diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 00000000..30356fe4 --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: 730ce413499d8fdfd29ef8987be796d6 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 00000000..e69de29b diff --git a/_images/tutorials_DataIO_DataIO_example_16_1.png b/_images/tutorials_DataIO_DataIO_example_16_1.png new file mode 100644 index 00000000..f3067b44 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_16_1.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_17_1.png b/_images/tutorials_DataIO_DataIO_example_17_1.png new file mode 100644 index 00000000..e6c93b3a Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_17_1.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_19_1.png b/_images/tutorials_DataIO_DataIO_example_19_1.png new file mode 100644 index 00000000..8fd57ad3 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_19_1.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_19_2.png b/_images/tutorials_DataIO_DataIO_example_19_2.png new file mode 100644 index 00000000..3f47fba0 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_19_2.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_19_3.png b/_images/tutorials_DataIO_DataIO_example_19_3.png new file mode 100644 index 00000000..bc1c6976 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_19_3.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_19_4.png b/_images/tutorials_DataIO_DataIO_example_19_4.png new file mode 100644 index 00000000..445a0188 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_19_4.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_19_5.png b/_images/tutorials_DataIO_DataIO_example_19_5.png new file mode 100644 index 00000000..08be3d6d Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_19_5.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_19_7.png b/_images/tutorials_DataIO_DataIO_example_19_7.png new file mode 100644 index 00000000..1dd715b9 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_19_7.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_23_1.png b/_images/tutorials_DataIO_DataIO_example_23_1.png new file mode 100644 index 00000000..f3067b44 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_23_1.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_23_3.png b/_images/tutorials_DataIO_DataIO_example_23_3.png new file mode 100644 index 00000000..e6c93b3a Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_23_3.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_29_1.png b/_images/tutorials_DataIO_DataIO_example_29_1.png new file mode 100644 index 00000000..bb32f4c3 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_29_1.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_29_3.png b/_images/tutorials_DataIO_DataIO_example_29_3.png new file mode 100644 index 00000000..184f8cb4 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_29_3.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_31_0.png b/_images/tutorials_DataIO_DataIO_example_31_0.png new file mode 100644 index 00000000..93889c2a Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_31_0.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_32_0.png b/_images/tutorials_DataIO_DataIO_example_32_0.png new file mode 100644 index 00000000..60ef7295 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_32_0.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_40_1.png b/_images/tutorials_DataIO_DataIO_example_40_1.png new file mode 100644 index 00000000..b2246c4b Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_40_1.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_40_3.png b/_images/tutorials_DataIO_DataIO_example_40_3.png new file mode 100644 index 00000000..abb7c723 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_40_3.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_42_0.png b/_images/tutorials_DataIO_DataIO_example_42_0.png new file mode 100644 index 00000000..d0a49202 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_42_0.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_43_0.png b/_images/tutorials_DataIO_DataIO_example_43_0.png new file mode 100644 index 00000000..c7550dc4 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_43_0.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_47_1.png b/_images/tutorials_DataIO_DataIO_example_47_1.png new file mode 100644 index 00000000..ad420bdd Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_47_1.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_47_2.png b/_images/tutorials_DataIO_DataIO_example_47_2.png new file mode 100644 index 00000000..8a0e2e65 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_47_2.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_47_3.png b/_images/tutorials_DataIO_DataIO_example_47_3.png new file mode 100644 index 00000000..1a124660 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_47_3.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_47_4.png b/_images/tutorials_DataIO_DataIO_example_47_4.png new file mode 100644 index 00000000..56423725 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_47_4.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_47_5.png b/_images/tutorials_DataIO_DataIO_example_47_5.png new file mode 100644 index 00000000..94ec9ca0 Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_47_5.png differ diff --git a/_images/tutorials_DataIO_DataIO_example_47_7.png b/_images/tutorials_DataIO_DataIO_example_47_7.png new file mode 100644 index 00000000..8c7e5e4a Binary files /dev/null and b/_images/tutorials_DataIO_DataIO_example_47_7.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_52_0.png b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_52_0.png new file mode 100644 index 00000000..11d71eb8 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_52_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_54_0.png b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_54_0.png new file mode 100644 index 00000000..6a25fd88 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_54_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_56_0.png b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_56_0.png new file mode 100644 index 00000000..0bd23db9 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_56_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_60_0.png b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_60_0.png new file mode 100644 index 00000000..bf75cbd7 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_60_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_62_0.png b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_62_0.png new file mode 100644 index 00000000..be8367c0 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_62_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_0.png new file mode 100644 index 00000000..464ba2fb Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_1.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_1.png new file mode 100644 index 00000000..62087d8e Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_1.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_0.png new file mode 100644 index 00000000..437b7822 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_1.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_1.png new file mode 100644 index 00000000..1bb32135 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_1.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_35_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_35_0.png new file mode 100644 index 00000000..8fb4ab04 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_35_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_37_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_37_0.png new file mode 100644 index 00000000..54a5c5fb Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_37_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_39_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_39_0.png new file mode 100644 index 00000000..c15d9b90 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_39_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_43_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_43_0.png new file mode 100644 index 00000000..13d044e9 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_43_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_45_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_45_0.png new file mode 100644 index 00000000..916287b7 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_45_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_47_1.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_47_1.png new file mode 100644 index 00000000..0f0c8cfe Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_47_1.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_49_1.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_49_1.png new file mode 100644 index 00000000..a3440036 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_49_1.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_51_1.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_51_1.png new file mode 100644 index 00000000..7ce93d49 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_51_1.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_55_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_55_0.png new file mode 100644 index 00000000..06fc8b81 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_55_0.png differ diff --git a/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_57_0.png b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_57_0.png new file mode 100644 index 00000000..444ccff1 Binary files /dev/null and b/_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_57_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_52_0.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_52_0.png new file mode 100644 index 00000000..2655e5c5 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_52_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_54_0.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_54_0.png new file mode 100644 index 00000000..e06d6e12 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_54_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_56_0.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_56_0.png new file mode 100644 index 00000000..616738f7 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_56_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_0.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_0.png new file mode 100644 index 00000000..b853c29d Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_1.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_1.png new file mode 100644 index 00000000..ba9931c1 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_2.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_2.png new file mode 100644 index 00000000..28239657 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_2.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_3.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_3.png new file mode 100644 index 00000000..e58ca5ea Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_3.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_4.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_4.png new file mode 100644 index 00000000..8f500907 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_4.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_5.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_5.png new file mode 100644 index 00000000..64c9c700 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_5.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_6.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_6.png new file mode 100644 index 00000000..d9fdbce2 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_6.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_7.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_7.png new file mode 100644 index 00000000..ec2b0bc4 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_7.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_8.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_8.png new file mode 100644 index 00000000..29086f6d Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_8.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_9.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_9.png new file mode 100644 index 00000000..78d15392 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_9.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_62_1.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_62_1.png new file mode 100644 index 00000000..42c5d7be Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_62_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_66_1.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_66_1.png new file mode 100644 index 00000000..27df37ad Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_66_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_68_0.png b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_68_0.png new file mode 100644 index 00000000..23dd1641 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_68_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_0.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_0.png new file mode 100644 index 00000000..fbaa743f Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_1.png new file mode 100644 index 00000000..a9e953a6 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_0.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_0.png new file mode 100644 index 00000000..7773b3c2 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_1.png new file mode 100644 index 00000000..9b912fbe Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_36_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_36_1.png new file mode 100644 index 00000000..949afc71 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_36_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_38_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_38_1.png new file mode 100644 index 00000000..365627da Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_38_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_40_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_40_1.png new file mode 100644 index 00000000..18654e32 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_40_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_0.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_0.png new file mode 100644 index 00000000..6fcc63fe Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_1.png new file mode 100644 index 00000000..3c8c498d Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_2.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_2.png new file mode 100644 index 00000000..4e757430 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_2.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_3.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_3.png new file mode 100644 index 00000000..40178066 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_3.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_4.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_4.png new file mode 100644 index 00000000..9b70b491 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_4.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_5.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_5.png new file mode 100644 index 00000000..12af3130 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_5.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_6.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_6.png new file mode 100644 index 00000000..c4e3c9eb Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_6.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_7.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_7.png new file mode 100644 index 00000000..e3b29243 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_7.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_8.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_8.png new file mode 100644 index 00000000..c800f135 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_8.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_9.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_9.png new file mode 100644 index 00000000..f8c45831 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_9.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_0.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_0.png new file mode 100644 index 00000000..3688f68e Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_1.png new file mode 100644 index 00000000..a4ea697f Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_2.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_2.png new file mode 100644 index 00000000..7e06b41d Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_2.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_3.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_3.png new file mode 100644 index 00000000..181e609c Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_3.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_4.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_4.png new file mode 100644 index 00000000..9e685138 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_4.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_5.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_5.png new file mode 100644 index 00000000..503f9633 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_5.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_6.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_6.png new file mode 100644 index 00000000..e779888e Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_6.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_7.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_7.png new file mode 100644 index 00000000..171dcfc4 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_7.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_8.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_8.png new file mode 100644 index 00000000..8cdeeb60 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_8.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_9.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_9.png new file mode 100644 index 00000000..8d3f0bcf Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_9.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_55_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_55_1.png new file mode 100644 index 00000000..0df144a2 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_55_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_59_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_59_1.png new file mode 100644 index 00000000..67097ab1 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_59_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_61_0.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_61_0.png new file mode 100644 index 00000000..d02c441b Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_61_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_46_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_46_1.png new file mode 100644 index 00000000..09d4184e Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_46_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_48_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_48_1.png new file mode 100644 index 00000000..a39b31ea Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_48_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_50_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_50_1.png new file mode 100644 index 00000000..27814137 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_50_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_0.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_0.png new file mode 100644 index 00000000..d0899b16 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_0.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_1.png new file mode 100644 index 00000000..1cfa59c8 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_2.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_2.png new file mode 100644 index 00000000..d1171bf4 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_2.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_3.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_3.png new file mode 100644 index 00000000..85df1858 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_3.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_4.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_4.png new file mode 100644 index 00000000..909bfd3e Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_4.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_5.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_5.png new file mode 100644 index 00000000..d6df6dd4 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_5.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_6.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_6.png new file mode 100644 index 00000000..2a54f8d6 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_6.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_7.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_7.png new file mode 100644 index 00000000..4af653ec Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_7.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_8.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_8.png new file mode 100644 index 00000000..155a0f45 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_8.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_9.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_9.png new file mode 100644 index 00000000..0681abd8 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_9.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_58_1.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_58_1.png new file mode 100644 index 00000000..26d67649 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_58_1.png differ diff --git a/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_62_0.png b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_62_0.png new file mode 100644 index 00000000..dc669cc3 Binary files /dev/null and b/_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_62_0.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_28_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_28_1.png new file mode 100644 index 00000000..cc718a48 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_28_1.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_41_2.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_41_2.png new file mode 100644 index 00000000..dbecacc0 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_41_2.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_65_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_65_1.png new file mode 100644 index 00000000..6787f433 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_65_1.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_67_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_67_1.png new file mode 100644 index 00000000..c8f51e68 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_67_1.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_69_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_69_1.png new file mode 100644 index 00000000..562e9029 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_69_1.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_0.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_0.png new file mode 100644 index 00000000..0b55ae62 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_0.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_1.png new file mode 100644 index 00000000..a4c8a752 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_1.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_2.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_2.png new file mode 100644 index 00000000..15c10af7 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_2.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_3.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_3.png new file mode 100644 index 00000000..87b0cd5d Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_3.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_4.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_4.png new file mode 100644 index 00000000..437f3be7 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_4.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_0.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_0.png new file mode 100644 index 00000000..34c8d609 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_0.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_1.png new file mode 100644 index 00000000..71c87bbf Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_1.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_2.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_2.png new file mode 100644 index 00000000..d6399fdd Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_2.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_3.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_3.png new file mode 100644 index 00000000..f4818b86 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_3.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_4.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_4.png new file mode 100644 index 00000000..51ec5240 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_4.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_88_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_88_1.png new file mode 100644 index 00000000..022512d0 Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_88_1.png differ diff --git a/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_91_1.png b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_91_1.png new file mode 100644 index 00000000..0f8a43cd Binary files /dev/null and b/_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_91_1.png differ diff --git a/_images/tutorials_response_DetectorResponse_23_0.png b/_images/tutorials_response_DetectorResponse_23_0.png new file mode 100644 index 00000000..e7408e0a Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_23_0.png differ diff --git a/_images/tutorials_response_DetectorResponse_25_0.png b/_images/tutorials_response_DetectorResponse_25_0.png new file mode 100644 index 00000000..84a73dcf Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_25_0.png differ diff --git a/_images/tutorials_response_DetectorResponse_29_0.png b/_images/tutorials_response_DetectorResponse_29_0.png new file mode 100644 index 00000000..04bf3bd4 Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_29_0.png differ diff --git a/_images/tutorials_response_DetectorResponse_39_1.png b/_images/tutorials_response_DetectorResponse_39_1.png new file mode 100644 index 00000000..7b3f0df1 Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_39_1.png differ diff --git a/_images/tutorials_response_DetectorResponse_41_1.png b/_images/tutorials_response_DetectorResponse_41_1.png new file mode 100644 index 00000000..a578eb3d Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_41_1.png differ diff --git a/_images/tutorials_response_DetectorResponse_48_1.png b/_images/tutorials_response_DetectorResponse_48_1.png new file mode 100644 index 00000000..e50a049a Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_48_1.png differ diff --git a/_images/tutorials_response_DetectorResponse_50_1.png b/_images/tutorials_response_DetectorResponse_50_1.png new file mode 100644 index 00000000..9b654e72 Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_50_1.png differ diff --git a/_images/tutorials_response_DetectorResponse_52_1.png b/_images/tutorials_response_DetectorResponse_52_1.png new file mode 100644 index 00000000..1586a26d Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_52_1.png differ diff --git a/_images/tutorials_response_DetectorResponse_60_0.png b/_images/tutorials_response_DetectorResponse_60_0.png new file mode 100644 index 00000000..ff30f069 Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_60_0.png differ diff --git a/_images/tutorials_response_DetectorResponse_61_1.png b/_images/tutorials_response_DetectorResponse_61_1.png new file mode 100644 index 00000000..fdbe147f Binary files /dev/null and b/_images/tutorials_response_DetectorResponse_61_1.png differ diff --git a/_images/tutorials_response_SpacecraftFile_18_1.png b/_images/tutorials_response_SpacecraftFile_18_1.png new file mode 100644 index 00000000..f9d40c76 Binary files /dev/null and b/_images/tutorials_response_SpacecraftFile_18_1.png differ diff --git a/_images/tutorials_response_SpacecraftFile_22_1.png b/_images/tutorials_response_SpacecraftFile_22_1.png new file mode 100644 index 00000000..e02069b7 Binary files /dev/null and b/_images/tutorials_response_SpacecraftFile_22_1.png differ diff --git a/_images/tutorials_response_SpacecraftFile_27_0.png b/_images/tutorials_response_SpacecraftFile_27_0.png new file mode 100644 index 00000000..532eaea1 Binary files /dev/null and b/_images/tutorials_response_SpacecraftFile_27_0.png differ diff --git a/_images/tutorials_response_SpacecraftFile_34_1.png b/_images/tutorials_response_SpacecraftFile_34_1.png new file mode 100644 index 00000000..8e750148 Binary files /dev/null and b/_images/tutorials_response_SpacecraftFile_34_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_10_1.png b/_images/tutorials_source_injector_GRB_source_injector_10_1.png new file mode 100644 index 00000000..de0a96df Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_10_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_21_1.png b/_images/tutorials_source_injector_GRB_source_injector_21_1.png new file mode 100644 index 00000000..361e25fe Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_21_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_28_1.png b/_images/tutorials_source_injector_GRB_source_injector_28_1.png new file mode 100644 index 00000000..be6a3ac4 Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_28_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_39_1.png b/_images/tutorials_source_injector_GRB_source_injector_39_1.png new file mode 100644 index 00000000..8a641bd1 Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_39_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_40_1.png b/_images/tutorials_source_injector_GRB_source_injector_40_1.png new file mode 100644 index 00000000..912ad1b0 Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_40_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_46_1.png b/_images/tutorials_source_injector_GRB_source_injector_46_1.png new file mode 100644 index 00000000..41e7db07 Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_46_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_63_0.png b/_images/tutorials_source_injector_GRB_source_injector_63_0.png new file mode 100644 index 00000000..77198a06 Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_63_0.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_6_1.png b/_images/tutorials_source_injector_GRB_source_injector_6_1.png new file mode 100644 index 00000000..87a211ad Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_6_1.png differ diff --git a/_images/tutorials_source_injector_GRB_source_injector_9_2.png b/_images/tutorials_source_injector_GRB_source_injector_9_2.png new file mode 100644 index 00000000..9e86040c Binary files /dev/null and b/_images/tutorials_source_injector_GRB_source_injector_9_2.png differ diff --git a/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_40_1.png b/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_40_1.png new file mode 100644 index 00000000..9b86c235 Binary files /dev/null and b/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_40_1.png differ diff --git a/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_42_1.png b/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_42_1.png new file mode 100644 index 00000000..3ac25fd4 Binary files /dev/null and b/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_42_1.png differ diff --git a/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_44_1.png b/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_44_1.png new file mode 100644 index 00000000..dfe2c20a Binary files /dev/null and b/_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_44_1.png differ diff --git a/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_42_1.png b/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_42_1.png new file mode 100644 index 00000000..55f0d080 Binary files /dev/null and b/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_42_1.png differ diff --git a/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_44_1.png b/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_44_1.png new file mode 100644 index 00000000..908eb54b Binary files /dev/null and b/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_44_1.png differ diff --git a/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_46_1.png b/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_46_1.png new file mode 100644 index 00000000..5c7a5deb Binary files /dev/null and b/_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_46_1.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_20_1.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_20_1.png new file mode 100644 index 00000000..dc0747ae Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_20_1.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_23_0.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_23_0.png new file mode 100644 index 00000000..ad0264c5 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_23_0.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_24_1.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_24_1.png new file mode 100644 index 00000000..9477089a Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_24_1.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_34_1.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_34_1.png new file mode 100644 index 00000000..eceaed5c Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_34_1.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_36_1.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_36_1.png new file mode 100644 index 00000000..85bb1fc0 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_36_1.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_1.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_1.png new file mode 100644 index 00000000..4e0a4f13 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_1.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_2.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_2.png new file mode 100644 index 00000000..62af07d5 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_2.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_64_0.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_64_0.png new file mode 100644 index 00000000..b8829786 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_64_0.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_0.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_0.png new file mode 100644 index 00000000..41252cc3 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_0.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_1.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_1.png new file mode 100644 index 00000000..152b8f65 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_1.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_2.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_2.png new file mode 100644 index 00000000..a14fc1a5 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_2.png differ diff --git a/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_79_0.png b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_79_0.png new file mode 100644 index 00000000..b28df1f9 Binary files /dev/null and b/_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_79_0.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_38_1.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_38_1.png new file mode 100644 index 00000000..9305f7be Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_38_1.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_48_0.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_48_0.png new file mode 100644 index 00000000..8a9877fb Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_48_0.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_50_0.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_50_0.png new file mode 100644 index 00000000..16016ea0 Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_50_0.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_57_1.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_57_1.png new file mode 100644 index 00000000..888b4959 Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_57_1.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_59_0.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_59_0.png new file mode 100644 index 00000000..b5ca79e9 Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_59_0.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_60_0.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_60_0.png new file mode 100644 index 00000000..f6b6b962 Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_60_0.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_80_1.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_80_1.png new file mode 100644 index 00000000..034e630b Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_80_1.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_90_0.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_90_0.png new file mode 100644 index 00000000..ff0ebd57 Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_90_0.png differ diff --git a/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_91_0.png b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_91_0.png new file mode 100644 index 00000000..42728e02 Binary files /dev/null and b/_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_91_0.png differ diff --git a/_modules/cosipy/data_io/BinnedData.html b/_modules/cosipy/data_io/BinnedData.html new file mode 100644 index 00000000..cba7cb26 --- /dev/null +++ b/_modules/cosipy/data_io/BinnedData.html @@ -0,0 +1,546 @@ + + + + + + cosipy.data_io.BinnedData — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.data_io.BinnedData

+# Imports:
+import sys
+import numpy as np
+import h5py
+from histpy import Histogram, HealpixAxis, Axis
+from scoords import SpacecraftFrame, Attitude
+from mhealpy import HealpixMap, HealpixBase
+import healpy as hp
+import pandas as pd
+import matplotlib.pyplot as plt
+from cosipy.make_plots import MakePlots
+from cosipy.data_io import UnBinnedData
+import logging
+import astropy.units as u
+from astropy.coordinates import SkyCoord
+logger = logging.getLogger(__name__)
+
+
+
+[docs] +class BinnedData(UnBinnedData): + """Handles binned data.""" + +
+[docs] + def get_binned_data(self, unbinned_data=None, output_name=None, \ + make_binning_plots=False, psichi_binning="galactic", event_range=None): + + """Bin the data using histpy and mhealpy. + + Parameters + ---------- + unbinned_data : str, optional + Name of unbinned data file to use. Input file is either + .fits or .hdf5 as specified in the unbinned_output + parameter in inputs.yaml. + output_name : str, optional + Prefix of output file. + make_binning_plots : bool, optional + Option to make basic plots of the binning (default is False). + psichi_binning : str, optional + 'galactic' for binning psichi in Galactic coordinates, or + 'local' for binning in local coordinates. Default is Galactic. + event_range : list of integers, optional + min and max event to use for the binning. + + Returns + ------- + binned_data : histpy:Histogram + Data is binned in four axes: time, measured energy, + Compton scattering angle (phi), and scattering direction + (PsiChi). + + Note + ---- + This method constructs the instance attribute, binned_data, + but it does not explicitly return it. + """ + + # Make print statement: + print("binning data...") + + # Option to read in unbinned data file: + if unbinned_data: + if self.unbinned_output == 'fits': + self.cosi_dataset = self.get_dict_from_fits(unbinned_data) + if self.unbinned_output == 'hdf5': + self.cosi_dataset = self.get_dict_from_hdf5(unbinned_data) + + # Get time bins: + min_time = self.tmin + max_time = self.tmax + if type(self.time_bins).__name__ in ['int','float']: + # Get time bins: + delta_t = max_time - min_time + num_bins = round(delta_t / self.time_bins) + new_bin_size = delta_t / num_bins + if self.time_bins != new_bin_size: + print() + print("Note: time bins must be equally spaced between min and max time.") + print("Using time bin size [s]: " + str(new_bin_size)) + print() + time_bin_edges = np.linspace(min_time,max_time,num_bins+1) + + if type(self.time_bins).__name__ == 'list': + # Check that bins correspond to min and max time: + if (self.time_bins[0] > min_time) | (self.time_bins[-1] < max_time): + print() + print("ERROR: Time bins do not cover the full selected data range!") + print() + sys.exit() + time_bin_edges = np.array(self.time_bins) + + # Get energy bins: + energy_bin_edges = np.array(self.energy_bins) + + # Get phi bins: + number_phi_bins = int(180./self.phi_pix_size) + phi_bin_edges = np.linspace(0,180,number_phi_bins+1) + + # Define psichi axis and data for binning: + if psichi_binning == 'galactic': + psichi_axis = HealpixAxis(nside = self.nside, + scheme = self.scheme, coordsys = 'galactic', label='PsiChi') + coords = SkyCoord(l=self.cosi_dataset['Chi galactic']*u.deg, + b=self.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic') + if psichi_binning == 'local': + psichi_axis = HealpixAxis(nside = self.nside, + scheme = self.scheme, coordsys = SpacecraftFrame(), label='PsiChi') + coords = SkyCoord(lon=self.cosi_dataset['Chi local']*u.rad, + lat=((np.pi/2.0) - self.cosi_dataset['Psi local'])*u.rad, + frame = SpacecraftFrame()) + + # Initialize histogram: + self.binned_data = Histogram([Axis(time_bin_edges*u.s, label='Time'), + Axis(energy_bin_edges*u.keV, label='Em'), + Axis(phi_bin_edges*u.deg, label='Phi'), + psichi_axis], + sparse=True) + + # Fill histogram: + if event_range == None: + self.binned_data.fill(self.cosi_dataset['TimeTags']*u.s, + self.cosi_dataset['Energies']*u.keV, + np.rad2deg(self.cosi_dataset['Phi'])*u.deg, + coords) + if event_range != None: + low = int(event_range[0]) + high = int(event_range[1]) + self.binned_data.fill(self.cosi_dataset['TimeTags'][low:high]*u.s, + self.cosi_dataset['Energies'][low:high]*u.keV, + np.rad2deg(self.cosi_dataset['Phi'][low:high])*u.deg, + coords[low:high]) + + # Save binned data to hdf5 file: + if output_name != None: + self.binned_data.write('%s.hdf5' %output_name, overwrite=True) + + # Get binning information: + self.get_binning_info() + + # Plot the binned data: + if make_binning_plots == True: + self.plot_binned_data() + self.plot_psichi_map() + + return
+ + +
+[docs] + def load_binned_data_from_hdf5(self,binned_data): + + """Loads binned histogram from hdf5 file. + + Parameters + ---------- + binned_data : str + Name of binned data file to load. + + Returns + ------- + binned_data : histpy:Histogram + Data is binned in four axes: time, measured energy, + Compton scattering angle (phi), and scattering direction + (PsiChi). + + Note + ---- + This method sets the instance attribute, binned_data, + but it does not explicitly return it. + """ + + self.binned_data = Histogram.open(binned_data) + + return
+ + +
+[docs] + def get_binning_info(self, binned_data=None): + + """Get binning information from Histpy histogram. + + Parameters + ---------- + binned_data : str + Name of binned data hdf5 file to use. + """ + + # Option to read in binned data from hdf5 file: + if binned_data: + self.load_binned_data_from_hdf5(binned_data) + + # Print units of axes: + for each in self.binned_data.axes: + print(each.label + " unit: " + str(each.unit)) + + # Get time binning information: + self.time_hist = self.binned_data.project('Time').contents.todense() + self.num_time_bins = self.binned_data.axes['Time'].nbins + self.time_bin_centers = self.binned_data.axes['Time'].centers + self.time_bin_edges = self.binned_data.axes['Time'].edges + self.time_bin_widths = self.binned_data.axes['Time'].widths + self.total_time = self.time_bin_edges[-1] - self.time_bin_edges[0] + + # Get energy binning information: + self.energy_hist = self.binned_data.project('Em').contents.todense() + self.num_energy_bins = self.binned_data.axes['Em'].nbins + self.energy_bin_centers = self.binned_data.axes['Em'].centers + self.energy_bin_edges = self.binned_data.axes['Em'].edges + self.energy_bin_widths = self.binned_data.axes['Em'].widths + + # Get Phi binning information: + self.phi_hist = self.binned_data.project('Phi').contents.todense() + self.num_phi_bins = self.binned_data.axes['Phi'].nbins + self.phi_bin_centers = self.binned_data.axes['Phi'].centers + self.phi_bin_edges = self.binned_data.axes['Phi'].edges + self.phi_bin_widths = self.binned_data.axes['Phi'].widths + + # Get PsiChi binning information: + self.psichi_hist = self.binned_data.project('PsiChi').contents.todense() + self.num_psichi_bins = self.binned_data.axes['PsiChi'].nbins + self.psichi_bin_centers = self.binned_data.axes['PsiChi'].centers + self.psichi_bin_edges = self.binned_data.axes['PsiChi'].edges + self.psichi_bin_widths = self.binned_data.axes['PsiChi'].widths + + return
+ + +
+[docs] + def plot_binned_data(self, binned_data=None): + + """Plot binnned data for all axes. + + Parameters + ---------- + binned_data : histpy:Histogram, optional + Name of binned histogram to use. + """ + + # Option to read in binned data from hdf5 file: + if binned_data: + self.load_binned_data_from_hdf5(binned_data) + + # Define plot dictionaries: + time_energy_plot = {"projection":["Time","Em"],"xlabel":"Time [s]",\ + "ylabel":"Em [keV]","savefig":"2d_time_energy.png"} + time_plot = {"projection":"Time","xlabel":"Time [s]",\ + "ylabel":"Counts","savefig":"time_binning.pdf"} + energy_plot = {"projection":"Em","xlabel":"Em [keV]",\ + "ylabel":"Counts","savefig":"energy_binning.pdf"} + phi_plot = {"projection":"Phi","xlabel":"Phi [deg]",\ + "ylabel":"Counts","savefig":"phi_binning.pdf"} + psichi_plot = {"projection":"PsiChi",\ + "xlabel":"PsiChi [HEALPix ring pixel number]",\ + "ylabel":"Counts","savefig":"psichi_binning.pdf"} + + # Make plots: + plot_list = [time_energy_plot,time_plot,energy_plot,phi_plot,psichi_plot] + for each in plot_list: + self.binned_data.project(each["projection"]).plot() + plt.xlabel(each["xlabel"],fontsize=12) + plt.ylabel(each["ylabel"], fontsize=12) + plt.savefig(each["savefig"]) + plt.show() + plt.close() + + return
+ + +
+[docs] + def plot_psichi_map(self): + + """ + Plot psichi healpix map. + """ + + print("plotting psichi in Galactic coordinates...") + plot, ax = self.binned_data.project('PsiChi').plot(ax_kw = {'coord':'G'}) + ax.get_figure().set_figwidth(4) + ax.get_figure().set_figheight(3) + plt.title("PsiChi Binning (counts)") + plt.savefig("psichi_default.png",bbox_inches='tight') + plt.show() + plt.close() + + return
+ + +
+[docs] + def plot_psichi_map_slices(self, Em, phi, output, binned_data=None, coords=None): + + """Plot psichi map in slices of Em and phi. + + Parameters + ---------- + Em : int + Bin of energy slice. + phi : int + Bin of phi slice. + output : str + Prefix of output plot. + binned_data : histpy:Histogram, optional + Name of binned histogram to use. + coords : list, optional + Coordinates of source position. Galactic longitude and + latidude for Galactic coordinates. Azimuthal and latitude + for local coordinates. + """ + + # Option to read in binned data from hdf5 file: + if binned_data: + self.load_binned_data_from_hdf5(binned_data) + + # Make healpix map with binned data slice: + h = self.binned_data.project('Em', 'Phi', 'PsiChi').slice[{'Em':Em, 'Phi':phi}].project('PsiChi') + m = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents.todense()) + + # Plot standard view: + plot,ax = m.plot('mollview') + if coords: + ax.scatter(coords[0], coords[1], s=9, transform=ax.get_transform('world'), color = 'red') + ax.coords.grid(True, color='grey', ls='dotted') + ax.get_figure().set_figwidth(6) + ax.get_figure().set_figheight(3) + plt.savefig("%s.pdf" %output,bbox_inches='tight') + plt.show() + plt.close() + + # Plot rotated view: + if coords: + plot,ax = m.plot('orthview', ax_kw = {'rot':[coords[0],coords[1],0]}) + ax.scatter(coords[0], coords[1], s=9, transform=ax.get_transform('world'), color = 'red') + ax.coords.grid(True, color='grey', ls='dotted') + ax.get_figure().set_figwidth(6) + ax.get_figure().set_figheight(3) + plt.savefig("%s_rotated.pdf" %output,bbox_inches='tight') + plt.show() + plt.close() + + return
+ + +
+[docs] + def get_raw_spectrum(self, binned_data=None, time_rate=False, output_name=None): + + """Calculates raw spectrum of binned data, plots, and writes to file. + + Parameters + ---------- + binned_data : str, optional + Name of binnned hdf5 data file. + output_name : str, optional + Prefix of output files. Writes both pdf and dat file. + time_rate : bool, optional + If True, calculates ct/keV/s. The defualt is ct/keV. + """ + + # Make print statement: + print("getting raw spectrum...") + + # Option to read in binned data from hdf5 file: + if binned_data: + self.load_binned_data_from_hdf5(binned_data) + self.get_binning_info() + + # Option to normalize by total time: + if time_rate==False: + raw_rate = self.energy_hist/self.energy_bin_widths + ylabel = "$\mathrm{ct \ keV^{-1}}$" + data_label = "Rate[ct/keV]" + if time_rate==True: + raw_rate = self.energy_hist/self.energy_bin_widths/self.total_time + ylabel = "$\mathrm{ct \ keV^{-1} \ s^{-1}}$" + data_label = "Rate[ct/keV/s]" + + # Plot: + plot_kwargs = {"label":"raw spectrum", "ls":"", "marker":"o", "color":"black"} + fig_kwargs = {"xlabel":"Energy [keV]", "ylabel":ylabel} + MakePlots().make_basic_plot(self.energy_bin_centers, raw_rate,\ + x_error=self.energy_bin_widths/2.0, savefig="%s.pdf" %output_name,\ + plot_kwargs=plot_kwargs, fig_kwargs=fig_kwargs) + + # Write data: + if output_name != None: + d = {"Energy[keV]":self.energy_bin_centers,data_label:raw_rate} + df = pd.DataFrame(data=d) + df.to_csv("%s.dat" %output_name,float_format='%10.5e',index=False,sep="\t",columns=["Energy[keV]",data_label]) + + return
+ + +
+[docs] + def get_raw_lightcurve(self, binned_data=None, output_name=None): + + """Calculates raw lightcurve of binned data, plots, and writes data to file. + + Parameters + ---------- + binned_data : str, optional + Name of binnned hdf5 data file to use. + output_name : str, optional + Prefix of output files. Writes both pdf and dat file. + """ + + # Make print statement: + print("getting raw lightcurve...") + + # Option to read in binned data from hdf5 file: + if binned_data: + self.load_binned_data_from_hdf5(binned_data) + self.get_binning_info() + + # Calculate raw light curve: + raw_lc = self.time_hist/self.time_bin_widths + + # Plot: + plot_kwargs = {"ls":"-", "marker":"", "color":"black", "label":"raw lightcurve"} + fig_kwargs = {"xlabel":"Time [s]", "ylabel":"Rate [$\mathrm{ct \ s^{-1}}$]"} + MakePlots().make_basic_plot(self.time_bin_centers - self.time_bin_centers[0], raw_lc,\ + savefig="%s.pdf" %output_name, plt_scale="semilogy", plot_kwargs=plot_kwargs, fig_kwargs=fig_kwargs) + + # Write data: + if output_name != None: + d = {"Time[UTC]":self.time_bin_centers,"Rate[ct/s]":self.time_hist/self.time_bin_widths} + df = pd.DataFrame(data=d) + df.to_csv("%s.dat" %output_name,index=False,sep="\t",columns=["Time[UTC]","Rate[ct/s]"]) + + return
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/data_io/DataIO.html b/_modules/cosipy/data_io/DataIO.html new file mode 100644 index 00000000..de5af9d1 --- /dev/null +++ b/_modules/cosipy/data_io/DataIO.html @@ -0,0 +1,151 @@ + + + + + + cosipy.data_io.DataIO — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.data_io.DataIO

+# Imports:
+import sys
+import os
+import yaml
+import argparse
+import cosipy.data_io
+from cosipy.config import Configurator
+
+
+[docs] +class DataIO: + + """Handles main inputs and outputs.""" + + def __init__(self, input_yaml, pw=None): + + """ + Parameters + ---------- + input_yaml : yaml file + Input yaml file containing all needed inputs for analysis. + + Notes + ----- + The main inputs must currently be passed with the yaml file. + The parameter configurator will be updated in the near future, + to allow for much more flexibility. + """ + + # Data I/O: + inputs = Configurator().open(input_yaml) + self.data_file = inputs['data_file'] # Full path to input data file. + self.ori_file = inputs['ori_file'] # Full path to ori file. + self.unbinned_output = inputs['unbinned_output'] # fits or hdf5 + self.time_bins = inputs['time_bins'] # Time bin size in seconds. Takes int, float, or list of bin edges. + self.energy_bins = inputs['energy_bins'] # Needs to match response. Takes list. + self.phi_pix_size = inputs['phi_pix_size'] # Binning of Compton scattering angle [deg] + self.nside = inputs['nside'] # Healpix binning of psi chi local + self.scheme = inputs['scheme'] # Healpix binning of psi chi local + self.tmin = inputs['tmin'] # Min time in seconds. + self.tmax = inputs['tmax'] # Max time in seconds.
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/data_io/ReadTraTest.html b/_modules/cosipy/data_io/ReadTraTest.html new file mode 100644 index 00000000..b5dec57d --- /dev/null +++ b/_modules/cosipy/data_io/ReadTraTest.html @@ -0,0 +1,323 @@ + + + + + + cosipy.data_io.ReadTraTest — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.data_io.ReadTraTest

+# Import
+from cosipy.data_io import UnBinnedData 
+import matplotlib.pyplot as plt
+import numpy as np
+import sys
+import pandas as pd
+
+try:
+    # Load MEGAlib into ROOT
+    import ROOT as M
+    M.gSystem.Load("$(MEGAlib)/lib/libMEGAlib.so")
+
+    # Initialize MEGAlib
+    G = M.MGlobal()
+    G.Initialize()
+    
+except:
+    pass
+
+
+[docs] +class ReadTraTest(UnBinnedData): + + """Old method for reading tra file, used for unit testing.""" + +
+[docs] + def read_tra_old(self,make_plots=True): + + """Reads in MEGAlib .tra (or .tra.gz) file. + + This method uses MEGAlib to read events from the tra file. + This is used to compare to the new event reader, which is + independent of MEGAlib. + + + Parameters + ---------- + make_plots : bool, optional + Option to make binning plot. + + Returns + ------- + cosi_dataset : dict + Returns COSI dataset as a dictionary of the form: + cosi_dataset = {'Full filename':self.data_file,\ + 'Energies':erg,\ + 'TimeTags':tt,\ + 'Xpointings':np.array([lonX,latX]).T,\ + 'Ypointings':np.array([lonY,latY]).T,\ + 'Zpointings':np.array([lonZ,latZ]).T,\ + 'Phi':phi,\ + 'Chi local':chi_loc,\ + 'Psi local':psi_loc,\ + 'Distance':dist,\ + 'Chi galactic':chi_gal,\ + 'Psi galactic':psi_gal} + + Note + ---- + This method sets the instance attribute, cosi_dataset, + but it does not explicitly return this. + """ + + # tra file to use: + tra_file = self.data_file + + # Make print statement: + print() + print("Read tra test...") + print() + + # Check if file exists: + Reader = M.MFileEventsTra() + if Reader.Open(M.MString(tra_file)) == False: + print("Unable to open file %s. Aborting!" %self.data_file) + sys.exit() + + # Initialise empty lists: + + # Total photon energy + erg = [] + # Time tag in UNIX time + tt = [] + # Event Type (0: CE; 4:PE; ...) + et = [] + # Latitude of X direction of spacecraft + latX = [] + # Lontitude of X direction of spacecraft + lonX = [] + # Latitude of Z direction of spacecraft + latZ = [] + # Longitude of Z direction of spacecraft + lonZ = [] + # Compton scattering angle + phi = [] + # Measured data space angle chi (azimuth direction; 0..360 deg) + chi_loc = [] + # Measured data space angle psi (polar direction; 0..180 deg) + psi_loc = [] + # First lever arm distance in cm + dist = [] + # Measured gal angle chi (lon direction) + chi_gal = [] + # Measured gal angle psi (lat direction) + psi_gal = [] + + # Browse through tra file, select events, and sort into corresponding list: + # Note: The Reader class from MEGAlib knows where an event starts and ends and + # returns the Event object which includes all information of an event. + # Note: Here only select Compton events (will add Photo events later as optional). + # Note: All calculations and definitions taken from: + # /MEGAlib/src/response/src/MResponseImagingBinnedMode.cxx. + + while True: + + Event = Reader.GetNextEvent() + if not Event: + break + + # Total Energy: + erg.append(Event.Ei()) + # Time tag in UNIX seconds: + tt.append(Event.GetTime().GetAsSeconds()) + # Event type (0 = Compton, 4 = Photo): + et.append(Event.GetEventType()) + # x axis of space craft pointing at GAL latitude: + latX.append(Event.GetGalacticPointingXAxisLatitude()) + # x axis of space craft pointing at GAL longitude: + lonX.append(Event.GetGalacticPointingXAxisLongitude()) + # z axis of space craft pointing at GAL latitude: + latZ.append(Event.GetGalacticPointingZAxisLatitude()) + # z axis of space craft pointing at GAL longitude: + lonZ.append(Event.GetGalacticPointingZAxisLongitude()) + # Compton scattering angle: + phi.append(Event.Phi()) + # Data space angle chi (azimuth): + chi_loc.append((-Event.Dg()).Phi()) + # Data space angle psi (polar): + psi_loc.append((-Event.Dg()).Theta()) + # Interaction length between first and second scatter in cm: + dist.append(Event.FirstLeverArm()) + # Gal longitude angle corresponding to chi: + chi_gal.append((Event.GetGalacticPointingRotationMatrix()*Event.Dg()).Phi()) + # Gal longitude angle corresponding to chi: + psi_gal.append((Event.GetGalacticPointingRotationMatrix()*Event.Dg()).Theta()) + + # Initialize arrays: + erg = np.array(erg) + tt = np.array(tt) + et = np.array(et) + + latX = np.array(latX) + lonX = np.array(lonX) + # Change longitudes to from 0..360 deg to -180..180 deg + lonX[lonX > np.pi] -= 2*np.pi + + latZ = np.array(latZ) + lonZ = np.array(lonZ) + # Change longitudes to from 0..360 deg to -180..180 deg + lonZ[lonZ > np.pi] -= 2*np.pi + + phi = np.array(phi) + + chi_loc = np.array(chi_loc) + self.chi_loc_old = chi_loc + + # Change azimuth angle to 0..360 deg + chi_loc[chi_loc < 0] += 2*np.pi + + psi_loc = np.array(psi_loc) + self.psi_loc_old = psi_loc + + # For comparing chi_loc, psi_loc=0 values are arbitrary, + # so we exclude them from the comparison. + psi_zero_index = psi_loc == 0 + + dist = np.array(dist) + + chi_gal = np.array(chi_gal) + psi_gal = np.array(psi_gal) + self.chi_gal_old = chi_gal + self.psi_gal_old = psi_gal + + # Construct Y direction from X and Z direction + lonlatY = self.construct_scy(np.rad2deg(lonX),np.rad2deg(latX), + np.rad2deg(lonZ),np.rad2deg(latZ)) + lonY = np.deg2rad(lonlatY[0]) + latY = np.deg2rad(lonlatY[1]) + + # Avoid negative zeros + chi_loc[np.where(chi_loc == 0.0)] = np.abs(chi_loc[np.where(chi_loc == 0.0)]) + + # Make observation dictionary + cosi_dataset = {'Energies':erg, + 'TimeTags':tt, + 'Xpointings':np.array([lonX,latX]).T, + 'Ypointings':np.array([lonY,latY]).T, + 'Zpointings':np.array([lonZ,latZ]).T, + 'Phi':phi, + 'Chi local':self.chi_loc_old, + 'Psi local':self.psi_loc_old, + 'Distance':dist, + 'Chi galactic':self.chi_gal_old, + 'Psi galactic':self.psi_gal_old} + self.cosi_dataset = cosi_dataset + + # Write unbinned data to file (either fits or hdf5): + self.write_unbinned_output() + + return
+
+ + +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/data_io/UnBinnedData.html b/_modules/cosipy/data_io/UnBinnedData.html new file mode 100644 index 00000000..bbca9431 --- /dev/null +++ b/_modules/cosipy/data_io/UnBinnedData.html @@ -0,0 +1,806 @@ + + + + + + cosipy.data_io.UnBinnedData — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.data_io.UnBinnedData

+# Imports:
+import numpy as np
+from astropy.table import Table
+from astropy.io import fits
+from scipy import interpolate
+import h5py
+import time
+from cosipy.data_io import DataIO
+from cosipy.spacecraftfile import SpacecraftFile
+import gzip
+import astropy.coordinates as astro_co
+import astropy.units as u
+from astropy.coordinates import SkyCoord
+from scoords import Attitude
+from scoords import SpacecraftFrame
+import logging
+import sys
+import math
+from tqdm import tqdm
+import subprocess
+import gc
+import os
+import time
+logger = logging.getLogger(__name__)
+
+
+[docs] +class UnBinnedData(DataIO): + """Handles unbinned data.""" + +
+[docs] + def read_tra(self, output_name=None, run_test=False, use_ori=False, + event_min=None, event_max=None): + + """Reads MEGAlib .tra (or .tra.gz) file and creates cosi datset. + + Parameters + ---------- + output_name : str, optional + Prefix of output file (default is None, in which case no + output is written). + run_test : bool, optional + This is for unit testing only! Keep False unless + comparing to MEGAlib calculations. + use_ori : bool, optional + Option to get pointing information from the orientation + file, based on event time-stamps (default is False, in + which case the pointing information comes from the event + file itself). Note: this is an option for now, but will + later be the default. + event_min : int, optional + Minimum event number to process (inclusive). All events + below this will be skipped. + event_max : int, optional + Maximum event number to process (non-inclusive). All + events at and above this will be skipped. + + Note: event_min and event_max correspond to the total + number of events in the file, which is not necessarily the + same as the event ID number. The purpose of this is to + allow the data to be read in chunks, in order to overcome + memory limitations, depending on the user's system. + + Returns + ------- + cosi_dataset, dict + The returned dictionary contains the COSI dataset, which + has the form: + cosi_dataset = {'Energies':erg,\ + 'TimeTags':tt,\ + 'Xpointings':np.array([lonX,latX]).T,\ + 'Ypointings':np.array([lonY,latY]).T,\ + 'Zpointings':np.array([lonZ,latZ]).T,\ + 'Phi':phi,\ + 'Chi local':chi_loc,\ + 'Psi local':psi_loc,\ + 'Distance':dist,\ + 'Chi galactic':chi_gal,\ + 'Psi galactic':psi_gal}\ + Arrays contain unbinned photon data. + + Notes + ----- + The current code is only able to handle data with Compton + events. It will need to be modified to handle single-site + and pair events. + + This method sets the instance attribute, cosi_dataset, + but it does not explicitly return this. + """ + + start_time = time.time() + + # Initialise empty lists: + + # Total photon energy + erg = [] + # Time tag in UNIX time + tt = [] + # Event Type (CE or PE) + et = [] + # Galactic latitude of X direction of spacecraft + latX = [] + # Galactic lontitude of X direction of spacecraft + lonX = [] + # Galactic latitude of Z direction of spacecraft + latZ = [] + # Galactic longitude of Z direction of spacecraft + lonZ = [] + # Compton scattering angle + phi = [] + # Measured data space angle chi (azimuth direction; 0..360 deg) + chi_loc = [] + # Measured data space angle psi (polar direction; 0..180 deg) + psi_loc = [] + # Measured gal angle chi (lon direction) + chi_gal = [] + # Measured gal angle psi (lat direction) + psi_gal = [] + # Components of dg (position vector from 1st interaion to 2nd) + dg_x = [] + dg_y = [] + dg_z = [] + + # Define electron rest energy, which is used in calculation + # of Compton scattering angle. + c_E0 = 510.9989500015 # keV + + # This is for unit testing purposes only. + # Use same value as MEGAlib for direct comparison: + if run_test == True: + c_E0 = 510.999 + + print("Preparing to read file...") + + # Open .tra.gz file: + if self.data_file.endswith(".gz"): + f = gzip.open(self.data_file,"rt") + + # Need to get number of lines for progress bar. + # First try fast method for unix-based systems: + try: + proc=subprocess.Popen('gunzip -c %s | wc -l' %self.data_file, \ + shell=True, stdout=subprocess.PIPE) + num_lines = float(proc.communicate()[0]) + + # If fast method fails, use long method, which should work in all cases. + except: + print("Initial attempt failed.") + print("Using long method...") + g = gzip.open(self.data_file,"rt") + num_lines = sum(1 for line in g) + g.close() + + # Open .tra file: + elif self.data_file.endswith(".tra"): + f = open(self.data_file,"r") + + try: + proc=subprocess.Popen('wc -l < %s' %self.data_file, \ + shell=True, stdout=subprocess.PIPE) + num_lines = float(proc.communicate()[0]) + + except: + print("Initial attempt failed.") + print("Using long method...") + g = open(self.data_file,"rt") + num_lines = sum(1 for line in g) + g.close() + + else: + print() + print("ERROR: Input data file must have '.tra' or '.gz' extenstion.") + print() + sys.exit() + + + # Read tra file line by line: + print("Reading file...") + N_events = 0 # number of events + pbar = tqdm(total=num_lines) # start progress bar + for line in f: + + this_line = line.strip().split() + pbar.update(1) # update progress bar + + # Make sure line isn't empty: + if len(this_line) == 0: + continue + + # Count the number of events: + if this_line[0] == "ID": + N_events += 1 + + # Option to only parse a subset of events: + if event_min != None: + if N_events < event_min: + continue + if event_max != None: + if N_events >= event_max: + pbar.close() + print("Stopping here: only reading a subset of events") + break + + # Total photon energy and Compton angle: + if this_line[0] == "CE": + + # Compute the total photon energy: + m_Eg = float(this_line[1]) # Energy of scattered gamma ray in keV + m_Ee = float(this_line[3]) # Energy of recoil electron in keV + this_erg = m_Eg + m_Ee + erg.append(this_erg) + + # Compute the Compton scatter angle due to the standard equation, + # i.e. neglect the movement of the electron, + # which would lead to a Doppler-broadening. + this_value = 1.0 - c_E0 * (1.0/m_Eg - 1.0/(m_Ee + m_Eg)) + this_phi = np.arccos(this_value) # radians + phi.append(this_phi) + + # Time tag in Unix time (seconds): + if this_line[0] == "TI": + tt.append(float(this_line[1])) + + # Event type: + if this_line[0] == "ET": + et.append(this_line[1]) + + # X axis of detector orientation in Galactic coordinates: + if this_line[0] == "GX": + this_lonX = np.deg2rad(float(this_line[1])) # radians + this_latX = np.deg2rad(float(this_line[2])) # radians + lonX.append(this_lonX) + latX.append(this_latX) + + # Z axis of detector orientation in Galactic coordinates: + if this_line[0] == "GZ": + this_lonZ = np.deg2rad(float(this_line[1])) # radians + this_latZ = np.deg2rad(float(this_line[2])) # radians + lonZ.append(this_lonZ) + latZ.append(this_latZ) + + # Interaction position information: + if (this_line[0] == "CH"): + + # First interaction: + if this_line[1] == "0": + v1 = np.array((float(this_line[2]),\ + float(this_line[3]),float(this_line[4]))) + + # Second interaction: + if this_line[1] == "1": + v2 = np.array((float(this_line[2]), + float(this_line[3]), float(this_line[4]))) + + # Compute position vector between first two interactions: + dg = v1 - v2 + dg_x.append(dg[0]) + dg_y.append(dg[1]) + dg_z.append(dg[2]) + + # Close progress bar: + pbar.close() + print("Making COSI data set...") + print("total events to procecss: " + str(len(erg))) + + # Clear unused memory: + gc.collect() + + # Initialize arrays: + print("Initializing arrays...") + erg = np.array(erg) + phi = np.array(phi) + tt = np.array(tt) + et = np.array(et) + lonX = np.array(lonX) + latX = np.array(latX) + lonZ = np.array(lonZ) + latZ = np.array(latZ) + dg_x = np.array(dg_x) + dg_y = np.array(dg_y) + dg_z = np.array(dg_z) + + # Check if the input data has pointing information, + # if not, get it from the spacecraft file: + if (use_ori == False) & (len(lonZ)==0): + print("WARNING: No pointing information in input data.") + print("Getting pointing information from spacecraft file.") + use_ori = True + + # Option to get X and Z pointing information from orientation file: + if use_ori == True: + self.instrument_pointing() + lonX = self.xl_interp(tt) + latX = self.xb_interp(tt) + lonZ = self.zl_interp(tt) + latZ = self.zb_interp(tt) + + # Convert dg vector from 3D cartesian coordinates + # to spherical polar coordinates, and then extract distance + # b/n first two interactions (in cm), psi (rad), and chi (rad). + # Note: the resulting angles are latitude/longitude (or elevation/azimuthal). + conv = astro_co.cartesian_to_spherical(dg_x, dg_y, dg_z) + dist = conv[0].value + psi_loc = conv[1].value + chi_loc = conv[2].value + + # Calculate chi_gal and psi_gal from x,y,z coordinates of events: + xcoords = SkyCoord(lonX*u.rad, latX*u.rad, frame = 'galactic') + zcoords = SkyCoord(lonZ*u.rad, latZ*u.rad, frame = 'galactic') + attitude = Attitude.from_axes(x=xcoords, z=zcoords, frame = 'galactic') + c = SkyCoord(dg_x, dg_y, dg_z, \ + representation_type='cartesian', frame = SpacecraftFrame(attitude = attitude)) + c_rotated = c.transform_to('galactic') + chi_gal = np.array(c_rotated.l.deg) + psi_gal = np.array(c_rotated.b.deg) + + # Change longitudes from 0..360 deg to -180..180 deg + lonX[lonX > np.pi] -= 2*np.pi + lonZ[lonZ > np.pi] -= 2*np.pi + + # Construct Y direction from X and Z direction + lonlatY = self.construct_scy(np.rad2deg(lonX),np.rad2deg(latX), + np.rad2deg(lonZ),np.rad2deg(latZ)) + lonY = np.deg2rad(lonlatY[0]) + latY = np.deg2rad(lonlatY[1]) + + # Rotate psi_loc to colatitude, measured from positive z direction. + # This is requred for mhealpy input. + psi_loc = (np.pi/2.0) - psi_loc + + # Define test values for psi and chi local; + # this is only for comparing to MEGAlib: + self.psi_loc_test = psi_loc + self.chi_loc_test = chi_loc + + # Do the same for psi and chi galactic. + # First need to convert to radians: + chi_gal_rad = np.array(c_rotated.l.rad) + psi_gal_rad = np.array(c_rotated.b.rad) + + # Rotate psi_gal_rad to colatitude, measured from positive + # z direction: + psi_gal_rad = (np.pi/2.0) - psi_gal_rad + self.psi_gal_test = psi_gal_rad + + # Rotate chi_gal_test by pi, defined with respect to + # the negative x-axis: + self.chi_gal_test = chi_gal_rad - np.pi + + # Make observation dictionary + print("Making dictionary...") + cosi_dataset = {'Energies':erg, + 'TimeTags':tt, + 'Xpointings (glon,glat)':np.array([lonX,latX]).T, + 'Ypointings (glon,glat)':np.array([lonY,latY]).T, + 'Zpointings (glon,glat)':np.array([lonZ,latZ]).T, + 'Phi':phi, + 'Chi local':chi_loc, + 'Psi local':psi_loc, + 'Distance':dist, + 'Chi galactic':chi_gal, + 'Psi galactic':psi_gal} + self.cosi_dataset = cosi_dataset + + # Option to write unbinned data to file (either fits or hdf5): + if output_name != None: + print("Saving file...") + self.write_unbinned_output(output_name) + + # Get processing time: + end_time = time.time() + processing_time = end_time - start_time + print("total processing time [s]: " + str(processing_time)) + + return
+ + +
+[docs] + def instrument_pointing(self): + + """Get pointing information from ori file. + + Initializes interpolated functions for lonx, latx, lonz, latz + in radians. + + Returns + ------- + xl_interp : scipy:interpolate:interp1d + xb_interp : scipy:interpolate:interp1d + zl_interp : scipy:interpolate:interp1d + zb_interp : scipy:interpolate:interp1d + + Note + ---- + This method sets the instance attributes, + but it does not explicitly return them. + """ + + # Get ori info: + ori = SpacecraftFile.parse_from_file(self.ori_file) + time_tags = ori._load_time + x_pointings = ori.x_pointings + z_pointings = ori.z_pointings + + # Interpolate: + self.xl_interp = interpolate.interp1d(time_tags, x_pointings.l.rad, kind='linear') + self.xb_interp = interpolate.interp1d(time_tags, x_pointings.b.rad, kind='linear') + self.zl_interp = interpolate.interp1d(time_tags, z_pointings.l.rad, kind='linear') + self.zb_interp = interpolate.interp1d(time_tags, z_pointings.b.rad, kind='linear') + + return
+ + +
+[docs] + def construct_scy(self, scx_l, scx_b, scz_l, scz_b): + + """Construct y-coordinate of instrument pointing given x and z directions. + + Parameters + ---------- + scx_l : float + Longitude of x direction in degrees. + scx_b : float + Latitude of x direction in degrees. + scz_l : float + Longitude of z direction in degrees. + scz_b : float + Latitude of z direction in degrees. + + Returns + ------- + ra : float + Right ascension (in degrees) for y-coordinate of instrument pointing. + dec : float + Declination (in degrees) for y-coordinate of instrument pointing. + + Note + ---- + Here, z is the optical axis. + """ + + x = self.polar2cart(scx_l, scx_b) + z = self.polar2cart(scz_l, scz_b) + + return self.cart2polar(np.cross(z,x,axis=0))
+ + +
+[docs] + def polar2cart(self, ra, dec): + + """Coordinate transformation of ra/dec (lon/lat) [phi/theta] + polar/spherical coordinates into cartesian coordinates. + + Parameters + ---------- + ra : float + Right ascension in degrees. + dec: float + Declination in degrees. + + Returns + ------- + array + x, y, and z cartesian coordinates in radians. + """ + + x = np.cos(np.deg2rad(ra)) * np.cos(np.deg2rad(dec)) + y = np.sin(np.deg2rad(ra)) * np.cos(np.deg2rad(dec)) + z = np.sin(np.deg2rad(dec)) + + return np.array([x,y,z])
+ + +
+[docs] + def cart2polar(self, vector): + + """Coordinate transformation of cartesian x/y/z values into + spherical (deg). + + Parameters + ---------- + vector : vec + Vector of x/y/z values. + + Returns + ------- + ra : float + Right ascension in degrees. + dec : float + Declination in degrees. + """ + + ra = np.arctan2(vector[1],vector[0]) + dec = np.arcsin(vector[2]) + + return np.rad2deg(ra), np.rad2deg(dec)
+ + +
+[docs] + def write_unbinned_output(self, output_name): + + """Writes unbinned data file to either fits or hdf5. + + Parameters + ---------- + output_name : str + Name of output file. Only include prefix (not file type). + """ + + # Data units: + units=['keV','s','rad','rad', + 'rad','rad','rad','rad','cm','deg','deg'] + + # For fits output: + if self.unbinned_output == 'fits': + table = Table(list(self.cosi_dataset.values()),\ + names=list(self.cosi_dataset.keys()), \ + units=units, \ + meta={'data file':os.path.basename(self.data_file), \ + 'version':1.0}) + table.write("%s.fits" %output_name, overwrite=True) + os.system('gzip -f %s.fits' %output_name) + + # For hdf5 output: + if self.unbinned_output == 'hdf5': + with h5py.File('%s.hdf5' %output_name, 'w') as hf: + for each in list(self.cosi_dataset.keys()): + dset = hf.create_dataset(each, data=self.cosi_dataset[each], compression='gzip') + + return
+ + +
+[docs] + def get_dict_from_fits(self, input_fits): + + """Constructs dictionary from input fits file. + + Parameters + ---------- + input_fits : str + Name of input fits file. + + Returns + ------- + dict + Dictionary constructed from input fits file. + """ + + # Initialize dictionary: + this_dict = {} + + # Fill dictionary from input fits file: + hdu = fits.open(input_fits,memmap=True) + cols = hdu[1].columns + data = hdu[1].data + for i in range(0,len(cols)): + + this_key = cols[i].name + this_dict[this_key] = data[this_key] + + # Clear unused memory: + gc.collect() + + return this_dict
+ + +
+[docs] + def get_dict_from_hdf5(self, input_hdf5): + + """Constructs dictionary from input hdf5 file + + Parameters + ---------- + input_hdf5 : str + Name of input hdf5 file. + + Returns + ------- + dict + Dictionary constructed from input hdf5 file. + """ + + # Initialize dictionary: + this_dict = {} + + # Fill dictionary from input h5fy file: + hf = h5py.File(input_hdf5,"r") + keys = list(hf.keys()) + for each in keys: + this_dict[each] = hf[each][:] + + return this_dict
+ + +
+[docs] + def select_data(self, output_name=None, unbinned_data=None): + + """Applies cuts to unbinnned data dictionary. + + Parameters + ---------- + unbinned_data : str, optional + Name of unbinned dictionary file. + output_name : str, optional + Prefix of output file (default is None, in which case no + file is saved). + + Note + ---- + Only cuts in time are allowed for now. + """ + + print("Making data selections...") + + # Option to read in unbinned data file: + if unbinned_data: + if self.unbinned_output == 'fits': + self.cosi_dataset = self.get_dict_from_fits(unbinned_data) + if self.unbinned_output == 'hdf5': + self.cosi_dataset = self.get_dict_from_hdf5(unbinned_data) + + # Get time cut index: + time_array = self.cosi_dataset["TimeTags"] + time_cut_index = (time_array >= self.tmin) & (time_array < self.tmax) + + # Apply cuts to dictionary: + for key in self.cosi_dataset: + + self.cosi_dataset[key] = self.cosi_dataset[key][time_cut_index] + + # Write unbinned data to file (either fits or hdf5): + if output_name != None: + print("Saving file...") + self.write_unbinned_output(output_name) + + return
+ + +
+[docs] + def combine_unbinned_data(self, input_files, output_name=None): + + """Combines input unbinned data files. + + Parameters + ---------- + input_files : list + List of file names to combine. + output_name : str, optional + Prefix of output file. + """ + + self.cosi_dataset = {} + counter = 0 + for each in input_files: + + print() + print("adding %s..." %each) + print() + + # Read dict from hdf5 or fits: + if self.unbinned_output == 'hdf5': + this_dict = self.get_dict_from_hdf5(each) + if self.unbinned_output == 'fits': + this_dict = self.get_dict_from_fits(each) + + # Combine dictionaries: + if counter == 0: + for key in this_dict: + self.cosi_dataset[key] = this_dict[key] + + if counter > 0: + for key in this_dict: + self.cosi_dataset[key] = np.concatenate((self.cosi_dataset[key],this_dict[key])) + + counter =+ 1 + + # Clear unused memory: + gc.collect() + + # Write unbinned data to file (either fits or hdf5): + if output_name != None: + self.write_unbinned_output(output_name) + + return
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/image_deconvolution/coordsys_conversion_matrix.html b/_modules/cosipy/image_deconvolution/coordsys_conversion_matrix.html new file mode 100644 index 00000000..befb18c7 --- /dev/null +++ b/_modules/cosipy/image_deconvolution/coordsys_conversion_matrix.html @@ -0,0 +1,346 @@ + + + + + + cosipy.image_deconvolution.coordsys_conversion_matrix — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.image_deconvolution.coordsys_conversion_matrix

+import numpy as np
+import healpy as hp
+from tqdm.autonotebook import tqdm
+import sparse
+import astropy.units as u
+from astropy.time import Time
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from scoords import Attitude, SpacecraftFrame
+from histpy import Histogram, Axes, Axis, HealpixAxis
+
+
+[docs] +class CoordsysConversionMatrix(Histogram): + """ + A class for coordinate conversion matrix (ccm). + """ + + def __init__(self, edges, contents = None, sumw2 = None, + labels=None, axis_scale = None, sparse = None, unit = None, + binning_method = None): + + super().__init__(edges, contents = contents, sumw2 = sumw2, + labels = labels, axis_scale = axis_scale, sparse = sparse, unit = unit) + + self.binning_method = binning_method #'Time' or 'ScAtt' + +
+[docs] + @classmethod + def time_binning_ccm(cls, full_detector_response, orientation, time_intervals, nside_model = None, is_nest_model = False): + """ + Calculate a ccm from a given orientation. + + Parameters + ---------- + full_detector_response : :py:class:`cosipy.response.FullDetectorResponse` + Response + orientation : :py:class:`cosipy.spacecraftfile.SpacecraftFile` + Orientation + time_intervals : :py:class:`np.array` + The same format of binned_data.axes['Time'].edges + nside_model : int or None, default None + If it is None, it will be the same as the NSIDE in the response. + is_nest_model : bool, default False + If scheme of the model map is nested, it should be False while it is rare. + + Returns + ------- + :py:class:`cosipy.image_deconvolution.CoordsysConversionMatrix` + Its axes are [ "Time", "lb", "NuLambda" ]. + """ + + if nside_model is None: + nside_model = full_detector_response.nside + + axis_time = Axis(edges = time_intervals, label = "Time") + axis_model_map = HealpixAxis(nside = nside_model, coordsys = "galactic", label = "lb") + axis_local_map = full_detector_response.axes["NuLambda"] + + axis_coordsys_conv_matrix = [ axis_time, axis_model_map, axis_local_map ] #Time, lb, NuLambda + + contents = [] + + for i_time, [init_time, end_time] in tqdm(enumerate(axis_time.bounds), total = len(axis_time.bounds)): + ccm_thispix = np.zeros((axis_model_map.nbins, axis_local_map.nbins)) # without unit + + init_time = Time(init_time, format = 'unix') + end_time = Time(end_time, format = 'unix') + + filtered_orientation = orientation.source_interval(init_time, end_time) + + for ipix in range(hp.nside2npix(nside_model)): + l, b = hp.pix2ang(nside_model, ipix, nest=is_nest_model, lonlat=True) + pixel_coord = SkyCoord(l, b, unit = "deg", frame = 'galactic') + + pixel_movement = filtered_orientation.get_target_in_sc_frame(target_name = f"pixel_{ipix}_{i_time}", + target_coord = pixel_coord, + quiet = True, + save = False) + + time_diff = filtered_orientation.get_time_delta() + + dwell_time_map = filtered_orientation.get_dwell_map(response = full_detector_response.filename, + dts = time_diff, + src_path = pixel_movement, + save = False) + + ccm_thispix[ipix] = dwell_time_map.data + # (HealpixMap).data returns the numpy array without its unit. dwell_time_map.unit is u.s. + + ccm_thispix_sparse = sparse.COO.from_numpy( ccm_thispix.reshape((1, axis_model_map.nbins, axis_local_map.nbins)) ) + + contents.append(ccm_thispix_sparse) + + coordsys_conv_matrix = cls(axis_coordsys_conv_matrix, contents = sparse.concatenate(contents), unit = u.s, sparse = True) + + coordsys_conv_matrix.binning_method = "Time" + + return coordsys_conv_matrix
+ + +
+[docs] + @classmethod + def spacecraft_attitude_binning_ccm(cls, full_detector_response, exposure_table, nside_model = None, use_averaged_pointing = False): + """ + Calculate a ccm from a given exposure_table. + + Parameters + ---------- + full_detector_response : :py:class:`cosipy.response.FullDetectorResponse` + Response + exposure_table : :py:class:`cosipy.image_deconvolution.SpacecraftAttitudeExposureTable` + Scatt exposure table + nside_model : int or None, default None + If it is None, it will be the same as the NSIDE in the response. + use_averaged_pointing : bool, default False + If it is True, first the averaged Z- and X-pointings are calculated. + Then the dwell time map is calculated once for ach model pixel and each scatt_binning_index. + If it is False, the dwell time map is calculated for each attitude in zpointing and xpointing in the exposure table. + Then the calculated dwell time maps are summed up. + In the former case, the computation is fast but may lose the angular resolution. + In the latter case, the conversion matrix is more accurate but it takes a long time to calculate it. + + Returns + ------- + :py:class:`cosipy.image_deconvolution.CoordsysConversionMatrix' + Its axes are [ "ScAtt", "lb", "NuLambda" ]. + """ + + if nside_model is None: + nside_model = full_detector_response.nside + is_nest_model = True if exposure_table.scheme == 'nest' else False + nside_local = full_detector_response.nside + + n_scatt_bins = len(exposure_table) + + axis_scatt = Axis(edges = np.arange(n_scatt_bins+1), label = "ScAtt") + axis_model_map = HealpixAxis(nside = nside_model, coordsys = "galactic", scheme = exposure_table.scheme, label = "lb") + axis_local_map = full_detector_response.axes["NuLambda"] + + axis_coordsys_conv_matrix = [ axis_scatt, axis_model_map, axis_local_map ] #lb, ScAtt, NuLambda + + contents = [] + + for i_scatt_bin in tqdm(range(n_scatt_bins)): + ccm_thispix = np.zeros((axis_model_map.nbins, axis_local_map.nbins)) # without unit + + row = exposure_table.iloc[i_scatt_bin] + + scatt_binning_index = row['scatt_binning_index'] + num_pointings = row['num_pointings'] + #healpix_index = row['healpix_index'] + zpointing = row['zpointing'] + xpointing = row['xpointing'] + zpointing_averaged = row['zpointing_averaged'] + xpointing_averaged = row['xpointing_averaged'] + delta_time = row['delta_time'] + exposure = row['exposure'] + + if use_averaged_pointing: + z = SkyCoord([zpointing_averaged[0]], [zpointing_averaged[1]], frame="galactic", unit="deg") + x = SkyCoord([xpointing_averaged[0]], [xpointing_averaged[1]], frame="galactic", unit="deg") + else: + z = SkyCoord(zpointing.T[0], zpointing.T[1], frame="galactic", unit="deg") + x = SkyCoord(xpointing.T[0], xpointing.T[1], frame="galactic", unit="deg") + + attitude = Attitude.from_axes(x = x, z = z, frame = 'galactic') + + for ipix in range(hp.nside2npix(nside_model)): + l, b = hp.pix2ang(nside_model, ipix, nest=is_nest_model, lonlat=True) + pixel_coord = SkyCoord(l, b, unit = "deg", frame = 'galactic') + + src_path_cartesian = SkyCoord(np.dot(attitude.rot.inv().as_matrix(), pixel_coord.cartesian.xyz.value), + representation_type = 'cartesian', frame = SpacecraftFrame()) + + src_path_spherical = cartesian_to_spherical(src_path_cartesian.x, src_path_cartesian.y, src_path_cartesian.z) + + l_scr_path = np.array(src_path_spherical[2].deg) # note that 0 is Quanty, 1 is latitude and 2 is longitude and they are in rad not deg + b_scr_path = np.array(src_path_spherical[1].deg) + + src_path_skycoord = SkyCoord(l_scr_path, b_scr_path, unit = "deg", frame = SpacecraftFrame()) + + pixels, weights = axis_local_map.get_interp_weights(src_path_skycoord) + + if use_averaged_pointing: + weights = weights * exposure + else: + weights = weights * delta_time + + hist, bins = np.histogram(pixels, bins = axis_local_map.edges, weights = weights) + + ccm_thispix[ipix] = hist + + ccm_thispix_sparse = sparse.COO.from_numpy( ccm_thispix.reshape((1, axis_model_map.nbins, axis_local_map.nbins)) ) + + contents.append(ccm_thispix_sparse) + + coordsys_conv_matrix = cls(axis_coordsys_conv_matrix, contents = sparse.concatenate(contents), unit = u.s, sparse = True) + + coordsys_conv_matrix.binning_method = 'ScAtt' + + return coordsys_conv_matrix
+ + +
+[docs] + @classmethod + def open(cls, filename, name = 'hist'): + """ + Open a ccm from a file. + + Parameters + ---------- + filename : str + Path to file. + name : str, default 'hist' + Name of group where the histogram was saved. + + Returns + ------- + :py:class:`cosipy.image_deconvolution.CoordsysConversionMatrix' + Its axes are [ "lb", "Time" or "ScAtt", "NuLambda" ]. + """ + + new = super().open(filename, name) + + new = cls(new.axes, contents = new.contents, sumw2 = new.contents, unit = new.unit) + + new.binning_method = new.axes.labels[0] # 'Time' or 'ScAtt' + + return new
+
+ + +# def calc_exposure_map(self, full_detector_response): #once the response file format is fixed, I will implement this function +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/image_deconvolution/data_loader.html b/_modules/cosipy/image_deconvolution/data_loader.html new file mode 100644 index 00000000..62f3a9c2 --- /dev/null +++ b/_modules/cosipy/image_deconvolution/data_loader.html @@ -0,0 +1,652 @@ + + + + + + cosipy.image_deconvolution.data_loader — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.image_deconvolution.data_loader

+import warnings
+import numpy as np
+from tqdm.autonotebook import tqdm
+import astropy.units as u
+
+from histpy import Histogram, Axes
+
+from cosipy.response import FullDetectorResponse
+from cosipy.data_io import BinnedData
+from .coordsys_conversion_matrix import CoordsysConversionMatrix
+
+
+[docs] +class DataLoader(object): + """ + A class to manage data for image analysis, + namely event data, background model, response, coordsys conversion matrix. + Ideally, these data should be input directly to ImageDeconvolution class, + but considering their data formats are not fixed, this class is introduced. + The purpose of this class is to check the consistency between input data and calculate intermediate files etc. + In the future, this class may be removed or hidden in ImageDeconvolution class. + """ + + def __init__(self): + self.event_dense = None + self.bkg_dense = None + self.full_detector_response = None + self.coordsys_conv_matrix = None + + self.is_miniDC2_format = False + + self.response_on_memory = False + + self.image_response_dense_projected = None + +
+[docs] + @classmethod + def load(cls, event_binned_data, bkg_binned_data, rsp, coordsys_conv_matrix, is_miniDC2_format = False): + """ + Load data + + Parameters + ---------- + event_binned_data : :py:class:`histpy.Histogram` + Event histogram + bkg_binned_data : :py:class:`histpy.Histogram` + Background model + rsp : :py:class:`histpy.Histogram` or :py:class:`cosipy.response.FullDetectorResponse` + Response + coordsys_conv_matrix : :py:class:`cosipy.image_deconvolution.CoordsysConversionMatrix` + Coordsys conversion matrix + is_miniDC2_format : bool, default False + Whether the file format is for mini-DC2. It will be removed in the future. + + Returns + ------- + :py:class:`cosipy.image_deconvolution.DataLoader` + DataLoader instance containing the input data set + """ + + new = cls() + + new.event_dense = event_binned_data.to_dense() + + new.bkg_dense = bkg_binned_data.to_dense() + + new.full_detector_response = rsp + + new.coordsys_conv_matrix = coordsys_conv_matrix + + new.is_miniDC2_format = is_miniDC2_format + + return new
+ + +
+[docs] + @classmethod + def load_from_filepath(cls, event_hdf5_filepath = None, event_yaml_filepath = None, + bkg_hdf5_filepath = None, bkg_yaml_filepath = None, + rsp_filepath = None, ccm_filepath = None, + is_miniDC2_format = False): + """ + Load data from file pathes + + Parameters + ---------- + event_hdf5_filepath : str or None, default None + File path of HDF5 file for event histogram. + event_yaml_filepath : str or None, default None + File path of yaml file to read the HDF5 file. + bkg_hdf5_filepath : str or None, default None + File path of HDF5 file for background model. + bkg_yaml_filepath : str or None, default None + File path of yaml file to read the HDF5 file. + rsp_filepath : str or None, default None + File path of the response matrix. + ccm_filepath : str or None, default None + File path of the coordsys conversion matrix. + is_miniDC2_format : bool, default False + Whether the file format is for mini-DC2. should be removed in the future. + + Returns + ------- + :py:class:`cosipy.image_deconvolution.DataLoader` + DataLoader instance containing the input data set + """ + + new = cls() + + new.set_event_from_filepath(event_hdf5_filepath, event_yaml_filepath) + + new.set_bkg_from_filepath(bkg_hdf5_filepath, bkg_yaml_filepath) + + new.set_rsp_from_filepath(rsp_filepath) + + new.set_ccm_from_filepath(ccm_filepath) + + new.is_miniDC2_format = is_miniDC2_format + + return new
+ + +
+[docs] + def set_event_from_filepath(self, hdf5_filepath, yaml_filepath): + """ + Load event data from file pathes + + Parameters + ---------- + hdf5_filepath : str + File path of HDF5 file for event histogram. + yaml_filepath : str + File path of yaml file to read the HDF5 file. + """ + + self._event_hdf5_filepath = hdf5_filepath + self._event_yaml_filepath = yaml_filepath + + print(f'... loading event from {hdf5_filepath} and {yaml_filepath}') + + event = BinnedData(self._event_yaml_filepath) + event.load_binned_data_from_hdf5(self._event_hdf5_filepath) + + self.event_dense = event.binned_data.to_dense() + + print("... Done ...")
+ + +
+[docs] + def set_bkg_from_filepath(self, hdf5_filepath, yaml_filepath): + """ + Load background model from file pathes + + Parameters + ---------- + hdf5_filepath : str + File path of HDF5 file for background model. + yaml_filepath : str + File path of yaml file to read the HDF5 file. + """ + + self._bkg_hdf5_filepath = hdf5_filepath + self._bkg_yaml_filepath = yaml_filepath + + print(f'... loading background from {hdf5_filepath} and {yaml_filepath}') + + bkg = BinnedData(self._bkg_yaml_filepath) + bkg.load_binned_data_from_hdf5(self._bkg_hdf5_filepath) + + self.bkg_dense = bkg.binned_data.to_dense() + + print("... Done ...")
+ + +
+[docs] + def set_rsp_from_filepath(self, filepath): + """ + Load response matrix from file pathes + + Parameters + ---------- + filepath : str + File path of the response matrix. + """ + + self._rsp_filepath = filepath + + print(f'... loading full detector response from {filepath}') + + self.full_detector_response = FullDetectorResponse.open(self._rsp_filepath) + + print("... Done ...")
+ + +
+[docs] + def set_ccm_from_filepath(self, filepath): + """ + Load coordsys conversion matrix from file pathes + + Parameters + ---------- + filepath : str + File path of the coordsys conversion matrix. + """ + + self._ccm_filepath = filepath + + print(f'... loading coordsys conversion matrix from {filepath}') + + self.coordsys_conv_matrix = CoordsysConversionMatrix.open(self._ccm_filepath) + + print("... Done ...")
+ + + def _check_file_registration(self): + """ + Check whether files are loaded. + + Returns + ------- + bool + True if all required files are loaded. + """ + + print(f"... checking the file registration ...") + + if self.event_dense and self.bkg_dense \ + and self.full_detector_response and self.coordsys_conv_matrix: + + print(f" --> pass") + return True + + return False + + def _check_axis_consistency(self): + """ + Check whether the axes of event/background/response are consistent with each other. + + Returns + ------- + bool + True if their axes are consistent. + """ + + print(f"... checking the axis consistency ...") + + # check the axes of the event/background files + if self.coordsys_conv_matrix.binning_method == 'Time': + axis_name = ['Time', 'Em', 'Phi', 'PsiChi'] + + elif self.coordsys_conv_matrix.binning_method == 'ScAtt': + axis_name = ['ScAtt', 'Em', 'Phi', 'PsiChi'] + + for name in axis_name: + if not self.event_dense.axes[name] == self.bkg_dense.axes[name]: + print(f"Warning: the axis {name} is not consistent between the event and background!") + return False + + # check the axes of the event/response files + axis_name = ['Em', 'Phi', 'PsiChi'] + + for name in axis_name: + if not self.event_dense.axes[name] == self.full_detector_response.axes[name]: + print(f"Warning: the axis {name} is not consistent between the event and response!") + return False + + print(f" --> pass") + return True + + def _modify_axes(self): + """ + Modify the axes of data. This method will be removed in the future. + """ + + warnings.warn("Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.", FutureWarning) + warnings.warn("Make sure to perform _modify_axes() only once after the data are loaded.") + + if self.coordsys_conv_matrix.binning_method == 'Time': + axis_name = ['Time', 'Em', 'Phi', 'PsiChi'] + + elif self.coordsys_conv_matrix.binning_method == 'ScAtt': + axis_name = ['ScAtt', 'Em', 'Phi', 'PsiChi'] + + for name in axis_name: + + print(f"... checking the axis {name} of the event and background files...") + + event_edges, event_unit = self.event_dense.axes[name].edges, self.event_dense.axes[name].unit + bkg_edges, bkg_unit = self.bkg_dense.axes[name].edges, self.bkg_dense.axes[name].unit + + if np.all(event_edges == bkg_edges): + print(f" --> pass (edges)") + else: + print(f"Warning: the edges of the axis {name} are not consistent between the event and background!") + print(f" event : {event_edges}") + print(f" background : {bkg_edges}") + return False + + if event_unit == bkg_unit: + print(f" --> pass (unit)") + else: + print(f"Warning: the unit of the axis {name} are not consistent between the event and background!") + print(f" event : {event_unit}") + print(f" background : {bkg_unit}") + return False + + # check the axes of the event/response files. + # Note that currently (2023-08-29) no unit is stored in the binned data. So only the edges are compared. This should be modified in the future. + + axis_name = ['Em', 'Phi', 'PsiChi'] + + for name in axis_name: + + print(f"...checking the axis {name} of the event and response files...") + + event_edges, event_unit = self.event_dense.axes[name].edges, self.event_dense.axes[name].unit + response_edges, response_unit = self.full_detector_response.axes[name].edges, self.full_detector_response.axes[name].unit + + if type(response_edges) == u.quantity.Quantity and self.is_miniDC2_format == True: + response_edges = response_edges.value + + if np.all(event_edges == response_edges): + print(f" --> pass (edges)") + else: + print(f"Warning: the edges of the axis {name} are not consistent between the event and background!") + print(f" event : {event_edges}") + print(f" response : {response_edges}") + return False + + axes_cds = Axes([self.event_dense.axes[0], \ + self.full_detector_response.axes["Em"], \ + self.full_detector_response.axes["Phi"], \ + self.full_detector_response.axes["PsiChi"]]) + + self.event_dense = Histogram(axes_cds, unit = self.event_dense.unit, contents = self.event_dense.contents) + + self.bkg_dense = Histogram(axes_cds, unit = self.bkg_dense.unit, contents = self.bkg_dense.contents) + + print(f"The axes in the event and background files are redefined. Now they are consistent with those of the response file.") + + ''' + def _check_sc_orientation_coverage(self): + + init_time_orientation = self.orientation.get_time()[0] + init_time_event = Time(self.event_dense.axes["Time"].edges[0], format = 'unix') + + if not init_time_orientation <= init_time_event: + print(f"Warning: the orientation file does not cover the observation") + print(f" initial time of the orientation file = {init_time_orientation}") + print(f" initial time of the event file = {init_time_event}") + return False + + end_time_orientation = self.orientation.get_time()[-1] + end_time_event = Time(self.event_dense.axes["Time"].edges[-1], format = 'unix') + + if not end_time_event <= end_time_orientation: + print(f"Warning: the orientation file does not cover the observation") + print(f" the end time of the orientation file = {end_time_orientation}") + print(f" the end time of the event file = {end_time_event}") + return False + + return True + ''' + +
+[docs] + def load_full_detector_response_on_memory(self): + """ + Load a response file on the computer memory. + """ + + axes_image_response = [self.full_detector_response.axes["NuLambda"], self.full_detector_response.axes["Ei"], + self.full_detector_response.axes["Em"], self.full_detector_response.axes["Phi"], self.full_detector_response.axes["PsiChi"]] + + self.image_response_dense = Histogram(axes_image_response, unit = self.full_detector_response.unit) + + nside = self.full_detector_response.axes["NuLambda"].nside + npix = self.full_detector_response.axes["NuLambda"].npix + + if self.is_miniDC2_format: + for ipix in tqdm(range(npix)): + self.image_response_dense[ipix] = np.sum(self.full_detector_response[ipix].to_dense(), axis = (4,5)) #Ei, Em, Phi, ChiPsi + else: + contents = self.full_detector_response._file['DRM']['CONTENTS'][:] + self.image_response_dense[:] = contents * self.full_detector_response.unit + + self.response_on_memory = True
+ + + ''' + def calc_coordsys_conv_matrix(self): + + if not self._check_file_registration(): + print("Please load all files!") + return + + if not self._check_axis_consistency(): + print("Please the axes of the input files!") + return + +# if not self._check_sc_orientation_coverage(): +# print("Please the axes of the input files!") +# return + + print("... (DataLoader) calculating a coordinate conversion matrix...") + + # make an empty histogram for the response calculation + axis_model_map = HealpixAxis(nside = self.full_detector_response.axes["NuLambda"].nside, + coordsys = "galactic", label = "lb") + + axis_coordsys_conv_matrix = [ axis_model_map, self.event_dense.axes["Time"], self.full_detector_response.axes["NuLambda"] ] #lb, Time, NuLambda + + self.coordsys_conv_matrix = Histogram(axis_coordsys_conv_matrix, unit = u.s, sparse = True) + + # calculate a dwell time map at each time bin and sky location + nside = self.full_detector_response.axes["NuLambda"].nside + npix = self.full_detector_response.axes["NuLambda"].npix + + for ipix in tqdm(range(npix)): + theta, phi = hp.pix2ang(nside, ipix) + l, b = phi, np.pi/2 - theta + + pixel_coord = SkyCoord(l, b, unit = u.rad, frame = 'galactic') + + for i_time, [init_time, end_time] in enumerate(self.coordsys_conv_matrix.axes["Time"].bounds): + init_time = Time(init_time, format = 'unix') + end_time = Time(end_time, format = 'unix') + + filtered_orientation = self.orientation.source_interval(init_time, end_time) + pixel_movement = filtered_orientation.get_target_in_sc_frame(target_name = f"pixel_{ipix}_{i_time}", + target_coord = pixel_coord, + quiet = True) + + time_diff = filtered_orientation.get_time_delta() + + dwell_time_map = filtered_orientation.get_dwell_map(response = self.full_detector_response.filename.resolve(), + dts = time_diff, + src_path = pixel_movement, + quiet = True) + + self.coordsys_conv_matrix[ipix,i_time] = dwell_time_map.data * dwell_time_map.unit + # (HealpixMap).data returns the numpy array without its unit. + + self.calc_image_response_projected() + + def save_coordsys_conv_matrix(self, filename = "coordsys_conv_matrix.hdf5"): + self.coordsys_conv_matrix.write(filename, overwrite = True) + + def load_coordsys_conv_matrix_from_filepath(self, filepath): + + if not self._check_file_registration(): + print("Please load all files!") + return + + if not self._check_axis_consistency(): + print("Please the axes of the input files!") + return + +# if not self._check_sc_orientation_coverage(): +# print("Please the axes of the input files!") +# return + + print("... (DataLoader) loading a coordinate conversion matrix...") + + self.coordsys_conv_matrix = Histogram.open(filepath) + + if not self.coordsys_conv_matrix.is_sparse: + self.coordsys_conv_matrix = self.coordsys_conv_matrix.to_sparse() + + print(f"... checking the axes of the coordinate conversion matrix ...") + + if self.coordsys_conv_matrix.unit == u.s: + print(f" --> pass (unit)") + else: + print(f"Warning: the unit is wrong {self.coordsys_conv_matrix.unit}") + return False + + axis_model_map = HealpixAxis(nside = self.full_detector_response.axes["NuLambda"].nside, + coordsys = "galactic", label = "lb") + + if self.coordsys_conv_matrix.axes['lb'] == axis_model_map: + print(f" --> pass (axis lb)") + else: + print(f"Warning: the axis of lb is inconsistent") + return False + + if self.coordsys_conv_matrix.axes['Time'] == self.event_dense.axes["Time"]: + print(f" --> pass (axis Time)") + else: + print(f"Warning: the axis of Time is inconsistent") + return False + + if self.coordsys_conv_matrix.axes['NuLambda'] == self.full_detector_response.axes['NuLambda']: + print(f" --> pass (axis NuLambda)") + else: + print(f"Warning: the axis of NuLambda is inconsistent") + return False + + self.calc_image_response_projected() + ''' + +
+[docs] + def calc_image_response_projected(self): + """ + Calculate image_response_dense_projected, which is an intermidiate matrix used in RL algorithm. + """ + + print("... (DataLoader) calculating a projected image response ...") + + self.image_response_dense_projected = Histogram([ self.coordsys_conv_matrix.axes["lb"], self.full_detector_response.axes["Ei"] ], + unit = self.full_detector_response.unit * self.coordsys_conv_matrix.unit) + + if self.response_on_memory: + + self.image_response_dense_projected[:] = np.tensordot( np.sum(self.coordsys_conv_matrix, axis = (0)), + np.sum(self.image_response_dense, axis = (2,3,4)), + axes = ([1], [0]) ) * self.full_detector_response.unit * self.coordsys_conv_matrix.unit + # [Time/ScAtt, lb, NuLambda] -> [lb, NuLambda] + # [NuLambda, Ei, Em, Phi, PsiChi] -> [NuLambda, Ei] + # [lb, NuLambda] x [NuLambda, Ei] -> [lb, Ei] + + else: + npix = self.full_detector_response.axes["NuLambda"].npix + + for ipix in tqdm(range(npix)): + if self.is_miniDC2_format: + full_detector_response_projected_Ei = np.sum(self.full_detector_response[ipix].to_dense(), axis = (1,2,3,4,5)) #Ei + # when np.sum is applied to a dense histogram, the unit is restored. when it is a sparse histogram, the unit is not restored. + else: + full_detector_response_projected_Ei = np.sum(self.full_detector_response[ipix].to_dense(), axis = (1,2,3)) #Ei + + coordsys_conv_matrix_projected_lb = np.sum(self.coordsys_conv_matrix[:,:,ipix], axis = (0)).todense() * self.coordsys_conv_matrix.unit #lb + + self.image_response_dense_projected += np.outer(coordsys_conv_matrix_projected_lb, full_detector_response_projected_Ei)
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/image_deconvolution/exposure_table.html b/_modules/cosipy/image_deconvolution/exposure_table.html new file mode 100644 index 00000000..da9f4c05 --- /dev/null +++ b/_modules/cosipy/image_deconvolution/exposure_table.html @@ -0,0 +1,551 @@ + + + + + + cosipy.image_deconvolution.exposure_table — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.image_deconvolution.exposure_table

+import warnings
+import pandas as pd
+from tqdm.autonotebook import tqdm
+import numpy as np
+import healpy as hp
+from astropy.io import fits
+import astropy.units as u
+
+from cosipy.spacecraftfile import SpacecraftAttitudeMap
+
+
+[docs] +class SpacecraftAttitudeExposureTable(pd.DataFrame): + """ + A class to analyze exposure time per each spacecraft attitude + + Table columns are: + - scatt_binning_index: int + - healpix_index: list of tuple. Each tuple is (healpix_index_zpointing, healpix_index_xpointing). + - zpointing: np.array of [l, b] in degrees. Array of z-pointings assigned to each scatt bin. + - xpointing: np.array of [l, b] in degrees. Array of x-pointings assigned to each scatt bin. + - zpointing_averaged: [l, b] in degrees. Averaged z-pointing in each scatt bin. + - xpointing_averaged: [l, b] in degrees. Averaged x-pointing in each scatt bin. + - delta_time: np.array of float in second. Exposure times for pointings assigned to each scatt bin. + - exposure: float in second. total exposure for each scatt bin. + - num_pointings: number of pointings assigned to each scatt bin. + - bkg_group: index of the backgroud group. will be used in the data analysis. + + Attributes + ---------- + df : :py:class:`pd.DataFrame` + pandas dataframe with the above columns + nside : int + Healpix NSIDE parameter. + scheme : str, default 'ring' + Healpix scheme. Either 'ring', 'nested'. + """ + + def __init__(self, df, nside, scheme = 'ring'): + + super().__init__(pd.DataFrame(df)) + + self.nside = nside + + if scheme == 'ring' or scheme == 'nested': + self.scheme = scheme + else: + warnings.warn('The scheme should be "ring" or "nested" in SpacecraftAttitudeExposureTable. It will be set to "ring".') + self.scheme = 'ring' + + def __eq__(self, other): + for name in ['scatt_binning_index', 'healpix_index', 'exposure', 'num_pointings', 'bkg_group']: + if not np.all(self[name] == other[name]): + return False + + for name in ['delta_time', 'zpointing', 'xpointing', 'zpointing_averaged', 'xpointing_averaged']: + for self_, other_ in zip(self[name], other[name]): + if not np.all(self_ == other_): + return False + + return (self.nside == other.nside) and (self.scheme == other.scheme) + +
+[docs] + @classmethod + def from_pickle(cls, filename, nside, scheme = 'ring'): + """ + Read exposure table from pickle. + + Parameters + ---------- + filename : str + Path to file + nside : int + Healpix NSIDE parameter. + scheme : str, default 'ring' + Healpix scheme. Either 'ring', 'nested'. + + Returns + ------- + :py:class:`cosipy.spacecraftfile.SpacecraftAttitudeExposureTable` + """ + + df = pd.read_pickle(filename) + + new = cls(df, nside, scheme) + + return new
+ + +
+[docs] + @classmethod + def from_orientation(cls, orientation, nside, scheme = 'ring', start = None, stop = None, min_exposure = None, min_num_pointings = None): + """ + Produce exposure table from orientation. + + Parameters + ---------- + orientation : :py:class:`cosipy.spacecraftfile.SpacecraftFile` + Orientation + nside : int + Healpix NSIDE parameter. + scheme : str, default 'ring' + Healpix scheme. Either 'ring', 'nested'. + start : :py:class:`astropy.time.Time` or None, default None + Start time to analyze the orientation + stop : :py:class:`astropy.time.Time` or None, default None + Stop time to analyze the orientation + min_exposure : float or None, default None + Minimum exposure time required for each scatt bin + min_num_pointings : int or None, default None + Minimum number of pointings required for each scatt bin + + Returns + ------- + :py:class:`cosipy.spacecraftfile.SpacecraftAttitudeExposureTable` + """ + + df = cls.analyze_orientation(orientation, nside, scheme, start, stop, min_exposure, min_num_pointings) + + new = cls(df, nside, scheme) + + return new
+ + + # GTI should be a mandary parameter +
+[docs] + @classmethod + def analyze_orientation(cls, orientation, nside, scheme = 'ring', start = None, stop = None, min_exposure = None, min_num_pointings = None): + """ + Produce pd.DataFrame from orientation. + + Parameters + ---------- + orientation : :py:class:`cosipy.spacecraftfile.SpacecraftFile` + Orientation + nside : int + Healpix NSIDE parameter. + scheme : str, default 'ring' + Healpix scheme. Either 'ring', 'nested'. + start : :py:class:`astropy.time.Time` or None, default None + Start time to analyze the orientation + stop : :py:class:`astropy.time.Time` or None, default None + Stop time to analyze the orientation + min_exposure : float or None, default None + Minimum exposure time required for each scatt bin + min_num_pointings : int or None, default None + Minimum number of pointings required for each scatt bin + + Returns + ------- + :py:class:`pd.DataFrame` + """ + + print("angular resolution: ", hp.nside2resol(nside) * 180 / np.pi, "deg.") + + indices_healpix = [] # (idx_z, idx_x) + delta_times = [] + xpointings = [] # [l_x, b_x] + zpointings = [] # [l_z, b_z] + + if start is not None and stop is not None: + orientation = orientation.source_interval(start, stop) + elif start is not None: + print("please specify the stop time") + elif stop is not None: + print("please specify the start time") + + ori_time = orientation.get_time() + + print("duration: ", (ori_time[-1] - ori_time[0]).to("day")) + + attitude = orientation.get_attitude() + + pointing_list = attitude.transform_to("galactic").as_axes() + + n_pointing = len(pointing_list[0]) + + x_1, x_2 = pointing_list[0][:-1], pointing_list[0][1:] + l_x, b_x = 0.5 * (x_1.l.degree + x_2.l.degree), 0.5 * (x_1.b.degree + x_2.b.degree) + + z_1, z_2 = pointing_list[2][:-1], pointing_list[2][1:] + l_z, b_z = 0.5 * (z_1.l.degree + z_2.l.degree), 0.5 * (z_1.b.degree + z_2.b.degree) + + if scheme == 'ring': + nest = False + elif scheme == 'nested': + nest = True + else: + print('Warning: the scheme should be "ring" or "nested". It was set to "ring".') + nest = False + + idx_x = hp.ang2pix(nside, l_x, b_x, nest=nest, lonlat=True) + idx_z = hp.ang2pix(nside, l_z, b_z, nest=nest, lonlat=True) + + delta_time = (ori_time[1:] - ori_time[:-1]).to('s').value + + for i in tqdm(range(n_pointing - 1)): + + if (idx_z[i], idx_x[i]) in indices_healpix: + idx = indices_healpix.index((idx_z[i], idx_x[i])) + delta_times[idx].append(delta_time[i]) + xpointings[idx].append([l_x[i], b_x[i]]) + zpointings[idx].append([l_z[i], b_z[i]]) + + else: + indices_healpix.append((idx_z[i], idx_x[i])) + delta_times.append([delta_time[i]]) + xpointings.append([[l_x[i], b_x[i]]]) + zpointings.append([[l_z[i], b_z[i]]]) + + indices_scatt_binning = [i for i in range(len(indices_healpix))] + + # to numpy + zpointings = [ np.array(_) for _ in zpointings] + xpointings = [ np.array(_) for _ in xpointings] + + zpointings_averaged = [ cls._get_averaged_pointing(z, dt) for (z, dt) in zip(zpointings, delta_times) ] + xpointings_averaged = [ cls._get_averaged_pointing(x, dt) for (x, dt) in zip(xpointings, delta_times) ] + + exposures = [ np.sum(np.array(_)) for _ in delta_times] + num_pointings = [ len(_) for _ in delta_times] + bkg_groups = [ 0 for i in delta_times] + + df = pd.DataFrame(data = {'scatt_binning_index': indices_scatt_binning, 'healpix_index': indices_healpix, + 'zpointing': zpointings, + 'xpointing': xpointings, + 'zpointing_averaged': zpointings_averaged, + 'xpointing_averaged': xpointings_averaged, + 'delta_time': delta_times, + 'exposure': exposures, + 'num_pointings': num_pointings, + 'bkg_group': bkg_groups}) + + if min_exposure is not None: + df = df[df['exposure'] >= min_exposure] + + if min_num_pointings is not None: + df = df[df['num_pointings'] >= min_num_pointings] + + if min_exposure is not None or min_num_pointings is not None: + df['scatt_binning_index'] = [i for i in range(len(df))] + + return df
+ + +
+[docs] + @classmethod + def from_fits(cls, filename): + """ + Read exposure table from a fits file. + + Parameters + ---------- + filename : str + Path to file + + Returns + ------- + :py:class:`cosipy.image_deconvolution.SpacecraftAttitudeExposureTable` + """ + + infile = fits.open(filename) + hdu = infile[1] + + if hdu.name != "EXPOSURETABLE": + print("cannot find EXPOSURETABLE") + return 0 + + indices_scatt_binning = hdu.data['scatt_binning_index'] + indices_healpix = [ (z, x) for (z, x) in zip(hdu.data['healpix_index_z_pointing'], hdu.data['healpix_index_x_pointing']) ] + + zpointings = [ [ [l, b] for (l, b) in zip(z_l, z_b) ] for (z_l, z_b) in zip(hdu.data['zpointing_l'], hdu.data['zpointing_b']) ] + zpointings = [ np.array(_) for _ in zpointings] + + xpointings = [ [ [l, b] for (l, b) in zip(x_l, x_b) ] for (x_l, x_b) in zip(hdu.data['xpointing_l'], hdu.data['xpointing_b']) ] + xpointings = [ np.array(_) for _ in xpointings] + + zpointings_averaged = [ np.array([z_ave_l, z_ave_b]) for (z_ave_l, z_ave_b) in zip(hdu.data['zpointing_averaged_l'], hdu.data['zpointing_averaged_b']) ] + + xpointings_averaged = [ np.array([x_ave_l, x_ave_b]) for (x_ave_l, x_ave_b) in zip(hdu.data['xpointing_averaged_l'], hdu.data['xpointing_averaged_b']) ] + + delta_times = np.array(hdu.data['delta_time']) + + exposures = hdu.data['exposure'] + + num_pointings = hdu.data['num_pointings'] + + bkg_groups = hdu.data['bkg_group'] + + df = pd.DataFrame(data = {'scatt_binning_index': indices_scatt_binning, 'healpix_index': indices_healpix, + 'zpointing': zpointings, + 'xpointing': xpointings, + 'zpointing_averaged': zpointings_averaged, + 'xpointing_averaged': xpointings_averaged, + 'delta_time': delta_times, + 'exposure': exposures, + 'num_pointings': num_pointings, + 'bkg_group': bkg_groups}) + + nside = hdu.header['NSIDE'] + scheme = hdu.header['SCHEME'] + + new = cls(df, nside, scheme) + + return new
+ + +
+[docs] + def save_as_fits(self, filename, overwrite = False): + """ + Save exposure table as a fits file. + + Parameters + ---------- + filename : str + Path to file + overwrite : bool, default False + """ + + # primary HDU + primary_hdu = fits.PrimaryHDU() + + #exposure table + names = ['scatt_binning_index', 'exposure', 'num_pointings', 'bkg_group'] + formats = ['K', 'D', 'K', 'K'] + units = ['', 's', '', ''] + + columns = [ fits.Column(name=names[i], array=self[names[i]].to_numpy(), format = formats[i], unit = units[i]) + for i in range(len(names))] + + column_healpix_index_z_pointing = fits.Column(name='healpix_index_z_pointing', + array=np.array([idx[0] for idx in self['healpix_index']]), format = 'K') + column_healpix_index_x_pointing = fits.Column(name='healpix_index_x_pointing', + array=np.array([idx[1] for idx in self['healpix_index']]), format = 'K') + + columns.append(column_healpix_index_z_pointing) + columns.append(column_healpix_index_x_pointing) + + column_delta_time = fits.Column(name='delta_time', format='PD()', unit = 's', + array=np.array(self['delta_time'].array, dtype=np.object_)) + columns.append(column_delta_time) + + column_zpointing_l = fits.Column(name='zpointing_l', format='PD()', unit = 'degree', + array=np.array([[pointing[0] for pointing in pointings] for pointings in self['zpointing']], dtype=np.object_)) + columns.append(column_zpointing_l) + + column_zpointing_b = fits.Column(name='zpointing_b', format='PD()', unit = 'degree', + array=np.array([[pointing[1] for pointing in pointings] for pointings in self['zpointing']], dtype=np.object_)) + columns.append(column_zpointing_b) + + column_xpointing_l = fits.Column(name='xpointing_l', format='PD()', unit = 'degree', + array=np.array([[pointing[0] for pointing in pointings] for pointings in self['xpointing']], dtype=np.object_)) + columns.append(column_xpointing_l) + + column_xpointing_b = fits.Column(name='xpointing_b', format='PD()', unit = 'degree', + array=np.array([[pointing[1] for pointing in pointings] for pointings in self['xpointing']], dtype=np.object_)) + columns.append(column_xpointing_b) + + column_zpointing_averaged_l = fits.Column(name='zpointing_averaged_l', format='D', unit = 'degree', + array=np.array([_[0] for _ in self['zpointing_averaged']])) + columns.append(column_zpointing_averaged_l) + + column_zpointing_averaged_b = fits.Column(name='zpointing_averaged_b', format='D', unit = 'degree', + array=np.array([_[1] for _ in self['zpointing_averaged']])) + columns.append(column_zpointing_averaged_b) + + column_xpointing_averaged_l = fits.Column(name='xpointing_averaged_l', format='D', unit = 'degree', + array=np.array([_[0] for _ in self['xpointing_averaged']])) + columns.append(column_xpointing_averaged_l) + + column_xpointing_averaged_b = fits.Column(name='xpointing_averaged_b', format='D', unit = 'degree', + array=np.array([_[1] for _ in self['xpointing_averaged']])) + columns.append(column_xpointing_averaged_b) + + table_hdu = fits.BinTableHDU.from_columns(columns) + table_hdu.name = 'exposuretable' + + table_hdu.header['nside'] = self.nside + table_hdu.header['scheme'] = self.scheme + + #save file + hdul = fits.HDUList([primary_hdu, table_hdu]) + hdul.writeto(filename, overwrite = overwrite)
+ + + @classmethod + def _get_averaged_pointing(cls, pointing, delta_time): + """ + Calculate an averaged pointing from given lists of pointings and exposure time on each pointing + + Parameters + ---------- + pointing : list of np.array + List of pointings in degrees, e.g., [ np.array([l, b]), np.array([l, b]), ...] + delta_time : list of float + List of exposure time in seconds for each pointing, e.g, [ 1.0, 1.0, ...] + + Returns + ------- + :py:class:`np.array` + Averaged pointing in degrees, as np.array([l, b]) + """ + + averaged_vector = np.sum(hp.ang2vec(pointing.T[0], pointing.T[1], lonlat = True).T * delta_time, axis = (1)) + averaged_vector /= np.linalg.norm(averaged_vector) + + averaged_l = hp.vec2ang(averaged_vector, lonlat = True)[0][0] + averaged_b = hp.vec2ang(averaged_vector, lonlat = True)[1][0] + + averaged_pointing = np.array([averaged_l, averaged_b]) + + return averaged_pointing + +
+[docs] + def calc_pointing_trajectory_map(self): + """ + Calculate a 2-dimensional map showing exposure time for each spacecraft attitude. + + Returns + ------- + :py:class:`cosipy.spacecraft.SpacecraftAttitudeMap` + + Notes + ----- + The default axes in SpacecraftAttitudeMap is x- and y-pointings, + but here the spacecraft attitude is described with z- and x-pointings. + """ + + map_pointing_zx = SpacecraftAttitudeMap(nside = self.nside, scheme = self.scheme, coordsys = 'galactic', labels = ['z', 'x']) + + for hp_index, exposure in zip(self['healpix_index'], self['exposure']): + map_pointing_zx[hp_index[0], hp_index[1]] = exposure * u.s + + return map_pointing_zx
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/image_deconvolution/image_deconvolution.html b/_modules/cosipy/image_deconvolution/image_deconvolution.html new file mode 100644 index 00000000..0a4c38b5 --- /dev/null +++ b/_modules/cosipy/image_deconvolution/image_deconvolution.html @@ -0,0 +1,371 @@ + + + + + + cosipy.image_deconvolution.image_deconvolution — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.image_deconvolution.image_deconvolution

+import warnings
+import astropy.units as u
+
+from cosipy.config import Configurator
+
+from .modelmap import ModelMap
+# import image deconvolution algorithms
+from .RichardsonLucy import RichardsonLucy
+
+
+[docs] +class ImageDeconvolution: + """ + A class to reconstruct all-sky images from COSI data based on image deconvolution methods. + """ + + def __init__(self): + self._initial_model_map = None + +
+[docs] + def set_data(self, data): + """ + Set COSI dataset + + Parameters + ---------- + data : :py:class:`cosipy.image_deconvolution.DataLoader` + Data loader contaning an event histogram, a background model, a response matrix, and a coordsys_conversion_matrix. + + Notes + ----- + cosipy.image_deconvolution.DataLoader may be removed in the future once the formats of event/background/response are fixed. + In this case, this method will be also modified in the future. + """ + + self._data = data + + print("data for image deconvolution was set -> ", data)
+ + +
+[docs] + def read_parameterfile(self, parameter_filepath): + """ + Read parameters from a yaml file. + + Parameters + ---------- + parameter_filepath : str or pathlib.Path + Path of parameter file. + """ + + self._parameter = Configurator.open(parameter_filepath) + + print("parameter file for image deconvolution was set -> ", parameter_filepath)
+ + + @property + def data(self): + """ + Return the set data. + """ + return self._data + + @property + def parameter(self): + """ + Return the set parameter. + """ + return self._parameter + +
+[docs] + def override_parameter(self, *args): + """ + Override parameter + + Parameters + ---------- + *args + new parameter + + Examples + -------- + >>> image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 30") + """ + self._parameter.override(args)
+ + + @property + def initial_model_map(self): + """ + Return the initial model map. + """ + if self._initial_model_map is None: + warnings.warn("Need to initialize model map in the image_deconvolution instance") + + return self._initial_model_map + + def _check_model_response_consistency(self): + """ + Check whether the axes of model map are consistent with those of the response matrix. + + Returns + ------- + bool + If True, their axes are consistent with each other. + + Notes + ----- + It will be implemented in the future. Currently it always returns true. + """ + #self._initial_model_map.axes["Ei"].axis_scale = self._data.image_response_dense_projected.axes["Ei"].axis_scale + + #return self._initial_model_map.axes["lb"] == self._data.image_response_dense_projected.axes["lb"] \ + # and self._initial_model_map.axes["Ei"] == self._data.image_response_dense_projected.axes["Ei"] + return True + +
+[docs] + def initialize(self): + """ + Initialize an image_deconvolution instance. It is mandatory to execute this method before running the image deconvolution. + + This method has three steps: + 1. generate a model map with properties (nside, energy bins, etc.) given in the parameter file. + 2. initialize a model map following an initial condition given in the parameter file + 3. load parameters for the image deconvolution + """ + + print("#### Initialization ####") + + ### check self._data ### + ### this part will be removed in the future ### + if self._data.response_on_memory == False: + + warnings.warn("In the image deconvolution, the option to not load the response on memory is currently not supported. Performing DataLoader.load_full_detector_response_on_memory().") + self._data.load_full_detector_response_on_memory() + + if self._data.image_response_dense_projected is None: + + warnings.warn("The image_response_dense_projected has not been calculated. Performing DataLoader.calc_image_response_projected().") + self._data.calc_image_response_projected() + + print("1. generating a model map") + parameter_model_property = Configurator(self._parameter['model_property']) + self._initial_model_map = ModelMap(nside = parameter_model_property['nside'], + energy_edges = parameter_model_property['energy_edges'] * u.keV, + scheme = parameter_model_property['scheme'], + coordsys = parameter_model_property['coordinate']) + + print("---- parameters ----") + print(parameter_model_property.dump()) + + print("2. initializing the model map ...") + parameter_model_initialization = Configurator(self._parameter['model_initialization']) + + algorithm_name = parameter_model_initialization['algorithm'] + + self._initial_model_map.set_values_from_parameters(algorithm_name, + parameter_model_initialization['parameter_'+algorithm_name]) + + if not self._check_model_response_consistency(): + return + + print("---- parameters ----") + print(parameter_model_initialization.dump()) + + print("3. registering the deconvolution algorithm ...") + parameter_deconvolution = Configurator(self._parameter['deconvolution']) + self._deconvolution = self.register_deconvolution_algorithm(parameter_deconvolution) + + print("---- parameters ----") + print(parameter_deconvolution.dump()) + + print("#### Done ####") + print("")
+ + +
+[docs] + def register_deconvolution_algorithm(self, parameter_deconvolution): + """ + Register parameters for image deconvolution on a deconvolution instance. + + Parameters + ---------- + parameter_deconvolution : :py:class:`cosipy.config.Configurator` + Parameters for the image deconvolution methods. + + Notes + ----- + Currently only RichardsonLucy algorithm is implemented. + + ***An example of parameters for RL algorithm*** + algorithm: "RL" + parameter_RL: + iteration: 10 + # number of iterations + acceleration: True + # whether the accelerated ML-EM algorithm (Knoedlseder+99) is used + alpha_max: 10.0 + # the maximum value for the acceleration alpha parameter + save_results_each_iteration: False + # whether a updated model map, detal map, likelihood etc. are save at the end of each iteration + response_weighting: True + # whether a factor $w_j = (\sum_{i} R_{ij})^{\beta}$ for weighting the delta image is introduced + # see Knoedlseder+05, Siegert+20 + response_weighting_index: 0.5 + # $\beta$ in the above equation + smoothing: True + # whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) + smoothing_FWHM: 2.0 #deg + # the FWHM of the Gaussian in the filter + background_normalization_fitting: False + # whether the background normalization is optimized at each iteration. + # As for now, the same single background normalization factor is used in all of the time bins + background_normalization_range: [0.01, 10.0] + # the range of the normalization factor. it should be positive. + """ + + algorithm_name = parameter_deconvolution['algorithm'] + + if algorithm_name == 'RL': + parameter_RL = Configurator(parameter_deconvolution['parameter_RL']) + _deconvolution = RichardsonLucy(self._initial_model_map, self._data, parameter_RL) +# elif algorithm_name == 'MaxEnt': +# parameter = self.parameter['deconvolution']['parameter_MaxEnt'] +# self.deconvolution == ... + + return _deconvolution
+ + +
+[docs] + def run_deconvolution(self): + """ + Perform the image deconvolution. Make sure that the initialize method has been conducted. + + Returns + ------- + list + List containing results (reconstructed image, likelihood etc) at each iteration. + """ + print("#### Deconvolution Starts ####") + + all_result = [] + for result in self._deconvolution.iteration(): + all_result.append(result) + ### can perform intermediate check ### + #... + ### + + print("#### Done ####") + print("") + return all_result
+
+ + +# def analyze_result(self): +# pass +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/image_deconvolution/modelmap.html b/_modules/cosipy/image_deconvolution/modelmap.html new file mode 100644 index 00000000..d7eb98ef --- /dev/null +++ b/_modules/cosipy/image_deconvolution/modelmap.html @@ -0,0 +1,213 @@ + + + + + + cosipy.image_deconvolution.modelmap — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.image_deconvolution.modelmap

+import warnings
+import astropy.units as u
+import numpy as np
+
+from histpy import Histogram, Axes, Axis, HealpixAxis
+
+from cosipy.threeml.custom_functions import get_integrated_spectral_model
+
+
+[docs] +class ModelMap(Histogram): + """ + Photon flux maps in given energy bands. 2-dimensional histogram. + + Attributes + ---------- + nside : int + Healpix NSIDE parameter. + energy_edges : :py:class:`np.array` + Bin edges for energies. We recommend to use a Quantity array with the unit of keV. + scheme : str, default 'ring' + Healpix scheme. Either 'ring', 'nested'. + coordsys : str or :py:class:`astropy.coordinates.BaseRepresentation`, default is 'galactic' + Instrinsic coordinates of the map. The default is 'galactic'. + label_image : str, default 'lb' + The label name of the healpix axis. + label_energy : str, default 'Ei' + The label name of the energy axis. The default is 'Ei'. + """ + + def __init__(self, + nside, + energy_edges, + scheme = 'ring', + coordsys = 'galactic', + label_image = 'lb', + label_energy = 'Ei' + ): + + if energy_edges.unit != u.keV: + + warnings.warn(f"The unit of the given energy_edges is {energy_edges.unit}. It is converted to keV.") + energy_edges = energy_edges.to('keV') + + self.image_axis = HealpixAxis(nside = nside, + scheme = scheme, + coordsys = coordsys, + label = label_image) + + self.energy_axis = Axis(edges = energy_edges, label = label_energy, scale = "log") + + axes = Axes([self.image_axis, self.energy_axis]) + + super().__init__(axes, sparse = False, unit = 1 / u.s / u.cm**2 / u.sr) # unit might be specified in the input parameter. + +
+[docs] + def set_values_from_parameters(self, algorithm_name, parameter): + """ + Set the values of this model map accordinng to the specified algorithm. + + Parameters + ---------- + algorithm_name : str + Algorithm name to fill the values. + parameter : py:class:`cosipy.config.Configurator` + Parameters for the specified algorithm. + + Notes + ----- + Currently algorithm_name can be only 'flat'. All of the pixel values in each energy bins will set to the given value. + parameter should be {'values': [ flux value at 1st energy bin (without unit), flux value at 2nd energy bin, ...]}. + """ + + if algorithm_name == "flat": + for idx, value in enumerate(parameter['values']): + self[:,idx:idx+1] = value * self.unit
+ + # elif algorithm_name == ... + # ... + +
+[docs] + def set_values_from_extendedmodel(self, extendedmodel): + """ + Set the values of this model map accordinng to the given astromodels.ExtendedSource. + + Parameters + ---------- + extendedmodel : :py:class:`astromodels.ExtendedSource` + Extended source model + """ + + integrated_flux = get_integrated_spectral_model(spectrum = extendedmodel.spectrum.main.shape, + eaxis = self.energy_axis) + + npix = self.image_axis.npix + coords = self.image_axis.pix2skycoord(np.arange(npix)) + + normalized_map = extendedmodel.spatial_shape(coords.l.deg, coords.b.deg) / u.sr + + self[:] = np.tensordot(normalized_map, integrated_flux.contents, axes = 0)
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/response/DetectorResponse.html b/_modules/cosipy/response/DetectorResponse.html new file mode 100644 index 00000000..cf769030 --- /dev/null +++ b/_modules/cosipy/response/DetectorResponse.html @@ -0,0 +1,275 @@ + + + + + + cosipy.response.DetectorResponse — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.response.DetectorResponse

+import logging
+logger = logging.getLogger(__name__)
+
+import numpy as np
+
+from copy import deepcopy
+
+from histpy import Histogram, Axes, Axis
+
+import astropy.units as u
+
+
+[docs] +class DetectorResponse(Histogram): + """ + Handles the multi-dimensional matrix that describes the + response of the instrument for a particular :py:class:`.SpacecraftFrame` coordinate + location. + + Parameters + ---------- + axes : :py:class:`histpy.Axes` + Binning information for each variable. The following labels are expected:\n + - ``Ei``: Real energy + - ``Em``: Measured energy + - ``Phi``: Compton angle. Optional. + - ``PsiChi``: Location in the Compton Data Space (HEALPix pixel). Optional. + - ``SigmaTau``: Electron recoil angle (HEALPix pixel). Optional. + - ``Dist``: Distance from first interaction. Optional. + contents : array, :py:class:`astropy.units.Quantity` or :py:class:`sparse.SparseArray` + Array containing the differential effective area. + unit : :py:class:`astropy.units.Unit`, optional + Physical area units, if not specified as part of ``contents`` + """ + + def __init__(self, *args, **kwargs): + + super().__init__(*args, **kwargs) + + self._spec = None + self._aeff = None + +
+[docs] + def get_spectral_response(self, copy = True): + """ + Reduced detector response, projected along the real and measured energy axes only. + The Compton Data Space axes are not included. + + Parameters + ---------- + copy : bool + If true, a copy of the cached spectral response will be returned. + + Returns + ------- + :py:class:`DetectorResponse` + """ + + # Cache the spectral response + if self._spec is None: + spec = self.project(['Ei','Em']) + self._spec = DetectorResponse(spec.axes, + contents = spec.contents, + unit = spec.unit) + + if copy: + return deepcopy(self._spec) + else: + return self._spec
+ + +
+[docs] + def get_effective_area(self, energy = None, copy = True): + """ + Compute the effective area at a given energy. If no energy is specified, the + output is a histogram for the effective area at each energy bin. + + Parameters + ---------- + energy : optional, :py:class:`astropy.units.Quantity` + Energy/energies at which to interpolate the linearly effective area + copy : bool + If true, a copy of the cached effective will be returned. + + Returns + ------- + :py:class:`astropy.units.Quantity` or :py:class:`histpy.Histogram` + """ + + if self._aeff is None: + self._aeff = self.get_spectral_response(copy = False).project('Ei').to_dense() + + if energy is None: + if copy: + return deepcopy(self._aeff) + else: + return self._aeff + else: + return self._aeff.interp(energy)
+ + +
+[docs] + def get_dispersion_matrix(self): + """ + Compute the energy dispersion matrix, also known as migration matrix. This holds the + probability of an event with real energy ``Ei`` to be reconstructed with an measured + energy ``Em``. + + Returns + ------- + :py:class:`histpy.Histogram` + """ + + # Get spectral response and effective area normalization + spec = self.get_spectral_response(copy = False) + norm = self.get_effective_area().full_contents + + # Hack the under/overflow bins to supress 0/0 wearning + norm[0] = 1*norm.unit if norm[0] == 0 else norm[0] + norm[-1] = 1*norm.unit if norm[-1] == 0 else norm[-1] + + # Avoid another 0/0 is the effective area is null for some bins + if np.any(norm == 0): + norm[norm == 0] = 1*norm.unit + + logger.warn("Null effective area, cannot properly compute dispersion matrix.") + + # "Broadcast" such that it has the compatible dimensions with the 2D matrix + norm = spec.expand_dims(norm, 'Ei') + + # Normalize column-by-column + return (spec / norm)
+ + + @property + def photon_energy_axis(self): + """ + Real energy bins (``Ei``). + + Returns + ------- + :py:class:`histpy.Axes` + """ + + return self.axes['Ei'] + + + @property + def measured_energy_axis(self): + """ + Measured energy bins (``Em``). + + Returns + ------- + :py:class:`histpy.Axes` + """ + + return self.axes['Em']
+ + + + + +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/response/FullDetectorResponse.html b/_modules/cosipy/response/FullDetectorResponse.html new file mode 100644 index 00000000..226d8bb0 --- /dev/null +++ b/_modules/cosipy/response/FullDetectorResponse.html @@ -0,0 +1,1320 @@ + + + + + + cosipy.response.FullDetectorResponse — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.response.FullDetectorResponse

+from .PointSourceResponse import PointSourceResponse
+from .DetectorResponse import DetectorResponse
+from astromodels.core.model_parser import ModelParser
+import matplotlib.pyplot as plt
+from astropy.time import Time
+from astropy.coordinates import SkyCoord
+from astropy.units import Quantity
+import astropy.units as u
+from sparse import COO
+from pathlib import Path
+import numpy as np
+import mhealpy as hp
+from mhealpy import HealpixBase, HealpixMap
+from cosipy.config import Configurator
+
+from scoords import SpacecraftFrame, Attitude
+
+from histpy import Histogram, Axes, Axis, HealpixAxis
+import h5py as h5
+import os
+import textwrap
+import argparse
+import logging
+logger = logging.getLogger(__name__)
+
+from copy import copy, deepcopy
+import gzip
+from tqdm import tqdm
+import subprocess
+import sys
+import pathlib
+import gc
+
+
+[docs] +class FullDetectorResponse(HealpixBase): + """ + Handles the multi-dimensional matrix that describes the + full all-sky response of the instrument. + + You can access the :py:class:`DetectorResponse` at a given pixel using the ``[]`` + operator. Alternatively you can obtain the interpolated reponse using + :py:func:`get_interp_response`. + """ + + def __init__(self, *args, **kwargs): + # Overload parent init. Called in class methods. + pass + +
+[docs] + @classmethod + def open(cls, filename,Spectrumfile=None,norm="Linear" ,single_pixel = False,alpha=0,emin=90,emax=10000): + """ + Open a detector response file. + + Parameters + ---------- + filename : str, :py:class:`~pathlib.Path` + Path to the response file (.h5 or .rsp) + + Spectrumfile : str, + path to the input spectrum file used + for the simulation (optional). + + norm : str, + type of normalisation : file (then specify also SpectrumFile) + ,powerlaw, Mono or Linear + + alpha : int, + if the normalisation is "powerlaw", value of the spectral index. + + single_pixel : bool, + True if there is only one pixel and not full-sky. + + emin,emax : float + emin/emax used in the simulation source file. + + """ + + filename = Path(filename) + + + if filename.suffix == ".h5": + return cls._open_h5(filename) + elif "".join(filename.suffixes[-2:]) == ".rsp.gz": + return cls._open_rsp(filename,Spectrumfile,norm ,single_pixel,alpha,emin,emax) + else: + raise ValueError( + "Unsupported file format. Only .h5 and .rsp.gz extensions are supported.")
+ + + @classmethod + def _open_h5(cls, filename): + """ + Open a detector response h5 file. + + Parameters + ---------- + filename : str, :py:class:`~pathlib.Path` + Path to HDF5 file + """ + new = cls(filename) + + new._file = h5.File(filename, mode='r') + + new._drm = new._file['DRM'] + + new._unit = u.Unit(new._drm.attrs['UNIT']) + + try: + new._sparse = new._drm.attrs['SPARSE'] + except KeyError: + new._sparse = True + + # Axes + axes = [] + + for axis_label in new._drm["AXES"]: + + axis = new._drm['AXES'][axis_label] + + axis_type = axis.attrs['TYPE'] + + if axis_type == 'healpix': + + axes += [HealpixAxis(edges=np.array(axis), + nside=axis.attrs['NSIDE'], + label=axis_label, + scheme=axis.attrs['SCHEME'], + coordsys=SpacecraftFrame())] + + else: + axes += [Axis(np.array(axis) * u.Unit(axis.attrs['UNIT']), + scale=axis_type, + label=axis_label)] + + new._axes = Axes(axes) + + # Init HealpixMap (local coordinates, main axis) + HealpixBase.__init__(new, + base=new.axes['NuLambda'], + coordsys=SpacecraftFrame()) + + return new + + @classmethod + def _open_rsp(cls, filename, Spectrumfile=None,norm="Linear" ,single_pixel = False,alpha=0,emin=90,emax=10000): + """ + + Open a detector response rsp file. + + Parameters + ---------- + filename : str, :py:class:`~pathlib.Path` + Path to rsp file + + Spectrumfile : str, + path to the input spectrum file used + for the simulation (optional). + + norm : str, + type of normalisation : file (then specify also SpectrumFile) + ,powerlaw, Mono or Linear + + alpha : int, + if the normalisation is "powerlaw", value of the spectral index. + + single_pixel : bool, + True if there is only one pixel and not full-sky. + + emin,emax : float + emin/emax used in the simulation source file. + + """ + labels = ("Ei", "NuLambda", "Em", "Phi", "PsiChi", "SigmaTau", "Dist") + + axes_edges = [] + axes_types = [] + sparse = None + # get the header infos of the rsp file (nsim,area,bin_edges,etc...) + with gzip.open(filename, "rt") as file: + for n, line in enumerate(file): + + line = line.split() + + if len(line) == 0: + continue + + key = line[0] + + if key == 'TS': + nevents_sim = int(line[1]) + + elif key == 'SA': + area_sim = float(line[1]) + + elif key == "SP" : + + try : + norm = str(line[1]) + except : + print(f"norm not found in the file ! We assume {norm}") + + if norm =="Linear" : + emin = int(line[2]) + emax = int(line[3]) + + + + elif key == "MS": + if line[1] == "true" : + sparse = True + if line[1] == "false" : + sparse = False + + elif key == 'AD': + + if axes_types[-1] == "FISBEL": + + raise RuntimeError("FISBEL binning not currently supported") + + elif axes_types[-1] == "HEALPix": + + if line[2] != "RING": + raise RuntimeError(f"Scheme {line[2]} not supported") + + if line[1] == '-1': + # Single bin axis --i.e. all-sky + axes_edges.append(-1) + else: + nside = int(2**int(line[1])) + axes_edges.append(int(12*nside**2)) + + + else: + + axes_edges.append(np.array(line[1:], dtype='float')) + + elif key == 'AT': + axes_types += [line[2]] + + elif key == 'RD': + break + + elif key == "StartStream": + nbins = int(line[1]) + break + + #check if the type of spectrum is known + assert norm=="powerlaw" or norm=="Mono" or norm=="Linear","unknown normalisation !" + + #check the number of simulated events is not 0 + assert nevents_sim != 0,"number of simulated events is 0 !" + + + print("normalisation is {0}".format(norm)) + if sparse == None : + print("Sparse paramater not found in the file : We assume this is a non sparse matrice !") + sparse = False + else : + print("Sparse matrice ? {0}".format(sparse)) + edges = () + #print(axes_edges) + + for axis_edges, axis_type in zip(axes_edges, axes_types): + + if axis_type == 'HEALPix': + + if axis_edges == -1: + # Single bin axis --i.e. all-sky + edges += ([0,1],) + else: + edges += (np.arange(axis_edges+1),) + + elif axis_type == "FISBEL": + raise RuntimeError("FISBEL binning not currently supported") + else: + edges += (axis_edges,) + + #print(edges) + + if sparse : + axes = Axes(edges, labels=labels) + + else : + axes = Axes(edges[:-2], labels=labels[:-2]) + + + if sparse : + # Need to get number of lines for progress bar. + # First try fast method for unix-based systems: + try: + proc=subprocess.Popen('gunzip -c %s | wc -l' %filename, \ + shell=True, stdout=subprocess.PIPE) + nlines = int(proc.communicate()[0]) + + + # If fast method fails, use long method, which should work in all cases. + except: + print("Initial attempt failed.") + print("Using long method...") + nlines = sum(1 for _ in gzip.open(filename,"rt")) + + # Preallocate arrays + coords = np.empty([axes.ndim, nlines], dtype=np.int16) + data = np.empty(nlines, dtype=np.int16) + + # Calculate the memory usage in Gigabytes + memory_size = ((nlines * data.itemsize)+(axes.ndim*nlines*coords.itemsize))/(1024*1024*1024) + print(f"Estimated RAM you need to read the file : {memory_size} GB") + + + + else : + nlines = nbins + + # Preallocate arrays + data = np.empty(nlines, dtype=np.int16) + + # Calculate the memory usage in Gigabytes + memory_size = (nlines * data.itemsize)/(1024*1024*1024) + print(f"Estimated RAM you need to read the file : {memory_size} GB") + + + # Loop + sbin = 0 + + # read the rsp file and get the bin number and counts + with gzip.open(filename, "rt") as file: + + + + #sparse case + if sparse : + + progress_bar = tqdm(file, total=nlines, desc="Progress", unit="line") + + for line in progress_bar: + + + line = line.split() + + if len(line) == 0: + continue + + key = line[0] + + if key == 'RD': + + b = np.array(line[1:-1], dtype=np.int16) + c = int(line[-1]) + + coords[:, sbin] = b + data[sbin] = c + + sbin += 1 + if sbin%10e6 == 0 : + progress_bar.update(10e6) + + progress_bar.close() + nbins_sparse = sbin + + #non sparse case + else : + + + + binLine = False + + for line in file: + line = line.split() + + if len(line) == 0: + continue + + if line[0] == "StartStream" : + binLine = True + continue + + if binLine : + #check we have same number of bin than values read + if len(line)!=nbins : + print("nb of bin content read ({0}) != nb of bins {1}".format(len(line),nbins)) + sys.exit() + + for i in tqdm(range(nbins), desc="Processing", unit="bin"): + data[i] = line[i] + + # we reshape the bincontent to the response matrice dimension + # note that for non sparse matrice SigmaTau and Dist are not used + data = np.reshape(data,tuple(axes.nbins),order="F") + + break + + print("response file read ! Now we create the histogram and weight in order to "+ + "get the effective area") + # create histpy histogram + + + if sparse : + dr = Histogram(axes, contents=COO(coords=coords[:, :nbins_sparse], data= data[:nbins_sparse], shape = tuple(axes.nbins))) + + else : + + dr = Histogram(axes, contents=data) + + + + + + # Weight to get effective area + + ewidth = dr.axes['Ei'].widths + ecenters = dr.axes['Ei'].centers + + #print(ewidth) + #print(ecenters) + + if Spectrumfile is not None and norm=="file": + print("normalisation : spectrum file") + # From spectrum file + spec = pd.read_csv(Spectrumfile, sep=" ") + spec = spec.iloc[:-1] + hspec = Histogram([h_spec.axes[1]]) + hspec[:] = np.interp(hspec.axis.centers, + spec.iloc[:, 0].to_numpy(), + spec.iloc[:, 1].to_numpy(), + left=0, + right=0) * ewidth + hspec /= np.sum(hspec) + + nperchannel_norm = hspec[:] + + elif norm=="powerlaw": + print("normalisation : powerlaw with index {0} with energy range [{1}-{2}]keV".format(alpha,emin,emax)) + # From powerlaw + + e_lo = dr.axes['Ei'].lower_bounds + e_hi = dr.axes['Ei'].upper_bounds + + e_lo = np.minimum(emax, e_lo) + e_hi = np.minimum(emax, e_hi) + + e_lo = np.maximum(emin, e_lo) + e_hi = np.maximum(emin, e_hi) + + if alpha == 1: + + nperchannel_norm = np.log(e_hi/e_low) / np.log(emax/emin) + + else: + + a = 1 - alpha + + nperchannel_norm = (e_hi**a - e_lo**a) / (emax**a - emin**a) + + elif norm =="Linear" : + print("normalisation : linear with energy range [{0}-{1}]".format(emin,emax)) + nperchannel_norm = ewidth / (emax-emin) + + elif norm=="Mono" : + print("normalisation : mono") + + nperchannel_norm = np.array([1.]) + + nperchannel = nperchannel_norm * nevents_sim + # Full-sky? + if not single_pixel: + + # Assumming all FISBEL pixels have the same area + nperchannel /= dr.axes['NuLambda'].nbins + + # Area + counts2area = area_sim / nperchannel + dr_area = dr * dr.expand_dims(counts2area, 'Ei') + + + + #delete the array of data in order to release some memory + del data + + + # end of weight now we create the .h5 structure + + npix = dr_area.axes['NuLambda'].nbins + + # remove the .h5 file if it already exist + try: + os.remove(filename.replace(".rsp.gz", "_nside{0}.area.h5".format(nside))) + except: + pass + + # create a .h5 file with the good structure + filename = filename.replace( + ".rsp.gz", "_nside{0}.area.h5".format(nside)) + + f = h5.File(filename, mode='w') + + drm = f.create_group('DRM') + + # Header + drm.attrs['UNIT'] = 'cm2' + + #sparse + if sparse : + drm.attrs['SPARSE'] = True + + # Axes + axes = drm.create_group('AXES', track_order=True) + + for axis in dr.axes[['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi','SigmaTau','Dist']]: + + axis_dataset = axes.create_dataset(axis.label, + data=axis.edges) + + + if axis.label in ['NuLambda', 'PsiChi','SigmaTau']: + + # HEALPix + axis_dataset.attrs['TYPE'] = 'healpix' + + axis_dataset.attrs['NSIDE'] = nside + + axis_dataset.attrs['SCHEME'] = 'ring' + + else: + + # 1D + axis_dataset.attrs['TYPE'] = axis.axis_scale + + if axis.label in ['Ei', 'Em']: + axis_dataset.attrs['UNIT'] = 'keV' + axis_dataset.attrs['TYPE'] = 'log' + elif axis.label in ['Phi']: + axis_dataset.attrs['UNIT'] = 'deg' + axis_dataset.attrs['TYPE'] = 'linear' + elif axis.label in ['Dist']: + axis_dataset.attrs['UNIT'] = 'cm' + axis_dataset.attrs['TYPE'] = 'linear' + else: + raise ValueError("Shouldn't happend") + + axis_description = {'Ei': "Initial simulated energy", + 'NuLambda': "Location of the simulated source in the spacecraft coordinates", + 'Em': "Measured energy", + 'Phi': "Compton angle", + 'PsiChi': "Location in the Compton Data Space", + 'SigmaTau': "Electron recoil angle", + 'Dist': "Distance from first interaction" + } + + axis_dataset.attrs['DESCRIPTION'] = axis_description[axis.label] + + #non sparse + else : + drm.attrs['SPARSE'] = False + + # Axes + axes = drm.create_group('AXES', track_order=True) + + #keep the same dimension order of the data + for axis in dr.axes[['NuLambda','Ei', 'Em', 'Phi', 'PsiChi']]:#'SigmaTau','Dist']]: + + axis_dataset = axes.create_dataset(axis.label, + data=axis.edges) + + + if axis.label in ['NuLambda', 'PsiChi']:#,'SigmaTau']: + + # HEALPix + axis_dataset.attrs['TYPE'] = 'healpix' + + axis_dataset.attrs['NSIDE'] = nside + + axis_dataset.attrs['SCHEME'] = 'ring' + + else: + + # 1D + axis_dataset.attrs['TYPE'] = axis.axis_scale + + if axis.label in ['Ei', 'Em']: + axis_dataset.attrs['UNIT'] = 'keV' + axis_dataset.attrs['TYPE'] = 'log' + elif axis.label in ['Phi']: + axis_dataset.attrs['UNIT'] = 'deg' + axis_dataset.attrs['TYPE'] = 'linear' + #elif axis.label in ['Dist']: + # axis_dataset.attrs['UNIT'] = 'cm' + # axis_dataset.attrs['TYPE'] = 'linear' + else: + raise ValueError("Shouldn't happend") + + axis_description = {'Ei': "Initial simulated energy", + 'NuLambda': "Location of the simulated source in the spacecraft coordinates", + 'Em': "Measured energy", + 'Phi': "Compton angle", + 'PsiChi': "Location in the Compton Data Space", + #'SigmaTau': "Electron recoil angle", + #'Dist': "Distance from first interaction" + } + + axis_dataset.attrs['DESCRIPTION'] = axis_description[axis.label] + + + + #sparse matrice + if sparse : + + progress_bar = tqdm(total=npix, desc="Progress", unit="nbpixel") + # Contents. Sparse arrays + coords = drm.create_dataset('BIN_NUMBERS', + (npix,), + dtype=h5.vlen_dtype(int), + compression="gzip") + + data = drm.create_dataset('CONTENTS', + (npix,), + dtype=h5.vlen_dtype(float), + compression="gzip") + + + + + + for b in range(npix): + + #print(f"{b}/{npix}") + + pix_slice = dr_area[{'NuLambda':b}] + + + coords[b] = pix_slice.coords.flatten() + data[b] = pix_slice.data + progress_bar.update(1) + + progress_bar.close() + + #non sparse + else : + + + data = drm.create_dataset('CONTENTS', + data=np.transpose(dr_area.contents, axes = [1,0,2,3,4]), + + compression="gzip") + + + + + + + + #close the .h5 file in write mode in order to reopen it in read mode after + f.close() + + new = cls(filename) + + new._file = h5.File(filename, mode='r') + new._drm = new._file['DRM'] + + new._unit = u.Unit(new._drm.attrs['UNIT']) + new._sparse = new._drm.attrs['SPARSE'] + + + # Axes + axes = [] + + for axis_label in new._drm["AXES"]: + + axis = new._drm['AXES'][axis_label] + + axis_type = axis.attrs['TYPE'] + + + + if axis_type == 'healpix': + + axes += [HealpixAxis(edges=np.array(axis), + nside=axis.attrs['NSIDE'], + label=axis_label, + scheme=axis.attrs['SCHEME'], + coordsys=SpacecraftFrame())] + + else: + axes += [Axis(np.array(axis) * u.Unit(axis.attrs['UNIT']), + scale=axis_type, + label=axis_label)] + + + + new._axes = Axes(axes) + + # Init HealpixMap (local coordinates, main axis) + HealpixBase.__init__(new, + base=new.axes['NuLambda'], + coordsys=SpacecraftFrame()) + + return new + + @property + def is_sparse(self): + return self._sparse + + @property + def ndim(self): + """ + Dimensionality of detector response matrix. + + Returns + ------- + int + """ + + return self.axes.ndim + + @property + def axes(self): + """ + List of axes. + + Returns + ------- + :py:class:`histpy.Axes` + """ + return self._axes + + @property + def unit(self): + """ + Physical unit of the contents of the detector reponse. + + Returns + ------- + :py:class:`astropy.units.Unit` + """ + + return self._unit + + def __getitem__(self, pix): + + if not isinstance(pix, (int, np.integer)) or pix < 0 or not pix < self.npix: + raise IndexError("Pixel number out of range, or not an integer") + + #check if we have sparse matrice or not + + if self._sparse: + coords = np.reshape( + self._file['DRM']['BIN_NUMBERS'][pix], (self.ndim-1, -1)) + data = np.array(self._file['DRM']['CONTENTS'][pix]) + + return DetectorResponse(self.axes[1:], + contents=COO(coords=coords, + data=data, + shape=tuple(self.axes.nbins[1:])), + unit=self.unit) + + else : + data = self._file['DRM']['CONTENTS'][pix] + return DetectorResponse(self.axes[1:], + contents=data, unit=self.unit) + +
+[docs] + def close(self): + """ + Close the HDF5 file containing the response + """ + + self._file.close()
+ + + def __enter__(self): + """ + Start a context manager + """ + + return self + + def __exit__(self, type, value, traceback): + """ + Exit a context manager + """ + + self.close() + + @property + def filename(self): + """ + Path to on-disk file containing DetectorResponse + + Returns + ------- + :py:class:`~pathlib.Path` + """ + + return Path(self._file.filename) + +
+[docs] + def get_interp_response(self, coord): + """ + Get the bilinearly interpolated response at a given coordinate location. + + Parameters + ---------- + coord : :py:class:`astropy.coordinates.SkyCoord` + Coordinate in the :py:class:`.SpacecraftFrame` + + Returns + ------- + :py:class:`DetectorResponse` + """ + + pixels, weights = self.get_interp_weights(coord) + + + + dr = DetectorResponse(self.axes[1:], + sparse=self._sparse, + unit=self.unit) + + + for p, w in zip(pixels, weights): + + dr += self[p]*w + + return dr
+ + +
+[docs] + def get_point_source_response(self, + exposure_map = None, + coord = None, + scatt_map = None): + """ + Convolve the all-sky detector response with exposure for a source at a given + sky location. + + Provide either a exposure map (aka dweel time map) or a combination of a + sky coordinate and a spacecraft attitude map. + + Parameters + ---------- + exposure_map : :py:class:`mhealpy.HealpixMap` + Effective time spent by the source at each pixel location in spacecraft coordinates + coord : :py:class:`astropy.coordinates.SkyCoord` + Source coordinate + scatt_map : :py:class:`SpacecraftAttitudeMap` + Spacecraft attitude map + + Returns + ------- + :py:class:`PointSourceResponse` + """ + + # TODO: deprecate exposure_map in favor of coords + scatt map for both local + # and interntial coords + + if exposure_map is not None: + if not self.conformable(exposure_map): + raise ValueError( + "Exposure map has a different grid than the detector response") + + psr = PointSourceResponse(self.axes[1:], + sparse=self._sparse, + unit=u.cm*u.cm*u.s) + + for p in range(self.npix): + + if exposure_map[p] != 0: + psr += self[p]*exposure_map[p] + + return psr + + else: + + # Rotate to inertial coordinates + + if coord is None or scatt_map is None: + raise ValueError("Provide either exposure map or coord + scatt_map") + + if isinstance(coord.frame, SpacecraftFrame): + raise ValueError("Local coordinate + scatt_map not currently supported") + + if self.is_sparse: + raise ValueError("Coord + scatt_map currently only supported for dense responses") + + axis = "PsiChi" + + coords_axis = Axis(np.arange(coord.size+1), label = 'coords') + + psr = Histogram([coords_axis] + list(deepcopy(self.axes[1:])), + unit = self.unit * scatt_map.unit) + + psr.axes[axis].coordsys = coord.frame + + for i,(pixels, exposure) in \ + enumerate(zip(scatt_map.contents.coords.transpose(), + scatt_map.contents.data)): + + #gc.collect() # HDF5 cache issues + + att = Attitude.from_axes(x = scatt_map.axes['x'].pix2skycoord(pixels[0]), + y = scatt_map.axes['y'].pix2skycoord(pixels[1])) + + coord.attitude = att + + #TODO: Change this to interpolation + loc_nulambda_pixels = np.array(self.axes['NuLambda'].find_bin(coord), + ndmin = 1) + + dr_pix = Histogram.concatenate(coords_axis, [self[i] for i in loc_nulambda_pixels]) + + dr_pix.axes['PsiChi'].coordsys = SpacecraftFrame(attitude = att) + + self._sum_rot_hist(dr_pix, psr, exposure) + + # Convert to PSR + psr = tuple([PointSourceResponse(psr.axes[1:], + contents = data, + sparse = psr.is_sparse, + unit = psr.unit) + for data in psr[:]]) + + if coord.size == 1: + return psr[0] + else: + return psr
+ + + @staticmethod + def _sum_rot_hist(h, h_new, exposure, axis = "PsiChi"): + """ + Rotate a histogram with HealpixAxis h into the grid of h_new, and sum + it up with the weight of exposure. + + Meant to rotate the PsiChi of a CDS from local to galactic + """ + + axis_id = h.axes.label_to_index(axis) + + old_axes = h.axes + new_axes = h_new.axes + + old_axis = h.axes[axis_id] + new_axis = h_new.axes[axis_id] + + # Convolve + # TODO: Change this to interpolation (pixels + weights) + old_pixels = old_axis.find_bin(new_axis.pix2skycoord(np.arange(new_axis.nbins))) + # NOTE: there are some pixels that are duplicated, since the center 2 pixels + # of the original grid can land within the boundaries of a single pixel + # of the target grid. The following commented code fixes this, but it's slow, and + # the effect is very small, so maybe not worth it + # nulambda_npix = h.axes['NuLamnda'].nbins + # new_norm = np.zeros(shape = nulambda_npix) + # for p in old_pixels: + # h_slice = h[{axis:p}] + # norm_rot += np.sum(h_slice, axis = tuple(np.arange(1, h_slice.ndim))) + # old_norm = np.sum(h, axis = tuple(np.arange(1, h.ndim))) + # norm_corr = h.expand_dims(norm / norm_rot, "NuLambda") + + for old_pix,new_pix in zip(old_pixels,range(new_axis.npix)): + + #h_new[{axis:new_pix}] += exposure * h[{axis: old_pix}] # * norm_corr + # The following code does the same than the code above, but is faster + # However, it uses some internal functionality in histpy, which is bad practice + # TODO: change this in a future version. We might need to modify histpy so that + # this is not needed + + old_indices = tuple([slice(None)]*axis_id + [old_pix+1]) + new_indices = tuple([slice(None)]*axis_id + [new_pix+1]) + + h_new._contents[new_indices] += exposure * h._contents[old_indices] # * norm_corr + + + def __str__(self): + return f"{self.__class__.__name__}(filename = '{self.filename.resolve()}')" + + def __repr__(self): + + output = (f"FILENAME: '{self.filename.resolve()}'\n" + f"AXES:\n") + + for naxis, axis in enumerate(self.axes): + + if naxis == 0: + description = "Location of the simulated source in the spacecraft coordinates" + else: + description = self._drm['AXES'][axis.label].attrs['DESCRIPTION'] + + output += (f" {axis.label}:\n" + f" DESCRIPTION: '{description}'\n") + + if isinstance(axis, HealpixAxis): + output += (f" TYPE: 'healpix'\n" + f" NPIX: {axis.npix}\n" + f" NSIDE: {axis.nside}\n" + f" SCHEME: '{axis.scheme}'\n") + else: + output += (f" TYPE: '{axis.axis_scale}'\n" + f" UNIT: '{axis.unit}'\n" + f" NBINS: {axis.nbins}\n" + f" EDGES: [{', '.join([str(e) for e in axis.edges])}]\n") + + return output + + def _repr_pretty_(self, p, cycle): + + if cycle: + p.text(str(self)) + else: + p.text(repr(self))
+ + + +def cosi_response(argv=None): + """ + Print the content of a detector response to stdout. + """ + + # Parse arguments from commandline + apar = argparse.ArgumentParser( + usage=textwrap.dedent( + """ + %(prog)s [--help] <command> [<args>] <filename> [<options>] + """), + description=textwrap.dedent( + """ + Quick view of the information contained in a response file + + %(prog)s --help + %(prog)s dump header [FILENAME] + %(prog)s dump aeff [FILENAME] --lon [LON] --lat [LAT] + %(prog)s dump expectation [FILENAME] --config [CONFIG] + %(prog)s plot aeff [FILENAME] --lon [LON] --lat [LAT] + %(prog)s plot dispersion [FILENAME] --lon [LON] --lat [LAT] + %(prog)s plot expectation [FILENAME] --lon [LON] --lat [LAT] + + Arguments: + - header: Response header and axes information + - aeff: Effective area + - dispersion: Energy dispection matrix + - expectation: Expected number of counts + """), + formatter_class=argparse.RawTextHelpFormatter) + + apar.add_argument('command', + help=argparse.SUPPRESS) + apar.add_argument('args', nargs='*', + help=argparse.SUPPRESS) + apar.add_argument('filename', + help="Path to instrument response") + apar.add_argument('--lon', + help="Longitude in sopacecraft coordinates. e.g. '11deg'") + apar.add_argument('--lat', + help="Latitude in sopacecraft coordinates. e.g. '10deg'") + apar.add_argument('--output', '-o', + help="Save output to file. Default: stdout") + apar.add_argument('--config', '-c', + help="Path to config file describing exposure and source charateristics.") + apar.add_argument('--config-override', dest='override', + help="Override option in config file") + + args = apar.parse_args(argv) + + # Config + if args.config is None: + config = Configurator() + else: + config = Configurator.open(args.config) + + if args.override is not None: + config.override(args.override) + + # Get info + with FullDetectorResponse.open(args.filename) as response: + + # Commands and functions + def get_drm(): + + lat = Quantity(args.lat) + lon = Quantity(args.lon) + + loc = SkyCoord(lon=lon, lat=lat, frame=SpacecraftFrame()) + + return response.get_interp_response(loc) + + def get_expectation(): + + # Exposure map + exposure_map = HealpixMap(base=response, + unit=u.s, + coordsys=SpacecraftFrame()) + + ti = Time(config['exposure:time_i']) + tf = Time(config['exposure:time_f']) + dt = (tf-ti).to(u.s) + + exposure_map[:4] = dt/4 + + logger.warning(f"Spacecraft file not yet implemented, faking source on " + f"axis from {ti} to {tf} ({dt:.2f})") + + # Point source response + psr = response.get_point_source_response(exposure_map) + + # Spectrum + model = ModelParser(model_dict=config['sources']).get_model() + + for src_name, src in model.point_sources.items(): + for comp_name, component in src.components.items(): + logger.info(f"Using spectrum:\n {component.shape}") + + # Expectation + expectation = psr.get_expectation(spectrum).project('Em') + + return expectation + + def command_dump(): + + if len(args.args) != 1: + apar.error("Command 'dump' takes a single argument") + + option = args.args[0] + + if option == 'header': + + result = repr(response) + + elif option == 'aeff': + + drm = get_drm() + + aeff = drm.get_spectral_response().get_effective_area() + + result = "#Energy[keV] Aeff[cm2]\n" + + for e, a in zip(aeff.axis.centers, aeff): + # IMC: fix this latter when histpy has units + result += f"{e.to_value(u.keV):>12.2e} {a.to_value(u.cm*u.cm):>12.2e}\n" + + elif option == 'expectation': + + expectation = get_expectation() + + result = "#Energy_min[keV] Energy_max[keV] Expected_counts\n" + + for emin, emax, ex in zip(expectation.axis.lower_bounds, + expectation.axis.upper_bounds, + expectation): + # IMC: fix this latter when histpy has units + result += (f"{emin.to_value(u.keV):>16.2e} " + f"{emax.to_value(u.keV):>16.2e} " + f"{ex:>15.2e}\n") + + else: + + apar.error(f"Argument '{option}' not valid for 'dump' command") + + if args.output is None: + print(result) + else: + logger.info(f"Saving result to {Path(args.output).resolve()}") + f = open(args.output, 'a') + f.write(result) + f.close() + + def command_plot(): + + if len(args.args) != 1: + apar.error("Command 'plot' takes a single argument") + + option = args.args[0] + + if option == 'aeff': + + drm = get_drm() + + drm.get_spectral_response().get_effective_area().plot(errorbars=False) + + elif option == 'dispersion': + + drm = get_drm() + + drm.get_spectral_response().get_dispersion_matrix().plot() + + elif option == 'expectation': + + expectation = get_expectation().plot(errorbars=False) + + else: + + apar.error(f"Argument '{option}' not valid for 'plot' command") + + if args.output is None: + plt.show() + else: + logger.info(f"Saving plot to {Path(args.output).resolve()}") + plt.savefig(args.output) + + # Run + if args.command == 'plot': + command_plot() + elif args.command == 'dump': + command_dump() + else: + apar.error(f"Command '{args.command}' unknown") +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/response/PointSourceResponse.html b/_modules/cosipy/response/PointSourceResponse.html new file mode 100644 index 00000000..c736664c --- /dev/null +++ b/_modules/cosipy/response/PointSourceResponse.html @@ -0,0 +1,216 @@ + + + + + + cosipy.response.PointSourceResponse — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.response.PointSourceResponse

+from histpy import Histogram, Axes, Axis
+
+import astropy.units as u
+
+from astropy.units import Quantity
+
+from scipy import integrate
+
+from threeML import DiracDelta, Constant, Line, Quadratic, Cubic, Quartic, StepFunction, StepFunctionUpper, Cosine_Prior, Uniform_prior, PhAbs, Gaussian
+
+
+
+[docs] +class PointSourceResponse(Histogram): + """ + Handles the multi-dimensional matrix that describes the expected + response of the instrument for a particular point in the sky. + + Parameters + ---------- + axes : :py:class:`histpy.Axes` + Binning information for each variable. The following labels are expected:\n + - ``Ei``: Real energy + - ``Em``: Measured energy. Optional + - ``Phi``: Compton angle. Optional. + - ``PsiChi``: Location in the Compton Data Space (HEALPix pixel). Optional. + - ``SigmaTau``: Electron recoil angle (HEALPix pixel). Optional. + - ``Dist``: Distance from first interaction. Optional. + contents : array, :py:class:`astropy.units.Quantity` or :py:class:`sparse.SparseArray` + Array containing the differential effective area convolved with wht source exposure. + unit : :py:class:`astropy.units.Unit`, optional + Physical units, if not specified as part of ``contents``. Units of ``area*time`` + are expected. + """ + + @property + def photon_energy_axis(self): + """ + Real energy bins (``Ei``). + + Returns + ------- + :py:class:`histpy.Axes` + """ + + return self.axes['Ei'] + +
+[docs] + def get_expectation(self, spectrum): + """ + Convolve the response with a spectral hypothesis to obtain the expected + excess counts from the source. + + Parameters + ---------- + spectrum : :py:class:`threeML.Model` + Spectral hypothesis. + + Returns + ------- + :py:class:`histpy.Histogram` + Histogram with the expected counts on each analysis bin + """ + + eaxis = self.photon_energy_axis + + spectrum_unit = None + + for item in spectrum.parameters: + if getattr(spectrum, item).is_normalization == True: + spectrum_unit = getattr(spectrum, item).unit + break + + if spectrum_unit == None: + if isinstance(spectrum, Constant): + spectrum_unit = spectrum.k.unit + elif isinstance(spectrum, Line) or isinstance(spectrum, Quadratic) or isinstance(spectrum, Cubic) or isinstance(spectrum, Quartic): + spectrum_unit = spectrum.a.unit + elif isinstance(spectrum, StepFunction) or isinstance(spectrum, StepFunctionUpper) or isinstance(spectrum, Cosine_Prior) or isinstance(spectrum, Uniform_prior) or isinstance(spectrum, DiracDelta): + spectrum_unit = spectrum.value.unit + elif isinstance(spectrum, PhAbs): + spectrum_unit = u.dimensionless_unscaled + elif isinstance(spectrum, Gaussian): + spectrum_unit = spectrum.F.unit / spectrum.sigma.unit + else: + try: + spectrum_unit = spectrum.K.unit + except: + raise RuntimeError("Spectrum not yet supported because units of spectrum are unknown.") + + if isinstance(spectrum, DiracDelta): + flux = Quantity([spectrum.value.value * spectrum_unit * lo_lim.unit if spectrum.zero_point.value >= lo_lim/lo_lim.unit and spectrum.zero_point.value <= hi_lim/hi_lim.unit else 0 * spectrum_unit * lo_lim.unit + for lo_lim,hi_lim + in zip(eaxis.lower_bounds, eaxis.upper_bounds)]) + else: + flux = Quantity([integrate.quad(spectrum, lo_lim/lo_lim.unit, hi_lim/hi_lim.unit)[0] * spectrum_unit * lo_lim.unit + for lo_lim,hi_lim + in zip(eaxis.lower_bounds, eaxis.upper_bounds)]) + + flux = self.expand_dims(flux.value, 'Ei') * flux.unit + + expectation = self * flux + + return expectation
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/spacecraftfile/SpacecraftFile.html b/_modules/cosipy/spacecraftfile/SpacecraftFile.html new file mode 100644 index 00000000..76290b19 --- /dev/null +++ b/_modules/cosipy/spacecraftfile/SpacecraftFile.html @@ -0,0 +1,1163 @@ + + + + + + cosipy.spacecraftfile.SpacecraftFile — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.spacecraftfile.SpacecraftFile

+import numpy as np
+import matplotlib.pyplot as plt
+import astropy.units as u
+from astropy.io import fits
+from astropy.time import Time, TimeDelta
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+from mhealpy import HealpixMap
+import matplotlib.pyplot as plt
+from matplotlib.colors import LogNorm
+from matplotlib import cm, colors
+
+from scoords import Attitude, SpacecraftFrame
+from cosipy.response import FullDetectorResponse
+
+from .scatt_map import SpacecraftAttitudeMap
+
+
+[docs] +class SpacecraftFile(): + + def __init__(self, time, x_pointings = None, y_pointings = None, z_pointings = None, attitude = None, + instrument = "COSI", frame = "galactic"): + + """ + Handles the spacecraft orientation. Calculates the dwell time map and point source response over a certain orientation period. Exports the point source response as RMF and ARF files that can be read by XSPEC. + + Parameters + ---------- + Time : astropy.time.Time + The time stamps for each pointings. Note this is NOT the time duration. + x_pointings : astropy.coordinates.SkyCoord, optional + The pointings (galactic system) of the x axis of the local coordinate system attached to the spacecraft (the default is `None`, which implies no input for the x pointings). + y_pointings : astropy.coordinates.SkyCoord, optional + The pointings (galactic system) of the y axis of the local coordinate system attached to the spacecraft (the default is `None`, which implies no input for the y pointings). + z_pointings : astropy.coordinates.SkyCoord, optional + The pointings (galactic system) of the z axis of the local coordinate system attached to the spacecraft (the default is `None`, which implies no input for the z pointings). + attitude: numpy.ndarray, optional + The attitude of the spacecraft (the default is `None`, which implies no input for the attitude of the spacecraft). + instrument : str, optional + The instrument name (the default is "COSI"). + frame : str, optional + The frame on which the analysis will be based (the default is "galactic"). + """ + + # check if the inputs are valid + # Time + if isinstance(time, Time): + self._time = time + else: + raise TypeError("The time should be a astropy.time.Time object") + + # x pointings + if isinstance(x_pointings, (SkyCoord, type(None))): + self.x_pointings = x_pointings + else: + raise TypeError("The x_pointing should be a NoneType or SkyCoord object!") + + # y pointings + if isinstance(y_pointings, (SkyCoord, type(None))): + self.y_pointings = y_pointings + else: + raise TypeError("The y_pointing should be a NoneType or SkyCoord object!") + + # z pointings + if isinstance(z_pointings, (SkyCoord, type(None))): + self.z_pointings = z_pointings + else: + raise TypeError("The z_pointing should be a NoneType or SkyCoord object!") + + # check if the x, y and z pointings are all None (no inputs). If all None, tt will try to read from attitude parameter + if self.x_pointings is None and self.y_pointings is None and self.z_pointings is None: + if attitude != None: + if type(attitude) is Attitude: + self.attitude = attitude + else: + raise TypeError("The attitude must be `scoords.attitude.Attitude` object") + else: + raise ValueError("Please input the pointings of as least two axes or attitude!") + + else: + self.attitude = None # if you have the inputs of x, y and z pointings, the attitude will be overwritten by a None value regardless of the input for the attitude variable. + + self._load_time = self._time.to_value(format = "unix") # this is not necessary, but just to make sure evething works fine... + self._x_direction = np.array([x_pointings.l.deg, x_pointings.b.deg]).T # this is not necessary, but just to make sure evething works fine... + self._z_direction = np.array([z_pointings.l.deg, z_pointings.b.deg]).T # this is not necessary, but just to make sure evething works fine... + self.frame = frame + + +
+[docs] + @classmethod + def parse_from_file(cls, file): + + """ + Parses timestamps, axis positions from file and returns to __init__. + + Parameters + ---------- + file : str + The file path of the pointings. + + Returns + ------- + cosipy.spacecraftfile.SpacecraftFile + The SpacecraftFile object. + """ + + time_stamps = np.loadtxt(file, usecols = 1, delimiter = ' ', skiprows = 1, comments=("#","EN")) + axis_1 = np.loadtxt(file, usecols = (3,2), delimiter = ' ', skiprows = 1, comments=("#","EN")) + axis_2 = np.loadtxt(file, usecols = (5,4), delimiter = ' ', skiprows = 1, comments=("#","EN")) + + time = Time(time_stamps, format = "unix") + xpointings = SkyCoord(l = axis_1[:,0]*u.deg, b = axis_1[:,1]*u.deg, frame = "galactic") + zpointings = SkyCoord(l = axis_2[:,0]*u.deg, b = axis_2[:,1]*u.deg, frame = "galactic") + + return cls(time, x_pointings = xpointings, z_pointings = zpointings)
+ + +
+[docs] + def get_time(self, time_array = None): + + """ + Return the arrary pf pointing times as a astropy.Time object. + + Parameters + ---------- + time_array : numpy.ndarray, optional + The time array (the default is `None`, which implies the time array will be taken from the instance). + + Returns + ------- + astropy.time.Time + The time stamps of the orientation. + """ + + if time_array == None: + self._time = Time(self._load_time, format = "unix") + else: + self._time = Time(time_array, format = "unix") + + return self._time
+ + +
+[docs] + def get_time_delta(self, time_array = None): + + """ + Return an array of the time period between neighbouring time points. + + Parameters + ---------- + time_array : numpy.ndarray, optional + The time delta array (the default is `None`, which implies the time array will be taken from the instance). + + Returns + ------- + time_delta : astropy.time.Time + The time difference between the neighbouring time stamps. + """ + + if time_array == None: + self._time_delta = np.diff(self._load_time) + else: + self._time_delta = np.diff(time_array) + + time_delta = TimeDelta(self._time_delta * u.second) + + return time_delta
+ + +
+[docs] + def interpolate_direction(self, trigger, idx, direction): + + """ + Linearly interpolates position at a given time between two timestamps. + + Parameters + ---------- + trigger : astropy.time.Time + The time of the event. + idx : int + The closest index in the pointing to the trigger time. + direction : numpy.ndarray + The pointing axis (x,z). + + Returns + ------- + numpy.ndarray + The interpolated positions. + """ + + new_direction_lat = np.interp(trigger.value, self._load_time[idx : idx + 2], direction[idx : idx + 2, 1]) + if (direction[idx, 0] > direction[idx + 1, 0]): + new_direction_long = np.interp(trigger.value, self._load_time[idx : idx + 2], [direction[idx, 0], 360 + direction[idx + 1, 0]]) + new_direction_long = new_direction_long - 360 + else: + new_direction_long = np.interp(trigger.value, self._load_time[idx : idx + 2], direction[idx : idx + 2, 0]) + + return np.array([new_direction_long, new_direction_lat])
+ + +
+[docs] + def source_interval(self, start, stop): + + """ + Returns the SpacecraftFile file class object for the source interval. + + Parameters + ---------- + start : astropy.time.Time + The star time of the orientation period. + stop : astropy.time.Time + The end time of the orientation period. + + Returns + ------- + cosipy.spacecraft.SpacecraftFile + """ + + if(start.format != 'unix' or stop.format != 'unix'): + start = Time(start.unix, format='unix') + stop = Time(stop.unix, format='unix') + + if(start > stop): + raise ValueError("start time cannot be after stop time.") + + stop_idx = self._load_time.searchsorted(stop.value) + + if (start.value % 1 == 0): + start_idx = self._load_time.searchsorted(start.value) + new_times = self._load_time[start_idx : stop_idx + 1] + new_x_direction = self._x_direction[start_idx : stop_idx + 1] + new_z_direction = self._z_direction[start_idx : stop_idx + 1] + else: + start_idx = self._load_time.searchsorted(start.value) - 1 + + x_direction_start = self.interpolate_direction(start, start_idx, self._x_direction) + z_direction_start = self.interpolate_direction(start, start_idx, self._z_direction) + + new_times = self._load_time[start_idx + 1 : stop_idx + 1] + new_times = np.insert(new_times, 0, start.value) + + new_x_direction = self._x_direction[start_idx + 1 : stop_idx + 1] + new_x_direction = np.insert(new_x_direction, 0, x_direction_start, axis = 0) + + new_z_direction = self._z_direction[start_idx + 1 : stop_idx + 1] + new_z_direction = np.insert(new_z_direction, 0, z_direction_start, axis = 0) + + + if (stop.value % 1 != 0): + stop_idx = self._load_time.searchsorted(stop.value) - 1 + + x_direction_stop = self.interpolate_direction(stop, stop_idx, self._x_direction) + z_direction_stop = self.interpolate_direction(stop, stop_idx, self._z_direction) + + new_times = np.delete(new_times, -1) + new_times = np.append(new_times, stop.value) + + new_x_direction = new_x_direction[:-1] + new_x_direction = np.append(new_x_direction, [x_direction_stop], axis = 0) + + new_z_direction = new_z_direction[:-1] + new_z_direction = np.append(new_z_direction, [z_direction_stop], axis = 0) + + time = Time(new_times, format = "unix") + xpointings = SkyCoord(l = new_x_direction[:,0]*u.deg, b = new_x_direction[:,1]*u.deg, frame = "galactic") + zpointings = SkyCoord(l = new_z_direction[:,0]*u.deg, b = new_z_direction[:,1]*u.deg, frame = "galactic") + + return self.__class__(time, x_pointings = xpointings, z_pointings = zpointings)
+ + +
+[docs] + def get_attitude(self, x_pointings = None, y_pointings = None, z_pointings = None): + + """ + Converts the x, y and z pointings to the attitude of the telescope. + + Parameters + ---------- + x_pointings : astropy.coordinates.SkyCoord, optional + The pointings (galactic system) of the x axis of the local coordinate system attached to the spacecraft (the default is `None`, which implies that the x pointings will be taken from the instance). + y_pointings : astropy.coordinates.SkyCoord, optional + The pointings (galactic system) of the y axis of the local coordinate system attached to the spacecraft (the default is `None`, which implies that the y pointings will be taken from the instance). + z_pointings : astropy.coordinates.SkyCoord, optional + The pointings (galactic system) of the z axis of the local coordinate system attached to the spacecraft (the default is `None`, which implies that the z pointings will be taken from the instance). + + Returns + ------- + scoords.attitude.Attitude + The attitude of the spacecraft. + """ + if self.attitude is None: + # the attitude is None, we will calculate from the x, y and z pointings + if x_pointings is not None: + self.x_pointings = x_pointings + if y_pointings is not None: + self.y_pointings = y_pointings + if z_pointings is not None: + self.z_pointings = z_pointings + + list_ = [self.x_pointings, self.y_pointings, self.z_pointings] + coord_list_of_path = [x for x in list_ if x!=None] # check how many pointings the user input + + # Check if the user input pointings from at least two axes + if len(coord_list_of_path) <= 1: + raise ValueError("You must input pointings of at least two axes") + + # Check if the inputs are SkyCoord objects + for i in coord_list_of_path: + if type(i) != SkyCoord: + raise ValueError("The coordiates must be a SkyCoord object") + + self.attitude = Attitude.from_axes(x=self.x_pointings, + y=self.y_pointings, + z=self.z_pointings, + frame = self.frame) + + return self.attitude
+ + +
+[docs] + def get_target_in_sc_frame(self, target_name, target_coord, attitude = None, quiet = False, save = False): + + """ + Convert the x, y and z pointings of the spacescraft axes to the path of the source in the spacecraft frame. + Specify the pointings of at least two axes. + + Parameters + ---------- + target_name : str + The name of the target object. + target_coord : astropy.coordinates.SkyCoord + The coordinates of the target object. + attitude: cosipy.coordinates.attitude.Attitude, optional + The attitude of the spacecraft (the default is `None`, which implies the attitude will be taken from the instance). + quiet : bool, default=False + Setting `True` to stop printing the messages. + save : bool, default=False + Setting `True` to save the target coordinates in the spacecraft frame. + + Returns + ------- + astropy.coordinates.SkyCoord + The target coordinates in the spacecraft frame. + """ + + if attitude != None: + self.attitude = attitude + else: + self.attitude = self.get_attitude() + + self.target_name = target_name + if quiet == False: + print("Now converting to the Spacecraft frame...") + self.src_path_cartesian = SkyCoord(np.dot(self.attitude.rot.inv().as_matrix(), target_coord.cartesian.xyz.value), + representation_type = 'cartesian', + frame = SpacecraftFrame()) + + # The conversion above is in Cartesian frame, so we have to convert them to the spherical one. + + self.src_path_spherical = cartesian_to_spherical(self.src_path_cartesian.x, + self.src_path_cartesian.y, + self.src_path_cartesian.z) + if quiet == False: + print(f"Conversion completed!") + + # generate the numpy array of l and b to save to a npy file + l = np.array(self.src_path_spherical[2].deg) # note that 0 is Quanty, 1 is latitude and 2 is longitude and they are in rad not deg + b = np.array(self.src_path_spherical[1].deg) + self.src_path_lb = np.stack((l,b), axis=-1) + + if save == True: + np.save(self.target_name+"_source_path_in_SC_frame", self.src_path_lb) + + # convert to SkyCoord objects to get the output object of this method + self.src_path_skycoord = SkyCoord(self.src_path_lb[:,0], self.src_path_lb[:,1], unit = "deg", frame = SpacecraftFrame()) + + return self.src_path_skycoord
+ + + +
+[docs] + def get_dwell_map(self, response, src_path = None, save = False): + + """ + Generates the dwell time map for the source. + + Parameters + ---------- + response : str or pathlib.Path + The path to the response file. + src_path : astropy.coordinates.SkyCoord, optional + The movement of source in the detector frame (the default is `None`, which implies that the `src_path` will be read from the instance). + save : bool, default=False + Set True to save the dwell time map. + + Returns + ------- + mhealpy.containers.healpix_map.HealpixMap + The dwell time map. + """ + + # Define the response + self.response_file = response + + # Define the dts + self.dts = self.get_time_delta() + + # define the target source path in the SC frame + if src_path is None: + path = self.src_path_skycoord + else: + path = src_path + # check if the target source path is astropy.Skycoord object + if type(path) != SkyCoord: + raise TypeError("The coordiates of the source movement in the Spacecraft frame must be a SkyCoord object") + + if path.shape[0]-1 != self.dts.shape[0]: + raise ValueError("The dimensions of the dts or source coordinates are not correct. Please check your inputs.") + + with FullDetectorResponse.open(self.response_file) as response: + self.dwell_map = HealpixMap(base = response, + coordsys = SpacecraftFrame()) + + # Get the unique pixels to weight, and sum all the correspondint weights first, so + # each pixels needs to be called only once. + # Based on https://stackoverflow.com/questions/23268605/grouping-indices-of-unique-elements-in-numpy + + # remove the last value. Effectively a 0th order interpolations + pixels, weights = self.dwell_map.get_interp_weights(theta = self.src_path_skycoord[:-1]) + + weighted_duration = weights * self.dts.to_value(u.second)[None] + + pixels = pixels.flatten() + weighted_duration = weighted_duration.flatten() + + pixels_argsort = np.argsort(pixels) + + pixels = pixels[pixels_argsort] + weighted_duration = weighted_duration[pixels_argsort] + + first_unique = np.concatenate(([True], pixels[1:] != pixels[:-1])) + + pixel_unique = pixels[first_unique] + + splits = np.nonzero(first_unique)[0][1:] + pixel_durations = [np.sum(weighted_duration[start:stop]) for start,stop in zip(np.append(0,splits), np.append(splits, pixels.size))] + + for pix, dur in zip(pixel_unique, pixel_durations): + self.dwell_map[pix] += dur + + self.dwell_map.to(u.second, update = False, copy = False) + + if save == True: + self.dwell_map.write_map(self.target_name + "_DwellMap.fits", overwrite = True) + + return self.dwell_map
+ + +
+[docs] + def get_scatt_map(self, + nside, + scheme = 'ring', + coordsys = 'galactic', + ): + """ + Bin the spacecraft attitude history into a 4D histogram that contains the accumulated time the axes of the spacecraft where looking at a given direction. + + Parameters + ---------- + nside : int + The nside of the scatt map. + scheme : str, optional + The scheme of the scatt map (the default is "ring") + coordsys : str, optional + The coordinate system used in the scatt map (the default is "galactic). + + Returns + ------- + h_ori : cosipy.spacecraftfile.scatt_map.SpacecraftAttitudeMap + The spacecraft attitude map. + """ + + # Get orientations + timestamps = self.get_time() + attitudes = self.get_attitude() + + # Fill (only 2 axes needed to fully define the orientation) + h_ori = SpacecraftAttitudeMap(nside = nside, + scheme = scheme, + coordsys = coordsys) + + x,y,z = attitudes[:-1].as_axes() + + h_ori.fill(x, y, weight = np.diff(timestamps.gps)*u.s) + + return h_ori
+ + + +
+[docs] + def get_psr_rsp(self, response = None, dwell_map = None, dts = None): + + """ + Generates the point source response based on the response file and dwell time map. + dts is used to find the exposure time for this observation. + + Parameters + ---------- + response : str or pathlib.Path, optional + The response for the observation (the defaul is `None`, which implies that the `response` will be read from the instance). + dwell_map : str, optional + The time dwell map for the source, you can load saved dwell time map using this parameter if you've saved it before (the defaul is `None`, which implies that the `dwell_map` will be read from the instance). + dts : numpy.ndarray or str, optional + The elapsed time for each pointing. It must has the same size as the pointings. If you have saved this array, you can load it using this parameter (the defaul is `None`, which implies that the `dts` will be read from the instance). + + Returns + ------- + Ei_edges : numpy.ndarray + The edges of the incident energy. + Ei_lo : numpy.ndarray + The lower edges of the incident energy. + Ei_hi : numpy.ndarray + The upper edges of the incident energy. + Em_edges : numpy.ndarray + The edges of the measured energy. + Em_lo : numpy.ndarray + The lower edges of the measured energy. + Em_hi : numpy.ndarray + The upper edges of the measured energy. + areas : numpy.ndarray + The effective area of each energy bin. + matrix : numpy.ndarray + The energy dispersion matrix. + """ + + if response == None: + pass # will use the response defined in the previous steps + else: + self.response_file = response + + if dwell_map is None: # must use is None, or it throws error! + pass # will use the dwelltime map calculated in the previous steps + else: + self.dwell_map = HealpixMap.read_map(dwell_map) + + if dts == None: + self.dts = self.get_time_delta() + else: + self.dts = TimeDelta(dts*u.second) + + with FullDetectorResponse.open(self.response_file) as response: + + # get point source response + self.psr = response.get_point_source_response(self.dwell_map) + + self.Ei_edges = np.array(response.axes['Ei'].edges) + self.Ei_lo = np.float32(self.Ei_edges[:-1]) # use float32 to match the requirement of the data type + self.Ei_hi = np.float32(self.Ei_edges[1:]) + + self.Em_edges = np.array(response.axes['Em'].edges) + self.Em_lo = np.float32(self.Em_edges[:-1]) + self.Em_hi = np.float32(self.Em_edges[1:]) + + # get the effective area and matrix + print("Getting the effective area ...") + self.areas = np.float32(np.array(self.psr.project('Ei').to_dense().contents))/self.dts.to_value(u.second).sum() + spectral_response = np.float32(np.array(self.psr.project(['Ei','Em']).to_dense().contents)) + self.matrix = np.float32(np.zeros((self.Ei_lo.size,self.Em_lo.size))) # initate the matrix + + print("Getting the energy redistribution matrix ...") + for i in np.arange(self.Ei_lo.size): + new_raw = spectral_response[i,:]/spectral_response[i,:].sum() + self.matrix[i,:] = new_raw + self.matrix = self.matrix.T + + return self.Ei_edges, self.Ei_lo, self.Ei_hi, self.Em_edges, self.Em_lo, self.Em_hi, self.areas, self.matrix
+ + + +
+[docs] + def get_arf(self, out_name = None): + + """ + Converts the point source response to an arf file that can be read by XSPEC. + + Parameters + ---------- + out_name: str, optional + The name of the arf file to save. (the default is `None`, which implies that the saving name will be the target name of the instance). + """ + + if out_name == None: + self.out_name = self.target_name + else: + self.out_name = out_name + + # blow write the arf file + copyright_string=" FITS (Flexible Image Transport System) format is defined in 'Astronomy and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H " + + ## Create PrimaryHDU + primaryhdu = fits.PrimaryHDU() # create an empty primary HDU + primaryhdu.header["BITPIX"] = -32 # since it's an empty HDU, I can just change the data type by resetting the BIPTIX value + primaryhdu.header["COMMENT"] = copyright_string # add comments + primaryhdu.header # print headers and their values + + col1_energ_lo = fits.Column(name="ENERG_LO", format="E",unit = "keV", array=self.Em_lo) + col2_energ_hi = fits.Column(name="ENERG_HI", format="E",unit = "keV", array=self.Em_hi) + col3_specresp = fits.Column(name="SPECRESP", format="E",unit = "cm**2", array=self.areas) + cols = fits.ColDefs([col1_energ_lo, col2_energ_hi, col3_specresp]) # create a ColDefs (column-definitions) object for all columns + specresp_bintablehdu = fits.BinTableHDU.from_columns(cols) # create a binary table HDU object + + specresp_bintablehdu.header.comments["TTYPE1"] = "label for field 1" + specresp_bintablehdu.header.comments["TFORM1"] = "data format of field: 4-byte REAL" + specresp_bintablehdu.header.comments["TUNIT1"] = "physical unit of field" + specresp_bintablehdu.header.comments["TTYPE2"] = "label for field 2" + specresp_bintablehdu.header.comments["TFORM2"] = "data format of field: 4-byte REAL" + specresp_bintablehdu.header.comments["TUNIT2"] = "physical unit of field" + specresp_bintablehdu.header.comments["TTYPE3"] = "label for field 3" + specresp_bintablehdu.header.comments["TFORM3"] = "data format of field: 4-byte REAL" + specresp_bintablehdu.header.comments["TUNIT3"] = "physical unit of field" + + specresp_bintablehdu.header["EXTNAME"] = ("SPECRESP","name of this binary table extension") + specresp_bintablehdu.header["TELESCOP"] = ("COSI","mission/satellite name") + specresp_bintablehdu.header["INSTRUME"] = ("COSI","instrument/detector name") + specresp_bintablehdu.header["FILTER"] = ("NONE","filter in use") + specresp_bintablehdu.header["HDUCLAS1"] = ("RESPONSE","dataset relates to spectral response") + specresp_bintablehdu.header["HDUCLAS2"] = ("SPECRESP","extension contains an ARF") + specresp_bintablehdu.header["HDUVERS"] = ("1.1.0","version of format") + + new_arfhdus = fits.HDUList([primaryhdu, specresp_bintablehdu]) + new_arfhdus.writeto(f'{self.out_name}.arf', overwrite=True) + + return
+ + +
+[docs] + def get_rmf(self, out_name = None): + + """ + Converts the point source response to an rmf file that can be read by XSPEC. + + Parameters + ---------- + out_name: str, optional + The name of the arf file to save. (the default is None, which implies that the saving name will be the target name of the instance). + """ + + if out_name == None: + self.out_name = self.target_name + else: + self.out_name = out_name + + # blow write the arf file + copyright_string=" FITS (Flexible Image Transport System) format is defined in 'Astronomy and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H " + + ## Create PrimaryHDU + primaryhdu = fits.PrimaryHDU() # create an empty primary HDU + primaryhdu.header["BITPIX"] = -32 # since it's an empty HDU, I can just change the data type by resetting the BIPTIX value + primaryhdu.header["COMMENT"] = copyright_string # add comments + primaryhdu.header # print headers and their values + + ## Create binary table HDU for MATRIX + ### prepare colums + energ_lo = [] + energ_hi = [] + n_grp = [] + f_chan = [] + n_chan = [] + matrix = [] + for i in np.arange(len(self.Ei_lo)): + energ_lo_temp = np.float32(self.Em_lo[i]) + energ_hi_temp = np.float32(self.Ei_hi[i]) + + if self.matrix[:,i].sum() != 0: + nz_matrix_idx = np.nonzero(self.matrix[:,i])[0] # non-zero index for the matrix + subsets = np.split(nz_matrix_idx, np.where(np.diff(nz_matrix_idx) != 1)[0]+1) + n_grp_temp = np.int16(len(subsets)) + f_chan_temp = [] + n_chan_temp = [] + matrix_temp = [] + for m in np.arange(n_grp_temp): + f_chan_temp += [subsets[m][0]] + n_chan_temp += [len(subsets[m])] + for m in nz_matrix_idx: + matrix_temp += [self.matrix[:,i][m]] + f_chan_temp = np.int16(np.array(f_chan_temp)) + n_chan_temp = np.int16(np.array(n_chan_temp)) + matrix_temp = np.float32(np.array(matrix_temp)) + else: + n_grp_temp = np.int16(0) + f_chan_temp = np.int16(np.array([0])) + n_chan_temp = np.int16(np.array([0])) + matrix_temp = np.float32(np.array([0])) + + energ_lo.append(energ_lo_temp) + energ_hi.append(energ_hi_temp) + n_grp.append(n_grp_temp) + f_chan.append(f_chan_temp) + n_chan.append(n_chan_temp) + matrix.append(matrix_temp) + + col1_energ_lo = fits.Column(name="ENERG_LO", format="E",unit = "keV", array=energ_lo) + col2_energ_hi = fits.Column(name="ENERG_HI", format="E",unit = "keV", array=energ_hi) + col3_n_grp = fits.Column(name="N_GRP", format="I", array=n_grp) + col4_f_chan = fits.Column(name="F_CHAN", format="PI(54)", array=f_chan) + col5_n_chan = fits.Column(name="N_CHAN", format="PI(54)", array=n_chan) + col6_n_chan = fits.Column(name="MATRIX", format="PE(161)", array=matrix) + cols = fits.ColDefs([col1_energ_lo, col2_energ_hi, col3_n_grp, col4_f_chan, col5_n_chan, col6_n_chan]) # create a ColDefs (column-definitions) object for all columns + matrix_bintablehdu = fits.BinTableHDU.from_columns(cols) # create a binary table HDU object + + matrix_bintablehdu.header.comments["TTYPE1"] = "label for field 1 " + matrix_bintablehdu.header.comments["TFORM1"] = "data format of field: 4-byte REAL" + matrix_bintablehdu.header.comments["TUNIT1"] = "physical unit of field" + matrix_bintablehdu.header.comments["TTYPE2"] = "label for field 2" + matrix_bintablehdu.header.comments["TFORM2"] = "data format of field: 4-byte REAL" + matrix_bintablehdu.header.comments["TUNIT2"] = "physical unit of field" + matrix_bintablehdu.header.comments["TTYPE3"] = "label for field 3 " + matrix_bintablehdu.header.comments["TFORM3"] = "data format of field: 2-byte INTEGER" + matrix_bintablehdu.header.comments["TTYPE4"] = "label for field 4" + matrix_bintablehdu.header.comments["TFORM4"] = "data format of field: variable length array" + matrix_bintablehdu.header.comments["TTYPE5"] = "label for field 5" + matrix_bintablehdu.header.comments["TFORM5"] = "data format of field: variable length array" + matrix_bintablehdu.header.comments["TTYPE6"] = "label for field 6" + matrix_bintablehdu.header.comments["TFORM6"] = "data format of field: variable length array" + + matrix_bintablehdu.header["EXTNAME"] = ("MATRIX","name of this binary table extension") + matrix_bintablehdu.header["TELESCOP"] = ("COSI","mission/satellite name") + matrix_bintablehdu.header["INSTRUME"] = ("COSI","instrument/detector name") + matrix_bintablehdu.header["FILTER"] = ("NONE","filter in use") + matrix_bintablehdu.header["CHANTYPE"] = ("PI","total number of detector channels") + matrix_bintablehdu.header["DETCHANS"] = (len(self.Em_lo),"total number of detector channels") + matrix_bintablehdu.header["HDUCLASS"] = ("OGIP","format conforms to OGIP standard") + matrix_bintablehdu.header["HDUCLAS1"] = ("RESPONSE","dataset relates to spectral response") + matrix_bintablehdu.header["HDUCLAS2"] = ("RSP_MATRIX","dataset is a spectral response matrix") + matrix_bintablehdu.header["HDUVERS"] = ("1.3.0","version of format") + matrix_bintablehdu.header["TLMIN4"] = (0,"minimum value legally allowed in column 4") + + ## Create binary table HDU for EBOUNDS + channels = np.int16(np.arange(len(self.Em_lo))) + e_min = np.float32(self.Em_lo) + e_max = np.float32(self.Em_hi) + + col1_channels = fits.Column(name="CHANNEL", format="I", array=channels) + col2_e_min = fits.Column(name="E_MIN", format="E",unit="keV", array=e_min) + col3_e_max = fits.Column(name="E_MAX", format="E",unit="keV", array=e_max) + cols = fits.ColDefs([col1_channels, col2_e_min, col3_e_max]) + ebounds_bintablehdu = fits.BinTableHDU.from_columns(cols) + + ebounds_bintablehdu.header.comments["TTYPE1"] = "label for field 1" + ebounds_bintablehdu.header.comments["TFORM1"] = "data format of field: 2-byte INTEGER" + ebounds_bintablehdu.header.comments["TTYPE2"] = "label for field 2" + ebounds_bintablehdu.header.comments["TFORM2"] = "data format of field: 4-byte REAL" + ebounds_bintablehdu.header.comments["TUNIT2"] = "physical unit of field" + ebounds_bintablehdu.header.comments["TTYPE3"] = "label for field 3" + ebounds_bintablehdu.header.comments["TFORM3"] = "data format of field: 4-byte REAL" + ebounds_bintablehdu.header.comments["TUNIT3"] = "physical unit of field" + + ebounds_bintablehdu.header["EXTNAME"] = ("EBOUNDS","name of this binary table extension") + ebounds_bintablehdu.header["TELESCOP"] = ("COSI","mission/satellite") + ebounds_bintablehdu.header["INSTRUME"] = ("COSI","nstrument/detector name") + ebounds_bintablehdu.header["FILTER"] = ("NONE","filter in use") + ebounds_bintablehdu.header["CHANTYPE"] = ("PI","channel type (PHA or PI)") + ebounds_bintablehdu.header["DETCHANS"] = (len(self.Em_lo),"total number of detector channels") + ebounds_bintablehdu.header["HDUCLASS"] = ("OGIP","format conforms to OGIP standard") + ebounds_bintablehdu.header["HDUCLAS1"] = ("RESPONSE","dataset relates to spectral response") + ebounds_bintablehdu.header["HDUCLAS2"] = ("EBOUNDS","dataset is a spectral response matrix") + ebounds_bintablehdu.header["HDUVERS"] = ("1.2.0","version of format") + + new_rmfhdus = fits.HDUList([primaryhdu, matrix_bintablehdu,ebounds_bintablehdu]) + new_rmfhdus.writeto(f'{self.out_name}.rmf', overwrite=True) + + return
+ + +
+[docs] + def get_pha(self, src_counts, errors, rmf_file = None, arf_file = None, bkg_file = None, exposure_time = None, dts = None, telescope="COSI", instrument="COSI"): + + """ + Generate the pha file that can be read by XSPEC. This file stores the counts info of the source. + + Parameters + ---------- + src_counts : numpy.ndarray + The counts in each energy band. If you have src_counts with unit counts/kev/s, you must convert it to counts by multiplying it with exposure time and the energy band width. + errors : numpy.ndarray + The error for counts. It has the same unit requirement as src_counts. + rmf_file : str, optional + The rmf file name to be written into the pha file (the default is `None`, which implies that it uses the rmf file generate by function `get_rmf`) + arf_file : str, optional + The arf file name to be written into the pha file (the default is `None`, which implies that it uses the arf file generate by function `get_arf`) + bkg_file : str, optional + The background file name (the default is `None`, which implied the `src_counts` is source counts only). + exposure_time : float, optional + The exposure time for this source observation (the default is `None`, which implied that the exposure time will be calculated by `dts`). + dts : numpy.ndarray, optional + It's used to calculate the exposure time. It has the same effect as `exposure_time`. If both `exposure_time` and `dts` are given, `dts` will write over the exposure_time (the default is `None`, which implies that the `dts` will be read from the instance). + telescope : str, optional + The name of the telecope (the default is "COSI"). + instrument : str, optional + The instrument name (the default is "COSI"). + """ + + self.src_counts = src_counts + self.errors = errors + + if bkg_file != None: + self.bkg_file = bkg_file + else: + self.bkg_file = "None" + + self.bkg_file = bkg_file + + if rmf_file != None: + self.rmf_file = rmf_file + else: + self.rmf_file = f'{self.out_name}.rmf' + + if arf_file != None: + self.arf_file = arf_file + else: + self.arf_file = f'{self.out_name}.arf' + + if exposure_time != None: + self.exposure_time = exposure_time + if dts != None: + self.dts = self.__str_or_array(dts) + self.exposure_time = self.dts.sum() + self.telescope = telescope + self.instrument = instrument + self.channel_number = len(self.src_counts) + + # define other hardcoded inputs + copyright_string=" FITS (Flexible Image Transport System) format is defined in 'Astronomy and Astrophysics', volume 376, page 359; bibcode: 2001A&A...376..359H " + channels = np.arange(self.channel_number) + + # Create PrimaryHDU + primaryhdu = fits.PrimaryHDU() # create an empty primary HDU + primaryhdu.header["BITPIX"] = -32 # since it's an empty HDU, I can just change the data type by resetting the BIPTIX value + primaryhdu.header["COMMENT"] = copyright_string # add comments + primaryhdu.header["TELESCOP"] = telescope # add telescope keyword valie + primaryhdu.header["INSTRUME"] = instrument # add instrument keyword valie + primaryhdu.header # print headers and their values + + # Create binary table HDU + a1 = np.array(channels,dtype="int32") # I guess I need to convert the dtype to match the format J + a2 = np.array(self.src_counts,dtype="int64") # int32 is not enough for counts + a3 = np.array(self.errors,dtype="int64") # int32 is not enough for errors + col1 = fits.Column(name="CHANNEL", format="J", array=a1) + col2 = fits.Column(name="COUNTS", format="K", array=a2,unit="count") + col3 = fits.Column(name="STAT_ERR", format="K", array=a3,unit="count") + cols = fits.ColDefs([col1, col2, col3]) # create a ColDefs (column-definitions) object for all columns + bintablehdu = fits.BinTableHDU.from_columns(cols) # create a binary table HDU object + + #add other BinTableHDU hear keywords,their values, and comments + bintablehdu.header.comments["TTYPE1"] = "label for field 1" + bintablehdu.header.comments["TFORM1"] = "data format of field: 32-bit integer" + bintablehdu.header.comments["TTYPE2"] = "label for field 2" + bintablehdu.header.comments["TFORM2"] = "data format of field: 32-bit integer" + bintablehdu.header.comments["TUNIT2"] = "physical unit of field 2" + + + bintablehdu.header["EXTNAME"] = ("SPECTRUM","name of this binary table extension") + bintablehdu.header["TELESCOP"] = (self.telescope,"telescope/mission name") + bintablehdu.header["INSTRUME"] = (self.instrument,"instrument/detector name") + bintablehdu.header["FILTER"] = ("NONE","filter type if any") + bintablehdu.header["EXPOSURE"] = (self.exposure_time,"integration time in seconds") + bintablehdu.header["BACKFILE"] = (self.bkg_file,"background filename") + bintablehdu.header["BACKSCAL"] = (1,"background scaling factor") + bintablehdu.header["CORRFILE"] = ("NONE","associated correction filename") + bintablehdu.header["CORRSCAL"] = (1,"correction file scaling factor") + bintablehdu.header["CORRSCAL"] = (1,"correction file scaling factor") + bintablehdu.header["RESPFILE"] = (self.rmf_file,"associated rmf filename") + bintablehdu.header["ANCRFILE"] = (self.arf_file,"associated arf filename") + bintablehdu.header["AREASCAL"] = (1,"area scaling factor") + bintablehdu.header["STAT_ERR"] = (0,"statistical error specified if any") + bintablehdu.header["SYS_ERR"] = (0,"systematic error specified if any") + bintablehdu.header["GROUPING"] = (0,"grouping of the data has been defined if any") + bintablehdu.header["QUALITY"] = (0,"data quality information specified") + bintablehdu.header["HDUCLASS"] = ("OGIP","format conforms to OGIP standard") + bintablehdu.header["HDUCLAS1"] = ("SPECTRUM","PHA dataset") + bintablehdu.header["HDUVERS"] = ("1.2.1","version of format") + bintablehdu.header["POISSERR"] = (False,"Poissonian errors to be assumed, T as True") + bintablehdu.header["CHANTYPE"] = ("PI","channel type (PHA or PI)") + bintablehdu.header["DETCHANS"] = (self.channel_number,"total number of detector channels") + + new_phahdus = fits.HDUList([primaryhdu, bintablehdu]) + new_phahdus.writeto(f'{self.out_name}.pha', overwrite=True) + + return
+ + + +
+[docs] + def plot_arf(self, file_name = None, save_name = None, dpi = 300): + + """ + Read the arf fits file, plot and save it. + + Parameters + ---------- + file_name: str, optional + The directory if the arf fits file (the default is `None`, which implies the file name will be read from the instance). + save_name: str, optional + The name of the saved image of effective area (the default is `None`, which implies the file name will be read from the instance). + dpi: int, optional + The dpi of the saved image (the default is 300). + """ + + if file_name != None: + self.file_name = file_name + else: + self.file_name = f'{self.out_name}.arf' + + if save_name != None: + self.save_name = save_name + else: + self.save_name = self.out_name + + self.dpi = dpi + + self.arf = fits.open(self.file_name) # read file + + # SPECRESP HDU + self.specresp_hdu = self.arf["SPECRESP"] + + self.areas = np.array(self.specresp_hdu.data["SPECRESP"]) + self.Em_lo = np.array(self.specresp_hdu.data["ENERG_LO"]) + self.Em_hi = np.array(self.specresp_hdu.data["ENERG_HI"]) + + E_center = (self.Em_lo+self.Em_hi)/2 + E_edges = np.append(self.Em_lo,self.Em_hi[-1]) + + fig, ax = plt.subplots() + ax.hist(E_center,E_edges,weights=self.areas,histtype='step') + + ax.set_title("Effective area") + ax.set_xlabel("Energy[$keV$]") + ax.set_ylabel(r"Effective area [$cm^2$]") + ax.set_xscale("log") + fig.savefig(f"Effective_area_for_{self.save_name}.png", bbox_inches = "tight", pad_inches=0.1, dpi=self.dpi) + #fig.show() + + return
+ + + +
+[docs] + def plot_rmf(self, file_name = None, save_name = None, dpi = 300): + + """ + Read the rmf fits file, plot and save it. + + Parameters + ---------- + file_name: str, optional + The directory if the arf fits file (the default is `None`, which implies the file name will be read from the instance). + save_name: str, optional + The name of the saved image of effective area (the default is `None`, which implies the file name will be read from the instance). + dpi: int, optional + The dpi of the saved image (the default is 300). + """ + + if file_name != None: + self.file_name = file_name + else: + self.file_name = f'{self.out_name}.rmf' + + if save_name != None: + self.save_name = save_name + else: + self.save_name = self.out_name + + self.dpi = dpi + + # Read rmf file + self.rmf = fits.open(self.file_name) # read file + + # Read the ENOUNDS information + ebounds_ext = self.rmf["EBOUNDS"] + channel_low = ebounds_ext.data["E_MIN"] # energy bin lower edges for channels (channels are just incident energy bins) + channel_high = ebounds_ext.data["E_MAX"] # energy bin higher edges for channels (channels are just incident energy bins) + + # Read the MATRIX extension + matrix_ext = self.rmf['MATRIX'] + #print(repr(matrix_hdu.header[:60])) + energy_low = matrix_ext.data["ENERG_LO"] # energy bin lower edges for measured energies + energy_high = matrix_ext.data["ENERG_HI"] # energy bin higher edges for measured energies + data = matrix_ext.data + + # Create a 2-d numpy array and store probability data into the redistribution matrix + rmf_matrix = np.zeros((len(energy_low),len(channel_low))) # create an empty matrix + for i in np.arange(data.shape[0]): # i is the measured energy index, examine the matrix_ext.data rows by rows + if data[i][5].sum() == 0: # if the sum of probabilities is zero, then skip since there is no data at all + pass + else: + #measured_energy_index = np.argwhere(energy_low == data[157][0])[0][0] + f_chan = data[i][3] # get the starting channel of each subsets + n_chann = data[i][4] # get the number of channels in each subsets + matrix = data[i][5] # get the probabilities of this row (incident energy) + indices = [] + for k in f_chan: + channels = 0 + channels = np.arange(k,k + n_chann[np.argwhere(f_chan == k)]).tolist() # generate the cha + indices += channels # fappend the channels togeter + indices = np.array(indices) + for m in indices: + rmf_matrix[i][m] = matrix[np.argwhere(indices == m)[0][0]] # write the probabilities into the empty matrix + + + # plot the redistribution matrix + xcenter = np.divide(energy_low+energy_high,2) + x_center_coords = np.repeat(xcenter, 10) + y_center_coords = np.tile(xcenter, 10) + energy_all_edges = np.append(energy_low,energy_high[-1]) + #bin_edges = np.array([incident_energy_bins,incident_energy_bins]) # doesn't work + bin_edges = np.vstack((energy_all_edges, energy_all_edges)) + #print(bin_edges) + + self.probability = [] + for i in np.arange(10): + for j in np.arange(10): + self.probability.append(rmf_matrix[i][j]) + #print(type(probability)) + + plt.hist2d(x=x_center_coords,y=y_center_coords,weights=self.probability,bins=bin_edges, norm=LogNorm()) + plt.xscale('log') + plt.yscale('log') + plt.xlabel("Incident energy [$keV$]") + plt.ylabel("Measured energy [$keV$]") + plt.title("Redistribution matrix") + #plt.xlim([70,10000]) + #plt.ylim([70,10000]) + plt.colorbar(norm=LogNorm()) + plt.savefig(f"Redistribution_matrix_for_{self.save_name}.png", bbox_inches = "tight", pad_inches=0.1, dpi=300) + #plt.show() + + return
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/spacecraftfile/scatt_map.html b/_modules/cosipy/spacecraftfile/scatt_map.html new file mode 100644 index 00000000..52ceb648 --- /dev/null +++ b/_modules/cosipy/spacecraftfile/scatt_map.html @@ -0,0 +1,157 @@ + + + + + + cosipy.spacecraftfile.scatt_map — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + + +
  • +
  • +
+
+
+
+
+ +

Source code for cosipy.spacecraftfile.scatt_map

+from histpy import Histogram, HealpixAxis
+
+import astropy.units as u
+
+
+[docs] +class SpacecraftAttitudeMap(Histogram): + + def __init__(self, + nside, + scheme = 'ring', + coordsys = 'galactic', + labels = ['x', 'y'] + ): + """ + Bin the spacecraft attitude history into a 4D histogram that contains + the accumulated time the axes of the spacecraft where looking at a + given direction. + + Same arguments as an HealpixAxis. + + Parameters + ---------- + nside : int + The nside of the spacecraft attitude map. + scheme : str, optional + The scheme of the spacecraft attitude map (the default is "ring"). + coordsys : str, optional + The coordinate system of the spacecraft attitude map (the default is "galactic"). + labels : list, optional + The labels of the two axes of the spacecraft attitude map (the default is `["x", "y"]`. + + + """ + + super().__init__([HealpixAxis(nside = nside, + scheme = scheme, + coordsys = coordsys, + label = labels[0]), + HealpixAxis(nside = nside, + scheme = scheme, + coordsys = coordsys, + label = labels[1])], + sparse = True, + unit = u.s)
+ + + +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/threeml/COSILike.html b/_modules/cosipy/threeml/COSILike.html new file mode 100644 index 00000000..5f88e622 --- /dev/null +++ b/_modules/cosipy/threeml/COSILike.html @@ -0,0 +1,493 @@ + + + + + + cosipy.threeml.COSILike — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.threeml.COSILike

+from threeML import PluginPrototype
+from threeML.minimizer import minimization
+from threeML.config.config import threeML_config
+from threeML.exceptions.custom_exceptions import FitFailed
+from astromodels import Parameter
+
+from cosipy.response.FullDetectorResponse import FullDetectorResponse
+from cosipy.image_deconvolution import ModelMap
+
+from scoords import SpacecraftFrame, Attitude
+
+from mhealpy import HealpixMap
+
+from cosipy.response import PointSourceResponse, DetectorResponse
+from histpy import Histogram
+import h5py as h5
+from histpy import Axis, Axes
+import sys
+
+import astropy.units as u
+import astropy.coordinates as coords
+
+from sparse import COO
+
+import numpy as np
+
+from scipy.special import factorial
+
+import collections
+
+import copy
+
+import logging
+logger = logging.getLogger(__name__)
+
+import inspect
+
+
+[docs] +class COSILike(PluginPrototype): + """ + COSI 3ML plugin. + + Parameters + ---------- + name : str + Plugin name e.g. "cosi". Needs to have a distinct name with respect to other plugins in the same analysis + dr : str + Path to full detector response + data : histpy.Histogram + Binned data. Note: Eventually this should be a cosipy data class + bkg : histpy.Histogram + Binned background model. Note: Eventually this should be a cosipy data class + sc_orientation : cosipy.spacecraftfile.SpacecraftFile + Contains the information of the orientation: timestamps (astropy.Time) and attitudes (scoord.Attitude) that describe + the spacecraft for the duration of the data included in the analysis + nuisance_param : astromodels.core.parameter.Parameter, optional + Background parameter + coordsys : str, optional + Coordinate system ('galactic' or 'spacecraftframe') to perform fit in, which should match coordinate system of data + and background. This only needs to be specified if the binned data and background do not have a coordinate system + attached to them + precomputed_psr_file : str, optional + Full path to precomputed point source response in Galactic coordinates + """ + def __init__(self, name, dr, data, bkg, sc_orientation, + nuisance_param=None, coordsys=None, precomputed_psr_file=None, **kwargs): + + # create the hash for the nuisance parameters. We have none for now. + self._nuisance_parameters = collections.OrderedDict() + + # call the prototype constructor. Boilerplate. + super(COSILike, self).__init__(name, self._nuisance_parameters) + + # User inputs needed to compute the likelihood + self._name = name + self._rsp_path = dr + self._dr = FullDetectorResponse.open(dr) + self._data = data + self._bkg = bkg + self._sc_orientation = sc_orientation + + try: + if data.axes["PsiChi"].coordsys.name != bkg.axes["PsiChi"].coordsys.name: + raise RuntimeError("Data is binned in " + data.axes["PsiChi"].coordsys.name + " and background is binned in " + + bkg.axes["PsiChi"].coordsys.name + ". They should be binned in the same coordinate system.") + else: + self._coordsys = data.axes["PsiChi"].coordsys.name + except: + if coordsys == None: + raise RuntimeError(f"There is no coordinate system attached to the binned data. One must be provided by " + f"specifiying coordsys='galactic' or 'spacecraftframe'") + else: + self._coordsys = coordsys + + # Place-holder for cached data. + self._model = None + self._source = None + self._psr = None + self._signal = None + self._expected_counts = None + + # Set to fit nuisance parameter if given by user + if nuisance_param == None: + self.set_inner_minimization(False) + elif isinstance(nuisance_param, Parameter): + self.set_inner_minimization(True) + self._bkg_par = nuisance_param + self._nuisance_parameters[self._bkg_par.name] = self._bkg_par + self._nuisance_parameters[self._bkg_par.name].free = self._fit_nuisance_params + else: + raise RuntimeError("Nuisance parameter must be astromodels.core.parameter.Parameter object") + + # Option to use precomputed point source response. + # Note: this still needs to be implemented in a + # consistent way for point srcs and extended srcs. + self.precomputed_psr_file = precomputed_psr_file + if self.precomputed_psr_file != None: + print("... loading the pre-computed image response ...") + self.image_response = DetectorResponse.open(self.precomputed_psr_file) + # in the near future, we will implement ExtendedSourceResponse class, which should be used here (HY). + # probably, it is better to move this loading part outside of this class. Then, we don't have to load the response everytime we start the fitting (HY). + print("--> done") + +
+[docs] + def set_model(self, model): + """ + Set the model to be used in the joint minimization. + + Parameters + ---------- + model : astromodels.core.model.Model + Any model supported by astromodels + """ + + # Temporary fix to only print log-likelihood warning once max per fit + if inspect.stack()[1][3] == '_assign_model_to_data': + self._printed_warning = False + + # Get point sources and extended sources from model: + point_sources = model.point_sources + extended_sources = model.extended_sources + + # Source counter for models with multiple sources: + self.src_counter = 0 + + # Get expectation for extended sources: + + # Save expected counts for each source, + # in order to enable easy plotting after likelihood scan: + if self._expected_counts == None: + self._expected_counts = {} + + for name,source in extended_sources.items(): + + # Set spectrum: + # Note: the spectral parameters are updated internally by 3ML + # during the likelihood scan. + + model_map = ModelMap(nside = self.image_response.axes['NuLambda'].nside, + energy_edges = self.image_response.axes['Ei'].edges, + coordsys = 'galactic', + label_image = 'NuLambda', # I think the label should be something like 'lb' to distiguish the photon direction in the local/galactic coordinates + label_energy = 'Ei') + + model_map.set_values_from_extendedmodel(source) + + # Get expectation using precomputed psr in Galactic coordinates: + total_expectation = Histogram(edges = self.image_response.axes[2:], + contents = np.tensordot(model_map.contents, self.image_response.contents, axes = ([0,1], [0,1])) * model_map.axes['NuLambda'].pixarea()) + # ['NuLambda', 'Ei'] x ['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi'] => 'Em', 'Phi', 'PsiChi'] + # this part should be modified with the future ExtendedSourceResponse class like + # total_expectation = self.image_response.get_expectation(model_map) + # or + # total_expectation = self.image_response.get_expectation_from_astromodel(source) (HY) + + # Save expected counts for source: + self._expected_counts[name] = copy.deepcopy(total_expectation) + + # Need to check if self._signal type is dense (i.e. 'Quantity') or sparse (i.e. 'COO'). + if type(total_expectation.contents) == u.quantity.Quantity: + total_expectation = total_expectation.contents.value + elif type(total_expectation.contents) == COO: + total_expectation = total_expectation.contents.todense() + else: + raise RuntimeError("Expectation is an unknown object") + + # Add source to signal and update source counter: + if self.src_counter == 0: + self._signal = total_expectation + if self.src_counter != 0: + self._signal += total_expectation + self.src_counter += 1 + + # Initialization + # probably it is better that this part be outside of COSILike (HY). + if len(point_sources) != 0: + + if self._psr is None or len(point_sources) != len(self._psr): + + print("... Calculating point source responses ...") + + self._psr = {} + self._source_location = {} # Should the poition information be in the point source response? (HY) + + for name, source in point_sources.items(): + coord = source.position.sky_coord + + self._source_location[name] = copy.deepcopy(coord) # to avoid same memory issue + + if self._coordsys == 'spacecraftframe': + dwell_time_map = self._get_dwell_time_map(coord) + self._psr[name] = self._dr.get_point_source_response(exposure_map=dwell_time_map) + elif self._coordsys == 'galactic': + scatt_map = self._get_scatt_map() + self._psr[name] = self._dr.get_point_source_response(coord=coord, scatt_map=scatt_map) + else: + raise RuntimeError("Unknown coordinate system") + + print(f"--> done (source name : {name})") + + print(f"--> all done") + + # check if the source location is updated or not + for name, source in point_sources.items(): + + if source.position.sky_coord != self._source_location[name]: + print(f"... Re-calculating the point source response of {name} ...") + coord = source.position.sky_coord + + self._source_location[name] = copy.deepcopy(coord) # to avoid same memory issue + + if self._coordsys == 'spacecraftframe': + dwell_time_map = self._get_dwell_time_map(coord) + self._psr[name] = self._dr.get_point_source_response(exposure_map=dwell_time_map) + elif self._coordsys == 'galactic': + scatt_map = self._get_scatt_map() + self._psr[name] = self._dr.get_point_source_response(coord=coord, scatt_map=scatt_map) + else: + raise RuntimeError("Unknown coordinate system") + + print(f"--> done (source name : {name})") + + # Get expectation for point sources: + for name,source in point_sources.items(): + + # Convolve with spectrum + # See also the Detector Response and Source Injector tutorials + spectrum = source.spectrum.main.shape + + total_expectation = self._psr[name].get_expectation(spectrum) + + # Save expected counts for source: + self._expected_counts[name] = copy.deepcopy(total_expectation) + + # Need to check if self._signal type is dense (i.e. 'Quantity') or sparse (i.e. 'COO'). + if type(total_expectation.contents) == u.quantity.Quantity: + total_expectation = total_expectation.project(['Em', 'Phi', 'PsiChi']).contents.value + elif type(total_expectation.contents) == COO: + total_expectation = total_expectation.project(['Em', 'Phi', 'PsiChi']).contents.todense() + else: + raise RuntimeError("Expectation is an unknown object") + + # Add source to signal and update source counter: + if self.src_counter == 0: + self._signal = total_expectation + if self.src_counter != 0: + self._signal += total_expectation + self.src_counter += 1 + + # Cache + self._model = model
+ + +
+[docs] + def get_log_like(self): + """ + Calculate the log-likelihood. + + Returns + ---------- + log_like : float + Value of the log-likelihood + """ + + # Recompute the expectation if any parameter in the model changed + if self._model is None: + log.error("You need to set the model first") + + # Set model: + self.set_model(self._model) + + # Compute expectation including free background parameter: + if self._fit_nuisance_params: + if type(self._bkg.contents) == COO: + expectation = self._signal + self._nuisance_parameters[self._bkg_par.name].value * self._bkg.contents.todense() + else: + expectation = self._signal + self._nuisance_parameters[self._bkg_par.name].value * self._bkg.contents + + # Compute expectation without background parameter: + else: + if type(self._bkg.contents) == COO: + expectation = self._signal + self._bkg.contents.todense() + else: + expectation = self._signal + self._bkg.contents + + expectation += 1e-12 # to avoid -infinite log-likelihood (occurs when expected counts = 0 but data != 0) + if not self._printed_warning: + logger.warning("Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.") + self._printed_warning = True + # This 1e-12 should be defined as a parameter in the near future (HY) + + # Convert data into an arrary: + data = self._data.contents + + # Compute the log-likelihood: + log_like = np.nansum(data*np.log(expectation) - expectation) + + return log_like
+ + +
+[docs] + def inner_fit(self): + """ + Required for 3ML fit. + """ + + return self.get_log_like()
+ + + def _get_dwell_time_map(self, coord): + """ + Get the dwell time map of the source in the inertial (spacecraft) frame. + + Parameters + ---------- + coord : astropy.coordinates.SkyCoord + Coordinates of the target source + + Returns + ------- + dwell_time_map : mhealpy.containers.healpix_map.HealpixMap + Dwell time map + """ + + self._sc_orientation.get_target_in_sc_frame(target_name = self._name, target_coord = coord) + dwell_time_map = self._sc_orientation.get_dwell_map(response = self._rsp_path) + + return dwell_time_map + + def _get_scatt_map(self): + """ + Get the spacecraft attitude map of the source in the inertial (spacecraft) frame. + + Returns + ------- + scatt_map : cosipy.spacecraftfile.scatt_map.SpacecraftAttitudeMap + """ + + scatt_map = self._sc_orientation.get_scatt_map(nside = self._dr.nside * 2, coordsys = 'galactic') + + return scatt_map + +
+[docs] + def set_inner_minimization(self, flag: bool): + """ + Turn on the minimization of the internal COSI (nuisance) parameters. + + Parameters + ---------- + flag : bool + Turns on and off the minimization of the internal parameters + """ + + self._fit_nuisance_params: bool = bool(flag) + + for parameter in self._nuisance_parameters: + self._nuisance_parameters[parameter].free = self._fit_nuisance_params
+
+ +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/ts_map/TSMap.html b/_modules/cosipy/ts_map/TSMap.html new file mode 100644 index 00000000..a34c7691 --- /dev/null +++ b/_modules/cosipy/ts_map/TSMap.html @@ -0,0 +1,484 @@ + + + + + + cosipy.ts_map.TSMap — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.ts_map.TSMap

+from cosipy.threeml.COSILike import COSILike
+
+from threeML import DataList, Powerlaw, PointSource, Model, JointLikelihood
+
+import numpy as np
+
+from histpy import Histogram, Axis
+
+from scipy import stats
+
+import matplotlib.pyplot as plt
+
+import astropy.io.fits as fits
+
+
+
+[docs] +class TSMap: + + """ + Compute the TS map of using `threeML` package. + """ + + def __init__(self, *args, **kwargs): + pass + + + + +
+[docs] + def instantiate_plugin(self): + + """ + Instantiate the likelihood plugin. + """ + + if self.other_plugins == None: + self.cosi_plugin = COSILike("cosi", + dr = self.dr, + data = self.data, + bkg = self.bkg, + sc_orientation = self.sc_orientation) + else: + raise RuntimeError("Only COSI plugin for now")
+ + +
+[docs] + def gather_all_plugins(self): + + """ + Gather all the plugins togather into a DataList. + """ + + if self.other_plugins == None: + self.all_plugins = DataList(self.cosi_plugin) + else: + raise RuntimeError("Only COSI plugin for now")
+ + +
+[docs] + def create_model(self): + + """ + Create the source model. + + Returns + ------- + astromodels.core.model.Model + The source model. + + """ + + self.spectrum = Powerlaw() + + self.spectrum.K.value = self.norm # 1/keV/cm2/s + self.spectrum.piv.value = self.piv # keV + self.spectrum.index.value = self.index + + self.source = PointSource("source", # The name of the source is arbitrary, but needs to be unique + ra = self.ra, + dec = self.dec, + spectral_shape = self.spectrum) + + self.model = Model(self.source)
+ + +
+[docs] + def fix_index(self): + + """ + Return the index of the source spectrum. + """ + + self.source.spectrum.main.Powerlaw.index.fix = True
+ + +
+[docs] + def ts_fitting(self): + + """ + Peform the ts fitting. + """ + + # collect ts_grid_data, ts_grid_bkg and calculate_ts because sometime we may want to skip fiiting + self.ts_grid_data() + self.ts_grid_bkg() + self.calculate_ts()
+ + + # iterate ra and dec to find the best fit of data (time consuming) +
+[docs] + def ts_grid_data(self): + + """ + Perform the ts fitting using the data on the different pixels. + """ + + # using rad due to mollweide projection + self.ra_range = (-np.pi , np.pi ) # rad + self.dec_range = (-np.pi/2, np.pi/2) # rad + + self.log_like = Histogram( + [Axis(np.linspace(*self.ra_range , 50), label = "ra" ), + Axis(np.linspace(*self.dec_range, 25), label = "dec"),] + ) + + for i in range(self.log_like.axes['ra'].nbins): + for j in range(self.log_like.axes['dec'].nbins): + + # progress + print(f"\rra = {i:2d}/{self.log_like.axes['ra'].nbins} ", end = "") + print(f"dec = {j:2d}/{self.log_like.axes['dec'].nbins} ", end = "") + + # changing the position parameters + # converting rad to deg due to ra and dec in 3ML PointSource + if self.log_like.axes['ra'].centers[i] < 0: + self.source.position.ra = (self.log_like.axes['ra'].centers[i] + 2*np.pi) * (180/np.pi) # deg + else: + self.source.position.ra = (self.log_like.axes['ra'].centers[i]) * (180/np.pi) # deg + self.source.position.dec = self.log_like.axes['dec'].centers[j] * (180/np.pi) # deg + + # maximum likelihood + self.like.fit(quiet=True) + + # converting the min (- log likelihood) from 3ML to the max log likelihood for TS + self.log_like[i, j] = -self.like._current_minimum
+ + + # iterate ra and dec to find the best fit of bkg + # only see it as constant for now + # set the normalization to 0, that is, background-only null-hypothesis +
+[docs] + def ts_grid_bkg(self): + + """ + Perform the ts fitting using the background on the different pixels. + """ + + # spectrum.K.value need to be 1e-10 otherwise you will have a migrad error + self.spectrum.K.value = 1e-10 + + # maximum likelihood + self.like.fit(quiet=True) + + # converting the min (- log likelihood) from 3ML to the max log likelihood for TS + self.log_like0 = -self.like._current_minimum
+ + + # calculate TS by ts_grid_data and ts_grid_bkg +
+[docs] + def calculate_ts(self): + + """ + Calculate the TS by the TS of data and background. + """ + + self.ts = 2 * (self.log_like - self.log_like0) + + # getting the maximum + # note that, in our case, since log_like0 is a constant, max(TS) = 2 + self.argmax = np.unravel_index(np.argmax(self.ts), self.ts.nbins) + self.ts_max = self.ts[self.argmax]
+ + +
+[docs] + def print_best_fit(self): + + """ + Print the best fit location. + """ + + # report the best fit position + # converting rad to deg due to ra and dec in 3ML PointSource + if self.ts.axes['ra'].centers[self.argmax[0]] < 0: + self.best_ra = (self.ts.axes['ra'].centers[self.argmax[0]] + 2*np.pi) * (180/np.pi) # deg + else: + self.best_ra = (self.ts.axes['ra'].centers[self.argmax[0]]) * (180/np.pi) # deg + self.best_dec = self.ts.axes['dec'].centers[self.argmax[1]] * (180/np.pi) # deg + print(f"Best fit position: RA = {self.best_ra} deg, Dec = {self.best_dec} deg") + + # convert to significance based on Wilk's theorem + print(f"Expected significance: {stats.norm.isf(stats.chi2.sf(self.ts_max, df = 2)):.1f} sigma")
+ + +
+[docs] + def save_ts(self, output_file_name): + + """ + Save the TS map. + + Parameters + ---------- + output_file_name : str + The path to save the ts map. + """ + + # save TS to .h5 file + self.ts.write(output_file_name, overwrite = True)
+ + +
+[docs] + def load_ts(self, input_file_name): + + """ + Load a ts map from file. + + Parameters + ---------- + input_file_name : str + The path to the saved TS map file. + """ + + # load .h5 file to TS + self.ts = Histogram.open(input_file_name) + + # getting the maximum + self.argmax = np.unravel_index(np.argmax(self.ts), self.ts.nbins) + self.ts_max = self.ts[self.argmax]
+ + + # refit the best fit to check norm +
+[docs] + def refit_best_fit(self): + + """ + Refit the best fit to check norm. + """ + + # reset self.spectrum.K.value to self.norm (big initial value) + self.spectrum.K.value = self.norm + + # converting rad to deg due to RA and Dec in 3ML PointSource + if self.ts.axes['ra'].centers[self.argmax[0]] < 0: + self.source.position.ra = (self.ts.axes['ra'].centers[self.argmax[0]] + 2*np.pi) * (180/np.pi) # deg + else: + self.source.position.ra = (self.ts.axes['ra'].centers[self.argmax[0]]) * (180/np.pi) # deg + self.source.position.dec = self.ts.axes['dec'].centers[self.argmax[1]] * (180/np.pi) # deg + + # maximum likelihood + self.like.fit() + + # display the best fit result + self.like.results.display()
+ + +
+[docs] + def plot_ts_map(self): + + """ + Plot the TS map. + """ + + fig, ax = plt.subplots(figsize=(16, 8), subplot_kw={'projection': 'mollweide'}, dpi=120) + + _,plot = self.ts.plot(ax, vmin = 0, colorbar = False, zorder=0) + + ax.scatter([self.ts.axes['ra'].centers[self.argmax[0]]],[self.ts.axes['dec'].centers[self.argmax[1]]], label = "Max TS", zorder=3) + + ax.scatter([20/180*np.pi],[40/180*np.pi], marker = "x", label = "Injected", zorder=2) + + # here we also use Wilk's theorem to find the DeltaTS that corresponse to a 90% containment confidence + ts_thresh = self.ts_max - stats.chi2.isf(1-.9, df = 2) + contours = ax.contour(self.ts.axes['ra'].centers, + self.ts.axes['dec'].centers, + self.ts.contents.transpose(), + [ts_thresh], colors = 'red', zorder=1) + contours.collections[0].set_label("90% cont.") + + cbar = fig.colorbar(plot) + cbar.ax.set_ylabel("TS") + + ax.set_xlabel('R.A.', fontsize=15); + ax.set_ylabel('Dec.', fontsize=15); + ax.tick_params(axis='x', colors='White') + ax.legend(fontsize=10)
+
+ + + +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/ts_map/fast_ts_fit.html b/_modules/cosipy/ts_map/fast_ts_fit.html new file mode 100644 index 00000000..5311122e --- /dev/null +++ b/_modules/cosipy/ts_map/fast_ts_fit.html @@ -0,0 +1,680 @@ + + + + + + cosipy.ts_map.fast_ts_fit — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.ts_map.fast_ts_fit

+from histpy import Histogram, Axis, Axes
+import h5py as h5
+import sys
+from cosipy import SpacecraftFile
+from cosipy.response import PointSourceResponse
+import healpy as hp
+from mhealpy import HealpixMap
+import numpy as np
+import os
+import multiprocessing
+from itertools import product
+from .fast_norm_fit import FastNormFit as fnf
+from pathlib import Path
+from cosipy.response import FullDetectorResponse
+import time
+import scipy.stats
+import os
+import psutil
+import gc
+import matplotlib.pyplot as plt
+
+
+[docs] +class FastTSMap(): + + def __init__(self, data, bkg_model, response_path, orientation = None, cds_frame = "local", scheme = "RING"): + + """ + Initialize the instance if a TS map fit. + + Parameters + ---------- + data : histpy.Histogram + Observed data, which includes counts from both signal and background. + bkg_model : histpy.Histogram + Background model, which includes the background counts to model the background in the observed data. + response_path : str or pathlib.Path + The path to the response file. + orientation : cosipy.SpacecraftFile, optional + The orientation of the spacecraft when data are collected (the default is `None`, which implies the orientation file is not needed). + cds_frame : str, optional + "local" or "galactic", it's the Compton data space (CDS) frame of the data, bkg_model and the response. In other words, they should have the same cds frame (the default is "local", which implied that a local frame that attached to the spacecraft). + scheme : str, optional + The scheme of the CDS of data (the default is "RING", which implies a "RING" scheme of the data). + """ + + self._data = data.project(["Em", "PsiChi", "Phi"]) + self._bkg_model = bkg_model.project(["Em", "PsiChi", "Phi"]) + self._orientation = orientation + self._response_path = Path(response_path) + self._cds_frame = cds_frame + self._scheme = scheme + +
+[docs] + @staticmethod + def slice_energy_channel(hist, channel_start, channel_stop): + """ + Slice one or more bins along first axis of the `histogram`. + + Parameters + ---------- + hist : histpy.Histogram + The histogram object to be sliced. + channel_start : int + The start of the slice (inclusive). + channel_stop : int + The stop of the slice (exclusive). + + Returns + ------- + sliced_hist : histpy.Histogram + The sliced histogram. + """ + + sliced_hist = hist.slice[channel_start:channel_stop,:] + + return sliced_hist
+ + +
+[docs] + @staticmethod + def get_hypothesis_coords(nside, scheme = "RING", coordsys = "galactic"): + + """ + Get a list of hypothesis coordinates. + + Parameters + ---------- + nside : int + The nside of the map. + scheme : str, optional + The scheme of the map where the hypothesis coordinates are generated (the default is "RING", which implies the "RING" scheme is used to get the hypothesis coordinates). + coordsys : str, optional + The coordinate system used in the map where the hypothesis coordinates are generated (the default is "galactic", which implies the galactic coordinates system is used). + + Returns + ------- + hypothesis_coords : list + The list of the hypothesis coordinates at the center of each pixel. + """ + + data_array = np.zeros(hp.nside2npix(nside)) + ts_temp = HealpixMap(data = data_array, scheme = scheme, coordsys = coordsys) + + hypothesis_coords = [] + for i in np.arange(data_array.shape[0]): + hypothesis_coords += [ts_temp.pix2skycoord(i)] + + return hypothesis_coords
+ + + +
+[docs] + @staticmethod + def get_cds_array(hist, energy_channel): + + """ + Get the flattened cds array from input Histogram. + + Parameters + ----------- + hist : histpy.Histogram + The input Histogram. + energy_channel : list + The format is `[lower_channel, upper_chanel]`. The lower_channel is inclusive while the upper_channel is exclusive. + + Returns + ------- + cds_array : numpy.ndarray + The flattended Compton data space (CDS) array. + + """ + if not isinstance(hist, Histogram): + raise TypeError("Please input hist must be a histpy.Histogram object.") + + hist_axes_labels = hist.axes.labels + cds_labels = ["PsiChi", "Phi"] + if not all([label in hist_axes_labels for label in cds_labels]): + raise ValueError("The data doesn't contain the full Compton Data Space!") + + hist = hist.project(["Em", "PsiChi", "Phi"]) # make sure the first axis is the measured energy + hist_cds_sliced = FastTSMap.slice_energy_channel(hist, energy_channel[0], energy_channel[1]) + hist_cds = hist_cds_sliced.project(["PsiChi", "Phi"]) + cds_array = np.array(hist_cds.to_dense()[:]).flatten() # here [:] is equivalent to [:, :] + del hist + del hist_cds_sliced + del hist_cds + gc.collect() + + return cds_array
+ + +
+[docs] + @staticmethod + def get_psr_in_galactic(hypothesis_coord, response_path, spectrum): + + """ + Get the point source response (psr) in galactic. Please be aware that you must use a galactic response! + To do: to make the weight parameter not hardcoded + + Parameters + ---------- + hypothesis_coord : astropy.coordinates.SkyCoord + The hypothesis coordinate. + response_path : str or path.lib.Path + The path to the response. + spectrum : astromodels.functions + The spectrum of the source to be placed at the hypothesis coordinate. + + Returns + ------- + psr : histpy.Histogram + The point source response of the spectrum at the hypothesis coordinate. + """ + + # Open the response + # Notes from Israel: Inside it contains a single histogram with all the regular axes for a Compton Data Space (CDS) analysis, in galactic coordinates. Since there is no class yet to handle it, this is how to read in the HDF5 manually. + + with h5.File(response_path) as f: + + axes_group = f['hist/axes'] + axes = [] + for axis in axes_group.values(): + # Get class. Backwards compatible with version + # with only Axis + axis_cls = Axis + if '__class__' in axis.attrs: + class_module, class_name = axis.attrs['__class__'] + axis_cls = getattr(sys.modules[class_module], class_name) + axes += [axis_cls._open(axis)] + axes = Axes(axes) + + # get the pixel number of the hypothesis coordinate + map_temp = HealpixMap(base = axes[0]) + hypothesis_coord_pix_number = map_temp.ang2pix(hypothesis_coord) + + # get the expectation for the hypothesis coordinate (a point source) + with h5.File(response_path) as f: + pix = hypothesis_coord_pix_number + psr = PointSourceResponse(axes[1:], f['hist/contents'][pix+1], unit = f['hist'].attrs['unit']) + + return psr
+ + + +
+[docs] + @staticmethod + def get_ei_cds_array(hypothesis_coord, energy_channel, response_path, spectrum, cds_frame, orientation = None): + + """ + Get the expected counts in CDS in local or galactic frame. + + Parameters + ---------- + hypothesis_coord : astropy.coordinates.SkyCoord + The hypothesis coordinate. + energy_channel : list + The format is `[lower_channel, upper_chanel]`. The lower_channel is inclusive while the upper_channel is exclusive. + response_path : str or pathlib.Path + The path to the response file. + spectrum : astromodels.functions + The spectrum of the source. + cds_frame : str, optional + "local" or "galactic", it's the Compton data space (CDS) frame of the data, bkg_model and the response. In other words, they should have the same cds frame. + orientation : cosipy.spacecraftfile.SpacecraftFile, optional + The orientation of the spacecraft when data are collected (the default is `None`, which implies the orientation file is not needed). + + Returns + ------- + cds_array : numpy.ndarray + The flattended Compton data space (CDS) array. + """ + + # check inputs, will complete later + + # the local and galactic frame works very differently, so we need to compuate the point source response (psr) accordingly + #time_cds_start = time.time() + if cds_frame == "local": + + if orientation == None: + raise TypeError("The when the data are binned in local frame, orientation must be provided to compute the expected counts.") + + #time_coord_convert_start = time.time() + # convert the hypothesis coord to the local frame (Spacecraft frame) + hypothesis_in_sc_frame = orientation.get_target_in_sc_frame(target_name = "Hypothesis", + target_coord = hypothesis_coord, + quiet = True) + #time_coord_convert_end = time.time() + #time_coord_convert_used = time_coord_convert_end - time_coord_convert_start + #print(f"The time used for coordinate conversion is {time_coord_convert_used}s.") + + #time_dwell_start = time.time() + # get the dwell time map: the map of the time spent on each pixel in the local frame + dwell_time_map = orientation.get_dwell_map(response = response_path) + #time_dwell_end = time.time() + #time_dwell_used = time_dwell_end - time_dwell_start + #print(f"The time used for dwell time map is {time_dwell_used}s.") + + #time_psr_start = time.time() + # convolve the response with the dwell_time_map to get the point source response + with FullDetectorResponse.open(response_path) as response: + psr = response.get_point_source_response(dwell_time_map) + #time_psr_end = time.time() + #time_psr_used = time_psr_end - time_psr_start + #print(f"The time used for psr is {time_psr_used}s.") + + elif cds_frame == "galactic": + + psr = FastTSMap.get_psr_in_galactic(hypothesis_coord = hypothesis_coord, response_path = response_path, spectrum = spectrum) + + else: + raise ValueError("The point source response must be calculated in the local and galactic frame. Others are not supported (yet)!") + + # convolve the point source reponse with the spectrum to get the expected counts + expectation = psr.get_expectation(spectrum) + del psr + gc.collect() + + # slice energy channals and project it to CDS + ei_cds_array = FastTSMap.get_cds_array(expectation, energy_channel) + del expectation + gc.collect() + + #time_cds_end = time.time() + #time_cds_used = time_cds_end - time_cds_start + #print(f"The time used for cds is {time_cds_used}s.") + + return ei_cds_array
+ + +
+[docs] + @staticmethod + def fast_ts_fit(hypothesis_coord, + energy_channel, data_cds_array, bkg_model_cds_array, + orientation, response_path, spectrum, cds_frame, + ts_nside, ts_scheme): + + """ + Perform a TS fit on a single location at `hypothesis_coord`. + + Parameters + ---------- + hypothesis_coord : astropy.coordinates.SkyCoord + The hypothesis coordinate. + energy_channel : list + The format is `[lower_channel, upper_chanel]`. The lower_channel is inclusive while the upper_channel is exclusive. + data_cds_array : numpy.ndarray + The flattened Compton data space (CDS) array of the data. + bkg_model_cds_array : numpy.ndarray + The flattened Compton data space (CDS) array of the background model. + orientation : cosipy.spacecraftfile.SpacecraftFile + The orientation of the spacecraft when data are collected. + response_path : str or pathlib.Path + The path to the response file. + spectrum : astromodels.functions + The spectrum of the source. + cds_frame : str + "local" or "galactic", it's the Compton data space (CDS) frame of the data, bkg_model and the response. In other words, they should have the same cds frame . + ts_nside : int + The nside of the ts map. + ts_scheme : str + The scheme of the Ts map. + + Returns + ------- + list + The list of the resulting TS fit: [pix number, ts value, norm, norm_err, failed, iterations, time_ei_cds_array, time_fit, time_fast_ts_fit] + """ + + start_fast_ts_fit = time.time() + + # get the pix number of the ts map + data_array = np.zeros(hp.nside2npix(ts_nside)) + ts_temp = HealpixMap(data = data_array, scheme = ts_scheme, coordsys = "galactic") + pix = ts_temp.ang2pix(hypothesis_coord) + + # get the expected counts in the flattened cds array + start_ei_cds_array = time.time() + ei_cds_array = FastTSMap.get_ei_cds_array(hypothesis_coord = hypothesis_coord, cds_frame = cds_frame, + energy_channel = energy_channel, orientation = orientation, + response_path = response_path, spectrum = spectrum) + end_ei_cds_array = time.time() + time_ei_cds_array = end_ei_cds_array - start_ei_cds_array + + # start the fit + start_fit = time.time() + fit = fnf(max_iter=1000) + result = fit.solve(data_cds_array, bkg_model_cds_array, ei_cds_array) + end_fit = time.time() + time_fit = end_fit - start_fit + + end_fast_ts_fit = time.time() + time_fast_ts_fit = end_fast_ts_fit - start_fast_ts_fit + + return [pix, result[0], result[1], result[2], result[3], result[4], time_ei_cds_array, time_fit, time_fast_ts_fit]
+ + + +
+[docs] + def parallel_ts_fit(self, hypothesis_coords, energy_channel, spectrum, ts_scheme = "RING", start_method = "fork", cpu_cores = None): + + """ + Perform parallel computation on all the hypothesis coordinates. + + Parameters + ---------- + hypothesis_coords : list + A list of the hypothesis coordinates + energy_channel : list + the energy channel you want to use: [lower_channel, upper_channel]. lower_channel is inclusive while upper_channel is exclusive. + spectrum : astromodels.functions + The spectrum of the source. + ts_scheme : str, optional + The scheme of the TS map (the default is "RING", which implies a "RING" scheme of the TS map). + start_method : str, optional + The starting method of the parallel computation (the default is "fork", which implies using the fork method to start parallel computation). + cpu_cores : int, optional + The number of cpu cores you wish to use for the parallel computation (the default is `None`, which implies using all the available number of cores -1 to perform the parallel computation). + + Returns + ------- + results : numpy.ndarray + The result of the ts fit over all the hypothesis coordinates. + """ + + # decide the ts_nside from the list of hypothesis coordinates + ts_nside = hp.npix2nside(len(hypothesis_coords)) + + # get the flattened data_cds_array + data_cds_array = FastTSMap.get_cds_array(self._data, energy_channel).flatten() + bkg_model_cds_array = FastTSMap.get_cds_array(self._bkg_model, energy_channel).flatten() + + if (data_cds_array[bkg_model_cds_array ==0]!=0).sum() != 0: + #raise ValueError("You have data!=0 but bkg=0, check your inputs!") + # let's try to set the data bin to zero when the corresponding bkg bin isn't zero. + # Need further investigate, why bkg = 0 but data!=0 happens? ==> it's more like an issue related to simulated data instead of code + # This first happened in GRB fitting, but got fixed somehow <== I now understand it's caused by using different PsiChi binning in the same fit + # But it also happened to Crab while the PsiChi binning are both galactic for Crab and the Albedo, why???? ?_? + data_cds_array[bkg_model_cds_array == 0] =0 + + + # set up the number of cores to use for the parallel computation + total_cores = multiprocessing.cpu_count() + if cpu_cores == None or cpu_cores >= total_cores: + # if you don't specify the number of cpu cores to use or the specified number of cpu cores is the same as the total number of cores you have + # it will use the [total_cores - 1] number of cores to run the parallel computation. + cores = total_cores - 1 + print(f"You have total {total_cores} CPU cores, using {cores} CPU cores for parallel computation.") + else: + cores = cpu_cores + print(f"You have total {total_cores} CPU cores, using {cores} CPU cores for parallel computation.") + + start = time.time() + multiprocessing.set_start_method(start_method, force = True) + pool = multiprocessing.Pool(processes = cores) + results = pool.starmap(FastTSMap.fast_ts_fit, product(hypothesis_coords, [energy_channel], [data_cds_array], [bkg_model_cds_array], + [self._orientation], [self._response_path], [spectrum], [self._cds_frame], + [ts_nside], [ts_scheme])) + + pool.close() + pool.join() + + end = time.time() + + elapsed_seconds = end - start + elapsed_minutes = elapsed_seconds/60 + print(f"The time used for the parallel TS map computation is {elapsed_minutes} minutes") + + results = np.array(results) # turn to a numpy array + results = results[results[:, 0].argsort()] # arrange the order by the pixel numbering + self.result_array = results # the full result array + self.ts_array = results[:,1] # the ts array + + return results
+ + + @staticmethod + def _plot_ts(ts_array, skycoord = None, containment = None, save_plot = False, save_dir = "", save_name = "ts_map.png", dpi = 300): + + """ + Plot the containment region of the TS map. + + Parameters + ---------- + ts_array : numpy.ndarray + The array of ts values from parallel ts fit. + skyoord : astropy.coordinates.SkyCoord, optional + The true location of the source (the default is `None`, which implies that there are no coordiantes to be printed on the TS map). + containment : float, optional + The containment level of the source (the default is `None`, which will plot raw TS values). + save_plot : bool, optional + Set `True` to save the plot (the default is `False`, which means it won't save the plot. + save_dir : str or pathlib.Path, optional + The directory to save the plot. + save_name : str, optional + The file name of the plot to be save. + dpi : int, optional + The dpi for plotting and saving. + """ + + + if skycoord != None: + lon = skycoord.l.deg + lat = skycoord.b.deg + + # get the ts value + m_ts = ts_array + + # get plotting canvas + fig, ax = plt.subplots(dpi=dpi) + + # plot the ts map with containment region + if containment != None: + critical = FastTSMap.get_chi_critical_value(containment = containment) + percentage = containment*100 + max_ts = np.max(m_ts[:]) + min_ts = np.min(m_ts[:]) + hp.mollview(m_ts[:], max = max_ts, min = max_ts-critical, title = f"Containment {percentage}%", coord = "G", hold = True) + elif containment == None: + hp.mollview(m_ts[:], coord = "G", hold = True) + + + if skycoord != None: + hp.projscatter(lon, lat, marker = "x", linewidths = 0.5, lonlat=True, coord = "G", label = f"True location at l={lon}, b={lat}", color = "fuchsia") + hp.projscatter(0, 0, marker = "o", linewidths = 0.5, lonlat=True, coord = "G", color = "red") + hp.projtext(350, 0, "(l=0, b=0)", lonlat=True, coord = "G", color = "red") + + if save_plot == True: + fig.savefig(Path(save_dir)/save_name, dpi = dpi) + + return + +
+[docs] + def plot_ts(self, ts_array = None, skycoord = None, containment = None, save_plot = False, save_dir = "", save_name = "ts_map.png", dpi = 300): + + """ + Plot the containment region of the TS map. + + Parameters + ---------- + skyoord : astropy.coordinates.SkyCoord, optional + The true location of the source (the default is `None`, which implies that there are no coordiantes to be printed on the TS map). + containment : float, optional + The containment level of the source (the default is `None`, which will plot raw TS values). + save_plot : bool, optional + Set `True` to save the plot (the default is `False`, which means it won't save the plot. + save_dir : str or pathlib.Path, optional + The directory to save the plot. + save_name : str, optional + The file name of the plot to be save. + dpi : int, optional + The dpi for plotting and saving. + """ + + if ts_array is not None: + + FastTSMap._plot_ts(ts_array = ts_array, skycoord = skycoord, containment = containment, + save_plot = save_plot, save_dir = save_dir, save_name = save_name, dpi = dpi) + + else: + + FastTSMap._plot_ts(ts_array = self.ts_array, skycoord = skycoord, containment = containment, + save_plot = save_plot, save_dir = save_dir, save_name = save_name, dpi = dpi) + + return
+ + +
+[docs] + @staticmethod + def get_chi_critical_value(containment = 0.90): + + """ + Get the critical value of the chi^2 distribution based ob the confidence level. + + Parameters + ---------- + containment : float, optional + The confidence level of the chi^2 distribution (the default is `0.9`, which implies that the 90% containment region). + + Returns + ------- + float + The critical value corresponds to the confidence level. + """ + + return scipy.stats.chi2.ppf(containment, df=2)
+ + +
+[docs] + @staticmethod + def show_memory_info(hint): + pid = os.getpid() + p = psutil.Process(pid) + + info = p.memory_full_info() + memory = info.uss / 1024. / 1024 + print('{} memory used: {} MB'.format(hint, memory))
+
+ + + +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/cosipy/util/data_fetching.html b/_modules/cosipy/util/data_fetching.html new file mode 100644 index 00000000..7fb56686 --- /dev/null +++ b/_modules/cosipy/util/data_fetching.html @@ -0,0 +1,162 @@ + + + + + + cosipy.util.data_fetching — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +

Source code for cosipy.util.data_fetching

+import os
+from awscli.clidriver import create_clidriver
+from pathlib import Path
+
+
+[docs] +def fetch_wasabi_file(file, + output = None, + override = False, + bucket = 'cosi-pipeline-public', + endpoint = 'https://s3.us-west-1.wasabisys.com', + access_key = 'GBAL6XATQZNRV3GFH9Y4', + secret_key = 'GToOczY5hGX3sketNO2fUwiq4DJoewzIgvTCHoOv'): + """ + Download a file from COSI's Wasabi acccount. + + Parameters + ---------- + file : str + Full path to file in Wasabi + output : str, optional + Full path to the downloaded file in the local system. By default it will use + the current durectory and the same file name as the input file. + bucket : str, optional + Passed to aws --bucket option + endpoint : str, optional + Passed to aws --endpoint-url option + access_key : str, optional + AWS_ACCESS_KEY_ID + secret_key : str, optional + AWS_SECRET_ACCESS_KEY + """ + + if output is None: + output = file.split('/')[-1] + + output = Path(output) + + if output.exists() and not override: + raise RuntimeError(f"File {output} already exists.") + + cli = create_clidriver() + + cli.session.set_credentials(access_key, secret_key) + command = ['s3api', 'get-object', + '--bucket', bucket, + '--key', file, + '--endpoint-url', endpoint, + str(output)] + + cli.main(command)
+ + +
+ +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 00000000..d85dd398 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,126 @@ + + + + + + Overview: module code — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ + +
+
+ + + + \ No newline at end of file diff --git a/_sources/api/data_io.rst.txt b/_sources/api/data_io.rst.txt new file mode 100644 index 00000000..070dc7d7 --- /dev/null +++ b/_sources/api/data_io.rst.txt @@ -0,0 +1,8 @@ +Data IO +======= + +.. automodule:: cosipy.data_io + :imported-members: + :members: + :undoc-members: + diff --git a/_sources/api/image_deconvolution.rst.txt b/_sources/api/image_deconvolution.rst.txt new file mode 100644 index 00000000..b2c43491 --- /dev/null +++ b/_sources/api/image_deconvolution.rst.txt @@ -0,0 +1,7 @@ +Image deconvolution +=================== + +.. automodule:: cosipy.image_deconvolution + :imported-members: + :members: + :undoc-members: diff --git a/_sources/api/index.rst.txt b/_sources/api/index.rst.txt new file mode 100644 index 00000000..79f566d5 --- /dev/null +++ b/_sources/api/index.rst.txt @@ -0,0 +1,23 @@ +API +=== + +This is cosipy's Application Programming Interface (API). It is an exhaustive list of all available classes and their properties, as well as the inputs and outputs of each method. + +If you are instead interested in an overview on how to use cosipy, see out `tutorial series instead <../tutorials/index.html>`_. + +.. warning:: + Under construction. The description of some methods is still missing. If you need the description of a particular class, please open an `issue `_ so we can prioritize it. + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + response + data_io + spacecraftfile + threeml + ts_map + image_deconvolution + util + + diff --git a/_sources/api/response.rst.txt b/_sources/api/response.rst.txt new file mode 100644 index 00000000..c1d6912e --- /dev/null +++ b/_sources/api/response.rst.txt @@ -0,0 +1,11 @@ +Detector response +================= + +Different matrices that charaterize the response of the instrument. These encode the effective +area and the various detector effects seens in the data, and allow to compute +the expected counts given a source hypothesis. + +.. automodule:: cosipy.response + :imported-members: + :members: + :undoc-members: diff --git a/_sources/api/spacecraftfile.rst.txt b/_sources/api/spacecraftfile.rst.txt new file mode 100644 index 00000000..e4026261 --- /dev/null +++ b/_sources/api/spacecraftfile.rst.txt @@ -0,0 +1,9 @@ +Spacecraft File +=============== + +.. automodule:: cosipy.spacecraftfile + :imported-members: + :members: + :undoc-members: + + diff --git a/_sources/api/threeml.rst.txt b/_sources/api/threeml.rst.txt new file mode 100644 index 00000000..17b56f72 --- /dev/null +++ b/_sources/api/threeml.rst.txt @@ -0,0 +1,10 @@ +COSILike (3ML plugin) +===================== + +ThreeML plugin + +.. automodule:: cosipy.threeml + :imported-members: + :members: + :undoc-members: + diff --git a/_sources/api/ts_map.rst.txt b/_sources/api/ts_map.rst.txt new file mode 100644 index 00000000..0b344778 --- /dev/null +++ b/_sources/api/ts_map.rst.txt @@ -0,0 +1,7 @@ +TS Map +====== + +.. automodule:: cosipy.ts_map + :imported-members: + :members: + :undoc-members: diff --git a/_sources/api/util.rst.txt b/_sources/api/util.rst.txt new file mode 100644 index 00000000..962a8863 --- /dev/null +++ b/_sources/api/util.rst.txt @@ -0,0 +1,4 @@ +Utilities +========= + +.. autofunction:: cosipy.util.fetch_wasabi_file diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt new file mode 100644 index 00000000..a753e177 --- /dev/null +++ b/_sources/index.rst.txt @@ -0,0 +1,36 @@ +Welcome to cosipy's documentation! +================================== + +The cosipy library is `COSI `_'s high-level analysis software. It allows you to extract imaging and spectral information from the data, as well as to perform statistical model comparisons. The cosipy products are meant to be ready for interpretation. + +The main repository is hosted at https://github.com/cositools/cosipy + +In the following sections you will find: + +- Installation instructions +- A tutorial series explaining the basics of various components of cosipy +- Further usage examples +- The Application Programming Interface (API), describes the various available classes, their properties, and usage. + +See also `COSI's second data challenge `_ for the scientific description of the simulated data used in the tutorials, as well as an explanation of the statistical tools used by cosipy. + +.. warning:: + While many features are already available, cosipy is still actively under development. COSI is scheduled to launch in 2027. In preparation, the cosipy team will be releasing alpha versions with approximately an annual cadence. Your feedback will be greatly appreciated! Note, however, that these are not stable releases and various components can be modified or deprecated shortly. + + +Contributing +------------ + +Cosipy is open-source and anyone can contribute. It doesn't matter if you are part of the COSI team or an external contributor. + +The preferred communication channel is the GitHub repository:: if you find a problem, please report it by opening an issue; if you have a question or an idea on how to collaborate, please open a discussion; if you have code to contribute, please fork the repository and open a pull request. + + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + install + tutorials/index + tutorials/other_examples + api/index diff --git a/_sources/install.rst.txt b/_sources/install.rst.txt new file mode 100644 index 00000000..4d29be56 --- /dev/null +++ b/_sources/install.rst.txt @@ -0,0 +1,111 @@ +Installation +============ + +Using pip +--------- + +Optional but recommended step: install a conda environment:: + + conda create -n python=3.10 pip + conda activate + +Note: currently cosipy is not compatible with Python 3.11 and 3.12, mainly due to +installation issues with a dependency (astromodels, see issues `#201 `_ and `#204 `_) + +Install with pip:: + + pip install cosipy + + +From source (for developers) +---------------------------- + +Optional but recommended step: install a conda environment:: + + conda create -n python=3.10 pip + conda activate + +Also optional but recommended: before installing cosipy, install the main +dependencies from the source (similar +procedure as for cosipy below). These are histpy, mhealpy, scoords, threeml and +astromodels. The reason is that these libraries might be changing rapidly to +accommodate new features in cosipy. + +Do the following (preferably inside a conda environment):: + + git clone git@github.com:cositools/cosipy.git + cd cosipy + pip install -e . + +The flag ``-e`` (``--editable``) allows you to make changes and try them without +having to run ``pip`` again. + +Troubleshooting +--------------- + +ERROR:: Could not find a local HDF5 installation. +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +This error is caused by missing h5py wheels for M1 chips. + +See https://github.com/h5py/h5py/issues/1810 and https://github.com/h5py/h5py/issues/1800 + +Currently, the best workaround for M1 users is to install h5py using conda before the cosipy installation:: + + conda install h5py + +Example error log:: + + × Getting requirements to build wheel did not run successfully. + │ exit code: 1 + ╰─> [13 lines of output] + /var/folders/5p/wnc17p7s0gz1vd3krp7gly60v5n_5p/T/H5close39c45pt5.c:1:10: fatal error: 'H5public.h' file not found + #include "H5public.h" + ^~~~~~~~~~~~ + 1 error generated. + cpuinfo failed, assuming no CPU features: 'flags' + * Using Python 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:41:52) [Clang 15.0.7 ] + * Found cython 3.0.10 + * USE_PKGCONFIG: True + * Found conda env: ``/Users/mjmoss/miniforge3`` + .. ERROR:: Could not find a local HDF5 installation. + You may need to explicitly state where your local HDF5 headers and + library can be found by setting the ``HDF5_DIR`` environment + variable or by using the ``--hdf5`` command-line option. + + +Testing +------- + +.. warning:: + Under construction. Unit tests are not ready. + +When you make a change, check that it didn't break something by running:: + + pytest --cov=cosipy --cov-report term --cov-report html:tests/coverage_report + +Open ``tests/coverage_report/index.html`` in a browser and check the coverage. This +is the percentage of lines that were executed during the tests. The goal is to have +a 100% coverage! + +You can install ``pytest`` and ``pytest-cov`` with:: + + conda install -c conda-forge pytest pytest-cov + +Compiling the docs +------------------ + +You need pandoc, sphinx, nbsphinx, sphinx_rtd_theme and mock. Using conda:: + + conda install -c conda-forge pandoc=3.1.3 nbsphinx=0.9.3 sphinx_rtd_theme=2.0.0 mock=5.1.0 + +Other versions might work was well. + +Once you have these requirements, run:: + + cd docs + make html + +To read the documentation, open ``docs/_build/html/index.html`` in a browser. + + diff --git a/_sources/tutorials/DataIO/DataIO_example.ipynb.txt b/_sources/tutorials/DataIO/DataIO_example.ipynb.txt new file mode 100644 index 00000000..b1fea029 --- /dev/null +++ b/_sources/tutorials/DataIO/DataIO_example.ipynb.txt @@ -0,0 +1,1425 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# DataIO Examples\n", + "\n", + "For these examples we will use 2 hrs of simulated Crab data with the Compton sphere mass model. This is an idealized mass model with a full-sky instantanious field of view, used only for development. The file can be downloaded using the cosipy utility function below. \n", + "\n", + "wasabi path: ComptonSphere/mini-DC2/GalacticScan.inc1.id1.crab2hr.extracted.tra.gz
\n", + "File size: 322 MB" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from cosipy.util import fetch_wasabi_file\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/GalacticScan.inc1.id1.crab2hr.extracted.tra.gz')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data formats overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The COSI high-level analysis data is composed of a stream of time-tagged events. Each event has an associated timestamp ($t$), measured energy ($E_m$), and the three parameters of the Compton Data Space (CDS): scattering polar angle ($\\phi$), and the longitude and latitude angles defining the direction of the first scattered gamma ray ($\\psi$ and $\\chi$). See these references for an explanation of the CDS: [1](https://github.com/cositools/cosi-data-challenge-2/tree/main/cosipy-intro#the-compton-data-space),[2](https://arxiv.org/abs/2308.11436), [3](https://arxiv.org/abs/2102.13158).\n", + "\n", + "There are three formats that contain time-tagged events:\n", + "* tra files. These have the extension \".tra\". They are text files generated by MEGAlib that contain track information. You can read about the format in MEGALib's [Mimrec documentation](https://github.com/zoglauer/megalib/blob/main/doc/Mimrec.pdf). Most users won't need to use these files.\n", + "* FITS files. These have the extension \".fits\". They are essentially tra files that have been converted into the [FITS](https://fits.gsfc.nasa.gov/) format. This is the typical starting point for a cosipy analysis.\n", + "* Unbinned HDF5 files. These have the extension \".h5\" or \".hdf5\". This is another option for converting the tra files into a binary format, in this case ([HDF5](https://www.hdfgroup.org/solutions/hdf5/)). Some examples use an HDF5 format instead of FITS, since it can be more computationally efficient.\n", + "\n", + "Currently, all the analyses in cosipy use binned data. These are also HDF5 binary files and have the extension \".h5\" or \".hdf5\". They contain a 4-dimensional sparse histogram corresponding to the variables $t$, $E_m$, $\\phi$ and $\\psi\\phi$. The binned direction of the scattered gamma ray ($\\phi$ and $\\psi\\phi$) is encoded as a pixel in a [HEALpix](https://healpix.sourceforge.io/) map." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Note: The data formats are likely to change and consolidate in future versions. In addition, we are contemplating adding more information to each event that cannot be captured by the Compton Data Space --e.g. the scattering angle and direction of the second interaction, for those events with more than 2 hits.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Example 1: Standard binned analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import the BinnedData class from cosipy:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
10:44:43 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=693506;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=503482;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113949;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=603534;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:45 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=436481;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892811;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378295;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=468787;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847982;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933240;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=266236;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=82342;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=532777;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=637640;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105550;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364215;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=259140;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=552462;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:45 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=603244;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=905296;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=689267;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=873945;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=480669;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=815;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282557;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=230210;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   no display variable set. using backend for graphics without display (agg)         __init__.py:46\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m no display variable set. using backend for graphics without display \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251magg\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=269009;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577205;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#46\u001b\\\u001b[2m46\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/pkg_resources/__init__.py:123: PkgResourcesDeprecationWarning: dev is an invalid version and will not be supported in a future release\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
10:44:50 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=966875;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265165;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72521;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605572;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:52 WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=145891;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=446981;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:53 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=19565;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389702;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:54 WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=918898;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=693090;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=263202;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=975208;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:56 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=421856;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511842;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:56 WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=189740;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=150136;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=297232;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=411648;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy import BinnedData\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get the unbinned COSI dataset\n", + " \n", + "Define an instance of the BinnedData object. Input parameters are passed from inputs.yaml.
\n", + "Note: We are still working on refining the handling of input/output parameters. This will be updated in future releases of cosipy. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A typical DataIO configuration yaml files looks like this:\n", + "\n", + "```yaml\n", + "data_file: \"/path/to/crab/tra/file\" # Full path to unbinned tra data file. Only needed when converting a tra file to fits or HDF5.\n", + "ori_file: \"/path/to/ori/file\" # Full path to spacecraft orientation file. See next tutorial. Only needed when converting a tra file to fits or HDF5.\n", + "unbinned_output: 'hdf5' # Format of converted unbinned file 'fits' or 'hdf5'. Only needed when converting a tra file to fits or HDF5.\n", + "time_bins: 60 # time bin size in seconds. Takes int, float, or list of bin edges.\n", + "energy_bins: [100., 200., 500., 1000., 2000., 5000.] # Energy bin edges [keV]. Needs to match response binning.\n", + "phi_pix_size: 6 # binning of Compton scattering angle [deg]. \n", + "nside: 8 # HEALPix binning of psi chi local. Needs to match response binning.\n", + "scheme: 'ring' # HEALPix binning scheme of psi chi\n", + "tmin: 1835478000.0 # Min time cut in GPS seconds.\n", + "tmax: 1835485200.0 # Max time cut in GPS seconds.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The starting point for the high-level data analysis is the so-called Level 1c data, which is a photon list consisting of Compton event parameters, e.g. energies of the scattered gamma ray and recoil electron, interaction positions within the detector, and time-tags. The photon list comes from the event identification and reconstruction, and it is stored in a tra file. From this information we can determine the total measured energy of the incidenct photon, the Compton scattering angle, the scattering direction, the distance between interactions, and the pointing of the instrument when the photon was detected, which is the main information needed for the high-level analysis. As a very first step, we read the data from the tra file and construct the COSI dataset. The data format for this is a dictionary containing the relevant information for all photons (i.e. an unbinned photon list). The dictionary can be stored as either a fits file or an hdf5 file.\n", + "\n", + "**Note:** Most users will not need to worry about this step, as the COSI data will already be provided in fits file format. However, this function can also be used for converting simulated data from MEGAlib to the proper cosipy format." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preparing to read file...\n", + "Reading file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 53383576/53383576.0 [03:35<00:00, 247474.98it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Making COSI data set...\n", + "total events to procecss: 3324977\n", + "Initializing arrays...\n", + "Making dictionary...\n", + "Saving file...\n", + "total processing time [s]: 720.1664335727692\n" + ] + } + ], + "source": [ + "analysis.read_tra(output_name=\"unbinned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bin the data\n", + "The data is binned with four axes: time, measured energy, compton scattering angle (Phi), and scattering direction (PsiChi). The binning should match that of the response used for the analysis. Here we will bin the data in Galactic coordinates, which is the default. The data can also be binned in local coordinates by specifying the keyword psichi_binning=\"local\". " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "analysis.get_binned_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's take a look at the raw spectrum and lightcurve:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGp0lEQVR4nO3de3RU5b3/8c9kksk9gVzIDasFLBJbQRBq64GKjhcaBauCWNvKaQlVFMEUsLiqrUorBRvxcrSFQ4una1lR1Go1gAYRrdqiVmo1EMULhYSEJOQyuU4ymd8fNPNLzIWEZGc/k7xfa7GUPXv2/s7D8OWTZ98cfr/fLwAAAEiSQuwuAAAAwCSEIwAAgHYIRwAAAO0QjgAAANohHAEAALRDOAIAAGiHcAQAANAO4aiPGhsbVVhYqMbGRrtLAQAAFiAc9dHBgweVnZ2tgwcPWrL9mpoaS7YLYGigRwDWIxwZxuPx2F0CAIPRIwDrEY4MEx8fb3cJAAxGjwCsRzgCAABoZ9iGow8++EDf+ta39Nhjj9ldSgfV1dV2lwDAYPQIwHqhdhdgh9bWVj388MM644wz7C4FAGAIn8+n5uZmu8tAPzmdToWGhsrhcJz0NoZlOPrLX/6iCRMmqK6uzu5SOklJSbG7BAAGo0dYo7a2VocPH5bf77e7FAyAqKgopaWlyeVyndT7jQ5H9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1A7rVVdX66mnntKjjz6qhx56aLA+Sq9VVlYqOTnZ7jIAGIoeMfB8Pp8OHz6sqKgoJScn92vGAfby+/3yer0qKyvTZ599ptNPP10hIX0/g8jocFRdXa3NmzcrJSVF48aN03vvvdftuvfee69effVVzZ07V6NHj9a2bdu0cuVKPfDAAzrrrLMC623cuFFz585VbGzsYHyEPvN6vXaXAMBg9IiB19zcLL/fr+TkZEVGRtpdDvopMjJSYWFhOnjwoLxeryIiIvq8DaNPyE5MTNSzzz6rp556SjfeeGO36xUUFGjnzp1atGiRFi9erNmzZ2v9+vVKTU3Vo48+Gljvo48+0v79+3XZZZcNRvknJSwszO4SABiMHmGdvs4Y+Xw+vfrqq/rTn/6kV199VT6fz6LK0FcnM1vUntEzRy6XS4mJiSdcb/fu3XI6nZo9e3ZgWXh4uLKysrRhwwaVlpYqJSVFe/fu1aFDh3TVVVdJOn6M2el0qri4WKtWrbLsc/RFbz4vgOGLHmGGZ555RkuXLtXhw4cDy0aPHq0HHnhAV155pY2VYSAYHY566+OPP9bo0aMVHR3dYfmECRMkSQcOHFBKSopmz56tCy+8MPD6gw8+qLS0NF133XXdbru8vFwVFRWB31v12JA2JSUlysjIsHQfAIIXPcJ+zzzzjK6++upOJ28XFRXp6quv1tatWwlIkqqqqvTb3/5WP/3pT+0upc+GRDiqqKjo8qeptmXl5eWSpIiIiA7HHsPDwxUZGdnj+UfPP/+8Nm/e3Gl5WVmZYmJilJaWpvLycjU3Nys8PFwjRoxQaWmppON3svX7/YFnIaWmpurYsWPyer0KCwtTYmKiSkpKJElxcXFyOBw6evSopONXpFRVVampqUmhoaFKTk7WkSNHJEmxsbEKDQ1VZWWlJCk5OVkej0eNjY1yOp1KSUlRcXGxJCkmJkYul0vHjh2TJCUlJamurk4NDQ0KCQlRWlqaioqKJEnR0dGKiIgIhMHExEQ1NDSovr5eDodD6enpOnLkiFpbWxUZGano6GgVFxfrscceU2lpqb70pS9p/vz5crlcysjIUElJiXw+nyIiIhQbG6uysjJJ0siRI9XS0hJ4DEJ6erqOHj2qlpYWhYeHKz4+PjAOI0aMUGtra4cxrKioUHNzs1wul0aOHNlhvKX/fx+YlJQUVVZWdjveISEhqqqqkiSNGjVK1dXVgfEeNWpUYAxPNN6pqakdxjA8PLzH8S4uLpbf71dUVJQiIyM7jHdjY2PgKsqMjIxO4932XU5ISJDX61VtbW1gDEtLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorqMIZNTU3djndMTEyHMWxubu4w3m3f2YiICMXFxXX4zvp8vg7jPZx7RE/jbUqPqK+vl8/nC5zMKx2/HFxS4FBZaGiofD6fWlpadMstt3R5VZvf75fD4dCyZcuUlZUlh8Mhh8OhsLCwwHZDQkIUEhKilpaWwHZbW1vV2toq6fgRky+u2/b3pDfrdrfdsLAwtbS0yO/3d1r3i5+1/boOh0OhoaGBWxz0Zd2KigqtWbNGOTk5Xa7bNmbdjXdb/V/cbkhIiBwOR5frth+XlpYW1dTUyO/3B77fvf7Bwh8k9u3b558+fbo/Ly+v02vXXHONf/ny5Z2WFxUV+adPn+7fsmXLSe+3rKzMv3///sCvHTt2+KdPn+7fv3//SW+zJzU1NZZs1worVqzwO51Ov6TAL6fT6V+xYoXdpQFDVjD1iGDR0NDgLygo8Dc0NJxw3V27dnXoed392rVrV79qkuS/8847/eecc45/+fLl/vfff99/3nnn+c8++2z/hAkT/Pfcc09g3fT0dH9RUZHf7/f7586d6//GN77h9/v9/sbGRn9CQoK/sbGxw7Z9Pp//pptu8p9xxhn+s846yz958mR/Q0OD/7PPPvPHx8f7f/KTn/i/9rWv+TMzM/0vv/xy4H3bt2/3n3feef7Jkyf7p06d6n/llVcCr/3+97/3T5w40X/WWWf5p0yZ4v/ss8/8l1xyiT8kJMQ/ceJE/5QpU/x+v9//rW99y79kyRL/ueee6585c2Zgn208Ho+/fTSR5F+9erV/2rRp/lNPPdX/7LPP+n/1q1/5p0yZ4h83bly349yXP9OuDImZo/Dw8C5v3NWWqMPDw09620lJSUpKSjrp9/dVf08iGywrV67UunXrOi33+XyB5WvXrh3ssoAhL1h6xFDVNjs3UOv1xOl06u2335Z0/IHDO3fuVHh4uBoaGvTNb35Tbrdb5557ri688ELl5+fre9/7nv75z38qNDRUNTU1evvttzVlypRO/wb+85//1M6dO/Xhhx8qJCRE1dXVgfsBVVdXa8KECbrvvvv0t7/9TbNnz9Ynn3yisrIy/eIXv9COHTsUFxenAwcOaPr06fr888/11ltv6e6779abb76ptLQ01dfXS5J++9vfatKkSdq7d2+H/X/00Ud67bXXFBYWps8///yE4xATE6O///3v2rlzp+bMmaOHH35Y77zzjp566imtWLEiMEYDaUiEo8TExMB0bHttU7+DGW76q6qqqtO5U6bxer3Kzc3tcZ3c3FytXr36pG/ABaBrwdAjhrK0tLQBXa8nP/zhDwP/39DQoMWLF2vv3r0KCQnRoUOHtHfvXp177rlyu93Kz8/XmWeeqYkTJyolJUWvvvqq3nrrrQ7n2bYZM2aMWlpa9MMf/lAzZ85UVlZWIHSHhoZqwYIFkqRzzz1X6enpeu+99/TBBx/owIEDmjFjRmA7ISEh+ve//60XX3xR3//+9wOfOSoqqsfP9b3vfa9PV11ec801kqRzzjlHdXV1mj9/viRp2rRp+vjjj3u9nb4YEuGo7R5IdXV1HZpGQUFB4PVgsWHDBm3atMnuMnrk8XhOeMmqz+dTcnLyoN9PKicnJ3B8GwAG2vTp0zV69GgVFRV1ed6Rw+HQ6NGjNX369H7vKyYmJvD/t99+u5KSkvTee+8pNDRUV155pRobGyVJbrdbq1atUmZmptxut1JSUpSfn6+33nqrw+1s2sTHx+uDDz7Q7t27tWvXLq1atUqvvfaaQkO7jgQOh0N+v18XXXSRHn/88QH9XG3ncrVp+0zttZ0r3HZeUvvft503NdCGRDg6//zz9cQTT+j555/XtddeK+n47EZeXp4yMzMH5Hb7+fn5ys/PD5yQaZXW1tbAyY/BrqamJnCS5GDuExjKRo0aZXcJw5rT6dQDDzygq6++OhAa2rSdZLx+/frAP+QDpbKyUhMmTFBoaKgKCwv18ssvB2Zx0tPTFR8fr9/+9rd65ZVXlJSUpFtvvVUej0eTJ0/utK2ysjI5nU5dfPHFuuiii7R7924VFBTorLPOUktLi/74xz9qwYIF2rNnj4qLizVp0iSlpaXprrvu0vvvvx+4sfKePXs0bdo0XX755VqwYIFuvPHGDofV4uLi1NDQIK/X2+1RhNTUVPn9fhUUFCgzM1P/93//N6DjdrKMD0dPP/20amtrA4fI3njjjcBVCldddZViYmKUmZmpmTNnasOGDaqqqlJGRoa2b9+ukpIS3XbbbQNSh9vtltvtVmFhobKzswdkm11pu9LLZB6Pp1chJC4ubtBnjuLi4gZ1f8Bgq66uDqpTBYaiK6+8Ulu3bu3yPkfr16+35DL+n/3sZ/r+97+vxx57TGPHjtUFF1zQ4XW3260XXnhBY8aMkXQ8dJx99tldnqN26NAhZWdnq7m5WT6fT+edd55mzZqloqKiwKzSxIkT1dLSoscff1yxsbGKjY3V448/rh//+Meqr6+X1+vV2Wefrccff1wzZszQz3/+c11yySVyOBxyuVzaunWrTj31VP3gBz/QWWedpZiYGL3zzjudagkNDdVDDz2kyy67TImJibr66qsHfOxOhsPf1bygQebNmxe4lPWLtmzZEjjG2dTUFHi2Wm1trcaMGaOFCxdq2rRpA1pPWzjauHGjxo8fP6Dblo7fJ8P0cOT1ehUVFdXjoTWn06n6+nrOOQIGWDD0iGDT2Niozz77TF/+8pf79KgJn8+n119/XUeOHFFaWpqmT58+4DNGg+nzzz/XpEmTArfcCGYn+2faxviZoyeffLJX64WHh2vx4sVavHixxRVZq7tjviZxuVzKycnp8mq1Njk5OQQjwALB0COGC6fTqfPPP9/uMmAB/pYZJljOJ2i7TD83N7fDDJLT6VROTg6X8QMWCZYegeBz2mmnDYlZo4FAODJMcXFx0EyZr127VqtXr9YjjzyiTz75RGPHjtXixYuZMQIsFEw9ItgYfpYJ+qDtbtkni3CEfnG5XFq2bJndZQDASQsLC5PD4VBZWZmSk5MDV50h+Pj/8wiYsrIyhYSEnPQP64SjXhqsS/kH++ouAMGFHjHwnE6nRo8ercOHD/fqjs0wX1RUlL70pS+d9B3ljb9azTRWX61WX19/wruLAhi+6BHW8fl8XT6KCsHF6XQqNDS0XzOAzBwZprKyksYHoFv0COs4nc6gvhQfA4cnGAIAALRDODJMcnKy3SUAMBg9ArAe4cgwHo/H7hIAGIweAViPcGSYrp5IDABt6BGA9Tghu5cG61J+TgYE0BN6BGA9LuXvI6sv5QcAAPbisJphioqK7C4BgMHoEYD1CEcAAADtEI4MEx0dbXcJAAxGjwCsRzgyTHh4uN0lADAYPQKwHuHIMMeOHbO7BAAGo0cA1iMcAQAAtMN9jnppsO5zlJSUZOn2MTR5vV498sgj+uSTTzR27FgtXrxYLpfL7rJgAXoEYD3uc9RHVt/n6NixY0pISBjw7WLoWrlypXJzc+Xz+QLLnE6ncnJytHbtWhsrgxXoEYD1mDkyTENDg90lIIisXLlS69at67Tc5/MFlhOQhhZ6BGA9zjkyTEgIfyToHa/Xq9zc3B7Xyc3NldfrHaSKMBjoEYD1mDkyTFpamt0lBLXc3NwTBoahwuPxdDiU1hWfz6fk5GTFxsYOUlUnlpOTo5ycHLvLCFr0CMB6hCPDFBcXKz093e4yglZNTQ2PV/iCmpoa1dTU2F1GgEm1BCN6BGA9wpFhOD++f+Li4pSRkWF3GYPC4/H0KmjExcUZNXMUFxdndwlBjR4BWI9wZJioqCi7Swhqw+mQjdfrVVRUVI+H1pxOp8rKyrisfwihRwDW48w+w0RGRtpdAoKEy+U6YRDMyckhGA0x9AjAeoQjw1RUVNhdAoLI2rVrtWLFCjmdzg7LnU6nVqxYwWX8QxA9ArAeh9V6abDukA301dq1a7V69WrukA0AA4Q7ZPeR1XfIbmxsVERExIBvF8DQQI8ArMdhNcM0NjbaXQIAg9EjAOsRjgxTV1dndwkADEaPAKxHOAIAAGiHcGSY4XIDQwAnhx4BWI9wZJgjR47YXQIAg9EjAOsRjgzT2tpqdwkADEaPAKxHODIMd78F0BN6BGA9wpFhoqOj7S4BgMHoEYD1CEeGKS8vt7sEAAajRwDW4/EhvcTjQwAAGB4IR73kdrvldrsDjw+xSkJCgmXbBhD86BGA9TisZhiv12t3CQAMRo8ArEc4MgyH7QD0hB4BWI9wBAAA0A7hyDDp6el2lwDAYPQIwHqEI8OUlpbaXQIAg9EjAOsRjgzj8/nsLgGAwegRgPUIR4aJiIiwuwQABqNHANYjHBkmNjbW7hIAGIweAViPcGSYsrIyu0sAYDB6BGA9whEAAEA7hCPDjBw50u4SABiMHgFYj3BkmJaWFrtLAGAwegRgPcKRYTwej90lADAYPQKwHuEIAACgnVC7CwgW+fn5ys/Pt/yhj2lpaZZuH0Bwo0cA1mPmqJfcbrfWrFmjJUuWWLofLtMF0BN6BGA9wpFhONkSQE/oEYD1CEeGCQ8Pt7sEAAajRwDWIxwZZsSIEXaXAMBg9AjAeoQjw5SWltpdAgCD0SMA6xGOAAAA2iEcGSY+Pt7uEgAYjB4BWI9wZBi/3293CQAMRo8ArEc4MkxNTY3dJQAwGD0CsB7hCAAAoB3CkWFSU1PtLgGAwegRgPUIR4apqKiwuwQABqNHANYjHBmmubnZ7hIAGIweAViPcGQYl8tldwkADEaPAKxHODJMQkKC3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCMAAIB2CEeGiYuLs7sEAAajRwDWIxwZxuFw2F0CAIPRIwDrEY4MU11dbXcJAAxGjwCsF2p3AcEiPz9f+fn5qq2ttbsUAABgIYefRzz3SWFhobKzs7Vx40aNHz9+wLff0tKi0FAyK4Cu0SMA63FYzTBVVVV2lwDAYPQIwHqEI8M0NTXZXQIAg9EjAOsRjgwTFhZmdwkADEaPAKxHODJMUlKS3SUAMBg9ArAe4cgwR44csbsEAAajRwDWIxwBAAC0QzgyTGxsrN0lADAYPQKwHuHIME6n0+4SABiMHgFYj3BkGO5hAqAn9AjAeoQjAACAdghHhhk1apTdJQAwGD0CsB7hyDA1NTV2lwDAYPQIwHqEI8M0NjbaXQIAg9EjAOsRjgzD07YB9IQeAViPcGQYzicA0BN6BGA9wpFhiouL7S4BgMHoEYD1CEcAAADtEI4MExMTY3cJAAxGjwCsRzgyTFhYmN0lADAYPQKwHuHIMJWVlXaXAMBg9AjAeoQjAACAdghHhklOTra7BAAGo0cA1iMcGaa2ttbuEgAYjB4BWI9wZJiGhga7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGSYtLc3uEgAYjB4BWI9wZJiioiK7SwDwBV6vV+vXr9eSJUu0fv16eb1e22qhRwDWG5aPd163bp3eeOMNNTY2KiUlRYsWLdJ5551nd1kADLRy5Url5ubK5/MFli1fvlw5OTlau3atjZUBsMqwDEfz5s3T0qVL5XK5tG/fPuXk5OiJJ55QfHy83aUpOjra7hIA/MfKlSu1bt26Tst9Pl9g+WAHJHoEYL1heVjt1FNPlcvlkiQ5HA41NzervLzc5qqOCw8Pt7sEADp+KC03N7fHdXJzcwf9EBs9ArCe8TNH9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1E7r5ubmKi8vT16vV+eee67GjBkzGB/nhI4dO6aMjAy7ywAsk5ube8LQYQKPx9PhUFpXfD6fkpOTFRsbO0hVST/60Y901113Ddr+gOHI+HBUXV2tzZs3KyUlRePGjdN7773X7br33nuvXn31Vc2dO1ejR4/Wtm3btHLlSj3wwAM666yzOqybk5OjpUuXau/evfr000/lcDis/igAJNXU1Aypk4prampUU1MzaPvzeDyDti9guDI+HCUmJurZZ59VYmKi9u/fr0WLFnW5XkFBgXbu3Kkbb7xR1157rSTpkksu0YIFC/Too4/q0Ucf7fQep9OpKVOm6KmnntLo0aP1jW98w9LP0htJSUl2lwBYKi4uLihmRz0eT69CT1xc3KDOHKWmpg7avoDhyvhw5HK5lJiYeML1du/eLafTqdmzZweWhYeHKysrSxs2bFBpaalSUlK6fK/P5zPmJ9n6+nrOKcCQlpOTo5ycHLvLOCGv16uoqKgeD605nU6VlZUFzmEcDJWVlYO2L2C4GjInZH/88ccaPXp0pys5JkyYIEk6cOCApOPPJXr55ZdVX1+vlpYW7dq1S++9954mTpzY5XbLy8tVWFgY+HXw4EFLP0d9fb2l2wfQOy6X64QhLicnZ1CDkUSPAAaD8TNHvVVRUdHlDFPbsrar0RwOh1544QXdf//98vv9ysjI0B133KHTTz+9y+0+//zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDFCpaWlkqT4+Hj5/f7A1HxqaqqOHTsmr9ersLAwJSYmqqSkRNLxqXmHw6GysjJJUkpKiqqqqtTU1KTQ0FAlJyfryJEjkqTY2FiFhoYGfoJMTk6Wx+NRY2OjnE6nUlJSVFxcLEmKiYmRy+XSsWPHJB0/bFdXV6eGhgaFhIQoLS0tMGsWHR2tiIgIVVRUBMauoaFB9fX1cjgcSk9P15EjR9Ta2qrIyEhFR0cHxjUhIUFNTU2qq6uTJGVkZKikpEQ+n08RERGKjY0NfLaRI0eqpaUlcO5Eenq6jh49qpaWFoWHhys+Pl5Hjx6VJI0YMUKtra0dxrCiokLNzc1yuVwaOXJkh/GWjp+n1jaGlZWV3Y53SEiIqqqqJEmjRo1SdXV1YLxHjRoVGMMTjXdqamqHMQwPD+9xvIuLi+X3+xUVFaXIyMgO493Y2NhhDHsab6/XG3gIaXp6ukpLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorq8TvbfrxjYmK0dOlSeTwebdiwQa2trWrjdDr14x//WEuXLlVFRYXi4uI6fGd9Pl+H8aZH0CPoEWb0iN4e0nf4/X5/r9Y0QNs5R11drTZ//nydcsopne5JUlxcrPnz5+vmm2/WvHnz+rzP8vLywBdTkg4ePKjVq1dr48aNGj9+/Ml9EABBxev16pFHHtEnn3yisWPHavHixYM+YwRg8AyZmaPw8HA1Nzd3Wt52D5KTPY8nKSlpUE+SLi4uVnp6+qDtD8CJuVwuLVu2zO4yJNEjgMEwZM45SkxM7DDD06ZtWbBcBRZEE3kAbECPAKw3ZMLRuHHjdPjw4cCx2DYFBQWB14NBVFSU3SUAMBg9ArDekAlH559/vnw+n55//vnAMq/Xq7y8PGVmZnZ7GX9v5efn66c//akeeuih/pbaIxofgJ7QIwDrBcU5R08//bRqa2sDh8jeeOONwJUKV111lWJiYpSZmamZM2dqw4YNqqqqUkZGhrZv366SkhLddttt/a7B7XbL7XarsLBQ2dnZ/d5ed8rLy4PiBnkA7EGPAKwXFOFoy5YtgUsDJem1117Ta6+9Jkm6+OKLFRMTI0m6/fbblZKSoh07dqi2tlZjxozRr3/9a02aNMmOsgEAQBAKqkv5TdA2c2TVpfwNDQ2KjIwc8O0CGBroEYD1hsw5R0NFU1OT3SUAMBg9ArAe4cgwX7zaDgDao0cA1iMcAQAAtBMUJ2SbID8/X/n5+YHn1FiFq1AA9IQeAVhvQGaOPB6Ptm/fPhCbMpbb7daaNWu0ZMkSS/fT9hA+AOgKPQKw3oCEo9LSUq1Zs2YgNjXstX/yNwB8ET0CsF6vDquVlpb2+Hp5efmAFANxiS6AHtEjAOv1KhzNmzdPDoej29f9fn+Pr6P32m5oCQBdoUcA1utVOIqNjdWPfvSjbu80ffDgQf3iF78YwLKGr7KyMk64BNAtegRgvV6Fo6985SvyeDz68pe/3OXrPp9P3GgbAAAMBb0KR1dccYUaGxu7fT0lJUU//elPB6woEw3WpfwjR460dPsAghs9ArAez1brI6ufrVZdXa34+PgB3y6AoYEeAViPO2QbxuqZKQDBjR4BWO+kw9H555+vQ4cODWQtAAAAtjvpcMTROGukp6fbXQIAg9EjAOtxWM0wR48etbsEAAajRwDWIxwZpqWlxe4SABiMHgFYj3BkmIiICLtLAGAwegRgvV7d5wiDd5+juLg4S7cPILjRIwDrMXPUS263W2vWrNGSJUss3Q/nEwDoCT0CsB7hCAAAoJ2TDkff/e53md61wIgRI+wuAYDB6BGA9U76nKMf//jHA1kH/sPn89ldAgCD0SMA6/V55sjr9VpRB/7D4/HYXQIAg9EjAOv1ORx95zvf0f3336/CwkIr6gEAALBVnw+reb1e/fnPf9Zzzz2nsWPHKisrSxdddJFiY2OtqG/YSUtLs7sEAAajRwDW6/PM0XPPPaecnByNHz9eBw4c0IMPPqgrr7xSd999t959910rahxWysvL7S4BgMHoEYD1+jxzFBUVpTlz5mjOnDn6/PPP9eKLL+rll1/Wzp079corr2jUqFHKysrSpZdeqpSUFCtqHtKam5vtLgGAwegRgPUcfr/f39+N+Hw+vfnmm3rxxRe1Z88e+Xw+hYSE6JxzzlFWVpb+67/+S6GhwX0z7vZ3yH7//fe1ceNGjR8/fsD3U15erqSkpAHfLoChgR4BWG9AwlF7x44d044dO5SXl6d///vfcjgciouL0/PPPz+Qu7FNYWGhsrOzLQtHLS0tQR8kAViHHgFYb8DvkJ2QkKBrr71Wv/jFL/S1r31Nfr9fNTU1A72bIau0tNTuEgAYjB4BWG9Af/yor6/Xyy+/rBdffFEfffSR/H6/IiIiNHPmzIHcDQAAgGUGJBz94x//UF5enl5//XU1NTXJ7/crMzNTWVlZuuCCCxQVFTUQuxkW4uPj7S4BgMHoEYD1TjocHT16VNu2bdO2bdtUUlIiv9+vESNGaPbs2crKytJpp502gGUOHwN8ChiAIYYeAVivz+Fo586dysvL0z/+8Q+1trYqJCREU6dOHTJXpdmtpqaGG2oC6BY9ArBen5PM3XffLen4XVpnzZqlWbNmadSoUQNeGAAAgB36HI4uvPBCZWVlacqUKVbUM+ylpqbaXQIAg9EjAOv1ORzdeeedVtSB/zh27JiSk5PtLgOAoegRgPX6fYJQS0uLnnnmGeXn5+vf//63mpqatGvXLknSxx9/rL/85S+aO3euTjnllH4XOxx4vV67SwBgMHoEYL1+haOmpib95Cc/0QcffKD4+HhFR0ersbEx8HpaWpry8vIUGxur7Ozsfhdrp/aPD7FSWFiYpdsHENzoEYD1+nWH7D/+8Y/617/+pUWLFunPf/6zsrKyOrweExOjSZMm6e233+5XkSZwu91as2aNlixZYul+EhMTLd0+gOBGjwCs169w9Morr+jss8/Wd7/7XTkcDjkcjk7rpKenc7v7PigpKbG7BAAGo0cA1utXODp69OgJH74aGRmpurq6/uwGAABg0PQrHEVGRqqqqqrHdYqLi7ndfR/ExcXZXQIAg9EjAOv1KxydeeaZevPNN+XxeLp8vbS0VH/72980ceLE/uxmWOnq0CQAtKFHANbrVziaP3++PB6Pbr31Vv3rX/+Sz+eTJDU2Nurdd9/V8uXL5fP5dM011wxIscNBdXW13SUAMBg9ArBevy7lnzRpkpYtW6YHH3yww1Vcl156qSQpJCREOTk5JzwvCQAAwBT9vgnkFVdcoUmTJum5557Tvn37VFNTo+joaE2YMEHf+c539OUvf3kg6hw2UlJS7C4BgMHoEYD1+h2OJOm0007T0qVLu33d5/PJ6XQOxK6GvKqqKiUlJdldBgBD0SMA6/XrnKNnnnnmhOv4fD7ddddd/dnNsNLU1GR3CQAMRo8ArNevcPTggw/q1Vdf7fb11tZW3XXXXXrttdf6s5thJTR0QCbzAAxR9AjAev0KR1/72te0evVq/eMf/+j0Wlsw2r17t77zne/0ZzfDCk/bBtATegRgvX6FozVr1uiUU07Rz372M3388ceB5a2trbrnnnv06quv6oorrujxfCR0dOTIEbtLAGAwegRgvX6Fo+joaN13332KiYnRihUrVFxcLL/fr7vvvluvvPKK5syZo1tvvXWgagUAALBcv8KRdPwJ0b/5zW/U2tqqn/zkJ/r5z3+uXbt26bLLLlNOTs5A1DisxMbG2l0CAIPRIwDrDciZfaeccorWrl2rZcuW6bXXXtNll12mFStWDMSmjZGfn6/8/HzV1tZauh9OtgTQE3oEYL0+/S3bvHlzj69PmDBBBw4cUGJiYod1HQ6Hrr/++pOpzxhut1tut1uFhYXKzs62bD+VlZWKioqybPsAghs9ArBen8LRH/7wh16t99hjj3X4/VAIRwAAYHjoUzh64IEHrKoD/8FlugB6Qo8ArNencDRp0iSLykAbj8ejxMREu8sAYCh6BGC9fl+thoHV2NhodwkADEaPAKxHODIMD+gF0BN6BGA9wpFhUlJS7C4BgMHoEYD1CEeGKS4utrsEAAajRwDWIxwBAAC0QzgyTExMjN0lADAYPQKwXr/CUWlpqerq6npcp76+XqWlpf3ZzbDicrnsLgGAwegRgPX6FY6uueYabd26tcd1tm7dqmuuuaY/uxlWjh07ZncJAAxGjwCs169w5Pf75ff7T7gOAABAsLD8nKOysjIektgHSUlJdpcAwGD0CMB6fXp8iCRt3ry5w+/fe++9LtdrbW3V0aNHtXPnTmVmZp5UccNRXV2dwsPD7S4DgKHoEYD1+hyO/vCHPwT+3+FwaO/evdq7d2+36yclJemGG244qeKGo4aGBrtLAGAwegRgvT6HowceeEDS8XOJli1bplmzZunSSy/ttF5ISIji4uL0pS99SSEh3DGgtxgrAD2hRwDW63M4mjRpUuD/FyxYoLPPPrvDMvRPWlqa3SUAMFgw9giv16tHHnlEn3zyicaOHavFixdzSwIYrV8/gpxzzjn661//qoqKii5fLy8v18MPP6wPP/ywP7sZVoqKiuwuAYDBgq1HrFy5UlFRUbr11lv18MMP69Zbb1VUVJRWrlxpd2lAt/oVjrZs2aI33nhDiYmJXb6elJSkN998U08++WR/dgMACEIrV67UunXr5PP5Oiz3+Xxat24dAQnG6vNhtfb279+vKVOm9LjOxIkT9c477/RnN0bIz89Xfn6+amtrLd1PdHS0pdsHENyCpUd4vV7l5ub2uE5ubq5Wr17NITYYp1/hqKqq6oT33EhISFBlZWV/dmMEt9stt9utwsJCZWdnW7afiIgIy7YNIPj97ne/00MPPWR3GSfk8Xg6zRh9kc/nU3JysmJjYwepKiknJ0c5OTmDtj8Ep36Fo5iYGB09erTHdUpLSxUZGdmf3QwrFRUVysjIsLsMAIYqLS0NuvOOelJTU6OamppB3R9wIv0KR5mZmXrttde0cOFCpaSkdHq9tLRUr7/+uiZPntyf3QAA/iM2NjYofoDyeDy9CiJxcXGDOnMUFxc3aPtC8OpXOJo3b57efPNN3XTTTVq4cKHOOeccJSUlqby8XG+//bb+93//V16vlwfP9kF3J7cDgCStWrVKd911l91lnJDX61VUVFSPh9acTqfKyso45wjG6Vc4mjRpkm666SY98sgjWrNmjaTjd81ue9isw+HQkiVLuA9SHzQ0NHDeEYBuBUuPcLlcysnJ0bp167pdJycnh2AEI/UrHEnS3LlzNXnyZD333HPav3+/amtrFRMTowkTJmjOnDkaM2bMQNQ5bNTX12vkyJF2lwHAUMHUI9auXSvp+FVp7WeQnE6ncnJyAq8DpnH426Z50CttV6tt3LhR48ePH/DtFxcXKz09fcC3C2BoCMYewR2yEWz6PXOEgRVsTQ/A4ArGHuFyubRs2TK7ywB6jScYGubIkSN2lwDAYPQIwHqEI8O0trbaXQIAg9EjAOsRjgzDDTMB9IQeAViPcGSYYHluEgB70CMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWGamprsLgGAwegRgPUIR4apq6uzuwQABqNHANYjHAEAALRDODJMRkaG3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCPD+Hw+u0sAYDB6BGA9wpFhIiIi7C4BgMHoEYD1CEeGiY2NtbsEAAajRwDWIxwZpqyszO4SABiMHgFYj3AEAADQDuHIMCNHjrS7BAAGo0cA1iMcGaalpcXuEgAYjB4BWI9wZBiPx2N3CQAMRo8ArBdqdwGDzev1Kjc3V++8845qa2t12mmn6eabb9ZXv/pVu0sDAAAGGHYzRz6fT6mpqfqf//kf5eXlae7cuVq1apXq6+vtLk2SlJ6ebncJAAxGjwCsN+zCUWRkpBYsWKCUlBSFhITowgsvVGhoqA4dOmR3aZKko0eP2l0CAIPRIwDrGX9Yrb6+Xk888YQKCgq0b98+eTwerVq1SrNmzeq0rtfr1aZNm/TSSy/J4/Fo7NixWrhwoaZOndrt9g8dOiSPx2PMwxw52RJAT+gRgPWMnzmqrq7W5s2bdfDgQY0bN67Hde+99149+eSTuuiii3TLLbcoJCREK1eu1Pvvv9/l+k1NTVq9erWuu+46xcTEWFF+n4WHh9tdAgCD0SMA6xkfjhITE/Xss8/qqaee0o033tjtegUFBdq5c6cWLVqkxYsXa/bs2Vq/fr1SU1P16KOPdlq/paVFd955pzIyMrRgwQILP0HfxMfH210CAIPRIwDrGR+OXC6XEhMTT7je7t275XQ6NXv27MCy8PBwZWVl6cMPP1RpaWlgeWtrq1avXi2Hw6Hbb79dDofDktpPBucTAOgJPQKwnvHnHPXWxx9/rNGjRys6OrrD8gkTJkiSDhw4oJSUFEnSfffdp4qKCt13330KDe15CMrLy1VRURH4/cGDBwe4cgAAYJIhE44qKiq6nGFqW1ZeXi5JKikp0QsvvCCXy9Vhlmnt2rWaOHFip/c///zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDEiMEsVHx8vv9+vmpoaSVJqaqqOHTsmr9ersLAwJSYmqqSkRJIUFxcnh8OhhoYGFRUVKSUlRVVVVWpqalJoaKiSk5N15MgRScefyh0aGqrKykpJUnJysjwejxobG+V0OpWSkqLi4mJJUkxMjFwul44dOyZJSkpKUl1dnRoaGhQSEqK0tDQVFRVJkqKjoxUREREIg4mJiWpoaFB9fb0cDofS09N15MgRtba2KjIyUtHR0YFxTUhIUFNTk+rq6iRJGRkZKikpkc/nU0REhGJjYwMPzBw5cqRaWloCN7NLT0/X0aNH1dLSovDwcMXHxwd+Oh4xYoRaW1s7jGFFRYWam5vlcrk0cuTIDuMtHT9PTZJSUlJUWVnZ7XiHhISoqqpKkjRq1ChVV1cHxnvUqFGBMTzReKempnYYw/Dw8B7Hu7i4WH6/X1FRUYqMjOww3o2NjR3GsKfx9nq9qq2tDYxhaWlpr8Y7LS1NZWVlgfE+0Xe2/XgnJCR0+s62H++272xYWJiSkpI6fGedTmeH8a6pqVFjY2On8Y6JiVFYWFiH8a6tre32O/vF8a6vr+/wnW0/3lFRUT1+Z9uPd0xMTIcxbG5u7jDebd/ZiIgIxcXFdfjO+ny+DuNNj6BH0CPM6BG9vfjK4ff7/b1a0wD79+/XokWLurxabf78+TrllFO0bt26DsuLi4s1f/583XzzzZo3b16f99nVzNHq1au1ceNGjR8//uQ+SA88Ho9iY2MHfLsAhgZ6BGC9ITNzFB4erubm5k7LvV5v4PWTkZSUpKSkpH7V1hc1NTU0PgDdokcA1jP+hOzeSkxM7DDD06Zt2WAGHAAAELyGTDgaN26cDh8+HDgW26agoCDwejBITU21uwQABqNHANYbMuHo/PPPl8/n0/PPPx9Y5vV6lZeXp8zMzMCVaqbravYLANrQIwDrBcU5R08//bRqa2sDTeGNN94IXKlw1VVXKSYmRpmZmZo5c6Y2bNigqqoqZWRkaPv27SopKdFtt93W7xry8/OVn58fOPPfKl2dNwUAbegRgPWC4mq1efPmBS4N/KItW7YoLS1N0vHHgbQ9W622tlZjxozRwoULNW3atAGrpbCwUNnZ2ZZdrVZWVqbk5OQB3y6AoYEeAVgvKMKRSawORy0tLSe8MSWA4YseAVhvyJxzNFS0f8wJAHwRPQKwHuEIAACgHcKRYXjiNoCe0CMA63HgupcG62o1AABgL2aOesntdmvNmjVasmSJpftpe0AfAHSFHgFYj3AEAADQDuHIMMFyJ28A9qBHANYjHBmmsrLS7hIAGIweAViPcGQYr9drdwkADEaPAKxHODJMWFiY3SUAMBg9ArAel/L30mBdyp+YmGjp9gEEN3oEYD1mjnppsC7l7+4BuwAg0SOAwUA4AgAAaIdwZJi4uDi7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGaaqqsruEgAYjB4BWI9wBAAA0A7hyDCjRo2yuwQABqNHANbjPke9NFj3OaqurlZSUpKl+wAQvOgRgPUIR73kdrvldrtVWFio7Oxsy/bT1NRk2bYBBD96BGA9DqsZJjSUvAqge/QIwHqEI8NwPgGAntAjAOsRjgxTXFxsdwkADEaPAKxHOAIAAGiHcGSY2NhYu0sAYDB6BGA9wpFhONkSQE/oEYD1CEeGqaystLsEAAajRwDWIxwBAAC0w/xsLw3WHbKTk5Mt3T6A4EaPAKzHzFEvud1urVmzRkuWLLF0Px6Px9LtAwhu9AjAeoQjwzQ2NtpdAgCD0SMA6xGODON0Ou0uAYDB6BGA9QhHhklNTbW7BAAGo0cA1iMcGaaoqMjuEgAYjB4BWI9wBAAA0A7hyDDR0dF2lwDAYPQIwHqEI8OEh4fbXQIAg9EjAOsRjgxz7Ngxu0sAYDB6BGA9whEAAEA7hCPDJCUl2V0CAIPRIwDr8Wy1XhqsZ6vV1dVxTgGAbtEjAOsRjnrJ7XbL7XarsLBQ2dnZlu2noaHBsm0DCH70CMB6HFYzTEgIfyQAukePAKzH3zLDpKWl2V0CAIPRIwDrEY4MU1xcbHcJAAxGjwCsRzgyjN/vt7sEAAajRwDWIxwZJioqyu4SABiMHgFYj3BkmMjISLtLAGAwegRgPcKRYSoqKuwuAYDB6BGA9QhHAAAA7RCODJOYmGh3CQAMRo8ArEc4MkxjY6PdJQAwGD0CsB7hyDB1dXV2lwDAYPQIwHqEIwAAgHYIR4bJyMiwuwQABqNHANYLtbuAYJGfn6/8/HzV1tZaup8jR47w7CQA3aJHANYjHPWS2+2W2+1WYWGhsrOzLdtPa2urZdsGEPzoEYD1OKxmGO5+C6An9AjAeoQjw0RHR9tdAgCD0SMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWG8Xq/dJQAwGD0CsB7hyDBW30cJQHCjRwDWIxwBAAC0QzgyTHp6ut0lADAYPQKwHuHIMKWlpXaXAMBg9AjAeoQjw/h8PrtLAGAwegRgPcKRYSIiIuwuAYDB6BGA9QhHhomNjbW7BAAGo0cA1iMcGaasrMzuEgAYjB4BWI9wBAAA0A7hyDAjR460uwQABqNHANYjHBmmpaXF7hIAGIweAViPcGQYj8djdwkADEaPAKxHOAIAAGgn1O4CgkV+fr7y8/Mtf+hjWlqapdsHENzoEYD1mDnqJbfbrTVr1mjJkiWW7ofLdAH0hB4BWI9wZBhOtgTQE3oEYD3CkWHCw8PtLgGAwegRgPUIR4YZMWKE3SUAMBg9ArAe4cgwpaWldpcAwGD0CMB6hCMAAIB2uJTfMPHx8XaXAMBg9AicLK/Xq0ceeUSffPKJxo4dq8WLF8vlctldlpEIR4bx+/12lwDAYPQInIyVK1cqNzdXPp8vsGz58uXKycnR2rVrbazMTBxWM0xNTY3dJQAwGD0CfbVy5UqtW7euQzCSJJ/Pp3Xr1mnlypU2VWYuwhEAAEOU1+tVbm5uj+vk5ubK6/UOUkXBgcNqhklNTbW7BAAGo0f0T25u7gnDwlDi8Xg6zRh9kc/nU3JysmJjYwepqhPLyclRTk6ObfsnHBmmoqJCo0aNsrsMAIaiR/RPTU2NioqK7C7DODU1NUYdsrW7FsKRYZqbm+0uAYDB6BH9ExcXp4yMDLvLGDQej6dXQSMuLs6omaO4uDhb9084MgyXVQLoCT2if+w+XDPYvF6voqKiejy05nQ6VVZWxnerHU7INkxCQoLdJQAwGD0CfeFyuU4YBnNycghGX0A4MkxJSYndJQAwGD0CfbV27VqtWLFCTqezw3Kn06kVK1Zwn6MucFgNAIAhbu3atVq9ejV3yO4lwpFh7D4JDYDZ6BE4WS6XS8uWLbO7jKDAYTXDOBwOu0sAYDB6BGA9wpFhqqur7S4BgMHoEYD1CEcAAADtEI4Mk5KSYncJAAxGjwCsRzgyTFVVld0lADAYPQKwHuHIME1NTXaXAMBg9AjAeoQjw4SFhdldAgCD0SMA6xGODJOUlGR3CQAMRo8ArEc4MsyRI0fsLgGAwegRgPW4Q3YftR3vP3jwoCXbLysrU21trSXbBhD86BFA/5x66qmKiIjocR3CUR+1PfRx9erVNlcCAAD6auPGjRo/fnyP6zj8fr9/kOoZEqqqqrRnzx6lpaX16oF9Dz30kJYsWdKrbR88eFCrV6/Wz372M5166qn9LXVY6st4m8SUugejDiv2MVDb7M92Tva99IjBZcrftZNhQu2DVYOVfYKZIwuMGDFCF198ca/Xj4mJOWFC/aJTTz21z+/BcScz3iYwpe7BqMOKfQzUNvuznZN9Lz1icJnyd+1kmFD7YNVgd5/ghGyLud1uu0sYVoJ1vE2pezDqsGIfA7XN/mznZN9ryp/9cBHM421C7YNVg919gsNqBiksLFR2dnavjocCGH7oEcDgYObIIImJiVqwYIESExPtLgWAgegRwOBg5ggAAKAdZo4AAADaIRwBAAC0w6X8QcTr9So3N1fvvPOOamtrddppp+nmm2/WV7/6VbtLA2CIdevW6Y033lBjY6NSUlK0aNEinXfeeXaXBQQVzjkKIg0NDdqyZYtmzZql5ORk7dq1S+vXr9eWLVsUFRVld3kADHDw4MHATWr37dunnJwcPfHEE4qPj7e7NCBocFgtiERGRmrBggVKSUlRSEiILrzwQoWGhurQoUN2lwbAEKeeemrg7v0Oh0PNzc0qLy+3uSoguHBYzUL19fV64oknVFBQoH379snj8WjVqlWaNWtWp3W9Xq82bdqkl156SR6PR2PHjtXChQs1derUbrd/6NAheTweZWRkWPkxAFjEqh6Rm5urvLw8eb1enXvuuRozZsxgfBxgyGDmyELV1dXavHmzDh48qHHjxvW47r333qsnn3xSF110kW655RaFhIRo5cqVev/997tcv6mpSatXr9Z1112nmJgYK8oHYDGrekROTo527Nih+++/X1OnTpXD4bDqIwBDEuHIQomJiXr22Wf11FNP6cYbb+x2vYKCAu3cuVOLFi3S4sWLNXv2bK1fv16pqal69NFHO63f0tKiO++8UxkZGVqwYIGFnwCAlazqEZLkdDo1ZcoUvfvuu3rrrbes+gjAkEQ4spDL5erVnWx3794tp9Op2bNnB5aFh4crKytLH374oUpLSwPLW1tbtXr1ajkcDt1+++38RAgEMSt6xBf5fD4VFRUNSL3AcEE4MsDHH3+s0aNHKzo6usPyCRMmSJIOHDgQWHbfffepoqJCd911l0JDOWUMGA562yNqa2v18ssvq76+Xi0tLdq1a5fee+89TZw4cdBrBoIZ/7oaoKKiosufHtuWtV1pUlJSohdeeEEul6vDT5Br166l+QFDWG97hMPh0AsvvKD7779ffr9fGRkZuuOOO3T66acPar1AsCMcGaCpqUlhYWGdlrddjtvU1CRJSk1N1WuvvTaotQGwX297RHR0tB544IFBrQ0YijisZoDw8HA1Nzd3Wu71egOvAxi+6BHA4CIcGSAxMVEVFRWdlrctS0pKGuySABiEHgEMLsKRAcaNG6fDhw+rrq6uw/KCgoLA6wCGL3oEMLgIRwY4//zz5fP59PzzzweWeb1e5eXlKTMzUykpKTZWB8Bu9AhgcHFCtsWefvpp1dbWBqa/33jjDR09elSSdNVVVykmJkaZmZmaOXOmNmzYoKqqKmVkZGj79u0qKSnRbbfdZmf5ACxGjwDM4/D7/X67ixjK5s2bp5KSki5f27Jli9LS0iQdv9qk7blJtbW1GjNmjBYuXKhp06YNZrkABhk9AjAP4QgAAKAdzjkCAABoh3AEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaIdwBAAA0A7hCAAGwIwZMzr8ampqCry2bds2zZgxQ9u2bbOxwv/vueee61Drr371K7tLAowSancBAMx15MgRXXPNNT2uk5qaqieffHKQKjJbamqqLr30UkmS0+m0dF979uzR8uXLNXXqVP3mN7/pcd27775b+fn5uuOOO3TRRRdp/PjxWrBggWpra7V161ZL6wSCEeEIwAllZGTooosu6vK1mJiYQa7GXKmpqfrhD384KPs655xzlJKSonfffVelpaVKSUnpcr3a2lq9/vrriomJ0YwZMyRJZ5xxhs444wwdOXKEcAR0gXAE4IQyMjIG7R999E5ISIhmzZqlzZs3a/v27br++uu7XC8/P19NTU369re/rfDw8EGuEghOnHMEYEDNmDFDt9xyi44dO6Zf/vKXuvzyy+V2u3XDDTfovffe6/I99fX1+v3vf68f/OAHcrvd+va3v62f/OQnev/99zute8sttwTO6dm4caPmz5+vmTNn6ve//31gnd27dys7O1tut1tz5szR2rVr5fF4NG/ePM2bNy+w3j333KMZM2aooKCgy7o2bdqkGTNmKD8/v5+j0rWjR4/q+uuvl9vt1quvvhpYXllZqYceekjXXnutLrzwQl1++eX62c9+pk8//bTD+7/97W/L4XBo27Zt8vv9Xe4jLy9PkpSVlWXJZwCGIsIRgAFXW1urm266SZ9//rkuvvhizZgxQ4WFhVq+fHmnf+Bramp04403avPmzYqNjdWcOXM0Y8YMffTRR1q6dKlef/31Lvdxxx13aPv27Tr77LN19dVXKy0tTZL04osv6o477tDhw4d1ySWX6NJLL9WHH36onJwctbS0dNjG7NmzA+/5Ip/Pp7y8PMXHxwcORw2kzz//XIsXL9bRo0e1bt06nX/++ZKkoqIiLVy4UE899ZTS09N15ZVX6txzz9WePXt04403dghyqampmjJlioqLi7sMnp9++qn279+v008/XV/5ylcG/DMAQxWH1QCcUFFRUYeZmfbOPPNMff3rX++w7MCBA7riiiu0bNkyhYQc/xls8uTJWrt2rZ555hktX748sO769ev12WefaeXKlbrssssCyysrK5Wdna1169Zp2rRpnQ4JVVRU6A9/+IPi4uICyzwejx588EFFRkZqw4YNOuWUUyRJ2dnZWr58uQoLC5WamhpYf+LEiTrttNO0c+dO3XzzzYqMjAy8tmfPHpWVlWnu3LlyuVx9HbIeffjhh7rtttsUGhqqhx56SOPGjQu89stf/lLHjh3Tfffdp2nTpgWW/+AHP1B2drbWrl2rzZs3B5ZnZWXpnXfeUV5eniZPntxhP8waASeHmSMAJ1RUVKTNmzd3+evvf/97p/UjIyN1ww03BIKRJF166aVyOp3av39/YFlVVZV27dqlyZMndwhGkjRy5Ehde+21qqqq0rvvvttpH//93//dIRhJ0l//+lc1NDTo29/+diAYSVJoaKgWLlzY5WebPXu26uvrtXPnzg7LX3jhBUnS5Zdf3t2wnJS33npLt956q2JjY/XII490CEYfffSRPvjgA11yySUdgpEknXLKKbrsssv06aefdph9mz59uuLj47V7927V1dUFlre0tOill16Sy+Xq9mR6AF1j5gjACU2bNk333Xdfr9cfPXq0oqKiOiwLDQ1VQkKCamtrA8v2798vn8+n5ubmLmemDh8+LEk6ePCgvvnNb3Z4bcKECZ3W/+STTyRJZ511VqfXMjMzu7y8/pJLLtHvfvc7vfDCC4GAduzYMb355pv66le/qtNOO+0En7b3du3apbfffltjx47VunXrNHLkyA6vtx0yq6ys7HI8/v3vfwf+O2bMGEkKhJ+tW7cqPz9fc+bMkSS98cYbqqqqktvtVmxs7IB9BmA4IBwBGHDR0dFdLnc6nWptbQ38vqamRpL0r3/9S//617+63V5jY2OnZQkJCZ2Wtc2cfDF0SMev7oqPj++0PDY2VjNnztT27dv16aefasyYMdq2bZt8Pt+Azxp9+OGH8vl8Ouuss7qssW083nrrLb311lvdbqehoaHD77OysrR161bl5eUFwhGH1ICTRzgCYJu2EHXNNdfopptu6tN7HQ5Ht9urrKzs9Fpra6uqq6uVnJzc6bU5c+Zo+/bt+stf/qKlS5fqxRdfVHR0tGbOnNmnmk5k0aJF+utf/6qtW7fK6XR2+sxt9S9dulRXXXVVr7c7duxYnXHGGdq3b58+++wzxcbGas+ePUpLS+t0HhKAE+OcIwC2OeOMM+RwOPThhx8OyPbGjh0rSV3OQu3bt08+n6/L95155pkaO3asXn75Ze3Zs0eHDx/WRRddpIiIiAGpq43L5dIvf/lLfeMb39CWLVv08MMPd3i97VDhyYxH2wzRiy++qB07dsjn8wUu9QfQN4QjALZJTEzUzJkz9cEHH+hPf/pTl/fqKSgo6PKwWlf+67/+S5GRkXrxxRdVVFQUWN7S0qJNmzb1+N7Zs2erpqZGa9askaROJ4gPFJfLpdWrV+ub3/ymnnzyST300EOB1zIzM5WZmamdO3d2OkFcOj77tXfv3i6363a7FRERoZdeekl5eXkKCQkJPMoEQN9wWA3ACfV0Kb8kXXfddSd99+WcnBwdOnRIjz76qHbs2KEzzzxTMTExKisr0/79+3X48GE9++yzvZrFiY2N1c0336x169YpOztbF1xwgaKjo/W3v/1NLpdLSUlJ3c6kXHzxxfrtb3+r8vJyjR8/3tL7AoWFhemee+7RnXfeqaeeekp+v1+33HKLJOnOO+/UsmXLdNddd2nr1q06/fTTFR4erqNHj+qDDz5QdXV1lzeljI6O1re+9S3t2LFDVVVV+vrXv97tI0UA9IxwBOCE2i7l787cuXNPOhzFxcXpkUce0TPPPKNXXnlF+fn5am1tVUJCgsaNG6frr7++yxOpu3P55ZcrNjZWf/zjH7V9+3ZFR0frvPPO0w033KC5c+cqIyOjy/dFR0dr+vTpeumllyybNWqvLSD9/Oc/19atW+X3+7V06VKlp6dr06ZN2rJli15//XVt27ZNISEhSkxM1MSJEwM3i+xKVlaWduzYIen43bMBnByHv7t7zgPAEHL48GF997vf1cyZM3XXXXd1uc7111+vkpISPfPMM91ecdedGTNmaNKkSXrwwQcHotxBceTIEV1zzTW69NJLdfvtt9tdDmAMZo4ADCkej0fh4eEd7mrd1NQUOPl5+vTpXb7vb3/7mz777DNdfvnlfQ5Gbfbu3Rt41MjLL79s7INen3vuOf3mN7+xuwzAWIQjAEPK3r179etf/1pTp07VqFGjVF1drX/84x8qKSnR5MmTdcEFF3RY/89//rOOHj2qF154QS6XS9ddd91J7XfBggUdft/VDSdNMX78+A71nn766fYVAxiIw2oAhpRDhw5p06ZN+uCDD1RVVSVJysjI0AUXXKD58+d3ms2ZN2+eysrKdMopp+iGG27odCduAMMP4QgAAKAd7nMEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaOf/AThz/YdaiuJ7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAG5CAYAAAAJchUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADeP0lEQVR4nOy9e3wTVf7//0qa3mhLCwVSSkHKTSl3BUWR21IB5SviAqLganEVhQVxBUHqqlwFXS4fXAVEVFTWFZRFEQG1LIKiLiIUlQICAlsobWmhbXpNm+T3R39nODOZmcwkk8wkOc/Hw4cll5l558ycec3r/T7nmFwulwsMBoPBYDAYDIYAs94HwGAwGAwGg8EwJkwoMhgMBoPBYDBEYUKRwWAwGAwGgyEKE4oMBoPBYDAYDFGYUGQwGAwGg8FgiMKEIoPBYDAYDAZDFCYUGQwGg8FgMBiiMKHI8Ina2lqcPHkStbW1eh8Kg8FgMBgMjWFCkeET58+fx2OPPYbz589rvu2KigrNtxkssNjDl3COn8UenrDYjQ0TigzDYrPZ9D4E3WCxhy/hHD+LPTxhsRsbJhQZhiUxMVHvQ9ANFnv4Es7xs9jDExa7sWFCkcFgMBgMBoMhChOKDMNSXl6u9yHoBos9fAnn+Fns4QmL3dhY9D4ABoPBYDAY+uNwOFBfXx/w/TY0NITtzBmBiD0yMhIRERFef58JRYZhsVqteh+CbrDYw5dwjp/Frh+VlZW4cOECXC5XwPftcrlw9uzZgO/XCAQidpPJhLS0NMTHx3v1fSYUGYbl6tWraNmypd6HoQss9vCMHQjv+Fns+sTucDhw4cIFNGnSBC1btoTJZAro/uvr6xEZGRnQfRoFf8fucrlw+fJlXLhwAZ07d/bKWWRCkWFY7Ha73oegGyz28CWc42ex60N9fT1cLhdatmyJ2NjYgO/fbDYjKioq4Ps1AoGIvWXLljh37hzq6+u9EopsMAvDsITrEybAYg9nwjl+Fru+BNpJ1Hu/RiAQsfu6DyYUGYYlOTlZ70PQDRZ7+BLO8bPYwxOLJXyTm8EQOxOKDMNSWFio9yHoBos9fAnn+Fns4YkeI63bt2+P3NxcAMCjjz6KvXv3evzO/Pnz8dRTT4m+l5ubiw8//FD1cegRu1qYUGQwGAwGg2FYGhoa/Lr9DRs2YOjQoT5tw1uhKIe/41aK8T1PRtjStGlTvQ9BN1js4Us4x89iNwZ9+/b1q8OZkpKCQ4cOcf8WG2BhMpnwwgsvYOfOnRgyZAgeeughTJ06FdXV1aitrcXEiRPxt7/9DQDQpk0b/Pjjj0hNTcV9992HCxcu4LvvvkNdXR1SU1NRUFCA6OhoyeMZMmQInnrqKYwZMwaXLl3Cww8/jAsXLiAtLQ3NmzfHDTfcgPnz5wMALl26hLvvvhtnzpxBSkoKPv74YzQ0NOCFF15AeXk5evfujf79+2PdunX4/vvv8cwzz8Bms8HlcmHRokW455570L59e3zyySfo3bs3IiIi0LdvXyxfvhxDhgzBkCFD0LNnT/z444+IjY1Fx44dcf3112P27NkAgLNnz+LWW29Ffn4+AOD555/Hf/7zH9jtdnTp0gVvvPEGmjVrplVTAWBCkWFgzObwNbxZ7OFLOMfPYjcGhYWFuHjxot6HgYiICPz4448AAJvNhj179iA6Oho1NTW47bbbkJmZif79+2PYsGHIycnBgw8+iKNHj8JisaCiogI//vgjbrrpJlmRKOTJJ5/ErbfeigULFqCwsBC9e/fGDTfcwL3/3//+Fz/99BOSk5Nx//3344033sC8efOwcOFCfPLJJ/jkk08AAFeuXMGYMWPw8ccfY+DAgXA6nSgrK1N0DL/99hv279+PyMhIfPfdd5gyZQonFDdu3IhJkyYhMjISL730EuLi4nDw4EEAwKJFi/C3v/0Nr7/+uuJ4lcCEIsOwlJWVIS4uTtdjyM3NxZkzZzB69OiAjko0Qux6Ec6xA+EdP4vdGLGnpKQEdPsOh0PUVXzkkUe4v2tqajBt2jTk5ubCbDYjPz8fubm56N+/PzIzM5GTk4Nu3bqhV69esFqt+Prrr/H9999j2LBhqo5tz549WL58OXec/+///T/e+yNHjuQGHt1666345ZdfRLfz/fff4/rrr8fAgQMBND4ING/e3O1zDofD7bUHH3yQu9/cdtttaGhowI8//oi+ffvivffew2effQYA+OSTT1BeXo6tW7cCaJxiqX379qriVQITigyGBKWlpbj11ltRW1uLdevW4fHHH9f7kBgMBsPv0GlhPaFXEsnOzkaLFi1w5MgRWCwW/PGPf+SWvsvMzMS8efOQkZGBzMxMWK1W5OTk4Pvvv8fatWt9Ogbh1DIxMTHc3xEREV7VEVosFp5AFC7hJ1xBZfLkyXjnnXdQWVmJFi1aoHv37gAaJ9P+xz/+geHDh6s+BjUYx+tmMAS0atVK1/3/9ttv3AV89OjRgO5b79j1JJxjB8I7fhZ7eKJkipirV68iLS0NFosFJ0+exFdffcW9l5qaisTERKxbtw6ZmZkYOnQoduzYgXPnzuHGG29UdSx/+MMfsHHjRgBAUVERduzYoeh7TZs2RXl5Offv2267DadOncI333wDAHA6nbhy5QoAoFOnTvjvf/8LADh8+DBOnjwpu+0//elP+Oijj7Bu3TqeyzpmzBisWrUK1dXVAIDq6mocO3ZMWaAqYEKRYVjoi04P6Ke8QE9hoHfsehLOsQPhHT+LPTwRS78K+dvf/oZ33nkHPXv2xLPPPos//OEPvPczMzNhNpvRoUMHNG3aFCkpKRg0aJDq2s/Vq1fjm2++QUZGBiZNmoRbbrkFSUlJHr83bNgw1NXVoWfPnnjiiSfQrFkzbNu2Dc8++yx69uyJG2+8EQcOHAAALF68GK+//jp69eqFt99+G926dZPddmpqKm6++WZs374dDzzwAPf63Llz0a9fP9xyyy3o2bMn+vfvz035oyUmlx4rgDNChpMnT+Kxxx7Dm2++ieuvv17TbV+8eBFt2rTRdJtq2L17N+68804AwMMPP8w9ZQYCvWPXk3COHQjv+Fns+sReW1uLs2fPIj09nZdaDRR2u90wS/jV1NQgMjISFosFpaWl6N+/PzZt2oRbbrnFL/sLROy+ti+rUWQYFr1nrNfTUdQ7dj0J59iB8I6fxR6eGGkJv1OnTuGhhx6Cy+WC3W7HtGnT/CYSAWPFLkX4npkMw6N3zU5dXR33d6CFot6x60k4xw6Ed/ws9vDESCK5Z8+efknfSmGk2KVgNYoMw1JQUKDr/mlH0W63B3TfeseuJ+EcOxDe8bPY9UWvSrRgWMbOXwQidl/blQlFBkMCPR1FBoPBCBRkDsNAPxAzAgNpV7G5KpVgfM+TEbYkJCToun89axT1jl1Pwjl2ILzjZ7Hrg8ViQZMmTXD58mVERkYGfJUYh8MBp9MZ0H0aBX/H7nQ6cfnyZTRp0sTrNDcTigzY7XasXLkShw4dQmVlJdq3b4/p06dzk3rqhd61G3o6inrHrifhHDsQ3vGz2PXBZDKhdevWOHv2LM6fPx/w/TudTkMtYRhIAhG72WxGu3btvB44E75XJYPD4XAgJSUFr7/+Olq2bIm9e/di3rx52Lx5M5o0aaLbcV29elXX/evpKOodu56Ec+xAeMfPYtcv9qioKHTu3FmX9HNRURGsVmvA92sEAhF7VFSUT2KUCUUGYmNjkZWVxf172LBheO2115Cfn6/53IjBBKtRZDAY4YTZbNZlHkWLxaLLfo1AMMTOhKKA9957Dxs2bEB6ejreffddyc+99NJL2L17t+T7W7duRcuWLf1xiKiursaHH36IvLw8HD9+HDabDfPmzeMmhxZit9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fqKfz8/Ph81m033iW3/9fkrR01HUO3Y9CefYgfCOn8UenrDYjQ0TihTFxcXYtGkTYmNjPX529OjR6Nu3L+81l8uFFStWICUlxa+NX15ejo0bN8JqtaJTp044cuSI7OeXLl2Kr7/+GuPHj0daWhp27dqFOXPmYPXq1ejZsyfvs3V1dVi8eDEmTZrktjB5oLHZbEhOTtZt/3o6inrHrifhHDsQ3vGz2Fns4UYwxM6EIsWaNWuQkZEBp9Ppcd3N7t27uw32+Pnnn1FbW4s77rhD9rs2mw2HDx/G4MGDRd/PycnBgAEDJAVrcnIytm3bhuTkZJw4cQJTpkyR3FdeXh727NmDqVOncmtEjhgxAllZWVi7di3Wrl3LfbahoQEvvPAC2rRpw0tF6wXt6Om9/0ALRb1j15Nwjh0I7/hZ7OEJi93YhOcwIxFyc3Oxb98+zJgxw+tt5OTkwGQyITMzU/Zz27Ztw/z587F//36393bs2IGFCxfKprWjoqIUP4Hs27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAhA48irxYsXw2QyITs72xDLCnk755NW6Oko6h27noRz7EB4x89iD09Y7MaGCUU0jvpdvXo1Ro0ahY4dO3q1jYaGBuzduxfdu3dH69atZT87ceJE9O/fHwsXLsRPP/3Evb5v3z6sWLECw4cPx5gxY7w6DiGnTp1CWloa4uLieK937doVAHD69GkAwPLly1FaWooFCxYYZoqKlJQUXfevp6Ood+x6Es6xA+EdP4s9PGGxGxsmFAF8+umnKCoqwqOPPur1Ng4ePIjy8nKPaWegcZTT/PnzkZGRgezsbOTl5eGnn37CokWLcMstt+DZZ5/VzNErLS0VdR/JayUlJSgsLMSOHTtw/PhxjB49GiNGjMCIESNw9OhRye3m5OTg2WefxT/+8Q9NjlOMixcv+m3bSqAdxUBPGaF37HoSzrED4R0/iz08YbEbG2NYRzpSXl6Ot99+Gw899BCSkpK83k5OTg4sFguGDh2q6PPR0dFYunQpZs6ciTlz5qC+vh5du3bV3NGrq6tDZGSk2+tRUVHc+ykpKaJpcDkyMzORmZmJkydP4rHHHtPkWI2Gno4ig8FgMBhGIOwdxQ0bNiAhIQFjx471ehvV1dX49ttvcfPNNyMxMVHx9+Li4jBt2jRUVFSgpqYGM2bMQHR0tNfHIUZ0dLSoyCEOmdb70xJhujzQ6FmjqHfsehLOsQPhHT+LPTxhsRubsBaK+fn5+OyzzzBu3DiUlJTg0qVLuHTpEux2OxoaGnDp0iVUVFR43M63336raLSzkIKCAixatAjt2rVDSkoKnn/+eZSUlHgbjijJyckoLS11e5281qJFC033pyV6i1g9HUW9Y9eTcI4dCO/4WezhCYvd2IS1UCwpKYHT6cTq1asxYcIE7r+8vDzk5+djwoQJ2Lhxo8ftfPXVV4iNjcWAAQNU7fvpp5+GxWLBypUrsWLFCtTW1mLWrFmKxKlSOnXqhAsXLqCqqor3el5eHve+Ubly5Yqu+9fTUdQ7dj0J59iB8I6fxR6esNiNTVjXKKanp2PJkiVur2/YsAHV1dV48sknkZqaCqDRXSoqKkJiYiKvlrGsrAyHDh1CZmam4mV4bDYbZs+ejZqaGrz22mto1aoVgMaRxzNnzsTcuXOxcuVKRRN/e2LIkCH48MMPsX37dm4eRbvdjp07dyIjIyNs19dUAu0oOhwOuFwuQ0wbxGAwGAxGoAhroZiUlISBAwe6vf7RRx8BAO+948ePY+bMmcjKysIjjzzCvb5nzx44HA5Vaedt27ahuLgYr776Ktq2bcu93rlzZyxbtgyzZs3C7t27ce+990puY+vWraisrORSyAcOHEBxcTEAYOzYsdyqKhkZGRg6dCjWr1+PsrIytGnTBrt370ZhYSHmzp2r+Jj1QO+0OO0oAo2uIhkE5G/0jl1Pwjl2ILzjZ7GHJyx2YxPWQlELcnJy0KxZM9x0002KvzNx4kQMHDgQ6enpbu/17NkT69atQ4cOHWS3sXnzZhQWFnL/3r9/Pzdyefjw4bzl97Kzs2G1WvHFF1+gsrISHTp0wMsvv4zevXsrPmY9qKqq0rV+QzhjfiCFot6x60k4xw6Ed/yhGPvRo0fhcrk89rehGLtSWOzGjt3kcrlceh8EI3gh0+O8+eabuP766zXd9sWLF9GmTRtNt6mG5ORkXv3I1atXfZpCSQ16x64n4Rw7EN7xh1rsR48e5QTi4cOH0adPH8nPhlrsamCxGzv2sB7MwjA2ZrO+p6eYoxgo9I5dT8I5diC84w+12L///nvu7//+97+ynw212NXAYjc2xj9CRtjiaSlEfyNWoxgo9I5dT8I5diC84w+12Gtqari/hQ+eQkItdjWw2I0NE4oMw1JQUKDbvhsaGuBwOHivBXIZPz1j15twjh0I7/hDLfbq6mrub09CMdRiVwOL3dgwocgwLHqWz4p16oF0FMO5dDicYwfCO/5Qi12NoxhqsauBxW5smFBkGJYmTZrotm9h2hkIrFDUM3a9CefYgfCOP9RiV+MohlrsamCxGxsmFBmGRYsJx71Fb0dRz9j1JpxjB8I7/lCLnXYU6b/FCLXY1cBiNzZMKDIMi9ga1YFCb0dRz9j1JpxjB8I7/lCLXU3qOdRiVwOL3dgwochgiKC3o8hgMIIfNalnBsOoMKHIMCzJycm67VtvR1HP2PUmnGMHwjv+UItdjaMYarGrgcVubJhQZBgWPZ/A9XYUw9l9COfYgfCOP9RiV+MohlrsamCxGxsmFBmGpaqqSrd96+0o6hm73oRz7EB4xx9qsatxFEMtdjWw2I0NE4oMhgh6O4oMBiP4YTWKjFCACUWGYdFzoXS9HUWjLxLvT8I5diC84w+12NVMjxNqsauBxW5smFBkGJZLly7ptm+xp/9ALuGnZ+x6E86xA+Edf6jFrib1HGqxq4HFbmyYUGQYFqfTqdu+9XYU9Yxdb8I5diC84w+12NWknkMtdjWw2I0NE4oMw8JWZglPwjl2ILzjD7XY1TiKoRa7GljsxoYJRYZhiYuL023fejuKesauN+EcOxDe8YdS7C6XS5WjGEqxq4XFbmyYUGQYlpKSEt32rbejqGfsehPOsQPhHX8oxS582PQkFEMpdrWw2I0NE4oMhgh6O4oMBiO4od1EgE2PwwhemFBkGJbmzZvrtm+9HUU9Y9ebcI4dCO/4Qyl24XQ49fX1cDgckp8PpdjVwmI3NkwoMgxLIKejEaK3o6hn7EJcLldA92ek2PUgnOMPpdjF5k2UcxVDKXa1sNiNDROKDMNSWVmp2771dhT1jJ3mn//8J1q0aIHs7OyA7dMosetFOMcfSrELU8+AvFAMpdjVwmI3NkwoMhgi6O0oGoXXXnsNV65cwSuvvBKW8TMY3qLWUWQwjAoTigzDkpqaqtu+9V6ZRc/YaWw2GwDA4XDg8uXLAdmnUWLXi3COP5RiV+sohlLsamGxGxsmFBmGpaioSLd96+0o6hk7Df07FBYWBmSfRoldL8I5/lCKXa2jGEqxq4XFbmyYUGQYFrkRgv5G7xpFPWOn0UMoGiV2vQjn+EMpdrWOYijFrhYWu7FhQpFhWGJiYnTbt96Oop6x09A3tkAtXm+U2PUinOMPpdjVOoqhFLtaWOzGhglFhmFJSEjQbd96O4p6xk6jh6NolNj1IpzjD6XYxYSi2GuEUIpdLSx2Y8OEIsOwBGrwhBh6O4p6xk5DC+ZACUWjxK4X4Rx/KMWuNvUcSrGrhcVubJhQZDBE0NtRNAIul4s30jtQQpHBCAXY9DiMUMGi9wEw9Mdut2PlypU4dOgQKisr0b59e0yfPh3du3fX9biaNWum2771dhT1jJ0gnA4oUELRCLHrSTjHH0qxq3UUQyl2tbDYjQ1zFBlwOBxISUnB66+/jp07d2L8+PGYN2+eaEcXSBoaGnTbN+nQTSYT91oghaKesROEN7VACUUjxK4n4Rx/oGIvLi7GP//5T1y5csVv+1DrKLJ2D0+CIXYmFBmIjY1FVlYWrFYrzGYzhg0bBovFgvz8fF2Pi0z2rAfEUYyPj+deC6RQ1DN2gtBVDZRQNELsehLO8Qcq9vvvvx8PPvggsrKy/LYPtY4ia/fwJBhiD8rU83vvvYcNGzYgPT0d7777rqLvnDx5Eu+88w5++eUX2O12pKam4u6778a4ceO4z7z00kvYvXu35Da2bt2Kli1bAgCOHDmCmTNnin5u7dq16Natm4qI1FFdXY0PP/wQeXl5OH78OGw2G+bNm4c777zT7bN2ux1vvfUWvvzyS9hsNnTs2BGPPvoo+vXrJ7n9/Px82Gw2tGnTxm8xGB3SoSckJHAXcrjVKApvapWVlaisrOSJZwYj2HC5XPj+++8BALm5uX7bD6tRZIQKQScUi4uLsWnTJsTGxir+zsGDBzFv3jx07twZDz/8MGJjY3Hx4kW30UajR49G3759ea+5XC6sWLECKSkpnEikGTt2LLp27cp7zd8Cq7y8HBs3boTVakWnTp1w5MgRyc8uXboUX3/9NcaPH4+0tDTs2rULc+bMwerVq9GzZ0+3z9fV1WHx4sWYNGmS7oKgdevWuu1bzFEM5BJ+esZOEKvTLCwsRKdOnfy6XyPErifhHH8gYq+srOQEm9g5rhVqp8dh7R6eBEPsQScU16xZg4yMDDidTpSXl3v8fFVVFV566SX0798fixYtgtksnW3v3r272wCOn3/+GbW1tbjjjjtEv9OrVy8MGTJE8fHbbDYcPnwYgwcPFn0/JycHAwYMkBXCycnJ2LZtG5KTk3HixAlMmTJF9HN5eXnYs2cPpk6digceeAAAMGLECGRlZWHt2rVYu3Yt7/MNDQ144YUX0KZNG7+mZJRy+fJlWK1WXfZNbiR6pZ71jJ2gl1A0Qux6Es7xByL24uJi7m9/Pvx5Mz0Oa/fwIxhiD6oaxdzcXOzbtw8zZsxQ/J2cnBxcuXIFjz32GMxmM2pqauB0OlV932QyITMzU/Iz1dXVigtSt23bhvnz52P//v1u7+3YsQMLFy6UTX8DQFRUFJKTkz3ua9++fYiIiMDo0aO516KjozFq1CgcO3aMt8ak0+nE4sWLYTKZkJ2dzRvEoRd6Ffk2NDRwyyrFxsYiIiICABvMAgSmTtEIsetJOMcfiNhpoRhoR5ENZhGHxW5sgkYoOhwOrF69GqNGjULHjh0Vf+/QoUOIi4tDSUkJJk2ahBEjRuDOO+/EihUrPHYSDQ0N2Lt3L7p37y5pDy9duhQjR47EHXfcgZkzZ+LEiROy25w4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxiuOT49SpU0hLS0NcXBzvdZIqP336NPfa8uXLUVpaigULFsBiMYbRHB0drct+6fMiOjoakZGRAAIrFPWKnUbKUfQ3RohdT8I5/kDETj8g+1MoqnUUWbuHJ8EQuzEUgQI+/fRTFBUVYdWqVaq+d+HCBTgcDmRnZ2PUqFGYMmUKcnNzsXXrVlRWVuLFF1+U/O7BgwdRXl4umna2WCwYPHgw+vfvj8TERJw7dw6bN2/G9OnTsWbNGnTp0kV0mxaLBfPnz8czzzyD7OxsrFq1CjU1NVi0aBFuueUWPPvss5q5eaWlpaLOI3mtpKQEQOPNf8eOHYiKiuK5j6+88gp69eoluu2cnBzk5OSgsrJSk2MVIykpyW/bloO+ecTExCAyMhK1tbUBFYp6xU6jl6NohNj1JJzjD0TstKPodDrR0NDg08Nxbm4utm3bhsmTJ6N9+/bc62odRdbu4UkwxB4UQrG8vBxvv/02HnroIdU/ak1NDWpra3HPPfdwo5QHDx6M+vp6bN++HY888gjatm0r+t2cnBxYLBYMHTrU7b0ePXqgR48e3L9vv/12DBkyBJMnT8b69euxfPlyyWOKjo7G0qVLMXPmTMyZMwf19fXo2rWr5m5eXV0d54bRREVFce8DQEpKimgqXI7MzExkZmbi5MmTeOyxx3w/WBGKiop0GXlNd+Z6OYp6xU6jl6NohNj1JJzjD0TstFAEGs9zX/rd+++/HydPnsThw4fx2Wefca+rdRRZu7PYjUpQpJ43bNiAhIQEjB07VvV3ia07bNgw3uuk5vDYsWOi36uursa3336Lm2++GYmJiYr2lZaWhttvvx1HjhzhatykiIuLw7Rp01BRUYGamhrMmDFDcws6OjpaVNyQAu5gsLz1QOgoEmEdbtPjiAnFS5cu6XAkDIZ2CIWiLwNaXC4XfvvtNwDA8ePHee+x6XEYoYLhhWJ+fj4+++wzjBs3DiUlJbh06RIuXboEu92OhoYGXLp0CRUVFZLfJ2nW5s2b814ny+ZITXb57bffyo52lqJVq1aor6/32CEUFBRg0aJFaNeuHVJSUvD8889zqWCtSE5ORmlpqdvr5LUWLVpouj+tUSrQtcYIjqJesdPolXo2Qux6Es7xByJ2ukYR8K1O0W63w+VyAYDbLBxEKNIxyU2Pw9o9PAmG2A0vFEtKSuB0OrF69WpMmDCB+y8vLw/5+fmYMGECNm7cKPn966+/HgDc5kwkokwqlf3VV18hNjYWAwYMUHW8BQUFiIqKkp3epqSkBE8//TQsFgtWrlyJFStWoLa2FrNmzZIVvWrp1KkTLly4gKqqKt7reXl53PtGhnTAgUasRhEIrFDUK3YavVLPRohdT8I5/kDELpZ69hY6vVxWVsY7fvIebVLIGQis3cOTYIjd8EIxPT0dS5YscfsvPT0dVqsVS5YswahRowA0XoTnz59HWVkZ931SX/j555/ztvv5558jIiICffr0cdtnWVkZDh06hEGDBiEmJkb0uOh9EE6fPo0DBw6gX79+kvM12mw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp0r+9SphiFDhsDhcGD79u3ca3a7HTt37kRGRobh527SUjSrwQiOol6x04jd1IqKilRNL+UNRohdT8I5/kDErqVQpPvqhoYG7t8ul4v7m2SvAHmhyNo9PAmG2A0/mCUpKQkDBw50e/2jjz4CAN57x48fx8yZM5GVlYVHHnkEANClSxfcdddd2LlzJxwOB3r37o3c3Fzs3bsXDz74oGj6dc+ePXA4HLJp5xdffBHR0dHo3r07mjVrhnPnzuGzzz5DTEwMHn/8ccnvbdu2DcXFxXj11Vd5g2g6d+6MZcuWYdasWdi9ezfuvfde2d+FjNomaeQDBw5wHeDYsWMRHx+PjIwMDB06FOvXr0dZWRnatGmD3bt3o7CwEHPnzpXdfjhjBEfRCIjdQB0OB0pLS0VXKWIwggEtaxSFD/Xl5eVo0qQJ7HY790AVHx+PqKgo2O12VqPICEoMLxS1YPbs2bBardi1axe++eYbWK1WTJ8+Hffdd5/o53NyctCsWTPcdNNNktscOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NMnvTZw4EQMHDkR6errbez179sS6devQoUMHjzFt3ryZlwbcv38/N3J5+PDh3Ioi2dnZsFqt+OKLL1BZWYkOHTrg5ZdfRu/evT3uQ29SUlJ02a+UoxjIJfz0ip2GFopJSUmci15YWOhXoWiE2PUknOP3d+wNDQ1uddtapZ6BxkxT69ateQIyNjYWMTExHoUia/fwJBhiD1qh+Oqrr7q91qdPH9FpXiwWCyZPnozJkycr2rZwaTsxxo0bh3HjxinanvBYxEQiQelk4lu2bFH0uejoaEybNg3Tpk1T9HkjUVpailatWgV8v1KOYkNDA1wuV0BWrdErdhr6pta+fXvk5uYCaBSK9NRQWmOE2PUknOP3d+wlJSVuNWFapZ6BawNaaAFJhGJFRYWsUGTtzmI3KoavUWSEL3qleqUcRSBwyy0ZIc1N30Cvu+467m9/D2gxQux6Es7x+zt2YdoZ0FYoEtedfr1JkyZcrbucUGTtHp4EQ+xMKDIMC5m/MNBILeEHBO6i1it2GvqmRgtFf8+laITY9SSc4/d37GJC0ZeSEmHqmTiKYqlnQF4osnYPT4IhdiYUGYZFOPdloKA7czr1DAROKOoVOw0tmOmlyfztKBohdj0J5/j9Hbu/HUWx1DPtKMrNaMHaPTwJhtiZUGQYlkDM2SeG0FGkn/gCJRT1ip1Gr9SzEWLXk3CO39+xay0UxQazAPKOotS8eazdw5NgiJ0JRQZDgBEcRSMgHMxCCIaOjcEQQ7gqCxAYR5FegCGQsycwGFrAhCLDsDRt2lSX/RqhRlGv2Gno36FFixZo0qQJAP8LRSPErifhHL+/Y9e6RlFKKEo5ioB0nSJr9/AkGGJnQpFhWAIxDY0YRnAU9YqdRjj6m8z35W+haITY9SSc4/d37IFKPUvVKALSQpG1e3gSDLEzocgwLOTpPNAYwVHUK3Ya4XySrVu3BgBcvXrVp5urJ4wQu55IxX/q1CkcOHAgKNaG9RZ/t32gBrN44yiG83nPYjc2TCgyGAKM4CgaAaFgplcQYHWKgaWwsBDdunXD7bffjs8++0zvwwlaAlWj6I1QZDCMChOKDMNitVp12a+coxioQnS9YqeRSj0D/hWKRohdT8TiP3z4MPeQ8sMPPwT6kAKGP9ve5XIZIvUsNUVOOJ/3LHZjw4Qiw7CQTjfQGMFR1Ct2GnIDjYqKgslkCphQNELseiIWPy1m5ObiC3b82fZVVVXcb2c2X7v1GWUwSzif9yx2Y8OEIsOw+LMOTul+9apR1Ct2GnJDi46OBoCACUUjxK4nYvGHi1D0Z9vTbiKpt/V1n95MjyMlFMP5vGexGxsmFBmGhRZogcQIjqJesdOQDoy4IYESikaIXU/E4qdvJqFc4+bPtqeFYlpaGve3lqnniooKOJ1OrxzFcD7vWezGhglFhmFp0aKFLvs1wsosesVOQ36HQDuKRohdT8TiDxdH0Z9tTw9kadu2Lfe3lo6iy+WCzWbzanqccD7vWezGhglFhmG5dOmSLvs1gqOoV+w05HcgNzk6XedPoWiE2PVELP5wcRT92fa0o9iuXTvuby1rFIHGmjNvHMVwPu9Z7MaGCUUGQ4ARahSNgNBRbNWqFfee2DQjDP8RLo6iP6GFolaOojD1DDTWKbLpcRihBBOKDMOSkJCgy35JRx4ZGQmz2ayLUNQrdhqhoxgZGckt42ez2fy2XyPEridi8YeLUPRn2/ujRlGsLcrLy72aHiecz3sWu7FhQpFhWCIiInTZr9BJ00Mo6hU7weFwwOFwALj2OwBAXFwcAKCystJv+9Y7dr0Ri592oULZkfJn2wfKUfQ29RzO5z2L3dgwocgwLHrPo0g7aYRwmUdRmH4nxMfHA/CvUNQ7dr1h8yj6B6nBLFrXKNKOosViQWRkJJtH0QMsdmPDhCKDIcAIjqLeCAf0EAIhFBnuhMpgFqfTiYsXL+qyb+IoxsbGIjk5mXvdH6ln8jqZP1HJPIoMhlFhQpFhWOjBE4FEzlEM1BJ+esVO8OQo1tbWoqGhwS/71jt2vRGLP1QcxXvuuQdpaWlYvny56Pv+bHsiFK1WK2/KK3+mnklNrxJHMZzPexa7sWFCkWFYKioqdNmvERxFvWIneHIUgcYl0fyB3rHrjVj8oSAUa2trsWPHDgDAxx9/LPoZf7W9w+FASUkJgMYbs8lk4q5rb4ViQ0OD6MMSnXomTqISoRjO5z2L3dgwocgwLHqlaIxQo6h3esqTowj4TyjqHbveiMUfCqlnulxBqnTBX7GVlJTA5XIBuObgkPPaW6FIC/aWLVtyf4ulnpUIxWBtVy1gsRsbJhQZhsVisQR8nw6Hg3MJyI1Ej5VZ9IidRolQ9Fedot6x641Y/EJHkYieYIJ+sJB6yPBX29MjnoVC0dtyEjrtTE9GX1ZWxr2nJvUczuc9i93YMKHIMCx61G7QN2Q9HUW961aUpJ79JRT1jl1vPNUoAoGrldUSWhxKnTv+ans5oaiFo0gvb1lSUsJNLSXmKEqVDoTzec9iNzZMKDIMS0FBQcD3Keak6SEU9YidRk9HUe/Y9UYsfqGYCcY6Rfp8kXIU/dX2tFC0Wq0ArmUKtBaK9JJsahzFcD7vWezGhglFBoNCzElj0+ME1lEEGjvPm2++GaNGjQqb31wOobgIRqFIi8OamhrOdQsE/nAU6dRzfHw8d23Q66Cz6XEYoQATigzDQouSQGEUR1GP2Gn0dBTj4+PxwQcf4Mcff8TOnTuxd+9ev+zHqIi1vVDMBKPYELqIYlPL+Ou8pyfb1qpGUbj6SlJSEgDg6tWr3OtqHEW9r3k9YbEbGyYUGYaFFmiBwiiOoh6x0+gpFCMjI7mpTIDGUaThhFjbh1rqWezfgP/Oe0+OojeDg+g2aNKkCRITE90+Q5xEi8UCs7nxdislFPW+5vWExW5smFBkwG63Y9myZRg3bhxGjhyJJ554Ar/++qveh8V7Mg8URnEU9YidRs/U89WrV2Gz2USPJRwQa/tQdBTFzh9/nfeXL1/m/iZT2ZAaRZfL5dXk8bQjSjuKNEQomkwm7jqSaju9r3k9YbEbGyYUGXA4HEhJScHrr7+OnTt3Yvz48Zg3b55oaijU8eQoBuNoU2/Q01EEENZCUYxQdBT9NQ+nGPR6us2aNQPAP6+9qVMUpp7FHEWSegbgUSgyGEaFCUUGYmNjkZWVBavVCrPZjGHDhsFisSA/P1/X46InsQ0URnEU9YidRk9HsWXLljyh6MsSa8GIWNuHglBU4ij667wnq19ERUVx5zMtFL15AKQfpD2lnoFr15FU2+l9zesJi93YGH+mRx957733sGHDBqSnp+Pdd99V9J2TJ0/inXfewS+//AK73Y7U1FTcfffdGDduHPeZI0eOYObMmaLfX7t2Lbp166bJ8YtRXV2NDz/8EHl5eTh+/DhsNhvmzZuHO++8U/Tzdrsdb731Fr788kvYbDZ07NgRjz76KPr16yf6+fz8fNhsNrRp08ZvMSihsrISzZs3D+g+jVKjqEfsNHo6ipWVlWHtKIq1fSimnsUcRX+d90QoNm3alHtNa0dRLPWsxlHU+5rXE71jt9ls+P777xEdHY3BgwcHdN96x66EkBaKxcXF2LRpE++pzhMHDx7EvHnz0LlzZzz88MOIjY3FxYsXeTUuNGPHjkXXrl15r/lbYJWXl2Pjxo2wWq3o1KkTjhw5Ivv5pUuX4uuvv8b48eORlpaGXbt2Yc6cOVi9ejV69uzJ+2xdXR0WL16MSZMm6T4aSw/XREwg6bEyi96OkZ5CsaamJqyFoljbh4KjqGQwi7/iIgOiaNePvq79lXoWcxSlzudgbFOt0CP206dP480338TXX3+Nn376iZuu6d///jfuvffegB3HuXPn8OWXX2LUqFFISEgI2H7VENJCcc2aNcjIyIDT6VQ0crKqqgovvfQS+vfvj0WLFnGj1OTo1asXhgwZouq4bDYbDh8+LPnkkpOTgwEDBkgK3OTkZGzbtg3Jyck4ceIEpkyZIrmvvLw87NmzB1OnTsUDDzwAABgxYgSysrKwdu1arF27lvtsQ0MDXnjhBbRp0wZZWVmqYvIHSn5/rTGKoyiMvaGhAaWlpdxkwf5GKvUcFxfH/e0voWg2m3nbVisUHQ4HnnzySVy9ehVr164VvYEbGbHzPlwcRX9c8y6Xyy+OopLUM+0okv5cqu306O+MQqBjr6+vx4ABA3ij4Qm5ubkBFYoPP/wwfv31Vzz88MPYuHFjwParhpA9M3Nzc7Fv3z7MmDFD8XdycnJw5coVPPbYYzCbzaipqYHT6fT4verqalWj5rZt24b58+dj//79bu/t2LEDCxcuxO7duyW/HxUVheTkZEX72rdvHyIiIjB69GjutejoaIwaNQrHjh3j5hdzOp1YvHgxTCYTsrOzYTKZFMfjL+j1UwOFUWoU6dhdLhcGDBiAlJQUvPPOOwHZv56OYuvWrX1yFL/++musWbMG//rXv7B582atD8/vCM97ev1xQjC6T0ocRX9c83V1ddx1G+jUs5ij2NDQIHq/0KO/MwqBjr24uJgnElNTU7m/A3lt2e12boaRw4cPB2y/aglJoehwOLB69WqMGjUKHTt2VPy9Q4cOIS4uDiUlJZg0aRJGjBiBO++8EytWrJDsSJYuXYqRI0fijjvuwMyZM3HixAmP+5k4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxio9bjlOnTiEtLY3nBAHg0uWnT58GACxfvhylpaVYsGCBYRYpv3jxYsD3aRRHkY79/PnzOHjwIADgjTfeCMj+lQxm8deo1YsXL/o0mIVeGYOejzFYEJ73YvEHo1BUMpjFH9c8nU2iXT9fB7N4m3oGxNtULPaCggLk5uaqPrZgI9B9Pe0GT5w4Edu2beP+HUi3np4ax8hZAmMoAo359NNPUVRUhFWrVqn63oULF+BwOJCdnY1Ro0ZhypQpyM3NxdatW1FZWYkXX3yR+6zFYsHgwYPRv39/JCYm4ty5c9i8eTOmT5+ONWvWoEuXLpL7sVgsmD9/Pp555hlkZ2dj1apVqKmpwaJFi3DLLbfg2Wef1czRKy0tFXUfyWslJSUoLCzEjh07EBUVxXMeX3nlFfTq1Ut0uzk5OcjJyfHrFCl6YBRHkYae2uPw4cOoqalRVXfrDVKOYlRUFCwWCxoaGvzW9i6XyydHkb4JhMLyf2Kiwsg3FSmUpJ79AUk7A/5NPSsdzAI0tp/w4V3IlStXcMMNN8Bms+H999/Hgw8+qPoYGeIIl1+k+9NAPoRduXJFl/2qxSuhOGHCBJ93PH78eN4oYq0oLy/H22+/jYceekj0wpWjpqYGtbW1uOeee7gRzYMHD0Z9fT22b9+ORx55BG3btgUA9OjRAz169OC+e/vtt2PIkCGYPHky1q9fj+XLl8vuKzo6GkuXLsXMmTMxZ84c1NfXo2vXrpo7enV1daIzv5NC7rq6OqSkpIimweXIzMxEZmYmTp48iccee0yTYxXiqSP1B0ZxFOnYaaFYX1+Pn376Cbfffrtf90/fOOkbnMlkQnx8PMrKyvwmFCMiInjrAKsVRXSHG4xCUXjeh4qjqCT17I9rnnYUaaGo12AWQPycFsb+448/cg9MS5YswaRJkwxREuQPAt3X0w8pcXFxipZY9Ae0UDTyw59XqefCwkLYbDa4XC6v/isqKvLbTWbDhg1ISEjA2LFjVX+XPGEOGzaM93pmZiYA4NixY7LfT0tLw+23344jR44oWvA+Li4O06ZNQ0VFBWpqajBjxgzeU64WREdHi94sSapF6/1piR7HJuakmc1mrtg6UMKDjp0WigBw4MABv++f7rSE7UDSz/66hoW/cbg5isLfO5wcRX9c87SjKJV69lUoKhnMQosRMaEvjJ0uoThx4kRIr3ke6L5e6AYbwVE08jXttXV13333eT0y1l/zFOXn5+Ozzz7DjBkzeLVJdrsdDQ0NuHTpEuLi4nhPlTTJyck4e/as25xGZCZ/Oh0mRatWrVBfX68otVBQUIBFixahXbt2sNvteP755/H666+jRYsWHvejlOTkZNGpfUpLSwFA031pzZUrVwI+l6NUbV5kZCSvKN7f0LELheJ3333n9/1LpZ4B/wvFCxcuSB6LEuiOPhhX0hGe96HiKCqpURTGfv78eaSkpPgkJJSknn2dcFuqFESNoyiMnQw0JLz++uv4wx/+oPo4g4FA9/VCoaiXo0jXKBr5mg6pwSwlJSVwOp1YvXo1JkyYwP2Xl5eH/Px8TJgwQXb4+fXXXw8AbsKKiE4lqeyCggJERUV5rCErKSnB008/DYvFgpUrV2LFihWora3FrFmzeB2br3Tq1AkXLlxw66Tz8vK49xnXkBJIJP2sh/AQE4oul8uv+5QSzABfKPrjOITnarg5ikJCRSiqXcLv/fffR/v27dGnTx9FGRoppFLPei3hByg7p2lHEWisvRc+RDG8gz73hI6iXqlnsdkNjIJXQvH999/3aZ4hX78vRXp6OpYsWeL2X3p6OqxWK5YsWYJRo0YBaDwZzp8/z7sJDx06FADw+eef87b7+eefIyIiAn369OFeE968gcYRxAcOHEC/fv1k54Wy2WyYPXs2ampqsHLlSrRq1Qpt27bF8uXLcfnyZcydO1ezG8GQIUPgcDiwfft27jW73Y6dO3ciIyMjYPPyeYMebqecowgETnjQsQvPtZKSEpw6dcqv+1fiKDqdTrdO9eeff1Y08l+OiIgI3r/DrUZReN6HaupZzFGkY9+xYwcA4Pjx4zh79qzX+5VKPWtZoxgTE4O4uDi3c5cWIJ7EiLDdhULR4XAEbNaDQBPovp5+mBTWKOqVegaMe117lXpu166dTzv19ftSJCUlYeDAgW6vf/TRRwDAe+/48eOYOXMmsrKy8MgjjwAAunTpgrvuugs7d+6Ew+FA7969kZubi7179+LBBx/kncwvvvgioqOj0b17dzRr1gznzp3DZ599hpiYGDz++OOyx7lt2zYUFxfj1Vdf5QbHAEDnzp2xbNkyzJo1C7t375YV02QkNkkhHzhwgJsXauzYsdzNPCMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlj1NvqqurA167IjfaFwic8KBjF3so+e6772RH1vuKEkcRaLzZkxvgf//7X/Tv3x9AY00VcejVIpzSJtwcReF5HwqOosPhcGtHMUeRjp1uR1+cfH+Peo6NjeUGmSQmJvJu/mpSz8J2p4Wi2WyG0+nEm2++ieeff54nckOBQPf1wtRzREQEIiMjubKxQCEUijU1NbqviCZGSE6P4wuzZ8+G1WrFrl278M0338BqtWL69Om47777eJ8bOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NNl9TJw4EQMHDkR6errbez179sS6devQoUMH2W1s3ryZ15Hs37+fG7k8fPhw3smWnZ0Nq9WKL774ApWVlejQoQNefvll9O7d29PPoSvV1dVcfWigMIqjSMcuJhQPHDjg19VzyI3TbDa7jcIXCkWyqP2+ffu413/44QevhSJdt0Mfi1K0Ehh6ITzvQ8FRlFrXWQgdO92O3gg5gpLUsy/zKNJiUCgU1aSehe1OahSbNGmCu+66Cx9//DGKiorw73//G/fff7/q4zUyge7rhUIRaGyf+vp65iiKoKlQtNlsOHDgAEaOHKnlZn3m1VdfdXutT58+olPCWCwWTJ48GZMnT5bd5rhx47ye3sdisYiKRIKSScK3bNmieH/R0dGYNm0apk2bpvg7RkCPqSA81SgGSijSsUs5iv6E/A5iT/lSq7MQd5v+vjf4WqNo5NRzSUkJoqKiJAfUAe7nvVj8weYoKhWKdOz+cBS1HPVMjo8Wg/T2zWYzb2otT0JR2O7ECEhJScFf/vIXfPzxxwAaB7WEmlAMdF8vrFEEGgW/zWbT3VE0IpoOZikqKsKyZcu03CQjjKGXVQoURnEU6dhpodi9e3cAjYORhJ2MlpDfQZh2BqSFolZTPfhao6g29fx///d/6N27N6+O1x/k5eUhLS0NqampsitRCM/7UHAUxUShmHiUWkrNF6Ho73kUaUeRHvDYpEkTngDyVAdHx15XV8ddT1arFYMHD0ZGRgYA4Ntvv/U4VVuwEei+XlijCFxrH+YouqNKKBYVFcn+F4zLZTGMS0FBQcD3aRRHkY6dCMWoqCjeHJ8//PCD3/bvjaNId3q+OIpCEeVPR3Hjxo3461//iqNHj+L5559XtR+gcd3e//znP27pcjG+/PJL1NXVoaqqSnYtd+F5Hwo1ikodRTp2ozuKUqlngnDmC0+OIh07vQ5xSkoKTCYTb2WWn3/+WfXxGplA9/VSqWdAv+lxAr1vNahKPd93332yFrHL5QrZmeMZgcffU8CIYRRHkY6dCMWkpCQMGDAAq1evBtCYfr7rrrv8sn9vHEU69exLhycUEL7UKMq118GDB/HEE09w//79999V92EzZszAunXr0LdvXxw8eFD2u/RvQgsBIcLzPhSEolQ9otPp5M0QQcfuD6GYkJDA/e1LjSI94p9OPQsdRRpPQpGOna4/T0lJAQDeUqy+PIgZkUD39VKpZ0BfR9Go17UqoZiQkIA///nPkoMgzp8/j/nz52twWAyGe0cbCIziKNKx00Lx1ltv5V735wotSh1FusPVylEUftcXR1FKABQWFuKPf/wjb1+VlZUoKytTVVRP6pwPHTqEI0eO4MYbb5T8LL0v4WTKNMLzPhRSz1JzJlZXV/POJzp2rQezxMTE8NLNvjiK9O+v1FH0ND0OHTt9fhChSB9vsLW/JwLd18ulnuvq6gJiejmdztB0FLt06QKbzSY5EMPhcOjiAjFCEz2EIrlQLRYLr1aOCEWXywWHw+FWR6c1JHan08k5IklJSUhLS0O7du3wv//9DwcPHkR9fb3oWt4XL15E69atZefzlMPX1LMvHZ7wu2o7bk+Oot1ux7hx40TrBPPz81UJRbqj//e//y0rFOm4fBWKRnUepJASilVVVZJCUasaRXL9CCfE9qVGUTjZNsGX1DMdu5ijqNfqIYGAxF5dXY33338f3bt3x4ABA/y2P7HUs1DIe1o0w1fKy8vd9JJRr2tVd5ExY8ZwJ60YVqsVzz77rM8HxWAA7vPpBQIpgUSLsUC4iiT2iooKrjMhaS3SgVZXV+Po0aNu33311VeRlpaGESNGeLVvl8slm3qml6b0x6hnejvebM+TUHz55Zc5N7ZNmza8eU/z8/PVHCpPKG7btk32s0odReF5HwqOotRyj8LXSezCydy1EIrCkea+OIpiQgPwLfVMtzstFMmiCKEsFEnsr776Kp544glkZmb6tW5RrkYRCMzvKzYY0ajtqkooDho0CMOHD5d8PyEhAXfeeafPB8Vg6IWUQKKFYiDn5qNHPJOb0G233ca99t///tftO1u3bgUA5OTkKFqfXAgtrpQ6ijU1NbxOzpcOT8x9UnMj9zSY5T//+Q/399atW9G3b1/u32qEYm1tLS/OvLw8nDx5UvbzBDmhKCTUHEXayZMSkML4vL3mXC6XX4SiPxxFmnBzFAm//vorgMb49u7d67f9kPPRZDJxvyvdXoG4vkJWKDIYgaR58+YB36eUo0jf3ALhKJLYxYRi586dudfEBAc9HYg3zp7cqiyAuFAUuoC+OIpinaXSDtTlcilKPRP69u3LWx1JjVAUG+ks5yoqdRSF573Yb1lXVwen06nkMA0BLQjpZUOFDwUkduGN2tvzqbq6mlsnWph69mUwixKhKOcoigkRut3FahRDWSiS2OkHW3/OFUvPgUlKWgL9+4r1H0Z9AGRCkWFY9BjZp8RRDIRQJLGLCUXaGaFFodhr3jgxcus8A+JCUcv5wMRcUKXbs9vtvLofsfjJaxEREYiIiAiYUKRjKC0tlTyPhOc9/W+6NjaYRr7SgpAWilIj3GmxD3jvKEot3wf4P/Ws1lGkjyHcUs8kdj2EIsHTYCOtCStHcciQIarrehgMJUgVwPsTo9QoktjFhCLtWngSit6ICS2Eoi8ixhehKBQYco4iaVMtheLBgwdx4cIF0c8Lf5PLly+Lfk5uZRq67Y3qPoghJRSFsZJ/ayUUpSbbBow3mIX+LYhQTExM5L7n67yPRobETj84/Pzzz16VzihBTCh6cny1JqyEIhvlzAgljOIoEtQKRbomC/DuBqtF6lmvGkVhBy/WVuQ1IhQSEhK43/R///uf4uOkhSI9P98nn3wi+nnhbyI3lyINHTvtWBn1piKGVOrZ3zWKUpNtA9rVKNJio1u3bmjVqhUAYPDgwbzveFOjSA8eDWVHkUALQ6fTKVqDrQWkjzGao2jUhz+WemYYljZt2nj1vU8++QTPPfecqNsmR319PScihG5AoIUiiV2tUKRrsgD9HEVvO1qXyyUqHvzhKNKOEnEVL1y4oLj2jxaK9Nq7UulnYVtI1SkKz3v6e6HuKJLYhe3orYMm5yj6UqNIHx/dVzRp0gR5eXk4dOgQHn74Yd53PAkREntVVRV3DYSLUCSxCx1Etenn06dPyy6PCfDrmOkZHJijKA0TigzDcunSJdXfKS4uxvjx4/HSSy9h9uzZqr5L31SE7kOghSKJXUwoxsXFcfMj0o4J4C4c/eEo0k/hWqeea2treUJX7Jjk8FYotmvXjntPKiUshBaKgwYNQseOHQEA+/btUzTFj5RQFJ73Uo5iKAhF4UMBiT0QNYr0Na1V6hloXEHlpptucpv305PQI7GLDWRR8n0al8uFhx9+GK1atcKiRYsCmgXxBhK7L0Lxv//9L7p06YL09HScP39e8nN2u517GJRKPTNHkQ8TigzD4s2ozuPHj6OhoQEA8K9//UsytSUGLbLoGzIQeKFIYhcTiiaTibvpCYWhUDj6w1E0m83ck7jWqWepmiSl21OSshTWKALe1SnSQrFZs2a49957ATQuPPDZZ5+5fV4Yg5RQFJ73oZx6FjqKJHZ/CEXhw5/JZOIeFrRKPcvhaWUVErvYQBZAnZDZunUr3nvvPVy+fBkvvPACbr75ZuTm5io6Tj1wOp2i2YTvv/9e9MFRjP3798PlcqG+vl52ah2x5fsANj2OHEwoMgyLNzPj0zVmVVVV+PjjjxV/10iOIoldTCgC145PKBS1cBQ9CUXgWvpZa0dRSigq3Z4SR1FYowj4LhSTkpI4oQgA27dvd/u8UkdReN6HcupZKAyk1tv1x2AW4Nr57cuoZ6X9lNls5s45MUFAtiM2hyKgXCja7Xa3hS9yc3PRr18/zJ8/35DTKsXGxnJrf9NUVFQgLy9P0Tboa53+DYWILd8HGGN6HCYUGQyV0LVwShEORnjnnXcUf5cWZXoLRRK7r0LRH/Mo0senxlF0uVw4c+YM5/iKIeUAe+soqq1RBLx3FPv378+lG8VGPit1FIXnfSg5ilFRUbxrS9jeJHatahTlHEXgmlDUah5FT5DrSUzkk9ilhKLSUdpvvPEGzpw5A6BxntDu3bsDABoaGrBgwQK89957io83UMTHx0te+0rTz3S/Ile2JDW1kREcRaM+/DGhyDAsSmvFaIRCcf/+/Vyn6QkjpZ5J7J6Eot1u5wkGIzuKTz/9NDp16oQHHnhAct+0o+jNE75QYIitP++v1LPZbJYVAkodReF5H0qOYnx8PE8IC1PPJPZA1CgC2jiKatakJ+eH2PlMYpeqUfTkSAKN1//ChQu5f69duxaHDh3CjBkzuNdOnTql+HgDxeXLl3nXPqn3BcAtt+kJbxxFI9QoBnq0tTf4LBQnTpwoegEyGHogNr3Ju+++q+i7SlPPWi3h98svv+DcuXOynyFCMSoqiteR0cdH3wy1qFFU4yjW1dWhoaFB0ajnHTt2AAA+/vhjyXVc6ZtFy5YtZbcnhph4om8gpIYJ8N1RpEV8s2bNAMgLAaWOohC6Dem+NhiFYlxcnORa4TSBSj1rUaPojaModz5LOYpKvv/yyy9z6yY/8MAD6Nu3L6KjozFp0iTuM2rqtgMJfe0PGjSIE/FKHUWlQtEINYoul4vrM+lSDKNe0z4Lxccff1zU0mcwfIXcfNVAhGJkZCQ3Mvjdd99VVJcjl3rWegm/r7/+Gj179kTnzp1F05QkdnJMSUlJvFGUUlPkBNpRBBo7XiVL+NFP8kQ0CvFVKAqdKID/G9AOI92maWlp3N9K51IkjmJMTIzberGeVt4ApOdRFJ739NyeweA+iEHEiSdHkcQeiMEsgLyjWF1djY8//hgTJkxAUlISbr31Vu44vBWKcucHiV1qMAsgLxQvXLiAVatWAWg8t5csWcK9JzallZFo1qwZ79pPTk5Gv379AABnzpxR9FAVTDWK1dXV3LlE9z1Gvab9mnp2uVzIz89X/OTMYNCoFWQul4u7yaenp2PEiBEAGm/8ShaYD2Tq+euvvwbQWFfz/fffu71P9kELRRqpZfy0qFGkv+PJUQQaxZ0SR5G+uYqNCibbIrRo0UL0mOQQE4p0e9GCgxaKMTEx3ETJalPPtLCTSz0Lf5PLly+LPsAIzy96taBA11FpgcvlUuwoktj9UaOoNPVst9vxxBNPoGXLlhg/fjy2bNmC8vJy/PDDD/jmm2/cjk+r1DOJnYgck8nEe1jy9P2FCxdyr0+fPh3p6ence0YXivX19bxrPyEhAbfddhv3byWuopY1iv4WbHR/2bx5c+7+EtJCcd++fViyZAmvoS9duoSsrCz86U9/woQJEzB//nzFw9wZDEB9h1ZWVsZ9p127dpg8eTL33saNGz1+P5CjnulrRWwlksrKSjidTu5GJ3SZpBxFYerZ13kUlTiKly9fdruRO51Ot0ErtLDJyckRFXV0m9NCUavUM/170G0KXEs/FxQUyA64IcgJReHxulwut9/I4XCIzrcotf5xdHR0UE66XFtbywniuLg4WCwW7rwSnvskdn+knunVcwj0YBbiNO/ZswdvvPGG6PlJSkW0SD0La2dJ7EQotmjRwu0clROKe/bs4Y7nueee471ndKFYWVnJOy5vhCJ9ndtsNsklYJXUKPr7IYyub46Pj5d9wDQCmgjFTz/9FKdOneJdiK+99hrOnTuHPn36oGPHjvj666+xc+dOLXbHYIhCpwzbtWuH0aNHczfxrVu3elypJZCjnmlBJ9WhVVRUcDcToaOoNPXsj3kUAX7KRmpyW/pm5nK5eP+ura1FTk6O23f8kXqm24v+m3YUgWtC0el0epzs3W63c/uihaJUarGhoUF0uVMl2ZZgdxTp85sIFuFgKCFap56JQBUiVlJCr+wxcuRI/O1vf+P+Tc51X4UiIB6Ty+XizglhfSIgnyonv7PVakXz5s157ympC9UbXx1FYb8sdW0pqVEMpKOYmJgoW5JgBDQRiufOnUPXrl25f1dXV+P777/HH/7wB6xatQpvvPEGrrvuOiYUGapITU1V9XmhUIyOjsbEiRMBNHbsYnPb0QQy9UwLRTFxk5qaKjniGZAezBKIlVkAvkMhVdNH38zEOkCx9LO/B7NIpZ4BdQNahCOeCeT3cjgcvP1KHb/YzUx43ks5isEoFIlgEU7YTiCxayUUyfUgNeBSbL1n+hp65JFHcN9993H/JkLR19Qz4N5+qampKC8v545DWJ9If1/MkSTHJCZco6OjERERAUD6wVRPUlNT3YRiy5Yt0alTJwDA4cOHPdaZC/tlqYc9JTWK/r62aKHYrl07RYOc9EQToVhRUcF7gvn555/hcDgwbNgwAIDFYkHfvn09rsHIYNBIFftLIRSKAHiTIP/444+y3zdS6rm4uFixUJRLPfvLUaSFohJHUWoUtLDzlxKKvtQo0iJDSeoZ8F0oAvyYpY5fTCgKz3spR9GoNxUhtBgkN2Zy/gjPfRK71jWKaoSiMLNw3XXXcf/W0lEUtl9xcbHsiGf6+3KlHWLHYzKZPLq4elJcXMy79smxXn/99QAafytP9wPh7yE1oMUI0+PQQjEyMjI8Us9xcXG8G9SRI0dgNpvRq1cv7jWLxRI0HRvDGCipE6MRE4p9+vThXvO0hBW5QZjNZrdJjwOdem5oaJAVikoHs/g66lkrR1GsAywsLMRPP/3Ee01qMItWjqKS1DPgvVCUEnJqHEXheR+KqWciGKuqqnjOGIldixpFp9PJnU9SM3PQQpHsQ/jA2LRpU+76EwrFyMhIzqlTgpwYaWhoUCwUhd+vr6/nfjsph9PIQrGhocHNUQSu9eOA9AMpQdgvSwlFI0yPQwvFhISE8Eg9t2vXDt999x3Ky8ths9mQk5ODLl268GoWCwsLvZruhBG+SIkUKcSEYvPmzbm/c3NzZdMX5AaRmJjIm4oGCLxQjImJ8cpR1HplFiWOIv27078bvR2646V/S2H62Veh6O2oZ4AvFD1NkaPEUaRjptuBFgBiQpHeBu0cBetgFjlH0eVy8X4nEp8WqefKykpOhHrrKJLrrn379gAap6BxOBzc8alJOwPyQjEmJkZysm1P31ficBpZKMbExIgKRdrN9XRNapl6DqSj2KpVK9mSAiOgiVAcO3YsSkpKMHbsWIwfPx6lpaUYM2YM7zN5eXlcvQGDoQS1E7nTHQk9N1Xv3r0BNIoQuQmuaaEoJNCp56ZNm2qSeg7EPIr0kz5dVyXlKGZmZnJ/C4UifRPzd42iMPVMuxdap57pv+n9iKXT6PNe2Bah4ihKjcIlsSsRiqtWrcKQIUNw6NAh0f16mhoHEF8WT6wEhQiWhoYGFBQUyKZ55aCFifBabdq0qdeOolqhaDQx0rRpU7dRzwBE0/5SKHUUjbCEHy0U09LSePv2tszCn2giFIcMGYK//vWvSE9PR9u2bfH444/jzjvv5N7Pzc1FVVUVbr75Zi12xwgT1NYokpt7q1ateBceEYpAY1mEGC6XS7FQ1GJlFk+OopoaRbnBLP5emQXgu2L0QAypG1mHDh3Qt29fAI19Ay3whZPuErSaR1Eu9dy6dWtuknatU8/08dNC0VONolAohtpgFuH7JHZhbML2r6ysxJw5c7Bv3z4sWrRIdL+eJtsGPA9mIdcdLVjOnTvHHZ9aR5HM1Qm492/CGkW5wSyAeqFIfnOHw6HZ6lJaIaxR9EYo+lqjaLFYuOvf344i3X+4XC7DZwo0m3B7zJgxePPNN/Hmm2+6reXau3dv7Ny5E/fcc49Wu2MweDQ0NHCDpegbMcAXilJ1irW1tVznKRRlgLYrs7hcLo+OIiC9zjMg7ijW19drUtul1lGkUSIUY2Njcffdd3P/pldpIb9LfHy8VwM31AxmEQpFi8XCHb8/HcXU1FTuhuRpehyhaA+1wSzC9wmeHEWbzcYJg99++010v56W7wPEaxTFls0UCha5EcZyeCo78OQoiglbgH99eapRBIyZfhYbzBLIGkWTycS1ZyAdxaSkJMM/APp1ZRYGwxfEBJsUBQUFXP0hXWsGKBOKciOeAW1Tz3V1dbxtiAnFpKQkWaFI1/+SYxemssi+vDk+ghJHkYYWilLT48TExPCE4hdffMH9TW4WCQkJXj1l+zI9DnDt3CkuLpb97XypUWzSpAmXVhcTC3Rbh2rqWcpRJLF7Eor0+XD+/HnRVKqS1LOco0i3g1Aoept6pl1CoZBJSkryOvVM/16eUs+A8YRiUlISd+2bzWZOwLVu3Zrre9UKRbU1ioCytbi1gAjFyMhItG7d2vAPgEwoMmC327Fs2TKMGzcOI0eOxBNPPIFff/1V78NStZKP2EAWQvv27TnxZwShKBR0YkLR4XDICsWIiAiu4yfHLjaheCBWZqFp3bq16HaEjmLv3r25zvHkyZPce7RQ9CYVpGYwi7BGEeA/ZIitwU3wJfUcHR3NCYbi4mI3kUOf93KpZyPeUMQQSz1LiRYSuydnXHhuXb582W2/nq5pQLxGkVx39HdooXjq1CnuoVRt6pkWisKHBIfDwb1msVjcJs0GtKlRBIwnFB0OBy+bQAbFmc1m7pr0NJhFmHouKioSHbwoNwdmoB3F5s2bw+l0MkeRYXwcDgdSUlLw+uuvY+fOnRg/fjzmzZsnetMNJHQqwhNyQtFkMnGu4oULF1BSUuL2fTlRBmgrFIVxiQlFm83m8ZjIjUxroeht6rlJkya8m6tUaiw2NhYmkwkdOnQAAJw9exYOhwMul4u7gZGbhdxKFGL4Mj0OoHyKHF9SzzExMZxgsNvtvHYG+OeHsC3MZjN33Ea8oYhBixIxR5F+32azweVyic6jSAtqoUgWG6TmjaNIL5tJX3Nk1DMAnDhxgvvbF0dRKBRtNhvnKLZq1Yp7SKIJVaFos9l4D4k0RKSXlZWJZk0Iwn5ZaolMcm7R/Qsh0I5i8+bNYbPZmKPIMD6xsbHIysqC1WqF2WzGsGHDYLFYPNZpGQk5oQjw089Hjx51e99ojiLgWbyS4yTb0yr17K2jmJycrOpGRmZBsNvtuHDhAmprazlHidws1HbcvkyPAyifIseX1DPtKALydYpiot3ok/MK8eQoCs9/u90u6gTRjpHwfBBLS6odzGK327k11oXfSU5O5tyn48ePc69rKRQdDgc3wEUs7QwoE4rBWqNIjklKKALy6Wexflks/UzOtyZNmrhNgxaI+Qzr6+u5WIlrbPRMgfvil0HAe++9hw0bNiA9PR3vvvuuou+cPHkS77zzDn755RfY7Xakpqbi7rvvxrhx47jPHD9+HLt378aRI0dQWFiIpk2bolu3bnj00Ufd6t6OHDmCmTNniu5r7dq16Natm/cBeqC6uhoffvgh8vLycPz4cdhsNsybN4830pxgt9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fpLbz8/Ph81mQ5s2bfwWgxLoNKYn1AjFI0eOcKsGEQIpFJU4iq1bt+aEojDlKDzOqqoqNDQ0aO4oRkZGiroagHttD9DY6SkptiedcceOHbnXzpw5w7vpeisUxcST0pVZAOVT5BChSA94AJRNuE07ikCjYLjhhhu4f9PnvZhQjI2NRUVFhSFvKGKoGczSunVryTXZ7XY712ZKhKLawSx1dXWS/YDJZMJ1112H48eP8wSo2tRzXFwc4uLiUFVV5SYUIyIiuAclqb7PlxpFqbpQI5CSkiIpFIUDWnr06CG6DbF+ubCwED179uS9Rn4rsT6MfghzuVxuQlIL6IfM5s2bo3Xr1oZPPQedUCwuLsamTZtUPckdPHgQ8+bNQ+fOnfHwww8jNjYWFy9edKtr+eCDD/DLL79g6NCh6NixI0pLS7Ft2zY8+uijWLt2LZcqoxk7dixvnWsAfhdY5eXl2LhxI6xWKzp16iQ55QsALF26FF9//TXGjx+PtLQ07Nq1C3PmzMHq1avdLiCgsbNcvHgxJk2aJFmHFihKSkp400nIoUYoitUpBjL1rMRRLCkp4Y5JalCPcIocsRusL4NZ5CY8j4qKQlRUFE94NW/e3CtHEWgUirRz4I1QdDqdAU89N2vWjHczUbKEX3R0tOw0KfR5LyUUAWPeUMRQM5ilpKREckUmu93OfU94XnubehbWKMr1A0Qo0qh1FIFGUXTmzBk3oXjs2DHub3oeWBo1D2JCjOwo/u9//+OcXOF9R6mjKHbeiI18lpssnVy/LpcL9fX1on2Er9Ajnps3b46SkhLDp541EYpFRUWIj48XVeiE6upq2Gw20bmh1LBmzRpkZGTA6XRKPnnSVFVV4aWXXkL//v2xaNEiSYcEAO677z688MILPFHwhz/8AZMnT8Y///lPPP/8827f6dWrF4YMGaL4+G02Gw4fPozBgweLvp+Tk4MBAwbIdkDJycnYtm0bkpOTceLECUyZMkX0c3l5edizZw+mTp3KTVk0YsQIZGVlYe3atVi7di3v8w0NDXjhhRfQpk0bZGVlKY7JX6gRZEQoRkVFiYrLjIwMREZGor6+XlQo6pl6ttvtaGhogMVy7XKsr69XJRTLy8tFU8++DGaRSjsT4uPjeZ1ecnKy147i6dOneS43EYpqahSlOlg1qWf6IUMu9UzaRrjalJQz4MlRlDpeudSzEW8oYqgZzCI2xRNBahQ9oE3qWc5RBPiCheCNULRarThz5gyuXr2Kuro67hjoBxMpsyGQqefa2lrVq2N5Cy3QtUw9iwlFOvUsRDirQCCEYn19veFTz5rUKE6YMAEff/yx7Gc+/vhjTJgwwaf95ObmYt++fZgxY4bi7+Tk5ODKlSt47LHHYDabUVNTI7mMW48ePdzSUW3btkX79u1lT9Dq6mrF6xJv27YN8+fPx/79+93e27FjBxYuXIjdu3fLbiMqKoo3GbEU+/btQ0REBEaPHs29Fh0djVGjRuHYsWO8G5TT6cTixYthMpmQnZ3tF8tdLZ6ECg25qbdt21b0YSAqKgoZGRkAGovRhTcjPVPPgLurGBkZKVpUTyNc71lrR1GJUKSRcxTFJvEWpp7FJtxVI4qkBIYaodiyZUtun1LXPF1jJBSKakc9A+5CUUpsB6uj6GkwC33uR0dHSw6io9tOyWAWb1LPnhxFIWpTzwC/TpF2k+lBdlKOYiCmx2loaMDkyZORkJCAl19+WfJzWkK3rZxQlHt4U1KjSA+Ukks9A/4TbEKhGAwT6WsiFF0ul8clgXxdMsjhcGD16tUYNWoU7wbjiUOHDiEuLg4lJSWYNGkSRowYgTvvvBMrVqxQdBN1uVy4evWq5BPp0qVLMXLkSNxxxx2YOXMmb0ScGBMnTkT//v2xcOFC/PTTT9zr+/btw4oVKzB8+HC35Q+95dSpU0hLS3O7IEiq/PTp09xry5cvR2lpKRYsWMBztvRE6TyKtEgSSzsT+vTpA6DxXKLTPIC+qWfAXSiazWbumlHqKGo9PY4nN0FMKKpxFK+77jruXDt9+rSooCDHIBz1KoaUwJBKPYvVKJpMJu4ckpqfjz5X5BxFNTWKNHLzKALXfr/6+npVU0jpBTm3TSYT9/tIiZakpCTJG6WcUBRrK7Wjnu12e8AcRQLd9rSA8MVR9EUoOp1OPPbYY9i4cSMaGhrwxhtvSIWhmN9++w2rV6+WHbRFP9wLhSJdDuKro0j3I0ocRX8gFIpJSUmGTz0HbNTz5cuXvXr6Inz66acoKirCo48+qup7ZBH37Oxs3HzzzVi0aBHuuusufPrpp1i2bJnH73/11Ve4fPky/vCHP/Bet1gsGDx4MJ588km89NJL+POf/4zff/8d06dPl1wpgHxv/vz5yMjIQHZ2NvLy8vDTTz9h0aJFuOWWW/Dss89q5uaVlpaKOo/kNfIEW1hYiB07duD48eMYPXo0RowYgREjRoiODg4knlatINApGzmhKFen6MlRpN0nX5e/UuIo0iJeaY2i1hNue3IUhQ8gakc9WywW7ubryVGkj0sKqfSb0pVZCOSYqqqqeJ06QWrEs/B4vR31TP9bzIk1eppKCBElcXFxXN8mNT1OUVGRV46icDopgC8UheKDIKxRFFu+j0BPkUPQUiieOXOG+1uto6iFUHS5XHjmmWewceNG7jX6XPeWe++9F0899RSmT58u+RnaKRS2VXR0NDcKXEmNotyk5nJzKAKBdxSbNWuGoqIiwzuKXltH9MkESK+h63Q6UVxcjD179nCpP7WUl5fj7bffxkMPPaRqtQ6g8Uevra3FPffcw41SHjx4MOrr67F9+3Y88sgjbiOaCefPn8eqVavQrVs3jBw5kvdejx49eKOvbr/9dgwZMgSTJ0/G+vXrsXz5csljio6OxtKlSzFz5kzMmTMH9fX16Nq1q+ZuXl1dnahrQjpHcvNKSUkRTYXLkZOTg5ycHEMURXsayEKQW/NZzxpFwF0o0p8JtKOoZDAL4Dn1rKTYvlOnTjhz5gwqKyt5N0phjSLZntwx0TeBpk2bcv9Wk3oG3GuihA9bckJRaeqZrMwCqJ8eR+h6yNWGGwFybtPni9z0OEqEothDw7lz53jtQa6HhIQEydp0udSzEkfR19Qz3fZ0mtQfNYqeRj0vXboUK1eu5L1WUVHhNvrX5XJhzZo1qKysxKxZs2TvWbW1tcjLywMA2UUc6OMRE/XXXXcdCgsLcenSJV5dJw25zpOSklBVVYXKykq31LPU8n0EfziKFRUV+Pvf/442bdrgz3/+s5ujKNyvER/+vFYl77zzDve3yWRCbm6u5KoXANCiRQs88cQTXu1rw4YNSEhIwNixY1V/l5xQwulQMjMzsX37dhw7dkxUKJaWlmLu3LmIi4vDokWLEBER4XFfaWlpuP3227F//344HA7Z78TFxWHatGl46qmnAAAzZsxQVZOnhOjoaFFRQzpcX/aXmZmJzMxMnDx5Eo899pjX25FDKt0vRKlQ7NWrF/e38Fw1WuqZTil6IxQTEhJgs9lUO4pOp5OLT22NonAwixLHgy4jodtEzFGsra2VPSfofSQmJnJugpqVWQD3mqgbb7yR975SR1Eu9RwZGYnmzZvjypUrbkJRatJy4WAW4XaNCjm3aaEi5W4lJiZKCkW5wSxAo6gn5SXAtetMKu0MuAtF+hwSXndkOTn6fNLSUST1ivHx8YpS5VrWKG7duhXPPfcc9+/ExESUl5fD6XSiqqqK991vv/2Wcwevu+463H///aL7A8CbWURuSh563IDYbBvXXXcd/vvf/wJozCDRMyYQSLuQZfFOnTol6ygGqkZxzZo1WLx4MQDgzTff5A22bN68ORITEw1/TXstFFevXg2g8eniqaeewp133unmugGNtQdNmzZFu3btZEccS5Gfn4/PPvsMM2bM4BX7kpGily5dQlxcnOSFlZycjLNnz7oth0Q6eLE0YGVlJebMmYPKykq89tpraNGiheLjbdWqFerr61FbWyv7pF9QUIBFixahXbt2sNvteP755/H666+r2pcnkpOTRZe2IrPVa7kvf6C0rpUWilLuMNDY8bdv3x7nzp3D0aNH4XQ6uXOSiCzhvHiEQA9m8SRcAffBLLQAbdmyJWw2m2pHUcmqLAStHEUC7fJKCUU56JsALbbUTI8DuM/bJsQboSj2u1qtVk4o0q4Nfd4rcRSNDp16Jki5Wy6XixcTmXMQkE89A+4DWsg1LfdwITbhNkH4PbKc3O+//8695u30OAQiFF0uF+d+tWnTRrL8SO31RSMnFN9++23u76VLl+LgwYPYtm0bgMbfkf4uveSmsNZbCH3/kcs+iZWd0Agf3uSEosViQbNmzXDq1CmUl5ejpqaG+008pZ79cW3Rv9Hhw4d57zVv3hwul8vwqWevaxR79+6N3r17o0+fPsjKysLIkSO51+j/evbsifbt23slEoHGOjqn04nVq1djwoQJ3H95eXnIz8/HhAkT3NLgNNdffz0AuAkmIjqFN+G6ujo8++yzyM/Px7Jly0TrUuQoKChAVFSUbAdSUlKCp59+GhaLBStXrsSKFStQW1uLWbNmyS5RpJZOnTrhwoULbiKEpALELjYjofS3UOooAtfSz1VVVbxUp6ebSqAdRfpJWK2jGBsby3Xsah1FsZo4KTwNZvE06hlwnyJHuG2thaI3qWchSlPPctPjANecpZqaGl770+eHJ6FoRPeBxuFwcDHQ50tkZCT3+9MCoqKigteO9LnvSSjSbeVwOLjfVM5RVFOjCLinn7VKPZeXl3PHK1WfCPivRpG+Pz7zzDNufQsN/W+x6WdoaHNHzlGkP+dJKErVKZIaxcjISFExDuhToyj3GzVv3hwVFRWGv6Y1GcwyefJkXv2XlqSnp2PJkiVu/6Wnp8NqtWLJkiUYNWoUgMYf+Pz58zw3ZujQoQCAzz//nLfdzz//HBEREbxUhcPhwPz583Hs2DEsWLAA3bt3lzwuYeE00HijO3DgAPr16ycpjG02G2bPno2amhqsXLkSrVq1Qtu2bbF8+XJcvnwZc+fO1eyJYsiQIXA4HNi+fTv3mt1ux86dO5GRkeHznJZGQamjCIBXJ0sLRU9zFkZERHBP+YFwFNXWKNITbjdt2pS7AQbSURQOZlHieNBCkXbSpGoU5RCmngneDmYB/O8oEoSTbst9z+juA43YHIrCf8vVKHorFOlrTE3qWa5GEXAXilqlni9evMi9Jrdgg1Y1ikKhSM7pxMRERERE8H4z4YMt/Rt5GnBIC1C73S7Zd3qqUfTk8pO14gF3oUjXKaqpUdRKsJH9R0dHIzs7mytJa9myJXeOGf2a1mTkxC+//IJ9+/bhgQceEB1lW1JSgg8//BBDhw5VvbRdUlISBg4c6Pb6Rx99BAC8944fP46ZM2ciKysLjzzyCACgS5cuuOuuu7Bz5044HA707t0bubm52Lt3Lx588EFe+vX111/HgQMHcNttt8Fms+HLL7/k7XP48OHc3y+++CKio6PRvXt3NGvWDOfOncNnn32GmJgYPP7445LxbNu2DcXFxXj11Vd5oqZz585YtmwZZs2ahd27d+Pee++V/V22bt2KyspKLo184MAB7mYzduxYxMfHIyMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlt28EpNY7FUKEYvPmzT2uJiMmAlwuF9cZyqWpIiMjZTs7pfi7RjExMZG7ATqdTrfJvOWghYk3jqKUi0ZeN5lMPIEmttoR4Hvqmb7RqZkeB2i8UZvNZjidTs2EopijKBT6BPq8D/bUs9iUR/S/r169yvtMSkqKZJ0g/VtIDWYheBqcRpCbcFtMYAozTN4Ixfj4eDRp0gTV1dWc23ThwgXufW8cRSU1ihaLBTExMaitrXXrb8g5TUq0lDqKaoQi0NjPifVnYg+JNJ4e3oTXNb0EIu3oqalR1OraIvtv3bo1lixZgj/+8Y/YtGkT7rnnHpjNZqSkpPCufyM6ipoIxc2bN+PMmTOSw99btGiB7777DpcvX8aCBQu02KUqZs+eDavVil27duGbb76B1WrF9OnTcd999/E+R1Jf3333Hb777ju37dBCceDAgfjqq6+wZcsW7uQfNGgQsrKyZC/0iRMnYuDAgUhPT3d7r2fPnli3bp3kzZNm8+bNvAtg//793Mjl4cOHc51ydnY2rFYrvvjiC1RWVqJDhw54+eWX/eYAa8mVK1d4o0OlIAJZydrQYh1OZWUlV0ytRig6nU788MMP6Nixoyp3VolQpDtgJUKxrKyMJ3aF0/koFYp0J6XGUYyPj0dUVBSvwxcTirGxsbz6q9jYWLRp04bnqADeCUUpR1Ft6jkyMhKpqam4cOGC6AS/WkyPA/BviLQDRp/3wT6YRa2jeOXKFckSAjWOopI5FAH3GkXiliUkJIgORtQi9Qw0uopnz571i6Mo94AXFxeH2tpanjh3uVxuKw3JCUVvHUVAWij6mnqmr3GLxcJ72JISioFIPdvtds7MIfenm266CTfddBP3mStXrhg+9ayJUDxx4gQvcDF69eqFQ4cOabE7AMCrr77q9lqfPn1Ep3mxWCyYPHkyJk+erHqbUowbNw7jxo1T/Hn6WMREIkHpZOJbtmxR9Lno6GhMmzYN06ZNU/R5I6EkbUov+aVk6iSxDsdTXRKBOFCkU1qzZg1mzJjBLcmldJoSJalnWowoGcxSUFDAibSmTZvy3LK6ujrFNzRvHUXiRAhrvgi0UBTSqVMnTYSiVjWKQON5cuHCBVy+fBnV1dW8309OKEZGRiIiIgIOh0PSUfQkFKWmgQl2R1F4fZDzp7KykhvMY7fbVaee27Zti/z8fFy5cgU2mw0JCQmKlu8DpB1Fqe9okXoGrgnFK1euoL6+XrGj6GlWgZiYGNnxAPHx8SgtLeW1i81m4zIY5HwWDpSjEdYoCqfPoREKRakBLXR7iWWFEhMTuZHYYg9v9MpoWqWetbi2aJEqZWTY7XbDp541qVEsKyvzOIK2efPmmkzeyQgfpFKDNEqdAwKd7icdjqe6JOHxEOGxc+dOAI1P1VLziAqh09w0QqFICwcpoUiP0KY7TzFHUSneOopEKJpMJu57Uo6iEOHDkclk4jpxqRujGGodRbnzS27ZMDmhCIgvO6jGUaSPS6w9jO4+0NDntVjqGWh05kkckZGRkqlnKaFIBiwC4g9/agazeKpV1tJRJBQXF3vlKNLnFBHXnoQrLc4JwgmgAemyCIDfX9bV1ckOOhRzFMWgHw6kJkcndYr5+fluy/AKU89GcRTpfUuVUkVGRhr+mtZEKMbHx0sWYxOKioq8fvpihCdK1rNWWotEiIuL4x5qxG4qctsgNxXSKdHTRMitxkNTXV3NdXJ0R6W0oF8IOV5avNA1ioC6kc/eDmah24p8T2zeOylHkSYuLo5zRdSszKIkZalkehxAPtVFfuvIyEjZm41Y6jkyMpKLTUoo0r+lmMNrdPeBRknqmf5ccnIyrx1pIS41j6KYUPQm9VxZWcn9nlL9QFpamlvphDcIR+UqdRQjIyO5/St9EKMh12xVVRXXD4k9+CitUSTHL4VSR5FuWymhSK5Ju93uNpJYqxpFrR1F2s2UchTlVrQyCpoIxYyMDOzfv1/yhCkqKsI333wjO4qYwRDiaeoFQL2jCFzrcC5evIj6+nrVqWe73Y66ujpe8TwtGuWgBQHdcQiFIqnZES4YL0TshkaPeibHqxRfU8/096RSY0KEjiLdgWs9mEVp6llulCW5sTZr1kw05UZuNmKpZzoeKaFIn/ehlHqWchTpzxUWFioS/PTvcsMNN3B/k2vSm8EstNkh5+KnpqZy//Yl9UwoKiriHMXIyEjZumx6vWxfhCJw7XpRKxSFM37I9dNKHUWyTbPZLBmD3MMbnXq2WCxo2bIl90BmdEexsLAQUVFRXF9ixGtaE6F43333oa6uDn/5y1+we/du7iZXUlKCXbt2Ydq0abDb7ZgwYYIWu2MwOJTWItGQDsfpdOLixYtepZ7PnDnDS38odRTp46WFonA1CiWjsKXe98VR9DX1TH+P7Nflcsk6iloJxUCnnsXSzvQxi6We6d9USijShMNgFuHn1NYoijmKtPiRe4C0WCzcDZoWinLXXefOnQE0toe3yycKhSJxFFu3bu1xzmE5oegpFS62dCL9W5HrWG56HH84iuT1hIQEyXpHOaEodBQjIiI4wa1njaISRxGQfgAwCpoMZunduzf+8pe/YM2aNVi2bBmAxsBJcb3JZMKMGTOCYqQtwzgocQiV1iLR0G7R//73P8XuAy0UhcLQG0eRfsKUmkdRSozIHW+gHMUbb7wR7dq1w4ULF3jTOQk7PLrjUyIU6ZjU1ChqtTILIH1Tamho4NpQynUSSz2rcRTp8ziUHEWpwSz055o2baqqRjEyMpI3S8S5c+fQ0NDAW4RBbtEEMl1TXV2dogFkQOPUaBUVFZg0aZKiOmoxaKF47tw5bmSsXNqZILy+XC6X4hpF4VyKVqtVlaPodDoVC8X6+nq3cQmeahSl0s6AOqEINPavRUVFKCoq4lbhCvQSfkqEIrneY2JiUFNTY8hrWhOhCADjx4/HjTfeiE8//RQnTpxAZWUl4uPj0bVrV9xzzz2KpnxhMGiknixpfEk9A40djjejnoVC8fTp0x7X9xYer1Tq2eFw+CQUA+UoxsTE4OTJkygrK+OJXqGj6GnViKSkJCQnJ3M3S1pAqKlRVDvhtlJHkb4p0eeKVNvQqWcyIlSNo0if98G+MouSwSz050wmE3czN5lMkqKZxB0dHY22bdtyxsT58+fx/vvvcw9uAwcO9DgjR3R0tNu5JffAOGTIEPz000+y2/QELRTpgXByA1kIwsFi9LGrST0Tca5GKJIR6jRSQpFczzRSQpEci9w8uMIHfBrh9DhAY/969OhR1NfX48qVK2jRokXAl/BTknom13vIO4qEjh074umnn9Zyk4wwRrjGqNRnCGpTz0CjCJBb35WGFopCB7G+vh7nz5/3+EBEC0V6cXi6A6VT4Z6Eopg49mXUs5rBLEBj5ybsAIUdnpLlxTp16sTdWGhx6K8aRYvFIpvii4uL48QrLRQ9jXimj9nlcqG+vh5RUVE8YUOQEor0eU+3Bzn/QnEwC7kGy8vLee6YcJ5DAu3QkrrBixcv4syZM7y5epcsWeLxgVPsPFcy1ZYv0EKRFp3eOIpKri+CUqFIBpQ5nU5enyW2IplUjaIw7Uzvk8blcvFSz1IorVEk1wktui9cuKBIKPrLUTSZTLz+noZc72K1zUZBkxpFBkMvvHEUhQMV1KaenU4nTpw44fa+kvSzcNob0lnRN1QlYkTueJs2barJqGdPqWcphKvCKLmR0elnugPXukaR/K0kZUjOk4sXL3I3IjVCkT5m8rsqST3T0E4kETzBmnpWMpgF4NfbST3wCH9PIiJoYT9y5EjRVb2EiAlFpQ+d3kILRaVT4xBIzGKOvZoaRfKbi02PQ7u5dP8oTDsD0o4iPYk2QcxRrK6u5lxKOaFID/IRClax1DNdckAGOek1j2LLli09LnogVrJiFLwSigsXLsS+ffu83qmv32eEB0pWO/FlMAvgXqOoJPUMAMeOHXN7X8mAFvp4ExISJFenINCDRMSQSj0HYh5FKYRCyVONIsCfIoe+IXjjKJLCcFIGIOYoytUnEsh54nA4UFBQAECZUBTebBwOByc0lTiK9HkvlrIO5cEsVquV5yhKncfCmk+xOsTFixcrOkaxc8HfQjEhIUH0WlDjKNbV1fHqEwHtHEXg2m9A949ijqKUUFTqKNLnvpxQjIiI4B6WhH2aUqEYyBpFl8vFW75PCnK9h5yjuGfPHpw9e9brnfr6fUZ4INYpCfFmMEtycjL3NHn+/HnVo57p/dIdr1pHsWnTpqJC0VdHUat5FL11FIV1hUqWF6MdRfrGrSYO4TKBwnkvAe+EIiA+mlapoyj1m8bGxnLpb/q8EE5oDPB/h2B1FJUMZikrK+Nu5k2aNJFsf6FQFE6EPW7cOI+1iQQ9Us8mk0n0QViNowi4X19qhKLcqGfgWn9KP9yKOYpqUs9ijqJSoUhf03JCkTh3ckLRbDaL9gFaCkWy6g4gXZ8IXLveyb4bGhp4qXQj4HWN4qlTp7B7924tj4XB4KFE4HiTejaZTLjuuutw/Phx/O9//xPtHMUQS1eOGDECW7duBaDeUfSXUPRl1LMWjqJwpLKSG1n//v25migy/QjgnaNI9kFW+RAbzKIk9SwUigMHDvRZKNK/jclkQkJCAsrLy3k3S6lBG4RQGcwi5ijSwkcu9Sz8XWhRYDabsXDhQsXHqEfqGWh0kui5WAF1jiLgfn15Sj2L1YWSc1o4eIj8BrW1tbDb7YiKipJ0FMWW8fPGUfRUk05GqAv7NLEaRbnUc5MmTURrV+lzwdeHMKVT44iVpdTW1nr8LQKJ10Lx22+/xYEDB1R/TzhiisGQwlNNB+DdYBagsf7s+PHjqKmpwenTpwE0dqJyAkLsCfS2227D3r17ceXKFZ9Sz2TFFrPZrEooSg1mCcTKLFJ443h06dIFu3fvRkFBAYYNGya6LaVCkdwshUsu0n8rcRTFJt32JvVMH7fQURUTivR5L3YTCZXBLFI1ikQESAnFhoYGbm1i8lvQcyn+6U9/QteuXRUfox6OIiBeWkNP5i2F8JrQKvWclJTEG+AlHPncsmVLUUeRLOMn7H+1dhQB99WxCGKp59atWyMyMhL19fVujqKUoCZlK8KSGaAxTjV9olKhSK534QNg0AvFZ5991ucd064BgyGG3AoFBG8cRYDvFpEOzZPQFBORXbp0QZcuXfDDDz8gPz8fVVVVspPwSqWegcabflxcnE+OotlsRlxcXEDmUZTCG0cRAO644w4A4E1k7s1gFjmh6G3qmUzHIVb4L0SpowhcuzHS5wV93ody6pn+/cjAB/rmKFWjKHaODhw4EH/9619RVFSEFStWqDpGPWoUAXeh2KpVK0XnpbfXFyAvFIXnM92fEqFIO4oJCQnceVtYWBhQoaikRjEiIgLt2rXDmTNn3ISiXB8dGxvr9rtu3rwZDz/8MEaPHo0tW7bIHiNBydQ4wLXr3cgPgF4JxTvvvFPr42Aw3Lh06ZLHmh0iFCMjI1UJG2FNE+CdULz++utx/fXX44cffgDQOJ9ir169PB4vwHcUAXAi0xeh2LRpU5hMJq8dRfrG7u3yZL7UUAH8dlcTh1jqGdCuRvHq1at47733uNfatm0r+j25wTxSQrGyspJzlOn4xYSimknI9YYMAkpISHDLENDuGfkcXbsuVaMo5tCazWasXLnSq2M0iqMoNX2KEK1qFMk5JyUU6b6F9Fu0o3j99dfj0KFDABrTz7SrCyhPPdOveRKK9DKqNGI1ikBj+vnMmTMoLy93q3+VQmw+ww0bNqCurg4fffQRCgoKFDm/Sh1Fcr0buaSETY/DCGpIx0UEklLEhKKnm4NQKFosFrRv3x5dunThXvM0oEXOUSRP20pcK4JQKJJ/e+so0pPkJicnK/4ejVDIKBn1LIVSR9HhcPBSloB4mkrN9DgtWrTgjvf8+fOYM2cOt8zbmDFj3FaUIQgdPzmXlr4xCt0WMr0Q4F7baOSpNAhXrlzhnByxh6fk5GSuHYhQpNtYKvUsl8r3BqFQtFgsXj8kqUEoFOXEBI0vNYrCwSwVFRVcOZicUCT9LC0U6X5PbOQzEYoxMTHc7+kvR1GsRhHg1ymePXtWkVAkx0r/rrQ7KKwrlUKpo0gw8mwGTCgyDIunTgO49qSrJu0M8OvPCGodxQ4dOiAyMpL3JO2pTpEcr8lkQlxcnKhQ9MVRJP/21lHUQijK3ciU3NjpdlfaeYq5KkL3weVyqXIUTSYTd56cOnUKGzZs4I7vH//4h+T3vHEUgWs3TPKaXMrayFNpEOgVR2688Ua3981mM+fMEKFI18hJpZ61GHBFI9xGUlKSqodObxGKBymHWoiWNYpSI54B99QzwB+RT/d7ckKxZcuW3H59mR4HUJd6BvhC8cSJE5wolks9izmKdHxKhaJSR5HEbOTUMxOKDMOiZDALEV5qa4q0SD2TjlKNo0iONz4+nqsnJHiarkIMsdQz4L2jSGrFYmNjPboTUghFqtrUM93u9AoqSoWiVI0i7TooEYoAfy5FwksvvSQ7OlXp9DiAuFAk8csJxWBwFOkVR8SEInAt/Xz58mW30ax6OYqBqE8E3B1Fb4WimutLOOpZ7qFUSeqZIJwix+l0cg+dLVu2FJ3dgaB21DPgnVDMy8vj/lbjKDY0NPAmD/dGKMo5ilKDWYwEE4oMwyJcUF4ImbYBUO8opqamuq3LrDb1TARip06dOAfCk6NIOkVyvHJCMSoqymPHHxMTwxNWWjmK3rqJ5JgIam9kAL/d6XpLuTjEXBWhUJS6mcghfKC45ZZbMHXqVNnvCDt8tY4iiV+Jo2hkoXj48GHub6k5Delar8LCQi61DzTezM1ms5tw1mLAFY3woUEvoah0v75cX3KOopLUM+0o0gNShY7i1atXuYcrWihq6SjSM6jI1SgSlApF8vuSifJLSkp4+xIuHygFEc/x8fGyApi0AXMUGQw/4M2qLASLxeI2UMZbRzE2NpZLUf7222+yU0CRYyYdopxQbNasmccUmMlk4h23LzWKLpeLE4otWrRQ9B0xfHUUhYilgoSIreFK2quhoYGXdgbUO4pA4zmzfv16twcMqeMF1NUoCpfxU+IoGs15oCFCMSYmBjfccIPoZ4QDWsScYaGL5G9HMRADWQB3oaikjg1wrwH2tH4xDZmMHvBOKNI14XQ6VSgU6YEsLVq04IQSmQaMxhuhCPAzBEpqFOnVtJQ4ikDj9SuMTa2j6G3tqZFgQpFhSFwul+ioORpvVmWhEbpFaoUinXImorGsrEzyuJ1OJ/dErcRR9FSfKHbcZLveOIo2m417MtfTURROi6REFMmlnoHGG4k3QrFbt27c37Nnz0bPnj09fseb6XGAazdMEr+cE2l0R7G8vBynTp0C0DiQRaqMhH5Yu3jxIq9dSIyBFoqBchSFa7JnZGQo+p4v1xdd7uJJKNJ9KnnAJY5iYmIiWrZsyYlOYeqZ7gNpRxFwP2fVjHqWegCWyhaQuRQBcPPlAspqFIHG31coFJU4itXV1dxv5ukBgFzvLPXMYKhg3759GDRoEG666SbZVK63cygShELR29Sz8G+pY66qquLcRimhWF9fzwkGb4SiL44iPZBFT0dR6KypdRSFAgNo/A3o30Fp6vn//b//hwULFuDFF1/EggULFH1HLvWsxFEk/1eSeqbXkTYSubm53N9yS+kJHUV6xH+oO4rCZfy8ST17c30Rd6+qqkp2hgU5RzEpKQkWi4XrJ4Riiq7powezAO7pZ28dRSVCkcylCPDrjJWkngFpoehp4RBaOHtyFEn8YZF6bmhowJYtWzBlyhSMHDkSQ4cO5d47deoUVq5cifz8fK12xwhhvvvuO3z77bdwOp1YvHix5Od8ST0D6h1FupNKSEjgPSnShd1SA1qEcygC7kKRrgEKtKNId+5aOopqp8cRCkIlNYqeHMX6+nrezUSpo2ixWPDCCy9g/vz5ir8jl3pW4iiS+OVS1ka+qQD8+kSpgSyAu1CkrxGhUBSbR1GLUc961SgCQO/evQE0rnWu9OHFl+lxAPBGIMsNnBMKRbvdzu2LvEeELlnGjyDnKAoHtGghFOmHJaF7TaefCb6knsXEoxClA1nI9oT7DUlHsa6uDk899RTWrFmDoqIixMXF8U6a1q1bY+fOnWxtaIYipk+fznVa//znPyUdOl9Tz8IpctSknrt06cKrH1TiKArnUATchaKaqXHEjlsrR9EXoSjnKCpxgIQ1gN46ikKh6E3q2Rt8nR6HxK/EUQT0F4pi7oqSEc+Au1CkYyYxktjlVmbxBb0cRQB47bXXsGTJEmzbts1j7SvBl+lxAHiVei4vL+f1t+Q3IiKILONHEApFJY6i2Wz22J5qHUVAvVD05CgCntPPahxF0u5GfvjTRCi+//77+OWXXzBlyhR88sknGDVqFO/9+Ph49O7dGz/++KMWu2OEOAkJCZg9ezYAyLqKWjuKalLPwlUIlAhFJY6imqlxCHSH7suoZ61Sz77WKAqL/Mn26urqJFM+ShzFQAlFoTOgdjALiV/JYBayD70oLi5G586d0bFjR26ZQ+CaoxgVFcWr8xRCC8WLFy/yxJJeqedAOopt27ZFdnY2evToIbr2sxi+Xl9EtNXV1fEEnacaRTrbIXQUAb448sZRTEhI8Dh4j75uxSbSB5QJRU9L+BHEHEXA84AWNY4i+Q2Nck2LoYlQ/M9//oM+ffpg4sSJMJlMoo2dmprq0a5lMAjTp0/nhJuUq6jnYBZaGAKN7iS54UilngPhKPoyj6JWqWdfaxTJ5MsEYU2WGEocRW+mx/EGoTOg1lEk8QeDo/jvf/8bZ86cwe+//46FCxcCaDyPT5w4AQDo0aOHrCinVycqKChwmx4HCN0aRSHC814KX9Z6BvhT5NDlYML+JjIykmsDKUeRFor0/V1OKAodRfJvJQssKHEUfU09B9pRJO0e8qnn4uJiN4dFSGxsrOhkmwyGGAkJCXj88ccBNLqKS5YscfuMr46i2tQzPcmysEDfbDaja9euABpXABDrSMQG32ghFDt16sT9TZaVC2ZHUYiSWMSmCJEbzBLI1LM/pscxyk3l999/5/5+//33UVBQgNzcXM75lUs7A40DOujVWcTOFeHceVoLRT1rFL1BqxpF4JpQNJvNokKN9FNkrWSCmKMoJxSFSwfSCFckkoN+wJOqUfQ19Sx8CKMfXghqHEVvpscJydRzbGws7yQSo6CgwPAXIMNY/OUvf+HSr5s2beKm2yD4Ouq5SZMmPEHkyUm4++67MX/+fCxbtsytvAIAxo0bB6CxZuv99993e19t6lmpUHzkkUfw7LPPYt26dVyaT09HUWpUptlsVuTkCSenVZKSMXLqWa2jSKcGpb5nlJsKfcO02+149dVXFU20TUOEYkVFhehgFhK7y+VCQ0NDQJbw0wNPq5IQhNcXeUjy5voi4i4pKYm3fCKB3LMrKipkaxQB8dSzxWJBUlKSZOrZ5XJp7ij6mnqWchTp17VMPZP2CPnUc7du3fDdd9+5PRETioqK8MMPP4guDM9gSNGiRQvMmjULgHitoq+pZ+Da6gJNmjRRtHzUiy++iLlz54qWV/zpT3/iXt+4caNbPZ2S1LPcdBVSJCQkYOnSpZwDS46VEGhHUZgao0f1KVlDVyjilHSgagezBDL1rNZRFI7yBYzrKApvmGvXrsXXX3/N/duTowjw6xTp7Uk5w6FUo0jjzah62lFUen2JiSSpvob8Fjabjdc3KXUUW7RoAZPJJDmYhZ4yzF9CkZ5LkaDUUayuruYcxa5du3K/vdLUc0REhMe+lMRklGtaDE2E4v333w+bzYa//vWv+OWXX7j5impra/HTTz9h9uzZcDgcmDBhgha7Y4QJV65c4Y2A3rRpE69g3tfUMwAsWLAAffv2xd///nfRJ2o1tGvXDsOGDQMAnDlzBgcOHOC976/Usxj00mdGcRSVpp3pG5Jwe744it5Mj+MNvk64TeJXKhTp88pb6Dnm1CAUihUVFfj3v/8NoNFN6tGjh8dt0JNu05MiSwlFf4961ksoCs97KeSEohLEHoilBs6RfsrlcuHChQvc63I1ivRiCWQyaSlHUc06z4B3NYr0XIoEpTWKFy9e5K6NlJQUbjvnzp2TnUuROIpWq9XjfYW0u1GyBGJoIhR79+6Np556Cr///jtmzJiBTZs2AQBGjhyJWbNm4eLFi3j66ac91jEyGEKaNm2Kxx57DECjq0intbRwFO+44w78+OOPmDZtmm8H+v+TlZXF/b1x40bee/5KPUuhZP5BGuIoRkZGKk6Dye0X4N/IvL2pC7cnRrBOjxMVFcUdizAjI/c9ep3dQ4cOqTo+p9OJF154AQMGDECXLl3QrFkzWCwWDBgwQFUdeWVlJScI2rVr5+ZmdevWTVGb044iXdsmNXG6v2sU9Uo9K0Vqehwl9YmAuCDz5CgC4D2kk9fptCoRijabjbvWiFCUchTVzKEIKJtHUSxbIEw/K3UUaefQarVy26muruY9WNM4HA7OhVRanyjcr9EcRfF1lbxgzJgx6N27Nz799FMcP34cFRUViIuLQ9euXXHvvfciPT1dq10xwgRi2dMjjOmRgb7WKPqDe++9FwkJCbDZbNiyZQtWr17NiUGx1HNERASio6NRV1enuVCMiopCVVWV6nkUSbrIW3x1FIWpGiWjnuXWCAYCO5glIiICkZGRqK+v9ziYBWi8QZaWlnLnB4lfzlEcOHAg9/c333yj6vj27t2LRYsWub3+3Xff4b333sPUqVMVbYe+iQ4ePBg2mw2ffPIJ95qStDPAF4o0whpFoPE38XfqWa++RGm5h9SDmC+OolqhSMQ06StcLheXbhWu8wxIO4pqlu8DvEs9A+5CUWmNIu2YW61W3v7Pnz/vttwo0Bg/Wc9aiVAkv1HIO4qE9u3bY+bMmVi3bh0++OADvPnmm3j66aeZSAwC7HY7li1bhnHjxmHkyJF44okn8Ouvv+p6TKRDEa4HSyBCMSYmxq83fjU0adIE9913H4BGYbht2zbuPTFHEbjWaVVXV3s1j6IUUo7ioUOH8NZbb/FcOOBa6tmXtDO9X8C7G5nQ1dKqRjFQ0+MA147Z0/Q4wLVzgQhFEr+cwExLS+P61R9++EGxawzwp2+Kj4/nRsoDwBtvvOFxeTICfRNt37495syZw3vfV6GoxFHUejBLXFyc388NKZS6uf5IPUsJRVo0izmKYsv4CUc8C/fpD0dRrVBUmnqmH4ZatWrFm1JNakALPajH00AW4Fq7h/xglqKiIo8neXV1NZtH0cA4HA6kpKTg9ddfx86dOzF+/HjMmzfPTUwEEtIBSglFkno2iptIkEo/izmKwDWhSDuK0dHRXk0lQyOcfw5o/M2GDBmCRx99FKtWreJer66u5jonXwayANKDOZTGI3yaVisU9R71DPBXk1HiKALXzg8Sv5yjCFxzFUktuFJoV/7jjz/G6dOncfPNNwMAjh49qjiVLRSKt956K26//XbuNSUjngFxoRgVFcVNvh3IwSx6zsyh1EWiY66urubO60Cmnun0vHAZP+E6z4CyGkV/zaMIeJ96FjqK9HakBrSonRpHrDQnJIXihAkT8PHHH8t+5uOPP2aDWQxMbGwssrKyuOLbYcOGwWKx6Lo+NykCFi7zRSAOndGmXRowYADn0vznP//hOlipVLmYUNQiJjFH8ffff+c66u+++457XauBLAC/M6frSJUKRWHxt5IaRSNNjwNci9VTjSJw7QZZW1uLhoYGLn6lQhFQl34Wu5FNmTKFe239+vWKtnP27Fnub+Ju/uMf/0CXLl3wwAMPoH///oq2IyYU6Rt5IAez6FmfqHQwHX28dAZC6fXlzahngC/M6NfpZfzKy8tFHUV/C0UtaxTpc4p2P4VCUcpRpO9RShxF0u4Wi4UTuSGZena5XB7TFUrTGXry3nvvYdCgQXj44YcVf+fkyZN49tlnMWrUKNxxxx14+OGHPYpmX6mursbbb7+N2bNnY9SoURg0aBB27dol+Xm73Y61a9fi3nvvRWZmJh5//HGPyynm5+fDZrPx3LxAQ25izZo14y5e4ii6XC5OeBnNUTSZTJyr6HK58N577wG4JhTNZjOvU6eFIhkB56tYA8QdRbpjpjs6rdZ5BhrjJzczen5VpTcy4VN4sK3MAvBTz0odRaCxfUj8noTioEGDuL/379+v+NhooUhE2oQJE7jj+Ne//qVoJLXQUQQaBzaePHkSH3zwgeI619jYWDehQt/I/V2jSIsPPR86lQ58oAWFN0JRzahnsd8jKiqK97vTI59PnDihKvVMP0gGKvUcEREh+6Ao9TtarVZFqWdaKCq5f9LtrmRdez3QtEZRjsuXLyu2xvWguLgYmzZtUpXuO3jwIKZNm4aysjI8/PDDePLJJ3HrrbfyLhR/UF5ejo0bN+L8+fO8VTmkWLp0KbZs2YI77rgDTz75JMxmM+bMmYOff/5Z9PN1dXVYvHgxJk2a5NPoV18hotBkMnEXHHmturqam7bAaI4iADz00EPcjXLNmjWoq6vjRFrTpk15N1EiFB0OB/e0LVdsrRQxR5HupOkpHmhH0dfUM71v+kam9KZOlxcIv+fJUSQDSQD9BrMA/A6fHDM9ZRGNUCiS+D0Jxc6dO6NVq1YAgAMHDiie4obcyCIjI7mHgvj4eEyaNAlA4wPLBx984HE75EZpNpt5qxZ5g9BVlHMU/Zl61tNRFJ73cpC4tRKKSmoUCYmJibz+i556Zvjw4by6bE+OIr3qCTmX5fBmrWeAP5dikyZNZB9ipM4pq9XK245U6pluRyVCkf48aUOjOYpej3oWTv1x5MgR0c85nU4UFxdjz549yMjI8HZ3fmfNmjXIyMiA0+nkPeVIUVVVhZdeegn9+/fHokWLVM3BZ7PZcPjwYQwePFj0/ZycHAwYMEDywk9OTsa2bduQnJyMEydO8NJGQvLy8rBnzx5MnToVDzzwAABgxIgRyMrKwtq1a7F27Vre5xsaGvDCCy+gTZs2vFo7vUlNTcWZM2dQXl6OqqoqQ454pmnXrh3GjBmDbdu24dKlS9i4cSN3zMInZzFRqIX4JZ1qQ0MDnE4nzGYzz1EkUzy0bNlSU0cRaOxsKyoqePvztuZSTY0iPemw0VLPUgMvhEKRiBVPQtFkMmHgwIHYunUrysvL8euvvypa1IA4iikpKbwb5pQpU7Bu3ToAjYNaHn/8cdkbKkk9p6Wl+ezQpqam4tixY9y/6XPF34NZWrRoAYvFgoaGBrf1341KdHQ0KisredeXv2sUCUIxPXXqVPz73//GyZMnYbPZ8MMPP3DvEaEYFRXFzQRAP6zS4xZoZ1IKJalnsYexiIgIdO3aFT///LNH8SbWT5nNZiQnJ8NsNqNdu3Y4c+YM96AtvEZoR1FqoJYUIecovvPOO9x/JpMJubm5vNfIf++++y527dqFpk2b4oknntDy2DUjNzcX+/btw4wZMxR/JycnB1euXMFjjz0Gs9mMmpoabki8J7Zt24b58+eLpot27NiBhQsXYvfu3ZLfj4qKUnwz37dvHyIiIjB69GjutejoaIwaNQrHjh3jXahk9ROTyYTs7GyfpkjRAlpA0Rd3QUGBJnMo+pvs7Gzu75dfflly8I2YUNRCrNE3UdKpCufqI0/FWq3KIrZvgrc1VGpqFOmbpREGswD80fliCIUiid+TUATUp5/r6+u5jIcw1dmnTx/069cPQGOfKDdApqKigiuT0GJWC28cxaioKE36qObNm2P9+vV46KGHMHfuXJ+35y1qsghi55K/p8eReq1t27b48ccfMXHiRLfP0tPH0CU2BK2EopKykjVr1uD+++/HmjVrZPch9tu2bNmSG1xF0tg2m0106WLiEEZERCiKiW53+gHTSHjtKK5evRpAYw3WU089hTvvvBMjR450+5zZbEbTpk3Rrl07n1e+8AcOhwOrV6/GqFGjeNNEeOLQoUOIi4tDSUkJnnvuOeTn5yM2NhbDhw/H9OnTZZ90J06ciOPHj2PhwoV4+eWXudGB+/btw4oVKzB8+HCMGTPG19AAAKdOnUJaWppbJ9S1a1cAjSshkJN5+fLlKC0txfLly0WfygINfcEKB7TQnaIRU88A0LdvXwwfPhxffvklr/BfiVDUQqwJO9WYmBg3oXju3Dn07dtX08EsgG83MuF31dQoyglFPWoUgWt1mkodRTFXQeq7wgEtnh52ychUQNztmDJlCle/vH79evTt21d0O3TaTWwtXbUIXR4poVhXV8edA1qknQmTJ0/G5MmTNdueN6iJJ1BCUewhXCw9n5CQgE2bNmHIkCGYMWMG6urq0KJFC15fEh8fj7KyMklHUUnqmb5uxYSiyWTiBJ2QAQMGYMCAAR73IfY70scmHNAi/O2IUExJSZE8Fhq6LenaZiPhtRro3bs393dWVhb69OnDey1Y+PTTT1FUVMSbKkQJFy5cgMPhQHZ2NkaNGoUpU6YgNzcXW7duRWVlJV588UXJ71osFsyfPx/PPPMMsrOzsWrVKtTU1GDRokW45ZZb8Oyzz2rm5pWWlore+MlrRCAUFhZix44diIqK4rmPr7zyimg6KycnBzk5ObyLXmtKS0u5G4hwihz6SdWojiIAPPfcc/jyyy95rylJPWs9Pxy5uYoJRUDbwSzCfROU3sjodgfU1SjS+zBC6hm49psrdRRJ/EocxZ49e6Jp06aoqKjAN998I5oKo/E0dcf999+Pv/71r6isrMS//vUvrF27VvRmJzaQxReEopX+/YTOODkHtBSKRkB43svhi1D0dtSz3GtAo0h77LHHcOutt+Kdd97B6NGjeeeOnKPYtGlTRe3pyVHU4gFQ7DhoZ1A4oKVPnz684yB1l0rTznS70w+Jnq7lQKKJbaT3k5i3lJeX4+2338ZDDz2kuoiZTKR7zz33YObMmQAaVyeor6/H9u3b8cgjj6Bt27aS34+OjsbSpUsxc+ZMzJkzB/X19ejatSsWLFigqZtXV1cnevGQC47cjFJSUlSNnMzMzERmZiZOnjzJLbHnT4RC0Shzn3li0KBBuP322/Htt99yrwmFrVhtkZY1ioB06pnc8LUezOLLjUxuW55qFOVSlnqlnglKHUWCEqEYERGB2267Dbt370ZhYSFOnz7NW95PiCehGB8fj0GDBmHnzp2orKxEaWmpqNNDO+T+EIpKUs+hJhTVIBa70hrFqKgoriYTaDyHpEYcK6lRFNK9e3esWLHC7XVaKBIRRISi0j7HU42iFvdOT0JRbi7FwsJCzrH3ZsYQuo+02+2aGAZaoHku2OFw4MqVKygqKhL9z0hs2LABCQkJGDt2rOrvkgYcNmwY7/XMzEwA4BVmSxEXF4dp06ahoqICNTU1mDFjhuYnRnR0NC/lRiAXmVFORDFoZ0uYejb6YBYaulYRUOYo+jqKFAheR1G4f09Csb6+nrtRyDmKeqWe5V4D3IUiiV/pfIF0naKn+RTFpsYRQt+06fOChnYU9apRDDWhqOa68+VBzGQy8dLPzZo1k3SuYmNj3Rxlbx9iyT4bGhq4diT9uNKpgQLhKJrNZrcHSSmhKJwiR+3UOAC/3Y26jJ9m1tXJkyexfv16HD16lDcCicZkMmHv3r1a7dIn8vPz8dlnn2HGjBk8N8Vut6OhoQGXLl1CXFycpAhJTk7G2bNn3eafIha+8IYsRkFBARYtWoR27drBbrfj+eefx+uvv66Jo0Mfp9h0PfS6vkalpqaGu3CEjiJt/xtdKI4cORJ9+vThZgZQUqOoxVRSYp2qsFRA6ChGRERo4maqEUpC6HYHxAWv8PMEowxmEbtpK3UUSfx0rHI3QGGd4iOPPCL5WfpGJnVzpvsEum+k0Tr1rKZG0dMo8mBFeN7L4atjT+oFAfk15U0mExITE7mBS4D3UwgJp8ih75FKRXIghCLQ+PvS25dLPdPQU90oTT3T7U63oZEGtGjiKJ46dQrTp0/HsWPH0K9fP7hcLnTs2BH9+vVDYmIiXC4XevXqheHDh2uxO00oKSmB0+nE6tWrMWHCBO6/vLw85OfnY8KECW5TANFcf/31AOAmwkjH6uliKikpwdNPPw2LxYKVK1dixYoVqK2txaxZsxRNdquUTp064cKFC25LLObl5XHvGxV6EmX6ort48SLvNzJy6hlo7Gyfe+457t/CkgQxoaj1/HByjqLL5eIeHJo3b67JoDNfbmTCZSM9OYr0uW2UGkVfUs8kftJm0dHRsrVK/fr147btqXxEyfJi9E1bylEkqeeIiAhNJuW3Wq28GKVqFP01mMUIqFkuVexcUvNwKXQU5RD2r746ikDjAyudYfR0DARPQlGrsi1hX0ULxdTUVG4/ckJR6XVBt7tRHUVNhOK7774LAFi3bh2WLl0KoPEp9+9//zu2bNmCe+65B2fPnjXUvHzp6elYsmSJ23/p6emwWq1YsmQJRo0aBaDx5nT+/HneUPihQ4cCAD7//HPedj///HNERETwClyF2Gw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp2r2UkyZMgQOBwObN++nXvNbrdj586dyMjIUDR8Xy/oG0dMTAzn3gbL9Dg0f/zjH/H3v/8d06dPx5///Gfee2JCUYuJf5XUKFZVVaG0tJQTBFqknQHfUs9CUeRJKP7+++/c3/SSWcGaeibx00JRjujoaG6t5t9//503ibEQrVPPbdu21eTmHBkZyauFlHIUq6uruWnIQk0oqhm4oIWjSPAk0oT9q1aOIi0U6cGJcniqUdTSUaSh75MWi4VzFc+cOcNbdc6b1LPwPkcwkqOoifz+5ZdfMGDAAF4Kgvx40dHReOqpp/Drr7/izTffxAsvvKDFLn0mKSmJl7IhfPTRRwD46Zzjx49j5syZyMrK4tI6Xbp0wV133YWdO3fC4XCgd+/eyM3Nxd69e/Hggw/KpnS3bduG4uJivPrqqzx3qXPnzli2bBlmzZqF3bt3495775XcBhldTTryAwcOcDeIsWPHch1BRkYGhg4divXr16OsrAxt2rThCt/1nDNMCcIbWZs2bXDlyhU3oWh0RxFo7Axmz54t+p6YUCSOtS8ocRQB4LfffuNS0lqVIvhyIxO2u6fOk15hqGfPntzfeg5m8SX1TOJXKhQB4MYbb+TqE48dOyY51Qi5kUVEREjenOmHBbHUc1lZGffQrEV9IiE1NZUTD1JCkc4khJpQVDM5s69Cke5z9HIUCwsLuX8rzWwFKvUs/C2F11OXLl1w5swZLg7iznuTeqY/Z9TUsyZCsaqqihesxWLhOWJmsxm9e/fGnj17tNidYZg9ezasVit27dqFb775BlarFdOnT8d9990n+72JEydi4MCBop1sz549sW7dOnTo0EF2G5s3b+ZdaPv37+fSTsOHD+ddlNnZ2bBarfjiiy9QWVmJDh064OWXXzb8dEaXLl3ipcfatGmDX375BXa7neciBYOjKIeYUNSik1DiKALgTaxsBEdR2O6eahRpoUhP5WS01LNSR5HEr0YoduvWjfv72LFjXMZDCHEUrVarZImBJ0dR6zkUCampqVwdr9TKLPQDYqgJReF5L4eWjqLUOs8EoTD0h6OoVOAFskaRRph569y5M3bt2gWg8UGbtJs3jiLd7kZNPWsiFJOSkng3oObNm+PChQu8zwiXXjIqr776qttrffr0Ea39sVgsXk3UarFYZJ/ElUz8vWXLFsX7i46OxrRp0zBt2jTF3zECwpVu6IeR48ePc38Hg6Moh1AoxsTEBGweRaBx8niCERxFYbt7chSPHj3K/d29e3fub6MJRaWOIolfjVCkl0cl9cdCHA4Hd3OWEySeHEWtp8Yh0DdW2lGk46cdxVAbzKJ0ZS/At+lxAN9Sz972t3JC0ZvpccTWevZXjaKYo0j47bffuOV4iaPYpEkTxQYG3e5GTT1rUqPYvn17/O9//+P+3aNHD/z444/49ddfATTWs+zduzdo1tFkGAPhxUrfSGg3VWoOsGBBKBSbNWvm9ZyDNEpGPQOBcxSVOkDC2OU6T6fTiV9++QVAYz9E38T0rFEUaz+p+Ombts1mc1vGSyuhWFxczN2U5NJinhxFrUc8E+hjkko90w86oeYoqrnmA1mjqJWjKDeYRel0YHrUKDZv3txtu7RQPHXqFPc3EYpt2rRRXHNKtxv9t5EcRU2E4q233oqff/6Ze/qcOHEiXC4Xpk+fjrvvvhuTJ09GZWUlHnzwQS12xwgThAJKzMqPi4tTtEySkRETimrWfZVC6Ci6XC5OKNK/Je3OaiUUtVw5wmKxcGlSoVA8e/YsF5NwBaFgcRQjIiI4YSS21rMSodisWTPOJZSaw1XJiGeAn4oUcxS1nkORQFwZANyypkD41CiqueZ9Ke0A9Bn1LOcoKn3g0KNGUWzAp9BRBBqvXfIgo2YmAPp3CWlH8Z577sHWrVu5E6hTp05YtWoVbr75ZiQmJuKmm27CsmXLeBPDMhieEN6kxFyQYE87A+JCUWr+OjUIO1V6xGjnzp25mw2d+tAq9ezLjUwYu8lk4rYnrFGUGsgCyA9mMdKoZ+CaK26z2bipu4hLojTFSuoUS0pKROdOVSoUo6KiuLRZIB3FIUOG4N///jcOHTrEc0jDpUZRzTWvp6PobU24lKMYFxen2D0TW+vZ4XBwg2f94SiKCcW2bdty1yURinR9opqBSXS7G3UwiyZC0WKxuNmzPXr0wCuvvIJNmzZh+fLluPXWW7XYFSOMEXtKC/aBLIC4UNQCoaNIp+2aNm0qWgpiBEdRbnvCzlNqIAsgnXq2WCx+X0NVzahngC8UAeWrstDQ4krMVVQyNQ5BuBY8DalRtFgsqm6ISrj55pt5biIgXaMYakJRDb7WKJLBTrGxsbjttttkP0v3sQkJCV5ncKQcRTVTtIkJRbqkxB81imLHZzabuZHaZ86cgcPh8GogixCjDmbRfAk/KQoKCvDSSy8FaneMEEA4Gi+cHEVPIxGVIHTUaKGYkJAg6gYZwVEUi11KKNIDWYSOolTq2d9pZ0Bd6hngC8VmzZrx5mxV+rvRI5/F6hSVrMpCIELx6tWrcDgc3Osul4tzFNu1a6d52YdY24dL6lnNNe/rg9iwYcOQl5eH33//3aNQo/tYX+Z3pR3FK1eucOe41WpVHLvJZOKua3I90yvB+cNRlJpqiqSf7XY7/ve//3k12TbAb/eQTj3LUVRUhFdeeQV/+tOf8OWXX/p7d4wQQphmbNWqldsTYyg4ilFRUbwbbvPmzUWngVGLnKMoJRSN4CiKxe7JUWzSpInblFJGE4pKUs8NDQ2oqKjgpokB+E6hHGocRU9CkTwwOJ1OnmgtKyvjxJqW9YkEsbaXGswSaqOe1VzzWjj2Xbt25U1QLwUtFH15MKcfiOmR81arVVXs5HwQcxQDlXoG3OsUvU0907EbNfXsk0/7888/46233sLJkycRERGBnj17YurUqWjXrh1qa2uxYcMGfPLJJ6ivr0eLFi0wadIkrY6bEQZUVVXxnmDNZjNat26N/Px87rVQEIomkwlxcXHcDbhZs2ZusXuD0FGkRzwnJCSIpriNMI+iWOxiNYqVlZU4c+YMgMZSF6G7JUxTBVIoept6BhpHJ9NTFvXt21fRPj2NfPYm9Qw01imSf9NzKPpjFguxtheu9UwINUdRzTUvjF34sKkldB/rS59EC0Vy3QKNQkxN7FFRUaiqqvKrUPSUegbchaK3jiIdu1FTz14LxZMnT+Lpp5/mNdJ3332HkydP4rXXXsO8efNw7tw5tGjRAhMnTsTdd98dkA6aEdqkpqbyhGIopJ4BuAlFLZBzFOPj491u9CaTSbN9C29kZrPZp/ohMUeRTIsDuKedAfc517QeGSmHt44i0CiAvRGKzZs3R0pKCgoLC0UdReJ4mEwmyXQagS5BKCkp4W6K9Py4wjXL/YWUwA41oagG4W+ixXRaUmjlKNKpZ3rBBLXLyAodRTr1rFWNIn2sUu57586dub9/++033oOYFjWKIeEofvDBB6ivr8eUKVO4NZF37NiBN998E9OnT8fVq1fx0EMP4cEHHwy5FAEjMIhdbMLXQsFRBNyX1PK2o6FRW6OYlJSkWUcrdiNTOoBELHbSgZJpfkwmk+yIZ8B4qWeljmJcXBwnFBMTExVNwE/IyMhAYWEhLl++jMuXL/OW6SM3MrESDiFCR5FAC0UtzlEhYtuUaq9QE4pqfk9h7P4Uim3atEFkZCTq6+s9rhgmB93H0bWmVqtVVeyBSD3fd999WLduHVJSUjBs2DDRzwgdRbp/VbrCDsBv95CbR/HXX3/FjTfeiEmTJiEpKQlJSUl48MEH0adPH1y5cgVPPPEE/vznPzORyPAaelJtgrBDCSVHkdCsWTPR2NWitkZRq4EsgG83MrHY6e2R9KPciGeg0cUk8y8GWiiqmXAb4AvFgwcPcqLupptuUjVCW2pAi9Pp5H5XJTcxqUm36fSa0kmS1SDW9lI3/1ATimqu+UAKxeTkZLz77ruYOnUq5s6d6/V2aJeOxmq1qoo9EEKxa9euyM/Px+HDhyXPs1atWnFGxalTp7hro2XLlqr6GDp2euS62CpaeuG1ULx69SpPUROuv/56AMDIkSO9PyoGA+CNtiQIa6tC1VEUi10tnhzFlJQU3me0qk8EfEuNicUuthwhPeK5R48eotsiNw4jpJ6VOorffvst97fStDNBqk6xpKSES9EpKbSXWsbP2zospYi1fUREhGj9XaiZEGqueeH5pWZqHG944IEHsGbNGp/aXCqrYLVaVcVO+ixyPftrxSVP02iZTCZOA507d44r7VA7ZRQde7t27bi/6TpOvfFaKDocDtmn5lBxehj6IXazDZfUsxZuiSdH0Ww28+oUtRSKvjgeYrHThe4ffPABXC4X5yi2a9dOshCenkojWFLP33//Pfe3WqFIO4p0naKaEc+AtKNIp5794ShKnfdibRZqjqKaeALpKGoFGbQnxGq1qoo9EDWKSiF1ii6XizsOtWJauFwgufZOnjyp0VH6TsDmUWQw1CK2hnOopp7JNBURERFISUnRZP1qT44iwF9ZwyipZ7HYJ0+ezP09a9YsfPnll1w8YmlnAu0+EOchEEJR7VrXdMz02rFaOYpqhaInRzEmJkazgU80Uue9L2uHBwtqrvlgFIqA+DKFVqtVVeyBSD0rRSyrqlYoCmMnWdmCggLeTBV64pP8/vLLL91G15GO5JlnnnH7vMlkwiuvvOLLLhlhxOXLl90uulBNPc+ZMwclJSUYMWIEmjdvjosXL/qc2hM6inSnQ+qFaKFolNSzWLuPGDECU6dOxdq1a1FTU4P77ruPe09sIAuB3Diqq6u51wIhFM1mM6Kjo3nTuSh1FAnNmzdXvURecnIyrFYrioqKeH2z2jnePDmKaWlpflndRqztgfBwFKViFyOQo561RCgUY2JikJCQgIKCAsWxk3PB6XTC4XAYTiiqTT0L271Lly44cOAAgMZBMjfeeKNvB6kBPgnFixcv8mpWaA4ePOj2mr+XzWKEPqHqKHbv3h07d+7UdJtGchS1uKkvX74c//nPf3Dy5EneqEklQrGqqsrtNX8TExOjeN4/MaHYt29fr/rMjIwMFBUVobi4GCUlJWjRooUmjqLNZuN+d3/UJ8oRDkJRDYGuUdQK4YAWq9Wq+hwXzo/qjyX8lKKFoyiEOIpAY/o5qIXi5s2btTwOBsMNsdRWQkICEhISONETKo6iEC3SekJHkZ6XiwgTWmTR84JpuW9AneMhFXuTJk2wadMm3Hrrrby6JLnUs5hQDNR8rjExMSgvL+f+rdZRFK55rJRu3bph7969ABrTz4MGDVItFGNiYhAXF4eqqirOUfT3iGdAuu3DQSiqueZDJfVM5lBUE7vwAdgfS/gpRazPVCsUhbHTQvG3337z7sA0xmuhqGTpHwbDF+gOgCY1NZUr9A1VoSgVuxqEHaqYULzrrruwZMkS1NXV4Z577vF5nwRfbmRysfft2xcLFizAc889x+2nU6dOkp8nNw56m4ESisKYvXEUvUFYpygUikpTY8nJyaiqquIcRX+PeAak215MZIfaqGc113ywCkUxRxFQF7uwX9Mz9ZyYmIhWrVqhuLiYe01t6lkYO+1SGmVACxvMwjAsUvNIkTVmLRaLXwrqjYAWc2hJjXo2m83cjcVsNiM7OxsLFizQtJP1xVH0FPvcuXMxfPhwAI3TdsgtXSYmCgOZeqZR6yh6KxTFRj7TNYpKV8Ig6efS0lK4XC6/j3gGpNs+HBxFNdd8sKaepRxFNbEbSSgC7ulntQ9Rwtg7duzIzf9qFKEY2IQ+g6EB2dnZKC4uxn333Sc6io7RiFSNYkJCgt/rhf3peERERGDXrl3Iy8vjpWnEELtxBDL1TKNGKLZs2dLrJfJoR/GLL77A/v37OUexRYsWiuMnNasOhwPl5eUBcRSlCAehqIZgHcwi5SiqQU4oBrpGEWgUimTu08jISJ8HBUZHRyM9PR1nzpzBb7/9xq1EpSdMKDIMi5SFP3DgQPz0008BPprAojZ9IYbFYoHZbIbT6eSNepZaIUFLhDd2NTcyJbGbzWZ0797d4+f0FIq+pJ69HcgCNAq81NRUFBQU4NSpUxg8eDD3npqlxYTL+AXCUZRq+3AQimqueZPJhKioKG6KmGARilKOoprYjVSjCPAdxdTUVM4NVIpY7F26dMGZM2dQWVmJS5cuaXI/8AWWemYYFrruI9zQKnZ6zjHaUfQ3JpOJ53qoualr2e5iNw4jpp6bNGnCu8F4O5CF8H//93+8dZ4Jam44wilyAuEoSrV9OMyjqPa8p+MPdqGoJnajpZ7pAS3eXBdisQtHPusNE4oMw6LFgI5gRavYyQ22traWcxQDIRTpfQPaDWZRS7Cknk0mE8/p9bY+kTB+/Hjk5+dzo8QJ/fv3V7wN4RQ5xFEkk8L7A6m217PWNFCoPe/p8ytYahRDbTALwBd13jjtYrEbbeQzE4oMwxJqoxrVoFXspFO9evUqXC4XgMAJRW8dDy3bXUxg6JF6joqK8phKptvFV6EINP6OkyZNwnfffYfc3Fxs374dzz//vOLvSzmKKSkpsgOIfEGq7YVtFhMTo3vdltaoPe9DyVFUEzt9LtTX1+u6hB/QWBM8fvx4tGzZEk888YTq74vFbrSRz6xGkWFYQmUybW/QKnbSCV25coV7zeiOopbtbhRHUUmatHPnzrh48SI6deqkeU1Sr169ZOebFIN2FC9duoSioiIA/qtPBKTbXkwohhpqz/tgFIpSjqKa2I3mKJpMJmzZssXrQSdisbPUM4OhEFaj6DukU3U4HNxrgRjMAnh/IwvFGkUljsm6deswd+5cvPbaa4Zwy2hH8ZdffuH+9ueIZ6U1iqEoFMOtRjEqKgpJSUkAgrtGkeDtNSsWe2pqKvdbsdQzg8HwK2ICxeiOopYYZdSzEqF4/fXXY9myZYpGcwcC2lE8evQo97c/HUUpwsFRVEuw1yi2atXKK3FlVKGoJSaTiUs/nz17lhvdrhdMKDIMC3naDEe0il1MFBm9RlHLdg+m1DPBKOc97SgeP36c+9ufQlEqdmGbhWL9stp2N8KDmFpoR5GeQ1FN7HLT4+hRo+grUrGT9LPD4cDvv/8ewCNyhwlFhmFxOp16H4JuaBW7URxFNUJJy3Y3ysosaoSNUc572lGkb8b+TD1LxR4OjqLadg/G1DPtKNJCUU3s9PUbCo6iVOxGqlNkQpFhWCoqKvQ+BN3QKvZgdBS1bHejpJ7VCBujnPdNmjQRPW5/OopSsYdDjaLadg/G1DPtntEDttTEHmqpZ6nYjTTymQlFBiOE0dNRNILjYZTUczCmSk0mk+hyZIFevg8ID0dRLUa4vtTSrVs33H333UhNTcVjjz3m1TZCTShKYaS5FIMvoc/wC3a7HStXrsShQ4dQWVmJ9u3bY/r06boW1vtrUt9gQKvYxURRoEY9e1tDpWW7G0UoqhE2RjrvW7RowVuRBfCvUJSKPRyEotp2HzZsGD766COkp6ejffv2/jkojTGZTNi+fbvbVDJqYg+1GkWp2OkVX5ijyDAEDocDKSkpeP3117Fz506MHz8e8+bNQ3V1tW7HVFpaqtu+9Uar2PV0FGlxqCY1pmW76zk9jtpRzwQjnfdCRzE5OdmvIk0q9nAQimrb/fHHH8fRo0fx888/B51AEo52VhN7qDmKUrE3bdqUW5udCUWGIYiNjUVWVhasVivMZjOGDRsGi8WC/Px83Y6J7gDCDa1i17NGccyYMTCbzejRowfv6dgTWra7niuzeOsoGum8FwpFf0+NIxV7OIx69qbde/bsGbAMgT9RE3uoCUW52En6+fLly7h69WqgDsmN4HoMEfDee+9hw4YNSE9Px7vvviv72SNHjmDmzJmi761duxbdunUDALz00kvYvXu35Ha2bt2Kli1bKt6eP6iursaHH36IvLw8HD9+HDabDfPmzcOdd94p+nm73Y633noLX375JWw2Gzp27IhHH30U/fr1k9xHfn4+bDabLvVIhEDd0I2IVrHr6SiOGzcOFy9eRIsWLWA2K38m1bLdjZJ69naJMr2hp8gB/F+fKBV7OAxmMVK7Bxo1scsJxWBzVgH52Lt06YKvv/4aQGOd4i233BKgo+ITfL/q/09xcTE2bdqkuoh37Nix6Nq1K+81uvMbPXq02zqrLpcLK1asQEpKClq2bKlqe/6gvLwcGzduhNVqRadOnXDkyBHZzy9duhRff/01xo8fj7S0NOzatQtz5szB6tWr0bNnT7fP19XVYfHixZg0aZKuT6vNmjXTbd96o1XsejqKgHf1dlq2ezCmno103gfaUZSKPRxSz0Zq90CjJna5tZ6D0VGUi104RQ4TiipZs2YNMjIy4HQ6UV5ervh7vXr1wpAhQyTf7969u9sAjp9//hm1tbW44447VG9PDJvNhsOHD2Pw4MGi7+fk5GDAgAGSIjg5ORnbtm1DcnIyTpw4gSlTpkjuKy8vD3v27MHUqVPxwAMPAABGjBiBrKwsrF27FmvXruV9vqGhAS+88ALatGmDrKwsVXFpTVFRka6Opp5oFbuejqK3aNnuRnEU1QgbI533gXYUpWIPB6FopHYPNGpiD7XUs1zsRCiazWZdl7QNyhrF3Nxc7Nu3DzNmzPDq+9XV1bynEE/k5OTAZDIhMzNTk+1t27YN8+fPx/79+93e27FjBxYuXCib/o6KihKdtkKMffv2ISIiAqNHj+Zei46OxqhRo3Ds2DEUFRVxrzudTixevBgmkwnZ2dmGWG+W4Rt6jno2AnoKxcTERO7vpk2bBmSfWhNoR1GKcBCKDGWEmlCUY9CgQcjLy0NNTQ1mz56t23EEnaPocDiwevVqjBo1Ch07dlT9/aVLl6KmpgYRERHo2bMnpk6dihtuuEHy8w0NDdi7dy+6d+/OjUDyZXsAMHHiRBw/fhwLFy7Eyy+/jJtuuglAo6hbsWIFhg8fjjFjxqiOTYxTp04hLS2Nt3QSAC5dfvr0aW6G/OXLl6O0tBTLly83RK0HfaMNN7SKXegoms1mw8+5pmW767kyS58+fTBu3Djk5eWpcueNdN4H2lGUil14HofiYBYjtXugURN7qNUoysWekJDgVtqmB0H3q3766acoKirCqlWrVH3PYrFg8ODB6N+/PxITE3Hu3Dls3rwZ06dPx5o1a3izoNMcPHgQ5eXlbmlnb7dHvjt//nw888wzyM7OxqpVq1BTU4NFixbhlltuwbPPPquZm1daWirqPpLXSkpKAACFhYXYsWMHoqKieO7jK6+8gl69erl9PycnBzk5OaisrNTkOBn+QSiUEhISwsop1tNRNJlM+OijjwKyL3/BHEWG0ZCbRzHUHEWjEFRCsby8HG+//TYeeugh1Quo9+jRAz169OD+ffvtt2PIkCGYPHky1q9fj+XLl4t+LycnBxaLBUOHDtVke4To6GgsXboUM2fOxJw5c1BfX4+uXbtiwYIFmj4V1dXVyd4s6+rqADQOOhBLhUuRmZmJzMxMnDx50usZ9j1RXl4eVmlSGq1iFzovRq9PBLRtdz2ForcY6bwPtKMoFXs4CEUjtXugURN7qK31HAztHlQ1ihs2bEBCQgLGjh2ryfbS0tJw++2348iRI3A4HG7vV1dX49tvv8XNN9+syBr3tD0hcXFxmDZtGioqKlBTU4MZM2ZonlKJjo4WnafJbrdz7zNCFzFHMZwIRqFoJGhHMS4uTrf0aDgIRYYywqlG0SgEjVDMz8/HZ599hnHjxqGkpASXLl3CpUuXOOv50qVLqhdVB4BWrVqhvr4etbW1bu99++23kqOdvdmekIKCAixatAjt2rVDSkoKnn/+eS4VrBXJycmiM7+T14SOgZEgtZPhiFaxB6OjqGW76zk9jrcY6bxPSEjgzqG0tDS/ly1IxR4O8ygaqd0DjZrYQ20Jv2Bo96ARiiUlJXA6nVi9ejUmTJjA/ZeXl4f8/HxMmDABGzduVL3dgoICREVFiRb4f/XVV4iNjcWAAQM02R5NSUkJnn76aVgsFqxcuRIrVqxAbW0tZs2a5ZXglaJTp064cOECqqqqeK/n5eVx7xsVPWei1xutYhc6MUZPcQDatrueK7N4i5HOe5PJhKeeegqxsbF48skn/b4/qdjDYWUWI7V7oFETe6g5isHQ7kEjv9PT07FkyRK31zds2IDq6mo8+eSTSE1NBQDU1taiqKgIiYmJXC1jWVmZW13j6dOnceDAAdxyyy1uK0eUlZXh0KFDyMzMFH16Vbs9GpvNhtmzZ6OmpgavvfYaWrVqBaBx1PHMmTMxd+5crFy5UpPRqUOGDMGHH36I7du3c/Mo2u127Ny5ExkZGYZ+miHp8XBEq9iD0VHUst2DMfVstPN+2bJlWLx4cUDcGqnYwyH1bLR2DyRqYg81oRgM7R40QjEpKQkDBw50e52MKqTfO378OGbOnImsrCw88sgjAIAXX3wR0dHR6N69O5o1a4Zz587hs88+Q0xMDB5//HG37e7ZswcOh0My7ax2ezTbtm1DcXExXn31VbRt25Z7vXPnzli2bBlmzZqF3bt3495775XcxtatW1FZWcmlkA8cOMBNyDl27FjOOcrIyMDQoUOxfv16lJWVoU2bNti9ezcKCwsxd+5c2ePUm2C86LVCq9iDsUZRy3YPxtSzEY8vUCk9qdjDQSgasd0DhZrYpYSiyWRCRESE5sfmb4Kh3YNGKPrKwIED8dVXX2HLli2oqqpCUlISBg0ahKysLNEpH3JyctCsWTNujkNft0czceJEDBw4EOnp6W7v9ezZE+vWrUOHDh1kt7F582YUFhZy/96/fz83ann48OG8FGN2djasViu++OILVFZWokOHDnj55ZfRu3dv2X3ojdJJxUMRrWIPRkdRy3YPRkeRnffuhEONImt3ZUjVKAZjfSIQHO0enL8sxauvvur2Wp8+fdymehk3bhzGjRuneLvCpe2EqN0ejcViERWJBCUTiW/ZskXx/qKjozFt2jRMmzZN8XeMQGFhYdguaaVV7MHoKGrZ7sEoFNl5H55L+LF2VxY7fU3X19dzjmIwOHNiBEO7B81gFgaDoZ5gdBS1REwUBqvzEM6Eg1BkKMNsNnPXMJ16DlahGAwwocgwLMG6Pq4WaBV7MI561rLdhTePyMhIw69Mw857d8Jh1DNrd+WQ8yEUhGIwtDsTigzDIjdyPNTRKvZgdBS1bHfhzcPoaWeAnfdihEONImt35dBCMdhrFIOh3Y1/hIywpaysTO9D0A2tYg/GGkUt2z0YhSI7790RtmMoCkXW7soJJUcxGNqdCUUGI4QJRkdRS8RSz4zgIyIigjf1SSgKRYZyQkkoBgNMKDIMC5mIPBzRKvZgdBS1bHdh/MHgKLLzXhy67UJRKLJ2Vw4RhbRQDNbUczC0OxOKDMNSXl6u9yHohlaxB6OjqGW7B2PqmZ334tBtF4qDWVi7K0esRjFYHcVgaPfglOCMsKCurk7vQ9ANrWIPxlHPWrZ7MApFdt6LQ8QhPT1KKMHaXTm0UHQ4HACCVygGQ7uH3tXGCBlC8WagFK1iD0ZHUct2D8YaRXbei0PEQUxMjOGnOPIG1u7KoYWi0+kEEBzXthjB0O7GP0JG2BIMtRv+gtUoakMwOorsvBcnLi4OQHC44t7A2l055DombiIQHIJLjGBod1ajyDAsBQUFeh+CbmgVO+0oRkREBMUgAC3bPRgHs7DzXpwZM2agadOmmDlzZgCPKHCwdleO2HUcrI5iMLR7cEpwBoOhCLrzTEhICMmUnRwREREwmUxwuVwAgvdmwgD+8pe/YOrUqUExQTHDv4SSUAwG2BXHMCzBkCb1F1rFbjKZuE41WH5PrY+TvoEEg6MYLO3kDzzFHsoikbW7ckJJKAZDu4fuVccIeoK15kQLtIy9efPmAIKjFgbQvt2DTSiy8z48YbErR+w6DtbfLxiOmwlFhmG5evWq3oegG1rG/ve//x233norFi1apNk2/YnW7U4LxWBwHdh5H56w2JUTSo5iMLS78aUsg8HwiQcffBAPPvig3oehG8HmKDIYDHlCSSgGA8xRZBiWli1b6n0IusFi1w76phIMQpG1fXjCYldOKAnFYGh3JhQZhsVms+l9CLrBYteOYHMUWduHJyx25YiJwmCo9RMjGNqdCUWGYamtrdX7EHSDxa4dwVajyNo+PGGxKyeUHMVgaHcmFBmGJSIiQu9D0A0Wu3YEm6PI2j48YbErJ5SEYjC0OxOKDMOSkpKi9yHoBotdO4JNKLK2D09Y7MoJpelxgqHdmVBkGJaLFy/qfQi6wWLXDvqmEgyuA2v78ITFrpxQchSDod2ZUGQwGCFNsDmKDAZDnlASisEAE4oMwxIXF6f3IegGi107gk0osrYPT1jsygkloRgM7c6EIsOwREdH630IusFi145gE4qs7cMTFrtyQqlGMRjanQlFhmG5cuWK3oegGyx27Qi26XFY24cnLHblhJKjGAztzoQig8EIaYJtZRYGgyFPKAnFYIAJRYZhadGihd6HoBssdu0IttQza/vwhMWunFASisHQ7kwoMgxLVVWV3oegGyx27Qi21DNr+/CExa6cUKpRDIZ2Z0KRYVhqamr0PgTdYLFrR7A5iqztwxMWu3LEHviC4SFQjGBodyYUGYbFbA7f05PFrh3BJhRZ24cnLHblhFLqORjaPTi9Woam2O12rFy5EocOHUJlZSXat2+P6dOno3v37roeV+vWrXXdv56w2LUj2AazsLYPT1jsygkloRgM7W58KcvwOw6HAykpKXj99dexc+dOjB8/HvPmzUN1dbWux1VQUKDr/vWExa4dwVajyNo+PGGxKyeUahSDod2ZUGQgNjYWWVlZsFqtMJvNGDZsGCwWC/Lz83U9LpfLpev+9YTFrh3BlnpmbR+esNiVE0qOYjC0e3BKcBW899572LBhA9LT0/Huu+/KfvbIkSOYOXOm6Htr165Ft27dvPqs1lRXV+PDDz9EXl4ejh8/DpvNhnnz5uHOO+8U/bzdbsdbb72FL7/8EjabDR07dsSjjz6Kfv36iX4+Pz8fNpsNbdq08VsMSmjSpImu+9cTFrt2pKenc39fd911mm7bH7C2D09Y7MoJJaEYDO0e0kKxuLgYmzZtQmxsrKrvjR07Fl27duW9JiWa1HxWK8rLy7Fx40ZYrVZ06tQJR44ckf380qVL8fXXX2P8+PFIS0vDrl27MGfOHKxevRo9e/bkfbaurg6LFy/GpEmTEB8f788wPKK23UIJFrt2ZGVloaysDO3bt0enTp003bY/YG0fnrDYlRNKQjEY2j2kheKaNWuQkZEBp9OJ8vJyxd/r1asXhgwZovlnCTabDYcPH8bgwYNF38/JycGAAQMkT6Dk5GRs27YNycnJOHHiBKZMmSK5r7y8POzZswdTp07FAw88AAAYMWIEsrKysHbtWqxdu5b7bENDA1544QW0adMGWVlZqmLyB6Wlpbq7mnrBYtcu9ri4ODz33HOabc/fsLZnsYcbamMPpRrFYGj3kK1RzM3Nxb59+zBjxgyvvl9dXY2GhgbNPwsA27Ztw/z587F//36393bs2IGFCxdi9+7dkt+PiopCcnKyon3t27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAgA4HQ6sXjxYphMJmRnZ8NkMimOh8FgMBiMQBFKjmIwEJwS3AMOhwOrV6/GqFGj0LFjR9XfX7p0KWpqahAREYGePXti6tSpuOGGG3z+LGHixIk4fvw4Fi5ciJdffhk33XQTgEZRt2LFCgwfPhxjxoxRfdxinDp1CmlpaYiLi+O9TtLlp0+fhtVqxfLly1FaWorly5cb5slMqRgORVjs4Us4x89iD0/Uxh5KQjEY2t0YikBjPv30UxQVFWHVqlWqvmexWDB48GD0798fiYmJOHfuHDZv3ozp06djzZo16PL/tXfnUU3d6RvAHwQJCCqIggsWQawVxWVEbS0oWGpdTq0Wl7ocD1oc6wbTal2YcUWrtqjHnlqstdZhxtal1nGnSo/VkW7aYnUArdaqKGFJBCSQAAn394eH/IgJSGIwubnP5xzOKd978837cDF9ueuzz1q0rqn3WbVqFd59910kJiZiy5YtUKvVSEpKwqBBg7B06VKr7dFTKpUmfxFrxxQKBfLz83Hs2DG4uroa7Hl8//330adPH5PzpqenIz09HSqVyip1mqLRaODm5tZk89szZpdmdkDa+Zmd2RvDkQ49i2G7i/Mn24DS0lLs2rUL06dPh5eXl1mvDQ0NRWhoqP778PBwREZGYsaMGdixYweSk5MtWtcUmUyG9evXIyEhAYsXL0Z1dTV69OiB1atXW/UXvrKy0uRfWrX/0CorK9G+fXuTh8EbEh0djejoaFy7dg2zZs2ySq2PKi8vN3sbOgpm97J1GTYj5fzM7mXrMmzC3OyOtEdRDNvd4c5R3LlzJ1q2bImYmBirzOfv74/w8HBkZmZCp9NZbV3g4Un2c+fOxYMHD6BWq7FgwQLIZDKr1F1LJpOhurraaLyqqkq/nIiISCwcqVEUA4dqFHNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDggdnz+vr6orq6GhqNxqrr5uXlISkpCc888wzat2+P5cuXQ6FQmF1fQ3x8fKBUKo3Ga8fatm1r1fezJnu/EqwpMbt0STk/s0uTudlNNYVibRTFsN0dqlFUKBSoqanB1q1bMWnSJP1XdnY2cnNzMWnSJOzevdvsefPy8uDq6tqo+x01dl2FQoF33nkHLi4u2Lx5MzZt2gSNRoOFCxda1MzWJzg4GHfv3kV5ebnBeHZ2tn65vZLL5bYuwWaYXbqknJ/Zpcnc7M7OzmjWzLB9Ees5imLY7uL8ydYjMDAQ69atMxrfuXMnKioqEB8fj44dOwJ4eAJpQUEBWrdurT8/oKSkxOhcgRs3biAjIwODBg0y+MU0Z91HlZWVYdGiRVCr1fjoo4/g6+sLAEhOTkZCQgKWLFmCzZs3W+VGnJGRkdi7dy+OHDmiv49iVVUVTpw4gZCQEPj5+T3xezSVmpoaW5dgM8wuXVLOz+zSZEl2V1dXgyN3Yt2jKIbt7lCNopeXFyIiIozGDxw4AAAGy3JycpCQkIDY2FjMnDkTALBy5UrIZDL06tUL3t7euHXrFo4ePQo3NzfMnj3bYE5z1n3UoUOHUFhYiA8//BCdO3fWj3fr1g0bNmzAwoULkZaWhnHjxtU7x8GDB6FSqfSHkDMyMlBYWAjg4dNiap+qEhISgqioKOzYsQMlJSXo1KkT0tLSkJ+fjyVLljRYp62J4Y71TYXZpUvK+ZldmizJ7iiNohi2u0M1ik8qIiICp0+fxv79+/VXIg0ZMgSxsbHw9/e3eN1HTZkyBREREQbPoK3Vu3dvbN++HUFBQQ3OsW/fPuTn5+u/P3funP7K5eHDhxs8fi8xMRF+fn745ptvoFKpEBQUhI0bN6Jv376P+5HY1KP3fpQSZpcuKedndmmyJPujF7SItVEUw3Z3EgRBsHURJF61t8f59NNP0b17d6vOfe/ePVGc6NsUmF2a2QFp52d2Zm+sTp06IS8vT/+9UqlEmzZtrF1akxPDdneoi1mIiIjI8TnKHkUxYKNIdkuMfx1aC7NLl5TzM7s0WZLdURpFMWx3Nopkt2pvCi5FzC5dUs7P7NJkSXZHaRTFsN3ZKJLdasrnSNs7ZpcuKedndmmyJPujjWJDt6SzZ2LY7uL8yRIREZFk1W0UmzdvDicnJxtW49jYKJLdqr05uhQxu3RJOT+zS5Ml2R9tFMVKDNudjSLZrYKCAluXYDPMLl1Szs/s0mRJ9rrNoZgbRTFsdzaKZLd0Op2tS7AZZpcuKedndmmyJHvdPYpifc4zII7tzkaR7Jabm5utS7AZZpcuKedndmmyJLujHHoWw3Zno0h2q2XLlrYuwWaYXbqknJ/ZpcmS7I7SKIphu7NRJLtVVFRk6xJshtmlS8r5mV2aLMnuKIeexbDd2SgSERGRqDjKHkUxYKNIdsvb29vWJdgMs0uXlPMzuzRZkt1RGkUxbHc2imS3tFqtrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbpWVldm6BJthdumScn5mlyZLsjvKOYpi2O5sFImIiEhUHGWPohiwUSS71aFDB1uXYDPMLl1Szs/s0mRJdkdpFMWw3dkokt0Sw20DmgqzS5eU8zO7ND3p7XHE3CiKYbuzUSS7JYaTfJsKs0uXlPMzuzQ96cUsYj5HUQzbnY0i2S2ZTGbrEmyG2aVLyvmZXZosyV53L6KY9yiKYbuzUSS75eXlZesSbIbZpUvK+ZldmizJ7iiHnsWw3dkokt0qKCiwdQk2w+zSJeX8zC5NlmR3lEZRDNudjSIRERGJiqOcoygGbBTJbrVu3drWJdgMs0uXlPMzuzRZkt1R9iiKYbuzUSS7JQiCrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbj148MDWJdgMs0uXlPMzuzRZkt1RGkUxbHc2ikRERCQqPEfx6WGjSHarffv2ti7BZphduqScn9mlyZLsjrJHUQzbnY0i2S2lUmnrEmyG2aVLyvmZXZosyd6vXz+0atUKABAZGWnlip4eMWx37q8lu1VdXW3rEmyG2aVLyvmZXZosyd6qVSv88ccfKCwsREhISBNU9XSIYbuzUSS7VffQgtQwu3RJOT+zS5Ol2du2bYu2bdtauZqnSwzbnY0ioaqqCps3b8bFixehUqnQpUsXzJ8/H7169bJpXW3atLHp+9sSs0uXlPMzuzQxu33jOYoEnU6H9u3bY9u2bThx4gQmTJiAZcuWoaKiwqZ15efn2/T9bYnZpUvK+ZldmpjdvrFRJLi7uyM2NhZ+fn5o1qwZXnrpJbi4uCA3N9fWpREREZENifLQc2pqKnbu3InAwED885//bHDdzMxMJCQkmFyWkpKCnj176r/PyclBWloaMjMzkZ+fj1atWqFnz56Ii4tD586dLZ7X2ioqKrB3715kZ2cjJycHZWVlWLZsGUaOHGm0blVVFT777DOcOnUKZWVl6Nq1K+Li4jBgwIB658/NzUVZWRk6derUZBkao/aKNilidumScn5mlyZmt2+iaxQLCwvx73//G+7u7ma9LiYmBj169DAYe7QR+uKLL3DlyhVERUWha9euUCqVOHToEOLi4pCSkoKgoCCL5rW20tJS7N69G35+fggODkZmZma9665fvx7fffcdJkyYAH9/f5w8eRKLFy/G1q1b0bt3b6P1KysrsXbtWkydOhWenp5NGeOxnJycbPr+tsTs0iXl/MwuTcxu30TXKH788ccICQlBTU0NSktLG/26Pn36PPZeSxMnTsSKFSsMbt45bNgwzJgxA3v27MHy5cstmreusrIy/Prrrxg6dKjJ5enp6XjxxRcbbIR9fHxw6NAh+Pj44OrVq/jrX/9qcr3s7Gx8++23mDNnDiZPngwAeOWVVxAbG4uUlBSkpKQYrK/VarFixQp06tQJsbGxjc7UVEpLS23erNoKs0szOyDt/MzO7FIjhuyiOkfx0qVLOHv2LBYsWGDR6ysqKqDVautdHhoaanSH986dO6NLly64ffu2xfPWdejQIaxatQrnzp0zWnbs2DGsWbMGaWlpDc7h6uoKHx+fx77X2bNn4ezsjDFjxujHZDIZRo8ejaysLBQUFOjHa2pqsHbtWjg5OSExMVEUf+UQERFR0xLNHkWdToetW7di9OjR6Nq1q9mvX79+PdRqNZydndG7d2/MmTMHzz333GNfJwgCiouL0aVLF6vMO2XKFOTk5GDNmjXYuHEj+vfvD+BhU7dp0yYMHz4cY8eONTufKdevX4e/vz88PDwMxmsPld+4cQN+fn4AgOTkZCiVSiQnJ9vNczNra5MiZpcuKedndmlidvtmHx1BIxw+fBgFBQXYsmWLWa9zcXHB0KFD8fzzz6N169a4desW9u3bh/nz5+Pjjz/Gs88+2+DrT58+jaKiIsycOdMq87q4uGDVqlV49913kZiYiC1btkCtViMpKQmDBg3C0qVLrbY3T6lUmtzzWDumUCgAPLw8/9ixY3B1dTXY+/j++++jT58+JudOT09Heno6VCqVVWo1paSkRPQ3U7UUs0szOyDt/MzO7FIjhuyiaBRLS0uxa9cuTJ8+HV5eXma9NjQ0FKGhofrvw8PDERkZiRkzZmDHjh1ITk6u97W3b9/Gli1b0LNnT4wYMcJq88pkMqxfvx4JCQlYvHgxqqur0aNHD6xevdqqe/MqKytNPiy99k7wlZWVAB4+lNzUofCGREdHIzo6GteuXcOsWbOevFgTauuTImaXLinnZ3ZpYnb7JopzFHfu3ImWLVsiJibGKvP5+/sjPDwcmZmZ0Ol0JtdRKpVYsmQJPDw8kJSUBGdnZ6vMW8vDwwNz587FgwcPoFarsWDBAshkMovy1Ecmk5l8jmRVVZV+uT0z1eRKBbNLl5TzM7s0Mbt9s/tGMTc3F0ePHsX48eOhUCggl8shl8tRVVUFrVYLuVyOBw8emD2vr68vqqurodFojJapVCosXrwYKpUKycnJZu0WbmjeuvLy8pCUlIRnnnkG7du3x/Lly/WHgq3Fx8cHSqXSaLx2zN53d9t7fU2J2aVLyvmZXZqY3b7ZfaOoUChQU1ODrVu3YtKkSfqv7Oxs5ObmYtKkSdi9e7fZ8+bl5cHV1dXoNjSVlZVYunQpcnNzsWHDhnovYjF33kczvfPOO3BxccHmzZuxadMmaDQaLFy40KKmtz7BwcG4e/cuysvLDcazs7P1y+2ZXC63dQk2w+zSJeX8zC5NzG7f7P4cxcDAQKxbt85ofOfOnaioqEB8fDw6duwIANBoNCgoKEDr1q315zKWlJQYndd448YNZGRkYNCgQWjW7P97ZZ1Oh1WrViErKwvvvfceevXqVW9d5sxbV1lZGRYtWgS1Wo2PPvoIvr6+AB5edZyQkIAlS5Zg8+bNZt9Q3JTIyEjs3bsXR44c0d9HsaqqCidOnEBISIhVrraqPb+iodsHWaqoqKhJL5axZ8wuzeyAtPMzO7NLjT1kDwgIgJubW73L7b5R9PLyQkREhNH4gQMHAMBgWU5ODhISEhAbG6u/SnnlypWQyWTo1asXvL29cevWLRw9ehRubm6YPXu2wZzbtm1DRkYGBg8ejLKyMpw6dcpg+fDhw/X/bc68dR06dAiFhYX48MMPDR4L2K1bN2zYsAELFy5EWloaxo0b1+DP5eDBg1CpVPrDyBkZGSgsLATw8Gkxnp6eCAkJQVRUFHbs2IGSkhJ06tQJaWlpyM/Px5IlSxqcv7FqH2i+du1aq8xHRERET8+nn36K7t2717vcSRAE4SnWYzXx8fEoLS01eNZz7fOX6zaKX331FU6fPo179+6hvLwcXl5e6N+/P2JjY+Hv728056VLl+p9z7pXBpszb11arRa5ubkIDAw0ufyPP/5AUFDQY2+RM3HiRH2T9qh9+/ahQ4cOAB7u8at91rNKpUJQUBDi4uIwcODABudvrJKSEvz888/o0KGD/mpqa7h9+zbWrl2Lf/zjHwgICLDavGLA7NLMDkg7P7MzO7Pbhuj3KNbnww8/NBrr16+f0W1exo8fj/Hjx1s8Z33MmbcuFxeXeptEAI2+mfj+/fsbtZ5MJsPcuXMxd+7cRq1vLi8vL4M9rdYWEBDQ4F86jozZpZkdkHZ+Zmd2qbH37HZ/MQsRERER2QYbRSIiIiIyiY0i2SUfHx/ExsaafASho2N2aWYHpJ2f2ZldasSSXbQXsxARERFR0+IeRSIiIiIyiY0iEREREZnERpGIiIiITGKjSEREREQmifaG2+SYqqqq9E+SKSsrQ9euXREXF4cBAwbYurTHqqiowN69e5GdnY2cnByUlZVh2bJlGDlypNG6t27dwkcffYQrV67AxcUFL7zwAubPn2/0/PCamhrs3bsX//nPf3D//n34+/tj2rRpiI6OtnjOppCTk4O0tDRkZmYiPz8frVq1Qs+ePREXF2fwqEpz6hRL9j///BOff/45rl27hvv378PNzQ0BAQGYPHkyXnzxRYvqFEv2R6WmpmLnzp0IDAw0eGoWAFy5cgXbt2/H77//Dg8PD0RFRWHWrFlo0aKFwXrmfAY0ds6mUPskMFNSUlLQs2dPs+sUS/Za165dw+eff44rV66gqqoKHTt2xKuvvmrwMApHzP7ee+8hLS2t3uUHDx5Eu3btzKrVnvPzqmeyK6tXr8Z3332HCRMmwN/fHydPnsTVq1exdetW9O7d29blNUgul2PSpEnw8/NDx44dkZmZabJRLCwsxJtvvglPT0/ExMRArVZj79698PPzwyeffILmzZvr1/3kk0+wZ88evPrqq3juuedw/vx5/PDDD1i5ciVeeukli+ZsCsuXL8eVK1cQFRWFrl27QqlU4tChQ1Cr1UhJSUFQUJDDZv/hhx9w8OBB9OzZE23btoVGo8HZs2dx+fJlLFq0CGPGjHHY7HUVFhZi2rRpcHJyQvv27Q0axevXr2POnDkICAjAmDFjUFhYiH379qFfv3744IMPDOZp7GeAOXM2hdpGMSYmBj169DBYNnDgQH2j7ojZAeDnn3/GsmXL0K1bNwwbNgzu7u64d+8eBEHAnDlzHDr7//73P+Tl5RmMCYKATZs2oX379khNTTW7VrvOLxDZiaysLCEiIkL44osv9GMajUZ44403hLfeesuGlTVOZWWloFAoBEEQhJycHCEiIkI4ceKE0XqbNm0SoqOjhfz8fP3YhQsXhIiICOHw4cP6scLCQiEqKkrYvHmzfqympkaYN2+e8PrrrwtardbsOZvK5cuXhaqqKoOxO3fuCC+99JKwZs0as+sUU3ZTtFqtMGPGDGHq1Kn6MUfPvnLlSiEhIUFYsGCBMH36dINlixYtEsaOHSuoVCr92NGjR4WIiAjhp59+0o+Z8xnQ2Dmbyq+//ipEREQIZ86caXA9R8yuUqmE1157TUhMTBR0Ol296zli9vr89ttvQkREhJCamqofc5T8PEeR7MbZs2fh7Oys3wMDPHxW9ejRo5GVlYWCggIbVvd4rq6ujbpx6tmzZzF48GD4+fnpx8LCwtC5c2ecOXNGP3b+/HlotVqMGzdOP+bk5ISxY8eiqKgIWVlZZs/ZVEJDQ432XnXu3BldunTB7du3za5TTNlNcXZ2hq+vL1QqlX7MkbNfunQJZ8+exYIFC4yWlZeX4+LFixg+fDg8PDz046+88grc3d0N6mzsZ4A5cz4NFRUV0Gq1RuOOmj09PR3379/HrFmz0KxZM6jVatTU1Bis46jZ65Oeng4nJyf96SGOlJ+NItmN69evw9/f3+AfAAD9YZ0bN27YoiyrKioqQnFxsckHwPfo0QPXr1/Xf3/9+nW4u7sjICDAaL3a5ebO+TQJgoDi4mK0bt0agONnV6vVKCkpwb1797B//3789NNP+Mtf/mJ2nWLLrtPpsHXrVowePRpdu3Y1Wn7z5k3odDqjOps3b45u3boZZW/MZ4A5cza19evXY8SIEXj55ZeRkJCAq1ev6pc5avaLFy/Cw8MDCoUCU6dOxSuvvIKRI0di06ZNqKysNLtOMWU3RavV4syZM+jVqxc6dOgAwLHys1Eku6FUKk3ukasdUygUT7skq1MqlQBQb84HDx6gqqpKv663tzecnJyM1gP+/+dhzpxP0+nTp1FUVIRhw4YBcPzs27Ztw5gxYzB58mR8/PHHiIiIwNtvv212nWLLfvjwYRQUFCAuLs7k8sfVWfffdWM/A8yZs6m4uLhg6NChiI+Px3vvvYc333wTN2/exPz58/H777+bXaeYst+9exc6nQ6JiYkYOHAgkpKSMGrUKBw+fBgbNmwwu04xZTfl559/RmlpKV5++WX9mCPl51XPZDcqKytNnnzv6uqqXy52tRkel9PV1bXRPw9z5nxabt++jS1btqBnz54YMWKE2XWKMfuECRMQGRkJhUKBM2fOQKfTobq62uw6xZS9tLQUu3btwvTp0+u9yvpxddZtZq2V/Wk0yKGhoQgNDdV/Hx4ejsjISMyYMQM7duxAcnKyw2ZXq9XQaDR47bXX9Fd+Dx06FNXV1Thy5AhmzpzpsNlNSU9Ph4uLC6KiovRjjpSfexTJbshkMv3/WOuq/eWXyWRPuySrq83QmJyN/XmYM+fToFQqsWTJEnh4eCApKQnOzs5m1ynG7AEBAQgLC8OIESOwceNGqNVqLF26FIIgOGz2nTt3omXLloiJial3ncfVWbeRtVb2p/lHUV3+/v4IDw9HZmYmdDqdw2avraHuFfgA9OfnZWVlOWz2R1VUVOD8+fMYOHCg/jQbwLF+79kokt3w8fHR71qvq3asbdu2T7skq6s9ZFBfzlatWun/sfv4+OD+/fsQHrmD1aM/D3PmbGoqlQqLFy+GSqVCcnKywTZz9OyPioyMxNWrV5Gbm+uQ2XNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDgwWPrfPR3pDGfAebM+bT5+vqiuroaGo3GYbPX1tCmTRuDcW9vbwBAWVmZw2Z/1Pnz56HRaAwOOwPm1Wrv+dkokt0IDg7G3bt3UV5ebjCenZ2tXy527dq1g5eXF65du2a0LCcnxyBjcHAwNBqNwVXDgPHPw5w5m1JlZSWWLl2K3NxcbNiwAV26dDFY7sjZTak9TKRSqRwyu0KhQE1NDbZu3YpJkybpv7Kzs5Gbm4tJkyZh9+7dCAwMhLOzs1Gd1dXVuH79ulH2xnwGmDPn05aXlwdXV1e4u7s7bPbaiymKiooMxmvPkfPy8nLY7I86ffo03N3djW6u70j52SiS3YiMjIROp8ORI0f0Y1VVVThx4gRCQkIMbgEiZkOHDsX3339vcLufX375Bbm5uQbnuISHh8PFxQWHDh3SjwmCgMOHD6Ndu3bo1auX2XM2FZ1Oh1WrViErKwurV682qK0uR8xeXFxsNKbVavHNN99AJpPpG2ZHyx4YGIh169YZfQUGBsLPzw/r1q3D6NGj4enpibCwMJw6dQoVFRX613/zzTdQq9UGdTb2M8CcOZtKSUmJ0diNGzeQkZGBAQMGoFmzZg6bvfY9jh8/bjB+/PhxODs7o1+/fg6bva6SkhJcvHgRQ4YMgZubm8EyR8rPi1nIboSEhCAqKgo7duxASUkJOnXqhLS0NOTn52PJkiW2Lq9RDh48CJVKpT80kJGRgcLCQgBATEwMPD09MW3aNHz33Xf429/+hvHjx0OtVuPLL79EUFCQwVNcfH19MWHCBHz55ZfQarXo0aMH/vvf/+Ly5ctYvny5/tw/AI2es6ls27YNGRkZGDx4MMrKynDq1CmD5cOHDzerTjFlT05ORnl5Ofr06YN27dpBqVTi9OnTuHPnDubNm6d/rJajZffy8kJERITR+IEDBwDAYFlcXBzmzZuHBQsWGDxNYsCAARg0aJB+PXM+Axo7Z1NZuXIlZDIZevXqBW9vb9y6dQtHjx6Fm5sbZs+e7dDZn332WYwaNQonTpyATqdD3759cenSJZw5cwbTpk3THwJ1xOx1ffvtt9DpdEaHnc2t1d7z8xF+ZFcqKyv1z7tUqVQICgpCXFwcBg4caOvSGmXixInIz883uWzfvn36e2z9+eefRs/nnTdvntE5PzU1Nfjiiy9w5MgRKJVK+Pv7Y+rUqfrGq67GztkU4uPjcenSpXqXnzt3zuw6xZL922+/xfHjx3Hz5k2UlpaiRYsW6N69O15//XWEh4dbVKdYspsSHx+P0tJSo2c9X758Wf982hYtWiAqKgqzZ882ej6tOZ8BjZ2zKXz11Vc4ffo07t27h/Lycnh5eaF///6IjY2Fv7+/RXWKJTvwcK/5v/71L5w8eRIKhQJ+fn4YN24cJk6caFGdYspea86cOcjLy8PXX39t8AecJbXac342ikRERERkEs9RJCIiIiKT2CgSERERkUlsFImIiIjIJDaKRERERGQSG0UiIiIiMomNIhERERGZxEaRiIiIiExio0hEREREJrFRJCIiIiKT2CgSEYlMfHw8hgwZYusyHuvkyZMYMmSI/mvVqlUWzbN9+3aDeXbt2mXdQomoXi62LoCISMrMbfjqPjdbLMLDwxEcHIygoCCLXh8WFgZXV1fk5+cjLS3NytURUUPYKBIR2VBsbKzR2FdffQWVSmVyGQD8/e9/h0ajadrCrCgiIgIjR460+PVhYWEICwtDZmYmG0Wip4yNIhGRDc2cOdNoLC0tDSqVyuQyAPDz82vqsoiIALBRJCISnfj4eFy6dMngMPTJkyexfv16LFu2DK1atUJqaipu3ryJli1bYtSoUZg5cyaaNWuGkydPYv/+/cjNzYWXlxdiYmIwefJko/cQBAEnTpzA8ePHcfPmTeh0OnTp0gVjx47F6NGjrZJDoVBgz549+PHHH1FUVARXV1e0adMGffv2xVtvvQVPT0+rvA8RWY6NIhGRAzl37hwuXLiAiIgIhIaG4ocffkBqaioEQYCnpydSU1MRHh6Ovn374ty5c0hJSYG3tzdGjBihn0MQBCQlJSE9PR3+/v6Ijo5G8+bNceHCBWzcuBG3bt3CvHnznqhOjUaDefPmIT8/HwMGDMCQIUNQXV0NuVyOU6dO4Y033mCjSGQH2CgSETmQn376Cdu2bUOPHj0APDy0PXnyZBw4cAAtWrTAZ599ho4dOwIA3njjDUyZMgV79+41aBSPHTuG9PR0jBo1CosWLYKLy8P/VVRXV2P58uXYt28foqOj0b17d4vr/OWXXyCXyzFhwgQsWLDAYFlFRYX+PYnItnh7HCIiBzJ8+HB9kwgALVq0wAsvvACNRoOxY8fqm0Tg4bmOoaGhuH37NrRarX7866+/hru7O95++22Dhq158+aYNWsWACA9Pd0q9cpkMqOxFi1awNXV1SrzE9GT4Z9sREQOJDg42GjMx8enwWU6nQ7FxcVo164dNBoNbt68ibZt22LPnj1G6+t0OgDAnTt3nqjOPn36wMfHB3v27MGNGzcwePBg9O3bFwEBAXBycnqiuYnIetgoEhE5EA8PD6MxZ2fnxy6r3aNYVlYGQRBQVFSE3bt31/s+T3p7Hk9PT2zfvh2fffYZvv/+e/z4448AAF9fX0ydOhXjxo17ovmJyDrYKBIRkV5tM9m9e3d8+umnTfpefn5+SExMRE1NDf744w9cuHABBw8exJYtW9CyZUtER0c36fsT0ePxHEUiItJr0aIFAgICcPv2bZSVlT2V92zWrBm6deuGKVOmYMWKFQCAjIyMp/LeRNQwNopERGRg/Pjx0Gg0+OCDD6BWq42W5+XlQS6XP9F7/Pnnn7h//77ReHFxMQDwYhYiO8FDz0REZGDMmDHIyspCWloarly5grCwMPj4+KC4uBh37txBdnY2VqxYgQ4dOlj8HhcuXEBKSgpCQ0PRuXNntGrVCnl5ecjIyICrqyvPUSSyE2wUiYjIgJOTExITE/H888/j2LFj+P7776FWq+Ht7Q1/f3/MnTsX/fv3f6L3GDhwIPLz8/Hbb7/h3LlzUKvVaNu2LYYNG4YpU6agS5cu1glDRE/ESRAEwdZFEBGR46n7WMGRI0c+8XyZmZlISEhAbGxsvc/BJiLr4jmKRETUpNavX48hQ4Zg1apVFr1++/btGDJkCBISEqxbGBE9Fg89ExFRkwgODkZsbKz++6CgIIvmCQsLM7i4pV+/fk9aGhE1Eg89ExEREZFJPPRMRERERCaxUSQiIiIik9goEhEREZFJbBSJiIiIyCQ2ikRERERkEhtFIiIiIjKJjSIRERERmcRGkYiIiIhMYqNIRERERCb9HxoZKDQ5ADtRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# LC in plot below is normalized to initial time. \n", + "analysis.get_raw_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2: Some available options for the standard binned anlaysis\n", + "In the previous step we saved the unbinned data to an hdf5 file with the read_tra method. Here we will load the unbinnned data from file instead of running read_tra again. We will also save the binned data to file, and make binning plots." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG/CAYAAABxMSLLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfCElEQVR4nO3deVxU5f4H8M+wiiyhA+ICl1AMQSMtl1xIyC0zSUNTu9w0lbwKZHq7Wqa3MstWuxKpKJWZJtivUCxxyXCvTNMkUByvycWSHZV9YOb8/uBymsOwzGrg+bxfr3nVPOc53/PMOTP07Xme8xyFIAgCiIiIiMgsNn92A4iIiIhuB0yqiIiIiCyASRURERGRBTCpIiIiIrIAJlVEREREFsCkioiIiMgCmFQRERERWQCTKiIiIiILYFJFREREZAFMqoiIiIgswO7PboCuM2fOYOHChU1uW79+Pfr27Su+z8jIwIYNG3Dx4kU4OzsjLCwMUVFR6Nixo2Q/tVqNDz/8EPv370dZWRl69eqFuXPnYtCgQXrHMDQmERERUWNtKqlqEBERgcDAQElZjx49xH9XqVRYtGgRfH19ERMTg4KCAiQnJ+Pq1at4++23JfutXr0ahw4dwtSpU+Ht7Y20tDQsWbIEa9euRXBwsEkxiYiIiBprk0nVPffcg9DQ0Ga3b9y4Ea6uroiLi4OzszMAoFu3bnjrrbdw8uRJDB48GACQlZWFgwcPYv78+ZgxYwYAYNy4cZg1axbWr1+P9evXGx2TiIiIqCltdk5VZWUl6urq9MorKipw6tQpjB07Vkx+gPpkycnJCenp6WLZ4cOHYWtri/DwcLHM0dEREyZMQGZmJvLz842OSURERNSUNtlTtXr1alRVVcHW1hbBwcGYP38++vTpAwC4fPkyNBoNAgICJPvY29ujd+/eUKlUYplKpYK3t7ckUQIgDi1eunQJXl5eRsVsrKioCMXFxeL7mpoaVFVV4Z577kGHDh1MOwFEREQWlJ+fj+vXr5sdx93dHV5eXuY36DbVppIqOzs7jBw5Evfffz/uuOMOXLlyBcnJyYiJicG6detw1113iQmMUqnU21+pVOLnn38W3xcXFzdbD6hPiBrqGRqzsdTUVGzevFmv3P5MZ9hU2LfwaVuhaKETUdC2vk9zdUxtQ1uMd6tiN3ecW3mstn7+zT2OoefVmvVMPSe36ry2RW3hN92ezn8zbT2g/dyqh83Pz8ffIiNQXWP+4FSHDh3w6aefMrFqRptKqu6++27cfffd4vsRI0YgNDQUTz31FDZu3Ih33nkHNTU1AOp7kRpzcHCAWq0W39fU1DRbr2G77j8NidlYeHg4hg8fLr7PycnBqlWrWvycREREt8r169dRXWODF2Ovw7eH/rQaQ+X8ZofX3nfH9evXmVQ1o00lVU3x9vbGiBEjcOTIEWg0Gjg6OgIAamtr9eqq1WoxYQLq5081V69hu+4/DYnZmIeHBzw8PIz4RERERLeeT49a+PfU/++cobQQLNia21ObT6oAoEuXLqitrUV1dbU4RKc7j6lBcXGxJMFRKpUoLCxssh4Asa4xMYmIiNojraCFxowhUm1bH15tA9rs3X+6fv/9dzg4OMDJyQl+fn6wtbVFdna2pE5tbS1UKhX8/f3FMn9/f1y9ehUVFRWSullZWeJ2AEbFJCIiao+0EMx+UcvaVFLV1J0Jly5dwvHjxzFo0CDY2NjAxcUFAwcOxP79+1FZWSnW27dvH6qqqhAWFiaWhYaGQqPRIDU1VSxTq9XYs2cPgoKCxDFhY2ISERERNaVNDf+99NJLcHR0RL9+/dCpUydcuXIFu3fvRocOHTBv3jyx3ty5cxEdHY3Y2FiEh4eLq58PGjQIQ4YMEesFBQUhLCwMGzduxPXr19GjRw/s3bsXeXl5WLp0qeTYhsYkIiJqjwQI0ML0ITyBPVWtalNJVUhICA4cOIAdO3agoqIC7u7ueOCBBzBr1ix4e3uL9QICArBmzRps2LAB77//Pjp27IgJEyZIEq8Gy5Ytg5eXF/bt24fy8nL07NkTb775Jvr37y+pZ0xMIiKi9kYDARrB9MRIw6SqVW0qqZoyZQqmTJliUN3g4GCsW7eu1XqOjo5YsGABFixYYLGYRERERI21qaSKiIiIrEMwc7I5h/9ax6SKiIhIBjQQzBrC4/Bf69rU3X9ERERE7RV7qoiIiGSAw3/Wx6SKiIhIBjQCzLv7jzlVqzj8R0RERGQB7KkiIiKSAQEwY+lPcPDPAEyqiIiIZIB3/1kfkyoiIiIZ0ArmzYvSMqdqFedUEREREVkAe6qIiIhkQAvz5lSZs69cMKkiIiKSAS0U0EBh1v7UMg7/EREREVkAe6qIiIhkQCuYN9mcE9Vbx6SKiIhIBrSAmcN/1BoO/xERERFZAHuqiIiIZEBj5kR1c/aVCyZVREREMiAICmgF0xMjwYx95YLDf0REREQWwJ4qIiIiGeDwn/UxqSIiIpKB+sU/TR+g4uKfrWNSRUREJANamDeniklV6zinioiIiMgC2FNFREQkA3z2n/UxqSIiIpIBjWADjWD6AJU5+8oFzxARERGRBbCnioiISAYEKKA1oy9F4PBfq5hUERERyQDXqbI+Dv8RERERWQB7qoiIiGRAa+ZEdS0nqreKSRUREZEMaGHesghayzXltsW0k4iIiMgC2FNFREQkA1rYQAPBrP2pZUyqiIiIZKB+TpUZSRXnVLWKSRUREZEMaM1cp4qPqWkd004iIiIiC2BPFRERkQxoBQU0ghl3/5mxr1wwqSIiIpIBDWygMXN/Y1VWViIpKQlZWVk4f/48ysrK8MILL2D8+PFiHa1Wi3379uHw4cNQqVQoKytDt27d8OCDD2L69OlwdHTUi/vVV18hKSkJeXl58PT0xJQpUxAREaFXr7CwEPHx8fjxxx+h1WoxYMAAxMbGonv37ibHbAmH/4iIiMgqbty4gc2bNyMnJwf+/v5N1qmursbq1atx48YNPProo4iNjUVgYCA+/vhjLFmyBEKjyfW7du3CW2+9BT8/PyxcuBD9+vXD2rVrsW3bNkm9yspKLFy4EGfPnkVkZCRmz54NlUqF2NhY3Lhxw6SYrWFPFRERkQwIUJh1B58pD1RWKpVISUmBUqnEhQsX8PTTT+vVsbe3xwcffIC7775bLJs4cSK6du2Kjz76CKdPn8bAgQMBADU1NUhMTMTQoUPx6quvinW1Wi22bNmC8PBwuLq6AgB27tyJq1evIiEhAYGBgQCAIUOGYNasWUhOThbbYkzM1rCnioiISAbqh//MexnLwcEBSqWyxTr29vaShKpBSEgIACAnJ0cs++mnn3Djxg1MmjRJUnfy5MmoqqrCd999J5YdOnQIffr0ERMqAPD19cW9996L9PR0k2K2hkkVERERGSwnJwfZ2dniq6ioyCrHKSkpAQDccccdYplKpQIA9OnTR1I3ICAANjY2uHjxIoD6eVqXL1/WqwcAgYGB+O2331BZWWlUTENw+I+IiEgG6u/+M29/AFi1apWkfNasWZg9e7Y5TWvS9u3b4ezsjCFDhohlxcXFsLW1RadOnSR17e3t4ebmhuLiYgDAzZs3oVarm+wlaygrKirCX/7yF4NjGoJJFRERkQzUL/5p/gOVly9fDl9fX7G8teE9U3z66ac4deoUFi9eLJnPVFNTAzu7plMXBwcH1NTUiPWA+sSoqXq6dQyNaQgmVURERGQwX19fBAQEWC3+wYMHkZiYiAkTJujNc3J0dERdXV2T+6nVanH5hYZ/1tbWNllPt46hMQ3BOVVEREQyUP/sP9Nft+LZfz/++CNef/11DB06FP/4xz/0tiuVSmg0GpSWlkrKa2trcfPmTbHXzM3NDQ4ODk0O3TWUeXh4GBXTEEyqiIiIZKBh+M+clzVlZWVh+fLlCAgIwCuvvNLkkFzv3r0BABcuXJCUX7hwAVqtVtxuY2ODnj176tVrOE737t3RsWNHo2IagkkVERGRDNRPVDenp8p6SdWVK1ewdOlSdO3aFW+++WazQ2733nsv3NzcsGvXLkn5rl270KFDBwwdOlQsGzlyJC5cuCBJlv773//izJkzCA0NNSlmazinioiIiKzmiy++QHl5uTjsdvz4cRQUFAAAIiIiYGNjg+eeew5lZWWYPn263rpQ3bt3R79+/QDUz3+aM2cO3nvvPfzrX//C4MGD8fPPP2P//v2IioqCm5ubuN/kyZPx1VdfYenSpZg+fTpsbW2xY8cOdOrUCdOnTxfrGROzNUyqiIiIZKB+AU/Te5s0EPDHPYCGS05ORl5envj+yJEjOHLkCABg7NixACAmWQkJCXr7P/TQQ2JSBdQnS3Z2dkhOTsbx48fRpUsXxMTEYOrUqZL9OnbsiLVr1yI+Ph5btmwRn/0XExMDd3d3SV1DY7aGSRUREZEMCILCrCE8wcQ1rnbs2NFqnYYky1ATJ07ExIkTW63XpUsXrFy50qIxW8I5VUREREQWwJ4qIiIiGdBAYdLz+/7Y3/ihP7lhUkVERCQDAsxba8qMJ9zIBof/iIiIiCyAPVVEREQyUD/8Z87df9Zd/PN2wKSKiIhIBurv/jNj+M/U2/9khMN/RERERBbAnioiIiIZ4PCf9TGpIiIikgFBMPPuPw7/tYpJFRERkQxo/vdAZdP35zpVrWnTSdWWLVuQmJgIPz8/fPLJJ5JtGRkZ2LBhAy5evAhnZ2eEhYUhKioKHTt2lNRTq9X48MMPsX//fpSVlaFXr16YO3cuBg0apHc8Q2MSERERNdZmJ6oXFBRg69atcHJy0tumUqmwaNEiVFdXIyYmBhMmTMDu3bvx0ksv6dVdvXo1duzYgTFjxuCZZ56BjY0NlixZgnPnzpkck4iIqL0RoIDWjJfAOVWtarM9VevWrUNQUBC0Wi1u3Lgh2bZx40a4uroiLi4Ozs7OAIBu3brhrbfewsmTJzF48GAAQFZWFg4ePIj58+djxowZAIBx48Zh1qxZWL9+PdavX290TCIiovZII9iYOfzXZvth2ow2eYbOnj2Lw4cPIzY2Vm9bRUUFTp06hbFjx4rJD1CfLDk5OSE9PV0sO3z4MGxtbREeHi6WOTo6YsKECcjMzER+fr7RMYmIiIia0uaSKo1Gg7Vr12LChAno1auX3vbLly9Do9EgICBAUm5vb4/evXtDpVKJZSqVCt7e3pJECQACAwMBAJcuXTI6JhERUXskQAGtYPqLw3+ta3PDf7t27UJ+fj7ee++9JrcXFxcDAJRKpd42pVKJn3/+WVK3uXoAUFRUZHTMxoqKisT9ASAnJ6fZukRERH+W+nWqzBj+Y1LVqjaVVN24cQMfffQRnnzySbi7uzdZp6amBkB9L1JjDg4OUKvVkrrN1dONZUzMxlJTU7F58+ZmtxMREZE8tKmkKjExEa6uroiIiGi2jqOjIwCgtrZWb5tarRYTpoa6zdXTjWVMzMbCw8MxfPhw8X1OTg5WrVrVbH0iIqI/g/C/YTxz9qeWtZmkKjc3F7t370ZsbKw4LAfUJzV1dXW4du0anJ2dxSE63SG3BsXFxfDw8BDfK5VKFBYWNlkPgFjXmJiNeXh4tLidiIioLdDCBlozhv/M2Vcu2swZKioqglarxdq1azFt2jTxlZWVhdzcXEybNg2bN2+Gn58fbG1tkZ2dLdm/trYWKpUK/v7+Ypm/vz+uXr2KiooKSd2srCxxOwCjYhIRERE1pc30VPn5+eG1117TK09MTERlZSWeeeYZdO/eHS4uLhg4cCD279+PmTNniqud79u3D1VVVQgLCxP3DQ0NRVJSElJTU8V1qtRqNfbs2YOgoCB4eXkBgFExiYiI2iOtUP+oGnP2p5a1maTK3d0dISEheuWff/45AEi2zZ07F9HR0YiNjUV4eDgKCgqQnJyMQYMGYciQIWK9oKAghIWFYePGjbh+/Tp69OiBvXv3Ii8vD0uXLpUcx9CYRERE7ZHWzDlV5uwrF20mqTJGQEAA1qxZgw0bNuD9999Hx44dMWHCBMybN0+v7rJly+Dl5YV9+/ahvLwcPXv2xJtvvon+/fubHJOIiKi90Qo20JqxKro5+8pFm0+q4uLimiwPDg7GunXrWt3f0dERCxYswIIFC1qta2hMIiIiosbafFJFRERE5tNCYdYCnlou/tkqJlVEREQyoBXMmxfFieqt4wApERERkQWwp4qIiEgGBJg3UV1gP0yrmFQRERHJgBYKs+ZFcU5V65h2EhEREVkAe6qIiIhkQCsozFxRnT1VrWFSRUREJAP1K6qbs/gnk6rWcPiPiIiIyALYU0VERCQDfPaf9TGpIiIikgHBzLv/BN791yomVURERDLAnirr45wqIiIiIgtgTxUREZEMCDDv7j8O/7WOSRUREZEMcPjP+jj8R0RERGQB7KkiIiKSAT77z/qYVBEREcmAYObwn2DCvpWVlUhKSkJWVhbOnz+PsrIyvPDCCxg/frxe3StXriA+Ph4ZGRmws7PD0KFDERMTA3d3d0k9rVaLpKQk7Ny5EyUlJfD29kZkZCRGjx59S2K2hEkVERERWcWNGzewefNmeHl5wd/fH2fOnGmyXkFBAWJjY+Hi4oKoqChUVVUhKSkJly9fRkJCAuzt7cW6mzZtwrZt2zBx4kT06dMHx44dw8qVK6FQKDBq1CirxmwNkyoiIiIZ0ArmTTbXCsbvo1QqkZKSAqVSiQsXLuDpp59ust7WrVtRXV2NxMREeHl5AQACAwOxePFipKWlITw8HABQWFiI5ORkTJ48GYsWLQIAPPLII4iNjcW6desQGhoKW1tbq8VsDSeqExERyUDD8J+pL1OG/xwcHKBUKlutd/jwYQwbNkxMfgBg4MCB8PHxQXp6ulh27Ngx1NXVYfLkyWKZQqHApEmTUFhYiMzMTKvGbA2TKiIiIjJYTk4OsrOzxVdRUZFZ8QoLC1FaWoqAgAC9bYGBgVCpVOJ7lUoFJycn+Pr66tVr2G6tmIbg8B8REZEMaKGAwpzhv//d/bdq1SpJ+axZszB79myT4xYXFwNAkz1aSqUSN2/ehFqthoODA4qLi9GpUycoFAq9egDEBM8aMQ3BpIqIiEgGtFBAYYElFZYvXy7p1TFkeK8lNTU1ACCZON7AwcFBrOPg4ICamppW61krpiGYVBEREcmApZZU8PX1bXJYzVSOjo4AgNraWr1tarVaUsfR0dHgepaOaQjOqSIiIqI/TUNPV8OQna7i4mK4ubmJvUZKpRIlJSUQBEGvHgB4eHhYLaYhmFQRERHJgDl3/pn73MCWeHp6wt3dHdnZ2Xrbzp8/D39/f/G9v78/qqurkZOTI6mXlZUlbrdWTEMwqSIiIpIBQTAvsRJMWKfKUCNHjsSJEyeQn58vlp0+fRq5ubkICwsTy0aMGAE7OzukpKTofC4Bu3btgqenJ/r162fVmK3hnCoiIiKymi+++ALl5eXicNrx48dRUFAAAIiIiICLiwsiIyNx6NAhPPvss5gyZQqqqqqwfft29OzZU/JImy5dumDq1KnYvn076urqEBgYiKNHj+LcuXNYsWKFZJFOa8RsDZMqIiIiGdAK5i2pYMrinwCQnJyMvLw88f2RI0dw5MgRAMDYsWPh4uICLy8vxMXFIT4+HgkJCeJz+qKjo8W5Tw3mzZsHV1dXpKamYu/evfD29sby5csxZswYST1rxGyNQmg8M4vMkp2djaioKNif6QybCv1bNA2maGFkVtC2vk9zdUxtQ1uMd6tiN3ecW3mstn7+zT2OoefVmvVMPSe36ry2RW3hN92ezn8zbT2g/dyqh23475Li6b5QdHM2OY5wrQLCxkxs2rTJonf/3U44p4qIiIjIAjj8R0REJAMCFBDMWPwTZu0rD0yqiIiIZEArKABzlkUQFBzeagXPDxEREZEFsKeKiIhIBgQBZvZUWawpty0mVURERDJgieE/w1dskicmVURERHIgKExeawqAWWtcyQXnVBERERFZAHuqiIiIZEALM3uquKRCq5hUERERyYAgwLyHInOieqs4/EdERERkAeypIiIikgEBCmjNGMKz4fBfq5hUERERyUD98J/piZFZQ4cyweE/IiIiIgtgTxUREZEMaAVF/QKgpuI6Va1iUkVERCQD5t79x+G/1nH4j4iIiMgC2FNFREQkC+Yt/gne/dcqJlVEREQyIJj57D/zEjJ5YFJFREQkA+ZOVOcDlVvHOVVEREREFsCeKiIiIhng3X/Wx6SKiIhIDsxcUZ0PVG4dh/+IiIiILIA9VURERDIgmLmkgsAlFVrFpIqIiEgGBJg3gsfRv9Zx+I+IiIjIAthTRUREJANc/NP6mFQRERHJAcf/rI5JFRERkQywp8r6OKeKiIiIyALaVE/Vr7/+io8//hjZ2dkoKSlBhw4d4OvrixkzZmD48OGSuleuXEF8fDwyMjJgZ2eHoUOHIiYmBu7u7pJ6Wq0WSUlJ2LlzJ0pKSuDt7Y3IyEiMHj1a7/iGxiQiImp3zFxRncN/rWtTSVVeXh4qKyvx0EMPwcPDA9XV1Th8+DBeeOEFPPfccwgPDwcAFBQUIDY2Fi4uLoiKikJVVRWSkpJw+fJlJCQkwN7eXoy5adMmbNu2DRMnTkSfPn1w7NgxrFy5EgqFAqNGjRLrGROTiIioveE6VdbXppKqoUOHYujQoZKyxx57DFFRUdixY4eYVG3duhXV1dVITEyEl5cXACAwMBCLFy9GWlqaWK+wsBDJycmYPHkyFi1aBAB45JFHEBsbi3Xr1iE0NBS2trZGxSQiIiJqSpufU2Vra4suXbqgvLxcLDt8+DCGDRsmJj8AMHDgQPj4+CA9PV0sO3bsGOrq6jB58mSxTKFQYNKkSSgsLERmZqbRMYmIiNolAYCgMOP1Z3+Ats+gnqrs7GyzDvKXv/wFTk5OBtevqqpCTU0NKioqcPz4cfzwww8ICwsDUN/7VFpaioCAAL39AgMD8f3334vvVSoVnJyc4Ovrq1evYXtwcLBRMRsrKipCcXGx+D4nJ8fgz0lERHSrCGbOqTJrPpZMGJRUPf3001AoTB9Lfffdd3HfffcZXP+DDz5AamoqAMDGxgYPPPCAOHzXkMAolUq9/ZRKJW7evAm1Wg0HBwcUFxejU6dOem1v2LeoqMjomI2lpqZi8+bNBn82IiIiuj0ZPKdq4sSJCAoKMip4ZWUl3n//faMbNXXqVISGhqKoqAjp6enQaDSora0FANTU1ABAkxPHG5KempoaODg4oKamptV6xsZsLDw8XHJnYk5ODlatWmX4hyUiIroVuPin1RmcVAUHB2PMmDFGBb9x4wbi4uKMbpSvr684ZPfQQw9h8eLFeP7555GQkABHR0cAEJMsXWq1GgDEOo6OjgbXMzRmYx4eHvDw8DD8wxEREf0JuPin9Rk0UX3VqlXo37+/0cGdnZ2xatUq+Pv7G72vrtDQUFy4cAG5ubniEJ3uPKYGxcXFcHNzE3uUlEolSkpKIDQaCG7YtyEZMiYmERERUVMMSqpCQkLg6elpdHA7OzuEhITgjjvuMHpfXQ3Dc+Xl5fD09IS7u3uTk+fPnz8vSeD8/f1RXV2tN3k8KytL3A7AqJhERETtlmDGi1pl8JIKUVFR+Pzzz5vszbGU0tJSvbK6ujrs27cPjo6OuPPOOwEAI0eOxIkTJ5Cfny/WO336NHJzc8W7BAFgxIgRsLOzQ0pKilgmCAJ27doFT09P9OvXTyw3NCYREVF71DD8Z87LWLm5uXj55ZcRERGBMWPGIDIyEps3b0Z1dbWkXkZGBqKjozFmzBhMmjQJa9euRWVlpV48tVqN9evXY/LkyRg9ejTmzZuHH3/8scljGxrTkgyeU1VSUoL4+HisW7cO9957L8aMGYMHHngAHTt2tFhj3nnnHVRUVOCee+6Bp6cniouLceDAAfz3v/9FdHS0eKzIyEgcOnQIzz77LKZMmYKqqips374dPXv2xPjx48V4Xbp0wdSpU7F9+3bU1dUhMDAQR48exblz57BixQpx4U9jYhIREbVLt3iien5+PubNmwcXFxdMnjwZbm5uyMzMxEcffYTs7GysXr0aQP3yRosWLYKvry9iYmJQUFCA5ORkXL16FW+//bYk5urVq3Ho0CFMnToV3t7eSEtLw5IlS7B27VoEBweL9YyJaUkGJ1VffPEFzp49iwMHDuDIkSM4deoU1qxZg2HDhmHMmDEYMmQI7OzMW6D9wQcfxNdff41du3bhxo0b6NixIwICAvD3v/8dI0aMEOt5eXkhLi4O8fHxSEhIEJ/TFx0drTf3ad68eXB1dUVqair27t0Lb29vLF++XG/SvTExiYiIqGX79+9HeXk5PvjgA/j5+QGov2Neq9Vi3759KCsrg6urKzZu3AhXV1fExcXB2dkZANCtWze89dZbOHnyJAYPHgygfurOwYMHMX/+fMyYMQMAMG7cOMyaNQvr16/H+vXrxWMbGtPSjMqC+vfvj/79+2PRokX44Ycf8M033+DEiRM4dOgQXF1dERoaitGjR+Oee+4xqTGjRo2SPI+vJX5+fnj33XdbrWdjY4PIyEhERkZaLCYREVH7o/jfy5z9DVdRUQEA6NSpk6RcqVTCxsYGdnZ2qKiowKlTp/D444+LyQ9Qnyy9//77SE9PFxOgw4cPw9bWVvLYOEdHR0yYMAEbN25Efn4+vLy8jIppaSZ1LdnZ2WH48OEYPnw4qqurceTIEXzzzTfYs2cPdu/ejS5dumD06NF4+umnLd1eIiIiMoWFhv8a3/ylVCqbXFpowIAB+Oyzz/Dmm29i9uzZcHNzwy+//IJdu3YhIiICTk5OyMjIgEaj0Xuiib29PXr37g2VSiWWqVQqeHt7SxIl4I+npFy6dAleXl64fPmywTEtzewHKnfo0AFjx47F2LFjUVpainfeeQfHjh3DZ599xqSKiIjoNtN4getZs2Zh9uzZevWGDBmCOXPmYOvWrTh+/LhY/re//Q1RUVEAWn+iyc8//yy+Ly4ubrYeYPhTUnRjWprZSRUAZGZm4ptvvkF6ejpKS0vh4OCAYcOGWSI0ERERWYKFeqqWL18ueaZuU8lLg27duuGee+7ByJEj4ebmhu+++w5bt25F586dERER0eoTTRoW4AZgsaek6Ma0NJOTqitXruDAgQP49ttvce3aNSgUCgwYMABjxozByJEjLXpXIBEREZlJUNS/zNkf9U89aTy01pSDBw/i7bffxrZt29ClSxcA9csXCYKAhIQEjB49utUnmujeKGapp6RY8+Yzo5Kq/Px8HDx4EN988w0uX74MQRDQu3dvzJ8/H6NGjeLjWoiIiAgAkJKSgt69e4sJVYPhw4cjLS0NKpWq1Sea6OYVSqUShYWFTdYDDH9KijVzFYOTqpiYGGRmZkKr1aJr167461//ijFjxogLchIREVHbJtzCldFLS0vh6uqqV15XVwcA0Gg08PPzg62tLbKzs/Hggw+KdWpra6FSqSSLb/v7++PMmTOoqKiQTFZv/JQUY2JamsErqufk5GDixImIj49HcnIyoqKimFARERG1F+Y8osaE+Vg+Pj5QqVTIzc2VlB88eBA2Njbo1asXXFxcMHDgQOzfv1+y2vm+fftQVVUlSYBCQ0Oh0WiQmpoqlqnVauzZswdBQUHw8vICAKNiWprBPVUpKSlmL+5JRERE8jB9+nT88MMPiImJwWOPPQY3NzecOHECP/zwAx555BFxGG7u3LmIjo5GbGwswsPDxdXPBw0ahCFDhojxgoKCEBYWho0bN+L69evo0aMH9u7di7y8PCxdulRybENjWprBWVLjhKqiogIpKSk4c+YMrl+/jn/84x8ICgrCzZs3kZaWhuHDh8Pb29viDSYiIiITCDBzorpx1fv3748PPvgAH3/8MVJSUnDz5k1069YNUVFR4oroABAQEIA1a9Zgw4YNeP/999GxY0dMmDAB8+bN04u5bNkyeHl5Yd++fSgvL0fPnj3x5ptvon///pJ6xsS0JJO6ngoKCvDMM8+goKAA3t7e+O9//4uqqioAgJubG1JTU5GXl4eFCxdatLFERERkIgFQ3MJn/wH1vUuGPGsvODgY69ata7Weo6MjFixYgAULFlgspiWZlFStX78elZWV+Oijj+Du7o5HH31Usn3EiBH47rvvLNJAIiIisoBb/EBlOTJ4orquH3/8EREREbjzzjuhUOh3JXbv3h0FBQVmN46IiIiovTCpp6qmpgbu7u7NbtedbU9ERERtgZmLf5r1MGZ5MKmn6s4772zx2TnHjh1D7969TW4UERERWdgtXlJBjkxKqqZOnYpvv/0W27ZtQ0VFBQBAEARcvXoVq1atQmZmJh5//HGLNpSIiIioLTNp+G/s2LHIy8tDYmIiEhMTAQD//Oc/IQgCFAoFoqKiEBISYtGGEhERkRk4Ud3qTF7N88knn8S4ceNw+PBhXL16FYIgoHv37hg5ciS6d+9uyTYSERGRuZhUWZ1JSdXRo0cREhICLy+vZof51q9fj/nz55vVOCIiIqL2wqQ5Va+88gp++OGHZre/8847SE5ONrlRREREZGGCwvwXtcikpGrcuHFYvnw5Tp8+LSnXarVYuXIlvvrqKyxatMgiDSQiIiLzKVC/orrJrz/7A7QDJiVV//znPxEaGoply5aJSyvU1tbixRdfxKFDh7Bs2TK9VdaJiIiIbmcmT1R/4YUXUFtbi6VLl2LlypXYvn07MjIy8Morr/DOPyIioraGE9WtzqSeKgCwsbHBihUrcN9992HJkiU4f/483nzzTSZUREREJEsG9VS1NOk8MDAQp0+fxpAhQ3Dp0iVcunQJAKBQKLgAKBERURvRMDfKnP2pZQYlVevWrWu1zqFDh3Do0CHxPZMqIiIikhOze6qIiIioHTB3WQQuqdAqg5Kqrl27WrsdREREZE2cqG51Jk9UJyIiIqI/GJRUPf/88zh79qzRwSsrK/H888/jP//5j9H7EhERkYUJZryoVQYlVd999x2KioqMDl5bW4vvvvsO169fN3pfIiIishyzVlM3885BuTB48c8tW7Zg9+7dRgXXaDRQKDixjYiIiG5/BiVV99xzj0nJka2tLe655x64uroavS8RERFZECeqW51BSVVcXJy120FERETWxKTK6nj3HxEREZEFmPxAZSIiImo/+Jga62NSRUREJAtmrqgO3njWGiZVREREcsA5VVbHOVVEREREFsCeKiIiIjkwdwFP9lS1yqykqq6uDoWFhSgrK4Mg6J/tgIAAc8ITERGRpXD4z+pMSqrKysqwbt06HDhwAHV1dXrbBUGAQqHAoUOHzG0fERERUbtgUlK1evVqnDhxAg8++CCCgoLg7Oxs6XYRERGRBXFJBeszKan68ccfERERgdjYWEu3h4iIiKyFiZFVmXT3n5ubG3r06GHpthARERG1WyYlVeHh4fj222+h1Wot3R4iIiKyBsECL2qRScN/M2fOhFqtRlRUFMaNGwdPT0/Y2OjnZyNHjjS7gURERGQ+zqmyPpOSqsLCQvz000+4dOkSLl261GQd3v1HREREcmJSUvXGG29ApVIhMjISgYGBcHFxsXS7iIiIiNoVk5KqjIwMPPHEE5g9e7al20NERETWwMU/rc6kpKpz585wdXW1dFuIiIjISjinyvpMSqqmTZuGnTt3YsKECejYsaOl20RERES3iezsbHz88cfIyMiAWq1G9+7dMXHiREyZMkWsk5GRgQ0bNuDixYtwdnZGWFgYoqKi9HIMtVqNDz/8EPv370dZWRl69eqFuXPnYtCgQXrHNTSmJZmUVKnVatjZ2eGJJ55AWFgYunTponf3n0KhwOOPP26RRhIREZEF3OLeppMnT+KFF15A7969MXPmTDg5OeG3335DYWGhWEelUmHRokXw9fVFTEwMCgoKkJycjKtXr+Ltt9+WxFu9ejUOHTqEqVOnwtvbG2lpaViyZAnWrl2L4OBgk2JakklJ1bp168R///LLL5usw6SKiIioDbnFc6oqKirw+uuv4/7778err77a5NJLALBx40a4uroiLi5OfOxdt27d8NZbb+HkyZMYPHgwACArKwsHDx7E/PnzMWPGDADAuHHjMGvWLKxfvx7r1683OqalmZRUJScnW7odREREdBv55ptvUFJSgqioKNjY2KCqqgqOjo6S5KqiogKnTp3C448/LnmO8Lhx4/D+++8jPT1dTIAOHz4MW1tbhIeHi/UcHR0xYcIEbNy4Efn5+fDy8jIqpqWZlFR17drV0u0gIiIiK7rVE9VPnToFZ2dnFBUV4cUXX0Rubi6cnJwwduxYxMTEwNHREZcvX4ZGo0FAQIBkX3t7e/Tu3RsqlUosU6lU8Pb2liRKABAYGAgAuHTpEry8vIyKaWkGP6YmKysLN2/eNKju77//jr1795rcKCIiIrIwCz2mJicnB9nZ2eKrqKioycNdvXoVGo0Gy5Ytw+DBg/Hqq6/i4Ycfxq5du/DGG28AAIqLiwEASqVSb3+lUimJXVxc3Gw9AGJdY2JamsFJ1YIFC/DDDz+I72/evIkxY8bg7NmzenV/+eUX8YQRERHR7WPVqlWIiooSX6mpqU3Wq6qqQnV1NcaNG4eFCxdi5MiRWLhwIcLDw3Hw4EHk5uaipqYGQH0vUmMODg5Qq9Xi+5qammbrNWzX/achMS3N4OE/QRD03qvVamg0Gos3ioiIiCzMzOG/hp6q5cuXw9fXVyxuqkcIqJ/vBACjRo2SlI8ePRqpqanIzMxEhw4dAAC1tbV6+6vVajFhaojXXD3d4zX805CYlmbSnCoiIiJqhyywpIKvr6/efKWmKJVK/Prrr+jcubOkvFOnTgCAsrIy9OjRA8AfQ3a6iouL4eHhIYmnuxSDbj0AYt2GJM+QmJZm8PAfERERkaEaEq/GiVDDnCZ3d3f4+fnB1tYW2dnZkjq1tbVQqVTw9/cXy/z9/XH16lVUVFRI6mZlZYnbARgV09KYVBEREcmBhSaqGyosLAwA8PXXX0vKv/76a9ja2mLAgAFwcXHBwIEDsX//flRWVop19u3bh6qqKjEGAISGhkKj0UjmcKnVauzZswdBQUHw8vICAKNiWppRw395eXli5teQKV69ehUuLi6SeteuXTOpMefPn8fevXtx5swZ5OXlwc3NDX379sXcuXPh4+MjqXvlyhXEx8cjIyMDdnZ2GDp0KGJiYuDu7i6pp9VqkZSUhJ07d6KkpATe3t6IjIzE6NGj9Y5vaEwiIqL25lYvqXDXXXfh4Ycfxp49e6DRaNC/f3+cPXsW6enpiIyMFIfh5s6di+joaMTGxiI8PFxc/XzQoEEYMmSIGC8oKAhhYWHYuHEjrl+/jh49emDv3r3Iy8vD0qVLJcc2NKalKYTGM9CbMXLkSCgUCkmZIAh6Zbrlhw4dMqoxK1asQEZGBsLCwtCrVy8UFxcjJSUFVVVVWL9+PXr27AkAKCgowJw5c+Di4oKIiAhUVVUhKSkJXl5eSEhIkMz4T0hIwLZt2zBx4kT06dMHx44dw3fffYeXXnpJMnnOmJgtyc7ORlRUFOzPdIZNhWH7NEnRQieioG19n+bqmNqGthjvVsVu7ji38lht/fybexxDz6s165l6Tm7VeW2L2sJvuj2d/2baekD7uVUP2/DfpevBYdC4uJscx7b8OtzPpWPTpk0GzakCgLq6Onz66adIS0tDUVERvLy8MHnyZL0nrpw7d058Tl/Hjh0RFhaGefPm6T2nr6amRnz2X3l5OXr27Im5c+c2uZinoTEtyeCkKi0tzejg48ePN6p+RkYG+vTpI0lgcnNz8dRTT2HkyJFYsWIFAGDNmjVIS0vD1q1bxe6+U6dOYfHixXjuuefE1VYLCwsxbdo0TJw4EYsWLQJQn/DFxsbi2rVr2LFjB2xtbY2K2RomVbcw3q2K3dxxbuWx2vr5N/c4TKrap7bwm25P51+GSZXcGDz8Z2yCZIq7775br8zHxwd33nkncnJyxLLDhw9j2LBhYvIDAAMHDoSPjw/S09PFBOjYsWOoq6vD5MmTxXoKhQKTJk3CypUrkZmZKT6A0dCYRERE7dItfvafHLX5JRUEQUBpaSnuvPNOAPW9T6WlpU1myYGBgfj+++/F9yqVCk5OTpL1NBrqNWwPDg42KmZjRUVFkts2dZM/IiKitkIBM+dUWawlt682n1QdOHAAhYWFmD17NoDWl5+/efOmuLhXcXExOnXqpDfvy9gl7XVjNpaamorNmzfrldt27wbb2v89n0i3S7qlYT1D2Rjw1daa+MvRjd1SDFPq6dJdNLalc6K7f+P5exoTuvoNjddcuxt/VlPqGXq+dNvXeJTelOvbXBsafwZDY9vqDmXo7GPo5zP0O6Cr8fBOc0M//xvWN6hNzTH02hqyjzGai9/S52tO48WZDT3Phn5fDfnbZtuo3NDfrbnfV2tei5ba0NzvoqV4dNto00lVTk4O3nvvPfTt2xcPPfQQgNaXn2+o4+DgYLEl7XVjNhYeHo7hw4dL2rxq1SrDPyQREdGtwOE/q2uzSVVxcTGWLl0KZ2dnvPrqq+KE8taWn9etY6kl7XXrNObh4WHV1VmJiIgs4VYvqSBHbXLxz/LycixZsgTl5eV455139JapB5pfft7NzU3sUVIqlSgpKdF7bqGxS9rrxiQiIiJqSptLqmpqavD8888jNzcXb7zxhjhBvYGnpyfc3d31lp8H6hcPbbykfXV1td7k8cZL2hsTk4iIqF26xSuqy1GbSqo0Gg1efvllZGZm4pVXXkG/fv2arDdy5EicOHEC+fn5Ytnp06eRm5srWX5+xIgRsLOzQ0pKilgmCAJ27doFT09PSXxDYxIREbVLTKqsrk3Nqfrggw9w/PhxDBs2DGVlZdi/f79k+9ixYwEAkZGROHToEJ599llMmTIFVVVV2L59O3r27ClZT6tLly6YOnUqtm/fjrq6OgQGBuLo0aM4d+4cVqxYIc7TMiYmERERUVPaVFJ16dIlAMCJEydw4sQJve0NSZWXlxfi4uIQHx+PhIQE8Tl90dHRenOf5s2bB1dXV6SmpmLv3r3w9vbG8uXLMWbMGEk9Y2ISERG1NwqYt9YU16lqXZtKquLi4gyu6+fnh3fffbfVejY2NoiMjERkZKTFYhIREbVLHMKzqjaVVBEREZGVmLmkAhOy1rWpiepERERE7RV7qoiIiOSAK6pbHZMqIiIiOWBSZXUc/iMiIiKyAPZUERERyQCf/Wd9TKqIiIjkgMN/VsfhPyIiIiILYE8VERGRDChg5vCfxVpy+2JSRUREJAcc/rM6Dv8RERERWQB7qoiIiGSAd/9ZH5MqIiIiOeDwn9UxqSIiIpIDJlVWxzlVRERERBbAnioiIiIZ4JIK1sekioiISA44/Gd1HP4jIiIisgD2VBEREcmBIEAhmNHdZM6+MsGkioiISA44/Gd1HP4jIiIisgD2VBEREcmAwsyeKq6o3jomVURERHLBxMiqOPxHREREZAHsqSIiIpIBDv9ZH5MqIiIiOeDdf1bHpIqIiEgG2FNlfZxTRURERGQB7KkiIiKSAw7/WR2TKiIiIhlQAOYN/1mqIbcxJlVERER0S2zZsgWJiYnw8/PDJ598ItmWkZGBDRs24OLFi3B2dkZYWBiioqLQsWNHST21Wo0PP/wQ+/fvR1lZGXr16oW5c+di0KBBesczNKalcE4VERGRHAiC+S8zFBQUYOvWrXByctLbplKpsGjRIlRXVyMmJgYTJkzA7t278dJLL+nVXb16NXbs2IExY8bgmWeegY2NDZYsWYJz586ZHNNS2FNFREQkB4KZd/CZOadq3bp1CAoKglarxY0bNyTbNm7cCFdXV8TFxcHZ2RkA0K1bN7z11ls4efIkBg8eDADIysrCwYMHMX/+fMyYMQMAMG7cOMyaNQvr16/H+vXrjY5pSeypIiIiIqs6e/YsDh8+jNjYWL1tFRUVOHXqFMaOHSsmP0B9suTk5IT09HSx7PDhw7C1tUV4eLhY5ujoiAkTJiAzMxP5+flGx7Qk9lQRERHJgYXu/svJyZEUK5VKeHh4NLubRqPB2rVrMWHCBPTq1Utv++XLl6HRaBAQECApt7e3R+/evaFSqcQylUoFb29vSaIEAIGBgQCAS5cuwcvLy6iYlsSkioiISAYUAgCtGQH+l1StWrVKUjxr1izMnj272d127dqF/Px8vPfee01uLy4uBlCfnDWmVCrx888/S+o2Vw8AioqKjI5pSUyqiIiIyGDLly+Hr6+v+L6pxKXBjRs38NFHH+HJJ5+Eu7t7k3VqamoA1PciNebg4AC1Wi2p21w93VjGxLQkJlVERERyYKHhP19fX71hteYkJibC1dUVERERzdZxdHQEANTW1uptU6vVYsLUULe5erqxjIlpSUyqiIiIZMDcZ/8Zu29ubi52796N2NhYcVgOqE9q6urqcO3aNTg7O4s9XQ1DdrqKi4sl87WUSiUKCwubrAdArGtMTEvi3X9ERERycIvXqSoqKoJWq8XatWsxbdo08ZWVlYXc3FxMmzYNmzdvhp+fH2xtbZGdnS3Zv7a2FiqVCv7+/mKZv78/rl69ioqKCkndrKwscTsAo2JaEnuqiIiIyOL8/Pzw2muv6ZUnJiaisrISzzzzDLp37w4XFxcMHDgQ+/fvx8yZM8XVzvft24eqqiqEhYWJ+4aGhiIpKQmpqaniOlVqtRp79uxBUFAQvLy8AMComJbEpIqIiEgGbvXwn7u7O0JCQvTKP//8cwCQbJs7dy6io6MRGxuL8PBwFBQUIDk5GYMGDcKQIUPEekFBQQgLC8PGjRtx/fp19OjRA3v37kVeXh6WLl0qOY6hMS2JSRUREZFcmLkqurUEBARgzZo12LBhA95//3107NgREyZMwLx58/TqLlu2DF5eXti3bx/Ky8vRs2dPvPnmm+jfv7/JMS2FSRURERHdMnFxcU2WBwcHY926da3u7+joiAULFmDBggWt1jU0pqUwqSIiIpKBWz38J0dMqoiIiOTAhDv49PanFnFJBSIiIiILYE8VERGRDHD4z/qYVBEREckBkyqr4/AfERERkQWwp4qIiEgmFObMU7dcM25bTKqIiIjkQAvzsiqtxVpy22JSRUREJAecU2V1nFNFREREZAHsqSIiIpIBhWDe6B8Edla1hkkVERGRLJi5ojpTqlZx+I+IiIjIAthTRUREJAMc/rM+JlVERERywLv/rI7Df0REREQWwJ4qIiIiGVAIAhTmTFQ3a5K7PDCpIiIikgMB5q2KzpyqVW0qqaqsrERSUhKysrJw/vx5lJWV4YUXXsD48eP16l65cgXx8fHIyMiAnZ0dhg4dipiYGLi7u0vqabVaJCUlYefOnSgpKYG3tzciIyMxevRok2MSERERNdamkqobN25g8+bN8PLygr+/P86cOdNkvYKCAsTGxsLFxQVRUVGoqqpCUlISLl++jISEBNjb24t1N23ahG3btmHixIno06cPjh07hpUrV0KhUGDUqFEmxSQiImpvFIIAhTndTRz+a1WbSqqUSiVSUlKgVCpx4cIFPP30003W27p1K6qrq5GYmAgvLy8AQGBgIBYvXoy0tDSEh4cDAAoLC5GcnIzJkydj0aJFAIBHHnkEsbGxWLduHUJDQ2Fra2tUTCIionbJ3JyIOVWr2tTdfw4ODlAqla3WO3z4MIYNGyYmPwAwcOBA+Pj4ID09XSw7duwY6urqMHnyZLFMoVBg0qRJKCwsRGZmptExiYiI2iVBMP9FLWpTPVWGKCwsRGlpKQICAvS2BQYG4vvvvxffq1QqODk5wdfXV69ew/bg4GCjYjZWVFSE4uJi8X1OTo7Rn4mIiIjav3aXVDUkME31aCmVSty8eRNqtRoODg4oLi5Gp06doFAo9OoB9QmRsTEbS01NxebNm/XKb9zrCcHRHQAgGNgfqNC5K6PFfXT/Z0FhQB00WkVX598F25b3M1pz7QEg6GxTtHAHim5bDT130gM1H09SzdBzrBurcbt1PpPW1rB6Fu9CN/C86hJauE7NHqZRuw25No3bI/kOCE2Xtxyw0VuNge0x5fzr7GPod9fQeLoaf3ZJfN3japouB1r47AZ+Vr1rqxu/hc8uOa7QdD29tjUTT+88NPN3oHEbmvvdNT5uc38DdentoxOvpZXIm/1etxDPlN+g2YQW/0S3vjs7qlrV7pKqmpoaAGhy4nhD0lNTUwMHBwfU1NS0Ws/YmI2Fh4dj+PDh4vucnBysWrXKqM9ERER0SzAzsqp2l1Q5OjoCAGpra/W2qdVqSR1HR0eD6xkaszEPDw94eHgY9RmIiIjo9tOmJqobomGITnceU4Pi4mK4ubmJPUpKpRIlJSUQGmXmDfs2JEPGxCQiImqPFFrzX9SydpdUeXp6wt3dHdnZ2Xrbzp8/D39/f/G9v78/qqur9SaPZ2VliduNjUlERNQu8e4/q2t3SRUAjBw5EidOnEB+fr5Ydvr0aeTm5iIsLEwsGzFiBOzs7JCSkiKWCYKAXbt2wdPTE/369TM6JhEREVFT2tycqi+++ALl5eXiUNzx48dRUFAAAIiIiICLiwsiIyNx6NAhPPvss5gyZQqqqqqwfft29OzZU/JImy5dumDq1KnYvn076urqEBgYiKNHj+LcuXNYsWKFuPAnAINjEhERtUvsaLK6NpdUJScnIy8vT3x/5MgRHDlyBAAwduxYuLi4wMvLC3FxcYiPj0dCQoL4nL7o6Gi9uU/z5s2Dq6srUlNTsXfvXnh7e2P58uUYM2aMpJ4xMYmIiNobcx9TY9YjbmSizSVVO3bsMKien58f3n333Vbr2djYIDIyEpGRkRaLSURERNRYm0uqiIiIyBrMnGze0gqoBIBJFRERkTxoYd68qj9jFfh2hkkVERGRDCgEAQozeqo4p6p17XJJBSIiIqK2hj1VREREciCAC3haGZMqIiIiWeBEdWvj8B8RERGRBbCnioiISA60/3uR1TCpIiIikgGz7/7jfKxWMakiIiIiizt//jz27t2LM2fOIC8vD25ubujbty/mzp0LHx8fSd0rV64gPj4eGRkZ4mPiYmJi4O7uLqmn1WqRlJSEnTt3oqSkBN7e3oiMjMTo0aP1jm9oTEtiUkVERCQHgpkT1Y3c97PPPkNGRgbCwsLQq1cvFBcXIyUlBXPnzsX69evRs2dPAEBBQQFiY2Ph4uKCqKgoVFVVISkpCZcvX0ZCQgLs7e3FmJs2bcK2bdswceJE9OnTB8eOHcPKlSuhUCgwatQosZ4xMS2JSRUREZEsmJlUGbn45+OPP45//etfkgTmwQcfxFNPPYVt27ZhxYoVAICtW7eiuroaiYmJ8PLyAgAEBgZi8eLFSEtLQ3h4OACgsLAQycnJmDx5MhYtWgQAeOSRRxAbG4t169YhNDQUtra2RsW0NN79R0RERBZ399136/UI+fj44M4770ROTo5YdvjwYQwbNkxMfgBg4MCB8PHxQXp6ulh27Ngx1NXVYfLkyWKZQqHApEmTUFhYiMzMTKNjWhp7qoiIiOTA3MU//7erbkIEAEqlEh4eHoaFEASUlpbizjvvBFDf+1RaWoqAgAC9uoGBgfj+++/F9yqVCk5OTvD19dWr17A9ODjYqJiWxqSKiIhIDsxdUuF/D1RetWqVpHjWrFmYPXu2QSEOHDiAwsJCsX5xcTGA+sSsMaVSiZs3b0KtVsPBwQHFxcXo1KkTFAqFXj0AKCoqMjqmpTGpIiIikgMzl1Ro6OVavny5pLeoqeSlKTk5OXjvvffQt29fPPTQQwCAmpoaAGhy4nhD0lNTUwMHBwfU1NS0Ws/YmJbGpIqIiIgM5uvr2+TQWkuKi4uxdOlSODs749VXXxUnlDs6OgIAamtr9fZRq9WSOo6OjgbXMzSmpXGiOhERkSwIfyyrYMrLyLv/GpSXl2PJkiUoLy/HO++8I5l/1dDL1TBkp6u4uBhubm5ij5JSqURJSQmERr1tDfs2xDUmpqUxqSIiIpIDrWD+y0g1NTV4/vnnkZubizfeeEOcoN7A09MT7u7uyM7O1tv3/Pnz8Pf3F9/7+/ujurpab6J8VlaWuN3YmJbGpIqIiIgsTqPR4OWXX0ZmZiZeeeUV9OvXr8l6I0eOxIkTJ5Cfny+WnT59Grm5uQgLCxPLRowYATs7O6SkpIhlgiBg165d8PT0lMQ3NKalcU4VERGRHNziFdU/+OADHD9+HMOGDUNZWRn2798v2T527FgAQGRkJA4dOoRnn30WU6ZMQVVVFbZv346ePXti/PjxYv0uXbpg6tSp2L59O+rq6hAYGIijR4/i3LlzWLFihThPy5iYlsakioiISA4stE6VoS5dugQAOHHiBE6cOKG3vSGp8vLyQlxcHOLj45GQkCA+py86Olpv7tO8efPg6uqK1NRU7N27F97e3li+fDnGjBkjqWdMTEtiUkVEREQWFxcXZ3BdPz8/vPvuu63Ws7GxQWRkJCIjIy0W05KYVBEREcnCrX32nxwxqSIiIpIDE+/gk+xPLeLdf0REREQWwJ4qIiIiORC09S9z9qcWMakiIiKSg1t8958cMakiIiKSA8HMOVVmTXKXByZVVvJhTDJ696x/mGONUCeWa3VSfRsoJPt0tPlj7YxaQaOzj7TLVaPzxbZV/BHDSfHHAyLLtdWSfZqrVyNIHzipe1x7ha1OvTpJPXvFH9PxHBX2OvWk8Zpra6VOPBdF82uG6H52m0ZTAHWPq/t5ddvduO0uNn989huNzlEHnf3s8Me/V+l8JieF9KnnurF1j1suqCX13HTOeUvfgea+K42Pq0v3WHfYdNCJ1fy1qNU5r51sOkrj6ZwXR8UffyIafyZtM//baq9znXS/J43boHu+dL93gPS7oqul70CVUNNsPd3zqvuZdDX+nTX3vdY0+g+LblttJJ9d+j3Upft5HfW+U38cS7dNut/Jxudet16tzhBN4++Nrc710G1D4+9hHXS3/bFP43PUUpua20e3fbrHbXy+dPfTPUfXNBWSeh4633ldlY2+/7p/Z3TbqvvdaHwedOleZ93P3Thec9cMkP4tkf42Fjd7XGpfmFQRERHJwS1eUV2OmFQRERHJAZMqq+OSCkREREQWwJ4qIiIiOWBPldUxqSIiIpIDQQC05qxTxaSqNRz+IyIiIrIA9lQRERHJAYf/rI5JFRERkRwwqbI6Dv8RERERWQB7qoiIiOSAj6mxOiZVREREciAIEATe/WdNTKqIiIjkQGtmT5U5+8oE51QRERERWQB7qoiIiOSAd/9ZHZMqIiIiORC0Zq6obsa+MsHhPyIiIiILYE8VERGRHAgwc/jPYi25bTGpIiIikgFBq4VgxvCfOfvKBYf/iIiIiCyAPVVERERywLv/rI5JFRERkRzwMTVWx6TKSiYfnoraDPf6NzY6X0SN4o9/t230BdXZJJkQKCga1Wv6iy3oxFPUNRrZ1W1DnU68xqF0d9PdR9u4Dc20p1E1yedtKZ4u3WF73aY6SsfzFZLP8ce/C43Oq6SeDsG+cbw/PrzkXNa2cL5smwwt/QyA5LwKdn9sVGhaOA9CM+eucTt0Y9i18EevroXvXnPH1eiUN47d3He58fe1uTa01Fbd89fMuQMARa3uRp0NjT9fc8fVbWszv6v64+p+H1r4bemGaPS9Exx0Yuh8DKFROEUz11Zo6Xzp7l/bwjnWNv07kewDSM9fS7/VZhvRwrbmrm3j363uW932NY6te/5aOkU610n3nDf390HvWLrtbunvgKKF34LufjrxrixovgnUvjCpIiIikgNBMG+tKfZUtYpJFRERkQwIWgGCGcN/5uwrF0yqiIiIZEFr5qroXFKhNVxSgYiIiMgC2FNFREQkA4LWvCE8PvqvdUyqiIiI5EAwc/iPWVWrmFRZWE1NDQDA7kbZH4WKZm5PbnybfHNLKujdQ9zM/2no3tbb+FZ93TZoWlgiQHdAuKVbgyVvW1hSQdvMLest3XbfzJIKcGjU2LpmGtT4vDa3bEFLSwQYugSFCUsqSG5X16AFLdzuL7k128ClEpr7fC0dV7d9jWM3+1223pIKLS6VoLuppe+AbXNtbaE9un8pG9+CL/leN3NMALDX/TugU954EoYp11ZXS0tnNLdMR+PPZGPgb7U5Jiyp0OKyIbrtM3VJBd3rpLtPS8uamLKkAlr4LTSzpEJ2djZ8fX3RoUOH5ttiAULHOrNmRQkd61qvJHNMqixMpVIBADy/O/Mnt4SIiNqDqP1HsGnTJgQEBFglvru7Ozp06IDqgJtmx+rQoQPc3d3Nb9RtikmVhfn6+gIAli5dCn9//z+5NWSMnJwcrFq1CsuXLxevI7V9vG7tE6+blDXPgZeXFz799FNcv37d7Fju7u7w8vIyv1G3KSZVFubq6goA8Pf3t9r/dZB1+fr68tq1Q7xu7ROv263h5eXFZOgW4JIKRERERBbApIqIiIjIAphUWZhSqcSsWbOgVCr/7KaQkXjt2idet/aJ141uRwpB4BMSiYiIiMzFnioiIiIiC2BSRURERGQBTKqIiIiILIBJFREREZEFyHLxz9dffx179+5tdvsXX3wBT09PaLVa7N69G7t27cJvv/2GDh064K677sKTTz6Ju+++W7KPWq3Ghx9+iP3796OsrAy9evXC3LlzMWjQIL34GRkZ2LBhAy5evAhnZ2eEhYUhKioKHTt2NDmmHOTm5uLDDz9ERkYGbt68CS8vL4wePRrTp0+XPDPLGueX18w8rV276upq7NmzB8eOHcPly5dRVVUFb29vTJw4ERMnToStrfQhi1qtFklJSdi5cydKSkrg7e2NyMhIjB49Wu/YV65cQXx8PDIyMmBnZ4ehQ4ciJiZG71EbxsSUC0N/cw3Kysrw17/+FdevX8fKlSsRGhoq2c7fHN3uZHn33y+//ILff/9dUiYIAt5991107doVW7ZsAQDEx8djx44dGDt2LIKDg1FeXo7U1FTk5+fjgw8+QFBQkLj/K6+8gkOHDmHq1Knw9vZGWloaLly4gLVr1yI4OFisp1KpMH/+fPj6+iI8PBwFBQVITk7GgAED8Pbbb0vaZGhMOcjPz8dTTz0FFxcXhIeHw83NDZmZmUhLS8Pw4cOxevVqANY5v7xm5jHk2l2+fBlPPfUU7rvvPgwaNAgdO3bEyZMncfToUYwbNw4vvviiJGZCQgK2bduGiRMnok+fPjh27Bi+++47vPTSSxg1apRYr6CgAHPmzIGLiwsiIiJQVVWFpKQkeHl5ISEhAfb29kbHlAtDf3O61q5diz179qCqqqrJpIq/ObrtCSQIgiD8/PPPQkhIiLBlyxZBEAShtrZWGD16tLBixQpJvd9++00ICQkR/v3vf4tlmZmZQkhIiPDZZ5+JZdXV1cL06dOFv//975L9n3vuOWHSpElCeXm5WLZ7924hJCRE+OGHH0yKKQdbtmwRQkJChMuXL0vKV61aJYSEhAg3b94UBME655fXzDyGXLvS0lK97YIgCKtXrxZCQkKE3NxcsaygoEAICwsT1qxZI5ZptVohOjpaeOyxx4S6ujqx/N133xVGjx4t5OXliWU//vijEBISIuzatcukmHJh6G+uwX/+8x8hNDRU2Lx5sxASEiKkp6dLtvM3R3LAOVX/880330ChUIhd/RqNBjU1NejUqZOkXqdOnWBjYwNHR0ex7PDhw7C1tUV4eLhY5ujoiAkTJiAzMxP5+fkAgIqKCpw6dQpjx46Fs7OzWHfcuHFwcnJCenq60THloqKiAgD0rodSqYSNjQ3s7Oyscn55zcxnyLVzd3eHn5+f3r4hISEA6h++2+DYsWOoq6vD5MmTxTKFQoFJkyahsLAQmZmZYvnhw4cxbNgwyTPPBg4cCB8fH8m1MyamXBhy3XTFxcXhgQceaLZ3iL85kgMmVQDq6uqQnp6Ofv36oVu3bgDqf5hBQUHYu3cv9u/fj/z8fPznP//B6tWr4erqKvkRq1QqeHt7S/4AAEBgYCAA4NKlSwCAy5cvQ6PR6D081N7eHr1794ZKpTI6plwMGDAAAPDmm29CpVIhPz8fBw8exK5duxAREQEnJyernF9eM/MZcu2aU1JSAgC44447xDKVSgUnJyf4+vpK6jac54ZrUlhYiNLS0iYf1hsYGKh37QyJKSfGXLf09HT88ssv+Pvf/95sPP7mSA5kOVG9sZMnT+LGjRsYM2aMpHz58uV4+eWXsWrVKrGse/fu+OCDD9C9e3exrLi4uMlHLTSUFRUVifV0yxvX/fnnn42OKRdDhgzBnDlzsHXrVhw/flws/9vf/oaoqCgA1jm/vGbmM+TaNaW2thaff/45unXrhj59+ojlxcXF6NSpExQKhaS+sdfu5s2bUKvVcHBwMDimnBh63WpqarBu3To8/vjj6NatG/Ly8pqMx98cyQGTKtQP/dnZ2SEsLExS3rFjR/j5+aFv37647777UFJSgm3btmHZsmWIj48X7x6qqamRTHht4ODgIG7X/WdzddVqtfje0Jhy0q1bN9xzzz0YOXIk3Nzc8N1332Hr1q3o3LkzIiIirHJ+ec0so7Vr15R///vfuHLlCt58803JUJOlrl1DHQcHB167Zhhy3bZt24a6ujpERka2GIu/OZID2SdVlZWVOHbsGAYPHiwZYqirq8OiRYswYMAAPPvss2L5fffdh5kzZ2L79u2YP38+gPqhwtraWr3YDT/+hvlXDf9srm7DHwJjYsrFwYMH8fbbb2Pbtm3o0qULAGDkyJEQBAEJCQkYPXq0Vc4vr5n5DLl2ur89ANi+fTt2796NOXPmYOjQoZJtlrp2jevy2kkZct0qKyuxfft2LFq0SG+pg8b4myM5kP2cqmPHjqG6ulpv6O/nn3/Gr7/+iuHDh0vKfXx84Ovri19++UUsUyqVYpe1roYyDw8PsZ5ueeO6DfWMiSkXKSkp6N27t/jHvcHw4cNRXV0NlUpllfPLa2Y+Q66drrS0NGzYsAGPPvooZs6cqRdPqVSipKQEQqPVYIy9dm5ubuJ/oA2NKSeGXLePPvoIHh4e6N+/P65du4Zr166J8+CuX7+Oa9euQavVAuBvjuRB9knVgQMH4OTkpJc8lZaWAoD4B0FXXV0dNBqN+N7f3x9Xr14V75ZpkJWVJW4HAD8/P9ja2iI7O1tSr7a2FiqVSqxnTEy5KC0tbfZaAPV3a1rj/PKamc+Qa9fg6NGjeOutt/DAAw9g0aJFTcbz9/dHdXW15I5AQP88e3p6wt3dXe/aAcD58+f1rp0hMeXEkOuWn5+P3377DdOnT8e0adMwbdo0vPLKKwCANWvWYNq0aeLvgb85kgNZJ1XXr1/HqVOn8MADD+itDuzj4wOgvgtcV3Z2NnJzc9G7d2+xLDQ0FBqNBqmpqWKZWq3Gnj17EBQUJN7O7eLigoEDB2L//v2orKwU6+7btw9VVVWSOV2GxpQLHx8fqFQq5ObmSsoPHjwIGxsb9OrVyyrnl9fMfIZcOwA4e/YsXnnlFQQHB2PFihWwsWn6z9OIESNgZ2eHlJQUsUwQBOzatQuenp7o16+fWD5y5EicOHFCcmv96dOnkZubK7l2xsSUC0Ou29y5c/Haa69JXnPmzAEAzJgxA6+99pp4lyB/cyQHsp5TdfDgQWg0Gr2hPwAICAjAwIEDsXfvXlRUVGDw4MEoLi7GF198AUdHR0ydOlWsGxQUhLCwMGzcuBHXr19Hjx49sHfvXuTl5WHp0qWSuHPnzkV0dDRiY2MlKwUPGjQIQ4YMMSmmHEyfPh0//PADYmJi8Nhjj8HNzQ0nTpzADz/8gEceeUTs5rfG+eU1M48h1y4vLw/Lli2DQqFAaGgoDh06JInRq1cvMfnq0qULpk6diu3bt6Ourg6BgYE4evQozp07hxUrVkgeaRMZGYlDhw7h2WefxZQpU1BVVYXt27ejZ8+eGD9+vFjPmJhyYch1a2p4zcXFBUD9sgYN64wB/M2RPMjyMTUN5s+fj99//x1ffvllk380a2pqkJSUhIMHD+LatWuwt7dHcHAw5syZI+mpaqjb8Pyp8vJy9OzZE3PnzsXgwYP14p47d058plXHjh0RFhaGefPm6U30NCamHGRlZeHjjz+GSqXCzZs30a1bNzz00EOYMWOG5O4wa5xfXjPztHbtzpw5g4ULFza7/6xZszB79mzxvVarxWeffYbU1FQUFxfD29sbf/3rXzF27Fi9fX/99Ve9Z/9FR0ejc+fOknrGxJQLQ39zuhquZVOPqeFvjm53sk6qiIiIiCxF1nOqiIiIiCyFSRURERGRBTCpIiIiIrIAJlVEREREFsCkioiIiMgCmFQRERERWQCTKiIiIiILYFJFREREZAGyfkwNERFZTlFREf7v//4P58+fx4ULF1BVVYW1a9diwIABBsc4deoUPv30U1y+fBkajQbe3t6IiIjAuHHjxDo1NTV47733cP78eRQUFECr1aJ79+54+OGHMXnyZMlq72lpaVi9enWTx0pJSYFSqWxy22+//YaZM2dCrVZj48aN6NOnj8GfQdfVq1eRkJCA06dPo7a2FnfddRfmzJmDe++916R41LYxqSIiiddffx1nz57Fjh07/uymAAA++ugjbN68GQDg5OSEffv2GbxvWVkZJkyYIL6fP38+ZsyYYekm0v/k5ubis88+g7e3N3r27InMzEyj9j927BhefPFF9O3bF7NmzYJCoUB6ejpee+013LhxA48//jiA+qTqypUruP/++9G1a1fY2Njgl19+QXx8PM6fP49//etferHnzJmDbt26ScoanlPYlPfff9/sZz7m5+dj/vz5sLW1xYwZM9ChQwekpaXhH//4B9577z3079/frPjU9jCpIpKBBx54wKB6a9eutXJLTLd8+XKj/yPn5OSE5cuX4/r164iPj7dSy+TjmWeeQdeuXbFs2bImtwcEBOCrr76Cm5sbDh061GRy05Ivv/wSSqUS//73v+Hg4AAACA8Px9/+9jekpaWJSZWbmxs2bNgg2ffRRx+Fs7MzvvzyS0RHR+v1QA0ZMsTg3qaTJ0/ixx9/xIwZM7BlyxajPoOubdu2oby8HJ988gn+8pe/AAAmTpyIyMhIxMfHIzEx0eTY1DYxqSKSgeXLl0ve7927F6dOndIr9/X1xZIlS6DVam9l8wxiyoON7ezsMHbsWFy7do1J1S3Q+GHHxqqsrISrq6uYUAH11/COO+4waP+uXbsCAMrLy5sc1qusrISjo2OLyXldXR3i4uIwZcoU9OjRo9l6OTk5SExMxE8//YSamhr4+flh5syZGDFihFjn3Llz6N27t5hQAUCHDh0wfPhwpKSkIDc3Fz4+PgZ9NmofmFQRyUDjhCQzMxOnTp0yKVEhspb+/fvjs88+Q2JiIh566CEoFAp88803yM7Oxssvv6xXv7a2FhUVFaipqUF2djaSkpLQtWvXJpOhhQsXoqqqCvb29hg0aBCio6ObTGg+//xzlJWV4cknn8SRI0eabOevv/6K6OhoeHh44K9//Ss6dOiA9PR0vPjii3j11VfFnuHa2lq4urrq7d+hQwcAwMWLF5lU3WaYVBGRROM5VdeuXcO0adMwf/58ODo6Ijk5GSUlJbj77ruxdOlSdOnSBVu2bEFqaipu3LiBQYMG4YUXXoCbm5sk7vfff4+tW7fi4sWLUCgUuOeeezB//nz4+fmZ3NYLFy5g06ZNuHjxIqqqqtC5c2fce++9eP755806B/TnmDlzJq5du4ZPP/1UHHbr0KEDVq5ciZCQEL36R44cwSuvvCK+79OnD5YuXSqZqO7o6Ijx48djwIABcHZ2RnZ2Nnbs2IEFCxYgMTERXl5eYt3i4mJ88sknWLBgAZydnZttZ1xcHLp06YKNGzeKvWqTJ09GdHQ0NmzYICZVPj4+OHfuHCorKyW9eOfOnQMAFBYWmnKaqA1jUkVEBvnmm29QW1uLiIgI3Lx5E9u3b8fLL7+Me++9F2fOnMETTzyBq1ev4ssvv8S6deskic2+ffvw+uuvY/DgwZg3bx5qamqwc+dOREdH48MPP9SbQGyI0tJS/OMf/4C7uzueeOIJuLq64tq1a832LpBx6urqUF5erldWW1uL69evS8rd3NxgY2P+Cj329vbw8fFBaGgoHnjgAWg0GuzevRurVq3CmjVr0LdvX0n9AQMGYM2aNSgvL8fp06dx6dIlVFdXS+o8+OCDePDBB8X3ISEhGDx4MGJjY/Hpp5/iueeeE7dt2LAB3bt3xyOPPNJsG2/evImffvoJs2fPRmVlJSorK8VtgwcPxkcffYTCwkJ4enpi0qRJOHHiBF566SVERUXByckJKSkpyM7OBlA/4Z5uL0yqiMgghYWF+Oyzz8Q7prRaLbZu3Yqamhps3LhR7B24ceMGDhw4gMWLF8PBwQGVlZVYu3YtHnnkEfzzn/8U4z300EOIjIzE1q1bJeWG+uWXX1BWVoZ3331XMgE5KirKzE9KAJCRkYGFCxfqlf/yyy84ePCgpCw5OdmkxLixf//738jKykJiYqKYpD344IN48sknERcXh4SEBEn9zp07o3PnzgCA0NBQfPrpp1i8eDE+++yzZpdKAIDg4GAEBQXh9OnTYllmZib279+P9957r8UE8erVqxAEAR9++CE+/PDDJuuUlpbC09MT999/PxYuXIiNGzdi7ty5AIAePXogKioK69evh5OTk2EnhtoNJlVEZJDQ0FDJLeiBgYEAgDFjxkiGWwIDA/HNN9+gqKgI3bt3x6lTp1BeXo5Ro0ZJejhsbGwQGBiIn376yaT2NLTlxIkT8Pf3l7SBzOfv7481a9ZIyj744AN07txZb1mKhsTGHLW1tfj666/xxBNPSJIaOzs7DBkyBCkpKaitrYW9vX2zMUJDQ7Fp0yYcO3YMjz76aIvH69KlC/773/+K79evX4/g4GB069YN165dAwDx+1pcXIz8/Hx4eXlBEAQAwPTp0zF48OAmY3t7e4v/HhERgYcffhj/+c9/YG9vD39/f3z99dcAwPlUtyH+FSIig+jOPQH+SGq6dOnSZHlZWRmA+v+zB4Bnn322ybgtzV1pSf/+/TFy5Ehs3rwZn3/+Ofr374+QkBCMHj1acvcYmcbV1RUDBw7UK1MqlXrllnDjxg1oNBpoNBq9bRqNBlqtttW7UhuG0yoqKlo93u+//w53d3fxfUFBAfLy8jBt2jS9ui+88AJcXFywZ88edO/eHUB9smfoeXByckK/fv3E96dPn4ajoyPuvvtug/an9oNJFREZpLkhkeZuT2/4P/qG/xAuX768yR4NUxdYVCgUePXVV5GZmYkTJ07g5MmTeOONN5CcnIz169ebfXs/WVd+fj6qq6vh6+sLAOjUqRNcXFxw9OhRzJkzR+yRqqysxPHjx/GXv/wFjo6OAOp7kO644w4oFApJzK+++gpA/XpZDa5fvy5JngDgu+++Q3Z2NiIiIsSy5557Tm+O008//YQvvvgCCxYskLRzwIABSE1NxWOPPQYPDw/JPk0dT1dGRgaOHDmCRx99tMXFR6l9YlJFRFbVcHu7u7u7VXo4+vbti759+yIqKgoHDhzAq6++im+//bbFycZkPZ988gkA4MqVKwDqb1JouNtt5syZYr3XXnsNZ8+eFW8ssLW1xfTp05GYmIi///3vGDduHLRaLb7++msUFhZK1lTbv38/UlNTMWLECHTv3h2VlZU4efIkTp06hWHDhuG+++4T686fPx933XUXAgIC4OzsjIsXL2LPnj3o0qUL/va3v4n1mhrKa5io379/f8m8vUWLFiE6OhpPPfUUHnnkEXTv3h0lJSXIzMxEYWEhPv74YwBAXl4eXnrpJQwfPhydO3fGlStXsGvXLvTs2RNPP/20WeeZ2iYmVURkVYMHD4azszO2bt2Ke++9V2/uU2v/Z9+csrIyuLi4SHorevfuDQBQq9VmtZlM13jy9p49e8R/102qmvLkk0+iW7du+L//+z9s3rwZtbW16NWrF1auXInQ0FCxXnBwMDIzM3Hw4EGUlpbC1tYWPj4+iImJwWOPPSaJ+eCDD+L777/Hjz/+iOrqaiiVSkycOBGzZs0yeS7YnXfeiU2bNuHjjz9GWloabt68iU6dOqF3796Sz+js7AylUokvv/wSZWVl8PDwQEREBJ588kn2pN6mmFQRkVU5Oztj8eLFeO211zBnzhyMGjUK7u7uyM/Px/fff49+/fph0aJFRsdNS0vDzp07ERISgh49eqCyshJfffUVnJ2dcf/991vhk1BcXFyrdQxd0qK5WGPGjMGYMWNa3LdPnz6S9alaEhUVZfIdoePHj8f48eOb3Na9e3e8+OKLLe7v6uqK119/3aRjU/vEpIqIrG7MmDHw8PDAtm3bkJSUBLVaDU9PTwQHB+Phhx82KWb//v1x4cIFfPvttygtLYWzszMCAwOxYsUKcTIxEdGtpBAaZpMSEbVBH330ETZv3ozU1FQoFAqDnwMH1E+Wv3HjBgoKCjB37lzMnz9fbzkAIiJLYU8VEbUL4eHhcHJywr59+wzep7y8HOHh4VZsFRHRH9hTRURt2u+//47ff/8dQP0dYgMGDDB437q6Opw9e1Z87+Pjo7feFhGRpTCpIiIiIrIA85+ASURERERMqoiIiIgsgUkVERERkQUwqSIiIiKyACZVRERERBbApIqIiIjIAphUEREREVkAkyoiIiIiC2BSRURERGQB/w9aXswS9oCtRwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAG4CAYAAAB2CPL9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABI20lEQVR4nO3deVyU5f7/8TeCIKKEAuICmUspah4tl9wSc0lLSY9LWrYqmamldX5tR09ZVqdvqx7K3MrKBTuVih1Fy9zIyjS30AgzOWaKCKggO8zvDx/ch4EBZgbuYOT1fDx62Fz3NddcH2Z7z31fc4+bxWKxCAAAAFWqTnVPAAAA4EpEyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABISsapSdna34+HhlZ2dX91QAAEAVI2RVo8TEREVERCgxMbG6pwIAAKoYIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABM4FHdE8CV6/h3p7Xv0wTlZecbbXXreajb2GvVqmezapwZAADmI2TBNPs+TdCFPy6VaM3R3n8nELIAlIkPaLhSELJgmqIXSDc3ybuRl7LScmSxyOqF80rGGwWuNCUf084+nit6bvABDVcKQhZM593IS3dF3qJV079WZmpOdU/nT1PWG8XW+QdUv/FRSYSuP8OVEHarKtxUVunHtHPBp6IQVds/oOHKQcjCFa+63mRLvlEUD5j/+//LbywWi6psjpWp19Hr/llv/pWp6UrYK+JIuKnKx3vJsbLSLj9u3dwub3c2+Ngbopz5gGar/uJcLWDXFBX9XaU/52/rah+aCFmwUtknUvHrF70g/1nzLGtejuxRqsqwU6TojeK3709r77+t37CK3lgqCgJVUa89ocLReZR+47M/vDjyZliZmq6EvSLFa5DKDzfl/a0cfXzbHkvybeajvOx8q/vfkdeOIiVDVFZajlZN/7rM146i7c7M+X/Kf16Vpya+mVcmVFb+daUk8z+8uNqHJkIWrJ5o9n1aLPuQl60nQN16th9mZu2dKPlGUvzTd0V7lCSZ9gRu1bOZ1RjF31iyZD3HkkGgoqBY/O9WmVBR0XXLe6F1c7v85n/x9CWtmv61JOfewIvXV9Hho6LbsudxcyUctvZu5CXJVrj9n/LuQ0dDdMnnjvS/+/Tbj49ajWLvm/DW+QeMsFjk8mvE5XkWr63otaP0dsfmXMSRx3NZ83ckoDn74c2RPcT2PI8ceb0uq3/Jx1VJVfnhpby/bcn7t6Z/aCJkXYEc3RtV1pO0fuPST6SyAkrRk7LkE6DkJ1fpf59Gbb9R2A4OJTn+RnL50/fY128uc4/SxdP/u05ZT+DygmFZ4a4sxd84Ss6x5N+n4kOPpe+DyoSKsq5r64W2qP69/778d7d+o7R+wS7OkTfDkvP69992lrgtx4OwPXtFSqqqQ1GO7kGx9Vgqmn9Zt2vrPqworJb1OCl6XBZXMmRV9CZcfOyix3xRiCp6/Nh6XpXcXpk52/N4LotzAc25D2+OHB4ur4byPlDa+vBS0QdQ6X+Pq5JK/m0dCYoV7yEvrazXypqGkHUFcnS3bsknWnlPhpIBxfaT0vYLXFmfVqXLga684FBSWUHC1l6hotsuesEuuUep+Bt2yfmXfAKXtydAsvVCWvaevJJvLLYCaUm2Dj2WdR+UvF1bb8qOBsOS8yjJnsdGSfa8GZZk6023rCBcsiZbe0Xs/TJCZfYaOL7HuLT/3acln0elQ3Z5yg6r/1P0Iauix2XJQ3xlPTZKvnaU95wsqfj2qphzSWXNubiyDmlWtGenvA9vxff6lrxuUX9Jdj2+bdVQ3hIFW/Xb8wG0ImV/iHZ0j9pltj7sl/fhveTY1Y2QdQWyd7du0RO8ohfH4kq+GJZ8Ukplv8CV92m1Vc9mdgWHkmwdTihi683bFkfCTnl7AoqUFe5KquiNRSr9BmbruhXdB7bD7eUXvLKUFQzLY89jw9btOPIGbuu2Sr75lfV4sbXXpKI9s7bmIzm318CRPcZlzb/ob2VPmLXnPqzoOVnRfMo7xFeSPY93e1RmzkUqWvtlS1n1lvU6U96Ht/KCYnHF177Z+/gurqwlCmWx5wNoWfdveR+ii7PnCEjReM4/Du07IvJnIGRdwcoKTWU9wavijbUyfSsKDiWVdTih5LaqqKGsT+vlvZBWhiNvYBXNv+TfpqwXQGf3ApSlMm+qjtRf0R7Soj629prYu2e2JFv3cXl7AWzt+ajMi78zH3RsBYrK3EcVHeIzy5/1uCrJ0XrLe02yNZatuRb1c+TxXZUceV2t6O/j7BEQR+do64hIdS6KJ2TVQtX14ugIR19Iq+pTckkVvShXJtyVpyrvo4r2MNnzZu/MJ//KcKT+yuzZqMq9b+XtBajsG0l5Knrs29rL68wHKkdvtyaqzPOqKl+THB2rsnvunFXVH6KLOHIExNHbLT52TVgUT8iqhVzxxbG6VPSibNbf0sz7yJGxK/PJvzKq8sXdrNutSE35MGPWBwFX5Iqvfa4454r8Wa9vNWFRPCELKMeV+ALniJoSFFxRTXns1JR5oOb4s/dM12aELABl4g0auHJU157p2oy/LAAAtQB7pv98hCwAAGoB9kz/+epU9wQAAACuRIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwAQe1T2B4o4ePaqYmBjt379fZ86cka+vrzp27KjJkycrJCTE6Pfyyy8rJiam1PWvvvpqrVixwqqtsLBQUVFRWrdunVJTUxUcHKyJEydq0KBBpa5/4sQJRUZG6vDhw/Lw8FCvXr00ffp0+fn5OT0mAAConWpUyFq1apUOHz6sAQMGqE2bNkpJSdHatWs1efJkLVy4UK1btzb6enp66sknn7S6vo+PT6kxlyxZopUrV2rEiBFq3769YmNj9cILL8jNzU0DBw40+p09e1YzZsxQgwYNFBERoaysLEVFRen48eNatGiR6tat6/CYAACg9qpRIWvcuHH6xz/+YRVobrnlFj3wwANauXKl5syZY7S7u7tryJAh5Y6XnJysNWvWaNSoUZo1a5Ykafjw4ZoxY4beffddhYWFyd3dXZK0YsUKZWdna+nSpQoKCpIkhYaG6vHHH9emTZsUHh7u8JgAAKD2qlFrsq6//nqrgCVJISEhuuaaa5SYmFiqf0FBgS5dulTmeLGxscrPz9eoUaOMNjc3N40cOVLJycmKi4sz2nfs2KHevXsbAUuSunXrppCQEG3bts2pMQEAQO1Vo0KWLRaLRWlpabrqqqus2rOzszVs2DANGzZMt99+u958801lZmZa9UlISJC3t7datmxp1R4aGmpsly7vnUpLS1O7du1K3X5oaKjRz5ExAQBA7VajDhfa8uWXXyo5OVkPPvig0ebv768JEybouuuuk8Vi0ffff69169bp119/1fz58+XhcbmslJQUNWrUSG5ublZj+vv7S5LOnTtn9CveXrLvxYsXlZubK09PT7vHtOXcuXPGbUmyuXcOAABcGWp0yEpMTNRbb72ljh07aujQoUb7lClTrPoNHDhQISEhWrJkiXbs2GEsPs/JySl1+FG6vGi+aHvxfyvq6+npafeYtkRHR2v58uVlbgcAAFeOGhuyUlJS9NRTT8nHx0cvvvhihYvJx40bp2XLlmnv3r1GyPLy8lJeXl6pvrm5ucb24v/a29eefraEh4erT58+xuXExETNmzev3LoAAIBrqpEhKyMjQ08++aQyMjIUGRmpgICACq/j5eUlX19fXbx40Wjz9/fX/v37ZbFYrA7vFR2yKxq36FBf8UN5xfv6+voae6rsHdOWgIAAu2oBAACur8YtfM/JydHTTz+tkydP6p///KeuueYau66XmZmpCxcuWJ04tG3btsrOzi619unIkSPGdkkKDAyUn5+f4uPjS4179OhRo58jYwIAgNqtRoWsgoICPf/884qLi9PcuXPVqVOnUn1ycnJKfYtQkj788ENZLBb17NnTaOvbt688PDy0du1ao81isWj9+vUKDAy0Gr9///7avXu3kpKSjLZ9+/bp5MmTGjBggFNjAgCA2qtGHS5855139M0336h3795KT0/Xli1brLYPGTJEqampmjRpkgYNGqSrr75akrRnzx5999136tmzp/r27Wv0b9KkicaOHavVq1crPz9foaGh2rVrlw4dOqQ5c+ZYrfOaOHGitm/frpkzZ2rMmDHKysrS6tWr1bp1aw0bNsypMQEAQO1Vo0LWsWPHJEm7d+/W7t27S20fMmSIGjRooN69e+uHH35QTEyMCgsL1aJFCz300EMaP3686tSx3jk3ZcoUNWzYUNHR0YqJiVFwcLBmz56twYMHW/ULCgrSggULFBkZqUWLFhm/XTht2jRjPZajYwIAgNrLzWKxWKp7ErVVfHy8IiIitGTJEpsnQnXWqulfKzM1R/Ube+muyFuqbFwAAFxFTXgvrFFrsgAAAK4UhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABN4VPcEijt69KhiYmK0f/9+nTlzRr6+vurYsaMmT56skJAQq74nTpxQZGSkDh8+LA8PD/Xq1UvTp0+Xn5+fVb/CwkJFRUVp3bp1Sk1NVXBwsCZOnKhBgwaVun0zxgQAALVTjQpZq1at0uHDhzVgwAC1adNGKSkpWrt2rSZPnqyFCxeqdevWkqSzZ89qxowZatCggSIiIpSVlaWoqCgdP35cixYtUt26dY0xlyxZopUrV2rEiBFq3769YmNj9cILL8jNzU0DBw40+pkxJgAAqL1qVMgaN26c/vGPf1gFmltuuUUPPPCAVq5cqTlz5kiSVqxYoezsbC1dulRBQUGSpNDQUD3++OPatGmTwsPDJUnJyclas2aNRo0apVmzZkmShg8frhkzZujdd99VWFiY3N3dTRsTAADUXjVqTdb1119vFbAkKSQkRNdcc40SExONth07dqh3795GGJKkbt26KSQkRNu2bTPaYmNjlZ+fr1GjRhltbm5uGjlypJKTkxUXF2fqmAAAoPaqUSHLFovForS0NF111VWSLu9JSktLU7t27Ur1DQ0NVUJCgnE5ISFB3t7eatmyZal+RdvNGtOWc+fOKT4+3viveHAEAABXlhp1uNCWL7/8UsnJyXrwwQclSSkpKZIkf3//Un39/f118eJF5ebmytPTUykpKWrUqJHc3NxK9ZMuhx6zxrQlOjpay5cvt6dsAADg4mp0yEpMTNRbb72ljh07aujQoZKknJwcSSp1WFGSPD09jT6enp7KycmpsJ9ZY9oSHh6uPn36WNU3b968MvsDAADXVWNDVkpKip566in5+PjoxRdfNBaTe3l5SZLy8vJKXSc3N9eqj5eXl939qnpMWwICAhQQEFDmdgAAcOWokWuyMjIy9OSTTyojI0Ovv/66VTApOixXdIivuJSUFPn6+hp7lfz9/ZWamiqLxVKqnyRjXDPGBAAAtVuNC1k5OTl6+umndfLkSf3zn//UNddcY7U9MDBQfn5+io+PL3Xdo0ePqm3btsbltm3bKjs7u9QC8yNHjhjbzRoTAADUbjUqZBUUFOj5559XXFyc5s6dq06dOtns179/f+3evVtJSUlG2759+3Ty5EkNGDDAaOvbt688PDy0du1ao81isWj9+vUKDAy0Gt+MMQEAQO1Vo9ZkvfPOO/rmm2/Uu3dvpaena8uWLVbbhwwZIkmaOHGitm/frpkzZ2rMmDHKysrS6tWr1bp1aw0bNszo36RJE40dO1arV69Wfn6+QkNDtWvXLh06dEhz5syxOmmoGWMCAIDaq0aFrGPHjkmSdu/erd27d5faXhSygoKCtGDBAkVGRmrRokXG7wxOmzbNWDtVZMqUKWrYsKGio6MVExOj4OBgzZ49W4MHD7bqZ8aYAACg9nKzlFzBjT9NfHy8IiIitGTJEpsnQnXWqulfKzM1R/Ube+muyFuqbFwAAFxFTXgvrFFrsgAAAK4UhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADCB0yFr3759Wr16tVXbf/7zH40ZM0Z33HGH/vWvf6mgoKDSEwQAAHBFToesDz74QMeOHTMu//rrr3r99dfl5+enLl266LPPPlNUVFSVTBIAAMDVOB2yEhMT1a5dO+Pyli1b5OPjo8jISM2dO1fDhw/X5s2bq2SSAAAArsbpkJWVlSUfHx/j8vfff68ePXqoXr16kqT27dsrKSmp8jMEAABwQU6HrCZNmujnn3+WJP3+++/67bff1L17d2N7enq66tatW/kZAgAAuCAPZ684ePBgffjhh0pOTtaJEyfUsGFD9e3b19geHx+vkJCQKpkkAACAq3E6ZN1zzz3Kz8/Xd999p6CgID3zzDNq2LChJOnixYs6cOCAxowZU2UTBQAAcCVOhywPDw9FREQoIiKi1DZfX1+tW7euMvMCAABwaU6vyXrssce0b9++Mrf/+OOPeuyxx5wdHgAAwKU5vSfrwIEDGj58eJnb09LSdPDgQYfGzMzMVFRUlI4cOaKjR48qPT1dzzzzjIYNG2bV7+WXX1ZMTEyp61999dVasWKFVVthYaGioqK0bt06paamKjg4WBMnTtSgQYNKXf/EiROKjIzU4cOH5eHhoV69emn69Ony8/NzekwAAFA7OR2yJMnNza3MbadOnVL9+vUdGu/ChQtavny5goKC1LZtW+3fv7/Mvp6ennryySet2oqfUqLIkiVLtHLlSo0YMULt27dXbGysXnjhBbm5uWngwIFGv7Nnz2rGjBlq0KCBIiIilJWVpaioKB0/flyLFi2y+qakvWMCAIDay6GQtWnTJqs9SB999JE2bNhQql9GRoaOHz+unj17OjQZf39/rV27Vv7+/vr555/10EMPldnX3d1dQ4YMKXe85ORkrVmzRqNGjdKsWbMkScOHD9eMGTP07rvvKiwsTO7u7pKkFStWKDs7W0uXLlVQUJAkKTQ0VI8//rg2bdqk8PBwh8cEAAC1l0NrsnJycnT+/HmdP39e0uXDe0WXi/67cOGCPD09FR4erqeeesqhyXh6esrf39/u/gUFBbp06VKZ22NjY5Wfn69Ro0YZbW5ubho5cqSSk5MVFxdntO/YsUO9e/c2ApYkdevWTSEhIdq2bZtTYwIAgNrLoT1ZI0eO1MiRIyVJ48aN06OPPmp1bqw/U3Z2toYNG6bs7Gw1bNhQAwcO1MMPP2x1iDIhIUHe3t5q2bKl1XVDQ0ON7Z07d1ZycrLS0tKsfiaoeN/vvvvO4TEBAEDt5vSarE8++aQq5+EQf39/TZgwQdddd50sFou+//57rVu3Tr/++qvmz58vD4/LZaWkpKhRo0al1o4V7S07d+6c0a94e8m+Fy9eVG5urjw9Pe0e05Zz584ZtyVd/v1HAABwZarUwnfp8iHDM2fOKD09XRaLpdT2Ll26VPYmSpkyZYrV5YEDByokJERLlizRjh07jMXnOTk5Nn/ax9PT09he/N+K+np6eto9pi3R0dFavnx5ReUBAIArgNMh6/z585o/f7527NihwsLCUtstFovc3Ny0ffv2yszPbuPGjdOyZcu0d+9eI2R5eXkpLy+vVN/c3Fxje/F/7e1rTz9bwsPD1adPH+NyYmKi5s2bV3FxAADA5Tgdsl577TXt3r1bo0eP1l/+8hfjJ3Wqi5eXl3x9fXXx4kWjzd/fX/v37zcCX5GiQ3YBAQFGv+LtxaWkpMjX19fYU2XvmLYEBASUux0AAFw5nA5Ze/fu1bhx4zR16tSqnI/TMjMzdeHCBasTh7Zt21ZffPGFEhMTdc011xjtR44cMbZLUmBgoPz8/BQfH19q3KNHjxr9HBkTAADUbk7/rI6Xl5eaNm1alXOxS05OjjIzM0u1f/jhh7JYLFbn5urbt688PDy0du1ao81isWj9+vUKDAxUp06djPb+/ftr9+7dSkpKMtr27dunkydPasCAAU6NCQAAai+n92QNGTJEu3btsjpfVFX47LPPlJGRYRx+++abb3T27FlJ0ujRo5Wenq5JkyZp0KBBuvrqqyVJe/bs0XfffaeePXtanVKiSZMmGjt2rFavXq38/HyFhoZq165dOnTokObMmWN10tCJEydq+/btmjlzpsaMGaOsrCytXr1arVu3tvpZH0fGBAAAtZfTIat///46cOCA/va3v2nEiBFq0qSJ6tQpvWPM1rmnyrNmzRqdOXPGuLxz507t3LlT0uVg16BBA/Xu3Vs//PCDYmJiVFhYqBYtWuihhx7S+PHjS81hypQpatiwoaKjoxUTE6Pg4GDNnj1bgwcPtuoXFBSkBQsWKDIyUosWLTJ+u3DatGnGeixHxwQAALWXm8XWeRfs0L9///8NYuM3DP/sbxe6ovj4eEVERGjJkiUOh9HyrJr+tTJTc1S/sZfuirylysYFAMBV1IT3Qqf3ZD399NNVOQ8AAIAritMhq/g6JQAAAFhz+tuFAAAAKJvTe7L++c9/2tWPw4oAAKA2cjpk/fjjj6XaCgsLlZKSosLCQvn5+alevXqVmhwAAICrcjpkffLJJzbb8/PztX79en366ad64403nJ4YAACAK6vyNVkeHh4aPXq0unfvrrfffruqhwcAAHAJpi18b9OmjQ4ePGjW8AAAADWaaSFr7969rMkCAAC1ltNrspYvX26zPSMjQwcPHtQvv/yiu+++29nhAQAAXJrTIeuDDz6w2d6wYUM1b95cTzzxhEaMGOH0xAAAAFyZ0yFrx44dVTkPAACAKwpnfAcAADCB03uyihw4cEDffvutzpw5I0lq2rSpevXqpS5dulR2aAAAAJfldMjKy8vT3LlzFRsbK4vFogYNGki6vPB9zZo16tevn5577jl5eFQ6xwEAALicSn27cNeuXRo/frzuvPNONW7cWJKUlpamqKgoRUVFafny5Zo8eXKVTRYAAMBVOL0m68svv9TQoUM1depUI2BJUqNGjTR16lTdeuut2rJlS5VMEgAAwNU4HbJSU1PVoUOHMrd36NBBqampzg4PAADg0pwOWYGBgdq/f3+Z2w8cOKDAwEBnhwcAAHBpToesoUOHatu2bXr99df13//+VwUFBSosLNR///tfvfHGG9q+fbuGDh1alXMFAABwGU4vfJ84caJOnTqlDRs26IsvvpCbm5skyWKxyGKxaOjQobrnnnuqbKIAAACuxOmQ5e7urmeffVZ33nmnvv32WyUlJUmSgoKC1KtXL7Vp06bKJgkAAOBqHApZOTk5+te//qVWrVpp9OjRkqQ2bdqUClSffvqp1q9fr0cffZTzZAEAgFrJoTVZGzZsUExMjHr16lVuv169emnjxo364osvKjU5AAAAV+VQyNq2bZtuvvlmNW/evNx+LVq0UFhYmL766qtKTQ4AAMBVORSyjh8/rs6dO9vVt1OnTjp+/LhTkwIAAHB1DoWsvLw8u9dYeXh4KDc316lJAQAAuDqHQlZAQIB+++03u/r+9ttvCggIcGpSAAAArs6hkHXjjTdq8+bNSktLK7dfWlqaNm/erG7dulVqcgAAAK7KoZB19913Kzc3VzNnztSRI0ds9jly5Ihmzpyp3NxcTZgwoUomCQAA4GocOolV8+bNNXfuXM2dO1ePPPKImjVrptatW6t+/frKzMzUb7/9pj/++ENeXl567rnn1KJFC7PmDQAAUKM5fKbQXr166YMPPtCqVau0e/duxcbGGtsCAgI0fPhw3XXXXRWe5gEAAOBK5tTp2Js1a6YnnnhCTzzxhDIzM3Xp0iX5+Piofv36VT0/AAAAl1Tp37ypX78+4QoAAKAEhxa+AwAAwD6ELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMEGlfyC6KmVmZioqKkpHjhzR0aNHlZ6ermeeeUbDhg0r1ffEiROKjIzU4cOH5eHhoV69emn69Ony8/Oz6ldYWKioqCitW7dOqampCg4O1sSJEzVo0KA/ZUwAAFA71aiQdeHCBS1fvlxBQUFq27at9u/fb7Pf2bNnNWPGDDVo0EARERHKyspSVFSUjh8/rkWLFqlu3bpG3yVLlmjlypUaMWKE2rdvr9jYWL3wwgtyc3PTwIEDTR0TAADUXjUqZPn7+2vt2rXy9/fXzz//rIceeshmvxUrVig7O1tLly5VUFCQJCk0NFSPP/64Nm3apPDwcElScnKy1qxZo1GjRmnWrFmSpOHDh2vGjBl69913FRYWJnd3d9PGBAAAtVeNWpPl6ekpf3//Cvvt2LFDvXv3NsKQJHXr1k0hISHatm2b0RYbG6v8/HyNGjXKaHNzc9PIkSOVnJysuLg4U8cEAAC1V40KWfZITk5WWlqa2rVrV2pbaGioEhISjMsJCQny9vZWy5YtS/Ur2m7WmLacO3dO8fHxxn+JiYkVlQsAAFxUjTpcaI+UlBRJsrnHy9/fXxcvXlRubq48PT2VkpKiRo0ayc3NrVQ/6XLoMWtMW6Kjo7V8+XI7KwUAAK7M5UJWTk6OJFktRC/i6elp9PH09FROTk6F/cwa05bw8HD16dPHuJyYmKh58+aV2R8AALgulwtZXl5ekqS8vLxS23Jzc636eHl52d2vqse0JSAgQAEBAWVuBwAAVw6XW5NVdFiu6BBfcSkpKfL19TX2Kvn7+ys1NVUWi6VUP0lG4DFjTAAAULu5XMgKDAyUn5+f4uPjS207evSo2rZta1xu27atsrOzSy0wP3LkiLHdrDEBAEDt5nIhS5L69++v3bt3KykpyWjbt2+fTp48qQEDBhhtffv2lYeHh9auXWu0WSwWrV+/XoGBgerUqZOpYwIAgNqrxq3J+uyzz5SRkWEcfvvmm2909uxZSdLo0aPVoEEDTZw4Udu3b9fMmTM1ZswYZWVlafXq1WrdurXVT/A0adJEY8eO1erVq5Wfn6/Q0FDt2rVLhw4d0pw5c6xOGmrGmAAAoPaqcSFrzZo1OnPmjHF5586d2rlzpyRpyJAhatCggYKCgrRgwQJFRkZq0aJFxu8MTps2zVg7VWTKlClq2LChoqOjFRMTo+DgYM2ePVuDBw+26mfGmAAAoPZys5RcwY0/TXx8vCIiIrRkyRKbJ0J11qrpXyszNUf1G3vprshbqmxcAABcRU14L3TJNVkAAAA1HSELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADCBR3VPwBn79+/XY489ZnPbwoUL1bFjR+Py4cOH9d577+mXX36Rj4+PBgwYoIiICNWvX9/qerm5uVq2bJm2bNmi9PR0tWnTRpMnT1b37t1L3Ya9YwIAgNrLJUNWkdGjRys0NNSqrUWLFsb/JyQkaNasWWrZsqWmT5+us2fPas2aNfr999/12muvWV3vlVde0fbt2zV27FgFBwdr06ZNevLJJzV//nx17tzZqTEBAEDt5dIh6y9/+YvCwsLK3L548WI1bNhQCxYskI+PjySpWbNm+r//+z/t2bNHPXr0kCQdOXJEW7du1dSpUzVhwgRJ0q233qr7779fCxcu1MKFCx0eEwAA1G4uvyYrMzNT+fn5pdovXbqkvXv3asiQIUYYki6HJ29vb23bts1o27Fjh9zd3RUeHm60eXl56fbbb1dcXJySkpIcHhMAANRuLr0n65VXXlFWVpbc3d3VuXNnTZ06Ve3bt5ckHT9+XAUFBWrXrp3VderWratrr71WCQkJRltCQoKCg4OtgpMk41DksWPHFBQU5NCYtpw7d04pKSnG5cTERMeLBgAALsElQ5aHh4f69++vm266SVdddZVOnDihNWvWaPr06Xr33Xd13XXXGWHG39+/1PX9/f118OBB43JKSkqZ/aTL4aion71j2hIdHa3ly5fbVyQAAHBpLhmyrr/+el1//fXG5b59+yosLEwPPPCAFi9erNdff105OTmSLu9lKsnT01O5ubnG5ZycnDL7FW0v/q89Y9oSHh6uPn36GJcTExM1b968cq8DAABck0uGLFuCg4PVt29f7dy5UwUFBfLy8pIk5eXlleqbm5trBCjp8vqrsvoVbS/+rz1j2hIQEKCAgAA7KwIAAK7M5Re+F9ekSRPl5eUpOzvbOKRXfA1UkZSUFKuw4+/vX2Y/SUZfR8YEAAC12xUVsv744w95enrK29tbrVq1kru7u+Lj46365OXlKSEhQW3btjXa2rZtq99//12XLl2y6nvkyBFjuySHxgQAALWbS4as8+fPl2o7duyYvvnmG3Xv3l116tRRgwYN1K1bN23ZskWZmZlGv82bNysrK0sDBgww2sLCwlRQUKDo6GijLTc3Vxs3blSHDh0UFBQkSQ6NCQAAajeXXJP13HPPycvLS506dVKjRo104sQJbdiwQfXq1dOUKVOMfpMnT9a0adM0Y8YMhYeHG2dn7969u3r27Gn069ChgwYMGKDFixfr/PnzatGihWJiYnTmzBk99dRTVrdt75gAAKB2c8mQ1a9fP3355Zf65JNPdOnSJfn5+enmm2/W/fffr+DgYKNfu3bt9Oabb+q9997Tv/71L9WvX1+33367VRAr8uyzzyooKEibN29WRkaGWrdurVdffVVdunSx6ufImAAAoPZys1gsluqeRG0VHx+viIgILVmypNQJTitj1fSvlZmao/qNvXRX5C1VNi4AAK6iJrwXuuSaLAAAgJqOkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKP6p6Aq8rNzdWyZcu0ZcsWpaenq02bNpo8ebK6d+9e3VMDAAA1AHuynPTKK6/ok08+0eDBg/Xoo4+qTp06evLJJ3Xo0KHqnhoAAKgBCFlOOHLkiLZu3aqHHnpIjzzyiMLDw/X222+radOmWrhwYXVPDwAA1ACELCfs2LFD7u7uCg8PN9q8vLx0++23Ky4uTklJSdU4OwAAUBOwJssJCQkJCg4Olo+Pj1V7aGioJOnYsWMKCgoqdb1z584pJSXFuJyYmGjuRAEAQLUhZDkhJSVF/v7+pdqL2s6dO2fzetHR0Vq+fLmZUwMAADUEIcsJOTk5qlu3bql2T09PY7st4eHh6tOnj3E5MTFR8+bNq/L51b/Ky+pfAABqm5rwXkjIcoKXl5fy8vJKtefm5hrbbQkICFBAQICpc5OkkS/1qbgTAABXsJrwXsjCdyf4+/tbra0qUtT2ZwQpAABQsxGynNC2bVv9/vvvunTpklX7kSNHjO0AAKB2I2Q5ISwsTAUFBYqOjjbacnNztXHjRnXo0MHmNwsBAEDtwposJ3To0EEDBgzQ4sWLdf78ebVo0UIxMTE6c+aMnnrqqeqeHgAAqAEIWU569tlnFRQUpM2bNysjI0OtW7fWq6++qi5dulT31AAAQA1AyHKSl5eXHnnkET3yyCPVPRUAAFADsSYLAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzAebKqUU5OjiQpMTGxmmcCAAAc1bJlS9WrV6/M7YSsanTmzBlJ0rx586p5JgAAwFFLlixRu3btytzuZrFYLH/ifFDM+fPntWfPHjVr1kyenp5VNm5iYqLmzZun2bNnq2XLllU2riug9tpXe22tW6L22lh7ba1bqpm1syerBvPz89OQIUNMG79ly5blJuwrGbXXvtpra90StdfG2mtr3ZJr1c7CdwAAABMQsgAAAExAyLoC+fv76/7775e/v391T+VPR+21r/baWrdE7bWx9tpat+SatbPwHQAAwATsyQIAADABIQsAAMAEhCwAAAATELIAAABMwMlIq8nLL7+smJiYMrd/9tlnCgwMVGFhoTZs2KD169fr1KlTqlevnq677jrde++9uv76662uk5ubq2XLlmnLli1KT09XmzZtNHnyZHXv3r3U+IcPH9Z7772nX375RT4+PhowYIAiIiJUv359p8esyrrz8/P18ccfKyYmRufOnVNAQIBuu+023X333fLwsH7YukLdRU6ePKlly5bp8OHDunjxooKCgjRo0CCNHz/e6qzBZsyzOmu3p+49e/bo66+/1tGjR5WYmKgmTZrok08+sTleYWGhoqKitG7dOqWmpio4OFgTJ07UoEGDSvU9ceKEIiMjdfjwYXl4eKhXr16aPn26/Pz8nB6zKmvPzs7Wxo0bFRsbq+PHjysrK0vBwcEaMWKERowYIXd3d5es3Z77/OOPP9Y333yjU6dOKSsrS4GBgerVq5fuvffeSs2xpt/nJaWnp+vuu+/W+fPn9cILLygsLMxqu6s8z+2t/dFHH9WBAwdKXbdHjx56/fXXXbZ2W/h2YTX56aef9Mcff1i1WSwWvfHGG2ratKk++ugjSVJkZKQ++eQTDRkyRJ07d1ZGRoaio6OVlJSkd955Rx06dDCuP3fuXG3fvl1jx45VcHCwNm3apJ9//lnz589X586djX4JCQmaOnWqWrZsqfDwcJ09e1Zr1qxR165d9dprr1nNyd4xq7ru5557Ttu3b9dtt92m9u3bKy4uTjExMRoxYoT+3//7f07NsTrrlqSkpCQ98MADatCggcLDw+Xr66u4uDht2rRJffr00SuvvGLaPKuzdnvrfvnll/X111/ruuuuU1JSktzd3csMWYsWLdLKlSs1YsQItW/fXrGxsfr222/13HPPaeDAgUa/s2fPatKkSWrQoIFGjx6trKwsRUVFKSgoSIsWLVLdunUdHrOqaz9+/LgeeOAB3Xjjjerevbvq16+vPXv2aNeuXbr11lv197//3eVqt/c+nz17tvz8/HT11Verfv36SkxM1BdffCE/Pz+9//778vb2dqm6Ham9uPnz52vjxo3KysqyGbJc4XnuSO2PPvqoTp06pSlTplhd39/fXzfeeKNL1l4mC2qMgwcPWvr162f56KOPLBaLxZKXl2cZNGiQZc6cOVb9Tp06ZenXr5/l7bffNtri4uIs/fr1s6xatcpoy87OtowfP97y8MMPW13/b3/7m2XkyJGWjIwMo23Dhg2Wfv36Wb7//nunxqyMknUfOXLE0q9fP8vSpUut+kVGRlpuvvlmy7Fjx5yaY3XX/dFHH1n69etnOX78uFX7vHnzLP369bNcvHjRtHlWZ+321p2cnGzJy8uzWCwWy5NPPmkZO3aszfHOnj1rGTBggOXNN9802goLCy3Tpk2z/PWvf7Xk5+cb7W+88YZl0KBBljNnzhhtP/zwg6Vfv36W9evXOzVmVdeelpZWarvFYrG88sorln79+llOnjzpcrXbe5/bsm3bNku/fv0sX331lcvV7Uztv/76qyUsLMyyfPlyS79+/Szbtm2z2u4qz3NHap8xY4bl3nvvrXA8V6q9LKzJqkG++uorubm5GbuqCwoKlJOTo0aNGln1a9SokerUqSMvLy+jbceOHXJ3d1d4eLjR5uXlpdtvv11xcXFKSkqSJF26dEl79+7VkCFD5OPjY/S99dZb5e3trW3btjk8ZlXXfejQIUkq9Uly4MCBslgs+vrrr12y7kuXLklSqfvT399fderUkYeHhynzrO7a7albkgICAkodCrYlNjZW+fn5GjVqlNHm5uamkSNHKjk5WXFxcVb19O7dW0FBQUZbt27dFBISYlW3I2M6wp7a/fz81KpVq1LX7devn6TLP4rrarXbe5/b0qxZM0lSRkaGU3N0hfu8uAULFujmm28ucw+KqzzPnak9Pz9fmZmZZY7nSrWXhZBVQ+Tn52vbtm3q1KmT8SLj5eWlDh06KCYmRlu2bFFSUpJ+/fVXvfLKK2rYsKHVgyQhIUHBwcFWDzBJCg0NlSQdO3ZMknT8+HEVFBSU+nHNunXr6tprr1VCQoLDY1Z13Xl5eZIkT09Pq75Fx/Pj4+MdnmNNqLtr166SpFdffVUJCQlKSkrS1q1btX79eo0ePVre3t6mzLO6a7enbkckJCTI29tbLVu2tDnHonqSk5OVlpZm84dkQ0NDS9Vtz5iOqkztqampkqSrrrrK4XlWd+2O1G2xWHT+/HmlpKTo4MGDmj9/vtzd3dWlSxeXq9vR2rdt26affvpJDz/8cJnjucrzXHKs9pMnT+rWW2/V0KFDNXLkSC1dulT5+fkuW3tZWPheQ+zZs0cXLlzQ4MGDrdpnz56t559/XvPmzTPamjdvrnfeeUfNmzc32lJSUmz+1EBR27lz54x+xdtL9j148KDDY1aGrbpDQkIkXV6/VbzGorklJyc7PMeaUHfPnj01adIkrVixQt98843Rfs899ygiIsK0eVZ37fbU7YiUlBQ1atRIbm5u5c6xorovXryo3NxceXp62j2mo5ytPS8vT//+97/VrFkztW/f3mh3ldodqTs1NdVqb1JgYKDmzJljFX5cpW7J/tpzcnL07rvvaty4cWrWrJnOnDljczxXeZ5L9tfevHlzde3aVa1bt1Z2dra2b9+ujz76SCdPntTcuXMdnmdNqL0shKwa4quvvpKHh4cGDBhg1V6/fn21atVKHTt21I033qjU1FStXLlSzz77rCIjI41vy+Tk5Fgt6CxStDcoJyfH6t+y+ubm5hqX7R2zMmzVfdNNN6lp06Z699135eXlpXbt2unIkSNaunSp3N3dnZpjTam7WbNm+stf/qL+/fvL19dX3377rVasWKHGjRtr9OjRpsyzJtReUd2OqKq6i/p4enpW631uy9tvv60TJ07o1VdftTrE4kq121u3r6+v3nzzTeXm5iohIUE7d+5UVlaW1ViuVLdkX+0rV65Ufn6+Jk6cWO5YrvQ8l+yr/emnn7a6zq233qrXXntNGzZs0Lhx49SxY0eH5llTareFkFUDZGZmKjY2Vj169LA6NJCfn69Zs2apa9eumjlzptF+44036r777tPq1as1depUSZcPLRYdZiuu6MFVtH6r6N+y+hY/RGfvmM4qq24vLy+9+uqreu655zRnzhxJl58ADz/8sD7++GOrXc6uVPfWrVv12muvaeXKlWrSpIkkqX///rJYLFq0aJEGDRpkyjyru3Z76i5+/1ekquou2be67vOSta9evVobNmzQpEmT1KtXL6ttrlK7I3XXrVtX3bp1kyT17t1bN9xwg6ZNm6ZGjRqpd+/eLlW3vbVnZmZq9erVmjVrVqnTC5TkKs9zqXLP9TvvvFMbNmzQ3r17jZDlSrWXhTVZNUBsbKyys7NLHSo8ePCgfvvtN/Xp08eqPSQkRC1bttRPP/1ktPn7+xu7TIsragsICDD6FW8v2beonyNjOqusuiWpVatW+vDDD/Xhhx8qMjJSn3/+uUaMGKELFy4YhxMdmWNNqHvt2rW69tprjRefIn369FF2drYSEhJMmWd1125P3Y7w9/dXamqqLCXOPuNo3b6+vsaLr71jOsrR2jdt2qT33ntPd9xxh+67775S47lK7ZW5z6+//nr5+/vryy+/NNpcpW7Jvtrff/99BQQEqEuXLjp9+rROnz5trME7f/68Tp8+rcLCQmOervA8lyp3vxddJz093eF51oTay0LIqgG+/PJLeXt7lwpTaWlpkmQ82YrLz89XQUGBcblt27b6/fffjW93FDly5IixXbocXtzd3a0Wj0uXPwEkJCQY/RwZ01ll1V3Ezc1NrVq1UufOneXr66sff/xRhYWFVudRcaW609LSyrwvpcvfJjVjntVduz11O6Jt27bKzs62+tadrTkGBgbKz8+vVN2SdPTo0VJ12zOmoxypfdeuXfq///s/3XzzzZo1a5bN8Vyl9sre57m5uVbfLnSVuiX7ak9KStKpU6c0fvx43XnnnbrzzjuNtUhvvvmm7rzzTuM56CrPc3trL0vR+ROLnzDWlWovCyGrmp0/f1579+7VzTffXOpMwEV7bLZu3WrVHh8fr5MnT+raa6812sLCwlRQUKDo6GijLTc3Vxs3blSHDh2MrzM3aNBA3bp105YtW6y+Ort582ZlZWVZrY2yd8yqrtuWnJwcLVu2TP7+/lZnY3alukNCQpSQkKCTJ09atW/dulV16tRRmzZtTJlnddduT92O6Nu3rzw8PLR27VqjzWKxaP369QoMDFSnTp2M9v79+2v37t1WX8vet2+fTp48aVW3I2M6wt7aDxw4oLlz56pz586aM2eO6tSx/dLsKrXbU3dWVpays7NLXXf79u1KT0+3WvDvKnXbW/vkyZP10ksvWf03adIkSdKECRP00ksvGcsiXOV5bm/tly5dslojJV3+uxediLr4WdddqfaysCarmm3dulUFBQU2D5m1a9dO3bp1U0xMjC5duqQePXooJSVFn332mby8vDR27Fijb4cOHTRgwAAtXrxY58+fV4sWLRQTE6MzZ87oqaeeshp38uTJmjZtmmbMmGF1Ztzu3burZ8+eTo1ZlXVLl8/47u/vr2uuuUaXLl3Sxo0bdfr0ab366qtWaxhcqe7x48fr+++/1/Tp0/XXv/5Vvr6+2r17t77//nsNHz7c2E1txjyrs3Z76/71118VGxsrSTp16pQyMjL04YcfSrr86bJoj2eTJk00duxYrV69Wvn5+QoNDdWuXbt06NAhzZkzx+pnaCZOnKjt27dr5syZGjNmjLKysrR69Wq1bt1aw4YNM/o5MmZV137mzBk9++yzcnNzU1hYmLZv3241Rps2bYww5iq121N3QkKCHn/8cQ0YMEAtW7aUm5ub4uPjtWXLFjVt2lRjxoxxao6ucJ/bOiTVoEEDSZdPJVB0jjTJdZ7n9ta+f/9+zZ07V4MGDVKLFi2Uk5OjXbt26fDhwxoxYoTVaRhcqfay8LM61Wzq1Kn6448/9Pnnn9t8Uufk5CgqKkpbt27V6dOnVbduXXXu3FmTJk2y2pNV1Lfo95gyMjLUunVrTZ48WT169Cg17qFDh4zfeKpfv74GDBigKVOmlFqE6ciYVVn3qlWrtHHjRp05c0ZeXl7q3LmzHnzwwVI1u1rdR44c0QcffKCEhARdvHhRzZo109ChQzVhwgSrb5GZMc/qrN2eujdt2mTzJ0ckaejQoXr22WeNy4WFhVq1apWio6OVkpKi4OBg3X333RoyZEip6/7222+lfsdu2rRpaty4sVU/R8asytr379+vxx57rMzr33///XrwwQddrvaK6j5//ryWLFmigwcPKjk5Wfn5+QoKClKvXr10zz332PydQVeo257abSl6HNj6WR1XeZ7bU/sff/yhRYsW6ejRo0pNTVWdOnXUsmVLDR8+XOHh4aVOqeFKtdtCyAIAADABa7IAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABPwszoAANRi586d06effqqjR4/q559/VlZWlubPn6+uXbvaPcbevXv18ccf6/jx4yooKFBwcLBGjx6tW2+91eiTk5Ojt956S0ePHtXZs2dVWFio5s2b67bbbtOoUaOszoZf3i9ArF27Vv7+/ja3nTp1Svfdd59yc3O1ePFiq9/AdMTvv/+uRYsWad++fcrLy9N1112nSZMm6YYbbnBoHEIWgFrt5Zdf1oEDB/TJJ59U91QkSe+//76WL18uSfL29tbmzZvtvm56erpuv/124/LUqVM1YcKEqp4irjAnT57UqlWrFBwcrNatWysuLs6h68fGxurvf/+7OnbsqPvvv19ubm7atm2bXnrpJV24cEHjxo2TdDlknThxQjfddJOaNm2qOnXq6KefflJkZKSOHj2qf/zjH6XGnjRpkpo1a2bVVvQ7j7b861//cvp3J4skJSVp6tSpcnd314QJE1SvXj1t2rRJTzzxhN566y116dLF7rEIWQCuODfffLNd/ebPn2/yTJw3e/Zsh98svL29NXv2bJ0/f16RkZEmzQyu5tFHH1XTpk2tfv+zuHbt2umLL76Qr6+vtm/fbjPslOfzzz+Xv7+/3n77bXl6ekqSwsPDdc8992jTpk1GyPL19dV7771ndd077rhDPj4++vzzzzVt2rRSe6h69uxp996oPXv26IcfftCECRP00UcfOVRDcStXrjR+oP7qq6+WJI0YMUITJ05UZGSkli5davdYhCwAV5zZs2dbXY6JidHevXtLtbds2VJPPvmkCgsL/8zp2cWZHyn28PDQkCFDdPr0aUIW7FbyB5QdlZmZqYYNGxoBS7r8WLzqqqvsun7Tpk0lSRkZGTYPA2ZmZsrLy6vcDx35+flasGCBxowZoxYtWpTZLzExUUuXLtWPP/6onJwctWrVSvfdd5/69u1r9Dl06JCuvfZaI2BJUr169dSnTx+tXbtWJ0+eVEhIiF21EbIAXHFKBpS4uDjt3bvXqeACoHxdunTRqlWrtHTpUg0dOlRubm766quvFB8fr+eff75U/7y8PF26dEk5OTmKj49XVFSUmjZtajMcPfbYY8rKylLdunXVvXt3TZs2zWbA+fe//6309HTde++92rlzp815/vbbb5o2bZoCAgJ09913q169etq2bZv+/ve/68UXXzT2gOfl5alhw4alrl+vXj1J0i+//ELIAgB7lFyTdfr0ad15552aOnWqvLy8tGbNGqWmpur666/XU089pSZNmuijjz5SdHS0Lly4oO7du+uZZ56Rr6+v1bjfffedVqxYoV9++UVubm76y1/+oqlTp6pVq1ZOz/Xnn3/WkiVL9MsvvygrK0uNGzfWDTfcoKeffrpSfwOgMu677z6dPn1aH3/8sXGYrl69enrhhRfUr1+/Uv137typuXPnGpfbt2+vp556ymrhu5eXl4YNG6auXbvKx8dH8fHx+uSTT/TII49o6dKlCgoKMvqmpKToww8/1COPPCIfH58y57lgwQI1adJEixcvNva6jRo1StOmTdN7771nhKyQkBAdOnRImZmZVnv5Dh06JElKTk62+29DyAIAG7766ivl5eVp9OjRunjxolavXq3nn39eN9xwg/bv36+77rpLv//+uz7//HO9++67VkFn8+bNevnll9WjRw9NmTJFOTk5WrdunaZNm6Zly5aVWshrj7S0ND3xxBPy8/PTXXfdpYYNG+r06dNlfmpH7ZSfn6+MjIxSbXl5eTp//rxVu6+vr+rUqfyZnOrWrauQkBCFhYXp5ptvVkFBgTZs2KB58+bpzTffVMeOHa36d+3aVW+++aYyMjK0b98+HTt2TNnZ2VZ9brnlFt1yyy3G5X79+qlHjx6aMWOGPv74Y/3tb38ztr333ntq3ry5hg8fXuYcL168qB9//FEPPvigMjMzlZmZaWzr0aOH3n//fSUnJyswMFAjR47U7t279dxzzykiIkLe3t5au3at4uPjJV1ewG8vQhYA2JCcnKxVq1YZ32QqLCzUihUrlJOTo8WLFxufui9cuKAvv/xSjz/+uDw9PZWZman58+dr+PDh+n//7/8Z4w0dOlQTJ07UihUrrNrt9dNPPyk9PV1vvPGG1ULgiIiISlaKK8nhw4f12GOPlWr/6aeftHXrVqu2NWvWOBX4S3r77bd15MgRLV261Ahtt9xyi+69914tWLBAixYtsurfuHFjNW7cWJIUFhamjz/+WI8//rhWrVpV5qkZJKlz587q0KGD9u3bZ7TFxcVpy5Yteuutt8oNjL///rssFouWLVumZcuW2eyTlpamwMBA3XTTTXrssce0ePFiTZ48WZLUokULRUREaOHChfL29rbvDyNCFgDYFBYWZvVV8dDQUEnS4MGDrQ5rhIaG6quvvtK5c+fUvHlz7d27VxkZGRo4cKDVnoM6deooNDRUP/74o1PzKZrL7t271bZtW6s5AEXatm2rN99806rtnXfeUePGjUudzqMo6FRGXl6e/vOf/+iuu+6yCjkeHh7q2bOn1q5dq7y8PNWtW7fMMcLCwrRkyRLFxsbqjjvuKPf2mjRpov/+97/G5YULF6pz585q1qyZTp8+LUnG8y4lJUVJSUkKCgqSxWKRJI0fP149evSwOXZwcLDx/6NHj9Ztt92mX3/9VXXr1lXbtm31n//8R5LsXo8lEbIAwKbiaz6k/4WcJk2a2GxPT0+XdPkTsyTNnDnT5rjlrRkpT5cuXdS/f38tX75c//73v9WlSxf169dPgwYNsvpWF2q3hg0bqlu3bqXa/P39S7VXhQsXLqigoEAFBQWlthUUFKiwsLDCb+8WHX67dOlShbf3xx9/yM/Pz7h89uxZnTlzRnfeeWepvs8884waNGigjRs3qnnz5pIuhz97/w7e3t7q1KmTcXnfvn3y8vLS9ddfb9f1JUIWANhU1qGHsr5GXvRJuegNZfbs2Tb3FDh7okQ3Nze9+OKLiouL0+7du7Vnzx7985//1Jo1a7Rw4cJKfw0fsEdSUpKys7PVsmVLSVKjRo3UoEED7dq1S5MmTTL2WGVmZuqbb77R1VdfLS8vL0mX9zBdddVVcnNzsxrziy++kHT5fF1Fzp8/bxWmJOnbb79VfHy8Ro8ebbT97W9/K7VG6scff9Rnn32mRx55xGqeXbt2VXR0tP76178qICDA6jq2bq+4w4cPa+fOnbrjjjvKPRlqSYQsAKhCRV9D9/PzM2XPQceOHdWxY0dFREToyy+/1Isvvqivv/663EW/QEU+/PBDSdKJEyckXf7yRtG36e677z6j30svvaQDBw4YX7hwd3fX+PHjtXTpUj388MO69dZbVVhYqP/85z9KTk62Ojfdli1bFB0drb59+6p58+bKzMzUnj17tHfvXvXu3Vs33nij0Xfq1Km67rrr1K5dO/n4+OiXX37Rxo0b1aRJE91zzz1GP1uH/ooW/nfp0sVq/eKsWbM0bdo0PfDAAxo+fLiaN2+u1NRUxcXFKTk5WR988IEk6cyZM3ruuefUp08fNW7cWCdOnND69evVunVrPfTQQw79XQlZAFCFevToIR8fH61YsUI33HBDqbVTFX1iLkt6eroaNGhgtRfg2muvlSTl5uZWas5AycXgGzduNP6/eMiy5d5771WzZs306aefavny5crLy1ObNm30wgsvKCwszOjXuXNnxcXFaevWrUpLS5O7u7tCQkI0ffp0/fWvf7Ua85ZbbtF3332nH374QdnZ2fL399eIESN0//33O72W7JprrtGSJUv0wQcfaNOmTbp48aIaNWqka6+91qpGHx8f+fv76/PPP1d6eroCAgI0evRo3XvvvQ7vMSZkAUAV8vHx0eOPP66XXnpJkyZN0sCBA+Xn56ekpCR999136tSpk2bNmuXwuJs2bdK6devUr18/tWjRQpmZmfriiy/k4+Ojm266yYRKcKVYsGBBhX3sPRVIWWMNHjxYgwcPLve67du3tzo/VnkiIiKc/ubssGHDNGzYMJvbmjdvrr///e/lXr9hw4Z6+eWXnbrtkghZAFDFBg8erICAAK1cuVJRUVHKzc1VYGCgOnfurNtuu82pMbt06aKff/5ZX3/9tdLS0uTj46PQ0FDNmTPHWNQLoGZxsxSt1gQAVLv3339fy5cvV3R0tNzc3Oz+/Tfp8uL7Cxcu6OzZs5o8ebKmTp1a6mv7AP487MkCgBooPDxc3t7e2rx5s93XycjIUHh4uImzAuAI9mQBQA3yxx9/6I8//pB0+ZtbXbt2tfu6+fn5OnDggHE5JCSk1Pm+APx5CFkAAAAmqPwvQwIAAKAUQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYIL/D5abwV3Ps7uhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHLCAYAAAA3J7d5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9wUlEQVR4nO3deVxWZf7/8TfrrYCKgpCCmSiDWJqVy5ipuJGmMhouWdY449JoLtNYmtZ3GkszW6YvTaON6UiOmZrlVu6WoKbOaGIWLjgmaQYCgqyy3r8/+nm+3d0cBWS5wdfz8fAxnuu6znV/zsVE78459zlOVqvVKgAAANhxrukCAAAAHBVBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwIRrTRdQV+Tm5mr16tWKj4/XiRMnlJWVpdmzZ2vgwIE3Ne/hw4f1r3/9S6dPn1ZJSYlatGih0aNHq2/fvpVUOQAAMENQqiRXrlxRdHS0/P391aZNGx09evSm59yyZYsWLlyoTp06acKECXJxcdH333+vS5cuVULFAADgRghKlcTHx0fr16+Xj4+PTp48qYkTJ97UfD/++KPeeustPfzww5o+fXolVQkAAMqDoFRJ3N3d5ePjU6axBw8e1MqVK3X69Gk5OTnp7rvv1qRJk9SqVStjzMaNG1VSUqJx48ZJ+unSXv369eXk5FQl9QMAAHvczF3Ntm/frlmzZql+/fp68skn9dvf/lbnzp3TU089pR9//NEYd+TIEd1+++06ePCgIiMjNWDAAA0ePFhLly5VSUlJDR4BAAC3Ds4oVaPc3FxFRUVp8ODBevbZZ432AQMGaMyYMVq5cqXRfuHCBTk7O+vVV1/V6NGj1bp1a8XGxmrFihUqLi7Wk08+WVOHAQDALYOgVI0OHz6s7Oxs9e3bVxkZGUa7s7OzQkND9dVXXxlteXl5Kikp0ZNPPqnHHntMkhQWFqasrCytW7dOjz/+uDw8PKr7EAAAuKUQlKrRhQsXJEl//OMfS+339PQ0/m6xWJSXl6d+/frZjOnbt68OHTqk06dPq2PHjlVVKgAAEEGpWl27t+iFF15QkyZN7PpdXFyMv/v4+OjChQtq3LixzZhr21lZWVVYKQAAkAhK1SogIECS5O3trU6dOl13bEhIiC5cuKDU1FQ1b97caE9NTTXmAAAAVYtvvVWjLl26yNPTUytXrlRRUZFd/8/vW+rTp48k6bPPPjPaSkpKtHXrVjVs2FAhISFVXi8AALc6zihVoo8//ljZ2dlKS0uTJO3fv994inZkZKS8vLz0pz/9SfPnz9e4cePUt29feXt7Kzk5WQcPHtRdd92lp59+WpL0wAMP6L777tPKlSuVkZGhNm3aaO/evfr666/1zDPPyN3dvcaOEwCAW4WT1Wq11nQRdcXIkSOVlJRUat+aNWvUrFkzSdLRo0f1wQcfKD4+XgUFBWratKk6dOighx9+2OZMUW5urpYuXarPP/9cWVlZatGihR599FGFh4dXy/EAAHCrIygBAACY4B4lAAAAEwQlAAAAEwSlm3D16lWdOnVKV69erelSAABAFSAo3YTExERNmDBBiYmJNV0KAACoAgQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAE641XQAq7uzBH3VkXYIKrxZV22e61XNVpxHBatW1WbV9JgAANYWgVIsdWZegKxdzqvlT83X4owSCEgDglkBQqsWunUlycpLqN7ZU+eflpefLalW1nsECAKAmEZTqgPqNLXr0nT5V/jmrpnyu3Mv5Vf45AAA4Cm7mBgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMOFa0wX8Um5urlavXq34+HidOHFCWVlZmj17tgYOHHjDfbdu3aoFCxaU2rd+/Xr5+PjYtO3bt0/Lly9XYmKivL299dBDD+mJJ56Qq6vDLQsAAKgBDpcIrly5oujoaPn7+6tNmzY6evRouecYN26cmjVrZtPm5eVls33w4EE9//zz6tixo6ZPn66zZ89qxYoVSk9P14wZM27qGAAAQN3gcEHJx8fHOPtz8uRJTZw4sdxzdO3aVW3btr3umEWLFql169Z68803jTNIHh4eWrlypYYPH66WLVtWqH4AAFB3ONw9Su7u7naXyCoiNzdXxcXFpfadO3dO586d05AhQ2wusw0bNkxWq1V79uy56c8HAAC1n8OdUaoM06dPV15entzc3NS5c2c99dRTatGihdF/+vRpSVJISIjNfr6+vmratKkSEhKqtV4AAOCY6lRQslgsGjhwoO655x55enrq1KlTWrt2rSZPnqylS5fK399fkpSWliZJpZ658vHxMfp/KTU11aYvMTGxCo4CAAA4ijoVlPr06aM+ffoY2z169FCXLl00depU/etf/9IzzzwjSSooKJD002W+X3J3d1dubm6p82/atEnR0dGVXzgAAHBIdSoolaZDhw5q166djhw5YrRdC0jXAtPPFRQUyGKxlDpXRESEunfvbmwnJiZq3rx5lVwxAABwFHU+KEmSn5+fvv/+e2P72iW3tLQ043LcNWlpaQoNDS11Hl9fX/n6+lZdoQAAwKE43LfeqsLFixfl7e1tbAcHB0uSTp06ZTMuNTVVKSkpRj8AALi11dqglJqaqsTERBUVFRltGRkZduMOHDigU6dOqUuXLkZbq1atdPvtt2vz5s02jxDYsGGDnJyc1KtXryqtHQAA1A4Oeent448/VnZ2tvENs/379+vSpUuSpMjISHl5eWnJkiXatm2b1qxZYzyFe9KkSfrVr36lkJAQeXp66vTp09qyZYv8/Pz0+OOP23zG5MmTNXv2bM2YMUN9+/bV2bNntX79eg0ePFh33HFHtR4vAABwTA4ZlNasWaOkpCRjOzY2VrGxsZKk8PBwu9eRXNOnTx8dPHhQ//nPf3T16lX5+PhoyJAhGjt2rJo0aWIz9v7779e8efMUHR2tqKgoNWrUSGPGjNHYsWOr7LgAAEDt4pBBae3atTccM2fOHM2ZM8embcKECZowYUKZP6dHjx7q0aNHuesDAAC3hlp7jxIAAEBVIygBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYcK3pAn4uNzdXq1evVnx8vE6cOKGsrCzNnj1bAwcOvOG+R44c0c6dO/X1118rJSVFTZo00b333qtx48bJ19fXZuy0adMUFxdnN0eXLl30xhtvVNbhAACAWs6hgtKVK1cUHR0tf39/tWnTRkePHi3zvu+++64yMzMVFhamFi1a6OLFi/rkk0904MABLVu2TD4+PjbjmzZtqieffNKm7ZdjAADArc2hgpKPj4/Wr18vHx8fnTx5UhMnTizzvk899ZQ6dOggZ+f/u5rYpUsXTZs2TZ988okmTJhgM97Ly0vh4eGVVjsAAKh7HOoeJXd39wqf1enYsaNNSLrW1rBhQyUmJpa6T1FRkXJzcyv0eQAAoO5zqDNKlS03N1d5eXlq1KiRXd/58+f14IMPqrCwUE2aNNHgwYM1duxYubrW6SUBAADlUKdTwUcffaTCwkL16dPHpr158+a65557FBQUpKtXr2rPnj1asWKFzp8/r7lz55rOl5qaqrS0NGPb7EwVAACoG+psUIqLi1N0dLR69+6t++67z6bvueees9l+8MEH9frrr2vz5s0aOXKk7rzzzlLn3LRpk6Kjo6uqZAAA4GDqZFBKTEzUCy+8oKCgIM2aNatM+4waNUqbN2/W4cOHTYNSRESEunfvbvM58+bNq5SaAQCA46lzQSk5OVkzZsyQp6enFi5cKA8PjzLt5+fnJ0nKysoyHePr62v3TCYAAFB31amgdOXKFc2YMUOFhYV66623yhVqLl68KEny9vauouoAAEBt41CPByir1NRUJSYmqqioyGjLy8vTzJkzlZqaqtdee00tWrQodd+cnBwVFBTYtFmtVq1YsUKS1Llz56orHAAA1CoOd0bp448/VnZ2tvHtsv379+vSpUuSpMjISHl5eWnJkiXatm2b1qxZo2bNmkmSXn75ZZ04cUIPPfSQEhMTbb6RVr9+ffXo0UOSdPr0ac2dO1f9+vVTQECA8vPztXfvXh0/flxDhgxRSEhINR8xAABwVA4XlNasWaOkpCRjOzY2VrGxsZKk8PBweXl5lbrfmTNnJElbtmzRli1bbPpuu+02Iyj5+/vr7rvvVmxsrC5fvixnZ2e1bNlSM2bMUERERFUcEgAAqKUcLiitXbv2hmPmzJmjOXPmlHs/6adnKF3vWUkAAADX1Mp7lAAAAKoDQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMCEa00X8Eu5ublavXq14uPjdeLECWVlZWn27NkaOHBgmfbPysrSu+++q9jYWOXn5ys0NFSTJ09WSEiI3dh9+/Zp+fLlSkxMlLe3tx566CE98cQTcnV1uGUBAAA1wOHOKF25ckXR0dFKTExUmzZtyrVvSUmJZs2apV27dunhhx/WH/7wB6Wnp2v69Ok6f/68zdiDBw/q+eefl5eXl6ZPn64ePXpoxYoVioqKqszDAQAAtZjDnTrx8fHR+vXr5ePjo5MnT2rixIll3nfPnj365ptv9NJLLyksLEyS1KdPHz366KNavny5/vznPxtjFy1apNatW+vNN980ziB5eHho5cqVGj58uFq2bFmpxwUAAGofhzuj5O7uLh8fnwrtGxMToyZNmqhnz55Gm7e3t3r37q19+/apoKBAknTu3DmdO3dOQ4YMsbnMNmzYMFmtVu3Zs+emjgEAANQNDheUbsbp06cVHBwsZ2fbwwoNDdXVq1eNy2+nT5+WJLv7lnx9fdW0aVMlJCRUT8EAAMChOdylt5tx+fJl3X333Xbt185QpaWlqXXr1kpLS7Np/+XYa/2/lJqaatOXmJhYGWUDAAAHVaeCUn5+vtzd3e3ar7Xl5+dLknEJzmxsbm5uqfNv2rRJ0dHRlVQtAABwdHUqKFksFiME/dy1NovFIun/ApLZ2GvjfikiIkLdu3c3thMTEzVv3rybrhsAADimOhWUmjRpUupls19eavv5pTh/f3+7saGhoaXO7+vrK19f38osGQAAOLA6dTN3cHCwEhISVFJSYtN+4sQJ1atXTy1atDDGSdKpU6dsxqWmpiolJcXoBwAAt7ZaG5RSU1OVmJiooqIio61Xr166fPmyYmNjjbaMjAx98cUXuv/++41Lbq1atdLtt9+uzZs3q7i42Bi7YcMGOTk5qVevXtV3IAAAwGE55KW3jz/+WNnZ2cYls/379+vSpUuSpMjISHl5eWnJkiXatm2b1qxZo2bNmkmSwsLCtG7dOi1YsEDnzp1To0aNtGHDBpWUlOj3v/+9zWdMnjxZs2fP1owZM9S3b1+dPXtW69ev1+DBg3XHHXdU6/ECAADH5JBBac2aNUpKSjK2Y2NjjbNE4eHh8vLyKnU/FxcXvfbaa1q0aJE+/vhj5efnq23btpo9e7Zuv/12m7H333+/5s2bp+joaEVFRalRo0YaM2aMxo4dW2XHBQAAahcnq9VqrekiaqtTp05pwoQJeu+990p96W5VWzXlc+VezpdHE4sefadPnfs8AABqWq29RwkAAKCqEZQAAABMEJQAAABMVDgoHTlyRB9++KFN22effabhw4frN7/5jf72t7/ZfPUeAACgtqlwUFq+fLnOnDljbP/3v//VG2+8IW9vb3Xs2FEff/yxVq9eXSlFAgAA1IQKB6XExESbb3rt2LFDnp6eeueddzR37lwNHjxY27dvr5QiAQAAakKFg1JeXp48PT2N7UOHDqlLly6qV6+eJKlt27ZKTk6++QoBAABqSIWDkp+fn06ePClJunDhgr777jt17tzZ6M/KypKbm9vNVwgAAFBDKvxk7v79++v9999XSkqKzp07pwYNGuiBBx4w+k+dOmW8hBYAAKA2qnBQevzxx1VUVKSDBw/K399fs2fPVoMGDSRJmZmZiouL0/Dhwyut0FvN2YM/6si6BBVeLTIdk5eeX40VAQBw66lwUHJ1ddWECRM0YcIEu76GDRtqw4YNN1PXLe/IugRduZhTprFu9RzylX0AANR6Fb5Hafr06Tpy5Ihp/1dffaXp06dXdPpb3rUzSU5OkkcTi+mfRs091WlEcA1XCwBA3VThUxFxcXEaPHiwaX96erqOHTtW0enx/9VvzAtoAQCoKTf1ChMnJyfTvh9++EEeHh43Mz0AAECNKtcZpa1bt2rbtm3G9ooVK7R582a7cdnZ2Tp79qy6du168xUCAADUkHIFpfz8fGVkZBjbubm5dmeVnJycVL9+fUVERGjs2LGVUSMAAECNKFdQGjp0qIYOHSpJGjlypKZNm2bz7CQAAIC6pMI3c69du7Yy6wAAAHA4N/0AntzcXCUlJSkrK0tWq9Wuv2PHjjf7EQAAADWiwkEpIyNDUVFRiomJUUlJiV2/1WqVk5OT9uzZczP1AQAA1JgKB6XXX39dX375pSIjI3X33Xcbry8BAACoKyoclA4fPqyRI0dq0qRJlVkPAACAw6jwAyctFotuu+22yqwFAADAoVQ4KIWHh2vv3r2VWQsAAIBDqfClt169eikuLk7PPPOMhgwZIj8/Pzk72+eukJCQmyoQAACgplQ4KE2ZMsX4++HDh+36+dYbAACo7SoclJ577rnKrAMAAMDhVDgoDRw4sDLrAAAAcDgVvpkbAACgrqvwGaVXX321TOO4RAcAAGqrCgelr776yq6tpKREaWlpKikpkbe3t+rVq3dTxQEAANSkCgeltWvXltpeVFSkjRs3at26dXrzzTcrXBgAAEBNq/R7lFxdXRUZGanOnTvrf//3fyt7egAAgGpTZTdzt27dWseOHauq6QEAAKpclQWlw4cPc48SAACo1Sp8j1J0dHSp7dnZ2Tp27JhOnz6txx57rKLTAwAA1LgKB6Xly5eX2t6gQQM1b95cM2bM0JAhQypcGAAAQE2rcFCKiYmpzDoMBQUFWrZsmXbs2KGsrCy1bt1a48ePV+fOna+738iRI5WUlFRqX0BAgD788ENju2fPnqWOmzhxosaMGVPx4gEAQJ1S4aBUVRYsWKA9e/ZoxIgRCgwM1NatWzVz5kxFRUWpQ4cOpvtNnTpVeXl5Nm1JSUlaunRpqSGrU6dOGjBggE1bcHBw5RwEAACoE246KMXFxenAgQPG2ZzbbrtN3bp1U8eOHcs9V3x8vHbv3q1JkyZp9OjRkqQHH3xQY8eO1eLFi7V48WLTfXv06GHX9v7770uS+vfvb9fXokULhYeHl7tGAABw66hwUCosLNTcuXO1b98+Wa1WeXl5SfrpZu41a9aoR48eevHFF+XqWvaPiImJkYuLiyIiIow2i8WiQYMGacmSJUpOTpa/v3+Z59u1a5eaNWum9u3bl9qfn59vfAYAAMAv3dS33vbu3atHHnlEo0aNUpMmTSRJ6enpWr16tVavXq3o6GiNHz++zHMmJCQoMDBQnp6eNu2hoaGSpDNnzpQ5KJ0+fVqJiYl6/PHHS+3ftm2bNmzYIKvVqpYtW+qJJ54o9cwTAAC4dVU4KO3cuVMDBgzQpEmTbNobN26sSZMmKT09XTt27ChXUEpLS5OPj49d+7W21NTUctUnlX7Z7a677lLv3r3VrFkzpaWl6ZNPPtHLL7+snJwcDR061HTO1NRUpaWlGduJiYllrgcAANQ+FQ5Kly9fVrt27Uz727Vrp88//7xcc+bn58vNzc2u3d3d3egvi5KSEn3++ecKDg7WHXfcYde/aNEim+2HHnpI48eP15IlSzRw4EDTS3GbNm0yfX4UAACoeyr8ZO6mTZvq6NGjpv1xcXFq2rRpuea0WCwqLCy0ay8oKDD6yyIuLk4pKSllvpTm5uamhx9+WNnZ2Tp16pTpuIiICL333nvGnxdeeKFM8wMAgNqpwmeUBgwYoH/+85/y8vLSyJEjFRAQICcnJ124cEEfffSR9uzZo9/97nflmtPHx0cpKSl27dcud/n6+pZpnp07d8rZ2Vn9+vUr82f7+flJkjIzM03H+Pr6lrkGAABQ+1U4KI0ZM0Y//PCDNm/erE8//VROTk6SJKvVKqvVqgEDBpjeSG2mTZs2Onr0qHJycmxu6I6Pjzf6b6SgoEAxMTHq2LFjuULNxYsXJUne3t7lqhkAANRdFQ5KLi4umjNnjkaNGqUDBw4oOTlZkuTv769u3bqpdevW5Z4zLCxMq1ev1qZNm4znKBUUFGjLli1q166d8Y235ORkXb16VS1btrSb4+DBg8rOzja97JaRkWEXhnJzc7Vu3To1atRIISEh5a4bAADUTeUKSvn5+frb3/6mVq1aKTIyUpLUunVru1C0bt06bdy4UdOmTSvXc5TatWun3r17a8mSJcrIyFBAQIC2bdumpKQkzZo1yxg3f/58xcXFKTY21m6OnTt3yt3dXb169Sr1Mz755BPt27dP999/v/z9/ZWWlqYtW7YoOTlZzz//fKk3kwMAgFtTuYLS5s2btW3bNq1YseK647p166Z3331XQUFB1/26fWnmzJkjf39/bd++XdnZ2QoKCtLChQvL9KTvnJwcHThwQL/+9a+NB2D+Uvv27fXNN9/o008/VWZmpurVq6fQ0FDNmjVL9913X7lqBQAAdVu5gtIXX3yhnj17qnnz5tcdFxAQoLCwMO3atavcQclisWjy5MmaPHmy6Zi333671HZPT0/t2rXruvN37tz5hi/YBQAAkMr5eICzZ89e98W0P3fXXXfp7NmzFSoKAADAEZQrKBUWFpb5niNXV1fj+UcAAAC1UbmCkq+vr7777rsyjf3uu+945hAAAKjVyhWU7rvvPm3fvl3p6enXHZeenq7t27erU6dON1UcAABATSpXUHrsscdUUFCgP/7xj8ZDIH8pPj5ef/zjH1VQUGA8CwkAAKA2Kte33po3b665c+dq7ty5mjx5spo1a6agoCB5eHgoNzdX3333nS5evCiLxaIXX3xRAQEBVVU3AABAlSv3k7m7deum5cuXa9WqVfryyy+1b98+o8/X11eDBw/Wo48+esNHCAAAADi6Cr3CpFmzZpoxY4ZmzJih3Nxc491sHh4elV0fAABAjanwu96u8fDwICABAIA6qVw3cwMAANxKCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmXGu6ANQ+een5WjXl85ouo1zc6rmq04hgterarKZLAQDUIgQllJlbPVdJ+bJapdzL+TVdTjnl6/BHCQQlAEC5OFxQKigo0LJly7Rjxw5lZWWpdevWGj9+vDp37nzd/f75z38qOjrart3d3V27du2ya//000+1evVqJSUlqWnTpho+fLgiIyMr6zDqpE4jgnX4owQVXi2q6VLKJS/9p3BX2+oGANQ8hwtKCxYs0J49ezRixAgFBgZq69atmjlzpqKiotShQ4cb7j9jxgzVr1/f2HZ2tr8Na+PGjXrzzTfVq1cvjRo1Sl9//bWioqJ09epVPfbYY5V6PHVJq67NauUZmVVTPq+FZ8AAAI7AoYJSfHy8du/erUmTJmn06NGSpAcffFBjx47V4sWLtXjx4hvO0atXL3l7e5v25+fna+nSperWrZtefvllSdKQIUNUUlKiFStWKCIiQg0aNKiU4wEAALWbQ33rLSYmRi4uLoqIiDDaLBaLBg0apG+//VbJycllmicnJ0dWq7XUvq+++kpXrlzR0KFDbdqHDRumvLw8HThwoML1AwCAusWhglJCQoICAwPl6elp0x4aGipJOnPmzA3nGDVqlAYOHKgBAwbo5Zdf1uXLl+0+Q5Latm1r0x4SEiJnZ2edPn36Zg4BAADUIQ516S0tLU0+Pj527dfaUlNTTfdt0KCBHn74Yd15551yc3PT119/rfXr1+vEiRN67733jPCVlpYmFxcXNW7c2GZ/Nzc3NWzYUGlpaaafkZqaatOfmJhYruMDAAC1i0MFpfz8fLm5udm1u7u7G/1mRowYYbMdFham0NBQvfzyy1q/fr3GjBljzOHqWvphu7u7X/czNm3aVOo36wAAQN3kUEHJYrGosLDQrr2goMDoL4/+/fvr73//u44cOWIEJYvFoqKi0r8mXlBQcN3PiIiIUPfu3Y3txMREzZs3r1w1AQCA2sOhgpKPj49SUlLs2q9d7vL19S33nH5+fsrMzLT5jOLiYqWnp9tcfissLFRmZmapl/6u8fX1rVANAACgdnKom7nbtGmjCxcuKCcnx6Y9Pj7e6C8Pq9WqpKQkm8cFBAcHS5JOnjxpM/bkyZMqKSkx+gEAABwqKIWFham4uFibNm0y2goKCrRlyxa1a9dO/v7+kqTk5GS7G6kzMjLs5tuwYYMyMjLUtWtXo+3ee+9Vw4YNtXHjRpuxGzduVL169dStW7dKPCIAAFCbOdSlt3bt2ql3795asmSJMjIyFBAQoG3btikpKUmzZs0yxs2fP19xcXGKjY012kaMGKE+ffooKChI7u7uOn78uHbv3q3g4GC75zKNGzdOb731lv785z+rS5cuOnbsmHbs2KEJEyaoYcOG1XrMAADAcTlUUJKkOXPmyN/fX9u3b1d2draCgoK0cOFCdezY8br79e/fX998841iYmJUUFAgf39/jR49Wk888YTq1atnM3bYsGFydXXVmjVrtH//fvn5+WnKlCl235wDAAC3NocLShaLRZMnT9bkyZNNx7z99tt2bTNnzizX5wwZMkRDhgwpd30AAODW4VD3KAEAADgSghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJ15ou4JcKCgq0bNky7dixQ1lZWWrdurXGjx+vzp07X3e/mJgYff755zp58qQuX74sPz8/devWTb/97W/VoEEDm7EjR45UUlKS3RwRERF65plnKvV4AABA7eVwQWnBggXas2ePRowYocDAQG3dulUzZ85UVFSUOnToYLrfG2+8IR8fH4WHh8vf31///e9/tX79eh08eFDLli2TxWKxGR8cHKxRo0bZtAUGBlbJMQEAgNrJoYJSfHy8du/erUmTJmn06NGSpAcffFBjx47V4sWLtXjxYtN9X3rpJd1zzz02bSEhIXrllVe0c+dODR482KbP19dX4eHhlX8QAACgznCoe5RiYmLk4uKiiIgIo81isWjQoEH69ttvlZycbLrvL0OSJPXs2VOSdO7cuVL3KSwsVF5e3s0VDQAA6iyHOqOUkJCgwMBAeXp62rSHhoZKks6cOSN/f/8yz5eWliZJ8vb2tuv76quvFB4eruLiYt12220aMWKERowYUfHiAQBAneNQQSktLU0+Pj527dfaUlNTyzXfqlWr5OLiol69etm0BwUFqUOHDmrRooUyMzO1detW/e1vf1NqaqomTZpkOl9qaqoRviQpMTGxXPUAAIDaxaGCUn5+vtzc3Oza3d3djf6y2rlzpz777DONHj1aLVq0sOl79dVXbbYfeughPfvss1q7dq0iIyPl5+dX6pybNm1SdHR0mWsAAAC1m0MFJYvFosLCQrv2goICo78sjh07poULF6pLly6aMGHCDcc7OTlp5MiR+ve//624uDjTm7wjIiLUvXt3YzsxMVHz5s0rU00AAKD2caig5OPjo5SUFLv2a5e7fH19bzjHmTNnNHv2bAUFBemll16Sq2vZDvHaWaTMzEzTMb6+vmWqAQAA1A0O9a23Nm3a6MKFC8rJybFpj4+PN/qv54cfftAzzzyjxo0b67XXXpOHh0eZP/vixYuSSr/xGwAA3JocKiiFhYWpuLhYmzZtMtoKCgq0ZcsWtWvXzvjGW3Jyst2N1GlpaZoxY4acnZ31xhtvmAaezMxMFRcX27QVFRXpgw8+kJubW6mPGQAAALcmh7r01q5dO/Xu3VtLlixRRkaGAgICtG3bNiUlJWnWrFnGuPnz5ysuLk6xsbFG27PPPquLFy9q9OjROn78uI4fP270NW7c2HgFyv79+7VixQr16tVLzZo1U1ZWlnbu3KnvvvtOEydOLPVbdwAA4NbkUEFJkubMmSN/f39t375d2dnZCgoK0sKFC9WxY8fr7nfmzBlJ0ocffmjX17FjRyMoBQUFqWXLltq5c6cyMjLk6uqq4OBgzZ07V71796704wEAALWXwwUli8WiyZMna/LkyaZj3n77bbu2n59dup6QkBC7xwMAAACUxqHuUQIAAHAkBCUAAAATDnfpDagqeen5WjXl85ou45bgVs9VnUYEq1XXZjVdCgDcFIIS6jy3eq6S8mW1SrmXy/4aHNyMfB3+KIGgBKDWIyihzus0IliHP0pQ4dWimi7llpCX/lMoZb0B1AUEJdR5rbo248xGNVo15XPO3AGoM7iZGwAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwIRrTRcAoG7KS8/Xqimf13QZAGo5t3qu6jQiWK26NquRzycoAahUbvVcJeXLapVyL+fXdDkAar18Hf4ogaAEoG7oNCJYhz9KUOHVopouBUAtl5f+03901eTvE4ISgErVqmuzGvsvPwB1y6opn9f4mWlu5gYAADDhcGeUCgoKtGzZMu3YsUNZWVlq3bq1xo8fr86dO99w35SUFL3zzjv6z3/+o5KSEt1zzz2aOnWqmjdvbjf2008/1erVq5WUlKSmTZtq+PDhioyMrIpDAgAAtZTDnVFasGCB1q5dq/79+2vatGlydnbWzJkz9fXXX193v9zcXE2fPl1xcXEaM2aMfv/73yshIUFTp07VlStXbMZu3LhRr732mlq1aqXp06frrrvuUlRUlD744IOqPDQAAFDLONQZpfj4eO3evVuTJk3S6NGjJUkPPvigxo4dq8WLF2vx4sWm+27YsEEXLlzQP/7xD4WGhkqSunbtqrFjx2rNmjWaOHGiJCk/P19Lly5Vt27d9PLLL0uShgwZopKSEq1YsUIRERFq0KBBFR8pAACoDRzqjFJMTIxcXFwUERFhtFksFg0aNEjffvutkpOTTffds2eP2rZta4QkSWrZsqXuvfdeffHFF0bbV199pStXrmjo0KE2+w8bNkx5eXk6cOBA5R0QAACo1RwqKCUkJCgwMFCenp427dfCz5kzZ0rdr6SkRGfPnlXbtm3t+kJDQ/XDDz8oNzfX+AxJdmNDQkLk7Oys06dP3/RxAACAusGhLr2lpaXJx8fHrv1aW2pqaqn7ZWZmqqCg4Ib73n777UpLS5OLi4saN25sM87NzU0NGzZUWlqaaX2pqak2/YmJiTc+KAAAUGs5VFDKz8+Xm5ubXbu7u7vRb7afpDLtm5+fL1fX0g/b3d3d9DMkadOmTYqOjjY/AAAAUKc4VFCyWCwqLCy0ay8oKDD6zfaTVKZ9LRaLiopKf8JnQUGB6WdIUkREhLp3725sJyYmat68eabjb4ZHI4vN/wIAcKtxhH8XOlRQ8vHxUUpKil37tctdvr6+pe7XsGFDubu7l3rZ7Jf7+vj4qLi4WOnp6TaX3woLC5WZmVnq5btrfH19TWuobEPnd7/xIAAA6jBH+HehQ93M3aZNG124cEE5OTk27fHx8UZ/aZydnRUUFKSTJ0/a9cXHx6t58+by8PCQJAUHB0uS3diTJ0+qpKTE6AcAAHCooBQWFqbi4mJt2rTJaCsoKNCWLVvUrl07+fv7S5KSk5PtbqTu1auXTp48aROAvv/+ex09elRhYWFG27333quGDRtq48aNNvtv3LhR9erVU7du3argyAAAQG3kUJfe2rVrp969e2vJkiXKyMhQQECAtm3bpqSkJM2aNcsYN3/+fMXFxSk2NtZoGzZsmD799FPNmjVLjzzyiFxcXLR27Vo1btxYjzzyiDHOYrFo3Lhxeuutt/TnP/9ZXbp00bFjx7Rjxw5NmDBBDRs2rNZjBgAAjsuhgpIkzZkzR/7+/tq+fbuys7MVFBSkhQsXqmPHjtfdz8PDQ1FRUXrnnXe0YsUK411vU6ZMkbe3t83YYcOGydXVVWvWrNH+/fvl5+enKVOmaMSIEVV3YAAAoNZxslqt1pouorY6deqUJkyYoPfee08hISE1XQ4AAKhkDnWPEgAAgCMhKAEAAJggKAEAAJggKAEAAJggKAEAAJggKAEAAJggKAEAAJggKAEAAJhwuCdz1yb5+fmSZPfeOQAA4PhatmypevXqXXcMQekmJCUlSZLmzZtXw5UAAIDyKsubNXiFyU3IyMjQv//9bzVr1kzu7u5l3i8xMVHz5s3TCy+8oJYtW1ZhhZBY7+rGelcv1rt6sd7Vq6rXmzNKVczb21vh4eEV3r9ly5a8I64asd7Vi/WuXqx39WK9q1dNrjc3cwMAAJggKAEAAJggKNUAHx8fjR07Vj4+PjVdyi2B9a5erHf1Yr2rF+tdvRxhvbmZGwAAwARnlAAAAEwQlAAAAEwQlAAAAEzwHKVqUlBQoGXLlmnHjh3KyspS69atNX78eHXu3LmmS3NIubm5Wr16teLj43XixAllZWVp9uzZGjhwoN3Yc+fO6Z133tHx48fl6uqqbt26acqUKfL29rYZV1JSotWrV2vDhg26fPmyAgMDNWbMGPXr16/Cc9YVJ06c0LZt23T06FElJSWpYcOGuvPOOzV+/Hi1aNHCZizrffO+++47LV++XKdOndLly5dVr149tWzZUqNHj1b37t1txrLelW/FihVaunSpWrVqpffff9+m7/jx43r33Xd1+vRpeXp6qnfv3powYYI8PDxsxpXnd3pZ56wrjh49qunTp5fat3jxYt15553Gdm1Yb4JSNVmwYIH27NmjESNGKDAwUFu3btXMmTMVFRWlDh061HR5DufKlSuKjo6Wv7+/2rRpo6NHj5Y67tKlS5o6daq8vLw0YcIE5eXlafXq1Tp79qz+8Y9/yM3NzRj73nvv6YMPPtCQIUPUtm1b7du3Ty+99JKcnJzUt2/fCs1ZV6xatUrHjx9X79691bp1a6WlpWn9+vUaP368Fi9erKCgIEmsd2VJSkpSbm6uBgwYIF9fX129elUxMTGaPXu2nnnmGUVEREhivavCpUuXtHLlStWvX9+uLyEhQU8//bRatmypKVOm6NKlS1qzZo0uXLig119/3WZsWX+nl2fOuiYyMlKhoaE2bQEBAcbfa816W1Hlvv32W2uPHj2sq1atMtquXr1qfeSRR6x/+MMfarAyx5Wfn29NTU21Wq1W64kTJ6w9evSwbtmyxW7cm2++ae3Xr581KSnJaPvPf/5j7dGjh3Xjxo1G26VLl6y9e/e2/vWvfzXaSkpKrE899ZT14YcfthYVFZV7zrrk66+/thYUFNi0ff/999a+fftaX3rpJaON9a46RUVF1t/97nfWxx57zGhjvSvfiy++aJ0+fbp16tSp1ieeeMKm75lnnrEOHTrUmp2dbbRt3rzZ2qNHD+uhQ4eMtvL8Ti/rnHXJV199Ze3Ro4f1iy++uO642rLe3KNUDWJiYuTi4mL8V6IkWSwWDRo0SN9++62Sk5NrsDrH5O7uXqbnZsTExOj++++Xv7+/0dapUye1aNFCX3zxhdG2b98+FRUVadiwYUabk5OThg4dqpSUFH377bflnrMuad++vd2ZhBYtWuiOO+5QYmKi0cZ6Vx0XFxf5+fkpOzvbaGO9K1dcXJxiYmI0depUu76cnBwdPnxY4eHh8vT0NNoffPBB1a9f32Ztyvo7vTxz1lW5ubkqKiqya69N601QqgYJCQkKDAy0+cFJMk5JnjlzpibKqvVSUlKUnp5e6vt/QkNDlZCQYGwnJCSofv36di9VvPYzuDa2PHPWdVarVenp6WrUqJEk1rsq5OXlKSMjQz/88IPWrl2rQ4cO6d5775XEele24uJiRUVFadCgQWrdurVd/9mzZ1VcXGy3Nm5ubgoODrZb77L8Ti/PnHXRggULNGDAAPXv31/Tp0/XyZMnjb7atN7co1QN0tLSSj07cq0tNTW1ukuqE9LS0iTJdG0zMzNVUFAgd3d3paWlqXHjxnJycrIbJ/3fz6A8c9Z1O3fuVEpKin7/+99LYr2rwt///ndt2rRJkuTs7KyePXvq6aeflsR6V7aNGzcqOTlZb731Vqn9N1qbY8eO2Ywty+/08sxZl7i6uqpXr1769a9/rUaNGuncuXNas2aNpkyZokWLFulXv/pVrVpvglI1yM/PL/UGyWu/jPLz86u7pDrh2rrdaG3d3d3L/DMoz5x1WWJiot566y3deeedGjBggCTWuyqMGDFCYWFhSk1N1RdffKHi4mIVFhZKYr0r05UrV/TPf/5TTzzxhOk3+260NgUFBTZjK2O9fz5nXdK+fXu1b9/e2H7ggQcUFham3/3ud1qyZIneeOONWrXeXHqrBhaLxfjl93PXfmgWi6W6S6oTrq1bWda2rD+D8sxZV6WlpWnWrFny9PTUyy+/LBcXF0msd1Vo2bKlOnXqpAEDBmjhwoXKy8vTc889J6vVynpXoqVLl6pBgwaKjIw0HXOjtfl5eKys9a5rgfR6AgMD9cADD+jo0aMqLi6uVetNUKoGPj4+xinBn7vW5uvrW90l1QnXTq+arW3Dhg2NfzB8fHx0+fJlWX/xasNf/gzKM2ddlJ2drZkzZyo7O1tvvPGGzf83We+qFxYWppMnT+r8+fOsdyU5f/68Nm/erOHDhys1NVU//vijfvzxRxUUFKioqEg//vijMjMzb7g2v/xnoSy/08sz563Az89PhYWFunr1aq1ab4JSNWjTpo0uXLignJwcm/b4+HijH+XXtGlTeXt769SpU3Z9J06csFnXNm3a6OrVqzbf4JLsfwblmbOuyc/P13PPPafz58/r1Vdf1R133GHTz3pXvWuXDrKzs1nvSpKamqqSkhJFRUVp1KhRxp/4+HidP39eo0aNUnR0tFq1aiUXFxe7tSksLFRCQoLdepfld3p55rwVXLx4Ue7u7qpfv36tWm+CUjUICwtTcXGxcdOm9NNpwC1btqhdu3Y2X9NF+fTq1UtffvmlzSMWjhw5ovPnz6t3795G2wMPPCBXV1etX7/eaLNardq4caOaNm2qu+66q9xz1iXFxcX6y1/+om+//VZz5861WY+fY70rR3p6ul1bUVGRtm/fLovFYoRU1vvmtWrVSvPnz7f706pVK/n7+2v+/PkaNGiQvLy81KlTJ+3YsUO5ubnG/tu3b1deXp7N2pT1d3p55qxLMjIy7NrOnDmj/fv3q3PnznJ2dq5V6+1k/eW5WlSJF198UbGxsRo5cqQCAgK0bds2nThxQm+99ZY6duxY0+U5pI8//ljZ2dlKS0vThg0b1LNnTwUHB0v66YmvXl5eSk5O1vjx4+Xl5aXhw4crLy9PH374oZo2baolS5bYXEZYvHixPvzwQw0ZMkShoaHau3evDhw4oP/5n/9R//79jXHlmbOuePvtt7Vu3Trdf//96tOnj11/eHi4pPKtDett7vnnn1dOTo7uvvtuNW3aVGlpadq5c6e+//57PfXUUxo1apQk1rsqTZs2TVeuXLF5hcmpU6f01FNPqWXLloqIiDCe6nz33XfrzTfftNm/rL/TyzNnXTF9+nRZLBbdddddaty4sc6dO6fNmzfL1dVVixYtMv5DoLasN0GpmuTn5xvvqcnOzlZQUJDGjx+vLl261HRpDmvkyJFKSkoqtW/NmjVq1qyZpJ/em/XL91Y99dRTatKkic0+JSUlWrVqlTZt2qS0tDQFBgbqscceM0LAz5V1zrpi2rRpiouLM+2PjY01/s5637zdu3frs88+09mzZ3XlyhV5eHgoJCREDz/8sB544AGbsax31SgtKEnS119/bbwnzMPDQ71799aTTz5p956w8vxOL+ucdcW6deu0c+dO/fDDD8rJyZG3t7fuu+8+jR07VoGBgTZja8N6E5QAAABMcI8SAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAOinV1r07NlTPXv21KxZs4z2H3/8UT179tSHH35Y7TXt3bvXqKlnz546efJktdcA3Opca7oAAJCkrVu3asGCBab9ixcv1p133lmlNdx+++164okn1LRp00qfu6ioSMOGDdPtt9+uv//976WOsVqtGj58uLy9vbVs2TKFhITohRde0LFjx7R58+ZKrwnAjRGUADiUcePGGS88/rmAgIAq/+wmTZqU+hLZyuDq6qqwsDBt2rRJSUlJuu222+zGHDt2TCkpKRo5cqQkyc/PT+Hh4SouLiYoATWEoATAoXTt2lVt27at6TKqRP/+/bVx40bt2rVLY8aMsevfuXOnnJ2d1bdv3xqoDkBpuEcJQK3y83uGPvnkE40aNUr9+/fXn/70JyUnJ8tqter9999XZGSk+vXrp9mzZyszM7NSa7BarXr99dfVp08fxcTEGO07duzQ+PHj1a9fPw0aNEh/+ctflJycbPS3b99et912m3bt2mU3Z1FRkWJiYnTPPffI19e3UusFUHEEJQAOJScnRxkZGTZ/rly5Yjdu165d2rBhgyIjIzVq1CgdO3ZMf/nLX7R06VIdOnRIjz76qIYMGaIvv/xSixYtqrT6iouL9corr2j79u2aP3++evXqJUlasWKF5s+fr8DAQE2ZMkUjRozQkSNHNHXqVGVlZUmSnJyc1L9/f509e1bfffedzbyHDh1SZmam+vfvX2m1Arh5XHoD4FCefvppuzZ3d3e7szApKSlatWqVvLy8JEklJSVauXKl8vPztWTJErm6/vTr7cqVK9q5c6f+9Kc/yd3d/aZqKyoq0rx587R//3698sor6tKliyQpKSlJy5cv1/jx4/X4448b43v27Klx48Zpw4YNRnv//v31r3/9Szt37tTEiRONsbt27ZK7u7sRvAA4BoISAIfy9NNPq0WLFjZtzs72J7/DwsKMkCRJoaGhkn4KItdC0rX2Xbt2KTU1Vc2bN69wXUVFRXrxxRd1+PBhvfbaa7rnnnuMvtjYWJWUlKh3797KyMgw2ps0aaLAwEAdPXrUCEp33HGHgoODtXv3biMo5eXlaf/+/br//vvl6elZ4RoBVD6CEgCHEhoaWqabuf39/W22r4UmPz+/UtuvXf6qqJUrVyovL0+vv/66TUiSpAsXLshqterRRx8tdd+fBzfppzC3aNEiHT9+XO3bt9fevXt19epVLrsBDoigBKBWKu0skyS5uLiU2m61Wm/q87p06aJ///vfWrVqlTp27CiLxWL0lZSUyMnJSa+//nqpddWvX99mu1+/fnr33Xe1a9cutW/fXrt27VKDBg3061//+qZqBFD5CEoAUAbt2rXTb37zGz333HN68cUXNW/ePONMUUBAgKxWq5o1a2Z32bA0vr6+uueee7Rnzx799re/1eHDhzVw4EC5ublV9WEAKCe+9QYAZdSpUye9+OKLOnTokObPn6+SkhJJP9207eLiouXLl9udubJaraV+a69///5KT0/XG2+8oaKiIi67AQ6KM0oAHMqhQ4f0/fff27XfddddN3UzdmXp0aOHZs+erfnz58vDw0PPPvusAgICNG7cOC1ZskRJSUnq0aOHPDw8dPHiRe3du1dDhgzR6NGjbebp1auX/vrXv2rfvn3y8/PT3XffXUNHBOB6CEoAHMqyZctKbZ89e7ZDBCVJCg8PV25urv7617/K09NTkydP1pgxY9SiRQt99NFHio6OliQ1bdpUnTt31gMPPGA3h6enp7p3764vvvhCffv2lZOTUzUfBYCycLLe7B2OAFAHTJs2TUVFRXrllVfk5ubmEF/TLywsVE5Ojnbv3q2oqCgtWbKkzr7eBXBUnFECgP/vm2++UUREhLp166aFCxfWdDk6ePCgnn/++ZouA7ilcUYJACSdOnXKeNaSt7e32rRpU8MVSRkZGTpz5oyx3a5dO3l4eNRgRcCth6AEAABggscDAAAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmPh/8s7U2ZLkO48AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAG4CAYAAADrBft1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8K0lEQVR4nO3de1zVVaL///eWuyKKgERgpmiKmdM5QaQpSprlSRkdw8lyOjbpNCZ2P1ZTnUanyTrZTDaWk1ZaU3gtL53jtbzkJSvM0oeaUShpipcNKtfNbf/+4Mvn13ZDwobNZ7P36/l49LC9PuuzWB8/uHmzPmuvZbHb7XYBAADANG3M7gAAAICvI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICWStQVlamw4cPq6yszOyuAAAANyCQtQK5ubmaPHmycnNzze4KAABwAwIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmMzf7A4AcJ+c3Se1Z0W2KsoqXTo/INhfiek91S05ppl7BgD4OQIZ4MX2rMjW+RPFTWjBpqzl2QQyAHAzAhng4ZoyylVaYJMkWSxSSHhQo8+12+Xy6BoAoOEIZICHa/oolxQW007ps1MadU5mxmaV5Nua9HUBAA1DIAM8XO0IlSujXNL/Pw8MAOC5CGRAKxESHqQ7595kdjcAAG5AIAPwi0oLbMrM2Nzo8/iEJgA0HIEMQJ0Cgv0l1Uzsd20uGZ/QBICGIpABqFNiek9lLXf90518QhMAGo5ABqBO3ZJjXB7d4hOaANA4bJ0EAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACbzqHXIDh06pPXr12vv3r3Ky8tTWFiYrr76ak2aNEldunRxqHv06FHNnTtX+/fvl7+/v/r376+MjAx17NjRoV51dbWWLFmiVatWKT8/X3FxcZowYYKGDRvm9PXNbBPeLWf3Se1Z4foiqwAA7+ZRgSwzM1P79+9Xamqq4uPjZbVatXLlSk2aNEnz5s1T9+7dJUmnT5/WtGnTFBoaqsmTJ6u0tFRLlixRTk6O3njjDQUEBBhtLliwQO+//75GjRql3r17a8eOHZo5c6YsFouGDh1q1DO7TXi3PSuydf5EcZPaqNnKCADgjTzqHX7cuHH67//+b4egctNNN+mee+7R+++/r2eeeUaS9N5776msrExvvvmmoqOjJUkJCQl65JFHtG7dOqWlpUmSzpw5o6VLl2rMmDF6+OGHJUkjR47UtGnT9Prrr2vIkCHy8/MzvU14v9qRMYtFCgkPavT5tRt1AwC8k0cFsmuuucaprEuXLrryyiuVm5trlG3btk0DBgwwQo4kJSYmqkuXLtqyZYsRdHbs2KHKykqNGTPGqGexWDR69GjNnDlTBw4cUL9+/UxvE74jJDxId869yexutJjSApsyMzY3+rzaAMrG5AB8hUcFsrrY7XYVFBToyiuvlFQzQlVQUKBevXo51U1ISNDu3buN19nZ2QoJCVHXrl2d6tUe79evn+ltXuzs2bOyWq3G65+HUaA1qHm8WrPBuGt7WtqUtTybQAbAZ3h8INu0aZPOnDmj3//+95JkBJWIiAinuhEREbpw4YLKy8sVGBgoq9Wq8PBwWSwWp3pSTfDxhDYvtmbNGi1atKievxHA8yWm91TWctc/xGC3y6VzAaC18uhAlpubq7///e+6+uqrdeutt0qSbLaa37brmhBfG25sNpsCAwNls9kuWc8T2rxYWlqabrzxRuN1bm6unnvuOad6gKfqlhzj8uhWZsZmF0fVAKD18thAZrVa9fjjj6tdu3b6y1/+YkyUDwqqmRBdUVHhdE55eblDnaCgoAbXM7PNi0VGRioyMrLOYwAAwPt45MKwRUVFmj59uoqKijR79myHcFL7CPDnc6xqWa1WhYWFGaNOERERys/Pl91ud6onyWjX7DYBAIBv87hAZrPZ9MQTT+jYsWN64YUXjMn8taKiotSxY0cdPnzY6dxDhw6pR48exusePXqorKzMaVL8wYMHjeOe0CYAAPBtHhXIqqqq9Oc//1kHDhzQjBkz1Ldv3zrrDR48WLt27dKpU6eMsj179ujYsWNKTU01ygYOHCh/f3+tXLnSKLPb7Vq9erWioqIc2jezTQAA4Ns8ag7Za6+9pp07d2rAgAEqLCzUxo0bHY4PHz5ckjRhwgRt3bpVDz30kG6//XaVlpZq8eLF6t69u0aMGGHU79y5s9LT07V48WJVVlYqISFB27dv1759+/TMM88Y89LMbhMAAPg2jwpk33//vSRp165d2rVrl9Px2kAWHR2tV199VXPnztUbb7xh7BE5depUp3lZ9913n9q3b681a9Zo/fr1iouL09NPP62bb77ZoZ7ZbQIAAN9lsV88Ox0e5/Dhw5o8ebIWLFhQ50Kz8Hy1Szm07eRbK/W7gr8rAL7Io+aQAQAA+CICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYzKNW6geAWqUFNmVmbG70eQHB/kpM76luyTFu6BUAuAeBDIBHCQj2l2ST3S6V5NtcaMGmrOXZBDIArQqBDIBHSUzvqazl2aooq2z0uaUFNUHOlXMBwEwEMgAepVtyjMujW7X7YAJAa8OkfgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACT8SlLoIFydp/UnhWuL8cAAEB9CGRAA+1Zka3zJ4qb1EbNoqcAADjipwPQQLUjYxaLFBIe1Ojza7f0AQDgYgQyoJFCwoN059ybzO4GAMCLMKkfAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkrNQPwOuUFtiUmbG50efVbm/VLTnGDb0CgPoRyAB4jZrN222y26WSfJsLLdiUtTybQAagxRHIAHiNxPSeylqebWwE3xilBTVBzpVzAaCpCGQAvEa35BiXR7cyMza7OKoGAE3HpH4AAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJP5m90BAPAkpQU2ZWZsbvR5AcH+SkzvqW7JMW7oFQBvRyADANUEKskmu10qybe50IJNWcuzCWQAXEIgAwBJiek9lbU8WxVllY0+t7SgJsi5ci4ASAQyAJAkdUuOcXl0KzNjs4ujagBQg0n9AAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACbjU5bwKTm7T2rPCteXNgAAwB08KpCVlJRoyZIlOnjwoA4dOqTCwkI9+eSTGjFihEO9559/XuvXr3c6/4orrtB7773nUFZdXa0lS5Zo1apVys/PV1xcnCZMmKBhw4Y5nX/06FHNnTtX+/fvl7+/v/r376+MjAx17NjR7W2iZexZka3zJ4qb1EbNAqIAADQfj/rJcv78eS1atEjR0dHq0aOH9u7dW2/dwMBATZ8+3aGsXbt2TvUWLFig999/X6NGjVLv3r21Y8cOzZw5UxaLRUOHDjXqnT59WtOmTVNoaKgmT56s0tJSLVmyRDk5OXrjjTcUEBDg1jbRMmpHxiwWKSQ8qNHn126PAwBAc/KoQBYREaGVK1cqIiJC3377rf7whz/UW9fPz0/Dhw//xfbOnDmjpUuXasyYMXr44YclSSNHjtS0adP0+uuva8iQIfLz85MkvffeeyorK9Obb76p6OhoSVJCQoIeeeQRrVu3TmlpaW5rEy0vJDxId869yexuAAAgycMm9QcGBioiIqLB9auqqlRcXP/jpx07dqiyslJjxowxyiwWi0aPHq0zZ87owIEDRvm2bds0YMAAIzhJUmJiorp06aItW7a4tU0AAODbPGqErDHKyso0YsQIlZWVqX379ho6dKj++Mc/qm3btkad7OxshYSEqGvXrg7nJiQkGMf79eunM2fOqKCgQL169XL6OgkJCdq9e7db27zY2bNnZbVajde5ubm/9FcBAABauVYZyCIiIjR+/HhdddVVstvt+vzzz7Vq1Sr98MMPmjNnjvz9ay7LarUqPDxcFovF6XypJvjU1vt5+cV1L1y4oPLycgUGBrqlzYutWbNGixYtavDfBwAAaN1aZSC77777HF4PHTpUXbp00YIFC7Rt2zZjYr3NZqtz4nxtCLLZbA5/XqpuYGCgW9q8WFpamm688UbjdW5urp577jmnegAAwDt41Byyphg3bpzatGmjrKwsoywoKEgVFRVOdcvLy43jP/+zoXWbu82LRUZGqlevXsZ/Fz8eBQAA3sVrAllQUJDCwsJ04cIFoywiIkL5+fmy2+0OdWsfJ0ZGRhr1fl5+cd2wsDBjJMsdbQIAAN/mNYGspKRE58+fd1hwtUePHiorK3OaFH/w4EHjuCRFRUWpY8eOOnz4sFO7hw4dMuq5q00AAODbWl0gs9lsKikpcSp/5513ZLfblZycbJQNHDhQ/v7+WrlypVFmt9u1evVqRUVFqW/fvkb54MGDtWvXLp06dcoo27Nnj44dO6bU1FS3tgkAAHybx03q/+CDD1RUVGQ86tu5c6dOnz4tSRo7dqwKCwt17733atiwYbriiiskSV988YV2796t5ORkDRw40Girc+fOSk9P1+LFi1VZWamEhARt375d+/bt0zPPPGMs4CpJEyZM0NatW/XQQw/p9ttvV2lpqRYvXqzu3bs7bN3kjjYBAIBvs9gvngxlsnHjxikvL6/OY0uXLlVoaKjmzJmjAwcOyGq1qrq6WrGxsbr55pt1xx13GEte1KqurlZmZqbWrFkjq9WquLg43XXXXXWu8n/kyBGnfSenTp2qTp06ub3NX3L48GFNnjxZCxYsqHNdMzRcZsZmleTb1LYTK/Wj+dR+XzV1S65uyTFu6B2A1sDjAhmcEciaD4EM7rD8sU+bvGl9h8vbKX12SjP1CEBr43GPLAGgtUlM76ms5dnG5vWNUVpgk90ul84F4D0IZADQRN2SY1x+3Fg7agvAt7W6T1kCAAB4GwIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDJ/szsAAJBKC2zKzNjc6PMCgv2VmN5T3ZJj3NArAC2FQAYAJgoI9pdkk90uleTbXGjBpqzl2QQyoJUjkAGAiRLTeyprebYqyiobfW5pQU2Qc+VcAJ6FQAYAJuqWHOPy6FZmxmYXR9UAeBom9QMAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMlc3styz549+u677zR+/Hij7P/+7/+0cOFCVVRUaNiwYbr//vvl5+fXLB0FANSttMCmzIzNjT4vINhfiek9Xd5LE0DzcTmQLVy4UNHR0cbrH374QbNnz1Z8fLxiY2P1wQcfqFOnTrrrrruapaMAAEcBwf6SbLLb5eIm4zZlLc8mkAEewOVAlpubq5SUFOP1xo0b1a5dO82dO1fBwcGaPXu2NmzYQCADADdJTO+prOXZqiirbPS5pQU1Qc6VcwE0P5cDWWlpqdq1a2e8/vzzz3X99dcrODhYktS7d29t2rSp6T0EANSpW3KMy6NbmRmbXRxVA+AOLk/q79y5s7799ltJ0vHjx3XkyBElJSUZxwsLCxUQEND0HgIAAHg5l0fIbr75Zr3zzjs6c+aMjh49qvbt22vgwIHG8cOHD6tLly7N0kkAAABv5nIg+93vfqfKykrt3r1b0dHRevLJJ9W+fXtJ0oULF/T111/r9ttvb7aOAgAAeCuXA5m/v78mT56syZMnOx0LCwvTqlWrmtIvAAAAn+HyHLIHH3xQe/bsqff4V199pQcffNDV5gEAAHyGyyNkX3/9tUaOHFnv8YKCAn3zzTeuNg/UK2f3Se1Z4fpH/QEA8DQuBzJJslgs9R776aef1LZt26Y0D9Rpz4psnT9R3KQ2ahbUBADAMzTqp9K6deu0fv164/W7776rjz76yKleUVGRcnJylJyc3PQeAhepHRmzWKSQ8KBGn1+7XQwAAJ6iUYHMZrPp3LlzxuuSkhKnUTKLxaKQkBClpaVp4sSJzdFHoE4h4UG6c+5NZncDaNXYBxPwDI0KZKNHj9bo0aMlSePGjdMDDzzgsPYYAKB1YB9MwLO4PJFm2bJlzdkPAEALYh9MwLM0eWZzSUmJ8vLyVFhYKLvd7nT82muvbeqXAAA0M/bBBDyLy4Hs3LlzmjNnjrZt26bq6mqn43a7XRaLRVu3bm1K/wAAALyey4HspZde0q5duzR27Fj96le/MrZNAgAAQOO4HMiysrI0btw4TZkypTn7AwAA4HNc3jopKChIl112WXP2BQAAwCe5HMiGDx+u7du3N2dfAAAAfJLLjywHDx6sr7/+Wo899phGjRqlzp07q00b53zXq1evJnUQAADA27kcyDIyMoz/z8rKcjrOpywBwLu5usq/xEr/wMVcDmRPPPFEc/YDANBKNH2Vf4mV/gFHLgeyESNGNGc/AACtRFNW+ZdY6R+oS5NX6gcA+JamrPIvsdI/UBeXA9kLL7zQoHo82gQAAPhlLgeyr776yqmsurpaVqtV1dXV6tixo4KDg5vUOQAAAF/gciBbtmxZneWVlZVavXq1VqxYoZdfftnljgEAAPgKlxeGrY+/v7/Gjh2rpKQkvfLKK83dPAAAgNdp9kBWKz4+Xt988427mgcAAPAabvuUZVZWVqPnkJWUlGjJkiU6ePCgDh06pMLCQj355JN1LrFx9OhRzZ07V/v375e/v7/69++vjIwMdezY0aFedXW1lixZolWrVik/P19xcXGaMGGChg0b5lFtAgAA3+VyIFu0aFGd5UVFRfrmm2/03Xff6a677mpUm+fPn9eiRYsUHR2tHj16aO/evXXWO336tKZNm6bQ0FBNnjxZpaWlWrJkiXJycvTGG28oICDAqLtgwQK9//77GjVqlHr37q0dO3Zo5syZslgsGjp0qMe0CQC+xtWV/lnlH97I5UC2cOHCOsvbt2+vyy+/XI8++qhGjRrVqDYjIiK0cuVKRURE6Ntvv9Uf/vCHOuu99957Kisr05tvvqno6GhJUkJCgh555BGtW7dOaWlpkqQzZ85o6dKlGjNmjB5++GFJ0siRIzVt2jS9/vrrGjJkiPz8/ExvEwB8SdNX+meVf3gflwPZtm3bmrMfkqTAwEBFREQ06GsPGDDACDmSlJiYqC5dumjLli1G0NmxY4cqKys1ZswYo57FYtHo0aM1c+ZMHThwQP369TO9TQDwJU1Z6Z9V/uGtWt1K/WfOnFFBQYF69erldCwhIUG7d+82XmdnZyskJERdu3Z1qld7vF+/fqa3ebGzZ8/KarUar3Nzc+utCwCtTVNW+meVf3irJgeyr7/+Wp999pny8vIkSZdddpn69++va6+9tqlN16k2qNQ1khYREaELFy6ovLxcgYGBslqtCg8Pl8Vicaon1QQfT2jzYmvWrKl3jh4AAPA+LgeyiooKzZgxQzt27JDdbldoaKikmkn9S5cu1aBBg/Tss8/K3795B+FstprfjOqaEF8bbmw2mwIDA2Wz2S5ZzxPavFhaWppuvPFG43Vubq6ee+45p3oAAMA7NOlTltu3b9cdd9yh3/72t+rUqZMkqaCgQEuWLNGSJUu0aNEiTZo0qdk6K0lBQUGSagLhxcrLyx3qBAUFNbiemW1eLDIyUpGRkXUeAwAA3sflhWE3bdqkW2+9VVOmTDHCmCSFh4drypQpuuWWW7Rx48Zm6eTP1T4C/Pkcq1pWq1VhYWHGqFNERITy8/Nlt9ud6kkyQo/ZbQIAAN/mciDLz89Xnz596j3ep08f5efnu9p8vaKiotSxY0cdPnzY6dihQ4fUo0cP43WPHj1UVlbmNCn+4MGDxnFPaBMAAPg2lwNZVFRUvQu3SjWT/aOiolxt/hcNHjxYu3bt0qlTp4yyPXv26NixY0pNTTXKBg4cKH9/f61cudIos9vtWr16taKiotS3b1+PaBMAAPg2l+eQ3XrrrXr77bcVGhqqcePGKTY2VhaLRcePH9fy5cu1detW3XPPPY1u94MPPlBRUZHxqG/nzp06ffq0JGns2LEKDQ3VhAkTtHXrVj300EO6/fbbVVpaqsWLF6t79+4O2yx17txZ6enpWrx4sSorK5WQkKDt27dr3759euaZZ4wFXCWZ2iYAoHFY5R/exmK/eDJUA1VVVenFF1/Uhg0bZLFYjGUg7Ha77Ha7br31Vj3++ONq06Zxg3Djxo0zltC42NKlSxUTU/OP6MiRI057RE6dOtVhPptUs+9kZmam1qxZI6vVqri4ON11110aPny4U/tmtvlLDh8+rMmTJ2vBggV1rmvma2rXIWrbKUh3zr3J7O4AaEHLH/tU508UN6mNDpe3U/rslGbqEdA8XA5ktX744Qd99tlnxmO56Oho9e/fX/Hx8c3SQRDILkYgA3zXkc9PNnmVf9474Ika9cjSZrPpH//4h7p166axY8dKkuLj453C14oVK7R69Wo98MADzb4OGQDAd7HKP7xVo54nfvTRR1q/fr369+//i/X69++vtWvX6n//93+b1DkAAABf0KhAtmXLFqWkpOjyyy//xXqxsbEaMmSIPv744yZ1DgAAwBc0KpDl5OSoX79+Darbt29f5eTkuNQpAAAAX9KoQFZRUdHgOWH+/v7GFkEAAACoX6MCWWRkpI4cOdKgukeOHGE/RgAAgAZoVCC77rrrtGHDBhUUFPxivYKCAm3YsEGJiYlN6hwAAIAvaFQgu+uuu1ReXq6HHnrI2LvxYgcPHtRDDz2k8vJyjR8/vlk6CQAA4M0atUjY5ZdfrhkzZmjGjBm6//77FRMTo+7du6tt27YqKSnRkSNHdOLECQUFBenZZ59VbGysu/oNAADgNRq9amv//v21cOFCZWZmateuXdqxY4dxLDIyUiNHjtSdd955yaUxAAAAUMOlZfRjYmL06KOP6tFHH1VJSYmKi4vVrl07tW3btrn7BwBAs2JjcniiJu9r1LZtW4IYAMDjBQT7S6rZz9K1LZRsylqeTSCDW7DRJADAJySm92zyxuSunAs0BIEMAOAT2JgcnqxRy14AAACg+RHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkLAwLU+TsPqk9K1xfMRsAAG9CIIMp9qzI1vkTxU1qo2ZfOgAAWj9+osEUtSNjFosUEh7U6PMDgv2VmN6zubsFAIApCGQwVUh4kO6ce5PZ3QAAwFRM6gcAADAZgQwAAMBkBDIAAACTMYcMAIAGKi2wKTNjc6PPq/0gUrfkGDf0Ct6AQAYAwCXULLNjk90uleS7shaiTVnLswlkqBeBDACAS0hM76ms5a4vZm23y6Vz4TsIZAAAXEK35BiXR7cyMza7OKoGX8KkfgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBk/mZ3AAAAX1BaYFNmxuZGnxcQ7K/E9J7qlhzjhl7BUxDIAABwo4Bgf0k22e1SSb7NhRZsylqeTSDzcgQyAADcKDG9p7KWZ6uirLLR55YW1AQ5V85F60IgAwDAjbolx7g8upWZsdnFUTW0NkzqBwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAk7XKvSz37t2rBx98sM5j8+bN09VXX2283r9/v/75z3/qu+++U7t27ZSamqrJkyerbdu2DueVl5frrbfe0saNG1VYWKj4+HhNmjRJSUlJTl/DHW0CAADf1SoDWa2xY8cqISHBoSw2Ntb4/+zsbD388MPq2rWrMjIydPr0aS1dulTHjx/XSy+95HDerFmztHXrVqWnpysuLk7r1q3T9OnTNWfOHPXr18+tbQIAAN/WqgPZr371Kw0ZMqTe4/Pnz1f79u316quvql27dpKkmJgY/c///I+++OILXX/99ZKkgwcP6pNPPtGUKVM0fvx4SdItt9yiiRMnat68eZo3b55b2wQAAL6t1c8hKykpUWVlpVN5cXGxsrKyNHz4cCM4STWhKCQkRFu2bDHKtm3bJj8/P6WlpRllQUFBuu2223TgwAGdOnXKbW0CAAC06hGyWbNmqbS0VH5+furXr5+mTJmi3r17S5JycnJUVVWlXr16OZwTEBCgnj17Kjs72yjLzs5WXFycQ8iSZDwO/f777xUdHe2WNuty9uxZWa1W43Vubm6D/j4AAEDr1CoDmb+/vwYPHqwbbrhBHTp00NGjR7V06VJlZGTo9ddf11VXXWUEmoiICKfzIyIi9M033xivrVZrvfWkmoBUW6+526zLmjVrtGjRonqPAwAA79IqA9k111yja665xng9cOBADRkyRPfcc4/mz5+v2bNny2azSaoZvbpYYGCgysvLjdc2m63eerXHf/5nc7ZZl7S0NN14443G69zcXD333HP11gcAeLfSApsyMzY3+ryAYH8lpvdUt+QYN/QKzalVBrK6xMXFaeDAgfr0009VVVWloKAgSVJFRYVT3fLyciMYSTVzu+qrV3v85382Z5t1iYyMVGRkZL3HAQC+ISDYX5JNdrtUkl//L/L1sylreTaBrBXwmkAmSZ07d1ZFRYXKysqMR4M/n4tVy2q1OgSeiIgInTlzps56koy67mgTAID6JKb3VNbybFWUOX947VJKC2qCnCvnouV5VSA7ceKEAgMDFRISom7dusnPz0+HDx/WTTfdZNSpqKhQdna2UlNTjbIePXpo7969Ki4udpiEf/DgQeO4JLe0CQBAfbolx7g8upWZsdnFUTWYoVUue3Hu3Dmnsu+//147d+5UUlKS2rRpo9DQUCUmJmrjxo0qKSkx6m3YsEGlpaUO4WnIkCGqqqrSmjVrjLLy8nKtXbtWffr0MT4N6Y42AQAAWuUI2bPPPqugoCD17dtX4eHhOnr0qD766CMFBwfrvvvuM+pNmjRJU6dO1bRp05SWlmasqp+UlKTk5GSjXp8+fZSamqr58+fr3Llzio2N1fr165WXl6fHH3/c4Wu7o00AAODbWmUgGzRokDZt2qRly5apuLhYHTt2VEpKiiZOnKi4uDijXq9evfS3v/1N//znP/WPf/xDbdu21W233eYQ2mr96U9/UnR0tDZs2KCioiJ1795dL774oq699lqHeu5oEwAA+DaL3W63m90J/LLDhw9r8uTJWrBggdOitGbK2X1Se1Y0bbJp205BunPuTZc+AQDQKLVzyHifbR1a5QgZPMOeFdk6f6K4SW3UfKQbAADfxk9DuKx2ZMxikULC619XrT61CxYCAODrCGRospBwhsMBAGiKVrnsBQAAgDchkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyVgYFgAAL1ZaYFNmxuZGn1e7m0q35Bg39AoXI5ABAOCFavYKtslul0rybS60YFPW8mwCWQshkAEA4IUS03sqa3m2se9wY5QW1AQ5V86FawhkAAB4oW7JMS6PbmVmbHZxVA2uYlI/AACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmMzf7A4AAADPVFpgU2bG5kafFxDsr8T0nuqWHOOGXnknAhkAAHAQEOwvySa7XSrJt7nQgk1Zy7MJZI1AIAMAAA4S03sqa3m2KsoqG31uaUFNkHPlXF9GIAMAAA66Jce4PLqVmbHZxVE138akfgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBl7WQIAgGZXWmBTZsbmRp8XEOyvxPSeLu+l2VoRyAAAQLMJCPaXZJPdLhc3Gbcpa3k2gQwAAMBViek9lbU8WxVllY0+t7SgJsi5cm5rRyADAADNpltyjMujW5kZm10cVWv9mNQPAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACZjHTIAAOBRfHHbJQKZj8vZfVJ7Vri+ojIAAM3Fl7ddIpD5uD0rsnX+RHGT2qj5BwQAQNP48rZL/CT1cbXfuBaLFBIe1Ojza4eHAQBoKl/edolABkk1YezOuTeZ3Q0AAHwSn7IEAAAwGYEMAADAZAQyAAAAkxHIAAAATMakfjcrLy/XW2+9pY0bN6qwsFDx8fGaNGmSkpKSzO4aAABep7UuKksgc7NZs2Zp69atSk9PV1xcnNatW6fp06drzpw56tevn9ndAwDAK7T2RWUJZG508OBBffLJJ5oyZYrGjx8vSbrllls0ceJEzZs3T/PmzTO5hwAAeIfWvqgsgcyNtm3bJj8/P6WlpRllQUFBuu222zR//nydOnVK0dHRJvYQAADv0NoXlSWQuVF2drbi4uLUrl07h/KEhARJ0vfff19nIDt79qysVqvxOjc3170dBQAApiKQuZHValVERIRTeW3Z2bNn6zxvzZo1WrRokTu7BgAAPAiBzI1sNpsCAgKcygMDA43jdUlLS9ONN95ovM7NzdVzzz3nlj627RDk8CcAAL7GE34WEsjcKCgoSBUVFU7l5eXlxvG6REZGKjIy0q19qzX6rzdeuhIAAF7ME34WsjCsG0VERDjMBatVW9ZSoQsAAHg2Apkb9ejRQ8ePH1dxcbFD+cGDB43jAAAABDI3GjJkiKqqqrRmzRqjrLy8XGvXrlWfPn1Y8gIAAEhiDplb9enTR6mpqZo/f77OnTun2NhYrV+/Xnl5eXr88cfN7h4AAPAQBDI3+9Of/qTo6Ght2LBBRUVF6t69u1588UVde+21ZncNAAB4CAKZmwUFBen+++/X/fffb3ZXAACAh2IOGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjHXIWgGbzSZJys3NNbknAACgsbp27arg4OBfrEMgawXy8vIkSc8995zJPQEAAI21YMEC9erV6xfrWOx2u72F+gMXnTt3Tl988YViYmIUGBjYrG3n5ubqueee09NPP62uXbs2a9uezlev3VevW/Lda/fV65a4dl+8dk+8bkbIvETHjh01fPhwt36Nrl27XjK9eytfvXZfvW7Jd6/dV69b4tp98dpb23UzqR8AAMBkBDIAAACTEch8XEREhCZOnKiIiAizu9LifPXaffW6Jd+9dl+9bolr98Vrb63XzaR+AAAAkzFCBgAAYDICGQAAgMkIZAAAACYjkAEAAJiMhWF9VHl5ud566y1t3LhRhYWFio+P16RJk5SUlGR215rFoUOHtH79eu3du1d5eXkKCwvT1VdfrUmTJqlLly5Gveeff17r1693Ov+KK67Qe++915JdbjZ79+7Vgw8+WOexefPm6eqrrzZe79+/X//85z/13XffqV27dkpNTdXkyZPVtm3blupus6rvftb64IMPFBUVpQceeEBff/210/Hrr79es2fPdmMPm0dJSYmWLFmigwcP6tChQyosLNSTTz6pESNGONU9evSo5s6dq/3798vf31/9+/dXRkaGOnbs6FCvurpaS5Ys0apVq5Sfn6+4uDhNmDBBw4YNa6GrurSGXHd1dbU2bNigbdu2KTs7W4WFhYqJidFNN92kO+64Q0FBQQ5tpqSk1Pm1/vCHP2jChAluvZ7GaOg9b8x7mrfcc6n++yhJiYmJ+tvf/iZJOnnypH7729/WWe/ZZ5/V0KFDm6/zjUQg81GzZs3S1q1blZ6erri4OK1bt07Tp0/XnDlz1K9fP7O712SZmZnav3+/UlNTFR8fL6vVqpUrV2rSpEmaN2+eunfvbtQNDAzU9OnTHc5v165dS3e52Y0dO1YJCQkOZbGxscb/Z2dn6+GHH1bXrl2VkZGh06dPa+nSpTp+/Lheeumllu5us0hLS1NiYqJDmd1u18svv6zLLrtMUVFRRnlUVJTuu+8+h7qt5WPy58+f16JFixQdHa0ePXpo7969ddY7ffq0pk2bptDQUE2ePFmlpaVasmSJcnJy9MYbbyggIMCou2DBAr3//vsaNWqUevfurR07dmjmzJmyWCym/pD6uYZcd1lZmWbNmqWrr75av/71rxUeHq4DBw5o4cKF+uqrr/TKK6/IYrE4nJOYmKhbb73Voaxnz55uvZbGaug9lxr+nuYt91ySnn76aaeyb7/9VitWrKhzoGHYsGG64YYbHMp+/suqKezwOQcOHLAPGjTInpmZaZSVlZXZ77jjDvsf//hHE3vWfPbt22cvLy93KPvxxx/tQ4cOtc+cOdMo++tf/2ofPnx4S3fPrb766iv7oEGD7Fu2bPnFeo899ph99OjR9qKiIqPso48+sg8aNMj++eefu7mXLeebb76xDxo0yP7uu+8aZdOmTbPffffdJvaqaWw2m/3s2bN2u91uP3TokH3QoEH2tWvXOtV7+eWX7cOGDbPn5eUZZV9++aV90KBB9tWrVxtlp0+ftqemptr/9re/GWXV1dX2qVOn2n/zm9/YKysr3Xg1DdeQ6y4vL7fv27fP6dyFCxfaBw0aZP/yyy8dygcNGuRw3Z6qofe8oe9p3nTP6/PCCy/YU1JS7KdOnTLKTpw44fTzz1Mwh8wHbdu2TX5+fkpLSzPKgoKCdNttt+nAgQM6deqUib1rHtdcc43Db/+S1KVLF1155ZXKzc11ql9VVaXi4uKW6l6LKSkpUWVlpVN5cXGxsrKyNHz4cIffnG+55RaFhIRoy5YtLdlNt/r4449lsVjqfAxTWVmpkpISE3rVNIGBgQ0azdu2bZsGDBig6OhooywxMVFdunRxuMc7duxQZWWlxowZY5RZLBaNHj1aZ86c0YEDB5r3AlzUkOsOCAjQNddc41Q+aNAgSarz378k2Ww22Wy2pnfSTRp6z2td6j3Nm+55XcrLy7Vt2zZde+216ty5c511SktLVVFR0dQuNhseWfqg7OxsxcXFOQ1h1z7e+v777x3ewL2F3W5XQUGBrrzySofysrIyjRgxQmVlZWrfvr2GDh2qP/7xj612HlWtWbNmqbS0VH5+furXr5+mTJmi3r17S5JycnJUVVXltPFuQECAevbsqezsbDO63OwqKyu1ZcsW9e3bVzExMQ7Hjh07pltuuUUVFRXq1KmTRo4cqYkTJ8rf3zveFs+cOaOCgoI6N1dOSEjQ7t27jdfZ2dkKCQlR165dnerVHm/tUxny8/MlSR06dHA6tn79eq1atUp2u11du3bV3XffrZtvvrmlu9hsGvKe5u33fPfu3SoqKqr3Pi5atEjz5s2TxWJRr169NGnSJF1//fUt3EtH3vHOg0axWq11/sZRW3b27NmW7lKL2LRpk86cOaPf//73RllERITGjx+vq666Sna7XZ9//rlWrVqlH374QXPmzGmVP5z9/f01ePBg3XDDDerQoYOOHj2qpUuXKiMjQ6+//rquuuoqWa1WSXXPmYqIiNA333zT0t12iy+++ELnz593elO+/PLL9W//9m/q3r27ysrKtHXrVr377rs6duyYZsyYYVJvm9el7vGFCxdUXl6uwMBAWa1WhYeHO82t8qb3hMWLF6tdu3ZKTk52KO/bt69SU1MVExMjq9WqDz/8UH/5y19UXFys0aNHm9PZJmjoe5q33/NNmzYpMDBQgwcPdihv06aNkpKSlJKSosjISJ04cULLli3T9OnTNWvWLPXv39+kHhPIfJLNZnN6nCfVDA3XHvc2ubm5+vvf/66rr77aYfLuxZO6hw4dqi5dumjBggXatm2bx0xsbYxrrrnG4ZHNwIEDNWTIEN1zzz2aP3++Zs+ebdzj+r4PysvLW6y/7vTxxx/L399fqampDuVPPPGEw+tbbrlFL730kj766CONGzfO/Mm9zeBS97i2TmBgoNe/J/zrX/9SVlaWHnnkEbVv397h2Ouvv+7w+j/+4z80adIkzZ8/XyNGjHD6VKana+h7mjff8+LiYn322WdKTk52ut/R0dF6+eWXHcpuueUW3X333XrttddMDWTMIfNBQUFBdT43r/0h3NregC7FarXq8ccfV7t27fSXv/xFfn5+v1h/3LhxatOmjbKyslqoh+4XFxengQMHau/evaqqqjLucX3fB7Vvyq1ZSUmJduzYoeuvv77Ox1QXq/0ovLfc90vd45/X8eb3hE8++URvvvmmbrvttgaNeAUEBOg3v/mNioqKdPjwYfd3sAXU9Z7mzfd827ZtKi8vb/Bj57CwMI0YMUI//vijTp8+7ebe1Y9A5oMiIiKMxxk/V1sWGRnZ0l1ym6KiIk2fPl1FRUWaPXt2g64tKChIYWFhunDhQgv0sOV07txZFRUVKisrMx5L1Pd94A3fAzt27FBZWVmD35RrJ/4WFha6s1st5lL3OCwszAjeERERys/Pl91ud6ontd73hC+//FLPP/+8+vfvr0cffbTB59V+L3jLe0Bd72nees+lmseVoaGhGjBgQIPP8YR//wQyH9SjRw8dP37c6RM4Bw8eNI57A5vNpieeeELHjh3TCy+84DSZvz4lJSU6f/6808KZrd2JEycUGBiokJAQdevWTX5+fk4jABUVFcrOzvaK74FNmzYpJCREN954Y4PqnzhxQpK85r5HRUWpY8eOdY7yHDp0yOEe9+jRQ2VlZU6fQGzN7wkHDx7U008/rV69emnGjBmNmg/qbd8Ldb2neeM9l2rmvu3du1cpKSmNGumvvecNGU13FwKZDxoyZIiqqqq0Zs0ao6y8vFxr165Vnz59vOITllVVVfrzn/+sAwcOaMaMGerbt69THZvNVueSB++8847sdrvT5N/W4ty5c05l33//vXbu3KmkpCS1adNGoaGhSkxM1MaNGx3+DjZs2KDS0lKnOVetzblz55SVlaWUlBQFBwc7HCsuLnaaI2e32/Xuu+9KktfsViFJgwcP1q5duxyWstmzZ4+OHTvmcI8HDhwof39/rVy50iiz2+1avXq1oqKi6vz348mOHj2qxx9/XJdddplefPHFeh+/1fVvpaSkRCtWrFCHDh3q/ISqJ2vMe5q33fNamzdvVnV1db0j43Xd8zNnzmjt2rWKj483dWSQSf0+qE+fPkpNTdX8+fN17tw5xcbGav369crLy9Pjjz9udveaxWuvvaadO3dqwIABKiws1MaNGx2ODx8+XPn5+br33ns1bNgwXXHFFZJqPpW3e/duJScna+DAgWZ0vcmeffZZBQUFqW/fvgoPD9fRo0f10UcfKTg42GHC76RJkzR16lRNmzZNaWlpxkr9SUlJrTaM1vrkk09UVVVV55vyd999pxkzZmjYsGGKjY2VzWbT9u3btX//fo0aNarV/BD+4IMPVFRUZDxi2rlzpzH/ZezYsQoNDdWECRO0detWPfTQQ7r99ttVWlqqxYsXq3v37g5bz3Tu3Fnp6elavHixKisrlZCQoO3bt2vfvn165plnLjnvsiVd6rrbtGmjxx57TIWFhbrjjjv02WefOZx/+eWXG2Hjww8/1I4dO4y12qxWq9auXatTp07pqaeeqnPSu5kude2FhYUNfk/zpnseGhpq1N20aZMiIyP1b//2b3W2NW/ePP3000+67rrrFBkZqby8PK1Zs0ZlZWV64IEH3H8xv8Biv/gBMnyCzWYz9rIsKipS9+7dPWIdluZS316FtT799FMVFhZqzpw5OnDggKxWq6qrqxUbG6ubb75Zd9xxR6tc8kKSVqxYoU2bNumnn35ScXGxOnbsqOuuu04TJ05UXFycQ919+/YZe1m2bdtWqampuu+++1r9GmxTpkzRiRMn9OGHHzr9YDlx4oTeeOMNHTp0SPn5+WrTpo26du2qkSNHKi0tzWkZAE81btw45eXl1Xls6dKlxrprR44ccdrLcurUqerUqZPDOdXV1crMzNSaNWtktVoVFxenu+66S8OHD3f7tTTGpa5bUr17FUrSrbfeqj/96U+SauaYLV68WDk5Obpw4YKCg4OVkJCgO++8U9ddd13zd76JLnXtoaGhjXpP85Z7Xvu9/uOPP2rChAkaN26cMjIy6qz/8ccfa/Xq1crNzVVhYaFCQ0PVr18/3X333ab/MkYgAwAAMBlzyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgA4B6rFu3TikpKfr2228vWfeBBx645F54J0+eVEpKivHf1q1bL9nu22+/rZSUlIZ22SXZ2dmN7heA5tU6N+sDgCZYt26dZs2aZbwODAxU586dlZSUpP/8z/902uexuY0aNUq/+tWvlJCQ4Nav01CXXXaZnn76aeXm5upf//qX2d0BfBKBDIDPuvfeexUTE6Py8nLt27dPq1ev1u7du/XOO+8oODi4UW29/PLLDa7bt29fj9rAuX379ho+fLj27t1LIANMQiAD4LOSk5PVu3dvSdLIkSMVFhamZcuWaceOHRo2bFij2goICHBHFwH4CAIZAPw/1113nZYtW6aTJ086lFdUVGju3LnasGGDbDabkpKS9F//9V/q2LGjUad2/tirr77q8tfft2+f5s6dq5ycHEVGRmr8+PH11t24caOWLVumo0ePKigoSElJSZoyZYqio6Md6n344YdaunSprFarunfvrqlTp+qtt95qcl8BNC8m9QPA//PTTz9JksLCwhzKX3nlFX3//feaOHGifv3rX2vXrl36+9//3qxf+4cfftCjjz6qgoICTZw4USNGjNDChQu1fft2p7rvvvuu/vrXvyouLk4ZGRlKT0/Xnj17NG3aNBUWFhr1Vq1apVdeeUVRUVGaMmWK+vXrp6eeekpnzpxp1r4DaDpGyAD4rOLiYp07d07l5eXav3+/3nnnHQUFBWnAgAEO9Tp06KCXX35ZFotFkmS32/XBBx+oqKhIoaGhzdKXt99+W3a7XXPnzjVGuQYPHqx77rnHoV5eXp4WLlyoSZMm6Xe/+51RnpKSonvvvVerVq3S7373O1VUVOitt95S79699corr8jfv+btPj4+XrNmzVJUVFSz9BtA82CEDIDPevjhh5WWlqbbb79dM2bMUEhIiP761786hZVRo0YZYUyS+vXrp6qqKp06dapZ+lFVVaUvvvhCgwYNcnjkeOWVVyopKcmh7qeffqrq6mqlpqbq3Llzxn+dOnVSXFyc9u7dK0n69ttvdf78eY0aNcoIY5J08803q3379s3SbwDNhxEyAD7r4YcfVpcuXeTn56fw8HBdccUVatPG+ffUi+dl1Qaanz8ebIpz587JZrMpLi7O6dgVV1yh3bt3G6+PHz8uu92uO++8s862asNXbViMjY11On7ZZZc1S78BNB8CGQCflZCQYHzK8pfUFdKkmkeXLa26uloWi0UvvfRSnf0KCQlp8T4BaDoCGQCYrGPHjgoKCtLx48edjv34448Or2NjY2W32xUTE6MuXbrU22btqN5PP/2kf//3fzfKKysrlZeXp/j4+GbqPYDmwBwyADCZn5+frr/+em3fvt1hXtrRo0f15ZdfOtRNSUmRn5+fFi5c6DRCZ7fbdf78eUlS79691aFDB3300UeqrKw06mzatKnZHrUCaD6MkAGAB/j973+vzz//XBkZGRo9erSqqqr04Ycf6sorr9QPP/xg1IuNjdW9996r+fPnKy8vT4MGDVLbtm114sQJbd++XaNGjdL48eMVEBCgiRMnas6cOXrooYeUmpqqvLw8rV+/XrGxsQ4fUgBgPgIZAHiA+Ph4zZ49W6+99prefvttRUVF6Z577pHVanUIZJI0YcIEdenSRcuXL9eiRYskSVFRUUpKStLAgQONemPHjpUkLV26VPPmzVN8fLyef/55vfrqqwoMDGyxawNwaRa7GbNSAcAHnTx5Ur/97W/14IMPaujQoWrXrl2Lb7lUXV2ttLQ0paSkaPr06ZJqlt0oLCzU/v379dRTT2nmzJkaMmRIi/YL8HXMIQOAFjZnzhylpaVp586dbv06NpvNaZ7Zhg0bdOHCBV177bVGWU5OjtLS0vTUU0+5tT8A6scIGQC0EJvNpv379xuv4+PjFR4e7ravt3fvXs2dO1dDhgxRWFiYvvvuO61du1ZXXHGF3nzzTWN0rqSkRAcPHmyxfgFwRiADAC918uRJzZkzR99++60uXLigsLAw3XDDDbrvvvsIXICHIZABAACYjDlkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJ/j/wbgjz6dCybgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOz9eZQkV33ngX7vjYjcaq+u6l3qTVILLSBkCcxmsQgZZMxiW/YM5tmc5228YI8xZw62mRk/D3gZL8ccj+2B8bExYOwZwMZmsREYhFnFIoH2Vgt1q1u9d61ZuUbce98fkZEVGRnLvTciMrNK+T0nTldXRcSNzIyM+MT3t1wihBAYa6yxxhprrLHGGmtLiw77AMYaa6yxxhprrLHGSq8x1I011lhjjTXWWGNtA42hbqyxxhprrLHGGmsbaAx1Y4011lhjjTXWWNtAY6gba6yxxhprrLHG2gYaQ91YY4011lhjjTXWNtAY6sYaa6yxxhprrLG2gcZQN9ZYY4011lhjjbUNNIa6scYaa6yxxhprrG2gMdSNNdZYY4011lhjbQONoW6sscYaa6yxxhprG2gMdWONNdZYY4011ljbQOawD2CsscZ6ZkoIgXa7jXq9jmaziXa7jXa7jVar1f057He2bYMx1l045z3/Bn8HAIQQEEJAKe3+3/uZUtr9u2EYsCwLpmnCsqzuYpomCoVC9/fe/0ulEkqlEsrlcs+/pjm+tI411liD1/jKM9ZYY2nJtm1Uq1Wsr693//X/XKvVUK/XYxfG2LBfRi6yLKsH+MrlMiYmJjA5Odldpqamev7vX2ZmZlAqlYb9MsYaa6wtJiKEEMM+iLHGGmv4sm0bKysrWFlZwfLyMpaXl7s/e7/3w1uj0chs7EKhgBZlgEkBiwIGdX82ift/M/A7SgDS+Zdi8//E/Vl0/94ZQHQWiO7PxPezu44AeGdxBMA47DYFv2yCcA5wDiIC/zIHhDFMWwaazWamkFosFjE7O9uzzMzM9P1ufn4eO3bsQLFYzGzsscYaa2tqDHVjjbXNxRjDysoKLl261F0uXryIS5cu4fLly11oq1aryvsmhMCxTPCCBV4ogBfdf1nBgiiY4KYJbpkQ3r9W53cVij0HqkDBcBdKcnjl2anaLKL1zfn4lYQAxCbobf7r/WyDOjaIbYM4Nihz/yV25/eOjcWShWq1CsdxlI9xamoKCwsL2LFjBxYWFnp+9v9rWZbmuzDWWGONusZQN9ZYW1yNRgPnz5/HuXPncPbsWZw/f74H4C5fviztIAlCwEpFsFIBvFTs/OwuvFQEKxZcgPP+tSx5ICtyXLF/KcUrzU7VZhGN78ypbSQIaDvwuzxKzYQAYQ6o3QJpt0HtFqjdBm23QHw/U9v9W5k7aLeDBxYuQggWFhawa9cu7N69O/Tfcrmcw4saa6yxBqEx1I011ojLcRxcvHgR586d64Kb9/O5c+ewsrKSuA9KKdqlAli5DKdSAquU4FTKYOUSWLnYBThesNywZVYyBYqzTTDHSL0rw2TYObMhvb4WuCUpDOxklGefASFc56/dBG01YbSbIO0GwJswmu5yoFjA0tISbNtO3N3MzAx27dqFPXv2YN++fdi/fz/27duHffv2YWFhoVtgMtZYY42exlA31lgjICEEVlZWcPr06Z7l1KlTOHv2bGI4jlsm7MkKnMkK2ETFBTYP3ColsFIRyPJmbAqU5poJrwmZwFycPNDLBeCipAt2URoQIwkIsEITRqMBs1GHUa/DqG/+PM85NjbioblQKPSB3v79+7F//37s3LkTJMsHgrHGGktZY6gba6wBynEcnDlzBidOnMDJkyd7AK5Wq0VuVygUUCsU4Ey54OZMVuBMlLs/80Ih2wOVgLYoDQLm3HEIWD1QwM8IihfzH9s9gIzhLqgBwJ4ggD21eQsgtg2jUYdZb8Cs1WDUajBrNVxdsHDu3LnYMH65XMaBAwdw4MABHDx4sPvz3r17YRgD+kzGGusZrjHUjTVWDuKc4/z583jyySdx8uTJ7r9PPfVUZAiMEAK7XIYzOQl7ahLtuQqcqUnY0xNglXK2YVEgFbiFaRAwFwpyYRoU3OUNdmGigKCAPZntpZsIwNwgPZDXI85dl6+2AXPDhT2ztoGjxSLOnDkTCXyFQgH79+/vgt7hw4dx5MgR7N27dxzKHWusjDWGurHGSql6vY4nnngCx48fx/Hjx7sA12yGAxM3DDhTU2jPToHtLkHsKGPhIAPmiiCW/k1utVHG5VOz/X/IGN7ClCfQSYNclPIGvAGCHRGAEfgohQE0duZ3GSchuxbB5wvOXcirVmFVq7A2qjCrVUw2GpFFHOVyGYcPH8ZVV12Fq666CkeOHMHhw4dRqVSyfxFjjfUM0RjqxhpLQaurq3j88ce7APf444/jzJkzCPsaCUpgz03Cnp+EMz8Je8cksKuM3Ve2QHJo4eFwitV6Gc324FpWjDTMBZUn3A0A7MKALvJwcgS9MMgLPQYCQAgY9TqsanUT+NbXYmFv3759OHLkCK6++mpcc801uPbaazE3N6B8ybHG2uIaQ91YY0VofX0djz76KB599FE89thjOH78OC5duhS6rjNRhL0wDXtxCvaOKdjzU6CLFvbtUO/9JiOHU6w3w5vNck5zB7u8YC5zkAtqC4OdCtQFNQqQ55cQHObGBqz1dVhrayisr2E/57h8+XLo+rt27cLRo0dx7bXX4tprr8XRo0cxNTWV8sjHGmv7aQx1Y40FoN1u44knnsCjjz6KRx55BI8++iiefvrpvvUIIWjPlF2AW5hCe2Ea9uI0eLmAQsHBvrm1zI8tDuDClDfU5QF0ucNcUCFwJ4gLP2lEOGDWk13YvvClzL5TQF3f+CMGed1t260u6Flrq3gWpTh9+nSoE75v374u4F133XU4evToeFaNsZ7xGkPdWM9IXbhwAQ888AAeeeQRPPLII3jiiSdCCxjsmQrau2Zg75xBe3Ea9o4piIILH3lAnCrABZUl0JWLbbx475Pd/zvCwMXmZOr9bthFfPf8IoAhwBwAcIDWXXojHKCtbEPhsmAXpSjgyxLq+sbMCfLSAF53H7YNc30NhdUVFFZXcZUQOHv2bN96pmnimmuuwQ033NBdFhYW0h/AWGNtIY2hbqxtL845Tp48iQceeKC7XLx4sW89VrLQ3jmD9q7OsnMGouS2CskD4GxmoNrKrhWJCtBVSi28aM8JqXWzgjm/mszC2fXpnt/ZzMDG5YlMxwHQA3FhGkWwi1JeUBfUKEMeAJB2G4XVVVhrKyg0l7BvzcHy8nLfert37+4C3o033ohDhw7BNAf8EDHWWAPUGOrG2nZqt9s4duwYHnjgATz44IN48MEH++Y1NQwDjR0TaO2a7UDcLNh0b9uQrEEua4gLKgzqVOAtTFkDXZNZOFeNzoUSHZsqNeAlgFxQWwnsCPf9RwA0eZKI1MoD8rICPAAAF5h8qgFaXwIpXcRNrSKefPJJcM57VqtUKnj2s5+N5z73ubjppptw9dVXjyFvrG2lMdSNteXlOA4ef/xx3HffffjWt76FBx98sK+yjpsG2rtn0N49h9beObR3zUBYvRfzrQZxfk0UbNy0oz8HMI2yBLokmAuTMuApglyYsoa7PMCO8Jg/DgDyhAE0dwjMfFdufW4A60fi18kM8ARQOd95v5kNc2MFRn0ZlFzEjuVmX4PvMeSNtd00hrqxtpyEEDhx4kQX4r7zne/0TW/EShbae+bQ6iz2whRg9PaA24oQN1tu4o5dj/b8rsktLNnZhS0H7c7JKBLwMgC5oLIEu4FDXZhSgh7hQGk5+jYhCMAzOO09+MsE8Pxw1/2dgNFYg7FxGZRewOKlet91o1Kp4MYbb8TNN9+MW265BUeOHBk3SB5rS2kMdWNtCV28eBFf//rXcd999+G+++7ry5/hRROtvfNo7p9Ha98OOHMTfTMwFIs2ipaDladnsjmoIsfkfB0AQImAaURPoaSjMIALyhYGLraza+0wbHdORkIQtGwTzVP5tbTYdmDnlyTkJcFc6K4zArzNfREICtT2a96mwuCu+zcX8sz1yzA3LmPervZB3vz8PG655RbceuutuOWWW7Bjxw694xhrrAFpDHVjjaRs28YDDzyAe++9F/feey9OnOjNC+MmdZ24ffNo7t8Be2EaoATcoRANn3MjCJDmBuiXD+KilAbuZCDOr1EFurxgzmYGqiuB2QYYAa3mEy4bZbBLBXVBhUCeDtD17TYjwPPgrud3qqAXB3fddXyQV72EmdYaGo1GzypXXXUVbr31Vtx666248cYbxy1Uxho5jaFurJHRhQsX8LWvfQ333nsvvvWtb/VcUCmlaCxOo7lvAY2FRbQWZoGoScKzAjkJiAuTDNjNVxq4fedjukeWaci1xU0stbLZVx5AFwpzQeUEd88YsPMkAKOVHuhCd50B5IUBXvdvMqAnA3eeOIO5sQxz/SJumiY4duxYz5+LxSJuuukmvOAFL8ALX/hC7N69W26/Y42Vo8ZQN9bQxBjDgw8+iC9/+cv42te+hqeeeqr376UiGnsX0di3E809C+DFiDvCgN04GQXBLi3E+TWKQDc0mAsqB7gLgh0RALX14IwwoHS595IrKEFbIyMgF6jr7Ld0afMYabZZBQDSA14c3PWsFwV6KnDXEbFbMNcvwVq/gH2o981+cfjwYbzoRS/CC1/4Qlx77bUwoh46xxorR42hbqyBqtls4hvf+Aa+9KUv4Stf+QrW1jYLFSilqO+YcSFu706056f78uK6GrIbl6S5SgM/sPehzPc7KKArUIY9pTU8VZ9PPqaMgU4L5vzKAOwIA4rLvQnyWeWKhYFdnOKgL2uwIzzk2Hz/HTXAk4W77vpByNOAO3c7Adqowlo7j++dN/DQQw/1tE+ZnZ3tOni33norKpUU5/NYYyloDHVj5a6VlRV85StfwZe+9CV84xvf6Gk3wgoWGvt3orF/F5q7Y9w4YKRBbrLUwg3z57v/Lxtt7CuuZjqGKtAVqYMFayP0b0xQ1FNSyqpdwdcvXtnzOyEIuOYVJTXMBSUJd2EAB6AHZtwVswE7VaiLkqAEdsapi6FQ1zNo73+zhrxBAh7ggzxduOuIOC2YaxdhrZ7DjvZaT8GFZVm4+eabcdttt+HFL34xZmdntccZa6wkjaFurFx04cIF3HPPPfjiF7+IBx98sGfuRmeijPoVu1G/YhdaO+eBuJYBWYDcACDOr0ECXRy4hSkLmAPCgS5KMqCXOdB5CgG7UIiTvQqOGNhB9IKVoEBrLgWcJEFdyPieRgXwdODOv61IG73nHObGEqzVczhiNnHmzJnunyileM5znoOXvvSleMlLXjKexmyszDWGurEy06VLl3DPPffg85//PB56qDf02JqfRuOK3ajv3w17bio6rApsSZDzKw+oy0LDALow+SEvN5jzixEYq2YvyKW56o0S2IlkmFIBPWWoCxyLpywBbxhwBwBGS0AQwJlIUdwiBEhrA2b1LG4uuE3SPRFCcMMNN+C2227Dbbfdhl27dumPM9ZYHY2hbqxUunz5Mr7whS/g85//fI8jRwhBY3EO9QN7UL9iN9hEOX5HIwhyshAXVBqoK1Ibi2bvlGZNbuGyky7Olle4VVcVy8atC0/hQmsKX3zs6kz2GRShAqWJzVB/u2Wh+FDCeSi9860Fdj2rx0BeKqgLHJMnVcATCb1+BQFA3JktpPaXAu6MVqCoRRPyBAGcMkAbNRQvn8X3lgUefvjhnnWuvfZa3H777Xj5y18+dvDG0tYY6sZS1traGj7/+c/jc5/7HL7zne/0hFabi3OoH9iL+oHdYBWJG2gamBuiGxclVaALgzi/tjPQ+ZUl3PlhjvimJxCCjBzYDQPq+jb3QV5mUNczwOaPYceZBHGRuw2yVQLoZQl3/n3KQp4Hdp5oq4HipbN48STBAw880PNAfPPNN+P222/HbbfdhsnJ7GZ3GWv7awx1Y0mp3W7jq1/9Ku6++2589atfheM43b+1FmZRO7AX9QN7kh05IBrkKIBCMuFZZRv7Flbjj5cZWG+UEveVFuKCioO6JIALarsBXRjMBZUG7qJgzq8x2MntK692KX7Ay2q+1z648ysE9PKAO/++4yAvCHaeaLuJ4qWzeEGJ9aSuFAoFfO/3fi9uv/12vOAFLxg3Ox4rUWOoGytSQgg89NBDuPvuu/G5z30O1eomkLTmp1E/uA+1A3vAJiVyorwrrwS0hUkG5MIUBndZg5ynINCpQpxfz0Sg80sW7oIh1iiY82tbgl2WUNfZn6fcAM83VhaAFwt3nnyQlyfcefsPA7wosPNEGzWULj6NG1DHyZMnu7+fmJjAbbfdhle96lV4znOeAxKXlzzWM1ZjqBurT2fPnsWnP/1p3H333T2VW06lhNqhfagd2gd7bjp8Y0ZAW5vxFGEJiIre3UYX5MJUNm3sq6wlr5hCs1YdN02cSr2fUQC6YcGcX1wQXGpPhsKdjCsXp0zBbhSgDsjcrYtSXjNZdPef9m1QYR0CcFMP7mTAzi97cnOMJLBzVxIwa+soXjyNg81VXLp0qfunffv24VWvehVe9apXjQssxurRGOrGAgC0Wi38+7//Oz7xiU/g/vvv7/6emwbqV+5B7fB+NHftAGjnwhSAN79GAeQmrDYOTiz3/I6DwObZdXnfVVzHa6a/DQBoCgtnnLnU+xwDXb/8cJcW5vzadmA3IKjza9sAXmc9bro/c0se8lThzpM9SeTgDgCEgLW2hNKFU9ixfgn1uptLTAjBrbfeijvvvBMvfvGLUShk1CF7rC2rMdQ9w3XixAl8/OMfx91334319XUA7oWivnsBtcP7UL9iNwS1IgHOr2HDXBDkaOCO4wgjNdTtLa3i1VMP9I1R58XUUDcGumhdaE3hiw8dBQyBykwjeQNJpQE7YQDtuc1zjDgEE2dShsRETFK+zKmbFdhp3BXyBLxhuHfdnyUATxfsAPfYGosKB8gclC6dxfeVGb797W93fz09PY1XvvKVuPPOO3H11flUlI81+hpD3TNQjUYD99xzDz7+8Y/3JOU6lRI2jlyJ+v6DcpWrGH2Q80sH6oIQFzZGFkAHpIc6D+imjCaeU1YPA59sL+CvTrxQe3wge5gDfEDnaQhgFwS4KBGbYOJsmr5meoDQBb4huHVhyhzwMnDvtMEu+PsYyEsDd954zXkFl7CxgdL5UzjYWO4Jz1577bV4/etfj5e//OUolZILxsbaPhpD3TNIJ06cwD/+4z/iM5/5DGq1GgDAMAxUd+1E7dABNHftjG8K7JMuzGUBclOFFq6srHT/HwdyfslAnQzE+TVIoNtlreF1EydD/1YVHI+0d2iPX6EtXGfVYrvLPGZP4G2P3hW9j7zcuShlCHd+sJMFuCgNC+y64wvAaAIgAEtTLJnRnWHUAC8TuPP/PQTydD+/4FjSgCcECisX8UOLJXzxi1+EbdsAgMnJSdx555143etehyuuuELrmMbaWhpD3TYXYwxf/vKX8dGPfrQnV86ZqGDj0AHUDlwJrvAkpw1zlTb27dAvVNAFuaDCwC4qpCqjPMKue6wV/KBCwUVNcDzSngOHXsOvKdrAUUsOjoLvjAd6WQJdIsz5lRHYtVoWrMcqAAXsqXQUkjoMmxXU9f1BEfKyvDMIoLjO0Z7SbEoXs19gBODOW8cHeFm4dn7JAh5pt1A+/xSubi7j3Llz3d/fcssteP3rX48XvvCFMM20c6GNNaoaQ9021draGj75yU/iYx/7GM6fd9t3UEqxsXsXNo4cQmtxQdqVA4YDc1mBnCcuKFqdq2UakPOUFuimaAM3FS9iiujf6AYJdFF6wi7hv594HQgRKBkOrp66qL0vJaDzpAl2XZDryAMDYWQAdqPi1iWuGAN6GUNdaY33gFSmgJfCvcsc7vzrWiQz184vKcATAoXlC7hzmuCrX/1qt7nx4uIiXvva1+K1r30t5ubSRxnGGi2NoW6b6YknnsBHP/pRfOYzn0G77VYJcquAjcMHsHH4IFhFfp7N7QByfu0urOPlk49ktm8VqJuiDVxf6IUdi2BLA92TTgH/7cTrAbjhS09eVaoK4J1rzuDLj1yleIf1SRLsokAuqK0OdtJQ17dhAPKyujt0oK7nVyMGeCqVstJg15FVE3Aq6ueCzDgygEebNVTOnMTejYtYXV0F4DY2vuOOO3DXXXfh0KFDysc21mhqDHXbQEIIfO1rX8Pf/d3f9VRD2VMzqF5zCPUr9kMY8gUCg4a5vECuSB3MmZvTiC1YVdxUyiZEmAR0YRDn13YBOpFwJ5Rx7841Z/DlhzOq1ouAOz/Myd7ohw52g3LrIncAsCw6ZHRCr3Hve2aAJ4BiNfozEwSwJ+L3nyfcFTaE28ZEAfBUxkgCPOIwFC+fxfNpDY8++mj3989//vPxoz/6o7jlllvGTY23uMZQt4Vl2zY++9nP4u///u9x4sQJAG7hw8bCbqxfewjtHfNqIdaCgChnD3NNx8R6vT9vb3aigefucJsb5wVyfmUFdWFAlwRxQaWBuq0CdH4RIlAwGI5OXej5faZA56kDdrKuXJzSgt0w8+vSQh0RAqWVzeuBoAS1XRotgUJcutjVdQAvAebixgqDvLzBzj+ODOCpjgGEA173MisEzOoyXjcDfPGLX+yGZg8dOoQf+7Efw+233z7uebdFNYa6LaharYaPf/zj+PCHP9wtY+eGicb+g1i77rB0OxJP0jBnE5Cme1EXZYbKjnB4itNUuYWrZi93/08Jh0U4JsyW8r48xYGcX1lC3TovKUGcX880oPPLC81utIs48/S8frg1TgIgLYriJSN9f7NnuFsXBLvuYakAniLU9Wzaedti4U4T6OLG9EAvL7jzg11w7CjI0wE7T37ACz4/08YGymefxI6Vs2g03GvD/Pw8fuiHfghveMMbMDWVrnfmWIPVGOq2kC5fvoyPfOQj+Od//mdsbGwAAJhVRP3gEaxdexCiYCntrw/mfNAWuU2ZoTzvfvFVOvr7YS7MlVMFO1mQ87RgVfHs4mltR9AWBmq8iAnawm5DHWY9ZRF2fUizdUlaoHvCLuG3Tr5WG+j8cgRFrV3AhTMZJmoLAMx383IIShfTzyCylcEuL6gLKhHyUoAdEOPeZQx0UWO3JyW/s1sA7qIugcRpo3T+JA5tXOyaBRMTE3jDG96Au+66a1xUsUU0hrotoAsXLuBv//Zv8clPfrLbf8gpT6J26CqsX70fMBVvXETdINGBuTBXLk5JYKcKcn6punQexAWVBuqGmUc3akDnV2q4C8CcX6MCdls1DCsLdX6FAl5KqOvZlefeTdKBAF19Z//5Y9bjJsfNBuz8xxAEvDRgBwCsSKKnJ+Mcxctn8Jz2Ujetp1Ao4Ad/8AfxH/7DfxjPNTviGkPdCOvcuXP44Ac/iH/5l3+B4zgAAHt6HhuHr8bGoV2b87DGiDD3hgK4NyZeUPu408KcqjMWBLs0IOeXDNRFgZynYbp02wHogjAXlBbcxQCdp1EAO2ITzHxXI9pM3BvwVnDrwtQFvAyhrrtvX184o539bSwK6IKKBLyM4c47Jg/wUoNdgQAkZu5ZIVBYPofn8zU89thjANyc7e///u/Hm970Juzfvz/dAYyVi8ZQN4I6c+YMPvCBD+DTn/40GHMvpu2ZBdSvvBbNPQuwp/o/Mj+8BbUVYM6TRTjmC7VMQM5TVOg1CeL8GgNdvkDnSRrsJGDOr7zBzoO2xO1TvI1EAIVqdLiuPRW980G7dUEJQtCeojDsbG43fqALKivAk4W6oHogLwew8yQI0J7WP6FYIbBtFOAJAWv1El5m1bsN7D24+4mf+Ans3btX+xjGyl5jqBshnTt3Du973/tw9913b8Lc7E7UrzyK5u4dsCcF0PkexkGcp60EcwCwq1jFjZXTeDrFdFdh8rt0KiDn17DCrh7QFQjDvOL4VV7Ag83+qYHmzQ28vHw2cftBA50nLggathUOd4ow51cWYCcMgJUEpsMATubropH60N00Buqi5MHeqECdX2kALw7quvtPAXe6QBeUWd+8ZsvCnSrYtebc95Uw9dfbB3ZArHtnri/hVaUW7r33XgAu3N155534iZ/4iXFYdkQ0hroR0NLSEj74wQ/in/7pn7ph1tbcLtSvPIrWrnk4FZEIcH5pwVyFoTw3eJjbVaziJVPHen5X5WU81VrQ2l+YZsw6ri6c194+b5euJjiesKdDtnMwRdtaY0YBXZI84BsW0PnV59qlADpPWmAnANNndhIOWIpw1XsQKcCOq930/WIJEBQ7bkqwC4M6T6pwJwN0fWMoAl5WUOeX2RC5uHZ+sAPU4S4U7Lo7Cwc8c30Jr7Tq+OY3vwkAsCwLr3nNa/CmN70Ji4uLSuOPla3GUDdEVatV/N3f/R0+8pGPoNl0H6Pbs4uoHbwO9uw8uAWwosJT2wBgTrX4IUx7Sut40eTjkX/PAur2FlbwwvIJNIWB8066kvysXLooeAMAhv4Lq0UYZqmevaILde6xUKw4E2CCYoMV8cDKPq39pAE6T13X7qn51PvyJAV2AZDr2wcDLE24GrRb55cu2OUJdX7JAJ4O1HX3LwF3eQCdu2Ng+rQDQSHdDkYX7DzJAl4s2AGRcGetXcbLjI1uWLZQKOCHf/iH8aY3vWncCmVIGkPdENRsNvGRj3wEH/rQh7qtSeypOWwcvh723KIyzAHqQJcG5vIAOb90oc4DOU8GBGrCTAV1ukBHAXAAp51eiAuDtzANC+hsYWKN9V69mQ/OZCEvC6AD3MbV5y/PQDACUc9uEvJQsEsAuZ7tn2Fu3aCgzq8owEsDdT37jwC8zKGuA3ORf06APN1wbFBxgJcIdd2dRMDd6iV8H1nHAw+482lPTU3hTW96E37oh34IxaJ6ustY+hpD3QDFOcenP/1p/OVf/mW3D5AzMY2NQ9ehvWM3eIGAF4XSdIvbCeY8qUBdGMh5Sgt0gBzUUQClkGtiXQAnnRnlMUcJ6MLkQV4Y4GUNc35lCXZdqFMAub59jN06JemAHdAPd1lBXXf/7f79ZwZ1CUDXs2pGcBcHdkA03EmDXXdHAcATAoXl87ipcaHbCmXnzp34qZ/6Kdxxxx0wFKaqHEtfY6gbkO677z782Z/9GY4fPw4AYKUKNg5dh9bO/QAhuYdaBwlzOiDnVxLUxYGcX3m5dFEQ51dduC6drDPnadSBLih/iDZPoPOUFdgRTmAtUxRXU+boDQvshpRbJwx37PKSHKj0bKsJdX4Ztsgc6vyithgK0PVtGgF4WYGdpyDgKYMdEAp3xQuncGT1dNe8OHz4MH7hF34Bz3ve89T3P5aSxlCXs5566in8xV/8Bb7yla8AcKfzqh84ivq+I4BhgFtQcudGFebSgpxfYVAnC3J+pYE6P9DJQJxfukAH6EPdMIBuc3sDl9ru+9xgFk5t6DcSjgM6T2nAjnACc92XVO4gFdgNKww7LLfOS/TvXkoEULks6URlAHVEANYGB4jCvLAqEi6wCkqwekRthp6wfelCXc9uAoCXNdgBvXCnBXZAP9wxhvL572L3xae6aUYvfOEL8Yu/+Iu44gq9a9VYyRpDXU6qVqv4q7/6K3zsYx8DYwyGYaC66wBqB6+FKBSVYQ5QAzpVmJuuNHFkZgmAPMxlCXJ+eVCnA3Ke0gDdNG3isNUE0/xqDDrsOipA55cq3MnAnF+qYBeEuZ6/pQW7Z5hbF6zglAW8TKGu+4sM4U5EO5DKkJcR0PUfhwt4eYAd4MKdNtR1d7IJd8IAiN3GL+yt4B/+4R/AGINpmrjrrrvwEz/xE5iYmEg31lh9GkNdxvLy5v73//7fWFlZAQC0duzGxuEbwCbcm9+gQq0yMDdRamP/1CqowjyuJuW4auISnjch0W1VUdO0ib1mtft/FZDzSxXqPJDzlAbonglhV3fbcKDzSwbuVIHOkwzYxcFcz3pbEOzSuHVZQp1fPZeRAOTlAnU9f0wBeDFAF7p6HOTlBHRBNecMUEeumlcF7NyN0s9YAQLYk5v/NWpV3Emr3R53c3Nz+Jmf+Rm8+tWvHufbZagx1GWoY8eO4U/+5E/w8MMPAwCcyiSqVz0H9vxOABhYqLXVtMDX458qrbkWbth3VhnmJgy3b9qe0lqmUFflZZy1Z7HXWsX3KszRGiYZoAtCXFA6UPdMCrvKAJ2nOLDTBTpPUWAnC3Pd9RlQXBlSGHaLhmBlFHTx0oJdLNR1V1KEO0WgC92FH/JyhrrmXD8AJcGdLtgB6eCu28HJd3iFpfO4cfVpnD59GgBw7bXX4td+7ddw9OhR/YHG6moMdRlofX0d/+f//B/88z//M4QQEIaJjQPXorH/CEDdL1Lm7hwVEKbv7wqfojnbxo37z0gDnR/m/EoLdh7I+ZUn1CWBnKdx2DVpW3mg8ysId2mBzpMf7AgjMKt60LAl3boRCcHKyLvc6M5h6+0jEep6NkgAvAyArmd3BGjNmbBq2c5zC4TDXJiiAE8L7DiUZ8Twq68tp3donKN85knsPv8karUaKKV4/etfj5/+6Z/G5ORkcDdjKWgMdSkkhMBnP/tZ/Omf/ilWV1cBAM2d+7Fx5AbwonvDTO3OGQLCiNlaA+YASAFdFMx50oG6MJDzK2uokwU5vwbp0g0j7JpXHp2sGszC46uLmQCdJ8EIULW0gc5TGrCLcusEBVhCpQ3hgFlTP++IcGcq2PyF2vaDcOv8IhwoL7ttUQQF7Ira56UMdd0NI+AuY6gDgOa82XddturpIE8W6PwKgztlsPMftu9Ukf38I3qtd98f2mriP0zY+OxnPwsAmJ+fx1ve8ha8/OUvByH5VDhvd42hTlPnzp3DH//xH3fzA5zKFKrX3AR7drNqU8WdEwbAS7zXffMUdm4LSANd1jDnlwzYJYGcX2mhriZMNIWBg6be9Frb3aUbNtABQIuZeGx1Z3ZQJwDeMgCHwlpJl5uTJgwrCMALgLWhOXZWYBe5Yv+vhgl1fskCnjbU9eykA3g5AB3QgbqgfB+PKuDpAF1QfsBLBXaeZN07Athxl4vOYVnLF3Hj8lN4+umnAQC33HIL3vrWt2L//v3yxzkWgDHUKctxHHzkIx/BX/3VX6HZbEIQitqBo6hfeU1PqDXJnSPCdQUAgJUANtm50CVdY0cE5jzFQZ0KzAEu0N1aOqVVHGERYIYa4ELA1iyuAAbn0jFBYRCOvUY1eeWADCJQUciFXOMGvli/CsBwwq5+tZiJkxvz4IKg6Zi4uBT1KC8pD+g8ZQF2km6dIO53d3PDzj9MD+xyh7q+DUcH6vyKA7xMoM4no51tmLQ5Z8pdwztKArwsgM4vD+4yATtACu4i3Tq/BADGUDl9HPNnv4t2u41isYif/umfxo/8yI+MCykUNIY6BT3xxBP4/d//fRw75k5A355ZQPXoTWCVzRtdlDvnhzhPecGcVwQB5AdznoJQpwpyfqm6dB7IeRo1oGOCwkb4xahEbC2gKxCOIkHEXsPlv4X6r82XWAH/Un221D6yBjq/tOAuCHN+5Qh2PSAX9Z3lQEH9o3V3OWiwA0D45nZOSf5GnyfYAeFwlzXUbe5XgErMO5ukUJcuTjGAlzXQ+UUdkR3YAbFwJwV1ngRg1DdwB1vGt771LQDAddddh7e//e04ePCgwo6euRpDnYQcx8Hf/u3f4n3vex8YY+CmhY3DN6C55wDgi/v7gS4M4vzqAp3Mg7IG0OUNc572lNbwrPJZbZDzSwbqgiDn17Cg7qQzEwtwYUoDdRUNcyXsFhq8RkdBXlqg82AOQB/QeVICuzig85QS7PxhWCmQC9l+S7h1AKiv8WzYxxMFenlDnV8e4OUFdZ7Swp0y1PnlDUtSNABWHZIA9pTCWElvfRjcJYVgQ8cRKJ17CnvOPI5arQbLsvDmN78Z//E//keYZnZzQG9HjaEuQSdPnsTv/M7v4LHHHgMAtBb2oHr1TeDFzbgLtwBuCRCJ69QouHNZwBwATJgt7Cuuas0JG6YoqIsDOb/SQJ0K0J1mRXxy/SbMGA0cLZ1VHmuQLh0QDnRhCnPxsnLonqzuSFwvCewEJxBtBWchDdgJFz6MJlEuPgCg7dYNG+rC5Ac9P+ANEuq6x0LdfLjian5gB+jBnVToVUaiNwfOnshh5gxo5tnJvu0BuFNy63yijQZ+kKzhq1/9KgDg6quvxm/8xm/gyJEjejt8BmgMdRFijOHDH/4w/vIv/xLtdhvctFC9+jnduVqF4YIcAGnwknbnRhjmPJALKi3Y7TLX8L3lp7r5dLIg5ylPl86DuN71KWbMOq4rnVEeSwfqdIEOkIc6vziAVW7i0xvX40RjUWMPrqJCrlGKAjtloAP0oE70N9A1WprVsFvUrYtTz8dICNoT6u9NGqgD3KKy1pQBIkTucAfIA14ql85TB+j856D3nmcBd5n0s1N5yzvH3ppX2KZvPIHixadxxZnHsb6+Dsuy8LM/+7O46667QGk+wLuVNYa6EJ07dw7vete78MADDwAAWvO7sH7dc+FMlnpXVIU5IDOgs+ZauG7veVDCcw+1RoGcX2mhznPpVGHOU5YuXRTE+TVj1nG0eA6G4usehbCrrJa5iS/UNhuCNoWpBHiqQNcdJwB2WkDnSQbsgiAX+Jsu1G0nty5MggDcV2jhFOXep9RQR4HWTOcz7Rz2IAAvCe6ygjojYgz/10gH8GRmn/CPFQt3qm81AUorHGtHUjSebjXxOqx151G/+eab8Ru/8RvYuXOn9j63o8ZQF9C//du/4Y/+6I+wsbEBYZhYu/YGNPb35s4BGAl3bhRgzlMaqLu6eAGvrqygKfTaC6R16U46hUSIC0rHpRvVsGuYlrmJL9avBg95H2TgThfoumN0wC4V0HmKArs4mAust93duiygzq8kwEsbgu1CXc8fBgN3QDjgpYa6EJcuclUFwFOBuaixQgFP8W0urfDufVAb7oRA6exJ7Dz1GJrNJiYnJ/Frv/ZreMUrXqG3v22oMdR11Gg08O53vxuf+tSnAADt2XmsPvt7wCohEw5LvGPDdud0YU4F5PxShbqrixfwg5V1AIBBKGzBUBd68KkDdWcdE5/euAF1XgCQDHF+bXeXbo0buKd+TSjQ+RUFd2mBzlPDtnDh7GyqfXTlBztZmPM0dusiFQd2nsIALxeo667QGWPA7l0WUBfl0sVuFhOeTQt0wXH64E4H7IDUcGfUqnhx9QweffRRAMAdd9yBt771rahUKlr7204aQx2Axx9/HL/927+NU6dOgRCC9cNXY+PItd2+c10NyZ0bZZjzJAt1HswZZPO9ZYJjQ7S0x5aBurOOic/VntXzuya3ulCnou3s0skCnV9+uMsC6IQgaDHD/dc2sXopg2mDPKhTBbruQW0Nt24Uoc4vD/ByhbqelQcDd9wi6apWFVy6yF0E4C5LoAuO0wN3Cm9tF+o8pYE7zvFfDs3h/e9/PzjnuOKKK/Dbv/3bz/giimc01Akh8A//8A/48z//c9i2DVYsYfXZ34P2jpDQ0hDdubxCrWlBzq84qDtaPIcfqLh3NT/MecrLpQuCnL+XnM1NbaAblEs3rLCrP49OVk1h4rGNPZkCnadMwM6hsJaNVDdNbbDbIm7dIKBuc0OgoNmaRAnqfOPlCXc8AuakIU/TpQvdle8zUXg20xqnNUf13Tq/NOGuclagObuEZz35GC5duoRCoYBf+ZVfwWte85pn7DRjz1ioazQa+IM/+IPunHPNnXuwesNzIQohN3oVoBuSOzdjNVCkcjlpZcPGvFmTWldWQajzgxwQDnOesoS6OJDrGTMF1A3SpRvFsGvotqyMrywdBhcELaYXhgoDOk/aYOdz6Dxpg92A3bqtEIJNA3V+J8lsKiTx60Cdb1zAHbtQzQbwooAuqFjAywnqur/LCe68r2prRn6AUKjzRNTAbuKM20QZTgu3L67ga1/7GgDg9ttvx9ve9rZnZDj2GQl1p06dwn/9r/8VJ06cgCAE60evR/3Akf5iCGBoQOd355KgrmTYmLUayTvuKE+oS3LlwqQLdR7QnXYsfKF2bff3SdN16QLdlNHEs0pntqVLlxbovrZ8qMehU4W7OKDzpAx2HXcuqJFw62TBS7hwp6JRD8FubghQ74QV8oCXCuo66gKlQGq4k4W6oLqQl0Ho1VPSZ5El3IVNMWdLtrhJAjtADu4mzmy+aQICHE9g7ruPgTGGK664Au9617uecTNRPOOg7p577sHv/d7voV6vgxVLWLnpVthzIY1Rswy3JsFciaM05eaUTVWauHJ6RSrcCqgDnadJo4UZU327MD2rdEbalQtKN59ujTPc19qNJ1tuObvKvKvb1aUbRtgV2HTpgpIFOxmg8yQFdiHuXFADc+s4UFh3xzOCsCJ5DDqF5UQgsv1GnKE/NKjr+b17DFFwlynUBY5HFfB0gS4PqX4OuoAnM19wEtzFQp2nBLirnO0HYUEAWl/CgaYbji2Xy3jHO96Bl7zkJcnjbRM9Y6COMYb3vve9+Lu/+zsAQGtuB1ZvurVnZoiu8nLnfPAWFOmcndMdqJOVLtRl4dZdVbyAV1cuo0hMJZDzS8WlW+MMx+2Z7v9X2QSebKs3xtWBurQunQ2KZSYXCigRG7sM+c/UIIAFfaiLa1+SpDCXzq8ksFMBOk+xYBfhzoUpF7DrQFzoeDwE7CSlA3aR4byQX/tBb6Ah2LiTNsK9yw3qfMclC3dZQR33vZzY9yRGup+D7NdeBuaCioM7KbADIkOyfpcuKMFaeMn0edx///0AgDe/+c1485vf/IxoVvyMgLp6vY7f/u3f7jYt3Dh4FarXXNdf3QokAp20O1dkKE32wwpJuJOMOtRdVbyA2ysXAAAGCCxioEgs5f14koE6P8x5rUeqvDwwoAPkXLoz9jz+feWa7v93Fddx5+x3urNkyLqJLgjWlY6PA6jy3s/BIhwzCXeIPIGu5/hC4E4H6DyFgp2EQ+dXJlAXA3Fh4xmaYdFMoS5M/lWJ+3+zJbd9blDXs+6me5c71HXHjIe7PIAuKNn3R/sz8O8j4hKgA3N+RYGdNNQBAHFf4/rhzYOMgzoAEOD4yRstfPSjHwUAvOhFL8I73vEOTEyEtCnbRtr2UHfu3Dm8/e1vd/PnKMXqDTejuXd//4op3DniEBC795d8gqE8rwZbk+UWDs4sK20zCKgLghzF5hfLICQXqAu6csE+coOEumDFaxDePHFBwH0nx+7SOn5w9n6lsXSADgiHuqDCIE837KoCdN1j9IFdGqADgLZjYOViZ07aQA86FWmBHQeKqwRUo7ZH163T7e2dVfJ9EuRpQYUK1HW36RwDIXBK+rCh3O4jBPAGAXWekt6nLKCuuy/fpTYt0PkVBndKYAf0wF0S1Hky1k9hevkhtNttXHnllfj93/997Nu3T23cLaRtDXUPPPAA3vGOd2B1dRWsWMTKc78X9uxc/4qKQNcHcSHb80l1qFN16QB9qAOSwc6DuSDI+ZUG6oL5dEkg55cO1Om6dA1m4UJrc9qqILyFaWexitfMflspXJsn0AVlEQ4GksqlC8ujS5IHdkIQNJ10zVpbtonVc9NK7lxQSlDHgcIa6W6nBXWj7NapKAB5A4O67rbCLQYhQHNO3bXT7uHmg7tBQp1fwfcsS6DzS3baN1X54U4Z6jwRKEE9aa7gQOMRXLp0CTMzM/jd3/1d3HDDDXpjj7i2LdTdfffd+L3f+z04jgN7egbLN38veKncv6JEuJWXuAtx3jkk8Y4NAurSAB0QDnVxrlyY0kCd59KFhVfjlKdL92RtAV9/6kD3/+VyGzfuPJcIcUENyqXTATrADQXXRAFcUNREAU+2dklvq+PS9YzNKdbbRW2XzlOjbaF6ahrmRro8mViw84Fc33YcoLb6WNsC6vwSgNEW+Ydge7YT/RW+CoCXRWNeo5VNxaoq1PlFWT5QZ3jAToDWVD55aB7c6YDd1Klm9+eVoyH39TCxJm42T+DYsWMoFAr4zd/8TbzsZS9THnvUlcEMxKMlIQQ+9KEP4T3veQ8AoLFrL9ZuvBnCDHmpEV9Iwkn3AipsAWGQ2PW3g46WzuFl5UsdkEuXryKjNd7AMdtElbt5USrTdGWtHpATxJ+fDc6TXbmgdharuHPmO0rb6Lp0aUUJxxRp4sbSaQBAU1g43toduX5aoGsxE2eWZ0CpwHSlmbxB1H5sE9Uz0wAFnAkBs5axqxADc13pMAwBWIloF0yoilkkf7AjbnuO4po7t2c7JwhIlABKy0zbvVORBz3e10AX7tIAXRbbh8nwh9kFUFznucCd1enB2Jyj6mDnu0jPHWvIgZ1Rwn3satzxogV8+ctfxn//7/8dZ8+exRvf+MZt1ah4W0EdYwz/63/9r25i5MbBq1A9en1i/zk/xAX/tp11Tek8fmTqBAAMBObWeAMnbO/CQMEFHRjM+V26oBsXBLm0okQoV8nqKK1L55fXZ7BCWrixdDrWvUsLdIALy+v1khbYtWwTa0/PbH5PiYAWYXUkiO+mLANzaaW5e0H1c+sGJgEU1jfn9xwK4Hlw1zmGvAEP2IQ7IGUfRA1ZgZk52imLSEI1ALjTlhCYO+ZGrBLhjpq4++ICfvJHfgQf+chH8J73vAfnzp3Dr/7qr8Iw8j9PBqFtE35ttVp417vehXvuuQcAsHbtDagfvKp/Rc9V9oNc3DtAAFYUYCW1t2mUw69XlJZxc/kkFo0arjL1v6CyoVc/zHkVoLYwUBMFZajTDb0+trEHX3iycz5IQlyp3Mb1u85L9wwE9HLpgOGEXhP3L2iPc5fGpfMDnV+qjl0f0HliJJVbR5gezOmEYL3tBlUwMZAQLNxj6wJd3x8jAC/L8GvswfXCXdrwqyFRGSxz2cjCaQsWcHhfTx24k3ldAFLDnRXx2cm+H4QDk6dD7n2ESIdjzdXvonz5YXDO8bKXvQy/+Zu/iULYjFJbTNvCqavVavj1X/91fPvb33YrXG+8Gc09/RWuhEmCnF/bAnk3QQ5At8WGkeOLC7pyYe088nbpHqzuw5cevwqEChAKLTdOBei89bcD0AGue+c5d2ecOXz60nWZAh2g5tg12pYbcg37SAwBZwJaYEe4/vRf2gbhAKM9AwnBotet6v/jkB28AYZmu0OmDM3qyhuvsObS8qg4dz0gF3Expsx905LgLvLWoeDaObNHUDNLmL70bXz+85/HxsYG3vnOd6JclszRG1FteairVqt429vehkcffRTcNLHy3OejvcN1cgh3HTkA0lN0DUvTlSb2T61Kry/j0oWBXN7ahLlwkMtTHsR1JQgEJ+4FRBW0Oi6dinRy6QYpFaDzixKOCdrCrlIV5xrTyRsElASCnBNUG0VMlaNnFmm0LayfnYq/QSqGYd1ZHtLly7pJ6npundZ4WyEEm6Qg4E1S/SpYjbFLywxGkwGUoLGQ/y0wKjSbhUsXDL36FYQ7IB7wpF06vyThzmoIuafqzjqUEf33p7OP2ccbWL0mHtD45D6sGxbmL9+Pb3zjG3jrW9+K3//938f0tPp1blS0paFudXUVv/Zrv4bjx4+DWwUs3fJCsKlZUGdrJj2qukJR8mBu8CAH5AlzYaHXHpDzIC4jbTeXTlfLbBKfW3sWioaDg5PLaDFTGu5azMS5leR1GaORjl0X6JI+W8miiVBnjgKsCBjqM9ZtiYKJkVWnRQi1OUAI2tP5u2hEdKpWmUD5oq0Md1rw01HKgu8+yVyi/OtEuXdpXhOAWLiTBrqe/Qlp1y5KhAupIgpe3omlnbdi1/L9ePjhh/GWt7wFf/zHf4wdO0KmD90C2rJQt7S0hF/91V/FyZMnwQpFrNz8YvCJ6einWIV2JFtRw3Hl2jjrcKiCnJdPl0ZdmEsAOUIFiLHVrY300nXpPKBzxOaVtWg42FNeTwS7uLBrmMJCsdJA5ynBrUsVas1aI3IYmYkA7WkanVcXtZl3wxcChTVHDu4IgVOGWl5d6NjQhru045r1zffJrgwmHJ17aFYAxSrvgp0W0HX3tenaAZpwJ4SUYyeK87iwcCuuKHwHJ06cwH/+z/8Zf/Inf7IlwW5LFkpcvHgRv/qrv4rTp0+DFUtYufnFYBNTyRtqhmBZKf9CCZ0iiRunzqQCuUWjhkOm2jelLmwsd65FtqBoCvVvmi0MrPOQOXcTdE/1Wfj7B25x/yPpyhEqQEy90GveBRKjmkvn1zKbxN2r0U06o1w7VaDz5C+cUAY6TxFFE1JAx/XcOt2edWZdwKqrf3e5KnukKxBWGqe4pg51JKpwIQ7wVIslfOMZzfBj7DppMYCX1tUiAjBavH9qto5kAc/a4Knz9bzXy0oZQyUBGnPUde8y22dvSDayWCJiW0GQCHdwaji08R1cvHgRBw4cwLvf/W7Mz8/rH/MQtOWcuuXl5U2gK1VcoKtsr7ncCpRhwoy/sxwYcIjVgzmWdfwgQcfbu/GZS9fhcmMCZy/MQrDBPNEOIvQ6KKV16eIU5drptj3x8utMg+sBHdBXNDEQd05i94QDxdXecyTN/LOqIhF5axrPZYOTECisd1ylgYRmOz/k7d4FPz/f/y1JBy+LbB0iOvPods7f1GHYjhpz7nG3pt1/M4G7QEhWqc6uE3JPdO3MCZyYfA4Oim/jqaeewq/8yq9sObDbUlC3trbWA3TL3/MS8HJl2IfVJz7JUJoLr+YrFWzsmOh3Z6asJuYK8q6NQXjuQOd35YIwx0G0XDoZeSDnjcMFgcOpMtDphF7TFEissgk82twrtc2cWcNLK4+jrvgeUgjMUBtrA8qpcySOLwh2LWbi/Kp+orHjGGjWC3pA56kThlUGOs3curCCiUwhLkeFwd5IgV4nmOTBHTBAwBtCaFYH8FLJ9/VgnanB0sBdY77/ODODu5SFFIRLhGPNCTw59xwcxnfw1FNPdUOxWwXstgzUbWxs4G1vextOnDjRCbm+aCBAxzV61JESw/751ci/0xFP7MvTlYvLp/NgzgO5TKSxmySX7kJ9CidPbxZsTMw2sLNQzb1FC4XAFHUvigtGb6zPFggFvTxdOr88sDu5MY+zKzMp0mgImGO4LWimbKCqCa8UYBWB4tLgWmcQDpSWRx/iZERYZ37bTlhUZZ7N3OQ7qTzA42b+x9UDdwCEQWBP6kFlN/QqqxDAsys0tupVRa2InDpduAsDup7xpjMKyXZcu/reEipn1RqYJ4GdexmdxImZ5+AQvoOTJ0/ibW97G9797ndjakoizWvI2hJQV6/X8V/+y3/BsWPHwM0CVm5+EVhlciBjJ7EFr3DQyd4b7MRESwncJqwWFksbSsf1VHMHKOG4tXxCabsoxblyWcsPP35XDgCcIU4XFqYL9SmcfHqh95eCuMltHXFOhjrNGQBYpBf0oiBPRTIunV9Fw8GVkyuo2xZWquoPXB7QdZXmNBQAbWruQNGtI8J16AjXgzidNiWUqSeOa7VD6bweM1ClmyXkCUIAE9F5daEbuev6X4+g+V63up+tAApVBkGgB3cpQ+5WnYMXSCePM+VTQ8JbloVzF1Qq144QnP/enl+A8DIO/4NaE/4osPNfMkXRBbsr2X144okn8Ou//uv4oz/6IxSLRfXjHqBGvlDCcRy8/e1vx9e//nUIaqF26MVoLc7C0WE6jUIJf5FEGMARgr4reaXSwp6pqvQYOlAHAIfLl/H8yneVt/O0aNSwy+Barpxu+NUrkvDDXBLILTUquHBhVrldiWqRhOAEwqYA9TfJ7AW4oEozLbzhqu+gSB3pcebNGm6bOKYUPve7dCqqC4Lj9g5MUfmn2bCKVxm1mIknqzsgBEGLGcpg1wd1ALhD1Nw6ARiNzfOJcL2GxEkFEx7I9f3eAUqr6p+TTjqmXvhJcX0RAQ6Bt9QPebEzS0SOE1MsEaMekCMhv4sYK6pQQmpMo3//soDn9kZM71Rxq/cYdADPn0snqzi4a85RrZYtUnDng7mwyxJ1AAgow52gpAt2Uc/AtLGKnRe+gVqthhe+8IV45zvfCTNsLvkR0WjZIgEJIfCHf/iHHaAzUD/wAojSzMBCGs6EgL3LBna2gJ0tGFN2Z3aCzWWrxlfawsAqL+ISIwMrfqiJAr5YvwZ/fubl+Myl6+AIKuXMCY3+c7L5dORCEXv+sYA9/1jA7FeKLvQzsrkk7IIQoQR0gNvMdxAFLnVB8Fh7EbYwscoqWGUVVCWrjlWBDnBBX3TOpaLBMDclnyMaBnQAQE0BTEmWlQaArvOrTEUEYLRjKl1HIEo5EInexWyK7jLgWqq+YyJcgPDBXpeJAKwNBmsjuouycug1QkGgA1wXlhVJ6N+iD0h9bFYkXfeu7xg0P3fPuYtUB+iEEZ3ryU0Xyp78IbXZIDzHLk68PItLi89FoVDAV77yFfzP//k/wfloFsUBIx5+/eu//mt86lOfggBBY/+t4JV8ExWdCQFnJvClJC4gbBe1h5ABXRMFXHLcxHkuCXKZKOQiQy4Usfsrm58n4aKbNzSwrvYDFO88t3X/FRSrrAKD8FD3TjWXzlOLmThZ7f1+emCX5NhFAV1XMjeLEKADIN2QOGw7fwg2ypkbqyPfJdJsCbAScT+TDMN2qsfiB7u8Q7PA5vO9B3ahzl3Ob4cHd4CeeyerYFi2OZfumh4ZkvUBnYy4BTz5w2Ul145wgZXrBWYejz5H2MQCVnc9F1Nnv4l//dd/xY4dO/BzP/dzcgc1YI0s1H3iE5/A+973PgBAa89zwKZ2Zz5GOMRtH4DzNGyQA9yE/afaC/jy8pGBHws5X8Tur3ZycITI7EJXmmnh9UceUNpm3qzhReUnlLbRCb16Ll2YOGgs3KUJuwaVBHaJQAeAGgI8rmgiCug2/6ytQcHcoPLqBiKvJ15n1gzvdwMHPN9wHuClhbuw0GtQQbgDNHPvUsoDvDC4iyqQUJUHd1m5sz1wpwh0nrwejk/+kFyu3ZNvqEAYAqtHvXsEQgGPTe/BBn8Oymfuw9/+7d/iyiuvxKtf/Wq1gxuARhLqvvGNb+CP/uiPAACthWtgzx/MZL/OhIAzvf0hzlNeMBeXT+eHueAsE1xQ5arWpUYFFy+qNbE1L1rY9Y3NO6TfjYtSbaeBpVvUwqi6oVdrQP3seEJ2RRDubGFquXT+sGuYZB27OFEzAuwSgM7dWMOt44DZ6OTqKEgYQHOWauXVDUJDmzt2RACPcDGwWYX8txYP8GSgME5K4dWOQuEuQ+OScKBYdcPu7clsdtyapli5XqRqreOFY+PA7sk3VCCsznvSuYwIAKtHRSjcObNX4idecQPe//734w/+4A+wZ88e3HTTTfoHmYNGLqfuzJkz+K3f+i0wxmDP7Ed7p/pNpkcCbl6UdyEjonfZwnqquQPfaBzq+V1bGN1lUKqJAk7aCzhpL+CSMw0Gktn8r7L5dMaKifmvWZj/moW5RwGjLbpLEtABcL8JxuidD1m7dGHioLCFibYwsK+4qjRWWNg1TGFtYmRcuh4FTwMZoNtcVV4cMDvmpfLMDcC2yqtz++9lPWGpC3isFJ2fJb0r1dy5zurcJN1lEOrebvzLgOXPuystKz6tSIgIF+4KG9m8uD1fEdj7xXT78sAuKteuC3RBUfcBbe2a/r//2TfX8LKXvQyO4+Ad73gHnn766VTHmLVGCurq9Tp+4zd+A9VqFaw8h+be53bKSxXlB7nRu09nJiYIbG4OBeSATZjzg1xWMCcjP8jNPkZAHddZoSz/D31QoVddJbl0QbWFgQv2LCq0jQOlJYVx4l06TxblPYUTykAHNwzbLZpQADppccCsd4BuG183BiLZ968DeE7W01Qljku6y6DgjgdduiEBntFgABcoLTup4S7M9c0C7srLHNRxH8j3fjEd3HErvIjiyTckRw48sOuBO0Lwz+cncO2112J9fR1vf/vbsbGh3r0iL40M1Akh8Du/8zs4ceIEuFlC44rnAVTyou+HuCGDXLncxq6p/D/gsmFjd3EdM6ba3KFpVeqED/Nw5WTlwZwf5KKmQJJRbaeBpe9R28Goh17TqELbuKZyPhHuWszEqY056f2qVsSGikAP6Doh2EhxH8ylvH54IVjl7UbmajwEdVqCcIuCW8MBvEE6d32SOO8yd0y5yAzuwqQLd+VlDuLrtOaHuzQKgl2kSxeQV3XbA3fUxDf5QSwuLuLUqVP43d/9XYxKd7iRuYy8//3vx7//+79DEIrGFc+DsBJKk0fUjSNE5DZjhAdyu4vrmDProBAwknpuZKQS4dhtALPUPWVUYe6p9gK+unxYaUx/Pl2YKxcGckZboFBVzTgHoNDPblAaROgV2HTp/DIgEl07DgLG1S4hRYNhdrKh7NJ5ooaAmNS7AYV+KyXcuVEOwW6rim2yuTzj4S6ne5pZCzlhNOFO9vmUCCiBHYmAo6xcuyffUNGKAPrhDgCEVcLJqetgWRa++MUv4u///u+1jytLjQTU3Xffffirv/orAEBrz7MjW5c4ZYLmPIFTwkiBXJ4KA7lBTjPmhzlKCKhOOBx6rUwuLU9j7isFZVduFM2wUQ69xinKtVN16TzZnGJ5vQKimc/KGQGpmWBFje2Dbl2G7lyW4obasi0VgLuBAl4A7rYr4PUpR+dO1rUrL8dfvLMIyR78VAsQAof+qa21vd+14+U5vOUtbwEAvPe978W3v/1trX1mqaFD3crKCv7H//gfEEKgPXsA9tzBnr97INecJ3DK0H4CDq18HQGFzSYxKiCXBczpqGYX8NTKHFjVyiS8mrVKMy384JGHlLbZKqHXMIW5djouHQC3+lmz/wFnBFi3Oi0z9L4P3a348HPnBAGcIukurEBcV5AoLqoiQGGDdxf/pPEjp2G6d0PIu4uS2WAorDsorGcfJu3TEOEuyqULyg93e76k9iWmLdb9Nw3YeXD3//vX7+KVr3wlGGP4rd/6LSwtyeck56GhtjThnON3fud3sLS0BFacQmvPjQBckHP80dcsvksh03mNksqGjRnTLb0eJMD5VSK8E16lkRB3gXE82NqT+dg1u4DLGxPd/wtBBnLD1c2nq9Dei0GLm1h1ohNvOQhWufycgQYEZqjk5KMdZRV6jZIHdo/Xdmm7dEtr7mfsOXUyRRZAAOgAN8G+KGC0FGcaEW641R1cfjtuqrU3CWttIgjACtHHO6yZGAh3Ia/nWKg7cfxIqfP++MGO2gMCUkIAIbrjDTw07DtX/WDXnpa/hYeGXuPUqSz2g11z3h0v7fOpB3f+NihJLl2YvM4Ge7/o/v/sS+K/RIc/1nvd9oPdidcVlMcXBrB2FHifU8CLDx3CiRMn8K53vQt/+Id/CEqH8/0ZKtT9v//3/3DvvfdCEIqNI7eivcPXg2obtQXwVDQdTFv9XfwtwjE34IIHv2RgzhMT2RVGhILcoKWST+dQGDWKhlHEhfZ08voBMSVjnGONF1EVvcdWAMeCEd0NN8vQa5gqtI395RV8d31BedugSycLdn1A192B1+VWToQD5gYBK8TP65qZqOvEqYibRK4FT84KA704IB2ofIfBLQqzwcAKg72B+mFSBvD6Kl/TKAPAU5KvbYwHeK3ZbMby4M79Wf+8l4G7wx9rd126nm07vzv0T21tsBOGia8eOYQDZ8/im9/8Jj760Y/irrvuUt5XFhrao9jjjz+O97znPQCAjSPPRnvHTLqQQh6yBIyi/NNNsWhjz1QVi+WN0GXaaoIS3rcMQxO0hSvM+lBCrDW7gFOrs7i8MeH2oRNybTGSpFUkESWHwlgze5ca7eS4qB3rvFXD900+pnUYbsPmzaUpTJxlxe5ymSlMdh+QikvnqcpKeLS6G9PF/oeTOPldOr8IEXL5dSk5xwO6gUgAZl3AaKgf9NDmTZWQ0RI9y8hIAEabw2gP51pKbT44xzAoX97dQMKzXEBQAqvKYFUzyonpzPIjCIFIeQ+KC8uGAV3w7wf/WX/6GHt2Cr/wC78AAHjPe96DEydOaO8rjYbi1Nm2jd/93d8FYwytHXvQ3HNwdEAuqMANp1i0MV2JvqERIoYGajKaoC0sGg2UiMAUSXbmspBX+VqzC1iqVaQgrnZxAvP3q2eBa731HQeuTyH3LTbr4KXXHVPavUE4rAyTArmv4KQJirPMBb51XspsjPjxCQrUwXypBkcYWG/Fj2tzikurk1rE0nXpwiQZgu0CXZ4cIgDTD3GDZB4ymPGCTorf7UzbRDi1Oofmgd2gnTsAuYVmzabktaPzHoS5d8qh1wR1p0LrgJ09lV3Fjgd2WTp3pSU5WDOaDg7+M3DytXoPy2899V38yPOfj3vvvRfvfOc78Rd/8RcoFNTdvzQaCtR94AMfwHe/+11ws4Dq1WoNhgXBwPxFo+Rgca7a9/uw7vijLA/kghoE0DW5hRONRTy5Mq/myAn1KZpkRbgA6XzpzQbddOBkRN38xzxlgMNQuEtzQbsh8Qpx77QcFE2h7+LJiBKBAnEwXWzGgl1ScURUGDYy7NqzcXwINhToCMCK6iHY0Lw6P8xtrctCavlvusH3khXJ5hywg1QA7oDBA55qaDZRqudVSHg2q/CvMHtfT2q4EyLyOp8Z3AnAqRgoJDh1nnTBbsf9bpjxC61Z7JqZwfHjx/HXf/3X+Lmf+zmNI9fXwB9njh8/jg984AMAgI2rngNRkE8e95RLiMK78fgWAvfGFVy2iiZoCwet1VCgy1tNbuGCPYtlNgkmCDinw8mZ64hwAdrmoG0O4rjz+jV3mFi6YTAFGYMWBUeFtFAi4QCqG3p9oLovZKzoNzAq7CqtpM+m49aF/inCocvkNOyEWM2GiG078UxpKEyE6FmMloDZ5DCHVVnrC0sOOzRLhpkjKYD2jAln0uguecibBi3TsGxHqcKywu2cIAhBe07eMXPBzpYKx+64n2DH/aQb+oVRwqXCUQDA3//93+P48eN6x66pgV5yHMfB7/3e77nzuk7vRWux/wYxMAUhbpvIzZVbwxXm2sBhzgO5LswNOaYeBnL+KX8FBYSZ7wU3TT5dFvLgLg7wZMVB4IS0MTEpi8yxk21hEsytiw279m3c/xnmFXIlXA7mRlluxWG+l37PXSEcMGvcXYYMeMOCOyIErA3HXepq4Qfp0GuMPCjylpGBuxiXLnR1VbgTva2wVMHQaDpduAvKA7kemPOJV/bgpS99KRhj+IM/+AMwNrieXAMNv/7DP/wDjh8/DkELaOx7jt68rrrSSHAflNadIijh2GHVtPcxQVuYp00YQ3ASm9zCGpsYKsR5RRL+0Cow/C42WefThYmBoCbRLoWCo0TsXMKyBZochk2SB3XMoclh154Ne3PrpIBOIwRLHcBoitxBbiAVsAP8qna/g8IFPBDAGUa7FF9olnABVhxg52YvhMgAa8MBKGBXJG6/OZwGHtz4wc7cSL5GBUOvcRrVnLv2XAGFFbXedEbTwcK3Cj2uu8z381+PF7BjYgKPPfYYPvaxj+GHf/iHVQ9XSwP7Zl2+fLk7a4Qzex2ElW9St9+VGfaNXUZcI04zb9ZwbfFc15UbNND1hFiHXekiAKMZ7shlJZ0iiVGT59wVFEGzykp4qLo3dh0P7DylCr2qfnbE5wxJOHSqz3eEu86uU87/PB/RZ89MRES8ezeQtimec9di3WWgEgJg+u6ditoxrUcG4d5FOneKLl2YYp27gEvn30YlDOuJOgJGW4S6cpEyy918uve+9724ePGi8rg6GhjUvec970G9XgcvzKKx9wDaM9nuvw/igss20rxZw3Mqp3BFYQmU8G0Hc7KVr8Hoee4AP4JFEjqqiyJOthdgC0P684sKvQblBzud2SMEANHSu7nkEXIlPFBRvY2Ba5DqXquDgDfI99efd5cj3EXm1AmRO+DJhhyT4E7FpQvTQHPuIoDOv76uVLsr/M5HnsD111+PRqOBP//zP9ceV0UDgboHHngAn/70pwEA9vyzIShN/eV9JkEcsAlyXZgDB8Xg8kPqnOFpBzjLpvJ35kR05es2TIMcijxn2F85m5UK1EHJtAfn0gFuOLWQbWh0hDsTbSsFAc/aGMBUWEHlCXcyYcIg4GUAd+0Z9eyqQTl3hi1SVbWGqes80uTrmY5b50npukAI7lteBCEEn/vc5/DQQ2rTS+ood6jjnOPd7343AMCZPABRnNPaD3Xc6X0M+5kBcUA0yA0D5pa5gfNsEo809ytt/3h9N7529mCqY8gD5BoLJpZvyJcMB1EkIZtPFycuaKxrJxN6DYoSActSuzlyQcAaJkAFREHxHOcEZkM1purm1fX9OujOpdR2qYBN2xhWRi7cCVhVZ/vBnfQxCIDDzT0sG3DKenAlAzeR2/rgjhcpRNZ813mfvWrpLCWTIqEbhvWkcn0QhRnceeedAIA/+7M/g8j49QaVe6HE5z//ebc4gphwZp+ltC11gJ4pNkXg322oebOGKwqbEwInAVyVl2CAZ17pWucMy9wAsHmzZxquDhN6E78D+bpxggI858rXQRRJZCkuKED6w7+yoVdPTWbhzNqMXh2UN7Thgh1pq507rCRgNGVDTv3h+q3izoUdp9F2X0zSHLP6g2Jg114iXNfVqjrdse3JAdb1eUUVHbAbaFGFX52PMQh2ZiP+uqLj0oXJBfnOedU5hLSXtJ5G1Z33mXhjZPDgIAjQnqYorMd/mT2wUy2c8OTl2croo992MFcu4+GHH8bnPvc5vOIVr9AaU0a5PkM6joO//Mu/dH+evgow4h0Fz43zFtrGtnfjAMAgAouFqpYj54JWNh+j58p5zhxDdvO8yogQActgrlMzDq/mIi+fLkpZhWO5IO7nWZBzW7ounV+yh8EJzLqXWCl/jEGNCtBRtukWRi2h8twPDpgtEbsYbQFujf6XrNv7bljunefcNRmsDQd0SP3ueqbQ9Dl4US5eGpfOL2r333jduU4z2b1vp+hx7nTdO8+l88AucdhBOXZmCW984xsBuPUF7bYeSMooV6j75Cc/iTNnzkDQItj0kf7B7QSI2+YgV6QMRcpgEo6zrRk80tg30NCqJ3+I1QO5YcCcSfVeu9kUKC9tHUcsSoMokgCSK6394Vid0KtflMqDXd9LVwjDdi+uxHXrVCV7cRYUcCrZfTco618yOQXCUlQCiyAAt0jfMqoaKtwB3bw32mLDgztPEYDnlI3MXDogvm2IDtwlTifnOz9V4c4pkx4zQHryogSwq+0vx24ve+34s7vPY2FhAefPn8enPvUpuY00lJuf3Wq18Dd/8zcAAGfmarCyBafUoWjDhTj3P3kdQXo5VQuX6CQWZzdS78sgAmbMp88FBR9waV1YiHWQIkRog1zfvni+JxKbdfCSZz2OKbOJa0rnpbbZYW7gCkP+3LEIMEtN1AXDk/Zg5nGNkwd3qqHX06uzPb/zwM5ua1xuksKwfpeuO6BaGFZZKXdLR+j5I+zGFwZ2YY7NsBQMzdIWAysPeMbLDtyBEPAhzDPbo8DH5Z/n1Z7Sf19kP3M/2GWabaIYmg07l2XCsEn75hLgKhWKpSZ+/Md/HO9+97vxwQ9+ED/wAz8Ay8q+Z2hu34RPfOITuHz5MrhVRn3fYYCS3pNvdK4R0RIEQjMfDEgGuWGJCYJVYcCAGDjMZQlyeYtNcixesQIA2DmxgdtmH4dB5AtVLOJAZcpFAwAFxSShuKHQ2zolDPSyKJKQkUm5NNhxQdxWJgHFXY9DQ689G8ePGfoVGyHDiYjRArkkxYKeICBCjATkdWetEAJGwwW8bQF3hKTKH/TniXrgqwN3OiHQuLy7RJcucqedffqgIQhhUcURKmk8afLrADmw++1/O4HDO3bg4sWL+Jd/+Re89rWv1R4vSrl8AxzHwf/9v/8XANDaeQ1gDCnJdACymYGWvfk2bjSLsLmBw1NLMVsNXkwQ2IFo+6BDrKMMc36A80R9x1wybFhkcCEfGvisgqBXFwzH7fiwQFrVeQHHazsByIGdVyARJi+/LtKti7t/0Ai3Lsyl6w6Y7NYRDhida3inRiRbdQ4352K3gchfVCII6RZijBrgDR3ugGwAL6NL8+bMDpvXLhnAS/uZBuFOG+h6drr5ox/w7AqNhTcVty4Idkmh16AIB5pzMZ89Ad74xjfiT//0T/HBD34Qd955J0wz23M1lzP/C1/4As6fPw9uFNCevzKPIQYmzgg2mtFuSNipH+ZUDEthMDdIGV7xw4ipPUkw/6zL3f/TEYdOoBf0JgnFAbOOh9rlzt+Sjz2pSCIoJigchX4cUS6dp7AwbKJL5ykiDBsLYjJfwzx4xIO59LUbI69RA7yhwx3QA3jCGOy112iFfyHC3DsgGvCyajOSeUFFd8ebP5pNATumjYlsNay7bi/YyYRegzKbIratyjvveQqH5udx/vx5fOYzn8GrX/1q9UFilPkZJ4TAhz70IQBAe+EIQIfwpdIRFYDRvxAan288qmKCoCmMoQCdRRjmjQ3MGxuYUJlcE8DqpUnM3Z/9OVPbZeHkD5jdZeUWGwWDdZesgW7WqOM663LyiilU8IUgvHrpJOlMR+cpi/cotHBC9ovkv07GuXS+9aOKJvwuXfcw0n5VqLuk7qlIAK4Stx8RuYBHwQp06AUXXpK90XC6gDcMGU1neP3uIuRv2m9VnR7IA7LPn3RKFNwk3SVLCSo3g4zK99EDO1WXbnMHgNmIOShq4K677gIAfOQjH8m8b13md8/77rvP7UtHDbQXDmW9e22ZNQIQA8602zIj9PF5K0wSG6Nhu3IWYZiiKfvlMQKa0UxctV0WLt3S+Uwph7A6OThlB7t3rmUzSIQMwpXy6bKSB3Zpq6j9oVe/osKwcaHXoDwWlXbpPAXCsFLh0rjPIKuve8CZG8u9MXILMG33Q8qqxYaqgs4dMGD3zhvfB3ZD63kXorDwLC/mew/xwE56DtUI+c8pqxHv1gHybh3QOX81PqZumLkDdlGO3R986WksFos4fvw4vvOd7+Cmm25SHyxCmX96//iP/wgAaM8dgDDzT+JOEisJtGc57GkOVuauA0fQ+7iS+6Sh+YoLOjRXDth05lIDXQaq7d505C49j0MUO4vVk5Ax8PlyBy3u63aoo7jQa5hjlxR69aunf53qx2AozjYR4taFuXSelNy6rJy5bSp/MjvhorsMQ/7+Z0bDgbmRX5+wUHnTgAkx3NkqItS9BVIC4ojo+WoV5ZSiv1CZuncZu3WNHYZWHmDPGDGOnTALuOOOOwC4bl2WyvSR5fLly/jyl78MAGjvyMelo22vv1L/31hJhIdbiO/fAdzMl2sVnKTzODi5rLTd2dYsKARuKJ9OXJeDotl5EwpDmrUgE2cuAzV2Ulx8XudUpgGAGwscNPP+h37HTsWl80SpO40Y07kECYnQq19hq6Y4RQRBF+bGUpcf7Ibh4JEOXHlg50zqN5/VUpx7l6LyNSqfTlXdW6QP7ETGYdOgVN27sPMmS7fOe7hjRQKjleZiEe3YfejxOqYAfOlLX8Lly5exsCCf7xynTK2dT33qU2CMwanMg5ens9z1pjpPFJ4D519YyXPhAsuAJQCl3l6ebG4k9qrjoKjzImq8CAbaWQb7Ii3CMGvUhwp0jZ0Ea69oYO0VDVSf2wx35MbqioOCSdpQUaHXoDzHTsWl82TbBloXKyAtvVAUbatBnfewF+fSqWgMdNlomO4dfHA3cOfON77fvTOaztAqa0QgX6QnkKXh3sW5dFGSce8iHwQk3bqkmSYaOzavSYJkULkb4djx0jRuvPFGcM7xr//6r+nG8CkzqBNC4JOf/CSA7F06YQC8uLk4FQwM4FjTQL0+3DCyLUzUebEH5gYtAwITtNWFuWHMfAFswpz9nA0USzaKJRum4sTxoygLwAzNzzFY5yU81NiPKktuaqxa9aotDnXHzKEoXjTUDXeFHpmxLz0pCXosLQ01PDtsuPMdA4RA6VITpUtNFC83h3MsIQrCXRLg6QBdUHkUVgDxD2SNHUbf9z8rsAvTvSuuK/sv//IvmRVMZBZ+ffjhh3Hu3DkIasCejZ9WyEtw7nvzDEBEtbEigZ8H9TQjMJTHcluYsDv14MOAOE8GBCgEDCI6Pw8e5ho7Cdo3ulOQEMpRLGx9iBuGbGHAIBxVVsKUkc0Nw+GGcujVtg20L1Xc/wiAtAyIovxnSlinhYZDIEzJCyEBeFGgsDa22EZd3OwU+zgDvtZ0bqpDC8t64u7rJgBKl9zvqSBAayG/WWaCLl2Ueh6mOmA3qNAskFwcJROCBaLDsFEPdDIIkAR+YWFYe3YfykuP4fTp03jooYdw4403Jg+UoMxo4d/+7d8AAPbM3sQ2JtQRIKLXfeNFF+i8pOPg8kxRk1uo8yKawuqGV4chAwIWOCzCh1ZUEObKFcZAl0qsMx1dlGMnG3r1xEHgMI1zlPf+LBWG7bh0ngh3wU5Jkqdy6MV97NINVNykXcAbqEbBufPEOcA5COOxDl6afDpZoAsqKjSbhUsXJqMtknPuZL/fIS/ZH3YNUxK0JXJK2PXDsHDbbbcB2GSotMrk3XccB5/73OcAALy8D2ZDxC60DXgTSm9XeFuuVXByY15qXacT7nIEdds8DNmZGybMTSzWsfqKBlZ9MDcGuWwVl1unG3rlXO7L2+PS9exADuw8l677f5VTVBBkZFAOTdSJXrarPLgbOOD54M66XE9ePyDazvi6JQl4g5Yf7qgtUL6YEwhLNoe1JB+8/Ll1YWHXvuEzzK/zLx97YBWAO2kD5+nd6UzCrw8++CBWVlYgaAGssnNku/KStturTiXUo6ukYomB5CwpyB9mHYZmKw1cP3se55tTeOzSrqEcw1bShrDxYFuuGKnGi3i0sa/nd55blyYMW3cKOLG8+eDCOQGlEudP1HUrbtOAS+ffRiYMSxyC8gWvb9mIPz0KwFStuFPMxyECIMzdJo+8pbw0lNAsEyCMwVzb/K44M/mFQqUUCNH63TZnQn6SeF2XLkxEAEbdARHoAbvGzvRhbKOtcH4ruHXtaQpmEelWRh7YBStilWBPoGdaQlbZicnJSSwtLeGhhx7Cs5/9bPl9hSgTsvjKV74CAHAmdgFktGDFLyJJ+nnJ78hlqSor46yjltfkadjO3GylgRftPYHnzJ9B2WijsJVmPg9RidrYZ61gltZR47RvaWZoR9tRCagBMZBufmb3dyFhWNXQK9Dv0Mk6dqES8W5d0KXr/l7ytKVMAALSbl3P11S40//kItG7ZDVFU5IIdxfqiNBllDUU567jlIFzmGvNHsjLTDqfPecAF93FrNl9yyDkAR3QW/hSvthO5d4ZbdFz35Y5N2XdOkEUe1Mi3LFTmrEiOB6heNGLXgQAuOeee9QOJkSZOHVf/epXAQBsYncWu0uU2XDLmlllMBce1jRQJ0VUKvJTXpmUo0DZQBw51bYmtnDXLwwJ5jxXDgBMymANqc+eikzKsc9akVrXiHlyYIKgFnEFWOYMFcKwyxhMgjbrPC56jl1WVa9Rjl1k6LVn45DCiSiXzlOCW+e5dID3YKfp1mX5NRkhZopKPg/ePLN0dSKlWP3KDQpC+eCrZjtOmQd2Q3fu/Ap5L8LAThACZ0re1UtS1G3E+2y03bvgfmU+asnTwbDd89yuqJ3bWTyb+926f3pgBSUA9957b+r9poa606dP49SpUxAgbuh1EBIA4QQDuzImVMCalKNg9oMJ0YClC61pWJThmtJ55W2T5MFcd/7PAQOdB3OjDnI7K1XcsfBIz+8qtBULa2nFQcBAUBUm6k7ve5Mn6PnBTkXB0Ku0ZKJmIW9zlEvX/TsHEAN2lPl+33HrZF6yoABhGbl0IwRyMgrCHm1zkE4uNMspGV6rVQ0hLnAKuZYoxM7w2jMCcCcMic8i5H0hFDCrm7CXBvCMenJSp/+zkQU8pbBrQEmVsEbnpeveAr0wbJo8Ow/sWHkRhmHg9OnTOHv2LPbuje8gEqfUUPetb30LAMDLOwBD/qQwGwKCEjgJD+6jIko5KoVoG1sH4MLEQWDrTDoXoz6YG7BGGebCAI4StyefXyUymBAGgD7XtSpMNB33olkgHHuMAiaJhesKS3ikvSN2X+u8hMebe+LH61xZmmHTtMQoLtQadOts20DrclnOH9NocwK4F+fgt5A4BOWL/espu3WBHbuJ4fLHtdWALkzeTZkIwGxsEl+ekKckRbjLVAG4AwBezs4Fy0v+UL8HeKpw5w+7So8bBngUaCxsAl4w7OoXdURyLmjMMRmBy7lV13PrWJGkdu0EBQgsXH/99XjggQfwjW98A6973eu095ca6u6//34AACsrTnEhknvO5KHQYgmJvneECmVwq7aLoGQKu8pV9QPNQMOGuZ1mFa+YfgS2MEYK5soTLbzpStfmDgO4YYh2rkBRYXRvXl9bUDzlOKgKC0+2r8CskVyVJwNra04Zj67uBiECs8X4mUJkXbog2CW5bb0bd8DOEPGhV78iwrChOTiSbh3hQKEafnMZmemDhRj8tdQHA37IGwnAGwG4AyEgbcc9Fivbh/RMFDIrgwd4qu5d2u9B9zPim4DXnrXiH4Qkxwxz64JAB7ivQQfsjJaAU8omLeF5z3ve8KFOCIHvfOc7AABWyWbestzUCaESuMetWiJiNyyskArmpuRL23WmT0orD+Q2j2HwF9idZhVHrSUYBHjSnh460JnTbbzg0JPd/y8WNjJrvjsM2aCwhYF1XkZbGNhpZvPQ0O44xKutciLYyRZESFfEhm4MUJsqwaDfrQtz6fzrybp1aYFpGA+vA5cId/GGqmHCnSchRhvuQhTm3gHhgCcTdlUau/M5mTUGpxL/fqV16/rG1jhFSKeAShbsIpsbU+BP//UYygAeeughCCFAiB47pIK606dPY3l5GYJQ8OJcml0pK7RYIiH3LY0EJxAj3EiPCYqmMHKFuBnawsHCZZxshwO8H+Z0Aw97SmtoLph4/HK6/ExrpoXvPXjC/ZlwTJibbtykOXxnLis1RQEXnanMwA4AWsyUAjvp/bVM2Msl5dIE4hAUVlVL03rduthKuQS3jnCgsP7My6VLLR8UeJPWdyesH4YGDXeEQNDgdEkduPP+HgZ4GpWvUvl0KRQHeDphVxlxi8pVgGu4dWEuXc+6Cm6dl2erCnZRYuVZmKaJ5eVlnDt3TjuvLhXUPfbYYwAAXpwF6GC+tP78FOoQsBF5KByWDHBQwmEQnrsrZxCBAnpdNw/k3L/rw5wnSgRKht7TXxzI+bXmlHGitYhDxUvaxzlK4hG2s0w+HQBssCIeXe2tXI8Cu7pTwMkVxQc4QdyZHzSueVFTCsZuIwDEuHQ96yW4dWOXLqU6r9+DOyBbwKMthSgAIT0Vh7n2eI+dP3jruXdAP+A5UxbMWrZOHbdy+FA6h50EdIC8W2c2Rc+6mcAtNXDNNdfgkUcewUMPPaQNdanewccffxxAB+o0ZDYEzEA0k4jN/klhSxZPvbRJQBpb58sUlAEOiziwiAM6pLvGTrOKF5VP4rrCEkoEKGUAdLqan6nhJc95DC859F3MWg3MWo1IoAPcsHiwb1vWsoWJNV7MdQxPbWHiojMV+jeZfDouSDf06pcHdkExhWnBbNuAs6xeERh06ZROcwFQW66fVVTfuu3s0vkbD+cps+kDLr65GC3WA3lplOpm6h1Twjq0lVORVAfuSNvJtiI3SSH5dKpyJkwI4v7rLWkVBDqznvyeyPZTlAE6T1ZdooI6ZJWkCnmZB9Prr78eAPDoo48mrxyhVJ+EB3X27CzsKb0TRRhDeJoVRK/Jo4Z0iiWi2pp4rtwwNW808aLySVhDhDgAWJis4Y7d7onfEiZW7NEro1bpHZhWeYRhgfgpxaQkCLrmrmLBqe6pTjhg1cI7v/etG+PWbWeXbiDHFjVGzu6dspKcu0HcK4TYBDtCIIYx562k7Emr27PQn5HkBztVB6/PoRMAkXkikliF2m4zbacs954mPShEwVsWYdgPfPEJlAA8+eSTietGSRvqhBB44oknAADOxKxyV+buflLc98wGAEJgTwwG0OyGhVVaweykWrEEi5kuLHQbX1sTWZBr8gJWITBL1ecolJUFkUmINY0Wpzbwyl2PwaIOpqhrsVR5aSShLi/VuYXj7f5G33mAncNpNwyrFXoNSgLsonLpCJcMw45KCxHNYzCGPIf8wOS7rHmAN/BZIvwaRFhWRh7gjSDc+YEuqKwAL0tRu/MlVPwuRuXWBcOuQUX9TZaPeHEGgAt1usUS2lC3srKCjY0NCACsNKm7m3Qa8MVbcJJuGiRJFaiDGbMBS7YRFlxXKC9nyBryHdIDOQA9MPdMFQNBO2KKMFWw22BFHFuLn2vXC8MWDJZN6FUG7CKeY6TBDu56Mm5dsGAii9Crtss4oAjCyMnrBNIJC+c1ewVtSVxTRw3uPAUgL+8iidBDkvxcVAAvbR5dVBVsF+i8sRs8tVsnE+5P49bxwhQopVhbW8PS0hIWFtS7imhD3enTpwEAwqqkKpIgHIDG/GtpRZsEnBgQ5dHon1agDiaNwVZltkEBbqJCwy90WcDcYWsdL51+FPesP0t52zBXLkwV2sbuwjrOS05wryNbGFjllVyd0KzUFAWcbC/gckSenV9R+XRBtZiJuq04q4U/9Nr3N4SCnVbFq397jr483cRtQkKwqcOTg2KzAfWoC94g8xlk80d/zl9mgCeE3IwmnkYtfB4M0epAXYp8OntSL0YTBXiAO0tJnMx6cmsT6e9aSrdOdlaZYBhWhW0MZmDPnj04c+YMnn766cFC3dNPPw0A4IUJ3V1sahgPpwPMq4tSEOTogLuZ8p5SsE1l6cxZACaIfDxpX3EFr5h+BPdNHZR25QxwWBFgmpUYaPr8sgGqzos425rFvFXLbJ82p7DbJqxC8nutWyABJANVrFsnerdXdet4IaMCiawlBKJOcZk2HYn9vCTGz1siItSUt3uXKK/FggxEhbUzyUNCwNjoNQHYZH6FWXFhVxX5AS+xyEE2ry5EUQ8hqm6dB3ZJYdewbXXlQd25c+dw0003KW+vDXVnz54FAAhjEkZTgGXUVVlVWyGvbsMu4ELDLZYYNsjFaZhh1n3FFby0cgwW4ajyAubNjaEdy7CUNKuEihgIGszCMiYyAbs2M7C0NuFWDsuAXZxL110HWm1OgHCw03Hputv63LpYqBTJ81EKmuKiLtRdMRmnru8G6v/v6Lbf7NHQ4M4DWlm4G9SzX6CfV16QlxXQ+UUdkZuZE/v9URzTc910vs9mU32GCgDYvdvNlz5/Xm/+d22oW1pye5PBKGUwTQj0Q7Ap8up0QrCqeXUOM9ByDFQsu3tzlQG5ZWcCFtmB/YUl6bF0NSowV+rMPDGcSdXSySIOZkdgurGg4sBOJp/OExcEvFPwIw12MvKBXdrQa9TUg7JuHWFA+RJPdgqTvi4pgM5MchQ11fOaxGbuniAk/HhT3sN72plkLA/uiJN/fJTWfd9pVbgbtBIgTxQ2b/e8JH/rzwWivfoFSjJpCO3l1eWRJlCoctiT6p+1Khd5Tvw/fvm7sDAEqFteXgYACCMjy3ebhGDbjgGbbeYA+GehUHHl8u6lRjsQZSkmjrDOTThtBeyVxWW8pPJ4D8x5mjeauK50Bo8096UcJVqqDYinaANXW5fBY+52NIOTmEJkXvASBXay+XRhigM75dCrH+wUTke/W5fk0slU2RMB0JQskjpCP4DroL8YI6wwIwh6WsUbOfMWEQJGwwYIAS+m75EWKR72lDB8uJPqa+eHPNp7r6NNuQcyZ6oIo8XBitm9Rtnecp5k8+pkgU4lBGvWuTZ0mk0Oo0XQmFcrzhCGe+30GEt5XK2tfAMKswSjCQgy3BCsoARORf3N1y2YCMKbp2FOJSbT1oQSjgL40MK+HsxRIjARUd1roH/miqwVB80ewAVVIBztAeTVWeCwU8RwNlgJj9d6W56kCcV6odegIsFOJvQaUF4u3eYACW6dAKzaEFMhNF26PKa9CkKcIATC6r2uUXsEqgg4AAjQ5gDgLkzDhLu0n7ssqNMOQLc2P+80gKccdpXMq5OaB9a3TxmlATrAdf5lcwL9+bLCcAvS1tfXtcbV/hZ4AwpacDuUDzkEq/qEv3m8BJypvQC7YaHKCYqlnDqNayqurclWgLlhadao4bDZ+1RUijihhg12UT3q/GIgcEKOURfs/KHXsL9lEopV/A578raRyaWLe94imuP37H8ILl3ela+ChE/v5m9DMXTAk4Q7qXYmOvIAyWEg9SYIIeDzyZXnoy5najMK5wd9XcDLK4/Oc/6UwC5BQaCzNtRCsGZz8z0qL/NEt67nttyBurW1NenxesbW2gpAo9GZE5K6u8jErUuTi9IAAAJWHkCVlnBvZiq6WJ3Ew3QPrp85l9NRhSsJ5mxQQERDTFoxAFeY69g18SgKOd6BVNqaXFFaxp2TDwHYDJnm9frTKAzs4nrUySjL4glPfrCzbQP2SlEpgEwYgbURmJdT6QAktyMAK5DEQoexJOT7gDMBvCyek+LgTrWdia6Ya1HTZTczeCTgjmrOMRuRS6cDeHkDnariQrBhDp2KY2c2OfwZRdQRsWAXrGoXdEhOXRfqiNk5MAGrli5RkZUJHL0uCPIX9iGJi81ZImSlWyzhgZz783BuYP7om0UAi3Dk2eoqqa2JH+QswjFFBBiQ6zFlobSh2DA1mIVTzhwu1LPr6+eBHeCGUlVF2GZPJ9V5XlXmdQx107Zo6FV3rMwVADydHLyodiZaGnZYFgAc91qUB9xpzROb5fvr320E4AGbkDdqQAcg8njiQq6ybh0J+XjijrXvFk1cTmi39aaW0TrbGWPdAUWn8bDXEoCkmHHBaLgZ09pgpztunYJRE2JitMKCqsUSdV4EFxRXmKv5HVSC/OfzsBk7DOT8MgCAPDPBrs1NqSKJqHy6MHFBIFgGvaxUwK7z2XELoJrZEFs39KqRgzeAfnNGk0P4wmAkzc03REQIGDWJD9sPdxrqqXzVVR5wl0MeZRYKnltGi4MwkXrGCKC/WCIKklRCsEG3LimHTub75g+7BhXm1oX5EIK469i2rTVVmDbUdUUoCBNuUiBz81a45oMR4UhFAkbLfeJjigUTBOrj8raBJgoolYc/UWOdF7HKKuCCghIOizBcXbiY23hhFbBZw9y80cS1xXN4rLVHeVsP5sJAbqvKyKEqVkZx+XRBCU7AWwZQECBtuWMljMCqar4uEX5RjB8wEILdwi7dqEYmgjc/D/AyhTumsK/O++RBGq9IdmwIq3zVVQDugBEJzUbIn0+nK9mWM4ltTQLFEqkcusB+PckWRcS5dcGwa1Bhxx13exJCoNFooFJRm9dcC7+ov2O2ED2FEiQw3Y6qjJYAqKZbx+PfpCwlNBzlLPPqPJAD3JkhvBs+EwaaIm3DEXnl5cwZECgR+Sfs3dYavr9wDPVJI1eYoxhcsUTvuMOBOmUJ0vkSyh8rCXH3pNw6f30TkXfr/B/dVnXpBqGoIgnt/eXo3kmpA2nKcJelnM2nELpc7RZZ8B05TXGYcT7dsJUZ0AUk63pHrZcEdGGSeSBtt9uDgTq/COvttkztrenWDSIEq5NXF5TflRv2Td47h4dlGOy21nBL0W3QWCAERWJgSnDY23RSdNWegkMTBYSEW5fk0mkXTiTJc+taYsu6dLrjjYp63LsBPB/1hFJzgjtST57SsEeOA9G5VtElNyk+F7jLKZ8uVipOqqTyADqzwZW/F2FunSzQlVc4GnPutpG+A/GFhE11kErt1BHRC3Wua7f13DqdEOwgtOxMwBZ7MGm4F4w8YE6lApYDaAuKAjgsxcOgyOYt9mDOAzm/DBDYo3T3ykh1YeJ4exdYwh0wrEddUC1mYqmZnCenkk8nOAFv+j4LQ0AUIAV2sfuNAruw0GvnYVLmCdibymurunSjmk+nKmEQmNVWJuG+WIWFUrOGO6bfW1N44dmlzYrHMMDTKpIYtLIGOgI4JSO3KJzqdym4flweXVBeIWn8NWpz/+VyWeXQ3ONR3gIu1BUKBbdYQvSfZFvVrVNV3nl1q3YFF5pTWCxu4NrJwbZCCcqDOU8MRHl6MYOky/GNgzld6RRLDCIE60GcX15Y3QCPhLuoHnV+cRA4EnlyKvl0APobwUmCnZZExMMblQc7ZhE0Z/UPgXCguK53Qqc9dUYyn04AZkMdOojDYa61AJqcyyVdJKGiELjLpEgiQSJsNg9/eDYM8AZQJJEKsHMCOnQmOZEBO+liiU5fXNWwqV86YdfyCkc7poqWcPccKBaLMAz1+5x2+HViYgLtdhvUcfr2slXdOlXlkVfngRwAOJyCcQq7oHYHuORM4TjZmUmxRBDmPDHhOmKqbp2KvGKJVV7BLcXzMABUaH5Tpw1bQZCLyo00iBsySHLtRkIRYKdSINHn1iUVSCick4KmOYH1LzKk04JJ5sFXuRgkTIqHqptPp9uBn3AOcLhwB8QDXg6hPQCbcFdrgjRaEKVCPuNIKhTwiu4xCUvmxBlwPl2OQOf9P7MgjO5EBx1ZGxzC1APCxAysDtSp5tJ50oa6SqWClZUVEGYjrBfqVnTrhpVXFwZyaWRnUCwRBXN+6bh1KmKCYJY2cNRal4Y5SggskC2TVycLckGNEtj1hV6DigE76TH8YBfl0nV3LO/W6Ypwoe3S9e4o+T3g5uY4RCB6qrO4YUbx+yB8ENcR8cKkHuBJuHfZH5cAOAdptABCpOBOOZ9O9ZA6gEcK7vWB2L0ndyTkDSqfLm+gy3jf/lubMAiI4vFzi2jl+DklAhA3n5cVo5o7DwnqJicn3R9EuBW+Fd26QeXVVVtFHKtu3siTQO5ycxJPGDtxVSW/NiVeXl3eYcWkvLq2oFjj7kWcgWCKtpXdOdW8OgMAJ/kZAEHVhYnv2osA3BxJXQDPE+xU8ukAxM/BBfSA3UDamMTtXqcVStgQKa4VStv6bsxC8yEqqrlvZrCnG3qNaRvS496lgDvtUKoQbncHGbhLkU8nK1L23QgDn1sQ8gBAFNWvK1rvcQ5Ax4qDATpALwSrc4v0gA5IYBPmpnNNTem1vNGGuh07dnQOIPoJZSu6daqSyavjnICxzbOgbRhoOfJvCuMUDZZvm5IqL6ApLOw1qskrp1BUXp0Hc+78tYN3nyjU5qD359VxEFS5XKimKSycd2YyazuTF9gxTsEcA4Rm+N3xwK5BlFw6T4ICxJF8WEty61K8rMxcOlUJoTfFWVwvrCgnZ4Ch1+T9BkKzqkrbb04F7vJUnOsWAuekFZ97KAoh96Cw0CsHzLVG6D6c6YxnCugAXVpfITSvLmXI1ZM3Uwa3FGfQknRNSYepFhYWlI8NSAF1i4uLnQNoRF4zvHZViVNVxkzxNWi3zmiohWDD8uqCEOeut/mBNloFLFOB+bLELOSaks2rq/ICzjuzYCCYpmohhCzy6pJgrsoLOOs0sTejiZrTyv9aWwI9rqKMKOGYNeo478xkdky5OXbCDa3GgV234bCsDAFR0Lz5qzpsYR/JVnPpMtxWRdQWEKS3t9ywRTjvcYW08sVkxmlEwGOGcBdWJJG1hGnEFlaQdv8XwVwJhzfZRsK6EpSACJEJ0IUqAehkQ7CsSLv7UZn+3Sn1rxwVgiWOex/uGmeK0oY6jyIJjwYBVnAXIOENMBDbq4ibgKQR0i8B0LbbmDRUQZgXkHMHOXEXANwQsO3eC4yIecGcEzgsXzcqKa/OD3N2ignidfPqZJ05BtqZIkt+DJ28urAQbBis+j/lInGLOS4x+bJzAxwV2sJucy0XsEuSbDuTriTADipTA3I3BOtUBMy6xhyxKqdalFv3THLpUoxHBODv/50p5AnArKo7bz3hYpvlA3ZJ141Rce6SlOQMhQBf3vAWp2EBHSAXgvUDnYr8Ydeew4o4zV73wiP41KeODR7qdu3q5IQ50W6ToPIVVHHQZzQFhKHp1gm489GGfVEjqmkIJxCO/Kcn2hQ2MWEW8suryCqvLg7mVlkFFnFyDcEyAdSEiSov5Bpm1elXZwHwF0Mm3S4MuDNfqCovsFtjFXxn/QpYNPo8lG1n0iMZsJPeFwHhgDAFnArkwU646RTK8u/+mejSaXxkPQngvuumH/J6AC9FK5M0IkIAnb5tUXCXa2uSDtxhfQOCMRCNRrGy6smny0vG8IquCBfZA513emYUcg3bT1IINgroomS0Bc6ePQsA2LNHfYpMIAXUXXnllQAA4mxIrU+Eml3Zs21MeDaVoj4L1QuhIBAqboWG0ubVyThzDDSVa5ckJoCmoOBCLW8urxAsgxtC9UQBhLjkuSgrsFtlFXxz7SAAwBEUTceCSRmmLP2bWdMxsbQ62fvLLMCOA7Sx+bmrXmy12hQF3bqULl2hOoJVpFkrzqnq/M0DPEE6oashTTLfde6i4C7L+Vuj1KlM7Vao5gF3w5gVIkHOrHpj3DARLqQLdrqzECaIWyQzSIxz6BKZJuFzC4ZgCQdOnToFALjiiitUDrMr7bPPG5DwJsBtgPYCBysAQQZJA3ZGQ0Bo5tYRxw3JcUvuxDFaBIIaEJX8nLdm28Jyo5J7Xt194kpM0WbqMGuUZPLqPJgDXKdIeYwMQ7BBkPOLA2gKNbArEmDRaCiFYD0Z4KAalUDLziTuW3cfqjyQ88vhBqp2URvshCDgYYUMAbBTzqfruHRdUUm3Ttel89Rx5LNw6WJM0Pw06NCrrPzzfnuHlyd7xOQ8JcKdpCLz6WTUOYYkuBtIPp1MH7u0Y6Tq8ehKBejcDZB4G9AFurC8Ot2Qq7tt8vvjB1SjLQBuY3l5GcCmcaYq7U9+amoK8/PzWF5eBnGqEIX5nr8LSjKd049wwKy5lRfKYCcUn/I7zqDKJsKmcKghHYLVyatTCcG2uIXLbAot04KVY1gYiM6ri4I5i3BMoI2ayDcXxR+CjYO5dGPohWA9lagt5dYlgVxQacEuUkHHLqVDLUwBpwyYjfj9ZNJMfMhctOVCr5IyWgxECLeSVgbussinS1pHdzqtLIArAHdAOvdOK/Sq6uwNIfSqDHQSSuPQBfPqZIEuLATLikQJeo22cCOSncjn/Pz8Zts4RaXC+cOHD7tUaa8DAaiL0kiGYbPQiIRgW9xClbkXAS4ImOIZnkVenYwzpwpCOiFYBoH6AG7kad26uDCsB3MyIBdU3mCnpEDotWd3loCDZLDTFeHILGzqFDf7TA3EPRtCgYSqvNCrd4PugTsgFPDyTsgnnIOs19zXQwhEOZ8GxqIV893yvZepQrOjGHqdSRd6HTWgC0rFoQvyjDLQtUT3oZXYqwCAq666Snr7oFK9Bddee627E3tFabs0T91GQ8DMt3m3O06LgNTznZLKC8GmVYtbuGxP4bI9hSoruXN2ds60NVbGWXtWel86eXVMENiiUwTBqZs3B6IVao09LsnTtSU4zjoCFxhFU6h9hl4IVkVp3To/2AEuyH12+Tp8dvk6fH3tIDbsojLQefLALnMJQDAi30cyGHoN/tkScMoh76EAjAymVvYeCNMuIOhW0zlFErmwAukbP82xK2uIriQRort0jyXt8eg0uGXMzaljDKTeTAytaoVeZcGkU1QhWm2gbbtLThpI6FV3KjFsL6Dr31YN6IDezhyvfbGb1nb06FG9A0BKp+5Zz3oWAIC0V3t+H5ZPl5V03TrVvDqdEKyq0rY2CbpyoWMIAlu3+7Ok1ngR67yEK8y1TEFORS3BsdTJA+Og3b5xaWBLRWncOsBtQXPRmcKyM4mvrx3Uhrgw5eHYCU4gmob7mMpFJqkWUY7dyLrzcb1gyaar17eZAEyZJ4cBu3Raodd2/IcTdO+IEDA21Ck9NQR0CiZIvRnt3A1iKjXhe788sCtkfLMcQWfP0xjoAtsUOt+Nzn3q2LFjADYNMx2lutt3B3aq7iS01N2dTD7dwIsmVPPqNKSaV6ejy81JPEL2YmfRDY9GwVwayYZg13gRp5x5cEFRoS0loNPJqwsLwXow5wc5vxgImsJASWEeGJ2CCQPQ6tfnzjAx23E7TVRoC1dNXMJDa3uV9xUnD+xMmiEheedeEthxgDblrpQ9YJeFS8eBwuqQbCvf2+OXAGCX5YBvoC5ditBr4nr+1ijMDYnmBlFCuKHXMMnAnewwcaFXqR10Ply/axcAvO3UymTUgc4pUa0HGwBoT1LlIqpNoOuI2zhx4gSAdE5dqrdjcXERu3fvBoEAaS8rb68LWV7RRN5hWOUQrEZenWwI1qAcRdOBSTlsbvSEWJOURwh2jRdx0l5Ak1toCwNVXsYZZ1p6DEDdRfOHYL0Q6yXm/k52Roc8ZXXcuiQ1hYWT9iJO2os4Y8+hya3u+20Rhv2FZdwwczbz43O4gboTD9Gh7UxkJGJCsYIoza3oj5indemIGFLFaoIEDV+44QKfUySuS+eFLnPmUt2bWSoRyR5euqHXOHlh2QyqXVNL8M3FC816oDeCrptqPh3hYksAndv+SO/9Vszy6Qc6AKS9DMYY9u7di507d2odB5BB0OTmm2/uHNAl5W25AfAC6Vtk3iAdsCOOYluDARRmxIVgPZDzYE57jAxDsGu8iAfbe3DSXkDb90ExQZTnM7UIxwRRs2KawhgIzOnm1sW5dR7MeSDnhzm/sgY7DoImM9FkJlqOGXsuRbYzkVEc2KmICrCy2NouXUc6RroHeH0gLBKWNNK44SaFXkO3CQu9JsBd1jDQo06+HS6r5YVrScbVDACeqDcg6g2gIXejG6l8us7n2pNfmYG4RXIBOgBaLXlkWpcEFQQ6VgD+P99/CABw0003qR+ET6nPgJtvvhmf+tSnQFqXlbelDsAhwANJxYIQEAXylQ7lCrizS+T42Js2BGtQnghwdcfC5fYkFgpyjZ91FAzB+kOtbdXHkhipuHVcUNRFEZxQVKh8orFOCFZXnlvn5dZ54VUA3RCr3H5csMMMtEOxHARt5n5W/mnrKARMytVnlpBRMBSrEHrt2Q0AowHwFDUeo+rSJYlwoLiuQcednLXQrxTpv5F40nXpdBoOx86v6R1fGgCIC71GiTG3OrXmbkcmFKbRU5FQ/EwN2nUcBaFAfTMKQAgBwkKzw2xlEhw7h8sLbXM4E9ndf3qATkNuHp3iNiHBEkEI7r//fgCbRpmuMoE6AKD2KhhrgZWLckUSHRfM4ACCYEcUn3D9+XKq2yZIuRGxZgh2pVnG7km5NiKOMGBztRPbC8HutVal1vdCsCow54Vg95nrSseWJB741gwq1Jomty6YK6cjHbCLArmg0oBdt0gicgUf2CmGXgGA2ATli8QFspYm2G1Rl85T3NRD8YNG/77HLfFD3oBcOmn5jyuP0GuEBOu8Jgm4S51PpyrB3Wab3n8DkAd0QC/roouAuqHXMHjMOTWPtnlmefFOqXOwQwC60Icr1uwWSQwd6hYWFnD11Vfj+PHjIK0LEBMHpD9crxN5mg+KOACl7lRAABIBr2/9JA2oETHLucedagi2yS2cZAuYNerSzpx2CDaiYCIIc55sYaLOxci4dVVBcNzenHyZCYqmcMOraSULdrIw51cqxy5pDA/sNESwWSChnXf7THPpoOic+SDPC6fFumhpxupIq+qVMfeCnZeEcMOb/l/JwJ0qCGc9jVoA8kAoUCqASLRKEQngx4vRfxdm57MYcK/iLIGOFdO5c+4+MgQ6AEb9AoQQOHr0KBYWFlIdWyYB+Be/+MU4fvw4aPMcgAPK21MbEKQ/DCsjImLy3sKAkeQfgh1EI+K8QrBNbmGZuRcxLly3bsZQDGcoKhiCjYI5v4bl1gUBDnAhrh5iJ1nEyWRqtiiw84McIA9zfuUZiiU2hbVKwcL6z0VuQ1C6uPk6CAeooltH2PBdujTScem05171nTL+XCkVwJMeSmefXKCbqJkEdzqhVyBy2i4V5y55EEVQ12lSTEnyXLeEdMGPzUYURMXlzA1+4onMgS5tLl4U0DELMCKYOg7oAODl107gS18CXvSiF6U7OGT0Eb34xS8GAJDWJbe1iaIId5/M6UA6tAO03alsZehdIoY3WgQkohs+OABG+hZVqKs3i7hYk686TBOCjZIHdDY3YXMTTKgXIuhUwXoFE1xQKaDTlefWqagpDJxmk7ivvYD72gt4pL0LVVbuWcKADgAKhMEiGUw4it7iCa/woc0MCEG6i648sMtcAjCaBGZN/tj8Lp0nylywUxl32C6dzseRxqXLRGRzEQbpLkFlViARJyFA2p3vDhedhSdDi2boNfZQGHeXWs1dcmwcnLtE530UwoW3sCVCrJR/EYZftM0zD7nmBXQAIt2/JKADd/DNb34TQDZQl8mndNVVV2H37t04f/48jPoFsPI+5X14YNeXXyezrWpINcrd4xF5phyg7f4u8d6+QtUyYBPAKstdADgnsBUbEau6dVEhWL87F/x7i1tYw4S0W6cTgq0JE8tsEiUif7HUCcHKqikMVLkbDmYg4ILCgMAqU5/9o9AJ92bh2NnCxLpTwqTZwpKTbTJ3nmBH2wQmAGdC/+osnV8n3AIse0IfcgkXMJM70+SiYbl0cX8LOniZF0hEKThO9/+Szl2SQkKvsaszFyrFhnstpDOSD69Zh16DIhSklM80aD1KMYtEkpxy7/UxS5gD0odcvQrXLEOunoz6eTSbTezZsyfV9GCeMrFFCCF45StfCQAwNk7p70fTsYsNwaoqol2A0SIwalS+jYBA7iFYHbfOrya3cNae7XHngsrTrasJEyedOZx3ZrQqanVCsFFuXVMYuMTKuMTKWOVFtGGgDQMMFJRw0BS9OtI6dnVexIP1/Tje2IkWNzFhtrGjlH1InELAyBPsEhy7YOi17++ylwWByD5wcguJniZMZvit4NKpHKPfwaMETtmEU5L/vurk0sXK79x5yjj0GruN40A4DvjaOviaRFGYauhVRyozGRACPpNTha+m/LCUB9CpwFiwV53nzuUBdABw21WuCfLKV77SLXZJqcxiXR7U0fpF0KZ+ZRDhesnRqj3oCAOorfAGcgB558kphmB1tMbKONFaxAV7Jhbm0ijJrfPDXJMXYAsTtjCVZpcAPLcuXTGCB3NBkAuqQBhmjbr2ODpgV+dFPFLfi+ONnWgwC63O50QJzxzsWszE2fVprNbKMMz0NyHiEBSXfDd+CbALC732/J0nhGE7qRVpRARg1UTkw50u6MlooC6drkgHfA15uFN26YQAsSXCqMGQbA6h197xOLivX1wQ7qQAT0Y6+XSKEpbaQ/SgQq9ZAx2gDmP+Bx6dgghAHujAWvj6178OYJOh0iqzT+rgwYM4evQojh07BmvladgLR6B7v9UpnFB261JW3UqpTWEbJqyS3M087xDsulPChcY0dhRrOFKRbxatGoKNUk2YuMSmwET4jBVMqFvkOm5dTZg4zyYxQdpgIKEQFxQlHCXYmDXqWmFYQC4UW+dFnGzu6KxndEEu7HgmzDZQApaaek/dLWZiqea+FiEIHMd9H6jbZwjM6X9fEtuZdFcE+qLpMaHYJJeuu17CdzY1ZAnEt2AJGd8bk3C3YXJbMfQ70i6dX4HX7t7sXLiDEDCbGUIVk3w/ulCrDo4qodfN8fpfo3A2r+8e2HVDs+PQq5RoJ08z93uygnIHOgDGxtNgjOGaa67BgQPqRaZhyhS/X/WqV+HYsWMwNk6CTx4CQLXALk1+XZ4y2gDqFKwiG4cBhCqkNYu4aExi54RcnpxMCNaDOa9a8kJzCpQIHCrLNYxOE4L1etbVhInzzkws0HhuncosEyq5dU1hYJlNdl+LpdjehBIOmjKUEgV2HswxUDSkGj3qg50Hc36Q69t3DNilasAWAXZJLl13PY1qWFl1XTpV+biCOgKFjcA+CEkEvS3h0kUoDu60CiRkXLqASE0d0JRCrwGXLnKfHcDrwt2k4gOXbtWrrEYs9Eo6ja/JYGswEjUIoIMQuHpqHU8tA695zWvUB4tQpm/l93//9+M973kPms0qaGsJIAsASCqwo44At9ypQRK3USyY8EKw3JL8cuuEYIfk1nkgB/S3vnC4PDh40i2YSHLn+rfL3q3zw5x3DBQcdV5ERamscjMMq+vWAYBBBLx7uA7M+UUJhylZ6ikDcz37jgO7NEpZPBFaNJFB6DXRpYsREQJmS2weX2DHPaDng7yt6tKFrhKEuzrTK5CQdel6thlAuXOISxclD+7Y+uY12ZjON7VGVqMQeiXDmGtYUtQWcMoa7dU4wBUcTaN2GU9degrlcjmz0CuQcdeZycnJzdy6jROpCxgI74BXGzDrIvFpdhAhWKMNGHWFt03XrdNsb7LulHC8uhPnGjPd+T79QOdptV3GiYZ8k0NVt64pCniqvYhHWvu6eXMyyjK3zp0ndgaX2BSaoneeVa45b2zaogkAMMBhCwOP1Pfiu81FbLCiFtB5KlIWm1/n5ctd3piAbRtSQOeJGjyTHLs++XLsZEOvfoV9b/OepzlWCdceynyLI1DY4ChscFh1Dm4CTGXaEoyOSxemzWITAV4ywWWhYFAunRAQTYVJw9OIs+7C1jd6IC+1tmDolTiiD+hYMbtpv9KK2kLrOkI4lDMAXnWj+9ndfvvtmMhwarrMEfz1r389Pv7xj8NonANzGqCkDEH13DpP3ptMhfumyzp3UvsehFunKB23bsMu4ri9s8+Vi1Kebl1TFLDBSmAgoLyIKap2AU3r1oU5c1HjDNqtawoLZ9tz4CCgRGDDST/rhBeGNSsMDje6oVhVZy5y/4qOHXEICstyeXe0Tdy+kYouW08YNssCCa1tN106WXluHjcJBOnUYZT7j8loZghvObp04dsJiE5okJdM0KZEtGJALp1QGUcy9Jq8H/c4I927bRp6TXTlcrydsqLCA+wAgY42a/jCF74AwGWmLJU51F199dV47nOfi/vvvx/GxhNgszfCaAnohmH9CsIdgD7A0+pZN2IFE7Jab5Vwqbr5JS0VbCxO5Df7Q5Jb1xQF1HkB3Ldei1tYYpPYYcg/oerm1i0zE01hJcKcJw6KtgCgCHY6RRN+mLM7LVWK1MG02cS6EzIxt6Io4SgbHJwyNC0Tx5cWU8Ncz/47YOe0ZWFNcr82ULngfgHtSX23LvcCiaRtNcf3pyeKwA06DPQAAITA2lCdUFf50DYPQmMba6P3Wico6Tp2UnCXl3RdOoXQq8q+egBvfja7MSI0qNBrXuFVp6x2/DJ5cR5LDAzoHIE3vnAaH/0owy233IKrr75afeAY5ZKe+OM//uO4//77QWtPgU1dA2IUtcGOiP68bP+bH3TvMu1ZF6FBFUxcMiewWOmFtPVWCZc3XJBjjPa4J6ah9sK9EKxswUSUwmDOE/NBjIpU3Dq395wFJii4YkaBG4ZVP2FkwS4M5jwZhGcKdlW7hCfXdoBx6s4nrHjOJYkaHNQiYBk25iUC7rWBANhQAzvCAaOZrm7DO4ZBunSegv2wwhQEPQAQBtCeCv9OEQF14MtBJMQJ87t2QADuBlggAcMAIbSnanVo8gGe19QYAEApSCWM6DsatdArB4yGDV5UQwrV0KvGrSRWuu4coA90xGnhE5/4VwDAG9/4Rr3BY5QL1N16663d9ibGxpNgM8/avHhn4Nj5FebesYJbubLVCybaTidPLgbk/Gq2LFyqTUi7dWlDsHEwF9xG1a3joIluXRqY69mPZhg2rho2Dub8ygLs/DDXtDs3TCoA8EzAjjMKe92X58ix2ZA2KwnAaAt1sHOAYrDa1CduSOxvBFw66W2M3n9DDqcH+IjYnNZLucI2I5eub5UouBtUgQRxp8Mi1AK4iIe7rEKvSYdkmr0hYcaBJMgbZui1A3E90imKGWJzi6EAnQB+9vt3433va+Ho0aP4nu/5Hr0DiFEuUEcIwY//+I/jv/23/wa6cQJs6iqAWr1glzFx+z8c98mfgHXukcJA/HiaBRN5unV2y8Ty6gxW1yZQKDpS+UyCEzgS+XR+qbp1XgjWnzeXuI2GW8cEBUW4W5cVzHnSDcMC/fl1sjDnVxqwq9olHF9Z7MKcX2nBjjMKu1pwvx+B8094V7QUF2XqAOWLvi+eKthxoLAhQGNCPYQBJNATVtDN/Y+yS6cr/2lHW6LbYsH/MK3TQkVWYS5dmPxwR2z1siWtAgn/sXlwBzMB7AbgfJKQnpBRkEcpyMQE0GoDRfmiMq3Qaxi8eYfs9H7O0q08RkDDAjpwGx/96EcBuBHNLGaQCCq37jDf933fhyuvvBKnTp2CUf0u2My1ADbDLcSS7wMTFoKNXZ+71WHEc9MEYPi+l2GQN2y3zm6ZELXNj4NwAsIATkwwhbBq3m5dS5hYaVVQMdqYNOSfYLNw67KGueBYumHYGivi/voBzBgNJZjzSxXswty50OPTALs4mPNEBEkNdpsPeT4pgB0R8UDXHSMAMIL4QI+4sGPo3LeH5NKpyH98/ptuIuDl5NKFbkYJCCHglSKIECANyYRMHZcuzFk3aLhrN0CXTkZdyGMchBIIIUBacu+VmJoAretVEwXhLXT/hMhXOQ9RMvlzce1MVIHOuz55ptFPvWIHPvCBKq688kq85CUvkd+RgnL7FCil+Omf/umOW/cE2ORBwHBvVkSg07/IrfzKw4KlbfeJnBc6b6j/gxD9F3FhqF80dd26IMABmxAXFGlT2HULVkVu4vq83LqWMLHhFMFA4XADlAglqNN16wATNQAlYqPGi5nDXHA82TDsJWcaX68dBuCC8bpTRsOwMGfpTyUmA3ayMOeXCth5odYomPMrC7ALlQzYccDSrAnyQE9QwJ7ozOvoS4v0cvXi9zFYl04H6PqA2b+/OMBLYeLJunR+UbuzjUEgQIByIRHsUrt0fTuMCMkOyaWTlXQDZUIAR+21yMBcj1TCwVDMp8vAWJZ158LMpu52ikDXEwFkTXz4w58GAPzsz/4sDCOfVi65ovVtt92GZz3rWXj00UdhrB8Dm3tO92+UARzCPREIEuFO160L22kf5MH9v8HddgyxOX8U4EZn4xC3jrQpjFb0gYoahTDhJgHKiANgal+WLN26IMx5ajALa6SCGVMeYnTcuhovosknsWiu5wp0QHIYNgzk/GowNxSSF9jFhVqTlAR2Mu5cmHTBri/0GlQC2Mm4dDLymoX6oYlQ0YW8SMAbsEunI9nj6wE8E7CqDCBq7SB0XTp324CTalKIJNcuK5cuKF9IFgBQy6+bgK7oAJoYi7Jar1AtyXwPfKcGK6doyzSscKtPP/r8Mj72sSauv/763Fw6IGeoI4Tg53/+5/HLv/zLMGpPgU0eAazNE5J4D4VeTpsE3KnI79YlHmsnWVoY8fl1ggPUB3KUAdQ20O2gweO3J4yAC0AU5c+SYbl1LWFizSn3wJwnLmgXOmTBTsWtawoLq6yyWYThADvMDBt3RigIdkkgF1QeYKfjzoUpDOyYY8DZsJRhzi8dsAsNvQYVVcCQwqXr7rrj0oX+jZAu5IUB3lZ36aJEhIBZY+7DMAGMJpeDuw7QpXLpguq4dmFwl7lLFzo+BYSAMe3OysPW1xM20JNs6LVHituQiYq60aWQ65Vb6DVw0DrfnTTtSrrbZQB0cGr4+Mc/DwD4uZ/7uVxy6brj57bnjm666Sa84AUvACBgrj0cv7LwHDZkYrduunXyoo7bOytynyKwdHLxCOskZUsMR5nbdFVamm7dUl2+2snv1rWEiSV7IhLouoclqHJI1XPr4tQUFpadSbS4BVsYWuOkEQfFeWcGn1y7CV+pXoXl9gSW2xOJQOepwQpYsfWnEQNcsGuwAh5a3oPjK4uotQqpgM4TpQJGJ0eTMwqnaoHYVBvoPBGvg27GzbkpE7AC1a1ZuHSCEKkpfbz1uEHATcCpAI7i7A+evEbDectoqbsSRAiYG2zzfRVeXrKA0eQwWvE71AE6d5yEz9EgECYFrxQ33aO8XLowWSZgmTCmp7uAl6kUQ686Lp0wFduG6Lh0iqFXXoh53WGRNA15LDF0oAPwsiMNMMbw/Oc/HzfddJPeAUlqIJmN/+k//Sd8/etfB5rnQRoXIMq7AHTecCL6ezFFOHeqIVhAza3zjkn1gyQMIA4gORNW56QlSgPpuHVeSxRZXWpM4j52BfZXVmNhzi/VMCwDwUanLDkYhvW7c0GIawoLS85k7m7dOivhu61daHILVafUnX5NVWkcu6X2JB5a2QOHU9RbBfCMSYBzila1CDgkNcz5RRwCs0bd3FELIHKnaryCYdiMXDpHg7kFIQARKNTda5bwXb1l+mMOozhCRaGgLFzgi3TuUoRdI126MBkEwjsWFem4dJ3temS5F/csnbvt4NLpKqz/YhYg54lw/Qpznfw5wDVrQvPxGufx5S/fC8Mw8Iu/+Itax6R0HLmPAODQoUO46667AADm6gOA2HzSinW2MnDu3Plj1d06onCdci/oaifQKLl1NjdQbRex3i6i2i5JAx2g59YFw7BNYeG8M9PjzoWNU+UlLDn55JOssxLurx/AY429WLEraDALJmGw+mdnl5aOY7fUnsS3l/ZhrVFCreWCISUCJuWgGUx9whhFc6PgnktZwSIHzHUKc4OC2u73R1ABkVU/Sl8YdpAuXVCECxTXBah3bSCkuwjqtmniRviFfeTDrkkNi/3OXavj3KUNu6oCmncoE2WgrND6R9elC1PAuUvl3qUokJCVqkunvP8sQq8SzpxsPl0aZw7ofOc0nELKEH4+C4YrC6cAAD/6oz+KgwcP6h+c7LHkPkJHb37zm7G4uAjC6jDWj6tt7IO7QUzarTOO59ZJq+vWKYzRceukh0hw6zyYq9sWbGaAcYr1dhGn6nNKx9VgFtYUrQ8vDBsMtcYpjzBsEOY2WG+X9kGB3VJ7El+4cDW+vbSvC3NBUSK0wY4xitpaGY1qEbA7X3sqIIwUgMQ6MFfdhDm/osAusUgiRJQJFNbF0Fw6wH14C77G3hWiAW/UiiO66wfDrkkS7kNyF+50p/zSADrq9UujFMI0kuEuK5cuTB248wCPWPkXFgykQKKk8SSmEHoVlLihVw+cZE4DIvdQlJYNhKH3PfUDXfAYfvaVCzh37hwWFxfxkz/5k+kOUPZ4BjIKgEqlgre85S0AAKN6HLDdMJpS3psHd+FFrZGitvqE30m5dUFtJbcuDOY8MU5xqT6hBHY6sLXGyvhucyeWnUmlbb0wbFolwZxfeYKdH+b87lyUdMCOMYpGtQjRpptA192hJtgx9DhzUQoDO6kiib4duZC0ch2w9GyCpWcTrF6jfvlK49IVqgrH7AM8ViDdlkmyvTkH4dIpA51fAjA32gDnoG2mFEpVCrt2xxP9LTk6cBcPdvm7AMJxQAwKYhW6S5IGFXpVFpX/Tsm6dIKS7gKKzJsUZ2H2ZAF07o58P9sb+NCHPgQA+KVf+iVUKunyrGU10G6Bt912G573vOfh61//OsyV++EsvhggZLMKVlKEux+Ad4EMbVESWN/ri6cyxnbKrbO5gabjHhgXpAfkgmKcouWonRoquXUbrISzzVlwQcAFwZ7CmvQ4XhhWtxrWy5mzuRELckGZhAEUmebYeaHWJJALyoM6mVw7D+j6YK5nh27tKpF5YGDo5s3FulY+CSogCp15mTXz7JwSweq1AJvcvHo7E8DSjZuvy2gRzD4efXXP1aWLEDfQe9khvWCXVeRBpzgCiMijkxmvbm+GXYUAhABtC4AQcCupWjaFSxe2O9MAJsquOeA1C87TpQuKu+MQw/+63e+0sCPchFEskMjYpevmzaW0jlgpegdZfH8yA7qenQo8d+E8Hr7Qxq233oqXvvSlaQ5RSURIdy/MRufOncOb3/xmNBoNODPXg09d5RYyKD49C8M3t6vXTSEG7gQFWIlIF0x423ALSnPVchPgBZUneoCbQmkbUeKwpuSsR84pBAeKZRuTZfkpsAzKsauygf2VVeltKOGYNpuRYLfBSrjUnoLNDbQ6cGQRjvlCTQnsAKBCW9htyW9z0ZnGAxtXdI9TR1xQtGQnFI5Q2WiDC9othFAFut7jIZFg5+bOFd1rThzQ+dV5yIiEO8+dSzEPOuEEZh2YPK32GdgTBMvPTdiGu8cH9AOe18Ikk1w6BSWeLsGvvaaJYTYG6NIBMKsx15KOSxkGd1q5dEKAViUbnXPuwl29ET/1V8xYSqs3ml2oC/27Dyw9wCOmqQ5187NK65OJijrUVeQfcoGOU1fpvTn2FECE5ZYaioRHAHuy/3XIXMKTQrbdeZQDq8mEemOBjhCQ2hMw1x7GxMQE3ve+92HXrl3JB5yRBhZ+9bRnz55uGNZcfxSw17Vaj7jum/cfdCtlBe08CZOw9dXH0HXrpJVTbh3nFE7LBGtTcNtAc6OI9Zp8cjHjFA1H7cktLgzruXMbTqELdABgC9p1sVQkG4Zdcibx2dXr8a3qAVxuT2C5XUHNUbt4eaKEpwrDOoLicmsST9dnpUKtyccTHoqNDbfGiSA6HJsB0AGua6dqdjolgrWrJFakgDPN4UxztHYwLN24GaLNrDhCQVKvk/gWAGZT9CwyIVWjPVigM+oJdqsQoWFZ3eKIOJeuf2UKYdCBAB2AWKADXPeuu3RCs3RSvtUUMBiXTnn/ndCrP7TqhVe7Sw6SDbXKAJ3QrBWLBToAaK+j0nDrBn7pl35poEAHDAHqAOAHfuAH8PznPx8QHOby/YDgUv3deuS1PfHLd4EMAzzd3LpRrIQlDaMP7DyQ82BO8M2zVnACptjiZL1dxNP1WaVtgkUTG6yEE41FnG3O9sBccJtz7RmlcWSqYZecSXy9egiX2xNYs90ecxwEDWZpg51Ofp0jKKpOETWngDY3QAnH/IR+c2K/gmAnFW5N3GkA7DICOl4AWle0Ub+6jfMv4bh0s9w5LwyATalOWYQu3K1eQ0EdgcKG+k1bN+zqbqyxCRM9C3VEH+h5C+ACXWiD5qj9ZwB00tWuHtzZvjCtomi9rTy9VXcsbxkREYOCTpQBwwCdKPcssRpALp106JXzjhvKIUzaC3E500RWqQq64VZAAugEx7MXz6PdbuP5z38+7rzzTr2BUmjg4VdPly9fxk/+5E+iWq2CTV0DZ+5Z6UKwsSv6fiYAKxBwhXs6K8j3uQPcE4ZbQj63Dp2wbVHtrBUlDmPCAe/cwEWC60eoQKHSxvSE/JytOmFYswM9bW72hFrjpBuGpYRjijZ78uu8UKstaBfm+raDQNmwMWHKh6T9coSRmF/nCLehc1iYlAuCtXYZy7VskmfbjoFGtaQWbk2SQ2CtGUr5c1HiBcDZ04JV2twRYxTk6TIW7o++BDklgtWjGlDnE20Q7Pxm50HPcENE7ag5ZX1K7dKpXM6E69KpRCwEJaF926IS0dMCHZAQdo0RsRnAAaHS/kIl7Oofa30Dwg5x9+IS9DVug0mh1zBFApe/oTIX4J3cQDo9qQx1mJlSWx8xodeI18cmixBJuZPBXamGXuG2MgntaZc0VohTFxVuldm2+xyfcJ78f2+fwQc+8AFMTk7ib/7mb7C4uChzuJlqKE4dACwsLOCtb30rAMCoPg6jdhFUIzwq9ZTqD3EI9+nW2thckuZvHym3jgAwOgsjYHUTgpMeVy5KOm6dThj2cmsSj6/v7Au1xskWFMvtCS3Hzh/yvehMd0OtUUAH5OvY+Z05h9PQvDdKBGYKDeyZXs/EtSMEoAWWHdB1zmFu6UGNX2FABwCGwSH2N3D5uTHJ1jounU+kRTDzuLt/z3WjtkBxncc6d6MOdAAiG/ESIUIX2hbKnf/9Sgy7Rog2HRCbgTAG2rBBJNugKIVdPQkRDnSdv2Xl3GkBXSnmWmMYm4tlbjp41AC46F2ylmV2Hbi+JUKqQKcrHaAL3U8W4daEc4e0LuKDH/wgAOBtb3vbUIAOGHD1a1CveMUrcN999+HjH/84jJVvgRdeBoqSGzaVKXvuhGCVTnPSH5cnTEAErgPM2nTzvPWVKnQ1KmGp477mnqIJgj707nayF3BbnCi0pGBtA+u1kpJb54Vhk9y6VbuMM7UZME5hd2BmZ7kqPU6a/LpjzT043ZyPdeeC8sAOgJZjF6yIjXPmwkSJQMVso2S4J5+Oa+f4qpiLRRuO4c7tyjZSdP4V6M40wYsCtuGez2Zd44k5Aug8GQYH29/AhYkiaJ1i8b7Nc1k6ly5CpEUw+xhBcb33+0FE57tJXHALc+4GHnZVvVkrjkHbbnVst08YANqWhxKlsKtfHL1wwLl76M0E1y6shYmESLWWfJ32bs7ePSaHXLpQGQoP1IbhHl9YS5aYzgVksgLV4JvQyDXdKpJ156KUGG71xJpYFMewIgRe97rX4eUvf7negBloqFAHAL/8y7+Mhx9+GE8++STMpW/B3vlCEBAQCCm489w6lb5OogNKHtiFJV8GQc8kAC8Q2BNyoVjPrROSKOjOHUvctcu924i4hEMBwCGAKTeO4ATtegHrgDTYMU5xoe7mroWBnR/mmr5WKGsttzBDBey8/DrZMOxlexKPrO+BI1yInC6ohWuyADtGCNbssjTMBeW5doAa2DmcQvjGIwSwLAbTZGgBemDnAZ13OhFAdFIJHKiBXRLQeTIMDmOhAcYoLovNcGxql46jD+h6/u6Du4J3ihLArkCtJ51Pyh1vOi5drhK91zfP/ZCFuzRAR9vhnz1hDKQhIAgJhTsdly4y7BolIeJDslGbNTRCwnEunfIBxDhoBlWD1KL6QzSbVH8tWTluSmOmyJ0DFIBOCDx//2Xcd98Kjhw5gl/6pV/SHzQDDS2nzq9Tp07hZ37mZ9BoNNz8utlnuX/wHqQS4E46t84nnYaFrAA4ZSIPkMTdhkkUnXrtWNxeWgJsQvEp1RTSYAcAZsnB3Ixae/65UgNXT1/q+d2qXcap6lwPzPk1UWjjiskVpXFk8+su25P49up+1G33wkSIQNm0lcEO0MuxqzlFnKrNdfv+WQbrwpmOVPLsgkAXlBBAq2WpgV0Q6EL+TltECuxkgS4oL89u9lGkyqWLcumS5ObDElBbQLXQeVBhV12XLnJ3nfHD4C410Mk4WpT2wJ1WcYQQwPKq+nF6uWwKLpqoqadLKBcvaMAmmZzIvY0JADhzcpEQv7Ty6UpUy0VkBdItltSSooP7U6+cxfvf/36Uy2W8973vxYEDBzQHzkYjAXUAcPfdd+Od73wnAMDecSt4Ze/mH5PgjnSm5FE5n4XnpilsQjtFE5b82SIMF+oU+tyClQXsacWLGgVQkH8xOkUTlsGwWK5hf2UVq3YZ5+rTsJkRCXSAW2gxU2wquXUAMG22cLh8KfRvfnduo937xqYBuwJ1MGslQ5kHc07AmaREoGLZuYKdF26NAzpPSmCXBHQ965HYcKwu0HlijIKcLmP2GLD0PepAoQt0njy3zXvQkoE7ZaCDu2+rrjqvl9rqSUDXs+sA3GkDHeBCXVOt1YAwDIiikW1xRJwY28xR85ykBLgTzVZvUYPMsZWKaqFXQAvqMKs4D22xoAxNOgUSghKtWSScCfW2LIQL2BX9fD8i1GCQNM7CXP0mAOAd73gH7rjjDu2xs9LQw6+e7rjjDhw7dgwf/vCHYS7fB9ucgCh0kua9FAiO8LCsZm6dcg863TlhVfmsRWDUDDW3bgBhWJsZOLU2i6dW5zBVasXCnCfGaaZh2KA7F5RImC0jTg43UHOKkW5dFMx54oKgbrsApQt2caHYJHcuKELcPLvEUKws0AGJ4di0QAcArG5iz30ClQttQBSxdIvCw0pKoPPP9iA6xVXdmqc4wNMAOuWwq8YYag+tvrAsFzDTAF1E2DVOhDGQqg3iMDXHKa44Ik5+h7T7c4Jzpwh0sfuKkq5Lp7iNjgumUyCR9bRgYeq63Sksqu7kBbKHa69hsvkQmgB+7Md+bCSADhghqAOAn//5n8eJEyfwzW9+E9ble9HedRtg+JyYANwBm+5dFrl1MqIO3AaqCm4dtQGjJe/WEe7dLBXATqBz91FoiaBQDdu0TdTrRQhOQKmAZcpf3BinaDG1U82rhgWAPYU1XLYn8Vh11/+/vTcPk6SsE/w/b0SedXRVN03TjXQjRwMiIB4tOGw5gAwwIII6eIzOOrr8RmeGdXZ2FGRZlgFHcYbhGVbXcfGYnd1hkDl0UFGX4xFQjuUQBBTolqu7gb6ru7qOrDwi3t8fcVREZmRmRGRmHdnfz/PUU5kR8b7xVlRm5Ce/3/egYmeaCp1HxTbZXyl0rX9dO5kL1dEjsUsqdB6e2FUNG9uOGECRROhCFTcOouiG0AFQMxh6xfnfjbxUJjuTozqo2kbtVFkxurEzoYu6xP42NfcWC8pd2n50idOuCTGqaa+DQgG1ZXmnrUmmMUmSdq1Dlat+yiuJ2MUaHFFPMzlrIXd6Nnmf2672pWtBrycbnm9aLQ1Wj7KTRnTqyntlk9RhlVmb2cj22Vk2bNjApz71qfQN6DKLJv3qMTk5ySc/+UleeeUV7NwKqqtOo+WSKoHUrJ1RifvW9VUaVuGMhE3Qty5OGna2mmF6quDPh6dMTb5YZXgg2Xx3adKwWfcfs2N2uCHV2opO+9dlDItZK8ve8kAsmWuoowup2L3lAV56bSWGqSkUE86aHUFDOjat0DVU7P6MVDsWuspkjjV3ZXyp87CzBhNH5puKnS90E90VumZ49wyzoqkVEhRcJP3oWqJ1aGJ3ZyWIGHLXgdABqPp0rRvhaSUsqdKuANWYr9NAB/9UUrdI+9L1Q+q1WXSuOphACL17VwDdrri2eNshr/Dkk0/yute9jq9//esMDyefG7BXLNg8dc0YHh7muuuuY2hoCKMy7q440Wb0p3uDNaoao5owRZpq+oH5TcPGRuNMcVJLIJteGjZiCbHZaobxicGQ0AFoS1EuZZmcSbbs2ES5wM5Sshf/nvIgT+9Zw46pZOW0VpRqWfZX4rfRw0YxU8uxtzxAuZZJLHQwF7GbqCTvVAwwUSmyecdB6IqBNWtSmulsSTGYi9qZQ9XuCR2gqoriNpP8CwX0i8mWQGogEKULYlRtRl4ss/qnioMeC9+25lvoPJzVHOIv57UUhQ4cobZzBrVleWrDzSap7VDoyhFi5s4NppoNmkibdk2SQvXmhjNNVLGIKsZ/Py/mKN1STr0qW89F51Lev5SOFjpvX1O05tw3zvLkk08yMDDAddddt6iEDhZhpM7jkUce4fLLL8eyLGrDR2ONvjFWOT9aF4jgtWURR+tSjYZNEbELjoYNplrtFpPZZvJW4hG0cSN2U9U8r02506RUMyilyWcsBnPJIlZJI3Y122CqmkdrRcXNq3nz7qXBUJqsYcceGTtRKbJ55wonVVoK3KwVGHmL4kDnEbvZ2SzGliJagTXY+do7xqxiaIs7gMOE0iqNOjLZ6wLcKN3dGYa2tv5fBaN2CyF0ypOzusnSvQ9KrcDKR+Vxez8wAk08wYws2yh0URgVuzFql2JghEcw7dr8oMaoXceDI+KSzYQjaG5fQ11q/n6er8ERizlKB+lGvUJ0pC5OvzmrYLTtDtFM5oI08wZj8leYUy9gmibXX389b3vb21pXtAAsWqkDuOOOO/jCF74AQG30BKzho9oXUq7YmXPPPVoJXtopTiJv3q3KFKCWMCI/H6NhAZRpY2TttjI3d3zyNCy0F7upap6t+5czWw1HyLKmxbJCihRIDLGLkrkgnYgdxEvHTlSKvLR9ZVjmgnRB7CrlDPYrA06fTaWx8p2JnaooijsMMoE/S5tQWQZWIZncVfYWWP8P8f42O2swfajT1y7tnHJpI3TKbi9nDYK32KN0MYXOP08wJdulfnTxCrgXZKbU27RrkFyTQUaBgST1gpdm/dV5GfEK8zaNSdrUa/1UJkkGQbRKvSbpOxflCmrmRTITvwQWz0jXKBbVQIl6zjnnHHbv3s1NN91EZt8v0WYee+Cw1oXqLTzwODwBZ12xRTpoAno8GtYG3NUDNAZWRUMm3kXw0rBAIrFrNnBif6XI9ulhPzpXT802mK7kEkfrvFQsECl2NdtgslKIlDkP03CuSVqxazWAoml0rh4NdtlkxspjZJL3swsJHYBWmGWNsg0n8pxQ7qKEDpxuBvm9jthUZodiyV1lMseae+NfW6NqM/hahdKqnPenJBKg1EKnIRMjEuZF8RRz0yQorZONuk84551RnR+hA0eqAayhHNndM6nTrolXc/COz2QgTZQuKdkWH5GBKFQoLdticuCmzNOI1/mabBjSp149oevGiFaPONG5Vu0xZl71he5Tn/rUohU6WORSB/C7v/u77N69m+985ztk9zxOVWWxi4e0LGNYGpRqDMM2ETxwJS/pl2gbzIpTcVyxUxaYrlf0fDSs5bapXuwCIuc/nzsbYPRc7GZrGXaWhv1o3f5KkVcnRyJlzj+XVpRrJtAdsWsXnaun22IXW+aCaNBVA6sGJZ2LFbWrlDNY24ooK2LiYK0wKrh3PSO22DUTutAxdXIHLaJ3VaNt2rVle7wBcDHehh0JXUTatW0527kfeR9yqv5GE1XdfAidN9K0gw/N6kAGvWoQNOR2JBsEFdmPLg5aQ8b0RapVGtQnTdoV4stWUPAyYXFKFVFsQ6q0K8n60um8c69K1ZeugxUkui5zHdSlTYWa3U5+4gks4P3vfz8f/vCHO29YD1n0UqeU4tJLL2V8fJx77rmH7J5HqKw8BV1Y1bxQHCuv269sZ5t3w487m/x8DZpQttOmRMU04WlOgjLXrM02iVM+acTOGzgxU81Rscym0bmGc3VJ7AYylbbRuSi6JXaT5Ty79w1hzaR8C7pRu1mVaxmxK89m0a8WybZbBSJh1E7ZtBS60LGu3EFY8DyMCqx4ufO+ff6qLC2idvMtdM7M9uET1j9vkLwkdCB0ncgcgG0qMKA2YDq3mNXD8eWuWksepYNwGVdqYsldGqFrFaVrgspmwagbyFN3TIPkpVmqLM0UJi2idJ7AhbaZCjuT7j6XKkqn3AhwlzqEdRKdU9rpxkV5JwMTj1O1LM466ywuvfRS1DzMu9cJi7pPXZBarcZVV13FAw88gFYm1ZWnogsrmxeo71uXAG0QHhdst5a8xTpoQtUURlVhZzU6FxC7dhi4Ay2SfVIkHThRswxKZedGk0kw7x2QeuBEsHwnaHed16RyV6mZTJfy2LbCqppoW6Fj9F9sigKVsSPTsZ7QJVmv1amzdV+7OFG62KeyITupKUxYFHYl+1/aWcNPv0ZRL3eLQejilGm6K0pM0gyM6KLQRbUnM2O1FrtqLd1KFe0+qmpWtNh1Y3BEDKKELpJgGnjAFdL98aOcnQyOiJI3aB7Bs/Pp5r9LNEBirjeIvx5xWqqDRsfROa9NtrWH4f2PUS6XGRsb45prriGTWfRxsKUjdQCVSoUrr7yShx9+2BG7g38DnV/R9PhU89bh3vzrXssNN8E60VsMYqdqCqMS7GCq/MibndfYSQZOpBC7uAMnapbBbCWLbStsd7p+09Q9FztbK6zAp7qptB95S0vcARSezGndOOGzXetQ7AAUmAXLF7vUQufXp7GzNETtuil04ETxcvs1ZlUnTr+2kzpwPii89/JSELpWbYwSMW143TNivo57KXT+OSBTsqKjdmmFDuJF9tzpT3y5S5t2bTY4ohnKQCUtA+hlzhRASVLRupC8X5w96HzIJEm/2hkD0kx9EneAREDm/HN2IHW1opGsz2ozFFAZZ7j0c0qlEqeeeipf+MIXyGaT/38XgiUldQDlcpkrrriCxx57DK0yVA9+R3Ox6yRaZ9J2OpT6m6M2HKlL8uGRVuzsvMau6yvnS1xkYxeH2HnROctqvEi9FDtP6OzAP8dQuudi10rmQu3rktiprI2uGpjj2fRCF6pzTu7srO6u0NmQmdYYNScKlZu2E0XrYkmdAeVlyk0XJ+wLl1boSNenKNb0S/XHux+eRq3dHA2QnayFJtNNQ1uhqztnfdSuYYLhuCT9mKpZoDV6cir5uXoZpQugBwp+Cjk2hpH4y4IuZlPNS9ezKF2EzAHojJH4PQCuzOH2f0vxXq1vF5U9jJR/wfT0NG9961v50pe+RD4/P3MOdoMlJ3UAs7OzXHbZZfziF78AZVI96BTs4sHRB/dY7OrPpY3kN3QrD7WEI8Z1FmqF5NGDhRI7LzqntYoUOo9eiF2U0Hl0S+zq07FxZS5Uh03n6VhboUomZklhlrvY98Mdwpmdnhvo03GVbpTOI2m0Lo7U2SbMLneup1HTseROuSlNpUn3IdGDKF09QaFrf7AmO2VjVtz51RSp5C6R0PnndqJ2ytZkX93Xm7Rrq3KVKnp6Jn6ZeRI6mIvSJSqTdO47wB5KEdnrdpQu2A2iSbVponS1Yt30J2mlzq1ClXcxWHqC2dlZTj75ZP7yL/+SYoIJpxcDS1LqAEqlEldeeSWPPfYYYFBbvgFdOMR5UdW9NrqZhm2Le3NOJHaGI3ZWgveeF61LUgZAZzVWMeGN1dQp5rybE7tW0bnI03VJ7ILp1iih8zCUdsb8dkHuStUs+6aKiWSuntRRO1uhZg2UpZwO9DUnctsNuVMalJshMiwnytaJ3AWjdHPb4kfrdEZRXp7FavNB4M0TVxkKRGhbyF0n0bm5CMTiFTp/s1c85n0qldD5J3OueWaySnb7voRlOxlE4patWWDb8eRuvtKu8xWlK2TQKQY7dC1K1yQqF1k2gdQFo3P+qdKsARtol5rdQXHmCSqVCm9/+9v5i7/4CwqF5CsSLTRLVurAScVec8013H///YDCGn0rdvFQgLDczWe0zj3fohW7eYrWgfO5Y+QsslkrttB5dCp2raJzzegkalexTPZNF7Ftg1rVeaHpNJ24XBKLXVDogmgwKp1F7ZyIFQ2p/U7krj5K52+PKXZxonT+sYFoXZB6uetU6NKO+JtvoQsdEiNq16nQKWvummama8nErpMoXT3t5K7P0q6wQFG6GFG5hrIxU69RMueRpt+r/3D2NXKTT2BZFmNjY1x99dXkcp0vzbgQLGmpA2dU7Be/+EXuvvtuQGEtOwk9cHjoxaQNhZVLF62bS6kmK5YmDds3YqfV3Bx5gMpbZHLJZnI3DE02m3yyUE/scplaIqHzz5tC7CqWyd6pAV/mYE7oOhG72OnYZkLnV5Q+atdM6IJ4A4biCl5UlC68v73YdUPqPIyaRllQ3GsfUELnH9oiatdNofPIzNScPn7t5K6bQhckSu76MO06n1E6K2/6/+c0t7x2UbpWMucR+71bV4Wa2Ux26mls2+ass87iv/yX/7IkRrk2Y8lLHYBlWdxwww3cfvvtzvOhY9GDx/hvUmdqA4WVTT6QAeYxDQvYuRT96xaT2HlCF3xVqXRil8nYmGaCvnxKk3FlLGPaqVOpccWuYplMzBSxbRUSOo9uiB20iNrZClU23A/PGOdIGLWLI3T1tBO8dkI3d1xrseum1IEzYXlxt/OHJupLt8SFLlSsLmrXC6EL0jJq1420azs8uatUEgvdYk+7Qu+jdFZA/rShULX0XVeaSV0cmfNo+56tr0JrjKmNGNObADj//PP5zGc+g5lCoBcTfSF1AFprvvGNb3DzzTcDYBfXYS87CdTci8XKOhE7n7g31pTRuvlKw4Ingws4cCIYnYtqRtYmW0w+s3pcsfOEzpt/zlDOtk7ErlU/u6joXBRBoetq1K5ddK5pRfGidmmErp76uR0doYtOu0a2oYnYxe1PB857tjKssNpMNWRYmsJ4YOoWO4bcLUahA9CawniKNU6Za5edNXoqdB6RUbv5ELpgkSQDKVzmLe3K4orS1Yuch7J1uqljvPPWvZeTyJzfhjbv1RDaxtj/JEZpKwAf+9jH+MQnPrHoJxaOQ99Incdtt93GjTfeiG3b2LlV2KNvA8MJpWqFm4aN+Me1u9H2YxoWOhc77QiCY6+tz5MmWgdOKtYwdFO5qxc6v1yHYufU0Ri1iyt0QboatSub6YQu1KDWchccGNEtlA25/fGlzinTKHbdjtJBo9QF2xwpd4tY6NJE6ZyykJ2sOG/ljEFleYo+RQmELogftZtvoZstJ14Tdj7TrvM6OKJJlK6ZyAXpJErn9afzRA6SyZzfhqjXXFQ1do3TjtjDww8/jGEY/Of//J95z3vek/h8i5W+kzqA+++/n2uuuYZyuYzOjGAtPwVMZxRLS7HzaHLjnc807GIfEatqCmUp7CGrtcyFCqUXO4iO2jUTOg9P7ICO07GWVi3Tre3oVOzsmoL9Wefa2ykix5GNapS7bkTpolA25CbBqOhEc93Vi918St1cG8LHpl0pYrELnaq4702lsAayycQupdCB85rLb9nrPK6muD/Mk9D1a9oV5qJ0Vl20rt1nV6dRusqIG3RJIXKhdgRfd82qskocv3wzmzZtIp/P8+d//uecdtppHZ13sdGXUgfwzDPP8LnPfY59+/ahjQLW8g2QXQ5EpGGjqNvtLTk0b2lYWJQDJ4yKgTmjnPVrbUVtyMYaTnBj7JLYBfvPxVnyq9Oo3Wwly77xQbAV2YH0Iay06Vi7pmBfLrRiCIbujtiBL3dOilR1X+i0s1asqjnCmJtMOBGwK3b5vVXKo1msfLw/vFtSF2pL8LMjzks/YXQOFljoPJTCKmZB0V7uOhS63J4SquRGY207udgl/BhLJXT0Z9rVKmackauuVCX9nEobpasNehLZ+U1MK3cC7lZNr+xlFb9ifHyckZER/vIv/5Ljjz++43MvNvpW6gBeffVVrrjiCl5++WXAwBo5GV08LF60rp7AobZ5YA2c8EQOnA8xoxoQE5N5F7ts1iKfrSVevzWt2M2Uc+zfPYiaNdGGhrzdkdhBsqhdpNB5KO1/2egUZUF20sBw/7QOM8Vz9QaEznueNFoHjtiZVSgPK/IxpbAXUheUreB6rJGCt5iFTkNmquK8hOqFLki7qF03hc7Ddr+wxZG7+epHVyyGRwjX2t/z0gpdL9OuVjE8stPKGckHirikidJ5MucPWuygH5v/3vKkrgmq9ArF0i+pVCocccQRXHfddRx66KGpz7uY6WupA5ienubzn/88Dz74IAD24NHYQ2/Ayhnto3VNsDOObPnocHqmKfM4cKJTsWslcg3nmkexs6om9kwGY6DG6Oh0orKQXOyCQuehDe32KdQ9jdp56VZsFS10QTqUO1/ogp+tgVN2InjKhmzdak1pxM5Z99hJ05glHUvsei11oc31grfIhS4yOteMZlG7XghdkHZRu/nqR1csNsqZXXfNIyRvvvrRQXTatV7gwB3VHCBN/zuPuFE6T+SA0ProaZbTg7DMeURKndYYU89iTD8PwGmnncZVV13FwMBAqvMuBfpe6sCZ8uRb3/rW3MjY/CFYo2/BKuSSRes8lCNZwbIqeBlbSN58DZzwzpVE7Iya06/KzmonnN1C5BrOlVLsyNgoU7eVO6tqYk9nwXYihzqjUSOVjsQOWvezixK6IL2K2tk1BZNZsGLIXD0pUrKRQtdwkNvWpF3J6qJ09edNkobVpjOS1avXqDjzy7WSu/mUutAhliY7PbcsV20g3kjdngtd3OhcM4JRuw6EDtx+dK9MtD+wWdRuvvrRAWp4qP1BQclTCp3N9LwfnSdydtZER3yW1QtcPdpUPY3SBaNykedP+FkYJXMeDVJnVxg7aoKHHnoIgI9+9KNccsklGCkGuSwlDgip87j77rv50pe+RKVSQZsD1JZvwBoc7ZrYhXZHXVaNt4TmohA7owZmKZhKcqah0Mr5AE06WXMqsYO2UTuramJPZjEq4TdjJ2IHraN27YTOb4PhROwwuxO1s2oG7G2Sao1LgqhdLKELFZh72E7wWgmdtz9JtC4odcE6WkXtFkzqbE3em1ZEuVOEBKgXvfkSukTRuWa4YlcdznYkdG2jdPUEo3bzKXRRUbp258pmoN3C9hFYI8n62thulM0qpJtbrRdRumZRuYZzJ0i9tpK5uYOc9zEA1X2szf2abdu2kcvluOyyyzj77LNjnWupc0BJHcDGjRu56qqr2L59O2BQXX4S1eWHp/u20kbsIovURfTq62v5LS2l2Ck3clhfTlmNc4n5TetA7KrDtjMqNlEjo8WumdD558to1GiF0ZHuiN1MOcfkvgF0TbUVulA7OpQ7yzKwp7LOjanU4XQlHjHkzqgqcntTniuiWFD0otKuUU2MI3Ze6jXqvdYqarcopC7ygDnR0wZUh2K+1rQbAdTEF7pOo3P1eCsHFJxVGCojyW5IqYTOwxUlNZ2wQ2a5gq4l/9vnVeiGC9i55HJm58xU3S66GaWLK3Kh88cIbMSSuQBG1UaVtlCcfZZKpcKhhx7KtddeyzHHHBOvgj7ggJM6gP379/PFL37R72dnDa6lvOpN/nx2iUghdn5RW4dG0sVJbWlDoRM2U9lOmsTKq3BfwHbnWsCIXX26teX5MhpdsDDyVkfp2FIly9SegUQy19CWhCnZoMwpL92tnVGosVeKaEcTuUscpYt1Lve3BqMKZjle89qJXVSULqqeYNROG1AZijHSnYRSB+0/DLXGrGiykzE60xtQXhFvmgxla4q7Kn6Epn3lXYrOeVi6IQthD+RiiZ3SkB2fRWmdSuh0PuOMPNUaVXWuayy5m0ehA9CF5FOKzLfQQXeidO3Sqy3P30Lqksqc04gamb1P+RMK/8Zv/AZXXnklw8PDidu2lDkgpQ7Atm1uueUWvvnNbzoTFWeXUV69AZ1L/gKws6QedFEvdnFJ1XFdMa9ilzZih6GhbLSVuYZzdhC1K5VzlHYNYJSd/nqdECdqFylzDRX1Tu56InR1pzLLzVOvDce36F/XKkoXfV4NNmRndKwoHfRA6ogRrXNJLHXby/EXXLchsz/GgrxxiBA6/zRtxM4TOmMmhuVH4AtdaGM8uUs90jWN0KWJ0ilFdUXyjvsdCV0HUTqroPwsUxqZ89sQIXWpZA6gup/jBjfz4osvYhgGl1xyCb/7u7/b9/3nojhgpc7jiSee4JprrmF8fBytTGqjJ1Bd/vpkL/gOonUwv2JnZxVW0ilS5kvs3LVMlcaZJy1NSiGF2JXKOUo7BzBn3HRYho7FDhrlzhc5aC1zDRW58wJ2Q+xw+7rNKIx0n6+xMKpuat9uPmiovk3NonVxonRR9ZllJyVbKyxApI4eS11MnImkbYxSh8uDtBA6j2Zi1xOhCx3gyF2k2KWI0s2r0JE+Spe6H10KoQuO7K4s63xt1GB/utDnWNJbnNYY0y8zMPMclUqF5cuXc/XVV/OWt7yl4zYuVQ54qQPYvXs3X/ziF3nssccAsAurqY2ejM7l264Z6bNUxE45bdQmiytiZyu3L1mgrEHPxa5e6OrP3TW5U05fudT1dSlqpyzIlJQzCXCwKV28C/hC550zbrQuQuySROka6rMhP2E7r3ejtdwtpNShwCoYVAfjfVhmZmxy++KHWD2xA5LLndt/rp3QedjFbKifXc+Fzj8wImqXNu0aZ6Rr/emXSD86iJd2VfWjWt3ntUGzo+ic3wZDpY/KeVgV3nX0FD/72c8AOOWUU7jiiitYsWJFx+1byojUudi2zb/8y79w0003UavV0EYee+QtWAOrAEdO2gmeNpxU7KIXO1g8qVgvOmcTOXlrJ2KnCxZGwWoqd82ELlxP52KnaorMtELV3OliDLAGUi7ZkFLulAWZWSdtEjm9iPcndng3qBc6IHa0zmtHUOzSROn8umzI73NPrNz3r4qWuwWVOnobrfPLJY3axYjONcMeyFFdlpsfoQsVmpM7du5JfM5+HhgBraN0IZFrMlVJZTRFv/MARtWVw4KRXuYANbuLNWxi9+7dZLNZPvnJT/I7v/M7B2S6tR6Rujo2bdrEtddey5YtWwCwi0ehh45Dm2Zozp9mkidi16Rcvdi1kbn6dmpFV6N2cYTOr6ODqJ0ndKFVOBRYeZ1e7NxK4spdMDrXtr0dRO+8fnSR+xIETDyxM8sdROk0ZKadwQrhHdFydyBIHcQUu4TRuSi0UtRGC2R3tRn+3Kx8GqGrwx+MoTWM72t//BIYGAHdTbvGETmPTqJ0nsx59/rqUFortcjsfQaz9BJaa9atW8d/+2//7YAa3doOkboIZmdn+R//43/w/e9/HwBtDmEvOxmyc2FdbcxN7FgveB0NnNA6dlSjniUjdgN2Q6o1VvkupWOTCF3U+ePKXZTQ+XUpOo/auRW1krskQtdQNqHgRUbpPBJE67xzK0t38OUoEKWLPCAsd72QOrQmM6vJTHd3BCwkT8EGURpU1cIoR7woOojOBbEHctgZA8MddWtMxZfQToWufloof7RtC7lbCgMjoPO0a7O0ahySRuk8kYPwF3erkHCJTq++mT0cMbiZrVud0a0XXHABl156KcViwk7ifY5IXQseeOABrr/+esbHxwGwB45GDx4LKvzmDwoeOFJXHUj3woX00TqYZ7EzcPvoxTyN9iKZzh9nFVJMINpJOrZoOXJSMRILXbiu9mLXSuhCdfVQ7joRunoaXo91z1sKnUfCNKxZ0tCmL1zT8u2kzj/QkTtlQ3amy1JH7/rVdRKtgwix60J0Dub61IUmW9ZgVGqxxK7bQhckNJVKQPDme2CEPVTAyvc+7WrOum9IpbDyhjN3U8J1Wj2SROnqo3L1JInSGTUN2sKY2kim9CK2bbNy5Uouu+wyTj311Nj1HEiI1LVh//79fPnLX+bOO+8EvKjdmyG7vGkZbTgpI9t931o5Ra2YfLTRfIqdNhypSyJ23rlaRe38kazB5zjXyCroeRU7bDDdlRrsjqctoWnULq7QherrRkrWrchLaWcnja4IXRTe/9GbYNiOGWSKPWjCdqY40cp5TSYRu6ap13ZlZueOt9t95nZb6pi/FKxfhwZsjTWQIb89XZo0iD2Qa1g5wyeG2DnLavVG6OpRWqNmys6gioyZWCQXo9D5EufirfZh583UAQaPdlG6ZlG5KOJInbfklyrv5aiRrbz88ssAnHPOOXz6058+4OaeS4JIXUx+9rOfccMNN8xF7YpHoYeOBdX6xe5Ij8Kqu1fHEb2lLHZBmWv2N3Qidon72dnOurb+Qut+lLG7cpdG6Py6uhC1MyqK/LiBs+KAe42Td/mJf74aFPZoqnEHM8SI1jlTrmgMb0UoLxocM2oXO0pXd04vUqeV8jtxN5W7BZY6gOy0RXYi5VQlSlEdyjjvgZwiu98ivyO92LUUOg9X7KAxHTufQgeu1E2VUGX3+tXPmdZC8uZb6CDcj65e3jyaLdlWG+xscEOzKF0SkQvSSup8mavVUNPPkSm/jG3brFixgj/7sz9jbGws/okOUETqEjAxMcF//+//nbvvvhsAbRSxh0+C/CEty0UJVlzRWwqpWO9c2iD0bTJOuzsSO2JG7YJCF8SX0W5MW+LIhFlOJ3ShulLKnVFRFHYbZAJzrWqFvwJJtwXPsCA3oTEqzhcBK240rY3YeVG6euJG7TqVurnzzckd1AneIpC6VNG6gMxZ+bk3jtI6tdjFErogdVG7BRe6KKJWOzCMeRE6pcEMSK81mAtN1Jtkvd1uR+nSilyQeqnzRA7c+0J5B4cWXmbHjh0AnHXWWfzJn/wJIyMj6U54gCFSl4KHHnqIv/mbv3HXjwU7fyh66AQwC03LxFoCLEL0wEnlWs2rbl1nDyN2qgZm3WT1dh5qSSc3dkcMa7PLUTvbER2n032Lst2I2gXSnsoGo9bZjdStMpbcGRVFbq+BYRESuqj6dKY7cucJnff/dwbBJPibm4hdfZSunjhil1TqlAazokMfLo3nDQuesjVWLt58X4tC6prIXOgQrclN1MjtjDdxd2T/ubi4YqfK1uITuigMhT06hE6YplVao8pVdC5ZtEzNVp1zDuSwE5b16IbQeVG6dv3kkuBJnR+V896q1ixq6pcY5dcAWL16NX/2Z3/GKaec0vlJDyBE6lJSKpX4u7/7O/71X/8Vy7LQKoMefAO6+Pqm3+JTRc5wZK9ZnzUr2174uiF2UQJnWLqhj5Q2nVUr7Fw6ueta1K5ZdK4ZnUTttCOO/uAB7dyo5kPuoqJzcerrJHpXL3RePYmidRApds2idEFapWPT9qdLNEgCJ2Lhf2AqmgpeEqlLOlgCYqRgY8hc6PCYEbvE0bl6NJjTZX8N0aTSA/ModIC9fAidjy/c/jlLVVQ1RcfWDoUOOku72u7r2Uu7dkPmvPq0+/L23/tao0ovs4yXmJqawjRNLr74Yj7+8Y/LyNYUiNR1yKZNm/jrv/5rnnvuOQB0ZgR7+MTQ9CdB0opdM1oJXxArq7DyCes2nPrB+VaVpNO9NqE2qBZG7EgodB5ponb1Qhfa1wO5y2lXyjS5vc48f9nkS92G6kwieFFC59eVQuyCr6l2UbqG80VE7bqVem2HEZRGFTGXnit6iaSOLkbrEspcqGiLiF1H0TnwZQ7caJTbVi+lGVfuloLQARj7m69J27xQ50KXJkpnB76YaFNF39PStseVQ23UdcupjnPcyh38+te/BuDYY4/ls5/9rMw71wEidV3Asixuu+02vvnNbzI97dwI7cJa9OAbIlOy3Ra7OGgDakUjsdjNVUDiN3knYpc2HWtUFdn9zgWuDaZ8aSeRO28qkZbHdE/uvFGyGJDdr8jt76i6hrpbCV4rofPrSJmGTSp0wTYHxW5BpC6yUkf0lA1GZa7uYJ+kKDqWug5kLlRvhNh1LTo320SsXLlrJ3ZLRehSRenmWegaRC5Ih2YQHFzR0NfamkVNP4Mx+woAQ0ND/If/8B+46KKLMM3O15Y9kBGp6yLj4+N8/etf50c/+pGzQWWwB49BF48EFb4ZLpTY2RmFnSJq51TAvIkduGJR1I7ExMCoKPJ7FZmS06m9NtCB2IHzwWzSfE66VlG6yOPnUg5JBc+L0nltAvylv1SNrsqddz4d+FzxJLewq72UpEnDGrX2addWbfWi1comUeoVeiR19fhTwLS7forqcLIPtcyMPdd5vkOZC+KlYrP7y51F56C90PknbR61Sypz4Ard9CxqNvlEzfbIELo4j0IHYChqo+kmJoZ4QtdS5PwdKc/fROTmNtoYMy8xZL/EzIzTZ+T888/nD/7gD1i+fHm6kwohROp6wDPPPMONN944l5I1h7CH3gi5VaH+dgshdtBh1C6l2Nk5hZ3tTT87o6LITiqMGqHF4G3TEQw703nUzkt5zjUsodDVEzN6FyVzDU301nWFngie1w6UE6lre2xCsVMW5PanX0ll7sSu0LW4VpHnn0epa98Y94Mx6b1BExoh2Q2U1uT21TBna+nrjkq3xjp5WO5SC13aCN0CCV0v+tHZdf09m4pc6KBk5w2mV6Pr06jKDo5Ytt1fgvO4447jP/2n/8Txxx+f7GRCS0TqeoRt2/z4xz/mpptuYt++fc627Er00PGQHfWPW7JiF/wdt1gP0rHB6FwzuhW18+XOpDOhCxIRvfNFzj1vIkHpUfTOe52aldbpV//4BGlYVYPibjvUhzN5A8Gsaj9ipU0V67rFGfkaRc+kDtzXWvLroM3uiJ0ncwDmzNw8bonrjhuda9oQFZruJPHkwgeY0HlRulQSFyoQ83ztonIe1X1sOHySJ554AoCRkRE++clPct5552F0uL6v0IhIXY+ZnJzk5ptv5jvf+Q6VipMCsAuHYQ8dB+aAs3TWUhQ7WNB0bLPoXDNs05luxTY7kztlO/32tAm1YpffOtqZMDgz46THq0MdtLOL0TsvSufVm53qXrTOi9JlZvXcXIcpxE7ZGrMcbpc2VFspThOlg8UpdUDspZwiTxslc0EMLxoTL9LTFaELvhZcqWsnd0sx5dpxhG4466ddU38x8mjxWo0tcgDWDMbUc36/uVwux8UXX8xHPvIRhoaGOmuj0BSRunli+/btfOMb3+Cuu+5ytxjYA0diD64HI+um4tIvYJ4WJwrmrFO7VNKxKGc+NjPFKkmdyp1RU2RmgtHD7smds7SXIjPrtM/KO/3aOpE7r9600bug0DkbEkTr2ohdUOiC50sjdlFSN9eO5nLXb1KXNlrnp1qjZK6eVlG7tOlWvyGuzEFY6OqOgUa582TOOfeBJXTd6kcZ9TpNJHIAdgVj+nkKtS1+IOPss8/mkksuYfXq1d1pp9AUkbp55rnnnuNrX/uaH4rWKos9eDQUj8ComQ1vKmfutN6L3lJIxyrLmSvPiZZp54Ml5b0sTUpWWQpzNrxwfTflzqhCYU/4f90LuYP20Ts/ehzx0osbrYPWaVhVg4FdjUKVWOzqUq9ND4uQu36TOkgmdt4oV3ST6FwzosSuF9G5NseHnqaMzsHSFTqA8sq0qZYI3NdpYpED0DXUzEuMsJWpKWeewze96U388R//Mccdd1z32ii0RKRuAdBa89BDD/E//+f/9Bcq1kYOPXAMylyHYQVGJxnhG3QvJW+h0rGtonaeyMGczIXKe9cmhdwlidpFCV24HZ3JXTBK16yt3ZI773ye4EFY8hqic/VoMMs6VqS0abTOhvxEOEoXKpdA7FpF6aLbNCd3i1XqnFVSeid2qWUuiCd2nUbnILnQ1ZW1BnMY5RpojblzIlHxpSx03YzSBT9XYoscgLZQpc2szLzK3r17ATjiiCO45JJL+Hf/7t+hOngdC8kRqVtALMvi7rvv5n/9r//Fa685S6Noowj59SjjMJRqfGfVS56/vUuytxBiB41Ru/qoXNvyHUbtWsldO6ELtyO53LUTuvq2dlPuQm2Ycua9i3NDTxStqxO7qLRrZDlfblrIXcwoXXS7lCOEMV5f9fRU6qDjaB1Ei11XZK4OY7baucxBR0LnrauqtCYzGYjWtZG8eRU6QzF99HLQUNw2vbBCpyEzE7ihKSiPJmyPtlGzW1lT2MbOnTsBeN3rXsfHP/5x3vWud8l8cwuESN0ioFar8aMf/Yj//b//N7t27QJAGwOo7HrIvC5S7uqJkj2roKjlVdsPz6i6Ou5nF/wdt1gGasW5D/44Mhcq30HUDqLlLonQhdsSX+6i0q5x2ur9b7oheIYFuX0Ks0S86TQSROsgLHbN0q5Ny7aI2iWN0oXKBkYeOydypKBtuRpt55trYAGkDubErusyZyhqg44MGWWL7M7J5HV0Ep1zyweFLvKQeskL7qtaqZYngyZCZxpMHzXatIw2oLTCZHB7jdy+dGlij1RCVydyZtl5rBVUl2WpFWPWp21UaStrh3f5wYiDDz6Yj33sY5x33nlkMp3JqtAZInWLiHK5zPe+9z1uvvlmfxoUVBFyR0PmMJRK9s3HzioqQwZWPvqmaVRbR0t6HrVzpwepP6dfNu1puyR3nkwkFbpwWxy5g2jBSxKla9XetNE7w4LshHJXdHDb2S796pFC7HTGGeCS+ItGE7HrqtSFTthc8BJH6dz6EtEFqVNaoyzn2mVKVtcicxiK6lAWqzAXHctO1cDS8eWuC+lWoKXQRRbVGlV1/unK0rEk3kMrRWmNs0JQ1BdObUDpoBbt0cy/0DURudAhCkqHxLjJawtV2sKhAzvZsWMH4ExP8nu/93tceOGF5PNd7NsnpEakbhEyMzPD9773Pf7pn/6J8fFxZ6MqQPYoyK5LJHd2VlErKKy8ojIUvoEalhMlaoUnWUaN5HLnrhQQFJsQKkaqb4HkThuuKNWvVdgBUdG7NFG6ZiSN3nnROU/m/HbGlTqSpWGVdj4M00pyg9h1kHr12hNrwuM6wVvsUufJHLgRRVtjVm2MUoq+X0Hc6JxW+EJXf97sRLW12HU53ZqoqCt0qV4vCmYOLVBelj7d2Q2hgzYDI+rTqkSLXKhIO6nTNdTMZlblt7Nnzx4ADjroID784Q9zwQUXUCymmJ9K6BkidYuYcrnMD37wA7797W/7aVlUDrJHQvZwlIrfF8TOKsojRoPYxcGwnA9vbZBsbU4NhuWMUrVyTcQuQV2pi6bob2dnwPKW7XXP3W25AyeV10mUrhmtBC8qOtfQxi5H63yh814/KT022M8OReooHeCvOZusAWCWUyx9kULqkgyWCIocRKSHbU12f0qhaCNz9e1oKnbzkG5t1a5+ELqGKF0KiQs1rVXq1a5iTr7EaH4bExNOv8RVq1bxkY98hPPOO08ic4sUkbolQKVS4cc//jH/+I//yPbt292tGciug+wRKCPeN6VOxA68QQuk6liuDWeGf212IHedil1MUfGjdPWfHYHzd0Xw3PR0sK6Ol8qKICh44EhdM5kL0i2xaxA6f0eMulu0TWl6H6VrOPE8SR20jda1FbkgaaJ1CWSuvl3Z/c5I1OzOye5E5wayzu+lKHQ7auT2dknocgaZUnBOpWQS19C8iCidWZqB8ksMZbYzPT0NwKGHHspHP/pRzjnnHLLZTr6dC71GpG4JUavVuOuuu/j2t7/tT4UCCjKHQvZIlDnStg47q5x+cjlSyZ2ynaidspew3EFk5E4bYOWI7OvXrA2p5a7JYJKeCZ52U+1xUt5ekQRp2FZipzRkSk0uVAdip2wg5e2rI6mbjSjY7u/oktQlErl6kohdXb+5NHhRu8y+2QWNzkFK+V8MQqdgam2RoVdmnf9FhxLX0ERX6syyhtoElF8gY2/HspxzrFu3jt/7vd/jXe96lwyAWCKI1C1BbNvm4Ycf5tZbb/UnMQbAXOn0uzNXtp0bqBtRu07lrqOUbIev2vrIXdPoXMx2pEnjtfsb6utMKyFev0mjpv3pQeL+nZ32r2sapQsdFK/+cMPqrk/C21jXpS7yJHNlWsqXUk2XCox6XSUeeRukndiljM7Vo7QmM22htMacdl6AqppARhY6OucOiCiPzLPQKZhaF8i8aMiUbQq7Oo/0hZqnYGZNHrQmM7kTNfsCWLv9/SeffDIf+tCHOPXUU2V91iWGSN0SZ+PGjdx6663ce++9/rcrjGHIHuFOh9L8htip2MHSTsl6bcBwJj5OLHQR7Ygld02idO2ILXk6PACmfrF6b8qaOHQSrYsldB4JX4KRf3uCW1mq/nSQTOoCGO1Wu0ggdR0TJXZdljkAczZQv619GW0rdx1E57w2dCp0qWUOkgldvcQBpYMMv57h12pdETpf4vwNFpZ6jTcU9vHSSy8BYJomp59+Oh/84AdlBYgljEhdn7Bt2zb+9V//ldtvv51SyVnhXhtZdGEdButQxmBkuU7TsbAIUrIdvIKVGzFz5uUDq9OBXHHkLkaULg71qVojcO+vF7nQ6XsYrfPELjObQOg8Epyj9fVtfXFTR+ncc/dC6uYdWzuRWzct2qnMwZzQhWQu4rxN5a5L0TnoIN3aS6GLEDgISFz94bZm5VOl9E2pE7nyqIGqTJPd+xIrazvZv99ZQqZYLHLBBRfwO7/zO7I2ax8gUtdnTE5Ocvvtt3Pbbbexbds2f7tVOARr6Ah0YRVmFbLT4Q+mhY7awfymZJ1O9u5j2zs/WPnuyp13robtXX7XOYMf4leaJFoH6dKw2QTtmSsc45C4TtXk1taJ1BmVdFOoLCqpcyN1AHbGoFbsjswBrYWurg3BNLKq2QsXnYPOhU7D4E5ncufcvgpTa6PWPGwucFH1JY3SNUTjcEQOrTGnd5Ld+yLZ6Z14H/mrV6/mve99L+9+97sZHh6OfR5hcSNS16dYlsUjjzzCd7/7XR5++GF/u50dpDZyBDq/Dow5ezKrziSuiyJqlwlP+5G8khbti5C5xjZ0Ue4C7fGigt0WOkghdT2K1jkRQydCZ1ZSTjnS6jztonSRZer6+c1z6hUWidQFZM6LaHlRsdpAushYYplr0i5la+ycmThK143oXGl1Aa1S9J/TMLSthlYwuS5Dfp/3Rk8gb03qjSN0TSXOw6qQ3beZI7P7ePXVV/3NGzZs4L3vfS/veMc7ZCmvPkSk7gBg69at3Hbbbfz4xz9mamoKAK1MassOpTp6OHbxIIya8j+A7ayTDs3OaKycohqduW3JYpO7ODLX2Ibuyp2qOREsbc6tcdstkkoddD9a563T66dcdZfFLo3Qhco7hVOvELIUpS4gchCQuSBKUV6ei11l12TObV/9/9TOhUWjmeTNS3TOFbdm5PfMMnnEIDMHd2kwgYahbRbFndHzA0WlVMMHaIzSONl9mxma3UG57NQzNDTEb//2b3PRRRexdu3a7rRVWJSI1B1AlEol7rrrLr773e/y4osv+tvt3BDV0cOpjaxFZ5xRX86kuHouuhRBHOHrRko2rdzV9zNLPeFtl+TOqEBhj/ZH2gJdE7xUUpcwWueVibqODULnF+ie2HVrihfbdOTQTLoyxFKSuqioXDOUwiqYsdKwsfrNxWyfU1+MQ3ON7bKzjsyoWnqpU5ZNZUWh7XH5XU0mdTSMngtd22ici6rNkpnYyvrCJFu2bPG3H3300bz3ve/lrLPOkpUfDhBE6g5AtNY888wz3H777fzkJz+ZG1iBwhpeTXX0cKzBQ0A5i6/nJ20y040fDDqjqA40v6HZWSeN22nUDtrLXYPA4Y6+dAcMaOVMYaLjzEHXtA3p5U5ZkNuvMetWj+iG4CnbEaeo9Sjb0anYeTIHLVYb6UTscM/VaZTOxc6A7Q4O8F4bsQWvA6lz+vH1+FYbJyrXjDZi181Uq1NfB1XkTHQmYPwJpc6f583u4FtCj4SusKtMafWcxGkVLXHOThtzaifZfZvJl3b6sx8UCgXOOOMM3v3ud3PCCSe0nd5K6C9E6g5wZmZm+MlPfsIPf/hDfvWrX/nb7UyR2shaqiNrwRwmM6sxqzpS7ppRL33Kdtb9tDPOerRp0Mr5YHbqm9seFLjW5bsnd0BswfOidO3rdR8nELw0Ubr686ZJwzaNzkUWSi92vpinncDWa4JyosutztFS8DqQOuhRtK4TkavH68+m8OWu16nWRMXdiF1I6BJilK1k8+U1VGAw+foBUKpzodNQ3DP3/zIs3VriXFRliuy+LRyqxtm9e25uueOPP57zzz+fM888k8HBFH1mhL5ApE7wefHFF/nhD3/IHXfc4Q93B7AKo9RG1lIbOIxMLZdY7urRpnIjXunlzv9w0IQWW4/dhi7IHcSL3jWL0rWv133cRvA6lroU0TpIMWVJCrFzJMt5rWlD+W1NQyupC9JM8NKOfPXLd0Pq6iQOOhS5CLShKK/Mkdvn/HPnM9UaWbwLMqcqttsHr0Oh6yQ6VydxSkNuogZKMbvcpNpicJqqlcnsf4XMxCuYs3v97SMjI5xzzjmcf/75HHHEEenaJfQVInVCA5VKhZ/97GfccccdPProo35YX6OwBldRG15LRq8iM9PZN9WuyZ0/unSB5c79G2xzTvDSCF1k3cF5Q+skr1Op884RJ1qn7LlVI5Qdble8EyUTO6OmG2TINlUqsQumXuPiCZ5hQX5fLXH5UF2p+36Fyxk1u+si55xIUVmWdSJ1AwbZSYvcRAcT3/Yi1ZqCjqNzkFzo6gQOAhIX2thC6OwamcltZCZeIT+7278Pm6bJ2972Ns4//3xOO+00WYtVCCFSJ7Rk7969/OQnP+HOO+/k2Wef9bdrlcEuroH86zCrK0ClF7zFJHfO4+4Injehcru0a6r662Sq0/5m7aJ1nswp2xlA45Wx8qpnYhcldH4VCaN2caN0TdtiaQa2VyMFI67oxZG6yEhg3SalNUYX1/+sl7kgqcSuSzIHiyQ6Fyfd2iwK17aRism1gTVVtY05vYvMxFaWVff4/Z0BjjvuOM4++2zOPPNMVqxYkeavEQ4AROqE2GzdupU777yTO++8MzSxsTZy6PwaDFaDeVBqwVsMcgddjN6ZjvSYJR2aUqUX1H+ARolfO5qJnbKdaKMnc/VleiF2wbRrKzyhaid3aaJ0QTypiyKueMRK3cZ8yRpWF6J1LWQuSHbKBq3by10/yRz4QjezKvCGiIjAeeT3JU9Tl5dnqAxpzJndZPa/xsHsY9++ff7+Qw89lLPPPpvf+q3fkqlIhFiI1AmJ0Vrzy1/+kjvvvJN7772XiYmJuZ0qC5nVkDk0teAtNrlzHicXPG06cuU8CcyT12XBc0a/hv/GVunUVsIXjH55KV3DIlLogmW6LXatonRRtErJdhqlg9ZSt1CkEjtP5KCtzNXTVO46lDmtQGc7lznoUqoVwDCYOnwg8otAGnmrR2sb7D1UCztYqfeF7qEjIyOceeaZnH322Rx//PEyelVIhEid0BG1Wo1f/OIX3HPPPfz0pz9tInhrwFyZWPAWi9xB8uhdSOgadnZX8KKkrmXb2vSf08ppVyuRiyqTWuzKdQMSEgqdR7OoXb9KXew0bAciF4Uvd3vLbjs6qq4r/eaUG9U1KimESylqQ3OTLyut0Uoxc0iuKwLnobUN1m6wtjFcnGByctLfNzIywjvf+U5+8zd/k7e85S1kMpkWNQlCc0TqhK5Rq9V48sknfcELphG0ykD2EMgcgjIOdoQvJt2WO+d5b6J33vOmQtdQYeeCl1TqYtWZorpOxM6ouv32ZuyOR4nWy12nqVdla/L7bX9qj8VEy2hdzPRqUpQNaMhOOsKjNGT3Jx9Q0a1UK8SQuTpxC+8LTOFiQ7M1g9OgdRWsXWi9k+HchL+iD8Dy5ct55zvfyemnn86b3vQmETmhK4jUCT3BE7x7772Xn/70p+zduzewV6GzB6GzqyF3CJgDzlardb+jbsgd9CB6F5gQObbMRVaYTvAWi9RBB2KH8/dmSppsqTsjO23T+f9Ui50JzWKM0nk0ROu6HJXzqw3+SyIGbmSmrMDz5pLXrVRrQ7+5VtIGIXFrekiXhE7bM2h2QnUHGb3XH7UKsGLFCt75zndyxhlncNJJJ8naq0LXEakTeo5lWTz77LPcf//9PPDAA2zevDm0X2eWofOr0blDUGoEmvQh8aTPkzvobCLjTqN32m2nNsIRuk4GV8xVHl/weiF13nnTkErs3P+F0t0TO9tUlJcZvnArTaqpZRaz1IETrasOeDNy9yAqB7EHcECj5Dnb5h57S3z5aI1ZtrEK8d44qmY3TjQeQ9qa1uf/jele8HZWgbUPqtuhsgNlT4b2r1u3jtNOO43TTjuNN77xjSJyQk8RqRPmna1bt/LAAw/wwAMP8PTTT2MHluvRKofOH4zOrULnV4ExZwaO3NQNCDAVVs6d3sL7rFDJ023tone6XjTd/nWNFc21oxeC57U19HyRSR0kFLsGuXYGTyibjuTOyiqm14RHLpplnVjuFqPU1b9GawMmtQ4jkqH6U8hcQx3BNraox1uZxPui1vQ470tOF5dbSxqds3PuNbbLUN0FtZ2sGJwJZSJM0+TEE0/ktNNO4zd+4zdk1Kowr4jUCQvKxMQE/+///T/uv/9+HnnkkdC8TAA6M4LOr8LOrYLs8uaDLZQzdxk4k/92kgb1ZEZ7dTYTuLYV9UDwoCGKZ1Y0Rg+coxtz37UVuzqhqz9/2qidbSrKI0b0pK56bsRtO8FbLP3p2kWRtVKUV3TWJ6tVijVRPTFlLnZ9vZI5aCl0vsABaBtq42h7N6qyE1WbCB07MDDAKaecwmmnncapp57KsmXLutZWQUiCSJ2waKhWq/zqV7/i4Ycf5pFHHuHXv/51aL9WGXTuYPdnJZiDjanagNxBZ3LXafSvsV1zbeqW4CnbER9V5z3dmjKlp2LXQuiC508TtWuI0jVtYHhKlXrJW6goXZq+nmmidd0SOVgaMufUR0jmQvLmoTWWWXIErrKLQWOi4Qvn+vXr2bBhA29/+9s58cQTZWUHYVEgUicsWvbs2cOjjz7KI488wqOPPhqeLgXQRhGdOwidW+lK3kC4goDgdTSAgcUreMpujDQp3Sh5kHJkbRfuDpFiF0Po6tsRN2rXMkrXjnrJsyG/X1PY3Rux62SgThRxxa4b6VWIaP8iljk02DnV8N7wp7uxZlCV3e7PHpQdlriRkRFf4jZs2MBBBx3U3fYJQhcQqROWBJZlsWnTJh555BEee+wxfvWrX1Grhacx0OaAI3hZT/IKzo4uRu+gd4IHySUvSuoij2sietBe9roqdt4AxRR1+nPn6dZRu9hRujhoZ968/L7OL4KyYWBnB2upxqSZ2C2FqBx0R+asfPjvV7bz+g/NV2iV5gSuuhtlzYTKmKbJG9/4Rt7+9rdzyimnsH79egyje/0WBaEXiNQJS5LZ2VmefvppnnjiCR5//HE2btwYmjoAQJtDTiQvuxydPciJ5Blq8QqeW4cfxVOgW3WT0s6KDJ2kWlvJXvA8RoJzaAMqgxHXwXDmjDM69JpWctdRlC4KTfvrExOjplm+qdydytpQK5qg6uSmn6JyCqyotKmLHXjfKI2z6oU1g6qOOz+V3ShrOlTGNE2OPfZY3vzmN/PmN7+ZE088kWKxmKxdgrDAiNQJfcH09DRPPfUUjz/+OI8//jjPP/889S9tbeTR2RXOT24FZEfQgekFFqPg2Wb4eTCKFzdK1zEKrATdhbQJtWKTaWk0GF0a2FEvd10XOrz+V92qS1Pcoynu6l20LvSaMxRWzmi5ekgcuh2Vg5gyl0DcGtA2qjLhCpwrcnZYqJVSHHPMMb7EnXTSSQwODib4KwRh8SFSJ/Ql+/fv58knn+SXv/wlTz/9NM8991xjuhYTnV0OuRXo3HLs3HIwnY5fi07w/HrchzYY3VvBqCXaAKtARxM+B+mm2Hn1ZUoaw4Lp1V1Mj3UxSufRi2hd8LWlM+G/P7iWL7ReHi5IL6Ny4MpcG2mDNuIWOrCMquzzBa6opiiXw9c5k8lw7LHHcsIJJ3DSSSdx8sknMzw8nPCvEITFjUidcEBQLpfZuHEjTz31lC96wbUXPbQ5gM6OonPLnd/ZUXSHy/eEBA86ljxvGhNlN0byuiKPEWgDakXaziUWl65H7Eoas6qpDBpok65E67oZpfPohtTV/4/rRa4Z9YIHYcnrpsj5AqfmzlEfldNKxZe2IHYNVZ1AVfeiqvucn7r+cADLli3jhBNO4IQTTuDEE0/kuOOOI59PsdSJICwhROqEAxLbttmyZYsvec8++yxbtmxpTNmCs+JFbhSdXY4yRiAzDMpd6shwVrVIQhrJU26HfXBkI3I5NaXCkhez7rjYGags62JqU4OqOR/2aeXOE7pMYMSq06evQ7nrQZQO0kldWolrhy95weq78Wmgwu+JVOLmoW1UdX9I4Ex7OjRhucfatWt9gTvhhBNYt26dDGwQDjhE6gTBZWpqio0bN/Lss8/y3HPP8eyzz7Jr166G4zQKzCEwRiCzDDs/CpllYLRYe7IFjZLXGMFoKnLt6KLodTta5zcnRdQu2J8uKHRBPLkDEgteL6J00F7qov4v3ZI4v7766rr47/TSqekicBVX4CZQtQlUdT9ZZhq6TQAcfPDBHHfccbzhDW/gDW94A8ccc4ykUgUBkTpBaMnu3btDkrdp0yb2798feaxWRTCXgTni/h4GI2KC5HbURToaBkx0Sgeit9BiF0fmoggKHrSRvB5F6SAsdfMhcH69dZHhbhLsFxdL5rQ3EnUCVXMlrrq/YV44j+HhYY477jhf4o477jhWrlzZpdYLQn8hUicICdBas3PnTp5//nmef/55Nm3axPPPP8+2bduij8dwo3rDjuSZw85jYyC+7PVa8iBa9Fzq08s9FbuqI2z1cpdW5ppRL3kwJ3rdiNIpW1MYb6xE2Zr8Xify1CuBg95G4yCmyGkN1jSqNoWqTTo/1UmoTaGIniNnzZo1HH300axfv56jjjqK9evXc8ghh6CSfjEShAMUkTpB6AKTk5O88MIL/PrXv/aFb/PmzVQq0dNXNMieMeg+H/T76zWlXvK8bd0WPWgue24bbLO7/ezAHQgyq8lNal9OlN0dmWuF9jr1d+E0hqUp7GkMO2ql0JnwXIndoNcSBy1ETltQ8+RtClV1BA5rCkV0yDOXy3HEEUf44nb00Udz1FFHMTQ01P2GC8IBhEidIPQIy7LYtm0bL730Ei+//LL/00r2ALQqzAmeMeiscWsMudG9JtGd+RQ93EEObrClMtz9iJOyNPn9tj8vX7clqAENmZKNWe7SormtTqVU9HqjSeqYZ4lDW9jMYFSmnEl7rWn39xTKbj5ZYi6X4/DDD+f1r3996GfNmjVkOhxVLghCIyJ1gjDPBGVv8+bNvPzyy7zyyits3bo1cpoVD40Co+jInTEQeOz+VoVwSjdK9LztXZA9T+y8Ubm9pKdyp8GctcnM9l7oIHm0LnLOxC5eBm0oSssNVHWW4vgk2DNoXUJTcqYKsWYwmY0cceoxNDTEYYcd1iBwq1evxjR79M1CEIQGROoEYRExMTHhC17w9yuvvEKpFN2R3MORvjrZUwUwCu62ApABQ3VN9pTtzJk3X3Rd7uZZ6PzTKjUna+7SdU0nvE7wp2pDUVpR90/UGnQNVZtF1Uru7xmM2gyqOoNRmQG7hGqTdy4Wixx22GGsXbuWww47LPQzMjIi/d4EYREgUicISwCtNXv27OHVV19l+/btbN++nW3btrFt2za2b9/Ozp07G9a+jaxHmWizgKLgCp8re6oAZh47kwcjDyrTOJAjuKJFIP06H5G6enS9t6SRvAUQOttUlFaF11xzprRpIXXN8GTNqqCssiNs1ix2ZhZVncWolDDc38pu/zeapsmqVatYvXo1a9as4ZBDDmH16tUceuihHHbYYaxYsULETRAWOSJ1gtAH1Go19uzZExK9HTt2sGvXLnbv3s2uXbuYmpqKXZ/GQJt5MHPoTAFt5tBmHjubd7YbWSCHNrNoIwdGFkMb5Cd6NBdIu/YmkTwNZtl2+tF1WeiipK1+/+zKJm2zLZRVRdUqqFoVZVUxamVUtRz4XQk9Vzr+9R4aGmLlypWsXLmSVatWsWbNGlavXu3/HHTQQdLPTRCWOCJ1gnCAUCqV2L17ty95QeHbs2cP+/btY+/evczMNC65FAetTLSRBSPrSKD32MiAkXF+K+e3wiRbMoCMGxXMOKN+lQkYzk8HUaF6ybNNRXXQoLi7lljmmoqa1oB2Rn/aNZS2sJVFdZkFVg1l11BWDWVbKKvmHGPVfHEzrKovb6pWSSRoQYrFIiMjIxx00EEcfPDBvritXLky9LxYLKaqXxCEpYNInSAIIWZnZ33B836Pj4/7j/fu3cvU1BSTk5NMTk4yNTXVshN9WrQynNG+yox+7Iuf8gVQ+4/rthsKnXGmSnEXf3OlDPw5TLR2+5W5+7QF2gZstGE70mXbztJVtrOv28lIpRRDQ0MMDw8zNDTE6Ogoy5cvZ3R01H8cfD46OiqyJgiCj0idIAgdYds209PTIcnzHu/fv59SqUSpVGJmZqbt46V6OzJNk2Kx6P8UCoXQc+9nYGAgJG3B38PDwwwODsp6pYIgpEakThCERYHWmmq1SqVSoVKphB4Hn1erVcrlMrVaDdu2sW0brTWWZaG19rfZth3aZhgGSqnQb++nfnsmkyGXy5HNZslmsy0fez8yiEAQhIVGpE4QBEEQBKEPkDi/IAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCH5BZ6AYIgofWmtnZ2YVuhiAIQiIKhQJKqYVuhiCI1AmLh9nZWc4555yFboYgCEIi7rjjDorF4kI3QxAk/SoIgiAIgtAPSKROWJTkHlmF0u53DmWgDAXKAEOBUijD2+duVwoMhfKO8fcpv4z/A4FtRni/U9DfppWa++oTqMPfrubOFdymlVONv89w6nW2K3+fV0a72/z9MFeH4R7v7Sd8jlAZt/naiNgXOp5QG+e2qYZ9DWUItqNuP022N6mvWTsayrSq19+uG8sHyvj7A3VpdzuBcs4+HWiPs18F9/nHevu0X6cKHq+0v89/iXnbvercY5yXgvafe2UM97mzz3nulfP3KY1irpzhbvN/0H45QxHa7pS358rhHW9jemXc53N12X59ZqB+E2e76dXnH2tjenXitcOeO565up06bQyc8zv7nPpMd5vCxvTKB8qY4JTDOY93Pbznzrm0+xh3n8Zwr4uJwgBM959toNxtClMpDAyU+5+rVkze//+tRhAWEyJ1wuLEUu7tFUfqcAXM/bSc26fAmDMY5RiSW4n36W7Q8Kk9Z0xhk/DqbPiUp25b8BxEbKsvx5zMBaSuYVtAwoLP65sYPj6ijNFiX7M/o6EdTf7sVvuaXaq09QXqjBK+nkpd1H7qn2u/7mA7gueM2udLIIFjgsc3lNER59Khn6DUzYmi+9NsH574OVUGBdCTP/DkDF+KgvscqbPnpEgFpch5bCjlCJf7G/+x8ss59eDW6ZXFLeduj9oXKGO6Qmr67fSkTreVumB9pnc9CG8zCLYx8D8UhEWCpF8FQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ8QqRMEQRAEQegDROoEQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ+QeeqExYmp0dqZcNSZd00Ffqu6CYG934HHBLfpwOMY+wKTls1NEdts+9xvHXpMqJwG0N72uTo1CjR+2eB+v47Q5GrBtkQ816Em1V2PJj/1x8aZi67VvtjnirkveMqW5XSbOnWTNjaffDg8t1xgn39s+smH59oRmKeO9PPUaebKaaXDPzi/nX2EtttKg7Ln6sQ7lx2YT889xt2vle3XR6h+97d3Lve54R7j/QYattmBt7X32FZgMzdPne1uUzSbp075EwabzP3PvOeGW6Z+7rv4kw8r5iYfjnpfCsLCIlInLEoqb9+50E3oDd5nZkrqnUQQPIIvLXshG5KaoFVLEkkQ0iDvHEEQBEEQhD5Aaa1lrRNhUaC1ZnZ2tqt1zs7OcuGFFwLwve99j0Kh0NX6hTByvecXud7zS7PrXSgUUEpi58LCI+lXYdGglKJYLPas/kKh0NP6hTByvecXud7zi1xvYTEi6VdBEARBEIQ+QKROEARBEAShDxCpEwRBEARB6ANE6gRBEARBEPoAGf0qCIIgCILQB0ikThAEQRAEoQ8QqRMEQRAEQegDROoEQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ8QqRMEQRAEQegDROoEQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ/ILHQDhAOPiYkJHnjgAX7+85+zadMmduzYgWVZjI6Ocuyxx3Luuefyzne+s2UdMzMz3Hrrrdx3331s374dwzBYu3YtZ555Ju9///vJZrMty4+Pj3PLLbfw0EMPsWPHDvL5PEcccQTnnnsu559/PkqpluVfffVVbrnlFh599FHGx8cpFoscc8wxXHDBBZx++ulJL8m8c/PNN/P1r3/df/7Tn/606bFyrdMzPT3Nbbfdxv33388rr7zCzMwMo6OjHHbYYbzpTW/i4osvZnh4uKGcXPPkPProo9x+++0888wz7N27F4CDDjqIN77xjbznPe/h5JNPblpWrrfQL8gyYcK8c8YZZ2BZlv88l8thmialUsnfdsopp/D5z3+eQqHQUH779u18+tOfZvv27QAUCgVs26ZSqQCwfv16brzxxsgPS4CNGzfymc98homJCQCKxSKVSsVv09vf/nauu+66pjfyhx56iKuvvprZ2VkABgcHKZVK2LYNwHnnncfll1/e9ka+UGzZsoVPfOIT/vWC5lIn1zo9jz/+ONdeey3j4+MAZLNZ8vk8U1NT/jHf+ta3WL9+faicXPNkaK254YYb+P73v+9vy+fzAJTLZX/bBz7wAS699NKG8nK9hb5CC8I8MzY2pv/gD/5A/9u//Zt+9dVX/e2vvfaa/tKXvqTHxsb02NiY/vznP99Qtlqt6o997GN6bGxMX3TRRfrRRx/VWmttWZa+++679TnnnKPHxsb0Zz/72chzT05O6gsvvFCPjY3pj3zkI/rZZ5/VWmtdqVT0d77zHX3GGWfosbExfcMNN0SWf/XVV/XZZ5+tx8bG9B/90R/pLVu2aK21np6e1t/61rf8tv/jP/5jR9eoV1iWpf/wD/9Qj42N6U996lN+e6OQa52ep556Sp911ll6bGxMX3nllfrZZ5/Vtm1rrbUulUr6mWee0V//+tdDr3+t5Zqn4Yc//KHfrquuuspvs9Zab968WV9xxRX+/vvuuy9UVq630G+I1Anzzs9//vOW+6+//nr/ZrZ9+/bQvh/84Af+vqeffrqh7F133eXvf+yxxxr2f+Mb39BjY2P6rLPOavhA1Vrrf/iHf9BjY2P69NNPD304eHz+85/XY2Nj+sILL9T79+9v2P9Xf/VXemxsTJ977rmR+xeaf/7nf9ZjY2P62muvDX1oRCHXOh2lUkl/8IMf1GNjY/rGG29MVFaueXI+/elP67GxMf2hD31IV6vVhv3VatX/f/z5n/95aJ9cb6HfkIESwrzzlre8peX+888/33+8cePG0L7/+3//LwBvfvObOeGEExrKvutd72LNmjWhY4Pccccd/nGHHnpow/73ve99FItFLMvirrvuCu0rlUrcd999AFx00UWR6ZiPfvSjgNOX6mc/+1nzP3IBeO211/jmN7/JyMgI//E//se2x8u1Tscdd9zBa6+9xooVK/jUpz6VqKxc8+Ts2bMHgKOPPppMprGbeCaT4eijjwYIdfEAud5C/yFSJyw6crmc/9jrVwIwOzvLL3/5SwBOPfXUyLJKKU455RTA6TgdZMuWLezYsQPAP6aegYEBTjrppMjyTz/9tN9Hp1n5NWvWcPjhh0eWX2iuv/56SqUSf/zHf8zo6GjLY+Vap8f7oD/jjDP8vl1xkGueDk+6nn/+eWq1WsP+Wq3G888/D8Cxxx7rb5frLfQjInXCouMXv/iF//jII4/0H2/evNmXvCOOOKJpeW/f+Pg4+/fv97e/+OKLDcdE4Z3z5ZdfDm0Plg+2q1n5l156qekx880PfvADfv7zn/O2t72Nc889t+3xcq3TUalU/OjyMcccw44dO7j++ut5//vfz5lnnsmFF17I5z73OR566KGGsnLN03HRRRcBzgjSa6+9lldeecXft2XLFq6++mpee+01Xve61/GBD3zA3yfXW+hHZEoTYVExOTnJzTffDMBJJ53EunXr/H27d+/2Hx988MFN61i5cmWozLJly4C5NE3c8tPT08zMzDAwMBA6//DwcMsIjFc+eL6FZNeuXXzta18jn8/zmc98JlYZudbp2L59O9VqFYBt27bxsY99jJmZGbLZLIVCgb179/Lggw/y4IMP8u53v5vPfvaz/qhGuebpOO2007j00ku56aabuPfee7n33ntDo1+Hhoa46KKLuOSSSxgcHPTLyfUW+hGJ1AmLBtu2+cIXvsCePXvI5XL86Z/+aWj/zMyM/7jVTTA4DUqwTKflvf44UdOsRJUPll1I/vqv/5qpqSk+/vGPR/b7iUKudTomJyf9x//n//wfMpkM1157LXfccQc/+tGP+Jd/+RfOOOMMAG6//Xb++Z//2T9ernl6PvCBD/AXf/EXLF++HHBkzktt1mo1SqVSaCoZkOst9CcidcKi4ctf/jIPPvggAH/6p3/KUUcdtcAtWvrceeedPPTQQ6xfvz6UehJ6Q7APqG3bXH755Zx++ul+B/5DDjmEq6++2u+4f/PNN0f2AxPiMzs7y9VXX83ll1/OIYcc4s9Z9/3vf58bbriB17/+9dxxxx188pOf5IUXXljo5gpCTxGpExYFX/3qV/nud78LwKWXXhoaAevhpS0gPKloPd4knvVlOi1fLBYb9rcqHyy7EIyPj/OVr3wF0zT57Gc/GzkyNj3WOwAABeZJREFUsBlyrdMRbMdhhx3G2NhYwzGGYfChD30IcFZX2bRpU0NZuebx+du//Vvuuece1q1bx1e+8hU2bNjA6Ogoo6OjbNiwga985SusXbuWiYkJ/uZv/sYvJ9db6EdE6oQF52tf+xr/9E//BMAf/dEfNY0oBfu27Nq1q2l9wb4ywTIHHXRQovKDg4OhG6lX1+TkZMubuFc+eL6F4KabbmJiYoILLriAdevWMTMzE/oJRoi8bV5/MLnW6Qj2rQr2B63HG9EI+CsZyDVPzszMDD/4wQ8AeO973xuZBs3n87zvfe8D4KmnnvKXEJPrLfQjInXCgvK3f/u3fPvb3wbgD//wD/0IRhSHH344huG8ZFuNBPP2rVixwu/UDOERZq3Ke6PSXv/614e2B8sHR641K99qRNx8sG3bNgBuu+02zj333IYfb0AK4G/72te+Bsi1TsuyZctadpqPwhsoIdc8OVu3bvWX42rVX/Swww7zH3vvC7neQj8iUicsGF/96le59dZbAUfoPvzhD7c8vlAo+BOEPvzww5HHaK155JFHANiwYUNo39q1aznkkENali+VSjz11FOR5U888UQ/EuCdo57t27ezefPmyPJLCbnW6fHa4rUtiuD0Ft48a3LNkxNcD9WbMy4Kb/1dmEtjyvUW+hGROmFB+OpXvxpKubYTOg9vjrUnnniCZ555pmH/Pffcw2uvvRY61kMpxTnnnAPAT37yE/8be5B/+7d/o1QqYZomv/VbvxXaVywW+c3f/E3AiX7Vj6YDuOWWWwDngyOqP9V88uUvf5mf/vSnTX9+//d/3z/W2/bpT3/a3ybXOh2//du/DTjzpkWtAmDbtv9l5uCDD+aYY47x98k1T8bhhx/ui9Htt98eOejEsiw/RTs8PMzatWv9fXK9hX5DpE6Yd4J96C699NKWKdd6zj33XI488ki01lx11VX8/Oc/B5wPynvuuYfrr78ecGZof+tb39pQ/kMf+hArVqxgdnaWyy+/3J8otlqtctttt/Gtb30LgAsuuCB08/f4xCc+QbFYZM+ePXzuc59j69atgPON/O///u/53ve+B8C///f/PnLZn6WEXOt0vOlNb+L0008H4K/+6q+49957fdnYsWMH11xzjT8K85JLLvFTgCDXPCn5fJ53v/vdAGzatIkrrriCF154Adu2sW2bF154gcsuu8xfOeLiiy/GNE2/vFxvod9QWmu90I0QDhx27NjBxRdfDDijANstV/XBD36wIYq3bds2/uRP/sTvYF4oFLBtm0qlAsD69eu58cYbm94EN27cyGc+8xkmJiYA51twpVLxP3g3bNjAddddF1quLMhDDz3E1Vdf7Y9KGxoaolQq+X17zjvvPC6//PJQamgx8nd/93f8/d//PeBE6qKQa52OUqnEZZddxpNPPgk4S9/l8/nQPHa///u/zyc+8YmGsnLNk1Eul/mv//W/hlKg3t/mXTOAs846iyuvvDIkdSDXW+gvROqEeWXbtm188IMfjH18sw++mZkZbr31Vu677z62b9+OUoq1a9fyrne9i/e///1ks9mW9Y6Pj3PLLbfw4IMPsnPnTnK5HEceeSTnnnsu5513Xih6EsWrr77KLbfcwqOPPsr4+DjFYpH169fznve8x4/SLHbiSB3ItU6Lbdv86Ec/4o477uCll15iZmaG5cuXc9JJJ/G+972PE088sWlZuebJ0Fpz3333ceedd7Jx40b27duHUorR0VHe8IY3cN555/GOd7yjaXm53kK/IFInCIIgCILQB0ifOkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEP+P8B8Evv4gc78/wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "plotting psichi in Galactic coordinates...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG2CAYAAAAZY3DTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd5glRb038G91nzA57uzO5oVlJS1hiRKXqBLFF4woAkYUQbxc8YqKYrgIKIpXUEQFkYyA5KBkUJC8hIWNbI6Tw0nd9f7Rp2r69OlQoWdmd+nv88yzs3O6q+ucOeEzv+quIpRSiiRJkiRJkiRJkiRbdYzx7kCSJEmSJEmSJEkS/SSoS5IkSZIkSZIk2QaSoC5JkiRJkiRJkmQbSIK6JEmSJEmSJEmSbSAJ6pIkSZIkSZIkSbaBJKhLkiRJkiRJkiTZBpKgLkmSJEmSJEmSZBtIgrokSZIkSZIkSZJtIAnqkiRJkiRJkiRJtoEkqEuSJEmSJEmSJNkGkqAuSZIkSZIkSZJkG0iCuiRJkiRJkiRJkm0gCeqSJEmSJEmSJEm2gSSoS5IkSZIkSZIk2QaSoC7JNpFZs2aBEIJZs2aN2TFPP/10EEJACMHy5cu12vrhD3/I23riiSdi6V9cGY/HNo5cd911/DG97rrrxrs7o55f/epXIIRg0qRJGBoaGu/uJInIT37yExBCsP322yOXy413d5JsI0lQl0Q77IPT76uxsRE77LADPvGJT+CWW25BsVgc7+7yvPrqq/jRj36Eww47DLNmzUJDQwNqamowefJkHHrooTj//PPxr3/9a7y7KRU3ZPy+0uk0JkyYgAMOOADf+c53sGjRovHucpIYsmHDBlx00UUAgAsuuAB1dXXj3KOtM9dddx1++MMf4oc//OGoH+ucc85Ba2srli1bhssuu2zUj5fkfRKaJIlmAAh/7bbbbvSdd96JvQ8zZ86kAOjMmTMjt124cCE9/vjjhfs8d+5cet9991W18/nPf55vs2zZMq3+X3TRRbytxx9/XLmdP//5z1K/j3Q6Tf/3f/83tE2Zx3ZLivux+POf/zze3RnVfOMb36AAaGdnJx0aGhrv7my1mT9/Pn/OjEUuvvhiCoA2NjbSjRs3jskxk2zbIZRSOjpcTPJ+CSGEf3/XXXdV3Nbd3Y3nnnsON954I4aHhwEAM2bMwCuvvIK2trYx7ScAPPDAA/j0pz+Nvr4+AEAmk8ERRxyB+fPnY/LkyaipqcH69euxYMECPPjgg1i9ejXf1/tSOf3003H99dcDAJYtW7ZFDE9ed911OOOMMwAAhx9+OM4555yK2/P5PFasWIG///3vePbZZ/nPf//73+PLX/7ymPY1STxZvXo1Zs+ejXw+j0suuQQXXHDBeHdpq81hhx2GJ598EkD163000tfXhylTpmBwcBAXXHABLrnkklE/ZpJtPONryiTbQuCq/ATljTfeoBMmTODbffvb3x7DHjp59tlnaTqd5n04+eST6XvvvRe4vW3b9NZbb6U77rij732Ls1IXV9zVqc9//vOh2/7oRz/i23Z2dlLLssamk0lizXe+8x0KgBqGQVetWjXe3dmqM9aVOkop/cxnPkMB0NbWVjowMDBmx02ybSY5py7JmGTXXXfFz372M/7/O+64Y0yP39vbi49//OP8nL6zzz4bt99+O2bMmBG4DyEEn/jEJ/DKK6/gtNNOG6uujlkuvPBCdHR0AADWrVuHd999d5x7lEQ2xWIR1157LQCnyjR16tRx7lES2Zx66qkAnFGNm2++eZx7k2RrT4K6JGOW4447jn+/dOnSqiv01qxZgx/84Ac44IAD0NbWhnQ6jdbWVsyZMweHHHIIvvWtb+Hpp5/2bTvqCs2rrroKa9asAQDstdde+OUvf1kxbByW2tpaPswalYcffhgnnXQSpk2bhmw2iylTpuDjH/84nn/++dD9xuPqV9M0scMOO/D/9/b2+m4X9dj69f3f//43Tj31VMycORPZbBYTJ07E8ccfj4ceeii0T3G2JXL1K7v9sMMOAwAMDg7i8ssvxz777IPW1lbU19dj1113xf/8z/+gu7s79Hgsr7zyCk4//XTMnDmTX3jz4Q9/GLfeeisAYPny5fy4p59+ulCbQXnooYewadMmACM4EMm7776Lb3/729h3333R0dGBdDqN5uZm7LXXXvj617+Of/7zn6HDjytXrsR3vvMd7LXXXmhra0M2m8XUqVNxwgkn4LrrroNlWaHH9z7uOtsedthhfBuWW265BUcffTQ6OzuRzWYxc+ZMnH766Vi4cGFoG2zo1X1c95ffBRRPPPEEPv/5z2PHHXdEQ0MDMpkMOjs7MXfuXJx44om4/PLLK07j8OZDH/oQ/+PqhhtuiHw8kiQJzXiXCpNs/YHA8CullBYKhYptV69ezW+77777aENDQ+SJ/c3Nzb5th53Mb9s27ezs5G3ceeedOneXxz38umTJEnrWWWcF9tswDHrttdcGtjUaF0pEDb9SSumcOXP49mvWrPHdJupCCW/ff/KTn1DDMAIfix/84AeB/YmzLZELJdjt8+fPp0uWLKG77LJL4LFmzpwZOcx++eWXU9M0A9v4+Mc/Tt99912p31FYzjzzTN7W0qVLI7cvFov0m9/8Zmgf2dcTTzzh28bvfvc7WltbG7rvbrvtFvpYuR/3qERt6x4yHR4epieddFJgv7LZLH3ggQdC2wj7uuiii/g+lmXRL37xi0L7nXvuuaH38WMf+xh/n9i0aVPkY5IkSVBSXuQlSTJa2bhxY8X/m5qaADgnen/qU5/CwMAAAKeid/TRR2PKlCmwbRsbNmzAa6+9hkcffTSwmhSWBQsWYN26dQCA5uZmnHjiiZr3pDrf+973cPPNN+MDH/gATjvtNOywww7o7+/HnXfeiQcffBC2beNrX/saDjroIOy0006xH18lTz31FJ/SZNddd8XkyZO127zmmmtw8803Y+rUqTj99NOx6667olAo4KGHHsKtt94KSikuvvhizJ8/H0ccccSYtRWVvr4+HHfccXjnnXfw0Y9+FB/5yEfQ1taGpUuX4uqrr8aKFSvw3nvv4bTTTsNTTz3l28b111+P888/n///hBNOwPHHH4/m5mYsWrQIf/rTn3D77bdr9dObRx99FADQ0dGB7bbbLnRbSilOPvlk3HPPPQCcSu1JJ52Eww8/HBMnTsTQ0BDefvttPPzww3j11Vd9K3W///3v8dWvfpX//4QTTsBxxx2HlpYWvPvuu/jzn/+MZcuWYcGCBTj44IPxyiuv8CrUWOTMM8/E3Xffjb333huf+tSnMGPGDGzatAk33ngjnnvuOeTzeXz2s5/FO++8gwkTJvD9fvKTn2DTpk343ve+hzfffBNA9UVfACpeu7/5zW/40HdLSws++9nPYt68eWhubsbQ0BCWL1+O559/Ho8//nhkvz/4wQ/irrvugm3b+Mc//oFPfvKTug9FkvdrxteUSbaFQLBSd8011/DtZs2axX9+2WWX8Z///Oc/D9zftm361FNP+d4WVk266qqrePtHHXWU2J0SiLtSB4CedtpptFgsVm13zjnn8G3OOuss37bGqlKXz+fp4sWL6S9/+Uva0tJCAdBMJkMffvjhwDZlKnUA6NFHH+17wvcvf/lLvs0xxxwz6m3JVOrY43DvvfdWbbNp0ya63Xbb8e2ef/55323Y42kYBr3xxhurthkaGqIf+chHKo6pU6lbs2YNb+e4446L3P7nP/85337GjBn09ddfD9z2xRdfpMuXL6/42bJly3iFzjRNeuutt1btNzQ0RI877jh+nFNOOcW3fXZ73JU6APTCCy+ktm1XbGNZVkUFL+h9RuZCiV133ZUCzuhB2DRNvb299JVXXglt64knnuDHPe+88yKPnSRJUBLUJdGOCOrefvtt2tHRwbc7//zz+W1f+cpX+M+7urqU+hAGjwsvvJC3/9WvflWpfb+4UbfTTjvRfD7vu11fXx//MNx+++19txmPeeqy2Sw99thj6XPPPRfapgzq2tvbA3+HlmXRGTNm8GP7ATjOtmRRd/HFF/s/AJTSP/zhD6Hbuf8wCXuObd68mba2tsaCukceeYS3861vfSt02/7+ftrW1sbxGga6oJx33nn8eGFXr/f29tLJkydTAJQQQt99992qbUYLdUcccURgO4sWLYrcTgZ12WyWAqAnnnhi5LZRWb9+PT/ukUceqd1ekvdvkgslksSau+++u+Lruuuuw5e//GXsvffefPh1ypQp+Pa3v833cc9+z4Y+4szmzZv59y0tLbG3DwBnnXUWMpmM722NjY3YZ599ADjz2W0pSwKZpomamhqkUvGdhXHaaaehtbXV9zbDMDB//nwAznx5S5YsGbO2omKaJs4+++zA293Du2+99VbV7X//+9/59+eee25gO21tbfjc5z6n2MvKvPfeexXthuXBBx9EV1cXAOAzn/kMdtttN+nj3XnnnQCAVCqF//qv/wrcrqmpCV/72tcAOEO+fsOYo5Wwx36HHXbA9OnTAfj/DmXD3rcWLVqkvVKO+3nu/r0mSSKbBHVJYs3HPvaxiq8zzjgDf/jDH/iVrjvvvDMeeeSRivNsjj76aP79//t//w9XXHEFVq1aNeZ918kHP/jB0NvZVBOUUvT09IxBj5zJh++6666KrzvuuAO/+93vcPrpp4NSijvvvBMHHHAArrrqqliOKfo4AIi8mjTOtqLygQ98IBCQUceybRsvv/wyAKCzszPynEmRKz5FwpAGRKPumWee4d+rnFO6YcMGjo099tgDEydODN3+Qx/6EP8+6srvOCP6nNF9vgAj71tvv/02jjrqKNx77718gnXZpNNpNDY2xta3JO/fJBdKJBnV1NfXY+LEiZg3bx4+9rGP4eMf/ziy2WzFNscccww+85nP4KabbsLGjRvxrW99C9/61rcwZ84cHHjggTj00ENx/PHHR36QBKW9vZ1/P1qgcp907Rf3fR6rSt2MGTNw0kkn+d72la98Bd/97ncxf/58rF27FmeffTZ22203HHLIIVrHjPNxGMvHVOdYvb29/I+W7bffPvJYItuIJJ/P8+8ZCILi/iNp5513lj7W2rVr+fcf+MAHIrd3b+Ped7Qj+nt0P3aq+fnPf45nnnkGa9aswVNPPYWnnnoK2WwW++yzDw466CAcccQROOKII5BOp4Xaa2pqQn9/vzIMkyQBkkpdkphDnfM0+dfAwACWLl2Kv/3tb/jsZz9bBTqWv/71r7j22mux66678p8tWrQI119/Pb7whS9gypQp+MxnPqP0ATFlyhT+/eLFi+XvlEAMY+t7Kc2ZMwf/+7//C8D5vf34xz/WbjPOx2EsH1OdYw0ODvLv3acSBKW+vl75WO64X0ts2buguG9vaGiQPlZ/fz//XqT/7mO49x3tjOVzZtasWXjllVdw9tln89M68vk8nn32WVx66aX4yEc+gmnTpuHXv/610JJj7Mr+2tra0ex2km08W98nUZJtMoQQfOELX8Abb7yBJUuW4Prrr8dXvvIVzJkzBwBgWRZuvvlm7L///li/fr1U2wcddBD//j//+U/kxKjvp3z4wx/m3z/55JPa5wa9H+NGjndCbb+4EagT95CreyjWL2z6IAB86iCZuCuBIv13HyOqihgW27aV9x2LTJw4Eb/5zW+wYcMGPPfcc7j88stx0kkn8cd7w4YN+OY3v4mvfOUroe0Ui0X+mI3HmthJtp0kqEuyxWX77bfHaaedht/97nd499138dJLL2HevHkAnJnsL7vsMqn2dt99d3R2dgJw/hpm83QlqRyaLhQKfHWCJOJpbm7mFbqlS5dGbi+yjUjcK3xEoW7atGn8+7ffflv6WO45DNnchmFxb+OulLOwi4oKhUJoO1vL8zGdTuOAAw7Af/3Xf+Guu+7Cxo0b8ac//YlXU//whz9gwYIFgfu7f38zZ84c9f4m2XaToC7JFp+99tqrYvkc90nfIiGE4Bvf+Ab//09/+lOUSqXY+rc1x31lMBDf0OD7KYZhYK+99gLgrKEbtBQVS1zLwM2dO5d//84774Ru6z5XUuWPmokTJ3JsvPrqq1UTiXvzyCOP8O/322+/qtvZcCVbui8oY3mRBVA5fCsyZBqUTCaDM844o+J959lnnw3c3g3t3XffXfm4SZIkqEuyVcRdlVAB2de//nVebXjppZdw3nnnCb9pDw8P4/Of/7z0MbeGPPzww/z7KVOmVAzTJRHPRz/6Uf79r3/968Dturq68Ne//jWWY3Z2dmLGjBkAgBdeeCF022OOOYYP6910002hVaOgnHzyyQCc19+vfvWrwO36+/v51dSEEHzsYx+r2maXXXYB4EzfEVa5vPLKK6X7qRP3uYBxDJOLvm+58br//vtrHzfJ+zcJ6pKMey6++GI8+uijoefPuKfc2GOPPaSP0dzcjNtuu43PyfZ///d/+MQnPoGVK1cG7kMpxe2334558+bhL3/5i/Qxt/QsXrwY3/3ud/n/P/3pT49jb7bunHHGGbz6dM011+Cmm26q2mZ4eBinnnpq5FCpTNi0Gps2bQrFUX19Pb7zne8AcIY8TzjhhFDYvfrqq1XzpX3jG9/gJ/Ffeuml+Nvf/la1Xy6Xw2c/+1legTv55JP5ebHufOQjH+HfX3DBBb5/YP3gBz/AP/7xj8A+jkbcS62xaWr8snbtWpx//vlYtmxZ4DZDQ0O4/vrr+f/D3rcY6gzDwFFHHSXT5SRJKpJMaZJk3PPYY4/hoosuQmdnJz784Q9jzz33RGdnJ2zbxpo1a3DPPffg6aefBuBc8fetb31L6TgHH3ww7rzzTpx66qno7+/HHXfcgXvvvRdHHHEE5s+fj8mTJyObzWLDhg1YsGABHnzwwa1uvjx3VqxYgbvvvrviZ7ZtY9OmTfjXv/6F2267rWIqjgsvvHAcerltpL29HVdccQXOOOMM2LaNU089FbfeeiuOO+44vvbrn//8ZyxduhQf//jH+RqwuldrnnTSSfjjH/8IwBnWDZsu5fzzz8czzzyDe+65B++99x6fZuiwww7DxIkTMTw8jHfeeQePPPIIXnzxRTz++OMV53fNmjULV1xxBb761a+iVCrhlFNOwUc/+lEce+yxaGlp4evbMlxOnTo1cP7DM888E5deeim6urpwxx134JBDDsGpp56KCRMmYMWKFbjlllvw4osv4lOf+hRuueUWrcdIJkceeSSvDn7hC1/Aeeedh5kzZ8I0TQDOBMY77LAD8vk8fvGLX+AXv/gF9t13XxxyyCHYeeed0dLSgt7eXrzzzju46aabsHr1agDO8PfBBx/se8xSqcRPKTn00EOTCyWS6GVc1rFIsk0FAsuEheWwww4TWtZqwoQJgWuURi1l5c5bb71FjznmGOHltObNm+d7XPcyYcuWLQs9ZtS247FMGPs68MAD6XvvvRfYpswyYVF9j9o2zrZklgmLY7kqSp3lwkzTDHysTznlFPrWW2/x/59zzjmRxw1LsVjky++FLZHFUigU6Ne+9jVqGEbk8+LJJ5/0bePqq6+mNTU1ofvOnTs38jVx//3386W2/L6OP/54OjQ0JLVMWFSiti2VSvTggw8O7NNFF11EKaV0+fLlwq+vww8/nG7atCmwTw888ADf9tprr428D0mShCUZfk0y7rnnnntw55134txzz8XBBx+Mzs5OpNNpZDIZdHZ24sgjj8Tll1+ORYsWVcxUr5qdd94ZDzzwAF566SX84Ac/wCGHHILp06ejtrYW2WwWnZ2dOOSQQ/Df//3feP755/Hyyy/HctwtIYQQNDU1YZdddsFpp52G++67D08//TQ/NyuJXs4//3y88MIL+NznPodp06Yhk8lg0qRJOProo3HLLbfg9ttvr5gzTrcqk0ql8KUvfQmAU6mLqiyn02n89re/xWuvvYZzzz0Xu+22G1paWmCaJlpaWrD33nvjG9/4Bp566ikceuihvm189atfxbvvvosLLrgAe+65J1paWpDJZDB58mQce+yx+POf/4xXX3214nwyvxx77LF47bXXcMYZZ2DGjBnIZDLo6OjA4YcfjhtuuAH33HPPmM/ZZpomHn30UVxyySU44IAD0Nrayqt07sycOROLFy/Gb3/7W77sWnNzM0zTRF1dHebMmYNPf/rTuPfee/HYY49VXGXuDTvHsrW1FZ/61KdG7b4leX+EUKpxiU+SJEmSJJHKb37zG5xzzjkAnPVU/S4kkMnatWux3XbbIZ/P42c/+xn+53/+J45uJhmD9PX1YcqUKRgcHMQFF1yASy65ZLy7lGQrT1KpS5IkSZIxSrFYxO9//3sATtXMPTG2aiZPnswnt/31r38tNAFyki0jV155JQYHB9HY2Ijzzz9/vLuTZBtIgrokSZIkiSEDAwN46aWXAm/P5/M488wz8eabbwIAPvaxjymvZ+zNhRdeiObmZqxfvx5XX311LG0mGd309fXhiiuuAAD893//d+S6tUmSiCQZfk2SJEmSGLJq1SpMnz4du+++O44++mjssssuaG5uxsDAAF5//XXceuut/GrI1tZWvP766xUrPejmV7/6Fc477zxMmjQJS5cuFVqHNsn45Sc/+Qm+//3vY7vttsNbb72Fmpqa8e5Skm0gCeqSJEmSJIYw1EVlxowZuOeee5TmW0ySJEmSsCSoS5IkSZIYYlkW7rnnHjzwwAN4+eWXsXHjRmzatAmUUrS3t2OPPfbACSecgNNPPz2pyiRJkmRUkqAuSZIkSZIkSZJkG0hyoUSSJEmSJEmSJMk2kAR1SZIkSZIkSZIk20AS1CVJkiRJkiRJkmwDSY13B5IkSZJEJZRSWJYF27Z9/2XfA87yaIQQGIbB/28YBv85+zJNE+l0GqlUCoSQ8bx7SZIkSSKdBHVJkiSJPaVSCcPDwxgcHMTQ0FDkVy6XQ6FQQKFQQD6f59/7/axYLFaAbbSSSqWQTqc58jKZDP8Z+39NTQ1qampQW1vr+y/7vra2FvX19WhoaEBDQwMaGxtRW1ubwDFJkiSxJrn6NUmSJIGhlGJgYADd3d3o7u5GX18f+vv7K/71+35wcHB8+w0AhDhf5R8Qm47cugVYyjAMjjzvV3NzM5qbm9HS0lL1lWAwSZIkQUlQlyTJ+zC5XI7Po9bV1cXRxr7v6upCV1cXenp6UCgUlI+TyWRQW1uLuro61NfXo66ujv+ffdXX1yObzeLaq58AYMKqz2DjHinANEFNA9Q0QY3yv6YBapigDGwG4d/zn7kxV056gGDm/dVrolK4oMf/tctfI9/Tip87t5XqDGze3QYpWfjBgYdgeHgYuVyu6l/2/cDAAP8qlUpaj6kbfG1tbWhvb8eECRMwYcIE/n17ezsymYzycZIkSbL1JUFdkiTbWIaGhrBhwwZs3LiRf3n/39fXJ9VmXV0dWltb0dzcjMbGRjQ1NaGpqQmNjY244U//ApAGQbriXyAFEnItVqE1gxUfMnXuqnCCUDcaKTamseKYkDNbKAWxLJBiEUaxBKNYhFEowigW8dOD56O/vx+9vb3o7e1FT09PxVc+n5fqS3NzM9rb2zn0Ojo60NnZiUmTJqGzsxMTJ05ENpvVvMdJkiTZUpKgLkmSrSz5fB7r16/H2rVrq77WrFmD/v5+oXZqa2vR0dGBtrY2tLa2orW1FX+/43UAGRBkyv9my//q4SvflsXKo8fvYvuxRJ1fIqEnGFIqwcgXYObzMPIFGPk8Ltxnf2zatAmbN2/Gpk2b+PeiFda2tjaOvEmTJvHvJ0+ejClTpiSrXyRJshUlQV2SJFtghoeHsWrVKqxYsQKrVq3CqlWrONw2btwYuX9DQwM6Ojoqvm740wsgqAFQU8ZaCiSmk8vsjInBySNDfYQCxHLeWgoNBjbvOfZvM6lhgs5/W85/KEDK3xKbItOjPqSsGpo2MDBlpCpGXca1MgRde8T4GFEKo1iEOZyDMZzDFYcchk2bNmHDhg1Yt24d1q9fj/Xr12N4eDiyqY6ODkydOpV/TZs2DdOmTcOUKVNQV1cXX5+TJEminQR1SZKMU0qlEtatW4eVK1dWfUXBrba2lldTJk+ejFv/+Q5qulIAakFQCxLjhe1esPnFjTi/jCbsKvAWFBfqgjKa2POCznebiELmqMFvcAip/mH8aP/9sX79eo6+1atXY2BgILSJtrY2jryZM2di1qxZmDlzJjo7O/n0MUmSJBm7JKhLkmSUY1kW1qxZg+XLl2Pp0qVYtmwZli1bhpUrV4aeMN/c3Izp06djxowZmDZtGq6892XQVD3sdB1gZgBCkBqmaHwvutoSFjtrYrBT7oT6KMQFJQ7cpYYIOp+PEJo3AqjzJg7kiWAucF9JE9lpov3YkhLQvMhVvS0VYBQGcclnD8Xq1auxatUq/m9vb29gO9lsFjNmzKiA3qxZszB16lSkUslMWkmSjFYS1CVJElMopdiwYUMF3JYuXYr33nsv8PymbDaLadOmYfr06Zg+fTquffRN2OkG2JkGB24BkcWcCty8UYWcNzKwUwKcXxRQ5xcZ6OmArqotzaKXLPiqcOcXqwCjMIRLPzcfK1aswPLly/Hee+9h5cqVKBaLvrukUinMmDEDs2fPxg477MD/bWtrk7k7SZIkCUiCuiRJFGJZFlatWoV3330XixYt4l9BV5VmMhnMmjUL2223He59aRXsTCPsbCNoqq5q+o2whGEuDrh5ExfkvAmDXWyQcycm1LkTBrw4QVfVdsyjmmHgE8KdN9QGKQzBzPfj3GP2wHvvvce/gs7ha2trq4De7NmzMXPmzKSqlySJZBLUJUkSkWKxiKVLl2LRokUccUuWLEEul6va1jRNzJgxA9tvvz0efHUN7Gwj7EwTaLpeCm/eMMyNBty8GS3IuVOsN7BpnnOM1CBB5wsxi8ubUUCdN27kjSbq3IkbeN7YKYLN86ga7ryhFKQ4DCPfi28cPRdLly7F4sWLsWrVKvh9DKXTacyePRs77bQTdtppJ+y4444J9JIkiUiCuiRJXKGUYvXq1Xj77bfx1ltv4e2338aiRYt8h5Nqamowe/ZszJkzB7f+aznsbAvsTCNgxDP3mpUBio0EDatGdzksO0VQaCQgNkV6EEjlRvd4AEBNglINQU3PKEurHNsksDIEmf4xuG8pINdiwsyPzVtrqZagVOv8/jJ9o3tMahAMTCOo6YrxOHYJRq4PPzxlfyxevBhLlizBkiVLfFclqampwZw5c7Djjjty7E2bNi25KCNJknIS1CV5X6e3t7cCcAsXLvQ9AbypqQlz5szBnDlzcN0Ti2HXNIOmG7SqbyxWFshNqGzHzCF2zDG8uUNsipTPiBix48cdNQkK9ZXHNyyMCuyo5/dCDaBU473viB15NAUMt1ainlCMCvC898c5mIO8ih+NAvYY7ryJDXuUghSHcNlnDsQ777zDv4aGqucarKurw84774y5c+di7ty52GWXXdDY2BhPP5Ik2cqSoC7J+yaUUqxatQqvv/46FixYgNdffx2rVq2q2i6dTmPOnDnYeeedce2i5Si2tMGqrYOZM1C/Vu/l4gc4d+LAnB/evAnCXOU2+rDzg5w7caHOi7iq231Q500cyPNDXcUxYgJe1H3xw11VKJDt1by/BsHAdNdxfO6aLvSoAQxPIgClMIcGcMUR+2PhwoVYuHAhFi1aVHUREiEEs2bN4sibO3cupk2blqyXm+R9kQR1SbbZlEolLFmyBK+99hoWLFiABQsWoKurq2q7adOmYZdddsHtK9eh2NKKYmMz4BnOMYeJNOiiAOeNCuhEAOeOCOYqt5eHXRTkvFGFXRTkKrYVQJ07KsCLAl3VMRSBJ3M/hHDnjgL0qmDn06Y3stDjsPPGtpEa7MfPDp6HN954A2+88QZWr15dtVlLSwvmzp2L3XbbDXvuuSfmzJmTnJuXZJtMgrok20xKpRLeeustvPLKK3jttdfw5ptvVl1tl06nsfPOO2O33XbDbxYuQaG5DTRk0XNRzMkCruIYgpiTBZw7spir3DcadrKQc0cGdTKQq9hPEnXuiAJPFnUVxxAEnup9kMadO4LQi8Sdp01vRKAXiDtXjHwO13zkYI68d955p6qaV1dXh9133x3z5s1LkJdkm0qCuiRbbWzbxuLFi/HSSy/h5Zdfxuuvv16FuPr6esydOxePdvWj0NqGYnMrYIp98AaBTgdwFe2HYE4HcO7oYK6yHX/Y6WDOnTDYqUKuog0N1LkTBDwd0FW0H4K7OPqvhTt3QqAnhTtPm974QU8EdhWxLaT7e/G9fXfF66+/jldffbVqpYwEeUm2lSSoS7LVhJ0T99JLL+Gll17CK6+8UjUvXHNzM+bNm4e/r+9CobUdpcYmpYsZ3KAr1RDk22O5CyPtu0AXF+DciQtzI+2NoC4uyLnjRV0ckHMnLtS54wZeXKiraN8DvFj7Hxfu3HFBTxl2Pm26w5AnDbuKNilSA724aN9d8eqrrwYib6+99sJ+++2HfffdF1OnTlU7VpIkY5wEdUm26AwMDODFF1/E888/jxdeeKFqTdTa2lrsueeeeLi7H/m2DmXEuUNswCiOzknVpARk+uBblYil/ZgxV9k4YMfrlooYlv6J+0EZDdTxEMBKb6Un4Y8G7jztF5pibM/9uiGAHceUjQLImzJlCvbdd1/st99+mDdvHhoaGmI4cJIk8SdBXZItKpRSLF68GM8//zz+/e9/480334RljVRw0uk05s6di6cGcsi3daDY3FJ1UYNsiA0YBdcHW5wFkRKQKs/CQNgEuHG94gh4X0mJIluetoISp/oXVwyLIj3otG2ngHxTfHOCERvIlNsGpTCCl8JVbL/cNnFV/whQjBEyhIL3mxKgWBdv26ncyO81bpi6Jy8mzNOjAD2bjWQSoFQXa9MjbQNAHE9NSpHq78H/7PkBvPDCC1iwYEHFe5Bpmthll1048nbaaadknrwkW0wS1CUZ9/T39+M///kPXnjhBTz//PPYvHlzxe0zZszABz/4QVy9ZBUKbe3C58QFpQpxFTdqNV2BOP4z6vxcr2H49s2NOXfigJ0bc+7owq4Ccu7EhDoOuYofBgzpxgA8N+rc0QWeG3TeduPAXdBqFMSvWBoT9GzvaWoxIa+qXZYYrEUKRfzp2IPxn//8B//5z3+wYsWKittbW1txwAEH4MADD8Q+++yDurqY1ZokiUQS1CUZl6xduxbPPPMMnnnmGbz++usVfwnX1NRgr732woPdg8hPmAirrt65QfXCvzDE8Y0U2vUBXNU2qqALQNzIsf0x544q7IIwx6KKukDMuaMBO1/M8RsjztNTxF0Q6NxRxV0Q6tztquJOZHkxX9zxG9WRFwgwd9uKLopsWxV5rsfCGB7EpQfvgRdeeAEvvvhixcoX6XQa8+bNwwEHHICDDjoInZ2digdMkkQtCeqSjEkopVi0aBGH3OLFiytunzVrFvbff39ctWQlCq3t1UttyUzNJYI4hbZFEMe3lcVcBOIq+xENOhYZ2EVhzh0Z2AlhjkUSdaGQq9hQ4uILCeCJoI5FBndRoPO2K4M7mfViQ2FXsaE88iIB5m5bAnnC7QJyyPN7LGwbN330MDz33HN47rnnqubI23777XHggQfi4IMPxs4775xMgJxk1JOgLsmopVQq4bXXXsPTTz+NZ599FuvXr+e3GYaB3XffHU8Nl5CbOHmkGucXgfdBacgJti0DOb5PFOgkAFfZF3HMsYigTgZzLCKok8IciyDqhDHHd1C4olYAdzKoYxHBnQzq3O2K4E4Gdbw/KtevCEBPCmCsTQHgSbcLiAEv7HEor3jx/b3m4Nlnn8Ubb7wB2x7ZoaOjA4ceeigOO+wwzJ07F6bmaSRJkvglQV2SWFMqlfDKK6/gsccew9NPP10x5Ug2m8V+++2He7sHkeuYBJrJijXqdyqUKuKi2lVAXMX+QaBThJzTJ3nMuRMEOxXMuRMEOyXMsYSgThpyFTtrTpMSADwV1LEE4U4FdN52g3CnAjp3lHBXTikAskoAYwlBnla7gD/yJO4/KRZw5fx5eO655/Cvf/2rYg7NtrY2HHLIIZg/fz723HPPZE68JLElQV0S7bCK3GOPPYannnoKvb29/LaWlhYceOCB+Ovazci3T5S/yMF9UWockPO0q4u4iibdoNNAXEWbmqBjccNOF3MsXtRpYc4dD+y0MMcbiWnuOxfudEDnjhd3uqhzt+vGnS7oWHRg544bedoAY/EgL7Z23Y+dyv23LPzpIwfgiSeewLPPPlsxZUpTUxMOPvhgzJ8/H/vuu28CvCRaSVCXRCmWZeH111/H448/jieffBLd3d38tubmZsyfPx9/XrO5fH6c4qcJiRlyrFkrPsgBGJmqJNapUOLBXEWbdjyLybtjp4BCgxEP5ljKqIsFcyxxoc7VXqmGxDoFCy0PV8YBOm+7cU6zwhIX7lhKdSQ+hAEceLG2CTjA07nvto0bjj8ETzzxBJ5++umKP4Kbm5tx+OGH46ijjsLcuXOTqVKSSCdBXRKpLF68GA899BD++c9/Vkw90tTUhEMPPRTXr+tCoXWC3txx5V3N4Zg+iKjzAURsZyWHOEJswCiV5w8z4+kngxwl5TapU1WLK8QCzEK8ULIyJLYPd2JRpAdtp6qYia8ia5vEqaoVqPP/mObwI5Q6lVkClGpj+vClFKlhimJDjB/m1Pm9D7fF0yarUFIC5Fud52kmrj9ACDDcUf595eNpEgQolucKjqtaCQLkJpdQs0ZTjLaNm086HE8++SSefPJJdHV18Zs6Oztx5JFH4qijjsLs2bM1O5zk/ZIEdUkis2nTJjz66KN4+OGHsXTpUv7zxsZGHHLIIbi+rxul2g5tyLlXKzAsTdTRykpCHKBzQ44fRgN03mocxxz/QTyoq0AXjQF2ZcwFHkO2uTLmWGJBXRlz/L8Mde7bNXHHUedqUwt31PM4GEQfdxRID7Glu5w+DrVrzvPoGXbmuHMdUwt5ZdhVHE8XeC7YsWgBjwC5KUVXY0QfeNTGX48/FI8++iieeuopDA2NDCdsv/32OOqoo3DUUUcl06QkCU2CuiS+GR4extNPP42HHnoIL7/8Mr+KK51O46CDDsJtdBDDUybCKKaQ6lf8cPRAjv9YFXTUHxeqoPNDXMXhFEBnFCky/f4Tyvq2pwG7QGipws4Hc5HHCmvOgzl3lGHnwRz/sRd17u0VcFcFOk+bKrgjNkVqqPrxUMadC3SV7UEZd2ETLVfAztUHJeB5YFfVBxXk+cCORQl4XtjxxjSAR4BCsw1iWfjjXvviH//4B/7973+jWBw5zrx583Dsscdi/vz5qKmpUTtOkm02CeqS8FBK8dprr+H+++/HU089VXG11u67747Ha4GhGZNhZ0cWXDRyhhzqAiDHb5YFXQDkWGRBFwU5QA5zQYiraC8IdHwDediFIksWdSGYEz6me7sQzLFIoy4Ac/zmINS595fAXSjqXG0K444KPCayuAtAHb/ZlINd1IUhgbDz9EkKeSG4432SAV4I7FikgBcEO96YJPDKqKv4UaGAK3fZDY8++iheffVVsI/suro6HHnkkTj22GOxyy67JHPgJQGQoC4JgO7ubjz00EO47777sHLlSv7zqVOn4s32BgxuNxWlxup55IRBFwE5vpko6CIgxyIKOhHI8UMLgE4EcoAA5io2FoOdcMVMBHaCmBM9tgjmWIRQFwG5ik2jUOdtNwJ4QqhztReFu6AqnV+EcBcBupG2IFS1k51kORJ35T4KAS8CdnwzUeAJwI5FCHhRsOONCQLPB3Ys5tAwvj91Oh588EGsWbOG/3zmzJk49thj8eEPfxhtbW0CnU6yrSZB3fs0tm3jxRdfxH333YdnnnkGpZLzjl1bW4sjjzwSfyh2ozChFQj56y8UdYKQ45tHgU4QcixRoJOBHO9CACBEEVfRlgzo+E7hsJMaAo1CnSTooo4vAzogAnUSmOO7yKDOfZwA3EmhrtxWGOxkUAcIwE4QdXzzkKqd6gTLQrCr2CkEeYKw45tHAU8Cdrx7YcAThR1vLAR4Iagb2Z/irsOPwv33348nnngC+bxzZ03TxAc/+EGceOKJ2G+//ZIJjt+HSVD3PsumTZvwwAMP4L777sO6dev4z3feeWc805TG4KypoOnovyZ9QScJuYpd/VAnCTmWINCpQI53xYMIFcjxtlRABwSiTvkiBT/YKWAurC+ymONd80OdAub4riqocx/Xgztp1LnaqsKdwNBrUHxxJwm6kbbgW7VTnY9PCXZ8Zx/gScKO7xYEPAXY8e55gSeLOsB5gMqpAp4I7NimxSJ+vdOueOCBB/Dmm2/yn3d2duLEE0/E8ccfj5aWFrm+Jdlqk6DufRB2rtydd96Jp59+GpZlAQAaGhpw9NFH47eFzSi2Nku1WYE6DcwBHtApQs4dN+p0IMfCAKYDOd6WKuh4A5Ww055OxA07TdC5+6OKuYquMdhpYI73Swd1vBEHd8qg87TFcCdbpfOmAnaKoKtoz1W1051gWQt2vBEX8BRhx1IBPA3UVXSPAU8FdrwR5z5x3Emgzp3HTzoZ9913Hx588EH09/cDcC5uO+yww3DSSSdh7ty5ybl323gS1G3DyefzePTRR3HnnXdi8eLF/Oe77747HmswMDRjMqjC7OVGzkBqkGhBjrdlAeZQjHOd2c7EwrqQc7enCzkgBsxVNObALpbHjAJmkWpjjsUo6mOOhRLAzhJt0AExoQ4AiIMebdS52rOyRAt1LNQgKNYb2qgDnPs43GbGNrlyLLgDHOD1Uy3YsTjPiXhgx0JNDdgBldW7tSkl2AEAsSz8dpfdcPfdd+Ptt9/mP589ezZOOukkHH300airE1hEN8lWlwR122DWrVuHu+66C/fffz9fezWbzeJDH/oQfm/3odjapNQusQhInsS3wkN5ZvZMbwztEYBYMU2CSgGzEM9STbZJQE0g22ejEMOEssSiSOVpLBPoEosi02+DmkChUV/oxKLI9lqghn7fGIKtrH5bhkWR3VSAnTFRqovnHCOjFM/vAED5uRsPOEs1hoOVYgx/iBhOe3H8DlhFuFhPUGiK5/Vup2KaTJgAuQk2Mj36jVEDyE0pOWLUbowAhMJsKIGuF1wn2ycPfuQ43H333fjHP/6BQqEAwLly9vjjj8cpp5ySzHu3jSVB3TYSSileffVV3HHHHXj22Wf5vHKdnZ14e3IbBnaYXjEViUyIRYASKX+vuWyXAdhp5yln5gnSOqAjI3/YmkUgrVNRo07VEHDuow7obJOgVFvuVwGo3ew0bKeJFuyIRZHKURDqfHjooIKBDoA26ohFke0eKenQlPp9pAR8RRFK9FBnWBQ1Gwu8XZo2eLu6uHNXgnVxR8tdIbYm7sqoA6ANO2oAVpY9XtCDHQVS5eXpKpYsI9AGnp12HUZ3MuGOclWMQgt4HHa8bb2PWLOxyN/odHBHigVcMnM27r77bqxatQoAYBgG5s+fj09+8pPYZZddtPqZZMtIgrqtPJZl4emnn8ZNN92EhQsX8p/vvffeeLDewPCUSYDpnJckEzfkRn6mCDoX5PiP8kStQkcqRigAaIDOBTnevCLo3JDj/XKBjm+nCDs36FhUYOfGHG9HEXVezPH2FFDnxtzIz9RQ58acu33eL3b6pgbu/Ib3VXFHPV1Qxp0LdcCIJWRx5wYd/5kq7Fygc7dVtRatBvDcsOPHUJ1MuMMz3KkIvCrY8WOofdyajeUhXdebnzTwCJCdPgBQiuunHYNbb70VL774Ir957ty5+MQnPoFDDjkkuWp2K06Cuq00+XweDz74IG699VasXr0aAJDJZPCRj3wEv7P6UGxudDYkkAKdH+ZGbpNEnQ/mWKSqdD6Q4+3Igs4HcvwwkqDzgxzvlw/oAHnUMcwB1Z8HsqjzAx1vSxJ2QaDj7QnCzg9zI7fJoc4Pc+7jVPVJA3dh52zK/E68oGORhh1xIOb3OpGt2vmhjt8mizsf1LF2qmDHogA8P9jxY8lOJuyFHW9IHHiBqOPHkfvY5airOIhC9Y7Brpz79/gsbr/9djz66KN81YrJkyfjlFNOwXHHHZecd7cVJkHdVpbe3l7cfffd+Nvf/oaenh4AQFNTE1bM6ET/B2bBrvG8wAVRF4Y553ZB0IVAjm8iWqULwRwgAboQyPFDCYIuDHK8XwGg420Iws6vOueNKOzCQAeIoy4Kc7w9AdSFgc65XQx1YZhzHyuwTwq4i7oQRxR2QahjEcadp0pXdbMg7MJAx7cRhV0A6NztBMKORQJ4YbDjxxSdTDgIdoAw7iJhx48n9hHsCztADnce1LEYg3l8K789/v73v6O3txeAs7b3ySefjJNPPhnNzXKzIyQZvySo20qyYcMG3Hzzzbj//vuRyznzdXR2duKtqRMwMHu6/1WsEaCLglzlthGoE8AcIAC6CMi5E4k6AcwB0aATgRwQjbmKNiNgJwI6IBp1UZiraCsCdkaJItMjdjlkGOqiMFe5bTjsREDHjhkJTSIGO5krq6NwF4U6QAB2IVW6is0EhmNFUAcIwC4CdN62InEHCAFPBHZABO6iUFfRUDjwhGEHROIuEHX8YIJDswGwAwAULfy8Zm/cdtttfHWh2tpanHjiifjkJz+JCRMmhPchybgnQd0WnnXr1uHGG2/EAw88wMvjc+bMwXMdjRiaMRkwQt6dAlAngzln+wDQCULOncBhVwnMAcGgIzbkVp4IAJ0o5Hh/JEDHjxEAO1HQsQTBTgZ0QDDqZDDH2woAlAzonO39USeKOfdxhYaEBap2stPlhMFOBHUsgbiLqNJVbR5QtRMFHd8+CHYSoHO3JQQ7lhDgicKOH9vvLsvADgjEnRTqKo4fcNpKFOz4gUOqd2GoY7Eprm6fj7/+9a9YtGgRAGe+u2OPPRaf/vSnMWXKFLF+JBnzJKjbQrNmzRr89a9/xYMPPsgnC95zzz3xcGsNcp0TELZ8F48HdbKYG9nPgzoFzAHlKl0fAdiukpBj8YJOFnJ8Pw/o7BRBqUahPwqgA/xRJws6wB91sqDjbXlgpwI63pYLUbKYG9mvEnWymHMfX+oCjhDcqc6B6P0dyYCOd8sLO8EqXVU7PrCTRR0QADsF1LG2pGDH4gM8WdjxPrjvvizseCOVwFOGHVCFO2HU8YP74E4EdXx/iuumfgQ33HADFixY4PTBNHH00Ufj9NNPT3C3BSZB3RaWVatW4a9//Ssefvhhjrm9994b97dkkJ8kUfp2gU4Vc86+LtApYg4oV+gY6BQxB1SCThVzQCXoVDEHqIOOhcEu7IIIkTDYqWKOt1NGnQ7meFspQxlzvI0y6lQxN9KO2lW5frjTndia4U4FdbxbDHeSVbqKNlzDsSqgc4fjThF07naUYAdU4U4VdoALd6qwAypwpwU7oOJNQRp2QDXuZGAHAJTiltkn4a9//SteeOEFpx+miWOOOQannXZaMtfdFpQEdVtINmzYgOuvvx4PPPAAx9x+++2He5rTyHe0yTdIAGKrY443YwFGiShjjsXIE6S9a8UqxCwA2R69vjj3CcqQc/dFB3QsHGQ60+wZzvu2DugABxqlWkMbdABgpw0t0AEOpmgKWqBz2lFEHYvrfLs4ViuxU0QLdQD7o4Yqo463Qx0g6qAuzmjBjqUMPB3YsXaGJ8WwQgcB7LoYVlohVA117o4AoBuycqhz5c6dPo4//elPHHepVArHHXccPve5z2HixInqfUsSSxLUjXN6enpw44034q677uKzfe+///64uzmNwoRWtUZrbJCUDXSrTTYMADRtAwZgDOu90VOTglgE2c3GyLCrQogNpAeB1LDe05UazvlyOh/MhMK5LxSo36CHOmoCVsbQX5+WOP3SXW6KreRg5tTvFzUJrFpDf1UDChgFG6lhzceYAFZdCqREQWy9yX2dyqERy4IB2is1lKt0caweUaohMDWswNvJEq1KHeD8vgpNBJQAho5fjPLSZLp/SxJguIMChv79shstwNL9vVN0zujCxu5GrWa2m7QZq7vVr2q9fc7/w5/+9Ce89NJLAJxz7k488UR87nOfQ1ubQiEiSSxJUDdOGRwcxG233YZbb70VQ0NDAJw1Wf81l2ATZsg3WGOjtsm5KjY3lFEGHU3bQE0ZBgVDGXXUpKBZpx1jyER2k8KEuzaQypW/t9RBRw1nmNP5j/pM+05Fg5175LRn5qgy7KgJlLJGuaqqPqxHidMnw1JHHSWAXV7/lVhQRh0DHSXOwvfK4KDO40Esqt4XApTqnavCCQWI6/FVxR01CKwa5w8UHdjFsvSWZ+hVB3elWmfoVAd2Jdd9UoUdJUChcQRi7DQNVdxx2LGoPuwMdiwKwKMEsJtKI/9RxR2hmDJzMwDApkQZdwTArEmb+f9VgXfL9h/FH//4R7z22msAnKtlP/WpT+GTn/xkMs/dOCRB3RinVCrh7rvvxvXXX8/nA5ozZw7WH5THqo6Z6F7dItegC3Ok/CkzPJiVRl0F5gBl0LkxBwDGcBl0MvOoujAHqIOuAnOAEugY5Nj+1Kz+QFaBnRt0gDrqGOhYVGDnBh2gjjo36ACooY5WPg6qqHODzulLJeoANdhx1Ln6q4K70UAdoAa7Um3la0QVdiXPfVK5AtYNOvfP3ZEFXhXsADXceWEHSOOuAnbsByq4MyimzBgBmSruZk/aNNJG+UFRwd2uk9bgf7JfwjXXXMNXNmptbcXpp5+OE044ASm/KbeSjEoS1I1RKKV45plncPXVV/N192bMmIHug21kdm0CMQiWdreje5XEC6oMOuL5VJFBXRXmWCRQ54UciyzovJjjPy+Jr/RQBTl+g9wHHsecZxc/1AFysPOCjh9TAnZezLHIos4LOt4XCdgxzDntuXAoizrqf/9lYOfF3EhfqlHHbxPEXRXo+A3ysItr6NUvsrCrQB2LJO68oGORmavOD3TsNr/I4M4Xdiyivwo/1PHOiD/mVbBz3yAKPFe1zh1Z3LlRx9sAkYbd3M61AJzPua/nP4k//OEPfKWjadOm4ctf/jLmz58PIjJrQxKtJKgbgyxcuBBXXXUVXn31VQDOXzDFw2qQ3bsVxBx5kgujzqc6x5IbyoB2Rc8sHog5QBh0QZhjERl2DYIcv10QdIGYA4RB563KVTUTADpAHHVBoON9EIBdEOhYRGEXBDpAHHXe6lxFG6KoC8DcSF+iUReEuZG+BKOObxOBu0DU8Q3EcTeaqAPEYecLOhZB2AWBjkUEduw8urDbwyICvFDYAWK4C4Md70z069cXde4NRHDnqda5I4o7AmD7ANgB4lU7hjoWWqI4ddOHcd111/GVj+bOnYtzzjkHO+20k1CbSdSSoG4Us2HDBlxzzTV45JFHADhrs5oHNaF2/gQY2epL3yJRF4I5lqgqXSjmWCJQF4U5ILpKF4U5IBp0oZCr2DD8Qy4Kc0A46FiiYBcFOiAadVGgA6JRF4Y53o8I1AVV56raiYJdBOicvoSjLgp0Tj+iUQeEwy4SdYAQ7EZr6NUvUbgLRR0gBLso1AHRy4UFVem820UlFHcEyLWJVsLCb4uEHRCKu0jYsY3CcBdQrXNHBHd+1Tq+vyDuvKjj++ctHL/sANxyyy3I5XIghOCYY47Bl770JbS3t4e2mUQtCepGIYVCAbfddhv+8pe/8CW9PvShD+E/85bDbPG/xn5pdzu6Vzf7o0IAcyxBqBPCHL8D/qijKQqaEWsjqEongjm+bQDqhDEHjKDB00wF5MrbBTYhADqWINiJgI73LQB2IqBjCYKdCOh4PwJgF1adq2ojCHUCmBvphz/qRDA30g8x1PHtfXAnhDq+cTDuRrtK500Q7CJBxxICOxHQsfjBThR07u1F4we8yGqdN36biqKOd8T/fkeizr2xH+4EUMcShrsw1PH9BXAXBDsAuHrOj3HNNdfg4YcfBuBcTPH5z38ep5xyCjIZ9VkaklQnQV3Mef755/HrX/+anze32267YcWhg0hPC19zaknXBPSsbqr8Ya2F2sY8gGjMAf5Dr1KYA3xBJ4M5oAw6zxQmMpgD/EEnhTnAF3QiVbmKJiRAB/ijTgZ0gD/qZEAH+KNOBnSAP+pkQAcEoE4CdE4/qlEnAzqnH3KoA6phJ4U63kb1z8YadYA/7IRRBwTCTgZ1QDXsooZdfbsi+fB5cScNO6D6tSsLO6AKd1KwYzt4cRcyBOsXP9wFDcH67h+CuzDUsfyo+Ru48sor8fbbbwMApk6dirPPPhsHHXSQ0PGTRCdBXUxZu3Yt/u///g9PP/00AKCtrQ2Fo2qR3bNZ6OTQCtRJYo7FXaWTxhyLC3WymGNxV+mIDZh5uRPJvaCTxhxQBTpZzAHyoGNxw04WdCxu2MmCjsUNO1nQAdWokwUd4EGdJOZG+jGCOlnMjfRDHnV83zLuVFA30sbI9+OBOqASdlKgY/HAThZ0LAx2slW6iq4o7OPGnRLsgMq+qsAO4LiTRh2LG3cS1Tp3vLgTqdZV7O+DOxHUAQC1Kb408DH8/ve/x+bNTt8PPvhgnHvuuZg0aZJUP5JUJ0GdZorFIm666SbccMMNKBQKME0T6QNaUHdkB4wa8Snjl3RNQE9XvRLmWIYHs6ADKTXMARx0qpgDRqp0xJLHHAspAWaBykPOHeq0ITrEWrW7IuiAEdSpgg4YQZ0q6IAR1KmAjvfDAoyiLXT+nO/+DHWKoHP64KCOGtXrsIr3Qx11gAM7HdQ5bTj/aqFOEXQsDHZKqAMqYKeKOsCBnUqVrqIrGg+jUZI4vy6wEUXU8f2pOuyAEdxJVuvcYbiTRR3f34U7UdTxffM2PvTOXrj11lthWRZqampwxhln4OMf/3gyBYpGEtRp5I033sBll12GZcuWAQDmzZuHZfP7kJokv/7UpuEGbOhrUMIcABQLKRSHNdfEsaE927nZb6JujcaM+9R5w9UJsSjM/Eh7St3QQB3ggDLTR5VAN9IJ8ek2/OK3aLtaQ/KYq9jdpkgN6690oRNd1DmN6K2PCihUnH36oLssmLNqiF43dJ4PAJzHMgOt14fucwKsUqgTXdgBsFr1l/KYMq1Lu42GtPpSfDYIWrNDSvteNvkC/OIXv8Drr78OANhuu+1w/vnnY7fddlPuz/s5CeoUMjg4iN///vf4+9//DkopWlpaUPpwPbJ7iA21upMybGzO1WNNT1P0xgHJpkuwbAN9XfVqDVjlv/h0pshPUZBhEw1LTaVmSjVAoZXCHCao3ajYB7tcnbOhjDk2TEtsinyL2odnapiicVURdoqg0KRYWSov2K5apSM2HEiRkQXkZWOUKMycjUKT+l/NRokiNWSBmmp9IBaFOVxCsVH9DxZCAbO81Jid1l0nlaJUqygiChgWRalWc41VTdiZBadCpFytg/MaUX1eAYBZdPpQbFCvGBILKDYSp3qoujQZAYYnkJE/AhX2z7c7x7ZVoUworLaS80e1agjQ2D6IxhrVOwJs19SFjcMNGp0AZjVuRndBfhUJSim+2HcSrrrqKj4p/wknnICzzjoLDQ16fXq/JUGdZJ5++mn86le/wsaNjjwa92lEw3GTUKyJnhvOnZRhI1Uej1k/3KiEumy6hOZa5+qDrsE6edRZBCg5b4owoIa6FIVZ65TW7K4sGpfIvbMxzAGAOUxQs0mhG7bzIcHe6FXCjkksIF2uKpWyRBp2DHQAlFGnez4dBx2gjDqjRJEaZOcFEmnYMcyxqKCOWBSpQeexpAaRhh2hgJkv98EGwN7qCFHCnWHZvC9KsKOAWXCGw2EQPdxpwI4BiBpqsHO/xlRhZxZHnt/SsGN/eFHnPvD9FXFHDSDX7rShhDsX7AA13FntrmqdIu4aJwyOfK+Au9nNm2CX32xUcTercWQYWAV3E6xubP+vvXHfffcBADo6OnD++efjgAMOUOrP+zEJ6gTT09ODK664Ao8//jgA56od+3gbdXPqkLdTyFniH3oMdEYZdWuHmqVQ58YcoAA6N+ZYZFHnwhwA2N1ZNCwRr9K5MQcogM4e+WDgUUCd+3hu0AGAlSHItaqjDpCHnd+VrzIfEhWg4z+U+/B1gw6QR50XdKwN0bgxx/eXRF0F6IBK1AFKsGOoA8rDjwRyuCujjv/XHHvYmYXKq8FVYOd9jcnCzv26VUWd+xSNCtiVb5fCXblaV9VPGRd5YAdI4o5V6yoakNgflajjP5PAHQGwfbNzbp0q7tyoA+Rh11nTBwD4ovFt/PznP+erUnz4wx/GN77xDTQ1qY9ovV+SoE4gTz/9NC6//HJ0d3fDNE00zm9E69GtMNKGFOjc1TnDdTmcKOq8mGORQp1FgKL3sniIa8qDORbRKp0XcyzCw65+mAOkQee9u17QschU67ygA+RQpzs/nS/oAGHUeTHHjy+BOj/QsTZE4gc6QBx1VZhj8aKO7yCOOzfq3P0Shp0HdUAMsAOkcOeHHRnYBb3GZGDnff1Kwc5Vpav4sRd25W1Fceeu1lX1V8RFPqhjEcVdRbWuogGx/dkQrDcysJvdXHnBhCzuvKhjEcWdQSgmZvudYxds7PrSIbj99tth2zba2tpw3nnnYf78+UJtvV+ToC4k/f39uPLKK/mEidtttx2KHy0iO21kqFUEdUGYYxFBXRDoAEHU+VXnWERQF4A5wAFd1Ll0QZgDBKt0ZfD4bkMhfB5d0DGCUAeIwc4PdCwisItaSSLqgyEQdIAQ6oJAB4ijLgh07nbCEgQ6QAx1gaADglEHCMPOD3Wsb5Gw8wEdv2kMYReEHFHYBf7hRABbAO6+f5BBEHYBoOP7B130IIi7MNgBArgzgHyb+mvYt1pX0UDE/vCv1vHbBHDnRR0/NDWEYBeEOhYR3LFqHcvXar6HSy65BMuXLwcAHHXUUTjvvPPQ2Ci+xu37KQnqAvLCCy/g5z//OTZu3AhCCJrnN6P1w051zp0o1HmHWr2JAl0Y5oAy6Lrrgi8FC8McSxjqQjDHElalC8McS2iVLgxzLBFVuiivhoEOiB6GDQMdEI063fVeQ0HHNwqGXRjo+PFDYBeFOXcbvl0LwRzfNwJ1oaADwlEHCMEuCHWAwHBsCOqc/THq59l5h16r+hABu8hKuADsglAHCMAu4sp432qdTxuBwAsYhvUmEHch1Tp3wnAXWK2raCD4pjDU8W1CcOcegq06rGDVThd2XtQBgF2imPfaEbjppptgWRYmTpyI7373u9hrr71C23o/JkGdJ4VCAb/73e9wxx13AHDOncPHgJpZ/tOUBKEuqjrHEoS6KMyxBFbpGOYANdAJYA4IrtKJYA4IqdKJYA4IrdKJjChHgY4lqFoXBTqWINiJgI634fNhIAQ6IBB1IqADglEnCjrWRlW3BEAHBKMuEnMsUajjDQbjLgx1LIFVuwjU8c1G8Tw70WpVEOxET28I+uMhDHT8+EGwC6nSVWwmArtye0FD0WHVOnd8cRdRrXPHF3dR1bqKBvz29x+C9UsQ7oKqdfywEbiLQh1LEO78UMfytZrv4cc//jFWr14NQgg++clP4otf/GKy1JgrmjX/bSvvvfcevvrVr3LQNR3UhMzXMoGgC4q7OhcGuqCIgi4w7uqcCtkFQcfifqMt1QBDk6kQ6Pz2hw0YBQqzKAA6Fu/5cTRe0AHOZKnZnsptRUEHOPjJ9FV+KsqAzi/CoAvpkwjoQvcXBJ1fREEXuL8o6GRCKYyi+mPqzMmn+ZjozOlHgVROp//O81onfs9pEdABzu80PeB/AZTQa9r22d93Q8CqIVVzUcpcK2ZlnS9vX0VjWM5X5f4SF434fXpLHL8/JzdjAz9s+XOto3ZAaX+W1oz8vHZX5X6ClnMoTjjhBFBKccstt+ArX/kKli5dqtWXbSkJ6uDMkXPffffhS1/6EhYvXozm5mZ0ntmJjo91wJCYbDRl2KgxS6HDrWHJpkuY2DSgDjqLAHkjeriVxVulS1GYDSVh0LEqHYtodY6FVemcxtQw536YRTGnmqq2NY6lArqK+yoLOlp5PFnQEYsi0zfyvNgmQceyDcLOLEj8keUDO9mryg0r3hei1OtaZlsv7ihQs1mu7xW4o0C2S+5qXi/szC6J6YMMVH2K928WnwmhP5fVwl1H7YAW7lozQ9K4M7MG3jvyFfzsZz9DS0sLlixZgi9/+cu49957kQw8JqhDf38/fvjDH+LSSy9FLpfDPvvsg5ZzW1C/i9ycb+NRnePn03kxJ/u8dmNOUkWEqlXn3PuzK1pl37jZsKsK5mSqdCxmYaRalxqmaFgjhxK/ap1M+Fx6W2mFjpQ/6HVARyiQylmjBzoWSmEULGXcVcBOcOi1Yv+4YSf7+tCt2Ll2Fa3S8WO7q3UR58tG7i+80wjuiC0PO6ASdrKpqNopLWyLkU9zheO7cbe0d4L4YcexandL3VW47rrrsP/++6NQKOCyyy7Dj3/8YwwNqa1ssa3kfX1O3aJFi/D9738fa9asgWmaaP5IM1rmt4AY4i8qGwTF8skRsphbP9SETUN1aFKcBbxrsA59GxvEK3PepCnMOnnIAU6VrnaNiUKL2tPHHCao3eAsY6VUXYs4aTosKqBjsTIEpRoiPOzqjZ0iKDaY6uug2hSGRNWlcmfnH1XQUdNZe1W1QkdsZ3UIpWMbBKWGtDrmRM+p80v5PDuRc+q8Yctpqa6oEdc5djorLiiv8Vq+cEIWdSyUAMV6ovw6Fz6/LiAFjYsrzaL4uXV+sVMS59Z5QygaW9Vh01iTjzyvzi/sXLtNuXrMbFBftiwr+QunNsVB756AP/zhD7AsC9OnT8fFF1+M2bNnK/dha877tlL34IMP4qyzzsKaNWvQ2dmJzq93ovXwVmnQWZQoVefSxEZ7zaAy6HKlFAaHsnqgqy8qgc4aTsEYNpRBR4lTCTALYw86SsBxoxKjBGT69SooOufRaa25qVD1cIfY6kOuxKYwdYZbSzYym4eV99cKpUqgAwBCKQilMBQxGkvFTnPdXeXnq+Zz3RliV94dUKnYuZLWKD5ZGWgt+0VKRP1cEkrQ3y2/mgPLQC6LbNXJftFhn4MTagYxJdurfPy8Lbd6DTEIntvpPlx55ZXo6OjAypUr8ZWvfOV9Oxz7vqvU5fN5XHnllbj33nsBAHU71WHiZybCrBOf/ntGbRf2qFuBRflJWNA/VboPaWKj1iyiq1CHtUNyM2TnSikM5jMYHsqi1JuRBp3ZXMTMSZvRl6tBd5/8C98aSsHsdq5CVHnPYSML6QGC+jWSDdjOX8CqMGPHNiwgPaRQdTEI7JRTXcz2yr/pUVJee5SoLezOMZxX/LSgZVwp7E8NAqvGUBpKBDyok/jDCXBgQwolUMOA1SR/lRspUaS6h0BTBkpNchc98ShW2tjxKQHsrPqasdQASvVqS84Bzv5U8nF3Ghi5SlN1uTlAvVJppVmlU2l3/l6hUrGjBCiV3yKl12AmQKmu/P6mUDqhAEqTCiMdkQ2hmDTJgdVQQX7dZAJgv8krAAB5hXXPZtc5lb41+WbpfU1CcXLbfwAAf++Wm7KkNGCh6b6Z+Pe//w0AOO6443Deeee9r66OfV+hbt26dfjBD36AhQsXghCCqcfWITN/knB1jmHOgI3F+U682j9N6vgMcwC0QEcpwfBwBlaP+BPVaCpiVqdzqblBKHpzNejqFT9v0BpKwexJVbzByKDO/b6UHiSoWyNZpSuDjrcl+T7Hj0+capss6hjoAHnUccyxKKDO/fgpwY6fjyePOg66cjvS54d5q3QSuGCgG+mLHOwY6Pj+KrDTAB3rAwB12LHTyxRg5x5AkIYdqZ52QxZ23kqdLO4s1+tEBXbu170s7NyoAzRhB0jhrgJ17g4JH5uis7PH2a28nyzu9i+jDtCDHSCPuzSxcUrbf2CV3+hlcEdtigMWHodrr70Wtm1j1113xY9//GNMmCB+ruDWnPfN8Ovrr7+OL3/5y1i4cCGamprwgbOakT28Uwh0M2q7cEL7q5hXtxxGuaZuSagiTWw0pfKoNYtKQ7W5UgqbB+s46GRjNjugMwiFoTLcyqpzMYDO+YFklc8FOtlQUvnGLr2/QWBlRkCncnyVxeO9beg14PrWILAkruiuAB1QBqn4/r7DrvY4/h2pNxIpHeJCDaGQH4Z1PVTEljsf0vs2Q2zn96ETneFUYORiGbV9NU4fKA/F6gzHKlz/VhmJ/QmA1HrPHy+Kw7GEUBBCUZdRP/0ha1hKQ7IsU7K9UkOydvnN2gSFCYqPtr6Mj7a+LLQvMQhe2PV+XHrppWhoaMCbb76JL37xi1iwYIFS37e2vC8qdQ8++CAuu+wylEolzJkzB/Wf7UZ/ffRfDqwyB4BjDoBwlc5dmXNDblO+AeuHG2FHfFqzyhyACswND2dgCQy9sqFW5/gjG/fmatDdWx85cutXnWMReX8JunvCQ68BmBOt1AVhTrRS567OVewvWKkLBJ1Epc7vMZSq1Pk8zKLVuirQudoUqdaFnkcn8MeUt0o30i+xap23Ssf3l6nWxVSlqzi+TMXO5/cnWrELQohwxc6nUsciWrELQqBoxc4KeJ2IVu1834MEq3beSl3FbSJ/13grde4I7O9brXN3LurwBsWkST2Vu0lU7UxCsU/nSt/bRCt37mqdOyKVO1atc0emcmcQigsmXo7vfve7WLZsGVKpFM477zyccMIJAj3ferNNV+osy8LVV1+N//3f/0WpVMKkeSZmfX0Nsm3hT0hWmWNDrYbnT6yoKp1IZU4UdJQS/+qcIOiCqnNCoPNU52SiXV3SqM5VHF+xH0Ggkzn+aFXoqAGxalvAL1mkWhcIOkCoWhd5YURExSgIdE7bNsy+gA87tk0A6JzbbKT6BKYPGgXQARIVu4CHSKRiF1ZVEqrYhYAOGN+KnbO/xs6aF1AAY1u18+9AdP/9yjUyVTsr5E1cp2oHiFXubJ83b5nKnU0J/tLzJexwzgbMnz8fpVIJl112Gf7v//4PljXKUyKNY7ZZ1A0NDeHCCy/EzTffDACYfWwa875Ygz6zAZvywWvXzajt4sOsXsyJhFXnVOeri2OodfsPrOOgk401lALW1PCLIWRTMdypEtu54m28hluBaNDZ6fC1XCNBR51qX2gfYhxyld41DHRsm5D+aV/pGgI6of1DQDeyjSDsRilKQ7Hu/SWHYv32H+2h2Kjbo2AXVKUb2T/05vDENByrhTsberjTmG2dwW48h2QBKF8l68ZdWNYWmpGqIaj95Iv4whe+AAC47bbb8IMf/AC53Pi9/kcz2yTqNm/ejG984xt47rnnkMlksMeZWXzghGzo+XPu6lxYFuc7fa949VbngsKGXr3xYk4WdGZzEbPmrA+tzkVlm6rOhfTFNoGiz9xfMufPBVbRtrBz6KR3FQAdgMBqnRToNFAhUq2LPn7IbaNUpavYJgx2Ag/N1gC7yD7EULELwl3k64jifVO1893NVbUbLdwtGYq+OCGoamdRgju69g3dN6pqx0bECCFYs8+tuOiii5BOp/H000/jnHPOQVeX+nx6W2q2OdStXLkSZ511FhYtWoTW1lbsfZ6JKfsGV522q9sUOtTqjXfoVeUiCPfQqyzm+Pl0rrCh1pRhb53VOUAKdKT8Zuztg3OjSAPV28Ux3GpljDEDXeAQrOCv328IVhh0bHtPX3UrdIBclc4PdqREkeoRm8+O2AHVOk3QyWQ0KnYyyPCFXcTQqzdxwG5LG44NO5/O9/hxwG4cq3ZBQ7Ivrpsu3M5oXEzhNwTrjcyQ7Audv8AVV1yB5uZmLFy4EF/96lexfPly5T5vidmmUPfWW2/ha1/7GtatW4epU6dit/PyaJk18u7UVarnQ68Mc3NrVykNtepe0QoInDcXlPJr11udk00F5sazOqcx3FrRh63p/DmfIditokLnjvd+qxzfBYpYhl17hv1PJgrcJ/5hWJEqXcX23s0lH8ctsWKnAr0tDXbSx9cdjgXiqdrFOCQbdl5dUMbifDu/BOFubaHyooz7ze/gqquuwrRp07Bu3Tp87WtfwxtvvKHV5y0p2wzqnnvuOZx77rno7e1F80wDO57TjfqO6rungzk29Dre580B8VTndDG3JQy3jhfo7DRBvtmMbbh1PEDHqnVKoGNtlPtNbApzSPGXaVNl0FVV61Qu5ne/hMdg2NUvOtU6YAR2qqiIC3ZxDcdGnU8XvL/GwWM4zw7YAqp2wLhOfwLEd76dyBCsN17c+V2U+Ne+r2DHc7sxd+5cDAwM4Fvf+hZeeOEFrf5uKdkmpjR59NFH8bOf/QyWZaFjVxN7frEGqZrqX2RrahATU31KF0AAwHuFDrwz1AlAfp1XAChRE8sH2rCqt1kZczXpEhqyeeXz5lZ3N6PwXgNgj90QkzeZPoLG9/SedpSUpxVQvBvEkl9o3K+N9KDOWkDOWrI6MSwKQ3VdT1c/tHa3KDLd6us5EQqtCh1vp2SroQ7laU5aa/U6oAkjSgA7o7h0AmvDAKxa9Taoof+c1A4h6uvNuqJVfTeA4Yn6fSg2arw2CVDs1DtvlBBUTWsiGkoJCKGY27ZO+fgGsXFM6wK8NjRDuQ0AmN+wUHlfCwT7ZAfwu+7dq24r5Sn6bp6L559/HqlUCt///vdx+OGH63R13LPVV+ruv/9+/OQnP4FlWZi6fwp7nRUMus5UjxLouqwGvJ2bivXFJuXqXImaWDHYqgw6g1BkUiWkTEu5Ore+vwG5tfXKoDNKQLqfwNQYrTLzQGoIKDSqv2Hqgo7NU6e6fiygDzqaAgqNhtJyYSyGRWFqrOtJbIr0QEl5PVfAqc5kN6s/IYhNYQzkQIoaf9VTCpIrKoMOcGBqDmk8ISwKc6AAI6dx1S+F8hqzvA0bWr9PYqstoedtQ6taRSkMzaFYKyM4l1xAtNedBWDVUr3KIQCUDOdLMZQ6a7mqhJQ/Y0rUQEnxwbSpgUd65kZegBiVAjVRUFwrzgTFa4VafLX19arbUlmCls++gSOOOAKlUgk/+tGPcN9992n1dbyzVaPurrvuws9//nNQSjH9kBR2Oy0LwzN8whBmKlbnuqwGrC82w1J8UpeoiWErg6Jtwla4qhVwQJcyLf69bNb3N2DxosnoX9eofN6VUQJSQ0TnlA2YeSDbTZw+KFiGlk/g1gVdathWvg/EAjJ9tjboinV6Lz3DokgNOfdDpTpEbOp8+GtAyChRZLpyDqp0hu5sCli2GuwoBcmXMaYKIkJg16QAqgg7y7lAhFCqNWxGyxP66sIOVB12xKLOMKQm7AB12Nkp5z3CsDRwV74YKg7YqeKOn5oQx5RoGrADHNip4o53QfHBtCiBARt71K2IBXeqScPEV1tfr8KdkSLInPw8TjzxRNi2jUsvvRS33367Vj/HM1st6m699VZcccUVAIBZR6Sx66crpyxRraixjFTnHNAN2Rn0leTWjCxRE0WFNfNY3NU51azvb3Awp3GehlECzGH1ipKZB2rXkxHQKaSiOjeOoNMabkU16Kghvw4sA51qvKAjFpVGgBt0AJRgR2wKY9D1iSkLTDfoWGRBxEBHCG9TBXaEPZaUKlXrqGeFhvGEHdtfBXZ+S5Pp9IHhTjkxwC6Oqp3WEmcsmrAD1Kt2vAsaVTt2DrsK7F4Yms2/16napWH64o4YBIWP/BOf+cxnAAC/+c1vcMcddygdY7yzVaLu5ptvxm9/+1sAwPYfTmOnUzIg5TfluDGnUqFzV+dU467OqaSiOqeBuXQ/gTlMtKtzxEY8oFOIUQIy/fYWBzr+c4n75Qc6mWqdb4VOElNVoFMIB5273zbVG4ZlEQWRF3RKx6qexoVYarDzZqxhV3X16ThX7Nz9iAN2wm/lBCg0VT4n4oAdEBPstuKqHQClqp3f53DcuCOEoOvgv+Nzn/scAODKK6/E3/72N6X2xzNbHer+9re/4eqrrwYA7HB8BjuelK0AnV+azWF0pPpC292SMDea1TmaorCz0e+yrDoX23CrQuIebvXeD2JTofPqRhN0Mom7Qldxm2C1LhR0gtU6X9CxiA7D+lXpVOIHOtFqnXvY1RsbwrDzVunc2Vordt6Iwi5wTVkJ2Fl+ywLLDsf6dEN3OJa3M4bDsfXNwee7bilVu7E4386mBl4pVF8548Yd4MBu4wF34rOf/SwA4Ne//vVWB7utCnX3338/fv3rXwMAZh+TxpzjnFdvVHUu6nw693lzOufO6WAO2Iaqc7ltY7gVGCPQkfAhWMOiyPRboaCLqtZFnkNHaSTsRq1C59OX0IiALgpDrEoXcgwR2PmCrvzzraliFzpHHHVeA1G4i4LbmFXswt4vtrXh2AjckYg3vy2haqc6JOtNFOysEO64q3aEEGw68C6ceuqpABzY3X333dr9G6tsNaj7xz/+gUsvvRQAMOvINOackIl9qFUlW0N1TrgfgtU5oxh8BayZA7I90cOtVib4Cljd4VZgywAdTQGFJkOoQhc0BKtbnQMkLooIuV0YdCHVOiHQAeHDsDIVuiAMiQ67hsHOZ9jV91ARsAur0rkz7hW7chvjf2Ws5lAsEA47n6FX380iYGfVCp4OEfQrIUCxXfB5vpWfaweoDcn6Ja4h2bPaFmDzQXfzc+yuuOIK/POf/9Tq21hFYyafscuzzz6Ln/70p/wq111OSUX+BRIWVpkD/MfqRbIlVOYAF+aAWC6EEH1YvduZeSDTQ3yX8ApupPK/1P1mq1md8+ujbxdsCqNUOQHxuAy3lqt17lUmZEFHKACbgrouGJK9ypVV60p1I89t6QodpSA2qvohBDoWy1kgiKZdrzGVIVfLBkzX70H2PLoy7Kw61xMkbNjVL+WhWLumchk+UdCxGJYN29T4AC/Dzv27BSKqdD5tpIfsque2LNSc50flzwKHXn36wGBne2Y78B169e3AyPGr+i7YDTfsLI+JZM6TZbCrsojM04PBLqX+vsVg11CjXoZksEspyJ1NN8ZgpzO3HYNdRqEcmoaz71ltC0BPWIChoW/h7rvvxk9/+lM0NjZiv/32U+7XWGSLr9S9+eab+OEPf8jnodvt02l+Dp1KtpWhVmBsq3NhMXMxXwwxCufPiWY8z59zfxCMaYWuohOV247ZkGtUX+I6hw6QvzDCp2InDDq2rcQ5dmHZVip2wChdGSvzq41p2pMt5iIKYIuo2gFbz5BsWNIwkSEmTvvEL/k8dt/73vfw5ptvavdrNLNFo27lypX4zne+g3w+j4m7Gdj9tHTFtCUy2ZaGWgEP6FT74gKdathwq9a6o+M83MoumBj3CyJYtU4DdOzcOp156Fi1Tgt03mFYlXns4r4aNuo8OqG2xIZdvfHOYSdbpXMnTtgpr7fqgp0Ozti+wlU6n34w2AlX6ao6oQc7IIGdbze2gSFZAKgxTHztzGux7777IpfL4YILLsDy5cu1+jSa2WJR193djW9/+9t8Ldd5X6ieWFg0XVa9dnWuGEN1LmXY2pjb1BvDxRBFon0xhFEkyHYRLdBZGef8lS3h/DmjRLeIK1ydFQH0+mGUNCcWphRG0XaW/tJZRZBSkKJdORedbCwbpFDSr9JRqjd9CXUwJzXs6hMjV9QCHYvuOq1bVMVO865w2Ok8rMQZ/hQ5ny6wiTLsRM+nC2zHBorNmr+bmKY+GcyrStnVFZ0iSIxVu5ydjt4oIHUpE9/5+t+wyy67oK+vD9/+9rfR09Oj3afRyBaJulwuh+985ztYvXo16iYQ7Pv1rO/SX1HZPrMRxzcswI7ZtcqYm5bZjPkNb2N2zQal/QGgKTWM7Wo3oSUzpNwGAJQsE6WiqTfc2lhExy4bkd8hp/5mSl3HV3WDAdiZ8vqMGm/G1HAqfTofDNQg0PQ67DRBvtGsOsdHJkaRIttVVK+eAE51y6agGv0gFDDyJT3QAc5aqEVLrUrn7k++CFLUQB2lIMN5GL0arz+LwujPwcipr8XJrohN9eqXdIjuKh5wXjdGSa+NYr2p9Vxj0V2HGYihykWBTC9FplevL0aRwCzovKnBeU8s6T2u6cY8ikXNtYQpQVt6UKsNGwT9di36bfW1lQ3YmJXuwax0j1ZfVllFrLLUToOoraH4/jcfxtSpU7Fu3Tp897vfRT4fQ3k25mxxqKOU4pJLLsHbb7+NpqYm7Ht2FlnJv54Y5nbLrkWG2DAVxwemZTbjA5n1SGu8WzSlhtGeHoRJbJiK8ihZJobzGRSKKWSyJRiN8k9Ko7GIKdtvwuSOXqQNG8RQH3bRGWoFyhBjo2CaoAMAOw0U6hXOYTMIrLQDOjtFUKpV64ydJig0GHrVxiJFtrukV7WwXcsqEYCmYnh5q1a2bIBYFmAANK0+5EkKemu6glLeBilZMHo0PqAodSqHeY1z42wbsO3YYKca/jeuTdVh53pqjCvsCGBlyhd6qU4VQgHDYqcvQBt2APRgx6IBO0IclBUKKWXcHTnjXRiEoi09qI07AFqwY9GBnUUJLEqUcdfcZOOSSy5BQ0MD3njjDVx22WWgun/8xpwtDnU33ngjHnvsMZimiVPPWYSGTrkubp/ZOII5RX2w6twHMuuVp0xh1TkGOtWULBOFYkppzVgWo7GIyR29MAlVWjsWwEh1Lk7QYWQIVqWdisie++5XnVMATBXoSPUVeVHxA510tc7WXwQdcFXpKn4o+bgw0LEowo4UXG+6lMpX61yg4/9XgZ1FYQy5EKYKO9uu+D4W2OkOwwLKsCvWV76AlGDn2UUVdt63R92qnQrsKAFKdZU/iw12mlU7SokS7FhBwyh/dsQFO13c6Vbt3LiTTXv6UFx88cUwTROPPPIIbrjhBuV+jEa2KNT9+9//xh/+8AcAwDlndGG7HcXf9NzVuTgwlyaWFuhGqnMjbcyp24Cd28WGcd3VOZ0w0CljDgiszrEhVKEmDKeiRr13R+FqV92TmoOGW20TwtU6O02QazW3vAqdO5LVOl/QSffFAzoWSdhVgI5FEXZVbchAiIHO244s7Gyf95IYYKcyDOv7+pGFXdDCDzFV7IRx56rSVd00DrDze1zMgtxwbLEt4HNnnGDnjkrVbn7LO74/j6tqp4s7lardXtM+jW9+85sAgGuvvRbPPPOMch/izhaDupUrV+Liiy8GpRQnHDWIj35I/PyXuKpzcWAurDpnEhtpI/qdJq7qHBtu9QPd5Am9yM0JXkKGJ2K4VaSLvDqn+X4ftn6jnRIbgo08f06gKlVRnfPbXLBaFwU6oWrdaFboKjYQ+OUFgU62L36gYxGFHavS+cW2xap1QaDjt2sOxZb7Mh6w8++LOOy8VTp3hGEXsZko7MLeg4RgVx569d3fBjI9+ufZAeJVOxp2aowg7NKN/s8pBjsd3MlW7cJOX4qjagfENyQrkxP2Px8nn3wyAOBnP/sZ1qxZo9yHOLNFoG54eBgXXnghBgYGMHfHAs4501mnde+MiQPrFgXuF3d1Tmd1iqDqnEzirs6FDbcahMIww7SGURlu9YvIEKxQdS5qgQCBCyKiqnVxnD8HiFfoQmEnAjqBap1whS4MdiKg0zy/jicKdt5hV7/bo4Zho0DHIoIpvyqd5/axgl3k60gAdsWGaBDEUbEDImAXUqWr2Ey3Yidwnp3f0KtfjOLYDMeGvVQpJeNWtQvK1lS1qzNGhqe+evL/Ydddd8XAwAC+//3vbxEXTmwRqLvyyiuxfPlytLe340f/1Q32vm8Sw1f5VRdCjEF1btfsKuzduLzq5+Nx7lympgTSUP2hFlWdE47ExRBBQ7CBw61+iRiCFR1uDavWSV3hGvCOKAW6kGrdqA65BvQlCHajOuTqlwjYaV3lCkSDzr1dFOxEToCmNLxaFwU613ajDTvh0xbCYCdhklDYSbQTBjvRwYxA2IVU6araiBqOFegLoU7FLgh3gUOvfolpODYId0fOeDeyjbE6125OepNwO2N5IUU6BfzoRz9Cc3MzFi1ahF/96lfKx44r4466f/zjH7j//vtBCMH3zn4X7S3hT+rxuhAiTawqYMZRnQMc0BVLcn81eZdJU7kYorPdZwhW4epW7xurynBrULVO+vy5qr6MXOEqGr9qXVxXuNZuKEqDrqpaN1ZDrr47eR4AlSHXANiRosQ0Kn7VOlHQubf3g533woioBA3DioLOtf2WPhQbNuzqF2qS0bkyVrBKV7GL6pWx7jZ8YCdapatoh/pX7UKHXv3iA7ugoVe/hFXtZGZ9iAt2gH/VTnbmiLG8kGKCfRAuuugiEEJw//3348EHH1Q+bhwZV9StWrUKl19+OQDgtJP7MG/X4Dmg5mTXaw+1AvGcOwdUgk4m7osl2HBrsWTGcnWrbHWuYgh2DIdbfeNTrVO5IMJdrdOaf86FF2XQuap17uqc0qoXDHGqoPNU67QqdOyxiekcOkASdCxu2MmCzt2GG3aiw67exHF+HTBqsFO6uMgDO5Fh16BUwE7xrc4LO9W3TG4ViSpdxf5+FTuVC38DYCcdz3CsyixEozUcG3SRRFTiGI4F9Kp2gPiQ7F7TPo0zzzwTAPCrX/0Kq1ev1jquTsYNdcViET/60Y8wNDSE3XfO43MnDwRuOye7Hrtk1itX5+akN+PDjQtiO3dOZ7iVXSzBqnPsLyXZZGpKaJg8MObDrb67l4dglUFXjpUBCs0k9IIIoRBN0GGkWrfFzEEH6FfoyrAb8yFXv7iqdUqgY/HATrkNm6qDjsUNO9kqnTsxw07rtcRgF4M9YqvYKVTpvImlYtdDke6j0lW6inZcsJMaevVLjMOxh08PPpc9LN7hWJ05XuO8iGJWugdTU31K+4tW7T5z9E+wxx57YHh4GD/5yU9QKsW0VrVkxg11N9xwA9555x00NTXhe9/oQcrnA7hILUwx89gls16rOtdvpzFIM9rVuanpbmxfu1FruHXIzmBzvl67Omfbzr5ac88BAKHQWBaPhxI90AGAUQRSgzEMK1qAWdBfvigW0FnO8mO6oKMEgOK6x1XRXmKKxnOVq22D9A2oI4qFtaMTy4K5oVu/L5YNIjN0GxRKQWJ6DseRUk08HxXKa7y6YhSpcpXOHd33PXYBRbpfvx2jSGD26z/GMkOvfmGfSYv7O7TaMQjFhMwA0kQfNjNS3dptAMCUsAsDBcJg93rBf9YI0wAuvPBC1NfX480338SNN96odTzVjAvq3n33XT5h3zfPfA8TJ1S/eRWphSFagAkog67HzmB5qRk9mtrvseqwtDARm60GmKrrc8EBXW+pFjPqujGjTf2JatsE1Far8LGs62rCupc6YS6r1f4rnFA4VSAd/BSA9ADVxo9ZAGq69cBhWM6alulBW2ttS6NEkem3y5UF9ZcaJTFdTUgBo6C73id1lv7SDCnZIF29oLYN5DQ+iCgFHRzWn9XdpqClEki/5nlB5RUjSE5jKJYQ2LVpp9qmCztCYlpZRH+iY7bGs85SegBQqjVAbAdUurH0lzYFoUBarQg00o8a570v1asnTdUFYKr6Yxt4s3eyVht71y8HAG3YGYQiR03kNBVuEIJOE+jUaMaiBEVqBMJuIg7h89ddd911WLhwofrBFDPmqCsWi7jkkktgWRYO3X8Yhx9Q+eAUqYUBO4chqr7GIuCArseuhUUN5XVfAQd0G60mWJoPFQOdTQkMYiNlyL8j2TaBVTI46Ar5FLqH5MG6rqsJZGkdjFI8l/vrpgp0Cm9MZh6oX2+hpssCoRRGkSI9LP8YGxZg5m3+oWEWnEqbdDsMdBSghCjDmYOOEGdIOa34PHSDTnJS4pE2YgadLsTKoAO1HZRp4JAWnPcbatv6sAPUYVcGHf+vIuwoIbBqRj69lGFnEBQaR9qJ5SIMDdgV64yKPx5VYede293KqOGOEqDYQAAaA+zK9ykO2OmEEIrp7T0ARmCnijv3qFgcFTsAscCO4U4nDHZ+uDtq97Nx+OGHw7Is/OxnP0OxGMO5thIZc9TdeOONWLx4MZoabXzzC30Vf1mw6pzlqszVGSbqJF7/7uqcG3M5O40cTYfs6WmnXJ3baDWJH9wnQ3YGawvNHHSqcVfnWIVO5Xw8Bjo35qhBlYZOq0AnWa0zCkC2i/pX6GSmPMg71TliU631MN2gq+iKZJNu0I00Il+tc4OO/0wFdj4VOmpIVnBGEXRK1To36JxGlGHn3UcZdt7z6HQrduXIws4LOv5zWdgx0Hleiyqw81vWTwV2fu8vcVTsADnYcdDxH4zAThZ3pdrKx1MVdulWgcnkBWK43rgs24ilagc4sIsDdypVuw7PqSuqVbsh1wdlkRq+VTtCgPM+dzNaW1uxfPly3HzzzXIH0cyYom758uW4/vrrAQDnntmLtvL0JVtTda7OyKPZFFvtwl2d84JuVn0XZrZ3CbUT23Dry51VoOORaFr1Ck533NU5nbY46HwwJ1OtCwId4Fx5Klqt8wUdytU6Qxx2fqDjt8nALmTIlYqO1YxBhU4Kdl7QjTQiDbugbaVhF3RhhAzsPFW6iptiOsdOGHYBoOP9kYBd4FuxJOyKdcF9l4GdHfK3vdZwbPkcO+mqnR9UKZDuNaVwF9fQq19kYceGXv0iA7udMmsDb5OBneHz4Ixm1a6pgeLss88GAPzlL3/BypUr9Q4ikTFDHaUUV1xxBSzLwkH75HDEgc4D4FedU4kbdMptCFTnRObLEanOiQzBeodb/SIyBMuHW4vBw62i1brIuy9QrRM+fy6inTDQySQMdMDIG3VkOwGgYxEdhg0DnVSizqETGYYdwyFXIdgFgW6kEWHYRW0jDDuBFSMiYRcCOr6JAOyCqnQV24jCLuLpN9ZDsVHvK2NVsauq0lVtIA47b5XOrx0R2MVRpSOEYmpbb+DtMsOxURckilbt0hHtxHmunU78qnZHzP0a9t13XxQKBfziF7/QP91EMGOGuscffxyvvPIKMpkMzj69DyWIV+fChmCDhltlMxrnzsU93OqXqNv9hlsDE/WmORrnzylGFHRR1boo0FW0E1KtiwIdT8QwrCjoIqt1ghdFhA7DjsM5dKGwiwLdSCORsBOt5kXCTmLFiEDYCYCObxoCOxHQ8W3DYOc5jy60PxGwE13eLwp2YVW6yv6E3x5WpXNH+wIKUdgJfESIwC6uKl0q4gGMczgW2LLOtYsajh0SqHq4q3aEAP/1X/+FbDaLl19+GY888ohWH0UzJqgbGhrCb3/7WwDAqSdtxoSOQuzVORHQBZ1Xx0AnmqAhWDfoRBI0BCs73BpUrZMCHcKrdVIIC6jWKYHOpx3ZCl0Q7ERBx7cv+cNOGHQIH4aVrdAFwk7yKldf2I3jRRG+sBMF3UgjgbCTPe8uEHYKK0ZUwU4CdHwXH9jJgI7v4we7iGFX3/4EwE7qb+wQ2Hkvjojuj//PRUHH4gc7SoBSvehpC+GwC63SeRIGu3SL/hQ6UVU6b8Jgt2f9CqljB8EubOjVL0Gw855PF5Q4h2MZ7jqN+fj85z8PAPjd736H4eFhvcYFMiaou+GGG7Bx40Z0Tizh+OM3x3LuXFzVOZWLIbxDsKoXQ3iHYEWGW/3irdat3dwcfv5cWLwnRcd0/lzgBRES4Ve4ag65silLZEAHVA/DGiWKmm5LGHQs3mFYSpz5u7SHXClg5C2laUuEz69TSGzDDqKgC9tedcgwtvswNkMwoqEpoxp3Ck8FYsewPFn5deDFncqAR5xTnnhxJ9WfsAsoJO9X0Hl2RHZpsYBEVem8CRqOVam++Q3HRg29+sVvONbvfLqwxDH1CTBStdvxgP/B5MmTsXnzZtxyyy16jQpk1FG3fv163H777QCAM0/bhFRG7ZXGhmB1L4Zg1Trd4VZWrdMdbmXVOtHh1qCwat3azc0wltWGnj8XFne1Tgtz5WpdLBdEEP0rXFm1zjtliXRXyhdNVFTnVO5XeRi2ojqnACterdOdg859fl3MVTqVVFTrWJVOJZ5qHZu6RLo/lFZW61RXjKB0pFqnUKVjcVfrKCGwsnpv5TRlSA27BvYrjlUsXFU70WHX4P44/8pW6byxMpJVOnd8LqCQqdJVteWq2o1Hlc4d73CsbJXOGwY72SqdNwx2olU6b7xVO5GhV78UqQGkDJx11lkAgJtvvhkbN25Uaks0o4666667DoVCAXN3HsZ+e4tdNeoXm1J02aZ2dQ6QH271i0kohuys9lQl7IRS3atbKSUY2FgPY1mt9txzQEznzxXjOX8OtrM8kO4FEdQgsNJ6f8ET21klwixQNcyxvpSHYe20EcsJMbqPDVAehjXIFjMXHbVtYDgnN+xa3YgDu6Gc1jx2rD+kf1BvCTDAGYbNl5RBx0IoBSnaDujiqrTqNkOBlML8kL79oGpVOm+sGv02WDta/WFVu35oP84MduNVpfPGsg283dcZyzlyTtVO/zmUo6Z0lc4bBrvlxQla7dTN+jx222035HI5XHvttVptRWVUUbdixQo8+OCDAIDPfbpL+X3HphTF8ieoDuhazCHMSvegRXBKkqAM2lmsKbagSE00mOofFMNWButyTahLFdDeorfMkW05Q3qlek34EMDOUFhZrWZglIDUEPQ/JGzAjGHuRitjIN+o/3SnJmCliRbogDLC4rh40KYwCjYoIaCmZlWjZMMcyIOU9N5QSckG6dacYh9wMJYvALprKNoW7L4+0H7NpcRsClosggzovX+AENB0Csaw3hObEgKrNhXLH2Ck5OA33R/DX4QUShN2V/WJAhnddojzOMWxPBklJJY/mIuNgJnX749VS1HcpLdaEiEU23dsRjal9xojhOLAtqVYVWjHmmKrVltTU92xXNUKAKtKzpdODEJggWjBjhDg61//OgDgoYcewtKlS/U6FZJRRd0f//hH2LaNOXvm0TpbbfjEDbo2w0JnSm2hvRZzCO1GHiYoOs1BTE9vVmpn0M6i16qFXcal6hqww1YG3QW2wgQVmirFL7ZFUBpKwc455WGq+JebMwxY/iLQKtUZJSA14MCFGhpDMQx01IFUoUHtRW5lDOSbDFCjvJ6rIu446AgBNQArq/bGzEFXfohV//pnoOPReDUz0IFSZ4hQEXYcdOUKHVH/S87BHLWdL0t9uNMeGCyDrKQOO5vyaiEtldRhRwhotnySlkWVYUcJgVWXcp47cZzPxrpnacCOAmae8u91YGcUy88fWw92JZd5dGDn9oUy7AhQaC6/H9IYYEcoYAHFjbVauGPndWdTJS3cpY0SLBAUqakFOxMUNjVgU0MbdhYckOnA7snhdt6WDuxW1/4/zJ8/H5RS/OUvf1HvUERGDXXvvvsuHn/8cRBCMP/kIViSn1w2pchTm4MOAExCpNeBZdW5dmOkomaCKq3h6gWdagZLWXQXKl+EE2oHMaFVDqy2RRzMuR5bWmOj2CT3GHHQuU/eNyFdrTNKQKZnBHRacYGOR+E90A06wLmPVkYedm7QOX1Rg50XdLx92ZOmvaADlKt1FaDTiBd0/OeysHODjkUFdi7Q8R+pwM4FOt6OCuzcoGPRgl1lH1Vh5wW8EuzcoHP9TGmJvWLlKRuqsCvVVV8ApAo7bzuqsKv46KCAmSNKuCvVuR4gGw7uJGHHqnTeyMKOEIpDJyyu+Jku7FjigB0ADjsV3LlnzGCwU8GdRQ2cfvrpAJwp3pYvXy7fGYGMGurY0hg775fDxOlyrwB3dc4bmWqduzrnTYc5LFytY8OtfqCrMwpoSolP/DhYyqK3WH2SR8qwpKp1tkVg532e7ESuWsdA5/vzlPgwrLs65wWdVLXOdi6KqAId5Kt1XtDx/gRMuRKUKtCxSMIuCHTufgm14wO6kb7KwS4QdJLVuiDQSccPdLxPErDzAR2/SQZ2PqDj7ehU7NyRhB2r0lVFAXZBv2Mp2PmBznWbzDl2XtDx/sjCjlRDjEUWdkGmIJYE7spVOv8DyFXtSnUBV50pwC5oAnxZ2KWN6u1VYDc11V31Mwa78ajasSqdXzsqsFtETsAhhxwyqtW6UUHdmjVr8PjjjwMADjjWedNbYzVivcAbchjoAPFqHQNdYDuC1Tp3dS6oQtdo5iJhN1jKYl2uyRd0LKLVOg66AAWIVuuCQOe+XWQY1iiOQnUuoCkrIwa7INDxQwkOwwaCjkWwChUFOtGEgY5FFHaRFTpB2ImATqhaFwY6mYSAjm+iMxTrbkcUdoQAmbD1qcRgVzHs6hcJ2EX9brWGYivaEYdd2NuNDOxKEbYRhZ0zghG+rfg8oGE3SsAu7EEShF1Qlc4dEdj5VencKVJT+Dy7qanuwM/2uIZjAUjBLmy9eBnY9dgjvxM2b91jjz2GFSv0rhb2y6ig7rbbboNt29hubgGTZjrPeGcKkuAnrd9wq0r8hluDElWtkxluDTu3btjKoLdYE3mVbFS1jp8/FwI6AM6UAHVWKOyiQMe3ixiGNYpAajAadJHVOr/h1qCE3HUrY2BoQioUdIDYMGwk6Nh2EdU6GdCF/lptCqMo9qEWBTvhIdcI2MlU6EJhJwq6qGqdAOj4plGwC6nSVbQTBbsy6CLnAoyAXSToWARgJ1qFjYRdWJWuop1o2LHz6ELbEYCd37CrX+xU9AUUovM3hsIurEpXcbBo2FUMuwYlAnYMdFHLVAJi59n5VekquyN2np1IsWZLGI71tiMyHOu+wHNp6iQceOCBsG2bT/cWZ2JHXU9PD+6//34AwAePrbw4IqhaF1Wd8yZoCDZsuNUvQdW6sOHWoAQNw/qdPxeWoGpdRXVOZJwuYBjWfUGESMKGYUVBx9sKgp0M6BA8DOuuzon82sIeSlHQAQgdhlWp0Pn1iYNO5m+egMdA+hy6ANipDLn6wk62QhcEOwnQ8V2CYCcIOt5OEOxEQccSADth0LGMxcUTgqAbaScYdkHDrr7thMEuZNg1KEGwk7WDL+zcF0eIJAR2gcOufom4gEIEdO74wY4QioMnLBFuIwx2fsOuQRmr4Vi/odewdoJg567SsXzyk58EADz88MPo64thpgBXYkfdvffei3w+j86ZJczaufLNya9aJws6wH8INmq4NSgd5nDFE0pkuDW4X5UvlKDz58LiV62LGm4NincY1u+CCKF2fIZhZUFX0ZY7kqBj8Q7DRg23BsVvGFYKdCw+2+oMubofJyXQAb4XToz2RRFC+7ofK9Uh1yDYqUDGO++cJOh4l7ywkwUdSyDsJDsUADuVK5urYCcJupF2/GEne7G9L+xI9LBrULywExl29e2Xn31lP2WDYCf7IPlcQCEy7BoUP9hlDbmLfIJgJ3sB5FgMx4YNvQa14wc7v2nY1jWditmzZyOXy+G+++6TOk5UYkWdbdu49957AQD7HD3s+5nIqnW6w63uap0q6ADnycQmTNS9upVV60TOnwuLu1qnCjoAFdU60eHWoLBhWKMIZHrVQDfSp/L3iqBjYbBTBR1QOQxLTaBUQ+RBx9pyVeviOIeOEnXQ8TZcw7BaoHNV6+K4KIIQon8OnRt2rEqn0oxlj1TrFEHH22KwUwUdiwt2gRdGiMQDO505CDnsFEE30k4l7ESGXX3bKcMuM2hz0Oksd8dgpwo63i8GO9FhV7/QyitjhYZdg+KBnWyVzh0GO9kqnTsMdgx3MlU6b0YLdqJVOr923MOxflU6wHl7OOWUUwAAd911FywrhgkQy4kVdS+++CLWrVuHmjobO+/njyyr/EvQPXfOJAQdRglz0t3KoGPpMIfRbg7EMl3JsJUWOn8uLCnDQkOmAMO01UFXDq2xUWimWqADnC7w6pziUl28rfJDrAM6FitLlEHH+0OcN/RSTXlmftU39PIwrJ0h2qADnD/MdUDHwpYh067QlZe4iuMqV0opYFtagHIasoFSSXrYtaoZNgyr2x+U71vK1F9P16IwciW5YVe/2A7IdSeVBsqwG4jn4on0oC017OrbTnm5v/SgHcv6xXaKxNIOsSWHXYPCqna6M0yXYadapXMnmyphp+b10lU6d4rU5LiTrdJ5Ezfsbu2fLV2l87bDcBe2WAKd/d9oamrC+vXr8dJLLykfz5tYUff3v/8dADD3wDzSGf9tNlpNeHJwRywo6C3TxWJqvv6yxFkfbq9sF/aqXa7VVpGayBoltGfVKgYs/YUa9AyXha+7To5FQGz9tQ+JDdCUMxu6Vqjzhu5ASrMt1p72FaWAUYrn/CPDAlJDtvZi4gx0sXzAWBRGrgia1n/jA6VAjd5yI5RSIKa/TKllw+rtU17TlccgINmsNlbdIbrLiRmAVZ+JvNo5sh8USA2VkBqO4TFnaw3HECuj/9xmITZQtykGtMZ0LmKhyXmf03APT77dAmJ46RqteSzbpFaBqmgHFGliYZPmh4EJigPrFqEuhgepkRSRho20wvyz7lggGLIzWF9s0e7Tzev3w7XrDg28PZUBjjrqKADAAw88oH08lthQ19vbi+eeew4AsOf86gsGNlpNeCs/FeuLzcjRlPb6rVb5zTcNIK343pAlQD0xyu0QpDXWgClSEzk7DYNQtKcHlWHXX6hB13AdbArU1RSQblSsQpYIjEETRl7/V0xsgFjOg2zVAIUmxQecogI7cazryNo1FH91xHbWlWX90XlaGiWK1JANviqD4meDt0JHFRelBhzQmUNl8GhXjsorKqRMoFbt1AIOOoYnU/3Tilo27P5+/njTkuKHg0Fg1NUB7HHWgZ1pAs2NvB1l2BmA1VjjvEYohZnXrWgCsKke7AwCK2M4V5/rPpVcFxXpvg+w/YlFtWDnjEA4r79YLjIpV+t1zJKfYIGaFJRQbdgZhMIqGXh3fQcWbehQawMUsxqcap9NiTLsTFAcXP8OasqfubqwM8urMpmEasHu6aE5ABzc6cIuZ6UxVMrg2nWHBuKuZY8/Osd9+unYLpiIDXVPPvkkLMvCxOmlqsmGN1pNWF9sRpGasMrvBm/lpypV6yxKOeh04gYdyy7pQexTt1SqnSI1MWRnkHOVwlSX/XKDDgAMw0Z9rQLsSsTBnGsIkKaoUrWOgY7fHaIIOw/oAJQXtJfvU1xxg875gTrsKkDHonIRQcCQqwrsKkCH8oUTGcXyqFV531RgVwU6FgXYUcuGPeC5alUFdl7QudqSDgOd++IUFdi5QedqRwV2hALmsOtkIVXYuUHHG5dvJiiqsPPupwO7ilUsNGBXdR6dIuwY6HgzGrAzJox8htiWAatkSMOOgc5d/NCBXY2niFJnFJVw1+w5/UoHdkXXMC6DnQrublu/L/9+qJThuPOmc6aFOXPmoFgs4rHHHlPqszexoe6f//wnAGDXAyofYAY6y/MOUKSmdLUuCHOy1To/0AGAKVmtY9U5v/vRkhqSqtZ5QcdiGLZcgcUNOk9kYVcFOn6DJHz8QIeRizdigZ1kta4KdPwGedj5go41J/G5EHUOnSjsiEWRGihUgM7pKEANQx52lv99oykTqBO73DAQdCwSsOOg82tLBnZBoHO1JRw/0LnaEYadH+hc7cjAjoPOezdsKjcc6wc6fhDh7vAEzemodFW+T1Rg53uVsALswlaNkPWKG3T8ZwqwMybkYfi8EanAzu/zURZ2rEoXFFnY+RVQVGD33NDsqp+x8+NkYZezqj/UgmDHhmCfeOIJqWMEJRbUbdq0Ca+++ioAYJf9R1AXBDqWt/JT8VZB7MkQVZ0ThV0Q6FhEq3UMdEGRGYYNAh2L8DBsCOhYaIqCRnymExswisQfdOXYGcFqXQDo+M3jALtA0PENxGBnlCgyfVYg6Jw+iQ3Dil4UEQU7YlGYw8Xg/sjCLgB0vD+mEVmxiwQdiwjsbBoMupEDRsMuCnSutiITBjpXO5GwCwOdqx0R2AWCjrcDsapdGOj4wSK7wxO1pJ7oNJxR28jAjg27+t5Gxc+zi7zSVQJ2+QnBvxcOO4GXSxDoWERh5x529Yso7LzDrkERhZ23SldxLAnYPTcUfnGEDOzcVTpv/GBHtv8pAODVV19Fd7f6lcAssaDuueeeA6UUU2cX0dxuV5w/FwQ6wIHRq7kZkcOwcQ23thlGKOgAp1q3R6YvFHZRoGOJGobtL9RgRV9rKOgAwWFYAdCxhK9aMFKdC8WIyDBsBOjc/Rmr8+siQcc3DO+T9/y58D6Fwy6uq1wjQcciCrsI0I0cWORTWPDOhcCOWjYsdg5dHMcTHdIOa0sEdKJ9IkTsdRABu0jQuSMCO5E+CWwjukYyEM/7gQjswkDHt4n5PLsor3iHXX2bIWLn2YWBjiUKdn7Drn5hsIvCXRToWKJg12zkI09zYrCLwp3I1a4isLtt/b6+VTp3vOfZtXTY2GmnnWDbNp566qnIfkQlNtQBwA57FnzPnwuLc2lz8IeLDOiCqnVR1TlvwoZhRUHHEjQMy6pzlk2EZmIIHYaVAB0QXK0LHG4NShjsBEHHE+f5dQGwEwaduymfp03YcGtwQwELlSuAzq9aJww6lijYiYIO4dU6pStdfWAXOuQa1K+gah2r0snE77gyoCsnsFpnAFaDxFXFAbCTAh1LEOxYlU40IW/3MqBjCVztRaKpMNiJgK5i+xDYSc1HFwI7EdBVNBUCO/d5dFGJgp3oaUk2JYFVu6hhV7+EwU70vPWoCyj8hl2DEgW7KNCxeM+zO/RQ599nnnlGuC9B0UZdPp/nc6y075aJrM75ZWF+clW1TvWCCC/sZEHH4h2G9bsgQiR+w7BRw61B8R2GlQQdi+05v04adHxHH/jIgg4xD8P6RAV0fsOwSqBj8cBOp0Lnhp006FiCYCcBOt4fnwsnhIdd/eKCnQroyh2ohp3osGtAexX9kwQda6MKdiLDrgFtuWGnBDoWL+xEhl394rO9CuhYvI+J0hzsAbBTuTrdD3ZFldm5AmAnAzq+jw/sjPaCUJXOHT/YRQ27BsULO9FhV7/4XUARNuwaFD/YRQ27+iXoAoqwYdegMNjZ038OwBmCzef15t3VRh3rREMbRXFSozToAAdMC3LTOeziGG4F1EEHVA7Dhl0QIRL3MKwq6ADPMKx7yhKVh4s4byB2WgN05VScX6cAOpbROr9OCXQsLthpgY73y9k3jiFXahB10LF4YacAOt4fF+y0QMdimuqg451ywU4HdK72lEHnaoPDThV0rrbMvK0HOhYGO1XQscR4VSwwAjmdIVkv7HSGUt2wKzZp9MsDu7Dz6CKbcsHOaC/AUFw1wj3lieiwa1C8sFMBnTsMdiLDrkHxwk51kmHvBRQiw65BGSpl8PfUgZgwYQLy+TwWLFig1A6LNupefvllAEDbzinYioACRoZh4wBdGkCjQZRBx2KW351kq3N+aUkNIWXYyqBjMQwbpkmdN04KvTdxog861o5VAxQbifaku7GfX1fSAB1L+XEy85qgK8ew9Jb+4t2yKYyiJpwA512AEC3QsXDY6YIOACxLD3S8UxTUsvRBBwCEgKTT6qBz9YlQCqshq/98pxRG3tJ+PgFwYDdY0odZeS47nSqdO2YuntUw6jbZ0sOuvm2VYaf/uwNISX7Y1bcpQkFTVBl0LGzKk4Jtas3dCozATnbYNSh1RlEZdCwMdjLDrkFhsFMFHcuwlcW++zqVvhdeeEGrLW3UvfbaawCA1jl6MyPm7TReHNoOLxeqF8SVSY9tYFGpAQuL9VinOYH6RpvCogZmZPWXVlmVa8F7fa3a7QznM8gPBizXIRkjT5DuI9qznhsFZz1YI1+9MLZ0WyUgPURhWPqfUMSmSOVsGD6LNcv2KTWsjzCnU04VROpcJb9m7PIHOcDXdtUJJQS0JoYSKaVAsQSS0lwuxLJg9cUAunJIOgWqOazBQUcpyFD1BOvSsctr8WqG2BTpriGk+mLoEwDYFJluzRU6KJDpKaJmcwxLKsD5o8q9XqxyOxZFbVc8zykAyOjOF0uAUgOFOWQgNRDDshFZG8VcHEv1OCB7p3+Sdjs7167xXeheJY2khHQMb8QLCpNRYxTRYg5pt3Xd0v2xsqdFu5199tkHAPhMIqrR+jQYGhrCO+84An+nfY5yO3k7jVz568XB7ZVh12MbWG818HXlbI0/NzfaFCtLTbBhYGq6Sxl2K4Zb8cS6OVjU0wHLNkAIVS4WDOczyA1knc+5jA27Vv1NzsgTpPsJXzuRKMLHKLD1YMvnqGiYzsFTeVZ3G1qwIzaFWaD8L2pV2FWAjsBZR1W5U8RBb7kdK6v28mOg4+vvGkQPduWnETVN0FqNPxgoBckV+BAlSSsikYHOjmcpMZLNghAC2DbosCZ8jPLjXLJigR0pWloYIzZFqmfYqbKW9NqqaNfSgB0FMr1FpyJWsrVhlxpynqBxwq6mW7cqNtKWLuwoG3WxoQe7rF0ewSHasJve0Q0AKFimFux2rVuNNLFQpCksLEzCwoJ6W42uDyld2OXsNAzYMGBrwe6GpfshX0zDsg1t2J21xLnyddGiRcjl1F/HWqh7++23YVkWSg21eLd/Bh7fuKPU/nk7jQGrpmJ4M+pq2KAw0LnP6dtoqVXrGOhYP0xQJditGG7Fop4OFCwTlq1XTakAHeAIShF2btAB4OfBycKOg871+qKGWrXODToWVdi5Qef+mSzsvBU6Sog67Fygc/6vBrsq0OnG8/RRhp0bdCwqsBst0LGowo5V6dwZZ9hVgM7Vp3GFnQt0QHmYUgN2qSG76j1hvGHnt4qFEuwIUGz09EEVdgx0LBqwm97RjbRr+gAd2LmHb4s0xXEnm0afDydV2L2an1Lxfx3Y5Ysj7wkMdiq4e3tlJ4rZekyYMAGWZWHhwoVK/QE0Uffuu+8CAPITmkFLBhau7BSGHavO+V188NrQDKlqnR/ogPJ4t9UgBTsv6FhkYcdA54c52WpdFeh4Q/KwqwIdi+yFkz6gc/pUvthBAnZ+oOPNScCODbd6QaeSoCFXJdh5Qcd/Lge7UNCpVOsCnjbSsPMDHYsM7EYbdCyysGOgM3we33GCnS/oXH0aF9h5QMfbUISdF3S8vThh12VL4S5sFQsp2JVB59ueCuz82lGAnRd0LCqw27Vute/PZWHnBzoWWdi9mp/ie468CuxuWLpf1c8s25Cu2r29shN20QQIwdy5cwEAb7zxhlRf3IkFdYX2ZgAALRnIW9FPIga6oBSpKTwMGwQ6FlHYbbQpXis0+IKOxQSFKTBDdRjoWERhFwg63pAY7Iw8QXaz4Q861pRgtS4QdLwhcdiFgc7dryjYVQy3BmwqWq2LOodOCnZBoOO3i8FOqEInA7uIp7Ew7MJAxyICu7ECHYso7MJAxzLGsAsFnatPYwq7ANDxNiRhlxr2Bx1vLy7Y2eJVO5FVLIRgFwY6FhnYZcOX7CnmUkK4CwIdiwzs2LBrUFQrdn5JgwrhLgh0LDKwY8OuQZGBnV0c+T3vuKNTFFu8eLHQvn6JFXUAsGzNhNBqXRToWERgFwU6Fgsk9Pw6Vp3L0XTk0G9nuie0WicCOpYo2EWCjjcUvgGvzlkIvzpVYBg2EnS8T9GwEwGdu2+Bh/IZbg3bNgx2ohdFCMEuCnR8O4RuIzXkKgI7wc/CSNiJgI4lDHZjDTqWKNiJgI5ljGAnBDpXn8YKdoRGL6UlCrvUsC10FX1csAPiOc+OtRMKOxHQsYjAzjvs6pfylAKhsCM0FHQsIrCLAh2LCOzCqnTeRMFOaBUoAdhFgY5FBHZvr+ys+P/FS53ZRJYuDV7RKirKqMvn81i1ahUAoNA2MhdN2DCsKOhYwmAnCjqWzXatb7UuaLg1KGHDsCuGW7Gkd4LU+XNBsBMGHUtAtS5wuDUoIbATBh1LCOykQAfnmH7VOhnQuffxg53sVa6hsBMFHWvL8K/WKZ1DFwY72Umhg2AnAzqW0MrZGIOOHzcAdjKgYxGBlkCCYCcFOpaxgB0F0n1iH75RsBMFHW9vjGAnu4qFL+xkQMcSBruMAOjcCYHd9Ak9ws2EwU4UdCxhsKtXuHovCHbe8+jCEga7G5eJgY4lDHZ82NWVYtlSK1euRKGgdqGSMurWrl0LSinsdAp2beXyNn6wkwUdizPxb+WHiizoWDsb7boK2MmCjsUPdgx0RUv/snRp0AG+w7DSoGPxgZ006Hi/qmEnCzrelGcYVgV07n3dsFOdtsQXdpKgc/apHobVuijCD3aqk0J7YacCOgAwjOpqHavSxRBp0LF4YacCOiC+qU5QDTsl0LGMJuwihl192wiAnSzoeHujDDvVVSwqYKcCOhY/2GVstU9vH9hFDbv6JQh2KvPa+cGunpSUceKFXdSwq1+CYDdckDeMH+z8QAcAVl0NGhoaYFkWVq5cKX0sQAN17IDFpjrfv8Dd59epgo7ljeFpeLkwAT22gaWlOmy065RXrmCwUwUdixt2uqBzV+uUQMcbGoGdMuhYXLBTBh3vFzhwVEHHmyrDTgd0PNSBne48dJRogo7vOwK7WK5ydcNOd1JoBjtV0LG4h2FjHHZVBh2LbYPm8uqgY4lpGBYYgZ0W6Fz9ih12CqDjbTDYdY3ATmfi8tGCne4qFm7YaU1U7IadKuhcHWGwUwEdixd2O9WuVe6SG3Y6oGNhsFMBHQuDHcPdjcuqL4wQjRd2fqADABCCadOmAXAKZypRfuzY0GupqT5wm+Vr2/HI+l20V2QoUhMrC+1YYzWWz3tTr4YVqYl+mkaPnVEGHYsJitWFeCp07XWDaKnNqYOOhVAY9UWUWizt1R1AAZoCrKwG6FhT5WeaDuhYiO1ALI5Z4XnfdE+nIQBNaYDO1Q6I84EQy7QlBgFNxzCpKeCAx6b6EwKbJmCY8YDOMGE2NemBjoVSgBjqoGOJE3Yl21l9JIahXWoS9G9XG0OvnAx2mvrLbRWdil1cIMu16k/EDTiVUe33T4zArmrqEpXYcN4f4riLlKCxYVgZdCwMds2pYdRozmLPYBfPbxCoI1TbHmwuu1tX7K1UpXOHwc57Hp03nZ3O7WOOug0bNgAASg11gdtQm2D5+na82DVD9TAAgEnpPnSme5Gj6uuvstSTAmqIhRpiodEY1mqrw+zHaS3P47gpb2q101Y7hA80bcCuLWsxbXKXVltG2kampoRs2zCGpustpWBngWJ9yOWkEmFNxLJsEMeYXlvUILDSgJ0CSnV6zytqEJRqDNiZmO6fAdgpzT4Rp1JHTQM0qwc7QinIsOYqAyyWBeTzMDKaK1gYJszmJiCdAqnJRm8f2pYBUlsDUBu0pLkECSEODIua7bhiN+jdP5pNoXv3FpRq9GFHTYLunWuh8bf1SEyCvllZDHXo/YFNDWBgSgp2Kh7Y5ZqdNjTNAwAo1QLpvniWSwMAFPTvX+uEfpgGRW++Rrut3ZtXwwDFGs8C9yr5QHoDcpqf8QCQJs5SuAfVLtdu6/fLD0WukEbajGFE4Z+taPpX+OuPoW7dunVKx1B+9Lq6HHxYdf5vNsS0QQwK2yZYsq5DGXaT0n2YntmMdPkEryJMZdjVkCJfFBhwKm2q6TD7McUsoNkg+HTzSzhp+utK7TDQZY0SskYJe7avwvQparAz0jYy2VJ5fVgb2QnqsOOgMyhKtUBeY4UzYgNGef1VKwOUajTe4NwTHRN12DHQsaqa1vsIKWOVlCdfTqvfP2KVF1UHAJMow44SUrHOqQ7sCKUgQ3mAUmc4N6ux6oRlgQ4Ng1IKpNMwahQ/VBjo2H00TXXYMdCxap9lqcOOECDlPM7EsvVgRwjsugzvoyrsGOis8h8cOrBjoLMyBLZJ0L2jOhBpiqB3uxrYacBOA4OT9GBnp0b+1YFdvtmo+GTUgV2xgQCG00amVw92VmP5FBEKLdi1tA8gZTplSMs2tGC3T9sK1BnOH3tFO6UFu10za5Atn5OnCzv2TldH9GB3zfJDMZQfeb/TgV3q8WakBylSOYqWl4LfQ69a7liCFc5ko486z0USxLRhpC0Qg/IPTFXYeUHHogK7GlJEo1FZaagzikrVOga6dPlDoFERdm7QsajCzg06FtO0AYVFot2gcxqnKDZQJdhx0Lm6oQw7n7uiAjsv6ACNah2prj6qwo5YFKkhz3l0CrDzgo7/XAF2btC521GCnRt0LCqw84KORQV2XtC5+yoLOwY6V1vKsGOgc/dLAXZe0LGowM4NOqePTjsqsHODjrWlCjtWpXNHFXb5ZsO3AqkCOwY6dxuqsLMabVB+vgi0YJdOVd4ZVdi5QceiCjs36FhUYed961WF3TXLD8Vgvvp9TgV2DHT8/8MO7PxwZ5Xfw3p7e6WPA2igrru72+mAC3XEoCOY8zywsrALAh1vT6LrfqBjaTQKUrDzgm6kHTnY+YGORRZ2fqDjbbXmpKp1VaDjB5GHnR/oWKRhF2JTGdj5ga6iTzKw8wHdyHHkYOcLOhYJ2AWBjt8uATs/0LnbkYKdH+hYlGAXcB9lYBcEOhaZ88V8QMdvkoWdH+hYJGAXBDoWGdhVgY73tQy7D4jDrgp0rrZkYecedvVGFnZBoGORgZ0XdO42ZGFnNbhAx6IIu5Z2/yvNZWHnBzoWWdj5gY5FFnZs2NUbFdj5gY4fRwJ2XtDxnw9Tjjt37Kzzwhhz1A0ODjodyDivJmLaIGb4vDmisIsCHeBMKCxSrasnhUDQsYjCLgh0I+2IwS4MdCyisAsDHQCpYdhA0PGDicMuDHQswrAT+GwVgV0Y6Cr6JAK7ENCNHE8MdqGgYxGAXRToKraL6lMI6Hg7orALAx2LKOxYlS4sIrCLAh0gfn5dCOj4JqKwCwMdiwTsgkDHIgK7QNCxEKBUKwa7QNC52hKFXRjoWERhFwU6FhHYBYHO3YYo7KwGGzTo/VgSdi3tA1VVuopjCcIuDHQsorALAx2LKOyCQMciA7trlh8afTwB2AWBrmIbD+ysGuf7vj6VBYU1UDc87CCIplL8/DmRq/5sm4QuJSYCOpaoYVjvOXRhiYJdFOhG2gmHnQjoWLJGCbWp4P5HgY5FBHaRoOMHjYadCOhYImEXw0VjgBjoeJ/SEbATAN3IccNhJwQ6lhDYiYIOgHNFbEi1TgR0/LhRsBMBHUsU7IKGXf0SBjsR0LFEDcMKgI5vGgU7EdCxRMCOZlPo3q0luh2Ew46aBN07hYCORQB2NEXQOysEdK62omAnAjqWSNgRSF30EQa7KNC524iCXSjoWARhFwU6fkwB2EWBjiUKdiKgY4mCXRToWERgFzTs6nvcCNhFgY7FDTtanvKJFc5ko4Q6SilyOeeSfVpDhEHHsmpjq2+1TgZ0LEGwCxtyDUoQ7ERBN9KOP+xkQMeyY/N632qdKOhYwmAnDDp+8GDYyYCOJRB20hMB+1frZEAHONsFwk4CdCPH94edFOhYfGAnBTq2T8AwrAzo3G35wk4GdCxBsJMBHYsf7GRAxxIEOwnQ8V2CYCcDOpYA2DHQyTxP/WDHQSfaTgjsOOhER+xDYCcDOpYw2OWb5D8G/WAnCjp3G0GwEwIdSwTsREHHjx0Cu33aVgi3AwTDTgZ0LEGwEwUdSxjsZEDHjx8Au9QTzVLtMNixuUWLRbUpYpRQVyqVYNtlTKQN6Xm5/IZhVUDH4oWdCuhYvLCTBd1IO5WwUwEd4D8MKws6Fj/YSYOOd6IadiqgY6mCnfJEwJWwkwYdix/sFEA30o9K2CmBjsUFOxXQ8T55YKcCOndbFbBTAR2LF3YqoGNxw04FdCxe2CmAju/qhZ0K6Fg8sFMBHYsbdtKgY/GBnTToXG15YacCOhY/2IkOu/rFDTtZ0Lnb8MJOCnQsAbCTBR3vgw/sRIZd/eKFnQroWLywkwUdix/sVEDH++GBXeqJZqQH5N/7UsMUTQuc17NlWbAs+cdJf0IYtc8T2DbB0vUT8GLXDC3QsTDY6YCOhcFOFXQj7TiwO3v240qgY3HDThV0LG7YKYOOxQU7HdCxcNjpTnRchp0y6FjcsNMAHe9XGXZaoGNhsNOdq68MOx3QudtCNqMHOhYGOx3QsZgmSG2tOuhYGOw0QMfCYacDOpYy7HRAx1KqIejdoU4NdCwu2CmDztUWg50O6FjcsNMBHe+erQ46FjfslEDH4oGdKuhY3LBTBR0Lg50O6FgY7FRBx+KGnQ7oWBjsVEHHksqNfLYPDMgvoaj0VIxl9nYAlmWgJ1eLXqtWC3QsNUYRLUY+hp4Bg3YW/XaNMuhYGg2CzlSvMuhYskYJ2VQJ1CbKoGMxTRtIU9imBuhYykPvRkEPdCwxzDvJ29ECHQsBbDP6hHOpJuNaLSKm1yElxMFcHH2Cc3qGFuhY0ml90LEYJJ7Hy7JAi8VY2iKWDTKcj6dfhgGrsSaWyb2tTAyThBNnJZpSbUoddK627JTrX81Q08FrLJMnA7Gs8GBYQCpH1EHHUoYdMagW6Fgs28DMhi4t0LEU7ZQ26FhMTdCxZAnwbm6yNuhYzCf1QAcA1PWhxUdEJaKNOp0Pp6bGYUxp6MW7gxPxxvB05XYAoNHIod0YhgGqNakwAGy06rGy2I4lhYl4p6g3+/qTw5Nx7bpDsTYnN77uzZu9k7FkVQdowUBuWO8JONRbi+zaFIwigZnTe/NODRLUrneW/opl2S4aA6DKENMGHZy/xM1iPNghNmDmbIAQWGn91SLsjAE7o/mJYlMYhRKoYThru2qEWDaQL4AQAqI6qbC7vUwaMGNSvmUBuitFuNsajmEZsJIFlCwY3fJ/jbtDSXn1EUrR9J7ehy+xgLaFw2h/S+/+EZuicZUFUIr6dZof5DZQv8ECbKBBsy1CgdQwAAKYMfz9Tywg06P//mBlAdhAZrNu6RBA1galwObuBu1+7da+FmliY0OxUbutSeleLChM1m6nvlzU0OWhBeAvPXsjb6dwwJTlut2C/Xgb0gNUb41foOKPvIYG+d+h0jumYRgcdumlarOcNzUOY7vWzciYFgp2Cm8OTFaGnRt0ALRgt9Gqx/JCB4rURJGaWJifogy7J4cn48Z1+6M3X4uufJ0y7N7snYyFKzpBCyZACeycqQy7od5aZFelYRQJCAWMvDrsUoMEdWsBowhepVOFnbPAt/M91amMxQ06dwVS472bgY6tJ0lThjLsnOW/nDtIDaIOuzLowPpkmsqwY6CD7aCVmIYW7EgmPfLmplvJsixnzjmbxgY7Wirpwa408pFE8kVl2FECfmI1KGAOl5RhRyygZdEQjFwRqf6CMuyITdG40nLWrAVgFGx12JVBR0rl9/Y8VYYdAx1br5bYVA925deNLuysLDgEjCJRh10ZdOxN2C4aWrDbrX0tak3nZP2SbWrBblK6F2lSQs5Oa8Gu3jVKZUMddgx03SVnmdN6M68FO/vxNqT7XRO0a7xl1XQ7j7lpmkil5EvTypW6ujrnwWh9O4/0Ejn0uEHHogo7L+hYVGDnBh2LKuwY6AaL5ZMebUMJdhWgY1GEnRt0LKqwqwAd79dImzJxgw5gH1QKsBtN0PHOKbblAh1vSgF2btDxn6nAzgM63pYC7CpAx3+oDrsK0LnaUwoDHcuWALtS9UeRCuwqQMd/qAY7Dro8+8uKKsHOCzoWJdh5QMfbUoCdF3Tu/irBzvO6UYWdG3QsSrDzgI53UxF2btCxqMKOgY5FFXb1PqcdqcDOCzreviLsvKBjUYFdTbcNo+Q87rW1tUqnuimPbdTX1wMAUrki2t+wpGCXMu0K0LHIwi4IdCwysPMDHQuD3VvFeqG2nhyejJvX78dBx6ICu7yVqgQdiyTshnprkVldCToWWdj5go73a6RNkXhBx5tRgB0lGF3Q8QNJtuUDOt6UBOz8QMdvk4FdAOh4WxKw8wUdv1Eedr6gc7UnFS/oWMYTdj6gY5GBnS/o+I1ysCMW0LJ4eAR0vB052BHLH3QsUrALAB1vSwJ2QaDjkbVYwOtGFnZ+oGORgl0A6FhkYecHOt6WpFS8oGORhZ0f6HifIA67INDx40jCLgh0KnFARwHq3BtWOJONNupAi0jlKNrfsJBZHA275qYhTG/qDrxdFHZRoGMRgV0Y6FiK1MSifGck7Bjo+gv+H2QysHuzdzKWrZ4QvIEg7BjozELwC1IUdqGg4/0aaTMsQaDjzcjAjsRzkUUk6HjnBNsKAR1vSgB2YaDj20jBLqJPArALBR3fSBx2oaBztSeUINCxjAfsQkDHIgK7UNDxjRxERR6PgS4X8IIWhB2xnHPogkDHIgS7CNDxtgRgFwk6OOeFC1frIh5SUdiFgY5FCHYRoGMRhV0Y6ADApoZwtS4IdCyisAsDHe8XomEXBTp+PEHYiYBO1MAcdABAncd/zFHX1FReqoc6fw2mchRtb4bDrqlxGLNaunyrdO6IwM6EHQk6ljDYiYCOhcEuaCg2CnQsIrDzHXb1SwTsREDHEgU7IdDxfo20GXQskQuehWAX07CrMOh45yLaEgAdbyoEdiKg49tGwY5V6UTaCoGdEOj4xtGwEwKdq73QRIGOZSxhJwA6ljDYCYGOtWPZaFwRXK2LBB0/aDjsREHHEgo7QdDxtkJgJwI6vq3IMKzga5lYQKY3+JgioGMJhZ0g6FiiYBcFOhaRYdgo0LFEwU4EdCxhsBMFHT9uxJPBfkK8Qhf1u64AHQDYzrHb2tqE2vdGGXUdHR3lDoy80BnsOh7KVuHO7zy6sITBrtHISU9d4gc7GdCxBJ1jJwo6ljDYCYOOJQx2FhECHUsQ7KRAx/s10qb3GDIz2ITCbrxAxzsX0JYE6HhTPrCTAR3fJwh2EcOuvm35wE4KdHynYNhJgS4qoqBjGQvYSYCOxQ92MqBzdgBSQyVf2AmDjrflDztZ0LH4wk4SdLwtH9jJgI7vEwY7ydcyKfnDTgZ0LL6wkwQdCy35P39EQccSBjtR0LEEwU4GdCx+sJMFHct+k9/zP8YTbUj3ST7uPr/zmm67GnQAQJ3X2IQJIaN0IYkBdZXLaqVyFNleG21vjpxnJws6Fj/YiQ67+sULuyJNSYFuZL9K2MmCjsUPdtKgY/GB3VBvLTLr5K+e8cJOCXS8XyNtsn9VpiT0hV2MF0Y4B9HfTxV0vCkX7FRAx9vxwk4BdLwtF+yUQMfiAztl0PntIws6ltGEnQLoWNywkwYd71A17KRBx9tyYNf2dr7cjhroWCpgpwg63pZr2iEV0PF9/WCn+Fr2wk4FdCwVsFMEHQDfqU5kQcfiBztZ0LF4YacCOhb3nhaAG3vnSYMOAJpSuSrYqYCOxf27Z5irAh3AC2Xt7e1Kx4m1UucOO88OG7NKoGNxw04HdCwMdhuteqwutiq3w2B3TfdeSqBjccNOGXQsLtjJDLv6xQ07YhE10PF+ldu01UDHm3HDbjSudNUJdT4sdUDHYxAt0PEuMdhpgI635a7YqYCOxQU77Qqde19V0LHEDDs6NKwFOhZSstRBxzs0Ajtl0PG2KNJ9eQ47VdCxGAUb9WstLdAB4HPY6YCOpQJ2mq9lBjsd0LEYJaIFOhb3MKwq6FjcsFMFHQuDnQ7oWCyMgG5TUX1aFzfsdEDHQonPcKsn8/d3ilhjXqmbMmWK8409GLjNwFQTdp2FVf0tqocB4MCuSE3UkKIW6FhqiIU0sZSqdO4UqYm0UUJzWm+iTss2sClXj7yVQk295szdlMAeTsHoSymDjoVQwBwiyPTpdQlwLmKwaogzyaZOOx7Y6XfMQZ3u04rQymqBVpcMAjsVT/mR41D/fRIwDNB0DFP6EwKSMgGFOZj82gKgBzrelt7cejymCdrRBtokdrV8eJ8I7No4llEow25VQR10vC2K1EBBeyJgAM79S8fzfDcKDsZ0QMdDy3806oYA+ZaYXn9AeQUf/fvHhmF1QAcABrExMd2PtFGKZVWo2emN2m0AzsNdpNACHUtTKoeSbWiDDgAa1pWQGgp/3axcuRIAMH262ry9yqibOXOm8401gKDlhewMAJNi08YmLO1RKyUCwA71GzGvbjmG7Cw22nUYoupvchliI0uA6eYAts9sUG4HAHI0jaKdwrTabkyr79Fqq1h+B5nYNIDa1uGIrUNiA7AI7IyNYqPek5BYzqzrlDgg0wktX51qp+OBnW0CtmYli4HOmZE/hrYojeUqXGLTcrVOrx3elklg16X12qEUKNlAygRtULsqq6pNwwBMzU9O9t6j245pgjTUA5qTJnPQpU3nSwd2KROFqa0O8rP6Kw1Q04BRsmHV6j0XYBgotGZhFCiozhJuhKBUa4AaMVy5ToBcqwlQ6PUJzh9CpTqnTVvnoSJArt1ZjkzbYQTITSo5f8gGnBcn3BQBmludYszrXVOU2zGIjc5MH9LlJTC7LD1A7ZpdgxpiYdDWn8bAos5H4cdbX9Bq54k1c/DEmjmglKDrUL0lSBrWlWAUafhzgVKsXr0aADBjxgyl4yg/ep2dnchkMiCwAXuo6vae7VMYmOX8smmJaMGuziighhRhgaBITfTbNUqwY6AzAdQQYE66Wxl2OZrGkJWFDYI0sbRgZ7tKTqZhq8PORllPAAhQarCUYUcswCiU34xIeT1IRdhR08Gc03A8sAPKSFSFHavQudtShF1VlU4DdhVVBk3YEctpixICmlKHHQMdXxIwk94yYEcrHyvldhjoGAZUYecCHVB+3FVhVwadnTGdtXkJ1GHHhm/Zc9Ik6rAzDOTbsiOnBhBFRLlAx2LVqL5oHNCx1y9V7RNGQMf7pQo7F+j4j1QLmwx0KTblBZRhx0DH1oXNlVJKsPOCDoDWyBcDHeB8HurAjoEOANqNvDLsnlgzB8OFNIYLzhOgrlEddQx0LIGjOvYwCoUC0uk0Jk2apHQs5UfONE1MmzbN+Y/VX3Fbz/Yp9O1YAjIjn5qqsNuhfiPm1q6s+JkFIg07N+hYVGHnBh0Lg92U+l6ptoDqCR1Nw8aExkE52LlBx0IAq16+YlcBOndbCrDzHSodb9h5QFfRliTsCHWGfarWQFaAne+wkSLsGOhYOOwkh/KqQMcSJ+xUzqvzGx1QgZ0XdPzn8rAjZcRVdJMQ0JTkE8EFOnc7SrDzgo5FBXZe0LmPIYMoH9AB7BQN2RdNJeh4WwqwqwKd6xhSsPMBHVC+SEwWdl7Q8c5CGnZe0LHIws4PdCwq1To36FhUYecGHYsK7BjovFGp1nlBBzjv9b6ws5xznaZPnw5T8Y9UrTrnnDlzyh0ZgYwf6FhkYbdD/UbsV78E9T7Tl8jCzkAl6FgY7OZk1wm14wc6ljSxMKO2S6piVwr45E+bljzsfJ4j1KBSsPMFHb9RDnah576NF+wCQFfRliDsAkHHN4hhWAmQhp0XdCxO5cgQhl0g6Fjigh2RxFhQfwA52AWBjt8uATvThD0h4MIrQsSrdT6gY5GGXRDoeJ8lYBcEOtexxPrkDzoWKdgFgI63JQG7QNC5jiXcJx/Q8ZtlYBcEOhYJ2AWBjiVXEvwcDQEd4FTrZGDnBzoWWdj5gY6lXWIKtCDQAU61TgZ2fqBj8YWd1QMA2GmnnYSP4Y3WR87OO+/sfFPq4T+zs/AFHYso7MJAxyIKuwyxkQ55UdYQYPtUL+bXLYqs2tnU8AUdi0zFLgh0vC1R2LEqXUAY7HId4cOxoaDjG4nBTuhihrGGXQToKtqKgF0k6PiGYrCLPLlbEHZBoGMRhV0k6Fhigp3wMGxUfwAx2EWBjm8nADvPsKs3wsOwIaBztyUEuyjQ8b4LwC4KdKxvUY9lBOhG2hGAXQToeFsCsIsEXTmR1boI0PHNRGBHgPxEKxh0LBGwIwRoaRsMBR3LG93hqztEgY5FFHZhoGMJ+6xlsWg46FhEqnVhoGOpa8yj65DoCxrDQMfifd//4B7OhMM77rhjZPtB0UId16TVA1BacR5dWKJgJwI6lijY+Q27+qWGAC2GHTocm6Np5ATq8KxiFwa7KNDxtqJg5zfs6hNqUNB0RNVO9MKqCNhJXZ0aN+xSRP8CCoTDThh0fIfwDwzhq/UiYBcFOpYo2AmDjmWsYCfaHyAcdqKg49uHwC4CdCyRsBMAnbutUNiJgo4lDHaCoOPHDXpMBUHHEgo7QdDxtgI2o4SgWC8GOnbcwLd/QdDxzcNgVwYdTYsuRxPQjKs6FwU6ABgqpgOHYUVBxxIFOxHQsYRV6xjmRB6pqGFYEdCx1DXlQit2IqBj4dtRinfeeQfAOKJuhx12QDqdBqEF9E3NBQ67+oXB7j/LZlbhrs4oCIGOJQh2oqBzJ+g8u7BhV7+EwU60Dd5WEOwEQedO0HAssSQnFw6AndJ0I3HCjgRU7QSrdBW7+MBOGnR8R/8PDunpF2K6KjYIdtKgYxlt2Mn2B/CHnSzo+H4+sBMEHUsg7CRA527LF3ayoOP7+TweMqBzH9/72EqCjsUXdpKgG2nLe87dCOak+uUHO0nQ8d38YCcLOhZPtS5quDUofufXyYKOJejCCRnQAcHDsCLVOW+CYCcDOha/Cyca1pWkQAe4hmHtAfT09CCTyWCHHXaQ6os7WqjLZDKYO3cuAKBUt14YdCy05EyW667a+V0YIRI/2AWdRxcV73l2sqBjYbDbs21VxXl23gsjhNrywk4BdCxe2AkNu/rFB3aUQA50rrbigh3ggZ0C6CraKX+AKIOOxQM75fm0fGAnWqVzxws7ZdCxjPVQrEjcsFMFHe+Yaz9J0LFUwU4BdO62KmCnCjoAMFBZrVMBHYsbdoqgY6mAnSLogMphWNHh1sC4YacIOt6U52I0JdABFcOwqqBjyZVSfChWFXQs7mrdTtm12Cm7Vgp0LF7YqYCOxXt+3ZNrd5AGHYt7GLZ+vQWjGHABRESITUHymwAAc+fORSbjv+a2SLRP495rr70AADUbNym3wap2BcsUHnb1C4PdRrsORRih59FFhZ1nNz2zWQl0LGliodHM8fPsRIddfdvywk5j7iMGu1I9VQMdSxl2xQZnKMPWedBHAXbUINorPHDYsbnodFKGnfYEqS7YqYCOpQJ2OqBj+f/tvXmUJFWd9/29NyK3yqytu6s3mm62RrZmk02hBxAFRBCQg+Crg6jzjsugHp+jMjrj4KAP+giMigojz4M6LsgwM24wvg84I4sCCrIIyr42vVQvVdXVteQSy33/iLiRkZGx3Hsju7u6uJ9z+nRVZsbNW5HbJ7+/u+wMscvbJ0qAYiGf0PntkHJZWeg4XOzcBf3KQhdui4udstBxeBk2j9BxCMCMfELHYRS5hC5oh3hf9HIJHccXuzxCFzTlAs0ljrrQcXyxyyN0nFmrkFvogHYZ9qDSJlSJjWqOBYq52OUROs6Fww/ink0H4J5NB2C2qS5QfQMNjK9tobrZgdHK16tT3+jt0nXUUUflaqd3UrdpW643X2YTjDeq2O7k+0BwQFAmFqrEzv3AlwlwUGEbDqlsyNmSt7hwxbAwXOpe00+GguGgXLSAQt7VLH2xKzE4eRfRJ95C03YVcCr522JUsnyb1BTz5alHbaVt7SIKIwRukcAp5n7pAQConX+pekaId8570yWAUqCSf2cGYpqeiOVuiIBUKkCerbY4BRNYNKwsdBxPxgiMZg92ZQBAm05PHj9mUjQWlXNvUQcC2BUKtwebYQCAVcsndBzqMBj5NgBqQ5Bb6ADAqjGQFskndD5G1cotdJwZu5RL6DhLzUlsdfqzbyjApFvqyeYcz7WW4vS9ns4ldBxmk9xCxxjDI488AmAOSN3BBx+MarUKo2mhuEl9P6kFS3bgyIXrsb61MNeerABggIHCi2jzbILiACgR4JDiZhxWWZ+rT45/qheWZnKJ3VSzhKnpCmjBAekTH8MYB7EIaJPAqTDYOWSMGYBT4OPpkEsSiQMYFlMv4/J2uISxHCVhH+oARtM7zyzPXqU+zN8aKZfYuQyG5QJu/vSQ2C6MGQvowX6zfF9YVjDziR2lYH1lsGIBpD/HSvVRocvz+FEKt78CVjDyn3PGAMZALAeFKfWtAQljMOo2qO16YpcDRgjsqgG3mPN5QAC7nD+h47gmAaPe+0IeqJ9oU4fBzPfd2kvFGHJvodgaYGAm84bAzOQzRKNmgVIXU7P5vlDtMziOfQbHYTGK52cX52pr78I4CsRBw80vT1NuES0Y2JozOfhdYxWmnDJWFMdz92lmvALYFK+elm+XlrFDpjE5OYlarYZDDjkkV1u5X3amaeKEE04AAFRfGgVa8k0uWLIDa5e/iGFzFhYzsL61EI/U91GSu37awBBtv0mqil347bGPMBxS3Iyz+/+oJHezThEztldTNAhTFrsdjTImJqtwXS/JIgYDLTpKYkcsAmOWgjB/3EpOsQueSURd7IgDGK12tp5XxsLladW2uNAFJVyiLnZc5jjKYhcSOu93dbHjQkd8Gcsldq7bsQerstj5QscFTFnskhI6lcePUrjVipdC8mZUz7kvdAByiR0XOl5+Jw5TFrtA6PiuDBTK4+miQpdH7lyzndoTV13saGSIQvR3KUKHEpspix0XuqCtHE7OhQ4AHIcoi90+g+MoGxbK/p6wdaegLHZc6Dgv22phzZRbDIQOQC6x40LHOW+/x5XamRmvBEIHAPagg1ffpCZ2m95QRGHHRgDACSecADPnntg9+S510kknAQAqm0Zh1Km02FUKNoZDX50sZmDWKUmndv20gYW02fVH5U3sAE/sFhmWdGo36xSxw650bgWmKHaOSzyhC0MgLXZhoeOoih1P6aJ9khW7qNAF7SvIWFKpVLatLqEL7kBe7KJCx5EWu6jQBZfLS0aX0AVXKIhdROg40mIXEbqgHVmxyyq5yjx+XOhidoaQPudhoeMoiF1U6ILLFcQuKnTB5bJil5LQqYhdWOiCu1AQuySBU0rrYppSEbuo0HFU0rqw0HFUxI4LXZR61xt8NlGhA4CGW5QWOy5zrciUx+jvIkSFDgBWFMelxS6QuciMY3tI3so3vaEIq9/FoU3vtX/iiSdKtxGlJ1J3/PHHwzRNFKanYU7ugFGnoFOmkNwtWLIDx4ysi72Op3aiYsfLrnE4DGgIyl3aQ8NTO1GxcxC/WDEXu5W1CSG529EoY2o6wbhkxY6R2IkRsmIXCF3cSZcVO4bE0a8yMhYuu+ZtC0iZNSshdklCx5ERO5JynmTELlHoghtIil3KxA8mOpYtQeiCdmTEjtDejKFLEbrgrmTELum2/sxjEZKELrheQuyShC64XvQUCpRcZcQuTujaDYm3k5bISZdhU+5XZrJSktB57ciJXZzQcRxH/PWbJHQc0bRueWF7rNBxZMqw4XQuDtG07neNVbFCx5Epw4bTuThE07pNbygGQmfu2IF169bBNE0cf/zxwn1JoidSV6vVcOyxxwIA+tZv8GYJOshM7cJl1yRExS5adk0iK7UTeSsUFbtZp5j6LccgDBXDykztppolbN/R153ShREUO2IRGPXkdrjYtQbT5S5V6EJ9EhE7Po4uDb7+XJqQZQlduK0ssQuPo0u+Q3+SQYrcZQkdR0jsXJY9MUJA7DKFLrihoNhltSMycYJSsEopM0ETEjtqgJQFplBnSbmA0AVNCYhd5uPCWGZalyV0we0ExC5L6ILbZT0HJMbQZe7aYJJ0oYP3OhdJ60RKrEJi54+fy7qNSFqXJnQcEbEzalaq0HFE0rosoQPEyrDLC9tRJlai0HFE0rosoQPEyrBc5pKEjiOS1s1MpAsd4KV1WWK36QRP5qx+77HrW+95xPHHH49aLcf4YZ9ezXfD6aefDgDoe/XV0HiRdLGLll2TyBK7pLJrEr0qx6aJ3axTxLRTgi0wPSqrHGs7NF3oOBliF1d2jYNRb7q+U2Gw0yYjC67CniZ2SWXXxL4lCJmo0GW1A6SUXePw24kTO1Gh46SKXVLZNfa23od6nEQIC11wQIbYJZRdo6SWYbnQUbFXcKrYcaETTemSxE5C6IKmUqQttuwaJaMMKyp0we0TxI4RAqtmCgkdkFGGVZgUkXTbQOZE3uoyyrAyY+ZSxU4iFcwqw4oIXdBWihdxmcsSOiC7DCsidJy0gIILnQhZZVgRoeOk3S4tnYuSVYadmagAltiTPK0Mu+mEIqyB0OPGGFZPek8a7lB56ZnUnXTSSahWqzDrdRTHxtpXJIhdWtk1jrQJFGll1yTixE62Ip42gcIBFRI6TpLY8dmuwiSInajQhfEW/uxO7GLH0WX0KU7sZIUuuP+kN37Jsc9x7UgJXZgcEyjCxIqdjNB1HNcpGtJCFxyYIHaCQseJFTtJoQvaihM7WaHjRB83BaELmooTaRGh4ySInazQBcdFxC6czsksERIrdj2c5ZqVzsWRJHYqkyBij1GYS5EkdjJCF/QpJq0TSeeiJImdjNBx4tI6GaHjxJVhoxMiRIlL62SEjhNXhp2ZqEgJHScuresSOgDFsXFs3rwZfX19eOMb3yh1H0n0TOpKpRJOPvlkAED1lYis+WIXHmcnmtKFiZtAIVp2jWNnTaDIKrsmERW7jtmuMvhi17HkScI4uiyi4+yEyq4JfeoSu7TxYVn9CglZnjXkwu0oCx0nJHayKV2YDrFTFbqgsYjYyQpdcGBE7CSFjtMhdopCF7QVFjtVoeNwscshdEFT4fMtI3SciNipCl2A/ziJllsTuxUWu5xCFz5OReg4UbHLM6u14+Mox+TY6OOkInReO51ipyJ0nPD4Or5kiazQAd1lWBWh44TTuqQJESJEj1EROk44rQtkTlLogM60btMJxVihA4Dqyy8DAE455RSUSr1Zdb9nUgcA55xzDgCgb8MG0FZEtELj7CpDDamULkq4HKuS0oXhYtercuy+pa3CZdc4wmIXO9tVFIL2kicEqePosuBiZ9UUhS7UJ6cIWFXv/7zrTvEdFWTKronthJZNyAUBGM25swY8sXMLJJ/QBY0B1PLXossDFztFoeMEYkeIstAFbRULIAP9+YSO0wOhC6MkdBwudjua+YQO3pceYrm5hC7oli92vUjogp1a8gbc/qnJtUwJQmXYfM0ADChMeTKnKnQc4gB01sgldJyp2TJWDkx0LFmiAg8s8ggd0C7DqqRzUbY6FTzU2DuX0AHttE4lnYuy/k2FQObihI42mxje4u0xf+655+a6r452e9YSgEMOOQSrV68GcV30RdM6DgMIYSjlXKnaYgYMwlAgLqyc7woNRrDdNTGbc6f0PsKw1NyOATPfkuUGYTCpi1qphWotX1vMJYDB4FRyChQFnBJD7jUk/VNstAC3B6uxx26KrQAjbUnM1Q71hKwXu1h4JbJezOAE3AKF25dvgUwAvtjlf+BYqQB3qDerzIMQwMy7VxMBK5jqSWYYxkCblrrQRfqVR6ABT8Jaw8XcXzTaDaotURLFaDGYWZORdjG9WjCZMKC8jeQSujB5hQ4ADMPFuh1yS4rEcWB1CwywXELHKcDJLXQAsMqs4/jyq7mEDgBeao7gyKUbcgsdANQOGY+VOU7fulfRarVw4IEH4qCDDsp9f5yeSh0hBOeffz4AoPbSS/FvassbWLN0E2bsEsasKmYVLWFVaRtWF0dhgMFiNJfYOYzAZQQNZuQSu41OCS+3RrCoMIV9K1uxoDCj1M4Oq4yJRh8M6mKo0sgtdiAMrOLA7ssTZ3lvVMxkcIpMefsfYiP4NsxM0t4YWwGvXMr87cDU2+EwA7CqFHY5X3kqEMQcn6GEMdAW88Quz84TFMG2a26RwqnliPj9ra1gUi9tU8WgcMtFsLIJVsn3LYHYTvt9RnVMoy90IARwXJBWji+cjHnHOy6IlePbBiFwi4aXjIb2+ZXujkHQXFiCU6TBPrF5oLY3Acds5JMVs+HtokBswGyovXgZAZwCCS2YnO+Pc/wvYzSnq/AStdEEKqPqr11m+P8IYI3nk5VCwQEhDA0r38K2B1a3oM8f7jRqDyq300/r6Kd1FIkDN6dJrzan0UcNLMj5ZfOl5gjqTgELijM46pCXlNsZXj6J4eWT6Cta6DtgMv5GjOGQiQkAwHnnnQfSg/HYnJ5KHQCcdtppqNVqMGdnUdm4qev6UsnCguIsXBDYzMCMXVISO76/K0dV7CwQWP5pyCt2DVbArFvyv8XYWFSYUhI7m1G0/BiLi11ftSndDnMIGJ+CTXsgdhzqyZ2K2IUFjBF1sQsLXbRdVbwNv72kTVnsSORnhWYIY6BN5u1bC6iLHe3+oMstdhyDqImdQeGWCoD/wccKhrLYdQhdXsJvqqpiFxI6MKYudoR4e8uGHzsFYQkLXXBZDrELj1slLvMmOSlgNjqHS6gk7Yy0tw/jTsCIutg5oXSdMHWxY0ZnO4biDnDMQDAT2Cufq39UFwoOKPXHVTKCp8eXKLUTFjoAaCp+I+cyV+xBiYULHeeM6jNK7XCh46zo267UztCyHZ7MFb0n0EA5/nO7snEjNm7ciIGBAZx22mlK95VEz6WuUqngggsuAAD0P/ts55uun9KFcUGkxW5FcRz7Fbd0Xa4idjylC/rji924ZDl2o1PCc82lHZcZYNJix1O6jnaoi+G+upLYdYwP8cXOGpaUOz+l67pYUuyIDRj1SBsKYhcVuqD9XiV2RF7skpZ9kF7sOCJ0nNyJXbgtFbGLfpMkRF7sIkLHURG7RKGT/cZLEv4GWbELC13oMmmx84Uu8bkk2p0YoctD3EQkasuLXVToAABMLq0LC13cdbI4McMlVMQuLHTtC4HKZsmZ3VzoIlgTcmldoeB0CB1HJa2LCh1HNq3jQhdFNq1bbU53CR0ApbQuKnQc2bRuaNkOVEvd56grrWMMJ2z3LrvgggtQqeTbyzZKz6UO8DpaLpdRnJxEaevW4HKe0kXhYidajq3SZkdKF8ZiFA1BuQundB39USjH8pQuiqzYhVO6jnZ8sRtZMCVUju1I6cJQBpiueGqXIHTB1YJix8uucdKlInZJfSLMk76epHaCYhcuuya1JbT2VoLQcaTELial62hLRuySREmmFJsgdBwZsctM6ETFLlx2jUNU7OKELnSdsNilCB0A4TJsltDJpnVpM8tlxM5oJU9oEi3DpgldcBvBtC5roWOp5Z/ihM5vw2iIi12S0BEGkBYVFjsuc1GhA+TSuv37tmH/vm2xQgfIpXVJQicLl7mo0HFE07qXmiOJQgeIp3VDy3YkCh3QndaVtm7Fc889h3K5jHe84x1C9yHDTpG6oaEhnH322QCA/mef8y6MSenC5C3HRtsSSe2iKV1XO4JiF5fSheFilzXOLi6l62iHuqgUrMxxdoHQpb0p9bAcKyJ2WSmaqNjxlC6LnpVjRcUu4yZCYseQKHQcIbHLELqgLRGxExGkLLHLEDqOsNiJlFyz+p0ldKL3lSZ04TayxC5L6DgZYiea0ImKnchSQSKf00aLZd4u63oRoeO3y3r+R0u3SYikdUlCxyHMG1+X3Q4y2yECW2/GpXNR6q1Cptjt37cN/UYD/UZ6iJCV1oXHz6UhktbFpXNRRNI6LnMqS4+F4TKXJHScyv7txQvPaHhPhrPPPhuDg+rjEpPYKVIHABdddBFM00R52zYUt40lpnRRssqxSaXXONLELiml6+qPL3aTbrzcbXRKeKKxd2xKF0ZknF1SStfVlsg4OxFXyxK7jJSu46YpYhdXdo1twxc7pxwvd0ll1yR2hdjJbHqeJnZ8YoQIqWInKHRBW0UKp5ogUjKlzKxSrOg5yhA7YsuVMpMuFxI6AHBZclonInSh2ybeTlToOAliJ1tyzRI70VCFsPS0TkTovA4lp3WiQhe+fRIy7aSVYZlBMoWufeP0tC5L6MKkpXUiQsdJK8NyoRMhLa2THT+XJHZJ5dYk3pKS1qWlc1HSSrBp6VyUwYp3Lktbt+GRRx6BYRi46KKLhI6VZadJ3ZIlS3DWWWcBAAaf/LPUgOa0cmxa6TWOpHJsVkrX0R9G/Ha6xS6p7JpEUjk2K6XraidhnF1i2TWJJLGTELrgkISZsTJyxfd4TUrtZPu0M8Uuq+ya1Fb3+J30smscsWInKXRBWyUjWexESRpjx1M6CZLETmliRMxYQGGh48SVYWWELnz30bROVug4kcdZdQxdktgRB0L72QbdSSjDCgsdv9+YMqys0AXHxbwWVNqJHU/MZU600p+Q1vEZrjLtJJVhZYQOSC7DyggdJy6t21Xl1jgWxaR1WeXWOOJKsFnl1kQYw8n+jNdzzjkHS5aoTVjJYqdJHQBceumlKJfLKI1PYPXYs1LHxpVjZVK6aFvh1E40petqpwfLngDxYiea0nW0kzTOTraiqjqBIratztRONKWLEi3HipZd49gZYqcidOG22jPk5IWO09PJE1GxU5liHxU7wbJrHFGxyzXTlf8tKkLHCYudotB1lWFVhY435x/W60kRskLHiYqdrNAF9x8SO1Wh48eGxU61HaAzrRNO57o61JnWhWe4yhAtwyZNiBAhnNbx8XOyQgd0p3W9FjoVwmldnnJrOK0TLbfGMchexJNPPolyuYz3vve90seLslOlbtGiRbjwwgsBALN3bAZTWPE7XI6VTemi8NSuwQzhlK6rP6Fy7PPWQOpYujS42K0qj8EkjlRK19FOaJxdudKSS+nCyE6gyIAvupk0OUKojYjYqWxzxtkpYpfD7QOxExhHl0YgdoopXUdbJcMbY5dnzSQuduWCstBxuNj1ZOmSPELHcVyQpqUmdJyQ2OUROgAA9Ranzit04bROVeg4/HNcVejC7eQROg5/jeZth7/3KAsdOidNyKRzSVgT5dQJESLwtE50/Fwao/ag8Pi5NFxGpcutcSwyDKV0LgpP65TSOY7LcOhj3ri6Cy+8EAsXLlTuTxY7VeoA4F3vehcGBwfR2mJj+++nldoIyrFODQ3F7bfCbZWJg1KuJ52X/BWIjSpVWGbExwBDH22h0INvNAZ1MVSto1BVfNJxKAOM3qz9xShyv3EFW4Hl3FIsoAf9cc2EDe5VutOD3TDcAoVdybeoKIeZBE7OnScYpXArBbBSzpXiGQOxXbCcu0Uw00BrxQLYIzl3sKAEbq0Mty9nqdqgaCzvR2s433qBjBI0Fpdgl3u0bInFcgkdAIAA9YU0//Pan8Xeix0e7HI+oQO8171VUxe6jv70oSftVEZmlWUuTNFwcskcZ6Ex3ZP15/ppQ7rcGkeTubknQ1DCcEjfxnxCB4A8tgXr1q3D4OAg3vWudym3I8JOl7parYZLLrkEALDt/5uAM6P2gO9dHsf+xS1oMDOX2BWIiz7CUKVuLrFrgcIBxYi5AyPmjuwDEtjUGsQrswtgUBdFqt4f5o8RHKw1UKjlELsWhTHtPS3yJFHEJjAaoTEjilCLoTDjfcvNm4wFb+x5/i7mlZnybinmbW/GAD+NVG+IBEsz2OW8EuX/V6BwKmpvhIwQsJIBRon3T3WbM8ZAG7a3z6yhvoMFMw1YSwfhlCjsigF7UU2tP5TA6S97260VTbj9iiv8mwYay/vhlA24BQJrQE0QGSVojJSCLenypVDeJB3iItc+w4wSTK0w4JQJppfney46JQIwBlNxyAXHLeZ/D2IEaA0RMBOwcywpxgjQHAbcAsu3FzcBSstnUCm1UDDyCdRApQGTurh3bHWudpYXJlCmFmZYvi88/bSBAnGxWTUJ92kyFw5jeM/C+5XboIThoMom9BsNXLzfw+qdmbWw4L4xAMAll1yCWk3xPUiQ3ny9z+D888/HbbfdhpdffhnWrzZg6TuHsbUl9625j7bQR5twQNFgJixmoEAclCXFzPA/uSiAKnVRZi4ajKKp+KovEAcj5g4MGbPY7vRhqz0gdXzTNTFrey8Eg7ooEQbGiPT4OpcRMEZgUBeDtQZaZQuNZgGtKclFXV3SUabk8iI9QcFtl1BgeB86/DKpdlhoo27it6cwiYMf3/WzbDs9WuAYaLfDKAErEBDGQASWkOjoTmhMDjMI7IrhzyKUf7MPpzR5kshwGZgRoubQLjyhCzqnWvMicEpt41Eeg0hCgkq80rByf3z5ZoQob7cHoHMvV5UhkKEZ13me04wSTO1lAARw/KEJjuKOLE6pPWYV8L/4KPxxfH5dsNsElX/v4TIHIBgCovIxwWXO65d/vhV30Sgt98Zh9/lrnxHFMSkD/mzMgr+n7Pammq0uL3gD/8v+oEOHUaXnYj/1++M/Eb3gRv5vazLX74d37HKRtWQicJkDECSYK4rj0u0AwFnL/4wnb65j/aSF/fbbL9hGdWey05M6ADBNE//jf/wPAMCL9zL0bRjDSHFKuT0HFC0Y0qldgbgohZ5wFECBQDq1a4GiwdpJRoE46KNN6dRuszWAV2YXdFxGCZNO7RgjsNz2Q2lQF5WihYGqZGrXojBmkhYsFW+Gp3ThY72JBXJvitRi3j6xXXcgn9olJhkyfxcTW7dLpB0SHV/qD+qWSu1IpAxMECyzIJ3aRf8sg0indTyl6+wj5NM6xkCjs02p/LZkzDRgLen8kuUaRD6to6RrPT9GiHxaZxpoLIvcN4F0WsdTuu7LxdsIp3NhoSMMUmldkM5VSIfIMQrptM4pxa8dJ5vWuUXEtiPz3sOFzi2gaxa+TFoXpHNFFggdRyat40LXV24GQseRTesGKg0UqBsIHUc2rePpXDk0i8QFlU7reDpXiHyzkE3reDrnhL6cGgD+nwW/E24jnM7lLUmftfzPKG0Yx4b7vPeyT3ziEzDNnZ+j7RKpA4AjjzwSZ5xxBsCAB38IrDDHcGh1g5DcrShNYHVptOtyntpNuUUhuTMSzJ+ndnnKsUA7tRMVu7pTCFK6KDJix1O6uDZkyrHEJanfIEVFKimRY0RO7DpSuq4rxfvjZg1KFmjHW6+K5U7puNAltSMsdiRlNXxf7oTFjsUPjmdF8TJsuOzadZ1MGTZcdo0iUYYNl12jSJVhDQqnv9zdfwK5Mmyo7NrRT0KkyrAdZdcogmXYjnJr7PUQErtwuTWuL3afeBmWC11sfxzxMiwXuvj+ir33hIUu9nrRl1VI6OIQ/bgJC11sOxJpHRe6OGTSOi50cTgS3y640MUhE9hwoYtjhZm9/AIfO8eFLo5z9npCqC9nLf8zzlr+Zyw3x/DcfxwGxhjOOOMMHHHEEULH52WXSR0AfPjDH0atVsPYOoLnf+2in9axspid2vUbDfQlTEhQTe2icLEbpFYuueNit19pc66xdoBfjjXsVLmLpnRxbQzWGij2Z4hdSkrXcX8ZvhFN6eKOFxG7xJSu486y+yO892rWbXpVdhVoR0TsMv8uUbFLELrgagGxSxO64DYiYpcmdBwBsUsTOo6Q2BnejhuJ/RYVuwShC/orKHapQhfqU9pnapbQiZIqdKG+iJRh04QuaEpg5YQ0oeOI7EaRJnScrLQuS+g4WWldltBxRNK6NKHjZKV1ywsTqUInSj9tpAqdKE3mpgqdCKLpnEgJ9qzlf8aK4hhWFMfw5H9RPP3006hWq/jQhz6k3D9ZdqnULViwAB/84AcBAH/4iYHJUaBAbKwsjuHgvk25S7K9ELuscmy09BpHgTjop43U1C6u9Brbp4xybFJKF8agLgaqDfQvmklM7bJSujAsRaZExs2JiF1qStdxw3SxkxpAnvQ39bLsKrh8SarYRcuuiXeYLXYisx3TxE5E6ILbpomdiNBxUsROROg4qWJnULjVFKHjZIldhtAF/c4QOyGhC/Up9mIJoUtL64SELrhtehlWROg4aWmdiNAFfUrojqjQpbXB2xEROiD5vZIRoLjXjJDQAelp3UClISR0QHpaF1dujSOrBJtUbo0jrQQbV26VJSx0eeDp3IqiNyFi+ybgsZ955/Jv/uZvduoSJlF2qdQBwNvf/nYcc8wxcCzg3u8YcB1P7AaNmdjUbkVpAvuVNgu1nVaO9Z5EYn3cFaldWuk1jryzYw3qoq9oxZdjBVO6KFGZykrposcywxuvEn2DFErpOu44XuyEU7pIW90N5U/pssquccSKXVrZNfaOU8RO4r0wVewk1seLFTsZoePEiJ2M0HFixc4XOrcgupdUgtgJCh2H8cc2ermM0AXHRLqokNDFiZ2M0HmNJJdhZYQOSE7rZIQOiL+tjNBxomkdI0BjgbjQcaJpXdr4uTTi0rqk8XOyyKZzcSVYlXQuLqSRTefixtWJlFvjiCvBhtM5wHsb+813DbRaLRx33HF429veJtx+L9jlUkcIweWXX45qtYqtL1I8cUdoZWxiY6/iREdq1280gpkxIiSVYw0wqT9WdRJFFJHUTpRoOTar9JrURlTsZFK6KGGZkp3dGjeBgi9hIpTSheFthfqjvMxD+G/qUUqnKoYdYicrdJw4scsou8b2JSJ2sRMjRNqJil10pqsoIbFTETpOh9hRIid0HILOGbGSQhduJ5zWqQhd0B8+gzRHyTUsdtJCF+pL9BhZoeNE0zpZoePw9xsvVSPSQsfb4GKXNiEii/B7pmi5NbadSFonms5FCZdge1luFU3n0lBN58Lj6vJMhgiXYKPpHOdPd1BsfZGiVqvh05/+NEieBc8V2OVSB3j7wn7sYx8DADz6CwPjr7avK5MWBo0Z7FWc6Ek5VnQSRRK9Tu1GzB3CpdfY/oTKsSKl1zi42KWVY2VgRC6lizuei51w2TUJEioP53ktkR5PjsixawQXu1x/U0TsVBeZ5WInU3aNbYeLXdxMVxm42FGqJHQct0i9hK5Wlhc6n2BGrKrQ8Tb8Mqyy0HHILh5Dl3p8uwyrKnRAe9KEW1QXOt6ftBmuwu0YcuXWJIwGySV0YWrlprLQAe0SrGi5NY5wCXYujZ1TSefiiKZznLFXgT/+wkvsP/rRj2Lx4sW57keF3SJ1AHDmmWfixBNPhGsDd33bhBU5x2XSwl5Fr/Q6QNSe5L2cRFEggAWKKVdx0VG0xW5RYQpmzjjcoC6MHG3wcqxhMBC7B98kCMu9nQ8zvCUn8uKVdXvQDpErLabRiw/V3K9WAoDmP8duyYA1XM59bhgh6ilduJ1iAa3lcutDxrZDqbLQAWiXYaslJaEL+uEnsoySfM9jBpjTTk++lFCLKQud1whgV4jwDN00XH/dy1zt+Mm5qswFzfRA6ADvb+mF0FWKFkqGk6vcSgjrSTrnMNoToZt0ndxj5wygJ0uVjBg7cObyJ7tkDgCsBvDId/aDZVl44xvfiDPPPFP5fvKw26SOEIJPf/rTWLRoESZHCe7/kdG1vWOZtNBPGxiklrLYcWaYiW1OAbM5tgJwGcGMW8KUW0ZD8d2Al2MHC3UMFNWfXNOtErZNVzFVL6HeUn9nYgxghnzJIAxxvKSOj5FT74wnZM1BAqsvp3jkFcRgr0fEjnOSaorkb8Nrh0iNg+tuwHusmOHtGaoMAZwShZNnazIGUMvx9qwtqrfDDAOtJVVv0eWcEMZgzOb4IGMAcVxvkPukejuEMRRmbOTap5YBxSkH1GGgVr4PVWq5uZJmAIAL1Dblnz7uFD3ZVVhTtg0DqIVce0kDCNb4y+k+3rhiytAYy7FdBYCCke+LPgAsKM9guDSL+6cOyNVO0KccQlf2NxfIu0Nkg3n/Tqi8mKudEWMHisTByuK2rusYA+7/oYFXX30VIyMj+MxnPrPLy66c3SZ1ADA8PIx/+Id/AKUULzxA8dx98SfBIMAgtbDUmFGWO5d55djtbjGf2IHCYiYarKAkdq9aC/FsYykMwjBYqGNJZUpJ7hxGYFkGHIeiZZm5xA4EcEsMTp+63BF/4ffcYke8lM0pq4kdo22BYjlTKdJLsaM52wiPgVN5iPjYQL8Nb2sxhckxlMAp+bsHFPOKndcXZlIlseNC5/h7n6qmbMQFzO3+Cv2WoyZ2vtAFbdpqH2aEMRSmbRBfpEoTCqVpLnS+zBFXXey40BGbYeAVxeEnvtCZda8PhuKnNBc6QG7sbgdc6Fzv59KE4vudfzq94SKKfQGfKOb1QWWyGuDJXMFwlXeX4Cwoz6BoOCgaDrY1829l5YJi1Fbbb7lMHBhgiWvLitIIHT6oaN8jxo5A6JJ4/n6CF35HYRgGrrjiCgwODirdVy/YrVIHeIsSf+ADHwAAPHCziYkN8bczCFAmLHdq5zKK7W4xf2rnL20iK3YNt4Ap2yvhGoShYli5UzvGoCR2040SmhN+OZkAzGRwS/lSO1Wxi06yYBTqYheZLOGaRE7uYv78noldIX6GY1Z/uNDlE7vIIHNJseNCF95DV0nseEoXvkhS7KJCB3+8oazYERcoTDQ6xvVJi11E6ADv9+KU3IdIWOi8dhmMhiMndhGhC9pWSNrCCR1hDMXttpzYuUB1o9shdICakIWFjiOV1jGAtkJCp9KGT1z4ZM7IvzeEhU4VLnNhoZOdPAe0ha7XZC3/FQcXunz32yl0qnCZSxO6iY3AQz/2JPj9738/Dj/88Px3nIPdLnUA8O53vxvHHnssnBbw39ebaKYsZ7G7UrtJ18CoE9lyyBe7POVYAEFqJyp2060SJmc7o3oudjLlWNumIFbMSvkSYkccgFrRZTd8CSrKyV30i6as2CWlYXyWrYzYxX3p7VUpVja1i05qkBa7lBm88mIX7Zyk2HGhi9vBQkbsDNIWulBfZMQuTugCRJO2GKHj0LotLHZdQhe0z0Bb4n2JE7qgPxJpXVzJ1euj4Ae/n84VZjuFjiOT1sUJHSAhh6F0rkvIJNO6pGqiTFrHJ2Z0CR0DxjcMCbeTlM65EmHFgvJMrNC5IPj15MHC7fSCAtxEoZMRtF7I3EJjOjOdA4DmDPDgt/dBo9HAMcccg3e/+9357zwnc0LqKKX4+7//eyxevBg7NhPc/W0DrgssNSex1Jjpun04tcsrd6KpncXiFx3OW47lyJRjHUZg290PHWPYLeXY2NQ/NKM167SkLYUiLXYpNxMSu4w/txdiF/RFpJ2E/giLXaTsGoeI2AVl19jOCIpditC170dgVxPDQGtRX2JfRMQuVejQg/F1PiJilyh0QV8FyrAZQsfbERG7tDF0QmVYF6iOxstc0I6gBCUJHSczaWPd6Zx0Gz5Zw8NE0jouc0kJnUgJdmeUW+PoRQlWlAJcFImbmNCJfB3pRTq30JjGQmMaZWIlCt1i01uVw3WAu280sGHDBixdujQYSra72f098BkeHsZVV12FUqmEDX+meOjfqDedOuWJ24uSbC/H2uVN7Xpdjk1L7abqJTS3p8zk3cXl2LT3Jy52aRMoRCVJROyy3it3mdhlrCUnLnbZj1+a2HWVXWM7Iyp2GX3JmDjRVXZN6Eua2GUJXXC7rDJsSkrX0U5K0pYldN79ZJRhBYQuuL+MMmzWpIjMMqwvdIXZ7L5kpXVZQgdkyKGA0PHbpaV1sQlfDFlp3c4qt8aRVoIdKtV3WrlVlgLcQOjy0Kt0rkwslEn6lzB+/R/+g2LDnynK5TKuuuoqDA0N5e9ED5gzUgcABx54ID772c8CAP78KwOP/kZsNlCvSrJ5x9plpXYbrWE821ia2U7eSRRAdmrnOBSkJfDwp5RjvZlfAudKsRwbho9HS0vtRB+2RLGTeGPgy6bszAkUImvJpYpdStk1jnSxE2ggTexixtElkVSGFRK6UF/St8sSG6eWKHaCQgckj68TErrg/hLKsBJCx0krz4qMvUssw0oIHZAsZE6RCAkdJzZpExW6tDaQfykiIKXcGkdKCVYmnUsqwQ6V6iib1i4TurTJElzm8ghdr9M5UZ67n+BPd3qVi8985jM44IDezBbuBXNK6gDg1FNPxaWXXgoA+MV3B/HM02LrwvU6tcsrd3Gp3YxbCiZJZLG7J1F0kFSOZRLLAiSUY6V3ocgxgSLaTpzYyVQ0+G4YO0XsJPqRLnZy73hRsUstu8Z2JkbsBMquUaJiJyV0IaJpXXimqyhdYichdJxoGVZK6Pgx0TKsgtDxdrr6J7lsCbEZ+teFXriSQseJpnVc5mTWQOx6/5AUusR2FY6PlmCzyq1xREuwvSq3cqHb1USHLfUinevVRAjRdC7My08X8LsfeIHTJZdcglNPPTV/R3rInJM6ALj00kvxF3/xF3Bsgq9esxzr10vskTpHlj/ZWWPt4iZJZKEyiaKLnViOlX2vioqd6nIhHTNjc/xJO0PsZHd86BI7yZSuoy8GP68CZdfYzoTETkHogn6ExS5uYoRAP8JlWNGyayx84oSC0HG42KkInXff3WXYPEuVhH+WnR1LGENxyrcpRaEDOoVMJp2LYjSROMNViEgJVtU3wiXYXVluTWOoVFcSOhcEd+84SPl+4+hVOpcXlXQOADavN/Dv31gJy7Kwdu1avP/978/fmR4zJ6WOT5w49NBDMTtr4JovL8f4mPhyB9GJFP1UbSuscEl2ByuptRFO7RSmdwOdqV3JtGMnSWQRLseOT1bTx9OlITk7NqmNXpRjnTJBc8CTO9XhkO39Z0muxUh7JXbMgLJgBsueuMzb/Fx1KzCCIK3Ls39uW+zUTywzKdy+YvLECIF+eDtpEHWhQ3vihKrQcWjTURM6Di/D+imdKsT12smzsDCxGQZedpSFjkPtfEIH8Fn44uPf4jCa+Y4H/NeOTLk1hbzpnO3SQOZUE7otDbV15qL0Ip2z/H95CMucrNBNjlP86NphTE9PY82aNXNmYkSUudcjn3K5jC9/+ctYuXIlxscLuPp/LcfMtOTm9b7cLaA2FihuDcJTO5dRFIjaBwJP7aq0iSEzZb2WDAzCMFisY6hWR6Wk9vRmDGCMgBRdsJLiC4wAzARYAXBU5c5//yaOujh0yFjOeQu5tx3y28jfj3wNBIldzn64pmTZNa2tco7SP6WwB0q5tu8iLlDY3gRx1CWImRSNJX1oDat9uQMAUAKnYuZ/jF1vTFuenSIYJZjeq5h7pwhqs1xCxyhQX0RznxNq59zflng72eRcHg1WP/O/tKo35BYYxrcM5BK6kuHApG6ucutgoY6hYl35eE6VNnOncyUCOMz7p4oFoiRzAFCfIfjRtUPYMW5g5cqV+NKXvoRSKcd7wU5kzkodAAwODuKaa67BwoULsWF9Cf907XK0WvIv/jIhWGJQ7FdoKMsd9adbl4mlLHcF4mBRYRorShPKcue9UG1USy1lsSPUBS24oGVbWeyC9dbyiB3zPnBzC5WLfJvd+33xxvKoH09y9oMweAkbgbclmEo3CPH+URKUUeU74h2bY7tkgAFG00uBlD+wKYVdK3hCp5j2EQcojjdAm3bwd6k1RGD3GXAqNJfYuQUK1yBwVYWZELgFCmox9ecIJdixsohWP8HUCrW/hRECu2rkmizEKDCzxIDVR2DlWD2DC53qThUgQGuAeFWDHNLQGmC523CLDKAAaai/+EqGA0JYri3DBgt1lKiNIlX7rAOAflpHP62joLz9hydzJeLt3aqKBQILBI5iOafVBP796wPYsr6AhQsX4pprrsHAQP69pncWc1rqAGDp0qW45pprUK1W8dwzFXztn5bBEplxGaEAAzVSwBKDqosdXFB4cpdH7PqNBhYVpnOldiZ1c4kdABCKXGIHwNsgPo/Y+fQkKVMUKhKa8JFH7LzEkOQTO/5Q5BA7Tj6xi/wvezhrD8hnBlFK61h4PByTm1DTboR5Qhd0TGHspUnRWFr1+0TgFhWeIH5Kx39W2r7OF7o8qRYXOruPAASwqgpthITO65dKPzyhsyvewUFbkoQTOqUgyBc6R3zYdiyB0OWAC10euNDlgQtdHrjM5RU6A/mFzmHqQme1gP+4bgAvPFNGtVrF1VdfjaVLs1ew2J3MeakDgP333x9f/vKXUS6X8afHq/j615ehqegyBRj5UzvMndSuWmrlKsdysUMth9z5Ymf3sVxyx8eU5ZG7QKhkXsORLjP/Q1e4HyzygaIgdkFK13GhnNjF3VZa7EjM3y37fsjQtfyGW6ByYkcpnGrn7b2xguJNEAcoTnRPlpI5H8ykaCyrwa6EZgQbkEvrfKGLlpCl0roEoZN6foSFLnSZTFrXJXQ+MmldVOi8diGV1lGbdZdcmURaR4DWIMktdK0Bllvo+Bi8PJ/GJcPJLXSDhXpuoZsv6RwA1Nw6fvatfjzzpwoqlQq+8pWvzKmlS5LYI6QOAI444gh86UtfQrFYxOOPVHH9N5dhxiZQSdzDqZ2q3IVTO1W5C6d2qnLXm3Is5MqxrjcouQO+vIdgakccb4B0lGDigshSZC5gtLrvixHx1C6c0nVeIZfadbXhi53MOLvYpGF3JHZxNxU9PFR2jSIsduGya7QbgmLXUXbtulLsfMQJHeA9HsJl2ASh42mdkNj1OqHraFs8rUsSOt5O5vEGMLPU6BI6jmhax2Uu7vUilNaF0rlYoRP8TOEyFyd0xBX7W9wCAIN5/yJ9GB0dEmqDy1xeoStRW1nowjKnKnRhmVMVurDMqQrdEK2jn9Xxo+sX4c+P9aFYLOLLX/4y1qxZo9irXcseI3UA8PrXvx5XXXUVCoUCHn2ohpuuX4KGQ9Fg+eVuTy/J7tLUjpHkNy3R1C6jnCYkdgyp+8fkHmeHnOPsCBFK7WJTuo4b+P1Ikbss8RMSu7iULtKPLMJl1zhExC5cdo29jwyxSxW64Ebp5yNJ6Np9FCjDJgld6PrMMqyA0Ik89rFCF7o+La1jhMCqmclC55OW1jEDmFnsjZ+LEzpRejEhIjOdE/gsyUznMtoIZDBlQgWZTV/xYS6lc/Oh1DpE6xiidZiug1tuXIhHH6qhUCjgqquuwlFHHZWjZ7uWPUrqAOC4447DlVdeCcMw8Iff9eM731qCpkXQYjRxZkyDMTRZ8pN2vpRkRVI71yVwU7aQkU7t4pBM7ZLoaTk28QYibaTITrT0GoeI2AkmDHlSu1Sx439jVvMZ51JkRmaq2MWUXWO7kSZ20XF0iY0kSE6G0AW3SyvDZgldiMS0bmcmdB33k5zWdUyIyErSEq7mQpclc1klWCGhSyvB9mD8XK/KrbHpnAQi6ZzLCLY3k9c07WU6p8quLLVOuslfXIZoHSXiwHAc3PTNJXjo/n4YhoF//Md/xHHHHZejd7uePU7qAODEE0/ElVdeCdM08fDva/j215ai1SJosPjUzgXgZHx6z8WS7E5L7QS+yfRyrF0usUsoxyaVXpPaiBtnl1h6jZJRihVrI98Eio6+RGREdlxVstiJ9yH24qzEMUSs2KWUXWOJmRGbNI4usYm4c0FIptABKWVYCaFLTOskhS5pPGWm0IVuG03rUsutgogKHSfpvmQSuq7bqYyfi3kap5VbRclK57KQTecst1uX5kI6tztKrXHrxPJ0rkQctFoE3/7q0iCh+8IXvoCTTjpJsXe7jz1S6gBg7dq1wRi7Pz1WxbeuWYZGw3twW77cqaxpkyR3BlwUBZ/AvSrJ7nFj7eLo5SSK8LM1o/TadbzEOLvkNnKUYoFYsZMRofZBPU7sVP6u6N0LpnRhomKXVXbt6kKkhC9Udu1qpPNchGe6itBVhpURuhAdaV2PErqpvcWEzrvPzrROVejCJVhZoUsiV8k1a/xcEpGXZM8mQ+zkdC6LuZLOycqc1fFzb8bNcZkrEQeNBsH11yzFn/5YRalUwpe+9KU9UuiAPVjqAOD444/HNddcg0qlgmefrOC6Ly/HjL9vnsOSkzsRouPtDDBQyXeWPSK1EyD30id7Ujk2DV+mgpmxIqXXrjZixE5xKQa+Jp0K3WKn1gevMcBoufJy6vcDgHDZtasLfhlWSeiCRvx1+QTLrlGiZVjphZLDkyZyCB1/LnChs6pybfC0LldC5x+iKnThEmzsDFfJvuQut/bPrXKrKnMtnZOFv7X0WuYAYGaG4hv/axmeebIPlUoFV1999R5Xcg2zR0sdABx55JH46le/iv7+frz0fBlf/eJyTIy1nzY8uZvNGFeXRHi83UIqv7p2OLWr0ib6Dfk2wqndYEH++HBqVy7v/qVPXDN+5qsIMrNj09rwflA42Bcyntopvc9ysYNCShfTF1W42OVLH/3/FP8OZhA4lYJc2TXaBZeBWq6a0PF+FAw0llalhQ4IlWEXlNtr0cnCxS5nQucaakIHwEvrashdcnULJFdC5xZI6gzXTJgnhLmEjvjpXI6tDIlLdnm5NY7dnc4tpPWellpVmHRLXTIHAONjBq69ci+8+FwFtVoNX/3qV3HkkUcq9nJusMdLHQAccsghuO6667BgwQJseLWEr3x+BTa82vlqnnEpxl0X00xeanhqVyaOr2jyp43CDbYocRQ+iXlqN2A2MFBqKG3/YlIXA+UmKn1NJRvh5VgUXbim4psMBZjJ4Jr5xqbwvWOVj6eeXLqKn8F8nJ368SS3lIX7okre7Zm88qO324IqbtGAo7KgbwSnprjTAyFwS2YuwWbE21khz3ZmoOq7MwT9MIia0AHec9ogmFmi/lgyAjT7qbLQEQaUJvKlc1aVwC7nS+iIm+/9ibYA2kQuoUO/lavcajkGVtYmlGWu6ZpouWaudG7cqWGQOsoyt9kpYLNTyJXOAUCZ2B0yBwDr1xXxlc+vwKYNRSxatAjf+MY3cMghhyjfx1xhXkgd4C1QfMMNN2DlypXYPmHimiv3wtN/7pz502AGxhyCTU5LSe4WUIqlxg4AUBY7wNtP1gFRlrsitdFntpTFrlywvXtW/fZHmCdmRaYsdyxUklU93ikSOBWiJnfEL+UaOcQOXjKS53hGSNCPXKh+jvPlR3J89jBK4JSomtgRgJmkI72UbsKXMVWh4tuqGU0XhSm1D0Bq+31Q3cGjR1CboTqq8AFM2im4U1Ip/QKtGoVVperJli90ZpMpJuBAq0pyTWZQTgdD0BZAHQLqKD4X+i2g34JZUB+3ZjkGGIB+U201h6br7XceN9FChHGnhnGnhoZbyCV0M6wAmnOHDABdQvfMk2Vc+4W9MDlhYp999sENN9yA/fffP/f9zAXmjdQBwLJly3D99dfj8MMPR6NO8c2vLMOD93XOkXdBMMNMJbkrERP9oVV3VVM7wBM7LncqUMLQZ7aUUztCmBcUCU8BjTYAMMOXO1Wx88XKKSm+CRNPyJyiotiF+pBb7GTfuVg7jQj2a91NYtfuk+TNCQELnTfpkp0/MSJIC3OIHeDLpWxaRwjcsv9HMAZDcrIH4Asdd2NDcQuwoLGc5XAGFKYlZSDnJCJGAKtK4RQAx38dG025J1NY6JTwhY7leB0TV2JGfAy01RY6ZfotmEUHZlFN6CzHgOUYyqlW0zUDoVOFy1xD0ax5Ojfjz1YtyMyIE+Ch+2v45ldWoVGnOPzww/Gtb30LS5Ys6el97E7mldQBwMDAAK699lqceuqpcByC796wBLf/ZBiuC9DQp5YFqix3UfLKnUxqN1yYwdLyFABP7PKkdjzazy13OVK7YIycZGrX0VUyB8TOJHAK4m0Qhi6J2tViF7tIsILYBT9TuTIsT8g6OyUndh0lUwI4JUNc7Ig3nq9jwogLqbQuLHTtC4UPT2g0/2xR4bQuRugYBerDYn9EWOjaF4qPmSUMKE+wOSN0AQwobhd/HHqWzvVA5vIIHQ8bOGsHnxE+PpzOqRCWuZmY5Ufy4rrAbf8+jO9cvwS2beOUU07Btddei/7+/p7f1+4kx8tg7lIqlXDFFVdgZGQEt956K/7zJwuwaX0Rl/z1FhTKnbe1QGExipbjYoq00E8JaiT5CcVLsKPOQNd1XOxoyjeLfqOOBayAcbudIAYvIj+6MVI+WcvExoBZxyjaT0Se2hUNBy3HQMOWe0EEYzYYASNMaB27zga81A7UW2WE2mrlGxj+8SJ+2rUtlyd2AANtCRwf6SK/f4d4b+4qw1AYJV63GANVrJwwQgBDbo/TLrzToA5DphxGUzqOU/Key+Zsxh/Ay66x15HYNei6bhY3Bs5P/0TUksXtKsEYjKYLwIbVn/72SFiM0IHPkAZonjF6NEcZMEjrMs5CUkJHAKec/RqOFToJepHOWX3+dnwxD5XZAOxy9+VdzUSFzu+bIbjcYa/SOVXyJHOAJ3MAYtO5fYrbMo8fd7zPsjiZO6S0KfP4zf4TKE7k+oXezLNpNgi+9+3FeOwhr68XXXQRPvzhD4PSeZdrzU+pAwBKKS677DLss88++Kd/+ic88mANW0YL+Ov/sRkLF9ldyVhY7mBYiWLnlWBbSPsi7IImil0BDsokYbcHCbmLQglDkdgwiZNP7phnNZ6cKMidyeBSePvDSspdIFb+B5qQ3EXu3yl6aRdxUuSOxP9p/P7BuJymdTb5Km+we4rYsfSB4HuS2MUhInaxKV3H9eplMF6GNaZTPpXDZdeuBrwybNbTL/XxoQDyPH6UACnbreWmhyXXJIwmSxyfJyJ0qd8vM9I5wgDY6U9i/hrMU24Fcghdv/cMy5POAciVzAHxMidCmsxxRjK+HYfLrHH0ovQ6ts3EP//TUqxfV0KhUMAnP/lJvPWtb83d7lxl/mlqhLPPPhtf//rXMTw8jPXrSvjKP+yF559JLs9YoHOiJKs63q6XJdndMdZOtRwbvv85Mc7OTB5nF1d67e7Dzi3Fpu3P2u5EwsUJKV2Y1IkTaSldcJv0MmzWXrmpZdi4smuUjDJsbNk1BF/PMA95xtallmAFhC6tBCuU0KWk3fNm/FzOcmvesXO9LrXK0OtxczuLF54t43/9w15Yv66E4eFhfO1rX5vXQge8BqQOANasWYMbb7wRq1evxvQOA9ddtRy/ubM/scITHm+3OUbuwrNgs4iTu36jjgXmdPaxCePtBs16MK4uibSJFCXTRrmSHmvPibF2OSdRzGWxE+vD3J08IbLocZLYZaV0AQliJ7T0SJLYiQgdEJRh48QuS+jaNxS4TerxeWaNJEyYEE3oEkqwPSm5bu9BybWX4+ckyD0Zoodj57LYd2C86zKZiRBx4+lkxs3FlV5lxs3lKb0yBvz6/w7iq/9zJaZ2mDjggANw4403Ys2aNcpt7im8JqQOAJYsWYJvfvObwQSKf/v+Inz/WyNo1JNfHBYopmLkLjoLVoSw3KWVYLuOC6V2XO76aAsDZvYixEmpnUldlMzsN5Wk1I6aLlhZIBafA6ldnmVPArGUmAARZS6KnVBK19GJSH8kzkWX2ImkdGFybIfGx9eFiR1Hl0TMbNikcXSxh8+1tG4XlFzTCBK6htqXRKtKYPWR3MuV7Cnp3NBA5y5CMukcJQwLijMdl8mmc+HxdGGZE03nwqVXlUkQqqXXRp3gpm8uwb/9cBEcx8Gb3vSmeTfDNY15O6Yujkqlgs9//vM49NBDccMNN+Dh39Xw6itFfODjW7BsRbJk8fF2DcfFDGmhSknqhIk0uNjFTZhIPS403k5mrB3Qo4kUobF2hBLAdCH8nSAy1g4uASkx0KbYm6P0JIrIfbsmAENiEkXMfQuNs0vANQkY9cbRqUygmGtj7GS3JguPsRNO6cJ3HRpfJ7tAcMf4urRxdEn4ZVg+aUL6MdidY+vCEyYUhI6XYCsTbi6h4+kcALWEzk/n8iwGnEfmALV0zur3pURx7Fy16L1ZzYWxc7JlVp7SpU2CSEM1pdu4voAbv74UmzcVYRgGLrvsMrzjHe8AyfPlcA/jNZPUcQgheOc734nrrrsOIyMj2LKpiGuvWI4Hf5stV+HkbrvrKq8xByDYE1YWntqJlGDDhFO7gVIDRVPOTno61q7IpNOncDlWqfSym8uxzN8twDXUZjXOiVIsFM89/DXsZFM6Tp716/wyrN1fEiu7RgmldcJl1/DhuzmtA6Ce0Pkl2DxCZzaYV25t5EjodqPQ5Sm3uiW2W8fOhUutskK3dvCZXEuUjFA71/IkKindg/fV8L+uWIHNm4oYGRnBN77xDVxwwQWvKaEDXoNSx1mzZg1uuukmHHPMMWg1KX74zyP40Y2L0GxkPwG43AFAHxWc9x5DixlKLxiXURSIg6rZlF5tm8vdcLmO/pr8PrLBWDtf0OQb8FI7pygvCLwc6+YtxxbVXuRBOTjPUCcDyuVYvt/s7oJRorydF1/DTnVbMkaJ0r6sALy0tmjICx2/by7UqklPzseMmeoNEAYYdaYu9HlKrgwgNtRkDt7rrDm4e4SOEcCuqJdbrZqrPHaOMQLGSK6lSpZVdyhPhBgqzGLAaChPhGgxI9ckCNmUrlEn+N4/L8Z3b1iCVpPimGOOwU033YTDDjtM6f73dAhjAgtCzWMcx8G//Mu/4F/+5V/AGMPIEguXfGQLVu0v9sQad/qwzlqAKm2hKil4DVbABmsYE3YVFAxlydriZmsAr8wugMsIXIUX/1ijis2T/XBdAteRe/G7jMBtGWBN6pVTZdemY4DRoDAaAHEIiGRZkzqhdaRkn8HMK+PyrZ1kIK5fgmVqiRthXhmV2ky+lOtLpbfci3pJTmZcWMehBkGrn4La6vfP0y7Zc8+oJxdGi8nvmAB499lSOM4gaA4X4BQIzLrK88U7RuW5Bngyywj8tfNkjwWaCwqwKgStQfn3B+IC5XEXxPVmm8o34P1X2qE2nrY5ROCUiPTuFPx4tyifbjMCNIe9bcqIqyBzVW9imbvIglmSe4EzRoJRDrVqA+WifCVnuOx9Ud+rb1L6WMATuj6jhYPLG6WPbfgSt9ScRD+VDwxG7SEAwCHFUeFjXn6hhO98awm2bimAUopLLrkE733ve2EYecsaey6veanjPPbYY/jiF7+ILVu2gBoMZ10wgTefPYmstQlH7X68bI3AgIshY1Za7EbtQTzfWAKDuCgRW0rsGm4Bo60BbGl6CxHLyt1Esw9bpmpgjHhiJyl3jkPhNgz/HRTSckcsArNOfMmSEzvCvPFN1Ap9E5d5JiuIHfGTh/D9yYodcfkHhvxWSt74QAK+uLGSWPGxaQpix6UOgJLYkdBbDbHlzj2jgFUzvL/d9s6jlNzJSp1B0BooeCX/IgUYk5Y64rLQ+ZafoMKFDpCXOi50dslLd2WljrhAecxFoe6CUSK8w0QHFMHrrCBx7sJCx/si81xTEToucwDglL0vjLLrbFo1F27RS0XNReJ7rnKZCzpCGEaGxYfWAG2Z6zO9MGK4KCdVQwVvUkaf0cJexQkMSEpZgxXg+KngQSV5IRy1hzDleitFH19+OfP2rgv86j+HcNu/L4bjOFiyZAk+97nP4fDDD5e+7/nGa7b8GuXII4/Ed7/7XZx66qlwHYLbb12Ab161FBNjYu8MDii2O30Yc2qYcSX3nwTgMIomMzHrFoUj7zK1UDHaEkgJg0ld4ZJstdDCQKUBQhgMw4VpujALDqgh9gFCKAMp+PUNgwGmXEmWl2G9WYoMbokJl2SDMW4F/2c+Zkj0fdg/Xooc61oBfkrnH8+I5Pg8Eirb+jsWSO+1GoIRIjlovrP86Zo579/kizRLQgjcgldCt2o76du4QdAcKsCuUOVyc1joAPmSfVjoALlzzSjQHDZhcyligDkr8eUlJHReg0BxRv4LCP9fuoJH0LFoscqQA9HXNpe55jCDU1YTOqvKYFW9scIAgH7xb6eB0PE3McJQ7RMPBobLdQyX6+gzW4HQ8f9FGCrMBulcn+EdJyN0DVboEDpZRu2hDqETYXzMwHVfXoaf/etCOI6DU089Fd/5zne00Pm8pma/ZtHf34/Pf/7zOP744/H1r38dzz8NfPkzK/CO94zhuLXTmasrOKCYcUtowHsXk03tHEbhMAqDuIAL6XIsh0tdVmpXpDbKpg2+4p4ndwyUEthAZmpHCfMmP/BuEgaY/gcYQ3Zq50+eAEggWYwyEEOsJMsIOr6W8D83uNeMzyFGPbEQSYx4MtjVf5ntnMJ3w1M3SJRhw09AQuD65044xYjcjBECAsHELkZCvd8l7j/aHRNwIXb+u/tDvC8ENUOtHJuEL3R8xq4KUaGTJSp0/DKRRgOhK4dfGOKzxruEDt6XEaMFQLQEG/PlyqoQobSOEaA50H0/bkHsecZTOpHbtYYYGPFEjuNtESj2d1pV/322FHoDIBAqu3alcyH6SmJSxmUuSklwij2XOVXyyBwAaZljDHjg3n782w8XoVGnqFQq+PjHP463vvWtr7nJEGloqYtACMFZZ52FNWvW4Itf/CKeeuop/OjGETz2YBUXf2AbBoezXzA8tWuwAsrEUpK7Jky4LlEaawd4wkUJyyzJ8rRuR7394iKEwTRduJRllmR5WscsvuSKl9h5+8giU+68tI4geG+RlTviyUH4NsJyF6QI6WLRVXaN3r+A2PGya9f9y4pdx/EKYhdBSuximBNi12+AOAL7zabBy60Uc07oxI+NEToJ4oROvhF0J8D+68xCutjxiRGxix7TbLETKbsmyRxHZIx+rMxxMlK6NJkTTemipdYwIilduNSqAh87lyedAyAldNsnDPzo/4zgT3+sAgAOPfRQfPazn8Xee++t1If5jB5Tl4Jt27jlllvw3e9+F5ZlodLn4IJLxnHsie3Ujo+pSyJrrF2DFfBqayE2W/Hr3RnERYE4iXIXHVeXRJrc8bF1cYiMtwvG1sU2QACHpMpdMLYu9nh/BluK3Hnj0+KvAyIyFvdszxhfF0yOSCNlfB3J2OuVTxxIvA9eek36Nio6xi7l6rQxdt7MVZpaLiaOn3Kk9IGkvNUQB6kTKIIxdUkwf9mMJLFLG1Mnks5ljKkLxsulnGOassYenxWcujWayxLPb6bQEcApAnZfwmswQ+gY8ca4pU6YyBr+wJInTaQJXZikcahpQsdFjv8cJ3MAL1Mn33+qzAGpY+lSZS7UgbSxdGkyF9wmZSydiMwtK2zHkDEbe52IzO1VmEidJCGSzoXH1DHmLVXyr99fhPqsgWKxiA984AN45zvf+ZqeDJGGljoBXnrpJVx11VV45hlv25TDjprBRe8fw+Cwkyl1gCd2ZWolpnZ8skRqGykTKbZZNbw4u0job4mTuzSp46TJncsIXIu207rYBlLkziWgrVBaF3t8stx5JRMITbRImlRBnPgPjNSULqGPXW3EpXQxxyaKHREYf5YldgL9TxK78ASJLJImUKQJXcftEiZQZEodkC52SVInWm5NkTrRdC5psoRMOhc3YUI0oUuaMMFnuRZm0xO61AkTIuNZEyZNiAod72vc84sRwKmQrsvSUrkoSWPpMmWOM2B3lV6FZA4IUrq40quIzAW3jZE6mWQuadaraKk1aZKETDrHpW5izMAt/zKCxx/x0rmDDjoIn/3sZ7HPPvtktvFaRkudILZt48c//jG++93vwrZtlMouzrloHMe8aRaj7jC22Nk7SyTJnYjUAcmpnYzUAd1i13JNjNX7OkqwSSTJXWpa19FAvNylpnUdx8fLnYzY8dvz9vj/0bROSugi/Wu3kZHSRY7tEruslK7j+BSxk/gbonInI3VAvNiJSh0QL3ZCUgfAWyyYdZdjo1InW25NkDrZcms0rZMtt4aljlGgNWR6a6oJlFzjpE5U6ICUtE5mglIkrZMRunCfw8+vaEonK3NAvNAJyxzQldIJy1xwfHdKJyNz/HbR8XSy4+aiUidbao1KnWypdXVxFENo4J7/GsAvbl2IRoPCNE28733vw7ve9S6Yph4xloWWOkleeOEFfOUrX8FTTz0FAFi1fwNvubSO2aULhNuIlmRFpS44PiJ3oiXYKGG5E0nrwkTlTiit62ggInciaV3H8W154oKXVYaNo0PuImInVHZN6ZfXhkBKFzm+Q+xEUrqO4xPETvJVHhY7WakDusVORuqA7nKssNRxoqldWOpUJkNEpE6k3BpHWOpUxs9xqVMaPxcpwcoIHacrrZMROqArrWMUmF0sPzaLp+phoVOROaCz7MpFDhCUOY6f0knLnN+BcEonK3OccEqnMm4uXHpVHTcXljrZiRAAsNeWjfjRTSN4+QXvuEMPPRSf+tSnsN9++0m181pGS50CjuPg5z//OW688UbMzs6CUIaD3kKw5hzALIm9kMOp3ZRblpK6oI2Q3E07Jam0LozLCMYaVSmp44TlzmqZYmldRwMhuWtRObEL2vDTO5vAbIindWEC8XK9Dx3DYvIpXbQ/Mild5Hhqe3ImnNJ1HB8RO8VXOGEMjGSPp0s8PjTOTlbqgjb8NemcMpVfAiWc2s04oI6bazIEtRloi+WaDEEdJjR+LgniMhCHKU+I4GmditABkbROVuiCRry0TiWl43ivdwa3SOCaajLHMZre9oOApMhxBmwYRUde5jh+Sqcqc5zhYj3XJIiDyxtzT4I4qLRRaSKE3QQegnRhvAAAQuxJREFUu43gyTu9z5JqtYoPfvCDePvb3w6atVispgMtdTnYunUrrrvuOtxzzz0AgOpC4PUXA3sdAeEp1gZcOKCYsKuYUnlHgid303YJGxpDSscDQMMuYFu9ikmBEmwcjBE4DkWrqSB2QCB3xCIo7FB8ETMvtTOagCG+9mcHhCd2LaAgsbZXVzsuQBzJlC4M83bNUCYsdjle4czwdnLIA7UBo5VjRiXLNyOVy10v2inMuLnOJ2FqMtduwHs8VGe48qVpzAaTFjoOowT1BVRN6AD/S4uXGqoIHcBTOXhLKinKHAAwk4HYRE3mAIAAdGGz3Snp4xmWL5xErdhUljkAWF6ZRInauZYo2be0NdcSJQZx0U8b0suUrHsUeOhWiult3vk7+eST8fGPfxyLFqmFFK91tNT1gPvuuw9f/epXsWXLFgDAssOA118EDCwVf5Fvs/oxZlU7FhOWwWIGtjT7MdHsQ9lUa2OsUcWmSW9sIFG0kUa9CHt70Vs/zlR4o3QI6IwBc4aoL43teuWUwrTiHrHw0rrilOJLgyGQCOUPPvhlXKaYFgLBAs3EgScjKm2YgFXJ9wFuNr10SbUNvveqt8B0HiNShMscoC504W7naMMpUbRqOT54/fTWbKhLtlMgsMtUWaQAb3Fh18jx3KbAzF6K6S8DitsJGiOuv06mGsQmcIdsGCW1b19Oi4JQhqP3W6fch9GZAVDCcOrSZ5XbmLQr2L+8Ndc+5g9P74Pj+l+Uu99R4Pc/ptj4Z+/FMTIygk984hM46aSTlPuh0evU9YQTTzwRRx11FH7wgx/gX//1X7HpTzZ++RTwujczHHY2UBD4NmoxA9utPtRdGxXakpa7AnFgEhczdhENx0TRcKS/+fUXGpiuFLFjtgz+KSQrd2bBgV12QWYNMJfKy53BwAoM1KFg/HOUMjnBo57MUJsF+zd661yJN8EMwC4DpkLix7cBA/zPb8USFfxjGdQ+/BgF7BLxj6XSYscMbzwfcf1+KJTbvEWbQ2VgpTCDgTHv72CU7VqxYwyFadcby0agtsNE3u4Sf0cJ4j2mRstb21EWw/KHA+T4Hu8UCBglMCymnLI5JdIu5ys+r5vDcscQBhQn2v0165AXOkY6x9gyKAmd0/KfQy7B4iWT0scDnswBwGyrgMNGNim1MWlX4DKCpmsqC93D0/sAADbODgKCQ7qtBvDH2wie/C8K1wEKhQIuvvhivOc970GlUlHqh6aNlroe0dfXhw9+8IM466yz8M1vfhMPPPAAnroDeOl3wFEXMOxzQnZJ1gVB3Smg6ZjKcme7FDa8nSlsl6JIHeHkrmg4qBVb2DFbDr3vy8mdaTowyjbcGQPEIYALabljBW/bncK0f9+MgLlycucWGawaQXFHe0A2cYmw3DHKS0NMTuxCg/u9vquJXcfpVhA7vlgr4MmYXSFQETvX8DvuJ4aMIp+khGRVBU8w2c5P7UKlVtl9VwN60T0+EYDy14I3Ls+RbDwQOh/XIKnr5sXBhS5osyFf9uwQOoDvjCUMFzq7T+ygsMwVZtr32Vgsc6chmXPbf78zbEFmoEkgc47fBgFW9G+XaKEtczPNotcEYdi3b0yqjUnbE6e6o1jGQETmBGEu8OLvCf7w7wT1Se8cvOENb8BHP/pRrFixQrkvmk50+XUn8cADD+C6667Dhg0bAAAL9gGOvhBYfGD8m/Gm1hBeri/suIyCoWSIy13dKeDV+jC21tsTHkzqokAdmNQVSu5ajoFNMwN+WteGf36KyJ1tG2hMlUBmQm95JCRlInJnUxhTRiB2QRtEXO6IAxSm2mIHeB8KjIrLHXEBoyEudsT1kpQoUilXUslVohTrGoAdSVIIA8w6ExY7L63sPtEyYkdcwEzaoUDCSwK57OrHThC7cDoXRiapS+uW6DtuROiCw6lfEhckKnReIywoxYoQFTrev1a/+PmPCl3QjKAzywhdnMwBbaGz+gXuNEHmAF/oKmIpXZfMAQABlizbLix1UZkDvPfiQxZtxv7Vrdl9YBTT/myQqMztV9mGRWbyosdh0mTuvCWPJh43+ow3bm7sFe8c7LXXXvjoRz+KN77xjUL3qxFHS91OpNVq4dZbb8UPfvAD1OvezKYVRwJHXtA93m7WLWJDcxjbWt0zUGXkbnNzAM/v6B5gKiN3Y40qNm6PX3dPVO7q9SLcsVJMA+JyR+oGSttivgtLyF2c2AFtueM/pwmesNixhA9QfrWg2GXtPpEldowCTtEbs9TVtqDYMcNL+uJkit+H6N+SKHXBjbLbSepHuyzcA7nLSudEpE6kGyLvuAlCB/jLeJhEqASb+Hz0Z2aLpHWxQuf30SkQobQuSei8vog9p7OELlpiDcscICF0KTIX3NGy7HJlrMwFbQCvP/DlzDbiZC5ogjCcs+pP6X1IkTnOcf0vZfYjK5k7Ymg99i11y+XkKPCHf6d49THvHPT19eE973kPLrzwQpRKMZ8Pmtzo8utOpFgs4j3veQ/OOussfPe738Xtt9+O9Y852PA4cMBfMKw5Byj7m1f30RZqRhPb0C11PSvLuhQmdaXLsmFEy7KFgoNG1elM64BghqpIWZYVGKwa60zreBvML8v6HWJedbG7DaO9XEEY4iJYa4xRvy0SL3dCpdgMoQMES7FZn7ECpVhGECt0/Dq7TMAMmjmBIlGkALFxdiw+tYy7XZ6JGD0Za5eUzskgevfeUynxuvb4ufgGRUqw1GYdYzu7GyHeOcsImxKFDgie81lj61KFDsh8TmcJXVIqF3c/iUIXHS8XJ3M+zqCTWnZ1Leq9T8bJnN+PJcu2p7SQLnMiiMicCKJl1qjQNaaAx35B8Mw93thowzBwzjnn4H3vex+GhyUHRGqk0EndLuTll1/GP//zP+P+++8HAJgl4OAzgYPe7E2miCvBxpGW3MWVYONIS+6SSrBxpCV3iWldRwP+BzIQL3hxZdiUduLkLimti8IowIz2OLSo4KUldkll19j7SREhmd0n4j4E01K6rvtKSe2SSq+xXUlI7YRSuq6D4i9OE8zwsdKpnczYuaSkTsUl454qKelc1+EpJdisLxftRtLTulSh42SkdZlCF24qps9JQpeVynW1k5TSZaVyEZwhG0Zf90KYrr/oeqrMcVJSOlGZSyq9yspcUulVdswcL7226sCTvyL4850EVsM7D2984xvxoQ99SG/vtYvQUrcbeOyxx3D99dfj6aefBgCUasAhbwX63ziEVx3xtXkoGIYKs11il1SCjYPLXTS5SyvBxhH+HOWCFzu2LrURf0YaQYfcJZZhk9qg3emdqNhxuOBF5S52qROBlK6r/Rixk16o2O9GWO7ixtKlESd2WaXX+Ia6/yYlqQO6zov0zgsicqc4EYKZkfOSI2EMt5GVznUdnlCClX0exo2tc/gEG8G+JImdjNB5d9j9RSW6dIlwKhduIyp0EqlcBzFl18xUrquN7rF0XOQA8WQuWnpVTebiSq8PT+8jNQECAM4efhRP30XwxP9H0PS/gB944IH4yEc+gqOPPlqqLU0+tNTtJlzXxV133YXvfOc7ePXVVwEA5UFgyekDIK8fARFcPZ+CoWJYKFErkDsZqeNEkzuZtC5KOL2TFjugW+5E07q4dkLpnazYAd3pHTMiaZ2C0AVthyVIYhJEd0O8BCme0oWJip1MStfVlVBqpyx1Qce8/6TksqsvMcfmKbXytC5HpdfrQ7s90XSuq4lIWqf0PIykdULpXBykc9KEtNAF/Wm/DnhK51SYVCrX0VxY6CRTuSjhlE5a5oAuoVMtsYZTurxl1rDUKc1otV0sfvJFbLhjBrPbvXOxcuVKfOADH8DJJ5+sd4PYDWip283Yto077rgD3/ve97B582YAgDlsYuj0Bagd3Q8i+IHG5Q4ALEYx0erLLMHGEU7uZuyiVFoXhX+eNhqF7DJsbAMI1pIiLgGdpfJix9vx0zviEJizkBI7TljwiM1g1tWFLmjTF7s8bXgNef2TSenCEObtp0lcb2Fa5R0L4MsUQosO54GoSx0/PkjterRMSa5dKSKoCh3QlrrM8XOZDXlpnbLQAR1pnbLQBf3x2msNAXz5NBmRC5rxhc4ph6Nstb/PGbJBCv6XHlmZ4/hl17zj5QhhOGvlk7nHzK0qj2NjcwiAN25bSuYchtYfJ9D89Ra4E97wnaVLl+LSSy/F6aefDtPUw/V3F1rq5gitVgu33347vv/972N8fBwAYC40MfSmYdRePyCc3AGe4NWdAjbNqguZSV24jGDbdBXNlgnDyLECvUPRnCqBzCpsH8YhABhgzlAY9Xwf8sQCSts715OTgVGAEeKlW/X8Lx/ZtbqS2nDNnB+m8LYmK065SovbdkD8vVIlls1Iakdl4/s4zNl8EyEYBeyq0ZO/yTXlyq2x/fHLtrm/EAAAY7n6Anjnp7FQbZ/g7sYAu09N5jh2H9AYcZVFjuNUHaDiqIlciNJAE4sGZpRlDvD26d53eBz71MZyTYDY2qhhaWVKuszKbBetRybQvHcL3AkvRFiwYAH+8i//Eueccw6KRfW/TdMbtNTNMRqNBn7605/i5ptvxuTkJADAGDIxdOoQascNgBbEUoIpq4SxRjV3f6abJWzf0QdCXVDKlOWuUS+CjYde8Irvj7QZ2RtW5Quz623ibdTbvysJHvPaMZvqLyE+Bo463n6cqvDSa175oQ5QnHa9ZV56kJAZVn6xY5S0EzfV7rhAcbJ7gLt4HwC7ZsApEOUt17yOeELH/ybl/vgJby+WcwmGAeR5mIj3/LP61PdzbXdI/UsOH9fHCGANMDiqjhEal+sOqD9vCtX2OOVqn/o2XE7oyf+G5S8rt7O14VVvZqwSKhKrH7CWi9YfxtH4zVawHd5xw8PDuPjii3HeeefpnSDmEFrq5ij1eh233XYbfvzjH2NszFsx3Og3MHjKEPpPGATNKAE1HRM7rDJmrHzfnCzHwPbZChqNAgigLHe2baA1XeweWyc7TM4hMGYJzHp7nJtSOy5AW56UgXkyE90NQogcYucagN1H4BQICGOgLSjJHU9seNkzj/xwqQPaZVQluSP+8f65Ja663AUJkv+f0r7pilLH07lgLB0TX7y5swMIFr32ZExN6sLjMNvPfcXybdxrR/Yh8suuXpnc/72YQ+wUhc4p87Ta/71PUei4zPHnfsVV2sPa7LNBCEOx5D3nDOqCKvxhLiNggLdNHmFYObQde/Vtl24nLHMAUDC8bSWzYE0HzQfH0PzNNrAZ728ZGRnBu971Lpxzzjl6rbk5iJa6OU6z2cQvf/lL/OhHP8KWLVsAALSPYuDEQQycOASjllzS7GVaN7GjL/hdVe4SxS7csABRsQMiH/Si7YTFDmjLHf9ZVPAUxc4pkK4V+QnzxurJiB1P6bouVxDdQp11/d0qqV3XMic55C5uJwNA7u+TlboumQuukJS6iMwFzQSzicSb6kjnuu5H8vEJyWHnFRKNkPiJOYwClsROE+H7lvGecCoXLvlKCx1t3ykLPdSyQmf6kyjCMgeoCV1Y5jiEMOmULipznKyUzp2x0fr9GJr3bwOre2+KS5cuxbvf/W689a1v1WXWOYyWuj0Ey7Jwxx134Ic//CE2btwIACAmQe2YfgyePITCSPeLrFdS13IMTPppXRgudwCEBa+rDBuHwOdBnNhxZASvS+yCRiQFT1LswildV58kxC6a0sVdL0o4petqRya1I0jsD58tLCN2iWO9JOROVOoSZS64gYTUhcbOxd6XYFoXm8513Zf4A525s4nIQ5MgdO3rJNM6QaFLErngelGhSxA5jozQRVO5KAVDbDsx139wozIHQDqlS5I5TpLUOduaaN63Fa1HJwD/NbpixQr85V/+Jd7ylrfoCRB7AFrq9jBs28a9996LW265JVjnDgToO7SKwZOHUN63PbahVyVYoDutiyKa3mWmdXENJ0CbBMXJ9DK0SHk2UeyCRgQFj3nr2BE3Xe7ShC7ok6DYJaV0HbcRlB6zkb0fqFBqlyZ1gFxqx0uVmbfJuImA1AXj5jK2AqMWS59wkZDOdd2fgNSlpnNd9yv4PMhqK+sTIU3oOm4jIHYxay1GyRK54HYiQhcpr8ZCALeW/lxJSuWiiKR0calcV5cEUjouckCyzAHdpVfGGJxXZtH87VZYT+8IHpPXve51uPjii3HyySdrmduD0FK3h8IYwx//+EfccsstwQ4VAFBaVcbgKUPoO7QKQslOT+uiiKR30mLHG45elJLWRclK7zLFLmhIQPBSUjsRoQv6lCF2fMYrEzyNaWKQltJ1tZOV2mVJXdBQdmonswAukPw3pkldZjrXdUBKWpeRznU0kyJ1Qulc130n31B03+H2AUn3IbEWYpbYpaRz4YWMRSZ5pgpdRioXxS27QCH+8c1K5cKkCZ0belDdjAc4K6XLSuWi8JSOOQzWk5No3rcNzquzwfVvfOMbcfHFF+OII44A6cWeyppdipa6ecDLL7+MW2+9FXfccQcsy3vBmsMm+t8wiOIxw5gp1nZJWhclLb0TKsOmNcx/lBA7TpLgCYtd0FCK4CWIXdw4ujTSJlCIpHRdXU4QWpGUrquthNQuK6HqvHF6aie9zEaCCMVJnbTMBQfGSJ1gOtfRTMK4Oql0LkrMh7C00AHdUkciEyKE+wO0BmLuPEboZEUuuG2c0EmKHCdO6ERTuShxZVcucFkiFyYppZOVOd4nWm+h9fA4Wr8fC5YlKRaLOOOMM3DhhRfq7bz2cLTUzSPGxsbw05/+FD//+c+D5VCISVA8YhDNo5eDLJdfjDiMaFoXJS69U0rrEhpXETtOVPCkxS5oKEbwImInk9JFiaZ2sildR1cjdy+T0nW1FU3tRFO6robi5S7PYrhA+28NS52yzAWdCkmdgsx1NBVK65TSuSghqVOdGd5uoH28yk4l7WMjaZ0vdIwAbshHVJZd6xA6RZHjhIVOVeQ44ZROJpWLEk3pREuscbgbZkD+sBmtx7cD/hfQwcFBnH/++TjvvPOwYMECqfY0cxMtdfOQZrOJX//61/jJT36CZ555pn3FXlXguCXAIQtATLVV8WXTuihhwWMuhV0384sdAOKqix0nLADUUhC7oKG24BGHwZz1JE9V6Dhc7IwmUxa6jm76XckjdUFbXO7M5EkbolDL2yGBWvkXxA2EhgGFKTufzHEYQ2HWzSVzQVOks43ciyz7UqeUziWgLHScsNix/CIXHNvXuVtEnuedW3FhDrSC30tl8TXcohi087UkK3JheEo31qzCZURa5Jjlwv3zBJwHt4BtaJdYV69ejfPPPx9vfvObUS7LbwWpmbtoqZvHMMbw1FNP4Sc/+QnuuuuuoDSLPhM4egQ4egRkWO4FHaR19aLYdLUUCADXIXCnCiB2/k8gLnZGg+TeoYFPeqA2QMQmryW3Y3tSl2sxXx/CGIwmerOLgA+1GQqz+d8G8qSHcRgtb3mVzIkSghDG8skcb4eniT3oFiMETpGAuL15G3YLxHu+5uwbo0CrRmA2JMutKe01Fnmvyzwix7H7GdwCy/cFggG0ReAsb8Iw3VwiBwCMecNKarVGLpHjuC7BULWOJX1T8jI30YTzh21wHtkGzHpJY6FQwCmnnILzzz8fhx56qB4vN0/RUvcaYXx8HLfffjt+/vOfY+vWre0r9h0AjhoBDh4WTu9ajoHtM77YwQ8HVC2KEThNA2jxqAe5BI+4BEaddGwlpix4zBM6arXbURY8PoYoTxvoHGPXE5i3mTu1EUxcyEM4qcub2BEXMOuu2AzYzMb8CQx5YX6KqLjFXNCML3OAN6PTaOU8734C7Bok92PIKNAcIHAqBLQJmDm2wmMUsPwxdZZ6wB+8hhkB7FpkP1epDgFGs51m2ossVBfUlfvFGNCYbQ/oowZDudJKOSIdx/FeNIQw9FeaGCw1xPtiuXCf3g7nkW1gL00F5fPFixfj3HPPxdlnn43h4WHlvmn2DLTUvcawbRv33XcfbrvtNjz00EMIHv6yARy+yEvvlmS/++5olLB9e2hWLckhd4zAaVHApt4bEd+rUVHwaIugMBVeMDbUTdnucbHjEsWHUqnKGfNkReXYngsd/MQvWFaCeWXnHFIQFqdccsfaSZ3XOf9iVbnLK3WRt0niejIs3UxE5jh5pM4tkPbfxvwkUfE5EhY6jqrYcaFTlbmO1yoDQACrX0HoQiIHeO8PAMAMhsIhO6T7FRU5t24CBDCrlrLQcZlz/fc+QoCVCyaEjnVHZ+E+sg3O4+NAvf3AH3PMMTj//PPxhje8QS9J8hpCS91rmNHRUfzyl7/EL3/5y2C3CgDA8qpXnj1sIUgpvvbScgxMTPehWY/UUvi4NEnBYw6B24i88SgKXpDWNeJn3QW3E+1eVOw4qoKnKHbEZTDFv7gLtIeuWY6Eqad2jMZPbFCRuyCl67rCb0tW7lSlLuHtUTatS5I5DnW88ZcyBOlc9O9SEDtGgVa/t3dwWOh4e8VJ+eeCitB1iVxwhaTQMcBotUWXi1y7fwytZeIpXazIdXQcqC2aEeubDxc5oC1zgPfeOVitp6Z0rG7DfWICzqPbwDa2x8qNjIzgrLPOwlvf+lYsX75cqj+a+YGWOg0cx8HDDz+M22+/Hb/97W9h2/5sL5MCBw15Cd5+AyBG56dyV1oXRUbwwmld7PWQErxUsQu3yW+f9SpIEjtOyD+EJE9S7HZG2TVtXJ5KapclTZ70ibWVKHXBDfw2ReVOVuoy3hZlpI4LXdrCuYBcWteRzsXeqfhjF5fORZFJ62SErut1F3cXokKXIXLt/okJXabIhfonmtIliVxHcwkpHXMY3Bd3wP3jONynJoIZrKZp4qSTTsLb3vY2HHPMMTCMHg1q1eyRaKnTdDAxMYE77rgDt99+O9atW9e+os8EDlsIHL4QWF4FISQ5rYtDRPCyxC64HYQET0jswm3y45JeEVliF0YkxRMcZ7ezy66p9yuR2olIk2hqlyl1wQ1DbacJnojUSbwVikhdVjoXRUTqEtO5rjvPTutS07kYssROdPxcYhoXe+MMoRMUuXYf04VOWORC/csSOhGRC5qLpHSMMbANs3AfH4Pzpwlgpr28yr777ou3ve1tOP300zE0NJTeT81rBi11mlgYY3j66adx55134r//+7+xffv29pULy8AaT/CmKoPpaV0caYInKnbB7ZEqeFJiF26THx+TJHABE5asrBQvJbXbGUKXldLF9iFD7pJKr4ldyJA7YanrOMhvM07u0qRO4S0wTepkZY6TVoIVlrmOjqQ/XlnpXGwfE8QuLZ0TSuO6DgKsGgMIuoVOUuTafWRoLbVRXTjbebmsyIX6mCR0MiLX0aSf0rGxBpzHx+E+Pg423l5baWhoCKeddhre8pa34OCDD9YzWDVdaKnTZGLbNv7whz/gzjvvxG9+8xs0m+03GXdFP2b2X4qpvfeCU1VY7yhO8GTFjpMgeEpiF24z3F3Wvlw4tYsSl+LFiN1OETqIpXSxx6XIneokhFi5i06SkO6o30z4Ay9O6nK+9UUnS6jKXJhoWqckc0GHutM6vlQJo2LpXBxRsYsTOqk0Lko0nQtLnP+7qMi1+9gpdMoiF+pjVOhURY5jzDQwtG4Dik9tAVvfHp9XKpWwdu1anH766TjmmGP0pAdNKlrqNFLMzs7i3nvvxZ133olHHnkErttOU5pLhjC731LU91sKp5ZP8JiL7okTMkQEj7aouthF2/XhEpZLusIpnhtaPsXp/cQIfh8qQtfRRkTuZFO6OMJyp5TSxXbUb9PftaE9Q7Q3b3k8reuFzHF4WpdL5sL4YkeYJ3Mg3q4medssTnqPu9Xvt1npvo0SXOhKTCmNi+2uL3R9C2bziVykn7VFM7lFjk41UH5+C8rPb0Zx02T7ckpxzDHH4PTTT8dJJ52Evr4c68FoXlNoqdMos23bNtx9992466678MQTT3Rc1xa8JXBq0Xd8MVzLAGzSMW5KCV/wiENAG57Y5fmQCLdLGEDsHqZpri8LFmDOqC9NEYtk2TULwhiI6+0JWsixllkYRhGISN612wKIJ3Z5hauzTQKrQoJt23rRNqMETgkozLLerKkXwq70QOZC0BbgFgCbu0YPHipGAWZ4O0XkFTkAAGGwK4BbZCALvOpCLpHjuAS0ZqFUttREbkfdF7ktKI5Odlx36KGH4tRTT8Vpp52GhQsX5u+r5jWHljpNT9i6dSvuuece3H333XjiiScQflo1Fw+ivu9S1PdZDHtIfPwdcwmYRQGHR3jIL3guQBpGsJ0YcXrw4cF4stZbuTMbXmpjqq+NGsAI4BYRiJ3yFmhhCOCUvB0H+C4XvZA7RrwPdy8N7JHcEeTaoq3dDkGr6n3RcIpAcaoHfy8lcMre3+2UPFHsyeMDwC7DS9LKBMi/mYb32PhelHuniSBJ9R5v5X2DO9pk7dSQMDg1t2NPWGXCS4702ShK7j5hbJ9F6QVf5Da318YjhGDNmjU4+eSTcfLJJ2Px4sX5+6p5TaOlTtNztm3bhnvuuSdI8MJPMWuoivqqxajvsxitxUNARtkuEDs+vo4P1skjeC5AWtSTOZd0iFguyfMTtp6may5QmMkndowATrldyiMMoC2WW+4YBaxq6MPOZT2RO9dof7h7JU7kl7u8UheSObvMz6M35pGndbJEZS64KwYUd+R7W+Yyx8vCXlqJXGLHhU5Z5qJDGv3XMDNyyFxY4vzfXX8sHjNZPqELi5xDwAgDqQkKnctQGJ1E6cWtKL+0FeZEe3IGIQRHHHFEIHKLFi1S76NGE0FLnWansm3bNtx7772477778Oijj7bXwAPglAtorPQEr7FiIVghvjTCHArWiPkkCY/GlpW8sNh1XJ5T8naS2KmmdlGhC5NL7vyULk6U8sidt39szN1xuQPUBE9B6hglsPraUsRlrqNZl0mndUkyF0Y1reuSuY7OqoldrnQuPL8h2iUVoUuRuDBKQhcppRKn83dGGEqLkl+ApGWjuG4M5Re3ofTyNtBGW/4Mw8CRRx6Jk08+GWvXrtWlVc1OQ0udZpcxPT2NBx98EPfddx8eeOABTE9PB9cxg6Kx10I09l6E+t4jcAbbA4O70rokZFO8JLHruE1b8oQFb2eIHaAkd66RPZZKRe6iKV1suwpylyR1Xf21/ZmdoosjS0hdIHMJItfRrITUichc0K5kWpcqcx0N+6VOAaRlLuauE/e1lxG6SEk1TuI67lNG6CJpXGKbhIFUbRQrnSmdsX0WpVfGUHppG4rrx0Hc9v3WajWccMIJOPHEE3H88cejVquJ9UmjyYGWOs1uwbZtPP7447jvvvvw29/+Fps2beq43hroQ2PvRWjsvQjN5QvgGgUxseOIpngiYhfcViLF2xnj7IJ+iJVk01K6OITlLiWli725hNyJSF1Hf0XTuwypE0nlYpsVkDoZmQsjktYJyxxHMK0TKrXGlVNF7t9vM1HoBNO4ODKFLiONi20zJHSkZaO4fgLFV8ZQWjcGc7LzRbjXXnvhxBNPxIknnog1a9bo5Uc0uxwtdZrdDmMML730Eu6//3489NBDePzxx+E4bRNilKC5dBj1FSOoL1sMqzYISO/9mSJ5LkBs6i99IllqjS52HBW93ZTayQpdmCy5E0npYtsVkDtXcXxVZnqXIHWMEtgVb902UZHrvF/vbzKacQvyqslcu+34tI75Ui0lcx0NJ4tdajqnInHR+40+vlGB8y8TlbigL6Z/+6jQKUhcR7twUWxOoDa6GcVXxlDctL0jjTMMA4cddhiOP/54nHTSSVi1apVeEFizW9FSp5lzzM7O4pFHHsGDDz6I3/3udxgdHe243q6U0FiyCI2li9Bcugh2TWENpzjJk0ntkoiIHnEA2iQ7NbWLyl0eoQsTK3eSKV1su247gQoLnkxKl9pnu30/geCFpI6LnPezmsx13GcoreMiB6jLXJhwWpdb5sJExK5L5mRKqSL3xdM5Qz2FS6IjncspcQBgTM+gvHkMpS1bUdm8FUa9c8eIZcuW4fjjj8exxx6Lo48+GtWq5I46Gs1OREudZk7DGMP69evx4IMP4ve//z0effTRjh0tAMCuVtBYusgXvYVw+hTWxQvtZkFaBNTq0bdthnZbDDCapCdLlHThy51X9m0vXtsLArnzT1FPlgbhbUcWWBYeIyfSNmu312uRi8J32OiFyHW13QyJaV6ZC0O8c8FFMZygKQtczH1YNdYxjs+t9HKxRE8Ug19VJG6mjvKWbSht3obylm0wZzpfoOVyGUcffTSOPfZYHHfccVixYoVO4zRzFi11mj2KZrOJP//5z3jkkUfwyCOP4Kmnnuoo1QKA1V/1JW8hmosXwumT3N2CAbRBYc74EmB4C5j2AuIQ0KYnesUp/+5CKUlu+Fg+f1HkXkFcwGh4qZ0nAr39UCOulzQaLdZOkXoIowSt/h73mTGY/koVzFArSae33xa6nstiOPUr9K5Zg4daBGgs8B5Lp9ojiWOAUffMkxHA7VNrl9YbKPsCV9q8DYXpzr1gDcPAQQcdhKOPPhpHH3001qxZg2KxmNCaRjO30FKn2aOZnZ3FE088gUceeQSPPvoonn322Y6tywDAqvWhOTKM5sgCNBcvgDXYnzkmjzgE5g4Kc5p0SV0vJI/YBMXtntjFSV1u0eux3BEHKG/3ziuj4VJmb2SDOgylydA55k32SPB6JXVhkSOsvUadawD1RflX9w2LnJfs+j9SoDXQgxPRQ5kzovvYM+8yRoHGIgZrKKfMhSQu+L3pC26fYNmWMRQmp1DaOo7StnGUto7DnOmUOEopDjzwQBx11FGBxOltuTR7KlrqNPOKqakp/PGPf8Sjjz6Kxx57DC+88EKX5DnFApqLhtFc7Elea8EQmNk9zS8sdmHipE5F9IhNYM4QUAtBahe01yvR64HcERcwZxnM2MkAXkkwT5LEU7q49oHeCF4eqUsSuWgfrSpRTusCmWMJM4+JN9NVWaBzylySwHVcRIHmAn9PWFmhiwocvyxyLrKEjtg2imPbA4ErbZsAtTqXISGE4IADDggk7vDDD9fLjWjmDVrqNPOamZkZPPnkk3jiiSfwxBNP4Mknn0S93jlmhlGC1vAgWguH0Fw4hOaiIdgDNYB4+8UaMxTEQZfcdbSRQ/TS5K6jvTyipyh3aULX0Txtj/eSFbxoSpd6P4qCJyt1IiIXRTatS0rlkg9QEDsFmRMRuI6rZWVOUOA6riaAU/HKuYHQMQZzxzRK49tRHJtAcWw7ihOTIJGPtEqlgoMPPhhr1qzBmjVrcMghh2iJ08xbtNRpXlPYto0XXngBjz/+OP70pz/h8ccfx9jYWNft3IKJ5sKhQPSs4WEQqw/mjPiHtqzohUuywvchK3oScicqdF13ISF4WSld6v1ICJ6I1KmIXLQ/rRpJXexZWuS6GhAUO0GZkxW4KIwCjYUM1nCCzCkIXFcTBHDKLgib9VK48e2ewI1vB7W7n8QjIyM47LDDAonbf//99XpxmtcMWuo0r2kYYxgdHcVTTz0V/Hv22WfRaDS6bmtXSrD7h+GUB2HXBmHVhuCW+zLH53VAAaeULHrEJihMExA7PbVL/ZsSpK7j8gy5UxW6rvvMEDyZlC71fsLNxkhenNSFJc77XX0fV05cWpdb5KKkiV2CzMWKmqTAdRzK0zmCttD1QOC8YxiM+izMqUmY05Mwp7ejuH0CRrO7s6VSCa973etw0EEH4aCDDsJhhx2GJUuW6NmpmtcsWuo0mgi2beOVV14JJO/pp5/Giy++2DXLFgBcw4RdG4RdG/L+rw7CrvYDVGKTzBjRozaBUfc+PFXlLkqs7DFP4FyTL13iz3LtgeB03X9E8NwClFO6zPuKSJ5rEFg1dCwnQ9yd8Df6aZ1TIb0VuSi+vHkpFvFEzpc0pxTtlLq8RWEUaA57f09rKHLuVP5O14E5PYXC1CTMqcng/7gEzjAM7LfffjjooINw8MEH4+CDD8aqVat0CqfRhNBSp9EI0Gg08Nxzz+HZZ5/Fc889h+effx4vvfQSrMggbABghMDu64dTHYDdNwC76v3slKvSqR4zAHPaW1C3uMNb76vXy4kEsse83S96kdBlYZcIplcSTyJbQG1DD9cui4FRbzHmXktcGOIyFKZdb2xZzYDd48ep+w4Bu+I9H8JS10uYAcyscAGXoDROAAK0BrO3L+tuyE/fpnfAnJny/p/yfo6OgQMA0zSx77774oADDsDq1atx0EEHYfXq1SiVosaq0WjCaKnTaBThiR6XvOeeew7PPfccpqenY2/PKPVkzxc9u28ATrVfSPaoAxSmOndj6Gq/V8LntsuFOyOxA7yZouNHeiJHLILy5nbZbmdJHulxk1ziAhhDYdpLmNwCxdTeO0FA/NIr/7kXj3cgbgm4ZW9WbnFcYDwpYzBmZ2DO7IA5PeUL3BTMmWkQN347lYGBARxwwAHBv9WrV2PlypUoFHq4gJ5G8xpBS51G00MYY9i8eTOee+45vPzyy8G/V155Ba1WfIzCKIVTqcGu1OBUqnAqNe/3vhpYodQhfFzuqM269gVNWzNOWfjCguf2plTqFAmmVhI0l8R/yBOLoDLqCQS1eid4vZA64jKYM27wM5e4KIwSNBcU0ByQKMMn3ml+kWMGMLNX/AlgBmAu71y7jbkE1kQJxCXdMscYaKsJY2Ya5uy0J3Gh/4kbfz/FYhGrVq3CqlWrsM8+++CAAw7A/vvvj8WLF+sxcBpNj9BSp9HsAhzHwaZNm/DSSy8Jyx7gjdnjkhcIX7kPrFiF0SyDOvGbvkdJFT7qjcvKpAeClyV0UcKCx1EVPVmpCwtc+LIkkYuSS+wURE5W3GJvx2XOAcqbWjDqs13SZszOgDrJ56BUKgXiFv63bNkyGEYPJFej0SSipU6j2Y04joPR0VGsX78e69evx6uvvhr8v3nz5q6Fk8MwQuCW+sDMPrhmHyirgBne78zoA4yy0Bi+zL1QSYz0hQQPyJY8p0gws4zALUBY6BK7ExE9UcnLkrqoxMkIXBKMErQGC2AG0uUuLHH+71GRS5M2fr2IuAEAXAY604Sxow5zqgG6owGyrYXC9CzMHXUYjdnYsW4cSimWLFmCFStWdPxbtWoVli5dCkrz766h0Wjk0VKn0cxRWq0WNm7c2CF7GzZswOjoKDZv3hw7GzcMAwGMMphRBjMqYEYZ8P9nRhnMrPjil56eZEpfDGHJk03nZIlL84Bu2eNSF5fA8cvzSlwSXaldROJck2Bqv3TrFJY224Ex04Qx3QSdafj/e78bM+3LiJv+1m8YBkZGRrB8+fIueVu+fLneD1WjmYNoqdNo9kAcx8G2bduwadMmjI6OBv82bdqETZs2YevWrZnSx2G06AkfLYEZJTBaBIwSGC0F/zOjBNAiQOOXj4iKX1TqpvcmaCzdOVKXiE3Qt8mTPaMJDD9t+X3befKWhFM2sPnYEqya/3ZLOpexyRI2Yjmgsy3Qeuhf8LsFo97yxa0B2hT72wzDwJIlS7B06dKuf8uWLcPChQv1ciEazR6GljqNZh5i2zbGxsawdetWbNu2Lfb/rVu3po7ni4MRw5M/WgBo0f+/EPk9cjkpwCmbmF3eKQhuAbtM9Iwpin1vq2ffsAc4ZQNbXt8589UpAs4hOzw5a1qgDQukaYM2bZCm5V9mg7S8/2nTv77eglFvgdhyAwJLpRIWLVqEkZERLFq0KPjHf1+8eDEWLVqkx7hpNPMMLXUazWsUxhimpqawdetWjI2NYfv27ZiYmMD4+HjwM/9/YmJCWgC77g/ES/qICUZMMMOEUzbBDAPMKIAZBkANuKYBewDe5ZSCGRSMGt7/BvUvMwBKvUWGCQEIASMEgLeWWvA78X6nswb2/u8GABb0hoV+bv/Pf3Y7/rHI74ALtwDMLCEgruP9c2wQxwaYDRRbnsBZDojtgLTszHJnFsViEcPDwxgeHsbQ0BCGhoY6fl64cGEgbbVaTc8o1Wheg2ip02g0mTDGMDs7Gwje9PQ0pqamgn87duwIfg5ft2PHjtwyON8ol8vo7+9HrVbr+D/6r1ardYhbpVLRoqbRaFLRUqfRaHYqtm2j0WhgdnYW9Xod9Xo99ufZ2Vm0Wq3gn2VZsb9bloVmswnbtuG6LlzXBWMMjuOAMRZcFv7HGAMhBJTSrv/jLjNNE8ViEYVCAYVCIfFn/ntfXx8qlUrwf7lcRqVS6fjX19eHcrmsF9XVaDQ7DS11Go1Go9FoNPMAvZiQRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08wNzdHdBoOIwxNBqN3d0NjUajkaJcLoMQsru7odFoqdPMHRqNBs4444zd3Q2NRqOR4o477kClUtnd3dBodPlVo9FoNBqNZj6gkzrNnKT44GIQ5n/nIBSEEoBQgBKAEBDKr/MvJwSgBITfJriOBMcE/4DQZbTzeu/A4DJGSPurT6iN4HLSvq/wZYx4zQTXUa9d73ISXMePYf5lwfVAuw3q355fj8776DjG7z6jMdd13B4dfWxfRrqu6zoG4X5ErkfC5QntJfWj65i0doPLWffxoWOC60NtMf9yhI7zrmOh/njXk/B1wW35dSxok4RvT1hwXfAU45fz5vzbeE8FFvzOj6H+79513u/8uOA6wkDQPo76lwX/wILjKEHH5d7xbvs48Nu7MPgx/u/tttygPSPUvgHvcoO3F9zWhcHbBO+H27492m17bbqg8O7fu85rz/AvI3Bh8ONDxxiAdxy8++Hng//u3Rfzf4Z/HQP1z4sBAgrA8B9sCuJfRmAQAgoK4j9yVsvABf/vUmg0cwktdZq5iUP8t1d4UgdfwPxPy/Z1BKBtgyGeIfmN8E93iq5P7bYxdZoEb7PrUx6Ry8L3gZjLosehLXMhqeu6LCRh4d+jXey8fcwxNOW6pD+jqx8Jf3badUmnSrW9UJtxwrdTpS7uekR/Z0Hb4X6E7zPuukACEbpN+PZdx7CY+2Id/8JS1xZF/1/SdeDi5zUZFkAufwCXMwRSFL7Okzq3LUUkLEXez5QQT7j8/xH8TILjvHbgt8mPhX+cf3ncdaFjDF9IjaCfXOpYptSF2zP4+UDnZRThPoYeQ41mjqDLrxqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAL1OnWZuYjAw5i046q27RkL/k8iCwPz/0M8IX8ZCPwtcF1q0rL1EbNLl7f9Zx8/oOI4BAOOXt9tkIABDcGz4+qCNjsXVwn2J+Z11dClyPhL+RW8rshZd2nXC9yV4XfguU49jGW2yhD4mLz7cubZc6LrgtuqLD7f7EVqnDurr1DG0j2OEdf6D9793HToudwkDiNtuE/y+3NB6ev5t/OsZcYP20NG+/z+/L/936t+G/w+g6zI39LLmP7sEcNFep871LyNIWqeOBAsGG2g/Zvx36h8TXftOfPFhgvbiw3GvS41m96KlTjMnaR23ZXd3YefAPzMViTqJRsMJP7Xc3dkRZcJWrYtIGo0K+pWj0Wg0Go1GMw8gjDG914lmTsAYQ6PR6GmbjUYD5557LgDg5z//Ocrlck/b13Siz/euRZ/vXUvS+S6XyyBEZ+ea3Y8uv2rmDIQQVCqVndZ+uVzeqe1rOtHne9eiz/euRZ9vzVxEl181Go1Go9Fo5gFa6jQajUaj0WjmAVrqNBqNRqPRaOYBWuo0Go1Go9Fo5gF69qtGo9FoNBrNPEAndRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wBzd3dA89pjcnIS9913Hx5++GE8++yz2Lx5MxzHwdDQEF73utfhzDPPxF/8xV+ktjE7O4tbbrkF99xzD0ZHR0Epxd577403velNuOCCC1AoFFKPHx8fx80334wHHngAmzdvRqlUwr777oszzzwTb3vb20AIST1+w4YNuPnmm/HQQw9hfHwclUoFBx54IM455xyccsopsqdkl/PDH/4QN954Y/D7vffem3hbfa7VmZmZwc9+9jP89re/xfr16zE7O4uhoSGsWLECRxxxBC688EL09/d3HafPuTwPPfQQbr/9djz55JOYmJgAACxcuBCHHnoo3v72t+PII49MPFafb818QW8TptnlnHrqqXAcJ/i9WCzCMAzU6/XgsuOPPx5f+MIXUC6Xu44fHR3Fxz72MYyOjgIAyuUyXNdFq9UCAKxevRpf+9rXYj8sAeCZZ57BJz/5SUxOTgIAKpUKWq1W0KfjjjsOX/rSlxLfyB944AFcccUVaDQaAIBqtYp6vQ7XdQEAZ511Fi6//PLMN/Ldxbp16/D+978/OF9AstTpc63OI488giuvvBLj4+MAgEKhgFKphOnp6eA2N910E1avXt1xnD7ncjDGcO211+IXv/hFcFmpVAIANJvN4LJ3vvOduOyyy7qO1+dbM69gGs0uZu3ateyv//qv2U9/+lO2YcOG4PKNGzeyL3/5y2zt2rVs7dq17Atf+ELXsZZlsfe+971s7dq17LzzzmMPPfQQY4wxx3HYf/3Xf7EzzjiDrV27ln3qU5+Kve+pqSl27rnnsrVr17J3v/vd7KmnnmKMMdZqtdh//Md/sFNPPZWtXbuWXXvttbHHb9iwgZ1++uls7dq17CMf+Qhbt24dY4yxmZkZdtNNNwV9/9GPfpTrHO0sHMdhH/7wh9natWvZhz70oaC/cehzrc7jjz/O3vzmN7O1a9eyv/u7v2NPPfUUc12XMcZYvV5nTz75JLvxxhs7nv+M6XOuwn/+538G/frc5z4X9Jkxxl555RX2mc98Jrj+nnvu6ThWn2/NfENLnWaX8/DDD6def/XVVwdvZqOjox3X3XbbbcF1TzzxRNexv/rVr4Lr//CHP3Rd/7//9/9ma9euZW9+85u7PlAZY+wHP/gBW7t2LTvllFM6Phw4X/jCF9jatWvZueeey3bs2NF1/Ve+8hW2du1aduaZZ8Zev7u59dZb2dq1a9mVV17Z8aERhz7XatTrdXbRRRextWvXsq997WtSx+pzLs/HPvYxtnbtWnbxxRczy7K6rrcsK3g8Pv/5z3dcp8+3Zr6hJ0podjlHH3106vVve9vbgp+feeaZjuv+7//9vwCAo446CocddljXsaeddhqWLVvWcdswd9xxR3C75cuXd13/jne8A5VKBY7j4Fe/+lXHdfV6Hffccw8A4Lzzzostx7znPe8B4I2l+s1vfpP8R+4GNm7ciP/zf/4PBgcH8dGPfjTz9vpcq3HHHXdg48aNWLBgAT70oQ9JHavPuTxjY2MAgAMOOACm2T1M3DRNHHDAAQDQMcQD0OdbM//QUqeZcxSLxeBnPq4EABqNBv70pz8BAE444YTYYwkhOP744wF4A6fDrFu3Dps3bwaA4DZR+vr6cPjhh8ce/8QTTwRjdJKOX7ZsGVatWhV7/O7m6quvRr1ex9/8zd9gaGgo9bb6XKvDP+hPPfXUYGyXCPqcq8Gl6/nnn4dt213X27aN559/HgDwute9Lrhcn2/NfERLnWbO8dhjjwU/77fffsHPr7zySiB5++67b+Lx/Lrx8XHs2LEjuPzFF1/suk0c/D5ffvnljsvDx4f7lXT8Sy+9lHibXc1tt92Ghx9+GMcccwzOPPPMzNvrc61Gq9UK0uUDDzwQmzdvxtVXX40LLrgAb3rTm3Duuefib//2b/HAAw90HavPuRrnnXceAG8G6ZVXXon169cH161btw5XXHEFNm7ciL322gvvfOc7g+v0+dbMR/SSJpo5xdTUFH74wx8CAA4//HCsXLkyuG7btm3BzyMjI4ltLFq0qOOYgYEBAO0yjejxMzMzmJ2dRV9fX8f99/f3pyYw/Pjw/e1Otm7dihtuuAGlUgmf/OQnhY7R51qN0dFRWJYFANi0aRPe+973YnZ2FoVCAeVyGRMTE7j//vtx//334+yzz8anPvWpYFajPudqnHjiibjsssvw7W9/G3fffTfuvvvujtmvtVoN5513Hv7qr/4K1Wo1OE6fb818RCd1mjmD67r4n//zf2JsbAzFYhGf+MQnOq6fnZ0Nfk57EwwvgxI+Ju/xfDxO3DIrcceHj92dXHPNNZiensb73ve+2HE/cehzrcbU1FTw8/e//32Ypokrr7wSd9xxB375y1/i3/7t33DqqacCAG6//Xbceuutwe31OVfnne98J774xS9ieHgYgCdzvLRp2zbq9XrHUjKAPt+a+YmWOs2c4brrrsP9998PAPjEJz6B/ffffzf3aM/nzjvvxAMPPIDVq1d3lJ40O4fwGFDXdXH55ZfjlFNOCQbwL1myBFdccUUwcP+HP/xh7DgwjTiNRgNXXHEFLr/8cixZsiRYs+4Xv/gFrr32Wuyzzz6444478MEPfhAvvPDC7u6uRrNT0VKnmRN861vfwk9+8hMAwGWXXdYxA5bDyxZA56KiUfgintFj8h5fqVS6rk87Pnzs7mB8fBzf+MY3YBgGPvWpT8XODExCn2s1wv1YsWIF1q5d23UbSikuvvhiAN7uKs8++2zXsfqci3P99dfjrrvuwsqVK/GNb3wDxx57LIaGhjA0NIRjjz0W3/jGN7D33ntjcnISX/3qV4Pj9PnWzEe01Gl2OzfccAP+9V//FQDwkY98JDFRCo9t2bp1a2J74bEy4WMWLlwodXy1Wu14I+VtTU1Npb6J8+PD97c7+Pa3v43JyUmcc845WLlyJWZnZzv+hRMifhkfD6bPtRrhsVXh8aBR+IxGAMFOBvqcyzM7O4vbbrsNAHD++efHlkFLpRLe8Y53AAAef/zxYAsxfb418xEtdZrdyvXXX48f//jHAIAPf/jDQYIRx6pVq0Cp95RNmwnGr1uwYEEwqBnonGGWdjyflbbPPvt0XB4+PjxzLen4tBlxu4JNmzYBAH72s5/hzDPP7PrHJ6QACC674YYbAOhzrcrAwEDqoPk4+EQJfc7lefXVV4PtuNLGi65YsSL4mb8u9PnWzEe01Gl2G9/61rdwyy23APCE7l3velfq7cvlcrBA6O9///vY2zDG8OCDDwIAjj322I7r9t57byxZsiT1+Hq9jscffzz2+DVr1gRJAL+PKKOjo3jllVdij9+T0OdaHd4X3rc4wstb8HXW9DmXJ7wfKl8zLg6+/y7QLmPq862Zj2ip0+wWvvWtb3WUXLOEjsPXWHv00Ufx5JNPdl1/1113YePGjR235RBCcMYZZwAAfv3rXwff2MP89Kc/Rb1eh2EYeMtb3tJxXaVSwcknnwzAS7+is+kA4OabbwbgfXDEjafalVx33XW49957E/9deumlwW35ZR/72MeCy/S5VuOtb30rAG/dtLhdAFzXDb7MjIyM4MADDwyu0+dcjlWrVgVidPvtt8dOOnEcJyjR9vf3Y++99w6u0+dbM9/QUqfZ5YTH0F122WWpJdcoZ555Jvbbbz8wxvC5z30ODz/8MADvg/Kuu+7C1VdfDcBbof31r3991/EXX3wxFixYgEajgcsvvzxYKNayLPzsZz/DTTfdBAA455xzOt78Oe9///tRqVQwNjaGv/3bv8Wrr74KwPtG/r3vfQ8///nPAQCXXHJJ7LY/exL6XKtxxBFH4JRTTgEAfOUrX8Hdd98dyMbmzZvxj//4j8EszL/6q78KSoCAPueylEolnH322QCAZ599Fp/5zGfwwgsvwHVduK6LF154AZ/+9KeDnSMuvPBCGIYRHK/Pt2a+QRhjbHd3QvPaYfPmzbjwwgsBeLMAs7aruuiii7pSvE2bNuHjH/94MMC8XC7DdV20Wi0AwOrVq/G1r30t8U3wmWeewSc/+UlMTk4C8L4Ft1qt4IP32GOPxZe+9KWO7crCPPDAA7jiiiuCWWm1Wg31ej0Y23PWWWfh8ssv7ygNzUW+853v4Hvf+x4AL6mLQ59rNer1Oj796U/jj3/8IwBv67tSqdSxjt2ll16K97///V3H6nMuR7PZxN///d93lED538bPGQC8+c1vxt/93d91SB2gz7dmfqGlTrNL2bRpEy666CLh2yd98M3OzuKWW27BPffcg9HRURBCsPfee+O0007DBRdcgEKhkNru+Pg4br75Ztx///3YsmULisUi9ttvP5x55pk466yzOtKTODZs2ICbb74ZDz30EMbHx1GpVLB69Wq8/e1vD1KauY6I1AH6XKviui5++ctf4o477sBLL72E2dlZDA8P4/DDD8c73vEOrFmzJvFYfc7lYIzhnnvuwZ133olnnnkG27dvByEEQ0NDOPjgg3HWWWfhDW94Q+Lx+nxr5gta6jQajUaj0WjmAXpMnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPOD/B8+H2tDUQyQkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data=\"unbinned_data.hdf5\", output_name=\"binned_data\", make_binning_plots=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The two healpix maps above show the projection onto the PsiChi dimension, where the upper map is in the local coordinate system, and the lower map is in the Galactic coordinate system. \n", + "\n", + "In the last step we saved the binned data to an hdf5 file. We can load this directly to access the binned data histogram object. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[1.835478 \\times 10^{9},~1.8354781 \\times 10^{9},~1.8354782 \\times 10^{9},~\\dots,~1.835485 \\times 10^{9},~1.8354851 \\times 10^{9},~1.8354852 \\times 10^{9}] \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.load_binned_data_from_hdf5(\"binned_data.hdf5\")\n", + "\n", + "# For example, we can project onto the time axis:\n", + "analysis.binned_data.axes[\"Time\"].centers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we will load the binnned data from file to make the raw spectrum and lightcurve. We will also save the outputs, which are written to both a pdf and dat file. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGp0lEQVR4nO3de3RU5b3/8c9kksk9gVzIDasFLBJbQRBq64GKjhcaBauCWNvKaQlVFMEUsLiqrUorBRvxcrSFQ4una1lR1Go1gAYRrdqiVmo1EMULhYSEJOQyuU4ymd8fNPNLzIWEZGc/k7xfa7GUPXv2/s7D8OWTZ98cfr/fLwAAAEiSQuwuAAAAwCSEIwAAgHYIRwAAAO0QjgAAANohHAEAALRDOAIAAGiHcAQAANAO4aiPGhsbVVhYqMbGRrtLAQAAFiAc9dHBgweVnZ2tgwcPWrL9mpoaS7YLYGigRwDWIxwZxuPx2F0CAIPRIwDrEY4MEx8fb3cJAAxGjwCsRzgCAABoZ9iGow8++EDf+ta39Nhjj9ldSgfV1dV2lwDAYPQIwHqhdhdgh9bWVj388MM644wz7C4FAGAIn8+n5uZmu8tAPzmdToWGhsrhcJz0NoZlOPrLX/6iCRMmqK6uzu5SOklJSbG7BAAGo0dYo7a2VocPH5bf77e7FAyAqKgopaWlyeVyndT7jQ5H9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1A7rVVdX66mnntKjjz6qhx56aLA+Sq9VVlYqOTnZ7jIAGIoeMfB8Pp8OHz6sqKgoJScn92vGAfby+/3yer0qKyvTZ599ptNPP10hIX0/g8jocFRdXa3NmzcrJSVF48aN03vvvdftuvfee69effVVzZ07V6NHj9a2bdu0cuVKPfDAAzrrrLMC623cuFFz585VbGzsYHyEPvN6vXaXAMBg9IiB19zcLL/fr+TkZEVGRtpdDvopMjJSYWFhOnjwoLxeryIiIvq8DaNPyE5MTNSzzz6rp556SjfeeGO36xUUFGjnzp1atGiRFi9erNmzZ2v9+vVKTU3Vo48+Gljvo48+0v79+3XZZZcNRvknJSwszO4SABiMHmGdvs4Y+Xw+vfrqq/rTn/6kV199VT6fz6LK0FcnM1vUntEzRy6XS4mJiSdcb/fu3XI6nZo9e3ZgWXh4uLKysrRhwwaVlpYqJSVFe/fu1aFDh3TVVVdJOn6M2el0qri4WKtWrbLsc/RFbz4vgOGLHmGGZ555RkuXLtXhw4cDy0aPHq0HHnhAV155pY2VYSAYHY566+OPP9bo0aMVHR3dYfmECRMkSQcOHFBKSopmz56tCy+8MPD6gw8+qLS0NF133XXdbru8vFwVFRWB31v12JA2JSUlysjIsHQfAIIXPcJ+zzzzjK6++upOJ28XFRXp6quv1tatWwlIkqqqqvTb3/5WP/3pT+0upc+GRDiqqKjo8qeptmXl5eWSpIiIiA7HHsPDwxUZGdnj+UfPP/+8Nm/e3Gl5WVmZYmJilJaWpvLycjU3Nys8PFwjRoxQaWmppON3svX7/YFnIaWmpurYsWPyer0KCwtTYmKiSkpKJElxcXFyOBw6evSopONXpFRVVampqUmhoaFKTk7WkSNHJEmxsbEKDQ1VZWWlJCk5OVkej0eNjY1yOp1KSUlRcXGxJCkmJkYul0vHjh2TJCUlJamurk4NDQ0KCQlRWlqaioqKJEnR0dGKiIgIhMHExEQ1NDSovr5eDodD6enpOnLkiFpbWxUZGano6GgVFxfrscceU2lpqb70pS9p/vz5crlcysjIUElJiXw+nyIiIhQbG6uysjJJ0siRI9XS0hJ4DEJ6erqOHj2qlpYWhYeHKz4+PjAOI0aMUGtra4cxrKioUHNzs1wul0aOHNlhvKX/fx+YlJQUVVZWdjveISEhqqqqkiSNGjVK1dXVgfEeNWpUYAxPNN6pqakdxjA8PLzH8S4uLpbf71dUVJQiIyM7jHdjY2PgKsqMjIxO4932XU5ISJDX61VtbW1gDEtLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorqMIZNTU3djndMTEyHMWxubu4w3m3f2YiICMXFxXX4zvp8vg7jPZx7RE/jbUqPqK+vl8/nC5zMKx2/HFxS4FBZaGiofD6fWlpadMstt3R5VZvf75fD4dCyZcuUlZUlh8Mhh8OhsLCwwHZDQkIUEhKilpaWwHZbW1vV2toq6fgRky+u2/b3pDfrdrfdsLAwtbS0yO/3d1r3i5+1/boOh0OhoaGBWxz0Zd2KigqtWbNGOTk5Xa7bNmbdjXdb/V/cbkhIiBwOR5frth+XlpYW1dTUyO/3B77fvf7Bwh8k9u3b558+fbo/Ly+v02vXXHONf/ny5Z2WFxUV+adPn+7fsmXLSe+3rKzMv3///sCvHTt2+KdPn+7fv3//SW+zJzU1NZZs1worVqzwO51Ov6TAL6fT6V+xYoXdpQFDVjD1iGDR0NDgLygo8Dc0NJxw3V27dnXoed392rVrV79qkuS/8847/eecc45/+fLl/vfff99/3nnn+c8++2z/hAkT/Pfcc09g3fT0dH9RUZHf7/f7586d6//GN77h9/v9/sbGRn9CQoK/sbGxw7Z9Pp//pptu8p9xxhn+s846yz958mR/Q0OD/7PPPvPHx8f7f/KTn/i/9rWv+TMzM/0vv/xy4H3bt2/3n3feef7Jkyf7p06d6n/llVcCr/3+97/3T5w40X/WWWf5p0yZ4v/ss8/8l1xyiT8kJMQ/ceJE/5QpU/x+v9//rW99y79kyRL/ueee6585c2Zgn208Ho+/fTSR5F+9erV/2rRp/lNPPdX/7LPP+n/1q1/5p0yZ4h83bly349yXP9OuDImZo/Dw8C5v3NWWqMPDw09620lJSUpKSjrp9/dVf08iGywrV67UunXrOi33+XyB5WvXrh3ssoAhL1h6xFDVNjs3UOv1xOl06u2335Z0/IHDO3fuVHh4uBoaGvTNb35Tbrdb5557ri688ELl5+fre9/7nv75z38qNDRUNTU1evvttzVlypRO/wb+85//1M6dO/Xhhx8qJCRE1dXVgfsBVVdXa8KECbrvvvv0t7/9TbNnz9Ynn3yisrIy/eIXv9COHTsUFxenAwcOaPr06fr888/11ltv6e6779abb76ptLQ01dfXS5J++9vfatKkSdq7d2+H/X/00Ud67bXXFBYWps8///yE4xATE6O///3v2rlzp+bMmaOHH35Y77zzjp566imtWLEiMEYDaUiEo8TExMB0bHttU7+DGW76q6qqqtO5U6bxer3Kzc3tcZ3c3FytXr36pG/ABaBrwdAjhrK0tLQBXa8nP/zhDwP/39DQoMWLF2vv3r0KCQnRoUOHtHfvXp177rlyu93Kz8/XmWeeqYkTJyolJUWvvvqq3nrrrQ7n2bYZM2aMWlpa9MMf/lAzZ85UVlZWIHSHhoZqwYIFkqRzzz1X6enpeu+99/TBBx/owIEDmjFjRmA7ISEh+ve//60XX3xR3//+9wOfOSoqqsfP9b3vfa9PV11ec801kqRzzjlHdXV1mj9/viRp2rRp+vjjj3u9nb4YEuGo7R5IdXV1HZpGQUFB4PVgsWHDBm3atMnuMnrk8XhOeMmqz+dTcnLyoN9PKicnJ3B8GwAG2vTp0zV69GgVFRV1ed6Rw+HQ6NGjNX369H7vKyYmJvD/t99+u5KSkvTee+8pNDRUV155pRobGyVJbrdbq1atUmZmptxut1JSUpSfn6+33nqrw+1s2sTHx+uDDz7Q7t27tWvXLq1atUqvvfaaQkO7jgQOh0N+v18XXXSRHn/88QH9XG3ncrVp+0zttZ0r3HZeUvvft503NdCGRDg6//zz9cQTT+j555/XtddeK+n47EZeXp4yMzMH5Hb7+fn5ys/PD5yQaZXW1tbAyY/BrqamJnCS5GDuExjKRo0aZXcJw5rT6dQDDzygq6++OhAa2rSdZLx+/frAP+QDpbKyUhMmTFBoaKgKCwv18ssvB2Zx0tPTFR8fr9/+9rd65ZVXlJSUpFtvvVUej0eTJ0/utK2ysjI5nU5dfPHFuuiii7R7924VFBTorLPOUktLi/74xz9qwYIF2rNnj4qLizVp0iSlpaXprrvu0vvvvx+4sfKePXs0bdo0XX755VqwYIFuvPHGDofV4uLi1NDQIK/X2+1RhNTUVPn9fhUUFCgzM1P/93//N6DjdrKMD0dPP/20amtrA4fI3njjjcBVCldddZViYmKUmZmpmTNnasOGDaqqqlJGRoa2b9+ukpIS3XbbbQNSh9vtltvtVmFhobKzswdkm11pu9LLZB6Pp1chJC4ubtBnjuLi4gZ1f8Bgq66uDqpTBYaiK6+8Ulu3bu3yPkfr16+35DL+n/3sZ/r+97+vxx57TGPHjtUFF1zQ4XW3260XXnhBY8aMkXQ8dJx99tldnqN26NAhZWdnq7m5WT6fT+edd55mzZqloqKiwKzSxIkT1dLSoscff1yxsbGKjY3V448/rh//+Meqr6+X1+vV2Wefrccff1wzZszQz3/+c11yySVyOBxyuVzaunWrTj31VP3gBz/QWWedpZiYGL3zzjudagkNDdVDDz2kyy67TImJibr66qsHfOxOhsPf1bygQebNmxe4lPWLtmzZEjjG2dTUFHi2Wm1trcaMGaOFCxdq2rRpA1pPWzjauHGjxo8fP6Dblo7fJ8P0cOT1ehUVFdXjoTWn06n6+nrOOQIGWDD0iGDT2Niozz77TF/+8pf79KgJn8+n119/XUeOHFFaWpqmT58+4DNGg+nzzz/XpEmTArfcCGYn+2faxviZoyeffLJX64WHh2vx4sVavHixxRVZq7tjviZxuVzKycnp8mq1Njk5OQQjwALB0COGC6fTqfPPP9/uMmAB/pYZJljOJ2i7TD83N7fDDJLT6VROTg6X8QMWCZYegeBz2mmnDYlZo4FAODJMcXFx0EyZr127VqtXr9YjjzyiTz75RGPHjtXixYuZMQIsFEw9ItgYfpYJ+qDtbtkni3CEfnG5XFq2bJndZQDASQsLC5PD4VBZWZmSk5MDV50h+Pj/8wiYsrIyhYSEnPQP64SjXhqsS/kH++ouAMGFHjHwnE6nRo8ercOHD/fqjs0wX1RUlL70pS+d9B3ljb9azTRWX61WX19/wruLAhi+6BHW8fl8XT6KCsHF6XQqNDS0XzOAzBwZprKyksYHoFv0COs4nc6gvhQfA4cnGAIAALRDODJMcnKy3SUAMBg9ArAe4cgwHo/H7hIAGIweAViPcGSYrp5IDABt6BGA9Tghu5cG61J+TgYE0BN6BGA9LuXvI6sv5QcAAPbisJphioqK7C4BgMHoEYD1CEcAAADtEI4MEx0dbXcJAAxGjwCsRzgyTHh4uN0lADAYPQKwHuHIMMeOHbO7BAAGo0cA1iMcAQAAtMN9jnppsO5zlJSUZOn2MTR5vV498sgj+uSTTzR27FgtXrxYLpfL7rJgAXoEYD3uc9RHVt/n6NixY0pISBjw7WLoWrlypXJzc+Xz+QLLnE6ncnJytHbtWhsrgxXoEYD1mDkyTENDg90lIIisXLlS69at67Tc5/MFlhOQhhZ6BGA9zjkyTEgIfyToHa/Xq9zc3B7Xyc3NldfrHaSKMBjoEYD1mDkyTFpamt0lBLXc3NwTBoahwuPxdDiU1hWfz6fk5GTFxsYOUlUnlpOTo5ycHLvLCFr0CMB6hCPDFBcXKz093e4yglZNTQ2PV/iCmpoa1dTU2F1GgEm1BCN6BGA9wpFhOD++f+Li4pSRkWF3GYPC4/H0KmjExcUZNXMUFxdndwlBjR4BWI9wZJioqCi7Swhqw+mQjdfrVVRUVI+H1pxOp8rKyrisfwihRwDW48w+w0RGRtpdAoKEy+U6YRDMyckhGA0x9AjAeoQjw1RUVNhdAoLI2rVrtWLFCjmdzg7LnU6nVqxYwWX8QxA9ArAeh9V6abDukA301dq1a7V69WrukA0AA4Q7ZPeR1XfIbmxsVERExIBvF8DQQI8ArMdhNcM0NjbaXQIAg9EjAOsRjgxTV1dndwkADEaPAKxHOAIAAGiHcGSY4XIDQwAnhx4BWI9wZJgjR47YXQIAg9EjAOsRjgzT2tpqdwkADEaPAKxHODIMd78F0BN6BGA9wpFhoqOj7S4BgMHoEYD1CEeGKS8vt7sEAAajRwDW4/EhvcTjQwAAGB4IR73kdrvldrsDjw+xSkJCgmXbBhD86BGA9TisZhiv12t3CQAMRo8ArEc4MgyH7QD0hB4BWI9wBAAA0A7hyDDp6el2lwDAYPQIwHqEI8OUlpbaXQIAg9EjAOsRjgzj8/nsLgGAwegRgPUIR4aJiIiwuwQABqNHANYjHBkmNjbW7hIAGIweAViPcGSYsrIyu0sAYDB6BGA9whEAAEA7hCPDjBw50u4SABiMHgFYj3BkmJaWFrtLAGAwegRgPcKRYTwej90lADAYPQKwHuEIAACgnVC7CwgW+fn5ys/Pt/yhj2lpaZZuH0Bwo0cA1mPmqJfcbrfWrFmjJUuWWLofLtMF0BN6BGA9wpFhONkSQE/oEYD1CEeGCQ8Pt7sEAAajRwDWIxwZZsSIEXaXAMBg9AjAeoQjw5SWltpdAgCD0SMA6xGOAAAA2iEcGSY+Pt7uEgAYjB4BWI9wZBi/3293CQAMRo8ArEc4MkxNTY3dJQAwGD0CsB7hCAAAoB3CkWFSU1PtLgGAwegRgPUIR4apqKiwuwQABqNHANYjHBmmubnZ7hIAGIweAViPcGQYl8tldwkADEaPAKxHODJMQkKC3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCMAAIB2CEeGiYuLs7sEAAajRwDWIxwZxuFw2F0CAIPRIwDrEY4MU11dbXcJAAxGjwCsF2p3AcEiPz9f+fn5qq2ttbsUAABgIYefRzz3SWFhobKzs7Vx40aNHz9+wLff0tKi0FAyK4Cu0SMA63FYzTBVVVV2lwDAYPQIwHqEI8M0NTXZXQIAg9EjAOsRjgwTFhZmdwkADEaPAKxHODJMUlKS3SUAMBg9ArAe4cgwR44csbsEAAajRwDWIxwBAAC0QzgyTGxsrN0lADAYPQKwHuHIME6n0+4SABiMHgFYj3BkGO5hAqAn9AjAeoQjAACAdghHhhk1apTdJQAwGD0CsB7hyDA1NTV2lwDAYPQIwHqEI8M0NjbaXQIAg9EjAOsRjgzD07YB9IQeAViPcGQYzicA0BN6BGA9wpFhiouL7S4BgMHoEYD1CEcAAADtEI4MExMTY3cJAAxGjwCsRzgyTFhYmN0lADAYPQKwHuHIMJWVlXaXAMBg9AjAeoQjAACAdghHhklOTra7BAAGo0cA1iMcGaa2ttbuEgAYjB4BWI9wZJiGhga7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGSYtLc3uEgAYjB4BWI9wZJiioiK7SwDwBV6vV+vXr9eSJUu0fv16eb1e22qhRwDWG5aPd163bp3eeOMNNTY2KiUlRYsWLdJ5551nd1kADLRy5Url5ubK5/MFli1fvlw5OTlau3atjZUBsMqwDEfz5s3T0qVL5XK5tG/fPuXk5OiJJ55QfHy83aUpOjra7hIA/MfKlSu1bt26Tst9Pl9g+WAHJHoEYL1heVjt1FNPlcvlkiQ5HA41NzervLzc5qqOCw8Pt7sEADp+KC03N7fHdXJzcwf9EBs9ArCe8TNH9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1E7r5ubmKi8vT16vV+eee67GjBkzGB/nhI4dO6aMjAy7ywAsk5ube8LQYQKPx9PhUFpXfD6fkpOTFRsbO0hVST/60Y901113Ddr+gOHI+HBUXV2tzZs3KyUlRePGjdN7773X7br33nuvXn31Vc2dO1ejR4/Wtm3btHLlSj3wwAM666yzOqybk5OjpUuXau/evfr000/lcDis/igAJNXU1Aypk4prampUU1MzaPvzeDyDti9guDI+HCUmJurZZ59VYmKi9u/fr0WLFnW5XkFBgXbu3Kkbb7xR1157rSTpkksu0YIFC/Too4/q0Ucf7fQep9OpKVOm6KmnntLo0aP1jW98w9LP0htJSUl2lwBYKi4uLihmRz0eT69CT1xc3KDOHKWmpg7avoDhyvhw5HK5lJiYeML1du/eLafTqdmzZweWhYeHKysrSxs2bFBpaalSUlK6fK/P5zPmJ9n6+nrOKcCQlpOTo5ycHLvLOCGv16uoqKgeD605nU6VlZUFzmEcDJWVlYO2L2C4GjInZH/88ccaPXp0pys5JkyYIEk6cOCApOPPJXr55ZdVX1+vlpYW7dq1S++9954mTpzY5XbLy8tVWFgY+HXw4EFLP0d9fb2l2wfQOy6X64QhLicnZ1CDkUSPAAaD8TNHvVVRUdHlDFPbsrar0RwOh1544QXdf//98vv9ysjI0B133KHTTz+9y+0+//zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDFCpaWlkqT4+Hj5/f7A1HxqaqqOHTsmr9ersLAwJSYmqqSkRNLxqXmHw6GysjJJUkpKiqqqqtTU1KTQ0FAlJyfryJEjkqTY2FiFhoYGfoJMTk6Wx+NRY2OjnE6nUlJSVFxcLEmKiYmRy+XSsWPHJB0/bFdXV6eGhgaFhIQoLS0tMGsWHR2tiIgIVVRUBMauoaFB9fX1cjgcSk9P15EjR9Ta2qrIyEhFR0cHxjUhIUFNTU2qq6uTJGVkZKikpEQ+n08RERGKjY0NfLaRI0eqpaUlcO5Eenq6jh49qpaWFoWHhys+Pl5Hjx6VJI0YMUKtra0dxrCiokLNzc1yuVwaOXJkh/GWjp+n1jaGlZWV3Y53SEiIqqqqJEmjRo1SdXV1YLxHjRoVGMMTjXdqamqHMQwPD+9xvIuLi+X3+xUVFaXIyMgO493Y2NhhDHsab6/XG3gIaXp6ukpLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorq8TvbfrxjYmK0dOlSeTwebdiwQa2trWrjdDr14x//WEuXLlVFRYXi4uI6fGd9Pl+H8aZH0CPoEWb0iN4e0nf4/X5/r9Y0QNs5R11drTZ//nydcsopne5JUlxcrPnz5+vmm2/WvHnz+rzP8vLywBdTkg4ePKjVq1dr48aNGj9+/Ml9EABBxev16pFHHtEnn3yisWPHavHixYM+YwRg8AyZmaPw8HA1Nzd3Wt52D5KTPY8nKSlpUE+SLi4uVnp6+qDtD8CJuVwuLVu2zO4yJNEjgMEwZM45SkxM7DDD06ZtWbBcBRZEE3kAbECPAKw3ZMLRuHHjdPjw4cCx2DYFBQWB14NBVFSU3SUAMBg9ArDekAlH559/vnw+n55//vnAMq/Xq7y8PGVmZnZ7GX9v5efn66c//akeeuih/pbaIxofgJ7QIwDrBcU5R08//bRqa2sDh8jeeOONwJUKV111lWJiYpSZmamZM2dqw4YNqqqqUkZGhrZv366SkhLddttt/a7B7XbL7XarsLBQ2dnZ/d5ed8rLy4PiBnkA7EGPAKwXFOFoy5YtgUsDJem1117Ta6+9Jkm6+OKLFRMTI0m6/fbblZKSoh07dqi2tlZjxozRr3/9a02aNMmOsgEAQBAKqkv5TdA2c2TVpfwNDQ2KjIwc8O0CGBroEYD1hsw5R0NFU1OT3SUAMBg9ArAe4cgwX7zaDgDao0cA1iMcAQAAtBMUJ2SbID8/X/n5+YHn1FiFq1AA9IQeAVhvQGaOPB6Ptm/fPhCbMpbb7daaNWu0ZMkSS/fT9hA+AOgKPQKw3oCEo9LSUq1Zs2YgNjXstX/yNwB8ET0CsF6vDquVlpb2+Hp5efmAFANxiS6AHtEjAOv1KhzNmzdPDoej29f9fn+Pr6P32m5oCQBdoUcA1utVOIqNjdWPfvSjbu80ffDgQf3iF78YwLKGr7KyMk64BNAtegRgvV6Fo6985SvyeDz68pe/3OXrPp9P3GgbAAAMBb0KR1dccYUaGxu7fT0lJUU//elPB6woEw3WpfwjR460dPsAghs9ArAez1brI6ufrVZdXa34+PgB3y6AoYEeAViPO2QbxuqZKQDBjR4BWO+kw9H555+vQ4cODWQtAAAAtjvpcMTROGukp6fbXQIAg9EjAOtxWM0wR48etbsEAAajRwDWIxwZpqWlxe4SABiMHgFYj3BkmIiICLtLAGAwegRgvV7d5wiDd5+juLg4S7cPILjRIwDrMXPUS263W2vWrNGSJUss3Q/nEwDoCT0CsB7hCAAAoJ2TDkff/e53md61wIgRI+wuAYDB6BGA9U76nKMf//jHA1kH/sPn89ldAgCD0SMA6/V55sjr9VpRB/7D4/HYXQIAg9EjAOv1ORx95zvf0f3336/CwkIr6gEAALBVnw+reb1e/fnPf9Zzzz2nsWPHKisrSxdddJFiY2OtqG/YSUtLs7sEAAajRwDW6/PM0XPPPaecnByNHz9eBw4c0IMPPqgrr7xSd999t959910rahxWysvL7S4BgMHoEYD1+jxzFBUVpTlz5mjOnDn6/PPP9eKLL+rll1/Wzp079corr2jUqFHKysrSpZdeqpSUFCtqHtKam5vtLgGAwegRgPUcfr/f39+N+Hw+vfnmm3rxxRe1Z88e+Xw+hYSE6JxzzlFWVpb+67/+S6GhwX0z7vZ3yH7//fe1ceNGjR8/fsD3U15erqSkpAHfLoChgR4BWG9AwlF7x44d044dO5SXl6d///vfcjgciouL0/PPPz+Qu7FNYWGhsrOzLQtHLS0tQR8kAViHHgFYb8DvkJ2QkKBrr71Wv/jFL/S1r31Nfr9fNTU1A72bIau0tNTuEgAYjB4BWG9Af/yor6/Xyy+/rBdffFEfffSR/H6/IiIiNHPmzIHcDQAAgGUGJBz94x//UF5enl5//XU1NTXJ7/crMzNTWVlZuuCCCxQVFTUQuxkW4uPj7S4BgMHoEYD1TjocHT16VNu2bdO2bdtUUlIiv9+vESNGaPbs2crKytJpp502gGUOHwN8ChiAIYYeAVivz+Fo586dysvL0z/+8Q+1trYqJCREU6dOHTJXpdmtpqaGG2oC6BY9ArBen5PM3XffLen4XVpnzZqlWbNmadSoUQNeGAAAgB36HI4uvPBCZWVlacqUKVbUM+ylpqbaXQIAg9EjAOv1ORzdeeedVtSB/zh27JiSk5PtLgOAoegRgPX6fYJQS0uLnnnmGeXn5+vf//63mpqatGvXLknSxx9/rL/85S+aO3euTjnllH4XOxx4vV67SwBgMHoEYL1+haOmpib95Cc/0QcffKD4+HhFR0ersbEx8HpaWpry8vIUGxur7Ozsfhdrp/aPD7FSWFiYpdsHENzoEYD1+nWH7D/+8Y/617/+pUWLFunPf/6zsrKyOrweExOjSZMm6e233+5XkSZwu91as2aNlixZYul+EhMTLd0+gOBGjwCs169w9Morr+jss8/Wd7/7XTkcDjkcjk7rpKenc7v7PigpKbG7BAAGo0cA1utXODp69OgJH74aGRmpurq6/uwGAABg0PQrHEVGRqqqqqrHdYqLi7ndfR/ExcXZXQIAg9EjAOv1KxydeeaZevPNN+XxeLp8vbS0VH/72980ceLE/uxmWOnq0CQAtKFHANbrVziaP3++PB6Pbr31Vv3rX/+Sz+eTJDU2Nurdd9/V8uXL5fP5dM011wxIscNBdXW13SUAMBg9ArBevy7lnzRpkpYtW6YHH3yww1Vcl156qSQpJCREOTk5JzwvCQAAwBT9vgnkFVdcoUmTJum5557Tvn37VFNTo+joaE2YMEHf+c539OUvf3kg6hw2UlJS7C4BgMHoEYD1+h2OJOm0007T0qVLu33d5/PJ6XQOxK6GvKqqKiUlJdldBgBD0SMA6/XrnKNnnnnmhOv4fD7ddddd/dnNsNLU1GR3CQAMRo8ArNevcPTggw/q1Vdf7fb11tZW3XXXXXrttdf6s5thJTR0QCbzAAxR9AjAev0KR1/72te0evVq/eMf/+j0Wlsw2r17t77zne/0ZzfDCk/bBtATegRgvX6FozVr1uiUU07Rz372M3388ceB5a2trbrnnnv06quv6oorrujxfCR0dOTIEbtLAGAwegRgvX6Fo+joaN13332KiYnRihUrVFxcLL/fr7vvvluvvPKK5syZo1tvvXWgagUAALBcv8KRdPwJ0b/5zW/U2tqqn/zkJ/r5z3+uXbt26bLLLlNOTs5A1DisxMbG2l0CAIPRIwDrDciZfaeccorWrl2rZcuW6bXXXtNll12mFStWDMSmjZGfn6/8/HzV1tZauh9OtgTQE3oEYL0+/S3bvHlzj69PmDBBBw4cUGJiYod1HQ6Hrr/++pOpzxhut1tut1uFhYXKzs62bD+VlZWKioqybPsAghs9ArBen8LRH/7wh16t99hjj3X4/VAIRwAAYHjoUzh64IEHrKoD/8FlugB6Qo8ArNencDRp0iSLykAbj8ejxMREu8sAYCh6BGC9fl+thoHV2NhodwkADEaPAKxHODIMD+gF0BN6BGA9wpFhUlJS7C4BgMHoEYD1CEeGKS4utrsEAAajRwDWIxwBAAC0QzgyTExMjN0lADAYPQKwXr/CUWlpqerq6npcp76+XqWlpf3ZzbDicrnsLgGAwegRgPX6FY6uueYabd26tcd1tm7dqmuuuaY/uxlWjh07ZncJAAxGjwCs169w5Pf75ff7T7gOAABAsLD8nKOysjIektgHSUlJdpcAwGD0CMB6fXp8iCRt3ry5w+/fe++9LtdrbW3V0aNHtXPnTmVmZp5UccNRXV2dwsPD7S4DgKHoEYD1+hyO/vCHPwT+3+FwaO/evdq7d2+36yclJemGG244qeKGo4aGBrtLAGAwegRgvT6HowceeEDS8XOJli1bplmzZunSSy/ttF5ISIji4uL0pS99SSEh3DGgtxgrAD2hRwDW63M4mjRpUuD/FyxYoLPPPrvDMvRPWlqa3SUAMFgw9giv16tHHnlEn3zyicaOHavFixdzSwIYrV8/gpxzzjn661//qoqKii5fLy8v18MPP6wPP/ywP7sZVoqKiuwuAYDBgq1HrFy5UlFRUbr11lv18MMP69Zbb1VUVJRWrlxpd2lAt/oVjrZs2aI33nhDiYmJXb6elJSkN998U08++WR/dgMACEIrV67UunXr5PP5Oiz3+Xxat24dAQnG6vNhtfb279+vKVOm9LjOxIkT9c477/RnN0bIz89Xfn6+amtrLd1PdHS0pdsHENyCpUd4vV7l5ub2uE5ubq5Wr17NITYYp1/hqKqq6oT33EhISFBlZWV/dmMEt9stt9utwsJCZWdnW7afiIgIy7YNIPj97ne/00MPPWR3GSfk8Xg6zRh9kc/nU3JysmJjYwepKiknJ0c5OTmDtj8Ep36Fo5iYGB09erTHdUpLSxUZGdmf3QwrFRUVysjIsLsMAIYqLS0NuvOOelJTU6OamppB3R9wIv0KR5mZmXrttde0cOFCpaSkdHq9tLRUr7/+uiZPntyf3QAA/iM2NjYofoDyeDy9CiJxcXGDOnMUFxc3aPtC8OpXOJo3b57efPNN3XTTTVq4cKHOOeccJSUlqby8XG+//bb+93//V16vlwfP9kF3J7cDgCStWrVKd911l91lnJDX61VUVFSPh9acTqfKyso45wjG6Vc4mjRpkm666SY98sgjWrNmjaTjd81ue9isw+HQkiVLuA9SHzQ0NHDeEYBuBUuPcLlcysnJ0bp167pdJycnh2AEI/UrHEnS3LlzNXnyZD333HPav3+/amtrFRMTowkTJmjOnDkaM2bMQNQ5bNTX12vkyJF2lwHAUMHUI9auXSvp+FVp7WeQnE6ncnJyAq8DpnH426Z50CttV6tt3LhR48ePH/DtFxcXKz09fcC3C2BoCMYewR2yEWz6PXOEgRVsTQ/A4ArGHuFyubRs2TK7ywB6jScYGubIkSN2lwDAYPQIwHqEI8O0trbaXQIAg9EjAOsRjgzDDTMB9IQeAViPcGSYYHluEgB70CMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWGamprsLgGAwegRgPUIR4apq6uzuwQABqNHANYjHAEAALRDODJMRkaG3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCPD+Hw+u0sAYDB6BGA9wpFhIiIi7C4BgMHoEYD1CEeGiY2NtbsEAAajRwDWIxwZpqyszO4SABiMHgFYj3AEAADQDuHIMCNHjrS7BAAGo0cA1iMcGaalpcXuEgAYjB4BWI9wZBiPx2N3CQAMRo8ArBdqdwGDzev1Kjc3V++8845qa2t12mmn6eabb9ZXv/pVu0sDAAAGGHYzRz6fT6mpqfqf//kf5eXlae7cuVq1apXq6+vtLk2SlJ6ebncJAAxGjwCsN+zCUWRkpBYsWKCUlBSFhITowgsvVGhoqA4dOmR3aZKko0eP2l0CAIPRIwDrGX9Yrb6+Xk888YQKCgq0b98+eTwerVq1SrNmzeq0rtfr1aZNm/TSSy/J4/Fo7NixWrhwoaZOndrt9g8dOiSPx2PMwxw52RJAT+gRgPWMnzmqrq7W5s2bdfDgQY0bN67Hde+99149+eSTuuiii3TLLbcoJCREK1eu1Pvvv9/l+k1NTVq9erWuu+46xcTEWFF+n4WHh9tdAgCD0SMA6xkfjhITE/Xss8/qqaee0o033tjtegUFBdq5c6cWLVqkxYsXa/bs2Vq/fr1SU1P16KOPdlq/paVFd955pzIyMrRgwQILP0HfxMfH210CAIPRIwDrGR+OXC6XEhMTT7je7t275XQ6NXv27MCy8PBwZWVl6cMPP1RpaWlgeWtrq1avXi2Hw6Hbb79dDofDktpPBucTAOgJPQKwnvHnHPXWxx9/rNGjRys6OrrD8gkTJkiSDhw4oJSUFEnSfffdp4qKCt13330KDe15CMrLy1VRURH4/cGDBwe4cgAAYJIhE44qKiq6nGFqW1ZeXi5JKikp0QsvvCCXy9Vhlmnt2rWaOHFip/c///zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDEiMEsVHx8vv9+vmpoaSVJqaqqOHTsmr9ersLAwJSYmqqSkRJIUFxcnh8OhhoYGFRUVKSUlRVVVVWpqalJoaKiSk5N15MgRScefyh0aGqrKykpJUnJysjwejxobG+V0OpWSkqLi4mJJUkxMjFwul44dOyZJSkpKUl1dnRoaGhQSEqK0tDQVFRVJkqKjoxUREREIg4mJiWpoaFB9fb0cDofS09N15MgRtba2KjIyUtHR0YFxTUhIUFNTk+rq6iRJGRkZKikpkc/nU0REhGJjYwMPzBw5cqRaWloCN7NLT0/X0aNH1dLSovDwcMXHxwd+Oh4xYoRaW1s7jGFFRYWam5vlcrk0cuTIDuMtHT9PTZJSUlJUWVnZ7XiHhISoqqpKkjRq1ChVV1cHxnvUqFGBMTzReKempnYYw/Dw8B7Hu7i4WH6/X1FRUYqMjOww3o2NjR3GsKfx9nq9qq2tDYxhaWlpr8Y7LS1NZWVlgfE+0Xe2/XgnJCR0+s62H++272xYWJiSkpI6fGedTmeH8a6pqVFjY2On8Y6JiVFYWFiH8a6tre32O/vF8a6vr+/wnW0/3lFRUT1+Z9uPd0xMTIcxbG5u7jDebd/ZiIgIxcXFdfjO+ny+DuNNj6BH0CPM6BG9vfjK4ff7/b1a0wD79+/XokWLurxabf78+TrllFO0bt26DsuLi4s1f/583XzzzZo3b16f99nVzNHq1au1ceNGjR8//uQ+SA88Ho9iY2MHfLsAhgZ6BGC9ITNzFB4erubm5k7LvV5v4PWTkZSUpKSkpH7V1hc1NTU0PgDdokcA1jP+hOzeSkxM7DDD06Zt2WAGHAAAELyGTDgaN26cDh8+HDgW26agoCDwejBITU21uwQABqNHANYbMuHo/PPPl8/n0/PPPx9Y5vV6lZeXp8zMzMCVaqbravYLANrQIwDrBcU5R08//bRqa2sDTeGNN94IXKlw1VVXKSYmRpmZmZo5c6Y2bNigqqoqZWRkaPv27SopKdFtt93W7xry8/OVn58fOPPfKl2dNwUAbegRgPWC4mq1efPmBS4N/KItW7YoLS1N0vHHgbQ9W622tlZjxozRwoULNW3atAGrpbCwUNnZ2ZZdrVZWVqbk5OQB3y6AoYEeAVgvKMKRSawORy0tLSe8MSWA4YseAVhvyJxzNFS0f8wJAHwRPQKwHuEIAACgHcKRYXjiNoCe0CMA63HgupcG62o1AABgL2aOesntdmvNmjVasmSJpftpe0AfAHSFHgFYj3AEAADQDuHIMMFyJ28A9qBHANYjHBmmsrLS7hIAGIweAViPcGQYr9drdwkADEaPAKxHODJMWFiY3SUAMBg9ArAel/L30mBdyp+YmGjp9gEEN3oEYD1mjnppsC7l7+4BuwAg0SOAwUA4AgAAaIdwZJi4uDi7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGaaqqsruEgAYjB4BWI9wBAAA0A7hyDCjRo2yuwQABqNHANbjPke9NFj3OaqurlZSUpKl+wAQvOgRgPUIR73kdrvldrtVWFio7Oxsy/bT1NRk2bYBBD96BGA9DqsZJjSUvAqge/QIwHqEI8NwPgGAntAjAOsRjgxTXFxsdwkADEaPAKxHOAIAAGiHcGSY2NhYu0sAYDB6BGA9wpFhONkSQE/oEYD1CEeGqaystLsEAAajRwDWIxwBAAC0w/xsLw3WHbKTk5Mt3T6A4EaPAKzHzFEvud1urVmzRkuWLLF0Px6Px9LtAwhu9AjAeoQjwzQ2NtpdAgCD0SMA6xGODON0Ou0uAYDB6BGA9QhHhklNTbW7BAAGo0cA1iMcGaaoqMjuEgAYjB4BWI9wBAAA0A7hyDDR0dF2lwDAYPQIwHqEI8OEh4fbXQIAg9EjAOsRjgxz7Ngxu0sAYDB6BGA9whEAAEA7hCPDJCUl2V0CAIPRIwDr8Wy1XhqsZ6vV1dVxTgGAbtEjAOsRjnrJ7XbL7XarsLBQ2dnZlu2noaHBsm0DCH70CMB6HFYzTEgIfyQAukePAKzH3zLDpKWl2V0CAIPRIwDrEY4MU1xcbHcJAAxGjwCsRzgyjN/vt7sEAAajRwDWIxwZJioqyu4SABiMHgFYj3BkmMjISLtLAGAwegRgPcKRYSoqKuwuAYDB6BGA9QhHAAAA7RCODJOYmGh3CQAMRo8ArEc4MkxjY6PdJQAwGD0CsB7hyDB1dXV2lwDAYPQIwHqEIwAAgHYIR4bJyMiwuwQABqNHANYLtbuAYJGfn6/8/HzV1tZaup8jR47w7CQA3aJHANYjHPWS2+2W2+1WYWGhsrOzLdtPa2urZdsGEPzoEYD1OKxmGO5+C6An9AjAeoQjw0RHR9tdAgCD0SMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWG8Xq/dJQAwGD0CsB7hyDBW30cJQHCjRwDWIxwBAAC0QzgyTHp6ut0lADAYPQKwHuHIMKWlpXaXAMBg9AjAeoQjw/h8PrtLAGAwegRgPcKRYSIiIuwuAYDB6BGA9QhHhomNjbW7BAAGo0cA1iMcGaasrMzuEgAYjB4BWI9wBAAA0A7hyDAjR460uwQABqNHANYjHBmmpaXF7hIAGIweAViPcGQYj8djdwkADEaPAKxHOAIAAGgn1O4CgkV+fr7y8/Mtf+hjWlqapdsHENzoEYD1mDnqJbfbrTVr1mjJkiWW7ofLdAH0hB4BWI9wZBhOtgTQE3oEYD3CkWHCw8PtLgGAwegRgPUIR4YZMWKE3SUAMBg9ArAe4cgwpaWldpcAwGD0CMB6hCMAAIB2uJTfMPHx8XaXAMBg9AicLK/Xq0ceeUSffPKJxo4dq8WLF8vlctldlpEIR4bx+/12lwDAYPQInIyVK1cqNzdXPp8vsGz58uXKycnR2rVrbazMTBxWM0xNTY3dJQAwGD0CfbVy5UqtW7euQzCSJJ/Pp3Xr1mnlypU2VWYuwhEAAEOU1+tVbm5uj+vk5ubK6/UOUkXBgcNqhklNTbW7BAAGo0f0T25u7gnDwlDi8Xg6zRh9kc/nU3JysmJjYwepqhPLyclRTk6ObfsnHBmmoqJCo0aNsrsMAIaiR/RPTU2NioqK7C7DODU1NUYdsrW7FsKRYZqbm+0uAYDB6BH9ExcXp4yMDLvLGDQej6dXQSMuLs6omaO4uDhb9084MgyXVQLoCT2if+w+XDPYvF6voqKiejy05nQ6VVZWxnerHU7INkxCQoLdJQAwGD0CfeFyuU4YBnNycghGX0A4MkxJSYndJQAwGD0CfbV27VqtWLFCTqezw3Kn06kVK1Zwn6MucFgNAIAhbu3atVq9ejV3yO4lwpFh7D4JDYDZ6BE4WS6XS8uWLbO7jKDAYTXDOBwOu0sAYDB6BGA9wpFhqqur7S4BgMHoEYD1CEcAAADtEI4Mk5KSYncJAAxGjwCsRzgyTFVVld0lADAYPQKwHuHIME1NTXaXAMBg9AjAeoQjw4SFhdldAgCD0SMA6xGODJOUlGR3CQAMRo8ArEc4MsyRI0fsLgGAwegRgPW4Q3YftR3vP3jwoCXbLysrU21trSXbBhD86BFA/5x66qmKiIjocR3CUR+1PfRx9erVNlcCAAD6auPGjRo/fnyP6zj8fr9/kOoZEqqqqrRnzx6lpaX16oF9Dz30kJYsWdKrbR88eFCrV6/Wz372M5166qn9LXVY6st4m8SUugejDiv2MVDb7M92Tva99IjBZcrftZNhQu2DVYOVfYKZIwuMGDFCF198ca/Xj4mJOWFC/aJTTz21z+/BcScz3iYwpe7BqMOKfQzUNvuznZN9Lz1icJnyd+1kmFD7YNVgd5/ghGyLud1uu0sYVoJ1vE2pezDqsGIfA7XN/mznZN9ryp/9cBHM421C7YNVg919gsNqBiksLFR2dnavjocCGH7oEcDgYObIIImJiVqwYIESExPtLgWAgegRwOBg5ggAAKAdZo4AAADaIRwBAAC0w6X8QcTr9So3N1fvvPOOamtrddppp+nmm2/WV7/6VbtLA2CIdevW6Y033lBjY6NSUlK0aNEinXfeeXaXBQQVzjkKIg0NDdqyZYtmzZql5ORk7dq1S+vXr9eWLVsUFRVld3kADHDw4MHATWr37dunnJwcPfHEE4qPj7e7NCBocFgtiERGRmrBggVKSUlRSEiILrzwQoWGhurQoUN2lwbAEKeeemrg7v0Oh0PNzc0qLy+3uSoguHBYzUL19fV64oknVFBQoH379snj8WjVqlWaNWtWp3W9Xq82bdqkl156SR6PR2PHjtXChQs1derUbrd/6NAheTweZWRkWPkxAFjEqh6Rm5urvLw8eb1enXvuuRozZsxgfBxgyGDmyELV1dXavHmzDh48qHHjxvW47r333qsnn3xSF110kW655RaFhIRo5cqVev/997tcv6mpSatXr9Z1112nmJgYK8oHYDGrekROTo527Nih+++/X1OnTpXD4bDqIwBDEuHIQomJiXr22Wf11FNP6cYbb+x2vYKCAu3cuVOLFi3S4sWLNXv2bK1fv16pqal69NFHO63f0tKiO++8UxkZGVqwYIGFnwCAlazqEZLkdDo1ZcoUvfvuu3rrrbes+gjAkEQ4spDL5erVnWx3794tp9Op2bNnB5aFh4crKytLH374oUpLSwPLW1tbtXr1ajkcDt1+++38RAgEMSt6xBf5fD4VFRUNSL3AcEE4MsDHH3+s0aNHKzo6usPyCRMmSJIOHDgQWHbfffepoqJCd911l0JDOWUMGA562yNqa2v18ssvq76+Xi0tLdq1a5fee+89TZw4cdBrBoIZ/7oaoKKiosufHtuWtV1pUlJSohdeeEEul6vDT5Br166l+QFDWG97hMPh0AsvvKD7779ffr9fGRkZuuOOO3T66acPar1AsCMcGaCpqUlhYWGdlrddjtvU1CRJSk1N1WuvvTaotQGwX297RHR0tB544IFBrQ0YijisZoDw8HA1Nzd3Wu71egOvAxi+6BHA4CIcGSAxMVEVFRWdlrctS0pKGuySABiEHgEMLsKRAcaNG6fDhw+rrq6uw/KCgoLA6wCGL3oEMLgIRwY4//zz5fP59PzzzweWeb1e5eXlKTMzUykpKTZWB8Bu9AhgcHFCtsWefvpp1dbWBqa/33jjDR09elSSdNVVVykmJkaZmZmaOXOmNmzYoKqqKmVkZGj79u0qKSnRbbfdZmf5ACxGjwDM4/D7/X67ixjK5s2bp5KSki5f27Jli9LS0iQdv9qk7blJtbW1GjNmjBYuXKhp06YNZrkABhk9AjAP4QgAAKAdzjkCAABoh3AEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaIdwBAAA0A7hCAAGwIwZMzr8ampqCry2bds2zZgxQ9u2bbOxwv/vueee61Drr371K7tLAowSancBAMx15MgRXXPNNT2uk5qaqieffHKQKjJbamqqLr30UkmS0+m0dF979uzR8uXLNXXqVP3mN7/pcd27775b+fn5uuOOO3TRRRdp/PjxWrBggWpra7V161ZL6wSCEeEIwAllZGTooosu6vK1mJiYQa7GXKmpqfrhD384KPs655xzlJKSonfffVelpaVKSUnpcr3a2lq9/vrriomJ0YwZMyRJZ5xxhs444wwdOXKEcAR0gXAE4IQyMjIG7R999E5ISIhmzZqlzZs3a/v27br++uu7XC8/P19NTU369re/rfDw8EGuEghOnHMEYEDNmDFDt9xyi44dO6Zf/vKXuvzyy+V2u3XDDTfovffe6/I99fX1+v3vf68f/OAHcrvd+va3v62f/OQnev/99zute8sttwTO6dm4caPmz5+vmTNn6ve//31gnd27dys7O1tut1tz5szR2rVr5fF4NG/ePM2bNy+w3j333KMZM2aooKCgy7o2bdqkGTNmKD8/v5+j0rWjR4/q+uuvl9vt1quvvhpYXllZqYceekjXXnutLrzwQl1++eX62c9+pk8//bTD+7/97W/L4XBo27Zt8vv9Xe4jLy9PkpSVlWXJZwCGIsIRgAFXW1urm266SZ9//rkuvvhizZgxQ4WFhVq+fHmnf+Bramp04403avPmzYqNjdWcOXM0Y8YMffTRR1q6dKlef/31Lvdxxx13aPv27Tr77LN19dVXKy0tTZL04osv6o477tDhw4d1ySWX6NJLL9WHH36onJwctbS0dNjG7NmzA+/5Ip/Pp7y8PMXHxwcORw2kzz//XIsXL9bRo0e1bt06nX/++ZKkoqIiLVy4UE899ZTS09N15ZVX6txzz9WePXt04403dghyqampmjJlioqLi7sMnp9++qn279+v008/XV/5ylcG/DMAQxWH1QCcUFFRUYeZmfbOPPNMff3rX++w7MCBA7riiiu0bNkyhYQc/xls8uTJWrt2rZ555hktX748sO769ev12WefaeXKlbrssssCyysrK5Wdna1169Zp2rRpnQ4JVVRU6A9/+IPi4uICyzwejx588EFFRkZqw4YNOuWUUyRJ2dnZWr58uQoLC5WamhpYf+LEiTrttNO0c+dO3XzzzYqMjAy8tmfPHpWVlWnu3LlyuVx9HbIeffjhh7rtttsUGhqqhx56SOPGjQu89stf/lLHjh3Tfffdp2nTpgWW/+AHP1B2drbWrl2rzZs3B5ZnZWXpnXfeUV5eniZPntxhP8waASeHmSMAJ1RUVKTNmzd3+evvf/97p/UjIyN1ww03BIKRJF166aVyOp3av39/YFlVVZV27dqlyZMndwhGkjRy5Ehde+21qqqq0rvvvttpH//93//dIRhJ0l//+lc1NDTo29/+diAYSVJoaKgWLlzY5WebPXu26uvrtXPnzg7LX3jhBUnS5Zdf3t2wnJS33npLt956q2JjY/XII490CEYfffSRPvjgA11yySUdgpEknXLKKbrsssv06aefdph9mz59uuLj47V7927V1dUFlre0tOill16Sy+Xq9mR6AF1j5gjACU2bNk333Xdfr9cfPXq0oqKiOiwLDQ1VQkKCamtrA8v2798vn8+n5ubmLmemDh8+LEk6ePCgvvnNb3Z4bcKECZ3W/+STTyRJZ511VqfXMjMzu7y8/pJLLtHvfvc7vfDCC4GAduzYMb355pv66le/qtNOO+0En7b3du3apbfffltjx47VunXrNHLkyA6vtx0yq6ys7HI8/v3vfwf+O2bMGEkKhJ+tW7cqPz9fc+bMkSS98cYbqqqqktvtVmxs7IB9BmA4IBwBGHDR0dFdLnc6nWptbQ38vqamRpL0r3/9S//617+63V5jY2OnZQkJCZ2Wtc2cfDF0SMev7oqPj++0PDY2VjNnztT27dv16aefasyYMdq2bZt8Pt+Azxp9+OGH8vl8Ouuss7qssW083nrrLb311lvdbqehoaHD77OysrR161bl5eUFwhGH1ICTRzgCYJu2EHXNNdfopptu6tN7HQ5Ht9urrKzs9Fpra6uqq6uVnJzc6bU5c+Zo+/bt+stf/qKlS5fqxRdfVHR0tGbOnNmnmk5k0aJF+utf/6qtW7fK6XR2+sxt9S9dulRXXXVVr7c7duxYnXHGGdq3b58+++wzxcbGas+ePUpLS+t0HhKAE+OcIwC2OeOMM+RwOPThhx8OyPbGjh0rSV3OQu3bt08+n6/L95155pkaO3asXn75Ze3Zs0eHDx/WRRddpIiIiAGpq43L5dIvf/lLfeMb39CWLVv08MMPd3i97VDhyYxH2wzRiy++qB07dsjn8wUu9QfQN4QjALZJTEzUzJkz9cEHH+hPf/pTl/fqKSgo6PKwWlf+67/+S5GRkXrxxRdVVFQUWN7S0qJNmzb1+N7Zs2erpqZGa9askaROJ4gPFJfLpdWrV+ub3/ymnnzyST300EOB1zIzM5WZmamdO3d2OkFcOj77tXfv3i6363a7FRERoZdeekl5eXkKCQkJPMoEQN9wWA3ACfV0Kb8kXXfddSd99+WcnBwdOnRIjz76qHbs2KEzzzxTMTExKisr0/79+3X48GE9++yzvZrFiY2N1c0336x169YpOztbF1xwgaKjo/W3v/1NLpdLSUlJ3c6kXHzxxfrtb3+r8vJyjR8/3tL7AoWFhemee+7RnXfeqaeeekp+v1+33HKLJOnOO+/UsmXLdNddd2nr1q06/fTTFR4erqNHj+qDDz5QdXV1lzeljI6O1re+9S3t2LFDVVVV+vrXv97tI0UA9IxwBOCE2i7l787cuXNPOhzFxcXpkUce0TPPPKNXXnlF+fn5am1tVUJCgsaNG6frr7++yxOpu3P55ZcrNjZWf/zjH7V9+3ZFR0frvPPO0w033KC5c+cqIyOjy/dFR0dr+vTpeumllyybNWqvLSD9/Oc/19atW+X3+7V06VKlp6dr06ZN2rJli15//XVt27ZNISEhSkxM1MSJEwM3i+xKVlaWduzYIen43bMBnByHv7t7zgPAEHL48GF997vf1cyZM3XXXXd1uc7111+vkpISPfPMM91ecdedGTNmaNKkSXrwwQcHotxBceTIEV1zzTW69NJLdfvtt9tdDmAMZo4ADCkej0fh4eEd7mrd1NQUOPl5+vTpXb7vb3/7mz777DNdfvnlfQ5Gbfbu3Rt41MjLL79s7INen3vuOf3mN7+xuwzAWIQjAEPK3r179etf/1pTp07VqFGjVF1drX/84x8qKSnR5MmTdcEFF3RY/89//rOOHj2qF154QS6XS9ddd91J7XfBggUdft/VDSdNMX78+A71nn766fYVAxiIw2oAhpRDhw5p06ZN+uCDD1RVVSVJysjI0AUXXKD58+d3ms2ZN2+eysrKdMopp+iGG27odCduAMMP4QgAAKAd7nMEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaOf/AThz/YdaiuJ7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAG5CAYAAAAJchUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADeP0lEQVR4nOy9e3wTVf7//0qa3mhLCwVSSkHKTSl3BUWR21IB5SviAqLganEVhQVxBUHqqlwFXS4fXAVEVFTWFZRFEQG1LIKiLiIUlQICAlsobWmhbXpNm+T3R39nODOZmcwkk8wkOc/Hw4cll5l558ycec3r/T7nmFwulwsMBoPBYDAYDIYAs94HwGAwGAwGg8EwJkwoMhgMBoPBYDBEYUKRwWAwGAwGgyEKE4oMBoPBYDAYDFGYUGQwGAwGg8FgiMKEIoPBYDAYDAZDFCYUGQwGg8FgMBiiMKHI8Ina2lqcPHkStbW1eh8Kg8FgMBgMjWFCkeET58+fx2OPPYbz589rvu2KigrNtxkssNjDl3COn8UenrDYjQ0TigzDYrPZ9D4E3WCxhy/hHD+LPTxhsRsbJhQZhiUxMVHvQ9ANFnv4Es7xs9jDExa7sWFCkcFgMBgMBoMhChOKDMNSXl6u9yHoBos9fAnn+Fns4QmL3dhY9D4ABoPBYDAY+uNwOFBfXx/w/TY0NITtzBmBiD0yMhIRERFef58JRYZhsVqteh+CbrDYw5dwjp/Frh+VlZW4cOECXC5XwPftcrlw9uzZgO/XCAQidpPJhLS0NMTHx3v1fSYUGYbl6tWraNmypd6HoQss9vCMHQjv+Fns+sTucDhw4cIFNGnSBC1btoTJZAro/uvr6xEZGRnQfRoFf8fucrlw+fJlXLhwAZ07d/bKWWRCkWFY7Ha73oegGyz28CWc42ex60N9fT1cLhdatmyJ2NjYgO/fbDYjKioq4Ps1AoGIvWXLljh37hzq6+u9EopsMAvDsITrEybAYg9nwjl+Fru+BNpJ1Hu/RiAQsfu6DyYUGYYlOTlZ70PQDRZ7+BLO8bPYwxOLJXyTm8EQOxOKDMNSWFio9yHoBos9fAnn+Fns4YkeI63bt2+P3NxcAMCjjz6KvXv3evzO/Pnz8dRTT4m+l5ubiw8//FD1cegRu1qYUGQwGAwGg2FYGhoa/Lr9DRs2YOjQoT5tw1uhKIe/41aK8T1PRtjStGlTvQ9BN1js4Us4x89iNwZ9+/b1q8OZkpKCQ4cOcf8WG2BhMpnwwgsvYOfOnRgyZAgeeughTJ06FdXV1aitrcXEiRPxt7/9DQDQpk0b/Pjjj0hNTcV9992HCxcu4LvvvkNdXR1SU1NRUFCA6OhoyeMZMmQInnrqKYwZMwaXLl3Cww8/jAsXLiAtLQ3NmzfHDTfcgPnz5wMALl26hLvvvhtnzpxBSkoKPv74YzQ0NOCFF15AeXk5evfujf79+2PdunX4/vvv8cwzz8Bms8HlcmHRokW455570L59e3zyySfo3bs3IiIi0LdvXyxfvhxDhgzBkCFD0LNnT/z444+IjY1Fx44dcf3112P27NkAgLNnz+LWW29Ffn4+AOD555/Hf/7zH9jtdnTp0gVvvPEGmjVrplVTAWBCkWFgzObwNbxZ7OFLOMfPYjcGhYWFuHjxot6HgYiICPz4448AAJvNhj179iA6Oho1NTW47bbbkJmZif79+2PYsGHIycnBgw8+iKNHj8JisaCiogI//vgjbrrpJlmRKOTJJ5/ErbfeigULFqCwsBC9e/fGDTfcwL3/3//+Fz/99BOSk5Nx//3344033sC8efOwcOFCfPLJJ/jkk08AAFeuXMGYMWPw8ccfY+DAgXA6nSgrK1N0DL/99hv279+PyMhIfPfdd5gyZQonFDdu3IhJkyYhMjISL730EuLi4nDw4EEAwKJFi/C3v/0Nr7/+uuJ4lcCEIsOwlJWVIS4uTtdjyM3NxZkzZzB69OiAjko0Qux6Ec6xA+EdP4vdGLGnpKQEdPsOh0PUVXzkkUe4v2tqajBt2jTk5ubCbDYjPz8fubm56N+/PzIzM5GTk4Nu3bqhV69esFqt+Prrr/H9999j2LBhqo5tz549WL58OXec/+///T/e+yNHjuQGHt1666345ZdfRLfz/fff4/rrr8fAgQMBND4ING/e3O1zDofD7bUHH3yQu9/cdtttaGhowI8//oi+ffvivffew2effQYA+OSTT1BeXo6tW7cCaJxiqX379qriVQITigyGBKWlpbj11ltRW1uLdevW4fHHH9f7kBgMBsPv0GlhPaFXEsnOzkaLFi1w5MgRWCwW/PGPf+SWvsvMzMS8efOQkZGBzMxMWK1W5OTk4Pvvv8fatWt9Ogbh1DIxMTHc3xEREV7VEVosFp5AFC7hJ1xBZfLkyXjnnXdQWVmJFi1aoHv37gAaJ9P+xz/+geHDh6s+BjUYx+tmMAS0atVK1/3/9ttv3AV89OjRgO5b79j1JJxjB8I7fhZ7eKJkipirV68iLS0NFosFJ0+exFdffcW9l5qaisTERKxbtw6ZmZkYOnQoduzYgXPnzuHGG29UdSx/+MMfsHHjRgBAUVERduzYoeh7TZs2RXl5Offv2267DadOncI333wDAHA6nbhy5QoAoFOnTvjvf/8LADh8+DBOnjwpu+0//elP+Oijj7Bu3TqeyzpmzBisWrUK1dXVAIDq6mocO3ZMWaAqYEKRYVjoi04P6Ke8QE9hoHfsehLOsQPhHT+LPTwRS78K+dvf/oZ33nkHPXv2xLPPPos//OEPvPczMzNhNpvRoUMHNG3aFCkpKRg0aJDq2s/Vq1fjm2++QUZGBiZNmoRbbrkFSUlJHr83bNgw1NXVoWfPnnjiiSfQrFkzbNu2Dc8++yx69uyJG2+8EQcOHAAALF68GK+//jp69eqFt99+G926dZPddmpqKm6++WZs374dDzzwAPf63Llz0a9fP9xyyy3o2bMn+vfvz035oyUmlx4rgDNChpMnT+Kxxx7Dm2++ieuvv17TbV+8eBFt2rTRdJtq2L17N+68804AwMMPP8w9ZQYCvWPXk3COHQjv+Fns+sReW1uLs2fPIj09nZdaDRR2u90wS/jV1NQgMjISFosFpaWl6N+/PzZt2oRbbrnFL/sLROy+ti+rUWQYFr1nrNfTUdQ7dj0J59iB8I6fxR6eGGkJv1OnTuGhhx6Cy+WC3W7HtGnT/CYSAWPFLkX4npkMw6N3zU5dXR33d6CFot6x60k4xw6Ed/ws9vDESCK5Z8+efknfSmGk2KVgNYoMw1JQUKDr/mlH0W63B3TfeseuJ+EcOxDe8bPY9UWvSrRgWMbOXwQidl/blQlFBkMCPR1FBoPBCBRkDsNAPxAzAgNpV7G5KpVgfM+TEbYkJCToun89axT1jl1Pwjl2ILzjZ7Hrg8ViQZMmTXD58mVERkYGfJUYh8MBp9MZ0H0aBX/H7nQ6cfnyZTRp0sTrNDcTigzY7XasXLkShw4dQmVlJdq3b4/p06dzk3rqhd61G3o6inrHrifhHDsQ3vGz2PXBZDKhdevWOHv2LM6fPx/w/TudTkMtYRhIAhG72WxGu3btvB44E75XJYPD4XAgJSUFr7/+Olq2bIm9e/di3rx52Lx5M5o0aaLbcV29elXX/evpKOodu56Ec+xAeMfPYtcv9qioKHTu3FmX9HNRURGsVmvA92sEAhF7VFSUT2KUCUUGYmNjkZWVxf172LBheO2115Cfn6/53IjBBKtRZDAY4YTZbNZlHkWLxaLLfo1AMMTOhKKA9957Dxs2bEB6ejreffddyc+99NJL2L17t+T7W7duRcuWLf1xiKiursaHH36IvLw8HD9+HDabDfPmzeMmhxZit9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fqKfz8/Ph81m033iW3/9fkrR01HUO3Y9CefYgfCOn8UenrDYjQ0TihTFxcXYtGkTYmNjPX529OjR6Nu3L+81l8uFFStWICUlxa+NX15ejo0bN8JqtaJTp044cuSI7OeXLl2Kr7/+GuPHj0daWhp27dqFOXPmYPXq1ejZsyfvs3V1dVi8eDEmTZrktjB5oLHZbEhOTtZt/3o6inrHrifhHDsQ3vGz2Fns4UYwxM6EIsWaNWuQkZEBp9Ppcd3N7t27uw32+Pnnn1FbW4s77rhD9rs2mw2HDx/G4MGDRd/PycnBgAEDJAVrcnIytm3bhuTkZJw4cQJTpkyR3FdeXh727NmDqVOncmtEjhgxAllZWVi7di3Wrl3LfbahoQEvvPAC2rRpw0tF6wXt6Om9/0ALRb1j15Nwjh0I7/hZ7OEJi93YhOcwIxFyc3Oxb98+zJgxw+tt5OTkwGQyITMzU/Zz27Ztw/z587F//36393bs2IGFCxfKprWjoqIUP4Hs27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAhA48irxYsXw2QyITs72xDLCnk755NW6Oko6h27noRz7EB4x89iD09Y7MaGCUU0jvpdvXo1Ro0ahY4dO3q1jYaGBuzduxfdu3dH69atZT87ceJE9O/fHwsXLsRPP/3Evb5v3z6sWLECw4cPx5gxY7w6DiGnTp1CWloa4uLieK937doVAHD69GkAwPLly1FaWooFCxYYZoqKlJQUXfevp6Ood+x6Es6xA+EdP4s9PGGxGxsmFAF8+umnKCoqwqOPPur1Ng4ePIjy8nKPaWegcZTT/PnzkZGRgezsbOTl5eGnn37CokWLcMstt+DZZ5/VzNErLS0VdR/JayUlJSgsLMSOHTtw/PhxjB49GiNGjMCIESNw9OhRye3m5OTg2WefxT/+8Q9NjlOMixcv+m3bSqAdxUBPGaF37HoSzrED4R0/iz08YbEbG2NYRzpSXl6Ot99+Gw899BCSkpK83k5OTg4sFguGDh2q6PPR0dFYunQpZs6ciTlz5qC+vh5du3bV3NGrq6tDZGSk2+tRUVHc+ykpKaJpcDkyMzORmZmJkydP4rHHHtPkWI2Gno4ig8FgMBhGIOwdxQ0bNiAhIQFjx471ehvV1dX49ttvcfPNNyMxMVHx9+Li4jBt2jRUVFSgpqYGM2bMQHR0tNfHIUZ0dLSoyCEOmdb70xJhujzQ6FmjqHfsehLOsQPhHT+LPTxhsRubsBaK+fn5+OyzzzBu3DiUlJTg0qVLuHTpEux2OxoaGnDp0iVUVFR43M63336raLSzkIKCAixatAjt2rVDSkoKnn/+eZSUlHgbjijJyckoLS11e5281qJFC033pyV6i1g9HUW9Y9eTcI4dCO/4WezhCYvd2IS1UCwpKYHT6cTq1asxYcIE7r+8vDzk5+djwoQJ2Lhxo8ftfPXVV4iNjcWAAQNU7fvpp5+GxWLBypUrsWLFCtTW1mLWrFmKxKlSOnXqhAsXLqCqqor3el5eHve+Ubly5Yqu+9fTUdQ7dj0J59iB8I6fxR6esNiNTVjXKKanp2PJkiVur2/YsAHV1dV48sknkZqaCqDRXSoqKkJiYiKvlrGsrAyHDh1CZmam4mV4bDYbZs+ejZqaGrz22mto1aoVgMaRxzNnzsTcuXOxcuVKRRN/e2LIkCH48MMPsX37dm4eRbvdjp07dyIjIyNs19dUAu0oOhwOuFwuQ0wbxGAwGAxGoAhroZiUlISBAwe6vf7RRx8BAO+948ePY+bMmcjKysIjjzzCvb5nzx44HA5Vaedt27ahuLgYr776Ktq2bcu93rlzZyxbtgyzZs3C7t27ce+990puY+vWraisrORSyAcOHEBxcTEAYOzYsdyqKhkZGRg6dCjWr1+PsrIytGnTBrt370ZhYSHmzp2r+Jj1QO+0OO0oAo2uIhkE5G/0jl1Pwjl2ILzjZ7GHJyx2YxPWQlELcnJy0KxZM9x0002KvzNx4kQMHDgQ6enpbu/17NkT69atQ4cOHWS3sXnzZhQWFnL/3r9/Pzdyefjw4bzl97Kzs2G1WvHFF1+gsrISHTp0wMsvv4zevXsrPmY9qKqq0rV+QzhjfiCFot6x60k4xw6Ed/yhGPvRo0fhcrk89rehGLtSWOzGjt3kcrlceh8EI3gh0+O8+eabuP766zXd9sWLF9GmTRtNt6mG5ORkXv3I1atXfZpCSQ16x64n4Rw7EN7xh1rsR48e5QTi4cOH0adPH8nPhlrsamCxGzv2sB7MwjA2ZrO+p6eYoxgo9I5dT8I5diC84w+12L///nvu7//+97+ynw212NXAYjc2xj9CRtjiaSlEfyNWoxgo9I5dT8I5diC84w+12Gtqari/hQ+eQkItdjWw2I0NE4oMw1JQUKDbvhsaGuBwOHivBXIZPz1j15twjh0I7/hDLfbq6mrub09CMdRiVwOL3dgwocgwLHqWz4p16oF0FMO5dDicYwfCO/5Qi12NoxhqsauBxW5smFBkGJYmTZrotm9h2hkIrFDUM3a9CefYgfCOP9RiV+MohlrsamCxGxsmFBmGRYsJx71Fb0dRz9j1JpxjB8I7/lCLnXYU6b/FCLXY1cBiNzZMKDIMi9ga1YFCb0dRz9j1JpxjB8I7/lCLXU3qOdRiVwOL3dgwochgiKC3o8hgMIIfNalnBsOoMKHIMCzJycm67VtvR1HP2PUmnGMHwjv+UItdjaMYarGrgcVubJhQZBgWPZ/A9XYUw9l9COfYgfCOP9RiV+MohlrsamCxGxsmFBmGpaqqSrd96+0o6hm73oRz7EB4xx9qsatxFEMtdjWw2I0NE4oMhgh6O4oMBiP4YTWKjFCACUWGYdFzoXS9HUWjLxLvT8I5diC84w+12NVMjxNqsauBxW5smFBkGJZLly7ptm+xp/9ALuGnZ+x6E86xA+Edf6jFrib1HGqxq4HFbmyYUGQYFqfTqdu+9XYU9Yxdb8I5diC84w+12NWknkMtdjWw2I0NE4oMw8JWZglPwjl2ILzjD7XY1TiKoRa7GljsxoYJRYZhiYuL023fejuKesauN+EcOxDe8YdS7C6XS5WjGEqxq4XFbmyYUGQYlpKSEt32rbejqGfsehPOsQPhHX8oxS582PQkFEMpdrWw2I0NE4oMhgh6O4oMBiO4od1EgE2PwwhemFBkGJbmzZvrtm+9HUU9Y9ebcI4dCO/4Qyl24XQ49fX1cDgckp8PpdjVwmI3NkwoMgxLIKejEaK3o6hn7EJcLldA92ek2PUgnOMPpdjF5k2UcxVDKXa1sNiNDROKDMNSWVmp2771dhT1jJ3mn//8J1q0aIHs7OyA7dMosetFOMcfSrELU8+AvFAMpdjVwmI3NkwoMhgi6O0oGoXXXnsNV65cwSuvvBKW8TMY3qLWUWQwjAoTigzDkpqaqtu+9V6ZRc/YaWw2GwDA4XDg8uXLAdmnUWLXi3COP5RiV+sohlLsamGxGxsmFBmGpaioSLd96+0o6hk7Df07FBYWBmSfRoldL8I5/lCKXa2jGEqxq4XFbmyYUGQYFrkRgv5G7xpFPWOn0UMoGiV2vQjn+EMpdrWOYijFrhYWu7FhQpFhWGJiYnTbt96Oop6x09A3tkAtXm+U2PUinOMPpdjVOoqhFLtaWOzGhglFhmFJSEjQbd96O4p6xk6jh6NolNj1IpzjD6XYxYSi2GuEUIpdLSx2Y8OEIsOwBGrwhBh6O4p6xk5DC+ZACUWjxK4X4Rx/KMWuNvUcSrGrhcVubJhQZDBE0NtRNAIul4s30jtQQpHBCAXY9DiMUMGi9wEw9Mdut2PlypU4dOgQKisr0b59e0yfPh3du3fX9biaNWum2771dhT1jJ0gnA4oUELRCLHrSTjHH0qxq3UUQyl2tbDYjQ1zFBlwOBxISUnB66+/jp07d2L8+PGYN2+eaEcXSBoaGnTbN+nQTSYT91oghaKesROEN7VACUUjxK4n4Rx/oGIvLi7GP//5T1y5csVv+1DrKLJ2D0+CIXYmFBmIjY1FVlYWrFYrzGYzhg0bBovFgvz8fF2Pi0z2rAfEUYyPj+deC6RQ1DN2gtBVDZRQNELsehLO8Qcq9vvvvx8PPvggsrKy/LYPtY4ia/fwJBhiD8rU83vvvYcNGzYgPT0d7777rqLvnDx5Eu+88w5++eUX2O12pKam4u6778a4ceO4z7z00kvYvXu35Da2bt2Kli1bAgCOHDmCmTNnin5u7dq16Natm4qI1FFdXY0PP/wQeXl5OH78OGw2G+bNm4c777zT7bN2ux1vvfUWvvzyS9hsNnTs2BGPPvoo+vXrJ7n9/Px82Gw2tGnTxm8xGB3SoSckJHAXcrjVKApvapWVlaisrOSJZwYj2HC5XPj+++8BALm5uX7bD6tRZIQKQScUi4uLsWnTJsTGxir+zsGDBzFv3jx07twZDz/8MGJjY3Hx4kW30UajR49G3759ea+5XC6sWLECKSkpnEikGTt2LLp27cp7zd8Cq7y8HBs3boTVakWnTp1w5MgRyc8uXboUX3/9NcaPH4+0tDTs2rULc+bMwerVq9GzZ0+3z9fV1WHx4sWYNGmS7oKgdevWuu1bzFEM5BJ+esZOEKvTLCwsRKdOnfy6XyPErifhHH8gYq+srOQEm9g5rhVqp8dh7R6eBEPsQScU16xZg4yMDDidTpSXl3v8fFVVFV566SX0798fixYtgtksnW3v3r272wCOn3/+GbW1tbjjjjtEv9OrVy8MGTJE8fHbbDYcPnwYgwcPFn0/JycHAwYMkBXCycnJ2LZtG5KTk3HixAlMmTJF9HN5eXnYs2cPpk6digceeAAAMGLECGRlZWHt2rVYu3Yt7/MNDQ144YUX0KZNG7+mZJRy+fJlWK1WXfZNbiR6pZ71jJ2gl1A0Qux6Es7xByL24uJi7m9/Pvx5Mz0Oa/fwIxhiD6oaxdzcXOzbtw8zZsxQ/J2cnBxcuXIFjz32GMxmM2pqauB0OlV932QyITMzU/Iz1dXVigtSt23bhvnz52P//v1u7+3YsQMLFy6UTX8DQFRUFJKTkz3ua9++fYiIiMDo0aO516KjozFq1CgcO3aMt8ak0+nE4sWLYTKZkJ2dzRvEoRd6Ffk2NDRwyyrFxsYiIiICABvMAgSmTtEIsetJOMcfiNhpoRhoR5ENZhGHxW5sgkYoOhwOrF69GqNGjULHjh0Vf+/QoUOIi4tDSUkJJk2ahBEjRuDOO+/EihUrPHYSDQ0N2Lt3L7p37y5pDy9duhQjR47EHXfcgZkzZ+LEiROy25w4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxiuOT49SpU0hLS0NcXBzvdZIqP336NPfa8uXLUVpaigULFsBiMYbRHB0drct+6fMiOjoakZGRAAIrFPWKnUbKUfQ3RohdT8I5/kDETj8g+1MoqnUUWbuHJ8EQuzEUgQI+/fRTFBUVYdWqVaq+d+HCBTgcDmRnZ2PUqFGYMmUKcnNzsXXrVlRWVuLFF1+U/O7BgwdRXl4umna2WCwYPHgw+vfvj8TERJw7dw6bN2/G9OnTsWbNGnTp0kV0mxaLBfPnz8czzzyD7OxsrFq1CjU1NVi0aBFuueUWPPvss5q5eaWlpaLOI3mtpKQEQOPNf8eOHYiKiuK5j6+88gp69eoluu2cnBzk5OSgsrJSk2MVIykpyW/bloO+ecTExCAyMhK1tbUBFYp6xU6jl6NohNj1JJzjD0TstKPodDrR0NDg08Nxbm4utm3bhsmTJ6N9+/bc62odRdbu4UkwxB4UQrG8vBxvv/02HnroIdU/ak1NDWpra3HPPfdwo5QHDx6M+vp6bN++HY888gjatm0r+t2cnBxYLBYMHTrU7b0ePXqgR48e3L9vv/12DBkyBJMnT8b69euxfPlyyWOKjo7G0qVLMXPmTMyZMwf19fXo2rWr5m5eXV0d54bRREVFce8DQEpKimgqXI7MzExkZmbi5MmTeOyxx3w/WBGKiop0GXlNd+Z6OYp6xU6jl6NohNj1JJzjD0TstFAEGs9zX/rd+++/HydPnsThw4fx2Wefca+rdRRZu7PYjUpQpJ43bNiAhIQEjB07VvV3ia07bNgw3uuk5vDYsWOi36uursa3336Lm2++GYmJiYr2lZaWhttvvx1HjhzhatykiIuLw7Rp01BRUYGamhrMmDFDcws6OjpaVNyQAu5gsLz1QOgoEmEdbtPjiAnFS5cu6XAkDIZ2CIWiLwNaXC4XfvvtNwDA8ePHee+x6XEYoYLhhWJ+fj4+++wzjBs3DiUlJbh06RIuXboEu92OhoYGXLp0CRUVFZLfJ2nW5s2b814ny+ZITXb57bffyo52lqJVq1aor6/32CEUFBRg0aJFaNeuHVJSUvD8889zqWCtSE5ORmlpqdvr5LUWLVpouj+tUSrQtcYIjqJesdPolXo2Qux6Es7xByJ2ukYR8K1O0W63w+VyAYDbLBxEKNIxyU2Pw9o9PAmG2A0vFEtKSuB0OrF69WpMmDCB+y8vLw/5+fmYMGECNm7cKPn966+/HgDc5kwkokwqlf3VV18hNjYWAwYMUHW8BQUFiIqKkp3epqSkBE8//TQsFgtWrlyJFStWoLa2FrNmzZIVvWrp1KkTLly4gKqqKt7reXl53PtGhnTAgUasRhEIrFDUK3YavVLPRohdT8I5/kDELpZ69hY6vVxWVsY7fvIebVLIGQis3cOTYIjd8EIxPT0dS5YscfsvPT0dVqsVS5YswahRowA0XoTnz59HWVkZ931SX/j555/ztvv5558jIiICffr0cdtnWVkZDh06hEGDBiEmJkb0uOh9EE6fPo0DBw6gX79+kvM12mw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp0r+9SphiFDhsDhcGD79u3ca3a7HTt37kRGRobh527SUjSrwQiOol6x04jd1IqKilRNL+UNRohdT8I5/kDErqVQpPvqhoYG7t8ul4v7m2SvAHmhyNo9PAmG2A0/mCUpKQkDBw50e/2jjz4CAN57x48fx8yZM5GVlYVHHnkEANClSxfcdddd2LlzJxwOB3r37o3c3Fzs3bsXDz74oGj6dc+ePXA4HLJp5xdffBHR0dHo3r07mjVrhnPnzuGzzz5DTEwMHn/8ccnvbdu2DcXFxXj11Vd5g2g6d+6MZcuWYdasWdi9ezfuvfde2d+FjNomaeQDBw5wHeDYsWMRHx+PjIwMDB06FOvXr0dZWRnatGmD3bt3o7CwEHPnzpXdfjhjBEfRCIjdQB0OB0pLS0VXKWIwggEtaxSFD/Xl5eVo0qQJ7HY790AVHx+PqKgo2O12VqPICEoMLxS1YPbs2bBardi1axe++eYbWK1WTJ8+Hffdd5/o53NyctCsWTPcdNNNktscOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NMnvTZw4EQMHDkR6errbez179sS6devQoUMHjzFt3ryZlwbcv38/N3J5+PDh3Ioi2dnZsFqt+OKLL1BZWYkOHTrg5ZdfRu/evT3uQ29SUlJ02a+UoxjIJfz0ip2GFopJSUmci15YWOhXoWiE2PUknOP3d+wNDQ1uddtapZ6BxkxT69ateQIyNjYWMTExHoUia/fwJBhiD1qh+Oqrr7q91qdPH9FpXiwWCyZPnozJkycr2rZwaTsxxo0bh3HjxinanvBYxEQiQelk4lu2bFH0uejoaEybNg3Tpk1T9HkjUVpailatWgV8v1KOYkNDA1wuV0BWrdErdhr6pta+fXvk5uYCaBSK9NRQWmOE2PUknOP3d+wlJSVuNWFapZ6BawNaaAFJhGJFRYWsUGTtzmI3KoavUWSEL3qleqUcRSBwyy0ZIc1N30Cvu+467m9/D2gxQux6Es7x+zt2YdoZ0FYoEtedfr1JkyZcrbucUGTtHp4EQ+xMKDIMC5m/MNBILeEHBO6i1it2GvqmRgtFf8+laITY9SSc4/d37GJC0ZeSEmHqmTiKYqlnQF4osnYPT4IhdiYUGYZFOPdloKA7czr1DAROKOoVOw0tmOmlyfztKBohdj0J5/j9Hbu/HUWx1DPtKMrNaMHaPTwJhtiZUGQYlkDM2SeG0FGkn/gCJRT1ip1Gr9SzEWLXk3CO39+xay0UxQazAPKOotS8eazdw5NgiJ0JRQZDgBEcRSMgHMxCCIaOjcEQQ7gqCxAYR5FegCGQsycwGFrAhCLDsDRt2lSX/RqhRlGv2Gno36FFixZo0qQJAP8LRSPErifhHL+/Y9e6RlFKKEo5ioB0nSJr9/AkGGJnQpFhWAIxDY0YRnAU9YqdRjj6m8z35W+haITY9SSc4/d37IFKPUvVKALSQpG1e3gSDLEzocgwLOTpPNAYwVHUK3Ya4XySrVu3BgBcvXrVp5urJ4wQu55IxX/q1CkcOHAgKNaG9RZ/t32gBrN44yiG83nPYjc2TCgyGAKM4CgaAaFgplcQYHWKgaWwsBDdunXD7bffjs8++0zvwwlaAlWj6I1QZDCMChOKDMNitVp12a+coxioQnS9YqeRSj0D/hWKRohdT8TiP3z4MPeQ8sMPPwT6kAKGP9ve5XIZIvUsNUVOOJ/3LHZjw4Qiw7CQTjfQGMFR1Ct2GnIDjYqKgslkCphQNELseiIWPy1m5ObiC3b82fZVVVXcb2c2X7v1GWUwSzif9yx2Y8OEIsOw+LMOTul+9apR1Ct2GnJDi46OBoCACUUjxK4nYvGHi1D0Z9vTbiKpt/V1n95MjyMlFMP5vGexGxsmFBmGhRZogcQIjqJesdOQDoy4IYESikaIXU/E4qdvJqFc4+bPtqeFYlpaGve3lqnniooKOJ1OrxzFcD7vWezGhglFhmFp0aKFLvs1wsosesVOQ36HQDuKRohdT8TiDxdH0Z9tTw9kadu2Lfe3lo6iy+WCzWbzanqccD7vWezGhglFhmG5dOmSLvs1gqOoV+w05HcgNzk6XedPoWiE2PVELP5wcRT92fa0o9iuXTvuby1rFIHGmjNvHMVwPu9Z7MaGCUUGQ4ARahSNgNBRbNWqFfee2DQjDP8RLo6iP6GFolaOojD1DDTWKbLpcRihBBOKDMOSkJCgy35JRx4ZGQmz2ayLUNQrdhqhoxgZGckt42ez2fy2XyPEridi8YeLUPRn2/ujRlGsLcrLy72aHiecz3sWu7FhQpFhWCIiInTZr9BJ00Mo6hU7weFwwOFwALj2OwBAXFwcAKCystJv+9Y7dr0Ri592oULZkfJn2wfKUfQ29RzO5z2L3dgwocgwLHrPo0g7aYRwmUdRmH4nxMfHA/CvUNQ7dr1h8yj6B6nBLFrXKNKOosViQWRkJJtH0QMsdmPDhCKDIcAIjqLeCAf0EAIhFBnuhMpgFqfTiYsXL+qyb+IoxsbGIjk5mXvdH6ln8jqZP1HJPIoMhlFhQpFhWOjBE4FEzlEM1BJ+esVO8OQo1tbWoqGhwS/71jt2vRGLP1QcxXvuuQdpaWlYvny56Pv+bHsiFK1WK2/KK3+mnklNrxJHMZzPexa7sWFCkWFYKioqdNmvERxFvWIneHIUgcYl0fyB3rHrjVj8oSAUa2trsWPHDgDAxx9/LPoZf7W9w+FASUkJgMYbs8lk4q5rb4ViQ0OD6MMSnXomTqISoRjO5z2L3dgwocgwLHqlaIxQo6h3esqTowj4TyjqHbveiMUfCqlnulxBqnTBX7GVlJTA5XIBuObgkPPaW6FIC/aWLVtyf4ulnpUIxWBtVy1gsRsbJhQZhsVisQR8nw6Hg3MJyI1Ej5VZ9IidRolQ9Fedot6x641Y/EJHkYieYIJ+sJB6yPBX29MjnoVC0dtyEjrtTE9GX1ZWxr2nJvUczuc9i93YMKHIMCx61G7QN2Q9HUW961aUpJ79JRT1jl1vPNUoAoGrldUSWhxKnTv+ans5oaiFo0gvb1lSUsJNLSXmKEqVDoTzec9iNzZMKDIMS0FBQcD3Keak6SEU9YidRk9HUe/Y9UYsfqGYCcY6Rfp8kXIU/dX2tFC0Wq0ArmUKtBaK9JJsahzFcD7vWezGhglFBoNCzElj0+ME1lEEGjvPm2++GaNGjQqb31wOobgIRqFIi8OamhrOdQsE/nAU6dRzfHw8d23Q66Cz6XEYoQATigzDQouSQGEUR1GP2Gn0dBTj4+PxwQcf4Mcff8TOnTuxd+9ev+zHqIi1vVDMBKPYELqIYlPL+Ou8pyfb1qpGUbj6SlJSEgDg6tWr3OtqHEW9r3k9YbEbGyYUGYaFFmiBwiiOoh6x0+gpFCMjI7mpTIDGUaThhFjbh1rqWezfgP/Oe0+OojeDg+g2aNKkCRITE90+Q5xEi8UCs7nxdislFPW+5vWExW5smFBkwG63Y9myZRg3bhxGjhyJJ554Ar/++qveh8V7Mg8URnEU9YidRs/U89WrV2Gz2USPJRwQa/tQdBTFzh9/nfeXL1/m/iZT2ZAaRZfL5dXk8bQjSjuKNEQomkwm7jqSaju9r3k9YbEbGyYUGXA4HEhJScHrr7+OnTt3Yvz48Zg3b55oaijU8eQoBuNoU2/Q01EEENZCUYxQdBT9NQ+nGPR6us2aNQPAP6+9qVMUpp7FHEWSegbgUSgyGEaFCUUGYmNjkZWVBavVCrPZjGHDhsFisSA/P1/X46InsQ0URnEU9YidRk9HsWXLljyh6MsSa8GIWNuHglBU4ij667wnq19ERUVx5zMtFL15AKQfpD2lnoFr15FU2+l9zesJi93YGH+mRx957733sGHDBqSnp+Pdd99V9J2TJ0/inXfewS+//AK73Y7U1FTcfffdGDduHPeZI0eOYObMmaLfX7t2Lbp166bJ8YtRXV2NDz/8EHl5eTh+/DhsNhvmzZuHO++8U/Tzdrsdb731Fr788kvYbDZ07NgRjz76KPr16yf6+fz8fNhsNrRp08ZvMSihsrISzZs3D+g+jVKjqEfsNHo6ipWVlWHtKIq1fSimnsUcRX+d90QoNm3alHtNa0dRLPWsxlHU+5rXE71jt9ls+P777xEdHY3BgwcHdN96x66EkBaKxcXF2LRpE++pzhMHDx7EvHnz0LlzZzz88MOIjY3FxYsXeTUuNGPHjkXXrl15r/lbYJWXl2Pjxo2wWq3o1KkTjhw5Ivv5pUuX4uuvv8b48eORlpaGXbt2Yc6cOVi9ejV69uzJ+2xdXR0WL16MSZMm6T4aSw/XREwg6bEyi96OkZ5CsaamJqyFoljbh4KjqGQwi7/iIgOiaNePvq79lXoWcxSlzudgbFOt0CP206dP480338TXX3+Nn376iZuu6d///jfuvffegB3HuXPn8OWXX2LUqFFISEgI2H7VENJCcc2aNcjIyIDT6VQ0crKqqgovvfQS+vfvj0WLFnGj1OTo1asXhgwZouq4bDYbDh8+LPnkkpOTgwEDBkgK3OTkZGzbtg3Jyck4ceIEpkyZIrmvvLw87NmzB1OnTsUDDzwAABgxYgSysrKwdu1arF27lvtsQ0MDXnjhBbRp0wZZWVmqYvIHSn5/rTGKoyiMvaGhAaWlpdxkwf5GKvUcFxfH/e0voWg2m3nbVisUHQ4HnnzySVy9ehVr164VvYEbGbHzPlwcRX9c8y6Xyy+OopLUM+0okv5cqu306O+MQqBjr6+vx4ABA3ij4Qm5ubkBFYoPP/wwfv31Vzz88MPYuHFjwParhpA9M3Nzc7Fv3z7MmDFD8XdycnJw5coVPPbYYzCbzaipqYHT6fT4verqalWj5rZt24b58+dj//79bu/t2LEDCxcuxO7duyW/HxUVheTkZEX72rdvHyIiIjB69GjutejoaIwaNQrHjh3j5hdzOp1YvHgxTCYTsrOzYTKZFMfjL+j1UwOFUWoU6dhdLhcGDBiAlJQUvPPOOwHZv56OYuvWrX1yFL/++musWbMG//rXv7B582atD8/vCM97ev1xQjC6T0ocRX9c83V1ddx1G+jUs5ij2NDQIHq/0KO/MwqBjr24uJgnElNTU7m/A3lt2e12boaRw4cPB2y/aglJoehwOLB69WqMGjUKHTt2VPy9Q4cOIS4uDiUlJZg0aRJGjBiBO++8EytWrJDsSJYuXYqRI0fijjvuwMyZM3HixAmP+5k4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxio9bjlOnTiEtLY3nBAHg0uWnT58GACxfvhylpaVYsGCBYRYpv3jxYsD3aRRHkY79/PnzOHjwIADgjTfeCMj+lQxm8deo1YsXL/o0mIVeGYOejzFYEJ73YvEHo1BUMpjFH9c8nU2iXT9fB7N4m3oGxNtULPaCggLk5uaqPrZgI9B9Pe0GT5w4Edu2beP+HUi3np4ax8hZAmMoAo359NNPUVRUhFWrVqn63oULF+BwOJCdnY1Ro0ZhypQpyM3NxdatW1FZWYkXX3yR+6zFYsHgwYPRv39/JCYm4ty5c9i8eTOmT5+ONWvWoEuXLpL7sVgsmD9/Pp555hlkZ2dj1apVqKmpwaJFi3DLLbfg2Wef1czRKy0tFXUfyWslJSUoLCzEjh07EBUVxXMeX3nlFfTq1Ut0uzk5OcjJyfHrFCl6YBRHkYae2uPw4cOoqalRVXfrDVKOYlRUFCwWCxoaGvzW9i6XyydHkb4JhMLyf2Kiwsg3FSmUpJ79AUk7A/5NPSsdzAI0tp/w4V3IlStXcMMNN8Bms+H999/Hgw8+qPoYGeIIl1+k+9NAPoRduXJFl/2qxSuhOGHCBJ93PH78eN4oYq0oLy/H22+/jYceekj0wpWjpqYGtbW1uOeee7gRzYMHD0Z9fT22b9+ORx55BG3btgUA9OjRAz169OC+e/vtt2PIkCGYPHky1q9fj+XLl8vuKzo6GkuXLsXMmTMxZ84c1NfXo2vXrpo7enV1daIzv5NC7rq6OqSkpIimweXIzMxEZmYmTp48iccee0yTYxXiqSP1B0ZxFOnYaaFYX1+Pn376Cbfffrtf90/fOOkbnMlkQnx8PMrKyvwmFCMiInjrAKsVRXSHG4xCUXjeh4qjqCT17I9rnnYUaaGo12AWQPycFsb+448/cg9MS5YswaRJkwxREuQPAt3X0w8pcXFxipZY9Ae0UDTyw59XqefCwkLYbDa4XC6v/isqKvLbTWbDhg1ISEjA2LFjVX+XPGEOGzaM93pmZiYA4NixY7LfT0tLw+23344jR44oWvA+Li4O06ZNQ0VFBWpqajBjxgzeU64WREdHi94sSapF6/1piR7HJuakmc1mrtg6UMKDjp0WigBw4MABv++f7rSE7UDSz/66hoW/cbg5isLfO5wcRX9c87SjKJV69lUoKhnMQosRMaEvjJ0uoThx4kRIr3ke6L5e6AYbwVE08jXttXV13333eT0y1l/zFOXn5+Ozzz7DjBkzeLVJdrsdDQ0NuHTpEuLi4nhPlTTJyck4e/as25xGZCZ/Oh0mRatWrVBfX68otVBQUIBFixahXbt2sNvteP755/H666+jRYsWHvejlOTkZNGpfUpLSwFA031pzZUrVwI+l6NUbV5kZCSvKN7f0LELheJ3333n9/1LpZ4B/wvFCxcuSB6LEuiOPhhX0hGe96HiKCqpURTGfv78eaSkpPgkJJSknn2dcFuqFESNoyiMnQw0JLz++uv4wx/+oPo4g4FA9/VCoaiXo0jXKBr5mg6pwSwlJSVwOp1YvXo1JkyYwP2Xl5eH/Px8TJgwQXb4+fXXXw8AbsKKiE4lqeyCggJERUV5rCErKSnB008/DYvFgpUrV2LFihWora3FrFmzeB2br3Tq1AkXLlxw66Tz8vK49xnXkBJIJP2sh/AQE4oul8uv+5QSzABfKPrjOITnarg5ikJCRSiqXcLv/fffR/v27dGnTx9FGRoppFLPei3hByg7p2lHEWisvRc+RDG8gz73hI6iXqlnsdkNjIJXQvH999/3aZ4hX78vRXp6OpYsWeL2X3p6OqxWK5YsWYJRo0YBaDwZzp8/z7sJDx06FADw+eef87b7+eefIyIiAn369OFeE968gcYRxAcOHEC/fv1k54Wy2WyYPXs2ampqsHLlSrRq1Qpt27bF8uXLcfnyZcydO1ezG8GQIUPgcDiwfft27jW73Y6dO3ciIyMjYPPyeYMebqecowgETnjQsQvPtZKSEpw6dcqv+1fiKDqdTrdO9eeff1Y08l+OiIgI3r/DrUZReN6HaupZzFGkY9+xYwcA4Pjx4zh79qzX+5VKPWtZoxgTE4O4uDi3c5cWIJ7EiLDdhULR4XAEbNaDQBPovp5+mBTWKOqVegaMe117lXpu166dTzv19ftSJCUlYeDAgW6vf/TRRwDAe+/48eOYOXMmsrKy8MgjjwAAunTpgrvuugs7d+6Ew+FA7969kZubi7179+LBBx/kncwvvvgioqOj0b17dzRr1gznzp3DZ599hpiYGDz++OOyx7lt2zYUFxfj1Vdf5QbHAEDnzp2xbNkyzJo1C7t375YV02QkNkkhHzhwgJsXauzYsdzNPCMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlj1NvqqurA167IjfaFwic8KBjF3so+e6772RH1vuKEkcRaLzZkxvgf//7X/Tv3x9AY00VcejVIpzSJtwcReF5HwqOosPhcGtHMUeRjp1uR1+cfH+Peo6NjeUGmSQmJvJu/mpSz8J2p4Wi2WyG0+nEm2++ieeff54nckOBQPf1wtRzREQEIiMjubKxQCEUijU1NbqviCZGSE6P4wuzZ8+G1WrFrl278M0338BqtWL69Om47777eJ8bOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NNl9TJw4EQMHDkR6errbez179sS6devQoUMH2W1s3ryZ15Hs37+fG7k8fPhw3smWnZ0Nq9WKL774ApWVlejQoQNefvll9O7d29PPoSvV1dVcfWigMIqjSMcuJhQPHDjg19VzyI3TbDa7jcIXCkWyqP2+ffu413/44QevhSJdt0Mfi1K0Ehh6ITzvQ8FRlFrXWQgdO92O3gg5gpLUsy/zKNJiUCgU1aSehe1OahSbNGmCu+66Cx9//DGKiorw73//G/fff7/q4zUyge7rhUIRaGyf+vp65iiKoKlQtNlsOHDgAEaOHKnlZn3m1VdfdXutT58+olPCWCwWTJ48GZMnT5bd5rhx47ye3sdisYiKRIKSScK3bNmieH/R0dGYNm0apk2bpvg7RkCPqSA81SgGSijSsUs5iv6E/A5iT/lSq7MQd5v+vjf4WqNo5NRzSUkJoqKiJAfUAe7nvVj8weYoKhWKdOz+cBS1HPVMjo8Wg/T2zWYzb2otT0JR2O7ECEhJScFf/vIXfPzxxwAaB7WEmlAMdF8vrFEEGgW/zWbT3VE0IpoOZikqKsKyZcu03CQjjKGXVQoURnEU6dhpodi9e3cAjYORhJ2MlpDfQZh2BqSFolZTPfhao6g29fx///d/6N27N6+O1x/k5eUhLS0NqampsitRCM/7UHAUxUShmHiUWkrNF6Ho73kUaUeRHvDYpEkTngDyVAdHx15XV8ddT1arFYMHD0ZGRgYA4Ntvv/U4VVuwEei+XlijCFxrH+YouqNKKBYVFcn+F4zLZTGMS0FBQcD3aRRHkY6dCMWoqCjeHJ8//PCD3/bvjaNId3q+OIpCEeVPR3Hjxo3461//iqNHj+L5559XtR+gcd3e//znP27pcjG+/PJL1NXVoaqqSnYtd+F5Hwo1ikodRTp2ozuKUqlngnDmC0+OIh07vQ5xSkoKTCYTb2WWn3/+WfXxGplA9/VSqWdAv+lxAr1vNahKPd93332yFrHL5QrZmeMZgcffU8CIYRRHkY6dCMWkpCQMGDAAq1evBtCYfr7rrrv8sn9vHEU69exLhycUEL7UKMq118GDB/HEE09w//79999V92EzZszAunXr0LdvXxw8eFD2u/RvQgsBIcLzPhSEolQ9otPp5M0QQcfuD6GYkJDA/e1LjSI94p9OPQsdRRpPQpGOna4/T0lJAQDeUqy+PIgZkUD39VKpZ0BfR9Go17UqoZiQkIA///nPkoMgzp8/j/nz52twWAyGe0cbCIziKNKx00Lx1ltv5V735wotSh1FusPVylEUftcXR1FKABQWFuKPf/wjb1+VlZUoKytTVVRP6pwPHTqEI0eO4MYbb5T8LL0v4WTKNMLzPhRSz1JzJlZXV/POJzp2rQezxMTE8NLNvjiK9O+v1FH0ND0OHTt9fhChSB9vsLW/JwLd18ulnuvq6gJiejmdztB0FLt06QKbzSY5EMPhcOjiAjFCEz2EIrlQLRYLr1aOCEWXywWHw+FWR6c1JHan08k5IklJSUhLS0O7du3wv//9DwcPHkR9fb3oWt4XL15E69atZefzlMPX1LMvHZ7wu2o7bk+Oot1ux7hx40TrBPPz81UJRbqj//e//y0rFOm4fBWKRnUepJASilVVVZJCUasaRXL9CCfE9qVGUTjZNsGX1DMdu5ijqNfqIYGAxF5dXY33338f3bt3x4ABA/y2P7HUs1DIe1o0w1fKy8vd9JJRr2tVd5ExY8ZwJ60YVqsVzz77rM8HxWAA7vPpBQIpgUSLsUC4iiT2iooKrjMhaS3SgVZXV+Po0aNu33311VeRlpaGESNGeLVvl8slm3qml6b0x6hnejvebM+TUHz55Zc5N7ZNmza8eU/z8/PVHCpPKG7btk32s0odReF5HwqOotRyj8LXSezCydy1EIrCkea+OIpiQgPwLfVMtzstFMmiCKEsFEnsr776Kp544glkZmb6tW5RrkYRCMzvKzYY0ajtqkooDho0CMOHD5d8PyEhAXfeeafPB8Vg6IWUQKKFYiDn5qNHPJOb0G233ca99t///tftO1u3bgUA5OTkKFqfXAgtrpQ6ijU1NbxOzpcOT8x9UnMj9zSY5T//+Q/399atW9G3b1/u32qEYm1tLS/OvLw8nDx5UvbzBDmhKCTUHEXayZMSkML4vL3mXC6XX4SiPxxFmnBzFAm//vorgMb49u7d67f9kPPRZDJxvyvdXoG4vkJWKDIYgaR58+YB36eUo0jf3ALhKJLYxYRi586dudfEBAc9HYg3zp7cqiyAuFAUuoC+OIpinaXSDtTlcilKPRP69u3LWx1JjVAUG+ks5yoqdRSF573Yb1lXVwen06nkMA0BLQjpZUOFDwUkduGN2tvzqbq6mlsnWph69mUwixKhKOcoigkRut3FahRDWSiS2OkHW3/OFUvPgUlKWgL9+4r1H0Z9AGRCkWFY9BjZp8RRDIRQJLGLCUXaGaFFodhr3jgxcus8A+JCUcv5wMRcUKXbs9vtvLofsfjJaxEREYiIiAiYUKRjKC0tlTyPhOc9/W+6NjaYRr7SgpAWilIj3GmxD3jvKEot3wf4P/Ws1lGkjyHcUs8kdj2EIsHTYCOtCStHcciQIarrehgMJUgVwPsTo9QoktjFhCLtWngSit6ICS2Eoi8ixhehKBQYco4iaVMtheLBgwdx4cIF0c8Lf5PLly+Lfk5uZRq67Y3qPoghJRSFsZJ/ayUUpSbbBow3mIX+LYhQTExM5L7n67yPRobETj84/Pzzz16VzihBTCh6cny1JqyEIhvlzAgljOIoEtQKRbomC/DuBqtF6lmvGkVhBy/WVuQ1IhQSEhK43/R///uf4uOkhSI9P98nn3wi+nnhbyI3lyINHTvtWBn1piKGVOrZ3zWKUpNtA9rVKNJio1u3bmjVqhUAYPDgwbzveFOjSA8eDWVHkUALQ6fTKVqDrQWkjzGao2jUhz+WemYYljZt2nj1vU8++QTPPfecqNsmR319PScihG5AoIUiiV2tUKRrsgD9HEVvO1qXyyUqHvzhKNKOEnEVL1y4oLj2jxaK9Nq7UulnYVtI1SkKz3v6e6HuKJLYhe3orYMm5yj6UqNIHx/dVzRp0gR5eXk4dOgQHn74Yd53PAkREntVVRV3DYSLUCSxCx1Etenn06dPyy6PCfDrmOkZHJijKA0TigzDcunSJdXfKS4uxvjx4/HSSy9h9uzZqr5L31SE7kOghSKJXUwoxsXFcfMj0o4J4C4c/eEo0k/hWqeea2treUJX7Jjk8FYotmvXjntPKiUshBaKgwYNQseOHQEA+/btUzTFj5RQFJ73Uo5iKAhF4UMBiT0QNYr0Na1V6hloXEHlpptucpv305PQI7GLDWRR8n0al8uFhx9+GK1atcKiRYsCmgXxBhK7L0Lxv//9L7p06YL09HScP39e8nN2u517GJRKPTNHkQ8TigzD4s2ozuPHj6OhoQEA8K9//UsytSUGLbLoGzIQeKFIYhcTiiaTibvpCYWhUDj6w1E0m83ck7jWqWepmiSl21OSshTWKALe1SnSQrFZs2a49957ATQuPPDZZ5+5fV4Yg5RQFJ73oZx6FjqKJHZ/CEXhw5/JZOIeFrRKPcvhaWUVErvYQBZAnZDZunUr3nvvPVy+fBkvvPACbr75ZuTm5io6Tj1wOp2i2YTvv/9e9MFRjP3798PlcqG+vl52ah2x5fsANj2OHEwoMgyLNzPj0zVmVVVV+PjjjxV/10iOIoldTCgC145PKBS1cBQ9CUXgWvpZa0dRSigq3Z4SR1FYowj4LhSTkpI4oQgA27dvd/u8UkdReN6HcupZKAyk1tv1x2AW4Nr57cuoZ6X9lNls5s45MUFAtiM2hyKgXCja7Xa3hS9yc3PRr18/zJ8/35DTKsXGxnJrf9NUVFQgLy9P0Tboa53+DYWILd8HGGN6HCYUGQyV0LVwShEORnjnnXcUf5cWZXoLRRK7r0LRH/Mo0senxlF0uVw4c+YM5/iKIeUAe+soqq1RBLx3FPv378+lG8VGPit1FIXnfSg5ilFRUbxrS9jeJHatahTlHEXgmlDUah5FT5DrSUzkk9ilhKLSUdpvvPEGzpw5A6BxntDu3bsDABoaGrBgwQK89957io83UMTHx0te+0rTz3S/Ile2JDW1kREcRaM+/DGhyDAsSmvFaIRCcf/+/Vyn6QkjpZ5J7J6Eot1u5wkGIzuKTz/9NDp16oQHHnhAct+0o+jNE75QYIitP++v1LPZbJYVAkodReF5H0qOYnx8PE8IC1PPJPZA1CgC2jiKatakJ+eH2PlMYpeqUfTkSAKN1//ChQu5f69duxaHDh3CjBkzuNdOnTql+HgDxeXLl3nXPqn3BcAtt+kJbxxFI9QoBnq0tTf4LBQnTpwoegEyGHogNr3Ju+++q+i7SlPPWi3h98svv+DcuXOynyFCMSoqiteR0cdH3wy1qFFU4yjW1dWhoaFB0ajnHTt2AAA+/vhjyXVc6ZtFy5YtZbcnhph4om8gpIYJ8N1RpEV8s2bNAMgLAaWOohC6Dem+NhiFYlxcnORa4TSBSj1rUaPojaModz5LOYpKvv/yyy9z6yY/8MAD6Nu3L6KjozFp0iTuM2rqtgMJfe0PGjSIE/FKHUWlQtEINYoul4vrM+lSDKNe0z4Lxccff1zU0mcwfIXcfNVAhGJkZCQ3Mvjdd99VVJcjl3rWegm/r7/+Gj179kTnzp1F05QkdnJMSUlJvFGUUlPkBNpRBBo7XiVL+NFP8kQ0CvFVKAqdKID/G9AOI92maWlp3N9K51IkjmJMTIzberGeVt4ApOdRFJ739NyeweA+iEHEiSdHkcQeiMEsgLyjWF1djY8//hgTJkxAUlISbr31Vu44vBWKcucHiV1qMAsgLxQvXLiAVatWAWg8t5csWcK9JzallZFo1qwZ79pPTk5Gv379AABnzpxR9FAVTDWK1dXV3LlE9z1Gvab9mnp2uVzIz89X/OTMYNCoFWQul4u7yaenp2PEiBEAGm/8ShaYD2Tq+euvvwbQWFfz/fffu71P9kELRRqpZfy0qFGkv+PJUQQaxZ0SR5G+uYqNCibbIrRo0UL0mOQQE4p0e9GCgxaKMTEx3ETJalPPtLCTSz0Lf5PLly+LPsAIzy96taBA11FpgcvlUuwoktj9UaOoNPVst9vxxBNPoGXLlhg/fjy2bNmC8vJy/PDDD/jmm2/cjk+r1DOJnYgck8nEe1jy9P2FCxdyr0+fPh3p6ence0YXivX19bxrPyEhAbfddhv3byWuopY1iv4WbHR/2bx5c+7+EtJCcd++fViyZAmvoS9duoSsrCz86U9/woQJEzB//nzFw9wZDEB9h1ZWVsZ9p127dpg8eTL33saNGz1+P5CjnulrRWwlksrKSjidTu5GJ3SZpBxFYerZ13kUlTiKly9fdruRO51Ot0ErtLDJyckRFXV0m9NCUavUM/170G0KXEs/FxQUyA64IcgJReHxulwut9/I4XCIzrcotf5xdHR0UE66XFtbywniuLg4WCwW7rwSnvskdn+knunVcwj0YBbiNO/ZswdvvPGG6PlJSkW0SD0La2dJ7EQotmjRwu0clROKe/bs4Y7nueee471ndKFYWVnJOy5vhCJ9ndtsNsklYJXUKPr7IYyub46Pj5d9wDQCmgjFTz/9FKdOneJdiK+99hrOnTuHPn36oGPHjvj666+xc+dOLXbHYIhCpwzbtWuH0aNHczfxrVu3elypJZCjnmlBJ9WhVVRUcDcToaOoNPXsj3kUAX7KRmpyW/pm5nK5eP+ura1FTk6O23f8kXqm24v+m3YUgWtC0el0epzs3W63c/uihaJUarGhoUF0uVMl2ZZgdxTp85sIFuFgKCFap56JQBUiVlJCr+wxcuRI/O1vf+P+Tc51X4UiIB6Ty+XizglhfSIgnyonv7PVakXz5s157ympC9UbXx1FYb8sdW0pqVEMpKOYmJgoW5JgBDQRiufOnUPXrl25f1dXV+P777/HH/7wB6xatQpvvPEGrrvuOiYUGapITU1V9XmhUIyOjsbEiRMBNHbsYnPb0QQy9UwLRTFxk5qaKjniGZAezBKIlVkAvkMhVdNH38zEOkCx9LO/B7NIpZ4BdQNahCOeCeT3cjgcvP1KHb/YzUx43ks5isEoFIlgEU7YTiCxayUUyfUgNeBSbL1n+hp65JFHcN9993H/JkLR19Qz4N5+qampKC8v545DWJ9If1/MkSTHJCZco6OjERERAUD6wVRPUlNT3YRiy5Yt0alTJwDA4cOHPdaZC/tlqYc9JTWK/r62aKHYrl07RYOc9EQToVhRUcF7gvn555/hcDgwbNgwAIDFYkHfvn09rsHIYNBIFftLIRSKAHiTIP/444+y3zdS6rm4uFixUJRLPfvLUaSFohJHUWoUtLDzlxKKvtQo0iJDSeoZ8F0oAvyYpY5fTCgKz3spR9GoNxUhtBgkN2Zy/gjPfRK71jWKaoSiMLNw3XXXcf/W0lEUtl9xcbHsiGf6+3KlHWLHYzKZPLq4elJcXMy79smxXn/99QAafytP9wPh7yE1oMUI0+PQQjEyMjI8Us9xcXG8G9SRI0dgNpvRq1cv7jWLxRI0HRvDGCipE6MRE4p9+vThXvO0hBW5QZjNZrdJjwOdem5oaJAVikoHs/g66lkrR1GsAywsLMRPP/3Ee01qMItWjqKS1DPgvVCUEnJqHEXheR+KqWciGKuqqnjOGIldixpFp9PJnU9SM3PQQpHsQ/jA2LRpU+76EwrFyMhIzqlTgpwYaWhoUCwUhd+vr6/nfjsph9PIQrGhocHNUQSu9eOA9AMpQdgvSwlFI0yPQwvFhISE8Eg9t2vXDt999x3Ky8ths9mQk5ODLl268GoWCwsLvZruhBG+SIkUKcSEYvPmzbm/c3NzZdMX5AaRmJjIm4oGCLxQjImJ8cpR1HplFiWOIv27078bvR2646V/S2H62Veh6O2oZ4AvFD1NkaPEUaRjptuBFgBiQpHeBu0cBetgFjlH0eVy8X4nEp8WqefKykpOhHrrKJLrrn379gAap6BxOBzc8alJOwPyQjEmJkZysm1P31ficBpZKMbExIgKRdrN9XRNapl6DqSj2KpVK9mSAiOgiVAcO3YsSkpKMHbsWIwfPx6lpaUYM2YM7zN5eXlcvQGDoQS1E7nTHQk9N1Xv3r0BNIoQuQmuaaEoJNCp56ZNm2qSeg7EPIr0kz5dVyXlKGZmZnJ/C4UifRPzd42iMPVMuxdap57pv+n9iKXT6PNe2Bah4ihKjcIlsSsRiqtWrcKQIUNw6NAh0f16mhoHEF8WT6wEhQiWhoYGFBQUyKZ55aCFifBabdq0qdeOolqhaDQx0rRpU7dRzwBE0/5SKHUUjbCEHy0U09LSePv2tszCn2giFIcMGYK//vWvSE9PR9u2bfH444/jzjvv5N7Pzc1FVVUVbr75Zi12xwgT1NYokpt7q1ateBceEYpAY1mEGC6XS7FQ1GJlFk+OopoaRbnBLP5emQXgu2L0QAypG1mHDh3Qt29fAI19Ay3whZPuErSaR1Eu9dy6dWtuknatU8/08dNC0VONolAohtpgFuH7JHZhbML2r6ysxJw5c7Bv3z4sWrRIdL+eJtsGPA9mIdcdLVjOnTvHHZ9aR5HM1Qm492/CGkW5wSyAeqFIfnOHw6HZ6lJaIaxR9EYo+lqjaLFYuOvf344i3X+4XC7DZwo0m3B7zJgxePPNN/Hmm2+6reXau3dv7Ny5E/fcc49Wu2MweDQ0NHCDpegbMcAXilJ1irW1tVznKRRlgLYrs7hcLo+OIiC9zjMg7ijW19drUtul1lGkUSIUY2Njcffdd3P/pldpIb9LfHy8VwM31AxmEQpFi8XCHb8/HcXU1FTuhuRpehyhaA+1wSzC9wmeHEWbzcYJg99++010v56W7wPEaxTFls0UCha5EcZyeCo78OQoiglbgH99eapRBIyZfhYbzBLIGkWTycS1ZyAdxaSkJMM/APp1ZRYGwxfEBJsUBQUFXP0hXWsGKBOKciOeAW1Tz3V1dbxtiAnFpKQkWaFI1/+SYxemssi+vDk+ghJHkYYWilLT48TExPCE4hdffMH9TW4WCQkJXj1l+zI9DnDt3CkuLpb97XypUWzSpAmXVhcTC3Rbh2rqWcpRJLF7Eor0+XD+/HnRVKqS1LOco0i3g1Aoept6pl1CoZBJSkryOvVM/16eUs+A8YRiUlISd+2bzWZOwLVu3Zrre9UKRbU1ioCytbi1gAjFyMhItG7d2vAPgEwoMmC327Fs2TKMGzcOI0eOxBNPPIFff/1V78NStZKP2EAWQvv27TnxZwShKBR0YkLR4XDICsWIiAiu4yfHLjaheCBWZqFp3bq16HaEjmLv3r25zvHkyZPce7RQ9CYVpGYwi7BGEeA/ZIitwU3wJfUcHR3NCYbi4mI3kUOf93KpZyPeUMQQSz1LiRYSuydnXHhuXb582W2/nq5pQLxGkVx39HdooXjq1CnuoVRt6pkWisKHBIfDwb1msVjcJs0GtKlRBIwnFB0OBy+bQAbFmc1m7pr0NJhFmHouKioSHbwoNwdmoB3F5s2bw+l0MkeRYXwcDgdSUlLw+uuvY+fOnRg/fjzmzZsnetMNJHQqwhNyQtFkMnGu4oULF1BSUuL2fTlRBmgrFIVxiQlFm83m8ZjIjUxroeht6rlJkya8m6tUaiw2NhYmkwkdOnQAAJw9exYOhwMul4u7gZGbhdxKFGL4Mj0OoHyKHF9SzzExMZxgsNvtvHYG+OeHsC3MZjN33Ea8oYhBixIxR5F+32azweVyic6jSAtqoUgWG6TmjaNIL5tJX3Nk1DMAnDhxgvvbF0dRKBRtNhvnKLZq1Yp7SKIJVaFos9l4D4k0RKSXlZWJZk0Iwn5ZaolMcm7R/Qsh0I5i8+bNYbPZmKPIMD6xsbHIysqC1WqF2WzGsGHDYLFYPNZpGQk5oQjw089Hjx51e99ojiLgWbyS4yTb0yr17K2jmJycrOpGRmZBsNvtuHDhAmprazlHidws1HbcvkyPAyifIseX1DPtKALydYpiot3ok/MK8eQoCs9/u90u6gTRjpHwfBBLS6odzGK327k11oXfSU5O5tyn48ePc69rKRQdDgc3wEUs7QwoE4rBWqNIjklKKALy6Wexflks/UzOtyZNmrhNgxaI+Qzr6+u5WIlrbPRMgfvil0HAe++9hw0bNiA9PR3vvvuuou+cPHkS77zzDn755RfY7Xakpqbi7rvvxrhx47jPHD9+HLt378aRI0dQWFiIpk2bolu3bnj00Ufd6t6OHDmCmTNniu5r7dq16Natm/cBeqC6uhoffvgh8vLycPz4cdhsNsybN4830pxgt9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fpLbz8/Ph81mQ5s2bfwWgxLoNKYn1AjFI0eOcKsGEQIpFJU4iq1bt+aEojDlKDzOqqoqNDQ0aO4oRkZGiroagHttD9DY6SkptiedcceOHbnXzpw5w7vpeisUxcST0pVZAOVT5BChSA94AJRNuE07ikCjYLjhhhu4f9PnvZhQjI2NRUVFhSFvKGKoGczSunVryTXZ7XY712ZKhKLawSx1dXWS/YDJZMJ1112H48eP8wSo2tRzXFwc4uLiUFVV5SYUIyIiuAclqb7PlxpFqbpQI5CSkiIpFIUDWnr06CG6DbF+ubCwED179uS9Rn4rsT6MfghzuVxuQlIL6IfM5s2bo3Xr1oZPPQedUCwuLsamTZtUPckdPHgQ8+bNQ+fOnfHwww8jNjYWFy9edKtr+eCDD/DLL79g6NCh6NixI0pLS7Ft2zY8+uijWLt2LZcqoxk7dixvnWsAfhdY5eXl2LhxI6xWKzp16iQ55QsALF26FF9//TXGjx+PtLQ07Nq1C3PmzMHq1avdLiCgsbNcvHgxJk2aJFmHFihKSkp400nIoUYoitUpBjL1rMRRLCkp4Y5JalCPcIocsRusL4NZ5CY8j4qKQlRUFE94NW/e3CtHEWgUirRz4I1QdDqdAU89N2vWjHczUbKEX3R0tOw0KfR5LyUUAWPeUMRQM5ilpKREckUmu93OfU94XnubehbWKMr1A0Qo0qh1FIFGUXTmzBk3oXjs2DHub3oeWBo1D2JCjOwo/u9//+OcXOF9R6mjKHbeiI18lpssnVy/LpcL9fX1on2Er9Ajnps3b46SkhLDp541EYpFRUWIj48XVeiE6upq2Gw20bmh1LBmzRpkZGTA6XRKPnnSVFVV4aWXXkL//v2xaNEiSYcEAO677z688MILPFHwhz/8AZMnT8Y///lPPP/8827f6dWrF4YMGaL4+G02Gw4fPozBgweLvp+Tk4MBAwbIdkDJycnYtm0bkpOTceLECUyZMkX0c3l5edizZw+mTp3KTVk0YsQIZGVlYe3atVi7di3v8w0NDXjhhRfQpk0bZGVlKY7JX6gRZEQoRkVFiYrLjIwMREZGor6+XlQo6pl6ttvtaGhogMVy7XKsr69XJRTLy8tFU8++DGaRSjsT4uPjeZ1ecnKy147i6dOneS43EYpqahSlOlg1qWf6IUMu9UzaRrjalJQz4MlRlDpeudSzEW8oYqgZzCI2xRNBahQ9oE3qWc5RBPiCheCNULRarThz5gyuXr2Kuro67hjoBxMpsyGQqefa2lrVq2N5Cy3QtUw9iwlFOvUsRDirQCCEYn19veFTz5rUKE6YMAEff/yx7Gc+/vhjTJgwwaf95ObmYt++fZgxY4bi7+Tk5ODKlSt47LHHYDabUVNTI7mMW48ePdzSUW3btkX79u1lT9Dq6mrF6xJv27YN8+fPx/79+93e27FjBxYuXIjdu3fLbiMqKoo3GbEU+/btQ0REBEaPHs29Fh0djVGjRuHYsWO8G5TT6cTixYthMpmQnZ3tF8tdLZ6ECg25qbdt21b0YSAqKgoZGRkAGovRhTcjPVPPgLurGBkZKVpUTyNc71lrR1GJUKSRcxTFJvEWpp7FJtxVI4qkBIYaodiyZUtun1LXPF1jJBSKakc9A+5CUUpsB6uj6GkwC33uR0dHSw6io9tOyWAWb1LPnhxFIWpTzwC/TpF2k+lBdlKOYiCmx2loaMDkyZORkJCAl19+WfJzWkK3rZxQlHt4U1KjSA+Ukks9A/4TbEKhGAwT6WsiFF0ul8clgXxdMsjhcGD16tUYNWoU7wbjiUOHDiEuLg4lJSWYNGkSRowYgTvvvBMrVqxQdBN1uVy4evWq5BPp0qVLMXLkSNxxxx2YOXMmb0ScGBMnTkT//v2xcOFC/PTTT9zr+/btw4oVKzB8+HC35Q+95dSpU0hLS3O7IEiq/PTp09xry5cvR2lpKRYsWMBztvRE6TyKtEgSSzsT+vTpA6DxXKLTPIC+qWfAXSiazWbumlHqKGo9PY4nN0FMKKpxFK+77jruXDt9+rSooCDHIBz1KoaUwJBKPYvVKJpMJu4ckpqfjz5X5BxFNTWKNHLzKALXfr/6+npVU0jpBTm3TSYT9/tIiZakpCTJG6WcUBRrK7Wjnu12e8AcRQLd9rSA8MVR9EUoOp1OPPbYY9i4cSMaGhrwxhtvSIWhmN9++w2rV6+WHbRFP9wLhSJdDuKro0j3I0ocRX8gFIpJSUmGTz0HbNTz5cuXvXr6Inz66acoKirCo48+qup7ZBH37Oxs3HzzzVi0aBHuuusufPrpp1i2bJnH73/11Ve4fPky/vCHP/Bet1gsGDx4MJ588km89NJL+POf/4zff/8d06dPl1wpgHxv/vz5yMjIQHZ2NvLy8vDTTz9h0aJFuOWWW/Dss89q5uaVlpaKOo/kNfIEW1hYiB07duD48eMYPXo0RowYgREjRoiODg4knlatINApGzmhKFen6MlRpN0nX5e/UuIo0iJeaY2i1hNue3IUhQ8gakc9WywW7ubryVGkj0sKqfSb0pVZCOSYqqqqeJ06QWrEs/B4vR31TP9bzIk1eppKCBElcXFxXN8mNT1OUVGRV46icDopgC8UheKDIKxRFFu+j0BPkUPQUiieOXOG+1uto6iFUHS5XHjmmWewceNG7jX6XPeWe++9F0899RSmT58u+RnaKRS2VXR0NDcKXEmNotyk5nJzKAKBdxSbNWuGoqIiwzuKXltH9MkESK+h63Q6UVxcjD179nCpP7WUl5fj7bffxkMPPaRqtQ6g8Uevra3FPffcw41SHjx4MOrr67F9+3Y88sgjbiOaCefPn8eqVavQrVs3jBw5kvdejx49eKOvbr/9dgwZMgSTJ0/G+vXrsXz5csljio6OxtKlSzFz5kzMmTMH9fX16Nq1q+ZuXl1dnahrQjpHcvNKSUkRTYXLkZOTg5ycHEMURXsayEKQW/NZzxpFwF0o0p8JtKOoZDAL4Dn1rKTYvlOnTjhz5gwqKyt5N0phjSLZntwx0TeBpk2bcv9Wk3oG3GuihA9bckJRaeqZrMwCqJ8eR+h6yNWGGwFybtPni9z0OEqEothDw7lz53jtQa6HhIQEydp0udSzEkfR19Qz3fZ0mtQfNYqeRj0vXboUK1eu5L1WUVHhNvrX5XJhzZo1qKysxKxZs2TvWbW1tcjLywMA2UUc6OMRE/XXXXcdCgsLcenSJV5dJw25zpOSklBVVYXKykq31LPU8n0EfziKFRUV+Pvf/442bdrgz3/+s5ujKNyvER/+vFYl77zzDve3yWRCbm6u5KoXANCiRQs88cQTXu1rw4YNSEhIwNixY1V/l5xQwulQMjMzsX37dhw7dkxUKJaWlmLu3LmIi4vDokWLEBER4XFfaWlpuP3227F//344HA7Z78TFxWHatGl46qmnAAAzZsxQVZOnhOjoaFFRQzpcX/aXmZmJzMxMnDx5Eo899pjX25FDKt0vRKlQ7NWrF/e38Fw1WuqZTil6IxQTEhJgs9lUO4pOp5OLT22NonAwixLHgy4jodtEzFGsra2VPSfofSQmJnJugpqVWQD3mqgbb7yR975SR1Eu9RwZGYnmzZvjypUrbkJRatJy4WAW4XaNCjm3aaEi5W4lJiZKCkW5wSxAo6gn5SXAtetMKu0MuAtF+hwSXndkOTn6fNLSUST1ivHx8YpS5VrWKG7duhXPPfcc9+/ExESUl5fD6XSiqqqK991vv/2Wcwevu+463H///aL7A8CbWURuSh563IDYbBvXXXcd/vvf/wJozCDRMyYQSLuQZfFOnTol6ygGqkZxzZo1WLx4MQDgzTff5A22bN68ORITEw1/TXstFFevXg2g8eniqaeewp133unmugGNtQdNmzZFu3btZEccS5Gfn4/PPvsMM2bM4BX7kpGily5dQlxcnOSFlZycjLNnz7oth0Q6eLE0YGVlJebMmYPKykq89tpraNGiheLjbdWqFerr61FbWyv7pF9QUIBFixahXbt2sNvteP755/H666+r2pcnkpOTRZe2IrPVa7kvf6C0rpUWilLuMNDY8bdv3x7nzp3D0aNH4XQ6uXOSiCzhvHiEQA9m8SRcAffBLLQAbdmyJWw2m2pHUcmqLAStHEUC7fJKCUU56JsALbbUTI8DuM/bJsQboSj2u1qtVk4o0q4Nfd4rcRSNDp16Jki5Wy6XixcTmXMQkE89A+4DWsg1LfdwITbhNkH4PbKc3O+//8695u30OAQiFF0uF+d+tWnTRrL8SO31RSMnFN9++23u76VLl+LgwYPYtm0bgMbfkf4uveSmsNZbCH3/kcs+iZWd0Agf3uSEosViQbNmzXDq1CmUl5ejpqaG+008pZ79cW3Rv9Hhw4d57zVv3hwul8vwqWevaxR79+6N3r17o0+fPsjKysLIkSO51+j/evbsifbt23slEoHGOjqn04nVq1djwoQJ3H95eXnIz8/HhAkT3NLgNNdffz0AuAkmIjqFN+G6ujo8++yzyM/Px7Jly0TrUuQoKChAVFSUbAdSUlKCp59+GhaLBStXrsSKFStQW1uLWbNmyS5RpJZOnTrhwoULbiKEpALELjYjofS3UOooAtfSz1VVVbxUp6ebSqAdRfpJWK2jGBsby3Xsah1FsZo4KTwNZvE06hlwnyJHuG2thaI3qWchSlPPctPjANecpZqaGl770+eHJ6FoRPeBxuFwcDHQ50tkZCT3+9MCoqKigteO9LnvSSjSbeVwOLjfVM5RVFOjCLinn7VKPZeXl3PHK1WfCPivRpG+Pz7zzDNufQsN/W+x6WdoaHNHzlGkP+dJKErVKZIaxcjISFExDuhToyj3GzVv3hwVFRWGv6Y1GcwyefJkXv2XlqSnp2PJkiVu/6Wnp8NqtWLJkiUYNWoUgMYf+Pz58zw3ZujQoQCAzz//nLfdzz//HBEREbxUhcPhwPz583Hs2DEsWLAA3bt3lzwuYeE00HijO3DgAPr16ycpjG02G2bPno2amhqsXLkSrVq1Qtu2bbF8+XJcvnwZc+fO1eyJYsiQIXA4HNi+fTv3mt1ux86dO5GRkeHznJZGQamjCIBXJ0sLRU9zFkZERHBP+YFwFNXWKNITbjdt2pS7AQbSURQOZlHieNBCkXbSpGoU5RCmngneDmYB/O8oEoSTbst9z+juA43YHIrCf8vVKHorFOlrTE3qWa5GEXAXilqlni9evMi9Jrdgg1Y1ikKhSM7pxMRERERE8H4z4YMt/Rt5GnBIC1C73S7Zd3qqUfTk8pO14gF3oUjXKaqpUdRKsJH9R0dHIzs7mytJa9myJXeOGf2a1mTkxC+//IJ9+/bhgQceEB1lW1JSgg8//BBDhw5VvbRdUlISBg4c6Pb6Rx99BAC8944fP46ZM2ciKysLjzzyCACgS5cuuOuuu7Bz5044HA707t0bubm52Lt3Lx588EFe+vX111/HgQMHcNttt8Fms+HLL7/k7XP48OHc3y+++CKio6PRvXt3NGvWDOfOncNnn32GmJgYPP7445LxbNu2DcXFxXj11Vd5oqZz585YtmwZZs2ahd27d+Pee++V/V22bt2KyspKLo184MAB7mYzduxYxMfHIyMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlt28EpNY7FUKEYvPmzT2uJiMmAlwuF9cZyqWpIiMjZTs7pfi7RjExMZG7ATqdTrfJvOWghYk3jqKUi0ZeN5lMPIEmttoR4Hvqmb7RqZkeB2i8UZvNZjidTs2EopijKBT6BPq8D/bUs9iUR/S/r169yvtMSkqKZJ0g/VtIDWYheBqcRpCbcFtMYAozTN4Ixfj4eDRp0gTV1dWc23ThwgXufW8cRSU1ihaLBTExMaitrXXrb8g5TUq0lDqKaoQi0NjPifVnYg+JNJ4e3oTXNb0EIu3oqalR1OraIvtv3bo1lixZgj/+8Y/YtGkT7rnnHpjNZqSkpPCufyM6ipoIxc2bN+PMmTOSw99btGiB7777DpcvX8aCBQu02KUqZs+eDavVil27duGbb76B1WrF9OnTcd999/E+R1Jf3333Hb777ju37dBCceDAgfjqq6+wZcsW7uQfNGgQsrKyZC/0iRMnYuDAgUhPT3d7r2fPnli3bp3kzZNm8+bNvAtg//793Mjl4cOHc51ydnY2rFYrvvjiC1RWVqJDhw54+eWX/eYAa8mVK1d4o0OlIAJZydrQYh1OZWUlV0ytRig6nU788MMP6Nixoyp3VolQpDtgJUKxrKyMJ3aF0/koFYp0J6XGUYyPj0dUVBSvwxcTirGxsbz6q9jYWLRp04bnqADeCUUpR1Ft6jkyMhKpqam4cOGC6AS/WkyPA/BviLQDRp/3wT6YRa2jeOXKFckSAjWOopI5FAH3GkXiliUkJIgORtQi9Qw0uopnz571i6Mo94AXFxeH2tpanjh3uVxuKw3JCUVvHUVAWij6mnqmr3GLxcJ72JISioFIPdvtds7MIfenm266CTfddBP3mStXrhg+9ayJUDxx4gQvcDF69eqFQ4cOabE7AMCrr77q9lqfPn1Ep3mxWCyYPHkyJk+erHqbUowbNw7jxo1T/Hn6WMREIkHpZOJbtmxR9Lno6GhMmzYN06ZNU/R5I6EkbUov+aVk6iSxDsdTXRKBOFCkU1qzZg1mzJjBLcmldJoSJalnWowoGcxSUFDAibSmTZvy3LK6ujrFNzRvHUXiRAhrvgi0UBTSqVMnTYSiVjWKQON5cuHCBVy+fBnV1dW8309OKEZGRiIiIgIOh0PSUfQkFKWmgQl2R1F4fZDzp7KykhvMY7fbVaee27Zti/z8fFy5cgU2mw0JCQmKlu8DpB1Fqe9okXoGrgnFK1euoL6+XrGj6GlWgZiYGNnxAPHx8SgtLeW1i81m4zIY5HwWDpSjEdYoCqfPoREKRakBLXR7iWWFEhMTuZHYYg9v9MpoWqWetbi2aJEqZWTY7XbDp541qVEsKyvzOIK2efPmmkzeyQgfpFKDNEqdAwKd7icdjqe6JOHxEOGxc+dOAI1P1VLziAqh09w0QqFICwcpoUiP0KY7TzFHUSneOopEKJpMJu57Uo6iEOHDkclk4jpxqRujGGodRbnzS27ZMDmhCIgvO6jGUaSPS6w9jO4+0NDntVjqGWh05kkckZGRkqlnKaFIBiwC4g9/agazeKpV1tJRJBQXF3vlKNLnFBHXnoQrLc4JwgmgAemyCIDfX9bV1ckOOhRzFMWgHw6kJkcndYr5+fluy/AKU89GcRTpfUuVUkVGRhr+mtZEKMbHx0sWYxOKioq8fvpihCdK1rNWWotEiIuL4x5qxG4qctsgNxXSKdHTRMitxkNTXV3NdXJ0R6W0oF8IOV5avNA1ioC6kc/eDmah24p8T2zeOylHkSYuLo5zRdSszKIkZalkehxAPtVFfuvIyEjZm41Y6jkyMpKLTUoo0r+lmMNrdPeBRknqmf5ccnIyrx1pIS41j6KYUPQm9VxZWcn9nlL9QFpamlvphDcIR+UqdRQjIyO5/St9EKMh12xVVRXXD4k9+CitUSTHL4VSR5FuWymhSK5Ju93uNpJYqxpFrR1F2s2UchTlVrQyCpoIxYyMDOzfv1/yhCkqKsI333wjO4qYwRDiaeoFQL2jCFzrcC5evIj6+nrVqWe73Y66ujpe8TwtGuWgBQHdcQiFIqnZES4YL0TshkaPeibHqxRfU8/096RSY0KEjiLdgWs9mEVp6llulCW5sTZr1kw05UZuNmKpZzoeKaFIn/ehlHqWchTpzxUWFioS/PTvcsMNN3B/k2vSm8EstNkh5+KnpqZy//Yl9UwoKiriHMXIyEjZumx6vWxfhCJw7XpRKxSFM37I9dNKHUWyTbPZLBmD3MMbnXq2WCxo2bIl90BmdEexsLAQUVFRXF9ixGtaE6F43333oa6uDn/5y1+we/du7iZXUlKCXbt2Ydq0abDb7ZgwYYIWu2MwOJTWItGQDsfpdOLixYtepZ7PnDnDS38odRTp46WFonA1CiWjsKXe98VR9DX1TH+P7Nflcsk6iloJxUCnnsXSzvQxi6We6d9USijShMNgFuHn1NYoijmKtPiRe4C0WCzcDZoWinLXXefOnQE0toe3yycKhSJxFFu3bu1xzmE5oegpFS62dCL9W5HrWG56HH84iuT1hIQEyXpHOaEodBQjIiI4wa1njaISRxGQfgAwCpoMZunduzf+8pe/YM2aNVi2bBmAxsBJcb3JZMKMGTOCYqQtwzgocQiV1iLR0G7R//73P8XuAy0UhcLQG0eRfsKUmkdRSozIHW+gHMUbb7wR7dq1w4ULF3jTOQk7PLrjUyIU6ZjU1ChqtTILIH1Tamho4NpQynUSSz2rcRTp8ziUHEWpwSz055o2baqqRjEyMpI3S8S5c+fQ0NDAW4RBbtEEMl1TXV2dogFkQOPUaBUVFZg0aZKiOmoxaKF47tw5bmSsXNqZILy+XC6X4hpF4VyKVqtVlaPodDoVC8X6+nq3cQmeahSl0s6AOqEINPavRUVFKCoq4lbhCvQSfkqEIrneY2JiUFNTY8hrWhOhCADjx4/HjTfeiE8//RQnTpxAZWUl4uPj0bVrV9xzzz2KpnxhMGiknixpfEk9A40djjejnoVC8fTp0x7X9xYer1Tq2eFw+CQUA+UoxsTE4OTJkygrK+OJXqGj6GnViKSkJCQnJ3M3S1pAqKlRVDvhtlJHkb4p0eeKVNvQqWcyIlSNo0if98G+MouSwSz050wmE3czN5lMkqKZxB0dHY22bdtyxsT58+fx/vvvcw9uAwcO9DgjR3R0tNu5JffAOGTIEPz000+y2/QELRTpgXByA1kIwsFi9LGrST0Tca5GKJIR6jRSQpFczzRSQpEci9w8uMIHfBrh9DhAY/969OhR1NfX48qVK2jRokXAl/BTknom13vIO4qEjh074umnn9Zyk4wwRrjGqNRnCGpTz0CjCJBb35WGFopCB7G+vh7nz5/3+EBEC0V6cXi6A6VT4Z6Eopg49mXUs5rBLEBj5ybsAIUdnpLlxTp16sTdWGhx6K8aRYvFIpvii4uL48QrLRQ9jXimj9nlcqG+vh5RUVE8YUOQEor0eU+3Bzn/QnEwC7kGy8vLee6YcJ5DAu3QkrrBixcv4syZM7y5epcsWeLxgVPsPFcy1ZYv0EKRFp3eOIpKri+CUqFIBpQ5nU5enyW2IplUjaIw7Uzvk8blcvFSz1IorVEk1wktui9cuKBIKPrLUTSZTLz+noZc72K1zUZBkxpFBkMvvHEUhQMV1KaenU4nTpw44fa+kvSzcNob0lnRN1QlYkTueJs2barJqGdPqWcphKvCKLmR0elnugPXukaR/K0kZUjOk4sXL3I3IjVCkT5m8rsqST3T0E4kETzBmnpWMpgF4NfbST3wCH9PIiJoYT9y5EjRVb2EiAlFpQ+d3kILRaVT4xBIzGKOvZoaRfKbi02PQ7u5dP8oTDsD0o4iPYk2QcxRrK6u5lxKOaFID/IRClax1DNdckAGOek1j2LLli09LnogVrJiFLwSigsXLsS+ffu83qmv32eEB0pWO/FlMAvgXqOoJPUMAMeOHXN7X8mAFvp4ExISJFenINCDRMSQSj0HYh5FKYRCyVONIsCfIoe+IXjjKJLCcFIGIOYoytUnEsh54nA4UFBQAECZUBTebBwOByc0lTiK9HkvlrIO5cEsVquV5yhKncfCmk+xOsTFixcrOkaxc8HfQjEhIUH0WlDjKNbV1fHqEwHtHEXg2m9A949ijqKUUFTqKNLnvpxQjIiI4B6WhH2aUqEYyBpFl8vFW75PCnK9h5yjuGfPHpw9e9brnfr6fUZ4INYpCfFmMEtycjL3NHn+/HnVo57p/dIdr1pHsWnTpqJC0VdHUat5FL11FIV1hUqWF6MdRfrGrSYO4TKBwnkvAe+EIiA+mlapoyj1m8bGxnLpb/q8EE5oDPB/h2B1FJUMZikrK+Nu5k2aNJFsf6FQFE6EPW7cOI+1iQQ9Us8mk0n0QViNowi4X19qhKLcqGfgWn9KP9yKOYpqUs9ijqJSoUhf03JCkTh3ckLRbDaL9gFaCkWy6g4gXZ8IXLveyb4bGhp4qXQj4HWN4qlTp7B7924tj4XB4KFE4HiTejaZTLjuuutw/Phx/O9//xPtHMUQS1eOGDECW7duBaDeUfSXUPRl1LMWjqJwpLKSG1n//v25migy/QjgnaNI9kFW+RAbzKIk9SwUigMHDvRZKNK/jclkQkJCAsrLy3k3S6lBG4RQGcwi5ijSwkcu9Sz8XWhRYDabsXDhQsXHqEfqGWh0kui5WAF1jiLgfn15Sj2L1YWSc1o4eIj8BrW1tbDb7YiKipJ0FMWW8fPGUfRUk05GqAv7NLEaRbnUc5MmTURrV+lzwdeHMKVT44iVpdTW1nr8LQKJ10Lx22+/xYEDB1R/TzhiisGQwlNNB+DdYBagsf7s+PHjqKmpwenTpwE0dqJyAkLsCfS2227D3r17ceXKFZ9Sz2TFFrPZrEooSg1mCcTKLFJ443h06dIFu3fvRkFBAYYNGya6LaVCkdwshUsu0n8rcRTFJt32JvVMH7fQURUTivR5L3YTCZXBLFI1ikQESAnFhoYGbm1i8lvQcyn+6U9/QteuXRUfox6OIiBeWkNP5i2F8JrQKvWclJTEG+AlHPncsmVLUUeRLOMn7H+1dhQB99WxCGKp59atWyMyMhL19fVujqKUoCZlK8KSGaAxTjV9olKhSK534QNg0AvFZ5991ucd064BgyGG3AoFBG8cRYDvFpEOzZPQFBORXbp0QZcuXfDDDz8gPz8fVVVVspPwSqWegcabflxcnE+OotlsRlxcXEDmUZTCG0cRAO644w4A4E1k7s1gFjmh6G3qmUzHIVb4L0SpowhcuzHS5wV93ody6pn+/cjAB/rmKFWjKHaODhw4EH/9619RVFSEFStWqDpGPWoUAXeh2KpVK0XnpbfXFyAvFIXnM92fEqFIO4oJCQnceVtYWBhQoaikRjEiIgLt2rXDmTNn3ISiXB8dGxvr9rtu3rwZDz/8MEaPHo0tW7bIHiNBydQ4wLXr3cgPgF4JxTvvvFPr42Aw3Lh06ZLHmh0iFCMjI1UJG2FNE+CdULz++utx/fXX44cffgDQOJ9ir169PB4vwHcUAXAi0xeh2LRpU5hMJq8dRfrG7u3yZL7UUAH8dlcTh1jqGdCuRvHq1at47733uNfatm0r+j25wTxSQrGyspJzlOn4xYSimknI9YYMAkpISHDLENDuGfkcXbsuVaMo5tCazWasXLnSq2M0iqMoNX2KEK1qFMk5JyUU6b6F9Fu0o3j99dfj0KFDABrTz7SrCyhPPdOveRKK9DKqNGI1ikBj+vnMmTMoLy93q3+VQmw+ww0bNqCurg4fffQRCgoKFDm/Sh1Fcr0buaSETY/DCGpIx0UEklLEhKKnm4NQKFosFrRv3x5dunThXvM0oEXOUSRP20pcK4JQKJJ/e+so0pPkJicnK/4ejVDIKBn1LIVSR9HhcPBSloB4mkrN9DgtWrTgjvf8+fOYM2cOt8zbmDFj3FaUIQgdPzmXlr4xCt0WMr0Q4F7baOSpNAhXrlzhnByxh6fk5GSuHYhQpNtYKvUsl8r3BqFQtFgsXj8kqUEoFOXEBI0vNYrCwSwVFRVcOZicUCT9LC0U6X5PbOQzEYoxMTHc7+kvR1GsRhHg1ymePXtWkVAkx0r/rrQ7KKwrlUKpo0gw8mwGTCgyDIunTgO49qSrJu0M8OvPCGodxQ4dOiAyMpL3JO2pTpEcr8lkQlxcnKhQ9MVRJP/21lHUQijK3ciU3NjpdlfaeYq5KkL3weVyqXIUTSYTd56cOnUKGzZs4I7vH//4h+T3vHEUgWs3TPKaXMrayFNpEOgVR2688Ua3981mM+fMEKFI18hJpZ61GHBFI9xGUlKSqodObxGKBymHWoiWNYpSI54B99QzwB+RT/d7ckKxZcuW3H59mR4HUJd6BvhC8cSJE5wolks9izmKdHxKhaJSR5HEbOTUMxOKDMOiZDALEV5qa4q0SD2TjlKNo0iONz4+nqsnJHiarkIMsdQz4L2jSGrFYmNjPboTUghFqtrUM93u9AoqSoWiVI0i7TooEYoAfy5FwksvvSQ7OlXp9DiAuFAk8csJxWBwFOkVR8SEInAt/Xz58mW30ax6OYqBqE8E3B1Fb4WimutLOOpZ7qFUSeqZIJwix+l0cg+dLVu2FJ3dgaB21DPgnVDMy8vj/lbjKDY0NPAmD/dGKMo5ilKDWYwEE4oMwyJcUF4ImbYBUO8opqamuq3LrDb1TARip06dOAfCk6NIOkVyvHJCMSoqymPHHxMTwxNWWjmK3rqJ5JgIam9kAL/d6XpLuTjEXBWhUJS6mcghfKC45ZZbMHXqVNnvCDt8tY4iiV+Jo2hkoXj48GHub6k5Delar8LCQi61DzTezM1ms5tw1mLAFY3woUEvoah0v75cX3KOopLUM+0o0gNShY7i1atXuYcrWihq6SjSM6jI1SgSlApF8vuSifJLSkp4+xIuHygFEc/x8fGyApi0AXMUGQw/4M2qLASLxeI2UMZbRzE2NpZLUf7222+yU0CRYyYdopxQbNasmccUmMlk4h23LzWKLpeLE4otWrRQ9B0xfHUUhYilgoSIreFK2quhoYGXdgbUO4pA4zmzfv16twcMqeMF1NUoCpfxU+IoGs15oCFCMSYmBjfccIPoZ4QDWsScYaGL5G9HMRADWQB3oaikjg1wrwH2tH4xDZmMHvBOKNI14XQ6VSgU6YEsLVq04IQSmQaMxhuhCPAzBEpqFOnVtJQ4ikDj9SuMTa2j6G3tqZFgQpFhSFwul+ioORpvVmWhEbpFaoUinXImorGsrEzyuJ1OJ/dErcRR9FSfKHbcZLveOIo2m417MtfTURROi6REFMmlnoHGG4k3QrFbt27c37Nnz0bPnj09fseb6XGAazdMEr+cE2l0R7G8vBynTp0C0DiQRaqMhH5Yu3jxIq9dSIyBFoqBchSFa7JnZGQo+p4v1xdd7uJJKNJ9KnnAJY5iYmIiWrZsyYlOYeqZ7gNpRxFwP2fVjHqWegCWyhaQuRQBcPPlAspqFIHG31coFJU4itXV1dxv5ukBgFzvLPXMYKhg3759GDRoEG666SbZVK63cygShELR29Sz8G+pY66qquLcRimhWF9fzwkGb4SiL44iPZBFT0dR6KypdRSFAgNo/A3o30Fp6vn//b//hwULFuDFF1/EggULFH1HLvWsxFEk/1eSeqbXkTYSubm53N9yS+kJHUV6xH+oO4rCZfy8ST17c30Rd6+qqkp2hgU5RzEpKQkWi4XrJ4Riiq7powezAO7pZ28dRSVCkcylCPDrjJWkngFpoehp4RBaOHtyFEn8YZF6bmhowJYtWzBlyhSMHDkSQ4cO5d47deoUVq5cifz8fK12xwhhvvvuO3z77bdwOp1YvHix5Od8ST0D6h1FupNKSEjgPSnShd1SA1qEcygC7kKRrgEKtKNId+5aOopqp8cRCkIlNYqeHMX6+nrezUSpo2ixWPDCCy9g/vz5ir8jl3pW4iiS+OVS1ka+qQD8+kSpgSyAu1CkrxGhUBSbR1GLUc961SgCQO/evQE0rnWu9OHFl+lxAPBGIMsNnBMKRbvdzu2LvEeELlnGjyDnKAoHtGghFOmHJaF7TaefCb6knsXEoxClA1nI9oT7DUlHsa6uDk899RTWrFmDoqIixMXF8U6a1q1bY+fOnWxtaIYipk+fznVa//znPyUdOl9Tz8IpctSknrt06cKrH1TiKArnUATchaKaqXHEjlsrR9EXoSjnKCpxgIQ1gN46ikKh6E3q2Rt8nR6HxK/EUQT0F4pi7oqSEc+Au1CkYyYxktjlVmbxBb0cRQB47bXXsGTJEmzbts1j7SvBl+lxAHiVei4vL+f1t+Q3IiKILONHEApFJY6i2Wz22J5qHUVAvVD05CgCntPPahxF0u5GfvjTRCi+//77+OWXXzBlyhR88sknGDVqFO/9+Ph49O7dGz/++KMWu2OEOAkJCZg9ezYAyLqKWjuKalLPwlUIlAhFJY6imqlxCHSH7suoZ61Sz77WKAqL/Mn26urqJFM+ShzFQAlFoTOgdjALiV/JYBayD70oLi5G586d0bFjR26ZQ+CaoxgVFcWr8xRCC8WLFy/yxJJeqedAOopt27ZFdnY2evToIbr2sxi+Xl9EtNXV1fEEnacaRTrbIXQUAb448sZRTEhI8Dh4j75uxSbSB5QJRU9L+BHEHEXA84AWNY4i+Q2Nck2LoYlQ/M9//oM+ffpg4sSJMJlMoo2dmprq0a5lMAjTp0/nhJuUq6jnYBZaGAKN7iS54UilngPhKPoyj6JWqWdfaxTJ5MsEYU2WGEocRW+mx/EGoTOg1lEk8QeDo/jvf/8bZ86cwe+//46FCxcCaDyPT5w4AQDo0aOHrCinVycqKChwmx4HCN0aRSHC814KX9Z6BvhT5NDlYML+JjIykmsDKUeRFor0/V1OKAodRfJvJQssKHEUfU09B9pRJO0e8qnn4uJiN4dFSGxsrOhkmwyGGAkJCXj88ccBNLqKS5YscfuMr46i2tQzPcmysEDfbDaja9euABpXABDrSMQG32ghFDt16sT9TZaVC2ZHUYiSWMSmCJEbzBLI1LM/pscxyk3l999/5/5+//33UVBQgNzcXM75lUs7A40DOujVWcTOFeHceVoLRT1rFL1BqxpF4JpQNJvNokKN9FNkrWSCmKMoJxSFSwfSCFckkoN+wJOqUfQ19Sx8CKMfXghqHEVvpscJydRzbGws7yQSo6CgwPAXIMNY/OUvf+HSr5s2beKm2yD4Ouq5SZMmPEHkyUm4++67MX/+fCxbtsytvAIAxo0bB6CxZuv99993e19t6lmpUHzkkUfw7LPPYt26dVyaT09HUWpUptlsVuTkCSenVZKSMXLqWa2jSKcGpb5nlJsKfcO02+149dVXFU20TUOEYkVFhehgFhK7y+VCQ0NDQJbw0wNPq5IQhNcXeUjy5voi4i4pKYm3fCKB3LMrKipkaxQB8dSzxWJBUlKSZOrZ5XJp7ij6mnqWchTp17VMPZP2CPnUc7du3fDdd9+5PRETioqK8MMPP4guDM9gSNGiRQvMmjULgHitoq+pZ+Da6gJNmjRRtHzUiy++iLlz54qWV/zpT3/iXt+4caNbPZ2S1LPcdBVSJCQkYOnSpZwDS46VEGhHUZgao0f1KVlDVyjilHSgagezBDL1rNZRFI7yBYzrKApvmGvXrsXXX3/N/duTowjw6xTp7Uk5w6FUo0jjzah62lFUen2JiSSpvob8Fjabjdc3KXUUW7RoAZPJJDmYhZ4yzF9CkZ5LkaDUUayuruYcxa5du3K/vdLUc0REhMe+lMRklGtaDE2E4v333w+bzYa//vWv+OWXX7j5impra/HTTz9h9uzZcDgcmDBhgha7Y4QJV65c4Y2A3rRpE69g3tfUMwAsWLAAffv2xd///nfRJ2o1tGvXDsOGDQMAnDlzBgcOHOC976/Usxj00mdGcRSVpp3pG5Jwe744it5Mj+MNvk64TeJXKhTp88pb6Dnm1CAUihUVFfj3v/8NoNFN6tGjh8dt0JNu05MiSwlFf4961ksoCs97KeSEohLEHoilBs6RfsrlcuHChQvc63I1ivRiCWQyaSlHUc06z4B3NYr0XIoEpTWKFy9e5K6NlJQUbjvnzp2TnUuROIpWq9XjfYW0u1GyBGJoIhR79+6Np556Cr///jtmzJiBTZs2AQBGjhyJWbNm4eLFi3j66ac91jEyGEKaNm2Kxx57DECjq0intbRwFO+44w78+OOPmDZtmm8H+v+TlZXF/b1x40bee/5KPUuhZP5BGuIoRkZGKk6Dye0X4N/IvL2pC7cnRrBOjxMVFcUdizAjI/c9ep3dQ4cOqTo+p9OJF154AQMGDECXLl3QrFkzWCwWDBgwQFUdeWVlJScI2rVr5+ZmdevWTVGb044iXdsmNXG6v2sU9Uo9K0Vqehwl9YmAuCDz5CgC4D2kk9fptCoRijabjbvWiFCUchTVzKEIKJtHUSxbIEw/K3UUaefQarVy26muruY9WNM4HA7OhVRanyjcr9EcRfF1lbxgzJgx6N27Nz799FMcP34cFRUViIuLQ9euXXHvvfciPT1dq10xwgRi2dMjjOmRgb7WKPqDe++9FwkJCbDZbNiyZQtWr17NiUGx1HNERASio6NRV1enuVCMiopCVVWV6nkUSbrIW3x1FIWpGiWjnuXWCAYCO5glIiICkZGRqK+v9ziYBWi8QZaWlnLnB4lfzlEcOHAg9/c333yj6vj27t2LRYsWub3+3Xff4b333sPUqVMVbYe+iQ4ePBg2mw2ffPIJ95qStDPAF4o0whpFoPE38XfqWa++RGm5h9SDmC+OolqhSMQ06StcLheXbhWu8wxIO4pqlu8DvEs9A+5CUWmNIu2YW61W3v7Pnz/vttwo0Bg/Wc9aiVAkv1HIO4qE9u3bY+bMmVi3bh0++OADvPnmm3j66aeZSAwC7HY7li1bhnHjxmHkyJF44okn8Ouvv+p6TKRDEa4HSyBCMSYmxq83fjU0adIE9913H4BGYbht2zbuPTFHEbjWaVVXV3s1j6IUUo7ioUOH8NZbb/FcOOBa6tmXtDO9X8C7G5nQ1dKqRjFQ0+MA147Z0/Q4wLVzgQhFEr+cwExLS+P61R9++EGxawzwp2+Kj4/nRsoDwBtvvOFxeTICfRNt37495syZw3vfV6GoxFHUejBLXFyc388NKZS6uf5IPUsJRVo0izmKYsv4CUc8C/fpD0dRrVBUmnqmH4ZatWrFm1JNakALPajH00AW4Fq7h/xglqKiIo8neXV1NZtH0cA4HA6kpKTg9ddfx86dOzF+/HjMmzfPTUwEEtIBSglFkno2iptIkEo/izmKwDWhSDuK0dHRXk0lQyOcfw5o/M2GDBmCRx99FKtWreJer66u5jonXwayANKDOZTGI3yaVisU9R71DPBXk1HiKALXzg8Sv5yjCFxzFUktuFJoV/7jjz/G6dOncfPNNwMAjh49qjiVLRSKt956K26//XbuNSUjngFxoRgVFcVNvh3IwSx6zsyh1EWiY66urubO60Cmnun0vHAZP+E6z4CyGkV/zaMIeJ96FjqK9HakBrSonRpHrDQnJIXihAkT8PHHH8t+5uOPP2aDWQxMbGwssrKyuOLbYcOGwWKx6Lo+NykCFi7zRSAOndGmXRowYADn0vznP//hOlipVLmYUNQiJjFH8ffff+c66u+++457XauBLAC/M6frSJUKRWHxt5IaRSNNjwNci9VTjSJw7QZZW1uLhoYGLn6lQhFQl34Wu5FNmTKFe239+vWKtnP27Fnub+Ju/uMf/0CXLl3wwAMPoH///oq2IyYU6Rt5IAez6FmfqHQwHX28dAZC6fXlzahngC/M6NfpZfzKy8tFHUV/C0UtaxTpc4p2P4VCUcpRpO9RShxF0u4Wi4UTuSGZena5XB7TFUrTGXry3nvvYdCgQXj44YcVf+fkyZN49tlnMWrUKNxxxx14+OGHPYpmX6mursbbb7+N2bNnY9SoURg0aBB27dol+Xm73Y61a9fi3nvvRWZmJh5//HGPyynm5+fDZrPx3LxAQ25izZo14y5e4ii6XC5OeBnNUTSZTJyr6HK58N577wG4JhTNZjOvU6eFIhkB56tYA8QdRbpjpjs6rdZ5BhrjJzczen5VpTcy4VN4sK3MAvBTz0odRaCxfUj8noTioEGDuL/379+v+NhooUhE2oQJE7jj+Ne//qVoJLXQUQQaBzaePHkSH3zwgeI619jYWDehQt/I/V2jSIsPPR86lQ58oAWFN0JRzahnsd8jKiqK97vTI59PnDihKvVMP0gGKvUcEREh+6Ao9TtarVZFqWdaKCq5f9LtrmRdez3QtEZRjsuXLyu2xvWguLgYmzZtUpXuO3jwIKZNm4aysjI8/PDDePLJJ3HrrbfyLhR/UF5ejo0bN+L8+fO8VTmkWLp0KbZs2YI77rgDTz75JMxmM+bMmYOff/5Z9PN1dXVYvHgxJk2a5NPoV18hotBkMnEXHHmturqam7bAaI4iADz00EPcjXLNmjWoq6vjRFrTpk15N1EiFB0OB/e0LVdsrRQxR5HupOkpHmhH0dfUM71v+kam9KZOlxcIv+fJUSQDSQD9BrMA/A6fHDM9ZRGNUCiS+D0Jxc6dO6NVq1YAgAMHDiie4obcyCIjI7mHgvj4eEyaNAlA4wPLBx984HE75EZpNpt5qxZ5g9BVlHMU/Zl61tNRFJ73cpC4tRKKSmoUCYmJibz+i556Zvjw4by6bE+OIr3qCTmX5fBmrWeAP5dikyZNZB9ipM4pq9XK245U6pluRyVCkf48aUOjOYpej3oWTv1x5MgR0c85nU4UFxdjz549yMjI8HZ3fmfNmjXIyMiA0+nkPeVIUVVVhZdeegn9+/fHokWLVM3BZ7PZcPjwYQwePFj0/ZycHAwYMEDywk9OTsa2bduQnJyMEydO8NJGQvLy8rBnzx5MnToVDzzwAABgxIgRyMrKwtq1a7F27Vre5xsaGvDCCy+gTZs2vFo7vUlNTcWZM2dQXl6OqqoqQ454pmnXrh3GjBmDbdu24dKlS9i4cSN3zMInZzFRqIX4JZ1qQ0MDnE4nzGYzz1EkUzy0bNlSU0cRaOxsKyoqePvztuZSTY0iPemw0VLPUgMvhEKRiBVPQtFkMmHgwIHYunUrysvL8euvvypa1IA4iikpKbwb5pQpU7Bu3ToAjYNaHn/8cdkbKkk9p6Wl+ezQpqam4tixY9y/6XPF34NZWrRoAYvFgoaGBrf1341KdHQ0KisredeXv2sUCUIxPXXqVPz73//GyZMnYbPZ8MMPP3DvEaEYFRXFzQRAP6zS4xZoZ1IKJalnsYexiIgIdO3aFT///LNH8SbWT5nNZiQnJ8NsNqNdu3Y4c+YM96AtvEZoR1FqoJYUIecovvPOO9x/JpMJubm5vNfIf++++y527dqFpk2b4oknntDy2DUjNzcX+/btw4wZMxR/JycnB1euXMFjjz0Gs9mMmpoabki8J7Zt24b58+eLpot27NiBhQsXYvfu3ZLfj4qKUnwz37dvHyIiIjB69GjutejoaIwaNQrHjh3jXahk9ROTyYTs7GyfpkjRAlpA0Rd3QUGBJnMo+pvs7Gzu75dfflly8I2YUNRCrNE3UdKpCufqI0/FWq3KIrZvgrc1VGpqFOmbpREGswD80fliCIUiid+TUATUp5/r6+u5jIcw1dmnTx/069cPQGOfKDdApqKigiuT0GJWC28cxaioKE36qObNm2P9+vV46KGHMHfuXJ+35y1qsghi55K/p8eReq1t27b48ccfMXHiRLfP0tPH0CU2BK2EopKykjVr1uD+++/HmjVrZPch9tu2bNmSG1xF0tg2m0106WLiEEZERCiKiW53+gHTSHjtKK5evRpAYw3WU089hTvvvBMjR450+5zZbEbTpk3Rrl07n1e+8AcOhwOrV6/GqFGjeNNEeOLQoUOIi4tDSUkJnnvuOeTn5yM2NhbDhw/H9OnTZZ90J06ciOPHj2PhwoV4+eWXudGB+/btw4oVKzB8+HCMGTPG19AAAKdOnUJaWppbJ9S1a1cAjSshkJN5+fLlKC0txfLly0WfygINfcEKB7TQnaIRU88A0LdvXwwfPhxffvklr/BfiVDUQqwJO9WYmBg3oXju3Dn07dtX08EsgG83MuF31dQoyglFPWoUgWt1mkodRTFXQeq7wgEtnh52ychUQNztmDJlCle/vH79evTt21d0O3TaTWwtXbUIXR4poVhXV8edA1qknQmTJ0/G5MmTNdueN6iJJ1BCUewhXCw9n5CQgE2bNmHIkCGYMWMG6urq0KJFC15fEh8fj7KyMklHUUnqmb5uxYSiyWTiBJ2QAQMGYMCAAR73IfY70scmHNAi/O2IUExJSZE8Fhq6LenaZiPhtRro3bs393dWVhb69OnDey1Y+PTTT1FUVMSbKkQJFy5cgMPhQHZ2NkaNGoUpU6YgNzcXW7duRWVlJV588UXJ71osFsyfPx/PPPMMsrOzsWrVKtTU1GDRokW45ZZb8Oyzz2rm5pWWlore+MlrRCAUFhZix44diIqK4rmPr7zyimg6KycnBzk5ObyLXmtKS0u5G4hwihz6SdWojiIAPPfcc/jyyy95rylJPWs9Pxy5uYoJRUDbwSzCfROU3sjodgfU1SjS+zBC6hm49psrdRRJ/EocxZ49e6Jp06aoqKjAN998I5oKo/E0dcf999+Pv/71r6isrMS//vUvrF27VvRmJzaQxReEopX+/YTOODkHtBSKRkB43svhi1D0dtSz3GtAo0h77LHHcOutt+Kdd97B6NGjeeeOnKPYtGlTRe3pyVHU4gFQ7DhoZ1A4oKVPnz684yB1l0rTznS70w+Jnq7lQKKJbaT3k5i3lJeX4+2338ZDDz2kuoiZTKR7zz33YObMmQAaVyeor6/H9u3b8cgjj6Bt27aS34+OjsbSpUsxc+ZMzJkzB/X19ejatSsWLFigqZtXV1cnevGQC47cjFJSUlSNnMzMzERmZiZOnjzJLbHnT4RC0Shzn3li0KBBuP322/Htt99yrwmFrVhtkZY1ioB06pnc8LUezOLLjUxuW55qFOVSlnqlnglKHUWCEqEYERGB2267Dbt370ZhYSFOnz7NW95PiCehGB8fj0GDBmHnzp2orKxEaWmpqNNDO+T+EIpKUs+hJhTVIBa70hrFqKgoriYTaDyHpEYcK6lRFNK9e3esWLHC7XVaKBIRRISi0j7HU42iFvdOT0JRbi7FwsJCzrH3ZsYQuo+02+2aGAZaoHku2OFw4MqVKygqKhL9z0hs2LABCQkJGDt2rOrvkgYcNmwY7/XMzEwA4BVmSxEXF4dp06ahoqICNTU1mDFjhuYnRnR0NC/lRiAXmVFORDFoZ0uYejb6YBYaulYRUOYo+jqKFAheR1G4f09Csb6+nrtRyDmKeqWe5V4D3IUiiV/pfIF0naKn+RTFpsYRQt+06fOChnYU9apRDDWhqOa68+VBzGQy8dLPzZo1k3SuYmNj3Rxlbx9iyT4bGhq4diT9uNKpgQLhKJrNZrcHSSmhKJwiR+3UOAC/3Y26jJ9m1tXJkyexfv16HD16lDcCicZkMmHv3r1a7dIn8vPz8dlnn2HGjBk8N8Vut6OhoQGXLl1CXFycpAhJTk7G2bNn3eafIha+8IYsRkFBARYtWoR27drBbrfj+eefx+uvv66Jo0Mfp9h0PfS6vkalpqaGu3CEjiJt/xtdKI4cORJ9+vThZgZQUqOoxVRSYp2qsFRA6ChGRERo4maqEUpC6HYHxAWv8PMEowxmEbtpK3UUSfx0rHI3QGGd4iOPPCL5WfpGJnVzpvsEum+k0Tr1rKZG0dMo8mBFeN7L4atjT+oFAfk15U0mExITE7mBS4D3UwgJp8ih75FKRXIghCLQ+PvS25dLPdPQU90oTT3T7U63oZEGtGjiKJ46dQrTp0/HsWPH0K9fP7hcLnTs2BH9+vVDYmIiXC4XevXqheHDh2uxO00oKSmB0+nE6tWrMWHCBO6/vLw85OfnY8KECW5TANFcf/31AOAmwkjH6uliKikpwdNPPw2LxYKVK1dixYoVqK2txaxZsxRNdquUTp064cKFC25LLObl5XHvGxV6EmX6ort48SLvNzJy6hlo7Gyfe+457t/CkgQxoaj1/HByjqLL5eIeHJo3b67JoDNfbmTCZSM9OYr0uW2UGkVfUs8kftJm0dHRsrVK/fr147btqXxEyfJi9E1bylEkqeeIiAhNJuW3Wq28GKVqFP01mMUIqFkuVexcUvNwKXQU5RD2r746ikDjAyudYfR0DARPQlGrsi1hX0ULxdTUVG4/ckJR6XVBt7tRHUVNhOK7774LAFi3bh2WLl0KoPEp9+9//zu2bNmCe+65B2fPnjXUvHzp6elYsmSJ23/p6emwWq1YsmQJRo0aBaDx5nT+/HneUPihQ4cCAD7//HPedj///HNERETwClyF2Gw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp2r2UkyZMgQOBwObN++nXvNbrdj586dyMjIUDR8Xy/oG0dMTAzn3gbL9Dg0f/zjH/H3v/8d06dPx5///Gfee2JCUYuJf5XUKFZVVaG0tJQTBFqknQHfUs9CUeRJKP7+++/c3/SSWcGaeibx00JRjujoaG6t5t9//503ibEQrVPPbdu21eTmHBkZyauFlHIUq6uruWnIQk0oqhm4oIWjSPAk0oT9q1aOIi0U6cGJcniqUdTSUaSh75MWi4VzFc+cOcNbdc6b1LPwPkcwkqOoifz+5ZdfMGDAAF4Kgvx40dHReOqpp/Drr7/izTffxAsvvKDFLn0mKSmJl7IhfPTRRwD46Zzjx49j5syZyMrK4tI6Xbp0wV133YWdO3fC4XCgd+/eyM3Nxd69e/Hggw/KpnS3bduG4uJivPrqqzx3qXPnzli2bBlmzZqF3bt3495775XcBhldTTryAwcOcDeIsWPHch1BRkYGhg4divXr16OsrAxt2rThCt/1nDNMCcIbWZs2bXDlyhU3oWh0RxFo7Axmz54t+p6YUCSOtS8ocRQB4LfffuNS0lqVIvhyIxO2u6fOk15hqGfPntzfeg5m8SX1TOJXKhQB4MYbb+TqE48dOyY51Qi5kUVEREjenOmHBbHUc1lZGffQrEV9IiE1NZUTD1JCkc4khJpQVDM5s69Cke5z9HIUCwsLuX8rzWwFKvUs/C2F11OXLl1w5swZLg7iznuTeqY/Z9TUsyZCsaqqihesxWLhOWJmsxm9e/fGnj17tNidYZg9ezasVit27dqFb775BlarFdOnT8d9990n+72JEydi4MCBop1sz549sW7dOnTo0EF2G5s3b+ZdaPv37+fSTsOHD+ddlNnZ2bBarfjiiy9QWVmJDh064OWXXzb8dEaXLl3ipcfatGmDX375BXa7neciBYOjKIeYUNSik1DiKALgTaxsBEdR2O6eahRpoUhP5WS01LNSR5HEr0YoduvWjfv72LFjXMZDCHEUrVarZImBJ0dR6zkUCampqVwdr9TKLPQDYqgJReF5L4eWjqLUOs8EoTD0h6OoVOAFskaRRph569y5M3bt2gWg8UGbtJs3jiLd7kZNPWsiFJOSkng3oObNm+PChQu8zwiXXjIqr776qttrffr0Ea39sVgsXk3UarFYZJ/ElUz8vWXLFsX7i46OxrRp0zBt2jTF3zECwpVu6IeR48ePc38Hg6Moh1AoxsTEBGweRaBx8niCERxFYbt7chSPHj3K/d29e3fub6MJRaWOIolfjVCkl0cl9cdCHA4Hd3OWEySeHEWtp8Yh0DdW2lGk46cdxVAbzKJ0ZS/At+lxAN9Sz972t3JC0ZvpccTWevZXjaKYo0j47bffuOV4iaPYpEkTxQYG3e5GTT1rUqPYvn17/O9//+P+3aNHD/z444/49ddfATTWs+zduzdo1tFkGAPhxUrfSGg3VWoOsGBBKBSbNWvm9ZyDNEpGPQOBcxSVOkDC2OU6T6fTiV9++QVAYz9E38T0rFEUaz+p+Ombts1mc1vGSyuhWFxczN2U5NJinhxFrUc8E+hjkko90w86oeYoqrnmA1mjqJWjKDeYRel0YHrUKDZv3txtu7RQPHXqFPc3EYpt2rRRXHNKtxv9t5EcRU2E4q233oqff/6Ze/qcOHEiXC4Xpk+fjrvvvhuTJ09GZWUlHnzwQS12xwgThAJKzMqPi4tTtEySkRETimrWfZVC6Ci6XC5OKNK/Je3OaiUUtVw5wmKxcGlSoVA8e/YsF5NwBaFgcRQjIiI4YSS21rMSodisWTPOJZSaw1XJiGeAn4oUcxS1nkORQFwZANyypkD41CiqueZ9Ke0A9Bn1LOcoKn3g0KNGUWzAp9BRBBqvXfIgo2YmAPp3CWlH8Z577sHWrVu5E6hTp05YtWoVbr75ZiQmJuKmm27CsmXLeBPDMhieEN6kxFyQYE87A+JCUWr+OjUIO1V6xGjnzp25mw2d+tAq9ezLjUwYu8lk4rYnrFGUGsgCyA9mMdKoZ+CaK26z2bipu4hLojTFSuoUS0pKROdOVSoUo6KiuLRZIB3FIUOG4N///jcOHTrEc0jDpUZRzTWvp6PobU24lKMYFxen2D0TW+vZ4XBwg2f94SiKCcW2bdty1yURinR9opqBSXS7G3UwiyZC0WKxuNmzPXr0wCuvvIJNmzZh+fLluPXWW7XYFSOMEXtKC/aBLIC4UNQCoaNIp+2aNm0qWgpiBEdRbnvCzlNqIAsgnXq2WCx+X0NVzahngC8UAeWrstDQ4krMVVQyNQ5BuBY8DalRtFgsqm6ISrj55pt5biIgXaMYakJRDb7WKJLBTrGxsbjttttkP0v3sQkJCV5ncKQcRTVTtIkJRbqkxB81imLHZzabuZHaZ86cgcPh8GogixCjDmbRfAk/KQoKCvDSSy8FaneMEEA4Gi+cHEVPIxGVIHTUaKGYkJAg6gYZwVEUi11KKNIDWYSOolTq2d9pZ0Bd6hngC8VmzZrx5mxV+rvRI5/F6hSVrMpCIELx6tWrcDgc3Osul4tzFNu1a6d52YdY24dL6lnNNe/rg9iwYcOQl5eH33//3aNQo/tYX+Z3pR3FK1eucOe41WpVHLvJZOKua3I90yvB+cNRlJpqiqSf7XY7/ve//3k12TbAb/eQTj3LUVRUhFdeeQV/+tOf8OWXX/p7d4wQQphmbNWqldsTYyg4ilFRUbwbbvPmzUWngVGLnKMoJRSN4CiKxe7JUWzSpInblFJGE4pKUs8NDQ2oqKjgpokB+E6hHGocRU9CkTwwOJ1OnmgtKyvjxJqW9YkEsbaXGswSaqOe1VzzWjj2Xbt25U1QLwUtFH15MKcfiOmR81arVVXs5HwQcxQDlXoG3OsUvU0907EbNfXsk0/7888/46233sLJkycRERGBnj17YurUqWjXrh1qa2uxYcMGfPLJJ6ivr0eLFi0wadIkrY6bEQZUVVXxnmDNZjNat26N/Px87rVQEIomkwlxcXHcDbhZs2ZusXuD0FGkRzwnJCSIpriNMI+iWOxiNYqVlZU4c+YMgMZSF6G7JUxTBVIoept6BhpHJ9NTFvXt21fRPj2NfPYm9Qw01imSf9NzKPpjFguxtheu9UwINUdRzTUvjF34sKkldB/rS59EC0Vy3QKNQkxN7FFRUaiqqvKrUPSUegbchaK3jiIdu1FTz14LxZMnT+Lpp5/mNdJ3332HkydP4rXXXsO8efNw7tw5tGjRAhMnTsTdd98dkA6aEdqkpqbyhGIopJ4BuAlFLZBzFOPj491u9CaTSbN9C29kZrPZp/ohMUeRTIsDuKedAfc517QeGSmHt44i0CiAvRGKzZs3R0pKCgoLC0UdReJ4mEwmyXQagS5BKCkp4W6K9Py4wjXL/YWUwA41oagG4W+ixXRaUmjlKNKpZ3rBBLXLyAodRTr1rFWNIn2sUu57586dub9/++033oOYFjWKIeEofvDBB6ivr8eUKVO4NZF37NiBN998E9OnT8fVq1fx0EMP4cEHHwy5FAEjMIhdbMLXQsFRBNyX1PK2o6FRW6OYlJSkWUcrdiNTOoBELHbSgZJpfkwmk+yIZ8B4qWeljmJcXBwnFBMTExVNwE/IyMhAYWEhLl++jMuXL/OW6SM3MrESDiFCR5FAC0UtzlEhYtuUaq9QE4pqfk9h7P4Uim3atEFkZCTq6+s9rhgmB93H0bWmVqtVVeyBSD3fd999WLduHVJSUjBs2DDRzwgdRbp/VbrCDsBv95CbR/HXX3/FjTfeiEmTJiEpKQlJSUl48MEH0adPH1y5cgVPPPEE/vznPzORyPAaelJtgrBDCSVHkdCsWTPR2NWitkZRq4EsgG83MrHY6e2R9KPciGeg0cUk8y8GWiiqmXAb4AvFgwcPcqLupptuUjVCW2pAi9Pp5H5XJTcxqUm36fSa0kmS1SDW9lI3/1ATimqu+UAKxeTkZLz77ruYOnUq5s6d6/V2aJeOxmq1qoo9EEKxa9euyM/Px+HDhyXPs1atWnFGxalTp7hro2XLlqr6GDp2euS62CpaeuG1ULx69SpPUROuv/56AMDIkSO9PyoGA+CNtiQIa6tC1VEUi10tnhzFlJQU3me0qk8EfEuNicUuthwhPeK5R48eotsiNw4jpJ6VOorffvst97fStDNBqk6xpKSES9EpKbSXWsbP2zospYi1fUREhGj9XaiZEGqueeH5pWZqHG944IEHsGbNGp/aXCqrYLVaVcVO+ixyPftrxSVP02iZTCZOA507d44r7VA7ZRQde7t27bi/6TpOvfFaKDocDtmn5lBxehj6IXazDZfUsxZuiSdH0Ww28+oUtRSKvjgeYrHThe4ffPABXC4X5yi2a9dOshCenkojWFLP33//Pfe3WqFIO4p0naKaEc+AtKNIp5794ShKnfdibRZqjqKaeALpKGoFGbQnxGq1qoo9EDWKSiF1ii6XizsOtWJauFwgufZOnjyp0VH6TsDmUWQw1CK2hnOopp7JNBURERFISUnRZP1qT44iwF9ZwyipZ7HYJ0+ezP09a9YsfPnll1w8YmlnAu0+EOchEEJR7VrXdMz02rFaOYpqhaInRzEmJkazgU80Uue9L2uHBwtqrvlgFIqA+DKFVqtVVeyBSD0rRSyrqlYoCmMnWdmCggLeTBV64pP8/vLLL91G15GO5JlnnnH7vMlkwiuvvOLLLhlhxOXLl90uulBNPc+ZMwclJSUYMWIEmjdvjosXL/qc2hM6inSnQ+qFaKFolNSzWLuPGDECU6dOxdq1a1FTU4P77ruPe09sIAuB3Diqq6u51wIhFM1mM6Kjo3nTuSh1FAnNmzdXvURecnIyrFYrioqKeH2z2jnePDmKaWlpflndRqztgfBwFKViFyOQo561RCgUY2JikJCQgIKCAsWxk3PB6XTC4XAYTiiqTT0L271Lly44cOAAgMZBMjfeeKNvB6kBPgnFixcv8mpWaA4ePOj2mr+XzWKEPqHqKHbv3h07d+7UdJtGchS1uKkvX74c//nPf3Dy5EneqEklQrGqqsrtNX8TExOjeN4/MaHYt29fr/rMjIwMFBUVobi4GCUlJWjRooUmjqLNZuN+d3/UJ8oRDkJRDYGuUdQK4YAWq9Wq+hwXzo/qjyX8lKKFoyiEOIpAY/o5qIXi5s2btTwOBsMNsdRWQkICEhISONETKo6iEC3SekJHkZ6XiwgTWmTR84JpuW9AneMhFXuTJk2wadMm3Hrrrby6JLnUs5hQDNR8rjExMSgvL+f+rdZRFK55rJRu3bph7969ABrTz4MGDVItFGNiYhAXF4eqqirOUfT3iGdAuu3DQSiqueZDJfVM5lBUE7vwAdgfS/gpRazPVCsUhbHTQvG3337z7sA0xmuhqGTpHwbDF+gOgCY1NZUr9A1VoSgVuxqEHaqYULzrrruwZMkS1NXV4Z577vF5nwRfbmRysfft2xcLFizAc889x+2nU6dOkp8nNw56m4ESisKYvXEUvUFYpygUikpTY8nJyaiqquIcRX+PeAak215MZIfaqGc113ywCkUxRxFQF7uwX9Mz9ZyYmIhWrVqhuLiYe01t6lkYO+1SGmVACxvMwjAsUvNIkTVmLRaLXwrqjYAWc2hJjXo2m83cjcVsNiM7OxsLFizQtJP1xVH0FPvcuXMxfPhwAI3TdsgtXSYmCgOZeqZR6yh6KxTFRj7TNYpKV8Ig6efS0lK4XC6/j3gGpNs+HBxFNdd8sKaepRxFNbEbSSgC7ulntQ9Rwtg7duzIzf9qFKEY2IQ+g6EB2dnZKC4uxn333Sc6io7RiFSNYkJCgt/rhf3peERERGDXrl3Iy8vjpWnEELtxBDL1TKNGKLZs2dLrJfJoR/GLL77A/v37OUexRYsWiuMnNasOhwPl5eUBcRSlCAehqIZgHcwi5SiqQU4oBrpGEWgUimTu08jISJ8HBUZHRyM9PR1nzpzBb7/9xq1EpSdMKDIMi5SFP3DgQPz0008BPprAojZ9IYbFYoHZbIbT6eSNepZaIUFLhDd2NTcyJbGbzWZ0797d4+f0FIq+pJ69HcgCNAq81NRUFBQU4NSpUxg8eDD3npqlxYTL+AXCUZRq+3AQimqueZPJhKioKG6KmGARilKOoprYjVSjCPAdxdTUVM4NVIpY7F26dMGZM2dQWVmJS5cuaXI/8AWWemYYFrruI9zQKnZ6zjHaUfQ3JpOJ53qoualr2e5iNw4jpp6bNGnCu8F4O5CF8H//93+8dZ4Jam44wilyAuEoSrV9OMyjqPa8p+MPdqGoJnajpZ7pAS3eXBdisQtHPusNE4oMw6LFgI5gRavYyQ22traWcxQDIRTpfQPaDWZRS7Cknk0mE8/p9bY+kTB+/Hjk5+dzo8QJ/fv3V7wN4RQ5xFEkk8L7A6m217PWNFCoPe/p8ytYahRDbTALwBd13jjtYrEbbeQzE4oMwxJqoxrVoFXspFO9evUqXC4XgMAJRW8dDy3bXUxg6JF6joqK8phKptvFV6EINP6OkyZNwnfffYfc3Fxs374dzz//vOLvSzmKKSkpsgOIfEGq7YVtFhMTo3vdltaoPe9DyVFUEzt9LtTX1+u6hB/QWBM8fvx4tGzZEk888YTq74vFbrSRz6xGkWFYQmUybW/QKnbSCV25coV7zeiOopbtbhRHUUmatHPnzrh48SI6deqkeU1Sr169ZOebFIN2FC9duoSioiIA/qtPBKTbXkwohhpqz/tgFIpSjqKa2I3mKJpMJmzZssXrQSdisbPUM4OhEFaj6DukU3U4HNxrgRjMAnh/IwvFGkUljsm6deswd+5cvPbaa4Zwy2hH8ZdffuH+9ueIZ6U1iqEoFMOtRjEqKgpJSUkAgrtGkeDtNSsWe2pqKvdbsdQzg8HwK2ICxeiOopYYZdSzEqF4/fXXY9myZYpGcwcC2lE8evQo97c/HUUpwsFRVEuw1yi2atXKK3FlVKGoJSaTiUs/nz17lhvdrhdMKDIMC3naDEe0il1MFBm9RlHLdg+m1DPBKOc97SgeP36c+9ufQlEqdmGbhWL9stp2N8KDmFpoR5GeQ1FN7HLT4+hRo+grUrGT9LPD4cDvv/8ewCNyhwlFhmFxOp16H4JuaBW7URxFNUJJy3Y3ysosaoSNUc572lGkb8b+TD1LxR4OjqLadg/G1DPtKNJCUU3s9PUbCo6iVOxGqlNkQpFhWCoqKvQ+BN3QKvZgdBS1bHejpJ7VCBujnPdNmjQRPW5/OopSsYdDjaLadg/G1DPtntEDttTEHmqpZ6nYjTTymQlFBiOE0dNRNILjYZTUczCmSk0mk+hyZIFevg8ID0dRLUa4vtTSrVs33H333UhNTcVjjz3m1TZCTShKYaS5FIMvoc/wC3a7HStXrsShQ4dQWVmJ9u3bY/r06boW1vtrUt9gQKvYxURRoEY9e1tDpWW7G0UoqhE2RjrvW7RowVuRBfCvUJSKPRyEotp2HzZsGD766COkp6ejffv2/jkojTGZTNi+fbvbVDJqYg+1GkWp2OkVX5ijyDAEDocDKSkpeP3117Fz506MHz8e8+bNQ3V1tW7HVFpaqtu+9Uar2PV0FGlxqCY1pmW76zk9jtpRzwQjnfdCRzE5OdmvIk0q9nAQimrb/fHHH8fRo0fx888/B51AEo52VhN7qDmKUrE3bdqUW5udCUWGIYiNjUVWVhasVivMZjOGDRsGi8WC/Px83Y6J7gDCDa1i17NGccyYMTCbzejRowfv6dgTWra7niuzeOsoGum8FwpFf0+NIxV7OIx69qbde/bsGbAMgT9RE3uoCUW52En6+fLly7h69WqgDsmN4HoMEfDee+9hw4YNSE9Px7vvviv72SNHjmDmzJmi761duxbdunUDALz00kvYvXu35Ha2bt2Kli1bKt6eP6iursaHH36IvLw8HD9+HDabDfPmzcOdd94p+nm73Y633noLX375JWw2Gzp27IhHH30U/fr1k9xHfn4+bDabLvVIhEDd0I2IVrHr6SiOGzcOFy9eRIsWLWA2K38m1bLdjZJ69naJMr2hp8gB/F+fKBV7OAxmMVK7Bxo1scsJxWBzVgH52Lt06YKvv/4aQGOd4i233BKgo+ITfL/q/09xcTE2bdqkuoh37Nix6Nq1K+81uvMbPXq02zqrLpcLK1asQEpKClq2bKlqe/6gvLwcGzduhNVqRadOnXDkyBHZzy9duhRff/01xo8fj7S0NOzatQtz5szB6tWr0bNnT7fP19XVYfHixZg0aZKuT6vNmjXTbd96o1XsejqKgHf1dlq2ezCmno103gfaUZSKPRxSz0Zq90CjJna5tZ6D0VGUi104RQ4TiipZs2YNMjIy4HQ6UV5ervh7vXr1wpAhQyTf7969u9sAjp9//hm1tbW44447VG9PDJvNhsOHD2Pw4MGi7+fk5GDAgAGSIjg5ORnbtm1DcnIyTpw4gSlTpkjuKy8vD3v27MHUqVPxwAMPAABGjBiBrKwsrF27FmvXruV9vqGhAS+88ALatGmDrKwsVXFpTVFRka6Opp5oFbuejqK3aNnuRnEU1QgbI533gXYUpWIPB6FopHYPNGpiD7XUs1zsRCiazWZdl7QNyhrF3Nxc7Nu3DzNmzPDq+9XV1bynEE/k5OTAZDIhMzNTk+1t27YN8+fPx/79+93e27FjBxYuXCib/o6KihKdtkKMffv2ISIiAqNHj+Zei46OxqhRo3Ds2DEUFRVxrzudTixevBgmkwnZ2dmGWG+W4Rt6jno2AnoKxcTERO7vpk2bBmSfWhNoR1GKcBCKDGWEmlCUY9CgQcjLy0NNTQ1mz56t23EEnaPocDiwevVqjBo1Ch07dlT9/aVLl6KmpgYRERHo2bMnpk6dihtuuEHy8w0NDdi7dy+6d+/OjUDyZXsAMHHiRBw/fhwLFy7Eyy+/jJtuuglAo6hbsWIFhg8fjjFjxqiOTYxTp04hLS2Nt3QSAC5dfvr0aW6G/OXLl6O0tBTLly83RK0HfaMNN7SKXegoms1mw8+5pmW767kyS58+fTBu3Djk5eWpcueNdN4H2lGUil14HofiYBYjtXugURN7qNUoysWekJDgVtqmB0H3q3766acoKirCqlWrVH3PYrFg8ODB6N+/PxITE3Hu3Dls3rwZ06dPx5o1a3izoNMcPHgQ5eXlbmlnb7dHvjt//nw888wzyM7OxqpVq1BTU4NFixbhlltuwbPPPquZm1daWirqPpLXSkpKAACFhYXYsWMHoqKieO7jK6+8gl69erl9PycnBzk5OaisrNTkOBn+QSiUEhISwsop1tNRNJlM+OijjwKyL3/BHEWG0ZCbRzHUHEWjEFRCsby8HG+//TYeeugh1Quo9+jRAz169OD+ffvtt2PIkCGYPHky1q9fj+XLl4t+LycnBxaLBUOHDtVke4To6GgsXboUM2fOxJw5c1BfX4+uXbtiwYIFmj4V1dXVyd4s6+rqADQOOhBLhUuRmZmJzMxMnDx50usZ9j1RXl4eVmlSGq1iFzovRq9PBLRtdz2ForcY6bwPtKMoFXs4CEUjtXugURN7qK31HAztHlQ1ihs2bEBCQgLGjh2ryfbS0tJw++2348iRI3A4HG7vV1dX49tvv8XNN9+syBr3tD0hcXFxmDZtGioqKlBTU4MZM2ZonlKJjo4WnafJbrdz7zNCFzFHMZwIRqFoJGhHMS4uTrf0aDgIRYYywqlG0SgEjVDMz8/HZ599hnHjxqGkpASXLl3CpUuXOOv50qVLqhdVB4BWrVqhvr4etbW1bu99++23kqOdvdmekIKCAixatAjt2rVDSkoKnn/+eS4VrBXJycmiM7+T14SOgZEgtZPhiFaxB6OjqGW76zk9jrcY6bxPSEjgzqG0tDS/ly1IxR4O8ygaqd0DjZrYQ20Jv2Bo96ARiiUlJXA6nVi9ejUmTJjA/ZeXl4f8/HxMmDABGzduVL3dgoICREVFiRb4f/XVV4iNjcWAAQM02R5NSUkJnn76aVgsFqxcuRIrVqxAbW0tZs2a5ZXglaJTp064cOECqqqqeK/n5eVx7xsVPWei1xutYhc6MUZPcQDatrueK7N4i5HOe5PJhKeeegqxsbF48skn/b4/qdjDYWUWI7V7oFETe6g5isHQ7kEjv9PT07FkyRK31zds2IDq6mo8+eSTSE1NBQDU1taiqKgIiYmJXC1jWVmZW13j6dOnceDAAdxyyy1uK0eUlZXh0KFDyMzMFH16Vbs9GpvNhtmzZ6OmpgavvfYaWrVqBaBx1PHMmTMxd+5crFy5UpPRqUOGDMGHH36I7du3c/Mo2u127Ny5ExkZGYZ+miHp8XBEq9iD0VHUst2DMfVstPN+2bJlWLx4cUDcGqnYwyH1bLR2DyRqYg81oRgM7R40QjEpKQkDBw50e52MKqTfO378OGbOnImsrCw88sgjAIAXX3wR0dHR6N69O5o1a4Zz587hs88+Q0xMDB5//HG37e7ZswcOh0My7ax2ezTbtm1DcXExXn31VbRt25Z7vXPnzli2bBlmzZqF3bt3495775XcxtatW1FZWcmlkA8cOMBNyDl27FjOOcrIyMDQoUOxfv16lJWVoU2bNti9ezcKCwsxd+5c2ePUm2C86LVCq9iDsUZRy3YPxtSzEY8vUCk9qdjDQSgasd0DhZrYpYSiyWRCRESE5sfmb4Kh3YNGKPrKwIED8dVXX2HLli2oqqpCUlISBg0ahKysLNEpH3JyctCsWTNujkNft0czceJEDBw4EOnp6W7v9ezZE+vWrUOHDh1kt7F582YUFhZy/96/fz83ann48OG8FGN2djasViu++OILVFZWokOHDnj55ZfRu3dv2X3ojdJJxUMRrWIPRkdRy3YPRkeRnffuhEONImt3ZUjVKAZjfSIQHO0enL8sxauvvur2Wp8+fdymehk3bhzGjRuneLvCpe2EqN0ejcViERWJBCUTiW/ZskXx/qKjozFt2jRMmzZN8XeMQGFhYdguaaVV7MHoKGrZ7sEoFNl5H55L+LF2VxY7fU3X19dzjmIwOHNiBEO7B81gFgaDoZ5gdBS1REwUBqvzEM6Eg1BkKMNsNnPXMJ16DlahGAwwocgwLMG6Pq4WaBV7MI561rLdhTePyMhIw69Mw857d8Jh1DNrd+WQ8yEUhGIwtDsTigzDIjdyPNTRKvZgdBS1bHfhzcPoaWeAnfdihEONImt35dBCMdhrFIOh3Y1/hIywpaysTO9D0A2tYg/GGkUt2z0YhSI7790RtmMoCkXW7soJJUcxGNqdCUUGI4QJRkdRS8RSz4zgIyIigjf1SSgKRYZyQkkoBgNMKDIMC5mIPBzRKvZgdBS1bHdh/MHgKLLzXhy67UJRKLJ2Vw4RhbRQDNbUczC0OxOKDMNSXl6u9yHohlaxB6OjqGW7B2PqmZ334tBtF4qDWVi7K0esRjFYHcVgaPfglOCMsKCurk7vQ9ANrWIPxlHPWrZ7MApFdt6LQ8QhPT1KKMHaXTm0UHQ4HACCVygGQ7uH3tXGCBlC8WagFK1iD0ZHUct2D8YaRXbei0PEQUxMjOGnOPIG1u7KoYWi0+kEEBzXthjB0O7GP0JG2BIMtRv+gtUoakMwOorsvBcnLi4OQHC44t7A2l055DombiIQHIJLjGBod1ajyDAsBQUFeh+CbmgVO+0oRkREBMUgAC3bPRgHs7DzXpwZM2agadOmmDlzZgCPKHCwdleO2HUcrI5iMLR7cEpwBoOhCLrzTEhICMmUnRwREREwmUxwuVwAgvdmwgD+8pe/YOrUqUExQTHDv4SSUAwG2BXHMCzBkCb1F1rFbjKZuE41WH5PrY+TvoEEg6MYLO3kDzzFHsoikbW7ckJJKAZDu4fuVccIeoK15kQLtIy9efPmAIKjFgbQvt2DTSiy8z48YbErR+w6DtbfLxiOmwlFhmG5evWq3oegG1rG/ve//x233norFi1apNk2/YnW7U4LxWBwHdh5H56w2JUTSo5iMLS78aUsg8HwiQcffBAPPvig3oehG8HmKDIYDHlCSSgGA8xRZBiWli1b6n0IusFi1w76phIMQpG1fXjCYldOKAnFYGh3JhQZhsVms+l9CLrBYteOYHMUWduHJyx25YiJwmCo9RMjGNqdCUWGYamtrdX7EHSDxa4dwVajyNo+PGGxKyeUHMVgaHcmFBmGJSIiQu9D0A0Wu3YEm6PI2j48YbErJ5SEYjC0OxOKDMOSkpKi9yHoBotdO4JNKLK2D09Y7MoJpelxgqHdmVBkGJaLFy/qfQi6wWLXDvqmEgyuA2v78ITFrpxQchSDod2ZUGQwGCFNsDmKDAZDnlASisEAE4oMwxIXF6f3IegGi107gk0osrYPT1jsygkloRgM7c6EIsOwREdH630IusFi145gE4qs7cMTFrtyQqlGMRjanQlFhmG5cuWK3oegGyx27Qi26XFY24cnLHblhJKjGAztzoQig8EIaYJtZRYGgyFPKAnFYIAJRYZhadGihd6HoBssdu0IttQza/vwhMWunFASisHQ7kwoMgxLVVWV3oegGyx27Qi21DNr+/CExa6cUKpRDIZ2Z0KRYVhqamr0PgTdYLFrR7A5iqztwxMWu3LEHviC4SFQjGBodyYUGYbFbA7f05PFrh3BJhRZ24cnLHblhFLqORjaPTi9Woam2O12rFy5EocOHUJlZSXat2+P6dOno3v37roeV+vWrXXdv56w2LUj2AazsLYPT1jsygkloRgM7W58KcvwOw6HAykpKXj99dexc+dOjB8/HvPmzUN1dbWux1VQUKDr/vWExa4dwVajyNo+PGGxKyeUahSDod2ZUGQgNjYWWVlZsFqtMJvNGDZsGCwWC/Lz83U9LpfLpev+9YTFrh3BlnpmbR+esNiVE0qOYjC0e3BKcBW899572LBhA9LT0/Huu+/KfvbIkSOYOXOm6Htr165Ft27dvPqs1lRXV+PDDz9EXl4ejh8/DpvNhnnz5uHOO+8U/bzdbsdbb72FL7/8EjabDR07dsSjjz6Kfv36iX4+Pz8fNpsNbdq08VsMSmjSpImu+9cTFrt2pKenc39fd911mm7bH7C2D09Y7MoJJaEYDO0e0kKxuLgYmzZtQmxsrKrvjR07Fl27duW9JiWa1HxWK8rLy7Fx40ZYrVZ06tQJR44ckf380qVL8fXXX2P8+PFIS0vDrl27MGfOHKxevRo9e/bkfbaurg6LFy/GpEmTEB8f788wPKK23UIJFrt2ZGVloaysDO3bt0enTp003bY/YG0fnrDYlRNKQjEY2j2kheKaNWuQkZEBp9OJ8vJyxd/r1asXhgwZovlnCTabDYcPH8bgwYNF38/JycGAAQMkT6Dk5GRs27YNycnJOHHiBKZMmSK5r7y8POzZswdTp07FAw88AAAYMWIEsrKysHbtWqxdu5b7bENDA1544QW0adMGWVlZqmLyB6Wlpbq7mnrBYtcu9ri4ODz33HOabc/fsLZnsYcbamMPpRrFYGj3kK1RzM3Nxb59+zBjxgyvvl9dXY2GhgbNPwsA27Ztw/z587F//36393bs2IGFCxdi9+7dkt+PiopCcnKyon3t27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAgA4HQ6sXjxYphMJmRnZ8NkMimOh8FgMBiMQBFKjmIwEJwS3AMOhwOrV6/GqFGj0LFjR9XfX7p0KWpqahAREYGePXti6tSpuOGGG3z+LGHixIk4fvw4Fi5ciJdffhk33XQTgEZRt2LFCgwfPhxjxoxRfdxinDp1CmlpaYiLi+O9TtLlp0+fhtVqxfLly1FaWorly5cb5slMqRgORVjs4Us4x89iD0/Uxh5KQjEY2t0YikBjPv30UxQVFWHVqlWqvmexWDB48GD0798fiYmJOHfuHDZv3ozp06djzZo16PL/tXfnUU3d6RvAHwQJCCqIggsWQawVxWVEbS0oWGpdTq0Wl7ocD1oc6wbTal2YcUWrtqjHnlqstdZhxtal1nGnSo/VkW7aYnUArdaqKGFJBCSQAAn394eH/IgJSGIwubnP5xzOKd978837cDF9ueuzz1q0rqn3WbVqFd59910kJiZiy5YtUKvVSEpKwqBBg7B06VKr7dFTKpUmfxFrxxQKBfLz83Hs2DG4uroa7Hl8//330adPH5PzpqenIz09HSqVyip1mqLRaODm5tZk89szZpdmdkDa+Zmd2RvDkQ49i2G7i/Mn24DS0lLs2rUL06dPh5eXl1mvDQ0NRWhoqP778PBwREZGYsaMGdixYweSk5MtWtcUmUyG9evXIyEhAYsXL0Z1dTV69OiB1atXW/UXvrKy0uRfWrX/0CorK9G+fXuTh8EbEh0djejoaFy7dg2zZs2ySq2PKi8vN3sbOgpm97J1GTYj5fzM7mXrMmzC3OyOtEdRDNvd4c5R3LlzJ1q2bImYmBirzOfv74/w8HBkZmZCp9NZbV3g4Un2c+fOxYMHD6BWq7FgwQLIZDKr1F1LJpOhurraaLyqqkq/nIiISCwcqVEUA4dqFHNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDggdnz+vr6orq6GhqNxqrr5uXlISkpCc888wzat2+P5cuXQ6FQmF1fQ3x8fKBUKo3Ga8fatm1r1fezJnu/EqwpMbt0STk/s0uTudlNNYVibRTFsN0dqlFUKBSoqanB1q1bMWnSJP1XdnY2cnNzMWnSJOzevdvsefPy8uDq6tqo+x01dl2FQoF33nkHLi4u2Lx5MzZt2gSNRoOFCxda1MzWJzg4GHfv3kV5ebnBeHZ2tn65vZLL5bYuwWaYXbqknJ/Zpcnc7M7OzmjWzLB9Ees5imLY7uL8ydYjMDAQ69atMxrfuXMnKioqEB8fj44dOwJ4eAJpQUEBWrdurT8/oKSkxOhcgRs3biAjIwODBg0y+MU0Z91HlZWVYdGiRVCr1fjoo4/g6+sLAEhOTkZCQgKWLFmCzZs3W+VGnJGRkdi7dy+OHDmiv49iVVUVTpw4gZCQEPj5+T3xezSVmpoaW5dgM8wuXVLOz+zSZEl2V1dXgyN3Yt2jKIbt7lCNopeXFyIiIozGDxw4AAAGy3JycpCQkIDY2FjMnDkTALBy5UrIZDL06tUL3t7euHXrFo4ePQo3NzfMnj3bYE5z1n3UoUOHUFhYiA8//BCdO3fWj3fr1g0bNmzAwoULkZaWhnHjxtU7x8GDB6FSqfSHkDMyMlBYWAjg4dNiap+qEhISgqioKOzYsQMlJSXo1KkT0tLSkJ+fjyVLljRYp62J4Y71TYXZpUvK+ZldmizJ7iiNohi2u0M1ik8qIiICp0+fxv79+/VXIg0ZMgSxsbHw9/e3eN1HTZkyBREREQbPoK3Vu3dvbN++HUFBQQ3OsW/fPuTn5+u/P3funP7K5eHDhxs8fi8xMRF+fn745ptvoFKpEBQUhI0bN6Jv376P+5HY1KP3fpQSZpcuKedndmmyJPujF7SItVEUw3Z3EgRBsHURJF61t8f59NNP0b17d6vOfe/ePVGc6NsUmF2a2QFp52d2Zm+sTp06IS8vT/+9UqlEmzZtrF1akxPDdneoi1mIiIjI8TnKHkUxYKNIdkuMfx1aC7NLl5TzM7s0WZLdURpFMWx3Nopkt2pvCi5FzC5dUs7P7NJkSXZHaRTFsN3ZKJLdasrnSNs7ZpcuKedndmmyJPujjWJDt6SzZ2LY7uL8yRIREZFk1W0UmzdvDicnJxtW49jYKJLdqr05uhQxu3RJOT+zS5Ml2R9tFMVKDNudjSLZrYKCAluXYDPMLl1Szs/s0mRJ9rrNoZgbRTFsdzaKZLd0Op2tS7AZZpcuKedndmmyJHvdPYpifc4zII7tzkaR7Jabm5utS7AZZpcuKedndmmyJLujHHoWw3Zno0h2q2XLlrYuwWaYXbqknJ/ZpcmS7I7SKIphu7NRJLtVVFRk6xJshtmlS8r5mV2aLMnuKIeexbDd2SgSERGRqDjKHkUxYKNIdsvb29vWJdgMs0uXlPMzuzRZkt1RGkUxbHc2imS3tFqtrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbpWVldm6BJthdumScn5mlyZLsjvKOYpi2O5sFImIiEhUHGWPohiwUSS71aFDB1uXYDPMLl1Szs/s0mRJdkdpFMWw3dkokt0Sw20DmgqzS5eU8zO7ND3p7XHE3CiKYbuzUSS7JYaTfJsKs0uXlPMzuzQ96cUsYj5HUQzbnY0i2S2ZTGbrEmyG2aVLyvmZXZosyV53L6KY9yiKYbuzUSS75eXlZesSbIbZpUvK+ZldmizJ7iiHnsWw3dkokt0qKCiwdQk2w+zSJeX8zC5NlmR3lEZRDNudjSIRERGJiqOcoygGbBTJbrVu3drWJdgMs0uXlPMzuzRZkt1R9iiKYbuzUSS7JQiCrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbj148MDWJdgMs0uXlPMzuzRZkt1RGkUxbHc2ikRERCQqPEfx6WGjSHarffv2ti7BZphduqScn9mlyZLsjrJHUQzbnY0i2S2lUmnrEmyG2aVLyvmZXZosyd6vXz+0atUKABAZGWnlip4eMWx37q8lu1VdXW3rEmyG2aVLyvmZXZosyd6qVSv88ccfKCwsREhISBNU9XSIYbuzUSS7VffQgtQwu3RJOT+zS5Ol2du2bYu2bdtauZqnSwzbnY0ioaqqCps3b8bFixehUqnQpUsXzJ8/H7169bJpXW3atLHp+9sSs0uXlPMzuzQxu33jOYoEnU6H9u3bY9u2bThx4gQmTJiAZcuWoaKiwqZ15efn2/T9bYnZpUvK+ZldmpjdvrFRJLi7uyM2NhZ+fn5o1qwZXnrpJbi4uCA3N9fWpREREZENifLQc2pqKnbu3InAwED885//bHDdzMxMJCQkmFyWkpKCnj176r/PyclBWloaMjMzkZ+fj1atWqFnz56Ii4tD586dLZ7X2ioqKrB3715kZ2cjJycHZWVlWLZsGUaOHGm0blVVFT777DOcOnUKZWVl6Nq1K+Li4jBgwIB658/NzUVZWRk6derUZBkao/aKNilidumScn5mlyZmt2+iaxQLCwvx73//G+7u7ma9LiYmBj169DAYe7QR+uKLL3DlyhVERUWha9euUCqVOHToEOLi4pCSkoKgoCCL5rW20tJS7N69G35+fggODkZmZma9665fvx7fffcdJkyYAH9/f5w8eRKLFy/G1q1b0bt3b6P1KysrsXbtWkydOhWenp5NGeOxnJycbPr+tsTs0iXl/MwuTcxu30TXKH788ccICQlBTU0NSktLG/26Pn36PPZeSxMnTsSKFSsMbt45bNgwzJgxA3v27MHy5cstmreusrIy/Prrrxg6dKjJ5enp6XjxxRcbbIR9fHxw6NAh+Pj44OrVq/jrX/9qcr3s7Gx8++23mDNnDiZPngwAeOWVVxAbG4uUlBSkpKQYrK/VarFixQp06tQJsbGxjc7UVEpLS23erNoKs0szOyDt/MzO7FIjhuyiOkfx0qVLOHv2LBYsWGDR6ysqKqDVautdHhoaanSH986dO6NLly64ffu2xfPWdejQIaxatQrnzp0zWnbs2DGsWbMGaWlpDc7h6uoKHx+fx77X2bNn4ezsjDFjxujHZDIZRo8ejaysLBQUFOjHa2pqsHbtWjg5OSExMVEUf+UQERFR0xLNHkWdToetW7di9OjR6Nq1q9mvX79+PdRqNZydndG7d2/MmTMHzz333GNfJwgCiouL0aVLF6vMO2XKFOTk5GDNmjXYuHEj+vfvD+BhU7dp0yYMHz4cY8eONTufKdevX4e/vz88PDwMxmsPld+4cQN+fn4AgOTkZCiVSiQnJ9vNczNra5MiZpcuKedndmlidvtmHx1BIxw+fBgFBQXYsmWLWa9zcXHB0KFD8fzzz6N169a4desW9u3bh/nz5+Pjjz/Gs88+2+DrT58+jaKiIsycOdMq87q4uGDVqlV49913kZiYiC1btkCtViMpKQmDBg3C0qVLrbY3T6lUmtzzWDumUCgAPLw8/9ixY3B1dTXY+/j++++jT58+JudOT09Heno6VCqVVWo1paSkRPQ3U7UUs0szOyDt/MzO7FIjhuyiaBRLS0uxa9cuTJ8+HV5eXma9NjQ0FKGhofrvw8PDERkZiRkzZmDHjh1ITk6u97W3b9/Gli1b0LNnT4wYMcJq88pkMqxfvx4JCQlYvHgxqqur0aNHD6xevdqqe/MqKytNPiy99k7wlZWVAB4+lNzUofCGREdHIzo6GteuXcOsWbOevFgTauuTImaXLinnZ3ZpYnb7JopzFHfu3ImWLVsiJibGKvP5+/sjPDwcmZmZ0Ol0JtdRKpVYsmQJPDw8kJSUBGdnZ6vMW8vDwwNz587FgwcPoFarsWDBAshkMovy1Ecmk5l8jmRVVZV+uT0z1eRKBbNLl5TzM7s0Mbt9s/tGMTc3F0ePHsX48eOhUCggl8shl8tRVVUFrVYLuVyOBw8emD2vr68vqqurodFojJapVCosXrwYKpUKycnJZu0WbmjeuvLy8pCUlIRnnnkG7du3x/Lly/WHgq3Fx8cHSqXSaLx2zN53d9t7fU2J2aVLyvmZXZqY3b7ZfaOoUChQU1ODrVu3YtKkSfqv7Oxs5ObmYtKkSdi9e7fZ8+bl5cHV1dXoNjSVlZVYunQpcnNzsWHDhnovYjF33kczvfPOO3BxccHmzZuxadMmaDQaLFy40KKmtz7BwcG4e/cuysvLDcazs7P1y+2ZXC63dQk2w+zSJeX8zC5NzG7f7P4cxcDAQKxbt85ofOfOnaioqEB8fDw6duwIANBoNCgoKEDr1q315zKWlJQYndd448YNZGRkYNCgQWjW7P97ZZ1Oh1WrViErKwvvvfceevXqVW9d5sxbV1lZGRYtWgS1Wo2PPvoIvr6+AB5edZyQkIAlS5Zg8+bNZt9Q3JTIyEjs3bsXR44c0d9HsaqqCidOnEBISIhVrraqPb+iodsHWaqoqKhJL5axZ8wuzeyAtPMzO7NLjT1kDwgIgJubW73L7b5R9PLyQkREhNH4gQMHAMBgWU5ODhISEhAbG6u/SnnlypWQyWTo1asXvL29cevWLRw9ehRubm6YPXu2wZzbtm1DRkYGBg8ejLKyMpw6dcpg+fDhw/X/bc68dR06dAiFhYX48MMPDR4L2K1bN2zYsAELFy5EWloaxo0b1+DP5eDBg1CpVPrDyBkZGSgsLATw8Gkxnp6eCAkJQVRUFHbs2IGSkhJ06tQJaWlpyM/Px5IlSxqcv7FqH2i+du1aq8xHRERET8+nn36K7t2717vcSRAE4SnWYzXx8fEoLS01eNZz7fOX6zaKX331FU6fPo179+6hvLwcXl5e6N+/P2JjY+Hv728056VLl+p9z7pXBpszb11arRa5ubkIDAw0ufyPP/5AUFDQY2+RM3HiRH2T9qh9+/ahQ4cOAB7u8at91rNKpUJQUBDi4uIwcODABudvrJKSEvz888/o0KGD/mpqa7h9+zbWrl2Lf/zjHwgICLDavGLA7NLMDkg7P7MzO7Pbhuj3KNbnww8/NBrr16+f0W1exo8fj/Hjx1s8Z33MmbcuFxeXeptEAI2+mfj+/fsbtZ5MJsPcuXMxd+7cRq1vLi8vL4M9rdYWEBDQ4F86jozZpZkdkHZ+Zmd2qbH37HZ/MQsRERER2QYbRSIiIiIyiY0i2SUfHx/ExsaafASho2N2aWYHpJ2f2ZldasSSXbQXsxARERFR0+IeRSIiIiIyiY0iEREREZnERpGIiIiITGKjSEREREQmifaG2+SYqqqq9E+SKSsrQ9euXREXF4cBAwbYurTHqqiowN69e5GdnY2cnByUlZVh2bJlGDlypNG6t27dwkcffYQrV67AxcUFL7zwAubPn2/0/PCamhrs3bsX//nPf3D//n34+/tj2rRpiI6OtnjOppCTk4O0tDRkZmYiPz8frVq1Qs+ePREXF2fwqEpz6hRL9j///BOff/45rl27hvv378PNzQ0BAQGYPHkyXnzxRYvqFEv2R6WmpmLnzp0IDAw0eGoWAFy5cgXbt2/H77//Dg8PD0RFRWHWrFlo0aKFwXrmfAY0ds6mUPskMFNSUlLQs2dPs+sUS/Za165dw+eff44rV66gqqoKHTt2xKuvvmrwMApHzP7ee+8hLS2t3uUHDx5Eu3btzKrVnvPzqmeyK6tXr8Z3332HCRMmwN/fHydPnsTVq1exdetW9O7d29blNUgul2PSpEnw8/NDx44dkZmZabJRLCwsxJtvvglPT0/ExMRArVZj79698PPzwyeffILmzZvr1/3kk0+wZ88evPrqq3juuedw/vx5/PDDD1i5ciVeeukli+ZsCsuXL8eVK1cQFRWFrl27QqlU4tChQ1Cr1UhJSUFQUJDDZv/hhx9w8OBB9OzZE23btoVGo8HZs2dx+fJlLFq0CGPGjHHY7HUVFhZi2rRpcHJyQvv27Q0axevXr2POnDkICAjAmDFjUFhYiH379qFfv3744IMPDOZp7GeAOXM2hdpGMSYmBj169DBYNnDgQH2j7ojZAeDnn3/GsmXL0K1bNwwbNgzu7u64d+8eBEHAnDlzHDr7//73P+Tl5RmMCYKATZs2oX379khNTTW7VrvOLxDZiaysLCEiIkL44osv9GMajUZ44403hLfeesuGlTVOZWWloFAoBEEQhJycHCEiIkI4ceKE0XqbNm0SoqOjhfz8fP3YhQsXhIiICOHw4cP6scLCQiEqKkrYvHmzfqympkaYN2+e8PrrrwtardbsOZvK5cuXhaqqKoOxO3fuCC+99JKwZs0as+sUU3ZTtFqtMGPGDGHq1Kn6MUfPvnLlSiEhIUFYsGCBMH36dINlixYtEsaOHSuoVCr92NGjR4WIiAjhp59+0o+Z8xnQ2Dmbyq+//ipEREQIZ86caXA9R8yuUqmE1157TUhMTBR0Ol296zli9vr89ttvQkREhJCamqofc5T8PEeR7MbZs2fh7Oys3wMDPHxW9ejRo5GVlYWCggIbVvd4rq6ujbpx6tmzZzF48GD4+fnpx8LCwtC5c2ecOXNGP3b+/HlotVqMGzdOP+bk5ISxY8eiqKgIWVlZZs/ZVEJDQ432XnXu3BldunTB7du3za5TTNlNcXZ2hq+vL1QqlX7MkbNfunQJZ8+exYIFC4yWlZeX4+LFixg+fDg8PDz046+88grc3d0N6mzsZ4A5cz4NFRUV0Gq1RuOOmj09PR3379/HrFmz0KxZM6jVatTU1Bis46jZ65Oeng4nJyf96SGOlJ+NItmN69evw9/f3+AfAAD9YZ0bN27YoiyrKioqQnFxsckHwPfo0QPXr1/Xf3/9+nW4u7sjICDAaL3a5ebO+TQJgoDi4mK0bt0agONnV6vVKCkpwb1797B//3789NNP+Mtf/mJ2nWLLrtPpsHXrVowePRpdu3Y1Wn7z5k3odDqjOps3b45u3boZZW/MZ4A5cza19evXY8SIEXj55ZeRkJCAq1ev6pc5avaLFy/Cw8MDCoUCU6dOxSuvvIKRI0di06ZNqKysNLtOMWU3RavV4syZM+jVqxc6dOgAwLHys1Eku6FUKk3ukasdUygUT7skq1MqlQBQb84HDx6gqqpKv663tzecnJyM1gP+/+dhzpxP0+nTp1FUVIRhw4YBcPzs27Ztw5gxYzB58mR8/PHHiIiIwNtvv212nWLLfvjwYRQUFCAuLs7k8sfVWfffdWM/A8yZs6m4uLhg6NChiI+Px3vvvYc333wTN2/exPz58/H777+bXaeYst+9exc6nQ6JiYkYOHAgkpKSMGrUKBw+fBgbNmwwu04xZTfl559/RmlpKV5++WX9mCPl51XPZDcqKytNnnzv6uqqXy52tRkel9PV1bXRPw9z5nxabt++jS1btqBnz54YMWKE2XWKMfuECRMQGRkJhUKBM2fOQKfTobq62uw6xZS9tLQUu3btwvTp0+u9yvpxddZtZq2V/Wk0yKGhoQgNDdV/Hx4ejsjISMyYMQM7duxAcnKyw2ZXq9XQaDR47bXX9Fd+Dx06FNXV1Thy5AhmzpzpsNlNSU9Ph4uLC6KiovRjjpSfexTJbshkMv3/WOuq/eWXyWRPuySrq83QmJyN/XmYM+fToFQqsWTJEnh4eCApKQnOzs5m1ynG7AEBAQgLC8OIESOwceNGqNVqLF26FIIgOGz2nTt3omXLloiJial3ncfVWbeRtVb2p/lHUV3+/v4IDw9HZmYmdDqdw2avraHuFfgA9OfnZWVlOWz2R1VUVOD8+fMYOHCg/jQbwLF+79kokt3w8fHR71qvq3asbdu2T7skq6s9ZFBfzlatWun/sfv4+OD+/fsQHrmD1aM/D3PmbGoqlQqLFy+GSqVCcnKywTZz9OyPioyMxNWrV5Gbm+uQ2XNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDgwWPrfPR3pDGfAebM+bT5+vqiuroaGo3GYbPX1tCmTRuDcW9vbwBAWVmZw2Z/1Pnz56HRaAwOOwPm1Wrv+dkokt0IDg7G3bt3UV5ebjCenZ2tXy527dq1g5eXF65du2a0LCcnxyBjcHAwNBqNwVXDgPHPw5w5m1JlZSWWLl2K3NxcbNiwAV26dDFY7sjZTak9TKRSqRwyu0KhQE1NDbZu3YpJkybpv7Kzs5Gbm4tJkyZh9+7dCAwMhLOzs1Gd1dXVuH79ulH2xnwGmDPn05aXlwdXV1e4u7s7bPbaiymKiooMxmvPkfPy8nLY7I86ffo03N3djW6u70j52SiS3YiMjIROp8ORI0f0Y1VVVThx4gRCQkIMbgEiZkOHDsX3339vcLufX375Bbm5uQbnuISHh8PFxQWHDh3SjwmCgMOHD6Ndu3bo1auX2XM2FZ1Oh1WrViErKwurV682qK0uR8xeXFxsNKbVavHNN99AJpPpG2ZHyx4YGIh169YZfQUGBsLPzw/r1q3D6NGj4enpibCwMJw6dQoVFRX613/zzTdQq9UGdTb2M8CcOZtKSUmJ0diNGzeQkZGBAQMGoFmzZg6bvfY9jh8/bjB+/PhxODs7o1+/fg6bva6SkhJcvHgRQ4YMgZubm8EyR8rPi1nIboSEhCAqKgo7duxASUkJOnXqhLS0NOTn52PJkiW2Lq9RDh48CJVKpT80kJGRgcLCQgBATEwMPD09MW3aNHz33Xf429/+hvHjx0OtVuPLL79EUFCQwVNcfH19MWHCBHz55ZfQarXo0aMH/vvf/+Ly5ctYvny5/tw/AI2es6ls27YNGRkZGDx4MMrKynDq1CmD5cOHDzerTjFlT05ORnl5Ofr06YN27dpBqVTi9OnTuHPnDubNm6d/rJajZffy8kJERITR+IEDBwDAYFlcXBzmzZuHBQsWGDxNYsCAARg0aJB+PXM+Axo7Z1NZuXIlZDIZevXqBW9vb9y6dQtHjx6Fm5sbZs+e7dDZn332WYwaNQonTpyATqdD3759cenSJZw5cwbTpk3THwJ1xOx1ffvtt9DpdEaHnc2t1d7z8xF+ZFcqKyv1z7tUqVQICgpCXFwcBg4caOvSGmXixInIz883uWzfvn36e2z9+eefRs/nnTdvntE5PzU1Nfjiiy9w5MgRKJVK+Pv7Y+rUqfrGq67GztkU4uPjcenSpXqXnzt3zuw6xZL922+/xfHjx3Hz5k2UlpaiRYsW6N69O15//XWEh4dbVKdYspsSHx+P0tJSo2c9X758Wf982hYtWiAqKgqzZ882ej6tOZ8BjZ2zKXz11Vc4ffo07t27h/Lycnh5eaF///6IjY2Fv7+/RXWKJTvwcK/5v/71L5w8eRIKhQJ+fn4YN24cJk6caFGdYspea86cOcjLy8PXX39t8AecJbXac342ikRERERkEs9RJCIiIiKT2CgSERERkUlsFImIiIjIJDaKRERERGQSG0UiIiIiMomNIhERERGZxEaRiIiIiExio0hEREREJrFRJCIiIiKT2CgSEYlMfHw8hgwZYusyHuvkyZMYMmSI/mvVqlUWzbN9+3aDeXbt2mXdQomoXi62LoCISMrMbfjqPjdbLMLDwxEcHIygoCCLXh8WFgZXV1fk5+cjLS3NytURUUPYKBIR2VBsbKzR2FdffQWVSmVyGQD8/e9/h0ajadrCrCgiIgIjR460+PVhYWEICwtDZmYmG0Wip4yNIhGRDc2cOdNoLC0tDSqVyuQyAPDz82vqsoiIALBRJCISnfj4eFy6dMngMPTJkyexfv16LFu2DK1atUJqaipu3ryJli1bYtSoUZg5cyaaNWuGkydPYv/+/cjNzYWXlxdiYmIwefJko/cQBAEnTpzA8ePHcfPmTeh0OnTp0gVjx47F6NGjrZJDoVBgz549+PHHH1FUVARXV1e0adMGffv2xVtvvQVPT0+rvA8RWY6NIhGRAzl37hwuXLiAiIgIhIaG4ocffkBqaioEQYCnpydSU1MRHh6Ovn374ty5c0hJSYG3tzdGjBihn0MQBCQlJSE9PR3+/v6Ijo5G8+bNceHCBWzcuBG3bt3CvHnznqhOjUaDefPmIT8/HwMGDMCQIUNQXV0NuVyOU6dO4Y033mCjSGQH2CgSETmQn376Cdu2bUOPHj0APDy0PXnyZBw4cAAtWrTAZ599ho4dOwIA3njjDUyZMgV79+41aBSPHTuG9PR0jBo1CosWLYKLy8P/VVRXV2P58uXYt28foqOj0b17d4vr/OWXXyCXyzFhwgQsWLDAYFlFRYX+PYnItnh7HCIiBzJ8+HB9kwgALVq0wAsvvACNRoOxY8fqm0Tg4bmOoaGhuH37NrRarX7866+/hru7O95++22Dhq158+aYNWsWACA9Pd0q9cpkMqOxFi1awNXV1SrzE9GT4Z9sREQOJDg42GjMx8enwWU6nQ7FxcVo164dNBoNbt68ibZt22LPnj1G6+t0OgDAnTt3nqjOPn36wMfHB3v27MGNGzcwePBg9O3bFwEBAXBycnqiuYnIetgoEhE5EA8PD6MxZ2fnxy6r3aNYVlYGQRBQVFSE3bt31/s+T3p7Hk9PT2zfvh2fffYZvv/+e/z4448AAF9fX0ydOhXjxo17ovmJyDrYKBIRkV5tM9m9e3d8+umnTfpefn5+SExMRE1NDf744w9cuHABBw8exJYtW9CyZUtER0c36fsT0ePxHEUiItJr0aIFAgICcPv2bZSVlT2V92zWrBm6deuGKVOmYMWKFQCAjIyMp/LeRNQwNopERGRg/Pjx0Gg0+OCDD6BWq42W5+XlQS6XP9F7/Pnnn7h//77ReHFxMQDwYhYiO8FDz0REZGDMmDHIyspCWloarly5grCwMPj4+KC4uBh37txBdnY2VqxYgQ4dOlj8HhcuXEBKSgpCQ0PRuXNntGrVCnl5ecjIyICrqyvPUSSyE2wUiYjIgJOTExITE/H888/j2LFj+P7776FWq+Ht7Q1/f3/MnTsX/fv3f6L3GDhwIPLz8/Hbb7/h3LlzUKvVaNu2LYYNG4YpU6agS5cu1glDRE/ESRAEwdZFEBGR46n7WMGRI0c+8XyZmZlISEhAbGxsvc/BJiLr4jmKRETUpNavX48hQ4Zg1apVFr1++/btGDJkCBISEqxbGBE9Fg89ExFRkwgODkZsbKz++6CgIIvmCQsLM7i4pV+/fk9aGhE1Eg89ExEREZFJPPRMRERERCaxUSQiIiIik9goEhEREZFJbBSJiIiIyCQ2ikRERERkEhtFIiIiIjKJjSIRERERmcRGkYiIiIhMYqNIRERERCb9HxoZKDQ5ADtRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum(binned_data=\"binned_data.hdf5\", output_name=\"crab_spec\")\n", + "analysis.get_raw_lightcurve(binned_data=\"binned_data.hdf5\", output_name=\"crab_lc\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3: Combining multiple data files\n", + "\n", + "### Combining unbinned data\n", + "One way to combine data files is to first combine the unbinned data, and then bin the combined data. As a proof of concept, we'll combine the crab dataset 3 times, and as a sanity check we can then compare to 3x the actual data. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "adding unbinned_data.hdf5...\n", + "\n", + "\n", + "adding unbinned_data.hdf5...\n", + "\n", + "\n", + "adding unbinned_data.hdf5...\n", + "\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.combine_unbinned_data([\"unbinned_data.hdf5\",\"unbinned_data.hdf5\",\"unbinned_data.hdf5\"], output_name=\"combined_unbinned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bin the combined data file:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "analysis.get_binned_data(unbinned_data=\"combined_unbinned_data.hdf5\", output_name=\"combined_binned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get raw spectrum and light curve:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGIUlEQVR4nO3deXxU9b3/8fdkkpnsgSxkg2oBi8RWEIXaBQoaVBoFV6S1rfxaQpW6QIqx9FGt2vTKJTbicrWVS0tvHw+vINVqFUGDilRtUSt1QVCsUsiekGVClkkm8/uDZm7GhJDt5HwneT0fjz5qzpw55z1fhg+ffM/m8Pv9fgEAAECSFGZ3AAAAAJPQHAEAAHRBcwQAANAFzREAAEAXNEcAAABd0BwBAAB0QXMEAADQBc1RP7W0tOjAgQNqaWmxOwoAALAAzVE/HTp0SLm5uTp06JAl229oaLBkuwBGBmoEYD2aI8N4PB67IwAwGDUCsB7NkWESEhLsjgDAYNQIwHo0RwAAAF3QHBmmvr7e7ggADEaNAKwXbncAAABM4PP51NbWZncMDJLT6VR4eLgcDseAt0FzZJjU1FS7IwAwGDXCGo2NjTpy5Ij8fr/dUTAEoqOjlZ6eLpfLNaD30xwZpra2VikpKXbHAGAoasTQ8/l8OnLkiKKjo5WSkjKoGQfYy+/3y+v1qqqqSp988olOO+00hYX1/wwimiPDeL1euyMAMBg1Yui1tbXJ7/crJSVFUVFRdsfBIEVFRSkiIkKHDh2S1+tVZGRkv7dBc2SYiIgIuyMAMBg1wjr9nTHy+XzavXu3ysrKlJ6ertmzZ8vpdFqUDv0xkNmirmiODJOUlGR3BAAGo0aY4YknntDNN9+sI0eOBJaNHz9e9913ny6//HIbk2EocCm/YcrLy+2OAMBg1Aj7PfHEE7ryyiuDGiNJKikp0ZVXXqknnnjCpmRmqaur09q1a+2OMSA0R31UXFysn/zkJ3rggQfsjmIUr9er9evX68Ybb9T69es5HwLAiObz+XTzzTf3eFVb57KVK1fK5/MN2T7b29uHbFvD6WTNkcmfi+aoj7Kzs7V27VrdeOONlu4nPj7e0u0Ppfz8fEVHR2vVqlV68MEHtWrVKkVHRys/P9/uaMCIFUo1YiTavXt3txmjrvx+vw4fPqzdu3cPaj8Oh0M///nPNXPmTK1Zs0bvvvuuvv71r2vGjBnKyspSQUFBYN3MzEyVlpZKkhYvXqyvfvWrkqTW1lYlJSWptbU1aNsdHR264YYbNHXqVE2bNk1nn322Wlpa9Omnn2rMmDFavXq1zjzzTJ1xxhkqLi4OvG/Hjh36+te/rrPPPluzZs3SSy+9FHjtd7/7naZPn65p06bpnHPO0aeffqrrrrtOHo9H06dP1znnnCNJmjt3rm666SZ95Stf0QUXXBDYZ6fGxsagc78cDod++ctf6stf/rJOPfVU/elPf9Ldd9+tc845R6eddppefvnlQY3ziXDOkWEGexLZcMnPz1dhYWG35T6fL7B83bp1wx0LGPFCpUaMVGVlZUO6Xm+cTqfeeOMNSccfOLxz50653W41Nzfrq1/9qrKzs3Xuuefq/PPPV3Fxsb7zne/oH//4h8LDw9XQ0KA33nhDZ599ttxud9B2//GPf2jnzp16//33FRYWpvr6+sD9gOrr6zV16lTdc889+utf/6qFCxfq448/VlVVle644w7t2LFD8fHxOnjwoGbPnq1PP/1Ur7/+uu666y699tprSk9PV1NTkyTp17/+taZPn669e/cG7f/DDz/UK6+8ooiICH366acnHYfY2Fj97W9/086dO7Vo0SI9+OCDevPNN/X444/rlltuCYzRUKI5MkxdXZ1iYmLsjtErr9eroqKiXtcpKipSQUHBgG/ABaBnoVAjRrL09PQhXa833//+9wP/3dzcrBUrVmjv3r0KCwvT4cOHtXfvXp177rnKzs5WcXGxzjjjDE2bNk2pqal6+eWX9frrr+v888/vtt2JEyeqvb1d3//+9zVv3jzl5OQEmu7w8HAtXbpUknTuuecqIyNDb7/9tt577z0dPHhQc+bMCWwnLCxM//rXv/Tss8/qu9/9buAzR0dH9/q5vvOd7/Trqsurr75aknTOOefo2LFjWrJkiSRp1qxZ+uijj/q8nf6gOTLMI488oo0bN9odo1cej+ekx9N9Pp9SUlIUFxc3TKmOy8vLU15e3rDuE8DoMXv2bI0fP14lJSU9nnfkcDg0fvx4zZ49e9D7io2NDfz3T3/6UyUnJ+vtt99WeHi4Lr/8crW0tEg6ftrHmjVrlJWVpezsbKWmpqq4uFivv/66Hn744W7bTUhI0Hvvvaddu3bppZde0po1a/TKK68oPLznlsDhcMjv92v+/Pl69NFHh/RzhYeHB/170vmZuuq8T1HnbRK6/mzVeUs0R4bp6OhQSUmJ3TGGRENDgxoaGoZ9n8BINm7cOLsjjGpOp1P33XefrrzyykDT0KnzXJn169cP+f2OamtrNXXqVIWHh+vAgQN64YUXArM4GRkZSkhI0K9//Wu9+OKLSk5O1qpVq+TxeDRjxoxu26qqqpLT6dQFF1yg+fPna9euXdq3b5/OPPNMtbe36w9/+IOWLl2qPXv2qLS0VNOnT1d6erruvPNOvfPOOzrzzDMlSXv27NGsWbN0ySWXaOnSpbr++uuDDqvFx8erublZXq/3hEcR0tLS5Pf7tW/fPmVlZel//ud/hnTcBormyDAul0uZmZl2x+iVx+PpUxMSHx8/7DNHnKyKka6+vl7Jycl2xxjVLr/8cm3durXH+xytX7/ekvsc/exnP9N3v/td/f73v9ekSZN03nnnBb2enZ2tZ555RhMnTpR0vOk466yzejxH7fDhw8rNzVVbW5t8Pp++9rWvacGCBSopKQnMKk2bNk3t7e169NFHFRcXp7i4OD366KP64Q9/qKamJnm9Xp111ll69NFHNWfOHP385z/XhRdeKIfDIZfLpa1bt+qUU07R9773PZ155pmKjY3Vm2++2S1LeHi4HnjgAV188cVKSkrSlVdeOeRjNxAOP0/Z65cDBw4oNzdXGzZs0JQpU4Z8+yUlJcY3R16vV9HR0b0eWnM6nWpqauKcI2CIhUKNCDUtLS365JNP9PnPf75fj5oYaXfI/vTTTzV9+nTV1dXZHWXQBvpn2omZI8Oc6JivSVwul/Ly8nq8Wq1TXl4ejRFggVCoEaOF0+nU3Llz7Y4BC/C3zDChcj5B52X6RUVFQTNITqdTeXl5XMYPWCRUagRCz6mnnjoiZo2GAs2RYUpLS0NmynzdunUqKCjQQw89pI8//liTJk3SihUrmDECLBRKNSLUcJbJyNHR0TGo99McYVBcLpdWrlxpdwwAGLCIiAg5HA5VVVUpJSUl6A7NCC1+v19er1dVVVUKCwsb8C/rNEeGGe6ruwCEFmrE0HM6nRo/fryOHDnSpzs2w3zR0dH63Oc+N+A7ytMcGYaTLQH0hhphjdjYWJ122mlqa2uzOwoGyel0Kjw8fFAzgPwtM0xtbe1Jb70OYPSiRljH6XSG9KX4GDo8wRAAAKALmiPDpKSk2B0BgMGoEYD1aI4M4/F47I4AwGDUCMB6NEeG6emJxADQiRoBWI/myDCcDAigN9QIwHo0R4ZJS0uzOwIAg1EjAOtxKX8fFRcXq7i4WI2NjZbuhyduA+gNNQKwHs1RH2VnZys7O1sHDhxQbm6u3XEAAIBFOKxmmJiYGLsjADAYNQKwHs2RYdxut90RABiMGgFYj+bIMEePHrU7AgCDUSMA69EcAQAAdMEJ2YZJTk62OwJCkNfr1UMPPaSPP/5YkyZN0ooVK+RyueyOBQtQIwDrMXNkmGPHjtkdASEmPz9f0dHRWrVqlR588EGtWrVK0dHRys/PtzsaLECNAKzHzJFhmpub7Y6AEJKfn6/CwsJuy30+X2D5unXrhjsWLESNAKzHzJFhwsL4I0HfeL1eFRUV9bpOUVGRvF7vMCXCcKBGANZj5sgw6enpdkcIaUVFRSdtGEYKj8cjn8/X6zo+n08pKSmKi4sbplQnl5eXp7y8PLtjhCxqBGA9miPDlJaWKiMjw+4YIauhoUElJSV2xzBKQ0ODGhoa7I4RYFKWUESNAKxHc2QYv99vd4SQFh8fP2qeO+XxePrUaMTHxxs1cxQfH293hJBGjQCsR3NkmOjoaLsjhLTRdMjG6/UqOjq610NrTqdTVVVVXNY/glAjAOtxZp9hoqKi7I6AEOFyuU7aCObl5dEYjTDUCMB6NEeGqampsTsCQsi6det0yy23yOl0Bi13Op265ZZbuIx/BKJGANbjsBoQ4tatW6eCggLukA0AQ4TmyDBJSUl2R0AIcrlcWrlypd0xMAyoEYD1OKxmmJaWFrsjADAYNQKwHs2RYXhuEoDeUCMA69EcAQAAdEFzZJjRcgNDAANDjQCsR3NkmLKyMrsjADAYNQKwHs2RYTo6OuyOAMBg1AjAejRHhuHutwB6Q40ArEdzZJiYmBi7IwAwGDUCsB7NkWGqq6vtjgDAYNQIwHo0RwAAAF3QHBkmMTHR7ggADEaNAKw3apuj9957T9/4xjf0+9//3u4oQbxer90RABiMGgFYb1Q2Rx0dHXrwwQd1+umn2x2lm8bGRrsjADAYNQKwXrjdAezw5z//WVOnTuUZRQAAoBujZ46ampr029/+VqtXr1ZOTo7mzJmj5557rsd1vV6vHn74YV122WXKzs7WD3/4Q73xxhvd1quvr9fjjz+u73//+1bHH5CMjAy7IwAwGDUCsJ7RzVF9fb02bdqkQ4cOafLkyb2ue/fdd2vLli2aP3++brrpJoWFhSk/P1/vvPNO0HobNmzQVVddpbi4OCujD1hFRYXdEQAYjBoBWM/o5igpKUlPPvmkHn/8cV1//fUnXG/fvn3auXOnli9frhUrVmjhwoVav3690tLS9PDDDwfW+/DDD7V//35dfPHFwxF/QHw+n90RABiMGgFYz+hzjlwul5KSkk663q5du+R0OrVw4cLAMrfbrZycHD3yyCOqqKhQamqq9u7dq8OHD+uKK66QdPzERqfTqdLSUq1Zs8ayz9EfkZGRdkcAYDBqBGA9o5ujvvroo480fvz4brfVnzp1qiTp4MGDSk1N1cKFC3X++ecHXr///vuVnp6ua6655oTbrq6uVk1NTeDnQ4cODXH6YKYe7gNgBmoEYL0R0RzV1NT0OMPUuazzdvuRkZFBv3W53W5FRUX1Wmyefvppbdq0qdvyqqoqxcbGKj09XdXV1Wpra5Pb7daYMWMC5wQkJCTI7/eroaFBkpSWlqajR4/K6/UqIiJCSUlJKi8vlyTFx8fL4XDoo48+0rhx45Samqq6ujq1trYqPDxcKSkpKisrk3S8OIaHh6u2tlaSlJKSIo/Ho5aWFjmdTqWmpqq0tFSSFBsbK5fLpaNHj0qSkpOTdezYMTU3NyssLEzp6ekqKSmRdPyZTZGRkYFmMCkpSc3NzWpqapLD4VBGRobKysrU0dGhqKgoxcTEBMY2MTFRra2tgSsAMzMzVV5eLp/Pp8jISMXFxamqqkqSNHbsWLW3t8vj8Ug6foJpZWWl2tvb5Xa7lZCQoMrKSknSmDFj1NHRETSGNTU1amtrk8vl0tixY4PGWzp+rpokpaamqra29oTjHRYWprq6OknSuHHjVF9fHxjvcePGBcbwZOOdlpYWNIZut7vX8S4tLZXf71d0dLSioqKCxrulpSVoDHsbb6/XG7isOyMjQxUVFX0a7/T0dFVVVQXG+2Tf2a7jnZiY2O0723W8O7+zERERSk5ODvrOOp3OoPFuaGhQS0tLt/GOjY1VRERE0Hg3Njae8Dv72fFuamoK+s52He/o6Ohev7Ndxzs2NjZoDNva2oLGu/M7GxkZqfj4+KDvrM/nCxpvagQ1ghphRo3IzMxUXzj8fr+/T2vabP/+/Vq+fLnWrFmjBQsWBL22ZMkSTZgwQYWFhUHLS0tLtWTJEt1www1avHjxgPbb08xRQUGBNmzYoClTpgxom70pKSnp8x8egNGHGgFYb0TMHLndbrW1tXVb3nknWbfbPeBtJycnKzk5ecDv76+xY8cO274AhB5qBGA9o69W66ukpKSg2Z1OncuGs7kZrPb2drsjADAYNQKw3ohojiZPnqwjR450u+P1vn37Aq+His5jvgDQE2oEYL0R0RzNnTtXPp9PTz/9dGCZ1+vVtm3blJWVpdTUVBvTAQCAUGL8OUd//OMf1djYGDhE9uqrrwauUrjiiisUGxurrKwszZs3T4888ojq6uqUmZmp7du3q7y8XLfeeuuQ5CguLlZxcbHlD31MT0+3dPsAQhs1ArCe8VerLV68OHBZ4Gdt3rw5UChaW1u1ceNGPf/882psbNTEiRO1bNkyzZo1a0jzHDhwQLm5uZZdrdZ5w0oA6Ak1ArCe8TNHW7Zs6dN6brdbK1as0IoVKyxOZC1OtgTQG2oEYL0Rcc7RSDKY2w4AGPmoEYD1aI4MM2bMGLsjADAYNQKwHs2RYTpv0Q4APaFGANYz/pwjUwzX1WoAAMBeNEd9lJ2drezs7MDValbpfDAiAPSEGgFYj8NqhjH8zgoAbEaNAKxHc2SYhoYGuyMAMBg1ArAezREAAEAXNEeGSUtLszsCAINRIwDr0RwZpvMZcgDQE2oEYD2uVuuj4bqUv62tzdLtAwht1AjAejRHfTRcl/K7XC7Ltg0g9FEjAOtxWM0wiYmJdkcAYDBqBGA9miPDlJeX2x0BgMGoEYD1aI4AAAC6oDkyTHx8vN0RABiMGgFYj+bIMA6Hw+4IAAxGjQCsR3NkmPr6ersjADAYNQKwHpfy99Fw3ecIAADYy+HnEc/90nmfow0bNmjKlClDvv329naFh9OzAugZNQKwHofVDFNXV2d3BAAGo0YA1qM5Mkxra6vdEQAYjBoBWI/myDARERF2RwBgMGoEYD2aI8MkJyfbHQGAwagRgPVojgxTVlZmdwQABqNGANajOQIAAOiC5sgwcXFxdkcAYDBqBGA9miPDOJ1OuyMAMBg1ArAedxLro+G6Q3ZdXZ1iYmIs3QeA0EWNAKxHc9RH2dnZys7ODtwhGwAAjEwcVjPMuHHj7I4AwGDUCMB6NEeGaWhosDsCAINRIwDr0RwZpqWlxe4IAAxGjQCsR3NkGJ62DaA31AjAejRHhuF8AgC9oUYA1qM5MkxpaandEQAYjBoBWI/mCAAAoAuaI8PExsbaHQGAwagRgPVojgwTERFhdwQABqNGANajOTJMbW2t3REAGIwaAViPa0L7aLierQYAAOzl8Pv9frtDhJLOZ6tt2LBBU6ZMGfLte71euVyuId8ugJGBGgFYj8NqhmFmCkBvqBGA9WiODNPc3Gx3BAAGo0YA1qM5MkxYGH8kAE6MGgFYj79lhklPT7c7AgCDUSMA69EcGaakpMTuCAA+w+v1av369brxxhu1fv16eb1e27JQIwDrcSk/APQiPz9fRUVF8vl8gWWrV69WXl6e1q1bZ2MyAFahOTJMTEyM3REA/Ft+fr4KCwu7Lff5fIHlw90gUSMA63FYzTBut9vuCAB0/FBaUVFRr+sUFRUN+yE2agRgPWaODHP06FFlZmbaHQOwTFFR0UmbDhN4PJ6gQ2k98fl8SklJUVxc3DClkn7wgx/ozjvvHLb9AaMRzRGAYdXQ0DCiTipuaGhQQ0PDsO3P4/EM276A0YrmyDDJycl2RwAsFR8fHxKzox6Pp09NT3x8/LDOHKWlpQ3bvoDRiubIME1NTZxTgBEtLy9PeXl5dsc4Ka/Xq+jo6F4PrTmdTlVVVQ3rs85qa2uHbV/AaMUJ2YZpamqyOwIASS6X66RNXF5e3rA/BJYaAViPmaM+Ki4uVnFxseUPfXQ4HJZuH0DfdV6m/9n7HDmdTtvuc0SNAKzn8Pv9frtDhJIDBw4oNzdXGzZs0JQpU+yOA2AYeL1ePfTQQ/r44481adIkrVixYthnjAAMH2aODFNaWqqMjAy7YwDowuVyaeXKlXbHkESNAIYD5xwZhok8AL2hRgDWozkyTHR0tN0RABiMGgFYj+bIMBQ+AL2hRgDWozkyTHV1td0RABiMGgFYj+YIAACgC5ojwyQmJtodAYDBqBGA9WiODNPa2mp3BAAGo0YA1qM5MsyxY8fsjgDAYNQIwHo0RwAAAF3QHBkmMzPT7ggADEaNAKw3JM2Rx+PR9u3bh2JTo15ZWZndEQAYjBoBWG9ImqOKigqtXbt2KDY16nV0dNgdAYDBqBGA9fr04NmKiopeX+emZEMnKirK7ggADEaNAKzXp+Zo8eLFcjgcJ3zd7/f3+jr6LjY21u4IAAxGjQCs16fmKC4uTj/4wQ80ffr0Hl8/dOiQ7rjjjiGMNXpVVVVxwiWAE6JGANbrU3P0hS98QR6PR5///Od7fN3n88nv9w9pMAAAADv0qTm69NJL1dLScsLXU1NT9ZOf/GTIQo1mY8eOtTsCAINRIwDr9ak5mjNnTq+vx8XFacGCBUMSaLRra2uzOwIAg1EjAOv1qTmCVFxcrOLiYjU2Nlq6n8bGRiUkJFi6DwChixoBWG/A9zmaO3euDh8+PJRZjJadna21a9fqxhtvtDsKAACw0ICbI07AtkZGRobdEQAYjBoBWI9nqxmmsrLS7ggADEaNAKxHc2SY9vZ2uyMAMBg1ArAezZFhIiMj7Y4AwGDUCMB6NEeGiY+PtzsCAINRIwDr0RwZhvMJAPSGGgFYj+YIAACgiwE3R9/+9reZ3rXAmDFj7I4AwGDUCMB6A75D9g9/+MOhzIF/8/l8dkcAYDBqBGC9fs8ceb1eK3Lg3zwej90RABiMGgFYr9/N0WWXXaZ7771XBw4csCIPAACArfp9WM3r9epPf/qTnnrqKU2aNEk5OTmaP3++4uLirMg36qSnp9sdAYDBqBGA9fo9c/TUU08pLy9PU6ZM0cGDB3X//ffr8ssv11133aW33nrLioyjSnV1td0RABiMGgFYr98zR9HR0Vq0aJEWLVqkTz/9VM8++6xeeOEF7dy5Uy+++KLGjRunnJwcXXTRRUpNTbUi84jW1tZmdwQABqNGANZz+P1+/2A34vP59Nprr+nZZ5/Vnj175PP5FBYWpnPOOUc5OTn6+te/rvDwAV8YZ5QDBw4oNzdXGzZs0JQpU4Z8+9XV1UpOTh7y7QIYGagRgPWGpGNxOp2aPXu2Zs+eraNHj2rHjh3atm2b9uzZozfeeEPx8fF6+umnh2JXIx73MAHQG2oEYL0hv0N2YmKivvWtb+mOO+7Ql770Jfn9fjU0NAz1bkasiooKuyMAMBg1ArDekB7rampq0gsvvKBnn31WH374ofx+vyIjIzVv3ryh3A0AAIBlhqQ5+vvf/65t27Zp9+7dam1tld/vV1ZWlnJycnTeeecpOjp6KHYzKiQkJNgdAYDBqBGA9QbcHFVWVuq5557Tc889p/Lycvn9fo0ZM0YLFy5UTk6OTj311CGMOXoMwfnxAEYwagRgvX43Rzt37tS2bdv097//XR0dHQoLC9PMmTNH3FVpdmloaOCGmgBOiBoBWK/fncxdd90l6fhdWhcsWKAFCxZo3LhxQx4MAADADv1ujs4//3zl5OTo7LPPtiLPqJeWlmZ3BAAGo0YA1ut3c3T77bdbkQP/dvToUaWkpNgdA4ChqBGA9QZ9glB7e7ueeOIJFRcX61//+pdaW1v10ksvSZI++ugj/fnPf9ZVV12lCRMmDDrsaOD1eu2OAMBg1AjAeoNqjlpbW/XjH/9Y7733nhISEhQTE6OWlpbA6+np6dq2bZvi4uKUm5s76LCjQUREhN0RABiMGgFYb1B3yP7DH/6gd999V8uXL9ef/vQn5eTkBL0eGxur6dOn64033hhUyNEkKSnJ7ggADEaNAKw3qOboxRdf1FlnnaVvf/vbcjgccjgc3dbJyMgw7nb3hYWFuvTSS3XRRRfp2muv1auvvmp3pIDy8nK7IwAwGDUCsN6gDqtVVlZq9uzZva4TFRWlY8eODWY3Q27x4sW6+eab5XK59MEHHygvL0+PPfYYd54FAACDmzmKiopSXV1dr+uUlpYa13SccsopcrlckiSHw6G2tjZVV1fbnOq4+Ph4uyMAMBg1ArDeoGaOzjjjDL322mvyeDw93rG1oqJCf/3rX086u9SbpqYmPfbYY9q3b58++OADeTwerVmzRgsWLOi2rtfr1caNG/X888/L4/Fo0qRJWrZsmWbOnNlt3aKiIm3btk1er1fnnnuuJk6cOOCMQ6mnQ5MA0IkaAVhvUDNHS5Yskcfj0apVq/Tuu+/K5/NJklpaWvTWW29p9erV8vl8uvrqqwe8j/r6em3atEmHDh3S5MmTe1337rvv1pYtWzR//nzddNNNCgsLU35+vt55551u6+bl5WnHjh269957NXPmTGMKTn19vd0RABiMGgFYb1AzR9OnT9fKlSt1//3368Ybbwwsv+iiiyRJYWFhysvL05QpUwa8j6SkJD355JNKSkrS/v37tXz58h7X27dvn3bu3Knrr79e3/rWtyRJF154oZYuXaqHH35YDz/8cLf3OJ1OnX322Xr88cc1fvx4feUrXxlwTgAAMDIM+iaQl156qaZPn66nnnpKH3zwgRoaGhQTE6OpU6fqsssu0+c///lBbd/lcvXp0tVdu3bJ6XRq4cKFgWVut1s5OTl65JFHVFFRodTU1B7f6/P5VFJSMqicQ+VEGQFAokYAw2HQzZEknXrqqbr55ptP+LrP55PT6RyKXZ3QRx99pPHjxysmJiZo+dSpUyVJBw8eVGpqqhobG/X666/ra1/7mlwul3bv3q233377hDNS1dXVqqmpCfx86NAh6z6EpLq6OiUnJ1u6DwChixoBWG9QzdETTzyhyy+/vNd1fD6f7rzzTt11112D2dVJ1dTU9DjD1Lms82o0h8OhZ555Rvfee6/8fr8yMzN122236bTTTutxu08//bQ2bdrUbXlVVZViY2OVnp6u6upqtbW1ye12a8yYMYH7OiUkJMjv96uhoUHS8QdGHj16VF6vVxEREUpKSgrcsyQ+Pl4Oh0OHDx9Wa2urUlNTVVdXp9bWVoWHhyslJUVlZWWSpLi4OIWHh6u2tlaSlJKSIo/Ho5aWFjmdTqWmpqq0tFTS8RtxulwuHT16VJKUnJysY8eOqbm5WWFhYUpPTw/MmsXExCgyMjLQDCYlJam5uVlNTU1yOBzKyMhQWVmZOjo6FBUVpZiYmMC4JiYmqrW1NXDbhszMTJWXl8vn8ykyMlJxcXGqqqqSJI0dO1bt7e3yeDySjt8Lq7KyUu3t7XK73UpISFBlZaUkacyYMero6Agaw5qaGrW1tcnlcmns2LFB4y393zkZqampqq2tPeF4h4WFBa62HDdunOrr6wPjPW7cuMAYnmy809LSgsbQ7Xb3Ot6lpaXy+/2Kjo5WVFRU0Hi3tLQEjWFv4+31etXY2BgYw4qKij6Nd3p6uqqqqgLjfbLvbNfxTkxM7Pad7Trend/ZiIgIJScnB31nnU5n0Hg3NDSopaWl23jHxsYqIiIiaLwbGxtP+J397Hg3NTUFfWe7jnd0dHSv39mu4x0bGxs0hm1tbUHj3fmdjYyMVHx8fNB31ufzBY03NYIaQY0wo0ZkZmaqLxx+v9/fpzV7MHfuXN1xxx2aO3duj693dHTojjvu0CuvvKKXX355oLsJ6DznqKer1ZYsWaIJEyaosLAwaHlpaamWLFmiG264QYsXL+73PnuaOSooKNCGDRsGdS7VifR2+A8AqBGA9QY1c/SlL31JBQUFio+P14wZM4Je6+jo0J133qldu3addHZpKLjdbrW1tXVb3vmQRrfbPaDtJicnD+sUNk/bBtAbagRgvUFdyr927VpNmDBBP/vZz/TRRx8Flnd0dOgXv/iFXn75ZV166aW9no80VJKSkoJmeDp1LguVY/SdU4wA0BNqBGC9QTVHMTExuueeexQbG6tbbrklcJz0rrvu0osvvqhFixZp1apVQ5W1V5MnT9aRI0e6Papk3759gdcBAABOZlDNkXR8xuZXv/qVOjo69OMf/1g///nP9dJLL+niiy9WXl7eUGTsk7lz58rn8+npp58OLPN6vdq2bZuysrJC5hh9T3caB4BO1AjAekNyKf+ECRO0bt06rVy5Uq+88oouvvhi3XLLLUOxaUnSH//4RzU2NgYOkb366quBKxWuuOIKxcbGKisrS/PmzdMjjzyiuro6ZWZmavv27SovL9ett9466AzFxcUqLi4OnPlvlfDwIfkjATBCUSMA6/XrarWeLmnv6h//+IcOHjyoyy67TGFh/zcp5XA4dO211w445OLFiwOXBn7W5s2blZ6eLklqbW0NPFutsbFREydO1LJlyzRr1qwB7/uzDhw4oNzcXMuuVispKenzpYYARh9qBGC9fjVH3/jGNwa2E4djSC7lNwHNEQA7USMA6/Vrfva+++6zKgf+jct0AfSGGgFYr1/N0fTp0y2KgU4ej6dPz5IDMDpRIwDrDfpqNQytlpYWuyMAMBg1ArAelz300XBdrWb1A3oBhDZqBGC9QT1bbTSy+oRsv98vh8Mx5NsFMDJQIwDrcVjNMJ1PHQaAnlAjAOvRHAEAAHRBc2SY2NhYuyMAMBg1ArDeoJqjioqKbg96/aympiZVVFQMZjejisvlsjsCAINRIwDrDao5uvrqq7V169Ze19m6dauuvvrqwexmVDl69KjdEQAYjBoBWG9Ql/L7/X6d7GK3kXIx3HBdyg8AAOxl+X2OqqqqFB0dbfVuLJedna3s7OzApfxWSU5OtmzbAEIfNQKwXr+bo02bNgX9/Pbbb/e4XkdHhyorK7Vz505lZWUNKNxodOzYMbndbrtjADAUNQKwXr+bo9/97neB/3Y4HNq7d6/27t17wvWTk5N13XXXDSjcaNTc3Gx3BAAGo0YA1ut3c3TfffdJOn4u0cqVK7VgwQJddNFF3dYLCwtTfHy8Pve5zyksjDsG9BVjBaA31AjAev1ujqZPnx7476VLl+qss84KWobBSU9PtzsCAIOFYo3wer166KGH9PHHH2vSpElasWIFtySA0Qb1K8g555yjv/zlL6qpqenx9erqaj344IN6//33B7ObUaWkpMTuCAAMFmo1Ij8/X9HR0Vq1apUefPBBrVq1StHR0crPz7c7GnBCg2qONm/erFdffVVJSUk9vp6cnKzXXntNW7ZsGcxuAAAhKD8/X4WFhfL5fEHLfT6fCgsLaZBgrEFdyr9//36dffbZva4zbdo0vfnmm4PZjRGG6z5HMTExlm4fQGgLlRrh9XpVVFTU6zpFRUUqKCjgEBuMM6jmqK6u7qT33EhMTFRtbe1gdmOE4brPUWRkpGXbBhD6fvOb3+iBBx6wO8ZJeTyebjNGn+Xz+ZSSkqK4uLhhSiXl5eUpLy9v2PaH0DSo5ig2NlaVlZW9rlNRUaGoqKjB7GZUqampUWZmpt0xABiqoqIi5M476k1DQ4MaGhqGdX/AyQyqOcrKytIrr7yiZcuWKTU1tdvrFRUV2r17t2bMmDGY3QAA/i0uLi4kfoHyeDx9akTi4+OHdeYoPj5+2PaF0DWo5mjx4sV67bXX9KMf/UjLli3TOeeco+TkZFVXV+uNN97Qf//3f8vr9fLg2X440cntACBJa9as0Z133ml3jJPyer2Kjo7u9dCa0+lUVVUV5xzBOINqjqZPn64f/ehHeuihh7R27VpJx++a3fmwWYfDoRtvvJH7IPVDc3Mz5x0BOKFQqREul0t5eXkqLCw84Tp5eXk0RjDSoB88e9VVV2nGjBl66qmntH//fjU2Nio2NlZTp07VokWLNHHixKHIOWo0NTVp7NixdscAYKhQqhHr1q2TdPyqtK4zSE6nU3l5eYHXAdM4/J3TPOiTzqvVNmzYoClTpgz59ktLS5WRkTHk2wUwMoRijeAO2Qg1g545wtAKtaIHYHiFYo1wuVxauXKl3TGAPuMJhoYpKyuzOwIAg1EjAOsxc9RHw3WH7I6ODku3DyC0USMA69Ec9dFw3SGbG2YC6A01ArAeh9UMEyrPTQJgD2oEYD2aI8NUV1fbHQGAwagRgPVojgAAALqgOTJMYmKi3REAGIwaAViP5sgwra2tdkcAYDBqBGA9miPDHDt2zO4IAAxGjQCsR3MEAADQBc2RYTIzM+2OAMBg1AjAejRHhikvL7c7AgCDUSMA69EcGcbn89kdAYDBqBGA9Xh8SB8N17PVIiMjLd0+gNBGjQCsR3PUR8P1bLW4uDjLtg0g9FEjAOtxWM0wVVVVdkcAYDBqBGA9miMAAIAuaI4MM3bsWLsjADAYNQKwHs2RYdrb2+2OAMBg1AjAejRHhvF4PHZHAGAwagRgPZojAACALmiODJORkWF3BAAGo0YA1qM5MkxlZaXdEQAYjBoBWI/myDCcbAmgN9QIwHo0R4Zxu912RwBgMGoEYD2aI8MkJCTYHQGAwagRgPVojgzD+QQAekONAKxHcwQAANBFuN0BQkVxcbGKi4vV2Nho6X7GjBlj6fYBhDZqBGA9mqM+ys7OVnZ2tg4cOKDc3FzL9tPR0WHZtgGEPmoEYD0OqxmmoaHB7ggADEaNAKxHcwQAANAFzZFh0tLS7I4AwGDUCMB6NEeGqampsTsCAINRIwDr0RwZpq2tze4IAAxGjQCsR3NkGJfLZXcEAAajRgDWozkyzNixY+2OAMBg1AjAejRHhqmoqLA7AgCDUSMA69EcAQAAdEFzZBieuA2gN9QIwHo0RwAAAF3QHBmmvr7e7ggADEaNAKxHcwQAANAFzZFhUlNT7Y4AwGDUCMB6NEeGqa2ttTsCAINRIwDr0RwZxuv12h0BgMGoEYD1aI4MExERYXcEAAajRgDWozkyTFJSkt0RABiMGgFYj+bIMOXl5XZHAGAwagRgPZojAACALsLtDhAqiouLVVxcrMbGRkv3Ex8fb+n2AYQ2agRgPZqjPsrOzlZ2drYOHDig3Nxcy/YTFsZkHoATo0YA1uNvmWHq6ursjgDAYNQIwHo0RwAAAF3QHBlm3LhxdkcAYDBqBGA9miPD8MRtAL2hRgDWozkyTGtrq90RABiMGgFYj+bIMOHhXEAI4MSoEYD1aI4Mw/kEAHpDjQCsR3NkmNLSUrsjADAYNQKwHs0RAABAFzRHhomLi7M7AgCDUSMA69EcGYaTLQH0hhoBWI/myDC1tbV2RwBgMGoEYD2aIwAAgC5ojgyTkpJidwQABqNGANajOTKMx+OxOwIAg1EjAOvRHBmmpaXF7ggADEaNAKxHc2QYp9NpdwQABqNGANajOTJMWlqa3REAGIwaAViP5sgwJSUldkcAYDBqBGA9miMAAIAuaI4MExMTY3cEAAajRgDWozkyjNvttjsCAINRIwDr0RwZ5ujRo3ZHAGAwagRgPZojAACALmiODJOcnGx3BAAGo0YA1qM5MsyxY8fsjgDAYNQIwHrhdgcYbl6vV0VFRXrzzTfV2NioU089VTfccIO++MUv2h1NktTc3Gx3BAAGo0YA1ht1M0c+n09paWn6r//6L23btk1XXXWV1qxZo6amJrujSZLCwkbdHwmAfqBGANYbdX/LoqKitHTpUqWmpiosLEznn3++wsPDdfjwYbujSZLS09PtjgDAYNQIwHrGH1ZramrSY489pn379umDDz6Qx+PRmjVrtGDBgm7rer1ebdy4Uc8//7w8Ho8mTZqkZcuWaebMmSfc/uHDh+XxeJSZmWnlx+iz0tJSZWRk2B0DgKGoEYD1jJ85qq+v16ZNm3To0CFNnjy513XvvvtubdmyRfPnz9dNN92ksLAw5efn65133ulx/dbWVhUUFOiaa65RbGysFfH7ze/32x0BgMGoEYD1jG+OkpKS9OSTT+rxxx/X9ddff8L19u3bp507d2r58uVasWKFFi5cqPXr1ystLU0PP/xwt/Xb29t1++23KzMzU0uXLrXwE/RPdHS03REAGIwaAVjP+ObI5XIpKSnppOvt2rVLTqdTCxcuDCxzu93KycnR+++/r4qKisDyjo4OFRQUyOFw6Kc//akcDocl2QciKirK7ggADEaNAKxn/DlHffXRRx9p/Pjx3R7KOHXqVEnSwYMHlZqaKkm65557VFNTo3vuuUfh4b0PQXV1tWpqagI/Hzp0aIiTB6upqTHm/CcA5qFGANYbMc1RTU1NjzNMncuqq6slSeXl5XrmmWfkcrmCZpnWrVunadOmdXv/008/rU2bNnVbXlVVpdjYWKWnp6u6ulptbW1yu90aM2ZMYJYqISFBfr9fDQ0NkqS0tDQdPXpUXq9XERERSkpKUnl5uSQpPj5eDodDlZWVkqTU1FTV1dWptbVV4eHhSklJUVlZmSQpLi5O4eHhqq2tlSSlpKTI4/GopaVFTqdTqampKi0tlSTFxsbK5XIFnseUnJysY8eOqbm5WWFhYUpPT1dJSYmk40/7joyMDDSDSUlJam5uVlNTkxwOhzIyMlRWVqaOjg5FRUUpJiYmMK6JiYlqbW0N3KAuMzNT5eXl8vl8ioyMVFxcnKqqqiRJY8eOVXt7uzwejyQpIyNDlZWVam9vl9vtVkJCQmAcxowZo46OjqAxrKmpUVtbm1wul8aOHRs03tLx89Q6x7C2tvaE4x0WFqa6ujpJ0rhx41RfXx8Y73HjxgXG8GTjnZaWFjSGbre71/EuLS2V3+9XdHS0oqKigsa7paUlaAx7G2+v16vGxsbAGFZUVPRpvNPT01VVVRUY75N9Z7uOd2JiYrfvbNfx7vzORkREKDk5Oeg763Q6g8a7oaFBLS0t3cY7NjZWERERQePd2Nh4wu/sZ8e7qakp6Dvbdbyjo6N7/c52He/Y2NigMWxrawsa787vbGRkpOLj44O+sz6fL2i8qRHUCGqEGTWir79YOPwhdHbf/v37tXz58h6vVluyZIkmTJigwsLCoOWlpaVasmSJbrjhBi1evLjf++xp5qigoEAbNmzQlClTBvZBetHS0qLIyMgh3y6AkYEaAVhvxMwcud1utbW1dVvu9XoDrw9EcnLysD7LiMIHoDfUCMB6xp+Q3VdJSUlBMzydOpeFysMaeW4SgN5QIwDrjZjmaPLkyTpy5Ei3wrFv377A6wAAACczYpqjuXPnyufz6emnnw4s83q92rZtm7KysgJXqpmOq1AA9IYaAVgvJM45+uMf/6jGxsbAIbJXX301cKXCFVdcodjYWGVlZWnevHl65JFHVFdXp8zMTG3fvl3l5eW69dZbB52huLhYxcXFgTP/rVJWVsazkwCcEDUCsF5IXK22ePHiwKWBn7V58+ZAoWhtbQ08W62xsVETJ07UsmXLNGvWrCHLcuDAAeXm5lp2tVpJSQm/GQI4IWoEYL2QmDnasmVLn9Zzu91asWKFVqxYYXEi63D3WwC9oUYA1hsx5xyNFJ+9wzcAdEWNAKxHc2SYzrubAkBPqBGA9WiOAAAAugiJc45MMFxXqyUmJlq6fQChjRoBWI/mqI+ys7OVnZ0duFrNKl6vlxMuAZwQNQKwHofVDGP1zBSA0EaNAKxHcwQAANAFzZFhMjIy7I4AwGDUCMB6NEeGqaiosDsCAINRIwDr0RwZxufz2R0BgMGoEYD1uFqtj4brUv7IyEhLtw8gtFEjAOvRHPXRcF3KHxcXZ9m2AYQ+agRgPQ6rGaaqqsruCAAMRo0ArEdzBAAA0AXNkWHGjh1rdwQABqNGANajOTJMe3u73REAGIwaAViP5sgwHo/H7ggADEaNAKxHcwQAANAFl/L30XDd5yg9Pd3S7QMIbdQIwHrMHPVRdna21q5dqxtvvNHS/XCZLoDeUCMA69EcGYaTLQH0hhoBWI/myDBut9vuCAAMRo0ArEdzZJgxY8bYHQGAwagRgPVojgxTUVFhdwQABqNGANajOQIAAOiCS/kNk5CQYHcEAAajRmCgvF6vHnroIX388ceaNGmSVqxYIZfLZXcsI9EcGcbv99sdAYDBqBEYiPz8fBUVFcnn8wWWrV69Wnl5eVq3bp2NyczEYTXDNDQ02B0BgMGoEeiv/Px8FRYWBjVGkuTz+VRYWKj8/HybkpnL4efXkD7peofsd955Rxs2bNCUKVOGfD8lJSXKzMwc8u0CGBmoEegPr9er6Ojobo1RV06nU01NTRxi64LmqJ8OHDig3Nxcy5ojn88np9M55NsFMDJQIwanqKhIRUVFdscYNh6Pp0+zjfHx8YqLixuGRH2Tl5envLw82/bPOUeGqamp0bhx4+yOAcBQ1IjBaWhoUElJid0xjNPQ0GDUIVu7s9AcGaatrc3uCAAMRo0YnPj4+FF1WDJUZ47i4+Nt3T/NkWE45gugN9SIwbH7cM1w6+s5R1VVVXy3uuBqNcMkJibaHQGAwagR6A+Xy3XSZjAvL4/G6DNojgxTXl5udwQABqNGoL/WrVunW265pduJ/E6nU7fccgv3OeoBh9UAABjh1q1bp4KCAu6Q3Uc0R4ax+yQ0AGajRmCgXC6XVq5caXeMkMBhNcM4HA67IwAwGDUCsB7NkWHq6+vtjgDAYNQIwHo0RwAAAF1wzlEfdX22mpVSU1Mt3T6A0EaNAKzHzFEfZWdna+3atbrxxhst3U9dXZ2l2wcQ2qgRgPVojgzT2tpqdwQABqNGANajOTJMRESE3REAGIwaAViP5sgwycnJdkcAYDBqBGA9miPDlJWV2R0BgMGoEYD1uFqtnzqP9x86dMiS7VdVVVl+RRyA0EWNAAbnlFNOUWRkZK/r0Bz1U+dDHwsKCmxOAgAA+mvDhg2aMmVKr+s4/H6/f5jyjAh1dXXas2eP0tPT+/TAvgceeKDPl/8fOnRIBQUF+tnPfqZTTjllsFFHpf6Mt0lMyT0cOazYx1BtczDbGeh7qRHDy5S/awNhQvbhymBlnWDmyAJjxozRBRdc0Of1Y2NjT9qhftYpp5zS7/fguIGMtwlMyT0cOazYx1BtczDbGeh7qRHDy5S/awNhQvbhymB3neCEbItlZ2fbHWFUCdXxNiX3cOSwYh9Dtc3BbGeg7zXlz360COXxNiH7cGWwu05wWM0gBw4cUG5ubp+OhwIYfagRwPBg5sggSUlJWrp0qZKSkuyOAsBA1AhgeDBzBAAA0AUzRwAAAF3QHAEAAHTBpfwhxOv1qqioSG+++aYaGxt16qmn6oYbbtAXv/hFu6MBMERhYaFeffVVtbS0KDU1VcuXL9fXvvY1u2MBIYVzjkJIc3OzNm/erAULFiglJUUvvfSS1q9fr82bNys6OtrueAAMcOjQocBNaj/44APl5eXpscceU0JCgt3RgJDBYbUQEhUVpaVLlyo1NVVhYWE6//zzFR4ersOHD9sdDYAhTjnllMDd+x0Oh9ra2lRdXW1zKiC0cFjNQk1NTXrssce0b98+ffDBB/J4PFqzZo0WLFjQbV2v16uNGzfq+eefl8fj0aRJk7Rs2TLNnDnzhNs/fPiwPB6PMjMzrfwYACxiVY0oKirStm3b5PV6de6552rixInD8XGAEYOZIwvV19dr06ZNOnTokCZPntzrunfffbe2bNmi+fPn66abblJYWJjy8/P1zjvv9Lh+a2urCgoKdM011yg2NtaK+AAsZlWNyMvL044dO3Tvvfdq5syZcjgcVn0EYESiObJQUlKSnnzyST3++OO6/vrrT7jevn37tHPnTi1fvlwrVqzQwoULtX79eqWlpenhhx/utn57e7tuv/12ZWZmaunSpRZ+AgBWsqpGSJLT6dTZZ5+tt956S6+//rpVHwEYkWiOLORyufp0J9tdu3bJ6XRq4cKFgWVut1s5OTl6//33VVFREVje0dGhgoICORwO/fSnP+U3QiCEWVEjPsvn86mkpGRI8gKjBc2RAT766CONHz9eMTExQcunTp0qSTp48GBg2T333KOamhrdeeedCg/nlDFgNOhrjWhsbNQLL7ygpqYmtbe366WXXtLbb7+tadOmDXtmIJTxr6sBampqevztsXNZ55Um5eXleuaZZ+RyuYJ+g1y3bh3FDxjB+lojHA6HnnnmGd17773y+/3KzMzUbbfdptNOO21Y8wKhjubIAK2trYqIiOi2vPNy3NbWVklSWlqaXnnllWHNBsB+fa0RMTExuu+++4Y1GzAScVjNAG63W21tbd2We73ewOsARi9qBDC8aI4MkJSUpJqamm7LO5clJycPdyQABqFGAMOL5sgAkydP1pEjR3Ts2LGg5fv27Qu8DmD0okYAw4vmyABz586Vz+fT008/HVjm9Xq1bds2ZWVlKTU11cZ0AOxGjQCGFydkW+yPf/yjGhsbA9Pfr776qiorKyVJV1xxhWJjY5WVlaV58+bpkUceUV1dnTIzM7V9+3aVl5fr1ltvtTM+AItRIwDzOPx+v9/uECPZ4sWLVV5e3uNrmzdvVnp6uqTjV5t0PjepsbFREydO1LJlyzRr1qzhjAtgmFEjAPPQHAEAAHTBOUcAAABd0BwBAAB0QXMEAADQBc0RAABAFzRHAAAAXdAcAQAAdEFzBAAA0AXNEQAAQBc0RwAAAF3QHAEAAHRBcwQAQ2DOnDlB/2ttbQ289txzz2nOnDl67rnnbEz4f5566qmgrP/xH/9hdyTAKOF2BwBgrrKyMl199dW9rpOWlqYtW7YMUyKzpaWl6aKLLpIkOZ1OS/e1Z88erV69WjNnztSvfvWrXte96667VFxcrNtuu03z58/XlClTtHTpUjU2Nmrr1q2W5gRCEc0RgJPKzMzU/Pnze3wtNjZ2mNOYKy0tTd///veHZV/nnHOOUlNT9dZbb6miokKpqak9rtfY2Kjdu3crNjZWc+bMkSSdfvrpOv3001VWVkZzBPSA5gjASWVmZg7bP/rom7CwMC1YsECbNm3S9u3bde211/a4XnFxsVpbW/XNb35Tbrd7mFMCoYlzjgAMqTlz5uimm27S0aNH9ctf/lKXXHKJsrOzdd111+ntt9/u8T1NTU367W9/q+9973vKzs7WN7/5Tf34xz/WO++8023dm266KXBOz4YNG7RkyRLNmzdPv/3tbwPr7Nq1S7m5ucrOztaiRYu0bt06eTweLV68WIsXLw6s94tf/EJz5szRvn37esy1ceNGzZkzR8XFxYMclZ5VVlbq2muvVXZ2tl5++eXA8traWj3wwAP61re+pfPPP1+XXHKJfvazn+mf//xn0Pu/+c1vyuFw6LnnnpPf7+9xH9u2bZMk5eTkWPIZgJGI5gjAkGtsbNSPfvQjffrpp7rgggs0Z84cHThwQKtXr+72D3xDQ4Ouv/56bdq0SXFxcVq0aJHmzJmjDz/8UDfffLN2797d4z5uu+02bd++XWeddZauvPJKpaenS5KeffZZ3XbbbTpy5IguvPBCXXTRRXr//feVl5en9vb2oG0sXLgw8J7P8vl82rZtmxISEgKHo4bSp59+qhUrVqiyslKFhYWaO3euJKmkpETLli3T448/royMDF1++eU699xztWfPHl1//fVBjVxaWprOPvtslZaW9th4/vOf/9T+/ft12mmn6Qtf+MKQfwZgpOKwGoCTKikpCZqZ6eqMM87Ql7/85aBlBw8e1KWXXqqVK1cqLOz472AzZszQunXr9MQTT2j16tWBddevX69PPvlE+fn5uvjiiwPLa2trlZubq8LCQs2aNavbIaGamhr97ne/U3x8fGCZx+PR/fffr6ioKD3yyCOaMGGCJCk3N1erV6/WgQMHlJaWFlh/2rRpOvXUU7Vz507dcMMNioqKCry2Z88eVVVV6aqrrpLL5ervkPXq/fff16233qrw8HA98MADmjx5cuC1X/7ylzp69KjuuecezZo1K7D8e9/7nnJzc7Vu3Tpt2rQpsDwnJ0dvvvmmtm3bphkzZgTth1kjYGCYOQJwUiUlJdq0aVOP//vb3/7Wbf2oqChdd911gcZIki666CI5nU7t378/sKyurk4vvfSSZsyYEdQYSdLYsWP1rW99S3V1dXrrrbe67eP//b//F9QYSdJf/vIXNTc365vf/GagMZKk8PBwLVu2rMfPtnDhQjU1NWnnzp1By5955hlJ0iWXXHKiYRmQ119/XatWrVJcXJweeuihoMboww8/1HvvvacLL7wwqDGSpAkTJujiiy/WP//5z6DZt9mzZyshIUG7du3SsWPHAsvb29v1/PPPy+VynfBkegA9Y+YIwEnNmjVL99xzT5/XHz9+vKKjo4OWhYeHKzExUY2NjYFl+/fvl8/nU1tbW48zU0eOHJEkHTp0SF/96leDXps6dWq39T/++GNJ0plnntnttaysrB4vr7/wwgv1m9/8Rs8880ygQTt69Khee+01ffGLX9Spp556kk/bdy+99JLeeOMNTZo0SYWFhRo7dmzQ652HzGpra3scj3/961+B/584caIkBZqfrVu3qri4WIsWLZIkvfrqq6qrq1N2drbi4uKG7DMAowHNEYAhFxMT0+Nyp9Opjo6OwM8NDQ2SpHfffVfvvvvuCbfX0tLSbVliYmK3ZZ0zJ59tOqTjV3clJCR0Wx4XF6d58+Zp+/bt+uc//6mJEyfqueeek8/nG/JZo/fff18+n09nnnlmjxk7x+P111/X66+/fsLtNDc3B/2ck5OjrVu3atu2bYHmiENqwMDRHAGwTWcTdfXVV+tHP/pRv97rcDhOuL3a2tpur3V0dKi+vl4pKSndXlu0aJG2b9+uP//5z7r55pv17LPPKiYmRvPmzetXppNZvny5/vKXv2jr1q1yOp3dPnNn/ptvvllXXHFFn7c7adIknX766frggw/0ySefKC4uTnv27FF6enq385AAnBznHAGwzemnny6Hw6H3339/SLY3adIkSepxFuqDDz6Qz+fr8X1nnHGGJk2apBdeeEF79uzRkSNHNH/+fEVGRg5Jrk4ul0u//OUv9ZWvfEWbN2/Wgw8+GPR656HCgYxH5wzRs88+qx07dsjn8wUu9QfQPzRHAGyTlJSkefPm6b333tP//u//9nivnn379vV4WK0nX//61xUVFaVnn31WJSUlgeXt7e3auHFjr+9duHChGhoatHbtWknqdoL4UHG5XCooKNBXv/pVbdmyRQ888EDgtaysLGVlZWnnzp3dThCXjs9+7d27t8ftZmdnKzIyUs8//7y2bdumsLCwwKNMAPQPh9UAnFRvl/JL0jXXXDPguy/n5eXp8OHDevjhh7Vjxw6dccYZio2NVVVVlfbv368jR47oySef7NMsTlxcnG644QYVFhYqNzdX5513nmJiYvTXv/5VLpdLycnJJ5xJueCCC/TrX/9a1dXVmjJliqX3BYqIiNAvfvEL3X777Xr88cfl9/t10003SZJuv/12rVy5Unfeeae2bt2q0047TW63W5WVlXrvvfdUX1/f400pY2Ji9I1vfEM7duxQXV2dvvzlL5/wkSIAekdzBOCkOi/lP5GrrrpqwM1RfHy8HnroIT3xxBN68cUXVVxcrI6ODiUmJmry5Mm69tprezyR+kQuueQSxcXF6Q9/+IO2b9+umJgYfe1rX9N1112nq666SpmZmT2+LyYmRrNnz9bzzz9v2axRV50N0s9//nNt3bpVfr9fN998szIyMrRx40Zt3rxZu3fv1nPPPaewsDAlJSVp2rRpgZtF9iQnJ0c7duyQdPzu2QAGxuE/0T3nAWAEOXLkiL797W9r3rx5uvPOO3tc59prr1V5ebmeeOKJE15xdyJz5szR9OnTdf/99w9F3GFRVlamq6++WhdddJF++tOf2h0HMAYzRwBGFI/HI7fbHXRX69bW1sDJz7Nnz+7xfX/961/1ySef6JJLLul3Y9Rp7969gUeNvPDCC8Y+6PWpp57Sr371K7tjAMaiOQIwouzdu1f/+Z//qZkzZ2rcuHGqr6/X3//+d5WXl2vGjBk677zzgtb/05/+pMrKSj3zzDNyuVy65pprBrTfpUuXBv3c0w0nTTFlypSgvKeddpp9YQADcVgNwIhy+PBhbdy4Ue+9957q6uokSZmZmTrvvPO0ZMmSbrM5ixcvVlVVlSZMmKDrrruu2524AYw+NEcAAABdcJ8jAACALmiOAAAAuqA5AgAA6ILmCAAAoAuaIwAAgC5ojgAAALqgOQIAAOiC5ggAAKCL/w9Ryiqu/PVgtwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAG5CAYAAAAeUIXbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADKWElEQVR4nOy9eXgUVdr+f3d3ks5GCAmQkABhFQnKjsAwKGhEfBkQREBRERlhFBUUkO2nI4IjMrIMjg64go7ji6iDOohBwyAo8iIiCBJAUAhbFhLI3kk63f37I98qTlVXVVd1V9fSdT7X5WXopeo8fWq5636ec47N5/P5QKFQKBQKhUKxDHa9G0ChUCgUCoVC0RYqACkUCoVCoVAsBhWAFAqFQqFQKBaDCkAKhUKhUCgUi0EFIIVCoVAoFIrFoAKQQqFQKBQKxWJQAUihUCgUCoViMagApPhRV1eHEydOoK6uTu+mUCgUCoVCCQNUAFL8KCgowPTp01FQUBCW7VdWVoZlu2aAxm5NaOzWxcrx09iNDRWAFM2pqqrSuwm6QWO3JjR262Ll+GnsxoYKQIrmNG/eXO8m6AaN3ZrQ2K2LleOnsRsbKgApFAqFQqFQLAYVgBTNqaio0LsJukFjtyY0duti5fhp7MYmSu8GUCgUCoVCCQ8ejwdut1uXfTc2Nlp2Nolwx+5wOBAVFQWbzRb0NqgApGhOWlqa3k3QDRq7NaGxWxc946+ursb58+fh8/l02b/P58Pp06d12bfeaBF7fHw82rRpg5iYmKC+TwUgRXOuXLmCVq1a6d0MXaCx09ithpVjB/SL3+Px4Pz584iPj0erVq1CcoqCxe12Izo6WvP9GoFwxu7z+dDQ0IBLly7h9OnT6Nq1K+x25RV9VABSNKehoUHvJugGjd2a0Niti17xu91u+Hw+tGrVCnFxcbq0wW63B+1OmZ1wxx4XF4fo6GgUFBSgoaEBsbGxirdBB4FQNMeqT4QAjd2q0Niti97x6+H8GWHfeqNF7MG4fpzvq9QOCkU2qampejdBN2js1oTGbl2sHH9UlHWTjGaInQpAiuYUFRXp3QTdoLFbExq7dbFy/HqMPu7QoQMOHToEAHjooYewc+fOgN9ZsmQJnnjiCcH3Dh06hE2bNiluh14jr5VABSCFQqFQKBTNaWxsDOv233zzTQwfPjykbQQrAKUId9xyMb5HSYk4kpKS9G6CbtDYrQmN3boYKf7+/fuH1ZFMT0/HDz/8wP7b4XD4fcZms+HPf/4ztm3bhmHDhmHKlCl45JFHUFtbi7q6OkyePBlPP/00ACAzMxP79+9HRkYGJk6ciPPnz+O7775DfX09MjIycPHiRTidTtH2DBs2DE888QTGjh2LwsJCPPDAAzh//jzatm2LlJQUXHvttViyZAkAoLCwEKNHj8avv/6K9PR0fPTRR2hsbMSf//xnVFRUoHfv3hg0aBDWr1+PvXv34qmnnkJVVRV8Ph+WLVuGO+64Ax06dMAnn3yC3r17w+FwoH///li5ciWGDRuGYcOGoWfPnti/fz/i4uLQuXNndOvWDfPmzQMAnD59GoMHD8a5c+cAAM888wz++9//oqGhAddccw1ee+01tGjRQq2uAkAFIEUHQi1cNTM0dmtCY7cuRoq/qKgIFy5c0LsZcDgc2L9/PwCgqqoKO3bsgNPphMvlwu9+9zvk5ORg0KBBuOWWW5CXl4f77rsPP/30E6KiolBZWYn9+/ejX79+kuKPz6xZszB48GA899xzKCoqQu/evXHttdey7+/btw8HDhxAamoq7r77brz22mtYtGgRli5dik8++QSffPIJAODy5csYO3YsPvroIwwdOhRerxfl5eWy2vDLL79g9+7diI6OxnfffYcZM2awAnDjxo249957ER0djRdeeAEJCQn4/vvvAQDLli3D008/jVdffVV2vHKgApCiOeXl5UhISNBt/42Njfjss8/QoUMH9O3bV9N96x27ntDYaexWxEjxp6ena7p9j8cj6AJOmzaN/dvlcmHmzJk4dOgQ7HY7zp07h0OHDmHQoEHIyclBXl4eevTogV69eiEtLQ1ff/019u7di1tuuUVR23bs2IGVK1ey7fzDH/7AeX/kyJHsgJ3BgwfjyJEjgtvZu3cvunXrhqFDhwJoEvgpKSl+n/N4PH6v3Xfffeyo8N/97ndobGzE/v370b9/f7z77rv4z3/+AwD45JNPUFFRgY8//hhA01RCHTp0UBSvHKgApFiOf/7zn5g2bRpiYmJw9uxZy69UQKFQrAGZntWTxMRE9u/FixejZcuWOHjwIKKionDnnXeyS6jl5ORg0aJFyM7ORk5ODtLS0pCXl4e9e/di3bp1IbWBP00LOY+ew+EIqk4vKiqKI/z4S8GRcQPAgw8+iA0bNqC6uhotW7bEddddB6Bpoue///3vGDFihOI2KME43jTFMrRu3VrX/TMjxBoaGnDixAlN96137HpCY7cmVo4dsHb8cqZCuXLlCtq2bYuoqCicOHECX331FfteRkYGmjdvjvXr1yMnJwfDhw/H1q1bcebMGcXZm5tvvhkbN24EABQXF2Pr1q2yvpeUlISKigr237/73e9w8uRJfPPNNwAAr9eLy5cvAwC6dOmCffv2AQB+/PHHgPeX+++/Hx9++CHWr1/PcUXHjh2LNWvWoLa2FgBQW1uLo0ePygtUAVQAUjSHPJn0gHwq03qovt6x6wmN3ZpYOXbA2vELpUH5PP3009iwYQN69uyJhQsX4uabb+a8n5OTA7vdjk6dOiEpKQnp6em48cYbFddWrl27Ft988w2ys7Nx7733YuDAgUhOTg74vVtuuQX19fXo2bMnHn74YbRo0QJbtmzBwoUL0bNnT/Tt2xd79uwBADz//PN49dVX0atXL7z99tvo0aOH5LYzMjJwww034LPPPsM999zDvr5gwQIMGDAAAwcORM+ePTFo0CDWuFATm0+vVaIphuXEiROYPn063njjDXTr1k317V+4cAGZmZmqb1cuU6dOxTvvvAMA+OKLLzBy5EjN9q137HpCY6exWxG94q+rq8Pp06fRsWPHoJYJU4OGhgbDLAXncrkQHR2NqKgolJWVYdCgQXjvvfcwcODAsOxPi9hD7WNaA0jRHL1nSNfTAdQ7dj2hsVsTK8cOWDt+Iy0Fd/LkSUyZMgU+nw8NDQ2YOXNm2MQfYKzYxbDukUnRDb1rYurr69m/tRaAeseuJzR2a2Ll2AFrx28k8duzZ8+wpFHFMFLsYtAaQIrmXLx4Udf9kw5gQ0ODpvvWO3Y9obFbEyvHDugfv55VXmZYDi1caBF7qH1LBSDFcujpAFIoFIoWMPPvaf2QS9EOZpQwM7egUozvUVIijmbNmum6fz1rAPWOXU9o7NbEyrED+sUfFRWF+Ph4XLp0CdHR0bqsSOLxeOD1ejXfrxEIZ+w+nw+1tbUoKSlBcnKy4GTbcqACMIJ56aWXsGfPHtTV1SEtLQ0zZszAkCFD9G6W7rURejqAeseuJzR2a2Ll2AH94rfZbGjTpg1Onz6NgoICXdrg9XoNtRSelmgRe3Jyckiru1j7zIxwJk6ciNmzZyMmJgbHjh3DnDlzsGnTJjRv3lzXdl25cgXx8fG67V9PB1Dv2PWExk5jtyJ6xh8TE4OuXbvqlgYuLi627EpL4Y49Ojo6aOePgQrACCYrK4v922azwe12o7S0VHcBqDe0BpBCoVgFu92u2zyAUVFRuu1bb8wQuykEYG1tLTZt2oT8/HwcO3YMVVVVWLRoEW6//XbF23r33Xfx5ptvomPHjuxkwOHYj1KU7ruhoQFvvfUWvvzyS1RVVaFz58546KGHMGDAAM7nVq9ejW3btqGhoQGDBg1Cp06dwh5LIFq1aqXr/vV0APWOXU9o7NbEyrED1o6fxm5sTJGcr6iowMaNG1FQUIAuXboEvZ2SkhK89957iIuLC+t+gkHpvpcvX47Nmzfj1ltvxaxZs2C32zF//nwcPnyY87k5c+Zg+/btWLNmDQYMGGCIySmrqqp03b+eDqDesesJjd2aWDl2wNrx09iNjSkEYGpqKrZs2YIPP/wQjzzySNDb+cc//oHs7GzR5c1C2U9VVRV27dol+n5eXh5cLpfo+0r2nZ+fjx07dmDGjBmYOXMmxowZg7/97W9IT0/HunXr/D7vcDjQr18/HDhwAHv37pUfVJggHTi996+1ANQ7dj2hsVsTK8cOWDt+GruxMYUAjImJQWpqakjbOHToEHbt2oXHH388LPvZsmULlixZgt27d/u9t3XrVixduhS5ubmq7HvXrl1wOBwYM2YM+5rT6cSoUaNw9OhRFBcXC37P4/HgwoULsvYRTkItXA0VPR1AvWPXExq7NbFy7IC146exGxtTCMBQ8Xg8WLt2LUaNGoXOnTuHZR+TJ0/GoEGDsHTpUhw4cIB9fdeuXVi1ahVGjBiBsWPHqrKvkydPom3btkhISOC83r17dwDAqVOnUF1dja+++gq1tbVobGzEzp07cfDgQfTq1UuVNoRCKMPWQ8Xr9XJEn9YCUM/Y9YbGbk2sHDtg7fhp7MbGEgLw008/RXFxMR566KGw7SMqKgpLlixBdnY2Fi9ejPz8fBw4cADLli3DwIEDsXDhQtXq78rKygTdQua10tJS2Gw2bN26FXfddRdGjx6Nf/3rX3jmmWfQtWtX0e3m5eVh4cKF+Pvf/65KO8XQ04Uk3T9A+1nyjeDA6gWN3ZpYOXbA2vHT2I2NKUYBh0JFRQXefvttTJkyBcnJyWHdl9PpxPLlyzF79mzMnz8fbrcb3bt3x3PPPafqZKD19fWCS7/ExMSw7yckJGDt2rWKtpuTk4OcnBycOHEC06dPV6WtRoNfl0GngaFQKBSKFYl4B/DNN99Es2bNMH78eE32l5CQgJkzZ6KyshIulwuPP/44nE6nqvtwOp2CwoVxs9Ten9rwU9dawncAtRaAesauNzR2a2Ll2AFrx09jNzYRLQDPnTuH//znP7jrrrtQWlqKwsJCFBYWoqGhAY2NjSgsLERlZaWq+7x48SKWLVuG9u3bIz09Hc888wxKS0tV3UdqairKysr8Xmdea9mypar7Uxs9BareDqDRxXk4obFbEyvHDlg7fhq7sYloAVhaWgqv14u1a9di0qRJ7H/5+fk4d+4cJk2ahI0bN6q6vzlz5iAqKgqrV6/GqlWrUFdXh7lz56oqNLt06YLz58+jpqaG83p+fj77vpG5fPmybvvW2wHUM3a9obFbEyvHDlg7fhq7sYmoGsC6ujoUFxejefPmSE5ORseOHfGXv/zF73NvvvkmamtrMWvWLGRkZKiy76qqKsybNw8ulwuvvPIKWrduDQBYuXIlZs+ejQULFmD16tWik1ArYdiwYdi0aRM+++wz3HPPPQCa0r/btm1Ddna2ZddelIPeDiCFQqFQKEbANALw448/RnV1NZvm3LNnD0pKSgAA48ePR2JiIo4dO4bZs2dj6tSpmDZtGpKTkzF06FC/bX344YcAIPienP0IsWXLFpSUlODll19Gu3bt2Ne7du2KF198EXPnzkVubi7GjRsXUowAkJ2djeHDh+P1119HeXk5MjMzkZubi6KiIixYsEDiVzQGeqao9XYAjZ6eDyc0dmti5dgBa8dPYzc2phGAH3zwAYqKith/7969m510ecSIEaLCTKv9TJ48GUOHDkXHjh393uvZsyfWr18fcB1eJftevHgx0tLSsH37dlRXV6NTp05YsWIFevfuLTtWvaipqdGtPkJvB1DP2PWGxk5jjxTcbjd27tyJvn37BrzRR2L8cqGxGzt20wjAzZs3B/xMnz59BFfi4PPyyy+HtB8hoqKiBMUfg5wJqJXs2+l0YubMmZg5c6bs7xgFqSXxwo3eDqCesesNjd2aRGLszz77LJYvX45u3bohPz8fdrt4OX0kxi8XGruxiehBIBRjInWxDDd6O4B6xq43NHZrEomxf/fddwCAEydOoKKiQvKzkRi/XGjsxsb4LaREHG3atNFt33o7gHrGrjc0dmsSibGT7g7/oZJPJMYvFxq7saECkKI5Fy9e1G3f/Iu11kvB6Rm73tDYrUkkxl5bW8v+HUgARmL8cqGxGxsqACma4/P5dNu33ilgPWPXGxq7NYnE2JU4gJEYv1xo7MaGCkCK5sTHx+u2b71TwHrGrjc0dmsSibErcQAjMX650NiNDRWAFM1RYzLsYNHbAdQzdr2hsVuTSIyddAADjfaMxPjlQmM3NlQAUjRHaB1jrdDbAdQzdr2hsVuTSIxdSQo4EuOXC43d2FABSLEUejuAFArF3Hg8Hs6DZCABSKEYFSoAKZqTmpqq2771dgD1jF1vaOzWJNJi5wu+QAIw0uJXAo3d2FABSNEcPZ+Y9XYArewW0NitSaTFTg4AAQLHF2nxK4HGbmyoAKRoTk1NjW771tsB1DN2vaGxW5NIi50/6CPQjT7S4lcCjd3YUAFIsRR6O4AUCsXcKHUAKRSjQgUgRXMyMzN127feDqCesesNjd2aRFrsSh3ASItfCTR2Y0MFIEVzCgsLddu3kAOo5YztesauNzR2axJpsfMFYKB5ACMtfiXQ2I0NFYAUzfF6vbrtm+8AAkBjY6Nm+9czdr2hsVuTSItdaQo40uJXAo3d2FABSNEcI60EAmibBjbD7PDhgsZuTSItdqUp4EiLXwk0dmNDBSBFcxISEnTbt5ADqKUA1DN2vaGxW5NIi12pAxhp8SuBxm5sqACkaE5paalu+9bbAdQzdr2hsVuTSItdqQMYafErgcZubKgApFgKvR1ACoVibug0MJRIgQpAiuakpKTotm+9HUA9Y9cbGrs1ibTYlTqAkRa/EmjsxoYKQIrmNDQ06LZvvR1APWPno+X0N4CxYtcaGnvkoFQARlr8SqCxGxsqACmaU11drdu+9XYA9Yyd5J577kGbNm2wa9cuzfZplNj1gMYeOfBTwIHmAYy0+JVAYzc2VABSLIXeDqARKCgowKZNm1BcXIx169bp3RwKxVQodQApFKNCBSBFczIyMnTbt9DFWkurXs/YGaqqqti/L168qNl+jRC7XtDYIwelg0AiLX4l0NiNDRWAFM0pLi7WZb9er1fQ7dPSAdQrdhLSBS0qKtJsv0aIXS9o7JGDUgcw0uJXAo3d2FABSNEcj8ejy36F0r+AtgJQr9hJ9BKARohdL2jskYNSBzDS4lcCjd3YUAFI0ZzY2Fhd9msEAahX7CTkDauqqgo1NTWa7NcIsesFjT1yUOoARlr8SqCxGxsqACma06xZM132K3ah1lIA6hU7CV8Ia+UCGiF2vaCxRw5KBWCkxa8EGruxoQKQojmXLl3SZb9GcAD1ip2Ef8PSSgAaIXa9oLFHDkqngYm0+JVAYzc2VABSLIMRHEAjoJcDSKFEAkIOoNaTqlMoakAFIEVzWrRooct+jeAA6hU7iV4C0Aix6wWNPXLgO4BerxeNjY2in4+0+JVAYzc2VABSNEfqYhlOSAfQZrOxf2spAPWKnUSvFLARYtcLGrs2/Pjjj/jPf/4T1hGYQilfqTpA2vfWxAyxUwFI0RxyImItIZ2vxMRE9m8tBaBesZPo5QAaIXa9oLGHn/Pnz2PQoEEYM2YMPvjgg7Dth+8AAtICkPa9NTFD7FQAUiwDeZEmR2hZrQaQf7MqLCzUqSUUinocOHCAPZcPHToUtv0odQApFKNCBSBFc9q0aaPLfsUcQC2XgtMrdhK9HEAjxK4XNPbwU1JSwv4tVu8bKl6vV1DsSQlA2vfWxAyxUwFI0Ry9hscbwQE0wtQAeglAI8SuFzT28EMKwHA91IkJPSkBSPvempghdioAKZqjV3GsEWoAjVAYzL9ZFRcXw+v1hn2/RohdL2js4UcLB1Bszj+puQBp31sTM8ROBSBFc5xOpy77NYIDqFfsJPybY2NjIy5fvhz2/Rohdr2gsYef4uJi9u9wCUChASCAtANI+96amCF2KgApmpOcnKzLfo3gAOoVO4nQzUqLNLARYtcLGnv4UdsBfO+997B27VrO9UHM6ZMSgLTvrYkZYqcCkKI55JO6lhjBAdQrdhKhm6MWAtAIsesFjT38qCkADx06hPvvvx9PPPEENm/ezL4ejANI+96amCF2KgAplsEIDqARELo50qlgKGZHzUEgv/zyC/v3sWPH2L+DcQApFKNCBSBFc5o3b67Lfo3gAOoVO4leKWAjxK4XNPbw0tjYiNLSUvbfoTqApNCrqKgQfJ2MS0oA0r63JmaInQpAiubotXA6eVPQSwAaYdF4vVLARohdL2js4aWsrIyzn1AFIJnqLS8vF3w9JSWF/VtKANK+tyZmiJ0KQIrmVFZW6rJfIziAesVOopcDaITY9YLGHl7I9C+gjQMoVwDSvrcmZoidCkCKZaA1gE3o5QBSKOGCLwBDrQEUE4BiDqDUPIAUilGJ0rsBlPDy0ksvYc+ePairq0NaWhpmzJiBIUOG6Nqm9PR0XfYr5gBquRScXrGTMAIwOjoaUVFRcLlcmghAI8SuFzT28KK2AyiWAiaFXosWLdi/pRxA2vfWxAyxUwcwwpk4cSI2b96M3NxcLFy4EM8//zzniVYPysrKdNmvERxAvWInYW5WsbGx7HqVWghAI8SuFzT28MKfciNcKWBSGMoVgLTvrYkZYqcCMMLJyspCTEwMAMBms8HtdnNGy+mBXilXI9QAGiHdzNwcnU4n+5R6+fLlsK2ewGCE2PWCxh5ewlkDKOYAyq0BpH1vTcwQe8SlgGtra7Fp0ybk5+fj2LFjqKqqwqJFi3D77bcr3ta7776LN998Ex07dsQ777wThtZeRWm7Gxoa8NZbb+HLL79EVVUVOnfujIceeggDBgzw++zq1auxbds2NDQ0YNCgQejUqVNYYwkEI0i1xggOoF6xkzA3K1IAAk0uSvv27cO2XyPErhc09vCidg0g6fRVVlbC6/XCbrcHlQKmfW9NzBB7xDmAFRUV2LhxIwoKCtClS5egt1NSUoL33nsPcXFxKrZOHKXtXr58OTZv3oxbb70Vs2bNgt1ux/z583H48GG/z86ZMwfbt2/HmjVrMGDAANhstnCEIBvyyVlLjOAA6hU7CSOEY2NjOQIw3GlgI8SuFzT28BJOB9Dn86G6uhpAcNPA0L63JmaIPeIEYGpqKrZs2YIPP/wQjzzySNDb+cc//oHs7Gx069ZN1uerqqqwa9cu0ffz8vIkR4opaXd+fj527NiBGTNmYObMmRgzZgz+9re/IT09HevWrRP8jsPhQL9+/XDgwAHs3btXVkzhQq8Rp0ZwAI0w2lYoBQyEv21GiF0vaOzhJZyDQICraeBgUsC0762JGWKPOAEYExOD1NTUkLZx6NAh7Nq1C48//rjs72zZsgVLlizB7t27/d7bunUrli5ditzcXNHvK2n3rl274HA4MGbMGPY1p9OJUaNG4ejRo5JrEHo8Hly4cEHWfiIN5iJtt9s5zq4ZajXUhBwEoqUApFDCBf+a5/V60djYGPT2+A/rzECQYBxACsWoRJwADBWPx4O1a9di1KhR6Ny5s+zvTZ48GYMGDcLSpUtx4MAB9vVdu3Zh1apVGDFiBMaOHatKG0+ePIm2bdsiISGB83r37t0BAKdOnQIAVFdX46uvvkJtbS0aGxuxc+dOHDx4EL169VKlHcGSlJSky37J1Gd0dDT7upYCUK/YGTweD3tj1NoB1Dt2PaGxhxe+AwiEVgcoJgDFagClsju0762JGWKPuEEgofLpp5+iuLgYa9asUfS9qKgoLFmyBE899RQWL16MNWvWwOVyYdmyZRg4cCAWLlyoWu1dWVmZoFvIvMaM8rXZbNi6dSvWrFkDn8+HzMxMPPPMM+jatavgdvPy8pCXl8fWu4QLvWoQycEPdrsdDocDHo9HUwGod/0lmRrTWgDqHbue0NjDR01NjV/KFmg61uPj44PaplgKOBgHkPa9NTFD7FQAElRUVODtt9/GlClTkJycrPj7TqcTy5cvx+zZszF//ny43W50794dzz33HKKi1Pup6+vrOQ4WAzPqiLnJJyQkYO3atbK3m5OTg5ycHJw4cQLTp09Xp7ECVFRUcGrwtIJ0AIGmiZC1FoB6xc5ACkByHkAg/AJQ79j1RCx2r9eLr7/+Gl27dkW7du10aFn4CXe/C7l/QGh1gHIcQPIeISUA6XFPYzcqNAVM8Oabb6JZs2YYP3580NtISEjAzJkzUVlZCZfLhccffxxOp1PFVjYJTSHRwqQ81N5fpEA6gABYEW2lGkC+A9i6dWv234WFhXo0ydK89tpruOWWW9C7d29BF4sSGLGa53ALwPj4ePZaQmsAKWaECsD/x7lz5/Cf//wHd911F0pLS1FYWIjCwkI0NDSgsbERhYWFshZ3vnjxIpYtW4b27dsjPT0dzzzzjOoTL6empgrOMs681rJlS1X3pzZpaWm67FfIAQS0XQpOr9gZyBtVbGwsZ/BRuB1AvWPXE7HYmRH5ly9fZmt3I41w93s4HMBAKWCmjIS5lkgJQHrcWxMzxE4F4P+jtLQUXq8Xa9euxaRJk9j/8vPzce7cOUyaNAkbN24MuI05c+YgKioKq1evxqpVq1BXV4e5c+fKEo9y6dKlC86fP4+amhrO6/n5+ez7RoacWV9LjOAA6hU7A98BBK6uWVlUVASfzxe2fesdu56IxU72h9RAAjMT7n4nBaDdfvWWFs5BIMwsAnIEID3urYkZYrdsDWBdXR2Ki4vRvHlzJCcno2PHjvjLX/7i97k333wTtbW1mDVrFjIyMkS3V1VVhXnz5sHlcuGVV15hU2srV67E7NmzsWDBAqxevVqViaWHDRuGTZs24bPPPsM999wDoOlit23bNmRnZxv+ySPcS44J4fP52BsC3wHUUgDqETsJeaMiBeDRo0dRV1eHyspKNG/ePCz71jt2PRGL3QoCMNz9TgrANm3asNNcBbtfn88XcBoYZnAJcz2XEoD0uLcmZog9IgXgxx9/jOrqajYlumfPHvYiMX78eCQmJuLYsWOYPXs2pk6dimnTpiE5ORlDhw7129aHH34IAILvkWzZsgUlJSV4+eWXOcXcXbt2xYsvvoi5c+ciNzcX48aNC6ndAJCdnY3hw4fj9ddfR3l5OTIzM5Gbm4uioiIsWLBA7s+kG0IDWMKNkPOlhwDUI3YS/iAQAH4jgcMlAPWOXU/EYif7I1LryMLd76QAbNu2bcgCsL6+3s8J508ErcQBpMe9NTFD7BEpAD/44ANOPdPu3bvZCZpHjBgRlpE5kydPxtChQ9GxY0e/93r27In169cHXINXSbsXL16MtLQ0bN++HdXV1ejUqRNWrFiB3r17qxNQGNGjRlFI+OghAPWuz5RKAQNNAlDu6jdK0Tt2PRGL3QoOYLj7nRwE0q5dO+zbtw9A8AJQqB/EHEDmWiLVd/S4tyZmiD0iBeDmzZsDfqZPnz6Cq3bwefnll2XtMyoqSlD8MciZVFpOuxmcTidmzpyJmTNnyv6OUSgsLERmZqam+xRKfeohAPWInYQ/CASAZlPB6B27nojFbgUHMNz9TjqA7du3Z/8OtgZQSMyVl5dzUsN8B7ChoQFer5dTg8hAj3sau1Ghg0AolsAoDqDeCDmAZM2o1DKCFPWxggMYbhgBGBsby5kgP1gHUGg6noqKCs72+AIwlP1RKHpBBSBFc5o1a6b5PoUcQGbibC0FoB6xkwg5gGTNX1VVVdj2rXfseiIWuxUEYLj7nRGArVu35syBqnYKmBSG/BQwIO7g0uPempghdioAKZrjcDg036eUA+jz+eDxeDRphx6xkwg5gOSa0uFcBlDv2PVELHZSNERqCjic/e7xeNh5VtUSgEIOYHl5OUcYCjmAYv1Hj3trYobYqQCkaI4e8yNJ1QAC2rmAes8NJSQAycFF4RSAeseuJ3QewPBQVlYGr9cLwF8AqlkDWFtby5nLVYkDSI97a2KG2KkApFgCKQcQsE4doFAKWCsBSPEnUgRgVVWVLjc8cgBIOFPAAHeAFOMAkvO6RqqDS4lcqACkaA65/qxWBHIAtVoOTo/YSfR0APWOXU/EYo+EUcCFhYVo27YtMjIy8Msvv/i9H85+JwVgWlpa2FLAAHetbCUOID3urYkZYqcCkKI5ai6LJxejOIB6xE6ipwOod+x6IhZ7JDiAX331FSorK+FyubBt2za/98PZ73wHkBnYBWjjAJICUOx79Li3JmaInQpAiubo4XQYpQZQb5cnkAPIX19aTfSOXU+EYvf5fBHhAJIjx4UeIMIZFzltUThSwK1atWL/Jh1AJYNAzNqvakBjNzZUAFI0JypK+/nHjeIA6hE7iZAAjImJYX+LcDqAeseuJ0KxNzY2cpYcM6sDSD40CD1AhLPfpWoAgy3rIFPA5CTpwaaA6XFvTcwQOxWAFM0xYg2gVgJQ77oQoRQwcNUFpDWA4UEodr5DFQkCUOj40aoGMBwOILlMYrAOID3urYkZYqcCkKI5Fy9e1HyfRnEA9YidRMgBBLQRgHrHridCsfMFihlSRkKQx4yQAxjOfucPAlG7BlANB5Ae99bEDLFTAUixBFIrgQDWngYG0EYAAsBHH32Erl27Yu3atWHdjxngC4ZIdQDDCSkAW7ZsqfooYLF1suk0MJRIgApAiuaQgw60wigOoB6xk8hxAMm6NDVJTEzEiy++iFOnTuG5554Lyz6MilC/R6IDKCQAw3nMM4NAUlJSEB0drfpE0GQK+MqVK+zfShxAvc95PaGxGxsqACmaQwovrTBKDaAesZMEEoA+ny9sTlR0dDS7bFdFRUXYhKYREer3SKwBFEoBh/OYJ9cBBqB6DSDpAJIoqQHU+5zXExq7saECkKI55JO0VhjFAdQjdpJAKWAgfGm8K1eusFOGeL1eNDY2hmU/RkSo3yNRAAodO+E65l0uF7tvZroWNWoAxVLAJErmAdT7nNcTGruxoQKQYgmMshKI3gRyAIHw1nGRc8aZNeWpFpGYAg7nPJJ8yKXnWrRoAUA7B1BJCphCMSpUAFI0h5xcVSuM4gDqETuJng5gUlIS53cO9gZtRoT63SoOYLiOeXKlhebNmwOA6vMAtmrVCna7/21SSQpY73NeT2jsxoYKQIrmaD1SEDBODaAesZMwosNms3EmKtVCAJKjKAFrOSZCv6lVHMBwHU+kAExKSgKgvgMYHx/PiksSJQ6g3ue8nugd+9mzZ7Flyxb89ttvmu9b79jlYPypqikRhx5Oh1EcQL1dHuZ3cDqdsNls7OtaCEBmAAiDWQVPMAj1u5AD6PP5OP1iBvgOID+GcB3zFRUV7N+MSCPP6VAFoMPhQHR0NJo3b+5Xz6XEAdT7nNcTrWP3+Xz4/PPP8fHHH+Prr7/GmTNnAADJycm4cOECK9y14Ntvv0VsbCxuvfVWw57T1AGkaI5QSiXcGMUB5Md+5coVTS+SzO9A3rgAICEhgf07XAKQH6dSAXj8+HGMHj0af/vb31RslTYIHfN8geL1ek05HyUpABsbG/1Sr+E634UcQJvNxg4ECXUQCCMWpBxAOfMA6nG9Mwpax56Xl4fRo0dj48aNrPgDmupFCwoKNGvH8ePHMXbsWNx2223Yvn27ZvtVinWPTIpuiBVWhxOjOIBk7EeOHEFmZiYyMzNx4cIFTfZPOoAkWjiAfNGpVACuWrUKW7duxbx581BWVqZm08KO0DEvJFDM5or6fD6/tC//3+E634UEIHD12A7VAWTEXXJyst9nlDiAelzvjILWsR85coT92+l0IiUlhf23lg/a+/fvZ6e5+vHHHzXbr1KoAKRojlZih8QoDiAZ++effw6Xy4UrV67gww8/1GT/Yg4gKQDDNZLz9OnTnH8rvUEzNYQej4czAtQMCB3zQoLBbOlCJm1Nwn+ACNf5LpQCBq6e36FOBM2IPL4DGB0dDYfDAUDeNDBC8R88eNAUS4WFitbXenIAz4cffogHHniA/beWD1eXL1/WZb9KoQKQYgmEHEC9l4IjRcx3332nyT71dAD521V6YSQv7mZMlfKJBAdQ6FjRaiqYcDmA/BQw3wEk68iCmQbmX//6F/r27YuePXty1hemhA55jUhMTOSk6LV8uCIFoJEf6oIaBDJp0qSQdzxhwgTcddddIW+HYj7IejOtYC7O5OhXPRxAMnZSAO7Zs0eTAQDMTVHKAQyXAORP/KxU7JAXUrMJQKFjXkigGPlmIYScUb/hOt9JB5AUgKHWAAZyAElRIUcA8uPPy8sDAJSVleH111/Hs88+G1Q7zYDW13ryeExISNBtnsaIdgCLiopQVVUFn88X1H/FxcWmGCJNCQ9890kLSOHDiCw9BCAZOykAL168iLNnz4Z13z6fj70Y6eEAhjrtiZkdQKFjPlIFIP+1cJ3vQvMAkvsLRgC63W72QUVsEAjpAEZFRbHpYLHjmR8/OR3Sa6+9ZrpjWQlaX+vJa0R8fLwhHEAjC8Cgp4GZOHEipk6dGtR3b7rppmB3S4kALl++jMzMTE33KSR89BCAZOz8OrbvvvsOWVlZYdt3Y2MjW6+lhwBk1m1lUHqDJi/gZlu5ReiYj9QUMP81fuwejwenT59Gly5dQtp3oBRwMMcIeYyJDQIhRQXQ9FBZU1Mj2nf8+IuLi9m/CwsL8cknn2DChAmK22oGtL7W8wWgXg4gOW2QkR/qaA0gxRIIpT71XgqOLwD37NkT1v2JrQIC0BpAPYhUBzDQ8TN27Fh07doVS5YsCWnfgQaB1NfX+w1QCYSQAJRyAIGr55Lc45k/Ifqrr76qqI0Uccjjke8A0hSwP0EJwH/+858YN25c0DsN9fsUc9OyZUvN92kUB5CMXcgBDCdi6wAD0gLQ7XZjx44dnBtuMHg8Hs6/rVQDKHTMR6oDyBeFZOxerxdbt24FAPb/wUI6gM2aNWP/ZmoAfT6fX91pIPirgADSNYDkv8X6jozf4/H4OeG7du3Czz//rKidZkHraz35kMivAaSDQPwJSgC2b99ecHJMrb5PMTfkSaoVgRxArQQFGTtfAP70009hrY0N1gFcsGABcnJycPPNNyt2VEj48VrJARQ65q3iAJKxk30equvOCMC4uDjOuRzKcnBkW5WkgAHx45ncZllZGfsgRE6SvG7dOkXtNAtaX+v5/UcdQGloCpiiOXoIQKM4gFIC0Ov1Yt++fWHbt5QDGBcXxw6O4d/Av/76awBNE5qGctPmO4hKbs4+n8/UDqCVBCD/NTJ28u9gR+kyMMcT30wgj22lx2soKWCxviNjJuv/xo0bx46SfffddzmOZqSglwCMiYlBVFSULg6g1+vl1ABaRgBWVVUhNzdXzU1SIhCt10X0+XyGcQCZ2Ovq6gRvgOFMA0sJQLvdzt6M+AKQXHUjlJs2XxgouTDyP2u0QSBnzpyB1+sVfV/omBeK38g3CyHkDAIhYycFgVoOIDkABFDPAZSbAiYdQCGHnIyfrP/r1q0b7rvvPgBNv9k///lPRW01A1pf65lrjJKl+tSmsrKScy0w8kOdqgKwuLgYL774opqbpEQgGRkZmu6PvNHoLQCZ2En377rrrmP/DudAEKkUMHA1DSw0ilNoG0rh3/CVbIvvJATqr/LyckycOBHDhw/HpUuX5DcyCF544QV07NgRo0aNEv2M0DFvFQeQjF2tkdxer1dUAJITvIcy0lwsBSzmAHq9XsGaQzJ+UgCmpaVh5syZ7L9fe+01RW01A1pf65nrBPMwq4cDSF4vAWM/1CkSgMXFxZL/lZaWhqudlAhC6yWQxJwvPQQgEzspAPv06YO0tDQAwN69eyWdpFCQcgABYQHY0NDA+XcoDiCZFgGUXRj5F2+p/vJ4PJg8eTI+/PBDfP3113jjjTeUNRRN17rdu3fL6ovPPvsMAJCbmytawyl0zEfqIBD+a2TsajmANTU1rNsmlQJWQwDKdQAB4f4j4ycFYHp6Onr27ImePXsCaFrHNlznvl5ofa3nr+KixzQwoVzntEbRPIATJ06UtHS1WMmAYn5CGUgQDGLOlx5LwTGxkwKwRYsWGDJkCP7973+jsrIS+fn5HFdQLYJxANV8muULAyU3ZyUO4J///Gd88cUX7L9/++032fth2tWrVy8UFxdj5cqVmDt3ruTnyd+kpKSEM6CGQeiYj1QHkN/PZOxqCUCxOQCB0GoAhVLAsbGxcDqdbH+JOYBA07FAjkgGuPHzBSAApKamsq/V19f7CUwzo/W1XioFrJcDaORzWpEAbNasGf74xz+id+/egu8XFBSEPLcTJfLhX0DDjZEcQCZ2UgAmJyejffv2+Pe//w2gKQ0cDgEo1wFsaGiA2+1GdHS038VMrxpAuQ7ghx9+iBdeeIHzmtIVVk6ePMkW669fvx5z5syRfLAlf5Pi4mJ06tTJ7zNCx3ykCkD+a2Tsag0CEZsDEFDfAWT2wUzfIjYNDCB8TJPxk4NAGAFItreuri6iBKCW13qPx8P2t1AKWCsnLmJTwNdccw2qqqrQsWNHwf/atm2rueKnmA+tBaCY82UkAfi73/2O/bfYQBCPx4MLFy4EvW+5AhC4ehNX82IWigDkO4BCzs7hw4cFVyc6d+6c7P0A3BTOqVOncPToUcnPk3GQN3gSuQLQyDcLIeSkgMnY+TWAwd4vpBxAtWsAAa7IVJoCJuMXcgD1Wq1CC5jYf/vtN6xduzasKWGhORypAyiNIgE4duxY9qAVIi0tDQsXLgy5UZTIRutaUSM5gEzsfAHYt29ftm1CA0F8Ph9uvPFGtG3bNqiaNiBwCphcuJ25iZMjgIHgXZv6+nq/31jNQSA+nw+TJ09mP3f//feja9euAJoEoBKhwa/h2bJli+Tn+Q6gEELHvFUcQDJ2sh99Pp/f5OBykZsCVmMUMMAdCBIoBcyHjJ8RgLGxsWyqOJIFIBP7+PHj8cQTT2DatGlh25dY+p5BLwcwmBVptEKRALzxxhsxYsQI0febNWuG22+/PeRGUShqIscB1HpaEb4AdDqd6N+/PwDg119/9RMMRUVFrDP4ySefBLVPJQ4gIwDVcgCrqqok2xOIQCngkpIS1qnr3r07XnvtNbRv3x5AkyDhz7kohVIBKMcBFCLSHEDGeZOazFyOkysHPVLAQq8DykaaMgIwPT2dLSuIZAEINAl9ZqWT//73v2F7yOEvAwcYwwEEQp/zMlzQiaApmpOSkqLp/ozkADKx8wUgANaxAuC3XBR5wwv2YiJ3EAigvgMoJADVdABJIXHdddchLi4O7dq1Y19TkgbmC8CDBw/i9OnTop+X4wAKHfOR5AA6HA42Rr4DSMbOjy/Y4ylcg0DkCEClDiATv9vtZs8nMpMWyQIwJSUF9fX17PQ4brcbP/zwQ1j2xV8GDmi6xpNzr2oB//oBGPe8pgKQojlaPw0ZqQaQiV1IAJI3Mv6qGeS/g3VNjOYAqjkIhPxNGCdKLQEISLuuchxAoWOeec3hcLCvGfVGIQYj9hITE0XnkSRjV8sB1DMFrLQGkGkD+VAnJgCN6hQFS319vd+5H67J7oX6zmazBVyrWW2EHECjCvuQBeCwYcMUF1lTrI1Q3VA4MZIDyMQuJABJl0FKAIZSh8egtQAUSguqOQiE/DfTr2oKQGaENp/GxkbO3G1855ZB6Jhn4if73ag3CjGYfk1ISBAVgGTsWqSAjTYIhImfPwk0A38UcCRRU1PjJwDDNdm9mHgPtFSf2ggJQKM+2IUsAI1a3EihMIg5gA6Hg00PaL22rFIBSDoewd40jZYCVrMGkPy3mg4gU6i/Z88eQXePH0MwNYCku2TUG4UYjLhJSEhg025ut1v0GDW6Ayg0khQAbrnlFvY1plaXQW4KV2gEsJLvmxX+A8F3330XFt0gVAMIgDqAEtAUMEVzMjMzFX/H5XLhL3/5CzZu3Kj4u+RNh//0zrhFWglAJnZSADI3sEh2ALWsAVRTAN59990Amh50mRU/SPgxiAlAoWOe6Y/ExETY7XbB7Rkd5jghU8AA92ZMxq5WDSB5PoRrImjyWvE///M/+Omnn3Dq1CnOxM38zwn1HxO/FQVgZmam37lfVlaGkydPyt6G1+vF/v37A/42QjWAgDEcQKP2KxWAFM0pLCxU/J133nkHTz/9NB588EHs2LFD0XdJscVPF2ktAJnYmTYlJSWxNWBk20iHA1CnBjAYB1CtiaDNKgDJaSuE0sD836OiokIwLv4x7/P52O86nU7Nb1Jq4Ha72X4gHUCAKwDJ2MPhAGoxChgAevbsiTZt2vh9J5CAY+IXmgRazvdJCgoKkJ2djeuuuw55eXmSnzUChYWFgue+kjrA+fPn44YbbsBtt90m+blAKWAtRJjP57NWCphCUUow613+9NNP7N9K58EjxRN/YXdGLGglAJnYGQFItkdqEAh5w9PSAeSngM0wCIQR9UlJSaw4ULIaCCMAExMTMXDgQFZI7tixw69fhGIQqgPkH/ONjY1sGszpdLJiw6g3CiFIkcd3AMm0Hxm7FilgtWoA5U5YH0jAMfGL1QAqEYDz5s3DsWPHcPToUdx6663405/+5PewaCS8Xq/gua+kDnDnzp0AgN27d/sdPySBUsAulyvsJWsul8tU0ztRAUjRnGCWOiJv4J988olgob4YUgXjWjuATOxCAlBuCljPUcB61QAGEg5CNYDAVRfw/Pnzsh88mGMrOTkZNpsN48aNY/exfft2zmeFYhBKA/OPeX5faF2npAakyCMHgfDfk5qLTY1BIPy1d9UYBWyz2QTPESECzQPIxC8nBSzV3r179+Kjjz7ivPb666/juuuuw3//+19ZbdWauLi4kB1A8tyWqrENlAL2er3sdDThQuy+ZNQHOyoAI5iXXnoJY8eOxciRI/HAAw+EbfSVUsgbhVxIAVhfX49NmzbJ/q6RUsCJiYmoq6sTHAAQ7hpApSng+vp6Wcu31dTU4Pz585L7FhsFLPeJPJhpYICrArChoQGXLl2StS/mIt6iRQsA4CzTx08ly3UA+cc8XwCaMQVMHhtSKWAydr6QD3UewMTERM40OoA68wDGxsZKrv9MEsjBY+IPZRSwz+fDU089xf57woQJ7O997tw53H777YoeirUiMTFRUADm5+fLbi8p2qTKh8RSwFpOBi2U/gWM+2BHBWAEM3HiRGzevBm5ublYuHAhnn/+eT9hoQdyb8Qk/BSeksEgUilgrQXgpUuXBEcAA8ZzAOXMaF9fX48ePXqgXbt2+Pjjj0X3Td4EgnkiV1IDSE7vo7QOkEzhMAKQvJnwL+RyHUD+MR8JDqDcFDAZu9opYH76F1DHAVSyXnkgAcjEzxwXSUlJgjVqYt8HgE8//ZR9gL/22mvx/vvv4+eff0avXr0ANP2ORpyO7dKlS5xjoXPnzuzfe/fulbUN8lwnRTSfQDWAQPjPL/KaGWhwkBEIWQBOnjxZ8CSk6E9WVhbrhthsNrjdbs3X4VWDiooKvzqX77//Hvn5+bK/zyDmAKq1FJzb7cauXbska1XkCEB+vGrUACpxAGtqamSNZjt69CgKCgoAAC+//LLovkkB2KpVK9HtiRHMNDCAcgFIuhKMAJS6gQi1X85UMFIOoFmm1uKngMUcQBK15wHkn8+AOjWASspUlE4DQ6Z/5Xzf7XZjwYIF7L9XrFiBqKgodOjQATfffDP7utQSfHpCnvvkUrJy08ByBWCgGkBAWweQdHmN6uyHLAD/9Kc/CZ6EalJbW4u3334b8+bNw6hRo3DjjTfiiy++kPXd06dP489//jMmTZqEW2+9FaNHj8Zjjz0mmg49ceIE5s2bh5EjR+K2227DnDlzFA1ZDxalMTY0NGDdunUYN24ccnJy8Kc//Qn79+/3+9zq1auRk5ODGTNmoG/fvujUqVM4w5AFc2OVC+n+kRdLuS6g0JQrDGo7gLNmzcKwYcPwhz/8QfD9Fi1aiArA+Ph4Np0l5QB6vV54PB7FbVPqAPIHgPC3AXBv6Hv27BFNgYQqAIMZBQyoIwClnuTlOoD8Y54vxsl9mGU1CLkOIBm7GjWAHo+H3X4wDuDZs2exZs0a/O53v0NcXBxefPFFv/YpEYCBnJ4WLVqgtraWfYgjhQEQWAC++eab+OWXXwAAQ4cOxejRo9n3xH5zo9CiRQvOuT9y5Ej2b7UFYKAaQEBbB5C89kSsAyiFz+fDuXPnFE2OKkRFRQU2btyIgoICdOnSRdF3i4qKUFtbi5EjR2LWrFmYMmUKAGDRokV+83qdOHECjz76KC5evIipU6di6tSpOH/+PGbNmqVoFGEwKI1x+fLl2Lx5M2699VbMmjULdrsd8+fPx+HDhzmfmzNnDrZv3441a9ZgwIABsutawolSsUX+9g8++CAr2v75z3/KSiEy4qlZs2Z+9UJqC8Cvv/4aALBr1y5BJ8ftdosKQJvNxt7QpAQgEJxIIL8j5ACSF02xFDD/Qkbe0D0ej+hDC3kTaNmypWCbpAhmJRAAaN++Pfu3Gg6gnHnshK53/ONLLAUMGPdmwUdqEAgpDsnY1agBJPerRAAeP34cv//975GVlYU5c+Zg7969qKurw6pVq/zap2YK2O12i04BE+j7dXV1WLJkCfvvl156iXMNN7oAdLvdnHO/W7duyMrKAgDs27dP1nVXzRpALQVg69at2b8j1gEEmm52f/nLXzgdXVhYiKlTp+L+++/HpEmTsGTJkqBcCwBITU3Fli1b8OGHH+KRRx5R9N3Bgwdj5cqVePDBBzF69GhMmDABa9euRZcuXbB582bOZ9966y04nU6sW7cOd999N+655x784x//gNfrxeuvvy65n6qqKuzatUv0/by8PMmDQEmM+fn52LFjB2bMmIGZM2dizJgx+Nvf/ob09HSsW7fO7/MOhwP9+vXDgQMHZNddhBOlFypSAPbt25d9Ai4qKvIblSmEVLpIbQHInANer1fw5lZdXS0qAMk2Sk0DAwTnnJAXPyEHMDo6mn09GAEIAP/5z38E9032OTmRrlop4HA6gGqkgKXWxyVTwIBxbxZ8pAaBkPGSf6uRApYq6QDEB4EsX75cMPNTWlqKmpoazjmrZgq4urpadAQw//v8a8aRI0fYQUV33HEHBg4cyHnf6AKwurqaowuaNWvGDqqqra31MyyEULMGMNznFnn9COY6pzWqCMBPP/0UJ0+e5AzHf+WVV3DmzBn06dMHnTt3xtdff41t27YFtf2YmBi/2ddDweFwoHXr1n4nzOHDh9G/f3/ORaVly5bo3bs39u7dK1nXtWXLFixZsgS7d+/2e2/r1q1YunQpcnNzRb+vJMZdu3bB4XBgzJgx7GtOpxOjRo3C0aNHRR1Xj8eDCxcuyNqHkSAFYPv27fHggw+y/96wYUPA7zOCS0oAer3eoOYn5EMKNbE6KLkCkHQQ1XQAo6Ki2JUn+DA3cbkpYP4F9YsvvhC8qTM3gfj4eI5QUCsFLFYD2LZtW/ZvPVPAfCLBAZSbAiZRIwUsNQcgIF4DSF77/vznP3Pq0QoKCji/u9o1gFIOoNQoYPI3vvbaa/22Kya6jYSYAATkpYHVrAHU0gEk+9mo57QqAvDMmTPo3r07++/a2lrs3bsXN998M9asWYPXXnsNWVlZQQtANXC5XCgvL8eFCxewefNm7Nu3D3379uV8xu12cy4eDLGxsXC73Th9+rTo9idPnoxBgwZh6dKlOHDgAPv6rl27sGrVKowYMQJjx45VJZaTJ0+ibdu2nJMfANsHp06dQnV1Nb766ivU1taisbERO3fuxMGDB9lRY3qSkZGh6PN8AThy5Ei2juazzz6TvPC53W72psMXWwA3XRiqC8if9FTogSEjI0OWAHS73ezNi4yBIRQHUCj9y8DcxIN1ACsrK/HNN9/4fY/5XZo1axZUTU6wDmBsbCxbcyinjENpCljuNDD8Yz4SHEC5g0CY2H0+n+YOIPk7M9+z2+1YsmQJBgwYwL5XUFAg6iAFIlDfZWRkiE4Bw/8+/3iSWsYS8B+4ZTQyMjL8jpPBgwez//7hhx8CbsNMDiB5zSQFu1HPaVUEYGVlJVJSUth/Hz58GB6Ph11AOyoqCv3799fVfXr11VcxZswYNq07dOhQPPnkk5zPtGvXDvn5+ZxUtdvtZkebSk1fEhUVhSVLliA7OxuLFy9Gfn4+Dhw4gGXLlmHgwIFYuHChavV3ZWVlgm4h81ppaSlsNhu2bt2Ku+66C6NHj8a//vUvPPPMM+jatavodvPy8rBw4UL8/e9/V6WdYgjdIKUgb9zt2rVDVFQUmwZ2u92SaYRANws1BSD/Aix0QS4pKZElAIGrbRea6T8UB1BqgltSAMpxAIUEkFAamBSAwUzTEew0MMDVNPDFixcD1owqTQELtb+srMxvP/xjXsoBNOrNgg8/BSzmADKxNzQ0+LnswRzHgRxAseOLzATYbDa2Fg1oEoBSy8BJEeiBpqSkRHYKWOoBK5AANKIDWFJSwp77CQkJsNvtuOaaa9j3z5w5E3Ab5LlUVFQkmqlhrhFOp5NT663XIBCp6aOMQpQaG0lISOCclAcPHoTdbue4TVFRUbr+CBMmTMCwYcNQWlqKnTt3wuPx+N1Exo0bh1WrVmHFihWYPHkyvF4v3n33XfZGGOhp1el0Yvny5Zg9ezbmz58Pt9uN7t2747nnnkNUlCo/NYCmixr/JgdcdT7q6+uRkJCAtWvXKtpuTk4OcnJycOLECUyfPl2VtgqhdDZ2RgCmpqayLkOfPn3Y9w8dOsRJK5BITQINcN2iUAUgX6gJCcDGxkZJAchfDi4tLU1w7sZgnBPmZijHAaypqRGcMiiQAwg0CcA1a9awDzw+n091B1DuSiBAkwD88ccf4fV6UVhYyKkL5EP2jZwUsFD7fT4fLl26xFk3ln/MR0IKmBQciYmJog4gE7uQIx6OFLBYDSC/FlgtARhoIufGxkZVBKCQK2l0AdjY2Mg595n/t2jRAleuXGGnkBLD5/NxDJnGxkZcvnyZM5CMgTnm+L+THtPAREVFce43Rn2oU8UBbN++Pb777jtUVFSgqqoKeXl5uOaaazg1gUVFRYqn/1CTrKws9O/fHyNHjsSKFSvgcrmwcOFCTp3VHXfcgfvvvx95eXmYMmUKpk6diosXL+Kee+4BIO+ikJCQgJkzZ6KyshIulwuPP/647CWF5OJ0OgXFCnOxU3t/aiMlQPg0NjayzjE5opMvAMWQmgQaUNcBlCMAY2NjFTuAQgIwGOeEubnIcQB9Ph/HsWfEnFQNIPNb/vbbbzh27BinrYwISExMVCwAPR6P337lpoABZQNBhBxA8veSGgVM3tj5dYD8Yz4SUsByHUCpVU7CkQKOioryO159Pp/f8ot8ARhsCphcNk7oeI6NjQ16FLCSFLARBWBsbKyfAASu/vbnz5+XHBwqdE0WSwMzvxW/NEoPBzAlJYVzbBr1oU4VATh+/HiUlpZi/PjxmDBhAsrKyvzq3fLz8xVP4RJOhg0bhuPHj/vdEKZPn45PP/0Ur7zyCjZs2IDXX3+dFYlSzgHDxYsXsWzZMrRv3x7p6el45plnVJ98OTU1VTA9x7wm9HRkJJRMHF5YWMheIEgBeP3117MXebkCMNwpYP6SR0ICMCkpSZUUcCgOoBwBCIB9Oo+JiWHbJeVQkEX1ZBqYvDEF4wCKTa1BIpUCVjIVjJAAdDgc7DalUsDkfvgCkH/MR1oKmD8IhHyPiV2OA1hdXY0JEyZg8uTJog85gRxAm83GyYYATf3GHDPMsUz2VygOIHBVdAidq0lJSRzRQk4PAkjPW2j2FHCzZs0kBaDH48HFixdFvx+MADSCA9iiRYug5jvVGlUE4LBhw/Dkk0+iY8eOaNeuHf70pz/h9ttvZ98/dOgQampqcMMNN6ixO1VgTjShk6ZZs2bo2bMnu2zNDz/8gFatWnEuGEKUlpZizpw5iIqKwurVq7Fq1SrU1dVh7ty5gheGYOnSpQvOnz/vJzCYWkUjCW0hlNQAkjds8vdPTExk6xmPHDkimlZWIgBDXQ1EjgPIrwHk38CEVgNR2wGUkwIGroqY1NRU9jtSN6iJEyeyf5NzbPJHASqtARQSDnJHAQOhO4AARJdqI/9NOkp8ARioBlBLl0It+MX9cXFx7EOZUA2gUD/y+3/Lli346KOP8L//+7+iSwsGEoDAVVHFbF8oExAXF8cOyDhz5kzAdKsUjKgTuraRNYCpqal+DyhSDxiBBKCc1Vf05OzZs+wDvJAABCCZBha6rovNBSgmALU6t8g5D1NSUjjXPaM+1Kk2EfTYsWPxxhtv4I033mBTpgy9e/fGtm3bcMcdd6i1O0Hq6upQUFDAucEKLTjd2NiI7du3w+l0okOHDpLb3LFjB44fP44JEyaITp0BNN3k5s2bB5fLhdWrV6N169Zo164dVq5ciUuXLmHBggWqHQTDhg2Dx+Ph3GQbGhqwbds2ZGdn+40yMzP8EcAkvXv3BtDU7ydOnBD8vpTbBmjvAJJtSkpK8puYWm4KWKlY9Xq9bHxyHUCGlJQU9iIqdYPq0aMHsrOzATSt88kMmuILQKUXZDkCUO0UcHx8vN9oYkA6BSzlAPKRWgnEqDcLPvwUsM1m40wjxEdOCpjMljCrX/AJ9FAHXD3Gme2L1QIzQqSwsJDzGaUOIJPWramp8Yvd5/OJLgPHb2+k1QCS524wAlCuA0iWiejlAJLHD3nNBIz7UKfeyIQw8/HHH3NGJu7Zs4d92ho/fjwSExNx7NgxzJ49G1OnTsW0adMAACtXrkRNTQ169eqFVq1aoaysDF999RXOnj2LRx99lHOwHDp0CO+88w4GDBiApKQk5Ofn44svvsDAgQNx1113SbZvy5YtKCkpwcsvv8y54XTt2hUvvvgi5s6di9zcXIwbNy6kGAEgOzsbw4cPx+uvv47y8nJkZmYiNzcXRUVFnDUjjYqQEBMjkABkJvM+dOgQevTo4fd9LVPAchzA5ORkv1okknCNAiZvtHIdQIaUlBT2SVxqFHBsbCxGjx6N/Px8+Hw+5OXl4Z577glZAMoRDnJGAQPyBSC/XllMAJP/Jo9PvhPE7+tIGwTCXEcTEhJQXV3NOfaZ2OWkgMnfRUwYqOUAAk1C5Pvvv4fP5+MITqUCkHzoLi4u5pxHdrud7VMxARgbG4vq6mrFNYDk/cuIApA0TUgByE+/iyFXAIotAwdo5wCSI4BTUlLQqlUr2Gw2+Hw+w57TphGAH3zwAafjd+/ezU66PGLECMEbFwDcfPPN+Pzzz/Hpp5+ioqIC8fHx6NatGx5++GH8/ve/53y2VatWsNvt+N///V+4XC6kp6fjj3/8IyZNmhRwFO/kyZMxdOhQdOzY0e+9nj17Yv369QHX4VUS4+LFi5GWlobt27ejuroanTp1wooVK1hXzMgoWRFGjgMINAnAe++91+/7RhOAHo9HUgDyRwGT/ydR6gAGWgWEQeg8Sk1NZWMLlKIiR2MzrqzeDmBGRgbsdju8Xm/QAlAsBSzXAeQf85E0CCQuLo51shMTE1FcXMwRI0zscgQg+fuKCQM5DiC/BjCQAwg0LRXHoDQFzBeATPkQAMkRwAxyHHYhAWi325GQkCDoPBoBsq/Iawv5u0vNzyk3BSw1gEcrB5AvAL1eL2JjY+FyuQx7TptGAPKXbROiT58+fitx3HLLLex8hIHIzMzkrAuphKioKEHxx0BeEMSQEyOD0+nEzJkzMXPmTNnfMQpVVVWyB4JICUA5I4GNlgK+dOkSe1OS6wCqIQD5gkMMMQeQKdSur6+Hz+dja734NyjyOP/1118B+E8XorQGUOjiqaQGMCoqCm3atMGFCxckbzb19fXsvsQcQKmJoKUEIP+Yj6RBIOQxw7gv5LHPxC6nBpD8PcXmiFPbAWQgBWCoDiAJuYCAWHlOsAIQaPr9jSoASSc8nClgKQGolwNYVVWFuLg4uFwuwzqAqtUAUijhgLlhR0dH+z09p6ensxfUQ4cOcab0YTCaA0h+JpAAZD6rRgqYn6oVI1ANIMAVn/wbFOlynzp1CoD+DiBwNQ1cUlIi+tuJDQABwBkEQx5n/GlgmOMpUA1gJA0CIVNuzPFDTv3DICeVT8Z+7tw5wWwBcz6QNYd8lNYAAuBMXaSmACQXEAjkAEoNshJzJaXqLvWGPwMAQ6tWrdjfWA0BKLYMHKDdUnB8AQhIT4FkBKgApGgOOUFuIBgB2LZtW8FBOEwauLS0VHClGaNNA0O6X2ZxAFNTU0Unu+ULwLi4OGRmZgK46gCGowaQv3azVA0gwHXnzp8/L7gfUgDy+4ZsM/lbkn/HxcWxo0H5IoB/zEeSAygkAMn3mdiVpoAbGxsFpwhhzoekpCTRgXmkA+jz+USvA6QAJB+0Qk0Bk5Bxi137xBzAQDWAAHfydqNBnoukALTZbOw5WVBQIPjwDqhfAxjOc4v/ANmmTRvRfjUKVABSNEfuvIhVVVXsSSU2BQ+/DpCPlilgOQ4gmdYKRQAqdQDJz4fqAJLbYi6o5NxrTBr40qVLqKysDIsDCHD7SyoFDMgbCCLlAIoJNH5tJSMELl26xBGo/GPe7INAvF6vZAoYuOr+MLErHQQCCLtDzHkmVUbCX+FH7DpACkCSYEcBA/4CkHHCgaYHWSEYwerxeDjOqdwUMNB03ChdZSnckGKNFIDA1d++trZWcF5bQLgG8MqVK5JC2Sgp4NLSUtHaYaOgigAsLi4O+PRRW1sbMC1CsQZyhZbYHIAkgQQgI54cDodgukjrpeDIi4SQACQvkmpOBB3KIBCpKQ2YGxQ5Bxw5D+Wvv/4alnkAAe5vECgFTB4/YnWAclLAADd+vpBjBKDH4+H0Nf/YMvsgELKNYg4gIwCZ2IXiCrS2tFAdoBwByD/GxBzA5s2bC56HaqaAycwE447zCXR+AeKupNgE3EJ4vd6Q5ztVAvm78wWgnJHAYtdk/m8sNwWs5SAQt9ttjRTwpEmT8NFHH0l+5qOPPsKkSZPU2B3F5Mhdqk5qAAiDXAGYlJTEChQSrVPA5IVA6MZjt9vZC2W4HMBQU8DktoQml+YPBAlHChjg9legFLCcovNgBCDzd1RUFBwOh6gQ4P/mZk8B81cBYRCamJiJXWkKGPDvK7fbzW5HbAQwuU+g6beWygQIuYDBTgQN+KcoyeNAqQBkYrXb7YLHNSB/LsBff/0V119/PdLT0/HTTz+Jfk5NyFj41xY5I4HFrsn839iI08CQ5zXf2TUKqghAn88nmsMnP0OhAPLnAZQjALt27cperKVSwGL71DoFTN7wxNrE3NjCNQ1MqClgMQeQgXQAT5065TcKONwpYKEpm+S4DcGkgBkhx8QkJgAjbR5A/iogDEJiRMk8gIEEIPkwIdcBbGhokKwFFhKASh1Ap9PJxsl3p5h/t2jRQlRYKnHY+cgRgBcvXsStt96K/Px8XLlyBR988EGAiAKzdetW/POf/5Sc1osUPWIpYEC5AyglAKVSwFo6gMnJyYZ39jWrAbx06ZLipypKZCK3FIAUgGLrMDscDvTs2RNA0xMuKcLI4m8xt0DNpeDkOIDkAIRAAlDNUcByHUChNDnzNCu0LSEBGE4HkLyGCDmAMTExgjfKcDuAzO9DOkHkcc4/5vmC3Og3Cj78VUCE/mY+w8QejADkp4DlTAEDcMsApFLAgDoCELgq/sm+9nq97EAWsfo/QHyQkdD5xUeo7pLk8uXLuO222zjT0QitkKWEw4cPY/To0ZgyZQo++eQT0c+JTQMDyDsnSQFJPlzx5wKUEoA2m010pRU14Zf3FBcXG350f9DzAG7cuJHz74MHDwp+zuv1oqSkBDt27GCXiaJQ5CDHAQSa0sD/93//BwD46aefMHToUADCC8DzMdo0MMDVttbW1sLtdqtSAxjKIBByLWAgsAPIF4DkcnfNmjXjDI5QWgNIzicnJADF0mQtWrRAYmIiqqurVRWATPuZG4xULRgJX5CT7TbijYIP39UV+psvRpROAwP4CwM5k0AD4ing2NhYvwcgNVLAQFPfnzhxAtXV1aitrUV8fDxKS0vZGMXSv0y7GITOL6n2SNUA1tTU4A9/+AN+/vlnzutCWYWioiL87W9/w7BhwzBy5EjR/QHAjz/+yP79888/Y/z48YKfE5sGBlDuALZv3549p/gOoFQNINB0fSLn+VQDZuWwcePG4cYbb2QFYPPmzdlrntGd/aAF4IYNG9i/bTYbDh06JDoZLwC0bNkSDz/8cLC7o0QQUhduEjkOIOBfB8gIwEAjgAHtBSB5EQgkAIGm1A0jmJo1a8a6aaHMA6ikBpBJTwo5gD6fT1AAJicnIzU1FWVlZTh16hQyMjI42ydv+kodwObNm7MXf6FBIEIDQICma1RWVhaOHj2Ks2fPciazZghnCph/zPMFIFkiY2YHUEiMkA80fPjHsdAoYK/Xy073ItcBFBsEInTOqe0AAk1937FjR84AECkHUGyaJeY3k2qPlOieNm0a9u7dC4C7DKXQQ+WyZcvwj3/8A6+88goKCwv9BBsJObeh1MAT8hzlb49coUeOAGzXrh32798PQFkNICA+zU4oTJ06FT/99BP+9re/4ZFHHmF/E2YOwObNmxve2Q9aAK5duxZA003giSeewO233y741GC325GUlIT27duLztlEsRZy60EZAZicnCx5sRcbCCLHLVBLAHo8Hr8bnNCFUY4oJWMlRXDr1q1ZARiueQCZWiOmj1JSUmCz2QQdCv4ceCSdO3dGWVkZzp8/z4qyhIQE2O120ZudGOTvSvajUA2gmAAEmhyEo0ePor6+HiUlJX6rMqiRAhYTgPxjnvntHA4H6xZERUWhsbHRkDcKPnJSwIwYYWLn36RramoCOoBMXzHTrATjADY0NLDnndB31BKA/Klg+AIwFAcwGAFYWVnJri7VvHlzfPnll7jhhhsACDuAzFrINTU1KCgowHXXXSe6T3JaI6mBJ1IOYHR0NDIzM3Hu3DlZg0BIAa2kBhC4+vupdW75fD7k5+ez/163bh37NyMAfT5f5DqA5E136tSp6NOnjynWoaXoT2VlpeTTJdAkqJh6Oan0LwBcf/317JOkXgKQX/8HCAtAcr4rOQ4gORVOq1at2MmVw7USiM1mQ2JiIhtPamoqAH9HJdA2u3Tpgu+//x4+nw+//fYbgKsXZqYmp76+XjUBGMgBBPxTTmoIQCkHkKx/4h/z/NQx0HSTqqqqMuSNgo+SFDATO38EvBwBCDTVATLiKpgaQJfLxR7PchzAmJgYTtmCXITEP1nzK7cGkPkNPB4Pe4wHIwDJa81tt92GAQMGIDY2FnV1dYICkHytqKhIUgDKdQDJB14hYZaVlYVz586htLQUNTU1fu4dWQOYmZnJPpwqqQEE1HcAL1++LHq/YARgZWWl4R1AVSy5Bx98kIo/iqoUFxezJ1ggARgfH48OHToAuLr6BKBtClhIADY0NPgN/ZdzAyNFDvlk3KpVK862lSDXAQS4NxT+kkbA1Yuo1CS1ZB0g4wCRF3f+Wq1S8FPADEpqAIHANUeMAOQPygCEa3nIOdWYeFJTU9lMBykA+QgJQKPPGUaiZBAIA3OTttlsrBiWIwDJvgomBVxaWsoeg0IPguSyZEBw7h8gLABDcQDlzAEIiA8CEXqgYX4zoRQweb0MNFCPFIBSDiA5WbhQBjDQVDDkOR4XF4eWLVsCCK4GEFBPAJIC9NZbb8WwYcPYf3ft2pX92+iDQFQRgEeOHMErr7wiOpt3aWkpXnnlFRw9elSN3VFMjth6mCRyB4AwMBeSiooKwelTwu0ACl1QAfGbYFJSkqjLIOUAMoRrJRBAWAAKpW3lCkAG0lVT8kTOHwTCoDQFLFcA8t0/sr3A1bhJ8cK873A4WHFDHhP8Y17MAQSMeaPgo8QBZGJn+jE+Pl70ASCQAAwmBSxViwlcrQ9lUEMAMgIlGAeQ+U3kLAMHiA8CIQUgWZcGCKeAydeUCEApB5A5V8QyPoHOSfIcj46OZpfSKyoq4pRVyK0BdLvdktPWyIUUoP369cOOHTvwzjvvYN68eXj66acBNB33Rk8BqyIAP/jgA+zZs4dNF/Fp2bIlvvvuO7YegWJtyOHyYpDuiZy1g4UuJMEKwKqqKnz99deKXDa5ApCJXWouxHA4gHIHgQDcGwpzTgvdoKQEIDkXIAO5DSUCUMwBVDIIBAi8GohcAci0Wew3ZW52pCvMP+at5AAysZMDGph+amho4NzIhR5syKlggnEAyWuJ2HlHXj+Cna4snA5gMClgIQeQnGKKX5carAMoJQCZ/lJDAEZFRbEPE2RdJyA/BQyoI8RIB7BNmzaw2+2YMmUKXnrpJfZ+dfnyZWukgI8fP87OxSZGr169OEWTFOsiR7yQ4k3OxNGBBKDYNoSWgrv99tsxfPhwPPbYYwH3yyCUAgb8L47MBVGuAIwkB5C8MAfjANrtdo7AUDMF3NDQwO5HSAAKPcmLpdWFBKDYmrdCDqARbxR85IwCZsQIEzs5pQlz3vl8PtaR8fl87G9LjvoPNQVMCkCxB0G1HUB+DWBcXJzgcSXUXqUpYCUCkPnNvF4v57N1dXWcY5SfYuUjJwXs8/nY40RMAAZ6KCNLaKKjozlOOinC5KaAAXXOL74AFKKhocEaDmB5eTmbmxcjJSUl5MknKZGB1E2aQe6FnkHoQkI+Icp1ACsqKrBnzx4AwLZt2wLuV6i9JOSFqa6ujr3xSwlAqVHADFo5gEI1gHIcwLS0NL9UDHkTUDIxq5BwAK4KQK/Xy4oIKQewTZs27CohfAEoNQAEEE4Bi4lqJs7q6mrWZeEf8/zRw8DV37ChoYEzV6IRkZMCZo59JnYyBUz2E3MsNzY2snG3b9+e/W1IB1BuCpjcvhEcQGYAgxhCDlUwKWCyX0jXme8AAtxrFnmtJNsvRH19PefhRswBrKurY89LtVLApAAkRWqg30ptB5Dct1hJU3R0tDUcwMTERMmCZ6DpgAr2yYoSWYiVCpDIvdAzqJUCZqZCAJou3lIFziTkxZS8gZAXRzmDUvhtJYUJ+ZAVrpVAgMApYKEUKP/cttlsfi4g2e/M9urr6wNOC0SmDoVS9uRNQkoAOhwO1lkKRQDKTQGTDggZu8/n8xs9LLYPo6JkGhgmdqEaQEB4VHl8fDz7UFdQUMAeI8E4gIFqAAF1HMDY2Fh2+8XFxaiqqmLbK1X/x3yXQYsUMMC9PvJrAqUEIOn+8fdJwl8BSIhASzSK1QACwgIwNjZWsLZaDwdQagJ9o6CKAMzOzsbu3btFD5ri4mJ88803ksPKKdYhUHoBUO4ABpsC5i8FRwpAADh58mTAfQPcix15QQhVAJIkJyezDla4VgIBAqeAhRxAoW3yBSA5CpD5vNfrDbhIOikchAQg+VtICUDg6g2nvLxc1AGRKwADOYDA1eOCPOYbGxtZQSPkAJL7MCpiDiD58MN8pqioCI2NjZwpTYQcQP60QszI/pqaGnaAYTCDQJQ6gKEYFeRycHLr/4DQBKCSUcBiAlCJA8gXgGIOIHlNFFphCGhqO/NgKyQAyWsDWQMIcEUYeY0QQg8HsKioyPDntCoCcOLEiaivr8ejjz6K3NxcdpLI0tJSfPHFF5g5cyYaGhowadIkNXZHsQDkzVmOAyhUMxRMCvjEiROc9/mCUE57SQFIpibktEfqvebNmyuaPoVEzRSw3BsUfyAIeaNSckEmJ8MVWruZFICBygvEpp0I5AAKOQiBHEBAuDZUzI01erqIRMwBtNvt7E2Y/Ay/nk1IAPIFtdBDHdNPDodDUhQprQEkH1bkZCjEYARgZWUlTp06xb6uRAAKPWAFsxSc0Chg8mGavGbxHcCSkhLRMgQhB1DIxZfjAAJXz8kLFy74zcQgNwXMxC32O4XLAUxMTBQVt4Dxz2lVBGDv3r3x6KOPoqysDC+++CLuuusuDB8+HHfddRdWrFiBy5cv4/HHH6dzBVIAyHP0yAuSnM87nU724sDc2ENNAQPwE4RikBc78iIldkGWKgiXEoDk6EklKHEAx4wZA4fDgbZt22LgwIEAAjuAQjdjvgNIprCVrAYiVjumNAUMiNcckX0j5BKF6gCSx7CYAFT7JhVOxAQgcFWQMG4UuX4zIC4AxRxAoKmvfvjhB/z0008AgA4dOkjW1JHbD9S3QNND25IlSzBgwAA88cQTotsNBFkHeODAAfbvYFLAcmsAnU4nm/ZUywH0eDyS07qReL1ewQdSpQLQ6/VyXFNAeQ2g0BQwQPhGAUvNUJGUlGR4BzDolUD4TJgwAX379sWnn36K48ePo7q6GomJiejevTvuuOMOdOrUSa1dUUyO1IWbQWkKGGi6kBQVFaGwsJCz/qfT6RQVPYEEYKgOYDACUCzepKQkTRzAnJwcnD9/HsnJyezvFowDyBeA5E1AyPEQwu12s2kgsRpAJSlgOQJQrRpA4OpNkDzm5QhAI94sSBihERUV5febMzXhzLFvs9n8xEygGkCn08npqzNnzuD1119n/z1nzhzJ9okd41LO+7PPPotnn31WcruBIAXgjz/+yP4dyAFUOsqehFm9p6KiQlAAknNTyq0BBJrSwOTMAwx8BxBoOh7411ipZeBI+AP4SOHPnwaGvLYqSQGr+XBVW1vLXu+l5rTlL6FpxIc61QQg0HTBD3RiUigVFRWStjnzGQY5KWCg6ea+b98+AE3Tp0it/8kQqAZQrgMoNulvMAIwOjoacXFxnAuG3W5HYmKiKg5gIAEI+F/YgnEA+SlgoRpAQFrs8NNggQSgkhSwEgEodAMJNA0McFUAksd8JKWAExIS/B7oGBeGEQAVFRWS/SjHAXz//fdZR61Dhw546KGHJNsndozLmVIqFNR0AOUKQACSAjA5OZntI7EUMN8BBJoEoFDdvpAArKmp8ZsJRKkDCPjXAfKngUlKSmLXkWam2GlsbGSPIS1qAEnnUcoBrKiosMYgEApFbZiLU0xMjCzBAviPKGNEpFwBWFBQ4FfQ/MsvvwQcpQrIGwQiVJMjBr/NSUlJ7Bq6QHjnARQimBtUu3btOL9vMDWAcgSgkhSw2LxjwTiASlLAJJHkAAo9yDGvkdOABJMCJoUBKaaWLFkSsJ+DcQDVgBSAag4CCTQ1DV90A1engSGPZyUOoNhgPTEByEeuACRdRn47+Clgm83GPhgwo8MDTQINqOsAyhkAIrRfI57TQQnApUuXYteuXUHvNNTvU8wNeZEUgxGASi7Y/JSRnEmXSUEhtFRhZWVlwFnxmc8xiAlAoXm5xODHzfw7WAeQvPjImYeRj1CKSmoaGKAp9dSxY0f23+RAHbkCkJ86DDQIRIkADFcKmBRFzE2QPOYjzQHkw18NJC0tza8f5QjAjIwMdtQ7Q/fu3XHfffcFbJ/QcUCuQRwuhASBw+EIKBRCqQEEuHWXPp8PXq+XFVNyBKCYAyiEWAqYj5xRwAAEjwUGvgAEwArAuro6FBcXB1wGDlDXAZQzBQzQdM4b/ZwOSgDu2LEDp0+fDnqnoX6fYm6ELjZ8mIuT3Po/gCsA8/Pz2VFsch1A8oJIXrDk1AEyF7vo6GiOuxdMCliozczvEKoDGBsbK6sGk0+gUYpirqLQiiCAcEpZCKnRo8GkgGNjY1kxFqwAlDsRNHD1uCCP+UgaBCJ0w+XPS1deXu7Xj0L9z/89yXkbGZYtWya6hjaJkAOYlJTEKUMIB0IPt61btw7YZqUTrfNhfnOPx4OGhgZUVFSwmQvyeiR3FDCgTACG4gDKFYDMwwBZGnDmzBlZDmC4UsBSwr68vNzwKeCgawBPnjyJ3NxcNdtCsQiBxIvP52MvTsEKwMOHD7N/y10xgOS2227Dxx9/DKCpDvDGG2+U3DfZXqH1UIHQBCDfAXS73fD5fLLFnNDKE0oItkj997//Pb744gvExcVxLpZqOIDBDAIBmo6T4uJiFBYWoqGhATExMQH7hkm/19fXBzUIhDzmxb5n9HQRQ0NDA/vbCzk7/ONfKE1HHjtCDiDzu3To0IE1C/r164c777xTVhuFjvNwp38BYQEYyP0DQk8B80U3KeiCdQCVpIADOYDBCkB+DSDgLwDJ402LFLBcB7C+vt7wD3VBC8Bvv/2WXTJLCXLqqSiRDT+tw8flcrEnvpKLNpneY6aLAOSngElGjx7NCkA5DiC56LkaApAvfJnfgbyxNTQ0yBZ0QmvPKiEqKgp2u50z5YMcAfjEE0+gZcuWuP766zm1PsEIQDVqAIGm4+T777+Hz+fDuXPn0LlzZ7ZvYmJiRGOJjY3lCEAlDiB5zIt9z+jpIgapKWAAfzEiNA0MUxsIiKeAAaBbt27YuXMnAOD555+X/cAjdJyHewAIICwAMzIyAn5PrRQw0PSbi11rlI4CFkKuAyh3FLCQqy/0bzEBSJaZBOMA1tfXK7ouyhWAUVFRkekALly4MOQdd+3aNeRtUMyJ0NQCJMFMAQM0XeCTkpJQWVnJuUjJTQEzJCQkYNiwYey/laSA5TiATqcz4AVdLAXMf1pWKgCDGQACXHXAXC6XIgcwPj4eM2bMAADOxLLhGgUs1wFkOHv2LDp37swpmBcTGXFxcZwRrUocQPKYN/sgEPLGLiQAScFRWlqKXr16+YkZ8jeQEoBPPfUUSkpKMGDAANx2222y2yh0HGjhAMbFxaFZs2Yc90vOFGhke4MdBcwgJQATEhLYBzkhB9DpdMLr9cLtdgsKwMbGRk4tM7lPPnIdQKG6XoZAAvD06dPsXKWAeA2gmBM3efJk/Pvf/8bbb7+NyZMni7aRRG4KuFWrVhzDy4jndFAC8Pbbb1e7HRQLUVhYKDkqTukqICRZWVk4cuQI5zWpbQjV5lxzzTVo164dOxVLoKlg3G43e3LLcQADuX9CbRZyAOvr62UXtTMX6FCWuYqNjYXL5QqqRgng9rvcGkClg0DkDHDhTzuxZcsWdkoJfs0ZCSNKhBzAQAKQjN3sg0AuXrzI/i10LJOO18WLF1FYWOgn5Ml/C80DyPwWnTp1Yp14JejlAAJNLqBc8cMgVGKg5PziLwcnNuDMZrMhKSnJbylERgwyy01euHBBUAAKiT/AnDWAZWVl+N///V8AwPr162ULQMYBdDgcflPf8D+XmZmJ6OhouN1uQ57TdBoYiuFQugoICXlzZ5C68NtsNj/RcM0118But7Mu9a+//iq5Xi15oWNmf2dcJKFRwIGmgAEC1wAC8kcCNzQ0sG0MZZkrvgAKNApYzrb42+EjZxCI0hQweYwcOXIEjz32GPvvefPmBWyzUPxqTwNjxJsFAznBca9evfze5wtAQN40MKFOVUSiVw0g4J8GlkoTkvCPr2BrAGtqaiTLTZjfQcgBTE5OZtsvtBwcmVkhryXhGgUsVAOYmprKCt4zZ85wrrFKagBJJ+/MmTOi7ePDfC8tLU3WoCJ+vxoJKgApmhPoiTjYFDDArQNkCHTh5wvAbt26AWgSgkDTRUhq1Dq/vTabzW891IaGBvYmGIwDyB8FDMgfCUw+tUs9sQaCPwJZzihgErGVQLQeBEIeIy+//DIrUv7nf/4HEydOFP0ecxMJZiJo8jWzp4BJAdi3b1+/90l3/+LFi2jWrJniaWCCrVWV+r5WDiA/LSh3FSzmnGCOD7VqAPkPnMy1hBGAHo+HM+0WIwCFloMjBSDpxEk5gDabTTQ1CyifBoY/F2CgkgRA+HpDOpwXLlyQ9UDt8XjY7wUS9sw5z/SdEc9pKgApmhNoEEioKWA+SgUgI/wYIQhI1wGS7WVOeuZCxFwYlQwAEWpzKA4geRFX0wFkhJDNZpMlvMh+12slEIB7jDAOQ3x8PF599VXJQQZMm91uNzwej6hj5XQ62XYEGgRixhQwMymz3W6X5QBGRUVJOrlSNYDBwgxaItHLARR6KBVCygFUqwYQuPo71NfXo76+nuPUJScncwQsPw1MCkBy8IWUAExMTJS9brMcAQhcFZ/19fWch3MlDiAZm9frZctApLh06RLrigYa3c2c80y/GvGcpgKQojnkxUkILVPAQGAHEJBeEo6fAgZCF4ByRgHLdQDJxdtDEYBiDiCZ8paC/A3UqAEMNgWcnJzs50IvW7aM42gIwZ+rTcqxYrbPHBtk7GZ2AOvr6/Hzzz8DAK699lpBx4W8MV64cAFXrlzxSwEHWgs4VAEI+B8LeglAubGICcDo6OiA8wgGIwCBpodXcgoY0gEEpAUgea0VSgEzrwXK+CitAQS47mN+fj77t5IaQH5s/GXohJC7DBxw9ZynDiCFooBQHEA1UsBGdADFRgHLgXQAQ0kBkykqn8/HEYDBbgsIfhqYYFYCAZocS/Lm1bdvX8yaNSvg9/guglTNGl8AkpjZATx69Ch7UxZK/wJNfcCMelZSA6i2AOSLci0HgTCkpKTIPj+Y9vKngQlU/wf4DwKRKwArKio4D9xkDSDgPxdgMCngUASgUA0gf9/kCk7BOoCAvDpAuVPAkFAHkEL5f7hcLsGbIonaDqASAZiens7uk5yqKFgHsLa2Fl6vV7UUsBEcQKDpQq1UAAYzD2A4UsAA0KNHDwBNacw33ngjYFmCUJuVOIBk7HImgjbizQLgrskrJgCBq3WAhYWFSE1NDWopuFDh94keDmDbtm0DTnvFQDqASh+wlDiA/NVASAeQLwDlpoD5DqDP51NFAMpxAE+dOsX+HWwNIKDcAQyUAmb6nf/gbCSoAKRoQmNjI9auXYtOnTph8uTJkidCKINA0tPT/VygQE/+5OfJtG9KSgrrmMl1APkCEGi6mRulBlANBxBouogqFYCkUA52EEigpeDkOIAAsHz5cjz88MP46KOPJIUMCb/NchxAZlJzMnYzp4DJASD9+vUT/RxTB9jY2IgzZ87IqgFUcxQwYAwHMDMzM+ADLwMZs9IHLP4oYGbgl8Ph8BuBK+UANm/eXHYNoJQD6HK52Fo5NQRgVFQUp8yE3Dc5qXgoKWC1HUCm38n+U7qEZ7hRTQA2NjZi8+bNmDFjBkaOHInhw4ez7508eRKrV6/GuXPn1NodxWTY7XZs2LABRUVFOHjwIL744gvRz4aSArbb7X5zuQUSkaRrRKZ9yX9fvHhRsM6F315+ChjgXpCB4KaBEUoBy72YqDUIhL8cHHMhlSsAxZwvJWsBq1EDCDS5F+vWrcO4ceNkfR4IzgEEmtwR8rNmXgmEFIC9e/cW/Rw5EOTs2bOSKWChGsBQRwED+tUAXnPNNWxf9u3bV7aY59eYMseAnBSwmAOYkpLiV5/LF4DBOoDt27dnt82/NsqdAgaQlwLmO/Ri9bpiv5XD4WCvHWqlgAM5gEy/G/m8VkUA1tfX44knnsA//vEPFBcXIyEhgePwtGnTBtu2baNrB1sYu92OZ599lv33kiVLRF3AUFLAALcOMCEhIWB6jxQVpAPI/7eYCyiVAgYCz8slhJwUsFwHUK0UsJgDKNetIQvZ9ZwGJlikagClBGBVVRUndrM4gPzz0+12s0ssdu3aVfLcJAVgSUmJXz8KHceRUgOYmpqKzz//HC+99BLmz58fcAAHA18oML9ZKClgoWsN2W9CDqCcGkCn04nExER2v3wHUMlE2HJWAuGXdpBzAZJIiWX+IJtwDwJh+t1o5zWJKgLwn//8J44cOYIZM2bgk08+wahRozjvJyYmonfv3ti/f78au6OYlDvuuIOdNmL//v2iLmAoDiDArQOUc9GXEoByBoLIcQCVCkByKhFAPQdQjXkAAW7Mch1A8saiRg1gsCuBBItYClhoMnG+ACRjN8MgkI8++ghJSUm49957WSF47Ngxtu1S6V+AKwBra2tZMeN0OmG32yO6BhAAbr75ZsybNw9JSUmC6wMLQcZcWVnJ/u5KBSAp6oSuNVKjgJOTk9GiRQv2oZkvkpiHyVatWnHm9+M7gHLXAQaahBIjlsTWAuafX+RcgCRS8w2S83j6fD6UlJRw3j937pzkhP+AMgeQ6Xcjndd8VBGA//3vf9GnTx9MnjwZNptNcEqIjIwM0cWlKdZArgtIPpHKXeqMhBSAci76UilgOVPBCDmA5JNoMALQZrOxbSedr1AdQDnpZzHICxkZj1wBSC4hpqYDGEwKOBjEUsBOp9PvmscXgGTsYgKQFEZ63yheeeUVVFdX4/3330deXh6AwBNAk5CTQZ84ccIvnRnJo4D5kH0vBdlepecXKXwuXLjA/h1IAAo5gHa7nRUv5D3b5/NxBCC531AcQODqNViqBpCPkACU6wCWl5f77cvj8QTsK8YBTE5ODniMMtuSe63TA1UEYElJid+Nk09cXJzgUHGKtbjjjjvQvXt3AE0uoFBZAOMu8R0fuSgVgEzNYIsWLTgj24Cro0UB4MsvvxT8fqBBIMEIQADo0qULAKBz587sa6E4gMw6n8FC3qBI1yCYaWCCnQfQZrOxMRglBSx0I5BaDk4qdWyUOcPIyXX/+te/ApA/AhjgOoDFxcV+6UypQSBCjmowkPuIiYlRRVSGE7EHLKXTwJC19nJSwHwHEIDgcnDl5eWsQ8YIQDVSwMDVvhKrARQ6HoQEoNS1iHQA+e4fg1QdoM/nYx1AuVPA8Nuk93nNRxUBGBcXxzmIhLh48aKmFjzFmNjtdixatIj9t5ALyAiqYOr/AG4NoJyn/hdeeAGPPvooPvjgAz8B0bVrV1x//fUAgO+++04wDRyOFDAArFu3DjNnzsRbb73FvhaMA8gIwFDq/4DQHUAyTaU0BRwdHc3eBJj/hzINTDBIOYB8+AKQjF1KABphzjC3281ZFSEvLw8HDx5U5ACSArC0tNRvTjupiaCFHNVgIPehl/sHBB4EwRDK+RUdHc3GS7p2clLAfAcQgOBycOQAEL4DWF9fz0mfqiUAxVLAgL8AjIuLk1ybl3QAyd+I/N2lBGBVVRV7HAdK/wJX+z3iU8A9evTAd999Jzrcvbi4GP/3f/8nuGwQxXrceeed6NmzJwDg+++/93MBmQtSsAKQcc4A/1n5xT7/yiuv4NZbb/V7z2az4YEHHmD//c477/h9RuhiJzYKOC4uTrYT0bt3b7z66qu44YYb2NeUOoAej4e9mYRS/wdwL2TBOIBk2/kjisUQKoSXEoBapoCVOIBi/WZEB/DcuXOs68Pw4osv4tChQwCaRlAHeohp1aoVW9dVVFSkKAWsllNH/rZ6mg9yj0k1H7AY5KSApRxA4KqgFBKA/OlnGJSMAgbUEYCBnFLmd6yvr+cM5iAfZqQGgigZAAJcjSniU8B33303qqqq8OSTT+LIkSPsvDx1dXU4cOAA5s2bB4/Hg0mTJqmxO4rJKS8v59QCLl++nP3b5/NxFiYPhqysLPx//9//h8GDB+OJJ54Iqa0AcO+997I3s3fffZcz7xRw1QGMjY1lT3oxBzBYUcug1AG8cuUK67CG6gCGmgImp8Kx2Wx+Kx8IITQVBl8AalUDyE8BK3EAydjlCMCqqio/EaYUn8/nd6zKQcgF2bx5MyvG5cyb6HA42Jvk+fPnLS0Ayb6XIhwCUKjmV2wUsM1mY7chNBeglAMIcAd+qO0AyqkBDCQAyd+XFHoDBw5k/5ZyAJUMAAHAeehniEgHsHfv3njiiSfw22+/4fHHH8d7770HABg5ciTmzp2LCxcuYM6cOQHrBCnWYezYsewJ/P3337Mipbq6mv07FLH0/PPP47vvvlPFdU5PT8ftt98OoOlmtnPnTs77jAAkL3RiAjDUVJRSB1CtKWAAcQcw2Bu2HAEo5QAaZRSwHAFIIjXfHbP6jMvlwrFjxxS178yZM7j33nvRv39/ZGVlIT4+HnFxcVi6dKni7TAI1VkFGgHMwKSByVHoUjWAagtAch96poDlQsZNikY5NYCA8AjYQDWA5ChgZgAIAMGpYJQ4gEpGAQPq1ADKdQABrgAkMyxSAlCpA8gQ8Q4g0HRDf/vttzFu3Dhce+21yMjIQNeuXTFmzBi89dZb+MMf/qDWrigmp2XLlrDb7ezNrr6+nhVIoU4BEy6mTp3K/r1x40bOe8wNnrywkhfjy5cvs09+arpwchxAtaaA4e87GIeCv39yiSQxhBxA5mahZwpY6SAQMnbme3a73c/ZGDp0KPv3N998o6h9f/nLX/D+++/jwIEDOHv2LOrq6uB2u7Fs2TJFMzCQA0CWLl3qd2OVu3IKWQfIIOQA8msAI80BlHvehXp+yU0BR0dHs/1AOoDkbxQoBczEpJUDKCQA+XMBSk0BA4jX+nXr1o2NXSoFrHQdYOY3ivhBIAwdOnTA7NmzsX79erz//vt44403MGfOHL+RlRRteOmllzB27FiMHDkSDzzwAPbs2aN3kwBcfVIkp4pgpi4IZRm4cPKHP/yBTaf8+9//5hROB3IAyWkZQo1JzAFsbGzEv/71L+zYsYPzebVWAQFCT1HxRwryJ2bl4/P5ZNUA6pECrq6uZlO0chxAMnYp4XjjjTeyf+/evVtR+8hpilq3bs2mqRobG/0eWqQgb479+vXDQw89xHlfDQFIzv3GHwWsxiog/O3o6QDKnf1CqxpA4Op1iKwBJH8jNWsAgxWAZAmDkADkzwUYbAo4LS2NnTni7NmzoqUXStYBBq7+HhE/CKS4uDjgQV5bW0vnAdSYiRMnYvPmzcjNzcXChQvx/PPPc4SLXjAngZAADHUVkHDhdDoxefJkAE3t//DDDwE03bQYASLmAJICUO6IQKl2MJAXyw8++AD33XcfRowYwRECZApYTQcwmBpA/sUvkABsaGhgL8ZSNYB6OICBUuB8AUjGLiV0+vTpw8b6zTffKFo8npl3LDk5GcXFxfj222/Z99544w3ZNYWkAMzKysKTTz7JirV27dqxN/9ACAlA8lghb/o+ny9iHUC5N/1QpoEBlAlA5vcoKSlhzx/yNxKqASSvJeGqAXS73ewxTz7YiU1fpUQAksceeYy3atWK3Y7b7eY4fSRKHUChlZIi0gGcNGkSPvroI8nPfPTRR3QQiMZkZWWxJ5bNZoPb7eacxHrB1JmQNwjm5mXUFDAAzmhgxlERcyzF5uUKVw3g4cOHAQBerxf79u1jXw+XAxiMAORP0RCoBpC/CgiDEaaBIeOX4wCSsUsJwOjoaAwePBhAU72pnOWpAOE5yjp37oycnBwAwK+//upXuyoGc3Ns3bo1EhIS0KFDB7z44ovo0KEDnn/+eVnbALgPeAxCqfyGhgZOH4ZDAOrpAEpNTUKipQPIXFvJ313MAZSqAeTXOjMEOwoYuHpek9PKiJ3XwTqAjFhNSUlBdHQ0ZztidYDkJNFyHECm3408CCT4WWEJfD5fwCdVJU+yfGpra7Fp0ybk5+fj2LFjqKqqwqJFi9jCfClOnz6NDRs24MSJE7h8+TJiY2ORlZWFe+65B0OGDPH7/Llz5/DWW2/hyJEjqKysRFpaGnJycnD33XeHdSJRpTE2NDTgrbfewpdffomqqip07twZDz30EAYMGMD53OrVq7Ft2zY0NDRg0KBB6NSpU9hikAtzgzKTAwg0pcN69OiBo0ePYs+ePTh58iTn4i6WAibnVGMmnQ4WMQeQvOCSFzA1B4GE6gDyn5rJGkCfz+c39xt/EmgG/iAQPVLASh1AMvZAqc4bb7yRTeV/8803ogvfk5BzlJEPVjNmzGBX8nj99ddxyy23SG6nvr6ePRfJ/c6bNw/z5s0L2A4SqRQwcDX++vp61VcBAbjHgp4Pk3IHDGg1ChgQ/j3I15jl4BobG/Hbb7+hvr6eFYAOh4MVi2IpYKXXcf6goJiYGM55LUcABqoBFPodGaFLLh5w5swZQW1AruwhZy5Xpt8j3gGUw6VLl2Rb2XwqKiqwceNGFBQUcOZ4k0NRURFqa2sxcuRIzJo1C1OmTAEALFq0CJ999hnns8XFxfjTn/6E/Px8jBs3Do8//jh69OiBt99+G88991xQbZeL0hiXL1+OzZs349Zbb8WsWbNgt9sxf/581glimDNnDrZv3441a9ZgwIABqkywGirMDSZQDaDRHECbzcYZDPK3v/1NcBk4gHsxIsVCqL+/mANIpl9IAajmIBCxG5TcGzaZCie/5/V6BdfgFHMAmd/A4/HA5/OxQtBms7GpynCgxAEkb4xVVVWc2AMJQHIgiNw6QNKdIAXHHXfcwbo1W7ZsEV0BgeHcuXPsw7oc4SlFIAFIOoDhEIBGcQD5x70YoQpAvgAiB3vwERJl5G9kt9vZh9WTJ09iyJAhrBvNDOLj75O8BjHHWXx8vKz7fqAlHtV2ABkYAUhuR8x1J+9bcq7jzOeNPAgkaAeQX1R88OBBwc95vV6UlJRgx44dyM7ODmpfqamp2LJlC1JTU3H8+HHMmDFD9ncHDx7MplQY7rzzTkyfPh2bN2/GmDFj2Ne//PJLVFdX49VXX2UHrowZMwZerxfbt29HVVWVaD1DVVUVfvzxR9x0002C7+fl5WHIkCGiJ7OSGPPz87Fjxw488sgjuOeeewAAt912G6ZOnYp169Zh3bp1nM87HA7069cPH374Idq2bev3e+hFoBSw0RxAAHjwwQexZMkS1NTU4K233uL0t5gDSBKqqFXqAKqZAib3Te4vmKXgAP8nY/5FPpADCDTdJJjfITo6OqwPOGR7SYdDSMhFRUUhLi4OLpdLdCk4MQE4cOBAREdHw+12yx4JLFafFBMTgwcffBB//etf4Xa7sXHjRsyfP190O4GmgFGCkhpA8mFGLQFI7p90eIyK2PkVbA1gixYtRM+HQA4g0DT595QpU1BfX89ZBpCsARVzAJm6Qbn1okLTApEPhWI1gKSmECo5IFHiAPKpqalhz3mh41oKIw8CCVoAbtiwgf3bZrPh0KFD7EzxQrRs2RIPP/xwUPuKiYkJ+eZF4nA40Lp1axw/fpzzOnMA8+3d1NRUwSkbSLZs2YINGzbgueee44zkA4CtW7fir3/9K5588kmMGzdO8PtKYty1axccDgdHvDqdTowaNQqvv/46iouLBVfA8Hg8sp9GwwkjjtLS0mC32+H1ek2RAgaajoVHHnkEK1euRH19PZYtW8a+J+YAkshZmUQKMQeQvGGQT7DhmgeQJFiHgr8aCP/hKlANIMAVgOFM/wLK50Fs1qwZKwCZ2H0+X0ABGB8fj/79+2Pv3r04ceIESkpK0Lp1a8m2SRWoT58+nV3P94033sC8efNE69LIm1+osze0aNECTqeTc5zKcQDVGgU8adIkHDx4ECkpKX7XZC0JlJpkCPX8EhKAYggJQL5LOnHiRHTr1g0TJkzAyZMn2ddJUSfkALrdbnYew0DHLYOQAJTjAGZnZ2P16tU4evQoHnnkEcl9hOIAkg57IKHJwPw2Rk4BBy0A165dC6DpgvbEE0/g9ttvx8iRI/0+Z7fbkZSUhPbt28suhg0HzLxdNTU12LNnD/bt24fhw4dzPtOnTx+8//77WLFiBaZNm4akpCT8/PPP+PTTTzF+/HjJE3Hy5Mk4duwYli5dihUrVrCTpe7atQurVq3CiBEjMHbsWFViOXnyJNq2bet3YenevTsA4NSpU0hISMDevXsxZMgQxMTE4JtvvsHBgwcVuafhgjkhHA4H0tPTcfHiRVMMAmGYM2cO/v73v6O+vh4///wz+zopAB0Oh9/ND5B/QRRDjgN49uxZeDweOBwO1gFMTEwM+cYq9n25Nyj+BZj8t9BcgKQDKCUAmRtFuAWgWA2g2O/SrFkzlJSUoKqqio21sbFRcvoYhqFDh2Lv3r0AmuoAx48fL9k28gbFdyi6dOmCW265BTt27MCpU6fw9ddf4+abbxbcDjkHYKgOoM1mQ2ZmJn777Tf2NSEBGK4awMTERLzyyiuqbCsU5MajpQAUergWut726tULBw4cwIwZM7Bp0yYAwLXXXiu4T8ZAIcsM5AyWAIIXgADw5JNPytqHlAOYkpKCxMREVFdXCzqApHEiVwAy/RmRg0B69+7N/j116lT06dOH85rRePXVV9maP7vdjhtvvNHvwBk4cCD++Mc/4r333uPMmXf//fdj+vTpktuPiorCkiVL8NRTT2Hx4sVYs2YNXC4Xli1bhoEDB2LhwoWqpafKysoE3RzmtdLSUthsNmzduhVr1qyBz+dDZmYmnnnmGXbyZSHy8vKQl5fHqeUIB2VlZexJlJmZiYsXL6K4uBhut9vwDiDQ5LBMmzbNL9XOd7ASEhL8hE24agBJAdjY2IiLFy+iXbt2rAOohoMe6g2K7Hf+9oSejMmLpVgKmBxBGs4RwAC3veTvLeUAMp9lYpdaBo5k6NChrGsnRwAGmqJixowZ7MCS9957T1QAqpkCBprEKCkAyX5k4m9oaOD0dTgH2+kB/7gXw2gOIEOzZs3w/vvvY9y4cThw4ADnvinkAJLTvcl9iA9FAMpFygG02WzIysrC0aNHUVBQAK/XyzGspB6wxGD6PSIdQJIHH3xQjc2ElQkTJmDYsGEoLS3Fzp074fF4OAcYQ5s2bdCrVy/cdNNNSEpKwt69e/Hee+8hJSUl4EXY6XRi+fLlmD17NubPnw+3243u3bvjueeek0wfK6W+vl7whCCfqBMSEliXVi45OTnIycnBiRMnAgpetcjMzMT+/fvh8/lQVFRkCgcQAObPn4/XX3+ds9YqX7AmJCT4rQOqRQ0g0HQjb9u2Lbv/UAeAAKHfoKS2J3RhFHMA+VNGaJUCjomJgc1m85vRQMoBZNrICD+5AnDIkCHsvuTUAQYSgORsAlLLXfHnAAwV/s1SqB99Ph+nfizSBKBcxOIOdik4sRHAgLwaQBKbzYaJEydi4sSJovtk+pAUgHKvO8HWACpBygEEmh54jh49ivr6epSUlHDcy2AcQKH9Gk0Aqp6T9Xg8uHz5MoqLiwX/04usrCz0798fI0eOxIoVK+ByubBw4ULOxXzHjh146aWXMH/+fIwePRo33XQTFi5ciJEjR+K1116TNYlyQkICZs6cicrKSrhcLjz++OOq1bQwOJ1OQfHKnDhq709tSDeKPxDE6INAGDp06IB7772X85qQA8gn1Gl4HA4H6yKKOYBA0428oqKCFahqOIChpoD5bVAiAKUGgWiVArbZbII36UAOIMB9OAv0PaDJvbn++usBAIcOHeKcF0IEEoCJiYlsG8iBQXwYAZienh60sCeRIwABbulHpAlAueee3ingYEZKk/sUcgDlush6OYBkSY7UXIDBOIBMvxt5EIhqAvDEiROYO3cubrvtNtx5552YNGmS33933323WrsLmWHDhuH48eOcSXq3bNmCrl27+tVpDRkyBHV1dZxCWDEuXryIZcuWoX379khPT8czzzyj+uTLqampghdx5jU13J5wQp4E/KlgSJEd6qoZ4Yaf1hdyAEni4+Nlr8Yghs1m46TOgCYHhZ+2P3PmjKqrgADiNyi5N2z+xY8UlEI1gEYbBAIIxxrIAQSuDsaR6wACV6eD8Xq9+O677yQ/y9ygmjVrJnje2Gw29hgQux7V1dWx21Ej/Qv4uyVyBKDRH2CVEsxKICRapYCDyU4EcgDlikq9U8CA9EjgYBxAy6wEcvLkSTz22GM4evQoBgwYAJ/Ph86dO2PAgAFo3rw5fD4fevXqhREjRqixO1VgLsTkjfPKlSuCN2jGiibTfUKUlpZizpw5iIqKwurVq7Fq1SrU1dVh7ty5AZ/gldClSxecP3/eb/m9/Px89n0jQzo7fAFIrqsbzjnd1KB79+6csoC2bdty3ucLwBYtWnBiDxa+m1RXV+d3bJ45c0bVKWCA0B1AfuyBLozk8S13GphwE6wAZCbRDUYAAgiYBuavAiIEcwyUlZUJTsx/9uxZ9m+1BCDfLRGqAQQi2wGUe85LjQqXQ7hqAKUIJADlZnECCUCtUsAMUgJQrgPI9DtTOgJEqAP4zjvvAADWr1+P5cuXA2i6eL300kvYvHkz7rjjDpw+fZoziW44qKurQ0FBAWeEHjmhJkNjYyO2b98Op9PJ6fR27drh5MmTHFcQaEoN2+12dO7cWXTfVVVVmDdvHlwuF1avXo3WrVujXbt2WLlyJS5duoQFCxao1vnDhg2Dx+PhTGTd0NCAbdu2ITs7O+SpRsIN6ZrxU8CMA2jk9C/JunXrMGPGDPzjH//wW+VDSACqMRCI7wDy07+AvwNohEEg/NgDCUBy8ABZj8MfBKJVChgQjlVOCpi5GQQrAJkRwUJUV1ezx4DUzYlxAOvr6wVFidoDQITaY8UUsNxzXihu0vEPRDhGAQfC4XCw7RZKAas1D2A4HMCkpCTOa2R5zq+//sr5LOOMp6SkyD4+mX4nS0eM5gCqMjLhyJEjGDJkCOeiwTxhOp1OPPHEE/j555/xxhtv4M9//nNQ+/j4449RXV3Nuhp79uxhh5uPHz8eiYmJOHbsGGbPno2pU6di2rRpAICVK1eipqYGvXr1QqtWrVBWVoavvvoKZ8+exaOPPsq5IN19993Yt28fHnvsMdx5551ISkrCd999h3379uEPf/iDZBqNmWX/5Zdf5giBrl274sUXX8TcuXORm5srOg+g3BiBprmPhg8fjtdffx3l5eXIzMxEbm4uioqKsGDBgmB+Xk0hbwpiDqCRB4CQtGzZEq+99prge0ICUOkkokLwHUAhAVhQUKDqKiBA01M4M28jg91ul31x5sceSACSq9r07NmT/Zs/EppxP42cAiaXPQv0PYaMjAykpaWhuLgYR48eFf2c3EXqyYeA0tJSv+NTzTkAGagAlO8YCZ1fsbGxsgVkKA5gbGxs0Kn3xMRE1NXVCTqATB1rILRIAfMf3vhGCTlDxi+//ML+7fP5WAGoZAAI2e/MpPARKQBramo4wUZFRXHcLrvdjt69e7PTEATDBx98wC5KDTQtkcQskzRixAjRerGbb74Zn3/+OT799FNUVFQgPj4e3bp1w8MPP4zf//73nM/27t0br776KjZs2IAtW7agsrISbdq0wfTp09kVN8SYPHkyhg4dKnjh7NmzJ9avXx9wAICSGBcvXoy0tDRs374d1dXV6NSpE1asWGHoqXgYCgsLBdcDPnfuHPsUaRYHUAohAUjGHixyHMCzZ89y5uNSayL12NhYv8EZcm9Q/NilagB9Ph8rANu2bcsZ0UjeDMg0sV4pYDkOIJNeVSIAAaBHjx4oLi5GSUkJSktLBYW8XAFIfresrMxvlK+acwAySKWArSIA5Z7zjFMkNvgpEKGMAg5lqbyEhASUlpb6OYBOpxM1NTWyHub1qAHkC8CkpCT2gYsUgGVlZWyblDzAk/3O7NtoKWBVBGBycjLnJpSSkoLz589zPsOf7V0pmzdvDviZPn36+K2decsttwRcAJ0kOzsbL730kuL2RUVFST41S6WPGeTEyOB0OjFz5kzMnDlT9neMAvmEm5SUhPj4eNTW1nJWZjGLAyiF0AU51EEggDwH0O1248iRI+y/1RoY5HQ6g75B8WOXcgDPnTvHlnKQ7h/AvRmQbdErBSzHAWT6SKkAzM7Oxn//+18ATTW+QitaBOsA8glHCjgxMRHNmjVj4ycdQLEawEgbBKLknOcLQLn1f0KflXIA4+Li4HA4WPc8lOstc53jO4BpaWmCtaZCBFoLOBw1gEKlUtdccw2Ki4vZKcmSkpKCngKG7+QCxksBq1ID2KFDB04B8fXXX4/9+/ezqyScOXMGO3fuNMV6jJTwQ56IzGoBADjuZ6Q6gGpMrcF3AMUm7ibX71TTAZT6txT82KUEoFj6FxB3APVKActxAJm+UrrkWY8ePdi/mUFefOROUcF3APmQArB9+/YB2yYXsn7TiilgJec8P3Yl37Xb7ZxrjpQAtNlsHNEXigPIZKZqamrgdrvZh4u0tDTZ7dejBlBMADKcOnUKQPBzAJKxM39HpAAcPHgwDh8+zHb85MmT4fP58Nhjj2H06NF48MEHUV1djfvuu0+N3VFMDl8YCZ1UkSAAhZ7I5a4LKgXpAPp8Po4DSP6Wx44dY/9WSwDyRUsoKSopAfjTTz+xf/fq1YvzHnkzIMWvkUcBK50ImoFc7F6sDlBtBzAjI0NVEXbTTTcBaBLyZB9ZRQAqOedDOb8Abh2glAAEuK6fGg4g0FTqwLh+aWlpsmM3Qg0gIFwHGMwcgAD3dzFqClgVAXjHHXfg448/Zg+iLl26YM2aNbjhhhvQvHlz9OvXDy+++KKuC3JTjAP/5iN0UkViCrhFixaqzAnJ3CR8Ph88Hg9HAJJF12QKQq0UcCgOBT92qRpAKQeQvFkYIQUsxwFk6jGDqQFkEHMAg60BJHG5XKwDr1b6l2HBggXYsmULvvrqK87rZH+R839GmgBUcs6Hcn4BVwVgTExMwO+q7QAC3JH7aWlpsmM3Qg0gwHUAGQEYrANIxs7s2+PxcJxNvVGlBjAqKsqv4PT6669n17KkUKSIVAdQSACqAX8ULF8A5ubmcj4fGxurqJZIilAdChI5KWCn08m5KAPGSwHLcQCZdspdCYQhNTUVrVu3RklJiSwHUMqhkHIACwoK2L/VFoBxcXEYO3as3+tWmQdQCfzYlZ63N998M3799Vfk5OQEHJxFXmPVcgD5AlAuWswDGB0dzal75C/4AAgLwGAdQBLyOulyufxWjdIL1ZeCE+PixYt44YUXtNodxcDwHxas5ABKjcyTC389YDEHkEHNlWFCcSj4sYsJQJfLxV58e/To4XfxN6MAZG5m5Bylcn87xgUsLi4WrN1jblDx8fGSNxZSAPK3E44BIAxix7xVUsBKzvlQHcB169Zh7969+Pe//x3ws+FwAMn589LS0mTHrkUNIMD9fYUEaufOnVnhzKz8FawDSMZu1NVAwi4Ai4uL8de//hX3338/vvzyy3DvjmIC+Ok+KzmAQkueKUXKAWzfvr3fb6dW/R8Q2g2KH7vYRfHo0aNs+pqf/gX0nQYm2BQwk+I8ePAg+xpZ3ycF+TmhNDC5CoiU60M+CPAdwHDMAcggdsyTxzF5DEfaKGAl53yoAtDhcGDQoEGyfsNw1ADyHUC5sWuRAgYCC8DY2Fh2ANQvv/zCmQPQ4XAIuoZikLGT/RgxAvDw4cOYPXs2Ro4ciVGjRmHRokXsaOC6ujq88soruPfee/H5558jOTkZs2bNUqXRFHPDX8LOKgIwJSXFL/Zg4DuA5ECIZs2a+Tk4agrAUFLA/NjFagDJ+j/+ABDAnA4gIwB/+OEHAE0xyJ0kV0oAulwu1lUMlJ5KSkpi3VS+A0imgNWerUHsmOc/yDBEmgOo5JwPNQWsBPIaG+o8gAx8B1Bu7FoJQPJ6JZaiZtLA5eXlKC0tZR3ANm3awG6XL5nI2Ml+NdJAkKAT6ydOnMCcOXM4nfTdd9/hxIkTeOWVV7Bo0SKcOXMGLVu2xOTJkzF69GhNLtAU82GlFDB5vgSLlAOYmJiIrKwsjogKZwo4lJu1mANIjgAWcgDJ+I0gAMV+g4SEBNhsNvh8Pna5Nmauy549e8p2usiBIPw6QLkDQICmqT9SU1NRXFzs5wCS87bylzQMF2LxR5oAVIKaNbaBUMsBlBoEIpdAKWA1agCBq21NTEwUXTzimmuuYQcs/fzzz+wALiXpXz5GTQEH/au+//77cLvdmDFjBkaNGgUA2Lp1K9544w089thjuHLlCqZMmYL77rsv4ix9SmjwTyQhARiJDmCLFi1UeZKVqgE0sgPI73exi6LUCGDAeCuBiF3fbDYbEhMTUVVVhfr6ehw8eJCdIqN///6y9ynlACoRgABYAch3AEkBGMqNTgix7YkJ9kgTgEp+z1BTwEogV6YKtEqVFOR1jqzlDLUGMBwO4COPPIKFCxfiiSeeEP0MORCEXFhC6XlBfp4/CMQoBJ0C/vnnn9G3b1/ce++9SE5ORnJyMu677z706dMHly9fxsMPP4w//vGPVPxR/CAnfAaaTn7+ouGR5gAmJCQgOjraL/ZgkHIAhQSgUQaB8GMXEoDkEnAZGRmCbTfLSiDA1TRwRUUFZ2Lufv36yd5nq1at2PMjFAcQuHos1NbWcm5ETJorKSlJ9RGKYse8VQSgknNeSwE4efJkPPXUU1ixYgUGDx4c9HaEnLTo6Gi0aNFCduxaCcBZs2ahsrISy5YtE/0MORfg119/zf6tdAQwGTvZj0IrN+lF0ALwypUrftMzAEC3bt0AACNHjgy+VZSIhhmGT8I/uSLNAWSmgBGKXSliDqDNZkNCQoJhHUB+7EI1gBcuXMDly5cBCLt/gLFqAKOjoyXrghgxVV1dzdb/AcocQOCqC1hUVMT+PoDyKSqERgL7fD7WAVTb/QPEj3mh/rLb7aql+4yCknNeyxrA+Ph4/PWvf8X8+fNlr+cthNBkz61bt4bNZpMdO3ksCC0Fp6a7H+j4InXN3r172b+Vnhtk7GRdLVknqTdBC0CPxyM5Ii4SHBxKeBB6wuefXJEqANVwN8QcwMTERNhstrAKwFAcCqGbG3Nh37NnD86cORMw/QsYayWQQBkORgDW1NRg//797HfIuj45iE0IHawDCFwVgOXl5awb2LZtW0XtkoPYMS8kACPN/QOUxaSlA6gWQg4gU/8nN3by3A1nDaAcsrKy2PaQg5OUOoBk7KSoPHHiRIgtVA/N5gGkUBiEUkykAOSvaWlWmjVrxj7BMzdWNdJrYg4gs+1wpoBDcQD5scfExLDLQ1ZVVWHKlCmcaVKERgAz32PQOwUc6AbHxOz1etl5xXr16qW4rWJ1gMHUADIwA0HCWf8HiB/zQuI5EgWgknPejAJQ6FrNCEC5sWuVApZDVFQUOnfu7Pe60nODjJ3JjAJXJ5g2AiHJ6i+//NKvJoWpJXnqqaf8Pm+z2ejqIBRcunRJciBIUlJSSCkJoxAdHY2///3v+OCDD7BkyRIAwrErhe8AMi4Y8yTeokULNGvWjBWGRnEAhWJfs2YN/vvf/6KgoADffPNNwBHAgLFSwHIdQBKl6V9AfCSw0hSwkANITnQbDgdQ7Ji3igOo5JzXchSwWkgJQLmxG0kAAk11gMyIfQal120y9szMTMTHx6O2ttZQDmBIAvDChQuciwfJ999/7/daJNzUKeGBPLkiqXxg2rRpmDZtmqrb5NfO8R1AJg185MgRAOF1AEO9YTdv3hz//Oc/cdNNN8Hn87GjCGNiYjhPzSRGEoByHUCSYARgIAfQ6XTKmstNDwdQDKsIQCVoWQOoFlIpYLlosRScEoTGNwS7DBzQdE2+5pprcOjQIZw+fRoNDQ2GmBYv6F/1gw8+ULMdFAshtCYueeOJhPo/MdRYD5i8cFRUVLCrZpBio2fPnjhy5AgSExORnp4e8j4ZQnEAxWIfOnQoFi5ciOXLl7OvZWdniz71G2klkGAcQCUjgBlat26Nli1borS0lOMAyl0FhEEPB1Cs360iAJWc85GWApYbu1ZLwcmFLwATExMV35f4sXfr1g2HDh2Cx+PBb7/9hmuvvTbkdoZK0AJQzZsKxVqQJzYDPwUcqQjFrhRSdJAT+pJi4y9/+QuaN2+OkSNHqnoTCSVFJRX7kiVLsH37dvz4448AxNO/APdmQG7TDA5gbGys7CXg+GRnZ2P37t0oLCzElStXEB8fz4o4ue6EHg6gWL8LiedInDZMyTlvRgEo5QDKjd2IKWCSYNw/fuxkRuPEiROGEIB0EAhFc4TmQWrfvj07nYbS9IGZUGMOKPJiSU7oS4qNrKwsvPrqqxg9enTI+yMJ5QYlFXtMTAz+9a9/sQ7V5MmTJT+r5HU1CbUGsE+fPkGns/gjgcl5xuQMAAGEp4EJtwMo1u9WcQCVnPNmTAFLOYByYzeaAOQ7gME8GPFjN+JIYCoAKYYgJSUFzz33HPr164e5c+fq3RxDI8cBDBfhdCiuvfZaHD9+HGfOnMFtt90m+jk5qeFwEWoKOJj6PwbSOVy/fj07rQwgXwCSKWC+AxgTE6NqvWggrCIAlWBGBzAmJsbvoUbpQ7zD4WBLGIxQA5iRkcER32o440YcCUwFIEVzxOz0p59+Gj/88AN+97vfadwi7QilkJhBzAEUW9tSTUJJAcudqJicNFUIMaFnhhRwKAKQnBbnvffew4QJE9h/yxWAycnJrNPOHDvkJNDhGKgn1u9WEYBKznkzjgJmJqAnYQSg3NhtNht7PBihBpAZtMEQzHWb/x3qAFIoALu4thVRI3byJiGWAg4XSgUQiVr9biQBqNQBDGYACMOQIUMwY8YMQTdE7g3Kbrez67OWlZWhtrYWV65cARC+EcBi/W6VeQCVHPdmdAABbhrY4XCwpQZKYucLQD1TwAC3DjCYc4Mfe1JSEjt2ggpAimVRYyCEWVEjdjk1gOEiXINAlKCnAAx2ImigqZ4rlMJvu92O1157DQUFBXj22Wc5A/FuuOEG2dthbs6lpaVhr/8DxPtdqL/oIBDz1QAC3OxDq1atWJdZSexGE4BkyjaYc0Modmably5dYh+89IQKQIrmROJFXi5qxG7WGkC1+l1M6Bl5KTgA6Nu3LxwOR8htyMjIwJIlS3D27Fnk5ubihx9+UDSymKnzq6qqwunTp9nXw+UAiv1GVkkBKznuI8EBJOv/lMTOnL+M8NNrKTiGadOmISsrC/369cPIkSMVf18odqPVAUbWqtsUUxBJEz0rRY3YyRvn5cuX2b+N7gCq1e96OoBRUVGw2+3s3IuBBEvHjh3Zzw8bNkzVtkRHR0sOlhGDHAlMrr0cLgdQrN+tIgCVHPdmFYCkA0gKQCWxG80B7NixI/uAFExtrFDs/DrAgQMHBt9AFaAOIEVzaA1gaJA3To/Hw/6txSCQUG5QkVADaLPZOL9BIIcjMzMTmzdvxpNPPon58+eHu3myIEf6kkvvaV0D6HA4/BzRSBSAwdYAOhwOXYRPMIg5gGauAQSazvdgB0YJxU4dQAqFEhJiosPoDqBa6DkNDNAUc21tLQB5Ka7x48dj0KBBmvSPHEgHkBSA4XIApYiJiYHL5WL/HYkCUAlk/Gap/wPEHUAlSAlAPVLA4YA/GbTeUAeQojly1iyNVNSIXczp0roGUKlDoVa/2+12tsicRKu1NcnfQK5gMdIxTzqAx44dY/8OlwCUip3fZ5FYH6yk78n4zZL+BcQdQCWxi00DQ84RaCaEYu/YsSMrZo3gAFIBSNEcpn7KiqgRu1EcQKVujZr9LiT29BCAcgWLkY550gFkbrI2my1sy3tKxc7vs0h0AJX0PRm/mQSgmAOoJHZSAPp8PtYBNEsanI9Q7FFRUejcuTMA4OTJk7pfF6gApGhOZWWl3k3QDTViN4oDqPQGpWa/C90UtEwBM8gVLEY65oVW+0hPTw/b7ycVO19AR6IAVNL3Zk0Bk24XOSelktiZ65rP54PH4zG9ABSLnUkDu1wunDt3Tssm+UEFIIViMoziAOrpUAjdFIzsABoJ0gFkCNcAkEBYwQFUglHOL6Xce++9yMrKwk033YQbb7wxqG3w1wM2uwAUw0gDQagApGhOuFJNZkCN2IWEjs1m08QxCMUBVLPfjSIA5QoWIx3zQg5gOAeASMVuBQGopO8dDgc7XVBOTk6YWqQ+3bt3x+nTp/H1119zzk0lsfMFIFOeYNYBIGKxG2lJOCoAKZpDrl5hNdSIXch1SkxM1KRQOioqir0gKxWcava7ngKQFL5yHUAjHfNaO4BSsVtBACrt+9zcXBw4cAAvvvhimFoUHoSuP0pijzQHUCx2I40EpgKQojnk8H6roUbsQhdELacYufPOOwE0TW+iBDX7nS8cbDabKqtsyCEYB9BIx3yLFi38XgunAygVuxVGASvte6fTib59+5py5CsfJbFHmgAUi52mgCmWRiunxoioEbvdbve7KGopADdt2oTz58/j6aefVvQ9NfudH7+Wx1QwNYBGOuajoqL8RGA4HUCp2K0wCMRIfa81SmIXE4BmTQGLxd6qVSt2lRDqAFIsh5ADYRXUip1/cdFSANpstqAEg5r9rqcADCYFbLRjnp8GDqcDKBW7FVLARut7LVESO3lOu91utgbQrA6gWOw2m411Ac+ePcuZCF1rqACkaE5xcbHeTdANtWLnCw+jrDIhhZr9zr8paHmTCCYFbLRjnj8QJJwOoFTsVhCARut7LVESe6SlgKViZwRgfHw8zp8/r1WT/KACkEIxIfwbpxbrABsJPR1AcpH3pKQkzfarJnwHkE4DQ9GbSBOAUixbtgznzp1DVVUVunbtqls7zJlcp5ga8gZqNdSK3YwOoJr9zhcOWgrAqVOn4vPPP0d2djb69Okj6ztGO+ZJBzA5OZmzlJfaSMXOP44jcRCI0fpeS5TETp7D9fX18Hg8AMxbAygVe1ZWloYtEcecvyyFYnH0rAE0AnqmgLOzs3H06FHN9hcOSAcwnPV/gaAOIIWBPBZqa2vZvyPRATQKNAVM0ZyKigq9m6AbasVuRgdQzX7XMwUcDEY75kkHMNzpX6nYrSAAjdb3WqIkdvJYqKmpYf82qwA0Q79TAUihmBDqAJpLABoN6gBSjEakCUAzQAUgRXPS0tL0boJuqBW7GR1ANfvdbALQaMd869at2b/DLQClYrfCPIBG63stURK7WArYrDWAZuh3KgApmnPlyhW9m6AbasVuxlHAavY7P36juwRGO+ZvvfVWXHfddWjTpg3uu+++sO5LKnYrrARitL7XEiWxR5oDaIZ+N6e0ppiahoYGvZugG2rFbkYHUM1+N5sDaLRjPiEhAYcPH4bX6w37EnpSsZP9FhUVpdlyflpitL7XEiWxR5oANEO/UweQojlmPaHVQK3YzVgDqGa/m00AGvGY12r9ZKnYyX6LxPQvYMy+1wolsUeaADRDu6kApGgOfxJaK6FW7GZ0ANXsdz2ngQkGeswLQx7HkSoAad/LgzyHI6EG0Az9TgVgBPPSSy9h7NixGDlyJB544AHs2bNH7yYBAIqKivRugm6oFbsZHUA1+91sDiA95oWxggNI+14ekTYPoBn63ZzSmiKLiRMnYvbs2YiJicGxY8cwZ84cbNq0ydIz00cKZnQA1UTPlUAo6mEFAUiRR6SlgM0AdQAjmKysLPakstlscLvdKC0t1blV5l0/VQ3Uit2Mo4DV7HezpYDpMS8MeRxH4ghggPa9XCJNAJqh303hANbW1mLTpk3Iz8/HsWPHUFVVhUWLFuH2228P+N3Tp09jw4YNOHHiBC5fvozY2FhkZWXhnnvuwZAhQziffeGFF5Cbmyu6rY8//hitWrUKOR4hlMbY0NCAt956C19++SWqqqrQuXNnPPTQQxgwYADnc6tXr8a2bdvQ0NCAQYMGoVOnTmFpvxLsdus+d6gVuxkdQDX73WwpYHrMC2OFGkDa9/KItHkAzdDvpvhlKyoqsHHjRqSlpaFLly44ePCg7O8WFRWhtrYWI0eORMuWLVFXV4ddu3Zh0aJFmDdvHsaMGcN+dsyYMejfvz/n+z6fD6tWrUJ6enrYxB+gPMbly5fj66+/xoQJE9C2bVt88cUXmD9/PtauXYuePXuyn5szZw5mz56NQ4cO4bfffoPNZgtbDHIpLy8P6+LzRkat2MmLpd1uR3x8fMjbDDdq9rvZBCA95oVjt0IKmPa9vNgjzQE0Q7+bQgCmpqZiy5YtSE1NxfHjxzFjxgzZ3x08eDAGDx7Mee3OO+/E9OnTsXnzZo4AvO6663DddddxPnv48GHU1dXh1ltvldxPVVUVfvzxR9x0002C7+fl5WHIkCGIi4sTfF9JjPn5+dixYwceeeQR3HPPPQCA2267DVOnTsW6deuwbt06zucdDgf69euHDz/8EG3btvX7PSjmg3ROEhMTDSHstcRsApAijBUEIEUekSYAzYDxPUo0HRhqDql2OBxo3bo1qqurA342Ly8PNpsNOTk5kp/bsmULlixZgt27d/u9t3XrVixdulQyvawkxl27dsHhcHDEq9PpxKhRo3D06FEUFxcLfs/j8eDChQuy9hFOyGWorIZasZMXSzOkfwF1+91sK4HQY14YKwhA2vfyEBOAZk0Bm6HfTSEA1cDlcqG8vBwXLlzA5s2bsW/fPvTt21fyO42Njdi5cye7ZJIUkydPxqBBg7B06VIcOHCAfX3Xrl1YtWoVRowYgbFjx6oRCk6ePIm2bdv62cvdu3cHAJw6dQrV1dX46quvUFtby8Zx8OBB9OrVS5U2hEJFRYXeTdANtWInHUCzCEA1+91sDiA95oWxwiAQ2vfyiLRpYMzQ7+aU1kHw6quv4rPPPgPQVDN144034sknn5T8zvfff4+KioqA6V+g6SllyZIleOqpp7B48WKsWbMGLpcLy5Ytw8CBA7Fw4ULV0nRlZWWCbiHzWmlpKWw2G7Zu3Yo1a9bA5/MhMzMTzzzzDLp27Sq63by8POTl5clyRkOhvr4+rNs3MmrFTl4szTACGFC3380mAOkxL4wVBoHQvpdHpKWAzdDvlhGAEyZMwLBhw1BaWoqdO3fC4/HA7XZLficvLw9RUVEYPny4rH04nU4sX74cs2fPxvz58+F2u9G9e3c899xzqtrY9fX1gicFcwLV19cjISEBa9euVbTdnJwc5OTk4MSJE5g+fboqbRXCrJa+GqgVuxkdQDX73WzTwNBjXhgrpIBp38sj0gSgGfrdMingrKws9O/fHyNHjsSKFSvgcrmwcOFC+Hw+wc/X1tbi22+/xQ033KBo4uSEhATMnDkTlZWVcLlcePzxx1VPbTidTkHxyiw+bfRUihlqI8IFrQFUB7M5gPSYF4YsYzGLk60U2vfyIM9h8v5mBiElhBn63TICkM+wYcNw/PhxnDt3TvD9b7/9VtboXz4XL17EsmXL0L59e6Snp+OZZ55RffLl1NRUlJWV+b3OvNayZUtV96c2Fy9e1LsJuqFW7GZ0ANXsd7OtBEKPeWF69uyJESNGID09Hffff7+GrdIO2vfyEHP6zOoAmqHfLSsAmfy8WL3bV199hbi4OL/JoqUoLS3FnDlzEBUVhdWrV2PVqlWoq6vD3LlzUVlZqUq7AaBLly44f/48xyYHmqaHYd6nRDZmdADVxGwpYIowdrsd27dvx4ULF/zmYKVYC7GHOHpuh4+IEoB1dXUoKChAeXk5+9qVK1f8PtfY2Ijt27fD6XSiQ4cOfu+Xl5fjhx9+wI033ii7LqWqqgrz5s2Dy+XC6tWr0bp1a7Rr1w4rV67EpUuXsGDBArhcrmBD4zBs2DB4PB52UAvQlP7dtm0bsrOzkZaWpsp+woUVBQuDWrGb0QFUs51mSwGbpY/CgZzYzbBqQrDQvpdHpAlAM/S7aZLrH3/8Maqrq9k05549e1BSUgIAGD9+PBITE3Hs2DHMnj0bU6dOxbRp0wAAK1euRE1NDXr16oVWrVqhrKwMX331Fc6ePYtHH31UcAWFHTt2wOPxKEr/btmyBSUlJXj55ZfRrl079vWuXbvixRdfxNy5c5Gbm4tx48aFFCMAZGdnY/jw4Xj99ddRXl6OzMxM5ObmoqioCAsWLJDdZr0wa02HGqgVe0pKCvu3GWpNgPAOAjG6AKTHvHWxcvzBDgIJdhtGwgztNn4L/x8ffPABioqK2H/v3r2bnXR5xIgRogXEN998Mz7//HN8+umnqKioQHx8PLp164aHH34Yv//97wW/k5eXhxYtWqBfv36y2zd58mQMHToUHTt29HuvZ8+eWL9+fcB1eJXEuHjxYqSlpWH79u2orq5Gp06dsGLFCvTu3Vt2m/XiypUrpli6LByoFfvQoUPx4IMPoqioCFOmTFGhZeFHzX43mwCkx7w1YwesHb+S2COtBtAM/W4aAbh58+aAn+nTp4/fShy33HILbrnlFkX74i+lJoeoqChB8cfQuXPngNuQEyOD0+nEzJkzMXPmTNnfoUQOdrsdb7/9tt7N0A1aA0ihRBY2mw3R0dF+M1zQczt8RG7hBcWwtGrVSu8m6AaNXR3MNgqY9rt1sXL8SmMXOo/NKgDN0O9UAFI0p6qqSu8m6AaNXR3MlgKm/W5drBy/0tiFzmMz1NIJYYZ+pwKQojl1dXV6N0E3aOzqYLYUMO1362Ll+JXGHkkOoBn6nQpAiuY4HA69m6AbNHZ1MJsDSPvdulg5fqWxR5IANEO/UwFI0Zz09HS9m6AbNHZ1MJsApP1uXawcv9LYIykFbIZ+pwKQojkXLlzQuwm6QWNXB/6NwuguAe1362Ll+JXGLnQeG/3cFsMM/U4FIIVCMR1mcwApFEpgIikFbAaoAKRoTkJCgt5N0A0auzqYTQDSfrcuVo5faeyRJADN0O9UAFI0h1zH1mrQ2NXBbAKQ9rt1sXL8SmOPpBpAM/Q7FYAUzbl8+bLeTdANGrs6mG0aGNrv1sXK8SuNPZIcQDP0OxWAFArFdJhtJRAKhRKYSBKAZoAKQIrmtGzZUu8m6AaNXR3MlgKm/W5drBy/0tgjSQCaod+pAKRoTk1Njd5N0A0auzo4HA7YbDb230a/SdB+ty5Wjl9p7JFUA2iGfqcCkKI5LpdL7yboBo1dPUjRZ3QHkPa7dbFy/EpjjyQH0Az9TgUgRXPsdusedjR29WBuDHa73fDLLtF+ty5Wjl9p7JEkAM3Q78ZvISXiaNOmjd5N0A0au3owNwuju38A7XcrY+X4lcYeSQLQDP1OBSBFcy5evKh3E3SDxq4ezI3BDDcI2u/WxcrxK409kmoAzdDvVABSNMfn8+ndBN2gsasHI/zM4ADSfrcuVo5faez8hzn+YC8zYYZ+pwKQojnx8fF6N0E3aOzq0bFjR87/jQztd+ti5fiVxs5/mDODuy+GGfrdnN4qxdTExcXp3QTdoLGrx2uvvYZ33nkH9957r6rbDQe0362LleNXGnskCUAz9Dt1ACmaU1ZWpncTdIPGrh7Z2dlYsWIFevbsqep2wwHtd+ti5fiVxs4XgGat/wPM0e9UAFIoFAqFQtGdSHIAzQAVgBTNSU1N1bsJukFjtyY0duti5fiVxh5JAtAM/U4FIEVz6urq9G6CbtDYrQmN3bpYOX6lsUdSCtgM/U4FIEVzzLBGYrigsVsTGrt1sXL8oa4FbGYH0Az9TgUghUKhUCgU3YkkAWgGqACkaE5mZqbeTdANGrs1obFbFyvHrzT2SBKAZuh3KgApmlNYWKh3E3SDxm5NaOzWxcrxK409kmoAzdDvVABSNMfr9erdBN2gsVsTGrt1sXL8SmPnO35mdgDN0O9UAFI0xwwzpIcLGrs1obFbFyvHT1cCMTZUAFI0JyEhQe8m6AaN3ZrQ2K2LleNXGnskCUAz9DsVgBTNKS0t1bsJukFjtyY0duti5fiVxh5JNYBm6HcqACkUCoVCoehOJDmAZoAKQIrmpKSk6N0E3aCxWxMau3WxcvxKY48kAWiGfqcCkKI5DQ0NejdBN2js1oTGbl2sHL/S2CNJAJqh36kApGhOdXW13k3QDRq7NaGxWxcrx6809kiqATRDv1MBSKFQKBQKRXciyQE0A1QAUjQnIyND7yboBo3dmtDYrYuV41caeyQJQDP0OxWAFM0pLi7Wuwm6QWO3JjR262Ll+JXGHkkC0Az9TgUgRXM8Ho/eTdANGrs1obFbFyvHrzT2SKoBNEO/UwFI0ZzY2Fi9m6AbNHZrQmO3LlaOX2nskbQWsBn6nQpAiuY0a9ZM7yboBo3dmtDYrYuV41caeyQJQDP0OxWAFM25dOmS3k3QDRq7NaGxWxcrx680dofDAYfDwf7bzClgM/Q7FYAUCoVCoVAMAVkHaGYH0AxQAUjRnBYtWujdBN2gsVsTGrt1sXL8wcQeKQLQDP1OBSBFcxobG/Vugm7Q2K0Jjd26WDn+YGKPFAFohn6nApCiOVVVVXo3QTdo7NaExm5drBx/MLGTAtDMNYBm6Hfz/rqUgLz00kvYs2cP6urqkJaWhhkzZmDIkCF6N4tCoVAoFEEixQE0A1QARjATJ07E7NmzERMTg2PHjmHOnDnYtGkTmjdvrmu72rRpo+v+9YTGbk1o7NbFyvEHE3ukCEAz9DtNAUcwWVlZ7Mlks9ngdrtRWlqqc6vMMTw+XNDYrQmN3bpYOf5gYo8UAWiGfjeFA1hbW4tNmzYhPz8fx44dQ1VVFRYtWoTbb7894HdPnz6NDRs24MSJE7h8+TJiY2ORlZWFe+65RzQdeuLECWzYsAFHjhxBQ0MDMjIyMHr0aNx1111qh8aiNMaGhga89dZb+PLLL1FVVYXOnTvjoYcewoABAzifW716NbZt24aGhgYMGjQInTp1ClsMcjFDcWy4oLFbExq7dbFy/KEOAjFzDaAZ+t0UDmBFRQU2btyIgoICdOnSRdF3i4qKUFtbi5EjR2LWrFmYMmUKAGDRokX47LPP/D7//fffY+bMmSgvL8cDDzyAWbNmYfDgwWFX80pjXL58OTZv3oxbb70Vs2bNgt1ux/z583H48GHO5+bMmYPt27djzZo1GDBgAGw2W7hCkI3T6dS7CbpBY7cmNHbrYuX4g4mddP3M7ACaod9NIa9TU1OxZcsWpKam4vjx45gxY4bs7w4ePBiDBw/mvHbnnXdi+vTp2Lx5M8aMGcO+XlNTgxdeeAGDBg3CsmXLYLfL18dVVVX48ccfcdNNNwm+n5eXhyFDhiAuLk7wfSUx5ufnY8eOHXjkkUdwzz33AABuu+02TJ06FevWrcO6des4n3c4HOjXrx8+/PBDtG3b1u/30Jrk5GRd968nNHZrQmO3LlaOP5jYIyUFbIZ+N4UDGBMTg9TUVNW253A40Lp1a1RXV3Nez8vLw+XLlzF9+nTY7Xa4XC54vV5Z29yyZQuWLFmC3bt3+723detWLF26FLm5uaLfVxLjrl274HA4OOLV6XRi1KhROHr0KIqLiwW/5/F4cOHCBVn7CCdi7bMCNHZrQmO3LlaOP5jYI0UAmqHfTSEA1cDlcqG8vBwXLlzA5s2bsW/fPvTt25fzmR9++AEJCQkoLS3Fvffei9tuuw233347Vq1ahfr6esntT548GYMGDcLSpUtx4MAB9vVdu3Zh1apVGDFiBMaOHatKLCdPnkTbtm2RkJDAeb179+4AgFOnTqG6uhpfffUVamtr0djYiJ07d+LgwYPo1auXKm2gUCgUCkVtIqUG0AxY5td99dVX2Zo/u92OG2+8EU8++STnM+fPn4fH48HixYsxatQozJgxA4cOHcLHH3+M6upqPPvss6Lbj4qKwpIlS/DUU09h8eLFWLNmDVwuF5YtW4aBAwdi4cKFqtXflZWVCbqFzGulpaWw2WzYunUr1qxZA5/Ph8zMTDzzzDPo2rWr6Hbz8vKQl5fn54yqjd7T0OgJjd2a0Niti5XjDyb2SHEAzdDvlhGAEyZMwLBhw1BaWoqdO3fC4/HA7XZzPuNyuVBXV4c77rgDs2fPBgDcdNNNcLvd+OyzzzBt2jS0a9dOdB9OpxPLly/H7NmzMX/+fLjdbnTv3h3PPfecqk8y9fX1gicGc+LU19cjISEBa9euVbTdnJwc5OTk4MSJE5g+fboqbRXC5/OFbdtGh8ZuTWjs1sXK8QcTe6QIQDP0u2VSwFlZWejfvz9GjhyJFStWwOVyYeHChZxOYkbt3HLLLZzv5uTkAACOHj0acD8JCQmYOXMmKisr4XK58Pjjj6s+GsjpdPqJV6BpahjmfSNTWVmpdxN0g8ZuTWjs1sXK8QcTe6QIQDP0u2UEIJ9hw4bh+PHjOHfuHPsak0JNSUnhfLZFixYA5K3td/HiRSxbtgzt27dHeno6nnnmGdUnX05NTUVZWZnf68xrLVu2VHV/FAqFQqFoAa0B1A7LCkBmUAdZ79atWzcA/jN4MwIu0LDu0tJSzJkzB1FRUVi9ejVWrVqFuro6zJ07V9WngS5duuD8+fOoqanhvJ6fn8++b2TS09P1boJu0NitCY3dulg5/mBijxQH0Az9HlECsK6uDgUFBSgvL2dfu3Llit/nGhsbsX37djidTnTo0IF9ffjw4QCAzz//nPP5zz//HA6HA3369BHdd1VVFebNmweXy4XVq1ejdevWaNeuHVauXIlLly5hwYIFcLlcoQX4/xg2bBg8Hg9nIuuGhgZs27YN2dnZSEtLU2U/4ULIvbQKNHZrQmO3LlaOP5jYmftwamoqevTooXaTNMMM/W4af5UZicv8qHv27EFJSQkAYPz48UhMTMSxY8cwe/ZsTJ06FdOmTQMArFy5EjU1NejVqxdatWqFsrIyfPXVVzh79iweffRRxMfHs/u45ppr8D//8z/Ytm0bPB4PevfujUOHDmHnzp247777JFOrW7ZsQUlJCV5++WXOQJGuXbvixRdfxNy5c5Gbm4tx48aFFCMAZGdnY/jw4Xj99ddRXl6OzMxM5ObmoqioCAsWLAjm59UUofpFq0BjtyY0duti5fiDiX3ixInIzs5GRkYG5/5sNszQ76YRgB988AGKiorYf+/evZuddHnEiBGsOOJz88034/PPP8enn36KiooKxMfHo1u3bnj44Yfx+9//3u/z8+bNQ1paGr744gt88803SEtLw2OPPYaJEydKtm/y5MkYOnQoOnbs6Pdez549sX79+oDr8CqJcfHixUhLS8P27dtRXV2NTp06YcWKFejdu7fkPowAafFbDRq7NaGxWxcrxx9s7Nddd53KLdEeM/S7zWeGscoUTWGmgXnjjTfYukg18Xg8cDgcqm/XDNDYaexWw8qxA9aOn8Zu7NgjqgaQYg5Il9Nq0NitCY3dulg5fhq7saECkEKhUCgUCsViUAFI0ZykpCS9m6AbNHZrQmO3LlaOn8ZubKgApGiOWmsimxEauzWhsVsXK8dPYzc2VABSNKeiokLvJugGjd2a0Niti5Xjp7EbGyoAKRQKhUKhUCwGFYAUzTH6SiXhhMZuTWjs1sXK8dPYjQ0VgBTNIZfqsxo0dmtCY7cuVo6fxm5sqACkaE59fb3eTdANGrs1obFbFyvHT2M3NlQAUjQnOjpa7yboBo3dmtDYrYuV46exGxsqACma07JlS72boBs0dmtCY7cuVo6fxm5sqACkaE5hYaHeTdANGrs1obFbFyvHT2M3NlF6N4BiPJjahYKCgrBs/9KlS6iurg7Lto0OjZ3GbjWsHDtg7fhp7PrFnpWVhdjYWMnPUAFI8YNZxPr555/XuSUUCoVCoVCU8sYbb6Bbt26Sn7H5fD6fRu2hmITy8nJ8//33aNOmDWJiYlTddkFBAZ5//nk8/fTTyMrKUnXbRofGTmOnsVsLK8dPY9c3duoAUoIiOTkZI0aMCOs+srKyAj6dRCo0dhq71bBy7IC146exGzd2OgiEQqFQKBQKxWJQAUihUCgUCoViMagApGhKamoqpk6ditTUVL2bojk0dhq71bBy7IC146exGz92OgiEQqFQKBQKxWJQB5BCoVAoFArFYlABSKFQKBQKhWIxqACkUCgUCoVCsRhUAFIoFAqFQqFYDDoRNEUTGhoa8NZbb+HLL79EVVUVOnfujIceeggDBgzQu2kBqa2txaZNm5Cfn49jx46hqqoKixYtwu233+732TNnzuCVV17BkSNHEBUVhcGDB+Oxxx5DcnIy53NerxebNm3CJ598gsuXL6Nt27a47777kJOTE/Q21ebYsWPIzc3FwYMHUVRUhKSkJPTo0QMPPfQQ2rVrF1QbzRA3AJw+fRobNmzAiRMncPnyZcTGxiIrKwv33HMPhgwZElQ7zRK7EO+++y7efPNNdOzYEe+88w7nvSNHjmD9+vX45ZdfkJCQgOHDh2P69OmIj4/nfE7JNUDuNsPBwYMHMXv2bMH31q1bhx49eihup1liZzhx4gQ2bNiAI0eOoKGhARkZGRg9ejTuuusuxe00S+wvvPACcnNzRd//+OOP0apVK0XtNHrsdBQwRROee+45fP3115gwYQLatm2LL774AsePH8fatWvRs2dPvZsnSWFhISZNmoS0tDRkZGTg4MGDggKwpKQEf/zjH5GYmIjx48fD5XJh06ZNSEtLw2uvvYbo6Gj2s6+99hr+9a9/YfTo0bj22mvx7bffYu/evXj22Wdxyy23BLVNtXnmmWdw5MgRDB8+HJ07d0ZZWRm2bNkCl8uFdevWoVOnThEZNwDs3bsXH3/8MXr06IGWLVuirq4Ou3btwuHDhzFv3jyMGTMmYmPnU1JSgvvuuw82mw3p6ekcAXjy5Ek88sgjyMrKwpgxY1BSUoIPPvgAffr0wUsvvcTZjtxrgJJthgNGAI4fPx7du3fnvHfDDTewIjwSYweA77//HosWLULXrl1x8803Iy4uDhcuXIDP58MjjzwSsbH//PPPuHjxIuc1n8+HVatWIT09He+++27kxe6jUMLM0aNHfUOHDvW9//777Gt1dXW+u+++2/fwww/r2DJ51NfX+0pLS30+n8937Ngx39ChQ33btm3z+9yqVat8OTk5vqKiIva1/fv3+4YOHer79NNP2ddKSkp8w4cP961evZp9zev1+h599FHfnXfe6WtsbFS8zXBw+PBhX0NDA+e1s2fP+m655Rbf0qVLFbfRLHGL0djY6HvwwQd99957L/uaFWJ/9tlnfbNnz/Y9/vjjvilTpnDemzdvnm/s2LG+6upq9rX//Oc/vqFDh/r27dvHvqbkGiB3m+Hixx9/9A0dOtS3c+dOyc9FYuzV1dW+O+64w7d48WKfx+MR/Vwkxi7ETz/95Bs6dKjv3XffZV+LpNhpDSAl7OzatQsOh4N1TQDA6XRi1KhROHr0KIqLi3VsXWBiYmJkTei5a9cu/O53v0NaWhr7Wv/+/dGuXTvs3LmTfe3bb79FY2Mjxo0bx75ms9kwduxYXLp0CUePHlW8zXBw/fXX+7lN7dq1Q4cOHVBQUKC4jWaJWwyHw4HWrVujurqafS3SYz906BB27dqFxx9/3O+9mpoa/PDDDxgxYgQSEhLY12+77TbExcVx2ir3GqBkm1pQW1uLxsZGv9cjNfa8vDxcvnwZ06dPh91uh8vlgtfr5XwmUmMXIi8vDzabjS3TiLTYqQCkhJ2TJ0+ibdu2nIMbAJteOXXqlB7NUpVLly7hypUrggt/d+/eHSdPnmT/ffLkScTFxSErK8vvc8z7SrepFT6fD1euXEHz5s0BRH7cLpcL5eXluHDhAjZv3ox9+/ahb9++ittpxtg9Hg/Wrl2LUaNGoXPnzn7v//bbb/B4PH5tjY6ORteuXf3il3MNULLNcLN8+f/f3v3HRF3/cQB/8sNDjh8D+TWLxo9RTIOJ86ByxwEODXAzDVAB14hoViTk1tJoGo2ZumiuP0hm6RyNzPzRQPkh0GgkZKGDbJCVoXDGURwCcnAHx3HfPxr35TwJDu7Qu3s+Nv7g/b57f17PE48Xnx/3OYiEhASsX78eeXl5uHHjhm7OWrNfvXoVLi4ukMvlyMjIwPPPP4/ExER8/PHHGBsbM7pOS8p+v4mJCTQ0NCAsLAzLly83uk5LyM4GkMyuv7//gXvQpsbkcvlil2Ry/f39ADBjznv37mF8fFz3WE9PT9jZ2Rk8Dvj/62HMmoulrq4OfX19WLdundE1WmLu4uJibNq0CWlpafj0008RHR2N3bt3G12nJWYvLy/H33//jezs7AfOz1br9P/Xc30PMGZNc3F0dERMTAxyc3Px4Ycf4pVXXkFnZyfefPNN/P7770bXaUnZ79y5A41Gg/z8fERFRaGwsBBJSUkoLy/HoUOHjK7TkrLf76effsLQ0BDWr1+vG7O27LwKmMxubGzsgSeuCwQC3bylm8owW06BQDDn18OYNRdDV1cXjhw5gqeffhoJCQlG12iJuVNTUxEbGwu5XI6GhgZoNBqo1Wqj67S07ENDQzhx4gReeumlGa88nq3W6Y2qqfIvRvMbHh6O8PBw3fdisRixsbF4+eWXcezYMRQVFVltdqVSCZVKhRdeeEF3JXRMTAzUajUqKiqQlZVltdnvV19fD0dHR8TFxenGrC079wCS2Tk5Oel+aU439YPt5OS02CWZ3FSGueSc6+thzJrm1t/fjz179sDFxQWFhYVwcHAwukZLzB0QEACRSISEhAQcPnwYSqUSe/fuhVartersn3/+Odzc3JCcnDzjY2ardXqTaqr8i/XHzv38/f0hFovR2toKjUZjtdmnaph+VToA3Tlw7e3tVpt9utHRUVy+fBlRUVG6010A6/uZZwNIZufl5aXbzT3d1Ji3t/dil2RyU7vvZ8rp7u6u+4/s5eWFu3fvQnvfJzDd/3oYs6Y5KRQKvPPOO1AoFCgqKtL797Lm3A8SGxuLGzduQCqVWm12qVSKCxcuICUlBXK5HDKZDDKZDOPj45iYmIBMJsO9e/dmrfX+n5O5vAcYs+Zi8/X1hVqthkqlstrsUzUsW7ZMb9zT0xMAMDw8bLXZp7t8+TJUKpXe4V/AuDotITsbQDK7kJAQ3LlzByMjI3rjHR0dunlL5+PjAw8PD/z2228Gc7/++qtexpCQEKhUKr0raQHD18OYNc1lbGwMe/fuhVQqxaFDhxAYGKg3b625ZzJ1uEahUFhtdrlcjsnJSXzyySfYtm2b7qujowNSqRTbtm3DyZMnERQUBAcHB4Na1Wo1/vjjD4P8c3kPMGbNxdbT0wOBQABnZ2erzT51IUJfX5/e+NR5aB4eHlabfbq6ujo4OzsbfOi7tWVnA0hmFxsbC41Gg4qKCt3Y+Pg4qqqqsHLlSr2Pu7BkMTExaG5u1vtYm2vXrkEqleqdRyIWi+Ho6IhvvvlGN6bValFeXg4fHx+EhYUZvaY5aDQaFBQUoL29HR988IFeXdNZW24AGBgYMBibmJjApUuX4OTkpGuErTF7UFAQDhw4YPAVFBQEPz8/HDhwABs3boSrqytEIhFqa2sxOjqqe/6lS5egVCr1ap3re4Axa5rL4OCgwdjNmzfR1NSEyMhI2NvbW232qW1UVlbqjVdWVsLBwQGrV6+22uxTBgcHcfXqVUgkEixdulRvztqy8yIQMruVK1ciLi4Ox44dw+DgIB5//HHU1NSgt7cXe/bsedjlzcm5c+egUCh0u+mbmprwzz//AACSk5Ph6uqKHTt24LvvvsNbb72FlJQUKJVKnDp1CsHBwXp3DfH19UVqaipOnTqFiYkJrFixAt9//z2uX7+Offv26c6vAzDnNc2huLgYTU1NWLt2LYaHh1FbW6s3v2HDBqNqtJTcAFBUVISRkRGsWrUKPj4+6O/vR11dHbq7u5GTk6O7PZM1Zvfw8EB0dLTB+JkzZwBAby47Oxs5OTnYtWuX3h0MIiMj8cwzz+geZ8x7wFzXNJf3338fTk5OCAsLg6enJ27fvo0LFy5g6dKl2Llzp1Vnf+qpp5CUlISqqipoNBpERESgra0NDQ0N2LFjh+5wpDVmn/Ltt99Co9EYHP41tk5LyM5bwdGiGBsb090TUaFQIDg4GNnZ2YiKinrYpc3J1q1b0dvb+8C506dP6z4n6tatWwb3cM3JyTE4p2ZychJffvklKioq0N/fD39/f2RkZOiaqunmuqap5ebmoq2tbcb5xsZGo2u0hNzAv78EKisr0dnZiaGhIQiFQoSGhuLFF1+EWCyeV52Wkn0mubm5GBoaMrgX8PXr13X3MBUKhYiLi8POnTsN7mFqzHvAXNc0h7Nnz6Kurg5//fUXRkZG4OHhgTVr1iAzMxP+/v7zqtNSsgP/7un+4osvUF1dDblcDj8/P2zZsgVbt26dV52WlB0AXn/9dfT09OD8+fN6f5jNp85HPTsbQCIiIiIbw3MAiYiIiGwMG0AiIiIiG8MGkIiIiMjGsAEkIiIisjFsAImIiIhsDBtAIiIiIhvDBpCIiIjIxrABJCIiIrIxbACJiIiIbAwbQCKiR0Rubi4kEsnDLmNW1dXVkEgkuq+CgoJ5rVNSUqK3zokTJ0xbKBHNyPFhF0BEZI2MbeSm31vZUojFYoSEhCA4OHhezxeJRBAIBOjt7UVNTY2JqyOi/8IGkIjIDDIzMw3Gzp49C4VC8cA5AHjvvfegUqnMW5gJRUdHIzExcd7PF4lEEIlEaG1tZQNItMjYABIRmUFWVpbBWE1NDRQKxQPnAMDPz8/cZRERAWADSET0yMjNzUVbW5ve4eDq6mocPHgQ7777Ltzd3VFaWorOzk64ubkhKSkJWVlZsLe3R3V1Nb7++mtIpVJ4eHggOTkZaWlpBtvQarWoqqpCZWUlOjs7odFoEBgYiM2bN2Pjxo0mySGXy1FWVoYrV66gr68PAoEAy5YtQ0REBF577TW4urqaZDtENH9sAImILEBjYyNaWloQHR2N8PBw/PDDDygtLYVWq4WrqytKS0shFosRERGBxsZGHD16FJ6enkhISNCtodVqUVhYiPr6evj7+yM+Ph5LlixBS0sLDh8+jNu3byMnJ2dBdapUKuTk5KC3txeRkZGQSCRQq9WQyWSora3F9u3b2QASPQLYABIRWYAff/wRxcXFWLFiBYB/DzGnpaXhzJkzEAqFOH78OB577DEAwPbt25Geno6vvvpKrwG8ePEi6uvrkZSUhLfffhuOjv/+ClCr1di3bx9Onz6N+Ph4hIaGzrvOa9euQSaTITU1Fbt27dKbGx0d1W2TiB4ufgwMEZEF2LBhg675AwChUIjnnnsOKpUKmzdv1jV/wL/nEoaHh6OrqwsTExO68fPnz8PZ2Rm7d+/Wa8SWLFmCV199FQBQX19vknqdnJwMxoRCIQQCgUnWJ6KF4Z9iREQWICQkxGDMy8vrP+c0Gg0GBgbg4+MDlUqFzs5OeHt7o6yszODxGo0GANDd3b2gOletWgUvLy+UlZXh5s2bWLt2LSIiIhAQEAA7O7sFrU1EpsMGkIjIAri4uBiMOTg4zDo3tQdweHgYWq0WfX19OHny5IzbWejH0Li6uqKkpATHjx9Hc3Mzrly5AgDw9fVFRkYGtmzZsqD1icg02AASEdmAqSYxNDQUn332mVm35efnh/z8fExOTuLPP/9ES0sLzp07hyNHjsDNzQ3x8fFm3T4RzY7nABIR2QChUIiAgAB0dXVheHh4UbZpb2+PJ598Eunp6di/fz8AoKmpaVG2TUT/jQ0gEZGNSElJgUqlwkcffQSlUmkw39PTA5lMtqBt3Lp1C3fv3jUYHxgYAABeBEL0iOAhYCIiG7Fp0ya0t7ejpqYGv/zyC0QiEby8vDAwMIDu7m50dHRg//79WL58+by30dLSgqNHjyI8PBxPPPEE3N3d0dPTg6amJggEAp4DSPSIYANIRGQj7OzskJ+fj2effRYXL15Ec3MzlEolPD094e/vjzfeeANr1qxZ0DaioqLQ29uLn3/+GY2NjVAqlfD29sa6deuQnp6OwMBA04QhogWx02q12oddBBERWY7pt6dLTExc8Hqtra3Iy8tDZmbmjPdJJiLT4jmAREQ0LwcPHoREIkFBQcG8nl9SUgKJRIK8vDzTFkZEs+IhYCIiMkpISAgyMzN13wcHB89rHZFIpHdRyOrVqxdaGhHNEQ8BExEREdkYHgImIiIisjFsAImIiIhsDBtAIiIiIhvDBpCIiIjIxrABJCIiIrIxbACJiIiIbAwbQCIiIiIbwwaQiIiIyMawASQiIiKyMf8DijUKeHTcBN4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum(binned_data=\"combined_binned_data.hdf5\", output_name=\"crab_spec_3x\")\n", + "analysis.get_raw_lightcurve(binned_data=\"combined_binned_data.hdf5\", output_name=\"crab_lc_3x\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare the combined data set to 3x the actual data. This step requires output files from earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAG5CAYAAAApsoiqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABl0UlEQVR4nO3dd1xV5eMH8M/d7I2AogiCiIqi4h45cGWZ5cps+M3RsPTb+FratzKztG+O6ldpmWm2zDTLXClmmltxiyCIIHuvC3ff8/uDuHoFFBAOw8/79aqXPGc9zx3nfM5znnOuRBAEAUREREQkGmlDV4CIiIjoXsMARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQNYI6XVahEbGwutVtvQVSEiIqI6xgDWSCUlJWHmzJlISkpq6KoQERFRHWMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYwaxL6Y03j31w0o1WkbuipERESikzd0Beje89OJ/fjw3fWQmICoCzH49c33G7pKRNSEmAUztuWeQqGpFJM9+8FGqmzoKhHVGHvASFSHr17Esg82QGIq+zv1aCp+v3i0YSvVAE4Vx+PJmE8wL2ED9madhUbPnkBq+nZdPI5Xv1+F08nxd70urVGPXRePo0hbalVuMBvx+rXv8HbSRqxI2YaXr66HwWy86+0RiY09YCSahJx0vPz2R4DGbCkzTnDAd9IjuF/oDZnk3jgfuFKahhfj16LUrMO5EmDvrqOQ79fCv2cbzHt0KsL92tfr9o0mIwxmE2wVqnrdTlNgNpvx0obPkJScjkVPz0CXVgENXaVa0Zj1iClNRSe71lBKxd2tpxXk4pNdW/D3n1HQp5adSBz47QQ2rVkCf2fvWq0zIScdT76xCLrkUkicZXh4yjD8Z8xkFGpLMefAalz0yrDMezgtGo/uWIQfX3gLSjkPadR0SARBEBq6ElRRbGwsZs6ciTVr1iA4OLihq2OhNephI695d3+hRo0HXp4HbVIJAEDhpYLXM22RoMgBALzVZiLGe/at07reSVpBLt78/itcjUmGvYsdWrb0RECrlujXoTPua9+1wvxmsxlHr0WjfQtfeDq61GqbcdmpmJ20BpmSIkuZ/ItCSFP+OYNXSjDuXxF446HHLdNLTTrszT8HAHjAPbzWQdVsNmPR1g3YsfEAJHIJ3po/Cw906VPt5fNLi/HMJx8iP6cIK16ag9BbworZbMauiyeQlJ0Jmb0cnoHuMAlmdLZvgw62rSCRSKq9LY1Zj+NFcZBKJECeCW2cPdHGpQWk0srbfro4AQWmEvR1CoZtDS5HzVn3CY7+HAUAkLrKsWrpfHRvHVjt5RuDffFn8GHp70g3FMDfpgU+DHgKQbY+Vc6fp1VjU95h+Nm0wGi3brXebpG2FP/55nOc3nkBMNwoF+SAcZIjOocH4uv2L9Q4EF5ITcCsN5bAmKW3Kle1toNEAmhSS2F83BHKIDugwAzzulxIcs3w7euLnxe8A7ms6u0JgoALRUn44KtvkZmWC1t7FRyc7ODs5IgBoaF4rPewKj9jN9MbjZBLpdWat7FI0eWi2KRBG5UH7GU29bINo8mIl775DFGHLsFsMEMQBEAA7DzsMG/mExjduVe9bPdWCTnpWLzxG8RHX8eoUf2wYOzjd16oATCANVKNJYBpzXpEFV/F1qhDOLTuOEy5BkAlgcxBDqWTCo5u9vDz80FoQAAGBIeik0/bCjulXRePY8nn30CTWBa+JE4yfL3iTWgdTZh+5XMAgKvcHts6zYeT3O6u6nsw7jyWrv8WALD0+ecq7dFQ6zR486e1OPRblFVv3M3cu3pg9X9fQ1v7FgCAPdGn8N7n61CaoIbUVY4NKxYi2Kt1jeqWW1KEh16aB42gh3GqEzp5+eFpz6FY+fH3yDqXCdx0FcWnpw8WzZiB1bt+w+kjl6F7xhFQSjDJsx8WtB5vFWaW7fwJWzZFQqqQwt7VDkF9AxDetxNC7dsg1N4PKqkCMRnJeHH5ChRcyruxEXspPv3fPPT2D7lj3a/nZWLqG+9YArRDeyfsW/Gx1Xs9a/UynNl2AQBgDlbA+LiTZZqnwgkBsc7o6uaPyb2HwMPBudLt6MwGbM4+irUZ+5BrLAYAyD8pgDTbBKgk6D8uHB899YLVMpuzj+Ld6z8DAGy2aeCrcseUkcPxSLeBtz1AfnVoJ1Yv+QmSm/aAUlc5vlg6H2FNIISZzWa8vvFL/PnjUZgesIc5vOygaiNRYF7rcXjYvXeF9l9ITcCsN5dCO0gBc6gKH/g/gVG3hLDI6ChsPnQAXQPbYWKvwZW+V1/89Tu+/uo3mPMMVuUKdyXk3RxQOAiApOzz+kabCQCAS+mJWLRhHdISsyGYzRDM/xycXWwx+P5emNJ3GCQS4Ikl70J3svifFUoAQyWHKGcZPv38dVy6dBWff7DRMqShzYA2WDLjGbRv4Ws1e4ouF3/kn8X23FNI0GRA/mkhpFmmCqvtNjYUXz77qlXZd0f3Yu1P26DJ08KsNULQmi3fVUEGSGQSyF0UeGzqaLw4/JEK6yzUqJFWmIciTQnUOg0Es4AB7UMrPZHVG43QGLRwtnWo2OZbmAUzco1qeMgdb3tyk5yfhbf3f4sov1RLmafCCe7JKthcFTCiVy883G0A7FSVh7JL6YmY+d/3YSw2oE03X0waPgyPdBtQIegWaNV49J23kXsup/KK2EqweNFsjOzU845tq65CjRq5JcWwkSthq1QirSAX72/8FlcOXAUMAgQFYHzcCf8d/BgmiHyCXx0MYI1UfQQwrVmPeE0GTEVGuNk4wMvRrcou+2KTBqvT9mBz9hFoBQOQb4JyRcEdtyFxlKHn9B54ILwf2tv64MM/N+HU51E3DnJKCRa/d+NL+FrCt9idfwYwC+id6gdvoxMuXL6KzMQcyFUytAlqifBOIRjdtddtA49ap8HL6z7D6R0XLDtj2Esx9+XH8Hjf4QAAo2DCx/u3YtPaXTDn337MiClUCdlkVzzlNQTX4lJw4MNDVgdqhyAn/LF8ZbUveRRpSzFx4X+Rdz4XACD3t8G2lf+Dp7Ls4JZWkIvnPlmGtGNplS5vHGMHcx9bAMBLrR7ANO+hAIBFW7/Btq/+tKqbcZQdzP3L5lVK5Ohg9kHMO2eBiscbyNwV+H7FIrTzbFll3c+nJuCZW3okTANs8N7MWRjt2QMAsOP8Mby9YBUk/+RZs78cxqdvOnALAhTLCyApNEOQAY4BTggNC0K3oPZQa0pRVFqK1MxsXNBfR1Ff64OJYnEeJLobDew9vhs+nf5vAMCRoli8ELcGJpgBjRmK/+VDUt6Z6GuL/855utKz7gRNJqaeWwH9plxIYwyAjQTQlm1D6ibHmg/eaPDLkWbBDINggkqqsCpPyEnHkbiL+GH7HmSfyQJQ1uskfd4DOs9/2nBUA98sJ/z3X9MsAXtfzGnMX/gphCITBBlgfMoJDoGO2BTyKlqq3AAA288fwztvrQb0ZesRbCTo+l44Ojm2gcasR5FRg6PLjlpOpgBAkAL+/f0w86GxGNExHJdLU/BUzCfQCWVvxH9ajMWB7SdxdvdFq56ymxknOsDcRQUpJDDrzZBvKIJCLcHn77+Os4lx+GrdVhgydADK9jHvvz0bER3LPnvLd2/Cj/+3w/IdEKSAa4gbhg4MR0JqGmKvJqHwUQVwU0iRHtJA/kdphXoAwIhpA/HepBkAgN15Z/DfD1dBck5XjXcMGPBSPywd9jRUUgVOJ8dj8Yb1uH4s+cY+6R8ydwWmPf0Qnh3yIADAJJjxW+4JfLhoHQzXtHDv5I4Hhg3A9EH3VwhGyflZ2Ke5iC15x3Bdl4NejkF4338qPBVOuNXq/b/j69VbYS4xwTjTGYLvjf2V9K9SyPdpyv5QSuDewR3/nTENAwJDrdYx9u3XkX4y3apM6ipHYI+2GNozHBPCB0IrM2JO/FrEbYiB7LweggSQ2P0T/o0CUP79tZPig/fmYGhwWei/XpCFjYf/hJuDI8b3HARXO8c7vsZasx67rkdh9erNyL2UU+G1vZlpkC1MEbaQSKRY1PZRjHWvu/BXFxjAGqn6CGBXStMw8fIyyFcXQJpqKvuSqCSwaWGLrj2D8fiQEejVtgM+2P4jdmnOojDQ+pOt+KwQNnIFjFoTTGqD5YB1K/2rLoCzrOwPowDF/xVAkmeGzF2Bl16cism9hljmzdQX4MG/F8P0ewGkV6rYO1sqIIHHWwHwsHeGu9wRznI7lFwuQkmKGmcPX65wyQIABAkwYFJPDHugN75M34vkmHQovi6yTGsZ7oMFTz0Jo9mEc0lXEX3tGk7+dRG6px1utMEsQP5lIaSp1q9H2IOdsea5/wAoGxi8PnM/otQJaJntiBBlKzzQtQ/SCnKxdPP3OPtnNFDyTzpRSfDB0rmWndDNlm7/AVvW7rmxw/qnnt5DWiJ5yI2DwHzHcbh0Lg671h+8ceCRABIBME5ygDn0xvguSboRis8Ly/7tKMP4J4bj1y37YcwsW5/K1xa/rvigQk9HYl4G/jh/EmtXb4VQdKPt5etvoXDGb51eB4wCIp6fA0N62fpa9PBC954h6Nq3A3SCAUeLruD4lUvAp3m4E0EBGF52BRykiHDpAn9lC/z5zWHk5xRBfeXGZdv7pvbBIwMG4ZWsb1EqLXvfg9LckLQ23hIegLKDcbcxnfHx0y9aDmSFxhI8HvMxrutyALOArgnemH/fFPxr3rsw5fzzGbKTwtnPCV3HdEb3zsEItPFBiJ0vnOS2ldY7szgfX/25AwcOR6EoQw2bTg5wHOMJALCRKuAmd0TO9jSozDL07tIZzw19qEJ4N5vNiCtOxxndNRwrvoJTxfEoNmmh/KIIkiIz5PZyGIsNENQVe23bRwTi89kv4/8ydmHz2YOQf1VoOTApW9ogsIsfov+6YvnOCm4yGJ5yBNxkCLP3x9rg53HqWixefO3DG59TAOZABYxPWR/YFUvzICkpW499O0e8/cIMDAkOs5rnt5wTeCtpI6AXygL0LbsKQYKyW8CEsv8Mr7sCdjd66wLhjQ/aTEWgZysAZT1DH2z/AbHXruPVCY9W6KF855dv8PvXf1pOAG5lmO0Mwbvs9e7m4I/hNqHoIm+DEp0WKfnZ2HXsGM7viLbU7Ym5Y9GqW0ssvr4ZgtEM+XfFkF41QOoqh9xWDplSBsEswGwyw6Q1wZRrgLmDAsbHHNHeriWCBR/sXrAXkjvs0lw6uWHa9LHYaj6FOE06JLF6KL4rvjGDvRTu7dwgV8ggU8hg0BmRfSELhkmOEEJu9KC5wQGzhCGYEj4EZrMZv509jK9/3Y6MUzfGyknaKDHitSFI1echUZuFwo3pkJ2z3mdKHGXYsnopWruW9fzvungCb772WYX3z8ozblD52aHYpAEMAlQ/lmDWIw9hxn1jAADZxQUY/9oCqysg85ZPxxHtFRyIPQ/pP/uF8hOzzl0DMTSsO0Z26mn5zurMBhwtisXe/PPYX3ABJQYtFB/mWz6HFciBwEEBCBweiG3Gf4YYQIL3/R+/q8vudY0BrJGqjwB2qjge0698DsXKfEjyKt9TSRxlEIpNEJylMMxxgY1KidFu3THQOQTh9oFwVt64RFikLUVU0hWciLuMy9cSkZKYgUJ1CfSzrHfYdnFAX307LJ48vdJu7tlfrcSJX85alQlSVNiZCkrA8Ka7VZlsmxqykzqr5ToOb4+061kovFwAADDdZwtTxI16y78uhIvKAfOmP15pd3ihvhRfZ+3Dd1kHYRTKjmI2qUDP7DboFdIRn7z/PSTmsh31iwseQ59unfFm4o+I1ZT1Xsl+Kobsoh5QSQCTYHVpUZACz7/2KJ4eOLrCdsudSrqCV5d/gpJkNfx7t8G8KY8j3K89vkjfg89Td0G2TwPpIY3VmV/Q0AB8/e/5uJqdBrVCjwwUIEqdgKjiq0g7kAL5zlJ49fDC5y+9gjZuXriUloh/vbIIQqEJggJwmO6DlkFesJOpUHyhANc2x0MotA6cMg8FPls8D+t0B/B30WUAwDSvIYj+PQZnf78IoOxgH7nqkwoD/As0avxwZB/+OhmFpAupt+2BbPdoEBZO+Bc62LWyKn/x649xbPPpGwW2Upi9pTBOccRQn65YHvAU8kqKsSryN+z6/ZAlEAKAwscG7r4uyEstgH6yPfRlHT4Itm2F9cEvwE6mwuWM6/jXvEUw5dw4ahqmOUJod+NA17LACdL9JbC1t4FMKoVMJkVeThFyo3Os3mdTVyVME6zP5m8OLlI3OQaODscrD07GoSsX8NvffyP+dCL0/lKYHrK+/KT4Xx4kxVXspm0kePzZBzF3xHhL0UeRW/D9Z79bhfibqVrbYdU7/8G87B+Qps8D9AL6JbfF6W3nYc4ra4RtW3t4tfFArrcWuaHW75Xio3zIjFKMmzIUrz0wpcrLvAvjNmLb+j8hO1P2PghSIGhwAD54+lm0cfMCUBY6DydeQoJ9Lo4UxuBcSSJ6OARgif8TVYbdqhxLiMaXO7fh4uErFT67LSa0xiP3D8FI1zD4qtwrXf6JjxYjZk9cWV3lgPFJJwj+Zb2PDzmH479tJ1Xa4202m7Fw63rs8oqG3vbGTkv2i7qs7SoJ3ILdoFQpoFAqkJOaZ9WDaJjlBKH1P72cBgHKTwqBgtt06+BGMHaQ2kBt1kK2swTSY1r49m6FzKvZMGZbByvnEBd8/OpL6OTT1lJ2NTsNm47ux9GoC0iPzrQEb68eXtj+7v8gCAKGvTwXxbFlJ2/hD3dFa68W+PPASRTEFpTtA20kMMx3BaRlvYstlW74pN10BNlZj0FML8rDpHlvlI3fm+QAoeON/YN8VQGkaZW0Vw7YtXGAraMN8vRq6B6zt5os266GPNoI5zbOMJvMMJvKLmu3bd8K/330SQR6toIgCFiavBUbsw8BggB5pAauWTZo39EP/Tp3xv2hveFmX7HnUCwMYI1UfQSwBE0mNmYfwonvoqDOLYGuRA+92lBhHEe5oCc64MNHnkGrfy5PVIfOZMDZkms4XBSD2NI0BNu1xL+8h8JVXvWYBo1Bh2c+X4acrAIEBrbGwNCuGNGpB3JLirH73AmciI7G9avp0MMI6TQ3FJpuXDqwhB2UHVjemjsdIzqGQ2804rkvl+PslTgYpzpadhC9HIPwtNsQ9PXocMe2JGqzsDZjH2ylSkz3HgYvpQuAikHAPM8NRsd/Lm+YBSiW5kOisf5aCVLAu5sX5kyZhBEdw6v1WprNZquDmyAImP7DMlz4/qLVfB1GBOGbOQuqPBDGZF1HbnER+rfrbFW+P/YsXlv8f9A/YgehzY3LXJJrBksvYTlVa1tseO9tBHj44Lo2G49E/w8GwQR5uhmS1fllO2Mp8O7S2XccaGs2m3Es8TK2Hv0b2Xn5sLe1gb2dLRzt7NA/JLTSnsFyM1d9aAl75Ry7uWLHu/+zGnxfqtNi7tf/hzM7LlYI8oYpZQcAV7kDfgx5CT5KV8u0S+mJ+PeKj1EQlw/oBehfdgFcZZbp0igt5L+W4LaUEsi62kH5cNn3ptSsg8FkhGJh5T1BN5cJrtKyHkAALjJ7+Nu2QNzyizAUGiBoTJDYSGHv4wDv1h4I9PPFE/eNrDDeCQAuZ1zHql2/4vSxy9Al3/i+uHR0xcZ3FsHd3gln1dfw9P6PIN1UBEnujRdJ4aPC5uVL0NKlLKgk63KQpsuHo8wGTnI7yHUSeNg73XawO1A2LOCh+a+jKKYAbqHuePuZ6egX0On2r10d0BuN+P5YJA6cOQNvD3c8MXiEVfCoitFkxCPvvon0E2kQpIDpYQeYw1SY5jUE/271wB1vIonTpGNewgYkaDMBAHb5MnS84oFFjz2NVi6elvnMZjM+3PkTtny3F8Z2cpgeKds3drTzxau+D6GTbWt8e3gPft17AFnns6yCPQDARoL2/QPw7nOz4KJwwIuRn+PK/12qvFIqCUZPHYSFj0y77XjIS+mJmDZ7oaWH9NE5Y9CzV2f8+4uPIT2qhcxJjn1rP4WDqiwUX8/LxM8nDuBiViLSu+mQrs9HD4cAfBjwFNwVlV9GTCvIwbMHP0NSq0JLmYfcEV1TWyLpdDJSLqdXeWImSAHDa2W9pA5SGwxz7YIhNh3R36PjHYeBmAUz3k36Gb/98Cdkh6wf92P6lzMe6zMMr7Z+6LbrqC8MYI2UmIPwTyVdwbf7/8Dp45ehTSqBzF2Bp2c8hFn3PViv260tg9mIfGMJCk2liL56DdczMuFsZ49Hew2t8GX8M+88/i99F7yULpjpHYEeju3uevtGkxGj5r2Kwsv5AP4ZZzDcDkG2PnjJ+0FE/nUcJ89cQlZsNgAguF87/GfiY3Uypkhj0GHMf/6D4itlO7HOoztg7ezXan031pnCq1iW9jsStVkoMesgQAA0ZihXFMC+lQN8/DwR2r4dXhjxCJxsbvQifpa2C18m7oFy8Y3Lil3GdMTa2a/dXQPvwGw246lP3rf0VEhd5Pj2o3cqDSFA2SWUd1euhSG9bMcrSAGXsV4IjwjFLJ8RCLD1qnI78TlpKLLRIVmfg8ulKYguTUbsxhjghKbC/BIHKfzD/TBh6BA83K2/VTgRBAHFJg2ik5NwOuEKtuz4E0UxBRXWIUgBx3ZOmPLSAxjYohOCbVtCWgePZjmdHI8fDu6FUq7AW+OftBr8/eyXyxH163nL31IXOdaveBsh3m3uertA2etYqC2p1tiexkBj0OGht+cjK1QPob0Sc1qNwXTvYdVf3qzHD1l/QwLgEY8+cJHbVzlvjroQG9L2IxYZeNA9HPe7da/wfhdq1EjJz4HGoIfWoIPeZESPNkFWg/SNJiNeWPsJTv12zhLm7ds5YujQnnh++Lgqb3i51dLtP2DL53+U/WEnhc8rgUhS5gKFJsx2GIlZve6vdDlBEFBgKoGLzP6OIbXAWIIVKb/DIBgxyrUb+jt3gFxSdoJjNptxIjEG204ewcXoeGRezbnROWArRe/nemJSz8Ho49i+xnfWGk1GzPz8Q1w8cAUoLTvZEKSAYYEbXg4Yi6e8h9xhDfWDAayRaqi7IDOL8+Fu53jHs9t7XWJeBiY9v6BsQLOtBI/972G84D9GlGcw5ZYU4f1fvoO/jw+eH/pQnd0KLwgCtIIBOrMBTlLb265XY9Zj6JwXYUwoCzZyTyX2fvmJ5Qy5PpnNZvz7m08RH5+M/06fdsdeFY1Bh73RUbBX2aC3f8hd1VFj0CEq6QpKdFoYTCYYjAbYKFUY0iGsRo9n+TP2DD79eTPS47Pg5O2IgX274cmBIyyX5sSiNxox4qV/o+RqMWArxcoPXq4wCPteozMbsDPvNNqoPOrkhE0s284dwaFL5zGp/9BaPUvQbDZjzH/nIeds2YmjOVgB41RHdLJvg+86zK2Tk4Gais1MRmJOBga171Inzy0s733fdz4KsenJ0N6nxJttJqKrQ9u7r2wtMIA1Uo3lMRRUtUtpiVi9+zfc36uvaM+3aUy+OrADq5dtgkQmwZvvzMLYrv0aukpUC7klRVgduQ1jw/tVeLYb3VsSctLx6PMLYNaYYYqwg7mfDdZ0eB69HIMaumrNEgNYI8UARk3B2eR4qBTKOrtkRUQN66vDO/Fp4W4IXnIMdArBp0EzG7pKzRavMxFRrTWFB5YSUfXN6H8/vHNbILo0GbN8RjR0dZo1BjAiIiKyeMA9HA+4V+9ubaq9pvNDVkRERETNBAMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREIpM3dAWaqw8//BCHDx+GVquFl5cXZs2ahf79+zd0tYiIiKgRYACrJ5MmTcLcuXOhVCpx+fJlvPzyy9i4cSOcnZ0bumpERETUwHgJsp74+flBqVQCACQSCQwGA3Jychq4VkRERNQYsAcMQGlpKTZu3Ijo6GhcvnwZxcXFmD9/PkaPHl1hXr1ej7Vr12LPnj0oLi5Gu3btMGPGDPTs2bPCvCtWrMDOnTuh1+vRp08fBAQEiNEcIiIiauTYAwagsLAQ69evR1JSEgIDA28775IlS7Bp0yYMHz4cc+bMgVQqxbx583D+/PkK87788sv4448/sHLlSvTs2RMSiaS+mkBERERNCAMYAHd3d2zduhU///wznnvuuSrni46Oxr59+zBr1iw8//zzGDt2LD766CN4e3tj1apVlS4jk8nQo0cPREVF4ejRo/XVBCIiImpCGMAAKJVKuLu733G+AwcOQCaTYezYsZYylUqFMWPG4NKlS8jMzKxyWZPJhNTU1DqpLxERETVtDGA1EBcXB19fX9jb21uVh4SEAADi4+MBAGq1Gnv37kVpaSmMRiP279+PM2fOoGvXrlWuOycnB7GxsZb/kpKS6q8hRERE1KA4CL8GcnNzK+0pKy8rv8tRIpFg+/btWLlyJQRBQKtWrfDmm28iKCioynVv27YN69evr5d6ExERUePCAFYDOp0OCoWiQnn54yZ0Oh0AwN7eHh9//HGN1j127FirB7UmJSVh8eLFd1FbIiIiaqwYwGpApVLBYDBUKNfr9ZbpteXh4QEPD49aL09ERERNB8eA1YC7uztyc3MrlJeXMUARERFRdTCA1UBgYCBSUlJQUlJiVR4dHW2ZTkRERHQnDGA1MHjwYJhMJmzbts1SptfrsXPnTnTs2BFeXl4NWDsiIiJqKjgG7B9btmyBWq22XE48fPgwsrKyAADjx4+Hg4MDOnbsiCFDhuDLL79EQUEBWrVqhd27dyMjIwOvvfZaQ1afiIiImhAGsH/89NNPyMjIsPx98OBBHDx4EAAwYsQIODg4AAAWLFgALy8v/PHHH1Cr1QgICMAHH3yAsLCwhqg2ERERNUESQRCEhq4EVRQbG4uZM2dizZo1CA4ObujqEBERUR3iGDAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHI5A1dAbIWGRmJyMhIqNXqhq4KERER1RMGsEYmIiICERERiI2NxcyZMxu6OkRERFQPeAmSiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikfE5YERERE2UIAgwGo0wmUwNXZV7jkKhgEwmq/XyDGBERERNkF6vR3p6OkpLSxu6KvckiUQCX19fODg41Gp5BjAiIqImxmw249q1a5DJZGjZsiWUSiUkEklDV+ueIQgCsrOzkZKSgqCgoFr1hDGAERERNTF6vR5msxmtW7eGnZ1dQ1fnnuTp6YnExEQYDIZaBTAOwiciImqipFIexhvK3fY48p0jIiIiEhkDGBEREdUZo9GId955Bx06dEDnzp0RFhaGWbNmoaCgoEbrGTx4MH799dd6qWNjwDFgREREVGemT5+OvLw8HD16FK6urhAEAZs3b0ZeXh5cXFws8xmNRsjl924MuXdbTkRE1Iz8+sZhlBbq6m39ds4qjHuv/23niY+Px88//4zr16/D1dUVQNlYqYkTJ+Kvv/7Cgw8+iD59+iAqKgpvvPEGDAYDPv74Y8tNBYsXL8aDDz5oWd++ffvw3nvvIT8/Hw899BCWLVvWbO72ZAAjIiJqBkoLdSjNq78AVh2nT59GUFAQPDw8Kp1++fJlfP7551i7di0AIDc3F1OmTIFEIkFiYiL69OmDpKQkqFQqAEB0dDSOHDkCg8GAQYMG4ccff8Rjjz0mWnvqEwMYERFRM2DnrGr06w8ICMB9991n+fvatWuYOnUqUlJSIJfLkZeXh2vXrqFDhw4AgCeffBIKhQIKhQKPP/44IiMjGcCIiIio8bjT5UExdO/eHXFxccjNzYW7u3uF6bc+Nf7RRx/F0qVLMWHCBACAm5sbtFptletvLpcfgXq4C1IQBCQnJyMzM7OuV01ERESNWGBgIMaPH4/p06db7noUBAFbtmxBQkJChfnz8/Ph7+8PAPjuu++Qn59vNf27776DwWCARqPBDz/8gIiIiHpvg1hqHcAOHDiA9957D8XFxZay9PR0TJs2DU888QQmT56MhQsX8gdCiYiI7iFff/01unbtit69e6NTp07o2LEj9uzZAzc3twrzfvzxx5gwYQK6deuGM2fOoE2bNlbTQ0JC0L9/f4SGhmLgwIF49NFHxWpGvZMIgiDUZsGXX34ZeXl5WL9+vaXsjTfewKFDh9C9e3cUFRXh6tWreOWVV6zuaKDqiY2NxcyZM7FmzRoEBwc3dHWIiKgR0Wq1uHbtGvz9/WFjY9PQ1bkn3e17UOsesMTERISEhFj+Li0txdGjRzF06FCsXLkSX3zxBfz8/LBz587aboKIiIioWap1ACsqKrLqTjx//jxMJhOGDRsGAJDL5QgPD0dqaurd15KIiIioGal1ALO3t0dRUZHl7zNnzkAqlaJr166WMrlcftu7GYiIiIjuRbUOYG3atMGRI0dQWFiI4uJiREZGon379nB0dLTMk5GRYXkSLhERERGVqXUAGz9+PHJycjB+/HhMnDgRubm5GDdunNU80dHRCAwMvNs6EhERETUrtX4Q6+DBg/HSSy9hx44dAIChQ4di9OjRlulnz55FSUkJevXqdfe1JCIiImpG7upJ+OPGjavQ61UuLCyMd0ASERERVaJGlyBnzZqF7777DteuXauv+hAREVETNmLECHTp0gVhYWEYOHAgzpw5c8dlrl69igkTJsDf3x89evRAr1698NVXX9V424mJiXBxcalFrcVXox4wnU6HNWvW4KuvvoKPjw8GDBiAAQMGoEuXLs3q95mIiIiodjZt2mQJQVu3bsW0adNw7ty5KufPyMjAgAEDsGjRImzevBlA2U8U/fTTTxXmNRqNkMubx89Y16gV33zzDdLS0vD333/j8OHD2Lx5M37++Wc4OTmhX79+6N+/P3r16gWVqn5/kZ2IiIisTbm8AjmG4jvPWEseCkf8GPLyHee7uQeqsLAQEokEsbGxGDZsGA4ePIiAgAAsW7YMkZGR2LlzJz777DMMHDgQM2fOtCzn6uqKZ599FgAwbdo0SKVSxMfHIysrCzExMZg6dSpiY2Oh1+vRunVrrF27Ft7e3pblX331VezZswcmkwkff/xxo/wNyRrHyJYtW2Ly5MmYPHkyCgsLceTIERw6dAj79+/Hrl27oFKp0KNHDwwcOBD9+vVrMl2BRERETVmOoRhZhsKGrgYA4Mknn8T+/fsBADt37kRwcDA+/PBDTJo0CcuWLcNnn32GEydOQCqVIioqCsOHD7/t+qKionDo0CHLo64++ugjeHp6AgCWLl2KhQsXYvXq1QDKQl9ISAiWLVuGY8eOYezYsbh69arVY7Iag7vqx3N2dsbo0aMxevRo6HQ6nDx5EocOHcKxY8dw5MgRSKVSdOrUCQMGDED//v3RunXruqp3sxUZGYnIyEio1eqGrgoRETUhHor6DRg1Wf+GDRsAlF05e+2117Bz505MmTIF+/fvx8iRI7Fv3z5LgKqOiRMnWgWoH374Ad9++y20Wi20Wi08PDws0+RyOaZNmwYA6NOnD1q2bIkzZ85g0KBB1d6eGOrsQqpKpbKMCRMEARcvXrRcqly1ahVWr16Nv/76q64212xFREQgIiLC8mPcRERE1VGdy4Nie+qpp/Dss88iNzcXzs7OuHjxItzc3Kx+prBHjx44evQoXnrppSrX4+DgYPn3oUOH8Mknn+Do0aNo0aIFtm3bhrfeeuu29WiM49Rr/SDW25FIJAgNDcXzzz+P77//Ht988w3DBBERUTNXUFCAtLQ0y9+//vor3N3d4ebmhtdffx3BwcH4+++/8eqrryI+Ph4A8Pzzz+PAgQNYt26d1Xq++OKLSreRn58PR0dHuLu7Q6/XV5jPaDTi22+/BQCcOHECaWlpCAsLq+OW3r1a94BNnjwZEydOxIQJE6qc55dffsGmTZuwceNGtG3btrabIiIioiagsLAQEydOhEajgVQqhaenJ7Zv344dO3Zg9+7dOHHiBOzs7LBixQpMmjQJR44cgY+PDw4dOoTXX38dixYtgqOjIxQKBWbPnl3pNkaNGoXvvvsOwcHBcHd3R0REhFWPWnlPW9euXWE0GvHDDz80uvFfwF0EsIyMjDuOU1Kr1cjIyKjtJoiIiKgJ8fPzw4kTJyqUh4WF4YEHHrD8PXHiREycONHyd1BQELZs2VLpOtevX2/1t0KhqPCIivfeew8A0LZtWxQUFNSy9uKql0uQ5UpKSqBQKOpzE0RERERNTo16wM6ePWv1d0ZGRoUyADCbzcjKysLevXt55yMRERHRLWoUwObOnWu5k0AikWD37t3YvXt3pfMKggCJRIJnnnnm7mtJRERE1IzUKIA99dRTkEgkEAQB33zzDcLCwiq9s0AqlcLJyQndunXj4HsiIiKiW9QogD399NOWf587dw6jR4/GqFGj6rxSRERERM1ZrQfhz5gxA/Hx8cjNza10ek5ODj799FNcunSp1pUjIiIiao5qHcB++uknHD58GO7u7pVO9/DwwJEjR7Bp06ZaV46IiIiaFqPRiHfeeQcdOnRA586dERYWhlmzZtXZ4yGmTZuGjz76qNJpb731Fr7//vs62U65Tz/91PLTRnWp1s8Bi4mJQY8ePW47T9euXXHq1KnaboKIiIiamOnTpyMvLw9Hjx6Fq6srBEHA5s2bkZeXBxcXl3rd9qJFi+p1/XWp1j1gBQUFVj9+WRk3Nzfk5+fXdhNERETUhMTHx+Pnn3/GunXr4OrqCqDsqQkTJ05EQEAAPvzwQ3Tq1AmhoaGYOnUqCgsLAQALFy7EpEmT8OCDD6J9+/Z44IEHcPHiRYwcORLt27fHlClTYDabLds5f/48+vXrh/bt2+Opp56CRqMBYN07tnDhQkyePBkPPvggOnbsiKFDhyIvL8+yjmXLlqFXr17o3r07Ro0ahaSkJABAcXExJk+ejODgYAwYMAAXLlyol9eq1j1gDg4OyMrKuu08mZmZsLW1re0miIiIqAa+/2U3ftha+eOhbhYc6IcVb1v/+PXL76xEbHxSpfM/9vAoTH3kzjfdnT59GkFBQZV20OzatQtff/01jh49ChcXF8yaNQuvv/46Vq1aBQA4deoUoqKi4OLigsGDB2PGjBnYu3cvbG1tER4ejl27dmHMmDEAgOPHj+PYsWOws7PDuHHjsHLlSixYsKDCNo8fP46oqCi4u7vj0UcfxRdffIH58+fjhx9+QGxsLI4ePQqZTIZvv/0Wzz//PHbs2IFFixZBpVIhJiYGRUVF6NOnD3r37n3HttdUrQNYx44dcfDgQcyYMQNeXl4VpmdmZuLvv/9G9+7d76qCREREVD0lpRpk5d75ypOXp1uFsoLC4iqXLSnV3HXdIiMjMXnyZMtlyOeee87q54hGjBhh6TXr3r07VCqV5Tccu3Xrhri4OMu8kyZNskybPn06Pvnkk0oD2KhRoyxj1fv27Wvpzfr1119x8uRJy1Aqk8lkWWbfvn1YuXIlJBIJnJ2d8dhjj+Hq1at33f5b1TqAlf+I5uzZszFjxgyEh4fDw8MDOTk5OHnyJL766ivo9XpMnjy5LutLREREVbC3s0ULd9c7zufiXPHHqV2cHatc1t6uelezunfvjri4OOTm5lZ5k1658ge7l7OxsbH8WyaTVfjbaDRWe11VrbN8HYIgYP78+Zg1a9Zt63i7dd+tWgewsLAwzJ49G59//jmWLl0KAJaHtJb/+8UXX6z0Qa1ERERU96Y+Ur1LhZW59ZJkbQQGBmL8+PGYPn061q9fDxcXFwiCgF9++QUBAQH47LPP8PLLL8PJyQlffPEFRowYUavtbN68Ga+88gpsbW2xbt06RERE1Gj5cePGYfny5ZgwYQLc3NxgMBhw8eJFdOvWDREREVi3bh0GDRqE4uJi/Pjjj+jZs2et6nk7tQ5gQNmvmXfv3h2//fYbYmJioFar4eDggJCQEDz00EMICAioq3oSERFRE/D1119j8eLF6N27N+RyOcxmMwYNGoQPPvgApaWl6Nu3L6RSKbp06YLPP/+8Vtvo2bMnRo4ciezsbPTt2xf//ve/a7T81KlTkZubiyFDhgAoe3TG008/jW7duuHNN9/EjBkz0KFDB3h6emLAgAHQ6XS1quftSITyLitqVGJjYzFz5kysWbMGwcHBDV0dIiJqRLRaLa5duwZ/f3+ry2wknrt9D2r9GAoiIiIiqh0GMCIiIiKRMYARERERiYwBjIiIqIm6+enwJK67HUJ/V3dBEhERkfiUSiWkUinS0tLg6ekJpVJZb8+roooEQUB2djYkEgkUCkWt1sEARkRE1MRIpVL4+/sjPT0daWlpDV2de5JEIoGvry9kMlmtlmcAIyIiaoKUSiXatGkDo9Fo9VM6JA6FQlHr8AUwgBERETVZ5ZfAansZjBoOB+ETERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQi429BNjKRkZGIjIyEWq1u6KoQERFRPWEAa2QiIiIQERGB2NhYzJw5s6GrQ0RERPWAlyCJiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiUze0BVo7vR6PVasWIFTp05BrVajbdu2eOGFF9C5c+eGrhoRERE1EPaA1TOTyQRvb2989tln2LlzJyZOnIj58+ejtLS0oatGREREDYQBrJ7Z2tpi2rRp8PLyglQqxbBhwyCXy5GcnNzQVSMiIqIG0qgvQcbGxmLdunW4cOEC9Ho9WrZsiQcffBATJkyol+2VlpZi48aNiI6OxuXLl1FcXIz58+dj9OjRlc6v1+uxdu1a7NmzB8XFxWjXrh1mzJiBnj17VrmN5ORkFBcXo1WrVvXSBiIiImr8Gm0P2IkTJ/D888+joKAATz31FObMmYO+ffsiOzu73rZZWFiI9evXIykpCYGBgXecf8mSJdi0aROGDx+OOXPmQCqVYt68eTh//nyl8+t0OixevBhTp06Fg4NDXVefiIiImohG2QNWUlKC999/H3369MG7774LqbR6ObG4uBinT5/GfffdV+n0yMhI9O/fH7a2tpVOd3d3x9atW+Hu7o6YmBjMmjWrym1FR0dj3759eO655zBlyhQAwMiRIzFt2jSsWrUKq1atsprfaDTirbfeQqtWrTBt2rRqtYeIiIiap0bZAxYZGYm8vDzMnDkTUqkUGo0GZrP5jstt3boVCxcuxMGDBytM2759OxYtWoTdu3dXubxSqYS7u3u16njgwAHIZDKMHTvWUqZSqTBmzBhcunQJmZmZlnKz2YzFixdDIpFgwYIFkEgk1doGERERNU+NMoCdOnUK9vb2yMnJwdSpUzFy5EiMHj0ay5cvh06nq3K5xx57DH369MGiRYsQFRVlKT9w4ACWL1+OESNGYNy4cXVSx7i4OPj6+sLe3t6qPCQkBAAQHx9vKVu2bBlyc3PxzjvvQC5vlJ2OREREJKJGmQZSUlJgMpmwYMECjBkzBrNmzcLZs2exZcsWqNVqvP3225UuJ5fLsXDhQvznP//BggULsHLlSmg0Grz77rvo3bs3Xn/99TrrfcrNza20t6y8LCcnBwCQkZGB7du3Q6lUWvWW/e9//0PXrl0rLB8ZGYnIyEio1eo6qScRERE1Po0ygGk0Gmi1Wjz00EOYO3cuAOC+++6DwWDAtm3b8PTTT6N169aVLqtSqbBkyRLMnTsX8+bNg8FgQEhISJ33Pul0OigUigrlSqXSMh0AvL29K70kWpWIiAhEREQgNjYWM2fOrJvKEhERUaPSKC9BqlQqAMCwYcOsyiMiIgAAly5duu3y9vb2eP7551FUVASNRoMXX3zRss66rKPBYKhQrtfrLdOJiIiIKtMoA1j5ZTw3NzercldXVwBldzveTlpaGt599120adMG3t7eePPNNy2XBOuyjrm5uRXKy8s8PDzqdHtERETUfDTKABYcHAwAFZ75VR6iXFxcqlw2JycHL7/8MuRyOVasWIHly5dDq9XilVdeQVFRUZ3VMTAwECkpKSgpKbEqj46OtkwnIiIiqkyjDGBDhgwBAOzYscOqfMeOHZDJZOjWrVulyxUXF+PVV1+FRqPBihUr0KJFC7Ru3RrLli1DdnY2XnvtNWg0mjqp4+DBg2EymbBt2zZLmV6vx86dO9GxY0d4eXnVyXaIiIio+WmUg/Dbt2+P+++/Hzt37oTJZEJYWBjOnj2L/fv34/HHH6/y8t7WrVuRlZWFTz75xGqQflBQEJYuXYpXXnkFu3fvxsMPP1zltsvvtCy/lHj48GFkZWUBAMaPH295gn3Hjh0xZMgQfPnllygoKECrVq2we/duZGRk4LXXXqurl4KIiIiaIYkgCEJDV6IyRqMR3377LXbt2oWcnBx4eXnh4YcfxqRJk267THJyMvz9/SudfvXqVQQEBNz2URSTJk1CRkZGpdN++ukn+Pj4WP7W6XSW34JUq9UICAjAjBkz0KtXr2q2smrld0GuWbPGckmWiIiImodGG8DudQxgREREzVejHANGRERE1JwxgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhKZvKErQNYiIyMRGRkJtVrd0FUhIiKiesIA1shEREQgIiICsbGxmDlzZkNXh4iIiOoBL0ESERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARqITzAJObbqCne+dQF5ycUNXh4iISHQMYCS6U5uu4OyvV5F2KRd/fnIWZqO5oavUIAozSqAvNTR0NYianOKsUuxYfBy/zD+EnITChq4OUa3IG7oCdG+J2Z+Mc9sSLH8XpKoRvfc6Oo9u23CVEpkgCDj+XQwu7kqETCFFm+4tEDigJXy7ekIm5zmR2ASzALNZ4Gt/l/KSi3HlrxRkxOSh/WBfdBzud1fry04oxNXDafDt4gHfrp43tnO9GLuXnkRpgQ4AsGvpSTzwVm+4+jre1faIxMYARqJJOZ+Nw2svVSg/vSUO7fr5wNZZJXqdzGYBpXla2DgpIVfKRNnmpd2JuLgrEQBgMphx7XgGrh3PgMpBgbBx7dB5VFtIpJJ62bZgFpByLhsSmQStQj0gkdRsOwatEQadCXYN8F7VB22RHjuXnEBhegkGPN0ZQYNaNXSVaiXlXDYST2WiXb+W8AlxE227JqMZ8X+nImZ/MrLjb/RE5VyLhp2LCm17etdqvUlRmfjzk7MwGcy4uCsRvl080GtqBxg0Rvzxv1PQlxot8+rUBuxachIPvt0Hji3sqrV+s1mAXm2A0l4OqYzBuy4JZgF514th1JsgCAAEAQ6etnBwtxW1HmaTGeocDRxb2NV4PycWBjCqFrNZQHZ8AQrS1FDZK2HnooStswq2LqpqBZecxELs+/gMBLMAAOh8f1voS4248lcK9KVGnPzpCgbNCq2TuupLDRAEQGWvqHIewSzg6tF0RG26guJsDSABHDxs4extD/e2Tug8yg92rjZWyxSkqRH3dxq82rugTbcWtapbUlQmjn0XY/lb5aCATl12GVKnNuD4dzFIOZeD+57rAjsXFQSzgMRTmYjekwQAGPRMKBw9rQ8ygllAzrVCyJQy2LvZQGknr3SHU5xdir+/vIi0S7kAgB6TgtBtXGC16555JR97V5yGTm3AsLnd0Lanl9X00kIdzv16FaX5Ohj1Jhh0JggmAZ7tnNG6mye8O7hVq5dJEARcP52F+ENpgASwd7OBvasNnLzs0DrME9Jb1mHQGnHs2xjo1Hr49/aGX7hXtT6TZqMZ+z45g7yksnGIB744DwEC2g/yrfZr0tDMRjNObIzFxZ2JAICYP5PR7eFAdHskENIqQnzKuWwcWR8NJ297RPy7G+Sq2p14pF3KxeF1l1CYVlLp9AOrz8PV1xHOPvaWMpPRDHW2BmazAMEsQBAE2LvYwMZJaZkn7mAqDn55wbKvAICU8zlIvXAIUrkUJkPZkAXPds4wmwTkJhahNF+Hne+fwINv96nwvS0nCAJyrxUh7u9UXD2aDm2RHkDZfsLGSQmv9i7oNaWDVV3KleRpUZKnhb7UAH2pEQatEVKZFFK5FFKZBA4etvDwd2q0B3pNoQ6XI69DV2KAs489nL3t4exjD3t3m2rVOSehEFq1Hj4hbpApqv68FGWWYu+KKOQnq63KJRKg+4QgdHu4+vub2jIZTLhyMBXntiVAna1Bq1APDH+lu2gn2DUhEQRBuPNsJLbY2FjMnDkTa9asQXBwcIPUwaA1IvFUJlLOZiPlfI4lKNxMIgGcfOzh1sYRbm0c4dnOBd7BrpYPu67EgDNb4xH9RxLMprKPml9PL0TM7QZNsR4/v3wQBk3Z2ezYRX3RItAFZqMZ+WlqKFRyOLawrfZOzWQw4exvCTi37SokEgn6PtURHYa2rjBfyoUcnPwxFrmJRVWuS2EjQ9jDgeg8yg8mo4Czv8bj4s5ESxtGzgtH6zDPKpevTM61QmxfdBxGnQkAEDauHbo/EojUCzmI+zsNCcfSLfPaOCnRaZQf4v9OQ2H6jQOcSyt7PPh2X6gcFJY2//l/55B0KtOq7g4etvAMdIFPBzd4h7gi9UIujn93GQatyapOA2d1RvDgiq/Rra6fzsK+T87ApC87+Nm6qDBx2UAo7crqIZgF7Fh8HBkx+VWuQ2Erh2+oB3zDPODbxRP2btYHSkEQkHIuB1Gb46oc1+Ph74TRC3pZwrXZLGDv8igkn8m2zKO0kyOgrw9ChreBexunKutzeN0lXN573bpQAtz3bBcEDWz8PWHqXA3+/OQssuIKKkzz6eiGIS+Ewc7FuqfyysEU/L3mIoR/PscdhrbGgBmdLdMFQcCZX+Jx9Ug63Pwcyy7/hXrA/p/eC7PRDHWuFqc2XUHC0XSrdbv5OSJ4cGtkxObh2rEMAICrrwPGLuoLmVyK6MjrOPNLfKX7Efe2TvDt4gGpXIozv8RbyluHeSI/RQ11jsZq/lah7oh4qTtMejO2v3sMBall3xFHT1t0GuWHdv1bwtZJBUEQkJdcjKSTmUg4loGCVOtgcCvPds64/41eUNiU9U2YTWYcWReNmD+Tb7scALTt5YWBM0It300A0GuMSDyZAU2BDka92fLd9+vRAt4drHsqBUFA6oUclObr0KZ7C9g4VgyCN8+bFVeAjNh8tA33sgq5t0o4lo4j6y5BW1zxdbdzVcG3qyd8u3igZWd32DhU3GbK+Wz88cEpCELZd8u/tw8CB/jAO9jNqqc+IyYPkStPV7qdcuGT2yPsoXZVTq8JrVqP66ezoC02QCqTQCaXQqc2IHpvEkrzdVbz+nYpC2G3C48NgQGskaqPAFZaqMPZrVehspdD5aCA0l4Blb0CLi0drL7AgiAg8WQmjn17GSW52hpvR6aUomVHd7i1cUTMn8lWO1zPQGeMeaO35az74q5rOPZtWY+Qk7cd7FxUyE4otBzobZyU8ApyQYsgFzh528PW6Z+eN2clFLY3enoyYvJwaO1Fy464XPAQX/Sb1hEyhQwZMXmI2hyH9Og8q3laBLpAMAsoSC+xhMFyTt52MGpNlvEm5VQOCjyypL/lwASUhQFdsb7CpVSzWcD1qCwcWX/JsmMI6OuDIS90tQqXKRdycGDVeWhu2datvEPcMPr1cAgCsO+jM0g+m33b+W+lsldAV1L2nkikEgx/pftte/SuHPjnoG223lV0vr8t+jweAgC49EcSjn4TXaN6uLZ2hLufI4w6E/QaI0rztRXev8q0CHLB6Pk9obCR48g30Yj+I6nS+SQSIPQBf3QfH1Th7Pdy5HUc/rrscrhULoFfdy9cO5Hxz4JA/6c7wb+nN1SOihr1amiL9CjKKgUEAeV7VrlKBlsnJWwclRV676qiKzEgPToP2iIdVA4KqByUUNkroCnUIS9FjfzkYlw/nWX5bkllEvj38UHCkTTLdm2clAiJaAP/Xt5wbe2Ac78l4NSmKxW2Nezf3eDfq+xS4Zmt8Yj6Oa7CPLbOShi0JkuAuFmLQBf0eaIDPANdIJFIYNAase2to8hPKQs7LTu7oyRXa3UiUR0dR/ih75MhMBnNuLQ7EWd/uwqDxoSAPj6477lQy8G0JE+L3985BnX2jZAmkUnQqpM7CjNKUJylqbBumUIKr/auMOpM0BbrUZKntfSs+Xb1wIhXesBsFrD/U+uTmztx8LDB4NlhcPdzRPSeJJzffq3SwAkAAX180HtqMOzdbZGdUIjj3122nMBIZRK06d4CQYNaoWUnd8iUMkilZa/t1cNpiI68bum5latk6P+vThUun2uL9DiyPtrqxO52JDIJ+jzeAZ1GtrWUmc0Ctr5+yPJe3szWWYmWnT3QKtQdZoMZR76JhtlY9uFz9rFH6zBPSKQSaIv1iDuYalmu19QO6DLGH1q1HglH0nH9TDZU9nK0CvVAq1CPCidmNzPqTEiKysTVI+lIOZdtOSGuilQmsczTpnsLDPt3t0Y11pMBrJGqjwCWnVCI3/57pNJpLq3s0banN7w7uOLCjkSkXsixmq6wlcO3iwe82rvCoDVCU6SHplCHooxSFKSqLTuvqsgUUoSO8UfXsQGWs0ug7Iz6l/mH73hmWhmJTALVPyHy5p27RALc/Kn2DHCGwk6OtIu5Vsu7t3VCzynB8A31AFAWPEvztDjz69WyM95bvhlSuQTO3vaWnZFXe1eMebMXpDIpsuILcPCL8yhILYGjpy1adSnbmWgKdLi4KxFFmaWW9bRo74L7F/SqtEtcU6jDwS8uWIUq7xA3dBjii2PfxVgum7Tr5wNtscHyPsmUUvj38kZpvg4leVoUZ5VWunNqP9gXfR7vgKjNcbi0O8my7NAXw+DsbQ+FjQwSuRQFqWrkJRUhK77QqqejTfcWSL2QA5PBDIlUgoeX9IdCJcOW1w5ZDs7DX+kOr/aukKtkMOnNSLmQg+QzWUg+m13lwehWbn6O6DEhCK6+DijJ00GdrcHxH26036ejG1p39cSJH2MBlH0W+j4Zguz4Qlw7kWEVFJxb2uO+Z7vA3c8RhemlyIrLx+H10ZZeoEHPhiJoYCscXR+N6Ft6xJR2cjh528PV1wGeAc7wCHCGWxtHq/dOq9Yj6WQmrh5NR/qlXNxuj6pyUMA7xA2dR7WFdwdXS7gTzAKy4guQfDYbqRdzkHO18LbruZmDhy2GzglDi0AXZMTk4c//O1uhB8DOTYXSvBtl3h1cLQd7lb0Cjyztj+TzOTi05mL1NgrAxlGBnlOC0X6Qb4Uxi4XpJfj1v4dh0FQMbK3DPGHjpLQsk5tYVKE3utsjgeg+PtAq/OpKDFDnauDW2rFCKC7KLMWB1eeRGVt1D2x5uwMHtIJ/b2+rIQq514uwY9Fxy9iydv18oCnUWy7XS+UStL/PFzaOSijtFVCoZBDMAkxGMwxaIy7tSrI6qVHayav1WZerZPDu4IaUc3c+iZJIyv5364lQufaDy042864XI+5gKq4eSbMaK9e2pxdCItqgOFuDwvQS5CcXIz0mz3KyW76NB97uA6/2rgCA2L+S8feXZZ8JOxcV9BpjpSH8Zi07u2PYnG5WPYHnfk/AyX++q0DZ9zfzSr4lsN3M1dcB3iFu8GrvCq/2rlA5KJB8JguJJzKRfC77jtsHynoYwx4OhElvwu4PTlmW8e/ljf4zOlXa09cQGMAaqfoIYCkXcrB7yckaLePbxQNdHwqAV5BrlWfvZpMZhRmlyE0sQtqlXKScy7Y6ALTr54OejwbDwaPyQZhpl3Kxa8lJy47F0dMWLYJcoCsxIisu32oncieeAc4YMKsz8q4X49BXF612LuWcvOzQfUIQ2vX1qXKwe25iEY5uiLYcpNp0b4E+T3SA0l6BXxcchjqnrGcwdIw/pDIJzv+eUK0DpkeAM0bO6wFbp6oHsQuCgCsHUpBzrQiB/VtadoZZ8QXYsfh4hTbJVTKMnBduNfjaqDchK74AGTF5yLicD4PGiO7jA9H6n54uwSzgz0/PWi4VVUenkX7o80QIzv56FVGby3pJvEPcIJVKLAeqDsNaY8D0zpUubzaZkX21ECnnc5ByLhvZCYUVQq57WyeEjWuHtuFeFd6b3KQi7Hj3eKWfh0GzQtF+cNnYLb3GiEt/JOLML/E3dvASQFLJwSt0jD96T+1Q9poIAo6si8blyFsuS95CIgFkShkkUgmkUgn0WqMlzNWEe1snBA/2Rd71YiRFZUJTqK/ZCiT/HFCmWx9QNEU6HFp7qaznppJq9ZwSjC4P+OPPj89aev1cWtmjMK3E8hnuOSUY3sGuSL2Qg5QLOVBna6C0k1t6zd1aOyL0Af/bHsgST2YgcuUZy9/eHVzRe2oHeLZzqTBvaaEOqedzkBVXAO8OrmjXr2XNXot/5KeqEXcwFfGHUlGar4NEKoFPiBva9vSCX48WVj3Wt0q/nIfdS09WOJmUq2SIeLm75UStMupcDf767FzFS/ASoF2/lvDvVTYuUa6SIT9VjahNVyq9VOfkZQffLh64diLjjp8Hz0BnOHjYWn2HFTayCsMMVPYK9PtXRwT09akQXI16EzJi8xF3IAVXj6Rb6vDwkv6QSCTY9PIBy778gbd6w72tE5KispBwrOxk49ZtdRjWGv2e6ljpsaKq3tU7ufWEupydqwrt+rW0jAU0G80QzAJaBLlY3RGbdikXf/zvlNX76tzS/p8rK67wCXG77SXc+sQA1kjVRwDTlxpQkFYCXYkBOrUB+hIDNEVlZ3mZV/KtdtYOHjbo80QI/MK9ajywVBAE5CerkZtYBDc/R7j7VT0Op1xuYhHUuRp4BjhbDaIVzAIK0tTISShCaYEWmsKynjdNod7SDl2JHgobObo8EICOI/0sg49zE4sQufJ02SB7AI4tbNHtkUAE9m9ZrTufBEFAenQe5EopWgS5Wsqz4vLx+6LjlR507d1toCnQVeh9atnZHaH3+8O3i8dd3eGYdCoTe1eetrxXClsZRs7rCe9g19svWAmToezs8NZLsreSKaXoMSEIoWP8IZFIYNSb8Mtrh6x69YCyz8wjHwyE0rZ69/Zo1XpoCvVQ2sqhsJFBYSO/42uTFV+AXUtOWPWshI1rh/BJ7SvMm5dcjINfXKhyPFnrbp4Y/koPq8HqglnAtRMZSI/OQ2FGCYoyS1GSo6l2b1R576dMIbV8b8p7jLWFZZcny3vxbsfV1wEtO7vDtZUDdKVG6NR66NQGKO0UcG3tADdfR7i0crjtAPqSfC0ST2Ti2vF0ZMTmQyaXYsCMzpbxbTq1Ab/MP1RhmMHNl5bvVtyhVFyPykJAXx+07VnzfUltmc0CCtNLYOusrFFvR+LJTOz76LTl/VbayTFyXrjlJOi22zSZcWbrVZzdGg8BQLu+Puj2cCBcWjlUmFenNiBqSxwu70kqu2HIQYFuDwciZHgbyORSmE1mpJ7PwdWj6SjJ08JsLOttE0xmuPs7o2NEG3gEOAMA4v5OxeGvL1XoGZKrZAjo443wSe2rvDHh5rpvf+c4suILAAAdh7eBnauN5ZJ1mx4tMOKVHlbLmIxmZMcXIOV8DnKuFaFtLy8ED/a97Xsc9fMVnNl6FUDZJfLA/i0RNLAVDDoTUs9nI+XC7Xt/bZyU8OvhhXb9feDdwa3KG01ulXwuG3uXR1Xa43a7k8b6xgDWSIk9CL80X4vEU5lIvZALdz9HhI7xt7pU2FRp1XrE/pkMezcbBPTxqfYYnDu5sPMajt90N6NUJkH38UHo8qA/TAYzMmLyLb1CgQNaViuEVlf03iQc3XAZKjs5RvwnHC0CXWq9LqPOhCsHUlCQVlL2iAmtESa9GY4t7OD+T3h28XWocLk0+UwW/vgwyqps1Ovh8O1SsxsTaiMjJs9yWSGgrw+GzO5aZXAzm8y4sOMarhxIhUwphWsrB7j6OsLd3wm+odULw0a9CXnXi5FzrRA5CYXIT1bDaDBDMJthNgmQKaRoFeqBdn194BHgfNsDkNloRsLxDFzYcc3qsptMIUWrLh5o28MLrbp6wP4OB8ya0haXhb5bB3ZnxORhx7vHLQe8dv1bYvBzXertMShNQez+ZBz5Jhq2zioMf6X7bW/kqIw6RwOJBLftbStXkKpGdkIh2nRrYXXJrqbyU4rx5/+dQ35yMbw7uCJoUCv49/ap9skQUHbZ+Jf5hyw97DKlFCa9GRIJ8Mj/BsK1kiBZU+UntWajGS07uVe6P9aXGpB1tRCZsfnIvJIPTaEOPh3c0LZX2RCZ2j42JDepCFcOpCArrgC5iUWWk+RBz4Y22J3PDGCNVGO4C5KqJggCDqw6j/hDaXD3c8Sg57rUeEd9N0oLdFDZyxv0rp69y6OQFJUFoGz8SV09RqQ6ijJLkJ+iRutuLap9FtyYCIKAjJiyA4yzjz18u3g02AnPxV3XcOy7GPj39MbgF7o2qkHKDUVfaqhWj2xjIpgFGLRGy53JtVHZzTS33inbHBj1JuQkFCIrrgAB/XxEf0ZZOQawRooBrGkoydfCzkXVaJ//U59K8rU4sOo8FLZy3PdM6F3t+KlhCWahSYUNqh+CWcCuJSctvfdylQyTVgy64yVMqh2e6hDdBXvX6j3IsDmyd7XB/Qt6YfhL3Rm+mjiGLwLKPgeDng21PIy2+yOBDF/1qOkP8iEiIqI64eBui/EfDEBJrtYy0J/qBwMYERERWZQ97Lp5/N5rY8ZLkEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDJ5Q1eAKqfT6QAASUlJDVwTIiIiqik/Pz/Y2NhUOZ0BrJHKyMgAACxevLiBa0JEREQ1tWbNGgQHB1c5XSIIgiBifaiaCgoKcOLECfj4+ECpVNbZepOSkrB48WL897//hZ+fX52ttylg2+/NtgP3dvvZdradbW8Y7AFrolxcXDBixIh6W7+fn99tk3lzxrbfm20H7u32s+1s+72msbedg/CJiIiIRMYARkRERCQyBrB7jLu7O6ZNmwZ3d/eGroro2PZ7s+3Avd1+tp1tv9c0lbZzED4RERGRyNgDRkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZHwQ6z1Cr9dj7dq12LNnD4qLi9GuXTvMmDEDPXv2bOiq3VFpaSk2btyI6OhoXL58GcXFxZg/fz5Gjx5dYd7ExER8+umnuHDhAuRyOfr27YsXXngBLi4uVvOZzWZs3LgRv/76K/Ly8uDr64vHH38cERERtV5nfbh8+TJ2796NM2fOICMjA05OTujUqRNmzJiB1q1b16qeTaXt165dw7p16xAbG4u8vDzY2NjAz88PU6ZMQf/+/WtVz6bS9sps2LABX331Ffz9/fHNN99YTbtw4QJWr16NK1euwN7eHkOGDMHMmTNhZ2dnNV9N9gPVXWddO3PmDObOnVvptFWrVqFTp041rmNTaPfNYmNjsW7dOly4cAF6vR4tW7bEgw8+iAkTJtS4nk2p7e+//z52795d5fQtW7bA09OzRnVtzO3nXZD3iHfeeQd//fUXJk6cCF9fX+zatQsxMTH4+OOP0aVLl4au3m2lp6dj8uTJ8PLyQsuWLXHmzJlKA1hWVhamT58OBwcHjB8/HhqNBhs3boSXlxe++OILKBQKy7xffPEFvv/+ezz44IPo0KEDDh06hKNHj+Ltt9/GsGHDarXO+vDmm2/iwoULGDJkCNq1a4fc3Fxs3boVGo0Gq1atQkBAQLNt+9GjR7FlyxZ06tQJHh4e0Gq1OHDgAM6fP49XX30VY8eObbZtv1VWVhYef/xxSCQSeHt7WwWwuLg4PPfcc/Dz88PYsWORlZWFn376Cd26dcOHH35otZ7q7gdqss66Vh7Axo8fj5CQEKtpvXr1sgTg5tbucidOnMD8+fMRFBSEoUOHwtbWFqmpqRAEAc8991yzbvvFixeRlpZmVSYIApYvXw5vb29s2LChxnVt1O0XqNm7dOmSMHDgQOGHH36wlGm1WuHRRx8Vnn322QasWfXodDohJydHEARBuHz5sjBw4EBh586dFeZbvny5EBERIWRkZFjKTp48KQwcOFD47bffLGVZWVnCkCFDhBUrVljKzGazMHv2bOGRRx4RjEZjjddZX86fPy/o9XqrsuvXrwvDhg0TFi1aVON6NqW2V8ZoNAr/+te/hKlTp1rK7oW2v/3228LcuXOFF198UXjyySetpr366qvCuHHjBLVabSn7/fffhYEDBwrHjx+3lNVkP1DdddaH06dPCwMHDhT2799/2/maW7sFQRDUarXw0EMPCQsWLBBMJlOV8zXHtlfl3LlzwsCBA4UNGzZYyppL+zkG7B5w4MAByGQyS48BAKhUKowZMwaXLl1CZmZmA9buzpRKZbUeqHfgwAH069cPXl5elrLw8HC0bt0a+/fvt5QdOnQIRqMRDz/8sKVMIpFg3LhxyM7OxqVLl2q8zvoSGhpaobeldevWaNu2LZKSkmpcz6bU9srIZDK0aNECarXaUtbc23727FkcOHAAL774YoVpJSUlOHXqFEaMGAF7e3tL+ciRI2Fra2tV1+ruB2qyzvpWWloKo9FYoby5tjsyMhJ5eXmYOXMmpFIpNBoNzGaz1TzNte1ViYyMhEQisQwTaE7tZwC7B8TFxcHX19fqgwXA0r0fHx/fENWqU9nZ2cjPz6/0h1dDQkIQFxdn+TsuLg62trbw8/OrMF/59JquU0yCICA/Px/Ozs4Amn/bNRoNCgoKkJqaik2bNuH48ePo3r17jevZFNtuMpnw8ccfY8yYMWjXrl2F6QkJCTCZTBXqqlAoEBQUVKH91dkP1GSd9WnJkiUYNWoUhg8fjrlz5yImJsYyrbm2+9SpU7C3t0dOTg6mTp2KkSNHYvTo0Vi+fDl0Ol2N69mU2l4Zo9GI/fv3o3PnzvDx8QHQvNrPAHYPyM3NrbQHqbwsJydH7CrVudzcXACosp1FRUXQ6/WWeV1dXSGRSCrMB9x4PWqyTjHt3bsX2dnZGDp0KIDm3/bPPvsMY8eOxZQpU/D5559j4MCBeOmll2pcz6bY9t9++w2ZmZmYMWNGpdPvVNebv9vV3Q/UZJ31QS6X47777sOcOXPw/vvvY/r06UhISMALL7yAK1eu1LiOTaXdAJCSkgKTyYQFCxagV69eePfdd3H//ffjt99+w9KlS2tcz6bU9sqcOHEChYWFGD58uKWsObWfd0HeA3Q6XaWDhpVKpWV6U1fehju1U6lUVvv1qMk6xZKUlISVK1eiU6dOGDVqVI3r2RTbPnHiRAwePBg5OTnYv38/TCYTDAZDjevZ1NpeWFiIr7/+Gk8++WSVd17eqa43B8W6an99h8/Q0FCEhoZa/h4wYAAGDx6Mf/3rX/jyyy+xbNmyZtluoKy3V6vV4qGHHrLcCXrffffBYDBg27ZtePrpp5tt2ysTGRkJuVyOIUOGWMqaU/vZA3YPUKlUlgPWzco/VCqVSuwq1bnyNlSnndV9PWqyTjHk5ubitddeg729Pd59913IZLIa17Mptt3Pzw/h4eEYNWoUPvjgA2g0Grz++usQBKFZt/2rr76Co6Mjxo8fX+U8d6rrzSGxrtov5glHOV9fXwwYMABnzpyByWRqtu0ur8PNd+QCsIx/unTpUrNt+61KS0tx6NAh9OrVyzLcAmhen3kGsHuAu7u7pYv1ZuVlHh4eYlepzpV3HVfVTicnJ8uXyN3dHXl5eRBueQLLra9HTdZZ39RqNebNmwe1Wo1ly5ZZvWfNve23Gjx4MGJiYpCcnNxs256cnIzff/8dEyZMQE5ODtLT05Geng69Xg+j0Yj09HQUFRXdsa63fk6qsx+oyTrF1KJFCxgMBmi12mbb7vI6uLm5WZW7uroCAIqLi5tt22916NAhaLVaq8uPQM3q2tjbzwB2DwgMDERKSgpKSkqsyqOjoy3TmzpPT0+4uLggNja2wrTLly9btTEwMBBardbqLkKg4utRk3XWJ51Oh9dffx3JyclYunQp2rZtazW9Obe9MuWXC9RqdbNte05ODsxmMz7++GNMnjzZ8l90dDSSk5MxefJkrF+/Hv7+/pDJZBXqajAYEBcXV6H91dkP1GSdYkpLS4NSqYStrW2zbXf5IPDs7Gyr8vIxSC4uLs227bfau3cvbG1tKzx0uTm1nwHsHjB48GCYTCZs27bNUqbX67Fz50507NjR6lb7puy+++7DkSNHrB6rERUVheTkZKsxBAMGDIBcLsfWrVstZYIg4LfffoOnpyc6d+5c43XWF5PJhIULF+LSpUt45513rOp2s+bY9vz8/AplRqMRf/zxB1QqlSWINse2+/v747333qvwn7+/P7y8vPDee+9hzJgxcHBwQHh4OPbs2YPS0lLL8n/88Qc0Go1VXau7H6jJOutDQUFBhbL4+HgcPnwYPXv2hFQqbZbtBmDZxo4dO6zKd+zYAZlMhm7dujXbtt+soKAAp06dwqBBg2BjY2M1rTm1n4Pw7wEdO3bEkCFD8OWXX6KgoACtWrXC7t27kZGRgddee62hq1ctW7ZsgVqttnQRHz58GFlZWQCA8ePHw8HBAY8//jj++usv/Pvf/8aECROg0Wjw448/IiAgwOqp+S1atMDEiRPx448/wmg0IiQkBH///TfOnz+PN9980zK2CkC111lfPvvsMxw+fBj9+vVDcXEx9uzZYzV9xIgRNapnU2r7smXLUFJSgq5du8LT0xO5ubnYu3cvrl+/jtmzZ1t+HqQ5tt3FxQUDBw6sUP7zzz8DgNW0GTNmYPbs2XjxxRetnuDds2dP9O7d2zJfTfYD1V1nfXj77behUqnQuXNnuLq6IjExEb///jtsbGzwzDPPNNt2A0D79u1x//33Y+fOnTCZTAgLC8PZs2exf/9+PP7445ZLYc2x7Tfbt28fTCZThcuPNa1rY28/f4roHqHT6Sy/h6VWqxEQEIAZM2agV69eDV21apk0aRIyMjIqnfbTTz9ZnhFz7dq1Cr/fN3v27ApjKsxmM3744Qds27YNubm58PX1xdSpUy2B5mbVXWd9mDNnDs6ePVvl9IMHD9a4nk2l7fv27cOOHTuQkJCAwsJC2NnZITg4GI888ggGDBhQq3o2lbZXZc6cOSgsLKzwW5Dnz5+3/IadnZ0dhgwZgmeeeabCb9jVZD9Q3XXWtc2bN2Pv3r1ITU1FSUkJXFxc0KNHD0ybNg2+vr7Ntt3ljEYjvv32W+zatQs5OTnw8vLCww8/jEmTJtWqnk2p7eWee+45pKWl4ZdffrE6MapNXRtz+xnAiIiIiETGMWBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIvrHnDlzMGjQoIauxh3t2rULgwYNsvy3cOHCWq1n9erVVuv5+uuv67aiRFQl/hg3ETVLNQ1SN/+uZlMxYMAABAYGIiAgoFbLh4eHQ6lUIiMjA7t3767j2hHR7TCAEVGzNG3atAplmzdvhlqtrnQaALzxxhvQarX1W7E6NHDgQIwePbrWy4eHhyM8PBxnzpxhACMSGQMYETVLTz/9dIWy3bt3Q61WVzoNALy8vOq7WkREABjAiIgs5syZg7Nnz1pdjty1axeWLFmC+fPnw8nJCRs2bEBCQgIcHR1x//334+mnn4ZUKsWuXbuwadMmJCcnw8XFBePHj8eUKVMqbEMQBOzcuRM7duxAQkICTCYT2rZti3HjxmHMmDF10o6cnBx8//33OHbsGLKzs6FUKuHm5oawsDA8++yzcHBwqJPtEFHtMYAREVXDwYMHcfLkSQwcOBChoaE4evQoNmzYAEEQ4ODggA0bNmDAgAEICwvDwYMHsWrVKri6umLUqFGWdQiCgHfffReRkZHw9fVFREQEFAoFTp48iQ8++ACJiYmYPXv2XdVTq9Vi9uzZyMjIQM+ePTFo0CAYDAakp6djz549ePTRRxnAiBoBBjAiomo4fvw4PvvsM4SEhAAou8Q5ZcoU/Pzzz7Czs8PatWvRsmVLAMCjjz6Kxx57DBs3brQKYNu3b0dkZCTuv/9+vPrqq5DLy3bBBoMBb775Jn766SdEREQgODi41vWMiopCeno6Jk6ciBdffNFqWmlpqWWbRNSw+BgKIqJqGDFihCV8AYCdnR369u0LrVaLcePGWcIXUDaWLDQ0FElJSTAajZbyX375Bba2tnjppZesgpBCocDMmTMBAJGRkXVSX5VKVaHMzs4OSqWyTtZPRHeHp0JERNUQGBhYoczd3f2200wmE/Lz8+Hp6QmtVouEhAR4eHjg+++/rzC/yWQCAFy/fv2u6tm1a1e4u7vj+++/R3x8PPr164ewsDD4+flBIpHc1bqJqO4wgBERVYO9vX2FMplMdsdp5T1gxcXFEAQB2dnZWL9+fZXbudvHYDg4OGD16tVYu3Ytjhw5gmPHjgEAWrRogalTp+Lhhx++q/UTUd1gACMiEkF5SAsODsaaNWvqdVteXl5YsGABzGYzrl69ipMnT2LLli1YuXIlHB0dERERUa/bJ6I74xgwIiIR2NnZwc/PD0lJSSguLhZlm1KpFEFBQXjsscfw1ltvAQAOHz4syraJ6PYYwIiIRDJhwgRotVp8+OGH0Gg0FaanpaUhPT39rrZx7do15OXlVSjPz88HAA7CJ2okeAmSiEgkY8eOxaVLl7B7925cuHAB4eHhcHd3R35+Pq5fv47o6Gi89dZb8PHxqfU2Tp48iVWrViE0NBStW7eGk5MT0tLScPjwYSiVSo4BI2okGMCIiEQikUiwYMEC9OnTB9u3b8eRI0eg0Wjg6uoKX19fPP/88+jRo8ddbaNXr17IyMjAuXPncPDgQWg0Gnh4eGDo0KF47LHH0LZt27ppDBHdFYkgCEJDV4KIiKrv5p9Hupsf4y535swZzJ07F9OmTavydzKJqG5xDBgRURO1ZMkSDBo0CAsXLqzV8qtXr8agQYMwd+7cuq0YEd0RL0ESETUxgYGBmDZtmuXvgICAWq0nPDzcalB+t27d7rZqRFRNvARJREREJDJegiQiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhLZ/wOTaDHvqW/6TAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# LCs: \n", + "# The plot below is normalized to the initial time.\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# LCs:\n", + "df = pd.read_csv(\"crab_lc.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],label=\"Crab\")\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], 3*df[\"Rate[ct/s]\"],label=\"3xCrab\")\n", + "\n", + "df = pd.read_csv(\"crab_lc_3x.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],ls=\"--\",label=\"Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Time [s]\")\n", + "plt.ylabel(\"ct/s\")\n", + "plt.savefig(\"combined_lc_comparison.pdf\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB440lEQVR4nO3dZ3RU5d6G8WsmvVdq6C30Kh1BEBWkiQjWV1CBAzZEUQEFBEFRUEDsHBTLUVEERLpBkN47gdBDb+m9zMz7YWA4HHpIsjPJ/VuLpXlmz557Ekj+earJZrPZEBERESnCzEYHEBERETGaCiIREREp8lQQiYiISJGngkhERESKPBVEIiIiUuSpIBIREZEiTwWRiIiIFHkqiG5Beno6UVFRpKenGx1FRERE8oAKolsQHR1Nv379iI6ONjqKiIiI5AEVRCIiIlLkqSASERGRIk8FkYiIiBR5KohERESkyHM1OoCIiEhhYbFYyMrKMjpGkeTm5oaLi0uOn6+CSEREJBckJydz4sQJbDab0VGKJJPJRJkyZfD19c3R81UQiYiI3CGLxcKJEyfw9vamWLFimEwmoyMVKTabjfPnz3PixAmqVq2ao54iFUQiIiJ3KCsrC5vNRrFixfDy8jI6TpFUrFgxjh49SlZWVo4KIk2qFhERySXqGTLOnX7uVRCJiIhIkaeCSEREpJDKzs5m9OjRVK9endq1a1O/fn369+9PfHz8bd3nnnvuYe7cuXmSsaDQHKIbiIiIICIiguTkZKOjiIiI3LbnnnuO2NhY1q1bR1BQEDabjVmzZhEbG0tgYKDjuuzsbFxdi3ZJULTf/U20b9+e9u3bExUVRb9+/YyOIyIiTmTuW2tITcjIs/t7B3jw0LiW13384MGD/Pbbbxw7doygoCDAPs+mZ8+erFixgi5dutCsWTO2bNnCW2+9RVZWFlOmTCEzMxOr1crYsWPp0qWL437Lli1j3LhxxMXF0a1bNyZOnFio5kypIBIREckDqQkZpMbmXUF0M1u3bqVq1aqEhoZe8/G9e/fy+eefM336dABiYmJ4/PHHMZlMHD16lGbNmhEdHY2HhwcAkZGRrF27lqysLFq3bs3PP//ME088kW/vJ6+pIDLQusQofj+/nsw1idQtX4l7atanSrEwo2OJiEgu8A7wKND3r1SpEm3atHF8fOTIEZ588klOnDiBq6srsbGxHDlyhOrVqwPw9NNP4+bmhpubG0899RQREREqiCR3bEk6xF/HtuH+Sxzr2MxX/IrJz4WAsv6UrVCS2lUqc3f1OjQoWwVXF32pREScyY2Gs/JDw4YNOXDgADExMYSEhFz1+P/u6PzYY48xfvx4HnnkEQCCg4NJT0+/7v0L03AZqCAy1IG005jOZF/RZkuyEB8ZR3xkHLvYy8/MBw8T3mE+tBvYinolKlPdO4zKniVwM+vLJyIi11alShV69OjBc889x4wZMwgMDMRmszF79mwSEhKuuj4uLo6KFSsC8OOPPxIXF3fF4z/++CNPPPEE2dnZ/PTTTwwePDhf3kd+0U9UA31UuQ/bvO/mL5+N7Dl4hFPR50g+kQRp/3MOToaNlGPJzE7ZyOzoTQC4mlwovsMNjxNQtVJZ7qpanXtq1KeEX5AB70RERAqib775hrFjx9K0aVNcXV2xWq20bt2ajh07XnXtlClTeOSRRwgMDKRdu3aUK1fuisdr1KhBy5YtiY2NpVu3bjz22GP59TbyhcmmU+hu6tIqs2nTphEeHp6nr2W1Wtl58jCr9u1i58GDRB85TcLxBLJ9bWQPCLziWtf/JGLed+Wpyi4hbgSVDaRipTDqV6lKmxr1CC9RNk8zi4gUdenp6Rw5coSKFSvi6elpdJwi6U6/BuohKmDMZjP1y1ahftkqcN/l9nOp8RzJPse+tFPsSz3BvtSTHD8bd9XzLTFZXIg5z4Xt59nEdqbxG253+1P/kTqEe5emulcZwr1LU8YtWPOSRERELtJPRCdR3DuQ4gTS1L+aoy1+WhIr9u9g0/597D90jDPR50k/lQpXTksiLcjCmsR9rEncZ29IseL+cTxeYT6UKl+M6pXL0yy8JndXrYuvhw4lFBGRokcFkRML9PbjofqteKh+K0dbRnYWGw7vZe3+3ew5eJiTR8+RVc6LRC4PrZlOZ0OmjbQjyRw+kszhFUdYyApsZnAv4Umx8sFUqViWRtXCebBBUwLdfa/18iIiIoWGCqJCxsPVjdbV6tK6Wl1Hm81m42xWPPtS7cNta6J3sD8oCmvclV1JJitknU7n1OlTnFp/in/MG/hgxHzCvEOo7h1Gde8yhCR6Ud2/DDVKlMNs1lF4IiJSOKggKgJMJhMl3YMo6R7EPYG1GPDwA/AwnIw/z/K929l6YD8HD5/gwrEYMs9lYLLan2cr5gKuJk5mxnIyM5Zl8btw+SUJlz2Z4GPGr4wfZSqUoHaVyrSsXovG5WvgXsTPwhEREeekn15FWFhgMZ5qfh9PNb88ezsxLYWVB3axIWoP521JpPqYiUo7Rbo1EwDz6Yu9SilWkqIS2BuVwN4l+/mNReBuwqu0NyXLhdK8ZT3ub9iEKl4l8TC7GfH2REREbpkKIrmCv5cPnes2o3PdZo42i83K8YwLRKacYGaTJZw4eobE44mQYr3yyZk20o6mcORoCgf8LzDDew0umKnoWZwqppJkbk6kUdVw2taoT1hgsXx+ZyIiItengkhuysVkpoJncSp4FufBlxsC9v2S9p09zsp9O9h+4CDRR04Rezwea6x98ratpAsAFqwcTD/DoSPHcfslkdVsYgo/Yg5yJbBsABUqlqZulSq0rl6XWqUqaF6SiEguuv/++zlz5gxmsxk/Pz8++eQTGjRocMPnHDp0iDfffJMtW7YQHByMi4sL/fv3p2/fvrf12kePHqV+/frEx8ffwTvIPyqIJEfMZjM1S5WnZqny0PZy++mEGFbs205maRMHLWeJSj3JobQzWE9fOYHbGpdNbFwMsTtj2MouZjAHvM34lfWj0+B7qe5ThureYVTwLI6LSUWSiEhO/PrrrwQGBgIwZ84c+vTpw44dO657/ZkzZ2jVqhVjxoxh1qxZgP1Ij5kzZ151bXZ2Nq6FaN5o4XknUiCUCgjh8ab3XtGWac1mXXAkf5fewr5D0ZyOPk/ayRTI/J9N0lOtJMYm8/35f+C8vcnT5EbQSvBNcye8cnkaV6tOm2r1CPL2y6d3JCKSM4/v/ZgLWUl5dv9QNz9+rvHqDa+5VAwBJCQkYDKZiIqK4t5772XlypVUqlSJiRMnEhERwcKFC/nss8+4++676devn+N5QUFBDBgwAIA+ffpgNps5ePAg586dY9++fTz55JNERUWRmZlJ2bJlmT59OiVLlnQ8f8iQISxduhSLxcKUKVNo37597n4icokKIslz7mZX2lSsS5uKl7cCyLZkszl6P6v37WLPocMcvzgvyVLK5YrnptuyOL8tnpjzFqJXHWMpqxhrArfiHoSWC6JSxTI0qlqNe2o2oFxQ8fx+ayIi13UhK4lzWVcfoprfnn76aZYvXw7AwoULCQ8PZ8KECfTq1YuJEyfy2WefsXHjRsxmM1u2bOG+++674f22bNnC6tWr8fOz/2I6efJkihWzzwsdP34877zzDl9++SVgL8Jq1KjBxIkTWb9+PV27duXQoUOO5xYkKohuICIigoiICJKTk42OUui4urjSrFJNmlWqeUX7qZQYDmefY1/qSaLSTrI34ThnYmKuuMZkg+yzGZw5e4Yzm86wls1M5Se8u4dSv21Nwr3DqO4dRjWPUpT2CNa8JBExRKhb3v7Qv9X7f//99wB89913vPnmmyxcuJDHH3+c5cuX88ADD7Bs2TJHQXMrevbseUVB89NPP/HDDz+Qnp5Oeno6oaGhjsdcXV3p06cPAM2aNaN06dJs27aN1q1b3/Lr5RcVRDfQvn172rdv7zjcVfJeaZ8QShNCq4AajrazP8exYt92Nu+P4sDhY5yPjiHjbDomy5XPTQjKZEXCHlYk7AHAdCwLtx+T8C3jR+nyxalZuSLNq9eiReVaeLq65+fbEpEi6GbDWfmtd+/eDBgwgJiYGAICAti9ezfBwcGcPHnScU2jRo1Yt24dgwcPvu59fH0vn16wevVqPvnkE9atW0fx4sWZN28eI0eOvGEOk8l0528mD6ggkgKvhF8QjzZuy6ONL8/eTs1IZ9XBXWzYH8neQ0c5dfQcmaW9Sb3iiBILpNlIPpDI/gOJ7I84yFz+AlfwKOVFifKhVK1YjibhNehQrwneLh5GvD0RkTwRHx9PamoqpUuXBmDu3LmEhIQQHBzM66+/Tnh4ON9//z1t27alUaNGVKlSheeff5769evz7bff8swzzzjuM3PmTP71r39d9RpxcXH4+fkREhJCZmYmX3311RWPZ2dn88MPP9CnTx82btzIqVOnqF+/fp6/95xQQSROydvDkwdqNeaBWo0dbVablZOZsfbhttSTrHDbyDG/Y9iS/qcrKRsyjqdx7Phxjq0+TkTwOsYMnkt5j2IXjygJIyDWnfrFK1MptFQ+vzMRkdyRkJBAz549SUtLw2w2U6xYMebPn8+CBQtYvHgxGzduxNvbm48//phevXqxdu1aSpUqxerVqxk6dChjxozBz88PNzc3XnjhhWu+RocOHfjxxx8JDw8nJCSE9u3bX9HjdKknql69emRnZ/PTTz8VyPlDACabzWa7+WVF26Uhs2nTphEeHm50HLlNB8+fZEXkdrYfPMCRIyeJORZPdkwmpot/86213Ml+7Mp/oK6fxWM+Y8Hk70JA2QDKVShJnapVuLt6HRqUqaJ5SSJyhfT0dI4cOULFihXx9PQ0Ok6RdKdfA/UQSaFXpVgYVdqEQZvLbReSElgRtZ1N+/eRFJBJnHcWB9JOk2WzQLYN0zl7r5It0UL8nlji98Syk0j+wzzwNOET5kvp8sVo274JbarVo6JXCdxMLtdJICIiBZ0KIimSQv0CeOSuNjxy1+UqKctm4Wj6WbafP8yctn9z6ug5Uk4mQ/r/dKKm20g5lMSBQ0lElj3Pp5a/cDO5UMWrFOVSgjDtz6RxeHXuCa9PqG9APr8zERHJCRVEIhe5mVyo6lWaquVK0/O1VoD9iJJtJw6yet8udh08RPSR0yQcT8CWeLEHqaT9n1CWzcLe1BNEbT6I67wU/mYt403gGuJOcLlAatWozNsPP0WAl+91X19ERIyjgkjkBsxmM43KVaNRuWpw/+X2wxdOs2r/TmyV3NiXepJ9aSc5mn4e038dUWKygeVCJucvnGPF1nOsXrqFNwf35qH6rQx4JyIiciMqiERyoFJoqatWoKVaMljhtZ1VNXay//AxzkZfION0KlyskbLPZzL2rWnM7bCKT/u/gq+HlwHJRUTkWlQQieQSbxcPHqzZlAdrNnW0pWdnsmT3JiZ88SMZx1Mx2WDPon10s45kat+XqelT1sDEIiJyidYOi+QhT1d3utVvScRnU2j8cH1sLmALNnOhSTZP7ZvC56cWk2XNvvmNRERyIDs7m9GjR1O9enVq165N/fr16d+/P/Hx8bly/z59+jB58uRrPjZy5Ej+85//5MrrXPLpp586jgLJbeohEskHnq7ufN53MMtabeWTows46h6HBStfnV7Kivg9DC/enfqhlYyOKSKFzHPPPUdsbCzr1q0jKCgIm83GrFmziI2NJTAwME9fe8yYMXl6/9ymgkgkH91bvSGtw+vx79N/8e/TEWRjJerkMfqOGEPjDnWZ9MyLOmdNpBD5z+zF/DRn8U2vC69Sno9HXXl+2KujJxF1MPqa1z/RvQNPPtzhhvc8ePAgv/32G8eOHSMoKAiwnyPWs2dPACZMmMCMGTMwm83UrVuXzz//nICAAN555x0iIyNJS0sjKiqKatWqMX78eF577TWOHDlCo0aN+M9//uPYoHbnzp20aNGCCxcu0Lx5c7788ku8vLzo06cP9evX55VXXuGdd95h7969pKamcujQIUqWLMmsWbMIDg4GYOLEifz6669kZ2dTvHhxvvrqK8qXL09SUhJ9+/Zl+/btFCtWjFq1at30c5lTGjITyWduJhcGlu7AjzVeobJ7CVxnJ2NKs7F5zg7avzCIlQd2GB1RRHJJSmoa52LibvonPiHpqufGJyRd9/qU1LSbvvbWrVupWrXqFafPX7Jo0SK++eYb1qxZw65du/Dx8WHo0KGOxzdv3sz3339PVFSUoyiZNWsWkZGR7N27l0WLFjmu3bBhA0uWLGHv3r3ExsYyadKka+bZsGEDM2bMIDIy0lH0APz0009ERUWxbt06tm7dypNPPsnzzz8P2HuZPDw82LdvHwsWLGDlypU3fd85pR4iEYPU8C7Dj+GDeKHmJHYd24fJBhnHU3nttY9p3r0RE//vedxd9U9UxJn5eHtRPCToptcFBlx9vldggN91n+vjfWerVCMiInj00Ucdw2YDBw509BwB3H///Y5epYYNG+Lh4eE4g6xBgwYcOHDAcW2vXr0cjz333HN88sknDB8+/KrX7NChAyEhIQA0b96cXbt2AfZDZzdt2kSjRo0AsFgunz+5bNkyJk2ahMlkIiAggCeeeIJDhw7d0Xu/Hn23FTGQt7sn3740jLl3r+aDSd+RfT4TsmHdb1tov+llxg95gRaV8q6LWETy1pMP33xo63r+dwjtdjVs2JADBw4QExPjKESux2QyXfHxf58F5uLictXH2dnXXwzyv/e63j0v3cNmszFs2DD69+9/w4w3undu0JCZSAHwUP1WLP5yEuH3VcV28d972tEUBg3+kCE/fE62RSvRROT2VKlShR49evDcc885VpXZbDZ+//13KlWqxK+//kpiYiIAX331Fffff/8N7nZ9s2bNIjk5GYvFwrfffkv79u1v6/kPPfQQX375JbGxsQBkZWWxbds2ANq3b8+3336LzWYjMTGRn3/+OUcZb4UKIpECIsDLlx8Hv80bo5/BJcTN3pgF//y8gY7vvM6JjBhjA4qI0/nmm2+oV68eTZs2pVatWtSsWZOlS5fy5JNP8swzz9C8eXPq1KlDYmIi77//fo5eo3HjxjzwwAPUqFGDwMBAXnnlldt6/pNPPkmfPn1o27Yt9erVo379+vz9998AjBgxgrS0NKpXr86DDz5Iq1Z5t9O/yWaz2W5+WdEWFRVFv379mDZtGuHh4UbHkSIgJiWRFz77mEMrjgCQ1dsPz2q+vFqmCz1DW+Rpt7GI3L709HSOHDlCxYoVrxgakvxzp18D9RCJFEAhPv788sY7DBrxf3jfF4ytijtp1kzGHfudAQe+4nRmnNERRUQKFRVEIgXYU83bs/Dl93kktLmjbX1iFN3eHsqo37/FarUamE5EpPBQQSRSwPm4eDKifE++qPovSrgFYt6cgW13Ogunr+CBN14l8vS1N24TkfynWSjGudPPfZEriHbv3k2bNm347rvvjI4iclta+Ifze63XqZxweZO1+Mg4er8winF//KjeIhEDubi4AJCZmWlwkqLr0uf+0tfidhWpfYisViuffvop1atXNzqKSI74uXgx680xfNH4D7796g9sSRZItzH3q79YuXYrnw15jSrFwoyOKVLkuLq64u3tzfnz53Fzc3McayH5w2q1cv78eby9vXHN4Ya2Raog+vPPP6lRowYpKSlGRxG5IwPbdaNzg+Y8P+kjzmw+A0DsrhgeH/g2jz7bgSEPPmpwQpGixWQyUapUKY4cOUJ0tIaxjWA2mylXrlyOV+EWyIIoNTWVX375xXFmSlJSEsOGDaNjx45XXZuZmcn06dNZunQpSUlJVK5cmb59+9K4ceMrrktISOC3337jiy++YOrUqfn1VkTyTNmg4vw55gOmLP2dH6fNhxQrpFqZ+elC/l6zme9GvE0xzwCjY4oUGe7u7lStWlXDZgZxd3e/o565AlkQJSQkMGPGDEqUKEGVKlUcO1Zey/vvv8+KFSvo2bMnZcqUYdGiRbzxxhtMmTKFunXrOq6bNm0aPXv2dJy3IlJYDLq/B10atuCFjz/iwvbzAJwhgV5RHzGifE/aBdYxOKFI0WE2m7UPkZMqkIOcISEhzJkzh99++42BAwde97rIyEiWLVtG//79ef755+natSuTJ0+mZMmSfPHFF47r9u/fz759++jcuXN+xBfJd5VCS7Fw3AR6vdgRUyk3LB29ic1OZvChbxl25EcSs1ONjigiUqAVyB4id3f3mx5EB/DPP//g4uJC165dHW0eHh506tSJr7/+mrNnz1KiRAm2b9/O8ePH6dGjBwDJycm4uLhw6tQphg0blmfvQyQ/mUwmXn/wMXrf24Fxx39nRcIeABbGbmXt2h08Edaaf93TxeCUIiIFU4EsiG7VgQMHKFOmDD4+Ple016hRA4CDBw9SokQJunbtyr333ut4/JNPPqFUqVI8+eST17zvhQsXiIm5fG6UJsiJMynuEcjkys8yP3YLHxyfTVJcCim/x/Lv9FksXrWezwe9Rin/YKNjiogUKE5dEMXExFyzJ+lS24ULFwDw9PS8YkzXw8MDLy+v684nmjdvHjNmzMj9wCL5xGQy0SXkLpr4VeFfX03kZHo8ACfWneChyNcZ8EJPnmnVwdiQIiIFiFMXRBkZGbi5uV3V7u7u7nj8WoYPH37D+3bt2pWWLVs6Po6Ojmbs2LF3kFTEGCXcA5n9whhGl/6OhT/+Axk2rAnZfP7ezyy4ey1fvPQqxXwDjY4pImK4Ajmp+lZ5eHiQlZV1VfulJY8eHh45um9oaCjh4eGOP+XLl7+jnNeTnWnBkmXJk3uLXGI2mxnd4xmmffI2vtX8He3Rq6LpPOA1/rNhmYHpREQKBqcuiEJCQq6Y63PJpbbQ0NCrHitIDq45xXfP/sXsYav558ud7F58lNN7Y8lMvbrIE7lT9ctWIeKjybR/uiW42Tcus8ZmM3n09zw2YTRxqUkGJxQRMY5TD5ld2qMoJSXlionVkZGRjscLspijiVgtNmKjk4iNTuLAypOOx/yKexFSwd/+p7z9v96BHjnegVME7Gf8vP9Yf3o0v4chEz8h5ZC9CDq48QhPtZ7E2Fr/RwPfiganFBHJf05dEN1zzz388ssvzJs3j8cffxywD5ctXLiQmjVrUqJEiTu6f0REBBERESQnJ+dG3Kt4B3gQVMaX+JPJ/O8hvUnn0kg6l8bRjWcdbZ7+7o7iyF4o+RFQ0geTWUWS3J67ylcjYvJk3vzpa1b+toHsrj6ccI3nmahPebpEG14o3REP89Xz80RECiuTzfa/P4oLht9//53k5GRiYmKYO3curVu3pmrVqgD06NEDX19fAEaNGsXKlSvp1asXYWFhLF68mL179zJp0iTq16+fK1mioqLo168f06ZNIzw8PFfu+d+yMy3EHksiNjqRC0cTiYlOJPZYEpbMm59e7urhQnB5P0LL+xNcwZ/Q8v4ElvHF1T1np/1K0bPt1EEmJS5kR8pRR1u57GD6erSlW/2W13+iiEghUmALol69enHmzJlrPjZz5kxKlSoF2FeSXTrLLDk5mUqVKtG3b1+aNGmSa1nyuiC6FqvVRsLpFGIuFkgxR+1/MpJvPr/I5GIisLQvoRX8CS7v5xh28/DRb/xybRablR/OruDTU4vIsmbj+ksypr2Z1O1Yg0/6DcLXw8voiCIiearAFkQFiREF0bXYbDZSY9MdvUgx0UnEHE0k+XzaLT3ft5h9XlJoeXuhFFrBH+9gT81LEodDaWcYvOBLTn9zxNHmVsqDEYP70rF27v2SISJS0KggugUFpSC6nozkLGKOXe5FiolOss9Lst78S+vp50bwxXlJ9h4lfwJK+WDWvKQiKz0rg1e+/YzNf+7AdHFXCJsZGnauw5TnXsLLLWfbWYiIFGQqiG7gvydV79y5s8AWRNeSnWkh7kTyFcNtsceSyM64+b5Hrh4uBJf1c/QihVTwJ6isn+YlFTFLIzcz+uNpZJ5Kd7S5h3kx5rV/cW/1BgYmExHJfSqIbkFB7yG6VVarjcQzKY5epEvzk9ITM2/6XJPZRGBpH0Iu9iJdmp/k6eueD8nFKKkZ6bw8/RO2L9yD6eIcf5sLNO1Wn4/6vICnq77+IlI4qCC6BYWlILoWm81GanzGfw232f+bdO4W5yWFel7eCuDif31CNC+psFmwcz1jJ31D9tnLx+GUfq4SkzsNoKLnnW1vISJSEKggugWFuSC6nszUrCt6kWKiE4k7kYzNcvO/Lh6+bv9VJNlXuQWU8sHs4tQboxd5SelpvPj1JPYsicJWw53sx3xxN7vxYtiDPFW8NS4mfX1FxHmpILoFRbEguhZLloW4k8kXe5OSLs5LSiQr/ebzklzczASX87tiY8ngsn64emhekrOZvXUV32T+w3G3WEdbfZ+KvBbYibolKxmYTEQk55x6p2rJXy5uLoRWCCC0QoCjzWa1kXg29fLk7Yv/TUu4cl6SJcvK+UMJnD+U4GgzmSCgtI+9SPqvQsnTT/NSCrKHG97Ng9amTD25iP+cW4kNGzs27eO5WVto+2gz3nu0L64u+tYiIs5FPUQ34MyrzIzmmJf0X6vcEs+m3tJzfYI9rzieJKSCP76hXpqXVABtTTrM23t+4NxHRzCl2L+V+Fb156Mhg2hYtmCfJSgi8t9UEN0CDZnljsy0bGKjr9xUMu54EtZbmJfk7u16xcTtkPL+BJb2weyqeStGu5CcwPOffcyRf45ebnQ38cATdzPmkWcwm/U1EpGCTwXRLVBBlHcs2VbiHfOSLhdLWWnZN32ui5uZoLJ+jl6kkPL+BJfzw81TwzVG+H7NEj777Fes8Ze/dv7VA5n82iDqhGlukYgUbCqIboEKovxls9pIOp96eZXbxUIpNS7j5k82QUBJnyuG20Iq+OPlr92V88PZpDien/oRx1Yfv9zoYaLL0215u9v/qbdIRAosFUS3QAVRwZCakEGsY15SEjHRiSScSYFb+BvsHeRx1ZCbX3HNS8or/165gK8//x1b4uUViGU6lefr/kMo5uZvYDIRkWtTQXQLVBAVXFnp2cQeS7piAnfs8SSs2Tf/a+3m5XpFL1JIeX+Cwnw1LymXnIqPYeAnEzm1/hQ2TxNZLwXgH+TLsHIP0zGooYpRESlQVBDdAhVEzsWabSX+VMoVm0rGHE0kM/Xm85LMriaCyvhd0ZsUXM4Pdy/NS8qpz5fN5efTq0msYXW0tQusw1tlexDqrt4iESkYVBDdgJbdFx42m43k82n/tV+SvVcpJTb95k82gX8J7yuH3Cr44x2geUm3Kj47hfHHZrMobpu9Ic2K57fJPNrzAV7t0NPYcCIiqCC6JeohKrzSEjOIiU5yzE26cDSRhNO3Ni/JK9DjqiNK/It7YzJrKOh6IuJ2MPbYLBJ/PYvLNvsk+eINi/P5q0MoH6wz0UTEOBoHkCLNy9+DMnU8KFMn1NGWlZ5N3PEkLhxNJPZiT1Ls8SQsWdYrnpsWn8GJ+POc2HHe0ebm5UJwOXuRFFren+AKfgSV8cNF85IAaB9Ujzqe5eltfZcY7AXRua3n6DlgKE/378qL7bsbnFBEiir1EN0C9RCJ1WIl4XTKFUVSzNFEMlKybvpcs4uJ0MoBNHm8OiXDg/IhbcFntVqZsHAms75dAmmXvwWValKaL155lbDAYgamE5GiSAXRLVBBJNdis9lIiUkn5mjixULJPuyWfOE685JMUOfBijTqWRVXdx1qCxB19jgvTvyY+D2XD4o1+bvQb+DD9GvT2cBkIlLUqCC6BSqI5HakJ2USe8w+5BZzNJHzB+OvOMctoLQPbQbUpXiVQONCFiBWq5Vx835k3vd/Q/rlb0cV2lbg21eH4eviaWA6ESkqNLFBJJd5+rlTulYIdTtVpO0L9Xjko9Y0fjwcs6t9snXCqRT+HLWOTb9EYcmy3ORuhZ/ZbGbEQ08z49N38K8e6Gg/6HeeRyInsCFxv3HhRKTIUEEkksfMZhP1ulSi+3stCa0UAIDNBjvmHWbu22u5cCTB4IQFQ63SFfhr4iQ6PNMaUy1PrHd5cDozjv4HvmTcsVmkWm7h6BYRkRzSkNkNaB8iyW3WbCs7/jzMttkHsVrs//RMLibqd6tMg4cqa5fsi05mxDIq+hc2JR10tAWthAEtOvNY03YGJhORwkoF0S3QHCLJbTHRifzz5U5io5McbSEV/GkzoC7B5fwMTFZwWG1Wfj2/lkkn55OxPxm375KwmaBau8p8NnAwQd76PIlI7tGvoyIGCCnvT7d3W9Cge2XHRo4xRxOZ+9Yats89hNVivckdCj+zycxjxVvxW43XCN3lBoDJBgeWHaLjgFeZvXWVwQlFpDBRQSRiEBdXM416VqPrmOYEhvkCYLXY2Pzrfv58Zz1xJ5MNTlgwlPMsxsJ3JnD3Y00cW8laLmTy3oh/8/SUcSSmp974BiIit0AFkYjBilUK4KFxLajbpRKXDoA/fyiBucPXsHP+YaxWjWq7u7ry8dMvMOnjIXiW8wbsvUV7l+zngYGvMH/neoMTioizU0EkUgC4urvQ5PFwurzTjIBSPgBYsqxs/CmKBWM22M9XE1pVqcNfn06haY8G2C7ubZl9NoN3hn/Bc599QFrmLRzWKyJyDSqIRAqQ4lWD6P5+S2p3rAAXe4vO7o9j9rDV7FlyFJt6i/B0defT517hw4mv4F7GCwCTFbbv2c/T+6cSlXrS4IQi4oxUEIkUMK7uLjT7vxp0HtEUv+L2H/iWTCvrvtvLwvc2knROc2YA2oU3IOKzKTTsVgebp4ns7r7szzjNE3sn8dXppWTZtOmliNw6Lbu/BVp2L0bJSs9m089RRP51zNHm5ulCkyerU71dWUyXJh0VcVvOH+T983M4kHba0VbpQjAvV+hM2/D6xgUTEaehHiKRAszN05UWz9Si4/DG+Ibaz/TKSrewZvoeFo/fRHJMmsEJC4ZGxarwc/XB9CvZHhfMkGnj+PeHeH3IJF76ZgqZ2dlGRxSRAk4FkYgTCKsdysPjWxHetqyj7eSuGH5/YzX7V5xAHb3gZnblxbAH+b76y4RucMEUZ8VkgfWztnLvSy+z5tBuoyOKSAGmIbMb0NEdUhAd33GeVdN2kRp7+Wyvsg2K0apvbXyCdDI8QGJ6Ki9+OYnIv/ZjuvQdzhXufqQJHz75L1xdXA3NJyIFjwqiW6A5RFLQZKRksf77vRxYdXlFlYePG81716Byy9KaW3TRrC3/MHHKD1guZDnavCv5MnHISzSuUN3AZCJS0GjITMQJefi40WZgXe57rSFeAe6AvUha8flOIiZvIzVBJ8MDPNKoDYu+nETVdpUcbamHk3l+0HiG/vQ12RbNLRIROxVEIk6sfKMS9Pjwbio1L+Voi950ltlvrOLw+tM3eGbREeTtx09DRjF41NOYgy8OlWXZiPhlDc9umMqpjFhjA4pIgaCCSMTJefq50+6l+tw7qD6efvZDUNOTsvj7k+38/cl20hMzDU5YMDzR9F4WfPkxFVqXB8DS3psdHsd5JHICsy+s18R0kSJOc4hugeYQibNIS8hgzTd7OLrprKPNK8CdVs/VpvxdJQxMVrD8tOlvZrit4qwlwdHW3KsaLwV2oFbpCsYFExHDqIdIpBDxCvDg3lca0PbFenj42HuL0hIy+evjraz4fAcZyVk3uUPR8ETjdvxe5w26hzR1tG2cs40+L77D2LnfY7VaDUwnIkZQQSRSyJhMJiq3KE2PD1tRtkExR/vB1af4/c1VHN9+3sB0BYefixfvVHiUT6v0JeiUO+a16ZBu44+vl9Fh6GvsP3fC6Igiko9UEIkUUt5Bntw/pBGtB9TB3ds+mTg1LoMlH25m5de7yExVbxHA3QE1+c/dr1H6rssT0+N2x/LkwBF8tmyuccFEJF+pIBIpxEwmE9Val6HHB60IqxPqaN+/4gS/v7mak7suGJiu4AgLLMa80eN5evBDmHwvfltMszLjozk8M/V90rM1MV2ksFNBJFIE+IR40WHoXbTqWxs3TxcAUmLSWfT+JtZ8s4esdO3HA/DSfd359cv3Cal3uXjcvWgfHV97jUPnTxmYTETymgoikSLCZDJRvV1ZHv6gFaVqBjva90YcY/abqzm9N8bAdAVHheCSLBw3gbsfa4Lt4nfI5AOJPP7S2yzdv9nYcCKSZ1QQiRQxfsW8eXB4E5r3romrh723KOl8Ggve3ci67yPJzrAYnNB4ZrOZj59+gddH9sHkZ/8cWXxhWNwv/HxulfYsEimEtA/RDehwVynsEs6ksPKrXZyNinO0+Zf0ps2AupSoFmRgsoJj/7kTDJw4gQv3A0H24ujB4IaMKNcTbxcPY8OJSK5RQXQLtDGjFGZWq409i46y+df9WLLs+++YTFC7U0UaPVIVV3cXgxMaL8tmYerJBXx3doWjrVxSEEPLdqdl5drGBRORXKMhM5Eizmw2UadTRbq/15JiVQIAsNlg1/wjzH1rLecPJ9zkDoWfm8mFV8t05aNKvfExe0CGjVPfHuGVIROZvGSW0fFEJBeoIBIRAALDfOkyqhmNH6uG2dUEQPzJZOaNXGfvPcrW7s3tg+rxU43BhKwxYz5vgQwb/5nyJ/83aayW5os4ORVEIuJgdjFTr2tlHhrXkpAK/gDYrDa2zz3EH2+vJeZoosEJjVfBszi/PT+KkneVdLTt++sAHQa/qt2tRZyYCiIRuUpwWT+6jWlOw0eqYHKx9xbFHkti7oi1bJt9EGsR7y0K8fHnj3fep+1TzbFdnGKVciiJp14aycxNy40NJyI5ooJIRK7J7Gqm4cNV6fZuc4LK+gFgs9jYMusA80atI+5EksEJjWU2m/nwiQEMH90Xk7+9KrIlWZgwegavfv+ZDogVcTIqiETkhkIrBPDQuBbUf6gyJrO9t+jCkUTmDF/DjnmHsFqK9g/+hxvezc9Tx+Jb1T7EaLLCql820mXUmyRnpxmcTkRulQoiEbkpF1czd/WqRtfRzQgM8wHAmm1j0y/7+XP0euJPJRuc0FiVi5Vm8UcfU6tjdUfbqcAknoqawqG0MwYmE5FbpYJIRG5ZscqBPDSuJXU6VwR7ZxHnDyYwZ9gadi08gtVadLc183B1Y8ZLw+j96kOY63thbe3FkfRzPLlvMotjtxkdT0RuQgWRiNwWV3cXmj5RnS6jmuFf0hsAS5aVDT/uY8G7G0g8m2JwQmO92L47v418l2o+pQFIs2by5pEfGBLxNakZ6QanE5HrUUEkIjlSoloQD7/filoPlHe0nY2KY/bQNUQujcZWhHuLynkW4/vqg+gSfBcApqNZrJi8hg6DX2XP6aPGhhORa1JBJCI55urhQvPeNek0ogl+xbwAyM6wsHZGJIve30TS+VSDExrHy+zOuxUeZ1jp7rj+nozJCmlHU3hm0Gh+XPeX0fFE5H+oIBKRO1aqRggPf9CK6veWdbSd2hPD7DdXs+/v40X2dHiTycRjpe5m5Jv9MAe6AmBLtjJ57I+89M0ULc0XKUBUEIlIrnDzdKXVc7XpMKwxPiGeAGSlW1j9790s+WAzKTFFdwl613ot+PXT9/CvHgiAyQbrZ22l4/AhnE6MNTaciAAqiEQkl5WpE0qPD1pR7Z4yjrYTOy/w+5ur2b/yRJHtLSofXIJFH35E/S61HW2xO2Po/sIbLNu7xcBkIgIqiEQkD7h7u9G6fx0eeL0R3kEeAGSmZrPyy1389dFWUuOK5mord1dXpg18nb5vPAJe9n0LLDFZDB36CROWzDQ4nUjRpoJIRPJM2QbF6fHB3VRpVdrRdmzrOX5/czWH1p4qsr1F/7qnC19OGo57GftEdBvwn+w1jDs2i0xrtrHhRIook62ofke6BREREURERJCcnMzOnTuZNm0a4eHhRscScUpHN51l9fTdpCdmOtoqNClBy2dq4RXgYWAy4ySmp9Lno/c4UioOaz3756C2dzkmVu5NKfcgg9OJFC0qiG5BVFQU/fr1U0EkcofSEzNZM2MPR9ZfPs7C09+dls/WomKTkgYmM9acCxt479jvZNrsvUMBNm/+ZWvLk43vNTiZSNGhITMRyTee/u7c+3ID2r1cHw9fN8BeJC2bvI3ln24nPSnzJnconLqHNuX76i8T5h4MQPKC80x653sGTvuYbIuG0ETygwoiEcl3lZqVoseEuyl/VwlH26G1p/n9zdVEbzlrYDLj1PAuwy81XqXumVK4bEjHZIPNc3bQcejrnIw/b3Q8kUJPBZGIGMI7wIP2gxtwz/N1cfe2b1qYFp/BXx9t5Z8vd5KRkmVwwvzn7+rNtx0Gc1f3etguHp4bvyeWh18cyqLdG40NJ1LIqSASEcOYTCaqtAqjx4S7KVu/mKP9wMqT/P7mKo7vKHo9I64urnzR71VeGPY4eNu/RVtjsxk5/DNGz/7O4HQihZcKIhExnE+QJ/e/3ojW/evg5mXvLUqNzWDJB5tZNW03mWlFbx7NM606MH3KCDzLedsbsmH+v/+mx3tvk5hedM+IE8krKohEpEAwmUxUu6cMPT5oRVidEEd71PLjzH5zNaf2xBiYzhh1wyqxaMrHVGxd3tF2bPVxHnz5VfacjTYwmUjho4JIRAoU31AvOgxtTMvnauHq4QJA8oU0Fo7byNpv95CVXrR6i3w9vPh16Bge+td9YF+YR5o5i3+d+IrVCXuNDSdSiKggEpECx2QyUePecvT4oBUlawQ72iP/OsacYWs4s6/oHYj6VreneP/9l3Gr4EX2o34kkc6LB//N56cWY7FZjY4n4vRUEIlIgeVX3JtObzWh2dM1cHG3f7tKPJvK/Hc3sP6HvWRnWgxOmL/a12zE4k8+pm25ugDYsPHV6aU8t2YKx2KL5nYFIrlFBZGIFGgms4naHSrw8PutKF4t0N5og92LjjJn2BrOHYw3Ml6+83f1ZlKlZ3glrDNmTJBmZfeXO+n54nDm7VhrdDwRp6WCSEScQkApHzqPbEaTJ8JxcbN/60o4ncKfo9ax6ZcoLFlFp7fIZDLxTMl2fFVtAN5LMjHFWrHGZzPm7a94+9fpWK0aQhO5XSqIRMRpmM0m6nauxEPvtaRYpQAAbDbYMe8wc99ay4XDCQYnzF9N/Kry7+ffwKuCDwAmCyyZsZLuY98iLjXJ4HQizkUFkYg4naAwX7qMbsZdvaphdrFv6Rx3Ipk/Rq5jy6wDWLKLTg9JrVIVWDL5Y6q0q+RoO7X+FJ1fGsLGo/sMTCbiXFQQiYhTMruYqf9QZbqNa0FIeT8AbFYb22YfZN6ItcQcSzQ4Yf7xcvfk5yGj6PlCR3C3F4iZp9N54dXxfLZsrrHhRJyECiIRcWoh5fzp9m4LGjxcBdPF3qKY6CT+eGst2+YexGopOr1Fb3R6jAkfDsa1uLu9Id3GjI/m8NznH2hpvshNqCASEadndjXT6JGqdBvTnKCyvgBYLTa2/HqAeaPWE3ei6MynuadaPeZNnUDof50Nt9VylIEHviI2K9nAZCIFmwoiESk0QisG8NDYFtTrWgnTxdPiLxxOYO5ba9n552GsVpuxAfNJMb9AFoz9kFaPNcFa1wNrc082JB3gsb0fszP5qNHxRAokFUQiUqi4uLnQ+LFwuoxuTkAp++orS5aVjT9HMX/0ehJOpxicMH+YzWYmPf0CXw9/k1A3fwDOZsXzzP7PmLR+tpbmi/wPFUQiUigVrxJI9/dbUqdTRbjYW3TuQDyzh61m96Kj2IpIb1Ej/8rMrPkajXztq9As+9P4z7t/0PWdYcSkFJ2J5yI3o4JIRAotV3cXmj5Znc4jmuJfwhsAS6aV9T/sZcHYDSSeTTU4Yf4IdfPnq2oDedyvJa6zkjHZ4OzmM3R+cQhrDu02Op5IgaCCSEQKvZLVg+n+fktq3l/e0XZmXxyzh64m8q/oItFb5GZyYWi1HjzVrxN42LvMss9m8MqQiUxeMsvgdCLGu62C6McffyQmJiavsuSpCRMm8NBDD9GhQwd69+7NmjVrjI4kIvnIzdOVFn1q8uBbTfAt5gVAdoaFtd9Gsuj9TSRfSDM4Yf545YGeTJ44BNcSHvaGDBv/mfIn/zdpLOnZmcaGEzGQyWaz3fKvRm3atMHFxYWmTZvSqVMnmjdvjouLS17myzXR0dGUKlUKd3d39u7dy6uvvsovv/xCQEDATZ8bFRVFv379mDZtGuHh4fmQVkTyUmZaNhv/s499fx93tLl5udDsqRpUu6cMpktL1AqxC8kJ9PlgHGe3nHW0+VT24+sRQ6lWvIyByUSMcVs9RE899RTBwcGsXbuWt99+mx49evDll19y7NixvMqXa8qXL4+7u32zMpPJRFZWFhcuXDA4lYgYwd3LlVZ9a9Nh6F34BHsCkJVmYdW03Sz5cAspsekGJ8x7ob4BzBs9nrZPNcd28ffalENJPPXSSH7fttLYcCIGuK0eIgCbzcaGDRtYuHAha9euJSsrC5PJRO3atenUqRNt27bF09PzjkKlpqbyyy+/EBkZyd69e0lKSmLYsGF07NjxqmszMzOZPn06S5cuJSkpicqVK9O3b18aN2581bUff/wxCxcuJDMzk2bNmvHBBx/c0m+C6iESKbwyUrJY/8NeDqw86Whz93alee+aVGlVukj0Fs3euorxH36LLdGCzcOEdWAgg+t156nirYvE+xeBHBRE/y0xMZGlS5eyaNEiDh48iMlkwsvLi3bt2vHggw9Sq1atHN339OnTPProo5QoUYLSpUuzbdu26xZEo0ePZsWKFfTs2ZMyZcqwaNEi9u3bx5QpU6hbt+5V11ssFrZv387hw4fp2bPnLeVRQSRS+B3beo5V/95NWnyGo61yi1K06lsbN09XA5Plj0PnT9F33PvENbJhq2nvTb8/qD7vlO+Fj8ud/ZIr4gzuqCD6b/v372fBggUsW7aMpKQkTCYT5cqVo1OnTjz66KO3da/MzEySkpIICQlh37599O/f/5oFUWRkJAMGDGDgwIE8/vjjAGRkZNCnTx8CAwP54osvrvsaQ4cOpVu3bjRv3vymeVQQiRQN6cmZrJsRyaG1px1tQWV9af9KQ8cmj4VZttXC56cXM/3MMkdbBZdQXvftQqsqdQxMJpL3cm3ZfbVq1Rg8eDBz5sxh1KhRVK9enejoaL788svbvpe7uzshISE3ve6ff/7BxcWFrl27Oto8PDzo1KkTe/bs4ezZs9d9rsVi4eTJk9d9XESKHk9fd9q+WJ92L9fHzdM+sSbueDJz317DkY1nDE6X91zNLrwc1onJlZ/Fz8UTbDaOzzrK4CEfMWHhL0bHE8lTuboPkc1mY/PmzSxfvpyDBw/m5q2v6cCBA5QpUwYfnyt/c6tRowaAI0NycjJ//fUXqampZGdns3z5crZt20a9evWued8LFy4QFRXl+BMdHZ23b0RECpRKzUrR7d0WBIbZv7dkpVlYNnkbG37ah9VS+I+8aBtYm5+qDyZsvw8uWzMg08avny7iiYmjSc0o/BPOpWjKlYHxkydPsnDhQhYvXkxMTAw2m43ixYvTsWNHHnzwwdx4iWuKiYm5Zk/SpbZLq8hMJhPz589n0qRJ2Gw2wsLCGDFiBFWrVr3mfefNm8eMGTPyLLeIFHyBYb50e7cFq77ezeH19iG0XfOPcP5QAu1eqo93oIfBCfNWOc9i/OehN+mz/z1ObTwFwIG/D9Ph8Kt8MeINapWqYGxAkVyW44IoIyODv//+m4ULF7Jr1y5sNhtubm60adOGTp060bhx4zxfnZCRkYGbm9tV7ZeW12dk2CdH+vj4MGXKlFu+b9euXWnZsqXj4+joaMaOHXuHaUXE2bh5utL2pXqUCA9k/Y/7sFlsnNkby9zha2j3cn1KVg82OmKeCvL2Y87IcYyY9Q1LfliFyQJpR1N4ZtBoXh78BE81v8/oiCK55rYLot27d7Nw4UKWL19OWloaNpuNihUr0qlTJ+6///5b2ugwt3h4eJCVlXVVe2ZmpuPxnAgNDSU0NPSOsolI4WAymaj1QAVCKwawbMo2UuMySI3PYMHYjTR5IpzaHSsU6qXpZrOZcb360jS8JuM+mI41PhtbspXJY39k4yN7mdz7RcxmnQIlzu+2CqL/+7//4/jx49hsNry9venUqROdOnWiZs2aeZXvhkJCQjh//vxV7ZeOF1FRIyK5pUS1ILq/15K/p27ndGQsNquNDT/u49zBeO7uVwd3r8K9NL9rvRbU/bQSz419n8R98ZhssO63LXSMGsIPI0ZS3CfQ6Igid+S2yvpjx45Ru3Zthg4dypw5c3j99dcNK4YAqlSpwokTJ0hJSbmiPTIy0vG4iEhu8QrwoOOwxtTtUsnRdmT9Gf4YsZa4k8kGJssfFYJLsujDj6jfpbaj7UJKIs8e+pwDaacMTCZy5277cNdPP/2Ujh073vFu1LnhnnvuwWKxMG/ePEdbZmYmCxcupGbNmpQoUeKO7h8REcHQoUOZOnXqnUYVkULC7GKmyePhtB/cELeLvUIJp1L44+21jsnXhZm7qyvTBr5O3zcewVTKjeyevhzPusBTe6cwP2az0fFEcuyON2bMyspi8+bNHDt2jPT0dHr37g3YJzSnpqYSEBCQo/Hl33//neTkZGJiYpg7dy6tW7d2rArr0aMHvr6+AIwaNYqVK1fSq1cvwsLCWLx4MXv37mXSpEnUr1//Tt6agzZmFJFrSTidQsTkbcQdT3K01epQnqZPVMfsWvjn1RxLO88bR39gb+oJR1snaz2G1+2Fr4eXgclEbt8dFUSrV69m4sSJxMfHY7PZMJlMrFixArAPWz3//PO89dZb3Hff7a9E6NWrF2fOXHsjtJkzZ1KqVCnAXnhdOsssOTmZSpUq0bdvX5o0aZLTt3UVFUQicj3ZGRZWT9/NwdWXh4xKVAui3aD6+AQZ35Oe1zKsWYw/PpvZFzZAihW3zxPwCvTksxGvUzes0s1vIFJA5Lgg2rVrF4MGDSIkJITHHnuMyMhIli1b5iiIAJ588kkqVqzo9EvWVRCJyI3YbDb2Rhxj/fd7sVrs31I9/d1p93J9Ste8+a77hcGcCxt4b9y/Icq+yhdvMy+88ih9WnUwNpjILcpxn+53332Hr68v06ZNo0ePHpQpU+aqa8LDwzl06NAdBRQRKehMJhM17ytP51HN8Amx9wqlJ2ay6L1N7PzzMLl0ZGSB1j20KWOe64c5+OJqu1Qrn77/MwOnfUy2JdvYcCK3IMcFUWRkJK1atSIwMPC61xQvXpzY2NicvoThNKlaRG5H8SqBdB/XkrA69l4hm9XGxp+jiJi8jczUq/dMK2w61m7C7E/HE1jLvmGlyQab5+yg49DXORl/9RYpIgVJjguirKwsvL29b3hNcnKyU29Y1r59e8aPH89LL71kdBQRcRKe/u488GZjGnSv7GiL3nSWuW+vJfa/Jl8XVmGBxVg0fgKNHqqH7eK3//g9sTz84lAW7d5obDiRG8hxQVS6dGn27dt3w2v27NlDuXLlcvoSIiJOyWw20ahnNe5/vRHu3vYhpMQzqcwbuY6Dq08anC7vubq48mX/V3l+6GPgbf8xY43NZuTwzxgz93uD04lcW44LojZt2jiO8biWn3/+mSNHjtCuXbschxMRcWblGhSn+3stCangD9hXpK34fCdrvt2DJcticLq89+zdHZk+ZQQeZS+OJmTDnHPrGRP9KxnWwj+EKM4lx6vMUlNTGThwINHR0TRs2JDMzEx2797No48+yp49e9i9ezdVqlTh888/dxy26qy0ykxE7kR2poW1MyLZv+Lyfj3FqgRw76AG+IYU/v16kjPSeHbS+xxMPoOlu30PuZreZZhYqQ9hHoX7gFxxHne0D1FSUhKTJk1i+fLlWK3Wyzc1mWjbti2vvvoqfn5+uRLUSCqIRCQ3RC0/ztoZkViy7N8vPf3caPtifcLqFI1zF/84v5H3jv9Ous3eO+Tv4sVgj448XKOVwclEcmGnaoCEhAT27dtHYmIiPj4+VK9eneBge9VvsVhwcXG546BGiIiIICIiguTkZHbu3KmCSETu2IXDCURM2Uby+TR7gwka9axK/a6VMZmddxHKrdqfeorXDs/gWMYFTHsycJ2ZTIPOtfm832DcXAv3AblSsOW4IJo9ezYPP/zwDa+xWCyMHj2aMWPG5ChcQaEeIhHJTenJmfzz+U6Ob7+8FL1cw+K0GVAXD183A5PljyRLGm9s+5ZN4zZiyrD/CAqoEcg3bw2nXPCdnUEpklM5nlT9ySefXLEr9f+yWq2MHj2alStX5vQlREQKJU9fd+4f0ohGj1SFi51Cx7aeY+7ba4g5mmhsuHzg5+LFpw3+RfMuDRxL8xP2xtPzpeH8uXOdseGkyMpxQVSnTh3Gjh3L1q1br3rsUs/QP//8Q/fu3e8ooIhIYWQym2jwcBU6vHGXo1co6Vwa80atY/8/J27ybOfn4uLC1GcH8crbT2Hyvbg0Py6b0W99ydu/Tr9iXqpIfshxQTR+/HjKli3L22+/zYEDBxztVquVsWPHsmLFCh566CEGDRqUK0FFRAqjMvWK8dC4lhSrFACAJcvKyq92sWrabrIzC//S/Kea38e3U0bhVcEHAJMFlsxYycNj3yY+LdngdFKU5Lgg8vHxYeLEifj6+vL6669z6tQpbDYbY8aM4e+//6Zbt24MHjw4N7OKiBRKfsW86DyqKdXvLetoi1p+nPmj15N0PtXAZPmjVqkKLJ70MVXaVXK0nVx/kk4vvcbmY1EGJpOiJMcFEUBISAgfffQRVquV1157jVGjRrF8+XI6d+7Mq6++mlsZRUQKPRc3F1o9V5s2A+ri4mb/1nzhSCJz31rL8R2F/xwwbw9Pfh4yip4vdAR3+8SijPgMBh2ezor4PQank6IgV5bd79u3j1deeYX09HQ6derE66+/nhvZDKdl9yJihJjoRJZN3kbi2Yu9QyZo0L0KDR+uUiSW5q/Yv4Nh739KWgcPbFXsG/sOLPUA/yp1v1OfjykF2y0XRDNmzLjh4zt27ODgwYN0794ds/lyx5PJZKJ37953FNJoWnYvIvktIyWLf77cybEt5xxtZeqFcs/z9fD0c+7d/29FQmYK7x6fxV/xOxxtj4W05PWy3XB10X5FkvtuuSBq06ZNzl7AZLrh8nxnoIJIRIxgs9rYOf8wm2fu59J3at9QL+59pYFjEnZhZrPZmHF2OZNPzgebDZe5KZRxDWbmW6PxcvMwOp4UMrdcZk+ZMiUvc4iIyP8wmU3U61qZ0EoBLP90B+mJmSRfSOPPd9bRondNwtuVLdRDSCaTiWdKtiPEzY/RX03HvDWD05ym21tD+W30uwR4+RodUQqRXJlDVNiph0hEjJYSk8ayKds5dzDe0Va1dRgtn62Fq7tzHo90O6ZGzOG7T+ZiyrZ/7FPZj5nvvUsJvyBjg0mhcVurzPr378+PP/7IkSNH8iqPiIhcg0+IF51GNqXmA+UdbQdWnmTeqHUknk0xMFn+eKl9dwYNe8qxAi3lUBI9XhvG4QunDU4mhcVtFUQZGRlMmzaNZ555hscff5zPPvuMHTt2oE4mEZG85+JqpkXvmrR9sR6uHvZeodjoJOa+tZboLWcNTpf3/q/5fYwY3R+87T+6Mk6k8eRrI9l18rDByaQwuO0hs1OnTrFq1SrWrFnDrl27sNls+Pv706JFC1q2bEmTJk3w8Chck900ZCYiBU3ciSQiJm0j4fTl3qF63SrTqGdVzIV8af4/+3fw+sgp2BLtO3mbA1z5eOxgWlaubXAycWZ3NIcoISGBtWvXsnr1ajZv3kx6ejoeHh40atSIu+++mxYtWhAYGJiLcY2hgkhECqLM1CxWfr2Loxsv9w6Vrh1C2xfr4eVfuH4x/V/bjx9kwPDxWGKy7A0+ZsaNeYH7a9xlbDBxWrk2qTojI4NNmzaxevVq1q9fT1xcHGazmVq1atGqVStatmxJ2bJlb36jAkQbM4pIQWez2di18Cibfo7CZrV/O/cJ9uTeVxpQvEqgseHy2MHzJ+k9bAyZp9KxFXPBvV8xptbrTyO/ykZHEyeUJ6vMbDYbu3fvdgytnThxwqn3I1IPkYgUdKf3xvL31O2kxWcAYHYx0ezpGtRoX65QL80/FR/D/00Yy4V7rRDggofJlYmV+9A6oKbR0cTJ5Muy+6NHj7JmzRqefPLJvH6pPKGCSEScQWpcOss+2c7ZqDhHW+WWpWn1XC3cPAvv7s5p1kyGHJrB6sR9ALhiZlTZR+lavLHBycSZ5Phw10cffZRZs2bd8JrZs2fz2GOPUaFCBacthkREnIV3kCed3mpC7QcrONoOrTnFvFHrrph8Xdh4md2ZXPlZOgQ1ACA708LokV/y5k9fGZxMnEmOC6IzZ86QnJx8w2uSk5M5c+ZMTl9CRERuk9nVTLOnanDvoPq4edqX5scdT2bu22s4srHwfj92M7vyXsUn6RHUDNefkzAfy+bvH9cy4OuPsFqtRscTJ5DjguhWpKSk4ObmlpcvISIi11CxaSm6jW1BYJj9eIusNAvLJm9jw0/7sFoKZ4HgYjLzdoVHqFetiqNty9ydPDVpLNmWbAOTiTO4rUHl7du3X/HxmTNnrmoDsFqtnDt3jr/++svpVpaJiBQWgaV96fZuc1ZN283hdfYdnXfNP8L5Qwm0e6k+3oGFb2m+2WzmmxeH8orfp6yZuQmAA8sO0SNlBDOHj8bT1d3ghFJQ3dak6jZt2tzyagWbzYbJZGLYsGE88MADOQ5YEGhStYg4M5vNRuTSaNb/uA+bxf4t3zvQg3aDGlAyvPCeBfbO7zOY/81yTBd/ygXXCeG30WPx9/Q2NpgUSLfVQ9S7d29MJhM2m43vvvuO+vXrU79+/auuM5vN+Pv706BBAypUqJBLUUVEJCdMJhO1HqhAaMUAlk3ZRmpcBqnxGSwYu4GmT4RTq0OFQrk0/50efQj08+PHqfMwWSB2Vwzd3nyTX8e+SzG/QKPjSQGT42X3gwYNomPHjnTo0CG3MxU46iESkcIiLSGDv6du53RkrKOtYrOS3N2vDu5ehXNp/ow1S/hsws+Qaf9x51HWm58+GE25wOIGJ5OCJMeTqvv27cvBgweJiYm55uMXLlzg008/Zc+ePTkOZ7SIiAiGDh3K1KlTjY4iIpIrvAI86DisMXW7VHK0HVl/hnkj1xJ38sYrh51Vn5YP8NY7fcHL3guW5p3Fy8e+4WxmvLHBpEDJcUE0c+ZM1qxZQ0hIyDUfDw0NZe3atfz66685Dme09u3bM378eF566SWjo4iI5Bqzi5kmj4fTfnBD3C72CsWfTOGPt9dyeP1pg9PljYfqt+KD9wbhVteH7Ef9OJJ1jj5RU4lOP290NCkgclwQ7du3j7p1697wmnr16hEZGZnTlxARkTxUoXEJHhrbgqCyfgBkZ1j4+5PtrPs+Emt24Vua3y68Ab+OfpeyvqEAnMqMo0/UVCKTjxucTAqCHBdE8fHxhIaG3vCa4OBg4uLibniNiIgYJ6CUD93GNKdKq9KOtj2Lo1kwdiMpcekGJssbZTxC+Db8Jap6lQIg9kICfV58h183rzA2mBguxwWRr68v586du+E1Z8+excvLK6cvISIi+cDVw4U2A+vS8tlamF3t82zO7o9jzrA1nIq89jxRZ1bMzZ9vqr1ALWsYbjMSsZ3LZsK73zLtn/lGRxMD5bggqlmzJitXruTs2bPXfPzs2bOsWrWK2rVr5ziciIjkD5PJRI325eg8shk+IZ4ApCdmsui9Tez88zD5cA54vvJ39WZqzX4EFPO3N2TBVxN+48MFvxgbTAyT44KoV69eZGRk8MILL7B48WIuXLgA2FeXLVq0iOeff57MzEweffTRXAsrIiJ5q3iVQLqPa0lYHfuCGZvVxsafo4iYvI3M1CyD0+WuEB9//nz/A4o1sC+/N1nh188XMXzmvw1OJkbI8T5EAL/99huff/654zeHS5s2Xvr/l156iYcffjh3khpI+xCJSFFjtdrY9vsBts055GjzL+lN+8ENCb44CbuwyMzO5vEP3+HY6suTq5s8XJ+pzw7CbM7TIz+lALmjggjg0KFD/PHHH+zbt4/k5GR8fX2pUaMG3bp1o1KlSje/gRNQQSQiRdWxbedY8dkOMlPth6O6erjQ6rlaVGkVZnCy3GW1Wnnm0/FELo5ytFW/vyrfvTxcRVERcccFUVGggkhEirKkc6lETN5GzNFER1vN+8rR9P9q4OJauIqFl7/9hHW/bXF8XKZFGWYOewd3FzcDU0l+KFx/k0VEJNf5FfemyzvNqHZPGUdb5F/HmD9mPckxaQYmy32fPPMyHZ5pje3i0W7RrjEMPfojmdZsY4NJnlNBJCIiN+Xq7kLr/nW4u19tXNzsPzrOH0xg7vA1nNx1weB0uevdns/x+EudsDX3wtLei2Xxu3jp4L9JtWQYHU3ykAoiERG5ZeFty9LlnWb4FrPvMZeelMWi8ZvYNvcgNmvhmYHxWodeTHn5FTxdPABYn7Sf/ge+ID6rcJ73JppDdEMRERFERESQnJzMzp07NYdIROSi9ORM/vl8J8e3Xz4LrFzD4rQZUBcP38Iz32ZH8lFeODiNJEsapqNZeC/JZPqYt6hRspzR0SSXqSC6BZpULSJyNZvVxva5h9jy+wG4+JPEr7gX7V9pSEgFf2PD5aL9qafo/88nJH99BlOGDXOQK1PHvU6TCtWNjia5SENmIiKSIyaziQYPV6HDm3c5eoWSzqUxb9Q69v9zwuB0uaead2km1OiDi48LANa4bF584wMiIrfc5JniTFQQiYjIHSlTtxgPjWtJsUoBAFiyrKz8aherpu0mO9NicLrc0bhCdWZMHIVrCfucIluylWFvT2XWln8MTia5RQWRiIjcMb9iXnQe1ZTq95Z1tEUtP8780etJOp9qYLLcU6NkOX79eCye5bztDek2PhjzLf9eudDYYJIrVBCJiEiucHFzodVztWkzoK5jaf6FI4nMfWstx3ecv8mznUPZoOLMmTgev2r23jCybHw5YSYfLZppbDC5YyqIREQkV1VtHUbXMc3xL2HvSclIzmLJh5vZ+vuBQrE0P9Q3gHkffEBo/WIAmCzw86cLGfnbNwYnkzuhgkhERHJdSHl/uo1tQblG9pPkscHW3w+yZMJm0pMyjQ2XC3w9vJgz5j3KtLi8e/efKVv49szfBqaSO6GCSERE8oSHjxv3DW5I48eqYbp4FMaJHReY+9ZaLhxOMDZcLvB0def34e9S/f5qWLr4YK3jweST85l8Yj7a0cb5qCASEZE8YzKbqNe1Mh2HN8HT3x2A5AtpzHtnHfv+Pu70hYPZbOb7QcN5sdvDjrZvz/7Nu8d+I9taOFbYFRUqiEREJM+VrhVC9/daUrxqIADWbBur/72blV/tcvql+SaTiedKteetco9gwt4VNmfRCrqOHEpqRrrB6eRWqSASEZF84RPsSacRTan5QHlH24GVJ5k3ah2JZ1MMTJY7ehVrwfiKT+G6KxOXP1M4v/UcXYa9SUxKotHR5BaoIBIRkXzj4mqmRe+atH2xHq4e9p2fY6OTmPvWWqK3nDU43Z3rENyAARU7YHK1f5y4L57urw/lZHzh2HagMFNBJCIi+a5yi9J0e7c5AaV8AMhMzeavj7ayaeZ+rE6+NL9fm868PuIZ8LQPn6UdTaHna28Rdfa4wcnkRlQQiYiIIYLK+NHt3eZUaFLC0bbjj0MsHr+JtMQMA5PduV533cO4d1/A5Gv/MZt1OoPer41mc/R+g5PJ9aggEhERw7h7u3HvoAY0ebI6JrO9R+XU7hjmDl/LuYPxxoa7Q/fXaswn41/HHGQfP7PEZvH8G+P5O2qbwcnkWlQQiYiIoUwmE3U7VeTBt5rgFWg/PDUlNp35o9cT+Ve0Uy/Nb1apJt9MGIFrcfuWA7YkC28On8KcbasNTib/SwWRiIgUCKVqBNN9XAtKVg8CwGqxsfbbSFZ8vpOs9GyD0+VcrdIV+Pnjd/Eoaz/KxGaF8afmsD5Rw2cFicnmzKV3HouIiCAiIoLk5GR27tzJtGnTCA8PNzqWiEihZs22smnmfnYtOOJoC60UQIc37nJs7uiMzifF89joUcQ0t2Kr4IabyYXxFf+P9kF1jY4mqCC6JVFRUfTr108FkYhIPjqy4TQrv9pFVrp948bAMB86Dm2MT4iXwclyLsOaxZtHfmB5/G4AzJgYUa4nDxdrZnAy0ZCZiIgUSBWblqLrmOZ4B9nnFcWfTOHP0RtIOO28mzh6mN2YWKk3XUMaA2C1WRn72Te88t2nBicTFUQiIlJgBZXxo8uoZviXsM+/Sb6Qxp+j1xNz1Hl3f3Y1uTC6/KM8Vbw1LhFpuGzMYM3MTTz76XisVqvR8YosFUQiIlKg+RX3pvOoZgSX8wMgPTGTBWM3cGZfrMHJcs5sMjOkTDeaBFdztO1auJdHP3iHzGznnUDuzFQQiYhIgecd6EGnt5tSvFogYN/ZetH4TRzf7rxHYphMJr7s/yrtnmrhaDu6Kpru7wzXobAGUEEkIiJOwcPXjY5DG1OmbigAlkwrSz/awqG1pwxOdmc+eOJf9Bh4P7aLP5HPbT1L1+FDiUtNMjZYEaOCSEREnIabpyv3DWlExWYlAbBZbCz/bAd7I44ZnOzODO3yJH1f6wEXD4VN2BtHt9eHcio+xthgRYgKIhERcSourmbavlif6u3K2htssOabPWyfe8ipd7Ue0LYrr73VGzwuHgp7JJmeQ4Zz8PxJg5MVDSqIRETE6ZjNJlo+V4t6XSs52jb/up+NP0U5dVH0WNN2jHl3IPjYfzxnZGTy8qHpnMxw3gnkzkIFkYiIOCWTyUTjx8Jp/PjlDXN3LTjCqmm7sVqcd/l6x9pNmfLBEFzLe5LVx5+TbvH0iZrKobQzRkcr1FQQiYiIU6vXpRKt+tXGZB9pYv+KE/z9yXYsWRZjg92BFpVqMXvy+1QsWQqAc1kJPBv1GbtTnHuuVEGmgkhERJxe9bZlafdyfcwu9qro6KazLJmwxakPhS3lEcw31V6kpncZAOLTk3n27bH8sG6pwckKJxVEIiJSKFRsWor7X2+Eq4cLAKd2x7DwvY2kJ2canCzngt18mVbteRp5VcR1ZhK2qAw+ee8/TP1rttHRCh0VRCIiUmiUqVuMjsMa4+5tX79+/mACC8ZsICXOeTc69HXxZFKlZwlxs+/UjQW+m/wH78753thghYwKIhERKVRKVAui88hmeAXaD4WNO5HMn++sJ/Gs8x4KG+Dpwx/jxlOqsX1OkckG86Yt47UfPjc4WeGhgkhERAqd4HL2Q2H9inkBkHw+jT9HbyDmmPMeCuvl5sHskWOp3Laio23lzxt47vMPdChsLlBBJCIihZJ/CW86v9OMoLK+AKTFZ7BgzAbO7o8zOFnOubq48tNrI2nQpbajbef8SB6fMIZsi/NOIC8IVBCJiEih5RPkSacRTSleJRC4eCjs+5s4scN5D4U1m818PfB12jzZzNF2+J8jdB/9FmlZGQYmc24qiEREpFDz9HWn4/DGhNUJASA7w8LSiVs4vP60wcnuzMQnB/LQv+5zHAp7Kj6G1w59R7rVeVfVGUkFkYiIFHpunq7cP6QRFZqUAMBqsfH31O3s+/u4wcnuzFvdnuKZwd2hkjvZj/uxJmUfzx/4miRLmtHRnI4KIhERKRJc3Fxo93IDqt1j3+gQG6z+9252zDtkbLA79MK9D/HZe2/g4+kJwJbkw/SN+pyYrCSDkzkXFUQiIlJkmM0m7u5XmzqdL6/U2vTLfjb+vM+pD4Vt4l+Vf1d7niBXHwD2nTlG19ffZOfJwwYncx5FoiDKzMxk/PjxPPLII3To0IEBAwawe/duo2OJiIgBTCYTTZ+oTuPHqjnadv55hNX/3oPV6rxFUU2fsnwb/iLFMv1w+y6JzP0p9B0yltUHdxkdzSkUiYLIYrFQsmRJPvvsMxYuXEjPnj0ZNmwYqampRkcTERGD1OtamZbP1YKLh8JGLT/O8qnbsWQ7754+FT1L8FG5p3G12Y8vsSVYGDzsYxbsXG9wsoKvSBREXl5e9OnThxIlSmA2m7n33ntxdXXl+HHnnkwnIiJ3psa95Wj7Yn1MFw+FPbLhDEud/FDYemGV+c9Ho3EPs88pIsXKO6O+5KcNy4wNVsAVyIIoNTWVb775hiFDhtCpUydat27NokWLrnltZmYmX3zxBd27d6d9+/b861//YtOmTTe8//Hjx0lKSiIsLCwv4ouIiBOp3LwU9w9phIu7/UfiyV0XWPT+JjKSswxOlnOVi5Vm1kfv413JviklGTYmjfuez5f9YWywAqxAFkQJCQnMmDGD6OhoqlSpcsNr33//fX799Vfuu+8+Xn75ZcxmM2+88QY7d+685vUZGRmMHTuWJ598El9f37yILyIiTqZsvWJ0HNbEcSjsuQPxzH93A6lOfChsKf9g5n44nsCaQfaGbPhm0mzem/ejscEKqAJZEIWEhDBnzhx+++03Bg4ceN3rIiMjWbZsGf379+f555+na9euTJ48mZIlS/LFF19cdX12djYjR44kLCyMPn365OE7EBERZ1MyPIhOI5riFeAOQNzxJP4cvZ7Es8473zTI2495739AybtKAmCywpwv/+L1/3xpcLKCp0AWRO7u7oSEhNz0un/++QcXFxe6du3qaPPw8KBTp07s2bOHs2fPOtqtVitjx47FZDIxfPhwTCZTnmQXERHnFVLen84jm+Ebaj8UNulcGvNHryf2uPPu6ePl5sGcUeOo2KaCo23Z0W18eWqJU281kNsKZEF0qw4cOECZMmXw8fG5or1GjRoAHDx40NE2ceJEYmJiGD16NK6urje874ULF4iKinL8iY6Ozv3wIiJSIAWU8qHLO80IDLNPq0i9eCjsuQPOfSjsL6+Pom7nmlgaeWB5wJsvTi/hwxNzsdqcd1VdbrpxZVDAxcTEXLMn6VLbhQsXADhz5gzz58/H3d39it6kDz/8kHr16l31/Hnz5jFjxoy8CS0iIgWeT7AnnUc2ZckHmzl/OIGMlCwWvreJ+15tSFidUKPj5YjZbGb682/y/ZkVfHRyHgA/nVtFUnYa71R4FFeTi8EJjeXUBVFGRgZubm5Xtbu7uzseByhZsiQrV6685ft27dqVli1bOj6Ojo5m7Nixd5hWRESciaefOx3fakLEx1s5tSeG7AwLSyZspu2L9anYpKTR8XLs6ZL3EODqzTvRM7FiY/72dWyZvpWZb43G38vn5jcopJx6yMzDw4OsrKuXRWZmZjoez4nQ0FDCw8Mdf8qXL39HOUVExDm5e7ly/+uNKH/XxUNhs238PWUbUSucex+7bqFN+KhyH9zO2nD9IYkLW8/T9Y03OZvkvMOCd8qpC6KQkBBiYmKuar/UFhrqnN2aIiJScLi6u3DvoPpUbW3fu85mg1Vf72bngiMGJ7sz7QLrMCjoQUwXpxClHEqix2vDOBJz2thgBnHqgqhKlSqcOHGClJSUK9ojIyMdj4uIiNwps4uZ1v3rULtjBUfbxv/sY9PM/U69Uuv/mt/H2+/0Ay97OZBxIo0nXhvJriJ4KKxTF0T33HMPFouFefPmOdoyMzNZuHAhNWvWpESJEnd0/4iICIYOHcrUqVPvNKqIiDg5k9lE06eq06hXVUfbjj8OseYb5z4Utlv9lkx8/xVM/vZJ1dnnMuk7ZBxrD+8xOFn+MtkKaGn7+++/k5ycTExMDHPnzqV169ZUrWr/S9ijRw/HLtOjRo1i5cqV9OrVi7CwMBYvXszevXuZNGkS9evXz5UsUVFR9OvXj2nTphEeHp4r9xQREecV+Vc0a2dEwsWfoJWalaLN83VxcXXefoatxw/y/PDxWGIuzs31MTNm1EA61m5ibLB8UmALol69enHmzJlrPjZz5kxKlSoF2FeSTZ8+naVLl5KcnEylSpXo27cvTZrk3hdQBZGIiPyvg2tO8c+XO7FZ7D9Gy9QrRvtXGuDq4bzL1/efO0GfYe+SdfrikSUeJoYM682jTdoaGywfFNiCqCBRQSQiItdybNs5lk3ehiXLPjO5RLUg7n+9ER4+V28J4yxOxcfw2FsjSTuSbG94xJ+PegykdUBNY4PlMeft2xMRETFYuQbF6TisMW5e9m39zu6PY8HYDaQmZBicLOdKB4bwx4TxBNQIIruTN5n13Bh88BsWxW41OlqeUg/RDURERBAREUFycjI7d+5UD5GIiFzThaMJLB6/mfRE+z54/iW86Ti8MX7FvA1OlnMZ2ZmMOPYLS+K2A2DCxPByD9OrWMsbP9FJqSC6BRoyExGRm0k4ncKi9zeSfME+/8Y72IOOQxsTVMbP4GQ5Z7FZef/YbH67sBYA85Z0mlGFz/q+gtlcuAaZCte7ERERMUhAKR86j2pGQGn78RepsRnMH7OB84fijQ12B1xMZt4q14O+Jdtj2pOByx8pbJ67g/+bNA6LxWJ0vFylgkhERCSX+IZ40XlkU0Ir+gOQkZzFwnEbObXn6lMVnIXJZOKlsAdpSw1MF8eU9i87SI9xI0jPzjQ2XC5SQSQiIpKLvPw9ePCtJpSsEQxAVrqFxR9s4uimswYnuzOTnn6RB5+7B5vJ/vHJ9Sfp9vYwEtNTjQ2WS1QQiYiI5DJ3bzc6vHkX5RoVB+yHwi6bvJX9K08YnOzOjO7xDE+93Bnbxa2WYndeoNubb3I+Kd7QXLlBBdEN6OgOERHJKVd3F9q/0oAqrUoD9kNhV365i92LnPtQ2Fce6MkLbz4O7vauouQDiXQfMoxjsc7dA6ZVZrdAq8xERCSnbFYb637YS+SSaEdbg+6VafhIVUwmk4HJ7sycrat4b9x0SLOXEa4lPPj3e8OpVaqCscFySD1EIiIiechkNtH86Ro07FHF0bZtziHWzYjE5sSHwnZveDcfvDcIk599/CwrLoNB2//NsfTzBifLGRVEIiIiecxkMtGwR1WaPV3D0Rb51zFWfL4Da7bVwGR3pl14Az7/cCguxd3JftKf88VT6RP1KVGpJ42OdttUEImIiOST2h0q0GZgXUxm+1DZobWn+WvSVrIznXdPn7vKV2PulxOoUqscADHZSTy3/zO2JTvXXCkVRCIiIvmo6t1htB/cABc3+4/g49vOs3j8JjJTswxOlnMlPQOZXu156vqUByApO43+Uycw7Z/5Bie7dSqIRERE8ln5RiV44M27cPOyz785sy+OBWM3kubEh8IGuPrwVdUBNPcPx7w8DVal8NWE35iw8Bejo90SFUQ3oGX3IiKSV0rXDKHTW03x9HMDIOZoIvPHbCD5QprByXLO28WDyRWfoVS8/fw2kxVmfraIt3+dbnCym9Oy+1ugZfciIpJX4k8ms+j9TaTE2g+F9Qn2pOOwxgSG+RqcLOcys7N57IN3OL7muKOtSY8GfPrsoAK71YB6iERERAwUGOZLl3eaEVDKfihsSmw688es58LhBIOT5Zy7qyuzho2hxgPVHG0bf99G7ynvYbUWzFV1KohEREQM5htqPxQ2pIL9UNj0pCwWjNvAqUjnPRTWbDbz/aC3aPZIQ0fb3qX7eeS9EWRmZxuY7NpUEImIiBQAXgEedHq7CSWrBwGQlWZhyQebid7i3EdiTH12EB2eae04FPb42hN0GzmU5IyCNVdKBZGIiEgB4e7tRoehjSnboBgAliwrEZO2cWCV8210+N/e7fkcj73woONQ2PPRMby8exqploKzqk4FkYiISAHi6u7CfYMbUrlFKcB+Fto/X+xkz5Kjxga7Q0MefJQBrz8KIS5k9fFnC0f514EvSchOMToaoIJIRESkwDG7mrnn+XrUvK+co23dd3vZ+vsBnHlxeN/WD/LF1OH4FbOvoNuZEs2zUZ9xPivR4GQqiERERAokk9lE8z41adC9sqNt6+8HWf/9Xqc+FPauwCp8U+0FQlztexUdTDrNw+++xaajUYbmUkF0A9qYUUREjGQymWjUsxrN/q+6o23Pkmj++XKnUx8KW827NDPCX6SUSxCuvyWRvjmR11ZO40DaKcMyqSC6gfbt2zN+/Hheeuklo6OIiEgRVrtjRVr/qw6X9jQ8uPoUEVO2OfWhsOU8i/FJmWdwjzWT/aA3ibVsHE47Z1geFUQiIiJOoFqbMtz7SkPMrvaq6NiWcyz5cLNTHwpbLbQMcz/9gFrtw3mrXA8eCK5vWBYVRCIiIk6iQuMSdHizMW6e9vXrpyNjWThuI2mJBWf5+u0q4RPEjPCX6FmshaE5VBCJiIg4kdK1Qug4vAkevvZDYS8cuXgobEzB2ujwdriaXIyOoIJIRETE2RSvEkjnkU3xDvYAIOFUCvNHryfhdMHY08cZqSASERFxQkFl/Ogyqhn+JbwBSL6Qzp+j13PhqPMeCmskFUQiIiJOyq+YN53faUZwefuePumJmSx4dyNn9sUanMz5qCASERFxYt4BHnR6uyklql06FDabRe9v4tg245awOyMVRCIiIk7Ow8eNjsMaU6be5UNh//p4KwfXGLfRobNxNTpAQRYREUFERATJyclGRxEREbkhVw8X7nutIf98vpPD609js9hY8fkOMlOzqHlfeaPjFXgmmzOfEpdPoqKi6NevH9OmTSM8PNzoOCIiItdltdpY++0e9i077mhr1LMq9R+qjOnSVtdyFQ2ZiYiIFCJms4mWz9aiXrfLh8Ju+e0AG37c59SHwuY1FUQiIiKFjMlkovGj1WjyxOVRjd2LjrLy611YLc57KGxeUkEkIiJSSNXtXIm7+9V2HAp7YOVJlk3Z7tSHwuYVFUQiIiKFWHjbsrQb1MBxKGz05rMsnbCFzLRsg5MVLCqIRERECrmKTUrywOt34ephPzPs1J4YFo3bSHpSpsHJCg4VRCIiIkVAWJ1QHnyrCR4+9kNhzx9OYP6YDaTEphucrGBQQSQiIlJEFK8SSKeRTfEOtB8KG38ymT/f0aGwoIJIRESkSAku60fnUc3wK+4FQPKFNOaPWU9MdKLByYylgkhERKSI8S/hTZdRzQgqaz8UNi0hkwXvbuBMVJzByYyjgkhERKQI8g7ypPOIphSvGghAZmo2i97fyPEd540NZhAVRCIiIkWUh6/9UNiwOqEAWDKtLJ24hUPrThucLP/pcNcb0OGuIiJS2Ll5unL/kIas+HwnRzacwWaxsfzT7WSmZlHj3nJGx8s3Otz1FuhwVxERKeysVhtrpu8mavkJR9tdj1ajXtdKReJQWA2ZiYiICGaziVZ9a1O3S0VH2+aZ+9n4UxRFoe9EBZGIiIgA9kNhmzxencaPVXO07VpwhFXTdmO1Fu6iSAWRiIiIXKFe18q06lsbLo6U7V9xgr8/2YYlq/AeCquCSERERK5SvV1Z2r1UH7OLvSo6uvEsSyduISu9cB4Kq4JIRERErqlSs1LcP6SR41DYk7tiWPjeRtKTC9+hsCqIRERE5LrK1CtGx2GNcfe279Rz/mACC97dQEpc4ToUVgWRiIiI3FCJakF0GtkUrwB3AOKOJzP/nfUkni08h8KqIBIREZGbCinnT+dRzfAtZj8UNul8Gn+O3kDssSSDk+UOFUQiIiJySwJK+tgPhS3jC0BafAbzx6zn7H7nPxRWBZGIiIjcMp9gTzqNaEqxygHApUNhN3Fip3MfCquCSERERG6Lp587D77VhNK1QgDIzrCwdMIWjmxw3kNhVRCJiIjIbXPzdOWBNxpRoXEJAKwWG39/sp19y48bnCxnVBCJiIhIjri4udDu5fpUaxMGgM0Gq6ftZsefhw1OdvtUEImIiEiOmV3M3N2/DnU6XT4UdtPPUWz82bkOhVVBJCIiInfEZDLR5Ilw7up1+VDYnX8eZs30PU5zKKwKIhEREbljJpOJ+g9VpsUzNR2Hwu77+zjLp27Hkm01NtwtcDU6QEEWERFBREQEycnJRkcRERFxCjXvK4+HjxsrvtiJzWLjyIYzZKVlc+8rDXDzLLhlh8nmTAN8BomKiqJfv35MmzaN8PBwo+OIiIgUeMe3nSNi8jYsWfbeoeLVAnlgyF14+LoZnOzaNGQmIiIiua5sg+JXHAp7bn8889/dQGp8hsHJrk0FkYiIiOSJktWD6fR2Uzz9Lx0Km8T80etJOpdqcLKrqSASERGRPBNSwZ8uo5rhG2o/FDbxbCp/vrOeuBMF61BYFUQiIiKSpwJK+dBlVFMCw3wASI3PYP6YDZw7GG9ssP+igkhERETynE+IF51HNCO0kv1Q2IzkLBaO28jJXRcMTmangkhERETyhae//VDYUjWDAfuhsEsmbObIxjMGJ1NBJCIiIvnI3cuVB964i/KNigNgzbbx95RtRK0w9lBYFUQiIiKSr1zdXbj3lQZUbX35UNhVX+8marlxRZEKIhEREcl3ZhczrfvXoVaH8gB4B3tQunaIYXkK7h7aIiIiUqiZzCaa/V8NfII8KdugGH7FvA3LooJIREREDGMymajbpZLRMTRkJiIiIqKCSERERIo8FUQiIiJS5KkgEhERkSJPBZGIiIgUeSqIREREpMhTQSQiIiJFngoiERERKfJUEImIiEiRp4JIREREijwVRCIiIlLkqSASERGRIk8FkYiIiBR5Ou3+FmRkZAAQHR1tcBIRERG5XeXLl8fT0/OG16ggugVnzpwBYOzYsQYnERERkds1bdo0wsPDb3iNyWaz2fIpj9OKj49n48aNlCpVCnd3d6PjGGLq1Km89NJLRsfIc87wPo3OmF+vn1evk5v3zY175fQe0dHRjB07lrfffpvy5cvfUQbJHUb/28wvzvA+/zejeohySWBgIPfff7/RMQzl6+t70+q6MHCG92l0xvx6/bx6ndy8b27c607vUb58+QL/d7aoMPrfZn5xhveZk4yaVC23pH379kZHyBfO8D6Nzphfr59Xr5Ob982Nexn99ZTcU1S+ls7wPnOSUUNmIiJOKCoqin79+t3S3AgRuTn1EImIOKGQkBD69OlDSEiI0VFECgX1EImIiEiRpx4iERERKfJUEImIiEiRp2X3IiKF2IQJE1izZg3p6emUKFGC/v3707JlS6NjiRQ4mkMkIlKIRUdHOzaV3bt3L6+++iq//PILAQEBRkcTKVA0ZCYiUoiVL1/escO+yWQiKyuLCxcuGJxKpODRkJmISAGRmprKL7/8QmRkJHv37iUpKYlhw4bRsWPHq67NzMxk+vTpLF26lKSkJCpXrkzfvn1p3LjxVdd+/PHHLFy4kMzMTJo1a0alSpXy4+2IOBX1EImIFBAJCQnMmDGD6OhoqlSpcsNr33//fX799Vfuu+8+Xn75ZcxmM2+88QY7d+686tpXX32VJUuWMGnSJBo3bozJZMqrtyDitFQQiYgUECEhIcyZM4fffvuNgQMHXve6yMhIli1bRv/+/Xn++efp2rUrkydPpmTJknzxxRfXfI6LiwuNGjViy5YtrFu3Lq/egojTUkEkIlJAuLu739LO0//88w8uLi507drV0ebh4UGnTp3Ys2cPZ8+eve5zLRYLJ0+ezJW8IoWJCiIRESdz4MABypQpg4+PzxXtNWrUAODgwYMAJCcn89dff5Gamkp2djbLly9n27Zt1KtXL98zixR0mlQtIuJkYmJirtmTdKnt0ioyk8nE/PnzmTRpEjabjbCwMEaMGEHVqlXzNa+IM1BBJCLiZDIyMnBzc7uq/dLy+oyMDAB8fHyYMmVKvmYTcVYaMhMRcTIeHh5kZWVd1Z6Zmel4XERujwoiEREnExISQkxMzFXtl9pCQ0PzO5KI01NBJCLiZKpUqcKJEydISUm5oj0yMtLxuIjcHhVEIiJO5p577sFisTBv3jxHW2ZmJgsXLqRmzZqUKFHCwHQizkmTqkVECpDff/+d5ORkx/DXmjVrOHfuHAA9evTA19eXmjVr0rZtW77++mvi4+MJCwtj8eLFnDlzhjfffNPI+CJOS6fdi4gUIL169eLMmTPXfGzmzJmUKlUKsK8ku3SWWXJyMpUqVaJv3740adIkP+OKFBoqiERERKTI0xwiERERKfJUEImIiEiRp4JIREREijwVRCIiIlLkqSASERGRIk8FkYiIiBR5KohERESkyFNBJCIiIkWeCiIREREp8lQQiYiISJGngkhEJIdat259xZ+MjAzHY4sWLaJ169YsWrTIwISX/fHHH1dkfe+994yOJFKg6LR7EbnC6dOnefTRR294TcmSJfn111/zKVHBVrJkSTp06ACAi4tLnr7Wxo0bGTJkCI0bN+ajjz664bVjxowhIiKCESNGcN999xEeHk6fPn1ITk5m1qxZeZpTxBmpIBKRawoLC+O+++675mO+vr75nKbgKlmyJM8++2y+vNZdd91FiRIl2LJlC2fPnqVEiRLXvC45OZlVq1bh6+tL69atAahevTrVq1fn9OnTKohErkEFkYhcU1hYWL79oJdbYzab6dixIzNmzGDx4sX07t37mtdFRESQkZHBgw8+iIeHRz6nFHFOmkMkInesdevWvPzyy8TGxjJu3Di6dOlC+/btGTBgANu2bbvmc1JTU/nmm294+umnad++PQ8++CCvvfYaO3fuvOral19+2TFHZ9q0aTz22GO0bduWb775xnHNP//8Q79+/Wjfvj3dunXjww8/JCkpiV69etGrVy/Hde+++y6tW7cmMjLymrmmT59O69atiYiIuMPPyrWdO3eO3r170759e1asWOFoj4uLY+rUqTz++OPce++9dOnShbfffpvDhw9f8fwHH3wQk8nEokWLsNls13yNhQsXAtCpU6c8eQ8ihZEKIhHJFcnJybzwwgscPXqU+++/n9atWxMVFcWQIUOu+qGemJjIwIEDmTFjBn5+fnTr1o3WrVuzf/9+Bg0axKpVq675GiNGjGDx4sU0aNCARx55hFKlSgGwYMECRowYwYkTJ3jggQfo0KEDe/bs4dVXXyU7O/uKe3Tt2tXxnP9lsVhYuHAhAQEBjqGm3HT06FGef/55zp07x4QJE7jnnnsAOHnyJH379uW3336jdOnSPPzwwzRr1oyNGzcycODAK4q3kiVL0qhRI06dOnXNYvPw4cPs27ePqlWrUq1atVx/DyKFlYbMROSaTp48eUUPzH+rVasWTZs2vaLt4MGDPPTQQ7zyyiuYzfbftRo2bMiHH37I7NmzGTJkiOPayZMnc+TIEd544w06d+7saI+Li6Nfv35MmDCBJk2aXDXcExMTw7fffou/v7+jLSkpiU8++QQvLy++/vprypYtC0C/fv0YMmQIUVFRlCxZ0nF9vXr1qFChAsuWLePFF1/Ey8vL8djGjRs5f/48PXv2xN3d/XY/ZTe0Z88e3nzzTVxdXZk6dSpVqlRxPDZu3DhiY2OZOHEiTZo0cbQ//fTT9OvXjw8//JAZM2Y42jt16sTmzZtZuHAhDRs2vOJ11DskkjPqIRKRazp58iQzZsy45p8NGzZcdb2XlxcDBgxwFEMAHTp0wMXFhX379jna4uPjWb58OQ0bNryiGAIICgri8ccfJz4+ni1btlz1Gs8888wVxRDA6tWrSUtL48EHH3QUQwCurq707dv3mu+ta9eupKamsmzZsiva58+fD0CXLl2u92nJkXXr1jF48GD8/Pz4/PPPryiG9u/fz+7du3nggQeuKIYAypYtS+fOnTl8+PAVvWx33303AQEB/PPPP6SkpDjas7OzWbp0Ke7u7tedEC8i16YeIhG5piZNmjBx4sRbvr5MmTJ4e3tf0ebq6kpwcDDJycmOtn379mGxWMjKyrpmD9SJEycAiI6OpkWLFlc8VqNGjauuP3ToEAB169a96rGaNWtecyn8Aw88wFdffcX8+fMdRVlsbCxr166ldu3aVKhQ4Sbv9tYtX76cTZs2UblyZSZMmEBQUNAVj18aDouLi7vm5+PYsWOO/1aqVAnAUfDMmjWLiIgIunXrBsCaNWuIj4+nffv2+Pn55dp7ECkKVBCJSK7w8fG5ZruLiwtWq9XxcWJiIgC7du1i165d171fenr6VW3BwcFXtV3qIfnfQgPsq7ICAgKuavfz86Nt27YsXryYw4cPU6lSJRYtWoTFYsn13qE9e/ZgsVioW7fuNTNe+nysW7eOdevWXfc+aWlpV3zcqVMnZs2axcKFCx0FkYbLRHJOBZGI5KtLhdOjjz7KCy+8cFvPNZlM171fXFzcVY9ZrVYSEhIoVqzYVY9169aNxYsX8+effzJo0CAWLFiAj48Pbdu2va1MN9O/f39Wr17NrFmzcHFxueo9X8o/aNAgevToccv3rVy5MtWrV2fv3r0cOXIEPz8/Nm7cSKlSpa6aVyQiN6c5RCKSr6pXr47JZGLPnj25cr/KlSsDXLO3ae/evVgslms+r1atWlSuXJm//vqLjRs3cuLECe677z48PT1zJdcl7u7ujBs3jubNmzNz5kw+/fTTKx6/NAyYk8/HpZ6gBQsWsGTJEiwWi2NZvojcHhVEIpKvQkJCaNu2Lbt37+bnn3++5l46kZGR1xwyu5ZWrVrh5eXFggULOHnypKM9Ozub6dOn3/C5Xbt2JTExkfHjxwNcNck7t7i7uzN27FhatGjBr7/+ytSpUx2P1axZk5o1a7Js2bKrJnmDvZdr+/bt17xv+/bt8fT0ZOnSpSxcuBCz2ew4RkREbo+GzETkmm607B7gySefzPEuyK+++irHjx/niy++YMmSJdSqVQtfX1/Onz/Pvn37OHHiBHPmzLml3ho/Pz9efPFFJkyYQL9+/WjXrh0+Pj6sX78ed3d3QkNDr9tjcv/99/Pll19y4cIFwsPD83TfHjc3N959911GjhzJb7/9hs1m4+WXXwZg5MiRvPLKK4wePZpZs2ZRtWpVPDw8OHfuHLt37yYhIeGaG0X6+PjQpk0blixZQnx8PE2bNr3ucR4icmMqiETkmi4tu7+enj175rgg8vf35/PPP2f27Nn8/fffREREYLVaCQ4OpkqVKvTu3fuak6Gvp0uXLvj5+fHDDz+wePFifHx8aNmyJQMGDKBnz56EhYVd83k+Pj7cfffdLF26NM96h/7bpaJo1KhRzJo1C5vNxqBBgyhdujTTp09n5syZrFq1ikWLFmE2mwkJCaFevXqODRyvpVOnTixZsgSw72ItIjljsl1v73cRESd34sQJnnjiCdq2bcvo0aOveU3v3r05c+YMs2fPvu5Kuetp3bo19evX55NPPsmNuPni9OnTPProo3To0IHhw4cbHUekwFAPkYg4vaSkJDw8PK7YXTojI8Mxgfnuu+++5vPWr1/PkSNH6NKly20XQ5ds377dcczHX3/9VWAPU/3jjz/46KOPjI4hUmCpIBIRp7d9+3Y++OADGjduTPHixUlISGDr1q2cOXOGhg0b0q5duyuunzt3LufOnWP+/Pm4u7vz5JNP5uh1+/Tpc8XH19oEsqAIDw+/Im/VqlWNCyNSAGnITESc3vHjx5k+fTq7d+8mPj4egLCwMNq1a8djjz12Va9Nr169OH/+PGXLlmXAgAFX7YgtIkWPCiIREREp8rQPkYiIiBR5KohERESkyFNBJCIiIkWeCiIREREp8lQQiYiISJGngkhERESKPBVEIiIiUuSpIBIREZEi7/8BWfmj4iF/cfsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Spectrum\n", + "df = pd.read_csv(\"crab_spec.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],label=\"Crab\")\n", + "plt.loglog(df[\"Energy[keV]\"],3*df[\"Rate[ct/keV]\"],label=\"3xCrab\")\n", + "\n", + "df = pd.read_csv(\"crab_spec_3x.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],ls=\"--\",label=\"Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Energy [keV]\")\n", + "plt.ylabel(\"ct/keV\")\n", + "plt.savefig(\"combined_spectrum_comparison.pdf\")\n", + "plt.show() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Combining binned data\n", + "\n", + "An alternative way to combine the data is to sum the binned histograms. This requires that the histograms being combined have the same exact binning." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "\n", + "The total number of photons has increased by a factor of 3, as expected:\n", + "single histogram: 3324977.0\n", + "combined histogram: 9974931.0\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data=\"unbinned_data.hdf5\", output_name=\"binned_data\")\n", + "combined_hist = analysis.binned_data + analysis.binned_data + analysis.binned_data\n", + "\n", + "print()\n", + "print(\"The total number of photons has increased by a factor of 3, as expected:\")\n", + "print(\"single histogram: \" + str(np.sum(analysis.binned_data.contents.todense())))\n", + "print(\"combined histogram: \" + str(np.sum(combined_hist.contents.todense())))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4: Making data selections\n", + "### Make time cut\n", + "Only time cuts are available for now. The parameters tmin and tmax are passed from the yaml file. In this example we will select the first half of the dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Making data selections...\n", + "Saving file...\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs_half_time.yaml\")\n", + "analysis.select_data(unbinned_data=\"combined_unbinned_data.hdf5\", output_name=\"selected_unbinned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bin the selected data " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "analysis.get_binned_data(unbinned_data=\"selected_unbinned_data.hdf5\", output_name=\"selected_combined_binned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get raw spectrum and lightcurve:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGMElEQVR4nO3deXxU9b3/8fdkksmeQBayQbWARWIruNaqcEEHFaNgXZDWtvJrDVXcMMUoPtRWG68WbIrL1V55UOnt49FbkGq1yqJBBaq2uFEVBMWFQvaELJN1ksn8/qCZmzEL2U7Od8Lr+Xjcx5UzJ+e883X89MM53/M9Dr/f7xcAAAAkSWF2BwAAADAJzREAAEAXNEcAAABd0BwBAAB0QXMEAADQBc0RAABAFzRHAAAAXdAcDVBLS4v27dunlpYWu6MAAAAL0BwN0IEDB5Sbm6sDBw5Ycvz6+npLjgtgdKBGANajOTKMx+OxOwIAg1EjAOvRHBkmMTHR7ggADEaNAKxHcwQAANAFzZFh6urq7I4AwGDUCMB64XYHAADABD6fT21tbXbHwBA5nU6Fh4fL4XAM+hg0R4ZJS0uzOwIAg1EjrNHQ0KBDhw7J7/fbHQXDICYmRhkZGXK5XIP6eZojw9TU1Cg1NdXuGAAMRY0Yfj6fT4cOHVJMTIxSU1OHdMUB9vL7/fJ6vaqsrNQXX3yhE044QWFhA59BRHNkGK/Xa3cEAAajRgy/trY2+f1+paamKjo62u44GKLo6GhFRETowIED8nq9ioqKGvAxaI4MExERYXcEAAajRlhnoFeMfD6fduzYodLSUmVkZGjGjBlyOp0WpcNADOZqUVc0R4ZJTk62OwIAg1EjzPDss8/q1ltv1aFDhwLbxo8fr0ceeUSXX365jckwHHiU3zBlZWV2RwBgMGqE/Z599lldeeWVQY2RJBUXF+vKK6/Us88+a1Mys9TW1uqhhx6yO8ag0BxhSLxer1atWqWbb75Zq1atYj4EgFHN5/Pp1ltv7fGpts5tS5culc/nG7Zztre3D9uxRtLRmiOTfy+aI8MkJCTYHaHf8vPzFRMTo9tuu02PP/64brvtNsXExCg/P9/uaMCoFUo1YjTasWNHtytGXfn9fh08eFA7duwY0nkcDod+/vOf64wzztDy5cv14Ycf6txzz9Wpp56q7OxsFRQUBPbNyspSSUmJJGnBggU6++yzJUmtra1KTk5Wa2tr0LE7Ojp00003aerUqZo2bZpOO+00tbS06Msvv9SYMWO0bNkynXzyyTrppJNUVFQU+LktW7bo3HPP1WmnnaYzzzxTr732WuCzp59+WtOnT9e0adN0+umn68svv9T1118vj8ej6dOn6/TTT5ckzZo1S7fccou+853v6IILLgics1NDQ0PQ3C+Hw6EHHnhA3/72t3X88cfrL3/5ix588EGdfvrpOuGEE/T6668PaZx7w5wjwwx1EtlIyc/P18qVK7tt9/l8ge0rVqwY6VjAqBcqNWK0Ki0tHdb9+uJ0OvX2229LOvLC4a1btyoyMlLNzc06++yz5Xa7ddZZZ+n8889XUVGRfvCDH+if//ynwsPDVV9fr7ffflunnXaaIiMjg477z3/+U1u3btXu3bsVFhamurq6wHpAdXV1mjp1qh5++GH9/e9/17x58/TZZ5+psrJSv/jFL7RlyxYlJCRo//79mjFjhr788ku99dZbuv/++/Xmm28qIyNDTU1NkqTf/va3mj59unbt2hV0/k8++UTbt29XRESEvvzyy6OOQ1xcnP7xj39o69atmj9/vh5//HG98847euaZZ3T77bcHxmg40RwZpra2VrGxsXbH6JPX61VhYWGf+xQWFqqgoGDQC3AB6Fko1IjRLCMjY1j368uPf/zjwD83NzdryZIl2rVrl8LCwnTw4EHt2rVLZ511ltxut4qKinTSSSdp2rRpSktL0+uvv6633npL559/frfjTpw4Ue3t7frxj3+s2bNnKycnJ9B0h4eHa9GiRZKks846S5mZmXr//ff10Ucfaf/+/Zo5c2bgOGFhYfrXv/6ll156ST/84Q8Dv3NMTEyfv9cPfvCDAT11efXVV0uSTj/9dDU2NmrhwoWSpDPPPFOffvppv48zEDRHhnnqqae0Zs0au2P0yePxHPV+us/nU2pqquLj40co1RF5eXnKy8sb0XMCOHbMmDFD48ePV3FxcY/zjhwOh8aPH68ZM2YM+VxxcXGBf77rrruUkpKi999/X+Hh4br88svV0tIiSXK73Vq+fLmys7PldruVlpamoqIivfXWW3ryySe7HTcxMVEfffSRtm3bptdee03Lly/X9u3bFR7ec0vgcDjk9/s1Z84c/fGPfxzW3ys8PDzof086f6euOtcp6lwmoeufrZq3RHNkmI6ODhUXF9sdY1jU19ervr5+xM8JjGbjxo2zO8Ixzel06pFHHtGVV14ZaBo6dc6VWbVq1bCvd1RTU6OpU6cqPDxc+/bt0yuvvBK4ipOZmanExET99re/1auvvqqUlBTddttt8ng8OvXUU7sdq7KyUk6nUxdccIHmzJmjbdu2ac+ePTr55JPV3t6uP/zhD1q0aJF27typkpISTZ8+XRkZGbrvvvv0wQcf6OSTT5Yk7dy5U2eeeaYuvfRSLVq0SDfccEPQbbWEhAQ1NzfL6/X2ehchPT1dfr9fe/bsUXZ2tv7nf/5nWMdtsGiODONyuZSVlWV3jD55PJ5+NSEJCQkjfuWIyaoY7erq6pSSkmJ3jGPa5Zdfrg0bNvS4ztGqVassWefo7rvv1g9/+EP9/ve/16RJk3TeeecFfe52u/Xiiy9q4sSJko40HaecckqPc9QOHjyo3NxctbW1yefz6ZxzztHcuXNVXFwcuKo0bdo0tbe3649//KPi4+MVHx+vP/7xj/rpT3+qpqYmeb1enXLKKfrjH/+omTNn6uc//7kuvPBCORwOuVwubdiwQccdd5x+9KMf6eSTT1ZcXJzeeeedblnCw8P12GOP6ZJLLlFycrKuvPLKYR+7wXD4ecvegOzbt0+5ublavXq1pkyZMuzHLy4uNr458nq9iomJ6fPWmtPpVFNTE3OOgGEWCjUi1LS0tOiLL77Q17/+9QG9amK0rZD95Zdfavr06aqtrbU7ypAN9t9pJ64cGaa3e74mcblcysvL6/FptU55eXk0RoAFQqFGHCucTqdmzZpldwxYgP/KDBMq8wk6H9MvLCwMuoLkdDqVl5fHY/yARUKlRiD0HH/88aPiqtFwoDkyTElJSchcMl+xYoUKCgr0xBNP6LPPPtOkSZO0ZMkSrhgBFgqlGhFqmGUyenR0dAzp52mOMCQul0tLly61OwYADFpERIQcDocqKyuVmpoatEIzQovf75fX61VlZaXCwsIG/Zd1miPDjPTTXQBCCzVi+DmdTo0fP16HDh3q14rNMF9MTIy+9rWvDXpF+WO2Ofroo49044036sc//rGuvfZau+MEMNkSQF+oEdaIi4vTCSecoLa2NrujYIicTqfCw8OHdAXwmPyvrKOjQ48//rhOPPFEu6N0U1NTc9Sl1wEcu6gR1nE6nSH9KD6GzzHZHP31r3/V1KlT1djYaHcUAABgGKNf79zU1KTf/e53WrZsmXJycjRz5kxt2rSpx329Xq+efPJJffe735Xb7dZPf/rTHt/UW1dXp2eeeSbohX4mSU1NtTsCAINRIwDrGd0c1dXVae3atTpw4IAmT57c574PPvig1q9frzlz5uiWW25RWFiY8vPz9cEHHwTtt3r1al111VXGTmr0eDx2RwBgMGoEYD2jm6Pk5GQ999xzeuaZZ3TDDTf0ut+ePXu0detWLV68WEuWLNG8efO0atUqpaenB72R+JNPPtHevXt1ySWXjET8QenpjcQA0IkaAVjP6DlHLpdLycnJR91v27ZtcjqdmjdvXmBbZGSkcnJy9NRTT6m8vFxpaWnatWuXDh48qCuuuEKS1NDQIKfTqZKSEi1fvtyy32MgmAwIoC/UCMB6RjdH/fXpp59q/Pjxio2NDdo+depUSdL+/fuVlpamefPm6fzzzw98/uijjyojI0PXXHNNr8euqqpSdXV14M8HDhwY5vTB0tPTLT0+gNBGjQCsNyqao+rq6h6vMHVuq6qqkiRFRUUFvZ03MjJS0dHRfc4/euGFF7R27dpu2ysrKxUXF6eMjAxVVVWpra1NkZGRGjNmjMrLyyVJiYmJ8vv9qq+vl3SkqB0+fFher1cRERFKTk5WWVmZJCkhIUEOh0Offvqpxo0bp7S0NNXW1qq1tVXh4eFKTU1VaWmppCOLwIWHh6umpkbSkQmaHo9HLS0tcjqdSktLU0lJiaQja3e4XC4dPnxYkpSSkqLGxkY1NzcrLCxMGRkZKi4uliTFxsYqKioq0AwmJyerublZTU1NcjgcyszMVGlpqTo6OhQdHa3Y2NjA2CYlJam1tTXwBGBWVpbKysrk8/kUFRWl+Ph4VVZWSpLGjh2r9vb2wNyJzMxMVVRUqL29XZGRkUpMTFRFRYUkacyYMero6Agaw+rqarW1tcnlcmns2LFB4y0dmasmSWlpaaqpqel1vMPCwgLvERo3bpzq6uoC4z1u3LjAGB5tvNPT04PGMDIyss/xLikpkd/vV0xMjKKjo4PGu6WlJWgM+xpvr9erhoaGwBiWl5f3a7wzMjJUWVkZGO+jfWe7jndSUlK372zX8e78zkZERCglJSXoO+t0OoPGu76+Xi0tLd3GOy4uThEREUHj3dDQ0Ot39qvj3dTUFPSd7TreMTExfX5nu453XFxc0Bi2tbUFjXfndzYqKkoJCQlB31mfzxc03tQIagQ1wowa0d9X7zj8IfIymb1792rx4sVavny55s6dG/TZwoULNWHChG5viS8pKdHChQt10003acGCBYM6b09XjgoKCrR69WpNmTJlUMfsS3FxMe9NAtAragRgvVFx5SgyMrLHVU29Xm/g88FKSUlRSkrKoH9+oL56axAAuqJGANYz+mm1/kpOTg66utOpc9tINjdDNZRGDsDoR40ArDcqmqPJkyfr0KFD3Va83rNnT+DzUNF5XxQAekKNAKw3KpqjWbNmyefz6YUXXghs83q92rhxo7Kzs5WWlmZjOgAAEEqMn3P05z//WQ0NDYFbZG+88UbgKYUrrrhCcXFxys7O1uzZs/XUU0+ptrZWWVlZ2rx5s8rKynTHHXcMS46ioiIVFRUFZv5bJZRuAcIcXq9XTzzxhD777DNNmjRJS5YskcvlsjsWLECNAKxn/NNqCxYsCDwW+FXr1q1TRkaGJKm1tVVr1qzRyy+/rIaGBk2cOFHXXXedzjzzzGHNs2/fPuXm5lr2tNrhw4eVlJQ07MfF6JWfn6/CwkL5fL7ANqfTqby8PK1YscLGZLACNQKwnvFXjtavX9+v/SIjI7VkyRItWbLE4kTWam5utjsCQkh+fn63JSwkyefzBbbTII0u1AjAeqNiztFoEhbGvxL0j9frVWFhYZ/7FBYWBpa0wOhAjQCsZ/yVo2NN521CDE5hYeFRG4bRwuPxBN1K64nP51Nqamqfq8CPtLy8POXl5dkdI2RRIwDr0RwZpqSkRJmZmXbHCFn19fWBZeNxRH19fWCpfxOYlCUUUSMA69Ec9dNIPa1m+Px44yUkJBwzr1bweDz9ajQSEhKMunKUkJBgd4SQRo0ArGf802qmsfpptZqaGo0dO3bYj4vRx+v1KiYmps9ba06nU01NTTzWP4pQIwDrMbPPMNHR0XZHQIhwuVxHnbuTl5dHYzTKUCMA69EcGaand8QBvVmxYoVuv/12OZ3OoO1Op1O33347j/GPQtQIwHrMOQJC3IoVK1RQUMAK2QAwTGiODJOcnGx3BIQgl8ulpUuX2h0DI4AaAViP22qGaWlpsTsCAINRIwDrceWon0bqUf7GxkaNGTPG0nMACF3UCMB6NEf95Ha75Xa7A4/yAwCA0YnbaoY5VhYwBDA41AjAejRHhiktLbU7AgCDUSMA69EcGaajo8PuCAAMRo0ArEdzZBhWvwXQF2oEYD2aI8PExsbaHQGAwagRgPVojgxTVVVldwQABqNGANbjUf5+Gql1jgAAgL1ojvpppNY5SkpKsuzYAEIfNQKwHrfVDOP1eu2OAMBg1AjAejRHhuG2HYC+UCMA69EcAQAAdEFzZJjMzEy7IwAwGDUCsB7NkWHKy8vtjgDAYNQIwHo0R4bx+Xx2RwBgMGoEYD2aI8NERUXZHQGAwagRgPVojgwTHx9vdwQABqNGANZjEch+GqkVsisrK5WVlWXpOQCELmoEYD2ao34aqRWyAQCAvbitZpixY8faHQGAwagRgPVojgzT3t5udwQABqNGANajOTKMx+OxOwIAg1EjAOvRHAEAAHRBc2SYjIwMuyMAMBg1ArAezZFhKisr7Y4AwGDUCMB6NEeGYbIlgL5QIwDr0RwZJjIy0u4IAAxGjQCsR3NkmDFjxtgdAYDBqBGA9WiODFNeXm53BAAGo0YA1uP1If00Uu9WAwAA9qI56qeRerdaYmKiZccGEPqoEYD1uK1mGL/fb3cEAAajRgDWozkyTH19vd0RABiMGgFYj+YIAACgC5ojw6Snp9sdAYDBqBGA9WiODFNdXW13BAAGo0YA1qM5MkxbW5vdEQAYjBoBWI/myDAul8vuCAAMRo0ArEdzZJikpCS7IwAwGDUCsB7NkWHKysrsjgDAYNQIwHo0RwAAAF3QHBkmISHB7ggADEaNAKxHc2QYh8NhdwQABqNGANajOTJMXV2d3REAGIwaAVgv3O4AoaKoqEhFRUVqaGiwOwoAALCQw88rngdk3759ys3N1erVqzVlypRhP357e7vCw+lZAfSMGgFYj9tqhqmtrbU7AgCDUSMA69EcGaa1tdXuCAAMRo0ArEdzZJiIiAi7IwAwGDUCsB7NkWFSUlLsjgDAYNQIwHo0R4YpLS21OwIAg1EjAOvRHAEAAHRBc2SY+Ph4uyMAMBg1ArAezZFhnE6n3REAGIwaAViP5sgwrGECoC/UCMB6NEcAAABd0BwZZty4cXZHAGAwagRgPZojw9TX19sdAYDBqBGA9WiODNPS0mJ3BAAGo0YA1qM5Mgxv2wbQF2oEYD2aI8MwnwBAX6gRgPVojgxTUlJidwQABqNGANajOQIAAOiC5sgwcXFxdkcAYDBqBGA9miPDRERE2B0BgMGoEYD1aI4MU1NTY3cEAAajRgDW45nQfioqKlJRUZEaGhrsjgIAACzk8Pv9frtDhJJ9+/YpNzdXq1ev1pQpU4b9+F6vVy6Xa9iPC2B0oEYA1uO2mmG4MgWgL9QIwHo0R4Zpbm62OwIAg1EjAOvRHBkmLIx/JQB6R40ArMd/ZYbJyMiwOwIAg1EjAOvRHBmmuLjY7ggAvsLr9WrVqlW6+eabtWrVKnm9XtuyUCMA6/EoPwD0IT8/X4WFhfL5fIFty5YtU15enlasWGFjMgBWoTkyTGxsrN0RAPxbfn6+Vq5c2W27z+cLbB/pBokaAViP22qGiYyMtDsCAB25lVZYWNjnPoWFhSN+i40aAViPK0eGOXz4sLKysuyOAVimsLDwqE2HCTweT9CttJ74fD6lpqYqPj5+hFJJP/nJT3TfffeN2PmAYxHNEYARVV9fP6omFdfX16u+vn7EzufxeEbsXMCxiubIMCkpKXZHACyVkJAQEldHPR5Pv5qehISEEb1ylJ6ePmLnAo5VNEeGaWpqYk4BRrW8vDzl5eXZHeOovF6vYmJi+ry15nQ6VVlZOaLvOqupqRmxcwHHKiZkG6apqcnuCAAkuVyuozZxeXl5I/4SWGoEYD2uHBnG4XDYHQHAv3U+pv/VdY6cTqdt6xxRIwDrOfx+v9/uEKFk3759ys3N1erVqzVlyhS74wAYAV6vV0888YQ+++wzTZo0SUuWLBnxK0YARg5XjgxTUlKizMxMu2MA6MLlcmnp0qV2x5BEjQBGAnOODMOFPAB9oUYA1qM5MkxMTIzdEQAYjBoBWI/myDAUPgB9oUYA1qM5MkxVVZXdEQAYjBoBWI/mCAAAoAuaI8MkJSXZHQGAwagRgPVojgzT2tpqdwQABqNGANajOTJMY2Oj3REAGIwaAViP5ggAAKALmiPDZGVl2R0BgMGoEYD1hqU58ng82rx583AcakSsXLlSl112mS666CJde+21euONN+yOFFBaWmp3BAAGo0YA1huW5qi8vFwPPfTQcBxqRCxYsEDr16/X5s2bdeedd6qgoEB1dXV2x5IkdXR02B0BgMGoEYD1+vXi2fLy8j4/D7VFyY477rjAPzscDrW1tamqqkqJiYk2pjoiOjra7ggADEaNAKzXr+ZowYIFcjgcvX7u9/v7/Hwompqa9Kc//Ul79uzRxx9/LI/Ho+XLl2vu3Lnd9vV6vVqzZo1efvlleTweTZo0Sdddd53OOOOMbvsWFhZq48aN8nq9OuusszRx4kRL8g9UXFyc3REAGIwaAVivX81RfHy8fvKTn2j69Ok9fn7gwAH94he/GMZY/6eurk5r165VWlqaJk+erPfff7/XfR988EG9/vrruuqqqzR+/Hht2rRJ+fn5euSRR3TyyScH7ZuXl6dbb71Vu3bt0ueff25ZczdQlZWVTLgE0CtqBGC9fjVH3/jGN+TxePT1r3+9x899Pp/8fv+wBuuUnJys5557TsnJydq7d68WL17c43579uzR1q1bdcMNN+h73/ueJOnCCy/UokWL9OSTT+rJJ5/s9jNOp1OnnXaannnmGY0fP17f+c53LPkdAABA6OjXhOzLLrtM6enpvX6elpamO++8c9hCdeVyuZScnHzU/bZt2yan06l58+YFtkVGRionJ0e7d+/uc96Uz+dTcXHxsOQdqrFjx9odAYDBqBGA9fp15WjmzJl9fh4fH9/jHKCR9Omnn2r8+PGKjY0N2j516lRJ0v79+5WWlqaGhga99dZbOuecc+RyubRjxw69//77vV6RqqqqUnV1deDPBw4csO6XkNTW1mbp8QGENmoEYL1+NUehoLq6uscrTJ3bOp+oczgcevHFF/Wb3/xGfr9fWVlZuueee3TCCSf0eNwXXnhBa9eu7ba9srJScXFxysjIUFVVldra2hQZGakxY8YErlIlJibK7/ervr5ekpSenq7Dhw/L6/UqIiJCycnJKisrkyQlJCTI4XDo888/17hx45SWlqba2lq1trYqPDxcqampgfVN4uPjFR4erpqaGklSamqqPB6PWlpa5HQ6lZaWppKSEklHJm+6XC4dPnxYkpSSkqLGxkY1NzcrLCxMGRkZgatmsbGxioqKCjSDycnJam5uVlNTkxwOhzIzM1VaWqqOjg5FR0crNjY2MK5JSUlqbW0NvNogKytLZWVl8vl8ioqKUnx8vCorKyUd+Ztve3u7PB6PJCkzM1MVFRVqb29XZGSkEhMTVVFRIUkaM2aMOjo6gsawurpabW1tcrlcGjt2bNB4Swosy5CWlqaamppexzssLEy1tbWSpHHjxqmuri4w3uPGjQuM4dHGOz09PWgMIyMj+xzvkpIS+f1+xcTEKDo6Omi8W1pagsawr/H2er1qaGgIjGF5eXm/xjsjI0OVlZWB8T7ad7breCclJXX7znYd787vbEREhFJSUoK+s06nM2i86+vr1dLS0m284+LiFBERETTeDQ0NvX5nvzreTU1NQd/ZruMdExPT53e263jHxcUFjWFbW1vQeHd+Z6OiopSQkBD0nfX5fEHjTY2gRlAjzKgR/Z2v5/APcrLQrFmz9Ic//EETJkwYzI8PSueco56eVlu4cKEmTJiglStXBm0vKSnRwoULddNNN2nBggUDPmdPV44KCgq0evVqTZkyZXC/SB+Ki4uZbAmgV9QIwHqDvnJk1QTswYqMjOzxcrPX6w18PhgpKSlKSUkZUraByMzMHLFzAQg91AjAeqPm3WrJyclBV3g6dW4byQZnKDovFQNAT6gRgPVGTXM0efJkHTp0KHAvttOePXsCn4eC9vZ2uyMAMBg1ArDeqGmOZs2aJZ/PpxdeeCGwzev1auPGjcrOzlZaWpqN6fovKirK7ggADEaNAKwXEk+r/fnPf1ZDQ0PgFtkbb7wRuLR8xRVXKC4uTtnZ2Zo9e7aeeuop1dbWKisrS5s3b1ZZWZnuuOOOIWcoKipSUVFRYOa/VRISEiw9PoDQRo0ArBcSzdG6desCjwZK0vbt27V9+3ZJ0gUXXBB419Bdd92ltLQ0bdmyRQ0NDZo4caJ+9atf9frak4Fwu91yu93at2+fcnNzh3y83lRUVPAkCoBeUSMA64VEc7R+/fp+7RcZGaklS5ZoyZIlFicCAACj1aDnHH3/+9/n8q4FxowZY3cEAAajRgDWG/SVo5/+9KfDmQP/5vP57I4AwGDUCMB6A75y1LmoIqzRuXw7APSEGgFYb8BXjr773e/K7Xbr4osvtuT1GaYaqafVAACAvQb8brU5c+bI6/XK4XBo0qRJysnJ0Zw5cxQfH29VRqN0Pq1m1bvVOjo6FBY2apafAjDMqBGA9Qb8X9jzzz+vvLw8TZkyRfv379ejjz6qyy+/XPfff7/effddKzIeUzrfqAwAPaFGANYb8G21mJgYzZ8/X/Pnz9eXX36pl156Sa+88oq2bt2qV199VePGjVNOTo4uuuiikFmV2iQ9vTwXADpRIwDrDfi2Wk98Pp/efPNNvfTSS9q5c6d8Pp/CwsJ0+umnKycnR+eee67Cw0NiSaWjsvq2WlVVVci8JBfAyKNGANYblo7F6XRqxowZmjFjhg4fPqwtW7Zo48aN2rlzp95++20lJCQEvfMMvWMNEwB9oUYA1hv2WX1JSUn63ve+p1/84hf61re+Jb/fr/r6+uE+zahVXl5udwQABqNGANYb1ntdTU1NeuWVV/TSSy/pk08+kd/vV1RUlGbPnj2cp7EFj/IDAHBsGJbm6L333tPGjRu1Y8cOtba2yu/3Kzs7Wzk5OTrvvPMUExMzHKex1Ui9eDYxMdGyYwMIfdQIwHqDbo4qKiq0adMmbdq0SWVlZfL7/RozZozmzZunnJwcHX/88cMY89gxDPPjAYxi1AjAegNujrZu3aqNGzfqvffeCyxGdsYZZ4y6p9LsUl9ff8wsqAlg4KgRgPUG3Mncf//9kqSMjAzNnTtXc+fO1bhx44Y9GAAAgB0G3Bydf/75ysnJ0WmnnWZFnmNeenq63REAGIwaAVhvwM3Rvffea0UO/Nvhw4eVmppqdwwAhqJGANYb8gSh9vZ2PfvssyoqKtK//vUvtba26rXXXpMkffrpp/rrX/+qq666ShMmTBhy2GOB1+u1OwIAg1EjAOsNqTlqbW3Vz372M3300UdKTExUbGysWlpaAp9nZGRo48aNio+Pt/Tx95EwUuscRUREWHp8AKGNGgFYb0grZP/hD3/Qhx9+qMWLF+svf/mLcnJygj6Pi4vT9OnT9fbbbw8ppAncbrceeugh3XzzzZaeJzk52dLjAwht1AjAekNqjl599VWdcsop+v73vy+HwyGHw9Ftn8zMTJa7H4CysjK7IwAwGDUCsN6QmqOKioqjvpk+OjpajY2NQzkNAADAiBlScxQdHa3a2to+9ykpKWG5+wFISEiwOwIAg1EjAOsNqTk66aST9Oabb8rj8fT4eXl5uf7+979r2rRpQznNMaWnW5MA0IkaAVhvSM3RwoUL5fF4dNttt+nDDz+Uz+eTJLW0tOjdd9/VsmXL5PP5dPXVVw9L2GNBXV2d3REAGIwaAVhvSI/yT58+XUuXLtWjjz4a9BTXRRddJEkKCwtTXl7eUeclAQAAmGLIi0Bedtllmj59up5//nl9/PHHqq+vV2xsrKZOnarvfve7+vrXvz4cOY8ZaWlpdkcAYDBqBGC9ITdHknT88cfr1ltv7fVzn88np9M5HKca9Wpra5WSkmJ3DACGokYA1hvSnKNnn332qPv4fD7dd999QzmNEYqKinTnnXfqscces/Q8ra2tlh4fQGijRgDWG9KVo0cffVRJSUmaNWtWj593dHTovvvu0/bt24dyGiO43W653W7t27fP0lehhIcPy8U8AKMUNQKw3pCuHH3rW99SQUGB3nvvvW6fdTZG27Zt03e/+92hnOaYwtu2AfSFGgFYb0jN0UMPPaQJEybo7rvv1qeffhrY3tHRoV/+8pd6/fXXddlll/U5HwnBSktL7Y4AwGDUCMB6Q2qOYmNj9fDDDysuLk633367SkpK5Pf7df/99+vVV1/V/Pnzddtttw1XVgAAAMsNqTmSjrwh+te//rU6Ojr0s5/9TD//+c/12muv6ZJLLlFeXt5wZDymxMfH2x0BgMGoEYD1htwcSdKECRO0YsUK1dTUaPv27brkkkt0++23D8ehjzlMtgTQF2oEYL0B/Ve2du3aPj+fOnWq9u/fr+Tk5KB9HQ6Hrr322sHkO+bU1NQoJibG7hgADEWNAKw3oObo6aef7td+v//974P+THMEAABCxYCao0ceecSqHPg3HtMF0BdqBGC9ATVH06dPtygGOnk8HiUnJ9sdA4ChqBGA9YZlQjaGT0tLi90RABiMGgFYj8ce+qmoqEhFRUVqaGiw9Dy8oBdAX6gRgPUcfr/fb3eIUNL5brXVq1drypQpw358v98vh8Mx7McFMDpQIwDrcVvNMCUlJXZHAGAwagRgPZojAACALmiODBMXF2d3BAAGo0YA1htSc1ReXq7GxsY+92lqalJ5eflQTnNMcblcdkcAYDBqBGC9ITVHV199tTZs2NDnPhs2bNDVV189lNMcUw4fPmx3BAAGo0YA1htSc+T3+3W0h914GA4AAIQSy+ccVVZW8pLEAUhJSbE7AgCDUSMA6w14Eci1a9cG/fn999/vcb+Ojg5VVFRo69atys7OHlS4Y1FjY6MiIyPtjgHAUNQIwHoDbo6efvrpwD87HA7t2rVLu3bt6nX/lJQUXX/99YMKdyxqbm62OwIAg1EjAOsNuDl65JFHJB2ZS7R06VLNnTtXF110Ubf9wsLClJCQoK997WsKC2PFgP5irAD0JRRrhNfr1RNPPKHPPvtMkyZN0pIlS3jqDkYbcHM0ffr0wD8vWrRIp5xyStA2DE1GRobdEQAYLNRqRH5+vgoLC+Xz+QLbli1bpry8PK1YscLGZEDvhvRXkNNPP11/+9vfVF1d3ePnVVVVevzxx7V79+6hnOaYUlxcbHcEAAYLpRqRn5+vlStXBjVGkuTz+bRy5Url5+fblAzo25Cao3Xr1umNN95QcnJyj5+npKTozTff1Pr164dyGgBAiPF6vSosLOxzn8LCQnm93hFKBPTfgG+rdbV3716ddtppfe4zbdo0vfPOO0M5jRGKiopUVFSkhoYGS88TGxtr6fEBhLa1a9fqySeftDvGUXk8nm5XjL7K5/MpNTVV8fHxI5RKysvLU15e3oidD6FpSM1RbW3tUdfcSEpKUk1NzVBOYwS32y232619+/YpNzfXsvNERUVZdmwAoa+5uTmkbq0dTX19verr60f0fMDRDKk5iouLU0VFRZ/7lJeXKzo6eiinOaZUV1crKyvL7hgADOV0OkOiRng8nn41IgkJCSN65SghIWHEzoXQNaTmKDs7W9u3b9d1112ntLS0bp+Xl5drx44dOvXUU4dyGgDAvy1evFj33Xef3TGOyuv1KiYmps9ba06nU5WVlTzWD+MMaUL2ggUL1NraqhtvvFGbN29WVVWVpCNPqW3atElLliyR1+vlxbMD0NvkdgCQQqdGuFyuo87tycvLozGCkYZ05Wj69Om68cYb9cQTT+ihhx6SdGTV7M6XzTocDt18882sgzQAzc3NzDsC0KtQqhGd6xh9dZ0jp9PJOkcwmsPf2ckMwWeffabnn39ee/fuVUNDg+Li4jR16lTNnz9fEydOHI6cxuickL169WpNmTJl2I9fXFwcEvMJANgjFGsEK2Qj1AzpylGnSZMm8WjkMHE4HHZHAGCwUKwRLpdLS5cutTsG0G+h95KeUS4zM9PuCAAMRo0ArEdzZJjS0lK7IwAwGDUCsB7NkWE6OjrsjgDAYNQIwHo0R4ZhwUwAfaFGANajOTIM71YD0BdqBGA9miPDdC6kCQA9oUYA1qM5AgAA6ILmyDBJSUl2RwBgMGoEYD2aI8O0trbaHQGAwagRgPVojgzT2NhodwQABqNGANajOQIAAOiC5sgwofZCSQAjixoBWI/myDBlZWV2RwBgMGoEYD2aI8P4fD67IwAwGDUCsF643QFCRVFRkYqKitTQ0GDpeaKioiw9PoDQRo0ArEdz1E9ut1tut1v79u1Tbm6uZeeJj4+37NgAQh81ArAet9UMU1lZaXcEAAajRgDWozkCAADogubIMGPHjrU7AgCDUSMA69EcGaa9vd3uCAAMRo0ArEdzZBiPx2N3BAAGo0YA1qM5AgAA6ILmyDCZmZl2RwBgMGoEYD2aI8NUVFTYHQGAwagRgPVojgzDZEsAfaFGANajOTJMZGSk3REAGIwaAViP5sgwiYmJdkcAYDBqBGA9miPDMJ8AQF+oEYD1aI4AAAC6oDkyzJgxY+yOAMBg1AjAejRHhuno6LA7AgCDUSMA69EcGaa+vt7uCAAMRo0ArEdzBAAA0AXNkWHS09PtjgDAYNQIwHo0R4aprq62OwIAg1EjAOvRHBmmra3N7ggADEaNAKxHc2QYl8tldwQABqNGANajOTLM2LFj7Y4AwGDUCMB6NEeGKS8vtzsCAINRIwDr0RwBAAB0QXNkGN64DaAv1AjAejRHAAAAXdAcGaaurs7uCAAMRo0ArBdud4CR5vV6VVhYqHfeeUcNDQ06/vjjddNNN+mb3/ym3dEAAIABjrkrRz6fT+np6fqv//ovbdy4UVdddZWWL1+upqYmu6NJktLS0uyOAMBg1AjAesdccxQdHa1FixYpLS1NYWFhOv/88xUeHq6DBw/aHU2SVFNTY3cEAAajRgDWM/62WlNTk/70pz9pz549+vjjj+XxeLR8+XLNnTu3275er1dr1qzRyy+/LI/Ho0mTJum6667TGWec0evxDx48KI/Ho6ysLCt/jX7zer12RwBgMGoEYD3jrxzV1dVp7dq1OnDggCZPntznvg8++KDWr1+vOXPm6JZbblFYWJjy8/P1wQcf9Lh/a2urCgoKdM011yguLs6K+AMWERFhdwQABqNGANYzvjlKTk7Wc889p2eeeUY33HBDr/vt2bNHW7du1eLFi7VkyRLNmzdPq1atUnp6up588slu+7e3t+vee+9VVlaWFi1aZOFvMDDJycl2RwBgMGoEYD3jmyOXy9WvYrBt2zY5nU7NmzcvsC0yMlI5OTnavXt30JL7HR0dKigokMPh0F133SWHw2FJ9sEoKyuzOwIAg1EjAOsZP+eovz799FONHz9esbGxQdunTp0qSdq/f3/gKY+HH35Y1dXVevjhhxUe3vcQVFVVqbq6OvDnAwcODHNyAABgklHTHFVXV/d4halzW1VVlaQjf+t68cUX5XK5gq4yrVixQtOmTev28y+88ILWrl3bbXtlZaXi4uKUkZGhqqoqtbW1KTIyUmPGjAlcpUpMTJTf71d9fb0kKT09XYcPH5bX61VERISSk5MDfwtMSEiQw+FQY2OjiouLlZaWptraWrW2tio8PFypqakqLS2VJMXHxys8PDzw1Epqaqo8Ho9aWlrkdDqVlpamkpISSVJcXJxcLpcOHz4sSUpJSVFjY6Oam5sVFhamjIwMFRcXS5JiY2MVFRUVaAaTk5PV3NyspqYmORwOZWZmqrS0VB0dHYqOjlZsbGxgXJOSktTa2qrGxkZJUlZWlsrKyuTz+RQVFaX4+HhVVlZKOvJW8fb2dnk8HklSZmamKioq1N7ersjISCUmJqqiokKSNGbMGHV0dASNYXV1tdra2uRyuTR27Nig8Zb+b5G8tLQ01dTU9DreYWFhqq2tlSSNGzdOdXV1gfEeN25cYAyPNt7p6elBYxgZGdnneJeUlMjv9ysmJkbR0dFB493S0hI0hn2Nt9frVUNDQ2AMy8vL+zXeGRkZqqysDIz30b6zXcc7KSmp23e263h3fmcjIiKUkpIS9J11Op1B411fX6+WlpZu4x0XF6eIiIig8W5oaOj1O/vV8W5qagr6znYd75iYmD6/s13HOy4uLmgM29ragsa78zsbFRWlhISEoO+sz+cLGm9qBDWCGmFGjejvw1cOv9/v79eeBti7d68WL17c49NqCxcu1IQJE7Ry5cqg7SUlJVq4cKFuuukmLViwYMDn7OnKUUFBgVavXq0pU6YM7hfpQ2NjY7erXwDQiRoBWG/UXDmKjIxUW1tbt+2dj71GRkYO6rgpKSlKSUkZUraBqK2tpfAB6BU1ArCe8ROy+ys5OTnoCk+nzm0j2eAAAIDQNWqao8mTJ+vQoUOBe7Gd9uzZE/g8FIwbN87uCAAMRo0ArDdqmqNZs2bJ5/PphRdeCGzzer3auHGjsrOzh/w+oqKiIt1555167LHHhhq1T7xxG0BfqBGA9UJiztGf//xnNTQ0BG6RvfHGG4EnFa644grFxcUpOztbs2fP1lNPPaXa2lplZWVp8+bNKisr0x133DHkDG63W263W/v27VNubu6Qj9eb1tZWy44NIPRRIwDrhURztG7duqCFz7Zv367t27dLki644ILAqz/uuusupaWlacuWLWpoaNDEiRP1q1/9StOnT7cj9qAcbd0lAMc2agRgvZB6lN8EnVeOrHqU3+/3G7ViNwCzUCMA642aOUejReciVwDQE2oEYD2aIwAAgC64ed1PRUVFKioqCizFbpX4+HhLjw8gtFEjAOvRHPXTSD2txmRLAH2hRgDW47aaYTpfpAcAPaFGANajOQIAAOiC5sgwqampdkcAYDBqBGA9miPDeDweuyMAMBg1ArAezZFhWlpa7I4AwGDUCMB6PPbQTyP1KL/T6bT0+ABCGzUCsB6vDxkgq18fAgAA7MVtNcMUFxfbHQGAwagRgPVojgAAALqgOTJMbGys3REAGIwaAViP5sgwkZGRdkcAYDBqBGA9miPDHD582O4IAAxGjQCsR3MEAADQBc2RYVJSUuyOAMBg1AjAeiwC2U8jtQhkY2MjcwoA9IoaAViP5qif3G633G53YBFIqzQ3N1t2bAChjxoBWI/baoYJC+NfCYDeUSMA6/FfmWEyMjLsjgDAYNQIwHo0R4YpKSmxOwIAg1EjAOvRHBmG9wAD6As1ArAezZFhYmJi7I4AwGDUCMB6NEeGiY6OtjsCAINRIwDr0RwZprq62u4IAAxGjQCsxzpH/TRSi0ACAAB7OfzM7huQzkUgV69erSlTpgz78VtaWhQVFTXsxwUwOlAjAOtxW80wLS0tdkcAYDBqBGA9miPDNDY22h0BgMGoEYD1aI4AAAC6oDkyTFZWlt0RABiMGgFYj+bIMKWlpXZHAGAwagRgPZojw3R0dNgdAYDBqBGA9WiODMPqtwD6Qo0ArEdzZJjY2Fi7IwAwGDUCsB7NkWGqqqrsjgDAYNQIwHo0RwAAAF3wbrV+Gql3qyUlJVl6fAChjRoBWI/mqJ/cbrfcbnfg3WpW8Xq9TLgE0CtqBGA9bqsZxuorUwBCGzUCsB7NEQAAQBc0R4bJzMy0OwIAg1EjAOvRHBmmvLzc7ggADEaNAKxHc2QYn89ndwQABqNGANajOTJMVFSU3REAGIwaAViP5sgw8fHxdkcAYDBqBGA9miPDVFZW2h0BgMGoEYD1aI4AAAC6oDkyzNixY+2OAMBg1AjAejRHhmlvb7c7AgCDUSMA69EcGcbj8dgdAYDBqBGA9WiOAAAAugi3O0CoKCoqUlFRkeUvfczIyLD0+ABCGzUCsB5XjvrJ7XbroYce0s0332zpeXhMF0BfqBGA9WiODMNkSwB9oUYA1qM5MkxkZKTdEQAYjBoBWI/myDBjxoyxOwIAg1EjAOvRHBmmvLzc7ggADEaNAKxHcwQAANAFj/IbJjEx0e4IAAxGjcBgeb1ePfHEE/rss880adIkLVmyRC6Xy+5YRqI5Mozf77c7AgCDUSMwGPn5+SosLJTP5wtsW7ZsmfLy8rRixQobk5mJ22qGqa+vtzsCAINRIzBQ+fn5WrlyZVBjJEk+n08rV65Ufn6+TcnMRXMEAMAo5fV6VVhY2Oc+hYWF8nq9I5QoNHBbzTDp6el2RwBgMGrE0BQWFh61WRhNPB5PtytGX+Xz+ZSamqr4+PgRSnV0eXl5ysvLs+38NEeGqa6u1rhx4+yOAcBQ1Iihqa+vV3Fxsd0xjFNfX2/ULVu7s9AcGaatrc3uCAAMRo0YmoSEBGVlZdkdY8R4PJ5+NRoJCQlGXTlKSEiw9fw0R4bhsUoAfaFGDI3dt2tGmtfrVUxMTJ+31pxOpyorK/ludcGEbMMkJSXZHQGAwagRGAiXy3XUZjAvL4/G6CtojgxTVlZmdwQABqNGYKBWrFih22+/XU6nM2i70+nU7bffzjpHPeC2GgAAo9yKFStUUFDACtn9RHNkGLsnoQEwGzUCg+VyubR06VK7Y4QEbqsZxuFw2B0BgMGoEYD1aI4MU1dXZ3cEAAajRgDWozkCAADogjlH/VRUVKSioiI1NDRYep60tDRLjw8gtFEjAOtx5aif3G63HnroId18882Wnqe2ttbS4wMIbdQIwHo0R4ZpbW21OwIAg1EjAOvRHBkmIiLC7ggADEaNAKxHc2SYlJQUuyMAMBg1ArAezZFhSktL7Y4AwGDUCMB6PK02QJ33+w8cOGDJ8SsrKy1/Ig5A6KJGAENz3HHHKSoqqs99aI4GqPOljwUFBTYnAQAAA7V69WpNmTKlz30cfr/fP0J5RoXa2lrt3LlTGRkZ/Xph32OPPdbvx/8PHDiggoIC3X333TruuOOGGvWYNJDxNokpuUcihxXnGK5jDuU4g/1ZasTIMuW/tcEwIftIZbCyTnDlyAJjxozRBRdc0O/94+LijtqhftVxxx034J/BEYMZbxOYknskclhxjuE65lCOM9ifpUaMLFP+WxsME7KPVAa76wQTsi3mdrvtjnBMCdXxNiX3SOSw4hzDdcyhHGewP2vKv/tjRSiPtwnZRyqD3XWC22oG2bdvn3Jzc/t1PxTAsYcaAYwMrhwZJDk5WYsWLVJycrLdUQAYiBoBjAyuHAEAAHTBlSMAAIAuaI4AAAC64FH+EOL1elVYWKh33nlHDQ0NOv7443XTTTfpm9/8pt3RABhi5cqVeuONN9TS0qK0tDQtXrxY55xzjt2xgJDCnKMQ0tzcrHXr1mnu3LlKTU3Va6+9plWrVmndunWKiYmxOx4AAxw4cCCwSO3HH3+svLw8/elPf1JiYqLd0YCQwW21EBIdHa1FixYpLS1NYWFhOv/88xUeHq6DBw/aHQ2AIY477rjA6v0Oh0NtbW2qqqqyORUQWritZqGmpib96U9/0p49e/Txxx/L4/Fo+fLlmjt3brd9vV6v1qxZo5dfflkej0eTJk3SddddpzPOOKPX4x88eFAej0dZWVlW/hoALGJVjSgsLNTGjRvl9Xp11llnaeLEiSPx6wCjBleOLFRXV6e1a9fqwIEDmjx5cp/7Pvjgg1q/fr3mzJmjW265RWFhYcrPz9cHH3zQ4/6tra0qKCjQNddco7i4OCviA7CYVTUiLy9PW7Zs0W9+8xudccYZcjgcVv0KwKhEc2Sh5ORkPffcc3rmmWd0ww039Lrfnj17tHXrVi1evFhLlizRvHnztGrVKqWnp+vJJ5/stn97e7vuvfdeZWVladGiRRb+BgCsZFWNkCSn06nTTjtN7777rt566y2rfgVgVKI5spDL5erXSrbbtm2T0+nUvHnzAtsiIyOVk5Oj3bt3q7y8PLC9o6NDBQUFcjgcuuuuu/gbIRDCrKgRX+Xz+VRcXDwseYFjBc2RAT799FONHz9esbGxQdunTp0qSdq/f39g28MPP6zq6mrdd999Cg9nyhhwLOhvjWhoaNArr7yipqYmtbe367XXXtP777+vadOmjXhmIJTxv64GqK6u7vFvj53bOp80KSsr04svviiXyxX0N8gVK1ZQ/IBRrL81wuFw6MUXX9RvfvMb+f1+ZWVl6Z577tEJJ5wwonmBUEdzZIDW1lZFRER02975OG5ra6skKT09Xdu3bx/RbADs198aERsbq0ceeWREswGjEbfVDBAZGam2trZu271eb+BzAMcuagQwsmiODJCcnKzq6upu2zu3paSkjHQkAAahRgAji+bIAJMnT9ahQ4fU2NgYtH3Pnj2BzwEcu6gRwMiiOTLArFmz5PP59MILLwS2eb1ebdy4UdnZ2UpLS7MxHQC7USOAkcWEbIv9+c9/VkNDQ+Dy9xtvvKGKigpJ0hVXXKG4uDhlZ2dr9uzZeuqpp1RbW6usrCxt3rxZZWVluuOOO+yMD8Bi1AjAPA6/3++3O8RotmDBApWVlfX42bp165SRkSHpyNMmne9Namho0MSJE3XdddfpzDPPHMm4AEYYNQIwD80RAABAF8w5AgAA6ILmCAAAoAuaIwAAgC5ojgAAALqgOQIAAOiC5ggAAKALmiMAAIAuaI4AAAC6oDkCAADoguYIAACgC5ojABgGM2fODPq/1tbWwGebNm3SzJkztWnTJhsT/p/nn38+KOt//ud/2h0JMEq43QEAmKu0tFRXX311n/ukp6dr/fr1I5TIbOnp6broooskSU6n09Jz7dy5U8uWLdMZZ5yhX//6133ue//996uoqEj33HOP5syZoylTpmjRokVqaGjQhg0bLM0JhCKaIwBHlZWVpTlz5vT4WVxc3AinMVd6erp+/OMfj8i5Tj/9dKWlpendd99VeXm50tLSetyvoaFBO3bsUFxcnGbOnClJOvHEE3XiiSeqtLSU5gjoAc0RgKPKysoasf/RR/+EhYVp7ty5Wrt2rTZv3qxrr722x/2KiorU2tqqiy++WJGRkSOcEghNzDkCMKxmzpypW265RYcPH9YDDzygSy+9VG63W9dff73ef//9Hn+mqalJv/vd7/SjH/1IbrdbF198sX72s5/pgw8+6LbvLbfcEpjTs3r1ai1cuFCzZ8/W7373u8A+27ZtU25urtxut+bPn68VK1bI4/FowYIFWrBgQWC/X/7yl5o5c6b27NnTY641a9Zo5syZKioqGuKo9KyiokLXXnut3G63Xn/99cD2mpoaPfbYY/re976n888/X5deeqnuvvtuff7550E/f/HFF8vhcGjTpk3y+/09nmPjxo2SpJycHEt+B2A0ojkCMOwaGhp044036ssvv9QFF1ygmTNnat++fVq2bFm3/4Gvr6/XDTfcoLVr1yo+Pl7z58/XzJkz9cknn+jWW2/Vjh07ejzHPffco82bN+uUU07RlVdeqYyMDEnSSy+9pHvuuUeHDh3ShRdeqIsuuki7d+9WXl6e2tvbg44xb968wM98lc/n08aNG5WYmBi4HTWcvvzySy1ZskQVFRVauXKlZs2aJUkqLi7Wddddp2eeeUaZmZm6/PLLddZZZ2nnzp264YYbghq59PR0nXbaaSopKemx8fz888+1d+9enXDCCfrGN74x7L8DMFpxWw3AURUXFwddmenqpJNO0re//e2gbfv379dll12mpUuXKizsyN/BTj31VK1YsULPPvusli1bFth31apV+uKLL5Sfn69LLrkksL2mpka5ublauXKlzjzzzG63hKqrq/X0008rISEhsM3j8ejRRx9VdHS0nnrqKU2YMEGSlJubq2XLlmnfvn1KT08P7D9t2jQdf/zx2rp1q2666SZFR0cHPtu5c6cqKyt11VVXyeVyDXTI+rR7927dcccdCg8P12OPPabJkycHPnvggQd0+PBhPfzwwzrzzDMD23/0ox8pNzdXK1as0Nq1awPbc3Jy9M4772jjxo069dRTg87DVSNgcLhyBOCoiouLtXbt2h7/7x//+Ee3/aOjo3X99dcHGiNJuuiii+R0OrV3797AttraWr322ms69dRTgxojSRo7dqy+973vqba2Vu+++263c/y///f/ghojSfrb3/6m5uZmXXzxxYHGSJLCw8N13XXX9fi7zZs3T01NTdq6dWvQ9hdffFGSdOmll/Y2LIPy1ltv6bbbblN8fLyeeOKJoMbok08+0UcffaQLL7wwqDGSpAkTJuiSSy7R559/HnT1bcaMGUpMTNS2bdvU2NgY2N7e3q6XX35ZLper18n0AHrGlSMAR3XmmWfq4Ycf7vf+48ePV0xMTNC28PBwJSUlqaGhIbBt79698vl8amtr6/HK1KFDhyRJBw4c0Nlnnx302dSpU7vt/9lnn0mSTj755G6fZWdn9/h4/YUXXqj//u//1osvvhho0A4fPqw333xT3/zmN3X88ccf5bftv9dee01vv/22Jk2apJUrV2rs2LFBn3feMqupqelxPP71r38F/v/EiRMlKdD8bNiwQUVFRZo/f74k6Y033lBtba3cbrfi4+OH7XcAjgU0RwCGXWxsbI/bnU6nOjo6An+ur6+XJH344Yf68MMPez1eS0tLt21JSUndtnVeOflq0yEdeborMTGx2/b4+HjNnj1bmzdv1ueff66JEydq06ZN8vl8w37VaPfu3fL5fDr55JN7zNg5Hm+99ZbeeuutXo/T3Nwc9OecnBxt2LBBGzduDDRH3FIDBo/mCIBtOpuoq6++WjfeeOOAftbhcPR6vJqamm6fdXR0qK6uTqmpqd0+mz9/vjZv3qy//vWvuvXWW/XSSy8pNjZWs2fPHlCmo1m8eLH+9re/acOGDXI6nd1+5878t956q6644op+H3fSpEk68cQT9fHHH+uLL75QfHy8du7cqYyMjG7zkAAcHXOOANjmxBNPlMPh0O7du4fleJMmTZKkHq9Cffzxx/L5fD3+3EknnaRJkybplVde0c6dO3Xo0CHNmTNHUVFRw5Krk8vl0gMPPKDvfOc7WrdunR5//PGgzztvFQ5mPDqvEL300kvasmWLfD5f4FF/AANDcwTANsnJyZo9e7Y++ugj/e///m+Pa/Xs2bOnx9tqPTn33HMVHR2tl156ScXFxYHt7e3tWrNmTZ8/O2/ePNXX1+uhhx6SpG4TxIeLy+VSQUGBzj77bK1fv16PPfZY4LPs7GxlZ2dr69at3SaIS0eufu3atavH47rdbkVFRenll1/Wxo0bFRYWFniVCYCB4bYagKPq61F+SbrmmmsGvfpyXl6eDh48qCeffFJbtmzRSSedpLi4OFVWVmrv3r06dOiQnnvuuX5dxYmPj9dNN92klStXKjc3V+edd55iY2P197//XS6XSykpKb1eSbngggv029/+VlVVVZoyZYql6wJFRETol7/8pe69914988wz8vv9uuWWWyRJ9957r5YuXar77rtPGzZs0AknnKDIyEhVVFToo48+Ul1dXY+LUsbGxuo//uM/tGXLFtXW1urb3/52r68UAdA3miMAR9X5KH9vrrrqqkE3RwkJCXriiSf07LPP6tVXX1VRUZE6OjqUlJSkyZMn69prr+1xInVvLr30UsXHx+sPf/iDNm/erNjYWJ1zzjm6/vrrddVVVykrK6vHn4uNjdWMGTP08ssvW3bVqKvOBunnP/+5NmzYIL/fr1tvvVWZmZlas2aN1q1bpx07dmjTpk0KCwtTcnKypk2bFlgssic5OTnasmWLpCOrZwMYHIe/tzXnAWAUOXTokL7//e9r9uzZuu+++3rc59prr1VZWZmeffbZXp+4683MmTM1ffp0Pfroo8MRd0SUlpbq6quv1kUXXaS77rrL7jiAMbhyBGBU8Xg8ioyMDFrVurW1NTD5ecaMGT3+3N///nd98cUXuvTSSwfcGHXatWtX4FUjr7zyirEven3++ef161//2u4YgLFojgCMKrt27dKvfvUrnXHGGRo3bpzq6ur03nvvqaysTKeeeqrOO++8oP3/8pe/qKKiQi+++KJcLpeuueaaQZ130aJFQX/uacFJU0yZMiUo7wknnGBfGMBA3FYDMKocPHhQa9as0UcffaTa2lpJUlZWls477zwtXLiw29WcBQsWqLKyUhMmTND111/fbSVuAMcemiMAAIAuWOcIAACgC5ojAACALmiOAAAAuqA5AgAA6ILmCAAAoAuaIwAAgC5ojgAAALqgOQIAAOji/wNjUzOXYjZAWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAG5CAYAAAAeUIXbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0VUlEQVR4nO2deXgUVfb+3+500tlYQxZI2DcBgcgioIIsEWEYEURAwHEQARVFFJHNwUHQQQaEQVFQQdCvC4sMLoggQQQFREAQhkAEWWTLTkI6ezr9+yO/Kqs7vVR113Kr63yeh+dpeqv75nZXvX3OueeaHA6HAwRBEARBEIRhMGs9AIIgCIIgCEJdyAASBEEQBEEYDDKABEEQBEEQBoMMIEEQBEEQhMEgA0gQBEEQBGEwyAASBEEQBEEYDDKABEEQBEEQBoMMIFGD0tJSpKeno7S0VOuhEARBEAShAGQAiRpcunQJkyZNwqVLlxR5/5s3byryvnrAyNoB0m9k/UbWDpB+0s+efjKAhOoUFhZqPQTNMLJ2gPQbWb+RtQOkn/Szp58MIKE6derU0XoImmFk7QDpN7J+I2sHSD/pZ08/GUCCIAiCIAiDQQaQUJ2CggKth6AZRtYOkH4j6zeydoD0k3729Fu0HgBBEARBEMpgt9tRUVGh9TBQWVlp6M4ScusPCQmBxWKByWTy+z3IABKqEx8fr/UQNMPI2gHSb2T9RtYOaKPfZrPhypUrcDgcqh/bFYfDgQsXLmg9DM1QQn9kZCQaNmyIsLAwv15PBpBQnRs3biA2NlbrYWiCkbUDpN/I+o2sHVBfv91ux5UrVxAZGYnY2NiAIkVyUFFRgdDQUE3HoCVy6nc4HCgvL0d2djYuXLiA1q1bw2yWXtFHBpBQnfLycq2HoBlG1g6QfiPrN7J2QH39FRUVcDgciI2NRUREhKrHdofZbPY7UhUMyK0/IiICoaGhuHTpEsrLyxEeHi59TLKNhiBEYuRfgUbWDpB+I+s3snZAO/1aR/44WBmHViih35+on9PrZRoHQYgmJiZG6yFohpG1A6TfyPqNrB0g/RaLsROOLOonA0ioTkZGhtZD0AwjawdIv5H1G1k7QPrVWoncrFkzHD9+HAAwceJE7Nmzx+dr5s+fj2effdbtY8ePH8eGDRsCHhcLK7FdIQNIEARBEITqVFZWKvr+a9asQb9+/QJ6D7kMoBCldYuFvZgkEfTUrl1b6yFohpG1A6TfyPqNrB1gQ3+3bt0UjUQmJCTgyJEjbh8LCQkBUF0L99JLL2H79u3o27cvHnnkETz55JMoLi5GaWkpxo4di3/84x8AgMTERBw+fBiNGjXCqFGjcOXKFRw4cABlZWVo1KgRrl27BqvV6nE8ffv2xbPPPothw4bh+vXr+Pvf/44rV64gKSkJ9evXxy233IL58+cDAK5fv4777rsPv//+OxISEvDZZ5+hsrISL730EgoKCpCcnIyePXti9erVOHjwIF544QUUFhbC4XBg4cKFuP/++9GsWTN8/vnnSE5OBlD99166dCn69u2Le+65B507d8bhw4cRERGBli1bom3btpgxYwYA4MKFC+jVqxcuX74MAJg3bx6+++47lJeXo02bNnjnnXdQr149OaaJhwwgoTqBFq7qGSNrB0i/kfUbWTvAhv6MjAxcvXpV62EgJCQEhw8fBgAUFhZi9+7dsFqtKCkpwR133IGUlBT07NkTAwYMQGpqKh5++GH8+uuvsFgsuHnzJg4fPoyuXbt6NX+uPPPMM+jVqxdefvllZGRkIDk5Gbfccgv/+KFDh3D06FHExMTgoYcewjvvvIM5c+ZgwYIF+Pzzz/H5558DAPLy8jBs2DB89tln6N27N6qqqpCfny9qDL/99hv27duH0NBQHDhwAJMnT+YN4Pr16zFu3DiEhobiX//6F6KiovDzzz8DABYuXIh//OMfeOutt0TrFQMZQEJ18vPzERUVpfUwNMFVe05ODrZv3457773XEI1yjTz3gLH1G1k7wIb+hIQEzd7fbrfzUcAJEybw95eUlGDKlCk4fvw4zGYzLl++jOPHj6Nnz55ISUlBamoqOnTogM6dOyM+Ph7ff/89Dh48iAEDBkga2+7du7F06VJ+nH/961+dHh80aBC/UKdXr144efKk2/c5ePAg2rZti969ewOoNvb169cXNYaHH36YXw1+xx13oLKyEocPH0a3bt3w4Ycf4quvvgIAfP755ygoKMCWLVsAVLcQatasmSS9YiADSBAa8uijj2Lbtm3o168fvvvuO62HQxBEEOMpPas20dHR/O25c+eiQYMGOHbsGCwWCx544AF+y7SUlBTMmTMH7du3R0pKCuLj45GamoqDBw9i1apVAY3BtS2LsI9eSEiIX3V6FosFdrud/7/r1m9C3UD1+X/dunWw2Wxo0KABbr31VgDVjZ7ffPNNDBw4UPIYpKB9TJowHHFxcVoPQTNctR89ehQAcOzYMS2GozpGnnvA2PqNrB0g/Z7aoNy4cQNJSUmwWCxIT0/Hrl27+McaNWqEOnXqYPXq1UhJSUG/fv2wbds2XLx4EV26dJF0/P79+2P9+vUAgMzMTGzbtk3U62rXro2CggL+/3fccQfOnj2LH374AQBQVVWFvLw8AECrVq1w6NAhAMDPP/+M9PR0/nXu+gD+7W9/w+bNm7F69WqnqOiwYcOwfPlyFBcXAwCKi4tx6tQpCWrFQQaQUB3hl8louGq/efMmgOo0iBEw8twDxtZvZO0A6RdGxoT84x//wLp169CpUyfMnj0b/fv3d3o8JSUFZrMZLVq0QO3atZGQkIA+ffpIrqlcsWIFfvjhB7Rv3x7jxo1Djx49ULduXZ+vGzBgAMrKytCpUyc88cQTqFevHrZu3YrZs2ejU6dO6NKlC/bv3w8AeOWVV/DWW2+hc+fOeP/999GhQwf+fdztx9yoUSPcfvvt+PLLLzFmzBj+/lmzZqF79+7o0aMHOnXqhJ49e/KtbeTE5GBhl2iCKdLT0zFp0iS89957aNu2rezvf/XqVSQmJsr+vnpAqL2qqoqviQGqT5AsFIoriZHnHjC2fiNrB9TXX1paigsXLqB58+Z+bRMmN+Xl5ZpuBVdSUoLQ0FBYLBbk5uaiZ8+e+Oijj9CjRw9Vjq+E/kDnmGoACdVhsSO6Wgi122w2p8dKS0sRGRmp9pBUxchzDxhbv5G1A6Rf663gzp49i0ceeQQOhwPl5eWYMmWKauYP0F6/O4z9iSQ0wci1MELthYWFTo+VlJQEvQE08twDxtZvZO0A6dfaAHfq1EmRNKpYtNbvjuDONxFMcu3aNa2HoBlC7Vz9H4cR6gCNPPeAsfUbWTugnX5WqrxY3ApNTZTQH+jckgEkCI1wFwEkCIKQA66+uLy8XOOREErBrRLmegtKhb2YJBH01KpVS+shaIZQuxENoJHnHjC2fiNrB9TXb7FYEBkZiezsbISGhmq+wMxut6OqqkrTMWiJnPodDgeKi4uRlZWFunXrOi0mlAIZQEJ1WKyFUAuhdiOmgI0894Cx9RtZO6C+fpPJhIYNG+LChQu4dOmSqsd2R1VVleYmVEuU0F+3bt2Adncx9jeS0IQbN24E/WIHTwi1GzECaOS5B4yt38jaAW30h4WFoXXr1kykgTMzMw2x3aUn5NYfGhrqd+SPgwxgELNkyRLs378fpaWliI+Px+TJk3HnnXdqPSzi/2NEA0gQhLqYzWYm+gBaLBYmxqEVLOonAxjEjBo1CtOmTUNYWBhOnz6N6dOnY8OGDahTp46m44qNjdX0+Foi1G5EA2jkuQeMrd/I2gHST/rZ02/chLwBaNq0Kd953GQyoaKiAjk5ORqPqqbxMRJC7UasATTy3APG1m9k7QDpJ/3s6ddFBLC4uBgbNmxAWloaTp8+jcLCQsyZMweDBw+W/F4ffvgh1qxZg+bNm+ODDz5Q7DhSkXrs8vJyrF27Ft9++y0KCwvRsmVLTJw4Ed27d3d63rJly7B9+3aUl5ejZ8+eaNGiheJafFFaWqr1EDRDqN2IEUAjzz1gbP1G1g6QftLPnn5dRAALCgqwfv16XLp0Ca1atfL7fbKysvDRRx8hIiJC0eP4g9RjL1q0CJs2bcI999yDZ555BmazGTNnzsSJEyecnjd9+nTs3LkTy5cvR/fu3ZnYjibQwlU9I9RuRANo5LkHjK3fyNoB0k/62dOvCwMYExODrVu3YvPmzXjyySf9fp+3334b7du3R9u2bWU/TmFhIfbu3evx8dTUVK8XeCnHTktLw+7duzF58mRMmTIFQ4cOxX/+8x8kJCRg1apVNZ4fEhKCrl274ujRozh48KB4UQoRyLJ1vSPUbkQDaOS5B4yt38jaAdJP+tnTrwsDGBYWhpiYmIDe4/jx49i7dy+mTp2qyHG2bt2K+fPnY9++fTUe27ZtGxYsWIAdO3bIcuy9e/ciJCQEQ4cO5e+zWq0YMmQITp06hczMTLevs9vtuHr1qqhjKAkLY9AKoXYj1gAaee4BY+s3snaA9JN+9vTrwgAGit1ux4oVKzBkyBC0bNlSkWOMHTsWPXv2xIIFC3D06FH+/r179+L111/HwIEDMWzYMFmOdfbsWSQlJSEqKsrp/nbt2gEAzp07B5vNhl27dqG4uBiVlZXYs2cPjh07hs6dO8syBiJwjBgBJAiCINhAF4tAAuWLL75AZmYmli9frtgxLBYL5s+fjxdeeAFz587F8uXLUVJSgoULF6JHjx6YPXu2bPV3ubm5bqOF3H05OTkwmUzYtm0bli9fDofDgcTERMybNw+tW7f2+L6pqalITU2FzWaTZZyecDWuRkKo3YgG0MhzDxhbv5G1A6Sf9LOnP+gNYEFBAd5//3088sgjqFu3rqLHslqtWLRoEaZNm4aZM2eioqIC7dq1w8svvyzrNkBlZWVuN3/mWr6UlZUhKioKK1askPS+KSkpSElJQXp6OiZNmiTLWN1htVoVe2/WEWo3ogE08twDxtZvZO0A6Sf97OkP+hTwmjVrUKtWLYwYMUKV40VFRWHKlCm4efMmSkpKMHXqVNkn3mq1oqKiosb93HY/LH7QhOTl5Wk9BM0QajdiDaCR5x4wtn4jawdIP+lnT39QG8DLly/jq6++woMPPoicnBxcv34d169fR3l5OSorK3H9+vUaF+FAuXbtGhYuXIgmTZogISEB8+bNk735ckxMDHJzc2vcz93XoEEDWY9HyI/D4TBkBJAgCIJgg6A2gDk5OaiqqsKKFSswevRo/l9aWhouX76M0aNHY/369bIeb/r06bBYLFi2bBlef/11lJaW4vnnn5fVaLZq1QpXrlxBUVGR0/1paWn84yxjZIPKaS8pKUFVVZXTY0YwgEaee8DY+o2sHSD9pJ89/UFVA1haWorMzEzUqVMHdevWRfPmzfHqq6/WeN6aNWtQXFyMZ555Bo0aNZLl2IWFhZgxYwZKSkqwcuVKxMXFAQCWLl2KadOmYdasWVi2bJnHJtRS6Nu3LzZs2IAvv/wSY8aMAVCd/t2+fTvat2+P+Pj4gI+hJEVFRcynqZWC0+5uWyAjGEAjzz1gbP1G1g6QftLPnn7dGMAtW7bAZrPxac79+/cjKysLADBixAhER0fj9OnTmDZtGsaPH48JEyagbt266N27d4332rx5MwC4fUzMcdyxdetWZGVl4Y033kDjxo35+1u3bo3XXnsNzz//PHbs2IHhw4cHpBEA2rdvj379+uHdd99Ffn4+EhMTsWPHDmRkZGDWrFle/opsYASj4wlOu7uIsBH+LkbQ6A0j6zeydoD0k3729OvGAG7cuBEZGRn8//ft28c3XR44cKBHY6bWccaOHYvevXujefPmNR7r1KkTVq9e7XMfXinHnjt3LuLj47Fz507YbDa0aNECixcvRnJysmitWmE2B3XlgVc47UaNABp57gFj6zeydoD0k3729JscDodD60EQbMG1gXnvvfc8bptHBMbevXvRt29fp/vatGmD9PR0bQZEEARBGAr2LCkR9Fy7dk3rIWgGp92oEUAjzz1gbP1G1g6QftLPnn4ygITqGDnozGk3ag2gkeceMLZ+I2sHSD/pZ08/GUBCdSIjI7UegmZw2o0aATTy3APG1m9k7QDpJ/3s6ScDSKiOHK1w9Aqn3ZMBZPFXopwYee4BY+s3snaA9JN+9vSTASRUx90uJkaB0+7OAFZVVbnd4i+YMPLcA8bWb2TtAOkn/ezpJwNIEBogrAEUtvcxQhqYIAiC0B4ygITqxMTEaD0EzeC0CyOA3K4xQPAbQCPPPWBs/UbWDpB+0s+efjKAhOqUlpZqPQTN4LQb1QAaee4BY+s3snaA9JN+9vSTASRUp6ioSOshaAanXWgAhXs3B7sBNPLcA8bWb2TtAOkn/ezpJwNIEBogrAGMjY3lbwe7ASQIgiDYgAwgoTqJiYlaD0EzOO1cBNBqtaJ27dr848FuAI0894Cx9RtZO0D6ST97+skAEqpz/fp1rYegGZx2zgDWrl3bqT9UsBtAI889YGz9RtYOkH7Sz55+MoCE6lRVVWk9BM3gtHMp4Fq1ahnKABp57gFj6zeydoD0k3729JMBJFSHxY7oauG6E4jRDKCR5x4wtn4jawdIP+lnTz8ZQEJ1oqKitB6CZkRFRaG8vBzl5eUAjGcAjTz3gLH1G1k7QPpJP3v6yQASqpOTk6P1EDQjJyfHqQWM0WoAjTz3gLH1G1k7QPpJP3v6yQAShMoIW8AYLQJIEARBsAEZQEJ16tevr/UQNKN+/fpOEUCjGUAjzz1gbP1G1g6QftLPnn4ygITqcPVvRqS8vNzQBtDIcw8YW7+RtQOkn/Szp58MIKE6NptN6yFohs1mM3QNoJHnHjC2fiNrB0g/6WdPPxlAglAZqgEkCIIgtIYMIKE6jRo10noImtGoUSNDp4CNPPeAsfUbWTtA+kk/e/rJABKqk5mZqfUQNCMzM9PQBtDIcw8YW7+RtQOkn/Szp58MIKE6drtd6yFoht1uN3QNoJHnHjC2fiNrB0g/6WdPPxlAQnXCw8O1HoJmhIeHG7oG0MhzDxhbv5G1A6Sf9LOnnwwgoTq1atXSegiaUatWLUOngI0894Bn/WVlZfjpp59QUVGh8ojUg+ae9BsZFvWTASRUJzs7W+shaEZ2dnaNFHBoaCjM5uqvYrAbQCPPPeBZ//Dhw9GrVy88+eSTKo9IPWjuSb+RYVE/GUCCUBnXCKDJZOKjgMFuAAn3fPfddwCArVu3wuFwaDwagiCMABlAQnXq1aun9RA0o169ejVqAAEYxgAaee4B9/rLy8tRVlYGAMjLy0NWVpbaw1IFmnvSb2RY1E8GkFCdyspKrYegGZWVlXwEMCQkhC8MNooBNPLcA+71CyPCAHDq1Cm1hqMqNPek38iwqJ8MIKE6rhc8I1FYWMjrr127NkwmEwDjGEAjzz3gXr9RDCDNPek3MizqJwNIECrDnQiEq8KMYgCJmrheGNLS0jQaCUEQRoIMIKE6DRs21HoImtGwYUO+BtCdASwvL2eyYahcGHnuAff6jRIBpLkn/UaGRf1kAAnVYXE5vFpkZGSguLgYgHsDCAClpaWqj0stjDz3gHv97gxgMK4Eprkn/UaGRf1kAAnVYbEYVi0KCgr427Vr1+ZvG6UZtJHnHhC3CCRYVwLT3JN+I8OifjKAhOpYrVath6AZwp0ePEUAg9kAGnnuAff63RWHB2MamOae9BsZFvWTASRUp27duloPgQmMaACNPvfu9LszgMG4EITmvq7WQ9AU0l9X6yHUgAwgoTqZmZlaD0EzLl26xN82ogE08twD7vUbJQJIc0/6jQyL+skAEoSKFBUV8beNWANI1MQoBpAgCLYgA0ioTp06dbQegmZUVVXxt40YATTy3APu9XsygMG2EpjmnvQbGRb1kwEkVCfYLmxScLcPMGAcA2jkuQfc6xd+Jpo0aQIgOFcC09yTfiPDon4ygITqCC94RiMnJ4e/bUQDaOS5B9zrF0YAe/bsyd8OtjQwzT3pNzIs6icDSBAqQjWAhCueDGAwrgQmCIIdyAASqpOQkKD1EDRDmAYQRgAjIyP528FsAI0894B7/ZwBNJlM6N69O39/sEUAae5Jv5FhUT8ZQEJ1cnNztR6CZgi3AzJiCtjIcw+4188ZwOjoaHTo0IG/P9gigDT3pN/IsKifDCChOsLdMIyG0ReBGHnuAff6OQNYq1Yt1KtXj980PthWAtPck34jw6J+MoCE6oSFhWk9BM0oLi7mbxuxBtDIcw+41y80gAD4KGBubm5QrQSmuSf9RoZF/WQACdWpX7++1kPQjNLSUv62ESOARp57oKZ+h8MBm80GoKYBBIIrDUxzT/qNDIv6yQASqpORkaH1EDQjLy+Pvx0VFcXfNooBNPLcAzX1FxcX883BOQPYvn17/vFgWghCc0/6jQyL+skAEoSKcG1goqOjYTb/+fUzigEknBG2gHEXAQwmA0gQBFuQASRUR1j7ZjS4GkDXv4FRDKCR5x6oqd/doiBhBDCYUsA096TfyLConwwgoTomk0nrIWiGa8E/h1EMoJHnHqip310EMFhXAtPck34jw6J+MoCE6hQUFGg9BE1wV/DPYRQDaNS553DVLzSAwgiBcCWwsHeknqG5J/1GhkX9ZAAJQiXcFfxzGMUAEs64iwACwbsQhCAIdiADGOQsWbIEw4YNw6BBg/D3v/8d+/fv13pIiI+P13oImuAp2gMA4eHh/O1gNoBGnXsOV/2eDGAwLgShuSf9RoZF/WQAg5xRo0Zh06ZN2LFjB2bPno1XXnlF81B0fn6+psfXCk+7gADV9SGcCQxmA2jUuedw1S/GAAbLQhCa+3yth6AppD9f6yHUgAxgkNO0aVO+A7nJZEJFRQVycnI0HVNZWZmmx9cKTxd7Di4NHMwG0Khzz+Gq30gpYJp70m9kWNRv0XoAclNcXIwNGzYgLS0Np0+fRmFhIebMmYPBgwdLfq8PP/wQa9asQfPmzfHBBx8oMNo/kTru8vJyrF27Ft9++y0KCwvRsmVLTJw4Ed27d6/x3GXLlmH79u0oLy9Hz5490aJFC0W1+CI0NFTT42uFGAN448aNoDaARp17Dlf9nj4T3Erg69ev8yuBWVxFKAWae9JvZFjUH3QRwIKCAqxfvx6XLl1Cq1at/H6frKwsfPTRR07F+UoiddyLFi3Cpk2bcM899+CZZ56B2WzGzJkzceLEiRrPnT59Onbu3Inly5eje/fuml9IGjRooOnxtcJbDSBgjAigUeeew1W/tx8FXBQwWFYC09yTfiPDov6gM4AxMTHYunUrNm/ejCeffNLv93n77bfRvn17tG3bVtTzCwsLsXfvXo+Pp6amer2wSxl3Wloadu/ejcmTJ2PKlCkYOnQo/vOf/yAhIQGrVq1y+5qQkBB07doVR48excGDB0VpUorr169renyt8FYDCBjDABp17jlc9XszgMG2EITmnvQbGRb1B50BDAsLQ0xMTEDvcfz4cezduxdTp04V/ZqtW7di/vz52LdvX43Htm3bhgULFmDHjh0eXy9l3Hv37kVISAiGDh3K32e1WjFkyBCcOnUKmZmZHl9rt9tx9epVUcch5EVKDWCwNP8lvGMkA0gQBFsEnQEMFLvdjhUrVmDIkCFo2bKl6NeNHTsWPXv2xIIFC3D06FH+/r179+L111/HwIEDMWzYMFnGePbsWSQlJSEqKsrp/nbt2gEAzp07BwCw2WzYtWsXiouLUVlZiT179uDYsWPo3LmzLOPwF3fmxwiITQE7HA6Ul5erNi41Mercc7jq9xYVDrYt4WjuSb+RYVF/0C0CCZQvvvgCmZmZWL58uaTXWSwWzJ8/Hy+88ALmzp2L5cuXo6SkBAsXLkSPHj0we/Zs2WrvcnNz3UYLufu4Vb4mkwnbtm3D8uXL4XA4kJiYiHnz5qF169Zu3zc1NRWpqan8bhVKERISouj7s4rYCCBQHQW0Wq2qjEtNjDr3HK76jRQBpLkn/UaGRf1kAAUUFBTg/fffxyOPPIK6detKfr3VasWiRYswbdo0zJw5ExUVFWjXrh1efvllWCzy/anLysrcriji2r1wy82joqKwYsUK0e+bkpKClJQUpKenY9KkSfIM1g35+fk1opdGQGwNIFBtAP35DLKOUeeew1U/ZwDDwsJqGH7hSuBgiADS3JN+0s+WfkoBC1izZg1q1aqFESNG+P0eUVFRmDJlCm7evImSkhJMnTpV9kiO1WpFRUVFjfu5tGEwRo6CAakRQCL44T4TntJDXBo4JycHWVlZqo2LIFjA4XDgscceQ+/evXHx4kWthxN0kAH8/1y+fBlfffUVHnzwQeTk5OD69eu4fv06ysvLUVlZievXrztFcDxx7do1LFy4EE2aNEFCQgLmzZsne+PlmJgY5Obm1rifu4/F5eZC4uLitB6CJoitAQSC1wAade45XPX7MoDBlAamuSf9Ujl8+DDef/99/Pjjj1izZo0Co1IPFuefDOD/JycnB1VVVVixYgVGjx7N/0tLS8Ply5cxevRorF+/3ud7TJ8+HRaLBcuWLcPrr7+O0tJSPP/886LMo1hatWqFK1euoKioyOl+Lk0USP9DNZDzb6EnKAJo3LnncNUvNgII6H8hCM096ZeKsP+lt+4WeoDF+TdsDWBpaSkyMzNRp04d1K1bF82bN8err75a43lr1qxBcXExnnnmGTRq1Mjj+xUWFmLGjBkoKSnBypUrebe/dOlSTJs2DbNmzcKyZctkaSzdt29fbNiwAV9++SXGjBkDoDr9u337drRv357JTaeFlJaWaj0ETZBaAxiMGHXuOYT6Kysr+f8bIQJIc0/6pSL80az1HvaBwuL8B6UB3LJlC2w2G58S3b9/P18/M2LECERHR+P06dOYNm0axo8fjwkTJqBu3bro3bt3jffavHkzALh9TMjWrVuRlZWFN954A40bN+bvb926NV577TU8//zz2LFjB4YPHx7QuIHqqEC/fv3w7rvvIj8/H4mJidixYwcyMjIwa9YssX8mzZBzQYye4E5m4eHhbv8GRjCARp17DqF+XxFhILj2BKa5J/1SEXak0LsBZHH+2RuRDGzcuBEZGRn8//ft28c3aB44cCBvpORk7Nix6N27N5o3b17jsU6dOmH16tU+9+CVMu65c+ciPj4eO3fuhM1mQ4sWLbB48WIkJyfLI0hBWKyFUAPugu+u/g8whgE06txzCPWLMYD169dHQkICMjIydJ8Cprkn/VIJpgggi/MflAZw06ZNPp9z2223ud21w5U33nhD1DEtFotb88chpqm0mHFzWK1WTJkyBVOmTBH9Gla4du0aEhMTtR6G6viq9zKCATTq3HMI9YsxgEB1GjgjI4NfCczihUQMNPekX6r+YDKALM4/LQIhCJXgagCNbACJPxFrAIMpDUwQUhCmgPPz87UbSJBCBpBQHSVS8KxTVlbG9240sgE04twLEer3tSiIQ7gQRM9pYJp70i+VYIoAsjj/ZAAJ1XG3i0mw46sHIGAMA2jEuRci1C82AigsH7ly5YoyA1MBmnvSLxVhBLCkpMTtBgh6gcX5JwNIqM6NGze0HoLqiLnYG8EAGnHuhQj1i/lRAACxsbH8bWFfNL1Bc0/6pSL8jgD6jgKyOP9kAAlCBcSk+4xgAIk/ERsBDBYDSBBSEUYAAX0bQBYhA0iojvCCZhQoAliNEedeiFC/WAMo3NpRzwaQ5p70S8U1AqjnhSAszj8ZQEJ1XH/VGQGqAazGiHMvRKhfrAEMCwtDnTp1AOjbANLck/5AX6PnCCCL808GkFCdYDU33qAUcDXBqkssQv1iDSDwZ/RAzwaQ5p70SyWYagBZnH8ygITqmM3G+9hRCrgaI869EKF+fwxgQUEBysvLlRmcwtDck36pBJMBZHH+2RsREfQ0bNhQ6yGoDhnAaow490KE+v0xgACQk5Mj/8BUgOae9EvB4XAEVQqYxfknA0ioztWrV7UegupQDWA1Rpx7IUL9/hpAvaaBae5JvxTKyspQWVnpdJ+eF4GwOP9kAAlCBagGkHBFaAB97RIg3P83KytLsTERBCu4WzSh5wggi1j8edHo0aMDPvDIkSPx4IMPBvw+hP6IiorSegiqIybaY7FYYLFYUFlZGbQG0IhzL0Son/tREBUV5bM+KBgigDT3pF8KrvV/gL4NIIvz71cEMCMjA4WFhXA4HH79y8zMZHJJNKEOVqtV6yGojth0HxcFDFYDaMS5FyLUz30mfKV/geAwgDT3pF8KwRYBZHH+/YoAAsCoUaMwfvx4v1579913+3tYIgjIy8tDYmKi1sNQFbHbfkVERKCwsDBoDaAR516IUD/3mfD2eeAIBgPoOve7d+/GP//5Tzz22GN49NFHNRyZOtBnX5r+YIsAsjj/VANIECogpgYQCP4IIFGNw+EwXATQlXnz5mH//v147rnntB4KwSDBFgFkEb8igP/3f//Hd6bX4vWEvhFubWUUuIu9xWLxmgoIdgNoxLkXwukvKSlBVVUVAOMYQNe5v3jxIoDqi3pZWRmTKTI5oc++NP3uIoB6XgXM4vz7FQFs0qRJQAYu0NcT+qa4uFjrIagOdzKLjo6GyWTy+LxgN4BGnHshnH4pLWCA4DCAwrmvqqpy0iGMkAcr9NmXpj/YIoAszj+lgAnVYfGLoDRCA+gNzgBWVFTAbrcrPi61MeLcC/HXAIaHh/OfnWAwgDdu3HDq8eYu2hNs0Gdfmv5gqwFkcf5lNYCFhYXYsWOHnG9JBCHeImDBChfhEGsAgeCMAhpx7oVw+qUaQED/+wEL5z4zM9PpMSNEAOmzL02/OwNYVlaGsrIyuYakKizOv6wGMDMzE6+99pqcb0kEIY0aNdJ6CKoi7OtXr149r88NdgNotLl3hdMfiAHMy8ursUOCHhDOvWszayMYQPrsS9MvTAELz4t6jQKyOP+SDGBmZqbXf3rdo5JQl2vXrmk9BFURnsjCwsK8PjfYDaDR5t4VTr8/BlC4G0hubq68A1MB4dwbMQJIn31p+oXfkaSkJP62XheCsDj/klYBjxo1ymsY0+FwMBnmJNjC4XBoPQRVkbLlV7AbQKPNvSuc/kAigEB1Gjg+Pl7ewSmMcO5dI4BGqAGkz740/cIfzomJiTh79iwA/UYAWZx/SQawVq1aeOyxx5CcnOz28UuXLmH+/PkyDIsIZiIjI7UegqoIoxu+Vr8HuwE02ty7wukX2xdSiNAA6nE/YOHcax0B/Prrr3Hu3DlMnjzZ6TunJPTZl6bfUwRQrwaQxfmXZADbtGmDwsJCNG/e3O3jdrudSZdLsAWLXwQlEZ7IjF4DKGbuFy1ahG3btuGNN95A165dVRiVenD65YgA6g1WDODFixcxdOhQVFVVwWKx4KmnnlLluEY777kiVb9rBJCDDKB8SKoBHDZsGBISEjw+Hh8fj9mzZwc8KCK4MVqtqPBib7F4/80V7AbQ19zn5OTgxRdfxIEDB/DEE0+oNCr14PSL3RpQiN4NoHDutUwBnz59mm/CnZ6ertpxjXbec0Wq/mCLALI4/5IigH369PH6eK1atTB48OCABkQQwYbwRBYVFeX1ucFuAH1x6dIlPotw5MgR/PLLL+jSpYvGo5IfI0YAhWgZAbxx4wZ/24jfMb3ARQCtVqvTLhp6XQTCItQImlCd+vXraz0EVRFe3IQrOd0R7AbQ19xfvnzZ6f/vvPOOksNRHU6/EQ2gcO6NaACNdt5zRap+4V7ZwtppvUYAWZx/MoCE6ui1kae/CC/24eHhXp8b7AbQ19xfuXLF6f+ffPJJUK0Q5fQb0QAK517LPoBaGUCjnfdckapfuHtSMBhAFuc/YAPYt2/fGr/aCcIbRUVFWg9BVYQXe6P3AfQ1964G0Gaz4ZNPPlFySKrC6TeiAeS022y2GttiqWnytTKARjvvuSJVP5cCDpYIIIvzH7ABpFW/BOEdqgEUj7sfk++8807QnWf8MYBRUVH850OPBpDDNf0LaBcBZHF/VsJ596To6GjUrVuXf0yvBpBFKAVMqI5wSb8REF7cWrRo4fW5wW4Afc29MAJ46623AgCOHTuGw4cPKzouteD0cwbQYrHAarWKfr2e9wPmtLvrYWiEFLDRznuuSNEvjJa5RgD1ugiExfknA0iozvXr17UegqoIoz2+LjjBbgB9zT1nAOvVq4dnn32Wvz9YFoNw+oUF7lJ2T+IWEeXm5vKtTPQCp91dBFDNFLDQQKj5HTPaec8VKfpdd0+KiopCSEgIAP1GAFmcfzKAhOro7cIVKJQC/hNvc+9wOHgDmJSUhIceeojvkbdhwwbdnviFcPqFBlAKXASwqqoKeXl5ol6zZMkSdOzYEd9++62kY8kNp52lFLCa3zGjnfdckaJf2ASa+5HEnQv0eh5gcf7JABKqo9bWS6wgNIDCflbuCHYD6G3us7OzUV5eDgBo3LgxoqKi8PDDDwOortX66KOPVBmjknD6OcPjrwEExKWBS0pKMHfuXPzvf//D4sWLJR1Lbjjt7lLAhYWFqtV5amUAjXbec0WKfnf7p3NpYL0aQBbnnwwgoTrcF9oocBd7k8mE+Ph4r88NdgPobe6F9X9c5//HH3+cvy8YFoNER0c7FbgHYgDF7Ad88eJFVFZWAtC+bpCbe2EEkLuvqqpKtQUZWi0CMdp5zxUp+l0jgAD4hSAFBQW6PA+wOP9kAAnV0fpCpDbCfla+tgMKdgPobe7dGcBOnTqhV69eAICTJ0/ip59+UnaACpOdne10cRO7DRyH1AjgxYsX+dta91Pkxis0rq1ateJvq5EGrqyslFSTKyd6Pu9VVFTg+++/D+gzJEW/u1XyXASwoqICpaWlfo9DK1ic/4AN4NixYyWfxAjCSHAnMzHfk2A3gN5wZwAB5yjg6tWrVR2TEvjTAoZDqgG8cOGC2+NqiTACqLYBdF1BWlpaKms06fDhw+jZsyfatWuHP/74Q7b31ZqpU6eiX79+GDJkiCrHE/5Ick0BA/pdCcwaARvAxx9/3GliCMIX9erV03oIqiIs+PelPdgNoDf9wh6AjRs35m+PGjWKT/9s2rTJKYWnN+rVq6eqAWQpAsjNPWcAo6OjnUoi1DCA7j47ckSTKisr8corr+COO+7AoUOHcObMGbz77rtOz1HjvHf58mW+jlZO9u3bBwD44Ycf/K7Bk6LfWwQQ0GcdIIvXPUVTwA6HA5cvX3a76oswLhUVFVoPQTUcDoeTAfSlPdgNoDf9niKAERER+Pvf/w6g+mL94YcfKjdAhamoqNAsAlheXq7pdlTc3HMp4Pj4eKeouBoG1Z0BDPR79vvvv6NPnz6YN28eX28JAEeOHHF6ntLnvWXLlqFJkybo27ev7McSzs2ZM2f8eg8pY/K2CATQpwFk8boniwHcu3cvXn31VadJu379OsaPH4+//e1vGD16NObPnw+73S7H4QidIwzvBztFRUV8iqlWrVo+tVutVr4vXDAaQG/6hQbQtWlqsCwGsdlsmkUAAW2jgDabDeXl5bwJi4uLczKAWkUA/f2eORwOrFu3DsnJyTh48CAAwGw28429jxw54vQ5Vfq8t3HjRgDAwYMHa0QfA0X4uTl9+rRf7yFFv7dFIIA+DSCL1z1ZDOAXX3yBs2fPOp3MVq5ciYsXL+K2225Dy5Yt8f3332P79u1yHI4gdIPwxCmmBtBkMiE8PBxAcBpAb3Ap4Dp16tQwRu3atUPv3r0BVF+AfvzxR9XHJxdaRQBdj60FwgUg8fHxTvq1MoD+rATOycnBgw8+iAkTJvAX9hYtWuCHH35Av379AFQ361azDlB4rH/+85+y1ckJsxiA/xFAKQRjBJBFZDGAFy9eRLt27fj/FxcX4+DBg+jfvz+WL1+Od955B02bNiUDSAAAGjVqpPUQVEN4UatVq5Yo7VwaOBgNoCf9wibQwvo/Ia5RQH/4+uuvsWDBAs3qCBs1ahSQAaxVqxYfYfJlAAsLC5Gbm+t0n5oNl11p1KhRDQOoxxTwDz/8gE6dOuG///0vf9+ECRNw/Phx3HHHHejWrRt/vzANrOR5r6ysDBkZGfz/c3Nz8a9//UuW9y4pKXFqYuyvAZSi310EUO+LQFi87sliAG/evIn69evz/z9x4gTsdjsGDBgAoHq/y27duuHq1atyHI7QOWL6lwULrhd7MdqD2QB60p+bm8vXpwnr/4SMGDECMTExAIDNmzf7bKnj7tgPPPAA/vnPf2LZsmWSXisXWVlZARlAk8kkej9g1/QvoG0EMCsry6keXIsUsDvjIPV79re//Y3f1ismJgZbtmzB2rVr+bns2rUr/9yjR4/yt5U877m7tq5YsQLnz58P+L1d58XfFLAU/cEYAWTxuieLAYyKinL6kBw7dgxmsxmdO3fm77NYLLrs3UPIj7BQOthxvdiL0R7MBtCTfk8LQISEh4fjkUceAVC9oOG7776TdOz09HR+heTZs2clvVYuXPvQSTWAwJ9p4JycHK+1kKwZwMrKSicD6BoB1EsN4LVr1wBUf05PnDiBBx54wOlxTxFAJc97wvQvZ5jKy8sxe/bsgN/b9TPz+++/+7XSWIp+XxFAPRpAFq97shjAJk2a4MCBAygoKEBhYSFSU1PRpk0bp5NbRkYGk8ugCfXhatyMgGsNoBjtwWwAPekXtoDxZAABoHv37vxtoWkUA3fhBqoX52hBeHh4jbIAqXAGsLKy0msqzLX+D9A2BRweHu61BlAPKeCKigp+NWezZs3cpvUSExMRFxcHoDoCyJl0Jc97QgM4a9Ys/vibN2/G/v37A3pv13mx2+04d+6c5PeRot/djyS9LwJh8boniwEcMWIEcnJyMGLECIwcORK5ubkYNmyY03PS0tKcmn4SxsVIjcNdL/ZSmkGXlJTodrWrJzzpF5o5TzWAgHMdjdDQiUH4fK1W5NWuXVu2CCDgPQ3MWgSwdu3amqeAA10EInxuZGSk2+eYTCY+CpiXl8fPg5LnPaEBvPXWW7FgwQL+/9OnT3eq4ZOKu8+MP3WAUvRz30+z2cwbJ71HAFm87sliAPv27YvnnnsOzZs3R+PGjfH4449j8ODB/OPHjx9HUVERbr/9djkOR+gcFmshlCKQGkAAmvZtUwJP+sWkgAH5DKBWEUDXGkB/Lgpi9wN2FwHUugbQ2yIQPaSAhQYwKirK4/Pc1QEqed4TGsAmTZrgscceQ4cOHQAAP//8M98ixh/kMoD+1ADWqlWLb4ul90UgLF73LHK90bBhw2pE/TiSk5NpBTBhSPyJ9rg2g2YxdSA3YlPAeo8AAoG1gQH0GwEEUKMGMDQ0lP+/3gygpwggULMO8MEHHxR9DH9wNYAWiwWvv/46Bg0aBACYPXs2hg0b5nRuEYu7z4y/C0HEwn0/uXpGQP8RQBZRdCcQgnCHsJZDTbQowhX+Uq1du7Yo7cG8G4gn/WIjgFFRUfyFQI8RwLp162pqALWsAaxbty5vAMPCwlCnTh1ERkbCbK6+DOmhBlCsAXQXAVTyvMcZwIiICH6l/L333ot7772Xf/w///mPX+8tVwRQin5hBJAjIiICFkt1zEqPBlCr6543yAASqqP2jjAOhwMPPvggatWqhQ8++EDVYwtNR8OGDUVpD2YD6Ek/ZwBr167tMy3KRQGvXr0qqUaShQig3W532+JCCmIMYH5+Pv/jQ9iiS8sIoN1u59NgcXFxMJlMMJlM/HwHUwSwUaNGSEhIAPDnQhClznsOh4M3gE2aNOFTpgCwdOlS3mD/61//8mtbVnfzcubMGcn1yWL1OxwOtxFAk8nEmyg9GkAWd0IjA0iojtoXofT0dGzZsgWlpaV44oknkJ6ertqxhf25EhMTRWkPZgPoTr+wCbS36B8HZwCLi4slmQYWIoCFhYX83yAyMhIhISGS30OMARRG/zp16uR0fK0oKCjgx8utUgX+jPIobQDtdrtb46CEATSZTHwU8MaNG7hw4YJif/sbN27wn+cmTZo4PXbrrbdi0qRJAKp/9Pzzn/+U/P7CcXPlKDabTXJfX7H6hY2nXSPkXPRfjwZQ6/ILd5ABJIKew4cP87dLS0vx6KOPqvZrjDtJRkREiE4BBLMBdEdeXh6vU4oBBMSngQsLC52ifmVlZZr15XKX3pKCGAMoXADSsWNH/raWKeAbN27w37v4+Hj+fi4CqPQFUmgahN8xuVcBc3jqByg3rvV/rrz88sv8Z+29997D//73P0nvL5yX5ORk/rZSW8J5i5ALDWCwdUjQAjKAhOo0bNhQ1eMJDSBQvVm6v/UwUuEMYGJiIkwmkyjtwWwA3ekX2wKGwx8DyO3cIESLKGDDhg0DNoDC6JmeIoDC1KQ7A1hUVKToDzNh+lf4GVIiAgjUrANU6rznywDGx8djzpw5AICqqirJ5z7hZ0bYyUPqQhCx+t01gebgDKDdbtcsiu8val/3xEAGkFAdqVt4BYrw1zd3EfrHP/6heCrYZrPxEZfExEQA4rQHswF0p1/sAhAO7m8JiDeA7p6nRR1gdnZ2wAawTp06/OpZMRHAW265hS+e98cAyhUp/e233/jbQhOr1n7AwgVZahvAI0eOKHbe82UAAed9tIXPF4MnAyg1AihWv5gIIKC/NLDa1z0xyGIAMzMzfbrx4uJivwpQCf9ZsmQJhg0bhkGDBuHvf/97wB3h5YLrpK/WsY4dOwYAaNWqFaZNmwZAnVSwsEaGMzZitAezAXSnX6oB9CcC6O55WkQQbDYbb6j8NYAmkwkNGjQAIC4C2Lx5c7/r7D7++GNERkZixIgRAafcMjIy+NvCCKDw76BkilrtCGCjRo34qM8vv/zi1/ZpYhBjAAMxTkJDJtyJR2oEUOx531sEUM+7gah53ROLLAZw9OjR+Oyzz7w+57PPPsPo0aPlOBwhklGjRmHTpk3YsWMHZs+ejVdeeYWJL43ValXtWKdOneL3oO7WrRteffVVfkeagwcPYsWKFYod23UBCCBOezAbQHf6xfYA5BBevMUWorMSARSaAH8NIPBnHWB2drZbY8ZFAMPCwtCwYUO/6+zef/99VFRU4L///a/Pc7wvhBE4dylgf8YnBbUNIPBnHWB+fr7bMgQ5EGMAQ0JC+M9bIAawWbNm/GdPagRQ7HnfW5skPUcA1bzuiUUWA+hwOHz+OqSCTfVp2rQpwsLCAFRHDSoqKpgIQ6vZD0lY/9e9e3dERkbi/fff51PBL774omKpYGFkizOAwdIHcMmSJejYsSN27twp6XXu9KtRA8hKBJBryQHIYwDLy8trmCaHw8FHAJs2bQqz2cwfS6rBysvL42+/+OKLAUUxhMf2lALWIgKo1CIQwDkNfPbsWdHHkYLQAHr7AcWZJ6l/Y+75YWFhCAsLwy233AKguq5WigkTe94X/jALphSwofsAZmdni/rCuKO4uBjvv/8+ZsyYgSFDhqBPnz745ptvRL32woULeOmllzB69Gjcc889uO+++/D00097TIemp6djxowZGDRoEO69915Mnz5dsS+uEKkay8vLsWrVKgwfPhwpKSl4/PHHayx2AIBly5YhJSUFkydPRpcuXdCiRQslZYhCzVIAVwMIAL1798YzzzwDoDoVPGHCBEVSwe4igGK0s24Ay8rK8OKLL+J///sfFi1aJOm17vRLTQFz/dUA/dUAXrp0ib8thwEEaqaBc3NzeW3Nmzd3OlZJSYmkmj7hRfbs2bNYv369v0N20q51ClhYRyrlOyb80SAlAggAP/zwg+jjSIGLoMfFxXndNYgz2v5GALl54gwgIC0KKPa8LzYCqLft4FgsgfN7KzjXEwFXZ+VKVVUVsrKysHv3brRv396vYxUUFGD9+vWIj49Hq1atPB7LHRkZGSguLsagQYPQoEEDlJaWYu/evZgzZw5mzJiBoUOH8s9NT0/HU089hbi4OIwfPx4OhwNbt27FM888g3feecdjeF0OpGpctGgRvv/+e4wcORJJSUn45ptvMHPmTKxYscJp1d/06dMxbdo0HD9+HOfPn3daiWcEOANoNpvRpUsX/v5//etf2LZtG37//XccOHAAK1aswPTp02U9tjsDKAbWDWBmZiYfCZIjrcVdwKKjo0XtjWu1WtGgQQPk5OToLgIoNJ2BbA7vuh9wy5Yt+f8L6/+aNWtW41iFhYWoV6+eqOO4XmTnz5+PcePG+fVjXph90DoFHB8fD5PJBIfDoWgKWBgBPHHihOjjiKWiooL/bPu6PnHmqbi4GBUVFU7b8HnD1QC2a9eOf+zMmTPo0aOH5HGLOR4QXBFAFvHbAK5bt46/bTKZcPz4cRw/ftzj8xs0aIAnnnjCr2PFxMRg69atiImJwZkzZzB58mTRr+3Vqxd69erldN8DDzyASZMmYdOmTU4GcO3atbBarVi1ahX/Qbvnnnswbtw4vPvuu3jllVc8HqewsBC//PIL7r77brePp6am4s477/S4F6MUjWlpadi9ezeefPJJjBkzBkD1tj/jx4/HqlWrsGrVKqfnh4SEoGvXrti8eTOSkpJq/D3URvglVpKSkhKcPHkSANC+fXunzdsjIyOxbt063H333XA4HHjxxRcxZMgQtG3bVrbjuzOAYrSzbgCFxfy5ubmSXuuq37UJtNgfKImJibwBdDgcPl/HigEUlsIoFQEUrgDmDKDwWGINoMPhqHGRvXbtGlauXImZM2dKHjNnwEwmE79dGaBNCrhevXqIiIhAcXGx3wZQeD7xREJCAhITE3H16lWcOnUKVVVVTmUAgXLt2jW+abJYAwhUfwaEO8R4w1sEUMpCELHn/WBdBKLWdU8KfhtArnje4XDg2WefxeDBg/mNp4WYzWbUrl0bTZo08fuDHxYW5nTCCJSQkBDExcXVCF+fOHECPXr0cJqoBg0aIDk5GQcPHkRxcbHHX31bt27FunXr8PLLL6NPnz5Oj23btg3//ve/8dxzz2H48OFuXy9F4969exESEuJkXq1WK4YMGYJ3330XmZmZTr+wOex2u+Tu7UqgVj3o8ePH+dSucPUaB5cKXrFiBZ8K3rdvn1+7M7iD+1ubTCY+bSlGu54MYF5eHux2u+i/mav+/Px8/qIqpv6Po1GjRvj1119RUVGB3NxcflWsp2OykgIOdB9gDm8G0HUFsOuxxEbZbDYbby6aNWuGP/74A1VVVVi0aBEmTZokOoroOs4GDRrwbWlcx6YnAyg2Ctq1a1dcvXoVBQUF+P3339G6dWvxg/aBmAUgHEKjXVBQIMoAVlZW8ovouNe7RgDFIva8H6wRQBbXQfj9UyQ5ORnJycm47bbbMH78eAwaNIi/T/ivU6dOaNasmay/evyhpKQE+fn5uHr1KjZt2oRDhw45pQSB6nA6t2hCSHh4OCoqKpx+WbsyduxY9OzZEwsWLOA3/waqzdrrr7+OgQMHYtiwYbJoOXv2LJKSkmr8AuW+mOfOnYPNZsOuXbtQXFyMyspK7NmzB8eOHUPnzp1lGUMgqLUbgbv6P1deffVVPn124MABfPHFF7IdnzOA8fHxfLpFjHY9GUCHwyGpFsdVv9T6Pw4pK4ELCgrc/h21iAAKzZpWEUCx3z/hvHbt2hWPPPIIf/+///1vSeN1OBx8DZRwAQigTQqYM4CAsquAAec6QOG1QQ6kGEB/zJO7HyxNmjThaw2lGECxnzsxjaAB/RlALXfh8YQsruzRRx912iKGRd566y0MHToUY8aMwdtvv43evXvjueeec3pO48aNkZaW5rQgoKKiAmlpaQA899wCAIvFgvnz56N9+/aYO3cu0tLScPToUSxcuBA9evTA7NmzZau/y83NdRst5O7LycmByWTCtm3b8OCDD+K+++7Dxx9/jHnz5nn99ZmamorZs2fjzTfflGWcWiPGAEZFRTl1xt+4caMsx66srOSNkpT6P0BfBhAIrMGp1BYwHFJWAgsfF0bGtYgACk1nIAbQ224g7iKA/pgs4QW2bt26ePnll/kfyCtWrBBdf8kds6ysDABqZCfUTgFzq6I5A6fkKmCgZkNoOfHXAIr9Owufx31ezWYzXypz7tw52fsbio0A6m0RCIvIYgBPnjyJlStXeqwHysnJwcqVK3Hq1Ck5DucXI0eOxLJlyzB37lz06NEDdru9RkuD4cOH4/Lly1i8eDEuXryI8+fP49VXX+V1+fqgW61WLFq0CI0bN8bMmTMxd+5ctGvXDi+//LJTyiNQysrK3BbwcifnsrIyREVFYcWKFdi+fTu++eYbrFmzxmN9IkdKSgpee+01TJ06VbaxukO4ilNJuJNtWFiY08IYV+69917ePG/btk3SBcETmZmZfPpMaADFaNebAZRSB+iqX44IoBQDKPwBpPVWUkqngCMiInij6E8KWHiBrVOnDpo0aYKnnnoKQPXncsGCBaLHm5WVxd/WygByeurUqQOz2RxwBNBTPbcrrlvCyUkgKWAxeCpZ4LJNdrsdv//+u6j3EnveD9YIoFrXPSnIYgA3btyI/fv3e6xha9CgAQ4cOIBNmzbJcTi/aNq0Kbp164ZBgwZh8eLFKCkpwezZs53y8vfffz/+9re/ITU1FY888gjGjx+Pa9eu8QstxHzho6KiMGXKFNy8eRMlJSWYOnWq7A0grVar235cnEFlseGkEGFvMaW4efMm39+vc+fOblP7HKGhoXxtZnFxsegWQ97wtAJYjPZgNoCu+qX2AOTw1wC2adOGv63VVnAcShhAYQ/AZs2a8VmHQFPAXPH9nDlz+Pdas2aN6BZZwhYYrilgtWsAudpF7ntWVlbG/1jzBWcAw8LCRP+oj4+P53/cHD16VPSxxKBFChjwrxWM2PN+sDaCVuO6JxVZDOCZM2e8RliA6oswl0plgb59++LMmTNOKSgAmDRpEr744gusXLkS69atw7vvvsubRDEXqGvXrmHhwoVo0qQJEhISMG/ePNmbL8fExLi96HL3eSuIZwGltkQScvToUX7ehDU4nhg5ciR/e/PmzQEf35MBFKNdbwZQyufbVb+/EUAp+wGzFAF0l1Lzh3r16vELb4QGMCsri//McPV/gDwpYKDaeM6YMQNAdfRn3rx5ot5LaAC9RQCVqgGsqqriDa2rAQTAL3TwBWcApbbB4c5BhYWFOHfunKTXeoMzgFar1elHgTvkNIDChSBiVwKLPe8Lf5i51rmHh4fzAQ69GUA1rntSkcUA5ufn+zQd9evXdyrC1RquHsVdFKBWrVro1KkTvzjgyJEjiI2N9fkLKycnB9OnT4fFYsGyZcvw+uuvo7S0FM8//7ysv2xbtWqFK1eu1LiAcQab2+qMVcT2nwoEMfV/Qvr168evitu2bVvAxsuTARSjXW8GUEoE0FW/GjWAwl6FWkcA5aoBNJvNfMZFaACFC0C4+j/XY/mbAuaYPn06bzY2btwoKq3pLQWsRgSwsLCQj7y5M4Biv2f+GkCl6gA5A9i4cWOfCy39qQGUMwIote9gZGSk2+4CnA69GUA1rntSkcUARkdHO33B3ZGZmSm6ZsJfSktLcenSJacTlzvTWVlZiZ07d8JqtTr9SnbH7t27cebMGYwcOdLrF6ywsBAzZsxASUkJli1bhri4ODRu3BhLly5FdnY2Zs2aJdvFvG/fvrDb7fjyyy/5+8rLy7F9+3a0b9/ebQsYlpCzpY8npBpAYRq4qKgo4DSw0AAKjY0Y7SwbQIfDEVAE0FU/FwGMjIyUtFVSXFwc/330tQqYpQigXHsBA877AXO4awLteix/DKBwbqKjo50if3PnzvX5Xt5SwFarlS/RUMoAuq4ABpxNnNi630AjgIB8dYAFBQX830vMJgWB1gAKX9+6dWu+vEBsBFDseZ/7Yea6AISDM4B6WwSixnVPKrKsTGjfvj327duHiRMnujUfmZmZ+OGHH2q0XZHCli1bYLPZ+GjD/v37edM5YsQIREdH4/Tp05g2bRrGjx+PCRMmAACWLl2KoqIidO7cGbGxscjNzcWuXbvwxx9/4KmnnnL6Ih8/fhwffPABunfvjtq1ayMtLQ3ffPMNevTogQcffNDr+LZu3YqsrCy88cYbTqni1q1b47XXXsPzzz+PHTt2eOwDKFYjUP337tevH959913k5+cjMTERO3bsQEZGBmbNmiX1T6s6GRkZklfGSoUzgFFRUU7pCm+MHDkSa9euBQBs2rQJDzzwgN/H9xQBFKM9JCQEoaGhqKioYM4AFhYW1hiTlAigUL/D4eAjgI0bN5a0Sj4kJAQJCQm4du2apBSwMDquRQRQ+LeSywCWlJSgqKgIUVFRblvAAP4ttBCaBNcmtpMnT8ayZctw8eJFfPvtt/juu+/Qv39/j+/lLQLIjS8nJ0exFLA7A6j3CKCU+j9A3hRwREQEmjdvjvPnz+PMmTOimrGLPe+7Np52RbinsdyNtZVEjeueVGQxgKNGjcKBAwfw1FNPYeLEiejWrRu/VdPhw4exZs0alJeXY/To0X4fY+PGjU6Rh3379mHfvn0AgIEDB3r8tdC/f398/fXX+OKLL1BQUIDIyEi0bdsWTzzxBO666y6n58bGxsJsNuPTTz9FSUkJEhIS8Nhjj2H06NE+C37Hjh2L3r17O6VdODp16oTVq1f73IdXisa5c+ciPj4eO3fuhM1mQ4sWLbB48WLm2/GoQXZ2Nr/vaJcuXUQ3Ke7fvz/q16+PvLw8Pg3sb9RaWNvmz5c+IiKCSQPoGv0DpO8GwlFQUMBH4aSkfzkaNWqEa9euITMzE5WVlR6/o5wBjImJQUREBCIiInjTpDbcMUNCQgLOiLguBImKinLbAgaQNwIIVEftFixYwPcGfPPNN70aQG81gMCfBlDNCKBUA1hVVcU/T6oBjI2N5XcE+eWXX2QxLoEYwEDawHDccsstOH/+PGw2G65duyabueE+n56u6dxn0eFwwGazBbSlotGRxQAmJyfjqaeewttvv43XXnsNAPh9FrnbU6dODciciFlBfNttt/GGiWPAgAEYMGCAqGMkJibi9ddf92t8FovFrfnjEO7V6Qkpq6StViumTJmCKVOmiH4NKyj9hZWa/uXg0sBr167l08D+RgG5CKDr/rZitUdERPAryVnCnQGUkgIW6vd3AQgHVwfI7TcurAvkEO4Cwj0eHR2NkpISTSKAXASpVq1aAfcFdd0PuFmzZh4jgHIbQKD6R+9zzz2H3Nxc7Nu3z6up8ZYCFo6PZQMofI4/eyF36dIFV69ehc1mw2+//eZUR+cPUg2gnG1ggOqFINu3bwdQnQb2ZQDFnPvKy8v5MglfEUCgWodeDCCL45Qtdjpy5EisWbMGQ4cORZs2bdCwYUO0adMG999/P9auXRtQOo0ILuRqiO0Jfw0gIM9qYIfDwRtA15OiWO3+9ChTg0AjgEL9gRpAMSuB8/Ly+AsKZwC5lYVaRAA50xlo+hdw3wqGiwBGR0cHvN+utxQwUB3F7N27N4Dqv7O3Pq9cCrh27dr8LhJCuPGVl5fzC/TkRA4D6E8TaCG33XYbf1uOOkAtU8CA9IUgYs59wh9lvmoAAX0tBFH6uucP8nUnRnWUa/r06XK+JRGEFBQUePxyy0EgBlCYBv7qq6/8SgPfvHmTNxeuBlCsdj0ZQCkRQKF+f3sAcrhuB+eu3Y/QGAojgIC2ewErYQCrqqr40gdhD0Cg2rCYzWZUVVVJjgCaTCaP0Yu7774bn3/+OYDqbS87duzo9nmetoHjcG0FI3cvUxYMoHAF+pEjRzBu3DjJ7yFEaADFfH+sViusVivKysoCXgUMOBtAMQtBxJz7vDWB5tDrbiBKX/f8QR/VkwQhEofDwRdZ169f32fdpSuhoaH8ns1FRUXYsWOH5DF4WgAiBT0ZwLy8PL82Ove3BQyHmFYw7gwgFwEsLi6WtSmvL6qqqpxSwIHiuh3c9evX+WinazmKyWTiLz5S+wDWrl3bY2q3T58+/O29e/e6fU5paSn/Xp46FCi9G4gcq4CFz3HtTycGYa9cOSKAwu+P2B9Q3N9ZrhQwh5Q9gf09HodeI4As4pcBXLBggccvuxqvJ/SNkm1qrly5wkcbunXr5lfYPdA0sDcDKFY7ZwArKytRWVkpeQxKITSADRs2BFA9RrEXbaF+uWoAAf8MICBtH9hAERPdkIJrBNBT/Z/rMaXuBOIu/cvRuXNn3lTs27fP7Q8BYZsaT59/pXsBuqtnVDsC2K5dOzRt2hQA8MsvvzjtOe8PXAQwJiZGtCGV2kPPUxsY7rhc/18xBlDMuU9MClhYj6onA8hieza/DODu3budTjZqv57QN0qG7YXpXzE7gLhjwIABfJTgyy+/lByF82YAxWpntReg0AB26NCBvy02DSzUr5UBFF5Y1KwDFBPdkIKrAfS0ApiDu4BLTQF7688YEhLCd1PIysrit18U4msBiHBsUsYnBRZSwPn5+fw5qaioKKComd1u578/Yur/OIQtVMRE7bm5MJlMbk0mFwW8du2aTzMm5twXzBFAFtPVftcAnj171q/0GEEoUeTNEUj9HweXBl63bh2fBvbWv9EVbwZQrHbXi5MchkEOuF01LBYL2rRpg9TUVADVC0HErHQX6udSWBEREfwuLFKQagC5iKXwQmaz2VT7Za60ARQbAbTZbD7bkJSWlvJz5S0CCFTXAXKrQfft21djdauvFjCANilgtQ1gWVkZunfvji1btgCoPlcJf0RJ4fr163wE0R8DWFVVhaKiIp81adxcREdHu82m3HLLLfjhhx8AAOnp6bj99ts9vpeYc18wLwJR8rrnL34bwB9//BH79++X/Dp/aoWI4ELsJur+IIcBBKp7W65btw5AdRpYLgMoVjvrEcD4+HgnAyJ2JbBQPxfBSEpK8itVHxMTg7CwMJSXl+siAijXPsAcMTExfLstMRFA4TGLioq8jsHdPsCecK0DnDx5stPjvppAu45NaQPIGQi1DaDFYkGPHj34/x86dAjjx4+X/D6A9BXAHK6tYHwZQF+LllwXgngzgGLOfVIjgCxG1Tyh5HXPX/wa0ezZswM+sHBLJsJY+Nq03F+qqqr4BSANGzYMqDEplwa+ceOG5NXA3gygWO0sGkC73c5fzBMSEpzajIhNAXP6b968yZ/s/Un/AtVpqUaNGuHixYset4MTGsCEhAQAzhFAPaeAQ0JCUL9+feTm5tYwgO4igK5RNm9j8NUDUEjXrl0RGRmJ4uJi7N27t8auECylgOvUqcM3hhd+x6QuAvHHAMbGxiIyMpI37T///LPk9+Dw1wC6NoP2dY70ZQClLAQRc+4L5gigUte9QPDLAA4ePFjucRAG4vr164psiXPu3Dn+hBBI9A9wTgPbbDbs3LmTXx3sC86McNuVCRGrnUUDmJOTw6+aTUhI4AvAAfERQE5/oPV/HJwBzM3NRVlZWY32IZwBjIuL4zdjF15Y1GwFI7cBBMBvbylcaFGnTh23pk1KM2hfPQCFhIaG4o477kBqaiquXr2KCxcuOK2+FxMBVCsFzKV/AWcTp0YEkPvst2/fHqdOncKJEyf83m1IDgPoyzxxO20A4iKAvgygmHOfmO+IXheBKHXdCwRqA0MEDXKlfzn8XQ3MGcCEhATR29C5wqIBFC4A8TcCyOFPCwt3COsAufpEjqqqKn7MwuexEAGUa1cALqpgs9n4HoCediSSYgClRACB6jpADtcOD2JqAJVMATscDrcGUO0UMAeXBq6srMSxY8f8eg+5UsDeELZJ8mTGmjZtyjf2FtML0BfCz2WwRQBZhAwgoTpKLWiQ2wAOGDCAv/iJXQ1cUVHBX/Dc/doTq10PBtCfCCCnX84IIIdrHWBOTg7fQkf4vGCLAHJwF2t36V9AWpRNqgEU1gG6bscpNQUstwG02Wz8ggktDSA358I6OX/TwGpEAMX8YDGbzWjbti0A4Pfff0dFRYXH9xPzmZfaCFpPBpCVhXxCyAASqqNUMawcLWCEhIWF8WlfLg3si+vXr/MLndwZQD0vAvEWAZS6CEQNA+huAQjARgRQCQPIIUcEUEoKGKg2NVz63TUCyKWArVarRyOhZA2guxXAgPTvmPCz4u8iEAA1FoL4A2cAQ0NDa5SZeMO1BtAbYj+vXBq4srIS586d8/g8uRaBhIaG8nOnJwPI4iIQMoCE6ghPyHIhTKe0aNHCyZwEgtQ0sK9dQMRqZ90ANmzY0K8UMKdfLgPobT9gTwYwmCKA7iJqniKASqaAw8PD0bNnTwDAhQsXnFL8XASwQYMGHld7KxkBlMsABhoB5MbRoUMH/tiBRgCTkpK8tvNxRUoKWOyqdbELQcSc+8QsAgH+NLJ6WgWsxHUvUMgAEkFBWloafxKXI/3LkZKSwl8Av/rqK5/d++XYBg5g3wAmJCQgKiqKj/qIjQByKFED6LoSmCKAzkgxWVLawHC4SwPb7Xb+x4GwZMAVJWsAPRnAQLaCC6QGMDQ0FF26dAEAnD9/XnL9bGFhIa9JSvoX8D8FLCYCCAS+JZzYY3KfST1FAFmEDCChOkosh5c7/csRFhaGlJQUANUnJ1+Fzr4MoJ7bwLgaQJPJxEcBpbaB4SKAVqs1oGitPyngYIoAuvs8yR0BFJMCBpwXgnAGMDc3l69NFM5BIGOTilCLlhFA4VwJ08BSo4DCH0+BGEC5U8BA9QYRnpCrDQzwp47CwsKAt9RTCxbbwJABJFRHiT5fci8AESKlaNuXARSrnXUDyK3m5KI6ubm5kraWCrQJNAfVACpvAMVGAHv27MnXOXF1gMIFIELz5UpISAg/L0pGAIVaQkND+fSpVAModu9dIcK/eSALQYQLQKRGz5WIAAq/W8JzhLf38/Wc0NDQGi2dhAh1KHE9UQIWxymbAaysrMSmTZswefJkDBo0CP369eMfO3v2LJYtW+b0y4UwLqWlpbK/pzAyd9ttt8n63lKKtn0ZQLHaWTaA0dHR/K9zLnpXVlYmKo1WWlqKwsJC/uITSP0fUH1h4i7GFAGsng9P7y1loYXURSBAtSnifnylp6cjIyNDtAEE/vybqJUCNplM/PdMjQig8LsvlwGUGgGUUgMo9vMaExPDt7sS9nx0Rcy5j/s++tqhRI8rgZW47gWKLAawrKwMzz77LN5++21kZmYiKirKKRrQsGFDbN++nfYOJgDA79543uAu9rVr15atxxpHly5d+EhBoBFAsdrFGMBff/0Vbdu2xejRo1VJg3AGULjqUOpCkJCQEKcFIIHU/wF/7gYCeDaAZrPZabGEVhFAubeCA2oaQE/RP9djSmkDI9YAAs51gD/88IOTIfDUAoaD+96qtQoYgKoGUPjdb9asGT93P//8s6QtUgMxgP6mgL2dU81mM69FaPhdEXPu87XzCIcet4NT4roXKLIYwP/7v//DyZMnMXnyZHz++ecYMmSI0+PR0dFITk52StMRxsVTM9hA4JoAe6sz8pfo6Gh+0/aTJ096jXRxBrB27dpuf8WK1S7GAL722mv47bffsGnTJnz//fei3tdfSktL+ROt0ABK7QUYHx8v2wpgDs5o37x50ymixxlA14bcWkcAw8PDZWsJ4bqwwtMCEMC/FHBERITXVJwrrg2hhYagZcuWXl/LmYybN2/Kume8GAMoZRGI2WxGWFiY5HEIv/smk4mPAubm5uL8+fOi3ycQAxgdHc2XXMgVAQT+1JaVleVx7sSc+7hj+ooA6nE3ECWue4EiiwH87rvvcNttt2Hs2LEwmUxua3oaNWrk9dcBYRxcIzWBUlhYyEdyGjZsKOt7c3BpYLvd7rF7v8Ph4A2gpxXAYrX7MoBVVVXYvXs3///U1FRR7+svwu9uIBHAa9euyW4A3dUBVlZW8mN2/UxoXQMoZ0PY0NBQp4uh2Aig2BSwlOgfANx55518tHzfvn1OnxtfppcbX1VVlShDJhZvBpCL5EmJAHL7+UrF9bvvbxo4kBX0JpOJN9pytYEB/jQ35eXlHiNyvs59VVVV/PdRSgRQLwZQ7uueHMhiALOysvhu4J6IiIhQ9WRLGAdPtV5yIjxZe6oDzM/P5y8kge756MsAnjx50mn/V6UNoOsKYA5/dgMRXsCUMoBZWVkeV5+GhobyERwtIoBylygI08DeIoDCqIrYFLDYBSActWvX5mtwT5486VSb660NDPdaseOTgtwp4EBawAjxtyE0FwGsW7euX58lzjzJtQoYcI5u+RvoEfqDYDSALCKLAYyIiPCZh7927ZrkX5NEcOIrvC8V4R6wSkUAxfxaF9b/eTI2YrX7MoDC6B8AHD16VNFGo54MoNTdQKKjo2WtAQTcG0BfPwq4KKDeI4CAswH0FgEUrrT1FgG02+3841INIOBcByjcPadp06ZeX6fUbiCeVgEDf37PysvLfdbRBmoAXb/7wm4FYiOAVVVV/A8oqelfDu46rEQKGPBsAH2d+8S2gAH0aQDlvu7JgSwGsEOHDjhw4IDHL21mZiZ++ukndO7cWY7DETrHn/oZbwgv9koZwA4dOvAnfjEG0FMEUKx2XwbQNeLncDiwZ88eUe/tD2IMoJgUcFhYmFMEMNBIKeCfAeROxmpFAMvKyvh9UuU2gMKLr7cIoPDY3gyWMDLkz492YR1gWVkZgOq6OV9blinVDJozgLVq1aqRhhZ+z3yt0gzUALp+9+vXr49WrVoBAH755Rev++hyZGZm8s/z1wByRru0tBTl5eUenyfFAAoX+HgygL7OfVKOp8dFIHJf9+RAFgP40EMPobCwEM899xxOnjzJ/5IqLS3F0aNHMWPGDNjtdowePVqOwxE6Jy8vT9b3E0YAlUoBWywWdO3aFUD1VlfC9CuHGAMoVrs3A1heXl5jv1VA2TSwXCngvLw83gBarVZZmqPqIQKoRAsYjr/97W8ICwtD3759nZryukO40MIT/vQAFNK7d+8a98XGxvqM1CidAnbXhkZsuyWHwxGwAXT33efSwGVlZThx4oTP9whkAQiH2OiZ3BFAX+c+KRFAPS4Ckfu6JweyGMDk5GQ8++yzOH/+PKZOnYqPPvoIADBo0CA8//zzuHr1KqZPn+6zTpAg/EGNCCDgOw0sTG0qWQP4008/8Rej4cOHIzQ0FICyBlBosgOJADocDly6dAlA9QVMyj6mnnC3H7CUCKCcK049oaQBHD58OHJzc/Hdd9/5XJwgjAB60u1PD0Ah9evXR8eOHZ3u89UCBlAmBexwOLwaQLHbwQlTxHLVAALSF4LIbQC9GW1uDqxWq8/olRw1gP5GAPViAFlEtkbQw4YNw/vvv4/hw4fjlltuQaNGjdC6dWsMHToUa9euxV//+le5DkXoHF/F4FJRIwII+D5Zi4kAitUeFhbGX8xdDaDQ6A0bNgy9evUCUN1wnTNXciNXBNBisfC/9P29gLkiNP3cHPj6THARwKqqKj5NqSRKGkDAub2HN4QrbT1FvAKNAALOaWCg2iBosQikpKSET5kGEgGUYx9gd/q1MIBim0FLqVkVYwB9zX+w1wDKfd2TA3maUf1/mjVrhmnTpsn5lkQQUlRUJKm3mC/UigD6WrUnxgCK1c7tUlBcXOzVAA4YMACXLl3i917dvXs3JkyY4PP9pSI0gMJoTu3atWGxWFBZWSnKAP7222/8bbkMYEREBOrVq4cbN25ITgED1XMSHh4uy1g8obQBFItrlM2dmZHDAPbp0wcrV67k/x8XF+fzs69EDaC3BSCAugbQnf7k5GSEhoaioqJC1EpgNVPA3BzIZQB9zX+wRwDlvu7JgSwRwMzMTJ+1NMXFxdQHkAAg/9ZmXLSnVq1aiq60atKkCW9+3HXv5wygxWLxmPKSot1di4qCggI+UtCuXTskJiYiJSWFf1ypNDBnABs0aMCnnIFqo1q/fn0A4lLAwoa3vlaFSkG4G4jD4eANoMVicfvLW+1m0KwYQDEmK9AUMOC8EhioNgi+PvtKRAC9tYAB1DWA7t4/PDycXxx55swZn2ZGixSwmM9rbGwsH4H2dJ33Nf9SIoDCz4peFoGwsqWnEFkM4OjRo/HZZ595fc5nn31Gi0AIAJCl7ksIZwCVjP4Bzt37b9y4gd9//93pcc4ANmzY0KNGKdrdGcC9e/fytUic8evevTt/kk5NTeX738mFw+Fwuw0cB2ewxEQAhVFSuSKAwJ8GkNuxhDOAnuZC7WbQSmwD5w9imkHLEQGMj493qvmOj4/3+dlXogaQJQPoST93TnE4HDh69KjX9+AMYEhIiN/nOzHRs4qKCr40Qszn1WKx8PXAngygr/mX8iPJYrHwJlEvEUC5r3tyIMuIHA6Hz0JqNQqtCX0gp1Gz2Wz8iUPJ+j8OT2ngsrIyfmWwtwUgUrS7M4Cu6V+g+mTYt29fAEB2djb+97//iT6GGAoKCviLgTsDyJ34i4qKfLbSEJ6slTCAAHDp0iV+D1pPnwmjRgDFmCw5DCDgXAcYFxfn87OvdArYlwH0tghE+Jjwx4MUPOmX0hCaM4CJiYl+bycopgbQn88rlwbOzMx0e733Nf/CY4rJ5IjtZ8gKSgco/EE1S5qdnS3r6ilCvwijQIGiRhNoIZ6KtoXj8GYApWh3ZwC5BtBms5k3fQAUTQN7WgDCIaUZdHp6On9bTgMo/Jv/8ssv/G1PBlDtCCArBlCtFDAAjB07FkB1tKpPnz4+P/tapICF1ySlI4Ce9ItdCFJcXMyXWQTSQF1MCjgQA1haWur2x4Wv+Rf+EBNzTL0ZQDmve3Lh9yKQ9evXO/3f0/6oVVVVyMrKwu7du9G+fXt/D0cQblFrAQiHp+79YhaASIUzgKWlpXA4HLh+/TrS0tIAVF80hCdyoQHcvXs3pk+fLssYAGcD6O5v7LoSWKwBlmMXEA6h0Tt8+LDb+4VoGQGUeys4KaiVAgaqI4AnT55EREQEWrZsKckABmMK2BNt2rRBnTp1UFBQgEOHDsHhcLhd0S1soB7IjycxKWB/Pq+uC0Gkfs6lmk5OR1FRESorK/2OiBoZv/9i69at42+bTCYcP34cx48f9/j8Bg0a4IknnvD3cEQQ4W8KxR1qtYDhqFevHtq0aYPffvsNx44dQ3l5OcLCwkQbQCnaXXcpEG7/JjR8QPWCkIYNG+L69evYu3cvPy45kBIB9LUQhDPs8fHxsq68Fc79kSNH+NuefhRQBFB5AwgAt956K3/b12df6xSw0gbQk36z2Yzu3bsjNTUV169fx9WrV91uJXnx4kX+diAGUEwK2J+aVVcD2Lp1a6fHfc2/lEUgQM1IJrcYjVXkvO7Jhd8GcMWKFQCqa/ueffZZDB48GIMGDarxPLPZjNq1a8vW9JXQP3Je+NWOAALV0bfffvuN797frVs30QZQinbXi5MwtetqAE0mE1JSUvB///d/KCoqwqFDh9zuyOAPvgyg2F6A5eXl/HvJmf4FnA2gcEcFViKAQlOlZQRQTJpVrhSwK74++1FRUTCZTHA4HEFpAL3pv/322/nv988//1zDAKanp+Pxxx/n/9+iRQu/xgAonwIG3C8E8TX/Uo8p/HGSn5/PvAFUutWUP/jtyJKTk5GcnIzbbrsN48ePx6BBg/j7hP86deqEZs2akfkjeMSsFhWL2hFAwH3NjtAAuvv1ziFFuycDGBkZiZ49e9Z4PrcoBJC3DlCuGsCrV6/yxeFytoABnOdeuL8pKzWAFy5c4G/LbX6lICUCGBISImvUwtdn32Qy8QY1GFPA3vQLzymuC0F++ukn3HnnnXyT96ZNmwbUUUNqClguA+hr/gOJAOqhDlDO655cyOLKHn30USQnJ8vxVgQhCS0igO5W7SlZAwhUL2zgtPbp08dtQ1EWDKC3FLAcPcw8kZCQ4LZuipUIINf/sFatWppGKsQYQO5iWqdOHVG7i8iJmL2KpaDEKmAlFjN6Wgiybds29O/fnzcPnTt3xoEDBwKKzCq9Chjwbzs47pgmk0nU31hvBpBFZA/L2e125OXlITMz0+0/ghAahkDRIgLYuXNnvhmyuwigNwMoRbvw4vTVV1/xt13TvxxJSUm45ZZbAFQbU7kuonKlgIXb1MltAENDQ90232YhAlhZWclrb9GiheqmSoiUNjCB1v+5Iuazz5kNuT67vuoZxa4CFn5G/DWA3vQ3bNiQXxR15MgR2O12rFmzBvfffz8/rv79+2Pv3r0Bn+dCQ0P5c4uaKWBf88/9EIuKihKVMdSbAZTzuicXsi2bSU9Px7vvvotff/0VlZWVbp9jMpmwZ88euQ5J6JSSkhLZ6iE4AxgVFaVacb3VakVycjIOHz7Md++/cuUKgOoog9C4uSJFu/B9tm3bxt/2ZAC5x86cOQO73Y69e/fivvvuE3Usb3AGMDQ01G0UhYUIIFBt9oQXnrCwMI/RNjUjgJcvX+abd8u58tkffC20cDgcihlAMZ99zqAWFRXBbrcjJCQkoGNyEcDIyEi3i6LU3gnEVx3g5cuXYbPZMHHiRKdOG6NHj8YHH3wg21ZiderUQUlJiaoRQF/6pew8AujPAMp53ZMLWSKAZ8+exdNPP41Tp06he/fucDgcaNmyJbp37446derA4XCgc+fOGDhwoByHI3SOt1SLVLi0qFrRPw7XlA03Dl/pXynahRcnzujGxsaiY8eOHl+jRD9A4S4g7qJXYiOAQgModw0gUPMz0KhRI4/RNjUjgMIdY7zVh6qBrxRwcXExb1blXADCvbcvhBFKOYw5ZwDd/XAB1DWAvvQLS0uE5u/ZZ5/FJ598Ius+sr566PnTBkYYgecasQvxpZ87ptjtPF0XgbCOnNc9uZDFAH7wwQcAgNWrV2PRokUAgN69e2PJkiXYtGkT7r//fly4cAHjx4+X43CEzpErBVZUVMRHMdTusi48WX/zzTf8Thm+DKAU7e4iif379/eaHunbty//uBwG0G638zucuEv/AtUnYk6XWAOoVATQ2/+FqBkBVGr/Y3/wZQDlbAHjipjPvtytYFgygL70C39UcixZsgTLli2TfRGlcLGNu60j/WkDExYWxv+d3UUAvel3OBz89zBYI4Baln54QpZP1cmTJ3HnnXeiWbNm/H3caj+r1Ypnn30WDRo0wHvvvSfH4Qgd43A4ZIvWaVH/xyE8WW/dupW/7csAShmnOwPoLf0LVJ8UubGlpaU5/Y38ITs7m79AeDKAISEh/InfWwqYq4OLiIhQpB5GigFUMwIoNIBdunRR9Fi+CA0N5dNQ7gyWkgZQzGdfzt1ASktL+a0JxRhApReB+NLftWtXPspnsVjw0UcfYcaMGYoYB848CY2XEH/7Vgq3g3PFm/6ysjK+dCxYDaDa1ygxyGIAi4qKnMRZLBanX1NmsxnJyck+N7omghubzYa//vWvePvtt2V5P7W3gRPSunVr/gQkbNDqywBKMWT+GEDAeTWwsHm0P/haAMLBpYE9RQAdDgcfAWzSpIkiFzVWI4DCFLCWTaBdx+AuAqhUD0BA3Gdfzt1AfK0ABtTdCs6X/ujoaKxduxb3338/du3ahXHjxvl1HDH4Mk+BGkCbzVbDUHvTL7UFDKA/Axjoj3ElkMUA1q1b1+kDU79+fb4onqO8vNznRvFE8FJYWIi7774b27dvx7PPPivLYiAtWsBwmM1mtykbXwbQXbrFE64GsGXLlk5Rdk/IWQco1gByEb2CggJUVFTUeDwvL4+/ICiVBnX923szgFarlU+rqRUBNJvNTGwI763XnpIRQDGffTlTwGIMoD8pYH97I4rRP27cOHz++edO+3wrga9WMIEaQKBmFNCbfn+OpzcDKOXcrxayGMBmzZo51fd07NgRhw8fxv/+9z8A1RGSPXv2aF7/QmhHdHQ0n/6qqKjA8OHD+c+Hv2iZAgbc1+z4MoDeVgj7eq6Y6B8A9OrVi39tamoqX47hD8K/sZgIIFBt9lxRuv4PkBYBNJlMfKRBrRrAJk2aaLoLCIe3VitCAyh3BFDMZ1/OFLAYAxgaGsqvNBZrAKV8h4X4+zol8LUbiLAnnxTD680AetPvTwRQb4tAWJp/DlkMYK9evXDixAm+/mfs2LFwOBx4+umncd999+HRRx+FzWbDww8/LMfhCB1iMpmwatUq/OUvfwFQ/Ytt8ODBPjeI94aWEUDAPwPo717AgHgDaLVa0adPHwDV/QnT09NFH9MVqRFAwH0aWMkegBxSDCDw51woGQG8ceMGf3Fq0aIFE/uBcgawoqKCX7zEIYykyB0BFKNd7RQw8Of3TIwBDA8P93tBBgtzzyE2BRwdHS2pXMObAfSm358IYK1atfix6SECyNL8c8hiAO+//35s2bKF/1C1atUKy5cvx+233446deqga9eueO211/iLEmFMLBYLNm7ciE6dOgEArly5gr/85S9+f3n1GAH0tkjCFaEBNJlM6Nevn+jXypUG9scAutOodAsYoLpFjrBvnK/PBBdpUNIACuv/WrZsKWn+lcLbSmAlU8BitKsdAQSkGcBAdgFhYe45xKaApUasvRlAb/r9iQCazWb+s6wHA8jS/HPIYgAtFgvq16/P744AVKeB//3vf+Ojjz7C0qVL0atXLzkOReic6OhofPDBB2jevDkA4MSJExgxYoTT/q1i0ToCmJCQ4BTNCg0NdUqFBorQAHbp0kXSylmhAdy+fbvfY5C6CARwHwFUIwXsWmPn6zPB/SJXMgUsXAHcokULxY4jBW9RNiVTwGKQswZQqEWMARSzCliJbeC0wFcKmLtP6qIlf7eD87fm0Fc/Q8I7sm8F54lr167hX//6l1qHIximbdu22LFjB29odu/ejYkTJ0quVeMigJGRkZrVVgmjgImJiT7TQ1L2gRUu+PjrX/8qaVydOnXiDds333yDb775RtLrOYQGUHhyd8VXBFCNFDAAPrqclJTk08BwBrC8vNztwhU5cDWAWu4DzOHNZCmZAhajXYsIIGfqlI4AsjD3HN5SwP705OPwZgC96fcnAgjoywCyNP8cihvAzMxM/Pvf/8bf/vY3fPvtt0ofjtABZWVlaNOmDb788ku+J9n//d//Yd68eZLehzOADRs21KzJpqsB9IVrzZU3mjdvjo8++ggvvfQSZs6cKWlcZrMZr7zyCv//yZMn+3WS5AxgrVq1vNaw+KoB5CKAJpNJ0d0w3njjDbzwwgvYvHmzz8+E8EKjVBpYaABbtmwpaf6VQqsUsBjtStUAetOiVgqYhbnn8GYAi4qK+B/jchpAb/r9jQBy81pSUuJXFklNWJp/joAM4IkTJzBt2jQMGjQIQ4YMwZw5c/gTfWlpKVauXIlx48bh66+/Rt26dfHMM8/IMmhC33AX2zvuuAOffPIJf6F+9dVX8c4774h6j5KSEv5ipWWDTeGOIGIMoFSjMW7cOLz88st+XXgmTJjAb7945coVzJgxQ/J7CLeB84bYFHBcXJzbPVnlomXLlvj3v/+Nnj17+nyuGs2ghTWALVq0ULzljBi8mSwl+wCK0a52GxjgTwNYUVHBb4MnxG638xfvQAwgC3PP4S3S6q8ZA5y3g3M1gN70B5oCBtiPArI0/xx+G8D09HRMnz4dx48fR0lJCWw2Gw4cOIBnn30W165dw+OPP47NmzejTp06eOaZZ/Dpp5/igQcekHPsRBAwfPhwvPHGG/z/p0yZgp07d/p8nZZNoIX07NkTycnJsFgsGDt2rGbjcIfJZMJ7773Hn1DXrFkjKQpfXFzMXxx8GUBvKeCysjLeSIoxyWqhRjNoLgJYt25dryZETbyZLGEEUIuyCi0XgQDuo4ByNIFmDW/GKRADGBERwb9GSg1goClgQB+tYFjD4u8LP/nkE1RUVGDy5MkYMmQIAGDbtm1477338PTTT+PGjRt45JFH8PDDD8u6iTWhf1xNwNNPP40//vgDS5YsQVVVFV555RXce++9Xt9D6wUgHGFhYTh69CgKCgpEXeDVNkBNmjTBkiVL8MQTTwAAJk2ahP/973+iTuzCE7ivv7G3CODly5f5261atRI1bjVQOgJYUVHBRz65BSAsGGAxKeDo6GhYLH5fHtwiRruWbWCAarPnakDkMoAszD2HUgYQqE4DFxYW1jCA3vT7e0xhOcm3336L1q1bSxhp4FRWVsJms8Fms6GwsJC/zf1r2bIlXybE0vxz+B0B/N///ocuXbpg3LhxqFu3LurWrYuHH34Yt912G/Ly8vDEE0/gscceI/NH1EC4sIDjtdde4xc9HDt2zGfXdK1bwAgxm82iozvutCvN5MmT0b9/fwDVqVix9YRiVwADzgXOrhFA4QpgOVdJB4rSEcA//viD/xy3bNkSgDbz74qYFLDc9X+AOO1Wq5XvJiFXBDA8PJyvNXaHr+3g5DKALMw9h9gUsD9RYK4OsKCgwGn3L2/6/Y0ACnsLr1y5MqCm91KZPn06wsPDUa9ePTRu3Bjt27fH7bffjv79+2Po0KEYO3YsevTogU2bNgFga/45/DaAN27cQJs2bWrc37ZtWwDAoEGD/B8VEdS4q7Mxm8247bbbAFRHY4S1U+5gJQIoFXfalcZkMmHNmjV8xGv16tX47rvvfL5OigEMDQ3lLxauEUChAWRprpSOALrW/wHazL8rYlLAShhAsdq5z5FcBtDXjzO1UsAszD1HZGQk3zPTNQIo/Lv7GwHkyMrK4m970+9vBLBjx464++67AQBnzpwJeO9zseTl5WH58uWi5vTxxx/H5cuXmZp/Dr8NoN1ud7u1CfdLS4seUoQ+8PRrvHPnzvztX3/91et7sBQBlIK3SISSNG/eHIsXL+b//9hjj/mMekkxgMCf0T1vBlDMXsZqITUCmJmZiTVr1ojevcZdD0Ct5l+IpxRweXk5b4CUOH+L1R6sBpCFuecwmUweW6jIkQLmEKaBven3NwIIVJcQcaxcuVLSa/1FuI1py5Yt8eCDD2L8+PF4+umnMXv2bLzyyiv8Arz8/Hz8/e9/V3Txm7+o1geQUJ8lS5Zg2LBhGDRoEP7+979j//79Wg8JgOeTihQDqNcIoD8nVLl48skn+V/LFy9exJw5c7w+X6oB5BaC5OXlOf3aFfYA5DIELCA1Avi3v/0NkyZNwsiRI0W9v2sLGEDb+efwlAJWsgcgIF47N75AagDLy8t54yanAQxkOy8W5l4I93dWywB6ey/hMaUawGHDhvG1gF999RUuXrwo6fX+cPLkSf4213Zq3bp1ePPNN7Fo0SK8+OKL2LBhAz+uPXv2YO3atYqPSyoBVfl+++23OHXqlNN93K/jF154ocbzTSYT/v3vfwdySEICo0aNwrRp0xAWFobTp09j+vTp2LBhg+bR2ezsbLcFsUaIAHrSrgZmsxlr165Fx44dUVJSgpUrV+LBBx/kTaEr/kYAHQ4H8vPzeUMojACytIpSagTw8OHDAICDBw8iNzfX584s7iKAWs4/h6cIoJI9AAHx2rnxlZWVoayszK86crELQAD1IoAszL0Q7jogZxsYwLMB9Kaf+/4Ja0DFYrFY8MQTT+Af//gHqqqqsGrVKqdshxIIDWDHjh3dPqdevXr48MMPMWDAADgcDrz00ksYNGgQkpOTFR2bFAKKAF69ehU///yz07+rV6/C4XDUuJ/7R6hH06ZN+bCzyWRCRUUFk/sRcjRr1oz/VSrWAIaHh2tuaPVEy5YtsWjRIv7/jz32mMfol78RQMB5IQhnAKOjo5maKykRwLKyMieDdOjQIZ/vz9UAhoSEoHHjxv4NUgE81QBqvQ0chxwrgcVuAwfUXAXsSjC2gQH+nOPy8nKnxRpKGUBvcMf0N0o6adIk/lq3Zs0ar0295UBoAG+99VaPz+vXrx/ff7WiogLjxo1TfGxS8DsCuHHjRjnH4ZXi4mJs2LABaWlpOH36NAoLCzFnzhwMHjzY52svXLiAdevWIT09HXl5eQgPD0fTpk0xZswY3HnnnTWef/nyZaxduxYnT57EzZs3ER8fj5SUFDz00EOK1nBI1VheXo61a9fi22+/RWFhIVq2bImJEyeie/fuTs9btmwZtm/fjvLycvTs2ZOJ/Ug9nZBNJhM6deqEH3/8EX/88Qfy8vI8bp/DpYAbNWqk2S4g/sBCL7ipU6di8+bN2L9/P37//Xc89thj+OSTT2psY8cZQJPJhNjYWJ/v6243EIfDwRvAJk2aMLUdkpQIYHZ2ttP/Dx48iL/85S8en+9wOPgIYNOmTfmWKizMv1YpYLHaXcfnz8pxKRFAtVYBszD3QoR/54KCAv76ppQB9Kbf363nOOLi4jBq1Ch89NFHyMvLw6effooJEyb49V6+cDgcfA1gkyZNfK6UXrhwIXbt2oXjx48jLS0Ns2bNcup9qyV+RwATEhL8+ucPBQUFWL9+PS5duiS5j1hGRgaKi4sxaNAgPPPMM3jkkUcAAHPmzMGXX37p9NzMzEw8/vjjSEtLw/DhwzF16lR06NAB77//Pl5++WW/xi4WqRoXLVqETZs24Z577sEzzzwDs9mMmTNn4sSJE07Pmz59Onbu3Inly5eje/fuTJilyspKj48J08CuWjhKS0v5E7ye6v8A79rVwmw24/333+cjYBs3bnT7+eYMYGxsrKiecO56AWZnZ/PRhSZNmjChn0NKBNA1kvHTTz95fX5eXh4fXePq/wA25l+YZlMzBSxWuxy7gYjdBg5QLwXMwtwLEUZ5hX9nudrAAM7fG2/6uWNKrf8TMnXqVP72m2++qVhLmMuXL/N/L0/pXyFWqxUff/wxb7DffPNN7NixQ5GxSUUXi0BiYmKwdetWbN68GU8++aSk1/bq1QtLly7Fo48+ivvuuw8jR47EihUr0KpVK74/D8e3334Lm82GxYsX4+GHH8bQoUMxZ84c3Hvvvdi/f7/XdERhYSH27t3r8fHU1FSvoV8pGtPS0rB7925MnjwZU6ZMwdChQ/Gf//wHCQkJWLVqVY3nh4SEoGvXrjh69CgOHjzo9b3VwNvfUUwdICu7gPhDoM1t5aJNmzb49NNP+R8ECxYswMcff8w/7nA4RG8Dx+EuBSys/2vatCkz+gFpEUBXA3jo0CGvbR3ctYAB2Jl/zmQJL/xKbgMHiNcux24gLNYAsjL3HJ6aQSvVBsaT/srKSv7vHshCmdtvv53PgB0/flyxa52Y+j9X2rdvj7lz5/L/f/TRR2tkFbRAFwYwLCzMZ8G1FEJCQhAXF1fjpM9FAVxPGDExMTCbzV6jIFu3bsX8+fOxb9++Go9t27YNCxYs8Or6pWjcu3cvQkJCMHToUP4+q9WKIUOG4NSpUx7rLux2u+gWFloh1QDqaQEIa9x3331YunQp//8JEybgwIEDAKqjQdzm6mINoLsIoNAANmnSJOAxy4mUCKDwQgZUX8xOnz7t8fnuFoCwBHehVTMCKBY5agDlNIDCz0Yw1gACzgYw0BRwdHQ0/3cSUwMo/PsGEgEEnFvCvPnmmwG9lyeELWC81f+58uijj/L9kTMyMjBp0iRVG1e7QxcGUA5KSkqQn5+Pq1evYtOmTTh06BC6dOni9ByuEfHixYtx9uxZZGZmYvfu3fjiiy8wYsQIt30POcaOHYuePXtiwYIFOHr0KH//3r178frrr2PgwIEYNmyYLFrOnj2LpKSkGi0J2rVrBwA4d+4cbDYbdu3aheLiYlRWVmLPnj04duyYk8HSCm+m7dZbb+Vr0TwZQL22gAHYM6zPPfccJk+eDKC6rnTYsGG4cOGC5AUggPsaQFcDyJL+QCKAgPc0sLsWMAA78++u1YrSi0DEapc7BczKIhBW5p7DU6Q1UAMI/BkFFH5vPOmX43gco0aN4uuVP/vsM6dggVz4EwEEqreCW7duHf9D+YsvvtC8NYxhDOBbb72FoUOHYsyYMXj77bfRu3dvPPfcc07P6dGjBx577DEcOXIEjz32GEaOHImXX34ZDzzwgFN9gTssFgvmz5/Ph3rT0tJw9OhRLFy4ED169MDs2bNlq7/z1IKCuy8nJwcmkwnbtm3Dgw8+iPvuuw8ff/wx5s2b53WvxNTUVMyePVuxX04crtEUIZGRkfwYT5065bZuRM8RQG/atcBkMmHlypUYMGAAgOqavb/+9a84c+YM/5xAUsDCHoBNmzZlSn8gNYCAeAMojACyop+70JaUlPDfMaUXgYjVHqwpYFbmnsNXBNCfliwcnAHMzc1FRUUFAM/6A2kC7Up4eDgmTZoEoDq1/O677wb0fu7gDKDFYsEtt9wi+nVZWVlISEjAmjVr+PumTZuGs2fPyj5Gsci72zfDjBw5En379kVOTg727NkDu93OfzCFNGzYEJ07d8bdd9+N2rVr4+DBg/joo49Qv359jBgxwusxrFYrFi1ahGnTpmHmzJmoqKhAu3bt8PLLL8u6sXpZWZnbLya3DL6srAxRUVFYsWKFpPdNSUlBSkoK0tPT+S+REvgqhu7cuTPS09NRVlaG9PR0dOjQwelxPUcAWSsEB6q3cdu8eTN69eqF9PR0pKWlOc2/nClglvQLL+a+IoDuLl7eaow81QCyot+1F2C9evWYWQSitgFUaxUwK3PP4csABhKNE9YBZmdno1GjRh71yxkBBIAnnngCixcvht1ux+rVqzFnzhzZduGoqKjgSz/atGkj6X05/ffffz8mTZqE9957D/Xq1UNOTo7XwIySGCYC2LRpU3Tr1g2DBg3C4sWLUVJSgtmzZzvl4Hfv3o0lS5Zg5syZuO+++3D33Xdj9uzZGDRoEN55550aHdPdERUVhSlTpuDmzZsoKSnB1KlT/Wpk6g2r1erWvHI1W3IfT258jc9XHaCeI4Cszk29evWwbds2vk2LcDs3ORaBmM1mNGrUiCn9ZrOZv6BLiQByKd20tDQn0ySEiwDWr1/f6ULLin53dXZKp4DFametBlAuA8jK3HP4SgHLZQC5744n/XJGAAGgcePGfLlVRkYG/vvf/wb8nhxnz57lr71S0r+As/5ly5bh2WefxYkTJ9CrVy/ZxicVwxhAV/r27YszZ87g8uXL/H1bt25F69atERcX5/TcO++8E6WlpaJCtdeuXcPChQvRpEkTJCQkYN68ebI3X46Jiamx3yrw50Xbn75ZauLr4iLFAOotAshSI2RXWrVqha1bt9aILos1gOHh4fwF0jUC2KhRI4SGhjKnn7vgiDWAYWFhfCE38OfuIELKy8v584qw/g9gZ/7d7QaidApYrHYtawCVNICszD2HrwigPy1gONwZQE/65Y4AAsrtD+xv/R/grD86OhrLly/XvC+qYQ1gWVkZAOdfHzdu3EBVVVWN53KhW29tH4DqqMf06dNhsViwbNkyvP766ygtLcXzzz8f8MbmQlq1aoUrV67UuGilpaXxj7OMr1oYXwaQSwFbrVbmmqv6grU6IFf69OmD9957z+k+Kf07uR8fubm5KCkp4fU2bdoUAHv6uTpAsSnguLg4p1/s7tLAly5d4jMLriuAWdHvzmRxEUCr1apI03stagDDwsK8Lt4DqAYQ+NMAlpeX89dGuSOAYmoA5TKAd999N186tH//fhw7dkyW9xW7A4g7WJt/IMgMYGlpKS5duuSUyhD+EuSorKzEzp07YbVa0axZM/7+xo0b4+zZs05RQaA6NWw2m2v8mhdSWFiIGTNmoKSkBMuWLUNcXBwaN26MpUuXIjs7G7NmzZJtC5i+ffvCbrc7NbIuLy/H9u3b0b59e6cvnx5JTEzk04neIoANGzZkorF1sPH3v/8dL7/8MkwmEzp37ow2bdqIfi03b7m5uUy3gOHgDKC3CKDdbud7dsXHxzsZQHcLQTzV/7GEtxSw1pGqQFPAlZWV/Dm8fv36Ps8RRt0KznUnEEC+aJyU7eCEx5QjBQxUL25TIgoobAEjNQLIIrpZBLJlyxbYbDY+tbR//37eUY8YMQLR0dE4ffo0pk2bhvHjx/PbwCxduhRFRUXo3LkzYmNjkZubi127duGPP/7AU0895fSFfuihh3Do0CE8/fTTeOCBB1C7dm0cOHAAhw4dwl//+levqdWtW7ciKysLb7zxhtO+n61bt8Zrr72G559/Hjt27MDw4cMD0ghUN5Xs168f3n33XeTn5yMxMRE7duxARkYGZs2a5c+fV1V8pZc44/Hdd98hIyMDWVlZfFq+rKyM//voLf0LaNtfTQovvfQSHnvsMcTHxyMkJET067jvSGVlpdPJkjOArOnnvlPFxcWoqqqqsR0eUG1mucxAXFwcmjdvjtjYWGRnZ+Onn36Cw+FwMhmeWsAA7Oj3lgJWaoxi3zfQFPCPP/7I//C/6667fD5f7CIQi8US0GICVuaew91OIEoaQE/6lUgBA8DDDz+MWbNm4ebNm/jvf/+Ld955J+DFmFwEMCoqyil4JAbW5h/QkQHcuHGjU2+yffv28U2XBw4c6PGXQ//+/fH111/jiy++QEFBASIjI9G2bVs88cQTNU4OycnJeOutt7Bu3Tps3boVN2/eRMOGDTFp0iSMGTPG6/jGjh2L3r17o3nz5jUe69SpE1avXu0zGiBF49y5cxEfH4+dO3fCZrOhRYsWWLx4MZKTk70egwXcpdld4QwgUB0FvOeeewDA6e+jtwUggDjtrJCYmCj5NcKFIL/88gt/m0sBs6Zf2AqmuLjY7XlEmLqJj4+HyWRCz5498dVXX+HGjRv47bff0LZtW/453ppAs6Lf1WRVVVXxJkCpCKBY7YEaQGHR/wMPPODz+WJTwIFG/1iZew61I4Ce9Mu9CET4XoMHD8bGjRuRn5+PAwcOoE+fPn6/n81m47/bHTp0cPtj0RuszT+gIwPoum2bO2677bYaO3EMGDCA73Emhvbt22PJkiWSx2exWNyaPw5v6WMOMRo5rFYrpkyZgilTpoh+DSvcvHnT58nFtQ6QM4B6bgEDiNOuZ4QGUFh3w0UAWdPv2gza3QVImMLiLmy9evXCV199BaA6DSzWALKi3zXNWlhYyNctKhWpEKvdYrEgMjISxcXFkg1gVVUVbwDDwsIwZMgQUcezWCxOW5IJkcsAsjL3HCEhIYiOjobNZlPFAHrSr1QEEACGDBmCjRs3AgC+/vrrgAwgV2MP+Jf+ZW3+gSCrASSCB08LQfTcAsYICMskhBFA1msAAc91gEIDyJUi9OzZk7/PtQ6QqwEMDQ1FUlKSbGOVE9cUMCvbwHG426pODEeOHOG3u0xJSRG9kpWLAippAFmE+/vInQKuXbs23/bEVw2gUhFAABg0aBBfnvH1118H9F6BrABmFTKAhOqIWVXarl07vl5DaAD1HgGUsqJWjwgjgMITP2cAWdMvZjs41xQwAHTv3p1PAQlXAjscDj4C2KxZsxr1k6zod02zKt0DEJCm3dWYiEVq+peDM4DeFoEEagBZmXsh3Fy7iwAG0gbGZDLV2A7Ok34lI4CxsbHo0aMHgOqdpYQ7E0klkBXAAJvzTwaQUB13PQxdsVqt/N7Gp0+f5lsT6D0CKEa7nnG3UKpOnTr8hYY1/VIjgNxFLTo6mo8CnDx5kjePOTk5/G13Nb+s6HeNACrdAxCQpl1oAIXN+r3hcDiwZcsWANVNvocOHSr6eJ4igA6HQzYDyMrcC+G+lzabDXa73clwB2rGuO9KTk4O7Ha7R/1KRgABOJUBBBIFDDQCyOL8kwEkVMfdLibu4NLAlZWV/PY7em4CDYjXrlfc7VEtTP+ypl9MBNBdChj4Mw1cVVWFI0eOAPBe/wewo9+1BlCNFLAU7dz4qqqqRLfPOnXqFM6dOwegup9lbGys6ONx5s71WKWlpbwBDdQAsjL3QtzVgnLIZQCrqqqQk5PjUb+SEUBAPgPIdTWIi4ursVmEGFicfzKAhOqIbaXgrg5QmALWYwRQrj0pWcWXAWRNv5gIoLsUMOBcB8ilgYU9AN0t/GJFv7caQKVSwFK0+7MS2N/0L+A5AihnD0BW5l6IazNoJQwgUP0jypN+7oeX2WxWpAF5cnIyf6347rvv3Kb5fZGVlcWfB/xJ/wJszj8ZQEJ1xO7e4c4AchHAsLAwzbfR8Qe97VwiFXcpYK4FDMCefikRQJPJ5KTPXUNoXxFAVvS7Giw1UsBStPuzG8jWrVv529xesGLhDGBlZSW/8xMgrwFkZe6FKGkAhVGyzMxMj/qFew8r0djfZDLhL3/5C4DqiO6ePXskv4ccC0BYnH8ygITq+FoVxuEtApiQkKDLXUDEatcrviKArOmXUgPYoEEDp0UdrVu35k/qXENoXwaQFf2RkZH8Iha1UsBStEvdDeT8+fM4fvw4AOD22293asYvBk+9AOU0gKzMvRBXo61kBNCd/vz8fFy4cAGAsnvYB5oGlmMHEBbnnwwgwSxxcXH8yqlff/0V5eXlyMnJAaDP9K8RiIqK4ts/cLDaAgbwHQF0OBx86sd1i0Wz2cyvMMzKysKFCxd8GkBWMJlMTq1W1EgBS0FqClgY/fO225InPG0HF6zbwHGomQJ2x2effYby8nIAwF//+teAjueNlJQUPgX79ddfi15YxBGMLWAAMoCEBki5wHBRwNzcXKe+cnpcAAKwcXFVEpPJVCMKKDSArOn3FQG8efMmvwLd3R7brmlgrgYwNjbW7QWUJf3c+NRKAUvRLjUFHEj9H+B5Ozg5DSBLc8/hagCFf+tA2sAANQ2gO/0ff/wxf/vhhx8O6HjeiI6Oxt133w0A+OOPP3Dq1ClJrxcawPbt2/s1BhbnnwwgwTTCNPA333zD36YIILu4GkBhDSBr+IoAumsBI0S4EOT777/nmxCzHP3j4C7wLEYApRjA69ev48CBAwCqt+hq06aN5OOpkQJmEdf9gNWMAF6+fBnff/89AKBNmzbo2rVrQMfzhb9p4KqqKt4wtmjRQpFWNVpBBpBQHWG0wReeDKBeI4BStOsVYS1PSEiI01yxpt9XBFC4Athd64fbb7+dv71lyxY+teTJALKkn7vA22w23Lhxg79fqQigFO2uq5S98fnnn/O3/Yn+AeIMoPCz4g8szT2H637A3N/abDYHbHiFBjArK6uG/k8//ZS//fDDDyte0y1MMW/btk306y5evMifGwJJ/7I4/2QACaYRGkCu1xpAEUCWEUYAk5KSauyGwRKBRgDr1q3Lp4Ty8vL4+8Xs/a01QpN15coVANUXfhYiHFIigIGmfwGKAALOBjA6OjpgQ1avXj1+Nyd3EcCPPvqIvz1u3LiAjiWGli1b8nt2HzhwwOn76o1AdwBhGTKAhOq4u5B6om3btvyiAmHhrl4jgFK06xWhAXRdAMKafl8RQF8GEHBOA3N4igCypF9osi5fvszfx60Olhsp2sUawLy8PL6tR/PmzZ1+MEpBjUUgLM09hycDKEdDZrPZzEfNMzMznfSfOHGCN1a9evVSrWSCSwNXVVVh586dol4j1wIQFuefDCChOsJ0ky8sFgs6dOhQ4369RgClaNcrwhSwa/0fa/qF0S5/UsCANAPIkn7hRZ6LeimV/gWkaRcawN9++83jqs1t27bBbrcDqI7++Ru1UiMCyNLcc3hqAyPXjhyc6cnKynLaCk2txR+u+FMHKEcLGIDN+ScDSKgOt+xfLO5+1es1AihVux7xFgFkTb8wAuhPChhwXgnM4ckAsqTf3UVeSQMoRbvw+71lyxaMGjXK7fzIkf4F1FkFzNLccwgjgPn5+fzfWG4DWFlZiezsbADV0bdPPvkEQPUP/FGjRslyLDHcddddvLYdO3bwPx68wUUAQ0ND0bp1a7+PzeL8kwEkVCc0NFTS810NoMVicdtwWA9I1a5HhOanXbt2To+xpt9isfAlBv6mgNu1a+d0wQwLC0NiYqLb57KkX+02NVK0JyUlYfHixXxE77PPPsMdd9zh1GfRZrPxabyEhAS3kVixeIoACj8TgRpAluaeQzjf165d4yOtgbaA4RB+Z7gI2L59+/ia00GDBinaANqVsLAwDBw4EEB1a7FDhw55fX5ZWRnS09MBVH/PA5lDFuefDCChOlLNm6sBbNiwoWJ1SkqjV+MqhSFDhuDZZ5/F008/XePXPYv6uSiguwiTMAUcGxvr9vUhISFOq4GbN2/u8fPJkn53F3klI4BStc+cORNffPEFb1RPnjyJ7t27IzU1FUB1BKe0tBRAdfPnQM4JaqSAWZp7DqvVyhsTzpQB8kcAAfD9NNVe/OGKlDRweno6HyUMtAE0i/Ovz6sooWsyMjIkPd+dAdQrUrXrEYvFguXLl+PNN9+ssQE6i/o5A+gtAlinTh2vG9UL08DeCtpZ0q92BNAf7ffddx9+/vlnvrdfXl4e7r33XixfvhxbtmzhnxdI+hdQxwCyNPccJpOJn3Phjx0lDOBvv/2G0tJSfPbZZwCq62+HDh0qy3GkMHjwYP62LwMo5wpgFuefDCDBPPXq1XOqJdPrAhCCTbiFIN5qAH2t4BOmH1u1aiXj6JRD7RpAf7nlllvw888/O63gnD59OjZs2ACg+vzA7fLgL0bdCg5wb/qVMIDZ2dn4+uuv+X54DzzwgCZ/04SEBHTr1g1A9RajwsinK8G6BRwHGUBCdfypLxFGAfUcAZSrtkavsKhfGAEUrjYtKSnhV0V6WgHMMXDgQAwYMABJSUmYOHGix+expF/tFHAg2uvUqYMvv/wSL774Yo3H7rvvvoDrq9RYBMLS3AtxNy4lDGBhYaFT+lfN1b+uCNPA27dv9/g8OQ0gi/NPBpBQHX9qdYQGUM8RQL3WLsoFi/q5CGBVVRVfUwY4p8R8RQBDQ0ORmpqKP/74A506dfL4PJb0q50CDlS72WzGK6+8gs2bNzut3g40/QuokwJmae6FqBUB/O2333izlZCQgP79+8tyDH8QWwfItYCpXbs2GjduHNAxWZx/9kZEBD3CfUfF0q9fP/72bbfdJuNo1MUf7cEEi/o9NYMWswLYFV996FjSr3YKWC7tDz74IA4ePIghQ4bg6aefxn333Rfwe6phAFmaeyFqGcDt27fzrVDGjBmj6Q5BXbt25ceWmprq9MOPo6CgAH/88QeA6vq/QHdGYXH+LVoPgCDE0L9/f3z88ccoKytzKuIliEBx3Q6Oa0shpgm0nlE7BSwnHTt2lLSfqy/EGEBvi4D0jDsDKFe6MiYmBmazGVVVVU4997RM/wLV0bjBgwdj/fr1KC4uRv/+/TFgwAD07t0bvXr1Qq1atWRrAM0yZAAJ1fH3Yjp27FiZR6I+wWgkpMCifjkjgL5gSb/aKWCWtLviaxFIREREwCk8VvUrWQMYEhKC2NhYp+/SLbfcwkQWZ+jQoVi/fj0A4ODBgzh48CCAanOYnJzs9HeRYw9gFuefUsCE6nCrwIyIkbUDbOp3jQByKGEAWdKvdgqYJe2u+IoACn8k+Aur+pVMAQM1vzsPP/xwwOlUObj//vvxwgsvoFmzZk73V1VV4ZdffsH333/P3ydHBJDF+ScDSKgO1xDUiBhZO8Cmfk8RQCVSwCzpFxpfDiUNIEvaXfG1CliOdiWs6lfbALKSyTGbzfj3v/+NCxcu4PLly/j0008xZcoUdOzY0cmg1qtXD8nJyQEfj8X5pxQwoToWi3E/dkbWDrCpX80IIEv6zWYzoqOjnTQrmQJmSbsrviKAchhAVvUrmQIGnL87d955J5o3by7be8tFUlISHnroITz00EMAqretO3DgANLS0tC3b19Zvhcszj97IyKCHhZrIdTCyNoBNvUbtQYQqL7Qq2UAWdMuJCQkBKGhoaioqHC7F7AcBpBV/UpHAIV9W7XY+s0f6tWrhyFDhji1iwkUFuefUsCE6ly7dk3rIWiGkbUDbOr3FAHkUsDh4eFu06X+wJp+4YU+MjJS0Q3rWdPuChcF5AxgRUUFKisrAchjAFnVr7QBfOihh1C/fn20a9dONwZQCVicf4oAEgRhaHxFAOPj45koWlcCYfpPLy1glCIiIgI3b97k075G2AYOUD4F3KVLF2RkZCAzM5PJ3TCMDEUACdWR8+SiN4ysHWBTv7sIYGVlJXJzcwHIl/4F2NMvHI/SBpA17a64RgDlNoCs6neNAIaHh8seCQ4NDTW8+WNx/skAEqrDYjGsWhhZO8CmfncRwJycHH5fYDlrd1jTL7woKVn/B7Cn3RXO5CllAFnV7zrvShkVVvWrBYv6yQASqnPjxg2th6AZRtYOsKlfGAHkDKASC0AA9vSrmQJmTbsrSkcAWdWvlgFkVb9asKifDCBBEIZGGAHkUsBKGUDWUDMFzDqcAbTb7aioqDBMDWB0dLRTjSuLqUpCGcgAEqoTGxur9RA0w8jaATb1u4sAKrUPMGv61UwBs6bdFdft4OQ2gKzqN5vNTp8DpQwgq/rVgkX9ZAAJ1SksLNR6CJphZO0Am/rVjACypl/NFDBr2l1xbQYttwFkWb/Q/CtlAFnWrwYs6icDSKhOaWmp1kPQDCNrB9jUr2YNIGv61YwAsqbdFdft4OQ2gCzrF/4QUMoAsqxfDVjUTwaQUJ2QkBCth6AZRtYOsKk/LCyMHxcXAVQqBcyafqG5Fe7YoASsaXfFWwRQGCX2F5b1C82/Uu1aWNavBizqZ29dMhH0JCQkaD0EzTCydoBN/SaTCVFRUbh586biEUDW9A8dOhQPPPAAKisrMWLECEWPxZp2V5ROAbOsX40UMMv61YBF/RQBJFTn6tWrWg9BM4ysHWBXP5cGdq0BDAkJQf369WU7Dmv6IyIisGXLFnzxxReybXfnCda0u6L0IhCW9auRAmZZvxqwqJ8MIEEQhodL8bmuAo6NjYXZTKdJI+AaARRuCxjMbWAAdSKABHvQmY1QHTnqafSKkbUD7OoXRgAdDgdvAOXuAciqfjVgXbvSKWCW9athAFnWrwYs6icDSKiO1WrVegiaYWTtALv6uZNzRUUFsrKyUFFRAUB+A8iqfjVgXbvSq4BZ1q+GAWRZvxqwqJ8MIKE6eXl5Wg9BM4ysHWBXv7D+7fz58/xtOVcAA+zqVwPWtSsdAWRZf79+/QBU71d75513KnIMlvWrAYv6aRUwQRCGR5ieERrAYN4GjnBGaQPIMnfccQdOnz6NyMhINGnSROvhECpBBpBQnQYNGmg9BM0wsnaAXf2eIoByG0BW9asB69qVXgXMuv5bbrlF0fdnXb/SsKifUsCE6ghX1xkNI2sH2NXvKQIodwqYVf1qwLp2pSOArOtXGtLPnn4ygITqlJSUaD0EzTCydoBd/WpFAFnVrwasa/e2CERoDv2Fdf1KQ/rZ008GkFAdI/dVM7J2gF39wgjg77//zt+W2wCyql8NWNfuKQIYGhqK0NDQgN+fdf1KQ/rZ08/eiIigR+k9R1nGyNoBdvULI4DCjv1yG0BW9asB69o9GUC5FoCwrl9pSD97+skAEqpz7do1rYegGUbWDrCr31OT1tjYWFmPw6p+NWBdu6dFIHIZQNb1Kw3pZ08/GUBCdRwOh9ZD0AwjawfY1e9uH9z69evLkvoTwqp+NWBdu6cIoFw7OLCuX2lIP3v6yQASqhPsPbW8YWTtALv63V3klegByKp+NWBdu9IpYNb1Kw3pZ08/GUBCdeRYUadXjKwdYFe/uwig3C1gAHb1qwHr2oUX6KKiIn7VplwXbtb1Kw3pZ08/GUBCdXJzc7UegmYYWTvArn61IoCs6lcD1rULL9DCbbvkMoCs61ca0s+eftoJJIhZsmQJ9u/fj9LSUsTHx2Py5MmK7fNIEHrGXQSQtoEzFmazGWFhYSgvL3e6WLOYuiMIOSADGMSMGjUK06ZNQ1hYGE6fPo3p06djw4YNqFOnjqbjiomJ0fT4WmJk7QC7+t1FAJVIAbOqXw30oD0iIgLl5eXIycnh75PLAOpBv5KQfvb0Uwo4iGnatCnCwsIAACaTCRUVFU4nNq0oLS3VegiaYWTtALv61YoAsqpfDfSgnUsDl5WV8ffJZQD1oF9JSD97+nURASwuLsaGDRuQlpaG06dPo7CwEHPmzMHgwYN9vvbChQtYt24d0tPTkZeXh/DwcDRt2hRjxoypkQ7917/+hR07dnh8ry1btsjeF4xDqsby8nKsXbsW3377LQoLC9GyZUtMnDgR3bt3d3resmXLsH37dpSXl6Nnz55o0aKFIuOXQlFREerWrav1MDTByNoBdvWrVQPIqn410IN2d4X6chlAPehXEtLPnn5dGMCCggKsX78e8fHxaNWqFY4dOyb6tRkZGSguLsagQYPQoEEDlJaWYu/evZgzZw5mzJiBoUOH8s8dOnQounXr5vR6h8OB119/HQkJCYqZP0C6xkWLFuH777/HyJEjkZSUhG+++QYzZ87EihUr0KlTJ/5506dPx7Rp03D8+HGcP38eJpNJMQ0EoVciIiJgMpmcenUpkQIm2Mad2aMaQCJY0YUBjImJwdatWxETE4MzZ85g8uTJol/bq1cv9OrVy+m+Bx54AJMmTcKmTZucDOCtt96KW2+91em5J06cQGlpKe655x6vxyksLMQvv/yCu+++2+3jqampuPPOOz0uBZeiMS0tDbt378aTTz6JMWPGAADuvfdejB8/HqtWrcKqVaucnh8SEoKuXbti8+bNSEpKqvH3UJvExERNj68lRtYOsKvfbDYjMjISRUVF/H1KRABZ1a8GetCuZARQD/qVhPSzp18XNYBhYWGyFlCGhIQgLi4ONpvN53NTU1NhMpmQkpLi9Xlbt27F/PnzsW/fvhqPbdu2DQsWLPCaXpaice/evQgJCXEyr1arFUOGDMGpU6eQmZnp9nV2u91pn1OtuH79utZD0AwjawfY1u+aBlYiAsiyfqXRg3YlDaAe9CsJ6WdPvy4MoByUlJQgPz8fV69exaZNm3Do0CF06dLF62sqKyuxZ88e3HrrrT43ch47dix69uyJBQsW4OjRo/z9e/fuxeuvv46BAwdi2LBhckjB2bNnkZSUVOOC1a5dOwDAuXPnYLPZsGvXLhQXF/M6jh07hs6dO8syhkCoqqrSegiaYWTtANv6hQtBoqKiZNsCTAjL+pVGD9qVNIB60K8kpJ89/bpIAcvBW2+9hS+//BJAdbqnT58+eO6557y+5ueff0ZBQYHP9C8AWCwWzJ8/Hy+88ALmzp2L5cuXo6SkBAsXLkSPHj0we/Zs2ervcnNz3UYLuftycnJgMpmwbds2LF++HA6HA4mJiZg3bx5at27t8X1TU1ORmpoqKjIaCCx2RFcLI2sH2NYvNHxK9QBkWb/S6EG7kgZQD/qVhPSzp98wBnDkyJHo27cvcnJysGfPHtjtdlRUVHh9TWpqKiwWC/r16yfqGFarFYsWLcK0adMwc+ZMVFRUoF27dnj55Zdhscj3py4rK3O7ST3X8qWsrAxRUVFYsWKFpPdNSUlBSkoK0tPTMWnSJFnG6g4lIit6wcjaAbb1CyOAShlAlvUrjR60uzN7co1bD/qVhPSzp98wKeCmTZuiW7duGDRoEBYvXoySkhLMnj3badWfkOLiYvz444+4/fbbJTVOjoqKwpQpU3Dz5k2UlJRg6tSpsFqtcskAUG003ZnX8vJy/nGWYaEXoVYYWTvAtn7hCVqpFcAs61caPWhXMgKoB/1KQvrZ028YA+hK3759cebMGVy+fNnt4z/++KOo1b+uXLt2DQsXLkSTJk2QkJCAefPmyT7xMTExbvcV5O5r0KCBrMcjCCOgRgSQYBslDSBBsIZhDSDX6d1TvduuXbsQEREhae/cnJwcTJ8+HRaLBcuWLcPrr7+O0tJSPP/887h586Ys4waAVq1a4cqVK04tK4Dq9jDc4yxTv359rYegGUbWDrCtX40aQJb1K40etCtpAPWgX0lIP3v6g8oAlpaW4tKlS8jPz+fvu3HjRo3nVVZWYufOnbBarWjWrFmNx/Pz83HkyBH06dMH4eHhoo5dWFiIGTNmoKSkBMuWLUNcXBwaN26MpUuXIjs7G7NmzUJJSYm/0pzo27cv7HY7v6gFqE7/bt++He3bt2c+esGlqo2IkbUDbOsXRgCVSgGzrF9p9KBdSQOoB/1KQvrZ06+bRSBbtmyBzWbj05z79+9HVlYWAGDEiBGIjo7G6dOnMW3aNIwfPx4TJkwAACxduhRFRUXo3LkzYmNjkZubi127duGPP/7AU0895fbLvXv3btjtdknp361btyIrKwtvvPEGGjduzN/funVrvPbaa3j++eexY8cODB8+PCCNANC+fXv069cP7777LvLz85GYmIgdO3YgIyMDs2bNEj1mrbDZbJLqKoMJI2sH2NavRgSQZf1KowftShpAPehXEtLPnn7dGMCNGzciIyOD//++ffv4pssDBw50u5k7APTv3x9ff/01vvjiCxQUFCAyMhJt27bFE088gbvuusvta1JTU1GvXj107dpV9PjGjh2L3r17o3nz5jUe69SpE1avXu1zH14pGufOnYv4+Hjs3LkTNpsNLVq0wOLFi5GcnCx6zARB/EmbNm342647AhHGgLaCI4yEyeFpGSxhWLg2MO+99x7atm0r+/s7HA7D7klsZO0A2/pLSkqwcuVKNGnSBKNHj1bkGCzrVxo9aH/33Xfx+OOPO92Xm5srS/2WHvQrCelnT39Q1QAS+sDTVnVGwMjaAbb1R0RE4IUXXlDM/AFs61caPWhXMgWsB/1KQvrZ008GkFAdu92u9RA0w8jaAdJvZP160O5qAE0mk2x9VfWgX0lIP3v6yQASqiN2ZXUwYmTtAOk3sn49aHc1gJGRkbKl7fSgX0lIP3v6yQASqlOrVi2th6AZRtYOkH4j69eDdtd0r5wLQPSgX0lIP3v6yQASqpOdna31EDTDyNoB0m9k/XrQ7i4CKBd60K8kpJ89/WQACYIgCALKGkCCYA0ygITq1KtXT+shaIaRtQOk38j69aDd1QAKm4MHih70KwnpZ08/GUBCdSorK7UegmYYWTtA+o2sXw/alYwA6kG/kpB+9vSTASRUp7CwUOshaIaRtQOk38j69aBdSQOoB/1KQvrZ008GkCAIgiCg7CpggmANMoCE6jRs2FDrIWiGkbUDpN/I+vWg3bVXm5wGUA/6lYT0s6efDCChOiwuh1cLI2sHSL+R9etBu9lsdtr5g9rAyAfpZ08/GUBCdVgshlULI2sHSL+R9etFu7AOkBaByAfpZ08/GUBCdeTaW1OPGFk7QPqNrF8v2pUygHrRrxSknz39ZAAJ1albt67WQ9AMI2sHSL+R9etFu1IGUC/6lYL019V6CDUgA0ioTmZmptZD0AwjawdIv5H160W70PTJaQD1ol8pSD97+skAEgRBEMT/R6kIIEGwBhlAQnXq1Kmj9RA0w8jaAdJvZP160a6UAdSLfqUg/ezpJwNIqI7D4dB6CJphZO0A6Teyfr1oV8oA6kW/UpB+9vSTASRU5+bNm1oPQTOMrB0g/UbWrxftQgMYFRUl2/vqRb9SkH729JMBJAiCIIj/j1KLQAiCNcgAEqqTkJCg9RA0w8jaAdJvZP160S6MAApvB4pe9CsF6WdPPxlAQnVyc3O1HoJmGFk7QPqNrF8v2vv37w8AiIuLw6233irb++pFv1KQfvb0W7QeAGE8KioqtB6CZhhZO0D6jaxfL9rHjh2Ljh07IikpSdYIoF70KwXpZ08/GUBCdcLCwrQegmYYWTtA+o2sX0/aO3bsKPt76km/EpB+9vRTCphQnfr162s9BM0wsnaA9BtZv5G1A6Sf9LOnnwwgoToZGRlaD0EzjKwdIP1G1m9k7QDpJ/3s6ScDSBAEQRAEYTDIABKqU7t2ba2HoBlG1g6QfiPrN7J2gPSTfvb0kwEkVMdkMmk9BM0wsnaA9BtZv5G1A6Sf9LOnnwwgoToFBQVaD0EzjKwdIP1G1m9k7QDpJ/3s6ScDSBAEQRAEYTDIABKqEx8fr/UQNMPI2gHSb2T9RtYOkH7Sz55+MoCE6uTn52s9BM0wsnaA9BtZv5G1A6Sf9OdrPYQakAEkVKesrEzrIWiGkbUDpN/I+o2sHSD9pJ89/WQACdUJDQ3VegiaYWTtAOk3sn4jawdIP+lnTz8ZQEJ1GjRooPUQNMPI2gHSb2T9RtYOkH7Sz55+MoCE6ly/fl3rIWiGkbUDpN/I+o2sHSD9pJ89/RatB0CwB1ercOnSJUXePzs7GzabTZH3Zh0jawdIv5H1G1k7QPpJv7r6mzZtivDwcK/PIQNI1IDbtPqVV17ReCQEQRAEQUjlvffeQ9u2bb0+x+RwOBwqjYfQCfn5+fj555/RsGFDhIWFyfrely5dwiuvvIJ//OMfaNq0qazvzTpG1g6QfiPrN7J2gPSTfvX1UwSQ8Iu6deti4MCBih6jadOmPn+dBCtG1g6QfiPrN7J2gPSTfrb00yIQgiAIgiAIg0EGkCAIgiAIwmCQASRUJSYmBuPHj0dMTIzWQ1EdI2sHSL+R9RtZO0D6ST+b+mkRCEEQBEEQhMGgCCBBEARBEITBIANIEARBEARhMMgAEgRBEARBGAwygARBEARBEAaDGkETqlBeXo61a9fi22+/RWFhIVq2bImJEyeie/fuWg/NL44dO4Zp06a5fWzVqlXo0KED//+TJ09i9erV+O233xAVFYV+/fph0qRJiIyMdHodq3+j4uJibNiwAWlpaTh9+jQKCwsxZ84cDB48uMZzL168iJUrV+LkyZOwWCzo1asXnn76adStW9fpeVVVVdiwYQM+//xz5OXlISkpCQ8//DBSUlL8fk+lEKv/X//6F3bs2FHj9U2aNMFHH33kdJ9e9J8+fRo7duzAsWPHkJGRgdq1a6NDhw6YOHEiGjdu7Nc4g017MM47AFy4cAHr1q1Deno68vLyEB4ejqZNm2LMmDG48847/RprMOrX8/yTASRUYdGiRfj+++8xcuRIJCUl4ZtvvsHMmTOxYsUKdOrUSevh+c2IESPQrl07p/sSExP522fPnsVzzz2Hpk2b4umnn0ZWVhY2btyIK1euYMmSJU6vY/VvVFBQgPXr1yM+Ph6tWrXCsWPH3D4vKysLU6dORXR0NCZNmoSSkhJs2LAB58+fxzvvvIPQ0FD+ue+99x4+/vhj3Hfffbjlllvw448/YsGCBTCZTBgwYIBf76m1fgAICwvDzJkzne6Lioqq8Ty96P/kk09w8uRJ9OvXDy1btkRubi62bt2KiRMnYtWqVWjRooXkcQabdiD45h2o3hO+uLgYgwYNQoMGDVBaWoq9e/dizpw5mDFjBoYOHSp5rMGoH9Dx/DsIQmFOnTrl6N27t+OTTz7h7ystLXU89NBDjieeeELDkfnPL7/84ujdu7djz549Xp83Y8YMx7Bhwxw2m42/76uvvnL07t3bcejQIf4+lv9GZWVljpycHIfD4XCcPn3a0bt3b8f27dtrPO/11193pKSkODIyMvj7Dh8+7Ojdu7fjiy++4O/Lyspy9OvXz7Fs2TL+vqqqKsdTTz3leOCBBxyVlZWS31NJxOp/9dVXHQMHDvT5fnrSf+LECUd5ebnTfX/88YdjwIABjgULFkgeZzBqD8Z590RlZaXj0UcfdYwbN46/Lxjn3hPu9Ot5/qkGkFCcvXv3IiQkxOkXk9VqxZAhQ3Dq1ClkZmZqOLrAKS4uRmVlZY37i4qKcOTIEQwcONDp1+C9996LiIgI7Nmzh7+P5b9RWFiYqAame/fuxR133IH4+Hj+vm7duqFx48ZOWn/88UdUVlZi+PDh/H0mkwnDhg1DdnY2Tp06Jfk9lUSsfg673Y6ioiKPj+tJf8eOHWtEGxo3boxmzZrh0qVLkscZjNo5gmnePRESEoK4uDjYbDb+vmCce0+408+hx/knA0goztmzZ5GUlFQjJM6lTs+dO6fFsGRh0aJFGDRoEO655x5MmzYNZ86c4R87f/487HZ7jc2/Q0ND0bp1a5w9e5a/T+9/o+zsbNy4ccPtRuft2rWroTUiIgJNmzat8TzucanvyQqlpaUYPHgwBg8ejCFDhmDZsmUoLi52eo7e9TscDty4cQN16tQBYKy5d9XOEczzXlJSgvz8fFy9ehWbNm3CoUOH0KVLF8ljDUb9HHqdf6oBJBQnNzfXbQSFuy8nJ0ftIQWMxWLB3XffjZ49e6JOnTq4ePEiNm7ciKeffhpvv/022rRpg9zcXADwqP3XX3/l/6/3v5EvrTdv3kR5eTnCwsKQm5uLevXqwWQy1Xge8KdWKe/JAjExMRgzZgzatGkDh8OBQ4cO4fPPP8fvv/+OFStWwGKpPt3qXf+uXbuQnZ2NCRMmSB5nsGnnxhPM8/7WW2/hyy+/BACYzWb06dMHzz33nOSxBqN+bkx6nX8ygITilJWVuS1a5T7AZWVlag8pYDp27IiOHTvy/7/rrrvQt29fPProo3j33XexdOlSXpcn7eXl5fz/9f438qWVe05YWJhorVLekwUef/xxp/8PGDAAjRs3xnvvvYe9e/fyRd561n/p0iUsX74cHTp0wKBBgySPM9i0A8E/7yNHjkTfvn2Rk5ODPXv2wG63o6KiQvJYg1E/oO/5pxQwoThWq9XpC8PBGSCr1ar2kBQhKSkJd911F44dOwa73c7r8qRd+AXW+9/Il1bhc8RqlfKerDJq1CiYzWYcOXKEv0+v+nNzczFr1ixERUVh4cKFCAkJkTzOYNPuiWCa96ZNm6Jbt24YNGgQFi9ejJKSEsyePRsOh8MQc+9Nvyf0Mv9kAAnFiYmJ4cPaQrj7GjRooPaQFCMuLg4VFRUoLS3lQ/ietAt16/1v5Etr7dq1ecMbExODvLy8GidQV61S3pNVrFYrateujZs3b/L36VG/zWbDzJkzYbPZsHTp0hqfXbHjDDbtngiWeXdH3759cebMGVy+fDno594dQv2e0Mv8kwEkFKdVq1a4cuVKjRVSaWlp/OPBwrVr1xAWFoaIiAg0b94cISEhSE9Pd3pORUUFzp4966Rb73+j2NhY1K1bt4ZWoLqhrqvW0tLSGispXbVKeU9WKS4uRkFBgVPzVr3pLysrw+zZs3H58mW89tpraNasmdPjwTz3vrR7Ihjm3RNcitJmswX13HtCqN8Tepl/MoCE4vTt2xd2u50vpAWqQ9nbt29H+/btnZa664X8/Pwa9507dw779+9H9+7dYTabER0djW7duuHbb791WhG2c+dOlJSUoF+/fvx9wfA3uvvuu3HgwAGnljVHjx7F5cuXnbTeddddsFgs2Lp1K3+fw+HAF198gdjYWNx6662S31NrysrKaqz6A4APPvgADocDPXr04O/Tk3673Y758+fj1KlTePnll53GJiQY516M9mCddwC4ceNGjfsqKyuxc+dOWK1W3gwH49wD4vTrff5pEQihOO3bt0e/fv3w7rvvIj8/H4mJidixYwcyMjIwa9YsrYfnF//85z9htVpx6623ol69erh48SK++uorhIeHOxUFT5w4EU899RSmTp2KoUOH8juBdO/e3enkwPrfaMuWLbDZbHxaYv/+/cjKygJQvRtKdHQ0Hn74YXz//fd49tln8eCDD6KkpASffvopWrRo4bRtWlxcHEaOHIlPP/0UlZWVaNeuHX744QecOHEC8+bNc6qvEvueWusvLCzEY489hpSUFDRp0gQA8PPPP+Onn35Cjx49cNddd+lS/1tvvYX9+/fjjjvuQGFhIb799lunxwcOHChpnMGmPS8vLyjnHQCWLl2KoqIidO7cGbGxscjNzcWuXbvwxx9/4KmnnuK3sgzGuRer//r167qef5PDWyUjQchEWVkZv8+tzWZDixYtMHHiRNx+++1aD80vPvvsM+zatQtXr15FUVER6tati65du2L8+PFISkpyeu6JEyf4vYAjIyPRr18/PP744zX2Amb5bzRq1ChkZGS4fWzjxo1o2LAhgOr9M133r3zqqadQv359p9dUVVXhk08+wZdffonc3FwkJSVh3LhxvKEQIvY9lcSX/ujoaKxYsQKnTp1Cbm4uqqqqkJiYiHvuuQcPPfQQ3wqCQy/6n3nmGRw/ftzj4/v27ZM8zmDSXlhYGJTzDgC7d+/G119/jfPnz6OgoACRkZFo27YtHnjgASdjI2WswaZf7/NPBpAgCIIgCMJgUA0gQRAEQRCEwSADSBAEQRAEYTDIABIEQRAEQRgMMoAEQRAEQRAGgwwgQRAEQRCEwSADSBAEQRAEYTDIABIEQRAEQRgMMoAEQRAEQRAGgwwgQRAEQRCEwSADSBAEwQjPPPMM+vTpo/UwfPLNN9+gT58+/L/58+f79T6rV692ep/3339f3oESBOERi++nEARBEFKRauSE++rqhbvuugutWrVCixYt/Hp9t27dEBYWhoyMDOzYsUPm0REE4Q0ygARBEAowfvz4Gvd99tlnsNlsbh8DgBdffBGlpaXKDkxGevfujcGDB/v9+m7duqFbt244duwYGUCCUBkygARBEAowYcKEGvft2LEDNpvN7WMAEB8fr/SwCIIgAJABJAiCYIZnnnkGx48fd0oHf/PNN1i0aBHmzJmD2rVr48MPP8T58+dRq1Yt/OUvf8GECRNgNpvxzTffYNOmTbh8+TLq1q2LESNGYMyYMTWO4XA4sH37dnz99dc4f/487HY7mjVrhmHDhmHIkCGy6MjJycHHH3+Mn376CdnZ2QgLC0P9+vWRnJyMJ554AtHR0bIchyAI/yEDSBAEoQP27duHw4cPo3fv3ujYsSMOHjyIDz/8EA6HA9HR0fjwww9x1113ITk5Gfv27cOqVatQr149DBo0iH8Ph8OBhQsXIjU1FUlJSUhJSUFoaCgOHz6MxYsX4+LFi3jqqacCGmdpaSmeeuopZGRkoHv37ujTpw8qKipw/fp1fPvtt3jooYfIABIEA5ABJAiC0AGHDh3CW2+9hXbt2gGoTjGPGTMGmzdvRmRkJNauXYtGjRoBAB566CGMHTsWGzZscDKA27ZtQ2pqKv7yl79gxowZsFiqLwEVFRWYN28eNm7ciJSUFLRt29bvcR49ehTXr1/HyJEjMXXqVKfHiouL+WMSBKEt1AaGIAhCBwwcOJA3fwAQGRmJXr16obS0FMOGDePNH1BdS9ixY0dcunQJlZWV/P3//e9/ERERgeeee87JiIWGhmLSpEkAgNTUVFnGa7Vaa9wXGRmJsLAwWd6fIIjAoJ9iBEEQOqBVq1Y17ouJifH6mN1ux40bNxAbG4vS0lKcP38eDRo0wMcff1zj+Xa7HQDwxx9/BDTOzp07IyYmBh9//DHOnTuHO+64A8nJyWjatClMJlNA700QhHyQASQIgtABUVFRNe4LCQnx+RgXASwsLITD4UB2djbWr1/v8TiBtqGJjo7G6tWrsXbtWhw4cAA//fQTACAuLg7jxo3D8OHDA3p/giDkgQwgQRCEAeBMYtu2bfHee+8peqz4+HjMnTsXVVVV+P3333H48GFs2bIFy5cvR61atZCSkqLo8QmC8A3VABIEQRiAyMhING3aFJcuXUJhYaEqxzSbzWjdujXGjh2Ll156CQCwf/9+VY5NEIR3yAASBEEYhAcffBClpaVYsmQJSkpKajx+7do1XL9+PaBjXLhwAXl5eTXuv3HjBgDQIhCCYARKARMEQRiEoUOH4tSpU9ixYwdOnjyJbt26ISYmBjdu3MAff/yBtLQ0vPTSS2jYsKHfxzh8+DBWrVqFjh07onHjxqhduzauXbuG/fv3IywsjGoACYIRyAASBEEYBJPJhLlz56Jnz57Ytm0bDhw4gJKSEtSrVw9JSUmYMmUKunbtGtAxbr/9dmRkZODXX3/Fvn37UFJSggYNGqB///4YO3YsmjVrJo8YgiACwuRwOBxaD4IgCILQD8Lt6QYPHhzw+x07dgzTpk3D+PHjPe6TTBCEvFANIEEQBOEXixYtQp8+fTB//ny/Xr969Wr06dMH06ZNk3dgBEH4hFLABEEQhCRatWqF8ePH8/9v0aKFX+/TrVs3p0Uht912W6BDIwhCJJQCJgiCIAiCMBiUAiYIgiAIgjAYZAAJgiAIgiAMBhlAgiAIgiAIg0EGkCAIgiAIwmCQASQIgiAIgjAYZAAJgiAIgiAMBhlAgiAIgiAIg0EGkCAIgiAIwmCQASQIgiAIgjAY/w8vfH8hOgtG7AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum(binned_data=\"selected_combined_binned_data.hdf5\", output_name=\"selected_crab_spec_3x\")\n", + "analysis.get_raw_lightcurve(binned_data=\"selected_combined_binned_data.hdf5\", output_name=\"selected_crab_lc_3x\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Compare to the full data set" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAG5CAYAAAD2/PK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gc1Z39fSp1npyUcxYIISGEkIQFyALMGoMJIuxirQF5wTaywTaY94eXYK/NkgxmDcYYg3exiYvBZKQFAUJESaQZ5SxNjp0rvn9UV9Wt6uqe7snTcz/Pw8Oou6vrdqo6db6J0TRNA4VCoVAoFAqlIGEHewEUCoVCoVAolP6Dij0KhUKhUCiUAoaKPQqFQqFQKJQChoo9CoVCoVAolAKGij0KhUKhUCiUAoaKPQqFQqFQKJQChoo9CoVCoVAolAKGir0RTiKRwI4dO5BIJAZ7KRQKhUKhUPoBKvZGOAcOHMBVV12FAwcODPZSKBQKhUKh9ANU7FEoFAqFQqEUMFTsUSgUCoVCoRQwVOxRKBQKhUKhFDBU7FEoFAqFQqEUMPxgL4BCoVAolEJEURRIkjTYy6AUAIIggOO4Hm9PxR6FQqFQKH1MJBLB4cOHoWnaYC+FUgAwDINx48YhFAr1aHsq9igUCoVC6UMURcHhw4cRCARQVVUFhmEGe0mUYYymaWhubsbhw4cxffr0Hjl8VOxRKBQKhdKHSJIETdNQVVUFv98/2MuhFABVVVXYv38/JEnqkdijBRoUCoVCofQD1NGj9BW9/S5RsUehUCgUCoVSwFCxR6FQKBTKCECWZdx6662YNWsWjjnmGMyfPx9r165FR0dHnzz/mjVr8Nvf/tb1vl/84hd44okn+mQ/Bg888ADWrFnTp89ZqNCcPQqFQqFQRgBXXHEF2trasHnzZpSVlUHTNDz77LNoa2tDaWlpv+77tttu69fnp2SHij0KhUKhUPqZv/9/mxDrTPbb8wdKvDj3V0sz3r97924888wzOHjwIMrKygDoeWAXXnghAODOO+/EY489BpZlMW/ePPz+979HSUkJbrnlFtTW1iIej2PHjh2YMWMGfvOb3+D666/Hvn37sHDhQjzxxBNgWT1Q+Pnnn+Pkk09GS0sLlixZgoceegh+vx9r1qzB/Pnz8aMf/Qi33HIL6urqEIvFsGfPHowaNQrPPvssysvLAQB33XUXnn76aciyjOrqavzhD3/AxIkTEQ6HceWVV2Lbtm2oqqrC3Llz++39LDRoGJdCoVAolH4m1plErK0f/+tGSG7ZsgXTp09HZWVl2n2vvvoqHn30UWzatAlffPEFgsEgbrzxRvP+Tz75BH/5y1+wY8cOU3A9++yzqK2tRV1dHV599VXzsR9++CFef/111NXVoa2tDffee6/rej788EM89thjqK2tNQUdAPz1r3/Fjh07sHnzZmzZsgWXXXYZrrnmGgC6O+j1erF9+3a8/PLLeOedd/L+HEYq1NmjFDSqquLv2z5EkdePr8+dP9jLoVAoI5RAiXfIPv/69euxevVqM5R79dVXm44fAKxatcp0AxcsWACv14uioiIAwPHHH49du3aZj73ooovM+6644grcf//9uOmmm9L2eeaZZ6KiogIAsGTJEnzxxRcAgL///e/4+OOPsXDhQgB6z0KDDRs24N577wXDMCgpKcGll16KPXv29Ph1jySo2KMUNM9/9gFu054FEsCj+0JYOHnaYC+JQqGMQLKFWAeCBQsWYNeuXWhtbTVFViacbT58Pp/5N8dxaf+WZTnn58r0nMZzaJqGn//851i7dm3WNWZ7bko6NIxLKWjuk14x//5T84ZBXAmFQqEMHtOmTcP555+PK664wqy+1TQNzz33HKZMmYKnn34aXV1dAIA//OEPWLVqVY/28+yzzyISiUBRFPz5z3/GypUr89r+3HPPxUMPPYS2tjYAeoPqrVu3AgBWrlyJP//5z9A0DV1dXfjb3/7WozWORKizRyloNFhzKRmNXgVSKJSRy6OPPopf/vKXWLx4MXieh6qqOOWUU3DHHXcgFothyZIltgKNnrBo0SKcccYZaG5uxpIlS/CjH/0or+0vu+wytLa24tRTTwWgt4v57ne/i+OPPx4333wzrrzySsyaNQtVVVVYtmwZksn+K3opJBiNTmke0ezYsQNXXXUV/vjHP2LmzJmDvZw+Z+lHNyHCJQAAy6VZeOCk7kMDFAqF0hsSiQT27duHyZMn28KVFEpP6e13ioZxKQXNiR1Wjl61UjKIK6FQKBQKZXCgYo9S0IyPWonIIZkOJKdQKBTKyIOKPUpBwxBFYrKauWKMQqFQKJRChRZoUAqaYMKH0YdLwakMSkOBwV4OhUKhUCgDDhV7lIImFPPglE9nglNYLDhtymAvh0KhUCiUAYeKvQLizjvvxKZNm5BIJFBTU4O1a9di6dLBbeQ52Lw46VPUnXAUALD4QOFVG1MoFAqF0h1U7BUQF110EdatWwePx4O6ujpcd911ePLJJ1FSMnKrUCVYo3Y4iaaoUigUCmXkQc9+BcTEiRPh8XgA6GNkJElCS0vLIK9qcJEZS+yxMv26UyiUkcv//u//YuHChZg/fz5mzZqF0047DaqqdrsdwzDm1I2e8Nvf/hYNDQ092vYnP/kJbrnlFtf7ZFnGrbfeilmzZuGYY47B/PnzsXbt2l6t1cmaNWvw29/+1vW+X/ziF3jiiSf6bF8A8MADD2DNmjV9+pzAEHX2YrEYnnzySdTW1qKurg7hcBg///nPcdZZZ+X9XH/5y1/wyCOPYPLkyXj88cf7bT/5ku++RVHEn/70J7zxxhsIh8OYOnUqrrzySixatMj2uHvuuQevvPIKRFHESSedhClTRnae2pGSdvPvN8o+w1LMGcTVUCgUyuBQX1+PtWvX4tNPP8XEiRMBAFu2bBmQ+bK//e1vsWLFCowaNapPn/eKK65AW1sbNm/ejLKyMmiahmeffRZtbW0oLS3t0325cdttt/X7PvqKISn2Ojs78dhjj6GmpgbTpk0z5+LlS1NTE/7nf/4Hfr97f7W+2k9PyHffv/71r/H222/jwgsvxLhx4/Dqq6/iZz/7Ge677z7MmzfPfNx1112HdevWYdu2bdi7d++IHxQt8Zaz18ZFBnElFAplpPOXxrfx340bu33c7MA43D/tCttt1+7+E+pih10f/y81X8PlNSuyPmdjYyM4jkN5ebl524IFC8y/d+3ahR/96EdoampCMpnE2rVr8YMf/CDtebI9bvPmzfjpT3+KcDgMTdNw++2347PPPsPRo0exevVq+P1+PPbYY5g7dy5uvvlm/N///R9EUcSMGTPwhz/8AWVlZaivr8eaNWtw6NAhjBkzBpWVlZg1a1baOnbv3o1nnnkGBw8eRFlZGQDdgbzwwgvNx9x555147LHHbCPgSkpKcMstt6C2thbxeBw7duzAjBkz8Jvf/AbXX3899u3bh4ULF+KJJ54Ay+rRoM8//xwnn3wyWlpasGTJEjz00EPw+/1Ys2YN5s+fjx/96Ee45ZZbUFdXh1gshj179mDUqFF49tlnzff7rrvuwtNPPw1ZllFdXY0//OEPmDhxIsLhMK688kps27YNVVVVmDt3btbPsacMybhWRUUFnn/+eTzzzDO4+uqre/w8v//97zFnzpyMY8B6s59wOIyNGzP/aNevX494PJ7x/nz2XVtbiw0bNmDt2rW45pprcM455+C3v/0tRo0ahQcffDDt8RzHYeHChfj000+xefPm3F9UgSMT+XsUCoUy0ESVBJqkzm7/a5fTL0zb5UjGx0eVRLf7njdvHpYtW4aJEyfivPPOw5133okjR44AABRFwSWXXIK7774bH3/8MT744AM8/PDD+Pjjj23Pke1xbW1tOPfcc/HrX/8an332GbZt24bly5fjF7/4BcaMGYOnnnoK27Ztw/z583HnnXciGAzio48+wrZt23Dsscfi//2//wcAuPbaa3HiiSeitrYWjz/+ODZs2OD6erZs2YLp06ejsrLS9f5XX30Vjz76KDZt2oQvvvgCwWAQN954o3n/J598gr/85S/YsWOHKbieffZZM9r26quvmo/98MMP8frrr6Ourg5tbW249957Xff54Ycf4rHHHkNtba0p6ADgr3/9K3bs2IHNmzdjy5YtuOyyy3DNNdcA0N1Br9eL7du34+WXX8Y777zT7WfZE4aks+fxeFBRUdH9A7Owbds2bNy4EY888gjuu+++Pt/P888/jz//+c+49dZbccopp9jue+mll/Cf//mf+PGPf4zzzjuv1/veuHEjOI7DOeecY97m9Xpx9tln4+GHH0ZjYyNqamrStlMUxfwxUwBF6z43hUKhUPqLIOdDtdB9wVwZH3K9LdO2Qa77Waksy+K5557D9u3bsXHjRrz66qv41a9+hU8++QSiKOKrr77CxRdfbD4+HA6jtrbWliq0Y8eOjI9ramrCzJkzsXz5cnN/pItI8ve//x2dnZ147rnnAOhpSpMmTQIAbNiwAXfddRcAYOzYsbbzXj6sX78eq1evNsO5V199tc31W7VqlekILliwAF6vF0VFRQCA448/Hrt27TIfe9FFF5n3XXHFFbj//vtx0003pe3zzDPPNM/rS5YswRdffGG+3o8//hgLFy4EoJ+bDTZs2IB7770XDMOgpKQEl156Kfbs2dOj15yNISn2eouiKLjvvvtw9tlnY+rUqf2yj0svvRR1dXW47bbbcMcdd5gf4saNG3H33Xdj1apVOPfcc/tkX7t27cK4ceMQDAZtt8+ePRuAbmcHg0Fs3rwZS5cuhcfjwbvvvoutW7di7dq1fbKGQkAGFXsUCmXwuLxmRbfh1kw4w7o9ZdasWZg1axa+973v4cwzz8SLL76IM844A+Xl5di2bVvWbTVNy/i4l19+Oec1aJqG3/3ud1i1alW3j82UirRgwQLs2rULra2tORknzufx+SyBzHFc2r9lOfPEpUxryvQcmqbh5z//eU7n4/5KvRqSYdze8sILL6CxsRFXXnllv+2D53nccsstmDNnDm666SbU1tbi008/xe23347Fixfjxhtv7LMPLdOX2bitpaUFDMPgpZdewgUXXIBvfvObeOKJJ3DzzTdj+vTprs+5fv163Hjjjfjd737XJ2scDig0jEuhUEYoR44cwaZNm8x/t7e3Y9++fZg6dSpmzpyJ4uJi/PnPfzbv3717N9ra2mzPke1xJ598Mnbt2oV3330XAKCqqrl9cXExOjs7zW3OPfdc3HvvvYjFYgD0gsWvvvoKALBy5Uo8+uijAPSikhdffNH19UybNg3nn38+rrjiCrP6VtM0PPfcc9i7dy9WrlyJp59+Gl1dXQCAP/zhDzmJSzeeffZZRCIRKIqCP//5z1i5cmVe25977rl46KGHzPdDkiQzT3/lypX485//DE3T0NXVhb/97W89WmN3FJyz19nZiUcffRSXX355v1fjeL1e/PrXv8a6devws5/9DJIkYfbs2bj11lvB83331iaTSQiCkHa70WYlmUwiGAxmDFe7sXLlSqxcuRI7duzAVVdd1WdrHcpQZ49CoYxUZFnGbbfdhn379iEQCECWZXznO9/Bt771LQB6+tGPfvQj3HvvvVAUBZWVlfjrX/9qew6e5zM+buzYsXj++edx/fXXIxwOg2VZ3H777fjmN7+Ja6+9FldddRUCgQAee+wx3HDDDUgmk1i8eLFpitxwww2YO3cu7rvvPqxZswZz5szB2LFjcdppp2V8TY8++ih++ctfYvHixeB5Hqqq4pRTTsHpp5+Os846C19++SWWLFliK9DoCYsWLcIZZ5yB5uZmLFmyBD/60Y/y2v6yyy5Da2srTj31VAD6Z/Hd734Xxx9/PG6++WZceeWVmDVrFqqqqrBs2TIkk8kerTMr2hCnrq5OW758ufbKK6/k9Pi77rpLu/jiizVRFM3bfvjDH2qXX355n+6H5NNPP9WWL1+uLV++XNuxY0fe23e378svv1xbt25d2u379u3Tli9frv3973/Pe58G27dv15YvX65t3769x88xVFFVVbvzmme1eZ/8WJv3yY+11a/dOdhLolAoI4B4PK7V1tZq8Xh8sJdCKRB6+50qqDDuoUOH8I9//AMXXHABWlpaUF9fj/r6eoiiCFmWUV9fb1q6fcXRo0dx++23Y8KECRg1ahRuvvnmPm9kXFFRgdbW1rTbjdsyVSONdFRFgz9mOaIKdfYoFAqFMgIpKLHX0tICVVVx3333YfXq1eZ/tbW1OHToEFavXo3HHnusT/d33XXXged53HPPPbj77ruRSCRw/fXX96monDZtGg4fPoxoNGq7vba21ryfko4iqWAV6ytOw7gUCoVCGYkM65y9RCKBxsZGlJSUoLS0FJMnT8avfvWrtMc98sgjiMViuPbaazFmzJg+2Xc4HMZPfvITxONxPPDAA6iurgagN05ct24dbrjhBtxzzz0ZGzrnw4oVK/Dkk0/ixRdfxCWXXAJAL1V/5ZVXMGfOHNe2KxRAkRRwCoOT3psKVmUwPkgdUAqFMnBomjbYS6AUCL39Lg1Zsffcc88hEomYocpNmzahqakJAHD++ecjFAqhrq4O69atw5o1a/Dd734XpaWlZo8fkmeeeQYAXO/LZT9uPP/882hqasL999+P8ePHm7dPnz7d7MT92muvZeyzl8++58yZg1NPPRUPP/wwOjo6MHbsWLz22mtoaGjADTfckOVdHNl0JqL4+KR94BQW5S0hzG0fN9hLolAoIwBBEMAwDJqbm1FVVTXiJxlReoemaWhubgbDMK7FmrkwZMXeU089ZRuc/M4775idpVetWpVRhA3Ufi699FIsX74ckydPTrtv3rx5eOihh7qdS5vPvm+66SbU1NTg9ddfRyQSwZQpU3DHHXdg/vz5Ob/WkUarGMFHJ+8FAMysHYUT6vqn5yKFQilcNFVDfV0bSkYHESzvvnkxoPdYGzduHA4fPoz9+/f37wIpIwKGYTBu3DhwHNez7TXqM49ojNYrf/zjHzOOlRuufLp/N77bqpfaz/liDC6oOwnn37FskFdFoVCGE1+9vh+bH6+Dr9iDi+9fAd6T+8lWURRIktSPq6OMFARB6LHQA4aws0eh9JakaB1kk14ZXUJsEFdDoVCGI407OwAAiS4R4aYYysYV5bwtx3G9OkFTKH1FQVXjUigkCdkSe3tmNOHxle8O4mooFMpwRBGtyTuKRCv6KcMTKvYoBQsp9gBAYeiBmkKh5IdMxR6lAKBij1KwJGTR9m8q9igUSr7IonXcoGKPMlyhYo9SsCQVu7OnsrQWiUKh5IecJJw9wuWjUIYTVOxRCpZ0sUevyikUSn4okiXwZOrsUYYpVOxRCpakItv+rVBnj0Kh5IktjEudPcowhYo9SsESkD2ori82/02dPQqFki+2MC519ijDFCr2KAXL8bHJWP3XxahJCT6V06Cq9GBNoVByhwzjUrFHGa5QsUcpWIyDNKtaX3NJoWEYCoWSO3LSEng0Z48yXKFij1KwKLJ+YGYVawi5KMuZHk6hUCg2VFmFplq5vqTLR6EMJ+i4NErBoqQSq09dPxuyoIBVWPC/odc3FAolN2RHQYYiUmePMjyhYo9SsLxe9Bneu7gOnMzha/83E+VtITCEy0ehUCjZkB3ijubsUYYrVOxRCpYmvhP1ozoBADKvH6QVhR6sKRRKbjhbrdDWK5ThCo1pUQoWEVZ+HqfoX3VVpr32KBRKbjjDuLRAgzJcoc4epWCRNOtAvWtmIxq6OtElxVAE/yCuikKhDBdoGJdSKFCxRylYJMLZ+3jJXgDAd6TTMRYVg7UkCoUyjCAbKgO0GpcyfKFhXErBIiL9wCw65uVSKBRKJtJy9qizRxmmULFHKVhkJr2nnizTK3MKhZIbaWFc2nqFMkyhYo9SsEhM+oFZVGhTZQqFkhvpBRr0YpEyPKFij1KwSC7OnqSOzIM1nQlMoeRPeusV+juiDE+o2KMULDKbfmAeibNxr3vjUZz8/s/xxEcbB3spFMqwIm2CBs3ZowxTqNijFCwLdk7CCR9Mtt0mjbAwbiSRwIaKLxH3S/hP7oXBXg6FMqxIb70y8i4WKYUBbb1CKVjm101EpCUOXmbxwbI9AABJHVliL5pMDPYSKJRhC63GpRQK1NmjFCyKrB+YWdWahzvSwrhJUTT/nrq3ehBXQqEMP2gYl1IoUGePUrAYV+WCyMMfE8AqLFjfyLq+SchWX0FWZCAlZAg++rOnUHKBTtCgFAr0qE8pWKJcAuAZHPP5OMz7bDwAYME1k7vZqrCIE84eJ7OIdSRRMor+7CmUXEiboCEq0DQNDMNk2IJCGZrQoz6lIFFVFQ9d9RbAANX1xVj918UAAE3WBnllA0uScPY4hUW8I4mSUcFBXBGFMnxw5uxpGqAqGjieij3K8GJkxbQoIwZJloHU8ZhTrK+5qoysMExcspy9r447gk86dw/iaiiU4YXsErZ1CkAKZThAxR6lIIkR4UveJvZGrrMHADsTDYO0Egpl+KEk04UdzdujDEdoGJdSkCQIsddSFcYbZ30BhdPg4byYg4mDuLKBxTkerkXqGqSVUCjDD2c1LkDFHmV4Qp09SkGSIMKX8YCEHXMasHtmI44wbYO4qoHnWHkCLnn8JPPfbUp4EFdDofQd7Uci2PdRg9liqT9wVuMCVOxRhidU7FEKkrhsiT2PyJl/y9rIyrdRZRXBqNf8dzuig7gaCqVvEGMS/vHvm7Hht1vx1esH+m0/bvl5Mp2iQRmGULFHKUgSkpWr5pGtbAVphIk9WVLhiwtgUo2lO7nYIK+IQuk9HUejEGN6ikLr/v5LTXC2XgEAxcXto1CGOlTsUQoSMozrkQXzb1kbWQdqVVLBgEEg6gEAhD3xQV4RhdJ7El3W71vtx7CqazUudfYowxAq9igFCTk5wqtYzt5IC+N+gYPYeOp2RIuSAICoX4QywkbGUQqPeFfS/Fvpx3ZKbmFc6uxRhiNU7FEKEjKM61MJZw8jS+jsQSM+X3DI/LfGamjs7Bi8BVEofcCAOXu09QqlQKCtVygFyVSlBhc+cSIUToXvGA/2VTQDAJQRFsYVNTnttqMd7RhTXjEIq6FQ+oZ4pyX2+qsaV1VU176cbqFdCmWoQ509SkHilQWMaijB2CNlGCOXm7ePNGdPVC2Hk5dYHLttHLTIyGosTSk84p1EGLcPxNeBTxvx2Yt7ICWsiyO3tiv6/kbWMYRSGFBnj1KQkAdkr2fkFmiIRI7iN//3eIw7XI7SGYFBXBGF0nviRBi3t2Iv2pbA+nu2QNMAhmEw75tT9OfNMBaNhnEpwxEq9igFCRnaKRECmFk7CqzKYnKgahBXNfCQYVxjRnCsI5np4RTKsMCWs9fLAo1wUwxayuzuOBoxb8/o7NECDcowhIo9SkFySGnFzpkN4GUWE72jsOrFYwEAU04aPcgrG1hIsWfMCI5TsUcZ5vSls0eORDN69zlv9wR48z4axqUMR6jYoxQkW9l9eP2fvgAATGivNr/ovXUBhhsyCGdP1sVeuIs2VqYMXzRVszt7vSzQkJPW9qTYI8O43qBg3pfJ8aNQhjJU7FEKElG1Dtp+jxcSdDfLrbqukBEJsffEms0QJA7jwxX4OhYO4qoolJ6TjEjQVOt33Ftnj3TqxJhV0ES2XfGGBISb432yPwplMKDVuJSChBR7Pt4q0Bhpzp5tPBwDSB4FXTydokEZvpANlQFAlXt3AZcxjEuIOm/IOobQMC5lOEKdvQLizjvvxKZNm5BIJFBTU4O1a9di6dKlg72sQSFJtBxhvSz+ePXbUFkNU7qqcSYWDeLKBpYxXWXojMSgcipaqiJI+CVEvInBXhaF0mPIfD2g93327GFc67ihEM6eJ0iKvZF1wUgpDKjYKyAuuugirFu3Dh6PB3V1dbjuuuvw5JNPoqSkZLCXNuCQjlZQ8CER0A/iiaiUaZOCZMWuOZjxVQ0A4O/f2YJD/lYkfBJiyQQCXt8gr45CyZ+EU+z1NozrcPY0TQPDMDbHz0vFHmWYQ8O4BcTEiRPh8egD7xmGgSRJaGlpGeRVDQ6iZom6kMcSNQozsg7UpOtRqln99Y62tw3GciiUXkNOzwD0gg1V7XkoVybCsqqima1VyBYrNrFHCzQow5Bh7ezFYjE8+eSTqK2tRV1dHcLhMH7+85/jrLPOyvu5/vKXv+CRRx7B5MmT8fjjj/fDai3yXbcoivjTn/6EN954A+FwGFOnTsWVV16JRYvSw5H33HMPXnnlFYiiiJNOOglTpkzp19cyVJGISRkBrxdMGNDYESj2DBeCAcqZkHn7kY42TBs1ZpBWRaH0HHJ6hoEqq2A9XI+ejwzjAnool/dyWZw9mrNHGX4Ma2evs7MTjz32GA4cOIBp06b1+HmamprwP//zP/D7/X24uszku+5f//rXePrpp/H1r38d1157LViWxc9+9jN8/vnnaY+97rrr8Prrr+Pee+/FokWLwDBMf7yEIQ9ZherjPWBV/as+UsUeJ7Co4IvM2xsiHYO0IgqldzjDuEDvQqvOSRlWixV7Na4Bbb1CGY4Ma7FXUVGB559/Hs888wyuvvrqHj/P73//e8yZMwczZ87M6fHhcBgbN27MeP/69esRj2eueMxn3bW1tdiwYQPWrl2La665Bueccw5++9vfYtSoUXjwwQddt+E4DgsXLsSnn36KzZs35/SaCg0yZ8/nEcCquugdaWLvL6e8g//+10145vyPUO21cjeb4h2DtygKpRc4CzSA3hVpOMWbUaSRSexRZ48yHBnWYs/j8aCioqJXz7Ft2zZs3LgRP/zhD3Pe5vnnn8ctt9yCd955J+2+l156Cbfddhtee+21jNvns+6NGzeC4zicc8455m1erxdnn302vvrqKzQ2NmbcVlEUHDlyJKf9FBqcwkBIcmBlBj5eADdCnb22UBQd5TF0lMZQHbDEXnOyaxBXRaH0HGfrFQBQe+HsyRmcPTI3zxMQgFSQhBZoUIYjw1rs9RZFUXDffffh7LPPxtSpU3Pe7tJLL8VJJ52E2267DZ9++ql5+8aNG3H33Xdj1apVOPfcc/tkjbt27cK4ceMQDAZtt8+ePRsAsHv3bgBAJBLBm2++iVgsBlmW8dZbb2Hr1q047rjj+mQdw42LPl+Cf3vgNHz/vpWo9peA1fQjtcqOrAO1knq9vMpidKjMvL1ViWTahEIZ0iQ6+9bZSwvjxtPDuLyHBSekLhip2KMMQ4Z1gUZveeGFF9DY2Ih77703r+14nsctt9yCn/70p7jppptw7733Ih6P4/bbb8fixYtx44039lmuXGtrq6sLaNxmVNsyDIOXXnoJ9957LzRNw9ixY3HzzTdj+vTprs+7fv16rF+/HpFIYZ70yVALJ7Aj1tmTOf194BUOU8tHY+XTcxGIejB3/MRBXhmF0jNcnb2+DOOm2jORhRuclwMvcFBElYo9yrBkxIq9zs5OPProo7j88stRWlqa9/Zerxe//vWvsW7dOvzsZz+DJEmYPXs2br31VvB8372tyWQSgiCk3W60WEkm9QNfMBjEfffdl/Pzrly5EitXrsSOHTtw1VVX9c1ihxDklT7LW2JPZUfWuDSZSzl7Goeq0mLMrhsDaEDA5TtF6V9UVcVb279ETVEpjhk/YbCXMyyRRQVSPD1nrjcCLGMYl7hg5AWOcPZozh5l+DFiw7iPPPIIioqKcP755/f4OYLBIK655hp0dXUhHo/jhz/8Ibxebx+uUheVkpTeCFgURfN+SjpkFSrDMPj61mNwxsvH4OtvHzPIKxs4VFWFwlthXJZn4SvSLxJiHenuCKV/eWbL+7gu/hguP3ofDreOzP6XvcWtEhfo42pcI4ybdA/j0mpcynBkRIq9Q4cO4R//+AcuuOACtLS0oL6+HvX19RBFEbIso76+Hl1d3SewHz16FLfffjsmTJiAUaNG4eabb+7zJsYVFRVobW1Nu924rbKysk/3Vyi8MfdzbFj1Fd47ZScAYHb9WMzYPhpT9lQP8soGDlG22s8Imt6DzF+iXxzEO5PQtJHlcg42/8H8LwBA4TU8fuCtQV7N8MStEhfo42pcI4wr2sO4nIc6e5Thy4gM47a0tEBVVdx3332uoc/Vq1fjggsuwLXXXpv1Oa677jrwPI977rkHyWQSP/jBD3D99dfjd7/7HYqLi/tkrdOmTcPWrVsRjUZtRRq1tbXm/ZR0ascdRWdRDIGY7mSxXKpAo5dzNIcTcdE6MfIpsZcYJeIQ2hALJtEViaGkKJhpc0o/IqlUMPSEBNFQmWEA43qlN7/rTM6eLYzr4cAJXOrxI+cYQikcRoTYSyQSaGxsRElJCUpLSzF58mT86le/SnvcI488glgshmuvvRZjxmSeLhAOh/GTn/wE8XgcDzzwAKqrdbforrvuwrp163DDDTfgnnvu6ZMmzStWrMCTTz6JF198EZdccgkAPYT7yiuvYM6cOaipqen1PgoRszBB1Q/QLJfK2VM0c/ZloRMXrROjAP19eGt2LT4+ZS8A4J/bTsVxRZMHZW0jHUHp2bSHkQ45Ks1f5kWsTf+O90fOHhnG5QTWdPZURR/PxrKFfwyhFA7DXuw999xziEQiZlhz06ZNaGpqAgCcf/75CIVCqKurw7p167BmzRp897vfRWlpKZYvX572XM888wwAuN5H8vzzz6OpqQn3338/xo8fb94+ffp0/OY3v8H111+P1157Deedd16v1g0Ac+bMwamnnoqHH34YHR0dGDt2LF577TU0NDTghhtuyPVtGnGQLUcAoLUkgoZRnVBZDYqi9GkRzVAlSeR6CqmfehlnjUyr72rHcaBib6A4qWU6Pqjcpf+ddK+Sp2SHrMQNlvtMsderatykU+zZw7icR8/75QVLoKuSCtZLBTtl+DDsz3hPPfUUGhoazH+/8847ZrPjVatWmaKpL7n00kuxfPlyTJ6cfqKcN28eHnrooW5n0uaz7ptuugk1NTV4/fXXEYlEMGXKFNxxxx2YP39+37ygAsTp7L143KfYd1ozAOA6+TyERoDY8yoCVqyfBZlTMWv0WABAJW+lFzRGOwZpZSMTiRjhx0jUFeoJZM5eqNyPZnQC6GWBhmNbq6ly6hiSmrlrFGgAgCwp4KnYowwjhv0Z7+mnn+72Mccff7zrtAsn999/f0775HneVegZ5NKgOZd1G3i9XlxzzTW45pprct5mJKNpGhSi5Yj+f+tALUoS4PMNytoGEr/qwbGf6c7zjBXjAADVfmJkWqJzUNY1UpFgOUisSMVeTyCrcYOV1m9YlXtWbKSpmovYs49LcxN7tNceZbgxIqtxKYWNqMgwtJ2QcvY4WFfhkiK7bVZwkInkHK+/ITWBUvO2Vik80Esa0ZBijzp7PYPM2QtVWGKvp9W4znw9ID1nz8jVs4k9WqRBGWZQsUcpOBLJ9CpUjviqi/LIqIQkT4DGiarEFzBvi6m0195AMqdxLDhJ/xy2CvsGeTXDEyNnj+UYs2ck0HOnzU20iXHZ5vgZ4VrOY10w0vYrlOHGsA/jUihO4pIl9owqVFsYV0lvUl2IRMQEOkqj4BQOkkc/OYW8PiBl6MXh3rOM0j9UdIagCLqAOMyn986kdI8xF9dX4rGLr546e26iTdPdPVPsCS5hXOrsUYYZVOxRCo4E0V/OaCbMMdaBWhohzt7n0gH89xXvAwDa2+NYjmNQ7LPaASUwMkTvUIHM00uqIyOVoC/RVA3xsP7b9hd7zdQEoOfVuM5KXIM40c/PdPZsBRpU7FGGF1TsUQoORmYxo24UFE7FZG8VAIAncvbEEZKzl5QlM1HDw+o/9SK/FcZNUGdvQGGTltgTh7HQlkUFckKBr9jT/YP7kGRMgqbohRj+Yg/YPiiYyOTQkeMEjZw9noZxKcMYKvYoBUex6sMZrxwLAJjxNb3lCJmzJ8kjROwpbmJPd/Y4mQXo+WpAaQxa1c9JDM/voJSQ8cx17yARFvGN/+9EjJpVPmD7TpANlUvszl5fFmgAdrFHq3EphQAVe5SCw16YkF6NO2KcPdVyj7ysoP9fEPDDB74OJIHyiUXANwZrdSOPF07aYv4tDVOl3birwxRCB7Y0DajYI3vs+Yo94HjLKVV7KL4yib04FXuUAoNW41IKDlvLkdQBmidz9pTheaLNF1LUGs4eoAs+AJATI+N9GCowRCu44RrGleLWd2qgvz9kHl1aGLeHzh55rCDD0m5hXI6YoOGcp0uhDHWos0cpONxajny79URMe7IKnMpi6g0jY55wgnT2OMH8W/DxSEYkSImR4XAOGQixJzHDUyyQBQ2Zihv6C7Khsq/E0zcFGoRoC5R6zX24hnE91NmjDF+o2KMUHJ8m9+KRq98GJ3P4phTDIsxEgPHCn9Cv3Bl1ZDS0JZtH28WefvIa6JP1iIf42onM8BTa5HdmoC8WyDCuv9jbJ2FVUuz5S7ww+hLFbc6eSzUubb1CGWZQsUcpOGJKEvGABECC3KkfzFmOyO9RRsaBWtTcxd6ns/fh4MwWSIKCf1ZOB8fRGZ8DgcJa3zuZHZ7fQVLgDfTFgi2MW+IB2wcFGmQYN1DmNf+OdSTMv3lvKhXEJi7phRJleEHFHqXgSCiS+c02ctVYjgj5KD2bozncSBJiz8dbYm/7mHrsqWwEAESTSRQHAmnb9gWvfP4p7mp5ASepM/AfK/+5X/YxXFAUBSpnfe+mHRqeqQR2Z2/wwrj+YofY6wNnL1Bqib14BzGFR3CboDE8xTpl5EILNCgFBzkhwxB7e/2N+Oikvfjg5N3YLzcP1tIGFIlo3OslxJ4P1t9d8Vi/7f/n0hNoLYng5bItaIl09dt+hgMJyfpOjjlUiuWfzhzE1fQcUuDJyQEO43Y6qnEFMmevZxdw6WFcnWTU+rzcmipTsUcZblBnj1JwJJX0liO7fA34cOkeAMDXRojYW9VwHGr+XgSFUzHj2jHm7T7NqjoMJ+IDspZoMonK0IDsakiSJEb48Qo3bKs5B9PZM+biegI8OIGDRui7vg7jkrhW41KxRxlmULFHKThENT1XjWetA7WsDs8Tbb74kgJKO/QQbcjrM2/3M5azN1Bir0jxdf+gAiYuWhcgnMIM2wR/m9gbpGpcX5F+sWKrxu2zAo10jGpcW87eMBXrlJELDeNSCg6bs5cSewJjiT1phMwlJZPIyROjn7FOauFkAv1FSUSf1hGIesDKI6MCOhMJ2XL2OJkdts6QvUBj4H5HmqpBTPX48wb13zTDMmBShVc9nqBBCFbBx5mV6iRurVfobFzKcIOKPUrBYatC5dOdPWmEOHtuk0QAwM9aYdxIsv+cvSSvfw6CyPX4ZFwoVKhF+N79p2LsoTLsmd6EB7+/AUlp+DVWdoZxNW1gip2kpGL2KRQCVkDKuIjpaZ89UnTzHs723OY+zDAudfYowxcaxqUUHLYqVMPZI8O42sg4UH9WfAD75zeBk1nIHFF1SIo9qf+cPVFIiT2JzzhwfqSgKRo8Eg9WYaCxgORREE0mzWkmwwVbnp6miyXe0/+te8jJHR4/IfYEFnJS6ZNqXM7DwRsQEGtL2h5jjUujOXtDmVhHEs17OlBcE0DZuKLBXs6Qg4o9SsHhVoUqEOPCRoqzt3n0Tuw8tgEA8P9xRCI6b4Vxo3L/iL14Mmm2GmmpDqNZ7EI1SvtlX8MBQxzwsiUY4skkEBpeVSvO0K2UkAdE7IkxosKecN+M9it9EcblPayrs0dn4w5d6utasef9etTXtqGzPgoAYHkGF9+3AoGygcsTbj3YhUhzHOOPrwbLDs2UFSr2KAXHgrYpUD9SoHAqJlxQCWBoOHtGzhHpTPQnEkPM/fRabl6Itw6CMcnuYvQVnY6WLnvEeszFhJy3j7YlsPnxWpSODeGEi2b09fIGHEMccIolGGJi/7z3/YmzKGOgGiuTzp7gTw/j9lR8kY4z7+Xg8ac7rUbrFZ722RtStB0K4+XbP0q7XZU1tB+JDJjYi3cm8eLNm6FIKpavPQYzV4wfkP3mCxV7lIJjXLgc0Vq91UjVZSUA7GJPGgSxF21P4LmfvgtFUnHur04ekDCDTIzk8hPhwlFCKSburYQgcSivCPbLvuNxu5BJKPnlp23fcBD7P24EPm7EtKVjUDp2eDlgTg6Jrfjg5N3YPbPRvK2/hHZ/IjvarQxU+xUxSxgX6MVsXMkRxg1mztljyXFpdILGoNN+KGz+zXAMvEHBrNgeyLSRtkNhU/y37usCVgzYrvOCFmhQCg5bFWrqAD3Yzt6RL1ogxmQokoqd7xwZkH0azh6rMLaRaMf5JuOc54/HWS/Nw5zO/rkKLZGCWPa25cgl5fzEXoyYYJAIi1keOTw4LLXg4yX7bLclxOH3utKcvQGajyvGCGcvYF249DaMqyStcYosy9hcQwNjggbLMubYxXzERPvhMMLN/de8fKRCusonr5mDef802fz3QI6zS0asY9tQrtKmzh6l4LBXoeongyIugOrDRWBVFiV8/4wHy8aBRDMOTGqBN8mjZG8TFmNWv+9TZvUDHhk6BADBSwjffgrDSQnZtt+kkp8o2OE9gs/mHwSrMlgsz8YolPf1EgeUpCIDjlSeuDS8xJ6maWnibqB67WUr0AB602cvlUuZ+k0YbV1IeOL3wnlYqPHcC0KOfNmCV//jY/BeDt/65ckoG+YO9VCCLK4RvBw0YgzmQPaxJKetDOUqbSr2KAVHA9+B5qowOIWFlvqGzxXGY/UTJwEA5n1zyoCv6T12O148fysAYOmmDnwzuRg+r3sT177CEHu8Yk+gF3xEsUo/OTNSXAYnk2IvP2fvd3NfB+bqfx8nT8GxmNSHqxt4RGJes0FsmIk9RVLh7LTiDOv2FzZnz08WaOgKWtMAVVFtM7BzwXCAjLm3HrfWK0T4lhM4SHElZ+fo6FdtAPSLqq9e3Y9lVx6T1/oombEV13h5mwAfyJxK0tkbyrmcNIxLKTj+PvVjPHn5B3jiX9+HxOk/RPIkoCoD/4MMq1Y/u01Ld+GDvTv7fZ8ymyoKUB3OHtE4tr9yrqSkAp4Ue2rPe8qx6tCsbssHt5xFstHycMDNBR4oZ8+Ws+fSZw/o2YnWeE18Ki/PGcblBBYMUV1pCL9cw7jxTisvc/emozYXiNI77GKPNQU7YHf9+hsq9iiUQUJirB+6T9DdMyPXBgBUZWAawZJEVHuLkw8a+l/sKYaz5xB7cUHEf//rJjy69h08NnVjv+z7Y3E33jj7S/PfvRJ7yvAXe6LL1Jb4MBN7bhcG3eXsaZqGzvpor5svdxfGBfQqzHwxw7ge9zCus62MKfZyPKmTYk9OKtg1QPm6IwEyVMt7uEFrjUMK+IEUmflCxR6l4JBJsefRD95GuAfoeeVeb4jCXnn5ZfJgv+9TTvXW41X7CSvg96GjPIZoURJdfP9M0DiktNj+7SZ2coUpAGePfP3j95fjzH/MwzSxZhBXlD9u49G6c/bee+QrPHP9O3jvka96tW+xm9YrQP5FGpqmmSdnM4zrdPa89lOk0Vg512rceIf9d1+3/iA0deAvNgsRMgWF93KO1jgD6OxFqbNHoQwKhrPHySxYVv+KN6ETz67+GE9f8hFeqdo64GuKsfaD/t5gE1S1fw8MxZ1+FHf6UJLw224PeDwwWvAlWbvjJikKXv9yC462tfZq3zHZ/nrJqSb5UghNsEUijDv3i7GYvrMGpVL/tL3pL9ydveyfzcGtTQCAQ6n/93jfMfcwLtuLMK4qq+YINjOMG3A4e4L9Qsl4nJ6/2L1oi3Xafwed9VEc+ap3vy2KjrNHon2cHc3Zc0ILNCgFh+RShapwKurHdQAAmpo7B3xNTrEXDSSxs/4oZo0d1y/701QNl/5lCQCgenop8A3rPpZlIUg8RK8MkbWLsLveeR5PFr+Poi992LDk1h6P84qq9tfL9EKvSb1wBYcK5Lxm43s5kBWDfUFPcvaMbXo7G7m7PntA/o69MwwIIK3PHpchjAtNTwfh+Myus6ZqiHfqoXqGgVncUvfmQYw7tjKvtVLSsefscaYQBwavQIOGcSmUAURhjfCl9fUWOOsgLmPgT7JxPj1n7b0Ddf22P7f2MySe1NgukbOv68ni9wEA4WACXzQe6PH+Y5qVj3bR/5yIs+sX9Pi5CsLZIwSrUaU8lNs0uOEm9rrL2TNOfr0tihLj1veU92Vw9vIWe/aGykB6GJfPEMYFuv/8klHJbAcyek4FAmV6/vDBTxsRaemf9ImRBPn56Tl7g1SgEbWOdUPZ2aNij1JwyJzRcsT6enuIpsIKM/A/yIQnPRl/a3ifyyP7BjKMQeY1GXgU/aQm8pkPiqzc81y5uGY5e4LE9yqHRh5iYi/SEs/bRSoRAxh1tASlbQGEixOoH92BBrWjfxbYT7i16cnm7Kmyaoqd3p4EjQINwc/ZZo/anL0896HYxEKGMK7T2cvDPSKLM4IVPsw6TW9grmlA3YZDea2Vko7kcPby+Wz6ElsYdwhfwFGxRyk4rJYj1oHaw1sH8YF29hRFQdKjn6wqO4vMfLmd/NH+22d3zp6ivx+ikNmZkeSeh0/jhLPnEbleHXy7G28XTSRw9esP4Z/e/BW+PNS/hS873z6MJ699Gy/c/H5eifbLWmfhwr+diBXrZ+OtVXV49tKP8Vbgy+43HEK4O3uZPxvSXVFlrVcVuUafvbTWKL1y9ojfSErUCT4ODHGNk6ka17m9GzGiOMNf4sXM08aDSXUF2PHWIai0UKNXGNNPwOify2A4e7Ko2C6sqbNHoQwgRhWqQIg9gbdOEgoG9uqrKxY3e86VSgHUdJYCAJpKutAW7uqXfTYlOvDCt7fgpW9tw3sTdqTd71P190PltIxju3yqp8f7TzCk2OPzSph2isxsrVdUVcU17/0B71fuxKHyVvyx9o2819rS1YVXP/80p/Fl2z8/jNaKCLapB1Bf35bzPoyTgK33YC+KVgYDtwINyaVC18AphrRetDwynD2P3+689aZAw5bzlRJ1DMPAQ7h7pFsE2As2unOryUrcQKkHwTIfxs6tAAAkusS0Sl1KfhiCjvdwYBhmUJw9Z9/EoSz2aIEGpeBQjJYjGuHscaTYG9gfJJ/gcPX9p0NhVYxbXIXXZ36OBnTAH/Pgi70H8LXjju3zfXaJcRycrFf9VbUUp93v1awTWmc8Bp/HA0VRwKiAxgLVDcWoDqRvlysJosp346nbccTXidNxfE7bKqKKy/58MmReAaewOP30zO/P/e++hG1lVm7hfr45r3WqqorVn9yNlpIwVr59LO5e9a9ZH//6+M/w3lJdPC/vPAZjxlbktB/DdSJTC4ab2HN19rKEcZ33KbJqE2e5oqqaKTTTWqP0okCDFGtkbp4nwJsn8WzOXncn9lindfHgL9Hz9bwh63c3lIXBcMAI4xrj7HhbNe4ANft2EXuaqtkacQ8VqNijFBSqouLKB78GhVNRNaUEWKnf7iGdvQHO2RNj+gGBU1kU+/y4OHQyJj5ShuJOP0Lf9gHH9f0+yekMPLi0+32a5dqF43HUlJSiPRqFljpe+hJCr05GCaLwY/sx9VBacn8uTdJQ3ma1JcmU3P/6l1vwuN/eFDqG/NyS5q5OtJSEAQDrK75AQhTh82R2NINxa8RdUyT3qm7jveRk67MQMbymKbjl52WbwOIMpSmyip7UdksZeuwBfRjGJRw7srVLX+Xs+Uu9qf2Q2w/d/K7hgOwQe5ytz94AOXuR9N+wIqtp35uhABV7lIJCkVT4EvoppVS1BIOHaCEyWGIPADwBAXOmT0Rtp+5GNe5sd91G0zTE2hIIVvhd7++OhEjs0+VnvrR9Bsq3BiBIHPxr9PcmERUx5/OxSPglVDUVQZnU8/dp9t6xqBA6sf2YegD2qSbdkS4S0sN/uxvqcUvH01D9+n3BiAenvjEHFWIIOD33dbZEwrZ/v1G7FefMX5zx8WTRSnMid7H3wthPUHvJYcSDlgAQMcycPZcCjWzOntNd6cmEC8AxPcMxu5Zslt67MC5RuZ8ljMv1NIxbYoi9gRckA020PYF9HzRgwoIqFNf0Xy9JhQjjAvqUJKPFzUC1NXITe7KoULFHofQ3mQoTBI7TG6gyAx/GFaPEySrII1TpQ6Dci1hbEs27O1wHuG+4byv2f9SIBRdMw4JvT897n0miia+HSf+ZHytOBPeF/rcg6vd7YzxOf3OO+RjlxJ6/Tyd+NAWJiIjtc+sBJk+x5xAQbs7eDZ/9BbFK3b2c3jIKl3+4DE37dPElxuW0cF8m2qJ2sfd642c4B5nF3qtzPzP/bhHDGR/npNHfgcZKuzgUBzh3tLe4O3vZcvacYq9n36dM0zMAh1OWbxiXrMb1WidnbzZnL4/GvTZnr8TN2StMsffuw1/i8GfN2PH2YZx/x7J+2YemaWnOnp63x0FOKgPmmro6e0P0c6Vij1JQkD80ZxXqiR9NgaYCo4SSAV3TtsQ+vHV6HbxJHqOLKnE8w6Bmehn2fdgAKaGg40gU5ROKzMerqob9HzcCAA583NgjsZeQrYOQwKb/zAXi5GYcNJMRCdtnH8X7y3dD4VVwqoApGJ33vgHdjWHAgJdZyIJqNrrOheZEF95ftgvbFh5EaVsA50gSFmOWeb+qqthdob8/nMziv05ai7o9B9AEXUxFW+PwjCtyfW4n7fGI7d9bA/ugKAo4rvsr8zYl0u1jDCQXYScNO2fPeg0sz0CVtexh3KT9pNfTxspizL2hMmAP4+bbekUmjxUeMoxrOXtOsZdP495Yh34xwvIMPKlmzSNB7LUf1i+C2g+FEWmNI9TD6EQ29Akm+t/kZ8IJrC72BsjZS0RdxN4QbZZOxR6loOhIRPDx4r3gFBZipWqk7AEAln0yA1JCQenY0ICuaZfcgC/nHwYALBd15+zAlFZsKK6F6JUxo2M8TplwjPl4OSFj88m7IXpllAoBnIf8r46ThNjzujh7AtGY1nBnEhEJCq8iWqQ7ErF499WpbiiSAjVVecmlxJ7RDicXDiSb8eni/QCA1uoI9rQ02u5XVRXzt0yAwmoY4y1DzeJSHKywxnFFWxMoy1HseRMeTNtbg90z9X1EA0ls3PkVTps9z/XxnMKaBUAdiOb8mmQXZ1NihpfYIytv/SVeRFsTkJMKNE0Dw6QnpPeVs5c1jNsLZ88WxiWjAMQ+OG9mZ6+79h6Gsxco9Zrvjy3nbwj3ZOsN5OfVuLMDoSV9L/ZsDZW9xOeVen9znV3cW9ydvaH5uVKxRykomsUwPli2BwAgt9hzhPRQqdLrbv75EpatbvklXj2HpSHYjtoxRwAAhxL2WZliTMaXxx1Gwi+hLNyznJekIsKoy3AL40p+Be1lUUiCgpZEFyaiBomIaCsgSCo9EyNiTIYGTXf2FBZJAHIezl5cshdZpLXKURgsf3smAGD0nHIAAFvB4OjYdkSKEhjXcQjjUJXTviZEKnDWS/OwZ3sTjoxrx9TdVfAdxwOz3R/vFXnE/LoI7mJjOb8mWxg7lU4g5vGeDAVIcWSIPU3VoEjuCeluBRo9IWsYl+9FNW5OYdxsOXuZ96cqKhJh/XtihHCd28sF6Oxpmt3tbdrZjqlLehYdyIZia6hsfUZGa5yBcteSkfQLYursUSgDQEKyfnyC4+ttNDRVe9HvqyeEVULs+XTxFuKtq92waB+ddCDcjIRfv2JsL8rdPSJJKrIl9tj0GshPgnvwP9/VR6OVxEJYiOl4lt+MN79hNfpNqj2rFj0Ya8YD16+HIHKQPPpBOR+xF5NEWwdQWcscDjRyHfeXN+O5iz8BAHjavTgTuY1nM1psTN1djam7qwEAh8QmaJfOdnWryG9OWEjktA/AcvZYhQGnsJA8iqvbN5Qxw7gM4CuyKpblpHtCuuLMvexpgQZZ4OR3Fmj0os+eS1NlwF6gQfbVA3IPwya6RPPLYhd7PRenwwGj9YhBpgK03uI21xiwnL3B6rMHDF0RT8UepaAgxZ4zfKl6VYgeGVEu95N0XxBRrf2VB3SxV+whxJ5sF3sN8Y5e75Ms0PBy6T/zkOAz/47KupPWKdudKrGHYq8rrr8eQ+gBVu/DXEgoDrHnKKghnVmjGnN8aSWQOq80yblXyZIHa8HPQYorCDfF0XYojIoJ6X0GFc56TVFvHmLPmOqisLjyyRVQuhSUledXOTzYmH3NPBwEn3WClRIKfC5R8/4o0HCGcXtToOGcrWowJuUWMwxQM7Ms8/6yhOtiLsUZadsPUQeoNzgLdloPhCElZFvaSJ/sh0gpIF1Zy9nLnF7Qlzj77Bn7HopQsUcZcqiqhq9e3Q+GYzD3jIl5/WBjWcTeI+dtRGdRDIGYB1fgzD5bb3dEid5vZQH9rFjsCZhX/k6x15nomZtHMloqw3F14yFzKsbPqEy7Pyj4zP3HVH19XbCvQ1R7FsYNJ9OHvMt5iL24LIJsyKY4HDBFUs0wsRHGm1xRY4q9Fib3KlnyYD3lpDHY8ZY+s/TAx42uYo98HTKrIppIIOjzpT0ubbuUs8mrLEqUAKLJBPJsCTjoyKkTrOCziz05wxQNZ/uLnrotZIFG9jBufs6hYnOHrOepnFyCC+8+BSzHoKg6YNuGz7GXW7zDOg4FSi0X1JbzN0Rzu3qDFLe/Jk3V0Ly3E2Pm5NZ8XNM0tO7vQvGoYNaKerL4hxR7hrOnaXoEh+P7V+zRalwKpRcc2tqED5/YDgDwBgVMXz425207ElEzfBni7InBnJYK47IDG8aNsdZZvSKkF4eU+IIwtBXp/AGpsG5Pus8STI3X4JS39ArWY2ZPSLs/5PGZYiOm6CemCOzr6GkfuHDCLvam7agGp3BQF6lg2e4nKMQVex6M09k7kmzFA9evB6swWNg6BSuxABVFRRAkDpKgoN2Tu1h+bOxGbF97BN6EgN9POhaffrQLe6c1431lNx6FvQpaURWonP7dKWsN4rLHlkC9TwW613qEs8eZJ/zh5uwYuVi8l7MlxWeqyE1rodMXBRrZWq/kHca11sc5wtAlo91zZXOdjevWUFnfPvc+e4mwiNf/8xMkwiJOvGQmJi/u+9y3vsatFU/Tzo6cxd4Xr+zHR09sR8noIM6/cznYDJMoMrmynGOKBteDiS35kKnP3lCEzsalDDnaDljOjOG05EpYtEKRRYJd7LGp8RBKHpWhfYEh9liFMV2gUp/lGEQ1u8XTJeWe+J8JWwsalwNeiAgjx7WU2GMdYq+H47wikiX2lm6cjrNeOg6rXj0mZ+cl4Qgfy44CDTE1O1flNCB1LmBZFsUx/TV1+WNQ1dw+43Y+gkhREq1VEdSMK8WbF32FjSu349Op+7D9yGH7uohG1YGYBwwYxDtzq1g2vnO8yprCYqieFDJhiDfBxzucvQxiL4fm2LlgK9AIZJmN25sCjRyb4OY6QcOtxx7gGOnVjdjb8r+70bynE+GmODbctw0b7ttqe96hCCnMDfLJ26uv1YvVOuujiDSnRwgMyDZAdmdvYAtg3HL2hqqzR8UeZcgRaY1Dg4bD49vw35PeRe3h3AVfF1n5KthDMFxK7A20s5fg9QOCTxRMZ6skYDkHzhFfYdkuuiQlf1GQrd8gABQRoccEdMES4+3rkLSeiZGIaK1fEK2Db67OTsLh7DmbYItElTDPWK+tXNJdU1lQ0dyVW95elNX3xagMSgIBLOFmmPf9Y9fH9nURKQKcrO8315Pvoi2TsWjzFJywezK+mnIIH520B++euCNnUTrYqKmqWyDl7Nly9twvCpzOZU+r4MVszl5v+uxlCONmI9cJGrGOHHL2sqy3sz6KuvUHbbft+7ABz/3sXez7qCGntQ4Gbi5v064OW9FGNjSieC7bb0vOUEk9kDmRqqLaUgzM/Q5RsUfDuAXEnXfeiU2bNiGRSKCmpgZr167F0qVLB3tZefPA+Nex/fqj5r//WvcOfjnuspy2JcVesTeT2BvYH2Pco4sEn2S5EuVBS+zFHWIv4hB7CVGE4M+vV5UsEyEqV7FnvTeGsxfz2EWWW9PfhCjiQEsTpo8akzEkG1Gs9XtE6xAjSyoyT50l9qE5hos7xtslZULsEXN/K1GEXdBPhPtbmlBTak+udyPOpz6bpC7ET6yejmeSHwAAmkS7YBQUHqv/ezFkXoUnJWJzdfaO/2QiVFlDxcQiPHbqu9hf0ay/VklEwJtDHHiQIUel8V7OtSl32jZ91HpFivVPnz0lSxg3E7mKiYw5ezk6g588tdMUPhMWVKNxZzuSEQmJsIQN923FhXedkjHUPJi4Cf9kVEJHfRRlOfQ3JTslkILZSSaxZ8up7GfnnJyMRDJUHXsq9gqIiy66COvWrYPH40FdXR2uu+46PPnkkygpGdiJEb2l2dNl+/dGT23OUw2iRP5bic9d7GksICsK+Byer7doqoZJe6qQ8EmoYK2DXUkgaPZbi7F2wRB15PAlJQlFeYq9p8rfx//9+EtwCovp7HiMgT1npph4vgQjQVEUJLyWyPr6K8dgztjxtm1UVcV57/wGR8s68J1dX8N1X/uW676N6l4A8GrETOIcr7Q9Eo9AxINYSERJux+Tm6tt94vkdBBC7FVz1vf8YGcLFmNmt/tKpASuPyXEA0QuY9IhOlmZQXVTMcJFcWyf3YDaY48AIodZsL9PTjRNM0PYrMDCo1lrjovDROwRgk7w8eDJptyZxJ4zZ6+HjocZGmTsJ3agd332MgmGbOTqzMW7Mjh7tlYx7u9b0652073zl3iw4vvHQRYV/N/929BQ1wZoQLgpNuTFXnFNAF2NekpK4872HMWe9Z7Gs4m9ZA45e/3ssJEhXN7LmWuizh6l35k4caL5N8MwkCQJLS0tw0rsqaqKzoA9V6MrFMdrX27B2cct6nb7opgP1WIxRK+Migp7PwhD7AGAKMm9FnuaqqFxZzvKJxTZRiyRSAkZq17Vp2OMOcYSXBzHYebu0YAEjJJKbdtENUvslbUGoU7OP+wsarIualkVAp/+MyfFY5KV0BqJmPlvE/ZVYFbdaIwPlNu2OdTagqNlHQCAF7SP8WPtHNdK6ahqHaQ/Pmkv3vpaLRROxUnxOTgGE9Me72TV4XmY9La176pp9u+vpBIHesb6DEf7LCfvSNTeqNoNWVGQ9OonJ7+suy9+wXJhnAUqxkE8Gkrig+W7AQBlLd1P6lBt85o5W//HaDKJiu6fYtCRHDlSNmcvQxi3r5sqe/x82veNrLbsaZ89hgFYLreqTXtT5O7DuHrlMjHhoZsCDU3T8OETO8x/Lzh/Ojx+Hh4/jwnzq3Sxh8wCe7Ahq3HHHluJrkY9FN20sx2zTs1+UQTk4exlEHvk3/3tsJFiL1DqNYUtbb2SB7FYDE8++SRqa2tRV1eHcDiMn//85zjrrLO63Xbfvn3485//jB07dqCtrQ0+nw8TJ07EJZdc4hrS3LFjB/74xz/iyy+/hKZpmDt3Lq6++mpMn57/PNJ8yPc1iqKIP/3pT3jjjTcQDocxdepUXHnllVi0yC6A7rnnHrzyyisQRREnnXQSpkyZ0q+vo69p7uqELKT/WJ6r/zAnsbds3yyM/1g/6U97wF69xhEpqqIiIwAvesPWv+/Glmd3o2RMEBf853IwLpVjScLq9zoE4XnvnYBoW0Kv1vuudXuUsZy+855ZiMDCXIKfdsh8O5+QLkQFngcv6aPMkqyM5rAVsvQl9Mc7T84x0Tr4Vh8uRufRqOvouTgh9sAxiBjj16Tc8tucB0tnYYdI9BAkxd64okowIoNgxGvL88pEW8SabRtQ9e9CwEOIPUfOonFy9ket700uI9MkUUbcL4JTWEAAPJp12I2LQzvh3sDu7HE2JyyT8EjL2etlgYYzhAt0H8aNdSax/6MG7P+oEY272jHrtPFYcvmc1Pr0dXMeLuf2TrnOxjVcKdLVA7p3ng580mQWNJSMDmLmqeOsfeeQJznYkOsaPaccO946BFXR0LizI6ft1Vxz9kix5xskZ4+oxA2U+yyxR5293Ons7MRjjz2GmpoaTJs2DVu3bs1524aGBsRiMZx55pmorKxEIpHAxo0b8fOf/xw/+clPcM4555iP3bFjB77//e+juroaa9asgaZpeP7553HttdfiD3/4AyZMSG9Z0Vfk+xp//etf4+2338aFF16IcePG4dVXX8XPfvYz3HfffZg3z5rjed1112HdunXYtm0b9u7d2+9NJfuavcQc1EXNU/BF0SEkfBK2le1HW7gL5UXpvc9IsuX32Jw9uWcNg0nqa/Wr7M6jUSTCYtqBHQBEsvt/0L4eT4BHtC29gm1aYzVQryLpleFN8j06eJD5dqRbRfKvz54CtUNFWWkIoQk+/NP/zkfCL6EorIcVnfslxR4vszi4pclV7C07OhNF73gheRQ0LQijIeUGJqTc3vO08J8jsV8kClYEQuwtqZyBa352GliNxdSTu29T0Rqx0gVCmv6a7c6efb2tyS7smFVvK/DpZLqvnG5NRPDINRsBAHNaxqIYlqtK9oUcykjOnD3CrZIHqPWKs8ce4AyLWs8fbUvg3Ye/wJEvWqARGrP29QNYdPFM8B4r7JZrCBfILWdPFhUzcT9N7Hkyb69pGj5+ynL1TrxkpjkhBkBO7/lgQ35PfMUeVE4uQdPuDnTWR5HoEuErzn7hqhG/9Zxz9lwmaAADIfbIvEzrc6ZiLw8qKirw/PPPo6KiAtu3b8fatWtz3nbJkiVYsmSJ7bZvf/vbuOqqq/D000/bxN6f/vQneL1ePPjgg2ao8+tf/zouu+wyPPzww/jlL3+ZcT/hcBhbtmzB1772Ndf7169fj6VLl8KfIdcqn9dYW1uLDRs24Oqrr8Yll1wCADjjjDOwZs0aPPjgg3jwwQdtj+c4DgsXLsQzzzyDcePGpb0fQ5mDHS1mOHGcUIlgxIe3fbVQeBV/2/Yevr/8G1m3N8QVwzJpB3GedPbk3h8sd4bq0TEhAk+Sz5ikbhd7dofNGLguJxWosmq2kViwfTIm7rdCvj05SZKzWH28e4i5UipGJBYHwzNgYwwm79PnybaVR9BU3QXVZ79QIMUeJ3M4uLUJ876Z7hyXd4TM55KOt9aekHMTNs7+ZU5HSFJk8zsiEI2zSytDZnudaFv30y3ao5azF2RSYs9jHbQlRzPnA2Iz3jj7S9ttXXzm9hAG5OsWNM625mHp7Hlzc/b6IoyryqrV8sVN7GUYP1b7xgEc/rwl7fGaBkRbEygZHTRbc+RaiQvYCzky5dyRRTv+Uru4yVbNG2tPovOo7hRXTS3BhIX2XFVhODh7RBjX4+NRPaMUTbs7AACNu9oxcWFN1u1tzl6uYVxiNq4tzD6QYdwy67gxVAs0hmTrFY/Hg4qK3Jow5gLHcaiurkaECNsAwOeff44TTjjBltNWWVmJ+fPnY/PmzYjFMl+1P//887jlllvwzjvvpN330ksv4bbbbsNrr72Wcft8XuPGjRvBcZxNqHq9Xpx99tn46quv0NjY6Lqdoig4cuRITvsYKpC5VmP8ZVg92Qq9v5ro3uE1rqg9gfT8nrMPHI8L/rYIF/3PiSjSehfCBYC/nvQ+/n7hFjz9zx+hI+4eztsU3YE/fW8j/mfN+/iocrftPo/fEmFJQhSSAhHo2UmSzDfzuoRxAevkIScVJMPWCepvl3+Ap/7lQzw3/yPb40lnjlMYbOvah+aO9BYntqt7winLVey9PGULXv2nz/G769/EI/+2EX9a9bb9+YnJHgJL5Ot4OXhD+muNtHYv9tri1vGgmNXFXsBLij37CTWhpDuTUW/3Yo1833jw8DKC631DGckWNnP02csxZ68nFy0i8dzk78WAdL7I3wkp9ueeMRFTTrKc3kiLLtDNMK6Qu7PHcox5oZHJwSHDj4FsYVzH+0EKmNIxobTjl01gDwNnT/DzqJlh5dE27erodntbzl6uYVxbzt7ghHGDZVaRFXX2Bph4PI5kMoloNIpNmzbhww8/xKmnnmp7jCRJ8HjSbWWfzwdJkrBv3z7MnTvX9fkvvfRS1NXV4bbbbsMdd9yBhQsXAtCF2d13341Vq1bh3HPP7ZPXsmvXLowbNw7BoL36avbs2QCA3bt3IxgMYvPmzVi6dCk8Hg/effddbN26NS9XdChQn2wHUpHB8aFKnDRtJqrfKkZTaRcOlbdiV/1RTB89JuP2j5/2LhRVRU28GP+Clbb7xiTLkTiaanCs9v46RxSsA9veeCPGoyrtMW1iGLGQiFhIhBK1HwRenrMVH5+8G0mPjGXhYzGrWM/PkeIyPl20D7XHHIXKqZidnIRK5FdkQzYiJt0qEsFrOYuJsL2HnMop5ogvgziRc7fthIPYdsJBjKqtxJUnf932OPLq3k/8vpJKbm7EnopGsxAkHhQhaPbPaoY0Fuf8/XgonIoTlk+13Res8CEZkRBrS0BTNdc8SoNR8VKseuMYJH0yTpg31VxvZVMIvMyhMmmvnEi6hP4TPgkJUYTP5Tjitp3AcPAQzl5MHibOXsLp7OUwQaMPmirb0jJcnD2GZcByDFRFs1X7kjmbx507Ffs/bMDeD+oBWGKvJ2FchmHACSwUUc04QSNTQ2Uge04ZKWA4F7fRFsYdqgUa5PfEx6F6eqn575Z93fe+JC8I4p1ixt8w+d0SbH32Bq71ii1nj3D2hupknIIVe//1X/+FF198EYDeXf+UU07Bj3/8Y9tjxo8fj9pae1sPSZJQW1sLAGhubs74/DzP45ZbbsFPf/pT3HTTTbj33nsRj8dx++23Y/Hixbjxxhv7LF+utbXV1QU0bmtpaQHDMHjppZdw7733QtM0jB07FjfffHPGQpP169dj/fr1aW7nYNOkWQeESRXVYFkWi7Xp+Ac+BQB8dGhXRrGnqiqO1rRD5TRoHeknFrLijryC7AuiGcJxXWIcRh1IiWAX66pHRTygHzAMZ1BVVSRjEhJ+CR3lurMclbp3qZyQIUh/BiGya3wDdpc1QBJkFEdCODyuTS/OSL1NaWJPkcz7DN7pqsWVsIu9HcVHEZkQR0D1wssSLlaOeZKiY7+Kowl2iezHxP36vN8xp9h76dXNOYptc/cjXJTAqtaFGFeVLsANQlEvZm7XHZ+5i/T8XJ7jcNlfT4aqaKiYVAxcYD0+KcuAiy5oaG/DpJpRGfdDNmMWwMHHDkdnz5mz132fPSXpDMf3wNmL250iNziBhaooNqeMnHns8fMIVVrpNJGWOFRFNY8BbsIqG7zAQRHVzGFcsqFyqUPs8Zlz9jLloZm3+YaBs0d8XoYDLPg4SAkF4SwTMQxUovmypmhIRET4i9MvVsnZuFympsoD2HolWG45e0N15nHBir0LL7wQK1asQEtLC9566y0oigLJcWA977zzcPfdd+OOO+7ApZdeClVV8Ze//AWtrXooURSzh528Xi9+/etfY926dfjZz34GSZIwe/Zs3HrrreBd2l30lGQyCcElFGe4kslkEsFgEPfdd1/Oz7ly5UqsXLkSO3bswFVXXdVna+0traw1Km1SpZ6z8rWSOWh5txNVjUUYv7AcONF922gyac4u9SvpAoccrdTTbv4GzqkWmQRZl2ylApQ4mjwbeWKAJfZiooj7171pE1Vijo4YiWyIPQ3wZPgubpmwH19W6tNJxGYFn622d+x3ir2ELKbN7K0rOZzmbL24aAu6QnEEY15cpFr5okmXMKgbUprYc05isE4IzlFw9dUd2Fmp9yjb29qUVeyRB2svkU/JeTiocTntZJ5UJFexd7SzI7vYI0Suh+FRiWJUNxSDl1n4Rg2PQ7DscGzsIcX+a71im4vrUo0LGL9rxZbbaYhElmfAeziH2EvYp2fkEcYFLEGRSUzEbM6e/TjEsAxYnoEqa2nfL9vUGxexJ3hJZ2+I5uyRYVyvXuUcrPCj40gE0dbu3XbnRXi8I5PYI0RlhjBuv+fsDTNnb0jm7PUFEydOxAknnIAzzzwTd9xxB+LxOG688UZoRGnWt771LfzLv/wL1q9fj8svvxxr1qzB0aNHzSKITMUVJMFgENdccw26uroQj8fxwx/+EF5v7/PBSLxeb5pQBSwx2tf7G0y+tmk2vv7KXKz4cDb8qdd10qSZOOGjyZh4oBLxfZnDXu0RSygGXHLyjgbbsHt6I3bOqkeH2H3LjGx0Ru3bZwrHRYgGyaV+u7MX4iyx15Wa6dsRjaS5Zz0SeymBxClsxkkXPkK5tXDhtPudIsst5070KFhf95n9Nj6VNynz8HJEXmKuYo+zv17nxBPSIWIdYq9GKDX/PtSV2ZkHHG1xSLGXOpk7w3Rky5dgzPp+NUayz/60h3F5nKrMxeonFuP8pxZhpjg267ZDBVvOnpcHJ7DmSdvN2dOI8WoGPXL2ugnjAu7iy5huYPS/DFVav7VwS9w+FzePMG6m/ZGQBRqB0vTjkBFqdM5uteehuYVxh4GzlxJ7go8zvx+G0FYkFfFwdgPF+R2JdbhfRJM9Ekk3r7s+hn2Jvc8embM3ND+b4XFZ2QesWLECd911Fw4dOmRrqXLVVVfh4osvxr59+xAMBjF16lQ8/PDDAPQwb3ccPXoUt99+OyZMmABRFHHzzTfjv/7rv1BZWdlna6+oqHANKRsOZF/uazBRZBVluwIo0wKommrlqIUq/fAEeIgxGa0HujJu3x6zBFjQpYfe5spdeHuWHqL/prQYk5HZjemOznj+Yq/MKfZ462KiK6mHODpi6SI0V5FEcuZH89AaDYPzscBi98f4iOFlHT7LgQzGvIgGkpB5+8HSKwuoaiyCzKuYIFfgsxrdCVzf8Dn+KdUDUdM0M5fRqwjw+gixp+bYeoXPHsatV9txcGIrWIVBhLOHhsb4icbKsbas+zkoN6OpugveJA8uYJ0wjBOt82SRINY/OlyKWFsSgagXnvHZD6NJm7PHOdp3DM0TgxNnnz2GYSD4OIgx2VV4uLkqzqpqVVHx7h+/RDIi4Wv/Ns8sriHJJYxrCH5bGDdV5GS4gZ6AAG9QQDIqIdIStwn5vMO4KdElxWVompaWrpMtjAvo4kSKu+TsdTO+jczZG+rVuORaSaEdaY6nFa2QuDl7bpD5luT7z9mcvYEp0BD8vL5fBoA2dJ29ESP2kkn9B+iWo1ZUVGTrVffJJ5+gqqqq2z57LS0tuO6668DzPO655x4kk0n84Ac/wPXXX4/f/e53KC7O3hMuV4w+fNFo1FakYeQWTps2rU/2M9jE2hP6CDEAoQpLCDEMg/KJxWioa0OsLYl4V9LV2m+Pka00XA6yDNlUuXcn2c64vVI7k9iLMtbtZUF7wn+xYL3GsKSLlnaXqt6eOHtj6stQ3OJLCyORBBjrvmggtU4NKEr6EA0k05y9BdEpkJ/QD74LrpqOK5QHoXIatnj3QVVVsCyLuGiF0n0qj1nsGJz6xmxwCos5C8ehO1RVheQQmU5n70PvbrxwwRYAwExlPI6H9f0fX1RpjjtrEDuy7uvFqk/x2b8cAAB803cSaqALxZeXb0OTrwscWFyG08zHi0QV8JK2GSh9RT+JjbvYPmnESZLYzsMKjikMQ/PE4MTZZ8/4vxiTXZ09N7HnDOPW17Zh1zt6t4AdGw9j3tmT0/ebQxjXCOUb4klTNXM7spF5qNKHZFRCtDVhfz05zsU18Bd70Y4IFEmFFJfTpufYwrgufeUyXUyQIsHN2SMFxdAt0EjviVhUZc+XrJ5WmnF7TbWLvUwVuTLREJskW2ubvsZw9rwhwV64M0R/08M6jJtIJHDgwAF0dHSYt7W3p4dUZFnG66+/Dq/Xi0mTJmV9zg0bNmD79u248MILM4a/AL3P3k9+8hPE43Hcc889qK6uxvjx43HXXXehubkZN9xwA+Lx7hNSc2HFihVQFMUsOAH0EO4rr7yCOXPmoKYme++i4UKkxXLBgpX2eaHFk/xorOnEV8cexrb9+1y370xYAizEpofgyWkLUg8EFEmXQ+zFFfcrUFLsVYQcYs9DiD1Z/650JVzEnpr/Wo0DHekiOfGzLpXoScGc8KBymi03kXShKoqLMLldz6nsLIph64G9+vpj1nfep3kwTqjEMV+Mw+zaMahJdF9RLMoyNIeTp7F6GyEDW+sVzi4AJpZbOXotamYXGACijPV9qyQ+m6ayLjSM6URDtb16kPwcQiHr+0mG7dwQHTl7tvYQw9DZM8Se4d64uUxu7oYzREdWgHfVu6dVkG2IshVokM8vJWSzkbIQIB0m/femqRrCjdbvN2+xR1xAuX32hrPnDQqubV2M25yzgsnEfrc1MQxjVp4OxTCupmnmusjQuLM4JhvO70imXnuZKqn5LE2r+xJN00xnz0gBMT6zofqbHrLO3nPPPYdIJGKGKjdt2oSmpiYAwPnnn49QKIS6ujqsW7cOa9aswXe/q8+buuuuuxCNRnHcccehqqoKra2tePPNN3Hw4EF8//vfRyBgJclv27YNjz/+OBYtWoTi4mLU1tbi1VdfxeLFi3HBBRekL4rg+eefR1NTE+6//35buHf69On4zW9+g+uvvx6vvfYazjvvvF69RgCYM2cOTj31VDz88MPo6OjA2LFj8dprr6GhoQE33HBDvm/tkGVX21EcmNiCorAPngr71XLdlHo8PUfv+1bdWoYlmJW2fZcYM7/RRZwv7X6b2FN794PsSjqcPdX9hB9nU61eFAZBR25lsTcApDaLKLrw6EzE04oAeuLsGa5Bth5iAS7d/fRLHvCatU1CFCH4rZwbA87D4WTvTOyB3uPxzf2fYeHkabbwtl/z5F0dF0u65+iIsgy/UTFPjDHzOOYbT6ysBo4CYIBWLnuleYzTPxtGBUoClmNuvH6FV03HEgAYBfDGeSi8iuKiAGLQvwPZxjoBwDHiBFz05IlQOA0nnzkDe4RGPLv6Yyi8ig4hgeMwNev2QwHJFsbVf2TGidbV2XO5zenskf/OJAJEsklvJrFHhHE1TbOFfu3OniU6Oo5a3418w7hkO5V4ZxIlo+3pGYYAdDZUNjDCzs6qTXvrFfffLe/jISWUIVmgoUiq6cyRwjxYQYq9zJ0FNE1LC+NmmqJhNtr2Op098njTf6JLisvmazXSD7rL5RxshqzYe+qpp9DQ0GD++5133jEbGK9atcoUQk5OO+00vPzyy3jhhRfQ2dmJQCCAmTNn4t/+7d+wbNky22OrqqrAsiz+9re/IR6PY9SoUbjiiiuwevXqbqtpL730UixfvhyTJ6eHHubNm4eHHnqo27m0+bzGm266CTU1NXj99dcRiUQwZcoU3HHHHZg/f37WfQwn3k58hRcv0Bsnj1drsIAIz82vmQSkjJZdyXrX7TtJsSe4OXvWgaC3zl5MTNpEWSKT2OP1qz+fKKQ5xaX+oCn2opp+EAxLsTSxJ/XA2dszphEQgURJ5gOem9gLSB4IhNiLiUkUpcSerTWEwGLx6On474j+fT0g6jmlpLvqZ/IXe5FEFrGXEssyKfZY+0WBz+NBMK7nHHb4shfhxPhUgZMomK2XAECwza4VEfTpFw5fb52H6hf13+TJP56F9dBDyd05e37Zg5pG3dWs4kqwn2tG/bgOAEBzW3phzFCErMa1nL2UQ6VoUGTVVhntnrPnEHvE9yGcQexJ5ASarNW4ADS9XYdIFN64OXsA0HHU+m70ztmzixEpYYW13cYnAvpvB0iJIyLnr7swLqCLmziGprNHhtzJYpIiMmevNbOzp7l0w3K7kNI0zfx+OT878t/9mbNnq+R3iL2hOkFjyIq9p59+utvHHH/88WkTLE4//XScfvrpOe1j7NixuPvuu3u0Pp7nXYWewdSp3V+t5/IaDbxeL6655hpcc801OW8z3GiQO8y/J5bYW2YcN2Ey2G0MVE7DAU/6GCTAynsDgBJPIO1+oQ+dvQWxKbj4+ZPw5OUfAAASmvsJf8V7s9DFxeEr8QD2aw1d7KUEbFTTD2pdUhxwmJKilp/YU1UVfz9nC8AAY9vK8AP8k+vjgkL6ySio+nDJzqU49EwTOJlF6B7rMa+VbMOHF+0CL3M4kZuNmdVjgd1AIOIBUkYJKdb8jAcKr6KtPAqFU9GETufu0mBlFsduGweZVxENJjF9Zw1YhQE3gxDqhNgTXC7KShMBRANJRPxJJEUR3gx9BhOCfsD2S/b7bWI3mTTFHilO/CUe/O/Fn6ArFEeR7Mc3MvUDgj1cx/GsPn839XXJtWhlsHGOSwOcEx1kcCGP6+MNnE2VSXETaYm7Fjvk2mfP2odqC/2SVdahKndnL3+xRzp79t896URlEnumk6jpQpnjU1XN3RRoAJaIGooFGpJt2on1WfnLfGA4BpqiZQ3julVruzl7iqSaud1cVmevH8VeJP07ZoZxqbNHoWSnGVaOldFjz8Dn8aC6qxgNZZ1oLQojkkgg5LOroqnhGpz0+TSIXhlTlqbnMZJhXLkHbhmJGJdR3hrEFb//GgSJw8zF44Az7I/RVA0T6ioADaiakp6vNipUitNfmwOPyGN6jd4o2gjnAsD4/eWYursas4/Nrz2HpChm+xYyJOskyKeHuovgQwkCaE21FiErKI8K7Tg6pkO/XVBRXVKKax9ZBa1T0yvuzgfCSetgHmS9qGc78MS/vg8AOLmlDd/MVBqcIiB7sWLD7LTbOWLiiZwljAsA5UoIR9AOMMCB1mbMGJ3+/imKgoQ3JfZku9jz2Jw962RDhh05nkW4JI5wKAElnv3gbgt/Cymxl4IcazeUMZoqszxjOmn2vm+KOfkGcC88SXf2yHxQFYkuMU0g2Qs03Mf+ke13dLHnLjqKSGfviOXs9TaMS0LmmLm1XQGQVo3tLDABMgtQPhVCV2XNNk97KEBOziGrcVmWQajch3BzHJEsjZXdGt275exlGpUG5Da7uC+wO3v673moh3GHzjeFMuJpF/SrbU5mMaq0LO3+ibLu9mkssPXAnrT7x7WVY9FHk7H03emYFhyddj85gL63zp6UkMGpLAJxDwSZS5sWYDzGuAL1BNOvq4qDAcz5aiym7apBVZNeIBAlWrWc+MEUHPvZeIxNZK/2dBJLWgfIbGKv3BNCeUsQrGK5KUWMP+PVMSlMjKkcFRV6xXmkNQFFUhCXkmBU/fkCnNc2GzcXYZMpuZk8EUjEKDiyj5/BcdIkHLttHJa8Ow1qh/uBtz0aNQVxwNGA20NcFMSI6Rf2nEUWIUkXDzGfaCvCcLKPacKOWfXYPb0RXXwcAWJ8nagNE2cvYeRIWd/jbBMdFDdnz1l96vi324QF0tnrrs8eoLuotqKODGFc26SHPPvsZSvQiLZnb7uir9e9F1x3ffYAe46aNMQqcp1zcUkMV1WMyWmzvw3cGt2LMTktLJppVBpg/y70axjX5uzxqX3ra9FUrUc9Jfsb6uxRhgSqqqLDr+d7lcQCrpXQM3xj8CF2AwA+bzqA5TPtc4vFblwAnnjO3oo9cl+Ae0d7smmv23pYngXn0cv1jRmgJ9VPh+cdFqJHRlmbnvitSPmNdksSDbgFt5EPKeYHJuGyx08GAGjQIHkUHPvNyWCIpdrEHmO9noBHdwWLqwNo2dsJaPrJekFsCr7/8OlQeBVLLp8Dv8d6MimHcHSmfBfyRKAQYs9tOsiZ7HyUbdDXxy9yf/2tEctFDml2h9MDd2fv7fJafHXGQXAKi68zC1Gs+HE05SA2dnZifIV7v8uPPXvwxtlfAgBOYmfjWI/V0knE0DphZ8IQFqTAI0+0zrCta86ekl3subXlMFw6hmUyOnAsb12sOJ09skDDWySA93Jpa813ggYp4pzOXqyN6ChQnu6cA+lhZ4Ncwrjk+y8nZFuYerCRXPI6DZwTTMonpK9byzDCMt6ZRFGVlZbjVhluMFAFGq45e2SPP0mFZwi5rgAVe5QhQmskDMmj/zjLpKDrY+ZVTjR7qNXFDqfdTx7kBZdkbi/jgSByYBUGTC9H477nq8O2U/fDI/I4bssE16vs9kgYDaM64U3ymBBy36EnICAuJs21l7UHMWWPPYSd71VighAoQhZnjydCLQwYeEQe5aEQPlH34JMT90HhVJwkzkEFdPeOdOaCXt3dKB5lHYS7GmMQEzIYMOBlDkGf1x6yZLo/+JIzL6PBJOJ+ESqrIS6JKIK+L0mzHuOWs0c2cY1mSAhvJXoyhhj7SVkgxR4hnHeF6rF9sl4cpPIqSmF9T+s72zKKPVLk+njB8Z4ME2cvdTFDnlz5LE1+c2mqnCb2XJw9w4HzBPiMs8Zt82YlRxiXOA4wDINQpc8WwgV6EMYtyuLs5Sv2CPfJXqCRKWePfM+z/540TXeYslXk9yVZnb0KokijJY7yCfY2VEDmeeXxjsxiz/nZmf3uJLVfW6/YnT17GBdICc0MTvRg0eer0TQNhw8fhsfjKZj+b5T+Z19Lo/l3lebejHrhhKnALv3v/Wz6RJEWpQtxnwhvkncN+ZyuHgPhd/oBZel301u35MNXgcP4fKI+V7arJI6DUivOwRLbY+qih/HMZXq7mKa2CFZhQdrzRKoTaAp0Qk2JQePkprAqYsEkFE5FGyJp22UjTvZ1y/ITJyvmDLxBAV+xh7F5iu6gHhXbcAwm6muzOXu6u9E+KooNq75CZ2kcyQ4NJydmWM/v521hXDmHMO57Yh1+v24DeJlF0mc9/gxxIapRCsDu7Hn5dIeAdBEyDV8nJ5UUOXoyeglrM0GEccnX7/N4UM5aYq8xnLn4hCyw8fICgl7rxDccnD1N06wwLiE2sjp7LmkNaa1XXJw9J4aDnqk4A0h3ypJkBa8jfSJU6U8Te/mGcVmehTckIBmR0pr+RttJsZdDzp7k7uz1Nowb60zizbs/RcfhCL5+/UKMmVuR8bF9hS2/0pfF2ctwAZZpXrmzSEN2aQNEYoq9gSrQCNkLNIChOUWjx2Jv48aNeO+993DttdeiqEhX6fX19bjxxhtx4IDelX7FihW4+eabbW0NKBQ3DrZb4q2Gd2++W1FcjNJwAB1FMTSEOiApCgTiu/XYCe+gcWUnOJnFWs/ZaduznOUMZDqw5EqMaJa8c3YDmsPpLTQ6EjEzL6zYpckzALyw9FMcKW8HNOD/KatNV6KtImpW+i5racVZOCHntZEChaxAdkLmXxl4Qx54E9bt5DxckdUPsowKeISUIKpgUBs8CgDY1VKPExNWFbrg4xEgegtKOTh7MUWE4lGhOKZoSLK17T/XLsfST6dDZVWMui/9uxJMnViSHgkHI+6V27MSY/BvD5yGpE/CCedMt913THI8OjdHwMkcyk63BB2ZK+gTPKgQrIuSplhHxtdEVg97eQF+ryWAJXboiz29RYj+t93Zy5yz5+rspeXs2R/j1n7FdPayiT3C2VNlzUyJ0LezXwyQosMg32pcQC/SSEYkxDuTtipi0tkLlGVy9tyLCHIL43Y/Mk2MSXj9Nx+j9YB+TNr17pFei736ulZ01scwbdmYjO9XVmcvh8bKTufXIE3sdSOKeQ/nmuvXl2RrvQIMzSKNHou9F154AW1tbabQA4AHHngA+/fvx4IFC9DV1YW3334bCxcuxDe/+c0+WSylcDkcbYURFRvtTS/OMBiXrICsqahqDqFxQjvGjbVCZwmzb1o3/biQ3gYiXxKO8JvIpR94O8UojBG9bn3/ACCgpk78DNAZi2Jn0VFExyUQCxCOkpbfQYsMPfJZfuKaF3jh/C04OElv6r140xQsD8yDhyhkSRBzeeWUWONlzsypnF49BtBH5KIe7XjPux1bTt0Lj8hjuXceRvFlepEKk5vYS8gijJG9gsiZoX2yL6Iqq2A1BqzCgRfSX5+vSMCf/m0jYkERlZ1FuBQr0h4jRmUIMgchwqHSb3eS50uToLyvv+6Kr1nHN5lYv9/jQZXP2q45kXlaBxn+9gkCPLwAVtHbCJFu4VCF7LFHOks2Z88Zxs2lqXI3zp4iKeZjMvXYAxy/a2cY1+HskaO7DLJNmcmEv8SDjiO6gyMlFFOMxtpS0zNCQkZRlEkU5NRnz5az597M+o27PjWFHmAXJj0h2p7Aq//xsd5PUVIx94yJro/LVI0LOMRes3svTZUYleYv8ZghcmeonHSN3VzZgaiKdXP2bGMQh2CvvR6Lvf3792PxYquNQiwWw+bNm3Haaafh3//93yHLMq644gq88sorVOxRuiUci4P3sJAFVZ9vmoF10bPw+eP6uDRxggQQXTWMvmk+OUOLBs46gGq9dPbirP0AKvHpJ+0uMW6KvRLBPQ/RD8v5aotG8fziTxAJOq5k8wz1JYkwrpfJ/BP3CjwOTWgz//3h0r1QAqqtUXFStl6XxKbythTroDahohL8Hv1zaxa6UBs4jM8X6OHtpCCBZVnwsn5/Li4WOXbOI/GE2CPadBCiwa31BMuy8CkCYhDR6Y/ZpmAYiBEy1Gf/vpB5QOQJwxSrml4YUhUoAVJP0ypnbo7sdPYA4MQtU6CJQDVfAqzMuOmQQCKKj0g3z+YyOcSdW3K80013tmdx9trLpcce4KjGdfTZy8nZyzOMC6S3X/H4eWiqZoZxgxXurp5zvbJLGJflGNuxKtNane+5KqvYcP9WNGy3jwwlxa9BMirhy1f2oWx8EaaclN65gKT9UNjMp2s/nPl7LtqcPft7GnTk7LlBfj9CFX5T5MXanWFcaz9uDijXD2PLOuujqNtwEGPmVmDC8dVIRqzjlNVnr0Cdva6uLpSXWy0hPv/8cyiKYjY05nkeJ5xwAt58883er5JS8CzbPROj3i9C0ifjxF9Oz/i4mollAHSx17q/yzxQKYqCpEc/CDj7phkc4lqw4eu1UFkVELhejalK8k6xp6SJii7ZmiZR4k1v8gwAAULsdcaiSAqpsJXIQTSETg6OGIlICDQhi9hjWRYeiUPSaz2+qqgYXtbaJkk4exKXcvaInncsy6I8GkJTaRc6glFEiZBLcWryBq9wkAUVcg5ij5xE4pMFRFMVOaLD2TP3z7kn7ZdLIbQhCsmjoDnchZqSUtv9tjCMU+xluEKX2dQIOoUFy7IYVVwK6KYoOtTM0zpkh7MHAMu3zUKiS3R1moYabg2Vgewuk1vOnjNM5wzrSnEFyagEX6pvmZRD2xUgu7PnLNTquzCuvUijZFQQ8bBoVpQGM4RwAcfFBPn9Sv2dKYQL2B0zp5v64V+349DW5tTj9KpjTbO/jwa1bxzA1uf3gGGA6mmlru+LQaLL+k26ObbWesjvif195z2c6dZlEnsa8f0IVvjQvFfPg3VWPJMtVZytVwBikkUfCq7Nf6nD4c+a8eUr+zFlyWgzXM8JrPn9sV8kFpCzFwwG0dVlhS62bt0KlmVx3HHHWU/O80hkGH9EoZBEWhJgwMCXEFBemV6pZVAx0QqdtR6wvn+dMSs/zq+6i712NoLaeUcAANPbx/RqvUnOLvY0Vs+VCxDJ9xGiZ16p393ZCzKW2GuNWRXJwaQPokcXEPk6e3PUcfjB3SuhshqOOze7oBVk3hR7jAqUh0K23nXkhIfjP5+EKJdEyOsDTrGeo1oqRhO6oPAa6j2Wq1Ds1wWu0RDZEEvZSBD78ylE2xaiVc57E3egoaYDrMLgXzlHJ+sUVVoxdqfm9u5tbkgTe+8LO/DFyQfgTQo41T/fdh/jAURBhsKriErWicYMYyv665lYWo2lz01HIObF7PKxaU21zbUTYt3H699NwwXoyxNSf2FvqUH02cviMtnyqlLtTtLGg7m89khL3BR7NtGWh7NnFGgIfg4sa78YcBM1+VbjAvaGyYYYyaXtir5e630jL1yMMG6mEC5gF9jOPMmdbx9OPT+Lr1+/EBvu24pkRHLta9dZrx9bNA3oqI9mF3thIqUkSwVwtpw9QH/v450iYh1JKJKSViVMOnuBUi8YRl+fs7FyttYrgCXeNUWDqqgZXdJ86DhiOZp7N1vjOo0QLuC8SBx6v+sei70JEybg/fffx5VXXgmWZbF+/XrMmDHDlsPX0NCAsrLM+VcUioFRoeUr9mS90g5W+OANCkhGJVteSnvUqlgNau5VcALLw9BNcp55cE4MF5EknIhnFHtlGcReiLUefyTcZuarhSQv2qEfkKU8xZ4qqWDAgFMZ00nKhFfmzVpfX1KfEevhSGfPep0LP54ERVJRNt4uxkez5fgS+ommrdhyuEoCuthb88opiLckEfT7gK9lXzspLgOEaJcIh/GzsQdwtKwDjMqAy3AgH8Vbx50D7c1YAnv19dbgfmxdsh8A8EO//f39wLcLf7j2LX2/EWA+9BnXsuFspsLY5cUhLNw6GZqqoXyS+6xuwP75Gc2ojRNDX4aa+gt79SPp7GV2mcjX5Qny5nNoigbGGA/m4n5EmuOonKQX3dj7Zubo7MlWz0q33paBUi9YjrG1+eiRs1ecLvZsxRkZKnEBe0GJWxg3m7NnF9jW+yOLiinEqqaWYMzcCngCfErspR+ryPfWbUoFSSJM5O269BM115NhNq5BqNKP5j26WxdtS6C4xn5MJD8TzsPBV6w7gc6KZ3uBRmZnD9AvKHor9jRNcx3bBtjFni2MOwTFXo/fhfPPPx8tLS04//zzceGFF6K1tRXnnnuu7TG1tbWYNm2a+xNQKClURTWvikNZcl0AvY/SJ6ftx1OXfYjfXfwGumJ6qLSdaKURYDKIPaJyV9Z6/mNMSlJatSgAhB0uthGCBICyoLtbWcRbV9RH4q3W7ap1u8zkt1byBMJ109jTo1onUV9qRqzPxdnTNM10YpzOw3hfeqWfIHJmFX6ZGEQw6oUn1v1JNUFMlAgQop109pRUk0ROcQ/hAsBYv5VicjjamnZ/hLE+q4qQ/bPJ5GyaYdyUU8mwDPzF+nsW78p8whRkDt4ED15izVY0mk9DwiuhS8g8PmqoQDo2tmrcbM4e8W+ysbHi4mSRkCE+KdecPUcY13D23AQiwzJp+XR9EcYFcuuxB2TOCTVCf9nWYxfY1nssRtNzUI3QtxSXoWn2EDr5eGeY1AkZxs3u7BEXBRmcPYNIS3rEjxR7LMeYzavjHUnb+m199tzCuH0supJRyUxBqJpSgoknWC3likdZgnWgGjr3lB47eytWrMCPf/xjvPzyywCA0047DWeddZZ5/7Zt2xCNRnHiiZkHhFMoAHCwuRn/OGcbirp8WOCd0u3jw2VxNFXpIdy9zY2YP3EyOuKEs8e4H2gFwrHqjbNH9mgjiTjEXoy1DqJOQWEQIubTNkpWr7ZiEE1E88zZI3OhugtRkXNgvWrqJEGIHTElduyjwuwH2CnFNXCajx6ZJx6fe3VckhR7jLvYM94Pcl6uk/HFlWYD7nqxPe1+87PR9NA1iY8XzDF3SWKG8rS9NYgKSZQw1mcjBHigI+maF2VwyYcno2l3BwDA/4QuEv6y4l0cKteLY65WzwbHDt32VJmdvSw5e6SzR4g9Mm/PPYxr/YbELC1USMiTrJSQzRN8pm2KqgIIN1mismfVuG7OnvV7z5qzl6GpspHnmHMYl/hc3HJQhdT7blTRkiLS5uw5ql2dxMO55eyZvwHGPbxqr8hNv8ghw7gsxyBQ6kXbAb04JBmR4Es1s86UQ2pATkRxc4/zhXQ+S8eGcMq/HYsDnzSiYXs75qyypuFwhdpnDwDOPffcNDfPYP78+XjllVd68/SUEcLhrjbsm6YnFpe2ZA6HGdRwpebf+9t0sdeZsIohijj3/BOb2EupE1lU0LSrA9XTSnOuypPiMqbtqIboVcy2JQAQTbqLPVZhEPS6u43FHks4NMMSe0WMH4zKQGM1KHmKva/Ug3h3xQ6wCouxnirMgXurBADQOOvka8yELeEDqDgaAq+w5nspJiUkPRJ4mQPnsTtq06vGAA3257WJPaIVApmz5QbZpsQm9shq3JTDxmYRe5PLq4FUak2Tlt7wOEa06XH2AfXxglllSzp7p741G4qYCmNfot8WLxXRLIUhemXXql/AcrNYnjFfO0+I7Jgoosg3dAs1JFuOVKacPWfrFetkRzpsCnFCd5sMQzbBzrVAg3T2SBfKbR41YJ+wwgksGDbz9zETbs5erJ0M42YWe7yLA6TKKrRU65Fcw7hk6JwczWiIPfJ9F2OyXexFSbGXu7OXTewZ1biCj3P9jZPvu1tPRdLZYzgmTVCbYq+7MG4fO3tkCNdf6gXDMJi0aBQmLRpl36+tynqYO3tr167FKaecgqVLl2Ly5Mn9tSbKCKMzQYyuYrOHcQFgjM/Kxzoc0cVWlxiz8t149+cgc9EU6AeBjQ9+jn0fNmD88VU446e5NS4OiF6c9ZJeiLR1wQHsntkIXuLAzrQf4P7l5WVo64qAqWDAnuguTEq8ARj6poO1BGuQ84JTWMiskncYdy/ThG0L9eZ3y8U5WR+rEGLPaMB8rGciLv1vfRrIsf+k/86b4p14+Idv67c1T8BZsBz7KTU1mL1hDIo7/Phw6R4AgJcortg+rh4HSpsg8youEyVbU2Enp+yfjdHvl0DmFZx1zEJMeLYMrMLixO9YhSYqY4RTM5+kJ1XVgDmiF860cOntIhKCfgLzi+lr8QteS+xpLmFs4qD+9xM/wZ6KJgDAj+LfQkkwPTfT2I48GXiIMXaxZHJIiz05w8xTW0gxQ4EGwzG2bUjX2Tgh+ku9SKQqWckwbs45e8T7GifFXgaBSDpMPQnhAoDPzdlrzb9Aw/hudCdgDDKNSxNdnD3y9YsxyVZUQhZt5BfGzexgm1NWXJq1A/b33W2MoWYL47K29cbakygbp0dHuivQ4PrY2SPFHrkmJwU1QSOZTOKPf/wjHnnkEYwePRrLli3DsmXLMG/evKxX6xRKNrqScTN7NMR1L/bGhyqR0mo4ktBDYfPCE3HZi0uQ9MlY+q2ZrtvZcvagQNM0HNqmO4qHP2/JuXKLPAkdv2Uijt+iO2fjfmbPXVPDKgJxD4pl97YrAHB8cDKu+o8V8CQ57J/XgpdXdgDQ3cl/fvZkqFEVZeVFwOndLsuEbJfi5bL/xFWOaGOQarni1vQ1Sszb9cB+gPXwAr69dRHaWsKm2POpltj7ZOIe7KzUrb9YMpFV7I1qK4G6W39/qxcVIxTRvw8c0dtPZlMOiJr5pOgVBITiPoSDCXT47GF3VVWR8GZu02NUzALWqDNN0czQLikufJr12M5YNIPYS4WdCQeKHGMXF7OfbAcb0rUjw4icwJoVk5kmaPAeLq2Awvw7dUIUvBw4wYdIc9wW3su5Gpe3zj2JTtLZcw/jkqKD8/YsbZ3jWbNQzBR7KWeP93JZxanb70vOoaEykHlqSdKlbyQp9kiXVFO1vMK4iVzDuIazl4PIds/Zs4dxSWePLNKwiT2X96qvnb24w9nLREFN0Hj88cdx9OhRvPvuu9i0aROeffZZPPPMMyguLsbJJ5+MpUuX4sQTT4Q3Q8iKQnGjS4wDKY1HFixkYlJZtdnfrFHRQ3RcjEV5mx4CHkMk55N4eMLZ01TE2pM4VNGKQxPa0FEWw/L6YzFj3FjXbUnIA6fRVgKwV6qRB1SvS1WgQSjohy+h3x9XJHPaRJHgQygqIN4pIiBkFkdukLNYyfw7N07omoJ/+LcAAGbJ+mu3tbJIHbTIEWwel959xTUBtLR1YerOaogeGRNYS/iSUzziUvYTC+lwkCcNMuSnGoUSWvYLzIu3nozInhiKunyQFymmC9AZjUFLCcaAkn6s8hMVzFLKdiVFCvn++GF9Nl0J92KLV0/4DHFFRKkawD+nOiiTuZJxMft7MthkcvYYhgHv4yDFlbQqTaMal/dyaa1RzMcQjmegyINIcxzJqN4qxBMQehTGJQtlcnL2hJ45ewDgL/WkxF4qjJsq0AiW+7KaH26iQMlhVBrgdFPJMC7p7OmPEYjjDimcpYRsXrgA2Z09VVFtQlJKKq6pGJqmmZ+XWyWuvi4Bgp+HFJdde+2pTmevjHBPCcFlb+uT/hnzfdzvLldnr+AKNMaMGYPVq1dj9erV6OzsxPvvv4/33nsPb731Fl599VV4vV4sXLgQy5cvx8knn4zS0tJ+WDalkAjL1g8/01gxkinVo0yx18rqhRpi3DogORupmrcTYk+GiqNH27B9zlF8eZzee++LpgO5iT0ilBEo9aKrUQ+/krlN5AE1U+4QYBc0c78cizlfjoEkKFjx/WOwhd8FwD23KRsiUVRAulRufCt8Iib9jy7MlnxHD/m6nYxihPvkRbqALKoJwPM5j2/8Qw9vk135SSewO2GjJK0pAmRYhDwRKKbYy+7KzOXGYU+LnrgXaYmjdKx+MdASscK6IZc2PQGPdVsyJfba4mH88Zq3wSkM5nSNwzdSYWyb2IvH4Mb2SfWI+0WUhonCDkIwx6Sh7uxlHoMleHlIccXF2bNC3raZ1C4FGpzAoqjKj4Y6/fZISwLlEwRbqDHTbxpwhHHzdfZ6GMYF9CKNjiNRyEkFsfaE+R6QIsUNd2cvu1tlbsuzZusYm7PnFsYlc/YI4exsxZLoEqGqWlpPQgBIEEIPAKDpbpkzfKqI1vzkbC5sqNKP9kNhRFrj0FTNli+ZVo1rC5W7u4u8izNrC5P3sbOXaxi3oPrsAUBJSQnOOussnHXWWUgmk/j444/x3nvv4YMPPsD7778PlmUxd+5cLFu2DEuXLsX48eP7at2UAiIiW5Z+kad7sVccCMAfFxD3S2jz6iE6MuE4UwglyPswdWc1WJXBRL4SrwW2mEIPAPZ0Nbhu52SD9AUev+pdCCKHs/bNR3mjfhInD0JNXV14f9kueJMCpLLMc3ida2XAwCPxCAV8pmPhnCnaHaSz110Yl7wKN3pGdbExPH/Bp1B4BXO08fga5tkcuUzOnswr6CqOwyPytnFJnjycvb0lzYiMjSPAeNHIdWDLwv1QOQ1lTDGOwSQAhLOXpUADcISNWi2x1x61xJ5b5bafcFKNHnlxSUTCr5/4EsSFRYC1Dv5dSXdnTzEnjxDvtS2M27vZpf1Nthwp499pOXtJwtlzCeOqClGQIHCOEF8c5ROKbEUHPSrQyHAcCFX4wAksFEmFryi7850Nstdeyz6rwXu2fD3AmbOnv0/2ubjZBajg45GMSrb3PFvrFQBm70EgXexpmh6qDZSkCxny/TSfKyGnfQ9so9J82cSeTx+/JmuIdSZtVctu1bgGZPGL8boZxn1cIimW+0J0OQs0MlFQYdxseL1eM4dP0zR8+eWXZrj3wQcfxEMPPYS33367r3ZHKSCiivVDLvFlzm8jKU0EEfd3IBxIQJQlbPPux95jGuBJ8kAGvVjmCZrO0/j5VXi97HOASLE6kGzJad/tSgThYn3N+8UWbLikAZKgIMbKZuXrkUgLPl28X9+gJXtIZ8uJ+xH3ifAkeSz6UG894wkI2DGpHs2ju8AKDP4lp5XpkBWt3Tl74+dXYctzu8B7OIw9Rnf4GJ7F4Yl6LmR5i54UTYo0H5t+gtxd04AH1/0fAGDR5ik4yWc1MRaIkGWiG7H39yWfoCsURzDmxQSuBptW6O7m2M5KnA89XDTuYAUUTsUotTTrc2XKEVLiKsbvL0fSJ2M0m9703U84e8Z7aRO7xGEzSIi9sJhB7KXEKTlmzstY72F8iDt79jFY9pO8cbFAut2apmXM2TNcalsrH4FFkUPshZtjOPql/nsU/FzaSDsS8vlJh8utqbLx+BMvnYWdGw/juG/1fGQiWZHbss+q+O5e7GV39rpzG3kvh2RUsr3nNmcv5ObsWfe7TdSIdyZzFntueXvdNVQ2KHK0X7GLPXsY163iGSDyQTNU/fZ1ONUQe7yXy37RYXP2CiCMmwsMw+DYY4/Fsccei2uuuQb79+/Hpk2b+mNXlAIgquUv9iqUItSjAxqr4WBLC96prsOOOXrI7se+c123sYWTFBVHtDbb/UeZNucmrpBOpMfDo6FSP9A3t1uOUVvMqjAuYjO7lQzDYMsJBxD3iyju8Ftiz8/jvbk70VCmjwXLB7InXXcTNComFuPSB04D52HNK3KfLWdNf66ELJlFNB4XsTepwsqj7CqJ2UI5AtFDLiFld7GM+buCwukFNSlNYPRF1BQN5zx/PACgZmYZcEG2FwfsnFWPruIEEOMwC3pkYXSiFOc+txAAcMLqGWmbFfsC+PaTJ4CXWUwYVwWcYRepRtUyAASJgqKImJ50rqgKFF4/ifFEBa6HmD8cl4d2zh5ZoME7TuR86jujyhpUWQXL646ZkcLAeVj7yTeD2AsRM4LDzXFseW63efKfe8YkVweH3N6NbEUSc8+YiLlnZG5JlAtkmLFlfx7OnksBQa5hXMD6DLoN49qqcTM7e0DmIg2yOMPArbGy7YIgi7MXtLntCdQQ95EhfoZjIPh5Myc61kE6e0Y/QndR2df97owwbrYQLjD0nb0eT9BYvXo1nn322ayP+d///V9cfPHFmDRpEi677LKe7opS4MQ064BijNjqjqWxmVj21gyc9cI8sO1AjLWeo8ylIhKwOwCqoqHRY++/1uTrcm7ivl6VaJbMW82SE6q1hvaEVQFanKHvn4FPToVPS+N4d8UOfLhkDxSfCj6Vk6ZyGlQ194OHxBBhXL77MJWv2GM7QPuJAitjrmtCye7sTR9l5TrumNOAj0p3m/8mw76JboSNMZJMUDmbIJJTAtZWKNHNdJB4mYTXz/4Sm5fvxgf8TvN2txMjicfDY+yRMtQ0lqC4U//s4oRIFUhnj7feq4ic7uwlie1IsecjnL3u3pPBxt7E1pmzl97k1xaS9HJg+fScvTSxR4iAo1+2YPe7enqFJ8Dj2LOzt/nK9D3wZhF7fUEmZy+QpaEy4N6PjXzPunP2jN+qnLAmY4guffbICy4yZy/p5uxlGAfm7uyli8Xu5uIaOMP1JJpqD+MyDGPmP0bbEuZrJV1jN/qy350sKqY4zhbCBdz7Jw4levxraGhoQCQSyfqYSCSChobc8qAoI5fxbRWItMYhemRUTCvOaZvl3tnwbEkNVG9VEef0g5IgcvBkEDiks5cQJXSE7An1kWACnVH39hkkUc06MFZ7S8y/44Ro7RSjZji5RMguYA2xB8Dsj+fxCzZxkJQkmwjLhkRMBzFmseYDWY1qTKuIyyKMugyfS4VvyGc/wUkeYlxWjsJGVVVIgr6dR+F1Zy91DpFh5HrZk7izMbXKKuRpZi3X1ZYL5iL2GIYxc7oMUZKUifAgIV5DREER6fgaJIiCFIH4PJdLs4G/quBlDnMuGZf1dQw2ppPDpE9k4W1TNGR4g0JazzjnODP9/0TYUmD1EWYMAA22mdfzvjklawjX2N4NIUsVfF9gaw1CTs/oZuQjmbNnhLVz7bMHWGFSTYM5GSMZ1b9nurjW3w9PpmpcV2cvg9hzc/Z6EcY1xgsC9jxDwO7sGa+hqMqProYYpLiCZFSCL+Sx5YO60Zf97sj3pVtnr5D67OVLNBqF0E0YiUJZtHMKJu7U26WUn9f9BA0g/QoxUZ6aiCBl/r4xLIPHrnwXCqeCVzmz/QZJbf0hLJk2y2VrC1LU1QRLzVBjEtbBq0OyxF6pJ7t49Kt2QWZM3OCJatN4HmJvVLgEE6IVkDkFoYnd9y10wnEcWIWBymmWs0e4lj6uewHJCpYQ85LOnpI5jJsQJf2EDz3Pj5x4IqWKTsjK5GyhPQAoCQbhSwhI+CS0e60LU9GlTYUTU+ylDtqkQ0eKvSKPz/z8Y0r6CZN0BHmiKrmaK8Ho+lL9+cT+daB6i+HkCN70HCnS6ZPMFkT2/DOyd6WRhO8cv8fxLIJlPtt8WV+xJ6dQa6bvQbYwbl+QyekJ9mM1LuCYXJKQU2Iv1eaJEMbk6ycFnquzlymM6+bsuYRxxRzDuPZUGvvx1+1CLlQZgHHFFmmO6xcT3Yi9vgynxtpzK87o6/32B3n9GrZt22b7d0NDQ9ptgH6F3tTUhDfffJNW4FK6xbgqJK9Ku8PWjb0lgWSN/hykS+aEYRhEQ0monP0gw8ksFF7/ce5sOdq92GOsA+CYojIYU84ShNjrIkJ6pb7sAtav2cWTVxT0HmaEOBC7yXUjWbF3DqZ9Vg0AqFiZm1PqhFdYiJwCmdUPrAujU9H1YhQyr+D4c7ufnhP1EPMkmRDKW4LgZRaeysyHHHLcnEfjbbl+iqZ/Ps2JTvz3v24Cp7A4NjEBq7Aw6zpK40E0+DrQlSrk8fACng19gI8u3w1vgscJvpkYh6q07Q5MaUVYjsEf9OJC2MPYZNuU4/1T8K93L4dH5DF/ZXqyf5LM9SM+z6HebZ8k28mVd5mPS4bOeA+XU84eoP+mSbF3/HlTswoHc/uMYdz+dvbSL3oYjrFN13CD5RjTxTQ++56EcQHrszEuYEinOlMY1z1nz93Zi+fq7OUYxs3UYBtwVOOmWrIUOXI5jYp6IFex17twak+dvWFfoLFu3Trzyo5hGLz22mt47bXXXB9rNF783ve+1/tVUgoasxlnloOEk2CFFzG/iHBxHAlJNsOGASW768SqLFTO/kOc2z4On1fp4dO90cZu920Te2UVrmIvrFpir9yfXewFYT+IeFNzZcmwXz55XW4n0nzRJ1ZYYi+U8GLM0VIAQJXgLiCvSpyOP/o2ABpwzuhF5u2ny8fA/7i+jrlXZ774iyaJXn4ab8s3NGYZx2QRHeV6+L2r2b2vHUmFEkJDqpDnUEsLpo4ajUauA62VutOXqX/bmyd/ic6iGAIxD24FkFRk03X0ErmEoYAPoajunioujoct14+oSraFfIZgfg+JEcZ1E168W86eow9at9W4qftDVX407mzX/670YdZpuRkFrMt3nOGYtJBzX0OGJA0CpV7XfnUkZpqAqEJ2c/a6mdFtd/YUyKJivp+kU20Xe0Q1bjSPMK6rs+eSs5djGJdz+S6Y/yZn4xLfCYNIc9ze4DuDKO7Lfne2hsrdiXiWMXsgDntn7zvf+Q4YhoGmaXj88ccxf/58zJ8/P+1xLMuiuLgYxx9/PCZNmtRHS6UUKsaVZraydie+Ig8ev+pdyIKKQMw66DpDok44lYHzULWiaC5aDnWhtD2IKk/3TliC0w+cnMyiMmQJOZGxDqgRosK4PJhd7AUY+0HElxrhRTp7yTycPfJA43YizAWjTYgh9uQc+oCtXbwKwoc8xoTKMXusdaLONbxhc/YgOMbb6duJClEZymQ/KQJANUrwFQ4DAPa1NmLqqNGIwDqAV4aKXLczXz9vFKhI5tGSLBzxkLNK4+mizaNwmPnVaCi8isl+y0EMCzHsmtEAmVdRpZXhGAzdWePZnD3BkbMHpH9XcinQAIDS0Va6w/HfnmbLbcuG2wWNN8D3+whPTtDHopFOWXeVuAa8wEERVVPo28ReN79Z53tub7tiHf9YloHg1yec2Kpx43mEcXN09nKtxrV9F3II49qcvZZ4TrmN2Y43iqTk/L0CHGHcbsLzgJ7TqsaVIXkBl5fY++53v2v+/dlnn+Gss87CmWee2eeLoowcFFXB/d99Ax6Jw6SOalyIU3LajmVZlMQCaC2JIBawDkgBl4kItu1cGvF+a86J0H6gT7yonFLispWdZErseSUeXo/HzG9LstYBNcJYwqUylF1AhhyNfQ3BSob9EnL+Yo/hmG5dhkwYDYCNHnG5jHPy8AK+t/SMtNtzDatEJes98zI8BKIQREkVnYgyIfbQ/UF7tMfqo3ewS+/bFmUJIV7k/tkIaqriMTU7eLo4CqtePwYyr+K4k6w8Mvtg+nTHo0wNYdVrxwAAZq+cYN5+gG/Ba9/8AgDgb/fhWzip29cyGKiKVaTiJvbIHLFEWP+O2meXZijQsH2f9PtnnT4e7UciCFX6Mf2U3ItW3Ap1MvXY62v8JV672OumEtfA+E1Y70fPwrhSQsmag6qPJ1PsTZWjZMhVF4OxfKpxXXP27M+ZCTeX1/y3ralyBmeP/G5lcBAzhVM/+O861L5xACdeOhPHnJXbxVU+YVxAvwCQ4kphTdC48sorsXHjRrS2tqKioiLt/paWFjz55JM49dRTMXfu3F4tklK4dMXikLwKJK+CRCK/SQIVUgitsFeEu01EIDHmqfqjHnz76YWIj5VR+fMSFFX6EW6Oo7M+6jr7kWT55pnoYuPwFQlgljEQZA5JToZIiL3KjiKExTiSXhnl87M7eyHOvuZAKoePdK6SeYi9x09+B51fi8Gf9OAK9OxibOGeyehIROFXBWAZsJtvwO7pjeBlFqKQ3+eUq7NHVq76ICDAe1DeEgSrMihJ6q5PvmJvXNA6Nh2JteL/6j7HkbJUqDDqtbmHJEYIXeU0SIqCcjGImdv1EXCTTq62XpuPwZaF+yF5FOwvbsEZOMH2PJlC6n7eg1RkGklt6E7QIJ0No1kvCdlmxOiFZmsQ7HVvqizb3hf9vfaXeHHaD+fnvUaGYcDyjK2as7+LMwz8JR501lttlrqrxDVwir18CjRIZ09KKLbZtc7qco9fQAxJe84e4ewV1wTRur8LyXD6yDRN1UwBT9J9NW62Ao1sOXvpzl6gxGt+tuHmnjt7mqqh9s0DUBUNtW8czFns5To9w1qT/XMdSvT4F/HUU09hz549+MEPfuB6f2VlJd5//300Nzfj1ltv7fECKYVNZ8w6UAa0/NqEVKIYO2G19vHHBJQw2ducGM4eowHlbSGMqtadn5LRQYSb45DiMuKdYtaruCl1VVBlDRUT9RDgSZ9Pg5iQUYYQcJr+mNM+mIOuxknwBHhwq7KLkjF8GfwxAfGAfmANpHL4SpQAijv84BQWTHHuDl1DaQfifgkl4cxj2rpj2Z6ZaN3fBSZ10N1YXouPztkDALiAW44J2TZ2sIdvwt8v+BQKpyLqkTEPU1wfN00Zje/fsxIyr2DeNyajxluKyx4/GQAwaZHeflUkqnl5pvsQ9cTSaiDVyeOw3Ir/qH8OSJm331IXZdzOQ+ZLimLG/n6CR8Dm5buhchpGtae7wkqG6mG/4IERTSZnGQ81yDFg5RPSXVDydxJNCUOncLE5eyn3hnR1eppXSsIJLFTZ2u9AOnsk3c3FNeA8WZy9bnP2yAINGUni7XO2qTFEr5xUoCoqWI41nUjBzyNQ5kXrfveRacmYZI6084YEU1S65uzlGMblXEL6BpqL2GNYBqFKvf1KpCWWdXSfebut+EkxX4uxv0hL+lzeTBj9BxmWga+o+/OTceGiDPcCDZLt27dj4cLslXDHHXccPvnkk57ugjICaI8TYg+5HSgNRvGl5t9nvTAP03bXuE5EIOGIRsWALvKM/x/+vAWiR0bD0XZMKR3lur0iKeZBw0iAXrZjJroaY7YDrZFH012PMABYJszBoWea8cxlHwGwCjbObVuEaa/oeV7j/72y2+cBAEVRkPDq+w7K+b2fJMbJSFM0qKpm690XEPIT5QlexKHU+LXG9s6Mj5NFBaymzwYOCF7X/J58c/amVFYjdNSLoi4/tlTuh+jVtx/TXoofrfhmxu3IYopYMpE1zOaReCQ4CUk+/SSoZnL2iJFsZMueoUbrfuvzqpycLvbIHDVjfqkzjOuasyf2sdjjWXPaCzCAzp7jojDXnD1z7rVrzl5uffYA3WVTVUskpYk9R0WuL+SxcqQDvE2sOkemkSHcoiq/Kfb6qho3lzCusW+j1x5ZrZ1P6xUyJ1FVNMQ6kjl9Voaz5y/25JQS4xTxQ4ke/yI6OjpQWZn9BFReXo729vae7oIyAiCdPXLOaC6MC1ghOmNWbXcHeVZNNWJO5aIZYm/nxHr86XsbEQuJ0Fo5fB/fcN2eDIcYBzVzfFGqH5mmamYejVvoy4knwEOQOEzZVQ3RI5uvK1vlWiZaImEY7flCSi/EHrlvSUWSmMoR8OT3vD5eMJsjS1lcLMURonHrzyYRYk/IQeyNLivHlY+tQGsgjL9+5wMAAKMy+MWkizI23wbsldBxUUSz1oWm6i5wCguJs78Gr8wjAcnM5ST5UN6FP17zNjiFwflSEgsxHUDK2UshakPPBTAgnb3KSeliz28bVq+fGNMnaLj0lXM0Ve4tzkKkgQzjkuQs9lKCTpU1aKrWiz57iu134wzjktXmkin2Um1aAoJd7HUkQVr2pNgLVfnN70JvZuNmb73i3jCd7LXXfthK28n0PvEuOXvOauNwc7zbz0pVNVMk5hLCBezh+e7SgQaaHv8iQqEQmpqasj6msbERfn/2UVGUkU1n0mqfEWTzawA8oajKDIVZYq+bbvspJSR5Feyc2YAlo+cAACrKihFLtTfZH8/8vY7EEmiu7oInyWNMyJ64rsoaVEWFnFSQmuzjOqHBicfPo6I1hLNfPA4AcOIlMwFkPzBmornLcmKKtJ7/9hiBgcQrUDgVoihBItyngDc/Z49soSJqmcWeMfMSMMReuiMkEnN/c8nZYxgGoQo/Xjhxi9lL8evtx2LJouy9FD2w1hyTkvg//5d46V+2AADm8pMwA1YBgVcWAMQhCumvLSYnkfCnwl9d1usjBTNZxT3UMGa+eoOCLVnegONZ+Io9SHSJlrOXZYKGa+uVPKojM8FxTrE3OGHcnMWex/7b7nGfvYRsHmsAN2fPPkWD3Jfu7Fm/ZWdFLlmJW1RlpcdknY3LZG8dYw/jOsQe8W+G+O2TFbkdRwix10NnD0iNaptZhmwkw6IZxs41PG8LIaemmwwVeiz25syZg3feeQdXXnklampq0u5vbGzEu+++iwULFvRqgZTCpisZN7+FQS4/x2hSRQ1wVP87V2fv1O1z8NRJusPz+j99gcuqVgAAZtWMA/RxnDistWXcfm+kAU/+y4cAgKUtM/ENnAj4NcT8IiRBQTIh4UhXK/77XzfBlxCwQJysPyYLzjUbV+M9cfaaI5YTU9xN/mI2npi/CV+uPAQAOCdxEkSGCON68xPlfoEQNmmNbyy+VA7ivVN2gpc5TPSNwlRuDP5+/qdQWQ3j1HJ8Ayfqzp4xZYPN7fAVqvRjxfpZ4BQGzWMiuHnZRd1u42Hszh4pUp3zhr2q/m9ZUM3GzQZJwskk+/MFiDF22d6TwSTWnjBzliomFWd0KQJl3pTYS+oulSOvqjux112rkVwYNGfP0Wsv55w9UpCIal599pwFGuSFoDOSQL4PYkw2XT3jPmcYl8QZxjVwm41rVOMKvvQpKyQ2t96Rs0eGo8nHkRcZdmfP/X1iWKtgR8ng7EWa0+dYO7EVZ3TTY8/A+bkWhNi76KKL8P777+P73/8+rrzySpxwwgmorKxES0sLPv74YzzyyCMQRRGrV6/uy/VShhGqrCLcHDdDpW6EpZj5LSzm8xMnE6sqwRxmoLEa9k5vwhtnfYmF3hmYgOqM2xzTOB4bmr5CS3UYjMpg5qixAIDJVdXg97OQBRWNQkfG7buS1kEimOqP99T8D01hdH5sGZqjXWbj386W7g8qcY+Ipy79EKJXxpgjpTjVrzt8n4UO4KVvbYPCqaiWKzAR6RdVTlpiltgryfP9JLGFMSURUqrSmFEBD5/fYcMn5CZsdjH12LroAABguTwXAsfh0CRdeLNt+glkrFyO5e/NgMJpmDs3t6a7ZeNCCH3hw1kvHYclP5uD4kD370tA88Cb4MHJLOQi1bZu52xgn2r9uysWR2UxIfaIghJy/BspmCVmaIZxyRBuhUu+nkGwzIe2A2GoioZERLRX4wqsw6HO3GevNzifY+DCuJYI8BV78ugNaG+q7XzPssHbxJ5sE9fZcvakuGxru+IJCAiUZnb2yOkZgTIfGJaBpmquzp5kir3s7zvDMmA4BpqiZQ/j8u7OXlejFQnK6iAKHFRZNqu+na8tnIPYi3fk13bF2K+Bno85dMbF9vgXMX/+fHz/+9/H73//e/zmN78BALPhsvH3D3/4Q9emy5TCRtM07Nx4GNue3wMVGr591zJ4M8xIDksJc4ZsyJNf2NHDCyiK+dAV0n+4O+bUQ/Vnr0BleKCjTM8TLI0E4Es5LBzHoSJahMbSTrSHomkOjUEXGXZOOZFezXpcJJFAO5GHWMR2/5oCQR+aRusn1lDYZ4agWoUw9k1rBgC0iF0ZtydpS0SAlI4oE7LP5M0GmQ+XkCSIqebKvMyBZfM7Ofs91vsjZQnjxomRZH5eAMuyYFRdzMuMftCukUswf4ve527G7NE57X/eOVOgqhoqJxVjxvzc+retbl2KOX8ZAwCY+ItKu7PnsX8v/LBOmF3xGCqLLWEk2pw9azvS2ZOYoenstdiKMzL3nyTdrFh70iVnLz10Z5+N2zcFGiSDEcbtbiYuiXOEnPGecQLbbZ6XYKvGdbZecY8SAIAYk2w5x94AD39xZmcvSbRd8RV7IPg4iDE5Q85e5ikrTjiehawotoIMwDH3mszZI8SeRrh/2cUeCylOhnEdzl4OF+GxHog9Mo9wqPXa69Xlz4UXXogFCxbghRdewPbt2xGJRBAKhTB79mx861vfwpQp7i0WKIUNwzDY82E9tpTtx0dL9qDtwzi+v8y94CGiWNVVJXmKPQD43gen4+kpH+DAFL1hbmkgu8CJBJKQhZRwEO0nsFFyCRrRCZXTsKu+HnPHpzcYiYgJ82ItmOqP52OsE0s0GUd7IgIjnayY6/41FRN5rYcntuGwpxXjUWWb1EBWoWajTSTEntd9OkQueIhDQ0ISzUkavJJ/WMLHk8Ims4uVJARVgNcPrpzCQGY1KCmxR179Z5qJ6iRQ4sXJ35mT15qdeT8yUenp5+2hO3K2cVfcPsKNbBXjJZw9juPgiwuABnjEgXGh8qW1m+IMA1uvvfZkWs4eeeK2ZuMSTlaOn2M2nDO1B8rZC5R5zZzFiiyC2EmmMG53IVwgvRrXNkEjkCWMG5dtDZgFZ4GGQxDFiTCuv9gD3quLPckRxtU0zWzHksvIS+P7kNZ6hQzjEheUZK89kmwhUuM+I4zrbA6dr9jLt0ADGHpjEHv9i5g6dSquu+66vlgLpYAo/lYIr0U/BwA8FX4fV4grTReNZEHrJCQ3JSF6ZEw/LzenhmRsqAIKZ11BlQWyNzDeW20VX4xm7Am647hKfAZ9Ru725sOuYi8sxU2xF+LTxV5ETKJDjJpuZYnQfcjQ6ZQZoReb2MuxF1unbLmKFb7s70U2BFLsyZIp9gQl/xOzn3SxsoRxEypxcknl+el9EVVL7Nn61vVfpRtnu0JX7GFcR+sZP0uIvYT9JEI6gh5H+Pf7j62EGJNRMiYInN0ny+4xbpWDRhhX8HMorsn8PSadvWh7wtF6hQXYbpy9vijQGCRnj+NZnPHThTj6VStmfC33qR9pFxMpUZKLy0kKQnJcmuDj0kWv35Gz53D2PEHeFFJpBRqEQPIVeVKuXTJtggZZkJatEtfAWGNaGFd2D+OSvfZIunP2gOzOXne99noUxrX1+Btazl7/ToqmjFiWzZqDGS26eOssiuFPH613fVxFZxFm7BiFY74Yh9HB8rz3E6r0m73TGBUo6SYf6+m5H5h/VwbsbsXkgJXrt6erAW6EZetkHhJ0RednrJN9VIyjS7QOSqXe/EOphjvp4fIXe/P+//bePEyK+l77vmvpffaVYQZm2GXfEWRXRHBBEUVRY4iCcYWIxoXnmKicE/VR4DEnHozG6DExQYwhGkCW4UWIaBAVBBlAEIRhGWaf6Z7eq+v9o6erq7qrZ7pnepue7+e6vGSqqqt+v+quqru+66XemLl9MCb9qz/6p6nXCgwHudC0u53gBBa8i4VGiPz90Kjz3yjDtuz53OutpXI8rPdBYBbsMKfb0GJywM3H7mbKa5RZdfIaboFir4cnCwVVGSg5mw0moOuUwo3LKc+d9EBK8EPhwpE6/GlpOT55Yb/0ALY1OaSaZrllmW0+FI2K8iv2oA4anErXhFSJ2QOA/H5ZGDmvX9hB/ECwBcj3G2ivxh4A8CHapall/stFryvAsqdt7R/sG3dgyzRfNi7DMdCaeElcBdbZk/8drhsXQLAbV1B34wLKuD0fbYk9nzvVX3pFKWQFl0dhuVSjI25c+ffqTrJae8npPyBSgod6z8Fy69sAgPfdn2OJ6+qg2D15z8aO3KDT8/TSA1Xr4sGFaH+lRllGvuLvgTk9gVbD2BlHjepnrIL/BpDR6nY2cDKx53KgWZCJPX3kYi+7VezJs03bqk8nJ78mA8MOey0MJT8JrxCzGjrGf2yH24WfvTMNgsuD7N7+LiHhouV5jPq6Nzg3ixJNcGtFH055eRefZa+1VI7PsrdL+x3eu+8zAEC2OxNDUYpY8L3xIsqvOQI3LyBXyFZYJA0BFuprnaORv977nfV6VDk/eQ29wCxenxXAneBq+8d3VcJpdeP84Vqc+vwiBkwrRt2P4blwgcDCyg5FrBKv5RTWWMmypyg1Eots3OQJjFdDbs10Kyx7YVjGWAacloXg9MAls+ypFXAPsuzJ77et2xsydWipswe1TPNZ9vTpWjAMI1ntfMkVPtEWbo09afy8uhtXHqLBBJTSkdfa89GWGzewjmGgZQ8ALDXWNkWc/DPhu3EDEzSSB7LsETFjxuDhGFjrtS41pVvxx33B1j15n0ZtGPEegdhy3VLmq0PXviC6vKG/9O8pxYMV64YX9wZa7zdV9kZFDImPFo9M7Om9VkSjrGSM1e1Es8dv/csxhBc3V2D1P1AzW8WeTub2a6s+nRyHLINOnxZZPTw5WkbpxvVZYjpSSoBlWczYOxhXfDYAo34ILc7klj1Ta7aqZNlrFXsuWZ09DRu7sgbVmiYcHXYBJy67hPOeOrgYvzgJDEdQNKa3BVg9ZHPSB8T6JUsfzeZq/8vJoc2nIIpi2Jm4QHDMnuCz9DBtZOO6o+zGDaqzl9x2jMCYPcmypwvvkez7zdmbnZJoUivgrlGIPZey9ErrOl+tPV/LNO+/Renf+nRN69jk7mP/7zzc7hk+fGVVAstJSe3SGAR1q4jUsid/gbCZnarXmLnWHrRMjq9IuNbIh33fkydoJNpiH0hyXxFEl+fB3nPxi1br3l/de3GPa5bCundaV42GQgu0Tj4sF0AgTDYD1Ia//cqRt+DVA//E+KwB3jp9MnLSMzDv2Fjov+ZQcCkDVQMbUDRY6VpuEeViL9iyZ3U7YIH/JpJrCi9ubm3ZPXizYjtmF42UrJNajoPPe+gKs8uCLzOP07JhBXuHQivLHLU5/AKyo3WjOA0LweVpU9g4ZMWFTdoAy15rXKb8PGi52N2+5EkYdo8LblnGrCHAOq0QewF9Q8fX9wO7T4TAe1CyUGn12zvsBM6PqIeH9+CnuDqaw48Iec2xhkoLzn1bG3YmLuDN1PSV5bA22BUvBgzDhKizF90EjUS6cTuCXBTIBVi415dGx8EOpXtS3Y0bkKARwrLnw9bobZnmsgvS9+jrCSvPAnY53JK4lL/ghHMPDxmz1+rGDXThAlAt6N1e6RUf8t+37z7kXW4N+pwcqVVamFY93/59JJtlL7mvCKLLM3PwcAzc1gPf51VJ1r0HpsyV1v9t1Jeom26B1snhl+wtEe+/X0EPSexxnvYfGmX5BVg7+96Q6xf3nYldW74FAJzYcy5I7NlE/8010+C1wBk1fsuGze1Ai1zspbVtFfExrFdvvNpriWKZjtfIxF54lr3TumqI2SLy9B3PxAWUBYCtTodULaqjVhhOywFWd5s3QHkShEnvs+z53Ljet353nCx7Cquqx4279kxFzYVGeLQiuHXK42oMyrpncoqbc9By1FvCJe8nyu/kZM8qnM3xuqZcggBNBCEI0cLtFILimQ5tOiU9IHkd12adTMBrhTFkaWGtd6ClwSEJGd//5bXVYlV6RW495HXKVnvJiFwUyLNpw72+eBV3qaobN6BdmkLsSZa94IxcRXJGa+Fo+TFDW/baHz/XjhtX7bvraMweoMy8ze2TgervGwG0XWtPXr8w3Hg9INg9n0yQ2CNijty69777c/zcc42UgergW+NNXB2LsUk3GHCXeSp2ub7D8qLOpzSWjiuExsDDZXPj1L+rMOmnQxRvq7ccmoAxJ3rDqRNQ9KI3m9fEy26WHifGnuyL/Ip02PVuZI/qeK07efZmOJY9j8eD9274HB5ORI+GTPwM13T42BPE/mh63wzOzaF0eh7+d86n4N0shup7Yw7GRbw/VsPAzQkKy2ggRY1ZcFpdcPEeGEd5z+noH8tQ77BAK/LAFVA2u+diF5el57VA673aLjjB21kYbFpFsWkfZ7V1+PC2/XBqBVxiLBiJftI6Zfaw8iGm8fh/V00tLYr6fB1BHm8VLmqdBC5W+DvI5JSmh7VPU7Ye1noHbE0O6NOC3X6+2mqSG1cesxdly16yW/UA5W9BXui4vb64PuRWNh9qYo/TcFK2bVAHDcmyF1xYWd4qzdBq2VP05JUlZShi9lTGFYhv7qJHVPxm/WKvfcsewzKq2/mQ/x7kv/GCflmS2LO04cb1uXCByMQeuXGJbs3MwcPRa0cuKnPq0JDeglpzMwoyswAAjtZ+ot7+oh3jlzPm45eYH42hgtdy6DepCMf+v0q4HQKOflmJEdP6+DdoAdJa9EALYDB4b4IjdKVY+NYEaFwcxk8biJqTjci/lAadSRNRwkggBZoMDDtYAs7DoF92+90zGlss8HDeG6ZJiKylWSD5fCaKz3mtmm6bgGNDLwIAdDUdiwP8w42fojbTDJ2Dx72Yo7rNrAPDUH/WDE7Dgr/Be96mnByEuh+bvb0yHwTccjduhJ08IkHPaSSx5xT9Fkm1zFFRJ+JCSSMAoLquSbFOIWoCPluELPyASwCAf58+jutHjg97fLZmB/av/x4NZ82wmZ2wNzshOAUMmFWCaT8bHvZ+5NaNtHxDkPhrz4Xrwxu31wSIgL21GK/cyuGvraZ047I802amb7jIS3Uke3IGoMy6lVv2wg29ULPsBRZUlpYbNbA3O+G0ueFQSYiTi5m2LHvy5At5yzRFNm44MXsBbn221XXdlhs3sNYer2u7+LQ80UVu2cvulSa5ci21od24HUnOAJLbjZvctm4iZegpZMPYokX+pXTUNZgBeF1XLq33gjAIyXOD7jO1B74dfRbr7/o3fm1/X7HO57KQu4qy9CYUXspETn0adDaNdPMOdfMNlyJdDmbuHIxpuy7D8Prgmn+BVDfL+uKKkReoliPvV9ri8N/45IkbEe2v1R3r5kK/7UqFZWU3at9DXBREb/FWmdjTxDJmT97iTXRL8UWBWZ+AP3YT8Fp25VzUNqC6oBl1uf5C2z7GZfgtgPtqvo9ofBXbzuD7T8+h5lQTLDU21OnN+Gzq93ii/5/xzY8/hL0fsyxuacR1fYIebO1l4vpQ6wmrsOz5ysy0nkefiysayRmA0jrYFSx7ctd1R9y4arFxapY9wO+udVndcLVa9liekb4TVcuemhtXbtmzh7DshZGNy6l0VAHaduP6au354NuxIMrvX2aZ2DNm6iQrobnGJnX8CkRRdiWSkjqye1dKddAgkouXX34Ze/fuhd1uR2FhIe677z5Mnjw50cMCACxpugqH3j0FAEh/0mt1amrxFwA2eDqeORptigbk4Ltx51Cf0YIamPH9xfMYWOTtoeu7sclvaoo3Xru/lpWuE9mwAFQD2wGvu3b9V5+BY1ncNm6KtLzG4rcqpTOdE3vyt+8Wh9/doetgr0e+1f0p8B54PB7VlmtqhWXl50AURIUbN7BuXTSRiz2H6MIXg0/A5RKQywUn3GQY/LUdbYxS7P2j31c4cbm3ZuNS7hpI1bYBTOs7FP/v3BYAwGFPZUTje8uwCyfuvAiTRYe5e0fiwqBGfNPaV/jd7z/FmLJ+7ezBi9zqkVlkwrA5pdi/3i8828vE9aEq9hSiXZmB6ZHEXnTsDUo3bvK8OIYiVMxe2G7cMGP2AL+1zWlzw9HqMtYaNZJlTK1lmrwvrlqChrxwdsTZuIr7ml9sSWIvRLH09Hx/YeX2zlMoy54+U4f0PAOaLrRAcHpgNzsV8/eh6J4RQRs8PokteyT2UoiFCxdi+fLl0Gq1OHr0KFasWIH169cjMzP8Nj6xIi2gFhcANMp6yBrE8C+oWMOyLK70DMPfsA8A8F7FHjxXtAgA8Nmg7+Ep9aCA859T+RuvucmG+qwW6Owa8Gmde5ApS1b4xd627w7gJe4fAIDMIwbMGToWAFBrNUvbZHLtd+5oC4vGgVP9quHmPQqXkbzYciTIY93sTheM+uDvW3AEl3dhOAYC64GH9db2UrpxYxizJ7fswY0DY36ESysgryk48cWXqAMANijFnltWRFoXUIy5X2ERMo8Z0JRmw9nMWtidTtUuM2qc09ahOtdryb3jxpmwO5zYdewoBN6Dz9OOw2K3I03fvitf7sZNLzAgr28mDv7jB7jsAjgti+ye4WWTm7KCj6Um2gMTNGIj9pL/sSa34Dk74sZV2S6kZa/1fIgeEdZGu2IZECJBw9x2goZc4HU0GxcABFkhZd9vI5RbX15rr73zFCpmz5CpVcT/WWpsqmKvI90zgOTuoJH8VwURNqWl/hpmDMPA5XKhtrY2KcSeUfYwaGnw3nDkYs/IJI9lDwDuGDYNf6vcBzDAp9wReDzeC/ezCd9DZEUUNWRJ24paEd9fdhEujYDvc6qw7arDAIBRtaW4HhM7PAZlNXb/DfWdll1A6+n6nXkr5sAr9urtZml5lqbjiSEAcJ6tw+abvFnJBY1+6468NVwkyMWezelQFXvv3LIH8AA9rTlYiOneZeN24/s5XsvYQtc0RY9aLR+77FWj1j8+J9xS6RfeE3zMDKP/4WFnXYp1crGn1wafu4G2IuxPOwWB9+CLH45j5uDw4u2atd4HmM7BI11vQLregLGNffBl3g9w6NxYf+BfWDKp/XIulurWByEDmHIN4HgWkxYPwTd/O4mh15QGJZWEwpjTthvXZ60J7KARLbHHdjU3bqhs3LAte8FzVCu9AigtnT5LmnyZvGWatVHFjStZ9uQxe53IxuXUPRa+uqahMqnlGbntlaiRn0e5y9mQoVXsx1xjQ36/rKDPdzRBI7ANXjKRlFeF1WrF+vXrUVFRgaNHj8JsNuPpp5/G3Llz2/3s6dOn8fbbb+P48eOor6+HXq9HaWkpFi1apOrSrKysxFtvvYXDhw+jubkZhYWFmDVrFm6//Xbow3gz7iiRztHpdOKtt97C9u3bYTab0a9fPyxZsgTjxyuDutesWYMtW7bA6XRi4sSJ6Nu3b8zmEAkm2cPA14apye6PFzIxsTvXHaFfYREGHCzEibxLaEy3orziW1zRbzDE1rZdepnbmdGy2HbddwC8D18faejcnCyMDeuW7YTAeTCwvgjXtGbB6t1aSdSZRVmNNIdFWp6j7XhfXKA1G7X1fmfn/Td+HdtBsSe71dhcwW2KBEFAbZ7Fe+x6/7nlZGHFDpcLN5wag8s29YDAiejxH9lB+4kW6Toj+h8vBOdmUcrn4WCe10Wqlo2r5TXgXSzcGg8cAWLPV4yZFRhwKqViRpv6Yj+84Q2fXzwWltjzeDww673XUJrd/xu7vddUfGnzxut9bNmPJWHU7vPFM5my9ZL1beC0EgycFn6fV0BZWNmH/IHst+y1ltCREl5iEbPXtdy4CsteuKVXOmDZC7XM1zKtpc4Oa70dTptb3bIXwo0rL+cSnmVPHrMXvhtXbpFrz7Kndh61Rh6chlPE/sldvHJ8BglA/bcdisCe2slEUiZoNDU14Z133sGZM2fQv3//9j8go6qqClarFXPmzMGyZctw9913AwCefvppfPzxx4ptL126hJ///OeoqKjA/Pnz8cgjj2Do0KH44x//iOeeey5q81Ej0jm+8MIL2LBhA66++mosW7YMLMviiSeewKFDhxTbrVixAtu2bcPatWsxfvz4NjOW4komgx1zvsM/bvkaf8nztrtqtvsteyY2edy4Pq7L8JcY+d/zn6LRapH+Noh+QWLS6aTOG/IuHuls5+Lm9Bot3BoPRFZpISqx+Wv/2Vj/TbnB5T+fuZ2ss6eXFQ62a/0PI32HxZ7cshcs9qyyZVrR/8DgZJ9zCgLSbHrk1KchvyY9qEdtNMnRmzB30wjM3jpM0fWDVxF7AKB1e8fsKyXkw822ihpB/VY7tfcQ6d+HXGfCGltjSwvcGu9+s9x+d/3My4ZJbuYzObU40E6ihsvuliw4akVrI6G9BA15IV1RFP2Fl6Nl2ZPtR9fJxKh4ENqyF26CRuQxe3ICBWBarkEayz/+z140nPPf63yldDQKN67/fiS3Ahoy2r8mFTF7Km7csCx77blxVSykPne1QuyFqLVnbRV7vI6LyFIc2FM7mUjKqyI3NxcbN25Ebm4ujh07hvvuuy/sz06aNAmTJk1SLLv55puxdOlSbNiwAfPmzZOWb9++HRaLBa+99hr69PGW15g3bx48Hg+2bdsGs9mM9HT1h6bZbMY333yD6dOnq64vLy/H5MmTYTCo30QjmWNFRQV27tyJBx54AIsWeWPHrrnmGixevBjr1q3DunXrFNtzHIexY8figw8+QElJSdD5SASZWUYcH3wRIgsIDd6LoNlpgy/eP41PLsseANw+Zgr+sK8cFpMD3+VVYu/pY0CrdpaLPZZloXFxUmaxjwy+c3Fz8k4jbvhvHHPPjcLWjINwazzeMjCtNHn8ltJcU+dqtili1rTypIiOiT1tO5a9Frv/TVou9njZ+6jL7ZbqtAGhLQDRQP7Qtco6iKhZ9gCv2LPCCQevLKrsE3t8iILfw3r1xvC9Jcg+Z0Kfmnx4rm6/Vl5lvb9lTJbHb8FlWRZz2dH4E/YAAP70/W6MbiNRQ27VUCtaGwk6k0bRnQBQCjnpAS+2PgRbv8ZoFFQGAJPM1SZ/mCcrcrEnj3mLtF2anJClV1TFnvI6HnNLf5SvPQCXzS0lQQDeFmw+8cWHcOP64vw4DRtWggYXIhbZ43Pjhvj9Z/QwSsW5Te1Y29Qse76sY/mLjTmEZc/nxjVm6SIymHBJXGcvKS17Wq0WubmhG6ZHCsdxKCgogMViUSxvac0Gzc5WuoNyc3PBsiz4Nup4bdy4Ec8++yz27NkTtG7Tpk14/vnnsXXr1pCfj2SOu3fvBsdxCqGq0+lw3XXX4ciRI7h06ZLq5wRBwPnz58M6RqzR8hqYbN4bsi/eaHxLPzzw/67Eveum4WqMSOTwVDHodLjR43eTv9m8Q/p3YIyhxh18c8nspNjTcJz0UJRb9tx2AenN3htWo8kqxRPKXbr5IV5SwkWvURd1eq5j1jSNTMDZ1cSeU5bxG9Ky51bE+ESjGG8oWI6RhL3N6Y/f0QTWT2lF11o6yKlRij2BbY1NC2HZY1kWiy/NwMiDvZFx3oCGSrPqdnIuNPmLHueySnf9T0bPAOf2Hmuv6bhCRAeiSM7opNhjGCYotonTBbtxAaXbL9yYwPYoHpGHETf0wbC5ZSib0CMq+4wlodzXYfdgDbDsaQyhu4a058YFgOJheZj/myuQG1BqxxevF3hMeZyeT+wZMsMTRmpuXI9HlO51TIiXOEOGDlOXDEP/KT0x4oa2w5Pasuz5avYB6m5cl93facSYE5kRglNY9siNGxdsNhsaGxtx/vx5bNiwAfv27cOYMWMU24wePRoA8NJLL+HEiRO4dOkSdu7ciY8++ggLFiwIaZUDgDvuuAMTJ07E888/j6+//lpavnv3bqxevRqzZ8/GTTfdFJW5nDhxAiUlJTCZlEH3gwcPBgCcPHkSFosFO3bsgNVqhdvtxq5du3DgwAGMHDkyKmOIBpkOr/hpMTjgdLvgtgrgBQ5Gqw5Zhs4lFMSKn4+/Bgab90Fek+l/EBsD3M5aIfiGmqXr3JxYlpVEgpv1ixyXzY2MJu9NSOA9uNDgffjf8s3luPd/puPOtyehV2Z+p45t0Pjnx7lZ9D9eiD4/5KEHl9Wh/clbm9ldrqD1ylp+fqEpt+w5BTe+y6vEkeHncHTIBYBVr5EVDRjGX4csHLF3eWU/TPysHybvHgiX0z8/3/emltjho8dl/pfNqmMN7Y6tqqVR+ne+VvlwLszMwpiGMgCAXe/C+wc+C7kfS0BB5c4S+GBUq5cIKOuyRS1Bg2MxYdFlmPiTwTF9CYgWoSyaYdfZC6gzF8qFC6hb9nQqcY0ZhSbMe24ihsz2hy1k9fTfw9RKr3gED+yt/bjl9fraglVJ0FB0mmmj1d3A6SWY8eBIZBS2/SKtdh59LmZ5zT6LSq09eXKGKYKyK4CyJAzV2YsTr732mhSjx7Ispk2bhkcffVSxzeWXX457770Xf/7zn7F3715p+U9+8hMsXbq0zf3zPI9nn30Wv/zlL7Fy5UqsXbsWNpsNq1atwuWXX46nnnoqavFydXV1qlZA37La2lowDINNmzZh7dq1EEURxcXFeOaZZzBgwADVfZaXl6O8vDzI2hlLsjwmnEcDRBa4UF8Pp7wYZ5IGVWeaTJjjGI1/6PZD5+BhN3hvbIExhmpiL1vfuSQJwGsREniPwrLnsgvIaPY/nE/VXEJJbh5czW4YbVqkOXVSd4+OIrfsFVdmY+4mr+V15ONlHdrflU3DkL3TAM7NovjenKD1ckGlg9yNK7MmuN3Y0/coKsd5xW1nupOEw5/v2AuL0QEXL8sADnHLnFJ9GSoP1gAABLsInxdc4Hxu3DbE3iD/+ag6Xo+h15SG3BYALtkbpUScQn1W0Prbe03BfvspFFSlo6nKAoSI4lBa9jpnhQaC4/b4EPUS5dd9uAkJqUYokRtunb1Ay15bYk/t3qoJEYfGaThcsXgIeo3Kx/nvajHkalm8qkrMnr3ZKVnkDGEWH1YrKeVLzgDUO2hESluWPcDr6m+ussJlF+CwuBQWzI4mZwDJ3UEjZcXerbfeihkzZqC2tha7du2CIAhwqVgUioqKMHLkSEyfPh0ZGRn44osv8Oc//xk5OTlYsGBBm8fQ6XR44YUXsHz5cjzxxBNwuVwYPHgwnnvuuTZdwJHicDigUXGraVtrcjkcDphMJrz66qth73PWrFmYNWsWjh8/3q6wjRa58LsWz9bXgrfJWhyFEeuRKB4Zfy1yfqVHZU49trdm3abzSkuIRuVhnm3svLWSa431EmSWvQ8u+zfOZNUhq96Ihe9NQMn9XrFgt3jdo/p0badfNAw6/41RkHW96GiMVQlyUFPptVrp3MHfdYtLJvZCWvYEuGXZrbFudm/XuyRx7yOUZU8eQ+Wyu6UMRkGy7IUea05pOmACzmXX45CmEjM9I1WLTvuocfk7pfRIywpaf+XgEfjJk1cg67wJmUWhf4Py7hmddeMCCIqjUkvQAAIse1GK2etqhBK54dbZ0wRsF6rsCqDuxlWz7MnpNSofvUYpvQNqpVd8HTeA8C17nIobV4yy2FMTzfLxyX/vllqbQuxZ6/1iz6RSUqgtWJ71hn+IlKARN0pLS6W6c3PmzMGKFSvw1FNP4fe//730INy5cydefvllvPfeeygoKAAATJ8+HaIo4ve//z1mzZrVbo06k8mEBx98EL/4xS8AAI888gh0uuhmlup0OlWh6mzNYIz28WJFPu93OZ031+G8sQ5HJ5+D1sljtm5cG59MLLkZGZg0cTB+OLNbWmYKSCjRicE3z1xT5+LmAL/Yk7txz2bXoTnTBo2Tg86pkdr+OFp7kurSO28lNcheLgReFnQfZkxRIFw7WWpWZwixx8isCYIbgk/seWKfZS63xhVezIDAeZArqn+n8vpiztZ4JlEUce/r072f65MBzFI/Dsux2LHgCI7lXwAAHL1wDkNLQrfHG3qhBPZDDrSkOdD/+qLg/bEsSpx5sMAGhyU4PtKHz43LMIApwtgkNQJj9tQ6aADKmL1ouXG7Gmpt94BIsnE758btSC1C+ffpi9lT9JDtgGVPcuMK4blxw0XVjSu37AXU2pP3gG6R19iL0LLnC/8QnJ6kc+N2myttxowZOHbsGCor/W2JNm7ciAEDBkhCz8fkyZNht9tx4sSJdvd74cIFrFq1Cr1790aPHj3wzDPPoLa2tt3PRUJubi7q6uqClvuW5eXlRfV4sULucrpkbcSB9B/x1cTT+HzaCXj0sYu/igbD5pbB4NKioCoDWfVG5GiULlp5UoGPvLTOiz2fRcgjE3u+8h5ap/eGZqmxocVmx56Jx/HNuB9xpk/wbyVSOI6DxslB4+DAu4J7nEYK206xUZtbVteLlYs9mUVIJva4Nixl0cJnrdU4OSz8y+VY9KdJuL5xrOq2rJ6FXeeCOd0Gs9VrGfC4PdA5NDBadcj0tG3lHarpJf37sx8r2ty28FwGRn9Tiil7BqJ3nnpsps9S4bC4pGK1gfjcuKZcfVQSJYJi9hQJGiFi9rpAfF0sYFkGjIoFq6Pt0iK17HWkbzfDMtJ32hnLXlzcuCr3Kfn42qq1Z+2EGxfwW23JjZsgHK0B4PIYtYaGBtXSKm6392YkCG1/WbW1tVixYgV4nseaNWvgcDjw8MMP47HHHsN///d/IyOjc+UvfPTv3x8HDhxAS0uLIkmjoqJCWt8V6GnKhq8BwiVnI2ys/w0qGi7PWGLI1OHGXhPQ/71CAMCMVUMV6zMEI0wWLQROxNx/joDGzSHr/0YhZk/FsudsLe+hcXovX3ONDVXNjfhmwo/ev2sdiAaP/OFquGwCPr3yGP74893g3BwmsUORh8g7sjTpWnC6bw3cvAeXuevRF0qLVE9HNqZ8PhBu3oNhQ/zCZ5plCAw7ebACi7K78/3ZrXEUe26ZZTOUONladBAfP+xN1OpjK0YZChSitj1RM6lwED50eNvzfW051ea2vgByjZ4LWcTWVxtNFAGH1QV9QJ9mp80NR2tgfVoU4vWA4Jg9uXWFDRGzF64lKxXhNSxcAc+YjmbjRmzZM3Swx7WOg9shwCWJvcgte0o3brBlT00ERzxOlfMoH196ntKyJ8daL0vQiNCNC7SGJrQkX+mVLi327HY7Ll26hMzMTGRlZQHwCrjAUiputxvbtm2DTqdDWVmZtLxXr17Yv38/Kisr0auX/wGzc+dOsCyLfv1C16gym814/PHHYbPZ8Lvf/U6yDr7yyitYvnw5nnzySaxZs6bNjN5wmTFjBtavX4+PP/5YqrPndDqxZcsWDBkyBIWFhZ0+Rjwozsr1tTZErccMG+d92DAeID0K5ynWjLttIADvTSOvr1Lw3HVuKr7/9Jz0t7w+VWe49uAoNNRZvIkBV3i7J/jKezTmWPH1+NP4Nucs7jD7hWU6onMuOZ6FCwJsRida0rxv8JoOPpy/01di0/yDAIDe1gJMgVIsm6p1GP2NN+xi5Pg+0vKenmz0OutNRDIIOknsxcWN22qtFVkRHsYDVmRDxpgZOf9Dwez0PjzkNcTas4he0f8ycN8yEHgRJ7VVbW7r62/altVBJ4tBcpiDxZ4limVXfATH7KknaMQiG7crwmlYRXFiIDZuXNWiyh0sPK3Rc7A3A26fG7e5c5Y9qfSKwrIXDTdu8D70soLP6bJsXvMlq2I7RYJGBK3SAo9Nlr0w+fDDD2GxWCRX5d69e1FdXQ0AWLBgAdLS0nD06FEsX74cixcvxj333APAK7ZaWlowcuRI5Ofno66uDjt27MDZs2fx0EMPwWj0f8m333479u3bh4cffhg333wzMjIy8Pnnn2Pfvn24/vrr23SPbty4EdXV1fjtb3+rEIoDBgzAiy++iMceewxbt27F/PnzOzVHABgyZAhmzpyJN954A42NjSguLsbWrVtRVVWFJ598siOnNyGU5hRg6K5imCw6DNYV4+QA70NN6+LbDEhPFjR6HpN+OkR1XWBgdVs330gYUN8DNaebAMYbA2Z1OCHKTtXn006Cd7GYbfWXFcpko2Op8VpmXIoEDXnP2EiQF2N2eILjT+vP+sva5PT2W9sVZRoEj8yNG3uLkFZ2DDfvgdbFhrTQyYuCW1xeIdVkb8G+ST+AE1jYst2YDXUXMACY9HrkmzNQld2E+nQLbA6HIknGh9Vqx4X0BhgZHQpaX3DV8Fn2AG9T+8BEDXlyRrSKEBvCjdkjsQfAf33JCdeNy2n8iQBA2+JNo+cV2wKdsex5j6Nq2csI07Inu6YFIT7ZuLxOaQU3ZukkK2XTxRbFtj7LuT5d06F2fr7fPSVohMn777+Pqir/G+6ePXukAsazZ8+WhFAgV155JTZv3oyPPvoITU1NMBqNGDRoEO6//35MmTJFse2oUaPw2muv4e2338bGjRvR3NyMoqIiLF26VLKgheKOO+7A1KlTpc4bckaMGIHXX3+93b60kcxx5cqVKCwsxLZt22CxWNC3b1+89NJLGDVqVJvHSCZy0tNw9e5hEJweZBWb4BjsvenrXMlZdiUSArPjoiX25J0HRI+IJmtL0DZujQcnGi8ArT+XLD46LnHfg9gtKz3ScbHnv9Woir1Kb4YpyzPIkgkT+Y3fI4jwtNbW48TYiwR55u37d+1DmkUHrUmHEQi+rtNk2dktbu/Dot5lwZdXeF2yzpr2b/zF7lxUoQkiCxw+fwYT+g4M2uZUXTXW/8Tr7h1TU4Z5IeqqyLMLfe5aOYruGQXREXtaAw+NgZM6QoQSe2TZ86I293AtewzDQKP3n2tdWmirGsMy0Bp4ZQ/bDiRoAP5YQcHpgccjdjBBo203biwSNAKtjgzDILOHEXVnzDDX2OBxe8DyLESPKMXsdSRez3vs1vsmuXHDY8OGDe1uM3r06KAOFldddRWuuuqqsI8zZMgQvPzyyxGPj+d5VaHnoy0XsI9w5uhDp9PhwQcfxIMPPhj2Z5INhmFgytaj+ZIV1gYHHBrvQ0jv7vpij9dxcPECDo0+C51dg4FZ0bnQuYDEhma7VXW7o7ZzktjL0XU+VhAAPh9xApeYRlSW+Ts2mDqY+a2Tdd5wepRdJlrsdnxjOI3czDSUZRUohEGd1oLTfWvgYUUMczf6Y/bE2Ltx5W3bGnOsaMyxotmq3l7JJBPBLYL3YSEvHq1h2n+I99Hk42t4xeHR6nOqYu9Ckz/5JpsN/T3LM7LlTe19mKuj78YFvA/IJpv3hUTRQUPj/77IsuclcO4My0Rk1dLoeL/Ya8ctq5GJPY2Ba7clXygCW6b5EjRYngnbNazmxhXdsS29oiZEM4pMqDtjhugRYa6xIbPIBLvFKVkZOy72vOdI9IjwCJ6Yl4gKl6QVe0RqYszWofmSFTa7E26N98Gt98SuoX28OJp+Hhtv/RqXejYBABprbIiGLK/ObMLZ3nXwcB44XC4029TF3mlttfTvnCgUcwaAY70u4GJ2o/Q34wE0Hawfqec1QOsz3iEqxd63Z09j843fAgAmVQ/AAkz1rzP8KMX69XUUwWTRwaURkOaIfS9ltQLKoXoDp2sNQKumavF4rR0KsReiPp+cgZnF0r9PWC6qbnOxpVG6a+drQieAyS17dhXLnrwnaFpedNz+gDdur+mCV+zJLXuhY/a6b4JGoNjjtWxE9THlSRrteRK0Rh4tdb5/d/zlWlFrz+72t0rLCL+HrPy34LPoeTzRFXssx4JhGSkTXU3sZfbwexCaLrYgs8jU6eQMQOlCdjs90BpI7BHdEFOOHm5eQG2ePyvamAJir15nwaXsJulvExMdMbJ9wGEcmeRN/Pi541qYHTKLTIseZpPXiiRv5ZZr6HzJFwDQiMoHMe/mOhxbKRd7gZa9w9Vn4Msp6aNXJhtpGFmxYo+An7w9GQCQ3z8TmNuhoYTN5PrLkLXfgO9GnsPFYu93G0rsZeiMktiztoo9h9svsrRM+7faoYW9gVbN/qO7WnWbalsjfLXJ1bpn+NDJYvYcKpY9qcYey3T4oaZGj8uyceFIHYxZOkV2rty6QZY9L4FCN9LMZHkMWlulVwBljF5Hauz54GXHdNrc3g4aCD85AwhRekXeLi1K5Xh4rT8BRm188jhWX9xeZ7pn+AjqopEkDQOSYxREt2H7gMPYMumAYplB7Ppiz8grH5gZbHTEnlxwOdwuZDqMGPfvPnBp3cjJTseuPsE12fLTIy+NogYfKPaEjlthdLz/YeMKsOwdt16QxN7QnF6Kdbysp65TcEEL737iUZ9tkKsnhKMuWNId7Ys9gwFo1du2VtUnF3uaMMTeoJ7F0FbySG/Ww1SrLsCqXf4Xih6mbNVtgADLnlklZq9V7KXl6qPqZhp5Yz/klmUgtyxD8R0pYvas/vF0b7EXbNmLBE2Elj3/v6Nj2bPU2SFG2CoNCIjDVc3GjU6IhjzbWd2y57doN1V5xV5n+uL64NspIJ8oSOwRcSVbp0we6HEhE0VM6IdWVyFI7HHRcY3JO0jYXS7kOtMxaa+3rmLpjYXYhWCxVxAlsRdo2dMIHX8wGzT+8+OEUuydht+KNbqXMvlBKxN7LrcbaBV78YiD8T185dnI8kQTORl6//etJvbCsexpOA5P/vMGNJ6xgGEZCLcJQdafeo/fIl6cGdxj2IciGzegi4bT6oKjxVdjL7oljzieRenY4FJQcmFDlj0vgRmjkVr2iobkoupYA3LLMhSWXDXk5Vc6Z9nzj9Fc7Q8p6bRlT15nr4PxhIF4z6cr5PgyZJa95irvXFrqo2DZk32vyVRrj8QeEVeKDH5hd8WeARi7vwzDrw+d6NJVMGn1kGuYTG10MmLlsV5OwQWNrJ9wcV4uODcrtTPrcSETDr0LOSEy1SM/tvL2wHs6frvQa2QJGrIT5fF4cNHo7ZlrsupQnJOrPCYrcxu5/VnB8oy+WOETWvKiynpe/aGWKSvpZGe84qrRaZXusPKuIG2RW5yOxjMWb+Z1lRU5vZQu+Qb4s7F7BZwrOco6e0qxZ45Bjb32YEN10OjGRZWDLXuRnYsxC/qj9+h8ZJektxsvFwvLXvMludgL3wqmVlRZ0Rs3Ste2/PwaMoKvW32aFro0DRwWl+TGVXTP6GjMnuwFzZ1EtfZI7BFxpSgtG2i9nlpMXpO5WoX3roZJq1OIvawoiT0eSsue1u6/gekMGmRZjajLsEDj5HDLX8fDkKEDd3V0HqByy964f/dBbyYPmNmxfem1GjCe1rg/t/9mfrauBjaD9+27pzXYwquRWfaaYMX+G0+CExhcxpVgDsZ3bDBhYtU5UF3QjPO9/NnIej5EgobBgFv+Oh4aJ4figlxgNlDRXAm0Gt8GZAb3sFUjq8Qv1BvOWYLEXpPG+4DlXSyyTKFFPa/lpDpigW5cZUHl6CVntIUiQUNWSLi7tksD1GL2IjsXDMMgv19WWNsqxV50YvaiYdmLVVFlQHl+Q4nRzCITqk80oqXeDrdDCHDjdsyyx5NljyCAXtl5QGuiYUuaV/V15uaTLKRp9YAsUTZbHyXLHiO3bLlgsYtw8wI4NwuNnkdpfR60Zh4ZTXoInKddd05kx/bfLAcdLcJlOcVtbN02PXXZeHjt1QCA3mMKgOu8yw+cOy1t04ctCPqchuOkYrAW2HG6fw0AwFQT+2zcf6efwPutNe186DTq55djOfRuyIXLJkCv9W5zwuPPqJ3QO7iMihrZxTKxd94MBLSVM+u9Qi3dbmg3WUaXpoHbIcAR4MZVZuLGy7Kn3hu5W7txO2nZiwSlGzc6lj1zBy177blxoxWzJxdd7Yk9AGi61CIlaLAco4h7jQSFG5cse0R3pXduviT2LOmtPT5TwbKnU4qPHGOUXKmM3I3rxhbTN9i2/FswHgalmp6499KVOLazUtqmozcoNeSlRwTOE7HlQY78QSa/AVY0VMLXaveytGAxqWE5qZ+yXZQF9jOxFwk6FddrKMse4M2OdNkEuOxuiKKIgtPpsNkcsKe7UDY2WMiqwffkseWGb1Gf24J/Cd/jf+EXiS12Oxw6r/k4w9m+SNOna9FSZ4fd4oIoipKrTx6XZMqNvWgGQlvwOvOb6urEU+xFLxtX5saV1WqMzI0rt+zFpoMGoMxWDmV5zJAlaTRfbIG13ldQWdfh2EG5RZEse0S3xaDTwWDTwmZwoqpnEz5Y9CWKDQUYiJJED61TpAeKPVN0yp/IBZdDcMMqegWyyIpI0+lhyleKD300LXuBYq8TNdE4hdjz3wBPuvzWr+GFpcFjYHlJ7DkYv9jjw6hb11nkmbd6qwaDj/REzrzQte28DxcHXDYBzZesGLenD8ahD3qNyQfCrPNeWJiFH/vWQuA94JqUYsDT7MH9r14Jq8mBotGh4/Wk8bf+FkRBhMvmliw6VrnYy4mP2AsVh8VTnT3/3zEUvhmyLikZneiYIrfsyWMvI3PjtpeNG53zMGhmCapPNqLfFT1DWjPltfbqKy1SyENHkzMApUUxmbpokNgj4k6GwwCbwetaqurZBLHrN9BAml55A81Ni1KtO3npEbdLyvQEvOU+DHka1OdYsPnGb2GwaTBZuAxXt9GDNRJK3Xko+yEPTVk2tKQ5YDM52v9QCFiOkfpzyt92XRYBmgwOAufBiJKyoM9peB6MA2A9LNyi3yIYD7EnT8YYv68PRn1TiryFob/Xyl71OJdTC7dWwORT/h7K+X3Cz47W8DzyLOm4lNWE+jQL7E4n9FrvOFoaHNC4OWQ2GdFH176lMLD8iu+Bp8w4jF6NvbYIVTute7txA0obxdCyVzwyH6Nv7g/RI6pmS4eLrzduIOH2xQUC3LhC7Ny4/a7oiT6X92hTPMpr7VUd88fmdua6kL/YuuzuNraMLyT2iLiT5TbiEvz1wuRlK7oq6UYjBlUUQeNikVufjuwx0XLjymL2BEEp9vQG6PM1sJqc3nZeAMyyB3lnmWYdDOFTN/50715sufFbVNeYMR+TO7QvhmGwd8YJOHgXMrVG3IgrILgEzNw4GNM9g8AP4qGfEGwdGK7pLcX6uceLOJZ/AUCcxJ7MsufLyG1LnOwZcgync71lZOYfmigtz+sbWSmcYlc2LqEJHk5ExYVKjCnztl60NUYm0hTlV8xOZBR6rzNfELrWyCtcXbEklBuX7cZij4+jG5dlGYy9ZUCn9yOv7eeDYZmIYoU5rj03bvR+E+3ty3dNAJBi94COJ2cAQLosDlaesZxoSOwRcSdHTIcUuAcgyxCdZIZEouE4zC0fAcHlTZKIpO1RW1zrGI3ctQawHgYTHu6HD5i90rpMowlOzo2NC7+WlmXx0TuXnIaDm/db08KpFdcW3w+6CEurdfCLk8cwkO8J0SOCAYM++erWBrm4UhYpjpPYazU4hCP2DDITdcW5s9CCAwMGeRFY9gCgTFOAb/AjAODIpbOS2LM2+i2rxqz2H0aK8iutLdNEUZQse/GK1wNCW/YCBU93Ip5u3Ggh743rw5ChjSi+Tc2NKy+9wkTJshcOGj0PY44O1nqHIrykM5a9DJXOHMlA8v+6iJTjescYmMz+iynL2PUte4A/SDmaD1Etz4PzsGDAQHB7YPfFrYlAut6AnCylBTFbE02xxypqzHVW7E13DpX+/R9n/4pzP9RKf+f0VnePyt/MXYLfJcLHQ+zJMm/tehc8jKdtsQe/uHrj2l34wwO78em8YzBmRfbgGJjeU/r392b/S9Fe5zHsm/QDvhtxDs6s9t1D+nSlZQ/wij7fQ60z1otICZmg0Y3FXqBVM5aWvWihZgmOJF4PCCi9EkM3brjI4/Z8GDsRy5pRaITvXZ/EHtGt6ZfWA1mNfoHXVr2wrsTEn1yGnsNyMWHRoKjtU/4w9Lg8sHNesad1cWA5FhyrfEDk6KMTK+g7tiCz7OmYzgVX/mraQvRo8Fq5ajPNWHP2n9K60GLPf+N3xlnsGWRdUQ6PrsT//GJnmxYMudgDALvRBbEDzWGG9ugt/fuMrEfufu0P+PKKU9h19VE4MsIRe3LLnlfsKeL14pScAYRO0IhWH9SuSKBVs8ta9iLIxAVC9cYVVdfHA3ncno/OvAhxPIv0Au/zrbmqBaIotvOJ+EBuXCLumLL1cDq8DytWYGDUdv3euABQNr4Hysb3iOo+lTdGEU6D97xpXeqXbjTL2HxpOIm/3+Z3EXdW7Om1WrzY/y7ce2kdBN6DgyPO4NthZzD6qzIs7DVd9TMWxo7dM4/Bw4qwZ8TZjavVQNawApzAtumeN7LBD72BfHjFlOVc1rMY3EUGAi/ivLZBWi7vnlGcHX42LuDvj5uITFxA3bLHado+n6lOPBM0ooVazF7EYo9lwDCAKIbIxo1Su7RwUbXsdTJxKbPIhOZLVrjs3kLN8bzWQpH8rxJEymHM0Un1wnROvt3isN2Zc3wd9k49gT0zjuMQewZOvvW8uf0P8gnN/aR/j8gPLl/SUQReWTZAx3ZeSI4u64e77NOkv0UWODDuR2Rkq7vyXawbh8ZU4rtR51CbZcawb4sx+LueKBPyOz2W9jBqlDd8Xmj7YWxSEXsjcyJvBajlNci1eC2dvoxcAGjivcHenJtFfnroEjA+lNm4wZa9eD6A1Kw13dmFCwRb8rqC2FOz7OkjdOMC/t+DlKDhSZwbV15rz0dnSq8ASmthsrhyu/fVRiQEbZYGzVnegpy+VlmEOtV8M76Z8CO+HXsWJ9kqODWtYs/jF3vPjbwdV9YNxTLnXPQviNySFAp5NioA6NnoWGB/MfV69Gnwi7WS5tBWKg3vF5jZ9SbMLB+CWduGYpyrX8jPRIsSQy7uXTcNWrt3DJyn7duliQsWe5eXdSwDstjl7bPm4UQcveAtmm3Wea+ZNJs+rBckXZq8P673OmtRtIOKT9kVILRlrzvTFRM0WI4NGneklj3AL/bU3LhMgt24GgPX6RaeySj2yI1LxB1TevweMl0dLcdLGaEOwYlb/zIBTq2Awl6ZwCzv8p45uVg7+94YHDtA7HHRKYjIsix+O/Je3FnxKprTbLhBPy7ktnKx52Flb/9RapbeFjqtBkarDpzgffjw7Yk9XmkNyLQYUJSd06Fjz/QMRcZOPXJqTdDfrIGtp1N6McpwhVcUV5GgoRazF9ds3ODvqzNFulOBeHbQiCa8jlNkrkaaoAEAHM/Ahdh20AiX9AIjGJaB6PGOobNWPYDEHkEAADiOwz0tM7HF+Q1+njM70cNJanSy8h92pxtll7xWsN754bXf6gx6XgvI8gD0XPRiK3vnF+DjsU/jfEM9hhSH7p6i5WRij4tvELdPjAic9wtoz42bplGKsFJ7x13N0/KGwnXQK9DO7qmGzeS3gGcJ4WWv8zrOm2Tj8qjH7MUxG5fcuMF0xZg9wPu78pXyATpn2fPH7Mle5OIcs8fxLNLzDVJNvGhcF5k9SewRBABg+bQbsBw3JHoYSY+W54HW+6pTXmdOJVA62ug4Xin22ugL2xGy09KQndZ2JrZWYdnziz0uioVXQ+FreySJPbHtc56pNUrCHAAGaXqG3rgd5NnJlQdr8A/Nl0BrqGMOE172OsN4i91aGxxB2bicho2oEG5nUXXjdgG3ZSzpim5cIPje0xHLXqAbV15nLxEZ2r6ECiA6XWWMWTpo9BxcdiFpxF7X+HURRDdFJ7NsKYoKx6HzgbxdWJ+T+RjP9Y/5MQPRymrdne/VgHXLduL3D+/CF9rvY35slmNxYPwZCJpWsdeOG/dywwCM/KaX9PfI3MiTM3xk9jBh5I39JEFwcOxZaV0+335yhg9fkobD4lIWVM7RxzUTlmGZoGK5ZNnrqm5c5b2nI5Y9LjBBI4FuXECZpBGNxCWGYZDRmuVrrrZCcAntfCL2kGWPIJIYnUzs1Gkt+H5QFTRODj0y2i+90VnkRYWNLVqk6eJfPkDDcYAIb19dAG6NB4AHrDs+D4TPJ5/wj6Udy57GwKMuzyL9PaGDyRk+xt82EMOvLcORT89AL3wOa2urvLH54Ytun/VOcHlga3bCafWaauPVE1cOx7NwC4Li7+5MVxV7cssewyizvsPFF8PpE3nKosqJsez5iFaWelZPE+p+bIYoAs3VNmQXJ7aeLIk9gkhidLKkiPPZ9ThxfRUAgG/Q4HpMiOmx9Rr/TVzgPQl7GHECG1QGRhOFMjDhwICBV222349Xo+dx49/GojG7Bda+LhSOzer08fXpWoy9YQC2C8+i/MhBaDgOs4aOiujzPurPmqV/J6LuV6DFhhI0lPPvKm5cefkVXbq2QzF2PkGnZtmLZ7s0H30nFaFi+xmIHqDP5dGplZohq9/XdKGFxB5BEKGRW/Zseqf0b6NKmY9oI7fsCZwnYQ8j1sMg0AkiT9yIJXqHBi1Gb7mS60+NaXNbY5YOOh2PnPo0TBwROumkI2g4DnNHjI34c/K4vPozzdK/49k9w0dgLFZXETexoivW2QMAjcyN2xEXLiBz4woiRFFMuBtXn6bFgv87FQCiFt6QpUjSsABQ7/8dL0jsEUQSI0+KEGXPhjQ+9mIvV5eB0lO5aM60Q2RE2Dhn+x+KAX0q8+ESBZzuXyMt08RJ7GndPFrggN6mQW97Xpvb8joOsx4dgwsV9Rg6J3rFrTtDMln2ghISunnMXldslwYAvMyN25HkDEBZiscjiAl34wLRE3k+FOVXqqxR3XdHILFHEEmMSaNH8dlscB4Wlwqb4GhtlxZY5iMWpGn10Lh4NOS2oCG3BXY+MQWwb9o1FrYmJ/ZOPYFvJvwIANBy8bGCaDze47h5IahxvRrFw/NQPLxtURhP5LX26s4kWOwFWPb4bu7GDbR0dh3LnlzsdeylUz53j9ujtOzFoYZmPAh04yYaEnsEkcRk6oy4+QNv0eEvJ/6AfZNPAQDSNLF/WHNaFgLvd6AatYkphi3F98iKKgcWfI4VfrHnAavpeg8hncyy13jBnzySkJi9gId4IkpsJBNdNUGD13Xesscpen57lKVX4lxnL1ZoDTyM2TpYGxxoqkq82OveVxtBJDnyB4JT6xde8ciM5XgWblliROLEnvfmL8iKKsfLjevStJ5zBriY3hCXY0YTvaxlmvyBGs9WaT4oZk8JwzDS9c3yDJguInKUbtwOWvZkcXked3K4cWOBz5Vrb3YqClEngtQ5qwSRgshvfJLwAJCuC6+LQmdgWAa1slIiRn2CxJ4vmJuTWfb4+FhBGg3+WJs9BcficsxoInfj+mAYwJCVmNIrir+7ecwe4D8HXcWqBwA6o6wkUwdfGoLcuO7Uc+MCgW3TLG1sGXvIjUsQSQzDMmA5Bh5BhEvrb2eRoY+92AMAm8mflCHPDI4nG6b/G1WmJjRn2aRl8XLjyh878SxCHC10acFuNkOWLiHWk6AYNRJ7XVLslU3ogSPbzoDTsigd07G2jWyAG1dp2et611kolGLPioIB2QkbC4k9gkhyPlj4JexaF+rz/HEfmfrYJ2gkC81GuyT05n40Ah5OROF9mXE5drYjDVV8IwBAy3adB7IPNcteIuL1ADXLXtc7n9Gm59Bc/PD5RfQcFvsi6dHCmKXDLa9M7dTLDyfPxnV74PHI6+ylzkuAXOw1JrhtGok9gkhy6nNaYNd74z00Tg4urYAMY3wse8kAJ/ofDP1OFoABg3RtfMTu9RdG4w8DdgEA8jzhtylLFjQGHgzHKOL1ElFjDwh2z5EbF5j+wAgMv7YPcsq61m+rs1ZupRtXhOhz4zKpk6ABkBuXIIgI4Fp7sqY367H4zakQGRHpf4qP2Lmqbhh25n6HqbWXxeV4anCyzhUiI4IRmbhlcgoav0jSxqlrRzRhGAb6NA1sTX53fKIse0EJGiT2wHIs8vrGx0qdTIRy46aSCxcA0vMNUhhO08XE1trrencvguhm8K1iT2hNUNDqebBsfB6Ua2bfgx+rL6H36Py4HE8NTlZNWuBEsG6Ai5OrxyPLRtaxiYlZ7Cz6dK1S7CUgExegBA3CDxeizl4qZeIC3vmkFxrRdKEFzVUtED1iwrKuU+vMEkQK4rPsCa115jT6+L6jlRUUxk1cqsHLxN65XvWo6tEEyMqwxBKPzLKn64KWPUDZMg0gyx6ReBSlVwRRJvZSy7IHAFmtrlzB5YGlztbO1rGDrjaCSHL41sK+Ap8YsZdoONltatPNB/HBnV9CjFNs/7+y/OVWTmmr43PQKCNvmQYkLmaPC4zZ60IZqER0Ce6gkZpuXADIbO2Ry2lYtNTZEzaO7vXUIIguiM+N6dZ4sPPqCvQWc3ErpiV4VPGDR7Ao0PLxuXXlIR0/wtuTtwefFZdjRpvA8itk2SMSTWAHjVR14wLA0DllGDyrFGm5+oQWzk69M0sQKQYvM2NVjDiP4yVVCRxN/JHH7AEAKzBxcys/M2Ahihqy0K+uAPcPvSYux4w2geVXkqb0Sjdvl9adkWdmy924TApa9kzZeqTnGxLeIYUsewSR5PABYscgds1EgY7CB7yTsp74iYSy/AJsnfWruB0vFsj74+rSNAkr4EuWPcJHoBtXTGE3brJAVxtBJDl8QICaQexY8/GuyoT6/pi+01/6hfPQAyES5JY9Y3ZirHqAWm9citnrrshFXaq7cZMFOrMEkeRcfrE/BlX0kP42MN1L7A1tKcGIg72Q0eitLcjF0bKXCuhlMXuJcuECKgkaZNnrtnABRZUlsZdCfXGTDbraCCLJGd1YhqGHSqS/jUxi6qQlCp9FyFdnMJ5u3FRAn5EkYk9DblzCS8hs3BTqnpFs0NVGEEkOx7Nwat3S30a2m4m9VpePh/W+/fMk9iIir28melyWDV2aBoNmFCdsHIEuOhJ73ZfgDhrkxo01lKBBEEkOy7NwaQXpbxPXvcSeTeNCY5YVNpO3CwQr0gMhEliWwfW/mgiP4Enow5QSNAgfcpe+4PQAvta45MaNGST2CCLJcWkFNOS0SH+b+MS54hLBjrxvseXeg9LfZNnrGIm2mgTH7FGCRndFLvxdDv+LbKJ/o6kMiT2CSHL+WfI1vsw9Jf2dpuleYo9n/KJg7scjMFIsA65K3HiIjsEGWPJ4sux1WxRuXKdM7FHMXswgsZdCvPzyy9i7dy/sdjsKCwtx3333YfLkyYkeFtFJNLLLVG/ToMiYncDRxB+52OMEFqZuFrOYKsgzMBkmNQvoEuEht/K65ZY9cuPGDBJ7KcTChQuxfPlyaLVaHD16FCtWrMD69euRmZmZ6KERnUAjEztzNg3H8J+WJnA08UfD+m9TAuuhB0IXRW7N4bQcGIa+x+6K3F1Lbtz4QGc2hSgtLYVW6y2zwDAMXC4XamtrEzwqorPIxZ7AitDou1esE8/IyjRwIj0QuijyQrrUKq17I//+FZY9svbGjKS07FmtVqxfvx4VFRU4evQozGYznn76acydO7fdz54+fRpvv/02jh8/jvr6euj1epSWlmLRokVBLs3f/OY32Lp1a8h9ffjhh8jPz+/0fNSIdI5OpxNvvfUWtm/fDrPZjH79+mHJkiUYP368Yrs1a9Zgy5YtcDqdmDhxIvr27RuT8RPxQyu3bPEeaPRJednGDJ7xz/eLKSeRU5mOazEhgSMiOoI8+5Yycbs3bAixR6792JGUT42mpia88847KCwsRP/+/XHgwIGwP1tVVQWr1Yo5c+YgLy8Pdrsdu3fvxtNPP43HH38c8+bNk7adN28exo0bp/i8KIpYvXo1evToETOhB0Q+xxdeeAGffvopbr31VpSUlOCTTz7BE088gVdffRUjRoyQtluxYgWWL1+OgwcP4tSpU+QqSQE0MrHjYT3QGJLyso0ZGtb/YGjOsuGQ+2wCR0N0FIUbl8Ret4YNFbNHVvuYkZRPjdzcXGzcuBG5ubk4duwY7rvvvrA/O2nSJEyaNEmx7Oabb8bSpUuxYcMGhdgbNmwYhg0bptj20KFDsNvtuPrqq9s8jtlsxjfffIPp06erri8vL8fkyZNhMBhU10cyx4qKCuzcuRMPPPAAFi1aBAC45pprsHjxYqxbtw7r1q1TbM9xHMaOHYsPPvgAJSUlQeeD6FroZJa9rTccxjNaTwJHE3/kYhcI7hVMdA04RcwePdS7M0o3rr9gPLlxY0dSXnFarRa5ublR2x/HcSgoKIDFYml32/LycjAMg1mzZrW53caNG/Hss89iz549Qes2bdqE559/vk0XcSRz3L17NziOUwhVnU6H6667DkeOHMGlS5dUPycIAs6fPx/WMYjkRZ6gAABGfffKRtVwSnHHJ+dti2gHpWWPBHt3Ri7qXBSzFxdS9q5ps9nQ2NiI8+fPY8OGDdi3bx/GjBnT5mfcbjd27dqFYcOGoaioqM1t77jjDkycOBHPP/88vv76a2n57t27sXr1asyePRs33XRTNKaCEydOoKSkBCaTSbF88ODBAICTJ0/CYrFgx44dsFqt0jwOHDiAkSNHRmUMROLQckqxx7Ipe9mqwgeIXR4kFLoictcdJWh0bxQxe05y48aDpHTjRoPXXnsNH3/8MQDvw3HatGl49NFH2/zMl19+iaampnZduADA8zyeffZZ/PKXv8TKlSuxdu1a2Gw2rFq1CpdffjmeeuqpqMXL1dXVqVoBfctqa2vBMAw2bdqEtWvXQhRFFBcX45lnnsGAAQNU91leXo7y8vKwrJ1EYtGyKXuZhsU4pi/mfjwCn8w7BECZnUt0HciNS/hQiD07WfbiQco+RW699VbMmDEDtbW12LVrFwRBgMvlavMz5eXl4HkeM2fODOsYOp0OL7zwApYvX44nnngCLpcLgwcPxnPPPQeej96pdTgc0Gg0Qct9ZVYcDgdMJhNeffXVsPc5a9YszJo1C8ePH8fSpUujNlYi+ozl/BnVabbu5cIFgDROj/Rmf9cQsux1TThK0CBaCVl6hSy+MSNlz2xpaSnGjRuHOXPm4KWXXoLNZsNTTz0FURRVt7darfjss88wYcKEiIoQm0wmPPjgg2hubobNZsMjjzwCnS66D2SdTqcqVJ1Op7SeSF3SOYPUKDzDbkzsYBIAy7PwsP7rVt5Rg+g68Dr/96bRpaydgQgDuUvfI/ivbYbapcWMlBV7gcyYMQPHjh1DZWWl6vrPPvssrCzcQC5cuIBVq1ahd+/e6NGjB5555pmoFzLOzc1FXV1d0HLfsry8vKgej0gu3LwAtN4D9Z5gC2+qw/EsPJw/A5nEXtfEkKnDgKnF0KVpMGhmSaKHQyQQhmWke5occuPGjm4j9hwOBwCEjFHbsWMHDAZDRL1ka2trsWLFCvA8jzVr1mD16tWw2+147LHH0NzcHJVxA0D//v1x7tw5tLS0KJZXVFRI64nUxc77SxPoRW0CR5IYGpkWHBzjf0nTkBu3yzL9gRG46/WrUDIydjVMieSHYRjVJB1qhRg7urTYs9vtOHPmDBobG6VlDQ0NQdu53W5s27YNOp0OZWVlQesbGxvx1VdfYdq0adDr9UHr1TCbzXj88cdhs9mwZs0aFBQUoFevXnjllVdQU1ODJ598EjabraNTUzBjxgwIgiAlnABeF+6WLVswZMgQFBYWRuU4RHJSw/pfHC6kB/++U50aphmnBlRLf+eLGQkcDdFZyFVHAOrCjrJxY0fSBk58+OGHsFgskqty7969qK723vAXLFiAtLQ0HD16FMuXL8fixYtxzz33AABeeeUVtLS0YOTIkcjPz0ddXR127NiBs2fP4qGHHoLRGBzztHPnTgiCEJELd+PGjaiursZvf/tb9OrVS1o+YMAAvPjii3jsscewdetWzJ8/v1NzBIAhQ4Zg5syZeOONN9DY2Iji4mJs3boVVVVVePLJJ8MeM9E10Rp4oNWomyZ2v/hMjaz0zPCDJZiZPzSBoyEIIhp4hZ2gXEYvAjEjacXe+++/j6qqKunvPXv2SAWMZ8+eLQmhQK688kps3rwZH330EZqammA0GjFo0CDcf//9mDJliupnysvLkZ2djbFjx4Y9vjvuuANTp05Fnz59gtaNGDECr7/+ert9aSOZ48qVK1FYWIht27bBYrGgb9++eOmllzBq1Kiwx0x0Ta4ovQyzj4/AD6jCqiF3JHo4cUfD+922Hlakt3+CSAHIjRtfGDFUeirRLfCVXnnzzTcxaNCgRA+HIIL49sxp3F373wCAy74rwq96LMTQa0oTPCqCIDrD+mWfwlKrDHW6YvEQDJlN13YsoFdkgiCSGq2sZqWHE8HR2z9BdHnUY/bo2o4VJPYIgkhq5DF73w+uwkHdj4kbDEEQUUEtHIMhsRczSOwRBJHU6AJ6A1s5Z4JGQhBEtFCz0FM8buygM0sQRFKjDWg9qOnmvYIJIhVQa41GbtzYQWKPIIikRhMg9rQciT2C6OqQ2IsvJPYIgkhqdBplizgNSx00CKKro1p6hdy4MYPOLEEQSY1Bo8X4L/z1LMmyRxBdH8rGjS8k9giCSGoYloHA+cuBktgjiK6PmhuXUVlGRAc6swRBJDUMw8DDe6S/SewRRNeHU3HZUru02EFijyCIpEeU6TsSewTR9SE3bnwhsUcQRNLz7Yiz0r+1vKaNLQmC6AqoZuOSGzdm0JklCKJLkadJT/QQCILoJOrZuGTZixUk9giCSHrSWnTe/5t1yNGS2COIro5qggaJvZhBYo8giKSHE723KoEVVdssEQTRtVCz4lGdvdhBZ5YgiKSH83hvVR7WQ3E9BJECUAeN+EJ3TYIgkh6nxg0AcBjc5OohiBRAzUJPlr3YQWeWIIikx2JwSP92su4EjoQgiGhAlr34QmKPIIguRWCvXIIguh4k9uILiT2CIJKewpZM6d8ajkvgSAiCiAbkxo0vdGYJgkh6fjdgCebUj8Ja42KwLN22CKKro15UmSx7sYL6DhEEkfQMLCrGS0V3J3oYBEFECdU6e9QbN2bQKzJBEARBEHGFU3HZUlml2EFnliAIgiCIuBLksmUAlix7MYPEHkEQBEEQcSXQikdCL7aQ2CMIgiAIIq5wgWKPXLgxhc4uQRAEQRBxJdCNSzX2YguJPYIgCIIg4kpgTT0Se7GFxB5BEARBEHEl0G3LUEHlmEJnlyAIgiCIuBLYQYMse7GFxB5BEARBEHElKBuXxF5MIbFHEARBEERcCRZ7JEdiCZ1dgiAIgiDiCrlx4wuJPYIgCIIg4gq5ceMLiT2CIAiCIOIKuXHjC51dgiAIgiDiChcg7pjAXrlEVCGxRxAEQRBEXAnqoEG9cWMKiT2CIAiCIOJKUG9ccuPGFDq7BEEQBEHEFSYgISPQ0kdEFxJ7BEEQBEHEFYZhFBm4ZNmLLXR2CYIgCIKIO/KM3EBLHxFdSOwRBEEQBBF35HF7VGcvtpDYIwiCIAgi7sjj9MiNG1vo7BIEQRAEEXdYsuzFDRJ7BEEQBEHEHXLjxg8SewRBEARBxB1y48YPOrsEQRAEQcQdcuPGDxJ7BEEQBEHEHXl/XCq9Elv4RA+AiB4vv/wy9u7dC7vdjsLCQtx3332YPHlyoodFEARBEEEoLXtke4olJPZSiIULF2L58uXQarU4evQoVqxYgfXr1yMzMzPRQyMIgiAIBcqYPbLsxRKS0ilEaWkptFotAG8rGpfLhdra2gSPiiAIgiCCUWTjUm/cmJKUlj2r1Yr169ejoqICR48ehdlsxtNPP425c+e2+9nTp0/j7bffxvHjx1FfXw+9Xo/S0lIsWrQopEvz+PHjePvtt3H48GE4nU707NkTN9xwA2655ZZoT00i0jk6nU689dZb2L59O8xmM/r164clS5Zg/Pjxiu3WrFmDLVu2wOl0YuLEiejbt2/M5kAQBEEQHUXhxmXJ9hRLkvLsNjU14Z133sGZM2fQv3//iD5bVVUFq9WKOXPmYNmyZbj77rsBAE8//TQ+/vjjoO2//PJLPPjgg2hsbMRPf/pTLFu2DJMmTUJNTU1U5hKKSOf4wgsvYMOGDbj66quxbNkysCyLJ554AocOHVJst2LFCmzbtg1r167F+PHjwTD0tkQQBEEkH3LXLblxY0tSWvZyc3OxceNG5Obm4tixY7jvvvvC/uykSZMwadIkxbKbb74ZS5cuxYYNGzBv3jxpeUtLC37zm99g4sSJWLVqVURvFmazGd988w2mT5+uur68vByTJ0+GwWBQXR/JHCsqKrBz50488MADWLRoEQDgmmuuweLFi7Fu3TqsW7dOsT3HcRg7diw++OADlJSUBJ0PgiAIgkg0LLlx40ZSWva0Wi1yc3Ojtj+O41BQUACLxaJYXl5ejvr6eixduhQsy8Jms8Hj8YS1z40bN+LZZ5/Fnj17gtZt2rQJzz//PLZu3Rry85HMcffu3eA4TiFUdTodrrvuOhw5cgSXLl1S/ZwgCDh//nxYxyAIgiCIeMJRNm7cSNmza7PZ0NjYiPPnz2PDhg3Yt28fxowZo9jmq6++gslkQm1tLe68805cc801mDt3LlavXg2Hw9Hm/u+44w5MnDgRzz//PL7++mtp+e7du7F69WrMnj0bN910U1TmcuLECZSUlMBkMimWDx48GABw8uRJWCwW7NixA1arFW63G7t27cKBAwcwcuTIqIyBIAiCIKKJ3JpHdfZiS1K6caPBa6+9JsXosSyLadOm4dFHH1Vsc+7cOQiCgJUrV+K6667Dfffdh4MHD+LDDz+ExWLBr3/965D753kezz77LH75y19i5cqVWLt2LWw2G1atWoXLL78cTz31VNTi5erq6lStgL5ltbW1YBgGmzZtwtq1ayGKIoqLi/HMM89gwIABqvssLy9HeXl5kLWTIAiCIOIBddCIHykr9m699VbMmDEDtbW12LVrFwRBgMvlUmxjs9lgt9tx4403Yvny5QCA6dOnw+Vy4eOPP8Y999yDXr16hTyGTqfDCy+8gOXLl+OJJ56Ay+XC4MGD8dxzz4Hno3dqHQ4HNBpN0HJfmRWHwwGTyYRXX3017H3OmjULs2bNwvHjx7F06dKojZUgCIIgwoHcuPEjZc9uaWkpxo0bhzlz5uCll16CzWbDU089BVEUpW10Oh0A4KqrrlJ8dtasWQCAI0eOtHsck8mEBx98EM3NzbDZbHjkkUek/UYLnU4XJFQBbzkW33qCIAiC6EpQUeX4kbJiL5AZM2bg2LFjqKyslJb53KA5OTmKbbOzswF4M27b48KFC1i1ahV69+6NHj164Jlnnol6IePc3FzU1dUFLfcty8vLi+rxCIIgCCLWyK15JPZiS7cRe76EC3mM2qBBgwAgqKaeT6xlZWW1uc/a2lqsWLECPM9jzZo1WL16Nex2Ox577DE0NzdHbez9+/fHuXPn0NLSolheUVEhrScIgiCIrgS5ceNHlz67drsdZ86cQWNjo7SsoaEhaDu3241t27ZBp9OhrKxMWj5z5kwAwObNmxXbb968GRzHYfTo0SGPbTab8fjjj8Nms2HNmjUoKChAr1698Morr6CmpgZPPvkkbDZb5ybYyowZMyAIgqIotNPpxJYtWzBkyBAUFhZG5TgEQRAEES+Khni9apyGRX7/rMQOJsVJ2gQNX0asz1W5d+9eVFdXAwAWLFiAtLQ0HD16FMuXL8fixYtxzz33AABeeeUVtLS0YOTIkcjPz0ddXR127NiBs2fP4qGHHoLRaJSOMXDgQFx77bXYsmULBEHAqFGjcPDgQezatQt33XVXm+7RjRs3orq6Gr/97W8VSRwDBgzAiy++iMceewxbt27F/PnzOzVHABgyZAhmzpyJN954A42NjSguLsbWrVtRVVWFJ598siOnlyAIgiASSo/LcnDr6mnQGHgYsyj2PJYwojxjIYlYuHAhqqqqVNe9//77KCoqwoEDB4LE3s6dO7F582acOnUKTU1NMBqNGDRoEG6++WZMmTIlaF9utxt/+tOf8Mknn6C2thaFhYWYP38+Fi5c2Ob43G43Kisr0adPH9X1P/zwA/r27dtm+ZVw5ujD4XBIvXEtFgv69u2LJUuWYMKECW2Osz182bhvvvmm5NYmCIIgCCJ1SFqxR8QHEnsEQRAEkdp06Zg9giAIgiAIom1I7BEEQRAEQaQwJPYIgiAIgiBSGBJ7BEEQBEEQKQyJPYIgCIIgiBSGxB5BEARBEEQKQ2KPIAiCIAgihSGxRxAEQRAEkcKQ2CMIgiAIgkhhSOwRBEEQBEGkMCT2CIIgCIIgUhgSewRBEARBECkMn+gBEInF4XAAAM6cOZPgkRAEQRAEESmlpaXQ6/VtbkNir5tTVVUFAPjP//zPBI+EIAiCIIhIefPNNzFo0KA2t2FEURTjNB4iCWlsbMSXX36JoqIiaLXaqO77zJkz+M///E/8x3/8B0pLS6O672SH5k5zp7l3L7rz/GnuiZ07WfaIdsnKysLs2bNjeozS0tJ23zpSFZo7zb270Z3nDnTv+dPck3fulKBBEARBEASRwpDYIwiCIAiCSGFI7BExIzc3F4sXL0Zubm6ihxJ3aO409+5Gd5470L3nT3NP/rlTggZBEARBEEQKQ5Y9giAIgiCIFIbEHkEQBEEQRApDYo8gCIIgCCKFIbFHEARBEASRwlBRZSLqOJ1OvPXWW9i+fTvMZjP69euHJUuWYPz48YkeWrtYrVasX78eFRUVOHr0KMxmM55++mnMnTs3aNsff/wRv/vd73D48GHwPI9Jkybh4YcfRlZWlmI7j8eD9evX4x//+Afq6+tRUlKCu+66C7NmzerwPqPN0aNHsXXrVhw4cABVVVXIyMjA0KFDsWTJEvTq1atDY+wK8/Zx+vRpvP322zh+/Djq6+uh1+tRWlqKRYsWYfLkyR0aa1eav5x3330Xf/jDH9CnTx/87//+r2Ld4cOH8frrr+P777+HyWTCzJkzsXTpUhiNRsV2kdwDwt1nLDhw4ACWL1+uum7dunUYOnRoxOPsKnP3cfz4cbz99ts4fPgwnE4nevbsiRtuuAG33HJLxOPsKnP/zW9+g61bt4Zc/+GHHyI/Pz+icSb73Ckbl4g6zz33HD799FPceuutKCkpwSeffIJjx47h1VdfxYgRIxI9vDa5ePEibrvtNhQWFqJnz544cOCAqtirrq7Gvffei7S0NCxYsAA2mw3r169HYWEhfv/730Oj0Ujb/v73v8d7772HG264AZdddhk+++wzfPHFF/j1r3+Nq666qkP7jDbPPPMMDh8+jJkzZ6Jfv36oq6vDxo0bYbPZsG7dOvTt2zcl5+3jiy++wIcffoihQ4ciLy8Pdrsdu3fvxqFDh/D4449j3rx5KT1/+VjuuusuMAyDHj16KMTeiRMn8MADD6C0tBTz5s1DdXU13n//fYwePRovv/yyYj/h3gMi2Wcs8Im9BQsWYPDgwYp1EyZMkMR2Ks4dAL788ks8/fTTGDBgAK688koYDAacP38eoijigQceSNm5f/fdd7hw4YJimSiKWL16NXr06IF333039eYuEkQUOXLkiDh16lTxL3/5i7TMbreLt99+u3j//fcncGTh4XA4xNraWlEURfHo0aPi1KlTxS1btgRtt3r1anHWrFliVVWVtGz//v3i1KlTxY8++khaVl1dLc6cOVNcs2aNtMzj8YgPPfSQePPNN4tutzvifcaCQ4cOiU6nU7Hs7Nmz4lVXXSU+//zzEY+xq8y7Ldxut/izn/1MvPPOO6VlqT7/X//61+Ly5cvFRx55RLz77rsV6x5//HHxpptuEi0Wi7Tsn//8pzh16lRx37590rJI7gHh7jNWfPPNN+LUqVPFXbt2tbldKs7dYrGIN954o7hy5UpREISQ26Xi3NX49ttvxalTp4rvvvuutCyV5k4xe0RU2b17NziOkywhAKDT6XDdddfhyJEjuHTpUgJH1z5arTas4pi7d+/GFVdcgcLCQmnZuHHj0KtXL+zatUta9tlnn8HtdmP+/PnSMoZhcNNNN6GmpgZHjhyJeJ+xYPjw4UEWpF69eqGsrAxnzpyJeIxdZd5twXEcCgoKYLFYpGWpPP+DBw9i9+7deOSRR4LWtbS04KuvvsLs2bNhMpmk5ddccw0MBoNinOHeAyLZZzywWq1wu91By1N17uXl5aivr8fSpUvBsixsNhs8Ho9im1Sduxrl5eVgGEYKs0i1uZPYI6LKiRMnUFJSovghA5BcJCdPnkzEsKJKTU0NGhoaVJteDx48GCdOnJD+PnHiBAwGA0pLS4O2862PdJ/xQhRFNDQ0IDMzE0D3mLfNZkNjYyPOnz+PDRs2YN++fRgzZkzEY+1q8xcEAa+++iquu+469OvXL2j9qVOnIAhC0Dg1Gg0GDBgQNPdw7gGR7DPWvPDCC5gzZw6uvvpqLF++YwnOyAAADQhJREFUHMeOHZPWpercv/rqK5hMJtTW1uLOO+/ENddcg7lz52L16tVwOBwRj7MrzT0Qt9uNXbt2YdiwYSgqKop4nF1h7iT2iKhSV1enahnzLautrY33kKJOXV0dAIScZ3NzM5xOp7RtdnY2GIYJ2g7wn49I9hkvduzYgZqaGlx55ZURj7Grzvu1117DvHnzsGjRIvzP//wPpk6dikcffTTisXa1+X/00Ue4dOkSlixZorq+vXHKr+tw7wGR7DNW8DyP6dOnY9myZfjNb36De++9F6dOncLDDz+M77//PuJxdqW5nzt3DoIgYOXKlZgwYQJWrVqFa6+9Fh999BFefPHFiMfZleYeyJdffommpiZcffXV0rJUmztl4xJRxeFwqAaUa7VaaX1XxzeH9uap1WrDPh+R7DMenDlzBmvXrsXQoUMxZ86ciMfYVed96623YsaMGaitrcWuXbsgCAJcLlfEY+1K829qasIf//hH3H333SGzf9sbp1yQRmvu8RC5w4cPx/Dhw6W/p0yZghkzZuBnP/sZ3njjDbzyyispO3ebzQa73Y4bb7xRykiePn06XC4XPv74Y9xzzz0pO/dAysvLwfM8Zs6cKS1LtbmTZY+IKjqdTno4yvH9iHU6XbyHFHV8cwhnnuGej0j2GWvq6urw5JNPwmQyYdWqVeA4LuIxdsV5A0BpaSnGjRuHOXPm4KWXXoLNZsNTTz0FURRTdv5/+MMfkJ6ejgULFoTcpr1xysVotOYeL4EfSElJCaZMmYIDBw5AEISUnbtvDPLMcABSzNqRI0dSdu5yrFYrPvvsM0yYMEEKWQFS7zdPYo+IKrm5uZKpWo5vWV5eXryHFHV8JvhQ88zIyJAu2tzcXNTX10MMqHAUeD4i2WcssVgseOKJJ2CxWPDKK68ovq9UnncoZsyYgWPHjqGysjIl519ZWYl//vOfuOWWW1BbW4uLFy/i4sWLcDqdcLvduHjxIpqbm9sdZ+DvJJx7QCT7jDcFBQVwuVyw2+0pO3ffGHJychTLs7OzAQBmszll5y7ns88+g91uV7hwgcjG2RXmTmKPiCr9+/fHuXPn0NLSolheUVEhre/q5OfnIysrC8ePHw9ad/ToUcUc+/fvD7vdrshoBYLPRyT7jBUOhwNPPfUUKisr8eKLL6KsrEyxPlXn3RY+t4vFYknJ+dfW1sLj8eDVV1/FbbfdJv1XUVGByspK3HbbbXjnnXfQp08fcBwXNE6Xy4UTJ04EzT2ce0Ak+4w3Fy5cgFarhcFgSNm5+5IEampqFMt9cWNZWVkpO3c5O3bsgMFgCCqenmpzJ7FHRJUZM2ZAEAR8/PHH0jKn04ktW7ZgyJAhivISXZnp06fj888/V5SS+frrr1FZWamI+5gyZQp4nsfGjRulZaIo4qOPPkJ+fj6GDRsW8T5jgSAIePbZZ3HkyBE899xzinHJSbV5+2hoaAha5na7sW3bNuh0Okn4ptr8+/Tpg//6r/8K+q9Pnz4oLCzEf/3Xf+G6665DWloaxo0bh+3bt8NqtUqf37ZtG2w2m2Kc4d4DItlnrGhsbAxadvLkSezduxfjx48Hy7IpO3ffMTZv3qxYvnnzZnAch9GjR6fs3H00Njbiq6++wrRp06DX6xXrUm3ulKBBRJUhQ4Zg5syZeOONN9DY2Iji4mJs3boVVVVVePLJJxM9vLD48MMPYbFYJFP73r17UV1dDQBYsGAB0tLScNddd+HTTz/FL37xC9xyyy2w2Wz461//ir59+yq6bRQUFODWW2/FX//6V7jdbgwePBj/+te/cOjQITzzzDNSPByAsPcZC1577TXs3bsXV1xxBcxmM7Zv365YP3v27IjG2FXm7eOVV15BS0sLRo4cifz8fNTV1WHHjh04e/YsHnroIamNUarNPysrC1OnTg1a/sEHHwCAYt2SJUvw0EMP4ZFHHlFU/h8/fjwuv/xyabtI7gHh7jNW/PrXv4ZOp8OwYcOQnZ2NH3/8Ef/85z+h1+vx85//PKXnPnDgQFx77bXYsmULBEHAqFGjcPDgQezatQt33XWX5FJMxbn72LlzJwRBCHLhRjrOrjB3apdGRB2HwyH1CLRYLOjbty+WLFmCCRMmJHpoYbFw4UJUVVWprnv//felOkynT58O6mf60EMPBcXAeDwe/OUvf8HHH3+Muro6lJSU4M4775QElJxw9xltli1bhoMHD4Zcv2fPnojH2BXm7WPnzp3YvHkzTp06haamJhiNRgwaNAg333wzpkyZ0qGxdqX5B7Js2TI0NTUF9cY9dOiQ1NPTaDRi5syZ+PnPfx7U0zOSe0C4+4wFf/vb37Bjxw6cP38eLS0tyMrKwtixY7F48WKUlJR0aJxdZe6A13r9pz/9CZ988glqa2tRWFiI+fPnY+HChR0aZ1eaOwA88MADuHDhAv7+978rXsA6Ms5knzuJPYIgCIIgiBSGYvYIgiAIgiBSGBJ7BEEQBEEQKQyJPYIgCIIgiBSGxB5BEARBEEQKQ2KPIAiCIAgihSGxRxAEQRAEkcKQ2CMIgiAIgkhhSOwRBEEQBEGkMCT2CIIgCIIgUhgSewRBEAlg2bJlmDZtWqKH0S6ffPIJpk2bJv337LPPdmg/r7/+umI/f/zjH6M7UIIgQsInegAEQRBdnUhFm7zXcFdhypQp6N+/P/r27duhz48bNw5arRZVVVXYunVrlEdHEERbkNgjCILoJIsXLw5a9re//Q0Wi0V1HQD8n//zf2C322M7sCgydepUzJ07t8OfHzduHMaNG4cDBw6Q2COIOENijyAIopPcc889Qcu2bt0Ki8Wiug4ACgsLYz0sgiAIACT2CIIgEsKyZctw8OBBhUv3k08+wQsvvICnn34aGRkZePfdd3Hq1Cmkp6fj2muvxT333AOWZfHJJ59gw4YNqKysRFZWFhYsWIBFixYFHUMURWzZsgWbN2/GqVOnIAgCysrKcNNNN+G6666Lyjxqa2vx3nvv4d///jdqamqg1WqRk5ODUaNG4f7770daWlpUjkMQRMchsUcQBJFk7NmzB/v378fUqVMxfPhwfPHFF3j33XchiiLS0tLw7rvvYsqUKRg1ahT27NmDdevWITs7G3PmzJH2IYoiVq1ahfLycpSUlGDWrFnQaDTYv38/XnrpJfz444946KGHOjVOu92Ohx56CFVVVRg/fjymTZsGl8uFixcvYvv27bj99ttJ7BFEEkBijyAIIsnYt28fXnvtNQwePBiA1028aNEifPDBBzAajXjrrbfQs2dPAMDtt9+OO+64A+vXr1eIvU2bNqG8vBzXXnstHn/8cfC893bvcrnwzDPP4P3338esWbMwaNCgDo/z66+/xsWLF3HrrbfikUceUayzWq3SMQmCSCxUeoUgCCLJmD17tiT0AMBoNGLSpEmw2+246aabJKEHeGP/hg8fjjNnzsDtdkvL//73v8NgMODRRx9ViC6NRoOlS5cCAMrLy6MyXp1OF7TMaDRCq9VGZf8EQXQOeu0iCIJIMvr37x+0LDc3t811giCgoaEB+fn5sNvtOHXqFPLy8vDee+8FbS8IAgDg7NmznRrnyJEjkZubi/feew8nT57EFVdcgVGjRqG0tBQMw3Rq3wRBRA8SewRBEEmGyWQKWsZxXLvrfJY9s9kMURRRU1ODd955J+RxOlv6JS0tDa+//jreeustfP755/j3v/8NACgoKMCdd96J+fPnd2r/BEFEBxJ7BEEQKYZPEA4aNAhvvvlmTI9VWFiIlStXwuPx4IcffsD+/fvx4YcfYu3atUhPT8esWbNienyCINqHYvYIgiBSDKPRiNLSUpw5cwZmszkux2RZFgMGDMAdd9yBX/3qVwCAvXv3xuXYBEG0DYk9giCIFOSWW26B3W7Hyy+/DJvNFrT+woULuHjxYqeOcfr0adTX1wctb2hoAABK0CCIJIHcuARBECnIvHnzcOTIEWzduhWHDx/GuHHjkJubi4aGBpw9exYVFRX41a9+haKiog4fY//+/Vi3bh2GDx+OXr16ISMjAxcuXMDevXuh1WopZo8gkgQSewRBECkIwzBYuXIlJk6ciE2bNuHzzz+HzWZDdnY2SkpK8OCDD2Ls2LGdOsaECRNQVVWFb7/9Fnv27IHNZkNeXh6uvPJK3HHHHSgrK4vOZAiC6BSMKIpiogdBEARBJCfyFm5z587t9P4OHDiA5cuXY/HixSH7BhMEEV0oZo8gCIJolxdeeAHTpk3Ds88+26HPv/7665g2bRqWL18e3YERBNEu5MYlCIIgQtK/f38sXrxY+rtv374d2s+4ceMUCRujR4/u7NAIgggTcuMSBEEQBEGkMOTGJQiCIAiCSGFI7BEEQRAEQaQwJPYIgiAIgiBSGBJ7BEEQBEEQKQyJPYIgCIIgiBSGxB5BEARBEEQKQ2KPIAiCIAgihSGxRxAEQRAEkcKQ2CMIgiAIgkhh/n/O3bLWojhfPgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# LCs: \n", + "# The plots below are normalized to the initial time.\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"crab_lc_3x.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],ls=\"-\",label=\"Combined\")\n", + "\n", + "df = pd.read_csv(\"selected_crab_lc_3x.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],ls=\"--\",label=\"Selected Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Time [s]\")\n", + "plt.ylabel(\"ct/s\")\n", + "plt.savefig(\"combined_lc_comparison.pdf\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0xUlEQVR4nO3dd3hUVeLG8e/MpPcGCSQh9ITQQUBAERRURFHXFQs/V1RA0bVXXLCisuoudkQWxF0rYkMpYhBReq8JoYWQUNN7nZnfHwODMQEhJDOT5P08j4/kzJ2ZdxCTl3vPPcdgtVqtiIiIiDRhRmcHEBEREXE2FSIRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWnyVIhERESkyVMhOgulpaUkJydTWlrq7CgiIiJSD1SIzkJqairjxo0jNTXV2VFERESkHqgQiYiISJOnQiQiIiJNngqRiIiINHkqRCIiItLkuTk7gIiINF1ms5mKigpnx5BGwN3dHZPJVOvnqxCJiIhTFBYWkp6ejtVqdXYUaQQMBgNRUVH4+fnV6vkqRCIi4nBms5n09HR8fHxo1qwZBoPB2ZGkAbNarWRkZJCenk6HDh1qdaZIhUhERByuoqICq9VKs2bN8Pb2dnYcaQSaNWvGgQMHqKioqFUh0qRqERFxGp0Zkrpyvn+WVIhERESkyVMhEhEROaGyspLnn3+euLg4unTpQo8ePRg/fjy5ubl18vpjxozhjTfeqPGxZ555hk8++aRO3uekd955hzFjxtTpazZWmkN0BgkJCSQkJFBYWOjsKCIi4gB33XUX2dnZrF69muDgYKxWK/PmzSM7O5ugoKB6fe8XXnihXl9fzkyF6AyGDh3K0KFDSU5OZty4cc6OIyLSqH37j5UU55XV2+v7BHpy3UsDT/v43r17+fLLLzl48CDBwcGAbV7KjTfeCMBrr73GnDlzMBqNdOvWjffee4/AwECee+45EhMTKSkpITk5mY4dOzJ16lQeffRRUlJS6N27N5988glGo+2izLZt2xgwYACZmZn079+f999/H29vb8aMGUOPHj146KGHeO6550hKSqK4uJh9+/YRERHBvHnzCAkJAeD1119n7ty5VFZW0rx5c2bMmEFMTAwFBQWMHTuWLVu20KxZMzp37lxvv5+NjS6ZiYiISyjOK6M4ux7/+ZOytWnTJjp06EBYWFi1xxYtWsTs2bNZuXIl27dvx9fXl6eeesr++IYNG/jvf/9LcnKyvZTMmzePxMREkpKSWLRokf3YtWvX8uOPP5KUlER2djbTpk2rMc/atWuZM2cOiYmJ9tID8Omnn5KcnMzq1avZtGkTo0eP5t577wVsZ5k8PT3ZtWsXCxYs4Ndffz3n/w5Nlc4QOdGh7Zns+jmNsDYBhLUNJKx1IJ5+7s6OJSLiFD6Bni77+gkJCdx00032y2YTJkywnzkCuPzyy+1nlXr16oWnpyf+/v4A9OzZkz179tiPHTVqlP2xu+66i7feeounn3662nteeeWVhIaGAtC/f3+2b98OwLfffsv69evp3bs3YFvT6aSlS5cybdo0DAYDgYGB3Hrrrezbt6/Wn7spUSFyoiNJ2aSsPUrK2qP2sYBwH0LbBBDWJpBmbQMJbR2Ap69Kkog0fme6nOUIvXr1Ys+ePWRlZdmLyOn88RZvLy8v+69NJlO1rysrK8/6tU73midfw2q1MnHiRMaPH3/GjGd6balOl8ycKPtgQbWx/GPFpKw5yvrPkln40jr+Ny6BuQ8v5+e3trDth/0c3plFebH2/RERqWvt27fnhhtu4K677rLfVWa1Wvnqq69o27Ytc+fOJT8/H4AZM2Zw+eWX1+p95s2bR2FhIWazmQ8//JChQ4ee0/Ovu+463n//fbKzswHbIpebN28GbHNfP/zwQ6xWK/n5+Xz22We1ytgU6QyREw19uCe5h4vITMkjc38+mSl5ZB3Ix1xhqXJc/rFi8o8Vs3/NEftYQISP7QxSm0CatQ0gNCYADx+dSRIROR+zZ89mypQp9OvXDzc3NywWC4MGDeKf//wnxcXF9O/fv8qk6tro06cPV1xxBRkZGfTv35+HHnronJ4/evRosrKyGDJkCGBbKuDOO++kZ8+eTJ48mbFjxxIXF0ezZs246KKLKCurv4nqjYnBql31/tTJu8xmzpxJbGxsvb6XxWwh99DJkpRHZko+WanVS1JNAlv42uYjtQkk7MTlNg9vdV4RcT2lpaWkpKTQpk2bKpeGRGrrfP9M6aelizGajIS08ieklT8dL4kCwFJpIedwob0gZe7PI/tgQbWSlHekiLwjRexbdeJMkuFkSbKdRQprYytJ7l76zy4iIvJ7+snYABjdjIS2CiC0VQCxg21jlkoLOemFZKbkkbE/j6yUfLIO5mOp/N0JPyvkHS4i73AR+1Yeto0ZIKilrSTZzyTF+KskiYhIk6afgg2U0c1IaOsAQlsHEDskGgBzpYWc9AL7fKTMlHyyU/OxmKuWpNxDReQeKmLvCltJMhggsKXfiTlJAbZ/xwTg5nnuuwWLiIg0RCpEjYjJzUhYa9t6RvC7kpRWYL/clrE/j5y0giolyWqF3EOF5B4qZM9vhwBbSQqK8jt1JqlNgEqSiIg0WipEjZzJzWgvNSeZK8xkpxVWmbidnVaA9Q8lKSetkJy0Qvb8eqIkGQ0ERfrZ5yOFtQ0kpJU/bh4qSSIi0rCpEDVBJncTzdraFn7kMttYZbmZnLQCMk7e2ZaSR3Z6YdWSZLGSk1ZATloBu5efKknBUX62lbZP3OGmkiQiIg2NCpEA4OZholm7IJq1C7KPVZabyT5YYJ+PlLk/j5z0QqyWqiUp+2AB2QcL2P2LbcxgMhAS5XdijSRbUQpp5Y/JXSVJRERckwqRnJabh4nm7YNo3j7IPlZZbiY7Nd8+HykzJZ/c9AJ+v5qV1WwlK7WArNQCdv+SDoDRZCA42v/EpbYTZ5Ki/VSSRMSlfP3117z00kuYzWZKS0tp2bIlCQkJ9p3qT8dgMJCTk2Pf6+xcvfHGG9x8881ERESc83Mfe+wx/Pz8eO6556o9VllZyUsvvcRnn32Gm5sbbm5u9O3bl1dffbXWWf9ozJgx9OjRo8YFJp955hliY2MZPXp0nbwXwDvvvMOGDRuYM2dOnb0mqBDJOXLzMNG8QzDNOwTbxyrLzGSl5lc5k5R7qLBKSbKYrWQdyCfrQD7Jy2xjJ0vSybNIYW0DCY72x+SmHWVExPGOHDnC+PHj2bhxIzExMQBs2rTJIfuBvfHGGwwePLhWhehM7rrrLrKzs1m9ejXBwcFYrVbmzZtHdnZ2nRWiM3nhhRfq/T3qigqRnDc3TxPhHYMJ73iqJFWUVpJ9sMC+RlLG/jxyDxfCaUrSSUY3AyGtAuwFKaxNAMFRKkkiTcV/j/3C/44t/9PjOvlE8Vb7u6qMPbB3FknF6TUef1v4JfwtfPAZX/PYsWOYTCZCQkLsY7169bL/es+ePTz00EMcP36csrIyxo8fz9///vdqr3Om41avXs3jjz9OQUEBVquVF198ka1bt3L48GFuuukmvL29mTNnDp07d2by5Mn8/PPPlJeX07FjR2bMmEFwcDBHjhxhzJgxpKWl0bJlS8LCwoiLi6uWY+/evXz55ZccPHiQ4GDb92eDwcCNN95oP+a1115jzpw5VbYjCQwM5LnnniMxMZGSkhKSk5Pp2LEjU6dO5dFHHyUlJYXevXvzySef2M+cbdu2jQEDBpCZmUn//v15//338fb2rnL26LnnniMpKYni4mL27dtHREQE8+bNs/9+v/7668ydO5fKykqaN2/OjBkziImJoaCggLFjx7JlyxaaNWtG586dz/jfsbZUiKReuHu51ViSsg7YLrfZziblkXu4qGpJqrTa7nzbnwdL0wBbSQptFWBfIymsTSDBUX4YVZJEGp0icynHK/L+9LiIyqBqYzmVhad9bpG59E9fs1u3blx00UXExMRwySWXMGDAAG699VYiIyMxm83ccsstfPzxx8TFxVFcXMyFF15Iv3796NOnj/01znRcu3btuO6665g3bx4XX3wxFouF3Nxcrr32WmbPns0XX3xBjx49AHj55Zfx9fVl3bp1ALz44otMmjSJd999lwceeIC+ffvy448/cujQIXr06FFjIdq0aRMdOnQgLCysxs+7aNEiZs+ezerVqwkKCmL8+PE89dRTTJ8+HYANGzawceNGgoKCGDx4MGPHjuWnn37C29ubCy64gEWLFjFixAgA1q5dy5o1a/Dx8eG6665j2rRpPP3009Xec+3atWzcuJHQ0FBuvvlmZsyYwcSJE/n0009JTk5m9erVmEwm/ve//3HvvfeyYMECXnjhBTw9Pdm1axf5+fn238+6pkIkDuPu5UZEXAgRcaf+9lVeUkl26qn5SJn788g7Wr0kZey3rci960RJMrnbtjgJ+/3ltkg/jCaVJJGGzNfkRXP3wD89LtjNr8ax0z3X1/Tne1sZjUa++uordu3axfLly1m0aBEvvfQSGzZsoLy8nJ07d3LzzTfbjy8oKCAxMbFKIUpOTj7tccePHyc2NpaLL77Y/n6/Pxv1e99++y15eXl89dVXAJSXl9O6dWsAli5dyuuvvw5AZGQkI0eO/NPPVpOEhARuuukm+6WzCRMmVDl7dPnll9vPLPXq1QtPT0/8/f0B6NmzJ3v27LEfO2rUKPtjd911F2+99VaNhejKK68kNDQUgP79+7N9+3b7512/fj29e/cGbMXypKVLlzJt2jQMBgOBgYHceuut7Nu3r1af+UxUiM4gISGBhIQECgsLnR2l0fLwrqEkFVfY5iT9bsXtvCNFVZ5nrrCQsS+PjH2n/jZocjcSGvP7y22BBEX6qiSJNCB/Cx/8p5e2TuePl9BqKy4ujri4OO6++26uvPJK5s+fzxVXXEFISAhbtmw543OtVutpj1uwYMFZZ7Barbz99ttcfvnlf3rs6eY49erViz179pCVlWUvIefyOr/fINVkMlX7urKy8pwzne41rFYrEydOZPz48eecs67oJ8UZDB06lKlTp3L//fc7O0qT4uHjTotOoXQd0YYhf+/Bjf8axN/+M5SrJvWl7+g42vZvQUCET7XnmSssHN+bS+JPB/l1xna+fmoFH931E/OfXc2qOYns/jWd7LQCLGZLDe8qIk3doUOHWLlypf3rnJwcUlJSaNeuHbGxsQQEBPDhhx/aH9+7dy/Z2dlVXuNMxw0YMIA9e/bw22+/AWCxWOzPDwgIIC/v1F/wTl52Ki4uBqC4uJidO3cCtp9Ns2fPBmwTwefPn1/j52nfvj033HADd911F7m5uYCteHz11Vfs37+foUOHMnfuXPLzbfM4Z8yYcVYFrCbz5s2jsLAQs9nMhx9+yNChQ8/p+ddddx3vv/++/fejoqKCzZs3A7bP++GHH2K1WsnPz+ezzz6rVcY/ozNE0iB4+LjTMj6UlvGn/pZTVlRhm5N08nJbSh75x4qrPM9cbuH4nlyO78m1j7l5mgiJ8aeZfYPbAAJb+mE01v+dJCLiuiorK3nhhRdISUnBx8eHyspKbr/9dq699loAfvjhBx566CGmTZuG2WwmLCyMTz/9tMpruLm5nfa4yMhIvvnmGx599FEKCgowGo28+OKLXHPNNTzwwAOMGzcOHx8f5syZw5NPPklZWRn9+vWznxF58skn6dy5M2+++SZjxowhPj6eyMhILr300tN+ptmzZzNlyhT69euHm5sbFouFQYMGcdlllzF8+HB27NhB//79q0yqro0+ffpwxRVXkJGRQf/+/Wu8Bf9MRo8eTVZWFkOGDAFs/y3uvPNOevbsyeTJkxk7dixxcXE0a9aMiy66iLKyslrlPBOD1fr7m6OlJsnJyYwbN46ZM2cSGxvr7DhyBmWFFWQeOFWQMvfnUXC85E+f5+ZpIrR1gH217bC2gQS28FVJEqknpaWlpKSk0KZNmyqXUURq63z/TOkMkTQqnn7uRHYJI7LLqbsqSgvLybIXJNu/CzKqlqTKMjPHknM4lpxjH3PzNJ0qSCf+HdjCF4NKkohIo6NCJI2el58HkV3DiOz6u5JUUE6m/XKbrSgVZlYvSUd35XB016mS5O5tsk3cPjFpO6xNAIERKkkiIg2dCpE0SV7+HkR1DSPq9yUpv9x+V1tGSh5ZKXkUZlZdu6Si5DQlqfWpfdvC2gQSEO6jkiRyFjRrQ+rK+f5ZUiESOcErwIOo7s2I6t7MPlaSX/a7+Ui2fxdl1VCSkrI5mnTqbhN3b7cq85EiOgbhG+rtsM8i4urc3d0xGAxkZGTQrFkzh2yPIY2X1WolIyMDg8GAu7t7rV5DhUjkDLwDPInu3ozo35ekvDL7IpKZKXlkpORRnF31joeKkkqOJGZzJNFWkgwG6HZNW3r/tYNW2BbBtgZNVFQU6enpHDhwwNlxpBEwGAxERUVhMtVu03AVIpFz5B3oSXSPZkT3OFWSinPL7NuRnDyTVJxzqiRZrbB1/n4O78hi8H3dCWzh64zoIi7Fz8+PDh06UFFR4ewo0gi4u7vXugyBCpFInfAJ8qRVz+a06tncPlacU0pmSj5HkrLZsfgAVrNtC5Jvnl5J/9s70fGSKF0mkCbPZDKd1w8xkbqic/ci9cQn2ItWvZrTb3Qc1z7f335WqLLMzG8f7ODnN7dQWlju5JQiIgIqRCIOEdY2kOteGkDskCj7WMq6o3zz1EoOJ2Y5MZmIiIAKkYjDuHu5cfG4rlz2UE88fW13QRRll7LwpXWs/zwZc6X2WBMRcRYVIhEHa9M3gr9MHUjLzif2ZTsx4fr759aQd6TIueFERJooFSIRJ/AN9Wb4xD70vSUWo8k2sTrzxITr5GVpWqxORMTBVIhcwLLcHaSVZeqHYBNjMBrodk1bRv5xwvXMHSx9c7MmXIuIOJBuu3ey3MoiHto3GwB/kzfxPlF08omis2808T7RRHqE6NbsRu7khOs1/9tF8rI0AA6sO8bxvbkMntD91KU1ERGpNypETpZYnG7/dYG5hLUFe1hbsMc+FmDyJt4nmnjfKO4Iv4wAN23/0BjZJlx3IbpHGL/N3EFZYQXF2WUsfHkd3a5uQ+8bO2LSCtciIvVG32GdLNIjhAktruCSwM40cw+o9ni+uYQ1Bbv579Ff8DRW7a+bCvazNGcbR8pzdLmtkWjdJ4K/TL2oyoTrbd+n8P2zq8k9XOjccCIijZjOEDlZjFcz7ml5hf3r4+V5JBank1icZvt3URpZlQW0826Bp7HqhnWfZaxgSc4WAILd/Ij3iSLeJ/rE5bYomrsH6nJbA+Qb4sXwiX3YvjCFDV/sxmK2kpmSz7f/WMWFt3UidohWuBYRqWsqRC6muUcgzT0CGRzUGbDt4Hu8Io+cyuq3YycVp9l/nVNZyMr8XazM32UfC3XzJ94niuvD+nFZcLf6Dy91xmA00O3qtrTsHMqyd7aSd6SIyjIzK/6zg7StGVw8tgte/h7Ojiki0mjokpmLMxgMhHsEEecTWe2xR6JGMi5iKAMCYgkyVd8sNKuygN/ykzhWkVdlvMhcyvTDi1meu5OMivx6yy7nL6xNINe/PJC4y6LtY6nrj/H1Uys4tCPTiclERBoXnSFqwC4N6sqlQV0B25mkI+U59kttO4vSSCxOI99cQmef6CrPSypO5/0jS+xfN3MPoLNPdJW720Ld/R36WeT03DxNXHRXF6K6NeO3mdttE65zylj0ynq6jmjDBaM04VpE5HypEDUSBoOBlp4htPQMYWhwd8BWkg6VZ9PcPbDKsb+/sw0goyKfX/J28kveTvtYuHsQXXyjeb3t7RgN+mHrClr3CadZ+0CWT9/G4R1ZYIXtP6RweEcWQ+7rTlCkn7Mjiog0WE3uJ92OHTu45JJL+Oijj5wdpd4ZDAaiPEPx+MPdaVcG9+TVNn9jTPgQ+vp3wN/kVe25xypy2V96rFoZ+uz4b/znSAKr8pPJrWFek9Qv32Avhj/Vh76j4+wrXGcdyOebf6xk19KDuttQRKSWmtQZIovFwjvvvENcXJyzozhVc49ArgjpwRUhPQCwWC2kl2Wx8+TdbUVpJBWnE/+HS20AczNWsb/0mP3rlh4htsttvlEn7nKLItCt+nwmqTsGo4FuI9oQ2TmUn9/ZQt7hIszlFlbM2kna1kzbhOsATbgWETkXTaoQff/993Tq1ImiIp3Z+D2jwUgrr2a08mrG8JCegK0kFVuqbh1RbC7jQOnxKmOHy7M5XJ7NT7lb7WORHiE8EX0dg4O61H/4Jiy0dQDXvzSQNR8nsWup7Y7D1A3HyNibyyUTuhHZNczJCUVEGg6XvGRWXFzM7NmzeeyxxxgxYgSDBg1i0aJFNR5bXl7O9OnTuf766xk6dCh3330369evr3ZcXl4eX375JXfeeWd9x28UjAYjfn+4lOZldOer+Cd4qfWtjG5+MT392uBlrH4m4lB5Nr5/eG5y8SGe2P9fPjq6jHUFeygwl9Rr/qbi5ITrYY/0wtPPtk5Vca5twvXaT3ZhrjA7OaGISMPgkmeI8vLymDNnDuHh4bRv357Nmzef9thXXnmFX375hRtvvJGoqCgWLVrEE088wZtvvkm3bqfW3pk5cyY33ngj/v66e6q2jAYjbb3DaesdztWhFwBgtlo4UHq8ykKSySWHqy0TsLkwhR9ztvDjiYUkAVp5NqOzTxSdfKPp7BNFnE9UtRImZyfmgnBuaBfI8ve3cWh7FgDbF6RweEcmQ/7eQxOuRUT+hEsWotDQUL755htCQ0PZtWsX48ePr/G4xMREli5dyoQJE7jlllsAuOKKKxgzZgzTp09n+vTpAOzevZtdu3bx8MMPO+wzNBUmg5F23hG0847gmtA+gK0kmf4wGXtX8aFqzz1YlsHBsgwW5dgKrwED/fw7MKPjPfUfvBHyCfbiyif7sGPxAdZ/noyl0kpWagHf/GMlF97WibhLo7XCtYjIabhkIfLw8CA09M93+F6+fDkmk4mRI0faxzw9PRkxYgQffPABx44dIzw8nC1btpCWlsYNN9wAQGFhISaTicOHDzNx4sR6+xxN1R/LEMCkmL9ya/OL7duS7CxKY3fJYcqtlfZjrFhr3Lz28f0f4W5wo7NPNPG+0cR6t8TH5Fmvn6GhMhgNdL2qDS3jQ1n27hZyD9kmXK+ctZP0LRlcPK6rJlyLiNTAJQvR2dqzZw9RUVH4+la9q6lTp04A7N27l/DwcEaOHMlll11mf/ytt96iRYsWjB49usbXzczMJCsry/51ampqPaRvWtwMJjr6tKSjT0uuoy8AFVYz+0qOnrizzVaUuvm2rvK8MksFP+fuoNJqZkH2RgCMGGjjFU5n3xOLSfpE09GnJd41zGdqqkJbB3DdlIGs/XQXST8dBCB143GO71vBJRO6EaUJ1yIiVTToQpSVlVXjmaSTY5mZtq0NvLy88PI6NTfF09MTb2/v084nmj9/PnPmzKn7wFKFu8FEnE8kcT6R/OU0P5/TyrKqjVmwsq/0KPtKjzI/yzaB3oSR/3S8l17+beszcoPi5mli4B2dieoWxm8fbKe0oIKS3DIWv7KeLle1ps9NHTG5m5wdU0TEJTToQlRWVoa7u3u1cQ8PD/vjNXn66afP+LojR45k4MCB9q9TU1OZMmXKeSSV2mrvHcHqHq+wt+QIO4vT7GeT9pYcoRKL/TgzFlp7Na/y3O8y1/Hx8eXE+9i2I4n3jaKjd0s8jdX/zDRmMb3DaTY1kOXvb+fQdttfEnYsPMDhnbYVroOjdKOBiEiDLkSenp5UVFRUGy8vL7c/XhthYWGEhemSgqvwMLoR72ubP3RSmaWCPSVH7AXpeEUeIe5V76TaXnSQ3SVH2F1yhG+z1gHghpF23i3o7BtFJ59oOvtE08G7RbXVvBsb24TrC9j54wHWfWabcJ2dWsC3/1hFv/+Lo9PQVppwLSJNWoP+KRAaGkpGRka18ZPzf1RqGi9PoztdfFvRxbcVNKv5mEJzCUYMWDi1nUUlFpJLDpFccghYC8CQwC680b7q+lQ13SnX0BmMBroMb0OLzqEse3sruYcKMVdYWPVhIulbM7l4fBe8AzRZXUSapgZdiE6uUVRUVFRlYnViYqL9cWm6pra9jWctN7G7+DA7i23bkewsSiOl9FiVkvTHNZMqrWYGb32GVp5h9ktt8T7RtPOOwN3Q8OfchLYK4LqXBrDuk10knphwfXDTcb5+aiWX3NOVqG6naZgiIo1Ygy5EgwcP5vPPP2f+/Pn2dYjKy8tZuHAh8fHxhIeHn9frJyQkkJCQQGFhYV3EFSfwNnrQ3a813f1a28eKzWUklxy2X27r69+hynNSSo9RYC5hZ3EaO4vTwDbtBg+DGx29W9oLUrxPFO28I3BrgCXJzcPEgDs6E9W9Gb9+sJ3S/HLbhOupG+gyvDUX3NQRN4+G97lERGrLYHXR7bG/+uorCgsLycrK4ttvv2XQoEF06GD7wXXDDTfg52ebL/Lss8/y66+/MmrUKCIjI1m8eDFJSUlMmzaNHj161EmW5ORkxo0bx8yZM4mNja2T1xTXtbFgHy8e/JIDpRlYOfP/Hku6PkO4R5D960JzKV5G9wZVkopzy/h1xjbSt2bax0Ja+TPk75pwLSJNh8sWolGjRnH06NEaH/viiy9o0aIFYLuTbNasWSxZsoTCwkLatm3L2LFj6du3b51lUSFqmgrNpewqTrdvSZJYnE5q2ak5a6Fu/izt9lyVycivpn3DVxlriPOJtK2R5Gu7w621V3OXnpNktVjZuSSV9Z8lY66w3b1ncjfSb3QcnYZpwrWINH4uW4hciQqRnFRgLmFX8SESi9KwYOWOiEurPD4m+W02F6ZUe16wmx9PRF/LVSG9HRW1VrIPFrDsnS3kpJ+6TBzdsxmDxnfFO1ATrkWk8XLdv7KKuCB/kzd9/Ntze8SQamUIbBvWRnlUXyw0p7KQiSmf8HTKJxSYSxwRtVZCWvlz7ZQBxF8RYx9L25zB10+tIG1r9Ts6RUQaC50hOoPfT6retm2bzhDJWcurLCKp+BA7i9PYULCXVfnJ9sdaeoTwdvuxtPeOcGLCP5e2+TjLZ9gmXJ/U+coY+twcqwnXItLoqBCdBV0yk/O1MHsjL6V+RaGllJYewcyNfwx/U/WNbF1NcV4Zv76/nfTfnR0KjrZNuA6J1oRrEWk8dMlMxAGuCunN3PjH6O3XlpfajG4QZQjAJ9CTK57oTf/bO2Fyt327yEkr4LtJq9j5Yyr6+5SINBYqRCIOEukZwqyO99HLr+oGtMfKc1mYvdFJqf6cwWCg8xWtuXbKAIKjbctdmCssrP4okSWvbaQkr+Y9A0VEGhIVIhEH+uPt6xarhUkHPmNiyidMTPnYtSdcR/tz7YsD6Pz7CddbMvjqyRWkbdGEaxFp2FSIRJxoRf4u1hXsAWBh9iZGJb7OpsL9Tk51em4eJvrfHs8VT1yAV4AHAKX55fz46gZWfZRIZbnZyQlFRGpHhUjEiQYFxjO1zW34m7wAOFyew13J7/Lu4UVUWl23XET3aMYN/7yI6B6n9j1L/DGV7yavIvtggROTiYjUju4yOwPddi+Ocrgsm38c+LTK2aFuvjG83GY00Z5hTkx2ZlarlaSfDrL2k11VVrjuc0ssna+I0QrXItJgqBCdBd12L45gtlqYfXQp0w//iBlbufAxejKx1V+4JuQCly4XOekF/Pz2VnLSTp0diurejEH3dMVHK1yLSAOgS2YiLsJkMDKuxTDmxN1PtKdttetiSxmTD3zG9uKDTk53ZsFR/lz7Yn+6DG9tH0vfmsHXT67g4ObjzgsmInKWVIhEXEw33xi+6PQo14baNii+IexCuvnG/MmznM/Nw8SFt3XiiicvwDvw1ITrJa9tZNUcTbgWEdemQiTignxNXrzQ+mbebHcnj0VdW+Uxq9Xq2hOuuzfjL1MvIrrn7yZcL0nlu0mryDqY78RkIiKnp0Ik4sIGB3XBx1R1Ds732Rv42663OFjqumv/eAd6cvljvRlwR/ypFa7TC5k/eTU7Fh3AatHURRFxLSpEIg1IWlkmrxz8mp3FaYxK+hffZq5z2e0zDAYD8cNiuO6lAYS0su17Zq6wsOZ/Sfz46gaKc7XCtYi4DhWiM0hISOCpp57i7bffdnYUEQBKzOWEuQfYfm0p59nUz3ki5b/kVxY7Odnp1TjhelsmXz+1goObNOFaRFyDbrs/C7rtXlxJsbmM19K/5evMtfaxcPcgXmpzK3382zsx2Z9L35bB8ve3U/K7s0Pxw1rRd3Qcbh4mJyYTkaZOZ4hEGhgfkyfPxtzEv9reToDJG4BjFbmM2z2dNw/9QIWl0skJTy+qWzP+MnUgrXo1t48l/nSQb/+xiqxUTbgWEedRIRJpoIYGd2de/OP09e8AgBUrs4/+zO3Jb3OoLNvJ6U7PO8CTYY/2qjLhOvdQId9NXsX2hSmacC0iTqFCJNKAhXsEMaPD3TwceTVuBtslp2PlufiYPJyc7MzsE65fHkhIjG3CtaXSytqPd7H4nxsozil1ckIRaWpUiEQaOKPByJiIS/lf7AO08WrOlDa3Euzm5+xYZyU40o9rX+hP1xFt7GOHttsmXKduPObEZCLS1KgQiTQS8b7RzIt/nP4BVSf+Z1UUsK5gj5NS/TmTu4l+o+O4cmIffIJsay6VFlTw0782sXL2TirLXHcRShFpPFSIRBqRk5fNTrJarTx74HPG736faenfu/aE665h/GXqRbTqfWrCdVLCQb6dtJKsA5pwLSL1S4VIpBFbmruN3/KTsGJlzrFl3Jb8FimlrnspyivAg2GP9GLgXZ0xeZyccF3Ed8+sYvsCTbgWkfqjdYjOICEhgYSEBAoLC9m2bZvWIZIGx2K18L/jv/LWoQX2/c+8DO48Hn0dN4RdiMFgcHLC08s5VMgv72whK7XAPhbZNZRB93TDN9jLiclEpDFSIToLWphRGrqk4nQmpnxMSumplaEvDerKszGjCHLzdWKyMzNXmNkwdw/bF6TYxzz93Bl0d1dieoc7MZmINDa6ZCbSBHTyieKzTo9wY9gA+9jPudv5a+JrrMnf7cRkZ3ZywvXwiX3wCbZNuC4rtE24XjFrhyZci0idUSESaSK8jR5Mivkrb7S7kyCT7axQRkU+d+95n6TidCenO7PIExOuYy44dVZo19I0vvnHSjIP5DkxmYg0FipEIk3MkKAuzOv8OBf6dwTgqpBedPKJcnKqP+fl78HQh3ty0e8mXOcdLmL+5NVs+2G/JlyLyHlxc3YAEXG8Zu4BTO8wnnmZaxge0rPa41ar1SUnXBsMBuIua0VEXAjL3t1K1oF8LGYr6z5NJn1bJpdM0IRrEakdnSESaaKMBiOjmg3A/8QGsSctydnCQ/tmk11R6KRkfy4o0o+RL/Sn2zVt4ERvO7wji6+fXMGB9a67rICIuC4VIhGxO1qewwupX/JL3k5uTHyNVfnJzo50WiY3I31vieOqp/tWmXCdMG0TK/6zg4pS112EUkRcjwqRiNgdLs/BzWD7tpBZWcCEPTN4Le07yl14heuWnUNtE677/G7C9c9pfPuPVWSmaMK1iJwdFSIRsevl15Z58Y8z4Hf7oX18fDmjd01jX8lRJyY7My9/D4Y+1JOLxnXBzdO2fUnekSLmP7Oabd9rwrWI/DkVIhGpIsw9gHfbj+OJqOtwP7E32u6SI9yS9G++OL4SV13L1WAwEDckmuteGkBYmwAA24Trz5JZ9Mp6irJLnZxQRFyZVqo+A23dIU3d7uLDPJXyMftKT50dGhQYz/MxNxPi7ufEZGdmrrSw8cs9bPthP5z4Dufp587F47rQuk+Ec8OJiEtSIToL2rpDmrJSSznT0n/g84wVAASZfJnX+XGauQc4OdmfO7wzi1+mb6U4u8w+Fjskigtv64S7l1YdEZFTdMlMRM7Iy+jBxFZ/4Z32Ywlx8+P51jc1iDIEpyZct+57asJ18rJ024Tr/ZpwLSKnqBCJyFm5ODCeH7o8zeCgLlXG8yuL2VNyxEmp/pyXnweXPdiTi/844frZ1WzVhGsROUGFSETOmq+p6irQVquVF1K/5NakaXx6/DeXnnAdOySa618eSFjbQMA24Xr9Z8ksfHkdRVklTk4oIs6mQiQitfZT7lZ+yt1KubWSf6Z9w9/3ziSrosDZsU4rsIUv1zx3Id1HtrWvcH0kMZuvn1pJyjrXXVZAROqfCpGI1NolgZ0Z3fxi+9cr8ndxQ+Jr/JqX6MRUZ2ZyM9Ln5liu+kdffENsZ7zKiipY+sZmfv1gu1a4FmmiVIhEpNY8je48EX0977UfR6ibPwA5lYXcv/c/vHLwa0ot5U5OeHot40O5fupA2vQ9dRv+7l/S+ebplWRowrVIk6NCJCLnbWBgJ76Mf4xBgfH2sc8zVnBr0hvsKTnsxGRn5uXnwaUP9mDQ+K72Cdf5R4ttE67n78OiCdciTYYKkYjUiVB3f95qdxdPR9+Ap8G2xs++0qPcmvQGe1142w+DwUDHwVFc//JAmp2YcG01W1n/+W5++tdGyosrnJxQRBxBhUhE6ozBYOCm5gP5tNMjdPRuAcBFgZ1o5xX+J890PvuE62vb2Sdcp23OYP6zq8k7WuTccCJS71SIRKTOtfeO4JO4hxnfYhjPxozCYDA4O9JZMboZ6XNTR4Y/1QdPX3cAcg8VMX/yag5tz3RyOhGpTypEIlIvPIxu3NdyOEFuvlXGf81L5OWDX1HiwhOuI7uGMfLF/gRF2rKXFVWw+J8b2LH4gMuutSQi50eb+ZzB7zd3FZHzl1VRwDMHPienspD1BXuZ2ub/iPWJdHasGgVG+DLy+f4se3craZszsFqsrPlvEtkHCxh4Rzwmd5OzI4pIHdLmrmdBm7uK1I0VeUk8um8OpVbbRGV3g4kHI69mdPOLMRpc84S1xWJl49zdbJ2/3z4W3jGYoQ/3xDvQ04nJRKQuueZ3IBFplC4K7MRnnR4h1tt2VqjCaub19O+4d+9MMirynZyuZkajgT43xzL4vu6Y3G3fMo/tzuHbSavIOuCamUXk3KkQiYhDtfUO5+O4B7k9fLB9bHV+Mn/d+Rq/5O5wXrA/0X5gS65+ph8+wbazQkVZpXz//Br2r3HdjW1F5OypEImIw3kY3XgkaiQzOtxDM/cAAHLNRTy4bzZTUue57ITrZu2CuG7KAJq1t61XVFlm5ue3trDxy91YtYijSIOmQiQiTnNhQEe+jH+MIYFd7GOLsjeRU+G6NzL4BHsxYlI/Olx8ajL45m/2kfDGZu2DJtKAqRCJiFMFu/kxrd0dTG51I14GdybF/JWWniHOjnVGbh4mBt3TlX6j4zi5xFLqhmPMf3YNBceLnRtORGpFhUhEnM5gMPDXZv35vsvTDA/pVeWxInMpx8tdb7NVg8FA1xFtuPyJC/Dwsa1gkpNWwLeTVnE4McvJ6UTkXKkQiYjLaO4RWG1sato3/DXxNX7O3e6ERH8uunszRr7Qn8AWJxZxLKxg0SvrSUo46ORkInIuVIhExGUl5GxlftZ68szFPLzvQ15InUuxuczZsaoJaunHyOf7E9UtDLBtDrty9k5Wzt6JpdLi5HQicjZUiETEZV3g357Lgrrav/4qcw23JE0jqTjdialq5unnzuWP96bLVa3tY0kJB1k0dT2l+a5515yInKJCJCIuK8jNl3+1HcOzMaPwMnoAcKDsOP+3600+PPozFqtrnX0xmoxc+H+dGHR3V4xuttnWRxKz+XbyKrIPFjg5nYiciQqRiLg0g8HAX8Iu5ItOj9DZJxqASquZNw79wN17ZnCsPNe5AWvQ8ZIoRkzqh3egrcQVZpQw/9nVHFh/zMnJROR0VIhEpEFo7dWcj2Lv586ISzFgO/uyrmAPf018jdTSDCenqy68YzDXTRlAWBvbwpOVZWYSpm1i8zd70RaSIq5HhUhEGgx3oxsPRl7NzI4TCHcPAqCLbyuiPUOdG+w0fEO9ufrZC2k3oIV9bOOXe/j57S1axFHExagQiUiD08e/PV/GP8pfwvrxQutbMBpc91uZm4eJwfd1p8/NHTlxYouUNUf54YW1FGaWODeciNi57ncREZEzCHTz5dmYm+x7oZ20rmAPs44kYHahCdcGg4HuI9sx7JFeuHuZAMg6kM+3k1ZxNDnHyelEBFSIRKQRya0s4h8pn/LW4YWM3z2do+WuVTZieocz8oX++Df3BqA0v5yFU9aS/Euak5OJiAqRiDQaa/J3k1GRD8CGwn38NfF1luRscW6oPwiO8ufaFwfQsrNt3pPFbOW3D3aw+r+JWMyuc1ZLpKlRIRKRRuPKkJ7M6ngvEScmXBeYS3h8/3955sDnFJlLnRvud7z8PbjyyQuIvyLGPrZzcSqL/7mB0kIt4ijiDAar7v88rYSEBBISEigsLGTbtm3MnDmT2NhYZ8cSkT+RX1nMiwfnVTk7FO0Zyitt/o+uvjGnf6IT7Po5jVUf7sRitn0rDgj3YdhjvQmO9HNyMpGmRYXoLCQnJzNu3DgVIpEGxGq18n32Bl45+DXFFtv+ZyaMTGh5BXdGXIbJhe5MO7orm4RpmygtqADA3dvEkL/3oFXP5k5OJtJ0uM53BBGROmQwGBgZ2oe58Y/S1bcVAGYs/OfoUo642GTriLgQrp0ykJBW/gBUlJhZ8vpGtn6/X4s4ijiICpGINGrRnmF8GHs/41sMw4iBJ6OvI8oFF3L0b+bNNc9dSOu+4bYBK6z/LJlf3ttGZbnZueFEmgAVIhFp9NwNJu5rOZwv4x/n+tB+VR4rtZRT6CITrt293LjsgZ70+mt7+9i+lYf54YW1FGW7RkaRxkqFSESajPbeERgMhipj/07/npsS/8W2wgPOCfUHBqOBXn/pwGUP9cTN07aIY+b+PL6btIrje3OdG06kEVMhEpEma3nuTr7IWEl6eRZjkt9hxpElLrPCdZu+EVzz3IX4hdkWcSzOLWPBi2vZ89shJycTaZxUiESkyWrnHUF339aAbcL1e4cXc9fudzlUlu3cYCeExgRw7ZT+RMQFA2CusLB8+jbWfroLi0WTrUXqkgqRiDRZUZ6hzI69jwktrsB4YufVzYUpjEp8nUXZm5yczsY7wJPhT/cl7tJo+9j2H1JY8tpGyosrnJhMpHFRIRKRJs3NYOKellfwYezfaekRAkChpZSnUj5mSuo8KqzOv8PL5GZk4F2dGXBHPAajrbilb83gu8mryTtS5OR0Io2DCpGICNDDrw1z4x/lqpBe9rEvM1dxz+73yat0fukwGAzED4th+MQ+ePq5A5B3pIjvJq8ifVuGk9OJNHwqRCIiJ/ibvHmlzf/xYutb8DC4AVBurcTL6OHkZKe07BzKtS8OIDjKtrVHeXElP/5zAzsWpWgRR5HzoEIkIvIHI0P7MCv2Pjr7RPPvdnfgaXR3dqQqAsJ9uOb5/rTqbdvaw2qFNf/bxW8fbMdc4fxLfCINkQqRiEgNuvnG8EncQzRzD6gynlVRgMUFbs338HZj2MO96HFdO/vY7uWHWDBlHcW5ZU5MJtIwqRCJiJzGHxdxzK8s5o7kd3hi//8oNju/dBiMBi4Y1ZEh9/fA5GH7dn58Ty7fTVpF5v48J6cTaVhUiEREzoLVamViyseklmXwU+5WxiS/zWEXWa+oXf8WXPPMhfiGeAFQlF3K98+vYd+qw05OJtJwnFMh+vjjj8nKyqqvLCIiLstgMHBT84vwNXoCkFxymFt3vcGmgv1OTmYT1jaQa6cMoHmHIMC2iOOyd7ay/ovdWLWIo8ifOqdCNHPmTG688UYmTpzIihUrMJs1eU9Emo5BgfF8HPcQrTzDAMipLGTcnul8lbHayclsfII8GTGpLx0GRdrHtn63j5+mbaK8pNKJyURc3zkVov/7v/8jJCSEVatWMWnSJG644Qbef/99Dh48WF/5RERcSlvvcD6Oe5AL/TsCUGk188LBL3nl4NeusYiju4lBd3flwtviODkF6uDG43z/7GryjxU7N5yICzNYz3HhCqvVytq1a1m4cCGrVq2ioqICg8FAly5dGDFiBEOGDMHLy6u+8jpFcnIy48aNY+bMmcTGxjo7joi4gEqrmWnp3/Px8V/tY339O/Ba278R5ObrxGSnpG/L4Oe3tlBebDs75OnnzmUP9qRl51AnJxNxPedciH4vPz+fJUuWsGjRIvbu3YvBYMDb25tLL72Uq666is6dO9dlVqdRIRKR0/kmcy1TDs6j8sTZoaejb+Cm5gOdnOqUvCNFLHl9o32LD4PRQP/bO9FpaKtqd9GJNGXnVYh+b/fu3SxYsIClS5dSUFCAwWCgVatWjBgxgptuuqku3sJpVIhE5Ew2F6bwyL4PuTCgIy+3Hu1yRaO8uIKf395K+tZTW3zEXRZN/9vjMbnpZmMRqMNCdFJFRQW//fYbc+fOJSkpCaPRyLJly+ryLRxOhUhE/syx8lwC3XxcapuP37NYrKz/PJntP6TYxyLigrnsoZ54B3g6MZmIa6jTvxpYrVY2bNjAsmXL2Lt3b12+tIiISwv3CKpWhtbk7+bplE8osZQ7KdUpRqOBfrfGccmEbpjcbd/6j+7K4btJq8lKzXdyOhHnc6uLFzl06BALFy5k8eLFZGVlYbVaad68OcOHD+eqq66qi7cQEWlQDpZm8Pj+j8g3l5BSeow32t1JuEeQs2PR4eJIAlv4kvDvTRTnllGYWcL3z63hkgndaNM3wtnxRJym1oWorKyMn3/+mYULF7J9+3asVivu7u5ccskljBgxgj59+rjUdfTXXnuNlStXUlpaSnh4OOPHj2fgQNeZ+CgijUt6eTaVJ/Y8SyxO55akaUxrdwfd/Vo7NxjQvH0Q104ZQMK/N5GxP4/KMjNL39hMrxva0/P69hiMrvO9W8RRznkO0Y4dO1i4cCHLli2jpKQEq9VKmzZtGDFiBJdffjmBgYH1lfW8pKam0qJFCzw8PEhKSuKRRx7h888/P6u8mkMkIrWxp+QwD+6dzaFy2xYf7gYTk1vdyLVhfZ2czKay3MxvM3ewb+WpLT5a9w3nknu64e5VJxcQRBqMc/oTf9ttt5GWlobVasXHx4cRI0YwYsQI4uPj6ytfnYmJibH/2mAwUFFRQWZmpssWOBFp+Dp4t+STTg/x+P7/sr5gLxVWM8+kfs7ukiM8HHU1bgaTU/O5eZgYfG83Qlr5s/7zZLDCgXXHyD+2hmGP9Ma/mbdT84k40jkVooMHD9K1a9d6X4CxuLiYzz//nMTERJKSkigoKGDixIkMHz682rHl5eXMmjWLJUuWUFBQQLt27Rg7dix9+vSpduy///1vFi5cSHl5ORdeeCFt27atl/wiIicFu/kxvcPdvJb2LV9krATg4+PL2Vd6lFfb3EaAm49T8xkMBrpf05bgKD+WvbOFihIz2akFfDd5FUMf6klEXIhT84k4yjlv7vrOO+8wfPjwel2NOi8vjzlz5pCamkr79u3PeOwrr7zC3LlzGTZsGA888ABGo5EnnniCbdu2VTv2kUce4ccff2TatGkuN8dJRBovd4OJp1vdwKRWf8XtxLfd1fnJjNs9HcuJeUbO1qpnc0a+MICAcFtBK80vZ+FL69j1c5qTk4k4xjkVoujo6GpjFRUVrF69mi+++IKPPvrIPl5WVkZOTg4Wy7n/zx4aGso333zDl19+yYQJE057XGJiIkuXLmX8+PHce++9jBw5kjfeeIOIiAimT59e43NMJhO9e/dm48aNrF7tGhsyikjTcGOzAXzQcQLBJ7b2uLvl5RgNrrMwYnCkHyNf7E/LLratPSxmKyv+s4NVcxKxVLpGcROpL+f1f+KKFSu48cYbmThxIu+99x4ffvih/bF9+/Zx/fXXs3Tp0nN+XQ8PD0JD/3yvneXLl2MymRg5cqR9zNPTkxEjRrBz506OHTt22ueazWYOHTp0ztlERM5Hb/92fBL3MM/GjOLSoK7OjlONl58HVz55AZ2vPDXvMnFJKov/uYHSAuevpyRSX2pdiLZv384zzzyDu7s7999/P0OHDq3yeHx8PJGRkSxfvvy8Q57Onj17iIqKwte36kaKnTp1ArAvDllYWMhPP/1EcXExlZWVLFu2jM2bN9O9e/caXzczM5Pk5GT7P6mpqfX2GUSk6Yn0DOEvYRdWG5+ftZ5SV1jE0WSk/9/iuXhcF4wm29SCwzuz+G7yKnLSC5ycTqR+1Pq+yo8++gg/Pz9mzpxJUFAQ+fnVVzqNjY0lKSnpvAKeSVZWVo1nkk6OZWZmArZJgz/88APTpk3DarUSGRnJ5MmT6dChQ42vO3/+fObMmVNvuUVE/mhuxkpeOvgVnx9fwbR2d7jEIo6xQ6IJbOlHwrRNlOaXU3C8hPnPrGbwfd2J6R3u7HgidarWhSgxMZHBgwcTFBR02mOaN2/OypUra/sWf6qsrAx3d/dq4x4eHvbHAXx9fXnzzTfP+nVHjhxZZdHG1NRUpkyZcp5pRURqll9ZwluHFgCwsziN0bveYFq7O+jqG/Mnz6x/EbHBXDdlAD/9exNZB/KpKDXz0783ccGojnQf2VY3p0ijUetLZhUVFfj4nPl20cLCwnr9n8XT05OKiopq4+Xl5fbHayMsLIzY2Fj7P79fw0hEpK4FuHkzq+N9tPQIBiCjIp87k9/l+6wNTk5m4xfmzTXPXkibC09s7WGFDV/sZtk7W6ksMzs3nEgdqXUhatmyJbt27TrjMTt37qRVq1a1fYs/FRoaSlZWVrXxk2NhYWH19t4iInUp1ieST+IeprefbX20cmslkw58yrT07zG7wK35bp4mLr2/B71HnZpqsH/1EX54YQ1FWSVOTCZSN2pdiC655BL7Nh41+eyzz0hJSeHSSy+tdbg/0759e9LT0ykqKqoynpiYaH9cRKShCHH3Y0aHe7jhdxOu5xxbxgN7/0OB2fmlw2Aw0PO69gx9uBdunrZVtjNT8vl20iqO7c5xcjqR81PrQnTzzTcTExPDq6++yiOPPMLGjRsBmD59On//+9+ZMWMG7du35y9/+Uudhf2jwYMHYzabmT9/vn2svLychQsXEh8fT3j4+U36S0hI4KmnnuLtt98+36giImfF3ejG5FY38nT0DZhOfItekb+L/0t6k7SyTCens2ndJ5yRz/fH78TWHiV55SyYspbdv6Y7OZlI7Z3z5q6/V1BQwLRp01i2bFmVBRgNBgNDhgzhkUcewd/fv1av/dVXX1FYWEhWVhbffvstgwYNst8VdsMNN+Dn5wfAs88+y6+//sqoUaOIjIxk8eLFJCUlMW3aNHr06FHbj1aFNncVEWdYV7CHx/Z9RJ65mAj3ID7t9DCh7rX7nlofSvPLSXhzM0eTsu1jXa5qTd9bYjGaXGfBSZGzcV6F6KS8vDx27dpFfn4+vr6+xMXFERJi2//GbDZjMp37BoajRo3i6NGjNT72xRdf0KJFC8B2J9nJvcwKCwtp27YtY8eOpW/futtNWoVIRJwlvSyLp1L+x6RWNxLnE+nsONVYKi2s/m8SSQkH7WNR3cIYcn8PPH2r3wUs4qpqXYi+/vrrP70cZjabef7553nhhRdqFc5VqBCJiDNZrdZqd+zmV5bgaXTD0+gapSPxp1RW/zcJq9n2IyWwhS/DHu1FUEs/JycTOTu1Pqf51ltv8csvv5z2cYvFwvPPP8+vv/5a27cQERGoVoYqrGYe3T+HsbvfI6Oi+qK4zhA/LIbhE/vg6WcraHlHipj/zGrStmQ4OZnI2al1IeratStTpkxh06ZN1R47eWZo+fLlXH/99ecVUEREqnoz/QfWFexhW1EqtyZNY2eRa+xI3zI+lOumDCA42nZWqLy4kiWvbWDbghTqYHaGSL2qdSGaOnUq0dHRTJo0iT179tjHLRYLU6ZM4ZdffuG6667jwQcfrJOgzqC7zETEFY0I7U2EexAAxyvyuCP5bRZlb3ZuqBP8m/twzXP9ibnAdpev1QrrPtnFr+9vp7JciziK6zqvSdVZWVlMmDCB8vJy3nvvPVq0aMHzzz/PsmXLuPbaa3nkkUfqMqvTaA6RiLiarIoCHtn3IVuKDtjH7oq4jL+3HI7R4Pw7vKwWK5u+3svmr/fax5q1D2TYw73wCfZyYjKRmp3X/zWhoaH861//wmKx8Oijj/Lss8+ybNkyrr766kZThkREXFGouz8zO97L9aH97GOzji7loX0fUmgudWIyG4PRQO+/duDSB3pg8rD9qMnYm8e3k1aRsS/XueFEanDef42Ijo7m1VdfJScnh19//ZWrr76axx9/vC6yiYjIGXgY3Xg2ZhRPRl9vX8Rxed5ObtvlOos4tr2wBdc8dyG+obazQsU5Zfzwwlr2rjzs5GQiVZ31bvdz5sw54+OdOnVi7969hIaGVjnWYDBw++231zafiIicgcFg4NbmF9PWK5zH939EvrmE/aXH+OTYrzzVqv52CjgXYa0DuXbKAJZO28yx3TmYKyz88u5WctIK6D2qI0Zj/W0CLnK2znoO0SWXXFK7NzAYznh7fkOgOUQi0hAcLM3gwX2z8Td585+O9+JhPOu/8zqEucLMyg8T2f3LqS0+ons2Y8h93fHwcY31lKTpOutCtGXLllq/SV1toeFoCQkJJCQkUFhYyLZt21SIRMTlFZpLKbNUuNQWH79ntVpJXJLKmv/twmqx/fgJivRl2KO9CYzwdXI6acrqZOuOxk5niESkIUspPca/07/nuZibXKYoHdqeyc9vbaGsqAIAT193Ln2gB5Fdw5ycTJqqc5pUPX78eD7++GNSUlLqK4+IiNSh/MpiHtw7m1/zEhm96w12FR9ydiQAIruGMfKF/gRF2s4KlRVVsPifG9ix+IAWcRSnOKdCVFZWxsyZM7njjju45ZZbePfdd9m6dav+8IqIuKhjFXkUW8oAOFKew+3Jb/NTzlYnp7IJbOHLyOf7E92zGWBbu2jNf5P4beYOzBVaxFEc65wvmR0+fJjffvuNlStXsn37dqxWKwEBAQwYMICBAwfSt29fPD096yuvU+iSmYg0ZMfL83h434fsKD61I/3dLS7nnhaXu8QijhaLlQ1f7Gbb9/vtY+Edgxn6cE+8AxvXzxNxXec1hygvL49Vq1axYsUKNmzYQGlpKZ6envTu3ZuLL76YAQMGEBQUVIdxnUOFSEQaujJLBS+kfskP2RvsY5cGdeWl1rfiY3KN0rF35WF++2A75goLAL6hXlz+aG9CWwc4OZk0BXU2qbqsrIz169ezYsUK1qxZQ05ODkajkc6dO3PRRRcxcOBAoqOj6+KtHE6FSEQaA6vVyn+PL+eN9O+xYPvW38G7BW+2u4tIzxAnp7PJ2JfLT//eRHGO7TKfm6eJQXd3pe2FLZycTBq7ernLzGq1smPHDvultfT09Aa5HpFuuxeRxmhFXhJP7v8fhRbbFh8hbn7M7zIRf5O3k5PZFOeU8tO0TWTszbOPXXBTR3pc286JqaSxc8ht9wcOHGDlypWMHj26vt+qXugMkYg0Nimlx3hw72xSyzJ4KPJq7oi41NmRqqgsN7PiPzvYu+LUFh89/9KeXje0x2DQytZS92o9m+6mm25i3rx5Zzzm66+/5uabb6Z169YNtgyJiDRGbbzC+TjuIR6NGsmY8CHOjlONm4eJSyZ0o8/NHe1jm7/ey8Yv9+jOZqkXtS5ER48epbCw8IzHFBYWcvTo0dq+hYiI1KMAN2/+Fj642hmXhJyt5FSe+fu7IxgMBrqPbMeFt3Wyj235dh/rP9+tUiR1rl7vtywqKsLdXfvTiIg0FKvyk3l8/3+5NekNdhe7xo70XYa3ZsCYePvX277fz9pPdqkUSZ06p53//rif2dGjR2vc48xisXD8+HF++umnBntnmYhIU2O2Wngt7VssWDlcns3fkt/i5TajuTSoq7OjEX95DAaTgZWzdgKwY+EBrGYrF/6tk+YUSZ04p0L04IMP2v/gGQwGFi9ezOLFi2s81mq1YjAYuPvuu88/pYiI1DuTwcj7He7moX2zSSxOp8RSzsP7PuTellcyPmKY04tHp8taYTQa+O0/O8AKO39MxWKxMuD2eAxGlSI5P+dUiG6//XYMBgNWq5WPPvqIHj161LiTvdFoJCAggJ49e9K6des6iioiIvUt3COID2P/zvOpc1mYvQmA9w4vZm/JEZ6PudnpizjGDonGYDLw64ztYIWknw5iNVsZeGdnlSI5L+dUiO688077r7du3crw4cO58sor6zyUiIg4j5fRg5dbj6aDdwveOrQQK1aW5GwltTSTN9vfSQuPYKfm6zgoCoPRwK/Tt2G1wq6f07BYrFw8totKkdRarSdVjx07lr1795KVlVXj45mZmbzzzjvs3Lmz1uGcLSEhgaeeeoq3337b2VFERBzKYDBwZ8RlvNnuTnyNtrNCySWHuCVpGlsLDzg3HNDhokgG39fdXoB2/5LOrzO2Y7FoorXUTq0L0RdffMHKlSsJDQ2t8fGwsDBWrVrF3Llzax3O2YYOHcrUqVO5//77nR1FRMQpLgnqzP/iHiTa0/a9vsxS4fTLZie1G9CSS+/vjsFkK0V7fjvE8ve2YjFbnJxMGqJaF6Jdu3bRrVu3Mx7TvXt3EhMTa/sWIiLiAtp5R/BJ3ENc6N+Rl9vYLqW5ijb9WnDZAz0wnihF+1Yd4Zd3t2GpVCmSc1PrQpSbm0tYWNgZjwkJCSEnJ6e2byEiIi4i0M2X9zvczZCgLlXGKyyV5FUWOSmVTes+EVz2UE+MbrZStH/NEX5+Z4tKkZyTWhciPz8/jh8/fsZjjh07hre3a2wWKCIi5+ePt91brVZeSfua0bveYG+Jc3cliOkdzrCHe2Fyt/1YO7DuGEvf2oJZpUjOUq0LUXx8PL/++ivHjh2r8fFjx47x22+/0aVLlxofFxGRhu3rzDV8lbmGtLIsbtv1Jr/kOvcmmuiezRn2yKlSlLrhGEvf2Iy5wuzUXNIw1LoQjRo1irKyMu677z4WL15MZmYmYLu7bNGiRdx7772Ul5dz00031VlYERFxHQMC44jzjgSg2FLGQ/tmM+tIglO31Ijq3ozLH+uNycP24+3gpuP89O/NVJarFMmZGazn8Sf3yy+/5L333rP/4T+5aOPJX99///385S9/qZukTpScnMy4ceOYOXMmsbGxzo4jIuIySizlPHPgc5bkbLGPXRnck+da34S30cNpuQ4nZrHktY1UltmKUGTXMIY92gs3D5PTMolrO69CBLBv3z6+++47du3aRWFhIX5+fnTq1Ilrr72Wtm3b1lVOp1IhEhE5PavVyn+OJvDO4UX2sXifKN5odyfhHkFOy3V0VzaL/7nBXopadg7l8sd64+apUiTVnXchagpUiERE/tyy3B08nfIJxZYyAELd/JnW7g66+7V2WqZju3NY/M/1VJTYSlFEpxCueLw37l7ntFGDNAG1nkMkIiLye0OCuvDfuPuJ9AgBIKuygPcOL3bqnKLwjsEMn9gXd29bATqaZDtrVF5S6bRM4pp0hugMEhISSEhIoLCwkG3btukMkYjIWcipLOTx/f/lUFkWn8Q9TIi7n7MjkbEvl0WvrKe82FaEmncI4sonL8DDx93JycRVqBCdBV0yExE5NxVWM8fL84j0DHF2FLvMlDwWvbKessIKAJq1C+TKp/rg6atSJLpkJiIi9cDdYKpWhnIri5iwZwYppTWvX1ffwtoEctU/+uLpZytAGfvyWPTyOkoLy52SR1yLCpGIiNS7CquZx/Z/xKr8ZP4v6U1+y3POPpehMQGMmNQPrwDbkgCZKfksemkdpQUqRU2dCpGIiNS7/Mpi+55nhZZS7t87izlHf3bKhOuQVv6MmNQX70BbKcpKLWDhS+soyS9zeBZxHSpEIiJS70Ld/fko9gGGBnUDwIqVaYd+4B8HPqXMUuHwPMFR/oyY1A+fIE8Asg8WsHDKOorzVIqaKhUiERFxCB+TJ6+1/RsTWlxhH1uQvZE7k9/leHmew/MERfoxYnI/fEJspSgnvZAFL66lOKfU4VnE+VSIRETEYYwGI/e0vIJ/tb0drxNbe+woPsitu6axvSjV4XkCW/hy9eR++IZ6AZB3uIgFU9ZRlK1S1NSoEImIiMMNDe7Of2Pvp6VHMAAZFfncmfyuU+5ACwi3lSK/Zt4A5B0pYsGLaynMKnF4FnEeFSIREXGKWJ9IPol7mN5+tn0vh4f0orVnc6dk8W/uw4hJ/fBvbitF+ceKWfDCWgoyVIqaChUiERFxmhB3P2Z0uIeHI69mUqu/YjAYnJbFv5k3V0/uR0C4DwAFGSUseHEtBceLnZZJHEeFSEREnMrd6MaYiEvxMFbdcHVt/h5SSzMcmsU31JsRz/QjsIUvAIWZJfzw4lryjxU5NIc4ngqRiIi4nJTSYzyy70NG73qDVfnJDn1v32AvRkzqS1CkrRQVZZXyw4tryTuiUtSYqRCdQUJCAk899RRvv/22s6OIiDQpbx5aQKGllAJzCfft+YC5GSsd+v4+wV5cNakfwdG2jWmLs8tY8OJacg8VOjSHOI42dz0L2txVRMSxisylPJ3yCb/k7bSPPRZ1LbeFX+LQHCX5ZSx6eT3ZBwsA8A704Kp/9CU4yt+hOaT+6QyRiIi4HF+TF9Pa3cGY8CH2sdfTv+Ojo8scmsM7wJOr/tGX0NYBAJTklbNgyjp7QZLGQ4VIRERcktFg5KHIq6usbP3vQ98z6+hSh+bw8vfgqqf7EtY2EIDS/HIWTFlLVmq+Q3NI/VIhEhERl2UwGLin5RXc13K4feytQwuYcWSJQ3N4+rkzfGIfmrWzlaKywgoWvrSOzBTHbzki9UOFSEREXN74FsN4IHKE/ev3Di8msSjNoRk8fW2lqHmHIOBUKcrYl+vQHFI/VIhERKRBuCviMh6JGgnAP1rdQLxvtMMzePi4c+VTfQiPtW05Ul5cycKX13N8T47Ds0jdUiESEZEG4/bwwczt9Cijmg10WgYPbzeufPICWsSHAFBRUsmiqes5mqxS1JCpEImISIMS6xNZbSypOB1HriLj7uXGFY9fQMvOoQBUlJhZPHU9R5KyHZZB6pYKkYiINGhLcrYwOukNXkv/1qGlyM3TxOWP9yayaxgAlWVmfnx1A4d3Zjksg9QdFSIREWmwjpbn8HTKJ5ix8Mnx33gl7WssVovD3t/Nw8SwR3sR1b0ZcKIUvbaBQ9szHZZB6oYKkYiINFgRHsE8EzMKAwYAvshYyUsHv3J8KXqkJ9E9baXIXG5hyesbSd/q2I1p5fyoEImISIM2MrQPU1rfgvFEKZqXuZoXUr90aCkyuZsY+nAvYi4IB8BcYWHJvzaStvm4wzLI+VEhEhGRBu/q0At4uc3/YTrxY+2brLU8m/oFZkeWIjcjlz3Qg9Z9baXIUmnlp39vInXjMYdlkNpTIRIRkUZheEhPprY9VYrmZ61n8oHPHFqKjG5GLv17D9pe2AIAi9lKwhubObD+qMMySO2oEImISKNxeXAPXm37N9xO/HhbkL2RF1LnOjSD0c3I4Pu60W5gSwCsZitL39zC/jVHHJpDzo0KkYiINCpDg7vxersxuBlMeBrcuCqkl8MzGE1GLpnQjQ6DbGsmWS1Wlr2zlX2rDjs8i5wdN2cHEBERqWtDgrowrd0duBlM9Avo6JQMRqOBQeO7YjAa2P1LOlaLlV/e3YrFYqXDRdUXlxTnUiESEZFGaVBgfLUxq9WKGQtuBpNDMhiMBi4e2wWj0cCun9OwWmH59G1YzVY6XhLlkAxydnTJTEREmowZR5bw0N7ZlFkqHPaeBqOBgXd2ptOwVrYBK/z6wXZ2LUtzWAb5czpDdAYJCQkkJCRQWFjo7CgiInKeZh9dyvQjPwLw8L4P+Xe7MXgZPRzy3gajgQFj4jGaDOxcnApWWDFzB1aLlU6XtXJIBjkznSE6g6FDhzJ16lTuv/9+Z0cREZHz1M03Bu8TBWhl/i4e3DubEku5w97fYDBw4W2d6DqijX1s5aydJC5JdVgGOT0VIhERaRIu8G/Pe+3H42P0BGBNwW7u3/sfis1lDstgMBjoe2ss3a5pax9bNSeRHYtSHJZBaqZCJCIiTUYv/7ZM7zAe3xOlaH3BXv6+d6bDS1GfmzvS47p29rE1/9vFth/2OyyDVKdCJCIiTUoPvza83/Ee/E1eAGws3M+EPR9QZC51WAaDwUDvGzvQ64b29rF1nyazdf4+h2WQqlSIRESkyenmG8OMDhPwN3kDsKUohQl7PqDAXOKwDAaDgV43dKD3jR3sY+s/383mr/c6LIOcokIkIiJNUmffaGZ2nECgyQeAw+XZ5FYWOTxHz+vb0+fmU4tHbpy3h43z9mC1Wh2epSlTIRIRkSark08UMztOoL1XBP/peC/RnmFOydF9ZDv6jo6zf735671s/FKlyJG0DpGIiDRpsT6RfBn/GEaDc88RdBvRBqPRwJr/JQGw5dt9WMwW+twci8FgcGq2pkBniEREpMn7YxmqtJp589APZFc4dmHeLsNbM2DMqS1Htn2fwtpPdulMkQOoEImIiPxOpdXMP1I+ZfbRnxm7+z2yKgoc+v7xl8cw8K7O9q93LDzAmv8mqRTVMxUiERGR38mqKGBToW1NoH2lR7lr97tkVOQ7NEOny1px8bgucOJK2c4fU1n1YSJWi0pRfVEhEhER+Z1wjyBmx95HhHsQACmlx7kr+V2Olec6NEfskGgG3d3VXoqSEg6yYtZOlaJ6okIkIiLyB9GeYcyKvY+WHsEApJZlMHb3ew4vRR0HRTF4QjdOzqlOXpbGbzO3Y1EpqnMqRCIiIjWI8gxlVsf7iPQIAeBgWSZ3Jr/L4bJsh+Zof1Ekg//eA4PR1op2Lz/EbzNUiuqaCpGIiMhptPQMYXbsfbQ6sT5RenkWd+1+l/SyLIfmaNe/BZfe3x2DyVaK9vx2iOXvbcVitjg0R2OmQiQiInIGER7B/KfjvcR4NgPgcHkO/0qf7/Acbfq14LIHemA8UYr2rTrCsne3YqlUKaoLKkQiIiJ/ItwjiFmx99HGqzlx3pE8FzPKKTla94ngsod6YnSzlaKUNUf5+Z0tmFWKzpsKkYiIyFlo5h7ArI73MaPjPQS6+TotR0zvcIY93AuTu+1H+IF1x/j5zc0qRedJhUhEROQshbr7E/SHMpRfWcyB0uMOzRHdsznDHjlVilI3Hidh2ibMFWaH5mhMVIhERERqKb+yhHv2zOCO5HfYU3LEoe8d1b0Zlz/eG5OH7Ud52uYMfvr3JirLVYpqQ4VIRESklt449D07i9PIrixk3O732F182KHvH9kljCueuAA3TxMA6Vsz+elfG1WKakGFSEREpJYeiryGLj6tAMipLGLs7vdIKk53aIaW8aFc+eSpUnRoexZLXttIRWmlQ3M0dCpEIiIitRTg5s37He+mm28MAHnmYsbvnk5iUZpDc0TEhTB8Yh/cvW2l6PDOLH5UKTonKkQiIiLnwd/kzfQOd9PDtw0A+eYSxu+ZzvaiVIfmCO8YzPCJfXH3dgPgaFI2i/+5gfISlaKz0SQKUXl5OVOnTuWvf/0rV155Jffccw87duxwdiwREWkk/ExeTO8wnt5+bQEoMJdyz+4ZbCs84NAczdsHcdU/+uLhYytFx5JzWDx1PeXFFQ7N0RA1iUJkNpuJiIjg3XffZeHChdx4441MnDiR4uJiZ0cTEZFGwsfkyTvtx9HHvz0AhZZS7tkzg70lRx2ao1nbQK76R188/dwBOL4nl0WvrKesSKXoTJpEIfL29mbMmDGEh4djNBq57LLLcHNzIy3Nsdd4RUSkcfMxefJ2+7Fc6N8RgAEBcbT2aubwHGFtbKXIy99WijL25bHo5XWUFpY7PEtD4ZKFqLi4mNmzZ/PYY48xYsQIBg0axKJFi2o8try8nOnTp3P99dczdOhQ7r77btavX3/G109LS6OgoIDIyMj6iC8iIk2Yt9GDN9vfyf0tr+KVtv+Hm8HklByhMQFcNakfXgEeAGSm5LPopXWUFqgU1cQlC1FeXh5z5swhNTWV9u3bn/HYV155hblz5zJs2DAeeOABjEYjTzzxBNu2bavx+LKyMqZMmcLo0aPx8/Orj/giItLEeRk9GNtiKO5/KEMVVseuDxQS7c+ISX3xDrSVoqzUAhZMWUdJfplDczQELlmIQkND+eabb/jyyy+ZMGHCaY9LTExk6dKljB8/nnvvvZeRI0fyxhtvEBERwfTp06sdX1lZyTPPPENkZCRjxoypx08gIiJS1cHSDK7fOZWVebsc+r7BUf6MmNQPnyBPAHLSClg4ZR3FeSpFv+eShcjDw4PQ0NA/PW758uWYTCZGjhxpH/P09GTEiBHs3LmTY8eO2cctFgtTpkzBYDDw9NNPYzAY6iW7iIjIHx0rz2Xs7umklWXx4L5Z/JaX6ND3D4r0Y8TkfviEnChF6YUseHEtxTmlDs3hylyyEJ2tPXv2EBUVha9v1Y32OnXqBMDevXvtY6+//jpZWVk8//zzuLm5nfF1MzMzSU5Otv+TmurYtSRERKRxCXH3p6uvbUXrCquZh/Z9yC+5Ox2aIbCFL1dP7odfmBcAeYeLWDBlHUXZKkUAZ24GLi4rK6vGM0knxzIzMwE4evQoP/zwAx4eHlXOJr366qt079692vPnz5/PnDlz6ie0iIg0Oe4GE1Pb3sY/Uj7hx5wtVFrNPLp/Dq+2uY3Lgrs5LEdAuC8jJvdjwZR1FGaUkHekiAUvruWqSX3xC/V2WA5X1KALUVlZGe7u7tXGPTw87I8DRERE8Ouvv571644cOZKBAwfav05NTWXKlCnnmVZERJoyd4OJl9uMxmQwsjB7E5VWM0/s/y9T297GsODqfzmvL/7NfBgxqR8LX1pLwfES8o8Vs+CFtVw1qR/+zZpuKWrQl8w8PT2pqKi+0FR5ebn98doICwsjNjbW/k9MTMx55RQREQFwM5iY0vpWrgm5AIBKLDy5/38syt7s0Bz+zby5enI/AsJ9ACjIKGHBi2spON50Fyxu0IUoNDSUrKysauMnx8LCwhwdSURE5IxMBiPPt76Z60L7AmDGwtMpH7Mga6NDc/iGejPimX4EtrDNwy3MLOGHF9eSd7TIoTlcRYMuRO3btyc9PZ2ioqr/8RITE+2Pi4iIuBqTwcizMaO4IexCACxYSSvLdHgO32AvRkzuR1CkrRQVZZWyYMpa8o40vVLUoAvR4MGDMZvNzJ8/3z5WXl7OwoULiY+PJzw8/LxePyEhgaeeeoq33377fKOKiIhUYTQYmdTqr4xqNoBxEcO4u8XlTsnhE+TJiEn9CI62LVZcnF3GghfXknuo0Cl5nMVgtVqtzg5Rk6+++orCwkKysrL49ttvGTRoEB06dADghhtusK8y/eyzz/Lrr78yatQoIiMjWbx4MUlJSUybNo0ePXrUSZbk5GTGjRvHzJkziY2NrZPXFBERATj5Y9jZ6+OV5Jex6OX1ZB8sAMA70IOr/tGX4Ch/p+ZyFJctRKNGjeLo0Zp3CP7iiy9o0aIFYLuTbNasWSxZsoTCwkLatm3L2LFj6du3b51lUSESERFHWpu/h9SyDEY1G+DQ9y0tKGfRK+vJOpAPgFeAB8Of7kNoqwCH5nAGly1ErkSFSEREHGVDwV7u2zOTUmsFT0Rfx+jmgxz6/mWFFSyaup7M/XkAePq5c9XTfQlt3bhLUYOeQyQiItLYbCjYR6nVtqTMq2nf8t9jvzj0/T393Bk+sQ/N2gcCtoK08KV1ZKbkOTSHo6kQiYiIuJC7W1xeZYL1v9Ln8+HRnx2awdPXneFP9aF5xyAAyopspShjX65DcziSCtEZ6C4zERFxNIPBwL0tr2RCiyvsY28c+oH/HElwaA4PH3eufLIPEXHBAJQXV7Lw5fUc35Pj0ByOojlEZ0FziERExBn+cySBtw8vtH89ocUV3NPyijM8o+5VlFay5PWNHEnMBsDd28QVT/QhIjbYoTnqm84QiYiIuKixLYbycOTV9q+nH/mRdw8vwpHnMty93Lji8Qto2dm2cXpFiZnFU9dzJCnbYRkcQYVIRETEhY2JuJTHoq61fz3ryFL2lh5xaAY3TxOXP96byK62LbEqy8z8+OoGDu+svn1WQ6VCJCIi4uJuC7+EJ6Ovx4SRl9qMpoN3S4dncPMwMezRXkR1bwacKkXp2x2/5Uh9UCESERFpAG5tfjHfdn6S4SE9nZbBzcPEsEd60qpXcwDMFRZ+en0jaVsznJaprqgQnYHuMhMREVfSyqtZtbFNBfsdOqfI5G7isod6EnOBbb9Qc4WFn/61kYObjzssQ31QITqDoUOHMnXqVO6//35nRxEREalmXsZq7tj9Di+nfYXFanHY+5rcjFz2QA/a9I0AwFJpJeHfm0jdeMxhGeqaCpGIiEgDlF6WxcsHvwJgbsYqphyc59BSZHQzMuT+7rTtb9tb1GK2kvDGZlLW1bwPqatTIRIREWmAojxDebH1LRgxAPBV5hqeS52L2ZGlyGRk8L3daDfQNsnbarby81tb2L/GsXfB1QUVIhERkQZqRGhvXmnzf5hO/Dj/Lmsdzxz43OGl6JIJ3egwKBIAq8XKsne2sm/VYYdlqAsqRCIiIg3YlSE9+Wfb23A78SP9h+wNTDrwKZVWs8MyGI0GBo3vSsfBUYCtFP3y7lb2rDjksAznS4VIRESkgRsW3J3X2t2Om8EEwMLsTUxM+YQKB5Yig9HAxWO7EHdZNABWKyyfvo3dy9MdluF8uDk7gCtLSEggISGBwsJCZ0cRERE5o0uDuvKvtmN4bP8cKqxmluRswcfowfOtb3ZYBoPRwMA7O2M0Gkj86SBY4dcPtmOxWIkbEu2wHLWhM0RnoNvuRUSkIRkc1Jlp7e7Aw+CGn9GLG5sNcHgGg8FA/zHxdL4yxjZghRUzd5CUcNDhWc6FzhCJiIg0IhcHxvNGuzvxN3nRxbeVUzIYDAYuvK0TRpOR7QtSAFg5eycWs5XOV8Q4JdOfUSESERFpZAYGxlUbs1qtVFjNeBgd86PfYDDQ99ZYDEYD277fD8DqjxKxmC10vaqNQzKcC10yExERaeSsVitT077hgX2zKLWUO+x9DQYDfW7uSI/r2tnH1n68i20/7HdYhrOlQiQiItLIvXV4AZ9nrGB1fjIP7J1FiYNL0QWjOtLrhvb2sXWfJrPlu30Oy3A2VIhEREQauUGBnfE1egKwtmAPf98zk2JzmUMz9LqhA71HdbB/veGL3Wz+eq9DM5yJCpGIiEgj19OvDe93uBs/oxcAGwr3cd/emRSZSx2b47r29Lm5o/3rjfP2sHHeHqxWq0Nz1ESFSEREpAno5teaGR3vwd/kDcCmwv3cu+cDCh1cirqPbEff0acmfW/+ei8b5jq/FKkQnUFCQgJPPfUUb7/9trOjiIiInLcuvq34oMM9BJwoRVuKDnDPnvcpMJc4NEe3EW248LZO9q+3frePdZ8lO7UUGazOrmQNQHJyMuPGjWPmzJnExsY6O46IiMh52VV8iLt3v0+uuQiAzj7RvN/hbgLcfByaI3FJKqvmJNq/vvC2OLoMd84t+TpDJCIi0sTE+UTyn9gJBLv5AVBgLqHUUuHwHPGXx3DRXZ0BCInxp/1FkQ7PcJIWZhQREWmCOni35D8d7+XF1Lm82vZvNPcIdEqOuMta4ennTotOoXj5ezglA6gQiYiINFntvSOYE3s/BoPBqTna9Gvh1PcHXTITERFp0v5Yhkot5bx0cB6ZFflOSuQcKkQiIiICQJmlgkf2zWFuxiruSn6P4+V5zo7kMCpEIiIiAkBOZSH7S48BcKDsOHftfo9j5bnODeUgKkQiIiICQIRHMLM63kdLjxAADpZlcNfudzlanuPkZPVPhUhERETsIj1DmB17H9GeoQCklWVxZ/K7HCrLdnKy+qVCJCIiIlW0OHGmqJVnMwAOlWdz1+53SS/LcnKy+qNCdAbaukNERJqqcI8gZnW8l9aezQE4Up7DXcnvcrA0w8nJ6ocK0RkMHTqUqVOncv/99zs7ioiIiMM19whkVuy9tPUKB+BoRS7vH1ni5FT1Q4VIRERETivMPYD/dLyX9l4RXODXjskxNzo7Ur3QStUiIiJyRqHu/vwn9l48De54G523vUZ90hkiERER+VPBbn74mDyrjGVU5LOn5IiTEtUtFSIRERE5Z5kV+Yzb/R5jk98jufiQs+OcNxUiEREROWdvHlpASulxcs1FjNs9naTidGdHOi8qRCIiInLOnoy+nh6+rQHIMxczbvd0dhQddG6o86BCJCIiIufMz+TFex3G09OvDQAF5hLu3v0+2woPODdYLakQiYiISK34mrx4r/14LvBrB0ChpZR79sxgS2GKk5OdOxUiERERqTUfkydvtx9LX/8OABRZypiw5wM2Fex3crJzo0IkIiIi58XH5Mlb7e/iQv+OABRbypiw9wNSSo85OdnZUyESERGR8+Zt9OCt9ncxMCAOgBEhvYg5sTlsQ6CVqs8gISGBhIQECgsLnR1FRETE5Xka3Xmj3Z18nbmGUc0GYDQ0nPMuBqvVanV2CFeXnJzMuHHjmDlzJrGxsc6OIyIi0uCUWMpdetuPhlPdREREpEFKKk7n6u0v8UvuTmdHOS0VIhEREak3aWWZ3L37fTIrC3h0/xx+zt3u7Eg1UiESERGRetPCI5gBAbbpJpVWM4/v+4iEnK1OTlWdCpGIiIjUGzeDiZfajObqkAsAqMTCE/v/x+LszU5OVpUKkYiIiNQrk8HIC61vZmRoHwDMWJiY8jELszc6OdkpKkQiIiJS70wGI8/H3MRfwvoBYMHKP1I+5fus9U5OZqNCJCIiIg5hNBiZ3OpGbgwbANhK0eQDn/Nt5jonJ1MhEhEREQcyGoz8o9UN3NzsIgCsWCm1lDs5lVaqFhEREQczGAw8FX09bgYjLT1CuLn5Rc6OpEIkIiIijmcwGHg8+jpnx7DTJTMRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWnyVIhERESkyVMhEhERkSZPhUhERESaPC3MeAYJCQkkJCRQWFjo7CgiIiJSj1SIzmDo0KEMHTqU5ORkxo0b5+w4IiIiUk90yUxERESaPBUiERERafJUiERERKTJUyESERGRJk+FSERERJo83WV2FsrKygBITU11chIRERE5VzExMXh5eZ3xGBWis3D06FEApkyZ4uQkIiIicq5mzpxJbGzsGY8xWK1Wq4PyNFi5ubmsW7eOFi1a4OHh4ew4TvH2229z//33OztGvWsIn9PZGR31/vX1PnX5unXxWrV9jdTUVKZMmcKkSZOIiYk5rwxSN5z9/6ajNITP+ceMOkNUR4KCgrj88sudHcOp/Pz8/rRdNwYN4XM6O6Oj3r++3qcuX7cuXut8XyMmJsbl/8w2Fc7+f9NRGsLnrE1GTaqWszJ06FBnR3CIhvA5nZ3RUe9fX+9Tl69bF6/l7P+eUneayn/LhvA5a5NRl8xERBqgk1sKnc3cCBH5czpDJCLSAIWGhjJmzBhCQ0OdHUWkUdAZIhEREWnydIZIREREmjwVIhEREWnydNu9iEgj9tprr7Fy5UpKS0sJDw9n/PjxDBw40NmxRFyO5hCJiDRiqamp9kVlk5KSeOSRR/j8888JDAx0djQRl6JLZiIijVhMTIx9hX2DwUBFRQWZmZlOTiXienTJTETERRQXF/P555+TmJhIUlISBQUFTJw4keHDh1c7try8nFmzZrFkyRIKCgpo164dY8eOpU+fPtWO/fe//83ChQspLy/nwgsvpG3bto74OCINis4QiYi4iLy8PObMmUNqairt27c/47GvvPIKc+fOZdiwYTzwwAMYjUaeeOIJtm3bVu3YRx55hB9//JFp06bRp08fDAZDfX0EkQZLhUhExEWEhobyzTff8OWXXzJhwoTTHpeYmMjSpUsZP3489957LyNHjuSNN94gIiKC6dOn1/gck8lE79692bhxI6tXr66vjyDSYKkQiYi4CA8Pj7NaeXr58uWYTCZGjhxpH/P09GTEiBHs3LmTY8eOnfa5ZrOZQ4cO1UlekcZEhUhEpIHZs2cPUVFR+Pr6Vhnv1KkTAHv37gWgsLCQn376ieLiYiorK1m2bBmbN2+me/fuDs8s4uo0qVpEpIHJysqq8UzSybGTd5EZDAZ++OEHpk2bhtVqJTIyksmTJ9OhQweH5hVpCFSIREQamLKyMtzd3auNn7y9vqysDABfX1/efPNNh2YTaah0yUxEpIHx9PSkoqKi2nh5ebn9cRE5NypEIiINTGhoKFlZWdXGT46FhYU5OpJIg6dCJCLSwLRv35709HSKioqqjCcmJtofF5Fzo0IkItLADB48GLPZzPz58+1j5eXlLFy4kPj4eMLDw52YTqRh0qRqEREX8tVXX1FYWGi//LVy5UqOHz8OwA033ICfnx/x8fEMGTKEDz74gNzcXCIjI1m8eDFHjx7lySefdGZ8kQZLu92LiLiQUaNGcfTo0Rof++KLL2jRogVgu5Ps5F5mhYWFtG3blrFjx9K3b19HxhVpNFSIREREpMnTHCIRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWnyVIhERESkyVMhEhERkSZPhUhERESaPBUiERERafJUiERERKTJUyESEamlQYMGVfmnrKzM/tiiRYsYNGgQixYtcmLCU7777rsqWV9++WVnRxJxKdrtXkSqOHLkCDfddNMZj4mIiGDu3LkOSuTaIiIiuPLKKwEwmUz1+l7r1q3jscceo0+fPvzrX/8647EvvPACCQkJTJ48mWHDhhEbG8uYMWMoLCxk3rx59ZpTpCFSIRKRGkVGRjJs2LAaH/Pz83NwGtcVERHBnXfe6ZD3uuCCCwgPD2fjxo0cO3aM8PDwGo8rLCzkt99+w8/Pj0GDBgEQFxdHXFwcR44cUSESqYEKkYjUKDIy0mE/6OXsGI1Ghg8fzpw5c1i8eDG33357jcclJCRQVlbGVVddhaenp4NTijRMmkMkIudt0KBBPPDAA2RnZ/PSSy9xzTXXMHToUO655x42b95c43OKi4uZPXs2f/vb3xg6dChXXXUVjz76KNu2bat27AMPPGCfozNz5kxuvvlmhgwZwuzZs+3HLF++nHHjxjF06FCuvfZaXn31VQoKChg1ahSjRo2yH/fiiy8yaNAgEhMTa8w1a9YsBg0aREJCwnn+rtTs+PHj3H777QwdOpRffvnFPp6Tk8Pbb7/NLbfcwmWXXcY111zDpEmT2L9/f5XnX3XVVRgMBhYtWoTVaq3xPRYuXAjAiBEj6uUziDRGKkQiUicKCwu57777OHDgAJdffjmDBg0iOTmZxx57rNoP9fz8fCZMmMCcOXPw9/fn2muvZdCgQezevZsHH3yQ3377rcb3mDx5MosXL6Znz5789a9/pUWLFgAsWLCAyZMnk56ezhVXXMGVV17Jzp07eeSRR6isrKzyGiNHjrQ/54/MZjMLFy4kMDDQfqmpLh04cIB7772X48eP89prrzF48GAADh06xNixY/nyyy9p2bIlf/nLX7jwwgtZt24dEyZMqFLeIiIi6N27N4cPH66xbO7fv59du3bRoUMHOnbsWOefQaSx0iUzEanRoUOHqpyB+b3OnTvTr1+/KmN79+7luuuu46GHHsJotP1dq1evXrz66qt8/fXXPPbYY/Zj33jjDVJSUnjiiSe4+uqr7eM5OTmMGzeO1157jb59+1a73JOVlcWHH35IQECAfaygoIC33noLb29vPvjgA6KjowEYN24cjz32GMnJyURERNiP7969O61bt2bp0qX8/e9/x9vb2/7YunXryMjI4MYbb8TDw+Ncf8vOaOfOnTz55JO4ubnx9ttv0759e/tjL730EtnZ2bz++uv07dvXPv63v/2NcePG8eqrrzJnzhz7+IgRI9iwYQMLFy6kV69eVd5HZ4dEakdniESkRocOHWLOnDk1/rN27dpqx3t7e3PPPffYyxDAlVdeiclkYteuXfax3Nxcli1bRq9evaqUIYDg4GBuueUWcnNz2bhxY7X3uOOOO6qUIYAVK1ZQUlLCVVddZS9DAG5ubowdO7bGzzZy5EiKi4tZunRplfEffvgBgGuuueZ0vy21snr1ah5++GH8/f157733qpSh3bt3s2PHDq644ooqZQggOjqaq6++mv3791c5y3bxxRcTGBjI8uXLKSoqso9XVlayZMkSPDw8TjshXkRqpjNEIlKjvn378vrrr5/18VFRUfj4+FQZc3NzIyQkhMLCQvvYrl27MJvNVFRU1HgGKj09HYDU1FQGDBhQ5bFOnTpVO37fvn0AdOvWrdpj8fHxNd4Kf8UVVzBjxgx++OEHeynLzs5m1apVdOnShdatW//Jpz17y5YtY/369bRr147XXnuN4ODgKo+fvByWk5NT4+/HwYMH7f9u27YtgL3wzJs3j4SEBK699loAVq5cSW5uLkOHDsXf37/OPoNIU6BCJCJ1wtfXt8Zxk8mExWKxf52fnw/A9u3b2b59+2lfr7S0tNpYSEhItbGTZ0j+WDTAdldWYGBgtXF/f3+GDBnC4sWL2b9/P23btmXRokWYzeY6Pzu0c+dOzGYz3bp1qzHjyd+P1atXs3r16tO+TklJSZWvR4wYwbx581i4cKG9EOlymUjtqRCJiEOdLE433XQT99133zk912AwnPb1cnJyqj1msVjIy8ujWbNm1R679tprWbx4Md9//z0PPvggCxYswNfXlyFDhpxTpj8zfvx4VqxYwbx58zCZTNU+88n8Dz74IDfccMNZv267du2Ii4sjKSmJlJQU/P39WbduHS1atKg2r0hE/pzmEImIQ8XFxWEwGNi5c2edvF67du0AajzblJSUhNlsrvF5nTt3pl27dvz000+sW7eO9PR0hg0bhpeXV53kOsnDw4OXXnqJ/v3788UXX/DOO+9UefzkZcDa/H6cPBO0YMECfvzxR8xms/22fBE5NypEIuJQoaGhDBkyhB07dvDZZ5/VuJZOYmJijZfManLRRRfh7e3NggULOHTokH28srKSWbNmnfG5I0eOJD8/n6lTpwJUm+RdVzw8PJgyZQoDBgxg7ty5vP322/bH4uPjiY+PZ+nSpdUmeYPtLNeWLVtqfN2hQ4fi5eXFkiVLWLhwIUaj0b6NiIicG10yE5Eanem2e4DRo0fXehXkRx55hLS0NKZPn86PP/5I586d8fPzIyMjg127dpGens4333xzVmdr/P39+fvf/85rr73GuHHjuPTSS/H19WXNmjV4eHgQFhZ22jMml19+Oe+//z6ZmZnExsbW67o97u7uvPjiizzzzDN8+eWXWK1WHnjgAQCeeeYZHnroIZ5//nnmzZtHhw4d8PT05Pjx4+zYsYO8vLwaF4r09fXlkksu4ccffyQ3N5d+/fqddjsPETkzFSIRqdHJ2+5P58Ybb6x1IQoICOC9997j66+/5ueffyYhIQGLxUJISAjt27fn9ttvr3Ey9Olcc801+Pv787///Y/Fixfj6+vLwIEDueeee7jxxhuJjIys8Xm+vr5cfPHFLFmypN7ODv3eyVL07LPPMm/ePKxWKw8++CAtW7Zk1qxZfPHFF/z2228sWrQIo9FIaGgo3bt3ty/gWJMRI0bw448/ArZVrEWkdgzW0639LiLSwKWnp3PrrbcyZMgQnn/++RqPuf322zl69Chff/31ae+UO51BgwbRo0cP3nrrrbqI6xBHjhzhpptu4sorr+Tpp592dhwRl6EzRCLS4BUUFODp6VlldemysjL7BOaLL764xuetWbOGlJQUrrnmmnMuQydt2bLFvs3HTz/95LKbqX733Xf861//cnYMEZelQiQiDd6WLVv45z//SZ8+fWjevDl5eXls2rSJo0eP0qtXLy699NIqx3/77bccP36cH374AQ8PD0aPHl2r9x0zZkyVr2taBNJVxMbGVsnboUMH54URcUG6ZCYiDV5aWhqzZs1ix44d5ObmAhAZGcmll17KzTffXO2szahRo8jIyCA6Opp77rmn2orYItL0qBCJiIhIk6d1iERERKTJUyESERGRJk+FSERERJo8FSIRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWny/h8iTCfCBJcjggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Spectrum\n", + "df = pd.read_csv(\"crab_spec_3x.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],ls=\"-\",label=\"Combined\")\n", + "\n", + "df = pd.read_csv(\"selected_crab_spec_3x.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],ls=\"--\",label=\"Selected Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Energy [keV]\")\n", + "plt.ylabel(\"ct/keV\")\n", + "plt.savefig(\"combined_spectrum_comparison.pdf\")\n", + "plt.show() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5: Dealing with memory issues\n", + "\n", + "Combining and binning data can be memory intensive. It's therefore recommended to use a work station with plenty of RAM if possible. If you're running into memory limitatons, a workaround is to use chunks. \n", + "\n", + "We can read the unbinned data in chuncks by specifying event_min and event_max:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preparing to read file...\n", + "Reading file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 16106/53383576.0 [00:00<04:04, 218242.46it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Stopping here: only reading a subset of events\n", + "Making COSI data set...\n", + "total events to procecss: 999\n", + "Initializing arrays...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Making dictionary...\n", + "total processing time [s]: 10.723071336746216\n", + "Number of photons in COSI dataset: 999\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.read_tra(event_min=0, event_max=1000)\n", + "print(\"Number of photons in COSI dataset: \" + str(analysis.cosi_dataset[\"TimeTags\"].size))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same thing can be done for binning the data in chuncks by specifying the event_range keyword:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG/CAYAAABxMSLLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdk0lEQVR4nO3deVxU5f4H8M+wiiyhA+KCl1AMQSMtl1xISNG8KGVoapebppBXgUxvPy3TW5pltmiSuWKZaYLdQrFcM3cr0zIJFMdrcrFkG1BZZ2Dm/P7gzolhQGaYMwWez/v1mpec53zPd87MCf32PM95jkIQBAFEREREZBW7P/sEiIiIiO4ELKqIiIiIJMCiioiIiEgCLKqIiIiIJMCiioiIiEgCLKqIiIiIJMCiioiIiEgCLKqIiIiIJMCiioiIiEgCLKqIiIiIJODwZ59AXT/++CNmz57d4L61a9eiV69e4nZGRgbWrVuHS5cuwdXVFeHh4YiLi0Pbtm2NjtNqtdi0aRMOHDiA0tJSdO/eHbGxsejfv7/Je5ibk4iIiKi+FlVUGURHRyMoKMiorUuXLuLPKpUKc+bMgZ+fHxISElBQUIDU1FRcu3YNb731ltFxy5Ytw5EjRzBhwgT4+vpi7969mDdvHlatWoWQkJBm5SQiIiKqr0UWVffddx/CwsIa3b9hwwa4u7sjKSkJrq6uAIBOnTrhzTffxOnTpzFgwAAAQFZWFg4dOoSZM2di8uTJAIBRo0Zh6tSpWLt2LdauXWtxTiIiIqKGtNg5VRUVFaipqTFpLy8vx5kzZzBy5Eix+AFqiyUXFxccPnxYbDt69Cjs7e0RFRUltjk7OyMyMhKZmZnIz8+3OCcRERFRQ1pkT9WyZctQWVkJe3t7hISEYObMmejZsycA4MqVK9DpdAgMDDQ6xtHRET169IBKpRLbVCoVfH19jQolAOLQ4uXLl+Hj42NRzvqKioqgVqvFbY1Gg8rKStx3331o06ZN874AIiIiCeXn5+PGjRtW5/H09ISPj4/1J3SHalFFlYODA4YNG4YHH3wQd911F65evYrU1FQkJCRgzZo1uOeee8QCRqlUmhyvVCrx008/idtqtbrROKC2IDLEmZuzvvT0dGzevNmk3flCZ9hVOt/m0/7BBOH3nxWKhtvr7/ujSHAOCrvfO10Fvd7aM2qUvqLCZrmJSJ4O6j+1af78/Hz8PSYaVRrrB6fatGmDjz/+mIVVI1pUUXXvvffi3nvvFbeHDh2KsLAwPP3009iwYQPefvttaDQaALW9SPU5OTlBq9WK2xqNptE4w/66f5qTs76oqCgMGTJE3M7JycHSpUtv+zmJiIj+KDdu3ECVxg4vJd6AXxfTaTXmyvnVAa+954kbN26wqGpEiyqqGuLr64uhQ4fi2LFj0Ol0cHau7f2prq42idVqtWLBBNTOn2oszrC/7p/m5KzPy8sLXl5eFnwiIiKiP17XLtUI6Gb675y59BCaDpK5Fl9UAUCHDh1QXV2NqqoqcYiu7jwmA7VabVTgKJVKFBYWNhgHQIy1JCcREVFrpBf00AnNnx6ht+JYuWixd//V9dtvv8HJyQkuLi7w9/eHvb09srOzjWKqq6uhUqkQEBAgtgUEBODatWsoLy83is3KyhL3A7AoJxERUWukh2D1i26vRRVVDd2ZcPnyZZw8eRL9+/eHnZ0d3Nzc0K9fPxw4cAAVdSYN79+/H5WVlQgPDxfbwsLCoNPpkJ6eLrZptVrs2bMHwcHB4piwJTmJiIiIGtKihv9efvllODs7o3fv3mjXrh2uXr2K3bt3o02bNpgxY4YYFxsbi/j4eCQmJiIqKkpc/bx///4YOHCgGBccHIzw8HBs2LABN27cQJcuXbBv3z7k5eVh/vz5Ru9tbk4iIqLWSIAAPZo/hCewp6pJLaqoCg0NxcGDB7Fjxw6Ul5fD09MTDz30EKZOnQpfX18xLjAwECtWrMC6devw3nvvoW3btoiMjDQqvAwWLFgAHx8f7N+/H2VlZejWrRuWL1+OPn36GMVZkpOIiKi10UGArv4SNhYeT7fXooqq8ePHY/z48WbFhoSEYM2aNU3GOTs7Y9asWZg1a5ZkOYmIiIjqa1FFFREREdmGYOVkcw7/NY1FFRERkQzoIFg1hMfhv6a1qLv/iIiIiFor9lQRERHJAIf/bI9FFRERkQzoBFh39x9rqiZx+I+IiIhIAuypIiIikgEBsGLpT3DwzwwsqoiIiGSAd//ZHosqIiIiGdAL1s2L0rOmahLnVBERERFJgD1VREREMqCHdXOqrDlWLlhUERERyYAeCuigsOp4uj0O/xERERFJgD1VREREMqAXrJtszonqTWNRRUREJAN6wMrhP2oKh/+IiIiIJMCeKiIiIhnQWTlR3Zpj5YJFFRERkQwIggJ6ofmFkWDFsXLB4T8iIiIiCbCnioiISAY4/Gd7LKqIiIhkoHbxz+YPUHHxz6axqCIiIpIBPaybU8WiqmmcU0VEREQkAfZUERERyQCf/Wd7LKqIiIhkQCfYQSc0f4DKmmPlgt8QERERkQTYU0VERCQDAhTQW9GXInD4r0ksqoiIiGSA61TZHof/iIiIiCTAnioiIiIZ0Fs5UV3PiepNYlFFREQkA3pYtyyCXrpTuWOx7CQiIiKSAHuqiIiIZEAPO+ggWHU83R6LKiIiIhmonVNlRVHFOVVNYlFFREQkA3or16niY2qaxrKTiIiISALsqSIiIpIBvaCATrDi7r9mHFtRUYGUlBRkZWXhwoULKC0txYsvvojRo0f/nlevx/79+3H06FGoVCqUlpaiU6dOePjhhzFp0iQ4Ozub5P3iiy+QkpKCvLw8eHt7Y/z48YiOjjaJKywsxOrVq/H9999Dr9ejb9++SExMROfOnZud83bYU0VERCQDOthZ/bLUzZs3sXnzZuTk5CAgIKDBmKqqKixbtgw3b97Eo48+isTERAQFBeHDDz/EvHnzINSbB7Zr1y68+eab8Pf3x+zZs9G7d2+sWrUK27ZtM4qrqKjA7Nmzce7cOcTExGDatGlQqVRITEzEzZs3m5WzKeypIiIiIptQKpVIS0uDUqnExYsX8cwzz5jEODo64v3338e9994rto0dOxYdO3bEBx98gLNnz6Jfv34AAI1Gg+TkZAwaNAivvvqqGKvX67FlyxZERUXB3d0dALBz505cu3YN69evR1BQEABg4MCBmDp1KlJTU8VzsSRnU9hTRUREJAMCFNALds1+NeeByk5OTlAqlbeNcXR0NCqoDEJDQwEAOTk5YtsPP/yAmzdv4rHHHjOKHTduHCorK/HNN9+IbUeOHEHPnj3FggoA/Pz8cP/99+Pw4cPNytkUFlVEREQyINXwX05ODrKzs8VXUVGRTc63uLgYAHDXXXeJbSqVCgDQs2dPo9jAwEDY2dnh0qVLAGrnaV25csUkDgCCgoLw66+/oqKiwqKc5uDwHxEREZlt6dKlRttTp07FtGnTJH+f7du3w9XVFQMHDhTb1Go17O3t0a5dO6NYR0dHeHh4QK1WAwBu3boFrVbbYC+Zoa2oqAh/+ctfzM5pDhZVREREMlB79591xwPAwoUL4efnJ7Y3NbzXHB9//DHOnDmDuXPnGs1n0mg0cHBouHRxcnKCRqMR44DawqihuLox5uY0B4sqIiIiGahd/NP6Byr7+fkhMDBQmpNqwKFDh5CcnIzIyEiTeU7Ozs6oqalp8DitVisuv2D4s7q6usG4ujHm5jQH51QRERFRi/D999/j9ddfx6BBg/DPf/7TZL9SqYROp0NJSYlRe3V1NW7duiX2mnl4eMDJyanBoTtDm5eXl0U5zcGiioiISAZqn/3X/Jetn/2XlZWFhQsXIjAwEIsXL25wSK5Hjx4AgIsXLxq1X7x4EXq9XtxvZ2eHbt26mcQZ3qdz585o27atRTnNwaKKiIhIBgzDf9a8bOXq1auYP38+OnbsiOXLlzc65Hb//ffDw8MDu3btMmrftWsX2rRpg0GDBoltw4YNw8WLF42Kpf/+97/48ccfERYW1qycTeGcKiIiIhmw/jE1zZvl/tlnn6GsrEwcdjt58iQKCgoAANHR0bCzs8Pzzz+P0tJSTJo0yWRdqM6dO6N3794Aauc/TZ8+HStXrsS//vUvDBgwAD/99BMOHDiAuLg4eHh4iMeNGzcOX3zxBebPn49JkybB3t4eO3bsQLt27TBp0iQxzpKcTWFRRURERDaTmpqKvLw8cfvYsWM4duwYAGDkyJEAIBZZ69evNzn+kUceEYsqoLZYcnBwQGpqKk6ePIkOHTogISEBEyZMMDqubdu2WLVqFVavXo0tW7aIz/5LSEiAp6enUay5OZvCooqIiEgGahfwbH5PlQ4Cfr8H0Hw7duxoMsZQZJlr7NixGDt2bJNxHTp0wJIlSyTNeTssqoiIiGRAEBTiWlPNO17Ck7lDcaI6ERERkQTYU0VERCQDOijE5/c173jLh/7khkUVERGRDAiwbq0pjv41jcN/RERERBJgTxUREZEM1A7/WXP3n+0W/7xTsKgiIiKSgdq7/6wY/uPtf03i8B8RERGRBNhTRUREJAMc/rM9FlVEREQyIAhW3v3H4b8msagiIiKSAZ2ggM6KokoncJ2qprToomrLli1ITk6Gv78/PvroI6N9GRkZWLduHS5dugRXV1eEh4cjLi4Obdu2NYrTarXYtGkTDhw4gNLSUnTv3h2xsbHo37+/yfuZm5OIiIiovhY7Ub2goABbt26Fi4uLyT6VSoU5c+agqqoKCQkJiIyMxO7du/Hyyy+bxC5btgw7duxAREQEnn32WdjZ2WHevHk4f/58s3MSERG1NgIU0FvxEjinqkkttqdqzZo1CA4Ohl6vx82bN432bdiwAe7u7khKSoKrqysAoFOnTnjzzTdx+vRpDBgwAACQlZWFQ4cOYebMmZg8eTIAYNSoUZg6dSrWrl2LtWvXWpyTiIioNdIJdlYO/7XYfpgWo0V+Q+fOncPRo0eRmJhosq+8vBxnzpzByJEjxeIHqC2WXFxccPjwYbHt6NGjsLe3R1RUlNjm7OyMyMhIZGZmIj8/3+KcRERERA1pcUWVTqfDqlWrEBkZie7du5vsv3LlCnQ6HQIDA43aHR0d0aNHD6hUKrFNpVLB19fXqFACgKCgIADA5cuXLc5JRETUGglQQC80/8Xhv6a1uOG/Xbt2IT8/HytXrmxwv1qtBgAolUqTfUqlEj/99JNRbGNxAFBUVGRxzvqKiorE4wEgJyen0VgiIqI/S+06VVYM/7GoalKLKqpu3ryJDz74AE899RQ8PT0bjNFoNABqe5Hqc3JyglarNYptLK5uLkty1peeno7Nmzc3up+IiIjkoUUVVcnJyXB3d0d0dHSjMc7OzgCA6upqk31arVYsmAyxjcXVzWVJzvqioqIwZMgQcTsnJwdLly5tNJ6IiOjPIPxvGM+a4+n2WkxRlZubi927dyMxMVEclgNqi5qamhpcv34drq6u4hBd3SE3A7VaDS8vL3FbqVSisLCwwTgAYqwlOevz8vK67X4iIqKWQA876K0Y/rPmWLloMd9QUVER9Ho9Vq1ahYkTJ4qvrKws5ObmYuLEidi8eTP8/f1hb2+P7Oxso+Orq6uhUqkQEBAgtgUEBODatWsoLy83is3KyhL3A7AoJxEREVFDWkxPlb+/P1577TWT9uTkZFRUVODZZ59F586d4ebmhn79+uHAgQOYMmWKuNr5/v37UVlZifDwcPHYsLAwpKSkID09XVynSqvVYs+ePQgODoaPjw8AWJSTiIioNdILtY+qseZ4ur0WU1R5enoiNDTUpP3TTz8FAKN9sbGxiI+PR2JiIqKiolBQUIDU1FT0798fAwcOFOOCg4MRHh6ODRs24MaNG+jSpQv27duHvLw8zJ8/3+h9zM1JRETUGumtnFNlzbFy0WKKKksEBgZixYoVWLduHd577z20bdsWkZGRmDFjhknsggUL4OPjg/3796OsrAzdunXD8uXL0adPn2bnJCIiam30gh30VqyKbs2xctHii6qkpKQG20NCQrBmzZomj3d2dsasWbMwa9asJmPNzUlERERUX4svqoiIiMh6eiisWsBTz8U/m8SiioiISAb0gnXzojhRvWkcICUiIiKSAHuqiIiIZECAdRPVBfbDNIlFFRERkQzoobBqXhTnVDWNZScRERGRBNhTRUREJAN6QWHliursqWoKiyoiIiIZqF1R3ZrFP1lUNYXDf0REREQSYE8VERGRDPDZf7bHooqIiEgGBCvv/hN491+TWFQRERHJAHuqbI9zqoiIiIgkwJ4qIiIiGRBg3d1/HP5rGosqIiIiGfgzhv8qKiqQkpKCrKwsXLhwAaWlpXjxxRcxevRok9irV69i9erVyMjIgIODAwYNGoSEhAR4enoan4dej5SUFOzcuRPFxcXw9fVFTEwMRowY8YfkvB0WVURERGQTN2/exObNm+Hj44OAgAD8+OOPDcYVFBQgMTERbm5uiIuLQ2VlJVJSUnDlyhWsX78ejo6OYuzGjRuxbds2jB07Fj179sSJEyewZMkSKBQKDB8+3KY5m8KiioiISAb+jGf/KZVKpKWlQalU4uLFi3jmmWcajNu6dSuqqqqQnJwMHx8fAEBQUBDmzp2LvXv3IioqCgBQWFiI1NRUjBs3DnPmzAEAjBkzBomJiVizZg3CwsJgb29vs5xN4UR1IiIiGRD+N/zX3JfQjOE/JycnKJXKJuOOHj2KwYMHi8UPAPTr1w9du3bF4cOHxbYTJ06gpqYG48aNE9sUCgUee+wxFBYWIjMz06Y5m8KiioiIiMyWk5OD7Oxs8VVUVGRVvsLCQpSUlCAwMNBkX1BQEFQqlbitUqng4uICPz8/kzjDflvlNAeH/4iIiGRAL1i31pReqP1z6dKlRu1Tp07FtGnTmp1XrVYDQIM9WkqlErdu3YJWq4WTkxPUajXatWsHhUJhEgdALPBskdMcLKqIiIhkQLDy7j/D8N/ChQuNenXMGd67HY1GAwBGE8cNnJycxBgnJydoNJom42yV0xwsqoiIiMhsfn5+DQ6rNZezszMAoLq62mSfVqs1inF2djY7Tuqc5uCcKiIiIhnQw7qJ6tbcOXg7hp4uw5BdXWq1Gh4eHmKvkVKpRHFxMQRBMIkDAC8vL5vlNAeLKiIiIhkwLKlgzcsWvL294enpiezsbJN9Fy5cQEBAgLgdEBCAqqoq5OTkGMVlZWWJ+22V0xwsqoiIiGTgz1hSwVzDhg3DqVOnkJ+fL7adPXsWubm5CA8PF9uGDh0KBwcHpKWl1flcAnbt2gVvb2/07t3bpjmbwjlVREREZDOfffYZysrKxOG0kydPoqCgAAAQHR0NNzc3xMTE4MiRI3juuecwfvx4VFZWYvv27ejWrZvRI206dOiACRMmYPv27aipqUFQUBCOHz+O8+fPY9GiRUaLdNoiZ1NYVBEREcmAXlAAf/Cz/wAgNTUVeXl54vaxY8dw7NgxAMDIkSPh5uYGHx8fJCUlYfXq1Vi/fr34nL74+Hhx7pPBjBkz4O7ujvT0dOzbtw++vr5YuHAhIiIijOJskbMpCqH+zCyySnZ2NuLi4uB8oTPsKs2/Y8Dm6l7mumtx1L/8ij/hKeQSnIPC7veRbEGvt/aMGqWvqLBZbiKSp4P6T22a3/DvksOMICg6uzY7j/BbOWrWX8DGjRslvfvvTsI5VUREREQS4PAfERGRDOgFBRQSLP5JjWNRRUREJAMCrJtTJdhoSYU7CYf/iIiIiCTAnioiIiIZEKCwsreJPVVNYVFFREQkA9YuqQBBweGtJvD7ISIiIpIAe6qIiIhkQBBgZU+VZKdyx2JRRUREJANSDP+Z/8AWeWJRRUREJAdWPhTZmjWu5IJzqoiIiIgkwJ4qIiIiGdDDyp4qLqnQJBZVREREMiAIps+vtyyBZKdyx+LwHxEREZEE2FNFREQkAwIU0FsxhGfH4b8msagiIiKSgdrhPyseqMzhvyZx+I+IiIhIAuypIiIikgG9oKhdALS5uE5Vk1hUERERyYC1d/9x+K9pHP4jIiIikgB7qoiIiGTBusU/wbv/msSiioiISAYEK5/9Z11BJg8sqoiIiGTA2onqfKBy0zinioiIiEgC7KkiIiKSAd79Z3ssqoiIiOTAyhXV+UDlpnH4j4iIiEgC7KkiIiKSAcHKJRUELqnQJBZVREREMiDAuhE8jv41jcN/RERERBJgTxUREZEMcPFP22NRRUREJAcc/7M5FlVEREQywJ4q2+OcKiIiIiIJtKieql9++QUffvghsrOzUVxcjDZt2sDPzw+TJ0/GkCFDjGKvXr2K1atXIyMjAw4ODhg0aBASEhLg6elpFKfX65GSkoKdO3eiuLgYvr6+iImJwYgRI0ze39ycRERErY6VK6pz+K9pLaqoysvLQ0VFBR555BF4eXmhqqoKR48exYsvvojnn38eUVFRAICCggIkJibCzc0NcXFxqKysREpKCq5cuYL169fD0dFRzLlx40Zs27YNY8eORc+ePXHixAksWbIECoUCw4cPF+MsyUlERNTacJ0q22tRRdWgQYMwaNAgo7bHH38ccXFx2LFjh1hUbd26FVVVVUhOToaPjw8AICgoCHPnzsXevXvFuMLCQqSmpmLcuHGYM2cOAGDMmDFITEzEmjVrEBYWBnt7e4tyEhERETWkxc+psre3R4cOHVBWVia2HT16FIMHDxaLHwDo168funbtisOHD4ttJ06cQE1NDcaNGye2KRQKPPbYYygsLERmZqbFOYmIiFolAYCgsOL1Z3+Als+snqrs7Gyr3uQvf/kLXFxczI6vrKyERqNBeXk5Tp48ie+++w7h4eEAanufSkpKEBgYaHJcUFAQvv32W3FbpVLBxcUFfn5+JnGG/SEhIRblrK+oqAhqtVrczsnJMftzEhER/VEEK+dUWTUfSybMKqqeeeYZKBTNH0t955138MADD5gd//777yM9PR0AYGdnh4ceekgcvjMUMEql0uQ4pVKJW7duQavVwsnJCWq1Gu3atTM5d8OxRUVFFuesLz09HZs3bzb7sxEREclFbm4uNm3ahIyMDNy6dQs+Pj4YMWIEJk2ahDZt2ohxGRkZWLduHS5dugRXV1eEh4cjLi4Obdu2Ncqn1WqxadMmHDhwAKWlpejevTtiY2PRv39/k/c2N6eUzJ5TNXbsWAQHB1uUvKKiAu+9957FJzVhwgSEhYWhqKgIhw8fhk6nQ3V1NQBAo9EAQIMTxw1Fj0ajgZOTEzQaTZNxluasLyoqyujOxJycHCxdutT8D0tERPRH+IMX/8zPz8eMGTPg5uaGcePGwcPDA5mZmfjggw+QnZ2NZcuWAagdNZozZw78/PyQkJCAgoICpKam4tq1a3jrrbeMci5btgxHjhzBhAkT4Ovri71792LevHlYtWoVQkJCxDhLckrJ7KIqJCQEERERFiW/efMmkpKSLD4pPz8/ccjukUcewdy5c/HCCy9g/fr1cHZ2BgCxyKpLq9UCgBjj7Oxsdpy5Oevz8vKCl5eX+R+OiIjoT/BHL/554MABlJWV4f3334e/vz+A2o4IvV6P/fv3o7S0FO7u7tiwYQPc3d2RlJQEV1dXAECnTp3w5ptv4vTp0xgwYAAAICsrC4cOHcLMmTMxefJkAMCoUaMwdepUrF27FmvXrhXf29ycUjNrovrSpUvRp08fi5O7urpi6dKlCAgIsPjYusLCwnDx4kXk5uaKQ3R15zEZqNVqeHh4iD1KSqUSxcXFEOoNBBuONRRDluQkIiKippWXlwMA2rVrZ9SuVCphZ2cHBwcHlJeX48yZMxg5cqRY/AC1xZKLi4vRjWJHjx6Fvb290d34zs7OiIyMRGZmJvLz88X3NTen1MwqqkJDQ+Ht7W1xcgcHB4SGhuKuu+6y+Ni6DMNzZWVl8Pb2hqenZ4OT5y9cuGBUwAUEBKCqqspk8nhWVpa4H4BFOYmIiFotwYrX/+Tk5CA7O1t8GeYn19e3b18AwPLly6FSqZCfn49Dhw5h165diI6OhouLC65cuQKdTmdyo5ijoyN69OgBlUoltqlUKvj6+hoVSsDvN59dvnwZACzKKTWzl1SIi4vDp59+2mBvjlRKSkpM2mpqarB//344Ozvj7rvvBgAMGzYMp06dEqtSADh79ixyc3PFuwQBYOjQoXBwcEBaWprYJggCdu3aBW9vb/Tu3VtsNzcnERFRa2QY/rPmBdSOXsXFxYkvw41l9Q0cOBDTp0/HmTNnMH36dEyYMAGLFy/G448/jsTERABN3yhWt2BTq9WNxgHm33zWWBEoBbPnVBUXF2P16tVYs2YN7r//fkREROChhx6SdBb922+/jfLyctx3333w9vaGWq3GwYMH8d///hfx8fHie8XExODIkSN47rnnMH78eFRWVmL79u3o1q0bRo8eLebr0KEDJkyYgO3bt6OmpgZBQUE4fvw4zp8/j0WLFokLf1qSk4iIqFWSaKL6woULjZYqaqh4MejUqRPuu+8+DBs2DB4eHvjmm2+wdetWtG/fHtHR0U3eKGaY1wxAspvP6uaUmtlF1WeffYZz587h4MGDOHbsGM6cOYMVK1Zg8ODBiIiIwMCBA+HgYN0C7Q8//DC+/PJL7Nq1Czdv3kTbtm0RGBiIf/zjHxg6dKgY5+Pjg6SkJKxevRrr168Xn9MXHx9vMvdpxowZcHd3R3p6Ovbt2wdfX18sXLjQZNK9JTmJiIjkys/Pr8F1Hes7dOgQ3nrrLWzbtg0dOnQAUDsqJAgC1q9fjxEjRjR5o1jdf3+luvnMlv+mW1QF9enTB3369MGcOXPw3Xff4auvvsKpU6dw5MgRuLu7IywsDCNGjMB9993XrJMZPny40fP4bsff3x/vvPNOk3F2dnaIiYlBTEyMZDmJiIhaH8X/XtYcb760tDT06NFDLKgMhgwZgr1790KlUjV5o1jdu+uVSiUKCwsbjAPMv/nMlnfsN+sxNQ4ODhgyZAhefvll7Nq1CwsWLEBQUBD27NmD2bNn44knnsCGDRukPlciIiJqLmsmqTdj6LCkpAR6vd6kvaamBgCg0+ng7+8Pe3t7kxvFqquroVKpTG4+u3btmnhXoUH9m88sySk1q5/916ZNG4wcORJvvvkm/v3vf2PIkCHIz8/HJ598IsX5ERERUSvUtWtXqFQq5ObmGrUfOnQIdnZ26N69O9zc3NCvXz8cOHAAFRUVYsz+/ftRWVlpdKNYWFgYdDqd0cR4rVaLPXv2IDg4WHx2ryU5pWbdJKj/yczMxFdffYXDhw+jpKQETk5OGDx4sBSpiYiISAp/8IrqkyZNwnfffYeEhAQ8/vjj8PDwwKlTp/Ddd99hzJgx4jBcbGws4uPjkZiYiKioKHH18/79+2PgwIFivuDgYISHh2PDhg24ceMGunTpgn379iEvLw/z5883em9zc0qt2UXV1atXcfDgQXz99de4fv06FAoF+vbti4iICAwbNsymz9YhIiIiCwmK2pc1x1ugT58+eP/99/Hhhx8iLS0Nt27dQqdOnRAXFyeuiA4AgYGBWLFiBdatW4f33nsPbdu2RWRkJGbMmGGSc8GCBfDx8cH+/ftRVlaGbt26Yfny5SYLlFuSU0oKof5y47dhWLjrq6++wpUrVyAIAnr06IGIiAgMHz6cj2sBkJ2djbi4ODhf6Ay7yoYfbfOnqHuZ6z5guv7lt+LB2c0mwTko7H4fyRYaGMOXir5OVzIRkRQO6j+1aX7Dv0vXx4ai2qv5i3E7Ft1Ep93HsXHjRrPu/pMjs3uqEhISkJmZCb1ej44dO+Jvf/sbIiIixAU5iYiIqGUzvxuFmsPsoionJwdjx45FREQE7r33XlueExEREUntD55TJUdmF1VpaWlWL+5JREREdKcyu0qqX1CVl5cjLS0NP/74I27cuIF//vOfCA4Oxq1bt7B3714MGTIEvr6+kp8wERERNYMAKyeqS3Ymd6xmdT0VFBTg2WefRUFBAXx9ffHf//4XlZWVAAAPDw+kp6cjLy8Ps2fPlvRkiYiIqJkEQMHhP5tqVlG1du1aVFRU4IMPPoCnpyceffRRo/1Dhw7FN998I8kJEhERkQQ4p8rmmrWi+vfff4/o6GjcfffdUDRw+3vnzp1RUFBg9ckRERERtRbN6qnSaDTw9PRsdH8F1/IhIiJqYaxc/NOqhzHLQ7N6qu6++2789NNPje4/ceIEevTo0eyTIiIiIon9wQ9UlqNmFVUTJkzA119/jW3btolPixYEAdeuXcPSpUuRmZmJJ554QtITJSIiImrJmjX8N3LkSOTl5SE5ORnJyckAgP/7v/+DIAhQKBSIi4tDaGiopCdKREREVuBEdZtr9mqeTz31FEaNGoWjR4/i2rVrEAQBnTt3xrBhw9C5c2cpz5GIiIisxaLK5ppVVB0/fhyhoaHw8fFpdJhv7dq1mDlzplUnR0RERNRaNGtO1eLFi/Hdd981uv/tt99Gampqs0+KiIiIJCYorH/RbTWrqBo1ahQWLlyIs2fPGrXr9XosWbIEX3zxBebMmSPJCRIREZH1FKhdUb3Zrz/7A7QCzSqq/u///g9hYWFYsGCBuLRCdXU1XnrpJRw5cgQLFiwwWWWdiIiI6E7W7InqL774IqqrqzF//nwsWbIE27dvR0ZGBhYvXsw7/4iIiFoaTlS3uWb1VAGAnZ0dFi1ahAceeADz5s3DhQsXsHz5chZUREREJEtm9VTdbtJ5UFAQzp49i4EDB+Ly5cu4fPkyAEChUHABUCIiohbCMDfKmuPp9swqqtasWdNkzJEjR3DkyBFxm0UVERERyYnVPVVERETUCli7LAKXVGiSWUVVx44dbX0eREREZEucqG5zzZ6oTkRERES/M6uoeuGFF3Du3DmLk1dUVOCFF17Af/7zH4uPJSIiIokJVryoSWYVVd988w2KioosTl5dXY1vvvkGN27csPhYIiIiko5Vq6lbeeegXJi9+OeWLVuwe/dui5LrdDooFJzYRkRERHc+s4qq++67r1nFkb29Pe677z64u7tbfCwRERFJiBPVbc6soiopKcnW50FERES2xKLK5nj3HxEREZEEmv1AZSIiImo9+Jga22NRRUREJAtWrqgO3njWFBZVREREcsA5VTbHOVVEREREEmBPFRERkRxYu4Ane6qaZFVRVVNTg8LCQpSWlkIQTL/twMBAa9ITERGRVDj8Z3PNKqpKS0uxZs0aHDx4EDU1NSb7BUGAQqHAkSNHrD0/IiIiolahWUXVsmXLcOrUKTz88MMIDg6Gq6ur1OdFREREEuKSCrbXrKLq+++/R3R0NBITE6U+HyIiIrIVFkY21ay7/zw8PNClSxepz4WIiIio1WpWURUVFYWvv/4aer1e6vMhIiIiWxAkeNFtNWv4b8qUKdBqtYiLi8OoUaPg7e0NOzvT+mzYsGFWnyARERFZ78+aU5WdnY0PP/wQGRkZ0Gq16Ny5M8aOHYvx48eLMRkZGVi3bh0uXboEV1dXhIeHIy4uDm3btjXKpdVqsWnTJhw4cAClpaXo3r07YmNj0b9/f5P3NTenlJpVVBUWFuKHH37A5cuXcfny5QZjePcfERGRvJ0+fRovvvgievTogSlTpsDFxQW//vorCgsLxRiVSoU5c+bAz88PCQkJKCgoQGpqKq5du4a33nrLKN+yZctw5MgRTJgwAb6+vti7dy/mzZuHVatWISQkpFk5pdSsouqNN96ASqVCTEwMgoKC4ObmJvV5ERERUStWXl6O119/HQ8++CBeffXVBke0AGDDhg1wd3dHUlKSuJpAp06d8Oabb+L06dMYMGAAACArKwuHDh3CzJkzMXnyZADAqFGjMHXqVKxduxZr1661OKfUmjWnKiMjA08++STi4uIwdOhQ9OnTp8EXERERtRB/8Jyqr776CsXFxYiLi4OdnR0qKytN5mKXl5fjzJkzGDlypNHyTKNGjYKLiwsOHz4sth09ehT29vaIiooS25ydnREZGYnMzEzk5+dbnFNqzeqpat++Pdzd3aU+FyIiIrIRqeZU5eTkGLUrlUp4eXmZxJ85cwaurq4oKirCSy+9hNzcXLi4uGDkyJFISEiAs7Mzrly5Ap1OZ/IEFkdHR/To0QMqlUpsU6lU8PX1NVkbMygoCABw+fJl+Pj4WJRTas0qqiZOnIidO3ciMjLSphO+iIiIqGVZunSp0fbUqVMxbdo0k7hr165Bp9NhwYIFiIyMxDPPPINz587hs88+Q1lZGV5++WWo1WoAtYVZfUqlEj/99JO4rVarG40DgKKiIjHO3JxSa1ZRpdVq4eDggCeffBLh4eHo0KGDyVipQqHAE088IclJEhERkQQkWBZh4cKF8PPzE7cbKl4AoLKyElVVVXj00Ucxe/ZsALWrAlRXVyM9PR3Tpk2DRqMBUNuLVJ+TkxO0Wq24rdFoGo0z7K/7pzk5pdasomrNmjXiz59//nmDMSyqiIiIWhCJHqjs5+dnMrTWEGdnZwDA8OHDjdpHjBiB9PR0ZGZmok2bNgCA6upqk+O1Wq1YMBnyNRZX9/0Mf5qTU2rNKqpSU1OlPg8iIiK6gyiVSvzyyy9o3769UXu7du0AAKWlpeLTWQxDdnWp1WqjuVpKpdJoKYa6cQDEWEPPmTk5pdasu/86duxo1ouIiIhaBsNEdWteljD0ZtUvhAxznzw9PeHv7w97e3tkZ2cbxVRXV0OlUiEgIEBsCwgIwLVr11BeXm4Um5WVJe4HYFFOqZldVGVlZeHWrVtmxf7222/Yt29fs0+KiIiIJPYHL6kQHh4OAPjyyy+N2r/88kvY29ujb9++cHNzQ79+/XDgwAFUVFSIMfv370dlZaWYAwDCwsKg0+mQnp4utmm1WuzZswfBwcHw8fEBAItySs3s4b9Zs2bhpZdeQkREBADg1q1biI6OxltvvWWyJtXPP/+MN954A4888oikJ0tEREStwz333IO//vWv2LNnD3Q6Hfr06YNz587h8OHDiImJEYfhYmNjER8fj8TERERFRYmrn/fv3x8DBw4U8wUHByM8PBwbNmzAjRs30KVLF+zbtw95eXmYP3++0Xubm1NqZhdVgiCYbGu1Wuh0OslPioiIiCRm5TpVzZnk/vzzz8PHxwd79+7F8ePH4ePjg4SEBKMb2QIDA7FixQqsW7cO7733Htq2bYvIyEjMmDHDJN+CBQvg4+OD/fv3o6ysDN26dcPy5ctNOncsySmlZk1UJyIiolZIgiUVLOHg4ICnn34aTz/99G3jQkJCjFYWaIyzszNmzZqFWbNmNRlrbk4pNWuiOhEREREZY08VERGRHEi0ThU1zqKiKi8vT7xF0XBL47Vr1+Dm5mYUd/369WadzIULF7Bv3z78+OOPyMvLg4eHB3r16oXY2Fh07drVKPbq1atYvXo1MjIy4ODggEGDBiEhIQGenp5GcXq9HikpKdi5cyeKi4vh6+uLmJgYjBgxwuT9zc1JRETU2kj17D9qnEVF1aZNm7Bp0yajtpUrV5rECYIAhUJh8cl88sknyMjIQHh4OLp37w61Wo20tDTExsZi7dq16NatGwCgoKAAiYmJcHNzQ1xcHCorK5GSkoIrV65g/fr1RkvTb9y4Edu2bcPYsWPRs2dPnDhxAkuWLIFCoTBa5dWSnERERK0Oe6pszuyi6oUXXrDleQAAnnjiCfzrX/8yKmAefvhhPP3009i2bRsWLVoEANi6dSuqqqqQnJwsrksRFBSEuXPnYu/evYiKigJQu+BYamoqxo0bhzlz5gAAxowZg8TERKxZswZhYWGwt7e3KCcRERFRQ8wuqkaPHm3L8wAA3HvvvSZtXbt2xd13342cnByx7ejRoxg8eLBY/ABAv3790LVrVxw+fFgsgE6cOIGamhqMGzdOjFMoFHjsscewZMkSZGZmIiQkxKKcRERErRJ7qmyuxU9UFwQBJSUluPvuuwHU9j6VlJQ0+DDHoKAgfPvtt+K2SqWCi4uL0dO0DXGG/SEhIRblrK+oqMjo+UJ1iz8iIqKWQgEr51RJdiZ3rhZfVB08eBCFhYWYNm0agN8fkGh4YGJdSqUSt27dEp9CrVar0a5dO5P5XYZjDc8fsiRnfenp6di8ebNJu6JjB9jp3EzapSCYMV9NUX+x1jrH1N/3R8UZnZ9eX2ej8c9jdHz9BUD0aJDZv/j18il0v3+ORr/ji5eNt4VGToKIiGSnRRdVOTk5WLlyJXr16iU+8kaj0QBAgxPHDUWPRqOBk5MTNBpNk3GW5qwvKioKQ4YMMTrnpUuXmv8hiYiI/ggc/rO5FltUqdVqzJ8/H66urnj11VfFCeXOzs4Aap82XZ9WqzWKcXZ2NjvO3Jz1eXl5ic8vIiIiaqm4pILttcgV1cvKyjBv3jyUlZXh7bffNipaDEN0decxGajVanh4eIg9SkqlEsXFxSbPLTQca8hrSU4iIiKihrS4okqj0eCFF15Abm4u3njjDXGCuoG3tzc8PT3FRUjrunDhAgICAsTtgIAAVFVVmUwez8rKEvdbmpOIiKhVEiR40W21qKJKp9PhlVdeQWZmJhYvXozevXs3GDds2DCcOnUK+fn5YtvZs2eRm5uL8PBwsW3o0KFwcHBAWlqa2CYIAnbt2gVvb2+j/ObmJCIiapVYVNlci5pT9f777+PkyZMYPHgwSktLceDAAaP9I0eOBADExMTgyJEjeO655zB+/HhUVlZi+/bt6Natm9F6Wh06dMCECROwfft21NTUICgoCMePH8f58+exaNEicZ6WJTmJiIiIGtKiiqrLl2tvVz916hROnTplst9QVPn4+CApKQmrV6/G+vXrxef0xcfHm8x9mjFjBtzd3ZGeno59+/bB19cXCxcuREREhFGcJTmJiIhaGwWsW2uK61Q1rUUVVUlJSWbH+vv745133mkyzs7ODjExMYiJiZEsJxERUavEITybalFFFREREdmIlUsqsCBrWouaqE5ERETUWrGnioiISA64orrNsagiIiKSAxZVNsfhPyIiIiIJsKeKiIhIBvjsP9tjUUVERCQHHP6zOQ7/EREREUmAPVVEREQyoICVw3+Sncmdi0UVERGRHHD4z+Y4/EdEREQkAfZUERERyQDv/rM9FlVERERywOE/m2NRRUREJAcsqmyOc6qIiIiIJMCeKiIiIhngkgq2x6KKiIhIDjj8Z3Mc/iMiIiKSAHuqiIiI5EAQoBCs6G6y5liZYFFFREQkBxz+szkO/xERERFJgD1VREREMqCwsqeKK6o3jUUVERGRXLAwsikWVURERPSH2LJlC5KTk+Hv74+PPvrIaF9GRgbWrVuHS5cuwdXVFeHh4YiLi0Pbtm2N4rRaLTZt2oQDBw6gtLQU3bt3R2xsLPr372/yfubmlArnVBEREcmA4YHK1rysUVBQgK1bt8LFxcVkn0qlwpw5c1BVVYWEhARERkZi9+7dePnll01ily1bhh07diAiIgLPPvss7OzsMG/ePJw/f77ZOaXCnioiIiI5+JPv/luzZg2Cg4Oh1+tx8+ZNo30bNmyAu7s7kpKS4OrqCgDo1KkT3nzzTZw+fRoDBgwAAGRlZeHQoUOYOXMmJk+eDAAYNWoUpk6dirVr12Lt2rUW55QSe6qIiIhk4M/sqTp37hyOHj2KxMREk33l5eU4c+YMRo4cKRY/QG2x5OLigsOHD4ttR48ehb29PaKiosQ2Z2dnREZGIjMzE/n5+RbnlBJ7qoiIiMhsOTk5RttKpRJeXl6Nxut0OqxatQqRkZHo3r27yf4rV65Ap9MhMDDQqN3R0RE9evSASqUS21QqFXx9fY0KJQAICgoCAFy+fBk+Pj4W5ZQSiyoiIiI5kGj4b+nSpUbNU6dOxbRp0xo9bNeuXcjPz8fKlSsb3K9WqwHUFmf1KZVK/PTTT0axjcUBQFFRkcU5pcSiioiISAYUgHXrVP3vz4ULF8LPz09sb6hwMbh58yY++OADPPXUU/D09GwwRqPRAKjtRarPyckJWq3WKLaxuLq5LMkpJRZVREREZDY/Pz+TYbXGJCcnw93dHdHR0Y3GODs7AwCqq6tN9mm1WrFgMsQ2Flc3lyU5pcSiioiISA4EwbqHIlt4bG5uLnbv3o3ExERxWA6oLWpqampw/fp1uLq6ij1dhiG7utRqtdF8LaVSicLCwgbjAIixluSUEu/+IyIikgNr7/yzsB4rKiqCXq/HqlWrMHHiRPGVlZWF3NxcTJw4EZs3b4a/vz/s7e2RnZ1tdHx1dTVUKhUCAgLEtoCAAFy7dg3l5eVGsVlZWeJ+ABbllBJ7qoiIiEhy/v7+eO2110zak5OTUVFRgWeffRadO3eGm5sb+vXrhwMHDmDKlCniauf79+9HZWUlwsPDxWPDwsKQkpKC9PR0cZ0qrVaLPXv2IDg4GD4+PgBgUU4psagiIiKSgz948U9PT0+EhoaatH/66acAYLQvNjYW8fHxSExMRFRUFAoKCpCamor+/ftj4MCBYlxwcDDCw8OxYcMG3LhxA126dMG+ffuQl5eH+fPnG72PuTmlxKKKiIhIBhQCAL0VCWz4MObAwECsWLEC69atw3vvvYe2bdsiMjISM2bMMIldsGABfHx8sH//fpSVlaFbt25Yvnw5+vTp0+ycUlEIgjWz1qi+7OxsxMXFoU1JH9jr3GzyHoJC0WSMot5lrXtM/X1/VJzR+enr/Gbf5vMYHV9/BqA1fzk0kE+h+/1zNHbeuouXjRsEa0+CiOTuoP5Tm+Y3/LtU4zUMcPRsfqLqG3AoOoqNGzeaffef3LCnioiISA7+5Gf/yQGLKiIiIhlozh18RlhUNYlFFRERkRz8wetUyRHXqSIiIiKSAHuqiIiIZIDDf7bHooqIiEguWBjZFIf/iIiIiCTAnioiIiIZ4PCf7bGoIiIikgPe/WdzHP4jIiIikgB7qoiIiGSAw3+2x6KKiIhIDlhU2RyH/4iIiIgkwJ4qIiIimVBYM09dutO4Y7GoIiIikgM9rKuq9JKdyR2LRRUREZEccE6VzXFOFREREZEE2FNFREQkAwrButE/COysagqLKiIiIlmwckV1llRN4vAfERERkQTYU0VERCQDHP6zPRZVREREcsC7/2yOw39EREREEmBPFRERkQwoBAEKayaqWzXJXR5YVBEREcmBAOtWRWdN1aQWVVRVVFQgJSUFWVlZuHDhAkpLS/Hiiy9i9OjRJrFXr17F6tWrkZGRAQcHBwwaNAgJCQnw9PQ0itPr9UhJScHOnTtRXFwMX19fxMTEYMSIEc3OSURERFRfiyqqbt68ic2bN8PHxwcBAQH48ccfG4wrKChAYmIi3NzcEBcXh8rKSqSkpODKlStYv349HB0dxdiNGzdi27ZtGDt2LHr27IkTJ05gyZIlUCgUGD58eLNyEhERtTYKQYDCmu4mDv81qUUVVUqlEmlpaVAqlbh48SKeeeaZBuO2bt2KqqoqJCcnw8fHBwAQFBSEuXPnYu/evYiKigIAFBYWIjU1FePGjcOcOXMAAGPGjEFiYiLWrFmDsLAw2NvbW5STiIioVbK2JmJN1aQWdfefk5MTlEplk3FHjx7F4MGDxeIHAPr164euXbvi8OHDYtuJEydQU1ODcePGiW0KhQKPPfYYCgsLkZmZaXFOIiKiVkkQrH/RbbWonipzFBYWoqSkBIGBgSb7goKC8O2334rbKpUKLi4u8PPzM4kz7A8JCbEoZ31FRUVQq9Xidk5OjsWfiYiIiFq/VldUGQqYhnq0lEolbt26Ba1WCycnJ6jVarRr1w4KhcIkDqgtiCzNWV96ejo2b95s0l7Spx30bTwBAIKZ/YGKOndl3O6YuiviCoqmY2oD6+77fUNvb5zAqtV2m1D3XOt+VtT/DELD+xr7rEAT593Yvnr5jM6vkWO8rvzXaFuvqbrNGxMRtSCC6V+3Fh3OjqomtbqiSqPRAECDE8cNRY9Go4GTkxM0Gk2TcZbmrC8qKgpDhgwRt3NycrB06VKLPhMREdEfgpWRTbW6osrZ2RkAUF1dbbJPq9UaxTg7O5sdZ27O+ry8vODl5WXRZyAiIqI7T4uaqG4OwxBd3XlMBmq1Gh4eHmKPklKpRHFxMYR6lbnhWEMxZElOIiKi1kiht/5Ft9fqiipvb294enoiOzvbZN+FCxcQEBAgbgcEBKCqqspk8nhWVpa439KcRERErRLv/rO5VldUAcCwYcNw6tQp5Ofni21nz55Fbm4uwsPDxbahQ4fCwcEBaWlpYpsgCNi1axe8vb3Ru3dvi3MSERERNaTFzan67LPPUFZWJg7FnTx5EgUFBQCA6OhouLm5ISYmBkeOHMFzzz2H8ePHo7KyEtu3b0e3bt2MHmnToUMHTJgwAdu3b0dNTQ2CgoJw/PhxnD9/HosWLRIX/gRgdk4iIqJWiR1NNtfiiqrU1FTk5eWJ28eOHcOxY8cAACNHjoSbmxt8fHyQlJSE1atXY/369eJz+uLj403mPs2YMQPu7u5IT0/Hvn374Ovri4ULFyIiIsIozpKcRERErY21j6mx6hE3MtHiiqodO3aYFefv74933nmnyTg7OzvExMQgJiZGspxERERE9bW4ooqIiIhswcrJ5hauDn3hwgXs27cPP/74I/Ly8uDh4YFevXohNjYWXbt2NYq9evUqVq9ejYyMDHGkKCEhAZ6enkZxer0eKSkp2LlzJ4qLi+Hr64uYmBiMGDHC5P3NzSklFlVERERyoId186osXI79k08+QUZGBsLDw9G9e3eo1WqkpaUhNjYWa9euRbdu3QAABQUFSExMhJubG+Li4lBZWYmUlBRcuXIF69evN1qYe+PGjdi2bRvGjh2Lnj174sSJE1iyZAkUCgWGDx8uxlmSU0osqoiIiGRAIQhGjymz+HgLK7InnngC//rXv4wKmIcffhhPP/00tm3bhkWLFgEAtm7diqqqKiQnJ8PHxwdA7XN3586di7179yIqKgpA7bN/U1NTMW7cOMyZMwcAMGbMGCQmJmLNmjUICwsTb0AzN6fUWuWSCkRERNSy3XvvvSY9Ql27dsXdd99ttH7k0aNHMXjwYLH4AYB+/fqha9euOHz4sNh24sQJ1NTUYNy4cWKbQqHAY489hsLCQmRmZlqcU2rsqSIiIpIDAZIs4Fl/QW2lUmn249oEQUBJSQnuvvtuALW9TyUlJQgMDDSJDQoKwrfffituq1QquLi4wM/PzyTOsD8kJMSinFJjUUVERCQL0kxUX7p0qVHz1KlTMW3aNLNSHDx4EIWFhWK8YU1Kw+Pi6lIqlbh16xa0Wi2cnJygVqvRrl07KBQKkzgAKCoqsjin1FhUERERkdkWLlxo1FvUUPHSkJycHKxcuRK9evXCI488AgDQaDQA0ODEcUPRo9Fo4OTkBI1G02ScpTmlxqKKiIhIDvT/e1nJz8+vwaG121Gr1Zg/fz5cXV3x6quvihPKnZ2dAQDV1dUmx2i1WqMYZ2dns+PMzSk1TlQnIiKSAcPdf9a8mqOsrAzz5s1DWVkZ3n77baP5V4ZeLsOQXV1qtRoeHh5ij5JSqURxcTGEeudhONaQ15KcUmNRRURERDah0WjwwgsvIDc3F2+88YY4Qd3A29sbnp6eyM7ONjn2woULCAgIELcDAgJQVVVlMlE+KytL3G9pTqmxqCIiIpIDQbD+ZQGdTodXXnkFmZmZWLx4MXr37t1g3LBhw3Dq1Cnk5+eLbWfPnkVubi7Cw8PFtqFDh8LBwQFpaWl1PpKAXbt2wdvb2yi/uTmlxjlVREREsmDl3X8WLv75/vvv4+TJkxg8eDBKS0tx4MABo/0jR44EAMTExODIkSN47rnnMH78eFRWVmL79u3o1q0bRo8eLcZ36NABEyZMwPbt21FTU4OgoCAcP34c58+fx6JFi8R5WpbklBqLKiIiIpLc5cuXAQCnTp3CqVOnTPYbiiofHx8kJSVh9erVWL9+vficvvj4eJO5TzNmzIC7uzvS09Oxb98++Pr6YuHChYiIiDCKsySnlFhUERERyYG1i39aeGhSUpLZsf7+/njnnXeajLOzs0NMTAxiYmIkyyklFlVERERyYO2SChY+UFmOWFQRERHJgZUPVJbiETd3Ot79R0RERCQB9lQRERHJwh97958csagiIiKSA71Q+7LmeLotDv8RERERSYA9VURERHLQjFXRTY6n22JRRUREJAd/8DpVcsThPyIiIiIJsKeKiIhIFnj3n62xqCIiIpID3v1ncxz+IyIiIpIAe6qIiIjkQNDXvqw5nm6LRRUREZEc8O4/m2NRRUREJAeClXOquE5Vk1hU2ciH/0hBj27VAACNUGPWMW3tnMSfqwWd+LMexl2uujr/YdsrFOLPLgpn8ecyfZXRMY3FaYRqo7i67+uosK8TZ/wZnBUOdX52FH+uFDRmnWtVnfdpW+d4S9R937qft+55A8bn7mb3+2e/We87alPnOAc0/Nkn7h5rdIw+3zgHERHJF4sqIiIiOeCK6jbHooqIiEgOWFTZHJdUICIiIpIAe6qIiIjkgD1VNseiioiISA4EAdBbs04Vi6qmcPiPiIiISALsqSIiIpIDDv/ZHIsqIiIiOWBRZXMc/iMiIiKSAHuqiIiI5ICPqbE5FlVERERyIAgQBN79Z0ssqoiIiORAb2VPlTXHygTnVBERERFJgD1VREREcsC7/2yORRUREZEcCHorV1S34liZ4PAfERERkQTYU0VERCQHAqwc/pPsTO5YLKqIiIhkQNDrIVgx/GfNsXLB4T8iIiIiCbCnioiISA5495/NsagiIiKSAz6mxuZYVNnIuBPjob3gWbuh+P0/RIVOIf4s2Nf7D1RR5+e6uwRFvbiG/8NW1Mkn6OofU+fHmnr7GokT7Oqct974GKNTqns+9d+27ue9TT4jdffVOQZOxuP5Qt3PUeeEFPW/1zpxdc9b4VA/3++j4UY56hzfszyr8fMmIiJZY1FFREQkB4Jg3VpT7KlqEosqIiIiGRD0AgQrhv+sOVYuWFQRERHJgt7KVdEtP1ar1WLTpk04cOAASktL0b17d8TGxqJ///5WnEfLxSUViIiIyCaWLVuGHTt2ICIiAs8++yzs7Owwb948nD9//s8+NZtgUUVERCQDgv73IcDmvSx7v6ysLBw6dAjPPPMMZs2ahaioKLz77rvo2LEj1q5da5sP+SdjUUVERCQHgt76lwWOHj0Ke3t7REVFiW3Ozs6IjIxEZmYm8vPzpf6EfzrOqZKYRqMBADjcLPu9se7qAbo6P9vXO7jRJRVuE1dX3eUH6i9ZUHezppHj68fVLbnr/y4pzPgZMP68t8tXl9G6B3U+k2O9L6LushF1d9X/X4W651D3/OovvVA3X90cdY7Xu2iMDtEL1SAiskZ2djb8/PzQpk0bm76P0LamGbOijI8HgJycHKN2pVIJLy8vk3iVSgVfX1+4uroatQcFBQEALl++DB8fHyvOqOVhUSUxlUoFAPA+8eOffCZkC1WBf/YZENGdJi4uDhs3bkRgoG3+gvH09ESbNm1QFXjL6lwODg5YunSpUdvUqVMxbdo0k1i1Wg2lUmnSbmgrKiqy+nxaGhZVEvPz8wMAzJ8/HwEBAX/y2ZAlcnJysHTpUixcuFC8jtTy8bq1Trxuxmz5Hfj4+ODjjz/GjRs3rM6l1+thZ2c8HNBQ4QTUjtw4OjqatDs5OYn77zQsqiTm7u4OAAgICLDZ/3WQbfn5+fHatUK8bq0Tr9sfw8fH5w8fanN2dkZ1tekUCa1WK+6/03CiOhEREUlOqVRCrVabtBvaGpqH1dqxqCIiIiLJBQQE4Nq1aygvLzdqz8rKEvffaVhUSUypVGLq1KmNjjFTy8Vr1zrxurVOvG53vrCwMOh0OqSnp4ttWq0We/bsQXBw8B135x8AKASBT0gkIiIi6b388ss4duwYnnjiCXTp0gX79u3DhQsXsHLlSvTp0+fPPj3JsagiIiIim9BoNOKz/8rKytCtWzfExsZiwIABf/ap2QSLKiIiIiIJcE4VERERkQRYVBERERFJQJaLf77++uvYt29fo/s/++wzeHt7Q6/XY/fu3di1axd+/fVXtGnTBvfccw+eeuop3HvvvUbHaLVacdy4tLQU3bt3R2xsLPr372+SPyMjA+vWrcOlS5fg6uqK8PBwxMXFoW3bts3OKQe5ubnYtGkTMjIycOvWLfj4+GDEiBGYNGmS0TOzbPH98ppZp6lrV1VVhT179uDEiRO4cuUKKisr4evri7Fjx2Ls2LGwtzd+UKZer0dKSgp27tyJ4uJi+Pr6IiYmBiNGjDB576tXr2L16tXIyMiAg4MDBg0ahISEBHh6ejY7p1yY+ztnUFpair/97W+4ceMGlixZgrCwMKP9/J2jO50s51T9/PPP+O2334zaBEHAO++8g44dO2LLli0AgNWrV2PHjh0YOXIkQkJCUFZWhvT0dOTn5+P9999HcHCwePzixYtx5MgRTJgwAb6+vti7dy8uXryIVatWISQkRIxTqVSYOXMm/Pz8EBUVhYKCAqSmpqJv37546623jM7J3JxykJ+fj6effhpubm6IioqCh4cHMjMzsXfvXgwZMgTLli0DYJvvl9fMOuZcuytXruDpp5/GAw88gP79+6Nt27Y4ffo0jh8/jlGjRuGll14yyrl+/Xps27YNY8eORc+ePXHixAl88803ePnllzF8+HAxrqCgANOnT4ebmxuio6NRWVmJlJQU+Pj4YP369UaP0DA3p1yY+ztX16pVq7Bnzx5UVlY2WFTxd47ueAIJgiAIP/30kxAaGips2bJFEARBqK6uFkaMGCEsWrTIKO7XX38VQkNDhXfffVdsy8zMFEJDQ4VPPvlEbKuqqhImTZok/OMf/zA6/vnnnxcee+wxoaysTGzbvXu3EBoaKnz33XfNyikHW7ZsEUJDQ4UrV64YtS9dulQIDQ0Vbt26JQiCbb5fXjPrmHPtSkpKTPYLgiAsW7ZMCA0NFXJzc8W2goICITw8XFixYoXYptfrhfj4eOHxxx8XampqxPZ33nlHGDFihJCXlye2ff/990JoaKiwa9euZuWUC3N/5wz+85//CGFhYcLmzZuF0NBQ4fDhw0b7+TtHcsA5Vf/z1VdfQaFQiF39Op0OGo0G7dq1M4pr164d7OzsjJ5ZdPToUdjb2yMqKkpsc3Z2RmRkJDIzM5Gfnw8AKC8vx5kzZzBy5Ei4urqKsaNGjYKLiwsOHz5scU65MKzIW/96KJVK2NnZwcHBwSbfL6+Z9cy5dp6envD39zc5NjQ0FEDtw3cNTpw4gZqaGowbN05sUygUeOyxx1BYWIjMzEyx/ejRoxg8eLDRIoP9+vVD165dja6dJTnlwpzrVldSUhIeeuihRnuH+DtHcsCiCkBNTQ0OHz6M3r17o1OnTgBqfzGDg4Oxb98+HDhwAPn5+fjPf/6DZcuWwd3d3eiXWKVSwdfX1+gvAAAICgoCAFy+fBkAcOXKFeh0OpOHhzo6OqJHjx5QqVQW55SLvn37AgCWL18OlUqF/Px8HDp0CLt27UJ0dDRcXFxs8v3ymlnPnGvXmOLiYgDAXXfdJbapVCq4uLjAz8/PKNbwPRuuSWFhIUpKShp8WG9QUJDJtTMnp5xYct0OHz6Mn3/+Gf/4xz8azcffOZIDWU5Ur+/06dO4efMmIiIijNoXLlyIV155BUuXLhXbOnfujPfffx+dO3cW29RqdYOPWjC0FRUViXF12+vH/vTTTxbnlIuBAwdi+vTp2Lp1K06ePCm2//3vf0dcXBwA23y/vGbWM+faNaS6uhqffvopOnXqhJ49e4rtarUa7dq1g0KhMIq39NrdunULWq0WTk5OZueUE3Ovm0ajwZo1a/DEE0+gU6dOyMvLazAff+dIDlhUoXboz8HBAeHh4Ubtbdu2hb+/P3r16oUHHngAxcXF2LZtGxYsWIDVq1eLdw9pNBqjCa8GTk5O4v66fzYWq9VqxW1zc8pJp06dcN9992HYsGHw8PDAN998g61bt6J9+/aIjo62yffLayaNpq5dQ959911cvXoVy5cvNxpqkuraGWKcnJx47RphznXbtm0bampqEBMTc9tc/J0jOZB9UVVRUYETJ05gwIABRkMMNTU1mDNnDvr27YvnnntObH/ggQcwZcoUbN++HTNnzgRQO1RYXV1tktvwy2+Yf2X4s7FYw18EluSUi0OHDuGtt97Ctm3b0KFDBwDAsGHDIAgC1q9fjxEjRtjk++U1s545167u7x4AbN++Hbt378b06dMxaNAgo31SXbv6sbx2xsy5bhUVFdi+fTvmzJljstRBffydIzmQ/ZyqEydOoKqqymTo76effsIvv/yCIUOGGLV37doVfn5++Pnnn8U2pVIpdlnXZWjz8vIS4+q21481xFmSUy7S0tLQo0cP8S93gyFDhqCqqgoqlcom3y+vmfXMuXZ17d27F+vWrcOjjz6KKVOmmORTKpUoLi6GUG81GEuvnYeHh/gPtLk55cSc6/bBBx/Ay8sLffr0wfXr13H9+nVxHtyNGzdw/fp16PV6APydI3mQfVF18OBBuLi4mBRPJSUlACD+hVBXTU0NdDqduB0QEIBr166Jd8sYZGVlifsBwN/fH/b29sjOzjaKq66uhkqlEuMsySkXJSUljV4LoPZuTVt8v7xm1jPn2hkcP34cb775Jh566CHMmTOnwXwBAQGoqqoyuiMQMP2evb294enpaXLtAODChQsm186cnHJiznXLz8/Hr7/+ikmTJmHixImYOHEiFi9eDABYsWIFJk6cKP4+8HeO5EDWRdWNGzdw5swZPPTQQyarA3ft2hVAbRd4XdnZ2cjNzUWPHj3EtrCwMOh0OqSnp4ttWq0We/bsQXBwsHg7t5ubG/r164cDBw6goqJCjN2/fz8qKyuN5nSZm1MuunbtCpVKhdzcXKP2Q4cOwc7ODt27d7fJ98trZj1zrh0AnDt3DosXL0ZISAgWLVoEO7uG/3oaOnQoHBwckJaWJrYJgoBdu3bB29sbvXv3FtuHDRuGU6dOGd1af/bsWeTm5hpdO0tyyoU51y02Nhavvfaa0Wv69OkAgMmTJ+O1114T7xLk7xzJgaznVB06dAg6nc5k6A8AAgMD0a9fP+zbtw/l5eUYMGAA1Go1PvvsMzg7O2PChAlibHBwMMLDw7FhwwbcuHEDXbp0wb59+5CXl4f58+cb5Y2NjUV8fDwSExONVgru378/Bg4c2KyccjBp0iR89913SEhIwOOPPw4PDw+cOnUK3333HcaMGSN289vi++U1s4451y4vLw8LFiyAQqFAWFgYjhw5YpSje/fuYvHVoUMHTJgwAdu3b0dNTQ2CgoJw/PhxnD9/HosWLTJ6pE1MTAyOHDmC5557DuPHj0dlZSW2b9+Obt26YfTo0WKcJTnlwpzr1tDwmpubG4DaZQ0M64wB/J0jeZDlY2oMZs6cid9++w2ff/55g39pajQapKSk4NChQ7h+/TocHR0REhKC6dOnG/VUGWINz58qKytDt27dEBsbiwEDBpjkPX/+vPhMq7Zt2yI8PBwzZswwmehpSU45yMrKwocffgiVSoVbt26hU6dOeOSRRzB58mSju8Ns8f3ymlmnqWv3448/Yvbs2Y0eP3XqVEybNk3c1uv1+OSTT5Ceng61Wg1fX1/87W9/w8iRI02O/eWXX0ye/RcfH4/27dsbxVmSUy7M/Z2ry3AtG3pMDX/n6E4n66KKiIiISCqynlNFREREJBUWVUREREQSYFFFREREJAEWVUREREQSYFFFREREJAEWVUREREQSYFFFREREJAEWVUREREQSkPVjaoiISDpFRUX497//jQsXLuDixYuorKzEqlWr0LdvX7NznDlzBh9//DGuXLkCnU4HX19fREdHY9SoUWKMRqPBypUrceHCBRQUFECv16Nz587461//inHjxhmt9r53714sW7aswfdKS0uDUqlscN+vv/6KKVOmQKvVYsOGDejZs6fZn6Gua9euYf369Th79iyqq6txzz33YPr06bj//vublY9aNhZVRGTk9ddfx7lz57Bjx44/+1QAAB988AE2b94MAHBxccH+/fvNPra0tBSRkZHi9syZMzF58mSpT5H+Jzc3F5988gl8fX3RrVs3ZGZmWnT8iRMn8NJLL6FXr16YOnUqFAoFDh8+jNdeew03b97EE088AaC2qLp69SoefPBBdOzYEXZ2dvj555+xevVqXLhwAf/6179Mck+fPh2dOnUyajM8p7Ah7733ntXPfMzPz8fMmTNhb2+PyZMno02bNti7dy/++c9/YuXKlejTp49V+anlYVFFJAMPPfSQWXGrVq2y8Zk038KFCy3+R87FxQULFy7EjRs3sHr1ahudmXw8++yz6NixIxYsWNDg/sDAQHzxxRfw8PDAkSNHGixubufzzz+HUqnEu+++CycnJwBAVFQU/v73v2Pv3r1iUeXh4YF169YZHfvoo4/C1dUVn3/+OeLj4016oAYOHGh2b9Pp06fx/fffY/LkydiyZYtFn6Gubdu2oaysDB999BH+8pe/AADGjh2LmJgYrF69GsnJyc3OTS0TiyoiGVi4cKHR9r59+3DmzBmTdj8/P8ybNw96vf6PPD2zNOfBxg4ODhg5ciSuX7/OouoPUP9hx5aqqKiAu7u7WFABtdfwrrvuMuv4jh07AgDKysoaHNarqKiAs7PzbYvzmpoaJCUlYfz48ejSpUujcTk5OUhOTsYPP/wAjUYDf39/TJkyBUOHDhVjzp8/jx49eogFFQC0adMGQ4YMQVpaGnJzc9G1a1ezPhu1DiyqiGSgfkGSmZmJM2fONKtQIbKVPn364JNPPkFycjIeeeQRKBQKfPXVV8jOzsYrr7xiEl9dXY3y8nJoNBpkZ2cjJSUFHTt2bLAYmj17NiorK+Ho6Ij+/fsjPj6+wYLm008/RWlpKZ566ikcO3aswfP85ZdfEB8fDy8vL/ztb39DmzZtcPjwYbz00kt49dVXxZ7h6upquLu7mxzfpk0bAMClS5dYVN1hWFQRkZH6c6quX7+OiRMnYubMmXB2dkZqaiqKi4tx7733Yv78+ejQoQO2bNmC9PR03Lx5E/3798eLL74IDw8Po7zffvsttm7dikuXLkGhUOC+++7DzJkz4e/v3+xzvXjxIjZu3IhLly6hsrIS7du3x/33348XXnjBqu+A/hxTpkzB9evX8fHHH4vDbm3atMGSJUsQGhpqEn/s2DEsXrxY3O7Zsyfmz59vNFHd2dkZo0ePRt++feHq6ors7Gzs2LEDs2bNQnJyMnx8fMRYtVqNjz76CLNmzYKrq2uj55mUlIQOHTpgw4YNYq/auHHjEB8fj3Xr1olFVdeuXXH+/HlUVFQY9eKdP38eAFBYWNicr4laMBZVRGSWr776CtXV1YiOjsatW7ewfft2vPLKK7j//vvx448/4sknn8S1a9fw+eefY82aNUaFzf79+/H6669jwIABmDFjBjQaDXbu3In4+Hhs2rTJZAKxOUpKSvDPf/4Tnp6eePLJJ+Hu7o7r16832rtAlqmpqUFZWZlJW3V1NW7cuGHU7uHhATs761focXR0RNeuXREWFoaHHnoIOp0Ou3fvxtKlS7FixQr06tXLKL5v375YsWIFysrKcPbsWVy+fBlVVVVGMQ8//DAefvhhcTs0NBQDBgxAYmIiPv74Yzz//PPivnXr1qFz584YM2ZMo+d469Yt/PDDD5g2bRoqKipQUVEh7hswYAA++OADFBYWwtvbG4899hhOnTqFl19+GXFxcXBxcUFaWhqys7MB1E64pzsLiyoiMkthYSE++eQT8Y4pvV6PrVu3QqPRYMOGDWLvwM2bN3Hw4EHMnTsXTk5OqKiowKpVqzBmzBj83//9n5jvkUceQUxMDLZu3WrUbq6ff/4ZpaWleOedd4wmIMfFxVn5SQkAMjIyMHv2bJP2n3/+GYcOHTJqS01NbVZhXN+7776LrKwsJCcni0Xaww8/jKeeegpJSUlYv369UXz79u3Rvn17AEBYWBg+/vhjzJ07F5988kmjSyUAQEhICIKDg3H27FmxLTMzEwcOHMDKlStvWyBeu3YNgiBg06ZN2LRpU4MxJSUl8Pb2xoMPPojZs2djw4YNiI2NBQB06dIFcXFxWLt2LVxcXMz7YqjVYFFFRGYJCwszugU9KCgIABAREWE03BIUFISvvvoKRUVF6Ny5M86cOYOysjIMHz7cqIfDzs4OQUFB+OGHH5p1PoZzOXXqFAICAozOgawXEBCAFStWGLW9//77aN++vcmyFIbCxhrV1dX48ssv8eSTTxoVNQ4ODhg4cCDS0tJQXV0NR0fHRnOEhYVh48aNOHHiBB599NHbvl+HDh3w3//+V9xeu3YtQkJC0KlTJ1y/fh0AxP9e1Wo18vPz4ePjA0EQAACTJk3CgAEDGszt6+sr/hwdHY2//vWv+M9//gNHR0cEBATgyy+/BADOp7oD8W8hIjJL3bknwO9FTYcOHRpsLy0tBVD7f/YA8NxzzzWY93ZzV26nT58+GDZsGDZv3oxPP/0Uffr0QWhoKEaMGGF09xg1j7u7O/r162fSplQqTdqlcPPmTeh0Ouh0OpN9Op0Oer2+ybtSDcNp5eXlTb7fb7/9Bk9PT3G7oKAAeXl5mDhxoknsiy++CDc3N+zZswedO3cGUFvsmfs9uLi4oHfv3uL22bNn4ezsjHvvvdes46n1YFFFRGZpbEiksdvTDf9Hb/iHcOHChQ32aDR3gUWFQoFXX30VmZmZOHXqFE6fPo033ngDqampWLt2rdW395Nt5efno6qqCn5+fgCAdu3awc3NDcePH8f06dPFHqmKigqcPHkSf/nLX+Ds7AygtgfprrvugkKhMMr5xRdfAKhdL8vgxo0bRsUTAHzzzTfIzs5GdHS02Pb888+bzHH64Ycf8Nlnn2HWrFlG59m3b1+kp6fj8ccfh5eXl9ExDb1fXRkZGTh27BgeffTR2y4+Sq0TiyoisinD7e2enp426eHo1asXevXqhbi4OBw8eBCvvvoqvv7669tONibb+eijjwAAV69eBVB7k4LhbrcpU6aIca+99hrOnTsn3lhgb2+PSZMmITk5Gf/4xz8watQo6PV6fPnllygsLDRaU+3AgQNIT0/H0KFD0blzZ1RUVOD06dM4c+YMBg8ejAceeECMnTlzJu655x4EBgbC1dUVly5dwp49e9ChQwf8/e9/F+MaGsozTNTv06eP0by9OXPmID4+Hk8//TTGjBmDzp07o7i4GJmZmSgsLMSHH34IAMjLy8PLL7+MIUOGoH379rh69Sp27dqFbt264ZlnnrHqe6aWiUUVEdnUgAED4Orqiq1bt+L+++83mfvU1P/ZN6a0tBRubm5GvRU9evQAAGi1WqvOmZqv/uTtPXv2iD/XLaoa8tRTT6FTp07497//jc2bN6O6uhrdu3fHkiVLEBYWJsaFhIQgMzMThw4dQklJCezt7dG1a1ckJCTg8ccfN8r58MMP49tvv8X333+PqqoqKJVKjB07FlOnTm32XLC7774bGzduxIcffoi9e/fi1q1baNeuHXr06GH0GV1dXaFUKvH555+jtLQUXl5eiI6OxlNPPcWe1DsUiyoisilXV1fMnTsXr732GqZPn47hw4fD09MT+fn5+Pbbb9G7d2/MmTPH4rx79+7Fzp07ERoaii5duqCiogJffPEFXF1d8eCDD9rgk1BSUlKTMeYuadFYroiICERERNz22J49exqtT3U7cXFxzb4jdPTo0Rg9enSD+zp37oyXXnrptse7u7vj9ddfb9Z7U+vEooqIbC4iIgJeXl7Ytm0bUlJSoNVq4e3tjZCQEPz1r39tVs4+ffrg4sWL+Prrr1FSUgJXV1cEBQVh0aJF4mRiIqI/kkIwzCYlImqBPvjgA2zevBnp6elQKBRmPwcOqJ0sf/PmTRQUFCA2NhYzZ840WQ6AiEgq7KkiolYhKioKLi4u2L9/v9nHlJWVISoqyoZnRUT0O/ZUEVGL9ttvv+G3334DUHuHWN++fc0+tqamBufOnRO3u3btarLeFhGRVFhUEREREUnA+idgEhERERGLKiIiIiIpsKgiIiIikgCLKiIiIiIJsKgiIiIikgCLKiIiIiIJsKgiIiIikgCLKiIiIiIJsKgiIiIiksD/A2z7H77gmWktAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAG4CAYAAAB2CPL9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABF40lEQVR4nO3deVzU1f7H8TeCIKKEDogLZG4pal4tl1xIzCUtJb0uadmqZKaWVr+2q7cs226rXsrcysoF21TsKlrmRlamuQVGmMk1F0RABdlhfn/44HsZZ9AB+QYjr+fj0YPmfM/3cD4MyJvzPfMdN6vVahUAAAAqVI3KngAAAMCViJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWZUoJydHCQkJysnJqeypAACACkbIqkRJSUmKiIhQUlJSZU8FAABUMEIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmMCjsieAK9ehH45r1+eJys8pMNpq1vJQ55Gt1Kxbo0qcGQAA5iNkwTS7Pk/UmWPnLmjN1c7PEglZAIArHiELpilewXJzk7zreSk7PVdWq2xWtq5krOQBQPVGyILpvOt56c7Im7Vs8rfKSsut7On8ZUpbyds4e49q1z8gidAFAFcyQhaueJW1onThSl7JgPm//z9/+dRqVYXNkRU0AKgaCFmw4egX9IUu9gu75PnZ6eatWpUlSJRlRakiw06x4pW8P348rp2f/W/skpdPL7V/rSLqZS8cAPy1CFmw+QXu3OW80i95OfoFX7OW42+zy1lxuViQuDAoFYc9Z1aUJJkWUJp1a2QzRvHl0+z0XGXLdo4X7l+7VFAs+XWr7nvhAKCqIGRdgcq6GuX4F7hUu76XXVtpAaX4l/2Fgab485SUnZ57kf1ZjoPDhS4WJEqrx7eRj0a+cVOpK0pnj//vnNICysWCYWnhrjTnw+f58S+c44Vfn0tferR/DqrrXjgAqCoIWVeg0kKGrf+tzlz4C/xi4ebCgOI4dP0vLJRUMlRc+Eu/dv2LB4cLlRYkHK0KFX/u4rB34YrSZ09s1Zlj55wKOxdbQZMcrYKVvpLXeWQrm6+lo0B6IUeXHkt7Di78vMXhtuTn4vIhAJiHkHUFujA0Xajkys2yyd/aBZaLuTCgXBi6pNLDwoWhomTfZt0aORUcLlQcJC62KnQpZQk7pa2gOVoFu9RYF34tHSkORheuipU891LPgeNwyx4tADAbIesKVlpoKrlyc7GVD2c4ExSc7Xup4HChkkGiPKtCZanhwrBT/LW92CrY5Sht1c/Rc3Sp+V/4tWGPFgD8NQhZ1dDFVpSqirKEt/L0d9alws7lhLuLqcjnqLQN9wAAcxGyqiGzAsmV6FJhx6yvJc8RALg+QhZwEYQdAEB51ajsCQAAAFyJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKPyp5ASQcOHFBMTIx2796tEydOyNfXV+3atdP48eMVHBxs9Hv55ZcVExNjd/7VV1+tJUuW2LQVFRUpKipKq1atUlpamoKCgjR27Fj169fP7vzDhw8rMjJS+/fvl4eHh7p3767JkyfLz8+v3GMCAIDqqUqFrGXLlmn//v3q06ePWrRoodTUVK1cuVLjx4/X3Llz1bx5c6Ovp6ennnzySZvzfXx87MZcsGCBli5dqiFDhqhNmzaKjY3VCy+8IDc3N/Xt29fod/LkSU2ZMkV16tRRRESEsrOzFRUVpUOHDmnevHmqWbNmmccEAADVV5UKWaNGjdI///lPm0Bz88036/7779fSpUs1Y8YMo93d3V0DBgy46HgpKSlasWKFhg0bpmnTpkmSBg8erClTpui9995TWFiY3N3dJUlLlixRTk6OFi5cqMDAQElSSEiIHnvsMa1bt07h4eFlHhMAAFRfVWpP1nXXXWcTsCQpODhY11xzjZKSkuz6FxYW6ty5c6WOFxsbq4KCAg0bNsxoc3Nz09ChQ5WSkqK4uDijfcuWLerRo4cRsCSpc+fOCg4O1qZNm8o1JgAAqL6qVMhyxGq1Kj09XVdddZVNe05OjgYNGqRBgwbptttu01tvvaWsrCybPomJifL29lbTpk1t2kNCQozj0vnVqfT0dLVu3dru84eEhBj9yjImAACo3qrU5UJHvv76a6WkpOiBBx4w2iwWi8aMGaNrr71WVqtVP/74o1atWqXff/9ds2fPlofH+bJSU1NVr149ubm52YxpsVgkSadOnTL6lWy/sO/Zs2eVl5cnT09Pp8d05NSpU8bnkuRwdQ4AAFwZqnTISkpK0ttvv6127dpp4MCBRvuECRNs+vXt21fBwcFasGCBtmzZYmw+z83Ntbv8KJ3fNF98vOTHS/X19PR0ekxHoqOjtXjx4lKPAwCAK0eVDVmpqal66qmn5OPjoxdffPGSm8lHjRqlRYsWaefOnUbI8vLyUn5+vl3fvLw843jJj872daafI+Hh4erZs6fxOCkpSbNmzbpoXQAAwDVVyZCVmZmpJ598UpmZmYqMjJS/v/8lz/Hy8pKvr6/Onj1rtFksFu3evVtWq9Xm8l7xJbvicYsv9ZW8lFeyr6+vr7FS5eyYjvj7+ztVCwAAcH1VbuN7bm6unn76aR05ckSvvvqqrrnmGqfOy8rK0pkzZ2xuHNqyZUvl5OTY7X2Kj483jktSQECA/Pz8lJCQYDfugQMHjH5lGRMAAFRvVSpkFRYW6vnnn1dcXJxmzpyp9u3b2/XJzc21exWhJH300UeyWq3q1q2b0darVy95eHho5cqVRpvVatXq1asVEBBgM37v3r21fft2JScnG227du3SkSNH1KdPn3KNCQAAqq8qdbnw3Xff1XfffacePXooIyNDGzZssDk+YMAApaWlady4cerXr5+uvvpqSdKOHTv0ww8/qFu3burVq5fRv0GDBho5cqSWL1+ugoIChYSEaNu2bdq3b59mzJhhs89r7Nix2rx5s6ZOnaoRI0YoOztby5cvV/PmzTVo0KByjQkAAKqvKhWyDh48KEnavn27tm/fbnd8wIABqlOnjnr06KGffvpJMTExKioqUpMmTfTggw9q9OjRqlHDdnFuwoQJqlu3rqKjoxUTE6OgoCBNnz5d/fv3t+kXGBioOXPmKDIyUvPmzTPeu3DSpEnGfqyyjgkAAKovN6vVaq3sSVRXCQkJioiI0IIFCxzeCLW8lk3+Vllpuapd30t3Rt5cYePiysD3BwD8NarUniwAAIArBSELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEHpU9gZIOHDigmJgY7d69WydOnJCvr6/atWun8ePHKzg42Kbv4cOHFRkZqf3798vDw0Pdu3fX5MmT5efnZ9OvqKhIUVFRWrVqldLS0hQUFKSxY8eqX79+dp/fjDEBAED1VKVC1rJly7R//3716dNHLVq0UGpqqlauXKnx48dr7ty5at68uSTp5MmTmjJliurUqaOIiAhlZ2crKipKhw4d0rx581SzZk1jzAULFmjp0qUaMmSI2rRpo9jYWL3wwgtyc3NT3759jX5mjAkAAKqvKhWyRo0apX/+8582gebmm2/W/fffr6VLl2rGjBmSpCVLlignJ0cLFy5UYGCgJCkkJESPPfaY1q1bp/DwcElSSkqKVqxYoWHDhmnatGmSpMGDB2vKlCl67733FBYWJnd3d9PGBAAA1VeV2pN13XXX2QQsSQoODtY111yjpKQko23Lli3q0aOHEYYkqXPnzgoODtamTZuMttjYWBUUFGjYsGFGm5ubm4YOHaqUlBTFxcWZOiYAAKi+qlTIcsRqtSo9PV1XXXWVpPMrSenp6WrdurVd35CQECUmJhqPExMT5e3traZNm9r1Kz5u1piOnDp1SgkJCcZ/JYMjAAC4slSpy4WOfP3110pJSdEDDzwgSUpNTZUkWSwWu74Wi0Vnz55VXl6ePD09lZqaqnr16snNzc2un3Q+9Jg1piPR0dFavHixM2UDAAAXV6VDVlJSkt5++221a9dOAwcOlCTl5uZKkt1lRUny9PQ0+nh6eio3N/eS/cwa05Hw8HD17NnTpr5Zs2aV2h8AALiuKhuyUlNT9dRTT8nHx0cvvviisZncy8tLkpSfn293Tl5enk0fLy8vp/tV9JiO+Pv7y9/fv9TjAADgylEl92RlZmbqySefVGZmpt544w2bYFJ8Wa74El9Jqamp8vX1NVaVLBaL0tLSZLVa7fpJMsY1Y0wAAFC9VbmQlZubq6efflpHjhzRq6++qmuuucbmeEBAgPz8/JSQkGB37oEDB9SyZUvjccuWLZWTk2O3wTw+Pt44btaYAACgeqtSIauwsFDPP/+84uLiNHPmTLVv395hv969e2v79u1KTk422nbt2qUjR46oT58+RluvXr3k4eGhlStXGm1Wq1WrV69WQECAzfhmjAkAAKqvKrUn691339V3332nHj16KCMjQxs2bLA5PmDAAEnS2LFjtXnzZk2dOlUjRoxQdna2li9frubNm2vQoEFG/wYNGmjkyJFavny5CgoKFBISom3btmnfvn2aMWOGzU1DzRgTAABUX1UqZB08eFCStH37dm3fvt3ueHHICgwM1Jw5cxQZGal58+YZ7zM4adIkY+9UsQkTJqhu3bqKjo5WTEyMgoKCNH36dPXv39+mnxljAgCA6svNeuEObvxlEhISFBERoQULFji8EWp5LZv8rbLSclW7vpfujLy5wsbFlYHvDwD4a1SpPVkAAABXCkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYoNwha9euXVq+fLlN23/+8x+NGDFCt99+u/7973+rsLDwsicIAADgisodsj788EMdPHjQePz777/rjTfekJ+fnzp27KgvvvhCUVFRFTJJAAAAV1PukJWUlKTWrVsbjzds2CAfHx9FRkZq5syZGjx4sNavX18hkwQAAHA15Q5Z2dnZ8vHxMR7/+OOP6tq1q2rVqiVJatOmjZKTky9/hgAAAC6o3CGrQYMG+vXXXyVJf/75p/744w916dLFOJ6RkaGaNWte/gwBAABckEd5T+zfv78++ugjpaSk6PDhw6pbt6569eplHE9ISFBwcHCFTBIAAMDVlDtk3X333SooKNAPP/ygwMBAPfPMM6pbt64k6ezZs9qzZ49GjBhRYRMFAABwJeUOWR4eHoqIiFBERITdMV9fX61atepy5gUAAODSyr0n69FHH9WuXbtKPf7zzz/r0UcfLe/wAAAALq3cK1l79uzR4MGDSz2enp6uvXv3lmnMrKwsRUVFKT4+XgcOHFBGRoaeeeYZDRo0yKbfyy+/rJiYGLvzr776ai1ZssSmraioSFFRUVq1apXS0tIUFBSksWPHql+/fnbnHz58WJGRkdq/f788PDzUvXt3TZ48WX5+fuUeEwAAVE/lDlmS5ObmVuqxo0ePqnbt2mUa78yZM1q8eLECAwPVsmVL7d69u9S+np6eevLJJ23aSt5SotiCBQu0dOlSDRkyRG3atFFsbKxeeOEFubm5qW/fvka/kydPasqUKapTp44iIiKUnZ2tqKgoHTp0SPPmzbN5paSzYwIAgOqrTCFr3bp1NitIH3/8sdasWWPXLzMzU4cOHVK3bt3KNBmLxaKVK1fKYrHo119/1YMPPlhqX3d3dw0YMOCi46WkpGjFihUaNmyYpk2bJkkaPHiwpkyZovfee09hYWFyd3eXJC1ZskQ5OTlauHChAgMDJUkhISF67LHHtG7dOoWHh5d5TAAAUH2VaU9Wbm6uTp8+rdOnT0s6f3mv+HHxf2fOnJGnp6fCw8P11FNPlWkynp6eslgsTvcvLCzUuXPnSj0eGxurgoICDRs2zGhzc3PT0KFDlZKSori4OKN9y5Yt6tGjhxGwJKlz584KDg7Wpk2byjUmAACovsq0kjV06FANHTpUkjRq1Cg98sgjNvfG+ivl5ORo0KBBysnJUd26ddW3b1899NBDNpcoExMT5e3traZNm9qcGxISYhzv0KGDUlJSlJ6ebvM2QSX7/vDDD2UeEwAAVG/l3pP16aefVuQ8ysRisWjMmDG69tprZbVa9eOPP2rVqlX6/fffNXv2bHl4nC8rNTVV9erVs9s7VrxadurUKaNfyfYL+549e1Z5eXny9PR0ekxHTp06ZXwu6fz7PwIAgCvTZW18l85fMjxx4oQyMjJktVrtjnfs2PFyP4WdCRMm2Dzu27evgoODtWDBAm3ZssXYfJ6bm+vwrX08PT2N4yU/Xqqvp6en02M6Eh0drcWLF1+qPAAAcAUod8g6ffq0Zs+erS1btqioqMjuuNVqlZubmzZv3nw583PaqFGjtGjRIu3cudMIWV5eXsrPz7frm5eXZxwv+dHZvs70cyQ8PFw9e/Y0HiclJWnWrFmXLg4AALiccoes119/Xdu3b9fw4cP1t7/9zXhLncri5eUlX19fnT171mizWCzavXu3EfiKFV+y8/f3N/qVbC8pNTVVvr6+xkqVs2M64u/vf9HjAADgylHukLVz506NGjVKEydOrMj5lFtWVpbOnDljc+PQli1b6quvvlJSUpKuueYaoz0+Pt44LkkBAQHy8/NTQkKC3bgHDhww+pVlTAAAUL2V+211vLy81LBhw4qci1Nyc3OVlZVl1/7RRx/JarXa3JurV69e8vDw0MqVK402q9Wq1atXKyAgQO3btzfae/fure3btys5Odlo27Vrl44cOaI+ffqUa0wAAFB9lXsla8CAAdq2bZvN/aIqwhdffKHMzEzj8tt3332nkydPSpKGDx+ujIwMjRs3Tv369dPVV18tSdqxY4d++OEHdevWzeaWEg0aNNDIkSO1fPlyFRQUKCQkRNu2bdO+ffs0Y8YMm5uGjh07Vps3b9bUqVM1YsQIZWdna/ny5WrevLnN2/qUZUwAAFB9lTtk9e7dW3v27NETTzyhIUOGqEGDBqpRw35hzNG9py5mxYoVOnHihPF469at2rp1q6Tzwa5OnTrq0aOHfvrpJ8XExKioqEhNmjTRgw8+qNGjR9vNYcKECapbt66io6MVExOjoKAgTZ8+Xf3797fpFxgYqDlz5igyMlLz5s0z3rtw0qRJxn6sso4JAACqLzero/suOKF3797/G8TBexj+1a8udEUJCQmKiIjQggULyhxGL2bZ5G+VlZar2vW9dGfkzRU2Lq4MfH8AwF+j3CtZTz/9dEXOAwAA4IpS7pBVcp8SAAAAbJX71YUAAAAoXblXsl599VWn+nFZEQAAVEflDlk///yzXVtRUZFSU1NVVFQkPz8/1apV67ImBwAA4KrKHbI+/fRTh+0FBQVavXq1Pv/8c7355pvlnhgAAIArq/A9WR4eHho+fLi6dOmid955p6KHBwAAcAmmbXxv0aKF9u7da9bwAAAAVZppIWvnzp3syQIAANVWufdkLV682GF7Zmam9u7dq99++0133XVXeYcHAABwaeUOWR9++KHD9rp166px48Z6/PHHNWTIkHJPDAAAwJWVO2Rt2bKlIucBAABwReGO7wAAACYo90pWsT179uj777/XiRMnJEkNGzZU9+7d1bFjx8sdGgAAwGWVO2Tl5+dr5syZio2NldVqVZ06dSSd3/i+YsUKhYaG6rnnnpOHx2XnOAAAAJdzWa8u3LZtm0aPHq077rhD9evXlySlp6crKipKUVFRWrx4scaPH19hkwUAAHAV5d6T9fXXX2vgwIGaOHGiEbAkqV69epo4caJuueUWbdiwoUImCQAA4GrKHbLS0tLUtm3bUo+3bdtWaWlp5R0eAADApZU7ZAUEBGj37t2lHt+zZ48CAgLKOzwAAIBLK3fIGjhwoDZt2qQ33nhD//3vf1VYWKiioiL997//1ZtvvqnNmzdr4MCBFTlXAAAAl1Huje9jx47V0aNHtWbNGn311Vdyc3OTJFmtVlmtVg0cOFB33313hU0UAADAlZQ7ZLm7u+vZZ5/VHXfcoe+//17JycmSpMDAQHXv3l0tWrSosEkCAAC4mjKFrNzcXP373/9Ws2bNNHz4cElSixYt7ALV559/rtWrV+uRRx7hPlkAAKBaKtOerDVr1igmJkbdu3e/aL/u3btr7dq1+uqrry5rcgAAAK6qTCFr06ZNuummm9S4ceOL9mvSpInCwsL0zTffXNbkAAAAXFWZQtahQ4fUoUMHp/q2b99ehw4dKtekAAAAXF2ZQlZ+fr7Te6w8PDyUl5dXrkkBAAC4ujKFLH9/f/3xxx9O9f3jjz/k7+9frkkBAAC4ujKFrBtuuEHr169Xenr6Rfulp6dr/fr16ty582VNDgAAwFWVKWTdddddysvL09SpUxUfH++wT3x8vKZOnaq8vDyNGTOmQiYJAADgasp0E6vGjRtr5syZmjlzph5++GE1atRIzZs3V+3atZWVlaU//vhDx44dk5eXl5577jk1adLErHkDAABUaWW+U2j37t314YcfatmyZdq+fbtiY2ONY/7+/ho8eLDuvPPOS97mAQAA4EpWrtuxN2rUSI8//rgef/xxZWVl6dy5c/Lx8VHt2rUren4AAAAu6bLf86Z27dqEKwAAgAuUaeM7AAAAnEPIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAE1z2G0RXpKysLEVFRSk+Pl4HDhxQRkaGnnnmGQ0aNMiu7+HDhxUZGan9+/fLw8ND3bt31+TJk+Xn52fTr6ioSFFRUVq1apXS0tIUFBSksWPHql+/fn/JmAAAoHqqUiHrzJkzWrx4sQIDA9WyZUvt3r3bYb+TJ09qypQpqlOnjiIiIpSdna2oqCgdOnRI8+bNU82aNY2+CxYs0NKlSzVkyBC1adNGsbGxeuGFF+Tm5qa+ffuaOiYAAKi+qlTIslgsWrlypSwWi3799Vc9+OCDDvstWbJEOTk5WrhwoQIDAyVJISEheuyxx7Ru3TqFh4dLklJSUrRixQoNGzZM06ZNkyQNHjxYU6ZM0XvvvaewsDC5u7ubNiYAAKi+qtSeLE9PT1kslkv227Jli3r06GGEIUnq3LmzgoODtWnTJqMtNjZWBQUFGjZsmNHm5uamoUOHKiUlRXFxcaaOCQAAqq8qFbKckZKSovT0dLVu3druWEhIiBITE43HiYmJ8vb2VtOmTe36FR83a0xHTp06pYSEBOO/pKSkS5ULAABcVJW6XOiM1NRUSXK44mWxWHT27Fnl5eXJ09NTqampqlevntzc3Oz6SedDj1ljOhIdHa3Fixc7WSkAAHBlLheycnNzJclmI3oxT09Po4+np6dyc3Mv2c+sMR0JDw9Xz549jcdJSUmaNWtWqf0BAIDrcrmQ5eXlJUnKz8+3O5aXl2fTx8vLy+l+FT2mI/7+/vL39y/1OAAAuHK43J6s4styxZf4SkpNTZWvr6+xqmSxWJSWliar1WrXT5IReMwYEwAAVG8uF7ICAgLk5+enhIQEu2MHDhxQy5YtjcctW7ZUTk6O3Qbz+Ph447hZYwIAgOrN5UKWJPXu3Vvbt29XcnKy0bZr1y4dOXJEffr0Mdp69eolDw8PrVy50mizWq1avXq1AgIC1L59e1PHBAAA1VeV25P1xRdfKDMz07j89t133+nkyZOSpOHDh6tOnToaO3asNm/erKlTp2rEiBHKzs7W8uXL1bx5c5u34GnQoIFGjhyp5cuXq6CgQCEhIdq2bZv27dunGTNm2Nw01IwxAQBA9VXlQtaKFSt04sQJ4/HWrVu1detWSdKAAQNUp04dBQYGas6cOYqMjNS8efOM9xmcNGmSsXeq2IQJE1S3bl1FR0crJiZGQUFBmj59uvr372/Tz4wxAQBA9eVmvXAHN/4yCQkJioiI0IIFCxzeCLW8lk3+Vllpuapd30t3Rt5cYePiysD3BwD8NVxyTxYAAEBVR8gCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzgUdkTKI/du3fr0UcfdXhs7ty5ateunfF4//79ev/99/Xbb7/Jx8dHffr0UUREhGrXrm1zXl5enhYtWqQNGzYoIyNDLVq00Pjx49WlSxe7z+HsmAAAoPpyyZBVbPjw4QoJCbFpa9KkifH/iYmJmjZtmpo2barJkyfr5MmTWrFihf7880+9/vrrNue98sor2rx5s0aOHKmgoCCtW7dOTz75pGbPnq0OHTqUa0wAAFB9uXTI+tvf/qawsLBSj8+fP19169bVnDlz5OPjI0lq1KiR/vWvf2nHjh3q2rWrJCk+Pl4bN27UxIkTNWbMGEnSLbfcovvuu09z587V3LlzyzwmAACo3lx+T1ZWVpYKCgrs2s+dO6edO3dqwIABRhiSzocnb29vbdq0yWjbsmWL3N3dFR4ebrR5eXnptttuU1xcnJKTk8s8JgAAqN5ceiXrlVdeUXZ2ttzd3dWhQwdNnDhRbdq0kSQdOnRIhYWFat26tc05NWvWVKtWrZSYmGi0JSYmKigoyCY4STIuRR48eFCBgYFlGtORU6dOKTU11XiclJRU9qIBAIBLcMmQ5eHhod69e+vGG2/UVVddpcOHD2vFihWaPHmy3nvvPV177bVGmLFYLHbnWywW7d2713icmppaaj/pfDgq7ufsmI5ER0dr8eLFzhUJAABcmkuGrOuuu07XXXed8bhXr14KCwvT/fffr/nz5+uNN95Qbm6upPOrTBfy9PRUXl6e8Tg3N7fUfsXHS350ZkxHwsPD1bNnT+NxUlKSZs2addFzAACAa3LJkOVIUFCQevXqpa1bt6qwsFBeXl6SpPz8fLu+eXl5RoCSzu+/Kq1f8fGSH50Z0xF/f3/5+/s7WREAAHBlLr/xvaQGDRooPz9fOTk5xiW9knugiqWmptqEHYvFUmo/SUbfsowJAACqtysqZB07dkyenp7y9vZWs2bN5O7uroSEBJs++fn5SkxMVMuWLY22li1b6s8//9S5c+ds+sbHxxvHJZVpTAAAUL25ZMg6ffq0XdvBgwf13XffqUuXLqpRo4bq1Kmjzp07a8OGDcrKyjL6rV+/XtnZ2erTp4/RFhYWpsLCQkVHRxtteXl5Wrt2rdq2bavAwEBJKtOYAACgenPJPVnPPfecvLy81L59e9WrV0+HDx/WmjVrVKtWLU2YMMHoN378eE2aNElTpkxReHi4cXf2Ll26qFu3bka/tm3bqk+fPpo/f75Onz6tJk2aKCYmRidOnNBTTz1l87mdHRMAAFRvLhmyQkND9fXXX+vTTz/VuXPn5Ofnp5tuukn33XefgoKCjH6tW7fWW2+9pffff1///ve/Vbt2bd122202QazYs88+q8DAQK1fv16ZmZlq3ry5XnvtNXXs2NGmX1nGBAAA1Zeb1Wq1VvYkqquEhARFRERowYIFdjc4vRzLJn+rrLRc1a7vpTsjb66wcXFl4PsDAP4aLrknCwAAoKojZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAm8KjsCQCoHNnpuVo2+VvVrOWhziNbqVm3RpU9JQC4orCSBVQzNWud/9vKapWy0nJ15tg57fwssZJnBQBXHkIWUM10HtlKVzX2Ue36XnJzO9+Wn1NQuZMCgCsQlwuBaqZZt0bGpcFlk79VVlpuJc8IAK5MrGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYwKOyJ+Cq8vLytGjRIm3YsEEZGRlq0aKFxo8fry5dulT21AAAQBXASlY5vfLKK/r000/Vv39/PfLII6pRo4aefPJJ7du3r7KnBgAAqgBCVjnEx8dr48aNevDBB/Xwww8rPDxc77zzjho2bKi5c+dW9vQAAEAVQMgqhy1btsjd3V3h4eFGm5eXl2677TbFxcUpOTm5EmcHAACqAvZklUNiYqKCgoLk4+Nj0x4SEiJJOnjwoAIDA+3OO3XqlFJTU43HSUlJ5k4UcFJ2eq6WTf62sqcBABWu9lVeGvpSz0r53ISsckhNTZXFYrFrL247deqUw/Oio6O1ePFiM6cGlEnNWh6ScmW1SllpuZU9HQC4ohCyyiE3N1c1a9a0a/f09DSOOxIeHq6ePf+XppOSkjRr1qwKn1/tq7xsPgKl6TyylXZ+lqj8nILKngoAmKIyfxcSssrBy8tL+fn5du15eXnGcUf8/f3l7+9v6twkVdqyKFxPs26N1Kxbo8qeBgBckdj4Xg4Wi8Vmb1Wx4ra/IkgBAICqjZBVDi1bttSff/6pc+fO2bTHx8cbxwEAQPVGyCqHsLAwFRYWKjo62mjLy8vT2rVr1bZtW4evLAQAANULe7LKoW3bturTp4/mz5+v06dPq0mTJoqJidGJEyf01FNPVfb0AABAFUDIKqdnn31WgYGBWr9+vTIzM9W8eXO99tpr6tixY2VPDQAAVAGErHLy8vLSww8/rIcffriypwIAAKog9mQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAm4T1Ylys3NlSQlJSVV8kwAAEBZNW3aVLVq1Sr1OCGrEp04cUKSNGvWrEqeCQAAKKsFCxaodevWpR53s1qt1r9wPijh9OnT2rFjhxo1aiRPT88KGzcpKUmzZs3S9OnT1bRp0wob1xVQe/WrvbrWLVF7day9utYtVc3aWcmqwvz8/DRgwADTxm/atOlFE/aVjNqrX+3VtW6J2qtj7dW1bsm1amfjOwAAgAkIWQAAACYgZF2BLBaL7rvvPlkslsqeyl+O2qtf7dW1bonaq2Pt1bVuyTVrZ+M7AACACVjJAgAAMAEhCwAAwASELAAAABMQsgAAAEzAzUgrycsvv6yYmJhSj3/xxRcKCAhQUVGR1qxZo9WrV+vo0aOqVauWrr32Wt1zzz267rrrbM7Jy8vTokWLtGHDBmVkZKhFixYaP368unTpYjf+/v379f777+u3336Tj4+P+vTpo4iICNWuXbvcY1Zk3QUFBfrkk08UExOjU6dOyd/fX7feeqvuuusueXjYftu6Qt3Fjhw5okWLFmn//v06e/asAgMD1a9fP40ePdrmrsFmzLMya3em7h07dujbb7/VgQMHlJSUpAYNGujTTz91OF5RUZGioqK0atUqpaWlKSgoSGPHjlW/fv3s+h4+fFiRkZHav3+/PDw81L17d02ePFl+fn7lHrMia8/JydHatWsVGxurQ4cOKTs7W0FBQRoyZIiGDBkid3d3l6zdmef8k08+0XfffaejR48qOztbAQEB6t69u+65557LmmNVf84vlJGRobvuukunT5/WCy+8oLCwMJvjrvJz7mztjzzyiPbs2WN3bteuXfXGG2+4bO2O8OrCSvLLL7/o2LFjNm1Wq1VvvvmmGjZsqI8//liSFBkZqU8//VQDBgxQhw4dlJmZqejoaCUnJ+vdd99V27ZtjfNnzpypzZs3a+TIkQoKCtK6dev066+/avbs2erQoYPRLzExURMnTlTTpk0VHh6ukydPasWKFerUqZNef/11mzk5O2ZF1/3cc89p8+bNuvXWW9WmTRvFxcUpJiZGQ4YM0f/93/+Va46VWbckJScn6/7771edOnUUHh4uX19fxcXFad26derZs6deeeUV0+ZZmbU7W/fLL7+sb7/9Vtdee62Sk5Pl7u5easiaN2+eli5dqiFDhqhNmzaKjY3V999/r+eee059+/Y1+p08eVLjxo1TnTp1NHz4cGVnZysqKkqBgYGaN2+eatasWeYxK7r2Q4cO6f7779cNN9ygLl26qHbt2tqxY4e2bdumW265Rf/4xz9crnZnn/Pp06fLz89PV199tWrXrq2kpCR99dVX8vPz0wcffCBvb2+XqrsstZc0e/ZsrV27VtnZ2Q5Dliv8nJel9kceeURHjx7VhAkTbM63WCy64YYbXLL2UllRZezdu9caGhpq/fjjj61Wq9Wan59v7devn3XGjBk2/Y4ePWoNDQ21vvPOO0ZbXFycNTQ01Lps2TKjLScnxzp69GjrQw89ZHP+E088YR06dKg1MzPTaFuzZo01NDTU+uOPP5ZrzMtxYd3x8fHW0NBQ68KFC236RUZGWm+66SbrwYMHyzXHyq77448/toaGhloPHTpk0z5r1ixraGio9ezZs6bNszJrd7bulJQUa35+vtVqtVqffPJJ68iRIx2Od/LkSWufPn2sb731ltFWVFRknTRpkvXvf/+7taCgwGh/8803rf369bOeOHHCaPvpp5+soaGh1tWrV5drzIquPT093e641Wq1vvLKK9bQ0FDrkSNHXK52Z59zRzZt2mQNDQ21fvPNNy5Xd3lq//33361hYWHWxYsXW0NDQ62bNm2yOe4qP+dlqX3KlCnWe+6555LjuVLtpWFPVhXyzTffyM3NzViqLiwsVG5ururVq2fTr169eqpRo4a8vLyMti1btsjd3V3h4eFGm5eXl2677TbFxcUpOTlZknTu3Dnt3LlTAwYMkI+Pj9H3lltukbe3tzZt2lTmMSu67n379kmS3V+Sffv2ldVq1bfffuuSdZ87d06S7J5Pi8WiGjVqyMPDw5R5VnbtztQtSf7+/naXgh2JjY1VQUGBhg0bZrS5ublp6NChSklJUVxcnE09PXr0UGBgoNHWuXNnBQcH29RdljHLwpna/fz81KxZM7tzQ0NDJZ1/U1xXq93Z59yRRo0aSZIyMzPLNUdXeM5LmjNnjm666aZSV1Bc5ee8PLUXFBQoKyur1PFcqfbSELKqiIKCAm3atEnt27c3/pHx8vJS27ZtFRMTow0bNig5OVm///67XnnlFdWtW9fmmyQxMVFBQUE232CSFBISIkk6ePCgJOnQoUMqLCy0e3PNmjVrqlWrVkpMTCzzmBVdd35+viTJ09PTpm/x9fyEhIQyz7Eq1N2pUydJ0muvvabExEQlJydr48aNWr16tYYPHy5vb29T5lnZtTtTd1kkJibK29tbTZs2dTjH4npSUlKUnp7u8I1kQ0JC7Op2Zsyyupza09LSJElXXXVVmedZ2bWXpW6r1arTp08rNTVVe/fu1ezZs+Xu7q6OHTu6XN1lrX3Tpk365Zdf9NBDD5U6nqv8nEtlq/3IkSO65ZZbNHDgQA0dOlQLFy5UQUGBy9ZeGja+VxE7duzQmTNn1L9/f5v26dOn6/nnn9esWbOMtsaNG+vdd99V48aNjbbU1FSHbzVQ3Hbq1CmjX8n2C/vu3bu3zGNeDkd1BwcHSzq/f6tkjcVzS0lJKfMcq0Ld3bp107hx47RkyRJ99913Rvvdd9+tiIgI0+ZZ2bU7U3dZpKamql69enJzc7voHC9V99mzZ5WXlydPT0+nxyyr8taen5+vzz77TI0aNVKbNm2MdlepvSx1p6Wl2awmBQQEaMaMGTbhx1XqlpyvPTc3V++9955GjRqlRo0a6cSJEw7Hc5Wfc8n52hs3bqxOnTqpefPmysnJ0ebNm/Xxxx/ryJEjmjlzZpnnWRVqLw0hq4r45ptv5OHhoT59+ti0165dW82aNVO7du10ww03KC0tTUuXLtWzzz6ryMhI49Uyubm5Nhs6ixWvBuXm5tp8LK1vXl6e8djZMS+Ho7pvvPFGNWzYUO+99568vLzUunVrxcfHa+HChXJ3dy/XHKtK3Y0aNdLf/vY39e7dW76+vvr++++1ZMkS1a9fX8OHDzdlnlWh9kvVXRYVVXdxH09Pz0p9zh155513dPjwYb322ms2l1hcqXZn6/b19dVbb72lvLw8JSYmauvWrcrOzrYZy5XqlpyrfenSpSooKNDYsWMvOpYr/ZxLztX+9NNP25xzyy236PXXX9eaNWs0atQotWvXrkzzrCq1O0LIqgKysrIUGxurrl272lwaKCgo0LRp09SpUydNnTrVaL/hhht07733avny5Zo4caKk85cWiy+zlVT8zVW8f6v4Y2l9S16ic3bM8iqtbi8vL7322mt67rnnNGPGDEnnfwAeeughffLJJzZLzq5U98aNG/X6669r6dKlatCggSSpd+/eslqtmjdvnvr162fKPCu7dmfqLvn8X0pF1X1h38p6zi+sffny5VqzZo3GjRun7t272xxzldrLUnfNmjXVuXNnSVKPHj10/fXXa9KkSapXr5569OjhUnU7W3tWVpaWL1+uadOm2d1e4EKu8nMuXd7P+h133KE1a9Zo586dRshypdpLw56sKiA2NlY5OTl2lwr37t2rP/74Qz179rRpDw4OVtOmTfXLL78YbRaLxVgyLam4zd/f3+hXsv3CvsX9yjJmeZVWtyQ1a9ZMH330kT766CNFRkbqyy+/1JAhQ3TmzBnjcmJZ5lgV6l65cqVatWpl/ONTrGfPnsrJyVFiYqIp86zs2p2puywsFovS0tJkveDuM2Wt29fX1/jH19kxy6qsta9bt07vv/++br/9dt17771247lK7ZfznF933XWyWCz6+uuvjTZXqVtyrvYPPvhA/v7+6tixo44fP67jx48be/BOnz6t48ePq6ioyJinK/ycS5f3vBefk5GRUeZ5VoXaS0PIqgK+/vpreXt724Wp9PR0STJ+2EoqKChQYWGh8bhly5b6888/jVd3FIuPjzeOS+fDi7u7u83mcen8XwCJiYlGv7KMWV6l1V3Mzc1NzZo1U4cOHeTr66uff/5ZRUVFNvdRcaW609PTS30upfOvJjVjnpVduzN1l0XLli2Vk5Nj86o7R3MMCAiQn5+fXd2SdODAAbu6nRmzrMpS+7Zt2/Svf/1LN910k6ZNm+ZwPFep/XKf87y8PJtXF7pK3ZJztScnJ+vo0aMaPXq07rjjDt1xxx3GXqS33npLd9xxh/Ez6Co/587WXpri+yeWvGGsK9VeGkJWJTt9+rR27typm266ye5OwMUrNhs3brRpT0hI0JEjR9SqVSujLSwsTIWFhYqOjjba8vLytHbtWrVt29Z4OXOdOnXUuXNnbdiwweals+vXr1d2drbN3ihnx6zouh3Jzc3VokWLZLFYbO7G7Ep1BwcHKzExUUeOHLFp37hxo2rUqKEWLVqYMs/Krt2ZusuiV69e8vDw0MqVK402q9Wq1atXKyAgQO3btzfae/fure3bt9u8LHvXrl06cuSITd1lGbMsnK19z549mjlzpjp06KAZM2aoRg3H/zS7Su3O1J2dna2cnBy7czdv3qyMjAybDf+uUreztY8fP14vvfSSzX/jxo2TJI0ZM0YvvfSSsS3CVX7Ona393LlzNnukpPNf9+IbUZe867or1V4a9mRVso0bN6qwsNDhJbPWrVurc+fOiomJ0blz59S1a1elpqbqiy++kJeXl0aOHGn0bdu2rfr06aP58+fr9OnTatKkiWJiYnTixAk99dRTNuOOHz9ekyZN0pQpU2zujNulSxd169atXGNWZN3S+Tu+WywWXXPNNTp37pzWrl2r48eP67XXXrPZw+BKdY8ePVo//vijJk+erL///e/y9fXV9u3b9eOPP2rw4MHGMrUZ86zM2p2t+/fff1dsbKwk6ejRo8rMzNRHH30k6fxfl8Urng0aNNDIkSO1fPlyFRQUKCQkRNu2bdO+ffs0Y8YMm7ehGTt2rDZv3qypU6dqxIgRys7O1vLly9W8eXMNGjTI6FeWMSu69hMnTujZZ5+Vm5ubwsLCtHnzZpsxWrRoYYQxV6ndmboTExP12GOPqU+fPmratKnc3NyUkJCgDRs2qGHDhhoxYkS55ugKz7mjS1J16tSRdP5WAsX3SJNc5+fc2dp3796tmTNnql+/fmrSpIlyc3O1bds27d+/X0OGDLG5DYMr1V4a3lankk2cOFHHjh3Tl19+6fCHOjc3V1FRUdq4caOOHz+umjVrqkOHDho3bpzNSlZx3+L3Y8rMzFTz5s01fvx4de3a1W7cffv2Ge/xVLt2bfXp00cTJkyw24RZljErsu5ly5Zp7dq1OnHihLy8vNShQwc98MADdjW7Wt3x8fH68MMPlZiYqLNnz6pRo0YaOHCgxowZY/MqMjPmWZm1O1P3unXrHL7liCQNHDhQzz77rPG4qKhIy5YtU3R0tFJTUxUUFKS77rpLAwYMsDv3jz/+sHsfu0mTJql+/fo2/coyZkXWvnv3bj366KOlnn/ffffpgQcecLnaL1X36dOntWDBAu3du1cpKSkqKChQYGCgunfvrrvvvtvh+wy6Qt3O1O5I8feBo7fVcZWfc2dqP3bsmObNm6cDBw4oLS1NNWrUUNOmTTV48GCFh4fb3VLDlWp3hJAFAABgAvZkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAm4G11AACoxk6dOqXPP/9cBw4c0K+//qrs7GzNnj1bnTp1cnqMnTt36pNPPtGhQ4dUWFiooKAgDR8+XLfccovRJzc3V2+//bYOHDigkydPqqioSI0bN9att96qYcOG2dwN/2LvALFy5UpZLBaHx44ePap7771XeXl5mj9/vs17YJbFn3/+qXnz5mnXrl3Kz8/Xtddeq3Hjxun6668v0ziELADV2ssvv6w9e/bo008/reypSJI++OADLV68WJLk7e2t9evXO31uRkaGbrvtNuPxxIkTNWbMmIqeIq4wR44c0bJlyxQUFKTmzZsrLi6uTOfHxsbqH//4h9q1a6f77rtPbm5u2rRpk1566SWdOXNGo0aNknQ+ZB0+fFg33nijGjZsqBo1auiXX35RZGSkDhw4oH/+8592Y48bN06NGjWyaSt+n0dH/v3vf5f7fSeLJScna+LEiXJ3d9eYMWNUq1YtrVu3To8//rjefvttdezY0emxCFkArjg33XSTU/1mz55t8kzKb/r06WX+ZeHt7a3p06fr9OnTioyMNGlmcDWPPPKIGjZsaPP+nyW1bt1aX331lXx9fbV582aHYedivvzyS1ksFr3zzjvy9PSUJIWHh+vuu+/WunXrjJDl6+ur999/3+bc22+/XT4+Pvryyy81adIkuxWqbt26Ob0atWPHDv30008aM2aMPv744zLVUNLSpUuNN6i/+uqrJUlDhgzR2LFjFRkZqYULFzo9FiELwBVn+vTpNo9jYmK0c+dOu/amTZvqySefVFFR0V85PaeU502KPTw8NGDAAB0/fpyQBadd+AbKZZWVlaW6desaAUs6/7141VVXOXV+w4YNJUmZmZkOLwNmZWXJy8vron90FBQUaM6cORoxYoSaNGlSar+kpCQtXLhQP//8s3Jzc9WsWTPde++96tWrl9Fn3759atWqlRGwJKlWrVrq2bOnVq5cqSNHjig4ONip2ghZAK44FwaUuLg47dy5s1zBBcDFdezYUcuWLdPChQs1cOBAubm56ZtvvlFCQoKef/55u/75+fk6d+6ccnNzlZCQoKioKDVs2NBhOHr00UeVnZ2tmjVrqkuXLpo0aZLDgPPZZ58pIyND99xzj7Zu3epwnn/88YcmTZokf39/3XXXXapVq5Y2bdqkf/zjH3rxxReNFfD8/HzVrVvX7vxatWpJkn777TdCFgA448I9WcePH9cdd9yhiRMnysvLSytWrFBaWpquu+46PfXUU2rQoIE+/vhjRUdH68yZM+rSpYueeeYZ+fr62oz7ww8/aMmSJfrtt9/k5uamv/3tb5o4caKaNWtW7rn++uuvWrBggX777TdlZ2erfv36uv766/X0009f1tcAuBz33nuvjh8/rk8++cS4TFerVi298MILCg0Nteu/detWzZw503jcpk0bPfXUUzYb3728vDRo0CB16tRJPj4+SkhI0KeffqqHH35YCxcuVGBgoNE3NTVVH330kR5++GH5+PiUOs85c+aoQYMGmj9/vrHqNmzYME2aNEnvv/++EbKCg4O1b98+ZWVl2azy7du3T5KUkpLi9NeGkAUADnzzzTfKz8/X8OHDdfbsWS1fvlzPP/+8rr/+eu3evVt33nmn/vzzT3355Zd67733bILO+vXr9fLLL6tr166aMGGCcnNztWrVKk2aNEmLFi2y28jrjPT0dD3++OPy8/PTnXfeqbp16+r48eOl/tWO6qmgoECZmZl2bfn5+Tp9+rRNu6+vr2rUuPw7OdWsWVPBwcEKCwvTTTfdpMLCQq1Zs0azZs3SW2+9pXbt2tn079Spk9566y1lZmZq165dOnjwoHJycmz63Hzzzbr55puNx6GhoerataumTJmiTz75RE888YRx7P3331fjxo01ePDgUud49uxZ/fzzz3rggQeUlZWlrKws41jXrl31wQcfKCUlRQEBARo6dKi2b9+u5557ThEREfL29tbKlSuVkJAg6fwGfmcRsgDAgZSUFC1btsx4JVNRUZGWLFmi3NxczZ8/3/ir+8yZM/r666/12GOPydPTU1lZWZo9e7YGDx6s//u//zPGGzhwoMaOHaslS5bYtDvrl19+UUZGht58802bjcARERGXWSmuJPv379ejjz5q1/7LL79o48aNNm0rVqwoV+C/0DvvvKP4+HgtXLjQCG0333yz7rnnHs2ZM0fz5s2z6V+/fn3Vr19fkhQWFqZPPvlEjz32mJYtW1bqrRkkqUOHDmrbtq127dpltMXFxWnDhg16++23LxoY//zzT1mtVi1atEiLFi1y2Cc9PV0BAQG68cYb9eijj2r+/PkaP368JKlJkyaKiIjQ3Llz5e3t7dwXRoQsAHAoLCzM5qXiISEhkqT+/fvbXNYICQnRN998o1OnTqlx48bauXOnMjMz1bdvX5uVgxo1aigkJEQ///xzueZTPJft27erZcuWNnMAirVs2VJvvfWWTdu7776r+vXr293OozjoXI78/Hz95z//0Z133mkTcjw8PNStWzetXLlS+fn5qlmzZqljhIWFacGCBYqNjdXtt99+0c/XoEED/fe//zUez507Vx06dFCjRo10/PhxSTJ+7lJTU5WcnKzAwEBZrVZJ0ujRo9W1a1eHYwcFBRn/P3z4cN166636/fffVbNmTbVs2VL/+c9/JMnp/VgSIQsAHCq550P6X8hp0KCBw/aMjAxJ5/9ilqSpU6c6HPdie0YupmPHjurdu7cWL16szz77TB07dlRoaKj69etn86ouVG9169ZV586d7dosFotde0U4c+aMCgsLVVhYaHessLBQRUVFl3z1bvHlt3Pnzl3y8x07dkx+fn7G45MnT+rEiRO644477Po+88wzqlOnjtauXavGjRtLOh/+nP06eHt7q3379sbjXbt2ycvLS9ddd51T50uELABwqLRLD6W9jLz4L+XiXyjTp093uFJQ3hslurm56cUXX1RcXJy2b9+uHTt26NVXX9WKFSs0d+7cy34ZPuCM5ORk5eTkqGnTppKkevXqqU6dOtq2bZvGjRtnrFhlZWXpu+++09VXXy0vLy9J51eYrrrqKrm5udmM+dVXX0k6f7+uYqdPn7YJU5L0/fffKyEhQcOHDzfannjiCbs9Uj///LO++OILPfzwwzbz7NSpk6Kjo/X3v/9d/v7+Nuc4+nwl7d+/X1u3btXtt99+0ZuhXoiQBQAVqPhl6H5+fqasHLRr107t2rVTRESEvv76a7344ov69ttvL7rpF7iUjz76SJJ0+PBhSedfvFH8arp7773X6PfSSy9pz549xgsu3N3dNXr0aC1cuFAPPfSQbrnlFhUVFek///mPUlJSbO5Nt2HDBkVHR6tXr15q3LixsrKytGPHDu3cuVM9evTQDTfcYPSdOHGirr32WrVu3Vo+Pj767bfftHbtWjVo0EB333230c/Rpb/ijf8dO3a02b84bdo0TZo0Sffff78GDx6sxo0bKy0tTXFxcUpJSdGHH34oSTpx4oSee+459ezZU/Xr19fhw4e1evVqNW/eXA8++GCZvq6ELACoQF27dpWPj4+WLFmi66+/3m7v1KX+Yi5NRkaG6tSpY7MK0KpVK0lSXl7eZc0ZuHAz+Nq1a43/LxmyHLnnnnvUqFEjff7551q8eLHy8/PVokULvfDCCwoLCzP6dejQQXFxcdq4caPS09Pl7u6u4OBgTZ48WX//+99txrz55pv1ww8/6KefflJOTo4sFouGDBmi++67r9x7ya655hotWLBAH374odatW6ezZ8+qXr16atWqlU2NPj4+slgs+vLLL5WRkSF/f38NHz5c99xzT5lXjAlZAFCBfHx89Nhjj+mll17SuHHj1LdvX/n5+Sk5OVk//PCD2rdvr2nTppV53HXr1mnVqlUKDQ1VkyZNlJWVpa+++ko+Pj668cYbTagEV4o5c+Zcso+ztwIpbaz+/furf//+Fz23TZs2NvfHupiIiIhyv3J20KBBGjRokMNjjRs31j/+8Y+Lnl+3bl29/PLL5frcFyJkAUAF69+/v/z9/bV06VJFRUUpLy9PAQEB6tChg2699dZyjdmxY0f9+uuv+vbbb5Weni4fHx+FhIRoxowZxqZeAFWLm7V4tyYAoNJ98MEHWrx4saKjo+Xm5ub0+79J5zffnzlzRidPntT48eM1ceJEu5ftA/jrsJIFAFVQeHi4vL29tX79eqfPyczMVHh4uImzAlAWrGQBQBVy7NgxHTt2TNL5V2516tTJ6XMLCgq0Z88e43FwcLDd/b4A/HUIWQAAACa4/HeGBAAAgB1CFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABggv8H+/niVmMnuRUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAG4CAYAAADrBft1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2SElEQVR4nO3de3hU1b3/8U/IjSRAA0mISDgRCMVwUVpByj1RQHyQFORWlVptk3qUBIR6VNp6UAulVtRiERSwRA9CQHuE0MpdiCCKB8rtEIzhABHQQDJJgNwmt/n9wZP9Y5igJCSsycz79Tx5ZK/1nTXLBY4f9l6zt4/D4XAIAAAAxrQwPQEAAABvRyADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHImoHy8nJlZWWpvLzc9FQAAEATIJA1Azk5OUpKSlJOTo7pqQAAgCZAIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADD/ExP4HL79+/X9OnT6+xbvHixevbsaR0fPnxYb775pr766iuFhIQoPj5eSUlJCg4OdnpdRUWF3n77bW3evFkXL15U165dlZiYqH79+rm8h8kxAQCA93KrQFZr/Pjxio2NdWrr2LGj9evs7GzNmDFD0dHRSk5O1rlz57R69WqdPn1aL7/8stPr5s2bpx07dmjixImKiorShg0b9PTTT2vBggW67bbb3GZMAADgvdwykN1+++2Ki4u7av+SJUvUunVrvf766woJCZEkdejQQX/+85/1xRdf6M4775QkZWZmatu2bXr88cf1wAMPSJLuuecePfLII1q8eLEWL17sFmMCAADv5rZ7yEpLS1VVVeXSXlJSor1792rkyJFWyJEuhaKgoCBt377dasvIyJCvr68SEhKstsDAQI0ePVpHjhzR2bNn3WJMAADg3dzyDNm8efNUVlYmX19f3XbbbXr88cd16623SpKOHz+u6upqde/e3ek1/v7+6tatm7Kzs6227OxsRUVFOQUiSdbl0GPHjikyMtL4mAAAwLu5VSDz8/PTsGHD9JOf/EQ/+MEPdPLkSa1evVrJyclatGiRfvjDH8pms0mSwsLCXF4fFhamgwcPWsc2m+2qdZKUn59v1Zkc80r5+fnW6yXxyCQAADycWwWy3r17q3fv3tbx4MGDFRcXp0cffVRLlizR/PnzZbfbJV0603SlgIAAVVRUWMd2u/2qdbX9l//T1JhXSk9PV2pq6lX7AQCAZ3GrQFaXqKgoDR48WJ988omqq6sVGBgoSaqsrHSpraiosIKRdGlv19Xqavsv/6epMa+UkJCgQYMGWcc5OTmaM2fOVesBAEDz5vaBTJLat2+vyspKlZeXW5cAL7+kV8tmsyk8PNw6DgsLU15eXp11kqxa02NeKTw8/Dv7AQCAZ3Hbb1le7ptvvlFAQICCgoLUuXNn+fr6Kisry6mmsrJS2dnZiomJsdpiYmJ0+vRplZSUONVmZmZa/ZKMjwkAALybW50hKyoqUmhoqFPbsWPH9Omnn6p///5q0aKFWrVqpb59+2rz5s36xS9+Yd3xftOmTSorK1N8fLz12ri4OKWlpSk9Pd26Z1hFRYU++ugj9ejRQ5GRkZJkfEx3d/zzb7Xvg2xVlrvehqSp+Lf0U9+J3dS5f4cb9p4AAJjiVoFs9uzZCgwMVK9evdS2bVudPHlS69evV8uWLfXYY49ZdYmJiZo6dapSUlKUkJBg3QG/X79+6t+/v1XXo0cPxcfHa8mSJSoqKlLHjh21ceNG5ebm6plnnnF6b5Njurt9H2Tr/Dcl31/YqOza+342gQwA4BV8HA6Hw/Qkan3wwQfasmWLzpw5o5KSEoWGhuqOO+7QI488oqioKKfaQ4cOWc+IDA4OVnx8vB577DGXZ0Ta7XbruZPFxcXq0qWLEhMT67xLvskxv0tWVpaSkpK0dOlSl/ua3Qgrkz9WaYFdPj5SUNvAJn+/skK7HA4puF2gHlx4V5O/HwAAprlVIEPd3CWQ3aiAdKPfDwAA05rFpn4AAABPRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhvmZnsB3effdd7Vs2TJ17txZ77zzjlPf4cOH9eabb+qrr75SSEiI4uPjlZSUpODgYKe6iooKvf3229q8ebMuXryorl27KjExUf369XN5P5NjAgAA7+W2Z8jOnTunFStWKCgoyKUvOztbM2bMUHl5uZKTkzV69GitX79es2fPdqmdN2+e1qxZoxEjRmjatGlq0aKFnn76aR06dMitxgQAAN7Lbc+QLVq0SD169FBNTY3Onz/v1LdkyRK1bt1ar7/+ukJCQiRJHTp00J///Gd98cUXuvPOOyVJmZmZ2rZtmx5//HE98MADkqR77rlHjzzyiBYvXqzFixe7xZgAAMC7ueUZsgMHDigjI0MpKSkufSUlJdq7d69GjhxphRzpUigKCgrS9u3brbaMjAz5+voqISHBagsMDNTo0aN15MgRnT171i3GBAAA3s3tzpBVV1drwYIFGj16tLp27erSf/z4cVVXV6t79+5O7f7+/urWrZuys7OttuzsbEVFRTkFIkmKjY2VJB07dkyRkZHGx7xSfn6+bDabdZyTk3PVWgAA0Py5XSBbt26dzp49q9dee63O/tqgEhYW5tIXFhamgwcPOtVerU66FHzcYcwrpaenKzU19ar9AADAs7hVIDt//rz+9re/6eGHH1ZoaGidNXa7XdKlM01XCggIUEVFhVPt1eouH8v0mFdKSEjQoEGDrOOcnBzNmTPnqvUAAKB5c6tAtmzZMrVu3Vrjx4+/ak1gYKAkqbKy0qWvoqLCCka1tVeru3ws02NeKTw8XOHh4VftBwAAnsVtAtmpU6e0fv16paSkWJf9pEvhpaqqSt9++61CQkKsS4CX77GqZbPZnIJMWFiY8vLy6qyTZNWaHhMAAHg3t/mWZX5+vmpqarRgwQJNnjzZ+snMzNSpU6c0efJkpaamqnPnzvL19VVWVpbT6ysrK5Wdna2YmBirLSYmRqdPn1ZJSYlTbWZmptUvyfiYAADAu7lNIOvcubPmzp3r8tO5c2dFRkZq7ty5Gj16tFq1aqW+fftq8+bNKi0ttV6/adMmlZWVKT4+3mqLi4tTdXW10tPTrbaKigp99NFH6tGjhyIjIyXJ+JgAAMC7uc0ly9DQUA0ZMsSl/f3335ckp77ExERNnTpVKSkpSkhI0Llz57R69Wr169dP/fv3t+p69Oih+Ph4LVmyREVFRerYsaM2btyo3NxcPfPMM07vY3JMAADg3dwmkNVH9+7d9eqrr+rNN9/UX//6VwUHB2v06NF67LHHXGp/+9vfKjIyUps2bVJxcbG6dOmil156SX369HGrMQEAgPfycTgcDtOTwHfLyspSUlKSli5d6nKj2RthZfLHKi2wK7hdoB5ceJfHvR8AAKa5zR4yAAAAb0UgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMP8TE/gcidOnNDy5cuVlZWlgoICtWzZUtHR0XrggQc0aNAgp9qTJ09q4cKFOnz4sPz8/DRgwAAlJycrNDTUqa6mpkZpaWlau3atCgoKFBUVpSlTpmj48OEu729yTAAA4L3cKpDl5uaqtLRUo0aNUnh4uMrLy5WRkaFZs2bpqaeeUkJCgiTp3LlzSklJUatWrZSUlKSysjKlpaXp+PHjeuutt+Tv72+NuXTpUr333nsaM2aMbr31Vu3atUsvvviifHx8dPfdd1t1pscEAADey60C2YABAzRgwACntvvvv19JSUlas2aNFchWrFih8vJyLVu2TJGRkZKk2NhYzZw5Uxs2bLDq8vLytHr1ao0bN04zZsyQJN13331KSUnRokWLFBcXJ19fX+NjAgAA7+b2e8h8fX3Vvn17FRcXW20ZGRkaOHCgFXIkqW/fvurUqZO2b99ute3atUtVVVUaN26c1ebj46OxY8cqLy9PR44ccYsxAQCAd3PLQFZWVqaioiKdOXNGa9as0Z49e/TjH/9Y0qUzVIWFherevbvL62JjY5WdnW0dZ2dnKygoSNHR0S51tf3uMOaV8vPzlZWVZf3k5ORctRYAADR/bnXJstYbb7yh9PR0SVKLFi00dOhQ6/KgzWaTJIWFhbm8LiwsTBcuXFBFRYUCAgJks9nUtm1b+fj4uNRJl4KPO4x5pfT0dKWmpta1NAAAwAO5ZSCbOHGi4uLilJ+fr+3bt6u6ulqVlZWSJLvdLkl1boivDTd2u10BAQGy2+3fW+cOY14pISHB6VulOTk5mjNnjksdAADwDG4ZyKKjo61LgqNGjdLMmTP17LPP6q233lJgYKAkWQHtchUVFZJk1QQGBl5znckxrxQeHq7w8PA6+wAAgOdxyz1kV4qLi9OXX36pU6dOWZcAay8JXs5ms6lNmzbWWaewsDAVFBTI4XC41EmyQo/pMQEAgHdrFoGs9vJfcXGxIiIiFBoaqqysLJe6o0ePKiYmxjqOiYlReXm5y6b4zMxMq1+S8TEBAIB3c6tAVlhY6NJWVVWlTZs2KTAwULfccoskadiwYdq9e7fOnj1r1e3bt0+nTp1SfHy81TZ48GD5+fnpww8/tNocDofWrVuniIgI9erVy2o3OSYAAPBubrWHbP78+SopKdHtt9+uiIgI2Ww2bdmyRV9//bWmTp2q4OBgSdKUKVO0Y8cOPfnkk5owYYLKysq0atUqdenSRffee681Xvv27TVx4kStWrVKVVVVio2N1c6dO3Xo0CE999xz1g1cTY8JAAC8m4/jys1QBm3btk3//Oc/dfz4cZ0/f17BwcHq3r277r//fg0ePNip9sSJEy7PiJw6daratWvnVFdTU6OVK1cqPT1dNptNUVFReuihhzRy5EiX9zc55nfJyspSUlKSli5dWud9zZrayuSPVVpgV3C7QD248C6Pez8AAExzq0CGuhHIAADwbG61hwwAAMAbEcgAAAAMI5ABAAAY1uBAtm/fPq1atcqp7Z///KcmTJign/70p/rrX/+q6urq654gAACAp2twIFu+fLmOHTtmHf/f//2f5s+fr9DQUPXp00d///vflZaW1iiTBAAA8GQNDmQ5OTlO3/jbvHmzQkJCtHDhQr3wwgu67777tGnTpkaZJAAAgCdrcCArKytTSEiIdbxnzx7deeedatmypSTp1ltvdbpDPQAAAOrW4EDWvn17ffnll5Kk06dP68SJE+rXr5/Vf/HiRfn7+1//DAEAADxcgx+dNGLECL3zzjvKy8vTyZMn1bp1a6e76WdlZalTp06NMkk0neOff6t9H2SrsrzqqjVlhfYbOCMAALxPgwPZz3/+c1VVVenzzz9XZGSkZs2apdatW0uSLly4oAMHDmjChAmNNlE0jX0fZOv8NyXXVOvf0q0efQoAgMdo8P9h/fz8lJSUpKSkJJe+Nm3aaO3atdczL9wgtWfGfHykoLaBV63zb+mnvhO73ahpAQDgVRocyKZPn66HH35Yd9xxR539//rXv/TOO+9owYIFDZ4cbpygtjw3EgAAUxq8qf/AgQMqKCi4an9hYaEOHjzY0OEBAAC8xnU9OsnHx+eqfWfOnFFwcPD1DA8AAOAV6nXJcsOGDdq4caN1/O6772r9+vUudcXFxTp+/Lj69+9//TMEAADwcPUKZHa7XUVFRdZxaWmpy1kyHx8fBQUFKSEhQY888khjzBEAAMCj1SuQjR07VmPHjpUkTZo0SdOmTXO69xgAAADqr8HfslyzZk1jzgMAAMBrXfedPktLS5Wbm6uLFy/K4XC49Pfp0+d63wIAAMCjNTiQFRUVacGCBcrIyFBNTY1Lv8PhkI+Pj3bs2HE98wMAAPB4DQ5kL7/8snbv3q3x48fr9ttvtx6bBAAAgPppcCDbu3evJk2apMcff7wx5wMAAOB1Gnxj2MDAQN10002NORcAAACv1OBANnLkSO3cubMx5wIAAOCVGnzJctiwYTpw4ICeeuopjRkzRu3bt1eLFq75rnv37tc1QQAAAE/X4ECWnJxs/Xrv3r0u/XzLEgAA4No0OJA9++yzjTkPAAAAr9XgQHbvvfc25jwAAAC8VoM39QMAAKBxNPgM2Z/+9KdrquPSJgAAwHdrcCD717/+5dJWU1Mjm82mmpoahYaGqmXLltc1OQAAAG/Q4EC2Zs2aOturqqq0bt06ffDBB3rllVcaPDEAAABv0eh7yPz8/DR+/Hj169dPf/nLXxp7eAAAAI/TZJv6u3btqoMHDzbV8AAAAB6jyQLZ3r172UMGAABwDRq8hyw1NbXO9uLiYh08eFBfffWVHnrooYYODwAA4DUaHMiWL19eZ3vr1q1188036ze/+Y3GjBnT4IkBAAB4iwYHsoyMjMacBwAAgNfiTv0AAACGNfgMWa0DBw7os88+U25uriTppptu0oABA9SnT5/rHRoAAMArNDiQVVZW6oUXXtCuXbvkcDjUqlUrSZc29a9evVpDhgzR7Nmz5ed33ZkPAADAo13Xtyx37typn/3sZ5o8ebLatWsnSSosLFRaWprS0tKUmpqqxMTERpssAACAJ2rwHrItW7Zo1KhRevzxx60wJklt27bV448/rnvuuUebN29ulEkCAAB4sgYHsoKCAvXo0eOq/T169FBBQUFDhwcAAPAaDQ5kERER2r9//1X7Dxw4oIiIiIYODwAA4DUaHMhGjRql7du3a/78+fr6669VXV2tmpoaff3113rllVe0Y8cOjRo1qjHnCgAA4JEavKl/ypQpOnPmjNavX69//OMf8vHxkSQ5HA45HA6NGjVKP//5zxttogAAAJ6qwYHM19dXv/3tbzV58mR99tlnOnv2rCQpMjJSAwYMUNeuXRttkgAAAJ6sXoHMbrfrr3/9qzp37qzx48dLkrp27eoSvj744AOtW7dO06ZN4z5kAAAA36Nee8jWr1+vjRs3asCAAd9ZN2DAAH300Uf6xz/+cV2TAwAA8Ab1CmTbt2/X0KFDdfPNN39nXceOHRUXF6etW7de1+QAAAC8Qb0C2fHjx3XbbbddU22vXr10/PjxBk0KAADAm9QrkFVWVl7znjA/Pz9VVFQ0aFIAAADepF6BLDw8XCdOnLim2hMnTig8PLxBkwIAAPAm9foK5B133KFNmzZpypQpatu27VXrCgsLtWnTJsXFxdVrMkePHtXGjRu1f/9+5ebmqk2bNurZs6cSExPVqVMnp9qTJ09q4cKFOnz4sPz8/DRgwAAlJycrNDTUqa6mpkZpaWlau3atCgoKFBUVpSlTpmj48OEu729yTAAA4L3qdYbsoYceUkVFhZ588kllZmbWWZOZmaknn3xSFRUVeuCBB+o1mZUrVyojI0N33HGHpk2bpjFjxujgwYNKTEx02o927tw5paSk6MyZM0pKStLPfvYzffbZZ5o5c6YqKyudxly6dKnefPNN9evXT9OnT1dkZKRefPFFbdu2zanO9JgAAMB71esM2c0336wXXnhBL7zwgp544gl16NBBXbp0UXBwsEpLS3XixAl98803CgwM1OzZs9WxY8d6TWbSpEn6z//8T/n7+1ttd911lx599FG99957eu655yRJK1asUHl5uZYtW6bIyEhJUmxsrGbOnKkNGzYoISFBkpSXl6fVq1dr3LhxmjFjhiTpvvvuU0pKihYtWqS4uDj5+voaHxMAAHi3ej/LcsCAAVq+fLnGjBmjiooK7dq1S5s3b9auXbtkt9t13333afny5Ro0aFC9J9O7d2+nMCZJnTp10i233KKcnByrLSMjQwMHDrRCjiT17dtXnTp10vbt2622Xbt2qaqqSuPGjbPafHx8NHbsWOXl5enIkSNuMSYAAPBuDbqNfocOHfSb3/xGv/nNb1RaWqqSkhKFhIQoODi4secnh8OhwsJC3XLLLZIunaEqLCxU9+7dXWpjY2P1+eefW8fZ2dkKCgpSdHS0S11t/2233WZ8zCvl5+fLZrNZx5eHUQAA4Hmu+7lGwcHBTRLEam3ZskV5eXn65S9/KUlWUAkLC3OpDQsL04ULF1RRUaGAgADZbDa1bdvWevD55XXSpeDjDmNeKT09XampqVdZEQAA4Gnc+kGTOTk5eu2119SzZ0+NGjVK0qXnaUpyubQpyQo3drtdAQEBstvt31vnDmNeKSEhwemSb05OjubMmeNSBwAAPIPbBjKbzaZnnnlGISEh+sMf/mBtlA8MDJSkOr+lWHsj2tqawMDAa64zOeaVwsPDuYcbAABepN6b+m+E4uJiPf300youLtb8+fOdwkntJcDL91jVstlsatOmjXXWKSwsTAUFBXI4HC51kqxxTY8JAAC8m9sFMrvdrmeffVanTp3Sn/70J2szf62IiAiFhoYqKyvL5bVHjx5VTEyMdRwTE6Py8nKXTfG191CrrTU9JgAA8G5uFciqq6v1/PPP68iRI3rhhRfUq1evOuuGDRum3bt36+zZs1bbvn37dOrUKcXHx1ttgwcPlp+fnz788EOrzeFwaN26dYqIiHAa3+SYAADAu7nVHrI33nhDn376qQYOHKiLFy9q8+bNTv0jR46UJE2ZMkU7duzQk08+qQkTJqisrEyrVq1Sly5ddO+991r17du318SJE7Vq1SpVVVUpNjZWO3fu1KFDh/Tcc89Z+9JMjwkAALybWwWyY8eOSZJ2796t3bt3u/TXBrLIyEi9/vrrWrhwod566y3rGZFTp0512Zf12GOPqXXr1kpPT9fGjRsVFRWl3//+9xoxYoRTnekxAQCA9/JxXLk7HW4nKytLSUlJWrp0aZ03mr0eK5M/VmmBXcHtAvXgwrsadeyGcsc5AQDQlNxqDxkAAIA3IpABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAzzMz0B4GrKCu1amfyx6WnUi39LP/Wd2E2d+3cwPRUAQDNCIIPb8W/pJ8kuh0MqLbCbnk492bX3/WwCGQCgXghkcDt9J3bT3vezVVleZXoq9VJWeClENrd5AwDMI5DB7XTu36FZnmFamfxxMzyjBwBwB2zqBwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGCYn+kJXK60tFRpaWnKzMzU0aNHdfHiRc2aNUv33nuvS+3Jkye1cOFCHT58WH5+fhowYICSk5MVGhrqVFdTU6O0tDStXbtWBQUFioqK0pQpUzR8+HC3GhMAAHgvtwpk58+fV2pqqiIjIxUTE6P9+/fXWXfu3DmlpKSoVatWSkpKUllZmdLS0nT8+HG99dZb8vf3t2qXLl2q9957T2PGjNGtt96qXbt26cUXX5SPj4/uvvtutxkTAAB4L7cKZGFhYfrwww8VFhamL7/8Ur/+9a/rrFuxYoXKy8u1bNkyRUZGSpJiY2M1c+ZMbdiwQQkJCZKkvLw8rV69WuPGjdOMGTMkSffdd59SUlK0aNEixcXFydfX1/iYAADAu7nVHrKAgACFhYV9b11GRoYGDhxohRxJ6tu3rzp16qTt27dbbbt27VJVVZXGjRtntfn4+Gjs2LHKy8vTkSNH3GJMAADg3dwqkF2LvLw8FRYWqnv37i59sbGxys7Oto6zs7MVFBSk6Ohol7rafncY80r5+fnKysqyfnJycq5aCwAAmj+3umR5LWw2myTVeSYtLCxMFy5cUEVFhQICAmSz2dS2bVv5+Pi41EmXgo87jHml9PR0paamXn0RAACAR2l2gcxut0tSnRvia8ON3W5XQECA7Hb799a5w5hXSkhI0KBBg6zjnJwczZkzx6UOAAB4hmYXyAIDAyVJlZWVLn0VFRVONYGBgddcZ3LMK4WHhys8PLzOPgAA4Hma3R6y2kuAtZcEL2ez2dSmTRvrrFNYWJgKCgrkcDhc6iRZocf0mAAAwLs1u0AWERGh0NBQZWVlufQdPXpUMTEx1nFMTIzKy8tdNsVnZmZa/e4wJgAA8G7NLpBJ0rBhw7R7926dPXvWatu3b59OnTql+Ph4q23w4MHy8/PThx9+aLU5HA6tW7dOERER6tWrl1uMCQAAvJvb7SH7+9//ruLiYutS36effqpz585JksaPH69WrVppypQp2rFjh5588klNmDBBZWVlWrVqlbp06eL0mKX27dtr4sSJWrVqlaqqqhQbG6udO3fq0KFDeu6556wbuEoyOiYAAPBuPo4rN0MZNmnSJOXm5tbZt3r1anXo0EGSdOLECZdnRE6dOlXt2rVzek1NTY1Wrlyp9PR02Ww2RUVF6aGHHtLIkSNdxjc55nfJyspSUlKSli5dWud9za7HyuSPVVpgV3C7QD248K5GHdvbsJYAgIZyu0AGVwSy5oG1BAA0VLPcQwYAAOBJCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIb5mZ4A4GnKCu1amfyx6Wl4Bf+Wfuo7sZs69+9geioAcF0IZEAj8W/pJ8kuh0MqLbCbno6XsGvv+9kEMgDNHoEMaCR9J3bT3vezVVleZXoqXqGs8FL4Zb0BeAICGdBIOvfvwJmaG2hl8seciQTgMdjUDwAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDA/0xMAgOtRVmjXyuSPTU8DQDPn39JPfSd2U+f+HYy8P4EMQLPk39JPkl0Oh1RaYDc9HQDNnl17388mkAFAffSd2E17389WZXmV6akAaObKCi/95c7k5wmBDECz1Ll/B2N/kwXgWVYmf2z8TDub+gEAAAwjkAEAABjGJcsmVlFRobffflubN2/WxYsX1bVrVyUmJqpfv36mpwYAANwEZ8ia2Lx587RmzRqNGDFC06ZNU4sWLfT000/r0KFDpqcGAADcBIGsCWVmZmrbtm369a9/rSeeeEIJCQn6y1/+optuukmLFy82PT0AAOAmCGRNKCMjQ76+vkpISLDaAgMDNXr0aB05ckRnz541ODsAAOAu2EPWhLKzsxUVFaWQkBCn9tjYWEnSsWPHFBkZ6fK6/Px82Ww26zgnJ6dpJwoAAIwikDUhm82msLAwl/batvz8/Dpfl56ertTU1KacGgAAcCMEsiZkt9vl7+/v0h4QEGD11yUhIUGDBg2yjnNycjRnzpwmmWPwDwKd/gkAgLdxh/8XEsiaUGBgoCorK13aKyoqrP66hIeHKzw8vEnnVmvs3EHfXwQAgAdzh/8Xsqm/CYWFhTntBatV23ajQhcAAHBvBLImFBMTo9OnT6ukpMSpPTMz0+oHAAAgkDWhuLg4VVdXKz093WqrqKjQRx99pB49etT5DUsAAOB92EPWhHr06KH4+HgtWbJERUVF6tixozZu3Kjc3Fw988wzpqcHAADcBIGsif32t79VZGSkNm3apOLiYnXp0kUvvfSS+vTpY3pqAADATRDImlhgYKCeeOIJPfHEE6anAgAA3BR7yAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDuA9ZM2C32yVJOTk5hmcCAADqKzo6Wi1btvzOGgJZM5CbmytJmjNnjuGZAACA+lq6dKm6d+/+nTU+DofDcYPmgwYqKirSF198oQ4dOiggIOCaX5eTk6M5c+bo97//vaKjo5twhpBY7xuN9b6xWO8bi/W+sZp6vTlD5iFCQ0M1cuTIBr8+Ojr6e5M5Gg/rfWOx3jcW631jsd43lsn1ZlM/AACAYQQyAAAAwwhkHiwsLEyPPPKIwsLCTE/FK7DeNxbrfWOx3jcW631jucN6s6kfAADAMM6QAQAAGEYgAwAAMIxABgAAYBiBDAAAwDBuDOuBKioq9Pbbb2vz5s26ePGiunbtqsTERPXr18/01NxSaWmp0tLSlJmZqaNHj+rixYuaNWuW7r33XpfakydPauHChTp8+LD8/Pw0YMAAJScnKzQ01KmupqZGaWlpWrt2rQoKChQVFaUpU6Zo+PDhDR7TExw9elQbN27U/v37lZubqzZt2qhnz55KTExUp06dnGpZ6+t34sQJLV++XFlZWSooKFDLli0VHR2tBx54QIMGDXKqZb2bxrvvvqtly5apc+fOeuedd5z6Dh8+rDfffFNfffWVQkJCFB8fr6SkJAUHBzvV1ecz/VrH9AT79+/X9OnT6+xbvHixevbsaR03h7UmkHmgefPmaceOHZo4caKioqK0YcMGPf3001qwYIFuu+0209NzO+fPn1dqaqoiIyMVExOj/fv311l37tw5paSkqFWrVkpKSlJZWZnS0tJ0/PhxvfXWW/L397dqly5dqvfee09jxozRrbfeql27dunFF1+Uj4+P7r777gaN6QlWrlypw4cPKz4+Xl27dpXNZtOHH36oxMRELV68WF26dJHEWjeW3NxclZaWatSoUQoPD1d5ebkyMjI0a9YsPfXUU0pISJDEejeVc+fOacWKFQoKCnLpy87O1owZMxQdHa3k5GSdO3dOq1ev1unTp/Xyyy871V7rZ3p9xvQk48ePV2xsrFNbx44drV83m7V2wKMcOXLEMWTIEMfKlSuttvLycsfPfvYzx7//+78bnJn7stvtjvz8fIfD4XAcPXrUMWTIEMdHH33kUvfKK684hg8f7sjNzbXa/ud//scxZMgQx7p166y2c+fOOeLj4x2vvvqq1VZTU+OYOnWq4/7773dUVVXVe0xPcejQIUdFRYVT29dff+24++67HS+++KLVxlo3naqqKsejjz7qeOihh6w21rtpzJ492zF9+nRHSkqK4+GHH3bqe+qppxxjx451FBcXW23r1693DBkyxLFnzx6rrT6f6dc6pqf417/+5RgyZIhj+/bt31nXXNaaPWQeJiMjQ76+vtbffCUpMDBQo0eP1pEjR3T27FmDs3NPAQEB13QzwIyMDA0cOFCRkZFWW9++fdWpUydt377datu1a5eqqqo0btw4q83Hx0djx45VXl6ejhw5Uu8xPUXv3r1dzox06tRJt9xyi3Jycqw21rrp+Pr6qn379iouLrbaWO/Gd+DAAWVkZCglJcWlr6SkRHv37tXIkSMVEhJitd9zzz0KCgpyWp9r/Uyvz5ieqLS0VFVVVS7tzWmtCWQeJjs7W1FRUU5/SCRZp3OPHTtmYlrNXl5engoLC+t86GxsbKyys7Ot4+zsbAUFBSk6Otqlrra/vmN6MofDocLCQv3gBz+QxFo3hbKyMhUVFenMmTNas2aN9uzZox//+MeSWO+mUF1drQULFmj06NHq2rWrS//x48dVXV3tsj7+/v7q1q2by5pfy2d6fcb0NPPmzdOoUaM0YsQITZ8+XV9++aXV15zWmj1kHsZms9V5tqe2LT8//0ZPySPYbDZJuuraXrhwQRUVFQoICJDNZlPbtm3l4+PjUif9/9+D+ozpybZs2aK8vDz98pe/lMRaN4U33nhD6enpkqQWLVpo6NChmjFjhiTWuymsW7dOZ8+e1WuvvVZn//etz8GDB51qr+UzvT5jego/Pz8NGzZMP/nJT/SDH/xAJ0+e1OrVq5WcnKxFixbphz/8YbNaawKZh7Hb7XVulq394LPb7Td6Sh6hdt2+b20DAgKu+fegPmN6qpycHL322mvq2bOnRo0aJYm1bgoTJ05UXFyc8vPztX37dlVXV6uyslIS693Yzp8/r7/97W96+OGHr/pt0u9bn4qKCqfaxljzy8f0FL1791bv3r2t48GDBysuLk6PPvqolixZovnz5zerteaSpYcJDAy0PmgvV/sHJDAw8EZPySPUrtu1rO21/h7UZ0xPZLPZ9MwzzygkJER/+MMf5OvrK4m1bgrR0dHq27evRo0apZdeekllZWV69tln5XA4WO9GtmzZMrVu3Vrjx4+/as33rc/lQbWx1twTw29doqKiNHjwYO3fv1/V1dXNaq0JZB4mLCzMOp16udq28PDwGz0lj1B7avpqa9umTRvrP8KwsDAVFBTI4XC41En///egPmN6muLiYj399NMqLi7W/Pnznf5cstZNLy4uTl9++aVOnTrFejeiU6dOaf369ZowYYLy8/P17bff6ttvv1VFRYWqqqr07bff6sKFC9+7Plf+93Atn+n1GdPTtW/fXpWVlSovL29Wa00g8zAxMTE6ffq0SkpKnNozMzOtftRfRESEQkNDlZWV5dJ39OhRp3WNiYlReXm507cGJdffg/qM6UnsdrueffZZnTp1Sn/60590yy23OPWz1k2v9pJLcXEx692I8vPzVVNTowULFmjy5MnWT2Zmpk6dOqXJkycrNTVVnTt3lq+vr8v6VFZWKjs722XNr+UzvT5jerpvvvlGAQEBCgoKalZrTSDzMHFxcaqurrY28EqXTqF+9NFH6tGjh9NX0FE/w4YN0+7du51uHbJv3z6dOnVK8fHxVtvgwYPl5+enDz/80GpzOBxat26dIiIi1KtXr3qP6Smqq6v1/PPP68iRI3rhhRec1uJyrHXjKCwsdGmrqqrSpk2bFBgYaIVh1rtxdO7cWXPnznX56dy5syIjIzV37lyNHj1arVq1Ut++fbV582aVlpZar9+0aZPKysqc1udaP9PrM6anKCoqcmk7duyYPv30U/Xr108tWrRoVmvt47jy3DOavdmzZ+uTTz7RpEmT1LFjR23cuFFHjx7Va6+9pj59+pienlv6+9//ruLiYtlsNq1du1ZDhw5Vt27dJF26C3SrVq109uxZJSYmqlWrVpowYYLKysq0atUqRUREaMmSJU6XYBYvXqxVq1ZpzJgxio2N1c6dO/XZZ5/pueee04gRI6y6+ozpCV5//XV98MEHGjhwoO666y6X/pEjR0qq37qw1lf3u9/9TiUlJbr99tsVEREhm82mLVu26Ouvv9bUqVM1efJkSax3U5s2bZrOnz/v9OikrKwsTZ06VdHR0UpISLDu9H777bfrlVdecXr9tX6m12dMTzB9+nQFBgaqV69eatu2rU6ePKn169fLz89PixYtsv7C0VzWmkDmgex2u/UsruLiYnXp0kWJiYm68847TU/NbU2aNEm5ubl19q1evVodOnSQdOnZgFc+m2/q1Klq166d02tqamq0cuVKpaeny2azKSoqSg899JAVOC53rWN6gmnTpunAgQNX7f/kk0+sX7PW12/btm365z//qePHj+v8+fMKDg5W9+7ddf/992vw4MFOtax306krkEnSoUOHrGchBgcHKz4+Xo899pjLsxDr85l+rWN6gg8++EBbtmzRmTNnVFJSotDQUN1xxx165JFHFBUV5VTbHNaaQAYAAGAYe8gAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAcANNm3aNA0dOlRDhw7VM888Y7V/++23Gjp0qFatWnXD57Rz505rTkOHDtWXX355w+cAeDM/0xMAgBttw4YNmjdv3lX7Fy9erJ49ezbpHP7t3/5NDz/8sCIiIhp97KqqKo0bN07/9m//pjfeeKPOGofDoQkTJig0NFRvv/22unfvrt///vc6ePCg1q9f3+hzAvDdCGQAvNavfvUr68Hxl+vYsWOTv3e7du3qfCB3Y/Dz81NcXJzS09OVm5urm266yaXm4MGDysvL06RJkyRJ7du318iRI1VdXU0gAwwgkAHwWv3799ett95qehpNYsSIEVq3bp22bt2qKVOmuPRv2bJFLVq00N13321gdgCuxB4yALiKy/d0/fd//7cmT56sESNGaObMmTp79qwcDofeeecdjR8/XsOHD9esWbN04cKFRp2Dw+HQyy+/rLvuuksZGRlW++bNm5WYmKjhw4dr9OjRev7553X27Fmrv3fv3rrpppu0detWlzGrqqqUkZGhH/3oRwoPD2/U+QJoGAIZAK9VUlKioqIip5/z58+71G3dulVr167V+PHjNXnyZB08eFDPP/+8li1bpj179ujBBx/UmDFjtHv3bi1atKjR5lddXa0//vGP2rRpk+bOnathw4ZJkt59913NnTtXUVFRSk5O1sSJE7Vv3z6lpKTo4sWLkiQfHx+NGDFCx48f14kTJ5zG3bNnjy5cuKARI0Y02lwBXB8uWQLwWjNmzHBpCwgIcDmrlJeXp5UrV6pVq1aSpJqaGq1YsUJ2u11LliyRn9+lj9Lz589ry5YtmjlzpgICAq5rblVVVZozZ44+/fRT/fGPf9Sdd94pScrNzdXy5cuVmJion//851b90KFD9atf/Upr16612keMGKH/+q//0pYtW/TrX//aqt26dasCAgKsgAfAPAIZAK81Y8YMderUyamtRQvXCwdxcXFWGJOk2NhYSZcCT20Yq23funWr8vPzdfPNNzd4XlVVVZo9e7b27t2rP//5z/rRj35k9X3yySeqqalRfHy8ioqKrPZ27dopKipK+/fvtwLZLbfcom7dumnbtm1WICsrK9Onn36qgQMHKiQkpMFzBNC4CGQAvFZsbOw1beqPjIx0Oq4NZ+3bt6+zvfayYUOtWLFCZWVlevnll53CmCSdPn1aDodDDz74YJ2vvTwgSpdC46JFi3T48GH17t1bO3fuVHl5OZcrATdDIAOA71HXWTNJ8vX1rbPd4XBc1/vdeeed+uKLL7Ry5Ur16dNHgYGBVl9NTY18fHz08ssv1zmvoKAgp+Phw4frzTff1NatW9W7d29t3bpVrVu31k9+8pPrmiOAxkUgAwA306NHD/30pz/Vs88+q9mzZ2vOnDnWma+OHTvK4XCoQ4cOLpdb6xIeHq4f/ehH2rFjh37xi19o7969uvfee+Xv79/U/xoA6oFvWQKAG+rbt69mz56tPXv2aO7cuaqpqZF0afO+r6+vli9f7nImzuFw1Pkt0REjRqiwsFDz589XVVUVlysBN8QZMgBea8+ePfr6669d2nv16nVdm/Iby5AhQzRr1izNnTtXwcHB+o//+A917NhRv/rVr7RkyRLl5uZqyJAhCg4O1jfffKOdO3dqzJgxeuCBB5zGGTZsmF599VXt2rVL7du31+23327o3wjA1RDIAHitt99+u872WbNmuUUgk6SRI0eqtLRUr776qkJCQvTEE09oypQp6tSpk95//32lpqZKkiIiItSvXz8NHjzYZYyQkBANGjRI27dv19133y0fH58b/G8B4Pv4OK539ykAoF6mTZumqqoq/fGPf5S/v79b3H6isrJSJSUl2rZtmxYsWKAlS5Z47GOlAHfEGTIAMOB///d/lZCQoAEDBuill14yPR19/vnn+t3vfmd6GoDX4gwZANxgWVlZ1r3KQkNDFRMTY3hGUlFRkY4dO2Yd9+jRQ8HBwQZnBHgXAhkAAIBh3PYCAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwLD/Bx/y691GcQYgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAG4CAYAAAB2CPL9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABD20lEQVR4nO3de3hU1aH//0/IZXLhEkxCjAQRCIUgUnpMRJRbBBEOkmIxKko92JJ6KEFFPXj/erBYakUriqKgBT3KXYVwylW5CFK0oSA8BONgJIIQLpMAuc7kMr8/8ss+jJPUZJKdTGber+fJA3vttdeszYTJJ2uvvXaA0+l0CgAAAM2qXWt3AAAAwBcRsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASGrFZWXlysnJ0fl5eWt3RUAANDMCFmtKC8vT+np6crLy2vtrgAAgGZGyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATBLV2BwA0Xu7eU9q3xqqK8kqPjg8ODVJSWm/1GBTXzD0DANQiZAFt0L41Vl04WdKEFuzKWm0lZAGAiQhZQBtUO4IVECCFdbY06tiyQrucTnk8CgYAaBhCFtCGhXW26O4FNzXqmGUZ21RaYDepRwCAWoQsoJU0ZV5VWSEhCQC8HSELaCVNn1dVM4EdAOCd+IQGWklT5lVJ/3eHIADAOxGygFbmybwqAID3YzFSAAAAEzCSBfipskK7lmVsa/RxLGQKAA1DyAL8TM1k+Zq1sjxbyoGFTAGgIQhZgJ9JSuutrNWeLx3BQqYA0DCELMDP9BgU5/EoFAuZAkDDMfEdAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwATcXQg0Qe7eU9q3xvPlEAAAvouQBTTBvjVWXThZ0qQ2ahYHBQD4Gq/8dM/JydGSJUt06NAhORwOXXHFFRo/frxuv/12o86hQ4f05ptv6ptvvlFERIRSUlKUnp6u8PBwl7YcDofeeecdbdmyRUVFRerVq5emTp2q5ORkt9c1o034ttoRrICAmgc9N1btI2oAAL7H60LWl19+qSeeeEK9e/fWf/zHfygsLEw//PCDzp49a9SxWq2aOXOmunfvroyMDJ05c0YrV67UiRMn9OKLL7q0N3fuXO3YsUNpaWmKj4/Xxo0bNWvWLM2fP18DBgwwtU34j7DOFt294KbW7kaL4bmHAPDTvCpklZSU6I9//KOuv/56/eEPf1C7dnXPy1+0aJE6dOigV199VREREZKkuLg4/fnPf9aXX36p6667TpKUnZ2tTz/9VNOmTdOkSZMkSbfccoumTJmihQsXauHChaa2CfgannsIAA3nVXcXfvLJJyooKFB6erratWunsrIyVVdXu9QpKSlRVlaWRo8ebYQhqSbohIWFafv27UbZzp07FRgYqNTUVKPMYrFo3LhxOnz4sE6fPm1am4AvSkrrrU5XRCj8MkujvwICatrguYcA/IVXjWRlZWUpIiJC586d01NPPaXjx48rLCxMo0ePVkZGhiwWi3Jzc1VVVaU+ffq4HBscHKzevXvLarUaZVarVfHx8S7BSZISExMlSUePHlVsbKwpbdbl3LlzstlsxnZeXl5D/2kAr8BzDwGg4bwqZJ04cUJVVVV68sknNW7cOP3ud7/TgQMH9OGHH6q4uFjPPvusEVKioqLcjo+KitJXX31lbNtstnrrSTWhp7Zec7dZl8zMTC1durTe/QAAwHd4VcgqKytTeXm5fvnLX+rBBx+UJA0fPlwVFRXKzMzUb37zG9ntNb8JBwcHux0fEhIih8NhbNvt9nrr1e6/9M/mbLMuqampuvHGG43tvLw8zZkzp976AACg7fKqkGWx1NwCP3LkSJfyUaNGKTMzU4cPH1ZoaKgkqaKiwu14h8NhhJ3a9uqrd+nr1f7ZnG3WJTo6WtHR0fXuBwAAvsOrJr7XXnK77LLLXMo7d+4sSSoqKjLqXDq3qZbNZnMJMVFRUfXWk2TUNaNNAADg37wqZNVOPL90TSzp/+Y5RUZGqkePHgoMDFROTo5LnYqKClmtViUkJBhlCQkJOnHihEpKXFfkzs7ONvZLMqVNAADg37wqZKWkpEiS/va3v7mU/+1vf1NgYKB+8YtfqH379kpKStKWLVtUWlpq1Nm8ebPKysqMNiRpxIgRqqqqUmZmplHmcDi0YcMG9evXz7gL0Iw2AQCAf/OqOVk/+9nP9O///u/asGGDqqqqNHDgQB04cEDbt2/X5MmTjUtxU6dO1fTp0zVjxgylpqYaq7MnJydr0KBBRnv9+vVTSkqKFi1apPPnz6tr167atGmT8vPz9dhjj7m8thltAgAA/+VVIUuSHn30UcXGxmrjxo3atWuXYmNjlZGRoTvuuMOo06dPH7388st688039dprryk8PFzjxo3T/fff79bek08+qdjYWG3evFnFxcXq2bOnXnjhBQ0cONClnhltAgAA/xXgdDqdrd0Jf5WTk6P09HQtXrzYbSFUtA21C2yGX+Zfzy70BP9WAPyNV83JAgAA8BWELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATeN06WQB8W1mhXcsytjX6uODQICWl9VaPQXEm9AoAmh8hC0CLCA4NkmSX0ymVFtg9aMGurNVWQhaANoOQBaBFJKX1VtZqqyrKKxt9bFlhTTjz5FgAaC2ELAAtosegOI9HoWpXiweAtoSJ7wAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAm4O5C+L3cvae0b43nSwsAAFAXQhb83r41Vl04WdKkNmoW2gQA4P/wkwF+r3YEKyBACutsafTxtY97AQDgUoQs4P8X1tmiuxfc1NrdAAD4CCa+AwAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACXh2IYA2o6zQrmUZ2xp9XO1DvHsMijOhVwBQN0IWAK8XHBokyS6nUyotsHvQgl1Zq62ELAAtipAFwOslpfVW1mqrKsorG31sWWFNOPPkWABoCkIWAK/XY1Ccx6NQyzK2eTj6BQBNw8R3AAAAExCyAAAATEDIAgAAMAEhCwAAwAReNfF9//79evDBB+vct3DhQl199dXG9qFDh/Tmm2/qm2++UUREhFJSUpSenq7w8HCX4xwOh9555x1t2bJFRUVF6tWrl6ZOnark5GS31zCjTQAA4J+8KmTVmjhxohITE13KunbtavzdarVq5syZ6t69uzIyMnTmzBmtXLlSJ06c0Isvvuhy3Ny5c7Vjxw6lpaUpPj5eGzdu1KxZszR//nwNGDDA1DYBAID/8sqQ9fOf/1wjRoyod/+iRYvUoUMHvfrqq4qIiJAkxcXF6c9//rO+/PJLXXfddZKk7Oxsffrpp5o2bZomTZokSbrllls0ZcoULVy4UAsXLjS1TQAA4L+8dk5WaWmpKivdFw8sKSlRVlaWRo8ebYQhqSbohIWFafv27UbZzp07FRgYqNTUVKPMYrFo3LhxOnz4sE6fPm1amwAAwL955UjW3LlzVVZWpsDAQA0YMEDTpk1T3759JUm5ubmqqqpSnz59XI4JDg5W7969ZbVajTKr1ar4+HiX4CTJuBR59OhRxcbGmtJmXc6dOyebzWZs5+XlNejfAwAAtD1eFbKCgoI0fPhwXX/99erUqZOOHTumlStXKiMjQ2+88YZ+9rOfGSElKirK7fioqCh99dVXxrbNZqu3nlQTemrrNXebdcnMzNTSpUvr3Q8AAHyHV4Wsa665Rtdcc42xPWTIEI0YMUL33XefFi1apHnz5slur3k8RnBwsNvxISEhcjgcxrbdbq+3Xu3+S/9szjbrkpqaqhtvvNHYzsvL05w5c+qtDwAA2i6vCll1iY+P15AhQ/TZZ5+pqqpKFotFklRRUeFW1+FwGGFHqpkrVV+92v2X/tmcbdYlOjpa0dHR9e4HAAC+w2snvl+qS5cuqqioUHl5uXFZ7tK5TbVsNptLiImKiqq3niSjrhltAgAA/9YmQtbJkycVEhKisLAw9ejRQ4GBgcrJyXGpU1FRIavVqoSEBKMsISFBJ06cUElJiUvd7OxsY78kU9oEAAD+zatC1vnz593Kjh49qs8//1zJyclq166d2rdvr6SkJG3ZskWlpaVGvc2bN6usrEwpKSlG2YgRI1RVVaXMzEyjzOFwaMOGDerXr59xF6AZbQIAAP/mVXOynn32WVksFvXv31+dO3fWsWPHtH79eoWGhur+++836k2dOlXTp0/XjBkzlJqaaqzOnpycrEGDBhn1+vXrp5SUFC1atEjnz59X165dtWnTJuXn5+uxxx5zeW0z2gQAAP7Lq0LW0KFDtXXrVq1atUolJSWKjIzUsGHDNGXKFMXHxxv1+vTpo5dffllvvvmmXnvtNYWHh2vcuHEuQazWk08+qdjYWG3evFnFxcXq2bOnXnjhBQ0cONClnhltAgAA/xXgdDqdrd0Jf5WTk6P09HQtXrzYbSFUtJxlGdtUWmBX+GUW3b3gptbuDpoZ7y+A1uJVI1kAYJayQruWZWxr9HHBoUFKSuutHoPiTOgVAF9GyALg04JDgyTZ5XRKpQX1LxZcP7uyVlsJWQAajZAFwKclpfVW1mqrKsrdHzj/U8oKa8KZJ8cCACELgE/rMSjO41Go2vlcAOAJr1onCwAAwFcQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMwBIO8Am5e09p3xrP10ICAKC5EbLgE/atserCyZImtVGzMjgAAM2DnyrwCbUjWAEBUlhnS6OPr30+HQAAzYWQBZ8S1tmiuxfc1NrdAACAie8AAABmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACZgxXcA+AllhXYty9jW6ONqH9fUY1CcCb0C4O0IWQBQj5qHhtvldEqlBXYPWrAra7WVkAX4KUIWANQjKa23slZbjQeQN0ZZYU048+RYAL6BkAUA9egxKM7jUahlGds8HP0C4CuY+A4AAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACbw6mcXvvfee3r77bfVo0cPvfvuuy77Dh06pDfffFPffPONIiIilJKSovT0dIWHh7vUczgceuedd7RlyxYVFRWpV69emjp1qpKTk91ez4w2AQCAf/LakawzZ87o/fffV1hYmNs+q9WqmTNnqry8XBkZGRo3bpzWr1+vZ5991q3u3LlztWrVKt1888164IEH1K5dO82aNUsHDx40vU0AAOC/vHYk64033lC/fv1UXV2tCxcuuOxbtGiROnTooFdffVURERGSpLi4OP35z3/Wl19+qeuuu06SlJ2drU8//VTTpk3TpEmTJEm33HKLpkyZooULF2rhwoWmtgkAAPyXV45kHThwQDt37tSMGTPc9pWUlCgrK0ujR482wpBUE3TCwsK0fft2o2znzp0KDAxUamqqUWaxWDRu3DgdPnxYp0+fNq1NAADg37xuJKuqqkrz58/XuHHj1KtXL7f9ubm5qqqqUp8+fVzKg4OD1bt3b1mtVqPMarUqPj7eJThJUmJioiTp6NGjio2NNaXNupw7d042m83YzsvLq/ffAQAAtG1eF7LWrVun06dP6y9/+Uud+2tDSlRUlNu+qKgoffXVVy5166sn1YQes9qsS2ZmppYuXVrvfgC+p6zQrmUZ2xp9XHBokJLSeqvHoDgTegWgJXhVyLpw4YL++te/6t5771VkZGSddex2u6SaUaYfCwkJkcPhcKlbX71L2zKjzbqkpqbqxhtvNLbz8vI0Z86ceusDaLuCQ4Mk2eV0SqUF9X8u1M+urNVWQhbQhnlVyHr77bfVoUMHTZw4sd46FotFklRRUeG2z+FwGGGntm599S5ty4w26xIdHa3o6Oh69wPwHUlpvZW12qqK8spGH1tWWBPOPDkWgPfwmpB1/PhxrV+/XjNmzHC55OZwOFRZWalTp04pIiLCuCx36dymWjabzSXEREVF6ezZs3XWk2TUNaNNAP6tx6A4j0ehlmVs83D0C4A38Zq7C8+dO6fq6mrNnz9fd955p/GVnZ2t48eP684779TSpUvVo0cPBQYGKicnx+X4iooKWa1WJSQkGGUJCQk6ceKESkpKXOpmZ2cb+yWZ0iYAAPBvXhOyevTooeeff97tq0ePHoqNjdXzzz+vcePGqX379kpKStKWLVtUWlpqHL9582aVlZUpJSXFKBsxYoSqqqqUmZlplDkcDm3YsEH9+vUz7gI0o00AAODfvOZyYWRkpIYOHepWvnr1akly2Td16lRNnz5dM2bMUGpqqs6cOaOVK1cqOTlZgwYNMur169dPKSkpWrRokc6fP6+uXbtq06ZNys/P12OPPebyOma0CQAA/JfXhKzG6NOnj15++WW9+eabeu211xQeHq5x48bp/vvvd6v75JNPKjY2Vps3b1ZxcbF69uypF154QQMHDjS9TQAA4L8CnE6ns7U74a9ycnKUnp6uxYsXuy2EisapnSgcfplFdy+4qbW7AzQJ38+Ab/CaOVkAAAC+hJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKPQ9a+ffu0fPlyl7K//e1vuv322/XLX/5Sr732mqqqqprcQQAAgLbI45C1ZMkSHT161Nj+9ttvNW/ePEVGRmrgwIH68MMPtWLFimbpJAAAQFvj8YrveXl5GjZsmLG9ZcsWRUREaMGCBQoNDdW8efO0efNm3XPPPc3SUQDwN2WFdi3L2Nbo44JDg5SU1ls9BsWZ0CsADeVxyCorK1NERISx/cUXX+i6665TaGioJKlv377aunVr03sIAH4mODRIkl1Op1RaYPegBbuyVlsJWUAr8/hyYZcuXfT1119Lkk6cOKHvvvtOycnJxv6ioiIFBwc3vYcA4GeS0nqr0xURCr/M0uivgICaNirKK1v3JAB4PpJ18803691339XZs2d17NgxdejQQUOGDDH25+TkqFu3bs3SSQDwJz0GxXk8ClX73EMArc/jkPXrX/9alZWV2rt3r2JjY/XEE0+oQ4cOkqSLFy/qwIEDuv3225utowAAAG2JxyErKChI6enpSk9Pd9vXsWNHrV27tin9AgAAaNM8npP14IMPat++ffXu/+c//6kHH3zQ0+YBAADaNI9D1oEDB1RQUFDv/sLCQn311VeeNg8AANCmNemxOgG1t7HU4YcfflB4eHhTmgcAAGizGjUna+PGjdq0aZOx/d5772n9+vVu9YqLi5Wbm6tBgwY1vYfwG7l7T2nfGqtHt56XFXI3FQDAuzQqZNntdp0/f97YLi0tdRvNCggIUFhYmFJTUzVlypTm6CP8xL41Vl04WdKkNmoWcQQAoPU16ifShAkTNGHCBEnSHXfcoQceeMBlbSygKWpHsAICpLDOlkYfX/soEQA8kgfwBh7/2r9q1arm7AdgCOts0d0LbmrtbgBtEo/kAbxHk6+tlJaWKj8/X0VFRXI6nW77Bw4c2NSXAAA0UFJab2Wt9nxuo9PJI3mA5uJxyDp//rzmz5+vnTt3qrq62m2/0+lUQECAduzY0ZT+AQAagUfyAN7D45D14osvas+ePZo4caJ+/vOfG4/UAQAAQBNCVlZWlu644w5NmzatOfsDAADgEzxejNRisejyyy9vzr4AAAD4DI9D1ujRo7Vr167m7AsAAIDP8Phy4fDhw3XgwAE9+uijGj9+vLp06aJ27dwzW58+fZrUQQAAgLbI45CVkZFh/D0rK8ttP3cXAgAAf+ZxyHr88cebsx8AAAA+xeOQNXbs2ObsBwDAS/BIHqB58DRdAIAkHskDNDePQ9af/vSnBtXjsiIAtA08kgdoXh6HrH/+859uZdXV1bLZbKqurlZkZKRCQ0Ob1DkAQMvhkTxA8/I4ZK1atarO8srKSq1bt05r1qzRSy+95HHHAAAA2jKPFyOtT1BQkCZOnKjk5GS98sorzd08AABAm9DsIatWr1699NVXX5nVPAAAgFczLWRlZWUxJwsAAPgtj+dkLV26tM7y4uJiffXVV/rmm290zz33NKrN7777TkuWLFFOTo4KCgoUGhqq7t27a9KkSbrxxhtd6h47dkwLFizQoUOHFBQUpMGDBysjI0ORkZEu9aqrq7VixQqtXbtWBQUFio+P1+TJkzVq1Ci31zejTQAA4J88DllLliyps7xDhw664oor9Mgjj2j8+PGNajM/P1+lpaUaM2aMoqOjVV5erp07d+qJJ57Qo48+qtTUVEnSmTNnNGPGDLVv317p6ekqKyvTihUrlJubq7feekvBwcFGm4sXL9YHH3yg8ePHq2/fvtq9e7eee+45BQQEaOTIkUY9M9oEAAD+y+OQtXPnzubshyRp8ODBGjx4sEvZr371K6Wnp2vVqlVGyHr//fdVXl6ut99+W7GxsZKkxMREPfzww9q4caNR7+zZs1q5cqVuu+02zZw5U5J06623asaMGXrjjTc0YsQIBQYGmtYmAPgbVosH/o9pc7KaS2BgoLp06aLi4mKjbOfOnbrhhhuMMCRJSUlJ6tatm7Zv326U7d69W5WVlbrtttuMsoCAAE2YMEFnz57V4cOHTW0TAPxFzWrxMlaLb+zXhZMlylptbeWzAJpXkx+rc+DAAf39739Xfn6+JOnyyy/X4MGDNXDgQI/bLCsrk91uV0lJiT7//HN98cUXSklJkVQzklRYWKg+ffq4HZeYmKi9e/ca21arVWFhYerevbtbvdr9AwYMMKXNupw7d042m83YzsvL+5f/DgDQVrBaPODO45BVUVGh2bNna/fu3XI6nWrfvr2kmonvK1eu1NChQ/Xss88qKKjxL/H6668rMzNTktSuXTsNGzbMuDRXG1KioqLcjouKitLFixflcDgUEhIim82mzp07KyAgwK2eVBN6zGqzLpmZmfXeMAAAbRmrxQPumnR34a5du3TXXXfpzjvv1GWXXSZJKiws1IoVK7RixQotXbpUU6dObXTbaWlpGjFihM6dO6ft27erqqpKFRUVkiS7veY/4qUT0WuFhIQYdUJCQmS323+ynllt1iU1NdXlLsm8vDzNmTOn3voAAKDt8jhkbd26VWPGjNG0adNcyjt37qxp06apsLBQW7Zs8Shkde/e3bgcN2bMGD388MN6/PHH9dZbb8lisUiSEbou5XA4JMmoY7FYGlyvudusS3R0tKKjo+vdDwAAfIfHE98LCgrUr1+/evf369dPBQUFnjbvYsSIEfr66691/Phx47LcpXObatlsNnXs2NEYVYqKilJBQYGcTqdbPUlG4DGjTQAA4N88DlkxMTHav39/vfsPHDigmJgYT5t3UXsJrri4WDExMYqMjFROTo5bvSNHjighIcHYTkhIUHl5udsE8+zsbGO/JFPaBAAA/s3jkDVmzBht375d8+bN0/fff6+qqipVV1fr+++/10svvaQdO3ZozJgxjWqzsLDQrayyslKbN2+WxWLRVVddJUkaPny49uzZo9OnTxv19u3bp+PHjxt3IUrSkCFDFBQUpI8//tgoczqdWrdunWJiYtS/f3+j3Iw2AQCA//J4TtbkyZP1ww8/aP369frf//1f4247p9Mpp9OpMWPG6Ne//nWj2pw3b55KSkr085//XDExMbLZbNq6dau+//57TZ8+XeHh4cZr79ixQw899JBuv/12lZWVafny5erZs6fGjh1rtNelSxelpaVp+fLlqqysVGJionbt2qWDBw/qmWeecVk01Iw2AQCA/wpw/nhyUSN9++23+vvf/26MAMXGxmrw4MHq1atXo9v69NNP9be//U25ubm6cOGCwsPD1adPH/3qV7/SkCFDXOp+9913bs8ZnD59unGXY63q6motW7ZMmZmZstlsio+P1z333KPRo0e7vb4Zbf4rOTk5Sk9P1+LFi+tco8vf1N7GHX6ZRXcvuKm1uwOghdT+3w8IkMI613/zUH1YLR7eqlEhy26367XXXlOPHj00ceLEeuutWbNG33//vR544AGP1snyF4QsV4QswD+tfvQzXThZ0qQ2Ol0RobR5w5qpR0DzaNScrPXr12vTpk1uzxf8scGDB2vDhg363//93yZ1DgDg+5LSeqvTFREKv8zS6K/adaFZLR7eqFHDTNu3b9ewYcN0xRVX/Mt6Xbt21YgRI/TJJ59owoQJTekfAMDHsVo8fFWjRrJyc3PrfS7fj/Xv31+5ubkedQoAAKCta1TIqqioaPAcq6CgIGMVdAAAAH/TqJAVHR2t7777rkF1v/vuO1Y/BwAAfqtRIevaa6/V5s2b61w09FKFhYXavHmzkpKSmtQ5AACAtqpRIeuee+6Rw+HQQw89ZDxG5seys7P10EMPyeFwaNKkSc3SSQAAgLamUXcXXnHFFZo9e7Zmz56t3//+94qLi1PPnj0VHh6u0tJSfffddzp58qQsFoueffZZde3a1ax+AwAAeLVGrxQ6ePBgLVmyRMuWLdOePXu0e/duY190dLRuvfVW3X333T+5zAMAAM2lrNCuZRnbGn0cq8XDTB4txx4XF6dHHnlEjzzyiEpLS1VSUqKIiAjj2YIAALSE4NAgSXY5nfJwvSy7slZbCVkwRZOfeRMeHk64AgC0iqS03spabfVoxfeywppwxmrxMAsPFgQAtFmsFg9v1qi7CwEAANAwhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzAswvRrHL3ntK+NZ4/rBUAAF9ByEKz2rfGqgsnS5rURnAo35YAgLaPn2ZoVrUjWAEBUlhnS6OPDw4NUlJa7+buFgAALY6QBVOEdbbo7gU3tXY3AABoNUx8BwAAMAEhCwAAwARcLgQA+LWyQruWZWxr9HG1c0h7DIozoVfwBYQsAIBfqrmT2S6nUyot8GQJGbuyVlsJWagXIQsA4JeS0nora7Xn6/o5nfLoWPgPQhYAwC/1GBTn8SjUsoxtHo5+wZ8w8R0AAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABF51d+GRI0e0adMm7d+/X/n5+erYsaOuvvpqTZ06Vd26dXOpe+zYMS1YsECHDh1SUFCQBg8erIyMDEVGRrrUq66u1ooVK7R27VoVFBQoPj5ekydP1qhRo9xe34w2AQCAf/KqkLVs2TIdOnRIKSkp6tWrl2w2mz7++GNNnTpVCxcuVM+ePSVJZ86c0YwZM9S+fXulp6errKxMK1asUG5urt566y0FBwcbbS5evFgffPCBxo8fr759+2r37t167rnnFBAQoJEjRxr1zGgTAAD4L68KWXfccYf+3//7fy6B5qabbtJ9992nDz74QM8884wk6f3331d5ebnefvttxcbGSpISExP18MMPa+PGjUpNTZUknT17VitXrtRtt92mmTNnSpJuvfVWzZgxQ2+88YZGjBihwMBA09oEAAD+y6vmZF1zzTUuAUuSunXrpquuukp5eXlG2c6dO3XDDTcYYUiSkpKS1K1bN23fvt0o2717tyorK3XbbbcZZQEBAZowYYLOnj2rw4cPm9omAADwX14VsuridDpVWFioTp06SaoZSSosLFSfPn3c6iYmJspqtRrbVqtVYWFh6t69u1u92v1mtVmXc+fOKScnx/i6NDgCAADf4lWXC+uydetWnT17Vr/5zW8kSTabTZIUFRXlVjcqKkoXL16Uw+FQSEiIbDabOnfurICAALd6Uk3oMavNumRmZmrp0qUNOW0AANDGeXXIysvL01/+8hddffXVGjNmjCTJbq95VtSPLytKUkhIiFEnJCREdrv9J+uZ1WZdUlNTdeONN7qc35w5c+qtDwAA2i6vDVk2m02PPfaYIiIi9Ic//MGYTG6xWCRJFRUVbsc4HA6XOhaLpcH1mrvNukRHRys6Orre/QAAwHd45Zys4uJizZo1S8XFxZo3b55LMKm9LFd7ie9SNptNHTt2NEaVoqKiVFBQIKfT6VZPktGuGW0CAAD/5nUhy2636/HHH9fx48f1pz/9SVdddZXL/piYGEVGRionJ8ft2CNHjighIcHYTkhIUHl5udsE8+zsbGO/WW0CAAD/5lUhq6qqSv/93/+tw4cPa/bs2erfv3+d9YYPH649e/bo9OnTRtm+fft0/PhxpaSkGGVDhgxRUFCQPv74Y6PM6XRq3bp1iomJcWnfjDYBAID/8qo5Wa+//ro+//xz3XDDDSoqKtKWLVtc9o8ePVqSNHnyZO3YsUMPPfSQbr/9dpWVlWn58uXq2bOnxo4da9Tv0qWL0tLStHz5clVWVioxMVG7du3SwYMH9cwzz7gsGmpGmwAA31ZWaNeyjG2NPi44NEhJab3VY1CcCb2Ct/CqkHX06FFJ0p49e7Rnzx63/bUhKzY2Vq+++qoWLFigt956y3jO4PTp0425U7Xuv/9+dejQQZmZmdq0aZPi4+P19NNP6+abb3apZ0abAADfFBwaJMkup1MqLaj/rvL62ZW12krI8nEBzh/P4EaLycnJUXp6uhYvXlznQqht0bKMbSotsCv8MovuXnBTa3cHAEzx3RenlLXaqoryykYfW1ZYE874nPR9XjWSBQBAW9BjUJzHo1C1v4zC93nVxHcAAABfQcgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAEwS1dgcAAPBHZYV2LcvY1ujjgkODlJTWWz0GxZnQKzQnQhYAAC0oODRIkl1Op1RaYPegBbuyVlsJWW0AIQsAgBaUlNZbWautqiivbPSxZYU14cyTY9HyCFkAALSgHoPiPB6FWpaxzcPRL7QGJr4DAACYgJAFAABgAkIWAACACZiTBRe5e09p3xrPJmRKNZMyAQAAIQs/sm+NVRdOljS5nZpblAEA8F/8JISL2hGsgAAprLPFozZqF8oDAMCfEbJQp7DOFt294KbW7gYAAG0WE98BAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzAiu8AALQxZYV2LcvY1ujjah971mNQnAm9wo95VcgqLS3VihUrlJ2drSNHjqioqEhPPPGExo4d61b32LFjWrBggQ4dOqSgoCANHjxYGRkZioyMdKlXXV2tFStWaO3atSooKFB8fLwmT56sUaNGtUibAAA0l+DQIEl2OZ1SaYHdgxbsylptJWS1EK8KWRcuXNDSpUsVGxurhIQE7d+/v856Z86c0YwZM9S+fXulp6errKxMK1asUG5urt566y0FBwcbdRcvXqwPPvhA48ePV9++fbV7924999xzCggI0MiRI01tEwCA5pSU1ltZq62qKK9s9LFlhTXhzJNj4RmvCllRUVH6+OOPFRUVpa+//lq/+93v6qz3/vvvq7y8XG+//bZiY2MlSYmJiXr44Ye1ceNGpaamSpLOnj2rlStX6rbbbtPMmTMlSbfeeqtmzJihN954QyNGjFBgYKBpbQIA0Jx6DIrzeBRqWcY2D0e/4CmvmvgeEhKiqKion6y3c+dO3XDDDUYYkqSkpCR169ZN27dvN8p2796tyspK3XbbbUZZQECAJkyYoLNnz+rw4cOmtgkAAPyXV4Wshjh79qwKCwvVp08ft32JiYmyWq3GttVqVVhYmLp37+5Wr3a/WW3W5dy5c8rJyTG+8vLyfup0AQBAG+VVlwsbwmazSVKdI15RUVG6ePGiHA6HQkJCZLPZ1LlzZwUEBLjVk2pCj1lt1iUzM1NLly5t4JkCAIC2rM2FLLu95nrypRPRa4WEhBh1QkJCZLfbf7KeWW3WJTU1VTfeeKOxnZeXpzlz5tRbHwAAtF1tLmRZLBZJUkVFhds+h8PhUsdisTS4XnO3WZfo6GhFR0fXux8AAPiONjcnq/ayXO0lvkvZbDZ17NjRGFWKiopSQUGBnE6nWz1JRuAxo00AAODf2lzIiomJUWRkpHJyctz2HTlyRAkJCcZ2QkKCysvL3SaYZ2dnG/vNahMAAPi3NheyJGn48OHas2ePTp8+bZTt27dPx48fV0pKilE2ZMgQBQUF6eOPPzbKnE6n1q1bp5iYGPXv39/UNgEAgP/yujlZH374oYqLi43Lb59//rnOnDkjSZo4caLat2+vyZMna8eOHXrooYd0++23q6ysTMuXL1fPnj1dHsHTpUsXpaWlafny5aqsrFRiYqJ27dqlgwcP6plnnnFZNNSMNgEAgP/yupC1cuVK5efnG9ufffaZPvvsM0nS6NGj1b59e8XGxurVV1/VggUL9NZbbxnPGZw+fboxd6rW/fffrw4dOigzM1ObNm1SfHy8nn76ad18880u9cxoEwAA+K8A549ncKPF5OTkKD09XYsXL65zIdTWUPvYhfDLLLp7wU2t3R0AQDPh873ltck5WQAAAN6OkAUAAGACr5uTBQAAzFNWaNeyjG2NPi44NEhJab3VY1CcCb3yTYQsAAD8QHBokCS7nE6ptKD+R8DVz66s1VZCViMQsgAA8ANJab2VtdqqivLKRh9bVlgTzjw51p8RsgAA8AM9BsV5PApVe2ciGoeJ7wAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKeXQgAABqkrNCuZRnbGn1ccGiQktJ6e/zsxLaKkAUAAP6l4NAgSXY5nfLwQdF2Za22ErIAAAAulZTWW1mrraoor2z0sWWFNeHMk2PbOkIWAAD4l3oMivN4FGpZxjYPR7/aPia+AwAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmYDFSAABgOn987iEhywfl7j2lfWs8f/wBAADNxZ+fe0jI8kH71lh14WRJk9qo+U8BAEDT+PNzD/lJ6oNqvxkDAqSwzpZGH187NAsAQFP583MPCVk+LKyzRXcvuKm1uwEAgF/i7kIAAAATELIAAABMQMgCAAAwASELAADABEx895DD4dA777yjLVu2qKioSL169dLUqVOVnJzc2l0DAMCntNWFTAlZHpo7d6527NihtLQ0xcfHa+PGjZo1a5bmz5+vAQMGtHb3AABo89r6QqaELA9kZ2fr008/1bRp0zRp0iRJ0i233KIpU6Zo4cKFWrhwYSv3EACAtq+tL2RKyPLAzp07FRgYqNTUVKPMYrFo3LhxWrRokU6fPq3Y2NhW7CEAAG1fW1/IlJDlAavVqvj4eEVERLiUJyYmSpKOHj1aZ8g6d+6cbDabsZ2Xl2duRwEAQKshZHnAZrMpKirKrby27Ny5c3Uel5mZqaVLl5rZNQAA4CUIWR6w2+0KDg52Kw8JCTH21yU1NVU33nijsZ2Xl6c5c+Y0e//CO1lc/gQAwN94w89CQpYHLBaLKioq3ModDoexvy7R0dGKjo42tW+SNOH5G3+6EgAAPswbfhayGKkHoqKiXOZW1aota4kgBQAAvBshywMJCQk6ceKESkpKXMqzs7ON/QAAwL8RsjwwYsQIVVVVKTMz0yhzOBzasGGD+vXrx/INAACAOVme6Nevn1JSUrRo0SKdP39eXbt21aZNm5Sfn6/HHnustbsHAAC8ACHLQ08++aRiY2O1efNmFRcXq2fPnnrhhRc0cODA1u4aAADwAoQsD1ksFv3+97/X73//+9buCgAA8ELMyQIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAE7BOViuy2+2SpLy8vFbuCQAAaKzu3bsrNDS03v2ErFaUn58vSZozZ04r9wQAADTW4sWL1adPn3r3BzidTmcL9geXOH/+vL788kvFxcUpJCSk2drNy8vTnDlz9PTTT6t79+7N1m5bwLn737n763lLnLs/nru/nrfknefOSJYXi4yM1OjRo01rv3v37v8yYfsyzt3/zt1fz1vi3P3x3P31vKW2de5MfAcAADABIQsAAMAEhCwfFBUVpSlTpigqKqq1u9LiOHf/O3d/PW+Jc/fHc/fX85ba5rkz8R0AAMAEjGQBAACYgJAFAABgAkIWAACACQhZAAAAJmAxUh/icDj0zjvvaMuWLSoqKlKvXr00depUJScnt3bXms2RI0e0adMm7d+/X/n5+erYsaOuvvpqTZ06Vd26dTPq/fGPf9SmTZvcjr/yyiv1/vvvt2SXm8X+/fv14IMP1rlv4cKFuvrqq43tQ4cO6c0339Q333yjiIgIpaSkKD09XeHh4S3V3WZV33tZ68MPP1RMTIweeOABHThwwG3/ddddp3nz5pnYw+ZRWlqqFStWKDs7W0eOHFFRUZGeeOIJjR071q3usWPHtGDBAh06dEhBQUEaPHiwMjIyFBkZ6VKvurpaK1as0Nq1a1VQUKD4+HhNnjxZo0aNaqGzapiGnHt1dbU2b96snTt3ymq1qqioSHFxcbrpppt01113yWKxuLQ5bNiwOl/rd7/7nSZPnmzq+TRUQ9/zxnye+dJ7LtX/PkpSUlKSXn75ZUnSqVOndOedd9ZZ79lnn9XIkSObr/ONQMjyIXPnztWOHTuUlpam+Ph4bdy4UbNmzdL8+fM1YMCA1u5es1i2bJkOHTqklJQU9erVSzabTR9//LGmTp2qhQsXqmfPnkbdkJAQzZo1y+X4iIiIlu5ys5o4caISExNdyrp27Wr83Wq1aubMmerevbsyMjJ05swZrVy5UidOnNCLL77Y0t1tFqmpqUpKSnIpczqdeumll3T55ZcrJibGKI+JidH999/vUret3O594cIFLV26VLGxsUpISND+/fvrrHfmzBnNmDFD7du3V3p6usrKyrRixQrl5ubqrbfeUnBwsFF38eLF+uCDDzR+/Hj17dtXu3fv1nPPPaeAgIBW+6FTl4ace3l5uebOnaurr75av/zlL9W5c2cdPnxYS5Ys0T//+U+98sorCggIcDkmKSlJY8aMcSnr3bu3qefSGA19z6WGf5750nsuSU8//bRb2ddff601a9bUOYAwatQoXX/99S5ll/4S2uKc8AmHDx92Dh061Lls2TKjrLy83HnXXXc5//M//7MVe9a8Dh486HQ4HC5l33//vXPkyJHO5557zih7/vnnnaNHj27p7pnmn//8p3Po0KHO7du3/8t6jz76qHPChAnO4uJio2z9+vXOoUOHOr/44guTe9lyvvrqK+fQoUOd7733nlE2Y8YM57333tuKvWoau93uPHfunNPpdDqPHDniHDp0qHPDhg1u9V566SXnqFGjnPn5+UbZP/7xD+fQoUOd69atM8rOnDnjTElJcb788stGWXV1tXP69OnOX/3qV87KykoTz6ZxGnLuDofDefDgQbdjlyxZ4hw6dKjzH//4h0v50KFDXc7dGzX0PW/o55mvvef1+dOf/uQcNmyY8/Tp00bZyZMn3X4GegPmZPmInTt3KjAwUKmpqUaZxWLRuHHjdPjwYZ0+fboVe9d8rrnmGpff1CWpW7duuuqqq5SXl+dWv6qqSiUlJS3VvRZRWlqqyspKt/KSkhJlZWVp9OjRLr/h3nLLLQoLC9P27dtbspum+uSTTxQQEFDnJZDKykqVlpa2Qq+aJiQkpEGjbjt37tQNN9yg2NhYoywpKUndunVzeY93796tyspK3XbbbUZZQECAJkyYoLNnz+rw4cPNewJN0JBzDw4O1jXXXONWPnToUEmq8/+/JNntdtnt9qZ30gQNfc9r/dTnma+953VxOBzauXOnBg4cqC5dutRZp6ysTBUVFU3tYrPgcqGPsFqtio+Pdxs+rr20dPToUZcPZV/idDpVWFioq666yqW8vLxcY8eOVXl5uTp06KCRI0fqP//zP9vs3CSp5pJwWVmZAgMDNWDAAE2bNk19+/aVJOXm5qqqqsrtwanBwcHq3bu3rFZra3S52VVWVmr79u3q37+/4uLiXPYdP35ct9xyiyoqKnTZZZfp1ltv1ZQpUxQU5BsfdWfPnlVhYWGdD8dNTEzU3r17jW2r1aqwsDB1797drV7tfl+YRlBQUCBJ6tSpk9u+TZs2ae3atXI6nerevbvuvfde3XzzzS3dxWbRkM8zf3jP9+7dq+Li4nrfx6VLl2rhwoUKCAhQnz59NHXqVF133XUt3Mv/4xufPJDNZqvzt4LasnPnzrV0l1rM1q1bdfbsWf3mN78xyqKiojRp0iT97Gc/k9Pp1BdffKG1a9fq22+/1fz589vcD92goCANHz5c119/vTp16qRjx45p5cqVysjI0BtvvKGf/exnstlskuqegxQVFaWvvvqqpbttii+//FIXLlxw+5C94oor9Itf/EI9e/ZUeXm5duzYoffee0/Hjx/X7NmzW6m3zeun3uOLFy/K4XAoJCRENptNnTt3dpun5GufCcuXL1dERIQGDRrkUt6/f3+lpKQoLi5ONptNH330kf7whz+opKREEyZMaJ3Oeqihn2f+8J5v3bpVISEhGj58uEt5u3btlJycrGHDhik6OlonT57UqlWrNGvWLM2dO1eDBw9ulf62rZ80qJfdbne7jCbVDMnW7vdFeXl5+stf/qKrr77aZYLrjyc/jxw5Ut26ddPixYu1c+dOr5oA2hDXXHONy6WSIUOGaMSIEbrvvvu0aNEizZs3z3iP6/s+cDgcLdZfM33yyScKCgpSSkqKS/njjz/usn3LLbfoxRdf1Pr163XHHXe07uTXZvJT73FtnZCQEL/4TPif//kfZWVl6eGHH1aHDh1c9r3xxhsu2//+7/+uqVOnatGiRRo7dqzb3YjerKGfZ77+npeUlOjvf/+7Bg0a5PZ+x8bG6qWXXnIpu+WWW3Tvvffq9ddfb7WQxZwsH2GxWOq8Bl37g7UtfaA0lM1m02OPPaaIiAj94Q9/UGBg4L+sf8cdd6hdu3bKyspqoR6aKz4+XkOGDNH+/ftVVVVlvMf1fR/UftC2ZaWlpdq9e7euu+66Oi8P/VjtLd2+8p7/1Ht8aR1f/0z49NNP9fbbb2vcuHENGpkKDg7Wr371KxUXFysnJ8f8Dpqsrs8zX3/Pd+7cKYfD0eBLvh07dtTYsWP1/fff68yZMyb3rm6ELB8RFRVlXEq4VG1ZdHR0S3fJVMXFxZo1a5aKi4s1b968Bp2fxWJRx44ddfHixRboYcvo0qWLKioqVF5eblwSqO/7wBe+B3bv3q3y8vIGf8jWTowtKioys1st5qfe444dOxphOioqSgUFBXI6nW71pLb9mfCPf/xDf/zjHzV48GA98sgjDT6u9vvBFz4D6vo88+X3XKq5VNi+fXvdcMMNDT6mtT8DCFk+IiEhQSdOnHC78yQ7O9vY7yvsdrsef/xxHT9+XH/605/cJrzXp7S0VBcuXHBbsLEtO3nypEJCQhQWFqYePXooMDDQ7bf0iooKWa1Wn/ge2Lp1q8LCwnTjjTc2qP7JkyclyWfe85iYGEVGRtY5EnPkyBGX9zghIUHl5eVud9219c+E7OxsPf300+rTp49mz57dqPmVvvT9UNfnma++51LNfLL9+/dr2LBhjRqVr33PGzLybQZClo8YMWKEqqqqlJmZaZQ5HA5t2LBB/fr185k7C6uqqvTf//3fOnz4sGbPnq3+/fu71bHb7XXewv/uu+/K6XS6TZBtC86fP+9WdvToUX3++edKTk5Wu3bt1L59eyUlJWnLli0u579582aVlZW5zWFqa86fP6+srCwNGzZMoaGhLvtKSkrc5pw5nU699957kuRTTz0YPny49uzZ47Isy759+3T8+HGX93jIkCEKCgrSxx9/bJQ5nU6tW7dOMTExdf7f8XbHjh3TY489pssvv1wvvPBCvZe/6vr/UlpaqjVr1qhTp0513p3prRrzeeaL73mtbdu2qbq6ut5R7Lre87Nnz2rDhg3q1atXq43iMfHdR/Tr108pKSlatGiRzp8/r65du2rTpk3Kz8/XY4891trdazavv/66Pv/8c91www0qKirSli1bXPaPHj1aBQUF+u1vf6tRo0bpyiuvlFRzR9revXs1aNAgDRkypDW63iTPPvusLBaL+vfvr86dO+vYsWNav369QkNDXSbFTp06VdOnT9eMGTOUmppqrPienJzcJsPlpT799FNVVVXV+SH7zTffaPbs2Ro1apS6du0qu92uXbt26dChQxo/fnyb+aH64Ycfqri42Li88/nnnxtzSSZOnKj27dtr8uTJ2rFjhx566CHdfvvtKisr0/Lly9WzZ0+XR5J06dJFaWlpWr58uSorK5WYmKhdu3bp4MGDeuaZZ35yDmNL+6lzb9eunR599FEVFRXprrvu0t///neX46+44gojRHz00UfavXu3sZ6YzWbThg0bdPr0aT311FN1Tg5vLT913kVFRQ3+PPO197x9+/ZG3a1btyo6Olq/+MUv6mxr4cKF+uGHH3TttdcqOjpa+fn5yszMVHl5uR544AHzT6YeAc4fX7xFm2W3241nFxYXF6tnz56tvkZIc6vv+XS1PvvsMxUVFWn+/Pk6fPiwbDabqqur1bVrV918882666672tzyDZK0Zs0abd26VT/88INKSkoUGRmpa6+9VlOmTFF8fLxL3YMHDxrPLgwPD1dKSoruv//+Nr0+mCRNmzZNJ0+e1EcffeT2w+LkyZN66623dOTIERUUFKhdu3bq3r27br31VqWmprrd0u6t7rjjDuXn59e5b+XKlca6YN99953bswunT5+uyy67zOWY6upqLVu2TJmZmbLZbIqPj9c999yj0aNHm34ujfVT5y6p3mfTSdKYMWP05JNPSqqZs7V8+XLl5ubq4sWLCg0NVWJiou6++25de+21zd/5Jvip827fvn2jPs986T2v/X7//vvvNXnyZN1xxx3KyMios/4nn3yidevWKS8vT0VFRWrfvr0GDBige++9t1V/ySJkAQAAmIA5WQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAfA7Gzdu1LBhw/T111//ZN0HHnjgJ599durUKQ0bNsz42rFjx0+2+9e//lXDhg1raJc9YrVaG90vAM2n7T3EDQDqsXHjRs2dO9fYDgkJUZcuXZScnKz/+I//cHu2X3MbP368fv7znysxMdHU12moyy+/XE8//bTy8vL0P//zP63dHcDvELIA+Jzf/va3iouLk8Ph0MGDB7Vu3Trt3btX7777rkJDQxvV1ksvvdTguv379/eqB/F26NBBo0eP1v79+wlZQCsgZAHwOYMGDVLfvn0lSbfeeqs6duyoVatWaffu3Ro1alSj2goODjajiwD8ACELgM+79tprtWrVKp06dcqlvKKiQgsWLNDmzZtlt9uVnJys//qv/1JkZKRRp3Y+1quvvurx6x88eFALFixQbm6uoqOjNWnSpHrrbtmyRatWrdKxY8dksViUnJysadOmKTY21qXeRx99pJUrV8pms6lnz56aPn263nnnnSb3FUDzYeI7AJ/3ww8/SJI6duzoUv7KK6/o6NGjmjJlin75y19qz549+stf/tKsr/3tt9/qkUceUWFhoaZMmaKxY8dqyZIl2rVrl1vd9957T88//7zi4+OVkZGhtLQ07du3TzNmzFBRUZFRb+3atXrllVcUExOjadOmacCAAXrqqad09uzZZu07gKZhJAuAzykpKdH58+flcDh06NAhvfvuu7JYLLrhhhtc6nXq1EkvvfSSAgICJElOp1MffvihiouL1b59+2bpy1//+lc5nU4tWLDAGI0aPny47rvvPpd6+fn5WrJkiaZOnapf//rXRvmwYcP029/+VmvXrtWvf/1rVVRU6J133lHfvn31yiuvKCio5mO8V69emjt3rmJiYpql3wCajpEsAD5n5syZSk1N1e23367Zs2crLCxMzz//vFsAGT9+vBGwJGnAgAGqqqrS6dOnm6UfVVVV+vLLLzV06FCXy31XXXWVkpOTXep+9tlnqq6uVkpKis6fP298XXbZZYqPj9f+/fslSV9//bUuXLig8ePHGwFLkm6++WZ16NChWfoNoHkwkgXA58ycOVPdunVTYGCgOnfurCuvvFLt2rn/TvnjeU61IeXSS3NNcf78edntdsXHx7vtu/LKK7V3715j+8SJE3I6nbr77rvrbKs2UNUGwK5du7rtv/zyy5ul3wCaByELgM9JTEw07i78V+oKXlLNZcOWVl1drYCAAL344ot19issLKzF+wSgaQhZAGCSyMhIWSwWnThxwm3f999/77LdtWtXOZ1OxcXFqVu3bvW2WTv69sMPP+jf/u3fjPLKykrl5+erV69ezdR7AE3FnCwAMElgYKCuu+467dq1y2We17Fjx/SPf/zDpe6wYcMUGBioJUuWuI2kOZ1OXbhwQZLUt29fderUSevXr1dlZaVRZ+vWrc12mRNA82AkCwBM9Jvf/EZffPGFMjIyNGHCBFVVVemjjz7SVVddpW+//dao17VrV/32t7/VokWLlJ+fr6FDhyo8PFwnT57Url27NH78eE2aNEnBwcGaMmWK5s+fr4ceekgpKSnKz8/Xpk2b1LVrV5eJ/ABaFyELAEzUq1cvzZs3T6+//rr++te/KiYmRvfdd59sNptLyJKkyZMnq1u3blq9erWWLl0qSYqJiVFycrKGDBli1Js4caIkaeXKlVq4cKF69eqlP/7xj3r11VcVEhLSYucG4F8LcLbGDE8A8CGnTp3SnXfeqQcffFAjR45UREREiz+Op7q6WqmpqRo2bJhmzZolqWYJiaKiIh06dEhPPfWUnnvuOY0YMaJF+wX4M+ZkAUAzmT9/vlJTU/X555+b+jp2u91t3tbmzZt18eJFDRw40CjLzc1VamqqnnrqKVP7A6BujGQBQBPZ7XYdOnTI2O7Vq5c6d+5s2uvt379fCxYs0IgRI9SxY0d988032rBhg6688kq9/fbbxihaaWmpsrOzW6xfAFwRsgCgjTl16pTmz5+vr7/+WhcvXlTHjh11/fXX6/777ydEAV6EkAUAAGAC5mQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACb4/wDe7bwVqp/E0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOz9d7QkZ33nj7+fp0KHm9NkTdRoBiWEkMisiAIEBuy17F3gYH5nWbMO4ABnD7ZZL8sah8X2MV+vvYvXx8aAsXdBNjbBBtsEgwAhFFCWRmhGM5p8c9+OVfU8vz+qq291dYXneaqqu+9Mv87pM3fu7QrdXeHV788TCOecY8SIESNGjBgxYsSWhg56B0aMGDFixIgRI0akZyR1I0aMGDFixIgRlwAjqRsxYsSIESNGjLgEGEndiBEjRowYMWLEJcBI6kaMGDFixIgRIy4BRlI3YsSIESNGjBhxCTCSuhEjRowYMWLEiEuAkdSNGDFixIgRI0ZcAoykbsSIESNGjBgx4hJgJHUjRowYMWLEiBGXACOpGzFixIgRI0aMuAQYSd2IESNGjBgxYsQlgD7oHRgxYsTlCeccrVYLtVoNjUYDrVYLrVYLzWaz83PY7yzLguM4nQdjrOvf4O8AgBACQggopZ3/ez9TSjt/1zQNhmFA13UYhtF56LoO0zQ7v/f+XywWUSwWUSqVuv7V9dGldcSIEf1ndOUZMWKEEpZloVKpYH19vfOv/+dqtYparRb7cBxn0C8jFwzD6BK+UqmEsbExjI+Pdx4TExNd//c/pqamUCwWB/0yRowYscUgnHM+6J0YMWLE4LEsCysrK1hZWcHy8jKWl5c7P3u/98tbvV7PbNumaaKlOYBOAZ2A6LTzMwza/j9xf6cRgLoPQgEQ7/8RPwMA54B3pePt/4f9zDjgcHCHAw6D1aJoLZkAYyCcgTDm/swYCHNAbAfEcTCpa2g0GplKaqFQwPT0dNdjamqq53ezs7OYm5tDoVDIbNsjRozYmoykbsSISxzHcbCysoKLFy92HhcuXMDFixexuLjYkbZKpSK9bkIIbF0HM00w0+j+19DBDR1M18F1Hcww3J8NHc4YwYErl4GCBpgUxJOvIWWtWcTyAwvxT+LcFT7HAXXstvDZII4DYtugtgViWaDtB7Ht9r+bv1swDVQqFdi2Lb2PExMTmJ+fx9zcHObn57t+9v9rGIbiuzBixIhhZyR1I0Zscer1Os6dO4ezZ8/izJkzOHfuXJfALS4uCidInBA4hQJYsQCnWOj9uWAGxM1wEzGRdRcdXHXl2TQvNTPWmkUsPjIvtQyxCYrLm6+VU6A1ncPlk3NX+Fot0Faz86/W9P7f/l3T/bfs2Gi1WmKvgRDMz89j+/bt2LFjR+i/pVIp+9c0YsSIvjCSuhEjhhzbtnHhwgWcPXu2I27ez2fPnsXKykriOiilaBVMOKUSnHIJdqno/lwqwikW4RRNsEIRzBSXNBG4wVCYr2NyrJF6XRplmDSbws9XEbckgmInQm7y19kAB7EtaI0GaKMBrdmAVm+ANhvQGu5jb9HE0tISLMtKXN3U1BS2b9+OnTt3Yvfu3dizZw92796N3bt3Y35+vtPBZMSIEcPHSOpGjBgCOOdYWVnBqVOnuh4nT57EmTNnEstxzNBhj43BHivDHivDKZVgl9vSVirBKRaADG/G3GAwZuNFjVKeiczF4YleHgIXhYrYRZG78Plh3E386nVo9Vr74f6s12uYYQwbGxuxqzBNs0f09uzZgz179mDbtm0gGX4hGDFihDwjqRsxoo/Yto3Tp0/j+PHjOHHiRJfAVavVyOVM00TVNGGPl9vitilw9lgZ3DQz3U8RaYuiHzIHABv1AnDfZGDjQGuK5b5tIFu5C9I32QtsglhWR/b0WhVarQq9WsWVBQNnz56NLeOXSiXs27cP+/btw/79+zs/79q1C5qm5fxCRowYAYykbsSIXGCM4dy5c3jqqadw4sSJzr9PP/10ZAmMEAKrWII9Pg57fByt6THYE+OwJsbhlEqZlkWBdOIWRj9kLlTkQnemP3KXp9iF4ckeB2BPZjscDOEE+npMmssYtEYdenUDWrUKvVaFXt3AVcUCTp8+HSl8pmliz549HdE7ePAgDh06hF27do1KuSNGZMxI6kaMSEmtVsOTTz6JY8eO4dixYx2BazTCBYdpGuzxCViTE2htK8NZKGHfVXXQWRPEUL/JXayN4fwTvT00uclgzOQrW3kKnbDIRZGz4PVV7DigBwJdZgDrR+R7y4pAOIFW6T0mSfCuwRj0ahX6RqXzMDYqGGvUIztxlEolHDx4EFdeeSWuvPJKHDp0CAcPHkS5XM7hlYwYcXkwkroRIyRYXV3FE0880RG4J554AqdPn0bYacQphTU9jtb0OKyZCVjTE2A7Sjh8dC2XITxajoYLG+PYqPVvvLI8Za5SK4LcP5HdCnOUO+IQFJdyFrsQoYt8qg6sHc1e9KIkL/y5ADh32+xVNkVPX1/DeIzs7d69G4cOHcLhw4dx1VVX4ejRo5iZmcnwVYwYcekykroRIyJYX1/Ho48+ikcffRSPPfYYjh07hosXL4Y+1y4X0ZqbRGt2EtbsJFozE8A2E8+64kIu+9ZyNCzXwxMN26G5i11eMpe5yAXZymInIXU9iw6B5HUt5zDo1Q0Y6+vQK2sw1tewhzMsLi6GPn/79u04cuQIjh49iqNHj+LIkSOYmMjxOBkxYosykroRIwC0Wi08+eSTePTRR/HII4/g0UcfxTPPPNPzPEIIWhPltsBNuf/OTYIVC9BLNp61+1z2+xYjcGHkLXV5CF3uMhckTO44AUnpe4QD5mqC2PGQ8qUIKaSuZ1VDJnkeWqMJvbIOY30NxvoqjmoUp06dCk3Cd+/e3RG8q6++GkeOHBnNqjHismckdSMuS86fP48HHngAjzzyCB555BE8+eSToR0YrMkxNBem0ZqfQmtuCq3ZSXDDnTI5D4mTFbggWQqdYTg4NL/U+T/jBIynT6IcRrHScAe47bvMAeAa0Jp27Y1wt01clgiJXRRxwpeh1PWsOgfJSyt4nfVYFsy1NRirKzDXVnGIcJw5c6bnebqu46qrrsK1117beczP92eYmxEjhoWR1I245GGM4cSJE3jggQc6jwsXesuiTsFwBW5hBs35KbQWpsEK7lAhRtnC0V3nM92vtAIXREboTNPBwbml5CciO5nzYzENFyrjXb+r103oD41luh2gW+LCGDqxC4MDhOUndT2bG2LJAwDSasFcW4WxugKjvow9GxaWl5d7nrdjx46O4F133XU4cOAAdF3PZB9GjBhGRlI34pKj1Wrh8ccfxwMPPIAHH3wQDz74YM+8ppqmoTYzjubCTFvkpmFPlLuGDcla5LKWuCBhUicjb2FkLXRhMhdGWsFLErkgW0Ls2jCfkxAGmKuZb6KHrCUvS8Fz18dROlOHvrEEaBfxHNvEU089Bca6j4FyuYzrr78ez3nOc3DDDTfg8OHDI8kbcUkxkroRWx7btvHEE0/g3nvvxT333IMHH3ywp2cd0zU0F6bR3D7rPhamO2VUj60mcX4MzcFcqZbpOrMUOlGZC0NU8GRFLoys5S4PsWMxDtIPyeM6sH6IYf4+sdfFdGDpxugx9TJN8AAU2p1ViG1B31iBtrEMyhYxv1rrGeB7JHkjLjVGUjdiy8E5x/HjxzsS94Mf/KBneiOnYKK5fQaNtsS15iZ7psnaihI3U6zjNdsf6frdsj2GB9Z2Z7aNQaVzIgQFLwuRC5Kl2PVb6kL3IQPRIyz6NkE4oIlPyRsJ04Hl57Bs2uFhU+46cA6ttga9sgjqXMC25WrPdaNcLuO6667DjTfeiJtuugmHDh0aDZA8YksxkroRW4ILFy7ge9/7Hu69917ce++9Pe1nHFNHc8ccGjvn0dg5B2t6vGcGBqNsYW56A+dOZzPmFTEYxqfq7s8ACka2bZDCBC7ImlPCfatXZLbNYUnnkmhZOlqnsm9/53GpiV0XHCisiD01TuZCn5+R4Hk4pjuLRmW/2vKhcufRljxjfRH6+iLmWpUeyZudncVNN92Em2++GTfddBPm5ubUdmTEiD4xkroRQ4llWXjggQdw11134a677sLx48e7/s40iub2WVfids2hNTsFUAJQDs3cTG6YQ8BbGZV2fBIX+Ryoy52IxPkZVqHLS+Y4ANvunkPUtjQ4Z0uZbwsYbrFLJXVBIiRPVuh6ls9Q8JzA1Mayohcrd52VtiVvbRHG+kVMNdZQr3ef71deeSVuvvlm3HzzzbjuuutGQ6iMGDpGUjdiaDh//jy++93v4q677sI999zTdUGllKI2N4nGnnm09s6itX0a0MJlLSuRE5G40OWQLHazpRpu3fao4p5lW3Id9nQuTOaC5CV3l43YebQFL63QhZGV5AUFz0NE9ITkzoM50CvLMNYu4DnjBI8//njXnwuFAm644Qa88IUvxIte9CLs2LFDbL0jRuTISOpGDAzHcfDggw/izjvvxHe/+108/fTT3X8vmWjsnUdj7wIae+bAi+FX80zTOJNhbMIdWJcojRDbXg+6xS6txPkZRqEblMwFyUvuqBVsn6W4HgconwmsiwCWwluXi9TBbYNXurD5AvPYThaCFyV3fqJET0ruvGWsJoy1izBWz2MPr/XMfnHw4EG8+MUvxote9CIcPXoUmiZ37I4YkQUjqRvRVxqNBu6++25861vfwre//W2sra11/kYpRX3bpCtxe+dhzU/2tIvzyCyN80kckE7k/MyW63jjrgcyWZeffgldUbOwp7yKJysLievJWuhUZM5PFmJHOKA1Nt8bTlxByIJQsYvdmWjpy1q4gkKX9/aA9IInInceQclTkTt3RRxavQJj5RxeOK3hoYce6ho+ZXp6upPg3XzzzSiX+9MLfsSIkdSNyJ2VlRV8+9vfxre+9S3cfffdXcONsIKB+r4FNPZvc9O4ghG5njxELiuJKxo2Dk5vjgc3oTfxrLGzmazbQ1boynoLzxoPn/GCgaDBot9rESp2Efctdu8P5wT1ltp608pcEFG5CwpcFFmJnbTURe0PBVpT6ffHT5LUBclcKvsoeMCm5CnLXRtiNWGsXoC5chZzzbWuDheGYeDGG2/ELbfcgpe85CWYnp5W3s6IEUmMpG5ELpw/fx5f//rX8c1vfhMPPvhg19yN9kQJ9f3b0DiwDc2dMz1DjfjJQuTySOOCEuenn0IXJ24AoAUmM3U4RY1J3vlCCBO6KEREL2uh8wgTO1GJC2PYxA7obv/GKUEzReduWanzM0yCJyt3mxsFWpMpPxfGoFeWYK6cxZW0gdOnT3f+RCnFs5/9bLzsZS/DS1/60tE0ZiMyZyR1IzLj4sWL+PrXv46vfe1reOihh7r+1pqfRP3ANjT2b4M1NxFZVgWyF7m80rgo8pA6BwQ1J7ynXVDcItcxAKELwy95ecmcH9vSwM6UlEUuyLCJXVKnBhnRSyN1frIUvIHIHQBqu591czbFZ8Q5aGMD+voZPFd3B0n3IITg2muvxS233IJbbrkF27dvV9/OiBFtRlI3IhWLi4v4xje+ga997WtdiRwhBI0d06gd2oHG/m1wJuLLYMOYyIlKXJA0UlemTRw0u+elrbASHm3sUlqfRxZCl1bm/GiEY8xoocU0nF+byGSdQWybwloudv5PHAJjPZuGcVtN7PzESV5WUudHRvAIBwqrMdsnQLOdpGmt6KcFUZU7GujEnkby7BKg1asoXDyDFxQ4Hn744a6/Hz16FK961avwile8YpTgjVBmJHUjpFlbW8PXvvY1fPWrX8UPfvCDrtJqc8c06od2oHZwB9h4MWYtLmlkLihxQHqRK5sW9k/1TgwuiqzQhUmcn0tZ6PxkKXdBmfMzbGJHGDB2ur9SF8QveXlInZ+g4CVKXBQ+ufOTJHpZyZ2fxpz452f7vtvSRh2Fi2fw0jLBAw880PWF+MYbb8SrXvUq3HLLLRgfz2cA7xGXJiOpGyFEq9XCd77zHXzlK1/Bd77zHdj25lWuuX0K9UM7UT+0Hc54csP0SJHjBBCoJNKyjR0La7HPcRhFTaDBflqJCxIndUkCF+RSE7owmQuSRu7iZM7PsIndINK6OKiVyWri4YC5kcH+RsidnzDRy0PuPJIkzw65RNJmA4WLZ/Ai0+lqumKaJl7wghfgVa96FV74wheOBjsekchI6kZEwjnHQw89hK985Sv46le/ikql0vlba34StcM7UT+0I7G0CrRFrqkJSVsYQZFLugV6B3WY3GUtch5BoZOVOD+Xo9D5EZU7UZELcimKXWYDBnMxeUm1CV8zSsIAcz3lvgvInYdf8vKUOyBa8MLErrPuehXF88/gOlbDiRMnOr8fGxvDLbfcgte+9rV49rOfDRLTLnnE5ctI6kb0cObMGXz5y1/GV77yla6eW/ZYAfXDu1C9ahfsufAbrtPQQNc2ayxc5+AFNZOjYzZ2zIuLXBjewV3UbSyUNmKfm5ZthQreMH1/6vUMg9ANSuaCRMmdqsz5yUrsLpUybIecpY7H9ItJLXgScuehtdTkTvY9CgpenNgBADiHvrGO4vlT2F9fxcWLFzt/2r17N1772tfita997aiDxYguRlI3AgDQbDbxr//6r/jCF76A++67r/N7pmuoH9yO2pHdaO6adedXRa+8+Rm0yHnotHsfCpqNmWItxRq72VFcx4/NfB8AwDhFK+5uJchI6MLx5C4LmfMzTGI3NGldjlIndYpwoLDWR8EjgF1yn6/XxLer+l55kpcodwDAOYzVJRTPncT82kXUau51jBCCm2++Gbfddhte8pKXwDTT924fsbUZSd1lzvHjx/H5z38eX/nKV7C+vg7AvVDU98yidtVu1A9sg+0UIgXOT1Yyl6XI+clC6nYXV/GmmXtD/5Z6MN+R0EVStw08c3YWnAOoZzsESiqx8x1u1CYonU93OSXcFcQwuCZ2ZqQWu2GRus5Cg5M7QEzw0rxfnADV3RL759goXjiDWwoO7r///s6vJycn8epXvxq33XYbDh8+rL5DI7Y0I6m7DKnX6/j617+Oz3/+812Ncu3xIjauvAK1HQfglMWmWRqGVC5O5PyoSF2cxPlJK3RAeqnzhK5MW9hXWExeIMB5awqfe+Z65e0D2csc0Ba6czMd2+GMAI2M5uxqIyR2Ip14bILyuXSXVJWpeP3CN6xpXaog2/eSlAQvpdj5iZO8NO9Zc9rdnsw8wFptA8VzJ3GgutxVnj169Cje/OY34xWveAWKxeyS7RHDz0jqLiOOHz+Ov/3bv8U//dM/oVqtAgA0TUNl+zZU9+9DY/u22EGB/ajKXL9Fzo+I1IlKnJ9+Cd02Yx1vHj8W+rdVBny7fkB5+0ViYb+xCCfmEzlhLeB/PvWyyL/nks6da4+1EWI6Wctdl9gpdugBBid2HoQDxHF/Vj40h03qula0+aO04GUodx5hkqf63nli5yEseJzDXL6AfztXxDe/+U1YltuFeXx8HLfddhve9KY34YorrlDbqRFbipHUXeI4joM777wTd9xxR1dbOXusjOq+fdjYvxdM4ptcFjLXT5ELEiZ2KiLnJ+uya5y8hSnMMgO+W98HFvrXZDyhEyEofZ7oZSl0STLnJyuxIzZB8aLmjqpjpLskDpPUBRE+VDOWOsKA4ipDbSHbhNUTvGGQO6Bb8LJI7fyICh5pNVE6+zSuqi3j7NnN3vg33XQT3vzmN+NFL3oRdD3jOd1GDA0jqbtEWVtbwxe/+EV87nOfw7lz7tyglFJs7NiO6oEDaGybF07lgMHJXBYi52FoDuaKbkKZVuQ80gidRhgmaAP79V4ZEr319VPoojhhzeMPj78cgJvWlXT1gc6CpVYRVMXOE7me9V3iYhck9BDOQepKy5s7xCnJVvBU07uc5M5Dr/HMUjs/QoLHOcyl83j9OMF3vvOdzuDGCwsLeOMb34g3vvGNmJlJMVHwiKFkJHWXGE8++STuuOMO/NM//RNaLVcWmGFi48A+VA/shz1WFl7XoEqsWYqcn70Ty3jn9n/NdJ2iUqcRBg3dp1qZNnEwROhEGbTQnbDm8T/bMhd2EZERvKpl4sz5afc/CjYjKnZRItezvi0udjJSF6RzSGcodkGp8zMUgicjd5JiBw4Ul7lSKTxO7DxEBI/WqyifPoHd6xewuroKwB3Y+NZbb8Xtt9+OAwfUm26MGC5GUncJwDnHd7/7XfzVX/1VV28oa2IKlcMHUNuzB1wXb9AyiFQuD5HbNbaGf7ftrs7/TeKgTBVnBg8hTujCJM7PpSJ0IhePJLnrCF2aaKpNlNyJylzXuoZA7PqV1uVJnNAFSS14HDCq0e934nvSB7kD5No6ioidR5LgEdtx555FFY8++mjn989//vPxEz/xE7jppptGgxpvcUZSt4WxLAv//M//jL/+67/G8ePHAbgdHzYWdqBy+ABac7PgNP8SqzZuY/tctMzVLR0btd52e6ZpY24su3HjAGDP+Cp+YuF7m/tGNl+PBp6Z1AWFLknigqSRurRCV6ZN7NXVZ9SQETo/YXKXpdB5eGKnInI960opdls1rXM3DGi+j8t9LxT2Q0LqujYvI3gJMhdF6HvUJ7HzEHlPZcTOI0zwOpdDzqGvL+PNE8A3v/nNTmn2wIED+Mmf/Em86lWvGo15t0UZSd0WpFqt4vOf/zw+85nPdLqxM01H7Yr9qBw5CKdckroRCMucQ0DbKQgrMxjTjc6fkr7ceUeZaTqYDRE5StQPwziR85Ol1Flck5I4P5ej0AVp2TqWltp3nQyFzoM3NJROp28MftmndQGx6/xaQvBUpa6zrSS5UxQ6j7BLD3GQn9yFiJ2fqPdVRew8/IIXvDxq9Q2UnnkKc8tnUK/XAQCzs7P4sR/7Mfzoj/4oJibU5mIeMRhGUreFWFxcxGc/+1n8/d//PTY23CmvHLOA6r5DqFy1H9w00smcT9qiCMqcKIWCjZlyPfY5MmInKnKdv6cUOsYpqtyEBo4iUe8IkEXZVXXokmEROsCVupatobIq3sZTBM58J0CLXvZil5fU9TwtQfLSil1nO0HBSyl0UQQHgbbGLh25i7pUEquF0tkTOFC50AkLxsbG8KM/+qO4/fbbR50qtggjqdsCnD9/Hn/5l3+JL37xi53xh+zyODYOXImNQ3sATcsj7OhCReZERC5InNjJipwfWanzJC5sPapSN8h2dMMmdN3/Ty93XTLXtfLhELstW4YVlLquRUIELyup62yDEtTmaS5CF6Q53Xu+UStmuxmKnUfw/Uwjdt76IiWcMRQunsYNjaVOsx7TNPEjP/Ij+Hf/7t+N5podckZSN8ScPXsWn/rUp/AP//APsG23G1prchYbhw6jtm87QEjihZ44BLR9LeUUYLrcx90vmfPjF7s0IudHROqiRM6/jkGldJeC0AVlrvfvanIXKXSdFQ9e7KhNMHaGy7W/aqM1eWf7KvQrrQtdtC14WUudB7HRLpNmPP5dmzChCxIpeDnIHbApY2nFjusJCSvnMJfO4gX2Gh577DEAbpvt17zmNXjb296GPXv2pNr+iHwYSd0Qcvr0aXzyk5/El7/8ZTiOeyFsTc+juu8oGjvm4ZR5zwXeL29BtorMeeydWMlE5DrLRwhdksQF15FW6PbrLaWWcJeD0G0+T1zsEmWua8X5ip0nbUlYZfkbsfcdhzCgfD56WJDGTPS6+53Wha2jUMlW6oh/uBXfS89S8ESkLkiX5OUkdt666/PqYscDp0Ok4HEOY+UiXqHVOgPYe3L39re/Hbt2pZuvekS2jKRuiDh79iw+/vGP4ytf+cqmzM1sQ3XfETS2z8Epb35jj5M4j60mc3vGV/HG+ftRps3UIufHL3UyIhdcR5qya1qhM4mDWW1DatkGN3DKmuv5/Rht4qh5NmSJbvotdN3LRMudlMx1rTS92HECgCBc4ATeKE4le0v6oE601EVvz5W9S17quv7g/pNW7lSELkhH8ETlTkHsPJlXmYYtKHZAfHqnry3hdWYTd93lDhWlaRpuu+02vP3tbx+VZYeEkdQNAUtLS/jUpz6Fv/u7v+uUWZuz21HddwTNbbNwikgUOD9bSeb2jK/i9fMPdP6vgYEShrEMx5NLS95lV0/cgqiInEeU0CXhCd8ghW5z2V6xUxa6zkoVxI4Dmu/jIw5gqkwq760ujdjZQPmC2vAgLX9PTtndTyt2GUtdpNB1PWnzRxXBy0Lq/FBbovwuI3c+sQPk5S5M7Dp/ixA8fW0Jt2o1fP/73wcAGIaBN7zhDXjb296GhYUFuR0YkSkjqRsglUoFf/VXf4XPfvazaDRcoWrNLGDjwNWwZmfBNA4uMS5UP2QuD5ELYhA7tdQ1mIklZxxF0sKcriZGHlmldFHyFsUgpA5wh2u50JqEA4qKXcQPltTKK2mEzk/T1lBZHstkXQDExC4gckFSiR1RK8MCammdR4/Y9TwhbuEtKHVdC7j/iMpd1kIHAODA5EkbXAPWDgicGynErrMKQcGLEzsgWu6M1UW8gmx0yrKmaeLf/tt/i7e97W2joVAGxEjqBkCj0cBnP/tZfPrTn+4MTdKanMHGldfAml2QljlAXuj6LXNJIudHVeo8kfOTVupUhW6a1jGrWfh6bb/SdgctdH4cX+FYVPKyErqGpWPj3Lh7UzYznHUkTOwSRM7PVkzrQAiaU3ID5fp/3tJS11lw88c4wctU6toyF7dPq4cizpcU5dieVcUIXpLUdZ4XJXcrF3ELX8cDD7jX+ImJCbztbW/Dj/3Yj6FQKIitfEQmjKSujzDG8OUvfxl/+qd/2hkHyBqbRPXKq9Gc3wGm47KWOQ8ZqQsTOY9+pXTTtI6rjO4LqUYIzjtNJakbJqELw5O8MMHLXOaATbmgyE7sPKmTELkgl2RaF7kghkrslKWuayXuP2Fyl5nUJQldYH8ykbsYsQOi5U5U7DrPDwoe5zCXzuE51fOdoVC2bduG//Af/gNuvfVWaFq62V1GiDGSuj5x77334o/+6I9w7NgxAIBTLGPj0NVo7NgDEJJ7qbWfMrd3YgWvm3tQaVkgWeriRM5PXildUOK0kOk0LlWhC+Iv0WYudGGHd1ZiZxEUzhkwqulWk0bstkRa54cBhXUGEAK7qCaGQyV1nZVt/ticpIMRupB96hG8DMWus8qAZ8mKHRAud8VzJ3Fo+VQnvDh48CB+9md/Fs973vPkNzBCipHU5czTTz+N//W//he+/e1vAwCYrqO6/whqVxwCNO2SkTmVRC6KMKkTFTk/aaTOL3QiEudHVegAdakbhND5l1+33bl9K1YRx1bUG0rHCp1HGrGzCMwLm3cuwkgqsRtUGXYgaZ0ndX5kBC8jqaOt9igAEvNaC0MAphOAABs7UyZLaaQusE8dwctB7IBuuVMROyBE7hwHpbM/xM5zT3eaGb3oRS/Cz/3cz+GKK65Q28iIREZSlxOVSgV/9md/hs997nNwHAeapqGycx82Dh4FNwu5t5vrh8ylTeSi8KROReQ80gjdBG3gaqOKMnE/oCSJC9LvlG5YhM5P1S7g8eVtwusJLbfGISt2AZnzM1CxS1OGHWRaF7HeWMHLSuqa3ePAZSl3fqHh/vNeVvKyErogBFg9qOcidoArd6pS11mHT+647k4/9nPbyvibv/kbOI4DXddx++234+1vfzvGxjLsADUCwEjqMsdrN/e///f/xsrKCgCgOb8DlcPXwhlzewMNUzq3ML2Bl2x/Snxn4LalAoAXTx6TWk4EhxM0FMaRCyIrdRO0gcPt5xuEYIKq7cPlUnb1lg0TOj8icieUzoUhInYxMudnkGLX97QuL6kL2U6X5OUhdV3bSyd4yT1ABSUvL6HzQ4CNXRr0mthzZcQOcAe6dkpqu+bBSfc6tGoFr2eVzhh3MzMz+I//8T/ida973ai9XYaMpC5DHn/8cfzBH/wBHn74YQDu/KyVI89Ga869qfVL5hxLA6vHX6Emtm3gNXsfi51rNUjFLuJMbQoAsKu8lqnUOZygxgpS+xOFiND5JS6IqtRdTmVXEaHziCvJKgudR5TYCcqcx1ZM64amBCuCJ3gZiF2k1HW2JS93am3JIiQvZ6nb2K21t9/eNEey3CmKHZBO7hwvsfPd98zFc7h+6RmcOnUKAHD06FG8973vxZEjR9Q3NKLDSOoyYH19Hf/n//wf/P3f/z045+Cajo2DR912c9RtdJu50LVHtgcArnNwiVLU+EIVt+1/RPj5fpnzs6e8ihdOPim8niCeyAVJK3ZRUhcnch5bKaXbCkLnwThF3TG6UrvUQufhFztJmetajUPEko8IBpLWDVsJNmmz3B2ENw2JUte1wWTBS1tu7KynLXnNKYrSYvbz3AZlLoxYwVMQO+psbk9F7pzAPa9zD2QM5VNPYceZp1CtVkEpxZvf/Ga8853vxPi4WpObES4jqUsB5xz//M//jD/8wz/E6uoqAKC+fQ82Dl8LVnTPgNQy55O3nucqyNxr9z0qLE1RMuehktZFiZyfLKVOROT89DulG0TZNa92dCJ4cveD87uyEToPCoBwZaHzSJPYRUqdyBRRHDCqCm8GB/TG5nIywtT3tK6NfwZA6si/Zimp62w0Wu6ykjrAFbvGNEXwEpZW8jZ2a7EyFyRS7iTFzj+TkX/7ooIXlLrOutq/p80G/n3Bwj//8z8DAGZnZ/Hud78br3jFK0Ak2zKPcBlJnSJnz57F7//+73faB9hjE1g/egOsmfnOc2SEjtP2ROGiHckkhE621Jokc35E0joRkfOTRuqKpIX95qKUyHlcDindIIXOo+4YeOjiTqw8I3aMJdL+4kMcAmM53XAUaaSOE8ApAIVVxY1zwNiQP/YJBzQB0ekRPtW0LkOp8yMqeEpS17UDm4KXpdABm1LXs0nfLssKnqzQhW27S/BSiJ2HaHrHCcDipiFr3x/NpQu47uLTeOaZZwAAN910E375l38Ze/bsEd7PES4jqZPEtm189rOfxZ/92Z+h0WiAE4rqgSOo7r9KvtTafue5BjBT7GNQkTlATJRkZM4jLq2TlTlAXeh26Kt4QfFie7tq6+hnSmcSBzv0NRSJBRp1l4uhKDE7e4WZuL/hTk/W77JrkLpj4Kk194tPtWli9bS6YALoSbL7KXacAHY58EvCQRyCworChhWlDuhO64QhgDU2PFLnJ07wUktdZ0cAZmbYczZC6Ho2Kyp47c4QaYQuuN2O3GUgdoCY3EWldV3rMQA4DsaePobZZ36IVquFQqGAd77znfjxH//xUUcKCUZSJ8GTTz6J3/md38Hjjz8OAGhNz2P9WTd0erUCCUIXeKe3ssx5BKVOReT8yEidX+S8S6k1REIXl8KZxEFZYSo0d/w8uW/6js96mO8OscTK+Jf1a4TWkbXQeXAANRW5i2mWkKfY9YhcyPGqLHVA7mld74K+sppImdijD2IHhMtdplLnnwkmpTyJSl3XLkQJXsZCF9ymXkNmYgfEy52I1HXWYwBabQOvaS7jnnvuAQBcffXVeP/734/9+/eLr+gyZiR1Ati2jb/8y7/Exz/+cTiOA6Yb2Dh8Leq79gG+un+P0MW8s3kK3ev2PSr03DQy57GrvIYXTDyZSuT8JEldmMj5GZTURQmcFnH30sD7JnUeTshdS0Ty0gpdmMwFkUrtYoSu85SUYueXOhGRC9v+lkjr4Db9iCRK9PokdX48wctE6oJCF/ibCipS17VZr3JDAGbGd4jIEqeQjdgB4XKXVIINXY/OUTrzNHaefALVahWGYeAd73gH/v2///fQ9Yxr5pcYI6lL4MSJE/jN3/xNPPaYm3w1FnaicvQGsMLmTa4jcwLv5DCkc1nIHADMFGo4VL6IMm0pCUoYYfvuFzkgXOY8VKROVugeanF85MxrsaO4jh+Zvg9O+64YJXBBhkXowvAkzxO8vBK6MGotI76dnYDMdT09bWJHAWL7xo2Q4JKROj9+wRuA1AHuvta2aZh6Ks0ktIiXOt9zhPcrpdB1bZYDhTXW2YfqtoymLQtQ8HfqIUBtIXk7SVLnEZQ7mbTOD3HqeKOzhu985zsAgMOHD+NXf/VXcejQIbUVXgaMpC4Cx3Hwmc98Bn/6p3+KVqsFphuoHHn25lytBndHzWbi13tRoRtmmfNEzoOCw6A2Jqj47BVR+PdfRuQ88krpftACfv/Ma7p+ZzOKXaU1vGnmXuntqUhdGqEDxKXOT4WZuLt+EI9WdypvV1ToPCLFTlLoAHWp80+ZRLjbq1WFfoudcgkWEmIX2B611LanKnVeJ4fqdgrCoC53IlIXeH4cWUmdJ3TEdy3jhGQmd10iF7oDyXInKnbAptyl6JsFrnMUzz2DK049gfX1dRiGgZ/+6Z/G7bffDkrzEd6tzEjqQjh79iw+/OEP44EH3LlMm3PbsXr9DbAn/Jmy+IUpj3Sun+3mwkTOT5ZSl1RejYJBrYNEmNBFSZyfHcUK3jhzr3A65zHMKV2QGjPwQPMK3/9NKcGTFTqPnlKsgtB1FhUUu+DE5n6o6pzsl2JaF8T3ucgIpbLUwd3Xqm+gX299UoInK3W+5UL3KUOpK66Gn+edwY4VBS9R6Lp2JF7uZMQOcOWuuMKwvi9Nk4gG3uSsdeZRv/HGG/Grv/qr2LZNfDrCy4GR1AX4l3/5F/ze7/0eNjY2wDQda9dei9pet+1cZwRvlr3Q5TVESVYyFxQ5P2mlbr+5iJcU11DjTntb8qRJ6Z6yzUSJC6KS0m01oXu4uTuwLtr+W7LcqQqdR0fsUgidR5zYxclcZ/nLIK3LQur8iOxDmhJsNWyKLi4hd6pSF1hHZ9MZSF1YSheFjOBJyVzojoULnqzYFZeZew8lUJc7zlG8cALbTjyGRqOB8fFxvPe978UrX/lKtfVdgoykrk29XsdHP/pRfOlLXwIANGdmsXLjc2GPd084LCp0eaRzk9s2cGvOpdakVC4MFanbby7i5aXNjgUO56hxtVKKSkr3lF3GJxZfjDXLTV+TJM7PpZ7ShQld9zrj5S6t0HX2o2Vg5Uz6tp9Ar9iJyJyfUVoXQ8IhFiV4mUtd5wmb6w8VvCyELrC+rKQuKqWLI648m1ro/ITInYrYAUgtd7RVwUtXT+PRR91Ogbfeeit++Zd/GeVycIyhy4+R1AF44okn8KEPfQgnT54EIQRrhw9j/cjRzrhzwGDTuX7LnIjI+ZGROr/M0bYcWNxRFjpATOqO2eP47PLNXb+rOyZWWvJz31zKKV2S0HWvv1fushA6DncKMc4JWraO6oWxxGWS8EudrNABKdM6mygNSEwYoCvMMjFsUufHL3i5SV3Xk0PkLmupA6A1GEAINnaq9cyUSemiCMpdpkLnJyB3MmLnSZ1HKrljDP/50Aw+8YlPgDGGK664Ah/60Icu+04Ul7XUcc7xN3/zN/jjP/5jWJYFu1jEynOfi+Z89+Tjw5DO5VFqVUnlwkiSumAqRwMF1rRSF1V6DYoc8921mkzHmlXsGtJDhH6mdMNSdk3eFkWNmbh3fW+mQueRidgxQK9oymIGqIvd5VqCTUKvq8unsNR1FvLJXV5SF0RC8lRTujA4IZ3P0slwcOUe2nKnmtb5UZE7woGxMxwbO5ZwzeOP4eLFizBNE7/wC7+AN7zhDZftNGOXrdTV63V85CMf6cw5V9+xEyvPeQ6Y2d1oPmuhk5G5V13xOCjhQunccquMCV1MGkpaC9vMCgB1kfMTJnVJIucnjdQFU7o4kfPTZPoopQugInQe560pfO7U9QAAU1Pb5zCh81AWOwboGz4BSJG4ASnKsCpp3VYpwapKnX8fJXZXSep82yHcTUBLy9lIVKjQBUkQvKylrru9X85yB6AxJ37ghEmdB6fiYkc4MHaau+Vv1sQrt63gu9/9LgDgVa96Fd73vvddluXYy1LqTp48if/yX/4Ljh8/Dk4I1q65BhsHDwEBsx+k0Hnp3KpVwvl6fH/wom4JCx0AjOlNbDMqws9Pwi91B80LuKXkzkUTJ3J+0kidxbmwyHmMUrpe0grd3z9zHRxGQXxfQGTkLk7oPKTFLih07Q0NS1ondBgxwKzIX6J75nkVpO9pXZh8Jux6Kqlrr1+vcXcoKo7UcickdUF8kpdF6dUjKHTdf8tW7uxiYF0EsMti608SOyBZ7jpS5y1HOCzzScw9/hgcx8EVV1yBD3/4w5fdTBSXndR9/etfx2//9m+jVqvBKRSxdPPNaM11T4zeb5kjJoNecCOAsXITV0yvCidopmZjypDveZqV2BnUxrOLJzsiB4jLHKAudDXOcXdjF76xfgRAssj5uZRTun6WXT3OWtP4u5PXd/3OkzsRsRMROg8hsQuTucAG+5XWEYeguKS+LVWpI5xHlmCZHv0+D4XUeUT8KSup8+h8D1EQPCWhC0IInKAgKRAndL3PVRe8HpkLIiB3cVLnESd3Xum1Z+pNCtD6EvY23XJsqVTCBz7wAbz0pS9N3N6lwmUjdY7j4E/+5E/wV3/1VwCA5twclm66GazYPVp+nkLnl7ce2leW8XITe6dWk3egjWxK55GF1O0yV/CK8lPYrhWkRM6PjNTVOMcZe1PGTtqz+Ne1o9LbVJG6HcUK3jBzPwwiV3/zpK7BDZyzxdo7msTBgrYutY0J2gIw2JQuiIjYyQidR6zYJQmdb8PKHR9ilg2VOO8yoXrfVhC7OKkL3YRP9AZWgo3DX6nNWOr8yKZ3mUgdAHts8/UQppiySkjd5jLicpcoc0ES5E5E7IDwkmwwpetZhjXxkulzuO+++wAA73jHO/COd7zjshis+LKYRK1Wq+FDH/pQZ9DCypVXYu1ZV3f1bgXEhE5U5ljJgTHZ6v2D5HRDw8Yecwk3F08CADTCYUAumVMhKHOAK3TfWr9Kel1e6VUWSlii0J1oLeDzF57d+f9CcQOvnnkIcCYASKSJkrbhgGCVFWDx7tPZIHZH9qJIm9B94ZlrQ4UOADgnIISj5bg3rKDcqQgdAJi6DWyr9oqdqNClhPvunbESlxV9aO/tL9dyzR2TUzm1ywPvPcj58uk12K/PaYlyl5nQlbuPWU43P3BRwVMROqDdvrDJY+VOWuY6O+XKs2hJNgrCgMmn3fdauL0dLeBblSvw9n97EHfccQc+/vGP49ixY/jABz6AsbH0vemHmUte6s6ePYv3v//9bvs5SrH8nBtR37On6zlp0zlOee+IuRqXFrjxchN7ptaklukHQZHrB2EiF0Sm5Nq9nNxFZldpDbdNP9D5/w9b2/GlC9f1rheka902p9L7WKSWVEoXh8V1LDubp7iI5ImSJHQenrB5cueJnarQefjb7inJHHHPZ6X2cRzQ6gSmF3SLnhIcfRE0wL3JOwX1acOCaWSi5PXrtZF2SnOOobojP+vskjsgk7Z3kcS8b57gqaZ3wrsQIXfKQufhS0WDcteYpcJpnXd/9uSusjf5syec4pP3O9C234iJlYdw55134l3vehd+53d+B7t3q32R3Qpc0uXXBx54AB/4wAewuroKp1DA4vNfAGtmpus5KkIXKnHB5xcdGONyN1DZ0iugXn4FkkuwnszFidwE4ZjX5NunAb2lVxGR81Apvap2kAAAm21KQ1DewlgobuBVM49Ag/i3+TRCF0zpkjCIDQ0803Z0SfjLsRxAvaU4y3eblq2jem5MPZ2TLMG6vSZJZ1lT5aMa4hKsB9eSdzJU8hRem2ovXXBArzNwSrB2UDKbiCm/xhEszeZRehXaj4DgqaZ0cXACNCczlub2PvrlTlTqgnAKMIHjtLPp1gr2Nh7BxYsXMTU1hd/6rd/Ctddeq7TtYeeSlbqvfOUr+O3f/m3Yto3W1BSWnv8COKVuYRAttzoFDlAudeL0Q+pUO0l4hEmdbCqXhdTJyBywWXqVTcFE2tIt1sdx8uxs5/9mycKV2xaltgO4UveamYekllGVOlmhA9xy8hytwwGRLsGKpnRhEMLBOQHjUE7pPGxGUbkwDn01RcEhQey6RC74NwZIN0tVfckcMNf7I3WAmNh1nusJnspraydESsvV2hdvz7NFBU9R6jy8y6JR4yisKI5x40NW6rr2hfF8pK59anMCtMbzlTsVsSsu2Z3RKqrbBc9/1sBzzON4/PHHYZomfu3Xfg0vf/nLpbc97Fxy5VfOOT796U/jYx/7GACgtmsXVp5zI7je/VJjhc5XOWU63FLqECIyILEoIqlclqyxBp60igDkL2hMoawZR1Dk4JMNFfHwUjoZsiy7yuB1sri5dAJAchu7NEIHALZDsVErgFKOclG9FGwzispKGdA57Gk7ndiFECdzHkpOuoVKsKJ4pVqt5Zbv7JLEC8zivWi/POJwTD9pqaV3kugNDk6BxqzuDkmiKHfB9nSy+NvfZYX/0ko4UKi4N8rmREbX3Pbn5Ym1TBm2ez3u8mPnbTGxo0Xc1zqMV794HnfeeSf+63/9rzhz5gze8pa3XFIDFV9SUuc4Dv7n//yfuOOOOwC0O0RcfU3y+HPyzd8uCXYXVvCG8Qc7/89b6NZYA0/Z7uDOjMt3VkiDv4NEj8QBinfoaGTKrmlQTemmA4NFa+0rrSd4cXKnKnQOI9ioFQBOwByCWsNUEruO0HmfWZqPLtC2TkTmBgIBWhNEaXiTvtG+jhrtm7W04GW1D225AyTSO1WI+zobs74x52QEL+3b0y5Dd/5LAKeUT1vDQoVlm9wF5E59PRxj5933PFHuqI5/OjuPt//4j+Ozn/0sPvaxj+Hs2bP4pV/6JWha/p2s+sElU35tNpv48Ic/jK9//esAgNVrr8XGoSu7ntMlcxIi55gAK8ndpPtRflVtT7eruIrnlo9jWqthh1aVXt5DtPTqyVwW6Zpq6fVEdRaPPO2bfF5A4vSihSu3L0oloipt6YD+ll4NYmNaYOy8YGk2TUrnFzo/VGNSYtcjdJ0/EPW0jgPUAvSa/B1WqQQLKJcq+1WClSm/bi7kpnXdO9D+U4zgKbWr85dfkyABucug/Jo0vp6o3KUpvXrb8ktd59eKcid6WU0rd4X17n32LrHCHTM4UFwOeX8JES7Haus/RGnpYTDG8PKXvxy/9mu/BjMwo9RW5JJI6qrVKn7lV34F999/v9vD9cYbUd8d0sPVuTwTOWBT5ABAIwwaeK5pUl6pnEzp9UR1Fo+cbIsch3QaR4haiXuYhY4SJtwD1l+aPdbahv9z/CWZCh0AMIcKJ3aRQgekLsMSRy0yyTjgzRzVEixxuLzYhT3dK436EjwAsFIOcyGFL73jlGDtQM63PV96l6Y0m2oX2tKbV3LnlWVl5M4vclGXVU+WRQY4DkUitXMmD6GmFTGxdD++9rWvYWNjA7/xG7+BUkmtjfiwsOWlrlKp4H3vex8effRRMF3H0vOej+bCAoDN3krez8MsdLLDmZianZjS7Smu4DnlEwA2RS5vVlgDJ2yz7+VVICBxgJLIeehFC4ckO0iotKXrJ17ZVfY40MAxrVVx5fQiHl/eprbxmM9BROxihc5D9qPmgKbWcbxrm9aEYlqnsK2hL8HG4dvtLsErEbXOEgrbJw7H9A+tTtvGuPlYU5NQmk3bni4qpevaBV+imSR4KoUUUbkrrDOp+6/e4CnGxxNva8fGdmNdMzC7fB/uvvtu/PIv/zJ+53d+B5OT8VNzDjNbuvy6urqK9773vTh27Bgc08TiC18Ee2o6dNwo1Tkbgf6UX7MsvXoylyRyE7SOBa0uvM2e5dvlV0/kAPWx40QIK72mTeOiMEoWDm+/KLXMsPd4FS27BrnojOFvVp4Lm2twOEHVLgjLXVxKFySqFCskdJ0nC5RhI2SOMAKlYfz6ObzJkJdgVTtleIMfOwXx8ptw+TUETzC88ehE5S6x9JqEb9HUIisgdaGLhchdVpftMLmTFbogUXJXXBJIQAXLsaS1jG2r96FSqeDAgQP4/d//fcwFpg/dKgzTmOFSLC0t4T3veY8rdIUCFl/4EtiT05EDgfJ2g+hLlT3FFfzI7H34kdn7cNPYUzCJk3syt8w03NdieMoqZt4jNQz/Nk5UZ/GlR69x28kx4j6GvRY2QGTKrn78Qge4nWkmjQaOzF5IXFZG6IDNxM6PlNAByaIUk86NDp/0KE8Y366qaE1BASWAXU5/vSHcbZozfsbG+Nk+lEnbEgmg85r7UEDp3oW2EGsKQiiybnNjc71phQ5wJVp9PMPNcmzs08xZnJ+5GXNzczh+/Dh+8Rd/EUtLaSZtHhxbMqm7cOECfumXfgmnTp2CUyxi8YUvhj0+kbicalo3rEnds8bPpSqvqiR1Da6hwjZvvP0o6Xp8uXId/uIHL3D/k2EqF6RfHSS2Qkp3zhnHHcs3h/4tLrWTFToPQjnGSu5+SgudR1RaJ1BuVU3rlMesY72NxhNROOUIB6g1vGldz775NhuZ3qVI66JO7c6hFpHepU7qAHe/49Yh8pYrpnShqyKAPZbtF3JOgOoODROns52Foyu1i+osEYbomHZOFftrP8CFCxewb98+fPSjH8Xs7Gz8MkPGlmtTt7y83BE6u1TC4gtfAucSm8tNpw5MGn8y7C8v4aaxp/omVX6Zc9oBbz+G7XigeQU+d+4GrDRKuLA46SZyOdOvDhL9Ik1K93crN0b+3Z/ahZZjFaSbM3eoE9O01YQO6O00IdF2TvV7gtByYTfzfiY1UWNxDeP3et8ueZIoXJpNQee05256l3u7uzD8H0cf0uOaT3T8KVsaqjs0gACV3RoIB8bPZCN3XR0pZN4b0XZ22hhOlJ6NfQv34+mnn8Yv/MIvbDmx21JSt7a21i10L3opnHJ50LvVAy8wGGNW6N+mxhs4NNPbAJ8GruxJUkEJz13ogqmc46vWa8iv44UncoA7T6vDKWxHA3fyby2QpoPEqlPGQ9U9yQsAWDAreM3Eg8lPDEAJwxixsMrEe2ipflYOSKfsGkdQ7DopnSLMoahVi+mSWF+JS6ozBOFgpkJaF9ZhIkriho0w2Rsm0Wvvij8B7JvgDVLugL4Inv8089rDpZG7jZ3a5r62W8XkIXdKHSna5dhYsdPHcKrwbFyx8AM8/fTT+MVf/EX8wR/8wZYRuy0jdRsbG3jf+96H48ePt0uuL+mL0DEDYEW5A9ycbOI5e54J/RsFz3QmiDwIS+X6gSdznsgNApGUbrE2hvMnN09wfbKFscOuBTDBK6/o8/y4QueWGxYC4wtanIaKXl4pXRBP7B5Z3K5UdvXDOAEIh1Zw4DQVG8JqHPaUjcJ5+UtcGpfU61tA4kRoix5xOEBIZg3pUxFM7/r03nbJHQDqcNTn1cdETDPfrbtD2ZVeqzu6X4d37KvKXZfQ+WnL3cYuLVuxK2vQa5LrSxA7zeIAHcMz+vXYs/AATpw4gfe973346Ec/iomJ5GZeg2ZLSF2tVsN//s//GY8//jiYbmLxBS/uW8nV6x0V+feSAzPQdm5mogY9aVLZlJyozUEjV+KFY09msr64VC5PwlK5YSIocB18Hy/nREnSssQgrEv0PMnLO6XzM2k0cPX8eTy+vA1rFbWxnlhW7SQdAn1F8fImmdYRBphrXLmUygyi1N5NBk7cKQ+pSl8AzrvbIucgedLvQXtIEqfoqx408r3met/1iMNRumABlKjLXRo4YI1TgANGNd1rjjrdlOUu4fTl1BU7QD21W7o6cF3iGrZ/X/KLa4TYaf5j0BjHaVyPHbP34cknn8Sv/Mqv4Pd+7/dQKKhXIfrB0HeUsG0b73//+/G9730PnBpobX8xqntnUN8mv9sqHSX8nSTCBI4Q3lO9mB6v4dBU/j1n9peX8JLxJ5SXn6B1TNCWUiqXtvwqk8qtNYpYXJzIvXsidwjQor0XppjrGZ208IrDT8BIaAPpZ8Gs4JUTD8OE+DL+lE6GCjPxQ2sbbiiEJ8dhBHu8ilJ3DBxbXQAH0LJ1JbHrkTpO5NI6h0Bf3mxLRwDFYUpIbNm2I3Kd57d/z9W21zMTQw4Qri518SsOSB5Xez3SYksApvdeE0TkLk2xhFrd03K5vxQUvCw6WiBkJAcFwavu0MU7lbd3OU7uIlO6qHW2VyUqd57Mhd0uvPu6tNz5hjzRIo4/0lrDTOVuVKtVvOhFL8Jv/MZvQNeHNw8b3j0DwDnH7/7u77pCRzRYCy8AjCnkHIJ1YAbgzFgwJ9wDJUzgtiItrqHBDTjtM7Bfqdw6K+LO6lW4e3mfVCrHeX7DldCLJrZ93z2ZG7MEK9c5UmkLIZASOg8ZoVOlwkzc39gLALizfggAMEnruK5wJnY5lZTOw3vrTN3G1ERdSuxCUzqZMqwndDn6UZfMDfXX4T7iT/KGoFTrpXd5J3eATw5F0ru8hA5w23RKpncyl1Sh5E7yEu0dJyIl2aWrtdjjyntPzt9kyomdQBs7bk5hZewGjFt349vf/jb+x//4H3j/+98PSoerquQx1FL353/+5/jSl74EgMCevwm8kG9DRWYATnDoEgJQemlcvT2Z83A47YvQrbIyTlszcEDhcAqLDW7AQL/EAQBhDJ6TqU4VNcx4n6/TfsmrThl31g9hjDZD0zvZtnQeXkrnR0bsUpddI4SOA2CmQnoWKMGOZE4QzkEYgTVGXMFIO1l7CvpZmgXagjfo0qwnd0Am5dkgUXJX3aF+TU8qySYJXde6NFfsAInUjnNUdxFMPh19rPLiPKqTN6C4cg/+8R//EXNzc3jXu94ltv4+M7RS94UvfAEf//jHAQDW7PVgpR2ZbyNK4i4lgiLXLzyRAzbF4mRzDt9f3tv3fdEumFi4xz1h/RKXFjpp4eVXypW/vdKr1HYUSq8VZuKB5hU9v3fFGqg4xVC5U0np/GXXICJilyh0hIOaDlgrYr9ySug46Z/M9aNdXd8hcOUOGBrBSyt3/tJrFF1yBwxe8ELkTnTS+yiCcpc2nfWndsCm3MkIXWddkqndhRtNcAqs79vc0OTTvZ8zK+9Eg10PY/k+/OVf/iX27t2L173udXI71weGUuruvvtu/N7v/R4AwJ68Cmx8fybrdUwObkQPcnkpkafMxbWn86dyYch2hFitl7C0NC63fz6JA8RErj5HsXKd3AVfpfRKwftSegUAK0bOwuRut76ilNIB8b6jUooNQmiE2AkInUpaRxiBvgEYVblelpyoJYP9mM0iVWeJtAyJ4Hlyl1Xv0TjCSrPWWLoqhVKriBC5y3JasLELNkqL7me7djClLPrkrjmdbj+91C5O7Dyh828b2BS8oNyx8b14+xuuwyc+8Ql85CMfwc6dO3HDDTeo72QODF1R+PTp0/jgBz8Ix3HglPfAmTqaan20BRjrBMY6gdYgm9O0JPRq3QqcqM3hO9UrO/9vcQ3rrIh1VuxrOrfKyni4uRsPN3fjpDWXfUlX4I5Hlg3M3mli9k4TMw+7jV69h4h3udPIDV9SkmVKF4YDCotrqDhFPNzcjTmjmryQj7CyaxgkomW6TNm1pz1rTgkdYQR6Fe5UVKUtfpHIgqwbErcFzxojsMop1s0354yV3v44dR8Zz6QQuUkOgHFoLdZ59B3vdY/RbKdE4wBhHIRxTD1lY+qp9OvmFNj+fQvb7w4f71V4PW2x80qyYduJ+n0wvfP4P19bxctf/nLYto0PfOADeOYZ8U5o/WCopK5Wq+FXf/VXUalUwMwZ2HM3KF1Q/CKn14nb63X47teZ0GDGQEQO2JS5Tnu5Ph9OXSL3CAGx4T76cL3UpizccuiY1DILZgUvn3gkpz3qJi6lC8MBRY2ZKGtNbJecnV7k1DI0B1MT3VPSSbeja3eaAJCL0BFGYGy0ha7zy+zWf9nAOTTRpNITvDRyp4DX94pT9E3uWKF7G4MSPLPigDCO8TNWarkbu9C9fFZyN/N4C8RmoBbD9rvTyR3XutvaeVx8TrjodS3bFrsuuSME/3isjKNHj2J9fR3vf//7sbGxobx/WTM0Usc5x2/+5m/i+PHj4FoB1vzNABG7MfklbtAiNzVWx4HJ5dy3U9Is7C6tYl56wsl0LNAadmi1oZC5LpFLUdFUKb2CcBQ0uYtWP0uvsjDfV9ay1sS+4lKi3ImmdB5eGTY1CkLnlWCj6KRzGVwzvBKsLMy4jA2SAM0pCrtE4KjMFJCCfshd0vcXEblT7JAeCWknbKnkLuJ8SSN3M4+33EGv21BrU+7SEBQ70f56/tSuI3dUxw8q+7CwsICTJ0/it37rtzAso8MNjdR94hOfwL/+678ChMKafx6gx7e/iUrjBp3IEZLfjBGeyO0urWLWlCuTpWWB1vDiAsNVRhEUkJY5lU4Sa41ipz1daCoX4kfUBgzJSb4v19KrnwbvbgtDCRNK7WTfNU/slHu7Eg5iyg07E7s6L52rhf+dU8DuU4rUj3Z1Q43X5K5d9r4U5S6JvNM7c733oqkqd8GULgy/3IniFzo/WaV2528yYZflDbmnJKsVcZo+C4Zh4Jvf/Cb++q//Wnm/smQopO7ee+/Fn/3ZnwEArJnrI4cuqS1QLF1L0JrCJV9W9RikyAHdMqcRCo2oHTIqs0UsLY9j9lsF6VRuGI+JYS69spjPJSq1qzsGfrg2L79vjobVdfXp/bhDgIoBpyT/IQfTOsLaMpc0E8TlLlsDwpO7fgtel9xdwoIXRFruZMbzFEztZp6IFzZ/aqcqdzNPOABp/6uAP7XjhRm8+93vBgD8yZ/8Ce6//36ldWbJwKVuZWUF//2//3dwzuGM7QUb39f199oCxfI1BMvXENR38LYty1/Q7TEOe2IAjVMVGBaRy0LmVGjaOpaqZbCankl5NWu0KQu3HJSbnm2YS69JRKV2jkK0xDlxB5NWgDsEfM3MJKXrErpB4ZMWu0Tg9GH2oc0esLzrMewMIr0bRLu7KPQ6g7HhPvImk7Js2HoFSrLEFnt9aeTO6zhHnXRi58ndb33mSbz61a+G4zj44Ac/iKWl/GeTimOgQ5owxvCbv/mbWFpaAtPHYc9cB8AVuUZ7GjBOeSZliaQ5XAdNSbMGInB+dmhVHNJLAIqREnfS3sA36gcz33bT1rHRdGOUzk2/D/WorNrTNR0da1YxchGHE1woi08GbRIHs5pc49usSq9ReGJ3oj6XPqXjRCpS7RE6yuGUAK0ueYwwwNjYHFpDaNvtEqwuMQxH6NAmBLDjpKSf1yf/SyHhvUjDpuAaNJ7cAe7hozX7I6S8PXCC0+7soDX7HBD42mv5xa4z0LAAYaXXOAh3tzt+pi1NhGBjp3utECm9Rq6Xua/FEztvGJSklC4Mb9xAT+zO3xzfWXD20e73wC92K1eplWTX92v4dLWI5x04gOPHj+PDH/4wfvd3f3dgM04MVOr+3//7f7jrrrvACUXlquehts/9QLISuWGDRnTLHNdbmNAbfd6bTTZlrpSYyDkcaAlKQBKhItdnZNrTEU4A252L9EKje+w8kTZiTCIYb3CKc/ZUz++LxMJuPbqdW5al1zDKWhPbChU8wcU7SHj0pHSCYpdVQkc4YFTcaaykk1+Fw5NTuSFROCFoTQBmpc/JWdjmQkRvgBPBhMIJ4BQIjIqj1EYqDY6vJ6uI4DEzwxt8BoInQ+cU9Qke19Jfr4NyJ5rShSEid7OPOqHDW3m/m3nCURY7UB33zB7CzjNn8P3vfx933HEHbr/9dul1ZcHA8uQnnngCH/vYxwAA61dfh+qBSTDNvXAMi9DxkoPCRMys3gE0jaGo26CEhT4AQCO85zEoduhreHGB4ZBe6muJ1SuvVhqFVOW4ICqdJKIgnIBYtOsBm7S/vRKwwCOOuUINr5yWb0/HQHseNV7AD625zuO0Pan4Cl1EUzqPFWsMd13cL+04kW3pRD/7LIRunUhtMg1aS2FqMmB4qgm896E3eNdjWCAcMKoO9Npgmjc4BdoleUFyrRJx3nn0ozxLHA5j3YK50oK5onKAh6yTcTgFgtaUjtZUusAgriybNF5pmnIsANjjE/jZn/1ZAMDHPvYxHD9+XHldaRiI1FmWhd/6rd+C4zio79iJjf37h0bkggSHydM0hqJphT4MzT0gwsRt0ALnRwPHfmMRzzW1vsjcyeYc7l25okfm4lg9P4G5e+S/Nam8xXECF3ywCRvXHDwttX5KGMwMGwWGSd4xawFPtLbLrUdhuHYHFDZzlxO9V1mOhpW1MSV576R0YVAu1GHCL3R5orU2H5fk/LAxkjcMDLvcqUJE2zwG5M4veLKl19j94bzzyEzufBMC5CF3wbJr5HIpxe5X7jmO5z//+Wi1WviN3/gNtFrZiK8MA5G6T37yk/jhD38IxzCxet0NUgMMay24M0P0AaLxSHHbamjgnUfn/31I5mrMxOnGNC5sjAvJXAfm9nbNA8I4tDpzH01EClz4woA5kHmWomGgcLgreWO0iTHaRJGkG9NJhqRPNDGNjfhbFmXXKKGTHfMrbmiTLpFL6kl7KRGX4skMQJwxntwNSvA8uctD8ITIK71jHHo1MNhwBnJnlwLvk0/urMls5E5qGUWxK5/nKF8AvnZxBlNTUzh27Bj+/M//XHo9aen7UXfs2DF88pOfBACsXXc9WKEPXb5EaLet8j+ItjV6y8bhF7l+UmMmzramsWKPwcmwxKqKX+Rok4NwoD6vY/k6PpRDoKRFIyxR7lRLrzKkHcIk8dCNSeviEjqlwzGY2gdlLmT7/WrIP3BCUjyj6mDiafHmK3kwDOldpu3pZOEcTpHALtPOIw0kYoDdVHIXdS62ex6nTe5a0+6yMm1CPbETkbvyeY7yeQ7C3NmMuF7E+bEjAIC//uu/xrFjcjMPpaWvR5tt2/jt3/5tOI6D5uwu1Hfu7ufmuwlKnMIwKcNKMJXrF57IeTLHBtxAKEzkulI4AmTU5yMS1fZ0WeHJXVDw0pZeg0R90sJtJgPPiS27CpBnyTVJ5joM6SWFJ/XCzWQj7j/UcjB5vIHJ442BCt6g5U6vOu5DcvvCpdcYOCFdjyzkLgpZuetJ6UJXCuXkrjWtKzftok50aueJnF/m/Djju/Cyl70MjuPgIx/5CBynf8ddX6Xub/7mb3Ds2DFwzUT1wLOlyq6pGWKJqzsGKnb0cBiiDEMqx0AGInNeJ4lEkev3fmXcni4Mh1NUBeal0gjLtSyb+lNvX32ly66BtE5U6KRKsByglqDMpcDtAduH86efl16HgTisI3gDl7sNB4W1/spdpx0a40pylyVBuRMSvJDSaxzCcidzHPqSO1G5CwqdSg9u6gATp3ioyMXNM/6lkwWMjY3hsccew+c+9zn5DSvSN6lbXFzszBrRmr8a3EwvMXFw6g6y6T0Ugomhp0gtTNDG0MjcwGhvWq/lK3IqnST6hehwKV5yV6BycidaevUfBalKr4qfnUxCJ/wNnrtfGjjp05RhQ9ppLAv8chcmeI7Zp/bSDkdhxXYfgxA8T+5yFjwnJgmTTe+iSq9Jy0TJnVBKF7pSMbnzyq5BVMSOMLetaJLI+eF6Ce9617sAuLNNXLhwQX7DCvRNdT72sY+hVqvBKc5gY/9+NGezveNeDhLnUaQWZvUqxrXBjG2Xt8ytnp/A7L0JZx4BmNF+tM/d3BO5IewkoYLDKWrMlPoyEFd6DeIdESrD1XCHgFXjBxCN3G7WJdd2OkdtdCRzWHvpbzWC6V1H8PqZIHpf/hyOwlp+6V2UtPWkdzkIHheshsXKnWRKF0ao3KX9rGPkLk3ZNQ6tJXeD+e+f/yGuueYa1Ot1/PEf/3H2OxRCX9TngQcewJe//GUAQGvb9QAlqd/wy0nigE2R82QuaiDjvFhjdTzcquNxay7/ZI4RhAZJISI3Qg1/m7o8Ut6+p3SUwylk+Dq4T+aGp6XGJUlQ8MoX+t9tljg8N7kTSbjyKM/GpXRRRMmdSkoXhvc6G7Nadu06Ax0qWlPJQpdmIG0psSME39/YBkIIvvrVr+Khhx5S37AguasQYwwf/ehHAQDW1D6w4ozSerSWOxo8tchlIXFAuMgNSuaetglO2DO4q3pIavln6jN4eHGH+g7kJHL1eQ1L1+d7t54r1PDyqcdy3YZoe7ok4lI7lV6vGmUoFOVKvJzBTekIwHW5z4Y4BOa6wk0seHEPSefScCn1gGVG/jEacRiIzVE+10LpYv+G5dncfn5yJ7wPnAMccEwKp0SV5AwQT+milvXkrjFvYGNvih7scesvkkzlDgSwBDuB9EvsWGEKt912GwDgj/7oj8AzEuQocs87vva1r7mdI6iO1vzVUstqLYA2Nz9w0h5+51Juc1KkFsrtoehFBK7CiqAOx5zkPKFJrLE6nrEBB5szJrhjocm9+RanYIJluy5Ivmkcp0RaHGShhKEo2XZNBZnpx5LQwOEEPmOZ0ivgznNba5ogaWrhbbEjttzxxgyEp7wReHN6uv/JTuY2N4Bcrlc90zRxwPTGIyOAJTE92TDiTf5ePudeC7lGUF9QK8srbd9xDwJP7JpTg5kjzROzoNhp9fh7g6oIhm3fnUoRqOwrg3Bg/GQt1TrXD24Kovf6vH6CmQxkTQC7SKE3BKZv05JnmohCa3HhNqCfedTBXKmEhx9+GF/96lfxyle+Um2jAuSad9m2jT/90z8FAFgzhwEtfkw6L43zHrRJcmv0PkxY7a8MqomcyLyjInipnJfMWZxmtm4RHE7Qst33YlRezQeHU1RYfCelrMqxlHAUS2KltE5KpwBxCIy19qVM9XDNQ+gUIJxDr7sSE/sg6Hp4y3olPKMW/9AbPP9hTTLAkztqsYGkd53kbsXG2DN1FJYH03M3OCyJl+BFyVualM6PU9hcD6euBFX2lVMldyxk3thgcqd6bFqlzeuAXRyexI7rRbzlLW8B4PYvyHOmiVxvnV/84hdx+vRpcK0Aa6a3bBdM4oBLW978WExDq300MU7QYmOg4NhXWuz7voSlcv3E4QSO4zsBJY8BvQGUlrZ+B4Z+ITJGnSd2i9a4dOm1az2UoVhqoVFXKBFLpHX+sQdl0zoZoeMUsMcI9Gr6C5UncGH7k/Y0TGoDxUHc1xJM9HhGaUkO+NO7vid33JfetcWuOTu4gfP90pZVKhe+nZDfUfdUUUnu/Cld+PY2Nyib3lkl2v2lTuIcikvsklJv0cTu//vGeeybn8e5c+fwpS99CW9+85vFd1CC3KSu2WziL/7iLwAArdmrwA29Y8TEcRM5YLgljlUNrBNgciLsyiuHX+KA3nSN8f6P7zZ0MqcKF+9mrgqbsPGsA2cwZTbw7IlTQsvMahs4Yoh3Y9cIR5lwVBjF49Y21V3NHJXSq588xa4rpfOgkmJHIfVFIs2p0iNyA77+9bwWMvyi11WapYBT6G9pdJjkDuhN5bQmg3dgpZmqzJ/ShW7XJ3cAhAQvLKWLXL9saTZk1aJlWNn1BhESO6rjrW99Kz760Y/iU5/6FF7/+tfDMLL/YpKb1H3hC1/A4uIimFFCc2G/e+H0veZhlrkOKXu+NR0ddjsVGYQ0RTGnbWCCWnja1vq+X5mJXB9gYw527FkGAMyVanjVwqPQwGEITkprEgeaxIFugMMkBNOU4abCua6/hYleVp0k4ihrLWwrV3ChNpFqPXHt69KUXoGIa8nwnG4gDDBqvp0c8mtfpOhxwLSGZ+cJ48i5zXn89nOSO05I5BhrsriCpyZ3orcGL/jnQKcsGyZ3SSld9H50yx3QK3hWVFqZUVongojY/fd/egoH5uZw4cIF/MM//APe+MY3qm8wglykzrZt/N//+38BAM2Fw4A2mEam/cBmFLa9+frOWzoato4rJlaHTuSu0NcBuH7N0F/RHHaZ8wucByUcpuae5UXNynU2Bj8aIQieMUHRqzCKR1o7Mu0kEaTGTPywtoCybgmJXVhK5+G1r8syrQtN6XzLiKR1hLk3L2YCNMtmLu3tAwA4oA12CtTUdHUoGdFFUO6A9IKXVZs4D0/uADHBS0rpovCKUUG5Wz9YlkrpwggrzXZ+H7NqmbQuKHayHY60FkdrPGYZouEtb3kL/vAP/xCf+tSncNttt0HXs9WwXKTuG9/4Bs6dOwemmbBm9uaxib7BHYpGKzpFCH5T5JzAYf3tYBCHJ3MUgP+cYn36hss47XR+GCZa4wTbjmyWRv0CN4wERW+aMlxtnsMjrR1wQFBjyTcRkU4SQbxOPDpNX98OK8MKp3RRYhd3HMucglmdrj6Z63RgyGjVI4YbT+6ATcFziv3t8eWXN5HnRAle2ttXUO7SCl0Qv+CZVYbWeIyoSvSGBQJip7DbRg2wxqL//uGvnsD+2VmcO3cO//RP/4TXve518huJIfOv+ZxzfPrTnwYAtOYOAnSLdGPUOFBgPQ+iM/D2UCphj2FlTtvADYUz2KevwyDdQpc3BWJjp7GKncYqpg259oi1xTKmH8r+mKlu1/H067TOY/W5LRR1u/PIWuimtRquK5zJdJ1+NEJgthsSauCYoA2UaXIcJNJJIgyTOthWrigt68cTu7QQhyTPHuFPy8L+7LvGe2md+g65yzOju0fqiMsTr9essdqAvja8Ma3WZD0iqJrShcE0dyQDrx0kyThNMKtMrDmD5EtiWophgThgVGP+TjXcfvvtAIDPfvazmY9bl/nd8957722PS6fBmjuY9eqV0esEIBrsCccVuLAxyrZEQ79ogiXWfooc4MrcrO6Ol0fb76X0YMmMgGbUbqe6XcfSc9x1cY2BG+7PpGRj9/bVTLYRh9HngaI9uRNN7uLwSq9+4sqwDiexibYfr32ddFu6QFpHmMABnndaF5LMjXDhhKA5VwAYUFgZXrHJFeZeA/xiZ08NtmNFGB2xI4BdzL6y0nVrbYsdp+lOGLPKOpJobiSkdVDoNJFm99piF5XYfeRfT2GhUMCxY8fwgx/8ADfccEOKjXWTeVL3t3/7twAAa3ovuJ5vI24RmMlhTXBYYxxOuZ3A6b7B7y6BgfBm9e5UblDJ3Ky+AUp4R+gGQXW7jpOv1XDytRoWb2JgRffhCR0AgADGEJda0+LJnWh6F4UVMoCTJ3ZhiDY5kBm/rgciOdtERFoX5ttSad0omROCE3dcveZcwX3MDIHQMA6j3+kZY52HvtYc2vSOWhzFZRvF5YyGiAo5Lzq33JTpXddyGad1dpEqtWvsWiYusdNN3HrrrQDctC5LMk3qFhcXceeddwIAWnMHslx1B+9iHFZFYgUOJ+yi7EkGQV/krVIr4jSdwu7xNanlFpviY9VZTEeTux+fxXX0YQafHsKSuUFQ30aw+FxXQPyJ3AhX8Mq0mTq58xNM7GRSus5+UQazaKOh0OtVqPTatYDMysWe48ncCDE6NzsNbnoHDDbBczbFzup3chaT3qXp+SrSni5533jnFPCLXWM2+yYxadI7s9r9WgnnuaR1nJB0897GJHZ/9VgV4wC+9a1vYXFxEfPz8+rb8ZFpUvelL30JjuPALs+CFSezXHUPrNBO4HwPx8RQJHCcA47C1FgiY9VZTMeGU+wIHeDeVPvJMCRzjTmCtVsaWLulgY3rG+GJ3AgAm8md6JRlYaXXIMHETrZjUMvS0TxXBmmpHbtCpdfOk7vTuiyq4iOhU6czM4KX4A0qvXN4R+76ntwBoemdvtbMvOerKNTuvnZ67QKJo5jeyZyiEumdv+zahWBalzTTRPDvqT+PiMSOFSdx3XXXgTGGf/zHf0y3DR+Z6TfnHF/84hcBANbs/qxWC8AdrNh/P7LHsClwOcMsCpvo0I3BzVjgT+UGBSUc01oNO43Vzv8HQWOOoHltHYRwmKb7mbSIDif9+NADRQNHnrM2VZmJHza3AwCmtOQ3K6z0GiRtj1jiEHAqdxwRm8BcVptLWISk4U0IB6jEZN4j4uGEdKd3HDDX+jsVGNq9VgeW3AGd9I4QgrFn3GFAOAFqu9Wn45Lfh+jj2uvZK5zeKV7LRNK71J0tEoY/CSOLxC6M7y3rKAH4h3/4B7z1rW8FyUDoMzOFhx9+GGfPnnU7SEztin2u1gBAACdw7gTlrfP74LAhfSqjdrY3gGv4MIgc4MqbAQaNcGhgA0vlmte6IuKXuUsJt2NLvt/QPVFbQ0lI7JIwqYP5UhVPr85ILddJ6QCAE5AWwE3x40oqpess5KZ1QuPFjVK4vtNJQwhgj+kA49DrfW736pc7QmBNDqBNOOeA3RY8oG+CF0zpovAP21JctgFC0JjJZ8iqzq3GJ3FGPUY8BUuwQEYzTUgSVoa1pnZhdvkxnDp1Cg899BCuu+661NvJrPz6L//yLwAAa3Jn4jAmWpPD2ODQGuh+tIaiejowdMpAwXvKq4OAEo4CcVCUnBUhSxrzbom1dV0NZsGCWbBgXIJC128spmHNKYX+TaT0GkRlHELitHuwcrTFLtmklFM6SaI6TIxSuv7ACcA1AntMh10awBiXjitWAyvL+rEZYDMQi2HsmRrGnqmhfLp3toY07emozZUGLiUOB7FZb2k24y9FngeYGyx5ZATRlxGyj0ll2aQybGKZNqwMqxm45ZZbAGw6VFoyMQfbtvHVr34VAMALe2BsxD+fcA5LI5e0sIl2ltApQ0nrc7khBn8yNwgKc3Ws3eIelpdqKjfsiJRe/XBOYDsUupZ8Y2lZOprny93zbnN3gnmRxE4ppessC5hrHK2pjIdC6ROEu1+IowibKolw9D2RyApOALTlDkD/0zsvuVttgG40wSbDvwhFQVoZX7vySvBSljODpdnCUgNrV42n26fQ7Qg8RzGtSxI6j6w6Tvjl8+/uW0UB7qQN73nPe0Bpui+umUjdgw8+iJWVFXBqghcX0r3oHKENAodoQCn/C0NcZ4lhEzlg8DI3WW7g2tlzON+YwJMXs+kFdClTYRwPt7YlPxHd7ek8LKalLsPWbANPLrmflYzYBWeFANpiFze7TsqUjthA6QIfSlkLwnTA3Ag/D+NOz7D3j5No2TOrDJwQWOXhflM6r8sTvH7LHQOIZYOubsYsbDpmygCPPO+DAcHzf/bNefFZY0TLriIQh8NcaoAwhqknNpOdLATPqEp8MZFI60Rlrmv1GYidYwJ6+wsaLy5gfHwcS0tLeOihh3D99derrxsZSd23v/1tAAArbQfI8M7vCQ4QTgYyn3aeIne8uQ1FauEFxdPSyw6LzFHCUKA2TLq1k7kybWKvsQxKGBq8N/HSwDMblNiSKNGHpW9BsZMtvTJOwXzJmYzYhZLQvi5NSucu7/4rktYFO0zkWXrtKfVm3ewkTPY62+Ewq70bG1bZ60rvGIfW6J/cEWfzuPYET0juJOAq86TbDMQ3MGlhsdHzlEjRy3CGB0/oAIBYm5+LJ3iqcmdUWVdKRxwg5NK6+XeJtA4E4hLoIyh2Mj1k3U6e/n2gePGLX4wvf/nL+PrXvz4cUved73wHAOCUd2SxukSMDQCEwproT1lBpQespjGMmS1MGPm3yWAgaMTNhxRglek4ZU9jjLSwS08/9ZMsnsgB6MjcsFPUbBwtnBV6LiUMJpzQYT4YCJyQu2wDwJpNYBCGBVUpUiAodrKl1yBxYhdWevUTVYYlNoGxkkFK59uO2ILKm0zEL3LBw6Tv369Ctkc4hxFoumWrTpskgWhy5MmdU9Sg1R04fW575wleXnKXhrDeoWGi18p4KBlP6Hp+3xa8TnpHCNYOi79fPWVXkUNE8BzySsdpZ7eQor0pu0A6ad3n712GCeCuu+5KvfrUUnfq1CmcPHkSHASsJNfAWhW3cXVfNtUhLm3VNAZT7/3GqNJTtO4YWLHKmAleUTPAkzmHUzBQgKSfg1OGYCo3rEyYTVw72T1v67yxIT/lWQRRY7o5IHC4hjN2t8DkLXqe2BkijVba1GwDP1yek95WWOm16+8RZVjqpLjo8u6x6Ygjl9ZpzWxSujiRG0aCclBYY4A3+HteU9bIlrUoATiH1i7HJsod4zBXs/uiPRRyJxJIRSRy/s/R37NVFnOpVxp79iEkvQPiEzypsqt/WwJpXZrXC2RQhiWbYsdKC9A0DadOncKZM2ewa1f8CCJxpJa6e+65BwDAinMAFU+L9DoAwmEPYcQfBqUchYhG+1kO88FAlCddj6JH5vrMZLmBq2fOQ6fO0MlcmMBRwnsER0Z40hJM8vyi5wlemQBXm+fwSCs+HQ9rTxeGxTTUuPgQDoxTOE7EmE4haV1SSte9AvlhTqIgNlBa7F1P2rSOMMAIKVuGwSmBU9waIhdLlxh3v/bcJE+U9s1VSO5S3szDCModAPBSn4ZEURgKqTXdm9J5n6Gs7PjLrqKECl4gwQuWXbuWTyjBAogNfoKvkTCulNalHpi4I3YGrrnmGjzwwAO4++678aY3vUl5laml7r777gMAsKJc43bCE1pG50RoZwlGEpM/Dnl5W60XQck09oytSu9nFgxa5nYby9g/fRFNpg+VzBkFGy+cPw4gXOAGhQYeWpoFNkXPE7x1XsBjzV2Y0xK6mkOspLrhFPDE+jZQwjFbiE+JRVK6MLFLSuk6z/OVYUGRqvQKHt5rTjStIw5QXGYRJUrBfWA891kC2ICHtPTfJAcqeDJylwOe3PW1nKdA3Gckm97JCl3P8iGCV9tdju/tKnDuRaV1Ua9JReycYnvc3TS0N/m85z1v8FLHOccPfvADAO2kbtjxxrdkBFyynOPUdWygiPEx8U+QMSo9fVJaPJEDMFCZu7mwBArgSas4cKEzppp4+aEnOv8vUHvg+5QGBwQWd8eas7iGHbrcHMNhME5hMQ2UcCw3y7FiF5fS+UnTccIvdqql16iUrvN3wd1KU3XnpD9t0YaJoRC8AcvdpUKS4ImUXWXwBE+vMzhm/DUmbVqXFU5BcFBzIHxuerhp3R994TEUADz00EPgnCvPLpFK6k6dOoXl5WVwQsFNuVHl0xLZWSKvawjvezM+KdacMTzYms9V5GZpA1eZ5/BERMnPL3NFonYR3VbcQGN+CU8tpvuS4Bc5gzBM6ptDdwxqirOsYZyixkycs6cyETt3nQQW0xLFThTOCep1E/ZSUfrUpDZgrFH1IdIjUjqPpHHraKCDhSoZt6bYMhAOaDX3A7DLA5KqoNwV+jB4NSXgRflOCEo9X/t4bAUFT6XsKoI1WxLrlauQ1iUljzJpneN1KCYSYhfZSwywJmYwtqhjeXkZZ8+eVW5Xl0rqHnvsMQAAN6cB2p+TlmmAN5ID17bGuFN5Mq41sKBXYBBHaogLFTTCYZDuhMsTOQCpZM5DJw6KikO/xImcH8YJLGhDU3ZNA+M0sg2maHu6DaeAJyubzSfixE6lgwTnBMQiSucqceB+oZI8rJJSus7zEu5JNEX7q8sxpQviNdDXa5vnWpaCp4mOV+fJXcMBL7jbJ80cz/9+yVZG7elk4RpBbd8Yxo5nO3qCNVsCyzrdbZ/CaTtG+HGCI8RkscuahquuugqPPPIIHnroocFI3RNPuDdQZk6pbTyks4Rf2qJIW9EkLQIQDbywNW/qnsgBAPXNy9pPskjlsmJ+egPPvvJ0rMj1GwcEDa6jSPIv8za4HpnWibSn80qv3b8LFzvR0quHbWlwFgvS1zzitFM6wB38FQpiJzICfURad0mndBww6vleL9zZLzY/AH/vSz2j9M4dBUH+M+q0bxSUO7oxHNeUrMiiJG6NawABqgcmOr9LK3hBodNaGZVgISd0qp0mktK6qNKrn2uuuQaPPPIIHn30Udx6663S+wBkJHXNuRm05tWuXkzvlbi8m6ERnu9g335UOktEDWviyRwd4GDBu7QaDo8fG7jMzU9U8SO7HwAAWEzHhpPtmEtpcUChoT9fGvIow7rrJanbhHJOOvO8gkPqG22XlMkc7sxtvGyNEaEeqlFp3SWd0vXj8hGxjbzTO1FE5c4/6HCe0Opm+zQ2Jj4rRL/xhA4AmL55jKcRvNCELqMSLADoDQ67mM35GHmrSSrDCmz+k998EkUATz31lOLepZA6zjmefPJJAIA9Pi39LboDVZc4rU7AKeCU+iM4Tl1HlRQwVhYf54gxCjtiurDIZXzDmoSlcqH7BooW12DmVFJ0OAEDgUEclAcoc9smN/D6XQ/CIA6mNVd6K05p6KQuTyqsiAcbV3T9Li+xczjtpHWqY9N1ISB2XSmdbznRb+VAO8UZcEqmktIRFj1F2KVGWHrHjP6LsGxyl9+ObL4fnuANm9z5hS5IGsHLvOTaxvtsZTOQqLTOKSD++hXxN5GUDgBY0a16PvXUU8qdJZSlbmVlBRsbG+AAnFL2k/eKktF4sGLw6IFjs6SkWdhVWMUuc0UqlWOcitWcJPBkbpB4IgegS+YuVxwQNENmEFERu2B7ut51bpZhTepkU3oVFLvenZErw3IqltYRBpjrHK1Jd6fSll7TpnR9vaYNCZ30ruoAhOSW3MWV4QYpd6QRaEfcFjx/egcEJE/hS0Pq9nSCh7WM4FmzpXS7FPFlr2sYIZ5RWieweGhaJ/q+mROglGJtbQ1LS0uYn5efB11Z6k6dOgUA4EY5XScJ5h6bKWcnkmbY2tWVNAsT+uYJbFA794b866wI6jDs0Ko9f8tK5q40GnjD9P34wuoN0suGpXJhlGkT28x1XGhNptjTeNacEh5r7sLRwpnkJw8QT+yeai1go6c1b/jzk9rdeWJXs+QGU+0qvfb8EaEXutCULrhcHKzdVtdD8MYXPNXSlF6B/ral68cYdXnNe+uH2KzTTk6vttui5ih4UXTJXYZzo8ZvNGI7gd93lWgn5WUoTXs6a1ztc4gSPAAw1+zYlE6kXZ3wlGAp0zrhYlCgDCua0gGAZmnYuXMnTp8+jWeeeaa/UvfMM88AAJiZbloUMqChQvrZri6KoMj1u7MDQ2/PyayTuSLRMEnFxzLaX1zCj83cg7tnDginchph0HI+ihxOQ9OxYYRxiopTxFPVeewvL2W0TgKbUVfUBK6Oqh0kgISwWaAM60+6ZNM6u0wy6SCROZxDsyIGTU0ax48AjjnE7fva+A+rzs+e4A1I7ggFeKkAcA7SSJ5WUXU4E/Gd8pVoK4EUbyK/Um1c2VUGv+DpVZZcdlWU6tDBvhXSOk/sEsuuPQtG/Jy0GOcdqTt79ixuuOEGiY26KEvdmTPtxEIbh14b3HRfW6Fd3XqjgDN0CrvG1gYuclEMusy6v7iEN0w8CAMcFa532hFebsTNKiHLhl3AidpcJmJnORqWN8rte0qy2MWmdJ0nQe1GEVWGDaZ0HpJpXVxKx0n3jalnHRwwagxaimQrSt4iOx4kbYoDWjMwLZJPnJXbQ/eJrvRuUMkdIYCo3PUrpQ2MEZeX5GUldH70KoucjzYtcbO3qPQvlBY6/3IK29uxwx0H9ty5c/ILI4XULS25NwpOC+mjtpQlWNU2KEolWMl2dQ4naLUM2CWKbQVXVEREbs0uQwPHdiO7Ru+h+wcCa4DjLvhlbowSAASV4aiISxH2mXrDmoRBCYPZB6GPE7uk9nR+GCdgzD3uRcVOCJ/YJZZeg8uFEHYtkErrVjmcpMb6cX/m7kPlrSE827G0guv2CJZSw5LRNKIXHM4kK8JKs3lDa5sCJy13/SZB8kAJig33vWvslmgHn8Pb7Akd10gmx7yX3ucxHV9pmaE+p9LrSe7pXrn2b7/1JAwMQOqWl5fbe5L+28ClVIJ1OOlqTM59AiiTyjFOMktswigSCxO0Lt1ur8EplpmNWZquIc/B0kXcNv5wl8x5LFAb1xWewYPNPam2EYfsAMTzRgU3l56CJXm3i5zLlWuRM39k3ZYySuxE2tNFESd20qXXgNiJLtNVho1K6TxErskcoA6Ub2KEuSndpUDqQzDHC7ond9p6A6CAPZlP2ZFwjrBL9tDLnUfPbA8UhLlSVzydPGc0ADiTBehVG/Ud2ZWU9arcOSLark5I6CRLsGY1fN5nEcbOuSdRdbvYNZZ4MtJ2qo5jSZJa6rhWgFEDgoMI95M0JVjVDhNBefPgfegdG4XIsCaezHlt0GTbojEQpPliFSdzHhohMAbYBXDeqOAFpR92/c5ot9tbzbBWFSntPN1sFxWniMcq3TNJpCnFeqXXnt2MEDuh0msAYgPGuuS34cBxGHfIJKZ1ntClRfHcUE3p+jW3quWbFJ1w+RtzHhDGXJlfzVfuoshK7np6vvYBYokNik6YCcI4ymfdGIkTpBI8pbKrwPNlLsuiKXoaoQMAYosv7O8tyzW3Z8X6+rrSdpWlztsg19wPPfWIwX0swRKbwD+fu6VzEFN8BdwhaDQM6PrgL2xBooY1CcpcvxGRuUERlDiDMBQjpGqCtlBhcr1AZXFAIsUubIy6MFohXSJVxc5feg2SWSmWE/l0yEvrSEJK55FjK4NLKaULYpdI95hdfFPyhkHwROUur9J2R+6KJsh6FcSywaYkOhAOusdeBP7etd4AzARQFry82tF5Qqc6E0QYQaErLcmVYL2UDgDGzjuJaR3xHQOcuveXtTW1plfKUlevt6+ixF1F2rQuTQmWWoBeJ9AaBPaY4FqC3/Ilb0qcUYRm8xGcX5/A/doe3DD9jNR20pIkc16burySMQcc+/Q6to8/lKvMyQxrMm9s4MbSCRjERpHY0MBRpmLfXPslxVFiFzVGnShZdp7w8IudSq9X4rgzQHADILKhBQMoF/tSJ9q2TpnhvDeng6DnRskJNtuzZSR4xE5//Rl0cgdC3JPBdkBXNgBK5OQuT6j8N5qoFNgveKVzmxFTnODlLXRyC8WXYMMSOpkvBGPnnK6Ujtg8Vux6xrSjA0rqPKnj7bZVxOHQ6yTVB8c0kjjvayTehX1IL6yMETQduRen2lnCEzkgWUIYp3AIR9aDdTjgYO1vH0VCYRCea7eApGFNPJED0JG5uERuGIhL7NKwYRfwWGU7anZ2iaMndiqlVwAgjLiyoCJ2MoTd27IqvSqSZweJIFmPNxcmeIQBWkPuDc1y1sOByx3gtmdjGD65yxjqk3G/4AGbkjdUQtcm6niLK7mKpnVhZde4UiwJJLW8Pe5vq6VWzldSKMdxNjfonzKKp2tgqzEOxuOHDMgDfYPCpibI1HA1eJXtLNFgBgxiY5oObsYFv8wNmjCR8+P1+r0cxa7FdKFOElHt6cLgGXR4UhE7Tt0BPrUBnb6DKr32qz2dKJwABARak8EubR5bej3j84tzaOvJQ0oF5c4Zk2sL5u/5qsxlIndAt+ABruRZk0YmQhfsLBEldMIl2JC0LqkNncgXL3/ZtedvIWld+Dyx7uu0LEtpqjBlqetAaCcl0ywOEKI+wnl7OABV9JrbvkG4BNuGMACS6QJjBLalQTcGLwQNZmDN2bzxmsTBfmMxv+2F9IDNWuYWqI2rC6fxSHO39LLB8upWJw+xY5yAcQKaEJHEtacLwjkBdwjYhA1aEbsIEMft6KQMCfybQE8Jdot2kBhmCONdn4dd0txhTiTTu/htiEs0Ycxts9m+Pon0kozq+aqMX+6AjuANopOECCqzVQSxx3Sh80JoWBOfGGbVV81/6RPtFBGX1gXLrj3bC0vwwu6ZXvDNOer1OsplsS/VHkr6Rf31ed9wBGmlDPCGFOBqaR3PNsZP2pZsT9cLlfHM2tUFRc6f6LVyHk3U3wM2r2ROI0QqQZvWarihcAqrxVKuMmcQ1pfOEv1CROxE4d45Idl8hwSkMfe0LsMOE5dyBwkA6efKBNx2eQSd9C5rwROmLQak/fnnMaZZ8j60jxUG0LUquNmHWWoybE8ntY6MOi10rTOvW5vgJTBKPpOELozwlK6bVqvVH6nrgvOuRspbNa3TqwS2lm8J1nGodLu6IH6Zy3McuyQYAIsP9mY2rdVwxLgAANAIh9Hu8FDJeTqvQfQg9tK6PMhS7ACA6EworYtL6ZTa18mmdRv8skrppNvThXSSSIWXQJDu9C6LThJJsLLvS1gOckc4B1nvnUM7FtsBjPY5MgjBzJHWVPZfejO//LVLsLJ9BMPSOlGh85dgQ1M6AP5vnbou7wvpk7rgFW2LpnUqJdh+sGaXYTEdRbp5d8ta5mR6wDa4hlVWwhytYVbijqi5EztlUtHwZE4jHMXAhx01w9JWxwFFg2uosvh2QWFj1AVhvLfTTpjYWY6GlapYGYZzAsfavOoSU1DsYkq7iWIXWLTfad0gU7pha08nTTu9c4oazFUbXMtzvBkSPuJW1nInURLuwbvBXwJy15oyM0/pmJHP8UEd+YbAwS9ice3oepZty198Sre5/lJJvgyuLHWmabqdJbjTc3HdqmmdLHm3qzvbnMIP1+axa3wNz516OpdtAGI9YD2ZA9zJ7QeREsbJnCoqnSX6UYJ1QHtmr3A4hUkc7DMX8XQrenqvsDHq/Hjt6cJ+7xc7FjHAdhid0qsPUbHLEq6JiR2ngDVJ0g0u6gDUVvvimWZu2GGFcECXlFxOADAOwhyAkmS5E+wkIUWI3GXSSSKJQsj1w5/eDEjw0rSny03oCEAtDpY0hR/EO0tEJ2XiqJRdx847aE5FH+ferB+FQgGaJh9PKl9tx8bG0Gq1QG0bPHhsbtG0TmU7Wber80QOcGetsBwNLUfug120JzPrLBGUOY9VVsIpp4ortPySCq+zxBl7JnOZ88PcbntS5FGCDYqcEzInLwXDtFYDEsROlcxLsRFiJ9pBIjKti1tUogybFqUx1wngmKQ93VX8Ctx5VNOfYypDmai0p0vV09GTOyBW8GQ6SchuHwAIOOh6DWxcri2TLIniESZ4puH+XnBGiH62p8tT6LImrdCVlhioxaWFDgBa40lfXNzPVrYtnYey1JXLZaysrAA8vDayFdO6QbWrCxO5VNsASd1ZIkrmOtvgtJ1y5Sd1jfZHd7V5XljmDHBMUCv3dnVZISJyQTyxo4ULON7clvk+yYpdsPQaJFLsRHvVSrav68cQJ4QBxWX1C1Tn1Em6rwPgxe4pusw1yU5AhMh/Oc66PV0YHDBXIz4kmfQuYwiHO4Bwpeq+dwlyp9SeThbON8WOEFfu/H8Tlbyc2NJC57YMklsHUxO65rTmnvv+DqZB2ICkbnx8HABAmBX+fmzBtK5f7eqWq2V8mx3s/N9iNFbkztcmcJ+2F8+ZOpnbPnnt6hyQWJlLg0i7uirjOOPr1WsQRyqd04h8uzoHBA2u9W28OhWRC0LBMEkbiaVYVZq2LtGeLjmx9otdZsOYpH1OGlJ2cpBpnN11eDD56xoHh13qPcbcjgrZpLIqpVcAndkJIslA7ro6ScjQ3jchucsrPfQgZLNTRdjfgr1oFUVPpfRqTW5hoesjrSlNqDpAmPtFZ2JiQmk7ylI3Nzfn/uA0Ip+zFdM6WUTa1RHCQWn3PtQs8STJcjQ0UvaaTaLCilh1xjCtVTOXORH8Mmf5phXJetDdKGRLsP52dQZxMCY4hIrFKZZYOZP3OM9SrM0oGjUTRiG7BMATO21VF07pPIYprUub0qXZbmFN7nzgBLAmtNCbLgfAA/dwT/T6XnpNwl+alSGqk4QMMnKXJzJt7Nqix/WYtlshY+RFTg1mhb/3rbkSWMaddrIQurB2dZkJXXu1zCRSzRpE57UntutU8/Nq13RlU1hYWHB3wImZSXsLpnXSJdiwBuIhEufH4QTEodBzbI8m2q6uyk2cs6fhcAKTOFKykUW7uirjOO+U2klh7+FYYwVcBMfCoKYLCOD4PmsNHNO0CQoOTfBAo+CYpnUsOdmMLJ+n2DGbwoIeK3acEzi2eKmfmAzOhAO9qiC13O015ojO+pRXWtfHlK53Wfntxt10e+Z1BYAiYGwwgACtiXzHvJSBcIA0rU25ySF1IRzQFiPm3MxS7sI6SWQM12msCPJib7AQJW9RZCV03gDEA0voREuwJOLnBFpTIedRRAmWtIOyTnAmibLUeRZJYpI6ZhB0Ogiqnn8csCYImrNqK/DuwaH3XNZ7gRUtwXJGwNtpA9EcaBJiwzmR7mAhS1K7unVWxEVn0m3D15YpUzIVS9OuLknmurYjeZartKsLK8E6gc+IheyHjNAB7nh6ZdiAVs1F7B6q74l9bthwJrHPTxA7ztE5D0TgDgFpaHBKXKkEK/MlLY+0jjCgsLI1UjpVONmUR3PdP3tQhpIX154uDrY59AgBchG7xLJlQO74mHzJMvf2ikBysjdkw6cMfclVcd9aU5pwSgcAb3zxlfjSl57ov9Rt3+6OhUXs6HlGOW1fIFK+p8Y6h2MQtGbVvuISh4Se+4RG9IAjHMxO6qGy+Qk7TQ0NmCiW8kuTsmpXFyZzHg1uYJWVc507do1x/NCawRhtJsqcKirt6oDuuXbDBC4r8hK7dVbCXUv7UdKja5RRw5nEIZLYCcMJiAMwnQMl8bZ1hAHGhvuv1gQc0Wk8s/4YOUAVGkh79DOl80qvUtvg7ZQuYpsdyfMJXm7t6RLghGx+vBE3buX2dCK09z/3ThJx7ekyZCAzbLQhDs987MVM289F7FpSCVZW6AgDzpw5AwDYuXOnzB52UD5S9u7d6+6EvZH43E5zJcX3mNoZzc8YIHZ3ZG58fUje0rar85dZo2TK4RQsx/Z0y4zh4ZbbW9Pk4h9oniXYrg4LhMHIsTevn6zE7pQ1h8+cfS4A9/OrNAuwHA2ThegEPYmGrePiUncj3SzEjjsExNcDltO4LmC9eEJE27sgInZZpnWDSunSIF0e4zxWHv1/M9fdMUqtcS3f9nQxdKV2QM8wIDlfll3y7iQB9CdVk7z0t+bSzw8LyDVlEB2rjmsku2MyxfBJiUIXvARy4ORJN7i54oorBHauF2VL8DZInAbALIB2l7qYQeCvfqUVO3OVg2lUKa3jlIOACFcJtTqFQwFezq/c0a92dQ1uYow2Y2UuDSLt6pYZwzFrDi2uweI6DIV5WbMswQYH9fVgnKIBuV6wDMRt66UQR7tTm8l//mEi56dh6wCKymLHOQlNqoNiJ9uezkvpOv+lECrDeild8HfCZHU/TJnSqdLP0qsM3k3TqDjuyPyAWttnkW157ekiiJU7iW1EtqfLkn61p8uZLNrT5TFNHtfIpm9I7Qx6/STFSwxtRxe3eQaAWVheXgawGZzJonyXn5iYwOzsLJaXl0GsCnhhtuvvXuk1K6gNFJc4AAWxk90PDulmYk6LokHES7Aq7epkSrCMUzTb8qLlmD7FtavzZM4BQcM3+4LFdVS5iTGSX7k6WIJ1QIRSyH7PlGGAYU4grUsSuSBNR8N6U13sovCLnWx7utD1CZZhw9q+SpVhh4CtVnoVhVqby3gpaqzcccBcU2tPl4Rf7pTKiX0Y702qPZ1q6VXytQ+i9Jqn0AHu+5wqrRN8S8JKsCplV3CAWO6319nZ2c6wcbKkim4OHjzYlrr1HqkLY1jLsJkwJCVYxnunl5Ihi3Z1UTLnx+FyjWJVS7Bp3gtR0qZ1cWVYT+ZERM4P5yR3sdMkpscLll671ifZvs5DtAxLmPeFMD3eDZlwnrpnvwiEBTorSJB16VVso+7y1OdGYYJH7PxLlnRtA3TD7QFqL0zms5F+jHt2CZZe8xY6AGppnYfMgoHnygqdf5QQYq0CAK688kqJFXSTSuqOHj2K73//+6CtFTDsF1pmkGVYGbZSCTZO5GrMBCUME1Tsxq7Srs4rwY4RO1Hm0iCaolWYhnPOOBxOoREmlQiqlGDTEhS7U9Yc7jh3IwDAYpqUzPnJW+yYTQGbghQE3qtA6bVnfRFiRxigx7RDF02/siib+tMMTuLvGEHpS5PSUckboEpKlzk+ORRK72JIKr1G7wPrtHfTL6zFyl3fSq8ASMO9HvFiPmXYYS+99kPoUpGy5ColdOi+Nrz5RVfgi198AEeOHFHeh1RS96xnPcvdqdZq1++D7emyRDWtk21Xp1KClSXt0CaiqVyenR8AVwTP2ROwoOUicyJ4Iuftj4X2+yLXFt9dXuGsTpPWAUCN63istRPPtGbxzxeOKotckNzEjhHAco8r3tTExC5plRFiF3e+96sMK1ueCkqf7Qs2CAP0evJx0s+UTrX0KnSD9qd3jEOvKZQ4016L22XVWLnr11Rb7XQvN7kbsqFK/IyELrC5wHH9+OOPA3ADM1VS3e29DROr0pmvDEhuT8cJUr155iqHuSy56304zp0WRaOer9Scr03gnrV9aDIjt9KiV4IVRSMMDFRK6Lx2dTLUWAEXne5lKkzDMWsKp+1JNLiBBjc2hQ6ABU16O4xTNPpQtgWACjNwb2MPHmvtRIMZmNJquGb6bKbb8ItdLjgEvBn9fsWVXoMwncMptW96CSmdR1wKRhygdH6APVaJO1gyp5sPpgPWGAl92KWg0PYppcui9JpEe/1co2CF/IboiJ2L1bKBlgX9whr0iymTubSlV3d+PZBGq/Po4hIbymTYhc4uqOtQazK90IFZOH78OAAMLqlbWFjAjh07cO7cOZDmMnhJfHLxNGXYVJ0mJJAuwSokb6IlWEo4NOo+pxUzT2wYeZVgNd9RScFQpC0psZNtVwdspmj+Eqtf4rLejgyiaV2FGTjW2t7eDkXDF2sbxMHh0nlgO/Dd8/ul9yEKT+xsVoShRR/PYcOZCNEWu9DELqH02vN0b6gTLpbKx6V1hLenK0xB2pte2CUh6vTi1BU+woDiKuuas9V9ncnXu36ldKp445F5Ykeb0QlZqtJrHF5yd3E9v/Z2ovjksCN2hLgJ3jC2p5uR+3KYh8wB2Qsdp+6/usA51rsvcs8P+yJKm8twHAe7du3Ctm3iLtWzHuUl29x4443tHboovaxjuN9Mgw+R0q0ndjKJHadc7hUPuARLCYehOTA0Bxp1h8Ml7d/LknWqpwWOSo0waJKGrpLWVVixK5lLEjpV8kjr/KlclRVQZYUuofMoEgtHS2fxgu0nMtmuRhmmi3VMFRqYLDRQ0OKn/UoceDuKhMROFE4BVuDQJfrqhF0khyKlUygLe4keYRydk564Nw67RCMfjmrSoJjSqdys/ckj1wi4RsAKenxyl+c1uJ3aaWeWctyIBO30DoyB1Jsg61X3sSF2MvSlPZ0htg2tyYS+hMjiHTdZCx0Q/WUrdvliNu/52199AABwww03pFpP6mz3xhtvxJe+9CXQxiJkW3/odQ6uA1a5+9NhBgET3DOtCWg1AqcscIHpVwlWYmiTIP5EDgjf5cX6OB7TduDo+DnFvUwmqhdsUObSIpqiVbmJ05bbw7pIWpjTkwe99vBKsLJDqGSR1sWlcnFkkdhplGHCbIISDt13TLkzSthS04UJE0jsZEqvfjjcc1t0aMWwtC6LlC4tKjceL6UL/2PMtjT3hmeEzO7AafjNp98pXdj3PpnkLonY0msUlg3eaAC0PUNGH8aRE8ITPMCd0tL/uigBD5t7doBDmQQFzvuikOWUaNTmsDO8j/uFTmn5ovzyUbfQ++67D8BmUKZKJlIHtLviOk2wYlEoadNagNbknYuUX+xk2ty5U9QQ6O3G1XaJiwmeIP0qwVJGUDTci1nS0jaj0rNLNJmBCikql2BFZE6lBJvEOivinD0N5hs82S+9oqiUYNP0hPVkTkbkghSJJS12nsgB6JE5j83fK4qdr5NEKH6xkyy9AgC1CMrniTu9oC0ndp2fM0rplG96xJ3JQhXl3rokfEw7wtAlex3J62NKl0RQ7rSGnU/pNXK59heRpvvlL1bu+jGUSRD/6wpKHuCK3oxk0wnF0mtYAhd2HGU59Re1eVev6jR47eeGRejgNDqdJAYudfPz8zh8+DCOHTsG2jgPp7xP7Nsp973ANINyOgC1Nmvaeo1Aa7g74BR7Ba8fvWBF0joSUkLNO0iUKcHWWAE1VsCCLt6YWCNMuqdt1EDEYTLn0eAGluzxoUnrGlzDRWci8DsDVZa+S6ao2EWlclGkFrskvFKspnAR5u45Dbhf2kTX4E/rhiKlU7hhxKZ0ScsmBFz+m25H8vr4Fol2+vBEwCloMFar4DknZ7zZ7P6FjNwNkqC86gZINflLOx9LaBNHow9cr12n6BeBrEqkWQtd2gEhMhU6ALR+HpxzHDlyBPPz86n2LZOr+Ute8hJX6upnAeyTXt6ou23dgmVYIXj3hZ+wzTeP+ATPwylyZHCvTdin7rQuTODSklcJtsYKWLTdDggAYJAdOFzIr8wLdKdocTLn4Q7lIn/oZpHWhQmcg/B9HaPNXMVOJJWLI2+xI00KY5XClkjOvZSuaz2SaR1xgNKFAaZ0qTaqltIRG9ITmBPGpVPUVMi+LEJAHAY0mm7HgQS5Uiq9AtGp21aROw/v/UqiLX5sOnwWmzgRG8Qcv2mELjirRJ5CR3j0e5dU6Hr5NeP41reAF7/4xel2DhlK3Z//+Z+DNi62hzaRWy1xAKPqvvFKYhe1Xtb7ZpIaAeoAMwG7KHagxJZgGQCnd5+5ISdztqOhSYCCLtaeJI8SbI0VcN6a7Er0apJSolKCtbiOc/YU1lkpVubSopLWOSCoslJnn6IELoxiO27KWuzuvrhXKpWLI1exY25yThwCa0JwP30pnYdMGdYdAw7QWgNM6RRLr4QBxTXFlE61HKgyR2rKDhJC2+AcxoWK+zNrD7kvIneqpdc4gnJn5jQIa5/wxE82RWMluetD2tJr58tNCpH0zyoxjAkdAIDZ+P73vw9giKTuyiuv7AxtolXPwynull5HGrEjjts+VKS62HmDZY4TDhCbgFthYxOE7yur66jRIspjYm3YOOSPXZW0LqwE60/ngn9ftsdwrCme1qmUYB0QNLiBpkTbM5USLCCW1kWJW4PLX8yzFDvGKWym4YqJVdTs7FIDv9jVrYxvWNwtiQJUXOxCkG1f15xOcfVmgFlJOQyKyuZTpHQqDHVKxwASGAxYSu5EdytYeo3dJ/cNY6tu5zE6PZV6+5nRB9GUH4Bb/LnBHrVZlluBbDpEAPLntUi/Qlo/h0ajgZ07d6aaHqyzvtRrAEAIwatf/WoAgF5Jnmw+cj1tsTNqkh9muwSbJ7RFQBqae6T6H1EwAhaS4GWJSlrnp8YKONmaw3lrEo2IwYwtrimndUl4MmdxvVPuFUW1BBs1GLG3L97++NHAQVM0/CxSC2NU4uYRoMKKeLC2B8fq22Bxigm9iUkj22m/PLEzY8awU6YtdkYl/jOmFkHpQvQ5I3OOM139wXWAGSEPkcNti6R0xIF6Y39K3Ifo0zPuVOGWjRlIc/MaQzgXHvajC4X3gNs2uG2Dra6Bra7JbzMPJIXLmQkvvQ4M3+4PWuiCgxB76VweQgcA/+aIe8F49atfDZJBk4/MBrXxpE6rXYBeVb+BEQdKHSeII/fNk7YArSnzVUL8Q1LFdjQ07XxHEG8yA2et6USZS0PSmHXdMkfgcAKD2CgE624JeGmdLH6B9O9LHBphKBKFnnhtVMSuxgp4sLYHT9UXUHcMNNtWQQlDSbMyFbuWo2GlUULL0VCeTL9eYhEUFn3HlYjYcbdXfOx6857JibeHWiK93984FRO9rZDSpem92fk+Kyp3kpvyl15jn+cwkEZzU+7s/KNHXt0Ux6DcDY3gCcA1yS/RkqVXVbIUOq3JoTW59Pnof75KuRWQcAWnie9973sANh0qLZl9Uvv378eRI0fw+OOPw1w5BWhXwlaclUip40Sgw0QSYe3tsoY3NNS04SnBnmtO4dj6AmaKNewrLwtvQ7YEG4W/rOmEpJyapM2rpnUNbsBimlTbOs2twXeWV0GkFFthRZxouL2fGCcdkQviiR0ArFtqJ1rL0VBpFTrbcph79SoXLGASqK2HrDdpOBOPkLZxcaXYpJTOI/Ecz+J+EHMY9hy2BJtDOHGvLZ9k85FBpHQZ4L0XxBO7rNKVkNJrFF5JljdbgK5JiZ1U6dVbJuT95vbmvnpi19fS7BBOJSbbni6L9nN+tGb6ae9yFzoAWu0ZOI6Dq666Cvv2yXcyDSPTo+G1r30tHn/8cdDq09DLB8CJpjSiel4dJ9JCLQJOKXhB8FNTKMHm0WHiXHMKT1bmYTENDVtH09HBOMGBMbFR1NOUYL0OE57Qhcmch5vW0dza1jk+CWRggOTwJho4nJTD20eJXYUVcaoxC4trkSIXRFXsPJnzi5wfQni82KUhSuwEUrrO/km0rZPdN+mmH/DJDdpDhVSDwygR2KX47W6VlC50dTFyp9RBYlGunSzQbvxPiCt2gJjcSb4P/pQu8jltweur3MUMQRJGP0qvou3pjPUWQAms8ezaBG4VoQPnODRVwdOrwBve8Ab5jUWQ6aXxNa95DT72sY+h0aiANJdgkHkQTpUSO0/siA3YZbEZJmQ6TADtEiwlcAqCB0A73ZPqYzGgtM4TOQAdmfOwGEXDkTuJVDtMJKVzPcvlkNb5Za4z7hynSuPWaYShCEs5rQNcGfNQkbngugyRCVKRLHN+BiJ2gsh2mpBar6KzE94eTB0hPe4Zh+EbacMveVs1pQsjVO5UOkioDDjsvRdeoiQjd8KbEH8xntw5FxY7v9O2pRt/LCuGofRqrLd7EjsM7lRU2UhdFkJHbQ5myIdJ1OJguvhyWm0RTy8/jVKplFnpFciwTR0AjI+Pd3aO1k60S5zqbzBx3DletRaHXue95Zwgkh0mVEqw1CIgTYm3TTWtk2hb50/rzjSn8a3FQ3h0bTsqrQIqrUKX0HmsN4s4Xp0T3oZsWnfOnsa/Vo7gycaOTrs5EbJsW+dwigYz3YQQpGsgYZmhSfyk7TQBAGb7zvpIbReeqi9gwykoCZ2HTlhs+7qWo2GpXsZaswjL0RKFzsMTuyza2PXga2MnWnrt2rew83yAo5gA8dcS71pDmHvTMKruQ69zMI3AMeUuxcOS0oVuwvOqqg2t4T5EUE3pQl8TId3JXXARhdKrLLzVArc2H86FxS7Jy4QtVno11lsw1ltue8j20Cr2ZPqRAbz2c1kInUqzLGpx6c6at97gfll+1atehbGx7NLTzI+IN7/5zfj85z8P2jwL5tShNUvuN9M0X/bbsqZZHNSWmxs2iX6kdbKopnXfsg71pHJR5JnWnbOncX91L+qOCarQLTltWheazIXgDCCtW3eKON7cBgYCBzSVzHl4ZViDOrCY1inFyiRzUagkdsQiKCwJxOVtsdOaRLj02rWdLNO6dgcJFfwpnfAy/sozdbcf7HVHOKC1ws+FYUvpwqD25r5rDRtOMeHDSpvShRFVks2h9NoF4z3b4JZ7kGea3smWXqf6X3r1UjkAoYMjs5Tj2cXJnDUu3gmwn0Kn1av4xje+AcB1pizJXOoOHz6M5zznObjvvvtAaz8Em7gWep0BUCvDUpuDU+I2RvbkrrWZ2jGddM01K1uCHcYOE6LUWgY2apvfckzTwVS5nuk2/CSldefsaTxa34Um01Fvj+uwbhdxsjWPvab4N1TVtnUX7cnOwMoi03s5IG6bP4rcO034Za7Wfm8M4gAaUJeU6zAoYTAJg04YbE5xqjKdSub8dIndalzjsDbc/bIktG4G6FW4ZU/ZIQP81b2U37LSlF6B9NeQ0PmuQ0TP3RYHlZwCLdUQJpIQDuiVbjkjDu8kdolyl/kOdZdkpQUNcqXXxHVZmydHv8uz3OhP6TVJ5FSxA5KWlM4xAQ/w2rP2Tegsjp+8ZQp33OHgpptuwuHDh+U3HEMuZ9db3/pW3HfffSD1p4GxwyAoQK8zcEKlO06ESpevzNqT3kn2glVhkB0m/CLHGQVjvpKi5DybXglWtMNEFGEy58G42oT2MmmdQWxMaOIy56dThlXoNCEidlVWwJON7V0y5ydLsVtqjuGhszs7x8T0RHaC74kdm6RoLAmInSjclyCpiF0WaR0HtEb/UjpRQkXP3SqscvgbRTjaX6KDK+tvbdqf0nl4M1GEyV2mpdco2nJHCu3rZyOHZgVtuC2WOPoFL7g/pJiQggxZ6ZVaDMRyoFHB6cogX3r1p3qDLLcC6kIHp4kvfOHLAIC3vOUtahuPIZej4uabb+4Mb0Jrx8HGj25OIA15sYslLL0zCHjp0ukwESdyfixLw3q9iMmS2DbSlmDjZM7Pul3EM6057DHF5VEkrfPLnJFiADPlMmxMb9iwZC6KtGLXkTmHwm62T2nCsYpSJmJn2Ro2qu4NhgMgRQecEaCVaZNcF0mxIwzQqjFnIgHsUvyNifjFUoG8k/6ubbVfKo8YH44DXcJHePvmQwiolf+OhqV0Pc8Jk7s8Sq9RtEuWnjQlyR2vS8pfSOk1cZcmJnra3CRK3oBLryQo7pz7Oj6IoVJ63eyQtAWFjgPvfP1OfPzjTRw5cgTPfe5z1XYghlykjhCCt771rfj1X/91kNpxoHwIoEZH7AinUlOIdJVgo/Cndy0OrhE47XMgaVveJOAy5J3WNeomKhsmiOlAM1ikyPnhjMC25QYSlk3rvBKsv91cEoxT1CTmgvWISuuykjkP1TIs0Nu+Tkbm/KiK3VJzDA88s3tT5jw4gd3UU4mdJ3McAPcdu0RjACXul5oUYkc4oIdVwkTFjrXHhUu4uOrBYUr8ojekKV0kApvzCx9tz4HLNYAR2llHnoIXltKF4Zc72cb4ANSEzp8g+eQuTuy4I3dzEE3p/BA95FYcJXmEgIyV3XluJcROuvRacPepR97apJUqFbJI54DBCR2YhTvuuAOAW9HMYgaJILnlt//m3/wb7N27FydPnnTb1o0fBdBuQ1Nnkd80w5Bu98a7nx/8AMIkj1pug+1BpXWNugmr4pMARtz5ZjnAJMqqead1NqM40ZjD6ea0VJu3LNrWZS1zftKUYZdYEfdUD6BMW9Iy50dG7ELTuSCKYhclc34I4YDO0oldXEImKnYCp0bYNjqi1xY8Y0NR7AaQ0kkt47sB+sfdykPwRFK60OUcDq4TOLPjAOfQVqrJCwHZlZQpjUzt+pbSia7b3avNdoJM7LPjYyXQlpycMlMDscUlqi9JcAbpnLue6Oc4ZrSbyAqd5rV9bf/z/3vtPD75yQr27t2Ll770peIrkiA3qaOU4p3vfGc7rfshUNoPaO6JQ5g7CrtdJK5MtZLfJaG0zv/8FgfVCMLa9Yd+KH1M6+q1AuwNo+dvxA45mGwC1tBAi2I7l1daZzOKOjPhcALGKZqEwZC4o6m2rSuSFkDdGQ8mtEbmMudHpgx7wZnA3RsHAbjpZdUuoEoLKKl04/SRJHZCMudHUuwsW0OlWoyUOT+ZiF0ccWLHxK4bURDHXbc1RsA0wJr0vV6GRMnrd0pHOKQbCse9P7kIHuPCKV3XYrq7fWa0r1szY8lilzalCxJRkpVN6VQITekyhutU+j2TFihBwfTIYigTGYTTudDQpy2DskLnf77TwGc+8xUAwE//9E9D07KdntMj16PplltuwbOe9Sw8+uijoNUnwCav7/yNWhxUJ3AKbhu4JLmTTesIA6gj3qHNbZcHEEZiR5JmBt8Uy5C0jjQp9Hr0DZGva2AmB9HFjg7CiNt+SYIs07qgzHkwTmEBUmKn0rZOIxxjxB1TKk+hA5LLsBecCdxTPQAAaDIdlcAsDt7wJHmJ3VJzDA+c3gW7ISnHAmInks6FoSp2kaXXIHFil4FTeSPKdI0sw32SFyN4/UzpVF6r6E25S/BAlcSOcHdcuixgpg4kpXZ5dfzwy52C0KmUXmUhY+Xct8FK2c3wELkNyfZ0TLJ87Gdg5VYfP/6SMj73uQauueaa3FI6IGepI4TgZ37mZ/Ce97wHtP40WPkgoLuDxHYGJiYEXAMcKiZ3MsSldaH7207r4gcRJd2DINcJWJVs9sBLSPwIAHACR1DqAAwsrbMZxYZT6JI5P7JiJ9O2TiNcery6LAiKXZLI+fHP1Zql2Pl7tUoLnUeE2KnKnB8lsUvTOSFlSgfATenGI14v8UleiOANJKWTRPX9IZLTegGbZdc0KV3P773ULkzusk7pwmjLHZ2eAhgHW19PXibP0qufiAGVo+Bj8r3VZZpHAf0pvUoObAAg3XAlQHZCB7uKz3/+6wCAd73rXbm0pfPIoWbSzQ033IAXvvCFADjoxiPRT2yPLecU3JJIWF2b2gKzSvhX2U7rZCAMsd+K3RHhfQ8LoC0CYsF9CGyP2gBtyLQpJO5E6hJ4aZ3w831pnc0oKnYxVuhU8dK6OAYldB4OCM5Z0/iH9evx7cphLDbHsdgcjxU6D0/sRDqQJLFmlXDnMwfxwOldaNVMdaHz8MSu4l7kvVIrc4iy0HkQwkF05vaMNTMWnrBDIcOULpa24DHdbTJiTRLYZQKz2sfjU6HsqtL2iCoup1p2FVq1oYGZOpzZ8c05S/s4PAvRdRDTAJ2eAp2cjH1uZh0k4p6vkNLxCHGOQimlky29TuRfeuUaSTUObWZCB+CWow04joPnP//5uOGGG9R2SJC+jAL5n/7Tf8L3vvc9oHkOvHkevLAdgPttl1PSPcSJJ3chyZ3StF6yaV1yZ7reZRyAEgImmr4xgDgEUlvqU1r3w415zBWqwjKnktada7kXx2AZNknmGKdd86bmwUV7Eveu74PFKVpMx5hC4pY2sVtsjePec3vgMIpGw0gtXF1wAqtm4uJ6Adq4lem6eYvCPGu4X0KyxivD5p3SxdE+ZcfOOaAWh8FZ19+sUvbfkdN2jsh7uTRl16iULvS5hgbCObihgzQlzymVwW8DkuLJV2RydxmndCrIzJGqAteI0vytgFr7OcAtJ3vJoB/SPIc77/weNE3Dz/3czyntkwy5J3UAcODAAdx+++3uBisPAtwVk9i5YQWSOxHySOt6nq/QiHmY0joCV6gYJ6jZZubpXJBgGVYjHCZxhNK5vPbtoj2JLy9fh++sHsLF5jhWW2U0bANVxcRNNbFbbI3j7jN7Ua0V0Ggnc0Rrp2BaeqHlDgGp6KBVDc5q+jQRAFhTg36iiMJpE3qNQMtvTFeXfqV0AagFTDzjdAb3pTbffFgcRo25j7DBfxXIunNEHFRhuTzKrnFwQgCNghdM8EI2x64sXcmdL73rR0qngmxKp0I/Sq+i7em4RtwHTR7KLGp5wtWELrQ8zB3sKZ0CAPzET/wE9u/fL79TkvRF6gDgHe94BxYWFkCcGmj1mPiCAbkDgVQJVgWlb8cOQMN6r0bRSeskaKd1oiSldZ7MUd+jbhu42BiX2i137lW5Q8krww661BqUuXVfiZWB9E3sFlvj+MrJo7j7zN6OzPkhlLtypyh23CHAug6yoYPa7S87TQpWUS/pqsqccCeJ4HIOH1xKB8CdHzb6/c9c8PqU0imXXfuMVm22f6DicpdBShcG0fVNwZucBB2Xu2aqMLQdJCRKr6xoqJVeBU7ZjsypjrCkOAetX+iCCeQ7b1vA2bNnsbCwgJ/6qZ9S2zFJ+jYJX7lcxrvf/W78+q//Omj1SbDiHkAfDy/BhuEry0qnYpIlWKDdq5VCuHEmkU/fQW2ANwhYsb89YQkA2jZXGjBYzgnWWq7YLBQVpu0RpMl0rDklJaHLogzrlVmbTO8SuZ5ttcUOQC6l2GCpNQmicQAM3JEYdNQhHZnrWpcndjBAJ+S+KbGmhsJpUy2VU+wkwXSChq85JnGA0gV5GVFO6U6L77RXhlEaVBf96xyhKnSEA1rdAShxUxQuPuiwSkoHoHcQXM1dDy+Y8iXZLOEMRNe7yqmsUold5FIpvYqkdKy4eV3jOsm89OrJWJoiThZCB6D7Z3sDn/70PwIAfv7nfx7lcv5SDvRR6gB3iJPnPe95+N73vgdt/X44My8GYaR9URG1J3TatogiO7wJsFn6kIlwh7ltnV/kgF6Z61qGE7REZkL2IdO2zmuvttwaw+N0J44Uz0pty9ueitiJylzXtnISO6/UKiJzfmTELkroOuuSFDvW1GCec2eHyb3M6oNrQHMWYP5OGAyo7fTNdJEkeTmmdKGLEAI7Yo5Wke3JoNo5Io3QdZYl7o1NVu5k6KR0oX+kncSuS+5ySul6aG/HX071pC1K7i6HDhKezPGUEhdXevXSuTRkJnRdK+V49o7zeHiphZtvvhkve9nLlPdPFsJ5f2d6Pnv2LN7xjnegXq/DGb8afOxK2CWSOD9jKBJ7zqk7crxMWseJXFoHeL3kJHaMAk6BC6d1AMBNBloWbJzc9uVSuYX5ccGR2uH2ZpwyG9JpHY0ZlNiTOQBw2rZcoA72FFeUxE5G6s5YM/je6gHYXH6+Ww+T2pgy1E2GEo4CtVF1TKl0LgrukEix4w4BqWoAJ5FC1/V8CnCdg2s8Uu5YU0PhjAEtZhxGEQgDjPggo3f/dKC+PeEcYe6sMECI4LWFLou2dKJwQtCakL/jqLSl0xvyMpImpYvtHMF5pNyppnT6muCMKJ5gNVt9kTrebMZuh9ub75MneHRiQl7qpuSSPT5WkpY6Z0y+mQltdh8HwVQuCNPlpggFAGb2vg6RdC4pEYySOZFzIl7oAG3tGLSNRzA2NoaPf/zj2L59e+I6s6Jvbeo8du7ciXe/+90AAG3jMcCuQGtyaDFfxLJAqcOEQoPJoWlbx92UjnO3ZFuvmViqin/bU0nr4vCEzuGkI3QA0GQaNhJr7+GIdJo4Y83gcxdvxLeWr8TFxjjWmiXYTO2wt5mm3L7OT9U2uzpCqBLVxq6TzlliQge0z48WiWxnl5XQqcA1oDkj8EQKOCUOp8RhlzlqOwnq2zb3V1Xoxk+rCZ1KSkfb42R61x6R689Ayq6xTyKdsqxf4lSFLjal63my294OKuXYFCldFJ22d+3yLJ2YAJVM3fqR0qlALQZWNLoeXCedR+h+pbx8dHWEiHmJSembajoHJAgdANgVlFpPAnDLrv0UOmAAUgcAr3/96/H85z8fAIO2dh+Iw9Qa6kp+LrTFQWXlUfJbc996wrZor9h5IteWua4/KQxxkkWnCYtT1B2jI3RhrFplPN7YKbUd//aiOGPNbMpcy21fwkDgMKokdqodJyjhKGkWCtQGJQwzZg0HtovPqhFHUOySyq2J6wvpQJGV0HEdqO9gqO1iqBxiqO4VPFFIoOwqQlvw7DJHc45g7JyDiZMKN20OGDW1cqLSdyLOex5+wQvKnkrZNa3QCS/ryV0KwdCqzcgJ5ePgtgNYlvsYEohpuEJHCEjB7HrE0oe2dKKlV1q3Ow9mal0Sl7bMmoRMR4g4ecxV6DjDs2fPotVq4fnPfz5uu+025W2p0vfyq8fi4iJ+6qd+CpVKBc74VbDmn5V7CRZQLMNK9qjhxL2BCbetA8BMwBmTTANMBlqyewQuCkI5ymNNzI2Jdz1ULcMCblsyBhIpc37SlGGB7lKsV2ptMa0jcz3PB4dGGXSqULYCR1G3EtvXeeXW4P4BbkeRpyrzOH4+fiBmUVhLA9Z14XJrEl6zA33DHcAzC6FrbHPATd/7wAmMFQ1jp6LXHdqWThKtRrDjria4RmCPaXAMgsre5BPaS+lkpc5L6WSljjqQ621FSOjzCd8ca6tnGyl6uiqPSce5O5k8kRc84bKrD7K2Ad7alDnS7lABI0ZcFFK6pNJrD5R05pbt2Xbgc+TtpJGMlaWljk2NST0fiC690nr3503aU6c54wVwyWm7lEqvBu3Iosw9OKz0KipzYedHZ0qzhFX8h5dP4pOf/CTGx8fxF3/xF1hYWBDaZpYMTOoA4F/+5V/w3/7bfwMAtBZeCHtqO6TnfFfYe66ha945ZiBW8oa2bR3lgMlATPELS6FkYfuUXIOmstHC7vKa8PPXrCLWW0VsK8ltJ4v2dV46FyVzXcvkJHZxMuenyXQsNcew1iqlkjtKOHTDQaNmgl7MZvwurgGswKDVKAqL6QJ9ZgDNhYDQdTYUL3ZCbelioE2CuUccmKubNycRuRt6oQNcqYvcke51eaJHHLVxxaRTOt9+UIu54kJIZ59F5E41pcPFldBfx8pdxm3peqAExDAAkUncfZLHQ5JGMhFfPZGWOs7BI/aLRMx/a8/Ip4GOwtytTklT6ggRlDqZdC54jCemc95yjQswl74Lzjk++MEP4hWveIXwNrOkr71fg7zyla/Evffei89//vMwlu4FM18G4pTAdGzOpZqEZOdRwG33pvk+OOoAzOr+1Pyi16+esF4jb6khTiTb47WaOpaqZam0zivDJqV1a1YRF2oTsBiF0y5vyohdmvZ1IulcEAYCtPdTVuzCesSKypxHgdrYVVrDXMHtwCIrdpRwmAUbpD3GoDbRQNNwYFtaKrnjGsCKDNA4nHEHdYODWkRJ7mKFDgAIhzXjoGJS0BbpkjvhtnQRhAkd4I53Z6zb0DUCzYqQu0GUXWVIGiol8HfiDbGiAazd6kZU7pSFzsMTJq+kTAiozRLFTkXoyNpG5O2Ae50o0BYlT+5yaEsXiojQAe68s4yBN5pdHS0AgBACXom5Dm+flz+WEC1vA4UOrmerh6jQwWlgm/MYVjjHm970poEJHTBgqQOA97znPXj44Yfx1FNPwVy8B9a2F7myYhM5uUsBYd2SB4SIHnFvUHYJYtYuOW4d4QBsAqIBUpbqEPCmBlIQH+KkVnXFSVTsvLHrKGGYK/Qu48mczSia9uYHttpw5UpG7Lz2daJp3SlrFt9ZPogW07HRKsDQ5C5OWYgdBces6b4vKsOsFKiNgxOLAMTFzhM6zbfPlHCUSi2wIkEVUBI7v9C5KwV4icEpAE1ASuy4niB0HsSVR4cTVOFL7VTa0vlX66BH6Lr/vil3tN3elOkE1Z0U42fkb3JpOkfkjV/IeNstROQuldB5KV3I74HN3rFhcifVOaJNsOwauVt+uYsryUYt35TcNy+lk92O3Xvscs6BiNdICAGnVHzsLkVhcsblv3hLld0zmqYsrRAKCx3neMHOi7j33hUcOnQIP//zP59uwykZSEcJP4VCAR/60IdQKpVAm4vQ1h5zSwXt0eO1BkCSmnGoHAMJ1yjC3Ml5O48Wdzs0SDy0JqA1SHssPoEHB7QWQOviHwthBLBcsRN+6QqdJjgnoUOBrFlFnNmYQrVldgkdADiMounIWXmTaXimMSPUceKUNYuvXTyC87UJrDTcXq2WIx+TpOk8AQANR8diawyrlnxJwsMTO5EOFJRwFIpWl9AF/z420QBbkOsB2CN0XSsFnHEHzXmxO0ZoG7ok2qld9QqeSUo3+7iYLRGHw1yz3UfFgVHl0gOkDk3ZNWwbEe3ruNb+zA0aOhZYJkIXlYJx3ikzUpt1DX+i3DlCQOi6nu8wwLJC5SmWPFM6oJPSyUAIcVO6PiDblg4QrHJR0iV0TshQJiIwo53wKQ78zTQiLnQA3vnKadx7770olUr44Ac/iEJBrdqUFQOXOgDYu3cv3vve9wIA9PUnQGtnAEBe7nKGWu2hV7jYwxVDgLbCe6+FDVtAGFGYq5bIjayMzTKsDHXbwFLTXWbNKuLY2gLObEz1yFzXMpaBC3W5MZaSyrCnrFn8v/M34WsXj2CtudnwmAOpxI5J1NcpOGj7mwHjFA3bQM02sNySb6Ts4Yndvm3L4dskHMWiBbNgxw4e7T1XRuxiha6zUlfs6jvj5U5J6DzaYlffwTF2Wi2l0xoEs4/2ll2F4O51xikQNKY1NCeTjyVVoXMXzl/okqQsTO5Sl1wBsbKmJ3dsU+xUy64qcIcBjIPbtpDcDTKlS1xGZj7cfqZ0WsLGAjLnwRXOJ06JOyuGotABQGeCA5Gn1k7jE5/4BADgve99L/bt26e+3YwYCqkDgFtvvRW33347AEBfuhektdkwX0juckjrejbB3IfsNmSXoZJpHYBOGVZ4t9plWNmx685sTOGe83si07me3WIUq42StNhFDXPiT+f8QtfZR0BKzrqW5SQxrfPLXBDGaSZid+XkxZ7Ezl9ujUroevZVUOyEhK6z0nY5NiK1Y0YKofM20aCYegIoLTFMHJdbVmsQzDzmoLCicFPUKRqz7jnECeCYpCN3SYKnInTSZVeFG5WMlHXLHVEXuqiyaxKMub1dbYXSt2RK17ttLiZ3o5ROfpmoRSJkToVNmctkdUKQ1homag8BAH7yJ38St956a/82HsPA29T5+Zmf+RkcP34c3//+92FcvAutHbcA2uY3A8LdUglhALe9XlT9aXfnQS0OTWSuWv8yzv+/vTcPl+QqD/PfU1W93WXu7Js0I7SPVlYtRhEGhCVZsjCLMWDjGBN+ASd6jBcFgQkRMgHhYGzFCbHBS5wnIKQEE2ELYQ16BBiErAUkIYE0IyFpNJLmzn7nbr1V1fn9UV3V1d3V3VXV1Xeb732e+9y+VXVOndtd3fX2d875Dug66Jhf2JSrsMoaGwO3FHMws6vQCT+Etauo1+N94MzV8kzPFXEdA2W4mEb8cw3SDQtwZnEfe+truf/oyczb+UiZC+NqRd0xMx1f103kOs/tiR2MsjYffwWPMH7EztWKPQfWRo6fi4svdt0mUCQSupaK6ZhE4eagun4woQNvLFzpiPfalQ67mFUDpwAzJ/cuN6jQldeZOPm2WXMNuQPv86ey2kS5UJh2GvsHGEc35MQD3bpd+6FNUDWwS6YXsaskeB/163btgTFbBX/Avk3sVB5qei5NEoRoGp+hvtiFV35YMVG6xSSmxLm5+Ha20DIHgFNlm/Ekk5UKF1xwAR/84AcXuAHdWdSUJlHMzMzwgQ98gBdeeAG3sJb6xktA9Vj7TXkvaiB3af6bhBeENrzumUQTNRU4ufhiB+AUNfZY/A9HbWjI6diTJiBe7rq5Wp6p6RHcxkxbZUC+UGe0GH/Mlmm4rC6WU6U5MZTL3rk1fWUujMITs6RiB57A+TNK8ylHsRvKZcSqpxY7gBfmV/PwUyehci7jq5Ln62rH1Yq5mWIgdqmFrqNiUFV/cfXBhM4om6x7RFE63Pq8u5aivM7oKnbDELpuBOlBtJf810lwA4KFG0eXNtJm1HTrkBDbjSd3AwgdgHGs7TPIaHzu95A7NT0X5HQbCmEJSRoN7JaXrhtdZrz2wo/SLVTXa5JInVMwUY72xtMljMjZpRjrWvt1tlWddDxsZ739DnC4YP1eHn30UU444QS++MUvMj6erCdqmCyZ7lef8fFxbrrpJsbGxjCqR7AOP9zzA7Cja9YhubWvkG7YtJMmunXDztXy7Du6qkXovDJQq+aYq8T/IEnbDXuwMsaDk9uZnEm49iGDja+zDJf1xVnGcunWrxu0K/ZAdZwfv3AC2N7rOTub4ObQhXB3bGZCB+AoCodNCodN8gcHC5srhw6hAzBsTemwy+on6eiSXUihA++LpJtTXpojQyX6PFhuQgfec+TmDOySiVPs8n4aVOhmI95njbF2XbtjtR6u0EEQuVOlImrVGGos5vt5BUbp4gidUzCDH214S3pl1cUatCPc1TqMCF2vt47W/OKOMo8++igjIyPcdNNNS0roYAlG6nweeOABrr/+ehzHwR4/DWfNObHKeeNg8CTKn7QQhyUardOGxi4RuxvWL5M0Ypcv1tm82ouihbta3R558Mycw8RYsgXu40bspmslXpyZwHYMqnULpTSFnE0pn+zbctKIXcG0WVuYw1SavGHjNpY5m62nm9FkKJe86WApN1bU7kB1nIdfOBHHMXDCa7AaYJRsxhI+31GUKzn0c6O4BY07Nng+DVU1GN3TGItmQH1cU9uQ/ObULUrXTjhql8UYOruQ7M2vNJhV3TEmLjyUs9u3fcMertABmNWUYhUhdJHH1d3OqJ3WHYu7xz5vuNu160GdUbuhR+nAk7NSsXl+8NrqavRsl/dzkkTDPss4SucUmv+nbhO4tF8uoiJ13SJzYVyTwSZJBOeK3m4cexxr5meYpslnP/tZXvOa1wx8rqxZslIHcNddd/GpT30KAHv1uTirTu1bRhue2AUrUzT+u1iCl/BacArKy1uXANfqvXpF5HkSdsMC6JyLKiUZC+N1xVp5p6/M+aTphoX+YjddK7Fnag3VemvUx7Icxosp8lfRX+zaZS7MoGIH8bpjD1THeWjP9laZa6lkcLGr1izqL456y375q5gMInZ1RWmfhRlqkjbAKXorqiSRO3PW5ITvxLvOXUtRXWWAgrEXkt/Y0wodeFG5XLnPjNIIwVvKUbq4QufT0iWb1Ti6WAUM0BpVrg5f6MATtNEuk8n8drcLXtJuVwDXxe0miV1QSqG3b012npRS176CRC+R80krdG5OtXShxpG5oGxG689GSZ0x+zOsKW9ixH/8j/9xyUyMaGdJTZRo54orruDQoUN84QtfwJp6HG0WcEdP7Fmmoyuk8Rrr0MoTiSJ4PViISRPQ7IZNEq2Lm5RY2wbUDK8rSUMtb2LETmTsdcMCicSu28SJ9uhcRznHoFzLJY7W+V2xQKTYFUybDcXZDpnzMZRLyfTOmVbsek2g6Bqd66gE3LLFjD2CkXMZHU0md9WaRf2l0eY6ro1VTJRjet2xSeUuQujAe/9Z896HsVHPxZI7o2yy5vEEKWVsTfGYg10wqE1YnmjNxBPIgYSuMY4uznHBYwfMmutdiIr4Y/CWqNCB9xz6RXLTtdTdromEDprnyedgoaJ03fAjcSaoVY2lu1wNEUt79WShZrwOmMYkjshlgRus9Rpf5oaJVmDMvxgI3Qc/+MElK3SwxKUO4Nd+7dc4dOgQf//3f0/u8I+oGznc0qaeZQxbe5Mn2u+PEYIHIcnTJLqAlOt1w0ACsdNe7jqHBZgNWwdNp9gFItdoj3JD34pqBi4MXez8/HV+tK5bdK7lXFoF+7MQu4JpszpfJmc4XYXOZxhiF1vmWioBXTVw6gazuhgraletWdQmR1CuwpxvH1UMRk01PvDN+GLXRejCtMsddI/eKRtGDqWIGIbGtzFu9RW7gYUuotu19wn9xOWhD5ywQHWTvAUQOqOum8NUUuJaCnssBxqsmWRiEjmOLg6mic4pMMZQrkbPpJ+M1BcjpgmFBC+N4A692zUFbtF7z9pj3u8kIjdIfsOlInPQELrKJMWph3GAt7/97bz73e9e7Gb1ZMlLnVKKa6+9liNHjvDtb3+b3KEHqG24CF3c2L1MnIHL4e6RkOT53xLMmOkABpk0keSy95IS60Q5htvTnISjcmGRaymjk68nm0bs/IkTs7UCVdvqGp3rOFdGYjeWr/aMzkWRpdgdqmzk6ckN8WWuoyIvajenij0jdn50zmqXuYj6kkTtlKt6Cl3rsZ7cQavg+Rh1GNk3YOi8kXpE94jaLQmhI2JcXbvkJcykn0roUkTnOmh0JQftVYXYcmfM15JH6cCTJ/+mn7O8p24YctcvSteNesJxhSmidJBickSfS8oXuJZzmAbOiDXUqFzL+RQ4RWNJyJw3CQpU5QAjUz+i7ji86U1v4tprr/WkegmzpMfUhbFtm49//OPce++9aGVS33Axutg9/Nwxti4m2gBtti4krOzekrdUJ00oW2FUFU5Re6kmeshcy3mUhrwbO1rnk3TiRNU2mZstogxNPp/swzDtxAnwUnuM5Oqctupg4rJeeQNbG9RdM7HcHasVefHwBK5j4pTNxlTKVM3wMEDlHQxLd8hd0N3aT+gi6uw51i5GlC72qWwoHNXk5lysSsI8iybYxYi7lfbEKSx3S0Xo+hZTKjLvplaqa+6upBMjshS6bu3pJXbGfC25/ECr0EWgqvVsxC5qckQc6nbiKJ2eGAPbQe87EOv4QSdHRMkbeAIXRX0iXTQwUdLr0Etqj6ZZlqVJFmPq/La77mHGjz1EtVrl0ksv5cYbb8SylnwcbPlIHUCtVuNjH/sY999/vyd2G1+LLqztenwwEzYhbk7hhK7lqGhcu+gtBbFTtsKoNC9qL1mz1za3oHGLSd5oycUu7sSJqm0yP1dEu+DWTZShMfLO0MXO1Qq7keJEKc36kTm2jR5NdM7W+uJPoOiQuTCDih2AAeaIHYhdaqEL1edaujNql6HQgRelKx10MRzIzSW8IXaTuuAAL92Rk/PSHywHoeveEDqWTdJK4eS9CH7cRMPDFjoffwxhu9wlnhgRJhfjhlq3B4/a9Zoc0YukY/yUwl0/4T2cjxmtUwrdRcx64Ra8566bvEXhjFiRawL3I67QRS38M4jUOXmVvNcsRNBuDdSOMF75IeVymYsvvphPfepT5FKkqFkMlpXUAVSrVT760Y/y0EMPoZVFfePPdRW7QaJ13gyc7sdEiZ42vNmticLHKcXOzXW+KXyJiy6zNMSuapvMzRRx21ayGLbY+ULnhCKVlukOXewCmXMNnPkeF1RGYqfyDto2MGas9ELXVmcgdwWX4qSFNXgeZK9qG/JTngD5CX2TROv6Sh1eioPqhIHSOrGIphI6AK3JzacYV5WkW0eBXVRB11i/G6nSYM27A930gMSzd9ujdh0JhmNX1DtK10FauVuoKJ1S6FWj6HzCyE+K27VbsBLJnM+wonTdVnF0ioaX1y4hfo5JbXifKWlQrm4Og6gdZqL2CHNzc7z61a/mM5/5DIVC+swHC82ykzqASqXChz/8YR555BFQJvV1F+GObIg8dphiF4nqftF2PZfZ+S28H64Fbj5hJGARxa49OhddbjhiFyV0PlmJXXt3bGyZa2dQuXMV5qzpfbhl/M5WDljzKvUHZzt+lC74O2G0Lq7UVdY1Fqm3iSV3vsz5bUrEMKJ07bQJXd/DG0KXOEdeOylvFX7ULr9/Zijdrl2xHVStjp6PafML2O0ajtIlIsVr4Iwkl7Oso3Rx7olponROvnWoVNLPppboHKCqBxmtPEylUuEVr3gFf/zHf0yplDBv2SKzLKUOoFwu87GPfYyHHnoIMLDXXIAubmpksW49Nqtu2NgklToFGPRfnqStjJtLLnZuDpykOe8sF2MkoWiFxK5bdC66XHZiF+5ujRI6H8t0GcnVGcnVBpa7feVV7J7ckFzmwqQVu7DQtdSXrhlhlAtmWbWkAxpE7sJRuuAcCaJ1/pe1ft/sdUOA6uOhYQk95G6Q6Jz/v4jQRbTD0VhzNtbB6WQFBxA6v82q8biv3C1gt+vxEqVLEuBIInXh6Fzz3MkmLbZE5wBV3U9p/mFqtRoXXngh//k//2eKSfMNLgGWrdSB1xV744038v3vfx9QOBOvRpe2BuvB+nK34NE6WLJit1DROgDtemFLZbqxhM4nC7HrFZ3rxiBRu6O1EZ46vIG6Y1Key6Ndha4PsApfUrHrJnRBfembojQYVdXStT+o3LVH6VrOFUPs4kTpfMLRupZztcndoEKXRpyOF6Hzx/GZ8wnFLs44unZCQtfSjl5ytwK7XWFxonRJe6ogftdrlMz5xP0cao/OAajKS+RnH8ZxHC699FJuuOEG8vmFWX4ta5a11IE3K/bTn/40d999N6BwVp2PLp3U0g2qDYVdShetE7HzzxNf7FzbgKrpLfTuKnTOhVzClAs5h0Ip+cxWpTR5y8Ey3URC55NG7I7WRnji4CbK5dCHgFa4dgZiB/3lrp/QtdSZrAlRQte+P1xnnDZERek6ztlH7LKQuuB8tvdBXzgmQtdBhkLnY5ZtbxJFP7lLG6Xr08XbIXeGQhULyZb18s+zhLtdFzJK51rKW1UkJf2idL1kzqffZ0+UzAGo+T3k5h7DdV3e9KY38Yd/+IfLYpZrN5a91AE4jsPnPvc57rjjDu/v0TPRo2cQJPBU4JqemDmF5BG7heqGBRopVRKWWUJi59oGlE1UONedIrHYpYnW+cuI+WkHy7V0s5Xiip0fnbNdo1XofLIQu0Y9kWLnKsw5A3TCcW4xX4Z+Qhd1fD/B6yd0LefuIXZZSh144wVHDjT+0biyJULXux0RQhemZ9Qug27Xvu0LH5tU6GBJd7vC8KN0LelDFBi17KUujsz59PoMbO9q9SrVGHO7MOZ2A3D11Vdz3XXXYaa5FpYQK0LqALTW/NVf/RVf+tKXAHCL23FXne8N7vKPMZU307QR5nUtYgneUo/Wgfe/OAkEDbIVu5boXETyYm1pKCR70ycRO8tyWF2qULC8Y12tqNjWQGLXa5xdZHQuCq3QLtl0x0JT7pJE57rW2X1XUqGLKh9Vv1WO7nbt2oYIsYs7ns4/tjrRPcdbcK6w1AUbe5RZokIH3vOWnx5gPV8YutD5REbtFkDofJSr0dPNNajVqvF4BReq2xWWVJSuXeSCh3a6Jep82qUuicz5RH0WdovOoV2M6UcxKnsB+M3f/E3e9773LfnEwnFYMVLnc/vtt3PzzTfjui5ufiPuxGvAaLyRGhE7/0LxEw1Df8Fb6mKXduLEoGLXT+YCUkTrwBM7Zboos3uC4nah8xlU7CA6ahdb6MJkGbWzMxC6ljo7N/kTI7JEuVA8osnNJojYRohd1lE66CJ1wc6252GJC13qKJ3WLYmMnUK6azWu0IUJonaLIHQ6FHFThTwoAzU+2r3gCu127Ral6yZyYQaJ0vnj6XyRg+RBDWiVuq4yB+DaXHLKYe6//34Mw+D3f//3efOb35z8hEuUFSd1AN///ve58cYbqVaraGsCZ/VFYDZmsbSJnU8cwVvQbtglPiPWW7zWGy/XU+bCpBQ76B616yZ0Pq5WOK5B3TUG7o4dy1V5+sh6bzJEEqHzGVTsHIUxZ6JcMGw10OSHSBr1DRql64bhQPGw9hJ39+l+DdMudgsudW0MPWUJLIrQWRUHZTcHu2vLSCx2aYTOOyEU9k17Ap3mlpQwVUqU0LXsD63Y0BG9W4HdrtCM0nWsytDnEhw0Sldd00iMPOD3XcPuI3MATpmz1+5h9+7dFAoFPvGJT3DJJZcMduIlxoqUOoCf/vSnfOQjH2FqagptFHFWXwC5NYAnb26PbvOw4EFT8hYyWgcDiF0e3ATilChaZyvMSjO1hZvTuIUEl1BGYuePnzOV7ip0YQaN2tUdk7ljJXTNwBxLPoEjIG13rNOIztXbo0bpmxKFcocjdMqF/LS/TilY5YRRlYbYmTUdu+sVhiN1ftoEb7Zs/y9DaYTOKSjcBIlYs4jQtQ9098UO4kXtBhG63LEKRsUO2pNIaBJG6foJXcfxYcErlVZct6s9aqEtoylzCS/XtFE6N2eAgtr4gDZH43Oly5CPgPpRNvITjhw5wsTEBH/8x3/M2WefPfC5lxorVuoAXnzxRT760Y/y3HPPAQbOqlegSyd2jdZ1Iyx5WoFdAnskhaUt14kTDZEDOlat8ER3YcUuV6qzafVMLJkLk1bsKrUc5UMjGBUDbWh00R1M7CBZ1K6b0LXUN1hzwJsFmp9WwdJyaWaLR9YbEjpoXEMJo3VBOddb7suqxis7DKkLd8cqp/k/RQnekha6UHdrr5mLcaJ2mQldqG0tv7uRstvVPXg4URkAY2IVWKEP437RwSUqdM5Isz1agVM0U92bIF2Uzu/i1RbYBSPx/S1M8JnSxytV+QVKlcep1WqcfPLJ3HTTTWzdujX9iZcwK1rqAObm5vjkJz/JD37wAwDckdNwx87yvpmkvJjsopcixUeb8SZcAAs2cWJgseshcpHlFkrsGoeXJiqcsOZYsrIkF7uw0AVNMDQ6p8HUw43a+d2tmt5C11JnuqYoG/LHFKa/opMiiEgPKniGA4UjrQ1LJXYKnJwKlgOKI3bDlrrWOloFbzkIXdw0FL2idpkLXVs7uwpORuPo4mBMrIJ822dGe8SuXfIWcBwdRHe7hgUO/PtC6+un27tbExA3Shc+pw41qT6SLkoXV+bQGmP2CYz5pwG45JJL+PjHP87ISIok08uEFS914KU8+Zu/+ZvmzNj8JtzVr8LN5VP143s3uWZqFD/ZcbC/n+QtpNgl6Yr1vxw32p6kCy612JkaDN1f7jRgN544rcDUlNaUU4td3TFxtOopd1FC19KkYUXt0shcS33JDu8Quo4DPMFLI3fKhfyMt5B81L5E3bCNcWYA6MYSXrq33C2k1IUxbI1Zbt5x+nYXL5TQxYzOdS3eFrVLLXTgjaPbPxvjuIio3QIKHYCxYV3/g9okTxfy6IKVLKFxwv/JFzm3aEaOv3Tyvc+tTTXUKF04KhdFUqmLLXMAbo1LTzvGfffdB8B73vMe3v/+92MkTTC9zDgupM7n7rvv5jOf+Qy1Wg1tjuCsvgC3uDoTsWvZ1yZ5wXZf9hZofJ1frqvYaTDaJzlor33a0Mm7fdOIHfSP2vlC156qfACxg95Ru35CFzQt46idWzcxj1rpZK6jzv6H9BW6loOTRe96CR2kiNaFpc5H947aLZbUoXVLWpHoz4PmGKaFFLpBksRCU+xcSw0kdH2jdB1lGlG7hRa6qChdH3Qxj/blIcnQ2dFk35r86Gl9LF2y3GFE6bpF5dpJ0vWaSOYA6lNsKzzFvn37yOfzfPjDH+byyy+PWXh5c1xJHcCuXbv4+Mc/zuTkJGBgT5yPM7493gd1G73ELvJ4X/YUoOn4lqOt3qtepBU75TbGTkStS9zt1V8qYtdN6HwyFrtKLUf5aMmLlvURupZmGhqdb8jdaHK5047CLVvgKoyygVnNMJ1Ij5fCqCmKh1LUGRK84DRtohfV7dpRTVyx87teo67HHlG7pSJ1kYc0RE+biplt3qzmwlT/58squw2ZjRuBHyw6F1mlAoJsAUm/aaYQugZu0fKig7Pl2GUWVegS4IwXAklLVK5kJvpC4JNllC6uyIWJE6VLLHNao8rPU6o+Qa1WY+vWrfzRH/0RZ5xxRswKlj/HndQBTE9P8+lPfzoYZ+eMbMNec34zn10CkopdsyAdCxBro/NGGVk0wSQPaJxDgz0KdpKhBIspdhpwGmk7+i0maGrMEZt8oT5Qd+xMpcDUvlWJZK4dbWh0yY0tdoHM+f8voBq56JTLUOUuUZQuDm2ipzRYc/2vgVhiFxWla6ctaqcNqK5SuPn+z2HmUgeYNbelC7Ybbs5g6nTvGjD7jBM0bFj9dBWnEPNNmVF0rmv1DbmLJXYactNVb5xTQqHTSqGLViA9quqgdH+5W2ihA3BHki8Cv9BCB9lE6fp1r/ail9QlljkAbWNMPxYkFH7ta1/Lxz72McbHYyaUXiEcl1IH4Lout9xyC3/913/tJSq2VmGvfw06l/wCcPIKJ/n7OFLsYhVLGbFzTYU95s3ejc1iiJ2lvTt90pWhB4jaTZVLHHphNebcYLOxIF7UTjsKt2J5K0R0yfM3TLnLXOiiUGD2WL+15dBe4+t6RenaCUXtDFvHitJBQqmDzKJ1EJK6GBh1WP/IfCIBGJbQ+cQSuwGic+1CF8avr5vcDTTTNYXQpYrSGWBPJPlQ9hhI6AaI0mmjOd46jcz5REmdn0DYn3QUG3uGMyb28Mwzz2AYBu9///v5tV/7tRU/fi6K41bqfB5++GFuvPFGjhw5AsrEnjgXZ+ykRN2xqaN1sOBiZ5cUtaQTshZI7JQ/41Z55ZzRFDejFGI3VS5xaO9qrGkzmLwxqNhBp9wFIgc9Za4dpRWqprITOw1mRVE4kk11kafwhxPZzW/dvegZrYsTpetogPeecgpkH6mDRZe6pKQe+xaTnmI3JKELY1TsDrHLdKZrnLYucLdr6nF0KYQunK7HTjljNUx4PF3LShBJZU5rVHkPpeqT1Go11qxZww033MCrXvWqgdu4XDnupQ7g0KFDfPrTn+ahhx4CwC1sxln9crRVTJTLbjmInWsqb+JEfmlF7JStsOYVqjHDVRsaZ2T4YtcidEFjvPN7gpf89O1oQ6MtjbKVF4VMQWZRO+0JjHIURuNep1zIxZiEGPsUBsFNQ7kJonVRYpckShfZGO811EZvuVtMqdOGorraZH5zvC7M4mHNqmfjjykLM0y5ixxntwBC5xOO2g19pmsby2UcHcTrdm3PuehHe+0Rs+86ynGojxjpo3I+bo037Jjje9/7HgAXXXQRH/3oR1m7du3A7VvOiNQ1cF2X//t//y9f+MIXsG0bbRRwV70Kt7QB8D54+8nTchE7WDpdsX50TrkEQtcsN5jY9RtnFyl0LY3LKGrngllTTcEwNU4pXZdYIHdOo8646ObYyo6xda4neFnIXVjo/PPGjdZBhNilidKF62s8zVr1lrvFlDpYmGidz4JF7UyD3HQVo5xi4lBCoQsTCOTP9iYvm2ZiRCGHNpN/SCyK0PWI0oVFrluXfW1igP5WCD57nIKRXuYAVTvEJnM3hw4dIpfL8YEPfIBf+ZVfOS67W9sRqWtj9+7d/NEf/RHPP/88AG7pVPTYDrRhtohTN8kTsYumXex6yVxrOe0t0ZZxd2xfofMZNGrXELqOVTjy6cUOEkbuGtG5filOfLnzHqcTvKjnKEm0DkJiV9cDR+naBaab3B1PUgfDFzsAo1JfkAhdVHmlNeZ0pbFBo1+Y7FtuOUyMwID6SHbdrnFEzmegKF3b9daxvmzsehyM2Scwy8+itWb79u38p//0n46r2a39EKmLoFKp8N//+3/nH/7hHwDQ5hjuqldArhnW9dKTNB63CV7qiRM0pC7FupvLSey0SUtXa7yy2XXHxha6MGnkLkLofIKZzkZGctctchdT6DrqTSF4HVG6UBuSROuAYBWTQRb57vXlqF3uhiJ1pJgBGwcNpUMu489V4h3fhWGKnTlXQ9XCg6XiPV9ZCF07geD1kLvU4+jSROlSToyAwbtdu3WrxiFxlK7L9aVNlXgOnNeAI5w8toe9e70I7DXXXMO1115LqZTuuVypiNT14N577+Wzn/2sN4kCb4kxPXomqNY3cVjwwPsWYpcWNlrnt2NBxU4BKoHcuV6yY200xpcllsIBu2P9yQqzuWRCFyZul2wPoQuTudyFI3cpha6j7pDgeX93Sl5XoQsOSN4NG3QVp82lFePp9OVOuVA4lmyh9lgkGVe3xmR+U8zxYxlE6yB7sTPnvAulReiCk/V+zoYhdC2n7xK9W1ChA9yxPG4uRXdtQqGzKq3Jr7WpUs+EThSl63NNJY7SaQdjdhdW5Rlc12X9+vV8+MMf5uKLL05Wz3GCSF0fpqen+fM//3N27twJ+FG7V0JuTdcyWnkXrjYbj3O9kwp3VrAIYmcpL49d0i89/aJ2Lhh2m2QE5ZJ3aQ4idqqmyE95T8xAi9X3i9q5XlJfI+kyawN2yUJr5M6aVwMLXeQ5QpJnOJCf0jgxxr0lnTRB+KlIKnYRXa89z+dCbm7xpA4WvgvWxxmxsOaSd5O20xGdi6LL8zZsoetohtaYx8pwaApVLEAuWRRqwYWuYHSs2dpOWOIAVCM59SDpS3z6RukSvNeSSJ2qHeXUib0899xzAFxxxRX8zu/8znGXey4JInUx+d73vsfnPve5ZtSudCp67ExQ3S92P8TsWqojqXBf0VvuYufLXFjkIsulE7uk4+xUTVE4YmJUvfO6FmhLZy93KYTOJ4uonVEzKBwyUK5343ctsEeG9xY3q4qR/Zr6aJwxZvGidS1Ruo6d8dqV9H2z3KRu4C5YpbBHTFAK11KYNXcgsYsldG3n91looYOG1B2aQc01ZhG3C1qPyN1CC137OLp2efNRXVYYGSTJMIBdMqNnjqedtBqjPcqxUXNPYlWfw3Vd1q5dyx/8wR9w6aWXpjvpcYRIXQKOHTvGf/2v/5W7774bAG2UcMfPh8KmrmWCsQNt17FrRoie1TYWb7l0xULz/9PN37HGBqYUO4gftWsRurZzO8UBxa5Rjza8ZMnKIZXQhUkrd0bNoLjfIDcXqkt56Wsge8EzbEXxMJhljZv3Jgj1JYbYdUTpOg7of5oVL3WkjNaFZS7cnaZJLXaJhS7UliUhdFFESVs+t2BCZ843xzs4I/kWMesmb1FkHqXL4OOjl9QpDVT3s7X4HPv37wfgTW96Ex/60IeYmEiaYPX4RKQuBffddx9/9md/1lg/FtzCVvTYuWBGz47oJnbtRIme0o3tKcbnDTtiZ9TBavtcdM0UXZuKYIxeqqhdvhF1a5M7VVPkpg0MW3UKXejcbs4bJzeI3CkNZrnR3dmYEDIoceUuiM45tAhdR30K3IL3Gg0qd77QWfN+Fw/xonXQU+x6RulaDuyzO9HyQmBVdOy1VJX2lvOyS3Hyyi0Rqesmc2ESil3P8XMx2+SWcktP6KIwDJyNayBFW1W5jo67rJtfpupdM6mje2QjdEGULkNLaJe6YJiEU0HNPo5RfQmAzZs38wd/8AdcdNFF2Z38OECkLiXlcpm//du/5atf/SqO46CVhR49C116WeS3+LhiF4U2PNmLmjGkI0Sw47wZiF2UwCmn88asDU9AXSud3GUVtesanetx7rRRO6XBnFcYdb8tjf9hAeQuKjrXt76G3EE6wWsXuqDOuNE66Cp2faN07XSZbTvM8XTeRBGnOcZJ0V3wEkhd0skSsbpg48hcW51xxC51dK7lXBqdMwO5S1R0IYUOcDeuwRnNJy5nlG1UPV3ofhChg8G6Xe2Sd94sEg2HcfIq+MIVvEe1RpWfYxXPMjs7i2mavOMd7+C3fuu3ZGZrCkTqBmT37t38yZ/8CU8++SQA2prAHT+vJf2JzyBiB40ZTKp9WwxhU2AXFPZIshNry4tieQuNJ0tJoQ2FXVocsXNzOpnQhc6dNGrXLnSt7Rme3GmTWNG5vnUmFLwooWupK4HYtU+ciB2l66ios95ExVNKXZiOQey+6CWQOr+eTKJ1SWUuTA+xGzg6BxBxy0kid8tF6ADM6XSLKw8sdCmidL7IAZlH55zGmDzXUljVUMX1I+xYv5+nnnoKgDPPPJP/8B/+g+SdGwCRugxwHIfbb7+dv/7rv2ZuzrvDusVt6NGzOrpkBxY7RWMsSrJyrgX1seRi553Ui6okzQA+iNil7Y5FaW925iAL1SeQO+VAbqZPqoYM5S4QO6XJTxnkpweqrrXuPoLXS+iCOlJ2w6YWOp/QKRdD6qLwRU/5H7G6/3toYKkbRObCRIhdVtG5nrvzVlexSyNzsHhClzZKt5BC1yFyLRWlbgLQFDlo7XK1qtrrap37KUblBQDGxsb4N//m3/CWt7wFM8WYRaGJSF2GHDlyhC9+8Yvceeed3gZl4Y6egS6dAqr5TX5QsYPoqF0/XMt7o7l5ksvdQosdJI7a+TM+M/uG2adLtleULoqW/yWh4AURWX9SBqAcb1UOo06mcgetggee5GkTRl/qc1NO2Q1r1nSybtceJM29Niyp89GmlyPMK9tP6hTHTk6QXsOF0mGX0kF/Ic0BZS6MBrPiUDjkydCwhS44LCJqN5DQHZ5FzSZP/7IYQgdgr0nf5RhH6HqKXFBRuvN3E7lmvS65qWcYc59lft57Ta6++mr+7b/9t6xZsybdSYUWROqGwE9/+lNuvvnmZpesOYY7dg7kNwbj7RZL7GCAqN0AYjfMcXbeUmOh7rss6RK1Syp07cSN3kXJXEcTG3IHDEXwwGurk4fSwf5PcOJuWAdyczpdlvlwPa4XBdAqgVQyfKlLIlra9BY7t8rxL2SlNbkZx4vQZYkGw9bkpmtYU8mjXM160r0pfblzRtKJ1XIUumGMowtLHPQQuZaKkp033L0aXZ/GqOzn1JF9wRKcO3bs4Hd/93c5++yzk51M6IlI3ZBwXZdvfvObfOELX2Bqasrbll+PHj0bcquB5St2fpqVpdAdm3l0rkcbfLlz84MJXZio6F3LOMkeMhfZzCFE73xJ04Y3WSY3G0PsEnTDKgfy0zre+NBudbihGaxK4eTip1hJMvPVP9ewpM6rX5OfSnZxeZFVMxuxC3UTG43f1mw9ndgNeHvReQud9yKXboKZp8el0DWidKkkrqWieIf1jco1ULUpLto6zcMPPwzAxMQEH/jAB7jqqqswjAHWARQiEakbMjMzM3zpS1/i7//+76nVvEHGbulEnPGzwCw1x/8sJ7GDRe+OHWp0rlcTGvn3lOtFrrJEG4ABuJ5E2WmWQ2uQVfTOFzp/hrVRh+KR7KJ1yvXG6LXMHE7xOa9cyM+Gni/VnDHeqw2J89OxNKUOvPdWbXWatQn9CjplLow1Z4PW8eUuC6ELi1xDAPrJ3fEmdMrV1FblgntIYolrp8fLFlfkALDnsY49gTnvjZvL5/O84x3v4Nd//dcZGxsbrI1CV0TqFojJyUn+6q/+im9961sAaGXgjp6CO3YG2sxh2BrD0cnXxWswiNgtxji7Qbpj/fMOsth7WgwbrHmakTsjW7kzHMD1xNWXqUHkDtJH79qFDnwJ87pL45bvJlXtQheUSyF2HVIX7OgtdytK6gaJ1jWELkrm2ukbtctA5oDu+eu6yJ0vc8CKFjrltH55qY9ZOHFyJsYh4qVLJHIAbg1z+mlGqnuCQMbll1/O+9//fjZv3pxNO4WuiNQtME8++SR/8Rd/EYSitZHDGT8NXToFwzE7uoG0GfONRHqxg+XRHet3tfrRMtdPubJAeCk4PLFrbsxW7joEJ2O5s8qNAft2d8HTjf/JX04tqo1xonXQuxvW73aNLJdA7Fq6XrseFC13K0nqIIXY9YnOdaOr2GUdnetFqOtOmyp1dA7A3bAaZyxd9vFhCl2LwPm0PcWVTYMuidNZd2KRA3BtzNlnWO3sZXbWk+uXv/zl/Pt//+/ZsWNHdm0UeiJStwhorbnvvvv4y7/8y2ChYm0UcMdOR1nbMeqhDzVFMHMO+kte2pQnsHjdsb2idsGYORoy1yZU2gxJyBCJFLqWAwaXOz9KF0WWcgetggdNyYuKznWUzSBa1y1K11I2pth1jdJFHtwqd0tR6gZZsgtiil1KmQvTInYZ3EYSCV0YpXBGc5hzddAa86XDiYovFaGLI3Dt1FflMovSObkUIgegHczZ59igXuTo0aMAnHzyybz//e/nX/2rf4VKOXNZSIdI3SLiOA533303//N//k9eeslbGkWbJXTxdAx1IuE0KAFtkufTLnvLaZwddEbtWqJy/e5tarhRu75C196WFHLXS+jCZC13PspR5GYUudl46/4mita1iV0coWs2rDFBpst9y5/xmiQxtlfQkzvDJrGQDF3qGCxaBz3ELgOZC2PN1rGOpouOBU3q193aC6VwSjncfKOshlw44a+jMSe7S96CCp0B89tXAVCanMfNd742SRhU6Kz51s+P8roEqXQAtIsxt5cTci9x4MABAE444QR+67d+i8suu0zyzS0SInVLANu2ufPOO/lf/+t/cfDgQQC0MYLKnw7WCdFy106E7NlFhVNIPktz0HF2g3THunk/2hhD5sIMKWqXSOja2pNE7pK+Rr7cQUZds7aiMKUwK/GkLkm0DlrFrle3a9fyXaJ2hpM80uajtJf4WBuNa1x5+fj6lbHKbqJF1RdD6qBN7DKWOa3w0mdoyM3Z5A7MpqsnbXQOOoUu8gRtkhds1xjlOvbqdDnhIoUuJG3R7YXKGpORAza5Y7VU5/VJK3RhkTNqzce11Rb1uPU1ZO6k0oEgGLFhwwZ+8zd/k6uuugrLSiiHQqaI1C0hqtUqX//61/nSl74UpEFBlSB/GuROBJXsm482FfUxo2V8RBjl9o6WLFrUTilP0NJ81mcod4YDRjWF0LW1x29HN8GLG6XriuFFONPInbIV+WPKk5V5/2YdT0TTiJ22aKwZnKiZXvkIsctC6lrP0VvwEkfpYNGkDppi5+SNTGTOr1NbKugZ8J4TG+XqRHI3UHdrIzFxT6Hrgln23tBGzWm+3nEwFPNbS95nW1RkWEF5bY/xcZpFEbpuIhdmbkuMN7x2MGaf58TCfvbv3w946Ul+4zd+g1/+5V+mUMhwbJ+QGpG6Jcj8/Dxf//rXue222zhy5Ii3URUhfyrktieSO20qnKLCySnqbXKm3IZQ9MC1/GWpkkftjCoUjrm4ORUr+tPSbuXlXEqdu2xAufMnYxi1AaWurU1R0bss8t1B8uidH52z2nrPtBEvWgfJumHRBOs+OilXPQhfD6m7XhtESV3ruToFb7lIXcvQC6U8CWtfnzZFnX5y26gxV8qF/HS9r9hl2t2aELNsY9RSjIFTivkTSlQmUqYdyUjooM/EiEYkOUw3kQvTU+pcG3NuD5vMfRw+7HVlr1u3jne/+91cc801lErpV8AQskekbglTrVb5x3/8R77yla8E3bKoPOROgfxJoOLbijYVtXGjQ+zioFwCSTITrKlq2BqronFNqI8aicUOspG7NOPt/C5kdDOSNgy5c3MJu5njYjTHJ7YLnmErcqHoXDtDidY1hM5/Dl0rvdj54+yUHixK5+UbjBllbAie0hqznPCcaZbuSjFZoucYWqVwSumEpJ/MtZymj9gNvbu1BytB6DqidCklLky3rlfl1LGmnmFNbh/Hjh0DYOPGjfz6r/86V111lUTmligidcuAWq3GN7/5Tb785S8zOTnZ2Gp5Ubv8yWDEs6VBxA4IUkf40ZYkuGZjnF6KqB1k1CVr9J7VGRyum0LXbEAoqpmR4HnpPmhZgF6lm0jXG6N1ZrFRj5a5lrZlKXZtQuczkNjhfWkwa8OJ0nUt5ya/aaZdjzVOtC72ZKgU0bokMtdyKhdyM7a3fFlD7rKIzkG67lZYQUJXNAaWuHbCUTqlwZqbQ1WeZcyYZG5uDoCtW7fynve8hyuuuIJcbgHzSAmJEalbRti2zbe+9S2+8pWvBKlQQIG1FfKngDnRt45e3bFxUC6YdY1yWHC5G3aXbCBz0HsmWgbRO22AU+yUzGEJnj/hw38O4pCkG7aX2CkXcvPRT2hasVMaT+i0f46EM1iXsdSlXiM3gdi1j5tLdbpG1M6aqixqdA5Y1kJX2VSgcKiGM+J9WAwqce3Mb85jVVywj6HKP8OyJ3Ec7/navn07v/Ebv8Fll10mEyCWCSJ1yxDXdbn//vu59dZbgyTGAJjrvXF35nrokxsoi6jdoHK3mF2y7ZG7yOhc34aklzs/StezmW2f3WkkT7lel3kwKSboju7/uieJ1kGX8XVdonRhkoqd0l6UruX50cnEbkGlrm+l0dKnXE3uWEYDLkPn6iV2aaNzUVhlF1yNNd8Qq2qCN4lSOEXLe24WIzq3tQSKRRG68uZiy99GXZObzX6MhlM00Vrjmocw5n4GzqFg3yte8Qre9a53cfHFF8v6rMsMkbplzq5du7j11lv5zne+E3y7whiH3MmQO6HnpIpBxQ6WcZcstETuMEgmdC0NSSZ33aJ0/Ygreb7IeY+jl+FyivFe84GidTGEzieJ2AVRuo7G+u3o/UImHU/XUjaF1KlQOpFudBMos+qi7Owlsl3sMpc5wKy2XqCq7m3vK3cDRudg8bpbIbnQtUtcdVXz/y4ddjITOqfY/J+0dtD6JU7ZNM2zzz4LgGmavP71r+ed73ynrACxjBGpWyHs27ePr371q9xxxx2Uy40s7yoHuW2QOwmM6LDQoN2xsLy7ZP0InZ/g1k2QMLizMfHkLk6ULg7tXbWW/7L3SVUzzGhdIHazOrbQ+cQRu8goXUej/bZEX4tpo3RencORuq7olF2H/WiIXTg58aAyB57Qtctcx6m7yV1G0TlYnO5W6C907QIHrRLXXtf48wlmpkUQFjk3p8CZh+pzTBQOMj3trRNYKpW45ppr+JVf+RVZm3UFIFK3wpiZmeGOO+7g9ttvZ9++fc0d1kbIvwysDXgW1FpOm4raKoN6aXGidpBBl6zRlLN++NGacLedNpqRv0zkDjoEL22Urh9GHQpT8Z/3RNG6FN2wpUO66zi6XvQTu65Ruii6yN0gXa/K1qnG7w0idcrVQ4nWATglEzuDZaa6Red6NqEezp/mLF50DjIZP1c66L3R81O1yLQjWqmuAhdFmihdWOKgIXJag30Aqs9h2Afxb/mbN2/mrW99K7/0S7/E+Ph4ovMISxeRuhWK4zg88MADfO1rX+P+++8PtmtjFPInofLbaEmJoj2pWc5RO+gvd1Ey11FHVnIHHdG7rKJ07SSVuiTROojfDWs4kJvRmBVPvswUQ8K6iZ0vR/1yK3YQkruF7nqFAaUOshW79rG2BjiF9GKXRubC+JF2VXdxC+mEyqw4oPWCj59TGnKNxL71EYPCtHf+pPIWRVyhi5S44I8a1PZy4tpjvPjii8HmCy64gLe+9a383M/9nCzltQIRqTsO2Lt3L7fffjvf/OY3mZ3180eZ6PwWyG8Hay2gUI1Lwc0p6iMGTk6l79bMQu4K3uy7LOQujsx11GEodGPx9yzkzqyCWdU4RZW52CWWOpJH69xc73x/YaHzyUrsUgtdGN2I9FVT5rZbLKmDwbph+y2obkB1dbI0FYPKHISGTrS3L8H3yYGjc1tLVFb3XgUiN9/9NbfKLrUxEzvm+ygOpSMOuZnuQtfRpRpGa3COQvV5iuoA1arXfTs2NsYv/uIv8pa3vIVt27Zl1lZh6SFSdxxRLpf51re+xde+9jWeeeaZYLs2RqGwHfLbwPC6DbTpjbFxLYVdiP7AiiN8WXTJppY7f7zcgL1LWcmdUYPCMe1FvRo3AW1lE7lLI3WJo3U9umGjhM5nELEDT+4Sdbv2wH/ulQPFqWQysNhSlzha10/mfBJG6+KMm+uFL3PB435EHdJ4Oo2ag1lJMZFAKerjeapr+4+DaM8LF2YhhK5nNC7YWIXaXk7aMMfzzz8fbD7ttNN461vfypve9CZZ+eE4QaTuOERrzU9/+lPuuOMO7rnnnubEChQ6t8kTPGujN5jaBLtgREZotFK9hamxvNKgUTuIIXfhcWyhbf6Aen+Ga9wxd1EEcmekWKHC8SYPmG3jp71uzYbgpeyaNRyw5rwoYGJSiF04YuefW7nRQueTVuzAa59W/Ze064c2oDausEuqsdyX93zFFbxBpI5G1+9AxInWxRW5dmKIXVZdrcHjjEgaqXPzniQlWT81imEJXSyJA9Au1A9C7Xks92CQ/aBYLPKGN7yBX/qlX+Lcc89FZfhcC0sfkbrjnPn5ee655x6+8Y1v8JOf/CTYrlURCtsgfyI6P+ZF7UyVSGbapc+XO50gAW47rqWCSFHLTTIkcL3bRGZy59cXJ3rnR+l615tO8FJF6drOG7cb1j/eLvWOzkWRSuy0J0Pa6PMFIgauBeX1EcshxRS8QXLUDTVal9VNuyF2QIvcDbWrdYFx80bqzx6f2ljjOcpA6IzQNVE65D2/fb9gObNQ28uGsSkOHWrmljv77LO5+uqreeMb38jo6BAG7grLApE6IeCZZ57hG9/4BnfddVcw3R1Am6shfwK6dAJuvphY7toJ8ssNIHfNykgVAclC7iBe12y3KF3veuML3qBSlyZahwFmJb7Q+SQWO91MX6INvOhxyterm9SF6SZ4aWe+BvVmIXXgRevq6cQy9ilMxfymPMWjXjfggna1Dgk3p4Keh0EYNDpntF0D/rVtVvsseedWofYi1F5EOVPB5omJCa644gquvvpqTj755NTtElYOInVCB7Vaje9973vcddddPPjgg82kxii0tQFdOhF7bAtuYbC8HJnJnT+7cQnInV+nL3hphK6z7qbgQafkDSx1xI/WKRfMsm7ki/O6xZMSW+waUbqo9DtJX6tw12tcvDVMvZMbjpeyYjGkrn1ZMMPRKDv7j21tKqprc2jlpRbKz7gUj6S7cJeKzEE20TlILnTtAgfRvQldhU7bUJuE2otY+nDwOWyaJq95zWu4+uqrueSSS2QtVqEFkTqhJ0ePHuWee+5h586dPPHEE8F2rUx0YQvO6DacsfWg0hvRUpI7/3FW0Tvo3+2avP5WyeubbDgOfaJ1yvEic8ptjov0Xi81HLHrInTB7oRRuzhRul4YdVi1J0LqYs6mjit1keu6Gm0bXZ16Bm/kOUMyVxtrPkdKk1jslpTMZRidg/7drd2icP3Iz4QO1C7Yh6D2AiPmkdB4Z9ixYweXX345b3zjG1m7dm28yoXjDpE6ITZ79+5l586d7Ny5syWxsVZ53NIWnPGtuMX0grcU5M5rB9lF70zvm7hKsT5sonO132/StL2L2CkHrPnoGcxDEzvdZ9UI/7AYcpcmSteOL3VRxIrexe02bRe4ru1xB47WaVNRXZPznp+x6CdQacjPuqDpKXcrUeYgOjoXFYGD+BIXxqxqr3vbPgy1l1gzMs3U1FSwf+vWrVx++eX8wi/8gqQiEWIhUickRmvN448/zs6dO/nOd77DsWPHmvuMPM7IFtzR9IK31OTOf5xIklTrjQ7tLW8FDEfwonpvurW31//SEDttKMxKs729Zi1nLnZ9onSRbejRJTtolA56S10clNaplybrRhqx80UO6Clz7XSTu6Ukc5BdVyt4Qhc1djiNvHWgXVTlELljL7K6dKzlM3RiYoI3vvGNXH755Zx99tkye1VIhEidMBC2bfPII4/w7W9/m3/+53+OELzNuKMnpBK8pSJ3XluIH71rF7qI9mQueAn/t36paNDJ0s9kJnYphC5oQ5eo3UqVurjdsGGRQ0F1PP1zEZa7wpT3oi0JmRswOheOTvtr4NpFlY3A+WgXo3IQY/4lVhtHmZmZCXZNTEzwute9jp//+Z/nVa96FZaV8TqCwnGDSJ2QGbZt8+ijjwaCF+5G0MrCLW3yJK+0Ccz4g3uzljsYUvQunLIh7n0uK8HL8F2sQm1K1IRBxK6umyI5aOaPkNxl0fWqHCgddslPp7/DD0Xq6B2ti9O9mhSlvRQnSkNuNrx263Bn5HYjicz1mt3tmt4+18qm27ZZcR2jfACjPMmEMRVa0QfWrFnD6173Ol7/+tfz8pe/XEROyASROmEo+IL3ne98h3/+53/m6NGjwT6Nwi2uwy1twR3ZjLZGmgV73HuzToUC2UXv/G/3SZY4impTasHL+F1sOPHGtHU0I63YNV5Ts9J7WaZEbTG812V+0+JG6Xy8Zc6GG61L273aC1/kfKxy5//Q/iVg2JIXJXP9UvL44tZ1f1ZCZ89hlicx5ifJ2UdD2QNg7dq1vO51r+MNb3gD559/vqy9KmSOSJ0wdBzH4YknnuD73/8+9957L3v27GnZ7+ZW4ZY2ez+F1b2Tqaqm3MEiRu90I7pEa3tcM1ki3171JxK8jN/FaaN1kELs/HF8JqAhN5eN2HlROoP6aFO400x8yUzqhhSt04ZqJgsesHs1TFjmokSuF+3XTr/3qFl2E63wECVw/aSta11WMx9kKrRG1Y5ilCe9n/pMy+7t27dzySWXcMkll3DOOeeIyAlDRaROWHD27t3Lvffey7333stjjz2G64YiDUYet7gRt7QRt7gRzEJL2ahZnsGHuWoek+oDulv0LiRwwWldr1uuowrDW84MhiN4/rk7JG8JSR0kELuw0AWFwSo38sQNIHeupShvaBUFrUgsd0tR6oLIMJ7g2EUjsyWrBpG51opCwtTn+TarOnjfLCSpo3NOFaNyAKN8gPWFuZaeCNM0Oe+887jkkkt47WtfK7NWhQVFpE5YVI4dO8a//Mu/8P3vf58HHnigJS8TgJufwC1uwi1uRBfW9Jxs0bxhD7ikVEjulKsbUpWimmEIXqN9QRTPAauiW27yWZG2C9anr9hFCV1LBemjdn6Uzh6Jfl7C10eva0U5UDziUjg2eORwEKlrf3212f43VCbSR4DidLHGr4zGMInBl3YbFomjc9pFVY8EImfUj7XsHhkZ4aKLLuKSSy7h4osvZtWqVRm3WBDiIVInLBnq9To/+clPuP/++3nggQd46qmnWvZrZeEWN3hRvMJ6sEYju2qDaF544kIKVDhXmh4slcGwBM+oa4pTGjc0xrpljN8ADBqt89sSKXb9hC6oIF3ULipK1/UURve/s4rSQTKp6ydx7WiDxNG6TEUOloXMQczonNZgz3sSVznAGMc6vnCefvrpXHDBBVx44YWcd955srKDsCQQqROWLIcPH+bBBx/kgQce4MEHH2xJlwKgzRJucT1uYb2XMiU84cI/xo/eDZh2YakKnlHXFI92LvDutk2kSyt6g0br/HO3iF1coWupJH7Url+ULk55H+VAYWp4kbpur0k/iYssE1PsMutehUDkYHnIHPS47ux5jMohjOohjMohlNMqcRMTE4HEXXDBBaxbt27ILRaE5IjUCcsCx3HYvXs3DzzwAA899BA/+clPsO3WCIq2RgPBc4vrwSw292UUvYPhCR4kl7xIqYsiQvSgv+xlEa0Ln8dpDJFMO+YxTtQuSZQuFi7kZwd/DpSjKR5tHYiZRt560U3sjqeonNJQPFANbVDMbS10XnN2ORA4T+LmW3abpsk555zDhRdeyEUXXcTpp5+OYSyxf1YQ2hCpE5YllUqFxx57jIcffpgf/ehH7Nq1qyV1AIBrjaEL63ALa3EL67xInlJLVvAgWRRPOZrcHFiVAU7aRfaaDfJukklu3K6pqI1HtLsRoYtcvDwJPeRu0CjdMFG2ZvzFiNk1GeNdQ34yxeZzvZKich3i1rbPOtTIB2caVE5cRXmd6UXiqocxakdQlUMY9lxLOdM0OfPMM3nlK1/JK1/5Ss477zxKpdKw/xVByBSROmFFMDc3x49//GN+9KMf8aMf/Yinn36a9ktbGwXcwtpA9HR+Au1/817iggedkhc7SjcgrqWoro7/3GhTUR+N3qc0GNUMxA465G4pCx0ALhSms+nKTcSgT/UiReVii1sE2oTqJo3mKLY1hVE9gnJb61JKccYZZwQSd/755zM62uXCFYRlgkidsCKZnp7m0Ucf5fHHH+exxx7jySef7OyuVSY6v6YhemtxCqu9FCpLUPCgTfIaqy+orJPZRuBLXW1VdikzMhM7CMbbmTWdbbfrEFioaF1X4j7lCxCVUy4UD0ZLG/QXtzBa1XFzMzjWDG5umtx4lWq1tW7LsjjzzDM599xzOf/883nFK17B+Pj4QP+DICw1ROqE44JqtcquXbv48Y9/HIheeO3FJiWwVlMfX4ubX40urEYnWNIsihbBg4ElT7kas+YNug8nYdVGn67UAVjKYqdcyM1prIqmPmLgmmCPLs1o3aJLXTvhpz9DkfPHaSpXMzJZizxGuTq2tIXROLi5WVxrFteawc3Nos1OOVy1ahXnnnsu5557Lueddx47duygUChE1CgIKweROuG4xHVdnn/++UDynnjiCZ5//vmOLlsA1DhKTaDza6iuWYvOj4NqjrpOGtVLI3nK1c0EyBqMKBlSnZn2sxQ9p6CYPSG7kI3SYNTwkjunlDtf6HLzzfLaYMnK3ZKTOtq7+DNIheNqSofqwePcZNSXp3hoXFxrriFws7i5WVS+0pKw3Gfbtm2BwJ177rls375dJjYIxx0idYLQYHZ2ll27dvHEE0/w5JNP8sQTT3Dw4MGIIxUYYzilCdz8BDrv/cbMpz53eHUK5YJVbbtpdRO5vhVnJ3pZR+t80kTtlOuPp2sVujDagNqoETxeCoK32FKnjdbrQUdcH2lRLozsr4GG/L7p5G1T9YbANX/MYq1j2ATAhg0b2LFjB2eddRZnnXUWZ5xxhnSlCgIidYLQk0OHDrVI3u7du5mejr5habMUkrxV6PwqdJcEyb1QrrdsUsvfg8xw7ThBetFbbLGLI3NRhAXP/3sxJG8xpC4scllKHIREDmLLnEajjQquNY9rzaIbAqfN6G7a8fFxduzYEUjcjh07WL9+fWb/gyCsJETqBCEBWmsOHDjA008/zdNPP83u3bt5+umn2bdvX/TxykDnxtG5cdzcODrvPU4ie0OXPIgUPYiWvaGKXZfu2LQy1412yfO3ZSV6ytGMHIh+jTKbINKFYUbjIL7IheVNm+WGxJXR1jwQ/dxs2bKF0047jdNPP51TTz2V008/nU2bNqEGnLgkCMcLInWCkAEzMzP87Gc/46mnngqEb8+ePdRq0dGHDtnLjXk/1igYvTPztktesC1r0QNP9vKdN1QnpyivN3qmL0l9Sg1mBXKzOlhzNyuZ64XO0BsMR1PcHzGzU4E9YuGU0q/T2s6wJQ6866t0oDlOLixyGgdtVnDNCjpXpj5WBz0Deo5u8pbP5zn55JMDcTvttNM49dRTGRsby7TdgnC8IVInCEPCcRz27dvHs88+y3PPPRf89JI9aHTj5kbR1hg6N9oQvtFGdC964PeCih5AYzJCfcTA7lydbWD8CRCGjRe5i7lmamo05KdtzPls1nntiaGork0//nKhJQ4AxyZ3+DDVDYCeQ+s50PPgzgGVrvXk83lOOukkXvayl7X8bNmyBcsa0lRtQTiOEakThAUmLHt79uzhueee44UXXmDv3r1d0qx4aBTaKqGtkcgfzGJLl26U6AXbs5C9htjZxeHOMFR6yHKnITdjY80tgNBBomhdu8BB9hKnFdTGQdUr5KfmUPY8Rn2e3OwcWs+DnscwqpEzTn3GxsY48cQTOwRu8+bNmGZ2UUlBEHojUicIS4hjx44Fghf+/cILL1Aul3uW9aQvLHolMIueCDZ+oyyUVpnJnrYUldULc9MeitwttND5KHBKXqRKK7BHzegxjQkFTis6xzpqDa6NUa+g7LL3u+aJm1Gbx6iWUc48qs+toFQqceKJJ7Jt2zZOPPHElp+JiQkZ9yYISwCROkFYBmitOXz4MC+++CKTk5NMTk6yb98+9u3bx+TkJAcOHOhY+zayHsP0JM8oesIXkj6MAoadB6MAyuqYyNEifY2F4/0F5BeSQO580kreIgidtgxmt7UmwNUK7JLCTZrjuiFryq5h2FWUXUbZVbQqY9QqGDXvt1kto9z+14ZpmmzcuJHNmzezZcsWNm3axObNm9m6dSsnnngia9euFXEThCWOSJ0grABs2+bw4cMtord//34OHjzIoUOHOHjwILOz8bP3a2WgrQLaKuA2fmszDxTALOBaOZxiAW3m0GYebeZQGOTm+ladOYklT0NuzgFXZy50UdIWxjUVcyd0ESPXQdl1DLuGsuve43oVo15FNX4b9RpGrYqyq95vHT+yOjY2xvr161m/fj0bN25ky5YtbN68OfhZt26djHMThGWOSJ0gHCeUy2UOHToUSF5Y+A4fPszU1BRHjx5lfn4+Vf3aMNFGrkX0tJXzthkWmBbasNCGCcrCrFlgmGhlgWE1fpuNySBG4vx+Ph2SRyNdSUEx/mI9scx1FTWtAQ3a8SJm2sE1HCprHZRjN3/ctr/D4ubUm3/3GLPWi1KpxMTEBOvWrWPDhg2BuK1fv77l71KplKp+QRCWDyJ1giC0UKlUAsHzfx85ciR4fPToUWZnZ5mZmWFmZobZ2dmeg+jTopUBymhIoOH9bZjBdm+bAlRDABUogr9123ZtgFX2Razx2ztT46FGEdqvHdAu4KJNF7TriZfrorTj/c74f1ZKMTY2xvj4OGNjY6xevZo1a9awevXq4HH479WrV4usCYIQIFInCMJAuK7L3Nxci+T5j6enpymXy5TLZebn5/s+Xq4fR6ZpUiqVgp9isdjyt/8zMjLSIm3h3+Pj44yOjsp6pYIgpEakThCEJYHWmnq9Tq1Wo1artTwO/12v16lWq9i2jeu6uK6L1hrHcdBaB9tc123ZZhgGSqmW3/5P+3bLssjn8+RyOXK5XM/H/o9MIhAEYbERqRMEQRAEQVgBSJxfEARBEARhBSBSJwiCIAiCsAIQqRMEQRAEQVgBiNQJgiAIgiCsAETqBEEQBEEQVgAidYIgCIIgCCsAkTpBEARBEIQVgEidIAiCIAjCCkCkThAEQRAEYQUgUicIgiAIgrACEKkTBEEQBEFYAYjUCYIgCIIgrABE6gRBEARBEFYAInWCIAiCIAgrAJE6QRAEQRCEFYBInSAIgiAIwgpApE4QBEEQBGEFIFInCIIgCIKwAhCpEwRBEARBWAGI1AmCIAiCIKwAROoEQRAEQRBWACJ1giAIgiAIKwCROkEQBEEQhBWASJ0gCIIgCMIKQKROEARBEARhBWAtdgMEwUdrTaVSWexmCIIgJKJYLKKUWuxmCIJInbB0qFQqXHHFFYvdDEEQhETcddddlEqlxW6GIEj3qyAIgiAIwkpAInXCkiT/wEaUbnznUAbKUKAMMBQohTL8fY3tSoGhUP4xwT4VlAl+ILTNaN3vFQy2aaWaX31CdQTbVfNc4W1aedUE+wyvXm+7Cvb5ZXRjW7AfmnUYjeP9/bSeo6VMo/naiNjXcjwtbWxuUx37OsoQbkfbfrps71Jft3Z0lOlVb7Bdd5YPlQn2h+rSje2Eynn7dKg93n4V3hcc6+/TQZ0qfLzSwb7gEvO3+9U1jvEuBR387ZcxGn97+7y//XLBPqVRNMsZjW3BDzooZyhatnvl3WY5/ONdTL9M4+9mXW5Qnxmq38Tbbvr1Bce6mH6d+O1wm8fTrNur08XAO7+3z6vPbGxTuJh++VAZE7xyeOfxnw//b+9cuvGYxj6N0XheTBQGYDZebAPV2KYwlcLAQDVeuXrN5O3/32YEYSkhUicsTRzV+HjFkzoaAta4Wzb3KTCaBqM8Q2pU4t/dDTru2k1jajUJv86Ouzxt28LnIGJbezmaMheSuo5tIQkL/93exNbjI8oYPfZ1+zc62tHl3+61r9tTlba+UJ1RwjdUqYvaT/vfOqg73I7wOaP2BRJI6Jjw8R1ldMS5dMtPWOqaotj46bYPX/y8KsMC6Msf+HJGIEXhfZ7UuU0pUmEp8h4bSnnC1fhN8FgF5bx6aNTpl6VRrrE9al+ojNkQUjNopy91uq/Uhesz/eeD1m0G4TaGXkNBWCJI96sgCIIgCMIKQKROEARBEARhBSBSJwiCIAiCsAIQqRMEQRAEQVgBiNQJgiAIgiCsAETqBEEQBEEQVgAidYIgCIIgCCsAyVMnLE1MjdZewlEv75oK/VZtCYH936HHhLfp0OMY+0JJy5opYrttb/7WLY9pKacBtL+9WadGgSYoG94f1NGSXC3cloi/dUuT2p6PLj/tx8bJRddrX+xzxdwXPmXPcrpPnbpLG7snH27NLRfaFxybPvlwsx2hPHWkz1OnaZbTSrf+4P329tGy3VUalNusE/9cbiifXuOYxn6t3KA+Wupv/PbP1fjbaBzj/wY6trmht7X/2FXg0sxT5za2KbrlqVNBwmCT5mvm/200yrTnvouffFjRTD4c9b4UhMVFpE5YktQuPLDYTRgO/j0zJe1OIgg+4UvLXcyGpCZs1dKJJAhpkHeOIAiCIAjCCkBprWWtE2FJoLWmUqksdjNWDJVKhV/+5V8G4Otf/zrFYnGRWyQsV+Ra6k2xWEQpiZ0Li490vwpLBqUUpVJpsZuxIikWi/LcCpkg15IgLF2k+1UQBEEQBGEFIFInCIIgCIKwAhCpEwRBEARBWAGI1AmCIAiCIKwAZParIAiCIAjCCkAidYIgCIIgCCsAkTpBEARBEIQVgEidIAiCIAjCCkCkThAEQRAEYQUgUicIgiAIgrACEKkTBEEQBEFYAYjUCYIgCIIgrABE6gRBEARBEFYAInWCIAiCIAgrAGuxGyAIxxOVSoVHHnmEXbt2sXv3bnbv3s3+/fsBeO9738v73ve+vnUcOXKEW265hfvuu4/9+/dTKBQ4+eSTufLKK7n66qtRSvUs/+KLL3LLLbfw4IMPcuTIEUqlEmeccQbXXHMNr3/96/uef9euXfyf//N/eOSRR5iammJ8fJxzzjmHt73tbbz61a+O9TwIg3Ps2DHuvfdefvjDHwbXkeM4rF69mjPPPJMrr7yS173udT3rmJ+f59Zbb+W73/0uk5OTGIbBtm3beOMb38jb3/52crlcz/KLfS0KgtCKLBMmCAvIww8/zIc+9KHIfXGkbteuXVx33XUcO3YMgFKpRK1Ww3EcAC688EJuuummrjfj++67jxtuuIFKpQLA6Ogo5XIZ13UBuOqqq7j++uu73ozvuOMOPve5zwXnGxsbY25uDv9jJK6YCoPzhje8IXgdAPL5PKZpUi6Xg20XXXQRn/zkJykWix3lJycn+Z3f+R0mJycBKBaLuK5LrVYD4PTTT+fmm29mfHw88vyLfS0KgtCJdL8KwgIzPj7Oq1/9at797ndzww03sHbt2ljlZmdnuf766zl27Bjbt2/ni1/8InfddRc7d+7kd3/3d7EsiwceeID/9t/+W2T5l156iU984hNUKhXOO+88vvzlL/PNb36TO++8k/e+970A3HnnnXzlK1+JLP/4448HQnfppZfy1a9+lTvvvJN/+Id/4M1vfjMAf/d3f8c999yT/EkREuM4DmeddRa///u/z6233srdd9/NXXfdxW233cbVV18NwP3338+f/MmfdJS1bZuPfOQjTE5Osm7dOv70T/+UnTt3snPnTm644QZGRkZ46qmn+OQnPxl57sW+FgVBiEakThAWkPPPP59vfOMb/Nmf/Rm//du/zWWXXUY+n49V9tZbb+XIkSMUCgX+y3/5L+zYsQOAXC7H2972tiBC9o//+I/s3bu3o/zf/u3fUi6XWbt2LZ/5zGfYtm0bACMjI7zvfe/jmmuuAeB//+//zczMTEf5v/zLv8RxHE455RRuvPFGNm7cCMDExATXXXcdF154YctxwnC5+eab+cIXvsBb3vIWtm7dGmzfsmUL119/fSDaO3fuDLr4ff7pn/6JZ555BoBPfvKTvOY1rwHAMAwuu+wyrrvuOgD+5V/+hR/+8Icd517sa1EQhGhE6gRhATFNM3XZu+66C4DLLrus5Sbu87a3vY1SqYTjOHzrW99q2Vcul/nud78LwFve8pbILrX3vOc9AMzNzfG9732vZd9LL73Ej3/8YwDe9a53YVmdw3H98pOTkzz66KNJ/z0hIa961at67vejdeB1lYb5p3/6JwBe+cpXcu6553aUveyyy9iyZUvLsWEW81oUBKE7InWCsAx4/vnng2jLRRddFHnMyMgI559/PgAPPvhgy77HHnuMarXas/yWLVs46aSTIsuH/+5W/rzzzmNkZCSyvLDwhCPA/jg18CbrPP744wBcfPHFkWWVUsHr3P5aLva1KAhCd0TqBGEZ4HeVAZx88sldjzvllFMAeO6557qW94/pVf7ZZ59t2e7/vWbNGtasWRNZ1jRNtm/fHlleWHgeeeSR4HH4Nd+zZ08geb2uJX/fkSNHmJ6eDrYv9rUoCEJ3ROoEYRlw+PDh4PGGDRu6Hrd+/XrA67aan58Pth86dAjwJmkUCoW+5cPnC5f393fDb1t7eWFhmZmZ4Utf+hLgjeP0ZRuaryXEu5bayyz2tSgIQndE6gRhGRC+Kfa6EYZTV4TL+GkuolJbRJUPlw3/3a+837b28sLC4boun/rUpzh8+DD5fJ7f+73fa9k/6LW02NeiIAjdEakTBEFYQfz5n/85P/jBDwD4vd/7PU499dRFbpEgCAuFSJ0gLAP8CQhAMMg8Cj+Ra3uZUqnUsb9X+XDZ8N/9yvttay8vLAyf//zn+drXvgbAtdde2zID1mfQa2mxr0VBELojUicIy4B169YFjw8ePNj1OH+80ujoaMvN0B+fNDMz0/NG7JcPny9cPjy2Kgq/be3lheHzF3/xF9x2220A/Lt/9+/41V/91cjjwmPl4lxL7WUW+1oUBKE7InWCsAwIzxLsNRvQn1n4spe9rGv58OzDbuXbZzX6fx89epSpqanIso7j8Pzzz0eWF4bL//gf/yNYfeG3f/u3ede73tX12JNOOgnD8D76e11L/r61a9eyatWqYPtiX4uCIHRHpE4QlgHbtm1j06ZNgLf0UxTlcjlIEHzBBRe07DvvvPOCQe0PPPBAZPnJyUn27NkTWT78d7fzP/bYY8Gg9vbywvD4/Oc/z6233gp4Qvfud7+75/HFYjFIONzttdRaB9dJ+2u52NeiIAjdEakThGWAUoorrrgCgHvuuYd9+/Z1HPP//t//o1wuY5omv/ALv9Cyr1Qq8fM///MA3H777czOznaUv+WWWwBvDNOll17asm/r1q1BMtnbbrsN27Y7yn/5y18GYPPmzbz85S9P+i8KKfj85z/f0uXaT+h8rrzySgAefvhhfvrTn3bs//a3v81LL73UcqzPYl+LgiB0R6ROEBaYmZkZpqamgh8/EWy1Wm3Z3p7K4V3vehdr166lUqlw/fXXB0s/1et1br/9dv7mb/4GgGuuuSZYSzPM+973PkqlEocPH+YjH/lIsCZnuVzm7/7u7/j6178OwL/+1/86cummD3zgA5imydNPP80nPvGJYDzV9PQ0f/qnfxpEbT74wQ8OtByaEI/wGLprr722Z5drO1deeSWnnHIKWms+/vGP9NsBQgAAAjpJREFUB+u7uq7Lt7/9bT772c8C3ooPr371qzvKL/a1KAhCNEprrRe7EYJwPPGrv/qrTE5O9j3uyiuv5A//8A9btu3atYvrrruOY8eOAV4ko1arBZGzCy64gJtuuqlliagw9913HzfccEMws3BsbIxyuYzjOABcddVVXH/99SilIsvfcccdfO5znwuOHxsbY25uDv9j5L3vfW+wmLswPPbv38873vEOAAzDYPXq1T2Pf+c739kRxdu3bx8f+tCHgmuxWCziui61Wg2A008/nZtvvrmrVC32tSgIQicidYKwwAwideAt23TLLbfwgx/8gAMHDpDP5znllFO48sorueqqq4JB8N148cUXueWWW3jwwQc5cuQIpVKJ008/nTe/+c28/vWv79uuXbt2cdttt/Hoo48yNTXF+Pg455xzDm9729siozpC9uzbt493vvOdsY/vJtvz8/PceuutfPe732VychKlFNu2beOyyy7j7W9/O7lcrme9i30tCoLQikidIAiCIAjCCkDG1AmCIAiCIKwAROoEQRAEQRBWACJ1giAIgiAIKwCROkEQBEEQhBWASJ0gCIIgCMIKQKROEARBEARhBSBSJwiCIAiCsAIQqRMEQRAEQVgBiNQJgiAIgiCsAETqBEEQBEEQVgAidYIgCIIgCCsAkTpBEARBEIQVgEidIAiCIAjCCkCkThAEQRAEYQUgUicIgiAIgrACEKkTBEEQBEFYAYjUCYIgCIIgrABE6gRBEARBEFYA/z9UtAwEG3mpXwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "plotting psichi in Galactic coordinates...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG2CAYAAAAZY3DTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd7gdVbn/v2tmt9NLcpKTHggRCAkQeg9VpIqCFUXQewVUUJSfekVF0asIeFG8VlBBpAkC0kKTFuAK0kMgkE56z+m7zazfH7PXnLVnT1llzjlJmM/znCcne8+8s/Y+s2c++31XIZRSioSEhISEhISEhB0aY6QbkJCQkJCQkJCQoE8idQkJCQkJCQkJOwGJ1CUkJCQkJCQk7AQkUpeQkJCQkJCQsBOQSF1CQkJCQkJCwk5AInUJCQkJCQkJCTsBidQlJCQkJCQkJOwEJFKXkJCQkJCQkLATkEhdQkJCQkJCQsJOQCJ1CQkJCQkJCQk7AYnUJSQkJCQkJCTsBCRSl5CQkJCQkJCwE5BIXUJCQkJCQkLCTkAidQkJCQkJCQkJOwGJ1CXsFEydOhWEEEydOnXYjnnuueeCEAJCCJYvX64V6wc/+IEb66mnnoqlfXExEu9tHNx4443ue3rjjTeOdHOGnF/84hcghGDs2LHo7+8f6eYkRPDjH/8YhBDsuuuuyOfzI92chJ2EROoStGE3Tr+fpqYm7Lbbbvj4xz+O22+/HaVSaaSb6/Laa6/hhz/8IY4++mhMnToVjY2NyOVyGDduHI466ihceuml+L//+7+RbqYUvMj4/aTTaYwePRqHHnoovv3tb2PRokUj3eSEGNiwYQMuv/xyAMC3vvUt1NfXj3CLdkxuvPFG/OAHP8APfvCDIT/WxRdfjLa2NixbtgxXX331kB8v4X0CTUjQBIDwz6xZs+g777wTexumTJlCAdApU6ZEbrtw4UJ66qmnCrd55syZ9IEHHqiJ87nPfc7dZtmyZVrtv/zyy91YTz75pHKcP//5z1J/j3Q6TX/605+GxpR5b7cn+Pfiz3/+80g3Z0i56KKLKADa2dlJ+/v7R7o5Oyxz5sxxz5nh4IorrqAAaFNTE924ceOwHDNh54ZQSunQ6GLC+wVCiPv7PffcU/Xc1q1b8fzzz+OWW27BwMAAAGDy5Ml49dVX0d7ePqztBICHHnoIn/rUp9Dd3Q0AyGQyOPbYYzFnzhyMGzcOuVwO69evx/z58zF37lysXr3a3df7UTn33HNx0003AQCWLVu2XZQnb7zxRpx33nkAgGOOOQYXX3xx1fOFQgHvvfce/vGPf+C5555zH//973+PL37xi8Pa1oR4WL16NaZNm4ZCoYArr7wS3/rWt0a6STssRx99NJ5++mkAtZ/3oaC7uxvjx49HX18fvvWtb+HKK68c8mMm7OSMrFMm7AyAy/wE8eabb9LRo0e7233zm98cxhY6PPfcczSdTrttOPPMM+mKFSsCt7dtm95xxx109913931tcWbq4oLPTn3uc58L3faHP/yhu21nZye1LGt4GpkQK9/+9rcpAGoYBl21atVIN2eHZrgzdZRS+ulPf5oCoG1tbbS3t3fYjpuwc5L0qUsYFvbaay/85Cc/cf9/1113Devxu7q68LGPfczt0/eVr3wFd955JyZPnhy4DyEEH//4x/Hqq6/inHPOGa6mDhuXXXYZOjo6AADr1q3Du+++O8ItSpClVCrhhhtuAOBkmSZMmDDCLUqQ5eyzzwbgVDVuu+22EW5Nwo5OInUJw8Ypp5zi/r506dKaEXpr1qzB97//fRx66KFob29HOp1GW1sbpk+fjiOPPBJf//rXMW/ePN/YUSM0f/Ob32DNmjUAgP322w//8z//U1U2DqOurs4ts0bxyCOP4IwzzsDEiRORzWYxfvx4fOxjH8MLL7wQut9IjH41TRO77bab+/+uri7f7aLeW7+2/+tf/8LZZ5+NKVOmIJvNYsyYMTj11FPx8MMPh7Ypzlgio1/Z80cffTQAoK+vD9dccw0OOOAAtLW1oaGhAXvttRf+67/+C1u3bg09HuPVV1/FueeeiylTprgDb0488UTccccdAIDly5e7xz333HOFYgbx8MMPY9OmTQAG5UCEd999F9/85jdx4IEHoqOjA+l0Gi0tLdhvv/3w5S9/Gf/85z9Dy48rV67Et7/9bey3335ob29HNpvFhAkTcNppp+HGG2+EZVmhx/e+7zrbHn300e42jNtvvx0nnHACOjs7kc1mMWXKFJx77rlYuHBhaAxWeuWPy//4DaB46qmn8LnPfQ677747Ghsbkclk0NnZiZkzZ+L000/HNddcU9WNw8sHP/hB98vVzTffHPl+JCSEMtKpwoQdHwiUXymltFgsVm27evVq97kHHniANjY2Rnbsb2lp8Y0d1pnftm3a2dnpxrj77rt1Xq4LX35dsmQJvfDCCwPbbRgGveGGGwJjDcVAiajyK6WUTp8+3d1+zZo1vttEDZTwtv3HP/4xNQwj8L34/ve/H9ieOGOJDJRgz8+ZM4cuWbKEzpgxI/BYU6ZMiSyzX3PNNdQ0zcAYH/vYx+i7774r9TcK4/Of/7wba+nSpZHbl0ol+rWvfS20jeznqaee8o3xu9/9jtbV1YXuO2vWrND3in/fo4jali+ZDgwM0DPOOCOwXdlslj700EOhMcJ+Lr/8cncfy7Lof/zHfwjt99WvfjX0NX7kIx9xrxObNm2KfE8SEoJIeSUvIWGo2LhxY9X/m5ubATgdvT/5yU+it7cXgJPRO+GEEzB+/HjYto0NGzbg9ddfx2OPPRaYTQpj/vz5WLduHQCgpaUFp59+uuYrqeW73/0ubrvtNnzgAx/AOeecg9122w09PT24++67MXfuXNi2jS996Us4/PDDsccee8R+fBWeeeYZd0qTvfbaC+PGjdOO+Yc//AG33XYbJkyYgHPPPRd77bUXisUiHn74Ydxxxx2glOKKK67AnDlzcOyxxw5brCi6u7txyimn4J133sGHP/xhfOhDH0J7ezuWLl2K3/72t3jvvfewYsUKnHPOOXjmmWd8Y9x000249NJL3f+fdtppOPXUU9HS0oJFixbhT3/6E+68806tdnp57LHHAAAdHR3YZZddQrellOLMM8/EfffdB8DJ1J5xxhk45phjMGbMGPT39+Ptt9/GI488gtdee803U/f73/8eF1xwgfv/0047DaeccgpaW1vx7rvv4s9//jOWLVuG+fPn44gjjsCrr77qZqGGg89//vO49957sf/+++OTn/wkJk+ejE2bNuGWW27B888/j0KhgM985jN45513MHr0aHe/H//4x9i0aRO++93vYsGCBQBqB30BqPrs/upXv3JL362trfjMZz6D2bNno6WlBf39/Vi+fDleeOEFPPnkk5HtPuSQQ3DPPffAtm08/vjj+MQnPqH7ViS8XxlZp0zYGYBgpu4Pf/iDu93UqVPdx6+++mr38Z/97GeB+9u2TZ955hnf58KySb/5zW/c+Mcff7zYixKAz9QBoOeccw4tlUo121188cXuNhdeeKFvrOHK1BUKBbp48WL6P//zP7S1tZUCoJlMhj7yyCOBMWUydQDoCSec4Nvh+3/+53/cbU466aQhjyWTqWPvw/3331+zzaZNm+guu+zibvfCCy/4bsPeT8Mw6C233FKzTX9/P/3Qhz5UdUydTN2aNWvcOKecckrk9j/72c/c7SdPnkzfeOONwG1feuklunz58qrHli1b5mboTNOkd9xxR81+/f399JRTTnGPc9ZZZ/nGZ8/HnakDQC+77DJq23bVNpZlVWXwgq4zMgMl9tprLwo41YOwaZq6urroq6++Ghrrqaeeco97ySWXRB47ISGIROoStBGRurfffpt2dHS421166aXuc+eff777+JYtW5TaECYel112mRv/ggsuUIrvBy91e+yxBy0UCr7bdXd3uzfDXXfd1XebkZinLpvN0pNPPpk+//zzoTFlpG7UqFGBf0PLsujkyZPdY/sJcJyxZKXuiiuu8H8DKKXXX3996Hb8F5Owc2zz5s20ra0tFql79NFH3Thf//rXQ7ft6emh7e3trryGCV0Ql1xyiXu8sNHrXV1ddNy4cRQAJYTQd999t2aboZK6Y489NjDOokWLIreTkbpsNksB0NNPPz1y2yjWr1/vHve4447Tjpfw/iUZKJEQK/fee2/Vz4033ogvfvGL2H///d3y6/jx4/HNb37T3Yef/Z6VPuJk8+bN7u+tra2xxweACy+8EJlMxve5pqYmHHDAAQCc+ey2lyWBTNNELpdDKhVfL4xzzjkHbW1tvs8ZhoE5c+YAcObLW7JkybDFisI0TXzlK18JfJ4v77711ls1z//jH/9wf//qV78aGKe9vR2f/exnFVtZzYoVK6rihjF37lxs2bIFAPDpT38as2bNkj7e3XffDQBIpVL4xje+Ebhdc3MzvvSlLwFwSr5+ZcyhIuy932233TBp0iQA/n9DWdh1a9GiRdor5fDnOf93TUiQJZG6hFj5yEc+UvVz3nnn4frrr3dHuu6555549NFHq/rZnHDCCe7vH/3oR3Httddi1apVw952HQ455JDQ59lUE5RSbNu2bRha5Ew+fM8991T93HXXXfjd736Hc889F5RS3H333Tj00EPxm9/8JpZjir4PACJHk8YZK4oPfOADgQIZdSzbtvHKK68AADo7OyP7TIqM+BSBSRoQLXXPPvus+7tKn9INGza4srHPPvtgzJgxodt/8IMfdH+PGvkdJ6LnjO75Agxet95++20cf/zxuP/++90J1mVJp9NoamqKrW0J71+SgRIJQ0pDQwPGjBmD2bNn4yMf+Qg+9rGPIZvNVm1z0kkn4dOf/jRuvfVWbNy4EV//+tfx9a9/HdOnT8dhhx2Go446CqeeemrkjSSIUaNGub8PlVDxna794F/zcGXqJk+ejDPOOMP3ufPPPx/f+c53MGfOHKxduxZf+cpXMGvWLBx55JFax4zzfRjO91TnWF1dXe6Xll133TXyWCLbiFAoFNzfmRAEwX9J2nPPPaWPtXbtWvf3D3zgA5Hb89vw+w41on9H/r1T5Wc/+xmeffZZrFmzBs888wyeeeYZZLNZHHDAATj88MNx7LHH4thjj0U6nRaK19zcjJ6eHmUxTEgAkkxdQsxQp5+m+9Pb24ulS5fi73//Oz7zmc/UCB3jr3/9K2644Qbstdde7mOLFi3CTTfdhC984QsYP348Pv3pTyvdIMaPH+/+vnjxYvkXJYBh7HgfpenTp+OnP/0pAOfv9qMf/Ug7Zpzvw3C+pzrH6uvrc3/nuxIE0dDQoHwsHv6zxJa9C4J/vrGxUfpYPT097u8i7eePwe871AznOTN16lS8+uqr+MpXvuJ26ygUCnjuuedw1VVX4UMf+hAmTpyIX/7yl0JLjrGR/XV1dUPZ7ISdnB3vTpSwU0IIwRe+8AW8+eabWLJkCW666Sacf/75mD59OgDAsizcdtttOPjgg7F+/Xqp2Icffrj7+7///e/IiVHfT5x44onu708//bR236D3I7zkeCfU9oOXQB34kitfivWDTR8EwJ06SAY+EyjSfv4YUVnEMGzbVt53OBgzZgx+9atfYcOGDXj++edxzTXX4IwzznDf7w0bNuBrX/sazj///NA4pVLJfc9GYk3shJ2HROoStjt23XVXnHPOOfjd736Hd999Fy+//DJmz54NwJnJ/uqrr5aKt/fee6OzsxOA822YzdOVUF2aLhaL7uoECeK0tLS4GbqlS5dGbi+yjQj8Ch9RUjdx4kT397ffflv6WPwchmxuwzD4bfhMOYMNKioWi6FxdpTzMZ1O49BDD8U3vvEN3HPPPdi4cSP+9Kc/udnU66+/HvPnzw/cn//7TZkyZcjbm7DzkkhdwnbPfvvtV7V8Dt/pWwRCCC666CL3///93/+NcrkcW/t2ZPiRwUB8pcH3E4ZhYL/99gPgrKEbtBQVI65l4GbOnOn+/s4774Ruy/eVVPlSM2bMGFc2XnvttZqJxL08+uij7u8HHXRQzfOsXMmW7gtiOAdZANXlW5GSaRCZTAbnnXde1XXnueeeC9yeF+29995b+bgJCYnUJewQ8FkJFSH78pe/7GYbXn75ZVxyySXCF+2BgQF87nOfkz7mjsAjjzzi/j5+/PiqMl2COB/+8Ifd33/5y18Gbrdlyxb89a9/jeWYnZ2dmDx5MgDgxRdfDN32pJNOcst6t956a2jWKIgzzzwTgPP5+8UvfhG4XU9PjzuamhCCj3zkIzXbzJgxA4AzfUdY5vK6666TbqcOfF/AOMrkotctXl4PPvhg7eMmvH9JpC5hxLniiivw2GOPhfaf4afc2GeffaSP0dLSgr/97W/unGz/+7//i49//ONYuXJl4D6UUtx5552YPXs2/vKXv0gfc3tn8eLF+M53vuP+/1Of+tQItmbH5rzzznOzT3/4wx9w66231mwzMDCAs88+O7JUKgObVmPTpk2hctTQ0IBvf/vbAJyS52mnnRYqdq+99lrNfGkXXXSR24n/qquuwt///vea/fL5PD7zmc+4GbgzzzzT7RfL86EPfcj9/Vvf+pbvF6zvf//7ePzxxwPbOBTwS62xaWr8WLt2LS699FIsW7YscJv+/n7cdNNN7v/DrltM6gzDwPHHHy/T5ISEKpIpTRJGnCeeeAKXX345Ojs7ceKJJ2LfffdFZ2cnbNvGmjVrcN9992HevHkAnBF/X//615WOc8QRR+Duu+/G2WefjZ6eHtx11124//77ceyxx2LOnDkYN24cstksNmzYgPnz52Pu3Lk73Hx5PO+99x7uvffeqsds28amTZvwf//3f/jb3/5WNRXHZZddNgKt3DkYNWoUrr32Wpx33nmwbRtnn3027rjjDpxyyinu2q9//vOfsXTpUnzsYx9z14DVHa15xhln4I9//CMAp6wbNl3KpZdeimeffRb33XcfVqxY4U4zdPTRR2PMmDEYGBjAO++8g0cffRQvvfQSnnzyyar+XVOnTsW1116LCy64AOVyGWeddRY+/OEP4+STT0Zra6u7vi2TywkTJgTOf/j5z38eV111FbZs2YK77roLRx55JM4++2yMHj0a7733Hm6//Xa89NJL+OQnP4nbb79d6z2S4bjjjnOzg1/4whdwySWXYMqUKTBNE4AzgfFuu+2GQqGAn//85/j5z3+OAw88EEceeST23HNPtLa2oqurC++88w5uvfVWrF69GoBT/j7iiCN8j1kul90uJUcddVQyUCJBjxFZxyJhpwICy4SFcfTRRwstazV69OjANUqjlrLieeutt+hJJ50kvJzW7NmzfY/LLxO2bNmy0GNGbTsSy4Sxn8MOO4yuWLEiMKbMMmFRbY/aNs5YMsuExbFcFaXOcmGmaQa+12eddRZ966233P9ffPHFkccNo1QqucvvhS2RxSgWi/RLX/oSNQwj8rx4+umnfWP89re/pblcLnTfmTNnRn4mHnzwQXepLb+fU089lfb390stExZF1LblcpkeccQRgW26/PLLKaWULl++XPjzdcwxx9BNmzYFtumhhx5yt73hhhsiX0NCQhhJ+TVhxLnvvvtw991346tf/SqOOOIIdHZ2Ip1OI5PJoLOzE8cddxyuueYaLFq0qGqmelX23HNPPPTQQ3j55Zfx/e9/H0ceeSQmTZqEuro6ZLNZdHZ24sgjj8T/+3//Dy+88AJeeeWVWI67PUAIQXNzM2bMmIFzzjkHDzzwAObNm+f2zUrQ49JLL8WLL76Iz372s5g4cSIymQzGjh2LE044AbfffjvuvPPOqjnjdLMyqVQK//mf/wnAydRFZZbT6TR+/etf4/XXX8dXv/pVzJo1C62trTBNE62trdh///1x0UUX4ZlnnsFRRx3lG+OCCy7Au+++i29961vYd9990draikwmg3HjxuHkk0/Gn//8Z7z22mtV/cn8OPnkk/H666/jvPPOw+TJk5HJZNDR0YFjjjkGN998M+67775hn7PNNE089thjuPLKK3HooYeira3NzdLxTJkyBYsXL8avf/1rd9m1lpYWmKaJ+vp6TJ8+HZ/61Kdw//3344knnqgaZe6F9bFsa2vDJz/5ySF7bQnvDwilGkN8EhISEhKk+NWvfoWLL74YgLOeqt9AAhnWrl2LXXbZBYVCAT/5yU/wX//1X3E0M2EY6O7uxvjx49HX14dvfetbuPLKK0e6SQk7OEmmLiEhIWGYKJVK+P3vfw/AyZrxE2OrMm7cOHdy21/+8pdCEyAnbB9cd9116OvrQ1NTEy699NKRbk7CTkAidQkJCQkx0Nvbi5dffjnw+UKhgM9//vNYsGABAOAjH/mI8nrGXi677DK0tLRg/fr1+O1vfxtLzIShpbu7G9deey0A4P/9v/8XuW5tQoIISfk1ISEhIQZWrVqFSZMmYe+998YJJ5yAGTNmoKWlBb29vXjjjTdwxx13uKMh29ra8MYbb1St9KDLL37xC1xyySUYO3Ysli5dKrQObcLI8eMf/xjf+973sMsuu+Ctt95CLpcb6SYl7AQkUpeQkJAQA0zqopg8eTLuu+8+pfkWExISEsJIpC4hISEhBizLwn333YeHHnoIr7zyCjZu3IhNmzaBUopRo0Zhn332wWmnnYZzzz03ycokJCQMCYnUJSQkJCQkJCTsBCQDJRISEhISEhISdgISqUtISEhISEhI2AlIpC4hISEhISEhYScgNdINSEhISFCBUgrLsmDbtu+/7HfAWR6NEALDMNz/G4bhPs5+TNNEOp1GKpUCIWQkX15CQkKCNInUJSQkxE65XMbAwAD6+vrQ398f+ZPP51EsFlEsFlEoFNzf/R4rlUpVwjZUpFIppNNpV/IymYz7GPt/LpdDLpdDXV2d77/s97q6OjQ0NKCxsRGNjY1oampCXV1dIo4JCQmxkox+TUhICIRSit7eXmzduhVbt25Fd3c3enp6qv71+72vr29k2w0AhDg/7AH3UkexPaiUYRiu5Hl/Wlpa0NLSgtbW1pqfRAYTEhKCSKQuIeF9SD6fd+dR27Jliytt7PctW7Zgy5Yt2LZtG4rFovJxMpkM6urqUF9fj4aGBtTX17v/Zz8NDQ3IZrP4/Z/nATBhZ1PonpIGNQzAMEENA9QwQQ0TMAzncWKAMmkjxPkdg/+HR3rMItD2rlXbQE703H+pDcCu/rfmMQrbtNE/xgaxyvjOiUdgYGAA+Xy+5l/2e29vr/tTLpe13lNe+Nrb2zFq1CiMHj0ao0ePdn8fNWoUMpmM8nESEhJ2PBKpS0jYyejv78eGDRuwceNG98f7/+7ubqmY9fX1aGtrQ0tLC5qamtDc3Izm5mY0NTXhxltfBEgaQMb5l6QBkgGQAiHBY7HKDSY2zTT1XqwggVI3BFhpgm27hYxBoxSwLRjlEkjlxyiXQKwSfnjSUejp6UFXVxe6urqwbdu2qp9CoSDVlpaWFowaNcoVvY6ODnR2dmLs2LHo7OzEmDFjkM1mNV9xQkLC9kIidQkJOxiFQgHr16/H2rVra37WrFmDnp4eoTh1dXXo6OhAe3s72tra0NbWhrvvfxMg2cpPxv2dED35Gk6B82M4pc6PSNETDlSGUSrAKBadf0sFfPOYg7Bp0yZs3rwZmzZtcn8XzbC2t7e7kjd27Fj393HjxmH8+PHJ6hcJCTsQidQlJGyHDAwMYNWqVXjvvfewatUqrFq1yhW3jRs3Ru7f2NiIjo6Oqp8bb30ZIHWAkQNIDk4mLZ6+WdQkKLRy0kaBVMG5tJRzMQmNJKk80PFKwW1fsXmwfcYI+B0lQLmOVH4nsNPccybQPybGfnKUOhnAYh5mYQA/O3UONm3ahA0bNmDdunVYv3491q9fj4GBgchQHR0dmDBhgvszceJETJw4EePHj0d9fX18bU5ISNAmkbqEhBGiXC5j3bp1WLlyZc1PlLjV1dW52ZRx48bhjn++g9RADjDqAFIPQuIb2F4jbL4bDUqcH0Mpdry8BeGVuiCGSvZ4ofN/vlryfLcxgP6x8Yufme+HOdCP7x5/ENavX+9K3+rVq9Hb2xsaor293ZW8KVOmYOrUqZgyZQo6Ozvd6WMSEhKGj0TqEhKGGMuysGbNGixfvhxLly7FsmXLsGzZMqxcuTK0w3xLSwsmTZqEyZMnY+LEifjVP14BTTXATtcDRgYgBGaJIrdZvdM9ANAUQaFFsjQaIXFBxCF3IhLnRVTqvOhKXpTMBe8XLXk1+8QgfcQGmldwU8VYRZByH370xTlYvXo1Vq1a5f7b1dUVGCebzWLy5MlVojd16lRMmDABqVQyk1ZCwlCRSF1CQkxQSrFhw4YqcVu6dClWrFgR2L8pm81i4sSJmDRpEiZNmoQbHlkAmm6EnW4EzOCRi7IypyRuNUHURM6LjNipCJwfqlLnh6joqQpdbRx5wauJISl8NXLnh10CKffhv88/Gu+99x6WL1+OFStWYOXKlSiVSr67pFIpTJ48GdOmTcNuu+3m/tve3i7zchISEgJIpC4hQQHLsrBq1Sq8++67WLRokfsTNKo0k8lg6tSp2GWXXXD/v1fBzjSBZppAU/U102+EESZzsYhbTdB4RM5LmNilBoCOV/VFjidOqeMJEry4hK42rr7g1cQMET4huasJaIOU+0FKPfjyR/fFihUr3J+gPnzt7e1Vojdt2jRMmTIlyeolJEiSSF1CQgSlUglLly7FokWLXIlbsmQJ8vl8zbamaWLy5MnYddddMffVNaCZJtiZZtBUg5S81cQtUuS2lIdG3LwMkcjx8FI3FBLnZaikzguTvKGSOp6hELyaY1SET0nuaoJRwBqAUezGBR+eiaVLl2Lx4sVYtWoV/G5D6XQa06ZNwx577IE99tgDu+++eyJ6CQkRJFKXkMBBKcXq1avx9ttv46233sLbb7+NRYsW+ZaTcrkcpk2bhunTp+OO55bDzraCZpoAzek/GFYWKDYTNK4Z2uWw7BRBsZkANpDppcj0Du3xAGeKj0IrQcsS9YmNRWFCV84ZSOWH/rWBEJSzBGSYLq3UICg1AKDO1C1DeiwT6JkKtC+I8bXZZZBSNy475xAsXrwYS5YswZIlS3xXJcnlcpg+fTp23313V/YmTpyYDMpISKiQSF3C+5qurq4qgVu4cKFvB/Dm5mZMnz4d06dPx01PLIadbQFNN2pl3xhWFhjo8KyAUEDsMufKW9WDQGqg9hJgWIhd7qw0Qf/Y6puvWaCxix01CUpN1WLtZM48N36K+CWvInQ1Dw/BZZb6nXsEjuBVbRi/7FET6JpW/ZhhxSh7lALlfvzki4fjnXfecX/6+/trNq2vr8eee+6JmTNnYubMmZgxYwaampriaUdCwg5GInUJ7xsopVi1ahXeeOMNzJ8/H2+88QZWrVpVs106ncb06dOx55574g/Ll6PY1g6rvh7pPgNNy/U+Ln4CxxOHzPnKW81G/jLHE4fY+YkcTxxS5ydxNdv4SV3NRjFIXoDUVW0SwyXXV+iqDuIjdzVB9GXPT+544hA92yTYMhMApUj19uK6ww/BwoULsXDhQixatKhmEBIhBFOnTnUlb+bMmZg4cWKyXm7C+4JE6hJ2WsrlMpYsWYLXX38d8+fPx/z587Fly5aa7SZOnIgZM2bgjrXrUGxrQ6mlBfCUc9K9RFroogTOi4rQWWmCUpPEzUpA5nhUxC5K5LyoiJ2IyFVtLyJ1VTsoCJ6A0NXsonD5jRS6qgMIyF1VcHnRixI7Lyqi54pdzRM2Uj09uOrA/fDmm2/izTffxOrVq2s2a21txcyZMzFr1izsu+++mD59etI3L2GnJJG6hJ2GcrmMt956C6+++ipef/11LFiwoGa0XTqdxp577olZs2bhl0uWoNDWDhqy6LmozFk5YGC0WiZAVOakBY5HUuZ4RMROVuR4RKVOVuSq9pWVuqqdBQVPQeqqdhe4FEsJXVVwSbmrOqiY6MnKHY+o6AXKHR+rkMef5hzpSt4777xTk82rr6/H3nvvjdmzZyeSl7BTkUhdwg6LbdtYvHgxXn75Zbzyyit44403aiSuoaEBM2fOxKPdPSiMakextQ0wxcQgSOh0BI4nlQca1vrLgpbA8WjIHE+Q2OnIHE+Q2OmIXFUcHamrChQgeJpCVxUq4JKsLHRVwTXkjidE9HTkjidI9ETErgrLQrq7Cz/YeybeeOMNvPbaazUrZSSSl7CzkEhdwg4D6xP38ssv4+WXX8arr75aMy9cS0sLZs+ejXs2b0Fx1CiUmpuVBjPwQheXxPHwQhebwPHEJHMMXuriEjkeXuriEjme2KSuKigneDFKHQ8veLFInRs4Jrnj4UQvLrHjITYw6k3n/ZAWOx5Kke7uwhV7z8Rrr70WKHn77bcfDjroIBx44IGYMGGCZusTEoaHROoStmt6e3vx0ksv4YUXXsCLL75YsyZqXV0d9t13X8zt6UFhdIeyxPEYZSDVOzSdqg0LSIcvp6lHzDLHQ02gXD90nc2NEkX9xqGZcmRIpK7qAEMXekgZCrnjoAZB76QhfHPiOB0FJG/8+PE48MADcdBBB2H27NlobGyM4cAJCfGTSF3CdgWlFIsXL8YLL7yAf/3rX1iwYAEsa3Da/nQ6jZkzZ+KpgTwKHR0otrbWDGqQxbAAM1+5O9gAiXFRd2Jzqw7YToYuLihxJocFAKME5LayrBFizRoZFpDuH8zSDXTEJ0dGkaL5vcoKGTGLFyVAOefEIzZFut+51FEDKDXEK3jE4jJqRrwZNSvLAjv9L+OEj80mnKaEoBSjs1BCUGxlvwOlpvhuOQRAupsMxm6OITalSHd14bt7fgAvvvgi5s+fX3UNMk0TM2bMcCVvjz32SObJS9huSKQuYcTp6enBv//9b7z44ot44YUXsHnz5qrnJ0+ejEMOOQS/Xb4K+VGjQDN6pbkqieOJQeiqJI6LqytzvMDxVMlcVUP0xY6XOR5dsasSOZ4YpI4XuarQNkWmz+a2q4hATILHS11Ve3QEjxe6qqDxyF1QbL/VROIQPV7uBh/Tlzxe7GpixyB5Zr6EG487Ev/+97/x73//G++9917V821tbTj00ENx2GGH4YADDkB9fb32MRMSVEmkLmFEWLt2LZ599lk8++yzeOONN6q+CedyOey33354qLsPhY4xsOqd+hAlTglQlkCJYyjKnK/A+cRWEbogiWMEyhyPotgFyRxDVeoCZY5HUeyCZM4N65G66n2JltwFCV3VMVTkLkjqOEzFLwtRcaOWilOVPD+xq91GTfSC5K4qrqLkGdxpa/b34eqD9sWLL76Il156qWrli3Q6jdmzZ+PQQw/F4Ycfjs7OTqXjJSSokkhdwrBAKcWiRYtckVu8eHHV81OnTsXBBx+MXy9fiWLbqJoRqjJCFylxPBJCJyRxXFwZmYuSOB4hoWNIiF2UzPHIiJ1ZoGhaGSFzDAmpixK5qrAhUjcYj7htKDaKC56I1LnHEJU7AaHjkZE74bgSawDLSp6I3A1uKy55UWJXE1dC8gy/U9i2cfuHjsHzzz+P559/vmaOvF133RWHHXYYjjjiCOy5557JBMgJQ04idQlDRrlcxuuvv4558+bhueeew/r1693nDMPA3nvvjacLZeQ7x7nZOD9EhE5K5BgCQiclclzcMKGTETgeKZljCEidjMwxRKROSuYYAlInI3NuWAGpqz4GEZY7Galz40fJnaTUMUTkTjquhNxV7RYhejJiN7hPtODJiF1VXAHB8xU7NwiF2deLy2d+AM899xzefPNN2PbgOdfR0YGjjjoKRx99NGbOnAlTcGqlhAQZEqlLiJVyuYxXX30VTzzxBObNm1c15Ug2m8VBBx2E+7r7UBgzFnZG7O7iJ3VKEscTIHRKEueJ6yd0qiIHKMocT4DYqcgcT5DYKckcI0DqVESuKqyk1A0eNzp7pyJ1bnw/uVMUOp4gudOKqyh3QLDgqYhd9f7+kqcidjVxfSQvVOq8bSgW8b+H7ofnn38e//d//1c1h2Z7ezuOPPJIzJkzB/vuu28yJ15CbCRSl6ANy8g98cQTeOaZZ9DV1eU+19raisMOOww3b9iMwugxwhP/Mnih0xY5Bid02hLnicuETkfieLSFjsGJna7MMbxSpyVzPJzY6cqcG1JR6nj8snc6QlcVm5e7GKSOwctdLDE1xK4qDCd5umJXHXdQ8nTFjqfYMviaZcTOxbJw4zGH4amnnsJzzz1XNWVKc3MzjjjiCMyZMwcHHnhgIngJWiRSl6CEZVl444038OSTT+Lpp5/G1q1b3edaWlowZ84c/Gn9ZhTbRylPOUKde2g8IsewHVGKTeQqMc1CPBLHiE3mOAgFjHK8H3crTVBsJvHIHIMApXojFplzQ8YgdQxe7uKSOje2SWITuurA8ceLQ+7ccISg2BSf3DkxgXITjU3sGMUWqiZ2DNvGLScchaeeegrz5s2r+hLc0tKCY445BscffzxmzpyZTJWSIE0idQlSLF68GA8//DD++c9/Vk090tzcjKOOOgo3btyCYvto7bnjnNnpY7oY205GjtiK37L9oE62j1AnfhwYZSDTTZ1JfnPO/9N98Xw8nddO45mstQI1nFUU6jbH86YSiyLTVYSdNdE9ORdLTAAwLApiA+leG1AcQe0HkzsnmxjPG0uoM3n0wOgYb+Y20LDeQl9nXC/cETpqEAx0EBAbqItp0mhKCPKjCShxVnKJC7uS/Irr808JkO+0kO7W/DvZNu446Vg8/fTTePrpp7Flyxb3qc7OThx33HE4/vjjMW1azMtzJOy0JFKXEMmmTZvw2GOP4ZFHHsHSpUvdx5uamnDkkUfipm1bUWrp0Bc5/r5oa0pdReLc0HEIHa3uh6crdEzi3PAVmeOf15U6YgNmiV9qCtpiRw2CYsNgELNEkduinvpkMseIS+oMLovmSp37gL7cVS3bFYPcEQqk+bn0DKIvdzbQuGbwxKcm0Zc7T5aOyR1DV/KY2A3+Px7Bsz1VTZ3rASVAfpxVlQGNQ/Bu/eAcPPbYY3jmmWfQ39/vPrXrrrvi+OOPx/HHH59Mk5IQSiJ1Cb4MDAxg3rx5ePjhh/HKK6+4o7jS6TQOP/xw3FnsR75zLAg1YOjIl9+uqkLnETn3EKpC55G4qpiKQucVOfdQHqHjt1cRO6/MVR1LUey8MscwylDK1nlljkdH7AyfkmiN1LlPqMld4DqsGnLnlTr3WKpy5xG6qpiqchc0ObFH7BiqgucVu+rn1CXPK3YMleuDK3buA4O/6gheqcUGKVv406yD8Pjjj+Nf//oXSqWS+/zs2bNx8sknY86cOcjlYkxnJuwUJFKX4EIpxeuvv44HH3wQzzzzTNVorb333htPpQj6J44HzWTcx4kFeakL21xW6AJEzj2UrNCFiBwgL3NBEld1yACh42PIiF2Y0AHyUhckczwy2bowmWOoSJ2fzLnHDJI6dwM5uQuUOj6ehNwFCV3VMWXlLkTqAAWxi5qQOEDseGQlL0zunOflBS9I7Bgy14sasXOfGPxVVvBKLdXvDykW8avd9sZjjz2G1157DeyWXV9fj+OOOw4nn3wyZsyYkcyBlwAgkboEAFu3bsXDDz+MBx54ACtXrnQfnzBhAt5qaULf5ImwGmvnkZMSOpHNRIUuQuTcQ4oKXYTIufEEhc4oAZkegVUGImSuKqaA2EXJXNWxBcROROb49kVl60RkjiEqdWEiV3XsKKmr2jha8CKljo8lIHciUuceW0TuIoSuKp6I3MlMRCwgdyxm/Ybo1xwldoPbiQtelNgxRK4fgWLnbjD4q6jgecWOYfYN4PtjJmPu3LlYs2aN+/iUKVNw8skn48QTT0R7e7vQMRJ2ThKpe59i2zZeeuklPPDAA3j22WdRLjtXr7q6Ohx33HH4Y18Xiu1tQMjNK1LqZL44RgmdoMi5h44SOkGRc+OFCJ2oxFUdXkLo3OOEiJ2M0AHRUicjdKxtYVInI3RAtNSJypx7fBmpc3cKljthqWPbG+FiJyN1TrwIsZOQOiBC7BRGugqLnec4QZInKnY85brw50XFjhF2PYkUO3fDwV/DBC9I6gbjUNx7+Al48MEH8dRTT6FQcBYDNk0ThxxyCE4//XQcdNBByQTH70MSqXufsWnTJjz00EN44IEHsG7dOvfxPffcE8/VZ53yajodGcdX6HSy/35SJylybjOChE5S5Nx4PkKnInJuMxSEDvCXOlmZq2qHj9jJyhyPXwlWVuYYQVInK3NuO1Skzt25Vu5kpc6N45O1kxW6qnb4yZ2k0FXF85M71RUlVMSOO6ZX8FTEjhEkeLJix/BeX4SlrmqnwV/9BC9S7CqQUgnX7ToTDz30EBYsWOA+3tnZidNPPx2nnnoqWltb5dqWsMOSSN37ANZX7u6778a8efNgWc7Fp7GxESeccAJ+27MVpdYWqZhVUqfblYMXOkWR46mSOkWRc2NxQqcjcgxVoWPwYqcjdG57OLHTETrWNpatU5U5Hl7sVGWOoSV1bhDn76ckdN44nNzpSB3gETsNoXPj8WKnOR+dlti5QQYFT0fsGLzgqUodD7vWKIkdo/IW83InKnU8T518Fh544AHMnTsXPT09Tsx0GkcffTTOOOMMzJw5M+l7t5OTSN1OTKFQwGOPPYa7774bixcvdh/fe++98WTWxMCE8aAKs5cTCzBK8c0hZ+aJtsgxSGVyYR2Rc2NRwCjoixygL3M8Rtlpk67QAais2KEnc3y76jeUtGWOwaROV+iAmKQOAAhgp2I69ytyZ2WJltQxqEEw0G5oSx1QEbuxZmwTDMcidwBAgbqNVFvsGOW6eMSOQSwNsQOqsnepHgPlZrXzgpQt/Gb63rj33nvx9ttvu49PmzYNZ5xxBk444QTU19ertzNhuyWRup2QdevW4Z577sGDDz7orr2azWbxwQ9+ENfne1FqaVYLXMl6GeV4LqiUVCZb7Y1p4lZbbEHzKFhGLg4xtNPOT91mG/0xTChrlIC6LXYskwgTm8LMU9hpgv7R+n1vzBJFw5oSUv2l6I0jsNMmeidmY3mdZpGicVkviqPqYGVimNSXOH3kfNdtVQlHadXNXC8YAAoYxRgCGkC+1YxtwmpiA8VGglKTfkBKAJpyVnKJI1b/OIp0TxwfKiDfWQax4hFYECAzph/FDeoC9vCxp+Lee+/F448/jmLR+cJVX1+PU089FWeddVYy791ORiJ1OwmUUrz22mu466678Nxzz7nzynV2duLtce3onzQFNjcViVxwuDcdp7SpfsFyLsZOMKNEtIWOLc1llPWEzihVlzV1hM5OA8Vm53WlBigaVzvBrBzREjsmdIRSdzUDVZjQOe3VkzqzRFG/oVJ2LVMtqXNlzm2ociiYRYqmRc6XGmoYKI6qpEoNoid3BFVLwunKHeEvwbpXY9YUXbFjQueNq4j7eSJAqZIVdtZp1buW2JXuv4TqCR41gP5xthtYS/AMID92MFuqK3jZsf1gp4iO3JFiET8bvxvuvfderFq1ymmqYWDOnDn4xCc+gRkzZmi1M2H7IJG6HRzLsjBv3jzceuutWLhwofv4/vvvj7nNBAMTxgLUgFGQvIlxIsdQFTpe5Ghld7OoLnTeNVZVhY4XOYaq0PEix+CFjqEqdmbRWQuWFwAVseNljqEqdbzMufEVpa5G5tyA0qGqZI5RJXUMVbkjteegcwy185n4XYJVr8reJqjInVfogmKLNsn7eSJAqb763FUVPF7s3PCKglcldtwBlATPI3Zu21QEjwDZMc7qEvypoiJ4qdEDAKW4ZeqJuOOOO/DSSy+5z82cORMf//jHceSRRyajZndgEqnbQSkUCpg7dy7uuOMOrF69GgCQyWTwoQ99CL9DF0qtTc6GFpETOh+ZY8hKHZM56rOLrNT53UQBeaHzEzmGrND5iRzDT+gAealjMgfU3vxlpc5P6BiyYucndE4gZ51VUbELlDmGxOvzkzmGr9QxZOUuQOoGjyXeaF+hcwOJN8kJFhxHSuyCpC7qOEGb+32mmNj5xJQVPD+xc8NKCp6v2HEHEha8Shk28GlJucuO7a95TDV7lxo9OKn8I/t/GnfeeScee+wxd9WKcePG4ayzzsIpp5yS9LvbAUmkbgejq6sL9957L/7+979j27ZtAIDm5ma8N3UsenafCrvOc4MUlboQmQPEhc4vK+dFRujCbp6iQhcmcgxRoQsTOUaQ0DFExc4vO+dFVOzChA4Ql7pAmeOPJZitixQ6QOi1hckcI1TqGKJyFyF1zvHEzu9QqXODCYUKf69ExS5K6ESOxW8W9pnyip1PbFHBCxM7N6yg4IWKXeVgQnIXkK2raZeI4HHZuprmSModL3UMo6+Ab1pT8Y9//ANdXV0AnLW9zzzzTJx55ploaZGbHSFh5Eikbgdhw4YNuO222/Dggw8in3dMprOzE29NGoXe3SaBpn2GcEUJXYTI8URJXVhWjkdE6KJumIwoqROROSBa6EREDoiWOZ4osRMROiBa6qJkjidK7ESEDoiWOiGZqwoY/JSI0AGCUgdEi52A0FUfN/y8EZI6IPpzKpr4iZI7UakTOKZw1jtI7jzHiBI8EbEDouWOEqB/vOCo0yjBExQ7IFru/LJ1VU2RKM36iR0AkJKFaxpn429/+5u7ulBdXR1OP/10fOITn8Do0aND4yaMPInUbeesW7cOt9xyCx566CE3PT59+nQ839mI/injACPkDhMkdRIyBwQLHZ+VY/+PIkzqZG6WQUInKnKMIKETFTmGjNAxgsROVOgYQWInI3RAsNSJypx73BCpkxY6wPe1icocQ1jqGEFyJyl1zrGDzyNhqXODBQWSi+ErdjJCF3Fc6X6pYWLnc6wgwRMVOzdkgOBFZut8DuwrdxFl2MB2+QleSLaupjkR2bsgqXOxKa4feyT++te/YtGiRQCc+e5OPvlkfOpTn8L48eOF2pEw/CRSt52yZs0a/PWvf8XcuXPdyYL33XdfPDI6i/y40QhbvsvFK3WSMsfwSp1IidUPP6GTvUECtUInK3IMr9DJihxDRegAZ36y/o7qN0BW6AB/qZMVOoZX7GSFzglS269OSeYY3GuTlTmGtNQxvHKnIHWDbaj+I0kLnRvI83+VAQx+YqcidQHHVxo9LiJ2Psf0Cp6s2PGkuOuKtNhxDagSPIlsnRev3EVl62qaEiB3kVLHBfjrlA/i5ptvxvz58wE4S5GdcMIJOPfccxO52w5JpG47Y9WqVfjrX/+KRx55xJW5/fffHw+OyqDQOUo8EC90ijIHVAudqswBtUKnemPkhU5V5oBqoVOVOUBd6BgsWxc2IEIEJnaqMsdgUmcWKeo3qk9iy7J1dtZE73hFmXODqcscQ1nqGEzuNKRusC3OuaYsdW6gyr+Ko1JZDKNI1YWOp9IOrfkdZcTOc1xe7nTEDhiUO2WxqzTClTsNsQM4uZPI1lU1xSt3BEiNEhS7SoC7dj8df/3rX/Hiiy8CcOTupJNOwjnnnJPMdbcdkUjddsKGDRtw00034aGHHnJl7qCDDsJ97SkUxrTLB7QIjLyhPe+VIz9EWeYYRpEg1a9z93FI5YHcJv0lo6ihLnJuWzSFbrBBzioFOjd5Spz9dYQOcKSu0GxoCR3gSJ1h2fpCBydbqCN0QAxSBzhilzW0pc5pj97fezAQ9KSuEsMoU32pA+JZGUZF7Cr7MShxPt86YscojIpnuRurQT8OsYh0to6HlzvhbJ2H+2aeiT/96U+u3KVSKZxyyin47Gc/izFjxii3LSEeEqkbYbZt24ZbbrkF99xzjzvb98EHH4x721ModrQpxSQZG5QCxlb1KxpNUdAUhZE3QKi6zNk5GzCA3Bq9tXiIBaR7Y1h7lQB2xil9KrfFdrIbRgloWK8ndXaGoNhgINujFycuqaMGYOUMpHvV20MJUG4wUdZ4jwHAsIC6jUWkt6jdfNz2ZFLom1SPVJ8FEsOSY3bGgJ3W/4Jip4jWEmiUEFhZglReTxYoISjXEeXPOE9cUlds1Fw6sPJaynUEpQb9JhVG29pfkEEAq60MyM4Z6hOndVw38kU9Y509fhVeWjlJef979jwDf/rTn/Dyyy8DcPrcnX766fjsZz+L9naFRERCLCRSN0L09fXhb3/7G+644w709zvfvPbee28sOKCApeXp0vFIxkYq5/RhKg2klYWOpihotnI1Zdk+BeycDbPFaY/Vk1aSOmI5fcwAwCiqC52zvmnld1Nd6JxlyKizRJTpxDDzVFns7AxBvsV5f40ylMUujtIrNYByvdMWZ51UxbYYBOU6w41pZdTea8MCstvKMEq2stTRTAq9U5xyE7GBVN/ga9KRO7vSx05H7Pj1Y1XFjhKCco6VcqEsd0zqnN+VQjhtiFHoYotJ4L5HzmoW6qEKo7nGqPzJCGC1lwbfZFW5q0gdQ1XuCKHYd9xq9/+qgnfXB07DH//4R7z++usAnNGyn/zkJ/GJT3wimeduBEikbpgpl8u49957cdNNN7nzAU2fPh3G8RuxZOw0LFk2Tm5kKidzDBWpq5I5QFnoeJkDKkK3NiX3mjiZA9SFjpc5QE3omMgNPlC7oLuK2PFCB6hLnXeQhIrY8ULnxFCTOl7oWFxZqWMyBwCwKQyLKkkdL3RArdQB6mJne0bFqsid9xxSETte6gA1seOFbvAx6aY4x49BwHihizMu/z7pyF2V2AHycsfEDtCTO4/YAWpyt/+Ele7vdqU9snJHCLDH2HW4vP48/OEPf3BXNmpra8O5556L0047DamUXqUmQZxE6oYJSimeffZZ/Pa3v3XX3Zs8eTIyx3ehfZ8siEHwypZJWLxEvMOpn9ABclJXI3MMCanzipwbQlLovDLHkJE6r8i5j0sKXY3MuU/U3pABObHzCh1DRuzimsbEK3RuHAtI9wm2xSNzfGwZqXOFzqaex8XFzitzDD+pc5+TECqv0LmPS4qd3zkEiMudV+gYsmLnJ3WDzwmHGTKhiyV2Jb7f+yUreDVSx5C5i/JiB1S/0aKC5yN1DBm546WOYVMiLXYzxq0H4NznLimfieuvv95d6WjixIn44he/iDlz5oCIzNqQoEUidcPAwoUL8Zvf/AavvfYaAOcbTOuJZXQcUgdiDp7kolIXJHOAuNAFyhwgLHRBMueGESi7BokcQ1TogmQOEBe6QJFzNwi+GYtKXZDQMUTELq4Jh4OEzokhlq0LEjoWX0TqvNm52uejpS5I5hhhUuduIyBUQVLnPi8od0HnESAmdkFSB4iLXZjQDW4TGWZIyq5DdYyg9wwASo1iYQLFjiEwUXSV1FXtK5G9CxE7QEzuCKHYb/yqmsdls3ZM6hi0bOO8rcfjxhtvdFc+mjlzJi6++GLsscceQjET1EikbgjZsGED/vCHP+DRRx8F4KzNOvqYNMYfXw8zV/uhjZK6MJljREldqMwxIqQuSuaA6CxdlMwB0UIXJnJV20VIXaTMAaFCx4gSuyihA6KlTmRZsCipC5O5wRjhUhcmc95jhYldUHaueptwqYsSOkBM6oBosYuSOiBa7KLOI0aY3IVJHSNK7kSkztku/PmhzNLFfZyo94wRJXiRYgeEy12Y2AFichchdYwoufPL1jFE5c4rdQxasPCR9w7E7bffjnw+D0IITjrpJPznf/4nRo2SmKIrQZhE6oaAYrGIv/3tb/jLX/7iLun1wQ9+EBuOeAXZNn8LeWXLJCxe2ul7IRCROUaQ1AnJHCNA6kRkzg0RkKUTkTlGkNSJyhwQLHTEAsyCaF1Y/EYcJHYiQscIEjvRdV6BYLETETo3RkAJVlTo2PH8pC4qO1e9rb/UicgcQ1Tq3O0DhEpE6txtA+RO9FwC/MVOROgYQWInKnSD2wfEHyahi/N4ou8dECx3QlLH8DuVoqTO3TdE7gSljhEkd2FSx4iSO0KAPTv9xQ4A/rjH5fjDH/6ARx55BIAzmOJzn/sczjrrLGQymcjjJ4iTSF3MvPDCC/jlL3/p9pubNWsW7A+tRuPk8G9LL22ejKVLx1Y9JiNzgL/QSckc4Ct0MjIH+GfpZGQO8Bc6GZkD/IVOSuYAKaED/KVORugAf6mTETrAX+pkhM6JUZutkxE6dkyv1Ilk56q3r5U6GaED5KUO8Bc7GakD/MVO5nwCasVORuoAf7GTlTpnH5/Ywyx1cR1T5v0D/OVOSuyAWrkTFTsgWO4kxQ6olbugEqwfYXIXlK3j+Wn7hbjuuuvw9ttvAwAmTJiAr3zlKzj88MOFjp8QTSJ1MbF27Vr87//+L+bNmwcAaG9vR9upZYw6ICfUOZSXOlmZY/BSJy1zDE7q7JwNo7kktCJZVQguSycrc0Ct0MnKHFArdNIyB0gLHYMXO1mhY/BiJyt0DF7sZIXO2b9a6mSFjh2XSZ1Mdo6HlzpZmWOoSJ27LydVslLn7sfJnco5xYudrNQB1WKnInSDx+ZijoDQxXls2fcQqJU7abEDwK8EIix17r4euVOQOgYvdyLZOh4/uROROgCgNsWXB07D73//e2zevBkAcMQRR+CrX/0qxo4dG7F3QhSJ1GlSKpVw66234uabb0axWIRpmug4KosJJzUgJXEDfGnzZCxb1aEkc25bBtIgPSk1mQNcoVOVOWAwS0fK8jLHMIpAupdKixwPNZ2bp7TIMRSFDhiUOlWhAwalTlXogEGpUxE6N4YFpAZsaZljMKmTzc7xMKlTFTpAT+qAQbFTlTpgUOxUzyvAeR0qMgIMip2O1AGDXjGSUqd9fEWp4yk1Kkodo7IaiLTYAdVypyF2gCN3slLH4OVOVOoYtGDhlMX74I477oBlWcjlcjjvvPPwsY99LJkCRYNE6jR48803cfXVV2PZsmUAgNmzZ6N80nuoHyd/Qr7d3YmFa9WXWLFKJux+zQ9CisLIWkoyx7C3ZdCwXN3GjBKQ6h/5U5KfYFgFYlGYBb02GGUg06e5WkAMS1ppreUJRy5TA7aS0AHO36HUaCrLrdMGPalzghC995MAZZ8BUrIxrBhWs4hjaTHd4+sIHTBy2ToeagB9k9UbQglgt6l/kQclAKFobe9TjwGnBDtjtJyU8diUoL+s1jfulxO/gZ///Od44403AAC77LILLr30UsyaNUu5Pe9nEqlToK+vD7///e/xj3/8A5RStLa2YtSHbYzaX6zUyrM234wFmzrR25+D6l8imy3Dtgn6NynO3k0ApG2YGfWLk20RkC0Z1K9RW2/WygClJopUP0H9OrU3gtjOj63otkYZSPdR52KfJSgp3nTMAkXdZht2Cig2qt3EzSJFbosFSzFDBsDNBKiKCLEBc8CGpSEihFIYBQqjpHhuGQS2SVBuUG+DUabIbSyi2JwGURRLBqEamTbqCG6pUf1LD6HOEnXFJvX3wyw574Hqah+Ac36qyiWhgFFyMsj5NsUMMnWy+f1jnP3TfapfGIDuaUDDStV0ODAwpvJ+1qmveGM3lwFT79zMNhRRl1UTREIoZnasha35LVBV7iil+FLfqfjNb37jTsp/2mmn4cILL0Rjo+BcMwkAEqmTZt68efjFL36BjRs3AgAy+7Wh88OtGNcut8jy2nwz3utx1sfrKWTQ0ye/2Hg2W0ZznTO6dltfnbzUEQBG5c9vUiWpsy0CWqosddWdcqROAiZzAJSFjtiOkFFDTehcmQNcCaKV8qus2DGhI9S56alInVmkqNvk9D2jBlETO67fjsp1ms9sUYNIix2hFEaRum1RkjpjcD1SasiLnVGmqFuXd/cvtgzebFTkzu1bZxA1sePeBzf7KHN8CpisX5xBlMXOLA6e6ypi5+4PtawhkzoASmJHaKXPLXX2Z2IHKMgdAWwT6N6NgthETe44sQPU5M5qKQ/+R1Husg2D/V1k5Y4Qin3GrIFV+cDpyB0ryarIXbvVhRkvzsIDDzwAAOjo6MCll16KQw89VLk97zcSqRNk27ZtuPbaa/Hkk08CcEbtbDsxi/S0RrRl+zEm2yMciwkdO/n7imkpqeNljgDY2leH/s314hkyXuYYklLHyxwAGD0pqSwdL3OAvNAxkeORlboqmQOqhA5Ql7r6TYNlPlmx44UOUJQ6n1F2Mtdob6lSVuqqhK7SHimpM2oXl5eVOl7o2P681AHyYlczGlZW7jzvg6zY8VIHqIkdL2ROUHmx88aQETte6NjxB9oVpK6bGzjiETtATu6oCXR9YPALCAB5wfOIHSAnd262jkdS7nipY8jIHRM7ALHJnazYdeR6AQAXpb+Gn/3sZ+6qFCeeeCIuuugiNDc3K7fn/UIidQLMmzcP11xzDbZu3QrTNJE6vB25Y8eCpA00ZwYwLifWSZXPztncXUtU6rwyx9gqk6XTFDqvzDFEs3RemWOISp2fzAFyQlcjc0CN0DFkxI7P0vH7FwRvvF6hY0iJXcCcWCLX5qB+ZzJSVyN0lTYJS52P0LE2iEidV+b4/b1SxxCVO9+562TEzud9kBE7r9S5MSTkrkbqACmx890f4mJXI3WQy9bxWTpvDK/YAYJyx7J102vPW2G585E6hqjcVWXreCTkTkfseKlz26QpdypZOyZ2dtHGAa8djDvvvBO2baO9vR2XXHIJ5syZo9SW9wuJ1IXQ09OD6667zp0wcZdddsHGk0ykJgwKlEiWLkjmGCJSx4TO7/IiJHV+MscQkLogmQMqQrc2PEsXJHOAmNAFyRwgLnS+MucewLmw+yEidn5CxxDJ1gUJHSAhdUFvoYDUhQ0kEJU6X6Hj2hYpdgFCx9oQJXVBQsf2D5I6QEzsAlebEBG7kNcvKnZBUgeIi12QlImKXeD+iBY7P6FjiIhdkNCx/f2kjhEpd0FiB4jLXYjYAdFy55ut4xGQOz+pY0TJnZ/UMSxKhq0ky6SO8Y2Gb+LKK6/E8uXLAQDHH388LrnkEjQ1NSm3Z2cmkboAXnzxRfzsZz/Dxo0bQQhB5ojRyB3nZOd4oqTOW2r10ldMhw6SCMrOMSJLr2EyxwiRujCZY4Rl6cJkjhEmdWEyxwiTulCRcw/in6VjREldmNCx/cOydWFCx4gUu6hPcYjYiYwMDRO7UJnj2hcodSEyxx8/TOrChI7tHyZ1QLTYRa4NGyZ3AlIbJndhQufuHyF2ZslfiAYPEi52YULHCBO7MKkDosXOW3b12z9M7BhB14OqMqzvBhFyFyF1jDC5C8zW8YTIXZjUMcLkLkrsgKEvyXqlDgDsMsVhbx6BW2+9FZZlYcyYMfjOd76D/fbbT7ktOyuJ1HkoFov43e9+h7vuuguA03eu65QcUlMafLcPkrqo7BwjKEsXJXOMwCydiMwBgUInInNAcJZOROaAYKETkTkgWOiEZA6IFDpGkNhFCR0jKFsnInRAhNSJfIIDpE50qo8gqRMSukobfaVGQOjY8f2kzihT5NYXIt9/EaljBMldpNQBwWInWIIOEjsRqQPCxU5EysLETmh/+ItdlNAxgsQuLEvn3V9E7AD/LhiB2bqqg4TInaDYAf5yF5mt4wmQOxGxA/zlLkzqGENdkvWTOsY3Gr6JH/3oR1i9ejUIIfjEJz6B//iP/0iWGuOIYRarnYcVK1bgggsucIUuc8go9P5HW6DQBcFn58KELgi+1Ko00F5U6AIQFToX7lBWBsiPokJC5wexnUmLRYTOD6MMZLtorELnxKVI91bHFBU6wMmSZHqrb8qiQheKxlcy7Ql5RYUuCEGhC9y9kp0Tef9loIZGo2wKo6zeHmLRmqXZpPa3KTI9ehPiispbEKZH3kSFDnDOydzW6vaLCh3bv36D2OsvNRCUGri/NXWOFX0QgJoUvVNs9E1Sf6/MAQJzoPpcEzo+w9KbY2+gEL50ZRAmoTAJhaE4UaBBKAxCUZ+Sn53+531XIfflNE477TRQSnH77bfj/PPPx9KlS5XasjOSSB2cOXIeeOAB/Od//icWL16MlpYWNHx2KupPmwAiMYP82nwzXtg4NbTcGkY2W0ZHa29g37lICJxvb6JC58nS2RaBlTeFhc7N0lUQzc4xUv0E9eud7VVkjs/SSckcH0PvuiglFPwFW1boiE1hDnguojIvlaJqslbpBe5tWpUp2l6EbqjYnsRONEvnbu8jdl7RCsVH7GRFT+p4HnzFZgjrSbzcERtoXiT4t2dyN5kOyh0F6jZIjib2iJ3RLTGE3yI1clfoE89aDRTSWnJnEFtL7upTRWm5M7IGFh69AD/5yU/Q2tqKJUuW4Itf/CLuv/9+JIXHROrQ09ODH/zgB7jqqquQz+dxwAEHgF4wHuk95IZOj0R2zu1PJytzHmRlrgqqnp0jFK5syGbmmNCpypzK/G18to5l6WT392brlNnRMnQEsFl/VA2hM8oU9avzQyp0DGoQdbnjxU6w9MoTe8ZO9nyJIWMHyGXp+GOzbJ2bpZM5pkS2jqfUQFCqd5a0ExY7ADAoqEljy9pJZesYPnInA5M7Sgne2DhOeL+RzNr9OXsDbrzxRhx88MEoFou4+uqr8aMf/Qj9/XJzxu5svK/71C1atAjf+973sGbNGpimifTxHcge0QEicSHPWynky843HVmZ6yumUSynhPrO+eFKnUapVXW5IKM7hexmA6VGtWOn+gka1lIYiivkEEvjpiNRdvVipwjsNITLrn77l7NEueyqMhGwS+X1qgodNQjsLFHP0FHx6UOCjq0qczJ96vwgNhXrUxcz1CQoN5hSmbqq/St97HQ+KzrYKSIvdRWoARRajdDBEVH7i/avq8EA+iYqvOc2AaFAwyoi3LfOj3I9Fe9b50O2WX2NwvpcMbJfnR9x9bVrkBQ8alMcv+REXH/99bAsC5MmTcIVV1yBadOmKbVjR+d9m6mbO3cuLrzwQqxZswadnZ2o+89dkDtqjLTQ9Zcyytm5hkxJue9c0TJRKpkjInQoGDALRFnoaJrCzo6M0NkpoNignilK5SnqN1rK/bjMgno/OpoiKDZrLDHlKaFK70+hLHRGmSK7Vf1GYxZsNC7qUt5fB0IBs6jxvtlAuls+EwHEk7FL9+uuH6xudlpl6EomX2f/tOo60jZQv1rh9ljJ2vVOoqAaS3GnBgiMrPrfvdCTVd53oJBBT0l+f5a1SxsWJtRtk96fZe0GLLlyMDEI/jn9UVx33XXo6OjAypUrcf75579vy7Hvu0xdoVDAddddh/vvvx8AkPpAE+o/NglGvfgncGrjZuzXsByv903GvzdNUWqHQaiSDBYtE/lSCvl8GqVe+cxDpqmI6WM3Yn1vEzatV5idu2Ag3e2IhcqJQ9MUVp2NzFYTLYsk9zWcUq9RAjK9Klkyp8RCLEfOZDHKcG+QVNWtqCOlsuU4miIoNJuOYBTk204odTImVHAUp/f4lQyhal86o0yR2ZIHTRnSGTOjRJFd2w0QAqtZfjk92BTEskFNA4VR8vs7fdqsyuhIuc+rI3QFgOhlCpWXJgNgV0ajKu1PBqVOJcvKjqmUrSOVkbAKJVi2f7GRAAQo1au9divnZPQLoyXFmAKkTJwv7Crf4QhQnuxkpe2C2sWmtcMZRarSZ84wKGaMXQcAaErLfxljM0KsHmiV3hcAPjXmX7Cogfu3zJbaz+q1MGbuOPzrX/8CAJxyyim45JJL3lejY99XUrdu3Tp8//vfx8KFC0EIQceHmlE4bLJwdo7JnEkoXqsInayUGZUOEzpCB0Ba6pjMseOv7WmWkzpO5tyF4sX3dmUOANLbHKGT6TvChA5QkzomdCDORVZW6lyhY69d9jrLHU5W6pjQscyqbKbSFbpKO2Slji/5qkgdEzoA0lLnCh0TCtOQE7uK0DFkxc6RaGvw7ycpdsQG0l2VkrEhL7RVKIqdzU0xIrU/qc3SyYqd93hScke46U1UxI5JXeV3abEjgFVJWFFDT+wASbnjpI4hK3dM6hgyckcIsFfnWvf/OmIHyMudQWx8uuMFFCsXWhm5ozbFsYtOwA033ADbtrHXXnvhRz/6EUaPHi3Vhh2V90359Y033sAXv/hFLFy4EM3NzZj8xdEoHjFFSOimNm7GR8e+jAMbl8HkTERGylhqWYWiZaI7n3WFTpZscwG7d25QPr4rdKwcoiF0gHOjVBU6WewUUGghrtDJYpSBbLc9KHQqaHxt8godAKnXUSV0lX2phJR4+/BRQmBLrBXKCx0AkLKNTJdkKVKxH54fSh8B1e5oLEvHsBVeO4/CqFrbM2ecTjkU0BwVjNr2CEOAYjNBsUlxf+rMS6dajiU2kN2kdrtkl02pciwFzJXVXz50yrGA3DqwXnpKWaWSLGNC3Tapkizrl5chFjLEwmntr+K09leF9iUGwZO7P46rrroKjY2NWLBgAf7jP/4D8+fPV2n6Dsf7IlM3d+5cXH311SiXy5g+fTrIJ/uwIRdt7XxmjkcmS+cnUqJZOj4zxyOapcs2F7DbmE017VjX24SN61uib1be7BxDUOq8MscQLb0GyZxopo7PzvGIZuqqsnNVASQydT6HEc3U+QodKtO/CJRga4SOa5NItk53wmGv0LlxBbN1NVk6hmi2zpOlc48vmK2rydK5T4hl66qydJ7jl5qHJ2MXJFFC+/tk6tynBEU76DhCGTsSsMKEaNaOz9R5HhfK2nGZOv4x4XJsJVPn2d35VyRr55OtYwhl7QjQOtp/Il+RrB1fgvUimrkLWm1JJHPHsnU8Mpk7g9j4wbif4jvf+Q6WLVuGVCqFSy65BKeddlp0w3dgdupMnWVZ+O1vf4uf/vSnKJfLGDM7hUlfWodMe/hXpqDMHE+UlOlk5oBgoROFCZ1fOygVsDJvdk6SIKET3l8jOwcEC50ogUInQ9wZOvacEb1OZ6DQAULZurBRtiLZuiChA8SydYFCBwCWDbM7YhRsgNABALFsZDeH7x8odIAzRUmEFNdk6TzHVx04AUA4YxeWFYvcP0TogBHM2AGOrKlm7AAna6c6gIKOQNbOB6GsXchLFMna0ZB7nE7WDhDL3PmNopXJ3NnUwJ+3no9dLtqEOXPmoFwu4+qrr8b//u//wrL0sp7bMzut1PX39+Oyyy7DbbfdBgDY9aQM9vlCHTagDav6WwP3m9q4OVTmRNCVOd1S6167rXaFTpqCgfTG9KDQSULTFOVmS1noqAGUcyNXbgUEhK4y2CGUkPeOmtycbX7PhwidS8hzoUIngNa0KQgXOqH9w4ROhBChY4iIXej5LyB2gQs6Y/jELoyhLsVGZQNDxS4oS8c9ry12muXY3EZDT+5SenJnZC2tkmxdtjSiJVkASqNkgWq5C2NFvh2pHEHm46/gC1/4AgDgb3/7G77//e8jnx/6uS5Hgp1S6jZv3oyLLroIzz//PDKZDGZ9vg67nZYL7T/HZ+fCeKN/UuCIV5HsXFDpNW6ZUxE6kjd3nuxcyPWemkA5V7tBLP3ngCHL0IkwXEIXlK0TFbrIbF2U0Fk2zB71KVKA4P51bpZONW5Ilq5qu/eB2EWhnbEL6mdHnKmLItkJsnbEZ+1uGYZS7jYUmiL3D8va3brx4NB9o7J2LNtHCMHK/e/E5ZdfjnQ6jXnz5uHiiy/Gli1bItu3o7HTSd3KlStx4YUXYtGiRWhra8Psr6Ux7oDg/gMipVYePykbzkEQfv3pwkqtIpC8ifTGNFI9xohk5wA5obPTqF6zkX9M5B7hs01Vdk5nQMQwCZ1fCVZK6HxKsCOdoQO4LJ0IZatW7ASydIPb1mbrQsuuXsKydYJdlYdK7GRkqWb/iNKrlzjEbkjKsaIh/cTOrz9d0OE1xK5yeK2sHSEURtaKRe6q2kWBt9Z3Cu8/FIMpRCYylinJ/t/Ya3HttdeipaUFCxcuxAUXXIDly5crt3l7ZKeSurfeegtf+tKXsG7dOkyYMAF7fa2ElqmDHUrXFFrd0quszPmxPfSbi6PU6srcCGXnVMqtvFfb6UrH5x2o/5y3BKuUoeO2HYmSq+xIWC/ebJ1S2ZWXJxmhY23wK8PKvI0esRPN0lW1QXeo2naYsdOdekWakexnh5jKsdDL2sUhd96sXVi/uiCGo7+dH0FytyLfXrXdfcZ38Jvf/AYTJ07EunXr8KUvfQlvvvmmVpu3J3YaqXv++efx1a9+FV1dXWieYmC3i7tQ31H78qY1blSWOb70OpL95oCYsnOapdbhzM75Yacr/edGQuj4fnWa2bl8e2pkSq6VbJ1uhg5Qz9IxsVPuRycyaCKqDXTwX6Wya0XsXKGTnVDA1szWAVVipypHcYhdLOXYqP50QYxwPzvdcmwlhHZfO0Jo7Fk7WeLsbxdVgvXilTu/bN9NXRdit4u3YebMmejt7cXXv/51vPjii1rt3V7YKaY0eeyxx/CTn/wElmVh9F4p7P2FOqQ8faZyRgktZj9yqmtTYXAqE1VyqRJKtomNvQ3KMeozJYyu7wOgJpZLN49C4d1mxx9U+6GnKax69YtGustE4wrl3QFgcAkhxWu4WQDqNldu4KqfAOKIqSrUIE7fPo37kFEG0opruQKVbJtOhgTOElq59QPqASwKI1/Um4/ONGDXyc+c72IYKDemtQSdUAqzV13OtKc6AQCDoFyncVISwMrof9fX+lwQoOQ3FYl0II19CZBv18scUgIUW/Rur/YEzc78BGhu0vhsApjWvkl5X4NQHNi6HJtK0X3rwjim6W3lfYvUxPT0JtzTXTsNSrlA0Xf7DLzwwgtIpVL43ve+h2OOOUanqSPODp+pe/DBB/HjH/8YlmVh3MFp7HtB/EKXIyU0GQPIGuoLLOdSJVjUUBY6k1Dk0mXkUmXl7NzKba0YWNGkvaaiDqluEw2r9ESGVL4R6whdtst2bjw6N3ENCbHTBPk2A1ZW/Y0wShTZbernJGwg3VtGpls9hlm0kVvXr94Gi8LoywOSZdMqDAKa0extbtswBzTeSwCkTGFrtIPYFKbk8nF+6KzvC6qfsWNxdEhplELjOD6gXxYvaQodANglE3ZJfb1nUKCgUREihKIpXVBaUQJw+qD/e9tUtKf6lNtgwka3nUO3rbBEIJzM3YpyGz7SXNvfLpUlaDr7LRx77LEol8v44Q9/iAceeEC5rdsDO7TU3XPPPfjZz34GSikmHpnGzM/mYHCdv3NGCe2pXtQbBZhE7UKXIyXkjKL6/qkSxtT3oDWr/m3JJBTplHo2ZuW2Vrw5fwq63muB4ssYREPGUt0mGlcKzJEXdGjqZKYipxMJgQkd0UhQE5s6Qmer3QDtNEGh2QAl1X0DZTBKFNmtZRBLsfRqA6kBS+t9cIXOBqCwnqwLpYM/shgENOtk6FTWtHWbYBqATWHm1cTOKNlO+1U/H4TAqmQadcXOWatWcUqhyvVTV+y0vjgSZ/90H9WXO01kV7/hibPlWmIHR+x05A5QWyoMcMTOIDZGp3swOu0/GbEoqmIHOPfRjzS/WiN3RorA/Oi/cfrpp8O2bVx11VW48847tdo5kuywUnfHHXfg2muvBQBMPjaDPT85OGUJL3OqsOxcznDKKS/2TcNzG3eVi5EqoTU7oNz/jmXndIWu670WwCKArVnSUNw91W2i9a2UttDpyBwQn9DpjHLlhQ7wH8UahSt0qi/DI3TEotLZuiqhY8hKFcvSqcIJHUNF7KjJXQZVxY47p6SzdUzouGaMpNgxRkLsvF9yCI0haxcD2oNZYkBX7AC9rB0ArawdQzZrZ8HAG/2T3f/rZO1MQn3ljhgEAyc+iU9/+tMAgF/96le46667lI4x0uyQUnfbbbfh17/+NQBglxMz2P3MLAghscscn52zqCE8Emh7y85pyxygJXSNK4lz849T6FgJVgCzANRvsOMTOkW8QseQydb5CZ1Uts4nQyf7nvgKnSxM6Phjq2brPMiIXZXQKVKz5BtREDufZkiLnWeQgqzY+a0yMqIZOy7GcItdoa32vdhexG5HztoBcLN2MnLnN7dr3HJHCMHGw+/HZz/7WQDAddddh7///e9K8UeSHU7q/v73v+O3v/0tAGDaqVlM/3DOFbogmcsZJaQj0jxBMicDk7nmTH5Es3MrtrYFZufsFGBnJNoWMZFvGNtbubVGXgiE13ANFDrBEmyQ0MkQd4aORzRbFyl0IkLlJ3QMUbHzydLFhkS2zi27ehEVO67s6sf7LmMX8PmQEjtd+QpdrWX7kTsRMrng83iks3YqcueHqNwtLbXXPMbLHeCI3bpD7sVnPvMZAMAvf/nLHU7sdiipe/DBB/HLX/4SgLPs17STs7Fl53RkDnCEjsmcjtDpytyb86egZ2XziGbn0jtRuRUYugwdI6oEa5Qo6jaUQoUuMlsX0YeOUBopdkOWoZNFQOhEsnWhWTpRsQt7HaJiF3EVFhK7kKlERMQuai1go6w3F56I2EV94dleSrHA9iN2UXJHIho60lk7wJE7XbED4utvRwjB+kP/gbPPPhuAI3b33nuvdvuGix1G6h5//HFcddVVAIApx2Ww1+lG7P3mlGJsR9m5npXN8fWdCwlhlAnMfv9TJ91tokGg3EpJ8AhYYaELKcFuD0JnpwkGRplCGbqg5/ns3FBk6HjCnpcSuiChEhW6sGydRIYuTOyEyq4RYldTdvVtRIjYRWTpeELFTmBuuDgydoBe1s4dta7xkRwOsSu0il0/Az+PBCi26rex3CE2W8PO0NduuLN2fvBZu4+2vIYNh93n9rG79tpr8c9//lOrbcOF5jwAw8Nzzz2H//7v/walFFOOMnHIx0sgRF1ccqSENCnHkpkD1Cci1s3MARWZW9XsXChHODvXsIpoDSKIMzvnxBNoSKUE6z2uO12JyGuplGD5WfRly60sW2cWBw8oW24lFoUBz+SzkqNcWbau2Dx4aVDK0FkU4LM/shk6th3/OVcouRKL1i6HJtOPriJ2Vq76UhlYdvVthCN2RpETRJ/BEVGYJRtWWv17OBM770TTUVk6L95zXaUdFKi91giG5MWuXO/toKrcrME2SLw09tms6Ser2Qy3LYIwsTPS6hdQJnbZtPrUPkzsVCceZnJnUwNbyurzuTKxazbkB2KxRQk+2vIa6Emvob//G7j33nvx3//932hqasJBBx2k3K7hYLvP1C1YsAA/+MEPYFkWJh5i4pBP29pCtzOUWoHhzc6FIZqdCz18zOXW7WmEqyj89tr95wClaUu82+5IJdchwy9jJ/ta/DJ2Clffmoyd5AoO20PGjrWD/3zJflZY5jopx1azPWTtgJ2nJJsyKE746M/deey++93vYsGCBdrtGkq2a6lbuXIlvv3tb6NQKGD8LOCwz9nutCWysFJrmuhNILw9lFoBTuhGMDsHcEKnWVIZ0f5z3IAJ5XIry9ZpDIhg2TodoXP71mnMQ8eyddpCx5c/Vf4uQzAadkhGuwo3hP0rXnb1I87BE7JZOp64xI5qfKGsErsRFqtE7KqJoyTbnuob0ZIsAKRNio+ccz0OPPBA5PN5fOtb38Ly5cu12jSUbLdSt3XrVnzzm99EV1cX2qcAh/4nqZpYWIY0sdxyq2qGrsnMx5Cds7Vlbs2W5u1iMESqn6BxaUpL6Ggl46oldBRIDYx8/zkgphGuZf0MHbGo1sTChFIYBQt1q/v0MnQASMnSm4uu8hq0s3S2ptBVsnVSZVe/MNmUdNnVCyUENGVIZ+l4tqeMne6E6HFm7ET704Wh3Z+OAOVWvfvE9jL1CaA//YlBbLSlRzZrl01TfPaC2zFjxgx0d3fjm9/8JrZt26bdpqFgu5S6fD6Pb3/721i9ejUaRgNHXUSQzql92JiAqcpcGhaajDyyRklZ5kZn+rB/ywpMqO9S2p9RKKVQzqf1yq2tRUyctQ7YpU9Z6IwikOojWp2e7QxQaItpjUfIz7VWs79mB+5yvYGeiSlnLVdFzCKQ22xpZU+oSWBlDVg5jQu6RZHqUViY3gOxbZB+zTiEACkTKGvc+W0bZlcfzG3qy5kRChgDJZh96oOqAAAUWuvDVoXSkDqGOaBnVOUcga153zfKtKovqSqi0xOFkemiyHTptSXVQ5DujeG6VtS7PTe0DsA09cV9XFbvvmWAotfKoddSlyoAMEFhaqZjN1p12GjVKe2by1F84eIHMGHCBKxbtw7f+c53UCjolZmHgu1O6iiluPLKK/H222+jubkZcy4myDXLf0B0MmqMNCx3vVjVk2l0pg9T6jbBhHp7CqUUunrrMJBPI5UtgzYplJBbi5gyYy12mbAJWbMMw1Bri1EgjtDpZLQyQKkRWv34eKw0UGjSu6JTE6CKnb/L9Qb6xpnOWrKKr8csAnWb9DJ01CRuB3ZqAOU6tbutUxZzSp/EVrspuEKnAyFAWn9NV6PXyRSSsqUldgAASmH2q60hDQqY/UUQy4LZrS52WsLOmlI5T4lNlcWOz0jrih0olMWOksEvh9TUkDsyWBLWETuWfRxpsWPTmZimrSR3hFCcvMtbAByx05U7ANpiB6jfiwFndQoLhrLcNTXZuPLKK9HY2Ig333wTV199NWgMXUTiZLuTultuuQVPPPEETNPEZy9+F82dakKnA8vOMaFTgWXnmNCpUiilMJBPDyY7VOa2aC1ilwmbkDEspBQzlkaBILOVINWv13fEFboKVjaGkkdMcqhCldDBuaFYWbnG1AgdIdKjC3mh08KiMHs5GVMQu6EQOkKpfLaOEzo3joLYEQoQfuSqithVhI59kFXFzivqcWTrVMSOktrzXEXsqqad0RA7LzpZO1Wxo57JzGMVO82sHQAlsfNO2h+X2I101o6XO1kGjENxxRVXwDRNPProo7j55puV2zEUbFdS969//QvXX389AODL523CrrvL3Rh0s3NxyBxQnZ3jT7wPNKzDXqPWCcXgs3NaVIROVeaASnauv9YnaQqwBUeuD5ZbfZ4cISHzIpOtK9cb6No1XSV0LhKvJ+4MXdXjstm6GMquQ5mhUxI7P6RGA3uEjoshLHYeoXNjS4odDRj1Lyt2fn0+dTJ2PLFk7Ari5VhKgFJDwPsyAmJXE8cG0jLlWAKUWwL6042Q2HmRydoZoBiX8982rqydrtypZO1mTfg4vva1rwEAbrjhBjz77LPKbYib7UbqVq5ciSuuuAKUUpxyXC9OO0GuY2ScpVZVRmf6MLt5ZWB2zgQVkqua7JwKXLnV75gT2ruAqdHvMS90fogMCqgqtw4RcZRgRXGzcyZqhQ7i2bpQoRPM1sWZoQsUOsFs3XCUXIXFzidL58awbKFsXaDQMaTEzv8DJCN2YWXX4czY+WXpeETFLnTVD5msXchLFxY7P9HlxG5HK8c2tAavO65ajvUiKnZh/dnjyNoB8ZVkZfjQQZfgzDPPBAD85Cc/wZo1a5TbECfbhdQNDAzgsssuQ29vL/bavYAvf34bAGBmhmC/uuWh+25v2bk0sZRPsLizc2Hl1hSxQ/vVDVW51Y/tqQQbla3zlltD2xOCUIYuQuxEhE4oWyeSoYsQu1iETpBIsQsROjdGRBk2UuhEYVm6sLYIiJ1IxlVE7CKX4ooQuyihY2hn7IBIsQvL0lVtp5mxY4OowsTOW3r1jTWM5dio5cGA4c/ahbEjZe2mpDLu71/46C+x1157obe3F9/73ve2i4ET24XUXXfddVi+fDlGjRqF7399s/tF3YAR+EeKeyBEFLNyK3FQy/Kax6Oyc6LIZOfSuYDBEq1FTN5z3ZCVW/0IKsGGllv92E4GTIQhLHQIz9YNZcnVd9swsdteSq5A7AMjIg831AMnAsquvm0JEbugsqvvtiFiJzrVznCUYkXW5gUQnbETfE2hwiUQY1jKsWGlVz9iKsf6yR0/SEKEoe5rNyWzSTjOUA+kMDhtSqeAH/7wh2hpacGiRYvwi1/8QvnYcTHiUvf444/jwQcfBCEE//XlhWhvjb6YjMRACIPYNZ1G48jOAYNCJ4yfbVWyc1mzLCx0fiXYqHKrH96bhUq5dXvP1skIXVV7OMwi0Li2LCd0Ptm6YSm5+uGTrRspofPN1kkInRvHR+yks3R+YichdO5xfcSOEiI92nWoSrGiWToeOzU0I2NFs3RV++iMjEWw2Ilk6bxxhrIcG1Z6DcJP7Lz3uyjGZHukj+uHn9jJ3l+HcyBFi3UILr/8chBC8OCDD2Lu3LnKx42DEZW6VatW4ZprrgEAnP3RLuyzV/jNYbizc2HwgyFk4AdLjPRgCL4EO5zl1kC202ydktDByZCxm6CbnbMV3l9O7FSFriZbp5qh48RupDN0VWKnIHRuHE7slMuuvmIn/0HixU5F6NxDe8ROZUJsXuxUhI6HFzvhLB2PX8ZOsTlVAiYZI66MHTB05ViR0qsfuuVYEzbGZbtcuQsbJBFFHOVYp016fyfRkuysCR/H5z//eQDAL37xC6xevVrruDqMmNSVSiX88Ic/RH9/P2btUcBnzuwO3V5H5vrsLPJ2Jra+czrlVjZYQncwRDpXRsPk7mEvt/rBSrBaQoftM1unKnR8W+Iotzpt0svQuWK3E5Vc4xwRq92PjomdQD+6MHTnsXObUxE7nRVO4irFAvFl7FSydDWhYsrYZbqoXiwmdrKlVz9iKsemUhY+NPVt9RiwXbHTWWM9zkEUJig6U2qCKZq1+9jxP8Q+++yDgYEB/PjHP0a5HEOfXAVGTOpuvvlmvPPOO2hubsa3L9oC0+eDUaAl5GlKOzvXYBTQZMinpL3MyK3CQU1LtMqtqwuteHvrWO3sXDpTRnNdXqrc6odhUFCT6vXvIkA5B5Qa1GMAgFEC0r3634DtFFCq0z+1SzpCV8EsUtRtjkHoUgSlxhgykLSyOL3O0GpKq9d1HWGIZcHY2qsZw4a5OYbykW3D7ItnNQ7lNWYrUAJYGf3PQRxLebmxdM8blrHT/OLGT1isAj+AQrfww/rZZTbrf75VSq9eKCX418apWjFM2Bib7ca07Hrt9ny06XXtGABweFbvJGZi92rRP45pAJdddhkaGhqwYMEC3HLLLVrHU2VEpO7dd991J+y76LxlGDO69huKI3R631wajAI6U9u0hc6mBkrUhEUNZDQWKl1daMWS3g605gbQ3qzeQTudtlCfLWld11Zta8HiNyai8J5Gag1wF+PWvfAbJSDdo1f6BZw2GGVoXfQpIbBNAsOiyG5Tf1GpAYrGNWXoLjROTaAcg6QSiyKzNabRWQaAjGa3gcqqFShpfKO1bZCefm2JAqVOCbdH41oR18zyhMCqzwA2RbpH1xgAOx2H2FGk8nqvL66Jhe0UQaaHan8BpIZ+xo+hI3aUAHaGAja0xc4wbBBClUuwjJJl4un1u6m3g1DsUbcGJqHaYpcmwH7ZNdgvqzdliEkMHJ61teTOggGbGoFi10YPc+evu/HGG7Fw4ULlY6ky7FJXKpVw5ZVXwrIsHHlwP+YcWn0RLdASeu1CLELXZAzAJLZWCtimBooVodOBCZ0NAkPxQ5dOW2hpzDtCRyiKlom+UiZ6Rw+rtrUgv6IJxNITMRpTqXNQ6CiooVYaIbZT5jQqfmCniFK2jhIymJmjQCpPkdsi/ya5QmezuNIhnP0qQkdJpY9eTu08ZEJHKABCQNMxLDVlEnWxYwKkI0K80FEKFFWX76KD7dAVOxvu31wJJnRuPDWxo4Qb7KMjdoS4femIrSl2MTidlSFuLKd0KR+UEsCqq5SmDSdjpyJ3lABFbglLXbEDEIvYMVTFLpd2LqJM7FTlznTXXdcXO5M4P3GIHZM7HZjY+cndnFkX4phjjoFlWfjJT36CUkm/D78Mwy51t9xyCxYvXozmJgsXfX4b+NH6LDtncZ/+6ekB7CHxh+Szc7zMlWCiJGELLDtX1FwlenWhFc9umeYKnSpudk7zW5grdNy5aGWBYpNcTD+hIxSQSWQaJSC7ZVDo3NiSYudm52qeEI8BeITOfRDSNyOv0KnCC53TPjWxqxI6hmHEInZKeEVOJVvnl6FTETte6LjY0mJXE0Nu91Akxa5K6BgqYseEjgulKnZxZem86Igd/7ts1s4VOs8uRklO7igB7GztuaMidg1jaieTV7lX8PuULFM7awcMil0ccqeStTu9YasnjlrWLoPBG5xN/bN2hABf+cxf0dbWhuXLl+O2226TOoYuwyp1y5cvx0033QQA+Mp529BWmb4kLDtnwKnPixCVnRPNtoVl59rNXoxNi3W4ZNm5MjVrhG5UXb9wCZYXOlVWbWvB4vkTa4QOQMXGxOKwC6Buho7PzhGtDvsBQge5bJ2v0FVIFcSzdWFCJ5Ot8wodH0NG7HyFzn1SP80qna0LWLFCSuzCSq4yYucndNwxhMXOzfJ5Y4jt7uLN0lXFokj1DmMp1kfo3Kckxc4s0nizdDXtERc7PktX85xsOTZkU1mxq6EidjJyZxj+J9xwl2MNQvGB3Nqax01CpbN2Z7e+6BPH+dlXQuzSpPZ9HMqsXXMjxVe+8hUAwF/+8hesXLlS6xgyDJvUUUpx7bXXwrIsHHrAAI4+zLlg+mXnVOCFThXR7FyUZIpk50RKsN5yqx8iJVg3O1cOLreKZOtEyq0i2Tpe6AKPJZCtCxO6wY0inke40DkbQOimJJKhExG7IKGTiQFECB0w/GXYiBUrhMROpA+diNiFCR13rEixCxI6N0b47i5hQsc2saLFzjdLVxVERuxCnpIRu2EYUyMrdoHPCYidt+waRJTY+WbpeCqlfBGx88vSeRERO1Z69UOmHGuGHEsma5cLicP62snInX974hE7b9buyL3Ox4EHHohisYif//znoHH1uY1g2KTuySefxKuvvopMJoMvfW4bihDvOxdWgg0qt8oSd985v+ycDENZbvUlIls3FP3ndBASOkRn6yKFrkJUtm6oSq6B20Vk6yKFjhFTGTZS7ET+3lFiJzMoIkzsRISOO2ag2EUJnRsj4nkBoXM3DRG7SKFzg0SIHdePLjSMgNjFVXYNytJVtydc7MKydFXbiWTsBK+FImIXiYDYBWXpvETdS6Kej7McG1dfu7Rk1s4/TnQ5li+9BsFn7QgBvvGNbyCbzeKVV17Bo48+qtVGUYZF6vr7+/HrX/8aAPDJD29EW0deKjsXVIKVHQwR1K+OCZ0oQSVYfjCECEElWNlya1C2TljoKgRl62SFLihbJyt0Qdk6UaFj2Gl/sRMVOmfj4EETskIXmIETFDoWI0jshIWOMdRiJyPwQWKnMsrVT+xkhI47do3YiQqdGyPgcQmhc3fxETthoXODBIhdSNnVN0yI2A112dW/Pf5ix4RONMsdJHaiWToeP7GLzNJ5CRE7kSwdT9B9JSxL5yVI7IJKr0GEiZ1f6TWIMLHz9qcLbotTjj00qzdIk8/ajSJH4HOf+xwA4He/+x0GBvSnnIkijmWXI7n55puxceNGjB1Twsmnbkae6qUz+HnnZLNzFjXc5U9sasACUcrO8ZK5utCKZX2jnD+mhP14S7BM5gD1kUtAReZWNgG25OhWQqv6WbkXwDj6z/XCGbGm2X+OWIrTnlR1jJaQOR5PGTY1QNGw1nJek+QpTcng6+CnLJHqd+eRbX7KEpVVK7Ybgs6RYSpfCB9b9jJmI7av0bpT/zhBADtjwJlrza56XCqMTZEacPYr5/gPWgxtVIDYQKaH1sxFJzsCnY2MBQXSfdyLUfioMLGzue880iPiObErjhoUD9EsHQ+7v1CuEbL3HF7s5oxd7D4eVnr1gxe7JYWx7uNhpVc/WDnWBvBaYTz3uNwX1jQx3YzdcwX1DywTu6mHfBfj7j8Ya9euxe23347zzjtPOaYIQ56pW79+Pe68804AwLmf3YhURk3oWAlWd6oSlq3TLbeybJ1uuZVl63TLrSxbJ9J/LgyWrXOFQfFez7J1bnbOVhsQwbJ1LDunejNjZVhloavAyrAsO0cseaHjqZqyROW9Jk62js/OqUnvEPWv0xExlq1jWTqlBnHZOpUsHRfHzdbFPR+dCtzACeksXU07Klk7wbKrbwhKq7J2w1l29YUOZu1Ey66+YbiRsSpZOi9GWSFLx+PpZyebpfPC7jUyWToevhwrm6Xj8ZZjZbJ01XGqs3aiWbraONVZO5HSqx82NWCkDFx44YUAgNtuuw0bN25UiiXKkEvdjTfeiGKxiBl7DuCA/dUn3AWAZqI/GAIASjSlPVUJAKwpyZVb/TAIRUOmqD26FQA2bG2SKrf6QqhzVsSQuDGL8fSfiwvVOfCqg3BlWN3+cwZgZcXKrYExiNMms2jrZ2/iLsPqrlpBKVAo6k8uzMRO9zzky7Cqf3u2n47QsRCVMqyW0HEYJVv7c09sinS/PWJZOi/sS47OZwzgsna6bzUFzJJ+e2AD6S2mUpbOS1yjY59aN106S+eFiZ1sls4Ly9rJZulq45g4NGthQWGCXpwpn8esWbOQz+dxww03aMWKYkil7r333sPcuXMBAGd/crNyhccGYFUuyDpCZ4KigRSRJnprsm20mvFS/64o2GmMrQtfszYMmxKUbQNZs4zGrN5M/5s2N8Fc2KC/QDQlsFNAuV5zIEMZMONYGtSWm/suOA6NJ3tAWDz9OFZW/+NnlIF0TxnUICg3aK7wULZhdPWD5PWmziBlG6SrF6SgGceyQQb0l9yCbYP29YP26mU1YNmgW7aCrInnm7aR11wb0iAoN6b1l94CkOq3HCHrieHDRgEjhjYRGl/GL9Ufz2c/juXSynWAYemLeLnJRs/aJu04TbkC0qb+3/2EcQuxvtSC9aUWrTjNZh7zi6MxvzhaK45JgAXFASwo6vVjSxMTFgwtsSME+PKXvwwAePjhh7F06VKtNoUxpFL3xz/+EbZtY8/ZA+jYLa8Ugxe60WYJnaaaRJmgyJGS+7uqHG60mrGiMNrNzqUV49iUwNb+ugZs2tSEnn93ILs4B1KG+ldASkBsMtjPS6eaUwZSeTjf1onTh00pDid01FBfEJzYFGah0odEZxQv313IBGzFUpVX6AzF6ykTulj6V5VtGD39Tpm8bCmLHSnbIN19YMtuqYodsZ0snTa2DZqvfLuwbHWxs2zQrm5QywaKJZB1imJnwO2/SGxbXewMglJT2s3Uaokd19dVW+zo4L86YsfOaS2xI0Cx0qeOUE2x4/uuaohduX4wlrbYEYBYBD1rm7Tkjl0S06alLHcGoag3C04fdRBtsSvRFEo0pSV22+wUStRAiRpaYveXbqcNumK3rf5UzJkzB5RS/OUvf1GOE8WQSd27776LJ598EoQQnHhW7UjRKGwAJUpdoQMAE46QycCyc0zodPAKnSp+QleXKqEhI3cT27SpCdklOZDSoPwYRSDVL9sjuCJz3EAAOyOfrSNlZ0CEK3QaxJqhK1Q3RknsfLa3U0Re7LwZukrTZMXOT+ioqZit44RuMJj8H7BK6BgKYjckQsdQETsmdJR1LqdqYscJHUNH7KouIapiR50sXXWbFMXOe3gKGGWF84jW/l9a7JjQ8TKmK3Z8eFWx81wuDIsoyV2pdbABxCKu3MnSlBv8fPByJ4NBKE6a8FbVY3GIHQAtsePvsUzsVOQuTwe7STCxU5W7c889F4Azxdvy5cuVYkQxZFLHlsbY++A+dE6Su2jx2TkvMtk6Pjvn95xotm6j1YxXB6b6Cl1Hpgfj6sSlNc4MXXZJzl98JIdQEk7meKysuNhVZee8u0hk64jtDK7we12y2To/oVMipOm2KSF2QSVXSbELy9BJi52f0KFS+pTI1vkKnQJDKnQMGbHzCB3DFbv1mzUbqiB2lSxdDbJiVxE6vz6v0mIXcliZjF1Q1llV7PziSItdwMebSM4uUK4Pfk5G7Eot/n0fVcTO76gqYlfv09dGRewajNo4TOxk5G6bz41CJWvHsnQ8FgzlrN168wQceeSRQ5qtGxKpW7NmDZ588kkAwJxTegAAW6wcRFZaChM6QDxbFyZ0MrDsXClgdKtJbIzPdkWKHes/FyZ0otm6UKGDRLYuROjcTQTOkCqh00AkOycqdlFCJ5yti9pGVFij+tAJvnciJVdhsQsQOoZoGTZS6ASzdcMidAwJsQuaCZ5SChQKYmLnk6XjERY7vuzq2yhBsQsRusE27aB97Liya1AcYbET+WgLrxoS/rSQ2BGE3rVlxI7P0vkdRkTs/LJ0PEzsROTOT+gYsuXYsPusjNjxWTovqmLH5q174okn8N5770nvH8WQSN3f/vY32LaN6TPzGD9FTKz8yq0qyJRbo7J1ouVWk9ihfeti7z8XInQMo0DCxU5A6ABnXqWwbJ2w0EXIT5zl1lReLEMXKXaCfzJqRPSvkxgUEZatk+lDFyl2EULHiBI74QxdhNgNq9AxosTOskF7ekJDCIldhNAxIsUuSujcRkWInYDQDbZJQOxELtkCYidyXkeKnU/ZNShOqp8OWzk2LEvHEyV2peZogyQWQc+6cLFryhVEvq8K9bPzy9LxxNXPDhArx/pl6WrjqJdjeVTKsZsyH8Jhhx0G27bd6d7iJHap27ZtGx588EEAg1k6RlC2Lio75yWoBJuGFVt2LqjcGkRQGVZW6IKydX795yLxOy4/IELwLQ8qw0pn6ALETlbogrJ1bnYujilUZBychJRhZUa5hpRhlQZFBL0GQaFzwwSInXTJNUDsRkToGEFiVxE6akXfREPFTlDoGIFiJyp0bqPCxU5mmqFQsZM5H0PETua8FhE70TihWTvZ7rIBpwo/OEKEILErtdjCd2xSrgygCJA70eaE9bOLytJ5CRO7sCydl6hyrOj9Nqoce0vPKKE4KuXYT3ziEwCARx55BN3d6jNo+BG71N1///0oFAqYMLWIaTOi/1CyQgf4l2BNUGQUUj3ebF1UuTUwjk+2blj6z4VQU4b1GRAhircMO5wl16D28GJHLLX+c77ZOpU/mZ+wqkxb4iN2qqNcfac5kRS6wWCePneqfeg8YkdsGrxG63DhfQ0SQjcYwkfsJIWOESR20pcSP7GjtQMjxNrkI3Yqn/2hLMVGlF3DYtWInerAdr9TRiFWjdhFlF1922IRR+48YhdWdg2MBX+xi8rSeYkzY+eXtRPJ0tXG8he7PjsrFceCgYXFcULb9reeiWnTpiGfz+OBBx6QOk4UsUqdbdu4//77AQCHndDrez1j2TrdciufrYu7/5zq6FaWrRPpPxdG1iy72TpVoXNhbRAstwbByrDaI1w5+dEtuTKxI5beHHRVq2doOHhVGVZF6NxAzj+GpT9tSVUZVlXoUD1wQntQREXsXKGLI7OqkqVz96WD2ToFoWNUiZ2i0DGqxC5oYIRQozixkyi7+reJEzudP5lH7FTPbSZ2ZpEKl13DYrlip/k9nBc70bKrH/zIWJGya2B7PGKn+vJ4sZPN0vF4+9nJZOm8eMVO9Z7rFTvRLJ2XIk1hQWFCpNwRApx11lkAgHvuuQeWFUPfowqxSt1LL72EdevWIVdvY++Dg1ePsCiJoe8cMCVVwvT0Zm2hM0GxxWrUnq7EWbqMamfnDEJh2QY2rm/REzoMZut0hI5BLBI8wlUqEIun1x4WI44JSm2TwErrXs0rceoM/YmFKzfjOOahoyaBlTWVhY5ByhaM3nwso1xh29uH0DEsG7SrR1noGJRSwLYAQ//SSmwbRrEsV3b1bRRAylRL6AbbFOPgiTLVPrdZCdUoQ1/GZAZQREHly65BEJto36mZ2Klk6ariAMiYFo4d9650lo5nKPrZqWTpquM4Ynf1lmnSWToeCwaKNBUpdo3TL0JzczPWr1+Pl19+Wfl4XmKVun/84x8AgP0O70M6YNDIgsIE/GnL4Xg+P95/A0FyxEA9SSOtaSrtZj92T3fjiLqV2K9+uVasEjXRYBYwti68c3UU/aUMevJZwCLa4mNngHIDBTX0L1ZWHUWhVTMIyxxQsZG1UdhpoFSvF4gaxFloO44LMAWMEtWSJ6Ay4GMghunrUclkDpRA69UvVABATQO0LgvaUBdLu+IQOlouo7xuPawuzX4pBgHJZYGs3ntUhUamju1v1aVh5vUuAoQC6f4yDA1ZZVBCUGo0Y/mslOsM9bVdPRCbIrtN/3wySkCmK4bzMuV8odZIQrkU2+LJ4pD6MjZsaY4lVr1ZRMHWXMEGwAH1S9GhuKAAz9TUVuSIhazmDbNEDfRaOawttmq36a51++PKlScHPp/OAMcffzwA4KGHHtI+HiM2qevq6sLzzz8PADjo6NqOxwsKE3Dn1gPxet8kDFgZ5Kn6CZEjBrIkBZMQjDUzmJRSOynazX50mhbShCBHiNbyYSVqIm+nYRCK0ZleZbHrL2XQNZCDTQkaRvVjQHKOP4adAYptNsqNtv46g4AjYQDKjRSFNvUYVbKj265KuVRH7FyhgyOZOtk6Z449WhFXKItdldAZRG91D4si1VNw+jtoSAY1DSCTdkrnKRO0UaOuFBO0XIa1YaMjh7alLnYGAclkAMMAMQyQenVpJZk06IQx3AOq9UCCcmMGIMT5Gw7ofrtzfnS+bFBCUGrihE7jvCzXOWseUwJtsWNfDg1LT+yMUiXzZ8cjdm4WUUPsCu1WPHdpAhCDwrYJ1m1pxnoNuTtq7OLB9mmI3cH1S5CBBRNUW+xYf3aTUC2xe6hnbwCADaItdgUrhb5yBleuPDlQ7ibs+1sAwLx582IbMBGb1D399NOwLAvjJhdrJhteUJiA1/smoWCnYVc+gf/u3UU6W5cjBlqMjCt0AGASovQimNDx+85Id+GA+mVScUrURL+VQZ47uQ1CYShkEHmhAwDTsNEwpk9a7OwsdWTO4LrUGQA1VTtmVf+qJHZeoYPTNuVsHfH8rnBf4IXOfcxUEzte6PjH5ONQmHnPjopi5yz4XnQXkaeGAbsxJx2nSuiA7ULsqoSOYVuwI6YgqYETOuf/6mLnCp239CordpzQuQ8pih2hQGqAu34oih0lBOUGnwyd8qAiPra62HmvH7pix9ARO+81RVXsYhM6AGga7KJEbQLbJkpid9TYxag3q0eqq4pdBoPnMxM7Fbmbnq5e2UVH7Ap0sITLxE5F7u5bv4/7e18548qdlwlTS5g+fTpKpRKeeOIJpTZ7iU3q/vnPfwIA9j20ui8dEzrb8+kr26ZUto7Pzpmei6Rsts5P6AAgLZmtY9m52khAe6ZPKlvnFTqGadiAhIzZWeqUW/1mM1ERO5/NKRz5kYkRdCOhhoLY+bw2OyWXrfMTOvc5SbHzEzonkNwNlAmdbz8jCbEjFkW6q+AInWekITVNKbHzCp37+AiKna/Qcc8Ji51X6NzH5cUuUOjcDUT/eLVC5z4lKXau0Hm/XNhOHzvRc5MJXeBnXtLHyrna90hF7IKuGypiZ/h0y1YRu6BriqzYUYXRroE0l0B8ut+oiJ1X6BiyYndw/ZKax0xQpayd3xyxKmLHsnQ8NohS1q5g1fbvCxI7VoJ96qmnpI4RRCynzaZNm/Daa68BAPY5eHAEyYLCBMzvn1gjdAzRbB0vdH6YhGCcmcH4VPTFPEjoGKLZOiZ0QciUYYOEjiFahnX7z4VcG4XFLmIwhFUnmK0TEBthsQvLyEmUYcOEzt1GQOyIDZgF6i90bBvBMmyo0DEExM7Nzlm0RugYomIXJHTu8yMgdmFCx28TKXZBQuc+Ly52kULnbhj1xwsWOncTQbELFDoegaxdpNC5B4xsEoDBsqv/sRyxE5G7qOuFjNj5CR2DiV2mOzpW1DVFRuzi6kcXJHQMGbHjy65+iIodK7sGISN23ixdVRwJsXuoZ++qLJ0XGbHjs3Re/MSuabfvAwBee+01bN26VegYYcQidc8//zwopZg8rYDW0RYWFCbg79sOwPz+iSjbwVeDsm1iXs8HQsUuSugYJiGhgybYgIgwoQOcbN0+mc2hYhcldIyoMmx/KYN1PU2hQgeIlWHtDGLtPyeySWQZViZTFdVukdclIHYiQidyzKrsXMRLjBI7IaEToEroIogSuyihc7cjBDDi6ewehYjQuduKTBEQJWECYicsdKKIrDwRIXZCQscQETvRrHxE08OEzj1WTP3sADGxCxM6Bpt6SUTsImMJiF3c/eiiEBE7v7KrHwU7HSl3YULHEBG76emNoSs5AYNiFyV3YULHEBG7+9bv45ul4/H2s2vvsLDHHnvAtm0888wzke2IIjapA4A9Z+fd7NyAlQkVOkZYGVZU6BhBZVh+QITICw4rw4oKnXvsgDIsy85ZgvPZhZVhZYUuNFsncd0KFTvJ0mNo/zqZ63uI2EkJHYIHTgSWW8OaFSB20kIXkK2TETpGkNiJCt1gm4whz9bJCJ2zAw3O1rEsnQghYqckdEHvKcvSiYYJEDspoWMEiJ3bj06GgJcnInTVxw4WO5nuGmFiJyJ0PGFiJ3NdCRO7oepHF0WU2IkIHU+Q2PmVXYOIErsooXPjEBqatfMruwYRJXZRQsfw9rM76qijAADPPvuscFuC0D59CoWCO8dKeq/myOycH94yrN+ACBFYGZYXu6hyaxDeMqzfgAgR/MqwUeXWIPzKsO6gCMkvtr5ip/BF1Ld/naTQVbXJ+4dS7Ijt3U9W6Nz9PGVYFaFz9/WInXKGziN2KkLH8IqdtNBh6Muw0kLH7VcjdlFlVz98xE4rQ1ez8kh02dU3jEfslISO4RE74bKrb8Oq/ysrdINtqBU7lYFVcQ2eAPzFTuW64id2w9GPLowgsYsquwbhFbuosqsfQQMowsqugbF8xC6q7OpH0ACKsLJrEEzs6qdcAcApwRYKevPgaJ9CrBH17cDKtgnSQgdUl2HDBkSIwI+GVRU6oLoMGzYgQgS+DKsqdEB1GdbOUmfKkog+dGFUiZ3GNa+qf52i0FW1ib3NGhUYfuCEqtC5baqInY7QMdiXS+2Sa0XsdISOwcRORejcGEMkdqpCx+/vip2K0DE4sYul5MreY0Whc8NUxE5L6BgVsdMSOrdhg//qdAnhxU5nXkuv2Mlm6Xh4sdO5rnjFbrj60YXBxI7JnWjZNQhe7GSFjuEdQCFSdg2M5RE7WaFjeAdQiJRdg+grZ/BnegJGjx6NQqGA+fPnK8VhaEvdK6+8AgDIfaAeluIbBMCVQdnsnB9jzQxmZnqUhY7hlGtt6eycH+2ZPtSnispCxzANG/UdfShMKFVNWaKF5pdYtwzbqid0LopTlHhj2Gmg2GhoXXirQtp6QgcAoIBZtGPpQweDOO9TDGtpwlAXOkbsYmdZsLd1KQud266K2CkLHYOJXV1dLH3oqGFoCR3DETtNoWPYgFmw9ISOQfxHuqpQM82PAkzsNKYjdYm7j91w96MLw7YJaOXGoiN0jIKdliq7BsHETlXo3DgVsZMpuwbBxE5V6Bj9VhYHHnggAODFF1/UiqV9Gr3++usAgLpd9WaZ77My+MfmffFAf4dWnMWlMub2j8YTA+OxtCQ/JxfPqnIKG61mjE7rrRABAOsLTVjX14yUqXdC2tT5wJGU/kWOWARGkWjLRWqAoGElQVZ/4A6MEpDdRmNZrofYgFmKJ06qEE/5hpqVmfTr4rnZ2SZBuUVzFQQDsHMp2PXifboCoRSkP68tKq7QASApvQsmCIHR2ABa0l8fGoYBUApjW692KGJZTpZVF0qR2pZ3JpnWbVPZBmyK7CbNdlEg01VGblMM73klXqo/nhVW0jEtBUYNIK05XywlTqUj1Wsg1a27FhiAhjKoHc/AJQrgyQ0f0I4zJt2N5dz6rDo0GUWUYliK6N/5yWhP9WJcept2rAdX7YXNffpfZA844AAAcGcSUUXr3env78c777wDAFg5erJynD7L6TTYX87gvk2z8Y8+tRNgcamM+YXx6LOdvm9FqH/dXFVOYUFxPErUREeqR1ns1uab8cLGqVjaNRoWJUiZFjIptTS0TQksy/mTZetLsFvVv3ISi1TNoK4qdqkBgtxGZx1HQzNjZJSAbI8zf5ZZ1BM7d01YgdGpoXFsIJV34lBCoJGMBjUBO+2UTa00QVlzeTMAgEFgpzTEzgBo2gQlBHbKAK1TT2sS2wbp6R/MrKmKXUXoqBtHr8xptjQ7MSwbVLO/ikuprCd2ZdvJrJVtPRmjFKnuvJOt1YxFyoPSRCyK7GZFIaNAprsMtr5r3UZ1sSMUyHRbblwdsbNN53wkNpAa0MxmVT4mhkX1xc6oXINtqItdRehQydLpit3oNud+ly+ntMRuTLobJmyUaArvFsfi3eJY5Vj1Rglm5WKuK3Z5mnG6RRGqJXZzV81AqWyCUqItdhcudUa+Llq0CPl8XjmO1jvz9ttvw7IslBvrsLowFm9skVshos/KYFOxAX3ljFuSzFsp9CsspsuErsjVDVaWRmGxQraOFzqGititzTdjaddoFCwTlmadlBc6ACCEItdUUBI7XujcxxTEzhU6TuZU5ZAJHV9qUxW7KqFjqAxs4ITODaModrzQMeIUO6VyNSd0DFWxqxE69wnJhnmFDnD6wqlk63ihc+NvB2JXtmv+ryRjTOj4cLqSyEHKtrzYcULHUBU7V+g8n2MVsWNC58bWEDtvdw5VsWNZupp2yYqdR+jc+Ipi19He48y2UEFH7Ezu5CzRlCt3svBCNxhP7dr5r4EpVf/XEbtSedARmNipyN3StaNRztVj9OjRsCwLCxcuVGoPoCl17777LgCg2NECahlYvaFVWOxYdq7sM6XH41tmSGXr/IQOACxKsKQ0Rkrs/ISOISN2TOj8ZE42W+cVOoYrdm3iF0w/oVPBT+jcY0jG9hM6hozYEcu5UNcIHUNmChIfoXPDSIqdn9Ax4hI76TKsj9C5sSTFLlDo3A0Eby5+QscwTTmx8xM69zgjKHZeoeMel5IxP6FTjYXqLJ33cWGx8xE6hqzY+Qodd5w4SrFM7GTkLqh/rqzYMaHz8xIlsQvoRycrdl6hY6iI3ZiAN0RW7PyEbjCW3Pv0r4EpyNPabiYqYjd31Yyax2ile5SM2C1dOxq0bACEYObMmQCAN998U6otPPFI3ShnpAy1DJTs6JBM6IIGDOStlHAZNkjoGKJit6qcwhMD4wOFjhF0cvGECR1DVOyChI5BCEWusRgpdsQiMPPhQiearQsTOjeW4HUyTOgYImIXV7kVCBc6hqjYhQkdIxaxkynDhggdQ1TsIoXO3TDi5hImdAxRsQsTOvd4IyB2QULHPS8kY2FCJxsLwULHPx8pdiFCxxAVu1Ch444nKnbeLF3VsWwIZ+2iBlyJil2Y0PHtEhI7lqULO55NhOQuSOgYMmLHyq5BiIqdQezIe26JGkJyFyR0g8cSF7tHVu9ZlaXzIiN2tDzY9t133x0AsHix2jQyQFxSN7rFfWzDpubQbF2U0DFExC5K6BgWJaH961h2rt/OhgodALSnekOzdSJCx4gSuyihYxBCQ0c8VfWfi7r3RoidiNC5sSI2MYvRQicSy7fcGoTA648SOjdUhNiJCJ27bRyrMoiInYDQMaLETljo3B0CjikidIwosRMROve4wyh2UULHbRcqYyJCJxoL0ULHbycidlFEiZ2Q0HHHixK7MKGrOm4M/eyAaLETEbqqNoWJXUDZNfDYIWJHCEKFjiEidlFCxxARu5zE+q1RYhcmdAwRsXtk9Z4olKK/XIqI3dK11X7zo+XOnL9Lly6NjB+EstQVCgWsWrUKAFBsH5ywMKwMKyp0jDCxExU6RlD/ulXlFBYWOyNljieoDCsjdIwgsRMVOkamzn/ghEq5NUjsZITOjRWwqVkE0n1iQgcARhm+2TopoWOEZCpFhc4NFSB2MkIHALaJoR84ISF0brsCxE5a6EKglIoJHSNI7GSEjhGn2FnxjM4MlDFKncdlDhMidqJCx2/vK3YsSydIkNhJCR137CCxExU69/ghYiczLVKQ2MkIXVWb/MROUujcNgSIXXureBeCMLETFTpGmNiFlV2D4/m/ud5+dGGEiZ2o0DHCxM4tu3KU2psAACtXrkSxqDYCXfkusnbtWlBKYadTsOuqDdhP7GSFjuE3cEJW6AD/MiwTuqBlysLwip2K0AUhK3QAYBgU2cbqgRM6/ee8YqcidG4szy5M6KTmtKMUZqla7JSEzo3naaOC0LmhPGInK3SMIR0RqyB0DK/YaQmd9/iWBdql0MvcK3YqQue2ISaxs23/bJ2kPLF9qmSMCZ3KCHMfsZMVOn6/KrETKLv64RU7JaHj2uAVO1mhc9vhI3Yq81x6xU5F6KraxIudotC5bfGI3ai2XqRNuRkZgsRORugYfmKnInSD8arf5Kiyqx9BYicjdAw/sfMTOgCw6nNobGyEZVlYuXKl9LEADaljByw31/uWVfj+dapCx3hi6x74R99oLC6V8UDfKGmhY/BipyN0DCZ2a/PNWN49Slno+GyditAxeLGLY0AEEzsdoatpY0lB6Bic2GkJnRvP+UdH6GpCKgodI26xs5ozWkLHYGJHbBukb0AvQ8faIVN29YOJnY7QMeISO28ZVlGe2L6pnoKe0HljQV3oGK7YKQodoyZjp/lZZmKnKnQMXux0Ji6vETudmXlsINVjaAud25aK2KkIHcMrdkEDI0RgYmcQW0voBuM5b7aK0DGY2DG5e2T1nsrt8Yqdn9ABAAjBxIkTATiJMxWUTzNWei21NARus2FTM17aOElL6ACgv5zB4nwnlpfb0GdnlISOYVGCdVYL3iu3aQkdY12hBcu7RwkNEAmjLl1CXaakLHQMw6AwMhZoiuqvWADnYmIU9YWOUCdDl+lVFDoGpTDKgFmIR8KI7WT8tFfVIAR2hmgJHY9ZiGHJIMOZe87OprSEjkFNAppJxVNmtG09oatAMhmYYzr0hI4nE8PyI0zsNOUJAGDbIBaNZdUQSgj6JmhOVF2B2BTFRkP7c2OUKeo3lAbnotOk0BTPeUAoUGzS/8wYFkW6p3bqEqU2sbdIU+gYY0Z1Kwsdg4ldv5VRytLxlGgKCwvjtIWO0WEQZaFjsLns7l8xUylLx8PEztuPzktnZyeAEZC6DRs2AADKjcErSVDLwIZNzVi2bZTqYQAAezStxz71K5CGhQZDb6bznFFCjpSQIRaaDPUJ/gCg1ezHiS3zceiYZVpx0oaNulQJTdkCmuv12lQspGH3pkEzFGXdCwlFPEsPwfmWWmog+hdKQgYn69Qd5cpGyhInu6YDNYFSHalZgFy5bWWqLXbEojCKtjMII46BGJV1QbWhFLRUAsnpCQYxTRjNTSCpFEhWczUM0wBpanSyiLpiR4izpFghhtUiAOf8bNR7fTRtomuPJlgZgt7Jeqv/wCDonpqLZ3APACtn6MciQP+YlHOdqY8jlgEYQDmneV0gQKENIDGt8gAAtE9zhRUAYzu6kDUtmJoXUQJgr9a1sGBgWUFvNSgAGJXqxTqrUTvOeJMiTQyc1vCudqzfLz4ChVIKJUt/7Tz66Cg0Px/++WNSt27dOqVjKEvdli1bAAB2fcSF2SbYvKUR73W3hW8XwB5N63Fo4yLkSAkmsdFkDCiLXc4oodnIw4ANAzZMjTXkWs1+dJjdaDby+GDzfBzVqba2HRM6ADBAtcSuWEjD6kkDNkAJBc1qiB03NYiVAwqtGmuCGpWSpAGU6wgKLaqzphPY/OdKYDRvYCiqtz8PNYFy1pkAmL1WVcwSRXarcz7oiB0TOlYmpQRaYkcq2TmaNmCPao7YOgRKnTInpYBpwqhTW8qPCR3MyglhmupixwsdoCd2hABp56ZLLFtP7AzAanCur9QgsOvV2sQLHSWAldUQu4rQ2Snn89w3Tk82yw2mI3TEyQTrwK4NWmJXETq3GKQhdpQA+dHEiUUBo6z3+krNzmeQ2ERL7JjQAU4mSlXsCID9Rq9Enelcr0rU1BK7zvQ2pGHBooa22KUrmfsmI6UldtcvOQL5ovO5oxRaYkcfb0eqz5kXseXFYG/6zYo3AAwmzmTRljqrTuDbtk2waXOTtNjxQsdQFTte6NzHSEkpW8eEjqWJG0hRSex4oWOoih0vdAxKKJRWGuCEDgCoQVGuVxM7V+jI4P+VxM4rdFxbZa9JfkKnKmO80OnGYkJHytxgEAWx8wqd2y5FsSOecqudTamJHS90DAWxqxE6Lpa02HmFzj2IgtgxoeNiKYsdEzr+vEoZ0mLHC537mKrYcULHsDJEWexcoWOoil0lS8ejJHZeoWMoiF2V0LkPqotdqdkGPyuXjthlPSVXFbHzCp3bTkWxY0LH0BG78Wb1a1EVu+uXHIH+QvXnTVXs6OPtSPcOtouJnZ/c2Tnn89TV1SV9HEBD6rZu3QpAUOoAabHbo2k9DmpYUiV0DJPIZdn8hA4ADNhoMApSYucVOoas2PkJ3WC7HLFrrBPruO0ndAzpMqxH6NyHFcTOK3T841JiFyR0bkBxsQvL0MnKmJ/QqcbyEzoXS1zsgoTObZek2HmFjiEtdn5Cx1DJ2HmFjntcWOyChI4hU2r2ETr3KVmx8xE6hozY+Qmd+5ys2PkIHUNF7GqEjiErdhWh87s+SIkdAfo7fISOISF2lAD5UcQ/loLYeYWOoSJ2Yzv8RUFG7IKEjiErdl6hY6iIHSu7elERO6/QMWTFzit0DLaaiVfs7Kxz3GGXur6+vqoGCFERuxVd7aGbMaFrMIKlpp4UhLJ1QULHkBG7IKFjiIpdmNANtouiJZePzNiFCR0gWYYNEDr3aQmxCxI6/nkhsYsSOjdgtNiJlFxFZSxM6GRjhQodKu0VELsooZMlSOgYwmIXJnQMQbFzs3RhiIhdlNAxRLJ1IULnbiIqdiFCx5ARu7A+nsJiFyJ0/HFExS5Q6BiiYhcidAwhsWNCF+VHAmLnCl1YLAmxCxI6hozY8WVXP0TELkroGKJiFyR0DBmxCxI6hozYXb/kiNDnRcUuSOh4vGJnVTJ13d1qo4mVpW5gYAAAQFOSqUiboBwywlNE6ACxMmyU0DFExC5K6BhRYpc2bGRTYhN1GqAgIR+yKKFjCIldhNC5mwmIXZTQ8duFip2o0Akg04cuSsZEhE40VpTQMaLETkboRLJ1UULHiBQ7EaFjRIhdYNk1IFag2IkKHRBdhhUQOnfTKLETEDpGlNixLF1knCixMwh6poQLHUNE7CKFjhEldgJCx4gSO0ogvpZziNgJCZ27cbTYRQkdQ0TsooSOISJ2UULHiBK7KKFjiIhdlNAxRMTOr+zqh4jYRQkdIzVA0fJvR+zsyvWGJc5kUZI6SinyeUeA7LT8Xberq963DCsqdIwwsRMVOkaY2IkKHSNI7JjQGRJDthszRd9snajQMULFTlDo3M1DxE5U6PjtfcVORegCpE1lUESQjMkIXVQsUaFjBImdSoYuTOxEhY4RKHYyQscIEDspoeNi1YidjNC5Bw8QOwmhc3cJEjsJoWMEiV1Y2dU3TpDYVYTOkuhGECZ2wkLHCBI7CaFjBIodAQZGS94GfcROSujcnYLFTlToGGFiJyp0jCCxY1k6GYLETlToGGFiJyp0jDCxExU6RpjY0cfDK5JeUv0VsTOd11IqicmzFyWpK5fLsO3KaDiZiyzDp3+drNAx/MROVugYfmInK3QMr9ipCJ3TptqBE7JCx/AVO0mhc3fzETtZoeP3qxI7nQydR950Rrl6ZUxF6IJiyQodwyt2OiVXP7GTFTpGjdipCB3DI3ZKQsfFcsVORejcRnjETkHo3F29YqcgdAyv2MkKnbufV+wUhI7hJ3bSQsfwip2C0DFqxE607OoHJ3ZKQuc2qlbsZIWO4Sd2skLH8IqdaNnVD6/YyQodw0/sZIWO4Sd2skLH8BM7kbKrH6l+iqbXnWufZVmwLIW/nfQeXhQ+pwCqpjpRFToGL3aqQsfgxU5V6BhM7D44fqGS0A22aXDghKrQMarETlHo3Fic2KkK3WCsiti1Gvol14rExTFtifu6NITOG0tV6Biu2A1Y2n3oeLEjmn3xXLHTETpGRey0hI6LRerr1IWOwcROQ+jcUEzsNISOwcROVejcOBWx69mlTlnoGLzYKQsdg4kdAfo71ISO4YqdjtAxKtcsZaFzGzUodqpCx+DFTlXoGEzsCIB9R61WEjoGEztVoWPwYqcqdAxe7FSFjsGLHf2nmtAxUgODN/feXvE1eRlK7wjhL2Y6N0zLQKGUgklsZaFjmMTGKLMXY8weZaFjGLBhgcCihvbs1g2kiBZzQFnoBttEYdkEVt7UnhCYEme1Cd15kwBH7KgBgEJ7JQVqIL4+dDZglPWEjkFJZekh/bcLRokiu6moLHQMQuGszBHHoAibwuwvAjorfVSghgHYMQ3WSKVgtDTrCR2DED2hY1AK2tcfSyxStmB098dyXlHTAM2a2pNfU+IsVacjdAwrQzAwJhPLJMXUBAqtJmz9eXcB4qxkoSViFagh0R8vNBCc8yCOU90mIIRqCR3DIBS7tmxCQ0p/Cb0SNbWEjmFRAx2mrSV0jCYjhUUDY7WEjkEpYD3djnSP3rWPchcEVhGVQVvqdL7d1zfn0dnUgwXd4/BC327KcQAgTSzkiLNaRM5Q/0YBAD12HbaUG7Gx3IR1VotWrH8NTMPc9XuhqGkrWwbqsW1bA4hJgbSmIOYNpHsMEAswLL0LbmqAILeFwmBrseq0q+wsJaa7ugOhTlkSlEJjfunBeLaztJkhNr4lELNAUb+2AKNsawsUNQjKDSnYWb3zilgUZk8BpGTByOt9bohlw9zS7aymkNZflYHkckBKLyPGoKUSMKC3WgtsG3RbF2i5DNqlvs6l0yAKFEtAoYj02m16sQAYZWc5sZbleq+R2EBum4VcVwxCUKawU0BJcy1jZzUaA9QANJJFAJxrQ7bbBrGBhrX6FwczD2S3aIeBXbmmp3piWOas0XmTVm9q1Q41uWkLsoaFbSXNVUgAHN74rtaE/4xZma1Ig6BE9WP9fPN+KNgpHDThPe1Y5nMtSPfG8GWBu941NsrP1ad0BhmG4YpddoXaxbu+OY8JLV1ImxbyVhqvdE1SFrs0sZCBBYPYMIiNDCxlseux67Cx3AQLBiwYWFdqURa7fw1Mw4PrZqG/lEbJMpXFbstAPbZsbQCtjBomaVtZ7Iy8gUy34a4jqCN2qQGC3Gbqrp3qSJliu8qAmXdKwrapLnau0DE0xY6PRSx1sasSOlS+DCmKHTUIrDrTySCmiLLYuUJX+TZIyray2BHLhrmpGyhXTizTVBc7JnT8Cg8aYkfLZWeJM9tWFzsmdGxljWJJXeyY0LFv4fmCltgZpUpmlFKY/WVlsSM2kO22YJQpjBLVEjujPLj2NDXVxY4XOqeNVFnseKEDnGuVjtgZBedzbJSpltjZaepma4mlKXaNJZDK2rC2RbTEjgkdANjU0BK7wxvfdatxOmI3K7MVOS5DpyN2P9+8HzaXnLXrm1J5LbFjQgdIjqb2IdvjnOCmaSKVkg+knKmrr68HALS8W0R2udwajrzQMVTFjhc6hqrY8ULHUBU7XugAJ7uuInZeoWOoiJ1X6NxYCmJXJXQMRbFjQsd/1lXErkbo3HapiZ1fLBWx8wqdG0tB7HihY6iInVfo3McVxK5G6BgqYucVOu5xFbFjQgdAXew8QufGVhE7r9AxFMXOFTouvorY8UI3GFtN7Hihc5ulIHZeoRtsq7zYeYWOoSp2TOjc/yuKHS90bltVxY4TOje+otjxQufGUhQ7XugYKmLnFTqGitjxQsdQFTte6BiqYpftsUEs5wZTV1dX3dVNEOWvBA0NzhtiFotofceWEjvDsKuEjiErdn5C5x5DUuz8hI4hK3ZeoWOoiJ1lkxqhY8iIXZDQubEkxM5X6BiSYucndAydjF1tu+TEzlcOuedExS5I6NxYEmLnJ3QMGbELEjr3eQmxCxQ6hozYBQkd97yM2FUJHUNW7AKEzj2GjNgFCR1DUuxqhI47jtlfRvMKsX5QfkI3eAw5sfMTOrdZEmIXJHQMGbELEjqGUZL8EuoROvdxSbHzEzqGtNj5CJ17HEmx8xM6N1bQHySAQxsXB/aXlxG7IKFjyIidn9AxZMXOT+gYsn3Msz2Vc5Q6NxeWOJNFW+pAy0gVqLDY1TfnMa6pJ/B5UbELEzqGqNiFCR1DVOye75/uK3QMGbHbMlCPru7wP6yI2EUJnRtLQOxChY4hKHZhQscQFbvALF1Vu8TELjIOxMQuSujcWAJiFyZ0DCmxi+iAKyJ2kULHEBG7KKHjthMRO1+hY4iKXYTQuccSEbsooWMIil2g0HHHMwSWlgsTusFjiYldmNC5zRIQuyihY4iIXZTQsW1Es3VBQuc+Lyh2YULntktU7EKEzj2eoNiFCR1DNFt3aONiNBkDoduIiF2U0DFExC5M6BiiYhcmdAzRbJ0rdMDISV1zszMnFbEdCxcRO7+yqx+iYhcmdPw2YWInInSMKLFjgyKChI4hInZbBuqxZVsDaDm6XWFiJyp0bqwQsUsNEGS3RAgdI0LsRISOESV2QkLntiv8mMJxEC52okLnxgoROxGhY0SJHcvSCbUpROyEhY4RJnaiQidIqNAxBMUuSujc7cLETlToGBFiFyl0bLuyHZqtExG6wWOGi52I0DHCxE5U6BhhYkcokOkJFzqGSBk2Sujc7SLETkToGJFi11COFDr3uBbBms3BSQkRoQPEyrAiQscIE7sZgkLHCBM7EaFjNKXCrwsiQgeIlWEzvdXnKLGdY7e3y01ezFCWuo6OymSC9uCLZ2I3+slMjdyJCh0jTOxYlk6UILGTETpGkNgFlVyDCBM7GaFjBIkdsSEsdO4+PmLHhE6qP1mA2MkIHSNI7KSEzm2X/7Gl48Bf7GSFzo3lI3YyQscIEruosqtvm3zETlroGH5ipyJ0Idk6IaFjhIldJUsng6/YyQodI0DsRIWOHTvVV/IVOxmhGzy2v9jJCJ3bNB+xkxU6hp/YMaETcBSXMLETFTp3+wCxkxE6RqDYNZRBTLnzygq4p4gKHSNM7GSEjuEndjMyW9GgMG2Jn9jJCB0jKFsnKnSMILHL9NrI9Pqco5bzeR09erTwMXj0pc6qviCmChTZHrsqaycrdAw/sRMpu/rhJ3YWiJTQDe5XLXayQsfwEzsVoWN4xc7IG0j3qv2JebFTEjqGR+xUhI7hFTsloXPb5WmDYhigWuxUhc6NxYmditAxvGKnInTuvpzYKQsdgxc7nQydj9hJCR3DT+wEy65+VImdqtAx8gWk1w2KpZTQuQ2qFTsVoRtsA0W2mxuUpiB0btM4sVMVusFgg7+qCB3DT+xkhc7dr0yR3Tr4fxWhY9SInYLQMbzZOlmhY/iJnYrQMXixUxU6P36xZV9poQOcbN3+46uXRTOflxM6hlfsmMz5vu2VRNmoUaOkjwPEIHXE9v8Dsqwd2ZJWEjoGL3aqQsfgxY7NRacKE7v7umYrCR2DFzsdoWMwsZMtu/rGYmJXETNlKvun+6my0DGY2GkJnduuwbboTlJMLIp0n57QVTVNQ+gYTOx0hI7hip0NdaFjmCZIJqNfcuXETknoGLzYaQgdgxZLoFu79ISOUXI+eEpC5zZoUOx0hI5hFm1X7HQ/N9R0ZE5L6OBIl1nSEzoGL3aqQscwSo7Y6Qgdw72Wawgd4GTrmNipCh2DFzsdoWOYxI5F6ErUhgWKX2zZFxuKTcpxWtMDrtiZz7doTSzMxM43O8dx9IETAYxApm78+PHOL1Zf4Db9YwzQDMWa7mbVwwBwxG5ruR55O60sdAyD2GggReSMolKWjseCgXqziLZsv1YcCiBfdjQ+ndGc4RYAUjaoKV929YOUgIjuBUJQw1mCyPZf61s6ls4NoDpYRew0V0AgtnMBt3L6U8JTk6DUmNJeoQNwLiSEUi2hYxCLwihozv4KOCKWzbgLV+uiJXQMbnUOHaEDAJJKwZ46HnZHq16bKthZU/v8dEbEllC/sawldAyjRJHu1z+ngMrnOY7ulNSJoyN0DKNEtYUOACghKDUAZiGuUfzQEjqGVTaQL6e0hI5hEooBK60tdIDTJSquDF2J2lpCx2hND4BSor1SBAA0rLOQ7gv/+61c6UjkpEmTlI6h/O5NmTLF+aXcG3jBsTMANSh6NzRgxdY21UNh18ZN2Kt+NbbZ9VhTbsM2S21UCACYoEgTGxPMLkxKb1aOAwD9dgZ5O40p9VswoVGu/w2PTQnKlXXj6nNFZOqLEXsEQykASkDrLRTaNG9OlpNhs1NAuV7/osTWPrVy0dsGtok6AmWbBHYqhgslP8FtDNhZA6VG9dUU7JSBUnMa1CTVC5krQCwKM2+BmgbsBrm5JIODEtAGjdnlCQFS5uDvOktIUeqsFBHD8mbENIC6HGAYMFrDR7iHxkmlYO86HnYuBasuDXusWmdnAEAqheLUDmf1kEbNb0OEwKpPwyjaMAr6UmBniPtFJg60M36EwMoAIEChWXMFCwLk241YhK7YAncZRV3KDRSggN2jv6RVc/MALNvA21vHasVJGxYMUNjUwKPds7Ri9dh1sKiBFwrqrsCwQGEDOH/0M1px5q2ehnmrpwEAth6mfl8GgMa1FoxSRKWKUqxevRoAMHnyZKXjKJ/9nZ2dyGQyILABuzZT1T3JRP+ESustoiV2WaOMHCnBpgbydhrb7HolsWNCx/6dnNqqLHb9dgZd5XrYlCBNLG2xc9toUGWxY0LnBKKwm9TFjliVHwqAAFZWXeyoiao1KVXFjgkdu0DaKU2x85vgViWMPdhnkBKiLHau0FVEhxrqYseEjt0s7YypJ3aEgFZ+kE6piR0vdPxjKmI3BEJHTcN579MpJbFzhS4z2HlGWewqQmdnKn3OTA2xIwTlhsHzitjQEjsra7iXmTjFTlV8eKEDnC+hqmLHhE53jdkqoQMACph59WtVuYGCms4bRCyiJXbNzQNIVbJ9hXJKWeyY0DH6yurXFyZ0ANBnZ7XEjgkdAHSYtrLYzVs9DYVSCoWSczLkGtXXv2VCxzDzAZ8/ewDFYhHpdBpjx6r9XZSlzjRNTJzo1H5Rrp53rnuSid5dbNgZruEVsXtvW6vUcaY2bMFe9aurHrOpIS12vNAxVMWOF7rBWBYm1W2VFjs+S+e2VVXsvDUMVbGzOaFjMLGrk7swuULn2U1W7LxC58ZRFbuwCW5lwjCh49qlInZeoXNjKYidV+jcY6iKHZM51iYdsQuIL8UQCZ0bXlXsDFIldG68tGRJ3iN0bhwVsfMInfuwotjxQlcVKwaxIxTSYucVOoaK2A2Z0LmNUhM7XugYqmLHCx1DRey8Qsf4Z/de0m3ihY6hKna80DFUxO7ZNbu6Msez5VD5ZItX6IDKfcNP7MrOIKtJkybBNNW68mjlqadPnw4AIKVt7mO+QsewCHrWNwpn7KY2bMEBTcuQI7X9eFTFzous2PkJHSNrlKXEzk/o3LZKil1gpUBW7Gyn5OpbDiGAlRPP2AUJnXso2YxdwGuUFjuRCW5FwvgIHUNa7AipufG6sSTELkjoGNJi5xE6t02yYueXpeMRzdYNsdC5h5EUO6cf3Tjf5+yUIZ6tCxA6t10yYhcgdO7TkmLnJ3R8rDiQEbsgoWPIiN2QC53bKDmx8xM6hqzY+QkdoxhwH/IjSOgAoLtcJyV2fkLHkBU7P6FjdEj0Q3x2za7IF/3f17qmgpTY+Qkdw0/smEvtsccewsfwoiV1e+65p9OQ8jb3MTsDf6FjCJZiw4TOPZag2LEsXRBM7PbPLY+UO5savkLHEBW7MKFz2y0jdmE9jStiNzChHCp3rA9daP8WwVJslNAxRMTOzdKFxREVO9GsUMR2YULHEBU7O2Wg1BR+NxERuyihc48nKnYBQue2SVTsooSObRMldsMkdO7hBMXOr+zqxc6losUuQujcdomIXYTQuZsJil2Y0DFi7V8XESpK6BgiYjdsQuc2SkzswoSOISJ2zc0DoUIHAJQSoWxdmND9//b+PNyyqr7zx99r7X3mOw81MRUFBcVQIMigDALSKoKo4BeFn8YQ7N9PTZvY5rFj4tNpTEyr7SwGp3wdEhXBTmuIhBZMNKiAgswyFjM1V9353jPtYf3+2Hvts88+e1hr7VN1qy7r9Tz3qbrnnL32umd8nfdnDRxRsUsTOs6Sm/0+5YClCh3nP0/8KrOtNKHjiIpdmtBxop9rr97sedGxxx6b2X4SuaQusElrFmCsexxdGhlit2Fgb6bQcbLELq7sGkeBuBik7dTUru4WsSAQLWWJnYjQcbLEjjGAuQKiYjCg6GamdkIDljPETlToOGlil1R2jW3HJN4M235MoAASxU5E6DhZYpdUdo1tK0XsRIUuOG+W2GUIXdCnLLETEbrwbZPuh/0sdMFpM8ROROgAX0LSxtcJCl3QXprYCQpdcPMMsRMRuqCd/SB2okLHSdq4hxGgMU73r9AFnUoXOxGh45CUrR25zKUJHSerDCsidJwssRMROk5aWsdlTiSHW2M4qWInInScLLETETpOkNYxhieffBLAMkrd0UcfjUKhAMLaWFzVSC67xuGL3aPPHtIjd3xihChJYicqdGGSyrFpZdc4ZEuxaSSJXdfECOHG4suxfGKEMAliJyt0nDixkxG64PyEJKd2qovchn+VELquPsWInYzQBW2liZ3k52mi2AkKXdCnJLGTEbrwMdH7Y5mELjh9gtiJCl2YWLGTFLqgX3FiJyl0wWEJd62o0AXt7GOxkxU6r6HetC6czu13oeMkiJ2M0AVNxaR1WelcHEliJyN0nHk7/ouejNAByWVYkXQuSpLYyQgdpzLYO3FiYIcjJXRAqAzrLGJ2dhbFYhFHH52+RWoauaSuWCzixBNPBAA4xd3iQsdxCNCkXald3MQIEdLETpao2MkKHYeL3Snj2wK5k0npwkTFTknogsa6xa5rpqsMBHCK3ZMnGIG00HHCYqcidF1tRcUu7yK3UBM6TlTsVIQuaCsidsRhMBRnM/aInaTQBX2Kip2K0IX60CN2yyR0HEZJ17p6wVp0EkLH6SrFmibaR0xIC13Qr7DYKQqd11BvWicrdJx9JXZKQucTLsP2q9zK+6QkdEED3b+qCB3QW4ZVETpOVOxUhI4TTusW3Iq00HGiYqcidJw1kY0QVISOE07rars8mVN57hMXMOp7AAAnnngiikX1JYxyr/J36qmnAgBKU3vUG/FTu5ZjCpdd4+Bit90eRd0tpY6jy4KL3bixqCR0nBK1MWQ2cFhlBqurC0pCx8mz3ElvY57YtYddNaHjUC+xaw8RWAMkdn9WGdyCt0BxHqEL2jL9/vRjDTreRo4+cbFrjZaUhS5oyxc7LnQkh/QEYqcodEGfuNgNVNWFjsPFjqd0OckjdAH+GnaB0JXVrIAR4q1jd8iEJ3Qx+/RKtWcQ2INFdaHzCZdhVYWuq60+il0eoeO4JtAc7k+5FeiD0AG+TBPYNaYsdBziELiLhVxCx+ETJ/IIHdApw3KZUxE6Dhe7PELH+c8Tv8Kvt2/IJXRApwxb2+XAaOV7vl/wam+XrlNOOSVXO32TuvLOqZQpmAI4BNP1fFt3AZ7YUbigxIWVc9uBAnGxsbgLR5d35WqHM16qY7K2mKsNgzIwRgCrD6tuGwxuicHNu5YlF7thwMr38AHwyrdOH9bKJYyBkeQxNVJE94pVbYZ4MpbnwzcMtVkuoeO4BaosKT04Tn9EmlKwSil3SkcMCjZYAyvme6IzSsDKxVxCF7Tl3z/92FKOt9eP5xRh+YUO8KRuaMsChrck7zgk32j+Jvq1EDAAuIWcQgd4fxMFzCWSS+gCimLj50SwGc0ldJzDS1NCEx5EoHBzCx0AbGmvwluOeCSX0AXYNLfQMcZw//33AzgApO64445DrVaD0W6jtGdWuZ3KqjqOG9+NF1tj2G6JT2OOwyAuDLiwmIEmU/9Ed0BQIC6OL23DMZWdufoEeFuUra3M5xK7xUYJ7dmSV7puU8DK8U7XpDAXKNwi874FK+IagFsCmMHglgCFvZO7IMwXu1w7T4TKpHnFjrFg6yHWJ+/JC3FZMMCW5Z0YwhiI7XoSlSM1IowBrbYnmSRnQko8gULBBIbVvylwoYNpeMmf4tpPAABK4Q5XwUpG7t0GqOV497vlwFzKmUT2SVJAAGsw337DgCd0A88tgDTaoPX8VQUuTjRvYMs6wzrytsUrEmaenbGI937CCEBsgsJ8zp0wKg5AgOmZfG/AR45MYf3wNBxGsJTngwHAibWtqNIWnD7sAzdIGygSB89aOT4YAPyqsRYLbhmHFqdz96kxUwEcgq0X5Ptg2HvCPObm5jAwMIDjjz8+V1u5pc40TbzqVa8CAFRe2gkiMhMzQmVVHaeu24qhQhNt18SLrTHct7ReSe6qtIVB6m1W6oAoi50T+lpYJg6OL23D64d+j02V7dJttVwTDX/TU5M6ymK32CihOV32hI7Bm/LjEjWxa1IUZg0Qx3tTySt2jLLg3zxiF6RhJL/YBX3zx/kpiR0XutC4nuUWOy50PKHz+qT4psmFDv79pCh2XUIXXKgodlzo+LHFgpLYdQkdR1XsCIE7VAEzQ+PqFMWOC13QTh6x67PQuXm3pgsJHQDAdXOldd6+sJ0xrcoyxiJDTHLcb26BdHbUcBTFLiR0wUV2jqEPFSf4NHctQ1nsjhyZQtmwUDa8OzqP2HGh4zSZWio2SBuB0PF2VMWOCx3ghT/v2Hi/UjuN2TIas/5nMQB72MHW89U+GLafbaI4uwMA8KpXvQqmme8Dpi87555zzjkAgOr2nYBDpMWuVLAxVOjsGt92TSw5JenUrkpbGDHqMEIBbR6xC1MmDsaMOjaVdkiJHRe68DcVVbFzHBI8iQIY5MUuJHRBM4pix1O6ri4pil1PeVNR7LpSOt4nFbGLCF2nreUTu6jQdfdJ8kMhJHSddiAtdrFCF1wpKXZRoeNIil2s0HFkxY4QL6Eze98uZcUuKnRBOypid4AJHXVYt9ABgMtAF5tKYhcWuqCrKmIXFTp4v6sIYljogrZkxS5G6DgqaV1Y6IJ+KogdF7ooKilbVOh4O7Jix2WuGFmaQUUQw0LHOaK0V1rsGrNlwKbeTwh7RGb5CI/tZ5uwBxlObHqvmbPPPlu6jSh9kbozzzwTpmmisLCIwty8J3YWFZK7yqo6TpiML23y1E5U7HjZNQoXuwW3KCR3TsrgjTJxpMUu7kXBxe7Ysd1CcrfYKMGaSxiXICl2xCWxy5fIil1QdqW9ny55E7tOZ+XELk7ogj4piV1SW8srdnFIiV2M0HXagZzYsYxxfRILPscKHUdG7PLMvg3DS64xQhecSlDsvOdm8m2JI7NOjvhNU+mj0NWeX+wWOo6C2MUJHUdqbGuM0IXbkRG7OKGT7lOK0AHyZdg4oeO4tng7SULHEU3rTqxtjRU6jowghtO5OETTul811sYKHeeI0l7hPgVCl4BoWrf9bDMQOnNuHi+++CJM08SZZ54p3Jck+iJ1AwMDOP300wEA1Re3eeMWGDJTu3DZNQlRsQuXXeNwQIRSuzSh43CxyxpnFy67xmFSBzWzlZnadZVdkxAVO38cXWIzvtjZVaTKXZrQBW1JiF3qm6IvdtYAUuUuTeiCPomKXWgcXXJb3uza/SV34XF0aX3KFLsUoeu0AyGxI4wBbYFPRoGt2VKFjiMgdsSg3gzcNETSOkp7Sq6J5xQQu6z7HK4rltYdTELH8cVu6Ol0sWM0XeiCc4rIWIrQcUTEzi2QVKHj58pM6zKELriZgNixipMqdN6NCKZns998s4QOECvDcplLEjqOSMqWJXS8nSyxu6u5GgtuOVHoOCJpXZbQAV5alyV2XObsQe/JWXtxKwAvHBsYyD/TsC9SBwCvf/3rAQC1F18Kvo1miV207JpEltjFlV2T6Gc59vjStsTELq7smkRWOTa27BpHltg1KQpzBoid0QwBXINlpnZpQhe+TZbYCX3LJd7SDUmpnYjQBX3KEruEsmtye/te7JLKrsn9SZA7AaHrtINUsSOum1x27blxShlWVOg4KWKXWnaNkiZ2EkIXnDtF7JLKrj1tZJVh+yF0BLCGjP0ndByXwVhIFjsucyLL6mTKmIDQibTFZU5oR420Mqyg0AU3TxlfF8icwFPTbRupYicidJy0z7K0dC6unTSxExE6Tlo7v2qsFd4bPqsMKyJ0nLQyLBe6AMawcXYeQMeh8tI3qTvnnHNQq9Vg1hso7e3sxpAkdmll1zjSJlAklV2TSBI7kZQuDE/skiZQyETNSWKXWnaNI0nsBIWuq6mEcmzcOLrUdlLETnqZkD5NoEgUO0mh67S378RORui6+hNN7SSErtMOYsWOJ3RSy6nEiZ2s0HFixE5K6DhxYqcgdEEfYsRNVOiCNpLErl9C58tcPyZFCAsdx2UwlnpvL5LOxZ0/VsYkhC58TJTMdC6uT3FiJyl0nLi0LjOdiyFO7AhhOGJ4WljoOHFpnYzQceI+G6MTIkSJS+t4QidDXBk2mBAhUcoG4suwO86KCB2A4t5p7Nq1C9VqFWeddZbUOZLom9SVSiWcd955AIDa8y92XReInd2RO9GULkzcBIqssmsS+3ICRVbZNYmo2AmVXePgYhda8oS4RErogqYiYidSdo1tp19j7IAesZNJ6br6FBU7RaHrtNd/sVMRut4+5fvwjopd6sSILMJipyp0nJDYKQkdJyx2OYSOExY7WaEL2oiKXZ+FLi+xkyJEcd2utE5F6Dg9YqcidOidOKEidOE+dX5REzqgtwyrInQc11/XlMvc4UMzqJryj120DKsidJxwypY0IUK2HcATOtGELsoVGx8I/p80IUKEcFq34ywTO84yYQ31PjEHnnseAHD++eejVOrXWn595NJLLwUAVLduA211P2G89YG8MmJxvCmV0kUJl2NlU7owshMo0uCp3fryXuGyaxxhsRMuu8YRWvKELBqp4+gym+Lj7CpqQhe044tde9iTu1yL+YbFLscHXq/Y5egT+it2eYWuq0+USKd03W0AoBQwqbrQcbjY5V3LDvDEbnRIXeg4/v6ueYWuq0lFoeMEYneACZ1SQhcmVIbNI3Th/gBQFrpwO9TKJ3S8H2YDYAV1oQv65ItdHqHz+uSNr+MypyJ0HP7ZlkfoeDtNVlBK56I8a5VxV3N1LqEDgCNL3s5YKulclG3nd2QuTuhoq4XRnbsBAG95y1tynaur3b61BOD444/Hxo0bQRy3J63jEAZQylDIGoWeQds1QYmLEVrP1Y4DgjYMLLH+iN3hhSlMFhdytWNSB1WzjZHBBsyRPizeWfDGx+VqgwBugcE1c7ZDvVTNzPeweRDkX9EdHbHrx4r8jAJ2mXbth6sMQf6FheH9XXbNhD2YbyFRvs+oO5p/MC8zDTij/YhtkUucuqAUxMr3vgTAl5ZW/n4RArdg5N8xhABOmfZNDl0T6kLHoRRLh6l/+HZ1iTEU6iyX0AHe+wAz8kkYxy0AtN2ftqwhN/8nNWEwCw6enRnP1YxBGM4afgYnDbyUS+g4C045t9ABwJjRxIbC3lxCBwAvtCbw6kOfzy10ADB4wlSszHFqz7+EdruNY445Bps2bcp9Pk5fpY4QgssuuwwAMPDsc7FvamSyhcPHZrBglbC3VUPDUVuQ8MjKHmwuvwQDDEYf3q1cRlF3S7nEbtqpYrc9iLWFWRxX24E1pXmlduasCqaaNRQNB+Mji/nFjgBO1YVTzfM1NjQzzVCXKdomKCwA1EbuDxlis/7IITpv6HbZm4yh1Ab10kPX8L7t5xE7whjgekKmutm71yfibftEve2flMWOeoLBTAqnasIZH1Tvk0HhjtTgFk241XyiCcv23mcYA+wcHw7UL0/ZLmgjx3YD/pgx4jigTYXxDhxC4FQKwTu0stj5QseIt4wRtfO9BzgFAtckWDpmTL0d08D8ppHg9aG6iDNhDIbFQG1/LFtT/W9joTJp3t0mnDKC7ciMHN7THnPQHnPACizfzkGEoVi1YBguWpZ6GcEgDGcOPYsRo46hnOnaglvBgluBxUw8016l3A4ArDMXUCYMIzTH6w2e0LVcE6tL83j15i3K7YwdMouxQ2YxVG5heMNM/I0Yw/FT3nVvfetbQfqxraJPX6UOAC688EIMDAzAXKqjsm1Hz/VmwUat0ILLCGyXYsEqKYldmdiokY7sqIqdAwo3ZChNVlAWuzYzYDETBeJgkDaxtjCrJHa2S2H5Gyqb1FUXOz+B4v/PLXY+LCR40l1yfaELGlPrA7EZCks5PuxiCP4uA2piF0oOvWRTTey40HX6pCZ2XOjC83/yiB3zS3eMEGWxC4TOL3G6BUNd7LjQ9RllseOTAFz/wXNdNbEjBE7Z7Aid6t8YErrgIlWx84WOv6e0B6ia2EWEThXCWOeLof/nqIpdWOgA7z1FVewCoQsaV2uHyxwrsE4nVQgJHQAwRvD7PWulmwkLXV4W3Apc1vncrefYF5YLHefUcnyFMAsudJz11amUWyfDZW6o7Nn8cCV+vH9l63Zs374dQ0NDuPDCC5XOlUTfpa5SqeBtb3sbAGDoiae63nTJZAtHjHebq8uItNgdWdmD48tbey7vV2LXZAXMumUpuZt2qthpD3ddViCOtNjxlC5MLrEL44udNSopdwllTlmxo20CM241A8mHbV8IXVd3iLzYMep/6EXakRW7sNB19Uc1sYs5tbTY+Sldd5/kxS4qdBwlsYsTOtW0jsbsFCErdlGhCy6XFDsudDFj3+RmGvcKXacd8WaCtrjQhS6TFrsUoZMR1y6hi14n+fBHhS5oR0HseoTORzatC9K5KDJpHWEo1tpdQseRTevShE42reNCF0U2rVtnLvQIHQCltC4qdBzZtI4LXZShI2e7L2AMr56eAwC87W1vQ6VSkTpPFn2XOsDraLlcRnF2DqVde4LLeUoXhYudaDk2mtKFkSnHRlO6Tn9oIHeiYsdTuiiyYhdO6cJwsRs5ZF5M7sIpXeRyZjLx1C5j3Jqo2HWVXWMbym4j6BLbd0LHkRE7XnaNFV8JsYsTuq7+SIhdkNIlICx2vOwaIxkyYpckdBwpsUtL6GTFLkboOMJilyR0wfWCYpcmdHztT6E1Ab3HN3ECApNI6+KELnRde4BiaaOA2AkkdEILOKcIXXAqgbTOe12mT2SQEU1vAlnSycTFLlHoAK+jImIXSueiQgd4ad2je9dkNmMQhjOHn8NpQ8/3NaGLQyat4zIXFTqOaFr3QmsiUegA8bQuXG6NY6TavcZNafcebNmyBeVyGZdffrnQOWTYJ1I3MjKCN73pTQCAoSc92yWTLRw2Ppt4TN5ybJR+pnZZYheX0oXhYpc1zi4upQtjUhe1Ujs7tUsSusht+laOFRC7nrJrbEPZ5+rnOLoshMUuS3xzlGJ7+iMgdnFl1zgyxS5F6Dp9yhY7ZhqpQscRFrusD1tRsUsROuFzZQldcLsMsUsRuuAmImLHhS5j0o9QGTZN6EK3sasZ9+O+KLmm3S6jDBtO57J2iRBJ69ySyA412e2kCl3QTtZ7EYtN56I0WsVUsTMIw2lDz2PcWMS4kb6NZVZax8fPJQkdRySti0vnooikdVzmkoROlGi5NYlwWnfRknfbN73pTRgeTvYGVfaJ1AHAO97xDpimifKevSjumYJZsDEosC5dVjk2qfQaR5rYJaV0vf1JL8dOO1W8aI3FpnRhRMbZJaV0Ufpdjk0UO4nZpWlil1h2jW0o+SpiMxTq+z6l6+pOhtjFlV2T2kkTu7SUrqc/KWInKnQcp0RhD8SIlIDQdfqULXZZQhfcLkvsLMHySpbYiQgdAOKw5LROVOjCfYo9SbbQBTdNEztBoQtuniZ2IkLn4xpITutMAwvHigtdUjomKnTB7RMe+qRya2I7KWVYtyQodD5paZ2Q0HGS0jpBoeM02/GfsWGhy0t0/FwadbeUKHZJ5dYk0tK6tHQuypmbn068Li2di8LTutLuvbj//vthGAbe8Y53CB0ryz6TutWrV+Piiy8GAIw88qjUgOa0cmxa6TWOfsyOTSvHJpVdk0gqx2aldFESxU4kpYvcPlbsJISOkzQzViil62oI8eNlGOQ2Pe8TSWKXVnZNaidO7ESFrqs/MWInK3Qcpxyf2IkIXadP8WLHDAp3WG6ZgUSxk50YkSR2gkLHiS3Dygqd35+etE5C6IJD4u4DSaELDosTOwmh47dvD8aUYX2hs6qSfYr8fbJCF5w+ktbJCl1Sf4COzIkKndeB3ou6ZrgKtxNThpUUOiC+DKsqdHFpnUg6FyWuDJtVbo0jLq3LKrfGsaHau8tEVrk1EcZw/l5vTsGll16K1atXyx0vyD6TOgC4+uqrUS6XUZqewSF7npc6Nq4cK5PSRQmLnWhK19snuXF2ScSJnWhKF4aL3dC6hXypHZ9AMZK/HBudGSuV0vU0FuqizbI3zN6HRMVOVujC7YTFTlbouvoTl9gpVri6SrExEyPE+tQtdlnj6NLoETvVma5RsZMUOk6X2KkIHSdchlUQuq4+8bROUeg67YR/kRS60HFdYqcodEFzwf7hakIHdJdhVYXOOziy24REOhclnNb1zHCV6pP/h6RMiBCBp3Xh8XP9TOjyIpPORQmndXnKreG0TrTcGseY/Qwee+wxlMtl/OEf/qH08aLsU6mbmJjAFVdcAQBg//YSmELKEi7HyqZ0UfqV2jVZAQtuEdvt4dSxdGmEx9mVqC2V0oUxqYvBcgvjI4sojLaUP9RBAFbwJlDYNZZ7UV9G4a2GnjY5Qqghv3vLlNJ1dSUsdgpJZridfo+xy5oYIYJTorCGisJl1/g+eWJnrxpSFjqOWzDgVgr5ly5hDHBcZaHjENsFrbfVhY7juiAtJ5/QhaQnj9AB6EycIIBrKghd0CnAqtHcQhc0l0PogjacnEIX6guQT+gAePd1W7LcmoRFUidECHXHT+tEx8+lUSQO6m4JdbeUS+ieaa+SLrfGMUhspXQuCk/rlNI5H+YyHPeAtynBFVdcgfHxfItAp7FPpQ4ArrrqKgwPD8Pd20brvpnsA2LgYjdt17DEci5WCqBMLJSJ+gqTLqOwmIkqbWHcVH8R8HF2ANC08w3YNKmL4cEGjMGcK2f6cteXnRoM9GXLLOIw0Pwba/QFvvtE/u3EvPJm3i2SuCBaQ4b6h3EYSuAW+vO20I/V9EEIWCXna94wYK0egj2Sf+kAYrv5hA4AMww0DxmANZRvQhijBPXVRbSG81UOAD5EIv/r3jWBXWeP5RY6MKC44OZ+nYEAbrE/z0W3kFPoeJdc5Bc6ABOHzCnLXJiC4fYlnQMAi5lSw5HiGDHq0uXWOBaY2ZfJEAXq5BI6AMADe/Diiy9ieHgYV111Va7+ZLHPpW5gYADvfve7AQCtn+2EW1eLbQ6tzuLI0m4suaVcYlcgDsrEQZXmE7sCsTFCmzjEmMOawqxyO0811+Dh6UPguFR5v1jA20fPZUCt1swldsQhoC0CKC4u3GnHK1k4RW/9JuV23I7QqaZH/YS4gNFmwb+52mkxT3zz/F0UsCsUTpF6W0HlgNoMcJlfPldPkGjLAXGYn66qf+jwvVNZwQCrKi5QahiwVg3CLVI4ZSOf2PG0MIeIc6FzytST8ZraB45rUNRXF2CXvB1Q2oP9+BaWc1cGCjRWUbRGCRrjOfrDgNK8C9pmKNRzSAsBWkPevse5kkwCL1UnQM7dLQNKu/KJxuRhMxipNDA2kG8pgIFKCwZ1cePOM3K1AwCUuBjLEXIAwLrCDMq0jWetoVztzLomLEbxmsEnc7VToA4oGM5d96xyG6xuYfhXXqD17ne/GwMD+bdZTGOfSx0AXHbZZVi/fj2cJRcDdzyDdRX5XRaqtI0howkXFEtuCVOuemrHy7BVamGENpTkjrdRIC4OMeZwQmmbktwt2SUstYtgjMBxKWxFuWOMgDECg7qo1ZqoTi6pyZ0LENc/f44twby15OCN0SkC1oCi3PF2gGD7reWUO75GHi8NmU2mJHfhtfa8RFPt72KEwDW8Dchdk8CuKsodAxCeUal6F7v9KZMTvvUXR7V0Ghl32K8UUlnsKLoeH+XnMumeuOOq7hEcmlhFFB87RoH6KorGJIVTQpCOyTcElOZclOZdEH/yhtJziQCtYYLWEIHLZ6ar3D0EsKveMIlgGHWfRoAY2QtBxDJ52AwmD5vBcNlroFJQ+wI/UGlhoNJCwfAsdW8j3z7M1H+TLhC10GZdYSYQOgDKn+2zrhkIHQBMGmr7sBeoEwgdAIwqrqN1/qotWHf3o5ibm8OGDRuCbVT3JftF6kzTxJ/92Z8BALb+2sLozl1YU1Hf9N6FV/6UTe0KxEEhNCqYS5lsalcgNqqhkbMF4mKQtqVTu6eaa/D7mc6WLVzsZFM7hxFYTuehNKiLUsGWTu2ClK7rQkindsTxJkiE2/DGosmJXdxyAox4crccYhdN5whjoI4ndzJix1O6MMHMYZm/iwJOuXN7777x9uaUFTsa+fDk4/VkIIx56VrXZWppHbG7j2EGkU/rDAPWRPe3YmYQtbSuD9uRMcNAc22kPxTSaZ1rUNRXRUq3/kQFKRIeXpm0jlF4MleGJ3Thy2XSOj+dIzYLhI5fLpvWcZlzozu8yDyf/XTOe012X7VcaR2XOS50HNm0jsscFzrAc9Uf7jpNqh3Akzka2aJk2JCbGcdlrhwZYyOb1nGZsyIfVrJpHZc5mtPgX7PqaZjbZrHjTu9D7EMf+hBMsw/jkTLYL1IHAK94xSvwhje8AWDA73/QwlGlXTht5EUhuTu8NoNNle09l6ukdnETJXhqJyp2SRMueGonKnY8pYsSyJ2g2PGUrqeffmonLHbhlC6KhNiRULrWfYWk2CW1g/0vdsQFzBaLXR+Mp3YiYkf9GXlJa+0Ji51fdnVjd3qAlNjxsmtPOxJl2HDZtfc6ObHjZdee/siUYUNl1yjSZdiU9eWEmwiVXaPIlGF52bVneR0/uRMWu4Su87ROaFcGLnRxDwnxXudCYhcSutg+2YJlWD+hi8pc+Hqh53NI6JL62w9k0rpwOhdFJq0Lp3NRdtfl9nKOyhynLLG/WjidiyIT2ITTuSiiaV00nYty8tg2oXZes+ppvGbV01htzOClHx0Lxhje8IY34OSTTxY6Pi/7TeoA4P3vfz8GBgYw8yKw9T9aGDMXcXRld2Y5lpde41BN7aLkLcdy8pZjOaLl2GhKF0VU7GJTuigiO0dEU7qeG4iJncjei/tT7LK2JpMRu6zFk0XEjpddk68XE7skoQvaERC7NKHr3EZM7JKELuiPiNilCB1HWOyyEjoBsUsTOo6I2CUJXRghscvoskgZNlXoQufJLMNmCF3QVFYZlqC73Jpyu6zrU4XOZ3+mdWlCxxFJ69KEDpBL65KETpRouVWVaLlVFZF0TqQE+5pVT2NtYRZrC7N46t+BJ554ArVaDe973/ty9U+G/Sp1Y2NjeO973wsAePjHDPM7Gaq0hQ2VPTh15CWlsXYcntrlFbuscmy09Bp/m+xy7FPNNXh0Nn3/PZFybFJKF4aLXWWinix3aSldmIxxdokpXdeNBMROpB3sH7ETnRSRJXbU6S27JpEqdpGya2IbWWIXHUeX1E6K2IkIXee26WKXJXRBf9LETkDoOJliJ1pyTRE7EaHjpImda1A0VqULXXDbtPF1Ei+VpLROSOjCt01K6wSFjt82Ma0TFbqgT8lJnojQ8f70g7S0buLQWUwcOpspdEB6WhcdP5dGVloXV26NI60Eu7owG1tujSOtBJtUbpUlLZ0Thadza/3P+/kdDI/d7A2R+C//5b/s0yVMouxXqQOAN7/5zTjttNPgWMBvv8PgOp7YTZgL2FDZ0yN2SaXXONLKsdHxdGmkpXYya93x1G5TaXuP3C3ZJSy2xEpJsuXYOAzqoly0YlM7oZSu6wDEpnaZKV2kjaQJFCIpXZh9LXZZKV33bePFjgudzBZnsWKXUnaNbSNF7KLj6FLbSRI7ycH1SWInKnRBf+LETkLoOIliJzuGLkbsZISuc0xvO1zo7JKotCSMr5N5iSeUYWWEjp8ztgwrI3S8qbjnmaTQ8WPiLhMWOp99mdZNHDqLkUoDIxXxFdfj0rq48XOqyKRzcSXY1YVZrC7MokbFlwaJC2lU0rm4cXVZ5dY44kqw4XQOAFyX4bffYWi32zjjjDNwySWXCLffD/a71BFC8JGPfAS1Wg1TzwJP3N65Li61Syu9xpFWjpVZeFh1EkWUAnExQlu5lz6JK8dmlV7jiC3HiqZ0UUi32AmldNHjIxMo+BImsun+vpoZq7J0SZLYqexZ2yV2kkIXtBEjdlll19h2ImIXNzFChKjY9cx0Fe1PWOwUhI7TI3aqkyJCYqcidEDvxAlZoQuOK0TKsCov74jYSQtd6NxdZVgFoePHdaV1KkLHm+LP47gZrhL96YfYRT/euNDJEk3rRNO5MEkl2LzlVi5zMkIXh2o6Fx1XpzoZIlyCjaZznCdvB6ae85Zz+/M//3OQnGuRyrLfpQ7w9oX90z/9UwDA73/CMLu1c8empXYy9GPpE6D/Y+3WFGaFSq9xRMuxIqXXOITKsSL4yyEwKpnSxbQTiJ2sGIbo98zYtMkRmceGxE6m7BoHF7uscXSpbYTFTrDsGtuOL3YyZdc4wmIXnekq1R8udnFbpkkQLHXSr1muCkLX6YtXhlUVOqDzeANQW87Dh4udstDx/vAyrKrQ8f7YDGbT7V2yRLohpM5wFaZPZVie1qkKXRiZcmsc4RKsaLk1Dl6ClU3n4ujn2Ll+lVvD6Rxn5iWGx37iPZZ/8id/glWrVuU6jwrLInUAcNFFF+Hss8+GawN3fYPBisT8PLU7qfoSRqjaGjHh1K6ZY5Vrnto1WQGzrtzm5GG42B1Z2oOKqS5TYblThZdjC0UbzMjxBOdip7ieXbgdT+zyC5lTAOw+tMP3d1WFMBYIqooYdjeGXB/OAIJ9efP2hVEvQerbtm05RYqVCrBW5VvQk1HSvdesajuGAWuymnshaP7FREXouujD9xviApU9trLQ8X7wtE5V6Dh8uRJloQPAt+vKuY1333CLrC9CVyrYy1JujaNMrb4I3R6n2Nexc3mE7pTq87HpHABYTYbHvnMoLMvCWWedhYsuuihHb9VZNqkjhODP//zPMTExgfmdwH03MDDWK3YjRh2TxpKy2AGe3M26VWyzhzDrqr8ztZmBbdYoHmwdim222orXBeJixKhjbWUekzX11bdblonFRgn1ZhHtnFuMoejCqeZ4ATMvqWOGt02QKtTfhcItIt/2Yv4HSF6xY4a3Wr+d9wM6pxzyNsDy7WJBHQaTl6/yrLAPgJkEdk19mytvP04KUAJWyPHJSr39au1y/k9nt2jAram/PzBKYU1U4RQpaM7dRgqLdrDfqFIbDCgu5d9CCgwozlowm/kkgbhAaTr/lwC76u1zW5rL937lLSuUoyPMK5saTUBxXdoAa9DbWWbv1pFc7cw1yyA5t9YqmzZKpo1bpvqz/EYeoRukTQzSJqyc5l0lNqrExoWDj+Zq55Tq895nd4zQMcbwu+8zvPTSS5icnMRf/uVf7veyK2fZpA4ARkdH8T/+x/8ApRTP/wZ47q742xWIi0ljCevNKWW5s5iJOith1q3mErsmK2DWqeIla1xJ7J6xxvFw/TCUDBtrK/PYOLpHSe4YAMemcB2KdtvIJ3YUYGUH9rCtJHcE3ocICMsndswv9fAyqkI7jHp7NDJC8okd8cXDX/9LRewY7aQJboHkS/38z1Rqqe1gwYWOp2uMQF3sqL+DRZHmEjs+Bo0ZVE3sfKHjZcY8ZXdqec97VbHjQucWqdTEmiiB0Nle2b+6R36FfsKA4qILauWUKAYU5ywQ2wWxXIw9rrZbAHGB0hSD0QZAgPaQ2oe0J3QAmNxEqi5CQkcYUJxTuI8YYLT80rQLULW7BUBH6MAAY0HtfplrljHXLMOWHF8dpWzaoISBEoY9jf5sZdVU2lrEE7oiHBSR78tEldgwCINBGNZILorMOaX6fCB0STx3N/DCbwHDMHDttddieHhYtcu5WVapA7xFid/znvcAAO77AcPc9vgXmTdpwc6d2lnM7Etq12QFJbGruyXM2l4Jt2TYGCk2cqd2YERJ7Nq2iVbD/1CmAAoMrOzkS+0UxY7agBmpPCiJHfGEDuiInVUj0nIXnhCgKna83MlxC14bsnJHIu9rSmLHemcPKomdL3T8eBWxC1K68GWyYhcRuqBdBbGjbbdLwmTFLix03e1KTrBxAXPJ6ZQnXaCwZEuJXV+FbsHqjHdkQHlPS0rsiAuU97KO0MF/TSp8WQuEjrfNIJfWMcBosp6ETloOQ0IXRiWtC4QuB1zmwkKn8gWfC12/cRTq/1zo8sDTOSPn38RlLk3o5rYzPHyj935xzTXX4KSTTsp1zrwsu9QBwDvf+U6cfvrpcNrAr7/K0K4nPxDLldpNuRVst0e7LuNi90hrnXI5FkCQ2omKXds20GpFPkh9sZMpxzoOBbMjTwE/tRMWOxfo2e6Pi11RQu5Y/FgbGbHjKV3XZcTbNksqtfMTuu525MQunNJ1XW7kT+0AObGjDoPZiH88ZcUu7n6REbtA6GKXABEXu66JANH2JcQuKnQc1xR9nOOFjqd1omLHhY4nhp2OAGZD7AOu70LXdnsuL82KWVCQzrUQCF3nSrm0Lip0Xl8k0jo/naNOr4xJpXUJQgfIpXXWIIsVOsKAp7esjT8ohqR0zpFYyaBs2rFC54LgX/aeItxOP+Dl1jihkynBhtM5VUTSOQBoLzE8/Pfr0Gw2cdppp+Gd73yn8jn7xQEhdZRS/Pf//t+xatUqLOwC7vp7BtdlWFOYwzpzruf24dQur9yJpnZNt4ClmNs0WQFTzoByOZYjU45lAFjcC5eR/pZjh7LljiBhtiphYFQstYtL6cIIi10opYsiU45NWpxURuyiKV0UUbGLpnRhRMQuWnaNQ1jsUu4XEbFLE7rgNkL9oLAHkss6omKXJHTelUQsraNInHUrKnaJQhdcn12G3edCx89juRh7IqMv4XJr3Ckk0jqnEiN0/DwiaR3j60Mm30RIDlOEjiOS1nGZi3UUwRLsQqvU93JrHP0qwYrQj3JrP9K5sMwlCd364l4AgOsw3PX3DNu2bcOaNWuCoWTLzfL3wGd0dBSf+MQnUCqVsPNR4KH/w1AmFsopn2r9KMn2c6xd3tSu3+XYtNSuq/QaBwVQdPdPOTYhpQvjGukTKOJSup7biIhdTErX3Ua22CWldFGyxC5N6DiZYhdTdo29WZbYhcquSccLJXZZg4dJxsQJSmENFjPv3yyxSxU6n6wyLKMU1lj6bPjM7eUyhM7rSHoZdn8JHb9NeXcrUeyyhK5zw+y0zqlQuGk3yUrrfKHLWksuNa3jEyIyhA7ITuv6VW5t20am0KV9qU9K55aDtHROhn6lc1mlVsCbwAkAD/2IYedjQLlcxic+8QmMjIwon7ufHDBSBwDHHHMMPvrRjwIAnvwZ8PCvxAZZ9qskm3esXVZqxydJZJF3EgWAzNQutvQaR1o5Nq70GodKOTaG1AkUKSlddxvpYieSFAWbp9dorNxlpXRh9mUpNq3sGkea2Iksh5gmdnHj6BLbSSrDCgpd+JzxV4hPZEgSu6SyaxJxaZ2Q0AUdiS/D7lehC922NNNrU8JCh/S0zqnQbKHj50xK6wSFjhMrh5EJEarYAwz2gJjQEQY8/XT8GqYLrZJwOpdUgs1K5/YFSZMlDsR0TpTn7mZ48mfe///yL/8SRx99tPL5+80BJXUAcMEFF+Dqq68GANz2DzVseSJj53effqd2eeUuLrULT5LIYrknUXSRUI5NLL3GkVCOJU566TUO1ZmxnESxy0jputvwF/ONpHaiKV2YOLETSenCxIqdYErXdUic2EmOuYuKnUjZtaedqNhJCl2nnd7bC0lUiKjYyQpdXBlWSuiCY7rLsMsidPzckTKsjNB1DupN67jMiQgdgPi0TlLo4tsVS+eiREuw1iCDa8qNLTbmu2+80CphoVVC284X8y1XOhedLNGPdC4sc/sjnQvz3BNF3P897zF697vfjQsuuED5/PuCA07qAODqq6/Ga17zGjg2wfWfW4vtW8WnRR8oy5/sq7F2bdtAuy1pNL7YNVo51rTbR+VY4qotRhoWO5HSa5S4mbFC47l62ukux8qkdGH6ndjJpnTJjaaXXeMIi52K0AXthMSOEahtBxUpw4qUXePgEydkhY4TFjsVofM6ESnDMiyL0PHjeFqnJHToTetE07koQVrnz3BVEbquEqyi0AHdJdh+lFu5zOUROtVyqwvSt/XqOP1K5/bXRIgou7aa+N/XHQHLsnDuuefimmuuUe7DvoKw6Iq/BwjNZhMf+tCH8Oijj2J0zMJffGwrRsflngh8FepZt6K8E0SB2CjAwaxbxR5FOSsTCzXawnZrFE831LcNaTkmnpmfwPapHGvg+C8Eu22KlV/jcAHSNGAuUlDJN/IARkAYQFtAaUb9KUhcJG82L9qG/21fee0reHcrtVnQH1WoxWA28r0kmeG1k2fHB8IAuCzX2m+EeRIlLS9RGINTNnPtIEAcBqOlJnSdNlyvHzm2IwO8LzF57hNmEiwcVsqf0qkKHYcAzckS6pMGDMU1Zvlrz7CYktB1GiJoDZLce7G2B73nmHK5lQD1td5jojrUhFHgyFO35k7nDMowVG7mSucoGN5z2K+Uj+es8Sc85pG5YX8sWx6Ze6y9GgAwZshXv+amKf7+byYwP21g8+bN+PznP49SKc82K/uGAzKpA7zBh5/61Kdw+OGHY2a6gC99eh2WluS6y0uy68wFrDF6Z9GKwFM7l1EUZGtiPjy1A4BBs5lx62RKho2x8hIGBxoolRUNhBEwl4JQBmIqvnNRgBnMm4Wr+p5DGPiG2G6ehIp4345pjq2HGFHYzLunDSjvy9rVjkHy7aYB7wMp130K8RmkWW24RQqnpH7nMgLY1XwiRRhgWPmEjlGC1mgJdjXfE8VoOaDtvLszMJRnnFxCxwygMWGoC13QFygLHeDdr/XVagldpxMEThG5hI4RoDlG4JRzjp+rentgK48dJgAzGZ5+YbWy0BHCcPTYXhw5MpVL6EqGt7tEXkZoPX86R63c6dysW8SYsagkdI0lgu9+dgzz0wYOP/xwfPKTnzwghQ44gKUOAIaHh/HZz34W4+Pj2L61hOs/txZthU3jy4RhndnA8cVdynJHiYsisVEmlrLcFYiDYaOB1cV5ZbkzqYtywUat1FYXOwCEMlAjh9j55NkMm7gAmLfnq7KEMG/8WR6x88piaqfvtOGlDbkGVftpH6M5xI54YwWdojfYfLlRLUfzY52yITzBIg7CPJHKu98oqJeQMYPEro8nhMsAnp6qFkioVwo2WuopHTOA+oQBq0Ywv6Gi1g8CtMZKcIoEZkvxbwmJVH216puIJ3SuQaC6pScjQGuUwCnlm8hl17xhIcqJPwFckwEEIAtqHSGE4ajRKYwW6xgtqi/SXzL8CRU59kkdoXVP6BQ/LwFP5qrUgpGjH7NuEbNuUXm7sXYLuOmLI9i9tYDx8XF89rOfxdCQ+pCqfc3yv+tnsGbNGnz2s59FrVbD009W8JUvrIWl8KIpE4IRCqwzG8piBwCGL3fKYkdtVI0Who1GrtTOoG5usQPJL3Y8rcuVdJGcYud3RFXsvPFO6qf22uishaUqduF+qIodL0V7Y/0ODLEDJWppHSHdQqe4l2JeoWOUwKqaXb+rYOQtQ/tCFySoCmLIhc4pE4AA1oDC3+ILnVv0hlAolfm50JX8NFZsPlykjZDQKRIWujxwoVOGC12Ol2tY6PLAhS4PXObyCp0BllvoLGYoC53VBn74pRE8+2QZtVoNn/nMZ7BmTfzs5AOFA+AdP5ujjjoKn/rUp1Aul/HYw1V89Utr0bLUXshlQrDObODYwu5ccpc7taN27tSOi12ucqwvdrToKMsdFzu3kKcc64mdUyG5Ujtqe5vei8pdv1K66BpV0mLHeoVUWuwikwkOFLHzJkvIiR0jgFOK6beE2PGULg+MElgDJlg4nSPxu1mkYbScTkqnQlTo4I9ZlEjruoTOxzUl0zoCtEeLPa9RqbQuJHQBFKivEnx+EAKnlCB0gt3g5da8QmfXcgodAdwCyyV0vNyaV+hKhp1b6FZKOgcAJaeN//N3w3jq9xVUKhV8+tOfPqCWLknioJA6ADj55JPxyU9+EsViEb9/oIb/9/o1WLINOLJT8+CJ3bjBcsudkbMkG07tVOXO6Ec5ljC5cqxFYETGNzLwcVhiYkcc0lumIF75QzS1Iyxm6Q/Jcmy/U7quy12vLyLtJ/VDRuwY7f2QOxjFLrPsKiB2/Si7xgodv06iDJsodKJJW4zQybYRJ3QAPEkbFHwP9YUuKtvCaZ0vUj1CBz+tE3HLUDqnmtCF07k4oRNcdSqQuTihM+sCfQunc5GnOmHAzK7sEl/fy62KQheWOVWhC8ucqtCFZU5V6GqkjbLbxg1fmcBjD1ZRLBbxqU99Cps3b1Zqb39z0EgdALzyla/EJz7xCRQKBTx0bw3/+NVJtFyKJssvdwd7SXa/pnYuAbHj72/R1I4LT/yVgmKXJmQ5yrH9hMtaqtjFpHRdV/tr36XKXcqSHwed2EXLrgm3SbxqHwtd+DZZZCZ0WVKWJnQQS+sShS64PiOtI0B7rBgrdGFS07rQ+DnlZGw/lVtFxtWlpnMsY1ydYDpH6smvkwMtnVsJpdYaaaNG2oDDcNPXx/HQvTUUCgV84hOfwCmnnKLcr/3NQSV1AHDGGWfgb/7mb2AYBh74zQC+c/0qtC0CCzRR7CwGtFPePFdKSXZZUrsYZFO7+H70rxybJEz7qvSadLsksRNKC0l6aheX0nVdf5CIXWLZNY40sdvHQuedJL0Muy9KrrHdcFni35sldF4DKWldKJ1Le1xS07q4cmscaSVYGaFL6EY/xs/1pdyakM4JNyGRzq2uLCRelzedG6LNFVNqrZE2DDAwm+Efr5/EfXcPwDAM/PVf/zXOOOMM5XaXg4NO6gDg7LPPxt/8zd/ANE08+NsavvWlVWi2KCzEp3YOCLI+Mw/Ekuy+SO0YI2Ivnz6Otcsjdknl2NjSa0InksbZ7cvSa+xtc243BCSIXUpK13XsAS52/Zztmgt/pqsISWVYKaGL+8IpKHScuOVahIQuuG1MWpdQbpVCVOiQUoLNmdCpjJ+L60dauVWInJMhVNK5mtm73ky/0rkysQ6qUqsTc8fzdM4AQ7tN8K0vrgoSuo9//OM455xzlPq2nByUUgcA5557bjDG7rEHq/j7z65Co0HhMpIodyIkyZ0BhjIRT7/6UZJdMaldnyZRdImdjJD1YdmTftEjdhml1ziiYpeV0nUdeyCLnUjZNUooretb2bUqN+04WobdXwldGMK600kZofMaiKR1ikLXVYIlQDPvzNI+CF3a+LkkojvUHAiTIQ6EsXNDtIkh2tzvpdbw0ir9GjfHZc4AQ6tJ8PefW4XHHqqiVCrhk5/85EEpdMBBLHUAcOaZZ+Kzn/0sKpUKtjxewVf+12rUlzyx66fcrTHmYBAXVCFmOZBTO2FyLn1ysJRjpbskWHqNOy5Y/kQxLQzETjCl6zr2QBI7GuqTaiJEyH4bRxd//lAZNrwWndTJ/WMUhC7ohp/WSQsd74JBsHBkRVnoukqwXOhklyrhJdi0Ga6CrMRyqyr9SOeGaBNlYkmFG2HylFr5osP9ljkAqC9RfO3Tq7HlMW+W62c+85mDruQa5qCWOgB4xStegS984QsYHBzEC0+X8eX/uQaz094DHpa7JZemjqtLIjzebpWRPD4hDZ7alai63HVSO/nl2/uV2vFyLAy1Nwae2gGKC3RKzo5N6kRQjs07nk6i9NpzrMvTw3wS4hbUZgEeKGIHSuCUjdxlV2A/jaNLOt4vw+Zdi05V6AD+BYEpCZ3XANAaJrlLrobF1IQOfgm2itwzXIH+CF2ecqtZJ/nWniMMG0an+iJ0/UjnVGWuQOy+llpVicocAMxMGbju42vw3JYyBgYG8IUvfAGveMUrlM9xIHDQSx0AHH/88bjuuuswNjaGHS8V8YWPrcX2lzr5ORe7OdfAksJWQTy1G6ENVGlLuaTKUzsVeGpnUgeqb3MGdTFQbqGcsxwLk4EVcoid/wco75HKUzvVN2w/HWNmvhXkXYPAVvnw9KGO+Hp6cRCXwWi6KNQVE1Q/Ycqzby4IgVug6jJEALdA4eYZt4XOeDz1BhiMHFtmEZfBbOQouxKifB+GcU2iJnQ+jBIsrc7xoiBAe0BN6ADvdVmaZvlmuBr+l78cQkedfOmcU2ZgRg6hA4AhG+OlJWWhm2lXMdOuqstcoYmhYiNXOrfEihikbWWZo/B2tciTzgFAmdg9fdj+YgFf/Ou12LmtiImJCXz5y1/G8ccfr3yOA4UVIXWAt0DxV7/6VRx++OGYmzFx3cfX4qlHO+8sLiOwGMWcW8AehyrJ3Zhh4RBzJtcMV0pYrm8sPIbOI3YFI+dAcsK8MSJlRbkjndJbHrFziwR2Ve3buLdXaw6xI964G6eIXGIHP11R3ZeU2gy0rSZ2xGXechhUbHmOJLwPUUUpIV7C5Zo5998lJPdetbTlwKzLvzaIy2AuOaCqUugLXS65hvcYEBcoT+VIC4maDDEKNEcomsMUjmKK7vWdodBgoIpyzAz/PUXxrqSOv4es6netQOjUvzC6wxbcYQtGUf19eqZdRdsx0XQK2TeOYajQRInaKCluqLvEilhiRVjMzCV0BmFYYGp/Q5hoH7Y8VsZ1f7sWczMm1q9fj69+9as46qijcp/nQGDFSB0ArF27Fl/5yldw0kknodmg+PpnVuN3d9a6buOAoMkMJbkrE4Ka/42lTKxcqR3Q+0SThUBd7qAwzjB6cmZ4cqea2gG+2Blqcsf8cqxbVC+zeAP25d+Aw1KqJHYslNIxBHKnAmFQEjsSnqShInaEdO9goXJ8SObyih3zS7nSx4W6TW3J+5ALnV92VR2yFL7vVLbdChJXBhQaOadYS8IoPJkrAW7Ru8xsyLXBEzqzGXpNyPZD8X2EQx0Arv8jCwGcCguEThV32IJRcmCU1D5XeDrXdtSMcqjQDIROFS5zluIG1jyd4wFGnoQO8FK6MPfdXcPXP3Momg2Kk046Cddffz1Wr16d6xwHEitK6gBgaGgIn/vc53DBBRfAcQi+97VJ/PRHw3D9FyoXqTxyx+EzYvPInWxqN1lcwKGDs12X5RK7PshdrtQOkE/tIsuZMLI8Yhcc74tduyZejiW+yHU3JC52Xum1c1tZsQtSujAKYhd+zJjEUiDBMZH367xi5xaolNj1PP0dJpzWRYUuuFzmZdCHsmu0hE6cfGkdowTNEbEXIxc6LnOAP9ZU0AmIC5T3MpSmvYROlb4JXdCgf5kIoXRO9bkbpHN9kLk8Quelc96DRwnD2cNbhI8Pp3MqhGXOyDGhIwr/fHVd4Nb/M4LvfmUStm3j/PPPx+c+9zkMDg727VwHAjkGTxy4lEolXHvttZicnMQPf/hD/PTHo9ixtYj/z/9vL0rl7ieLAwKHGbAYRZ25qBIHtZQPtjHDwhKbxU57JLjMAINBLBSI7X9DSX5l8wkTrcic+bBspjFgNDFWrGMrRrou50cpvRT4J5vqC8lP7Rj1viUQxX15+Zty1uSDOCHiYgcwGBlzSXg6GD0eJuBSAAqzWrmUeu2STuIgiy92mXIVI4CB2AGwqumfcF0pXRgKMJBsuYykdBzXJN5zIGusIEneZotRorZJPD++H2VYAHY1+xM6KnRSpJRdicOE/o7YMZF+WtdUnm4pVoKNEzqp0/jpXF6Z433pvgIoLgBtgc/rHqELtZFJSOhUySNzAHIlc4AncwBi07n1hb2Zxy8x7wkQJ3PrzJnM4/lyJXEiN6v65IrQahJ8/+sTePh3XuXuHe94B97//veD0hWXa61MqQMASik+8IEPYP369fj85z+Ph+6tYc+uAv7zh3ZheKL3FRyWO8BKFLtwCTYKlzsgPTIuEActxI8TEJW7JHLLXZ5vSH5qRwwvLVCRu2A8jMJSH1zsmOF9KKbJXdy3er7sCqHee3yi2JHkb+Q8tUsVO8bSF04WFbu4rkmIXSKCYpeUjIiKXdp9yAyILS4dd7w/acJopjeQFlJ7ZdiUbZrc9ESPsIwQvA/j6HJPcsmBiNCZjeT9XLOEjjBvIlHqLikZ6ZzRYkDKvrZBEqdabi13lpCRhRGADXmfFapCN2dV4DKSK5kD4mVOhDSZ49QyIttwmTWOfpRep/ca+H+/sBrbXyyiUCjgwx/+MN74xjfmavdAZuVpaoQ3velN+NKXvoTR0VFsf7GIz/+PdXjhyeR3IgckV0kWOHDG2ymRtyTbh7F2eSZR7I9xduH11WKvzxhnx5eeSO9E8m2Iy7wPrASySrGxpdcoaaXYhJQuTOrEiZSUrut45dmHJLMMm/kUTynDcqHb1xMj0tLKLKHblyVYEaFLK8EKJ3QpVy/7+Lkc5VYudHnHzjXtQt9KrbL0e9zcvuKFp4r4/LXrsP3FIkZHR/HFL35xRQsd8DKQOgDYvHkzvvGNb2Djxo1YXDBw/SfX4Nc/G0zcSztrvN2YYWGNOZt6zrTxdrwEm0XSeLu4cXVxJE2kKBVslMoZi7T1a6xdKYfc5Z1EcQCMs+vHzFjhy0OkiV1i6TVKitiJPCZpYifyYdiX8XUxe8yKPrXjZsPKCF3s59X+SujyTphIKMEeKCXXvo6fEyXnZAhGAHfIDoROhTmrIlxudWPe/UUnQiSNp5MZNxdXepUZN5en9MoYcM/tFVz/iUOxOG/g6KOPxje+8Q1s3rxZuc2DhZeF1AHA6tWr8Xd/93fBBIof/+MYvveVCTQbyW+OSXKXVoKNkiR3MileVO74uDpRon+hQV0UTYHzJ6R2tOCClQXeFQnAzGVO7XIue8JMb0afitztU7ETIE7shFK6MFGxE0jpwvSInUBKFyZveTHvJIS42bD7c+mSaFonU3LNm9ZFWW6h48mYqtAFy5UsZzpXtoWEjgA4dt2ursv2dzoXHk8XljnRdC5celWZBKFaem01CP73V0Zw8/fG4DgOXvva1664Ga5prNgxdXFUKhV87GMfwwknnICvfvWrePA3NWx7oYir/3QP1hyaLGlxkyniJkykEZ1MASB2wkRWGwfCWDtvAWIXwt8J+Fg76r2xM0bglgAqsTmG6CSKnuN8MSOG2CSK2ONFxtklHe+LHaPeGmJKEyhCY+yIy0Db4m1Ex9gJp3RhImPsZD9Uo2PsZN6r+zK+rmR4+7FCIYD2y7B21cgcRxdHMLZuOcbQ5ZwwwUuw5VkXjAKtITWhIy5QmmF+f3II3XKkc4DSZAjvCyXz3j8GbYAw6XTukOosAC+dA7CsY+dky6w8pUubBJGGakq3a6uJG748hr07CjAMAx/4wAdw+eWXg5B8X+4OJl42SR2HEIK3v/3tuO666zA5OYk9Owr40rVr8Ltf1zKPDSd3C4rLjfPkrkAcpTF3PLVbXZwXKsFGSSrJZtKPsXZ+aucW/c2tZbtwkJZjudg5RcAuETVB4YmdP4BcBtV17LqgCLbCUoFRIp3ScfKPryNwSoby05fabv5xdMiROrpseSZF+CVYLnQqrx2z7qdz9ZwJ3TIJnVNWn93qFuTSuTjmrAqadgFNW34B3nCpVUboeOk1zxIlNWLnWp5EJaV78K4KvvqxVdi7o4DJyUl8+ctfxtve9raXldABL0Op42zevBnf/OY3cdppp6HdpvjB1ydw49+Po9XMfgJwuTPAMEglV9n0KRMLLiNoSiR1YQaNJg6rzGCgKL8XLOCNqytXFDY/9T8ZCYHas4ePtSvkKGMY3humyrGe2CmKiW/Eiousxy6lIteAfFLJIQygVsas26zTG+pbUDGaT87cAoGtuk9tzrXgXIOiPmnmE7o8ZWCaT+jyCBGjRFnoCGMwc8gc4M2eXa7xc3bN+yIq+5xlBLBrDGxQXeYciwZCp8JAoaU8EaJmtjBpzitPhJh3yrkmQSxIvrm3GgT/9PVR/O+vjcFqE5x22mn45je/iRNPPFHp/Ac7hDGFXe5XEI7j4B/+4R/wD//wD2CMYWK1hXf+8V4cvkFMeHY6Q3i+PYkabWGQNqXObTEDO+1hzNlVFIiDsuQu93utATxbn8Bsq4LFtvy7bss2UW8V4DgUtiX34mUMcFsG0KIgjMi/cboEZoPAXCKILiYsAmEAsTv/Sh/rpM8uTILagNlgXvqjUCGgFlCec9XGyhHAKRAYFoOpkLp5Oy54SaHKOD1GCawq9faslRmXxyGe2EGlBEwAp0hBLQZTYQIAcRmMuvwHHCtQzG4owSkRTD4ktwcnowR2zUTX7iGy5zdIsD+u/LFAfZUBq0rUvoi4QGnOBQjQTlkaJAlqea8zM2WmdhLMP6dbIDAVpdCqEfkvfwRoD7Pg/zIwAjhVr+SKYQtUYZsvt+0Z5KpVc1hTW5A+fry0JH1MmEE/2Xv1wNPSx877G/4eVdyNSUM+7NjjJKx/k8LWZwu46StjmN5tglKKd7/73fjDP/xDGEa+pVAOZl5WY+riMAwD11xzDU499VT87d/+LXbv2o0v/80aXHT5LC540zyy1ia0mIlFp+yNjTMhJXYF4qBMLOx2TVjEexLKiN2w2cCa8rx3nGGj6ZhScmdQF6bhglIGw3Cl5I4QgPgLDjPGAAI5uaM8rSPBQD8ZseOLBcPtDPkTlTtG4C9BJrfILXUAo9VJvQA5saM2UKh7b/oquQsLttXyjlYRO4CnhQILDCfA1w6TEjvSPSbMG58od35PbghsQgEGJbkTPleBYv6IElwDsIaI1PhPoCN03qQSAkYZDMmkjwudCoHQ1TqvLylcoDzrwmh5r/G09d6S4K9n/kVElEDoil7fnSKBITGOFFAQupDMOSXvtS77fuRUGdyi9xjL7tvKZY7ZBKCQFjouczXTe6Iu2XJf8gdD4+6OKu+WOhbwhI6neqpCt+R6fa4JvNhcF/j1rQP4t//jTYZYvXo1/uqv/gonnXSS9LlXGi/b8muUV7ziFfj2t7+NCy64AK5DcOv/HsXXPrkaM1Nixm8xA9P2AHbaw1hwy9LndxlB3S1iwSkLl2QLxEGVtmESFwOFFkZKDUxUloRLsnwWLCUMpuGiUHBQKrdhFsTsiJguUPC+yXuzJJnUM8o1AbvMwBfzZabkIHo+M9bolGRFqwVZa83FH9QZz8bTPunjQyIjVVLzhQbwyztlClticWEWOh7g45QkZqGS7rK1a8jNgmWku4SoOj6P+WllrnJs1jkKFHNHltAaJbCGFPrYJXT+ZZK7XESFTubLR5fQAd7rS+au8hM6vhYiYUBxQU6qwt9NpV9nhO8Og+C9Qfp4UaEjQHuEoT3sLVUiK3S81BoWOlKVFzpmE0/oCLB6zazwseOlJYyXllAzW4HQtSQG/tbMFgYLza4x3qvMeeHj551yl9DJssepdAmdCLNTBr796XHc9sNhOI6DCy64AN/61re00Pm87JO6MIODg/jYxz6GM888E1/60pfwzBPAZz+6Dm955zROP3cJWeMtLWbAcgyl1A7wxK7F1FI7AIHclU3vuKzUjsATO75yPiUM1GCg1HsDz0rtgrSOd5P4Yiea2lEGVgDQJJ03b+Z3TFCaeEoXpG9MIrkj3oenyAcmT+m6DncZjLZYWsdTuq5+g8+KzT4/IwThuTlc7ADBxI70jmeTSuwIelb3V0rsus5PlBI7IJTagfY1seNC1x5WnxASFTrpNmISOuKKbRvWI3T8ctF02Be6rlnaLHt3hjC87BpGNK1jBD19B+TSOqsq0M9wMhfZOlL0fcepesdxmeOIll270rlQv0RTOi5zUWzBSXxc5lTJI3MApGWOMeD+X1Xxr98fRqtBUalU8MEPfhBvfOMbX3aTIdLQUheBEIKLL74Ymzdvxt/+7d/i8ccfx01/P4GH763iimumMTya/SLgqd0SLSmNteOpncUMpbF2JnExUmoIlWR5Wte2O28ElDAUCo5QSZaYLliBABZfc8T7ES3J8rTO5BNUVOTOvx0gJ3eiZVjqAEazd9apaBmWC11UXmTFLq7/UmIX18ZylGK7zt8HsetDOZaXWxnFASd04sfGC50wcUInSZzQAV5alyV2jADWQMxEJv89QUTsMsuuKTIHlj32ME3mALGULlbm/L6JpHTRUmsYkZSOH6cqdHzsXJ50DoCU0M3PUPz4W6N46iHv3CeccAI++tGP4rDDDlPqw0rmZT9RIg3btnHjjTfi29/+NizLQqXq4q1/MI1Xnt1J7V6yx/Bkc21iGwXiYMxcTBS7JitglzWMvdZA7PWUsCAaj5O7plvAbmsQe1vxx9uMelPiU+TOdika7fh3QpcRuC5JlTvXomDNpI08vZ80uaNtgsJCQo2Gz/jMkLukWaGEIThvkuBlTZyIpmw9XfTlIknsqAWU5pOFg/D7KEmsiDdJIOkLOGGA2XQTxc6b9UtTy1hpkycY8SZYpO3DSVwWktyYNmh6uTZYriVJ7ghgl5LrePzcSWKXNlFCJJ2jLSROlAgmRADJfyMDzEbyE5incGlCxyhJTOtEhI64KbOns4SOeItop02YSBK6MEmTJhKFrutGSJ00kSh0IZEDYmQu1AkjYX5clsxxjJHkCXaJMsehwMlHvZR4fJrMcdLG0vHjkmbEUsJwVHl3YvlVROY2lbanjqkTSefCY+oYAx66q4KffHcEzTpFsVjEe97zHrz97W9/WU+GSEMndSmYpol3vetdOPvss/GJT3wCTz75JH7w9Qk8dE8V/88f9Se147tNAPFSllWSLVMLVZr8RhIuyapMpgiXZCllcF3SI3c9aV3XlchM7nrSusjxQsldKK0L00njkJjeMX9MYFy7cWXXnlOnJHbEyV5wNSuxi5Ze445PTexiSq89baQldjGl157jKQnu/h6xExgXlWcCBaBejt1v5VZfzOMmS4imc0klWNGELrEEK5LQZZRgRYQOiE/rhISOH5+U1sWNo0tL5aIkpHSiMgckp3SZMuf3NSmlE5G5NLJkLkya0Ikkc0lCp5LOzU1T/Ms/jOCJB7xjN23ahI9+9KNYv369cBsvR3RSJ4ht2/jBD36Ab3/727BtG6Wyi4vfPoOTX9vGi/YEdlijmW0UiIMStXrkbo89iBdb45nHJ6V2e60BvNgYE/s7GO1ZAoUBaNtmVwk2CZd5qV1U7lybgDUEviMkJHepaV3k+KTkjideWfD0Lix3cWldUtk1sWsxiV1WShfX/y6xykjposfHJXZ8KRMhGE90uid0WBKTMqJLnmSldFGIE7MESEZSF9yMp32Rcmw0qXOLBhYOK4IZYuXWuKROutwak9bJllvDS5swA6hPGACNH4cWd/4ecZEpuSakdaJCxwmndTJC5x3gnSsqdl0pnYzM+Z2ITo6QkTlONKUTkjlOTEonK3Mt1+wZT1czW8Jr1VHCepYykS21nlt9put3WZkrUwvEdfHbf6vhZ/80hFaTwjRN/NEf/RGuuuoqmKbOobLQUifJM888g09/+tN4/PHHAQCHH9XCuX9oY3pSfF+5aElWVOo4UbnLKsFGiSvJppVg44jKXbBuXVxaF0dU7lwCo0Hi07qE44NSUkjwZBbnjcpdVOyyyq5xuAaB7S+3FIylkxhvFhU7RonU3rFRsRMpvca243T3QUbqgG6xk5U6IKYcKyh1wfGRcmxY6tyigfn1Ral0Lix1jBLYVQOy++BGpU5l/ByXOtXxc10lWIUxdIwCjYnO4yArdLwPRvDcAJpjktNjI2XYQOhkZS5ozyu7hkUOEJc5wEvp+AQJKZkDvJRu7WwwQUI1mQuXXmXSOaC39Ko6bi4sdbITIQBgYauDH39rFFuf9b4Zn3DCCfhv/+2/YcOGDVLtvJzRUqeA4zi4+eab8Y1vfAP1eh2EMqz/T0VsvKQIoyj2Qg6ndk23ICV1nLDcLTol4bSOE5a72WZFSuo4sLsdLwAAQItJREFUYblrNwpiaV2YsNzZkmIXaoO4AFw/iZB8Rofljn9IGW0mldIFXQmldTIpXU9/GEAYE07posdzsZNK6aLt+Pdl1ni6xOP9cXbESRlrltkHBuowOAX5XRXCqV1hyQG1XMwfXhJO57pwgeoeFwMvtdQnQ/hSJzJ+LrEJ6q3fpjwhgqd1qpMiQmmditBxzBaTT+k4PK2zGKwqgVsE2kPe8A4pmQMA5i3G7ZblUrkwXOikZY7jp3R5y6xLdkla5oIu+Cld3kkQ51afUSq1Wi3g1zdX8dufVuC6BLVaDe9973vx5je/GTRrsVhNF1rqcrBnzx5cd911uOOOOwAAlXGC464oYdVJhvAUaz4Dac6pwFLcT5YShoZTwK7WkNLxNqOo20XMt8qYqcuv6g14cmfbBlqNAlhdZYNU74e2KIpzii9iXjqUXDiUE5Y7owmUZxRnlBLvw9ewFHde8PvCiDeGSPV4o+WVMXNtTQa5hCy2Ly5D5npAGcerSGVwvJ98toao8tg5wJP0kact9dmtDDDabq4tlJlBsHiIqT7DFV6CXJrJMcuVAM0RmmvLOeL6+6rm2LKvPextOagkcz5ukYG4REnmOHwsnbTMAQAFjjliJw6tzSrLHOB9jljMUNoWDPA+Q06obM21RMm4uYhJY156mZKn7i/i335Qw9xe743qvPPOwwc/+EFMTEwo9+XljJa6PnDnnXfiC1/4Anbv9lbinjjewHFXlDCwRvzDcNquYdaqYLygts2LxQzsbQ9grl1G1ZRbAoWzt1nD1tkREMJAFfftq9dLcKZK/gbw8m0Qh8BYojDreT75vMkNZh1BKVQWo+klM0qn96WO2kx6JfwAwndggHTyGG2DOAzFJcW/hRJPLHO8Syg+lUKdYKA2wLdJU8E1gcYqNTklDlDd5XoJaI5lU4jNlJeO4TgVirn1ah+8xAUKCwzEBYqLOZZ/od6XDdUvHIwC1iCBayJxtqlIG0uHKv4NjKA0Q9BY44CZql+6CGiTwBl0AKr4mPqzti59xUNKh7uM4p7dh4MShnPXPJN9QAIt18T68hSGDblt8DgOKH4+vQnXrP6V1HFTOwzc/v0anvu9V2qdnJzEhz70IZxzzjlK/dB46FGHfeDss8/GKaecgu9+97u46aabsPcxG7/+2zrWv7aAoy8uwhQof7VcE1OtWhChy8pdgTigYFiySmi7JorUlpa7gUILw9UGZharYJQpyV2xZKFeM0EWTK8kKil3zGBwiwzII3X+oUaTgTh+qcuQEzy34G1VJLuSPocZgOOXC1XEjhEEZVcCKEkVo4BdBojrTe+VFbtgW7LwrEmVu4N/b8yR1lGLBZ1QFTsViAPUdjgozjvyY+jC7eQUOhbafaM8xdAclx9LV5xnudagA7znFAgBtaG09zGj3rZrdtmXfQWpYwRojcmXWUvTnfvMbEBa6AgjoI1OG8QmakLHSDCbf8N6+S25uMwxRjA7X8UJh+yQ7wOAhv8AWowqCZ0Din+bOg4A8NLCCCA4rLzVILjzXyq45/YKXIegUCjgyiuvxLve9S5UKorfwjUBWur6RLVaxXvf+15cfPHF+Lu/+zvcfffdeO5nFrb/1saxlxex7gwzsyTbdk20XRNNx1SWO5tR2DaFRQxpuSsbNgYKbcygCtclgL9npYzcmYYLo2yDzZuAQ8D4wGwJuWMFBrvKcqV1bgGwawSFhc6AbOIQYbljRmcTcxmxYwSdZSdC5VMpsfMTtnCbsmLH0xT+f7uiIHYhsWSdP0k9tWP5yrDwJz/wD8R9KXdBOucyT+hU2/EneuQVuuD5wIDikovmuHhNPU7oRHdS6eqHL3SAX95vM6m0Lix0HKcol9Z5QgfYVcG+h2SOv5UyAjTWykxe8lI5b+KO/5oC4AxKJoVc5vipCXDCiLiQcZkDgOm5Gm8CGwflxDAscyqEZe7F+VGvHwKfD8wFHv1NCT//YRWLs97z99WvfjX+5E/+BIceeqhSXzS9aKnrM4cddhj+1//6X7j77rtx3XXXYdu2bXj4Oy288AsLm95WwtjG7DdjVbkbLDQxXl7CVLOmLHeDxSaGaw3MLXnmoyJ3pZKF+pAJOm9638Yl5Y4ZDE7Nu7Gq2DED8NZzJkHJiW9OLip3ymIXfq9UELu4fWmlxY54Jcdwn5TELqZvucUOUJc7tu9Tu650Lk87fSi3dgmdSh8SEjqWsC5jYj9CQseRSevihI4ReJ9AglIXCF1N4PkbI3O8jcZaBmso+4+PkzmgI3SsJLFBbFjmAIACG47cJXR4nMwB3kvguEN2ivUByTK3obJX6Pg4mRPlhSdM/PuNNex83puMd8ghh+BP/uRPcNZZZ0m1o8lGj6nbh7Tbbfzwhz/Ed7/7XTQa3qKMq042cOxbe8fb1d0itjZGsSdmWZIitVE2bCG529UawvOLvbNgTeKiYDhCcrenMYCXZkZir6OCcrdUL4HtLvdc7i30y4TkjjYpirM5B+k7QGERQWIX9IN2ZmRmCR5xPKnLEjue0sV+AfaTjUyx8xOopC/RImvxMeoNQI/bMYi43nIQWWLH/FJj2i4WomKXvFOGoKwwFr+TAE80BVI7kTF1memcYPm1H+kckCJ0BGgNGpkl2KySqzepSCBhiRE6jlPInswTJ3RBHxhA7Oy0TkToiEtQnOn0JfpWKSp0STIXtAPAnhCofsTJHIcCl57yYOrhSTIX9BPAWzdlj8fLSubOGHwu9fgsmSOE4ZJDHsUZ1d5xfVM7DPz8h1VsecCbPFGtVvGud70LV1xxBUolueVONGLopG4fUiwW8a53vQsXX3wxvv3tb+OWW27B7occ7HmkjsPOMXH0JUWUhrwXWpW2MVhoxkrdcpdlw4gmd+G0LoxMctePMiwzAKcEFCJ7ZPPkDsguzYokdqlCBwgndnEpXfT6zKQsktJ1He8ndsww0idQhEqvqf3I6Euq+x9Aqd2Bls4BSE7oMkqwwYQIhtQxdCJpXZrQAdlpHZ8UESd0QCetc5AsdllCF5a51LdFgkShC0QOSJQ5/6rssisfq5B0s4yULkvmROlHmfXn05vgMpKZzEWFbmme4Nc3V3H/L8pgLoFhGLj00kvxR3/0RxgdlUv5NHLopG4/8vzzz+NrX/sa7rrrLgCAUQI2vL6I9a8twCwT7GgP49nF7Gncacld3S1ie2MYU830N4O05K7pmNi2OByUYNNIS+6S0rowQXIHxApeP2bDJqV1PX3JSO/SEju+Pl0maYldRkrXddOEBCAtpetpIyW1Y5TAFlxuIi21ExacNLFLSuq6jk9P7ZKSOuIA1d2uJ7hZQpeS1O3zdC56O4Ng/vBeqZOdEJGW1mUJHScprQuETmAMK2HebPWeNhKELiuVi2snLqXLSuW62kBK2ZV1hDAzwU5I6WRkjpdejx3slUMZmdtQ2YsJs/sbr4zMAV5S99cb/wWANwnintvK+O1Pq2j7knzWWWfhfe97n97eaz+hk7r9yPr16/GpT30KDz74IL7yla/giSeewJaftPH8L9o46g1FFF8l9kYcTu4AdIldlbYxaLYwhfQ3hbTkrmzYGCq2hKQunNwB6BK8YtFGY8juSevC8OQOQGx614/ZsMH4OkZQWEy+j7PSO2Z4C69Gpa5rckQWSYmdhNDxc8YmZSkpXU8bCePs+KxXUXLPjgWSUzvGevYKjT8+lNoJTKQIZM4FinOCa3sxBuL0Ptb7JZ2LQFyG8jRDc4yELpOf4RqX1gXPQcEE1bAAoHvShIzQcWInTZBuoRNO5UIwAjTWdIRONJWLbSsqdFmpXBQKrA/NeHUZxe/2HOb/n0glc1GhU0nmkoTu+Tm5heytNnDfv1dw979W0Fj0zn/MMcfgj//4j3HqqadKtaXJh07qlgnXdfGLX/wC3/rWt/DSS96ef8VhgqHXjqP1irUgptgLMy61SxpXl0Y0uZNJ66KE0zvLNtCYL6eKXZTouLu+rF0H8cSuqy+R9M4pdqd1mWXXxIa7E7vwbFVZeFImk9J1HR9J7GRSuqS+dNpWeHsJy4RIShfbhr+zR4HLUiepIw5Q2+mKy1ykb/z5sL/TuZ7jQmldniVLwmmdaDrX0xcCWFUStCErdEDv+Dqe0jkVJpXKRfvVWMNgDTtSqVxPO4ikdLIyBwRCt3l0eyBzsiIH9KZ0ecqsfDwdlzkAUkJHXAebn3sY229bCGa0Hn744XjPe96D8847T+8GsQxoqVtmbNvGbbfdhu985zvYtct7kZLRIkqvXY3CyaMgggmQJ2Odr7lNp5BZgo0jLHdLVilxwoQIXO4ajWJmGTaOrtIsA4xmn8RuAamJXWJ/QoJHbYbCIlMTuqBBX+wsBtdMnpQgAvGljn+wSh/veh+mxGEoNJiy1PG+eNucoZPAKTVE1KUO6CrJWhWC5jiVT+di+uQWSF/SOUBd6ABP6hYONYTGz2VBLaYsdByn4CXZKkLH4WJHLaA96u25C8iJHIcLnVvs3C/UUhBW+EIX3nVCZQI5BS55xcPKMsfhEyTyjpk7ojyNhxcOCX6XSuccF8aje2D++iWQWe9BWrNmDa6++mq8/vWvh2nqIuByoaXuAKHdbuOWW27BP/7jP2J6ehoAQMaKKL1mFQqnjAond4AneC4jmGurL+RoEhcuCKaWqmi0ikLrECXhOBTt+RLokrq1+Iuvw2gQGK18YkfbQHFWbVFgwJMnRgGzmasbfmOhTevzNmUkD0gXhThAaYHlEkwgJHY5xcfbsi3n/eOndq5J1GUOAIi3jy5t5RQ64u13Sm2Wa7kSEKA5bMBs9UEuqTfpIW8bS2uostBx+Pg6q6Ymc5z2INAec5VEjsMAODUXrOyqiRyHAKTsYGJ8IdfkB+YQHL1uDzYO7VGWOQCYs7wHSbbMCtuF8fBuGHdvBZ3zZG5sbAx/8Ad/gEsvvRTFosKK1Jq+oqXuAKPZbOLHP/4xbrjhBszNzQEAyHDBk7tXjoEUxF7IbcdAyzGVt/viLLWLmF2sBF/gVeWu1SgAe/0p7Dk+x2iboLDgl3m84WDyMH8bMf8DgziKguenUSTHm71rwBMFi6GwlLOMZ3ilV9nyaxjiAIV6/94SiJtP7PjWXCzPosU+1MrxQBECu0rBKFBYyLPpqSeGrkmU9wXm8G3khMdzxsBCaWbe3SasipfStQfV2yDM+9KlKpiWv3gAI4BdY2rvD9E2R1VTXaAw2KmeuDk2/XVt/w9hwOuOe1y5nZl2FQBQt4vYW5eQS8uB8eAumL/ZBrLg/U2jo6O48sor8da3vlXvBHEAoaXuAKXRaOAnP/kJfvCDH2BqagoAQAZMFM9dheIZYyDF9CjFZQSWY6DtRy6qcmc5BhaaJTRa3qKRqnJn2xRWNK1TeY9zAbNBYNT90flEUe78Dw+j7YuHrSh3OcTONbxdL9yCdzxt+WVdFbkj3gSHYCkSiQkTXc30WeqAfKldeL/VvGKnJHWEwK54Ty63QEBcpiZ1vswB3gQOwid2KMDTPR7UqEidNxbUu095O9Rm/qQHOewSCZ5vjABORU3s8gidNeCfu8wnWCGf0PmTbexapOwqApc5wlApe3dos1WA48h3KJA51ytVHLFuCscMy28tNmdV4DKCpuO9j8+3ymjaAm8QbQfG/Ttg/mY7SN37WyYnJ3HVVVfh0ksv1WvNHYBoqTvAabVauPXWW/H9738fu3d7L2ZSNVB41QSKr5oArSW/MHlaF0ZF7nhaF0ZF7mLFLmhQokNhsePH8slsMoIXEjugI3eApOApip1bANpDkZmULmAuyYsdo5E70P+QlRE7b/Zv/8rBPe0ryF1Y6jiqcicldVzmCLpKpNJSF5G54GLWPUFBFJ7ORc8hU4nj6Vz0GJVxeXa5d2IOo0BjUu4xUhG6cCrHZQ7IKXS8GVmhC6dyIZkD1ISuS+aCczDplC4qc4D3hT8zpatbMO7bAfN3O0Aa3oOyZs0avPOd78Qb3/hGXWY9gNFSd5BgWRZuu+02fO9738P27du9C02CwiljKJ4zCWOi9xtTnNRxZOQumtaFCX++igheVxk2DtHPgqjYhY+XEbyI2AXNyAqepNiFU7oo0mJHEkRHUuz2RUoXex6Jkmyc1HFk5U5I6iLJXM/VMlLnC13S0ioyaR0zSOrC1KJpHU/o3ITby6R1cULHzyGT1skInRVam92u9N53SkIXbUZG6EIyV6n0rp7MANTrYmlWIHJAt8wB0ikdHzNXt3vlK03qyFQDxj3bYTyyG8T2/v5DDz0Uf/AHf4DXve51egLEQYCWuoMM27bxy1/+EjfeeCOeeOIJ70ICmJuGUDx3FcwjOi/WaAk2DlG5i0vrooikd6lpXU+D6VfTNkFhLuVGouXZBLELmhEVPD7jE+lylyZ04XOKil1PStfVkFg5dl+ndD3nE0jtuPRk9UlU7jKlzhe6rEWkjZYLo5nSlj8RInOtPEGpi03nYs6ZtRMJ819ySULH+ySS1iUJXfh8WWLHZQ5IF7oskQvOKSN0aX8iyRhHFxkrFydznFbbhG1nDJWJS+V6zpmd0nGRA+JljtNTemUMZOsCzN9ug/HUdHDxscceiyuvvBLnnXeelrmDCC11BymMMTz00EO48cYbgx0qAMA4vIriOZMwjxsGoSQ1rYuSJnhpaV2UrPROSuyAZLlzAbNOYDQyPtRF0rsMseu6nZ9kJApeSmrnGoBdJXAFqhdCYpeU0sXcLi21218pXc95U1K7tJQuish9kCh1Gelcz83T0rqMdK7rphlSl5XOxd0+9vKMdC5KVlqXJXTh8yaJXVY6JypywblEhS6rqbSULiOVi5ImdKmpXM95GQ5fO41jR+K3FktL5XrOG07pXAb65BTM324D3b4Y3Oass87ClVdeiZNPPhmkDxOUNPsXLXUrgOeffx4//OEPcdttt8GyvHdjMlJA8cwJmKeOwy6XUtO6KElyJ5LWRUlK7zLLsIkNRn4XFbvw8UmCJyp24dsnCV6C2MWNo0vtrust6UEcxMpdakrX01i82O3vlK6nWwmpnYzUcdLkrkfqJGUuOCxO6gTTua5DUsbVCaVzPQ32HiMrdLxfcWldeEKEKHHj65KETlbkgnNkCZ1oU3FCJ5HKRU8ZV3YVSuV6+hWf0snIHGe+VUZznsF4eBeM+3YGy5IUi0W84Q1vwBVXXKG38zrI0VK3gpiamsKPf/xj3HzzzcFyKDAJjM2jcE5bA7JuIL2BCFG5k0nrokTTO+m0LrZR/19ZsQsfHxU8WbHjxAleROxEyq6JXY1L7URTuq6Gesuxy5XSRYnKnYrUceLul0DqFGUu6GdY6hRkrqutSFonm85F4WmdaLk1iWhaJ5rO9fQnktZFhU5V5IL2k4ROtqmw0CmKXJhwSieVyvX0qzulEy2xxmFtbWDhzlkYj+0NxssNDw/jsssuw1vf+laMjUmuWac5INFStwJptVr4+c9/jh/96Ed48sknO1ccUgPOWA0cPya1mDHQETyVtC4K/7x1bAproZhP7Hibrr8wsazYBQ2gKwUMb1ckTUTwzCbz1s0SLLsmdjEsdipC19VYJ7U7UKSOw+WOOkxZ6jjh+4jaDE6ZeHvbKghY0D+XobDo5pK5oC1f6vLKHCdoRzKdi4OLnarQBX3yn/t2zXtdOKEAS0XkgnajQqfalC905kRnNXEVkeO02ibazdA3N1mR6+qbl9KppHIAwCwX1u9n0f7NFNyt9eDyjRs34rLLLsN/+k//CeVyzhXLNQcUWupWMIwxPP744/jRj36EX/ziF0FpFlUTOHUSOHUSZFTuBe24FDP1ChqNIkwzxyKsPrZtwJkrgjbzrxLqlSoJaIv0bFIu15D/j+O1mWulfebJISPIJXRB13yxMxv52wqndspbcYWbc31xUtzDNq49b3/cfGIHIBC5PDLXaczb2i2PzIVxC/kXIgbgJZBlby29vEIHAthloFDPt5g1hxnA0loCaucTOcIAc4nAGmKe1OW92whgr2nDLNm5RA5+Vxb21kCKbj6R8ykPtFArt3HU6F5pmXNn2mjfMwXrd1Ngde/NsFAo4Pzzz8dll12GE044QY+XW6FoqXuZMD09jVtuuQU333wz9uzZ07niyCHglEngOPGtyNqOgemFGtot792eUKYseIwR2G0DbsP/5HBILsHzFvENbSXGkEvwwhvU5xa8PkAcb99aL/3rw5sy6aR1XMpUoQ5g1l24BW9sVz/kjjpekpVX7BjtlFxz04+3TEKC/XVdEygu5tztIjTeLdcXGsATnYr3+FEr304TjAKtMS89tAbU2iEMKCx2yspuwd8tIi++0A2O1LNvmwAXuQCbgpTVH4DygDfGjRCGNcMLqBXERZNZLuzH59D+3TScZxeD961Vq1bhLW95C970pjdhdHRUuW+agwMtdS8zbNvGnXfeiZ/85Ce49957ETz8ZQM4acJL71ZXM9uZrVcwO+29mRECENNVljvGCByHemNPXALW9j98FQWPWt1l2GCygqrg8aZC4+OWQ/DCQsfJXYI1OiU/4peNVcWOOkBhyQn6lVfuiItgiRhqMz/1VBxj1y+py/t2GZY5XqFjOaTOT+dCa8v6M4pV++cLXanzpUhV7BgFmuNESebCIgcARsPrW3uoD0LHOv2rbppVOjwscsac6clm1VUWOi5zA5VWcNmagQWhY50dDVj3TaP94AzQ6Jz/tNNOw2WXXYZXv/rVekmSlxFa6l7G7Ny5E7feeituvfXWYLcKAMC6mleePXEcpBQ/3q1pm5ier6Fd73yacLkD5NM716Gwrci5XALW6swWExU84npr2NF2r0woC160qWUQPGoB5en+LMQbFbrgYqaW2hEXMFtuTxkxj9zRmMdHVe5yS10fZM4p8vuj92qjzWC0JM4RkkMnpjInLXa+zAEhoeMwoLgg9/erCB0vrfL/G+EhBnmFLnoYBazVbQyNiqV0cSLXdT0B2JjcHmtc5IBumQOAwVIrNaVjDQfWwzNo/24a7vbOHTU5OYmLL74Yb3zjG7Fu3Tqp/mhWBlrqNHAcB/fddx9uueUW/PrXv4Zt+4ZiUmDTiJfgbRgCMbo/FMNpXRRZwetK6+KQFLw0sQvfxju5oOAlNRVZumRfSF5cStfTDRmxI+hKd3qulkztwildUt+cEpESuzipC66TlDtlqetjqTV11rNMWue3FydzwU1kvrRE07mYvnnSKdacqNCFJY7/bsSNFVUVuqSbCwpdlsgFt5NI6dJELkxcSsccBvvpBVgPzcB+dA7wX5umaeKcc87BJZdcgtNOOw2GkX/imebgRUudpouZmRncdtttuOWWW/Diiy92rqiawInjwEnjwLoaCCGxaV0cooKXKXYcQcETEbvwbb1OZHwYijhJn1M8EaHrOn2W3CWkdD03k0jtsqSO90smtUuTuuA2vF8ZgictdX2SubR0rvt8AlIXGjuXJuTBzbPSurR0LqZ/WWInMn4uNY1L6KOU0GXdjKaPoxMVueD2AkInKnKccErHGIO7tQHroRlYD8+CLXXeTI488khccskleP3rX4+RkZHMdjUvD7TUaWJhjOGJJ57A7bffjn//93/H7Oxs58rxMrDZE7y50mhiWhdHluAJix0nQ/BkxC58jNeZBMGTqSLmTPFkhS44bZrYCUpBcPMMuUsqvab1zS16H/5pcicidV23T0nvhKSuX2+FMjIXIrEEm1FqTexG2heUrHQujhSxS0rnhNO4mP61B/1+Zgmd6MOWkNAxAAtTteCXLJELjksROlmRC7NmYAHuVAvWgzOwHpqBO9Upw46MjODCCy/E6173Ohx33HF6BqumBy11mkxs28bvfvc73H777fjVr36FVqvzJuUeOoiFI9dh4ZBD4NTklkdJEjxpsQs6Ey94KmIX9DHsB9EPSZX3U4kUT1Xouk4XfdMXTOli+5MgdyIpXVLfkuQuPElClji5S5W6ZZa5Tj8iaZ2izHV1KZrWyaRzCX2Mil1U6KTTuJ5OC6Rzsg9ZROhURS44fYzQ5RE5ACALLVSf3gX66F44L3XEs1Qq4dxzz8XrX/96nHbaaXrSgyYVLXUaKer1On75y1/i9ttvx/333w/X7XxiNFeNon7kGtSPXAOnJr+dWFjwKGG9EydkiAieUafKYtfVz2iKl6e5jBQvbWKE9KkIySV0YQjz++l/wMukdEl9i8qdbEoXR1juYqXuQJG5EN66fMgtc13d8wXZLsNLaVVkLow/cYJRoDXqLzUSumuVRC44OEHo8jxUvtANjtZziVxXd/yJEblFbr4F44m9MJ6cgrF1vtNlSnHaaafh9a9/Pc455xxUq9krEmg0gJY6TQ727t2L//iP/8AvfvELPPLII13XNVeNoH7kWtTXr4EzoCB4husldYwEsqcMFzxGQFoUZj2/3AGhxM3xJCf3Iq0hyaMWUJrNl9L1NE+JVNk1iyC5Y0BlKv/MkLDc2WWSuqm8DDxVdE2+TEf++5RRAqtGYLRZX2QuDLX6I3Nh3GIfZI7jT6IhjKE9RPJJXAin4v3dgdDlfZgIYFcZaJvAGbNyixzgJ3Q1B7Rmo1S21ERurulJ3ON7YWzvnhBxwgkn4IILLsCFF16I8fHxXH3VvDzRUqfpC3v27MEdd9yB//iP/8AjjzyC8NOqNTmC+vo1qB+xCvawxP6zjABhn6Poi+BhyYSx4JdmGfqS3hEbAOlsLcZoPskjDlBY8totzedP61yDwK54MkIYA823eL4HBewKATOA4hwDtfsjd65J0Bw1Oklbn+SuXzLXHiDe314m3Xvx5mmXPwUJ8stMGOL9OMX+iWc4rc6Dw0dr+GM83RLL/8WIeFt+hX/P+/rmIsfbq47XUSvLvYDIdAPGU1NeKrdjsXM5Idi8eTPOO+88nHfeeVi1alWuvmo0Wuo0fWfv3r244447ggQv/BSzhmuoH74ajSNWoTU5CtCsWXcEsIknY4QBht9WHsFzCVjdAG1SX8i6B3KrfggQFzBa3g8jAAt9QKlKHnGA4lw+sXMNArvau6BsXrljBtAe7txX1M4vd540Udjlzpisvsldjre6LpmrhP5mv1yq3G5Y5rquUG8z3F64LOptk5azWRfKfXPCQ25Dk3VyyVxU4gCwiuul3i2q/FruEjkAtOo9n8vVtpjQuQx02zyMLdMwnp4GnepEmYQQnHzyyYHITUxMKPVRo4lDS51mn7J371788pe/xJ133okHHnigswYeAKdcROOwSdQPX43mIRNghYR3docA0UkTYcED5CUvJHZdzeaUvLDYhQlLnqzg5UnteoSuq1M55M6Xm/Dm7MFVOeTONQkaY71jKQO58/utJHiSb3WByAE9Mte5EZTSukSZC7WrRIzMhVEVO9V0LprG9fRHVuiSJK7rAnmhi0oc0BG58LnHRxeRSMuG8dysJ3LPTIM0OscbhoFXvOIVOO+883Duuefq0qpmn6GlTrPfWFxcxD333IM777wTd999NxYXO2+QzKBorB1H47BJNA+dhD0UWiYlnNYloZLiJYhdV7MhyRMVvCSx40RTPEBM9FTkzimQrjQtvkPychdN6eJQkbskqQujnN4JvtUlpXLxN5aTukyZi7QtTIbMhW+X+TeFby4hc0508nvG0jnCQhcRuR6JC8MA0qagrey/MSmNSyIupSMzDRjPzsDYMg364hyI07mjBgYG8KpXvQpnn302zjzzTAwMSAw90WgU0VKnWRZs28bDDz+MO++8E7/+9a+xY8eOruutwSoah06ieegEmmvHwcxCtthxZFI8AbELmpVI8Yjri5KbLHdhZMq1oiXZ1JQuthOCcpeS0sXeXELuRKSOI53epbzVCaVysQeKSZ2UzIXazkRU5kKIpnWppVaC7sdfYu1DtwiApAidSBoXR4bQCaVxCQRC13ZgvDAL+uwsjGdnQGebXbc75JBDcPbZZ+Pss8/G5s2b9fIjmv2OljrNssMYw3PPPYe77roL9957Lx5++GE4TufNl1GK5upRNA+dRGPNKlhDQ94UWVGyJI/PjnXE95cFeiWPnyoselmpXRJZkpeV2kkLXdfJ0+VOJKWLI0vuouPpZBBK72Le6qRSuQTSxtUpyVxXAwmXK8hcmDSxS0rnksbESZ03ms7FCBwgKHHBjT2ZA9AldHwtuc65mLDEdRphqC1NY2DbbhjPzoJunQdxO3eMYRg48cQTceaZZ+Kcc87BEUccoRcE1iwrWuo0Bxz1eh33338/7rnnHvzmN7/Bzp07u663KyU0V0+guWYCrTUTsAcU1nAKSx2XPInULom4NM9oEtC2/3/5FRAAJJdsGemVu1xC13WCGLmTTOni4HLH/88FTyalSyI1vfPf6pRTuSQiaR0LN5f38z367pxT5sJExS68ZmLP46soccG5eDpXUEzhkgilc32ROADGfB3l7dMobZ9GZdte0Hq3sa9duxZnnnkmTj/9dJx66qmo1cR31NFo9jVa6jQHNIwxbN26Fffccw9++9vf4oEHHuja0QIA7FoFzTUTvuiNw6nKrYsHoCN5jreWXTSBUyU6Js9cIigs9aXpLtHju08A3gd+39YkAwK5A/FSujxCFyUsePxc/SIseMxfINi7ArCr/b1/zHqo4/0Oahj6KnNh3AKBzZ2E/wk5Ba4LArRH3I48EpZP4qKYLtAygraVJG6xgdL2aZS3TaO0fQrmYndJtVwu49RTT8Xpp5+OM844A4ceeqhO4zQHLFrqNAcVrVYLjz76KO6//37cf//9ePzxx7tKtQBgDdZ8yRtHa9U4nKrc9mVgAG1SmIveGzczAKfcn5cJtQmMBgG1gKK/gDwjAPr8Ye013N+2jDYDo8STRsm7NAtqAdXdLoyWt1NBe6C/dwijgF3r8wdxKKGjdv8XDAYL7TBC+tw+Aawa8QS3j48l3wmEEaA17nr9HurD9iCAJ8/T/rcYCtiTbVCFZY3oUhPlHdMobfPSuMJ8916whmFg06ZNOPXUU3Hqqadi8+bNKBb7/eBqNPsGLXWag5p6vY5HHnkE999/Px544AE89dRTXVuXAYA1UEVrchStyTG0Vo3BGh7MHJNHbILCnCd2XjoVKq/1QfKoTVCcISj6C8pHE5i+il4fXuHEBUxeYiSdJLBfgmc2gNEnvASWGQTWgBG03w/B65vUhUutDCg0eBLoS1If2uci5+3Y0bnPrX6ki32Uubit3PjWec0JBns050LUYYnzmkVhzut7Y7ULMiYyA4mhML2I4q4ZlHbOorRzBuZC9/YXlFIcc8wxOOWUUwKJ09tyaQ5WtNRpVhQLCwt46KGH8MADD+DBBx/EM8880yN5TrGA1sQoWqs8yWuPjYCZMWujhcQuTFTygsskRY/aBOain9ot9F7fd9FTfaUzwGgxrwQbxRe8PHJHLaC200V5b+8J+iV4uaQuQeS6bkK8UqZymubLXJfIRcjVvl9yZgSwFUYnJApc5BzNceadS1boXMCcjQ4aBYpzkceMAM1VLjAeL3TEclDcM4uiL3ClXbOg7e6+EEJw9NFHBxJ30kkn6eVGNCsGLXWaFc3S0hIee+wxPPLII3jkkUfw2GOPodHo/qbOKEF7dBjt8RG0xkfQmhiBPTQAEAJiExhLFNRGj9x1tZFD9LLkrruvkd9VRE/mFZ8mdGFypHfhlC61KzkET1rqBESu5xDZtC4plUtBWuwUZE5I4CLnkJI5UYGLnmPSK+cGQscYzNklFPfMobjb/5nqnp0KAJVKBccddxw2b96MzZs34/jjj9cSp1mxaKnTvKywbRvPPPMMHn74Yfz+97/Hww8/jKmpqZ7buQUTrfGRQPSskVHQdhXmkoRISIpetCQrfB5V0ct65YsKXRQJwUtL6VK7Jil4QlIXmvBAXDGR6zpcJK1TELkoQmInKHPSAhdzntRSq4rAxZ1j0oFRmusI3B7vh1q9nZ2cnMSJJ54YSNxRRx2l14vTvGzQUqd5WcMYw86dO/H4448HP0899RSazWbPbe1yCfbQKJzSMOyBYdi1EbjlqtSaeVmiJ5PapZ4nxnESZS/uHUBV6KJkCJ5oSpdGWPD4eaKSFyt1kVmrKiLX05e4tK4PIhclUewSZC5O3gBJgQvBKNAaZd6EBS50/RA4AGAMtFWHuTgHc2kOtD2D4twMjEbvYoClUgnHHnssNm3ahE2bNuHEE0/E6tWr9exUzcsWLXUaTQTbtvHCCy8EkvfEE0/g2Wef7ZllCwCuYcKuDcMeGIFdG4YzMAy7OghQ8fXWGAWcSvfLkFoEZgNwjXxyF3eunsvCsud6s1yDZUz6SUTwmAFUd7mo7OnvieIkrzVEYVdJ3yWu59w8rSuEZq4itHZeH3EL3n3plEJLtLiAE5PMqcpbFEaB9ghDYZ6gPRL5m1QEznVg1hdgLs7CWJqHuTgLc2ke1Ol9ThiGgQ0bNmDTpk047rjjcNxxx+GII47QKZxGE0JLnUYjQLPZxJYtW/DUU09hy5YtePrpp/Hcc8/BsmIG9xMCpzoIuzoEpzoEu+b93y3X5FI96q1DV1j0tx1rwRtTtA9CiED2/ISuXxKQeD4TaI4RlKe9hY0HXxLcdFblXAZBe8hAe4D2XeK6T+TLG/H23O33mnI9EKA9SOAUSSBy/X7cGAXao57kF2e9v6k9zNTSt+YSzPoCjPoCzPo8zMU5GI0FkJiPINM0ceSRR+Loo4/Gxo0bsWnTJmzcuBGlUh8XSdRoViBa6jQaRXiixyVvy5Yt2LJlCxYXF2NvzyiFXRkMRM+pDsGuDgrJnrf9mC93Sf7TL+GL7MqwLwTPLQJLh3r/p22C6s7O2xC1gMEX+yt5zKRojeTbraK30e4EjjCAWv4SJwbQru0DqyPo7IZBAGsg/wMeiFvS9QgtJ5LZGIPRXPJSN1/gjPo8zMYiiBv/RBoaGsLRRx8d/GzcuBGHH344CoV+rYCs0bx80FKn0fQRxhh27dqFLVu24Pnnnw9+XnjhBbTb8aLCKIVTHoBTGYBTqfn/DsCuDIAVSl3Clyl3aZ+7Kp//+0DwmAG0xgiswYQJIyHJ61eK1zepC90fYYnruRmFl6AV+7O2XF6RSxM3RgB7xO650Jw14mWOMVCrBaOxGPpZCv5PWPyCwMViEUcccQSOOOIIrF+/HkcffTSOOuoorFq1So+B02j6hJY6jWY/4DgOduzYgeeee05Y9gBvzB6XPKfsCZ9brsIt1QCUQRhJTu6i5BW+PgheltBFoRZBdUdkvKGC6ClJHesdC5cmcj2H5xE7BZGTFreEG5qzBghjKO1pgTbrMJrd0mY0l0Cd5LZKpVIgbuGftWvXwjD6nJZqNJoutNRpNMuI4zjYuXMntm7diq1bt+Kll14K/t21a1fPwslhGCFwS1W4Re+HGbXg/26xCmaWxcfwZd0sen1UeDIkjxlAe4iAmRAWuiSoRVDdHinXZkiekNSllFNVYdSb0MAI0uUuLHH+71GRyyyTioobALgMRqMJc7EOc6kBc7GBwkwTZr0Oc7EO2qrHjnXjUEqxevVqHHrooV0/RxxxBNasWQNK9/WAQo1GE4eWOo3mAKXdbmP79u1dsrdt2zbs3LkTu3btip2NG4YRAmaW4RYqcAsVsIL3f34Z/11opm6W9DGAOvGSJ5vOyRKVvM7lHdnrkrqYBA7oj8Ql0ZPaRSSOmQRLh6afW1TaiO3AaDRh1L0fs97s/b3eTJU2wJttOjk5iXXr1vXI27p16/R+qBrNAYiWOo3mIMRxHOzduxc7duzAzp07g58dO3Zgx44d2LNnT6b0cVyj6AmeWQIL/bgx/wdNWT4iLH4hcWIG0BohsAf271tNWPaIA5RnvdRzX8pbEk6RYO4oA65/93nr5nX6wGi6sBHLhtFsgzZb3r8t71+j2QJttr3/c3Friy0RYxgGVq9ejTVr1vT8rF27FuPj43q5EI3mIENLnUazArFtG1NTU9izZw/27t0b+++ePXtSx/PFwajhiZ5RhGsUwIwimFHwf4q9/5oFgJpgpglrqDsRZAT7TfSMBsHkQzk3mBfEKRLMbej+W10TqB/eArVs0Lbl/bQsUMv/tx3/w0WOOsll+DhKpRImJiYwOTmJiYmJ4If/vmrVKkxMTOgxbhrNCkNLnUbzMoUxhoWFBezZswdTU1OYnZ3FzMwMpqeng//zf2dmZqQFsOd8hIBR05M8aoIZJtyCCWYYvgQaADXAqAGnTMCoAVDqiSSlYJQCRud3UApG/HVcCPH/D28cIem+jLYoxh+30dk+g3k/LPT/rstdAG7vv6H/u9RFa4SBuA6I44A4NohrA64NZlogtgNq2d6/tgOSMj5ShGKxiNHRUYyOjmJkZAQjIyNd/x8fHw+kbWBgQM8o1Whehmip02g0mTDGUK/XA8FbXFzEwsJC8DM/Px/8P3zd/Px8bhlcaZTLZQwODmJgYKDr3+jPwMBAl7hVKhUtahqNJhUtdRqNZp9i2zaazSbq9ToajQYajUbs/+v1OtrtdvBjWVbs75ZlodVqwbZtuK4L13XBGIPjOGCMBZeFfxhjIISAUtrzb9xlpmmiWCyiUCigUCgk/p//Xq1WUalUgn/L5TIqlUrXT7VaRblc1ovqajSafYaWOo1Go9FoNJoVgF5MSKPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBWAudwc0Gg5jDM1mc7m7odFoNFKUy2UQQpa7GxqNljrNgUOz2cQb3vCG5e6GRqPRSHHbbbehUqksdzc0Gl1+1Wg0Go1Go1kJ6KROc0BSvGcVCPO/cxAKQglAKEAJQAgI5df5lxMCUALCbxNcR4Jjgh8gdBntvt47MLiMEdL56hNqI7icdM4VvowRr5ngOuq1611Oguv4Mcy/LLge6LRB/dvz69F9jq5j/O4zGnNd1+3R1cfOZaTnup5jEO5H5HokXJ7QXlI/eo5Jaze4nPUeHzomuD7UFvMvR+g47zoW6o93PQlfF9yWX8eCNkn49oQF1wVPMX45b86/jfdUYMHv/Bjq/+5d5/3OjwuuIwwEneOof1nwAxYcRwm6LveOdzvHgd/ehcGP8X/vtOUG7Rmh9g14lxu8veC2LgzeJng/3M7t0Wnba9MFhXd+7zqvPcO/jMCFwY8PHWMA3nHwzsPvD/67dy7m/x/+dQzUv18MEFAAhv9gUxD/MgKDEFBQEP+Rs9oG3vb/XQON5kBCS53mwMQh/tsrPKmDL2D+p2XnOgLQjsEQz5D8RvinO0XPp3bHmLpNgrfZ8ymPyGXhcyDmsuhx6MhcSOp6LgtJWPj3aBe7bx9zDE25LunP6OlHwp+ddl3SXaXaXqjNOOHbp1IXdz2iv7Og7XA/wueMuy6QQIRuE759zzEs5lys6ycsdR1R9H+SrgMXP6/JsABy+QO4nCGQovB1ntS5HSkiYSny/k8J8YTL/xfB/0lwnNcO/Db5sfCP8y+Puy50jOELqRH0k0sdy5S6cHsGvz/QfRlFuI+hx1CjOUDQ5VeNRqPRaDSaFYCWOo1Go9FoNJoVgJY6jUaj0Wg0mhWAljqNRqPRaDSaFYCWOo1Go9FoNJoVgJY6jUaj0Wg0mhWAljqNRqPRaDSaFYBep05zYGIwMOYtOOqtu0ZC/5LIgsD839D/Eb6Mhf4vcF1o0bLOErFJl3f+ZV3/R9dxDAAYv7zTJgMBGIJjw9cHbXQtrhbuS8zvrKtLkfsj4Sd6W5G16NKuEz6X4HXhU6YexzLaZAl9TF58uHttudB1wW3VFx/u9CO0Th3U16lj6BzHCOv+gfevdx26LncJA4jbaRP8XG5oPT3/Nv71jLhBe+hq3/+Xn8v/nfq34f8C6LnMDb2s+f9dArjorFPn+pcRJK1TR4IFgw10HjP+O/WPia59J774MEFn8eG416VGs7xoqdMckLTP2L3cXdg38M9MRaJOotFwwk8tdzk7okzYqnURSaNRQb9yNBqNRqPRaFYAhDGm9zrRHBAwxtBsNpe7GyuGZrOJt7zlLQCAm2++GeVyeZl7pDlY0c+ldMrlMgjR2blm+dHlV80BAyEElUplubuxIimXy/q+1fQF/VzSaA5cdPlVo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgZ79qNBqNRqPRrAB0UqfRaDQajUazAtBSp9FoNBqNRrMC0FKn0Wg0Go1GswLQUqfRaDQajUazAtBSp9FoNBqNRrMC0FKn0Wg0Go1GswLQUqfRaDQajUazAtBSp9FoNBqNRrMC0FKn0Wg0Go1GswIwl7sDGs3LiWaziQcffBBPPvkknnrqKTz11FPYtWsXAODqq6/GNddck9nG9PQ0brjhBtx9993YtWsXSqUSjjzySFx00UW45JJLQAhJPX7btm244YYbcO+992J6ehqVSgXHHHMMLr30Upx//vmZ53/yySfxwx/+EA8++CBmZ2cxODiIE044AZdffjle+cpXCt0PmvzMzc3hzjvvxH333Rc8jxzHwcjICI499lhcdNFFeM1rXpPaRr1ex4033og77rgDO3fuBKUUhx12GF772tfibW97GwqFQurxy/1c1Gg03ehtwjSa/cgDDzyAD37wg7HXiUjdk08+iQ9/+MOYm5sDAFQqFbTbbTiOAwA444wz8MlPfjLxw/juu+/Gtddei2azCQCo1WpoNBpwXRcAcPHFF+MjH/lI4ofxLbfcgs997nPB+QYGBrC0tAT+NiIqppr8XHDBBcHjAADFYhGGYaDRaASXnXnmmfj4xz+Ocrncc/zOnTvxp3/6p9i5cycAoFwuw3VdtNttAMDGjRvxxS9+EYODg7HnX+7nokaj6UWXXzWa/czg4CBe+cpX4qqrrsK1116LsbExoeMWFxfxkY98BHNzczj88MPxjW98A7fddhtuv/12/Nf/+l9hmibuuecefPnLX449fvv27fjYxz6GZrOJzZs34/vf/z7+7//9v7j11ltx9dVXAwBuvfVW/OAHP4g9/ve//30gdOeeey7+6Z/+Cbfeeiv+5V/+BW9+85sBAN/5znfw85//XP5O0UjjOA6OO+44/Nmf/RluvPFG/Nu//Rtuu+023HTTTbjkkksAAL/97W/x2c9+tudY27bxF3/xF9i5cyfGx8fx+c9/Hrfffjtuv/12XHvttahWq9iyZQs+/vGPx557uZ+LGo0mHi11Gs1+5KSTTsK//uu/4gtf+ALe//7348ILL0SxWBQ69sYbb8T09DRKpRI+/elPY9OmTQCAQqGAyy+/PEjIfvKTn+Cll17qOf5b3/oWGo0GxsbG8KlPfQqHHXYYAKBareKaa67BpZdeCgD47ne/i4WFhZ7jv/a1r8FxHGzYsAF//dd/jVWrVgEAhoeH8eEPfxhnnHFG1+00+5YvfvGL+PrXv463vvWtWLduXXD52rVr8ZGPfCQQ7dtvvz0o8XN++tOf4tlnnwUAfPzjH8dpp50GAKCU4sILL8SHP/xhAMBvfvMb3HfffT3nXu7nokajiUdLnUazHzEMQ/nY2267DQBw4YUXdn2Icy6//HJUKhU4joOf/exnXdc1Gg3ccccdAIC3vvWtsSW1d73rXQCApaUl/OpXv+q6bvv27Xj44YcBAFdeeSVMs3c4Lj9+586deOihh2T/PI0kp556aur1PK0DvFJpmJ/+9KcAgFNOOQUnnnhiz7EXXngh1q5d23XbMMv5XNRoNMloqdNoDgJefPHFIG0588wzY29TrVZx0kknAQDuvfferuseeeQRtFqt1OPXrl2LI444Ivb48O9Jx2/evBnVajX2eM3+J5wA83FqgDdZ5/e//z0A4FWvelXssYSQ4HGOPpbL/VzUaDTJaKnTaA4CeKkMAI488sjE223YsAEA8Pzzzycez2+Tdvxzzz3XdTn/fXR0FKOjo7HHGoaBww8/PPZ4zf7nwQcfDP4ffsxfeOGFQPLSnkv8uunpaczPzweXL/dzUaPRJKOlTqM5CJiamgr+Pzk5mXi7iYkJAF7Zql6vB5fv3bsXgDdJo1QqZR4fPl/4eH59Erxv0eM1+5eFhQV873vfA+CN4+SyDXQeS0DsuRQ9ZrmfixqNJhktdRrNQUD4QzHtgzC8dEX4GL7MRdzSFnHHh48N/551PO9b9HjN/sN1XfzP//k/MTU1hWKxiA996ENd1+d9Li33c1Gj0SSjpU6j0WhWENdddx3uuusuAMCHPvQhHHXUUcvcI41Gs7/QUqfRHATwCQgAgkHmcfCFXKPHVCqVnuvTjg8fG/4963jet+jxmv3D9ddfjx/96EcAgA984ANdM2A5eZ9Ly/1c1Gg0yWip02gOAsbHx4P/79mzJ/F2fLxSrVbr+jDk45MWFhZSP4j58eHzhY8Pj62Kg/cterxm3/PVr34VN910EwDgj//4j/H2t7899nbhsXIiz6XoMcv9XNRoNMloqdNoDgLCswTTZgPymYXr169PPD48+zDp+OisRv77zMwMZmdnY491HAcvvvhi7PGafctXvvKVYPeF97///bjyyisTb3vEEUeAUu+tP+25xK8bGxvD0NBQcPlyPxc1Gk0yWuo0moOAww47DKtXrwbgbf0UR6PRCBYIPv3007uu27x5czCo/Z577ok9fufOnXjhhRdijw//nnT+Rx55JBjUHj1es++4/vrrceONNwLwhO6qq65KvX25XA4WHE56LBljwfMk+lgu93NRo9Eko6VOozkIIITgDW94AwDg5z//OXbs2NFzmx//+MdoNBowDAOve93ruq6rVCo477zzAAD//M//jMXFxZ7jb7jhBgDeGKZzzz2367p169YFi8nedNNNsG275/jvf//7AIA1a9bg5JNPlv0TNQpcf/31XSXXLKHjXHTRRQCABx54AI899ljP9b/4xS+wffv2rttylvu5qNFoktFSp9HsZxYWFjA7Oxv88IVgW61W1+XRpRyuvPJKjI2Nodls4iMf+Uiw9ZNlWfjnf/5nfPOb3wQAXHrppcFemmGuueYaVCoVTE1N4S/+4i+CPTkbjQa+853v4OabbwYAvPvd747duum9730vDMPA008/jY997GPBeKr5+Xl8/vOfD1Kb973vfbm2Q9OIER5D94EPfCC15BrloosuwoYNG8AYw1/91V8F+7u6rotf/OIX+MxnPgPA2/Hhla98Zc/xy/1c1Gg08RDGGFvuTmg0Lyfe/va3Y+fOnZm3u+iii/DRj36067Inn3wSH/7whzE3NwfASzLa7XaQnJ1++un45Cc/2bVFVJi7774b1157bTCzcGBgAI1GA47jAAAuvvhifOQjHwEhJPb4W265BZ/73OeC2w8MDGBpaQn8beTqq68ONnPX7Dt27dqFK664AgBAKcXIyEjq7d/xjnf0pHg7duzABz/4weC5WC6X4bou2u02AGDjxo344he/mChVy/1c1Gg0vWip02j2M3mkDvC2bbrhhhtw1113Yffu3SgWi9iwYQMuuugiXHzxxcEg+CS2bduGG264Affeey+mp6dRqVSwceNGvPnNb8b555+f2a8nn3wSN910Ex566CHMzs5icHAQJ5xwAi6//PLYVEfTf3bs2IF3vOMdwrdPku16vY4bb7wRd9xxB3bu3AlCCA477DBceOGFeNvb3oZCoZDa7nI/FzUaTTda6jQajUaj0WhWAHpMnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCuD/D8xH6UUumgcaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data=\"unbinned_data.hdf5\",event_range=[0,1e6],make_binning_plots=True)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cosi_nomegalib]", + "language": "python", + "name": "conda-env-cosi_nomegalib-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb.txt b/_sources/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb.txt new file mode 100644 index 00000000..774c718b --- /dev/null +++ b/_sources/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb.txt @@ -0,0 +1,2381 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# DC2 Image Analysis, 511 keV, Image Deconvolution using CDS in the Galactic coordinate system\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on the image deconvolution with the Compton data space (CDS) in the Galactic coordinate system.\n", + "An example of the image analysis will be presented using the 511keV thin disk 3-month simulation data created for DC2.\n", + "\n", + "In DC2, we have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) in the image deconvolution. Please also check the notes written in 511keV-DC2-ScAtt-DataReduction.ipynb." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e751bbd5", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import os\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz (please gunzip it)\n", + " - a pre-computed 511 keV line response file converted into the Galactic coordinate system\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/GalacticCDS\n", + "- inputs_511keV_DC2.yaml\n", + "- imagedeconvolution_parfile_gal_511keV.yml" + ] + }, + { + "cell_type": "markdown", + "id": "cbb84ad7-5fcb-4a56-abc3-6acac81c0879", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cafd42c7-7f7f-4e6e-acd7-8e76eb5160dc", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz\n", + "# File size: 3.82 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz')\n", + "os.system('gunzip psr_gal_511_DC2.h5.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae368f5f-2d30-4ba6-a152-c5bbb4187471", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (511 keV thin disk model):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "# File size: 202.45 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dddb7361-a523-42b4-93fe-da0b3ce75deb", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 1. Create binned event/background files in the Galactic coordinate system\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "markdown", + "id": "90fec91e-8209-4f03-bbe3-b9acb78682b8", + "metadata": {}, + "source": [ + "**Source**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9cae1835-e54b-4720-b3a6-196c42cbd1ce", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 7.75 s, sys: 255 ms, total: 8 s\n", + "Wall time: 8.06 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "signal_filepath = path_data + \"511_thin_disk_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_signal = BinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "binned_signal.get_binned_data(unbinned_data = signal_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "3544076d-3475-48d6-9aec-55dab18567c2", + "metadata": {}, + "source": [ + "**Background**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "801ba251-96e0-4243-8f55-1678823f1d58", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 1min 51s, sys: 3.96 s, total: 1min 55s\n", + "Wall time: 1min 55s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "bkg_filepath = path_data + \"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_bkg = BinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "binned_bkg.get_binned_data(unbinned_data = bkg_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "4eb8577f-d394-49b9-a13f-a527d4512f77", + "metadata": {}, + "source": [ + "Convert the data into sparse matrices & add the signal to the background" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f224b957-d0df-4b4b-98dd-90d3a5bda3fb", + "metadata": {}, + "outputs": [], + "source": [ + "signal = binned_signal.binned_data.to_dense()\n", + "bkg = binned_bkg.binned_data.to_dense()\n", + "event = signal + bkg" + ] + }, + { + "cell_type": "markdown", + "id": "217e40dd-5587-4c43-bb77-44ddba2a8dbb", + "metadata": {}, + "source": [ + "Save the binned histograms" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "24289425-380b-4d26-a7c0-cbbd5c58e7b2", + "metadata": {}, + "outputs": [], + "source": [ + "signal.write(\"511keV_dc2_galactic_signal.hdf5\", overwrite = True)\n", + "bkg.write(\"511keV_dc2_galactic_bkg.hdf5\", overwrite = True)\n", + "event.write(\"511keV_dc2_galactic_event.hdf5\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "badfd194-59f0-46d4-90b3-73cce60207c8", + "metadata": {}, + "source": [ + "Load the saved files" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e0f3dcae-5d3c-45af-931d-057d5681859c", + "metadata": {}, + "outputs": [], + "source": [ + "signal = Histogram.open(\"511keV_dc2_galactic_signal.hdf5\")\n", + "bkg = Histogram.open(\"511keV_dc2_galactic_bkg.hdf5\")\n", + "event = Histogram.open(\"511keV_dc2_galactic_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "0e7bb933-0ec0-47af-a18c-ac241abfea82", + "metadata": {}, + "source": [ + "In DC2, the number of time bins should be 1 when you perform the image deconvolution using the galactic CDS.\n", + "It is because the pre-computed response files in the galactic coordinate have no time axis, and all of the events are assumed to be projected into a single galactic CDS.\n", + "In the future, we plan to introduce more flexible binning." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "88efdbfa-aa5e-40b3-bdd6-2635946318e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[1.8354873 \\times 10^{9},~1.8434673 \\times 10^{9}] \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bkg.axes['Time'].edges" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 2. Load the response matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b5b295cf-0a96-4501-aa4e-4182a21dfe63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 3.61 s, sys: 25.7 s, total: 29.3 s\n", + "Wall time: 47.9 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "response_path = path_data + \"psr_gal_511_DC2.h5\"\n", + "\n", + "image_response = Histogram.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "fbdbd818-8a58-4d25-a657-d43fc7f88ea4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi'], dtype='FormatcooData Typefloat64Shape(1, 3072, 3072)nnz3072Density0.0003255208333333333Read-onlyTrueSize96.0KStorage ratio0.0" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ccm.contents" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader()\n", + "\n", + "dataloader.event_dense = event\n", + "dataloader.bkg_dense = bkg\n", + "\n", + "# the loaded response matrix should be assigned to both full_detector_response/image_response_dense in the Galactic CDS method.\n", + "dataloader.full_detector_response = image_response\n", + "dataloader.image_response_dense = image_response \n", + "\n", + "dataloader.response_on_memory = True\n", + "dataloader.coordsys_conv_matrix = ccm" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis Time of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 395 ms, sys: 340 ms, total: 735 ms\n", + "Wall time: 735 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_gal_511keV.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_gal_511keV.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 509.0\n", + "- 513.0\n", + "nside: 16\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f867026503df4ec38a7742788ff48203", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3072 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 386050.327946638\n", + " background_normalization: 1.1900860583584663\n", + " Iteration 2/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 400418.0610733818\n", + " background_normalization: 1.1604351059838505\n", + " Iteration 3/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 411089.6070768463\n", + " background_normalization: 1.0528532374315778\n", + " Iteration 4/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 412844.82476469607\n", + " background_normalization: 1.0586383806179276\n", + " Iteration 5/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 405718.57862391905\n", + " background_normalization: 0.9646219744282969\n", + " Iteration 6/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 415983.925941571\n", + " background_normalization: 1.1066673898750912\n", + " Iteration 7/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 416858.4161653833\n", + " background_normalization: 1.0806318578055656\n", + " Iteration 8/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 414257.0394215712\n", + " background_normalization: 1.0102344432919617\n", + " Iteration 9/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 417764.7103005161\n", + " background_normalization: 1.0821152684078852\n", + " Iteration 10/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418085.83036392974\n", + " background_normalization: 1.0628439330942752\n", + " Iteration 11/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 416671.5483449631\n", + " background_normalization: 1.01071378053145\n", + " Iteration 12/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 418586.7202159421\n", + " background_normalization: 1.06125861498167\n", + " Iteration 13/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418748.2154258507\n", + " background_normalization: 1.046438809261912\n", + " Iteration 14/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 417929.9387790803\n", + " background_normalization: 1.0064089218442853\n", + " Iteration 15/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419053.901413677\n", + " background_normalization: 1.044315278190893\n", + " Iteration 16/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419142.6261917602\n", + " background_normalization: 1.032928348339306\n", + " Iteration 17/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418668.7303367079\n", + " background_normalization: 1.0022726458324056\n", + " Iteration 18/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419331.81249085104\n", + " background_normalization: 1.0310819169451524\n", + " Iteration 19/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419384.6657808487\n", + " background_normalization: 1.022400747988371\n", + " Iteration 20/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419117.17787774315\n", + " background_normalization: 0.9990969032872745\n", + " Iteration 21/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419503.1781891738\n", + " background_normalization: 1.020903831468017\n", + " Iteration 22/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419537.4338580138\n", + " background_normalization: 1.0143336117743598\n", + " Iteration 23/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419391.0999065008\n", + " background_normalization: 0.996731360121657\n", + " Iteration 24/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419612.81397406233\n", + " background_normalization: 1.0131337570188672\n", + " Iteration 25/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419636.6847504409\n", + " background_normalization: 1.0081895689199645\n", + " Iteration 26/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419559.4179241776\n", + " background_normalization: 0.9949613976847363\n", + " Iteration 27/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419685.6098920044\n", + " background_normalization: 1.007241126899907\n", + " Iteration 28/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419703.1797833361\n", + " background_normalization: 1.0035377514781483\n", + " Iteration 29/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419664.32482954196\n", + " background_normalization: 0.9936399908743172\n", + " Iteration 30/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419487.46208422736\n", + " background_normalization: 1.0028055191196619\n", + " Iteration 31/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418669.1558819624\n", + " background_normalization: 0.9799331479447816\n", + " Iteration 32/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419634.10911400197\n", + " background_normalization: 1.0211029605768254\n", + " Iteration 33/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419659.03221757046\n", + " background_normalization: 1.0136432733397405\n", + " Iteration 34/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419411.490253184\n", + " background_normalization: 0.9943973775742112\n", + " Iteration 35/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419725.5587795917\n", + " background_normalization: 1.015325684269482\n", + " Iteration 36/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419738.1626685151\n", + " background_normalization: 1.0099456346378402\n", + " Iteration 37/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419626.3826360004\n", + " background_normalization: 0.9957165764734817\n", + " Iteration 38/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419778.6108548996\n", + " background_normalization: 1.009612147376651\n", + " Iteration 39/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419787.8858903183\n", + " background_normalization: 1.0056281285483295\n", + " Iteration 40/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419731.6003448446\n", + " background_normalization: 0.9950185424057802\n", + " Iteration 41/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419813.53259433387\n", + " background_normalization: 1.0050135239487987\n", + " Iteration 42/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419820.6780524987\n", + " background_normalization: 1.002046819706305\n", + " Iteration 43/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419792.0089048097\n", + " background_normalization: 0.9941334048497183\n", + " Iteration 44/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419672.64219748904\n", + " background_normalization: 1.001496431493074\n", + " Iteration 45/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419151.89420566417\n", + " background_normalization: 0.9830572014967464\n", + " Iteration 46/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419768.8962983411\n", + " background_normalization: 1.0159118239103546\n", + " Iteration 47/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419781.17991715414\n", + " background_normalization: 1.0099829791967136\n", + " Iteration 48/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419623.7705518758\n", + " background_normalization: 0.994708877170725\n", + " Iteration 49/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419821.7835588583\n", + " background_normalization: 1.0112793627463252\n", + " Iteration 50/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419827.8357267488\n", + " background_normalization: 1.0070105323513425\n", + "#### Done ####\n", + "\n", + "CPU times: user 3min 26s, sys: 2min 3s, total: 5min 30s\n", + "Wall time: 1min 25s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': 1.0,\n", + " 'background_normalization': 1.1900860583584663,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 386050.327946638,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.1604351059838505,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 400418.0610733818,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0528532374315778,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 411089.6070768463,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0586383806179276,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 412844.82476469607,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9646219744282969,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 405718.57862391905,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.1066673898750912,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 415983.925941571,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0806318578055656,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 416858.4161653833,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0102344432919617,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 414257.0394215712,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0821152684078852,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 417764.7103005161,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0628439330942752,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 418085.83036392974,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.01071378053145,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 416671.5483449631,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.06125861498167,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 418586.7202159421,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.046438809261912,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 418748.2154258507,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0064089218442853,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 417929.9387790803,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.044315278190893,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 419053.901413677,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.032928348339306,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 419142.6261917602,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0022726458324056,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 418668.7303367079,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0310819169451524,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 419331.81249085104,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.022400747988371,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 419384.6657808487,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9990969032872745,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 419117.17787774315,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.020903831468017,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': 419503.1781891738,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0143336117743598,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': 419537.4338580138,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.996731360121657,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': 419391.0999065008,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0131337570188672,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': 419612.81397406233,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0081895689199645,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': 419636.6847504409,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9949613976847363,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': 419559.4179241776,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.007241126899907,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': 419685.6098920044,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0035377514781483,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': 419703.1797833361,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9936399908743172,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': 419664.32482954196,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0028055191196619,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': 419487.46208422736,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9799331479447816,\n", + " 'delta_map': ,\n", + " 'iteration': 31,\n", + " 'loglikelihood': 418669.1558819624,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0211029605768254,\n", + " 'delta_map': ,\n", + " 'iteration': 32,\n", + " 'loglikelihood': 419634.10911400197,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0136432733397405,\n", + " 'delta_map': ,\n", + " 'iteration': 33,\n", + " 'loglikelihood': 419659.03221757046,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9943973775742112,\n", + " 'delta_map': ,\n", + " 'iteration': 34,\n", + " 'loglikelihood': 419411.490253184,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.015325684269482,\n", + " 'delta_map': ,\n", + " 'iteration': 35,\n", + " 'loglikelihood': 419725.5587795917,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0099456346378402,\n", + " 'delta_map': ,\n", + " 'iteration': 36,\n", + " 'loglikelihood': 419738.1626685151,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9957165764734817,\n", + " 'delta_map': ,\n", + " 'iteration': 37,\n", + " 'loglikelihood': 419626.3826360004,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.009612147376651,\n", + " 'delta_map': ,\n", + " 'iteration': 38,\n", + " 'loglikelihood': 419778.6108548996,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0056281285483295,\n", + " 'delta_map': ,\n", + " 'iteration': 39,\n", + " 'loglikelihood': 419787.8858903183,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9950185424057802,\n", + " 'delta_map': ,\n", + " 'iteration': 40,\n", + " 'loglikelihood': 419731.6003448446,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0050135239487987,\n", + " 'delta_map': ,\n", + " 'iteration': 41,\n", + " 'loglikelihood': 419813.53259433387,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.002046819706305,\n", + " 'delta_map': ,\n", + " 'iteration': 42,\n", + " 'loglikelihood': 419820.6780524987,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9941334048497183,\n", + " 'delta_map': ,\n", + " 'iteration': 43,\n", + " 'loglikelihood': 419792.0089048097,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.001496431493074,\n", + " 'delta_map': ,\n", + " 'iteration': 44,\n", + " 'loglikelihood': 419672.64219748904,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9830572014967464,\n", + " 'delta_map': ,\n", + " 'iteration': 45,\n", + " 'loglikelihood': 419151.89420566417,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0159118239103546,\n", + " 'delta_map': ,\n", + " 'iteration': 46,\n", + " 'loglikelihood': 419768.8962983411,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0099829791967136,\n", + " 'delta_map': ,\n", + " 'iteration': 47,\n", + " 'loglikelihood': 419781.17991715414,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.994708877170725,\n", + " 'delta_map': ,\n", + " 'iteration': 48,\n", + " 'loglikelihood': 419623.7705518758,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0112793627463252,\n", + " 'delta_map': ,\n", + " 'iteration': 49,\n", + " 'loglikelihood': 419821.7835588583,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0070105323513425,\n", + " 'delta_map': ,\n", + " 'iteration': 50,\n", + " 'loglikelihood': 419827.8357267488,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "1a69308c-c13b-4162-820a-7ac3a514e0ba", + "metadata": {}, + "source": [ + "**(If you want, you can save the results in the directory \"./results\" as follows)**" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "44d94156-fc95-43f0-ac56-3e784bbad1eb", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.mkdir(\"./results\")\n", + "\n", + "for result in all_results:\n", + " iteration = result['iteration']\n", + " result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')\n", + "\n", + " with open(f'./results/result_itr{iteration}.txt', 'w') as f:\n", + " paramlist = ['alpha', 'loglikelihood', 'background_normalization']\n", + "\n", + " for param in paramlist:\n", + " value = result[param]\n", + " f.write(f'{param}: {value}\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAG5CAYAAADPm0PuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxw0lEQVR4nO3dd3xUVeI28GdKMukZSKMkhhQICVWlEyAUKaJRFGR1WcCC5YVgWRfL6trwZ1nUDVJEoqKLUtRFwkpREVBwEUECmEAIkIQA6b1Mn3n/GOaSYUKYydQkz/ezfJK598y5N4fIPHvOueeIDAaDAURERETkVmJ33wARERERMZQREREReQSGMiIiIiIPwFBGRERE5AEYyoiIiIg8AEMZERERkQdgKCMiIiLyAAxl7YRSqURubi6USqW7b4WIiIicgKGsnSgsLMSCBQtQWFho83vPnj3rhDuia2F7uxbb27XY3q7F9nYtd7c3Q1knoFKp3H0LnQrb27XY3q7F9nYttrdrubu9GcqIiIiIPABDGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyAMwlBERERF5AIYyIiIiIg/AUEZERETkAaTuvoHr+eyzz5CRkYGYmBh8+umnAIxbDm3fvh379+/HuXPnoFAoEBkZidtvvx233347JBKJWR16vR4bN27EN998g6qqKkRGRmLOnDmYNGmSxfUKCgqwYsUKnDhxAlKpFCNHjsSiRYsgl8udXicRERF1Xh4dysrKyrB+/Xr4+vqaHb906RLS09Nx8803Y/bs2fDz88OhQ4fw7rvvIjs7G3//+9/Nyq9duxaff/45br/9dvTt2xf79+/Hq6++CpFIhIkTJ5pdLy0tDQEBAViwYAEUCgU2btyIc+fOYc2aNfDy8nJqnURERNR5eXQoW7VqFZKSkqDX61FbWysc79q1K9atW4eYmBjh2B133IE333wT27dvx7x58xAZGQkAKC8vx6ZNmzBjxgw8+eSTAIDbbrsNaWlpWLVqFVJSUoSetfXr10OpVCIjIwMREREAgMTERDz11FPYsWMHUlNTnVYnERERdW4eO6csKysL+/btQ1pamsU5uVxuFshMxowZAwBmm3bv378fWq0WM2bMEI6JRCLceeedKC8vR3Z2tnB83759GDVqlBCeAGDIkCGIiorCnj17nFonERERdW4eGcp0Oh3S09Mxffp0xMXFWf2+qqoqAEBwcLBwLC8vD76+voiOjjYrm5iYKJwHjL1f1dXVSEhIsKg3MTFRKOesOq9WUVGB3Nxc4U/zoElEREQdj0cOX27duhWlpaV47733rH6PRqPBl19+ie7du6Nv377C8crKSnTp0gUikcisfEhICABj+DGVa3786rJ1dXVQq9Xw9vZ2Sp1Xy8zMxLp16yyO5+fnQ6fTtdwI19DQ0ICcnByb3kNtx/Z2Lba3a7G9rWcwGAADYDDA+FXf/LUBYm8xxBJRq3W01N56nQGaRt3lP3ro1PrLF7xSt3DNy68BQCwVQSQVQSwVQSy5/LXZMYmXCF7+EojErd+Tqxgu3/fVn7W20OsMaCpTo7FUA732coMY/2fePpe/V6vUUNUehyzYsfEoKSnJqnIeF8pqa2vx8ccfY+7cuTY9nfivf/0LBQUFeOuttyCVXvmxVCpVi5PpTUFIpVKZfb1eWW9vb6fUebXU1FSMHj1aeF1YWIilS5ciJiamxZ631uTk5Fj9C0H2Y3u7Vmdub4PeAI1SC73WAL1OD73u8let4cr3OuOnjcRbAqm3BFIfCbxkEkhlEogltg+WtLf2bqpRoSirDMp6DQw6Awx6A/T6y18vvzYdk3pLEBDqg8BQXwSE+SIg1BdePtf+mNSqdai91Ijqiw2oudhg/HqhAfXlTZfb/fr3J/EWQ+bnBS8/KWR+XvD2k8Lbzwve/lJ4+0lRVqxGvUQFRa0Kilo1lHVqqBo1Dmwhc2KJCAGXf/7AMD8EhvsiMMwXgeF+CAzzhU+Qt10hCQCqL9Tj0Be5qDpfL/xdGHRX/l6a/91IvMQI7uGPLj0D0CUqEF0iA9AlMhCBYb4W4dFgMKChQoGyM7UoP1uD8jO1qCiovRJarXTzxAHontjVrp+xrTwulGVkZCAwMBB333231e/ZsGEDtm3bhgcffBAjR440OyeTyaDRWP4Cq9Vq4Xzzr9aWdXSdVwsNDUVoaGiL54jIMzVWKVFxrhYapRY6rTEc6TT6y9/rodPohdAklUngE+QN3yBv+Fz+4xvoDZ9Ab4ilV8KSTqNDfbkC9aVNqCtrQl2p8U99WRPqyxTQaWz7wGlOLBFBKjMFNSmCuvkhtFcQQi7/CQj1tfsDuCUlp6pQeKQMOrUOOlO7aA3Nvjd+hQgIiwtGz/6h6Na3S6sBqTllnRr5v5Xg3P+KUXKyytRR1CYyfy8EhPoYg0qoLyTeYtRcajSGr7Imu+oGAJ1ajya1CqhRtVKq3r6L2ECvMwi/Y0ClxXkvHwmih0Tg5ll9EBjma1lBq3XrceLbfBz5Ks/Ya2UFnUaPqsJ6VBXWAygWjktlEsh7BqBLZAD8u/qg6nw9ys7UQFmntumeWmKw9y/VDh4VyoqKirBt2zakpaUJQ4CAMcBotVoUFxfD398fQUFBwrkdO3bggw8+wB133IF58+ZZ1BkSEoKjR4/CYDCY/eNiGlo0BR/TEKPpeHOVlZUICgoSerScUScROUd9uTG8aFU6aNXGPzq13vhao4NWpYdOrYNILEJwd3/Ie/hD3jMAPoGt/7dpMBhQV9KEklNVKDlVjZJTVagvVzjknmX+XvAJ8oZWrUNjldKqHpe20OsMUDdpoW7SAlChtrgRRUfLze6ja3SgENJCewXZ/YGVu7cIP3/4h9XlS3Or8cf2AoilIkT06YIe/UPQs38oQmODIW7WU6Jq0KDgcAnO/a8El7IrjUOFDqBq1EDVqEFloXXBSOIlRlA3P0i9JIAYEIlFxvsUGb+KxJeH40SARqm73P4aqJs00Chan5ri5SOBb7AMPsHe8A2SwTfYGOq9fKUQiUUQiczrF46JjENzOo0eOs3lIKzWX359+ZhGD7VCi4ZyBerLm655LxqlDmf2X0L+ryXoP60XBt0RB2/f60eJ6gv1+GnNCZSfvbKSgqlXUGRqJ4nIeM9iU1uJoFZoUVfSZPH3qVXpUHGuFhXnaq++lJnAcF+Ex8sRGhts/G9aBKFNcPmrsZ0AQIQLF4vQNTLwuj+Ps3hUKKuoqIBer0d6ejrS09Mtzs+ePRszZ87E4sWLAQA///wz3n77bYwdO1ZYmuJq8fHx+O9//4vCwkL06tVLOG4ao4+PjwcAhIWFQS6XIzc316KOkydPCuWcVScRXWHQG3tNpN6S6xdugV6nx/nfy5Dz3Xlcyrb8P0XW8An0grxnAIK7B0De0x/yHgGQBXih7EwNSk9VoyS3Copa+/9feUtMQaA1Ei8xAsP94N9VBrFUbPwjMX6YCd9LLs9ZEhl7ZDQqnTGMCn+0wjF1kxZalfkHsapRg+KcKhTnVAnH/MK8EPlcLwR387f55zr7yyX8vNb6QNacXmsQ7uXI5jx4+0nRo18IwuKCUXKqGhdPVBiHDK8SFOGH2JHdEdIrSGgfkVgEkcT8w98UABoqFGgoVxi/VijQUKFEY5XSIhQIPTU9L/9+XO61CQjzMwuLNv2MegM0QkjTQtWkQdHF80ganADfIBmksrb992Arg8EAVYPG2ENb1iR8bShXoPxsLVSNGug0ehzLPIfcvRcw5J4+6JMS2eLPbeod+/3rM0KvrkgE9L81BjfP6m3Vf+M6jQ61xU2ovlCPqqIG1FyoR/WFBtSVNZn9HxaZvxfC4oIRFi9HeFwwQuOC4RvU8mjUtTT5V8InyH2dJR4VymJiYvD6669bHM/IyEBTUxMWL16MHj16ADAumfHKK69g4MCBePHFFyEWtzw3Ijk5GStWrMCWLVuE4GYwGLB161aEhYWhf//+Qtlx48Zh586dKC0tFZawOHLkCIqKinDPPfc4tU6izqL8XC3yfy2BqkEDtUIDjcLYU2P6ajxmDAdB3fwQNTgMUYPD0K1v1+v+A95Uq0Luj0U4tbvI2MNkB2W95nIPWLVV5SVeYoTFyxHRpwv85N6QXA5KEq/LX6Xiy5OpxRBLxNAotFDUG+cIKevUUNSpoaxXQ1lr/KqoU0EsESMo3A+BEX4IivAz+95PLnPohGyD3oD68iZUFtajsqBO+NN01bBaU7kG214+iMlP34zweLnV9Rf8Voq9q44LH6JJk6PRe2xPs3aRSMUQX/4q8RJD3aRFcU4lLp6oxMU/KlBfdqUnUt2kRcFvpSj4rdTiWgFhvogd0R2xI7ohpFeQ3UOwep0eTdUqNFQooFXrENw9AAEhPg6fEC8WiyAL8IIs4Mo85BqUIjDMz6HXuR6RSASfy0PpYbHBZudUjRpkbT2L7J0F0GsNUNapsT/jD2TvKsTwOX0ROeDKtJvqiw346YPjZr1jwd39MfaRAYjo08Xq+5F4SdD1hkB0vSEQzddj0Kp0qLnYgMZqJeQ9AhDUzc8pw+2u5FGhTC6XC2uNNffll18CuLIOWUlJCZ5//nmIRCKkpKRg7969ZuXj4uKEpTTCw8Mxa9YsbNiwAVqtFomJifj5559x/PhxvPjii2ZbMs2ZMwd79+7FE088gZkzZ0KhUGDDhg2IjY3FtGnThHLOqJOoo9Pr9Di65Syytpyxeh5OXUkTsncWIntnIaQyCbondb0c0sKF+SwGgwElp6pw8ofzyP+1xKK3JCjCD9FDIuDtJ7082V1snPAuk0DiJTbOqfKWGP+Bv9SI2ksNxjlDlxrQVH3teT5evlJE9OmC7oldEJHQFWGxQZB4uaYnwxlEYhGCIvwRFOGPmGHdhONNtSohoJ3ZfxE1FxuhrFPj26W/YkLaYETfHNFKrUZFx8rx4/tHhd6mvhOjMHJe4nU/QH0CvREzvDtihncHANSVNuHSHxW4eKISl7IrzXoT/bv6IGZEN8SO6I6wuGCHfjiLJWJhTllnJ/P3wvD7+iJxYhR+23Aa+YdKAADVRfXY+cZviBochqH3JqAoqxy/f5XX5t4xa0hlEoTGBiMUwdcv3E6IDO6c0WalxYsXo7a2Vtj78ujRo3j88cevWX7+/Pl44IEHhNd6vR5ffPEFMjMzUVlZicjISPz5z3/G5MmTLd6bn59vsU/lwoUL0bWr+ZMYzqizNbm5uViwYAHWrl3Lpy89XHtvb61Kh6YaFZpqVFDUKNFUozZ+X6tCQIgP+k66AX7Btg0J1Jc1Yc/KYyjLq7lmGalMAm9fKbz8jE+dwQBU5Nddc26QvGcAevQLQUHWJTSVXTXUJwJuuDEcibfcgMgBoW3u0VA3aYSAVnupEYpaFbpGB6Fb3y7oekNQm4ep2itVowZbl/6MukJjWBWJgFEP9EPixBuu+Z5LOZXY9dZh4cM5PrkHxj060O5eJr3eYAyLhXWQ9whARG+5xyzl4Eie/u9Jyakq/Lr+FMpbmdvVlt4xd3F3e7eLUEYMZe1Je2vv+rImHNqYi6rCejTVqKBRaFstL5VJkDT5Bgy8Lfa6k+EB4Mz+izjwSbYwJCkSi3DTXfG44eZw40RfXy94+ba8PIOqUYNLf1SgKKscRccqoGj1CTVAFuCFhPFRSJwU5fIhn87ij+PZKNunwbn/XXkSbvCdcbh5Vm+L3qmyvGps/7/fhLlqMcO6YXzaoDYtxdFZtYd/Twx6A87+cgm/bTxtPm1ABAxwcO+Ys7m7vT1q+JKIXEvZoMaON367/Pi7dbQqHY5vy8fJ78+j/7Re6H9rDGT+lmvxqZs0+GVdDs7svyQcCwz3xfiFgxDe27r/xyzz9xKGrwx6AyoL64wBLascZWdqhPlJYfHBSLolGjHDu7Wbf/zbK7FUhPELB8E/xAcn/psPAMj65iwaK5VIXtAfksvLeVTk12LnW4eFQBZ1YxhSFjGQdUQisQjxyT3Ra2g3nNiRjz++LYB/iA9GP9CvXfSOeRKGMqJOSq/T48flWUIgk3iL4d/VB35yGXzlMvhd/uMrl8EvWAZZgBfOHLiEkz+ch15rgEapw9EtZ5G9qxADpseg39RewqPxpaersXflMbMlIuKTe2DU/CR4+1kGOGuIxCKExgQjNCYYN86Ih7JOjbKzNSituYSh4wfb3R5kPZFYhOH39UVAiA/+99lJwADk/XwRTTVKTHz8RjRWKbHjjd8uL7UB9OgXgomP3ygENuqYpDIJbrwzHoNT4zrkULIrMJQRtSPKejWqiupRXVSP6qIGKBvUGDg9xuqep+YOrj+FS38Yl4vwCfLGHa+Nuu5ikGFxcgycHoOj35zF6b0XhHWujnyZhz92FGDg7bHQaXQ4+p+zwlwwL18pkh/sh7hRPWz/gVvhE+SNG24MR0NOxfULk1P0m9ILfl18sHflMeg0elw8UYn/vvorFHVqqBqM8/wi+nTBLX+9iT2YnQgDWdsxlBF5IL1Wj8rz9ag+X4+qC8YQVlXU0OKcqqKj5UhZOMjsibnrOfVjEXJ2GTe5F0tEmPTkTVavzu0f4ovkB/tjUGosjm45i7yfLsKgN65r9NsG8zX5wvvIMX7hIM7v6sBihnWDb7AM379zBKoGDarOX1lkNTQ2GFOW3Gz1SvxEnR3/SyHyMOomDb554RfUlVg3z0un0WN3+lGM+Esi+k/tdd3yxSercOCTbOH16Af7oVuC7T1tgWF+GPvwAAy6PRZHt5zBmQOXhDleIhFw413xGHxnHOcQdQLdErrg9pdGYOfbh9Fweci6S1Qgpj47pM3D1USdEUMZkYfJ3lXYYiCTBXihS1QgukYFomuUcXPeUz8WIe+ni4ABOPjZSTRWKjHs3oRrDh/Ulzdh979+h+HyWl79pkYjISXKrvsN7u6PlP83CIPuiMOxrWfRVK3CTTN7tynoUfsl7xmA1FdG4tAXp2DQGzD8L4nwCeA2ckS2YCgj8iAapRZ/7CgAYOxtGvKnBIREG4OYr1xmseRAeG85/Lv6IOubswCAE9/mo7FKiXGPDrBYyFSj1OL7d36Hst4416fngBAM/3Nfh917l54BSPl/gxxWH7U/fnIZfweI7MBQRuRBTu4uEiZIx43ugUG3x7ZaXiQSYcg9fRAQ4oMDH2fDYADO/a8YTTUq3PLUTcJSFQa9AXtXHxfm+wR398eEtBs5tEhE5EH4LzKRA6kV2hY3RbaGVq3DiW+N6z5BBAxKbT2QNdd34g245a83CxsWl5yswn9fOYiGSuP8nt+/zkPh5T0Cvf2kuOWvN5ntr0dERO7HnjIiOzVWK5F/sBhnfylG+dla+Ed4oc/rfWye4Hx67wXh6cpeQyPQJTLQpvffcFM4bv37MHy37AiUdWpUX2hA5j/+h6RbonF0i3F4UyQCxqcNhrxHgE11ExGR8zGUEbWBskGNgkOlOPvLJRSfrBKeOgSAxlINDm3IRfKD/a2uT6fV4/h/zwmvB98Z16b7Co+XI/WVEdj55mHUlTahqVqFw5tPC+eH3dcXUYPC2lQ3ERE5F0MZkZU0Si0KD5fi7P+KceF4hfAEY3MiEWAwAKd2FyF2ZHf0SAqxqu4z+y+iocK4Z1zUjWEI7RXc5vsMivDH7a+MwHfLjqD8zJVNgnuP7Yn+t/Zqc71ERORcnFNGZIW8ny/i88d+xN5Vx1F0tNwskAVF+OHGGXG4+59jMGLulY1s96/9Q9j3rzV6vQHHtjbrJbujbb1kzfkGyTD978PRa1gEACByYCiSH+xn8fQmERF5DvaUEV2HwWDA4U2nzQKWX1cZYkd0R9yoHgiNCRLCjry7P/748Szqi1SoK23C4S9PY8ScxFbrzz9YLOw/2aNfiMM28JXKJJj0xE1Q1KrgE+TNQEZE5OEYyoiuo7a4EY1VxqHFLlGBGDU/Cd0SurS4QKtILEL8bSE4nlECnUaPP3YUIHZ4t2vuTWnQG4Q1xoC2zyVrjW+wzOF1EhGR43H4kug6LmVXCt/3Tu6B7oldW91w1zfECzfN7G18YQB++vAEdJqWhzELj5Sh+kIDAONCsN2TujruxomIqF1hKCO6jot/XAllPfpbN3F/wK29EBprnKxfc7FRWJKiOYPBgKxvzgivb7wzjkOMRESdGEMZUSv0egOKL/eUyQK8EBIdZNX7xBIxxj48AGKJMWQdyzyHioJaszIXjlegIr8OABDSKwiRg7lUBRFRZ8ZQRtSKyvxaqJu0AIAeSSGtDlteresNgcIcMYPegJ/XnIBeqze+NhiQtcV8Lhl7yYiIOjeGMqJWNJ9P1mOAdUOXzQ26Iw5doowr81cW1uP4f43bKJWcqkLp6WoAgLynP3oNiXDA3RIRUXvGUEbUiosnmoWyfraHMolUjLGPDICpE+z3/+Sh+kK92RyzwXfE2dQDR0REHRNDGXVYygY1fnjvd2x5/gBqSxptfr9WrRN6swJCfREU4dem+wiLDcaA22IAAHqtAd+/8zsuXX54IDDcF7Eju7epXiIi6lgYyqhDaqpV4dvXDqHgt1JUFtTh96/ybK6j9HQ1dBrjHLAe/UPsmvN10929EdTNGOpMC8UCxuFNsYT/GRIREUMZdUANFQr895WDqC6qF44VHimDRqm1qZ5LzZbC6GnlUhjXIvWWYOzDA4Bmuc6/qw96j+lpV71ERNRxMJRRh1Jb3IhtrxxEXUmT2XGtSoeCw6U21dU8lHVvw3yyq3Xr2xVJt0QLrwfeHgOJlP8JEhGREbdZog6j8nwddr7xGxS1agBAUDc/3HR3b+xdeQwAcPbAJfROtq5nStWgQUW+cV2xLlGB8HPQVkXD7kuAl48EEm8xEpsFNCIiIoYy6hDKztRg11uHoWrUADAGqWnPD4VvoDcObzqNhgoFLp6ohKJWZdVekMUnK2EwGL+3d+iyOam3BEP/lOCw+oiIqOPg2Am1e5dyKrHj/w4JgSwsPhjTXxwGv2AZRGIR4kYZn2406A04d7DYujrbsLUSERGRPRjKqF07f7QMu946DI3SuOF396SumPbcMPgEeAtl4pN7CN+fOXDJqnpN+12KJCJ068tNwomIyPkYyqjdOnewGN+/+7uwbEXUjWGYsmQIvH3NR+W7RAaia7RxVf3yM7XXXbOssVKB2mJjmfA4uUV9REREzsBQRu1S1fl67Hk/CwadceJXzIhumPTkTZB6S1osHz/qSm/Z2V9a7y27mM2hSyIicj2GMmqXzh8tEybi9x7TE+MXDW51eYm4Ud2FNcLO7L8Eg+nNLXDk+mRERETWYiijdklRqxK+TxgfCfF19o70D/FF90Tj3LC6kiZUnKttsZzBYBBCmVQmQVi83DE3TEREdB0MZdQumdYiA2DVEhcAEDf6+hP+ay41oqnGGPi69e3KxV2JiMhl+IlD7VLznjLfYO9WSl4RM6wbxFJjj9q5/xVDr9NblLn0R4XwPeeTERGRKzGUUbtk6imTeInhZeXTkTJ/L0TdGC68/1KzCf0mnE9GRETu4vHP+n/22WfIyMhATEwMPv30U+H4oUOH8OOPP+LkyZMoLCxEeHg4Nm/ebPH+4uJizJ49u8W6X3rpJUycONHsWEFBAVasWIETJ05AKpVi5MiRWLRoEeRyuVk5vV6PjRs34ptvvkFVVRUiIyMxZ84cTJo0yeI61tZJ1jP1lPkGyyAStT6frLn40T1Q+JtxD8yzB4oROTBMOKfX6XEppwoA4BPoha5RgQ68YyIiotZ5dCgrKyvD+vXr4evra3Huhx9+wI8//og+ffogJOT6PRqTJk3CiBEjzI7169fP4nppaWkICAjAggULoFAosHHjRpw7dw5r1qyBl5eXUHbt2rX4/PPPcfvtt6Nv377Yv38/Xn31VYhEIrOgZ0udZB29Vg9Vg3H1fmuHLk2iBofB208KdZMWBb+VYPQD/SCVGZfRqDhXC41CCwDo0S8Uous8PEBERORIHh3KVq1ahaSkJOj1etTWmj8t9/DDD2PJkiWQSqV45plnkJ+f32pdvXv3xuTJk1sts379eiiVSmRkZCAiIgIAkJiYiKeeego7duxAamoqAKC8vBybNm3CjBkz8OSTTwIAbrvtNqSlpWHVqlVISUmBRCKxqU6ynqLe9kn+JlJvCXoN64bTey9Ao9Sh8PcyxI00bsPE9cmIiMidPHZOWVZWFvbt24e0tLQWz4eGhkIqtS1TKhQKaDSaa57ft28fRo0aJYQnABgyZAiioqKwZ88e4dj+/fuh1WoxY8YM4ZhIJMKdd96J8vJyZGdn21wnWc98kr9toQwwDmGanG32FCbnkxERkTt5ZCjT6XRIT0/H9OnTERcX55A6161bhylTpmDSpEl4+OGHcejQIbPz5eXlqK6uRkJCgsV7ExMTkZeXJ7zOy8uDr68voqOjLcqZztta59UqKiqQm5sr/CksLLT+h+3gzJfDsG34EgC6JXaFXxdjmCs6Vg5lvRpalQ6lp6sBAIFhvggM93PMzRIREVnJI4cvt27ditLSUrz33nt21yUWizF06FCMHTsWoaGhuHTpEjZv3owlS5bgjTfewMiRIwEAlZXGXpKW5qeFhISgrq4OarUa3t7eqKysRJcuXSwmmJveW1FRYXOdV8vMzMS6dessjufn50On09nQAkBDQwNycnJseo8nK8tpEL6vVVS16WeTJ8jQdFAFg86AX745Ch+5FHqtcZV/v0iJXe3V0drb07G9XYvt7Vpsb9dyVnsnJSVZVc7jQlltbS0+/vhjzJ071yFPJ0ZEROCdd94xOzZlyhTMnTsXK1euFEKZSmUcEmtp4r0pNKlUKnh7e0OlUl23nK11Xi01NRWjR48WXhcWFmLp0qWIiYlpseetNTk5OVb/QrQHmrPnABgDb0xCNGKTuttcR7hfLb45+AsAoPGcAQF9/IVzScnxiGtDnSYdrb09HdvbtdjersX2di13t7fHhbKMjAwEBgbi7rvvdto1goKCMG3aNHz++ecoKytDeHg4ZDLjcFZLc87UauNwmamMTCazupy1dV4tNDQUoaGhNv1cnYW9c8oAICQ6CPKe/qi52IjS3Go0VCiEcz36dbX7HomIiGzlUXPKioqKsG3bNsycORMVFRUoLi5GcXEx1Go1tFotiouLUVdX55BrhYcbFxGtr68HcGWI0TTk2FxlZSWCgoKEHq2QkBBUVVVZbGpteq8pTNlSJ1lPUWP7av5XE4lEZtsuNVYqAQBdowPhG9S2oEdERGQPjwplFRUV0Ov1SE9Px+zZs4U/OTk5KCoqwuzZs1ucZ9UWly4Zn7oLDg4GAISFhUEulyM3N9ei7MmTJxEfHy+8jo+Ph1KptJh8bxqHNpW1pU6yXlv2vWxJ/KgeFsd69mfvJBERuYdHDV/GxMTg9ddftziekZGBpqYmLF68GD16WH6QtqampsZiblp5eTm2b9+OuLg4syHCcePGYefOnSgtLRWWsDhy5AiKiopwzz33COWSk5OxYsUKbNmyRVinzGAwYOvWrQgLC0P//v1trpOsp6gz9pSJpSJ4+7X9Vzgw3A/hfeQoO10jHOvRj0thEBGRe3hUKJPL5RgzZozF8S+//BIAzM6dPXsW+/fvBwBcvHgRDQ0NwjZM8fHxwiT51atX4+LFi7j55psRGhqKkpISZGZmQqlUYvHixWbXmTNnDvbu3YsnnngCM2fOhEKhwIYNGxAbG4tp06YJ5cLDwzFr1ixs2LABWq0WiYmJ+Pnnn3H8+HG8+OKLwsKxttRJ1jP1lNm6xVJL4kf3EEKZWCJCt75d7L09IiKiNvGoUGaL06dP46OPPjI7Zno9depUIZQNHToUly5dwpYtW1BfX4+AgAAMHDgQc+fOtXiKMSIiAsuXL8eKFSuwZs0aYZ/KhQsXWsz9euSRRxAYGIjMzEzs3LkTkZGReOGFF3DLLbe0uU66Pr1OD2X9lVBmr9jh3XHw3yeh1xrQrW9XePm02/8kiIionWsXn0DLly+3ODZt2jSrepomTZrU4ibh1xITE2OxhEZLxGIx5syZgzlz5jisTro+Zb0GuPx8RVsn+TfnE+SN8YsGo/BwKQalxtpdHxERUVu1i1BGZOKI5TCuFjOsG2KGdXNIXURERG3lUU9fEl2PWSgL4vAvERF1HAxl1K44ajkMIiIiT8NQRu2KWU+ZnKGMiIg6DoYyalfMe8o4fElERB0HQxm1K86Y6E9EROQJGMqoXWFPGRERdVQMZdSuCFssSUSQ+Xu5+W6IiIgch6GM2hVTT5lPsLfdWywRERF5EoYyajf0egOUdZe3WArifDIiIupYGMqo3VDVq2HQG/dY4iR/IiLqaBjKyKVyvi/Evxf8gKP/OWPzeznJn4iIOjKGMnKZhkoFfl1/CqpGDbIyzwq9XtbichhERNSRMZSRyxz9zxnoNHoAgE6tR1OzkGUN81DGnjIiIupYGMrIJWqLG3F630WzY/VlCpvq4L6XRETUkTGUkUsc/vK0xXBlfXmTTXWY1igD2FNGREQdD0MZOV1FQS3yD5ZYHK8vszGUsaeMiIg6MIYycrrDm/KE7/ukRArf2z58eaWnzI+hjIiIOhiGMnKqklNVuHCsHAAQEOqLoX/qI5yrL2/bnDKRWARZALdYIiKijoWhjJzGYDDgt42nhdc33R0P3yCZEKgabJ1TdrmnzDfIGyIxt1giIqKOhaGMnKYoqxylp6sBAPKe/ogf0xMAEBjuBwBorFRCp9VbVZdBb4DCtMUSJ/kTEVEHxFBGTmHQG3B485Vesptn9YH4cu9WYJivsYwBaKiwbghT1aiBQcctloiIqONiKCOnOHewGFWF9QCAsNhg9BoaIZwLDPcVvrd2XhlX8ycioo6OoYwcTq/V48iXV564HDK7D0SiK3PAAsP8hO8brFwWo/lyGD4cviQiog6IoYwcLnffBdSVGsNWj34h6Dkg1Oy8afgSYE8ZERGRCUMZOZRWrcPR/5wRXg+Z3ceijGmiPwDUWd1TxtX8iYioY2MoI4fK2VWIpmpjgIoeEoHweLlFmYBQH+DyaGaDlQvIcjV/IiLq6BjKyGHUTRoc23bO+EIE3Dyrd4vlJF4S+HfxAWD9/pfsKSMioo6OoYwc5vh/86Fq0AAA4kf3QNeowGuWNT2BqazXQKPUXrdu9pQREVFHx1BGDqHX6ZG9qxAAIJaIcPPMlnvJTJrPK7NmD0xTT5lIBPgEsqeMiIg6HoYycghFnRoahbHHq+fAULPQ1RKzJzCtmOxv6inzCfIWFqElIiLqSBjKyCGUzYYX/eQ+1y3ffK2y680rMxgMUNRd3veSQ5dERNRBMZSRQ5hCE2DdRHyzVf2vM3ypbtRCrzVtscShSyIi6pgYysghTJuFA1aGMhsWkOXCsURE1BkwlJFDmG2DFHT94OTXxQdiqXFu2PXmlJn3wjGUERFRx8RQRg6hbB6cgq7fUyYSi4R5ZfXlChgMhmuWNVsOw4q6iYiI2iOpu2/gej777DNkZGQgJiYGn376qXD80KFD+PHHH3Hy5EkUFhYiPDwcmzdvbrEOvV6PjRs34ptvvkFVVRUiIyMxZ84cTJo0yaJsQUEBVqxYgRMnTkAqlWLkyJFYtGgR5HK50+tsz8zXEbMuOAWG+aK2uBFalQ7KOvU1e8E4fElERJ2BR4eysrIyrF+/Hr6+vhbnfvjhB/z444/o06cPQkJCWq1n7dq1+Pzzz3H77bejb9++2L9/P1599VWIRCJMnDjR7HppaWkICAjAggULoFAosHHjRpw7dw5r1qyBl5eXU+tsz5R1zYcvrQtlAVfNK7t2KLM98BEREbU3Hh3KVq1ahaSkJOj1etTW1pqde/jhh7FkyRJIpVI888wzyM/Pb7GO8vJybNq0CTNmzMCTTz4JALjtttuQlpaGVatWISUlBRKJBACwfv16KJVKZGRkICIiAgCQmJiIp556Cjt27EBqaqrT6mzvTBP9RSLAJ8C64BRktoBsU4v7ZALsKSMios7BY+eUZWVlYd++fUhLS2vxfGhoKKTS62fK/fv3Q6vVYsaMGcIxkUiEO++8E+Xl5cjOzhaO79u3D6NGjRLCEwAMGTIEUVFR2LNnj1PrbO9Mc8p8grwhsnJxV2uXxWBPGRERdQYeGcp0Oh3S09Mxffp0xMXF2VVXXl4efH19ER0dbXY8MTFROA8Ye7+qq6uRkJBgUUdiYqJQzll1Xq2iogK5ubnCn8LCQmt+XLcwGAzNVty3vifL2gVkhZ4ykfVDo0RERO2NRw5fbt26FaWlpXjvvffsrquyshJdunSBSGTee2Oah1ZRUSGUa3786rJ1dXVQq9Xw9vZ2Sp1Xy8zMxLp16yyO5+fnQ6fTtfozX62hoQE5OTk2vccWWpUeOo0eAKCXaKy+lkZx5ecoya+45vtqyxsAAFJfMU7lnrLzbp3P2e1N5tjersX2di22t2s5q72TkpKsKudxoay2thYff/wx5s6d65CnE1UqVYuT6U1BSKVSmX29Xllvb2+n1Hm11NRUjB49WnhdWFiIpUuXIiYmpsWet9bk5ORY/QvRFrUljTiEIgBAaI8uVl/LYDAgy7cEGoUW+iZRi+8zGAz4VWGsO7Crn1N/DkdxdnuTOba3a7G9XYvt7Vrubm+PC2UZGRkIDAzE3Xff7ZD6ZDIZNBqNxXG1Wi2cb/7V2rKOrvNqoaGhCA0NvdaP5VGUZqv5Wz98KRKJEBTui8rCejRUKKHX6SGWmI+oaxRaoReOk/yJiKgj86g5ZUVFRdi2bRtmzpyJiooKFBcXo7i4GGq1GlqtFsXFxairq7OpzpCQEFRVVVksTmoaWjQFH9MQo+n41WWDgoKEHi1n1Nmema/mb9vPE3D5CUyD3oDGKmWrdXOSPxERdWQeFcoqKiqg1+uRnp6O2bNnC39ycnJQVFSE2bNntzjPqjXx8fFQKpUWE+VNY8bx8fEAgLCwMMjlcuTm5lrUcfLkSaGcs+pszxQ2rubfnNkemC08gcnlMIiIqLPwqFAWExOD119/3eJPTEwMIiIi8Prrr2P69Ok21ZmcnAypVIotW7YIxwwGA7Zu3YqwsDD0799fOD5u3Dj88ssvKC0tFY4dOXIERUVFGD9+vFPrbM+UdvSUXe8JTPNQxp4yIiLquDxqTplcLseYMWMsjn/55ZcAYHbu7Nmz2L9/PwDg4sWLaGhoELZhio+PFybJh4eHY9asWdiwYQO0Wi0SExPx888/4/jx43jxxReFRV4BYM6cOdi7dy+eeOIJzJw5EwqFAhs2bEBsbCymTZsmlHNGne2Zoo1zygAg6DprlZkPX7KnjIiIOi6PCmW2OH36ND766COzY6bXU6dONXty8ZFHHkFgYCAyMzOxc+dOREZG4oUXXsAtt9xi9v6IiAgsX74cK1aswJo1a4R9KhcuXGgx98sZdbZX9gxfBly1qr9F3Ry+JCKiTqJdhLLly5dbHJs2bZrVPU1isRhz5szBnDlzrls2JiYG77zzjlvqbK/asu+lSeBV+19ejRP9iYios/CoOWXUPpl6s6QyCbx8bMv5Um8JfOXGHrCWQxl7yoiIqHNgKCO7mXqzbB26NDH1lilqVNCqzHcrMOsp4xZLRETUgTGUkV30Oj1UDcbFcX3aOLwYGH7tJzBNPWWyAC+Ipfx1JSKijoufcmQXZf2V3Qp8bdiMvLnW5pWZnuzkfDIiIurobJoAlJWV1eYLDR48uM3vJc9l9uRlm3vKWl4WQ6PUCsOZnE9GREQdnU2h7PHHH4dIJGrThfbu3dum95FnM99iqa09ZS0PX5pN8m9j3URERO2FTaFs3rx5FqEsJycHhw4dQmRkJAYMGIAuXbqguroaf/zxB4qKijBs2DDucN+BKWvbvkaZidmcsmY9ZU01XA6DiIg6D5tC2QMPPGD2+tixY/j888/xt7/9DdOnTzcLbAaDAdu2bcPy5cvxl7/8xTF3Sx7HfDX/tgUn/xAfiCQiGHSGa/eUcfiSiIg6OLsm+n/00UcYMWIEbrvtNoseNJFIhNTUVAwfPtxi5X3qOOxZONZELBYhIMQHgLGnzGAwALgqlMnZU0ZERB2bXaEsNzcX0dHRrZbp1asXTp06Zc9lyIPZs+9lc6Z5ZRqFFqpG4xOd3PeSiIg6E7tCmZeXF/Ly8lotc/r0aXh5edlzGfJgCgfMKQPM55U1XJ5XxuFLIiLqTOwKZUOHDsWhQ4ewfv16aDQas3MajQbr16/Hb7/9hmHDhtl1k+S5lKbeLBEgC7QnlF1ZFqPu8sbkjpivRkRE1F7YtSH5Y489huPHjyMjIwNfffUV+vbtC7lcjpqaGpw6dQo1NTUICQnBo48+6qj7JQ9jCk4+gd4Qi9u2XArQ8gKyjuqFIyIiag/sCmXh4eH48MMPsWbNGuzZswf/+9//hHPe3t6YPHkyHnnkEYSEhNh9o+R5DAaDsHisvaHJfFkMY0+ZqRfO208KiZfErvqJiIg8nV2hDABCQkLw/PPPY8mSJTh//jwaGxvh7++PqKgoziXr4LQqHXRqPYC2P3lp0rynrOGqnjLOJyMios7A7lAmVCSVIjY21lHVUTvgyKcjfYK8IZVJoFXpUFfWBK1KB43StMUShy6JiKjjc1goO3HiBPLy8tDU1AQ/Pz/07t0bAwYMcFT15IEcOedLJBIhMNwX1UUNaKhQoKlGeaVu9pQREVEnYHcoO3HiBN58801cvHgRgHGekWkh2cjISDz77LPo37+/vZchD2S2cKwDerMCw/xQXdQAvdaAysJ64ThDGRERdQZ2hbL8/Hw8/fTTUCqVGDJkCG688UaEhISgqqoKR48exW+//Yann34aH3zwAXr16uWgWyZPYbZkhQM2DG8+r6wsr+ZK3Ry+JCKiTsCuULZu3TpoNBq8/fbbGD58uNm5P//5z/j111/x3HPPYd26dXj55ZftuRR5INOTl4Bjlqxo/gSmeShjTxkREXV8di0em5WVhZSUFItAZjJ8+HCkpKTg6NGj9lyGPJSy1rGLuzZfQLYiv9ahdRMREXk6u0JZY2Mjunfv3mqZ7t27o7Gx0Z7LkIdq/vSlj0OGL6/0lOk0euF79pQREVFnYFcoCwkJQXZ2dqtlcnJyuHhsB2U2fOngnrLmGMqIiKgzsCuUjR49GllZWcjIyIBKpTI7p1Kp8PHHH+Po0aNITk626ybJM5mevpR4iyGV2b/ivpePFD6BlgsOc/iSiIg6A7sm+s+bNw//+9//sH79emRmZiIxMRFdunRBdXW1sPdljx49MG/ePEfdL3kQ09OXvkEyYRkUewWG+0FZf2U+mZevFFJvbrFEREQdn12hLDg4GKtXr8YHH3yA3bt34+DBg8I5b29vTJs2DY8++iiCgoLsvlHyLHq9Acr6y6HMgT1ZgWF+KD/LSf5ERNT52L14rFwux7PPPounn34ahYWFwor+0dHRkEodtmEAeRhlvRowGL+3d9/L5q6eV8b5ZERE1Fk4dO/LuLg4R1VHHk7pwH0vm2u+gKyxbvaUERFR58C9L6lNHL1wrEnzBWQB9pQREVHnwb0vqU3M9r106vAle8qIiKhz4N6X1CYKJw1fBoT4QiQCDAbH101EROTJuPcltYmi1jnDl2KpGP4hPmioUF6um6GMiIg6B+59SW2iaD586eAhxoBm2y1x+JKIiDoL7n1JbdJ8Tpmje7NCexnXtRNLRAiK8LtOaSIioo7BruFL7n3ZeTV/+rKlrZHsMeiOWIgkIoTHyzmnjIiIOg27Qtno0aPxn//8BxkZGfjLX/4CmezKB6hKpcLnn3+Oo0eP4u67727zNT777DNkZGQgJiYGn376qdm5EydO4IMPPsDp06fh7++P8ePHY8GCBfDzu9K7cvToUTz++OMt1r169Wr069fP5joBQK1W46OPPsJ3332H+vp6xMXF4aGHHsLQoUMtrmNtne2JaZ0yWYAXxBK7Olwt+AbJMPy+vg6tk4iIyNN59N6XZWVlWL9+PXx9fS3O5eXl4cknn0R0dDQWLVqEsrIybNq0CRcuXMA///lPi/J33303EhMTzY717NmzzXW+8cYb2Lt3L2bNmoXIyEjs2LEDS5YsQXp6OgYOHNjm+2wvhH0v2ZNFRETkEB699+WqVauQlJQEvV6P2tpas3MffvghAgMDsXz5cvj7+wMwzl97++23cejQIQwbNsys/KBBg5CSktLq9aytMycnB7t378Zjjz2Ge++9FwAwZcoUzJ8/H6tXr8bq1avbfJ/tgUaphValA8CJ+ERERI5i97iTae/LHTt24OOPP8aKFSvw8ccfY8eOHXj22Wchl8vbVG9WVhb27duHtLQ0i3ONjY04fPgwJk+eLAQdwBiMfH19sWfPnhbrbGpqglarbfGcLXXu27cPEokEqampwjGZTIbp06cjOzsbpaWldt2np3PWwrFERESdmUfufanT6ZCeno7p06e3WOe5c+eg0+mQkJBgdtzLywu9e/dGXl6exXveeOMNKBQKSCQSDBw4EI899hj69r0yb8mWOvPy8hAZGWkWtAAIw6NnzpxBREREm+7TpKKiApWVlcLrwsLCa5Z1NYUTn7wkIiLqrBwWyhxp69atKC0txXvvvdfieVNYaempzpCQEBw7dkx4LZVKMW7cOIwYMQLBwcEoKCjApk2bsGjRIqxatQp9+vSxuc7KysprlgOMgcrWOq+WmZmJdevWWRzPz8+HTqe75vta0tDQgJycHJve05qq003C9/WqGofW3RE4ur2pdWxv12J7uxbb27Wc1d5JSUlWlbM7lB0+fBibNm3CqVOn0NDQAINpf5xmRCKR1UN1tbW1+PjjjzF37txrDn2qVMblGLy8LJdi8Pb2hlp9pSdnwIABZhujJycnIyUlBffffz8+/PBDLFu2zOY6VSrVNcs1r8uWOq+WmpqK0aNHC68LCwuxdOlSxMTEWPS8XU9OTo7VvxDWyC0twimUAwCi4yPRN+kGh9XdETi6val1bG/XYnu7Ftvbtdzd3naFsr179+KVV16BXq9HREQEoqOjIZFI7LqhjIwMBAYGtrqMhmnpDY1GY3FOrVYL4ehaIiMjkZycjJ9++gk6nQ4SicSmOmUy2TXLNb8/e+4zNDQUoaGhrf4c7tJ830sfDl8SERE5hF2h7NNPP4W3tzf+7//+DzfffLPdN1NUVIRt27YhLS1NGAIEjAFGq9WiuLgY/v7+wnBg8zlXJpWVlVaFmfDwcGg0GiiVSpvrDAkJQXl5eYvlAAhlHXGfnqj5wrF8+pKIiMgx7Hr6sqioCBMnTnRIIAOMc7H0ej3S09Mxe/Zs4U9OTg6Kioowe/ZsrFu3DjExMZBIJMjNzTV7v0ajQV5eHuLj4697rUuXLsHb21tYA82WOuPj43HhwgWL7aNM49Cmso64T0/Epy+JiIgcz66esqCgILNV/O0VExOD119/3eJ4RkYGmpqasHjxYvTo0QMBAQEYMmQIvvvuO8ybN09YGX/Xrl1QKBQYP3688N6amhqLuWlnzpzBgQMHMHz4cIjFxlxqS50pKSnYuHEjMjMzhXXK1Go1tm/fjqSkJERERNhcZ3vSfPjSl6GMiIjIIewKZePGjcORI0eg1Wohldr/IKdcLseYMWMsjn/55ZcAYHbuoYcewsKFC5GWlobU1FRhpfyhQ4di+PDhQrmXXnoJMpkM/fv3R5cuXVBQUIBt27bBx8cHjzzyiNl1rK0zKSkJ48ePx4cffoiamhr07NkTO3fuRElJCZ555pk21dmemJbEkHiJ4eXrkQ/wEhERtTt2faI+/PDD+Otf/4qXX34ZaWlpQg+RKyQkJODdd9/FBx98gPfffx9+fn6YPn26RdAaM2YMvv/+e2zevBmNjY2Qy+UYO3Ys5s+fj8jIyDbVCQDPP/88IiIisGvXLjQ0NCA2NhZvvfUWBg8e3OY62wtFrXFOmW+wN0QikZvvhoiIqGMQGVpaw+IaZs+ebXFMq9UKE9kDAgIsFlQFjEtibNy40Y7bpNzcXCxYsABr165165IYer0Bn/xlJwwGIDQ2GHcuHeWQejsSdz9S3dmwvV2L7e1abG/Xcnd729RT1lJ+k0gkCA8Pb7WMDbmPPJyqQQ3TXyfnkxERETmOTaFs8+bNzroPaif45CUREZFz2L0hOXUuZk9eBnPhWCIiIkdhKCObmCb5Axy+JCIiciSbhi/XrVsHkUiEGTNmICgoqMUNs1siEokwb968ttwfeRhF8+FLruZPRETkMDaFsk8++QQikQgTJkxAUFAQPvnkE6vex1DWcTSfU8aeMiIiIsexKZSlp6cDgPC0pek1dR7mq/lzThkREZGj2BTKrl4Y9erX1PEpm21GzuFLIiIix+FEf7JJ8zllvoEMZURERI7CUEY2MT19KQvwgljKXx8iIiJHsWn4cty4cW3a61AkEmHPnj02v488j2miPxeOJSIiciybQtmgQYO4AXUnplXpoFHqAPDJSyIiIkezKZQtX77cWfdB7YDZfDI+eUlERORQnBREVmv+5KUvn7wkIiJyKJt6ylpTUFCAwsJCKJVKTJkyxVHVkgdpvkYZl8MgIiJyLLtD2cmTJ/HPf/4T586dE46ZQllWVhb+9re/4aWXXkJycrK9lyI3UzTvKePwJRERkUPZNXyZn5+PJ554AsXFxZg1axaGDx9udn7QoEEIDg7G3r177bkMeYjmWyzx6UsiIiLHsiuUffzxxwCAtWvXYuHChejbt6/ZeZFIhH79+uHUqVP2XIY8hPkWSwxlREREjmRXKMvKysK4ceMQGRl5zTIRERGorKy05zLkIcyevgzm8CUREZEj2RXKFAoFunTp0moZlUoFvV5vz2XIQ5hW8wf49CUREZGj2RXKwsLCzCb4t+T06dPo0aOHPZchD2GaUyaWiuDl67AHd4mIiAh2hrJRo0bht99+w+HDh1s8/+OPPyInJwdjxoyx5zLkIUzDl75BMu7sQERE5GB2dXf85S9/wd69e7FkyRJMnToVVVVVAIAtW7YgOzsbu3fvRrdu3XDPPfc45GbJfQx6A/e9JCIiciK7QplcLsf777+PpUuX4ttvvxWO/+tf/wIAJCUl4R//+AcCAgLsuklyP1WjBga9AQAn+RMRETmD3RODevTogVWrViEvLw85OTmoq6uDn58fkpKSkJiY6Ih7JA/ASf5ERETOZVco++mnnzB27FgAQO/evdG7d+8Wy73//vtIS0uz51LkZgouHEtERORUdk30f+2113Ds2LFWy7z//vv4+uuv7bkMeYDmq/lz4VgiIiLHsyuU9ejRA88999w1l8VYsWIFvvrqK+572QGYr+bPOWVERESOZlco++c//wk/Pz/87W9/Q2lpqdm5VatW4csvv0RycjJeeeUVu26S3E/ZbDNyH84pIyIicji7Qll4eDiWLVsGlUqFv/71r6itrQVgDGSbNm3CqFGj8Morr0AikTjkZsl9zHrKGMqIiIgczq5QBgC9evXCW2+9hfLycvztb3/DihUrsGnTJowcORKvvfYapFKu/N4RmO17yeFLIiIih7M7lAFAv3798PLLL+PMmTP46quvMGLECCxdupSBrANRNB++5ER/IiIih7MpNe3cubPV80OHDkVOTg5Gjx6NH374wezc1KlTbb878hjKy8OX3n5SSKQOyfJERETUjE2h7I033mhxz0ODwQCRSASDwbji+7vvvmt2TCQSMZS1c8K+l1zNn4iIyClsCmXPPvuss+6DPJhWrYNGoQXASf5ERETOYlMomzZtmrPugzyYkqv5ExEROZ3Hz8T/7LPPkJGRgZiYGHz66adm506cOIEPPvgAp0+fhr+/P8aPH48FCxbAz8/PrJxarcZHH32E7777DvX19YiLi8NDDz2EoUOHWlzPnXV6Kj55SURE5HwePWO7rKwM69evh6+vr8W5vLw8PPnkk1AqlVi0aBGmT5+Obdu24aWXXrIo+8Ybb2Dz5s245ZZbsHjxYojFYixZsgTHjx/3qDo9lar+SiiTBXi58U6IiIg6Lpt6ysaNGwexWIzPPvsMUVFRGDduXIsT/68mEomwZ88em29u1apVSEpKgl6vFxamNfnwww8RGBiI5cuXw9/fHwDQvXt3vP322zh06BCGDRsGAMjJycHu3bvx2GOP4d577wUATJkyBfPnz8fq1auxevVqj6jTk6matML3Mn+GMiIiImewqads0KBBGDhwIGQymfDamj8DBw60+caysrKwb98+pKWlWZxrbGzE4cOHMXnyZCHoAMZg5OvraxYA9+3bB4lEgtTUVOGYTCbD9OnTkZ2dLWwP5e46PZm6USN8z1BGRETkHDb1lC1fvrzV146i0+mQnp6O6dOnIy4uzuL8uXPnoNPpkJCQYHbcy8sLvXv3Rl5ennAsLy8PkZGRZqEIABITEwEAZ86cQUREhNvrvFpFRQUqKyuF14WFhdcs62zqpiuhzNvf46chEhERtUse+Qm7detWlJaW4r333mvxvCmshISEWJwLCQnBsWPHzMpeqxxgDD+eUOfVMjMzsW7dOovj+fn50Ol013xfSxoaGpCTk2PTe5q7WFgtfF9cfglNOVVtrqszsLe9yTZsb9die7sW29u1nNXeSUlJVpXzuFBWW1uLjz/+GHPnzoVcLm+xjEpl3PLHy8tyKM3b2xtqtdqs7LXKNa/L3XVeLTU1FaNHjxZeFxYWYunSpYiJibHoebuenJwcq38hWlL1yx+4hDoAQJ+keIT0CmpzXZ2Bve1NtmF7uxbb27XY3q7l7va2KZS11HNjDZFIhHnz5llVNiMjA4GBgbj77ruvWcY0p02j0VicU6vVQjgylb1WueZ1ubvOq4WGhiI0NPSa511J1dh8+JJzyoiIiJzBplD2ySeftOki1oayoqIibNu2DWlpacIQIGAMMFqtFsXFxfD39xeGA5vPuTKprKw0CzMhISEoLy9vsRwAoay76/RkzeeUyTinjIiIyCls+oRNT0931n0AMM7F0uv1SE9Pb/Fas2fPxsyZM/HAAw9AIpEgNzcXEyZMEM5rNBrk5eVh/PjxwrH4+HgcPXoUjY2NZhPzTWPG8fHxAICYmBi31unJVI3GJTFEIsDLh6GMiIjIGWz6hB08eLCTbsMoJiYGr7/+usXxjIwMNDU1YfHixejRowcCAgIwZMgQfPfdd5g3b56wMv6uXbugUCjMwk5KSgo2btyIzMxMYU0xtVqN7du3IykpCREREQDg9jo9mWlJDG8/L4jE11+XjoiIiGznUd0ecrkcY8aMsTj+5ZdfAoDZuYceeggLFy5EWloaUlNTUVZWhk2bNmHo0KEYPny4UC4pKQnjx4/Hhx9+iJqaGvTs2RM7d+5ESUkJnnnmGbPruLNOT2aaU8blMIiIiJzHrk9Z0yKprRGJRPD397dY08teCQkJePfdd/HBBx/g/fffh5+fH6ZPn45HHnnEouzzzz+PiIgI7Nq1Cw0NDYiNjcVbb71l0fPn7jo9kcFggPryiv7efpzkT0RE5Cwig8FgaOubrd1mCTD2go0dOxbz589H165d23rJTis3NxcLFizA2rVrXbokhlqhxWcPfg8A6NEvBLf+3fO3hXI3dz9S3dmwvV2L7e1abG/Xcnd727Uh+ZQpUzBw4EAYDAYEBARg8ODBmDBhAgYPHozAwEAYDAYMGjQII0aMgLe3N7Zu3YoFCxaYPVlJno2r+RMREbmGXZ+y9957LxYuXIh58+bhvvvug4+Pj3BOpVLhiy++wFdffYWVK1fihhtuwPr16/HRRx/hs88+w1NPPWX3zZPzqRuvbEbO4UsiIiLnsaunbPXq1UhKSsIDDzxgFsgA48Kp999/P5KSkvDBBx9ALBZj7ty56Nu3Lw4ePGjXTZPrqLgZORERkUvYFcr++OOP685v6tOnD44fPy68TkpKQlUV905sLzh8SURE5Bp2hTK9Xo+LFy+2WubChQto/iyBRCJpdXsh8izsKSMiInINu0LZgAEDsG/fPuzevbvF83v27MFPP/2E/v37C8cuXLggbD9Eno9zyoiIiFzDrvGoRx99FAsXLsRrr72GL774AgMGDECXLl1QXV2NP/74A2fOnIGPjw8effRRAEBtbS0OHz6M6dOnO+TmyfnYU0ZEROQadoWyuLg4rFixAv/6179w4sQJnDlzxuz8gAED8PjjjyMuLg6Acduhb775xuKhAPJcZnPK/DinjIiIyFns/pSNj4/HihUrUFpaijNnzgibdMfHxwt7QJpIJBIEBATYe0lyoebDl+wpIyIich6HdX1ERERYhDBq/1RmT18ylBERETmLw0JZeXm5RU9ZWFiYo6onN1E3cviSiIjIFez+lL1w4QLeffdd/P777xbnbrrpJjz11FOIjIy09zLkJqrLw5cSLzGk3hI33w0REVHHZVcoKy0txaJFi1BdXY0bbrgBgwYNQkhICKqqqnDs2DEcOXIEixYtwpo1azi02U6Zeso4n4yIiMi57Apl69atQ3V1NZ566imkpqZCJBKZnd+6dSveffddfPrpp1iyZIldN0ruYXr6kqv5ExEROZddn7SHDh3CqFGjcMcdd7R4/o477sDBgwfx66+/2nMZchO9Vg+NUgeAk/yJiIicza4V/WtqahAbG9tqmdjYWNTU1NhzGXITdVOz5TC4mj8REZFT2RXK5HI5CgoKWi1TUFAAuVxuz2XITZqv5s+eMiIiIueyK5QNHToUBw4cwH//+98Wz3/77bf45ZdfMGzYMHsuQ27SfDV/GZfDICIiciq7Pmnvv/9+/PLLL1i2bBm+/PJLDB48GF27dhWeviwoKEBwcDDmz5/voNslV2JPGRERkevYFcoiIiKwcuVKLFu2DFlZWRZDmTfeeCP++te/cjmMdqr5nDKGMiIiIueye0wqKioK6enpVu19Se1L854yGZfEICIicirufUnXZL7FEnvKiIiInMmmUPbmm2+2+ULPPvtsm99L7mHaYgngiv5ERETOZlMo27FjR5suIhKJGMraoeZPX3JFfyIiIuey6ZN206ZNzroP8kDmc8rYU0ZERORMNoWybt26Oes+yAOpmw1fck4ZERGRc9m1eCx1bMJEfxHg7cvhSyIiImdiKKNrUl2eU+btK4VILHLz3RAREXVsDGV0TaaeMi4cS0RE5HwMZdQig8EA1eUV/TnJn4iIyPkYyqhFWpUOBp0BAODNzciJiIicjqGMWqTmchhEREQuxVBGLVJxM3IiIiKXYiijFrGnjIiIyLUYyqhFKrPNyDmnjIiIyNkYyqhFam5GTkRE5FIe1wWSn5+PTz75BLm5uaiqqoKPjw+io6Nx7733YvTo0WZlv/76a2zZsgXFxcUIDg7GhAkT8OCDD8LX11coU1xcjNmzZ7d4rZdeegkTJ040O1ZQUIAVK1bgxIkTkEqlGDlyJBYtWgS5XG5WTq/XY+PGjfjmm29QVVWFyMhIzJkzB5MmTbK4jrV1ehJVE3vKiIiIXMnjPm1LSkrQ1NSEqVOnIjQ0FEqlEvv27cNzzz2Hp59+GqmpqQCA1atXY8OGDUhJScGsWbNQUFCAr7/+Gvn5+XjnnXcs6p00aRJGjBhhdqxfv35mr8vKypCWloaAgAAsWLAACoUCGzduxLlz57BmzRp4eV3pMVq7di0+//xz3H777ejbty/279+PV199FSKRyCzo2VKnJ+GcMiIiItfyuFA2cuRIjBw50uzYXXfdhQULFmDz5s1ITU1FRUUFNm/ejClTpuDvf/+7UC4yMhLp6ek4cOCARa9a7969MXny5FavvX79eiiVSmRkZCAiIgIAkJiYiKeeego7duwQAmF5eTk2bdqEGTNm4MknnwQA3HbbbUhLS8OqVauQkpICiURiU52eRs2nL4mIiFyqXcwpk0gkCA8PR0NDAwAgOzsbOp0OEyZMMCtn6qHavXt3i/UoFApoNJoWzwHAvn37MGrUKCE8AcCQIUMQFRWFPXv2CMf2798PrVaLGTNmCMdEIhHuvPNOlJeXIzs72+Y6PY3ZRH+GMiIiIqfzuJ4yE4VCAZVKhcbGRhw4cAC//vorxo8fDwBCsJLJZGbv8fHxAQCcPn3aor5169Zh9erVEIlESEhIwEMPPYRhw4YJ58vLy1FdXY2EhASL9yYmJuLgwYPC67y8PPj6+iI6OtqinOn8wIEDbarzahUVFaisrBReFxYWXrOsM5gNX3JOGRERkdN57KftypUrkZmZCQAQi8UYO3asMFQYFRUFADhx4gRuuukm4T3Hjx8HYAxYJmKxGEOHDsXYsWMRGhqKS5cuYfPmzViyZAneeOMNYajUFIBCQkIs7iUkJAR1dXVQq9Xw9vZGZWUlunTpApFIZFEOMAYqW+u8WmZmJtatW2dxPD8/HzqdzuJ4axoaGpCTk2PTe6rLa4XvzxWdhbhY1Eppaq4t7U1tx/Z2Lba3a7G9XctZ7Z2UlGRVOY8NZbNmzUJKSgoqKiqwZ88e6HQ6oYcsISEBSUlJ+OKLLxAWFoYbb7wRhYWFePfddyGVSqFWq4V6IiIiLCb+T5kyBXPnzsXKlSuFUKZSqQCgxYn3ptCkUqng7e0NlUp13XK21nm11NRUs3lxhYWFWLp0KWJiYlrseWtNTk6O1b8QJqdQBUAFiZcY/Qf2u255uqIt7U1tx/Z2Lba3a7G9Xcvd7e2xoSw6OloYHpw6dSqeeuopPPvss1izZg1EIhFee+01vPzyy3jzzTcBGOed3XPPPcjKykJRUVGrdQcFBWHatGn4/PPPUVZWhvDwcGEotKU5Z6aQZyojk8msLmdtnVcLDQ1FaGhoqz+HM5nmlHE+GRERkWt4bCi7WkpKCpYtW4aioiLccMMNCAsLw8qVK1FUVCSsExYSEoIZM2YgMjLyuvWFh4cDAOrr6xEeHi4MMTafx2VSWVmJoKAgoUcrJCQER48ehcFgMBvCNL3XFKZsqdPTqC+vU8Y1yoiIiFyjXTx9CVwZCjQ9gWkSFRWFQYMGISQkBAUFBaisrMSQIUOuW9+lS5cAAMHBwQCAsLAwyOVy5ObmWpQ9efIk4uPjhdfx8fFQKpUWk+9N49CmsrbU6Un0Oj00CuO8Na5RRkRE5BoeF8qqq6stjmm1WuzatQsymQy9evVq8X16vR6rV6+Gj48P7rjjDuF4TU2NRdny8nJs374dcXFxZkOE48aNwy+//ILS0lLh2JEjR1BUVCQ8+QkAycnJkEql2LJli3DMYDBg69atCAsLQ//+/W2u05OYrVHmx1BGRETkCh43NrVs2TI0NjZi0KBBCAsLQ2VlJb7//nucP38eCxcuhJ+fHwAgPT0darUavXv3hlarxQ8//ICTJ0/i+eefN1sTbPXq1bh48SJuvvlmhIaGoqSkBJmZmVAqlVi8eLHZtefMmYO9e/fiiSeewMyZM6FQKLBhwwbExsZi2rRpQrnw8HDMmjULGzZsgFarRWJiIn7++WccP34cL774orBwrC11ehKV2Wr+HvcrQkRE1CF53CfuhAkT8O2332Lr1q2ora2Fn58fEhIS8OijjyI5OVko16dPH3z55Zf44YcfIBKJkJiYiPfee89siQwAGDp0KC5duoQtW7agvr4eAQEBGDhwIObOnWvxFGNERASWL1+OFStWYM2aNcI+lQsXLrSY+/XII48gMDAQmZmZ2LlzJyIjI/HCCy/glltuaXOdnoKr+RMREbmex4WyiRMnWmwS3pJp06ZZ1dM0adKkFjcJv5aYmJgW9868mlgsxpw5czBnzhyH1ekpVNz3koiIyOU8bk4ZuV/z1fz59CUREZFrMJSRBTV7yoiIiFyOoYwsqDinjIiIyOUYysgChy+JiIhcj6GMLHCiPxERkesxlJEFdSMXjyUiInI1hjKyYNr3EmBPGRERkaswlJGF5sOXXpxTRkRE5BIMZWTBtKK/t58UYrHIzXdDRETUOTCUkQVTTxnnkxEREbkOQxmZMRgMwpIY3IyciIjIdRjKyIxWpYNeZwDAhWOJiIhciaGMzKi5mj8REZFbMJSRGbPlMPjkJRERkcswlJEZVUOzLZbYU0ZEROQyDGVkpvnwpYxPXxIREbkMQxmZab5wLHvKiIiIXIehjMw0n1PmzSUxiIiIXIahjMw07ynjvpdERESuw1BGZtSNzZbE4JwyIiIil2EoIzPmPWUcviQiInIVhjIyw8VjiYiI3IOhjMxwThkREZF7MJSRGdPTl2KpCBIv/noQERG5Cj91yYz6ck+ZzN8LIpHIzXdDRETUeTCUkRnV5acv+eQlERGRazGUkUCvN0CjMIYyzicjIiJyLYYyEnA1fyIiIvdhKCOBuvm+lxy+JCIicimGMhI0X82fw5dERESuxVBGApVZTxmHL4mIiFyJoYwEzeeUsaeMiIjItRjKSKBq5BZLRERE7sJQRgI1NyMnIiJyG4YyEqj49CUREZHbMJSRQN3Epy+JiIjcxePGqPLz8/HJJ58gNzcXVVVV8PHxQXR0NO69916MHj3arOzXX3+NLVu2oLi4GMHBwZgwYQIefPBB+Pr6mpXT6/XYuHEjvvnmG1RVVSEyMhJz5szBpEmTLK5fUFCAFStW4MSJE5BKpRg5ciQWLVoEuVzu9DrdzaynjMOXRERELuVxn7wlJSVoamrC1KlTERoaCqVSiX379uG5557D008/jdTUVADA6tWrsWHDBqSkpGDWrFkoKCjA119/jfz8fLzzzjtmda5duxaff/45br/9dvTt2xf79+/Hq6++CpFIhIkTJwrlysrKkJaWhoCAACxYsAAKhQIbN27EuXPnsGbNGnh5eTm1TnczX9Hfc+6LiIioM/C4UDZy5EiMHDnS7Nhdd92FBQsWYPPmzUhNTUVFRQU2b96MKVOm4O9//7tQLjIyEunp6Thw4IDQq1ZeXo5NmzZhxowZePLJJwEAt912G9LS0rBq1SqkpKRAIpEAANavXw+lUomMjAxEREQAABITE/HUU09hx44dQiB0Rp2egHPKiIiI3KddzCmTSCQIDw9HQ0MDACA7Oxs6nQ4TJkwwK2fqodq9e7dwbP/+/dBqtZgxY4ZwTCQS4c4770R5eTmys7OF4/v27cOoUaOE8AQAQ4YMQVRUFPbs2ePUOj2BaUV/L18pxGKRm++GiIioc/G4njIThUIBlUqFxsZGHDhwAL/++ivGjx8PANBojD06MpnM7D0+Pj4AgNOnTwvH8vLy4Ovri+joaLOyiYmJwvmBAweivLwc1dXVSEhIsLiXxMREHDx40Kl1Xq2iogKVlZXC68LCwmuWdRRTTxmXwyAiInI9j/30XblyJTIzMwEAYrEYY8eOFYYKo6KiAAAnTpzATTfdJLzn+PHjAIzDiyaVlZXo0qULRCLznp+QkBAAxvBjKtf8+NVl6+rqoFar4e3t7ZQ6r5aZmYl169ZZHM/Pz4dOp7M43pqGhgbk5OS0WsZgMEDVqAYA6CW665ana7Omvclx2N6uxfZ2Lba3azmrvZOSkqwq57GhbNasWUhJSUFFRQX27NkDnU4n9JAlJCQgKSkJX3zxBcLCwnDjjTeisLAQ7777LqRSKdRqtVCPSqVqcTK9KQipVCqzr9cr6+3t7ZQ6r5aammr2tGlhYSGWLl2KmJiYFnveWpOTk3PdXwitSof/6c4DAIK6Blr9C0SWrGlvchy2t2uxvV2L7e1a7m5vjw1l0dHRwvDg1KlT8dRTT+HZZ5/FmjVrIBKJ8Nprr+Hll1/Gm2++CcA47+yee+5BVlYWioqKhHpkMpkQ5pozBTfTEKjpq7VlHV3n1UJDQxEaGtriOWdQcd9LIiIit/LYUHa1lJQULFu2DEVFRbjhhhsQFhaGlStXoqioSFgnLCQkBDNmzEBkZKTwvpCQEBw9ehQGg8FsuNE0tGgKPqYhxubzuJqXDQoKEnq0nFGnu6nNnrxsN78WREREHUa7ePoSuDIUaHoC0yQqKgqDBg1CSEgICgoKUFlZiSFDhgjn4+PjoVQqLSbKm8aM4+PjAQBhYWGQy+XIzc21uPbJkyeFcs6q092ab0bOnjIiIiLX87hQVl1dbXFMq9Vi165dkMlk6NWrV4vv0+v1WL16NXx8fHDHHXcIx5OTkyGVSrFlyxbhmMFgwNatWxEWFob+/fsLx8eNG4dffvkFpaWlwrEjR46gqKhIePLTWXW6m/nCsewpIyIicjWP+/RdtmwZGhsbMWjQIISFhaGyshLff/89zp8/j4ULF8LPzw8AkJ6eDrVajd69e0Or1eKHH37AyZMn8fzzz5utCRYeHo5Zs2Zhw4YN0Gq1SExMxM8//4zjx4/jxRdfFBZ5BYA5c+Zg7969eOKJJzBz5kwoFAps2LABsbGxmDZtmlPrdLfmC8eyp4yIiMj1PC6UTZgwAd9++y22bt2K2tpa+Pn5ISEhAY8++iiSk5OFcn369MGXX36JH374ASKRCImJiXjvvffMlsgweeSRRxAYGIjMzEzs3LkTkZGReOGFF3DLLbeYlYuIiMDy5cuxYsUKrFmzRtincuHChRZzv5xRpzupmw1fcjV/IiIi1/O4UDZx4kSzvSOvZdq0aVb3NInFYsyZMwdz5sy5btmYmBiLvTNdVac7qdlTRkRE5FYeN6eM3KP5khh8+pKIiMj1GMoIwFU9ZQHsKSMiInI1hjICAKiaOKeMiIjInRjKCAAXjyUiInI3hjICcCWUiSUiSGWS65QmIiIiR2MoIwBXVvT39vcy2zqKiIiIXIOhjABcWdGfy2EQERG5B0MZQa83QH15oj/nkxEREbkHQxlB08TNyImIiNyNoYzM9r3kchhERETuwVBGwnwyAPD25/AlERGROzCUkVlPGYcviYiI3IOhjIRJ/oBxSQwiIiJyPYYyMu8p49OXREREbsFQRuZbLLGnjIiIyC0YykhYzR9gKCMiInIXhjIye/qSE/2JiIjcg6GMzIcvOaeMiIjILRjKyGz4kj1lRERE7sFQRuwpIyIi8gAMZQTV5TllXr4SiCX8lSAiInIHfgKT0FPGfS+JiIjch6GMhBX9OZ+MiIjIfRjKOjmtWgedRg+A88mIiIjciaGsk1NzM3IiIiKPwFDWyam4GTkREZFHYCjr5NhTRkRE5BkYyjo5rlFGRETkGRjKOjmVWShjTxkREZG7MJR1cuombrFERETkCRjKOjmznjJ/Dl8SERG5Cz+FO7n45B4IjQmGukmD0Nhgd98OERFRp8VQ1skFhvkhMMzP3bdBRETU6XH4koiIiMgDMJQREREReQCPG77Mz8/HJ598gtzcXFRVVcHHxwfR0dG49957MXr0aLOyP/74IzZv3ozz589DLBYjJiYG9913H0aOHCmUKS4uxuzZs1u81ksvvYSJEyeaHSsoKMCKFStw4sQJSKVSjBw5EosWLYJcLjcrp9frsXHjRnzzzTeoqqpCZGQk5syZg0mTJllcx9o6iYiIqPPyuFBWUlKCpqYmTJ06FaGhoVAqldi3bx+ee+45PP3000hNTQUAfP3110hPT8fIkSPxyCOPQKVSYefOnXjmmWfw2muvYdy4cWb1Tpo0CSNGjDA71q9fP7PXZWVlSEtLQ0BAABYsWACFQoGNGzfi3LlzWLNmDby8riwZsXbtWnz++ee4/fbb0bdvX+zfvx+vvvoqRCKRWdCzpU4iIiLqvDwulI0cOdKspwsA7rrrLixYsACbN282C2V9+/bFm2++CZFIBACYPn067rrrLuzcudMilPXu3RuTJ09u9drr16+HUqlERkYGIiIiAACJiYl46qmnsGPHDuHa5eXl2LRpE2bMmIEnn3wSAHDbbbchLS0Nq1atQkpKCiQSiU11EhERUefWLuaUSSQShIeHo6GhQTjW1NSELl26CIEMAPz9/eHr6wuZTNZiPQqFAhqNpsVzALBv3z6MGjVKCE8AMGTIEERFRWHPnj3Csf3790Or1WLGjBnCMZFIhDvvvBPl5eXIzs62uU4iIiLq3Dyup8xEoVBApVKhsbERBw4cwK+//orx48cL5wcPHox9+/bh66+/xqhRo6BWq/H111+jsbERM2fOtKhv3bp1WL16NUQiERISEvDQQw9h2LBhwvny8nJUV1cjISHB4r2JiYk4ePCg8DovLw++vr6Ijo62KGc6P3DgQJvqvFpFRQUqKyuF14WFhdcsS0RERO2fx4aylStXIjMzEwAgFosxduxYYagQAB5//HHU1tYiPT0d6enpAIDg4GC899576N+/v1BOLBZj6NChGDt2LEJDQ3Hp0iVs3rwZS5YswRtvvCEMlZoCUEhIiMW9hISEoK6uDmq1Gt7e3qisrLTopWv+3oqKCpvrvFpmZibWrVtncTw/Px86ne4ardayhoYG5OTk2PQeaju2t2uxvV2L7e1abG/XclZ7JyUlWVXOY0PZrFmzkJKSgoqKCuzZswc6nc5s6FEmkyEqKgphYWEYNWoUmpqasHnzZrzwwgtYsWIFIiMjAQARERF45513zOqeMmUK5s6di5UrVwqhTKVSAUCLE+9NoUmlUsHb2xsqleq65Wyt82qpqalmT5sWFhZi6dKliImJabHnrTU5OTlW/0KQ/djersX2di22t2uxvV3L3e3tsXPKoqOjMWTIEEydOhVvvfUWFAoFnn32WRgMBgDG5SzKysrw/PPPIyUlBbfeeiuWL18OrVaLtWvXtlp3UFAQpk2bhvPnz6OsrAwAhHloLc05U6vVZmVkMpnV5ayt82qhoaFISEgQ/lw9VEpEREQdi8eGsqulpKTg1KlTKCoqwqVLl/Drr79arFsWFBSEAQMG4I8//rhufeHh4QCA+vp6AFeGGJvP4zKprKxEUFCQ0KMVEhKCqqoqISA2LwcYA5WtdRIREVHn1m5CmWkosKGhAVVVVQCMC7heTavVWjXn6tKlSwCM89AAICwsDHK5HLm5uRZlT548ifj4eOF1fHw8lEqlxeR70zi0qawtdRIREVHn5nGhrLq62uKYVqvFrl27IJPJ0KtXL0RGRkIsFuPHH380660qKyvD8ePH0bt3b+FYTU2NRX3l5eXYvn074uLihF4tABg3bhx++eUXlJaWCseOHDmCoqIisyc/k5OTIZVKsWXLFuGYwWDA1q1bERYWZvaggbV1EhERUefmcRP9ly1bhsbGRgwaNAhhYWGorKzE999/j/Pnz2PhwoXw8/ODn58fbr31Vvz3v//FE088gbFjx0KhUGDLli1Qq9X485//LNS3evVqXLx4ETfffDNCQ0NRUlKCzMxMKJVKLF682Ozac+bMwd69e/HEE09g5syZUCgU2LBhA2JjYzFt2jShXHh4OGbNmoUNGzZAq9UiMTERP//8M44fP44XX3xRWDjWljqvx9RT2JalMc6fP292T+RcbG/XYnu7FtvbtdjeruXM9o6OjoaPj0+rZUSGqydGudnu3bvx7bff4ty5c6itrYWfnx8SEhJw1113ITk5WSin1WqxdetWbN++HRcuXAAA9O3bF/PmzcNNN90klPvhhx+wdetWFBYWor6+HgEBARg4cCDmzp3b4lOM+fn5FvtULly4EF27djUrp9fr8cUXXyAzMxOVlZWIjIzEn//85xZ3DbC2ztZ89913WLp0qdXliYiIyHOsXbv2uqsneFwoo5bV1NTg0KFD6N69u00PB5iW0njhhRf4BKcLsL1di+3tWmxv12J7u5az29uanjKPG76klsnl8uvu3dma6Ohom9c3o7Zje7sW29u12N6uxfZ2LXe2t8dN9CciIiLqjBjKiIiIiDwAQ1kHFxISgvnz57e4/yY5HtvbtdjersX2di22t2t5Qntzoj8RERGRB2BPGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyANw8dgOSq1W46OPPsJ3332H+vp6xMXF4aGHHsLQoUPdfWvtWlNTEzZu3IicnBycPHkS9fX1eO6551rcx7SgoMBie61FixZBLpe7/sbboZMnT2Lnzp04evQoSkpKEBQUhH79+uGhhx5CVFSUWVm2tWPk5+fjk08+QW5uLqqqquDj44Po6Gjce++9GD16tFlZtrnjffbZZ8jIyEBMTAw+/fRTs3MnTpzABx98gNOnT8Pf3x/jx4/HggUL4Ofn56a7bX+OHj2Kxx9/vMVzq1evRr9+/YTX7mpvhrIO6o033sDevXsxa9YsREZGYseOHViyZAnS09MxcOBAd99eu1VbW4t169YhIiIC8fHxOHr0aIvlysrKkJaWhoCAACxYsAAKhQIbN27EuXPnsGbNGnh5ebn4ztufL774AidOnMD48eMRFxeHyspKbNmyBQ899BBWr16N2NhYAGxrRyopKUFTUxOmTp2K0NBQKJVK7Nu3D8899xyefvpppKamAmCbO0NZWRnWr18PX19fi3N5eXl48sknER0djUWLFqGsrAybNm3ChQsX8M9//tMNd9u+3X333UhMTDQ71rNnT+F7t7a3gTqc7Oxsw5gxYwxffPGFcEypVBr+9Kc/GR599FE33ln7p1KpDBUVFQaDwWA4efKkYcyYMYbt27dblHvnnXcMkyZNMpSUlAjHfvvtN8OYMWMMW7duddn9tmfHjx83qNVqs2Pnz583TJw40fDqq68Kx9jWzqXVag3333+/4c9//rNwjG3ueC+99JLh8ccfN6SlpRnmzp1rdu7pp5823HnnnYaGhgbh2LZt2wxjxowx/Prrr66+1Xbr999/N4wZM8awZ8+eVsu5s705p6wD2rdvHyQSifD/agFAJpNh+vTpyM7ORmlpqRvvrn3z9va2amHBffv2YdSoUYiIiBCODRkyBFFRUdizZ48zb7HDGDBggEWPS1RUFHr16oXCwkLhGNvauSQSCcLDw9HQ0CAcY5s7VlZWFvbt24e0tDSLc42NjTh8+DAmT54Mf39/4fiUKVPg6+vL9m6jpqYmaLVai+Pubm8OX3ZAeXl5iIyMNPuFAiB01545c8bsH1NyrPLyclRXV7e4oW1iYiIOHjzohrvqGAwGA6qrq9GrVy8AbGtnUSgUUKlUaGxsxIEDB/Drr79i/PjxANjmjqbT6ZCeno7p06cjLi7O4vy5c+eg0+ks2tvLywu9e/dGXl6eq261w3jjjTegUCggkUgwcOBAPPbYY+jbty8A97c3Q1kHVFlZ2WJvjulYRUWFq2+pU6msrASAa/4d1NXVQa1Ww9vb29W31u59//33KC8vxwMPPACAbe0sK1euRGZmJgBALBZj7NixePLJJwGwzR1t69atKC0txXvvvdfi+eu197Fjx5x6fx2JVCrFuHHjMGLECAQHB6OgoACbNm3CokWLsGrVKvTp08ft7c1Q1gGpVKoWJ9qa/pFUqVSuvqVOxdS+1/s74IeWbQoLC/Hee++hX79+mDp1KgC2tbPMmjULKSkpqKiowJ49e6DT6aDRaACwzR2ptrYWH3/8MebOnXvNp1av195qtdqZt9ihDBgwAAMGDBBeJycnIyUlBffffz8+/PBDLFu2zO3tzTllHZBMJhP+AW3O9Mskk8lcfUudiql9+XfgOJWVlXjmmWfg7++P1157DRKJBADb2lmio6MxZMgQTJ06FW+99RYUCgWeffZZGAwGtrkDZWRkIDAwEHffffc1y1yvvRl+7RMZGYnk5GQcPXoUOp3O7e3NUNYBhYSECF2wzZmOhYaGuvqWOhVTt/e1/g6CgoL4D6kNGhoasGTJEjQ0NGDZsmVmv79sa9dISUnBqVOnUFRUxDZ3kKKiImzbtg0zZ85ERUUFiouLUVxcDLVaDa1Wi+LiYtTV1V23vfnvuf3Cw8Oh0WigVCrd3t4MZR1QfHw8Lly4gMbGRrPjOTk5wnlynrCwMMjlcuTm5lqcO3nyJNvfBiqVCs8++yyKiorw5ptvChP8TdjWrmEa0mloaGCbO0hFRQX0ej3S09Mxe/Zs4U9OTg6Kioowe/ZsrFu3DjExMZBIJBbtrdFokJeXx/Z2gEuXLsHb2xu+vr5ub2+Gsg4oJSUFOp1OmKgLGLtdt2/fjqSkJD556QLjxo3DL7/8Yrb8yJEjR1BUVCQ8xUat0+l0ePnll5GdnY1XXnkF/fv3b7Ec29pxqqurLY5ptVrs2rULMplMCMVsc/vFxMTg9ddft/gTExODiIgIvP7665g+fToCAgIwZMgQfPfdd2hqahLev2vXLigUCra3DWpqaiyOnTlzBgcOHMDQoUMhFovd3t4ig8FgcOoVyC1eeukl/PTTT7jnnnvQs2dP7Ny5EydPnsR7772HwYMHu/v22rWvv/4aDQ0NqKysxDfffIOxY8eid+/eAIwrRQcEBKC0tBQPPfQQAgICMHPmTCgUCmzYsAFhYWH48MMPObxjheXLl+Orr77CqFGjMGHCBIvzkydPBgC2tQP9/e9/R2NjIwYNGoSwsDBUVlbi+++/x/nz57Fw4ULMnj0bANvcmRYvXoza2lqzbZZyc3OxcOFCREdHIzU1VVhhftCgQXjnnXfceLfty+OPPw6ZTIb+/fujS5cuKCgowLZt2yCVSrFq1Srh/3S4s70ZyjoolUol7H3Z0NCA2NhYPPTQQxg2bJi7b63du+eee1BSUtLiuU2bNqF79+4AjPsIXr034MKFC9G1a1dX3m67tXjxYmRlZV3z/E8//SR8z7Z2jN27d+Pbb7/FuXPnUFtbCz8/PyQkJOCuu+5CcnKyWVm2uXO0FMoA4Pjx48JejH5+fhg/fjweeeQR7n1pg6+++grff/89Ll68iMbGRsjlctx8882YP38+IiMjzcq6q70ZyoiIiIg8AOeUEREREXkAhjIiIiIiD8BQRkREROQBGMqIiIiIPABDGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyAMwlBERERF5AIYyIuo0iouLMXbsWPzf//2fu2/FIXbs2IGxY8dix44d7r4VInIAhjIi6tQWL16MsWPHuvs2WtTRQiQRtU7q7hsgInKVsLAw/Pvf/4a/v7+7b8UhxowZg6SkJISEhLj7VojIARjKiKjTkEqliI6OdvdtOExAQAACAgLcfRtE5CAig8FgcPdNEBG5QnFxMWbPno2pU6fi+eefv+awpem8ydmzZ/Hvf/8bWVlZqKurQ0hICEaPHo37778fwcHBLdZ/3333Ye3atTh27Bjq6uqwadMmdO/eHT/99BP27NmDU6dOoaKiAlKpFHFxcZg5cyZSUlKEunbs2IE33nijxftLT0/HjTfeKJR57rnnMG3aNLMyJ06cwL///W9kZ2dDpVKhW7dumDBhAu677z74+PiYlR07diwGDx6Ml19+GatXr8bBgwehUCgQHx+PRx55BDfeeKOtTU1EbcCeMiLqtObPn4+dO3eipKQE8+fPF4737t1b+H7//v14+eWXIRKJkJycjPDwcBQUFOA///kPDh06hDVr1iAwMNCs3osXL+Kxxx5DbGwspk6dirq6Onh5eQEAPvzwQ0ilUgwYMAAhISGoqanBgQMH8I9//AOPP/447r77bgBAfHw8Zs6cia+++grx8fFITk4W6u/WrVurP9eePXvw6quvwsvLCxMmTIBcLsdvv/2GdevW4dChQ0hPT4dMJjN7T0NDAxYuXIiAgABMnjwZ1dXV2LNnD55++mmsXbsWsbGxbWpjIrIeQxkRdVoPPPAAsrKyUFJSggceeMDifG1tLV5//XUEBwdj5cqVZmFo9+7deOWVV/DRRx/hiSeeMHvfiRMnMH/+/BbrfPvtt9GjRw+zY01NTfh//+//4aOPPsL06dPh4+OD3r17IyAgQAhlLdXVksbGRvzzn/+ERCLB6tWrERcXBwB4+OGH8eqrr+LHH3/Exo0bMW/ePLP3nTlzBnfeeSeeeOIJiMXGZ8BuuukmvP322/jPf/6Dp59+2qrrE1Hb8elLIqJr2LVrFxobG/Hwww9b9E5NnDgRffr0we7duy3e17VrV/zlL39psc6rAxkA+Pn5Ydq0aWhoaMCpU6fsuuf9+/ejoaEBt956qxDIAEAsFuOxxx6DRCJpcQkNX19fPProo0IgA4zDuBKJxO57IiLrsKeMiOgasrOzAQA5OTm4ePGixXm1Wo3a2lrU1NRALpcLx+Pj44XhyqtVV1fj888/x8GDB1FaWgqVSmV2vqKiwq57zsvLAwAMHjzY4lxERAR69OiBoqIiNDU1wc/PTzgXGRlp9howPhjRtWtXNDQ02HVPRGQdhjIiomuor68HAGzZsqXVckql0ux1ly5dWixXV1eHhx9+GKWlpRgwYACGDBmCgIAAiMVinDlzBvv374dGo7HrnhsbGwEYe+taEhISgqKiIjQ2NpqFsGstEyKRSKDX6+26JyKyDkMZEdE1mELLunXrbJroLhKJWjz+7bfforS0FA8++KDFnK7169dj//79bb/Zy0zhqqqqqsXzpuMdZa02oo6Ec8qIqFMzzaHS6XQW55KSkgBcGca0l2kItPmTlCbHjx+/5r3Z0lNlenI0KyvL4lxpaSkuXryIHj16WAxVEpH7MZQRUacWFBQEACgrK7M4d+utt8LPzw9r165Ffn6+xXmlUmlTYDM9LHDixAmz499//z0OHjxoUT4wMBAikajFe7uW5ORkBAQEYPv27Wb3bDAYsGbNGuh0Oos1zYjIM3D4kog6tZtuugl79+7Fiy++iOHDh8Pb2xvx8fEYPXo05HI5XnrpJfzjH//AAw88gGHDhuGGG26ARqNBSUkJsrKy0L9/fyxbtsyqa02ePBlffPEF0tPTcfToUURERODMmTP4/fffMXbsWPz0009m5f38/NC3b18cO3YMS5cuRWRkJEQiEaZMmXLNtcr8/f3xt7/9Da+++ioeffRRjB8/HnK5HEeOHEFubi4SExPxpz/9ye52IyLHYygjok7ttttuQ3FxMX788Ud88cUX0Ol0mDp1KkaPHg0AGDlyJD766CNs2LABR44cweHDh+Hj44OwsDBMmzYNkydPtvpa4eHhWL58OVavXo3Dhw9Dp9OhT58+eOedd1BWVmYRygDghRdewPvvv49ffvkFjY2NMBgMGDhwYKsLyI4fPx5du3bF+vXr8dNPPwkr+s+bNw/33XefxcKxROQZuM0SERERkQfgnDIiIiIiD8BQRkREROQBGMqIiIiIPABDGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyAMwlBERERF5AIYyIiIiIg/AUEZERETkARjKiIiIiDwAQxkRERGRB/j/L4ecM76I4oMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACqa0lEQVR4nO19eZhU1Zn371b1RncDTXfTCALdrA2FuCRRowgCzjgYJ8zEJRq/RNFo4oYkM35B+GayGP2cz5jPByfuRknMOGJ0VJyoiTEInxoVERQoaLamaZbupve9uqvu/f4oqurWfpdz3ntu9fk9Dw/Vt+69572nzj3nXX7vexRN0zRISEhISEhISIwgeJwWQEJCQkJCQkKCGlIBkpCQkJCQkBhxkAqQhISEhISExIiDVIAkJCQkJCQkRhykAiQhISEhISEx4iAVIAkJCQkJCYkRB6kASUhISEhISIw4SAUoDQYHB1FXV4fBwUGnRZGQkJCQkJBgDKkApUFDQwNuueUWNDQ0mLru4MGDnCSSSAXZ37SQ/U0L2d+0kP1NC6f7WypAjBEIBJwWYURB9jctZH/TQvY3LWR/08Lp/pYKkISEhISEhMSIg1SAJCQkJCQkJEYcpAIkISEhISEhMeIgFSAJCQkJCQmJEQepAElISEhISEiMOEgFSEJCQkJCQmLEQSpAEhISEhISEiMOUgGSkJCQkJCQGHGQCpCEhISEhITEiINUgCQkJCQkJCRGHPKcFiAR27dvx6pVq1J+9/jjj2PevHkZrz958iR+9atfYevWrVBVFeeccw5WrlyJSZMm8RBXQkJCQkJCwoUQTgGK4Morr8TcuXPjjp1++ukZr+nv78eqVavQ19eHb3/728jLy8NLL72ElStX4tlnn8XYsWN5iiwhISEhISHhEgirAJ111llYvHixqWtee+01HD16FE8++WRUeTr//POxYsUKbNiwAd/73vc4SCohISEhISHhNgirAAFhj05BQQHy8oyJ+d5772HOnDlxnqPq6mp86UtfwqZNm1yjAPW1DaD+k2aEhkNkbVZMG4vTz6iAoiiW72FUbm++BzXnnobSylGW2wKA47vbcPSvXRg+cDDjeaWVo1Bz3mnw5lmnvA31D6P+4yYM9gxlPlFRcPr8ClTW2PM2dhztQeP2k9A0LeN5BSX5mH7+RBSW5ltuSw2paNjWgu6mvqzn9ioD0OZqtsZJf8cg6j9pQjCQeZx48jyoOXcCRo8vttwWAJzY046W/R1ZzyspL0LNeachr8Brua3hwSDqP2rCQDebXa6bW7KP7+LyIkwjlHvSvAqMn1FmuS0A6DzeiyOftUBTM4/v/FF5mP7ViSgaXWC5LVXV0PhZCzqP92Y9t0fthzZHg+KxPr4HugKo/7gJw4NBy/cwi7LTSzH1nCp7cncHUP9RdrkVrwfVX6rC2IklltvqaenHgfePo7W9C+Wedpw2p9zyvexAWAXogQcewMDAALxeL84880zcdtttmDNnTtrzVVXFoUOH8LWvfS3pu7lz52Lr1q3o7+9HcXHqybS1tRVtbW3RvxsaGuw/hEW8/eA2dDT2kLf79Z9+FRNmj7N8/Z8e2oa2BmNy7/3LUVz54EWWF9KTh7rw5v2fAACOoDPr+V/9TgBnXDbNUlsA8Ml/1mHvu42Gzv3sZQ++9e9LUDTG2qQ9NBDExp98hOEBYxPoCX87lq4821JbALD//x3D/3tql+Hzp01vx6R5FZbb+/PD29FyoNPQuXveOYKrf7nI8sTe3tiDP/z8Y8Pnf6VtEGf/wwxLbQHApy/tw+632c4dRsZ378kBnPONmZbb2Pbyfux687ChcxWPgmvXXYySCmsGTHAohP/+2UcY7Bk2dP7Rz1tx6d1fttQWABz+pAl/eWSH4fOnTGlB9ZcnWG5v06Of4/iutuwnMsbf/PAc1Jx7muXrNz/2BY5+0Wro3J1/qMe1jyy2bFR2NfVh28v7AQDlY1ulAhRBXl4eLr74Ynz1q1/F2LFjcfjwYWzYsAF33nknHnvsMcyePTvldd3d3RgaGkJFRfLEHDnW2tqKqVOnprx+48aNWL9+fdLx+vp6hELGPTG9vb3w+/2Gz0+EpmmOKD8AsPvjfWgLjrZ0raZphpUfAOg81ovdu/zweK0tbM3bzfXRwc8b4akesNQWABzd22z43NCwih1/3YUxU4ostdXXMmRY+QGAE/tbbY25Q9vbTZ3v/3g/OhXj/ZGI1sNdhs/tbu7Hrs93w1tobaI9uTO71a9H/c6jKJhl3XvT6G+yfK0dHN51DIW1WbyTGdDoN/57aqqGHR/6MW6GNQVosGPYsPIDAE0H2myN74ZPs3v/9Nj76UH0jbKuwLQcMtceK+z99BD6S8y9y3o0HzR+7UBnAF98uguFY6ypEO2H+qOf2zrs/b7p4PP5sp4jnAI0f/58zJ8/P/r3RRddhMWLF+PGG2/EU089hYceeijldYFAeNLKz08OBRQUFMSdkwrLly/HggULon83NDTgvvvuw7Rp01BbW2tYfr/fb6jj0yE4FMJfcQQAMG5KKb58VWqFjxWa93Vg5x/qAQBVlVXw+ax5SUJBNSp32eml+Mo3U8v92Sv70X4krLzUzqpFfpHFIXi0AQcRfmHnLavGxLnJiu9gdwDv/3o3AGB0yRhbv0tdXjt6MQTFq+CSu85Jec7BD46j/pPwAjh1cjUm+ax5SU4WdeFznAAATDl7PGqXTEl53uYnvsDwQBB5njxbz9b+4S40IfybfPU7c1BamewlPXmwE59vPAQAqKwYD5/PmpdE0zR8GAp7SMZMKMZ516X26u54/SBaD4UVpVkzZlv2ptW1NGI/wovZ3L+ZitPnVyadM9Q/jC1P7gQAlBaPttWXBwq60I3wPPM3PzwHgPWQBAA0Hm3ElMmpf//hgSA2P/EFAKBkVKktuQ8WdKMLgwCAS35wTkrPbP0nTTj4wXEAwORJk1Hts+Yl6TjWi88Qvs+keRXwXVqd8rwPnt2Fga4heOC19Wzdn+3BMXQDAM69djbGTixNOqe9sRufvXwAAFAxrhI+n/V5d6t2FEA4pHrBDdblNoKOoz3Y9vuwJ6ViXAV8PuNrVSI+1Y4BUFE8rhAXrkidbb3rrXo07Q0reDOmzcSYCdbC0/U9J7AXJwEAp02aAJ9vuqX72IVwClAqTJ48GRdddBG2bNmCUCgErzc51l1YWAgAGB5OtiyGhobizkmFyspKVFYmT47UCA2r0c8l44pQc651V6wxaNj5h+S2zUJ/bfG4wrRy7/1LY1QBCg2ryLfmJIlrr2rWuJTt9bUPAggrQKGg9WfTX59X4En7bO1HulH/SbJ8ptvSXTt2Ukna9j78jRfDA0FmzwYAp585HuNOT14gvPmeqAJk59m0kAacon2MGpt+nBx4/1hUAbLzfHpZx88cm7K9wd6hlOdbau+UrB6vYiscEUF/SRtq0igaQ/2xuY6V3IoCTDsvtdzdzX04+IH99lTdtWMmFKcdA1tfrMNA1xBUm+Nb396kMyoxfnoyP69odD4+Q1gBst2Xp64vGp3Pff4eNbYgqgCxGgOFpQVp5W7Y1hxVgFi9l95858oRuqYQYlVVFYaHhzE4OJjy+zFjxqCgoCCOxxNB5JgICk426AeVh2Bg6GO4dga0anBA67+z9QLprk0Xh9YfVxlNapli3nHPZmeBMPBs+u9YPVum9vTPZmdBivvdjI4Tzn0ZN07sKpORcULw7noYvbtATO5Mcw6Pd9dIe6wWdiD9GGDVl5qmQQ2GNXw3zd9AbB4x+l7amXeM/CYUcI0CdPz4cRQUFGDUqNRxZ4/Hg+nTp2Pv3r1J3/n9fkyaNCktAVokqAYWI5bwxC00mTMyMsHogGallBixIDyMFlFAZ9lnmBxYTaJGraPoAsHQA5S2L/PY9KX+Wk+GcULZl6yULSCmQGV6NlZgqeBH5CZ/dw20FwqqWbMhDbdnYAzYeTajxgsrsJrj1JCKSBcbHQOs3ksKRTEdhFOAOjs7k44dOHAAH3zwAc4991x4PGGRm5ubkzK1Lr74YuzduzdOCTpy5Ai2b99uuqaQU6B2DbKyfs0u2onXmIVqYNFmZbECOuvIoAeIt3Knl8X2om3SA8TMcyeIpenxehChvLDypFC8u4pHiSYRUMjtIR4D0fa0U6FTBu2lU0x5LOy5OH8zU7gE8QAJxwH6yU9+gsLCQpxxxhkYN24cDh8+jDfeeANFRUX4/ve/Hz3v/vvvx44dO7Bly5bosW984xv47//+b6xevRrXXnstvF4vXnrpJYwbNw7XXnutE49jGkZeVpZgpZAYlZuHZZ+uPX2Gme0wUTD7AsFsEjXal6dkUYMaNM16bR4j1piXkQfIqIeT3YIUWzgzeu/yPQgNqcw8hVSTujffAzUUYie30fHtwBiwOh8aCc9Tz4OsQC23WxXFdBBOAVq4cCHeeecdvPTSS+jr60NZWRkWLVqEFStWYPLkyRmvLS4uxrp16/CrX/0Kv/3tb6N7gd15550oKyujeQCbMMqlYQVmGj2xB8iIFakoCrz5HoSGVXYWsgGFRH++FRjuywTrz5tvrRCekb5kxgES1NL05oUVIFYcICq3fnixCjEjCmdc/DjwwAxzjuwkTBjxAjLybjk6fxNzOHOBAyScAnTVVVfhqquuynreI488kvJ4VVUV7r33XtZikYF6YDBzoRpdaHgspFk8TqFhe5a9UWIjDw+QGdK1VQVIP5Glq8vEjAMkqKXJinCrGvCksARrojCFB8jwu8sq5GbEA8SK3+Tk/E0gN7VnljeE4wCNdJDHkFl5ZAyS2lgtpEY4QPrvbFlHVpQ76r5koHB58z1pw2jMOEDUlqbBvmQxTjRNM+QpZAk9UdgOhPdwslK6eYfAnJy/c9AzyxtSARIM5DFkcq9FbIHlzQHSy0JJSgboPUAsns+oR4ZZlgxBXxqdaD0MxomqI+pSeYA8DDxAqqpF9+QS2cNpFZHfVPEo8KTZUoWav8cKzLxyRj2zxIkevCEVIMGQ8xwgDi8sbw+QWVIy4EBfMvIApW2Lg6VJ0ZeUJQWMPhtLROS2E042TEqm9soRjm/Fq0SLdttSgonnb8WjhGWHy+YcmQYvkQqSA2QMRiftyELkBCnZKpyykCnCH/GKa/qsNWqyJYuSAtSLHxAvt9VaOZbCH5Rp8GCjBGf6/RVFYRJONPpsLBH1cru1jIkMgUlEIDlABttzyANEoZA4yQFK25ZHie7ITkGApbY0I99pqgY1ZK09JzJb4hRFi7VyLBFgidPgbRlLBoqYAmwI5UbHN0swkdvBMiYyBCYRBfVWGHFF4IaN73qfCPKtMEy60bVQjOdgpy3j1pGNvrSicA3x5QDp22OxGOnvl6ktvXxWoP8deC/uTkzqcQvSkLUxZ5YoDjAMKROMgeBQdg8QwMZb7ERoh4nnKm7sGvPM2pnjREmDlwqQYKDeCgPQESkpvCSMU2kVD9ISGwHAW2B/0ra0fQMhbwXg7wHSf++qrTCsKFxWxwkxARZgI7dxhTtWZoEVByiPkAhveHwTkO5ZggUR3pJn1s7WSZIDJJEKTliRLPgP1OnNkYlGSVO3JtoeoWVPvl0Eg8wsTdWi2wxkXSAIORLMxklEUVbC3s607THoSyc5QIntm4GTWY6URPisHk7CjFGWYMEBsuKZZdae9ABJROAkj4BZdVfCGLInL7MCxIK4aUUhIfGSED6bvj1XcYAM8j+Y96WLPEBOke4T75nUHgMOkKZp5j2cBJ5wlnDMM+syRTEVpAIkGByxIJi8QDquBQm3w4IHyCJPxlKasC3lzmBfsvBuDRmfsJ3yFPLOAEr83rqnMPa70W6FEWnf6hgwJjeX0gScOW5aSAMM7HIO5AAHyE4mIDU3L9JeFs8sb0gFSDA48gKdiu3be/GNFYHT8whYvECeLLs/sFBK4ieH9A1SV5ON60sWvBWDFjKz8gUEfRnlfxRkHihM+tIgt4UlmHuAMvwmXDIBCXlZWT1Ap/iCmqpBZZIwYW1rGrPQ8xwtZwJaeC9ZpN2n23qHClIBEgyOkOgYcDssZS5RhMAYc4Ao0tIpt94wk7bL2tKk9DZkfTbGfUlnvLDmLmXxqLIOl3P2NpjxqDPhgTk4fwPW+4l6M+sohzPL/M0bUgESDE6GwKi3iyAhQRNyJBRFiSpkbtl6wyj5EYhfrJhYmgQ1YKIKkEHvlv4as3Bi8aMc3/rvKUJgLAwKKx5OgEbhYgUmyruVLF4mHiDLt2ACqQAJBicriWoarBeBM1lwDrD+Auk3nczmAWLB7TCT3eO2rTfMbN/AhCfjENcg27MxWWwdzgKjWLRZlMywlHHE4t01M77dOgZYlPqg8MwaNGB5QypAgsHMgsQKlNYvE4VE530w4wFiwgEisJBVnXKXbnf2RFnY8Jv4h4msVAG2tdga9gDF+pm3Fc0STJRgE/WLKD1A1AoJdV+yAhPPlYX5mwUXMJsByxtSARIMTtQSobR+mbjs9UpiFgWIkgOk/56yMCHAyPrP5iVhXSyQs6WphlRoBjOAKK1olmCxIFnxcDLhACmZDRjKhT3xe4q+ZAUW8zc1ByiWxCIVIAkdnK4lQhlDZuFFyEaio+Z2sCymZoa4y+TZTJBEeStcTLxbFhb2xOvMwHEOEIGSwDJV3JvnyejhZG2YkXCAcnz+jts6iQEHSJKgJeIgY8gG2tJ7EbKlwRO70VlygLJ6m1j/bmYULt5FJYnDETnBASIe31YzAc1uTQHQZGVJDlAYhr3cVn8TNbYvo/QAScTBrTFkyjR4MyEw5qniBr0kLDhA1KnbJGnCRjOAGFiaVkI7ideZwUjiAEFDdAsV0+1F+R9iKSRu5QAxCRdb8XIzeC8VmQUmoYcjm6ESTjR6hYXFQpPNhcqct2KQJ6MGNdu1ckyFpAgI3kz6ktDStMr/sP5ssd871zlAgP0xR8JxGwEcIMe8gEwyT6UHSEIHPTlMybDLOUuwtH6zbTqpKIrtMJFqxgNEnQbPkLtCwgGy+Gy80+D17UkOUHowVxLMhF1tjjnRFG7JATp1P4PzDhODUobAJPQwWriNJVhmExmxfO0SKc14gMgLxdnsS03ToAZPxccpOEBWC8VRKK8MPUCSA5QepqqBU3qAiCszu7YQIjUHyGaih74tSYKWiEPkhaWKHye2ZbeisBGrx7YFYdEDRMGTsduXVidsyq0wbLWnW/wyZQBFztFfYxbkHCAH0uDj+R/2q3NnVYIZvk+mSPcueHcTr3NmDDBQFDkneqjSAySRDs54gBjwckzIbTdV3EwWGDUHyO5CapWUTLFZJMuQhBEFn6WlScFtcSQExoK3Qugl0WcAicZxY1noU/Eo8LiJwmDBqGShlMpK0BJxCJnwpLACy4nGkALE0LLPGgJzkANk5fmsKltMns0MUZiBBygbmHINKJ7NifCHy7wkZt4lxasASvJ1ZmDVu0UxD7ICa7mzeWYj/aipGlTVvNcx/r2UCpCEDma4NKzAciE1Y9mzqQMk2FYYdi1kq2m7xBwguxayoVCpzXFiZpdz1inQbk2D5z2+zYRcFUWJjQGCMCjLvfVIDViWHE4T7yVg38st0+Al4mC0SBhLsIx9k1j2xB4gSgvZVFq6J5YpSM0BohgnLC1NihRot26FYTVTykp7ZjkyLInwFOM7yuF02fxtdM+8xHMsGXmSAySRCvpdzp2yIGxzgExYEFooxgcwAzOZRG7zkpgNo7AkJFJayNSWpkyDTw8zcttNgzejcOvbo06Dp5gHWYFlGryZ+Vt/nam2BKoDlOdo6wbw29/+Fs888wymTZuG3/zmNxnPffbZZ7F+/fqk4wUFBfjzn//MSUJ20O9y7qYYclxpcxOWfaS9vAJzftC4NHjCOkBGiI12ybRmK8l68zwIBkLc9+YCaFOgk9obVpFXaH2ciFZ1mBXoi+DFxr/tLEcTY4Ckvg3DvnTT/A2Yk9uuISQSCVpoBailpQW/+93vMGrUKFPX/fM//3PcNR6POxxdZvZlYgmmvBWzFsSwBQXIhAXB1DoykeEG8OcAAfrK0wTeLZseGU3VotsnUFia5PwPg8VAWcKxrTAstmd2jnMdB8iBMiYsvYCmPbO2jTypAKXFY489Bp/PB1VV0dXVZfi6iy++GGVlZfwE4wQnyqgDDHgrFsM2ltujToM34da2bR2ZtZAZpqTyrsxrlv/BtC8JOUCkCQwMt2/w5CmGazNZbc/0+HaIA2S3L900fwPmPEAsDWanPUDCukZ27NiBzZs3Y+XKlZau7+vrs7wXk1NwIosEYMBbMSm3XU8CeRq8CWKjbevIrDfN5gJBuRWG6Wdj2ZeEHCDXZQCZIaaPEA6QpYU9pCKy5Lhp/tZULUq/IOEAmTBgeUNID1AoFMK6detw+eWXY8aMGaavv+aaazAwMIBRo0bhoosuwh133IHy8vKM17S2tqKtrS36d0NDg+l27cIJDkFiW7ZJbcSWvZk0eAoPEMs0YVPbihATvG1nuBFYmk5thUFq/Xs9UBRA0xwY34QcoEjChNn9ES0XeSTwhLMCU4WEmAMkQ2Ap8Prrr6O5uRkPP/ywqetGjx6NK664AvPmzUN+fj6++OILvPrqq9izZw+efvpplJSUpL1248aNKQnU9fX1CIVChmXo7e2F3+83JXcE/a3D0c/dvd2W72MWPUcD0c8nm1tNtzvQFpO7t68n6/U9vbFw5r66/SjpKDDVXktTR/Tz4NBgxvb0XsDebmu/zVAgCAAIqsNZr28+2RP93HjkGIb8xkO3ANB6uC/2ue0k/P6hzLIFw79daFi19Gzdnd3RzwcO7kdeUfoJsK8pJktbS5vp9gJdwdi9BrL/Fl09sb47sO8ASnsLTbXXfLwz+vnY8aPoG9WW/mSEa5JoIaC/p99SXwYGw/0T0kLM3l0j84niVaAFNfT3WpR7ICy3iuxj6GRzb/Tz8cbj0Py9Gc5ORsfBgejnto7sY2hwKHb+rp27TSsWHe2xMXSw/gAK29IveQPtsXmsvbXDdF8OD8TWif7BPrL5e7AjJneHBbmDgzGFZDCQfQx1dMbm3/oDh9AeMsfRPX409psEhgPc+snn82U9RzgFqKurC88++yyuv/560zyeq6++Ou7vxYsXY+7cufj5z3+OV199Fd/+9rfTXrt8+XIsWLAg+ndDQwPuu+8+TJs2DbW1tYZl8Pv9hjo+FdoOd2MHjgMAKsaXW76PWbQWd2EnmgAAY0eXmW63/UgPtp+Su7xyXNbrOz7ajRaEF/ppU6ehcvpYU+11bvXjOMILd8no4qztfeRthBbSUJhfZKlPP1YbAQCjSkZlvT6v9SgOoR0AMGH8BPh81abaOtB+DPvQCgCYNHkifL6ajOcfHN2NvhNDgAbMqZ1jmnx7qLAHwCAAwHfG3IyE9I6xvfgcJwAAY0aPNd2XXSf6sA3HAABl5dnHWfdne9CEsEI5dUoNTqsdZ6q93s/34ijCk+20mTWYOLci4/lbC45ieCCE/LwCS+Nkm3YcQAhFxYXM3l0j88mnBccwFAwi32tN7s8QlrtwVPbr63tOYD/CiuT4iir4fNNNtXW4rxl70AIAOG3SBPh8mT38R8b2oRthJX/2zFoUluSbaq9x1KdoRz8AYK5vDorGpDe2etsGovPY6OLRpvuyv2MQW3EUADB2nPn3wyr6OgZP/YZASYl5uQe6AvgE4TluTNmYrNcP7tmPY6fm38mnT8UU33hT7QX2HUADOgEAxaXZ51SeEI4D9Mwzz2D06NG48sormdzvb//2b1FeXo5t27ZlPK+yshK1tbXRf9XV5hYuFnCMA8SQ1U/iRjdRB0gvk12ejNksMPK+5JzBZ5sDZJHgDRDxqRhVKKcMf+jbI+cAEYxv28R7Mxwg4mdjBdv1shycc5wmQQvlAWpsbMQbb7yBlStXorW1NXp8aGgIwWAQJ06cQElJCcaMGWPqvlVVVeju7s5+osNwopIs4BxvxXJ7+jpABmLI3vxwrRwri6hZYqOjfRlUYc4+1qVue5Ws/AqWiquQfcmoQjnl4gfoFCAXcNzMZrraTpgwoXQz3eZjpMzftknQUgGKorW1FaqqYt26dVi3bl3S99dccw2uuuoq3HXXXYbvqWkampqaMGvWLJaicoEIFoRtYiOBByh+5+Ls59ux7E2n+DvYl3aqJVNk71GToE335alzLC20JouBsoTHhtyapkENGpebaQkLCiK8CW8x04XdrfO3yd/EboV2SYLWYdq0abj//vuTjj/zzDPo7+/HXXfdhUmTJgEAmpubMTg4GBeq6uzsTOINvfbaa+js7MT555/PVXYWcKwOELHlw3IhNeJCtWPZm53U4vvSwv5VDilc1BVgzWyaC9Bk5djxpJj1brGELbmJS1hYTYMH7L2/RnY5Z1meg3L+VrwKoADQaH4TllthOL0ZqlAKUFlZGRYuXJh0/Pe//z0AxH13//33Y8eOHdiyZUv02NVXX42lS5di+vTpKCgowM6dO/Huu+9i1qxZWL58Of8HsAkRPEC8660A9uP6qkkLwo4HyJbL3gUcIMoUaDseIMr6VG4KfwC0crMshknpbTCicCseBYoH0FR3pcErigJvngehYZVEbruGUNxmqNIDxA5/+7d/i127dmHz5s0YGhrChAkT8K1vfQvXX389ioqKnBYvK1zLAbKwf5Wt9sySoG1sF0GvkMS8RpTxeENt6fratoVMvemiiYldDWrQNC2rxyCuLYeMFyAmt6ZqUFUt6351elC/u9RjwGxlZiVPgTakkcyDLOHNP6UAUc/ftj1AUgHKikceecTQsR/96EcU4nCDW7fCMO0lYWhFGiJB6yxk0wubg9aRaBwgRVGitXLcUHDNVngnqMKbb9w/75TxAiSHbjwmNo218+7a3geKsBimUaXU41WgQrOWMBHXl7QLu52CqLbGAOdCtrxB+6ZKZIRTVqSiKFFXpOu2wjDQTfqJNlLy3SjsWEcU4URWRGGjCndknFBvhUG+R53J5zOrbLGEHbntvLuUW2EA9sYAyfgWYAxQz9+2PUAOh8CkAiQQHOUR2CEKWww1JF5ruD0TxEbA3qRty7sleEqqpmmmPEBAzGXtCv6HWQK7jb4UgQME8JfbNn+PeAyY2eUcsDm+BRgDbpi/VekBkkgFR2PIdoiUDlkQRvvIziQqfhq8dV6O3htmNGwTmbDcwAEys8s5YHOcCMABAux5gKj5e5RzhWEPkDf+OlNtOcwBAujnb7tebqdJ0FIBEghOcYAAe6ni5F4Ss2EbG1arvTR4grANK+vfKEcij42FTO0pNAJWfekoB8ik3LnMATK7yzkQC8nY5wARz98OcYBsF7J1OA1eKkACwdEYso1ianYypexMNEb7iF0IzFy4TfSsMysTdjRE4CJL0/A4GekcILMhVwoOECvjxaSHM5IwYbU9p8aAFooV5DQKp7Yy8niNeWZ5QipAAmHEcIDsTqJmLXtGk6iQ2zfY8VpYWSAYeYAoLU3jzzbCOUAGMwHtjAHKrTCsKKVxpR7MJkwIMH8D/L2X1PM3TzgvgUQUbuUAObUVhmEOkI1J1DRJ1OtBxKgRfSsMKyGwiMvaiqVphwBrqwaMgFwxlrDFAbIQumPFN+EdArPym+izknjzqVjClpfbodIb1H2UCs5LIBGFCBygSBE4M7DFW8kxDpC+PeE5QCYVEiDeQrZlaZrNynKRp9DJxc80B8iCl8RWuJyQBG0lJGWn2KcI8zfA33tpm5guPUASqSACBwgwP4naSm82m7qtatBMEhsp0+D17dnhAClK2JuUtS1WHCCTJGgr7Tm1DYKo44QVqL0krPbW411Y1Ip3K84DRGBQsAKll9t27TGT7yVPOC+BRBTCxJDtTDScLXsrvBVKDpC+PTseIBLeioW+VBh5gHhb/2Z3OU88j3dBQZagLISoP496Kwxb3i2TafCATWXSpWOAZJNik9w8nnBeAokorCxIrGBnUFNuhWFlkqG0jvTn2eEAkfNWLHiAbJFSOVuadkI7idcbgZNp8KzI22YNClseTq8CxcCeZcy8WyYLIQI0fckKpPO3zUr+Zmsz8YTzEkhEYSUkwQqUReBsKSRWrDpqDhADjgR5hpsVDxClp5AgK4vak8IKdt5dO4qiHQ+npbAkwRhgpuC7aAyYHbuKR4mVC7DhmZUhMIk45EQqLWcPkBUlkZwDxIAjYal4HwUHSB8i4M0VY6QoW8kW5G1FswS5khDxANnIBLRkvBCMAVYk/1wfA1bD/FbCkjzhvAQSUYhiRXKPITuUtgvQeJxYcCTMZpxZac8SB8iOhWy25owNS9OKQuJWDhC13CwWW4qwpKVCn6xI/jk8f+vPsxUqlh4gCT2iL6wSH2qgALMYshEFyBOL//POJEqUiWS7iFNyaaoG1WJVVivPZmcyspImTBFys2pp2l3Y3cQBsje+ze8HZyeL0ywBljosyazMQw5zgPTnUczfPOG8BBJRRBe/PGO7nLMECy+JxyCxUd+eLauOwktixePEgHRNsn2DTY4ERV+ysDQpOEBu5X9YqpZsJ4vT5PhmVd/GeJZj7LPkAGVoL+LlJpi/ecJ5CSSicJIdzyIzy4zcVsNEdrwIidcbgSWSqMWFVFVjnAoryhZFij+LLBnFo8BjUlGmcOtT8yhYwSn+h5X2zHKAmCVMWKlzJcdAWlgt9io9QBJpEfWkOKAZsyilbkZuq8XUrMSQydPgLU5GbvBu2aqUa6ECLBNL0xIHyMaGktThDwc9nGba0zTNnoeTYgzYyXK0oHSzAjMOEOdSCJIDJJEWqoMeIBaTqKgeIFZp8LyVErvKFu8K3oDNSrkmFz+A1tJkxgFyURV3ux5OM+3pNxflrWwB9j2cVkn+njz6Xc7tzHERuU15ZnXzt5mtk6QHSCIt9BwgarBYSM3ITckBsjWJ2uUAmXg+O1WnAZscICtp8Fa5YmYUZQaWpqh8KlYg3wrD4vtkqTChR4kqJTScM/skf0coDAxChaYMWL0SHDKuAEkOkERaCMMBsjjRmFnYPAw8QBRbYVBygOyQhAF73i0rITAKD5BlS9NKX7o0Dd6prV4Akxw3i0qi1b31rLy7LAp9OmLAsvDgm/HMWlWCLcw5POG8BBJRCMMB4kxs1J8bClpf2ITdCsMqB8jKhK0oUauVYisMW3WAKC1NB9PgyTlA1B5OiwqX1cXPMhHebpYj5xR/lmAxf1v5TQBz84CT+6WlgvMSSABI2OXcRRwgK8TGuHM1RJ/bCFyxFQYhB0h/LkVdHlsk0ShHgsDSJE6DF4UAS7kVhtn2rC5+VonwVsaArTR4Bz1ATDicVuZvmFSCHTQUUsF5CSQAOE8Os2r96q1yq5Y970wpFttFmCE2UnKA9OdScICskqA1TbPPNbDoaqeocOzoPn4OpUCbbc/qHMeCCE+yFYYoHCCKMiZWw6AOhopTwXkJJAA47xpkwlshtuwpOEB2F23ez6Y/l5wDZMZTGNKAU7oytaVJyQEyUwyUFVh4rhQF8Hj5GhRWlUTLHCC7IbCRwgGyUsaE8L3kCeclkADgPDmMSe0aAg+Q7S0OKNzDxNZRdIEg4ADps8Ase7cEtTSprWhWsEWEt5DA4BoOEGGhT/0u526avwFr5VeYeGalAiQRgdPpgVaLwNkN2wA2eASUlr2FDDf99YbacgEHyOpmkUw8hZz7ksVWGE4nMFgmplO/uxY5QJYTJix4gMw8m9OhHatznBpSoTnkmZUKkEQUTg8My7wVFh4gqxMNRRq8TQ8Qb+UOoOUAWeVIsPAA8eYAebweRGheFNvBsILiUaK/C4XcTnGA7CRMGFVMrXqARtr8bVnhkhwgc/jtb3+LRYsW4YYbbjB0/smTJ/GTn/wEX/va17Bs2TKsWbMGx48f5yylfTiZRQLY4K1YlJtJDNnCok1SJMzqs1nty2ixQI17rRyrHiC7/A/A7DgxX3VYf65VT6FTk7rdMJHl8S3wGLC2FUbsM8U8yArU87f0ABGgpaUFv/vd7zBq1ChD5/f392PVqlXYsWMHvv3tb+Omm27C/v37sXLlSnR1dXGW1h6crCQL2NDoiT1AlsI2imI9TGSlSJhDheIA/rycOGUyBy1Nq4RbK1walvBYlDuW5WjRK0fIAQJszBVGjSWLWY5Czd/EHE7enlmeyHNagEx47LHH4PP5oKqqIQXmtddew9GjR/Hkk09i7ty5AIDzzz8fK1aswIYNG/C9732Pt8iW4fTAIE/dtjqJWrQiPXkehIZV0zWOrBAbWXiA7JCuvfneDGfHoJ+49IpNJlitlOsWS9OqJ8VKkUeWcIMHyPK7azXkZqkOkDVvsVDzN4Hc1J5ZXnBegjTYsWMHNm/ejJUrVxq+5r333sOcOXOiyg8AVFdX40tf+hI2bdrEQ0xmcNo1SJ66bdWNbpNLwrsyc6JcVjlAJKRr3eJntMaRVQuZBVeMoi+tjBOrxUBZwm6xQNd4OK0q3ZzT4IWav3PQM8sLQnqAQqEQ1q1bh8svvxwzZswwdI2qqjh06BC+9rWvJX03d+5cbN26Ff39/SguLk55fWtrK9ra2qJ/NzQ0WBPeIhyPIZN7LewvpFY8CZSkZIDeA2Tl+UzxjSxWyrWsuFrlf1jsS4+FcWK1GChLWOEuqaoGTXWfh9MorOxybpkELdL8TeGZZZXoETB8KRcIqQC9/vrraG5uxsMPP2z4mu7ubgwNDaGioiLpu8ix1tZWTJ06NeX1GzduxPr165OO19fXIxQKGZajt7cXfr/f8PkRtB/qj35u62iF3z9s+h52MDwQe8auji7Dz5Asd9DQda3tsZBmQ/0R9Ba2GrqusyN23cH6AxjCgCFZQ1pYrqHAsOFnG+6L9Un/YL/h67qODUY/tzS1GP4tm47Fnu140zEM+jsMXdfb1xP9XLdnH4rK8w1dN9gfllNTVMPP1j8Y+727u3oMX9d5aCD6ub2zzfB1J9u6o5+PHG7EQGm7oeva22J9d+jwIRR1GpvqgqHwbzU8FDQsYygQm9QHAsbGo1EYnU+GQ0MAgKAZuXWL0aAJuXuOx1at1hbjv+Xxo7Hf8kTLCQT93RnOjqG7J/Ze7N93ACVdBYau6+8NjznFC8My9vX3xj739Bnvk6OxPunq6WQ6BoxC8QCaCvT1GJ+r9L+lGblbWmL9dLTxmOHfsu1kzMlw+MhhaCVD3PrK5/NlPUc4BairqwvPPvssrr/+epSVlRm+LhAI/5D5+cmTf0FBQdw5qbB8+XIsWLAg+ndDQwPuu+8+TJs2DbW1tYbl8Pv9hjo+EYe6T2AvTgIAJk46DT7fNNP3sIPhwSC24igAoLioxPAz1Pc2Jcg93dB1akM9jqATADDptEmY4Ztk6LojRX3oQHhim+ubg4NH9huS1V/chsGOXkBVDD9bX9tAtE/Gjhtj+LrmvA7sRjMAYNzYcvh8c7NcEcaAf3+0T2qmVWOyb7yh61r/3xdoRVgxmVYzHeMmjzZ03Q6lCUAIhUUFhp9t967dAMJKSFHBKMPXHQm0wI8WAMCEiVXw+WYZuk45cQT1CCszE6smYrZvsqHrjr39GdpO9cmcubNRPK7I0HX7SjvQf3IYWsjYBAoAg91D+BiNAIAxZaMtvf/pYHQ+2V/aif7mLmihsMfbSEgz0DtsSe620m7sRBMAYOzosYavGz54CIdP/ZZTa6Zgmu80Q9d1bvWjGeEFt3pKDapmlhm6bpf3JIBh5BfkGZbR7/fDm9+J0LCKgrxCw9edUNqifTJ+QiV8vjmGrmOJT/KPIhgIoSDP+Pvc5Gm3JHdh53EcQFiZqaqcAJ+vxtB1Jzd/Ef0tZ9XOxPHOI0zfF7MQTgF65plnMHr0aFx55ZWmrissLAQADA8nW9tDQ0Nx56RCZWUlKisrTbXJEkLFkAXmANmtJyOyy95JDpBRKJ7wVg+aqlnnSAi6FYb+XE3VoKqaodCJ0wRYICEkEdLgzeMnt5Np8Kb2KbRQxBQI96XZhAmntzICwnIHAyHXlDERIQ1eKAWosbERb7zxBlauXInW1lhIZGhoCMFgECdOnEBJSQnGjBmTdO2YMWNQUFAQx+OJIHLMSQUnG5zeCiNSBE7T6NMoKRa2yKSkhcK8ByP7NTEp8ugC0rVZzkJkorWyGEWuN9NWBJRp8EC4Lz2F2TPqRJjUEw0KI89slygO2ODJUKTBWySmR/rSbXtcWSHCx8/fxvewk2nwHNDa2gpVVbFu3TqsW7cu6ftrrrkGV111Fe66666k7zweD6ZPn469e/cmfef3+zFp0qS0BGgR4PRWGED4xQ0NqQgNG+c8UVuRkXPNEBuB5FTavAJzC5tl62jIRF8yULiCFiYjs4u2N8+CpcmiL01M7EHdGLbelyHkGVGAHCbAAolKQggYlX1qZ6UkGoVTXkDT49sKoVyAhd0KET7I4DcxNecIoCjqIZQCNG3aNNx///1Jx5955hn09/fjrrvuwqRJYa5Ic3MzBgcHUV1dHT3v4osvxpNPPom9e/dizpxwLPPIkSPYvn07rrnmGpqHsAgRrEhvXkQBIsiUsmhBWK23kqhwmVWAyDd65ZwmrKladFsB0xay3XAixTiJKMomdjkHrPWl00XwAGtyM0mBptwKA9aMJdMeTsKMUZawUsSThWfWcnvSAxSPsrIyLFy4MOn473//ewCI++7+++/Hjh07sGXLluixb3zjG/jv//5vrF69Gtdeey28Xi9eeukljBs3Dtdeey3/B7ABEVyDkUFtuborYQzZtAJUYL49FgoJiZfEwoIU92wFJvvSgqVJbv1b5H/Y7ksRPECc5c7TFdoUtdK5pmnWPZyEfEGWsPteWp6/XaYo6iGUAmQXxcXFWLduHX71q1/ht7/9LVRVxTnnnIM777zTVEaZExDBNWjJ9cvCS2IlbGPRqgMsWvYEVa5ZLBBG+9IOadOSpUk9TizyP+z2pdNbYQD85WbiAeKcVKCFNMDCLueAjgPkstCOngOkaZqhTEAWnlkr87dZzywvuEIBeuSRRwwdA4Cqqirce++9vEViDhFcg5ZefBaTmgUPkJXMjsR7ZG3LImmTSYYb5760Q7q3ZGkSewoth0pHkAfIcrFIXSagqIVFrS7s+vPNZAIKMX9HnlMLK4CKkUxA4sw8p/fMS4QYUkgI4Rq05PolLm+vWvQAWVlInUzd5t2Xdkj3iZamETi1FYYdrpjkAGVoz2aYyLLHyYp3y0KWYwQUfckKVuYdas+s1fmbF8SQQkIMK9IK+c+qZW/TA2THsjc8qVm0IhWPEt1cVNS+tDNhJ1qahtoj3grDKgHW0mIrwLtLPQa8FrzFTELKnN9dwGIYVIAxYNvLLfD8zQtiSCEhRAw5WgROA9QQZwvCwiQTR2y0w+2wYh1ZtCIt1+TgXFLATuo2ZV/a5orZWfwsKBJO8z8AmjEQeU4r4Q+AvxJs5921pkw6v8s5pRJsd+8xqQBJxEGEGDKl5WOFKKwnNorMAQLs8ak8XsVQocYIrPSlnbANKZ/KoqUZeT6riqv+HkbbSryeElZ+E1tjgJAvaDcERuEBEm3+5u0ps5vo4VS9rESIIYWEGDFkwS0IO25mSg4QYI9PJbrL3ralybnonhpSobFQlN1EgrZASrUjt62MUSV+1/WsbdkkQdviABGEE1nBthJMUchWeoAkUsHprTAA+xYEb8ueBWkTMLGQMuARWCF4k/BWGFnIvPvSkrfJTvjDbkkBEcIfBOn7lraL0IWvjaRoR0BNSqYsKcASthVFMzxHrwIo5toCdEae9ABJ6CHKVhgRcOd22OUsEHM7SKols/AAEVvIvJUSp1KgrbYnxFYYhB4g6sw8Syn+BGNAhBCYbUPIhNyKopgOg6pqeB9GQKbBSyTAzqTNCrYL6nGOIbMgJQM0Vp2dWjmi81acsjQpU/wtt+eid5fFGDCTMBFyyMNpi+TvIi+glTAoC0WRYv7mBTGkkLDlbWAFSiuSOtRAvcVBrFqyZrpWjujbNzhmaRIUecyFrTAoOUCAeYXLVsjVkhfQeLgtfD5tX7KCU+FiNymJiRBDCono4FBMZgCxhC3r1ySxUVEUeE5VKqVUSAAiL4kVDxeL1G1qDhChpUm5zYfl9pziABHzViwlFTDwcLqBBzYSOECA+UQPEZTERIghhYQQFTLtFIEzS2wE7C1sbkmDN9qepmnW96+yy1uh6EsbIQmzhFvJAeLPW7FDTHYVB8hFafCUnln9+VaI6ZIDJBEHESpk2iEKW5Hb7Atka8J2KA3eaHuqrqIy+fYNFH0Z5X8olhVlyQFKj3jPFd/tSZLaMz0GXMQBclMavFOeWRcRxRMhhhQSlt3DLGGn5LwVy9dsphQzDhDnImGA+YXUloeEuKSAnQXJjqJMUZl5xHKAOHtJNFWLbptCEU5m9Wxm50Endzl3zDProlBxIsSQQsIyAZYlLLnRWSxsVhQSO5Y9ddaZEQ8QK2tc8L60oiCYDpWy8hS6aGK3zVuxw5MxMAbsKCQeHbeQhANkw6BwdP52yDOrqRpUNbvXUQRDIRFiSCFhmQDLEpYmURueK7NplLnMAWKWkSN4X1pZIMxygNyyzQdLkG+FYdJLYkchURTFfLiF2KBwLYfTjgFrYwxIDpBEHITgANlYSCk8QLnMAbIVkvJ6oJitleNQX9pRlLVQrJBaxrZYhT9cVN/Eqa0wAPMKvi0l2IpSSmhQiDJ/m+WvWXovTSqKkgMkkRJ2djlnCTtbYdjhAKlGF7Zc5gDZzCQSnU9lx8NpR5m0FdpxUQjMdqo45zR4u0qiWSI8szIPZj3hbg2BWVFKCY08XhBDihEO/S7njobATA5oO8RGwPwL6xRvxQqx0Wxf2s0kIuVT2UmBJrA0nUyDFyIFmiB9X19c0HQIjIIIb4dzZIML6eQu57ZCYBTvpVSAJFJBhDoiAO1Ck3iNEaXETbwVW30pOp/KpOKqqVo0zZ/C0mSW4m+WS2OyGChL2N4Kg3MY1O4cZ5YITz0G3OoBYuWZNTR/C7LO6SGGFCMcomjGtngrVsI2ZmPIrMI2hLwV/X2MtAVYVLjMLhA2FC6zlqZt5c5OOJEw5dpKMVBWsCO3x0L1ebPj266HMzJXWOE3kYwBG3MFK1B7Zinnb14QQ4oRDhFc6Ilt815oAAsKF6sQGAVvxWTIze4YoKzJYdbStFNsLfEa0652Qg6QMNY/gdy20uApSiEQeoBE2eWc2jNLOX/zghhSjHCIohlThhoSr+HtJaHO7DDrJbHNATJLgmZlIZv93exampxrzlBWOGYJxasASrw82aDakNtWGrwNg8JowoQdpZt6HmQFJz2zFF5uHhBDihEOuwsEK1CT2uzEkCkL3NldIEgs5MgCITj/g6LeiJ1nUzxKtPCe6VRiByd1RVHME+EZlLAAaDhAtjKOOM8VwlAYTHqdWXpmKbzcPCCGFCMcdhcIVvAW2LAgLL1AXlPt2fGSKB4lSlA1T2z0ZjkzGbbCNgXW+1LTADXE97czbWnG/W42+9LsRGulLwusedOc5jWYJsKzKk1A4OHMs7PYmhxz+jFjlgpgZXyzgun5m+V7KTlAElZhl0zMCqYtCEa1PQBal63p7RsIOEDkfcnIQiaxNO1Y5DbGiZs4QPr2c5EDZEfp5p3lKOL8TcnLAmjmbx4QQ4oRDv0CIcxeYAQkaNOTKGGmlBpSoUVqMxFPDpR9qRBkANlWSOwUQrTB3zLtAXJ4Uje9XYQNuZ3iAAH8ifemPRuiePCJM0+p528eEEOKEQ7XWhAu8lroryHhN5nuy1DKaw23Z3FBckMBtLhxMmRyQeLMp1J1xUCdntQ9JuTWNC3GcbP5mwQJyzwAxsZAXHsmazOZXdiDunfXTRxOphwgs+1JD5BEBKJwgOxxO2yGiQg4R2Yse6akzWG+23wA1i1kigw38iwwwow6UTKAAJNyU9dmstlPVkNu3nzztZnMPpso3BZ9JiDFb2LLYBbEA5TntACJqK+vx3PPPYe6ujq0t7ejqKgI1dXV+Na3voUFCxZkvPatt97CAw88kPK7V199FRUVFTxEtg0RPUBmKzPbXkgJ0+5J0tKJ6wBZ9aaRhKSILU1WXDE3ZQABtHKbzsqiHgM2MjgjmYBqSHPVwh7JBAwNqyRy20q7lwpQajQ1NaG/vx/Lli1DZWUlBgcHsXnzZqxZswZ33303li9fnvUe3/3udzFx4sS4Y6WlpbxEtg1RYqO2eCsuqCNhJkuGXiGJeYlI4vGRGjBW2vKa2weKab0oQg6QGtSgaVpGD4JIxM6I3JqqQVU1eDJwu6jfXeoxYLc0gTffAzUUIpkHWcKbf0oBop6/zb6XgoTAhFOALrjgAlxwwQVxx6644grccssteOmllwwpQOeffz7mzJnDS0TmEMWFamuHZ7txfQorUmchZ13YiK0j2yEJQg6QoiixidZsONENfZngvcuUIiyK8QIkh248henlZvnumt4HiiDt3i4xPTwXhsxncOY7sxVKBNGK8MTzt5tChXqIIUUWeL1eVFVVobe31/A1/f39CIVC2U8UAKJYkYqiwJNnvAgc9R5P+nPMEhuB+Ik3UgI+HVhaRxThRKuZK1YnIjNbb7iNa2CmL0UidpqR28kqwCQcIAYeIP19MrYl4Bignr/duhWGcB6gCAYGBhAIBNDX14cPPvgAH3/8MZYsWWLo2lWrVmFgYAD5+fk499xzcccdd2DKlCkZr2ltbUVbW1v074aGBlvym4EoMeRI+2owRBpqSLxX2vZsEBuB5Ek700vI1LslWEqqPgPI6kTkzfdgeEBQ/oddAruJvhTq3SWU2zR/z6GMI6uhFq8JT4qIY0DI+VugfopAWAXo0UcfxcaNGwEAHo8HixYtwg9/+MOM1xQWFuKyyy7DOeecg5KSEtTV1eGll17C7bffjmeeeQYTJkxIe+3GjRuxfv36pOP19fWmPEm9vb3w+/2GzweAE8e6op+PNx1HwN9p6nqW0JSwZ2SgL5D1OY4f645+PtF0HMP+rgxnJ6OtqT92/fEmeP0DGc8f6Dv1vUeLymamv/sDsfb27N6D/OL0IYLuI4PRz53dHaZ/06GeYOz6js6s17e3tkc/H26oR3Nvvqn22js6Y9cfakCXpyXtuXrv1+DwoKlni/S3qoXficDAUNbrTzT2RD83tZyA6u/JcHYyOo7HxkXTiWb4/YGM5/f3hH9nxQvs2bPHVFsA0DfQF/2811+HwjHpp8ne4zFZunq6TI+TbDAzvnsHYh7yvf46FJVlkLtpKPrZitzBQGwx6+7syXr9yRadcdl4GG3BE6baa22LzTUNh4+gr7gtw9lAcCg8PodD2cenHpH+DqrD4esDw1mvb2mI9XtLawv8WeYxnhiOyh3M/pvo5D7Z2mxa7p6jsbF/svkk/P7M62RPV+y933dgHzx5iqX10ih8Pl/Wc4RVgK6++mosXrwYra2t2LRpE0KhEIaHhzNes3TpUixdujT698KFC3Heeedh5cqVeP7553H33XenvXb58uVxWWYNDQ247777MG3aNNTW1hqW2+/3G+p4PQJ7D6ABnQCA6mlTMdVXZep6lthR1IRgfwBejzfrcwztO4gGdAAIy13tS69gpkLj0EnU4SQAoGJcJXy+WRnP/8LTAiCI/ML8qGxm+vvYuEF0IvySz5w+CyXlRenPVVuxC80AgPETxsPnm22ojQgGe4fwKY4BAIqLSrPK2PTnHTiJ8MI7e84sjB5fbKq94QMH0YiwAnr6xNNR4zst7blDA0F8hCMAgNFjssumR6S/dxWfxFBPPzzwZL0+VF+PeoQVvCnVUzDDNzHj+Yk4jjbsQVihKy+rgM+X+X3057UCGEZeQfYxnArN5TvQjrASNWPaDIyZUJL23CZvB75AEwCgsqoCPt9c0+1lgpnx3fLe52jTyT12Ynq5W/I78AXCSkhYbnP9FBoO4RM0AgBGFY7Ken3r+zvRjPCCO3P2TJRPGW2qPRxtwOFTc83ECZMwy3d62lM1VcOHatiDX1JabGl87y1tx0BbD6AqWa/3nDiCAwgrZKdPmYRaX+ZoA0/UlXRg4OQwNDW7AlDX3Ij9UblPxxyTcreO6sLOU2O/bMy4rO0dKOhCN8JK07wzfFA8iqX1kiWEVYCqq6tRXV0NAFi2bBn+6Z/+Cffccw+efPJJU+GPM888Ez6fD9u2bct4XmVlJSorK23JbBUixUbNFIFjmSllhmxoOWxjgrdgl9gocho8CzKiKQ4QY1Jy1vYYhPcS75UOOcEBshtypeAAmQi52SVcAyYTJgQcA1pIg6ZqGau8M51zzGSeWqg+zwtiBOIMYPHixdi7dy8aGxtNX1tVVYXu7u7sJzoEkWKjZoqpMeWtmOQAWYGZF9apujwAfw4QkwXC4jgh4VPZSPEHRiAHyGImYCRhgiTjyETCBAulNM44y5YwIdIYMDPHUc/fNonpPCCOJFkQCIRdZ2YywSI4fvw4ysrKGEvEDkLVkTBTLJDagrBR3AwwN4naJol6PYgYjSSVeU2QRFkU3oxcF7E0M4ElAdZUDRgWix/nccISZkipLNL3rWZK8U6DZ/GbmFncRZy/Af7eS2piOg+II8kpdHR0JB0LBoP44x//iMLCQtTU1AAIZ201NDQgGNSRTTs7k67961//irq6Opx33nm8RLYNkeojJBaBywSm2zcQeIAsu9Gt1hIxs0Cw7Esz3i2KvrRZAM0tnkKnJ3YzoUImXhIz4XLCUggsQlJmFncR52+Av/fSankKp/tID+E4QA899BD6+vpw1llnYfz48Whra8M777yDI0eO4I477kBxcZgc+tRTT+Htt9/Ghg0bolWfb7vtNsyePRu1tbUoKSnBvn378Oabb6Kqqgrf+c53nHysjBAqhmymCBzL1NZsqdu6TSfpOUDW2wsNqaY4QIoS9h6ZbssqB4hRX+YVEI0TzkUeE6+jGCesQO4lMRMGtcs5ovZuERsUrEDp5aYuTskDwilAS5cuxR/+8Ae8/vrr6OrqQnFxMWpra3HrrbfioosuynrtRx99hK1bt2JwcBAVFRX4+te/jhUrVqC8vJzoCcxDJDd64qA2XAWXs2XPkreSeL9s7dm1Is14gEh4K9R9SWj9a5oGNWhvd3ZTi61Ixgux3Jb31uNMhLcbck28zpQy6dIxQLlJsdMV0/UQTgG65JJLcMkll2Q9b+3atVi7dm3csVtuuQW33HILL9G4gcWCxApmBjXlVhgseSsADbfDyu7c5LwVgr5kygGiIMCaWGxF2grDKnnbrhJsysNpMQOIWiGh7ktWIJ2/TVbyDw2HLLfFC+JIMoLBIiTBCqYWUsKtMMh5Kyw4QBY4EuQZbhReEpaeQoKsLGpPCiuY4q0Qe4CYhiWJxwBFX7IC5fyteJTolkRmPLNO95Ee4kgygiFUCIxwojGzaPPgrRhujyJV3C5x1+qzsaiVw1nhsqoos8gW5G1FswS1khBNmDCRCUiicBOPgZE6f+uvM+WZlR4gCT1EtSK5x5AdStsFaDxOVjgSdjPOjLTHslAcYDJLhrOlyaTIo0s9QNRyW1lsKcKSI3kMUM7f+utMhYqlB0hCj+gLq4Rj5E7CcgzZigLkifEBeFeuBWxYRzaVEk3VoGaxkFl6gMxMRm7wAOmvo17Y3cQBMje+Y+ORiUFhcAwwId0LqtwBzo8BSg6Q/jqK+ZsHxJFkBEOfHmhll3OWsOIlsVPa3CiRkkXYxslUWqPEZJLtG6gLxTHoSyuWJgUHyK38DxZyWxkDTN5dQoI3IDlAGduLeLkJ5m8eEEeSEQyRCkRZycyyI7fRMBFLL0Li/VKBdTn9TM+nqjEOBXndEgoP0KlnVzwKPDYVZcn/SA8nicJG3ycmHk6BPUAjbQwYLfYqPUASaRH1pAigGVsppW5HbqPF1FjEkMnT4A1ORrnu3bK7+Onbo+cAGQtd2mmPFRwtFpihPU3T2Ho4BeYAOT2HW+YAcS6FIDlAEmmhCuQBsjKJusUDZDUNnrdSwlrZMsrHsNOelZCEHdc3paVpmQPk9OJntVggi9pTmRT8EAO+kcWiqZRbYXjyFMcpDGbey4jctjyzuvk709ZJIhkKeogjyQiGSCXCrSykduSm5ACZmkRZe0kyPB/zkBRFGryFBckOQdSKpekWPhUrkG+FYXAMsPhNFI8STRARdSsMp39/wFqo0JYBq1cUQ+kVIMkBkkgLYTlABicaOwubx4IHiGL7BkoOEEuSMGDOu0W5FYYtRdmopcmiL3MhBZqaB5aJ48ZISYzISe3d4k3wZglquQ0rwQzmHB4QR5IRDGE5QJyJjfprQ0HjC5trtsIwygFiMGErigJPXthCFnUrDBJL08E0eKcNGOrMPKMKF6vFzzARnrV3i3OKP0tYmb9Z/CZA5nlApP3S9GCyF1goFEJXVxeGh4dTfj9hwgQWzeQk4nY5F+AFMmr9siA2xl2rAVpIg5KXOhbtyq0wCDlAkWvVYEjYrTBskeUTFvd0Y87JrTCcNmCc2gojW3usFj+jRHjyrTAE8gBZ4nCymL+RRQkWyFDQw5YCVFdXh6eeegqff/45gsFgynMURcGmTZvsNJPTEI0cZtT61VvhrCz7UFBNu4g4tRWGHWIjJQcocu0wQvQcoAzPpmkae67BsAqMSn0edQq0SNwGp1Kgs7XHao6zQoQnKYUgKgeIooyJ0TCoQKFiPSwrQPv378edd94Jr9eLc889Fx9++CFmzpyJ8vJy7Nu3D52dnTj77LNx2mmnsZQ35yCaa9ASb4WhZZ9fZKA9Ct4K40WbNwdIfy05ByiTpzCkAad0ZWpLk5IDZKcYKCtY8VwpCuDx8jUoWCmJhjlA1F5AgTxAVsYAs/mb83vJA5YVoN/85jcAgCeeeAI1NTW4+OKLsXDhQqxYsQKBQACPPvoo3nvvPdxzzz3MhM1FiEYOs1S7hqEHKB2Yb3FA4R4mto6iCwQFB8hgCjQr65+yL6mtaFYwxVthkMAgLAeIRQkLEx7OyC7nbpq/ATblVwxzgASLdERgWZKdO3diwYIFqKmpiR6LkFgLCwvxgx/8AJWVlXj66adtC5nLEMmFDhgvAscybBOBYR4BpWXPIMNNf7+UbTFWJkk4QBZSoKktTcqtMJzm/wAWienU7y4jDpDhhAnOHCDRQjtG5zg1pEJzyDMrQj9FYFmSvr4+TJo0Kfp3Xl4eBgYGYjf2eHD22Wdj27Zt9iTMcYhGDjPMW+HhATI60VCkwTP2APFW7gDdAkHBASLmf1iyNK1a/14PIrQviu1gWEHxKPBEauUQyO0UByiSMGGkPd4coJE+fxtWuHLNA1RWVoaenp7o3+Xl5Th69GjcOUNDQxgcHLQu3QiASFkkgAneCiO5LcWQLS9sMY4GSZEwo8/Gqi/zIxwJjXutHKf4H0C2cWK/6rD+WqOeQlGsWrNhImbjW6AxQMkBGunztyVungD9FIFlSWpqanDkyJHo3/Pnz8fWrVuxa9cuAMDhw4exadMmVFdX25cyhyFSJVnAhEZP7AFiYUUqimI8TMSiSJhDheIA/rwcwxwgJy1NAsItCy4NS3gMyh3LcmTklSPkAAEm5goWJSwIuJCsQC232zlAlknQF1xwAX71q1+htbUVlZWVuO6667BlyxbceeedGD16NHp7e6GqKr797W+zlDfnIFIl2UQZSFK3rSykNj1OoWE1a40jFsRGKx4glqRrb7435Xn6iUrvFTMDSxVgXVRvxKgnhUWRR5YQ0QPE7N01GnJj4QEyym8Sef4mkNuKZ1aEforAsgL0D//wD1iyZAlGjx4NAJg5cyYefvhhPP/88zh+/Dhqa2tx5ZVX4oILLmAmbC5CuBgydeq2UTc6Qy7J8EAW64iHckfdlwYULm++x3qNI8LFKPFair404ilkVQyUJcwWC3Sth9Oo0s07BCby/C2qZ1aAforAsgKUl5eH8vLyuGPz58/Hgw8+aFuokQThYsjkXovYAkwRQzaSKs6alAzQe4CMPB8rj4zhLBmCvmSlvHoMjBNWxUBZwgh3SVU1aKr7PZzpwHKXc4CGv8cKhr1yrDyzxIkerCGOJCMUQseQia063hwg/bWUpGTAgb406AGy3JYFS5OiLylLCohI7IzInbGKOytSMrVXjnB8K14FOKU7ZVSCBZu/FY8Slh2CzTmMxgBr2N4LrK2tDfv27UNPTw9UNXUHLFu2zG4zOQuhY8gCcYBYTdpGdp93lJRMaCFThD/iFVfrlZIp0+D111KME5bQy61pWsoQJ5fwB2UaPIwpwXZ+f0VR4I3wBQmejSW8eR4EQyFxy5gIsM5FYFkBCgQC+MUvfoF33303bcpt5AWUClB6iOYaFJUD5JQHiEIhcZIDZLktT3jrB03VjHtkqNNtGSy2mqpBVbWUoRTRjBcgQVEMafCm2FyYCwGWOA0+o7HEoIgpEO7LbAkTIhb48+Z7EAxk3hPQyTImIqxzEVhWgJ588km88847mDJlCi655BKMHz8eXm/qrBOJ9BBtK4xIEThNo0+jpFjYIpOUFgrzIFLt38TFOhKQdG03bBOZaI0sRonyWWkrAso0eCDcl57C5LlNxEk90aBI1QesieKAiZAyRRo8I2J61FvsstCOESJ8/PztHs8sa1hWgDZt2oSamho8/fTTKCgoYCnTiIJoW2EA4Rc5NJTF8iG2IiPf2SE2Aslu+7yCFAsbD+uIkLcC8PcAAadc7dksTVYcIIfS4CP3zEulAAlGgAVSLEijks/hpSSmg1NeQNvjO8KnclloxwgRnj4NXjxFEbBBgu7t7cV5550nlR+bENGKjPEIQmnPoU5vZlVvxYjCFRrisYhm6EsemVJDqZ9NU7XoNgK2LWSz4USSNPhwP9vZ5RxIHCepfzuROUBAerlHCgfItofTAA9M5PlbcoCyw7IHaOrUqejo6GApCwCgvr4ezz33HOrq6tDe3o6ioiJUV1fjW9/6FhYsWJD1+p6eHjzxxBPYsmULAoEA5s6di9tvvx21tbXMZWUBEV2DRjJJnIoh2+0jI14SLgoJhZfE5LPZ5kiYXSAoLE1G/A+zfSnauwvwl1tEDpCmaew8nIR8QZYwUgyTi2fWZYoiYMMDdO211+L9999P2v/LLpqamtDf349ly5bhrrvuwvXXXw8AWLNmDTZu3JjxWlVVsXr1avz5z3/GFVdcgVtvvRUdHR1YtWoVGhsbmcrJCiK6Bo28QE5thcFq0QbSexK4pAlT8KmMeLcYhlxNp1y7iP9hti9FeXeNLEi5zAHSQhrAYJdzwFjGqIhjQM8BSpegxMMza2T+tuuZZQ3DHqAdO3bE/T1+/Hicd955+P73v4+rr74as2fPRnFxccprzz77bMMCXXDBBUnVo6+44grccssteOmll7B8+fK017733nvYtWsX7r33XixevBgAsHTpUlx33XV47rnn8OMf/9iwHFQQ0TVo6MXnkSlFEdcvMLBAMJqwLWW4ce7LuLYK2ChAImWbMAuV5rAHiFmxSK8nmglolAOUx7nmDMu09Mj1mTIBhZy/I8+thRVCJVUmIHFmXjQsKYiSGIFhBWjVqlUpa0pomobnnnsuY0n99957z5JwEXi9XlRVVWHv3r0Zz9u8eTPKy8uxaNGi6LGysjIsWbIE77zzDoaGhoTjLInoGjRbBI6ivH10YWNk1QEZJlEHU7d59yVL0n2ipcmz5ozZDDeWXDFDfSnKu2tAbpZzTjTlmsADZIQDxLI4ZeKYc0smYOK8k6ofqD2zrOZv1jCsAN1www2W9w2ygoGBAQQCAfT19eGDDz7Axx9/jCVLlmS8Zt++fZg1axY8nvhOnjt3Lt544w00NjZixowZKa9tbW1FW1tb9O+Ghgb7D2EAQlqRERIdhWVP7QEysJCysiIVjwKPV4EaymIhE/YlywnbkKXJg09lxNJkRPDW3zOpLQHfXeoxYCQTkLLyNFMPUIIHN1smoChjIFEpyS9KPset8zdrGFaAbrrpJp5yJOHRRx+Ncn48Hg8WLVqEH/7whxmvaW9vx1lnnZV0vKKiAkC4anU6BWjjxo1Yv3590vH6+nqEQukzeBLR29sLv99v+Py2k+2xto7Uo2XQeQ9VYDgAIFwLaPeu3Slr5bS16JTFxsNoHbImd//Jodg9T7an7Dv9ppNDwUDcOWb7u7M7Rtw/sP8gWgaTZ4fmhp7Y55PNUPz9hu+fBC+AENDfN5hWzt7u3ujnuv17LRsarc190c/Hj54A/H1J5/S1xPq7u7fbVN8B8f09GBiIHt+9y58ypNbaHBvfRxqPoENrNtVeBIMdw9HPHa0daeUODoXf1WBo2PSz6dHRGRsnhw7Wo11tSjrn5OFY/55sa4HfP2i5vXQwO747Ojujn+sPHE7Z361xcp+E3x+wLJ+qhN/Lwf5AWjm7O2Pv0/6D+yyHXttPxN7DE8ebkJeiv/XjpLe/x9b47huM9dMe/14UlCYrQM0nYuOk8XgjegpbTbXHA30Dsflkr38vCkYnL/PNJzqjn48dP4q+UW1J5xjBcH9sbezq6Erb34HB8LwT0kK25m8z8Pl8Wc+xvRUGL1x99dVYvHgxWltbsWnTJoRCIQwPD2e8JhAIpAxxRY4FAulf9OXLl8dlmTU0NOC+++7DtGnTTGWQ+f1+Qx0fQct7n6MF4QE7u3YWxk4sMXwtL9SP6UEPwn01e2Yt8ouSh8nJLV+g+ZTcs2bPRNnppZba6m7uww6cAACMKR2Tsu/UoIq/4ggAoGR0Sdw5Zvu774s6nEB4Qp46uRqTfBXJJx1rwEGEF+7JU0/HbN9kw/dPxLaC4wgMDSPPk5dWzrr8DvRiCB6vgnnz5llu63BfE/YhPAGPrxgPny9Z2W8t6sLnp/q7Yny5qb4D4vu7sawfXQgvQrNmzEbR6OR3r/2vu6L9PWP2dFTWjDXVXgR9HYP4DMcBACUlo9PK/ddQ2HNbXDrK9LPpMbhnP46hGwAwZdIUTPFVJZ2zr+Uo9p/q70lTJmGub6rl9tLB7PgO1B3AUXQBAE6fNBnVvglJ5+xvPRYdJ5MmT4TPV21Zvi+KWjDcOwCv4k0r58HC7ug4mXeGz7LH4WioFXtxEgBQMa4SPt/spHM6j/VGx0l5xThb4/vEuAA6EFbyZ0ybidHjk4sq9WzfGx0n02dMw2lzyk21xwNN5UNo18tdlczN7dmxNzpOps2swcS5KeZBAxgeDGIrwolQxUUlaft7m3YcQAhFxYW25m/WsK0Atba24i9/+Qv279+P3t5elJaWYtasWVi6dCkqKyst37e6uhrV1eEXc9myZfinf/on3HPPPXjyySfTWsiFhYUYGhpKOh45VlhYmLa9yspKW/JahZAx5AS3Zn6Kc3jwVihCDZQcIMAcn4qkxhHLvjQbbuFcdE8NqYgkvbDYBiECV5GgDZBSWcptKmNUQXSjTkttmSRBM+UAEYQTWcEIL4dHaQIjyRCi9FEEthSg//qv/8Ljjz+O4eHhuHS7P/3pT3j66adx++234xvf+IZtIQFg8eLFeOihh9DY2IipU1NbWuXl5XE8nggixyKhMJEg2lYYgEEiJQ9iIwVnwQCPgNX2DYAxPlV07yIK3gpj/kcEvPvSyKTOUnE1m04uysRumihslwdmZLsIHQHWDo/UEAeIJcfNpaUQTCuKdniOXgVQAGTZOolVeQrWsKwAvfvuu1i3bh3Gjh2L73znOzjzzDNRXl6O9vZ2fP7553j55Zej3y9dutS2oJHwVW9vb9pzZs2ahS+++AKqqsYRoffs2YOioiJMmTLFthysIepWGBGkTaUltCB4FO9LvG9ceywXUqc8QMQWMm+lxKkUaKPtibgVBoXnysh2EZTjm6nxQlhSgCVMG0I25FYUBd68zJvGqmp438VE2USAZWleeOEFjB07Fs8++yyuv/56nH322Zg6dSrOPvts3HDDDfj1r3+N0aNH44UXXjB131TVpYPBIP74xz+isLAQNTU1AMKht4aGBgSDweh5F198Mdrb27Fly5bosc7OTmzatAkXXnihcCnwANtJmxVMF9Rjld7MWdlKbI/CqjNTK4fls1GkbjtiaYI2xd9wey56d3mMAU0LhyBTIeSQh5PVVhhG2xNxDKSdUzkoihTzN2tY9gA1NDTg8ssvT8ubqaqqwpIlS/DWW2+Zuu9DDz2Evr4+nHXWWRg/fjza2trwzjvv4MiRI7jjjjuixRafeuopvP3229iwYQMmTpwIIBwme/nll/HAAw/g8OHDGDt2LF577TWoqkqexWYULL0NrEBpRVKHGqi3OIjty6NlrZXjtu0bHLM0Cbb5yIWtMCg5QED4t05V5Vfl4AEy9Gw2djkPX0/bl6zgVLjYTUpiBJYVoNLSUhQVpSgwoMOoUaNQWmouO2jp0qX4wx/+gNdffx1dXV0oLi5GbW0tbr31Vlx00UUZr/V6vXjwwQfx2GOP4ZVXXkEgEMCcOXOwZs2atLwhpxEZHIpXSZlu7gRMWb82iY2KosCTp0ANaqQKCUDkJUmYRL35yam0pBu98uIAEVmamVztTMnrLrX+qXkriUkFKRMmOHg4ReSBiRLeofTMAtkTPURUEiOwrAAtWLAAH374IW655Rbk5SXfJhgM4oMPPsiqtCTikksuwSWXXJL1vLVr12Lt2rVJx0ePHo3Vq1dj9erVptp1CiJWyDRTBM4usREIv0BqMH0xNR4hqcT7xrXH0pOQMIkmKkD6GkfUG72S9CXDkEQ2wq3kANHzVswQk13NATJC8hdkDFB6ZvXXGyGmi6IkRmBZmttuuw2jRo3CP//zP2P37t1x3+3atQv//M//jOLiYnz/+9+3LWQuQ8QKmWaIwizkzvYCMZ2wHUqDT9eeGtJSnmupLYe2wgCyKwmePIWJogxIDlAmxHuu0myE6RAPzNUcIDelwTvEAXITUTwCyx6g7373uwgGg2hra8Mdd9wBr9eLsWPHoqurK1o5uaKiAt/97nfjrlMUBS+++KI9qXMIrNzDLGGm5DwLyzdbphQ3DpCRWjmclRKmHhLikgJmFiSWirKRZ5McIKM8Gb5eEk3Vwju0M26L+tmyzYMi7XLumGfWRaHiCCwrQJqmRTcp1SOx1o6+PlCqv0c6RNwl15AbncfCZkQhYWnZU2edpfIA8bLGBetLFgpCtow6Xs/mpondNG+FJU8mxRhgqZB4dFxDEg6QCYNCqPnbIc+spmpQVQ2eBC6riIZCBJYVoJdeeomlHCMWQnKATCykLBc2I9VW3c4BytQWCQfIob5ksUBk4wDxIq9TjBNWMF0FmLOXhKVCoihKjAhPMQaMlBQQcf6m9swmjAFPwqaxOckBkmADITlAJhZSCg9QLnOAmIakvB4o2WrlONSXLBVlLRQrrBbXFq/wh4vqmzi1FQaQXcFnqgQbUUoJDQpR5+9s/DUm72UWRVFkDpBY0owwaJrG1JPCCma2wmDJAVLTLWy5zAFinEkkGp+KVYp/4j2yKZNMQzsuCoGZThVnnAafCNZKYjYiPLcyD9k84YL8/oDJEBgLpZTQyGMNwyGw9evXW2pAURTccMMNlq7NdWghDWC0eSNLZBvQLImNQPILm1eQ4EJ1iLfCgtiYrS9ZZxJ58zwIDWWoleNUCjQHSzPjOCFOgxfFgDFL3rbvJYnxPbKGwCiI8Cw5Rya4kKKUQQBMhsAIPEA5oQA999xzlhqQClB6iDiBAgYGNMNJJvEealAFEhc2F/NWTPWl2/hUWSxNTdWiaf4Ulia3FP9sXBqbxUBZwvRWGJzDoKw9nNmI8NRjwK0eIF6e2VTzjoj1siIwrACtW7eOpxwjEqJqxqZ4KyzCNtliyLzCNoS8Ff19U7WVKJvd9ij4VNksTebKnZlwImHKNYtioKxgRm4Pg+rz2cY3aw9nZK4wwm8iGQMM5wpWoPbMUs7frGFYATr77LM5ijEyIWIWCUC70AAGFC5eITAK3kqWkBtrJYGyJkc2S5NlsbXEe2R1tRNygESa1M2k77NUSAD+7y6QXcGn3A5F1F3OqT2zlPM3a1hOg9cjFAqhq6sLw8PDKb+fMGECi2ZyDiJmkQC0oYbEe/D2klBndmTzkjDnAGUjQfOykLP9bqwtTc41ZygrHLOE4lUABYCWPfzBMiQF0HKAIgkTiR4slko39TzICk56Zim83CxhSwGqq6vDU089hc8//xzBYDDlOYqiYNOmTXaayVkIGwIjJrWZiSFTFrhjvUCQWMiRBUIw/gePeiOJYPlsikeBx6tADWnZU4kFencVRQkT4YezbxrLI4EhqS1OWY6ReycR4Qk9QG6Yv1PNpzw9sxRebpawrADt378fd955J7xeL84991x8+OGHmDlzJsrLy7Fv3z50dnbi7LPPxmmnncZS3pyCqAPDVG0Pl8WQFY8CxatAC2npFwhOITAK6yhyD00D1JCalMXGLUuGc0gq8R5ZF1tGE7saCmX1AIn07gKIFgs0wl1i0Vb0vhQezsTFPUMmIHcPp1vnb56e2VzlACXiN7/5DQDgiSeeQE1NDS6++GIsXLgQK1asQCAQwKOPPor33nsP99xzDzNhcw2iugazafS8wjYAncs2GAqRbt8AEPVlwmSUpABxspCpLU0KhSs8sYdcxQECjPPAWBYmBGg5QAABD8xM3SmBxoCTnlmK+ZslLEuzc+dOLFiwADU1NdFjkX2+CgsL8YMf/ACVlZV4+umnbQuZqxC1Qibl9g2Auawz3plSakiFxrA2k6h9qRBkAJFzgBziU4nEAQKyy80tBZqQAwTwJ967tcKxcJ5ZQRVFwIYC1NfXh0mTJkX/zsvLw8DAQOzGHg/OPvtsbNu2zZ6EOQxhY8hm0uBZu7UJJppMxdSYTw6C9iX1xEfCAWJt2WbgU7EuBsoSGeXWYqFfkvHNOCxpZnHnvRWGG+Zvcg6QixRFwIYCVFZWhp6enujf5eXlOHr0aNw5Q0NDGBwctC5djkNU16CZ4n08iI1J7bGuJZLBA8TcPRzXl5n3r6LsS4oMN659mc3SZNiXFGEElsjkAYqkP+vPs9WWGf4HQUg55pVjsMu5iXIgIs3fHl1RThLPrEsVRcCGAlRTU4MjR45E/54/fz62bt2KXbt2AQAOHz6MTZs2obq62r6UOQpRXYNO81YSwS1TiiLFX9C+JH82Cv4HJ8uWIozAEpk4QFwXP+oQWIb2WLQVSZgA3BXaURQloxJM/psIbCxYJkFfcMEF+NWvfoXW1lZUVlbiuuuuw5YtW3DnnXdi9OjR6O3thaqq+Pa3v81S3pyCqK5BUXkrAH8OEHOXvaB9yeTZslmaPMMfFOHLqKKsQdO0OI+CqEVMgdgY0FQNqqrB40m9X5cbC30azTpjNZ9GEibcxAECwvNOulIIXEnQBJ5ZlrCsAP3DP/wDlixZgtGjRwMAZs6ciYcffhjPP/88jh8/jtraWlx55ZW44IILmAmbaxDVNUjO7TDDAWLYXiioJi9s1F4LF3OAIpZmaFglVUgAonGS4OHy5sdSrkUtggckczI8hTG5nczKosw6Y6WUevM9CAZSZ4yKOn8DYXmGB/jXy0q8R9b2BOsnywpQXl4eysvL447Nnz8fDz74oG2hRgpEdQ1mKwLnpGXvYbDpZLQ9DdBCGpS81JY9tYVMGZJgNd4cszQdqG+iV4CEXvwS5M4r5Ce3qaws1mHXTOOboQdIf99UbSXKJQIyJnpQz98ie8qcFmAkQ+gXKBORkmcaZSbeSj6bTSczTdrUvBWuHKCEZ9M0jXnxvojM1JYmec2ZhPZYK64skWlBckrhBmgVLmYKvkEivGhjgJK/5taK2YBUgByFythiZQmjREqSUuoR3grjRVt/71R/u9E6ymQhayENYFjjCHDQ0sygcLHY5RzI7NoX2a2faUFyOwfIsIeTwAMk8hiIzJVZfxOK+VtgRVEsaUYYRA2BAZk9QNSb6bHec8mohexG68io14K1B4ja0sw00bIaJ9R9yQqZFiS3c4AyejgZ73IO6DycLgvtZCz2SuwBEpkvJ5Y0Iwwip9JmKqbG1UvCOXU78T68LXtT1hHnrDMeruhMlqZTW2GwsjKp+5IVjMpNQUqm5ABxUfB1HqDITgfR9gRNgwd083dIg6YmyO0QB4iVZ5YlxPrVRhhE9gBlin3zqsycrj3WxN2MITCuhRAJrDGj/A/GfSlEyX2HPECiufUpPVeKosBzKonA6a0wWCvcQPx7oi8imdi+aAZsRi+3Qxwg0dY4QCpAjkJkDpDhhY21lyRDejMzDlCGSZR1JpHiVQAldVuJ7fFOg+fhis5oaRJ7CnnUgEm8d6q/RZvYKTlA+vs4zQPjUW+Gui9ZIVO42KmtMERb4wCpADkKkT1AiUXg9OBKbCTwAGWcRBn/JoqiZE6lJexLLiEwh/hUGbdBcOGzsQQlB0h/H2q+ScZn4+AFpAi5sYLRRA83zt8sYbkOEC/s2bMHb7/9NrZv346mpiaMGTMG8+bNw80334wpU6ZkvPatt97CAw88kPK7V199FRUVFTxEtgyhOUAZisBxJTYmZi7piI1cLHvOafAAosUCM24XoSBadt9WW5n4HxwXP+BUXxakKRZIyAFitvhJDpCx9owmTHAeAzzmU6MGhagcIIC/3JTb77CGcArQCy+8gJ07d2LJkiWYMWMG2tra8Oqrr+Lmm2/G448/junTp2e9x3e/+11MnDgx7lhpaSkvkS2DR8yaFTIVgeNJbKTkrQCZlQRmC4QBD5A3j1GNI+IJm7IvMy1GmqZBDTJWlInHCStkkptLCMxgwgTvrDMe82nGEJjAHiDDXm7O87e+fdHeE0BABeib3/wmfvzjHyM/Pz96bOnSpbjxxhvxH//xH/jXf/3XrPc4//zzMWfOHJ5iMoHQFgRhKCUj14Kz14I3QRDIwpHg6LXItb40/Gw8+pLAU8gKGX8TnqUQMoxvhVEGUKasMy4cIOKQMitkCoNyrQWVgQMkWh8BAnKA5s+fH6f8AMCUKVNQU1ODhoYGw/fp7+9HKBRiLR5TCB1DzjCoKS177rwVzhwgIIuFzJggmMt9adi7xaMvXRQCy8hb4egBSskBYl3CwqFnS9mewB58o6FwFvO34lGi4fuU1ecZJyewhHAeoFTQNA0dHR2oqakxdP6qVaswMDCA/Px8nHvuubjjjjuy8odaW1vR1tYW/duMsmUVbplEuW8X4TRvRQdeHCAgtYXMusgjeV8atTQpxwlxGrxoEzvlVhj69iIJE6k2F+YyvglI0IY5QIKNAWqulDfPg2AolBwm1JUOEG2NA1yiAL3zzjs4efIkbrrppoznFRYW4rLLLsM555yDkpIS1NXV4aWXXsLtt9+OZ555BhMmTEh77caNG7F+/fqk4/X19aY8Sb29vfD7/cbO7eqNfq7bX8dko09W6O7tjn7et3c/itsKYt919cS+O1Bne2Dr06d7u/vi+m+gfTj6uae/J6lvzfR3BC2tMfkbG44iUNYZ/bu5qSP23bFGdOefNHXvVBgKDgEAgkOhJFmHAuHnC6lB08+RCr0nAtHPrS1tcfdsq++Pfdd+En7/kPn7J/R3V09n9PP+ugMo7S6MfdcZG0P7D+1H/qgYj8wqFA+gqUBfT3+cHIHuYPRz30Afk75saYm9n8cajyPkj42bpuOd0c9HTxxFn78NPGBpfDfr5T4GNY3cx04cxYC/3baMgaHB6OfdO/3RukAAMDgQHo8qVCa/yUBbbD5ob+2Iu2fHwYHYdx3tltpL7O/Orth8cHD/IbQOFcW+a++Mfj5UfxCF7eIspx06uQ8dqEdb8ETsO73chw+hqJOB3J7wHD7YPxjXf6FATCEaCAwwmb+NwufzZT1HnF8sDRoaGvDwww9j3rx5WLZsWcZzly5diqVLl0b/XrhwIc477zysXLkSzz//PO6+++601y5fvhwLFiyIa/e+++7DtGnTUFtba1hev99vqOMBYH9BJ4AAoADzzvAxIcGyQvtfd+Ek+gAANdXTUFkzNvrdgYIudCM8sZ0xfx6T2P5HyhFoGlCYXxjXfx1He7AdxwEA5ZXjkvrWTH9HkNdyFIcQnvgnVJ2Gub6p0e+6PvXjOMIL9/SZ0zBh9jhLz6PHgdFd6GsaAjRgzpy58Oj66xP1KABgVEmR6edIhY4xPfgCTQCAsaPHxt3zYOdx1CGs0E08fSJ8vhrT90/s7+5te9CM8IJbPaUmrr/qC3vQifDi6Js3F/lF9qebT/KPIhgIoSCvIF6O5j5swzEAwLjysUz6srDzOA4grNhUVVbB55sW/a7vizocRRcAYNr0Gkzy8ckwtTK+i7pPROUeXzkhTu7+XfvQqJP7dF+lbRkbxvZG54PZM2ejoDhGYfgMJwCEUDiqgMlv0nNyIDoflJaMjrtnw0Az9qAFADBhUhV8vpmm75/Y3/279kXngymTp2Kyrr+OvrkNbQgbFXN8tRg1thCiYMC/H8cicp8+BZN946PfHXtLJ/fc2SgeV5TyHmawo7AJwYEAvEpeXP8Ndg/hYzQCAMaUjWYyf7OE0ApQW1sbVq9ejZKSEvz85z+H12vegjzzzDPh8/mwbdu2jOdVVlaistL+ZGAGrDOAWMJIrJ1laXNvgRfBQIiElGyY21HAh7fgKdSVFOBZvZiAI5GRlMopLBUMJLvaufA/JAfIEDKNAeYcoAKjz2bf2xi+D21fsoLh8C3jfnJTqBgQkAQdQW9vL370ox+ht7cXDz30kC3lpKqqCt3d3dlPJIbIBaIycoA4sPrTESl5L2wkmVJpFlJN1cI7tIP97uwAbQYQkL5asuJR4PHy5VPx4LZQ801YgVpuI0oCOQdIjoHoZxJDKJ9u/mYJIT1AgUAA99xzDxobG/F//+//NUx+Tofjx4+jrKyMiWwsEZksRCPQAcZeIJZyx4iUDi9snDNJ9O3xmLANbxVAuCBRKMo86tvE92X6bT5Em9gzjQGVcAxomsZ+I2PiGkeG+1KwOdyp2moU8zdLCCdRKBTCT3/6U+zevRs/+9nPcMYZZ6Q8r7W1FQ0NDQgGY+THzs7OpPP++te/oq6uDueddx4vkS2DxwLBCkbSm3NjYeNvRaZrj3vaLuf6H4AxhYul69uIokzSlwJP7Ia3i+Dt4QxpwCm9MRc9nLESFopwFAZPBrnjPLOsKAy6+Vu/dZLI+6UBAnqAHn30UXzwwQe48MIL0dPTgz/96U9x31966aUAgKeeegpvv/02NmzYEK36fNttt2H27Nmora1FSUkJ9u3bhzfffBNVVVX4zne+Q/4s2SByfYSMkygHudNtvkru1uZsIaucPUBGqxdT9GV0E0SWirIRVztFXwo8sYvCA+Mx3iI1Z7SQlpGTQ6JwiUxhoPbM6hWukAZvXnJdIBHXOeEUoAMHDgAAPvzwQ3z44YdJ30cUoFRYunQpPvroI2zduhWDg4OoqKjA17/+daxYsQLl5eXcZLYKkStkGik5z3Jhi24XQbx9g5McIB7hCMOVcin5HywVZd040dec4bnHVeL9I+0nyiQKqOsXpRsDvJTEaM2ZDF45kpAb4/AeSxhRgpl6ZhO3Tkrh0RdttwNAQAXokUceMXTe2rVrsXbt2rhjt9xyC2655RYeYnEBDy4NK1BbPtEY8nDCwubk9g28OUAcvBaKosCTp0ANprCQHepLLpamFg6xKKcsTd7bfFCEE1kh02aoXDhAaRQuXvulUWYCGjEoRFzYjYRveXhmgVNjbFT4s8iGAiAgB2ikIG6XcwFfoHTWL6/S5pF7aacWtlRtU3OAeG+pwM1CTpcpxbsvh9IsEJwszSBvPlWGcaJvWzQDxnDqNg8lWDcG9J+5eAEdzhgNDYfi5BEJ+vcymOa95PGbAPHzjsiGAiAVIMcgcgolkN6C4FXaPJ0VyWVrCgMWMktiIyUHSH+vjIRyzh6guAwgnpZmirZJ+E0c+pIVqD2c6baL4DXHpU25dqgUgpvmb4CzZxbxv4v0AEmkBA+XPUukHdCcLN90bnvevBVqgiDvZ9PfizL9FUifAURhaTrFAWJZDJQVjBDhFQXsajOleXd5KYnRzYUJwpLUXBpWMDIGuM3fnN9LlhBPohEC0QcGtUvTCI+AC7eDgribjgTN2QNEEv7Qe2QIrH/KvqS2olmBmrfiBAcIoCGmp+tLTdOgBtkWMWUJI95LCs+sDIFJpITwrsG4hUbHyeG8aAP8M0kMWfYcMtz0909sm4QDxEEpMeS5I7Y0Kax/lYMVzQqZFHwemUuG3l2OmYAp2+PMARLdg59ujlNDKjRKz6zo/eS0ACMVItcRATLwVig8QOkmGoIQmMrZA0SVJpx4/8S2uaQJE3uAeHOAPF4PIjQwN9WACW89kpxFCfCR2ykOEBITJgg5QHL+jgd1ogcriCfRCIHIlWQBY6Q28hgys4UtxtlIlyrOQyHR3z/xM59tRbS0FjKXQnGE/A8gcZzEnpMLnyrdOBHw3QWyh4m4jW8HxwAlB0j0LR6o5U7/Xoa4tMcK4kk0QhCXIiqiZpzOI0PsAeJhRSqKkjVVnMf2Dfr7Axz70kjWGY8QgYOWJnc+lYtqwACxxSYdUZjp4meAB8aNc8TbC2gkO1XAMUAttyHPrIj95LQAIxWix0bJU7eNLKQcPE6JNY54EBup4+OGKk972WQupeUAkVuanPlU6bg0Ak7qgBgeIG7vbrqQGw8PUDp+k5vmbwK5jXhmRewn8SQaIRA9Nkqeup3Ojc6ZSxJnHVEod9R9mULh8uZ72NU4IlyMEu9F0ZepxgmvYqAsoScK65FzHs50SjfvEJib5m9RPLMC9pN4Eo0QCB9DJvdaxBZk3hwgQBfaICQlA/QeoFTPx8sjkzZLhqAveSmvnhTjhFcxUJZIxV1SVQ2amvseTh67nAM0/D1WSOuV4+WZNWKYCNhP4kk0QuCqGDKxVcebA6S/FyUpGXCgL9N4gJi1ZcDSpOhLypICok/qQEzuuCruvEjJ1F45wvGteBXglC7lpvo2ikcJyw6H5xzB+0k8iUYIXBVDdpADxGvSTsUBcpSUTGghU4Q/4hVXdpWSKdPg9feiGCcsoZc7kglIEv6gTINHaiWY5e+vKErKcKLo5F4gNYHf0TImAq5z4kk0QiC6ZiwKB8gpDxCFQuIkB4hZW57YVhAUBFjKrTD099JUDeqp8JHoxguQoCiG+MrtZBp8nLHEoYgpkJpQzmt8s0RKuR0sYyLiOieeRCMEvFJEWSFdETjyrTA4u9G1UIwXQWIdCUC6Zh22SRluISiESJkGD8T6UvRJHUhtUPAmigMZQsoUafCciOmeVB4gTn3JEqk8V/HzN61nVsR+Ek+iEQKRd5OOIBWRktqKjHxmSWwEUrvtSawjQt4KwN8DBKQOE+XCVhiJ94oqEoITYIHUCxKlkgg45wVkPr4jCr6LQjuAg/M3QRkTVhBPohECN1iRTsWQU000vBZtIPZMuVIkLNWzaaoW3TaAuYWcLZxI2JcsdzkHUk/sbuIAAToFP9c5QJEQGGsPZxYPkOhjQBgOkID9JJ5EIwRu4hGIEENm3UepvCQkColDmVI8XdHZPECUlibrZ8vWl6K/uwB/uUXgAGmaxmWXc/39KDwpLCHS/K2XRySIJ9EIgStiyNEXKLafi1NbYfBatAEdt2OI04Qd92wEfZmF/8FLmUybvUfC/wj3K/Nny0v+7dzw7noI5RaBA6SFNC67nAOpM0bdMAb0nivemYBxv8lQ8hhg7ZllBfEkGiFwRQw51YtPkSlF4AGi9JIYynDj3Jc803azjRMKS5NbqDRbXwr67qaSm1uxSF3ChFMcIJ7jO3I/fSagK+bvSD9oiIa/KX6TVCE3UZVEMaUaARDdNQjoPEAUMeQsFYVJFjYHU7d59yVP0r1+nFBamqkWW55csZR9Keq7S5y9RskDS2m8cAonA6nHnCvmb0L+WjYOkLBKotMCjFS4woqMkOgoLPtsHiCOCpCawgPEtJqsR4luPupUX8ZN2AWc+lJvaTrEp2K9+LmVA5R1DDB+n/LyvUltUCYVcPUApQopu2AMUGYwUs/frCCmVCMAboghR4vAaYAa4mxBpMpc0rRY6jZPbkcq64ijlyQCCpIoReo2ZV9m44pxXfxSKBKivrvUYyDSDyQZR8TvbmplUkv5vUigVIKzbWUkFSCJOLghhkxp+aTaCkMLacCpeYZXdVeAJlMqE0/G441VU2aBVH3JM2xD2ZfpLE0e23wAqb0NrgiBpfhNuI4BQr5gthAYSckMl83fvD1lqeYcfbui1ssSU6oRAFfEkB22IHi6mVORaSkypUjCe9R96RCfKqqQhNRoBhBXRdlNJOgUpFSecqdKuY4qXAqiG3MyaSsLCZorB4ggnMgKWZVgikK20gMkkQqilwgHslsQvC17rlZdKsuegEeQiuBNwlshspB592VKbxPP8Ee2kgKCvrtZicK8PJwpSNDePA8Uhe+2C1wJ3lnGgBvm75SKIkueo1cBUmydxCuLlxXElGoEwE1bYQAE3I5snAVibgdJtWQKDxCxhcxbKXEqBTpde6K69qk9V6m2i6Ac31yNF8KSAiyR1RBiKLeiKElhUFWN7bMoqpIoplQjADwnbVbIWlCPcwyZgpQM0Fh1maqyup234pSlSZLinwNp8JQcIH3CBK+tKcjT4F3qBUwVBqVQFCnmb1bIc1qAROzZswdvv/02tm/fjqamJowZMwbz5s3DzTffjClTpmS9vqenB0888QS2bNmCQCCAuXPn4vbbb0dtbS2B9MYh+iZxAK0VSR1qyLYZKq+FVA1q0DQNiqLQbN9A8GxOWJqhYZW7spV4P1dxgFLxVgg8QED4t/d4Pfy2psjGb2K4y3n4frR9yQpOhYvdpCQKJ9ULL7yAzZs348tf/jLuuusufP3rX8fnn3+Om2++GYcOHcp4raqqWL16Nf785z/jiiuuwK233oqOjg6sWrUKjY2NRE9gDJHBoTDOAGKJjNYvY2Kjoijw5IXvR6mQAEReklQeLorUbWoOEKGlSbLNh0utf2reSsqkAgIPpwg8MFHDO5SeWSA50cMNSqJwUn3zm9/E73//e6xatQp///d/jxtuuAH//u//jlAohP/4j//IeO17772HXbt2Yc2aNbjxxhtxxRVX4JFHHoHH48Fzzz1H9ATGIHqFTCBzETjWxEYg88KWK2nwkfY0TeNGEMzKW6HoS44hiUTCreQAJYOat5KJmJxTHCAXpcFTemb190tFTBdVSRROqvnz5yM/Pz/u2JQpU1BTU4OGhoaM127evBnl5eVYtGhR9FhZWRmWLFmC999/H0NDQ1xktgLRK2QCmYnCPOROfIG4TtgOpcFH2lNDWsrvmLSVzbtF0ZdR/ofCTVGWHKD0iPdc8d2eJKm9pDGQQxwgN6XBO+WZdRNR3GkBjEDTNHR0dGDs2LEZz9u3bx9mzZoFjyf+sebOnYvBwcGMYbDW1lbU1dVF/2VTtuyCl3uYJTKVnOdh+SZmSpFxgDgXCQOSF1KuHhLikgKZFiSeijJFZeac5QBx9pJoqhbdFoUinEz1bInzoKi7nAMOemZdFCoWjgSdCu+88w5OnjyJm266KeN57e3tOOuss5KOV1RUAADa2towY8aMlNdu3LgR69evTzpeX1+PUChkWNbe3l74/f6s5w0Nhr1RIS1o6Hwn0NreFf18uP4IegpbERgIy60ixFzukBru56HBYfj9frQf6o9+19bRCr8/mHSN0f5ORNexwejnlqYW+P3D6NI978FDB1Bwkt3r0dvfE/1ct2cfvEWxCWFgsJ9pX4aGYhNPd2cP/H4/ThyPPdvxE8cw6O+wdO9U/X2yrTv6+cjhRgyUtmOwPwAA0BSN+TgZVofD/wfC705n/UD0u47Odqbt9RwNRD+fbG6F3+9HR2us7w4dPoiirvxUlzKB1fHdcyxZ7vY4uQ9hVDc7ubt7Y+Nrf90BFOnencGhAaa/SWTDXQDo7e4Lj+/G2Bhsaj6BkL8n1aVZkaq/m0/G7nX0yFEM+7vQ3xuemxSvIuz83dzSG/189MgxBP3d6IvKHU44Yomh4Kl3XtWwe9du9DXFIi5dPV0p+8nq+DYCn8+X9RzhFaCGhgY8/PDDmDdvHpYtW5bx3EAggIKCgqTjkWOBQCDpuwiWL1+OBQsWxLV73333Ydq0aaYyyPx+v6GO/1Q7BkBFUXGRofOdQOhwPY6gEwAw6bRJmOGbhG04DiCEolGFzOX2l7Qi0BmEoinw+Xyo723CXpwEAJw26TT4fNOTrzHY34lozuvAbjQDAMaNLYfPNxdHRvWhHeHFdM68OSgqTR5LVnFyyxdoRXjymVYzHQXF+diKowCAsePGMO1LNaTiY4S9nUWFo+Dz+TDg3x/9LaunV2OKb7yle6fqb+X4ERxGeHGdOGEiZvsmY4fSBCCIgqJ85uOkrqQDAyeHoanhSa4x0AI/WgAAEyZWweebxayt1lFd2IkmAMDY0WXw+Xw49sfPor9lra8WJeOKmLWXCKvju62kO0nuE3/ajlb0AQBq585GacUoZnJ2fuJHM8ILbs3UGow5rSQ6BseMHc18DHySfxShYRUF+eF5KHjwEOpPjcGpNVMwzTfR0n1T9Xd+2zEcRDsAoGr8afD5qrHb2wpgGHkFXmHn74KO4ziINgBA1fgJ8PlquMpdP6YHPQivsbWz5qA1vxtfnBqDlVUV8PnmJl1jdXyzgtAKUFtbG1avXo2SkhL8/Oc/h9frzXh+YWFhSp5P5FhhYWHaaysrK1FZWWlPYBNwBQcoQyiFa2hjBHCAuIakvB4oyqmaLA73JY8QUaS/tFC40BpZ+MNF9U2c2goDQFyJAoAPAdYTKYWQKoGBIqnAZfN3In+Ny3uZkOghOUA20Nvbix/96Efo7e3FQw89ZEg5KS8vR1tbW9LxyLFIKMxp8NzlnCUybYXBkwOkRha2XOYAcc4kcppPxSvFP/GeicokL14D4C5uQ9ZUcc5p8LyVxEQiPPVWL6LvcQVkIabzUEoJjTxWEFKqQCCAe+65B42Njfi3f/s31NTUGLpu1qxZ2L9/P1RVjTu+Z88eFBUVGSqkSAGeu5yzROKA5klsBJJfWLI6QAmWPQ9iY2Jf8s4kSvSmUVn/SSnQBJamk2nwohow2cjb7L0ksUy/RJI/CRGe4xjItCWQqGUQgCzJCRTvpVSAzCMUCuGnP/0pdu/ejZ/97Gc444wzUp7X2tqKhoYGBIMxYuzFF1+M9vZ2bNmyJXqss7MTmzZtwoUXXpiSH+QE3DCBArQLTeI91UTLnrAOEA+lNGNf8rSQCTKlEhVXTdWiaf4UliZZij/nYqAskXUrDM5hUN4ezsSaYdRjwK0eICrPrEowBlhAOA7Qo48+ig8++AAXXnghenp68Kc//Snu+0svvRQA8NRTT+Htt9/Ghg0bMHFimPC2ePFivPzyy3jggQdw+PBhjB07Fq+99hpUVc2aQUYJN2jGQBbeCo+wTWIMmSpsQ8hbibTDu0hY0gJBuBUGd+UuUziRMOWaRzFQVsgkt4dD9fnE8c3bwxmZK1Lxm0jGAMe5ghWoPbOU8zcrCKcAHThwAADw4Ycf4sMPP0z6PqIApYLX68WDDz6Ixx57DK+88goCgQDmzJmDNWvWYOrUqdxkNgveBEFWoFxogBQKF/VWGDyto4SQG28lgbImR6KlybPYWuI9k1zthBwgUSd1II3XgqPciRwgKg+nE9uhuGGXc4DeM0s5f7OCcArQI488Yui8tWvXYu3atUnHR48ejdWrV2P16tWsRWMGN2SRALShhsR78vaSUGd2JHpJvLw5EokkaCoLmXORx8R7Jk20Lq5wzBKKVwEUAFpy+INnSAqg5QBFEiZ4Kt3U8yArOOmZpfBys4CYUuU4XBMCIya1ZYohU25yyXuBILGQE7cVcYj/wX2cJLraGT+b4lHgOcXzSUolFvjdVRQlmQhPUMICoOEAZcw44jxXuHH+Vok9sxRebhYQU6ochxsGBpAi1MB7UiOMISseJUpgpSA2UltHkXtqWrgwIlmWDOeQVOI9kxZbQm+ayO8ukIIIz1Fuag5QppAydw+nW+dvSs+sSzhAYkqV43CDaxBI1ui5T2oOuWwT0+B5LxAkfZnJauVcUiCXOEBAej6VqJN6BOnk5lWYMAJKDhBAwAPLVHdK4DHgpGeWYv5mATGlynG4oUImkKzRk05qBBONnkiphlRoHGszidKXCkEGEDkHyCE+lcgcICBZbrIUaEIOEMCfeO/GCseAAJ5ZFyiKYkqV43BNDDlTnJ23W5tgotEXU+M+OQjSl9QTHwkHiLdlq+NT8S4GyhJxcmuxyuok45tzWDLT4s57Kww3zt/kHCCXKIpiSpXjcINrEEgRRnGS2MhxEiUp8hjXl5pjfUmR4Ubal4mWJse+pAgjsITeAxRJf9YfZ9pWJv4HQUg55pVTmNdmylQOROT526Mr0knimXWhoiimVDkON7gGAQF4K4QcIOoJ26m+JH82Cv4HkWVLEUZgCT0HiHTxow6BDfNV8OMSJlwS2gFOZQLqlXcn529B+0lMqXIcbnANAuLwVgD+HCDuLntB+pLLsyVampThD4rwZVRR1lyz+AGxMaCpGoJDoaTjTNsiLvSZLuuM13yqLynglvkbSFCCKUnQBJ5ZFhBTqhyHG1yDgAPcjkwcII7tkXOAiC1k3hygjJYmZ84RyTjR3XN4MLb3oOiLX5zcA3zlpt7qJV3WGS+lVF9SwC3zN6CTmyIsmfheuqCfxJQqx+GWGHJiETgnLXsPh00no+1pQDDgnIVMGZLgNRE5ZmkSZ53FKRKCTuoReAnlzpiVxTvsqh/fBB4gVylAeiOPev52wTonplQ5Dje60R3ZCkOXtstj00l9e0PEFjIpB0g3GXFbIByyNKlrzujHiahu/Qg8hHI7ygHSKVzcFPw0RHjRxwAlf82NFbPFlCrH4QbXYATpiJQkpdQjvBXOizYQbyHngnWkf7ZgIARwrHEEOGhp6hQuHrucA7SeFJZwygNEstlvOg8nBQfIhfN30m9CMX+7QFEUU6ochxtcgxF401g+FBYE7z2X0lnIuWAdpfNa8PYAUVua+omW1zih7ktWoJSbmgOUNFdw3OUcSOAAuXH+pvbMErTHAmJKleNwVQhMV0yNav8qgH/qduJ9uVvImawjziRRCq+F3tJ0aisMXlamWzlA6eSmICVTcoAoiOnpOECumb9D/DMY03m5eXlmWUDsXy9H4SYLQh/7pqrMHGmPN3E3bZZMjhWK47346dtzpOQ+oQdo2EUcIMosMEVR4MnTJUwQcoBIFPy4kLJ7vIAeQkWRsjYTK4grWQ7DTTHktAsbby+JLr2ZGwdIT4Lu57uwKV4FOGUEUZcU0D8bbwuZ3NIkrAEDJPSl6O8usdzpwuW8xwDvdxeQY8BQW8TzNwuIK1kOw00eoHRF4LgTGwk8QB5CD5CiKPFudEKSKLWFzL3mTBoOEC/vFuWzsQSlB0h/X2q+CcX4pu5LVqCUm3r+ZgFxJcthuCqGnMaFSklsJLHsCYnCcdtFKIiW2WfaFvWzpWuPkAPEbfEjfDaW8KSRm7eiSLFnGjUxPW1JAcHHQLqxSzF/8+ZwsoC4kuUw3FhKHaCtJkvJW6FqL1WxQG8epxpHOdyXSSGwIGdFmbgvWYGS4wakT5ignCsolGA3eYBIPbNpPEAivyfiSpbDcEOBqAjSWlq8eStOei14p4pTELxzuC/jFqNB2sXPVWnwAoxvhVMGUFrvFoES7CYvoFPzd9z2OwL3kbiS5TDcyAECaC17R3krFBYyZ4JgLvcldVYWdV+yglNeEv2GodReOXIPkOhjgHD+VjxKNJwfZ+QJvMaJK1kOw60cIErLPte8FkC8hcy7yKNTz0bRHjUnx62FECm3wtC3p0+YyBVeFnVfsgJ5QdRT96XwzLKAuJLlMHgXimMJyiJwucxbAdJzgHiAvC8dsjQps5sS2xPeeKHOlEoRmiT3AOVA0VSWoC7iGbmvW+pliStZDoP3LucsQWlBeLweRPjAJJa9Q14STdWiu8/nitfCKUtTeoDSQ4QxwNuY0LfFsz05Bgy2R/hesoC4kuUweO9yzhJxqY1DfImNgC6Vdog/Tyoum2iIv1cuMX0boNm+geLZqNvzphgnudKXrJDq3QVoxwCFskUxV1D3JSukk5t7KQSC34QFxJUsh+GGAlERpHpReA7oVPemUEhI2hPh2QgWpAgUJezV49JeDvclK6Rb5CgypTIdY9JWmmeg4ADFHXfpGKBQFKPHBF7nxJUsh6Fytv5ZgnpAp7o3RXl7ivZSKpPECwQFB4h3W+nuTTmpp5NBJFArCSnnCkJli2t76fpS8DmcfAwQzt8sIK5kOQzemzeyREqrjqcHiFBJSGsd5fICQdiX1J5CCv5HNhlEggheQIrtSSjaS/lsAu9yHkEue2ZZIM9pARLR39+PF198EX6/H3v27EFPTw/WrFmDyy67LOu1b731Fh544IGU37366quoqKhgLa4luKE+QgTklj2lkkBs1ZEuENTPJoCnkBtXjNiKZgXyMBHhu+vxhJUPTdVI2nPbwh5BLntmWUA4Bairqwvr16/HhAkTMHPmTGzfvt30Pb773e9i4sSJccdKS0tZiWgbbqiQGQG5ZU+oJJB7SQRQ7ij7kqsCJAAHSPQQmAheEt5KcCSbknd7qfpM5NBOBLnsmWUB4RSgioqKqLdm7969+N73vmf6Hueffz7mzJnDQTo24J0BxBJCLGw5wgGi7EvFo8DjVaIbykbbI+xLnuNbBA6QyJYtkNseTiD8HEkKUA68uyyRy55ZFhBOsoKCAiahqv7+foRCoewnEkNTtdgu5259gagXNmoOUI4oCU7zqagV5VzxFLKCEFmOxHMFJclf5IU9AmrFjXoesAvhPEAssGrVKgwMDCA/Px/nnnsu7rjjDkyZMiXjNa2trWhra4v+3dDQwEW2kIuqQAPOWHVGjvFqiyexkXwyyvMAILKQiRcIp5U7QPwFkFpuEZRgymcTObQTAXVWltsUxZxSgAoLC3HZZZfhnHPOQUlJCerq6vDSSy/h9ttvxzPPPIMJEyakvXbjxo1Yv3590vH6+npTnqTe3l74/f603wcHYwrQwGB/xnNFQFtTf9KxwcAAN7kHAsntnWg+jmF/V8rzs/V3JgS6g8kHveD2bG0dnUnHOrs7uLWnKWrSsfoj9Wjuz7d8z3T93XFiIOlYYDjA7dn6BnqTjjW3NEHzJx+3i+H+5Pdf8QB79u5h3lYi7Ixv/Vyjx566PVwKsLa2Jb+j3T1d3MZAUB1OOtZwtAHtapPle6br766jg0nHhkNDws/f3SnkDoaGucnd09eddOxkWwv8/mQ5AHvjOxt8Pl/Wc3JKAVq6dCmWLl0a/XvhwoU477zzsHLlSjz//PO4++670167fPlyLFiwIPp3Q0MD7rvvPkybNg21tbWGZfD7/Rk7fqArgE/QCAAYM26MoR/JSRwJtKAOJ+OOjSkbzU3uY2UD6ET8yzK1ZipqfKmV12z9nQmD3UPYhmNxx/IL8rg929D+gziK+EWiasJ4+HzGx5cZ7CxqwVBPvGIyu3YWxkwotnzPdP19XGvDHrTEHSsdU8KtL5vKh9CO+GebUj0ZM3yTmLc1PBjEVhyNO+bN95K8u3bGd3AoFJ1rIvDmezBv3jwWoiVBazyMBnTGHauoquDWT3tK2jHY3hN3bObsGaiYOsbyPdP1d0tBJ3ajOe5YSWmx8PP3yaIu7EqQu7h0FDe52z/chZPoizs2acokzPVNTXm+nfHNAjmlAKXCmWeeCZ/Ph23btmU8r7KyEpWVldzliQuBCewajECINMpc5q3kCp9KALIlZcFMV4SvqX8TEcKgcgzEQYj5W+B1TlzJGKKqqgrd3cmuOSeg3wjVFS+QAGmUlOnNucJbSdseZZZMjowTxasACREjkSf1CBSPEpZdh1xRuAHaMeDWNPhcfi9ZQFzJGOL48eMoKytzWgwAsRpAgDteoFy27D3eZB5ELllHpJlSOWxpKoqSdG83EGCB5D6RHiCLbblsYY8gl+dvFhBXsixobW1FQ0MDgsEYkbWzszPpvL/+9a+oq6vDeeedRyhdekgPUJb2KC17RUm6d65YrOnunTPeNIf70g0eIIBWbuqM0VQLK2mRRxeMgVx/L+1CSA7QK6+8gt7e3mha+gcffICWljDB8sorr0RpaSmeeuopvP3229iwYUO06vNtt92G2bNno7a2FiUlJdi3bx/efPNNVFVV4Tvf+Y5jz6NHnALkhhcohy17IDyJUv0mQiwQKbxevNrKJUsz8d4iT+p6SA8Qo7ZctrBHkOvzt10IqQBt2LABTU2xVMYtW7Zgy5YtAIBLL7007bYWS5cuxUcffYStW7dicHAQFRUV+PrXv44VK1agvLycRPZsyIU6QLlkQXjzPRgeiP+bW1sOLxDefA+X9OdUbQG5N06ytS8iEhckyQGyBskBMtieyxRFIRWgl156Kes5a9euxdq1a+OO3XLLLbjlllt4icUE6rDLOEACEHcpC3fl8gJBXQAtlyxNyQEy31a6Y8zaS3gWrrucu6zCcQS5Pn/bhbiS5Shc5wESwa1Nadnn8AKRKxln6e4tPUDJcHoMUIZ4ubaVInTshjHg8SRXts+l99IuxJUsR+E6DpAAvBXeHCCqtpzuy1zZwy3dvUn7UuBJXY8kD1AOjwGez5YqYcI1XkBCud3GARJXshyF9ABlac/pSVR6gCwhpaWZw33plsUviQOUw78J7/mU0qBgCUol2G2hQnEly1HEcYAEHhgRpCwCRzyJUk7akgNko71cJty6NQQ2kjycnOdTaoWLFRJ/g1yav+1CXMlyFG7bCiNVEThKN7riUeDhtDt7qvZyyWtB+WwAMeHWYc6RWxa/3PZw0lW5BmiVSZagHLsyBCaREW4rhAjQuv+pF5pctpCpJ+wkhYuSbKkgadsHlqB8NpYYSWnw1B4gkT0belB6ZiUJWiIjVJd5gABnM0l491FSewW5Ex9PfBbeE7aTHiCeNY7StecG5CXImfg3S9B7gLwZ/2bfHl1fsoTTmYAir3PiSpajCLmMAwQ4+wKRL9o5RBCk9gDltKLs0jpAlKni5B5O4jFA2Zcs4WhomrNn1i7c8QvmENyWBg84mypOHbbJpRR/p7NkcmlrCteSoAnl9ng9SHTC5RIvy61jwMnQtDePr2fWLtzxC+YQ3JYGDzhLpMylSY28eN9I8gDlUHiPJajlpiTeU/KbAPeGQZ0OTYsMsaXLQagu9AA5mSpOntnB8YVVPEpSRVnSvswhJYE6xT9XSNC5nFSQS8/GEk6WpxB5GwxAKkDk0HuA3BJDdjJVPJc8QNTt5XJfOr34ueXddbwWVA55OKkNClZwcv7O45hUwgJiS5eDcCMHKKetOuJJTb8AebzJ1ZNZIpf7ktoj4zbXfgT0YyA+E4tnplQue7dYwskQmPQAScRBcoCytEVt1TnIk8m1CdtJsiX38J5LQ2CO8sA4ZwA57d1y7fydQ15nuxBbuhyE27bCAGgXG3KrzkErkpy3kkscIIdToEWf2COgDtvo+4l3BpDjWY4uGQOU83fi1kmiGwpiS5eDcNtWGECOW/YOeknIeSuS32S9PZe59iNwkuOWSwp3qvvL+TsZiVsnia4kii1dDsKVW2HksGVPXnhRv0DkmMs+ly1Nt7n2I3ByaxlqD2cuZYyyhJOKouhKotjS5SDc6AEiLabmdN0SwkmUeziCOkyUw5amW9PgR5YHiG/BPbd6gJwMF4uuJIotXQ4iwgFSOGcAsUTcC8OZ2KgoCjx5sfvnmmWf0yGCHLY03Wr9U/NWEjlAPOE0D0z08E4ETiYMiK4kii1dDiLiARJ9YOjhSRjQvEub618g6uyeXF4gyPsyhyxNyQEy314uK9yp2hcVuezltguxpctBRDhAbrEggfgBTSG3l1JJkGnwXNrz5CmkirL0AKWG5ACxgxwDBtuTHiCJdFBd6AGK88gQyE2ZKeVkqniupcFT/m5AbvOpWMHJYpg5V8JCd39FCW/+6gbksmfWLsSWLgcR8QCJ7hrUg3JSA6QHiFlbDnqAKBQE6QHKjiTeSg4tfon76lGS/F01f+ewZ9YuxJYuBxENgQk+MPSg5K0AkgPECk5ygCgWCEc5QC5ZAB31AHEe34qiOGZQuGr+pjZgXaQoii1dDiJKghZ8YOghPUAM26MM73k9UByqlUPuAZIE2JRwcnxTK8GUhT5dO39TvJcuUhTFli7HoGlaNA1e9IGhByVvBZAcIJZwqi/JLU3iFGi3LIBObheRc0qwi7gtelBnZVHPA3YgtnQ5Bi2kQdPCn0V3DerhJLmV0mtBQWzM6b500tKUHqCUIM+U0hUjJB/fhAq+W8ogAMllTHjDTYqi2NLlGNxYBRqgH9BOcYAolFInw0SU+6qRW5qUoVLOxUBZwtlSCMQeIMoQr+ALux6Ozt+Cr3N5TguQiP7+frz44ovw+/3Ys2cPenp6sGbNGlx22WWGru/p6cETTzyBLVu2IBAIYO7cubj99ttRW1vLWfLscOM+YAC9ZU+aSUJtHVErXITP56SlSV3dlncmDSvEjTeC6vPUPBmPg2PALcjl+dsuhJOuq6sL69evR0NDA2bOnGnqWlVVsXr1avz5z3/GFVdcgVtvvRUdHR1YtWoVGhsbOUlsHHoPkJtCYNSWfS5bddQeINJMKQctTbm/UWpQ/yaOcoAovVsuHQO5Nn/bhXDSVVRU4NVXX8Xvf/973Hbbbaaufe+997Br1y6sWbMGN954I6644go88sgj8Hg8eO655zhJbBzqsDtDYCPGss9BgqBj4cQcVu5Ed+vroXgV4JTThzwklcMcIDl/p4ebFEXhpCsoKEBFRYWlazdv3ozy8nIsWrQoeqysrAxLlizB+++/j6GhIVZiWoJrQ2A5bNnnMmchsY2c86ZR1pzxKNHCe256dxVFifYNeXVu6izHHBvfrJDL76VdiC2dSezbtw+zZs2CxxP/WHPnzsXg4GDGMFhrayvq6uqi/xoaGpjL51oSdA5b9opHiRJac237hsQ2cs1Cdsq176Z3F6CV20kPkOQApUYuz992IRwJ2g7a29tx1llnJR2PeJTa2towY8aMlNdu3LgR69evTzpeX1+PUChkWIbe3l74/f6U3/UcC0Q/d/Z0pj1PNKhBDfklHgz3qdDGDnCXWx07AADIG+VBc99RtPqPpz03U38bxZipheiqH0ThaQr3Zxv0DodDEhowUMh/DBRUacA+oPT0AtTt32ubvJupv9WQhoLRXgz1hIBxAe7PFhzTDwDwFipoDZxAp7+Za3ulUwvQsW8AoyZ5yN5dFuO7dEo+2uuCJHIPIQjFC2ghIDCqm3t73sogAKB4fD4ONR7gOr41VUNReR4G24NQKoZdM39rmoZRFXkYaAvCWxHkPwZKBgGEt93oCLWgz9+W9lwW4zsdfD5f1nNySgEKBAIoKChIOh45FggEkr6LYPny5ViwYEH074aGBtx3332YNm2aqQwyv9+ftuMD1cOYWHk6QsMqxlQVo6JmjOH7Oo1ZD89Gb/sAKqYSyOwDzji/B8XjClFUmvx76pGpv42i9qe1aGvowfjpY7lnyQDA7LmzoYU0jK4q5t7W3LkaWpd1Y9zkUuQVeG3fL1t/z354NnpODqCimmaczPtyD0aNKUTRmMzjhAXm/MsctB7uRuX0sfAQjBOAzfie879o5Z41ezaCgyGMnVjCva25czW0XdKNsZNKkF9kfznLOr4fqkVXUx8qqse4JhMQAGb/ohZdJ/pQUUMgtw/wnd2H/FF5KC4rzHgqi/FtBzmlABUWFqbk+USOFRam/zEqKytRWVnJTTYAKCzJx9Rzqri2wQuFpfkoLM0na698ymiytrz5XlTNLCNrr7RiFFlbiqJg/PSxZO0VFOejoppunIybTDdOPHke0nHCCtRyl4wrImtLURRUEo7v/KI8VNbQtccK+UV5qJxGJzeF8ssCYgfoTKK8vBxtbcnutsgxq+RqCQkJCQkJidxCTilAs2bNwv79+6GqatzxPXv2oKioCFOmTHFIMgkJCQkJCQmR4FoFqLW1FQ0NDQgGg9FjF198Mdrb27Fly5bosc7OTmzatAkXXnhhSn6QhISEhISExMiDkBygV155Bb29vdHQ1QcffICWlhYAwJVXXonS0lI89dRTePvtt7FhwwZMnDgRALB48WK8/PLLeOCBB3D48GGMHTsWr732GlRVxU033eTY80hISEhISEiIBSEVoA0bNqCpqSn695YtW6JenUsvvRSlpaUpr/N6vXjwwQfx2GOP4ZVXXkEgEMCcOXOwZs0aTJ06lUR2CQkJCQkJCfEhpAL00ksvZT1n7dq1WLt2bdLx0aNHY/Xq1Vi9ejUP0SQkJCQkJCRyAK7lAElISEhISEhIWIVUgCQkJCQkJCRGHKQCJCEhISEhITHiIBUgCQkJCQkJiREHqQBJSEhISEhIjDhIBUhCQkJCQkJixEEqQBISEhISEhIjDkLWARIBgUAAANDQ0GDquiNHjsDr9fIQSSIFZH/TQvY3LWR/00L2Ny1493d1dTWKiorSfi8VoDSIVKK+7777HJZEQkJCQkJCwiyefvpp1NbWpv1e0TRNI5THNejs7MQnn3yCiRMnGt5EtaGhAffddx/+5V/+BdXV1ZwllJD9TQvZ37SQ/U0L2d+0oOhv6QGyiLKyMlx66aWWrq2urs6odUqwhexvWsj+poXsb1rI/qaFk/0tSdASEhISEhISIw5SAZKQkJCQkJAYcZAKEENUVFRgxYoVqKiocFqUEQHZ37SQ/U0L2d+0kP1NCxH6W5KgJSQkJCQkJEYcpAdIQkJCQkJCYsRBKkASEhISEhISIw5SAZKQkJCQkJAYcZAKkISEhISEhMSIgyyEyABDQ0P49a9/jT/96U/o6enBjBkzcPPNN+Pcc891WjRXo7+/Hy+++CL8fj/27NmDnp4erFmzBpdddlnSuYcPH8avfvUr7Ny5E3l5ebjgggtw5513oqysjF5wl2LPnj14++23sX37djQ1NWHMmDGYN28ebr75ZkyZMiXuXNnf9lFfX4/nnnsOdXV1aG9vR1FREaqrq/Gtb30LCxYsiDtX9jd7/Pa3v8UzzzyDadOm4Te/+U3cdzt37sQTTzyBffv2oaSkBEuWLMEtt9yC4uJih6R1H7Zv345Vq1al/O7xxx/HvHnzon871d9SAWKABx54AO+99x6uvvpqTJ48GW+99RZ+9KMfYd26dTjzzDOdFs+16Orqwvr16zFhwgTMnDkT27dvT3leS0sLVq5cidLSUtxyyy0YGBjAiy++iEOHDuHJJ59Efn4+seTuxAsvvICdO3diyZIlmDFjBtra2vDqq6/i5ptvxuOPP47p06cDkP3NCk1NTejv78eyZctQWVmJwcFBbN68GWvWrMHdd9+N5cuXA5D9zQMtLS343e9+h1GjRiV9t3//fvzwhz9EdXU17rzzTrS0tGDDhg04evQofvGLXzggrbtx5ZVXYu7cuXHHTj/99OhnR/tbk7CF3bt3awsXLtReeOGF6LHBwUHt2muv1W699VYHJXM/AoGA1traqmmapu3Zs0dbuHCh9uabbyad98tf/lL7m7/5G62pqSl6bOvWrdrChQu1119/nUxet+OLL77QhoaG4o4dOXJEu+SSS7R77703ekz2Nz8Eg0Htxhtv1P7H//gf0WOyv9njJz/5ibZq1Spt5cqV2vXXXx/33d1336394z/+o9bb2xs99sYbb2gLFy7UPv74Y2pRXYvPPvtMW7hwobZp06aM5znZ35IDZBObN2+G1+uNWmsAUFhYiMsvvxy7d+9Gc3Ozg9K5GwUFBYaKZG3evBkXXnghJkyYED32la98BVOmTMGmTZt4iphTmD9/fpI3YcqUKaipqUFDQ0P0mOxvfvB6vaiqqkJvb2/0mOxvttixYwc2b96MlStXJn3X19eHTz/9FJdeeilKSkqix//u7/4Oo0aNkv1tEf39/QgGg0nHne5vGQKzif3792Py5MlxPx6AqMvvwIEDcROXBFucPHkSHR0dKTfTmzt3Lj766CMHpModaJqGjo4O1NTUAJD9zQMDAwMIBALo6+vDBx98gI8//hhLliwBIPubNUKhENatW4fLL78cM2bMSPr+0KFDCIVCSf2dn5+PWbNmYf/+/VSi5gweeOABDAwMwOv14swzz8Rtt92GOXPmAHC+v6UCZBNtbW0pvRSRY62trdQijSi0tbUBQNrfoLu7G0NDQygoKKAWLSfwzjvv4OTJk7jpppsAyP7mgUcffRQbN24EAHg8HixatAg//OEPAcj+Zo3XX38dzc3NePjhh1N+n62/P//8c67y5RLy8vJw8cUX46tf/SrGjh2Lw4cPY8OGDbjzzjvx2GOPYfbs2Y73t1SAbCIQCKQkIUYmpEAgQC3SiEKkf7P9BnKBMI+GhgY8/PDDmDdvHpYtWwZA9jcPXH311Vi8eDFaW1uxadMmhEIhDA8PA5D9zRJdXV149tlncf3116fNnsvW30NDQzxFzCnMnz8f8+fPj/590UUXYfHixbjxxhvx1FNP4aGHHnK8vyUHyCYKCwujk5UekR+usLCQWqQRhUj/yt+ALdra2rB69WqUlJTg5z//ObxeLwDZ3zxQXV2Nr3zlK1i2bBn+z//5PxgYGMA999wDTdNkfzPEM888g9GjR+PKK69Me062/paKpj1MnjwZF110EbZv345QKOR4f0sFyCYqKiqibjw9IscqKyupRRpRiLhO0/0GY8aMkZOWSfT29uJHP/oRent78dBDD8WNYdnf/LF48WLs3bsXjY2Nsr8ZobGxEW+88QauuuoqtLa24sSJEzhx4gSGhoYQDAZx4sQJdHd3Z+1vOZ/bR1VVFYaHhzE4OOh4f0sFyCZmzpyJo0ePoq+vL+643++Pfi/BD+PHj0dZWRnq6uqSvtuzZ4/sf5MIBAK455570NjYiH/7t3+Lkp8jkP3NH5GwQG9vr+xvRmhtbYWqqli3bh2uueaa6D+/34/GxkZcc801WL9+PaZNmwav15vU38PDw9i/f7/sbwY4fvw4CgoKMGrUKMf7WypANrF48WKEQqEoiREIu+7efPNN+Hw+mQFGgIsvvhgffvhhXMmBbdu2obGxMZpNI5EdoVAIP/3pT7F792787Gc/wxlnnJHyPNnfbNDR0ZF0LBgM4o9//CMKCwujyqfsb/uYNm0a7r///qR/06ZNw4QJE3D//ffj8ssvR2lpKb7yla/gT3/6E/r7+6PX//GPf8TAwIDsbxPo7OxMOnbgwAF88MEHOPfcc+HxeBzvb0XTNI1rCyMAP/nJT7BlyxZ885vfxOmnn463334be/bswcMPP4yzzz7bafFcjVdeeQW9vb1oa2vDa6+9hkWLFmHWrFkAwhVGS0tL0dzcjJtvvhmlpaW46qqrMDAwgP/8z//E+PHj8dRTT8kQgUE88sgjePnll3HhhRdi6dKlSd9feumlACD7mxH+1//6X+jr68NZZ52F8ePHo62tDe+88w6OHDmCO+64A9dccw0A2d88cdddd6GrqytuK4y6ujrccccdqK6uxvLly6OVic866yz88pe/dFBad2HVqlUoLCzEGWecgXHjxuHw4cN44403kJeXh8ceeyyq4DvZ31IBYoBAIBDdC6y3txfTp0/HzTffjPPOO89p0VyPb37zm2hqakr53YYNGzBx4kQA4X2VEvdKuuOOO1BeXk4prqtx1113YceOHWm/37JlS/Sz7G/7ePfdd/GHP/wBhw4dQldXF4qLi1FbW4srrrgCF110Udy5sr/5IJUCBABffPFFdG+q4uJiLFmyBN///vflXmAm8PLLL+Odd97BsWPH0NfXh7KyMnz5y1/GihUrMHny5LhznepvqQBJSEhISEhIjDhIDpCEhISEhITEiINUgCQkJCQkJCRGHKQCJCEhISEhITHiIBUgCQkJCQkJiREHqQBJSEhISEhIjDhIBUhCQkJCQkJixEEqQBISEhISEhIjDlIBkpCQkJCQkBhxkAqQhISEhISExIiDVIAkJCS44MSJE1i0aBH+9//+306LwgRvvfUWFi1ahLfeestpUSQkJBhAKkASEhJkuOuuu7Bo0SKnxUiJXFPYJCQkMiPPaQEkJCRyE+PHj8fzzz+PkpISp0VhgoULF8Ln86GiosJpUSQkJBhAKkASEhJckJeXh+rqaqfFYIbS0lKUlpY6LYaEhAQjyN3gJSQkuODEiRO45pprsGzZMqxduzZt6CvyfQQHDx7E888/jx07dqC7uxsVFRVYsGABbrzxRowdOzbl/a+77jo8/fTT+Pzzz9Hd3Y0NGzZg4sSJ2LJlCzZt2oS9e/eitbUVeXl5mDFjBq666iosXrw4eq+33noLDzzwQEr51q1bh3POOSd6zpo1a3DZZZfFnbNz5048//zz2L17NwKBAE477TQsXboU1113HYqKiuLOXbRoEc4++2z89Kc/xeOPP46PPvoIAwMDmDlzJr7//e/jnHPOMdvVEhISFiA9QBISEiRYsWIF3n77bTQ1NWHFihXR47NmzYp+fv/99/HTn/4UiqLgoosuQlVVFQ4fPoz/+q//wieffIInn3wSo0ePjrvvsWPHcNttt2H69OlYtmwZuru7kZ+fDwB46qmnkJeXh/nz56OiogKdnZ344IMP8OMf/xirVq3ClVdeCQCYOXMmrrrqKrz88suYOXMmLrroouj9TzvttIzPtWnTJtx7773Iz8/H0qVLUVZWhq1bt2L9+vX45JNPsG7dOhQWFsZd09vbizvuuAOlpaW49NJL0dHRgU2bNuHuu+/G008/jenTp1vqYwkJCeOQCpCEhAQJbrrpJuzYsQNNTU246aabkr7v6urC/fffj7Fjx+LRRx+NUzzeffdd/OxnP8Ovf/1r/OAHP4i7bufOnVixYkXKez744IOYNGlS3LH+/n7cfvvt+PWvf43LL78cRUVFmDVrFkpLS6MKUKp7pUJfXx9+8YtfwOv14vHHH8eMGTMAAN/73vdw77334i9/+QtefPFF3HDDDXHXHThwAP/4j/+IH/zgB/B4wrkoX/rSl/Dggw/iv/7rv3D33Xcbal9CQsI6ZBaYhISEEPjjH/+Ivr4+fO9730vyulxyySWYPXs23n333aTrysvL8Z3vfCflPROVHwAoLi7GZZddht7eXuzdu9eWzO+//z56e3vxta99Lar8AIDH48Ftt90Gr9ebMm1+1KhRuPXWW6PKDxAOBXq9XtsySUhIGIP0AElISAiB3bt3AwD8fj+OHTuW9P3Q0BC6urrQ2dmJsrKy6PGZM2dGQ16J6OjowH/8x3/go48+QnNzMwKBQNz3ra2ttmTev38/AODss89O+m7ChAmYNGkSGhsb0d/fj+Li4uh3kydPjvsbCJPGy8vL0dvba0smCQkJY5AKkISEhBDo6ekBALz66qsZzxscHIz7e9y4cSnP6+7uxve+9z00Nzdj/vz5+MpXvoLS0lJ4PB4cOHAA77//PoaHh23J3NfXByDshUqFiooKNDY2oq+vL07hSVcawOv1QlVVWzJJSEgYg1SAJCQkhEBEQVi/fr0pErCiKCmP/+EPf0BzczO++93vJnFwfve73+H999+3LuwpRBSZ9vb2lN9HjudKLSQJiVyC5ABJSEiQIcJ5CYVCSd/5fD4AsVCYXUTCaPqMrgi++OKLtLKZ8cBEMth27NiR9F1zczOOHTuGSZMmJYW7JCQknIdUgCQkJMgwZswYAEBLS0vSd1/72tdQXFyMp59+GvX19UnfDw4OmlKOIkTqnTt3xh1/55138NFHHyWdP3r0aCiKklK2dLjoootQWlqKN998M05mTdPw5JNPIhQKJdUMkpCQEAMyBCYhIUGGL33pS3jvvffwr//6rzj//PNRUFCAmTNnYsGCBSgrK8NPfvIT/PjHP8ZNN92E8847D1OnTsXw8DCampqwY8cOnHHGGXjooYcMtXXppZfihRdewLp167B9+3ZMmDABBw4cwGeffYZFixZhy5YtcecXFxdjzpw5+Pzzz3Hfffdh8uTJUBQFf/d3f5e2FlBJSQn+5//8n7j33ntx6623YsmSJSgrK8O2bdtQV1eHuXPn4tprr7XdbxISEuwhFSAJCQky/P3f/z1OnDiBv/zlL3jhhRcQCoWwbNkyLFiwAABwwQUX4Ne//jX+8z//E9u2bcOnn36KoqIijB8/HpdddhkuvfRSw21VVVXhkUceweOPP45PP/0UoVAIs2fPxi9/+Uu0tLQkKUAA8C//8i/493//d3z44Yfo6+uDpmk488wzMxZDXLJkCcrLy/G73/0OW7ZsiVaCvuGGG3DdddclFUGUkJAQA3IrDAkJCQkJCYkRB8kBkpCQkJCQkBhxkAqQhISEhISExIiDVIAkJCQkJCQkRhykAiQhISEhISEx4iAVIAkJCQkJCYkRB6kASUhISEhISIw4SAVIQkJCQkJCYsRBKkASEhISEhISIw5SAZKQkJCQkJAYcZAKkISEhISEhMSIg1SAJCQkJCQkJEYcpAIkISEhISEhMeLw/wEafYCr5WWvbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG+CAYAAABh1ltMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLxklEQVR4nO3dd3hUZdo/8O/0Se+FQICEhF6CFFG6KEWUdVcXfVd3RdeKurqrq8Lr2pb92dfF3VXU9RV11wV7BRQRiPReQwmQhBDSeyaZfn5/DHMyJ5lkypmZFL6f6+K6MjNnznk4aXfu537uRyEIggAiIiIi6pCyqwdARERE1N0xYCIiIiLygAETERERkQcMmIiIiIg8YMBERERE5AEDJiIiIiIPGDARERERecCAiYiIiMgDBkxEREREHjBgIiIiIvJA3dUDcKe5uRmrVq1CXl4ejh07hsbGRixZsgTz5s3z+N69e/di/fr1OHToECorKxEfH49LLrkEv/3tb5GYmNju+MOHD2PFihU4efIkIiIiMHPmTNx5550IDw8Pxn+NiIiIeqBuGTDV19dj5cqVSElJQVZWFvbv3+/1e1esWIGGhgbMmDED6enpOH/+PD777DNs374d77zzDhISEsRj8/Pz8fvf/x4DBgzA/fffj4qKCqxevRrnzp3DSy+9FIz/GhEREfVA3TJgSkhIwOeff46EhAQcP34cd911l9fvve+++zB69Ggola2zjRMnTsTvfvc7fPbZZ7jzzjvF59966y1ERUXhtddeQ0REBACgT58+ePHFF7Fr1y5MnDjRq2sajUYUFRVhwIAB0Ov1Xo+ViIiIeoZuWcOk1WolmSBf5OTkSIIl53PR0dEoKioSnzMYDNizZw9mz54tBksAMGfOHISFhWHjxo1eX7OoqAh33nmn5PzeOn36tM/vIf/xfocW73do8X6HFu93aHX1/e6WGaZAa25uRktLC2JiYsTnzpw5A5vNhiFDhkiO1Wg0yM7ORn5+fofnq6qqQnV1tfjYn0DJyWQy+f1e8h3vd2jxfocW73do8X6HVlff74siYPr4449hsVhwxRVXiM85Ax53mayEhAQcPHiww/N99dVXWLlyZbvnCwoKYLPZfBpbU1MT8vLyfHoP+Y/3O7R4v0OL9zu0eL9DK1j3e/jw4V4d1+sDpgMHDmDlypWYOXMmxo0bJz7vjFQ1Gk2792i1WpjN5g7PuWDBAkyePFl8XFRUhGXLliEjI6NdxsqTvLw8rz9ZJB/vd2jxfocW73do8X6HVlff714dMBUVFeGJJ55AZmYmHnvsMclrOp0OAGCxWNq9z2w2Q6vVdnjexMREty0KiIiIqHfqlkXfgVBeXo6HH34YEREReOGFF9r1VXJOxbnWIjlVV1czICIiIiJRrwyY6uvr8fDDD8NiseDll192G/xkZGRApVLhxIkTkuctFgvy8/ORlZUVquESERFRN9ejA6aqqioUFRXBarWKz7W0tODRRx9FVVUVXnzxRaSnp7t9b2RkJMaPH4/vv/8ezc3N4vPfffcdWlpaMHPmzKCPn4iIiHqGblvD9Omnn6KpqUmcMtu6dSsqKioAANdffz0iIyPx1ltvYd26dVi9ejX69OkDAPjzn/+MY8eO4eqrr0ZRUZFkyX9YWBimTp0qPr7jjjtw33334YEHHsCCBQvETt8TJkzApZdeGsL/LREREXVn3TZgWr16NcrKysTHubm5yM3NBQDMnj0bkZGRbt936tQpAMCaNWuwZs0ayWupqamSgGnIkCH461//ihUrVuDvf/87wsPDMX/+fNx9992B/u8QERFRD9ZtA6aPPvrI4zFLly7F0qVLfX6fq9GjR+P111/36T1ERER0cenRNUxEREREocCAiYiIiMgDBkxEREREHjBgIiIiIvKg2xZ9E1B1ph5lJ2pRU9yIqXeMhEKp6OohERERXZQYMHVj+z8/haK9jt5To6/JQGya+1YKREREFFyckuvGEgfFiB9XnqnvwpEQERFd3BgwdWNJg2LFj6tOM2AiIiLqKgyYurGkDJcMEwMmIiKiLsOAqRvTRWoQnRIOAKguaoDdau/iEREREV2cGDB1c0kX6phsFjtqzjV28WiIiIguTgyYurmkQZyWIyIi6moMmLq5xMxY8WMGTERERF2DAVM3lzgwWmxYWcXWAkRERF2CAVM3p9apEJfuaFhZW9wIi9HaxSMiIiK6+DBg6gGSMh11TIIAVBc2dPFoiIiILj4MmHoA1waW7PhNREQUegyYegBnhglg4TcREVFXYMDUA8T1i4RK4/hUsfCbiIgo9Bgw9QBKtRIJGdEAgIbyZhibzF08IiIioosLA6YewnVajhvxEhERhRYDph5CUsfEaTkiIqKQYsDUQ3ClHBERUddhwNRDRKeEQxuuBuBYKScIQhePiIiI6OLBgKmHUCgVSLwwLddSZ0JzjbGLR0RERHTxYMDUg7COiYiIqGswYOpBJHVMXClHREQUMgyYepCkQez4TURE1BUYMPUgEfF6hMfqAABVBfUQ7Cz8JiIiCgUGTD2MM8tkbraivszQxaMhIiK6ODBg6mESB7Hwm4iIKNQYMPUw3CKFiIgo9Bgw9TCJmSz8JiIiCjUGTD2MPlKL6JRwAEB1UQPsVnsXj4iIiKj3Y8DUAzkLv20WO2rONXbxaIiIiHo/Bkw9EPsxERERhRYDph4oMTNW/JgBExERUfAxYOqBEgdGQ6FUAACq2FqAiIgo6Bgw9UBqnQpx/SIBALXFjbAYrV08IiIiot6NAVMP5axjEgSgurChi0dDRETUuzFg6qFcG1iy4zcREVFwMWDqoRK5Uo6IiChkGDD1UPH9oqDSOD59LPwmIiIKLgZMPZRSrUTCwGgAQEN5M4xN5i4eERERUe/FgKkH40a8REREocGAqQeTdPzmtBwREVHQMGDqwZIGxYofM2AiIiIKHgZMPVh0Sji04WoAjpVygiB08YiIiIh6JwZMPZhCqUDihTqmljoTmmuMXTwiIiKi3okBUw/HBpZERETBp5Z7gsLCQnz22Wc4fvw4GhsbYbfb2x2jUCiwatUquZciN+LSo8SPm6paunAkREREvZesgOnAgQN45JFHYLFYoFKpEBcXB5VK1e441tYEjy689VNobuEmvERERMEgK2B68803YbPZ8Oijj2Lu3LlugyUKLk24RvzY3MyAiYiIKBhkBUynTp3CrFmzMH/+/ECNh3ykDXPJMDFgIiIiCgpZRd96vR6xsbEBGgr5Q+syJWdhwERERBQUsgKmSZMm4dChQ4EaC/lByxomIiKioJMVMC1evBhNTU1Yvnw5jEb2AOoKar1rwGTpwpEQERH1XrJqmJ5++mmEhYXh888/x9q1a5Geno7w8PB2xykUCvztb3+TcynqgFKpgCZMBUuLjTVMREREQSK7rYBTS0sLTp486fY4hUIh5zLkgTZMA0uLDRZOyREREQWFrIBp8+bNgRoHyaC5sFKOGSYiIqLg4NYovYCz8NtqssFua99pnYiIiOSRvTWKq5aWFhgMBkRERCAsLMzv8zQ3N2PVqlXIy8vDsWPH0NjYiCVLlmDevHke31tVVYVPPvkEx44dw/Hjx9HS0oLly5dj7Nix7Y793e9+J5lWdJo4cSJefvllv8cfapLWAi026CIZBxMREQWS7IDJYrHgv//9L9auXYvS0lLx+T59+uDqq6/GTTfdBI1G08kZ2quvr8fKlSuRkpKCrKws7N+/3+v3FhcX48MPP0S/fv2QmZmJo0ePdnp8UlIS7r77bslzCQkJPo23q2nDXLp9t1igi/TtfhMREVHnZAVMJpMJDz30EI4dOwalUol+/fohISEB1dXVOH/+PN555x1s27YNf/vb36DT6bw+b0JCAj7//HMkJCTg+PHjuOuuu7x+75AhQ/DNN98gOjoamzZtwpNPPtnp8ZGRkZg9e7bX5++ONOz2TUREFFSyAqb//Oc/yMvLwxVXXIF77rkHKSkp4msVFRVYsWIFNmzYgA8//BC33Xab1+fVarV+Z3nctTXwxGq1wmw2+/Xe7kDSvJIBExERUcDJCph+/PFHDB48GE899VS715KTk/Hkk0/i3Llz2LBhg08BUygVFxdjzpw5sFgsiI+PxzXXXINFixZBre741lRVVaG6ulp8XFRUFIqhdkhaw8SAiYiIKNBkBUxlZWVYuHBhp8eMGzcOH3/8sZzLBE1aWhrGjh2LzMxMGI1GbNq0Ce+//z6Ki4vxzDPPdPi+r776CitXrmz3fEFBAWw2m09jaGpqQl5enq9Dl6ipb2gdQ34hmvRVss7XmwXifpP3eL9Di/c7tHi/QytY93v48OFeHScrYNLr9airq+v0mLq6Ouj1ejmXCZrHH39c8njOnDl46aWX8PXXX2PhwoUYMWKE2/ctWLAAkydPFh8XFRVh2bJlyMjIwJAhQ3waQ15entefrI6oq86hALUAgKT4FAwfPkDW+XqzQNxv8h7vd2jxfocW73dodfX9lrX+fPjw4diwYQMKCgrcvl5YWIgff/yxw8CjO7rxxhsBAHv27OnwmMTERAwZMkT8N2BA1wYorqvkOCVHREQUeLIyTL/+9a+xe/du3HXXXZg/fz5ycnIQFxeH2tpa7N+/H2vXroXVasUtt9wSqPEGXXJyMgCgsbGxi0fiPRZ9ExERBZesgGnUqFF48skn8dJLL+Hzzz/HF198Ib4mCAIiIiKwdOlSjBo1Su44Q+b8+fMAgNjY2K4diA+0bCtAREQUVLIbV86cOROXXnoptmzZgpMnT6K5uRnh4eEYPHgwpkyZEtSl+lVVVTAYDOjbt2+nq9rcMRgM0Gg00Gq14nOCIOD9998HAEyYMCGgYw0mjWuGiVNyREREAReQrVHCw8Mxe/bsgDaA/PTTT9HU1CQu39+6dSsqKioAANdffz0iIyPx1ltvYd26dVi9ejX69Okjvve9994D4KihAoDvvvsOhw4dAgDceuutAICTJ0/imWeewZVXXom+ffvCZDLhp59+wuHDh3Httdf6XLzdlaQZJksXjoSIiKh3CuhecoG0evVqlJWViY9zc3ORm5sLAJg9ezYiIyM7fO8777wjebxmzRrxY2fAlJKSgjFjxiA3Nxc1NTVQKpUYMGAAHn74YSxYsCCQ/5WgYx8mIiKi4PIpYFq3bh0AYNq0aQgPDxcfe2Pu3Lk+Deyjjz7yeMzSpUuxdOnSds87A6vOpKWlddprqSdRaVRQaZSwWeysYSIiIgoCnwKm5557DgqFAiNGjEB4eLj4uDOCIEChUPgcMJFvNGFq2Cxm1jAREREFgU8Bk7PRo3Oft7aNH6nraMPUMDaYYWGGiYiIKOB8CpjmzZvX6WPqOs46JnOLVczqERERUWDI6vR94MABlJeXd3pMeXk5Dhw4IOcy5AVtuKPbt2AXYDX5tp8dERERdU5WwPTQQw9h7dq1nR7z3Xff4aGHHpJzGfKCJoy9mIiIiIJFVsAkCIJXx3B6KPi4PQoREVHwyAqYvHHu3DlEREQE+zIXPdfmlezFREREFFg+N658/vnnJY9/+uknSYNJJ5vNhoqKChw6dAiXXnqp/yMkr2jY7ZuIiChofA6YXGuWFAoFTp06hVOnTrk9VqFQYOjQobj//vv9HyF5hVNyREREweNzwLR69WoAjtqkm266Cb/85S9xww03tDtOqVQiKioKYWFh8kdJHjlXyQEs+iYiIgo0nwOm1NRU8ePHH38cgwcPljxHXcN1So7NK4mIiAJL1ua7bFzZfUim5JhhIiIiCihZAZOTyWTC8ePHUVVVBYvFfcEx95ILLi2LvomIiIJGdsD02Wef4Z133oHBYHD7OjffDQ3XDBPbChAREQWWrD5MmzdvxvLly5GcnIzFixdDEARMnjwZd955JyZOnAhBEDB9+nQ89thjgRovdUCaYWLAREREFEiyAqaPP/4YcXFxeOONN7Bw4UIAQHZ2Nm6++Wa8+OKLeOKJJ/DTTz+xKDwENK6r5BgwERERBZSsgOnMmTOYPHky9Hq9+Jzdbhc/vuqqq3DJJZdg5cqVci5DXtDoVcCFHWg4JUdERBRYsgImq9WK2NhY8bFOp0NjY6PkmKysLOTn58u5DHlBoVCI03JcJUdERBRYsgKmhIQEVFdXi49TUlLaBUdlZWVQqVRyLkNechZ+c5UcERFRYMkKmIYNG4aTJ0+Kjy+99FIcOXIE//73v1FQUIAvv/wSubm5GDp0qOyBkmeaMEcdEzNMREREgSUrYJoxYwbMZjNKS0sBALfccguSkpLwr3/9C7fddhv++te/IiwsDPfcc09ABkudc07J2cx22K12D0cTERGRt2T1YZo2bRqmTZsmPo6NjcX//d//4ZtvvsH58+eRkpKCOXPmICkpSfZAybO2G/Dqo7VdOBoiIqLeIyCdvl1FRUXhf/7nfwJ9WvKCdHsUCwMmIiKiAJE1Jbdu3Tps2rSp02NOnz6NdevWybkMecl1A17WMREREQWOrAzTc889B4VCgSlTpuBPf/oTdDpdu2Nyc3Px3nvvcWuUEGg7JUdERESBISvDBDjqln766Sc88MADqKmpCcSYyE/asNZu3xYGTERERAEjO2C67rrrcNddd+HkyZO4++67cfr06UCMi/zAKTkiIqLgkB0wAcDNN9+MZ555Bg0NDbjvvvuwffv2QJyWfMQpOSIiouAISMAEANOnT8fy5cuh1+uxdOlSfPzxx4E6NXmp7So5IiIiCoyABUwAMHToULz55psYOHAg/vnPf+Kvf/0rbDZbIC9BnXANmLgBLxERUeAEvA9TSkoK/vnPf+Lpp5/Gl19+Cb1eH+hLUAckNUyckiMiIgqYgGaYnMLDw/H888/j5z//OYxGYzAuQW64rpJjwERERBQ4sjJMmzdv7vA1pVKJhx56CHPmzIHJZJJzGfISi76JiIiCI+BTcm0NGzYs2JegC7RhrGEiIiIKhqBMyVHXUKqVUGkdn1KukiMiIgocnzJM06dPh1KpxPvvv4/09HRMnz4dCoXC4/sUCgU2btzo9yDJe9pwDVrMJk7JERERBZBPAdOYMWOgUCjEPeOcj6n70Iap0VJn4pQcERFRAPkUML322mudPqau56xjMrdYIdgFKJQMaImIiORiDVMvo3GulBMAi5FZJiIiokBgwNTLcKUcERFR4Pk0Jbdy5Uq/LqJQKHDrrbf69V7yjXQ/OSsiunAsREREvYVPAdO7777r10UYMIWONpzdvomIiALNp4Bp+fLlwRoHBQj3kyMiIgo8nwKmnJycIA2DAsW1hsnMGiYiIqKAYNF3L+Naw2RpZrdvIiKiQAjYXnI2mw319fWwWNz/kk5JSQnUpagT3ICXiIgo8GQHTCdOnMBbb72FgwcPwmp1/wuaW6OEjoZTckRERAEnK2DKz8/H/fffD5VKhQkTJmDbtm3IyspCfHw8Tp48ibq6OuTk5CA1NTVQ4yUPJKvkGDAREREFhKyA6b333gMArFixAgMHDsT06dMxdepULFq0CCaTCf/85z+xadMmPP744wEZLHkmaVzJKTkiIqKAkFX0ffjwYUyePBkDBw4UnxMEAQCg0+nw0EMPITExEW+//basQZL3NOGckiMiIgo0WQGTwWBAWlqa+FitVqOlpaX15EolcnJysHfvXjmXIR9I2gpwlRwREVFAyAqYYmNj0djYKD6Oj4/HuXPnJMeYzWYYjUY5lyEfqHUqKJQKAFwlR0REFCiyAqaBAwfi7Nmz4uNRo0Zh9+7dOHLkCACgsLAQGzduxIABA+SNkrymUCjELBM33yUiIgoMWUXfl112Gf7xj3+gqqoKiYmJ+NWvfoXc3Fzcf//9iIqKQlNTE+x2O2655ZZAjZe8oAlXw2SwdGkNk7nZArVeDeWFbBcREVFPJitg+tnPfoaZM2ciKioKAJCVlYVXX30VH3zwAc6fP48hQ4bg+uuvx2WXXRaQwZJ3nM0ru6qGqfRYDda9sBuRCWG47i+XQ6MPWH9UIiKiLiHrN5larUZ8fLzkuVGjRuHFF1+UNSiSxzklZ7cKsJptUGtVIb1+4a4y2Mx21JcacO5QFTImsg8XERH1bNxLrhdy7fbdFXVMFmPrNcuO14T8+kRERIEWkLmSuro6FBYWoqqqqsPtUebOnRuIS5EXJN2+m60Ii9GF9PoWk038uOx4bUivTUREFAyyAiaTyYS//e1v+P7772Gz2dweIwgCFAoFA6YQ0nZx80qrS8BUU9QAc4tV0h+KiIiop5H1W2z58uVYs2YNBg0ahOnTpyMhIQEqVWjrZag9bRdPybkGTIIAVOTXot/opJCPg4iIKFBkBUybN2/GkCFD8MYbbwQ0UGpubsaqVauQl5eHY8eOobGxEUuWLMG8efM8vreqqgqffPIJjh07huPHj6OlpQXLly/H2LFj3R5/+PBhrFixAidPnkRERARmzpyJO++8E+Hh4QH7/4SaJMPUBSvlrEZptrHsOAMmIiLq2WQVfdvtdowdOzbgWaX6+nqsXLkSRUVFyMrK8um9xcXF+PDDD1FZWYnMzMxOj83Pz8fvf/97GI1G3H///Zg/fz6+/vprPPXUU3KG3+U0ku1RuqDo2yQNmMpPso6JiIh6NlkZpqFDh7bbCiUQEhIS8PnnnyMhIQHHjx/HXXfd5fV7hwwZgm+++QbR0dHYtGkTnnzyyQ6PfeuttxAVFYXXXnsNERERAIA+ffrgxRdfxK5duzBx4kTZ/5euoO3igMnaJmCqyK+DzWqHSs1FmURE1DPJ+g3229/+Frt378a2bdsCNR4AgFarRUJCgl/vDQ8PR3R0tMfjDAYD9uzZg9mzZ4vBEgDMmTMHYWFh2Lhxo1/X7w5cV8l1dVsBALBZ7Kg6Ux/ycRAREQWKrAzTyJEj8corr2DJkiUYPHgwBg0aJAk+nBQKBW699VY5lwq4M2fOwGazYciQIZLnNRoNsrOzkZ+f3+F7q6qqUF1dLT4uKioK2jj90Z1WyTmVn6hFyuC4kI+FiIgoEGQFTPX19XjzzTfR2NiIvXv3Yu/evW6P644BkzPgcZfJSkhIwMGDBzt871dffYWVK1e2e76goKDD9godaWpqQl5enk/v8cRQbhY/Li+pRF6ePaDn74xgF2CzOK6n1ithNTo+zt9zFupBxpCNoyPBuN/UMd7v0OL9Di3e79AK1v0ePny4V8fJbitw+PBhTJo0CbNmzepRbQVMJhMAR0apLa1WC7PZ3O55pwULFmDy5Mni46KiIixbtgwZGRntMlae5OXlef3J8lZjUjMOohQAEKGPDPj5O2NusWI7zgIAkgfFobqoAaYmC5rPWzFs6DAoungz3mDcb+oY73do8X6HFu93aHX1/ZYVMO3cuRM5OTl44YUXAjWekNHpHN2vLZb2y+7NZjO0Wm2H701MTERiYmLQxiaXNsylhinERd+u03FqvQqpQ+JQtLcCJoMFtSVNiE+PCul4iIiIAkFW0bcgCBg6dGigxhJSzqk411okp+rq6m4dEHmiCe+6VXJWU+v1NDoVUoa2bs5cfoLtBYiIqGeSFTCNGjUKp06dCtRYQiojIwMqlQonTpyQPG+xWJCfn+9z/6fuRKlUQK1zTI2GuujbtQeTWufIMDlxI14iIuqpZAVMixcvxvHjx/Hpp58Gajw+qaqqQlFRUYcb/nYmMjIS48ePx/fff4/m5mbx+e+++w4tLS2YOXNmIIcacs6VcuaW0Hb6du3yrdapkDgwWgzeyphhIiKiHkpWDdN///tfDBo0CH//+9/x6aefdthWAAAef/xxn8796aefoqmpSZwy27p1KyoqKgAA119/PSIjI/HWW29h3bp1WL16Nfr06SO+97333gMAFBYWAnAEQYcOHQIAyWq9O+64A/fddx8eeOABLFiwABUVFVi9ejUmTJiASy+91KfxdjfacDWaa00hr2GSZpjUUKqVSM6Kxfmj1TBUG9FU1YLIxLCQjomIiEguWQHT2rVrxY9LSkpQUlLi9jiFQuFzwLR69WqUlZWJj3Nzc5GbmwsAmD17NiIjIzt87zvvvCN5vGbNGvFj14BpyJAh+Otf/4oVK1bg73//O8LDwzF//nzcfffdPo21O3Juj2Ix2mC3C1CGaHWaa4ZJcyGzlDIkDuePOgLfsuM1yJrSNyRjISIiChRZAdPq1asDNY52PvroI4/HLF26FEuXLm33vDOw8sbo0aPx+uuv+zS2nkCyUq7FCl1E+/YJweBa9K3WOwImSR3TiVoGTERE1OPICpgOHDiA+Pj4HrvnWm+mbbNSLnQBU/sMU3J2LBRKBQS7wJVyRETUI8kq+n7hhRewc+fOQI2FAkjjugFvCAu/266SAwCNXo3EgY79/WrPNcHY2HFTUCIiou5IVsCUkJDg81YgFBquGaZQFn5b3QRMgKOOyan8JLNMRETUs8gKmCZPnow9e/Z0uo0IdY2u2oBXMiWnbx1D6lBpHRMREVFPIitguvPOO6HX6/HEE0+goKAgUGOiANCGdU23b3dTckCbDNNxBkxERNSzyCr6/u1vfwuLxYJTp05h165d0Gq1iI2NhUIhXcKuUCiwatUqWQMl37RdJRcqVqPLKjmXgCksWoeYPhGoLzWgsqAeVpNN8joREVF3JnsvObVajeTkZCQnJyM2NlZ83vWf3W4PxFjJB9L95Lqm6FvTJiByTssJNgEVp+pCNiYiIiK5ZGWYvOmVRF2jbVuBUJEUfevbBExD4nFi4zkAjo1400YkhGxcREREcsjKMFH3Jalh6qqib500Hk+RNLDkRrxERNRzyMowubJarSguLobBYEBERATS09OhVgfs9OQjbXhX1TBdCJgUgEorjcejksMQHqdDc60JFfl1sNvsUKoYsxMRUfcnO6JpaGjAihUr8MMPP0jaC+h0Olx55ZW46667EBMTI/cy5CNNF03JOWuY1FqV2+L/1CHxOLOjFBajDTVFjUjM5NcGERF1f7L+vG9oaMA999yDb7/9FjqdDuPHj8ecOXMwYcIEaLVafPPNN1i8eDEaGhoCNV7ykrStQOiKvp1Tch2tgJP2Y+K0HBER9QyyMkzvvfceSkpKcNNNN2HRokUICwsTXzMajXjvvffw4Ycf4v3338f9998ve7DkPZVGCaVKAbtNCO2U3IXNd9uukHOS1DEdr8XIeRkhGRcREZEcsjJMW7ZsQU5ODu69915JsAQAer0ed999N3JycvDTTz/JGiT5TqFQiCvlQjold6GGqe0KOae49ChxXGUnaiEIQsjGRkRE5C9ZAVN1dTVGjhzZ6TEjR45EdXW1nMuQn5wb8IZqlZzdLsBmcfTcartCzkmpVCBlsCPLZGwwo6GsOSRjIyIikkNWwBQREYGysrJOjykrK0NERIScy5CfnCvlzC3WkGRyOtp4ty3ptBzrmIiIqPuTFTDl5ORg06ZN2LNnj9vX9+7di02bNiEnJ0fOZchPzqkvwSbAZg5+t/XOmla6Sh0S2I14a0uacOCL02iqapF9LiIiIndkFX0vWrQI27dvxyOPPIJJkyZhzJgxiI+PR01NDQ4cOICdO3dCp9Nh0aJFARou+ULTZqVcsPducxZ8Ax0XfQNA0qAYqDRK2Cx2lAcgYNrwt32oKzGg+GAlrn1qkuzzERERtSUrYMrIyMDLL7+M5557Dtu3b8f27duhUCjE6Z+0tDQsXboUGRlcCdUVpK0FrAiP6+TgALB4OSWn0qiQmBmD8hO1aChvRnOtEeFxer+uabfaUVdiAODYbqWxsgVRSWEe3kVEROQb2Y0rR48ejQ8//BCHDx9Gfn6+2Ok7Ozsbo0aNate8kELHtdt3KAq/xS7f6DxgAhzTcs7sUtmJWmRO6uPXNY2NZsnjoj1lbFVAREQBF5C9SxQKBUaPHo3Ro0cH4nQUIJINeEMRMEkyTJ1/aSVmRIsfN5T7v1KupUEaMBXuLmfAREREAceNvHox1xomSwi6fVuMrhvvdp5hCovRiR8b2wQ9vmgbMJWdqEVzvcnv8xEREbkjO8NUV1eHNWvW4Pjx42hqaoLNZmt3jEKhwN/+9je5lyIfhT7D1HqNzlbJAdKAqUVGgGNs+14BOLunHENn9ff7nERERG3JCphOnz6Nhx56CI2NjZ32+WEdU9doW/QdbK5Tcp4zTFrx45b6wGWYAMe0HAMmIiIKJFkB0z//+U80NDTgN7/5DebPn4+kpCSoVMFduk7eC3XA5O0qOcAxXehsLdDSICPD5CZgKjlaDZPBAl2Exs07iIiIfCerhuno0aOYMmUKfvvb3yI1NZXBUjejcVklF4oNeL3t9A04so76aEeWKVAZprQRCQAcjTrP7q/w+5xERERtyQqY1Go1+vbtG6ixUIB15So5jd5z8jLsQsBkajTDbvdv6xbX+qdhV6aLHxfuLvfrfERERO7I3hrlxIkTgRoLBZi2TafvYPNlSg5oLfwWBEfQ5A9xSk4B9B+XImatzh2shMUYmk2HiYio95MVMC1evBhnzpzBf//730CNhwLINcPU3abkAIjBDeC+eNsbzvfpo7RQqZUYMC4FAGAz23HuUJVf5yQiImpLVtH3Bx98gMzMTLz55pv46quvkJWVhYiICLfHPv7443IuRX5wnRYLSdG30bu95JzatRZIj/L5ms4Mk3N6b+DEFJzYWAzAMS2XMTHV53MSERG1JStgWrt2rfjx+fPncf78ebfHKRQKBkxdQKFUQBOmgqXFFvK2Ap76MAGtQQ7gX/NKi9EqXtOZrUobkQBNmBqWFivO7quAzWqHSs3+rEREJI+sgGn16tWBGgcFiTZM4wiYQl307WFrFKBtLybfWwu4Bllh0Y5slUqtRP9LknF663lYWqw4f7Qa6WOSfD43ERGRK1kBU2qqf9Md5eXlKC0tRU5OjpzLkxe04WoYakJUw+TcGkUBqLSeszp6yZSc7xkm17onvUvwNXBCCk5vdWQ7C3eVM2AiIiLZumSuYs2aNXjooYe64tIXHc2Fwm+ryQa71R7UazlXyam1Kq+6u0syTH5MyblmpVyn9/qNThQDtqK95X63LCAiInJicUcvJ2ktEOQsk3NKzpsVckDrNBoQiCm51oBJo1eLWSVjgxnlJ2p9PjcREZErBky9nDYsdN2+nZvverNCDgD0URrgQiLKn6JvyZScS/AFOKblnAp3l/l8biIiIlcMmHo5SbfvIK+UE6fkvFghBwBKlRL6SEdA508NkyTD5DK9BwDpY5OhVDmiscLd5Z1uDk1EROQJA6ZeTiOZkgtet2+7XYDN7KiR8maFnJOzF1NLg8nnoMZ1Gs+1CSYA6CI0SBvp2FvOUG1EVUGDT+cmIiJyxYCplwtVhsnXLt9OzkDHZrbDYrR5OFqqpYMaJqeBE1pXcRbu4rQcERH5jwFTLxeqDXh9bVrp5Fr4bWzwrfDbOSWn0iglmTSnAeOSxRopTssREZEcDJh6OddAwhLUDJNv26I4SZtX+lbHJO4jF61128YgLEaH1CFxAID6UgPqSpp8Oj8REZETA6ZeznWVXDCn5Cz+Tsn5GTAJdqHdPnLuSKbldpd7fX4iIiJXXRIwRUREIDk5uSsufdEJ2ZSc0b+ASbIBrw9TciaDBcKFhpRtWwq4krYXYMBERET+6ZKAaeHChfjoo4+64tIXHUnjyubgrZKTFn37sErOdQNeHzJMLZ20FHAVmRiGxMwYAEB1YQOMtcG7B0RE1Hv5tJfcypUr/bqIQqHArbfe6td7SR6NS4YpmI0rpRvv+pth8j5gci0Qb9tSoK2BE1JQdaYeAFBzogWY7PVliIiIAPgYML377rvtnnMttnVdheR8XhAEBkxdKFRTchZj67l9WyXnWsPk/ZSca71TZzVMgCNg2rP6JACg+niz19cgIiJy8ilgWr58ebvnVq1ahT179mD27NkYPXo04uPjUVNTg4MHD2L9+vWYMGECbrzxxoANmHwjnZLrfhkm1+yQbxkm14Cp4xomAIhNi0Rs3wjUlRjQeM4Eq8nmU50VERGRTwFTTk6O5PE333yDAwcO4O2330ZGRobktblz5+KGG27A4sWLMWXKlHbvpdBQaVRQaZSwWezdcpWcRq+GWqeC1WTzLcPkuo9cJzVMTgkDolFXYgAANFW1ILZvpNfXaqv4YCVsZrukoJyIiHo3WUXfH3/8MWbNmtUuWHIaNGgQZs2axQLvLubsxRSqGiZfszfOom1fNuB1Da48TckBjuJvp6bqFh9GJ1V5ug7fvbAHP7y6D6e3nff7PERE1LPICphKSkoQHR3d6THR0dE4f56/WLqSs44pVKvkNHqfEpfilJqpyQK71e7Ve4wetkVpSxowGX0an6vy/Drx48PfFrB7OBHRRUJWwBQbG4udO3d2+EvDbrdj586diImJkXMZkknrkmEK1i94f6fkgDbNKxu9yzJJpuS8CZgS9OLHTZX+Z5iaqlrfW1XQgMrT9X6fi4iIeg5ZAdOVV16J06dP4/HHH8epU6ckr+Xn5+Pxxx9HQUEBrrrqKlmDJHm04Y5u34KATje4rT7bgANfnJYEBd6SNSXnUrTtbR2TM8OkDVdDpfF8vQiXDJNBRoap7b05tv6s3+ciIqKew7e5kzZuu+02nDx5Ejt27MDOnTuh1+sRGxuLuro6GI1GCIKAcePGYdGiRQEaLvmjbS8mrZuNaov2luPH1w7AZrGj4lQdZj8yzqdruHb69mWVHCBtPOlt80pnYOVNdglok2GSUcPUVCUNts7sKMWlNw/1ehxERNQzyQqYdDodXnnlFaxbtw7r1q3DmTNnUF5ejsjISAwdOhRz5szB3Llz3W6MSqHTttt3RLxe8nr+lhLkrjgsbjVSW9zo8zUsJv/6MAG+b8Brs7au+PPUUsBJG66BNlwNc7PVrwyaU1OltI+TzWLHiU3FGLNgkN/nJCKi7k9WwAQ4GlTOmzcP8+bNC8R4KAg668WUt74I297NkzxnMvheHC7tw+Tbl5XrXnDe7Cdn9LGlgFNkYhhqzjbCUG2EYBegUPoWyFuMVhgbLRfOpRezTcc2FGPUNZlQ+ng+IiLqObpkLzkKLa2b7VEEQcCBL09LgiVnItDcYhWzTd4Sp+QUgErr25eVJMPkRWsB16DKmxVyTs6VcnabgGYfej45ua6uSxkSj35jEh3PV7bg3IFKn89HREQ9h+wMEwBYrVYUFxejqakJNpv7omI2ruw6mjDp9iiCIGD3qhM49HWB+PyYBZmoKmhAyeEqQHAcp4vQeH0N5yo5tVbl8xSsrxvwGn3YFsWVax2ToaoFEXH6To5uz3V1XWRiGAZd1gfnDlYBcGTq+l+S7NP5iIio55AVMAmCgHfeeQefffYZmps736Nr06ZNci5FMjhXyQGO6bat7xzF8R+Lxecm3DQYYxYMwo+vHRCfMxssPgVMzik5f7YckW7A6znzI20p4F0NEyBdKddYZURyttdvBSBdIReVqEe/nCREJoU5MkwHq9BQbkB0SoRvJyUioh5BVsD03nvv4YMPPkBkZCTmzJmDpKQkqFTco6u7cZ2S2/vRSbEOBwpg8u0jMGxWf8dxEa3HmQwWRPlwDeuFom9fV8gBgC5CA4VSAcEueFX07RowhflYw+Rk8KPw2zVgikwKg1KpwLBZ6di9yrGx77EfinHpzUN9Pi8REXV/sgKmNWvWICUlBW+//TabU3ZjrkXfzmBJoVJgxr2jMejyNPE114ySr4Xf4pScjyvkAEChVCAsWovmOpOXRd+tx/iynF/aWsD3XkySgOlC8DVkRjr2fXoKNosdJzedw7gbsrmxLxFRLySr6LumpgZTp05lsNTNadr0XVJplLjqD5dIgiVAGjCZfQiYBLsAm9mxpYmvK+ScnKvdjPVmj93IW/ytYXLdHsWPDFNjZfuASR+tReakPgAcQeaZ7aU+n5eIiLo/WRmm1NRUGAyGQI1Form5GatWrUJeXh6OHTuGxsZGLFmyxOv2BY2NjVixYgVyc3NhMpkwbNgwLF68GEOGDJEct3DhQpSVlbV7/4IFC/DII48E5P/S1cJdips1YSrMfmQc+gxLaHecVpJh8n6jXqvZ/y7fTo5+So2w2wSYDVboIjuun5LuI+d9DVN4rA4KJSDY/Wte6Qyy9NFaqLWt/89hV/VH/k8lABzF39nT+7L3GBFRLyMrYLruuuvwwQcfoLa2FnFxcYEaEwCgvr4eK1euREpKCrKysrB//36v32u32/HYY4/h9OnTuOmmmxATE4MvvvgCDz74IN5++22kp6dLjs/OzsaNN94oea5fv34B+X90B1FJYRi/cDAqTtXhkuuzkJjhPiOoc6lh8iXD5Lrdij9TckDb5pWmTgMmZw2TQoFOj2tLoVRAG62Gqc4KQ5VvU3I2qx3NdY6pwKikMMlrSYNikJgRjaqCBnF/ueSsWJ/OT0RE3ZusgGnKlCk4dOgQFi9ejFtvvRWDBw9GRIT7VUIpKSk+nTshIQGff/45EhIScPz4cdx1111ev3fTpk04cuQInn32WcyYMQMAcMUVV+BXv/oV3n33XTz55JOS4xMTEzF79myfxtfT5FznuRO11s8aJqtLl29/ir4BaS1SS4MZsX07PtZZw6SP1vrcfFIXrYKpzgqTwQJzB9vEuGOobgEuzBS6Tu0Bjuatw68agNy3DgNw7C/HgImIqHeRFTDdeOONUCgUEAQBzz//fIfHKRQKbNy40adza7VaJCS0nzbyxubNmxEfH49p06aJz8XGxmLmzJlYv349zGYztFpp7YvFYoHVakVYWFjb0100/C36tsjYeNfJtbWAsZPCb0FoXUnnS0sBJ12MGoDj/IbqFmj7ebcW0F39kqvMy/pg53+OO+qYuL8cEVGvIytgmjNnTres1Th58iSys7OhVEpr2ocNG4avv/4axcXFGDSoNeOyb98+zJ49GzabDampqfjlL3+JX/7ylx2ev6qqCtXV1eLjoqKiwP8nuoC06NuHGiZjIGqYvNtPzmK0wWaxt3uPtxwBk0NTlRFxXgZMkh5MSe0DJrVOhcEz+uHwtwXcX46IqBeSFTAtXbo0UOMIqJqaGowZM6bd886MVXV1tRgwZWZmYvTo0UhPT0dDQwPWrl2Lv//976iqqsK9997r9vxfffUVVq5c2e75goKCDjudd6SpqQl5eXmeDwwBa0vr2Gsqar0eV92Z1mCirtH797mqrW89x9nTJUCe+8UExprWzJcZLT5fS9C1BoL5h8+gUevdliZnj9WJH9e0VCLPzfg0A1rHdmjtaagzjT5PGfY23enr+2LA+x1avN+hFaz7PXz4cK+OC8jWKN2NyWRqN+UGQHzOZGqd8mk7lXj11Vfjj3/8Iz766CNcf/31SE5uv93FggULMHnyZPFxUVERli1bhoyMjHar8DzJy8vz+pMVbIJdwC7FOUAANAqd1+Mqai5HHioAAH36pmL4cN8zK1X6ehy7cI5IbXSH1y4/WYt9OA8ASElP8vne1Z3eixI4gp0oTSyGD/fu81W5+RCAegDA8LFDEN/ffWaqYqsZ5w5WwVRvQ5Q56aLfLqU7fX1fDHi/Q4v3O7S6+n73ys13dTodzOb20zrO53S6jmtfFAoFFi5cCJvNhgMHDrg9JjExEUOGDBH/DRgwICDj7moKpUIsgva7hikQq+Q62YDXKNkWxfcpOa3rlJwPzSsbJU0rO96DbvhVrV8Leet7x1QtEREFoOjbGwqFAqtWrZJzKZ/Ex8dLaoycnM95KiZ3ZpUaGhoCP7huThehgbnZ6lNbAatLwBSQVXL1HRd9t/jZg8lJF906Pl+aVzqP1UVoJHvztcX95YiIeidZGSZBENz+a2pqQllZGcrKymCxWGC32wM1Xq9kZ2cjPz+/3XWPHTsGvV7frg9TW+fPO6Z8YmNjgzXEbsvZWsBksHrsuO1kMbbWBflb9K3SqMQ974ydFH27bp3iT9G3SqsUezcZvGxeabfZYahxZKM6yy4BEPeXczqx8ZzPYyQiou5HVobpo48+6vC10tJS/OMf/0BtbS3++te/yrlMp6qqqmAwGNC3b1+o1Y7/zvTp07Fp0ybk5uaKfZjq6uqwceNGXH755WItU0NDAyIiIiQbBlutVvznP/+BRqPB2LFjgzbu7sq5Uk6wC7AYbV71KbIGoK0A4GgtYG62drqfnGsw5e+y/cjEMJiaLDDUmGC32aFUdf53Q3OtCYJNEN/rSfbUvuKGvJVn6v0aIxERdS9BK/ru06cPnnnmGdx22214++238cADD/h8jk8//RRNTU3iVNrWrVtRUeEoDL7++usRGRmJt956C+vWrcPq1avRp49jT68ZM2bgk08+wXPPPYfCwkKx07fdbsftt98unn/r1q14//33MX36dPTp0weNjY1Yv349CgoKcNddd/ndB6on07p2+262+BwwafT+f0mFxWhRX2qApcUGq9km2X7ESTIlF+N/wFRd2ADBLqC51uQxCJJsuuumpUBbYbE66CI1MDVZUH9e/tZB9aUGRCTo3d4PIiIKjaCuklOr1Rg/fjw2btzoV8C0evVqyT5vubm5yM3NBQDMnj0bkZGRbt+nUqnw4osv4vXXX8enn34Kk8mEoUOHYsmSJejfv794XGZmJgYMGID169ejrq4OarUa2dnZeOaZZzBz5kyfx9sbtG1eGZngOUAIRONKQJoxMjaY3QYy0qJv32uYACAyoXVaramqxWPAJC349nw/FAoFYvpEoCK/DoYaIyxGq9+B5IEvT2PP6pNIzIjGtc9cBpW6V67TICLq9oLeVsBkMvldPN3ZlJ/T0qVL3faDioqKwmOPPYbHHnusw/cOGTKk0w7lFyOtpHmld4XfgZySc2qpd5/5cU7XqTRKaPxcked6Xm9WyjX5GDABQGyaI2ACHBmijvbv86RgRykAoKqgASd+LMbw2b1jRSYRUU8T1D9XDx48iA0bNkiyOtS9STJMTd51+3bt9O3vKjmgTbfvDloLOLuAh8Vo/e4y71q47c1KuSaXbVGivAyYYvq0royrL/VvWs5uF1DnMqW377NTMLd434GdiIgCR1aG6cEHH3T7vM1mQ1VVlTidduutt8q5DIWQc6Ua4H2GyeKy+a6/fZgAz60F7HYBpkb/95FzinCZZvQqYPKxhgkAYtNap4vr/KxjaqpsFreBARzTkYe/LcC4G7L9Oh8REflPVsDUUWNHhUKBqKgoTJgwAQsXLsSECRPkXIZCyJ8NeKV9mOQUfbtuwNs+w2RqMsPZ6cCflgJOrkGPwaspOccxap1KbEngiSTD5GfAVFfS/n2Hvy3AsCv7IzzW/4CRiIh8Jytg2rx5c6DGQd2EZAPeZi8DJueUnMLR58hfnjbgldvlW7xOlBYqjRI2i91jhkkQBPGYyMQwr6cBo1PCoVApINgE1JU2+TXO2pLW9zmbYVpNNuz7NB9TfjvSr3MSEZF/uOSGJLSSDJN39TLOVXJqrcrvuiKgfdF3W65BlL8tBQDHFjAR8Y46pqaqlk4bdLbUm8VpsSgvp+MAQKlWIjo5HICjhkmwe9cE1FWdS8A05bcjxCL3ExvPoe68f0EYERH5J2ABk9VqRUFBAY4cOYKCggJYrSxO7YnkTMnJWSEHtNlPzk2GqSUALQWcnKvdLEYbzM0df636s0LOKSbNMS1nM9t92rfOqe7chaBIAaQOiceoazIAOJqK7vnopM/nIyIi/8luK9DQ0IAVK1bghx9+kGx4q9PpcOWVV+Kuu+5CTIx/S6op9HR+tRVwBBxyVsgBgCZMLU6VuVslZ5S5LYoryUq56hbJ/9tVk5eb7rojXSnX5FOGShAEMYsUlRQGtU6FUVdn4Nj6s2ipN6NwVzkq8muRnB3n05iIiMg/sjJMDQ0NuOeee/Dtt99Cp9Nh/PjxmDNnDiZMmACtVotvvvkGixcvvig3se2pXFfJeZthEqfkZKyQAxyLBZy1SUY326NIpuRkBkySlXKVHdcxNVb6n2GKTWsNmHxdKedoeOm4r7F9HSvuNHo1Lrm+dYXcrv+e8Hq/PyIikkdWhum9995DSUkJbrrpJixatAhhYa2/UIxGI9577z18+OGHeP/993H//ffLHiwFn1LtaAjpmKryHDAJdgE2s6PGR84KOaewGB0M1UYYG8yw2wUola01UZKibxk1TIC0n1JnK+VcM0y+ZIgAIKZPa2sBX3sxidNxaA2YAGDIjH44srYQ9aUGlB2vxdl9FRgwLsWncxMRke9kZZi2bNmCnJwc3HvvvZJgCQD0ej3uvvtu5OTk4KeffpI1SAotZ+G3N0XfVnNgunw7OTNHguBoI+BKso+czBqmiDZTch2RU8PkmmHytbWAa1F3nEvApFQrMf7GweLj3atOwm6zg4iIgktWwFRdXY2RIztf3jxy5Ehx81zqGZz1PN7UMEn2kZM5JQd0Xvjd4jJNJ6etAADJHnlNlZ4zTEq1QrKKzxv6KK3Yt8nX1gK151oDLNcMEwAMnJCC5KxYx3lLmpCfW+LTuYmIyHeyAqaIiAjJ5rjulJWVISIiotNjqHtxZphsFrskg+SO1diahZJb9A1IV7+1bV5pvBBAacPVsjehjUjwnGESBEGsb4pMDINC6XvLBGfH7+Yak0/bmri2FHDNVAGOWq+JvxoiPt77ab6keSgREQWerN86OTk52LRpE/bs2eP29b1792LTpk3IycmRcxkKMZ0Phd+WAG286xTWyfYozik5XzM97qi1KjGb1VHAZDJYxMJrX6fjnGJcgp0GL+uYBEEQA6aIeD204e1X8KUOjUf/S5IBOIKxo98V+jU+IiLyjqwq3UWLFmH79u145JFHMGnSJIwZMwbx8fGoqanBgQMHsHPnTuh0OixatChAw6VQ0LZpLRAR1/FyeteNdwMSMHUwJWc122C5kKGROx3nFJkQhpZ6M5prTbBZ7e2yVnLql5xiXVoL1JUakJjpucVGS4NZDFTbTse5mnDTYBTvr4AgAAe/OoMhM9OhjwrMvSEiIilZAVNGRgZefvllPPfcc9i+fTu2b98OhUIhLnVOS0vD0qVLkZGREZDBUmjofOj2bZVkmOSvktN30O3b2Bi4lgJOEYl6VJ6pBwSgucaIqAuduZ1ca5uiApBhqveyO7d0hVzH09lx/aKQPb0fTm46B3OzFQe+OI1Jvx7m1ziJiKhzsn/DjR49Gh9++CEOHz6M/Px8GAwGREREIDs7G6NGjZK1VQZ1DV+aV0o33g1whsmlhslYH5h95Fy5Zo2aqlvaB0xVza3H+thSwMlZwwQ4MkzecK1fiuskwwQA427Ixumt52Gz2JG3vgijr8lAeCcZQSIi8o+sgOn5559HZmYmFi5ciNGjR2P06NGBGhd1Ia0P26MEfJVcB0XfkpYCAahhAtyslGuTnGmqas0w+TslF5UUJm7C621rAUnBt4eAKSJej2FX9ceRNYWwWwWUHqvBoMvT/BorERF1TFbR9w8//IDa2tpAjYW6CW2E90Xfgc4w6aM0wIWkpOuUXEsAt0Vxars9SluNAahhUqqViE7xbRPeWh8CJgDoOyJB/LjyTL0fo2xVVVCPExuLYbNw1R0RkStZAVNaWhp7LPVCvk3JtdY4BaLoW6lSQn+hd1FIp+Sq2vdicrYUUCgViIj3P6vlLPy2WeydNsl0cmaY9NFar4q4E1wKyasK/N+GyNRkwZq/7MJPbx/BhuUHuO0KEZELWQHT1Vdfje3bt6OysjJQ46FuQBIwNXde9G0J8Co5oHXKraXeJP7Slk7JBW6VnJPriri2z0XE66FU+f+tEuNSx+RpWs7YZBZXB8b185xdAoDwGJ3YV6q6sN6rLJY75Sdrxc/32X0VOL6h2K/zEBH1RrICpunTp2P48OFYvHgxPvvsM+Tl5aGsrAzl5eXt/lHP4UsNk2RKTi9/lRzQmkGyme3i+SX7yMncFsVJF6WBSuv4Fmib+bEYrTA1Of7vrlN3/pC0FvAQMNWVdNzhuzOJGY4sk6XFhvoy37Zhcao4VSd5vOPfxyTTg0REFzNZv+FuuukmsY3Aa6+91uFxCoUCGzdulHMpCiGdv0XfAc4wAY4sk0avDkoNk0KhQGRiGOrPG2CoNkIQBHFVZyB6MDlJWgt4WCkn7fDtQ8CUGY2iPY4/TKrO1Pv0XqfK03WSxzazHZv+cQALnr0MKk1gPrdERD2VrIBpzpw5bBvQC2ldOn370lYgYAFTtLR5ZXRKhDhNpVAqJAGdXJEJjoDJarLB1GgRs1uNla0BU5SfLQWcXAOmOg+9mCQtBbyckgNaM0yAo44pa0pfH0YICHYBlacdBeOO2ikN6koMqC5qxJ6P83Hpr4b6dD4iot5GVsC0dOnSQI2DuhG1VgWVRgmbxe55Ss4Y2FVyQNsMkyNQck7J6aO1fu3p1pG2K+WcAVMgM0z6SEcAYmy0+JZh8mlKLlr8uKrA95Vy9WUGsX4pOTsW467Pxpd/2ga7TcDhbwrQb3Qi+o5M9Pm8RES9hbwdTKnXcmZxPE/JuaySC0AfJgDQuxR1Gxschd/OKblATcc5dbRSLpABE9Ba+N1ca4K5ueN76qwZ0oarfSpuD4vWieOsLmyA3cfC78pTrUFW8qBYJAyMxvibWjf43bzikKTbOhHRxYYBE7nlLPw2+7A1iiYAW6MAbabkGsywtFhhtzoCgEC1FHDqaKWc67YoAQmYXAq/68ua3R5jbrbAUO24bmy/SJ+nu51ZJovR5jGT1VaFS/1SUpZjem/UvIFIu9DjqbnGhC3vHGGrASK6aMn6DXfjjTd6PEapVCI8PBz9+/fH1KlTccUVV8i5JIWIM8NkNdlgt9qhVLuPrcWASQFxxZlcbafkXDfhDXSGKaKD5pWNrtuiyFwlBwCxbeqYktxswuu6gs7TlijuJGbGoHB3a+G3L+eodK6QU0Acm0KpwPR7R+Ozx7fA1GRB4a5ynNx8DkNmpPs8NiKink7WbzhBEGC1WlFWVoaysjJUVlbCbDajsrJSfM5sNqOkpAQ//vgjnn32WfzhD3+AxdL5NA91PW+7fTv7MKm1qoAtAJBmmExB2RbFyXVTXYNkSs7xcXisLiArxCQZpg5aC7gWhPuzys3fOiar2Ybqs43idbXhrUX1EfF6TL1zpPh4+3vHfM5eERH1BrICpnfeeQcJCQm45JJL8Prrr2PDhg34/PPPsWHDBrz++usYN24cEhIS8PHHH+M///kPJk2ahH379mH16tWBGj8FibetBZwZpkCtkAOk024t9WYYXVoKBHpKLjxeL27F4pySs5ptaKlzXDMQ03GANADqMGByLfj2YYWck2Sl3BnvO35XFzZAsDmm2pKz2me+Bk5IxZCZ/QA4Pt+b/nkQdqvd5/EREfVksgKmFStWwGw245VXXsGIESPEDINCocCIESPw0ksvwWw2480330S/fv3wzDPPICUlBRs2bAjI4Cl4tF5uj+LcGiVQK+QARwNMZwBmbJthCnDApFIrER7ryFo5p+ScdUQAECmzpYBTVHIYlCrH90ddBxma2nMuLQX8mJLTR2nF8VYXeV/47dqwMikr1u0xk349DNGpjj3xKs/UY99np3weHxFRTyYrYNq6dSsmTZoEpdL9aVQqFSZNmoQtW7YAAHQ6HS655BKUlJTIuSyFgCTD1Mn2KM7GlYFaIefkXCHWUm8Oyj5yrpyF3y31ZljNtoBsutuWUqUUA46GMoPbYMaZedLoVeJWJ75KupBlsppsqPfQ88nJ2X8JAJIGtc8wOcakxsz7xkBxIeg78OVplB6r8WuMREQ9kayAyWAwoLnZ/Yof12MMhta/qGNi3P9Apu5FF+G5eaVgF2AzO6ZmAjklBziWyQOODWENta0Zn0DXMAHSoMhQbWzTUkB+wbdTTB9H1shmscPQZu86q9mGhgrH91JMmu8r5JwSM13qmLyclnMWfKu0SsSnR3V4XNKgWIy7IdvxQAB2/ue4X2MkIuqJZAVMAwcOxA8//IDz58+7ff38+fPYsGEDBg4cKD5XUVGB2NhYOZelEPBmPzmrOfAtBZxcexC5TlUFekoOaL9Srsm1y3eAMkxA25Vy0mm5+vMG4ELSyZ/pOCfXOqZKLwq/WxpMYlfzxIwYj5sMj742U+xAXnWmHi31pk6P96TyTL2kqzp1vRObinHwq9OSliFEJLOtwC233IInn3wSt99+O6655hqMHDkScXFxqK2txZEjR/Dtt9+ipaUFt9xyCwDAYrFg9+7dmDBhQkAGT8GjC/ccMEn2kQvwlJzrBru1xY0uzwdvSg5wrJSTZJgCVMMEtFkpV9qE9Jwk8XGtpMN3BPwlLfz2HDBJGlZ2UL/kSqlUIH1sshjEnj9ajUGXp/k+UAAFu8qw4W/7oVQrcNXD45A+JsnzmyioKk7V4ae3jlz4uB5XPjQ2oJ31iXoyWQHT9OnT8eijj+Lvf/87Pv74Y3zyySfia4IgICwsDI888gimT58OADAajXj00UeRkZEhb9QUdNKib/c1TMHYFsXJNcPk3LJDrVNBow9sJgtovz1KoLt8O3WWYfJ3S5S2dJEaRCWHobGixVH4bbN3mjWSFHx3UL/UVt+RCTj09RkAQMkR/wOmk5vOAQDsVgE/vLoP8x6fgNSh8X6diwLDdQPmoj3l2PtJPsYvHNx1AyLqRmT/9pk/fz6mT5+OLVu24NSpU2hubkZ4eDiysrIwZcoUREa2/vCPiorC1KlT5V6SQsCbtgKSbVGCGDA5BSO7BLTdHqU1YNJFagIaoDlrmAC062UUqIAJcDSwbKxogc1sR12JAfH9O65Lcv0F6U2GCQBShsSJew2eP1IFQRB8rrmymm04n1ctPraZ7fjupb2Y/8RESZaMQqtty4sDX5xGXL9Iv4Niot4kIL8NIiMjMXfu3A5ft9lsUKkC+wuVgsubom/XDFOgAybXKTmnYNQvAdIpuYaKFhhqHHU5UQGcjgMcAZg+Wgtjg7ldhsk5JafSKBGVHC7rOkkZMSjYUQbA0cCyo4BJsAviCrmwWJ3XK/PUWhVSBsfh/NFqNFUZ0VDejJhU36YRy47XiAsGlGoF7FYBlhYr1j2/G/OfnCSrjov8V1/WvuVF7puHEZ0SjqRBsaEfEFE3Iqvo+7PPPvN4jM1mwzPPPCPnMtQFvCr6dq1hCmLRt1OwMkzaCDU0YY6Ar+pMPYQLS/4DOR3n5JyWa6lr3YTXZrWjofzCCrk+EVDKrBlJzPSujqm+zCBOdyYNivEpS5Q2MkH8+PzR6k6OdO/cwSrx4yl3jETq0DgAgLHRgrX/bxcaKzpffUvB4cx8asPVGDzD0azUZrFj/Sv7YKgxdvZWol5PVsD02muvYdOmTR2+brfb8cwzzyA3N1fOZagLqHUqsedOhxkmUxBrmNwER8FoKQA4Gq06s0yu/6dgBEyu03LOLFNDmUHstC13Og4AEga6bpHScWsBScG3j9mDvq4B02HfA6big5UAHPvVDRiXgtmPjBPH3VxrwtrndqO5lr+gQ8lqtolbAsWkRWDy7SPEQLa5zoT1f90nWRlLdLGRFTCNGjUKy5Ytw759+9q95gyWNm/ejJ///OdyLkNdQKFQiHVMpg6KvoO5Ss5dcBSsKTkAiEhoHxwFJWBKc10p5wiYXOuXAjEVpYvQIDrFMa1XXdTQ4TYmFS71S0lutkTpTEJGDLThjqzi+bxqr7uKA0BjZbNYK5OcFQtdhAbacA3mPj5evD8N5c1Y+9xuGBvNnZ2KAqihrDWrF5MaAZVaiVkPjRW/D6rO1CP3zcMQBO8/10S9iayA6fnnn0d6ejqeeOIJ5Ofni8/b7Xb8+c9/xqZNm3DdddfhwQcflD1QCr3WgCn0GSZdhKbdcuZgTckB7htUBrqGCXC/Ui5QLQVcOaflbBa75PyunA0roQCSMn0LmJRKBdJGOLJMpiYLagq937vOdTquX06i+HFYtA5XL50otnKoPdeE717YA3NLx53mKXDqS1u/TpwtMMKidZj9yDhoLvxBdGZ7KQ58eTqg12UA1r0YG8z4dtlOrH91H5pl9lnrbWQFTBEREXj55ZcRGRmJP/7xjzh//jwEQcCzzz6LH3/8ET/72c/w+9//PlBjpRDTXij8trRY3WYQrEFcJadQKtpllIKZYXKXTQrOlJy0FxMA1JW0FtoGYkoOABIzXKfl2tcxWc02VJ919LeKTYuE1qXvlrdc65hKjlR1cqTUuQvTcQCQPlraeykiXo+rl05A2IX9/SrP1GP9K3s5FRQC9aUuGSaXr9P4/lGYcd8YcZPqvR/lo3B3WUCueXZfBf591wZ899IeGJuYTewOjm04i9K8GhTtLse3f97J2jUXsgImAEhISMArr7wCu92Ohx9+GE899RQ2btyIa665Bn/4wx8CMUbqIq6tBZwFyq4kU3IBDpgAQN+m8FsfpBomAIh0s0IsGAFTVFIYlGrHbx7ntJRzSk6hUiDax9VmHZEWfrfP/lQXNoh1U8k+Tsc59R3Zmh0qOeJdHZPNaheLxPXRWkm9lVN0SgTmLZkAXaTj6680rwYblu/vcGqRAsO11YVrwAQAA8alYMKNrf2YNr1+CNU+ZBU7su+zUzAZLCjeX4mvn9ohLn6gruNa91h/3oBvnt2Bxkp+XoAABEwAkJ6ejhdffBG1tbXIzc3FNddcgz/+8Y+BODV1IUnA5GZaTtK4MggNJcPatBYIZYZJE6YWM2yBpFQpEZ3i+GVUX2aAzWoXf1HFpIZDpQ7ItyQSB3aeYZI2rIz16xrRqeFiK4LyE7VeZYHKT9TCcuHrpt/oxA67SMenR2HOo+PFqaDi/ZU4sfmcX+Mk70gCJjeB++hrMzFosqMfk9Vkw/ev7JU1ZdNcZ5Ks4qwvNeCrp7ZLvjYp9KqLpIFwY0ULvnl2Z7vecRcjn34jrFy5stPXhw0bhlOnTiEhIUFyrEKhwK233urP+KgLaSXbo7SvIwl2hqlta4FQBkyRiWF+b4DrSWxaBOpKmmC3Cig9Wg2bxX7h+cD1HtKGaxDTJwL1pQbUnG2E3WqH0iUYc/ZfAnwv+HZSKBToOzIBJzeXwGaxoyK/Tqxr6kix63RcTudboSRnxWLW7y/Buud2AwDyfyrBsFn9/Rqr89rHNxQje2pfDJyQ4vd5eitnD6aIBL3b72eFQoGpd45EQ5kBlafrYag2Ys/qk5h21yi/rld8oKL13CoFBJsg1s9ccX8OBozn5yjUTAaLuJdmbN9ICHYB9aUGGKqN+ObPO3H10gmI69dxI9zezqeA6d133/XquPfee0/ymAFTz+SpF5M16AGTNMOkjwpewBQep4NCATjrT90VgQeK63RH4Z5y8eNA1S85JWZEo77U4Cj8Ptckmf5yFnyrtErEp/v/AzBtZCJObi4BAJQcrvIYMIkF3wrplF5H+o1KRFx6FGqLG1Fxsg6NFc1+Nfa0mm3Y9I+DMBksKNpTjtHXZmL8jYNl97zqLYwNZpiaHN/jnTUhVWtVuOoPl+DjR36CpcWKwl1lmHz7CL8yo8X7W4Pn2Q+Pw8Gvz6DsmKOh6fpX92HSr4dh5NyBPp+X/FdztjW7lDY8Hjm/yMLa/7cbtcWNaKkz4Ztnd2Le0glIHHhxduP3KWBavnx5sMZB3ZCnbt/B3EsOkK6K00VqJBmSQFOqlAiP18NQ7ShwjApC/ZKTayapyCVgiusX6IApBqe3lQIAKgvqxYCppcGExgt/RSZmxHS615wnkgaWHuqYDNUt4kbKSYNivF71OOjyPtiz2vG+09tLkfOzQT6Ps2hvhSToP/T1GdQUNWDG/WOgjwxeIN5TuHb4dm194U54nB79L0nG6a3nYW62ojSvGv1Gd54tbMtmsaHksCN41kdr0Xd0ItJGxCP3rSM4vfU8IAA73j+GpsoWXHrzUG4AHCLVha0bnccPjEZ4jA7zn5iIdS/sQdWZepiaLFizbBfmPjYeydlxXTjSruFTwJSTkxOkYVB35KmGSbKXXID7MAHSKblgthRwikwMEwOmyCC0FHBy/YXUUt+6MiiQU3KAm47fM9MBtGlY6eX+cR0Jj9GJGaDKAscPVGexdlvnDrm0E/DhF+ygy/pgz+qTAIDT2877FTDlu6l/OneoCl8+sQ1X/WFcp/vtXQxc95DzZpubgRNSHIENgMJd5T4HTKXHW2vZ0sckOTJ9ShVmLB6NqKQwHPjC0brgyNpCNFW1YMZ9Y6DWcnutYHOtX0oY4PgDSx+lxdVLJ+C7F/ei/GQtzM1WrH1uN2b/cRz6DOs8o+yNo98VYt+npzBgfAom3TLUrxW7oRK8P9mpx/NlSk4T4K1RAGnRdzDrl5xcV8oFY4WcU9sVSAAAhee/7H2VMDBaXAruuvJFWvAtP7Uudv0WINlQty1f6pdcRSWHI3lwLACgtrgJNWcbO39DG4Yao5jNiEwKw9X/O1EMwBsrWvDVU9txZkepT+fsbXzJMAGOgn2V1vHro3BPuU+NSwGgeH9r/VL62NavBYVCgfELB2PqnSPFrFLh7nKsWbYLLQ3sCRRsNRcCJoVSIcl4OxvLOqfcLUYb1r2wB+cOVbo9j7csRit2rzoJU5MFJzedw2ePb/Frq6VQkRUwrV27FnfccQeqqtz3YKmqqsIdd9yB9evXy7kMdRFdROdF32LApID4wzOQXIOktivmgkGs8VG0/nUVDLoITbuC9ujk8ID/Ba0NU4vBWc3ZBtguLMuvdOnwLTfDBLTZJqWDaTm71Y6SC1uo6CI1kuyXN7IuTxM/Pr3tvE/vPbWlRKxNy57aF2kjEnDdssvFXlVWkw0/vnYAu1ed8PkXf2/haYVcWxq9Gv3GOAIdY4MZFSdrvb6WIAhi/ZJCpUC/0e1r2YbMTMecP7Y2zKw4VYevn97htr2JL6rO1OPI2kK0sCFjOzaro9YRcCxMafvzSKNXY/Yfx4l/7NjMdnz/8l5ZqxoLd5VL/vBuqjJizV92YccHx7pl7zVZv+XWrVsHjUaDxET3xZuJiYnQ6XT49ttv5VyGuojWUw3ThS90tVYVlBVlsf0ixQaGfUbEB/z8bQ27sj/GLczGzPtz3GeBAiimzfRboLNLTs4O3nargNriRgh2QVwhFxajFdsCyJE6LF7cd7Cjvw4rTtXBcqFjd99RiT4XW2dcmipmHE5vK/W6O7QgCGJROgAMntYXgCODeM1Tk5A9ta/42sGvzuD7Fy/OBorOgEmpVng9He260rBwd3knR7a/lrPfUuqQuA6nYPqNScI1T01CeLzjZ0BDWTOO/XDW6+u01VJvwrfLdmLHB8fwyR9/Qn5uCbuMu6graYL9Qm+2+A7+YFRrVbjyD5eIn3u7VRCnT/2R/1Pr96brtPiRtYX44n+3uW2J0pVkBUyFhYXIzs7u9JisrCwUFhbKuQx1EZ2HKTlnDUIwVsgBjm/O65+fggXPXoZhV/q/nNxbGr0aY6/LwqDL+gT9WrFtArJAF3w7STp+n6lHfakB5mZH4JKUFRuQQFejV4uZqvpSA5qqWtodU+yyHUr6GN/qXQDHiklnJqupqgUV+XVeva8iv04MBvoMj5essFNrVZh2zyhM+s0wMRhz1jXVFPs27deT2e2CGMBEp0R4Hcz2H5sMpco5bVbmdfBx1mV1XPrY5E6PTRgQjauXThSnlvO+P+t3A9NjP5wVf2aZmizYvOIQvnthj7gA4mLn2og0YUDHNX0qtRJXPJCDiHjHH1vF+yvQVO37PWysbBH/wIpODcd1/28yLr1lKFQaR1hSV9KEL5/cjv1fnILd1j2a1soKmAwGA6KiOi+WjIiIQFOT+72sqHvz1OnbuTVKMFbIOemjtUgO0C/27qRtRinQLQWcEjNcCr8LGiT9l5L9bFjpjqdpOdftUPqO8dxOwJ1BrtNyW72blnPNLmVP69vudYVCgZFzB2Le0gnQRzm+3hsrWrD2/+26aPawM1S1iL3AfMms6iI04irJpiojqgu86/ztWr/Uf6zn4Dk2LRL9LwRWhhqjpBWHt6xmG/LWt89OnTtUhU8f/QlH1hVetNOxTu4KvjuiVCsxZGY/AI5WLCc2+t5U9tQW6femUqnAqKszcN1fLhfLIwSbgL0f5eObZ3ZK6uy6iqyAKSEhQbLprjunTp1CXNzFt/ywN9Do1XDGKZ01rgzGCrnerm2GKdAr5JxcC78rz9SjwqV+yd+Gle6kSbZJkdY0NteZxL9eEy4sVfbHgPHJ4l+fZ3aWefyr02qyicXcGr0KGRNTOx7/8ARc95fJra0X6s04sbHYr3ECjozsV09vx0e/34z8n7r31E9nW6J4MnBC6z0t8GJaztxsQdkJR71TdEq419cbMXeA+PGRdYU+jRFw1L0ZGxxTrZmT+uCqhy8Rp/qsJht2vH8M3zy9A7XnLp7MYlvVRa3/d29qOIfMTBczsyc2FvuUBRIEAfm5FwImBZA9pfWPmbh+UVjw7GXIuW6Q+Pun4lQdPl+yFWV7G7v0e0lWwDR+/Hjs3r0bu3fvdvv6rl27sGvXLkycOFHOZaiLKJQKsb6gbQ2TYBdgMzu+QYI1Jdebta1hClaGSaNXi8FYbXEjyo7XOF5QtNY3BULyoBixQLfkSLXkh5rrSpp+fkzHOWnDNeh/iSPTYGwwe+z7VLinXKybyrg01eP2PZGJYZixeLT4+PCaArFQ3leHvj6DipN1aChvxuY3DuHbP+9E9Vn5e68Fg2SFXB/fmoIOGJcsBuSFuzxPy507VCXuYZg+NsnrzHHaiATEpTu+jitO1qHyjPe1LYIg4MiaQvHxyKsHYsC4FNzw4lQMnZUuPu/8pbzv03y/P+89lSAI4gq5iHi9V21cIuL1YoawudaEs/u8XzFXfuF7A3D8sdJ2VbJKrcT4hYNxzVOTEJ3i+Jq0mmw4s7YGed8XeX2dQJMVMN18883Q6/V49NFH8fzzz+OHH37AgQMH8MMPP+C5557DY489hvDwcNx8882BGi+FmLPwu20Nk+sKhmC0FOjtIpPCxGxJRIIe2rDg3UOx8NsmoLbYuQomMqD9TpRqJVKHOQrzjQ1m8TqAS3dvAOl+Tsc5SabltnXeCuCkS++l7Gn9vDp/XL8o9B/nCMqaa0w4vcW3FXmA4//f9od62fFafLF0G7a/nyd7pVeg+dqDyVVYjA6pQxwzCPWlBnEj6Y4U+1C/5EqhUGDEnIHi46M+ZJlKDleJq79SBseJ9XbacA2m/HYk5v9pIqJTHb+U7TYB+z49hS+WbvW5fUVP1lTVItY2xndSv9TWUJfa0uM/el+Qn5/r8r05vf1UuVPK4Dj8/LnJYmCrj1Nj8HTvvpeDQVbAlJaWhhdeeAHx8fFYu3Ytli1bhoceegjLli3DunXrkJCQgJdeeglpaWmeT0bdkrOOyWywQHCZ45fsI8cpOZ8plQqMWZAJTZgaYxZkBvVaCRnt0+vJAZyOc+rrZlpOsAtiDyRtuBrJ2bGyrpGekwhtuCO4LNxd1uHS46aq1oLSqOQwpA71vixgzLWtn4+D35yRfN174/CaAskGw86/kAW7gKPrivDxw7nI39J9pul87cHUluu0XGer5ex2QezFpdGr0MeHzwkAZE1JE5uintleiuZao1fva5tdaqvPsAT84vkpGLMgU5xiqj3XhHUv7obF6H8dm9Vsw77P8rH/i1OyNikOBdcO3760VOk3KlFcVXnuUBUaK5o9vsdqtuHMjjIAjq+DgR72DNTo1Zjy25GY8+h4ZP8sMSgbvXtLdvOc0aNHY9WqVXj66aexcOFCzJ8/HzfeeCOeeeYZ/Pe//8WIESMCMU7qIs7mlYIAyQ+PYG+LcjG45Pps/ObtKzH8qgGeD5bB3dRbUgALvp0k26RcCFaazrfuUdZ3ZKKsbVgAQKVRYeCFWiSL0Yaz+yrcHpf/UwlwIR4ZPK2fT4sGUgbHiQFW/XkDiva6v4Y7LQ0mHP3OkV1Sqh2b1f7ihSkYtzBb7FXWUm/G5te7zzSds4ZJG672a79Gb9sLVJ2uE+uI0kYlQqXx7eeGWqvC0CscmQa7TcCxDZ5rzGrPNYod5qOSwjrc0FetVWHCTUPws2WXIe7C3orNNSYc/OqMT2N0tfM/x7Hvk1PY+1E+Vv9uE7atzHO7grQ7kBR8D/Q+YFIoFeLnBAJw/EfPn5MiH6fKndJzkhDVL/j9+DoTkG6DGo0GM2fOxOLFi/HHP/4R9957L2bMmAGNpvu2OCfvdNS8Mtgb714sQrFHVsKAaLSNFwJZ8O0U1y9SbMhZmlcDu9WO2tOtvyD6yZyOcxp0eWvbh9Pb20/LtSsodbM6zhNJlunr015ngw5/WyB+bwydmY6IhDCotSqMvS4LN7w0DQNcggvXabquatJnNdvQVOXI1MSkRfi1GjUyMUxsRFpd2NBhlsG1nYA3q+PcGX5Vf/F75tgPZz3etyNrC8WPR8wd6LFlQuLAGFz50FixXcLhbwvEWhtfVJyqk/SMslnsyPu+CB/9fjNy3zrcLVZ8uaop8q6lgDuDp/cT+7Cd2HTOY/2XdOVq102v+YNbo1CnXOtcXAu/XbNNDJi6N7VOhViXPk8qrRLx6YHfO02hUIir5awmGypO1aFOEjD5X/Dtqs/wBLGhafH+inb1deUnajstKPVGv5wkMdNQeaq+tVi+Ey31JuR97/glqdIoMabNnndRSWG46veXYM5j49tN0/301mGfx+hKsAs4f7Qa5kbfppAaylqDAV/rl1xlTPScZZJsh5Ljff2Sq4iEMHG1o7HBjDNuAmanlnoTTl2oQdOEqTF4hne/nGP6RGDEvIEAHIHOzg+P+zRGu82Orf93VMxwpo1IEH9G2m0CTm46h08ezsXGfxzoNv2+nCvkNGEqRCX5VvgfHqsTp9WMDWbJhuJtGWqMOH+kNePnrH/rKQIyGVhRUYH9+/ejqqoKFkv7gkaFQoFbb73Vp3M2Nzdj1apVyMvLw7Fjx9DY2IglS5Zg3rx5Xr2/sbERK1asQG5uLkwmE4YNG4bFixdjyJAh7Y7dsmUL3n33XRQVFSE2NhZXX301fvOb30CtZjGzLrL1Hrj+YpJmmHifurvEjBixEDsxI0b21FhH+o5MEHsknd5eiqbzjimYuPQosdGdXEqlAoMu64Mjawthtwoo3F2GITNaVzudzG39C3ZwJwWlnVEoFBhzbQY2vX4IAHDwqwKPG40ecskuDbkivcP/b/qYJKS9OAWHvy3E/i9OwWa24/S2UmRP7et3UPnT24dxcnMJ9HFqjLrE5vV0V31pa5G2nO72AyekYvcqxwbJhbvLMWp+huR1Q3WL+Es5MTMG4bH+T62MmDtAbBdxdF0hsqf1dZsZO/bDWbG/1NAr0n1aWDH2ukE49VMJWurNKNpdjpIjVZIavc7kfX9WbKMRPyAKcx8fD7PBiiPrCpH3fRHMzVYIgmPRwultpRgwLhk5P88K6KpVXxibzOJUYXz/aL+y3kNnpaNgp6Mu6fiGYmROct/8V7JN0bS+IcmwB5Lsn5qvv/46brrpJjz33HN4++23sXLlSrz77rtYuXKl+PG7777r83nr6+uxcuVKFBUVISsry6f32u12PPbYY/jhhx/wi1/8Avfccw9qa2vx4IMPorhYOse6Y8cO/O///i8iIyPx4IMPYurUqXj//fexfPlyn8fcG3XU7Vu68S4zTN2dawPLQOwf1xHXOibXeob0nMBMxzllunRjP721NctgMVpR4Oy9FKaSFCT7cw1ndurcwUpJnUdbLfUmHFvvkl3yUMiv0qiQc90gTL6ttcZz6/8dlXxfeatwd5k4zWGstaL8ZJ3X760vdckwyQiYYvpEiN3qy/Nr2xVkFx+QPx3nlJwdKwYX1UWNKDvefh8710aVCqUCw2f7VieoDddgwk2tf1zveP+YV32GDDVG7P3YEThCAUy5fQSUKiX00VqMXzgYN702A+NvHCw2SQWAor0V+PJP25Dv0sjRH+YWK87sKBXrxLxV42P/JXfShieIKw3PH62W9PZyEgRB8seM67ZEPYWsgOnrr7/G6tWrMXbsWDz77LMQBAFz587Fk08+iQULFkClUmHGjBn429/+5vO5ExIS8Pnnn+Pjjz/Gvffe69N7N23ahCNHjmDJkiW47bbb8Itf/AKvvfYalEplu+Dt9ddfx6BBg/DKK6/g2muvxYMPPoibb74ZX331FYqKuq7fQ3ehjehgSo6r5HqUgRNSoA1XQ6lWIGty8FatRiaEib94nf12AKDf6MBMxzklDYoRp7XO51WLv6ALd5WLK9QyJ/WRNV2sVCklmZJDX3dcAHzoG5fapSvSERHnXTYte1pfsR1DY2UL9n9+yqcxtjSYsOWdo5LnnKsSvSGnaWVbYvG3gHbduH3ZDsUThUIhaWTprsWAa6PKjImpiPJyfzxX2VP7ImmQIzCrPdfk1T5229/PE7/+hl6RjuRs6ZSTNlyDnJ8Nwo3LZ2DSr4ciPO5Cpk0Atrx9RLI9iS9MBgu+/NM2/PjaAax/dZ9P762WUb/kJCn+hvvi78rT9WILi9ShcZJtinoK2QFTamoqXnrpJUybNg0AkJqailmzZuEPf/gDXnnlFfz000+oq6vz+dxarRYJCZ2nwDuyefNmxMfHi2MCgNjYWMycORNbtmyB2ez4RiosLERhYSGuvfZayfTbz3/+cwiCgE2bNvl1/d5EkmFqdl/0zQxT9xcRr8dNf5+JX71+hU+rYPzhuk0K4Fg6nBLgWgWFQtFa/C1AXKZ80qW/SyD6tQyZ0U/MBpzZXuq2oLm53oS89Y4/rrzJLrlSKBQXshCOqYlD3xb4VNeybWVeu4xCiYeGnq4kAZOMGiag4/YCVrNNXDUZFqtDYgC+/jIm9RGn9Yr2lKOxsvXz4q5RpT8USgUuu3W4+Hjvx/mdZm/O7q9A4S7H/1sfrcWEG9uXfzhp9GqMnJeBG/82XZw2tlns+OHVfeKqUm/ZbXb8+Np+MRgpP1HrU8dySYZJxudm8LR+UKodX8cnN59rV5Cf7zpV3sOKvZ1kBUxFRUW49NJLoVS2nsZma71JOTk5uOyyy7Bq1So5l/HZyZMnkZ2dLRkXAAwbNgxGo1Gcljt50pE6bVvXlJiYiKSkpA63famqqsKJEyfEf705E9VRhsm5jxzAou+eQhumhj7S92XjvkprEzCljUiASh34mqlMSRPL82isbEZpnqM4O6ZPhOyeT4Dja9vZMFEQHKum2jr09Rmx6/3QWekI9zK75BTbN1IsEBdsAra8c8Sr3k9ndpSi4EKgqIvUiBm3qoJ6GBu9m5ZxrtaKSNDL/j6OHxAlZnJK82pgbDKLHzv/wErPSQpI3YpKrRQ35BYEiMX2gLRRZfLgWFlT0MlZseLUkbnZij3O6bY2rCYbtq3MEx9festQsWdUZ1QaFSbfPkKcYmysbMGmNw761Ptr+/vHUHJYGiQ764m84cwwKVQKWTsO6KO1YkG+qcnSLmh2FuirdSoMvNT/qfKuJLtaNzKy9Qbr9XrU10tb1qenp2PPnj1yL+OTmpoajBkzpt3zzoxVdXU1Bg0ahOrqasnzbY91vt7WV199hZUrV7Z7vqCgQBIweqOpqQl5eXmeD+wijeWtDdfKisuRl+cIlM4Xt36eSyvOw5RXF+qh+aW73+/ewKq0ObbLuPAzX5VsDdo9j0jVwlBmRuXpevz4duvPmZihGhw7diwg11AOsEGpUcBuEXB8YzHCR9qhjXAEF+YmG/K+d/zlrFQrEDbEv/+rbrAAfbwaxhorKk7WYdOHu5ByScfTI+YmGw683dqFfMBVMWgqNaOhHIAA7PruIBKHd54xsjTbxGyGOgoB+RxFDdKgsbIFgl3Ajq8PIHlMJM782LrCUJFoCtjXgiLdBoUKEGxA3oYihI+wQqVVIu+j1l/UcaPUsq8Xcwmg3KmA3Szg+I/F0GVaEZHi+MPD+fOk6MdaNFU6CqdjBuphjqtDXp7327f0nx+J2n81wtpiR/H+Snz/9nakT431+L7SPY0oWO+4vwolIFwoszqWWwT9MM+ZKrtVELNRYQlqnDx1wusxuxOWZQe2OT7e99VxmOPqAABVeQaxBjYuW49TBe4DT0+C9fN7+PDhng+CzIApKSkJlZUuu5D37dvuh1RBQQHCwnyfP5bDZDJBq23/l7TzOZPJEQQ4p+Y6Ora52X3/jQULFmDy5Mni46KiIixbtgwZGRluV+F1Ji8vz+tPVleojzfgMBx/rUToosSxGg6dwFnUAQAyszOQNty/6dNQ6+73u7coyGxE5WnHL4wJc0f5vFTZW9aZeuz6r+OHfOWRC9NLCmDyL3IQkRC4nzstV6rFVXnWAh1yFg4GAOz44BjsVkdkOPyqAci5dJjf14i/NxVr/rILAFC8qQGXXpvjdqNiQRDww6v7YW1x/HbMmJiKqTfkoORwFc7vcASNilq9x6/z8pO1ABxTmGnZyQH5vkhQ1+L8jh0AAPN5FYbdNAyHVmwGAChVClw6Lyeg2wDVT3b03LIZ7VBVRqHPsHhsO+PI+EclhWHyz8d77L3kDUV5hGMVoACU/2TE/D+NgUKhQF5eHvpEp2P7TkeGS6lW4Kr7J/i1mXZSZBrWPb8bEIDi3HoMn5SN9E5WTZ47VIntLpm1qXeNwokfz6H8ZC1aKi3oE52OuH6d1yRVFdZDsDvOkTY4SfbXgDBMwLkNP6GuxICGYpM4hu++bf1jZvyC4eg73L9FIF3981tWnnzkyJE4erS14HDKlCnIz8/HSy+9hO3bt+PNN9/Ezp073WZ7gkmn04nBkCvnczqd44eQM1Dq6FjncW0lJiZiyJAh4r8BA4LbqbkrdbRKzsLGldSJ8QsHIyYtAv0mRwctWAKAzMvbL1/uOzIxoMESAIy6eqBYZ5T3fRHMLVY01xrFQmCVVonR13pfu+RO2ogEZE1xTDOam63Y+YH7DNnprefFXjf6aC0uv304FAoFUofGQ3HhW7HkcLXHZpty9pDrSHJWrFhbVHKoCpWn68Ul632Gxwd8z8SRcweKHx/9rgiHXWqXvGlU6fV15g0UpzzLjteKU16CIGDr/x0VFziMWTDIr2AJcGwzMv6XjkAcArDpHwc7bAJaW9KEDcsPiFN3o6/NxOBp/ZDhMtXlrOvrTI2fW6J0RKFQYOgVLvvLbShGc51J3E8yIkHfY/64dkdWwDRnzhz07dsXZWWOT8xNN92ErKwsfPPNN1iyZAk+/PBDpKSk+LzKTa74+Hi302ltp+Bcp+jcHetv0XlvIq1hYqdv8k7fUYn45cvT0H9mcBvTRSa03yfO395LnYlICMOgya3BzIkfi3Hw6zNin59hV/aX1VvIybX25fS2Upw7JN0B3lBrlNTKTL59BMKiHddVa1WITnfUTzVVtUiaUrojdw85dxRKhdjN3GaxY7vLWP1tVtmZhIHRkm1sTm5yZMx8aVTpDZVGhUtvGSo+3vmf447mrAcNYluD6JRw2ftCjlmQKW7+bDJY8MPf9rcrnjY2mvH9S3vE7UUGjE/BhBsdgZZrwFSws/PNqQH/t0TpTPbUvuLG4vk/leDEj8ViYJc9tef1XnIlK2AaO3YsXnrpJaSmOj5J4eHhWLFiBZ555hnceeedePLJJ7Fy5Urx9VDJzs5Gfn4+7HZp34xjx45Br9cjPT1dPA4ATpyQzttWVVWhsrJSfP1iplQqoLnwV6GkDxP3kqNuYpBLmwRtuLrD/cLkcs0gHfq2AMcv7GUWiOySU1i0DhN/1Tqtv+3d1m1TBEHAln8dEXeVH3R5H7HI1ikms7Xg3LkBckcCuULOlevecpVnWut4+l8S2NYSTiNcskxOvjaq9Eb/S5LRb7RjKslQbcSuVSdQtKG1B9Tltw2HWivvZ6FCqcD0e0aL2azqwgZJgGyzOlbSNVZcaDQ5IAozFo8Wg5CIeL24IrWuxOBxtZxrwBTfPzDd/3WRGrFPmrnZKmmV0RN7L7kK2NKV+vp67N27F9u2bUNUVBSuueYazJo1K+j1S1VVVSgqKoLV2pr9mD59OmpqapCbmys+V1dXh40bN+Lyyy8Xp+IyMjLQv39/fP3115Ji7S+++AIKhQLTp08P6th7Cl1E+4DJ4rpKjn2YqAtlTEwVl/4PnZUu+5dWR+L6RmLAhb/+W+pMYnZp+FUD3NYa+Wvw9H5i1qShvBkHvjgNAMjfXILiC/2MwmJ1kiXvTrEZLgHT4c7bCzgDJqVaIe44Hwh9hsa3WyEW0ycC0SmBC8pcDRifItn+xp9Gld5QKBSY9Oth4r5ped8ViXVkmZf1CVivMV2EBlf+/hJxs+aTm87h+MZicfrPmdEKi9Fi9iPj2m1emznJu2k5wS6IAVNEgt6vjZc7MmxWa08m+4XpyuTsWNm9vrqa7BC8tLQUr732Gnbs2CGZM1coFLjsssvwwAMPoE8f923SPfn000/R1NQkTplt3boVFRWO/Yiuv/56REZG4q233sK6deuwevVq8TozZszAJ598gueeew6FhYWIiYnBF198Abvdjttvv11yjcWLF2PJkiV4+OGHMWvWLJw5cwaff/45rrnmGgwcONCvcfc22ggNUGWE2WCBIAhQKBRt+jBxaxTqOvooLa55chJqzzVigIzO3t4YsyATRXtb90RT61QYfU1GJ+/wnUKhwOTbR+DzJVthtwk49PUZpA6Jw3aXmqYpvx3h9hdcRKoW+igNjI0WnD9aDbvN7nYbHLtdEPfbi06JCFitDwAo1Ur0vyRZ0nen/yWBn44Tr6dUYPjs/tj1oWOmwN9Gld6I7RuJEbMHSDb11YarMenX/hf7uxPfPwpT7xgpbs2z7d2jqDpdL045qjRKXPXwOES6qdUbODEV298/dqE/WSkuuT7L7dYxjZUtsLQ4fo4Hon7JVVJWLOL7R6HmbGuGa7Afm2B3N7J+05WUlOC+++5DbW0t+vXrh1GjRiEuLg61tbU4cuQItm7diry8PLz++utIS/O9u/Dq1avF+igAyM3NFbNGs2fPlrQ0cKVSqfDiiy/i9ddfx6effgqTyYShQ4diyZIl6N+/v+TYyy+/HMuWLcPKlSuxfPlyxMTE4JZbbsGiRYt8Hm9v5Sz8ttsEWE02aPTq1oBJAfEvIaKuEts3UlYPGW8lZ8chdWic+Ff+sKv6IyyA2SWnuH5RGH1tJg58cRp2m4B1L+4R2zRkT+uLAePcTzs6N0A+s70UlhYrKk/XI2Vw+zoyQ1WLmCELxl/9AyekSAKm9JzgTMc5DbuyP0rzatBcZ8KEmwYH9Vpjf5GFU1tbO4mPv3FwQOrX2sqa0hcVp+qR930R7FZB0j172t2jOuwvFRGnR+oQx9do/XkDaoub3E63BaN+yUmhUGDorHRse9cxnajSKJHRwf5yPYmsgGnFihWoq6vDww8/jGuvvVYSxQqCgK+++gqvvvoqVqxYgWeffdbn83/00Ucej1m6dCmWLl3a7vmoqCg89thjeOyxxzyeY+rUqZg6darP47tYtG1e6RowqbUqt3+9EPVWl94yDGv+sguRiXqMCVDtkjs51w3Cme2ljkzQhWApPF7nMZvRd1SC2CSw5HCV24ApkFuiuB9DIjR6FSxGGzRh6qDvSq/RqzHn0fFBvYaTLkKDaXePQu6bhxHZT42hs/p7fpOfLr1lKKoK6lGRXyc+N/YXWRh0eecJiIxL+4hBfcHOUrcBU00AtkTpTNbkNOz/7BRa6s3ImpImWXHdU8lKDezduxeTJ0/GggUL2v3SVCgU+NnPfobLLrss5I0rKbDcbY/ibCvAFXJ0sUnKjMGt71yFXzw/JaB1H22ptY4u0K6m3jnK4y+evqNae9x0VMckWSHXJ/BtH9RaFS69ZRiiU8Jx6S1DoQxCp/eu1H9sMm5ZMQuDf5EU0OnMtlRqJWY9OFbccy7zsj645BeeN6PPmJjiaB4LRx2TuxYT1QHYdLcz2nANrnlyEmYsHo3LF/WO3neyMkx2u91jnU9mZib2798v5zLUxbThrV8mzu1RrEZH4MQVcnSxCkVmte+oRIy+NgOHvilAzs8GddrI0Mm5AXJ9qQEVp+pgbrZAGy4NsoLRg6mtoVekSzZkJf9ExOvx8+cmo67EgNQhcV4tyw93nZYrNaCmuBEJ/aVBkXNKThOmDmjRv6uYPhE9vtDblayAafDgwSgsLOz0mIKCAp+7X1P34q55pZhh4go5oqCa+D9DMfF/hno+0EXfUYmoLzVAsAsoPVbTruYpGD2YKHjConVivy1vZU5ymZbbUSYJmIyNZhiqjQAc03Esq/COrDzpnXfeiZ07d+Kbb75x+/pXX32FXbt24Y477pBzGepibQMmwS6Im41ySo6o++k7qrXprrtpOWcNkzZcHdRpReo6AyemitNyBTul03Kuq9eCMR3XW/mUYXK34ezYsWPx8ssvY9WqVRg1ahTi4+NRU1ODw4cP49y5c5gwYQL27duHUaNGBWrMFGJti75dO8+ypQBR99NnWDwUSgUEu4CSw9IGllazDU1VjuxCTFoEswu9VHisDqlD41F2rMYxLXe2UQyOqgtdC74ZMHnLp9927777boevFRcXo7i4uN3zu3btwu7du3Hrrbf6PjrqFqQZJqt0HzlOyRF1O9pwDZKzY1F+wlHD0lTdIvbscd0yJVj1S9Q9ZE5KRdmxGgCO4m8xYHLt8D0w8CvkeiufAqbly5cHaxzUjTk7fQMXMkzcFoWo2+s7KgHlJxw1LCWHqzBkhqMAu760STymNxXkUnsDJ6Ri+8o8CAJQsKMU4xdmQ6FQiAGTQqVAXAj6l/UWPgVMOTk5QRoGdWeuK2xMBgs33iXqAfqOTMS+Txz7eJUcrnYJmFwyTAyYerXwWB1Sh8WjNK8GDeXNqClqRExaBOpKHDVscf0iodLwZ7i3eldzDAoKbWTbgMllHzkGTETdUtKgGLElyPkjVeKO8cFuWkndS8alrnvLlaLuXJP4tcD6Jd8wYCKPdJKibyssRtcME4u+ibojpUqJPsMdq+WMjRZxGkYSMLGGqdcbODEVCpfVclVB7vDdmzFgIo9UaqWYSTI3W9psvMsME1F3JW0v4Fgt5+zBFJGgZ4b4IhAeoxMD54byZuRvbt3jL54ZJp8wYCKvaC8UfpsMFq6SI+oh+o6UbpNibDDD1ORoPsvs0sXDdVqu/GSt+HHb7t/UOQZM5BXdhcLvtkXfzDARdV/RqeGITHS0Eyg/WYvqs63TMezwffEYOCEFbdttRSaGQRfZ8zfEDSUGTOQVZ/NKm9kOU5NZfJ4pfaLuS6FQiJvx2ix2nNx0TnyNGaaLR5jLtJwT65d8x4CJvOJa+G2oNYkfM2Ai6t5c65gKdpaJHzPDdHHJmJQqecz6Jd8xYCKvSAKmGqP4sUbPVXJE3VnaiARxTzG7rXU/MWaYLi5tp+XYUsB3DJjIK1qXbt/N1a0BEzNMRN2bPkqLxIwYyXNKtQKRSWFdNCLqCmHROvQZ0ZptTMxgwOQrBkzkFddu364ZJgZMRN1f35HS+pXolAgoldx092Iz6dfDkDYiARNuGiwuBiDvcT6FvOI6Jddc31rDxFVyRN1f31GJOPjVGfExO3xfnOLTo3D1/07s6mH0WMwwkVdcAya0lkGwDxNRD5AyOFaSDWbAROQ7BkzkFdcaJlcabo1C1O2pNCqkDo0TH8f0Ce/C0RD1TAyYyCuSDJOTAlBp+SVE1BOI3Z4VQEp2XOcHE1E7TA+QV7RuAia1VgVF2/axRNQtDZ7WDyqNCuGxOsT2jezq4RD1OAyYyCvuMkxcIUfUcyiUCmRNTuvqYRD1WJxPIa+4C5i4Qo6IiC4WDJjIKyqtEkq1dPqNK+SIiOhiwYCJvKJQKNplmTglR0REFwsGTOS1toXfbClAREQXCwZM5DVdeJsME6fkiIjoIsGAibzWPsPEgImIiC4ODJjIa7o23b5Zw0RERBcLBkzkNRZ9ExHRxYoBE3mt7ZScmkXfRER0kWDARF5jDRMREV2sGDCR19rVMHGVHBERXSQYMJHX2tYwMcNEREQXCwZM5LX2NUwMmIiI6OLAgIm8xlVyRER0sWLARF7Ttun0rdFzlRwREV0cGDCR19i4koiILlYMmMhrmjA1FEqF+JgBExERXSwYMJHXFAoFtOGtWSaukiMioosFAybyiWvhN/swERHRxYIBE/nEtbWAhlujEBHRRYIBE/mk76hEAEBSVgxUWn75EBHRxYEpAvLJ+F9mY+D4ZMSlR0GhUHh+AxERUS/AgIl8olAqkDQotquHQUREFFKcUyEiIiLygAETERERkQcMmIiIiIg8YMBERERE5AEDJiIiIiIPGDARERERecCAiYiIiMgDBkxEREREHjBgIiIiIvKAARMRERGRBwyYiIiIiDxgwERERETkAQMmIiIiIg/UXT2A3sBkMgEAioqKfH7v2bNnoVKpAj0k6gDvd2jxfocW73do8X6HVjDv94ABA6DX6zs9hgFTAJSVlQEAli1b1sUjISIiIl+9/fbbGDJkSKfHKARBEEI0nl6rrq4Ou3btQp8+faDVar1+X1FREZYtW4YnnngCAwYMCOIICeD9DjXe79Di/Q4t3u/QCvb9ZoYpRGJjYzF79my/3z9gwACPkS0FDu93aPF+hxbvd2jxfodWV95vFn0TERERecCAiYiIiMgDBkxdKCEhAYsWLUJCQkJXD+WiwPsdWrzfocX7HVq836HVHe43i76JiIiIPGCGiYiIiMgDBkxEREREHjBgIiIiIvKAARMRERGRB2xcGWJmsxnvvPMOvv/+ezQ2NmLQoEG44447MGHChK4eWo/X3NyMVatWIS8vD8eOHUNjYyOWLFmCefPmtTu2sLAQ//jHP3D48GGo1WpcdtlluP/++xEbGxv6gfdAx44dw7p167B//36UlZUhOjoaI0aMwB133IH09HTJsbzX8hUUFODdd9/FiRMnUFNTA71ejwEDBuB//ud/MHnyZMmxvN/B8f777+Nf//oXMjIy8N5770leO3z4MFasWIGTJ08iIiICM2fOxJ133onw8PAuGm3Psn//fjz44INuX3vjjTcwYsQI8XFX3msGTCH23HPPYdOmTfjlL3+Jfv36Ye3atXj00UexfPlyjB49uquH16PV19dj5cqVSElJQVZWFvbv3+/2uIqKCjzwwAOIjIzEnXfeiZaWFqxatQpnzpzBm2++CY1GE+KR9zwffvghDh8+jJkzZ2LQoEGorq7G559/jjvuuANvvPEGMjMzAfBeB0pZWRmam5sxd+5cJCYmwmg0YvPmzViyZAkeeeQRLFiwAADvd7BUVFTg3//+N8LCwtq9lp+fj9///vcYMGAA7r//flRUVGD16tU4d+4cXnrppS4Ybc91/fXXY9iwYZLn+vbtK37c5fdaoJA5evSoMHXqVOHDDz8UnzMajcJNN90k3HPPPV04st7BZDIJVVVVgiAIwrFjx4SpU6cKa9asaXfcK6+8Ilx55ZVCWVmZ+Nzu3buFqVOnCl9++WXIxtuTHTp0SDCbzZLnzp49K8yaNUt49tlnxed4r4PHarUKt912m3DzzTeLz/F+B8dTTz0lPPjgg8IDDzwg/OY3v5G89sgjjwjXXXed0NTUJD739ddfC1OnThV27twZ6qH2SPv27ROmTp0qbNy4sdPjuvpes4YphDZv3gyVSiX+NQgAOp0O8+fPx9GjR1FeXt6Fo+v5tFqtV03NNm/ejMsvvxwpKSnic+PHj0d6ejo2btwYzCH2GqNGjWqXrUhPT8fAgQNRVFQkPsd7HTwqlQrJycloamoSn+P9DrwDBw5g8+bNeOCBB9q9ZjAYsGfPHsyePRsRERHi83PmzEFYWBjvuR+am5thtVrbPd8d7jWn5EIoPz8f/fr1k3yyAYgpyFOnTkl+0FHgVVZWora21u3mjcOGDcOOHTu6YFS9gyAIqK2txcCBAwHwXgdDS0sLTCYTDAYDtm7dip07d2LmzJkAeL+DwWazYfny5Zg/fz4GDRrU7vUzZ87AZrO1u+cajQbZ2dnIz88P1VB7heeeew4tLS1QqVQYPXo07r33XgwdOhRA97jXDJhCqLq62m0GxPlcVVVVqId00amurgaADj8PDQ0NMJvN0Gq1oR5aj7d+/XpUVlbi9ttvB8B7HQz//Oc/8dVXXwEAlEolpk2bht///vcAeL+D4csvv0R5eTleffVVt697uucHDx4M6vh6C7VajenTp2PSpEmIiYlBYWEhVq9ejfvvvx+vv/46Bg8e3C3uNQOmEDKZTG6LLp0/wEwmU6iHdNFx3mNPnwf+UvFNUVERXn31VYwYMQJz584FwHsdDL/85S8xY8YMVFVVYePGjbDZbLBYLAB4vwOtvr4e//d//4ff/OY3Ha4w9HTPzWZzMIfYa4waNQqjRo0SH0+ZMgUzZszAbbfdhrfeegsvv/xyt7jXrGEKIZ1OJ/5wc+X8ROt0ulAP6aLjvMf8PAROdXU1HnvsMURERODPf/4zVCoVAN7rYBgwYADGjx+PuXPn4oUXXkBLSwsef/xxCILA+x1g//rXvxAVFYXrr7++w2M83XMGp/7r168fpkyZgv3798Nms3WLe82AKYQSEhLEtKIr53OJiYmhHtJFx5nO7ejzEB0dzR9yPmhqasKjjz6KpqYmvPzyy5KvYd7r4JsxYwaOHz+O4uJi3u8AKi4uxtdff40bbrgBVVVVKC0tRWlpKcxmM6xWK0pLS9HQ0ODxnvNnujzJycmwWCwwGo3d4l4zYAqhrKwsnDt3DgaDQfJ8Xl6e+DoFV1JSEmJjY3HixIl2rx07doyfAx+YTCY8/vjjKC4uxvPPPy8WezvxXgefc5qiqamJ9zuAqqqqYLfbsXz5ctx4443iv7y8PBQXF+PGG2/EypUrkZGRAZVK1e6eWywW5Ofn857LdP78eWi1WoSFhXWLe82AKYRmzJgBm80mFm0CjlTimjVrMHz4cK6QC5Hp06dj27ZtkjYOe/fuRXFxsbjiiDpns9nw9NNP4+jRo3jmmWcwcuRIt8fxXgdGbW1tu+esViu+++476HQ6MVjl/Q6MjIwM/OUvf2n3LyMjAykpKfjLX/6C+fPnIzIyEuPHj8f333+P5uZm8f3fffcdWlpaeM+9VFdX1+65U6dOYevWrZgwYQKUSmW3uNcKQRCEoF+FRE899RRyc3OxcOFC9O3bF+vWrcOxY8fw6quvIicnp6uH1+N9+umnaGpqQnV1Nb744gtMmzYN2dnZABxdZCMjI1FeXo477rgDkZGRuOGGG9DS0oL//ve/SEpKwltvvcVpCy+89tpr+OSTT3D55ZfjiiuuaPf67NmzAYD3OkD+93//FwaDAWPGjEFSUhKqq6uxfv16nD17Fvfddx9uvPFGALzfwfa73/0O9fX1kq1RTpw4gfvuuw8DBgzAggULxO7TY8aMwSuvvNKFo+05HnzwQeh0OowcORJxcXEoLCzE119/DbVajddff138g6Cr7zUDphAzmUziXnJNTU3IzMzEHXfcgYkTJ3b10HqFhQsXoqyszO1rq1evRp8+fQA49uZqu9/Wfffdh/j4+FAOt8f63e9+hwMHDnT4em5urvgx77V8GzZswLfffoszZ86gvr4e4eHhGDJkCH7xi19gypQpkmN5v4PHXcAEAIcOHRL3NwsPD8fMmTNx9913cy85L33yySdYv349SkpKYDAYEBsbi3HjxmHRokXo16+f5NiuvNcMmIiIiIg8YA0TERERkQcMmIiIiIg8YMBERERE5AEDJiIiIiIPGDARERERecCAiYiIiMgDBkxEREREHjBgIiIiIvKAARMRERGRBwyYiKhbKC0txbRp0/D//t//6+qhBMTatWsxbdo0rF27tquHQkQBwICJiLqt3/3ud5g2bVpXD8Ot3hbgEVHn1F09ACIiAEhKSsIHH3yAiIiIrh5KQEydOhXDhw9HQkJCVw+FiAKAARMRdQtqtRoDBgzo6mEETGRkJCIjI7t6GEQUIApBEISuHgQRUWlpKW688UbMnTsXS5cu7XAqzvm60+nTp/HBBx/gwIEDaGhoQEJCAiZPnozbbrsNMTExbs//q1/9Cm+//TYOHjyIhoYGrF69Gn369EFubi42btyI48ePo6qqCmq1GoMGDcINN9yAGTNmiOdau3YtnnvuObfjW758OcaOHSses2TJEsybN09yzOHDh/HBBx/g6NGjMJlMSE1NxRVXXIFf/epX0Ov1kmOnTZuGnJwcPP3003jjjTewY8cOtLS0ICsrC3fffTfGjh3r660mIj8ww0RE3dKiRYuwbt06lJWVYdGiReLz2dnZ4sdbtmzB008/DYVCgSlTpiA5ORmFhYX47LPPsGvXLrz55puIioqSnLekpAT33nsvMjMzMXfuXDQ0NECj0QAA3nrrLajVaowaNQoJCQmoq6vD1q1b8eSTT+LBBx/E9ddfDwDIysrCDTfcgE8++QRZWVmYMmWKeP7U1NRO/18bN27Es88+C41GgyuuuAKxsbHYvXs3Vq5ciV27dmH58uXQ6XSS9zQ1NeG+++5DZGQkZs+ejdraWmzcuBGPPPII3n77bWRmZvp1j4nIewyYiKhbuv3223HgwAGUlZXh9ttvb/d6fX09/vKXvyAmJgb//Oc/JYHKhg0b8Mwzz+Cdd97BQw89JHnf4cOHsWjRIrfnfPHFF5GWliZ5rrm5GYsXL8Y777yD+fPnQ6/XIzs7G5GRkWLA5O5c7hgMBrz00ktQqVR44403MGjQIADAXXfdhWeffRY//vgjVq1ahVtvvVXyvlOnTuG6667DQw89BKXSsVbnkksuwYsvvojPPvsMjzzyiFfXJyL/cZUcEfVI3333HQwGA+666652WZ1Zs2Zh8ODB2LBhQ7v3xcfH49e//rXbc7YNlgAgPDwc8+bNQ1NTE44fPy5rzFu2bEFTUxOuvvpqMVgCAKVSiXvvvRcqlcptG4KwsDDcc889YrAEOKYmVSqV7DERkXeYYSKiHuno0aMAgLy8PJSUlLR73Ww2o76+HnV1dYiNjRWfz8rKEqfg2qqtrcV//vMf7NixA+Xl5TCZTJLXq6qqZI05Pz8fAJCTk9PutZSUFKSlpaG4uBjNzc0IDw8XX+vXr5/kMeAoko+Pj0dTU5OsMRGRdxgwEVGP1NjYCAD4/PPPOz3OaDRKHsfFxbk9rqGhAXfddRfKy8sxatQojB8/HpGRkVAqlTh16hS2bNkCi8Uia8wGgwGAI8vlTkJCAoqLi2EwGCQBUketFlQqFex2u6wxEZF3GDARUY/kDChWrlzpU9GzQqFw+/y3336L8vJy/Pa3v21XQ/Tvf/8bW7Zs8X+wFzgDn5qaGrevO5/vLb2oiHoT1jARUbflrNmx2WztXhs+fDiA1qk5uZzTeq4r3pwOHTrU4dh8yfA4V/gdOHCg3Wvl5eUoKSlBWlpau+k3Iup6DJiIqNuKjo4GAFRUVLR77eqrr0Z4eDjefvttFBQUtHvdaDT6FEw5C8cPHz4seX79+vXYsWNHu+OjoqKgUCjcjq0jU6ZMQWRkJNasWSMZsyAIePPNN2Gz2dr1bCKi7oFTckTUbV1yySXYtGkT/vSnP+HSSy+FVqtFVlYWJk+ejNjYWDz11FN48skncfvtt2PixIno378/LBYLysrKcODAAYwcORIvv/yyV9eaPXs2PvzwQyxfvhz79+9HSkoKTp06hX379mHatGnIzc2VHB8eHo6hQ4fi4MGDWLZsGfr16weFQoE5c+Z02IspIiICf/zjH/Hss8/innvuwcyZMxEbG4u9e/fixIkTGDZsGG666SbZ942IAo8BExF1W9dccw1KS0vx448/4sMPP4TNZsPcuXMxefJkAMBll12Gd955B//973+xd+9e7NmzB3q9HklJSZg3bx5mz57t9bWSk5Px2muv4Y033sCePXtgs9kwePBgvPLKK6ioqGgXMAHAE088gb///e/Ytm0bDAYDBEHA6NGjO21eOXPmTMTHx+Pf//43cnNzxU7ft956K371q1+1a1pJRN0Dt0YhIiIi8oA1TEREREQeMGAiIiIi8oABExEREZEHDJiIiIiIPGDAREREROQBAyYiIiIiDxgwEREREXnAgImIiIjIAwZMRERERB4wYCIiIiLygAETERERkQcMmIiIiIg8+P++5649NqwYhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 50th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "2769b6e5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADCcElEQVR4nOzdd5wTZeIG8GdStjd671UBFQUUQUEFGxY8CyoK2MtZz+7Z23nq+bOc/VBsJ6gcdkRAkSoIiPTeO8vC9t1sMu/vj2yGlClvktlNdvf5fj772d3kzcybZDKZZ94yihBCgIiIiIiIiGqdI9EVICIiIiIiaqgYyIiIiIiIiBKEgYyIiIiIiChBGMiIiIiIiIgShIGMiIiIiIgoQRjIiIiIiIiIEoSBjIiIiIiIKEEYyIiIiIiIiBKEgYyIiIiIiChBGMiIiIiIiIgShIGMiIiIiIgoQRjIiIiIiIiIEoSBjIiIiIiIKEEYyIiIiIiIiBLElkC2detWKIoCRVEwbtw4OxbZIA0dOlR7HYmIjIwbN07bV2zdujXR1dFMmDBBq9eECRMSXR2ymaqqOOGEE6AoCm6//fZEV4fC8PNHiTRr1ixt+3viiScSXR1bFRUVoXHjxlAUBe+8806NrKPWWsgmTJiAJ554ot69SWa++uor7TkfPnw40dWhak888YS205D5kT3gXblyJW6//Xb07NkTWVlZyM3NRZ8+ffDggw9i27ZtNfukiKhBqaqqwnvvvYczzjgDrVq1QmpqKtq2bYvzzz8fkyZNghDC9nW+++67WLp0KdLS0vDQQw/plkn2/WtFRQXeeustnH322WjZsiVSU1PRrFkznHjiiXjuuedw8OBB6WVFY8GCBbj22mvRpUsXZGRkoHHjxjjhhBPwzDPPID8/v0bWmQh9+vTR3tuZM2dG/fi5c+dqjz/66KOjfnxwKJX5mTVrlunyDh48iJ9++gnPPfccLr74YnTo0CHk8bIOHTqEr7/+Go888gjOPvtsHH300WjevDncbjdyc3PRq1cvjBs3Dj/++GPUz1lGQzk+Of/887X3Zvz48VE/fvv27XA6nVAUBY0bN0ZFRQUAICcnB3fffTcA4O9//zsOHTpka70BAMIGW7ZsEQAEADF27FjdMkOGDNHKNBRjx47VnvOWLVssyzfE1ygRHn/8ce11lvmRee9efPFF4Xa7DZeRnZ0tPvvss5p/ctQgRLtvqS0ffPCBVq8PPvgg0dWpt7Zs2SL69u1rut8aNmyYOHTokG3rLC0tFS1bthQAxB133GFYLpn3r4sXLxYdO3Y0rU/z5s3Fjz/+GM1LY0pVVXH33XcLRVEM19miRQsxc+bMuNeVDJ+/f/3rX1odrrrqqqgff+2112qPf+GFF6J+fPBrIPPzyy+/GC5r+fLllo+X9dZbb0nX6dRTTxV79uyJ+rkbqa3jk19++UVb5uOPPx5/xWMwefJkrQ6DBw+O+vFPPfWU9vhbb7015L7CwkLRqFEjAUA8+OCDdlVZ44INOnbsWCNn4xoaqzM1ZL+nn34avXv3Ni3TvHlz0/vffvtt3HfffQAAt9uNq6++GkOGDEFVVRWmTZuGL7/8EsXFxbj66quRl5eHs88+27b6U8M0YcIEdklqoA4fPoxzzjkHa9euBQAcddRRuPbaa9G2bVts3LgR7777Lnbs2IEZM2bgL3/5C3766Se4XPF/1b/55pvYu3cvnE4n7r//fqnHJNP+ddWqVTj99NNRVFQEAOjVqxeuvvpqdOrUCYcPH8bUqVPx9ddfY//+/bjoooswY8YMnHzyyVLP08xDDz2E//u//wMAZGZm4rrrrsOAAQNQUlKCyZMnY/r06di3bx8uvPBCzJkzB8cdd1zc60ykq666Cg888AC8Xi/+97//4c0330R2drbUY8vKyvDFF18AAJxOJ66++uq46nL77bfj9NNPNy1jtn36fL6Q/51OJ3r27InNmzejvLw86vo4HA4ce+yx6N+/P3r06IGWLVsiJSUF+fn5WLRoESZNmoSysjLMnj0bp512GpYsWYKMjIyo1xOsoR2fnH/++WjatCny8/Mxd+5cbNq0CV26dJF+/Icffqj9fc0114Tcl5OTg7/+9a945pln8Prrr+Pee+9FkyZNbKt7rTXFNMTWn2Q9i93QBZ/BNTs7JmP37t0iIyNDABAul0tMnz49okzwGbt27dqJ8vLyuNZJlKyS4Qx9fXfXXXdpr/HZZ58dsT85ePBgSOvZv//977jXWVVVJdq1aycAiDPPPNO0bLLuX0888cSQlpuqqqqIMl9++aVwOBwCgOjRo4dumWgsXbpUaxnLzc0Vf/75Z0SZ4Nerf//+QlXVmNeXLJ+/Cy+8UKvH+PHjpR/30UcfaY8777zzYlq3na/Bxo0bxZgxY8Srr74q5s2bJ0pLS4UQQnTo0CHq49ldu3aJgwcPmpbZtm2b6Nq1q7bs559/Pq761/bxSTK0kAkhxJ133qnV49FHH5V+3OzZs7XH9e7dW7fM+vXrtTLPPvusXVUWQgjBWRaJ4vDCCy+grKwMAHD33Xdj2LBhEWXGjRuHSy+9FACwY8eOmPo1ExHt378fb775JgB/a8uHH36ItLS0kDKNGzfGRx99pI1veeaZZyLO9Efru+++w44dOwD4W0Bqi13714ULF2LhwoUAgDZt2uC9997TbTW8+OKLcfPNNwMA1q1bF3K2PBZPPfWU1nvoueeewzHHHBNR5vHHH8eAAQMAAL///jt++OGHuNaZDIJbFqJpyQ8uG946kQhdunTBhx9+iDvuuAMnn3xyXK1VrVu3RuPGjU3LtG/fHi+88IL2//fffx/z+oCGe3wSvO189NFH0j34ZLa/bt26oX///gD8rY+yy5ZR47MsBmYO/PXXX7Xb9AZWGk32oaoqPv/8c4waNQqdOnVCRkYGsrOz0bNnT9xyyy1YsWKFad2CBxgHugTOnDkTV1xxBTp16oS0tLSIgcVerxfTpk3DPffcg8GDB6N58+ZISUlBdnY2unfvjnHjxmH27NmG6wzMgBa8M+/UqVPEczZ6rWQGii5cuBA33ngjevTogezsbGRmZqJLly4YO3Ysfv75Z8vHB9YzdOhQAEBpaSleeukl9OvXD40aNUJmZiZ69eqFhx56qGYGL9YDQgite4XVrGN33HGH9vekSZNqvG7BFixYgFtuuQVHH3008vLykJaWhvbt22PUqFGWO3y9WZO2b9+Oe+65Bz179kRmZiby8vJw8skn480334TX65WqU0lJCV555RUMHz4crVu3RmpqKho3boz+/fvjsccew4EDB0wfH/5Z8fl8mDBhAoYPH442bdrA5XKhY8eOEY/bt28f7r//fhx99NHIzMxE48aNMWDAAPzrX//Svrg6duwIRVEiHv/jjz9q6wx+P83ccccd2mOmTp0q9RgZVrMs1tT79t133+H8889Hy5YtkZaWho4dO2L06NFYsGBB1M/B4/Fg/PjxuOCCC9CuXTukpaUhLy8PxxxzDO655x7DyR7WrVuHzMxMKIqC3NxcbNmyxXAdhw4dQvv27aEoCpxOp+l+uy746quv4PF4AABXXHGFYXe/3r17a1219u7dG/L9G4uPP/4YAJCeno6LLroormXJsnP/GvydeOmll0aE2GBjxozR/v7vf/8bVZ2DFRcXa5/5nJwcwxmow59bbXw//P7772jWrBkURUFqaio+//zziDLxHHuNGDFC2zbnzp2LzZs3W9Zp+/bt+OWXXwAATZs2xfnnnx/js6vbgicy2bt3b8zLSebjk0A3QkVR4HA4tC694X788UeMGzcO3bp1Q3Z2NjIyMtClSxeMGzcOc+fONVz+sccei759+wIAtm3bpm1XZoK7y7pcLtMTT6NHjwbgD7C2DjWyo5nNbFKP4K6KZj96zZsbN24Uxx13nOnjHA6HaZNkcHeAn3/+Wfz1r3/VXU5wl8KhQ4dK1Xns2LGisrIyYp3BXRWtHm/0WhmpqqoSN9xwg+WyL7vsMlFWVma4nEC5IUOGiE2bNomjjz7acFkdOnSoV10u7epSs2LFCsvm7QCfzydycnK0bbaoqCjm9coqKSkRo0aNstxWRowYYVif8C4IU6dOFXl5eYbLGj58uKioqDCt1w8//CCaN29uWqfs7Gzx9ddfGy4j+LNy8OBBMXjwYN3tNtjPP/+sDcjV++nTp4/Yvn271h0l/PE+n0906tRJABCNGjWy7NpRXl6ura99+/bC5/OZlo+GVXdou983r9drul9zOBzin//8p3R3od9//117LY1+UlJSxNtvv637+HfffVcrN3DgQOH1enXLXXLJJVq5v//976avaV1w8cUXa8/nyy+/NC374osvamXvu+++mNdZUVGhdXs69dRTLcsn4/711ltv1Zb11ltvmS6roKBAK+t0OrVuatH69ttvteVYdb/bv3+/VrZZs2YxrU8Iue5606ZNE1lZWQKAyMrK0u3GZsex19/+9jet7GOPPWZZ9+DJFO68807ZpxyhNrptxtJlUdb333+vLfuUU06JeTmJOD6R6bK4dOlS0aJFCwH4u1F+/PHHEWX2798vTj/9dMtjl+uuu054PB7d9bz22mtauTFjxljWPbi77IUXXmha9s8//7RlWw1ny6QeZgJTuj7yyCNYtWoVAGDKlCkR5Xr27Bny/6ZNm3DSSSdp08EOHjwY5513Hjp06ACfz4clS5ZgwoQJOHToEJ5++mk4HA7LKfVffPFFTJ06FS1btsS4cePQu3dveL1eLFq0CKmpqVq58vJyZGVl4YwzzsAJJ5yAjh07Ii0tDXv27MGqVavw6aeforS0FB9++CHy8vLwyiuvhKznjjvuwMiRI/Haa69pyfydd96JOJvZvn17qdcw2NVXX42JEycCANLS0jB27FicfPLJcDqdWLx4McaPH4/i4mJ8/vnnKCwsxNSpU01b3IqKijBixAisW7cOF154Ic4++2w0btwYmzdvxltvvYXt27dj27ZtGDNmTJ0/u6znsccew65du7Br1y6kpKSgRYsWOOmkk3DZZZfhvPPOM33tVq5cqf19wgknmK7H4XCgb9+++PXXX6GqKtasWaN1U6kJlZWVGDZsGH777TcA/q4Xo0aNwlFHHQW3242NGzfio48+wvr16/H9999j5MiRmD59OhwO40bzZcuW4cUXX4QQAjfddBMGDhyI1NRULF68GG+//TZKS0sxffp0PPvss3jqqad0lzF58mSMGjUKPp8PbrcbF1xwAYYOHYoWLVqgqKgIv/zyCz7//HMUFxfjoosuwvTp0y0HZV911VWYO3cujj32WFxxxRXo2LEjioqKsHz5cq3M6tWrcd5552mtYH379sVVV12Ftm3bYt++fZg0aRLmzZuHUaNGGbYWORwO3HDDDXj44Ydx6NAhTJ48WTtTpufLL7/UWpevu+4609e2Jtnxvt1xxx1ai39KSgrGjh2LwYMHw+FwYNGiRRg/fjweeOABjBw50rI+CxYswLBhw1BWVgZFUXDWWWfhzDPPRJs2bVBeXo4FCxbg448/RllZGW6++WakpqZGtC7ccMMNmDZtGiZPnowFCxbgySefjKj7+PHj8eWXXwIATjrppHpxyZVo9jn9+vXTfVy05s2bp31uot1nJcv+VcTYrcjn82H16tUhr6WsaOrfrFkzdOjQAdu2bcOBAwewf/9+y8lOYvHZZ59h7NixqKqqQrNmzfDDDz9EPDe7jr2uueYavPzyywD83cYCvZWMmE2mEKs333wTzz//vNbdtlmzZujfvz9GjhyJUaNG2TLZjZ0OHDiABx98UPv/L3/5S8zLSsbjk19++QUjR45EUVERMjIy8OWXX+Kcc84JKVNQUICBAwdi06ZNAPytXX/5y1/QtWtXOBwOrFy5EhMmTMCuXbswfvx4eL1e3W6xV155Je699154PB5MnjwZb7zxBrKysgzrFk132d69eyMrKwslJSWYNm2a/AtgxY5UZ/e09z6fTxx//PECgEhNTRWff/65brm9e/dqZ3EcDodYuXJlRJnwKXgHDx4sCgsLTdc/Y8YM09al/Px87Yy8w+EQmzdv1i1n97T3EydO1O5v0aKFWLVqVUSZrVu3hpx5NhrQHfyapKSkiG+//Vb3eQYva+HChZbPwUhpaamYMmWKLT9LliyJuR5CyE/LfOKJJ4qtW7caLufJJ5+0PBsUbMyYMVp5vbNCdgoe+H/ffffpDk73eDwhddI7cxx8xgvwt/SsX78+otzChQuFy+USgL/1SK+1Zfv27dpZuPbt24vly5fr1n3hwoUiNzdXABBt27bVPQMW3vJ+1113mbZABbeg3Xrrrbplw7eL8BYyIfz7nMD0wUOGDDFcnxBCnHrqqdpZ9h07dpiWjVY0LWTxvm/BA53z8vLE4sWLI8qsXbtWmxI98KN3drqoqEibHCIvL0/MmjVL9/lt2LBBtG/fXgAQmZmZ4sCBAxFlCgoKRNu2bbXXeM6cOdp969atE5mZmQKAyMnJEZs2bdJdj6w1a9bYtv/Sey4yfD6f9l45nU7LCSc2b96svRddunSJaZ1CCPHcc89py/niiy8syyfj/jV4WXfffbfpcn777beQen7yySeW69ZzzTXXRNVSE9hfAAjZlqNh1jr02muvaROMdOjQQaxbty7i8XYeewkhRL9+/bT6/Pzzz4b1/vXXX7Vyffv2lX/COmSnve/Ro4fuJCsy4m0h27dvn7Y/mDx5svjPf/4jbrnllpBeDGeeeaZh64+MRByfmLWQffnllyI1NVUAEI0bNxbz58/XXcbIkSMFAKEoinjllVd0yxQXF4szzzxTW9fUqVN1ywX3kHj//fcN671161bts9G8eXOpyXwCPekURRGHDx+2LC8jKQNZ8HUEXnvtNdOy69atE06nUwAQN9xwQ8T9wV8OmZmZYteuXVLPycqmTZu05T799NO6ZewOZMEzZ/3www+Gy1m4cGHIjlevO0/wjumpp54yXNZ7770nVc5K8DYS74/RNibr8ccfF2lpaeKcc84RTz31lPj444/FpEmTxKuvvir+8pe/aNsTANG6dWuxc+dO3eXcfffdWrnXX3/dcr3Rlo/V7t27RUpKigAg/vKXv5iW9Xg8onPnzgKA6NatW8T94Qf2s2fPNlzW6NGjTcvdfvvt2sHkH3/8YVqv8ePHa8v69NNPI+4P/qyccMIJpmHs999/18r27t3bsHtb+HL1ApkQQlx66aVaGb2QI4R/vxQoM2LECNPnGotoA1k871vwjGkTJkwwXM53330Xsk69g9DgaxR98803ps9x5syZWlmj2axmzZqlzYrXoUMHcejQIeHxeMQJJ5wQ98FFsGivrWX2E2s3vsLCQm0ZTZo0sb28kSuvvFJbjtFJlGDJuH+dMWOGdl+bNm1Mu+eGD2uIdZbKiy66SFuG3gnPeMvrMQpkf//737Xbe/XqZfia23nsJYQQb7zxhrY8s25jweHVar1WPvjgA+FyucSQIUPEo48+Kj788EPxxRdfiDfffFNcddVVIi0tTVtXdnZ2TKEs3kA2depUw/1DmzZtxFNPPWX6PSUjEccnRoHs7bff1vbTbdq00W1MEEKIJUuWaI//29/+ZrqugoIC7cTt8OHDdcsEd/80624dHF6t1htwyy23aI+J9QRKuKQMZIGEnJOTIzUF58CBAw0PoIK/SGX6kUYjcEbYqH+4nYEs+DXu06eP5bLOOOMMrbxey1bgPqfTKQoKCgyXExw8L7/8csv1GkmmQLZixQrT6WdXrlwZMvXssGHDdMsFj+V77733LNf78MMPa+Wfe+65mOtv5ZVXXtHWY3QWKthDDz1kuJ0G72CtzlwGh6jwsT+qqorGjRsLwHrabCH8498CrQF673fwZ8XszJcQQjzyyCNaWavxI//73/+0skaBLDgo3H///bpl7rvvPq2M2Vi4WEUTyOJ53yoqKrRw36JFC8uDhKOOOkr3gDAgcFa9e/fuls9RCCFat24tAPPWyODP1ahRo8T999+v/T969Gip9VhJhkC2a9eukIM2Kx6PRyufkpIS0zqFEGLQoEHacowO5IMl4/7V6/WGrHPs2LG62/JXX30VEhjj2VcPHz5cW4beOK1wwcH3v//9b0zrDA9kXq9XXH/99dptJ598sun3vZ3HXkL4D5oDASgzM1MUFxdHlCktLRXZ2dnadpqfny/9fPVs2LDB9MT79u3bRf/+/bXXpGfPnlGHn5oKZIqiiNGjR5u2JspKxPGJXiALDjs9evQQ27ZtM3x8oGePoihSjSdXXHGFAPytuXonWbxer/YdoiiKbm82VVVFly5dtDquWLFC6rkGv16xtqKHS64OtNXmzJkDAGjVqhV+/PFHy/JOpxOAfzaV8vJypKen65Y75ZRTpOtQVFSETz/9FD/88ANWrFiB/Px8lJaW6pbduXOn9HJjtWjRIu3vM88807L8mWeeiZkzZwLwz8ho1B+4e/fuaNSokeFy2rRpo/0dz2yLyXTxcKsLlfbq1Qs//vgjevfujYqKCsyYMQMLFy7EiSeeWEs1jE/g8wP4t82vvvrKtHzw+7pmzRrd2QkB/zgcM2bbyqpVq1BQUAAAyM7OtqwTAGRlZeHw4cNYs2aNaTmrz/XixYu1v0877TTTsoFZR82cdtpp6N69O9avX48PP/wQzzzzDNxut3Z/VVWVNh6idevWGDFihOUya1I879uff/6pzeo3ZMgQbV9r5IwzzjB8vwoLC7VxfS1atJDeBgCYbgNPPvkkZs6ciYULF4bMENapUydtivh4PfHEE/ViDFosAp9bAJbTdgPJuX91Op146623cPbZZ8Pn8+HDDz/EkiVLQi4M/eOPP2LKlCnaDKuBWT4TNfYzXhUVFbj00ku1MfvnnnsuvvjiC9Op2+0+9mrUqBFGjhyJiRMnorS0FF9++WXEeNDAhYkB4IILLoj7Qrtdu3Y1vb9du3aYOnUqevfujb1792Lt2rX48ssvMWrUqLjWG42zzz5bOx7yer3Yv38/5s6di5dffhmffvopPv30U9x22234v//7v6Qb5yZLVVXcdttteOONNwAA/fv3xw8//ICmTZsaPiaw/eXl5YUc8xqprKzUfm/evBlHHXVUyP1OpxNjxozB888/DyEEPvzww4j9+Jw5c7Txav369bPcfwUEb6d2zUSedO90SUkJDh48CMA/vXG0U+weOnTIMJAFH3iY+eWXX3DllVdKTzlaVFQkXb9Y7dmzR/u7e/fuluWDywQ/NpzZhwNAyGQnFRUVluutLwKXEHjnnXcA+K8HEn7AEDxAVOa1KS8v1/7Ozs62qaaRgqcLv+yyy6J6rNmOJZ5tJbhOkydPxuTJk22pE2D9ud69e7f2d+fOnU3LNmrUCHl5eTh8+LBhGUVRcOONN+Lee+/Fvn378O2334YMvv7mm2+wf/9+AP7BwVYhpqbF874Fv3ZWBzpWZXbs2AFVVQH4vwSDTxxYMdsGXC4X/vvf/+K4447TDuwCt+Xk5EivI9klan8TOOhxOp2G363RSsT+ddiwYZg0aRLGjRuHkpISrFy5Eg888EBImZSUFLz++uv48ccftX2W2QlLM4n+fnjwwQdRWFgIwD/x0QcffGB6cF9Tx17XXHONNhHZhAkTIgJZ8GQK1157bcTjzU7cZGRkSJ2gDtekSRPceeedeOihhwD4t7/aDGTBXC4XWrdujcsuuwyXXHIJrrnmGnz00Uf497//jfT09JDrkkUj0dvfa6+9pm1/w4YNw5QpU0wn1QCOHCccOnQopu1Pz7hx4/D8888D8E8u8/jjj4dMLmO1/RkJ/m4Jfu3ikXSnfgJvYKwCZ3P1yHyZbNiwASNGjNDCWI8ePXDXXXfhjTfewGeffYYpU6ZoP82aNQOAuC+6KSNwoAH4LwhqJXjDD35suLp69q82BLeWrF27NuL+vLw87e/AjFRmAl924Y+1WzyfIbPPTzzbSk3VCbD+XAdatl0uV0hLlhGZz9e4ceO0IPPee++F3Bf4X1EUXHfddZbLqmnxvG8lJSXa3zIXRTV77eLZBqqqqkzvb9q0aUjrTefOnS1nFqtrsrKytAPqw4cPW147zq79TWA79/l82myLdkjE/vXiiy/Gxo0b8eijj6Jfv37Iy8tDSkoKOnTogGuvvRaLFy/GjTfeGLKsli1bWj8ZHYn+fgjePkpLSy17qNTUsdewYcPQtm1bAMDs2bNDTs5t27ZNu45T69atdcPVRRddZPhz4403xlxfq+0vERwOB9544w3k5uYC8IeaWFtf6tr2B9TMcUKPHj1w8sknAwC2bNkSMlt4WVmZNhNvWloarrjiCun1BdfVrhNVSddCFhwkTj311LgvaBmtf/zjH1ra/fvf/46nn37acKrWG264odbqFXzGwqjrZLDgA6mabI2RVVZWhp9++smWZbVv3x7HH3+8LcsyE9wkrddiEtwKaXQR22Dbtm3TfazdAp8hRVHg9XqTInQHf64fe+wxPPnkk7W27kBI8Hq9qKqqsgxlMp+vJk2a4JJLLsGnn36Kn376Cdu3b0f79u2xbds2TJ8+HYD/QKRTp07xP4EECn7fZA7GzV674GWNGTMmZJrreN16660hn6/169fjkUcewT//+U9blr927VrbDtoGDx5s2Wqpx+FwoEuXLli3bh18Ph927txp2L0YsG9/Exx0CwoKpIK5jETtX1u0aIGnnnrK8BIPgP8yGQH9+/e3XLeeRH8//OMf/8DEiRMxf/58TJkyBaNGjcKkSZMM9381dezlcDgwduxYPPvss1q3sccffxyAf6r7wIH6mDFjarU3gdX2lyhZWVkYPHgwvv/+e1RWVuK3336LmBpeRqK3vzvvvBNr1qzBlClTsGDBApx11lmYNm2a6fFoYJhC4LvULtdccw3mz58PwN8iNmTIEACh3WVHjhwZVRCNtiu3jKQLZLm5udr8/rUxNivcjBkzAADNmzfHU089ZRjGiouLQ96QmtaqVSvt7w0bNliWDy7TunXrGqlTNPbv3x91E7SRsWPH6l53wm5WZ4yC+xovWbLEdFmqquKPP/4A4P+CCu/rbKc2bdpg2bJlEEJg165daNeuXY2tK5o6BdT257p169ba2KXNmzejR48ehmUPHTok/eV8880349NPP4Wqqnj//ffxxBNP4P3339e65cVz9jZZBO87Nm7caFnerExNbQOBMReA/3o7+fn52LZtG1566SWcddZZltexkzFx4kTbTiL88ssvUmMV9fTu3Rvr1q0D4N/nmAWy4LGTsuMi9HTs2BHz5s0D4D8ICbR2xCtZ96+rV6/WWhS6dOkS8t0bjWjqf+DAAe0AtFmzZrZcgyw7Oxs//vgjzj77bKlQVpPHXuPGjcOzzz4LwN9t7LHHHgMQeu2x8K6MATU19ry2eqzEIji0xBoWE3184na7MWnSJFx++eX43//+JxXK2rRpg8OHD2P//v1SJ09lXXbZZbjzzju1FrF///vfyMzMxAcffKCVifbad8HH/x06dLClnrV26jz4LL3VB+zUU08F4D94kjkIsNO+ffsA+AeEm7UszJgxQzvwMhLNc7YSPClH4Ay8meDWqJq8AHF9FnyGUO+MUa9evbSDk1WrVpl+ic2fP18bazho0KAabbUMnP0BYFurZLz69u2r9bmeOXOm5WfHTsEXPg1cqN1IoPuMjMGDB6NXr14AgPfffx9VVVV4//33AfhP6Fx44YXRVzbJHHvssUhJSQHg/zxYdc8OTCSkp2nTpjj66KMBAL/99pstY2+3bNmCW2+9FYC/JfSzzz7DJ598AqfTCVVVMWbMmJADr7rurLPO0v62uiBp8KQMZ599dszrDD6wC4RBOyTr/jX4IC2eLsdDhw7VunvOnj3bdJxJ8HsZz3sVLhDKBg0aBACYMmUKLrvsMsMuwDV17NW1a1dt8qXNmzdjzpw5mD17NjZv3gwAOPnkk01PlNUEq+0vkYJf+1ha04HkOD4JhLKLL74YALRQZrTvDxy7VFRUhHQtjFdOTo5Wh5KSEkyePBlbt27VtoG2bdti2LBhUS0zMNGUoijo06ePLfWstUAW3Bxu1SVo7Nix2t+BMym1JdAdY/PmzYYhyufz4bnnnrNcVjTP2UrHjh21bnp//vmnaShbvHgxfv75ZwD+5J4MYykCsyza8VMbrWObNm0KOXt37rnnRpRRFAWXXnopAH/gfv311w2X99prr2l/1/Tg4csvv1w7iP7nP/8Z97ZnB6fTidGjRwPwd434z3/+U2vrDg5Gb7zxhmmoePXVV6Na9k033QTAP2HFXXfdpX3pjR071raze4mUmpqqbfv79u3Df//7X8OyU6dOtZwRM7BvLysr0wZax8rn82H06NHal/trr72Gbt26YfDgwXj44YcBALt27cL1118f13oA/yyLdu2/Ym0dA/zdagKf7c8++0ybPCbcypUrte+Ali1bhpykiVbwZBsLFy6MeTnBknX/unbtWm09eXl5cW07WVlZ2vMqKioy/N4SQuDf//639r/d3w+BUDZ48GAA/kkyjEJZTR57BbdATJgwIeT1iLZ1Il4FBQUh+3q97S9Rli5dqrVoud3umLvMJsvxicvlwsSJE3HJJZcA8Ieys88+WzeUjRkzRvv7ySeftHV+hvDtL7i77NixY6Ma2uHz+bQeCD179rRv8ig75s6XuQ7ZHXfcoZX59ddfTZfn8/lCrhNx5513isrKSsPyZWVl4oMPPhCfffZZxH3B14+Ruf5L8LVDXn755Yj7PR5PyEUMYXINjpdfflkr8+GHH1qu2+pabZMmTdLub9WqlVizZk1EmW3btoVcU8HoopaB+82u7xNL2WT3zTffiC+++ML0uiPh18kZOnSoYdldu3aJjIwMAUC4XC4xY8aMiDLB14Zp166d1PVd4nXPPfdo6zzttNPEnj17DMv6fD4xffp03QucG13oUY9V2R07doi8vDztuiFWn4l9+/aJp556SvfCndFc11AIIQYPHqyVv/XWW3UvJB1+rSmjz3Www4cPa+9/8I/RBaPtEs11yOJ93+bMmaPd36hRI92Leq9fv160atUq5DXQuw5ZSUmJdg0fRVHECy+8YHpR78OHD4tXX31V9zpOjz76qLauSy65JOS+qqoq7RpJAMQ777xj+hrUJYFr9QAQ55xzTsT+pKCgQPTt29fyO0BWRUWFyMzMFADEKaecYlo2mfev+/btE6tXrzZc15IlS0S7du20ZZldBD38uppGli5dKhRFEQBEbm6u7r7siSee0JbTv39/w2XJMLowtBBCFBcXh+wHL7zwQuHxeELK2HnsFa64uFjbjrKyskRWVpYAIDIyMkRhYWFMzzfc/PnzxXvvvWd64e8dO3aIAQMGaM+xW7duoqqqKqr1RHsdsuLiYvHQQw+J/fv3m5ZbsmSJaN++veXxtBAiZPszus5tbR+fmH2XVFVViUsuuUS7/6STTtJ93y+++GKtzKhRo0y3jaqqKjF58mSpfZyqqqJjx47ad0+LFi209WzYsCGq5/nnn39qj73rrruieqyZWhtDdsYZZ2gp/LrrrsPdd9+NDh06aIM4u3btqk2Z7HA4MHnyZAwcOBC7du3Cq6++is8//xyXXnopjj32WOTm5qKkpATbt2/H4sWLMXPmTJSWluLpp5+Ou56333671vr0t7/9DbNmzcJZZ52FJk2aYMOGDfjoo4+wYcMGnHbaadiwYYNpM/AZZ5yh/X3//ffjwIED6NGjhzZTVps2baJq6rzsssswZcoUTJw4EXv27MHxxx+PcePGYeDAgXA6nVi8eDHGjx+vnXk488wzte485Ldp0ybcfffdaNasGc4++2wcd9xxaNmyJdxuN/bt24dZs2bh66+/1mYIat26tenkA61bt8a//vUv3HLLLfB6vTjnnHMwZswYDBkyBF6vF1OnTtVm8XG5XHj33XeRlpZmuLzgMYtbtmwxHSNi5h//+AeWLVuGmTNn4pdffkHnzp1x8cUXY+DAgWjWrBk8Hg/27t2rtbbu3bsXZ5xxBh555JGY1iejbdu2mDhxIi644AJUVlZi7NixePnll3HBBRegW7duSE9PR2FhIdavX4/ffvsN8+bNg8/ns7x2mIx33nkH/fv3R1lZGd58800sWLAAV111Fdq2bYt9+/Zh0qRJmDdvHgYOHIjt27dj165dUmfMcnNzMWrUqJBuTkOHDkW3bt3irnOyGDx4MG699Va8+eabOHToEE466SSMHTsWgwcPhsPhwKJFizB+/HiUlpZi5MiRptNUZ2Zm4quvvsKQIUNQVFSE+++/H++88w4uvvhiHH300cjKykJRURE2b96MRYsWYdasWfB4PPj4449DljN37lytl0Lbtm3x7rvvhtzvcrnw6aef4rjjjkNRURHuvvtuDBkypNa7RdWExx9/HD/++CPWrl2LqVOn4vjjj8f111+PNm3aYOPGjXjnnXewY8cOAP5tMd6xjKmpqTj77LMxefJkLF68GCUlJYbTVyfz/nX79u3o378/BgwYgDPOOAM9e/ZEeno69u7dixkzZuD777/Xzsjff//9Ia1Fserbty/uv/9+/POf/0RhYSFOPvlkXH/99RgwYIDWdSrQrTwrKytiO7ZTVlYWpk6dinPPPRdz5szB119/jUsvvRRffPGF1ppfk8deWVlZuPTSSzFhwoSQSccuvvhi21oY9u3bhxtuuAH33HMPzjrrLJxwwglo06YN0tLScPDgQcybNw9ffvml1n00OzsbkyZNMr0cwPjx47Fly5aQ24LHdYV/ZzZq1Aj33HNPyG1erxf/+Mc/8OKLL+LUU0/FiSeeiK5duyInJweVlZXYvn07Zs2aFTIUpmfPnnjppZfieTlsPz6Jh8vlwmeffQZFUfDFF1/gt99+08aUBb//77//PtavX48VK1Zg0qRJmDZtGi677DL069cPjRo1Qnl5OXbt2oU//vgD06dPx6FDh6S6FiuKgnHjxmm9HQLDk0455RSpS7oECx76MHLkyKgea8qOVCfTQub1ekPOzoT/6J2Z3b17tzjjjDMMHxP843Q6da9GHm0LmRBCPPTQQ6brGjRokNi/f792lsTsTHrgSuJ6P+GvlcxZ/6qqKnH99ddbvh6XXHKJKCsrM1xOoFxDayH7v//7P6ntCdVng7du3Sq13BdffFG43W7DZWVnZ0udRQx+jNFZL1mVlZXitttuE06nU+r5jhkzJmIZdra0BCxYsEB07txZqk5ZWVli+fLlEcuItoVMCCF+/vlnrYVO76d3795i+/btok2bNgKAOOaYY6SWu3DhwpDlfPrpp9J1ilVttpAJ4d9/X3311YavncPhEC+88ILpGfpga9euDWnFMftJTU0VU6dO1R576NAhbd/rcDhM9+uffPKJtpy+ffuanu2vS7Zs2WL5+g0bNkwcOnTIlvV99dVX2nI/+ugjw3LJvH/9/fffLeuUnZ0tXnvtNcv6yLaQCeE/M3/XXXdpLWV6P82bNxczZ86Uei3MyHz+SkpKxKmnnqqVu+CCCyJayuw49tLz66+/Rjz+559/jvdpa6ZMmSK9/fXu3Vu3xTJc8HeNzI/e8eChQ4eiWsbFF18s9u3bZ1qv4PJWxwp2HZ9YkfkuqaqqEpdddplW7sQTT4xoBSssLBSjRo2Sfr0effRRqfpt2bIl4nP4/vvvR/08Ay2s7du3F6qqRv14I7UWyIQQory8XDz//PNi4MCBolGjRiEHimYHDbNmzRI33XST6NWrl8jLyxNOp1Pk5OSIo48+WowaNUq89dZbYvfu3bqPjSWQCSHE1KlTxYgRI0TTpk2F2+0WrVq1Eqeffrp47733tOZtmUDm9XrFW2+9JYYOHSqaNm0qXC6X4WsVzUHmggULxHXXXSe6du0qMjMzRXp6uujUqZO46qqrpHbsgfU0tECWn58vPv/8c3H33XeLU045RXTp0kXk5uYKl8slGjduLI499lhx0003RbWtBKxYsUL89a9/Fd27dxeZmZkiOztb9O7dWzzwwANSBx6lpaXaa52SkiIOHjwYwzOMtGHDBvHggw+KE088UTRr1ky4XC6RkZEhOnXqJM4991zx3HPP6YYeIWomkAnh3yl/8skn4rLLLhOdOnUSWVlZ2nvQr18/ccMNN4hJkyaJkpIS3cfHEsiEEGLv3r3i3nvvFT169BDp6ekiLy9P9OvXT7z00kuitLRUqKoq0tPTBWDelSqYqqoiNzdXABCNGzc27S5jl9oOZAHffvutGDFihGjWrJlITU0V7du3F1dccYWYP3++EELugDBAVVXx9ddfi7Fjx4ru3buLnJwc4XQ6RV5enjj22GPFmDFjxIQJE0RBQUHI44K/qB988EHTdQghxOjRo7Xy99xzj2X5usLj8Yh3331XnH766aJFixYiJSVFtG7dWowYMUJMnDjR1gMFr9erdaUaPny4Yblk3r+WlJSICRMmiLFjx4revXtr3+0tW7YUgwYNEs8//7xp1+5g0QSygPnz54tx48aJzp07i7S0NJGXlyeOP/548dRTT4kDBw5ILcOK7OdPL5TpnayI59hLj6qqIUMqOnbsaOt2WlxcLL7++mvx4IMPitNPP110795dNG7cWLhcLpGXlyeOOuooMXbsWPHNN9+YdpUOZkcgE0KI1atXi1deeUVcfvnlok+fPtrrmZaWJlq2bCmGDBkiHnjgAamQKET0J2/j/fzIkP0u8Xq9IftxvVAmhL/L71133SX69u0rmjRpIlwul8jKyhLdunUTI0eOFC+//LLYtGlTVHU8/fTTtfVmZmaK4uLiqB6/fv167fHPPvtsVI+1oghRQ3OKElFUpk2bps2wdccdd0Q9wQTFb8WKFTjmmGMAyL8HM2bMwPDhwwH4r73yyiuv1GQViRLi//7v//C3v/0NTqcTW7dutW36eyKiuuKxxx7D008/jczMTGzbti3kenbxSvwVY4kIwJFr4GVnZ9foWC4yFjzbmezYtbfeekv7uz5ce4xIz80334yWLVvC5/PhhRdeSHR1iIhqVVFREd544w0A/vkm7AxjAAMZUdIIBLK//e1vaNasWYJrU//MmTPH9Ppnb7zxhjaovk2bNjjvvPMsl7ls2TJtEothw4Zp19kiqm/S09PxxBNPAADeffdd7N69O7EVIiKqRa+99hoKCgrQpEkT3H///bYvn10WiZJAfn4+mjdvjqZNm2LTpk01euHohqpr166oqKjAOeecg759+6JZs2aoqqrCpk2bMGXKFPzxxx9a2W+//dYwkP34449QVRXr16/HCy+8gD179gDwz/wXuAArUX2kqir69++PpUuX4rbbbjO9thERUX1RVFSETp06oaCgAG+//bZ2DVI7MZARUYPQtWtXbNq0ybRMeno63nvvPe0i1nqCL00QIDve7KeffkJZWZl1ZXU0bdpUu7grERER1R8MZETUIPz222+YPHkyfvvtN+zatQsHDx5EWVkZGjVqhO7du2PYsGG45ZZb0KJFC9PlBAJZVlYWunfvjltuuQXXXnut1HXLOnbsiG3btsVU/yFDhmDWrFkxPZaIiIiSV61dGJqIKJFOOukknHTSSXEvh+ewiIiIyE5sISMiIiIiIkoQzrJIRERERESUIAxkRERERERECcJARkRERERElCCc1IOIiGLi8/lQXl6OsrIy7Sf4/9LSUlRWVsLj8cDj8YT8rfe/x+OBz+eDqqohvwM/qqqG3Af4Z700+gnMfOlwOOB0OuFyueB2u7Ufo/9TUlKQmpqK9PR0pKWlIS0tDRkZGdrfwbenp6cjKysLGRkZcLn4lUpERNHjtwcRUQMmhEBxcTGKiopQVFQU8XdhYaF2W+B3aWkpysrKUFFRkejqJ5WMjAxkZWWF/GRnZ4f8n5OTg7y8POTm5iIvLw95eXlIT0/Xvb4dERE1DJxlkYionlFVFYWFhSgoKMChQ4cifof/7fP54lqf0+lERkZGyE96ejoyMzORlpaG6RNmQxEAfAogFEBVABVQ1MDfQf8LAKj+LeAvH/iWEkduVwK3Bd2N4EyjoLpg0P+K8HfUVwSEI/C/CLlPOKoX7vT/nH3D6aioqEB5eTnKy8tRUVGh/R/4XVlZGdfrl5KSooWz4J9GjRqhadOmaNq0KZo0aYKmTZsiMzOT4Y2IqJ5hICMiqkN8Ph8OHTqE/fv348CBAzhw4EDE3/n5+fB6vVEtNyMjAzk5OcjOzkZOTg5ycnLw639/g+JVAK8DitcBVCn+3z4Fik8BfP6/oQIKGm5IENUBTrhUwCUApwrhEoCr+rdT4II7z9RaHA8fPqz99ng8Ua0rLS1NC2eBoNakSRM0b94czZs3R8uWLdGkSROpC5UTEVFyYCAjIkoiPp8P+fn52LNnT8TP3r17cfDgQekWrdzcXDRu3BiNGjXCsh9XQ6lyAFUOKJ4jv7XbRMMNVIkiUN1C5xYQbhXCrQJBv4dddwoOHjyI/Px85Ofno6SkRGq5LpcLzZs3R4sWLdCyZcuI382bN4fb7a7hZ0dERLIYyIiIalllZSV27dqF7du3Y+fOnSGha9++fZatW06nE02aNEGzZs3QvHlzzP5kIVDpgOJxQqn+DQ9DVn0jHAJI8UGkqNU/Plz29/O1ltF9+/YhPz/fMrA7HA60aNECbdq0Qdu2bdG2bVu0adMGbdq0QatWrZCamlpLz4iIiAAGMiKiGqGqKvbt24cdO3ZE/Ozbtw9mu16n04mWLVuiVatWWPrdKigVziM/Hoc/bDXgLoJkTEAAqSpEqk/7Off207F3717s27cPe/fuNe0mqSgKmjdvroW0du3aoUOHDujYsSOaN2/OrpBERDWAgYyIKA4+nw+7d+/Gli1bQn527dpleuCblZWF9u3bo23btpj5n3lHAlel09/axcBFNUBA+LtFpvsg0ny44ukLsXPnTuzatQs7d+5EWVmZ4WPT0tLQvn17dOzYUQtpHTp0QOvWrTnlPxFRHBjIiIgkBFq8tm7dis2bN2vBa9u2bYbBy+12a60M8/+7BEqFC0qZE0q5C/AqDF2UVPxhTUCkeSHSfbjymZHYsWMHtm7dih07dhh2pXW5XGjXrh06d+6MLl26oEuXLujatSuaNm3KGSGJiCQwkBERhfF6vdi6dSs2bNiA9evXY8OGDdi4caNh60Fqaio6duyIDbO3QSlzQSlzwVHmBCqdDF1ULwgIiDQfRIYXIsOHM248Gdu2bcP27dtRXl6u+5jc3NyQgNalSxd07NgRKSkptVx7IqLkxkBGRA1aeXk5Nm7ciA0bNmg/W7ZsQVVVVURZl8uF9u3bY+tvu/0tXWUuOMpcQAWDFzVMgTFraoYXIsOL0244CRs3bsSOHTt0JxdxOp1o3749evTogZ49e6Jnz57o0qULJxIhogaNgYyIGgyv14stW7Zg9erVWLNmDdasWYOtW7fqTrCRlZWFrl27YsX366GUuqCUuKCUuzhzIZEEoQh/a1qmFyMfPhObNm3Cxo0bUVxcHFHW6XSic+fOWkDr0aMHOnfuzHFpRNRgMJARUb0khMD+/fuxevVqLYCtW7cOlZWVEWUbN26M7t274/fPV0ApdcFR4mJ3QyKbCQggRYWaVYXR/xyJtWvXYu3atSgsLIwom5KSgq5du+Koo45C79690bt3b7Ro0SIBtSYiqnkMZERUL3i9Xqxfvx7Lly/HihUrsGrVKhQUFESUy8zMRM+ePbHsq7VQil1wFLuhVDkTUGMi0ro8ZlXhsqdHYN26dVi3bp3uRbCbNWuG3r17o0+fPujduze6du3KVjQiqhcYyIioTiorK8OqVauwYsUK/Pnnn1i9enVE61egK9Sm2Tv9wavYDaWcLV9EyUybQCS7Chc+PBwrVqzApk2bIsakpaamai1offr0QZ8+fZCVlZWgWhMRxY6BjIjqhMLCQixbtgzLly/H8uXLsXHjxogDtOzsbPTp0wcLP13uD2AlbigqwxdRXSccKkS2F2NfvRgrV67EqlWrIsajORwOdO/eHccddxz69u3LgEZEdQYDGRElpbKyMixfvhxLlizB0qVLsXHjxojJN1q0aIEDKwrhKHJDKUrxz3zI1i+iek9A+C9unVOFM+8cjD///BO7du0KKcOARkR1BQMZESUFj8eD1atXY+nSpViyZAlWr14d0QLWoUMH7PhtPxxFbjiKUqBUcuwXEfmJFB/UXA/OvudU/PHHH4YBrX///ujfvz969eoFt9udoNoSER3BQEZECSGEwLZt27Bw4UIsWrQIy5cvjxgD1rJlS+xfdhiOwhQ4Dqdw8g0ikmYV0NLT09G3b1/0798fAwYMQNu2baEobGEnotrHQEZEtaasrAxLlizRQtjevXtD7m/UqBEK15fBcbg6gFVyBjUisodI8UHN82DorQOwePFiHD58OOT+li1baq1nJ5xwArKzsxNTUSJqcBjIiKjGCCGwZcsWLFy4EAsXLsTy5cvh9Xq1+91uN4499lj88flaOA6ncgwYEdUKAQGR6cW1b1+K33//HStWrEBVVZV2v9PpRO/evXHyySdj0KBBaNeuHVvPiKjGMJARka28Xi+WLVuGOXPmYN68edi/f3/I/a1bt8bexYfgOJQKR2EKZ0EkooQTDgE114ORjw/DokWLsH379pD727Rpg0GDBmHgwIE49thjef0zIrIVAxkRxa20tBQLFy7E3Llz8dtvv4Vc1DUlJQV9+/bF4s9Ww1GQAqWCrWBElNxEqg+3fDIa8+bNw7Jly0Ja9jMzMzFgwAAMGjQIJ510EnJychJYUyKqDxjIiCgm+fn5mDdvHubOnYulS5eGdPdp1KgRCteUw1GQ5h8LxlYwIqqjhFOFmufB8L+djAULFoSMPXM6nejbty+GDh2KU045BY0aNUpcRYmozmIgIyJp+/fvx6xZs/DLL79g1apVIfe1a9cOuxcchONgKpRiN1vBiKjeERAQ2VW4/KXzMG/ePGzevFm7z+Fw4JhjjsGQIUNw6qmnolmzZgmsKRHVJQxkRGQqPz9fC2ErVqwIua9Xr15Y+/02OA6mwlHOMRVE1LCoaV5c8+7FmD17NtauXRtyX69evTB06FAMGTIELVu2TFANiaguYCAjoggHDx7Er7/+il9++QXLly9HYDehKAr69OmD1VO2+FvCPLwuGBER4B93dsOEUfj111+xcuXKkPt69eqF4cOH47TTTmO3RiKKwEBGRAD8E3PMmjULP/30E/7880+oqqrd17t3b6z5Zhuc+QxhRERWRIoPt3w6GrNnz8ayZcu0k1pOpxP9+vXD8OHDMXjwYGRkZCS4pkSUDBjIiBowr9eL33//HT/99BPmzJkDj8ej3Xf00Udj3Xfb4cxPYwgjIoqRcPtw48eXY8aMGSHdGlNTUzF48GAMGzYMAwYMgNvtTmAtiSiRGMiIGhghBNavX4+ffvoJM2fOREFBgXZfhw4dsPPXg3AeSINSyRBGRGQnNc2L0f8+HzNmzMDOnTu123NycnDGGWfg3HPPRffu3XkRaqIGhoGMqIHIz8/HtGnTMG3aNGzdulW7PS8vD8WrK+HYnw6lxMXZEYmIapiAgMjyYuSzZ0ScGOvSpQvOPfdcDB8+HHl5eYmrJBHVGgYyonrM5/Nh0aJF+O677zB//nz4fD4A/os1e3cpcOxP918nTDCEERElgoCAyPPg1DtPCOk67nK5MGjQIJx77rno378/XC7OZEtUXzGQEdVD+/btw/fff48ffvgB+/fv127v1asX1n21HY78NCg+RwJrSERE4YRLxa0TR2Pq1KlYt26ddnvTpk1x1lln4bzzzkObNm0SWEMiqgkMZET1hNfrxfz58/Htt99i0aJF2qxeOTk5KF3jhWNfOhxlPMNKRFQXqJlVuPDZ0zF9+nQUFhZqt5944okYOXIkTjrpJDidHOtLVB8wkBHVcfn5+fjmm2/wzTffhIxD6Nu3L1ZM3ORvDWOXRCKiOkkoAo/MvA3fffcdFi1apN3eokULXHDBBRgxYgQaN26cwBoSUbwYyIjqICEEVq9ejcmTJ2PWrFnwer0AgEaNGqFoeaW/NayCrWFERPWJSPPiLy8Nxw8//ICioiIA/rFmQ4cOxciRI9GnTx/O0EhUBzGQEdUhHo8HP//8M/73v/+FXM+mT58+WPPFdjgOprI1jIionhMOgXu/ux5fffUVVq9erd3euXNnXHLJJRg+fDhSU1MTWEMiigYDGVEdcODAAXz11Vf49ttvcfjwYQDVMyXucMC5OwOOUl5QlIioIVIzq3DWoydj+vTpqKysBODvLXHRRRdh5MiRnDqfqA5gICNKYlu2bMHEiRMxffp0rVtis2bNUPB7OZx706F4OVMiEREBwqni+o8vxZdffqnNrpuSkoKzzjoLl156KTp27JjYChKRIQYyoiQjhMCff/6Jzz77DAsWLNBuP/bYY7Fq4lZ/t0RevJmIiHQIReChn27BpEmTQrq2n3jiiRg1ahROOOEEjjMjSjIMZERJwufzYe7cufjss8+0MQGKokA5kALnzkw4StgtkYiI5AgIiJwqnPTX3pg7d652KZRu3bph9OjRGDJkCKfNJ0oSDGRECebxeDB16lRMnDgRu3btAlA9PmybE85dGZwtkYiI4iLSvDj/H0Pxww8/oLy8HADQrl07jB49GsOHD4fbzRN+RInEQEaUIJWVlfjuu+/w3//+FwcOHAAAZGdno2yVCueeDChVHB9GRET2ES4Vo985D19++SWKi4sBAM2bN8cVV1yB8847jzMzEiUIAxlRLauoqMA333yDzz77DAcPHgRQPVHHwgo496ZBURnEiIio5ginius+ugSTJk1CQUEBAP/MjJdffjkuuugipKWlJbiGRA0LAxlRLSkvL8fXX3+NiRMnal+ALVq0wMF5ZXDsS+f1w4iIqFYJReD2/12NTz/9FHv37gUANG7cGFdeeSUuvPBCtpgR1RIGMqIa5vF48M033+Djjz/GoUOHAAAtW7ZE/pxSOPYziBERUWIJReCe767Dhx9+iN27dwMAmjRpgquuugrnn38+UlJSElxDovqNgYyohni9XkybNg0TJkzAvn37AACtW7fG/lklcBxIYxAjIqKkIhSBu74ehw8//FD73mrWrBnGjBmDESNGwOXiJFNENYGBjMhmqqri119/xfjx47F9+3YA/i+0Q/Mr2CJGRERJL9CV8aOPPtImnWrbti1uvPFGDBkyhNcxI7IZAxmRjRYvXoy3334b69evBwDk5uaiZJnPP2uiyi8wIiKqO4QicPOky/HRRx/h8OHDAICjjz4aN998M4477riE1o2oPmEgI7LB1q1b8eabb+K3334DAGRkZKByjQLn7gwoPs6aSEREdZdwqrjynRGYNGmSdh2zgQMH4qabbkLnzp0TXDuiuo+BjCgOhw4dwgcffIBvv/0WPp8PTqcT2JEC5/YsKF4GMSIiqj+E24dz/zFY+85zOBw499xzccMNN6BRo0aJrh5RncVARhSDyspKfPHFF/jkk09QVlYGAHAcTIVzSxYcFRz0TERE9Zea5sWge/tg1qxZAIDMzEyMHTsWF198Mdxud2IrR1QHMZARRUEIgXnz5uH111/Hnj17AADdu3fHli8PwFHEaYGJiKjhePnPx/D6669j7dq1APwTf9x2220YOHAgJ/4gigIDGZGknTt34tVXX8XChQsBVM+cOLfSP4U9+MVDREQNj4DAPd9fh3feeQcFBQUAgP79++P2229Hx44dE1s5ojqCgYzIQnl5OT755BNMnDgRVVVVcLlcEFtS4NyRCUXlODEiIiLhVHHJ68PxxRdfaN+Vl19+OcaMGYO0tLREV48oqTGQEZmYPXs2XnvtNezfvx8AoBxKgWtzNhzlHCdGREQUTqR50e+OHpg/fz4AoGXLlrj77rsxcODABNeMKHkxkBHpOHDgAF555RXMmTMHgP8LJf+XcjgOprJ7IhERkYXHfr0Dr776qnZC89RTT8Udd9yB5s2bJ7hmRMmHgYwoiKqq+Prrr/HOO++grKzMP4391rTq7okMYkRERLKEQ8XFrw/D559/Dp/Ph/T0dFx33XW4+OKL/d+vRASAgYxIs2XLFrz44otYuXIlAEApcsO1MRuOMk7hS0REFCs1owo9x7bBihUrAAC9evXCgw8+iA4dOiS4ZkTJgYGMGjyv14uPP/4YH3/8MbxeL9LT01G10gXHnnR2TyQiIrKBgMDtU67GW2+9hbKyMqSkpGDcuHG4/PLL4XJxXDY1bAxk1KBt2bIFzz77LNavXw8AcBxMgWtTDhQPu1IQERHZTaT40Pf2LtolZHr06IEHH3wQXbp0SXDNiBKHgYwaJJ/Ph4kTJ+L9999HVVUVsrOzUb5Y4TXFiIiIapiAwL0/XI/XXnsNJSUlcDqduOaaazB69GiOLaMGiYGMGpwdO3bgueeew6pVqwAAjoIUuDayVYyIiKg2CbcPJ957lDajce/evfHII4+gdevWCa4ZUe1iIKMGQwiBb7/9Fq+//joqKyuRkZEBzzIXHPvZKkZERJQIgdayV155BWVlZUhPT8edd96Jc845B4rC72ZqGBjIqEEoKirCCy+8gNmzZwMAlMMpcG/IgVLJVjEiIqJEE6k+9LyuNZYvXw7Af92ye++9F3l5eYmtGFEtYCCjeu/PP//E008/jf379/v7pm9Mh3NXBlvFiIiIkoiAwLiPRmL8+PHw+Xxo0qQJHn/8cRx33HGJrhpRjWIgo3rL6/Xio48+wkcffQRVVdGmTRvs/74cjhJeV4yIiChZ/XvNM3j66aexfft2OBwOXHvttbjqqqvgcDgSXTWiGsFARvVSQUEBnnzySfzxxx8AAMe+NLg2Z0PxcWdORESU7IRDxWlPHo9p06YBAPr3749HHnkEjRo1SnDNiOzHQEb1zooVK/D4448jPz/ff5HnZW44D6QnulpEREQUBQGBv313Lf7v//4PlZWVaNq0KR577DF2YaR6h4GM6g0hBCZPnow33ngDPp8PSpkTrjV5cJS7El01IiIiipGa4UXri7Kwbds2OBwO3Hrrrbj00ks5CyPVGwxkVC+UlZXhxRdfxMyZMwEAjgOpcG3IgaKyiyIREVFdJxwCpz3ZV+vCeOaZZ+K+++5DampqgmtGFD8GMqrz9uzZg4ceegibN2/2z6K4IQPO3emcRZGIiKgeERC4+fPLtZ4w3bt3x7PPPosWLVokumpEcWHzAdVpy5cvx0033YTNmzejcePGcCzNgWs3p7QnIiKqbxQoeOeySXj55ZeRm5uL9evX44YbbsCyZcsSXTWiuLCFjOqsqVOn4sUXX4TX64VS4oJ7dR4UDy/0TEREVN+JVB86XNkIGzZsgNPpxD333IPzzjsv0dUiigkDGdU5Pp8P77zzDiZOnAgAcOSnwrU+F4rKVjEiIqKGQjgETn3sGMyYMQMAcNVVV+H666/n9cqozmEgozqlsrISTz31FObMmQMAcG7PhHN7JrsoEhERNUACAle8dw4+/PBDAMDpp5+Ohx56iJN9UJ3CQEZ1RlFRER566CGsWLECbrcbYkU6nPm8vhgREVFD97fvr8ULL7wAn8+HPn364Nlnn0VeXl6iq0UkhYGM6oR9+/bh3nvvxbZt25CVlYXK+W44ilISXS0iIiJKEs///iAeffRRlJSUoG3btnj55ZfRsmXLRFeLyBIDGSW9TZs24b777kN+fj5Q6YB7VSM4ynixZyIiIgqlpnvRZIQbe/fuRbNmzfCvf/0LHTt2THS1iExx1CMltRUrVuD2229Hfn4+lFInUv5szDBGREREuhzlLhR840XHjh1x4MAB3H777VizZk2iq0VkioGMktYff/yBe++9FyUlJVAK3XAvb8xp7YmIiMiU4nFi98RSHHXUUSgsLMRdd92FpUuXJrpaRIYYyCgpLVq0CPfddx/Ky8uhHEqBe1UjKD5urkRERGRN8Tqw6f18HH/88SgvL8d9992HBQsWJLpaRLp4hEtJZ968eXjooYfg8XjgKEjxX/CZ1xgjIiKiKCg+B1a+vhOnnHIKqqqq8MgjjzCUUVJiIKOkMnv2bDzyyCOoqqryX/B5TR4UwTBGRERE0VOEgoXPr8OQIUMYyihpcZZFShq//fYbHn74YXi9Xjj2p8G1PocXfCYiIqK4CUVg4MNH4ddff4Xb7cazzz6Lk046KdHVIgLAQEZJYunSpbj//vv93RQPpMK1LpdhjIiIiGwjFIGTHuqJ2bNnIyUlBc899xwGDBiQ6GoRMZBR4q1YsQL33nsvysvL4TiYAtdadlMkIiIi+wlF4MQHe2DOnDlIS0vDyy+/jN69eye6WtTAMZBRQq1fvx533XWXf2r7Q9UTeDCMERERUQ0RikDfv3XCwoULkZ2djX//+9/o1KlToqtFDRgDGSXMnj17cMstt6CgoMB/nbFVjTibIhEREdU44RDodkMzrFq1Ck2bNsUbb7yBVq1aJbpa1EAxkFFCFBUV4dZbb8X27duhlLrgXs7rjBEREVHtES4Vba7IwpYtW9C2bVu88cYbaNSoUaKrRQ0Qj4Cp1lVWVuKhhx7C9u3bgQoH3KvyGMaIiIioVileB3ZNKkbLli2xc+dOPPzww6isrEx0tagB4lEw1SpVVfHss89ixYoVgFeBe3UjKB5noqtFREREDZDiceLgd1XIzs7GqlWr8Pzzz4Odx6i2MZBRrfrPf/6DWbNmwe12w70mD44yV6KrRERERA2Yo8KFZ555Bk6nEzNnzsSECRMSXSVqYBjIqNb8/PPP+OSTTwAAYmU6HIUpCa4REREREXD/Cc/hnnvuAQB88MEHmDFjRoJrRA0JJ/WgWrFx40bceuutqKiogHNnBlxbsxNdJSIiIqIQF/37NEycOBEpKSl444030KNHj0RXiRoABjKqcYcPH8aNN96IvXv3+q81tioPCji9PRERESUXAYF+93fF/Pnz0bJlS/znP/9BTk5OoqtF9Ry7LFKN8vl8ePLJJ7F3716g3An32lyGMSIiIkpKChQs/tcGtG7dGnv37sUzzzwDVVUTXS2q5xjIqEZ98sknWLJkCdLT0+Few+ntiYiIKLkpPgeefvpppKSk4LffftPGvxPVFB4dU435888/8cEHHwAAqpa5OaMiERER1Qm39ngYd999NwBg/PjxWLJkSYJrRPUZx5BRjSgsLMS1116LAwcOwLEvDe4NuYmuEhEREVFUhv2jH77//ns0adIEEyZMQG4uj2fIfmwhI9sJIfCPf/wDBw4cgFLuhGsTZ1QkIiKiumf6339H+/btcfDgQfzrX//iRaOpRjCQke2+//57zJ8/H263G661uVBUbmZERERU9yiqgkcffRROpxOzZs3CtGnTEl0lqod4pEy22rdvH/79738DANT1qXCUuhNcIyIiIqLY3XbUI7j22msBAK+88gr27NmT4BpRfcNARrYRQuDFF19EWVkZlCI3nLsyEl0lIiIiorh9OPZr9OnTB2VlZXj++efZdZFsxUBGtvnhhx+waNEiQAVcG3J4vTEiIiKqFxQoWPf+bqSmpuKPP/7Ajz/+mOgqUT3CQEa2yM/P17oqOrdlwVHOKe6JiIio/lAqXVrXxTfeeAOHDx9ObIWo3mAgI1u89dZbKC0thVLsYldFIqo5ikTLu11liIjCjL9qMrp27YqioiK88cYbia4O1RMMZBS3ZcuWYfr06VAUBa6N7KpIRDUkEKLMwpRdZYiIdChCwb333gtFUTBt2jQsXrw40VWieoCBjOLi9XrxyiuvAACU3WmcVZGIakZ4eNILU3aVISIycWfvx/GXv/wFAPD666/D6/UmuEZU1zGQUVy++uorbN68GahS4NqWlejqEBEREdW4b++djdzcXGzZsgXff/99oqtDdRwDGcWsuLgY77//PgDAtS0LipebExHVAKNWrODb7SpDRCRB8Tkwbtw4AMD48eNRWlqa2ApRncYjaIrZZ599hpKSEiilTjj2pie6OkRUH1mFJUWxrwwRURTeuuwztG/fHocPH8Ynn3yS6OpQHcZARjE5ePAgvvzySwD+ae45kQcRaewISYoCOJyAYv41pTity0BxSJZhaCMieYpQcMsttwAAvvjiC+zfvz/BNaK6ioGMYvLRRx+hoqICSpEbjoLURFeHiJKFHd0IFSU0QBmEKcXprL5bMQ5cEsvRbjcLZbU9M6NMqCWihHv8lP/DscceC4/Hg//+97+Jrg7VUQxkFLU9e/bg22+/BVA9doytY0QE2DPzYXgY024PvS0Qxo7crfM4ieXo/m9V55oOSjKhloiSggJFG0v23XffIT8/P7EVojqJgYyiNmnSJHi9XiiHU+AoTEl0dYgoGcR7MeZAi5BZ18Lq+8LD2JG7gx4vsRzTFrNk6r7IUEaU1B7o/w/06dOHrWQUMwYyisrhw4e16V1dOzISXBsiSgp2TKoBWI/zAqC4zK91qDgUKCkSJ4pkx5TJXGDaTpwJkqjOCW4l++abb3Dw4MHEVojqHAYyisqUKVNQWVkJpcQFha1jRGRTUDBq9Qop43bJL8+krOJQoDid/hY104XITAZi4yyPdgVbIqp1D534T/Tq1Qsejwf/+9//El0dqmMYyEhaRUWFtpNx7szk2DGihs7mMGYWkLSAZTaBBwAEBTu9UBberdEylFWXsy5Ti9dBYygjSjoKFFx++eUA/K1klZWVCa4R1SUMZCRt2rRpKCwsBMqdcORzZkWiBq2GWsakApJRKLNoZTOa+KPGQpnMJCexYigjSjpPn/Y6WrZsicLCQkyfPj3R1aE6hIGMpAgh8M033wAAnHvS2TpG1JDVcDfF8ICk2/0wPFwZLav6sVZT49seymTHnsXzWjKUESUVBQouuugiAMCXX34JIUSCa0R1BQMZSVmzZg02bNgAqIBzf3qiq0MUHR642seOyTkUh+WYMcWh+H/Mxo05FH8Qs1qW22VLnQLlrMtIzjhpx3bJbZsoqYwf8yVSU1OxefNmrFmzJtHVoTqCgYykBFrHHPlpULzcbChOdnbbsmN6cm3K9SSa6ry2ycwoaNNMidJVcrmgWKxTSUmB4jKZwEOpnsDDakIQh+L/kapYku0D6/N2SVTHKD4HhgwZAgD44YcfElwbqiuS7FuFklFFRQV++eUXAIBzL1vHKE4yXbqiWY7ZsuycUMGueicjq9dJ+jVy6P8dVkame6DicgEOB+BwGIYybXp7h0M3lCmK4l9GdZg0DGVB9ZFqJQMYyojI0C//+h0AMHPmTFRUVCS4NlQXJNk3CiWjefPmoby8HKhwQCkyvwYQkSE7p+yWCQ12lTG6rb6wer6xhDGj26INYwE6oSziWmNhoSwkjB25UaqljKGMiOKhFLrRqlUrlJaWYs6cOYmuDtUBSfZtQslo5syZAADnAU7mQTGy82K3sl0Qre6LZ9KF+nLga0cXRcA8mEQ5xXxEGAsICmWGF36uDmW6YUxbQVgo06tTXQ9l9WX7JKqjFCgYPnw4AGDWrFmJrQzVCUn2TULJpri4GAsXLgQAOA6kJbg2VCfZebFbu5Zlx6QLdrf42VXvaNZpWcb6K0J2IgyZizAbhrEApxOOrEzL+ihZmZbvneJ2mY8ZiyKU2TYZiJ1qe3uSUVfrlIzqar0bkM/u+g4AsHDhQpSVlSW4NpTsGMjI1MKFC1FVVQWl1AlHmUVXn0Sy64A+mmXV1nKSld2TYNRa+LF5tydTb9nWOJn12BFK7Zqco7qMVdhSnE7LVjQlxW0+W6KiQElPk6q74nJBycgwL+R0mk4GAgCK02HZxVF2unzTafery2g/FsuSZsf+TnZ7kt3m6mqdrNhVp2jXWVvY8ho1pcyFdu3awePxYP78+YmuDiU5BjIyFdiJOAqS+ELQsl3QoumqZteEE/X1C8zOyTKiWVfcy3KE/jYrF0UgqdExbWa3m5WLZ1kyk3MgNIwYBRPF6Twyg6HBODMlJWhsqlE3w/Q07X0JKR9STAHS06rX6zAOZYFWOIPJQLRlVf82CmVKlJOBGIYynbF2Bgswv1/3MRLbQU2Xqct1kllGTdUpnvXZqbbXV08oUDB06FAA4DgyssRARoa8Xu+R7orJGshiOeg1Wk5NBYj69gUWT7CIdtk1EcaM/re63aicXiiz62DSqFyst8XaMqZzm1QACYSxgPBAYhSuwl4nLYxpy3FGPC4QxoIn/9ANZeFdInVCWcQEIiahLKSc3msS1l0zIpTJboey26/usmw6OVDb26ad+/d4b4vmBEdNfufEur5Y1fb66pmJ9/q7LS5evBg+ny/BtaFkxkBGhlatWoXi4mKgSoFSnISzK8bT9aWmWnhqurUo0eJ5zaNZh+1de2w+6DUrZ0e3pWhac2XLxRrGdO4zCmMRLUYGE2ZYtXT5F6DohzFtOUdCmV4YO1KPoFBmND4tKJQZTrEfFspMWwSPFNItpwS9BqasWsRiCWXxbivR7gPsWl+8n4Xgz12sy4pmnxTtaxDtMuNZTrKurx5Sit3IyspCcXEx1q5dm+jqUBJjICNDf/zxBwDAcTgl+WZXtPqikD3otaOMTJ1k7o92fXaw+/nZUXfZ7oLRLM/iftMxTtG0TEi/lhLPzyEzUYTka2753jnkJ+ewKKcEJsOwmjAjTaLV3WGxLTicUFJTDMNY8PpMJwupXpcj1bxOgVAmO2bOrJwiO2mInWPKZLYpu7Y7qTLGXUYjlmVHnexYlmzQsrtOMuzal9u9vgZMgYJ+/foBgNbjiEgPAxkZ0gJZocEU03aT/XJLxJeATAC0Yzmyy7Bap2wZO9allZUccyXZChP3BAiSIUN6Ugan03x5VsEuqJzM+qTKyrayWL1O1a+BZYBwuywm3nBASUmxnggj6ILOhmWcTjgyM6A4zco4gOZNgLwc8/W5XHBkGk/yoSiKf1kOxXhK/aB6WYYImW0vMCGKSTnFoWg/lsuKt7UteJ0S27llMJcoE1zWolK181mQFc0+UbpedpzQk1iO7PJqO9zVY/379wdw5JiKSA8DGenyeDxYtWoVAECpjUBm1ZUkGXf6sYZDvcfIdI3RW188y4q2jBmZgz2rsBXl2C3tQNVoogjJkKH3dyzlQtZn0tpmWu/qMqb/690eaxmdVhzDLnbBB81GY6XcLm07NezWaBF4gOqD+Yz0oGXpjWFzQDTOhXA4INwuiNxs/YU5nf7lVAc8S2ahTGIykFjGh+m9VjLvi9VyDW83KBdcD6nxcEbvceDEhFkwlVyWLdu5WflYRRvu4glliiJ1YiVkOfG08EX7vZaoE6V1xCuXvw8AWLt2Lbxeb4JrQ8mKgYx0rV+/Hh6PB/AoUMolL5AaK6twkCw7+mi6qtixrFjWZ9eXcCxhzOh/mduiPJC0miRBOmRY3GbUOmG1fN3AFX4AalBGisxrLPGaS12oOTyMBYSPlQqEMe22yFCmG3TCWslCwljIsoLHsB0JYwG6oSwQxqqXoRfK/BeRDnsd9EKZxGQg8ZxoCAlDFqHffEGxbUO6oVBmPFz4exzeSqzXoia5LFu282geJyuWfZfMbXqhTIncv0nVz2hZEWVt/L5Nlu/qJKOUO5GTk4PKykps3Lgx0dWhJMVARrrWrVsHAHCUuGt2/JhVOEi2HbzdZwJtGYcRxWtl9ziweM9YR9PNSCeM6ZWVOZiVaQ2TOvg1KRcSuIwOQMPKmKxE/2+jchKvufRrYNadLDBWKjyMaQs6EspMW8YcR7rvRYSxkGU5dMNYQEgoCw5jQcsIDmW6YUyrk2LdtTI4lNnw/ilOp+V2F3Uok6iXabdJmfFwYWFLdz2KI7plyb6eZmWsPg+xhLJ4w55MT4GQkxFxrC94WXZ0l5eRbN/ZSUCBgl69egEAVqxYkeDaULJiICNdGzZsAAAoJTU0u2I0QaMukjpgqOUvQelWtugCkmU50yLW42MCY1rMygaCjeyyrOotNcW5bN1dbsvwo7gkPmeyr6fVGKjAWDCr1Tmd5mEM/kDjyDQIUAFOJxxWF2kG/JNlGIWxgPQ0eHq01g1jASI9BZU925if7AmEMqtw43RCserm6HBIdcOU+sxUr9NyUbKTgUisT2bbk91eZD5bDrOZNaOok/Tzs2N8mgyrLprBRV1uiZMmFt+REmE6UE564hS7xgrLTAwjy87vtgQ66qijABw5tiIKx0BGutavXw8AUEokduTRqgM7z7jItFLI3B/N+mTPGMdbRgkaA2W5KPNyMlN/ay00ZmOuAmVlJtSwmv1P8bfAKIpFy1DgIMfqYMhqfUFlrCZ3cKS4TQ+M/cHOYjKN6jJSz8/tMq+TokBJT/eHFqN6OaqntneaT3GvOB1QMjMBs/qnpaKic1N4012oaqYfkoTbifJWmfBmOlHZrYXxshQFcLv96zQs4wCcDv9MjtUXmzZclqKYT+HvONK6Zyaw7ckcQNsxqYYi+dkCYB3OXS7r7c/pMB9/F143i/ulWhMlu+bK7F+kXk+LUKa1Ptvx/lUHO6n9sV0TpwT/NmMVypK994fNPrpvMgBg8+bNCasDJTcGMorg9XqxdetWAICj1OYWsoYSxoz+D7893lBmd1c2s2WFffHLhi3LrnoGy4roLmc1EYZDMS8jMylF8Dglo9ASVM402Fh14wovYxDKtKDlqD5Y1wk/wWFMpoxp3YO7IBpMzqGFscD7ZrpdHTmo0gstWhgLlNOrU3UYU93+9ahO421POBUIRYE3w4nKrgahLNBV0eHQD2WBMKZ9bkz2Ww7HkS6XeqHMoSD8YtW6VQq/XWKSC9NJNWTKBN6/eD43QOh2Zfb8opwUxfL5WXVRtugybLZu3fUFlmtRRu9/vXVIXc9PZjyhbFdtuyZOkS1nFMpimVgkEeOjbeQo9W/vW7du5cQepIuBjCLs3bvXv8PwAai0cRNpaGFMtlysoczO9VndZhas9G4zeaz0hBd6Bw9GE2EE10OvjMykFHoz+YWHFp1yusEm/H/ZOoWFsuAw5r8/MpTptYwZhbJwus/PYnKOiDAWqHf4+hw6rWJhoSwijAUE1yksjAGAcDkiWsmE24mKlkduE4ribykLD2XB48b0Qll4GKu+TbeVLLjeeqEsLIwFP2+z//2L1htHp1NOIgjoltGZyCTqzw2gG6x0n1+Mk6JYPj+dfZPMPsaQEl53iRkwJYKx4bLCy0juZ2Wen20TpxiR+W4JD2UyE4sYrk8ipMVSpjZUOJGWlgaPx4Pdu3fX/vop6TGQUYSdO3cCAJQKl30TejTkMBbL2cdY1xfLWUzLsQxyE0Bof5u0rklPCS8zRiZQP726Ba9HZlIKi65kWv2Mzv4HBxuj9cnWKXjMXHAY0+4/EsrMuikGhzKrcrKTc+iGsYDgrouBMGa0rBS3cRgLWp5eGAvwpTq1UBYIYyKs5SwilBnMqKiFMr0wppUL67qoKLrvDVAdygzCmPbwQCur2bYn08qKIwfZlpNzBH6bTGQi/bmBfhg7sr7glhKDuktOimL5/ML3URb7GEtK4L2x7npouaho3pto9rP6hbT7bJ04Jd7eF4FQZjWxSDQTkNhRphaPSxQoaNu2LQAwkJEuBjKKoAUyu6a7T7YwFm83wfBlySwvmv75dixHspzlGIVox4tZfXFLjLmyHF8SPPbMrG4yE1xItCQFxvRYj/9xQklNtSgjOQGEURjT7vcfyFpNlqEo1WPPLMf2OKGkpZp/VgMTXJi95k6n/8LQRmFMq78TSlaWeRm3C562jXXDWIAv1YnK1lm6YSwgEMoqerQ0DyIuJ5SsTMsDSyU9TT+MaWUc0hN9mI47w5FtT2bfIDVZhsyYRonPDQDLbd2/PomTHTKvVfUYSvOVSY5vldjvAZCb7MRi7KdWTnYSHZn1Sexn7Vqf9GslsyzZiT5kysmUibXVLZ5lWWjZsiUAfy8konAMZBRh3759AAClwoZAlogwFu/ZPDvWE1JMPtRYftFGs6w4y4RMuiEbAs2KBCbLMDkoDrQomLUsAKiecMI6IBmNgdLWUV3G8OAa8N/ndlu0alWHTZkJCyxCp6IocKSmmh+kKtUHzdUByLLubrMJJySCslmLV3i90qzq7vCHP6fDeHluFzxtGkG4FDg8quGiKvOc2D7Oi20XmtdLdSmoynKiomtz40IOhz+UZZhM4AEALpf5JB+oDlLVE4eYrk/2tbc6aSDT2oagz6BZGZdBK2l4Gau6y2x7gNZSYRhOA/sFh8SkKBITi2hlJVqsLPd7sgHXbL8XVE5qkiDL7UU5UtaMRGuhVGubRJngdUrdX1vf4doyayeUBQLZnj174l4W1T8MZBTh4MGD/j+q4gxkyRrGZMrGs56QYhLdTBD2pWbS5S/qZcVYL6MxGAYLM1yPViR8soxwQQddWrcvg+1HCQpRlmWM6hMxdsoglAUfdBodgIbfbhDKQtZpUkZJS9UmKNE9uAyEseoyhqGsul6m4SC8jMFrEBLGTAbOK6mpR1qI9NYXCGNmB2+BMFbdMqYIAUdVZCirzHMi/8Jy5GaXIadlMbafp7844QSg+H8sQxngr7tRKAs62FVS9UNnyAQeZqEsUM4s2DgcRwKLQSiTGY+m3R54b4w+NyGTc5hM4BE0ptHsM6FtV4ZdDUPrYRzKjqxPZlIUqS7IkG8l0hU+4ZCe8JNMZi20esuNYX2GjwkWFGqkJg3R+V/mMabrtrpdtseIXeKdEMSqC6SiYMqL0wAcOelNFIyBjCIUFBQAAJQqkzPYVhIdxmwME7E+JqpJMML/N5kUI+plRfk4q3Fepv/rPUTv4Ch8QojwMGAQykKClkEoiwhjOpNS6M8uqFOHiMk5IsOX0QGp7oyGYcsPL6OkhXUDCw9lwWEsqExEKAs6IA6pQ3A4MCoTXke9ljGd/yO6sIWHMr0w5gg7iAkLY9pD1dBQFghj2VnlAACX06cbyrQwpi3IIJTpjdMLD2U6B7vhoUx3Ag+9UKazLehua+HbcVgok52xMWJSDb3PTcQEG5Gty0ZjGvU+ExHbVcRkEgZBwGpSFJ1QpjspSoyhTDekSU7IE/5/xGtsNIYxnNUkQUaP02M1iYfkZCB6t0tPQBJZyPz/aMrVZCgzGANrepvZicAqf10LCwtjqR3VcwxkFEELZJ4YN49Eh7Hw2+wYuxVl2XgHZ1tNGx/NOqNpWbPsNhn6AOsiZpNgBFqBzFqnAmWhE7T8d4YcXBq2jClHJqUwv/5WUCudWatF4IBaZnyFXhgLWlbgumCG3fwCoUwvjAWV0UKZzgFxSF3cbusy2jgok26KQcHYcDxRIJSZtYwFhzJFiQhj2uqqQ1llnhMHLqjQwlhAeCiLCGPaggBfSmT41617IJQZfW6CQpnpBB7BocxkWwhpjTXajgMTtUh0T9R+G217gc+N4RT0R0KZ4ec0uO5W25XWFdB8nxYyKYpR3SW6aUYbykxbzCQn5NGKGwXO4FBmMR4zmvVJLUtishM7uzFaLMi8TtGUq4lQZtUapvd38G06ZRjIyAwDGUUoLS31/+EN7AijCFjJEsZk7oulnNSirF8DmbFg0ZSxY1ky48CkyzkU6wPGwMGe1fitQEuSWTAIjMuy+hK1Gs8StDxTsmN/AhePtniOlt34ApNumJUJjEExOCAO0CYpkShj+XlWFP2uibHUPcUNT+s800V5cl3Ye64HOdlluve7nD60aF8A7235+mGsmpqi+FvJzN4XoDpsWkw44XRaTs7hX5RyJDAbCYy7stiOZSZtAOAvZ7XtWY25CmwLktu71HYlwXRSm8D6pCavkAxlMq+p1OQVOq1g4esy675YA+vzr9Q6+MR78i/aMtInOOPpWhoLmeMYqy6KemW8DGRkjIGMIpSXV595VuWa4RNOGA/6t3UZMi1Cst1IZNg9g6NZucCMhTJf7lZlZF8Dq4PhAKtAE1iWTBmZ9UrUKzA2xnKCBKfTeibLwCx6Zu+N0wE4zMfFAQCcOtf+CifzPgfq7DP/XCiB1jbDAtUHJJbblANqVhqcFcYXTK1s5MbO871Iy/Cgskr/Oaa7vTiv7Upc0GYFfDfnG1fLBzjLvfDlZZnXSwj/a2oWOlXhf29kQ5LMvlQiKEpNACExrkVqe5fZjp0OuX2DQ25mQq1+ZvfJ1F8muMm0WOl1n9StlnU5IYT0ciz3MRJlpMl+50gvLv562TppSIIpXv9zKCkpSXBNKBkl99ZLCREIZIpPp3uYFYkvmhoRTyhL1jAms26Zclb98PWmj5cZNG7U/QwSB53RhDGrx+iMPdMTcuAisyyT5Zj9r3e7zCQK/ht03pvg62IpBl3Z/Cs58tvoAFT2fQ5mEMpsDWOZ6f6WmCofXMWeiCKBMJaeXQkAUFUlIpSlu704u/Vq5DrLkeHwGIYyxQukFlRCUQWE22EcytSg520VyoCoQpkUmc+IzAQQgHG3KomTFBHjL3XLhD3eZN8Q+Ns0lFmdYAnvDibxeTYMZTKfifDJOQyrZf15kg1jMsuV2ccA8J80iEYthTKrnhuxTCyS1KGs+iR3VVVVgitCySiJt1xKBK/XC5/P5/8nPJAByR3KYpHsYSze22RazmTCl97/4bfVZBgzeqzJ2DOj2wxDWQxhzOh2wzE0wf8bjtsJCl96FynWC2V6/4cfgMq+z3qve1gosz2MBV1DLDyUhYexgOBQFhzGAvRCWXAY869f0Q9lqs5+QS+UhR/oSoYy6RaNWEKZzIyGeiFGZ116oSlyEh2jMGTd0q4bysLrYbWtB26TeT6xfCaMJueIqII9YcxIzHWINoxpC6vZUCY106/ksnQKyVeuNlW/FV6vN65tgeqnJN1qKVGkdhLJGsqibSWrK2FM7754r9MS6Joi0z0x+LdRmdoIY+HLsBqLE/S34cGMbDdGWD+3aM6gy1yrTDeMaQsKCmVmLWaBA1DZ99nsda8OZTUZxrRFVIeyyjz9MBagVp9xDg9jAYFQVnXTwcgwptUjLJTphbGA4FBmdKCbyFBmee0pi25+wScuzK7TFdiOLS/6bLH/CA9lRqFKdqIFqRa/QBmJz4RJN0Xp1qlqsgfgUvsP2Va6WMOYtrCaCWWxBDSjsiaF5CuXAMXFxYmuAiWZ5N5iqdbZ1hcdSN5QJlTbwpit7BovJrssWbIDvW0bx2DTcgymzj+ymijWY3aQHiXp9dr1Htp5wgCwDgg+n9w6FUU3jAXzZDkMw1gwvTAWkOHw4OhG+1CZ54gMYwGO6rrIDuaXKSPzGshuVzL7UtmTHTaMoQTkt2PLIOKwmNxH9nn5K2VdRmfafOPFyZ2EsSIsxmJq4g1QwcuRWZYd46+jFPfsjHWZOPL8tJ5IRNUYyChEyBeM0b4xmqCVbKEsmi+g2v6ySsCXo20HADA/8BJC+O+XOQCVLWelehlG9ZKuT2A5Fl+gwucDVFXudbD6Mq7yAl7jCS4gVH+LlSqMP2My6wlQJerlUAAhIDwm4x98Pv96vRbrVfzLUsr0w5ZwO1HRIh0ppSpSf8kxXExuZjm+POZ9XJi9yrDMurKWWPS/Y+BNU1DUKUO/Oj4BR1F1qDMLAKoAAuM/jA4eA++NWRlE0X0t8J7YtS+12uYtPjehZS3KBO43K1d9n2G4UdUjz92qToHXyuw5Vt9nR6uWzGukhTHJ10o6vFmtz7KgGvrbrIzlogSE5HeJWbnAfVbLklpXIr5PrQRVOyNDf19EDRcDGYVwBB+MKDo7vVgOCpIllMWyg5Z4jOwXkV3rs10Nh7Lg22wJZYHbJQ66An+H1yuiHmbLEkdCj1EoC7ndIJRFvA5G4Ucbw+nTD2XBB/yAfiiLJYyZ1Ss4WKg+/VAW/DifzziUBQ6EhYDi9UWEskAYU90KFFUga49PN5TlZpZjUq8P0cmdhTbODN1Qtq6sJX794gSkHhKAAlRlRoYyxSfgKCzzv28Oky591WEs5L0ND1yB9yb4c6wTykK2P7NtL/y9MAvfZveHs/psVf8dVygL364kHhsRkoLDWIDRssJfK73nGHZbPKEs4vOsVyY8HJm8VjKsXs+ow5jR/0a36S5K6P4dbbnw24yWVWfDGAA4jpx8SDG67iQ1WAxkFEJRFKSnp/v/cUp+EcpIdCir4VkYGcqOsDpQiSuUWf1vdJvM+q1uMwhluiEt7GDW8HUIf6ze/8GhLDyMaesLCmUxhjFDeq08RqEsmF4oCz8ADgtlwWFMe4hOKAuEsfYu/7gvp+KICGUhYUxbWGgoCw5jWpX0QpleGAunF8YCwl9Dme3Y6D20CiixhjKD7T+mUKa3XemU0SPVDTB82UavlcRJl1hCmdUJF8AkHEm8DnqPtapDzGFM7/YYwlg8t8mGrzodxgCI6mOqjIwMe4eHUL3AQEYRMjMzARzZefj/seGAPVGhrJauU8ZQdoTWNc/k/qhDmeRZfaMyUt0mw5dlcLAbCGGm3RiD12kgJJSZtZh5vcZhTFuf8N8fZxgLqZPZmI7gUGb0mgaHMqMDkEAoq/JFhLEALZTNykFuZjn+e/SRMBYQHMrWlbXErC/Dwpi2MH8oK+6QERHGtCoFhzKrMOZQzMNYcDmYtRYFPdbqPbRqEYs2lFl8JqIKZWbblUwXRlSHJL3PX+gC/b9ltneLfU00oUymS7JlOJJ4HYKXYdVKF3cYi7YM4msNC75PtntiXQ9jALST3OyuSHoYyChCIJDBFehjbmfQSEAos4tkKJP54pD+crFaZ6CMXV+0MvWSGTAuUcZ/4CJxMCXT4qOqR8b2mJWRWZ/P51+W2cGuEBCeyOtlhZcTHo9lvYTMsnw+iEqLMgAgVIgqk7FngP+Aucp82mUhBITZGDZtWT6Iigrzz7XPB1FhPTEHqrxI211meLeiCmTs8+HAyubo5Na/dphTcWCvLxU/f30C0gqM6+T0ALnrikzrLQIBqqLSOpAEArMF4fVanxCQuUaRVVgB5FtKZdbn80ltD1LblXR4kNiPytQpihMU1suSqLvPJ7evlaiX8FmHYSG57Ultn5Kvlex3nF0nKWs9jMkcp8geywSXc/rrqPVCIgrCQEYRsrOzAQDCJeR3OtGo56HMX8z67KHMmUGhCrkuJlZ1kxnAHSD7JWo2HiIQEq0G86sWoUxVIXw+fxmzcj6f9aQU1ZNumJapDolWLWlCZn3aIoXxQW/gANzkgFcLRz6feXATqr/FSgjjUKZWL8uqpbD69TbtlqiKI+VMDuoDdYdRKFMUiOpZ75Qq49dTdSqoaORA1g4Fnb65UbfMkkoPrv70DqQUAb5Uk1YPAX83ycA08HrV8qkQJWXW23FlpdwJiMBraRZYqq9PZPaZkNk+ARy53+ozYVVGcn8tAhO6WAXO6s+06bICwdXsM1jlrd5/mH1OVcsyWjnAen9lVUY2/AnVfN+ut16r9Vns/60Ckq0TatS2mghjMq2zMidFgn6LFH89GzVqFE8NqZ5iIKMIzZo1AwCIlBqclrWBhrJYBi5Lf3Eb1S2a4BYgO/hc7//wsQh6ywq+zSiU6Y3D0isXOECVKKMtT69M4EA4EBQNDi6D62q4vrCDat1QFh4OVTUilGnLDxycGrWmBcJY8PrDQ5ka1upldPAcNjmHbigLf58NQlnw+oTXGxnKAmEscH0lTxUytpVGrs6poLyJA6pLgeIFcle7IkLZkkoPrvz0TqTvr27ZcuiHMmcl0HhFYUgdwkNZSBgDjLfjQBjTKmrweQ5/DfW69IW/9zrbVcQ2JdONFzD8TFiWiRinZDKpTfDBp8QYTcNlhbci6n0Gq8JfK73Pafj69F8rqYk3ZMa/RUzAYnwiLST8xLo/jjb8af/a872UNGqyZUzvOEW2jN5nvDqQNWnSJNYaUj3GQEYRAoEMNRnIgAYXyuIZuBzxxS07VbFs65oeyUH4IWeOjQKhRBdH6ZkKwwOD3mD3kDPHIjLYVT82pEwgjAXXKezgUvcgWW99VuWMWuqCQllIGAu6PyKUhYex4HoEDlzDw1hQGcuxS+GhzOh9DgtleuszCmXB9XGUViBjx5FQFhzGtIeEhbIllR5c+d8jYUxbXFgoc1YCjZcXRk63H3yRX58KUVaufyIjePsID2NahcO2R6NWxuBt0qh1NDiAGW1TMpNzAJGzYFqVMTjQ1J3URu8gVWJsZ8SyrLp0IjKMHVll0OspGb6kuiDKnJwynIAlchvS3d9Huz+OY33aOnX+NipjVi6haqObYvDt8ZapPqZq2rRpDBWk+s6V6ApQ8gnsLERqLVy4UAj7LgRc24QqdfFeu8aUCVVAcdg8eNuq/qrwT0YgM2bMKiSqDvNlqQICPiiKYjkORQlMqmEy2F3x+QCnU/8MuxD+gfw+H+BwRIax4Do5YHk2WltfYFlGVNW/vVt10wwcoBu1NDgcEB4PFLfLvFuhsLhuWHWZwDIN+XwQHkBxuczfZ5/Pvy2bXHhXeL1QKgCkp2ldFcPr4yiuQMYOoKRjVkQYCwiEsh4HbwEApO/T348EQllKkdAPY9oCFShenz+MmR3w+uAfM2bVvc2hWL/2MA5j2v0y217g/bPqxig7htLpNFshhM8HxenUD2NB5WQm7tGWZRbGAtu82fhIVUBAYj/qU6E4HeZhzK79HnBkP2sQjvxFBBSTl9zu9QXWacX/naM03DAWTRmJZQwdMxAzZ85kCxnpYgsZRWjVqhUAQKTVQiADDJv364RouhLa8AUiOyuV9IBqmS93yxnfqsd5Wa1PZlkS4z0CrT2WB7LVYcQstIlAK5LVwbXVGDb4D/SsJtQQMgEJ/oNU84NP/2uplleYL0j118lysL7V+LRAmUqLyTlUAVFZaTkBifB6/cHHZOZFR3EFMneU6YaxAFepQLvplWg11/x1d3gEGi87ZBzGqtcpikusxxiWV1hPnAJYT2SiGrRshpPZ9szGDYaVk2E5WUagldZqeWaBLXhxHk/MLWOhheT2s1IT1khNuiGx35MsJzOhhp3rkz1pJzfxkj2TikiVk57ESvKYws4JPCzs2LEDANC2bVtblkf1CwMZRejQoQMAQKT7pM442sYsmAXuS8bgJvMFIlM2ilkVLbuZVC9Hasphi7EO0Yxhi2t9gXpLdHHUlmV0sBC4z2pZgQlDLJ6fzPosJx9RhRaOzA4Ita6KQrWesMAsuKnVj68OwoYHVoFyRmP5tPX5l2EYIoK7RfpMZoUUwj9FvKcKKCoxXB9UFc5DpWj2p/7Mi06PQKONFXCWVSHlsAd5G/Tr5awQaL7wMBwlFeYtMIeL/C1fRq+5EP6QVb0fMnut1MpK88k5gt8b2UkbTFtV/csw3V6EONIN14RWTmJiEcvW4ODfRnS6HUesLzCToGxXbdOFSUyoIVEmqhkJZfefFq95yDKt1hfvJE/RdpG3o4xVOen3WIT+NipTi8cTAkILZO3atau19VLdwUBGEdq0aQOn0wm4BJBiY7cAWVaDZutSKJOZZCP8NpllmXVHCftSkxpDYDH2wPCgwmhMRLTrC1qWdr/R+Jygx+qGpOoylssKOotsdtAUcSCks75YyuiOsYoYj6YfyrSD+UCZiAk81NAy1XWIEFxOGIey8LFMEaFM7/nohbLqg32NUSgTAooqoPhUuPYXRYQyp0eg0YYKOMr961R8qm4o08JYcbm/nKrTjS44jAHVATb88xAUxoJv03mt1LBWxIgy4e+NzBjLAN1xh2GfP6OLCgeN9TS9rlVwOYttQe9//2MjXz9dvrAJefTqFL5dyexT45lQQ6JMxGtgdoJMJoyYLNvoNsv1Ga1T5rWKtTWrJtcXbRgz+t/otpqWoqK8vBxOpxNt2rSp/fVT0mMgowhutxutW7cGAIgMia4dNcHqDFddCmVWZeP4ErMcnK0TyiwnDTEIe3pf9tKzREa5LN0gFRS0IpalTZYRWUZ3WTpdevQOvnQPjsLWF0+ZkFkIDWdsDA1lEUErUKbqyLgzwzLhE6eEl9MJZUYHiFLd7YIPzMPDWEB4KKsOYwF6oUxRoYWxkHLlR+oaHsaOPDYolIWHMa0O+qEsQviEMgbdPrXX0OS9iXhtZCbeMPr8hV9UOLycTigzLGexLUTcbjTuMfz102kZi/jfsLUyyhNY1f9bfuYlyhi+BhL7k1hCWVzrC1+n5Mk+yzJ2LiueMhGPkTheSNCxQ+BYqlWrVnC73QmpAyU3BjLS1bVrVwCAmpWgQAZY7ziTPZRZfYnY0QUnuCXI6DFBoUyqq4vp6o50h5EdyyazPtPQpgrDMBZSNtDNz2pZBuuLqJNZ96Hq9cmUMRMIZZbXNBP+iT50D+aDy1QFtfLoCdTZKBgEHhvUvdKwSoFQZtDa5y8k/K1kRmEsIBDKwsJYQHAoc3oEcjfrj89yVPqQt6HKMIxpy1MFlCqvfhjT6l4dygKtYwYCr5HweMwno/H5LN8/7TWSaRGx+vwFLipsVC4olJmW05ZnNYbSpx/GtPUFhTKTbopancxeK8B6/xkoU/1bppu31X7B8jWQaHGPJpTZsj7Z9Ub5elqya33xhrHg+xN4zBA4lurRo0fC6kDJjYGMdPXs2RMAILIkzoInUjQDd2trhx3Nl4gdywqUkTl4kQhcUkFLYtyV9PosQo02dknigNFyDJvVZBkSdQpeX7zPTysjUyeZeonIa5lFCIxhs9heLC/GDf9rEN5FT3d9VhNcCBUor/AHJAOKT4VrXyGazz8IZ5n+fknxqUjLr0CLXw8YhjEA/kB66LDl5CPw+SBKy8z3C9WTq5iOgwo6YWAqOFSbFbMqE/jsyUyiIzFjpNSEGiZdIY+UUY+cgDBhuX1Cbl8FWO8Xoikj9f7J7hutSO777Vuf7HekxLJUmYlAJL5r7ZyYI8EGjTkeAAMZGWMgI11HHXUUAEBN9kAGyH2JWJWV7dJg51m2RJ2xize4RduVxOxMcbSBs7bOAkd1ZtaG11PmDL7B/+H3SQVTmdbLwG+zg/rq0CYzI6ThDI2BFjkhAE8VRFGxQTkBpaQMSkEhXAf0g5viU+HcU+APdkYzUKoqxOHC6tk1TSZOUYXW6mU6OUcgPJhNMBPekm0g5HW3KmO0vqB1yUxeEfLbqIxVuAvU1+r5yezvqrdfmdfA7H6p5+8vbF+AioYNvSNsE004svrekp1QI5oyMuWS3Nq1awEcOdlNFI6BjHR1794dDocDSFMhavoC0XaIJtzEOujXzn7oiQiAIcu1GGsgWybWZcmsK9b1ySxLdn1GB2uxvFYS9ZY54+8vatIt02RZ0YS7kDJ6B+Phk4/ohbLqC3wHLmAcEcqCwxhgHMqEAKpboUT13+GhTPGpcO47rF2cWqhqZCgLDmPBt4WHsqAwplVBb3IOnYlMwpcT/l7EE7wjyoSvT+d9N3yPY9mGZSYV0dlfae+blbCTCbFswyHdt60CZ6z7BKsysuzcD8fKzkkwYllWrOtLcBfEaIhUH/bv3w+n04nu3bsnujqUpBjISFdGRoa241BzLbr1JBPZGRmjOUNnVC7WL4NEBEDdesRwMGLHsuJdl8z67ApMsuuzq4zkwXv4fUYTCNgaBKymYA8PZdVhTLvbIJTpTuwQHMqCwlhImaBQFh7GjlRJBQLdEvXCmB6dMKYtL3xyDj0mE8wYiXVynJA6RdPiEs82bDWpSFjXRdlrn+lNtOOvhvw2LDOW1vB/2TLht8cbjuzat8S0bovvx2jKxNMF0c5eLEkocAzVo0cPZGRkJLg2lKwYyMjQ8cf7+zyreXUokAFHvhzsmBTE7nFn8QZAu7+I7OzCZ1eXwmjK2tFdUFYtvgbS42OsumXZ3VXOalxZIJSFhTHt7uBQVt06pruYQCgrLIoIYyFlyivg2nNIN4xp5bxeoKzcPIwFX4st3sk5ANMJZgC5kBF8v9T4JpNlhbeeWrIq4/NZjzvz6W8DRsuT6WZrxjSMRRa2vs+Oz3o0an19Nny3RfM9W1vrS0LD7jgZANC3b98E14SSGQMZGTrhhBMA+M/u1OoFopONXd0n7FxObX952bk+y+VIHnjY9fzsPNCRfg1sCnZ2hURAeiITy6AozCcW0UJZRaV58BHCuoxPhXq40HjcWaCc12s9sYiqahd0Ni5jPfskIB8gpLqoSgYMqTrJTlZjuTqTkwDBZJ6f5DYlUSn7Qo1d+x+79gey7NoH260Ohii7CAgsXboUAAMZmWMgI0N9+vRBSkqKfxxZRh0YR5YMZLpb1Pb6zMrIhLtou4rILMuqjFW9ZOtkd5CMdSxFzMuxoXuntk6TZcm0CgSVMWuJ0YKG6ZT51S1SBq1aAKpbmQREmcFsiaqAqKiobt3yGU/i4fMdWYZZnTxV5i0/YYFGtguo8QqjaMGNtzutZP2imlREJkSZtIIC8Idb2TBmV0u3HaLdD8ru76yWF+9+uo62MNVlIsOL/fv3IyUlBcccc0yiq0NJjIGMDKWlpR1pJWtscLBDkcK/8Gr6C1BmfbJlYg1cdtZB5rZoH2dHsItmWfHUKeIxUYx1M6uXXiiTGUdjUAepLmQWk0AYhrLANa0CMzSGh7KgMHZkWTqhLPDY4Otj6V3o2lMVeuAf/txkW5eiCWNm/8daxui2iCKR9YxlUhGpEwYGoUxqKv1YX4OaFOt+TK+M7HeF1X4jGVvFCACgNvG3zPfr1w9paWkJrg0lMwYyMjV48GAAR3YqJEm233xtri+W1p14W+CiKVPTdbIzENbmgRQQ+0GnXj3tanWRmDQkIpTplQkPZeEXGA4PZTph7MiygkKZXhgLXkfgMcFhLOi5BU/lbhTGohkLFrJsq9trYXKHaCd8sZzZM4p6xRTG9G5PdBjTuz3ekz8y66zJ9ZGtup3VDsCRYykiIwxkZOrkk0+GoigQ2d66Mf19MknGfvp2ds+TLSOzLpmydnfriadMcLnaqBOAqMe6mXZbsmscjVr9y/g5aKHMrIxPhfB4IsNYQEQoM66bEMI8jAX4fPph7EjF/WUkxmZJs3PsYDzrCSlq3dJp+f5ahfyggBtXGAu+P1nCWPD9du8z492/sotiQolUn3b9sZNOOinBtaFkx0BGppo0aYI+ffoAAHzN2G2RYpBs3WmiOXCyI3DaVSc7lyUdzG2aDERmEgiZC0xXVUGUlpovR1UhSkotQ5t2QWcT0teFk3gNaj9A2PPeyYQfmQlDhNX7G7w+GbUVkGTWZbfa3PdQjfE19R8zHXfccWjatGmCa0PJjoGMLA0fPhwAoDZnICOqUVYtaVZBMdqDNJn1SS1HctySVTc0YXJ9L1QHqSqv8SyO1UFLmzTEYBmBmf2kWn5kW6Nqa9IJu96XGqi3LROdSJWzoZVJtiWKwYdi1OGM5gCAM888M8E1obqAgYwsnX766XC73RCZXqgZJrOiEVH87B7HFu/6aiuUBS1HL0z5p8sPGtcVHspEdStN8LinsLoHh7GQOlnVU3a2y5qedMKu98WuSUWkVp/AMBZvGYYxipGaUYXNmzfD7XZjyJAhia4O1QEMZGQpOzsbAwcOBACoLdhKRlTjavvsfS1OPiIVdsJCWUgYCwgOZTphTCtTXXe9MCZVP6N61vakE/G813ZNGBLlDI41HsbsmlxHtgyRJLWlf7zrwIEDkZ2dneDaUF3AQEZSRowYAQDwtSiHcPDLiqjGRTO5iB0HkDKTj9g17ixwoG7RXU74VP0wFqAGuihaXT9MNQ1jIbfH280vcH9thLGou6jWzoQhUV30Ot6WsWjGe3ISDKoFwiGQ3t0JALjgggsSXBuqKxjISMqAAQPQqlUrwCWgcnIPotqRjAeHtTkZiM9nejFnAP77ZSaUkJlNMNkm56jlCVqkWYVWO2eCZEiiOkZtVoGSkhK0bt0a/fr1S3R1qI5gICMpTqcTF154IQDA16oMAvyCJGqwZLpRShy0W06qEfgdRzc7qZBl8vgaY9flEGTL18ZsgrF06zSrC4MY1TECAl3OawXA3zrmcPAwm+RwSyFp5557LlJSUiCyvBA5nNyDqEGLNZSFhSjDSTVM/pdadjQSeU2reMbsyT5Oez9k3rMYx31Jt3hJhjGiOkjkVmHdunVITU3Fueeem+jqUB3CQEbS8vLycM455wAAvO0srgVERPWf2aQKeqHMaAIPmYkgZCfLCLov6bogAva0ZMWzPjtn7Ix26nyGMarnjr2mCwD/uPu8vLzEVobqFAYyisoVV1wBp9MJ0cgDNZOtZEQNnlnLSnAos5rAQ/a6YLLVqkthTHZiimjXEU83RRtn1pSevINhjOowNbMKixcvhtPpxKhRoxJdHapjGMgoKq1bt8bpp58OAPCxlYyIAOuucLKTTlgctMtOvGFbGLNjUg07w5Ysu+pk5zW97ChDlMQG/+1YAP5rt7Zq1SrBtaG6hoGMojZ69GgAgNqkEmq616I0ERHsaXGJYjKQmNehlbEhRNSHkBHvuLNoyhDVUWqGF7/++isA4Morr0xwbaguYiCjqHXu3BmnnHIKoAC+jiWJrg4R1RXxhLIYJgORXnZEGRvGXdWnkBHruLNYyhDVQQNu7wlVVTFkyBB06dIl0dWhOoiBjGJyww03wOFw+FvJsj2Jrg4R1RWxhLJ4JgMxWqZhGYkxVfHMZlhXRfP84y1DVIeo2R7MmzcPDocD119/faKrQ3UUAxnFpGPHjtqUrt6OJbwuGRHJiyaUxTkZSMiy4q2XXeOu6jKOGSPSCAgcdXU7AP5LA3Xo0CHBNaK6ioGMYnbNNdcgNTUVIrcKauPKRFeHiOoS2yaVsA5tnOHPJgxjRCHUxpVYvnw5UlJScM011yS6OlSHMZBRzJo1a4ZLL70UAODrVAKh8EuWiKJkV/e/eC4UzYBARFESDoFmZ2QAAC655BI0a9YswTWiuoyBjOIyevRoNGnSBCLdB19bToNPRDWAgYmIkoyvTSn27NmDZs2aYcyYMYmuDtVxDGQUl8zMTNx2220A/NclE2mcBp+IomTXDIVWE4HIrJuIyIJI9cLZrQoA8Ne//hUZGRkJrhHVdQxkFLfTTz8d/fr1AxyAt3MxJ/ggouhZdVG0ayKQWJZJRBSk35094PF40K9fP5x22mmJrg7VAwxkFDdFUXD33XfD7XZDbeyB2oQTfBBRDOyY5dCudRER6fA1qcD8+fPhcrlw5513QlGURFeJ6gEGMrJFu3bttKvTe7sUQ7glz1ATEUXLLEwFQptVGSKiKAm3D5kn+f++6qqrOM092YaBjGxz9dVX+69Qn6LC26WIXReJqObohSqZsWgMY0QUAwEBb5diFBYWomvXrrj66qsTXSWqRxjIyDYpKSl4+OGH4XQ6oTathNqsItFVIqL6LDhcyYw9YxgjohipzSqgNq2E0+nEww8/DLfbnegqUT3CQEa26tatG8aNGweguutiii+xFSKi+k12XBnDGBHFSKT4kN7Pvw8ZN24cunbtmuAaUX3DQEa2Gz16NHr27Am4BKq6F7LrIhElFsMYEcVIQKDn9a1RXFyMHj16YPTo0YmuEtVDihD8piL7bd++HTfccAPKy8vh3J4J1/asRFeJiIiIKCre9iXwtS9FRkYG/vOf/6Bt27aJrhLVQ2whoxrRvn173HPPPQD8F4xWczkVPhEREdUdam4l1A5lAID77ruPYYxqDAMZ1ZgzzzwT559/PqAAVT2KINwcT0ZERETJT7h9yB7igBAC559/Ps4444xEV4nqMQYyqlF33HEHOnfuDKSoqOpZCKGwhywRERElL6EI9Li+FQoKCtCpUyfcfvvtia4S1XMcQ0Y1btu2bbjppptQVlYGx550uDflJLpKRERERBEEBLxdi6G2LEdWVhbefvtttG/fPtHVonqOLWRU4zp06IDHHnsMiqJAbVUOX8uyRFeJiIiIKILashxqy3IoioLHHnuMYYxqBQMZ1YqTTz4ZN954IwD/9cnUXE+Ca0RERER0hJrrgejhP2l800034aSTTkpwjaihYCCjWnPllVdi+PDh/kk+eh6GSPMmukpEREREUNO8yBiswufzYdiwYbjiiisSXSVqQBjIqNYoioL777/ff9Fot4Cn12EIt5roahEREVEDJtw+ND0/BYWFhejZsyceeOABKIqS6GpRA8JJPajWHTx4ELfeeiv27NkDpdgF94pGUFSeGyAiIqLaJZwqqvocgsjyok2bNnjzzTfRqFGjRFeLGhgeBVOta9KkCV566SXk5uZCZHtRdRSnwyciIqLaJRThvyRPlhd5eXl48cUXGcYoIRjIKCHatWuHf/7zn0hLS4No5IG3WxEEGMqIiIio5gkI/7FHIw/S0tLw/PPPo23btomuFjVQDGSUMEcffTSeeuopOJ1OqM0r4O1czFBGRERENUpA+Gd8bl4Bp9OJJ598EkcffXSiq0UNGAMZJdRJJ52EBx980H+Nstbl8HUqYSgjIiKiGiEg4OtUArWV/1pjDz/8MAYOHJjoalEDx0BGCXfWWWfhvvvuAwD42pTB14GhjIiIiOwlIODrUAJfG/+1xh544AH/5XiIEoyBjJLCeeedh7vvvhsA4GtXBl/70gTXiIiIiOoTX7tS+Nr5w9jf/vY3nHvuuQmuEZEfAxkljYsuugi33XYbAMDXvhTe9mwpIyIiovgICHg7FMPXwX+y97bbbsPIkSMTWymiIAxklFQuu+wy3HzzzQD8oYxjyoiIiChWAgK+zsVay9itt96Kyy67LMG1IgrFC0NTUpo8eTJeffVVAIBjbzpcG7OhQElwrYiIiKiuEBDwdi2G2rIcAHD33XfjoosuSnCtiCIxkFHS+uGHH/DCCy9AVVU49qfBtSEHimAoIyIiInNC8V9nTG1eAYfDgQceeADnnHNOoqtFpIuBjJLaL7/8gqeeego+nw+OghS41uZBURnKiIiISJ9wqPD2LITa2AOn04lHHnkEZ5xxRqKrRWSIgYyS3oIFC/Doo4/C4/FAKXbBvboRlCoOfyQiIqJQwu1D1dGHIbK9SE1NxZNPPomTTz450dUiMsVARnXCypUr8dBDD6GwsBAod8K9Kg+OCleiq0VERERJQk3zoqrXYSDdh9zcXDz//PPo1atXoqtFZImBjOqMHTt24N5778WePXuAKgXu1XlwFKckulpERESUYGpWFTKG+FBYWIhWrVrhpZdeQrt27RJdLSIpDGRUpxQUFODBBx/E2rVrARVwrcuF82BaoqtFRERECeJrWg7HMRXweDzo0aMH/vnPf6Jx48aJrhaRNAYyqnPKy8vxxBNPYMGCBQAA5/ZMOLdnclp8IiKiBkRA+K9Z2t5/weeBAwfi8ccfR0ZGRoJrRhQdBjKqk7xeL95++218/vnnAABHfipc63OgqJzsg4iIqL4TDhXeHkVQm1QCAK644grceOONcDqdCa4ZUfQYyKhOmzp1Kl566SVUVVVBKXXBvToPSiV3xkRERPWVSK2eSTHTC7fbjfvuuw9nn312oqtFFDMGMqrzVq5ciUceeQQFBQX+yT7W5sJRmJroahEREZHN1LxKZAwSKCwsROPGjfHMM8+gd+/eia4WUVwYyKhe2L9/P/7+979j3bp1gKgeV7aD48qIiIjqAwEBX7tSqB3LIIRAjx498Mwzz6BFixaJrhpR3BjIqN6orKzEa6+9hm+//RYAoBxKgXtdLhQvx5URERHVVcKloqpHIUQjDwDgggsuwO23347UVPaGofqBgYzqnalTp+Lll19GZWUlUOGAe10ur1dGRERUB6lZVajqeRhIU5Gamop77rmH48Wo3mEgo3pp06ZNePTRR7Fz505ABZzbsuDclcEujERERHWAgICvTRnQtRw+nw9t27bF008/jS5duiS6akS2YyCjequ0tBQvvPACfvnlFwDVXRg35EDxcBZGIiKiZCVSfKjqXgSR5++iOHToUNx///3IyspKcM2IagYDGdVrQgh8++23eP311/1dGKsUuDbkwFmQluiqERERURhf4wpkDgQKCwuRlpaGO+64AyNGjICisIcL1V8MZNQgbNu2DU899RQ2bNgAAHDsSYdrSzYUlTt4IiKiRBMOAW/HYqitywEA3bp1w+OPP4727dsnuGZENY+BjBoMj8eD//znP5g4cSIAQClzwrUhhxN+EBERJZCa7YG3exFEug8AMGrUKNxwww1ISeH3MzUMDGTU4CxevBjPPvssDh486L9m2a4MOLdlQRFsLSMiIqotQhHwdSiB2q4cQgg0a9YMDzzwAAYMGJDoqhHVKgYyapCKi4vx2muvYdq0aQCqW8vW58JR4k5wzYiIiOo/NasK3u6FEBn+VrGzzz4bt99+O7KzsxNcM6Lax0BGDdrcuXPx0ksvoaCgwN9atjMDzu1sLSMiIqoJwiHga1cC0aECqqqicePGuPfeezF48OBEV40oYRjIqMErKirCq6++iunTpwOobi3blANHIfuuExER2UXNrURV12KgeqzYsGHDcOeddyI3NzfBNSNKLAYyompz5szByy+/7B9bBsCxL80/E6PXkeCaERER1V3CpcLbqRhqiwoAQNOmTXHXXXfh1FNPTXDNiJIDAxlRkJKSErz77rv4+uuvIYTwX7dsSzYc+9OggN0YiYiIZAkIqM0q4O1cDLgFFEXByJEjceONNyIzMzPR1SNKGgxkRDpWrlyJF198EVu2bAEAKIdT4NqUDUe5K8E1IyIiSn5quhfeLsUQeR4AQKdOnXD//fejV69eCa4ZUfJhICMy4PV6MXHiREyYMAEej+fIFPk7MqH42I2RiIgonHCq8LUvBdpXwufzISUlBePGjcPll18Ol4snNYn0MJARWdi9ezdee+01zJ8/33+DxwHX1ix2YyQiIqomIKA2r4C3YwmQogIATjnlFPz1r39F69atE1w7ouTGQEYk6bfffsNrr72GnTt3AgCUIjdcm7N57TIiImrQ1Mwqf/fEnCoAQLt27XDnnXfyAs9EkhjIiKJQVVWFL774Ah9++CHKy8sBATj2p8G1LQuKx5no6hEREdUakeKDt2MJ1Ob+2RPT09Mxbtw4XHLJJXC7ebKSSBYDGVEM8vPz8fbbb+Onn37y36ACzl2ZcO7M4PgyIiKq14RTha9tKZxdvP4x1gDOPPNM3HTTTWjWrFmCa0dU9zCQEcVh9erVePPNN7F8+XL/DR4Frh1ZcOxNhyI4voyIiOoPoQioLcrhbV8CpPgPH4877jj89a9/RY8ePRJcO6K6i4GMKE5CCMydOxdvv/02duzYAQBQypxwbsuC42AqJ/4gIqI6TUBAbVIJX4cSiAwfAKB9+/a4+eabMWjQICgKv+eI4sFARmQTr9eLb7/9Fh988AEOHz4MAFCKXf7xZYdTGMyIiKhOERBQG3n8QSzLCwDIzc3Ftddei/PPP5/T2BPZhIGMyGalpaX47LPP8MUXX/gn/gCgFLrh2pYFR1FKgmtHRERkTc3xwNuhBCLXP3NiRkYGLrvsMowaNQqZmZkJrh1R/cJARlRDDh8+jE8//RRTpkzRBj0rh1L8wYxT5RMRURJSs6r8QayR/3srJSUFf/nLX3DllVciLy8vsZUjqqcYyIhq2IEDB/Dxxx/ju+++g9fr7/LhKEiBc0cmHMVsMSMiosRTczzwtivVgpjT6cR5552HMWPGcOZEohrGQEZUS3bv3o0PP/wQP/30E3w+/6Bo5XAKXDsyoRS6OcaMiIhqlYCAyPXA275U65rodDoxfPhwjBs3Dq1bt05wDYkaBgYyolq2a9cufPrpp5g6deqRYFbo9gczTv5BREQ1TJuso10pRI4/iLlcLpxzzjkYPXo0gxhRLWMgI0qQffv24dNPP8X333+Pqir/F6JS7IJzVyYc+Zwun4iI7KVNX9+uVJs1MSUlBeeffz4uv/xytGjRIsE1JGqYGMiIEiw/Px8TJ07E119/jcrKSv+NFU64dmXAsS8NiupIbAWJiKhOE47qCzq3LgPS/T0z0tLSMHLkSIwaNQpNmjRJcA2JGjYGMqIkcejQIUyZMgVTpkxBYWGh/8YqBc69GXDuTodS5UxsBYmIqE4Rbh98rcvha1kGuP2Hezk5ORg5ciQuueQSzppIlCQYyIiSTEVFBX788UdMmjQJu3bt8t+oAo79af7ujOW8ECcRERlTM7zwtS6F2rwCqO5k0aZNG1x66aU455xzkJ6entgKElEIBjKiJOXz+TB37lxMnDgRq1at0m5XDqXAuTsDjkOcAISIiPy0iTpalUE09mi39+7dG5dffjkGDRoEp5M9LYiSEQMZUR2wYsUKTJw4EXPnzoX2ka1wwLknA8596VC8HGdGRNQQCZcKX4ty+FqWa+PDFEXBqaeeilGjRqF3794JriERWWEgI6pDdu/eja+++grff/89iouL/TcGujPuyYCj1J3YChIRUa1QM6vga10GtdmRbolZWVk499xzcdFFF6FNmzaJrSARSWMgI6qDKioqMHPmTPzvf//Dhg0btNuVIjece9LhyE+DItidkYioPhGKgNq0Ar7WZRDZXu32bt264aKLLsKwYcOQlpaWwBoSUSwYyIjqMCEEVq5ciSlTpmDWrFnwequ/oKsUOA+kwbE3HY4ytpoREdVlakYV1Jbl8DWr0GZLdLlcOO200zBy5Ej07t0bisKTcER1FQMZUT1x8OBBfPfdd/juu++wb98+7Xal2AXnvnQ4DqRB8XGsGRFRXSCcKtRmFfC1KA9pDWvevDkuuOACnHfeeWjcuHECa0hEdmEgI6pnfD4flixZgu+//x5z5sw50mrmU+DIT4VzbzqUYjdnaCQiSjICAiKnCr4W5VCbVgDVkyK6XC4MGjQII0aMQP/+/TlbIlE9w0BGVI8dPnwY06ZNw3fffYdt27ZptytlTjgOpMG5Px1KJb/YiYgSSaT64GtWAbVFOUT1TIkA0LFjR4wYMQJnnXUWL+JMVI8xkBE1AEIIrFq1Ct999x1+/vlnVFRUaPcphW7/eLP8NE6fT0RUS4RL9U/Q0awCIrdKuz09PR2nn346zjvvPBx99NEcG0bUADCQETUwZWVl+PXXXzF9+nQsWbLkyHXNVMBxKBWO/WlwFKRylkYiIpsJRUBtXAm1eQXURpXadPWKoqBv374488wzMXToUGRkZCS2okRUqxjIiBqwAwcOYMaMGZg+fTo2btx45A6vAkd+Gpz5qVAOp3C8GRFRjAQERK7H3yWxaSXgOnLY1bVrVwwfPhxnnHEGmjdvnsBaElEiMZAREQBg06ZN+OmnnzBjxgwcOHDgyB1VChwHq8NZYQpbzoiILAgIiDwPfE0qoTapAFKOHGq1aNECw4YNw/Dhw9G5c+cE1pKIkgUDGRGF8Pl8WLZsGX7++WfMnj0bhYWFR+6sUuA4mApnfhrDGRFREKFUt4Q1rYDapFK7XhgA5Obm4tRTT8Xw4cNxzDHHwOHgeF0iOoKBjIgMeb1eLFu2DL/88othOHMcTIPjMMMZETU8QhFQ8zxQm1ZAbRwawvLy8nDqqadi6NChOO644+ByuRJYUyJKZgxkRCTF6/Xizz//1MLZ4cOHj9zpq54QpMD/w9kaiai+Ei7VPzFH40qoeZ6QMWGNGzfWQtgxxxzDEEZEUhjIiChqgXD266+/Yt68eaFjzgSgFLm1cOYo5wEJEdVdAgIi3aeFMJFTheB5jpo2baqFsD59+vCizUQUNQYyIoqLEALr16/HvHnzMG/ePGzYsCHkfqXM6Q9mh1KhFLnZtZGIkp5QBERO1ZEQFnSxZgDo1q0bBg0ahEGDBqF79+68VhgRxYWBjIhstW/fPi2c/fHHH/B6vUfu9ClwHHb7uzceSoFSydYzIkoOItULtZHH/5Mb2hXR7Xajb9++GDRoEE4++WS0aNEigTUlovqGgYyIakxJSQkWLVqEBQsWYNGiRTh06FDI/Uq5E8qhFH9AK0yBovIsMxHVDuFQoeZVQc2rhGjkiWgFy8vLw4knnohBgwZhwIABvFgzEdUYBjIiqhWqqmLjxo1YtGgRFi5ciJUrV8LnCzoAUgGlKAWOwylwFLqhFLt5QWoiso2AgMjy+mdFzKseCxY0/5DT6UTv3r0xYMAADBgwAN26deP09ERUKxjIiCghSktLsXTpUixcuBCLFi3C3r17Qwt4FTiK3FAK/SFNKXUxoBGRNAEBkekPYCLXAzWnKqQbIgC0atVKC2DHH388MjMzE1RbImrIGMiIKOGEENi+fTsWL16MpUuXYtmyZSguLg4t5FX83RoDLWhlDGhEdISAgMgIBLCqiHFgAJCVlYXjjjsOJ5xwAgYMGIC2bdtyQg4iSjgGMiJKOoHujX/88QeWLl2KP//8E2VlZaGFAi1oRSn+3yVujkEjakCEIiCyq6DmVEHkeKBmV4VcmBkAMjIycOyxx6Jv377o27cvunbtymnpiSjpMJARUdLzer1Yv349li5diqVLl2LlypWoqKgILaQCSom7OqS54ShK4QWqieoR4VahZnv809HnVEFkhY4BA4D09HQcc8wx6Nu3L4477jh0796dF2cmoqTHQEZEdY7X68XGjRuxfPlyrFy5EsuXL0dBQUFEOaXMCaXYDUdxdQtaqYvXQSOqA4Ti734osqugZldB5FRFzIIIAI0bN0afPn3Qp08f9O7dmwGMiOokBjIiqvOEENizZw+WL1+OFStWYMWKFdi6dWtkQRX+UBYc0sqdHItGlEACAiLd5w9fWVUQ2VUQmd6I1i8A6NSpE3r37q2FsNatW3MMGBHVeQxkRFQvFRYWYvXq1VizZo32U1RUFFnQq/gDWokLSml1KxpDGlGNEBAQaT6ILC9EVnUAy/JGTL4BANnZ2ejZsyd69uyJ3r17o3fv3sjOzk5ArYmIahYDGRE1CEII7N69G2vWrMHatWuxZs0arFu3Dh6PJ7KwD1o404JamYuThhBFQTiqux1mVUHN9EJU/8AZediRmpqKHj16aAHsqKOOYusXETUYDGRE1GB5vV5s2bIFa9aswfr167Fx40Zs2rQJlZWVkYUF/C1nJdXhrMwJR5kLqGBrGjVsAgJI80HN8PkDWKa/y6FI90Hvo5GSkoIuXbqgW7duWvjq0KEDx34RUYPFQEZEFMTn82Hnzp3YuHEjNmzYoP0+dOiQwQMApdxVHdIY1Kj+0robZnghAuErwwuR7gUMZpJv3Lgxunbtiq5du6Jbt27o2rUr2rZty6nniYiCMJAREVkQQuDgwYPYuHEjNm7ciC1btmDr1q3Ytm2bfpdH4EhQK3f6f1c4j/zN6fgpiQmXCpHu9YevdJ//73R/ANObaAPwt3q1b98eHTt21Fq/unTpgiZNmtRu5YmI6iAGMiKiGPl8PuzZswdbtmzBtm3b5IIaAFQpkSGtwgmlwumfZIQta1TDhFP1h6y06rAVCF5pvoiLKwdLSUlBh/9v786DoygT/49/eoaETAwQjiwEgwhyiCssNyKE5TIgYomALiy7nvw8SsWStTzyFVFQUVhXLNliXWoRL9RFS5D1yAoCitzKJch9yZFsDhIIOSfTvz8m05kh95CkM/H9qprqnn76efrJQ8T50D3P0769rrzySnXo0MHaj42N5ZFDAAgSgQwAapgvqB07dkwnT57UyZMn9csvv+jkyZNKTU2tuLLbkJHvlJHnkJHv9D76mO+0AptRxN01VMyUKTmLHy+MKJLZuEiKKJLZ2COzsfdYWbMa+ouJiVFcXJz1uuKKK9ShQwe1bt2axw0BoIYRyACgDuXm5ur06dNWQPNtT506Vebi1qX4Alu+Qyrwbo0C/33usjVkpkypkSkz3BuwFO7x7od7pMYloauywCV5v9/lH7ri4uLUrl07tW3bVi6Xqw5+GgCARCADgHojPz9fycnJSk5O1pkzZ3TmzJmA95mZmVVrqEjegFbgKH45pUKHjEKjeFsc4gqdTOVfD5gyJYcphXlkhpnecBXmkRlWvC0OXN4AVlTu97gu1qJFC7Vp08Z6xcbGqnXr1tb7iIiI2v3BAABVQiADgBCRm5urlJQUJScnKy0tTampqaW2WVlZ1Wu0SCUhrdAhuR0y3N7gZu2XtTUJcmUxHabUyCPTWbxt5N2qkSnTf1scuHyhq7xZCsvTrFkzxcTEqGXLloqJiVGrVq0UExOjmJgYK3gRuAAgNBDIAKAByc/PV3p6uhXS0tLSlJmZqbNnz1rbs2fPKiMjo+KJRypTJKnIIRUZMooMqfhleIyLjjm8+x5JHsP7Mg0ZAe+9+4an+Dyz+Jgu3vduKnsc0yw50W9rereGvHejDFOmw7dfvHWYMv325ZA3WDk83u9kOb3fzZLT9AYv//fFAayqd6/KEh4erhYtWig6OlrR0dFq3ry5oqOj1bJlSytw+fbDw8ODvxAAoF4hkAHAr5BpmsrNzQ0IaZmZmTp//rz1OnfunM6fP6/s7GzrfXZ2tmz/34apwJAWELxU5mLEdcnhcCgqKkpRUVFq0qSJ9fK9j4qKsgKXL3RFR0fL5XLJMLjzCAC/NgQyAECVeTweXbhwQefPn1dubq5ycnLK3F68n5+fr4KCAhUWFgZsyzrm8Xhq9WdwOp0KDw9XWFiY9fJ/79sPDw9XZGSkXC6X9YqIiJDL5Sp13OVyWYErMjJSDgezYQIAqoZABgCoV4qKimSapoqKiuTxeMrc998ahiGHw2Ftfa+LjxuGoUaNGjFtOwCgXiGQAQAAAIBNeKYCAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGzSyO4OAGj4TNNUXl6e3d0AgGqJiIiQYRh2dwNAA0cgA1Dr8vLyNGrUKLu7AQDVkpSUJJfLZXc3ADRwPLIIAAAAADbhDhmAOhW+5TcyzOJ/CzIcMhyGZDgkhyEZhgyHr6z4uGFIDkOG7xyrzLDqWC/J75gjsNxb0TpmGkbJP0n5tWEdN0qu5X/MNLzNWGUOb7ve44ZV5qtjFh+zyqWSNhzF5/vKFXiNgDrF3TcdZZQFnK+APpYcM0qVlaoj/35cVK5yjpfTXnn9KFWnonat42bp+n51rHK/tszi4/Kr5y0z/frjLTf8y6xzfWWm1abhf75hWmXWr5jvuK+54nO8vwqm9d5Xx1H83lvmfe+rZ5UZpgyV1HMUH7NeMq16DkMBx731PSX15DvfI6evTvH7krY8VntOv/ad8h53+tqzzvXI6WtTvn54Ss5XSdveNj1yyHt9b5m3PWfxMUMeOX31/eo4JW89ea/jGw/fe++1zOJ9FZeZchSPi1OGHJKcxX/YDhnFxww5DUMOOWQU/8kVFjg14f+1EQDUFQIZgLpVZBR/NJI3kKk4PBV/0i0pMyRHSfowvOmmuBHfJ3OHSn3iLkk7gSnA12apT+i66Jj/NVTGsYvrqSSI+QWyUsf8ApT/+4u7GHh+GXUcFZSV92OU6kc5P3ZFZeUNVbDt+bVZVlir1UBWVrkufm9abfv3w/+aZZVZAU5+5/ifX6qOWca1zICXfyArCXnFr/LK5Att3ib9w5svuEm+YCUr0PiXeQOZpyTQGP6BxrvvMAxvWCreyto3rHredlTcpq+uiusVHy+rzK+OszhMOq1++gKZWWkg82/P6RsPBR5zyL+Pfn+GAFAHeGQRAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJqxDBqBuOU2ZpncxWO+6Wobf1rhosWbf1m9f/sdMv/0qlPktSlWyfG95x0u2ZsC+AuqZkmT6jpe0acqQTFl1/cutNgIWz/LvSxnvzYAuXTQe5bwuPrcqa41VVFbla1WxzP+SFdYzK2nTLKeP5S8MHbh2mF+ZdW7wC0OX9MNvHTIFvw6ZqZJ6pmEGvuTdessUcNxjmJLhKWlTvmt5/NZLKz6nuNw0PFZ7Cmi/eOu7VvF7R/E5vq2kUsc8fv9Z+/Y9huRRyTpknuJjhspbh8ywFnN2quTPzPfeUVzn4rXNqr4wtKGShaHL+u8SAGoPgQxAnSro/z+7u1A7fJ93g3RxngB8/H+1PHZ2JGj+iZgHcwDgYvzNCAAAAAA2MUzTvIR/0wWAypmmqby8PLu70eDk5eXplltukSStWLFCERERNveoYWBca0cojmtERIQMg3vWAGoXjywCqHWGYcjlctndjQYtIiKCMa4FjGvtYFwBoASPLAIAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2YZZFAAAAALAJd8gAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJs0srsDAPBrkJOTow8//FDr1q1TcnKyHA6H2rVrp+HDh2vChAkKCwsLuu2MjAwtXbpUGzduVEpKiho3bqwOHTpo9OjRuummm2QYRpn10tPTtXPnTh04cMB6nTt3TpL0+uuvq1evXkH3qa7Ux3E9efKk1q9frx07dujw4cPKyMiQ0+lUq1at1KNHD916663q2rVr0P2qC/VxXL///nvt2LFDBw4cUEpKijIzM1VQUKBmzZqpU6dOGjZsmBISEtSoER9tAIQWwzRN0+5OAEBDlpycrGnTpik5OVmSFBERIY/Ho4KCAklS586dNX/+fDVp0qTabe/fv1+PP/64srKyJEkul0sFBQUqKiqSJPXv319z5swp8wP04sWLtWTJkjLbDYVAVh/Hdffu3XrooYcCjkVGRqqwsFCFhYWSJIfDoT//+c+69957q92vulAfx1WS7rzzTh09etR6HxkZKbfbbfVLkrp06aK5c+eqRYsW1e4bANiFQAYAtcjtdmvq1Kk6cuSIWrZsqf/7v/9T37595fF4tGbNGs2bN085OTm67rrrNHfu3Gq1nZ2drT/96U/KyMjQFVdcoWeeeUZXX321CgsLtXLlSi1YsEBut1vjxo3T9OnTS9V/66239Pnnn6tLly7q2rWrWrZsafWhvgey+jqu27dv1/Tp03X99dfrhhtuUK9evdSsWTMVFRXpwIED+vvf/65du3ZJkp544gmNHTu2xsakJtTXcZW8/4AQExOj7t27KzY2Vo0bN5YkpaWl6T//+Y+WLFkij8ej/v37669//WuNjAcA1AkTAFBrVq5cacbHx5vx8fHm7t27S5V//fXXVvm2bduq1faiRYvM+Ph4c+TIkeapU6dKlb/77rtmfHy8OXToUPPEiROlyt1ud8D706dPW3358ccfq9WXulZfxzUlJaXMsfYpKCgw77rrLjM+Pt6cNGlStfpVF+rruFbFm2++afUtJSWl2vUBwC5M6gEAteirr76SJPXq1UvXXnttqfIRI0YoNjY24NyqSkpKstpo27ZtqfLx48fL5XKpqKhIX3/9dalyp9NZrevVJ/V1XH/zm9+oXbt25bYdFhamhIQESdKpU6d0/vz5avWtttXXca2Ka665xtpPS0urdn0AsAuBDABqSV5enn766SdJ0nXXXVfmOYZhaMCAAZKkrVu3VrntEydOKCUlRZKs+heLjIxUjx49qt12fRfq4xoeHm7t+747VR+E+rj6HgU1DKPMwAcA9RWBDABqyfHjx+XxeCRJHTp0KPc8X1lGRoY1y2Fljhw5Uqp+WTp27ChJOnbsWJXaDQWhPq7bt2+XJLVs2VLNmjWrdv3aEorjmpOToyNHjmjhwoX66KOPJEkJCQmKjo6uUn0AqA+YGxYAaon/Y1MxMTHlnteqVauAOk2bNq207fT09Gq1feHCBeXk5CgyMrLStuu7UB7Xn376SevXr5ckjR07ttwp3u0QKuO6Z88ePfjgg6WOO51OjRo1So899lil/QGA+oQ7ZABQS3Jycqx934xwZYmIiCizjl1t13ehOq6ZmZmaNWuWPB6P4uLiNHny5CrVqyuhMq6NGjVSixYt1KJFi4Dp8W+++WbdfffdFbYPAPURd8gAAKhlOTk5evrpp5WcnKzIyEjNmjWrQdyttEPXrl21fPlySZLH49Hp06e1bNkyrVixQklJSZoxY4YGDx5sbycBoBq4QwYAtcT/A3d+fn655+Xl5ZVZx66267tQG9fc3Fw9+eST2rNnj1wul+bOnatOnTpVqT91KdTGVfIush0XF6fHHntMDz74oHJzczV79mxmWQQQUghkAFBL/L9rk5qaWu55/h8e/etUpGXLltVq+7LLLmswgSyUxtUXxnbu3CmXy6VXXnnFmkmwvgmlcS3LuHHjFB4ertzcXK1evbpadQHATgQyAKgl7du3l8Ph/Wv26NGj5Z7nK2vRokWVJkiQSmajq6xt3+x2V155ZZXaDQWhMq6+MLZjxw5FRETolVdeUc+ePavUDzuEyriWp3HjxmrSpIkk7xpvABAqCGQAUEsiIiKsxXU3b95c5jmmaWrLli2SpH79+lW57Xbt2ql169YVtp2bm2utzVSdtuu7UBjX3NxcPfHEE9qxY4f1mGJ9DmNSaIxrRXJycpSZmSlJcrlc1a4PAHYhkAFALRo9erQk79pTe/fuLVW+Zs0anT59OuDcqjAMQ6NGjZIkffPNNzpz5kypcz799FPl5ubK6XTqhhtuCKb79VZ9HldfGPN/TLG+hzGf+jqubre70mt88MEH1kLbvXr1qnLfAMBuBDIAqEWjR49Wx44dZZqmZsyYoR9++EGSd3a4NWvWaN68eZKkAQMGqE+fPgF1Fy9erCFDhmjIkCFlfoCdNGmSWrRooby8PD355JPav3+/JKmwsFDLly/Xv/71L0ne6cDbtWtXqr7H41FmZqb1On/+vFWWnZ0dUFZQUFAzA1JD6uu45uXl6amnnrLCWCjcGfNXX8f166+/1lNPPaV169bp7Nmz1nGPx6PDhw9r3rx5evvttyVJ3bt314ABA2poRACg9hmmaZp2dwIAGrIzZ87o0UcfVXJysiTvo2Eej8cKOZ07d9b8+fOt77/4LF68WEuWLJEkffTRR4qNjS3V9v79+/X4448rKytLkndmuoKCAuuOQr9+/TRnzhyFh4eX2a8//OEPVfoZnn76ad14441V+4HrSH0c16+++kovvfSSJCk8PFxRUVEV/gyzZ89W9+7dq/mT1676OK5ffvml5syZY713uVwKDw9XTk6OCgsLreO9e/fWrFmzqvzdNgCoD1iHDABqWWxsrJYsWaIPP/xQ69atU3Jysho1aqQOHTpoxIgRmjBhQsACt9XRtWtXvf3221q6dKk2bNig//3vf4qIiFDHjh01evRojRkzxpqooaGpj+Pq/2+cBQUFysjIqPA6VXkUr67Vx3EdOHCgnnjiCW3fvl2HDh1SRkaGsrOzFR4ertjYWHXr1k3Dhw/XwIEDL/XHB4A6xx0yAAAAALBJw/xnUwAAAAAIAQQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAECA119/XUOGDNEjjzxid1dgs+zsbN10000aMmSIvv32W7u7AwANUiO7OwAADcWFCxd08OBB7du3T/v379f+/ft16tQpmaYpSfroo48UGxtbK9c2TVMTJ05UamqqpkyZovvvvz+odg4ePKjly5dLku67774a7KG9jhw5oi1btmj37t06cuSI0tPTVVRUpCZNmuiqq67SwIEDNXr0aEVFRdnd1XolKipKkyZN0qJFi/TGG29owIABaty4sd3dAoAGhUAGADVk2rRpOnjwoC3X3rdvn1JTUyVJ8fHxQbezcOFCFRUVacCAAerevXtNdc9W06ZN044dO8osy8jIUEZGhrZu3ar33ntPiYmJ6t+/f912sJ6bOHGili1bppSUFH388ceaMmWK3V0CgAaFRxYBoIb47oRJ3jsLvXr1UosWLerk2t99950kKSYmRt26dQuqjV27dmnbtm2S1KA+dPuCapMmTTRmzBglJiZqwYIFWrRokWbNmqWBAwdK8oazxMRE7dy5087u1jsul0sTJkyQJC1dulQ5OTk29wgAGhbukAFADRkzZoyio6PVtWtXxcXFyTAMTZs2TRkZGbV+bV8gGzRokAzDCKqNDz74QJIUGxur3/3udzXWN7vFxcXpjjvu0IgRIxQeHh5Q1rVrVw0dOlTvv/++3nzzTRUUFOjVV1/VO++8Y1Nv66eEhAQtXrxY58+f1+eff67bbrvN7i4BQIPBHTIAqCETJ07UyJEj1a5du6BDUTB++eUXHT9+XFLwjyumpqZq48aNkqRRo0bVaf9r27x583TjjTeWCmP+pkyZos6dO0uSjh07psOHD9dV90JCbGysevToIUn67LPPbO4NADQs3CEDgBDnm/3O95hkMFatWiWPxyNJGj58eJXquN1uffPNN1q/fr327dunzMxMFRUVKTo6Wh07dlTfvn01cuRItWzZMqDekCFDJEmjR49WYmKiTpw4oY8//lhbt25VWlqaLrvsMnXp0kV//OMf1bNnT6tefn6+vvzySyUlJenkyZPKy8tT27ZtdcMNN+i222675MkmevfubX0H8JdfftFVV10VdFvHjh3TihUrtHPnTp05c0Z5eXmKiopSkyZNFBsbqz59+mjw4MG64oorgmrf7Xbrv//9r9asWaMjR44oKytLhmGoadOmio6OVrdu3dS3b18NGjRIYWFhAXUvHv9jx47p008/1bZt25SWlqbc3Fy9+OKLpcL98OHDtXPnTh0/flz79u3T1VdfHdzgAAACEMgAIMT5HlccOHCgGjUK7q/1DRs2SPJ+z6p9+/aVnn/o0CE9++yzOnnyZKmy1NRUpaamavPmzTp8+LASExPLbWft2rV66aWXlJeXZx3Lz8/Xpk2btHnzZj3++OO6+eablZaWpsTERO3bty+g/tGjR/XPf/5TmzZt0quvvnpJocztdlv7DkfwD5CsWLFC8+fPV1FRUcDxrKwsZWVl6eTJk9q6dasOHz6sGTNmVLv9zMxM/eUvfylzAhnf2B88eFCfffaZli5dqri4uHLb+vLLL/Xqq6+qoKCg0uv6T/KyYcMGAhkA1BACGQCEsLS0NP3888+Sgn9csaCgQHv27JEkdevWrdLHFQ8ePKiHH35Yubm5kqRevXopISFB7du3V1hYmNLT07V3795K1606fPiwvvnmGzVv3lz33Xefde0ffvhB7777rvLy8vTaa6+pZ8+eeuGFF3To0CGNGzdOgwcPVnR0tE6dOqV33nlHhw8f1q5du7R06VLdfffdQY2BJP3444/WfocOHYJq48iRI1YYa9q0qW6++Wb17NlT0dHRKioqUnp6uvbv369NmzYF/Vjo/PnzrTDWp08fJSQkKDY2VpdddpkuXLig48ePa+fOndYjqOXZv3+/Vq1apaZNm+q2225T9+7dFRYWpmPHjqlNmzalzu/QoYNcLpdyc3P1448/6p577gmq/wCAQAQyAAhh69evl2maCg8P14ABA4Jq4/Dhw9bdoa5du1Z4rtvt1rPPPmuFsUcffdSagc/f9ddfr6lTpyolJaXctg4ePKjOnTtr/vz5atKkiXX8mmuuUVxcnGbOnCm3262HH35Y586d07x589S3b1/rvC5duqhfv3664447lJaWpuXLl+uOO+6Q0+ms1s8veR/7PHr0qCRvKG3Xrl2125CkNWvWWHfGXnvtNet7af7i4+M1depUZWVlVbv9/Px8K+jGx8frhRdeKBXsevbsqVtuuUW5ubkV3uk7evSo4uLitGDBgoDZQMubpdPpdKpLly7auXOnDhw4II/Hc0l3EgEAXvxNCgAhzPe4Yt++feVyuYJqw/+xw8qm6V+1apVOnTolyTurZFlhzF/r1q0rLH/qqacCwpjP0KFDFRMTI0k6e/asxo8fHxDGfKKionTjjTda5x07dqzC65UlLS1Nf/vb3yRJhmHowQcfrHYbPr4ZNaOiosoMY/6aNWtW7fbPnz9vheeePXtWeJfN5XJV+gjn9OnTq7U0g+/cvLw8paWlVbkeAKB8BDIACFHZ2dnavn27pEtbDDo9Pd3ab9q0aYXn+gKgJE2ePDnoa0reR+DKCy2GYQSUJSQklNuO/3mnT5+uVh/y8vKUmJhoBamLJxKpLl+IzM7O1po1a4JupzzNmjWzZotcvXr1Ja0JFhMTU2bIrYj/74f/7w0AIHgEMgAIURs3bpTb7ZbT6dSgQYOCbic/P9/aL+tulb8DBw5I8t4pqcrkHxWprL5/XyqajdD/vOoElMLCQj3zzDPWRCGDBw/W1KlTq1y/LAkJCdZdqZkzZ+qhhx7S+++/r127dlmPeV6KsLAwjR49WpK0d+9e3X777Zo3b55Wr15d7TAazCyS/oHMfyIWAEDw+A4ZAIQo392qa6+9VtHR0UG34/+dq8pm28vMzJRUcifoUkRERFRY7v84XkWPY/p/j8k3dX9l3G63ZsyYoS1btkiS+vfvr+eeey6o75/5a9u2rV5++WW99NJLSk1N1e7du7V7925J3nG++uqrNWTIEI0dO7bS8FueRx55RAUFBUpKStK5c+e0cuVKrVy5UpI3KPfv319jxoyp9E5fZXdDy+If3oOd0RMAEIg7ZAAQggoKCrR582ZJl/a4ouT9vpPPuXPnLqmtUOB2uzVz5kxrqv++ffvqxRdfrHDh6Oro06ePPvjgAz3//PMaM2aMNe18UVGR9uzZo4ULF2ry5MlWGKyuxo0bKzExUe+9957uvfde9e7d2wqsGRkZ+uqrrzRt2jQ988wzAQHqYsFMyOE/EYn/7w0AIHj88xYAhKBt27ZZj8BdaiDzn+K8skAWHR2tlJSUkJ3QwRfGfHcXe/furTlz5lzyotIXCw8P17BhwzRs2DBJ3juLP/zwg5KSkrRp0yadO3dOM2bM0NKlS0stnF1V7dq105133qk777xTRUVFOnjwoDZs2KAVK1bo7Nmz+vbbb7Vo0SI9/PDDNfZznT9/3tqvbMIWAEDVcIcMAEKQL1B07txZsbGxl9SW/5pbJ06cqPBc37T46enplZ5b31wcxnr16qWXX365xsNYWaKjozVixAjNnTtX48aNkyTl5uZq/fr1NdK+73HIe+65R//4xz+sx0FXrVpVI+37HD9+XJIUGxuryMjIGm0bAH6tCGQAEGI8Ho++//57Sd6JKC5V69at1apVK0myFpkuz5AhQ6z9pUuXXvK164rb7dZzzz1nhbGePXvqlVdeqfR7bLWhf//+1r7vO3k1KTY21lpHLZi1zsqTmZlpLXnw29/+tsbaBYBfOwIZAISY3bt3Wx/k/QPSpfCFhOPHj+vChQvlnjd8+HDrw/4XX3yhTz75pMJ2K1oYuq643W7NmjXLWlC5NsPYunXrKg1Zvu/+SdLll19erfZPnz6tbdu2VXjOmTNnrDtZbdu2rVb7Fdm7d6+1f91119VYuwDwa8d3yACghpw8edKaUc/Ht76VJK1duzZgNkSXy6WhQ4dW+zq+uzxt27YNaurysgwbNkxffPGFPB6Ptm3bpt///vdlnteoUSM9//zzeuihh5Sbm6vXX39d3377rUaNGqX27dsrLCxM6enp2rdvn9auXauuXbsqMTGxRvoYrNmzZ2vt2rWSvAHogQce0JkzZyqs07x5czVv3rza1/rkk080e/Zs9enTR3369NGVV16pZs2aqbCwUCkpKVq1apV1d7NNmzbVXq4gJSVF06dPV9u2bTVo0CB169ZNrVu3VuPGjZWVlaW9e/dq+fLl1myZlS3cXR1bt26V5P1+3MCBA2usXQD4tSOQAUAN2b17t+bMmVNu+cKFCwPet2nT5pICWU08rujTt29fxcTEKDU1VUlJSeUGMknq1KmT3njjDT377LM6ffq0tm/fbi1QfTHfd87s5L9A86lTp/TAAw9UWueuu+7SPffcE9T1CgoKtHHjRm3cuLHccy6//HLNmTOnwun8K3L69GktW7as3HKHw6HJkyfr1ltvDar9i7ndbq1evVqS965ssFP2AwBKI5ABQAg5dOiQdXfnUmdX9Od0OjV+/Hi9+eab2rRpkzIzMytc26xLly567733lJSUpO+++04HDx60vq/UvHlzXXXVVerXr59GjhxZY30MBTNnztSWLVu0c+dOHTlyRBkZGdYjjM2aNVOnTp0UHx+vhISEoKbZ79GjhxYsWKBt27Zp7969SklJ0dmzZ3XhwgVFRESobdu26tGjh8aOHVtjd08lWb8TkjRx4sQaaxcAIBmmaZp2dwIAUDVvvfWW3nrrLTVv3lyffvppUGtJlSc7O1uTJk3SuXPndP/992vKlCk11jZC25NPPqmNGzeqT58+eu211+zuDgA0KEzqAQAhxPe44vXXX1+jYUzyLvTrC2EffvihcnJyarR9hKa9e/dq48aNMgxD9913n93dAYAGh0AGACGisLBQ8fHxuuuuuzR+/PhaucaECRMUFxenrKws/fvf/66VayC0LFq0SJI0atQodevWzebeAEDDwyOLAIAAP//8szZu3KioqCjdfvvtdncHNsrOztayZctkmqbGjx9f4fcKAQDBIZABAAAAgE14ZBEAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCb/HwVVv4UvUCQOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 49\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "9955eb5c-5c49-4c20-bbe5-32d2d547527a", + "metadata": {}, + "source": [ + "An example to plot the image in the log scale" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "2e91030b-0ae0-4d77-8bf8-e51bb636536c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZTkWVnnj79j33JfKitrr+rqhe6GbhBB6aahaUC7FVFBRNQjMoLOMB5xDi7jFwdQPIj+YNzmDI4LMOIAygyiyDIu7M3SjGzd9Fbdte9VWZmVe0ZkfH5/RD4RN27e5XkiI7Myq54Xpw/dGTciPhHxWe7r837uvakkSRIoiqIoiqIoiqJcg6Sv9AYoiqIoiqIoiqJcKVSIFEVRFEVRFEW5ZlEhUhRFURRFURTlmkWFSFEURVEURVGUaxYVIkVRFEVRFEVRrllUiBRFURRFURRFuWZRIVIURVEURVEU5ZpFhUhRFEVRFEVRlGsWFSJFURRFURRFUa5ZVIgURdmyvOUtb0EqlcJnPvOZK70pUT7zmc8glUrhLW95y5XeFOUKceTIEaRSKbz61a/uyuulUik8//nP78prbSZe/epXI5VK4ciRI1d6UxRFuUZQIVIUpcm+ffuQSqWc/2zfvn1V+2q1ij/8wz/Ez/7sz+L2229HPp9HKpXCn//5n3vf48SJE/id3/kd/NiP/RgOHjyIdDqNVCqFQ4cOredHE3HHHXcglUrh4x//eLTtjTfeiFQqha9//esbsGXKvn37sG/fPvHz3vve93r37VQqhXe/+93O583Pz+PNb34zbrzxRhSLRWzbtg2veMUr8PDDDzvbX2lJ2Qo3CbbCNiqKcm2RvdIboCjK5qK/vx9veMMbVv29p6dn1d9mZ2ebbcfGxrB9+3YcP348+Ppf+9rX8KY3vQmpVAr79+9Hf38/Jicnu7Dl3eO1r30t7r//fvz5n/857rvvPm+7z372s3jsscfwzGc+E09/+tODr/msZz0LDz/8MEZGRrq9uYqAl770pbj99ttX/f2Zz3zmqr8tLi7iRS96Eb74xS/imc98Jn7pl34Jx48fx9/+7d/iH//xH/Gv//qvePazn70BW+3m4YcfRrlcvmLvv168/e1vx6//+q9j586dV3pTFEW5RlAhUhSljYGBAXZZV7lcxsc//nHcfvvtGB8fx1ve8ha89a1vDT7nmc98Jj73uc/htttuQ19fH57//Ofjs5/9bBe2vHv8+I//ON7whjfgYx/7GM6ePYuxsTFnO0rCXve610Vfs1wu46abburqdipyfviHf5hdsvaud70LX/ziF/Hyl78cH/rQh5BON4oqfvzHfxw//MM/jNe85jX49re/3fz7RnO17k/j4+MYHx+/0puhKMo1hJbMKYrSMfl8Hvfee6+o87Jr1y4897nPRV9f37pt17Fjx3DLLbcgn8/jr/7qr5p/n5ubw9vf/nbcfvvtqFQq6Onpwfd+7/fiAx/4QNvzS6USfuqnfgrVahXvfe97ne8xOTmJD3/4w+jp6cFP/MRPRLfJN4bo+c9/PlKpFKrVKn7rt34L1113HYrFIm688Ub82Z/9WbPdu9/9bjz1qU9FqVTCrl278OY3vxn1en3V+7z3ve/Fy172Mhw4cAClUgl9fX2444478P73v9+7bQ888ABe/OIXo7e3F319fXjhC1+IL33pS8HSpkceeQSvfvWrsXv3buTzeYyNjeFVr3oVHn300eh3QSwtLeFP/uRPcN9992Hv3r0oFAoYGhrCC1/4QnziE59wfn9Hjx7F0aNH28rdujUmxyRJkmYZ3e/93u+1Sc9LX/pSPPe5z8V3vvOdpsxTSR7QSA7N7XPdYDhy5Ahe+cpXYmRkBMViEc985jPxsY99TLSNdnnevn37mjck7r777rZtMOEeB0D7fvvVr34VP/ADP4ChoaG2MT6f/vSn8brXvQ4333wz+vr6UCqVcOutt+Ktb30rFhYW2l6Ps42hMUR/8zd/g7vuugv9/f0olUp46lOfire//e1YXFxc1ZbKK2dnZ/Erv/Ir2LNnDwqFAg4ePIh3vOMdSJKE9T0rinL1owmRoihtLC4u4v3vfz+OHTuGSqWCpz3tabjrrruQyWSu9Kax+OY3v4n77rsP09PT+PjHP44XvvCFABoC84IXvABf//rX8YxnPAOvec1rUK/X8alPfQqvetWr8NBDD+Ftb3tb83Ve+9rX4r/9t/+Gv/iLv8Cv/dqvrXqf97///VhYWMBrX/taZzmhlFe+8pX4yle+gvvuuw+5XA4f/vCH8brXvQ65XA7f+ta38L73vQ8/+IM/iHvuuQd///d/j9/6rd9CuVxetW3//t//e9xyyy246667MD4+josXL+LjH/84fvqnfxqPPvoofvu3f7ut/ec+9zm8+MUvxvLyMn70R38U1113Hb797W/j7rvvxgte8ALntn7yk5/Ej/7oj6JareIlL3kJDh48iBMnTuD//J//g3/8x3/Epz/9aTzjGc+IfuaJiQn80i/9Ep7znOfgRS96EUZHR3H69Gn8wz/8A+677z782Z/9GX7u534OQKNz++Y3vxl/8Ad/AABtZZ2uEjgf3/jGN/AHf/AHWFhYwM6dO3H33Xdj165dq9o98cQTOHbsGG644Qbs379/1eP33nsvPv/5z+Nf//Vfcffdd+P222/Hm9/8Zrz1rW/F3r172yTNHlN09OhRPOtZz8KBAwfw0z/905iYmMCHPvQhvPSlL8U///M/4+6772Z/HpM3vOEN+Lu/+zt89rOfxc/8zM84x1pJjwPiS1/6Et7+9rfjzjvvxGte8xpcuHAB+XweAPCOd7wDjzzyCJ7znOfgB37gB7CwsIAvfvGLeMtb3oLPfOYz+Od//ufm+YOzjT5+4zd+A29/+9sxMjKCV73qVejp6cEnPvEJ/MZv/AY+9alP4f/+3//b3CaiWq3i+77v+3Dq1Cnce++9yGaz+Lu/+zv8+q//OhYWFvDmN7+Z/wUrinL1kiiKoqywd+/eBMCqf/bv35985jOfiT7/zW9+cwIg+bM/+zP2ez7vec9LACSPP/64eHvp/T796U8nSZIk//RP/5T09fUl4+PjyTe+8Y22tj/zMz+TAEje8Y53tP19fn4++b7v+74klUolX//619see9azntX2+ia33XZbAiB54IEHWNv66U9/OgGQvPnNb277O33+Zz7zmcmlS5eaf3/iiSeSXC6XDAwMJPv27UtOnDjRfOzSpUvJ8PBwMjIyklSr1bbXO3To0Kr3XlxcTF7wghck2Wy27XWWl5eTgwcPJgCSj3/8423P+e///b83f3/z809MTCQDAwPJ8PBw8tBDD7U959vf/nZSqVSSpz/96azvZGFhITl+/Piqv09OTia33HJLMjg4mMzNzbU9tnfv3mTv3r2s1zd5z3ve49y3M5lM8vM///PJ/Px8W/uPfexjCYDkB3/wB52v97d/+7cJgOQVr3hF298BJM973vOczzl8+HDzfd/ylre0PfbJT34yAZDce++97M/kei/7mLCRHge03wJI3v3udztf84knnkjq9fqqv7/pTW9KACQf/OAHO9rGw4cPN/92//33JwCS3bt3J6dPn27+vVqtJj/4gz+YAEh+53d+p+116Hx27733tu1HZ8+eTfr7+5P+/v5kaWnJuQ2KolxbaMmcoihNfvZnfxb/8i//gjNnzmB2dhbf/va38fM///M4cuQI7r33Xnzzm9+80pvo5f3vfz/uu+8+7Ny5E1/+8pdx2223NR+7ePEi3v/+9+OZz3wmfvVXf7XtecVisVk+87/+1/9qe4zGBtmz5j3wwAP45je/iac//enOwfid8Lu/+7sYGBho/veBAwdw5513YnJyEr/5m7/ZNsB8YGAAL3nJS3DhwgWcPHmy7XWuu+66Va+dz+fx+te/HrVaDf/yL//S/Pv999+PQ4cO4e6778a9997b9pzXve51uOGGG1a91v/8n/8Tk5OTeOtb34qbb7657bFbb70Vr33ta/H1r38d3/nOd6KfuVAoONOZ/v5+vOY1r8GlS5fwwAMPRF+Hw/79+/HHf/zHePTRRzE7O4tTp07hb/7mb7Bv3z786Z/+KV7zmte0tZ+ammpuiwv6eycTguzduxdvetOb2v72fd/3fdizZw+++tWvil+PS6fHAdBI4X7+53/e+boHDhxYVZYHAL/8y78MAPjUpz615m3/y7/8SwDAm970prYZL7PZLN75zncinU57Z7f8oz/6I5RKpeZ/b9u2DS996UsxNTUlKvFUFOXqRUvmFEVpYpeP3HrrrXj3u9+Nnp4evPOd78Rb3vIWfOQjH7lCW+fnD//wD/HRj34Ud9xxB/7+7/8eg4ODbY8/8MADWF5e9o7nqFarALBqKuVXvvKV+OVf/mX87//9v/HHf/zHzdelsT2vfe1ru/YZXGK1Y8cOAMB3fdd3rXqMBOnEiRPYu3dv8+/Hjh3DO97xDvzLv/wLjh07hvn5+bbnmQJFU4Xfeeedq14/nU7jOc95Dh577LG2v3/pS18C0ChNdH2X1P7hhx9eJUwuHnroIfz+7/8+Pve5z+H06dOrxpzYwtcpz3ve8/C85z2v+d/lchk/9mM/hu/5nu/Bbbfdhg984AP4tV/7tTaRXi9uv/12Zwnq7t27m9/vetDpcQA0Zkn0MTs7iz/8wz/ERz7yETz22GOYnp5uG5/Tjd/w3/7t3wDAWcZ5ww03YNeuXTh8+DCmpqbaJLa/vx8HDx5c9Zzdu3cDAC5durTmbVMUZeujQqQoSpRf+IVfwDvf+U587nOfu9Kb4uRzn/sckiTBPffcs0qGgMadcaDRIQwlDjMzM23/XalU8KpXvQp/+qd/ive///34xV/8RczOzuKDH/wgKpUKfvInf7Jrn8GVRGSz2ehj1IkFgCeffBLPetazcOnSJTz3uc/Fi1/8YvT39yOTyeDIkSN43/ve1zb4nFIQ3yx6rr/Td2lO+ODC/i5dfPnLX8YLXvAC1Go13HPPPfihH/oh9PX1IZ1O4xvf+AY++tGPOgfLd5Pdu3fjvvvuw1//9V83Zz8EWt85fUc29Hcz1ePie042m3VOlNEtOj0OADjXIQMa+98LXvACfPWrX8Wtt96KH//xH8fo6ChyuRwA4K1vfWtXfkP6vn0TuIyPj+PYsWOYnJxsO15C3zUALC8vr3nbFEXZ+qgQKYoSZXR0FEDjTvBm5C/+4i/wu7/7u3jrW9+Ker2O3/qt32p7nDpIv/zLv4x3vetdotd+3etehz/90z/Fn//5n+MXf/EX8cEPfhDT09N4zWtes64z5XXCu971Lly8eBHvec97Vs289oEPfADve9/72v5G23/27Fnn67n+Tt/lN7/5TTztaU9b0/a+7W1vw/z8PD796U+vmnjg7W9/Oz760Y+u6fW5uPbvG2+8EQBWJWTE448/DgDOssLNylqOA1dJHAB89KMfxVe/+lW8+tWvxnve8562x06fPh2dhp8LbfuZM2ecZaGnT59ua6coiiJBxxApihLly1/+MoDGWIHNyMDAAP7pn/4Jz33uc/Hbv/3bq8ZHPOtZz0I6ncbnP/958Ws/4xnPwHd913fhW9/6Fr761a+K1h7aaA4dOgQAeNnLXrbqMddaT7SY7Be+8IVVj9Xrddx///2r/v493/M9ANDRd2lz6NAhDA0NrZIhwL29AJDJZLp+V/8rX/kKgPb9+7rrrsOePXvw2GOP4fDhw6ueQ9OC2yVc6XT6iqYOVIrn2oa1HAc+aJ/70R/90VWPhX5D3zb6oH3VNQX8oUOHcOLECezfv7+jxE5RFEWFSFEUAI1xA64E6MiRI/iP//E/AgB+6qd+aqM3i01vby8++clP4p577sHv//7v45d+6Zeaj23btg0/+ZM/ia997Wv47d/+bWdH7IknnnB2fIHWWKE3vvGN+PKXv4ynPe1pePazn70+H2QN0BTGdqfxU5/6lHPA+R133IHrrrsOn/70p1et+/M//sf/cKYjP/uzP4uBgQG89a1vdU4AUK/XnZ1W3/ZOTEzgW9/6Vtvf/+Iv/sI7EH94eBjnz59fNTYqxte+9jXntr797W/Hl770JYyMjOD7v//7m4+lUin8wi/8AgDgV3/1V9tK2T760Y/i85//PG6++ea2cUm0fcePHxdtWzcZHh4G0BhLZrPW48CFb5978sknndPVx7bRB0168ba3vQ3nz59v/n15eRlvfOMbUa/X8e/+3b9jv56iKIqJlswpigIA+NCHPoR3vvOduOuuu7B371709vbiiSeewD/+4z9iYWEB9913H974xjeuet7v/u7v4pFHHgHQWOMFAN7znvc0U4c777yzuZYMYZZz0XN/7dd+Db29vQCAn/u5n3MO9I9RLpfxsY99DC972cvwR3/0R1hYWMC73/1upFIp/Mmf/Akef/xx/Jf/8l/wV3/1V7jzzjsxNjaGU6dO4eGHH8YDDzyAD3zgA841Z171qlfhjW98Y/POejcnU+gm/+E//Ae85z3vwY/92I/h5S9/OXbs2IEHH3wQn/zkJ/GKV7wCH/rQh9ra08xc3//9348f+qEfwste9jJcd911+Na3voV/+qd/wr333otPfOITbYuSDg8P48Mf/jB+5Ed+BN/zPd+De+65B7fccgtSqRSOHz+OL33pS7h48eKqyRFcvOENb8CnPvUp3HnnnXjFK16B/v5+fO1rX8MXvvAFvPzlL8eHP/zhVc+555578MADD+D7v//7cdddd6FQKOC2227DS17ykuB7ffd3fzduvfVW3Hbbbdi5cyempqbwxS9+EQ8++CDK5TL++q//elUJ5H/6T/8JH/vYx/DhD38Yz372s3HPPffg2LFj+Nu//VuUy2X85V/+Zdt3Q9v3wQ9+EC95yUvwjGc8A7lcDnfddRfuuuuu6PfRDe6++26k02n85//8n/Hggw82x9TRrHZrOQ5c0DpU73rXu/Dtb38bT3/603Hs2DF87GMfww/8wA84pSe2jS6e85zn4Fd/9Vfxe7/3e7j11lvx8pe/HJVKBZ/4xCfw4IMP4s4778Sv/MqvSL8uRVGUBld21m9FUTYLn/nMZ5JXvvKVyY033pj09/cn2Ww2GRkZSV74whcm73vf+5zrjCRJax0d3z8/8zM/s+o5ofYAkve85z2sbfatZ7K4uJj8yI/8SPP9l5eXm3//4z/+4+R7v/d7k76+viSfzye7d+9OXvCCFyT/9b/+1+TChQve9/q5n/u5BEBSKpXa1gviEluHyIVrPRbC99m/+MUvJnfffXcyMDCQ9PT0JHfccUfykY98xPv+SZIkX/7yl5MXvvCFSU9PT9LT05Pcc889yf3335+8/vWvTwCsWp8pSRpr6rz+9a9PDh48mBQKhaS3tze58cYbk5/6qZ9KPvKRj/C+lCRJ/uEf/iF59rOfnfT09CT9/f3Ji170ouSzn/1sc90ge1+YmZlJfuEXfiHZuXNnkslkvPuYzRvf+MbkrrvuSsbHx5NCoZCUSqXkxhtvTF7/+tcnTzzxhPd5s7OzyW/+5m8mBw8eTPL5fDIyMpK8/OUvX7UGE3H27NnkJ37iJ5Jt27Yl6XS67TundYh82xvaF1zAs+bRX/3VXyW33XZbUiwWm8eUieQ4CO03xLFjx5JXvepVyY4dO5JisZjcfPPNyTve8Y6kWq12tI2h/f4DH/hAcscddyQ9PT1JoVBIbr755uRtb3vbqnWkkiS8ZlVsLSRFUa4tUklizI2pKIqiKCvccccd+MpXvoKpqSlUKpUrvTmKoiiKsi7oGCJFUZRrmLm5Oefiou9973tx//3348UvfrHKkKIoinJVowmRoijKNcwjjzyCpz/96XjRi16EgwcPolar4etf/zq+8IUvYGBgAPfffz+e8pSnXOnNVBRFUZR1Q4VIURTlGubSpUv4lV/5FXz2s5/FmTNnsLi4iO3bt+OFL3wh/r//7/9zrvmiKIqiKFcTKkSKoiiKoiiKolyz6BgiRVEURVEURVGuWVSIFEVRFEVRFEW5ZlEhUhRFURRFURTlmkWFSFEURVEURVGUaxYVIkVRFEVRFEVRrllUiBRFURRFURRFuWbJXukNUBRFUdaPVEpP890gSWpXehMURVGUdULXIVIURdnEqNBcHahQKYqibF5UiBRFUTYIlRtFgkqUoijKxqBCpCiKsgZUcpTNgMqToihK56gQKYqieFDZUa4mVJoURVHcqBApinLNosKjKC1UmBRFuVZRIVIU5apEZUdRuo9Kk6IoVyMqRIqibFlUehRl86CypCjKVkWFSFGUTY1Kj6JsfVSWFEXZzKgQKYqyKVDxUZRrDxUlRVE2AypEiqJsKCo+iqLEUFFSFGUjUSFSFGXdUPlRFKVbqCQpirJeqBApirJmVHwURblSqCgpirJWVIgURRGh8qMoymZHJUlRFAkqRIqieFH5URTlakElSVEUHypEiqIAUPlRFOXaQyVJURRAhUhRrllUgBRFUdpRQVKUaxMVIkW5BlD5URRF6QyVJEW5+lEhUpSrDJUfRVGU9UUlSVGuLlSIFGWLowKkKIpyZVFBUpStjQqRomwxVIAURVE2NypIirK1UCFSlE2OCpCiKMrWRgVJUTY3KkSKsslQAVIURbm6UUFSlM2FCpGiXGFUgBRFUa5tVJAU5cqiQqQoG4wKkKIoihJCBUlRNhYVIkXZAFSCFEVRlE5QOVKU9UeFSFHWARUgRVEUZT1QQVKU7qNCpChdQiVIURRF2UhUjhSlO6gQKcoaUAlSFEVRNgMqR4rSOSpEiiJABUhRFEXZCqggKQofFSJFiaASpCiKomxlVI4UJYwKkaI4UAlSFEVRrkZUjhRlNSpEirKCSpCiKIpyLaFypCgN0ld6AxRFURRFURRFUa4UmhAp1zSaCimKoiiKpkXKtY0KkXLNoRKkKIqiKH5UjpRrDRUi5ZpAJUhRFEVR5KgcKdcCKkTKVYtKkKIoiqJ0D5Uj5WpFhUi5alABUhRFUZSNQwVJuVpQIVK2PCpCiqIoinLlUDFStjoqRMqWRCVIURRFUTYfKkfKVkSFSNkyqAQpiqIoytZB5UjZKqgQKZseFSFFURRF2bqoGCmbHRUiZVOiEqQoiqIoVx8qR8pmRIVI2VSoCCmKoijK1Y+KkbKZUCFSrjgqQYqiKIpy7aJypFxpVIiUK4aKkKIoiqIohIqRcqVQIVI2FJUgRVEURVFiqBwpG4kKkbIhqAgpiqIoiiJFxUjZCFSIlHVFRUhRFEVRlLWiYqSsJypEStdRCVIURVEUZb1QOVK6jQqR0jVUhBRFURRF2ShUjJRuoUKkrBkVIUVRFEVRrhQqRspaUSFSOkZFSFEURVGUzYKKkdIpKkSKGBUhRVEURVE2KypGihQVIoWNipCiKIqiKFsFFSOFiwqREkQlSFEURVGUrY7KkRJChUhxoiKkKIqiKMrVhoqR4kKFSGlDRUhRFEVRlKsdFSPFRIVIAaAipCiKoijKtYeKkQKoEF3zqAgpiqIoinKto2J0baNCdI2iIqQoiqIoitKOitG1SfpKb4Cy8agMKYqiKIqirEb7SNcmmhBdQ+hBriiKoiiKwkPTomsHFaJrABUhRVEURVGUzlAxuvpRIbqKURFSFEVRFEXpDipGVy8qRFchKkKKoiiKoijrg4rR1YcK0VWEipCiKIqiKMrGoGJ09aBCdBWgIqQoiqIoirLxqBRdHagQbWFUhBRFURRFUTYHKkdbFxWiLYiKkKIoiqIoyuZExWjroUK0hVARUhRFURRF2RqoGG0d0ld6AxQeKkOKoiiKoihbB+27bR00Idrk6MGkKIqiKIqytdG0aHOjQrRJURFSFEVRFEW5ulAx2pxoydwmRGVIURRFURTl6kP7eJsTTYg2EXqQKIqiKIqiXBtoWrR50IRok6AypCiKoiiKcu2gfb/NgyZEVxg9GBRFURRFUa5tNC26smhCdAVRGVIURVEURVG0T3hl0YToCqA7vaIoiqIoiuJC06KNRxOiDUZlSFEURVEURfGhfcWNR4Vog0ilsrqDbwJSkPwGKX7LVFG+MYqibAqkx2863bNOW6IoynqSyfSx2xZy29dxS+Jov3FjUSHaAHSH3hzwZSgFrgylUkWkUkUkyUK0bSbTJzoZK4qycdCxzIUjRalUvvmPoiibA8m1+EpLEaB9yI1CxxCtI7oTbw5MEUoQqsu1Jch/aNgdp5AQmSfe5eXLgfdXFOVKIDmebRGq12cCr9suQkmy1MHWKYrSTbjXZFuGFqtn1m2buOjYovVDE6J1QmXoypNCVpgKMVo57iL7Ok+aCCnK1kSSFknK5zQpUpTNhaZFCqEJUZfRnfXKEhOg1QmRT4TaD4tQ58gWIt/JVdMhRdmcSI5vnwC5kiKfAGlSpChXDsk12idBmhZdfWhC1EVUhq4cnDSoXYZ444Rid4rNzpImQoqy9YglQZKkyJSlUBqkSZGibD40Lbq2USHqErpjXjnkM8fFRKiRDnE7QpyTqKZDirJ16fZkC43XVClSlCtB7HoskaIrLUba9+weWjK3RnRnvHJIRCjBMv91UwVWu3Sa16FRGVKUzYtEdpJkgS083LI4LZ9TlI2HKz3ZdJn9mle6jE5L6NaGJkRrQGWo2/AmNijmd6CY38F+1d7ydax25cIetgxVijtZ7bbWPsKdWIJ/Z5t/t1yyDgx/fShl82OXmoXJdP39sxn+pAi95evZbcsF3jkimx1iviJ/OQBFuXbhnSN6mNfwWn0OA+X9rLaF3HZhxUp32Vr9jc2HClGH6I7XTfgXehKhxaVz0ba95etEMsShUtypMgSeFEllKC5F2iG8tslY/792ctkRADIpqhTHo21K+VEA6yFFgB4DihIjg9h5Ymr2YfQUd7LFaKC8nyVG+dyIcIbb7rK1+h2bCxUiIbpycLe58qmQRIY4bK19RLIILS8Zktzx5ydD2gm8GjH3E8n01VeCntLu5r9zpIgISVHGEDGVIkXpNvy0KCRGF2Yeav47Ny0CpEt/dI+t1QfZPOg3JkB3sG7iuqC7h7NxRcgnQZfnHnP+vdsiBGy1fYTfqZLIEP811yJDKYQWzlU2P659JZ3u8Sx0andsMoBgXKALSocISolqy/6FVk0qxXHMLpxe9XdKhzohmx1CrTbheESPAUXhsYz280XG+HsYkqKZhZPBdiRFk3OHnY/ncyNYql5o/jdJUXhh+O6TSmV1XJEATYiYbK2O7mZGVh63Vhly0Y1UaH7pfNt/b707MvxUaK0y5Pq7JkMKH99d3s5L52wZMnGVz5npkAk3KXKlRBlPmZ4mRYqyHqwuo5uafdjZsttldMSVSIy2Vr/kyqJCxEB3qG7RHREyxw9JxgkBOlYoLqStx9Zr8gSVISW0v8hK57o/yQLQ+ZiiUDrEHU8E2FKkx4GidI/4+CJgdRmdWTZnQ2LElSOVos2JfksBdCfqFvwL+nokQgBfhICrdQY5YD1K5IDuziSXShVXFrvVTuDVCmd/aZXOdV94QumQSTbTg9ryjDcd6oRyYSfmFk9606G29/eWz9lo6ZyitGOXzbngld1yy+iIVjkd2srmbDa6jI76K1pC50fXIfKw9Tq7m49G53aR1baY5w9Szmd7RdtRW15gtSvk+lFdnmW1Xahe4r8/q1NjysB6IJGhHLNdFtyQWXIS5u4z6XQJ9foc+3WVtY+76QZcga7X5wWvyv9cXCECgFJ+GAnqrLb1On8fX6xNsdvWatxzzWa4lG+OfUxRJDdT+is3sNqN5W/BVJ0nRgBwbuoBdtuNHF+kUuRGS+YcqAytHYkM9ZV5J6Pe4k70CiY4yKQLyKR56wpJZCjDXJC1Xl9Cvc5bdFGyDg93QbnG60rGAJWQTpeYr7s+x0gmw1sEj7udDdZzuu7uv66kzlyyL6wXkn0smxlgv242w7vxkUrl2MdPNjvEFhwp3PNCktSRZ342AMhmB1ntNkOpoeS104IFLxVFzjK4cp5KZZBKxffbs0sPoT/N74P0lPejRzDGaKPQPq4bFSIL3VHWhmSMSF/5BpEMSZCIUCHXz3zNvEiGuHQiQ7GOsKSTCsgEo5NjJPacTKbclKFYB1AuQ+tFyvr/brwi/7vl7gsrra3/7w6SfYxkKM3Yf6gNV4oa2xI+jmSTFTTSIQBIMS6T1IZ7fgDQVSlKpysr/8+RovXZF9zv4YZkKJ0uqxgp64xMjDj0p3eyxKica6TRHDHScUVXHhUiRVEURVEURVGuWVSIDNSY18Z6JUPcdIhK5CTpEBfJnV9JmRz3O8tk+tjlUa679qFxQeudDsXglskBq7c1fHd5I9Khbr5iNvjfJva+EN431jMJaBFKi+xSuVBKZD8WSom4491spGVzoZTIfix0rkiS9ve9ukrnXGtF8dCUSFl/uls+B/CTImKzldBpn7cdFaIVdMfoHGmZHBfpeCEu61kmtxnGDElwyZDrWFivdZbWIkNhfAtZdoPuv3YnpXLM1sy/yXGLt6BM07E/ccrpWu+1WoZ8x5WrXC4kRVQu1/bagsvlRpbOUblc+998UrR++wP//dyoFCnrj7t8bnJm9XpEPjE6u7R6+m0SI64cqRRtTq55Idp6C2puHtZzvJA0FeJypVMhYH1kqJMxQ92ZQIF/p91+nY2VoW6x/slQ6LHQ/rD6sVBndG2d4E7GDq2Fbo4lMnFJkUuGmq9tXTJDkmSfP+x0yOTqSoo6f22VImVj4M+EyE2LCFuKaByRjSst2uhxRM331X4wgGtciHQH6BxJp2MzpEIAX4bWMxXaqBK5EFe6RA6Iy5DZ6Yttb3snKiYsa5lxjvPa0lfcyGSoO8T2N/PxmAyZiVAsHTKlKFYqZx5nsckUulk+Z7NeSRHhSofaHzeliLMuS6fwXzsmPSpFysbQ/VnoCGlatFkSo2u9T3zNfvpr/YfvlKtZhHKZCupJlf26VzoVarzu1SdDJtdqMmS3SzO/s0ymD8vM6eNbnVTJ3VLe/pZK5ZFhdmwlZXLZTC+W67y1ulKpIntfS1BHOT/K3g6pFHHXQstnerG0PB1tl80Ostcnai1yy2E91xHiv3Y6XdY1xpQNYv3Tojn4F2glSIqm5x4XvUe3SaWy1+w6RddkQrTVZEi61oi0k8x/XX6nXrK6e29+B7vtskBYAIgEJyPYL0JlNTaShSDLhb3sttJphLMZfrngeh0juSx/Xy4X9ghel/8dA7JyIslrS47VXI7/+5ULY+y2yuaiLuhcSM5XksWsS4Vd7LbShEbSXnR8CI67K1VqZLNe115l/anWuDeS5AwVrmO37UaJ8VrZan3kbnHNfeqt9EPTxWN5+TKrPZ2Mk4SfXPBeV0Wo9br8zk0mzf/eSnl+h1eyD3Pv0ncG/35KVpAKSUqHpJ8vVmJkI5Mh/nbnc9vYbSXlFLlMD3KZHiwsnY22zWZbglyrTUTbF1eO18Vq/G5nYaVuvrYcv8ufX9mOpdpUtG0u24McerCwFN+GYr6xDVXGNlQM4QyN9SHymcZ+tMRM49LpLOp13rkjmy6ixkzB8tk+LNV414dSYRzzi6dZbaUJTXolta/X44tx0/mLcxeajr9qLf57kxQluLJ3t9frOqysL7MLh1EpNs61uWz4OnGu+gi25W5iv3YBPU0pmlh8Iti2VBjF/MphVFueZL9Ht7kWk6JrKiHaKjIkHT8iHVDPRTLmBdgcMlRPqipDzW1QGSLS6cqGyVDs2DVlKJYSmTIUS4lymVbqVYzsU6YMNf47vB1F43gteAYJux6P/fZ5Yzvy2XCCmcuany+8Debjucg2VKzvNZUK79skQ/a/uzDPGel0+Ng1z1vZyPnDfDwvSF1LBX6qRIumShKgtKCcWXIu07RI2Uiqtdl1S4yGCtexE6NsZuCKJkZbpc/cLa4ZIdoqP+x6jh+RIBUhW4Z8Nfa9+R1sGVpOqmwZ6kSEuDJUT2oqQ22sTYZ8Y0ZcMlTMucd1uD5fLusuY/SJUKhszu6A+V4b2DzJEBdbhmIUHcerT4pcf/dJkUuAfFJkylBru9zb4Pp7TIpsYlJkEpMik5gUmcSkqG0bAlJUyA20/XdIinxC45Mi1999r5FxfE++c5r7+Hb/3i4BUilSuoGW0W2dvnM3uCaEaCv8oJ2kQuuBJBVyiVCI9UyFJKxnKsSVoVJ+jC1D0ikxQzKUXvN+s/WSIQm57EhXyuRcx7JPhlwpkU+GXCmRT4ZcKVFIhlwpkUuGfMSSI5NQGhRLikxiSZGJS4rsdMjEJUU++XH93XfucEmR7xzmkiKfKEmTIklaBMjGCmlS1GI9r9fK+qNp0dboQ3eDq16INvsPuVlEqPH661cetxlSIWBrlMgVjCmnY/tvxugMZ9LlTZ0M+YjJkJkSxT6fmeRwZMhMiWKdLTsl2grJkClFnGTIlKKYDEkESLI/2LjSIR8xQTKlKCRDhClFsSRoMyZFdjpkY0oRR2JMKYpPn916PVc6ZHI1SJFkOnpl67HeadFmF6PN3pfuBle1EG32H3Azlcd1OxWitT02Uyp0JUvksisd161bItddGaKyuc2UDPHaNaSII0N0fHNkiFIijgxRSrSeZXJcSIo4ckT7BScBojYcGSIJkqRFEjopn+OcP0iKOOcykiKOHJEUxWSI2GxJEec4p+OVIzwpZDdVWqRsXdYzLQLkZXQbLUabvU+9VlJJkiRXeiPWg838w0lEqJgbxtziSXb7bKaPNSMPsX6p0DhSzIX+EixjgTmTHgAsM2YyMskJ1rJZZKwBQtTrNSzVeO1L+WH2WiQAWGuRNGHMimWSSmWxzJxBKpMus9d9AWRJQFbwu1TZa+s0ZKu6zF13pSEWsqmR+bNHSZLD/tJeLNQmWW1zmQrmFs+xX5s7axkhSSUklAvbsLDEWz+nUtiGGeasaFLyWdkiqJJzyHJSY++vqVR63TpYEpHLpAuYE3zX6XQRdcE+JbkeS8p6a8zjBQCy2QH2tbGTdZAksqMz0G1OaJY5DsPF61FMCaaRRwEzuMhuf/Lyl9ltN3o2uqt19rmrMiHarDIknbGnmOOvdQM0ZIi/LT3stViymZ5mwsGhV7A+RiJYFK26PCvqGGfSBdEirnXUkWOWvXCn0AVkaxalUmlRR6ZeXxJ15tcrdcpmyiIZyqTz7N8+mymyv0PJIp+ALGUBGh1p7nFZKYyjmBuMN0RDhrhw91GilB9Bb5G/Ds1w5Ub29vSX9rLblgv8skGih5le9Bf3ob+4j/2aecHvXsmNitoDst8oNsUvITmfFXL9Yukri5MirjSnWVOZA/IxjvncCPKC0k1JuZ0sCSuLzq1XevawTrgWxkIt1xdFN1wXEv6NXADoAb8vUCmOo1LkHZPSvuVa2ax97LVy1QnRZv2hpCLE7XRlM33Nf/jbIii1EYoQV4YSLItlSILZcagjfDGur/yPy3rKEFGIlBXV60uo12V3GTuVoVjKIRWhTJp/Uc1m+EmFKUMc0THbcERK0sGsCDqXplAUswPBtmZHmyMYJWEZ2XDlRud2uTAflwhdMR+XxIpAnkwRikmRKVhSyeG0XzZuTsSkyDzeuVIEQHSTh7PPmq/HkSJThPhSxFvfSYJ5zMakKGscV+slRQBvAhzz3LpVpMgUoatdigBZFcpCcrn5D4ceDIvFiMtGitFm7WuvhatKiDbjDyTZQSUiBMgSoca2aCpkIxWhtchQqHMvTYW40AXaPjZC6Y80GeLiEqHQvmB/XyG53IhkyCR0nNoyFEqJJCLhIiRFtgzFUiJThmK4tjv0WeztDEmRLUOhlMglQNykCIhLTsWa9j3UfnmNZSQhKbLPaaFzXCHXfjPlyiZF7ee1kBStdQbMbiVF9vW6k/WYpGnRVkPTIjeSxEgiRpK0CJCLfKdsxj73WrhqhGiz/TDrWR4nTYQa27P2VMhV+y9JhQC5DLlwlYhJRQiQy5ALV2ejlB/uOBmKb4dbhlzfSSfHxEbKUPi1O0uGTFzSk8v0eGXIuz5SF5IhlxT5BMKXEknKsHzJkE+KfDK0VmED/NLmkiJfMsQtnQvhew2f5NgyFGvvwveb+Y55lxT5zmvdSIp8r+GTIp/8bHRS5D1W16l8rvm+znWX3OfBq12KgGtHjCRI0iJg65fRbba+91q4KoRos/0g61UeB2ztVIgrQ52kQhJiJXJ2J+ZKjReyy+akyZCE2JTddtnceslQNlMMypD9/UqSIU4qZL9eSIbs47bTMjnna1tSFJIhWzjWUibnwt7W0Lbbj3UybsiHLTShJMh+LCZUay2fC6VD9m8XuwGylvI5Ox0ysffl2HmzXBgXpUWrpcj/OZOk3vUSOsKWomygDFW67hggu75LkvmtOK6IuBakaLOkRYC8jG692Wx98E7Z8kK0mX6IzZQKSUSo8frrM1YI4KVCxZXPtp7lccDGlsi5oM6+eOKEdZAhujhLp+zutgzR/iFJhQCeDJEESUvkAF4yRMcwR4YoJZKmLpxkiMSDI0OSCRZsONtObTgyZKZEnHFDJDacsjhJ6ZyNLx0yISnilMpJJ8IgKeKc36hNSIYIafkc0EqLOCmQJCkCWmmRpFyONd5PkBQBrbSIe/2WSpGmRVcHnUy6cK2kRZupL94pW3ra7c30A0h2NslaNADYUzsTkmmS0+k8UgIvHu25WbQtEqaX+NO+SjsYaaRFMrRYnWK3lZaDLQvkZn7pvOi1JdM8Synlh7FQ5U2Z3NgW/vci/T0lv08nZDP8aZYln7MvvwuLdcEU84L1tqR33CULiXZCtT7PbptJ5QRtZTdBlpP1m6YfAOYFUz/XBN9JMTuAuSX+EgqSGwqScxAhOfalE75IzluSVLhUGMHswhl2e+5yBJ0imlJ8g6dS9pHNDmFZsIwBsDWnFc9k+kQ3zraVbxW9fm8qfpPF5MTSv7HbTs8fFb22dEp5CVt5Su4tnxBx2EwLs+Ujs0i1t+0V3dGTtk8LOnKFXD/rDmTztZFDGrxOTq2+iJrgrksnMiRBklJlM0V22iNNtJZq0+yOQiZdFMtQMT/ImvELkJUCArLfKJMuiKYOT6f5nedspiSSG4A3CxqRz/ayf9O+vCyZyad7UMrwtiWf7kFBkCCP5A6iLz2OvjTvDuNI+gBG0gfYr19J8+/QD2cPYCDDX+NsOM1P2PrS2zGY4bXvzWxHb2Y7iinZIrYl5jk9my5EZxG0KTPLH8v5EVHZX19hp2g7cpmKKFmkxWE5pFJp0dpetKAtl0pxO6tdIdcvnlBCUmaezfSIrrnSKo/1JCNM2CVrLW4mJOvXLdSnsFDn35hLUG8uWM+hN8df1L6UHxMu+n51J3mdsiWFSBJBbyYR4srQRoiQVIbYry0QIQBiEVpPGTLHLnEuupI7smanmfNbSVLBTlIhSae/UxlKM+76S0seSYZKhXhHsRMRou+F89tKjjlThgrpeGchL+gImW05UjSSO8h+bQBtIsSRIpKhgWxccoazrdfjSNG2zA2N5zGkqC/d6ghzpYhYLykC4lOr2224UgTwxkJROWBfYadYjDhSRIv6SqQI4C14TMflekkRwJ9lzxQhSck559pr3iDaalJEZZOZTN+WFKPq8oxYjCRIxKg3t2PdxGi9ShylJaKbiS0nRBIR2gwyJBGhRvv1EyFg/VMhLhuRCklliEts4L+NNBVaTxmSpELAahkKTSEtFVb7ewmlROl0TpwMhf7bRvKdALIB6p0kQyahlEgiToBbhkIpkSQVAlYnQyEpMmWo2T4gRSRDzecLkiIgLEW9mdUd5m5KUdbaP7qZFNmPSSeIiEmRfUxLk6KQGNnpujQpComRfdNEKkWdpEVcpDclN5MUaVq0GkqLpIkRl07EiMt6itFWY0sJEecL3iwiBKx/eZyPUn51rWq3UqHLiydXv3aXUqFSdsj5d0knOyRCvr9LZciFr2xOKkPu13C/ZycyJPm7JBny/Ua+lEjyvfhEyJcS+eTH93ff5/f91pIpjH0y5EuJfILDLZ0D/ClRKBnils4BfknylclxkqIYtgwRPiky06EYLhkipFLkwpah5mt7rg++v7ukyCdK0qnEXVIUusHhk6Ks55wkSYt8UuQ7HiVpkU+KfNe7bkmR7++bXYqynmuyVIy2shS5xKiv6D+naRmd+Zqboy/OZcsIEVeGNgOxVMiepWQzpUKAvEROwnqWyHUyVigkQ/aFVpoKhTr99m8onTijWzLkIyRDdkokTe9C34udEsVSIVuKuj1eyP7NO5mly4ctRdK0J9TeliJpmRwQTofsx2JjhmwpcqVDzbZWSuSToeZrWVIUkiFp6RwgkyJJ6RywWn6kyVEIW4piM+ettXzOJ0PN7bGkKDT2UpIUAavP1aGSWklSBLilKJQGSZIiYPX1OZyUb55xRYBsbNFWLaEDZGkR0Nn4IpOpxD8RyFZLi7aSFG0JIYp9oZoKuekkFeq2DFGb9SyRk5bHAbJUCODJEF3gpeNiODJEAiSdPIFbIkdtpIvKcn4nMyXifDfUIZCUyAE8GTInWVhrmZwL8/NJSuU4MmSmRJz2JEVcGTJTIk6pHLWRTKAAhGWIkEyyALSkiJMMmVIUSodMOpUiXzrU9tqCa4aZCHHGFnVaPsc9/0qncCcp4kxEY0oR5/wrTYpIjDjXPGkJnTnZAkeQpDctN5sUkRhxpl3fylLUiRhx2ai0iDML3LUqRVti2m3flymVoATrNx1gMc/fOQHZ4onS9AAAFmuygX6hsSE2A4V9otdeqvNPIjXhFLlSEQKAxWX+9ymZ4rXRnt+JrydVzC3KptWWIO3wS6ZfB+RT90rWXpImPdVa9wXXRPK7AkAly59iVXIRBGRTcfem5Quj5iGcdhr8acQzwkRZsi1VyM4dNWF7AFhI+OdVybTj6816TiUOAPOC6cEB2R136eQMhdyAqH1tWfY7dXI95pJJ57FYnWS3rwuurVJ85XIhpFMuLy/zzx3riVTShitPEb/HSIY/HvNyck702pcWnmS3nXMMewjRrSnUt8J03Js+IXLLUGrlHx7Z7EBwteq1IrlbUy5sE63eXs4OY0C4wKAkSSrmBkUy1F/Yw+7AFVI9KKT43816y1AtWUJNcHBn0gWkUhl2e8m0x3VBp7axLXnRejflgmzNg978OHoE0bqkrTR5LOdGkE/zE8Ks4G5WKTeIUm5Q1EEsZgdEa/b05/h3zUupfpRT/OOvmOpDJc1L8HakbkJvIuvUjNV3YbDOTwjLdf7xPVrfhaE6f7/ZV9+PHXV+edOBZL9gW7ZjvC4rn6skAxgG7zkpZEQlkMOZ/RjOCLY/wy+B7MvsQEmwj1VSI+ISy4GSbPINyXov0gWyCxn+9a8nOya+wSe5fkuvr4BM6DZLZQzhGr/sI5MuIp/jf5eSkjvpQqTSmdGW6rIbcKXMIGbBX8erlOpHSZBKS2ai7CntRY9gcfBUqohUau3rG26FlGhTC9HqL7BdhGiF+xDrLUIkQ0u1+J0OqQiVs7LpjqUleFIR6i/sYbeXiBAgk6FOSuQkIgTIyt4Kmb6mDHE62p3IEJdyYbQpQ9x0qzcvGzhMMtQfGFhKmCLE2TfLwhXmSYZKjH3ZbsP5raRjOkiGsozFQ80LHkeKiqnOSk24UjRWb4kcR4pIhobr8XR81HhtjhTtq7fkgCNFu5PGNnCkaNR4Pa4UVZIBVjsbjhSZIsSRIpIhiRQBYElRJdU6/kZyB1liROe+9ZCirNGp5UgRDXaXSBHAr3qg5Fp6Y3M9pChZWYB9swwZoM9Yyo+KxEgiRYAszelEjLgs1WfFYjSLS2IxikELfZfzI2IxknAtSNGmFSK3DPHZ6qmQBJcIhWq7O0mFJNgyFKrTryWLYhmSYstQSHaki6dKUiFgtQyFkpz1ToWA1TIUSn568mOrHg9JkSQVAlbLUCwlspOhkBRxhMnGlqFYSmQnQyEpktz9A1bLUCwl2pG6qe2/Y1JkyhAHOxniSJFJSIpMGeJAMkRIkiIgLkW2DMVSohTaU2XpZBkhKbIlKCZFfZn270aSFBEhKbLPf+uZFAFhKbJn/ipkeoNi1JNt3welSRHQ3bTIPtdLS/+6KUWdlMvZSKUoJEa2BElL3LqZFvWW2vtDUikCcE2nRZtZijatELWQlccBG5cKcfCdMH3jKSQy1MmMc9I7VdJUaKuXyLnwlc35ZMiXPEiSIZ8I+f7uk6F0KutNiiTJkKREDvDLkG9/lSRD2VReXCbnw/db+ZIhnxRJy+Rc+FIiXzLkkyJbhmL4ZMiXEvnK5HxSNOp5fZcU+WTIlxLZMkT4pGjU8zrS8jmfFNkyRPikyCc/3Sifs2WI8EmRmQ7ZSEroBkoHRGLkk6KspxMrKZ8DZGmRT4rMyVhsfNd437VWcg32SRGlQzabISky8UmRb2Kg9SqhA/xS5JO/TtIiiRz5pMg3FlIqRestRlcjm1KIGjtiZyIUkqFcVlaOY7PeqZBUhqR0s0TOHke01UrkbPmRzgwnHS8UkiFbZiSpkOv5MXrz40EZsuUnJkN2SrTWZMjEToliImTLDycZsqWo0zI5F3ZKFLuo2VIkLZMLyZCdEo3Vd0WTIVuKYmOGbCnyyVAn2FLkkyHCliKfDBHj9b2rxChUKscdT0TYUhSTHvvxUBq01vK5kAwRthTFzoHdkCIfthSF1oUBVkuRnQ6ZDBT2reu4ImD1tTh0zi/kBjZ0XFEn6VCob7HRJXShNGg9S+gIqRRtlrQIcJXR+ftda0mLNmtKtOmEqCVDMrZCKuRtzxAhmlih01RoI0vkXFDZ3HqXyElTIYAnQ5QSmeOFOKzHeCGzDVeGKCXqdLwQF44MmfsvJxkiKZKkQkB3yuSc22OkRJxkiKRorWVyLsyUiJMMSSdZAFpSJJlAAeDJkJkScUrlJJMsAC0pismQC864IVOKfOmQSaflcxzhMdv40iGTbpfPuehUinzpkMl6JkVAKy3iznhpXvc519v1nmxhq6RFLswSOk4KdCVL6FyYaRFnUW2JFAFXR1q0GaVoU027nRJObQsAOeF4m2pNNj2oRIQGKsK7dILV5wFgrnZR1B6QrbdTyW9DVrBzS+9eX6odFbVf74kTpEhmPgOAReGUootV/pS+0hQGiC/MuFYWBJ+3N7sd88v8i4BULDtBmhKW0vzjNwfZRaPOmDDGpD+R/bblhN8hAIBF4RTV0mO3D7LtyQimcAeA6UQ2tfLllGzZggmcELXvTcl+rzRDtohFzK3baxPTddm0wJPz/GmBM+mCaCrsgbJszFguJdvXZmpnRe0BoF7nn6+ka+ItLPoX7XQhXW5EmhBJxU46bfmypzzQh2R651J+TLRESU9RNlYSkJVTA0BeeC6cXD7ObrsgnE5/Zp7/2gCQJLLfqvGczTMd96ZKiFKMmZlMysIkQ4I0DpTK0EhW1p4za1Vb+3SBtSggUcnLUq0h7EI54QuRZK2VYqYPxXVevC2frogEp5IdRU5wV6mcEZQ/ZnpECyj2FneKF1zsz+1GVtAp70ltQ0+Kv09wSm6I3qzsbn02XRB9Xun3CQCFTL/oZkCPYH2f/mQU5USwADNKKIK//bvr+9GXCNqnRjAs2JcBYFRwR3JHehDb0/z2TykNY2eJPw36vkoZu8v832pbQXbu7E2VsBP8fTSHAsZwHbv9OA6iJ+F/P3vre7C7vpP/+oLxUL3JsHgGvWJSwWiKLyHZVAEjZdm6LZJ1yJKEf23ZljqIQfA7tWlk0JeVdYILmV6UcnypqOS3ia6/vWX+vpZKF0U3ddPpHtSF68tJq1b6irvQJ1jQt1wQLPGQHURReOOvkBUsRh8Yk+tjbll+I5tLFQuoZPifty+/S7Rg+EjvUzHS+1R2e2lSt9nGIm0aIeIetOXCnuY/AH9FbQlSEZLI0Ej2YFOGKql4pzmbKjRlqI+5MrFEhIDOZIiLufryQDY+TbMpQtJOLRdp0iNZZLOcGW7K0GA+3mkwP2NvMd7pMdtwvp/+3G705+Lfu4lUhEiGhrPx8hhThjgJqbkvcz5vJ/tMISNL20iGOIuMmskNR4rMhUg5UrRbOiObQFyJvpXzIUeKdhipGUeKnlJqnQM5UrSv0hI5jhSRDF1XHIi2tZFIEQCWFI2jda3gSNHeeuumH0eKhuqN/a2TNZakcKTIvJHHkSIzpeVIUf9KaU+S1EViJJEiAOjL7mCJkVmWx5Eis/yWcx2m/k5v+TqRGEmkCIBYigDeuOaiIR8cKaJKiHJhTCRG6ylFAH9JCxqfOrd8kSVG0nSIqGRGxWIkgSNF6ZVSfprsgr9m1Pr08zphUwiRRIbWSmhiha2eCgGrZSh0UnbdmaoFIs8h7BLLkIS1pkKcMSa2DIXkqJIdXSVDoZRIkgoB8s47R5hMXCIUS4lsGQrJkSsVCklRJ8mQBPv75Hy/tgzFUiI7GQpJkauMLSRFpgxxsGUolhLZMjScLkeToj7r+5AkRUBYikwZIkJSZMoQBzsZiklRb6qE3lT7+8ekKIf295AkRUBYikwZIkJSRDJExKSoN2n//jlSVEzaz5eSpAjgSZFJSIr6HeMcQlK0LdV+/Y1JkauUUJoWSZIiQH5zMiRFKWsmt9hYaPsxjhT1WVNQS8c3S5IiQJYWFXOjQTEqWeNjC9n+oBjZn1WaFAHrmxYB6GpaZI+nlaZFAD8x2ixStCmEKIaZCK0XPhHy1Td2mgpxMFMhVvuV8rj1LpFz4Sub88mQLyXajCVyEnwy5EuJfJ11n/T4/u57nU5SofUqkQP8MuRLiXz7su/zSv8O+JMhnxRJy+Qk+GTIlxL5kiGfFIWSIZ8U2TJE+KRoh2dMlaR8zodPhnwpka9MzidFtgiZ+KTIliHCJ0VmOmQiKZ8DeElR8z09UmTLEBGSIluGCJ8U+a5hPinyjeGTlM8BshK6QezoKC1y4Zu0wSdFvin8fddmXzWMJCkCZJ3Pen1pQ0roXPjGyfqkqJD1TXO++UrouiFGVbhvXvukyDehy3qkRSbS6dGvJFdciEIH50aJ0HqXyIWwy+ZiImSXzUnvogMbVyLHITZeSJqiuNaoiYmQ/XhMhuyUaDMlQ5wSOTsliomQ/XhMhuyUKJYM2VIU26c7SYJsOi2Tc2GnRDEZslOiWDJkS1GsTM6WIk6ZnC1FPhkibCnyyZAPVzpESMYTAaulKDZmyJaikAw1t8mSIp8MEbYU+WSIsKXIlQ6Z2FJkp0Nt730Fyudi1zFbimITmthS5EqHTGwpstMhG1uKYhNNcEvoiI1Oiux0yMbud8UkyZaivtKeVYmJjS1FxVD60sG4os1WQmeLkW+NO8KWok7L5Vx0UkK3nmOLgLgYbYaU6IoKkesLoIkV1luEGu8lG9C1niVynaZCHOhkzB28SWVz3BI5Sok2ukSOw3qOFwJ4MkQpEXewPwlQb3EnS4boNSWpEEkRNxWidt1KhrzbtcYyuVibQqafJUNmSsRJhkiKuMkQSRG3TI6kiDtmiKRIMmaIpCgmQzYcGTJTopAMEaYUcUrlJJMsAC0p4shQc5tWpCgmQwRJUUyGCJKimAwRJEUhGSJMKfKlQya2FPnSIZMrWT7ngqQoJkMESZFk1j2SIs6U3qXcUPNa7EuHTMzrNWes9HomRcD6jSsy6bSEzpcOmZgldHa5nAuzhC4mf4Q0MepWWuRDIkXA+qdFQKuMztX/vtJSdEWn3fZ9eM7OalIpbMPk3GF2+1ymgvkl/lSagz2yld+lY4UWMSNq38kBJI11uRcRYjY1KWq/kMimtV1aln1H5cwIFur89+jNbMdCwp82eiC1Q7R2QH8yilP177DbS5FMAU1Ip02XCu+ScPrfaiJrL4WzToxJJTWMZfCnzx2qb8dSij/taDnpweX0JLv99voYlgW/QX/kLrGLqqDcCABywumvBwuy81AuLVuTbnFZdjk7tyibThwAzgmO+8GkD1Mp/jTD+zOjuFzjdzyH8wUcW+K/fh4ZTAinFJccAwBwCadk7Rf4U3ID8vRkLH2DqP0U5NNsLybSqaT5+11PdjsmFp/gt8+P4czlf2O3L+aGsVDl9yn6yweQEh730mn4F5eF3+eyTNak29/JMhcZ4TIyAxlZmbuvZM5FBYOYTPjH5UBqB84tP8Zun0uXcHb6G+z2gF+w63VZX6+bXLGEyCVDvaW96BUsCAU0ZEiCdFY6qQztyTxDNB11TzKA4UR4V0RYopVJFUSdwcH0blRTvBN2BjnWbFtECX0oQfD9CMe2lDMjKGeEKUZGlmIMpGQ159LxJH2ZHayFFYnBzF6x3EinTS8nfaJSmkoygMGE/xkK6Ol4djsOPaltrFkdW68vO8aGhAt/lgXTZAMNGZKwp9iD/rxMPoYKWYwV+Yvf7ioXMFbiH/s3DeQxVuJfcvb3prGrwhei3ZUUDvbxX7+SS2F/j0way+ks9qVlx3O/YMp1AOjLyhYg3pOXvf4Qc8xSFhlkkUFBMF1/DgVsAz8pqqOK/iK/I1jOj4huzOxI3yK6PhWTMsYSWdIFAIUU/zeopEfQl5VNkDNUkKU/2/ueIWpfzMnOd9JZ/bjJPDFcuB7DhevZ7QdKezHA7DsWcv2i5KoTGcqlS6Kb0Pl0D+YS/o2WPEqoQHYTVNpv2ZaR3UgY671d1L6YH0HRsWDslUyJrogQ+WSIS6WwrfkPl1ymIpKhwZ6bRDK0J/MM7MnwT0I9yQB6OqjVlpBJFZARlOENpndjMM2/OJkXmj5Gp98UocFU/H3MDvIQY0pnW4SKjMHcpgxxpMI8qXBOSKYM7UjfHG1vihBHigYzreOGK0VmGSRHiiTiBMjHIBQEa+4AsrI9qVA3Xr/VOeB0pkwZyifxzqMpQ331gWh7U4YyjFP2nmLr9blSNGQkNxwp2lVunVc4UnTTQOs1OVK0v7fVhiNFu402HCmq5FrtuVJUTre+I44UDRrHDUeK9hvlLRwpGs63fgOOFOWNm2JcKSIKKIrESCJFAERSBMjTas5xXDQWK14vKaqkW+cujhT1GCXHHCnqMaprOFJkihBHivrL7ddhjhSZY0Q5UmR+Zo4U9ebHm//OlSJAPvlDJ4hL6JJLIjGqYFAkRgOpHSIx2pa5QSRGY723N//hspmk6IpPquBKhbIZ/4nXJ0Gh1apdIhQqy+skFbIJdSLXW4QAiEQIgEiEAN4FxkSSCgGytXCA1TLEYTMmQxJMGeIimSADWL0fx2THfjyWEtkyFJvm25ahkBy5XquSGg6mP67HQvu6KxkKSZErGQpJkSsZCkmRKUNETIqGHGVsISkyZajZPiBFpgy12vs/gylDzfcMSNFux2MhKTJlqPmeESkyZYgISdGg4/wfkqL9jlr/kBSZMkSEpCjvqBAISVHWU1EQkiJ7bNU27A+KUd0qxYtJUdnqOMWkaEf6lrb/ll6z1jspAnhSZLLZkiJANqsfIJ/QRpIUATIpAuTjnDpBPBNdQIpc405DUuR6LNSXcT0WkiLf5BEhKcpn28+PvrRoo9nwMUSm+YVSodry6vrIWCLkGkcUSoVc44i6IUPEXGr1mJSQDF1MnRC9t28sUUiGEiyv+ltIhnLJ6tcKXVgup86v+ltIhi4lx1f9LdQpnqitrjePyZA9ligmQvZYopgI2WOJYiJkjyWKidDl5fba35gIucZCxUTI3ldjqZA9ZiwmSpdS7Z8hlgrNJOfaXz+SCs0mF9r+myPUs0n78RMrk7PHUsTK5OzxRLEyOXs8UaxMzh5P5JIhk6ml9iUEXCJkc3ahvc7bJUNt7efbvyOXDLW3b/8MLhkyOTHbfrlyyZDJocvtr++SIZvDM9bv5pAhkyP19nOeS4ZM7DFFLhkysccUuWTIxB5T5JIhE3tMkU+GTBat8QuxiSbOof3abMuQzdRC+3XBliGblHWTwJYhG/tYNtMhF2dT/DHKhD2uyEyHXFyunWz7757IhDT2uKKeyNhre1xRTH7scUV2OmTjGpcTWnx7cXn1WLbQZ764+Piqv5npkM3k/NFVfwuVvy3VVo9b6rRczkfdsYyLbzpsACinVn9/oYl4XOOaQ7LkGlcU6u+4xhXFZtNzjS2yhchkYal1Ld/o8URXJCGSjhWSlscBWiLHoZMSOR0vFGazpULSxXSBrV0iB8jTxcZ7bL0xQ2ZSFJMhoD0p4sgQ0J4UxWQIaE+KYjLUaN/6DDEZAtqTopgMAe1JEUeGgPa0KCZDQHtSFJMhYOuOKTKRlM8BW7OEzmQs2S9OjK61tGgrjysCtISOg7SEDkBHJXRXKi3aUCFKp3vYIkRlcxIRorI5rghR2Vw3UyET6lhyRajTyRUkIkSTK3BFiCZX4F5AaCwRV4RoLBG3E0tjiSQiRGOJuDJEY3G4Jwo6AXFliMYScWWI2nFliLZfIkK0r3JliCSIK0NUOseVIek039RONjHDcNv/x6BjgCtDVDrHlSEqnetkAgUJXBm6lpFOttDpRAuxdIggKYqlQwRJUSwdIkiKOOkQQVLEnYacpCiWDhEkRbF0iCApiqVDBB3PsXTIpFMpiqVDBElRLB0iSIpi6RBBUsSVHWoXS4dMSIpC6ZAJSRH3M5MUhdIhE5IibtpDUtTtdMiEpCiUDpmQFHGXaaA+CVeOqK/D7fOQFHE/L9AqoQulQybF/MiGjyXa0JK5/grvRAUAA/m9mK/zzRgACuk+TMwfYrcfLB3A/DL/PSSJEAAMJwO45CibCyEtm1vsIFIcSMtSiaLw7jZ3hrpme8jaS6bHJnKC9UYAYKS+AzNp/vuM1bfhYmqC//rJMI6k+VOpDibbcDnF31d31HdhUrjv7U6N4niyuuTRx3YM4wz407UOJf04kV5dIuljtL4d59L8qUJ31vfgVFp2/AzXx3AxzZ9md7S+HUuCaYh7UcY8+FPCDqUqWHCUVYTYWZQt6JeRzWQNQD799WBB1r4sdDTpRzg9L7/MnZ2T/Q5Ty7Lz2J5SGTNV/h31sXIGEwuyJOTMEn8q+xrqmEvJpr4vJiXxc86AP51vPtWD2WX+OWlb5gZnmbePoaQf08LlAdJI43SKf+7uTY1iHoIlHZIxTKT4573+ZBTnwS/pG0ztxuG5L7DbA53JQTkrS5ik1+ilRNb3ma9NitpLp+YGZIIAtK93x6GSGmbfgAAaN9kkSzuU6z2YS/O/11xSwDnw+9xA46b8xPzq8kcfcwtHRK+/FjYsIRrq5cvEQF4+WLyQlpX5DJb4dzyAzmQI4JVQAEAmySCTZLCNuap4HmXkUUYvY9FIoi+9HX3p7agzywt6kn70JP3su4aVpIxKUsZAXRDZ1gcxKig/Gq1vx+5EGNkm+0UlTiN1mTCO1WUlWiOMhRFNBhPZ6++oy5JGoCFDErZDWGK2cgd6V52XTNI+sY35W+xcWcxS8tmHV5KYYWYiQ9uUZ6alvSsrj5fAK3kaSjWS7aKgpGJfuYyc4Cy+vZzGqGDqawAYL6cxUuQryNMGgd1lvoDcNlDD9T18+dhXXsbe8uqxkD76cwluEq4BnUkBOyr836GUTWN7gd8Z2lNq7Bs9zB9vrNw4Bw8VZb/d9jxPlmsr14SyIC0pJiXxcwBgO3jn73yqcSNOurik9IYcHacSxhNZuZp0UqEhwZIFADAqLEncX76T/9rlp6AvJ9ye3A2iMuQxXCf6zCPJTuzAjdiBG1ntS6lBDOX2YyjH+57ymQpy6RJbcPLpHuTTPUghw17iZLm+iMXlKedYKhf0fUpvIHNmMjUp12U3wLcxF542GSrxSx8l7rBWNrRkLhNZhX4gv7dNhriLTZoyNFSK/zimDHFi3U5liEsmkS0Yme/gBN6Xlo156BHWlVeEF8WB+qBInEbr29vEiSNFdt13TIpG6jvaZKinHr+ImTI0nAxF25sytK8ev6iaMtSXxL8vUwgGmDJuyhBHjEwZ4oiRdIyCRJCBlgxJ4EoQYW9TTIrsThZXigiOFO0rt96D06/eXm414krRuPEcjhQ9zdhFOVJ020BLhDhStM8QIY4U9eda28CVIjNB40hRKdv6jjhSRDLEhWSIWC8pIqSC08lzuFJEcKTIHNvAkSLzvMSVInOBUY4U9RrnU44UDSSt8xJHEMwybY4Umctd7C/fGRWj0fJTmv/el9vBEqPRXOt3iM3qaTOU7BDLIFeKmu/BlCJCmvoA8kXAuVJEcKTIFCGOFJkixJEiM4nlSpH5vQyVro+KUTEX71N1kw0RIo7hdZoKSZKhwdIBUTIknThhOBnoigyFUiKXDPWmtwWTIpcMhVIilwyFUiKXDIVkx/VYqBMs7SAD8lrvTlIhSTI0kgx3JRkKSZErHRlI+oJi5BKgkBS5BCgkRS4ZCqVErt86lBK5ZCiUEg3Xx5wyFBIk6f7XyR1nSodMQlJkyhARkiJThojRUjgtGnc8JyRFT3PsmiEpMmWICEnRPocAhaTIlCEiJEWZlLucMCRFpgwRISlyyRA3JTLpphTVHNeCmOBQOiR5zqptCkgRpUMmISlyDfQOSZHrvBQ6btMr/7MJSVGv4zzaSVIkEYRR7F/XtAiAOC0CwuM0x7D6Owx95pFk9eQTISkqOWZqC0lR3jEGPSRFvnFAISlarq/eNzuRIkla1FcfEKVF5XqPKC3ahoPrlhZtVEq07kK0VhlypUQxEXKlRCERcqVE3UyFXGVzVCLHhUrkJFCJnISNSIZ8uDqeoc6oKyWKzQbkSolCMuRKiUIi5EqJQiLkSokGk21brkzO9VgoGXJJUei3dklRKBlyfR+xVMj1eGibXClRqFPlS4lcMhTCJUMhXDJk4pIilwwRLilyyRDhkiKXDBEuKXLJEOGSIpcMES4pio2rkpTPAbykyMQnRXY6ZNINKXLJEFFOyk7JccmQ+RzRNjmkyCVDhEuKQrNebdbyOZcYmemQjUsQQpP4uKQotBi6S4rMdMjGlxaZ6ZCNS4pcMkRsxqRImhZJSugAeEvoQkLpkqKQ+LgeC4mP67HQOD2fGIW+h80iRRs+7bZZNmeXyMWQJkLERo0X4sIRITMl4oqQmRJxRMhMiWi8UAgzJaLxQiFs+ZGUyAHyO/OdLKTHSYZMKeKkQqYUcVIhU4o4ImSmRDvqu1gyZKdEMRmyH+90zBAXzm9tShGnTM78XrglcmY7zjaZUsTpTNlSFJMhOyWKyZDdr47JkIuQDBGmFIVkiDClKCRDhClFIRkiTCkKyRAhHVMErJYiVzpkYktRrFTOlqKQDBFrkaKQDJmYkhOSIVd71jatQ/mciS1FsXOTfRy7kiGb8eS6NjFypUM2phSFZIgwBYEzo6kpRSEZIqRJESBPi8TLG1hS5EqHTOxxRa50qO31rXFFrnTIxpQi7ixxpgy40iGb9SihM1nvcUWAPDGyS+g2ulwO2IBZ5lxWt1xfFInQfP1SRyIkXZtAGjVLRehS6rIoFTqXPipOhabr50SpUBppUSpUw7I4FVpvjqceE8vQRPqMqExuJn1ZVCJ3MTUhKpE7kn5CnAr1JLJkAQB6I+P4bI4n50UydAYXRTJ0In1cJL7n0qdEY4ZOpU+IxwsBQFo4j1lBuK7JPJZEydBCUhMlQ9W6XIbOz9dZMkRcWEhYMmQylOdPhgAA1brsdzg6l2EJEfHIZfmse6dma1EZMjmzOC8aNzRTrbNkyEQ6+9yJJfnspHOpOZYQme0lnMFjwXTIZnb5vGhNlFxSEN+ombUWoOUgmZ0UAOZxmSVExETqlGi9u/M4zBIi4vDcF4LpkIvL1VPBdMiFdF1G6Tn5FB6NCpHJRPUwS4iIan2eLUREgmWWEBGFTL9YIqXXuxpks2lWU/xZVolzOCRKyibmH3cK0cT0vzlad491TYh8EddYgT/9NgDsS8mjsmHhYpR7kptF7fcKF3/sSedFMjSEXtxUv1X0HgBwA75L1H5EmMLsgGzBrP6UTJ6G0rJO/ki6B0/vYP+4MZHF67vqvDUPiFtysv3vGcy1M4jxlPzuyb6S/C7P04uyO4BPK8ja35aWXURvT8vWDLs1xZ/NhpCWsPWnyiimZEI0npHd4Lm+R7ZNe3rkp/ZbB2UdjuePyeTm1v5ZUXsAONgr61Q/c1DWgb19UH4/8GC/7Le+fUB23N04ICvPy6RSGC3JBGosK7+ZMiyUiT3MtXeIGxLZefyW1B2i9tIbmACwPS2fblq6jtj+uuwcta8uO2felMj6BHcUXy5qDwA3ZO7AYF2W3A0IFyjmzthLSPeng5nvFbUfzsoqj4BGUpRN8/tEi8tTmFzmL1XRCRXm2kaEZK0yYhjCBeU9JXTrXTa3oSVzI7mDGMnxI7ROVocGOpehEvPuF8lQT5o3cxS128GcNW8IshPFeH138x8J3CmNm+1pAVKm5FA7bnuSIa4UjXSwaNdoqh+jKdlFbgCyzgOVpYzlefvTULaxFgF3kUaSIUnaQzI0XOB15kYKOYww2xLbCo3t2VXkfV/D2cb3s4O5UBu1G80y96dM4/Ul8kEyNCDcxyUMrCw6XUjzLiy7K43vlbsWEKU8ecHZfazYEIPhAk8Qbu1v3FXkJj4kQztKfGHZW5kHwJei0ULjzuX1Pbw7sMVM47M+dYAvReVs4zfYWeH9dttXRGWowPsxdlYa7Qby8sWiuFJUrTc+r0SKSisJaIU5W+JIpnFccKWob2WtO25nn9qNCjvhqZX/caDzq0SKelY6l1wponbczj59T4OMGUdNpEtD3FC/BTfUZTfpALCliMaQcqWIZJz7PVH1xO66rP+4B08TtY9NaOWDK0XplRttXCmSpkOF5nG9/lI0hF2yxeKzw+K1rNbKugmRbXK2CBUi0bgtQuNJXKSGsatNhkYQLq3Zk9y8IcmQSUyKbBk6UA/fhXBJ0PZ6uM52W31HmwzFyiC2YbApQ1zWmgzFpMiWIY5s2iI0nAqfjAdQaZOhHOMkIJ3ilmSIiEmRnQzFpGhfqWdVMhSTIluExotx8SIZ4kIyxMWWppgUkQwRHCmyk6GYFNn7OCclIhniQjJExKTILnnjSBHJEBGTIpIhQloGx5EikiEuJENETIpIhgiOFJEMETEp2m4JCleKCI4UZVLtbWJSRDJEcKSoZJWDxqSIZIiQJkXSBIQjRbagxKTIPq9uT/dHxajH6lTGpMh+XJqAcKTIHM/KmRl1h1UxwpGi7ZZ0xKTInlBnvZOi3fX9UTEyJ1vag6dFxagv3V4x0okYxaQobV1PNiIpiolRkmqV5maRYYnRsrWQuUSKgNUL/K5nSrTuCZE0FQI6GxzfrRI5X0q0N7XNKUO+lKgnnWcnSEQnyZAUXyrkkyKfCPmEpz9Vdj4WEqROyuSk+FIhnxT5UiGfFG3Pl50yFEqJbBmKIS2TC5XI+aTIlwr5pGhboeCUoVBK5JKhUErETZAIW4aIkBT5yuR8UuTbn0NS5JKhUEpky1AM3/gfnxSNFZNVMkT4pMiWISIkRa5SuZAUuWQolBLZMkT4pMiWIeKpA4lXjGwZIrhJERGSIkqHTEJSZMsQ4ZMiW4YInxSVkFslQwQ3KSJCUkSph0lIilyPjdZHvWLkExOfFIVuMklL6KTlc6HOvut7GkwGvWLkWxfPJ0W2DBHrmRQRISlylWoOJn3e78o3ttYnRb71CaVpEYCuS5HN5PJxrxh1mg7ZbFRaJGGj0qJ1ESIyuJgI2SlRrETOlxKFZMiVEm10KmRjpxlD6A3KkCslismQKyXqtESOSywVsh8fSleCMuR6LCRDvpSo2yVythTFUiGXFIVkyJUShWTIdQHvZLxQrETOlqJYKuSSolAy5BKfkAy5UiKfDIWIjRmypSi2n7ukKJQMuaQoJEOulEgyGQKwOhVyYUuRT4YIlxSFxg25pCiUDLmkyCdDhC1FPhkykZTQAW4pstMhE5cUuWSIcEmRT4YIW4p8MkR0MqbIJUV2OmTikiJXJ59wiU8sPbKlKCYk3PK5ttd0SJGdDsW2IbRdro5+6HtqPKf92hdbJLyTEjoXdjrUtk0OKQqtQTeQ9K4So9i4tU7SIgkuKbLTIZtOpMgWIzsdsrkS44rMdMjGJ0V2OmQiLaEDWmnReqVE65YQbVQqxEmGSIq4JXJmSsSRIVOANiIV4iZDphRxZMhMiTgyZHYM12vyBGo3ku5hJUM70oNtYsSRITMl6nS8EJehbJGVDJlSxEmGTCniypCZEnU6XiiGKUWcMjlTgDjJkClFHBkaz/S1JUWdTKDAwZQiTpmcKUWcZMiUIo4MmSkRR4YI7pgiwpQiziQKphRxyuRMKYrJkA1HhghTinzpkIkpRSEZIkwpCskQYUpRTIaItUy04EuGbEwpCskQYUpRrJMPtAsQt5Suk3FFBHdcpilFIRlqtjcEiJMahRIQ/3M6H1fkS4dMTCnaXt8flKHmNtVHm2IUkiGTtZTQcWZeNaXIlw6ZmFIUkyFiPUrobEwp6lY6ZGKW0IVkiOCW0NmstYSum3R92u0bhl4hfs6A8AS2lJJPhVlmnHxNtqVlB2UnLNRl0x3OB2zbRx2yn3chNS9OhqRwL+iEdLpNADhVvyROhpYT2dS1w3lZSVPsLq3N4eXz4jI57qQJJtJvd1l4xpivyb7XTlju4DS2WJeNfenkRFlkTpxAbCvJZhhzLZIaYjAv/xQXF1PRdMhGMnkCAOTSsu2aWpLt54/PFERCRDwxI7tnuCzc1YU/N6bllwCcmpX9dpdrS+L3KGVkH2RyWX4Nl5IR3u+V3swEgJm67Ls6kz4rLqNbFi4fIr1eSr+nx9IPsWTIpgJZibh0u6qQnc+Ppw+zhMhkMn1e1B5oLIUioZ7IDvLrUs8UtQfky0TMpOQzhC4Kp6yfwAnxe5y49E/i54ToekKUA7+TuLu+F7uNBUg5DKfk6xHtxBgGBXeCDxYH0Jfnd2T68hlRewAYKsguIAO5PMZzsrvZ47kKdub4Irgr34uDOdldjYGc7MAayOXQm+V/9sF8Dv15fvueXAY9uQxuKMgG8kq2CQDGS0XkBQuYjJcz2NPDf4/hYgbPrMhO1jf0yQQNaKQLkvVqtpfTrDvaxGAhvWpByxjbhHe2h4sZsUgMF7PYUeZ/X6PFPLYVZR2mkYKs/fX9OfQLZhfbUU6JZpLbU66jNyuXgmcNyTp9N/VPoy/Pv6jv6pvBWA//gttfWMSeXtk6Ok8fkF/Q8+kET+njd7JGCsCYoGJzRzkRC+pO4aSG6RSwS3De6cmlsaMk67jurZSwrSi7DtzUI7vh6JocJsTuYgU7ivwfY3uhhJ6c/O72bsH6UgBwe27fqgV7Q4zlS9iR51/3+9NF8VpzO0uyMuNnpZ+BPdlB7Mnyb5zuzAyIJpQZzpYwkJV9DumENbelbsbuDP+G4/b0AG6CbIr0ctKLsdR18YYGWeHvdzF9FhfTZ9ntpctE1FAXrT9GFIXrVY5gT3QiNJP+lKx/xGFDp902MUWIs8L7cKqvKUPj2IZx8DruOyG7G3OwOCBqb4oQR4qGCtmmDHEvPAM5+Z0rqTztyrcuUH0MyRnI5ZoyxJUiqTwN5lvtOVJkX9DM54cgGeJ+z+PCDsO4scgiR4qGi632O8u8bSIZGhbMZCUdd2KKE0eKBo1t4UoRyRBXiszvitc+i+Fia1s4UjRqiBBXikiGuJ2s64Vr2+wot8SJI0V7yq27zBIpuq7SEJtyhneX+qb+6ea/c6RoV19LbDhS1F9ojQniSlFPtpGQPEWwplHeSKw4UjRi7EYSKQL4qV3fyi7ClSJzqBlHinpyxvEqPMcBYEvR9lKjHVeKTBHiSNFuo0xXIkUA/3gFgMGV6zhXikwR4kiROfZUIkUAv/RvT6nxulwpsiWFI0U7MwOt5wulhStFlUyu+fqc9zDLqyVSBEAsRQDYUpRONY7BbLrAEqOBTKsMUSJFAG9W1Lb2TClKJWmkkvTKc8osMUobKiKRom7TVSG6ZeinAcRToo1KhWwZiqVEtgzFBKcbqVDowjOQy6/qpHNEx24TS4lMGeLgEpuY7NiPxxIZrswQvgtZ6HV6s9lV2xGTIluGYinRuHDFeVcHPyRFN/QVViVDHCmyZSiWEklSJKBdhoiYFNkSFJMi+7uKpUSmCLVtV0CKRh0CFJMiOxmKdbJsGYqlRKYMESEpMmWI4EgRyRARkyJThjiYMkRIkiIgLkUkQwRHivKO8r2QFI04dp+YFO0ot79HTIr6rNNYTIpcs7OHpMiUIWJHqRgVo72V9g8akyKSISImRS4Bkk4YE5MiW044UjRoXct3l8pBMXIJkCQpAuJS1J9u/61iUkQyROwslYJi5JMTSVIExKXIHmsakyKSIcl72MSkaHt6oO2/OVJUtsZCjaWuC4oRyZBJJ2lRCOlSETWrXLOYlDYsLQpB6RA5R7dYt4TIJ0U+GfKlRCEZ8qVEnaRCvmTIJz3Sv3dSIucjJEW+x3xS5JMhX0rUSYmc7zk+KfJJjC8l6qTUQVoiB/iTIZ8U+WTIlxJJ045QiVxIinzJkE96fH/3pUQuGYrhkx/f333flU+KfDIUwiVDzffxPOYrk/Pto75kyCdFLhnqlN5s4hUjW4YInxT5ZMiXErlkiPBJkZkOmfikyJYhwidF+XTilKFO8UmRLUOET4psGSJ8UhRaqkpSPkf4pMiWIcInRbYMEdLyOcAvRbs90/37pMgnJaFrii1Dbe8vLKHzvb9vuQafFNkyREjL5wB5CR3glyIzHTLxCYtv4p2BbKFrJXS+yXd8UmTLEBGSIluGTLpVQmemQyY+KQotFdGttIiSIfdz3O+f9miIT4rWo1SutS0bxHqNF7KlKCZDdkrUSYmcNDmKyZB9wZGWyI3nKs1/JMSSIVuKpCmQVJ6AeDJkSxHrbl5elk6tSuVKxWiZnC1FsWTIlqKYDNkpUSfjhRrbJUuCYsmQLUUxGbJTom2lTDQJsh+PfVe2FHFkyE6JQjLkIzZmyN5XY2VythTFZMiVErnSIRtbinwyRNhSFEuGbCkKyRBhS5FPhghbinwyRNhSxBEhV0rkSodMbCnyyRBhS5FPhgjpmCJgtRS50iEb+xrlkyHCliKfDBE39fSuEqNYEmQ/7pMhwpaiWELTyY02YLUUxd7Hfjy0dh2wWop8MkT0pgurxMhOh2xsKeLIiC1FPhlqvqYwxXFthysdCr1HbCbSTsrnulFC50qHTGwp8skQIR1XBKxOi+x0aFV7S4pCMtR6zvqOK1orXRMiV3RFKRFXhCglMscLSeAmQyRFXBkiwZGWyAH8ZIguOOxxLCvyI5EgSol25Xu7UiYXasdtT3IymM91rUzOBb02Nxmi30E6Xgjgl8mRFHGTIZIirgzZKRF3zBBJELdMjqSImwyRFEknTwD43xVJkSQZIiniypCZEnEnUKB9ljtmiKSImwyZUsSRIYKkKCZDBEkRt0xOMsmCTUyGCJKimAwRJEWSVMiUopgMESRFMRkiSIpiMkSYUhRKh0xIijgyRNA1KiZDhHSiBaCVFnHL4qhdTIYIkiJuudqqcanM6zlJEfd9qF1MhgjpmCKglRbFZIggKZIkM52Uz5G0cJZlMLcnJkPme0jYnRlqipEvHbIxxSiUDpmQFMVkiJCWzwGttEi6XERMhprtOyyfIzHypUM2JEWudKibZXNXbFIFRVEURVEURVGUK03X1iHyWdp24Tzvo7kSpmqyu4nD+TwuLQmfI1yvZaSYwYUF/hSsY6UMLi7I1g+Y24D1WnZVsjg5J5uvf72tub+QxmxVtht2su5MTbgO0O6eLC4IfsO9PWnMCG+Ez9Zk27S3J4ULgun9x1fuSl9c7N7YExcjhQTHZvnvsaeS4EnZGHzx+ke7KykcmZE9abycwrEZ2XEo3K3wlIE0JgUzWR/oqePsgnBGwKL8XLKtIFuv5sbBScxXZefRviIv7SEWqrIxL6V8FSenZOn3E7Pyu5znF2Xp5nhxGecW+b/hSL6Os8L3OB1f17aNvhzE+/rOShrn5mU7PDe1InZXUnj8Mn+7njqYwjcm1veY3bWy8O7Zef77jJfTODYjXOtMuF1DxTSOCy461/fnRdc0AJitys8l0uvzgb4cjk7Lzj9V4bqB0vWZ9vbmcOiy7HwFAMeSM6L253FY1H4Ye7GY4h/su+t7kEvJziUziexz55HBNPizeAJACUVMpSZFz6mm3BfOhyb+SvQ6Ptatr7sv2Y19yW7RYK3RnPzCNJxvlKpwy632VArYUymgkhVcnISD3cdWSoGGi7z3GCikMSBcr2WomMGQcLt2rbz+TmZJ12AhjcFCGv2CQfL9HbSXUMmlUMml0CdZgAVAXz4t+r52Cwcf7+1pbE+PoH84VgIO9PJP0nt7ZCf0caNEZ7jAv0BtLybYXuS3HxG8NtCQIQA4IOi3jpdT2FXhf/7dgrbmewDAnh7+vrWrkha1f8qAbL890NO46I8JBOfW/iWMCOXmYM88+nL8jtWNg5MAgJLgOft2TmBomD+L3Oj4NHbvucRuX1opy9spmO0un1nGUxhjmkzKmTr2lvmfe7zY6BRvK8g6cGMFfme6kE6wr8I/DqkcT7LvEttK/GPrhn7goKD6nY7b6/tk23X7kOSYzWBPD/9aQDIEAGMl2XZJ3mdnJYNdgvZDK/2L3ZKLDoARZr8EaOwfTxkULhZdymCsnMVYWXgN7eW3HyllMF4W9C2LuVVLLoS3pfHaB4VjdQfyWTytsIvdvpiUsTu5BbuTW1jth9EYflIQlqpVE/65pJLJYixbwViWV1qZR2Of5SyfY9OfDLDb9ib9GKqPYqg+Kn4fLl0RIjsd2pe0D/jiSJEpQ/1Z3o5OMsRlT8UakMeQIlOGOGI0JhwXMWAJAUeKzI49t5O/S7g4pj0ehCMuZhtp+0oufpG123ClyGzH+b5MGeJcPPZanQrO9ckcbM2RIlOGRhgl0eOO8QocKTJFiCNFpgztYXTI7DYcKRo3xs9wpMiUoX1MiRy3xuhwOoq7jAklOO1NGRpgnLpIhgiOFN3a37qDxpWigz2tu40cKSIZIjhStG/nRPPfOVI0Ot6SGo4UlawxShwpymdanQSuFJkTSnCkiGSI4EjRSL7VhiNFBWMMFEeK7LFJXCkyJ1DhSNEN/a1/50iRfRODI0VPHWw9hyNFptxwZMVsT3CkyByvyXmfncb7cKRoyLoucaTo+n5jzCPjumbuF1wpGrH6PxwpOmDskBwpMt+DI0Wj1lg26YyjHCkayGcxYEz4xJEie4IBrhQRHCnaXW9NSMCRokqm/bvhShHBlaISWp0YjhT1Jv1t/21LUbfGEXU9IbJlKMZoriROhobzeacMhVIiW4ZijBQzTgEKSZFLhkIpkS1DMXypUCwtcslQKCWSTpvsS4VCUuR6LCRFHGFy4ZKm0HflSoZCFw9bhji4puMNSZErGQpJkUuGOLgEKCRFrmQoJEUcYbKxRQUIS5ErGYpJkes9YuxyTDke6li6kqGQFNkyRISkyJQhIiRFB3vm22SICEmRLUNESIpMGSJCUmTKEBGSIluGiJAUmTJEPKVvJihGrinHQ1JkyxARkiJThoiQFBUcE0JIkiIiJkWuKfZDUnRD/+q/SZIiIiRFpgwRISlyyY0kwTEJSZFr8prQ++x0bJckKSJCUmTKEBG6rrn2B2lSRISk6IBj5pCQFNnCBTSkSJIWAWEponTIJCRFA57lQJ5W2CVKi4CwFFE6ZBKSIlOGiGqyLEqLgLAUUTpk0ouyOC3qTwZEaRGwWoq6QVeFKCRDrpQoJEKulMgnQiYuKQrJkCslkpbIAeFkyCVFIRlypUTS8jgilAy5pCgkQ1LpkbwO4RKfkAz5UqK+fFpcVhcqk3NdPEIy5Lo2jZXkq9iHyuRcUhSTIV9KFBIf12OhMjmX+IRkyJcShUTFJUWhMjmfFIXew9dJdMlQ6DmhMjmXFPlkKIRLhgiXFLlEyMQlRT4ZCuGSIcIlRS4ZIiTlc4RLilwyZOKSotCitJLyOcIlRS4ZIlxS5JIhwidFoZnrfPu7b70xwC1FLhkifFIUOnZdUuSSIcIlRS4ZInyyEnoO4Jai0EyeUvna1eMuobPTIROXFLlkiJCUzwENKfKJkUtWCJcUuWSIkJTPES4pstMhE5cUuWSIkJbPES4pCk0/7ZIilwwR0vI5wJ0W2emQiUuKXDJk4hMjMx2ycUmRnQ6ZdFuK1ixEFFV1kgzFMKVIWh5HcJIhU4o4MmS2GStl1lwm58KUIq4Mme12VbJrLpNzsZayOO5zTDjJkCk+XBGyv1POmCHz4sFJhsxrE0eE7JSIM2bIlCJuMmRKkXS8EMAbM2QKECcZsqVImtpwxgzZUsR5D7uTGJIh13M4Y4ZMKeLIkJ0ShWSIMKUoJkOEKUUcGbJTopAMEaYUhWSIsKXIlw6ZmFIUkyHClKKQDBG2FPnSIRNTikIyRJhSFJIhwpYizjTe5r67s5IOyhAhGVMErJYizrFrSlFIhgjJmCKgISumsMRkiDCliLOsgS1FrnTIxpSikAwRphSFZIiwpYhV/muJUUiGiLWOKeK8hylFIRkiOimfM8XIlw7ZmFLEWYunk/I5U4xc6ZCNKUUhGSKk5XOEKUUhGSI6TYq6UTa35lnmfmDwN0TtF5KqqERuqlbtSIZ6BesrAMBsrS5OhjLCSpuLC3VRmdyp2VpHyVBZuGEn55ZFZXJTi/WOkiEJs9Wk4zI5CRMLy6IJFC4s1MVlckIvxZPTiWgChQsLnZXJSb/eMwsp8QQKUp6clsnQidmkowkUFoUhzLGZOkuGzPbSCRSGGJ1ik7MLaZYMmQwIJkEgLldzonRovppjyZBJRvjZjx8bZMkQcXKqly1DJkdnZaUfR+dyLBkykc54dnYxwxIi4shsir2mESGd0REAzs0nwXTI5tBl+eQnxYxsw74xUWfLDSH9PYDG7HPcdd4A4NjMMkuGTOaEM5Ien6myhIi4sFDvaJKN8wuy7To7VwumQy6ks7GenquyhIi4uFALpkMuJLMOE99aPCFanPR46qFgOuRiWyJLTXKpDEuITC7VBFPdrjCNOZYQEVOpyWA65OLzk++SblYbG74O0XhBdoHZWZLHlCPFDApCKdjfKzs5SS8wg3ngoHDmnOv7O4iNhXfrAOC2Idln3yf8rgbzKQzmZdsl6XzSe0i5rhf47lHZZ/nuEeHd0J5lcQfpjlFZ5/D2QfmJeXthGcN52fO+a1DW+e6klOiubbLZ0e4clX2GPeVl7Ckv4/oe2fOeNya7IN+zXdb+5r5FbC/Kvq+7t8nmLb9pYArbK7KpUQHgadsuiNpff+N5Ufvep2ZQvlF2Qt1/o0y4rtsmaw8AlVwVNw9MiZ7z9AHZ9ztaWMJYUXZc3dAja/+0Adm+vrtcx76KvGzz7jHZ+9yzXXasA8BB4Wf/oV2yz7Gnw88uvS48a0R2fRspAHuE8viCcdkxdfdYgusq8mvJDcKxYc/dLuvX7C4nuEn4Hk8flt1Ev31Yvojwjf3ym9XfW4knNyZ3ZO7ETRlZ9VVPWvbZpX3sSjaDXcyFkNveJyNbtHePYxHW9WbNQlTKMKdwzuea43uyzIUJaBXtokBupCnPtlKqGflzbxCQDHHv/A92UO1Hrz1c4H92kiHuTaGRYqvkinuyJfHgCkgnotLpe0je6zqjRGt7idd53d/TaLeNWWJ2UNjpBlqlNrtKvOdSuzHBlL7bjdIbrhTtLDU661zJoXYSKdpVanSQru/hPWdfubbyHryO1Z6y/PcAgP0rnYTrmL8nydYOpgjf3Nda84ErRTf3NUrNRgu89SJuEnbsiX2DjecVcrzveNeBSQBAjvld9T61db7mSlF25Xjdvp8nhMVC4zvdPdzZd8CVoqGVxGo7c62l0UKrc8+Vov5c43vlHld9ucZ5YV8HHd19Fb4c3NLX2D92Mvd5OmZv6OWfH27tb3yvXCnas/IezxjkvceecuuzSqSISoJ3MVN6KlHeybzutL8X7xp3/cr1bTdzm57a3/rdJFI0mG+8PleKqN3ODioauFK0faUfxF2mgVLKwTy/rza84hASKaKhGU/vGWE/h+BK0YHUTgB8KdpXbgQUA/kMBvLCMW4CKerLNL6woQyvOqw/3eiYDqZLGEzzntNpSZ/JmoTo5SO/CSAuRdw1gkx6rJI3jhTZMhRLiaS1z8DqZCgmRfYBNsKQcfs1Y1I0XkqtSoZiUsSZutnGFo6YgEjbd+s9Ys8xZYgLyRARkyJbhjgpkd0mJkX24xwp2i5Y24QgGSJinTH78Vj7XaVaU4aImBTtsyQoJkUuGeKkRPutzkFMiuzXjEmRKUNETIpIhoiYFNkyxE2JSIaImBSRDBExKTJliIhJUdbqRMakiGSI4EpRxSotjEnRkFW+F5MiU4aImBSRDBGx44pkiOBI0e7y6nNITA5IhoiYFNnH6g291agYkQwRMSnaY70HV4pMOFJkj4+MSZE9XpMjRXafISZF11vXN64UmcSkaDCfNGWIiEmR/ThHiuxtj0nRdqsfJFm7johJ0bD1e3CkyJ68iyNFe7LtiUpMikiGCGlSBCAqRZVs++McKSIZIrhSZBKTIpIhcpJO6VrJnE+KfDLkS4l6culVMsTBlwz5pMgnQ6GUyFcm55Mi34Hlk6JKVj7eJFQi55MinwyFTrQ+yejm36VpUqi97zGfDIVSIluGCJ8U+ZIhnxSNF+VldT5ZCkmRT4ZCKZEtQ4SvMyb9uy1CHGwZar2H+++hZCgkRbYMET4p8r2WT4pcMhTDliHCJ0W+ZCgmRbYMET4psmWI4CZFHGwZInxSZMsQEZMiW4YInxTZMtTcLmZSZOKTIluGCN9xZcsQEZIilwy1nud+zJYhgpsUmfikyJYhwidFtgwRISna4/nsISnyTRbDTYqInaXEK0a+voLvWm3LEBGSIjMdMvFJkS1CJtLyuZ3lxCtGvm32SZEtQ4R0mQbA33ezZYi4sT8jLqF7es+IV4xsGSJ8UmTLEBGSIkqHbHxSZMsQ0Un53FCm5BUjSodsfFLUjWSIWNcxRLFkyJaimAj5UqJOyuRC2FLUl+tszFAI+0QXEyFXSsQZL2RLUSwZcp1ouykqrsel7bnbZLeJJUMuKfLJkI9YmZwtPjERcolPLDlySVEsGXJJkU+GfEiTo5gMuVIinwy13qP9cU6ZnEtkfDJE2FIUS5u45XOEKyXyyRBhS1GsTG57Zc4pRj4ZImwp8skQ4ZIiVzpEuFIinwwRthT5ZIhwSVElV/XKEGFLkU+GmtvlkCJXOhTCJ0OEfVz5ZIhwSVFIhlrPa2/jkyHCJUWxJNeWIp8MEdIxRS4p8skQ4ZKi2MyZLimKzeZpS1GsmkQ6psglGD4ZImwpCskQ4ZKimCjZUhRLtaRjiqTLNACr+3A+GTJxSZFraRcTW4p8MkR0MqbIFiOfDBHdKp+z0yEbW4p8MkRwy+c6patCZKZE0jI5bipkSpFv8VQbMyXilsmRFHFFyBQa6ZghbipkSlEnkydwy+T2NGtqeamN2Wa9xv108h4m3DI5U4o4MmSmRNwxQyRB3FTIFCDu2CKSou2FZXaZnClFHBkyO2LSsUXcZMiUopgMtd6j0U4yZsgUmpgMhZ4bwpQiTjpkSlFMhgiSIsmYIVOKYjJEkBTFZIgwpSgkQ4QpRTEZIkiKYjJEmFIUEyETkqKYDDW3y5AijgyZKVFMhgjpBCamFHFkqPW8RtuYDBGmFHHH+pEUxWSIMKXIlw6ZmFIUkyHCHE/FXWDalCLu0gYkRZzS+sa2tK6FvnTIxBSNmAwRa51ogZsakRRxS/xMKfKlQya7KqmmGHFnN+xk/LcpRTEZIqTjikwp8qVDNiRFMRkiTCnypUMmu4qVNjGKyRAhLaEzpaib6RCwhmm3Q7V6xYzMsySTJgCt9XKqwslgBDNQAgA6mfRZuBYo5oXnmkpW/rkBQFqF2JdLcHJu/ae93giGhFNF7y7VcGFJVrvYl5X9KNsKSzi32NnaWlxS6GyK7CJj3ZW1sL9nFoeme0TPqdaFs0b2zOPJGdmMlgAgnN21oztKA3lZmeBQXnYX/Prxi5iYlF8oioJprAFgdPfqBUyj77Ffts8vHZN9dgCYPCUbIDlxWb6fFHI1HJ2S3aZeTmT78MKyfBarS1XZc6TbBAAHKvM4uyCbmSormCYcAA70zODEnOx3WarLjsYLi50tdl4X9gxqwtPpQK6Os8Jtk0zDDgAHexZxYVF203qiujGTEkvfZbIq+z3Gi3WcWZC9C3MesDYGcgkenJQ956JwKu+luvxaPSJce0na3+xdWc/j5JzserIsVJF82v8bfvjCb4tei+jqHj5UyGKoIPuyc+mUaM0DyXo5JqNFmaxUsoBwHTH05RLROgm5tKwUj5IkqdxsL9YxLFjnoy8n70gPFRKReIRqh32MFROMCRcRvb53WfTZd68kFyOCTuue0hIGmLNwAQ0ZkrK7PI/dZd6CmgCws7SAHSX5GIb9PfMYFzxvT2Ueeyr87drf00g6DvbyO9O7ygvYz1xMtPEe/LYmtwxcxm2Dl9ntb+2fxs394UH9Njf3T2NHib991/dfxnCJv+bD9eMXAQBDA7xEiRgbnUZ/P/99xvbNIC3sT1aetw2ZPQPs9pkDwyg9f1z0HqksMLiH/zlKlSp2jstmn6N0bG8/f18ZyC9hmDkjIAAMFxaxsyybwruUWcYOwRTe48Ul7OrgHAEAY4LxUbvK89he5P8mB3pmVp7H//x7e2ZxfR//WBzIVXGwR76Wyp7yEvaVBZ+9tIR9Ffn5fkww+c3+ShU7BGMxD/Y0tn+EmaQCjdTyKb2y72tHsYYdRdnNnxt6Fpvbx3qPUg0398knzNhe5PcJdpTqovZAQ4YA4NYB/nO2lVJti93GONifxc3CCOumgfyqhXhDjJfTHa1NBQA7y/zObV8uK64q681l0Jvr7KaGj64JkSlCZWZMmDO0myNFtgxxxWDUuGHIkSKzhI0jRX25RCwR5rZzpEg62QJhHsgcMTA/B1dYTBHiSJH5upz3sEWIK0XX95rTS8c/++4OBvjvKbUudhwpMmWIK0amCHGkaKfRgd5RWmSLkSkSHCkyRYgjRSRDEnaVW5+FIzpmmwM9/A7VLQOtzi1Him41RIgrRWY7jhRdb3S4OVJEMiRlbLS1XRwpGtvXklmuFFWet6357xwpyhwYbv47V4pSZtkyQ4pKlVZHSipFBEeKBoyEjyNFZhuuFJWMRWc5UjRutJFI0QHjOOdI0S7jfCWRotbz459/r3Fe4UiRuTgxV4r2lJewp9z6zjhStMu4NnClaMAY/8WRov3GPiyRIoIjRWYJJ1eKTBHiitENhghxpMj8vFwpGjf6QxzJ2VGStXfBkSJzKIdEigDg5sE8S4xuGmi14UiRudAwV4p6rdXeOVLUl2t9Xq4UDRda7bopRV0RIlcqFJOinDCD9CVDISkaLbbLEAeXeISkyCVCsZTItc0hKXJtE0cGXQdwSAxcnyUmLNJyNNfrhd5DmggRpgwRoc/ukqFYSmTKEBGSIpcAxaTIJUAhKdrp6TjHpEiaqrgEKCRFLhmKpUSmDLVeJ/Qeqx/jSJEpQ0RIim51CFBMilyPh6ToekdHOyRFLhmKpURjo9NtMkSEpMiUISImRaYMESEpMmWIiElRynGODEmRKUPEzvGpqBi5ZtkLSdGAo9wxJEWux2JSZMoQEZKiccdjHCk64Di+Q1K0y3GeikkRpUPtr+P//Hsd5xVJUgTEpcgUIZOQFO1yXBtiUjTgmAwjJEX7HftwTIpcohGSItesh9KkiAhJ0Q2O7ZIkRUBcisYd/aGQ5JgyxGlPDDj6USEpco1rj0nRwf7Vj4ekyJQhQpIUAQ0pComRLUOEJCkC4lJkylDrvbsjRWsWolCJnEuKcumUV4Z8KVGsTM4lByER8qVEoRTGJUWhVMgnRSGRcUlRaJtCryW9mxH6LC5hCZXI+f4eEh/XYyEZ8j12fe+yU4YIlxSFkiGfFLlkiHBJUUh8fI9JSuQAvwwRPinySYYvJQqJj+uxUDLkkyKXDLVez/Ue/m0KSZFLhgiXFLlkiPBJkbSsziVDhKR8DvBLkUuETFxS5JIhwidFLhkiXFLkkiHCJ0UuGSJcUuSSIROfFHEXpyVcMkRIyucAvxS5ZIhwSZFLhoiQFLlkiHBJkUuGCJ8UuWSo9XqrP79LhgifFA14Js/wSZFPhghJ+RzglyKXDBEuKXLJEOGTopBguKQotC7WU3oXvGIUEh/XYy4ZInzb7PuMN/dVnWLkkiFC2lcKtXfJEOGSotAkXz4pcskQ4ZIilwwRPiky0yEblxT5ZIjwSZGZDpkM5nNOMXLJUGsb1i5FaxIiznghU4o4qZAtRdwxQ6YccFIhW4qkJWmcEjlbiqRjfzjb5HrN2AFuSwHns5jCwkmF7Dac0jizDScZstuERMjE/PycMjlbikIy5IJTGme3icmQ/XhMhghTivb3zEeTIVuKOKVxZhtOmZwtRSEZar3uvPPffbikKCRDLkIyRNjyE5MhOyUKyRBhS1GsVM6WopgMEaYUhWSIsKUoJEOEKUUhGSJsKQrJEGFKUUyGCFuKYjJkp0QhGSJsKYpJki1FIRkiJGOKALcUhWSIMKUoJEOELUUhGWq9buvzh2SIsKXIJ0PEwZ6FNjGKyRBhS5ErHWprb0lRSIYIyZgiYLUwcNIWU4piiwQTthRxSuPMNiEZIuxt55QGmlIUkiHC7jO50qFQ+4FcEpQhQjKmCFgtRSEZIqTjimwpCskQYUpRTIYIW4p8MmRiSlFIhlrbsjYp6miWuZeP/KZo8oS5Wl1cIpdJySdQqNblJXJLdZkMzdXkkw4sLKdEMnS52tmYIcnkAQBwcSkt/izSWfEmFlOiyRNOzqXEZXJnF1JsGSIuLqXFY4YuLGVFMjRZzYonUDi3mBclQ8fnSmwZMikIZ5I7PV8QTZ4AAJmU7D0OTfewZIg4PFMSl/rRzHMSGfrmpT6WDJl8Z6pXlAydmi+xZMjk4nxRNG5oYrLCliGTqakiS4iI+jJPhtpgTOtqMv+Z0ywZIi4dK7JlyOTk6X5RMnR0qo8lQyYXFwuixOjkXJklQyanFvLBdMjmxHyBJUI2ZxcKLCEiziwUWTJkkhHOqPb45d6oDNlIZ6wDgCNzhagMtbWfzbNkyOTsYiaYDtmcms+KS88uLObYQkQ8PF0UT6BwaiHLEiLi0ExBPE7q0pLsvHJmIR2VIZuFZfkUdA9O8peAAYCHL9VYMmTynUtLwXTI5sJCnSVDJsdm6mwhIk7OVVkyZHJpqcoSImK6utzRTHMdCdEb9/0WLlf5T0sBWKrL3qY/nxYnKsMF3uQMJsVMIpp6NJuSj2nJpoBF4bTBks9h3j2qCT5LOVPHVI1/whjMLePUguwEs7dcw7lF/s4/Vqji5Lys5nR3uYop4XSzO4pLmKzKDsqBXE10odxemsfEomx62tHSAi4v8T//SGkB5+Zk8/hvW+mwTAm2bag0j2lB++HKHCbnZHcn+kuLODvDny56tDKL87Oy6aX3Dk0CAM5d5k/7vWNkCsfPDYjeZ7R3FuenBZ+ldxZzwmnYt41Mo1bj7489I0tYnJLfaSmN1ZAI+kfF7x5ESnDxqj/vuwEA6S/+G/9NsmksfOYku3m6kMLcKXknN51LcO40f1/JZ5dFvzsA9JcWMDXPP1ZKuRpOCo4TABgpLuD8Av89tpfnMSGcWhtorGl1UfBZxnpmMS18n+GeOUwKznmlXBXHLjMXogMwvJJ2nRaeV7eX5kVThZczyzg1L7w+FKqYFUzHPlZYxHRNdswPFxYxuSQ7FxUzy+Kp2MeLsm3ry1VxRrAPA0AxXcfpBf65qDdbx+wy/zxRXrmxOCEUr2ImwbE5wWxvxbqoPdBY0+q4YOmU0WKCySV5cHFhQdYnLmZSOL8gHNKRT2FG4BzDhTT+f0f+i+g9gDWUzPUxrZBa5QUJUX9evs4QrSIsWdKIStoyTMmRylA21finE7ifQxqlE3Qg92d5zx9cWSBwB3MxUaC1EN+2Au+uzthKZM9ZFJTYvbIgIXcBQ6BVRiKZKpva5tO8nXL7SinUkODO7+hK0tPHXA9mZKX9NsEdWUlbYmjls/QyP8vwykKfA4K0p3+lVGeMORPdaGW27f85kAwBwLY+3l3pHSON0qnd2ybDDc1t651t+39u+7IgTdw20kh6ssz1r3pGGq9d6JfdYS2NNdqnmP2j4nc3VllPFuVpDJuVMuzi83kLEqZXFrQu75BdhNMr6fm2cd6+kl85l3J/d6AhQ+b/xyitnId2CmZsHFkpTxtlzvK2feUcMVRcxJBgem1a4Jc7zo2O9V7Bewz30LmFdx4rrSRDe4QTLQDAuOBcSed77lTh5ZWET7I0wujK9bHCTAfHVs7XvVn+MU9JpSTlLK5sj2Qq9vGibNv6Vn5HyUyFxZVr9XiRdy7qXTmXVjpYh28ov4yhPO93oX4nd1FgYk+5zn4OLfDLXeR2dKUqZyDP7+NSH3WkyO/k0pqjo4IJHfryjef0MJ1juMOleYAur0NkY28+R4r6pSuboiVDREwmihnZekFAZzJkIl04DYh/DpcMcbazbB3wMSkatGSDI0X2quQxKRqzBnVypGi3tTo7R4rsmnqOFNltYlK03RoXwpGiUWHZ24jVniM6dpt+xnYNWZ8lJkUkQwRHivqtTkFMimwJ4kiRKUNETIpIhgiOFNmd4Vjn2H6cI0UkQ0RMikiGCK4UkQwRMSkiGSI4UkTpEADU73hGfKOsiXpiUkQyRHClKG2VEsekKG+dQzlSZEtQTIpK1nmII0UjVgcyJkXbHecRjhRtt477mBTZxzhHioZ77HNL+JxXssrkOFI0bG0HR4rs871k/SSAJ0Wj1vUxJkVj1nmaIx522SZHiorWdnCkaLwo27Y+63fkSFHRukbHpKjXOodypMjuRwGISpHd7+QIjj0GKvYckiGCK0XEQD6JipHdN5VIEcGRIpIhgitFnbImIQqlRL5HfFLUn087ZSiWEtkyRPhkwidCoZRorTJEdFOKQslQaHtdBzHglyJbhoiQFNkyRPikyJYhIiRFtgxx8A0wDkmRJEUCVl8ciZAUuWQolBLZMkSEpMj3WEiKbBkifFJkyxARkiJbhgifFPnkJyRFLhkifFJkyxARkiJfJ1j695AU2TJE+KTIliEiJkW2DMWwZYgISZEpQ82/haTIs5QDNykiYlJkyxDhkyJbhoiQFPnkx/d3W4aIkBTZMtTcLs/fXTJEhKTIliHCJ0W+YzskRbYMET4psmWICEmRLUNESIp85/uQFJVd06QHpMiWIYKbFBEh8fCNYZOOhwPCUmTLEOHbNluGiJAU2TLUem/3a9kyRISkyNePAvxS5Ot7hgTHNyGE7zm2DBEhKRr1jNn2SZGvTxqToqLjiaPFtFeMbBkiQlK0lnQI6EJC5JKimMPZUhRLhXxS5JMhwv7+Y6mQS4q6JUNEN6SIUybn2u7QQezCJ0OES4p8MuTDJ0OES4pCMtSfW3YmRbHZllziE5IhV0rkuzgSLikKJUMuKfLJEGGLz7byfDQ9ckmRT4YIW4p8MkS4pMgnQ4TdcYolQa7HQzJE2FLkkyHCJUXSJCjW3iVFPhny4ZMhotBfc4pRSIZcKZFPhgiXFLlkqPmYS4oi69q5pMhOh0xcUpTOJV4ZIrjlc4Trd44lQfbjPhkiXFLkk6HmdlmPh2SIcEmRT4YIW4pi6a9LinwyRNhS5JMhwiVFPhkixsvzq8Qodr53SZFLhgiXFPlkiHBJkZ0OmbjEIzahh0uKipnlVelQ2zY4vk+fDIW2LYRLinwy1NoG2Y1UlxRx+lG2FMX6ni7Bic2OZz/HJ0OES4p8MkTYUhSrWvJJkUuG2rej/fzukyHCJUVrlSGgSyVzphRxAy2SIm6JnClFw4W4DBH0O3BL5Ewp6rYMEZ1IESEZM2RuP+cgNlOimAwRphRxZMhMiWIyRJhSxE2GTCniTj1rChAnGTKlKHZxJEwp4pTJmVIUkyGik3FCphTFZIggKYrJEGFKUUyGCOpAcccKme04MkSQFMVkiDClSDJmRNLelCKODJkpUUyGTEwp4iRDphTFZIgwpSgkQ802phRFZKi5LYYUhWSIMKUoJkImphT50iET8/fmjhXitiNMKYrJUHO7VtpxZIgwpSgmQwRJEXd8oClFMRkiSIpiMkSYUhSTIRfc870pRSEZIkwpiskQYUpRSIYIUzy4sxuaUhQSIRNTimIy5No2XzpkYkpRTIZa29J6XV86ZGJKkeSmMndMEWEKDmeqcPs5HEwpiskQQVLEHdc+Uky1iVFMhlrb0zjPx2SIMKWoGzIErGGWORfTglkgAKDUwYwD22UTvwAAch0IiHTLOpk8QTrz3IjwACPyws8vnCEdgPw7TkH+m3SyXdKygk6QTJxASKeOzW/A5wCADPOiQhRyNSSCmQ0BiNsLJ6gEAJSZnQmTbAfH14JwRsRO6OmV7V/FAdmdViItXLKgcBtPhkySFz9H1D79lW+I32PpS6dE7RfOd1aXPnledjFaEszo2XqObIawxQ7eQ3ouAjo7H2WFz+HIpkk6nWB+UXY8zgpnUwMAeY8J4tlGqx1M+90jTFg6+Q0XBDPcEZ10VVPCm9HSWfEAYEZ4rHR6G3tOMGsdIJtMjJDMlAwAwkneAADTVfl5cqaDuXUWhRf8gqdjuKGzzNnUAVQEA54yaflU3AN5YEF4DKdT8p1F+rOnU43PL6GW8Ge3A4ByJhEfWABQydZFslLM1NkzqREDuZpIPIbyVQzmZSfvcqbOvgNEjOSXxOt1lDLLouf05qrii1c+uywSj/7SAkrMmeeIYq6GonD8U7mwJFpzpROymTpygo5OLruMgmAGQQDo610Qy025dwl54YyN2WxdJCu53DJyws+Sz9ewtMi/cBf6ax112KQylNtRQP28bPB48sLvldltXz/qL3qe7D1OTyG3jz8ldb2aID8g7x3Uqyn0DfBTnFQK4v04nYLoGM6k6ygLzxPlfBUFYUe6nF8Sy025sCQSnEppSXysdEJFOEYmn1lGQShq2UxdlNoX0nWx3Azkl5AVXFOK2WXxDcal5Yy4w1jMLIvFq5hdFq2Tt1TPoCz8TQCgR/CcdCoR9deIXDoRzYBbTNdZqZXJUH4Zo8yZfIFGv7MinFSsWk+hKHTh5QQoCVd5yGf4C70CQCWb4hYQsOjKS5k/H0eKMsa7cqXIXF9qYZknRuYBz5WiTmSI4O7GNeMjcw6ysrHzSqSoYhxYHCkqGichrhSZpWUcKRoyLthcKTJjaq4UjRgXOq7gmO04z+k1In2uFEnvepqlM1wpkooQ0F6exZUiase9m5c1fkeOFJltuJ3JPmPldK4UlXtbn50rRW3laQwpMjt33I5e3jg+OFJklr5JpKgTGSK4UpS88Htb/8E55/f1t5ozpSg53Sp35EhR3ahokEhR3bhTypGilHGN4O7H5nWFczybN1i4UmS240pR2TivcqXIPLdwzn8VY3FT7rGSXrm+lTpIhqVSBIAtReY5T1rKzJUis5yNI0VFY9u5UrRkJEPcHohZWseVInPbOFK0VG9t13pJUdq4vkmkyOxzcaTI7Ntwpcgsy+NIkbn9XCmqGpVMHClaTtrX0eRKUd54bY4UVYyyrG5J0ZpfxvWzhaQo43jHmBT5FtsNSZHrQI9J0VpkiIjtxjXHRw0dZGXHTsuRoorjgApJUdFx8olJkWucTUiKhhwX6pgUSSeCGMkvtckQERMcaZLU66hvjkmR3RmIpUSucQQxKbI7T5ykyDWAPyZF9uMxKco6fkdJUtR4z3B7U4aa7xuRIlOGiJgUuWZ0C0mRq1MX6+jlHcdFSIpckyPEpChdXJsMETEpapOh5pMCG2fIULN5RIpMGSJCUlR3lHfnB+pRMao7ykZCUpRyXCNi+7HruhI6hl3nkZgUuR6PSVHZcV6NSZFkbS2gXYaI2LGStq5r6yFFeUfSEZMi1zkvJkUF67eMSZFrwgNJUgTEpWjJUSaXhrzzGJOiouP7DEmRKUNEt6Uo7biucaTI1dcKSZHrRm9MilxjlEJS5NrumBRVHcM6QlK07Hm5mBTlHa8ZkqKKY4xKN6RoTS8R+rlcUuSSIcInRT4ZIlxSFDrAfVLUDRkifN+LS4YI187qkiEiJEUuGQrhkiHCJ0XS6ahdMkT4pMgnQ76UyCVCJj7pkf7dJUOET4p8d0Z9UhQaVO2TolCnyfdYqMPikyLf331S5OoYED4p8v3d15l0yVDz/TsYG+STotCaPy4pCnXmfI+5ZIhwSVFoCm2fFElFCHDLEOGTIqcMNZ/k2DiHDDWbe6TIJUOES4pcMmTikyKXDBEuKXLJEOHbj0PXFdcxHLqp4pMiaVld4zn+84RPinznFt+50CVDhO9YsWWI6KYUhTryPikKnfN8UmTLEOGTotCU2D4pckkH4N/vXDLU9jzP330TL/i+S992AbykyGS9y+eAsBSFbjy7pChU9eKTotCEDS4pCm2vT4pcMkS4pMgnQ4RPilwyRLikyCVDxFqlqOOnc3ZRU4pCMkTYUhSTIcKUIk4EbEtRN2WIsL+fkAy5CMkQ4ZKimAzZB2tIhghbimIyZKdEIRkibCmKJUP2SSQmQ4QtOdLkKCRDhC1FsTIRu1PDmWHKliJOWY3dhnP31pafWHJkS1GoY0DY8hNLjuzOZEiGmtvhuIC40iETW4piC6AC8gkQ7I5eSIYIU4o4i6zaUtRtGSJsKQrKUPNJxsYFZKjZ3JKikAwRphTFZIiwpSgkQ4QpRSEZIuz9WDqmgzMO0ZafmAy5UqKQDBG2FMXOLfY5MSRDhH2s+GSI6IYUcUq9bCninPNsKfLJEGFLEWd9IFuKQtIBrN7/YjLUfJ7137FZ6OzvNLZdwGopcqVDJt2QIlc6ZOKSDM7QBMmYImC1FHFmr5OMKQJWS1FIhghTimIyRNhSFJIhwpSikAwRa5Gijp4q8fVKLsWSIYKkiCtDJpILCknResgQQd8TV4boAOPIEGFKETcZooOWI0MESRE3GSIp4sgQQVLELZMjKeLKEEGSIx1bxJEhgqSIO2aIOjeS6XZJiiRjhqitpJSFJIg7toikiNMxIEiCuGV01JnkyBBhSlFMhgiSIo4MESRF3PEP1I4jQ4RkogWgJUWdyJAEkiKWDDWflLBkqNl8RYo4MtT2POEsqCRFHBky4cgQQfsx97pCx69kUhaSIG4yRFJUzi+xZIggKeKeW+jcyJEhgo6VmAwRa5EiyWQAJEWScx5JUUyGCJIiyWKpJEUc6QBa+yFXhprPW/l/7pTc9N1ytwtoSVFMhoi1SFFMhgjqs+XSiWjyKpIi7phokiLJVN4kRdxxTyRFHBkipBMtAC0p4sgQ0ZtLsWSI6FSKujg/Q/dY5OqmwXQH0/vN1YTTBcvfAjPC99goErEKysfzSGeFA+TRNWdtB+fzhLP45Dr4LPPCKXO5J2GTXAefXzq1difML8mno64KZ1HsZLrg2nIaNeH7JMLp8QF+h41Y7mCa3VpN9hxpx55IcRegoPb95Y7eR8RAr6h5SjjbUad0MjOadBr6Wgf7inRmNOnMc4T03CKdZAaQHyudzJzZybm4LvwdAdlNNkA+tTYgP09eFE4RTkin5JaOdQKAy1XZdaXawW8i7X5KBMIkJ9zHuGtpruU50j4xAMx30AVb/x5IZ3SWEAm+48nFOhYE9WJ0J/PsvPzHnxIEBYsrP+IscwegrZEcLLRzLSzz3oNSqzlme6BdUmaZHaSllQvKvOAERnK+xLwYNT+LYK5/OrFwL0bUbk54IqYEgzs7Wi2h35H/PtRpmVrgXVyoUzTNbA+g2bFfFpyQSToWq/weIrXlPmdusRHvTs/zP8vcyvohc8x1ROizz87y38NcM+jyJC8qWZxvfObqEv+3n5ttfP5lpngtrHzm+QV+LJ4WXuiSlXNRbVooN0IZyhwcAQCkH/gm+znJ+A4kJb5EpR/4t8a2PWWXbNtKss+yNNn4/SSLtgJAVtDJX1hq7F/cY3hm5dhaFNxsIYGQisRyPS16Dp3DJOcWAKhW+ccWHStV5nWlvvK9SqRofqXTLRHP+ZXPLFlrip4jnZZasl1045M7C+r5levPtPBmHl2DuesBkTzWBNcu2rYF5nl1auX7lUjR1Mq+yJUc2pa5WhpzghtU1JY7+3G12Tfkv8f0yr6YYz7l/GKjoWQdpEvyCRoxu3IoSpbQqdZlfW/p8jxE52OIGBs3udj6ZjlSZNe6c6XI/AE5UrRofVlcKSI4P4xt2lwpaj6f0d6V2MSkyBYajhTZSWVMiuyDnCNF9gkoJkX241wpsiUoJkW1xP4d4+9jX7BiUmTfIeZIkZ1ycDpUdgLD6bjYbWLPIRkiOFJkS1BMiuzPzpEi1wKqMSkiGSI4UkQyxGXB+qwcKTJlaPZivH1inYu4UmTKUO1s/MRKMkRwpCgZ39H6d4YUkQwRHCmqnZht/jtXikiGmu/LkKL52dZvyZEikiFCcmMD4EmRLTSdJJGc59jnsPWQIvtYiUlR3fo+OVI0byUQHPmYtz4rR4rs56yHFNlVIDEpOm9dd7hSZF97Y1JkJ2kcKbK3LSZFU9b3y5GiKWsfjEmRaxs4UiQRJ2D1tnOkaFq46CzJUPM9GVJkytASU6JmrUOQIy7mtnD63p3KELDWWeYCG2fKEBGSIt9sSDEpcv1wISmyZYgISZFrC0I/jC92DEmR605BSIpC5WvcpIgISZGvbJObFBEhKfKdeHxS5Pt7TIp88uP7uy1DREiKfBcqnxT5ymVCUuQr+Qp1qHzlaKGOi+8x399tGSJCUuSTH9/ffZ89JEUuGYphyxARkiKXDIVSIruDR4SkyJUMhaTIliEiJkWuZCgkRbYMESEpMmWo+beAFNkyRISkyJQhIiZFtgw13z8gRaYMESEpsmWICB3DM47jKyRFPpHpthT5zmHdlCLfseKTIluGiJAU2TJEhOTDFhsiJEW+53RTinwl8T4psoWDiEmR75rrkyJfWWFIinzb5sOWISIkRbYMxQgJWUh4XI+FUiLfNoekyCVDoZTIlqHmewckx5UMxaTIliEiJDCubQj1vdciQ0A31iFybJxLhgiXFMXWy/BJUegHc0mRT4YIlxSFNs31w8RqMF1SFDogXFLEGcvjkqKQxLikKDaGzfV6wc/iOFBjd2GktdxzyxnnSTqWBHHL5wiXFMXu2tlSFBs74JKi2PgXu0NVXU5Hx+a4Oi6xzoz9uE+GCJcUccvjiNhnd0lRTIZcKZFPhgiXFIWSIZcU+Tp4hEuKQmVyLinyyRBRm045xShUJueSIp8MES4pcslQ8zGHFPlkiHBJkUuGCJcULU2mvTLU3A6HFLlkiHBJkU+GCJcUuWSIcElRTHq6JUWxc1g3pCh2rNhS5JMhwiVFPhkiavX0qvO7T2wIlxTFntMNKZKOD44Jh0uKfNfZELExVi4pCm2bS0p8MkS4BCMkQ67+CadkzyU+IVFy9ZtiqZZLikLJkEuKfDLU3AZHVzNUJueTIp8MES6RCfXvXX3vtcoQ0KVJFUwpCskQYUoRd0V1U4qqdV6kZ0pRTIYIU4o4m2b+MNwBaaYUcWpITSmSTGxgShEn0TGliDuhh/m6rM9iHLDcOl1TiriCZJ6subJjtvOlQyamFHHrurljighTiriTAUhLb4D2jgu3E0PtYjJEmFLEkSGzDfezm1LETYZMKYrJEGFKEadMzpSiWAePMKWIM2bIlKKYDJmYUsQZM2RKUUyGCFOKQjLUbGNIUUyGCFOKQjJEmFIUEyETU4pCMkSYUhSTIcI8hkMyRJhSxJWdtUoRdzKItUgR91ghKYrJEGFKUUyGXMTEhjCliPscKea1hyNDZkrETV9MKeKKkJkScSecMKWIs22mnMRkiDBFg5MMmf0U7vgloF2AOGVyZv+JO+7JlCJOmZwpRTEZam6L0eXkjBlaqreLUUyGCFNoOP17s+/dDRkCgFSScJWkxRv2/pbz75e5hYQrFIQDdgFgqCB/TidTA5azsq9lUThGCOAPdiNGOlhgspP36e1g5h/u1I5EJ7O2dUKlg1l5uANQiWwHMxL1CVdwLwlnIwI6m/VISiFXYwsRsREzUXUyk15BuHYDIBsQDvAHg5tUKrK1jcr9HUy5CSA3IGtfuCMuNjbLP3SvqH3mc18Qv0f1nx4VtZ8/3dlxMjsp2+9n5uSzd0k7653M3NXJsdLJLGzS2d6kwpbLLrOFiJicK4naA/LZMAH+4HlCOu01IJ9NbrKDmUCl13kA6Ovg2nWJOTkDsdiB3EvH8kh/w07ppGck3bZT8/Lva6aDiSclEzQQUi3wvccfHP0v4vfu2rTbZ+ZqmKvJPv3pOdmBMl2t4+iMvHN0QdafwHICTAumqJ2uptiDyojZGjAp6BOnUwkmqvKfa76exmXBgT9TS+H0guxO1qVqBheYdz4BYLKaxXlhJ3q6lhXPfLNYT2NCeGKdWMqL3ufiUh5nhdOUzi1ncEZwIZ5eyuHcrGwq43OzZVwQXuwn5kuYmJc95/ClAVH7s3NlnJrpET3n5JRsiuXzM2WcuSx7DwA4dbFP1P7spV5MzPB/l4mZsmgWQaCRDpyd4H/+pcUsJs/JO3lLsxnMnuR3wtLFFKr/77TsTYb6kfnC/ezmmS9/BcgLyyo/+zhSecFMTIczqC3Iz6tTF0qoCeT27GQvZoXnotMzFUwKzpOXF/OYmJctNDXXQToytVDAJeH7SMVuer4gLqmdFczSCAAXZ8riNP3MXEk8LfXFxQJ79jUAmFgsYEZ4rZuq5jAh2FdOzBUxI7w5c2Exh7PC73g5SYnl5uhsGZcFadrZhRwmBbOANp6TxbSgX3R+KdNR/2uqlsaU4H0mqmlMCt9nYimNKUF/9cmZtDhRkfahAeDcfB2XGBVjJpwKM5NLi3XMdGJdHroiRGfmWurIlaKJxcZzuFI0bXzoozPLbDEiq+X+oGYMJ5EioLOZNiRSBEB0UM4bd004UmSumcSVokvGHXKOFE0aJzquFJmCwpUV844RV4rMdpz3uWi050qRWW7AkaJp4y4eV4qk8gSgTYS4UkRic3aO935mO64UnV/5LFwpOm8IikSKLq48jytFZy+1tkciRQB/anWzVIojRUuLrX1WIkVLs619kiNF6aJR2sGVoqHWwqscKcp8+Sut/2BKUe2zjzf/nSNF04eNkleBFE1daH23HCk6O9n67bhSdHqmwt4eoCFDBFeKSIamBR18s+SXK0UkQ9w0RlpaC7RK07jrn100jtlOSoy5UmS240jRhNGeK0VThmxypOjEXOt340rRBeN34EqRmVpwpeioce3iSNHZhdZ2caXo7ILZn4gf9+eN15X0vyQiZL82V4omlmTv8eSMUbrNlCLqO3Pbn5uv49x8qzPMlSKSoYsLvPbm63ZLitYsRKYMETEpIhkiYlI07fmwMSmyI76YFLkGasWkyH68k5k2YlJklydwDsp5R4QsSYqAuBRdcpQLSZIiIC5FLjEJycpiPe2Mz2NS5Ho89D4XHe1jUuSqvQ5J0bTj4h6THfvxC3OlaFLkEqCYFNlCE5Mi1+MxKTpvfZaYFJ13iAlHii5az4tJkSlDREyK7MdjUuQaNyJJioC4FC3NZtpkiAhJkSlDRFSKDBkiQlLUJkNERIpMGSJCUmTKUPM1FtJRMTJliIMpQ0RMimwZiqVElx2Px6TIToY4UuQa/xiTIjsZiklRJ5Ov2JMXxKTIPt6BuBSdmSutOlfHpMj1eEiKJhztY1I05UjeQlJkylDrPcIiccHx/Z9dyAfFyFXCFZOio8IbeaYMETEpOiusfjnveD1O/8uWoZgcuV4zJkW2DMVSIlOGiJjk2H3mWHtThExiUmQnQzEpcr1eN6RoTULkkiHCJ0W2DBGn56pOMfLJEOGTIl+9o0+KQlP5+aTI9/dOZtrwSZGvVjt0ULpkiPBJ0YxnELZPilwyRPikaNJzx8cnRSEhkZbPAX4pCsmS9H18UhQaiOqSIpcMET4pCsmST4pC4uN7zCcyPikKyZLvtWwZInxS5JIhIiRFrs4R4JcilwwRPiny/d0nRaFB9D4pMtMhE58UuUTIRFI+BwSkyCFDhEuKnDJEeKTIJUMhXDLU9noeKfLJkC8lcskQ4ZMiXzLkkyKXDBE+KfKVyYWkKDQZjE+KfGVyPinqZHp+3/TWPinyHe+AX4pCN618UhSSJZcUuWSI8EmRS4ZCuGSo9R7u79ElQzFC41l8UuSTIV9K5JIhwidFPhnypUQuGSJC/S+f/Pj+HnotnxT5kiGfFLlkiPBJjq+v7GvvkyHCJTGTi3VvmZxPikJytVYp6toYIhe2FPlkyEQ6rghYLUWxwV8XFuU1kbb8xJIjW4o4M23YUhQbuOo6kEIyRNhS5JMhwpaikAwRthT5ZIiwpYgjInYbzsBKW3445XT2+7jSIRNbijiz8kjGFAGr5YdTJmdLEac0zm4TS3Vs+eGU09mv6ZMhwpaikAwRLikKdY6A1VIUkiHClp9YcmRLEWdGMVuKfDJE2FIUkyHCliJXOmSySooCMkSYUhSUIcKSopgM2SlRTIaar2tJUSwZsqUoJEOELUWxMjlbikIyRNhSFBsz5JIizsyYthTFxgzZUtTJAs6xBVBtKYod78BqKeKcl235kY4xCskQYUtRTIbslCgkQ633aP8+OTJkp0Scwf22FMWSIVuKQjJE2FIUS4ZsKQrJEOHqf8WSIPtxTtpkS1GsTM6WopAMueD0j20pismQC854IVuKpGOSpHQsRKF0yISkiCNDBElRLB0yISmSzIRBPzpn9dvG9qTa/j+GPf0gB5Ii7iw+nQz0A1pSFJMhgqSII0MESVFMhgiSIkkqQ20ls8yQBEkmXKD3ickQQVIkWauBLr6hdMiEJEgyZkg60QLQkiLuuB+SIO7YIvO1YzJEkBRxZIgwpYjTOQJaUsSRIYIkiDu2iKSII0MESVFMhgiSIq4MESRFMRkimlLEkKGOWZEibjJEUsSVIYKkiFsmR1LEkSGCpIg7ZoikiCNDBEkRdwIFkqKphYJomQCSIu4ECiRFHBkiSIpiMkSQFHGPdxPJTSqSIK4MUUrEkSGCpIibDJEUcWSo9R6N71WSDJEUSWY6IynilsmRFHFkiCAp4pbJkRRxZMhGMnkCtZP23SaW0uwxQyRFXBkiwZEEBfQciQyR0EgmTyAp4srQWlKijnrT356aFrX/5sIZ8Xt8c2ZC/JyHOJOkWxyflU0jeX5BPgDztGdhWR8n52SvP1FNY6KaZqVDJo/PyA586exzAPDgZdndsgcvy2YvAoDDjgU5Yzx8WTZoGQAenZbJxLem5O/x7UuyjuT9Z3nrwJhcmJPPJvflc8Oi9hIZIr4o/Cz/fGJM/B6fP7kdnz+5XfScLx4dF7/P105vE7V/8MKQ+D0eOSX7vg49Id9XAODSk7JZoqoPnBK1z3zhfl46ZLD0KdnU2ucfkp9XAODIUdnv8uhZ2XECAA9PDIraf2dSNhsiADxxWTb+7JiwfafPOyI83wF8GSJOTsm+r+V6SpzYA8Ajws/+cAczYR6elW3X1y/J3+Phafn19NCM/Pj6uuDGAQB8a0r+HtIxQ4/NyNpPVGWzyBEPXZbtw9+4JJe0x6dl23V0Ri4Shy/L5+L+5qTMHwDg65dmRO2ljkJ0JET/Mvn7OF+dFz3neHKB3fZcvfFhnlycFL0HAByd5kvR/MoCsafmeMJCRiyZsvDiYuO1L1d570Gldcdn+eJVradQradwudr4h8PZFbE7LZhd6eJSGifnBYnHQqPtCcFzAODoHP+kdGGx8dqnmItwmkjuNtHr0/vFX7vxGSQXCkrIjjDvmh1auet5SHj388mZMg5N85/z2ErbY4J1VA7PFnF4lv/Zqe1jws/yTcFF9fHpVufgO8xO0uGVO/eHBJ2XJ1fe58lp3nOOrrzHEWZ7ALi0cuf+yYsDrPYXphvvceyMrPO9xNzfm6ys0l391MPspyQPHUPyzcP8bfqHBxtvxZyNiFiYE465ODsAALjE7IQ+sfJbSKbKPrby23OnZT61ksKcEEx7fWklUTjNfM6lle2fWspjSpKiC8e00Pd0cYH/WeZrOdGseHTjZ2GZf005NN3DXuSToHM3d+bU0yupyllBEnN+pe0Ec+Kio3O0TfzPcpy5MLUJJSuSG5NHhGtyHVnpE5wVnI+Oz2dwjrn4KNDqC11aYlbNzKdwej6FE3Oym+TU/vQ873lHZhrtjgn6hOdW+nfc6qezKynPrCBdOc1dcdXg2Hxjweyj8/GFs1vPkSUEh+dm8S+Tvy96DrGmMUQcKXq8dq757xwpIhkiuFI0U21ZCkeKSIYIrhQRHCkiGSK4UkRwpKjqGAgak6KzVsrFkaKLRlTLkSKSIYIjRWeNkxdHimw54UqRKUIcKbJflytFBEeK7AtpTIpsCeJK0ZNGu0PTcTF6zHqcI0WmCHGkyG7DkaKHje3iSNHjDtngShHBkSJbgmJSdNQqleJI0SWrjCkmRSRDBFeKTBm6+B3GsVVvP79xpCh56Fjr3xlSRDLUfEuGFJ37euvY4koRyRARk6InrN+AI0XH7NnkIvJxyhIajhRdEkrKJcd2c6TIlKHzjO2yvx+OFM3XWu/BkSI7BY9J0aHpHhwyjj+uFNnn7pgUnbbG3XCk6LxwcgOSodbz45/FlKHzzNIse+wNR4pMGZpglOAfsfoCHCk6bvQ3OFJk94FiUmTLzIk5nhhJ5YlkiOBI0TlhFdNZq+SNI0WmDHEl6pglQRwpMmXoyFxcjA7P8UXLxZonVQhJkSlDxPHkgleMbBkiYlJkyhARkiJbhoiQFLkEKCRFtgwRISlyCXdIilwy1Hof2UERkqKLjpPjyfmMV4xsGSJCUnTWcdIKSZFPSk7N54Ji5BKgkBT5XiskRa6YPiRFvgsoNylqvUe4/ZOex31SZMsQEZIilwCFpMj3WEiKHnZsV0iKXDJEhKTosGNcR0iKfPLDTYqIkBTZMhTDliEiJkWuZCgoRXX3eS0kRaYMNf8WkCJbhppvHZAiU4aImBTZMkRwkyIiJEW2DMWwZYgISZFLhkIpkUuGiJAUuZKhkBT5vpeQFJky1HzfgBT5SoJ9UnTIc8zFpEi6wLgtQ0RIilwyFEqJbBlqvY7/Oa5kKCRF07W0d3a2kBS5kqGQFNkyRPik6Ph8pk2GiJAUSapkgHCyExIe12Oh17JliAhJkUuGQimRLUNESHJcyVBMimwZInxSdGx+zpkMhaRorTIEdGmWOZcUuWTIRFJCB/ilyCVDxNHpJVEJHeCWopD4uB7zyRDhkqJQ+uiSopAMtd5ndRs7HTJxnRhcMmQiKaED3FLkkiFCUj5n4hKZkPi4HoslTi4pCtUsu6QodkF1SVFIfHyP+WSo+TxBCR3gliKp+MTSI5cUuWSIcElRSIYIlxS5ZIhwSVFMelyP2+mQiUuKQjLkSol8MkQcOzPoFKNQmZxTijwyRLikyCVDzcccUuSToeYmOKTIJUOES4pOnB3wyhDhkiI7HTJxdf5DMuRKiXwyRLikKJQMuaQoJEOES4pCZXIuKYolZy4pcslQ8/0dUiQdH+mTIcInRaFzt+sxnwwRLikKJUMuKfLJUOv1Vj8nVCbnkiLOYqYuQmVyLinyyZAPlwiZuKQoJEOulIhT5uYSn5AouV7TJ0OES4pCyZBLinwy5OP0bC1YJueTIp8M+YiVyLmkqBsyBHRx2m1TimIyRJhS5EuHTGwpCsmQiSlFvnTIxJQiTmncwrJsXBHQLkWcUkzJmKL292k9LyRDhHmCiMkQYUqRLx0yMaUoJEPE0blsmxhxS9ZMoeGUxknGFLm2hTOA05Qi7t1FU4o4pXFmmydnylEZaj7PkA1fOmRiSlEnpXEcTCkKyRBhShFHhghTikIyRJhSxE2AzHYhGSJMKeIkQ9zxRDamFHHGDLVJUUSGCFOKQjLUbGNIUUyGmptiSFFIhghTimIi5CMkQ4QpAZxkyJSimAwRphRxyuRMKeLIEGFKEWfMkClFkrFVREiGmtthSBFHhsyUKCZDxFQ12yZGnHO32SYmQ4QpRZwyOVOKYjLkgjNmyJQirgyZKdGRuQJrzJApRRwZMlOimAwRphRxkiFTirhjfmw4ZXLma8dkyObcQopVJmdKEUeGTMHhjheypYgjQ2ZKxB0vZEpRt2QIAFJJksgGtqxwz8CveB+bTMlmeCgksjKQA4UBAHwhIraVZB3eoYL8AJhlCJdJJiV7j92VhJUO2cwLhW28WGcLEZERblYuLd/1Khn5c6TbNVasiidpkEw5CgAHexbE5RbCXavjux3SuWakn31/ZUEsR9zBocRtA9MiISJKGdmBku7gGplhTqlP9Odka7MdGJ6MpkMutg9eFrUfvkk+q2d2l2y7qsfkF7sLD8v2rU6+q8HKPEuGTC4Lx/PMLcuP4EpWtv8W0/KZpfrzS+IJFHLC9xkuLrBkyKQqnGVVMh21yZLwfaTn7bFCVTxmSJrajBZq4gkUih1cUITdGwDycn/p0ibbCnVxmZz0hjcA7Con4jFDi8L3Kconn8MF4WQ0l4VfcCXX+G6lyVAKsu8qgf/A6nRShY6FCHBL0WOpbwEAtmE/6zUuoHG3cGdyPft951KNKfj2pfjT4S7UG4a7p8KP02v1BNtK/APn0kqpXJ65k55fsZTtZf6JaW7l7Hqgl7/znFxJvCSCd24+wa4Kv/3plfcQPWce2FPh736Ukt3Uxz9Aj8w2fr/revjPObzynD1l3nNa7fmf5dhcCk/t55/9Hpxq7FQ39fGf89h0Bjf1ys6wT6ysU7O/wnvesblG+50l/vd7bC7N/m6B1vShBwS/4an5NA72yD77hZUbALtLPAF5YrYhtNf38MXg6EoqcaDCe86ZldTyxl7+TDsXFvM40Cu7GC2sTGW8b/QS+znzC3nsup0/Hercycbx2/ds5tojX2l85tI4/7g6/G/96C3xF9N47HxjWu2homyl7kenejFakPzujc73YI5Z1bCyn4wW+Pvw+ZU75vuY+xalCzuKMrGdWMphRPDZJ6v0Wfjf8cJyBkOC95hb2X+5N9kevdzYBytZWWfvzEIWQ3n+c6gCYljwnHOLGWwX/O50zt5W4H32Yyud9G1F/nF1cbHxnJ0l/nPOL8rf5+hsCoOC+4RnVgqThgT31I/N1LGzwu/XHVuZjlrSFzw52/j9dlb4xnJsZS3NsRLvObTezojAVKUydGnF0CQ37p9YblSIDST8GWCPpA8BAPbXeR5wMn0CALCjvnPVY53KENDFkjmgJUMAcA78aVQB4GSKt8geyRAAHElO40hyOtC6AckQAByb5U0XXlspBeEuOnXJGDe0JLR8/iK3rfd4clrusRORsU3EuZV1k07MJjjBWKfptFFiyGkPNGQI4E8laZYMPnJZvts+wVygjOQGaHTcZe15n4XafXuKd+J70Gj3CHP9gsemG+0emc7gkWnec54wFu08zFjAk2QIAE7O875f+k453y3QvpYCd5G5UyvbckiwztYFIw09LkwHH5/hXcGPGiVaT87Gn3PGKOF8lDnG68JK6vikIPVYMNZ1OXKeNwPd/EoJ0Ilv8FI4kiGgJTohzDbzp3nH1eF/a6xpw13ok2QIACYEk1U8SosCMxPeo3NmOVt8nzT3k/PM8mBuO8IstTrFLOdqPI+WH+A9Z9KcfY45XfbCymLWE8z3mDP2X071BMkQAMwyk5UzC1mcWSmJ5i6OaZaDc6stzq38jmeYv6d5zj63GP/s5jWKOxvZRcbr2pxflL/P0ZVrPHc5yTNGV26C4drHZupNuTk5y5wZrYO1eUiG7H8Pv4+s02guPsqVnE5lCACWGbnJE8vnmjIE8CvFSIa4kAwBwKn0SdFzY3RViGxiUkTpEBGTIlOGTDhSZBKToppVF39uvi5ajReIS9F5q4YtJkVzjtydI0UnrUkiYlJ0zrGILFdyuO1PW19/TIpc46c4UnRktr1NTIoOz65+nNtxb7WPDIa0Ho9J0YOOx2NS9JhDgGJS9IRDgDhSZBKTIvu7jH23roXlYlJ0ytoGjhRdcHRWYlL0hCU0MSk6KlwD54xjPFtMiuxOakyKFmqZNhkiYlI0b3WgY1JkyhARkiLXYzEpIhkiYlJkyhAxsVCIihHJEBGToqOOsiyOFLW/R7i9/fiRiGy7BuNzpIhkiIhJ0aRr9rmIFJEMNd8z8h5zwkVaTRkiYlJ0xjE2NCZFrrGxMSk6Z/2OMSlynbNDuK5NMVmxZegkYxzNeYdAxd7nqHWNj0nRGd597SYusYlJkf0cTh/QJUAxKbJl6GxkfMOMYK0goCFCa5EhDqYImcSkyJahw+mwA5gytB50TYjMdMjEJ0W2DBEnU4+z0yITnxSZ6ZCJT4psGTLxHRCXPJLhkyJbhogzczV2WkSEpMiWIcInRS4ZInySc9rzHt72nhPZsdmUaOExICxFtgwRPilyyVBz2zwdd99zfFLk+/u3pzLstIjwSZFLhprP8TwWurD6pMhMh0x8UuT7DqXCCfilyJYhIiRFLhkifFJkyxDhkyKfDHFSIhufFPk6pz4pcomQiU+KbBkifFLkkqFO8UmRLUOET4pcMmTikyJbhgifFLlkKIZvX/FJke/vPikKTdcckiJbhgjffueSoRi2DDXf2/MePhnypUQuGSJ8UuSSoeZ2ec4dnImCTM4tZlbJUPP9PX/3nbN9KVHoRp1PVnzJUEiKXDIU4uhsapUMET4p8smQLyUKpTw+KfI9x9cHPDm7zE6DWu+x7E2GfFLkkyGf8EhFCPDLkC8l8slQiCPpQ95kyCdFPhnqZkq0JiGiWj2fDBHS8jlgdVrkS4dMbCnyyRDBLZ8zsQ8InwwRthT5ZMjEliJXOmTy5HSySox8MkRwy+dMbMnxyZC3PePrtqUoNrueLUVHZtNeGSK45XNt22V13EMC1WifCv63C1uKXOmQiS1FIRlqPodZPmdiS5FPhghbimLSc2wuvaqNKx0ysaXIJ0OES4pCMkTYUuSTIcKWolgy5JIiVzpkYktR7E69LUUxGSJsKfLJEGFLUUyGXElQrJzOliKfDBG2FMVkiLClyCdDhC1FMRlypUSxfcWWn1hyZEtRSIYIlxT5ZIiw97+YDNkp0cJyxitDzW2w3iOWDNlSFJIhHyEZam6XdQ6JyZCdEvlEqG07rDaxZMiWIm4pt0msTO7kfGqVGMVkyBYvnwiZ2FIUS4ZsKeqk5C32HLsPyBEhuw2nRM6WolgyZMtPN2WIsKWII0N2SiQtkQPiyRBJ0VrGDwFdSIhiMkScw+GmGPnSIRuSIo4MEZ2Uz5EYhdIhEzogYjJESMcUAS0pismQCUlRTIaIicWkKUahdMiEJCcmQ3Z7CSRF3KnGSYpiImRiSlFMbprbtdJp57eXX4hIimIyRJAUcWSo+RyjLbfsgqQoJkMESZEkAaK2MRkiSIpiMkRIxhSZkBTFZIggKeKWyZlSFJMhgqSIO5ZDMqbIhKQoJkMESRE3GTIFiDO2CGhJUUyGCJIirgzZxGSIICniJkOmFHH3FZIg7pghkiKODNlMLOWiMkTQfshNhkiKYiLUtj0r78EtkyMp4sqQmRJxZKi5XSuSw02GSIo4MmTDPV+TFHGvQaasSMYMkRRxkyF6H44M2XDL5EiKuDJEKZE5xigG9QElqRC1lY4XAvhlciRBnZTIdatMzgVJEVeGKCU6mT7BLpPrRlK0plnmAGD34PeJ2k8uHsFQ4Tp2+xoWMMqcsc5kezIqal9DHXtKsrtIOeGcuyfnFtGTFZxoq4vYV5Hf2SoIz7OnZmvYVuJv1/mFGrYL2gNARvhdPXF5AQf7ZCUnnUxBeWS6hgN9/M9yYnYZ4+XOOtZcjk7XsK+Xv02PTi3hKQPy8quc8HbImbkEOwWzCALy6bKPz9RFs/mcmF3GwT757zGQl23YybkURgW74+HpBDfy+utNysIp5c8spHFLn2yGsB2lBVF7oLHezMGhSXb7ybkiDuy9KH4fCQ8/uQ2Dgs/y4MQghvPyacKlU+OfXcyiVzhz2eWq7EA8s5DCdskMYUsp9qyRRLGDJREmqhlsK/BLvi8tZbCnLJvdryicFv/R6TJywmnuO1l49MxCCsPMWd4A4My87HwC8NYrNDk8LbtWXVpMMFKUi0pe+HWdnkswIFzSRDod9YnZKga40/0CODY3j50l2YK+VeYNdJOji9PYlefPvnZ+aR77yvI+oIQz80sopGXX0CP18+L3OVz7KgZze9ntL9dOYiR7UPQeD0/8L+lmtbHmhGhh+RIWlnlTtU4uHgEATCw+IXqP88KSuzrqOJU6i1Ops6LncReFAoCppWVcWOCfoU7ONU78MzXZWe3ILH+bAODiQg2nBGdOantuXrZdZwTtT85VcWxmCcdmeB2SJy43OjqHLvM7PI9fXsC3L8k6e0emG5/hycuyz356jn92fnRyCY9OCqbnXdkm2jYuDwveA2jcpXriMv9znFlJBE8KEr/Tcwk7eQQaMgTwZ3Y8sXLH7ZDgc8xUG/+cENyhPLlyl/W80CUeneK3PTOfYs+iBzRkCAAeuszvsE/XMnhUmBRJ15uZXElHnjw6zH7O6VP9OH2Kb48PP7kNAHCJuWgpcXFJJjeHZkqYEkyAcHaxcRND0qE+OZ/BdI2/L55hzthFXFxZWFIyQcp0LY3zS8JZ61a+p3OLvBs5l5YocebP7rdYT2NKsD9SiloVrJN2ZC7T/M64SH+TM/Py88mpOWBKcIo/PC0zCKp2ubAg6+Sfm6/jBHPGNqBVWTLJrK6hsTkXBAsBnZiVrdt2bK4RPZ2c5w+heHT+Ep5cnBS9z9FF2fqc55ca22MuQhpjtpaI1sI8My/rNzxeP4HH6ydQhexGxuHaV0XtL9caac+FGi9RulA7xG4bYs1CdP5y44NypYjgSFENrTOGVIoIjhTVjKUoOVI0ZdTAXVioicQI4EnRRLW1w3Gl6KKxHadmZWIE8KTovPEeHCk6Odd+cuJKEcGRoseNNt++xBMjWzg4UnTCiMc5UmSKEEeKjlrbxJGiR42rJFeKzMj+icsyMQJ4UmSWVHKk6HgHM/qYcKRoxrpOcqTopFVywunEHDbG83Gk6IxRi8+RojPWooIcKZo2yoy4UmTK0KGJgWj7SatUjCNFpghxpIhkiOBI0YMTrbFQXCk6NNO6W8yRorOWCHCk6OR863U5UmR2vDmdcLtjz5Eic7vPL2VYYjQhnDXvkvWaHClaNBZD5UgRd5p64shcBkeMcmCuFJ0RlpqdscfdMM4np4zLP0eKTBniXKfs0n+OFNkz73KkiFtmT9jlaBwpMmVokjFWgWSIy6Pzl/DofKuvy5UiU4ZOLMXFiGSIiy1CHCkyZWixHv+uHq93NsObKUOXqkej7UmGuJAIkYusha5Oux2SIkqHTEJSZMoQcR6Ho2JUx+oDMyRFNUd7SVJEhKSI0iGTkBSZMkRIkyIiJEWux0JSdN7xGSVJERGSoiccAhSSosc9j3HFyCQkRScctcKhi41LgKRpERCWokcdV8eYFPnql0NSdMZxIQtJkevCF5IiW4Zaz/FfZF2/R0iKbBlqvY6/E2PLEBHqxBx2zPoYkiK7gwTw11syCUnRtGPMRUyKXMkQR4psQlLkEqCQFNkyxMGUISImRaYMESEpsmWIgylDREiKXAIUkiJfhz4kRT6JC0mRS4ZCKZEtQ0RIikwZIkJS5JKhUEp0xDMuMiZFru8/JEWuYz3Eqbl2GSJCUuRKhkLXKe44aCK0BElIilzXhFBKJJ2xrfH+q0/yISlyyVAoJTJFSIIrGQpJkUuGQimRJBEiXMlQSIpcMhRLiQ7XvupMhkJS5JKhUPLTjVTIpOvrEHWSFHVSQucSI5cMEZ2Uz7nEaCpwgLmkyCVDRCflcy4xurhQa0uHbFziExKlTsrnXGJkp0MmLilyyRAhKZ8zcUlRSDJcUuTqfBOS8jnCJUV2OmTi2l6XDBHS8jnCJUUuGSJcUhS6Cygpn2s9Z/UxHfo9XFLkk6HW63Ww8KBjd3TJEOGSolAHySdFdjpk4pIilww1t2m64hSjUJmcT4rsdMjEJUUh8XE9FpIhX0rkkiHCJUWHZkpOGSJcUhSSIZ9guGSo9RyZ+Dg75cKSr8b7hrsCLikKJUMuKfLJUAiXDBEuKQolQy4p8slQjKCMOqQodKy7ziUuEYoRKpNzXadCMuRKiaSpfeu9/e/jkqKQDLlSohOz1Y7L5Fy4pCgkQ76U6OjidMdlci5cUhSSIddjZ+aXOiqT8+GSIp8IhbhcO9lxMtRNuiJEdlRlS5ErHbIxpciVDjnfV1hGZ0uRKx2yMaUoJEPEWsvnXOmQjSlFIREyWWv5nCsdsjGlKCRDhClFIRkibCnypUM2phRxytBMKQp1vgn7YsNJgcw2IRkizO0OyRDhkiLO7DamFIVkiDCliFMSYUuRLx1qf45ZmhH/DKYUxWSo9brWAoSM2ZnMjkxIhghTijh3i20pCskQYUpRSIbatsuQIs6YIVuKQjJEmFLEKY0z23CSIVuKQjJEmFIUEiETU4o4yZAtGiEZaj1HVhrXVrbFkCE7JeKOeTKliFMmZ0oRR4bslCgkQ4QpRZwyOVOKODLk+j5Z5YqGFHGOdfNcwpEh+xLAGTNkXqc4yZApRfxxne3tONcEU4o4yZApRRwRslOiTsrkYjy5ONkmRhwRslOiTsrkJG04ImSnRNIyOa4ImSkRR4Rs+bH/uxvlckAXZpkjRvue5fz7Qk0wshjAUOE6thA13xv7g+mQi23CWej2lMosISJGitlgOuRiKZGlDb0Z+cxiOypZsRylhDccfQt4+djTk2cJkUknO22vYIY/ADjQl2V1wInxckZcElfMyO5J7OvNsoSIoNnnpFN9VrKy7dpZSYlqxLeVUiwZMlkSzupzsC/DFiJiVyVhyZDJTFW2XTf2y8pnDvTUWTJksqcsTy53FGX77sGhSZYMmZRysnPPpGeRVB+DpQWWDJl0klwseBb/9NGbrbNkqNU+EQ/Wl84aub+yLJ5RbTS/LB4zJJ3lbU95kSVDRH+uKh4z5FtA2sfwyqyUkt9kuJCIy+SYsys36c/LJlAYL2fEZXL1DrqIGWGnYaCQEpfJLSwLZ3Osyc5vO0uljsrkMpAdHwXI+iX7ymVRmVwlmxKnQscgW74mh4I4FRrM7RWnQj66JURdL5mzSRLZTistnwOASziNKchK4rhzmxOPzU+K2n97dgITyazoOZchy8k7mfrw/12eELW/sDyH8zXZdp1dlsXEX7h8StT+kdSjeDT1qOg5APCI8OD7ykXZ5/j8xEWcq8ue853acVH7f52Q7eefvziJz1+cFEf3Z+dlJvGdS7KO7kOXZK9/bmEJk0uy5zwyKR/f9q0J2cX/8HSVlZ6afOGssP054bTBVeAh5jpWJk/OyuTj386NiNpPLBZwcoY/y92Ry72YFM4M99Vz/NntAODwrGwWPaDRmZas1dJ4H9nv8eSM7PUnlxKcF84Q1sk+8si0rPN2YTGF00KZf+iyTLIfnJLNnMhd54w4M5fgoUngoUnR0/DgJdnvYS/EGePozBK+NSHr6D4oHFd7SnhTFwDOLVRxWtgB/+aErI9xclHWtzpTm8accGa0Ly8+JmoPAKfTsqqlE8JFSi9jFt+ak/X7Hp+TXfsfTz0pan948X48tvhp0XMA4MTMV0Ttq3VZgtYJ6y5EiqIoiqIoiqIom5WuCZErspqvNuJGaUp0efEkLi/KozRuSlRNNe4UcFOiBTTudkiTDwDslOhC0nhtbkp0MdUoRZSkRKeXLzf/n/6dCzclOlVrvC73uzpWv9DYJkzgNGTplSQlOrmyb3BTovPVlbUJFuSjW7kp0ZNJY1u4KdGT1cZilyeZE5dcWG7fdm5KNFNt3KnkpkRUSspd6ZoSlctVeVkXNyWqrZTXnRCUh04sNs5TF5mrfB+ebm0LNyWidocu8z7HqTnZWkvGJokSgIXlRiLBTYku1xpJwZMzPaz2E4uy9MmEmxI9vjIWao5ZBkbp0KRgYVSz1IqbEl1YabfEvAzSeJI55q47udRKIrgpEb32McGEIvR5zzHLxi4IUzSgNX7q0AzvNz8+12hXZZYwUjrE/W7tcZQXmd/v6bnGj32BeS6hdGiCeQ49Kly+AgAuLjZODtxSfkqHJOVW5xZkKf7R2XkcnW1cay8s8raL0qGLNV5icKYm67cdTx/H8XTjmnwpzetfnU4fbqZD3NSH2j2RfoTV/jJkqRgAnFqaAQBMJ7zvltKhxRTvuz28eL94m2YXz2B28QwA4PICrw9O6ZArJepWuRywgQlRktQ7EqMYWbTH6zEpIhkipKVzZ5eno519WzZiUkQyRHRSOkf/SIhJkd2hjkkRyRDRiUDGpOgRS4I4UnTS2idiUkQy1Hz+wlxUjA4tTLb9d0yKSIaImBSRDDW3STibIxGTohlLUmJSZI+ri0mRLQ6Xq8tRMTq30H5BjklRzRprxJEikiGCK0UmMSmyH49J0Slrso6YFE07Xo4jRSRDREyKSIaa7SNSZMsQp2zuyOX21dxjUvS4NVteTIrsUjmOFLnGncSkyJaCmBTZM47FOu6mDHGxX5MjRfbnjEmR/bljZXPTtdSqGfZiUkQyRMSkyC6Vi323nEllXJAMETEpskvlYlJky9B05Px5cbHalCEiJkV2qRxHimwZipXNkQhJsEvlYlJky1CsbI5EiIspQhJsaYpJkS1DTyxdCLY/tTTTlCEudqlcTIpsGaoux4WNRIhLtT6/IaVyxLoJEaVDNt2UIluGiE7GE/nEiNIhG19n3ycZ3RxPROmQC58U+bbL93dbhohOxhP5vitKh1Ztk0eKbBkiNmI8EeBPi2wZInxSZMsQIR1PFJIi3+8H+KXIliHCJ0W+SUa4SZGJT4psGSJ8UmTLECFJioiQFB122Qf8UuT7u0+KbBlqtZd/tz4WllOrZIjwSZEtQ832HinyJUMhKbJliPBJkS1DhE+KfOOGJqtpUVoUw5eQ+KTIt76Vr+Puk6FQSsRNRkx80ueTIt/n9kkRZ1FaG1uGCJ8U+cYN+b6PkAyFUiJbhmL4xg35pMiXDPmkyBYhDp2OG3LhkyKfDPlSopOLsx2NG3LhkyKfDPlSopAIhVKiTsYNufBJkU+EfCnR46knOxo35CIkRT4Z8qVEPhFaT0HqqhBRdOWTIWI9kiKbKZxdJUZ2OmRjS5FPhghpAuKSIjsdMrmMuVViFJIhwpaiWBLUjfI5Ox2ysb8rnww1t6lL5XN2OmTySO3kKjGy06FVr2dJkU+GiG5MsmCnQ23bs3xplRiFZIiwpcgnQ4R0kgWXFMUSFFuKfDJE2FLkkyHCJ0V2OmTikiKfDBH254x9bluKfDLUar/68dAmuVIinwiZ2FLkk6Fme2b5HOGSIp8M+fDJEGFLEWcSBZcUhWYlcwlDrFzMlqLQYr/A6o57LBlySVFIhlwp0cXFVDQBs6Uo9rltKYrJkCsl8smQj9gkCvb3wkmGbCk6PVcPypArJepkEoUQthTFZMhOiU7NLQZlyJcSdVImF8KWopgIuVKiTsrkQthSxEmFbPE5kT4UlCFXSiQtk4ulQrYUxUTITokOL97fcZmchJj00OPdLJcDruCkCmsZV5RF0ZsO2az37HNmR58jFhPJbFOMQjJkIi2hA+Qz0JnbzulQn6+1Zp+LyRAhFUhTinzpkIktRSEZMiEpislQ83WF44pMKfKlQyamFIVkqG2bVqSI89sRa5l5jjMFvSlF3DE2JEUxGSKkM8+dmK21iVFIhghTimIyRNDn5X5u7piiVvvWd8vZJFOKODJEkBTFZKjZ3pAizrghU4o4MmSmRDEZIkiKJDPKmVLEmaLZFAfp2JmYDBHUceeWyZlSxEmGTCmSzqIH8D83SRE3GTKliCNDZkrUyYxyXEiKuKmQKUUcGTJTIumYIW4yRFLETYVsKeLIkJkSScvkuKkQSdGZ2jRLhsyUqJMyOSncVIik6DJmWTJkpkRrLZGLwRWh6vJsMykyxwuFMFOijSyRs+naOkRET+l6+UakZCetocJ14vcopwZE7Yfr8cUAberC1XGkaydVU/L4u5DIBjNfTJ/F9vpO0XOqkNVhLEaSOpuplHx68YvVJ7A3+12i5wwnQ6L285EE0WYmJUviLuEUxpODoucUIB+8PpyWreEhXTup1sEpZmFZdve0R7jGFACUhWstdTIJhBTpNo2VZFMnX9cjHxs1XUtjf0V27hnIydpXBevOAMD5Rdl02Y9OZzAgX7YN0kpL6Z4uWFIMgHwtLqCxDomsvfgtkBb6U09W/jkKwtu3RwQTRgDA5Q7GY0l/j+Pzc9hR5C0CTMTGCNks1WXHuFR9zyVT2J4eED4LWKrLPseisF8h7YecTh9FHrLfYgEy6eiE0fpuUfsSMxwwOZOWVV2dWvi6+D2WhCldKS9bMgEAJme+LX5OiK4nRDPzj4ufI0mLcpkKpmtnMF2TRXCTddlaN6fTR3E6fTTecIXz6TO4mOanUZfS5zGV5t39B4Cz6aOYSMk+AwCcS5/AOWHqJTlYzqVPs2diAYCz6WOYTMlSu5n6OVF74mjt/7HbTqcmcERQ23s8fRQX0vzFyw7jmzifyO8snU7xt+li+hROCe9ezaRmcDThf7+X6vM4XRWOh6stiRbFu1RbwHzC71DPJ1V2ukfMLS/jgqC+/vTCImaXZRdcM0XlcKm2IEofzy8u4cFJ/ueerSX41qT8zj8gS1cuLGZwaIZ/kT67kMfEEr8Xfnw+L1oY9dFp+Xo7AHByDpCss3xxMcGEYNHLiwtJtMzT5PJSHf//9t49XLKqvPP/7l3n1qev0E3TIPegCEEeIHgZQndALhIxghDQMTJmohlhghplhCfKiFH5IfoIkjjexiBJSAJGM8gkEAdRJE0ElYsIDQToK3053ed+qXvV/v1xzqpatWvtvd+3TtU5Vae+nzzE01Wrdu267b0++/uutbKKBRkBYKYQYH9Gfn7NFAMMK9czGs4G2J+RP+ZANsA2Rb9SUroX5pVpDyXFyxjKlJBRLvS5P1vAeF5+TNiV0Vd67MhOY7Qk/43vLU1gRFh5AgAjwZS4UgWYlaFG2BXoLmru8Hdiny/v7+z2d2K/or2mbwcAw8WXMVzUjf0BZtfV1KytmSmPYSeeEbcf8ffgVV+e9Gz3nsd273lxe0AvQ+ncXqRze1Es6eQxk5f3h4ulbNNlCGijdYi0JXQAxGKUD2YPROPlPSIxyqN6AJL8cA741X3QSBEAlRQBwKi3RyxGdrIikSJ73yVStN8SAo0UARBL0e7gOQCzUiQRo5HCKxgpVA9AEima8qqleRopAqCSIgA4EGwTidEYqp+xRIpGrJOBVIqmveoBSyNFAMRSNFqopoESKRorVuuHJFJkt5FIUbpUQtpKnzRSBEAsRbYISaTIft0SKTqQq76XEimyVzbXSNGUcAprw3CuKh8SKRrKVmMbiRTtylTba6QI0MnNbusjkDxuxBIhiRTZY1AkUjRpDTqSStFMQSc2GWu7Uimy20mkyC7jk0iRLUJ7MrLP+xXlorZ2+ZpUiuxSMYkU2TK0J5v8e92RncaOrK5DubekkxVbnCRSZMvQvvI49pXHEx+zKzhQkaEhTzYueIe/U9TOsNtqL5Eiu09n9/WisEVoWnghXitCwKwMabDP+RIpskUoGyRXq+zJPqWSISNCraZY0i0urKElQtRISgQkT83dm3LXjMdJkZEhm0bSIg1JUhSWhwl/JFaMhhzPnyRFrjKzViZFQLIUDYUOdOPeUKwYGRmyiZMiW4RsNEkRkCxFu0KfR5IUbcOv6m6LkyJbhgxxUjTiOAlokyIgWYrGQrW9SVJky5AhTopsKTDESZHrPm1SBCRL0d5s7etIkiKXAMVJket1x0mRLUMGTVIEyKQoLENJKZEtQ4Y4KbJlyBAnRbYMGZKkKJwOSeRmt/JC/ohDgOKkyDVLWZwUTTqmpUuSorAMJaVEGWXyBLilKU6KXBM9xEmRKxVKkqKwDCWlRNqJDQD3uJk4KXIlQ3FS5BKhpJQoLENJKZEmRQKik6E4KXKlQnFStMPfWSdDSSnRbqU8NZIMhUmSIpcIxclRpjxWJ0NJKZHrnB/HQqRCLpqdEhkZatQxkmibhMim0bRIQ5QURV0xiCqhs9MhmxF/aEHSIi1RUhS1r1FStD9CAsb8A04xCsuQzUKU0EVJ0VTEATpKisIyZBj29zrFyCVDBm0JnaZ8DoiXIjsdsomSorAMVfapMOMUI5cMGVxS5JICg6Z8DoiWonTMuKQoKQrLkCFKiuLEx3Vf3OvWTt4RJUUzEZ3dZ8a9SDGKSoaipMglQwaXFLlkyOCSIpcMGaKkKKpULkqKdqejZSjqMS4ZiiNuymaXFLlkyBAlRVHJUJQURcnQcDa6fE5bVhc3FbhLiuJK5FxS9Mq0F5kMRUlRlAzFpUTaGdW0ZXJxqZBLivaWJiKToSjpibo9KiVqpEyukRK5KFxStNvfGSlDUSlRlAxF9fkaLZHT0EgqFCVDrpQorkQuKiVqlgw1k2Ip29JkyNAyIZqvwYWlKCodsgmX0LnSIRtpCZ3NfNOipBQlLEWudMjGJUVJkxCExxUlids+f3fT06IwYSlypUM2YSmKSodswlIUJUOG7f7LNWIUJUM2jZTQ2bjSIZuwFCVdKdrjb6sToygZMoSlKEqGavargXFFGsJSlCRJYSmKkyFDWIqiZMgQliJJaZx2Ha+wFLnSIZuwFEXJkE1YipLK5MJSFCdDLuJkyKAZUwTUS1HSuKGw4EhSofBjkmQonBLFyZCLOBkyhKUoqUwuLEWSZCgsP0kyFE6J4mTIRSPjhZIIS1FSMhSWov3ZQqIMhVOiJBkKp0StKJGz5WckmEpMhsJSJJGhcEqUJEPhlGg+JXISJOPBbSmSjBcKp0SSErnw/UkyFE6JFiIVakWJ3HxTorAItSodAto0ITIkldBF0WhaJKknBapSFJUOhTHCIZWERscVaROjRkvootKhMOb1xqVDNkaKkmTI0GhS1OwSujBGiuLSIRsjRUkyZDBSpDlAGilKkiHDjmB/w+OK4tIhGyNFcSmJjZEgaWJkpEgiQwYjRUkyZNBOtABUpUj6uo0UJcmQwUiRRIYMRoqkY4aMFEllyKREEhkyGCmKS4dsjBRJJ1EwgqMpkTOPkSZDRoqkMmRSIokMhZGOGTJSpCmTMxIkTYaMFEllyKREUhkyKVEj44WkZXJGijSpkJEiaTJkpEgqQyYlms94IQn7g4mWJkNGiqQyZFIiqQyZlKgZJXJxNDJWCJAnQ0aKpOd6kxJJZcikRN2cCtk0fdrtMK5puEvlHFK+fHpgz/NFCVGY/tQqVftB/yBV+x7lFMcT5d04yJdPqThW3oVlyn2aLu7D6h7FcxR3YF2PfGrnyfI+rPEPV+2TVDQNMwmLtoaZyu5BX69uQcdiKYP1AyeJ26fLY1jpy6diHy68rPr+pQsHsKrvCHF7AOjzdNNlA8Cq4BBV+xlvHIcppgEd80axIZC/Twe8MRwcrFa0H8YhwTpx+0lvGod5uunUAaCgvBCTDpTrhPjDOFQxtf+r/i4cFxwrbj8VZHDKSt2xY6YQ4OSD5NfIRnLAMct179PKHl37mZLumt1LUz76FA/ZPlXCIcqpy4cyJawbkD/JgUwJ6wbkzzGWK6M/pevoa2ZUA4CVvfrZBsfzZaxRvLkzxQArFM8zXQhw+KB8+3vTZaxRzMW9Z6aIPuX7qp3yGgCmSrpjwU5/u+oYu9ffhYPLh4rbj/pDqvZD/g711M97vZexDkerHpMVXpwzlJTTao8Ut2KNoi90IPcC+lPyfsR4ZjsG+3Tn03RuCGtXnChunymMYl3/61TPUQx0y5poha5RGepJyRfuDoIy+nrqP4tWpkPAIiZEpbLuQzMLPUkpBwVkiiPIFGVpS7Y0jtHCNowWZOM60uUxTJb3YbIsS4kmyrPpylhZtwiYtsYUACaKuufQXhXRlBlOBQeQC6aRC2QHv7HCDuRLM8gLP++p7Fy6V5BfASvOXWXbn90ifgwATCkTqZxgoV6bybw8scuXpzFd0u3PTHkYe4PnsTeQXT2a8cYBzJ6AJYzNXfXb58n264A3+90e9XRXIg94OmHeG8hmNzKMlmcwFcglfhjjSHvymGHEn93/IV/2Pr069/5v9WTHJrPvz0zJjx0mXXh2TCcs22cUApX3sT0tL4U7kE8hrVhEVrsI5/ap2c7uAcXAepMu2ItsxnGg0l72HGNzCwXnFIaTLpaRU0wZXQoCjCsTKG17TToJzMoQAOwRLnJqFkMdFyysDMzKEADkhe/rruwMdmVnMK68Qr29vB8jc8dNCTv97artS4/FhlHlOOahSvWL/HlMxcIwZGmMOQdJ+0Jj5V0YK+/CZFneER8p6hYdPZB7QdV+PLNd1R6YlSENmcLseWs49x+i9iP5lzGSfxkTBdn7uj/9LPann630h5LI5keQzY/A9xpY0E1BI1VhzWLBhcgWoVI5pxIjewVcDVIpMkilyCCVIoPkQGC3kUqRXdcqkaKxYvUAJqmbtV+nZPzVVCg+l0qRQSpFlfYKKTJIpChtvf8SKRouVN9HiRSlC9X3SSJF+XL1fZwu7ReJUTh1S5KimdBJXXsilkqRQSJFtghJpGjSugIplaLRcvU7J5GiYYxX/pZIkZEhQ5IUvRp635OkKLzPGikySKRoxDpsS6RoJF9tI5GiA/lqoiKRIluGJH13I0MawqVWSVIUFq0kKRoLde4lUpQuVh8jkaKSVRAilRy7neQxtgxNC8r4JG1s9gqlybAntLpukhTtytaedyRStL28H9utc4NEimwZkhxf7TYS0bHbSNonjVd27pNyoh/pxThDuK+UJEUjxa01MjSe0A86kHuhRoZypeQ+hC1D6bysRNCWoZHp5PfAyJCUkbzuc9ifflbVPqtYI6hRwkNktAu7NoOWC5Ek4oqTIs+r38UkMSo7xhjESVG2NF53W5wUpR2CEidFJh2yMVc9pLimZkxiorirrdIiIF6Kxgr1B+Q4KTLpUE37wlSsGLmuhsRJkeuzjpMiW4YMcVJky5BhMv+qKi0CoE6LAP3JKe6kPeaYoCJOikw6ZBMnRS4BipOiSUc5RpIU2TJkiJMiW4YMcVIUliGDNCkySJMiQ5IUucaexEnRiONwHSdFtgxV2sdIkS1DhjgpciVDcf12lwwlpUTa6Zk1qRNQL0OGOCmyZajaPvqFlxzV8XGCM54vO++Pe4wrGYoTHtd9cSmRS4biUqKwDCURliEJ25WVAzv97c5kKO746rovTnJc98W1d8lQXEq013vZKUNxKZHrfBPXB9JW0yxEKqRNhtK5IVUylCmMOmUoLiVyyVBcSuSSobiUyCVDjaREcZMrSFKhVpfLAQuUEM1XiqLQJkaaEjoAqhI6AKoSOoPrRx93IHBJ0XRxX+zc+C4pstOhMC4pintdLikKp0M2LilyyZBBmxQB+rSokfI5TQldrjTZlBI6Ox0K45KimfJw7Jgs10kqnA7VtHecJF0yZHBJkUuGDC4pihMf130uGTLsDUadYuSSIYOmfA6QJUVhXFIUTodsXFIUt58uKZopBLED8V1S5JIhg0uKXDJUae+QIpcMGVxSFFcm5+q3xyVDBzIlp8jEyZArJYqTIVdKFCVDcbhkKA6XDBm00hN1f1yZnEt84kTJJUVxyZBLiuJkyJUSxcnQeCnrTIriZMiVEjVSIqdJ50f9oYbL5MT7pEyFgPiLb9o+kCslipMhV0oUJ0OulChOhKJSojgRcqVEjaRCmmTIlMhJMSVyraZdZAhY4JK5JOkJl9C50iEXthS50qEwthS50qEwthS5EoMwrSihs+n0cUUAVOOKANSNK3KlQ3WPCaVFSbWy+7NbasRI8lnbUuRKh8LYUuRKh8LYUhQnQwZbiqSTU9gnqzgZqrS3TtBxMmRoRfmcjXZMEaAfVxSWDVc6ZBOWoqh0KIo4GTLYUiSRNluKpDOS2VIUJ0MGW4riZKjS3pKiOBky2FIkGTNk99ulZXK20EiSIVuKJMmQdDyRIZwSJclQOCWKkyEX2vFCQONjhqRIyuRsKZIkQ7YUSZMhW4okyZAtRRIZso+tEhHSlsXZbYb8HYkyZKdEUalQGDsl0oxZBfSVM8DSGi8kRSJCdkokESG7fyQRofmmRJJZpBe6bK7ls8zZLOs/Stw25feLhcjQm1ouEqLK/vSsFQmR4eDeY0WdZMMqf4OzXK6ZNJKslaE74fX58tlBACDlxa9oHyatHOOVK+inA/V93bom6wdOUn3WK/31IiEy9KdWiYTIsKrvCJEQGVak1qtn6zvMO1EkRJX25SNFQmTYEKyPTYfCHBysVsnOIcG62HTIxWHewbHpUJiV3rJEGbIZDAZVMnRoeb1IhmwOKW9Qtf+NgTWq9gBwmGL2LwBYqTsEYHmP7jS0O62bLWzPjH7MkFYLtKfSdQMpVTrUn/JUyVB/ylfJ0Jo+Xy1Da/p8lQyt6PVUMnT4oK8aM7Sm31eVyfWlPHWZ3JrUgKpMbm2wRpUMHVY+UpUKHVw+VJUKHVw+VJ0KaWcuA4BCwjqQ86UgWB+vpr2y0iS8Ho4I5YQAg/3y2f8AYF3/61Sp0OreI1WpUE9qmSoVKitnV519jhWqiRPyBV3AMB8WNCEqKBZoKpVzKBR1X+BCaUY1b3mmOCKeYQOYTYpmCvIDz2R5H7LFcXF7QF8elm7gR5vO6a7YT+d10ywWyq09EBaVB0JAf6VBO7HGeEnXidW+p2NZ3VUw7SBLANhW+Jmq/X9At57T897TqvYve7L1qAz/4T2T3CjES9B9zjs93dgu1+rhcWzBL1Tt04EuLc55+o7NdKGElybkF5pGcwF2TMs7veN5neC8OuNB4x7Pj2cxUZDvv2F/XnccGy7oZiR7bkp3TAovHJzETFEngTtn9J2bEWW536hwdj7Dc2O6fdoyrvvMXs6Oq9oDwNOB7jjzTPBvqvZbyrr2W4NfqtpvC55UtR8v6BZCBXQzpgL6fs9MXteHmUxvV7WfziiFsTiKYlGX8pQD3fi2fHFKdV6fyQ2pZKhYSi9AiZyvkqFGhGs+LKgQFYujYikyb5pGisxjpFJUKufn2ss62CaNkUqRKc2TSpE5KGinnE7nR8RiNJ2btW2pFBmRkHbgTUInlSJtOjQzt/8aKTJtpVLUk1oGQFZOCQCluatnPcK1tcyVKukB0XxPpScBU5ankXHTdn9eVt5gSgXNorJJmEVnpVOzjmL2hDoB2W/NbH8f5AIyPVeaNyKc1GBsbsHktDCFGvVmv6sZyMaOjZRn3xttye0O5YrkW5TlHN3IPqUMHcjrLtIMFWa3vycvPNYXZ48V0kWGi3PGmBVOxz1ZKNb8rwRTcZYVTmVtStSkU1+P5Wb3ZTQn26c9mdnz/nhB1onaOVdpkINcNLf7s4Pbxz3Zb3R3+dez7YUXzMaK22v+NwmzXen2J0qzFSvpkuy8a2Rouqi4EDwnQ9IyMG2/x5wHpedzI0OZnKwiw8hQSdhXtUWoKOwzmHP/dFZWQWReq7Q6ZmbuGF8sy/rCxVJjF7F1ZXOzulES7lM5yKslc74syjpEhdK0Ki0qFGfUaZF2ldtiKaNKi2YKQ6q0KFscV3VQNWvxGDRiBMxKkSYtms7vVSUbhXK6pWlRsZxRp0XapEhTUgnIpcigvUqkvTKm/d4BcikySKXIIJUig1SKDBopMkilyCCVIoNUigwSKbLTIYkU2emQVIqmrYUpJSnRaK7a2ZWkRONW31WSEr06U20jSYmeH6+eA6QpkS1DkpTIliFJSmRkSIqRISlFZemeRoIM2oVgpRJkGBNKkMHIkJSdyrLr7f5/VGRIipEhKVIJMmirEowMibevTIa0s6Nq+zgz+f2q899kersqGZrO7FAlQ42mQppzfr44peqzzOSGKjIkoVhKNyxDcnxoVKMc5Bc8GTIs6BgiQ09PdeX43ojVa6Nitd6e5ZHbjXpMT2rAebu58l7ffllEe3e5yfJedx1o1Ix2Az1r6m6LOzD0pepfc9KkAoN9a+tuM+mQs33/+vp9ivkhrug7rO62uPFbvf5g3W2NpkMuenz3ZxYnTK6VkKM+ewAYSK2pu60UU1tddHxf4uqYfa9+nFPUdxQAlvfVf2ZJM9m5vntxwrS+r35V7bjZ9Q7xjq27zaQ3Llyrm5t0KMxquH9nUdvfgOMin3c6YuKGteX69xSopkNhBgP38Ws04gryMqxy3m7SoTCrfPf4oKhSuaMD9yrocaVyJ0XUsdsyZPPa1e4BQrYM1ezTCrfojEd8tV8z6N6OLUM2XoRH2TJks7rXvf9xqdD6vvrjFxCdDK3rdZ9zomTo8D73eS1KhgZT7gkoomRoIOXukETJ0Kre6DGXUW4zkHJ/EFEy1OdoHydCB/fX71OcCK3prb96HSdC/aj/XiRJ0Jqg/vcZJ0JrUkfW3RYnQgf1HFN3W5wIubYfJ0KDqfp+QpwIrehxHyviRGhZ78F1t2n7O3Ei5DqPx4nQsv5D6m6LE6GUo4+aJEI9jr5CnAitGHhN3W1R/a/+3tXO26NEqMd3H4uaJULx8uI+7qQi9sne1kKnQ8AiJUQ2rrQorsYwKimKe4wrKYrraLqSorjJC1xJUey6Ry0eVwToxxZxXFEynZ4WAfrvXjgtSppqPJwWxckQUJ8WRckQMJsUhdOiuO27kqJpbyJShgB3UhQlQ4A7KYqSIcCdFEXJEOBOiuLGDbmSoqRxQ660KEqGAHdSFCVDgDspipIhwJ0URckQ4E6KomQIcCdFSSVyrqQorkzOlRTFJUOu0rm4ZMhVOheXDLlK5+KSoaj74oKecOlcvhTEJkPh+5JSoXDpXFIqFC6dayQV0tJtqRDQneOFtDQyXigKV9lcXCrkKptrZioUXTYXrRfhsrnFTIVsFkWIXF+oRkroNGV0LKETtG+ghM4gmd3PlqJmpkOGsBRJJMk+8MSlQwZbiuLSoco2LSmSzHJjHzjjpN1gnyyk6xzZ3zvJd7CTS+j2Yau6hM6WojgZMthSFCdDBluK4mTIYEuRZBIFW4qkkyjYUhQnQwZbiuJkqLJPlhTFyZDBlqI4GTLYLhAnQwZbiqTjhWwpkowZsqVIUiZnS5GkTM6WIkmZnC1F2jK5UqArk+vEEjl7LJFUhuyxRBIZsoVGIkN2G4kM2W0kMmSPJZLIUHgskUSG7LFEkj6M3UYiQ/Y5nCVy8bS+RM5HIyVyYRYjHQIWqWTOYJfO1dzuKK+Ko7dnuWrmip7UgKizWW2/TDW9tav0Kb69bo7aRqad1kxHDsjkwGawd52qvXbKTIkQ2fT4y1SpUV/PStVrHkitEQmRoVjOqab91Hyfgeiy0GayrKe+vCKOHk+XkPlIXofGpgzdLForPN3+ry2vFwmRYTBYIRIiwzKsEgmRYZW/QTWrXFzJYBRH+brf8doB3bFudZ9uumzt2emFCV1HOaM8LgKAB/lrWNc7oBozdHjfctWYocFUSjVmaCDlq2VoeY/yfKZqrZ8NL1vW7f8kdOeavb7ugg4AzJTkSygAQBDIX/NBPceokqE1qSNVydBgaq0qGVrRc6g6FUopqyW0U2RrZ0crKStWggbSC1+5XElfj7ucOgrphAnAbNlcK0VoVmp0v/yoZXUWS4aANiiZc5FXviHZwhhyRbkk5AoTqvQnX5hCqST/QeQKEypp0f74GyGnXPhLe4DJK9ZyCVBWlZOlc/vhKb+q+dKU6spMsZRBNi9/jzQyBMgXGbb3R0MjC5hl87opm8fS8ik/p3K7VVOFTxX21Cwkl8REYRemCvLFgPPlaYyWdEnULu8/MB3Ifwd78KJq+3sKuvKavblfqdo3MrnE1rL8auNUKY/tM/KT7IFsAS9Pyo+jw9myalpnrQwNQb/AtXadq5eKunKfVxTHIACYKMqFLlsqYTyvF8AZhaCVygEKZbmg7cunMaW42Li/PKUSnD2ebkKW3d5LqvYAMJzV/e7H0q+o2r+a/rm4baYwir1Z+XFiIrMDe6fl03BPZ17Fvindcgv54hQyeflabDO5farzWTqnK98vlnTnykZkSIvmObSTkpWKk8gpyg61qVaxNIWycj3McgNDHBaCRRUilwmW56xXK0UAVFIE6DudGikCdElOoTTTMjHK5Ifm9mdUJEbmSkI2PyISI5OsaKQI0I+x0UoRoK/d1UiRlNLcVei+npXOAaBhTCmotGzTpH+ak4iRIakUmXYaKQL06ydppAiASIrsBW1HSztEYpQOxit/S6RoPJi9IpsNZL/5scLsPkjLHE057kReV+OvkaLiXOKmkSIAIik6kK12xCVSNGytVyORokZlSCM4pu2EJ/udjXmTqufIYLZTsb8s+04U5lLkmVLyMS5rldeVGygKkUhRSSFCgH5q8/1lXUfWyNC0J3s/jQxpzhlGhiRTTI+lX6nI0Hhme2J7e1a1aUGnXzrNtWFCOXZmOqNLhQD9hTptJYiRIcn4k2JpqiJDkoQuCPItlyHtc2hECJiVIQ3a/pJWLoGqDJUc/d3FTIeANkiI4t6AfHFULUa54oRKjLRjhUqlvDotit1eqHQvSYoaKZer30br0qJ8eUYlRj1+f6wYhcc0JUmR6+pG0o88XOKYJEW9ETPaSZFIkY0qzRTUIIclKEmKwvcnSdFUrrZcI0mKwlKTJEXh+zVJkUGbFsVJkZEhQ5IUGRkyJElReGxiK6SoGCo/TJKiqdAxUJMUAfFSNKxcvHO+yZBEWMJtkqRoLNQJT3oOI0OGJCkqhEpq46QoK1y7aD6EZSgpJQrLUFJKFJahpJQonAwlSVE4GUo6ZwxnX1QlQ9pUSDuRQFiG0oX4RCYsQ5lcfPuwDKVzQ0gnjF0Jn4fiUqKZ3D6VDKVze1XJ0GKkQuVy/G8+/By5hM9MmwppZKiRVEj7npbLmdhkaLFlCGgDIZLQqBhpiOp0liPqlaOkyDXRQyMldK0uo2uWFEWNu4mSogARU6Mr0iIPvjot0v7gm5UUlSLGKERJUdREIZHfz4jtq2fQy4+pSuialRRFyUyUFEXdHrWdfMxJKUqK7HTIRlM+J02KDFFSFDVRSzOlKCxDhigpCsuQIUqK7HSoUaJSomaVycUJS9R9UVIUlqGk7YRlKImwDMURJUPNTImikqEoKYpKhqKkqNFkSMJu7yV1mVyUCEUlNFEyFJUSRclQVErUymRoOvOqOhnSTwzgFqGobUSJUFRK1G4lco2kQi4ZCiL6M1EiFLXQbKtToSQRaifaQoikZtiMtChucoRG0iLV/ijTnWZIkSmXc+EqoYsbeCctoTMsdAmd5IcdbhM3AUY2P1onRvNNh2xamRQB7hOKNg2Ka++SonA6VNN+gcvn4mTIEJaiKBkyhKUonA7ZuKQonA7ZSMvnDPOVoiJKkTJkCEtRlAxFESdDrpQoLh3SjCdykTRmaNKbrpOWpGQnLEVRMhRFnAy5UqI4GQqnREnJUDOkaDHL5FwpUZwMhVOiJBFynU9aPV5ovsmQTTglmsjsiJWhcEokEaFwSrRQJXISklKMcNncQpXIaWhliVzSReLwfY2mQhLaIR0C2kSIAJ0U2YlRSfAFa+XYokZK6IwYSWa6s9OiZpTLufdpYUrootIhG1uKJFOAt/O4oqh0yMaWIsk08vZ3UzJzoPZqHaCbbGEs/XJFjOJkqNLekiJJqZstRRJBWsjyuTgZMthSFCdDBluKJNP4t3JMkcFIkUSG7JRIkgzZUiQplbOlSJMOLcQEChIZsrcpSYZsKZIkQ0aKFqNMzoWdEklkyE6JJMmQkaI93pA6GdIgLZGzBUUiQ3ZKJJEhkxJlCqOqZKhdxgvZZXMSGTLb7IQSORembE4qW6ZsrpGJE7QypEHyfhr5MYlQp8kQsMjTbofxldNtA+5VhOOIWrU3Cs2U2K2e2jqqfC+OuIQoTH/vwaqpGVcsO0K1L9p0ZTKjSwgkcmyj/S6sdKwmHYdEiGxmsvKrZb6vmwoXaOz7o0HzfT5o4LiG5EVKf0o3hSkADPjuFcCjKELeIc8oF8TVLjS8uu8oVft1OFrV/pDgIFX75SndUgJr+nTf5wNZ3W+9ESHSUIbuNNob6N6fgzz5eS6lmBYcAHxP1x4ABnzdFPkjRfn3eaXfryqTk06aYNCsYwYAozldygPMznwrpTel6/eop7BWrNcI1C+amUSPcv/1nXHdhQnNjGeel2p5KuRFLlzqxlf2S8qKPpun3fYClLoFyhl7W0nbJEQAUC6n1V/OYnECRdWU23IbzRWGkcnLr0rki5PIKyxdW6KnJZPbDajGzexB0Vp4NAnt4riaNGc6t1fV6S+Vs4By7R7t5yWZ6cfQ76/CYEq37s3ygQ3ituVysaWCo71CVShNquR7z+TjmFIIr2bxuUx+BOMZ3Voi+fIMJotyQZsu7UdWUeKmSXfTuf3IF+QdwmIpg5GMvJTHRwqj0F0B3uPLZX0SaewtyV/veCmL7Rn5d217ZhozivPEq8oOcMZLI+PJOxlpbxpZT34czHozmPLHxe0LnvzCSiEoIavscGpL57LlIsaL8k7MNsUaPXv83XhRkWLu919FWiFEY9ijWr9sWPG7AoDpzCuYzsgFqlgcRSYn/y1m88OYycrXGJpRJEO5wj7kCroStmJpClnFcT+bH0K+IK8wKSj6a0E5j0CxvqQHT91naClBWbU/QVCMHEfkbI9i4kQPNpq2QGnuPw2ltpIhoM2ECDAfst7YtVKkEaNMfq9ajDSIplaeT+c3KKrESCNFgOwKVJ+/HIB+QgR1EqI8qACyz8usIzSd26sSo1ZKESD/XjT6/dHWMEukKJOvdpAkUmRkSCNFANRSBEAkRdOlammLRIrG5zol2pJXiRTZxw6JFGkXvwWAgjd70tJIEQCRFI2XqlejJVKkESegKkMF6M8pEilKWyVwEinSiBNQlaH9goSrYI2J0EqRFO2iqEaGJOWHe/xqR3/MT5ao/b5O6segS6SNDEmPnbYIScqAtKVCWc1aPpkdFRnKJ8xeBqAhEdKWpWnEqVAYrciQRHI0IgToFleeL6L+rLLPohWhAPL25fJ0AzKkpaR6DQtF2wkRUJWiZqdFpVC0qB0708lpEQC1FMWJUX9vbQmNNpbXSlGcGDkj/oQDTDl0ANVKrFaKNGLUKimSEpagJCkqhKRAkxQB8VIUlqAkKcqExrdJpCg8+YcmKQLipWg8dIU2SYrC4+Y0SREQL0VhGRrFq4lJkZEhQ5IUTaL2GKtJipIIy1BSShROhpKkyJUMxUlRWjnGKCxDSSlROBmKk6KCYF2VOCQpUViGklKicDIUJ0W2DEkIy1BSShSWobiUaDjzYkPJkIawDMWlRNn8sFqGNIRlKOmCqEuE4mQnmx9Sy5CGsAzFyY43939twwKkQhrqRSjuuNJYKtSuMgS0qRDZNCpGUjoxLZoXEV/EIHDXDS9GCV2UbLQ6LYr6rEw6FCZqP/t99/iVxZCiZpXWNSspstMhG235nCYtipOiqJkQo6TITodsmlE+FzWJSJQURR0rNOVzACKlKCxDhigpCsuQIUqK7HTIEJUARd0eJUVRZXJRUqQpkQOiZSgqAYq6PUqKtGVyzudsYumcJhnaVjqgLpNzEZUStTIZihKhuONolAxFJUCaZChKhKLK5qJkKCol0iRDzUyFosrmWl4i57xdPx63KUT0TaLGBHV2KtSIPC08bStE4Q9/IcYWacVISiNp0XzJxM34tcAldKZczkXLS+iAugNPOB2yaeW4IkAvRdpxRfMlTnxc44rC6ZDNfJOiJOkJ3x9Oh2yaUT4XJUOGsBSF0yGb+ZbPJR0jwlKUVCo33zFFUTIUhUuGDNqyuLAUNTJmSHN/UjIUlp9Gy+RchFOipGSoGaVzcTIUTomSRCicEs03GbIJp0Rj2BMrQ+GUSJsKAbpkqFgcjZWhcEqkSYWA5o4XCp/ztSIENF4i5yIsPu1cIieiTVKhxkSoERmq0q7pENDGQgS4pcgWo/A88i40UgToyujstCgrGCi4lEvowixUCZ14RpwWjCsy2OOKotIhm4WabKFVky4YKYqTIYMtRVHpkI0mKQKqUhQnQ4awFEnWyWq0fC5Ohgy2FEmmmNeWzxmk44ZsKYpKh2yMFElkyE6J4mTIYEuRRJCMFElkyE6JpMmQNkEySGTITokkyZCRovmWybmwU6JsuShKhowUaVIhQCZDdkokSYaMFDU6XigJc0xtZPIEDRIZMimRPV5IQiPjhSQYAVroErk4lkKJXBKePzuLXSOpkA7J8aYU+rtzZAhos2m3o/AiF8/UDRD2FFNozyL/4mqnVuzrkU8LrJn62xCbEDnQ/JCWDxyr2vbyvvXitpK1bGwKRe2PWjftZ3/vGtW21y47Qdw2XZLPtgPopuVuBG1ZnOb3MYtGepVTlcYssOtisF/+nWxk+5q1nOIWi3buiyIlPWTZSaptA8BK7xBV+xVl+bFsGXRTBmsY83RTaxc9/clZspZaowwE0Ul6mIMC3bTyA8rvb14pW9oFaac9+YXKgmC9JptcoDuOjWbqF5iOI53TjdHRsKz/CF0ypOxg6saU6Cdg0dIusqIda9MImtI8T3n+K5cbu2CzkLS7DAFtnhAlo4vvgiAbOVbG3V5+JUIbPWqSqAAlBNqYMmLci3v7ui+qdpG0nGJ8hRZtB0W9KGtuH7KK1bQ1a+toJ1vo7ZF3mAKU1e+NZj2J2bRWczUqrfp9aK6oFoujyBd0K7xPZeQLmuYLUyrBmc7uEa8jlC0cECVthkJpUnXs0JYBeZ6PachFvQT5WJecl8O4ouM87k2q2pcV3/eMN6PuaE8F8gQki2lkoTgfII0JT7b9MsoY8cbF2wZ0pXPaMrs9/j5VgqZZHHisvAvTZflve6y4Q3WhaTy3XdwWaK0MAfGTK4RR9WWU6cEs8yuNSm6raK/oz/ipQfjKtZEWbRyRg0Cxplm5nFOtu0Ti6QghSu546cVI2kY7qYNWirRipMLzVQcSLRIp6knNLgSWK002XYxMWVsjnX8tEinq61kJQCdFgKyEzqzY3duzvCViZNr0pAaVYpR8krWvXkl+H6aNtsxEIkWlcrZSZqmRIkCW+kxnq5+9ZnFViRTZbSTHDW/uCq9UiuzJQyRSZGRowtclnRLJ0YgQAIx4s/sgkaKMVcYmlSIjQ9NB8mu1RUgiRTnF+Cv79WmlSIKRIelCs9qp2I0MSd7HsXK1fFYiRWNFuayM57ZXZEiSuKZzO1ouQxoq/ROB5LQ+/bD7X9qyqgTsPoygL6MVoXYimPs/KZ0kQp2QDgEdIkSA9A3tjLQo/FraKS3SokmKgPZKixK3FxqfpE2KtGmRhjgpcr0PzUyLwr8F7cEu7rcRvi9JisL3NzspCo/b0SRFSWQLtYmAJikC4o8bXqjcpaEB4zFSFE6GkqQoFxqTFCc84fuS5MjIkCFOijLKCQ6A+mQorjOvSYWAehmSpkSNkJT8NJIM2SSlROFkKO59tGVIQliG4lKidkuFwsT1S9T9lgWRIU3b1qRCQOfLkE2c7HRaKtQpMgR0kBABGilqblpUbdsZaZFzBrwmpUWeN1B3W7NK6LTjh1zEJSLacjkXUVJk0qEwzZAikw6F0SRFQLQURd3ejKQoqra5GeVzUbdHSVHUBBxRUhQ1iUGUFNnpkCEqJQrLkCFKijSyFJYhQ5wURU0t7yKqTC5KisIy1AhRUhSWIYOmfC4uJYoqk5MkHIYoSYpKhqKkyPWamlU657q9PHc0dRGVDEVJkbZMzkVUSqRNhlxEpUTtmArV3R4hPc2Roah+hna2MXfbyH1sQolcJwjSUk6FgM6SIaDDhAjQvMHyHyzHFjUHrRS1Oi1qVRldp44rAvTvS1iK4r772ulBw7+LuN9J0pS1YcJSlDQb4XzL51wyZNCUzgH18hMnQ9rFpV1SFCdDmvFEQL0UxcmQS3I0yVGUDEURlw65pEgzZgiIT4fC92nK5IB4wZtv6VxSMhSWIk2Z3D5sjZWhsFhqkqGx4o5YGQqnRJpkqF1L5ERtGxovJGX+0y7Horxw2wnSE8VSHyvUaTIEdKAQAdqOV2vK6BpJi6Ri1EhapBKjFo4tWqgJF6TTYjcqReFyORetkiJAV0JnS5H09c5HihK3bcYhCGa+0U79aaRIIkeNlM8ZMZJMca0pn7OlKCodstEkQvaxIiodstGWz9lSJJlEwUiRJBmyJUcztkgiQ7ZEaEvlJDJkd+a1EygkYadEmrRLghGgbFCcd5mcC5MSaVIhQCZDJiXSpEKAXoYWG7sf0j4lctI+hj2eqH0mTmgXNKlQp4pQJ8oQ0CHTbkcRPR13e+MqO4tjoG+dqn02r+gIBmXVQVSz76sGddNzR5WGudvqRMqDryqZkwiRYdXy16r2ZWXv4eK22np3zXuopVhKqy4CaBdTbhWplG6KYgDo7zlI3FaTAPX4y0RC1AgDvbrpsg8ZPFHVfhmUUz0HK1TtpWhmtgOAnKdL6LKB7tjS48mnEtest7Y6OEQlQ2uDNeK2jbDPl68tMxHoJlsoBPLErKD4vQ2m1qqOoZq1hbqHFPSpkBztkiW+L++DlEvy71Xrx1u1chrz1n0+WjpVhoAOTYgMnfrGa0v0tGUxmo9VexDQ7Pdkehsm09uSG86RK4yL25aVK1WXgzw06+Zo3pfJmZcwOfOSuP1MUd4h1qx/kytMIFAuQKsdV6U9ebUDJWUKWS6lVet4FRUnXc12Z6cql29bc2W7HBQwNPMMhmaeEbUPgjLSwbh4+yXF7yftTVYW1BRtW7F+UNqbFAvUeGkXxku7kC3L18jRtJ0pD6umkB715KmypkKggBIKyg7UJOQJWwaT6PPkV+9bJUPp3H4Mp58Xt6cMRdEenW3P61FdBG8vGdLQnPFZi0Gn9skNHS1EQGd/AFop0omRj1Z9vFqhk0jRVGa2XEIrRVox0kqRVoySMIvsaqVII0ZSKTIy1Aopapd0yKCVIkAmL9nCbNmURIrMiuyaldYBaenhbBuJFJUDXcJiI5EiI0MzgrEttghJpCg/l/ZIpEgjWWEkomPaTJeSJWemrFhsE9UUbNxLTlqMDA0Lygi1IgRUZWiwnJz4ZaB7z1spQxooQ4uH5FyhFaHOliFNW8pQM+l4IQI6+4NYmLSodWIkRZMW5QrjLU2LZqUoWhrC41qaLUWGmeKBWDGazNcu0tcKKTKUg2KsGIU7/Es1KQqfSOOkyMiQQZMUJUlRWILipCh8n3YMRFJKFP4uxUlROBmSSJGUfKj0LU6KwjKUlBKNl3TTPIeFKU6KwjKUlBJpSgLDyVCcFIVlKEmOJjGjToZs4lKiQpBeMBkqlqIfO515hTLUxrQ6FWofGercVAjo7D64zZIQIqDzP5DWpkVAJ6VFhigpyubrr7YuRFokZTFK6HKF+ivaWikCdGlRlBS1WzpkUypNRopR1Mm0GeVzBcfvNUqKoqcqn3/5XFQ6FCVFjXyHwkRJkSvBiUp1wjLUCFGiESVDUSmRtkzORZQUufYxKiXSlslpbo8SoaiUSJMMaUQIaF0yRBFqb5gKRbWlDLWKJSNEQOd/MN2UFklpJC3SidHCldCZcjkXrRpXFATlyn82ceLTDClqd7QldGEpCqdDNmEpcsmQQVs+FyZOksJSlFQqJx1PBLhTorhxQ2EpiitnC98XJ0OulEhTKpeUDIXlJ06GJKVzccQlQ2EpipOhcErUyvFCQLwMhVMiyhCRwFRoPm0Xjk7vc4dZUkIELI0PSCNGJi3Sjy9qPpr9buWEC0BtGV3y066adAAAL6RJREFUdyK+hC5MK0voKo8LlcuF0Y4rAnRX+20pSioFs6WondOhMLYUSU6qrZpowZaipBTIvl+SGM2nfC7p+2JLkXYShWa0qTy3JUVJj7OlY75lci5sKUoaN2SnRPMpk4tDIkN2G4kM2SlRq5KhQjnTVBmyy+YoQ+2LpkSuc1Ohzi6PMyyFvnaYjp52O45OnZI7jOcNqFaR7+892FlSFoUm2dGgnZ7bTKogQftD1Lx/mrIkD/Lv2Krlr41NiMKUFGsPZPK6BSo9Tz4Fue/1qDr32nWF2oFUapXqxOoppn3VTN/u+X3i75/vD6q+qwN98qneAWD94Mnitv2efHrt5cEasewMBqtUpXKaxU6nSrppoTWsSK0XT6Kwwl+vkqHVgXxq9dWKabh7kVIlQ2l/WiVDmkklWpUK9aSWUYbaFM/rE/fZPK+nQ0WotdOXLyRLUYaAJZgQGZbKBxYEWVXHJ1cYbZnkaNCmRZqOtPb1tWphM038PjnzEsZnXhBvW7OeUEnR6QaAQnFc0bbxmbo6BfW03JrvquIEqPmda9pqCYKyqnxuSjGV9DDkiZVkhjVDGvJxPZOlPeoFm9MFeYf+QE7+O58oyi8E9UIu4r3QlbJOY/5jtKIoBvLjb0px0cg1bjIOylD7Ik6Fyp2aCgGUofZnyQoRsLQ+OG0HSDseqVVo9qHVUtRKMUpkLqVqFykqlaZRKsneb+nK052YDhmkJ07TTvJay+WZuccknwhbfeLO5uVr2mjIz5VBSaQoE8x2YNPBWPJ259IeieiYNtoFW6VoZChTHBU/xqTA08Vk8TMylPaSjwlGhtKe7JyRg67MNe3Lf+eNyNCAYCFlI0MpP3lR3Gx+T8u+/2ThMH0gybGyvcYKLR2WUp/axZIWImBpfYDahRqB1pXEafdBuh/l8rS4Y92I9C2qFM2RJEUZq+QxSYqms9VxLaVytiExkrKUfksukj7D8P2tSopahaRTaI8bSkqJ8ooxIUaGGkGT/iRJ0WSp+h5IUiJbbJIkx8iQBE1J7HySoSQpsmXIF3QHbBlahnhxsWWo31sZ27ZVyRBFqPPR9nsoQq1hqZ//gS4QImDpfZDqAwTTotC2F7+EbnzmBXFalC9ONS0tKjrKw6KkqOQoTVhqv6Uw2iuLUd9Tkw7VbtstRQt5Ao/rILomUWhV6VxcSpRXjAXSlsqFiZMilwBFSZFLhqLaumQoKiVyyVBUSqQpk8sh33bJkATKUHehFSHKUGtY6ud9Q1cIEbA0P1CmRY1td3bbi1xCN0c7ldBJcf2WOrlczkX4M4z7TJdiUmTjkqKodMglRVHpkEuKomTIJT5RMuRKiVwyFEcjZXISFioZsgmnRHEiFJUSRcmQKyWKkiFXShQlQ66yuSgZcpXNUYY6m7iLvuHJjChCrWUp9p2j6BohApbmB2sOHFI56oa0SCtGraAbpWip0WhS5EqHardbsv5enPcx3GFMmmLblqKkUjlbipJK5WwpSkqGbAFKSoZsKUqSoXBKlCRD9v1JMmS3TZIhOyVKkiE7JdImQ1LS/nTlPylMhsh8YXlc+9AN53mbJTvtdhxLZUruKDRT8nrewKILkmYffH+FSpBmty0bbO37/S2ZvctDT2VShSTWLH99zRiiOPp6VtaMIUoi5Q84S+acbVMrnCVzLjyvZ8klRDYeesQn3tnvp2z6Yg+ptjih9/duELc9aPB4cdseL3nAeyNtNcyU5AseZ5QLXUun8x/sXSdOhlb0bBAnQ4PBSrEMDQaDYhkqo6ySoAwmxSKUC6bEIpQtTYpFqFTOUYQ6GFWfRXE8Jo3TbTIEdFlCZFjqH7R2fNFi06q0SL/txU+LxqblYzYm0y+q9qNQlJcBFRVlQEtZhoDGk6Jmbpd0LpryO8mMc5XtCmacMwz78vFdU37yLIA2KciTnmX+QfLtKhKkvGIpAdJ+MBVqL5Z6HzmKrhQioHs/8O5EujJ068Z3BIG8VEVzpVMviPL9aAdZ7kwkoXv7BPO5gqwTXipnMTz9rKhttjSO6eKQ7PnLk+IkZ6Z0QNx2NPcKcsJ1tCYzu1AozqBQlKV7ucIEsnmZOBRLGczkZULie72YKMlTXwlpT36MmPB1izznFesX+YrKDM3irJm87HtGCEmmm/vGXStEQHd/8N3J4g5oD4K8WEg0a2dQish8SZIiezxakhRlS+OVv5OkKFeuCkuS6Nj3J7UdzVUX4UySosmMfHFUQDeepVjSCIM8ETFMePECY8vQlD8evy1LhiRrOtky1O+tiG1ry1BfQlvKECGLQ7f3ibtaiAD5opNkqbD4s3y1Ii3SzMhn9kG6H3FSRGGKIi4Bap90yEaaFAHJUmQjTYri0IwFsmUoCZcMxaVEYRmKS4nCMhSXEoVlqBkp0VJIhgb71kW2DcuQ7w+Kn4cQUoX94Fm6XogM/DJ0E9ISutbRziV07tvaY3bCzqI9xScOlxRFzVbokiI7HUp8rnJ9cqMRH1fbKBlypURxyZBLitopGbJxpURRMuRKiaJkqISCMylimRwhSwf2fatQiAghhBBCCCFdC4XIgqbcbSx+SrRQY4rikiOOKWol4ZSo/VMjTemcTVw6FC6bc6VDhnDyE5caaRIlm2aOGwqXzcWlQ+Gyubh0qNGyucUqlQuPI2pFOpTJDzEdIqRJsM9bC4UoBL8g3UZnls8lyVEjY4rkbSlFOtpfgqJIWty3kbFEcTJkMKLTzLFD0hnnDKZsTlIqZ6RoIUvlbEzZnESGTNncYo4bMhMrFMqZRBky44goQoQ0D/Z16+nKhVklLPXFW4mLFBZTjjyvTyUmi007LOpLWkdPao247YplR4jb9vrLGtibeDSyoxkL1NuzXNy+JyVbUBUAVva/Rtx2dUrWthfyxW3LyuNcSbj2Sy6YFidDGtkdmX5O1K4VC2sTstSgDLlhQhQBvzDdSOckRe0AZWhpUxROkFAsjWNcuj5RXr7gbzovW9B0LP0K0nlZ53oy/bL4+QFgOiObsa5QHEMmt1fUtlSW/86LgWyx6EwwgclAttZRGnIhBIAMZLKZCSbEopUP5On1VFZWOkgZIiQZ9m2joRDFwKkICSHdjFSKJBgZknRwjQxJpUiCkaFcQSZPZixVodi8fTAyNJ7ZlthWI0NSjAxlkSwkGUyqZEiKkSFJUkgZIqQ5sD+bDIVIAL9EhBBSjy1M0pQIiO/oaiRoLF1NcKQpkQTNxBKFYnVShbiUqNFkaKS4Vfy4ODTJUFiE8ogWjkZkKImp7G7KECFNgn1YGRQiIfxCEUK6EU1KFCVFmlK5MFGCZMtQEuFSubiUyCVDUSmRLUNxuGQoKiWSJkNAvYxElc3NR4Y0zx+HRobC9PWscbalDBESD/uucihECvjFIoR0Iy4pihKlsBRFyZCr4xslP+Hbo2TIlRJFjRsKS1GusK/hZMhGOpbIRZQMuVIiqYxEyZCrbK4ZMuR6DfORoSgoQ4TEwz6rDgqREtZhEkK6EVuAmjW2yO4AN2u8kC1F2kkU4rBTImkyBMSXytkp0XySIRs7JWpmMmSXzS1UMuSiXE5ThgiJgf3UxqAQNQi/bISQbkMqQiYlmk+pXBgjTNJSOYkMmZSoGcmQjUmJpOOGmiVDNotdJpcPphNlyEyswPFChDQH9k0bh+sQzROuV0QIIW4G+g4XtUv5sjV0ckV5J78obqudbj8latXXu1bUbsWA7D0CgMGUbJs9nuz9nC7uw/Ke9eLnLwUFUbsyZO0AYFSY4iUtRk1It0MZmh9MiOYJo0lCCHGTzTc+niZMWjg2p1gcRbEoTaZatfaYbLvlch6T6e2ytsLzTL48jXRpRNRWw1RRlqKlSyPIlmSJ0/6pZ0TtKEOERMN+aHOgEDUJfhkJIaSeZkiRRobkLL4MSdHIkJRpoeAAVRlqpmgZGSqW4svgKEOERMO+Z/OgEDURfjEJIcTgVf7K5vc2JEbp3N4aGSrFdJ51qVArZKh2u/mCewpsQC5D5aBYI0PTxaHIto3K0Ewxej8BeTIE1ApTXEokTYYIIdGwz9lcKERNhtElIYS40UiRNBUCtDLUCuTb1ciQFJcMRaU50mRoqrjPKUNR25WmRy4ZikqJmA4RUg/7ma2BQtQi+GUlhJB6JFK0FMcLAdEyFB5HNF8ZiiJKhsIpkSYVAqJlKJwSaZIhyhAh9bBv2TooRC2EFk8IIfVEldCFS+TiWLzxQqWIv+NpVjJkl821YsyQRIZsAWrWuCI7JaIMEVIL+5Oth3NGLwBBUOT03IQQEiKb34uBvsMAdFqJnGzb+cJ+9KTWiLfY7GQoXRpBWThVNtC8ZMgmW5rEQGoVZ5QjpEEoQgsD1yFaYChGhJDuwUtuAsATrpsTBNn57MyiIBWiAGWsXHaUqG2fv1zUbiKzAyuF6xyNp7di1eAxorYAMJnZiVXC/ZVOLS5d+JeQboAitLCwZG6B4RecENI9NO96WyfKkJQAZXHbfGEK07nkJGcis0O8zfH0VnFbYFaGpIxNPYtSSV7aRwhhX3ExoBAtAqwFJYR0DwHmI0ZBkKUMYVaE8oUpUVtbhqay8SVotgxJkhytDElhOkQI+4eLCYVoEeGXnhDSPeilaKmLkEaGpCxkMhQnR2EZikuJKEOEsE+42FCIFhleDSCEdA9yKVoqMuTq7EeJ0JRDMKJkyFU2105lclIoQ6TbYT+wPaAQtQn8MRBCuoP4EjqWyFVpVjIULpuLkyFX2VycDIXvi5OhcEpEGSLdDvt+7QOnPGsjzA+DM9ERQpY+AcKz0C1lEQIWR4bCMBkiZPGhCLUfnHa7TaEUEULI0qAntUYlQ/09B4nblso5RVuFcHq6ApJScVLcNgA7g6R7oQy1JyyZa1NYU0oIIUsDaRpSKk2iVJKLRTr3qrhtriBfdFWb3sgXyqUMke6F/br2hjFEm8MyOkIIWfq0SoSAxmTISE5Pz8Hx7efaBSjCS+hSUIZIN0IJ6gyYEHUI/EERQsjSZD4ylCsciGybK+yrkaGk5IfJECHNhX23zoFC1EEwbiWEkKWFS4bSOfckCa0qkQOiZShKely3R0kPZYh0G+yvdR6sw+pAWEZHCCGdRak0iVRqVc2/NTRLhoqlcfSk1tT8WwuTIULcUII6FyZEHQyvQBBCSOehLZFLkiG7bK4VkyfYApQkQ7YAUYZIN2D6YuyPdTaMGJYATIwIIaQzkMrQbNlcSrVtqQw1ugYQkyFCaqEELR24DtEShGJECCFLAakQlVq6F4SQWihCSw/2nJcgTIwIIaRboAwRslBQhJYuTIi6AIoRIYR0KnEpEWWIkIWAIrT0YU+5C2BiRAghSw3KECGthiLUPbCH3EVQjAghpNOhCBHSaihC3Qen3e5C+EMnhJBOoRTxNyGkFbCP1J0wKuhSmBYRQkgnQRkipJVQhLobTqpAAFCMCCGEENJ9UIQIQCEiIShGhBBCCFnqUISIDYWIOKEYEUIIIWSpQREiLihEJBaKESGEEEI6HYoQiYNCRMRQjgghhBDSKVCCiBQKEVFDMSKEEEJIu0IRIlooRKRhKEaEEEIIaRcoQqRRKERk3lCMCCGEELJYUITIfKEQkaZBMSKEEELIQkERIs2CQkSaDsWIEEIIIa2CIkSaDYWItBTKESGEEELmCyWItBIKEVkQKEaEEEII0UIRIgsBhYgsKBQjQgghhCRBESILCYWILBqUI0IIIYQYKEFksaAQkUWHYkQIIYR0LxQhsthQiEhbQTkihBBClj6UINJOUIhIW0IxIoQQQpYeFCHSjlCISNtDOSKEEEI6F0oQaXcoRKRjoBgRQgghnQNFiHQKFCLSkVCOCCGEkPaDEkQ6EQoR6XgoR4QQQsjiQQkinQ6FiCwZKEaEEELIwkERIksFChFZslCQCCGEkOZBASJLFQoR6QooR4QQQogeShDpBihEpOugHBFCCCHRUIJIt0EhIl0N5YgQQgihBJHuhkJEyByUI0IIId0EJYiQWfzF3gFCCCGEEEIIWSyYEBHigGkRIYSQpQhTIULqoRARkgDliBBCSCdDCSIkHgoRIQooR4QQQjoBShAhcihEhMwDChIhhJB2gAJESONQiAhpEpQjQgghCwkliJDmQCEipAVQjgghhLQCShAhzYdCRMgCQEEihBDSCBQgQloPhYiQBYZyRAghJA5KECELC4WIkEWGgkQIId0NBYiQxYVCREibQUEihJClDQWIkPaCQkRIm0NBIoSQzoYCREh7QyEipMOgIBFCSHtDASKks6AQEdLhUJAIIWRxoQAR0tlQiAhZYlCQCCGktVCACFlaUIgI6QIoSYQQ0hiUH0KWPhQiQroUShIhhNRC+SGkO6EQEUIAUJAIId0HBYgQAlCICCExUJIIIUsFyg8hJAoKESFEBSWJENLuUH4IIRooRISQeUNJIoQsFpQfQsh8oRARQloGRYkQ0iwoPoSQVkEhIoQsKJQkQkgSlB9CyEJCISKEtAUUJUK6D4oPIaQdoBARQtoaihIhnQ/FhxDSzlCICCEdC2WJkPaB0kMI6VQoRISQJQlliZDmQ+khhCxFKESEkK6F0kRIFcoOIaRboRARQkgEFCaylKDwEEKIGwoRIYTMA0oTaQcoO4QQ0jgUIkIIWSAoT0QDJYcQQhYGChEhhLQxlKilAeWGEELaFwoRIYQsYShUzYFCQwghSxcKESGEEEIIIaRr8Rd7BwghhBBCCCFksaAQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka+lZ7B0gZCkyNDSE8fHxxd4NQgghS4w1a9bg0EMPXezdIGRJQSEipMkMDQ3h0ksvRSqVWuxdIYQQssQYGBjA3/7t31KKCGkiFCJCmsz4+DhSqRReeOElZNIZwPPm7vHhYe5v+zbPd/ztzf1/v/q3V72/uh0fnldt681VwXqe/bfnuM3ebmru2a39Qwp+6H4PXvXxCG9r9jbf3BZUt+Wj/vE+fHiB/RrNu+PVbcu3Xm9tW1S2W9lX+zavept5u007eNW/fa/6yMq771nP6Zk21vY9q621ffNe+1Zjv+b5a7dRff7q3/bzms3U7ldQ87ja11f7uMrjnW0D671w7Ivj9c1uP3A8V3Wfqs8bWNur3l+p06553sB6Xvv1hV9rUPO+mec1++RZj/e8oGa/w7fN7p/V1mpT//zW4/yg8vjq5177d91tfvX12bdV21Z3sva26t/WIaPy/tm32YeO0GEEXu0HU31DrS+WZ3/JzL7UfFj2G+/V3u+57699fuv+ygfqekzo/sp2/eo2K/f79T8kz6u29a0XWbN/1m1eeF9897asdoF9mx/afs0+hfZv7nmDmvutxzueC6Hn2rHjAP6/m76P8fFxChEhTYRCREiLSKczSM+ka3ottshUbqv8naqRC8DIhiU5jvvt2yry4gVWx9C0tTvbQV3He7aDayTCq8qNS3iQqspJRZj8ivz4QVWYAqTqHg/48IPq37PtrPcnqL5uhESpun9m/6t/248wQuTDqxMiLyRENSITur9WiKqPsSWj2n+qbsclKbYQ1Hbs7b+rzxHevi0BzvtD2429H9XOti1E1X0JIh5fFSJbVOrfl8D6PKzHoP7+yr5Yz+uHHld9jOt++7XUS4wtSdXPqlaIbGmqPj5aiOz7a+TLdwtRjeiEb7P6xfZtNUJU+3Op6XfXCJHvamt/sHP/tt9Y3xIi60OMFJ7K/Q7JcQiPF3W/LRNOoUlq60fcbwtPWIh8d1sv4X6rXWDfFhaiGslxbytw3u87n8t5PyGk6fDXRQghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQrqVnsXeAkKXK4OAyeADgeXO3+PAw97d9m+c7/vbm/r9f/dur3l/djg/Pq7b15q5xeJ79t/X4yrbM81d3ZfaZgrlbA/go1z4eQeX+2b/N9suV5/dRmv07qD6Xj1Rln81jfPjwAvs1mtdUfV/s6zVBze2z/y5X3qnq4wLrtmBuv8s1r9G8b9W/fQ+Vx1fefQ/We2XaVPfO86y21vbNe+VbjX2E3+PqNqrPX/3bfl6zmdr9CmoeZz+/H3pc5fHOtoH1Xjj2xfH6ZrcfOJ6ruk/V5w2s7VXvr3yqNc9rPrnqfvn246xt2t8E+/sIAF5QfXy4bfg2Lwgqz+t51u2e/f6av4Pqaw2s7XvVx9h/193mV1+ffVu1bXUna2+r/u3Vv5ia2+xDR+gwAq/2g6l+0NYXy7O/ZGZfaj4s6wtrjgk1j6m/v/b5rfsrX0jXY0L3V7brV7dZud+v/yF5XrWtb73Imv2zbvPC++K7t2W1C+zb/ND2a/YptH9zzxvU3G893vFcCD3Xjh0HQAhpPhQiQppMuVxGT08PXv/61y72rjSA6bgVrdsKi7EjNQSh/y1HNSTEEKD6hSFkCdHT04NymUdBQpoJhYiQJuP7PorFIm644QYcffTRi707hBBClgg7duzA5z//efi+n9yYECKGQkRIizj66KNxwgknLPZuEEIIIYSQGHiJgRBCCCGEENK1UIgIIYQQQgghXQuFiJAms3btWvzhH/4h1q5du9i7QgghZAnB8wshrcELgoDz8BBCCCGEEEK6EiZEhBBCCCGEkK6FQkQIIQQAcO+998LzPPz7v//7Yu/KkuRHP/oRPM/D/fffv9i7QgghxIJCRAghbcBdd92FD33oQzjjjDPQ398Pz/Nw5513zmub11xzDXp7ezE+Pp7YtlAo4LrrrsPb3vY2nHnmmfN63mawefNmXHvttfit3/otrF27FgMDA3j961+P66+/XvR62pHzzjsPZ511Fq677jqUSqXF3h1CCCFzcAwRIYS0Accccwx27NiBdevWYfny5dixYwe+853v4A//8A8b3uZRRx2F173udfjRj36U2PaOO+7ABz7wATz00EN461vf2vBzNosNGzZgeHgYZ511Fk477TR4noeHH34YTz31FI477jj8+7//Ow499NDF3k01//f//l+8853vxF133YU/+IM/WOzdIYQQAiZEhBDSFnz729/G9u3bceDAAVx11VXz3t6TTz6JXbt24eKLLxa1//rXv44jjzwS55xzzryfuxl87GMfw86dO/Hwww/jtttuw6233oonnngCV199NbZu3YrPfvazi72LDXHhhRdi3bp1+MY3vrHYu0IIIWQOChHpatLpNO644w78j//xP3DRRRdh06ZNeOCBB1ryXAcOHMCNN96It7/97bjwwgvxZ3/2Z9izZ09du02bNjn/u+uuu1qyX6Q9OO+883D00Uc3bXs/+MEPAADvfOc7E9s+++yz+OUvf4nLLrsMnuc52zzyyCO45JJLcOihh6K/vx9HHnkkLr30UmzevLnS5jOf+UwlyfnOd76DN7zhDVi2bBmOPfZY/MVf/AUAIAgCfPnLX8YJJ5yAgYEBvPa1r8Xf/M3f1D3f9ddfj8MPP7zmNs/z8D//5/8EAPz0pz+VvRGYlcPf//3fx1FHHYX+/n4ccsgheOMb34ibbrpJ9PiJiQl8+tOfxkknnYQVK1Zg1apVOP744/H+978fO3bscL7+O++8E6effjoGBwdx9tlnV9r09vbikksuwebNm/Hyyy+LXwNZHPL5PL7+9a/jXe96F8477zx86EMfwi9+8QvRYyXH/Fwuhy984Qt4//vfj9/93d/F2972NvzX//pf8Y//+I8oFoux2//iF7+ITZs24frrr6+7L5fL4a677sKVV16J888/H5deeik+/elPY9u2bTXtnnjiCXzhC1/Ae9/7Xpx//vl497vfjVtuuQXDw8M17fbu3Rt5btq0aRO++MUvit4TQtqVnsXeAUIWk4mJCdx555049NBDcfzxx+Opp55qyfOk02l89KMfxczMDN73vvehp6cH3/3ud/HhD38Yd9xxB1avXl3T/owzzsCFF15Yc9trX/valuwbWZrce++9OPXUU0WS9dBDDwEA3vKWtzjvv/322/Gxj30My5Ytw7ve9S4cddRR2L17NzZv3ozvfe97OOuss2raf+UrX8HDDz+Miy++GG9961vx/e9/Hx/96EcxODiIp556Ct///vfxjne8A+eeey7uvvtuvP/978cxxxyDTZs2Je5rb28vAKCnR3b6evrpp3HmmWcilUrh4osvxtFHH43x8XFs2bIF3/rWt/CpT30q9vFBEOBtb3sbHn/8cfz2b/82LrzwQvi+jx07duC+++7DlVdeWfcef+lLX8JPfvITXHzxxbjggguQSqVq7v9P/+k/4dvf/jZ+/OMf4/jjjxe9DrI43HzzzXj44Ydx+eWX44gjjsADDzyA6667DrfffjtOOeWUyMdJj/m5XA7bt2/HW97yFmzYsAG+7+PZZ5/FV7/6VTz//PP49Kc/7dz+Cy+8gAceeAB9fX3O+z/3uc/h0Ucfxe/93u/hda97HYaHh/F//s//wdVXX40777wTGzZsAAB84xvfwOTkJM4++2wceeSR2LNnD/7pn/4JP/vZz/BXf/VXlfWO1qxZgxtuuKHueR5//HE8+OCDeOMb36h6XwlpOwJCuphcLhcMDw8HQRAEzz//fLBx48bg/vvvb/rz/N3f/V2wcePGYMuWLZXbtm/fHpx99tnBN7/5zZq2GzduDG699dam7wPpHG6++eYAQPCd73ynocdv27YtABB85jOfEbW//PLLAwDBSy+9VHff008/Hfi+Hxx++OHBtm3bau4rl8vB7t27K/++8cYbAwDBwQcfHLzyyiuV23fu3Bn09fUFq1evDl73utcF+/fvr9z32GOPBQCC3/u93xPt6y233BIACD7xiU+I2n/84x8PAAT33ntv3X3mtx/HM888EwAILrnkkrr7stlsMDU1Vfm3ef3Lly8Pnnnmmcht/upXvwoABP/lv/wX0Wsgi8Nzzz0XbNy4Mfj7v//7ym3ZbDZ4z3veE1x11VWxj9Uc813cdtttwcaNG53f0XK5HFx11VXBzTffHFx++eXBddddV3P//v37g40bNwb/63/9r5rbn3jiiWDjxo3BPffcU7ntqaeeCkqlUk27p556Kti4cWPwrW99K3E///RP/zS48MILg2w2m9iWkHaGJXOkq+nr6xOv+P3YY4/hmmuuwQUXXIC3ve1tuO666+rKD6J4+OGH8frXvx4nnnhi5bajjz4ap59+On7yk584H5PL5ZDL5UTbJ8TGlMtJxw+9+uqrAOCcpOCb3/wmyuUyPv/5z+OYY46puc/zvLqyNgD46Ec/iuOOO67y7yOPPBJnnXUWJiYm8KlPfQqHHHJI5b43v/nNOO644/CrX/0qcT+ffvpp/Pmf/znWr1+P6667TvTaDMuWLau7Tfrbj3p8f38/VqxYUXf7f/tv/w1veMMbIrdl3mfzvpP25Kc//SlSqVRN2Wl/fz8uuugiPPfccxgaGop8bCPHfBuT4ExPT9fd98Mf/hDbtm3DH//xHzsfm06nAQAHHXRQze3m+97f31+57dRTT4Xv13YFTz31VKxataqmHNTF8PAwnnrqKWzatKlmm4R0IhQiQgT88Ic/xPXXX49ly5bhQx/6EN7//vdj+/bt+JM/+RPs3bs39rHlchlbt27F61//+rr7TjzxROzevbtyAjP867/+Ky644AKcf/75uPLKK/Hggw829fWQpc0PfvADHHXUUTj11FNF7UdGRpBKpbBy5cq6+37+858DAC644ALx87ue97DDDou9zzWezmbr1q246KKLUCqVcPfdd2PdunWifbniiivg+z7e9a534Y/+6I/wD//wD9i9e7foscDsb/SUU07BP/zDP2DTpk249dZb8eSTT6JcLkc+5k1velPsNg8++GAAqBunQdqLl156CUcccQSWL19ec7uRnKgxYI0c8wuFAsbHxzE0NIRHHnkEd999NzZs2IDXvOY1Ne3S6TS+8Y1v4H3ve1+k0L/mNa/BIYccgnvuuQePPvoo9u/fjy1btuDLX/4yDjvssMRZJNPpNDKZTF0pd5gf//jHKJfLOP/882PbEdIJUIgISSCdTuP222/HO97xDnzpS1/CZZddhve+972VWaKSJjuYnJxEPp93nrzMbXbH6OSTT8YHP/hB3HTTTbj22mvh+z4+97nP4d57723eiyJLltHRUfzbv/2bOB0CZtOPUqmEQqFQd9/ExAQ8z6sIjYRVq1bV3WbG/ETdFzeAfNu2bTjnnHMwPDyM733ve6qZ8N785jfj4YcfxqZNm/D3f//3eO9734sjjjgCb3rTm0RX6nt6evDjH/8Y11xzDV5++eXK2kgbNmzAZz/7Wed6QknTgWcyGQDA4OCg+HWQhWdkZER83LbRHvOB2UlL3vnOd+Lyyy/HDTfcgPXr1+Pmm2+uGyt35513or+/H1dccUXkfvf09OBzn/scli1bhj/7sz/D7//+7+Oqq65CJpPB1772NeeFD5t//Md/RKFQSBSnBx98EGvXrsXpp58e246QToBCREgCv/zlLzE9PY1zzz0X4+Pjlf9838eJJ56IJ598MvbxpuzNDAa3MQNi7dK4r33ta7j88stx1lln4eKLL8a3v/1tHHvssfjWt77FEjqSyL/8y7+gWCzikksuET/GlLCNjo7W3bdmzRoEQZCYhLaKrVu34uyzz8bevXvx3e9+F+94xzvU29i4cSMeeOABjI2N4Sc/+Qk+/vGP49e//jUuuugibN26NfHxa9euxV/+5V9i9+7d2LJlC7761a/i4IMPxo033uicXStqpj6DeZ/t0kHSfuRyOfFxO/w4QH7MB4DTTjsNt956Kz772c/i4osvRiqVQjabrWmza9cufO9738PVV18dOZmCYeXKlTj++OPxB3/wB7jpppvw3//7f8e+fftw4403xp5Hnn76adx5550455xz8Fu/9VuR7Xbt2oUXX3wR5557bl3JHSGdCL/FhCRg6vz/9E//FO985ztr/vvFL36B8fFxALMnuJGRkZr/gGq9tuvqez6fr2njore3F5deeimmp6fx4osvNvOlkSXID37wAxx00EGiGdsMZryL6/tlyr/+3//7f83ZQQVbt27FOeecg7179+Kee+5RpV4uli1bhrPPPhtf/vKX8clPfhKZTEZVjup5Hk488UT8yZ/8SeVx9913n3o/zPscN86ILD79/f0NHbcbOeYffPDBOOOMM3D22Wfj2muvxZlnnomPf/zjlfMIAPzFX/wFTj755Jpp3F1MT0/jwx/+MH7zN38TH/rQh7Bx40a85z3vwec+9zk888wzkUtL7NixAzfccAOOO+4451TeNub7z3I5slTgtNuEJGDGCtxwww2V2n8bM6Xuj3/8Y9x888019z3yyCNYtWoV+vr6ak5sBnNb0niI9evXA5gtxSAkilwuhx/+8Ie4+OKLxdNSA8Dv/M7v4LbbbsPjjz9eJ1JXXXUVvvnNb+KGG27AW9/61poppk1y5JpYYb6YMrk9e/bgnnvuwbve9a6GtvOzn/0Mp512GgYGBmpuNwPiw7eH2b59OwDUTSghfbyLxx9/HMDs+07al7Vr1+LAgQN1tycdt5txzD/77LPxv//3/8bmzZtx8cUX44knnsDjjz+Oz3/+8zVpbalUQi6Xw969e7Fq1SosX74cP/3pTzE6Oorf/u3frtnmqaeeiuXLl+PXv/51XYI8NDSEa6+9FsuXL8ctt9ySWM754IMP4qijjsIJJ5wQ246QToFCREgCZlDrmjVrcMYZZ0S2e+Mb34hbb7217nbf93HcccfhhRdeqLtvy5YtOPzwwxNPPmbA+Zo1axR7TjqJb3/725VFTn/9619Xbnv44YcBAGeddRY++MEPxm7jRz/6Eaanp9VJyrnnnouVK1fiwQcfxCc+8Yma+97whjfgK1/5Cj7ykY/gN3/zN3HJJZfg6KOPxr59+/DII4/goosuwle+8hXV80k455xzsHPnTrzlLW/BM888g2eeeaauzWc+85nE7dxyyy34yU9+gk2bNuHYY4/FwMAAnnzySTz00EM47rjjEkXr6aefxqWXXoo3velNOOmkk7Bhwwbs3r0b9957L3zfx8c+9jH1a3vwwQfVKR5ZeMzadDMzMzUTK2zZsqVyv4tmHPNNWdvMzAwAYP/+/QDgXAvowIEDePe7341rrrkGV1xxBcbGxgCgbuKPIAhQLpfrxr1NTEzg2muvRaFQwG233ZYoa1u2bMHu3bvxgQ98ILYdIZ0EhYiQBN70pjdh+fLluOuuu3D66afXXXkfHx/HmjVrsG7dusgTye/8zu/gm9/8Jl544YXKzEM7d+7EU089hXe/+91127JJp9P43ve+h9WrV/Nq3BJm8+bN+Ou//uua2x599FE8+uijlX8nCdEPfvAD9Pf343d/93dVz71ixQq8733vw7e+9S3s3bu3bgKFa665BieffDK+/OUv44EHHsD09DTWr1+PN7/5zbGDu+eDmfL3sccew2OPPeZsIxGiq6++GqtXr8bjjz+On/70pwiCAEcddRQ++clP4mMf+5hzkgebM844A9dffz0efvhh/Mu//AvGx8exYcMGnHfeefjEJz4RuZhtFNu3b8ejjz6Kj370ow2lS2ThOPvss3H33Xfjvvvuw3/+z/8ZwGzJ2/3334+TTjqpMnnG0NAQstlsTXqqOeavXr26btzZP//zPwNA5Zh/+umn46abbqrbxy996UvYsGEDrrzyyspU90cccQSA2QWX/+iP/qjSdvPmzchkMjWLfGcyGVx33XUYHh7G7bffjiOPPDLxfTHlcuedd15iW0I6BS8IgmCxd4KQxeT73/8+pqenMTIygnvvvRebNm2qnDAuu+wyrFixAg8++CBuuukmHH300Tj33HOxZs0aDA0N4bHHHsPJJ5+ceJU4nU7jAx/4ANLpNN7znvcglUrhu9/9LsrlMu64446KBN1xxx3YvHkzzjzzTBx66KEYGRnB/fffj6GhIXzqU59STX1MuosgCHD44YfjtNNOw/33369+/IsvvoiTTz4Zn/nMZ/CpT32qBXtIgNkr/F/84hfx/PPP4zd+4zcWe3dIAjfeeCMeeeQRXHHFFXjNa16Df/3Xf8Xzzz+P2267rTKF/Ec+8hE8/fTTeOSRRyqPkx7zv/vd7+K+++7DWWedhcMPPxzpdBo///nP8ctf/hJnnnkmvvCFL8Tu3xVXXIFjjz0Wt9xyS+W2QqGAD37wg9i+fTsuvPBCnHTSSdi9ezf+6Z/+CStXrsR3vvOdyvN/8pOfxObNm/H2t7+9bra4ZcuWYePGjTW3lUolXHbZZTjssMPw9a9/vcF3lZD2gwkR6Xruuece7Nu3r/LvRx55pHJiu+CCC7BixQqcf/75WLduHf7u7/4Od999N/L5PA455BCccsopePvb3574HIODg7j99tvx1a9+FX/zN3+DcrmM0047Dddcc01NIvSGN7wBzz77LP75n/8Zk5OTGBgYwIknnojrr78+dsYfQh5//HHs27ev4YkHTjjhBHzwgx/Ebbfdho985COJU/MSPWNjY/jLv/xLXH311ZShDuGTn/wkDj30UPzwhz/E9PQ0jjvuONxyyy2Ja3xJj/mnnHIKnnvuOTz00EMYGxtDKpXCkUceiWuuuQaXXnppQ/vc29uLr371q/jrv/5r/OxnP8NDDz1UkZs//uM/rnl+s5bS/fffX3chZcOGDXVC9MQTT2B0dBRXXnllQ/tGSLvChIgQQgiA2XEKX/va13DZZZdxBrQW8OSTT+K+++7Dhz/84chFNQkhhCw8FCJCCCGEEEJI18J1iAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdy/8Py3w/3K0XcbQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration_idx = 49\n", + "\n", + "result = all_results[iteration_idx]\n", + "\n", + "iteration = result['iteration']\n", + "image = result['model_map']\n", + "\n", + "data = image[:,0]\n", + "data[data <= 0 * data.unit] = 1e-12 * data.unit\n", + "\n", + "hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "96731b2a-be51-4b40-b8b7-34ed55d004ad", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb.txt b/_sources/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb.txt new file mode 100644 index 00000000..5e84267b --- /dev/null +++ b/_sources/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb.txt @@ -0,0 +1,1131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, 511 keV, Data Reduction\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on how to produce the binned datasets with the spacecraft attitude (scatt) binning method for DC2.\n", + "Using the 511keV thin disk 3-month simulation data created for DC2, an example of the image analysis will be presented.\n", + "After running through this notebook, you can go to the next notebook, 511keV-DC2-ScAtt-ImageDeconvolution.ipynb.\n", + "\n", + "### Notes on the coordinate system of Compton data space in the image deconvolution ###\n", + "\n", + "We have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) with, namely the Galactic coordinate or the detector coordinate.\n", + "\n", + "Using the Galactic coordinate is intuitive, and the spectral fitting adopts this coordinate. Thus, we suppose that Galactic coordinate should be adopted also for image deconvolution eventually. However, in this case, we need to convert the detector response into the Galactic coordinate for each pixel in the sky because the response matrix is described in the detector coordinate. As for now, it takes a long time to compute it. Thus, the pre-computed converted response are provided in DC2 for several main sources (511 keV, Al-26, Ti-44, continuum). The pre-computed responses assume that we analyze 3-month data without extracting some time intervals, and the pixel resolution of the model map is already fixed in them. While there is less flexibility in binning/modeling, it is relatively fast to perform the image deconvolution in DC2 since the most computationally heavy part, the coordinate conversion of the response, can be skipped.\n", + "\n", + "Using the detector coordinates for Compton data space may not be so intuitive. However, the advantage is that we do not have to convert the response matrix. Instead, we will convert the model map into the detector coordinate. Because the model map generally has a much smaller data size than the response, we can compute this coordinate conversion quickly. \n", + "\n", + "The disadvantage of this method is that we need more bins due to continuous pointing changes of the COSI satellite. Since COSI is an all-sky monitoring satellite with ∼90-minute orbits, it changes its pointing by ∼4 degrees every minute. Thus, in this case, we need to divide the data into several bins so that astronomical sources can be considered at rest in the detector coordinate for each bin within the COSI's angular resolution. The straightforward way could be to divide the data every $\\sim$15 seconds, considering that the COSI's angular resolution is an order of degrees. However, we need $5\\times10^5$ time bins for 3-month observations, which makes the event histogram very huge. To avoid this issue, the spacecraft attitude (scatt) binning method is introduced. Instead of binning data over time, we first analyze the satellite attitude and find the time intervals when the satellite has almost the same attitude within the angular resolution. Then, we assign the events in such intervals into the same CDS. In the DC2 simulation, the orbit inclination is assumed to be 0 degrees. In this case, the number of the scatt bins becomes 100-1000, which makes the computation more executable. With this method, at least in DC2, we can perform the image deconvolution using the original response matrix and have flexibilities to change binning/modeling, e.g., the pixel resolution can be changed in a relatively easy way.\n", + "\n", + "While both methods have pros and cons, our baseline is to eventually use the Galactic coordinate. But we still need to carefully investigate how they will be scaled with longer exposure, finer pixel resolution, etc. Thus, we provide the notebooks of both methods for the image deconvolution in DC2.\n", + "\n", + "For the Crab image analysis, the following notebooks are based on the scatt binning method\n", + "- ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb\n", + "- ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution.ipynb\n", + "- ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb\n", + "\n", + "GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb uses the galactic coordinate.\n", + "\n", + "If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "2a7ca026", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "Before running the cells, please download the files needed for this notebook. You can get them from wasabi. \n", + "\n", + "Basically, the data reduction from raw tra files may take hours depending on your environments. So we can skip this process.\n", + "Please download the following data files and then run the following cells.\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/ScAttBinning\n", + "- inputs_511keV_DC2.yaml" + ] + }, + { + "cell_type": "markdown", + "id": "8462d0dc", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9f64536f-144e-443e-8336-4866ebee9e3c", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "# File size: 350.43 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c09adf05-ad79-4141-96cb-0e0a3b54a9c8", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (511 keV thin disk model):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "# File size: 202.45 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5360bb81-b4f8-486a-9238-947dd085ac91", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5eb6c100-e8d4-4904-a258-0403ce98cf5e", + "metadata": {}, + "outputs": [], + "source": [ + "# Orientation file:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "# File size: 684.38 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16 s, sys: 1.16 s, total: 17.2 s\n", + "Wall time: 16.9 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(16, 3072)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside_local = full_detector_response.nside\n", + "npix_local = hp.nside2npix(nside_local)\n", + "\n", + "nside_local, npix_local" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 60\n", + " EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "Here the orientation file is analyzed to define the indices of the spacecraft attitude binning." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 3.6645188392718997 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "182c9f53f9ac483e8244d24e2a887e58", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(2088, 87)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(2088, 116)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.792486557202956, -23.48162697469867][45.79313907872797, 66.51842748236865][1.0000000000065512, 0.9999999999969589, 0.999...13091.0130910
22(2152, 116)[[45.978454945885545, -23.778456203550505], [4...[[45.978454945885545, 66.22154379644951], [46....[46.11600105920392, -23.997057178710705][46.11666483156788, 66.00300061062126][0.9999999999969589, 0.9999999999969589, 1.000...13268.0132680
33(2152, 148)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
44(2217, 148)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[48.22733567147042, -27.24260105367847][48.22779496794004, 62.75745007981912][0.9999999999969589, 1.0000000000065512, 0.999...11295.0112950
.................................
273273(2732, 574)[[169.8606861124748, -53.117736603001354], [16...[[169.8606861124748, 36.88226339699865], [169....[169.88431682515662, -53.105715691570055][169.88431237591922, 36.89428628084324][0.9999999999969589, 1.0000000000065512, 1.000...919.09190
274274(450, 512)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
275275(2864, 819)[[109.12274453361954, -62.18192897402973], [10...[[109.12274453361954, 27.818071025970276], [10...[109.11536622684899, -62.18125087710709][109.1153664213486, 27.818749379017405][1.000000000001755, 0.9999999999969589, 0.9999...210.02100
276276(216, 761)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
277277(212, 819)[[289.1161733315789, 62.182064711183735], [289...[[109.11617333157892, 27.817935288816265], [10...[289.1158698854739, 62.181869345669945][109.11587008833249, 27.818130910219594][0.9999999999969589, 1.0000000000065512, 0.999...216.02160
\n", + "

278 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (2088, 87) \n", + "1 1 (2088, 116) \n", + "2 2 (2152, 116) \n", + "3 3 (2152, 148) \n", + "4 4 (2217, 148) \n", + ".. ... ... \n", + "273 273 (2732, 574) \n", + "274 274 (450, 512) \n", + "275 275 (2864, 819) \n", + "276 276 (216, 761) \n", + "277 277 (212, 819) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[45.66020516346508, -23.269427365755966], [45... \n", + "2 [[45.978454945885545, -23.778456203550505], [4... \n", + "3 [[46.29919922293719, -24.286823740507035], [46... \n", + "4 [[48.1115581160702, -27.07000329743496], [48.1... \n", + ".. ... \n", + "273 [[169.8606861124748, -53.117736603001354], [16... \n", + "274 [[180.0238082643748, 46.67626678787605], [180.... \n", + "275 [[109.12274453361954, -62.18192897402973], [10... \n", + "276 [[325.1571038593629, 61.0351405587937], [325.1... \n", + "277 [[289.1161733315789, 62.182064711183735], [289... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "2 [[45.978454945885545, 66.22154379644951], [46.... \n", + "3 [[46.29919922293719, 65.71317625949297], [46.3... \n", + "4 [[48.111558116070206, 62.92999670256505], [48.... \n", + ".. ... \n", + "273 [[169.8606861124748, 36.88226339699865], [169.... \n", + "274 [[180.0238082643748, 43.32373321212394], [180.... \n", + "275 [[109.12274453361954, 27.818071025970276], [10... \n", + "276 [[145.15710385936296, 28.964859441206304], [14... \n", + "277 [[109.11617333157892, 27.817935288816265], [10... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.77592919492308, -21.83137450725276] \n", + "1 [45.792486557202956, -23.48162697469867] \n", + "2 [46.11600105920392, -23.997057178710705] \n", + "3 [47.169799754806256, -25.642813300423782] \n", + "4 [48.22733567147042, -27.24260105367847] \n", + ".. ... \n", + "273 [169.88431682515662, -53.105715691570055] \n", + "274 [180.01420731505038, 46.68360608975279] \n", + "275 [109.11536622684899, -62.18125087710709] \n", + "276 [325.15317939441115, 61.03567974667542] \n", + "277 [289.1158698854739, 62.181869345669945] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.79590102793104, 68.17007080261746] \n", + "1 [45.79313907872797, 66.51842748236865] \n", + "2 [46.11666483156788, 66.00300061062126] \n", + "3 [47.188380045186555, 64.35902575261872] \n", + "4 [48.22779496794004, 62.75745007981912] \n", + ".. ... \n", + "273 [169.88431237591922, 36.89428628084324] \n", + "274 [180.01420553833427, 43.316394483057174] \n", + "275 [109.1153664213486, 27.818749379017405] \n", + "276 [145.15317503922358, 28.964324759952632] \n", + "277 [109.11587008833249, 27.818130910219594] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 71072.0 \n", + "1 [1.0000000000065512, 0.9999999999969589, 0.999... 13091.0 \n", + "2 [0.9999999999969589, 0.9999999999969589, 1.000... 13268.0 \n", + "3 [0.9999999999969589, 0.9999999999969589, 1.000... 71137.0 \n", + "4 [0.9999999999969589, 1.0000000000065512, 0.999... 11295.0 \n", + ".. ... ... \n", + "273 [0.9999999999969589, 1.0000000000065512, 1.000... 919.0 \n", + "274 [0.9999999999969589, 1.000000000001755, 1.0000... 646.0 \n", + "275 [1.000000000001755, 0.9999999999969589, 0.9999... 210.0 \n", + "276 [1.000000000001755, 0.9999999999969589, 0.9999... 970.0 \n", + "277 [0.9999999999969589, 1.0000000000065512, 0.999... 216.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 71072 0 \n", + "1 13091 0 \n", + "2 13268 0 \n", + "3 71137 0 \n", + "4 11295 0 \n", + ".. ... ... \n", + "273 919 0 \n", + "274 646 0 \n", + "275 210 0 \n", + "276 970 0 \n", + "277 216 0 \n", + "\n", + "[278 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "nside_scatt = nside_local\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(\"exposure_table.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(\"exposure_table.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "8ebcb20e", + "metadata": {}, + "source": [ + "The sum of values in the 'exposure' column should be the same of the observation duration." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0f073766", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$92.36059 \\; \\mathrm{d}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(np.sum(exposure_table['exposure']) * u.s).to(\"day\")" + ] + }, + { + "cell_type": "markdown", + "id": "e9306cf5", + "metadata": {}, + "source": [ + "SpacecraftAttitudeExposureTable can produce SpacecraftAttitudeMap that has an exposure time in each Z- and X-pointing pixels." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b24d8dc3", + "metadata": {}, + "outputs": [], + "source": [ + "map_pointing_zx = exposure_table.calc_pointing_trajectory_map()\n", + "map_pointing_zx = map_pointing_zx.to_dense()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b75a6097", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dX/P7Ndu6vVSqveuyzJRW644UIxzXRMMc3GlNADBAj8wpsAKYQXEgjJG5LQOwRIqAFCb8aAey+SJcvqvWv7/f2x3rUkS/bKlrRF83kePZZXszNn7szcud97zj1HEkIIZGRkZGRkZGRkZGRkxiGKQBsgIyMjIyMjIyMjIyMTKGRBJCMjIyMjIyMjIyMzbpEFkYyMjIyMjIyMjIzMuEUWRDIyMjIyMjIyMjIy4xZZEMnIyMjIyMjIyMjIjFtkQSQjIyMjIyMjIyMjM26RBZGMjIyMjIyMjIyMzLhFFkQyMjIyMjIyMjIyMuMWWRDJyMjIyMjIyMjIyIxbZEEkIyMjEwZkZmaSmZkZaDNGjXvvvRdJkvjiiy/82n7FihVIkkRFRcWo2jUUFRUVSJLEihUrAnL8UCSU7+Gxut+G+xzIyMj4hyyIZMYVkiQd9kd+0cjI+IckSSxatCjQZgSMYD3/Z5991q++zvsTKNEoczDea/fss88G2hQZmXGFKtAGyMgEgl/96ldD/i1UZyhlxjeffvppoE0IKh544AHuuusuUlJSAm3KmFNSUnLIPg7gv//9L9999x1JSUlYLJYxsuzQhPI9PFb324033shFF11Eenr6qB5HRma8IQsimXHJvffeG2gTZGRGlJycnECbEFQkJSWRlJQUaDMCQklJCSUlJUP+/YcffuDBBx9Ep9Px9ttvExkZOXbGHYJQvofH6n6LjY0lNjZ21I8jIzPekEPmZGSGoLy8HLPZTExMDHv37u33t+7ubgoLC1Eqlf1C7Lxx5Hv27OGPf/wjEyZMQKfTkZqayq233kpHR8egx1q7di3nnXce8fHxaLVaMjIyuP7666mtrT1o2/r6em6//XYKCgowGAyYzWYKCgpYsWIFe/bs8W13uNCLwcJ9+sanv/zyy8yaNQuj0djPa9bT08MDDzxASUkJBoMBo9HInDlzeOWVVw7doAPwrhfo6uri1ltvJS0tjYiICEpKSnjrrbcAcDqd/Pa3vyUvLw+dTkdOTg5/+ctfDtqX3W7nL3/5C6eddhoZGRlotVpiYmI48cQT+eCDDw55/Pb2dm688UZSUlLQ6XQUFRXx2GOPIYTw+1wWLVqEJEnYbDbuuecesrKy0Gq15OTkcN9992G32w/6jrf96+rquOqqq0hJSUGpVPa7Xv/85z9ZsGABUVFRREREMGnSJB544AFsNtuQ5zMYr7zyCscddxxmsxmdTkdhYSG/+c1vBt0PwI4dO1i5ciWZmZlotVri4+OZP38+jz/+OHDg3gL48ssv+4VfDZxs+P7771m6dCmJiYloNBrS0tL4yU9+Qk1NzaDHXrt2LaeccgqRkZGYTCZOPPFEvvvuu0G3PRSDrenou66noqKCiy66iNjYWHQ6HTNmzOC9997za9/DOX/vcYdzrOFer+FQVVXF2WefjdVq5emnn2bmzJl+f/fZZ5/lvPPOIzs7m4iICEwmE/PmzePFF188aNt//etfSJLE7NmzcTgc/f62ZcsW9Ho9ycnJNDQ0+D4f7B622+089thjTJs2jejoaPR6PZmZmZx11ll88sknftk9Fv3ySNxvixYt4oorrgDgiiuuGDSscag1RN7+pKmpiWuuuYakpCS0Wi3FxcU888wzg56fzWbj3nvvJTs7G61WS1ZWFvfccw82my1ow0FlZEYNISMzjgDEcG77119/XQBi7ty5wuFw+D6//PLLBSDuvffeftsvX75cAOLMM88UZrNZXHPNNeLOO+8UU6ZMEYCYPn266O3t7fedd999V2g0GqFWq8WyZcvEXXfdJRYvXiwAkZycLPbs2ePbtru7W+Tk5AhALF68WPzsZz8Tt912mzjvvPOE2WwW7777rm/bZ555RgDimWeeGbItFi5c2O+zX/3qVwIQp59+utBqtWLp0qXi5z//ubj22muFEEK0traKqVOnCkBMmzZN3HjjjeL666/32fSLX/zC77bNyMgQycnJYvbs2SI/P1/ccMMN4uqrrxZGo1EoFArxySefiHPPPVekpKSIq666Stxwww0iPj5eAOLVV1/tt6/a2lqhUCjEscceK6688kpx1113ieXLl4uYmBgBiCeeeGLQ4yclJYkZM2aI3Nxccdttt4kbb7xRJCUlCUBcf/31fp/LwoULfdc9KSlJ3HTTTeK2227ztcvpp58u3G53v+8AYtKkSSIjI0MUFxeLG2+8Udx8883iP//5jxBCiLvvvlsAIjY2Vlx77bXi9ttvF8XFxb7rZrPZDjqfjIyMg2y74oorBCBSU1PFypUrxW233Sbmzp0rALFo0aJ+97UQQrz33nsiIiJCKBQKcdppp4m77rpLXHvttWLOnDkiMzNTCCHE+vXrffdKRkaG+NWvfuX7+fzzz337euqpp4RSqRR6vV5cdNFF4o477hBnn322UCgUIikpSezdu7ffsb/99lsREREhlEqlOP/888Xdd98tTj31VKHRaMQpp5wigH77PxTeZ7G8vNz3WXl5ue+84+LixKxZs8Qtt9wiLr/8cqHVaoVCoRCfffbZYfftz/kf6bGGe72GQ3d3t5g2bdqwn1UvOp1OTJ8+XSxfvlzcdddd4uqrrxYpKSkCEPfcc89B299www0CEHfccUc/GwoLCwc9/8Hu4WXLlglATJw4Udx8883i5z//ubjssstEVlaW+NnPfuaX3aPdL/c9xtHcb88884w466yzBCDOOuusfvdVa2urEOJAHz3wOQDElClTRH5+vpg4caK48cYbxdVXXy3MZrMAxLPPPttve7fbLZYsWSIAkZeXJ2677TZx0003iZSUFHH22WcP+n6QkQlnZEEkM67wCqK+L5q+Pw888MBB37nuuusEIO666y4hhBDPPvusAMRxxx0nXC5Xv229L0WLxSIqKip8n7tcLnHuuecKQNx///2+zzs7O0VMTIxQKBTiq6++6rev3//+9z7h4+Wdd94RgLjlllsOstNms4mOjg7f/49GEOn1erFu3bqDvuM9vwcffLDf5729veLkk08WkiSJ9evXD3q8gWRkZPjEgtVq9X3+1VdfCUBER0eLGTNm+AYCQghRVlYm1Gq1KCkp6bcvq9Uq9u3bd9Ax2traRHFxsYiOjhY9PT2DHn/evHn9jt/c3Cyys7MFIL788ku/zsUriPLy8kRLS4vv897eXjF79mwBiOeff77fd7z34mWXXXbQIHfVqlUCEGlpaaK2ttb3ucPhEKeffroAxG9/+9uDzmfgYNJ7D5xzzjkHnb/3Wj/66KO+zxobG4XJZBJqtVp88cUXB53nwDY+1KBp586dQq1Wi5ycHFFVVdXvb5988olQKBTi7LPP9n3mdrtFQUGBAMRbb73Vb/tHH33U114jIYgGm8z48MMPBSBOPfVUv/YvxKHP/0iONdzrNRzcbrdYunSpb/8DBbo/lJaWHvSZzWYTxx9/vFCpVAddZ6vVKqZOnSokSRIffPCBEEKIFStWCED88pe/PGhfA+/htrY2IUmSmD59unA6nQdt39TU5Jfdo90v9z3G0d5vh+u3DyWIAHHllVf2a6utW7cKpVIpCgsL+23//PPPC0DMnz+/3+RKa2ur7zmUBZHMeEIWRDLjCu9LY6ifqKiog77T29srpkyZIiRJEn/+85+FwWAQcXFxoqam5qBtvS/Fvi9XL2VlZUKhUPhm2YUQ4sUXXxSAWLZs2UHbOxwOkZmZKQDfTLpXEN19992HPdejEUSDCa6mpiahVCrFjBkzBt3fhg0bDpoNPhReQTLYICsrK0sA4tNPPz3ob4sWLRIqlWrQAdJg/OEPfxhU3HiPP3DAI8SBtluxYoVfx/AKooGiRwghPv/8c98scV8AodFoRH19/UHfueqqqwQg/v73vx/0t507dwqFQiGysrIOOp+BgqikpESoVKp+otKL0+kUFotFzJw50/fZww8/LABx8803H+p0+53DUIOmW265RQDivffeG/TvZ599tlAqlT4R/8033whALFiwYFBbvd62kRBEGRkZg94/6enpwmKx+LV/IfwTRMM51nCv13C45557BCBKSkpEV1fXEe1jKN58800BiOeee+6gv+3atUsYjUYRFxcnHnroId81HqxNBt7D7e3tAjwe+iMRcF5Gu1/ue4yjvd+ORhDp9XrR3t5+0HcWLFggANHZ2en77IQTThhy0sd7/rIgkhlPyEkVZMYlYhjrQ3Q6Ha+99hozZszgpptuQpIk3njjjUMuoF24cOFBn2VnZ5OWlkZFRQVtbW2YzWbWrVsHwPHHH3/Q9iqVigULFlBRUcH69etJT09n4cKFpKSk8Pvf/55169Zx2mmnMW/ePEpKSlAqlX6f0+E45phjDvrsxx9/xOVyDblOwrtOYPv27X4fx2w2D7qQOjk5mfLycqZPn37Q31JSUnA6ndTV1fXL6LR161YeeughvvrqK2pra7Farf2+V11dfdC+VCoVc+fOPehzb+z8+vXr/T4XGPy6H3vssSiVykH3lZmZSXx8/EGfH+q+yM/PJzU1lfLyctrb24mKihrUlp6eHjZu3EhsbCyPPvrooNtotdp+12v16tUAnHrqqYNuPxy8636+/PJLfvzxx4P+3tDQgMvlYteuXUyfPt13zoO1oVKp5Nhjj6WsrOyo7QKGfF7S0tKOaL3SSBzrSK6Xv7zyyiv85je/ISEhgbfffhuDwXDQNhUVFYOuN+z7rFdWVvLggw/y6aefUllZSW9vb79tB3vG8vLy+Nvf/sall17KHXfcQWxsLC+//LJf/ZXJZOKMM87g3XffpaSkhPPOO4/58+cza9Ys9Hr94U98AKPVLx+Osbrf8vLyMJlMgx4HoLW1FaPRCHj6NoVCMWj/d+yxx46YTTIyoYIsiGRk/CA/P5/JkyezatUqioqKOOmkkw65fUJCwqCfJyYmsnfvXtrb2zGbzbS3twMMKa68n7e1tQGeAcLq1av51a9+xTvvvMNHH30EeDIPXX/99dxzzz2o1eojOcWD7BxIc3Mz4BFGgw1wvXR1dfl9nKEG8yqVasi/e//Wd6H26tWrOf7443E6nZxwwgmceeaZmEwmFAoFGzZs4O233x50QXpsbOygAxXv+Xuvj78Mdt1VKhWxsbH9Fo8PPM5A/LkvKisraWtrG7INW1tbEULQ2NjIfffd55f93vtsJFIHe++Xhx566JDbee8X7zkf6tkZKcxm86Cfq1Qq3G73iB1nOMc6kuvlDz/88AMrV65Eq9Xy73//e8gBfEVFxaDH9QqiPXv2cMwxx9Da2sr8+fM56aSTiIqKQqlUUlFRwXPPPTdk0oeTTjoJk8lER0cH559//rDur9dee40HH3yQl19+2ZdKXKfTsXTpUh5++OEh75fBGK1++XCM1f12qOMAuFwu32ft7e3ExMT4/taX4bSpjEy4IGeZk5Hxg9///vesWrWK2NhYtm7dygMPPHDI7evr6wf9vK6uDjgw0Pf+6/18IN5sRn0HvampqTz11FM0NDSwZcsWHnvsMSwWC/fffz/333+/bzuFwvN4O53Og/Z7uBe5N4NWX7w23HrrrQhPuO2gP59//vkh9z0a/OY3v6G3t5f//ve/fPDBBzz66KPcf//93HvvvcyaNWvI7zU1NfUbJHgZeJ38ZbDr7nQ6aWpqGnTmdrB27nvc4dwXQ+1j6tSph7xefb2l3gHVYDP9w8V7/Pb29kMe2ztr793+cM9OuHIk1+twVFdX+zLKPfHEE8yZM2fIbRctWnTIY/3xj3+kubmZp556ii+++ILHHnuMX//619x7772cfPLJQ+5XCMHll19OR0cHsbGx/OMf/+Crr77y+xwiIiK499572bVrF5WVlbz44osce+yxvPjiiyxdutTv/cDo9suhhslkoqWlZdD3w1DtJCMTzsiCSEbmMKxatYpf/vKXFBQUsGXLFgoKCvjVr37FN998M+R3vvzyy4M+27NnD/v27SMzM9M38Jw6dSrAQSlUwTOQ/vrrrwGYNm3aQX+XJIni4mJuuukmPv74YwBfumqA6OhoAPbt23fQd9esWTOk7UNxzDHHoFAofDYFE6WlpcTExAyaJnawa+HF6XSyatWqgz73Xg/v9fGXwY71zTff4HK5hrWvQ90XpaWlVFVVkZWVNeSMMIDRaKS4uJitW7fS0tLi13Fnz54NMGSq8oEoFIpBBWXfffl7v3jv8cHa0OVyHfJ5CxSHOv/hciTX61D09PRw5plnUltby89//nMuu+yyo9pfaWkpAOedd95BfzvUM/bQQw/x4Ycfcskll/DZZ5+hVqu5+OKLfR7E4ZCWlsYll1zCRx99RG5uLt98882w9jMW/fLR4vVYj9R9NRRTp07F7XYP2v8F47MmIzPayIJIRuYQtLa2smzZMpRKJa+++ioJCQm89tprqFQqLr744iEHLn/605/61S5yu93ccccduN1uX50JgLPPPpuYmBheeeUV3/oNL48++ijl5eWceOKJvjCXrVu3Djp75/2sb1z9jBkzUCgUvPzyy/T09Pg+b2lp4c477xx2W8THx3PJJZewZs0afv3rXw/6wi4rK6O8vHzY+z5aMjMzaWlpYdOmTf0+f+qpp3xhhUNx99139wv1aWlp4Te/+Q1Av2vlD7/+9a9pbW31/d9qtXL33XcPe18rV64EPJ6vxsZG3+cul4vbb78dt9vNlVdeedj93HbbbdjtdlauXDmoV7C1tdW3XgJg+fLlmEwmHn/88UFn8auqqvr932KxDCq4AW688UbUajW33noru3btOujvdru9n1iaO3cuBQUFfPXVV7z99tv9tv3LX/4yYuuHRpJDnf+RMNzrNRRCCJYvX866des444wz+N3vfnfUtnnrAw0UCR999BFPPvnkoN9ZvXo1v/jFL8jNzeXxxx9n0qRJPPLII1RXV7N8+fLDersaGxvZvHnzQZ93d3fT1dWFSqVCo9H4fQ6j1S+PJBaLBfCs1xpNLr/8cgDuueeefnXS2tvb+fWvfz2qx5aRCUbkNUQy45LBkgJ4Ofvss31V3leuXEllZSWPPfaY77MpU6bwhz/8gRtvvJEVK1bwzjvvHLQPb6KDCy+8kKioKD766CM2btzI9OnT+4kRo9HI008/zfnnn8/ChQs5//zzSU9PZ+3atfz3v/8lMTGRv//9777tP/74Y+644w7mzJlDfn4+8fHxVFVV8fbbb6NQKLjjjjt82yYlJXHJJZfwwgsvUFJSwpIlS+jo6OA///kPCxYsGHbCAPAMTHfv3s0vf/lLXnjhBY499lgSEhKoqalh+/bt/Pjjj7zyyitkZWUNe99Hwy233MJHH33EscceywUXXEBUVBRr1qzhm2++YenSpbzxxhuDfi8pKQmbzcbEiRM588wzcTgcvPHGG9TW1nL99dezYMGCYdlRWFhIcXExS5cuRa1W8/bbb1NWVsaSJUuGNUM/d+5c7rzzTv73f/+XiRMnsnTpUgwGAx988AFbtmzh2GOP7Xeth2LlypWsXbuWv/71r+Tk5HDyySeTnp5OS0sL5eXlfPXVV1xxxRX87W9/A/AteF+6dCnHHXccp556KpMnT6ajo4NNmzaxb9++foL3hBNO4NVXX+WMM85g2rRpqNVqFixYwIIFC5gwYQJPP/00K1eupLi4mFNOOYX8/HwcDgeVlZV8/fXXxMXFsWPHDsDj8XzqqadYvHgx5513Hueeey65ubls2LCBTz/9lFNOOYUPP/xwWNdjtDnU+R8Jw71eQ/GHP/yBN954A4VCQV5eXr9Q2sFYsWLFkEV9vVx//fU888wznH/++SxdupTk5GS2bNnChx9+yAUXXMBrr73Wb/u2tjaWLVuGQqHg1VdfJTIyEoBrr72WTz/9lDfeeIM//vGP/OxnPxvymNXV1UydOpVJkyYxefJk0tLS6Ojo4L333qOuro6bb77Zt19/GK1+eSSZM2cOer2eRx99lObmZt/auZtuumlEQ/Quv/xyXn31VT788MN+/d+bb77JzJkz2blzpy/sWkZmXDBq+etkZIIQDpN2mz7pTh977DHB/mJ+g3HOOecIQPzxj3/0feZNvVpWViYefvhhUVBQILRarUhOThY//elPB02JKoQQP/zwgzj77LNFbGysUKvVIi0tTVx77bWiurq633bbtm0Tt956q5g+fbqIjY0VGo1GZGRkiPPOO098++23B+3XarWK22+/XaSkpPhqwvzud78TDofjkGm3D5Xa2GaziT//+c9izpw5wmQyCY1GI9LS0sTxxx8vHnnkEb9rgwxVSFSIA2msB2Ow9LZCeAopzpo1SxiNRhEVFSUWL14svvzyyyHT2HqP39bWJq6//nqRnJwsNBqNmDBhgvjTn/40rDS/XnutVqv4xS9+ITIzM4VGoxFZWVni3nvv7VfnyMtg7T+QV155RcybN08YjUah1WpFUVGR+M1vfnNQEcm+5zMY7777rliyZImIi4sTarVaJCQkiJkzZ4pf/OIXYvv27Qdtv2XLFnHZZZeJ5ORkoVarRXx8vFiwYMFBacDr6+vFsmXLRHx8vFAoFIL9Nb76smnTJrF8+XKRnp4uNBqNiI6OFsXFxeKaa64ZNK36mjVrxMknnyyMRqMwGo3ihBNOEKtWrfLr3uzLodIgL1++fNDvHOq+G4xDnf/RHGu412sg3nP398ffNv3222/FcccdJ8xmszAajWLevHni3//+ty+1fN9r763v07d/9NLW1iaysrKEWq0W33//ve/zgfdwa2uruO+++8Rxxx3nez4TExPFwoULxcsvv+z3Mzra/XLfY4zE/fbBBx+I2bNnC4PB4LtG3v0eKu32UP3JUH1mb2+v+J//+R9ff5WRkSH+3//7f6KqqkqApzisjMx4QRJiGCs0ZWRkDsmKFSt47rnnKC8vP+yMq0xg8V6fioqKo97XokWL+PLLL4e14H2kSUxMJCoqip07dwbMBhmZYETul4fHxx9/zEknncRdd9112ARCMjLhguwPlZGRkQlxWlpaaGpqIjU1NdCmyMjIhAg1NTUHfdbc3Mxdd90FwDnnnDPWJsnIBAx5DZGMjIxMiNLe3s7DDz/MRx99hMvlGnYaYhkZmfHLbbfdxsaNG5k7dy5xcXFUVVXxwQcf0NLSwk9+8pNBC3TLyIQrsiCSkZGRCVFaW1t54IEHyMrK4oEHHuAnP/lJoE2SkZEJEc4991zq6+t59913aWtrQ6fTUVxczJVXXulXFksZmXBCXkMkIyMjIyMjIyMjIzNukdcQycjIyMjIyMjIyMiMW2RBJCMjIyMjIyMjIyMzbpEFkYyMjIyMjIyMjIzMuEVOqiAjIyMjM+YIIejt7aW6uhq73U5aWhqRkZG+Wk4KhTxfJyMjIyMzNsiCSEZGRiaMEUJgtVrp6uqiu7ubrq4u309HRwc9PT10d3dTV1eH1WpFCEFPTw91dXWYTCYkSaKhoYHW1laSk5NxOBzs2bMHSZKwWCx0d3dTXV2N0WhEp9PR0NCA1WrFbDbjdDppaWnB7Xaj0Wiw2WzYbDbcbjdut3tQexUKBQqFAo1Gg06nw2azoVAosFgsqFQq2traUKlUJCcn097ejt1uJyEhAbPZTFVVFQBFRUWo1Wp27NiByWSioKCAjo4OqqurKSwsxGKxUFtbi8vlYv78+RiNRsrLy0lNTWXChAmo1Wo6OzvJyckhNjYWjUaDUqkcy8smIyMjIzOGyIJIRkZGJkjxipPW1lZaW1tpa2vz/T7Y/5ubm+ns7MRut9PV1UV7ezu9vb1Dig8vCoUCtVpNREQEFosFIQRdXV1ERUURHR1Nc3MzTqcTjUaDWq2mt7cXtVpNTEwMBoOBnp4eYmNjycvLY/fu3XR3dzNv3jy0Wi3ff/89KpWK4447DrvdzurVq0lLS2P69Ons2LGDNWvWIISguLiYadOm8e2331JfX8+sWbOIiIjgk08+wel0MnfuXGw2G99++y0ajYaioiK2bt1KR0cHCQkJGAwGqqurcblc9PT04HA4aGtro729HZvNRkNDAz09PVRVVaFSqWhsbMRms/HKK68ctn0kSUKj0WCxWDAajXR1dREZGUleXh46nY7m5mamTJlCRkaGr70XLFiA2WzGbreTmppKfHw8kiSN5O0hIyMjIzNCyGm3ZWRkZMYIm81GY2Oj76ehoaHf/72fNTc3+wSPw+EYdF8RERFERUUhhCAjI4OEhAS6u7vp7e1l3rx5GI1G1q1bR2dNDw1rOjDG6sk/NY26VW10llnJWpRE0uQ41j+2BwUKpl2bi63LybaX9qKJVHHMbRPY9XYVDRvaiJkQSdKMGLa+uBeA4kszUagkNj9bDkDhRenUfNdM+95ulDoFhsQIuut6cVndJM+2YEjQsfvt6kHPo/CidAC2v1o56N/zzkqhu95KzepmlDoFxoQIuuo9+47KMJA8x+L77qQrshBOwZYXKkCCoksyqFvTQsuOThKmRpN3Zgo//GEH9i4nxZdlojYoWf94KW7cTP1pNnVbm9nzSTXmIj1x002UflJFR203SfOjURsVzJo1i66uLr788ksUCgXx8fFUVlZSU1ODEMLX/oOhVqsxmUwApKamkpmZidvtRgjB8ccfT1xcHO3t7WRkZFBSUkJcXBxarda/G0tGRkZG5qiQPUQyMjIyR4HL5aKxsZHa2tpBf+rq6nzCp6Oj46Dv6/V6oqKiiI2NJTU1lfT0dLRaLeeccw5paWm8/te3SCiwsOffDahRU7w0G2cLVH3eRIRBQ9GyDPZ8WEvrj11kLEgl9bg4vntgGwDZp2ZgVttRSs0oOhVE2WPpRYGQupFaNZhiIlFr1Lgdbuo3tuF2eDwl9k4nG58sw2F1ec7R5iY6JxJ9nJaeRhv7vm7odw4DxUzxsgwqv2ygelUTNaubj6p9+wqpxGkxpC+M54dHdgDQvreb9r3dvr9XftbgW4Okj9USkxNJ9bdNnm0ru9nwZBn2LicAzds7UKik/d4fNaboSGob2zFKURhtBqJsMUQ22zBIFpKdFnSShm/u2wLAKf/vVKq+bmDfe03k503llItOY+vLe7Fa7aSdGIvKIrHltTIcOMhdmkDT3jbOXn46O3bsYN26dcTGxuJwONi2bRttbW189tln9PT0HHTuGo2G+Ph40tLSUCqVqFQqTjjhBJKSkuju7iYnJ4fp06cTFxcnh/TJyMjIHAWyIJKRkZEZgt7eXqqqqti3b1+/n5qaGmpqaqitraWhoQGXy9Xve3FxcSQmJpKQkEBBQQGzZs2is7OTNa9sQepRkTotkfRpSWx/sgplr4rJF2fTsbebig/raY+AvAUT2fZ0FWubykgoTCPJEEOL5DmGUW/Euf93a5uD7norjm7PIL92TQutpV0gAQJcNhfmTAM1q5tx293oojWo9J5uv3lnB2v/sgu30yOCalY3ozWrfeeQsySZngYbu96qoqOyhw1PlNHTZAOgY++AwbsECSXRNGxsxWV1s/m5crrrrSN+PWq+b6a9ohuX1Y2kgPgp0dRvaIX9cQ59xVFPk40NT5T57EifH48+XsuGf5QB0Fraia3N431zOdys/csun1hS6VXoYjQ+gWjOMhw4Hwk2PbvH911Hl5Pueiu2ds//DTERKDVKDJLHG5QQkYLoiuCtm74gIk5D8bRp7Pu4EafVxYknLsGUbmDT03tw4aTomlRqttRTvqoGVRwkz7GQmJiI3W5n/fr1NDQ0sHXrVhobG/u1i1KpRK/Xk5qaSnZ2NiqVCo1Gw5IlS0hLSyMiIoIJEyYQHR090pdERkZGJiyQBZGMjMy4RAhBY2Mj5eXlVFRUUFFRcZDwaWpq6vcdrxcnNTXVNzP/r99/iAYdlmQzSfkJ1H3RjqJJQck5OXTW9lL2XA31+l4mLs8i25JPZ28vimotzdYelJKnC973VQMqnWeG3+1wkzzLQnedld4mG65eN26nQKFW4Ha4KX2vBqfNI4iES7D38wa8S1N00RpKrsph/d9L6a6z0lndi63D6bN/w9/LfL+7bG56bXbf/y0TTBRemM4Pf9yBvdPJrn9XYetw+I7TVTN4KBiAPk5LzpIkrC122vd2H3Lbo6GvHaZ0AzlLkuis7qGnwTbIxvSzo+yDGrQmj+DTmNTM/GkB21+rpHlHBwjobT7QFk1b2mna0u77f8vuLuz728KQoGPq1blseKKMrp5e3E7PNRAujyorfb8GldZzLT3XTODs9QiryBQ9ybMs7P20HoDueqtPxCklFU3f9OBq1hArJRGpiyA3NYXNz5Xj7HEx5/SFGGdFsOGJMty4ST3NTH1pM7W7GsHgJHNRIpGRkbS3t7NhwwYaGxt5/fXX+zVJbGwsiYmJCCGYOnUqEydORKfTYbFYWLx4sbzOSUZGZtwiryGSkZEJW1pbW9mzZ49P9Az8t+96j6ioKNLS0vr9vPI/b6NDj44ItOhJmBQDApq2tqM2KJl1eyHbXt1Ly85OYotMJB1jYfNz5SAgKsOAo9fpG6wr1BKSUsJldWNMjiB3STJbXqzA2esi57QkNCa1L/TMMsFEZ02vbxDeF7VRhTnTQOP+AfuUK7PpbbGz699VKFQS0fmRtJV14bIdOlEAQMHSNGztDio+rkOpVRCVYaC1rMs3uD8chiQd3bUez4nWpPYJqOFwuDVEh6LvMfvacjgkpUR0jtHjbbK7yTopEU2kmp1v7jvsd5VaBeYcIy07OxEuQf65qeiiNWx6ag8AcROjaKvoxtHlPOi7GpOayGQdzTs6ASi6KB1rh4M9/6lFFaFk4qWZlL5XTVetFZVOidvlxu3YHwIYr0UdofIIKAkmLc+i9odmmrZ1EFMQSdFFGXz/8HYc3S5ii6NAgvrNLdjoQT9BRUdbO2fccDJbtmxhw4YNANTV1dHefkD4RUREEBkZSWpqKrNnzyYhIQGn08nxxx/PlClTZA+TjIxM2CILIhkZmZDF6+UpLS2lrKyM0tLSfj8tLS2+bY1GI1lZWWRlZZGZmUlmZibP3vY6ERjQoUctaUCC6FwjPY02bG0OLIUm8s5K4fuHdngGv2en4na5KX23BoC4SVG0l3f7Qq36oovWYEjQ+ga/M28poGFTK3s/a0AbpSZtYTyVn9dj7zz4uwOJKYjE2mqnp8GGpdDEhKVp/PCHHTh6XOiiNdg7Hbidh+/K1UYVqXNj2ft5A26Hm8Tp0Ti6XR4vyTCJiNUy7fpctr9WScvOzmF/38vRCCIvlgmRTLggnXV/LaW3aRBv0WG/b0JtUFK3thWFWkHGcfFUrWoaVNQMRKGS0ESqsbbaUeuVHPOzCex4Yx/N2zvQx2vRRWv8ah9NpIr04xLY92UDtnYHGccnED/ZzI+P7vSdY3e9DWur/eDvGlVE9RHJuWcko1Aq2PVWFZJSYtYdE9j9djXN2zvQmtXo47Se0EoBksGN2+SgsaaJKx65gHfffRer1UpnZyelpaX9Jg0MBgMxMTHMnz+fnJwcbDYbxxxzDPPnzycuLk72LsnIyIQssiCSkZEJeux2O7t372b79u1s376dHTt2sGPHDnbv3k1n54HBZlJSErm5ueTm5vLVMz+gx7hf8BhQo/EN2JRahc+DkjgjBp1ZTcUnnjCmOXcXsfezemq+b0YXoyEmL5K6dS2+mfqhUGoVpB4bR8PGNnqbbKTMsZC2IJ7V/7sdBJhzjFhb7VhbDh7QDkRrUmNMiaB5u0eozPhpPg0b2qj8ssGTCEAp+eUB8qLSK3H2uNBGqZlyVTZbX97rtzflUERlGWgv7z78hodgJATRSNkCHk9T8cUZbHxyD7Z2B2q9EkeP6/Bf3I9Sq0C4BG6nIH1RPPGTzax5bBcAliITXVW9fnnSdDEadNEa2so8a8Jm31nIvq8aqP6umYhYLfFTzFR903jY+0ChlkicFkPL7k6sLXaSZ1vIOC6e7x7YDkDmiQlY2xzUrWnx2e/dpxACVSy0trTR6+5CmwOGVB1ut5uysjJqamoOtJvBQFRUFLNmzWLq1KkYjUby8vI46aST0Gg0frefjIyMTCCQBZGMjEzQ0NHRwY4dO3yixyuAysrKfIkLYmJiKCwspLCwkC+e/N4nevQYfWtyBhKda8Te7aS71oopXc/kK7JZ8+ddWFvsJM2MQRejofyjOgDUBpUvScHhSJsfhypCSfl/65CUEtNvyKPsgxpad3eh1CgQbuGX5wY8a1McPU7snU4SZ8SQeWICPzy8A7dToNQpcFn9F0B9yT4lkagsI+sfL/V8sD/hwpEgKSUmnJ9G44A1NkfDSAkiL7ETo4ibGMWO1/f5Hfp3EH3aaOp1ubTt6fLdH8PFe+0UKo+npvzjeurWtKCJVKHWq/xOPqFQSUgKCZfdTXSekZxTk1n7f7sRLkHWSYk4e13s+7rx8DsC1AYljm7P85R9SiK9zXZqf2whwqJh+o35bHpmDx2VPRiSdGgMKo83aRAkA/S6u+joaUdKcKLPVqFQKNixYwfNzZ7sgkqlkuzsbNRqNVOnTmXx4sWkp6eTmZlJVlaWX/bKyMjIjDayIJKRkRlThBDU19f38/Z4f6+uPpBiOT09ncLCQrZ9VIYBEwYiMWBCIx2+Nkt0rhHLBBOl73lmsKdem0t7RRd7PvSslYnJi6Rld6ffXhZJKSFcAmNyBBMuSGPTU3uwdzpJOiYGpVZJlZ8D0YF418BICs9gufq7JvZ91YhCrQDwZTkbLpZCE9Y2O921VvTxWjSRao+nYQTIOS2J5h2dtO0Zmf2NtCAy5xixFERS9p/aEdufvdNBT4MNQ5IOnVnj89wNl77XNW1BHCmzY/n+4R0ItzjiNVgAqfPjcFld1P7oEVqTr8xmxz/30VXT67t3/WHgs5F9SiJRGQbW70/GkXt6Ms07OoYUSH0RkU7s2h4aG5voVXWhy5Fob2+nru6AsExOTqawsBCtVktOTg7nnHMOBQUFJCQkyGnEZWRkxhRZEMnIyIwaNpuNbdu2sWHDBjZu3MjGjRvZtGmTb22PSqUiLy+PwsJC1v1rm0/06IlENYS3x4tSq0CtV3nWbhiUTL0uj91vVdFa2oWl0ERCiZltr1aCYNgelr5hQ5NXZtNZ3UP5R3Wo9UpS5sVRs7rJr7U/hyJlbixp8+M8A2KXQB+npbfZhjgyDdSPqdfm0rKrk72f1R/9zvAIQp1Z3S8T20gx0oKoLxGxWqyt9iP3FA0g44QEYvIiWf+30qPel6SACIunrpOklJh1+wRfSNzRoIlUkTw7lqpvG3H2uMg6OZHIFD2bnvYkfeh7b/uD79mRoOiiDOo3tNK8vYPoPCN5Z6Wy/q+7fWvZHD3Ow+7bKZwIiw0Rb6dyezXTzi3i22+/pbGxEbfb812dTkdhYSELFiwgOTmZ1NRUzj33XHQ63ZE3jIyMjMwhkAWRjIzMiNDQ0OATPV4BtGPHDpxOJ5IkkZuby5QpU1j3xnaM+z0+ERhRSAq/9q82KInJN/nqzhRekI5Sq2DLCxWAZ5a8eVv7EQ3aJaWEQukJR4qbFEXemSms/t/tuB2C2CITtk4nnfsOLpw5vIPA5BVZNGxqo25tK9ooNREWDW3l3UccwuZFY1KTd0Yype/XYGtzDHvQezgyjk8gocSzFsbfEEB/GS1BpFBJzPhpPvXrPYksRgpv22rNanKXJLP73ZpBswEOC8lT66i32Y6t3UHijBjiJ0Wx6dnyo743ItP0aCNVNG3rQKFWMPvOCex+p5rGze0oNQrcLnFEgjHCosFSGEXVNx7v6MTLM3FZ3Wz/Z6WvLlXLrg5faN7hcAs3vXTjiOxBkyOISTWza9cudu/ejRACpVJJYWEhBoOBKVOmcN555zFp0iQSEhJQKPzrQ2RkZGSGQhZEMjIyw8LpdLJr1y6f+PEKIG8ojMFgYPLkyUyZMoUv/vY9RswYiTqsx2cw0hbE0V1npWVXJ6Y0PZNWZLHucU8mMX2cFrdL+JWkYDBUEUqcvZ7B2jE/m0DN901UfdOExqQmKkNP8/aOox78G5MjSJhqpux9T/hW2vw4Ovb10F5x9Iv/4UAon0ItUXhhBns/raNrBJIlDESpUWBI1NFReZSicBBG00NkStfTXWfFZR85cejFmKQj44REtr+6F7dTDCs07XBEZRowpel9a4JyliRRv77tqOs7KVQSlkIT7Xt7sHc4SD02juRZFn74ww6g/zMxXHQxGhRKiZ5GmycD4XW5bHq2nM59PcQURGJI0LHvqyMILdW6cUZbqautY9G1x/DBBx9QX1+P1eq5z41GI9OmTWP27NnExcVRXFzM4sWLUankMosyMjL+IwsiGRmZIXG73ezevZsffviBH3/8kR9++IGNGzf6BiNpaWlMmTKFLe+VEomZSKKIwHjE6XdjCiJJKIlm+2uewXHhRem0V3RTs7oZSQGSUnHE62qQQJIkhFuQMsdC6rGecDWEJ+1yd4P1iMVVXzSRKhRqBdYWO1GZBrIWJ7L1pYphZSrzh+hcI7lnpLD+8VKc1pHdt5fY4ija9w5eU2ekGE1B5EVtVBGVYaBp68gkghiIKkLJ1GtzKX232q/1NcNBrVdSfEkm5f+to31vN7oYDW6H+6hDNsEjYgzxOk/adQlP2N7XjfufNwkhxBF7qBRqBW6nGwQkz7YQlWE48FxfmE79htYjTtcuhKCXbpyxPZBkJy7dwqZNm9i3z1NHSqfTMXnyZAwGA4sXL+acc84hPz9f9iTJyMgMiSyIZGRkfFRXV/cTP2vWrPEVbszPz2fmzJn88NLm/eLH7KndcwQoVBJup0ChVjDlymwqv6ineUcn5mwj8ZPN7H63esRm28HjSZnx03wqP2+gfn2rbyDYsqtjRNbs9KXkmhx6m23sfLNqZHe8H6VGgcvuRq1Xkjwnln1fNR65SDwECpXEtBvyqF/X6nf2siNhLARR2vw4EqZFs+7/do94yB94Bv9pC+Ko/q4JZ4/Ld41Gg4Lz0oiwaNjwj7IR3a+kgJj8AxMDCVOjSV8Uz5rHdo34s5h3RgoNm9po29OFZYKJ9EXxbHxqD26H29c3HBFGFzZ9N/X19Uw5P5/PPvvMl+1Or9eTlJTEueeey+zZs8nOzmbSpEly8gYZGRlAFkQyMuOW1tZW1qxZ008A1dZ6QruSkpI45phj2PJ2KSZiMBF9xOIH9q+7sHtmiwcu8s48MYGmbR1HHQ40kKRjYkiYGs2G/RmyEmfE0LG3m57G4RfuPBT6eC2FF6az5fkKbO0O9HFabO2OURkQJ8+ykDzLwrq/js7AfiBqvRJHr+uo17EcirEQREigjhhePaEjxSska1Y3U/P90SVIGAylRoE2Sk1Pow2tWc3EyzLZ/lolPQ0jfF/HaTFlGHz1iab+JIe69a3U/tBymG8OD2NyBLFFJl8dsMlXZtO5r4fy/9aBtH8C4CjWwzmEnQ5aId2GO9pGY2Ojr35SVFQUCxcupKSkBJPJxEUXXURKSsqInJeMjExoIQsiGZlxgNvtZuvWrXzzzTd8++23/PDDD+zevRvwDApmzpxJ6Sf79oufGHRSxFEdT1JKqCOU2LucvvUEm58tp2NfD6Z0PWqD6ohTFw+FQi1RcF4atT+20FbWRWRqBKY0PdWrm0d8QK+NUqOP19K6uwuFWiL75CT2fdOIre0oF9cPgUIt4XYIdNEaorIM1K9rHZXjgOfapS+Mp+rbwxf9HAnGRBDtR6lVkDovjsovG0bU6zGQhGnRtJd3Y221+67daKA1q0k7No49H9bidgqi84z0NNiwtY/wfShBymwLHft66KzqxZxjJGlmDDvf3Dfi52YpNOHodtJR6ekrJi0/sG5QY1Th6HUd9bWzil5UBQ4aWupInhLP6tWr6eryhDrm5uaSkZFBQUEBP/nJTyguLpa9SDIy4wBZEMnIhCG9vb38+OOPPgG0atUq2traUKlUTJ06ldmzZ/PZn1djIgb9Uaz56UtErJbeJs8sdfElGbidwrNmwJtxamfHiM/QR2UaMGcbfeml889J9YTijFDNnaHIOimRmIJI1v5596geBzzhXpYiExuf2INwj353bUjSUXxxJltfrPC7aOjRMJaCyJCgo/jSTLa+XEH3KCSfGIikkCi5OpumbR2jGnboZfpN+bTs7PB4V0YRc44ntHXXvz1hoRnHJ9C2p2vEkoV4UeuVxBT0ySx5UToKpcTWl/YC/fuco0EIgTLNRfW+ak64eQ5vv/02+/btw+12ExUVRVJSEgsXLmTZsmUcc8wxREQc3YSRjIxM8CELIhmZMKCpqYlvv/3WJ4DWrFmDw+HAZDIxZ84cdn9UhRkLUcSgPIJsb4OhUCtQahU4upyYc4xMvDSTtX/ZRW+znciUCFwO94iH8SBBdI6R3mY71lY78VPMJEyNZsvz5SO+FqjfYRUSxZdm0LipjfoNbSh1CoRLjNrMv+eggABDog5joo76DW2jd6wBHNU6jmEyloIIxvbcABJKzHTVWemus/qu6WihUEtISgmX1U3C1GjiJkWx9cW9oyqkJQVMvDyL+vWtNGxsQxetIcKiobWsa8TPVR+vRalW0FndS4RFw/Qb89nyYgVtZV2ojSpcNveIradzCSfttNCla0XKsFNVVUV3dzcqlYqkpCTOP/985s+fz9SpU8nIyBiRY8rIyAQOWRDJyIQYQgjKy8v56quvfAJoxw5P2tzU1FQcVRJmLJiJxUjUiHh/vGjNal9YWMlPcuiq6aX03RoUKglThoH2iu5RCUXSRqmxtTuQFDDztgnUrPakyB5tTBl6OvZ6Uk1nHB9PW3k37eUjOws+GMmzLETnRbL1pYpRHUD3Ra1XkjTLwr6vGkc1nGwgYy2IwCOKUufHUfN9M84xWFcEgATFl2TSurtzVNYWDSQqy0BUpoHKzz01mPrey6NJ6rGxJM+O9aTyFgee3ZFGUkpEZRro2NuN2ynIPTMFY5LOt2awb181Eggh6KIdkdlLu9RCj7PLl9UuMTGR0047jZkzZ1JcXMzcuXPlMDsZmRBDFkQyMiFAdXU1n3/+OZ999hmfffYZe/fuRZIkJk2aRMumLszEYiYWnaQf0eNKClCoPAkR4iZGkX9uKt8/tANnrwtTmh5bp2PU1s14SZoZQ+aJCXz/8A7cDoHaqBrVNNBeTOl6Jl+RzcanyuisGtmED4cjKtOAKX1/HZox6qFj8iPJWZLMhn+U+l1McyQIhCBSG5SUXJNL2fs1tOw6stTPw0baX4eqcuTqUPlLZGoEU67MYdMze0alltRAvM+oQq1g1u0TqPikjtofRzYZw0C0ZjXaSDUd+3pQ6ZXMun0CO/9VRdOW/QVone4R9yJbRQ/qyU6qqvcRkaJm8+bNCCFISUlh8eLF5OXlccIJJzBr1qyRPbCMjMyIIwsiGZkgpKmpiS+++MIngHbu3AnA5MmTad3UQwzxmIk9qsxvQyEpJF+IzfQb82ja1sHez+pRRSiJTImgrXx0vEB9mXBBGu0V3dT+0IImUoU+XkfbnpEPwRlIVOb+WfUvPLPqkSkRdFaPjRgy5xiJyY9kzwe1Y3K8wRjJ4qL+EghBBIE5175kn5pEy67OUV/v5qXvvZy+KJ72iu7RF2YSmLON9NRbsXc5SZ5lwZShZ8c/943uYZUS5iwDndW9OHtdZJyQgGWCiXX/51nz17ePG9HjRroR6b3s2lJK9BQ9GzduBDwlCxYtWoTFYmHlypXk5uaO+LFlZGSODrmUs4xMENDe3s5XX33l8wL1fZF273IyidlEE4dms5b4kYuAO4jYYhM5pyXzwx93IlyCik/q6G32FCt19rpGvOikF02kivgp0VR941l43tNgw97h8QLZO53YO0d50Lh/bYcuRkNUhsE3YBorMQSe4p46s2bMB+qqCCVxk6Ko/bEloAJhrBEugaTwpGNv3NyOs3fsvGKSUkJn1qDSjV1YlfdelhQSURkGbB0OjyAazXVNgn6Cz9bu6LeuMHV+HA0bWkekyGy/w7pEv76qcVMbXdUez5hCJTHz1gLK/lND09aRzXQpOhWw1UC+NAU2wQmmLDo1rdTs2sd/7f+loqKCBx54gMmTJ1NUVERxcTE33ngjZrN5RO2QkZEZPrKHSEYmADidTr7//ns+/PBD/vvf/7JmzRrcbjdpaWk49ymIIZ5o4kY8BG4wJl6eSfOODmp/aEEXrSEmP5K6da2jUuyzL5JCQm1QYu90EpkaQfHFmWx8qswnwMaKgvPSsHXYqfi4fkyPC55F8DH5kSM+MBsOsROjyDk1iXX/t3tM6vQMJFAeIvCEzk27Po+y/9TStLV9zI/vJbbYRMuuztFN0jEEmYsT0ZpUo1ZIeCgiLBqmXJXD1hcr6KzuRROpwtHtGvVMigq1gsRp0bTs6sTaaid5loWYgki2PF8xqscFkGJd1DRV0SIasUa309raikKhYPr06SQlJbFs2TKWLl2KSiXPVcvIjDWyIJKRGSOqq6v56KOP+OCDD/j4449pb28nJiYGdYt+vwCKJwLDiCZBGIyoTAPJsyyelNhA6rFxdNX2jlnojpeiiz2Zmba97EmhO5bZvzRGFY4ez+ArcXo0jm4XzTvGXpQkTI0m6+RE1v5l95isixoKpfboil8eDYEURBDYcwfPvTj9pjz2fFA7ppkEvVgmmFAblNStbfVMUug99cPGgr7P/MD+YKww5xgxJkX4vNOFF6ZT833zqIcTCiFwGmw0dNfSrm2iVdFAb28vUVFRTJ8+nYKCAu666y7S09NH1Q4ZGRkPsiCSkRklbDYb3377LR9++CEffvghmzdvRpIkTCIaC4lYSMBEzKgLIICkY2LoabTRXt5NZJqe1Hmx7H6rGqd17DwCaoOS7FOS2ft5PdYWO5GpETit7hGpIzIclFoFM28pYO/n9dT+MLoLvQ9lg3cQPlpZuA6L5Emk0LJzjJIKDEGgBZGXmIJIT4KFALwR+94DgRRoybMspC+K58dHd465DRGxWlTaAym10xclsOfDmjFN8KHSKck7O4Wqb5vo3NdDVJYBfZx2TPoJIQk6aKXZXUdvbCt1zXUIIZg4cSIZGRmcddZZXH755Wi12lG3RUZmPCILIhmZEaS8vNwngD799FO6u7tJSEhAUa/DQiIxxKORRv+FpopQYs4y0LTN4/WYtCKL1tIu3yzoWKFQSRgSdHRW9yIpJSZensnez+rHJP3vQKJzjb51BZYJJtrKuwIy8DQmRzDxsky2vFhB1xiuURpITEEkhRems+6vpWMuSvsSDIIoIlbLtOtz2f5q5dhlnRuEyJQIii/NZMsLFXTVjP29odQqMGcZfd7S6DwjrbvH1nMMnhThGccnsOX5CoRLEJkaQXeddUzrR4FnjVN0jpHNz5YDntDGtj3dY7LezKW00+isp0VRT4e+ia6uLgwGAzNnziQ7O5vbb7+dwsLCUbdDRma8IAsiGZmjwO128/333/POO+/w9ttvs337dlQqFUanmVgSsZA44rWAhkJSSig1Cpy9LmKLTOSfm8aPj+70hGKNckHIoUhfGE/yLAvf/2FHQBfsG1MiKLkqh83PltO+d2xTHg9EUkDKnFiqVzcHPIlBhEUz5mu2BhIMggiCoy0kpUTybAs13zWNaqFhf4jKMDBpRRYbnigLiDjzIiklZt0+gZrVzVR+2RAAAwDhCW2ceWsBO97cR/O2DlQRSlx295g8w0IIuhTtNLvr6Ilto66lBrfbzYQJEygqKuLcc8/loosukmsfycgcBbIgkpEZJj09PXzyySe88847vPvuuzQ0NBAbG4u6yUgcScQQj0pSj7ldU6/NpWNfN2Xv1yIpJVRaRUAWyWefkkR3vZX69a2o9EpUWiXW1rEfaCo1CiyFJho2tgGeKvd9M1yNNenHxdO4uT2g3hgvGpMae0cAwvQGIVgEkZdgaZuIWC1xk6J8hVUDQd9nJn6KmebtHbjsY6/UdNEanDYXzh4XCVOjMSTo2PPh2KenV+uVOG0eEZSzJBlTagTr9xeCHUvcSgdNzgaaqKXd0Eh3dzfx8fEcd9xxTJgwgZtvvpmYmJgxt0tGJpRRBNoAGZlQoL6+nqeffpqzzjqL2NhYzjrrLL755hsiGszMYBFTmhZSLM0gXkoZMzEUmaZn2g15KHWex7j8v3VUf9cMeNLOjqUYMiTqDvxH8nhBAJw9roCIIfCE++SclozW5LkegRRDSo2CmPxIIlMiAmaDF02kiuk35hE3MSrQpgQdcZOimH5jHprIwGf5ikyJICY/EqUmcK9p7zOjNanJOS2Z6DxjQOywttpx7u/PJAUer81++vU9o4yjx+XzCFV/10T5x3WAZ+3RtBvyiEwb/aygAAqXmngphSJpBrN7T2GW5ngiGqL59ttvue+++0hJSeHMM8/k7rvvZsOGDWNik4xMqCN7iGRkhmDnzp289dZbvP3226xevdqTEMEdTSzJxJGMQYocc5viJnkGsY2b21EbVWQsiqfyi4Yxywo1GMYkHSXX5LL5+XLaywMbjqaL1mDONlC3thUAtVEV0OxtkkJCoZFwWd2jVgzySIgtjtqf5jnAcVkEl4dIqVEQnWcMaBr0vnjvGaVOgdsuAnr/9H2WEqdH07anO2CTHV6isgxMujyL9f8opbvWGjA7NJEq0hfGs/fzBhzdzn799FjjMlupaq2kkRraJc8E2axZszj55JOZO3cuJ5100pjbJCMTCsiCSEamD9u2beP111/n9ddfZ+vWrej1egw9ZuJIJpakMUmIMBBjSoQnhl9A3lkpuF2CsvdqxtyOvkRlGojKMvjCeczZBtr2BFYMAaTMsZA4w8L6x3eP+QLswcg7KwVdjIbNz5QH2pSgJZgEUbAy+Yoselvs7H67OtCmoFBJTL0uj9ofm6lZ3RxYYyQwZx3oe9KPi6e9vHvUU2YfjtzTk5EUErvfqQbJk0glIAlUjC6aqKW6cx+dumasViv5+fksW7aMxYsXM3v2bHndkYzMfmRBJDOuEUKwdetWnwjavn07JpMJfYeZBFKJIQGlFLgXhj5Oy7Tr89j6UoUnQ1qAkiN48dYNiS8xk1ASzZYXKoIiMYAhKYKmLe0g7bcxAAUuB8OQoENtUAaFWASPQLO1OQKzOH0IglEQpS+MRxetZtdbgRcg4JlwcHS76K4PnBekLwq1ArfTDcJT2Le7tjcoElJMvCyT+vWtNGxsG9O6ZoMbBAhP6G7xxZms++tuehoDF7YrRQicGV3s2L6Dnqg22tvbSUxM5Oqrr+a8885j4sSJsjiSGdfIgkhm3CGEYPPmzbzxxhu8/vrr7Nixg6ioKPTtZuJJwUICigCKoLQFcUSm6n0FCk3pejr29QRUCAFMWp5FV10v5R/VBdaQAWSemEB0biTr/14a8DYCjyBLOsZC9XdNQWFPX5JnW3B0OWncMvahPEMRjIIobmIUaqMq8B6QgUieDIW1PzQHhQcUCab+JJfW0k4qPqkPtDX9yD4lEUNCBJufC7B3VgJT6v4+HCi+JIOOfT3s+2psSyD0xS1cKCbaKKveTatopK2tjdjYWC655BKuuOIKJk+ePCaZUWVkggk5qYLMuGHz5s3cc889TJgwgSlTpvDnP/+ZWbNm8d5771FfX0+xNJM4KXnMxZCklEiaGUNErCccr6uml7ayA7U/OioDJ4ai84woVJ4XY93aFl9do0ATYdH4FnhXftHAxifLgkZ8RKbqSZsfhz42+Aoo1qxuDioxFKw0bmkPPjEE6GO1pM2PIzJlbBbvHxYBG58so/ILj8cxOs9IhEUTYKM8NG7toG6tp6CqQiUFLCEEAp8YAmgt7fKlMY+I1ZI0MwZJObbiQyEpYauenLYp1NfX8/e//52CggKef/55SkpKSEhI4Pzzz2fDhg3Ic+Yy4wXZQyQT1lRWVvLKK6/w4osvsmXLFqKjozn77LNZunQpJ554Ikt0lwTMNrVBhaPbiaSA6Tfns++rRurXtQbMnoFoTWqm35zP7rerArI4+FDknZlCRJyWTU/tCbQpg6LUKXBZA5+wwIs+Totlgonq75qCw7PQh2D0EIFnEJ0yJ5am7R1BkSrdS7DdW32ZfGU2PY02St8JjlBDL3GTosg7K5U1j+0KipTqXhKmRZM2P461f96FcB94JwSK960v8cknn/DrX/+arVu30tnZSW5uLlOnTuXee++lqKgoYLbJyIw2sodIJuxobW3liSeeYOHChWRkZHDfffcxceJE3n33Xerq6tj3bCePnP5MQMVQfImZGTfno9QqEG5Y++fdQSGG9PFacpYkAWDrcLD+8d1BI4bUeiXGJE+K3T0f1rLl+SBKVCDBhPPTSJljAQi6AasxOYK4yeaAF/sMJYTbU3tnYKp09/ypR7S/it/MOaLv7XpyRr//e++tlDkWJpyf1i8FdV9KH5097GM1XzmH5iuPzE6lJYbt77VTvr8+kDFJh0ofHGtSGje3s/7x3T4xlLMkCX1c4D249etaWfuX3Qi3R+jOuDmf+BJzwOxZoruER05/BuP3qTQ3N/P++++TmprKW2+9RXFxMQsWLOCOO+5gx44dAbNRRma0kD1EMmGB1Wrl/fff56WXXuL999/H6XRy4okncskll3DOOedwbtTKQJtIyhwLjh4XDRvbUBtURGXoad7REVSD1MjUCHLPSGHrixXYOwM3UzkYBeemEhGnZUMACiH6Q9qCOLpqrbTu7gy0KYMT4IQcQxGsHiLgoDYbKIYUX6/3azcDxVDmPd/59b2BYij/qjW+36PzIjEm6QZdizJQDOXestqv4w0mhixPHd5WpaV/EVBXcwslP8mhp9HGrn9V+XXssUITqaL40kxK36mmMxCZ34ZAUoBlgon2vT04up3ETzGj1it9teUCyestT/Dee+/xwgsv8PHHH6NQKDj99NM5//zzWbJkCWazOdAmysgcNbIgkglZ3G43X331FS+++CJvvPEG7e3tTJ8+nUsvvZQLL7yQy1NuDrSJ6GI0WFs82Zdyz0jG3uEMqgxfACnzYolK07MtCAekkkJCY1Rh63CgNqpAENCQksHQRqmxtQdPGM5ADAk6uhusQSmGIMgFEYAEhngd3fXWIb1DhxNGQ3mHDiWMBoqhvvQVRtD/HhzKM3Q4UXQoz9DhRNFAQQSg1itwtbbh6HKiNamxdzmDpg5XX4qWpdO+t4fqVU2BNqUf6Qvj0ZhUlL7rKbHQ910SSP687df8+9//5t///jc//vgjWq2WCy64gBUrVrBo0SIUCjnwSCY0kQWRTMhRWVnJc889xzPPPEN5eTlZWVlceumlfPLr7zFIpkCb5yMiVsv0G/LY+nIFrbu7Dv+FMURSSihUEi6bm+g8I/p4HdXfBteAADxrhYxJOtYHqVfIMiGSgvPSWPd4aVAMVgaiUEkc87MJVK9qYt/XgctqdSiCXRClzY8jZW4sP/xhB845JYfcdjBh5E+o3GDC6FCCCA6IIl2MhmnX5bLzzX007+g8bKjcYMLI3zC5wYTRYGKoL67mFqZem0tXTa+nLk+QkTIvlp4GK627u1BqFbidIuClBAYSnRdJ8cUZrP3LroCnN++LlOTEskDHjz/+SFlZGdHR0Zxxxhncd999ZGZmBto8GZlhIQsimZDAarXy9ttv8/TTT/Pxxx+j1+u58MILueKKK7h3/qNBkyI0Os+IOdvoS01tmRBJy+6uoHvBTr4ym95GW1AOUMDjGRJugS5Gg0qn9GVlCjYkhURskSmoM7cZEnTYuxw4ul2BNmVQgl0QqQ1KNEY1nfmFfn+nrzAaztohrzA6nBjqS/5Va4ibGEXTtg52/3GW39/zCqPhrhnqK4oOJ4a8GOLV2OtbsbbYfc92MJJ3ZgoRsVo2PR1cyVokpURMnpHmHZ5w3KyTE2kr6/LUpgsChBDc9fG1/PKXv2Tjxo309PQwc+ZM5s+fz/3334/BYAi0iTIyh0UWRDJBzfr163n66ad56aWXaG1t5dhjj2XlypU8v/IdVJIq0OYBnll4hUqB0+oiblIUcRPNbH+tMuhe+oYEHb0tdtwOj1fI2uoIquxZXlLmxhJTEMmW58qDan1VX4wpETh7XUHpFQo1gl0QefGEywmGzGIwCIqv1w87mULmPd8NSxD5jtWlItLlRisETSr/khnk3rL6iJMoxL+1c9jfcbe2MGl5Fs07OoJibcxAImK16MxqWku7UGoU6KI1QVMM14ukkCi8MJ3GzW00bmlHpVPidrqDJnukSzhZ/uzZPPDAA+zcuROz2czFF1/MiSeeyJlnnikXf5UJWmRBJBN0NDc38/LLL/P000+zYcMGEhMTWb58OV89uAGDFBlo8w5i6nW5tO/tZs9/agNtypAotQpm3lrAvq8agy5WfiCRqRGY0g1Bbeek5Vk4rS62vxa8g3jLhEiSZ8ey9aW9uB1BqiwZe0HUeeFsIl/zL8mAF4VaQfa9E9liUKF50/9XZu1cT4Y6R6T/30n/yDMAL10+vIHjhL/0kLpUjUYIPjRGgB9e85QvPPdFj2V4x+rI9fyb+/DwRNHuO/KZ/04pHXu7gyqhwWCkzI0lbUEcPz6yE5cteJ+f7NOSiMowsP7x0kCbchC9qm4W3F7C008/TX19PdnZ2dx8881ccsklxMbGBto8GZl+yIJIJigQQvDdd9/x+OOP8/rrr+NyuTjjjDNYuXIlj5zxDAopeBZqqiKUJM+2UP1tEy67m+hcIz1NNmxtwbewPrY4iubt7Qi3x6vRXdsblF4XY5KO+JJo9nwQvKKyL0qtAkkh4ewNzjA0AFOGntiiqKBv07EURJ0X9l9fMxxhFPPgFCoilNRpleS+6F9iD68g8uKPMPIKIi/+CKMJf/EU/lRpPOnCt196+LWUXjHkZTiiyCuIwH9RtPvOgn7/z/75d2SfmkT9hla6a4PLCwOerG+GpAi6qns9GeAKo2jaGnyhsVqzGn2s1ufVSpkXS83q5qDqm9ySm8W/ncn333/P+++/jxCCadOm8Yc//IF58+YFTci7zPgmeEaZMuOSzs5O/va3vzF16lTmzZvHqlWruP/++5njPIXOt5T86czngkYMec1QqCSSZsRgSPTUxGkt7QpKMaSP01JwbirmbE+F9q7q4BRDABqTGmNSBEptcFzrQZEg/bh4VHolLps7qAYcg9GxtyfoxVCg6bxw9kEiaTB2/X0mq80a6rQe0VB6qYrSSw8dsjtQDAGoO4c/8Mt9zv/7zGkHlxOKXu7ghNWdSMOY79Q3u9A3H/5YfcUQQOntBZTeXjD4xvsZKIYA9v1+NsakCLQmtd82jiXC7ekzAczZRk/a/9jA1y4aiK3N4VtLZEjSkTQjBoXKc58FyasThVDw6f9bS9fbKuY4TmHZsmVUVlYyf/58Jk6cyJVXXklVVXClZ5cZfwTJ4yIz3tiyZQs33HADKSkp3HDDDWRkZPDBBx+QtWcqH9/1I1pJF2gT+5E4PZqSa3JBAnunkx/+uJOOyp5Am3UQSq2C5Nme4qA9jTbW/HlX0Cy8PQgJYvI9IZAtOzvZ9PSeoA5N0Zk1JEyNxpAQXPfmYMQWmdDHB9/gLVjxCqPDiaNoh5vMPkLYH2E0EHWnNKQwGugd8pL7nGtIYeT1DvXFEAUJGTDx9cFrYg30DvXlUKJooBjqy1CiaDAxBOCQJN7Kj6dlp8fGmPzI4SzPGlNaS7tY8+ddvjWXybMtQTl507G3hx/+uNNTQ06CkmtySZweHWiz+qGRtNS+2Etx3Tz++9//YrFYeOaZZ5gwYQLXXnst33zzTaBNlBmnBN8TLRO22Gw2Xn75ZebPn8+kSZP417/+xU9/+lPmuk+h510NfzjtqaBynWsiVURYNAB0VvfSsKkNSeGxL9iyxnmJTIkgfVE8uhiP3cHoufISkx9J4YXpQTnrOhjWVjtrH9tFe3l3oE05LGkL4ombZA60GSHJoYRRTq+Lkk4HDPC8jLQwGopDCaO+tDfCuk8Eth7If7aD/Gc7hnUcfzxFgzFQFA0lhnxIEnsenENErJbCC9N9EyTBiLcv1cVoSF8UT2TKwR7AYMD7bpIUEg2b2nxrtSJitWgigyMREYAkSfzvyf9A+00Ci/RncPvtt/Puu+8yf/58cnNzeeGFF7Bagy+UUiZ8kQWRzKhTU1PDPffcQ1paGpdccgmNjY28+OKLFNXNpWZVCxPPPDDtOPmKLOImRgGexfUl1+SgNng68dT5ceSfk+rbduJlmSRM9cx+GRJ0lFyTg9bsCb9Inm1hwvlpvm2LlqWTNNOTIjbCoqHkmhzfQDxxRgxFF2f4tp2wNI2UORYmnJ9O9qlJlFyTA0D1qibiJkUx8fJM37b5Z6eSNj8OALVeSck1OUSmel6UscVRTF6Z7ds29/RkMo6PB0CpUVByTQ5RWZ50pDEFkb7jAGSfkkjWSYmAJ+yh5JocovM8oW/mHCMl1+T4wiKyT0ti0oosANr2dNPbbPN5MUzpekquyUGl84T6pC+MJ+/MFN9xJq3IIm6yGQBjsqe9vS/N1HmxFJx7oL2LL80kYZqnvfXxWkquyUEX7RFeybMsFF6Y7tu28MJ0ko7xtLcuxtPe+jhPeyfNjKb4kgxadnay/m+lpC+MJ2WeZ4GtxqSm5JocjMmeNoyfbGbS8izffvPOSiFtoae9VRGe9jal6z3tXWRiylUH2jtnSRIZJyQAoFBLlFyT4wsfjMn3tLc3pCTr5ESyT/G0t2dmNYeYAs/gLL7EzKw7JqA2KHE7BRnHJ5BzerLvOJOvzCa22LNmw5S2v731nvZOWxBH3lkH2nvi5ZnET/G0tyFp/z27P2QoZW4sBUv73LMXZ/hmdyNi97f3fqGbNDPGt/YGYMIFaT7PoNasRrgFLTs9g+CEqdEUX5rp2zb/nFRSj/W0t9qo8tyz+wd3cZOimHTFgfbOPTOF9EX771nd/ns2w3PPWgpNTLm6zz17WhKZi/e3t8rT3tG5nvaOzvXcs5LSc89mLk4k+9Qk33ejMgxYJnjaMCrTQMk1Ob4Z+PTj4sk9o097H0UfMTezhwi1xzuSGW1nasqBhf3TU3tJN3uyBho0bib9fDLismM87dvtZHGzjQ1GFW/HaTmu1c7ELs8A2eB0c2ajFYvdTemlKhKS3BQsPOCBmaXupUjp8SxocXOSpguL5FmDlKZwcIrN4+FJ/8hKXoGTzGyPGFEqBVNnOjBHe/ZliXUzdaYDEOQ+52JWq4NTPvfYL0kweaFEtKf5McfBxGMlVBrIKZHIKZE4ZZ3HE5PyhZtj8qzER3lsMBtczMrrRaX0DKSzE+wUpdl8IXQLzN2k6h105ILF7eI0WzcR+2Nvi502jrUfaMMT7D1wSxaltxegt6hY0ttNpNuzbaHDziLbgW2Ps/UyweFp78qfldCuUPiyNnr7CC8F56UFTR9hbbGz5k+7yDwxkZiCSJKOicFSZPLcsxrPxsHQRyROi8aUrqe7zurbr/d9pDV72tD7ngh0H6Hs0bDt5b1ceNrF3HPPPcTFxXH55ZcTFxfHkiVLKC8vR0ZmtAme6QKZsGPt2rU8+uijvPbaa2i1WlauXMmWl8vJy83k+ZXvoJA8L8C+azE6a3qxd3le1E6rm86qHtwuzwvV1mqHPqmsu2p7sXV4BiUu+/5tHZ6/29oddGsOzC511Vl9ldxdDuHZ1u7Zr73DQVdtL0qtgvRF8dg6HVjbHOx+uwrhFqTMifWFctk7nXTVHnipdzdase+3we3y7Ne7raPLSVfNgXCWnkYbTpvnXIXbs6333B09Ljqr+mzbZPfNQgsBnVU9OHo82zp7nHRW9fgmqRVKCUOiDpVeibPHRWdVL45ubxt69utNAW5tteOyH2jvrppe7J3728Xm2dabvtXaZu+Xqaqrttd3rgfae/+1abfTXXdgUXZ3/YH2djs827rsbrRmNekLE2jd0+Vrk+4GK7Y2z0DI7dy/7f52snU6+rV3T6PNZ6+vDa2ebe3dzn6Zq3oabb77Qbj3t2Gvp10c3f3bsLfJduBcve29vw2VGgXCLQ60YYsNZfeBc+2q7sXR5erf3q4D7d03HW5Xba8nnAVw2fa3odPta2+F8kB7d9dZsXU4+7Whr707HL6BzsD2Bo/93ufIflAbWrG27m/D/fes03t/dzn71XzqbbT67jvhol97O7qcdFb39NnWhts1oL17Btzf+xu8t9nW71ydva4D92yv955lf3sP3ke4F07FuXXbsPqIWqOS/ZvS61Sg6jMB3WFVYHV6BrQuN7T1KnC6wXX6MQilk2a1Aud+D3GbSqJLuX9bSaJRrcC+f+BcMU9J8XvVMM0zEGx3K+gVnj+6kWh2K3Hsjw2zItHiVqLulFB8vZ6e1Mk4Xfu90AI62xU4HJ7/Oxye/3vRrBX07K4BkhBAVyvs1xc4HJ7/CwH6SOhsFVi7PWm2e88+hvYeBXanZ79Ol0R7j/LAs2BX4OrThh29CjQfbIdrJuMAmhRKvHKvS1L0W6fSIinp2f+BvaGVJmUKTt+2Epo+G7dICrr3P3NOoF6louPkKcy5bAvSxwk0bTuQwCDY+gjfPeoSpM2Po+aH5v79bBD2EfUbWnHs7xM0kSokyZPMCIKnj+iptbHlmQqM7lTOKD6f3qRWPv30U/Lz8zn//PM599xzOffcc1Eo5Ll8mZFHzjInM6K4XC7eeustHn30Ub755hsyMzO5+eabeee2L1FJwbl41otCJTHlqhz2fl7vi2sPVnTRGszZBurWtgKetUPBvP7Gh+SZPa1Z3RS0hUJDGV20hqnX5bL1hQo69gXfGrfBONIsc+6FU32/K75cf4gtPZQ9dKDeTvwa/1976u4Dz1XlGYIEm4uTW+z8O05Lp2rwgVn+T370/V7987mHPUbKg6t8v3vqHR2evsVfFSVFfn3HvWGb7/fes4/x6zsAEW/94Pu9/IHD1y3KuvtA8dY9D/pX5yhuneeaaJRuFpxWgbOoDiRYOzW4B799+97E6dG07enG2hrc9cliCiLJOC6BjU+WBU39oqFwCgfn/Ol4/vCHP1BZWUlRURH33nsv55xzDiqVPKcvM3IEd08jEzK0t7fzxz/+kdzcXJYuXYpCoeBf//oXORXT+c/PVgWtGDJl6Jl+Ux6qCE841Pq/lQa9GAJPKELy7FhfCFKwi6HE6fuTEQjY+2l9SIih5NkWMk9MCLQZw8JpdVH5RUO/2d7xgHvh1H4C6XA0zJBomDH89Yrp70pEfKxkvVGFXTH49/uKIegvdvxB8fX6fmLHH9wbtvUTO4ORHtvsC6uE/iLnUAzcrq/Y8Yfsn39H9s8P/R2vGAKwuxR88m42SCC16zjmX2amr3czfX1w9nHevldSSqTMicUyIXjXQXnxhiu7nQJVhJLpN+VhytAH2qxBUUlq3r3la/IqZ/LrX/+a2NhYLrjgAhITE7n88stpbW0NtIkyYYLsIZI5KsrLy3nkkUd45plnsNlsXHTRRex8oQaTFFyZbQaiNauxtTlQ6ZVkLIpn7xcNOHuCe5CujVJjTI6geXsHSB6PljfcI5iRlBJTVmbTvKODfV83Btocv0meZUFtULH3s/pAmxLWjISHqC9DeYv6eogGciiPUV8PUV8qzxj8OwMFUV+G8hYdSjQN5jE6lGAayluUFtOMo9tJzffNB/1tMG/R4QTTUJ6iQwmmwbxFfcXQQE48pxRljQnbgjJQ9t8uGD1HCrXk8bgIz6RVV01vv1DWYGTgO9D7bgxmOkUb0uwu1qxZg1ar5dJLL2XZsmUsXLgw0KbJhDCyIJI5IjZt2sSDDz7Ia6+9htls5rrrruPL36xHKwVn5p2+ZC5OJLbIxNo/7wraujyDkXliApYJJtb9dXdo2C3tDyexuj3iLchDM0KdyNQITBkGar5r9q1lCAWORBD54w0aKIwOJYj60lccDSWGJEmQHu+ktUvBluP7D8wPJYi89BVG/niQBooifzxIfYXR4bxHcLAo8seDNFAU+eM9GiiKDiWIABbd/h2oBNiVoHYNmpo72MSRpIBp1+fRtL2DvZ+GzoSKpIDpN+fTtLWdio+D326bsHL8r6bzyCOP0NnZyVlnncUvf/lLpk7131ssI+MluHoRmaBGCMHXX3/NkiVLmDJlCt9++y2PPvook5vns/q3O4JaDOnjtBiSPBl16ta0sPPNfSEhKtQGFVGZnow9lV80sOGJspCwGyD75EQmXZYFEiElhnKWJJM4IybQZgwbQ2IEccVRISWGRpPhhtF58SeUTghIjHFi0rtJf1ci/d3hhd8dTRidv+F0Q4mgxBkx5CxJOujzvgLI33C6rLu/O6IQOi+HE0MAXzw8BwRov81CvTl50G28IXXBElYn3LDhiTL2fdkAeDInejMhBjPCDTvf2EfdGk8YmiFJ58sOGoxoJR3f3r+VWfYTueWWW9i4cSPTpk2jqKiIJ598Enm+X2Y4yB4imcPidrt5//33+f3vf8+qVauYOHEiP//5z3nmsn+jCJZS2Idh0hVZOLqd7PjnvkCbMixyliQTlaFn3eOlEGJPqj5Oiy5GExJrsvqSuTiRngYrDRvbAm3KuGC0PEQDKT99+AV1U748VBitYKC7Qveef0IikMRPMaOP11HxcV1A7ThcEdyBJBidFF2+EWGy+f2doPAcSTDtulza9/ZQ9n5NoK0ZFhMuSEOtV7H52dBIe+0Wbs5/fDH33XcfdXV1zJo1ixtvvJGLLrpITsAgc1hkQSQzJA6Hg1deeYUHH3yQbdu2MW/ePO6++24eOf2ZoCqgOhiSApKOsdBW1kVPow1NpApHtyskZs8lpYQuWkNvkw2lVoFCKflSkwY7Sq2ClLmx7PuyIWQ8WeGAKkLpSXUb/Lf3QRRelI4kSWx/vRrhdB7+C8De+z1hV2mf+l+4sTtRO+xECjl3eLwZ1tMHz8gmIVApwbE/VXYoCKJgYjiiKPK11YCnb09bGE/c7xtAc/hOpsvl8XDsnBG4dTFqvRK3S+CyuYmI1WJttQdtce++SEoJtV6JvdOJPk6LOcdI7Q/NQd+3CyG49b0r+N///V+++uor4uPj+f3vf88ll1yCRqMJtHkyQUoQTJ/IBBt2u50nnniCvLw8li9fTnZ2Nl9//TURq5J49Ixng14MeZA8hen2F4izdzpDQgyBJ9SsaFkGSJ4MRqEihgCMSREkTo1Gaw69l86E89OwFJoCbcYRkbskmeJLMgNtxlEjqVRIw5jJ3XeCjn0nHN7z053oGRTHrxHDSrntZSihU5JnY0J6cKdYHgpLoalf8epAEPnaap/QOdx2XnTRGhKnRlN6ocEvD5Bxf1HcgjVq389Y4+hxebLRSVC0LIPskxPH3IYjQbiEryaSKcNA4rRoBl3EFWRIksSjZzyL5ut4nnrqKfLz81m5ciVZWVlcffXVtLe3H34nMuMO2UMk48Nut/Pss8/y29/+ln379nH++edT+c9WjFJUoE3zC02kipxTkyn7oAZ7pxNJKYXELJwXVYQSZ68LTaQKtV5Fd73/s9+Bpm9bh2ICBYVKIvf0ZBo2tdG2pzvQ5gwbY5IOpVZJe0Xo2d7XQ9SXQ3mLvB6igQzlMfIKooEcymPk9Q4NpK+3KDrShdMFnT3KkPMOmbMNxE82U/peTVA8r0N5iwYTTH37mL59z6HWEHk9RX0JhNfIkKDD0ePE3un09fmhgretB75rQ4Eu0Y52oZ0vv/ySlJQUfvGLX7BixQoiIoJ37bPM2CJ7iGSw2+384x//IC8vj2uvvZY5c+YwS5xIy+vukBFD4KlErzaq0ER6ZgBDSQxlnJDApBVZSAqPNyvUxNCUldmkzPHUOAmGwdVwcTsFu96qDkkxBNBVaw1JMXQohustAvzyFvXlaL1FrZ1KOnuUw95HMNC2p5tdb1UHzfPqj6fIi9fmlDkWpqzM9tVjWztV4fsZiNdT1JdAeI26662eCTsFTFqRRcYJoVPrzPtO1USqURtVuOxBHjvXB6MUhfqrOObrT2XhwoXccMMNJCYmcscdd2Cz+b8uTSZ8kT1E4xi73c4zzzzD7373O/bt28eFF15IxastGKXQCRsyJkeQfXIiW1/eG/TFSQ9FRKwWfbyW5m0dgTbliEiebaFtTxc9DaH3Ysk/J5X69a0hKyjSFsTRWd1LW1lXoE05IobyEA2kr8doKA9RX/p6i4byEPVloLdoKA9RX6ynH4PF5MKkd1P75PCKqQYLUZkGEqZGs+vfVYE2BejvKTqcSDIk6IjKMlCz+uDaSn3p6zkazFM0kLHyHFmKTPTUW+ltDs2wS/CsGy2+OIM9H9XRVRM6BaGd5l46s+tYv349ycnJXHnlldxyyy2YzeZAmyYTIGQP0TjE4XDwj3/8g9zcXK677jrmzp3LLLGYptecoSOG9o9d7J0OHD0ulJrQu5UthSaKLs5AUkBvky3kxJBSp8Cc7VmjVbO6OSTFkFKrQK0PzRl+L6Z0AxGW0FuzNVxGa32RF+/6ouF4jXTv/YBe68YcGTphT4Oh1itRaoOjD/WKIH88Rt31Vp8YMmcbUOoGP4e+XqPBPEUDGSuvUfO2Dnqb7UgKKLo4IyTXMCo1Chw9Luyd+0Vk8C8xAkDVFkH0uixmuRezcOFC7r//fjIzM/nrX/+K3R66AlXmyJE9ROMIt9vNP//5T/7nf/6HsrKykPQIAcRNjCJlbiwbn9oTUmFxAzGl6UmYGk3Zf4Ijhn+4pB8XT8LUaNY+tisk7ZcJDvz1EPWl4pczh3WMmK3Dvz+HE8IlE1gUKonpN+dTv66Vyi8a/PrOkQie0fIcKVQSOaclU7e+lc59PaNyjLFAUkpMuTKbqlVNNG0JrcQFyjQn2hI37733HklJSVx44YU8+OCDcrrucYQsiMYBQgg++ugj7r77bjZs2MDpp59O43tWIiVzoE0bHhIgPPVt4kuiqfy8PuQG4lqTmoRp0X6/tIMayZPxydoSmrNpmYsTadraHlJhHgNRG5Q4ukPbO1F4UTq9eTF87daT/qB/iQn23elJbODS+ff8Z/zSE/7mb5rnIxFDoX4tjMkRxBabqPi4PtCmHBG6GA3WVvsRpZ73Vxx1Og94HGtmj159tfRF8dSva8XWEbhU4UeCQiWRflwCDRta6Wm0+d7ZoUSXaMc+rZl169YxefJkfve733HaaaeFSHZdmaMhOHzkMqPGd999x3HHHcepp56K0Wjk66+/xvq+LuTEUPIsC5MuzwKgp9FGxcd1ISeGwDPoiJ9sDomq5YMhKSD3jGT08VoQhKwYUmoVRGUa0JrGPgXvSCEpJKbfmE/SMTGBNmXEqPz5MVT+fPCaP4OhtEoorYceqHjFEIye1yfpmBim35iPpAjdQZM2Sk1UpjFoQueGi7XFI4b08Vpyz0hmODXDd85w+OX9iVQdWJeWvDqS5NWRR2LqIVEbVMRPNmNMDr3sZ26noOLjOp8YmrQ8i+RZlkCbNSyMUhQx67P59NNPiY6O5vTTTyc7O5s333wz0KbJjDKh2fPJHJatW7dy9tlnM3fuXFpbW3n//ffRfpPAfQv+FGjThsf+8UVXbS+tpZ0hE588EO/LrXlHB2v/bzeO7tBIVToQpUaJIV7ny+QXqrhsbjY+WUbzjtBat9Ufwa5/V9Gya/RmqgPFkQgjf/G39s1waNnVuT8pQehN0nhp3t7BxifLQjo5DXgyoBnidSg1w18b6BVGhxJHfUURHBBGIyWOHN1O1v7fbl/fFIrCyEvr7k66avd74EPs3f3AiY+j+jKWxx9/HLvdztKlSzn99NP55ptvAm2azCghC6Iwo7a2liuvvJJJkyaxefNmXnrpJeI25fHI6c+EnMs344QECs9PB6Cjsoeqb5tCcrwRlWmg5OocjCmeF1uorntSqCScVhcbn9oTshnNABKnR6OL0YTkvdQX4fYMxG1toRVWMxxG2lvUl5EURbY2By27OhGhrSVAeELPEqZFB9qSI6atrIuNT+3BaXWhUB35O+9QwmigKPIyUsLI+44wpkRQcnUOUZmGo97nmCOg6tsmOio9a6IKL0gn4/jQSTEOngKvb17/KYU1c3j11VfZtm0b8+fP5/jjj6eqKjiyMsqMHLIgChN6e3v5zW9+Q15eHm+//TaPPfYYmXtKeObSf4ecEPLSua+H1rIQnv3e3+ztFd1sfr6crurQXauSMsfC5D71PkIVhUoiZU4sloKRD3UZa7JOTvSELoY5oeIt0sdryTo5cUT2FUgsE0ykzIkN+WddUkpM7lMf7Ujp6zXqK5CGEkUwcsKoq7qXzc+XHygJEMKXpLW0k86q0EwYIUkSTy57g5x9U7n66qvZvHkz+fn53HDDDdTXh+aaO5mDkQVRiON2u3nppZcoKCjg/vvv59prr2Vi8zzevvlLFMMJog4SMhcnknN6MuCZ/a5b2xpgi44MTaSKadfn+Wb22stDs8aNl9ayLho2toWsd8uL2ylY/7dSar4/dN2SYEdjVBGdG4k6IjTXoh0Jwe4tUus910RjDO1rUrO6iQ1/Lw35Z124BA2b2mgtHVlvtr/rjWBkwum8746oTAPTrs9DExma91fd2lZfeG/u6clkLg4tbxEALgXlT7YysWkeN910E3//+98pKCjgueeew+0OdfewjJxlLoRZtWoVt956Kz/88APnnnsudf/qQS8ZA23WURFfYkahUlC3piXQphwVkgKyTk6i+rumkA5p0sdp6WmyhXx4GUBkSgTWNkfIrt8KV/pmmfOHtN+uour/zfV7/6m/W3Wkpo1r1AYVOrOazhD2bPuQQB+r9Sz2HwWGI3iONDud1qwmZU4sez6sDfn+OHFGDG6Hm4aNbYE25ahQJLnQTHPw3nvvUVhYyE033cR1110XaLNkjpDQcyHIUFFRwYUXXsi8efNwOp1MZyEd/1aErBjKOD6e9IXxADRsaAtpMRRbbEIfp0W4Yc8HtSEthpQaBZNWZJE2Py7QpowIOUuSyQ6DkCYgJAsRHwoJkIYxwRrMIidcrk32KYnkLEkOtBkjQtr8OCatyBq1a1Mzu9NvoRP5dSyRX8cO+xi2Ngd7Pqj1lZ6ILQqt+oF9qVvT4hND6QvjyTg+PrAGHSHuWiXW93V88803dHd3c/3113PuuedSVlYWaNNkjoDw6LnHCVarlfvvv5/CwkK++eYbiphB9LosoqXQHrC67G5c9tCt3+FFUkDqsXHETzEH2pQRwWV3s/2flb5K8KHOlucrKP9vXaDNOGpUEUpm3TmBmDBYBzUQye2/MEr93aqgE0YxBZHMunMCKt3wM5wFG+X/rWPL8xWBNmNEqFndzPbXKnHZRzesyR9hFKn2eKm8wuhIxFH8FDOp8+NCek2RF5fdFfKZDe+d/yh5lTMpMc7hxx9/pLCwkDPPPJOWltCd3B2PyCFzIcJ//vMfbr75ZiorK0l2ZJNFISopNGOJAZJmxuB2CerXheYaoX5IoNIqcVpdKHUKXNbQ7twVKglLoYnGzaFVaXwoVHolbofA7Qjt6+JFqVEQW2SiZXdXWIT/FV6UjjUvhq+d/UPmxBDTdWm/PVgEHSqEbixFk9qgIibPSNO2jlEffI8VSo0CSSnh7A39SSuAuMlmmre1j1kdu6HC6TodBydE6Zzf5Pd+ve8alU6J0+YK+TA6gIRp0SiUErU/hq6QcAkn7XnVbNyzjtTUVB577DHOOOOMkE1uNZ6QPURBTkVFBWeffTZLliyhtayTGY7jyJMmhbQYAoiI0xIRowm0GSNC7hkpFF2cARDyYgggpsBE7hkpaKNCu9aQl6zFiUy+IivQZowYLrub+g1tYSGGDsVIeIvG2oPk6HZSv6EtbMQQwKQVWWSdFB6hplqzmtzTk8fUuzqU18jrKer32TA8Rt53TdHFGeSeHh6hjRExGiJiQztzplJSEVOawWzpRLr2WjnrrLMoLi5m1arg8mbLHIzsIQpSrFYrDz/8ML/97W+JjY0luiqVeFJCepYhKtOAQiWNeNafQGNI0KE2qkK6Ns9AtCY1to7QXf/UF22UGl205kDq2hAnbX4cjVvasbbaA23KiDCUh6gvfb1Fg3mI+tLXWxSIkDpdtIa4iVHs+7pxzI89GkRlGrC22rG1h0l/EOC+ra/HaDAvUV/88RiZc4w4upx01w+dBjwUic4z4naIkO63hRDYs9rZ3LqG3t5efv7zn3PnnXdiMIRgXalxgOwhCkI++ugjJk2axH333UeCNYPcqhkkSKkhLYbAEyaXUBK6Bf/6otYrPQtBJeiut4aFGIrJj8QywbNQN1zEEICt3RHSL9W+aExqkmdb0JrDw3vnL6G0tkhrVpM8yxKy6ZEH0l7RHTZiCA70bZZCE9F5Y78Or6/HaDAvUV/8WWfUVtblEUOSJ0GRSh/669cAEqZEkzQjJtBmHBWSJKGtMDO1bRFJtix+//vfk5aWxmOPPRZo02QGQfYQBRGNjY3ceuutvPTSS0QTzwRKMEihm0kGPPVS1AYV3fVWFGoFbqc7LGKdzTlG8s5IYdMze8JmsJB7RjIqnZIdr+8LtCkjQlSGgezTktjyQgWOrjAKL/POi4TBcwT+eYj6kvpAkIeeSITNtfGiNqqYeFkmZf+poWNvaBbXHMiE89NwWl2UvlsTaFOGlVhhKK+RNkrN5Cuy2f1udVhM0CGBQqXA7XBjSNTh6HJiD/F+XFjs7DFsoXzvHi688EIeeeQRkpKSAm2WzH5kQRQECCF46aWXuOWWWxBCkNiaQ5JID3mPEEDhBemojSo2Pb0n0KaMCKoIpW9xsUIljdnC3LFCUkohX5DRiz5eS+K0GE/dDpmg5D/V63j9w+NYvTadrZuU1Mw/vCgKekEUpmSfkkTduhZ6Gkanls9YE4x9nT/CqMfpWXvrOu5gIdf3ndT3XRXqTF6ZjaPLyfZ/VgbalKNGCEG9VEWdpYzu7m5uvPFGHnzwwbAY74U6cshcgCkvL+fUU0/lsssuQ9WsZ2LrPJKlzJB/OLxu+7L/1LD91b0BtmZkUOuVTLs+j/gSM0DYiKHs05IwpXkGosE2QDgaehpsYSWGJIXEMT8rCOn6I335T/W6gz5L/jo8vA+xRSaOua0AKYzesHs+rA0bMQQH+jpTmp7sU4Njlr5zftNh1w3pVZ61g8rPk1F+3j+ZgvedlFBiZtr1eWETPrf91b2U/ccjAEP9nCRJIlFKp8S2gOz0HB566CEWL17M7t27A23auCeMuuvQwuVy8cgjjzBx4kS2bdtGiXQskxSz0Ui6QJt21GSfksjEyzJBAnuXE0dPeMxSOXpcVH7ZQMvOI6s0HowoNQoMcTrUhtB+yfRD8oT/6eNCO1vRQCSlRM3qZrpDfFD6n+p1g4ohL8lf94S8MOpusFHzfTOSMrxesfo4LblnJIdF/RsvaoMKQ7wuqArq+iOMvAwmjJp3dlL5ZQPOMHr32rucIMGkyzLJPiUMsh52K0naXchUaT5lZWUUFRWxfPlynM7QDgsMZeSQuQCwdetWrrjiCtasWUOqyCFHmohKGrBIOoQviz5OizZKHTbZ5AwJOjSRqrA5n3BHE6mi+JJMdr9TTVdNb6DNkenDYEKob8jcQAYLoZND5gKHMSWCvDNS2PpSBfZOeeA2VgwWSucNnRvIwFC66Fwj9s7wyUIXnWvE1u6gpzGEJ4YGRAC5lS7aCypZv20dU6ZM4amnnmLq1KkBMm78EjxTIuMAl8vFQw89xLRp0+jq6mIGx1GgmHqwGApBLBMiKbooHUkBPY22sBIPybMsnqrgYYTaoKT40kx0YVILqi/2Tifr/1YadmLIMiEypLPLHcorNBSh7CnSmtVYJox9FrPRpKu6l/V/Kw1LMaSL0VB8aSbqIAzJGsxj5A2dG8hAj1Hq/DiSZ1lG1b6xpLW0i55GG5ICii5KD4tnTOFSEr0ti+niOJxOJzNnzuTiiy+WvUVjTHjkBQ0BSktLWbFiBatWrSJd5JG4oxClFHwd75Hi6HXh6HXtn/kIXe/WYJS+V4NCHUYxIoBS67n33GFUQBLAmByBo8eJrS08Mv/5kCDvrFQqv2ygZnVzoK0ZFkcihPriFUX+JFwIJmILTaTNj6d55/Zw6xLRmtWoI5R01YaH1wEO9IVKnTJow7y9osif5AteUbTtlL24HWF2AwJI0oFxR5gQJcUQuS2K6RMNvPbaa+zZs4fnnnuOgoKCQJs2LpBD5kYZt9vN3/72N+644w4SExOJLk8nWvLD2xACl0WpURBfYqb2h5ZAmzLi6OO0FJyXxvZ/VmJtCY8CmOOB4kszQQi2vhQeiTz6olBJSAoJVwiJWH/E0KFC5gZSM18fMiFzSo0C4RZhk3ylL8WXZIAksfXFikCbMq6J/Dp2yNC5gWiWNjHh/HR2vrkvtMPNhiDpmBgaNrSFRv/oR9KsNtFMe+4+KioquOSSS3jqqadQKOSgrtFEbt1RZN++fZx88snccMMNxPQkkl4+JWzEEEBUloGM4xJCOoxnKBw9TrrrenF0h5fL2pCoo/jSzJDP1DMU21/dGxR1RUYDt1OExsseKHu5xG/P0OqPo6Cl3a9tQymEzmV3h6UYAih9N3yyhw5EpfeEExsSgz/BUef8pkHTbw+G65U4Ggp0YfdOA9BFa8g4LoGoLEOgTfEPP8Z4ZslCaulEJhZM5tlnn+X444+nvLx8DIwbv8iCaJR4+eWXmThxItu3b2cqxzJBmoZKOkyEohAhIYa8Fdhbdnay5rFdYRWepDWpUWoVOLpd7HqrGpctNAag/qJQSbgdblzW8Dov8MzIu53CV4k+nMg7MyVk1gGUvVzi97anpUzz/a74ZsPIGxNgkmdbyDszJdBmjDi2DgdupwiqzGwjhcvmxu1wo1CFTpi067iawwojl1qwOg32PF9I3WsT0ZjCZyLT2mpnzWO7fBlgvWOUoMaP8Z5SUmHZmsU0FlBeXk5RURG33norcmDX6BB+vVmA6ezsZPny5VxyySXoO6LIrZ6ORfIjRWSI3OD6eC0zbs7HnGMECJvCb14mXJBG7hnhN4Dx0lnVy/bXKhHu0Ljf/MWcbWTmrQVoo8LnJd8XW6cjJGLl/RVDp6VM6yeGvCi+2RBWwsjR48LWGX4CHUAbpWbmrQWYs0NkVt5PhEuw/bVKOqtCLynL4YRRpsUT3n5MFeT8vwL2vT5xrEwbdbxjEXOOkRk356OPD5GyC36M/WKkeLIrp5Kblcejjz7KxRdfTHu7f151Gf+R1xCNIGvWrGHZsmXU1dWR0VVIkpTRf4PB4kZDsPkTSsw0bGoPu0E1eFJsO60ubO3hNYixTIgkbqKZnf+uCqviq140RhVxk6Ko/i60Eg6EC4MJoZ0Lnx5024FCqPCidAC2v9q/Cr372IP3CeHpSQpVUuZYaNzc7qkRE2ZISomCc1Jp3NJG847QrD03sD4RQEVzDAY7qF3QFuH5LG3pljG2bPSQFBLxk6Oo39AWaFOGjx9jxDqxj0rTdiIiInjggQe44oorxsi48Ef2EI0Abrebhx56iLlz59JQ2szkrmMPFkODESJiSFJI5JyejCndk+WpfkNbWIkhhUoiZV4sSNBdbw07MeTFaXOFpRgCTwHgcBVDWrM6qAvnHmmI3OEIF+GjNqjCcp0lQPV3zWEphsDjKXLa3aHymh6UwTxGmZYWujUeMSQJKGyEmn9OZN8b4eEtEm7hE0OmdD05pycjKUIk/NGPmy1RSmNSxzxUShVXXXUVv/vd73C5gj96IBSQBdFRUldXxymnnMKdd95JsiOLGRyHXjIe/osh1stqTerQiMs9AiLT9KTNiyPCEiIu9iOgeUdn2CYbSD8untgiU6DNGDUyjkugaJkfEywB4FBiqODLlb7fhwqROxwDQ+hCUSQVLUsnY1FCoM0YNWKLTKQfFx9oM0aF0neqfetSQpmhQukibVDUALH7c5XseyN8hBGAJlKNNtTWSvkxNoyQDBTUzSJDKuCee+5h1qxZrF27dgyMC2/kkLmj4JNPPuHiiy9GoVCQXJ93+LVCkhRSQkhtUKHUKLC2hn/aaaVWEXYJFAAsRSaiMgzs+bA27GqheCk4L5WOfT1hmf4dPAuE1XpV0FWa98cztHPh04cVQkOFzA3EfWxJSAoiQ4IOR48zLIuZgifdsSlNz843qwJtyuggQfYpSbRXdNO8vSPQ1hw13jC6iuYYwBM65xjCAR1OoXS6aA0uuzu0suz5MWZsEQ3sjlyP2+3mjTfe4JRTThkj48IP2UN0BLjdbn77299y0kkn4WqUKKifGVaJE7zknZlC3lnhm2AgbUEcKXM9Be7CUQwBqDQKTyao0Lr1hsXON6vCVgwB2DudQSWGyl4uGVbyhJEiFMUQeMJww1UMAdT+0BK+YghAeDJYqrThMVwa6C3yiqHCRihu6L9tOHmM8s5OIe/Mg9dUBTV+JlyYo16M3mbitNNO45ZbbsFmC786U2OB7CEaJq2trVx22WW8//77ZFFINkVIfhTZCkW0JjVIhO2amvRF8bhdgqqvGwNtiswRoNQoMCZH0F7RHWhTRg1Tup6Ygkj2flqPCBLNvuflEr/0dc7FG/zan78eolBFUkDGCQm07OykozJ06igNl6gsA51VvbgdQXKjyviFV/AUNYBSwOZBojvtdpXfz3Owoo1SgyAsyzIACCHYq9hJmdhKYWEhX375JbGxsYE2K6QIjymPMWLdunVMmzaNVatWUcI8cqTisBNDkWl6ii5KR6GSsHU4wlIMeetLVH7RELZiKKYgkrQFfhQBDmFiJpiYeFlm2K5tA89L3JRmCCox5A+hPngaSYQbTGmGsE0JD56wzomXZmKZEBloU0aVtAVxxBSE1zl6w+K2xR8QQ8pB+pvheIaDEVu7A1uHA4VKomhZOpFp+kCbNKJIkkSmmMAJhadRV1fnG6vK+I8siPzkqaeeYu7cuTRXtFPUOptYKSnQJo0K3ixkIZOVZZhozWqm35xPVGZ41c4YSIRFiyEh+CutHw2Nm9pY/7fSsA5Hatzczqan9wTaDKC/GArP3mH02PT0Hho3h2/dEHunk/V/Kw3rcwQwJOqIiNEE2owRJ23pFp8wSuiC03eCYYilw6EsimD/2EYQthlX2R5BUctsOqp6WLBgAdddd51cyNVP5JC5w2Cz2bjxxht58sknSSGbfKaglII3Be6RYkjU0V0XPOsURgtJKZG+MJ6qbxvDdt2QTPggKaSgSHE/lGdoMMuG6x0K95A5L8FyLWVkDkXdaxMpaoTN8eDuM2Vutw/uiQ91b3DYjn2UbpoLKli/dR2XXXYZ//jHP9DpwnuS9GiRPUSHoKGhgRNOOIHnn3+eImZQKE0LSzGkiVQx5cpsEqZGB9qU0UMCjUmNcAn2flYftmLImKQL7+u4n4JzU8k6yY9EJiFMhEXDnLsLMaZEBNQOf8PkIPQHR6OFMSWCOXcXEmEJP+9CX7JOTiT/3NRAmzHqJEyLxpAUnoPLxAu30HLjFtwK0Ns9tYoORSh7jBKmRjPlyuzwDLt2KbBsy2Yix/D6669TWFjIhg0bAm1VUCMLoiHYsGEDM2fOpLS0lMn2eSRLmYE2adSwdzrZ+tJe6je0BtqUUSNtQRxTrspGoQ7vYB9zbiRJM2PCPqaprbybzqrwXaAO4Ox1Uf5xHb1NwZsxqO9tJouhoeltslH+cR3O3vAuoNhZ1UN7efgmOQFAgqQZMUTnhNdaooFkLNvKSWWeZAuHI1TXF9VvaGXrS3vDOuw6UUpndtTxNDc3s3jxYtasWRNok4IWOWRuEN58800uv/xylD0apjAXnRRei++8xE02o1RL1K0NXyHkRRWhxJSmp2VX6BfZOxwKlYTbKT/WMkePP94h7512pIJovITMyYQP46WPjcmPpKOyh/IXC4cMmRuMUJwcSZwejcshaNzUFmhTRgWH2sZ6+zfYdb384he/4J577gm0SUGH7CHqgxCC+++/n6VLlxLZE8MMFoWtGAJPeJUxKbDhOKNNRKwWlU6Js9cV1mJIbVASneeZsQzrF7UEafPjwjPEYQCxxVFExGoDdnx/Q+UkQnMANNZExGqJLY4KtBmjjiZSRdr8uLD2Unv72Jj8SNSG8Auj99KyqxOn1UXWpduJsvn/XglFb5ExKQJjmIZBAqgdWqaziOTINP7nf/6Hq666Crc7PJcOHCmyINqP1Wpl2bJl/OpXvyKbIiYyC6UUnoMu5f4Cc+Uf1VH6Xs1htg5tCs5NJWdJiBVjOwLiJ5vJPzvFU4Q1jImwaEmZG4smMnxTGHvJOTWJmDxjQI6tmFJI7oP+heply2LIL2LyI8k5NTyzk/ZFY1KTMic2LLOx9UWpVZB3dgpxk8yBNmXUyTk9mRO/6xrWxEf5K1Mof2XK6Bk1wpS+V0P5R3XAgTFSuKGUlGQ1TmZa2jE8/fTTnHfeeXR1dQXarKBBDpkDWlpaOOuss1izZg151hISpPBdFBqVYaDwwnQ2PbuHnobgXZswUmij1AgB9jAtxtYXbZQ6LOtGDURSSuGbMrUvEiiUgQnNUUwp9P1e+vOhvVQjIYbGS8icQiXhdonBU/OFGePlGR0vfa7GpEbqU6TdHw+Qok82hqxlG0fLtBFHH69l8opstr9WSfve8F0P1yhq2KFdS3x8PF988QXZ2dmBNinghKcMHgYVFRXMmzeP7du389lnn4W1GALorO6h6ttGehrDWwzF5EciKSVs7Y6wF0P6eM+ANdxfzAqVNG4GWgCIMA9/HGe4neNDDIGnxotCJfmKYIcr3j7X2weHK/b9RdolpURMfngnk+hptFG1qpHO6vBO2hMnJfPkk0/S1tbGySefTGlpaaBNCjjjWhCtW7eOOXPmYLfbWbVqFb+c98dAmzRqmNL0aKPUuJ2Cqm+bwvrFrDGqKFiaRvxkc6BNGXVi8iOZdl1eQNeajBUJ06KZeUsBkjK8B1kAqcfGkn1aYMKr+nqHZEaWnNOSSJ0XG2gzRh2FSmLGLQXjogRARKyWadfl+dZwhjPxU8wULE1jwjVbyLl4g98hdCEVPieg6psm3E6BNkpNZFr4riN/7vK32bBhAwqFgpkzZ/L0008H2qSAMm4F0YcffsiCBQtIS0vju+++44YJvwi0SaOHBDlLkklfGB9oS8YEe5enanr9+vDPnteyu5OtL1UEdWrmkaJ1dxflH9eNCw+Ro8eFo2vsU8EOJoaGWkskrx0aPvYuJ44wT70NHm9Y+X/raC0N//UJvU02tr5UQWtp+Cbt8VK/rpX1fyvt1zcNd11RKJG+KJ7cJclhnSDkJ7k/Z9WqVZjNZq699lreeuutQJsUMMblGqJnn32Wq666itNOO42ud5VhmzyhL2qjCpfNhdsR3pc7brKZxs1tYe0B8zJeUr/KjA2H8gwNXEc0kmJovKwhkgl/xk2fLEHcJPNBKar7ri1SHKaiayisK1KoJZQaJY7u8K1T5EWo3ehPdvD+++/zpz/9iRtvvDHQJo05485D9Kc//YkrrriClStX0v2uOqzFkNqgIvdMT+YxR5cz7MWQKV1P/lkpYZ9KHECpUzDj5nwsE0yBNmVMSJwRQ9w4CIEEz6BKax7bLHqHC5Pr6yWSPUNHh9asDvu1NV7iJptJnBETaDPGBEuhiRk356PUhf+wypgUQf5ZKZjS+4eThZu3yO0QOLqdKDUKcs9MCesU65JDQc+7Gq6++mpuuukmLr/88kCbNOaE/5O7HyEEv/71r7nlllu488472fNECwopvE9fF63GlBqBShe+D3FfOip7WPPYLrpqegNtyqgjXILaH1vo2BfeCz+9GJN0GBPDt0ZEX0zpemb+tABd9NikLfZ3zVDugzZZDB0luhgNM39aENbrEvpiTNSFdW2XvnRU9lD7Y8u4COntqullzWO76Kg8+P0TjmuLVDolptSIMeuTA4UkSZT+vYmzzjqLF154gV/84heMpyCycREyJ4Tgzjvv5OGHH+a3v/0tn/1iHZIUxjN0EgdCxvr+HqYoNQpi8iNp3NIeaFNkZI4apVZBZKqetrKxWX8xnCQK7o3bR/z44ypkTgJztpHOqh5cNrkookzoEzcxipZdnbjsB9/PwxE7QR9CN87GVSf/7yzuuOMOTj75ZN555x00mvAWgzAOPEQul4trr72Whx9+mMcee4zP71kf3mIIyD8rhexT9meoCvOHFiC2yETO6cmoDeEb/tiXjBMSSJgW/tmbvGijwr8Ia19cNveYiSHwX+SUXWSm/IE5o2xNmCOgraxr3Imh8fQMJ0yLJuOEhECbMSaoDSpyTk8mtmjw0O2sZRv9FjpB7y3aP5bKPiWJ/LNSAmvLGPDRnd9z55138tFHH3HBBRfgdIb/OqqwFkROp5PLLruMJ598kmeeeYZ3fvpVoE0aE9rKu8dNKBVA/YY21v3f7nGx8BE8HrHxsgZBUkiU/CSH1GPDP1Wxl9R5sQfF5o82hxNFZReZfb/LoujoMKXrx0XqbS+px8ZRck0OkmJ89FkKlYRSE9ZDKx+Obifr/m839RvaDrndcLw/QS2KgI59PbSVh2/B1r6se2gPjz/+OO+99x4XXHABPT3hPa4M25A5p9PJpZdeyptvvskrr7zC3y94LdAmjTpqoyogqXoDhUqnxJgSMaaz6TJjT1SmAWurPewLz3op+UkOdWtbqVvTMqbHHSp0rq8Y6kvW3d+NyHHHVcgcngQhidOj2fD3skCbMiZozWp0Zg3tFeNjEDleMecY6azuwWU9tPcznMLoxsuY66a3LuO8886jsLCQH3/8Ea02POsehuU0hsvlYvny5bzxxhu8+uqr40IM6WI0zLgpn5iC8C8O5yVhWjQTzktDqQ3L2/ggdNEaYidGhXVNhMFor+geN2IIYMPfy8ZcDMHgXqKhxJDMkVO3pmXciCEAW5tj/IkhCWInRo15tshAodQqmLA0jUQ/CvGGi7copiCSGTflo4sJ/7U1fz77Be699162bdvGJZdcgsMRnu/jsBtJulwuVqxYwWuvvcYrr7zC385/NdAmjQnWFjt7PqodV96S6lVNbHiybNzE48cURJJ1UiIK5fhQRJJSIv/sFPRx4TkbFYz0FUWHE0Ny6JyMv+jjtOSfnYI0TvouhVIi+6TEcVMWwWVzs+GJMqq/a/Zr+3BYW9RW1sWej2qxttgDbcqY8MX/bODNN9/k7bff5tRTTw3L8LmwEkRut5srr7ySl19+mZdeeol/XPjPQJs06khKCUOCJ61p/brWcVEUTqVTYtifynW8dEYANaubWf946bi4xgCaSBX6uPGRstdLytxYJq/MDrQZfiOLoiNj8spsUuZYAm3GmKKP06GJHB+Jb9xOwbrHS6lZ7Z9ACAe872JDks7vUh+h7C1yOwX161oBMCToxoXY/8s5L/LEE0/w+eefs3jx4rBLtBA2gsjtdnP11Vfzwgsv8MILL/DksjcCbdKYkDLHwqQVWeMmbAwgeZaFiZdmolCHfwfkxRt64ex1BdiSscPW5mDDE2X0NNoOv3GY0FXbS9O2wKaPd2/cLofKjTLN29vpqrMG2owxo6fRxoYnyrC1hWeozWB4++rxEjYHoFBLTLwsk+RZ/ov94XqLmq8OrkkYpVbBpBVZ42aC46WV7/Pggw/y/fffs2LFClyu8BmThEVSBSEEt9xyC3/+85957rnneH75O4E2acyQlBLGJB2dVeFfjNSLpPDMNnbXj48BhcakZsbN+ex6q4qm8VJrSQJtpBpbx/gZQAULvpnYisNnuhuJxArjLanCeEZrUmPrdIyLchDgWUeUf3YKax7bjX2c9GWGBB09jVbEEUSy++MFMn3m6ZcsT4xMUpeRIDI1gq5a67goyuvl6lfPZ9myZcyfP59PP/0UpdI/r2AwExZuhd/97nc89thj/N///d+4EUOGRB26aA3CJcaNGJIUElrz/2fvvePjuOv8/+fM9qLdVe+9y71HASdOJaSSQCohjRAIoZfcJcDdcff9He2OIwTIHaQACYEQEiAkBNILKXbcuy1Lsnrv0vbd+f2xWll2bFkrrTS7M/N8PPJ4xPbMzlsfzX4+n9fn3QxIYVQjhgD8YwEO/aGVwUNjcpuyaDgKraz7cvVUOKhacJba0Jnlm5aP25CUzBwjHq8qc2pEZxZxltrkNmNRsWWbWfflahwFi1tSXk4GD41x6A9t+MfUIYYgsjZL4YhnLNZS67F4iwY+VZ8w3qKxdg9SSMKcasSWo4416xfXPclnP/tZXn/9de699165zYkLSS+Ifv7zn/PNb36Tb3/72zx91ytym7NolF6YQ9mHc+U2Y1HJXZ/Gqs9UyLphlAUJBg6OEQ6oo3gEwES3lwNPtqpK+BrtepbdVIqzSJ6NckzlcDUxNC+cxTaW3VSKwa6OnBqIbJTV9p0OB8IMHBxTjUcsis4ssuozFeSuS5vT/bHkFiWKKAIo+3AupRfmyG3GonHwp9185zvf4fvf/z4//OEP5TZn3iR1yNxTTz3FNddcw2c/+1kO/KQLQVBPTonOJCLqRdU0I4VIfLKzxMZQg3oq6eVtSMeSYaLxuU65TdFYaAQwu4wEJoKE/IsrfmcUQycJnYunIFJjyJzOKGKw6fEO+1W3WVYj5Zfk4en30blZPUUWUivtjBydIByY+wt+snkpGjJ3MuQOozPY9YQDYdVUvo1Sc1cOP/nJT/ja177GD37wA7nNmTNJe9T+yiuvcMMNN3D11Vdz8IHuKTGkM4pTfVoE8fiO0aJBQNQfE00zXqt//7WCGL2WOF8bNeL4awWdcFzhANEgkrHEid6qI+QPH+cxONm1U1VPhBN+Vp2AaDh+XOZ07bzGMLbxjkw0EkMN4zOOYbzHe+ZxicN4nziGuuPHJRwME/SFTn5tAr6zov74cZnLeFvSjZRdlIvJaZhhDOM03ok0R0jgHfIjhaX4vrOnubb5tysQJAl9SEKYPB8TwxL68ORGpsSNXpIQJ/+t9N534jpHTD/Hms8cMdt3NhHmiFAgfNxh1nzmiPjNyQs/R+gtOsovzsWabTrttacbw9N/7xNnjgh6QoR8oYTZR8Q6R8Q8hgKMtrgJB6WIbXMc79Lrd1H+id3oonORJKEXJITJUwSByJ+jDN9xhqxzRGA8SDgoYXLqSa91zHIMF34fsdBzxIGfdHHmmWfyox/9iGeffZZkJSkF0e7du/nIRz7COeecQ56jkLIPRULHTC4D9ffU4SyOhJzkbUhj3Zerp+5bemMJ5RfnAWCw6ai/p460ykgj0+xVLjbcfaxTe+11xVReUQBEXtL6e+pIr3UCkLnURf09dVNfiOqPFlJzdeHUvfX31JG13AVAWrWD+nvqpqrAVVyWT90NxVPXrv9aDTlrUwFwldmpv6duqjRp+YdzWXZT6dS1675URcVleeSsScNRaKX+nrqppmAl52ez4vbyqWtXf7aCwo2ZQCTfqP6eOmxZkdjWorMzWX1nxdS1Kz9VTsl52QBY0ozU31NHymScd359Bmu/UDV17bJbyii7aHK8HZHxdpXaAchdl8b6rx4b7yUfL6Hi0sh46y2R8U6dHO+slZExjFJzTRFVV0bGW9AJ1N9TR8aSyHgXnZPNhq/WYEmP/KxVVxZQe23R1L1n/HMtWSsj451amUL9PXXoLZEEv/JL8lhyY8mxMfxK9ZQb31Vqo/6eusjGGyi7KIflt5RNXbv2C5Xkn5kBQEq+hfp76rCkRxby4nOzWXnHsTFcfWcFRWdnRcY7KzLe9slY4sKNmay+69i1Kz5ZTsn5kfE2T463oygy3nlnpLP2i8fGO2tlKobJn8Vo10fGsDwy3jlrUtnw9Zqpa+tuKKbi8nwg4kGsv6eOtOrIpJy5/ITx/lgh1R+NvLOCGHlnM5dFxjC9dvKdnZz4Kq/Ip/a6Y+/shrtryF4deWdTKyLjbbBNvrMX57H0E9Pe2S9Xk7chMt7O4snxnqy6VHphznElptd8rpKCD2ZgchpIq0ph3Zeqp3oQFW3KYtWnj73fqz5dTvE5kfG2Zpgi72yeBYCCD2Sw5vOVU9cuv61sKowhkeeI3PVp5J2RPu85Iv+MSLWjWOaIVB9c3xDGNVnQb/mAxGXNxw5cLva7WRX0UXrPO3GfI6J5YvOZIzLqnNTfUze1kCfLHFG0KfLn+cwRS28qpfziyHgn+hwR8ofJXOqi+qpj34W5zBEA9rzIeCfDHNHySg99+0YTZh8xlzliLvuI9FoHa79YRfklefOaI85/MuJZM4bhktxxss2Rw4Qia4BLco9FjKxL9VDylUglOlnniNvKKftwLqJBSIh9xELPEYIgYHk3h/Lycj72sY/xpz/9iWQk6ULmuru7Wb9+PRkZGTh3FJNR7iLgDjLR7UU0iKRV2hlpmSAwEcKSbsSaaYrE8BJJWA75wox3ehB0AunVKYy2uvGPByPJcLlmBvaPAuAotk4VLBBESK9xMNbuwTcawOQ0kJJvof/AKEiRSQUBRlsjScgZdQ7GOj34hgMYU/Q4Cq0MHBxDCkuk5FsQDeJU5+70WgcTPV68g34Mdj3OIiuDh8cIByXsuWZ0Zh0jzZFr06pTCHhCjLe70Zl1uEpsDB0ZJ+QPY8sxY7Dppxqzplam4Bv24+7zoTfrcJXZGGoaJ+QNY80yYXIapkLPUivs+MeCTPR40RlFUivsDDdPEPSEsGSYsKQbpxL6XWU2gp4Q411eRINAWmUKIy1uAhNBzGlGbFlmBg5GxtBZYiMUCDPeMW2829z4x4KYXAZS8iz0R8e7yIokwVibO9Llu9bBWIcH30gAW66Z/DPSOfynDpAiFV0EUThuvMe7vHiH/MfG+9AYUkjCnm9BN328axxM9E6Ot02Ps9jKYMMY4YCELdeMwaJjuGlyvKtS8Az68fT70Ft0uEqnjXd2pKfG0JHoeNvxjQRw9/rQmUVSy+wMN00Q9IawZpowuYwMNUyOYbmdwETknY2O98jRCQLuyDtryTAxeGiMnLVp+McD+EeDjHd6EPUCaVUpjLS6CYxPjne2mYEDk+NdbCMcDDPW4UEQBdJrUhht9+AfDZx0vJFgtG3aOzs53iaHgZQCCwMHR5HCk+OtExhtcR97Z7snx9uuxzH9nc2zoDOJU+9sek0K7j4fngE/BqsOZ4mNwYZxwoHJd9aqZ7hpfGq8vUOT72x0vBvHCfkm31mH4dh4T39nTSKp5cfeWWumCXOqkcHD0XfWnhRzhC0nMnZ9u4fnNUd4BibfWevMc4T/F8uZMMCwScAYksidkOiyCfh1Ai6vhC0IHfbI5iFvXCLtm4cXZI4o2pRF0Bvi4JNtc54jThzvZJgjaj5ayESvj6Mvds95jjjxndXmiMSdIww2HcXnZtP2ep/s+4jZzhHx2Edkr0pltM2NwaqLyz7C+Nk1DPp1eMMiVl0YlyFEpzciRtKNQSRg0K8HJKrf2i/PHGHVMdHtIzARlH0fsZhzhKvGylbPGwwMDLBt2zYqK48dOiQDSSWI3G43mzZtoqOjgy1btnBL4ZfkNmnRyFmTSu/u4XnF42okD+Y0I6s+U8GB37VMbb7UgKATEHXCoufQqI1YmxzGkuQcK2rMIVI7OqNIOCSpqkyxq8xG7XXF7HjgCN4h9TQUjyfj15wBgM8pnObKCHLnFIkGgazlLrq3Dclqx2Lyoz3/xvnnn092djb/+Mc/sNvtcps0a5ImZC4cDnPzzTezb98+CjprVSWGLOlGSi/MnXIpqwW9RcfKT5Vjz1VHGcvpeAf9vPfDQ6oSQxA5Zdxwd42qqm8tNokkhjTUh9GuZ8PdNaRWqGs9G26a4L0fHlKlGLLnmln5qfKpELT5YhqRMI0kvph2ldopvTB3KiRRDXxp2b9R0r2MpqYmzjvvPHy+5GmsnjSC6Jvf/CZPPfUUFe4VOIRUuc1ZVDwDfrbed2jKva8WRIOIZ9CPd0Q9PRwgkqiIAEGvcjpAz5bxDg9H/tJJYFw91RMhkrdw5jeOxYAvFJoYShwcRVbO/Max3AO14B8PcuQvnYx1qKN/3nSC3hAIHJe0rgZ8IwE8g/7jigLEg0QXRYOHx9h63yG8g+oSwXbBySrXGbz33nvceOONcpsza5JCEP3617/mO9/5DhXSUrKEfLnNWVSyVrgQRAi41bc59o8GOPRUG0GV/ex59Rms/mzlVBUYNeEfD9K7a1huMxadkC9M84vdeAYW7jQtVjGksbB4Bnw0v9ityvDQ3l3Dqjv0AECANXdVkndGhtyWLCoBd4hDT7XhH43/4eapvEVyh8tFCbhDCGJkL6cmjO1OVqSt5w9/+AP/93//J7c5syLhBdGOHTv49Kc/TS4lFFF1+hsUhD3PQsVl+VPVnNREwcZMUgrV93MDDB4apf3NPtX1JzG5DBRuzJyqpKQmgp4QXVsGCUwsjPifixjSvEMLS2Ai8jsPetR14AOR6lWFGzOnqsmpBgna3uhj8PCo3JbIQkqhlYLJqnXxJpG9RSkFViouy8c+WeVQLWQMFlJAOZ/73Od4+OGH5TbntCT0zmNgYICrrroKg9dCDatU1XgVYLzTw7YfH56qgqIWopV7ouVU1Ya710fv7mG5zVh0rJlm8jakI4UTd2FbKOx5FlIKFmax1MRQ4pJSYFHdJglACkvkbUjHmqm+/NDe3cO4e5MnryKe2LJMpFelHNcTZ7ZECyrMRKKKotFWN9t+fJjxTvWFiVaxgpzsHL761a/S29srtzkzkrCCKBQK8fGPf5zR0VGWcwY6IT7JeMlCWnWkr4FvAVzMiY4Uktj1YBM9O9RTmSVK0dlZuMrUlWwcZahhjM3/dVCVlRTzz8yg+JzsuH+uJoYSm+JzssmvV1f4FEA4ILH5vw5OlRBWG64yO4VnL4ynJJHp3j7EroeaFrS6YKIWXIju5aJ7O7UgCiIVgysxGo1ce+21BIOJGyqbsILo29/+Ni+88ALFg3VYBJvc5iwqjmIrddcVY89X38mhNcs01YBVbSFjCJFEazVVpDkOdTmAj+Pw0+0cfKotrp+piaHE5+BTbRz+Y7vcZsiHSr/z5jQjziKb+n7+yTXdkm7EmhVbBIj99+9i//27s7q270pPQuZM2vMt1F1XjKNYXekAeq+Zwt5a3nzzTa644gq5zTklCdmH6Nlnn+Wyyy6jnCWUCrWnv0GBWDJMePrV51av/lghZpeBXQ82yW2KxiJizTKx/JYydv+ySbXhJPEmWSrKaX2I1In2nVcvK24vwzsUKZo0F04XPtd35fGhaYl00KPWvR2Ad2Uf/9jxOr/97W+57rrr5DbnfSSch6i9vZ2bb76ZDHIpoUZucxYdW04kplqtX5jDf2zn4B/ie1KeLEx5xlRI0Bum491+1ZUnhUiCec01hdiy45dPkSxiSO3Yss3UXFOoykIi3kE/He/2q7KoRBS1zvkH/9DG4T/N3TM6W09RlETyFkX3dtG9npow7cggWyjg05/+NEePHpXbnPeRULNwKBTipptuwmKxUMda1RVRsOdZWPXpCpwl6goRjKIzikghCd+w+vKmbLlm1nyuSnWu9Cj+0QBtb/QRDiacw3rB0RlFdAaReDnrNTGUPEiShM4gojMm1FK8KISDEm1v9OEfS9ycgoXEUWxlzeeqsKmw8bhvOIAUkub13scSQgeJJYqcpTZWfbpCdQVVBEGgVlpDSkoK55xzDm53YhUMS6iQue9+97vce++9rJI2kiZkyW2OLLjK7Qw3jsttxqJjz7Ow9KYS9jzSzESPV25zFh1BFEitsDPYMKbK3KnslakMHhpVZb+teBLLop8oQkgLmVMvBquOtGoHPTuHVDnvpVWmMHRkXJWVNW3ZZpbfVsqeXzYz3jW/NX96CN2J4XInIxHmPleZneEm9e31AIRKHy8feY4vfvGL/PCHP5TbnCkS5lhqy5YtfOtb36JYqlKlGNKbI1X01CiGALxDftre6GOiV31iCCJlaAcPq1AMAeZUIxWX5qmyBC8wpxK0JyORTkA1YiNe70CyYc00U3FpHuZUFYaOSTB4eEyVYghgotdL6+t9eOMQEZKMIXRRMRTd+6kJqcFESbiG++67jzfffFNuc6ZICA/R2NgYq1atoq9xkLWcgygkjE5bFAw2PWs+V8mRZzvp3zcitzkai4yz2EbWCheNf+1UZcgYRMLGwsEwUlhuSxaf4vOySa9xsP2nDXP+jGQOk1O7h2j1XZUMHByl5eUeuU1ZdAQRRL1IyK/CLz4gGgTKP5xH765hRlom5DZHESTTXJixxEnFpXls+0kDgQl1hY5KksRO45uErH62b99OaWmp3CYlhofoy1/+Mj09PSxlg+rEEEDAHeToyz0MNaqzJ0PxuVlkLXfJbYZs6MwiBrtetWIIIORXpxgCGNg/Qssrc98MNz2+EkmavYchkcSQBrS80sPAfnUehElhVCuGINKPyWDXozOrb98TJWu5i+Jz4xcVFOv8Jqe3aLhxnKMv9xBwq0sMQSSfaE3qB/F6vXz+85+X2xwgAQTRiy++yEMPPUTBeBVWQZ0NKZGge+sgIa86Fwaj3aDqBWHw0Bj7H2+R2wzZqLuhmMxlTrnNkI3xLi8DB0bndG/T4ytjul4TQ4nHwIHReedQJDOZy5zUXV8stxmysf/xFgYPqfMwFEBv0WG0G+L6mckiioLeEN1bB1UZKg8Q7hUp9y7jueee45lnnpHbHHlD5sbGxli2bBljLR5WsVF1VeUAltxYwsCBEbq3DcltioYMmJwGwoGweosJCFD24VwGD42pNn8uY4mD8S5vzCXHTyaGBOHU03miiiG1h8yZ04zYc83075ubKE52XOV20qpSaPpbl2o3hgarDtEg4htRX4XVhSYZQuhy1qSSXutk32NHF/3ZciNJEnsM7+C1jLNz505ZQ+dkPZb/53/+Z/r6+qhljSrFkCDCWIcbjwp7rwCIeoHUSpV6BScp2pTF0pvkj52VDQma/tqlWjEEUPWRAlLLY/senMozdKrQuUQVQxqQWm6n6iMFcpshG8ON4zQ9r14xBLD05lKKNqmvmNR0UivtiPr47wOTwVvkGfQz1uFGhRkjCILAyrQN+Hw+vvjFL8pri1weotdff51NmzZRxUqKhAo5TNCQmfRaBzVXF7L1x4dV2XsIQG/VYXIamFBpyIw5zUjQE1J1c0ZBFBBEZp1DNpswuemeokQXQ2r3EIl6ASmMaquNQSRsSm/RqbIxM0T60PmGA6qdB00uA2u/UMXBJ9vmHD58OpLBU6RmOmjmgLSNv/3tb3zoQx+SxQZZBJHH42HZsmX0Nw6zlk2q9A6lVadgchjoem9QblNkxZJuxDOgzkVQA5beVELQG+Lg79vkNiUpiCVnSBCkpFjU1S6INKD2miJ0ZpG9vz4qtykaMrFYe4FEFka569PwjQRUmVMmSRI7df9AcgbYt28fOTk5i26DLA66733ve7S2tlLHWlWKIYg0InWW2uQ2Qz4mf+1qFkP5H8ggvz5dbjNkpeGZDlWWG47iLLFRc01hQoSKaMiDqBeouaYQZ7F614OjL3fT8EyH3GbISn59OvlnZshthmxM7QUWeEuYyCF0rhI79jzLoj0vkRAEgTXZZzI6OsrXv/51WWxYdEHU1NTEd7/7XfIDZdiElMV+fMLQ+movB59U76l45WX5VFyaJ7cZsqI3ieiM6mvKNh3fcEDVohgh0ocl3iXXy27YGdfP01g4wkEJUS8mQM1X+fAM+FUbNh1FZ9KhV3G1VYCKy/KovCx/wZ8TiyiSJCHmap5z5cCTrbS+2rsoz0pEwl06SqjmiSee4ODBg4v+/EUPmbviiiv4+zMvciYfQifoF/PRCYEgRqrqDDWoN4kcIGOpE0GAvj3q7L+hAY4iK6mVKZEePOpNn4iZ0y3OySaGtJA5DQQoPjeboYYxRlvdclujIROZy5xIEvTvXbx9wek8QCcWqlmM+TW10s5w47gqe/OFpBDv8gLVKyvZunUrOt3iHRov6nHEX//6V5555hmqWKFKMQSQWpHCkhtKsGSY5DZFVvr3jqhaDJlchgUJk0omzKlGXCU2VYuhubwDMy3IySaGNI6h6vlAAleJDXOqUW5LZEXUC5hc8e3Jk0z07RlZVDEEsYfQLbS3yJJhYskNJbjK1RlBpRN01NdsZOfOnfz4xz9e1GcvmofI5/OxdOlSBo+MqrbnUBRrpgl3n09uM2Sj4IMZ9O0dUXWIxPJPluEb9nPoqXa5TdGQkbrripAkOPBE7N6RExfmZBVDmocIaq8tAkHdY6AB1R8twOQ0svvhJrlNkQ2Ty0DmUift/+hf1OeezFN0qjYGsLDzrdr3iAB7Te9gzNJx4MABrFbrojxz0TxE999/P83NzVSxUrViSDREfm41v+jGFD35Z2RgSVe3h6zhzx20vdkntxnyos5p4Dg63h2gc/PAnO6dviAnqxjSiNC5eYDOd+f2HigKlc8JbW/2qb64hCXdRN4ZGRhTFjeKqPT6XTF5i5oeX7lg3qLoHjG6Z1QjZd5ldHd3c++99y7aMxfFQzQ8PExZWRnWoVRqhdUL/biEZeUd5QweHqP1NfUmzUEkj0qSUHWolNoxOgys+Vwl+x47quUMzIOmx1cmvRjSPEQaAI5iK0s+XsK2+w/jHwvKbY6GXAggCMiaP9P82xUzeodOZCHm4KJNWaRVpbDz541x/+xkob+qif3Nezlw4ABlZWUL/rxF8RB9//vfx+fzUUbtYjwuMRGg451+BhvUV19+CiFy4iGFUbUYyl2fRtYKl9xmyEo4EKbllR48/er1lgJkrXRhcs49ZyDZxZBGBJPTQNZKl9xmyIqnz0fLKz1xr7iYbGStcJG7Pk1uM+RDiogh0SDI5jGcS15RvL1Fgw1jdLzTr2qvaVZvCQaDgfvvv39Rnrfggqizs5Mf/ehHZLmLMAnqrK8OgBRJGBzv8MhtiWy4yuxs+FrNvDaASsCaZVZ9UY2gJ0TnuwME3OrszA6gM4tUXVEwr74TCxm2obF42PMtVF1RgM6k3rLLAXdkTgh61DsnQCR/xJplltsMWTE5DWz4Wg2uUrtsNpTdsHPWB06V3x6n8tvj6Kor0FVXxOX54x2eSOEpFZ8PhIdFciZK+NnPfkZDQ8OCP2/BQ+Y+85nP8OSTT7J8cCN6QZ0bYZPLQH59Bq2v9hL0qneyN6boSa910LVlUG5TNGTGWWoj6A4x0eOV2xRZEcTI8Z8Ujn0a1ooqKIf5vAdKwpZtRm/VMdI8IbcpGjKTuz6NgQOjCRE+ebpDp8pvv7+NSujQkXk/V2/RUbQpi453+lVbhCokBdnmeIXq6mq2bNmyoM9a0OOoI0eO8OCDD5I+WKBaMQSRJEFniY1wUIVF5afhHwuqXgyp+QR4OqUX5JCzTsVhIZNIYSkuYuhUf6eRHMz1PVAauevSKD0/R24zEgK1rxVdWwYTQgzBzIdNJxNDQFw8ReFAGGeJTdVFqHSCnmX5q9i6dSt79+5d0Gct6Dfuu9/9LrqQgQLKF/IxCc9w4zg7Hjii6thoR5GV/Pp0uc2QnYpL86m7oVhuM2Rn10NNHH2pW24zZMVZaqP2mqIp78Bs0YSP8hBEgdprinCW2uQ2RVaOvtTDLhWXnI6y5OPFVFyaL7cZ8iJAfn06jqLFKbl8OmIJoYsy3xC6cFBixwNHGG48uehSC6YD6ZgkC9/5zncW9DkLJoja2tr49a9/TTGV6ITF6zSbaFgyTOiM6j7pAbDnWchY4pTbDNnp2jIQSZRUOVJIIuRVt8dUECYrLsbgGTidGNLEUnIihSUEMfJOqJmgN4QUUu/BYZT2t/vp2qLyMuwSZCxxzivHciGYLopO5R06kfl6i3QmEUu6epsWi4JImaWW3/72t7z88ssL95yF+uD//u//xm63k8/Cl8pLZCovz6fqIwVymyE7ne8OsOtB7eRvtM2t+vh4Z7GNmqsLEfXq3v0NN02wP4a8mdmKHU0UJSf7f9fKcJO65wbRIFBzdSHOYnV7ykaaJxht09oR7HqwKSH7c80lX3M+oqjqIwVUXqHufWRuqBir1cqPfvSjBXvGgnS+6uvr4+c//zk5nhJV5w4BHHyyFZ1JvR4yANEgEg6o2xsAkFJgwZphomfnsNymyIqgA1EnqDqEFEDUz34MGh9fqebqq6ohlndCiYQDEqJOQMVBJVNkr3Th7vcx1q7eyrRREnIP0W4BFieU7ejLPYR86i3IBSAERHL9pbzwwgt0dHSQnx//kNIF8RDdd999iKJIIfEpP5jM+MeCqu+1UnJ+NstvU7enEMBVaievPkNuM2QnVs+IUqm4LJ9lN5ee9rrGSY/PbLfJyVptTu0su7lUyxtB85RFyavPkLXsdKKw/LYySs7PltuMk9LwyUwaPpm54M/x9PsSpsCEnBRQjsVi4e67716Qz4972W23201BQQEpQxlUCSvi+dFJhSAKLL2phNZXexlpUffkbs+3YErRM3BQxU1pJ4nkjMhthbzoLTrV9xoBcBRaEQ0iw02nPmVsPEn420yeomQUQ1rZ7Qiucjthf1gLlUKbI0BbK6Kk16TgGwsmVA/Hpu/Xn/TvKx/qO+U98y3D7SyxUbQpi72/PqrqipRjyzvYcWAbHR0dZGTE94A57h6i3/72twwPD6u+spzeosM3EsA/oan68Q6PJoYm0RY4WH1XJQUbF/5ULdEZbXPHLIZmIhnFkMYxhhvHNTEEFGzMZPVnK+U2Q3a0tSLCwMGxhBJDM7GQ3iL/eBDfSAC9Rd1FulLasgmFQvzud7+L+2fHdWQlSeKnP/0p6VI2VkHdrt7ARJDDf2xXfbhcaoVdqy5HpMTy6s9WYLBqwfFH/tLBwIFRuc2QnfRaB5aMk/eXmEkMnexsUBNDyY8lw0R6rUNuM2Rn4MAoR57tkNsM2TFYdaz+bIXqS7FDpNpcakVi7ClP5R2KcjJRFI8mrZ5+H4f/2E5gQt2eU4b0pIdy+NnPfkYoFN+xiKsgevfdd9mxY4fqvUOiXsBVbkdQt5AHILUyhawVLrnNkJ2gO8RQ4zgBt8onM2Dw0JjqDwoAKi7LI60q5X1/PxvP0HRRpIkhZZBWnULFZXlymyE7nn4fg4e0iIJAdM3QokzIXukitfL9c+ViczoxFGWhcosEMRJaq/YKrWWOGg4cOMD9998f18+Naw7RjTfeyNO/+RNnchGCihsqpFWlUHd9MVt/fBjvkF9uc2RHi4XWiGLNNJGSb6Fn1/DsqwQoFEEEBOG4viuxhsmVK0AMaTlEEQSdAJKkzZUCZK9wMdbhwd2nHZxoJM4eYraCaDpld78Tt+ebU42s/UIV+3/bwuBh9R4aSJLETtfrrFq7khdffDFunxs3H0ZfXx9PPvkkBZSrWgwBDB4eY9tPGzQxNPkaJMJEJjfOEhs6s+YydJbYKL0wV/ViCCLfi+li6PAD6wmNzL75nhLEkMYxpJAmhgCQoPRDuThLtFAxnVlUfU8mmLaHkHlrGau4kQo8MR9yzYR3yM+2nzaoWgwBCIJAxnAhr776Kh0d8QuvjdsO7YknniAcDpNLcbw+MqnRQoKg5LxsltxYIrcZsqMziSy7uZS0Ki0/oOu9QTb/1wG5zZAdk8NA7bVFmNMiAujwA+tjul8TQ8rDnGak9toiTA519+4D2PyDA3S9Nyi3GbKTXuVg2S2l6IzaYdqSG0soOU/+8ttz8fjEUxRpe8sIuRSh0+n49re/HbfPjNu37LHHHsMVzMQonDxJWC2kVtpZcmMJokHdXjKI9Jvp3zcitxmyE/KFee++Qwwe0goJgOYxhEh4VDTH8EQxdDovkSaGlIsgskDdAZMLbY6IMHBolPfuO0TIrw1I/76RhOlPNRtRJBUcXxmv8fGVcRFGokFkyY0lCVNkQi70goHyknKeffbZuH1mXKbew4cPs3nzZs07RKTTtm80QDigxQQNN43Ts2NIbjMSAt9wgJBPW9Rqri7UimwQCX3Y/9tWdv9/K0/676cSRZoYUi7ewcg74RsOyG2K7GStdFFzdaHcZshOyBfW3odJenYMzdimYLGZSRSdKIamM19RFA6E8Y8GCAe1Paa5KZ2uri52794dl8+LiyD6zW9+g8PhIIPceHxcUjNydIIjz2glQ82pRlIr7bLH/CYCeRvSyV2fJrcZCYF/LEjQq1XaQ4DDP1s34yUniiJNDKkEbc4k6AnhH9OqqwHkrk8jb0O63GbIjxCJwDGnzj7PcqEpu/sdWULoGp7pYORoYnjL5CQ1mEVGRgYPP/xwXD5v3oJIkiQee+wx7KNp6AR191gxpuixZZvlNiMhSK9Jofoq7YQPwOjQY0zR8gIAmv7WpZXUBcL/vZpbezwIpynyGRVFmhhSPoIo8MF/XUrWMpfcpsjO4KExmv7WJbcZCYHJYcCYopfbjISg+qOFpNfIX377RKYLo5m8Q9OZryiyZZtV/16IgkheagEPP/wwgcD8PanzFkTbtm2jqamJHIrmbUyyk7UylWW3liKI2hFfxzsDbPtJg1ZNDDj6Yg8tL/fIbYbsiHoBg03dhyZReg0i/3AYkVRekVPjGFJYouGZDkbb3XKbkhAYbDrV91sBOPpSD0df0tYPJNh2fwMd7wzIbYnsCKLAsltLyVqZKrcpspMZyGdsbIw33nhj3p81b0H0zDPPkJqaiouMeRuT7HS83c/uh5qQwpoKALSGchAJf9HWdCBScnvD12pVf6oFMKoXabDObhyqvty5wNZoJAo9O4bwDqq8XQNgdBjY8LVarfR2FG0dARJ/TxFr+NxcvURSWGL3Q010vN0/p/sVxVEzOTk5PP/88/P+qLgIoksuuQRR0ErjSCFJayQHmFwGln6iZKqksJpxltg48946TE4tZG6808P+37XgH0/sRW0xSA+EyfOdPpeq9t+OAqDLzlpgizQSAVeZDVuOFnbtHwuw/3ctjHfOLvxIyZicBs68t07rRwRY0o0s/UQJJlfirqexhDeHfDoOP7KGw4+sifk57j7fcX3s1IogCJx11lk89thjhELzy0+el4ppaWlh165d7HqsYV5GKIGUfAtVVxWgM2nCUNSLBL0hQlryPN4BP80vduMb1SoFBdyhSP6QNoez/m8drB2b2RMQFUNRNFGkfErOzyF7tRYGgxTJIwq4tTXENxqg+cVuzXNIpNhG0BtC1CW2u2w2oijkOz58PFZRpDOJVF1VgD3fEtN9SmRw/xg9PT28807sBS6mM6/d+1/+8hcMBgPp5MzLCCUgGkWMNr1WWplI47CDT7ZpixmRxaxry6AmAoC06hTSqhIvIVYOmv7WTcP/23fKfz9RDEXRRJGy2fOrZpr/1i23GQlBWpU2XwAgQdeWQe1Qjcih2sEn2/AMJL44LL9hZ8zFcGIRRSFfGKNNrzXtBUL7zVgsFt5+++15fc68BdGmTZvQC4nrvlwsRpon2PvoUbnNSAhMLoNWWGKS1Aq7FgIzSeYSJ1krXXKbkRBIYYmQL0zVnVve92+nEkMayifkC2s5qJNkr0wlY6lTbjMSAluOWfWNOKMIopDQIXMncjJRdKJ3aDqxiKK9jx5lpFkrv62TdFx44YX8+c9/ntfnzFkQ+Xw+3nzzTY6+qFU/QQCjXUsUj7Li9nIKz8qU24yEoPTCHK0R6SSHnm7n4O/b5DYjISg6J4ucNZHQqOmiaDZiSPMSKZecNakUnaP9fgEO/L6Vw0+3y21GQpC1wkXJBVokDkDhWZmsuL1cbjNiYroomkkMRYlFFBnteq3gBtC7f5B3332Xzs65FyGasyB677338Hg8pKJtfK2ZJtZ/tYaUAi2WE+DgE6307ByS24yEYMf/HqH11V65zdBIMPQm8bhQh6o7t8TkGdJEkTLRGUX0Wh6qxgm0vtrLzv87IrcZCUHPziEOPtEqtxkxsxDhcymFVtZ/tQZrpmmOVikH61gq4XCYzZs3z/kz5jzzvv766zgcDlJwzfnhSsE3EuDAE61MdHvlNiUhGG1z4xvW4p0BpDCE/FpeGcCyW0oTsqmeHDT9rfu4fhqNv1nF4R/my2iRRiLQ8c4ATVoOERBp7r3sllK5zUgIQv4wkraMAOAbDjDalpy9uipvOxjXz5vo9nDgiVZ8I9p+i24DWVlZbN26dc4fMWdB9Nprr7Fx40YErbEgIV+YgYOjhINa7LejyEru+jS5zUgIbNlmaq8twmDTwikRwDPgI+jRVvUTafzNqqn/n60oCvVoXkcNZRP0hPEM+LRwIMBg11N7bRG2bC0fFSB3fRqOIqvcZsSEaI787mruPHUxnVgJByQGDo5qxbyIlN9eu3Ytf/zjH+f8GXMSRH6/n7fffpvDzyWf23IhyDsjXSt9OElKgZVsrXsyAIJOQNAJhAPaZIUER/7SyUiLlgAKsO5L1RRszDxODEU5nSjSxJByKdyYydovVcltRkIw0jLBkb90ahU6gbA/PLWeaEQKbqQUJI8gioqhKLMRRVW3bpvVZ9vzLeSdkT4nu5TGWIebQ4cO0dfXN6f75ySIdu7cidvtxqXlDwGQuzaNlDxNEAF0vN3Pzp83ym1GQjDe6WH/4y1ayBwg6gUMWuGRKVpe6WHvLXkx36eJIWUzdGSM1le033EUg12PqNdEQMgfZv/jWqPaKDt/3kjH2/1ymzEvau7cd0phNFsxBJCSZyF3rRaVAxA+aCQcDrN379453T8nQbR9+3b0ej12tJKYANt+0kDXe4Nym6GRYIgGQQv3mMRRbGPDV2swOpKnXOpC0rt7mAHzqaffk3mJNDGkfMa7vPTuHpbbjITA5DCw4as1OIptcpuSGAiTa4pGUnGid+hEThRFsYghgK73Btn2k4aY7VIiJp8di8XCjh075nT/nATRjh07qKurQyecvnyghnoQRFjz+Uqtmd4klZcXsOTjJXKbkRBMdHnY93gLgfGg3KYkBP7/W4E1MHMs0HRRpIkhdWBM0ZNWrc2fAP7xIPseb2GiS/OKACy9sYTKy7XCKxBp2rvm85UJf+B4OjEUJZ55RWpGFERyc3P5/e9/P7f753LT9u3b6ds9MqcHKo28M9JZ+okSuc1ICASdQP/+Ua3iySRdWwZof2tusaxKI+AOMdQwpjWdBJofXcm5nSFyPKcfi8M/zNfEkIpwltqpu65YyxUh0rx4qGGMgDsktykJQds/+ujaokWiQKSyb//+UUWFU9bcuS9m71CUpZ8o0fKIJrFgo6OjY073xhzUHwgE2LNnD8XUzOmBSsPT72NYQV/K+RAOSLS8rDXqjZKspUEXAnu+BWumid6dw3KbIiuNv1kFksTvyvQEZ3EcVf7xubn+NZKTgf0jvHtkDCmkHRwAZK90MdHr03JngJFmrSBNlIkeLxM9id/mJOz1ztpL1PBQLTC3OX+4eRxPvy/m+5RIuMlAp9iJ2+3Gao2t8EbMHqIDBw7g8/m0/kOTDB0Zp/0fyZ3cFy8Mdj2WDK1BWJSsFS7MqUa5zUgIXGV2Cjequ5noVEU5QcCnFwiJMx+kaGJIfYSDEkHNIzJFwcYsXGV2uc1ICMypRrJWuOQ2I2GwZJiSolBP2Ht64RYVQ8BJK4+ejvZ/9DN0ZDzm+5RICi7C4TDvvPNOzPfGLIgOHow0ltIKKkSw51vQaZ3FAche4WL5bVojPYiED1ZekU9KgVZ9EKD9zT623X9YbjNkY/oiZw5KfKA7iMN/ai+AJobUiSXdSOUV+RhsWn4uwLb7D9P+Dy3sGCCl0ErlFflaOOUkK24rSxqBOJMomi6GosQqinQmUWv9MonLHqm49+yzz8Z8b8w7+cbGRlwuFwZBO/kWDQIrby/XighM0r1jiL2PHpXbjIRACkm89R/76N83KrcpGjJz4uKmkyDFD+Ip9JAmhtSLoBMwpxkR9dohm8bx9O8d4a3/2KeFU06y59FmenYMyW3GrDmZKDqZGIoSiyhKq3aw8vZyReVUzZXwBKSnpyOKsc+hcxJE5eXlMT9IiYSDEtsfaNBclZME3SEmuhI/rnfRkNCKCExSfF42xeeqL2TuZIvahEHgb0V6hk3vX7w0MaRu3L0+9jzSrBWmmaT43GyKz8uW24yEQApLWpPaaUx0eZMuvHQ24XPTma0oGmoYY/sDDYQ1sQxAbW0t3d3dMd8XsyA6cuQI7du0xHkApMgCFvQk15dyochdl6Z5yyaxZpmova4IYxLEOC8GgYmg6qpFxRr2oIkhDY3jCbiDBCa0Uv0ARrue2uuKsGZpeboQKb2duy75GpJGRdFM3qHpzGYdCXpCuHt9mmCepPNgL5s3b475vjl5iCxoSY4AzmIbRZvUd+p9Klzldux5WhwrgCAICEBY8xAB0PnuAJ3vDshtxqIxesMZp/y3dG+Y648EcPqOvRuaGNKASKL4Gf9ciz13dpWplI7a5o2ZCIclBCJri0Ykf9tVnpx70YXwFBVtysKpNTEGICsvg66urpjvEyRJmvWOze/3YzabqZFWky9oyfPZq1LJWZPKrgeb5DZFQyOh0ZlFpKBEOKh8gThdDPVd8v5SqJagROlYmEaHiE8nqF4M1V5XBMCB37XKbIn86C06sla46Ns7ojUxBkS9gKAXCHnDcpuioRF35lJR7lTrxYrby+jeNpRUeVULRbfUyl62MDo6SkrK7KOWYvIQ9ff3I0kSRjSXLUDPjiFNDGmcFEEUEr6L9mKy/NYySs5Xfi7AiZ6hzOfeP1d69AL7U3WaGNJ4H0FPiM53BzQxNEnJ+Tksv6VMbjMSB2FybdFQBHOZ/08lonY92KSJoUmiGqW3N7am5jEJor6+vuMepqERRWcSWfuFKpylmssWIP/MdDZ8VWteHKXpb110b1f2ZH2qMLkTRZEpJJHjDlNx085FsEojmRD1As5SG3qLVnYbIoeOTX+PPfRFqWz4ag359elym5EQOEttrP1CVdK3PYmnKNKI4Mh0APDGG2/EdN+cBJFBE0QAVF1ZQNmHc+U2IzGQoG/fCP4x7WQTYPDwGI1/7ZTbjIRhpHkikvSpUGbKGYLjRVG6V+JD7SEMNq3ghsbxGKx6lt1Uij1Xy8UEmOjxMtI8IbcZCUPjXzsZbBiT24yEwD8WpG/fiCIKCcRDFJVdnEvVlQXxMimpEcYjB0reGHO1NA/RPBhuHme01S23GQlByB+m5eUePP3K3fTGgrvXR/9+rQdRlKzlLsVWRzqdGDoR22d38959h/CPaaWVNY7HNxbgvfsOMdqqiQCIVOvMWu6S24yEoX//qKIPlmLB0++j5eUeQn5l5JfNVxSNtrgZbtJawAAInshho9EYW7/UmAWRyWRCh3ayCdC7c5j+fSNym5EQiAYBa5ZJ66I9iT3XnLQVcBaC0otySFXgeMQihjKfM1H+8R2EgxK+4YAiTjY14owEvuGAKoqPzIbUihRKP5QjtxkJg6vcrlUgnETQRfYcokE5e475iKL+fSP07hqOs0XJiSiIOJ1OmpubY7svlotHR0dxOp1a2cdJbNlmLexlEnuOhdV3VmJOjU2RK5Xs1amUnKv8IgKzZfP3D9LxjvLK5zoef3fW14YMAkM312PLMVN2ca7WVVzjfYh6gbKLc7HlaJtegI63+9n8g4Nym5EwlJyXTfaqVLnNSAjMqUZW31mJLUdZ4aWxiqK0F8wM3VyPwabHlq3NG1FEUWTHjtjGMiZB5PP5MJu1AY+y5MZisldrkxNEYr13PtiIb9gvtykJQdPz3ez+pVaBUA3MRhSFpp1ieq9YhqPACtrBksaJCAKOAisGq1ZUQeP97H6kmaa/dcttRkLgG/az88FG3D2x5YkkA7MVRWkvHNuPOz+5nCUfL14ok5IOl8tFfn5+TPfELIhMJmXmAcyFvb8+qpU5nCTkDzPe4dFCPSaRwhLhgDYWUequLya1Qnkhc1FmEkWhE0I6+r16XvVlEQ4oI/ZdI36EA2F2/ryR4SYthwggtcJO3fXaJi9KOBBG0pp9AxAOSox3eBSTQ3QipxNF08UQQOu4gbdHnQtpUlLhcDgWNofI6/Vqgmga7j6f1i9iEku6kcKzM7UwoEny69Mp+GCm3GYkDJGFXG4rFpaTiaITxdB0hm6uX0hzNDSSHimMdnAwjYIPZmpltycR9QKFZ2diSVdumP6pRNGJYgjAFxIZC+i0dWUSj8cTcw5RTAkwXq8Xo9GIzpjcdd/jReHZWQweGmWiW3ku21ixZprIWZ1G744hglpXcXQmHTqDqH1XJml4pgNA8eOR+octjF697thfnEQPZVmCLEv38VqHldFbziD18S2LZ2ACEm00qfR3YzaIRpFVn66g6flOho5oFaPG2t2Mtbu1d2MSg1VHyC9o4wHozSI5q9Nw93gV3e6j6tZdND20fOrPqS+bQXi/l9BhDJFjDXJ42KStK0AgEKC/vz+mewRJkmbtf7300kvZtWsXt99+e8zGaWhoaGhoaGhoaGhoLCS/+tWvyM3N5a233pr1PTF5iFJTU3G5XBx8sjVm4zQ0NNRL9ccK6d42qJomi91fKMW+yzDr6+2vH15AaxKb/A9kANDxVmyneRrKx1lqI2dNGof+0Ca3KRoasuL+YCXhGNuaqHldSU9PJzs7tkq/MQkip9OJKIr079EaTmocj7PURtmFOez+ZTMhnxYyV/WRAowpevY+elRuUxIC4Y/tjHV48A4qvwrhVLO8D4ZOGuttECXshjDDPhEJgdRfvYOag24zJxtvao2MAQFS8i14BvwEPSG5rZGd8W4vo61u7d2YZOknSvCPBTn8p3a5TZEdnUlk+S2lNL3QrfiDttEbzoDJCNqZ8lKno/Z1pb+4H4sltpLsMQWimkwmfD6tS3KUFZ8qJ2uFS24zEoKgO8RIy4RWAWeSnl1DdG5WXt+dudK3Z0RdYmgGMsxBPpjrRi9GFi0NjSh6k44VnyzHWWyT25SEwDvop2+P1vw8SufmAXp2aZVtIVLJdaRlgqBb2QcHJzb/1p2iem2BPcDG3Igw1NYVkCQJuz22yrYxeYjMZrMmiKYx3DiGV+u7A0T6EGn9EY6h9BOrWMlY4mS8S9keopOJocELve/zEvV59LzaYcX+y9k3ddVQB0FfiO0/a8A3EpDblITAkm7ElmOhf58migAGD4/JbULCEA5Iit9znCiGougC0vs8RZ6AQJ9Hr4mhSWw2G9XV1THdo3mI5kHLK72MtrjlNiMhEHQC5lQjQowxrkrFmmXSTnmnUfWRfFLLlduHaCbP0OCFxwcuBCUBw4NbQHOmapyIFGnnoNTeKrHiKrNTeUVszRWVjLPYhjVLa30Cyt9znEoMRTnRUzTg09Nz3/aFNCmpmJiI/VA6JkFks9kYH9dKgUYxOQ0YU2JysikWW5aJtV+owpqhTdYAOWvTKL0oR24zEoZ3v3+Arq2DcpuxIMwmTG66KMr/63ZKLshGnGUsuIZ6EA0iJRdkY83U5lGArq2DbP7BAbnNSBjKLsohZ02a3GYkBNbMyT2HAgXi6cRQlOmiKPvp9zA5Z1/IR+kMDAzQ0tIS0z0xCaKMjAzGxsYIS8qO2ZwtNR8rpGhTltxmJASeAT97ftWMd0i5IVGx0PJyD3t+GVtTMCUTDkiK9IjMRgxFGbzQS+qv3sFg15NW5UDUab1ENI5H1AukVTkw2LWDNgCkyblDA4Ddv2ym5ZUeuc1ICLyDk3uOAWXtOWYrhqLoAhKpv3qHonOyqf5Y4QJZlVxIkoTH42H16tUx3RfTrJuZmQmAHx9mrDE9SIkcebaToE8ThwAhf5iRo1reTBSt0t7xlF+Sy0iLm/69yskFiEUMwbGu4yPNE2z/acNCmKSR5AQ9Ie3dmEbGUifOYiuNz3XJbUpCoK0rx1DqnsPx+LsxiaK+S3z0XbIK01170Zt0C2hZ8hAkQCgUora2Nqb7YjqinC6INCKFBHzDWvIrROJ58+vTtVCPSVzldsovyZPbjIRB1IuIonJCxGIVQxoaGrEjigKiXvOkRim/NA+XgnMxY8GaaSK/Pl2ROUSOx2dXcKfvkmN7cd9wgIkeNRfaPobgihwciGJsc8ecBFFAE0QAOEts5K7X4nkhUgKz8KwsrFnv77uiRvQmEXOqUW4zEoaGP3fQu3tYbjPiwlzEUNQ7BJBSYGHN56swOrR4b43jMToMrPl8FSkFsfXPUCq9u4dp+HOH3GYkDGaXEb1JE4gA1iwzhWdlKbbVx+lE0XQxBGD4yXKcJVohJwAxNSKI9PrYQo81D9E8SCmwkrnMJbcZiYEE737vgFYedZL+/aPse+yo3GZoxJn5iiEA/3iQ/n0jhANa+IvG8YQDYfr3jeAfD8ptikYCsu+xo1qT2kn6943w7vcOKDI3NcqpRNGJYgigbEzC/9XyhTYpKehvjvTqqq+vj+k+QZKkmF6n9PR0UgdzKRVii83T0NBQL8tvK8Pd5+XIXzrlNmXOxEMMabyf2uuKADjwu1aZLdFINCouz8eaYWL3w01ym6KhIRvTc4pOJoZORO3rTot0mA7rEcbHxxGE2YdUxux7LS8vx43yEtk05k/5JXkUnaNV3QNIKbRSf2+dFjY3SftbffTuGpbbjDkTTzEk6ARs2Wat7LbG+xANkXdDiXkRc6F35xDtb/XJbUZCYE4zUn9vnRZOOUnROVmqytONFE+YXXSW2nNcLdUiTqczJjEEcxBEFRUVeNB6EUFkglp1Z4Ui6+DPBe+gTysyMYl3yE/Lyz0EvVoVQoDBQ2OMtiZnE2PRHHte3EwndJY0I6s+U4FNy7fTOAFbtplVn6nAkqYdpACMtroZPDQmtxkJQdATouXlHrzaGgtEigh4BtSRvnG6fKJUn8TlRwOk+I8FfDU+vnKBrUpcBgcHycuLXSzPyUNkzdMma4hMUCNHJ7Su4pN0vDNAz44huc1ICALjQTo3DxD0aIIIIhs9Z2nyJXxGxVDlJ2ffHPJ04QreIT87f9HIRK86FnON2TPR42PnLxq1fm6TOEtt2LK1gwOI7Dc6Nw8Q0PLLAOjZMUTnuwNym7FozLSuBATotor4o1W3hYgwUqsoMjkMbNq0Keb75iSIOjs7CWnNWQl6QjQ936V5RSYR9QJm7WRzCleZTescPUn26lRKL8yR24x5MRtRNJvY7XBQYrzToxVV0Hgf4UA48m4EFZwpHgNlF+aQvTpVbjMSApPTgKss+Q6VFgpzmhFRr67Q0lOtL+NGgS1ZOnw6YUoMqZWwEKalpYXi4uKY741ZEFVVVQHgRnNjAxjsek0ETJK5zMWaz1UiKKjfzHyou76YtKoUuc1ICFpe7mH3w81ymxETJwuVm0kUzTaRVTSIFJ2dhSVdmzc0jseSbqTo7CxEg1ZaGWDXw820vNwjtxkJQVp1CrXXxb7JUyKCKLDmc5VkLnXKbcqic7J1xuGXsASlk4ohtXmJjEUQDM7NixrzrLts2TIEQWCM4Tk9UGmUfziXChUl9s3EYMMYe37ZTIyFCxXLtvsbtBDCSUL+cFJ5RGbKGzqZKIqlqo+oF8helap5DzXeh8lpJHtVKqJWVAGIeMy0kPQIPduH2P6TBrnNSAgkSWLPL5sZPKLOfPYT15szekKs7z111JaaRFFXR6SS7WWXXRbzvTGX3Qaorq7GczhMtbAy5gcqDUu6kXBI0sLmNDRmwFliI3tVKof/2C63KadltkUUGh6KtB5Qe4nT+aKV3dY4FVVXFtCzfYiRFq2yrYbGdKYqyQkSdr+ECIwaZz5IKb9h54LbJTcN0m7ChR5aW2NfT+bkl1+9ejVjaCffAJ4BvyaGppFfn449TysLCpC9KpWCD2bIbUZCIOoFjHY9JPjBdywV5So/eUATQxoaC4QggtGu18rTT1LwwUyyV7rkNiMhsOdZyK9Pl9sMWSn/+I6pELlxo3BaMQTq8BSFs30UFhbO6d45CaJVq1YRtPu00ChAb9ZRckG2lg8wSe46TRBFMdr1mJzaewEwdGScvY8eTfiu4mGvd9bXHnxgCYcfWTOn56y8o5yMJY453auhXDKWOFh5h9ZtHkAKw95HjzKk0rCoEzE5DRhStDBbiAiinLXqFkQQ8fg4fBJrekMYQ6dfXKu+nLyN0WeDJEkMjveTmZk5p/vnLIjGx8dxa/2ICAfDpNc4tY3vJFt/fJjurYNym5EQtL3ZR+Nzyp6AlEgsogiYkygaOTqBf0wrn6txPP6xICNHtfAwjffT+Fwn7W9qTWoBurcOsu3+w3KbkRBU/kcjxeMSodM4iKJiSJedtQhWyYMPDxMTE9x6661zun9OOUQjIyOkpaVRHV5FvlA6pwdraGioB5PTwJrPVbLvNy1Js+GbKXzu4ANL3vd3VbduW0hzFIuWQ6RxMpwlNpZ8vJhtP2nAN6KFpWtonIqZQuFO5RUK9fQukDXy0U0re6UtdHd3k52dHfP9c/IQOZ1OVq5cyTD9c7ldQ8Gk1zpY/dkKuc1ICBxFVurvrcPk0sIcAhNBml/oxjuYPA0nT+UpOpkYgtg8RUaHAYNNd/oLNVSFwabD6NDmCwDvoJ/mF7oJTGieVJPLQP29dTgKrXKbkhCs/mwF6bVayHGUUxVLmClETomeIl2tn8zMzDmJIZijIALYtGkThiJJyyMCsla6WP+1GrnNSAh8w34GDo0haGVj8Qz6aXm5h5BPKxsbDkp0vTeIbzS5TnpPFEWnEkNRZiuKltxQTOFG5S1IGvOj8Kwsltyg9ZoB8I0G6HpvUGtSC4R8YVpe7sGTRAdKC4WgExg4NIZvWBsLgA1fqyFrpet9okjp+UInY2h8kDVr5pbXC/MQRGeffTatra14cc/54UphvNND2xu9mggAxru8tLzcgzSLBD+lExgP0rl5gKDn1P0B1ISj2Io1yyS3GTETFUWnE0NRZiOKGv7cTufmgXnZpaE8Ot8doOHPiV+afjGwZplwFGseEYCgJ0Tn5gHNWwZIIYmWl3sY74ot11OJCDqB1jd6Ge/0AMc8RbMVQ0ryEvkkL62trdx8881z/ow5C6KNGzciCAJDaEl+7l4fXVsGNREwiTnViDlNKzIBkFJg0aruTVJ+US45a9PkNmNONDwcXw/weJcX75B2wqlxPN4hv7bRmyR3bRplF+XKbUZCYM+zkFKgrSMA5jQj5lRtfwERcdi1ZRB3r2/q79ToGQIIF0ecMxs3bpzzZ8xZEKWmprJy5UoGUV5i1lywZplIrbDLbUZCUHVlAUVnK+fkYT4Un5NN/plaLyKIlNA9+kK33GbETDRhVWeKn6cvrTqFjCXOuH2ehjLIWOIkrTpFbjMSguYXutn36FG5zUgI8s/MoPicueVFKI2iTVlUfSRfbjMSgtQK+3FRF4cfWM+BfyuZ9f1KKqwwau4nIyOD/Py5vxv6+Rhw6aWX8pOjPyE8FEYU5qytFEH2qlRcZXaGjhyR2xTZafhzOwEtTAyAg0+1EfJqOUQAAXfyvRMnVu/RmUKEfDMXQ5hNtbm0qhT0Zh39+0bmY56GwsiocxD0hhg8NCa3KbITDkqEg8k3ZywEh59uR2dW9x4rStPfujBYtII0ACUX5DDcNM7fP1J03N8f+LcSav/t6Iz3KkkMSZJE30gv11133bw+Z05lt6Ns3bqVdevWsYazSRXm1ghJKehMIuFAGEnb+2ponJS06hRSy+00/rVLblNmxUylTE8lirTS27Gjld3WOBnll+Qy1DDO4GFNHGponAxBhKb71xEQ35+/PpMgUpIYAhiRBnmPV3j99dc566yz5vw58zpyWL16NXl5efShzpjF6YR8mhiKojfrKL8kNykT6OONNctEzTWF6LUTLXQGEaNCOq2fLHxOE0MaGvHDaDegM2peEb1FR801hdp6SmQ9Lb8kF71ZW08BDv10/UnFEHDS0LlQT6/ixBCAuNyD1WrlzDPPnN/nzOtmUeTSSy/FUB7Wym8DxedlU/qhHLnNkJ1QIIyj0IbBNq+ITEUQDkrojDp0Jm1h79s7woEnksMLMJN3KMp0URSrGMpenUqdVl5Z4wTqbigme3Wq3GYkBAeeaKVvrxZSqjfr0Bl1WvlxwGDT4yi0EfJrp8+p31vJmrGZC/NMF0VKFEJR+sZ7WLNmDXr9/Pac896lXX755TQ2NjKB5tb2jQTwDSdXn5WFQApJ7PjfI4w0T8htiux4B/3se+yo9l5MJ8Gr089GDEXRmUJz8gz5xwK4e7VqYhrH4+7z4h/T5opEnyMWE+9QZA1JpqbWC8VI8wQ7/vcIUljd4vDwA+sZ0wlMzLLVi5LFkEeaoKmpiS984Qvz/qx5C6LzzjsPp9NJD23zNibZ6d46qPUWmYYW7nAMzUMEBpuOM79Rl9DVGJu+Xx/T9afqEH46hhrGOfpSz5zu1VAuR1/sYahhXG4zZCe1IoUzv1GHwaaFRmlrxzG0PcUx9tsMHLSePgT98P/kLYI18uEuGsBsNnPRRRfN+7Pm/XaZzWY+9rGP0U2rFjYHmJwGLdYXcJbaOOOfajE6lJEzMh8qr8in7notPCrgDtH8YjfuPt/pL1Y4gk7A5DRoJ+EaxxAi64fW4DviKWt+sTspK1PGm7obiqm8QiszbXIYOOOfanGW2uQ2RXZSA2FsIS1sUJIk2iaaqKurw26f/0FrXOT2Jz7xCTxMMILmHSm/OI/SC7VmchNdXo4820nIpy1o3dsGaX1duS7rWSNB15bBhA0fjHqHhPbZNUCcq3cIwFlsZd2XqjFpBwYak5gcBtZ9qRpHkVVuU2THNxyga8sgaGestL7WS/e2QbnNkJ2gL8SRZzuZ0BoXs2HMz5mjpw+h1Dkj18QSBp5MjDFM/0A///RP/xSXz5tX2e0o4XCY0tJSQq16aoXV8bAraTGnGgm4g4R8mnrX0DgRe64ZnVHHSEti5ZedLFROKvDMeM98BJHerMOWa2asza36ZGmt7HYEUS+QUmhlostL0KvugyRnsY2QP8S4tvnV0HgfOpNI+3+tZkx/cp9GVAhNZz7rVaJymF34skZpb2+fd0EFiJOHSBRFPv7xj9NDG2GV1572Dvk1MTSJJd1I3oZ0uc2QHwGyV7q0UEog74wMis7JktuMWTGTp2i+i0vQG2KkeUL1YkjjGOGgxEjzhOrFEEDROVnkbciQ2wzZsWaZyF7p0kJrgbwN6VjSjXKbkRCEfGFyP7/1pP92MjEEyvMShYUwg7Yu1q9fHxcxBHESRAA33ngjQQJaTyIgZ20a5ZcqO5FtNthyLRSelaklQkpQcn4OzmIt9rnx+U72/vqo3GYcx0yFFE4miuJx0iboBG2B1zgOS4aJvA3pWg4RsPfXR2l8XttLOEtsFJ+fo/rQQZ1RpPCsTGw5swtnVjIVl+aRszbtpP92KjEURUmiaEjsZXx8nBtvvDFunxm3nWpdXR0bN26kjSPx+sikJRwIE9bq5DOwf4TN/3VQ6xkAbPmfQ3S9p8WBh7zhhCqZOpuqctNFUdzCDiQoPjcLW445Pp+nkfTYsk0Un5sFWnEipLCkRVoQybl8738OyW2G7IT8YTb/10EGDmh9qUL+Y/vLqju3TP396cSQ0mgNNrB27VquueaauH1mXI/u77rrLobpZ1xS90vbu2uY5he65TZDdqQwqj/ZiiKFtIGASBWt2muKMKfJ7xmJpcS20G6Jawy2FJZ45zsH6N83GrfP1Ehu+veN8s53DqDyqHPMaUZqrymKVGHU0NaOKBKq/24ANL/QTe/u4ak/65z+mMSQErxEQm6QAXq47bbb4vq5cRVEV155JTk5ObTTGM+PTUpEg6CVhwSyVrhY87lKuc2QHVuOmVV3Vqi+DHk4EEY0CIh6+cOCyu5+Z9bXVj7Uh666YgGt0dDQgEhxCdEgEA6oe/drchhYdWcFtmzNi7zm85VkrXDJbYbsOEttiIbj185YDuoElJGO1mVoxmKxxNU7BHEWREajkTvuuIMuWglKiVlad7HIXOZi6Y0l6C3qbiw30eOlZ+eQ6uPi/WNBRlsnENQ9DATcIfb9pgV3b2L0IopFFAFxFUWVl+eTf6aWOK4RIf/MDCov1/rNuHt97PtNi9aDSIDR1gn84+reSwk6gZ4dQ0z0qLvioN6iY+mNJWQuc73v32YjiqZvPZqS2EsUkoIcbNnPnXfeSXp6fIt2xaXs9nQ6OjooLi6mPLSMIkG9J6o6o4jeqkvYnisaGnKiM4oJlVs2U/hc5UN97/u70KH550oWnp2JbyhwXPiDGtHKbkfIWu7C5DLQ9sb73zc1kWhzg4ZGomByGQi6Qyf9fswUCneyc9iyJC3DPZjewY6Bd2lsbKS0tDSunx338l/5+flcffXVtHJY1SW4Q/6wJoYmMaboyVzuktsM2dGZRFIKtCo51R8rpPbaIrnNOI5TeYpOJoYgPp6ittf7VC+GNI7Ru3tY9WIIoPbaIqo/Wii3GbKTUmBBZ1J5hVYgc7kLY0p8yionO77hwCkPC07mJZopRC4ZvUSSJNEiHWbZsmVxF0OwAIII4J577sGLm27aFuLjkwaT08DKO8pVX0nKUWyj4tI89GZ1hw9mr0xl2c2lqg8f7No8QNubibfxO1EUnUoMRZmvKBL1grbQa0xhTNEnRG6d3LS92UfXlgG5zZAVQSew7OZS1efN6C06Ki7Nw1Gk7nxsW46ZlXeUx1RoRIkzSS8dDAwM8K1vfWtBPj/uIXNRLrvsMl559nXquRBBpYkTgggVl+XT8U5/wuRMyIGgExBELUlWb9WhN+nwDqmrPGay0fT9+tOKoenMNXyu6Jwsslemqr6srhYyF2Hdl6vp2TFE62u9cpuikQCYU40EfSGCKs+l0hlFwiFJ1dX2rFkm8uszOPKXjtNW2mt8fGVMYihZQuckSWILL7P+vDW89NJLC/KMBfPH3nvvvbgZU3WjVikMDX/uULUYgkjZULWLIYCgO6SJISKekexVqZhciVlxb7EKLfTuGubw0+1zuldDeRx+ul31IZQml4HsVamapwzwDvlVL4Ygkn6gZjEEkUIjDX8+vRgCZXqGAKhxM8Ywd91114I9YsEEUX19PZs2baKZgyyQEyppcBRacZXZ5TZDVhxFVtZ+sUr1YXOZS52UnJ8ttxmyU35JHin5iZlP1fT4Shr+dfbf17l6iLyDfkZaJuZ0r4byGGmZwDuo7gOTlHwr5Zfkym2G7JScn03mUqfcZsiK3qxj7RercBRZ5TZFVlzldhyFsx+D2Xp8ym7YmTTeIYDd7TsoKSnh8ssvX7BnLGjG3je+8Q3GGKKfroV8TMKTd0Y6uevS5DZDVjwDfgYPjao+f0Zn1mG0qztvJByUeOc7+xOyKen0RNPZiKL5VJsz2PTknZGu+tL8GpFcibwz0jHY1D039O8b4Z3vHCAcVPchqtGuR6fyw0NBJzB4aBTPgLoPCXLXppG3Ib7lpZNJCAEMSr30jXdz3333odMt3PdiwXKIIBLzd+655/Lea9s5gwtUm0ukM4mEfFrImIZGInOqqjuV3x4/6d/Pt/S2LdvM8tvK2P1IExPd6u2xoeUQRZKml99axq6HGlUfYq2hoXE8c9lDnmo9SzYxJEkSezPeIrcgh+3bty+ojlhQD5EgCHz3u99lglG6UO9iF32R1X4SLOgEMpc5Ve8hQUD1Y5C51MmSG0vkNmOKmUqQxhI+FwsTPV7e+c5+VYshjQgT3ZF3Qe1iaMmNJWSoPFTMaNcrOBFkdhjtejKXOVUfURLdM8bjQD3ZQuSijKb20tPfze23377gTpUFL3K/YcMGrrrqKprYR1hSb4Kgs9jG+q9WY8kwyW2KbIh6gYrL8nGWqruEZtWVBVR/TN19NgLuEJ6B5Nn8nSiK4tGYVUND43g8Az7VFxKovrqQqo8UyG2GrDjL7FRclo+oYkFkyTCx/qvVOIvntl+aLn6SUQgBhKUw+4Z28KEPfWhBiylEWdCQuSgHDx5kyZIlVISXUSRULvTjEhJBF6ms1btriHBAvfHReouOoEfdC5491wyCwHinR25TNIitQV3lt8fjKoZqry1i8NAoPTuH4/aZyYYWMgfZK12kVTs48IR6x0Ajgj3PgiRJTHSp23Os9r2CaBDIWpFKz46hOVfZa3p8ZdKKIYDR4m7ea3mLHTt2sGLFigV/3qK0Qa6pqeG2226jmQMEJHUmyEkhie6tg6oWQ8DUBCeI6j35Ge/yamIIMFh1MTWaWwiafxvbJBtvz5B3yE9AxYu+RoSARyvJb3IaMFjVHVYOMN7pUbUYiu4N1CyGAMKByJ5RrWIoKAXZ37+TtWvXLooYgkUSRADf/va3MdmNNLF/sR6ZkOSfmUHBBzPkNkNW6m4opuQCdZeeTq9zkLMmVW4zZKX2+mKKz5HvPYiKIUGY3YKzEItL8wvdDB4ai/vnaiQXg4fGaH6hW24zZKX43GxqryuW2wxZyVmTSnqdQ24zZKX0wmzqblD3e1DwwQzyz5z7PjEa9RBL9EOi0cwBgsEgP/vZzxbtmYsmiPLy8viXf/kX2jjCmDS8WI9NOHQGEVG/aMOekPTtHWGoQd2bQEeBFUeRunOpGp/rpOXVHrnNAGYviuKNqBcwpqi7wIYGGFP0qm9G2vJKD41/VW8jdwBHkQ1Hgbr77gweHqNv74jcZsiKqBcRDbHPB02Pr0xqERQl6PTSSgP33HMPa9euXbTnLkoOURS/38+KFSvoPtjPGs5WbRluDQ0NeTlVqJwknXxOWqjQg+Lzsslc4mTrjw8vyOcnA1oOEaz9QhV9+0ZoeTkxDgg0NDSSCyWV2W4s2s7o+AhtbW1YrYt3QLCorgqj0ciPf/xjhumnm7bFfHRCIYiQvSpV1fHStmwzhRsz5TZDdnQm9XoLdSaR4vOyF7XyYvNvV8yYN3QyT9FCLii9O4c4/Kf2Bft8jeTg8J/a6d05JLcZsmHJMFF8Xra650Ozen/2KIUbM7Flm+U2QzYMVh3Zq1IRYnwVZvIKJZvHqI9OjrY2c++99y6qGIJFFkQAF1xwAR/96EdpYDdBKbDYj08IdCYdpRfmkFqRIrcpsmHJNJG1woXOqN5FoOyiXJbeVCq3GbIRDkpkLnFidslbWOFEpouihT5d8wz4GW11L+gzNBKf0VY3ngH1FlUwuwxkLnESDqq36NCyT5RSdlGO3GbIhs4okrXCperWJKkVKZRemIPOOLvDcqWEyEURTGEOs4uLL76Yr3zlK4v//MUMmYvS2tpKbW0tae5caoRVi/34hEDtJSURAPWufQDY8y0YLDqGjozLbYoqiLWinCQJCy6I9BYdWStc9O8dwT8eXNBnJSpqD5kz2vVkLHXSu2tY3WuCykmttBNwhxjvUHkFUpXvDWa7N4xFCCVL2NzwshZ27t/Bvn37qKqqWvTny3I8X1RUxHe/+13aaWRI6pPDBNmJvvDWTJWehkxOeEa7XrVeovEOjyaGYFG6sscqhmBxFhGdUaT4nGzMacYFf5ZGYmJOM1J8TjY6gzrnQWBR5oBEZ6hhXLViSGcUMdgni8uoVAxF94LxPhQRBGlO699iMyINsG33Vm688UZZxBDIJIgA7rrrLj7wgQ+wn62EJHWejGYudbLqMxWy92KRC51RZM3nK8lerd7y0ykFlnmV10x2XOV26u+pQ29euHy6uSwGpdfvWgBL3o9vJMA739mvhc2pmNFWN+98Zz++UXWGkOstOurvqcNVbpfbFNnIPzODlAKL3GbIRvbqVNZ+vlK1h6Mmp4FVn6kgc6kzrp8rV/XUWAkLIfazlTVr1/CLX/xCNjtke/tEUeThhx9GModoZJ9cZshK/4FR9j3egm9EnQthyB/m4JNt9GxXbzKxLdtM1jJnzEmUSsHd66XllR4ktR4LamioHEmSaHmlB3evOpuRCiJkLXepuphAz44hDj7ZRsgfltsUWfCNBNj3eAv9B0bj8nmCICWNGAIYX9qFV+fmwQcfRK+Xrw2FLDlE0/nBD37A3XffzTrOwSmky2mKrIh6QdUJpapF5fHSC00ie4eiVFyah280QNsb6gwfVnsOUeFZmZgcBo48q+4ePKpHWwtUyXz2fifLI5pJCC322jYbRqUh3uMVrr7map544glZbZH9XPorX/kK69evZ5+KQ+cKN2ay7NYyuc2QjczlLmquLpTbDHmYnLv0FvWWYLekG0mvjX939mQQQwCeQb9qw6U0wD8awDOo3gpz6bUOLOnqzaGbmvtVKoZqrikkc7lLbjNkY9mtZXFrQZJMXiGAkBQJlVu+YjmPPfaY3ObIL4h0Oh2/+tWvkCxBDpN46nUxGG4ap3vroGoTS4PuIP7xIIKozgFwldvZ8LUajA515pKl1zgovyRPbjNko+Ptfnp3DstthoZM9OwcpuPtfrnNkI3yS/JIq4n/gUgyYHIY2PC1GtXmTwmigH8sSNCtzsNwBOjeOshw0/yKKyVbiFyUkSWteHTjPPLIIxgM8u9/ZA+Zi/KLX/yCO+64g+XUkyXky22OhsaioTOKZCxx0rd3hHBAfTHUokFECklI4fhNRcniHQIQdAJml0G1fWjUHjJnSTfiHQ4ghRJiKV50BFFA0Amqnfsylzrp3zei2vwZjfkRy1qXSCFz/VIXO3mLW265hUceeURuc4AE8BBFuf3227nqqqvYz1a8kjorLhWelUnZh3PlNkMeBMhc5lRlYmnIH6Znx5AqNwQA4UA4rmJo/JozyPxjbBWb5Fwo0qpSWPO5KlWHTaoVvUXHms9VkVap3ibdUlhS9dzXs2NIlWLIlm0mc5lTtZExZR/OjVuo3GxJlPLbPsHLfrZy8cUX8/DDD8ttzhQJI4gEQeAXv/gF2flZ7GULCeK4WlQCE0H8Yyp1HQOFZ2WRqtKNgc4kUnJ+tmpj6QvPyox72FysokguRo5OsPuXTarcFKmdkD/M7l82MdIyIbcpslB+ad6ibwoTBUu6kZLzs9GZEmYbtqikVqVQeFaW3GbIhn8sSECFoYKSJNFRtB+L08wjjzyCICSOIk6ob2JaWhqPPfYYI8IAzRyU25xFp3vbEO3/UGelKSTY9YtG1f784aBEeo0DS7o6G/X6x4L4RuYfMjZ+zRnH/Xk2okjuMIKgJ8Roi1u1IVNqRgpJjLa4496MMVnwDfvxj6mzoIgl3URatUO11WXb3+xj1y8aVVtMov0ffXRvU1/LkVYaaDraxLe+9S2yshJLECeUIALYtGkT3/zmN2liHwNSj9zmyELehnRVNiuNnpBHOzarCSkkse0nDQweHpPbFFno2TFE+z8WJrF8JlEktxiKkrM2DWeJTW4zNBYZZ4mNnLVpcpshG+3/6KdHpQVFBg+Psf2nDao8CImu8Wr0iuesSSVvgzpbzIwaBjjCHr72ta/x1a9+VW5z3kfCCSKAf/3Xf+XCCy9kL5tVmU9kTjNiTlVn6FRqhZ3Vn61UpSgCEA0CJpVWmzOm6OcVMniid2g6iR4+l73SRUqhVW4zNBYZR6GV7JUuuc2QBUu6EWOKfE0Y5cTkMCAaEidUaDGxZplY/dlKUivUWVnP5FLn/k5IDbHf+B7Lli/jO9/5jtzmnJSEqTJ3IgMDA6xZs4ahllHWsAmdoCUcqwIhIoqGGuZXhjJZWXpTCeFAmP2/VV/FraU3lRDyhTnwROw/+0xiaDp9V3qm/j9RvENqR+1V5tRK7bVF6Ewie399VG5TFp2664sR9QJ7Hz0qtymykFppZ+jIuGrD5eJNoleaC0thtguvI7jCvPbaayxfvnzRbZgNCXs8k56eztNPP82ZZ57JYd9Oalkjt0mLTsZSJ4Io0Ld7WG5TFg+JKTEkiCCpzKN+9KUeVSZaAjQ+10nAvbC5FFFPkf337y7oczQ0NGam4ZkODFZ1HnQ2Pt+JQYVVJaNruhoPPDOXu5DCEv17R+Q2ZdFptuxlIjjK68+9nrBiCBI0ZC7K6tWreeCBB+igmQ6pWW5zFh1XqQ1nsTrDaAo+mMHSm0rlNmPRGe/04BtWZ5KxZ8A/5+TyWAXOwKfq5/SchSJjiYNVny6X2wyNRWbVp8vJWKLOpqRBT0i1vbd8wwHGu7xym7HoLL25lIIPZshthiw4i624VJgnGlwyQrPnMN/61reor0+sdfdEEloQAdx66618+tOf5iA7GJLUVYHsyLOdHPlLp9xmyMJYm4f+/SOq7FHgLLFRd0OxKn/2ok1Zcy4oMhtR5HMK+JyRgU0kUeQbDjDUNI4gqvCXrlIEncBQ07gqD0CyV6dStCmxKkwtCgLU3VCszgIqAvTvG2GszXP6axXIkb90cuQ5+fdzi9mLaEQa5I29r3D22Wdz7733Ltpz50rCCyKAH//4x2w652x28w5uSUWu1sn4WmepTXWJtyMtE3RtGVRljHHQF0IKSujN6gup0Ft08/q5k9VTNNbh4eiLPXFtUKuR2EghiaMv9jDWob4Not6sU2UjYr1ZhxSUCPpUWGZdgq4tg6rruZW9KvWYAFbR9C5mhdgtvs0ZZ27gb3/7Gzpd4n/fk0IQGY1G/vCHP1BaVcJO3iIgqcvNnlaVQnqtU24zZKHo7CzVlaWd6PJy4PetquxN0vR8Fx1vz6/89qlEUdQzdCKJIorMaeqtuqVGjCl6zGnqqzYF0PF2P03Pd8ltxqIT9IQ48PtWJlQWLpezNo2is1XoEQTSax2kVamr4XxQCrAj9A+sTgtPP/00ZrNZbpNmRVIIIog0bX3uuecwpxnYzTuEVZRtf/TFHvb/tkVuM2RBZxbRq7STt7PEpsrynKJBxGCfnzA4URSdSgxFSQRRtOymUnLXqbM/hRrJXZ/O0ptK5DZj0THY9aosOW1ONaozVA7Qm0R0ZnWu4/sfb+HoS+rpqRmWwuxhM16fl0cffZTs7Gy5TZo1SfWGVlRU8Mc//pFxwzCln0xFkiREg4CgOza56oziVO6FIAqRP08iGgRE/Syv1b//WkGMXkucr40acfy1gk5ANAhTYTT2fAv5H8iY8dpjP6t4bFyEE35WnYBoOH5c5nTtvMZwdtc2/72bjnf6Zz2G8Rjv2Y9hHMb7xDHUCVM/e9VVBWSvdsVpvBfnnRX1x4/LXMZ7+a2llJyXfZoxPP14R0WRTpAQp2IVJPSChDD5Z2HyzxARRcN3nCHbHLH/dy10vtsf/3c2lmtlmCOEaXvjucwR08dw5msTa47o3jY4VWJ+LnPErK5NwDmi9Pxslt9aNqtr5/fOxmlOjtM+ImuFi+qrChD1sYxhLNcm7hzR8e4ALa/0nvzaGMbw/eOSuHNEfn06tmxzZIyity7UPkKS0IckhMkuOmI48uco+rCEGA3HlqQFnSNMH/YwrOvjqaee4pJLLiGZSCpBBHDWWWfx4IMP8tBDD3GUgyy/rYzSC3MAMLkM1N9Th7M4cgqTtyGNdV+unrp36Y0llF+cB4DBpqP+njrSKiOuzOxVLjbcXTt1be11xVReUQBEXtL6e+qmwtYyl7qov6du6gtR/dFCaq4unLq3/p46spa7AEirdlB/Tx26SS9HxWX5kYT5SdZ/rYactakAuMrs1N9TNxU2U/7hXJZNq7S27KYS8jakI+gEHIVW6u+pmwq5KDk/mxW3H6tStfqzFRRuzATAlmOm/p46bFkRt2XR2ZmsvrNi6tqVnyqn5LyIirekGam/p46Ugkh1u/z6DNZ+oeqYDbeUUXZRbmS8HZHxdpVGGqzlrktj/VePjfeSj5dQcWlkvPWWyHinTo531srIGEapuaaIqisj4y3oBOrvqSNjSWS8M5Y4qb+nDntuxP6qKwuovbZo6t4z/rmWrMkcq9TKFOrvqZuKTy+/JI8lN5ZMXbvuK9XkrouE4LlKbdTfU4fJGWmEWnZRDstvObZQr/1CJflnRgRoSr6F+nvqsKRHGsYWn5vNyjuOjeHqOyumQgJsWZHxtudE7C3cmMnqu45du+KT5ZScHxlv8+R4O4oi4513Rjprv1iFFIbdDzbhLLFTfnFkvI12fWQMyyPjnbMmlQ1fr5n63Lobiqm4PB8AnSnyzqZVRypYZS4/Ybw/Vkj1RyPvrCBG3tnMZZExTK+dfGcnJ77KK/Kpve7YO7vh7pqpwgepFZHxNtgm39mL81j6iWPv7LovV5O3ITLezuLJ8XZFxrv0whyW33ZsvNd8rpKCD2bQ9HwXA4dGqb+nbqpBb9GmrOOqsK36dDnF50TG25phiryzeZGS2gUfyGDN5yuBiKdofbmHJU5f5FqdxCW546QbI+GIZbYAF2Yfy0usT3dT8OVI0ulizxHeIT8Bd2hec8S6L1WRf0bEy5Qsc4QtO/LMec0RdZE5Iro4J8Mcse6L1VP7pLnMEVGW3lSaVHOEqJ+2mWRucwSAPc8SlzkCWJR9RPtb/RhTDKRVy7uPWMw5InOZk5y1aeSfmQD7iEWeIzKXuXAUWxdlH5ESgOsbwmROpiPWDklc1Xgsiur81jDreyKCyBJkweYI6exhnn/+ee68804uuOACko2Ebcx6Ov7jP/6Df/mXf2F1Zj2F+nImur2IBpG0SjsjLRMEJkJY0o1YM00MHBwDIsUJQr4w450eBJ1AenUKo61u/ONBzKlGbLlmBvaPAuAotiKFJMbaPQgipNc4GGv34BsNYHIaSMm30H9gFKTIpIIAo61uADLqHIxNlk82puhxFFoZODiGFJZIybcgGkRGjkYSC9NrHUz0ePEO+jHY9TiLrAweHiMclLDnmtGZdYw0R65Nq07BOxzA3eNFb9XhKrExdGSckD+MLceMwaZnuDGyuUutTME37Mfd50Nv1uEqszHUNE7IG8aaZcLkNEz1AkitsOMfCzLR40VnFEmtsDPcPEHQE8KSYcKSbmTwUGQMXWU2gp4Q411eRINAWmUKIy1uAhNBzGlGbFlmBg5GxtBZYiMUCDPeMW2829z4x4KYXAZS8iz0R8e7yIokwVibGwTIqHUw1uHBNxLAnGpg2S1ltL/dR9fmQVIKLAiicNx4j3d58Q75j433oTGkkIQ934Ju+njXOJjonRxvmx5nsZXBhjHCAQlbrhmDRcdw0+R4V6XgGfTj6feht+hwlU4b72wzxhR9pLkckUZzvpEA7l4fOrNIapmd4aYJgt4Q1kwTJpeRoYbJMSy3E5gIMtF9bLxHjk4QcEfeWUuGaWq8naU2pJDEaKsbUS+QVpXCSKubwPjkeGebGTgwOd7FNsLBMGMdHgRRIL0mhdF2D/7RwEnHGwlG26a9s5PjbXIYSCmwMHBwFClMZLx1AqMt7mPvbPfkeNv1OKa/s3kWdCZx6p1Nr0nB3efDM+DHYNXhLLEx2DBOODD5zlr1DDeNT423d2jynY2Od+M4Id/kO+swHBvv6e+sSSS1/Ng7a800YU41Mng4MobeB5ej325mJKBDJ0hkm4IM+HX4wiJ2XZgUQ4gub2QxyzAGsf1xryxzhHc4QOYyJ/17R+Y1R3gGJt/ZJJkjijZlEfSGOPhk25zniBPHOxnmiOorC2h/q5/RVve854jouqbNEXObI1xldgLu4ILtIyZ6vEghKWH2EYs1R5hTjWStcHHwD22R8ZZxH7HYc8RIixspJC3KPqLtseXkT0j0WAW8egGHT8Lph7aUiPjLmZAIiDDQY0MnSax+bH/c54hOqYX9vMcdd9zB//3f/5GMJK0gkiSJL3zhC/zsZz9jSXg92UKB3CYtGiaHgYKzMml6vgsplJS/vpgRDQLhgDp+1ulkr06l6Owstv74sGp+1xA5JQwHwvTsHJ7X50wvMep4ZXY9vdJ/8c68njlXUivslF6Yw66Hmgj51JMjWXtd5JT2wO9aZbZk8dCZRVbcVkbzC91TmyE1kL3ShWgQ6XpvUG5TFg1BJ7D2C1W0vt5Lz/Yhuc1ZdESDSDigjvlM0AmUfTiX9jf68I0uXjn905bSPnr82ld6T3zXOKluglcP/J1bbrmFBx98EGF6HHQSkbQljQRB4L777mNgYICnnnoKg99ImqCOKiZ6mw5nsQ2Tw4B3SB0V96JiKL3GwcjRyImJGhg5OkGbqK7+WwDWbDOhOP+OR891n1YUySWGAIaOjDN05Ihsz9dYPELeMNt/pr7ftSXDhM6U+OV3403bm31T3gU1oLdE9igDB0dVI4YgcljtLLbRbRtcVEE0IwsshoakPvY0vMOSJUv46U9/mrRiCJLYQxTF7/dz+eWX89Zbb1E3vgGHkCq3SYuDgKpq2kOkh8PaL1bR8kqPqk4YNebGTKdmJxNGcoohNaNGD5GGhpLJXZdG8bnZbL3vsGoOL6eQYW920rXu6MkP/+IpiLy2cfbo3mH16tU8++yzWK2zi8JIVJKuqMKJGI1GnnrqKZYsWUJTxi7GpVG5TVocpEjCW/VVBVNJpUon6A2x44Ej6hNDAhSfl626XgYIzLv89qkYPde9IJ87X5Z8vJiSC5KnTKnG3Ci5IOe4pHg1YLDrj1XbUglpVSkUn5etup+7671BdjxwRDViyJplovqqgkjRi0Q4qD6FGIon4XQfO/kHGRkZ/OlPf0p6MQQKEEQANpuN5557jtzcXJqzdzGhElEkhcGYYpiq3qMGom7oaEKkKpDAmm7C6DDIbcmiUvWRAmo+Vnj6C0/CaWOqOV4UJYp3qH//6FTys4ZyGWken0piVgs1VxdS9RH15PoCGB0GLOnGxNgkLwKCKJBSEKnklzAhY4uAwarHmGKYapEiG0etiyKG3NI4h0zbcTgc/PnPf8bhcCz4MxeDpA+Zm05vby/nnHMOQ0NDlHQtxyao7ERdJRhT9Kz9YhWNz3XRs0N9SapqwZ5nAQHGOzwx3zsbQRTF8Yo1YQSRGtFC5tSBPd8CEox3xv591kgOslenUn5xLlvvO4x/LCi3Oaqh+Tuzbyw+35A5MTfIzuDbuFwuXnvtNXJzc+f1eYmEIjxEUbKysnjllVdwuVy05O3BLamnek/Zh3Mp+7ByXsyZ8I8F2f1Is+rEkKATyFjqlNuMRWO807PgYggSxzsETJWrnd6sT0NZiIbI73h6g0M1MN7hUZUYyljqPK75qBro2T7E7oebVSOGyi6Wf98lLq85/UWTzFcMeaQJ3vO8TjAY5IUXXlCUGAKFCSKA7OxsXnnlFVJSUmgt2KsaUTTR42Wi2yu3GYtGdKNszTSpZtFxFFmpvrJgqpGlGnCW2ig6Rx3VIwHMqcZIs9Ici9ymaCwQthwzSz5eMtV8VA0UnZOFs9QmtxmLhi3bTPWVBVPNdJWOoBOmcpnVJHonuuTbd4nLaxCX19B4/ekLiZXe805cxFBHyQFSU1P5+9//TnGx8nIgFRUyN53Ozk42bdqE1+ulsG0JVsEut0mLht6iI+hRfjKj3qxj3ZeraHm1l853B+Q2Z1EwuQz4htUTm529KpXMZU72Pnp0VnH4sXqHSq/fNTfDFghBjOQdqOl3rMaQOZPLgH80gKSGisQCLLuplN5dQ/PuK5ZMqGmuzjsjneJzsnjvf9RRVU7OPdaJHqGZBFG8Ksrp8sJscb+K3W7nrbfeorBwbrm9iY7iPERR8vLyePXVVzGbzTTn7mJcGpHbpEUhvdbB2s9XYXIq//Qx6A2x//FWVVWdiy6wBqs6enn07Bhi76+PqiYpWQqjmk2UmvENq0QMAUiw51fNqhFD0blZTd/jrvcG2f94qyrEkMlpYO3nq0ivXdxCAlGP0GyJlxiakMbYI70LwBNPPKFYMQQKFkQA+fn5vPnmm2RkZNCQvp1RSfk5J8ON47S81oNvRB2T8UjLBFJIwuQyIOrVETpXdnEuS24skduMRWU24UXJ7h2KkrXCRfG56gkTVBvF52aTtcIltxmLhppCAwGWfKKEsouVlVtxKkSDgMllQApJjLSoozqmbyRAy2s9DDcuXjpGrEIobr2GCnwcydyO0+lkz5491NfPvnhDMqJoQQSRnKLXXnuNiooKDqRsYUjqk9ukBSXkD9O1JeIxseeaVZG4K+oFVtxWRuFZ6thE9mwfovmFbrnNWDTSqlJY98Vq1Wys9Gadqkrpqw2DTRfpV6ICTC4D675Yraoeas1/76Znu/IPXwEKN2ax4rYyVRxG6owi9txI/m7XlkFC/oV38cbiFYqrEAJGxQH+0fciZrOZ119/nfz8/Lh9dqKi2ByiExkbG+OKK67g3XffpdqzhgwhR26TFhRRL7D2i1X07Bym5eUeuc1ZcJwlNsa7PIR8aolDUQ+iQcRVZmPoyDhS6NTTlVI8RGpDjTlEakHQCaRW2BluGiccUMVWQ1XoTCL2XAsjR5XvHSo+L5vsFS62/vgw4eDCvsuzFUGN16fGVQRFGZR6OWTbRmVlJX/6058UWUDhZKhGEAF4PB6uueYa/v73v1MTWEO2oOwmcbZsM+5+34ybSKWht+oQRQH/uPLLftZcXchoq5vOzeooKDETjY+vRBRm/54nuhgSxEiTw4VeeBMBNQkiUS8QDkmqyYlTE3kb0nEUWTn4ZJvcpiw4xhQ94ZBE0K38nKEogk7AmmFiomdhq8rFEh4X3n0w7s8Xlrt5dd8LnHPOOfzxj3/EZlNPdUh1+O0nsVgsPP3003zsYx9jr7CZVumI3CYtKBM93qn8msKzMuU2Z1Gou75YNfHb7j6fanLF9GYdlZfnz1hyPCwpJ2xj/VdryFmbJrcZGnEmd10aG742+w1PMmPLNlN5eT46szq2Gb6RAO5en9xmLAplH86l7np1eA0Kz8qcypNaaDE0W478s5kj/xz/9hvtUhMv7/kbdXV1qhNDAKoLVDcYDDz22GPk5ubywx/+EK80QSXLEQTlbKZOxFlkI3OZi84tA4S8yg4pa3yuUxXeIYDW13rlNmHRCPpCWNKNGOx6OCECtPHxlVP/H5aEGT1Fie4ZitL4166EWXw14sdgwzi+UXXMT8YUPZZ0o2rCmAcOjjJwcFRuMxaFpr92ReZihaMzi2Quc+EbDtA7PCy3OceJoLIbdsbtcyVJojvnCAe7d3HXnXfxP//zPxgM6sjZnY6qQuZO5Mc//jFf+tKXuPrqq+n7fQCdoNxSxqJ+MvxGQBXhGqJBwJK28O5tudGZRYrPyabjrX58o+rwFp3IdEEU5VSiKFkEkZpQU8ichvIwOQzkfyCDlld7FH/gaMsx4xnwqSMfbHKvNLV3WgROFS53Mm9QvARRWAojnj/KSy+9xNe//nW+973vKdpBMBPq8GWfgi984Qv84Q9/4JlnniF01gAByS+3SQtGOCgh6gWW3VSqipKvJefnUHttEYLS3/AwuEptWCa7hCsdvVWHJd142utOFj6XTGLIaNeTuz5NFdWb1IKoF8hdn4ZRBSfrlnQjepX0SrNkmnCV2pAUnk4jiFB7TREl5yu7IBVEWh8su6l0UcXQyVio0LgoQSmAcN4Ib7zxBv/xH//B97//fdWKIVBhyNyJXHXVVbz88stcdtll+AiwUvogFkGZcZPhoMRYhxtPv/LjnFtf66XrvUHFNz8M+cNsf+CIKrx+EFmQQ74Q+3+rbG+C0WGg9IIcRponcPcp//uqBsypRkovyGGs3aP4sN7SC3PRGUX2/KpZblMWnOHGcVXMwVIY9j3eQmBC2e8ugKffx1iHW9FFbYSMEPt5B88WDy+88AJnn3223CbJjqpD5qZz6NAhPvzhD9Pe3MkK6nEJGXKbtOCk5FsY6/DIbcbCIkB6dQoDB8fktmRBEfUCOWvS6HpvQNEi0Jppwj8eJOiJHMeeLFxuOtND55LJQ4QAgoCif5dR1BQyJ4ggSSh+86y36DDa9YoW84IIuevS6d42qOiNM0B6jYOBQ6OKf2/l3hNND5mbyTM033C5EWmQ3byNxWXmN7/5DRdffPG8Pk8pKD2gaNZUV1ezefNm6s/awDZep0NS9slW5nIXy24tU3yzy/TqFGquLppVmFUyY0k3UXxeNvZ8q9ymLCjuPt+UGJoNSVt5TlKHGFIbUhjFbyoBgp6QosUQgD3fSvF52VjSlR2ubEk3UnN1oeKb65pcBpbdWkbmMqcsz4+KoYUOkwssQDD+mQAAcxJJREFUGWab8Bqr61dx4MABTQxNQ/MQnYDf7+fzn/88P//5zymkgkqWIyo0EcVRZGW01S23GQuOJd2IZ0C5+WFR9BZdTGIhWUmttFPwwUz2/LKZxt+snNU95XGsyLNYqKWviVo8RKroGybA8ltKaftHH0MN43Jbs+CoZc5Vyxoq556o6TTRDtOZi4dIkiQaxb0cDR+ivr6eV199FZNJ2WI+VpS5058HRqOR//3f/+X++++nnUZ28ZZiiy1Ev/g5a1JlOxVZDKITec7aNIwpyk2bC3pCIICzVJk5cFH8Y0E8/T66f7cUo1G58ey+0YDiT9nVhLvPp/hKkDqjiLvfh39Mud9LmJxjBRQthowp+qleaEoWQ5nLnOSsSQVIeDEkMTcxJNgk9hje4Wj4EP/2b//Gm2++qYmhk6AJopMgCAKf+9zneOHFFwin+nmPV5iQlJuDYs+zYM+1yG3GgqIziRR+MJO0aofcpiwoGbUOlt5YgjlNuSGCE91ejvylk8BkESuliqKBA6Oq6jWldFpf62XggLL71IR8YY78pZOJbuW2OzCnGVn6iRIyapW9lqRVOyj4YAY6k7K3ifZcC/a8xN7/zCft0C2Ns8P0OqO6Qf7617/yr//6r+h06qgAGStayNxpaGho4PLLL6fh4BGWsI4sIV9ukxYUk8Og2FNMnUlURZNAW45Z0RsSINIj4sGlDFpgYlL7+f0n9/4lY7hcFJPDgKAT8A4p94RWDSFz5lQjUkhS7NwKkZ/RlmuOiD6F7ypUMcei7DUzkfY6p/IQnfg1inUt65M62cd75Bbm8POf/5yLLrpoTvapBWVL/zhQWVnJ5s2b+chHr2A379Ag7Sas0Gxnk8PA6rsqFRs+F53Y02sdFHxAuVUEowu1NUu5LnFBFFjbAQXTDtyV6CmqubaIwrMy5TZDY54UnpVJzTWFcpuxoKRVpVB+cR6CmKSFTGZBdE5Vshgq+EAG6ZPeL6WKoczlLlbfVYHRIX9RqZOJofkWopQkieG6NnbxNh++7CJ2796tiaFZoNyEijjicDh48skn+dGPfsRXv/JVRhhkmbQBk5DYbtZY8Y0GOPJsh+LDOqwZJsU3Ms1Y6qT6ygK23n8Y33BinILFk9YnltAdhBOdQkZj8JSeomSk4c/tquj7oXSOvtSNwaac9/JkdG4eoHf3MFJIme4hk8vAqk9XcOjpdvr3jchtzoJhzTaDgkUtwMD+EZAk/AniIYoy0zdntt4hv+RlL1sY2tfH1VdfzeOPP45er+y5J15oIXMx8uabb3Lttdcy0DXEMjaQKijz9NbkNJC7Lo2WV3qUXf5XQJHhHYIo4Cy1MdyozEpPbX9YOvX/hhBT+URRoqIomcPl1IIaQuaUjpJDq6bjKrcz0jyuzDVRoWthFEGE4nOz6doymJChcqcb+tmsZWKVj7fbXsVqt/K73/2Oc845Z172qQ0tZC5GNm7cyPbt26k/ewPbeYMW6RBK1JT2XDNp1Q50ZuUm31mzTKy5qxKrAr1FUliaEkOJEBawUCztgQuP8L7VRCnhc6JBoOyi3IRP+tU4NfZ8C2UX5SLqlXvqvuL2cgrPVubhIBybQ4cblSmGrFkm1nyuUtFh1jqzjrRqB7bchevxEwtRMTSb8LjTiSFJkmiVGnjp8HOkZaTx9ttva2JoDmiCaA7k5OTw0ksvcfc/3U0De9jFW/glZZXHHTg4xo4HjhB0h9CZRAw25Qkj33CA4aMT+MeVsXk+Gem1DtZ8rhJzqjKrzrU7YHfOyf9NCaIoHJBIKbQquly80jGl6EkpsBAOKu/gLErLKz0MHlRmJVZzqpG1n6+cyqtRIv6xIMPNE4oMrzbYdOiMIkF3iB0PHGHwUGK8p7PNEzqdGBIcYY5kbucwu/j8Fz7PwYMHKS8vj4eJqkMLmZsnzz33HLfccguj/eMsYR3pQvYprw1vXIX45o5FtC4+VF1ZgDXDxM5fNMptyoKht+iQJImQV1nHf4JOIGOJk77dw3KbEjd0r+YBcHQg7bTXFn5s70KbozFPtJA5jUQna7mLvn0jisuP0plFBASCXuX2U1p5RznuPh+H/9gutynH0TiL3kNHNv2SD+Wd+rpBqZfD1u2EpBAPPfQQ119/ffwMVCGah2ieXHLJJezevZuzzv8gO3iTBmnPjFXowhtXEd64ahEtnD8tr/TQ+Hyn3GYsKLXXFVF5mfJKqkshaUoMKdHLB6APwbp2SD+hp56SxJBoUG64ldJR8u/Onm+h4rI8dEZlbiWic6ZSi0VUXpY/dSChVBqf76LllR65zYiJI5t+yZFNvzzlv4eFMJ0ZDWznDVavXc3rr7+uiaE4oMxZbJHJzc3l73//O9/73vdo5TBbeRW3NHMyezKJIt9IgLF2DwBlF+UqMnSg+YVujr6cXJNmLDiKrKz7UjW2nMSIn54rUe8QQEn6IAAhEVL8YE7+CLmTYs+zcMY/1Sky103pWLNMnPFPdYrNATPa9ZhTjYT8yvKsQ6TX0LovVeMossptyoJx9OUeml/oltuMuJNe66DsolwAxtrc+EaSJxRwJiEE4JEmOJD2Dgf6d/ONb3yDV155hXXr1i2OcQpHE0RxQhRF7r77bt7d/C6Z5Wls5iW6pJYZCy4kkyiCSOUyvVWHzqC812a8w4N30I+gE8g7Iz1ScUdBjLa5afp7N+5eZfXPKEkfRBLglTLomKbTleQdcvd6aXq+E79Wfjvp8I8HaXq+U3HfuyiDh8bY++ujcpuxILh7vTT9vZvRNvfpL04mBMg7Ix1BFPAO+hnv9MhtUdzRGUX0Vh1Ckm1VTieGhh3dbOYlDFYDDz30EP/v//0/dDplRn7IQZK9LonP+vXr2b59O9ffeB37eI89bJ6x4EIyhdBJYYnDT7fTOxmClV6TorjKSfZcM0WbsrAnuSflfUjQvXUQKZy8oXPTvUPTiXqKDCHIU2ALrXBQonvbEEG3cuP8lUrQHaJ725AiCyqkVaWgMylzC2Gw6ZDCkTlTaaWo7TmTa1yestY4US+QVp0CQO+uYQ4/3Z40FQFPFyIXkPy0Fu5h68g/uOzKS9m1axe33nrr4hmoEpQ5m8mMw+Hg0Ucf5YknniCU7uFdXqBPmjkHJ1lEURSDXU/VlYVkLnfJbUpcGWv3sPW+w4x3KfNE15xqZO0XqqYWDqVQkj5I2SDUt0HJDfvlNifumFONEc+lRlKRd0a6Iis86owiVVcWkL0qVW5T4k5adQprv1ClyN8bwHiXl633HZ4Kg1cKmctdVF9ViMGe+BU5pxdUOJ1XaMjYwzu8QM9IN1//+td56qmncLlcC2qfWtGqzC0w3d3dfOpTn+LZZ58lJ3sVleWXYNDPHE+eLJXozKlGvEN+QJmN+Yo2ZaEzioqLsc5enUrfnmHCgeT56p/KOzQdMQSdfWlkXq+ccLkoqZUpVH+0gG33HyYwoSxPkVKrzBlsetZ8vpJDT7Ux1KC8BskGm56QP5RU88hsEA0imcuc9GwfktuUuFJ6YQ4hf5jW13rlNiWuTN97TN+TJDKNj688rRAaHQtz1e16Xn3jMBdccAGPPPII+fnKK/yUSGgeogUmJyeHZ555hkceeQS3p5EtW+9ncOjIjPcki7coOvFEk09T8pWVOOwfDyqyR1HP9iHCAQmDTY8gKifkMayDzOv3IogorurV0JEx3v3eAcWJISUTmAjy7vcOMHREWWJIZxQRxMjPpyQxJIgCBpuecCCsODEE4J9Q3nqWkm85rlhQMoghOL1X6O+v+lh5biubt7Zzxx138Pzzz2tiaBFQ1q4hQREEgVtuuYU9e/bwgQ+uYeeeRzjU8AzB4Klzi9rvOZP2e85cRCvnjqffR/tbfYoLM+veOkjH2/0ASV+d7UREvcDKT5VTeFbid5dPeTMDq372C93y28ooPu/U/cCSktl28dNILBT4eys+L5vlt5XJbUbcKTwrk5WfKldcXmx07ep4qz+SE6Ugxru8tL/Vh6f/1HupZGLCHebDnzBz8Q1tFJXWs2fPHv7v//5PK5ywSGiCaBEpKirixRdf5Cc/+QlDI3vYvO3H9A8emvGeZBBF4aBE+z/6kcIS5jQjddcXJ23i/skwOQ2suL2MLAXlS4WDEo3Pd9K1ZUBuU2bNbEVR+z/66N6mrIUfIGdNKituV95GVKmsuL2M7NXKy7Hp3jZI+z/65DYj7nRtGaDx+U5FFcDIWuFixe1lmJwGuU2JGwabjrrrizGnGZHCkb2HEn5nz7/sYfmmVl5/s4GbbrqJV155hbIybb5fTDRBtMiIoshdd93F3r17Ofvs9eze+2v2HXgCv//UYRXJ5C3Sm0REg6CoUArfSIB9v2mhd8+w3KbElcFDYwTcIXQmMWEXzJQ3M47780yiKHROpHDJwMEx3L3KODGcjrvPx2DDmOJKwisSAQYbxhRzcj0dd6+PgYNjcpsRN0xOAzqTSMAdYvCQcn4uiDSU3feblqTqw3M6wkEJ0SCgV0iFw4HBEBuv1HHpjR2UVmxk7969/OpXv0KvT/ziEEpDGW9UElJaWsrf/vY3fv3rXxMItfPu1h/R1bNjxr5FySCMxru87P31UUL+MAarjpw1yjghHWmeACnSaLHsohxFbUqrryyg6qoCuc2YNbPxFJlcBpbdUorJlZhCby6Mtrppe71PcSFYikSCttf7GG1VTg8bc6pRcd8pgKqrCqi6Mnnmv9MiRBqoW7NMIE2uXQogZ00qBquOkC/M3l8fTfoQ/VBI4ldPTLDkrFZ27+3gzjvv5MUXX6SiokJu01SLJohkRBAEPvGJT3Dw4EGuvfYqDhz6Azv3/BKPZ+Zwn0QXRVHSahwUbcpCb1FO+Jwlw0RKvlVRzWmbX+ym4U8dcpvxPk70Dk3nRFEU9Q5FCYwHCXlD6E3KefcgcprtKrPJbYbGaXCV2RLW6zpXdEaRkDdEQGGJ+Q1/7uDoi8qpJKoziKQUWLBkmOQ2JW7oLTqKNmWRVuM4/cVJQEtbgBXnh7ntS12cc95HaWho4Gc/+5mWKyQzWtntBOL555/nM5/5DO3tXaRv+hBp685GOM0XpOA7by+SdXNDb9YR9IYQDSLWTJMyumILgETktCogEQ4oo9y4IAo4iq0Jc6I4kyCK4g5GeoWcKIiUStE5WeSsSmXLD2fOPUwmlFh2e/1Xq+neNqS4EsdKwllqY7TFjRRWxhZINETC1YPu0NQalezY8yy4+3yEA+GpvURSowvTJjXRbtqFxZrOl770Jb7xjW/IbZXGJJogSjDGx8f51re+xY9+dB/GjCyyL7wKW0nlrO5NZHFUsDGTgvoM3vvRIUJ+ZQiIZbeUEnAHOfj7NrlNiQu569IoOT+HrfcdIuCWd+GZjRiKMrax/5T/Zk4zklHnVEwSuN6iQwpJivkOgTIFkc4oIugEgp4k38BNUvDBTPr3j+AdTI6yxqfDYNOx9ovVNL/QrZjKa7XXFKG36Njzq2a5TYkLOqPIui9V0/5OP+1vJv/8PST10ZZ5gL7+Xj772bv4z//8TxwOZXi8lIImiBKUXbt2cdddd/HWW2/hqFtF5nmXY0hxzniPJELh/zc7UdR+75kU/OfiCShBBGuWmYlub6RPjEmX9JsFe66ZcFDC3aeQxGkBrBmmhPh58t5NYSwwu5CPmQRRep2D0gty2PnzxqR/35SKEgWRktBbdKy8o5zmF7oZODAqtzlxw5ppwt3vU4QnBSI/j6AXmEjy3Bq9RUfIF0IKR0qGu3u9SEl8/iOkhdg7uI0uqZWqqir+7d/+jeuvv15uszROgiaIEphwOMyjjz7K3XffTf/wCOkbP0Ta2o2nDKOTpqW1nE4Ytd97LA9pMYURQOHZmWSvSmX7TxoUUS4TAcovyaNr80BCiIl4kLs+jb49I7KIiLx3U6b+/3SiaCYxFEXQCUghBbxnk+SuS8OWa+HIM4mX9zUXlCaIKi7PZ7zToxjPAyjnO6S36Mhc5qRrizJ+N9ZME7kb0ml8rlMRwk7UC6z5XBXd2wdpeyO5vUJhKUyXuZkmaT9Go5H/+Z//4dZbb0UUlZN/rDS030wCI4oiN998M4cOHeKuT99B3yt/ofmh/2Ki5chp7237xpm0fWN2xRfa7z3zOIG00HRvHaL5he4pMZTsjfD0Zh32XAtGhzKSqA02PYVnZZFaYV/0Z08XQwAphvkLTCkkYbDqSCm0zvuzEoGgL6x5uxKYoCekmJDGlEIrBqtOEWIIILXCTuHGLAw2ZZQ0NjoM2HMt6M3JnYwf3QOEgxJNL3TRvW1IZovmh1TmYQsvc8C7g/PPP5/t27fzyU9+UhNDCY7mIUoidu7cyV133cXbb79NSu1Kss69FIMzberfpVN8107lLTqVCFpMj1Hu+jRy16ax8xeNiuldZM+zJH3xCJ1ZJORd/E3diYIoysk8RbPxDkWpvCIfe56FHQ+c/jBBY3FRmodISay6s4LxDg8NCvFGgnxzWzxRwhoTRTQIrLyjgq73BpLec+eV3LQ5DtIy2kRNTQ2PPvooa9euldssjVmiydUkYuXKlbz55pv88pe/xD7cQ9P/fpe+154j5Js5ZjgWbxEsrsdouHGc7m1DihFDqRV2Vn6qHFu2WW5T5kV0w5C13EV+ffqiPPNUYgjm7yk6+lIPe36pjGRjAJ1JxJab3O+YErHlmtEppGEkwJ5fNnP05R65zZg3+fXpZC13ASS9GLJlm1n5qXJc5YvvwV8IwgGJ7q2DDDeeujl9wmMJMVDWwtv8HY95nH/6p39iz549mhhKMpQzc6uEaBjd4cOH+ea99+De8TZND/wnwzvegeDME/1chNFC4xnw07l5AICMOgfLbytDTOIeP0NHxtnz62YmepI7sTWKOd2YMP0spouiWLxDAIGJIEFPCNEgYLAld3gJQNGmLOquLZbbDI0TqLu2mKJNWXKbMW8MNl2khLMnRGAi+fsOWTJMmNONcpsRFyZ6vOz5dXNSCwjRILL8tjLS6yJV1jo3D+AZSL4KhpIk0SkdZbv5dXYf3c6dd32GI0eO8N3vfhe9XhlhmWpCC5lLctra2rj33nt57LHHMGXmknnBFdjKqmZ1rxDDb34xwuhSCixk1DlpfkEZTfLSa1LIXZ/Ogd+1KiKnYCETq2fyDp3IWMAUsyCKsvy2MnwjAQ49ldyl0k2T+Wq+0YDMlswfJYXMmRwGJMCf5L+X6o8WYnIa2P1wk9ymzAulFIPQGUVqryuic/MAg4fG5DYnLpRemEP//hHG2pMz9E+o9rKjezP9w31ce+21fPGLX6S+vl5uszTmgSaIFMKWLVv4yle+wltvvYWtso7M8y7DlJE94z1F39sCQNvd62f1jJBZovhf3pm1TWPXnkHKE+/O+vrpOEtsFJ+bzf7ftiRtAnlKoZWs5U4an+uS25R5Y8s2U3d9Mft/2xJ371f11sjmfiw4uxCwzjPmviFwFFnxjQbwDSf3hlVJKEkQKQWTy4DJYWC01S23KXNmIecsOSi/JJfe3SOMtSXn70Rv0VF3QzEtL/Uw0pIYzb/nglsao4E99NFJYWEhv/nNb9i4caPcZmnEgeSNTdI4jvXr1/Pmm2/y+9//nsyAm7Zf/Bfdz/2ewOjwKe9p/aeIECr8/hYKv79lVs9p+fd6Wv599qcgY9eewdi1Z8z6+ighfxh3vy9pxRDAWJt7Sgyl5FtIq569FyTR8Az6Io0ZhxYurCFFf/pNy3zEEMBoqxvfcABBjJweJzPptQ4qLsuT2wyNSSouyyO9NrkbLQo6AUEE33AgqcUQgHfIT//+ETwDydsKIa06BXu+BYDG57qSVgxBpPqiu89HKJCc0RI+yUNfzRE2617CXKjj0Ucfpbm5WRNDCkITRApCEASuvvpqDhw4wA9+8AP0rQ10/N/36H3pGULu05/InE4U6bzHNpALLYzGOz1TfVZs2WaW31aGMSV5Y3KzVrrIr8+Q24w5Ew5INL/QTcgfxmDTY7TH53cR9Q5FmY0omjdCJHSu6OzMhX/WAiKIkVh8klvXKQMh8rsQknxFLTo7i+W3liX1O2W06zHY9IT84ePaOyQj+fUZZK90yW3GnDGm6Fl+WxnWrEge6pFnOpKuOp6QEuYIe9hqeYUjrQ1cd911HDp0iBtvvBHdKXpCaiQnWsicghkdHeWHP/wh//3f/40oihhXf4DU9WchGo8lyUfD5k7kVGF0IfPJX5dThdKdSgTFEkpnyzZTsDGTw39sT+p4cJ1RJOQPY3IakrpXybKbSwkHw+z7Tcu8P+tEQRTlZOFz8/UOTSdrpYuJbi8T3ckfSpPsaCFziYMtx4wt20zvrmG5TZkzSz5ejKgX2fOr5KwqqTOK6C06fCOBqTUjWRF0AlVXFtD+Zl/ShS2GpCBdlqMclQ4iSRJf+9rX+NrXvobL5ZLbNI0FQhNEKqC3t5f//M//5IEHHiA1NRVp1QdwrToDQac/pSCKcqIwOpUginKiMDqdVyjWHCOTw0Ddx4s59FQb7t7kDIVYflsZgYkgB55Izg2gOc2IFJbmnYdzKjEU5URRFE9BpBiEyIFBMgs7JQgiW445suHTVlPZMbkMCKKAdzD5qpYB1F5bhMGqY/cjySnorFkmqq8qZP/jLclZ9EUXxlMxQNPIYfr6+rjgggv4zne+w4oVK+S2TGOBSXIHv8ZsyMrK4kc/+hGHDh3ioosuou/vf6T5ge8ysvs9Wr6+ZsZ7Y8kvgkXIMRJgott7bDOehKEdh//UztGXIpX0kjGPxTvoxzccQNQLlFyQPae+K6cTQ3B8+NxCiCFBJ7D0phKyV6fG/bMXi9y1aay4vUxRvW+SDZ1JZMXtZeSsSTv9xQlK9upUln6iJCnnI4j8DkouyEbUC/iGA0kphqJjf/Slbg7/OQkb4U6+Or6RQORwIMleJUmS6JZa2ax/mbcOvs6aNWs4dOgQf/3rXzUxpBI0D5EK2bdvH9/85jf505/+hCE1g6rRcnKEYsRZBMC33b3+tF6i6RT/yzsxCZ5YPEZ6s44Vt5fR+HxXcvZkEGDZTaWMHJ2g9fVeua2JGUuGiaWfKOHgk60xl06djSCKcmjtwp0yFp2TxUjzBCNHk7Pqkd6iw+QyMNGleYjkxJZrxjccSNoiMM4SG85SG62vJt88BJGWDTVXF7H30aN4+pMvcqDo7CycJTb2/Lo5Kb2MrnI75R/OZeeDjUnX+FaSJIK1I+zu3M7QyCCXXHIJn/nMZ7j00kvlNk1jkdEEkYrZsWMH//7v/86f/vQnLNgp0y2ZlTCSgsGYvECFL3uZyJl9c8/etQLlXz99eW+dSaT4nCyOmAsR//ReUsZb56xNw93rTbiKTlERezqBOr3Px2x7fqzZEWY8NPv3YSEFkYb8KEEQacjDXOafRMRRZMWaZaZ766DcpsREdM012vUUfDCDlld7CfmSYw0OC2H6dR0cCezDzTi1tbU8/PDDnHFG7FVxNZSBJog0TiKM6sgRSk4pjKTgsc7lsxFGhS8fO72ejTDqXXvM1z4bYeS9dD2CIFFf56XnjU463hk47T2JSPmleQw1jCVM473pnr3TCaOiTVk4i09/wrlmx7HFcjaiaFHEkADVVxUw3DxBz/ahhX9enLFmmSg5L5tDT7Un3YEAJLcg0hlFqj9awNGXenD3JZ9nImdNKs4SG4eebk8+z4QQKfAycnSC1teSz7OVVp1CamUKjc92ym3KnMivTydnTRrbHziSVEI0LIXpoY2utEYGBwe57LLL+OY3v8n69bPrx6ihXLTAcw1WrVrFH//4R3bs2MFFV17AvtAW3g7+lY5wE2Hp/RssQX+s5HLxv7xz2matbecdS463dfum/jsVWVuPTa6NP6if+u9UmJ/dgiTB0W4D3fmleC9dj3TlWnyXrZvRrkRC0AkYzDoEMXECr6eLoGiu16nCH4eOjNG3b2TWYgjArkuQDaQUiXtP1nCnkC+MaBAxxKkUusbsMdj1iAYxaU7FTyTgDuEbCSSfGAKQoG/vCEMNiXGAFCtTc34S5W0JOmGq/cVgwzjtb/UnjRgKC2GCy0Z4V3iBfbxHZWUljz/+OM8884wmhjQAzUOkcRJ27drFv//7v/P0009jxkaJWEOeWIpOOLbhmu4lOpGTeY2me4lO5GReo+leohM5mdfIe+nxE9raai++gMCepshnm5+dfWGIRCC/Pp2hxvGEqKQ3Uw7YyTxHaVUpjLa53ycwThREUU7lKdJC5dRBMnuINBYfvUWHo9DK4OHkE0LWLBOp5fakjWKouboQg13PniSqgBeSQnRxlDZ9AxPBcc4880zuv/9+Vq9eLbdpGgmGJog0Tsnu3bv57ne/yxNPPEF6ejqOgRwKxUoMgnFGQRRlujCaSRBFOVEYzSSK4P3CaLoospnDiAKMeUTMxjA6ESa8YlIII1EvsOKTZXRvH6LrvcSIKZ9NYYyUJ95FNIis/XwlXVsHaXujb+rfTiWGopwoiuQSQ6UfysE3EqDz3eTbsFizTPhGAknnrUhWQaQziZichoQ4tIiVvDPSMTkNNP+9W25TYqbwrExy16ax9f4GwoHketdz16eRsyqVXQ81JU3DWEuGiXAwjG84gC3HTDgoJUXhioDkZ6Kyl4Nde3G73XzsYx/j5ptv5uKLL5bbNI0ERRNEGqelqamJ//7v/+bhhx9Gr9eT7s6nSKzGFDLO6v6oMJqNKIJjwuh0gihKVBid6CWKUlPkJ80R4u29ZqbXAk1kcTQ9QTijzsFIq5vA+OlF6EIy22qBGX/bFuk/IQECrNk++03LeMgkq2eo+NwsfKPBpEtu1lt0bPhaDUee60y6PKhkFUTZq1OpuCSPzf91MOnCLXPWpmFy6Gl5JYlybwSm5hRTiiFpetwY7HqcRVb6948CSVb8QYA1n6tiuHGMxr92yW3NrBDTwjQHDtEtteL1ev//9v48Tq6yzvv/X+ec2peurfd9zb4vEJYQwiqCDJuIKMsojuIy6qjjz4fO7X3P7dw+9IszijoMI+IC4oaDoCCKsggIhKxkTzrdnfS+79W1nvP7o7qqq5NO0gndXRX683w8QopTZ7nqyunq8z7Xda6L8847jwceeIDly5dnumgiy0kgEtPW2dnJ/fffz/e//32CwSB50RIqWIhTcU9re33T6jM63mihddqhKKnkpRMvTBTFwG4xCIZVzCaD0twYR7tM6Hpi39kcjFSTwtpPLqBj++QWl0w5oyHUrXEuXNFP5PwmDNf05wXZtloebTwb7lI7I20hDP3c+ko/VwORoiq4im1nPOS8OHM2v4XF7yvn0P+0JOa4OYeUXZJHwRof2793+JxoFVLNCiUbcunY1kc0GMeeayXUF8n675WgMcJRDtKhHcNkMvGZz3yGT3/60xQVFWW6aOIcIYFInLGhoSEefPBB/v3f/53Ozk5yjWIqqMNDAEU5fYA5k2CkvrQD4JSDKqRLH5DBPHpiy0SeJ8aiigiv77UTjU+U9dh7Etst+Oib0zpO6xcvBKDkG3+b1voA+sbVqC/vmPb66qolib8PHiQe1jF0A0+Vk9GO0JR3pMduSLSQ2X97ZgGv8euJuq360ulH9ANo+EZi/bztp/7qsGo6C/Ii7Ou0svGL09t3toSh4g0B7AErR54+N0eAOpecq4HoXFRzXTFj3WHa3ji3uoRqFpXqdxXR9HxnxlvKp8Nk13AW2hhsHEVRFTSres60IprsGms+Xkv979uyZsTTUwkHhun2HeXQkUPk5eVx22238dnPfpaKiopMF02cYyQQibMWCoV45JFHuO+++zh06BA5+CinjnxKpzXJK5w+HCUDUdLZBCOYHI5UxUA3FFTFYGVNmPo2C3svnxzkphOMkqEo6XThSN84+bNOJxwlQxGA8dZ+1n6qjp59QzQ9N3Xf/2QoSppuOEqGIpheMEqGoqTThiOTzkV37EEvOPkEutkShgDyV3qxByznVpcioPqaIsIDkXPqoe1zMRCVXBDA6rHQ8Oy50Y0oqeKyfMZ6I3TtGsh0UabFV+titCNE5BwIQemqrioksDiHbd89nPUtK5CYWLjysgL2//IYesxANSnZ3Zql6Yzk97KvbTdD9BEIBLjnnnv46le/it1uz3TpxDlKApF423Rd59lnn+Xb3/42zz33HFZslFJDCdVYlOlNwHmqYHR8KEo6VTg6PhAlpQcjq1lnSWWEA0ctjEVUOq7ViSiAMr1wdHwgSjpVMDo+FCWdKhylhyKzDeIxiG3dh6vEzlhv+ISZwY8PRelOFZDSQ1HSqcLR8aEoaapwtDAvTKE7hnLzW6BN/W+TTYHoXFW+OZ/IUJSObefOc0TnYiAqXOvDkmPm2AvnVmA+lyiawtpP1NGzb5CmP3dmujinZbJp2AIWRlrH0CwqmkXN+iBnsmnEQnGsXjO115Vw+KlWIln8bFbUiNBKAx3Oo4yMDnPppZfyT//0T1x77bWoqvz+EG+PBCIxo/bs2cN3vvMdHnnkERRFIRAqoow6XErOtLafKhidLBAlnSwYnSwUJU3uUmewYUmIhlyNrR7zlOtPFYxOFoqSpgpHJwtFMHUwSg9E6VZdpjDcB4d/vPeE904VipKmCkdThaKkqcLRyUJR0kQ4MrCZDEIxlUu/8BqoRvr4FlkbhvwL3ZRdnMfunzaiR+Wrcjaci4HoXKKaVZbfWUnzy93nzFDVyRYKi9uUCBXnwI9e7fUl5JQ52P79w5kuyrRUXlmAr8bNjv+qz3RRTmvUGCK4pJsDR/YBcMMNN3Drrbdy0003Zbhk4p0kO69CxDlr2bJl/OAHP6C5uZmvfOUr6EUhXudP7DBepsdox+TU8NW5UxOQOgttuEsnmrgDrYex79qD+tIOzGYDf0CHzauAxLDCOeWO1Lreahc2v4WaL7zGwn/ZQmkshmk833v0OH7HxN25gCOG05IIQCbVIM8Zw3ArRJ0qDquOzx2nvtVMo12jMBynbCxGIKJj0g3KQnGsusGhB9fT/v21jH5nYv6CxY/txKMk+oZrGBSpUawkjuNUdPQvraf1ixfS+sULcZfacRbaUF/egaIkPpvFkiiv1Zr4f33jKvSNq3G+eyWuosSEtvrOffgKwDI+v63FBr4C2Ps3g2P7DdyblpB/3RJsGxLByVfnwvtCIlhZTAa57jiKkjiOy6bjcSTKO3bDeTjuWAu3rkvUi11jzcN70Mbr0KvHydcn6jD0tfX0/Nv5NH79AjSbiq/OTd2/vJGq74L4xLqF8RgePU73GoWB1WBZqRPTE8NEBX+xEstrlal1D9/gwpGXaElUzQq+OjcmuwaAzWfBW+NKresuc+AsSFSEoiXWNTsT61o9Znx1aeuWJOo7sTL46txYxicvteSY8dVNDAbiKrbjKp44D311biw5ZsZ6IwR7w3hr3CR7gR5/zvpqXVi9iRBtdoyf3+OTLToLbOSUpZ2zNS5sPkuqvn11blRzYl1HnpWciol1PVVO7IHEupo1Ud+aJVEIe8CCp9I5sW6lE3uuNVUPZZvyMNnG69BvwVs9sW5OuQNH/nh9m8br2zFeh14zvtq0Oiy1T9S3mqxvU1p9p9VhiT11zqbqe3wSR4vblFh3PAS7imy4Sibq0Ow0Yc0Zr0OX6ZTfEen1bRqvb9U0Xocn+Y6AxN3wRH2P12GuFU9FWh1OVd/WtPquSqzrq3PhW5B+zqqnPGdzyk6sb/Op6rvwuPoeP2etU52zRROTXp+0vg2D8HA0dZ4lP4N1/MaP2XniOes+3TlrSjtnJ9W3M1Xfye+I1Dmbaz3pOatZxte1qdReX8KS91fgqXISGU6EoZwKR1Z+RziLEz8fZpeJwcYR9j6SmJ8nW78j/ItysOda0Swq4cEYLa8kBurJxu8IZ6EV85owO4xXeI0/0dBcz4033sixY8f4xS9+IWFIzDgJRGJW5OXl8eUvf5mmpiYeeeQRKtaUsJNXeTn8DP3lzcQtiWb5kg25VF5emNpu0XvLCCxMtCa5G+pZtjyOebzBpmh9gKqrJ0aMWXBTKblLPADY86xcHhpj0Te2U/OF11j/l2MsrJgY2WxZYZjinMQxHWaddWUhHOZEcMkvjLOkKkp7zILzjxoXDEZZOxzjkoEIjrjOlX0RvOPzXVSNxdk0EOHQg+s59OB6ij5aw6o9zQBYMLjEMoZPTaxbrMa40DwxAlXh3Qvw37MIAE2DZSvj5HgS4cPnN1i2cuKh2/IqndIb69A3rsa4ZBWLN6h4chPvuQOweINKPArRMJTUKVQvV6hZqaCuWsLi2yrwb67D/tst5DjirK4OY9LG95sXZUHxRJeI5RVh8j1xxm44D/PNq1h6ewV139wGQF08yvroxHwTF0ZDVOqJbQf+ZR1Lb6+g56vrqP7ia9TEolwQmRj9aUMkRM34XFVOQ+fy8BiR5Qbda1SGclTibYl/422rVWreVUThOn+iDl1mlt5ekfoFG1jkZtHNZan9Vl1ZSNH5ASBxgbv09gpcxYkLBF+dm8XvK5+ow80FlF6UqDTNrLL09orUxZu3ysnS2ytSIadsYx7ll+Ql/keBpbdX4K12MtYTpu/gMEveV442HjBKLsylYnNB6jiL31eOf/yXvqvYztLbKzCPX6wVneen8qqJ83vhTaUEFic+uyPfytLbK7C4Eyd44VofNdcUp9Zd8Hel5C33AmD3W1h6e0XqQil/pY/a95Sk1q25tpiC1b7EMc8PUHFpAY6CxAVN7lIPC24sTa1bfXURReP1bXaaEnVYmKzvHBbeMlHflVcUUrwhUd+aNVGHyQs9b42LJbdN1HfFpfmUXpyoQ1VTWHp7RSpweCqT9Z242im9OI/yTfmpbXNKHXjHL7JyShN1mAwjp/qOcBUm1jU5EhdVp/uOWHp7BdacxLqFa3zUXDuxbt17Sshfmahvm2+8vscv7vNWeKm7vgRFU1h4Uxl17ymhYE2ivi3uRB0mL9hzl+Sw8KaJ+q66upDi88bPWXvinHUWJerQv8DNolvT6vCyAkouSJyzqiVRh8mLZW+Ni6W3TzwoXr4pj7KNiTpU1PH6rhqvw3LneB1q6DEDQ4eC1f7UtovfV5G6qHWXOBJ1OF7fxecHqLpi4vxedEsZgUWJ89tZaEuc3+OhoXCdn+p3pdXhDaXkLUvUtyMwXt/jwatglZfa6ybO79rrilP1bfUmfu7tfis9ewaJjMZYcMNEHWbrd8SC64upflcROWUOFt5URmx8DrBs/Y6oe08xJRcEsOSYqbmmiNBA4ndkNn1HRJUIR41DvBR8hj9s+x15i7z85Cc/obu7m5///Ofk5098bwgxk6TLnJgThmHw+uuv8/3vf5/HH38cAF+4gHJLLT41NzWZpNmhEY/o6DEDRVMw2VSiwTgYibuIiqakRusxOzTiUR09aqCoCib7ydcN334+cR3ihoKCgVkziMYVDBQ0xUBTITI+6pzvqTc5/K1VWA0Y1RR8UYNVI1Fe81iIKmAyIDR+d8+qG+hAxWNxOi60YcEgioKOgoaBCYPw+H0HCwYGEB2fUENz6RT8OYyhK6iqgaZBNAqgYDIl1o3HEuuazRCPw6E7TCz+zyAmcyIMAWgm0MZDY2QM3H7QdRgdAEUFkxn23uam5CUD03hXtdj4ZzWbDOI66LqCohiYNYjEEmWI5KqMVENk/Jkqq6ETRyGmKKiGgQWDMAqGomAyDDQMyr51mMP/vHDSuophYJ1i3TAKlz7bwEDDCKMdIeIRHZTEv2tsLDGqnmpW0Mzj/64kLnAMw0icL8l1QzpGPPEgsGZViY6Ot9jZVDCYOLecp1jXqoJC6nkss1MjHp44D13FNhbdUs6BXx0j2BM+5bonnLOqQix05uesyaGhRw30qJ74d7RrxMbiGPoU69o1jLhBPKKj2VQsLhOhvuh4HaqoZoVY8MR1T6jDU9X36epwivpO1sup6nvxbeWompJ6oDtVh2nrKspxdTgL3xGnqu/0OjTZNTRLYtSwaZ2zp6rv4+plpupb0RS8VQ5q31PKnp82Jrqdne6cPVV9J+vwNPU9uQ5PU99p9eIsspG3zMPRv3SeUN8nrcMMfUdYc8wYOsTGYmhWjehoDD1mnFCH2fAdYfGYqdiUT+NzHcQjOhaXKfH9xfF1mNnviHhUZ1jrZ6S6k0ONB1FVlRtuuIHLL7+cD3/4w2ja+B09IWaRBCIx53p6evjRj37Egw8+yJEjR3DhoZRqCinHpEz9/M5Mme48Ou5fvp56PXD/Gs4bivJswEpMVbDHDca0E4cXr310ostY+4XTG+km6p748Sv/4/Tm16i/a+KXw6LvBU8sxxoFZw7senHyj/ahuyee4yp5cXqTpQYDE8caqp3WJtTedzD1+vA/LzzpeibD4OpQkANmC8aXt05v5xmiqFBxeQEtr/ScM8PnpiayzHLn1DNE50idQuKitvTi3FTIyGb5q7wUnxfgrR81okezu7CrPlpDsDPEod+2ZrooJ2V2moiOxlDNKsvuqKTxuQ6Gm0/8XZFpujlObNEgu/btYDDWT0FBAZs3b+b+++8nLy8v08UT84wEIpExuq7z3HPP8cADD/C73/0Op9OJZziPUmpwKZ5ZP/7pwlF6KEpqeGAd7+sMsT3HzP7xftLp0kNR0unCUXooSjpdOEoPRUnJcKQoieeMwmNgtSe62PW0JNZJD0VJpwtH6aEo6XThKD0UJU0VjlTDQB9vgVr9X28x2DSa9Reck+6eZimrx8zyu6s4+D8tWXkhlO5cCUQ5ZQ4W3FTK7h83Eh7M3pG4jm9xyFpKopvUYONo4n9VJWuHqM5b7mHoWJDwYBSrx0xkOJa1ZS1a76d8cz5bv30oa7+jop4gRwYOMpTTzfDwMOvXr+d//+//zdVXXy2jxYmMkUAkskJzczM/+MEPeOihh2hvbycHPyVUUkBZxlqNpgpEAIHFOQy3BNlz32pKQnEMoG38+ZKpAlG6k4WjqUJR0snC0VShKCkZjoproKhGYcdfDPTx66OpQlHSycLRVKEo6WThaKpQlHR8OHLqOjeGRql/ooWutwZOul02WPWRGka7Qhx+MnvvEANUXlFAx/Z+Qn2R06+cQedKILL5LRSu8WX9ENB1f1eCI9/Grh8cyXRRTil/hZfa64vZ9t3DWR0wVbPC2k8uoO31nqyd38tb7QIFBo6MYHGbcJc66N0/lOliTRIzonTSwkBuO+09bRQUFHDPPfdw6623smLFikwXTwgJRCK7RKNRnnrqKR5++GGeffZZrFYr3rF8iqnESy6KcmJXtZl0fDg6WShKWnBTKWPr/fzFbwXDQAFqfja9O7Pp4ehUgSjd8eHoVKEoyRo3qHpgDJMZiusUWg8Z7P/g6YdBPz4cnSoUJR0fjk4VitId/ueF+PU4fYpK9f/vdTSLmrV3Nz2VTkIDEcID2XsRdy45VwLRucLms2D1mBOtrVko/WfbWWhjtGN6XYXnkmZVKb04j9ZXe4iF4qlnc7KJopLqCrn4feXEozqH/qcls4U6jmEYDKg9hBf2cbjhEJFIhI0bN3LJJZfwpS99CYfDcfqdCDFHJBCJrNXa2spPf/pTHn74Yerr67HjpJhKiqjApsz+F2kyHJ0uFCV/wXsqnVT9fTVP51ko+vmZXcy3X2ifdihKKv9jaFqBKKlkLM7F/VH2/V4nGjl1S9EJ246Ho+mEonRDtdMPRUk9n6/lqlCQAz88wnDL2Ok3yBBFU8gpc2TthSckhlc2O0107RzIdFFO6lwIRPmrvERHYvTXj2S6KCflqXQy1BzEiGfvr3R3qZ2lt1ey+yeNjHZmXxBKMjs1Vv1DLYefamXgSPb9m1tyzKz8UDWHnmhh8Oho1t1AMjwxhgs72X1gN2OMEAgEuOaaa/h//+//UVZWdvodCJEBEohE1jMMg5dffpmHH36YX//614RCIXx6HsVUkUcRqpIdI9DY/BYKVnk5+nxi9vrc965koE8hEpl+q5b68g6avnbqyU6PV/mV1zj00Lrp7X/8mR1NN7iiJ8pOi5Vu05nVX+1nXqf3w2dWRoD8304vGKkaFK1y0bZjhFh33xkfZ64UbwhQfmk+W+8/lBqdKdtUXV2IzWth/y+zN2ycC4Fo8fvKCQ1EaPxjR6aLMiWTQ2P9pxdw9IUu2l7Pzm5dkLiJUHphLq2v9aDHsuvSw11ip3xzAft/cTQxGlyWPdNkcZvwVDrp3j0IQMVl+XTuHMieLrFmg35bJ01D9fSrXaiqyvXXX8+nPvUpLrnkEnk2SGQ9CUTinDI0NMSvfvUrHn74YV577TX8fj+OPi+FlOMhMOtd6qZLs6is+8wCjv6lk45t/eiXrAJjemVTX96Rej3dcFT5lddSr6cTjuxxg419UV73mii8d3vql3/9t6c3Cl/tZyZazc4kHAV+OFFOLeA/xZoJVrdG3RVuDj3RwlhvlvziT1LAkWsl2B0+/boZkt6tJludC4EIsr8uHXnWxJDKWfYb3R6wsODGUg483pyV3UyT3302v4XqdxVR/1RrYpjybDE+smHhOj8Vm/PZ+p3sGSzBMAyG6KOdY/Q52gkGg5x//vncddddXH311VRXV2e6iEJMmwQicc7av38/P/rRj/j5z39OS0sLdpwUUkYh5TiV6XcHmy2aRUWPGxhxg8orCnDkWdn382PoG1efdtv0UJR0unCUHoqSptVyZBi8941+evYN0fq3ntTi6YSj9GCUdLqAlB6Kkk4Wjqw5GhUX5XDkLwNE2rP3znfZpjx69w1lbTiy51oZ68nOsmV7IMrmunPkWQkszqH5r92ZLspJaVaVuutLaHyuI+sCUcmFueQuyWHXQw2ZLsqUlry/nNGuMEf/0omiKaiakhVhaNQYZii/k7boUfr7+ykuLmbTpk184AMf4Nprr8108YQ4KxKIxDlP13X++te/8rOf/Yxf//rXDA4OsmbNGoa3xyikDKsyvTmBZpOv1oUlx0zn9n5Uk0LR+QE6t/UTWX/y0XWmCkVJJwtHU4Wi4x0fkhTDYNFIHMe3DjLcMobVY0aP6qmJ9+DU4WiqUJR0snA0VShKN1VAMtlUytdaafpzx6SyZZpqVljx99W0b+2jc3t/potzAke+lTX31rH3Z01Z+QxMNgciX62LpR+oZPsDhwl2ZV8oKljjo2idn7d+1IAezZ5f5WaHRuUVhTQ+15F1gxGYHRqqWSU8GMVdasdVZKd9a19WtKyZbBoFa320v9GLHjMoXOsjPBjNip/bsBEivmSQrkg79fX1uN1uli5dyj/+4z9y6623yuSp4pwngUi8o4RCIZ555hkeffRRnn76aWKxGJdffjmtz/WTT8msD+E9HTnlDpZ+oILtD9QTHohOeiD2+NajU4WipOPD0XRCUdLx4WjBPVtZeHMZ9oCFnf998mF7jw9IpwpF6Y4PSKcLRklawI+rwEzN5V72/baXUHPP6TeaQ+nPG2TbsweQGFyhv34kKy76jpfNgQglEYr6D2f+gjRdtp9vFpeJZXdWcujJVkZas2tglFX/UMNYb4SDv2nOdFFSkr8DbD4Lqz9Ww95HjzKUDfOH2XX0BcMoAZ0XXngBRVFYunQp//Iv/8K1116L3Z75m41CzBQJROIdq7+/n9/85jc8+uijvPTSS9hsNq677joOPN5MLkWYlBMnVp0rqllJ3dFd9Q81DDSMnDC/ib5x9bQC0fGavnbBGYWidIceWseST+7A6jUz2hHC4jaRt8xD25a+k45elQxH0w1FSclwNN1QlKQF/KgmheJlJlpe6SYeznwXkqTAkhwqLs3nrR81Zt2d8WyV1YEoC5nsGiv+voqjL3Rl1VwzyaGqm1/qyqoBExRNofg8P917BokMx3AW2ggPRLNm4trKKwrwVrtSN6DSfzdkhF1n2NVLxaUFPPXUU4RCIVatWsW9997LTTfdRG5ububKJsQskkAk5oXm5mZ+/vOf86tf/Ypt27Zht9u55pprOPQ/rRkPR/6FbiIjMUZax3CXOchb7qHpuY6s6AKTt8xD1dWFbPvu4azou57kLrWz+H3l7P5xY1YNtmDzWShY4+Po851Z1xpTfH4AX62LvT87mumiTJKtgWjpByvpPzxM2xtZ9uyaApWXF9C+tS+rnsmxBywsv7uK/b88llXD5WsWlbWfqqPhjx307BnMdHFQzQqVVxbS/dYAwy1juErsWFwm+g4OZ6xMujlOd6SNhbeU8dRTTxGJRFi9ejW33norV1xxBevWTW8UUyHOZRKIxLzT0NDA448/zq9//Wu2bt2KzWbjmmuu4fATyXCUuW51gSU5FK8PsPsnjQB4qpwMtwQzGo6SdyxVs8qqj1TT8Gw7Aw2Zn3tHNSmJO9EKlF6UR/uW3qwKbc4CG+GhaNa0FHlrXLiK7bS80p1VYS0rA5ECpRfnMdI2ljXz0JjsGtYcc1bN36NZVIrOC9DyauKcSv1MZpi32kn1u4rY+YMG9Kie8VYX1azgLnUw2Jj43lx+VxVtW3oz2sIXM2L00E7J1V7+8pe/EIvFWLt2LZs2beL6669n06ZNGSubEJkggUjMa01NTalwtGXLFlRUAhSSTyl5GQ5HJpvGeZ9fSMOzHXRs7cv4swImu0bFZQW0vNxNeCiKI99KeCCa8RDiLLSx/K4q9jzSxEhbltyZVmDNx+sYOjZK/e/aMl2arJaVgSgL1V5fQk6Zg+3/eThrAq2r2M6yO8YnWu3IbFDTLCpWj5lgdxhrjpnSjXkcfb4zozckkt/Zhev8VL+rkC33HcxoV72YEaWHdkIV/TS1NBKLx1i3bh21tbV88pOf5KKLLspY2YTINAlEQow7evRoKhy98cYbqKj4yCePYvIoyshodVavmVgwTjyiU3FZPjnlTnb/uHHOyzGVVR+tYawnzMHftGS6KJMGpii9KJfOHf0ZH4nO5rcQHY1l1TNOKFByQS4j7WOpu9WZlm2ByFPlxFVkp/W1nqwJHpB4RsfsNGV8Ik6zU6NglY+WVxMDm6T/7GXSwptLsQespxwMZi4tv7uKwaOjHHuhC82iYnJoGeniGDZCDPt6GPH30tBwBN3QWbBgAevXr+f//t//S1VV1ZyXSYhsJFMHCzGuoqKCz33uc7z++uscPXqU+/79PpZtWsgBtvMyT7PF+AuNxn5GjEHm6j5CegvMQMMoXbsGgMSDwgtvLsORb52Tckxl32NHOfp8F5AYOa/63UWopsxMjJusI6vHTMkFubiKMz/6UagvQjysY3ZqLLujEnvAkukigZEYNc1VaMt0SbKWq9CGr8aVFWHIHrCw7I5KzE6NeFjPeBgCcBXZKbkgF6sn0XqeqTCkmhSq311ETrkDgKPPd7Hv55l7Ps6Rb2XhzWUoWuI7sGvXQOqmQzyiz1kYMgyDEWOQwQWt7Pa/wsv8np39bxDXY3zms5+hqamJgwcP8uijj0oYEiJN5p4kFyKLlZeX89nPfpbPfvaz9Pb28swzz/DUU0/xxOO/5Qh7seMk1ygij2K85KIqs39vYbBplMGmxC9Yi9uE1WtOjfyWU+5Aj+qMtM9dt5XI8MRs7ha3CUfAmnp+wOo1Z+Zu6GCUrfdPzOReujGP/sPDme3OoygYBhiZv4kOwJ5HmrLiYj9btb7WS+vr2TGQgqGDYQBKZm40JDkLbfjq3LS83E1//cikn7G5lvxu0WMGjoAViytxGRPqn/uw6CqyoZpUhpqDGHEDq9eMxW0iPBClc8fczUmmGzph3xChkgH27ztAUB/BfMTM4iWL+ea/f4N3v/vdMjqcEKchXeaEOAOhUIgXX3yRJ598kqeeeoq2tjZMmMmlkDyKCVCYkeeOltxWDgrs+3mi25HNb8nY3WSr18y6Ty3gwK+b6T2QuYeGVbPKyg9X0/paT6plLdNUk4KzyM5wFswxEliSQ9+B4YzPYZMtXeYUVcG/yE3vvswPZe0uczDaPpYVAxQA5K/0UnJBLrt+mBikIFMCi3NYdEsZW+8/RHgwMyPspX+3Lnl/BYZhZOTcjRlRlKVjNPcdpam9gRhR3G43V155Jffccw+bN2/GZpOWYCGmSwKREGfJMAy2b9+eCke7du1CQcFDgFwKCVCICw/KXNzdVcBs14gG47hL7az8cA07HzqSmBRRYW5bBBQILMqh//Awesyg+PwAsXCcrp0Dc1iI8aKoEy0zZZfkEeqP0L07c0PvllyYS9nGPN78zkHiocxdWNoDFtZ8vI79vzxG36HMDfcL2ROI/AvcLH5fOdv/83BGh3LXbCrrP72Q5pe7af1b5iYgzlvuweaz0PzXbmDyz9Jcyl/lxWTVaHujF9Wk4KtzJ260zPF3Gga4SuysuqeGXQ8dYbh1DLNDIzoWn5OyGIZB1BckVj7M/rcOMmD0YGBQVFTEhz/8Ya6//npWr16NySQdf4Q4GxKIhJghTU1NPPPMMzz77LM887tniBPHgo0ABQQoJEABZmX2nyNRTQreGlfiQteARbeUER2Lc+TpzIx2VnNtMbFQnKN/6UQ1KVhyzBlpvaq7voRgb5jWVzN3kYmSGI470yNyQWLOpEx0MzpetgQiyJ46cRbaEsNrZ/C3c+lFudgDVg4/1Trnx7b5LUSGEt3iKq8oQLOqHHm6fc7LAVBzXTEmm8bBx5tBSQTngSMjc9J6FzUiKEtDtHQf5VjXUSKEMJvNXHDBBak5ghYuXDjr5RBiPpBAJMQsCIfDvPrqqzz77LM8++yz7N69GwAP/lQ4ysE/J61HuUs9GHGD3gNDWL1maq8tpv7ptow845O/ykvde0rY8u8HiY7GTr/BLCm9KBdXiZ0Dv2rOWBkqryjA4jJx6Ldzf8GZzpFvJdgVztjxsyEQZboOABbcUEJkJEbTnzszVobFt5Yz1BrM6E0Ds9PEef+0kMO/a81Iq3LqO/L3bYQHowQW5aBoCj17Z79l2TAM4vlBxgoGObD7AIP0AVBUVMQHPvABrrrqKtatW4fP55v1sggx30jbqhCzwGq1ctlll3HZZZfxzW9+k5aWFv74xz/y7LPP8tvHn6SBfZix4DcKCFCAn3xsimNWypL+i9xk0wCIjiaGpC4+P0A0GJuzbmTduwcJD0ZTYWjJbeV07hyY82eNgj2TL37NDm3Oh+keaRvD7MrsV7C3xsWyD1ay47/qs2rCz7nkLLSx+qO17HmkiYGGzE3COtw2RnRk7m8SpJ/7w21BxnrmPhgGFueQv9LL/l8cIzoaY8+jTQwdm7vn7PJWeDHbE93ykt+NJrtGeDA6699NISOIaWWEppYmWnuPEe2KYB20ctk1l3HTTTdxySWXsGDBglktgxBCWoiEmHOxWIw33ngj1Xq0detWABy48JGPjzz85GFRZv+B2LrrS4iMxjj6l040m0rhGj+dO/rnZDJD1aRQ8+5iunYnhqd1FtqwuE30H57bi9K8FV5q3l3Etu8eSl0MzbWCVV5C/VEGj8793EC+Whf99ZkLAtnQQpSpOvBUOLH6zBlpCYHEnEJrP7WAI0+3zfmzdb46F5GhGKOdITxVTvKXeznyTNucdEUz2TUKVvvo2NZHPKxTcXkBFqdpTroHRoww8fIRhu191B88QpDEeVdeXs4dd9zBFVdcwfr163E6nbNeFiHEBAlEQmRYT08PL730Es8//zzPP/88Bw4cAMBJDn7yx0NS7qw/f+SpcLLk9nK2ffcwkZEYnionsVCc0TkayrvyigL8C9xs/896IHHRMhfBzGTT8C9ypy5K81d66d0/NKfDCi+5vYKx3jCNf+yYs2Mez+w0ZaQbYyYDUaY+c1LV1YXYA1b2PTZ38+doFpXA4pzUyIv5q7z0HRgmFpqDn7W0n+k1n6ij7+DQnHURdBbZMNk0BhtHsbhNrP1kHfseOzbrNyGiRoRBUy/qohANRxoZGEt0g8vNzeWGG27g6quvZsOGDZSWls5qOYQQpyaBSIgs09bWxosvvpgKSI2NjQDk4BtvPcrHSy6aMvPdrRRNSc1ttPyuKsJDUQ490YKiKfjr3PQfGUaPzt5XRvKCyeI2se7TC9j/y2b6D8/dKGhWr5m1n6jjwOPN9B2cw9HXlMRUM4aemFNqtCs0p6PQ+epcLHpvOTsfrJ/zEdYyFYjsAQurPlrLgV8dm9PWIZNNw5FvZehYMDFym8GcDp7gX+hm0S1lbPv+4Tl9jtC/wM2iW8vY+p1DRIZjs37DQzUr+Grc9B1KDC2/4MZSrDlmdv8k8X2a/l03k+JGjAF60KuDdI6009GVGAzC6/Wyfv167rrrLjZt2iQBSIgsI4FIiCzX2NjICy+8kApI7e3tKCjk4MdLAC+5eAhgUawze2AlcfEWG4uTU+5gxd9Xp541ceRbiYf1WZsLRDUr5C310LN/iHhYp+ySPEx2bU5aUMwuU+pZjsorCxnrDdO5fW4mWVRUWPvJBfQdGqLh2blrLVI0hfyV3sRkknP8GyFjLUQKFKz20bVrYFYujE+m+l1F+Be42fa9Q3M2jHXBGh/2gJWm5xLnVPo5Ppuqri4kNhan+a/daFaV3MU5dO8dnLWbKlaPGc2qEuwK4yywsfpjtbz1owaGjgUTASw080NkR5Qwg3ovo64BQt5h2lpb0Q0dn89HdXU1H/3oR7niiiuoqqqa2QMLIWaUBCIhziGGYXDw4EGef/55/vrXv/LKK6/Q2pro9+7EnQpHXnKx45zRUeySM8QDLP1ABQB7f5bo6uOtdjF0bHTW+v8XrvNjsqq0vNqDalIo25RP+5ZeIsOze1FX8+4iRjtDdGzrR7OqqCZl1p8zsuaYiYXixCN6os4Ho3MaUuaqq2JSJgLRXH9GlMTFenggimZRMdk0wkOz2zpjdmroMYN4WKdwnR9nvpUjz8zu0NUWt4mi8wI0v9SFHjMovSiXWFinY2vfrBxPNSnklDtTg2Es/WAlhm6kuiCmf2fNBMMwUHJjtPW0MUgPIf8wvX2JEfmKi4vJz8/nmmuu4Y477mDRokVzMwedEGJGSCAS4hxmGAbHjh3jlVdeSf3Zs2cPABZsqRYkLwFceFEVdUaOq1lUzE4Tof4Ijjwraz5ex+6fNjLYOIojzwoKszaMsavIxtIPVLLzoSOEB6K4S+3ExuKz3tWrfFM+Rev9bPmPg3PSoqBoCuv+cQHduwfm7DkLd4mdZXdWsfsnjYy0jc3JMec6ELmK7Sy/q4o9P21kuHVuPmPlFQXkLfOy9buH5uzcOe+fFtK+pY9jL3XN6rHsAQsmu8Zwyxg2n4WVH65mz8+aZu3ZQ0e+FQwIdofxVDlZfmcV2//zMMHuMDafhehobMae/9MNHVN1jI7Bdjp62xi29DMWSYx+t3TpUiorK1m6dCn33nsvFRUVEoCEOIdJIBLiHaa/v5/XXnstFZC2bNlCOBxGQxvvZpeLBz85+Gesm50910qoP4IRN6j7uxKcBTZ2/vcRIPHswFBzcGbvyI/PHA+w7M5KYqF4ak4he8AyK+FIs6m4i+0MNIyiqAo11xbR+reeWQ1iOeUOQv0RIsOxuenmpEDxeQHat/bNWTeyuQ5EiqZQtM5P25beWW95S/6bWdwmbD7LrA4lbQ9YKLkwlyNPt2PoBt5qJ8NtY7PyLFr6z9jiW8vRbCp7ftqUeDPtZ3MmmOwaOWWOxETTwKp/qGG0M8ThJ1tRNAWbzzJjQ4VHjDBUhBhzDXNkbwOD9BInjslk4oILLmDt2rX4/X7uuusuysvLZ+SYQojsIIFIiHe4cDjM9u3bUwHp1Vdfpbe3FwAbjlQ4ysGHGx+mtzlYg6IpWHPMhPojmBwaG76wmAO/aaZnzyCOfCuOXCs9+2Zubg9FUzDbNSIjsYlnnf67ntH2EJpFnZXR4mx+C0tuK2f/r5oZ6wlj9ZqJDMdmL0QosPpjtQw2jtLw7Ox2e0qaq+dM5jIQzeWoctXXFOGpdLLjv+pnLXgpmoLFbSI8EMWea2XxrWXs+8UxQn2zcENg/GfJVWRj1T/U8tbDDQw1B7G4TUSD8Zk79xXIXZxDsCdMsCtM3jIPC24q5Y37DhALxrH5LISHom/7eHEjxhD9jNoGUcrDNDe1MBJJhC6Hw8Fll13Gxo0bqays5Morr5TJUIV4h5NAJMQ8YxgGjY2NvPnmm2zZsoUtW7awfft2gsHE3WsnOeMhyUcOflx43lZXO7NTIx4x0KM6pRfnUbTOz5vfPggkJoYdbg0y3DIzXZcUTcFb7UqNTLf4tnL0qM7B37SMr8CsXJyu+FA1keEoB37dPPM7H+epdBIZiTHWE575i9DjmB0aaz+5gKbnO2ft+Y+kuQpERev9lG/OZ/v3Ds/aJLyKpmB2aESGY9hzrVhcJgabZm9Y50XvLcPiNvPWww0zv/O0n5WFN5ehmhT2/zLxb+SrczPQMDJj55+71I67xEHbG4kbNes/u5D2N/toeaUb1ayiWd7es3u6oqNVxGhuamHI6CPiH6W3vwfDMLDb7RQUFHDeeedx4403smbNGmpqatA0bUY+mxDi3CCBSAhBLBZj3759k0LS7t27icfjqKi48aZakXLw4cB91v3l01ttVt9bS+f2ftre6MWRZ6VwnZ+jL3TOWDcfT5UTRYGBhlHsAQsrPlzNnp82Mdoxs8832PwWNLPKaGcIV7Gd8k35HHqyhdgsXXgvu6MSPaaz7+ezFyJyl3noPzxMPDy7Q6HNVSDSrCq+Ojc9e2ZvAtIl7y9HNanseaRpVvZvcmgs+LtSjr3UxUjbGM4CG/GoPuMtQs5CG8vurGTXQw2E+iJ4q50YBgw2zky402wqFZsL6NjaR7A7TPH5AQpW+xKtafC2WnYNwyDICLZVBm1trXR0tTOiDhLX42iaxvLlyykqKqKqqoqPfvSjLFmyBJNp5qcwEEKcW+RbQAiByWRixYoVrFixgg9/+MMABINBdu7cmQpJb775JnsPvwmAiobLyMGNFxee1N8mxXzaY6Vf6Ox4oD712uox4yl3oI+/X31NEdHRGM1/7U6scBatO+kXcPGITvuWvtTzBtXXFKFoCkd+33ZmO51C+gWpalIwdCP1zFTeMg/DrWOE+mfuovXIH9rRLIlWO4vbhGpSZ3T/QCo4mB0aJodpxp7TmGv2XCuxYIxoMD4rYcjms6DHdCLDMY691D3jXTRtPguuEjs9ewaJjcUxdAPVlLgZMdo5c8G+5rpijLhBwx/aGesJ076lDz2a+CwDDWcZhNJ+ZssuycPsNNHwh3b0iIGnwknfoWGC3WHa3uhNtQ4B069Da5zB+CBD0X4oCTMUG6CzsxOdOOyE/Px8rr39XaxYsQK/38/NN9+M3+8/u88ihHhHkxYiIcS09fX1sXPnTnbu3MmuXbvYtWsX+/btIxpNDG1rx5kWkLy48WDDcVatSaUX5RIdi9O5vR+rx8yaj9ey59GjDDcHsbhM6HHjbQ3UkL/Si6IqdO7ox+TQWP3RWg4+3sxQ88w9+K6oCus/s4DW13pofa0XzaaioCTmQ5khNe8uwlfrZut3D81Kd8DF7yvH4jax66FZ6JbF7LcQrbynmshwLNXda0YpsO5TC+ivH57RIa1NNg0Dg3hIp+SCAMUX5LL124cw9Jn7B84pd7Dw5jJ2/Fc9sbE4Bat9GHGDrrcGzr7cdg1VU4iMxHCXOVj2wQq2f7+e8FCUgjU+zHaNlld7zni/hmEQIoi5Lk5/qI+25nZGtUGC8cRw2yaTifLycvx+P7feeitr1qxh6dKlFBYWnvVnEULMLxKIhBBvSyQSYf/+/amAlAxLyYEbTJgntSK58eAkB+0MBm8wOzTyV/no3NFPbCxO9TVFeKtdbP/+YQDyV3kZbg6e9YhvZpeJkgsCtL7WS3QkRsVl+TgLbKkuaYqqnPXFqGpSQAE9alC6MY/SC3J5474DM3Zxq5oU7AEro50hTDaNgtVe2t/sm7E5ocxOE6pZmdH5XNLNdiCyes3oUWPGBlNQTQpF6/107hggForjLLAx1huesfpWVIXzP7+Ilr/1jD9Do2DonPXzOunn7pL3lzPSEeLYC10nnPNnwx6w4C510LVrAIA1n6hj4MgIDc+2Y7JriYlvd/af0TNbil1nlBH6g73o+SHGLMO0tbQTI3H+ORwONmzYwIoVK4jH41x33XVceumlWCyWs/oMQggBEoiEELPAMAza2tomBaRdu3Zx6NAhkl85dpw4yUn9cZGDE/e0gpI1x4wlx8Rwy1jiAvILi2h8roPO7f24SuwUrfXT8Gz7WXdf8tW5sXnNtL/Zh6IlLlCPPN1G955BNIuKoRtndQFsdmo4C+0MHBkBBdZ+so6jL3TNWFeuwKIc6q4vYet3D834xKOqSaHisgKaX+6e0X3PRiAy2TXKNuZx9PnOGZ8s2OTQWPepBRx+spXeAzMzWmLuMg8Vm/PZ9r3DYIC3xsVox9hZDSSgmhQUVSEe0clb5qHm2uJEAI8bFK33ExqIpgYdOVOaRaX6XUW0b+tjpHWMgjU+qq4s5I3/LxHw3aV2IkOxaU06GzdijDKMuVYnqAzRfLiNUYYYI9E9T1EUKioq8Hg8XHvttVx44YXU1NRQV1cnAx4IIWacBCIhxJwJBoPs2bOHvXv3snfvXvbt28fevXs5dmziYjgRlNw4cKf+duDGgvXkXe+U8TvhcQNvjYuyjXns/nEjkLgrHh6KcuTpdlDAW+ViuCU47bCkmhUKVvnoPzJCqC9C8YYA5Zvyef2b+8FIPIAeGoic8UAQqlmh5IJcevcPEewOk7fcg39BDgd/8/ZGqks+kK5oCis/VM3RF7vO+gI4nc1vYdkdlRz8nxaGZ7Bb4WwEIneZg4U3lbLnkaYZGXDAV+em4tJ8dj3cgBE3ZmQ494U3l9F3aIju3YM48qwEFufQ+loPevTMfiVrNhWb15IYKESBDf+8mGMvddH2ei82vwVfjYvOnf3T3q9mUXGXOhhoHAEDaq4twuo2s2/832f53VU0v9zNwJERFG289ekkuzYMgyhhLHUG/YP9dHd1E3OHCGrDDAwMpNbzer1s2LCBpUuXAnDRRRdx1VVX4XQ6z6guhBDibEkgEkJk3PDwMPv3758Ukg4ePEhTUxO6nrjwNGFOC0mu1Gs7zlO2KuUu86BHdPoODWPPtbL2E3Xs/kkjg02j+OpcuIsdHHupa9pltXrNuArtqdaB9f+0kK5dAxz9Sydmpwn/Ajc9ewfP+II5sDgHb5Uz9SxK7XuK6XprgKGjZxc+NKtK5RWFtL2emDzWWWgjNhYnPHj2Xd/Su1+ZHNqMjKI3k4EovUxvp5sjJAb5MNk1RjtC2HOtFJ8foOnPHWc96p6nwkneCg/1v0sM4lFzbREDDaP07j+zVibNopK71EPfoWGiozEqLi8gf4WXN/8jMZR9YFEOIx1jZ9TFsfzSfIZbgvTXj+CpcrL8ziq2fe8QY70R/AvcqGaVnr0nb8XUNR1LlUFXcxeDoUHUkhij8SG6OrpTXd0URaGqqoqqqio0TeOqq67i4osvZtGiRXg8njOqAyGEmGkSiIQQWSscDlNfX8/Bgwc5cOAABw8eTP1Jv8NswYYDF3ZcOHCmvXadMPKdzWchMhxFjxkUnefHX+dm78+OAolnILp29tPyag8mu4a32kn/4ZFThhubz4IeN4gMRfHVuVlyW3liEsmxOIXrEiNanelcPppFZfH7yml9vYf+w4mL1MCiHBr/2HHWF/lLP1CBoiozMiR0yQUBSi7MZdv3Dr/tYblnKhBpVpW1n1xAy6vdtL3ee/oNTmPZHZUYupE6N86UoipUXV1I74EhBhsT4btkQy77f3nsjMNy+nlkcmic/7lF7PvFUfoPj2DJMaNqyilHGdQsKr46FwMNo8TG4pRelEv+Si/b/zMxyuPSD1TQd3iY9i19qCYFi9t84v7sOkp+lI6mrsSw1nUK/f399Pb0EmZitDuPx0NxcTFut5vrr78+FXjWrFkjI7wJIbKWBCIhxDnHMAy6u7upr69P/Tly5EjqdV/fRAAxY8GOExtO7DjGXztSyzRl4nmEwrU+RjtDDLeM4a1xseyDlWz5j4NEhqKUXJSLxWWi8Y8dwHhXub7ICRe3qllJdU+quroQDGj8UweqWWXdP9Zx6LetDBwZOaPBCvKWechf5WPvo00AVL+7iMGGEXoPTL8rnGpWMDtNhAeiuIpsLLipjL2PNp1Vi5HJruGrddG9++0/+zSTLUR5yz3014+c1TNOVq+ZpR+o5OD/NDPaHsLqNRMdjZ1RF7bAohw81U4axlv5ln6wks6d/dN6Rix98AdvjYsFN5Sw9f5D6FFj0nkEk8+xJM2iYvNbUnNsVV1dSGQkRuurPVhzzKz/7EL2PNrEwJER3KV2nAU2Orb1p7aPG3FMJQYhRulu7SFiGcNSqdDd0sNQcJAoEwHJ7/eTk5NDUVERV1xxBVVVVaiqyiWXXEJlZeVZz1EmhBCZIvMQCSHOOYqikJ+fT35+PhdeeOEJ7/f19aUC0pEjR2hqaqKpqYnGxkbqj+0mFpsYVcti2LDjwIaTw1vtWHFgw85QvYPeb/SjjplQFIV4WCduSoQfRYVVH6nhyB/a6djah7vETtF5AY483UY8omNxm4hH9FR4AlA06Njan3qmpXCNj5ILchPPIgHFGwIEu8OJAReO071nkO60i2qL04RqTsxD5C5zUHlZAQd+feyUo3npUSMVvuJRg8HGkdTD78UbAgS7QtOebyY2Fk+FofxVXnw1Lg7+T8usDPt9SgosvKmU/voRunYNnHFA81Y7ceTbaHu9l/BglMHGkVTQmE5QNTs1Ft1STtNfOhhuGUM1K1icE79WkwF2ymPXuHDkWVOtWas/WpsYWe7lbkJ9ETq29qNoCkSN1HmkWVU0i0pkOIZmUam5tpj2Lb0Mt46Rt8JL9buK+Nu/7QUD4iE91XoXGozw0jd2MBYdwbXczJHmoww2D6LkxolZw3S19hAhBK2JsplMJspLy4npKhdevoHzzjsPv9+Px+PhyiuvJD8//4zqWQghsp0EIiHEO47f78fv97N+/foT3ovH47S2ttLY2JgKScnA1NzcTFPLPiKR8bvhY6CgYjPsWN+0YxsPS1bdzsD9XWhhM5phwWW2Yc0xEx+fyLL2umIMY7zVQ4FF7y2j9W89HHupKzHSXIGN9m19DDRMhJ/AwhxU0wgDR0Zw5FtZ+sFK9j7SRLA7jLPAhmpRU4MZHPj1xMALhm4QHo4SHW8VWfy+ciIjMY48nXhWxVloI9gVwkhryBrrCU+aNyewMAdFUxhoGMXiNuGpdNKzb2haQz3Hw4lJSec8DAEYEBmJTbsLmqIp5C7JYbBplMhwDFeRHW+NKxFKDKacS0hRwZFvS7W81FxbjMVlYv8vEwE0PBwl2c+ie/fgpFDmLktMNDzaGcKRZ2XpHZXsfbSJYFcYV7Edb5UzFYj2PtrEWH8EZ4GNyEiUYy914S61U3JhbuLf24CFN5YCsO8Xx4hHdaw5ZgyzgZIf5+iRJg5+9wCxvAjmQnjmpS2EjCDkxBgeHSaebDV7azzwVJfj9XrRNI077ryDhQsXYrVaqampYfXq1ZhMcnkghJg/pMucEEKk0XWdnp4empubT/qnvb09NRltkgkzVuxYseGwObFpdtRRMzazndpNZQzuCRHpMChbV0jtNSWpO/nV7yokMhqn5eVuFBXylnkJ9oTxL3TT+moP8YhO7fUlOPOtqclRl36wks4d/fTsHcRk17DnWhlpHcPQDXKX5qBHjcQgEgELaz+5gD2PNDLQMEpOuQN7rpXO7f1TfXQA8lZ4qb2umC33HSAe0fHVuQgPRAl2h09bd/4FbgrX+Djwm+ZpdzU70y5zqllh0c1ldGzvp+/Q6bsMOvKsWL1m+g+PoFlUzvv8Iup/30b3KSYgLVjjY6wnzNCxIN5qF8vuqGTrdw8R6ksOMqDQs3cIRVVwldgZ6wkTG4uTu9RDweqJro0r76lmtCtM/VOtaFaVkgtz6Ts4hCPXRtfuATCgdGMeZoeWaAVS4MIvL6X+mRa6j/ShenWctRba9nZhLlRoP9xFKDaG6tcJjo0y2D80qSsbgKZpuFwuFi1aRFVVFfF4nNzcXK666ipKS0txOp3U1dVJ4BFCiDTyjSiEEGlUVU11x1u7du2U6+i6Tm9vL+3t7Sf8aWtrS71uaW8gFArx1p9fn9h4K5i3WTAbVixYOfymG4tiI2YY2E0Ocmqr6Osepu35VoqW51OzuYy3vn8Us8NEyYW5REdihPrDxEKJZ00sLhMLbijl9f9vP7FgYqJQk02j79AwoYEoR1/sJDyU6CLoqXQSWJiTCkTL7qykZ+8gHdv60WxqYvS8fYP0HxpOtbpUXVlIf/0IjX/qOGGC3BPqJW4QCcZTYcjqMb+tUe3SWXPMhIeiiedsgnH0k7ReHT8haMFqH75aF/2H64lHdN7894PoMR1PpZORjjHiIZ3CtT5yl3rY89MmAIrW+ek9MMTQsSDh4UiiDsc/h6/WlWiN2zuEyaay8kPVHHyihehojFgo8W+Tv8KL2WVi3y+OEQ3GWPmpSupfaKGluZWYI4JW66C/uw1THrx6YC8RPUQsP8pYeIy/fu13RIzx8DkANI1/rm4TxcXFlJeWous6OTk5XHrppRQVFdHX18fKlStZsWIFgUAAVVVnpM6FEGK+kBYiIYSYJYZhMDg4SHd3N93d3XR1daVeT/Wnq6trorvecTRMOOx2zJoVY0TBYrJSvDyP0aYIasRETq6LomW5DOwfw2IzY7XZUCIK1ZeX0PpCL2aTBUVRqb6qiB0P1qOqClVXFxEaiNDwTDu+WhdLP1DJzv+uZ6Q9RMnFuVhdZhr/1I5qVvFUOlFNamri1+hIjJILAmg2jWMvJIYtN9m1VFByFtpY/dFa3vpRA0PHTj50+HRaiHLKHaz4+2p2PFif6rqWfqzyzfnEQ3FaX+vF4jKx9lMLOPxUC3rMYLBpFD2qU3V1EeGhKK2v9uAqsrHqH2rZ+7Mm+utHqHl3EVavhcY/tqPHDVZ/rDbxGp2YEaX4Ej9Hnm8Fs4Fi14lGoljzNdr39mAOqAz1DGHyq/Q2D6A4dIb7RonEw0TiESKRqVvWzGYzdrudiooKioqKCIVCOJ1OLr74YvLy8ujo6GDp0qUsX76cQCCAz+eTwQqEEGKWSCASQogsYRgGw8PD9Pb20t/fz8DAAP39/ak/6f/f19dHX18fg4ODqeXpg0VMRUHBpJkxq2bsOTaUiIrZZMZqt6GhkVPgYrQljDPPjqKDI9dO795hnHk2PKWJrnMjrSGsbiu5dTmMtIcxWzXiQQOr24KnzEnfgWGIKyiKiqfUSceb/dh9VgILPKiKSstLPahmDWfAymhrmLLL81AUhWN/7sJZaiUaiRMeDFN6cS6GYjDYMsLAsRGK1vsJ9oXQ4zqxWBz/QhfBnhCjfSFUC+gY2HPN9B4cIjQcxlvnQrMqDDaPEOwL41/kYmwwjB7XiYaimD0ag50j6MTQ1TiRaIRoLMrYcIi4EiMSiXC6X48mkwmr1YrX66WoqAiTyUQ4HGbNmjUUFBTQ09ODw+Hg4osvxufz0d/fT21tLVVVVbjdbgk4QgiRJSQQCSHEO4BhGASDQUZHRxkdHWVkZGTSn+Hh4dR7fX199Pb2oigKo6OjtLW1EQqFiEajBINBhoaGUFWVWCxGPB4nGAyiKAqxWCz1Jx5/+5OyzgZN0zCZEiMDqqqKyWTCZrMRiUSw2+2YTCZMJhOxWIzS0lLsdjvhcBi73U51dTV+v5+mpiYWLFhATU0NkUiE/v5+zj//fHw+H2NjY3g8HkpLS3E4HBJqhBDiHUACkRBCiLMSi8UYHR3FMIxUcBocHERVVcLhMKFQiGAwyMDAAC6Xi66uLnRdp6+vD03TCAQC7N69G4AVK1aknr2qrq7G7XajqiqdnZ2sXLkSh8NBe3s7OTk5FBYW4nA4aG1tpaKiAo/Hg2EYRCKR1JDQuq7LszRCCCGmRQKREEIIIYQQYt6S22dCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYtyQQCSGEEEIIIeYtCURCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYt0yZLoAQ70SdnZ0MDAxkuhhCCCHeYbxeLwUFBZkuhhDvKBKIhJhhnZ2dvPem94KW6ZIIIYR4p7HZbDzyyCMSioSYQRKIhJhhAwMDoIHpYA7KmAUl1TFVRVGVxEsl7e/x14qqwvji1EaKAuqJ6061/clfp+1TTf1P2vLxF6oysbKiTHSoTa7HxD6N9PeZOI6R2tfEciO9HMnt0zvrppdj/LVx0tcTGxlpH+WEzr9K2rpK2rqk7Sf1WThx/2nLUBSM48o65TYnbJ9WL+nbT3Gs9Pcn7eP4ssAJZTl+m9O9zzTfP+myU60z6X1jyveNKctgTN7fCZ/FOHH/SuIYJz3+pH1NsT1G2uluTKyatq6Sti/luGMpyuTtJ1Y9cXtVMdKOYYxvk1iefK2kLQdQMVLlTmw/sa/kcZLbHP9+8lgqE3+nlimc+L5y3L7SXif/VtO2UdBT+0ouUxU9bd3kcj1VPxoT5dbG100eR1MMlPFlWlpZtbRjpbZXDDTSjpUqq55WluT2+sQxTrJNsozJrxBV0acsa3pdqqSVL62syf1MqpfUfkEbP0uS54qmgDL+fxrKpNeJ9RTU8deqoqKicLTVxL9918vAwIAEIiFmkAQiIWaJEjShBs1pIUid9BpIXp2ML1LTroZODERKeqBJDz7p605afvy6x21/fLhKK4uhpF2NThGyUiEn/f3xS7TEChPLJy4VE+sk354USFL7T3utTrX8JMvU4/d1inVT7ysnrpsWAqcMVOlh5mSvU9sraa9PLNfkdad+PeX7nOb902x/uuNPGQ458bNOdazJ758mEB237qRjnrDuSQJR+vLU8acKNNMIROmvp9heSQsvU20zcbpMXLgrqXIZk5an9pO2LHmRzRTboBhpnyEtEKVvf5LwcsKyk74/VWCYCA5a2jbp60IiDKQvm1g3bVn66+NChqboqOOVlb6vxGvGX0+EsGRg0JSJwKElv8aYOP7kfelp2yRf6xP7TSvLRLjRU2XV0upEI718kwPR5DJPLl+y3BPLJgKPlhZ+NCW5npq2LPF/QojZIT9dQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYtyQQCSGEEEIIIeYtCURCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLVOmCyDEO5XhiKErKkrqtoOKoiqJl0ra3+OvFVWF8cWpjRQF1BPXnWr7k79O26ea+p+05eMvVGViZUWZuF2SXI+JfRrp7zNxHGPSMcfXndhB2rLkfzjhvdQ2OhPHUpKvJ9Y10j7KCftK+yikbT/5fWWKdU/4qGkvjlvv+G1O2D6tXqYoV3r50983pihL+jEm7WuKbU73/lRlner9ky471TqT3jemfN+YsgzG5P2d8FmME/evJI5x0uNP2tcU22Okne4TJ5CStq6Sti/luGMpyuTtJ1Y9cXtVMdKOYYxvk1iefK2kLU/tJ1UWgxPqCiO1L0Mx0NPeNyatk/hbH1+mKhOfUSW5zEgd//jXyb/VtG2U8R/O5NeJioGq6GnrJpfrqfrRkp8PA2183eRxNMVAGV+mMVFXWtqxUtun7UtN+xqaOKaSeq2hoIyvoaXWM1DHK1NVlInXqff1KcuaqiuM1Ovjy5rcz6R6SSufNn6s5D+VpoAy/n+Jsk68TqyXVj5FRUXhaKtctgkxG+QnS4gZpus6JpOJ2MKhTBfl3GAc9/cMmeq6W4h3iok4lLp3MA+lJ9z50+HFZDKh6/P3X12I2SCBSIgZpqoqsViMr3zlK1RUVGS6OEIIId4hjh49yte+9jVUdf4EQCHmggQiIWZJRUUFCxcuzHQxhBBCCCHEKcgtBiGEEEIIIcS8JYFICCGEEEIIMW9JIBJihgUCAe6++24CgUCmiyKEEOIdRH6/CDE7FMMwZnhsJyGEEEIIIYQ4N0gLkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3jJlugBCvFNEIhF++MMf8qc//Ynh4WFqamq45557WL9+faaLJkTW+c1vfsP999/P/v37GRoawu/3s2TJEu69915uvvnmTBdPiNMKBoP84he/YN++fezfv5/h4WG+9KUvcc0110xa73e/+x1/+tOfOHbsGCMjIwQCAVavXs3dd99NUVHRpHX7+vp48MEHee211wgGg1RUVPDBD36QzZs3n3D8rVu38sgjj9DQ0EA8Hqe0tJSbb76Zq6+++qz2+dJLL/H8889z4MAB+vr6yM/P54ILLuCuu+7C7XbPUK0JkZ0kEAkxQ77+9a/z4osv8t73vpfS0lL+8Ic/8M///M985zvfYcWKFZkunhBZ44EHHuDjH/84RUVF3HjjjQQCATo6OtiyZQtPPPGEBCJxThgcHOTHP/4xBQUF1NbWsmPHjinXO3z4MEVFRVx00UW43W7a29v5/e9/z9/+9jd+9KMfkZubC8Do6Cif+MQn6O/v55ZbbsHv9/PCCy/w1a9+lVgsxpVXXpna5yuvvMKXv/xlli5dyt13342iKLzwwgv827/9G4ODg9x6661nvM/77ruPQCDAVVddRUFBAUeOHOGJJ57g9ddf54c//CFWq3UWa1OIDDOEEG/b3r17jY0bNxqPPfZYalkoFDJuu+0242Mf+1gGSyZE9lmzZo1hsViMzs7OE97r6enJQImEOHPhcDh1vu7fv9/YuHGj8cwzz0xr2wMHDhgbN240HnnkkdSyxx57zNi4caOxdevW1LJ4PG585CMfMf7u7/7OiEQiqeWf/exnjRtvvNEIh8OpZdFo1LjtttuMu++++6z2uX379hPK+Yc//MHYuHGj8bvf/W5an0uIc5U8QyTEDHjppZfQNI3rr78+tcxqtXLttdeyd+9eOjs7M1g6IbKP2WzGbDafsDwQCGSgNEKcOYvFctbna2FhIQAjIyOpZbt27cLr9bJ27drUMlVV2bx5M319fezcuTO1PBgM4na7sVgsqWUmkwmPxzOpJedM9rl69eoTynnJJZcA0NTUdFafU4hzhQQiIWbA4cOHKS0txel0Tlq+ePFiAOrr6zNRLCGy0m233cbo6CjLli3jC1/4As888wxDQ0OZLpYQs2pwcJD+/n4OHDjA17/+dYBJQSUajU7ZLc1mswFw8ODB1LJVq1bR2NjIQw89REtLC62trfzkJz/h4MGDvP/97z+rfU6lt7cXAK/XO81PKcS5SZ4hEmIG9Pb2TnmnMLmsp6dnroskRNb6/Oc/TyAQ4IEHHuBb3/oW9913HyaTiWuvvZb/+I//oKqqKtNFFGLG3XzzzUQiEQA8Hg+f/vSnJw26U15ezrZt2+jo6Ei1IAG89dZbwOTfI3fddRft7e088sgj/PSnPwUSIedf//Vf2bhx41ntcyqPPfYYmqaxadOms/3YQpwTpIVIiBkQDoen7P6T7M4QDofnukhCZC1FUfjQhz7Em2++SXd3N0888QQ33XQTTz75JNdddx3xeDzTRRRixn3zm9/km9/8Jp/4xCfIz89nbGxs0vvXXXcdqqry1a9+ld27d9Pa2sqjjz7Kyy+/DEz+PWI2mykrK+PSSy/lq1/9Kl/5yldYuHAhX/va19i7d+9Z7fN4zz33HE8//TS33norZWVlM1kVQmQdaSESYgZYrVai0egJy5N3A2V0HiGmFggEuOGGG7jhhhvo6enh+eefp76+noULF2a6aELMqDVr1gCwYcMGLr74Yu666y7sdntqVMWamhr+1//6X3zrW9/iE5/4BAB+v59PfepTfOtb38Jut6f29e1vf5t9+/bx0EMPoaqJe9uXXXYZd955J/fffz8PPvjgGe8z3a5du/jGN77Beeedx0c+8pHZqRAhsogEIiFmQCAQoLu7+4Tlyf7XyWFVhRDw4osvsmnTJhRFSS2LRqP09fUBE883CPFOVVJSQl1dHX/+858nDTN/6aWXctFFF1FfX4+u6yxYsCA1nHeylSYajfL0009z++23p8IQJAZVOP/883niiSeIRqOpXgvT2We6+vp6vvSlL1FdXc2//uu/YjLJpaJ455OzXIgZkJyDYnR0dNLACvv27Uu9L4RIuOGGG8jJyWHDhg1UVFQQjUZ57rnn2LdvH7fccgsVFRWZLqIQsy4SiaR6EaQzm82pAXkAtm3bBsC6deuAxOAM8Xh8yq6l8XgcXdfRdf2M9pnU2trK5z//eXw+H9/85jdxOBxn+emEOLfIM0RCzIBLL72UeDzOU089lVoWiUR45plnWLJkCQUFBRksnRDZ5etf/zqrV69my5YtfO973+PRRx/F5XLxwAMP8Nhjj2W6eELMmFgsxvDw8AnL9+3bR0NDA4sWLTrl9s3NzTz55JNceOGFqdYcn8+Hy+Xi5ZdfntRVOxgM8uqrr1JeXn7KbtpT7RMSPRo+97nPoaoq9913n4wsJ+YVaSESYgYsWbKEzZs389///d8MDAxQUlLCs88+S0dHB1/84hczXTwhssq9997Lvffem+liCPG2/eY3v2FkZCTVPfrVV1+lq6sLSIwqZxgGt9xyC5s3b6aqqgqbzUZDQwN/+MMfcDqd3HnnnZP2d8cdd7B582by8/Npb2/nySefJCcnh8997nOpdTRN47bbbuOhhx7iYx/7GFdffTW6rvP000/T3d3NV77ylTPeJ8AXvvAF2traeP/738/u3bvZvXt36j2fzzdpRDwh3mkUwzCMTBdCiHeCcDjMD3/4Q/70pz8xMjJCdXU199xzD+edd16miyaEEGIW3HrrrXR0dEz53i9/+Utyc3N54IEH2LFjBx0dHYTDYXJzc1m7di133nknRUVFk7b5P//n/7B79276+/vxeDxcdNFFfOhDH8Ln852w/+eee47HH3+c5uZmotEoNTU13HbbbVx66aVntc/kJKxTWbVqFffff/80a0WIc48EIiGEEEIIIcS8Jc8QCSGEEEIIIeYtCURCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYt/7/F37nGIXDMAIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZhc1f3/X3fcdmfW3SWebJSEhOAeIECQoCG4FmkpfKGFCqW0UKw/aItTIFCgNGhwgoQQd1/JuruMn98fkx02yWpWZmf3vJ5nnmRn7tz7mbln7j3v8zFFCCGQSCQSiUQikUgkklGIKtAGSCQSiUQikUgkEkmgkIJIIpFIJBKJRCKRjFqkIJJIJBKJRCKRSCSjFimIJBKJRCKRSCQSyahFCiKJRCKRSCQSiUQyapGCSCKRSCQSiUQikYxapCCSSCQSiUQikUgkoxYpiCQSiUQikUgkEsmoRQoiiUQikUgkEolEMmqRgkgikUhGAKmpqaSmpgbajEHjwQcfRFEUvvnmm15tv2TJEhRFoaCgYFDt6oqCggIURWHJkiUBOX4wEsxjeKjGW19/BxKJpHdIQSQZVSiK0uND3mgkkt6hKArHHXdcoM0IGMP187/88su9uta1PwIlGiWH037uXn755UCbIpGMKjSBNkAiCQQPPPBAl68F6wqlZHTz5ZdfBtqEYcXDDz/MPffcQ0JCQqBNGXJycnK6vcYBfPbZZ/z444/ExcURERExRJZ1TzCP4aEab7fccgsXX3wxycnJg3ociWS0IQWRZFTy4IMPBtoEiWRAycjICLQJw4q4uDji4uICbUZAyMnJIScnp8vX16xZwyOPPILBYGD58uWEhIQMnXHdEMxjeKjGW2RkJJGRkYN+HIlktCFD5iSSLsjPz8dmsxEeHs7+/fsPeq2lpYVx48ahVqsPCrFrjyPPy8vjb3/7G2PHjsVgMJCYmMgdd9xBY2Njp8dav349559/PtHR0ej1elJSUrjpppsoKys7bNuKigp++ctfMmbMGMxmMzabjTFjxrBkyRLy8vL82/UUetFZuE/H+PQ33niDo446CovFcpDXrLW1lYcffpicnBzMZjMWi4U5c+awbNmy7r/QQ2jPF2hubuaOO+4gKSkJo9FITk4O//vf/wBwu9089NBDZGVlYTAYyMjI4O9///th+3I6nfz973/njDPOICUlBb1eT3h4OCeddBKffPJJt8dvaGjglltuISEhAYPBwPjx43nqqacQQvT6sxx33HEoioLD4eD+++8nLS0NvV5PRkYGv/vd73A6nYe9p/37Ly8v55prriEhIQG1Wn3Q+frPf/7D/PnzsVqtGI1GJk2axMMPP4zD4ejy83TGsmXLOP7447HZbBgMBsaNG8cf//jHTvcDsGvXLpYuXUpqaip6vZ7o6GiOOeYYnn32WeDnsQWwcuXKg8KvDl1s+Omnn1i0aBGxsbHodDqSkpK4/vrrKS0t7fTY69ev57TTTiMkJITQ0FBOOukkfvzxx0637Y7Ocjo65vUUFBRw8cUXExkZicFgYMaMGXz44Ye92ndfPn/7cftyrL6er75QXFzMwoULsdvtvPjii8ycObPX73355Zc5//zzSU9Px2g0Ehoayty5c3nttdcO2/a///0viqIwe/ZsXC7XQa9t27YNk8lEfHw8lZWV/uc7G8NOp5OnnnqKadOmERYWhslkIjU1lXPOOYcvvviiV3YPxXV5IMbbcccdx1VXXQXAVVdd1WlYY1c5RO3Xk+rqaq677jri4uLQ6/VMmDCBl156qdPP53A4ePDBB0lPT0ev15OWlsb999+Pw+EYtuGgEsmgISSSUQQg+jLs3377bQGIo48+WrhcLv/zV1xxhQDEgw8+eND2V155pQDE2WefLWw2m7juuuvE3XffLaZMmSIAMX36dNHW1nbQez744AOh0+mEVqsVixcvFvfcc484+eSTBSDi4+NFXl6ef9uWlhaRkZEhAHHyySeLu+66S9x5553i/PPPFzabTXzwwQf+bV966SUBiJdeeqnL7+LYY4896LkHHnhAAGLBggVCr9eLRYsWiV//+tfihhtuEEIIUVdXJ6ZOnSoAMW3aNHHLLbeIm266yW/Tfffd1+vvNiUlRcTHx4vZs2eL7OxscfPNN4trr71WWCwWoVKpxBdffCHOO+88kZCQIK655hpx8803i+joaAGIN99886B9lZWVCZVKJebNmyeuvvpqcc8994grr7xShIeHC0A899xznR4/Li5OzJgxQ2RmZoo777xT3HLLLSIuLk4A4qabbur1Zzn22GP95z0uLk7ceuut4s477/R/LwsWLBBer/eg9wBi0qRJIiUlRUyYMEHccsst4rbbbhMff/yxEEKIe++9VwAiMjJS3HDDDeKXv/ylmDBhgv+8ORyOwz5PSkrKYbZdddVVAhCJiYli6dKl4s477xRHH320AMRxxx130LgWQogPP/xQGI1GoVKpxBlnnCHuuececcMNN4g5c+aI1NRUIYQQGzdu9I+VlJQU8cADD/gfX3/9tX9fL7zwglCr1cJkMomLL75Y/OpXvxILFy4UKpVKxMXFif379x907B9++EEYjUahVqvFBRdcIO69915x+umnC51OJ0477TQBHLT/7mj/Lebn5/ufy8/P93/uqKgocdRRR4nbb79dXHHFFUKv1wuVSiW++uqrHvfdm89/pMfq6/nqCy0tLWLatGl9/q22YzAYxPTp08WVV14p7rnnHnHttdeKhIQEAYj777//sO1vvvlmAYhf/epXB9kwbty4Tj9/Z2N48eLFAhATJ04Ut912m/j1r38tLr/8cpGWlibuuuuuXtk92Nfljsfoz3h76aWXxDnnnCMAcc455xw0rurq6oQQP1+jD/0dAGLKlCkiOztbTJw4Udxyyy3i2muvFTabTQDi5ZdfPmh7r9crzjzzTAGIrKwsceedd4pbb71VJCQkiIULF3Z6f5BIRjJSEElGFe2CqOONpuPj4YcfPuw9N954owDEPffcI4QQ4uWXXxaAOP7444XH4zlo2/abYkREhCgoKPA/7/F4xHnnnScA8fvf/97/fFNTkwgPDxcqlUp8++23B+3rz3/+s1/4tPP+++8LQNx+++2H2elwOERjY6P/7/4IIpPJJDZs2HDYe9o/3yOPPHLQ821tbeLUU08ViqKIjRs3dnq8Q0lJSfGLBbvd7n/+22+/FYAICwsTM2bM8E8EhBAiNzdXaLVakZOTc9C+7Ha7KCoqOuwY9fX1YsKECSIsLEy0trZ2evy5c+cedPyamhqRnp4uALFy5cpefZZ2QZSVlSVqa2v9z7e1tYnZs2cLQLz66qsHvad9LF5++eWHTXJXrVolAJGUlCTKysr8z7tcLrFgwQIBiIceeuiwz3PoZLJ9DJx77rmHff72c/3EE0/4n6uqqhKhoaFCq9WKb7755rDPeeh33N2kaffu3UKr1YqMjAxRXFx80GtffPGFUKlUYuHChf7nvF6vGDNmjADE//73v4O2f+KJJ/zf10AIos4WM1asWCEAcfrpp/dq/0J0//mP5Fh9PV99wev1ikWLFvn3f6hA7w379u077DmHwyFOOOEEodFoDjvPdrtdTJ06VSiKIj755BMhhBBLliwRgPjtb3972L4OHcP19fVCURQxffp04Xa7D9u+urq6V3YP9nW54zH6O956um53J4gAcfXVVx/0XW3fvl2o1Woxbty4g7Z/9dVXBSCOOeaYgxZX6urq/L9DKYgkowkpiCSjivabRlcPq9V62Hva2trElClThKIo4umnnxZms1lERUWJ0tLSw7Ztvyl2vLm2k5ubK1QqlX+VXQghXnvtNQGIxYsXH7a9y+USqampAvCvpLcLonvvvbfHz9ofQdSZ4KqurhZqtVrMmDGj0/1t2rTpsNXg7mgXJJ1NstLS0gQgvvzyy8NeO+6444RGo+l0gtQZjz32WKfipv34h054hPj5u1uyZEmvjtEuiA4VPUII8fXXX/tXiTsCCJ1OJyoqKg57zzXXXCMA8c9//vOw13bv3i1UKpVIS0s77PMcKohycnKERqM5SFS243a7RUREhJg5c6b/uUcffVQA4rbbbuvu4x70GbqaNN1+++0CEB9++GGnry9cuFCo1Wq/iP/+++8FIObPn9+pre3etoEQRCkpKZ2On+TkZBEREdGr/QvRO0HUl2P19Xz1hfvvv18AIicnRzQ3Nx/RPrri3XffFYB45ZVXDnttz549wmKxiKioKPHXv/7Vf447+04OHcMNDQ0CfB76IxFw7Qz2dbnjMfo73vojiEwmk2hoaDjsPfPnzxeAaGpq8j934okndrno0/75pSCSjCZkUQXJqET0IT/EYDDw1ltvMWPGDG699VYUReGdd97pNoH22GOPPey59PR0kpKSKCgooL6+HpvNxoYNGwA44YQTDtteo9Ewf/58CgoK2LhxI8nJyRx77LEkJCTw5z//mQ0bNnDGGWcwd+5ccnJyUKvVvf5MPTFr1qzDnlu7di0ej6fLPIn2PIGdO3f2+jg2m63TROr4+Hjy8/OZPn36Ya8lJCTgdrspLy8/qKLT9u3b+etf/8q3335LWVkZdrv9oPeVlJQcti+NRsPRRx992PPtsfMbN27s9WeBzs/7vHnzUKvVne4rNTWV6Ojow57vblxkZ2eTmJhIfn4+DQ0NWK3WTm1pbW1l8+bNREZG8sQTT3S6jV6vP+h8rV69GoDTTz+90+37Qnvez8qVK1m7du1hr1dWVuLxeNizZw/Tp0/3f+bOvkO1Ws28efPIzc3tt11Al7+XpKSkI8pXGohjHcn56i3Lli3jj3/8IzExMSxfvhyz2XzYNgUFBZ3mG3b8rRcWFvLII4/w5ZdfUlhYSFtb20HbdvYby8rK4h//+AeXXXYZv/rVr4iMjOSNN97o1fUqNDSUs846iw8++ICcnBzOP/98jjnmGI466ihMJlPPH/wQBuu63BNDNd6ysrIIDQ3t9DgAdXV1WCwWwHdtU6lUnV7/5s2bN2A2SSTBghREEkkvyM7OZvLkyaxatYrx48dzyimndLt9TExMp8/Hxsayf/9+GhoasNlsNDQ0AHQprtqfr6+vB3wThNWrV/PAAw/w/vvv8+mnnwK+ykM33XQT999/P1qt9kg+4mF2HkpNTQ3gE0adTXDbaW5u7vVxuprMazSaLl9vf61jovbq1as54YQTcLvdnHjiiZx99tmEhoaiUqnYtGkTy5cv7zQhPTIystOJSvvnbz8/vaWz867RaIiMjDwoefzQ4xxKb8ZFYWEh9fX1XX6HdXV1CCGoqqrid7/7Xa/sbx9nA1E6uH28/PWvf+12u/bx0v6Zu/vtDBQ2m63T5zUaDV6vd8CO05djHcn56g1r1qxh6dKl6PV63nvvvS4n8AUFBZ0et10Q5eXlMWvWLOrq6jjmmGM45ZRTsFqtqNVqCgoKeOWVV7os+nDKKacQGhpKY2MjF1xwQZ/G11tvvcUjjzzCG2+84S8lbjAYWLRoEY8++miX46UzBuu63BNDNd66Ow6Ax+PxP9fQ0EB4eLj/tY705TuVSEYKssqcRNIL/vznP7Nq1SoiIyPZvn07Dz/8cLfbV1RUdPp8eXk58PNEv/3f9ucPpb2aUcdJb2JiIi+88AKVlZVs27aNp556ioiICH7/+9/z+9//3r+dSuX7ebvd7sP229ONvL2CVkfabbjjjjsQvnDbTh9ff/11t/seDP74xz/S1tbGZ599xieffMITTzzB73//ex588EGOOuqoLt9XXV190CShnUPPU2/p7Ly73W6qq6s7Xbnt7HvueNy+jIuu9jF16tRuz1dHb2n7hKqzlf6+0n78hoaGbo/dvmrfvn1Pv52RypGcr54oKSnxV5R77rnnmDNnTpfbHnfccd0e629/+xs1NTW88MILfPPNNzz11FP84Q9/4MEHH+TUU0/tcr9CCK644goaGxuJjIzkX//6F99++22vP4PRaOTBBx9kz549FBYW8tprrzFv3jxee+01Fi1a1Ov9wOBel4ON0NBQamtrO70/dPU9SSQjGSmIJJIeWLVqFb/97W8ZM2YM27ZtY8yYMTzwwAN8//33Xb5n5cqVhz2Xl5dHUVERqamp/onn1KlTAQ4roQq+ifR3330HwLRp0w57XVEUJkyYwK233srnn38O4C9XDRAWFgZAUVHRYe9dt25dl7Z3xaxZs1CpVH6bhhP79u0jPDy80zKxnZ2LdtxuN6tWrTrs+fbz0X5+ektnx/r+++/xeDx92ld342Lfvn0UFxeTlpbW5YowgMViYcKECWzfvp3a2tpeHXf27NkAXZYqPxSVStWpoOy4r96Ol/Yx3tl36PF4uv29BYruPn9fOZLz1R2tra2cffbZlJWV8etf/5rLL7+8X/vbt28fAOeff/5hr3X3G/vrX//KihUruPTSS/nqq6/QarVccsklfg9iX0hKSuLSSy/l008/JTMzk++//75P+xmK63J/afdYD9S46oqpU6fi9Xo7vf4Nx9+aRDLYSEEkkXRDXV0dixcvRq1W8+abbxITE8Nbb72FRqPhkksu6XLi8uSTTx7Uu8jr9fKrX/0Kr9fr7zMBsHDhQsLDw1m2bJk/f6OdJ554gvz8fE466SR/mMv27ds7Xb1rf65jXP2MGTNQqVS88cYbtLa2+p+vra3l7rvv7vN3ER0dzaWXXsq6dev4wx/+0OkNOzc3l/z8/D7vu7+kpqZSW1vLli1bDnr+hRde8IcVdsW99957UKhPbW0tf/zjHwEOOle94Q9/+AN1dXX+v+12O/fee2+f97V06VLA5/mqqqryP+/xePjlL3+J1+vl6quv7nE/d955J06nk6VLl3bqFayrq/PnSwBceeWVhIaG8uyzz3a6il9cXHzQ3xEREZ0KboBbbrkFrVbLHXfcwZ49ew573el0HiSWjj76aMaMGcO3337L8uXLD9r273//+4DlDw0k3X3+I6Gv56srhBBceeWVbNiwgbPOOos//elP/batvT/QoSLh008/5fnnn+/0PatXr+a+++4jMzOTZ599lkmTJvH4449TUlLClVde2aO3q6qqiq1btx72fEtLC83NzWg0GnQ6Xa8/w2BdlweSiIgIwJevNZhcccUVANx///0H9UlraGjgD3/4w6AeWyIZjsgcIsmopLOiAO0sXLjQ3+V96dKlFBYW8tRTT/mfmzJlCo899hi33HILS5Ys4f333z9sH+2FDi666CKsViuffvopmzdvZvr06QeJEYvFwosvvsgFF1zAscceywUXXEBycjLr16/ns88+IzY2ln/+85/+7T///HN+9atfMWfOHLKzs4mOjqa4uJjly5ejUqn41a9+5d82Li6OSy+9lH//+9/k5ORw5pln0tjYyMcff8z8+fP7XDAAfBPTvXv38tvf/pZ///vfzJs3j5iYGEpLS9m5cydr165l2bJlpKWl9Xnf/eH222/n008/Zd68eVx44YVYrVbWrVvH999/z6JFi3jnnXc6fV9cXBwOh4OJEydy9tln43K5eOeddygrK+Omm25i/vz5fbJj3LhxTJgwgUWLFqHValm+fDm5ubmceeaZfVqhP/roo7n77rv5y1/+wsSJE1m0aBFms5lPPvmEbdu2MW/evIPOdVcsXbqU9evX88wzz5CRkcGpp55KcnIytbW15Ofn8+2333LVVVfxj3/8A8Cf8L5o0SKOP/54Tj/9dCZPnkxjYyNbtmyhqKjoIMF74okn8uabb3LWWWcxbdo0tFot8+fPZ/78+YwdO5YXX3yRpUuXMmHCBE477TSys7NxuVwUFhby3XffERUVxa5duwCfx/OFF17g5JNP5vzzz+e8884jMzOTTZs28eWXX3LaaaexYsWKPp2Pwaa7z38k9PV8dcVjjz3GO++8g0qlIisr66BQ2s5YsmRJl01927npppt46aWXuOCCC1i0aBHx8fFs27aNFStWcOGFF/LWW28dtH19fT2LFy9GpVLx5ptvEhISAsANN9zAl19+yTvvvMPf/vY37rrrri6PWVJSwtSpU5k0aRKTJ08mKSmJxsZGPvzwQ8rLy7ntttv8++0Ng3VdHkjmzJmDyWTiiSeeoKamxp87d+uttw5oiN4VV1zBm2++yYoVKw66/r377rvMnDmT3bt3+8OuJZJRwaDVr5NIhiH0UHabDuVOn3rqKcGBZn6dce655wpA/O1vf/M/1156NTc3Vzz66KNizJgxQq/Xi/j4ePGLX/yi05KoQgixZs0asXDhQhEZGSm0Wq1ISkoSN9xwgygpKTloux07dog77rhDTJ8+XURGRgqdTidSUlLE+eefL3744YfD9mu328Uvf/lLkZCQ4O8J86c//Um4XK5uy253V9rY4XCIp59+WsyZM0eEhoYKnU4nkpKSxAknnCAef/zxXvcG6aqRqBA/l7HujM7K2wrha6R41FFHCYvFIqxWqzj55JPFypUruyxj2378+vp6cdNNN4n4+Hih0+nE2LFjxZNPPtmnMr/t9trtdnHfffeJ1NRUodPpRFpamnjwwQcP6nPUTmff/6EsW7ZMzJ07V1gsFqHX68X48ePFH//4x8OaSHb8PJ3xwQcfiDPPPFNERUUJrVYrYmJixMyZM8V9990ndu7cedj227ZtE5dffrmIj48XWq1WREdHi/nz5x9WBryiokIsXrxYREdHC5VKJTjQ46sjW7ZsEVdeeaVITk4WOp1OhIWFiQkTJojrrruu07Lq69atE6eeeqqwWCzCYrGIE088UaxatapXY7Mj3ZVBvvLKKzt9T3fjrjO6+/z9OVZfz9ehtH/23j56+53+8MMP4vjjjxc2m01YLBYxd+5c8d577/lLy3c89+39fTpeH9upr68XaWlpQqvVip9++sn//KFjuK6uTvzud78Txx9/vP/3GRsbK4499ljxxhtv9Po3OtjX5Y7HGIjx9sknn4jZs2cLs9nsP0ft++2u7HZX15OurpltbW3iN7/5jf96lZKSIv7v//5PFBcXC/A1h5VIRguKEH3I0JRIJN2yZMkSXnnlFfLz83tccZUElvbzU1BQ0O99HXfccaxcubJPCe8DTWxsLFarld27dwfMBolkOCKvy33j888/55RTTuGee+7psYCQRDJSkP5QiUQiCXJqa2uprq4mMTEx0KZIJJIgobS09LDnampquOeeewA499xzh9okiSRgyBwiiUQiCVIaGhp49NFH+fTTT/F4PH0uQyyRSEYvd955J5s3b+boo48mKiqK4uJiPvnkE2pra7n++us7bdAtkYxUpCCSSCSSIKWuro6HH36YtLQ0Hn74Ya6//vpAmySRSIKE8847j4qKCj744APq6+sxGAxMmDCBq6++uldVLCWSkYTMIZJIJBKJRCKRSCSjFplDJJFIJBKJRCKRSEYtUhBJJBKJRCKRSCSSUYsURBKJRCKRSCQSiWTUIosqSCQSiWTIEEIghMDr9eJyuaitrUWlUhEREYFGo0FRFAD/vxKJRCKRDDZSEEkkEskIxuPx4HA4aGlpoaKigoaGBtRqNc3NzezatQu1Wo1KpaKyspK8vDwiIyPxer2UlZXR2tpKVFQUbreb3NxczGYzJpOJhoYGysrKCAkJwePx0NDQgNPpRKvV4nK5aG1t9Qsft9uN2+1GCIHH48Hr9fr/7QyVSuW3qf2h0Wj8YkmlUmE0GtFoNLhcLgwGA1arFbVaTWNjI3FxcYSGhtLW1kZrayvp6eloNBqqqqowmUzExcWhUqmorq4mPT2d6Ohov51jx47FYrHg8XiwWq3ExMRgNpvR6/Wo1eohPnMSiUQiGSpklTmJRCIZpgghaGlpoaCgALvdTltbG0VFRezbt4+QkBAaGhrYs2cPdXV1aDQaGhoaKCgoQK1W43Q6aWxspKWlhZ4u8yqVCrPZjKIofk+N0+lECIHRaPQLBpVK5d++o3DRaDSo1WqMRiM6nQ4hBAaDAYvFgkqlwuVyYbPZMBqNeDwehBBERUWh0WjYtGkTAJMnT8btdlNdXY2iKGg0Gux2O/X19Wg0GjweD83NzTgcDhRFwel00tbWhtvtPkxotYstr9eLVqsFoK2tDUVR0Ol0uN1uampq/N9vV+KsHUVRMJvNhIaGotPp8Hg8pKamYrVacbvdhIWFkZ2djdVqpampiczMTJKSkjAajRgMBlJTU/3fr0QikUiGH1IQSSQSyRDR1tZGTU0NFRUVbNmyBZfLRUtLC3l5eezZsweDwUBVVRWFhYU0NTXR1taGy+XqdF9Go5GwsDB0Oh0mk4mMjAysVit1dXUkJCQQHx+PWq3m/X+twF7qQvFoMIYY0Kq1uOu96Ax6bPEWzGFGLFEmTFFGTJF69Fat/xhej8DR4MJe58TR6MLZ5MLV7MbZ7MbZ5MLZ7MbV7MbrDuxtRK1ToTVr0JrVaM0adBYNuhAteqvvYbDp0IVqUal9gkQIgaPeRWu1g9ZqOy3VrbTU22koa8LR6kBjU+HyuGhrsiPUbgzxWs6+7jQ8Hg+lpaWUlJQQFhZGQ0MDubm5tLa24nQ6qauro62trVMbtVotRqORkJAQkpOTiYqKwm63k52dTXp6OmazGa1Wy+TJk4mJiSEiIgKj0TiUX6NEIpGMWqQgkkgkkn7Q7tUoKSlhw4YN2O12Ghoa2Lt3rz8krbKyktLS0k4nyyaTibCwMDQaDWPHjiU2Nhav10tISAjjx4/nH7e8ijU6BE+TgtKmQqvSoUWLInofwmUI12GJM2CJM2KONWKONaAz+yKmhVfQVuuktcpOW7WDtlonjjoX9nqfCGKQ7xBpp8UBkL+ibHAPpIAuRIvBpsUYrsMYqccYoff9G65DUfnEkrPZRUu5neZyOy3lbbSU22mrdfb6exCKBxcuXF4nwuhFHSJoqGzihr9fwY4dO2hubkZRFCoqKti5cydut5u6ujpaW1sP25fRaCQ+Pp7o6Gg8Hg9jx44lKysLq9WKwWBg2rRpJCQkEBkZiUYjI+AlEonkSJGCSCKRSLqgtbWVHTt2UFVVRWVlJTt27GDLli2o1WrKysrIz8+noaHhsJCrqKgoIiIi0Gq15OTk+PNWvnjxe9yVAi16LBYzSqsGVR+ETW/QmjWEJpsITTJhifeJH43edwx7vZOWcrvvUXlAANU4Ed7A3Qam35oFwPqn9wbMBkWlYAjTYoo2YI4xYI41YIk1+r1lHqeH5jI7TcWtNBa10lTciqvFM6A2eFUehNFNS3MLThxoohVOWjrPn8+1adMmXC4XNTU1VFVVHfRelUqF1WolLS3NL6gnT57M+PHjiY6OJioqivHjx2MymQbUZolEIhkpSEEkkUhGJUIIqqqq2L59O+vXr8ftdlNcXMymTZsoLy+noaGB6urqg94TFhaG2Wxm0qRJJCYmotPp+PGdDbgrFPQcyJlp1aCIoetoYIrWE5psJjTRRGiyCUOYDvCJn6biNprL22gpa6O5zI67bWAn8SMdjVF9QBwZCEkwEZJkQh/qE0n2OqdfHNXnt9BW7Rgyu4TixWty+3KqsKOJEcxZNA2n00lxcTHbtm2jpaWF2trag94XGRmJ1WolNjaWnJwcEhMTUavVzJgxwy+eZJ6TRCIZjUhBJJFIRix1dXXk5eWxdu1a8vLy/AUKNmzYQH19PXa73b+t1WolKSmJkJAQIiMjmTVrFst+s5zw6DBUTVrUbXrUSuArjeltWmzpFmxpZmxpFrRmDV6PoKW8jcaiAx6MolacTe5Amzoi0YVqCU00EpJkIiTRhCXOgEqtwtnsoj6/hYb8Furzm3HUd577NZR4hAeP0YE3xEVtZR2L/3AOa9asobq6mqamJoqKimhoaPBvbzAYsNlsTJs2zV8IIj09nRkzZpCRkUFYWFgAP41EIpEMHlIQSSSSoKXdy7Nv3z6++eYbqqurqaioYPv27ezdu/egvAy9Xk92djZpaWmo1WomTJjA+3/8EpPagkljRuUcnjkYap0KW4aFsEwLtjQLhjAdwitoKm2jIb+Z+vwWmopaA17Y4EjJuT4DgE3/zA2wJUeGSqMQmmzCmmbBlmrGEm9EUSnY653U5zZTu7eJ+rwWvK7uK9kFCq/OTau7hVZPM+f85iS2bduGx+MhPz+fPXv24HD87PkymUxkZWUxYcIEoqOjiYyM5PjjjyczM5OoqCjpXZJIJEGLFEQSiWTY43Q62bZtGytXrqS+vp59+/axbt06CgsLD/LyREREMH78eFJSUtjx3R48ZWr0TiNGtQWNRxs0Eza9TUt4dgjh2aFYU02o1Cpaq+zU5/m8Dw0FLXgcw3OC3Veyz00AYM97JQG2ZGBQ61WEJpuxpZsJywzBFKnH6/bSUNBC7d4m6vY2Y69zBtrMXiGEwKN20+ppxqFrRR3nYfwx2ezfv5+dO3ceFFJqMBhISkpixowZZGVlYbPZOPbYY5k4cSI6nS6An0IikUh6RgoiiUQybGhsbGTXrl3s3LmTXbt28fXXX1NaWkppaSkejy//xWazMWHCBOLj48lbU4hrvwojZszqEFTewIe0HSnmOAOR462EZ4dgjjb8PIne00Tt3qZhEYIl6TuGMB3h2SGEZYVgTTGh0vjEbfXORmp2NNJSYe95J8MUr8pDq6eZVprRpnjJOCqF0tJStm/fTl1dHQBqtZr4+HhiYmKYM2cOYWFhzJgxg1mzZhETExPgTyCRSCQ+pCCSSCRDihDCX3K4Xfi0/7+k5GcvQXJyMvHx8dTuaURVa8CshGDV21A5tN3sPbgwxxqInGAlcrwVY7gOV6ub2t1N1O5poj6vGY9zZHiBusMUowegtWLoihIECpVWhS3dTMSYUMLHhqA1amircVC9s5Hq7Q20lAevODoUr95Fg6OeFtGEN8KBNd1EcXExZWU/l1ePiIggISGB5ORkTjjhBGJiYpg9ezapqan+JsASiUQyFEhBJJFIBg2Hw8GOHTvYtGkTmzdvZvPmzWzZssVf/Uqj0ZCVlcW4cePY8N8dmAnBTCgmQtAowzOnp7+YovRETToggiL0uFrd1OxspGp7Aw0FLYPe92e4MeuuMQCseWx3gC0ZWhQVWNMsRI4PJWJsKFqThrZaJ9XbG6jcXEdbTXCE1fUVN248VjuN9no8YQ5sGWb27dtHdXU1brevEIjZbGbChAnExcWRk5PD8ccfz8yZM2XZcIlEMmhIQSSRSAaEyspKv+hpF0C7du3C7XajKAqZmZlMmTKFDe/sxEIoZkIwYkGljPyVYI1RTdREK9E5YYTEG3G1+URQ9fZGGgqaESPfEdQlEWNDAKjZ1RRgSwKHogJrqpnI8T6hrDGqaSpppXJzPVXbGkZFuXQvXoTNhcPQTKOznrhpkWzdupWKigqEEKhUKhITE0lJSeHUU08lLi6O+fPnk5GRETS5gRKJZPgiBZFEIukTbrebPXv2+MVPuwAqLy8HfKu7kydPZsqUKXzzj5+wYMOCdcR6fLpCUUFYZgjRU2yEjwkBFOr2NlGxqY66vc0BbYYqGb4oaoXwbN+4CcsMAQR1e5qp2FxH7Z6mUedB9Ko9NIkGiHOQMCOKHTt2UFxc7K8gGRYWxtixY0lJSWHKlCmccsopTJo0Ca125ITWSiSSwUcKIolE0iVer5e9e/eyZs0a1q5dy5o1a9i8ebO/sltSUhJTpkxh24f7CMFGCFaMWEb1iq0uVEvs9DBip4Whs2hpLmvzrfRvrcfVOvJX+vtK6onRABR8WRlgS4YfWpOayIlWYqaEYYk34mh0UbGxjvL1taO6z5QQAk+IA7u5mdqWGiInhbB7925qamoAXyhueno648eP58wzz2T8+PHMmjULjWZ0LcpIJJLeIwWRRCLxU1JScpD4Wbdunb9xY3Z2NjNnzmTN61sPiB8bWkWW023HlmEhbkY44dkheFxeqrbUU76+LqiriA0FM36RDcC6J/cE2JLhjTnWQOz0cKImWVFrVdTuaaJsXS31uc2BNm3Y4NG5aPLUQ6ITa4aJnTt3UlpaCvjKgk+aNIlJkyYxZcoUjjvuOCZOnCiLN0gkEkAKIolk1FJXV8e6desOEkDtFaDi4uKYNWsW25bvI5RwQgmT4qcT1HoVsdPCiJ0RjjFcT0t5G2Xraqna2jAqKsRJhh61TkXUJCuxM8KxxBqx1zkpXVNDxYY6OeY6watz4whtps3USPS4cFavXk19fT0AMTExxMfHc9RRRzFv3jxOP/10wsPDA2uwRCIJCFIQSSSjAK/Xy/bt2/n+++/54YcfWLNmDXv37gXAarUyc+ZM9n1RdED8hGNQjAG2eHijt2qJnx1BzNQwVGqF6u2NlK2roam4LdCmSUYRIQlG4mZGEDnRitftpWJDHaU/1eBokD2rusOlt+OwNFPdUoUhQyE3N5e2Nt9vNyYmhrFjx7JgwQKOOuooZs+eLfORJJJRgBREEskIpK2tjbVr1/oF0KpVq6ivr0ej0TB16lRmz57NV0+vJpRwTKM856cvWOKNJMyJJHJ8KG67h7J1tZStqcXVMnrzOfrLlKvTAdj8Ql6ALQledCEa4mZGEDsjDI1eTfXORkp/rKapRAr03iCEwK5twRneQvK8aNavX09xcTFutxuTycSYMWM488wz/ULJarUG2mSJRDLASEEkkYwAqqur+eGHH/wCaN26dbhcLkJDQ5kzZw57Py3GRgRWwlGPsmpvA4Et3ULS/CisKWbaahyUrK6hcnMdXpe8fPaXsRckAbDr7aIAWxL8qLQK0VPCSJgdgTFCT31+M0XfVdGQ3xJo04IOr+LGHd1Gg6oGQ5Kabdu20dLSglqtZvz48eTk5DB79mzOOOMMUlNTA22uRCLpJ1IQSSRBhhCC/Px8vv32W78A2rVrFwCJiYm4ihVsRGAjEgtW6f3pB2FZFpLmRxOaaKKpuJXiH6qo2T36Sh9Lgo+IsSEkHhNNSLyRxqJWir6rpG6vLMBwpAghcIa0YLc1UVpZTJu5yd9gOjMzk9TUVI4//njOOOMMpkyZIq+7EkmQIQWRRBIElJSU8PXXX/PVV1/x1VdfsX//fhRFYdKkSdRuacZGJDYiMSiyk/tAED4mhOT50VjijTQUtlD0bZWs5jVI6Kw+j6WzQYYdDga2DAvJ86MITTbTXNZG0bdV1OxqDLRZIwK3yU6rpZGqlnKc1hZKS0sRQhATE8PkyZM55phjWLx4MZmZmYE2VSKR9IAURBLJMKS6uppvvvnGL4B2794NwOTJk6nb0ko40diIlJXfBpiwLAspJ8RgiTX6wo2+raKhQIYbDSaz7hoDwJrHdgfYkpGNNdVM0jFR2NItNJe1sf+rCur2SZE/kAiDh3pRTVtYPa36JgoKCgCIjo5m9uzZnHDCCSxevJjo6OjAGiqRSA5DCiKJZBjQ0NDAt99+6/cCbd68GfD1/mnZ4yacaMKIQqfoA2zpyCQ0yUTKiTFYU8w0FLSw/+sKGgtbA23WqCBqsg2Aqi31AbVjtHDQWN/fwv4vK2gskmN9MPDonNQp1TijG6lz1fjbGiQmJjJjxgwWLVrEqaeeSmRkZIAtlUgkUhBJJAHA7Xbz008/sWLFCj777DPWrVuH1+slKSkJd5HKL4BkCNzgYorWk3pCDOFjQmkua6PgywoZGicZFYRlHvCGxhmp3dPE/q8qZBPhQcahtGGPaKBeXU21o4K6ujoURSEzM5OjjjqKq6++mjlz5qDXy4UviWSokYJIIhkiSkpK+PTTT/nkk0/4/PPPaWhoIDw8HG2t6YAAisaIWSbjDgG6EA2pJ8YQNdmGvc7J/q8qqd7eEGizRiVJ86MAKPq2KsCWjE4iJ4SScnwMhnAdlZvq2f9VBc5mmc812AghsKtbcSc2U2Uvp6q1nKamJgwGAzk5OZx33nmcd955ZGRkBNpUiWRUIAWRRDJIOBwOfvjhB1asWMGKFSvYunUriqIQKsKIIJYIYgglXAqgIUSlUUg4OpLEuVF4nF4Kv6mgYmMdwhtoy0YvM+/w5RCtfVzmEAUMBWKnh5NyXDQqrULx99WU/FiN1y2nB0OFEAJ7aBNNlhqq3GVUVJfj9XpJTk5m5syZXHvttcybNw+z2RxoUyWSEYkURBLJAJKfn+8XQF9++SUtLS3ExMSgqjAQQSzhRMs8oAAROSGU1JNi0YVoKF1dQ9G3VXicUglJJO2o9SqS5kcTf1Q4zmY3BV9UUL1Nek4DgUs4cSY0UuUuo9pRQX19PTqdjilTpnDmmWdy4YUXMm7cuECbKZGMGKQgkkj6gdfr5aeffuL9999n+fLl7Ny5E41Gg8VtI5JYIoiVvYACjDnWQPppcVhTzNTsaiT/s3Lsdc5AmyWRDFsMYTrSTo4lYlwojUWt5H5UKvOLAkh7D6Tm0Fqq3GWU15ThdrtJSEhg7ty53HTTTRx99NFotdpAmyqRBC1SEEkkfaS1tZUvvviC999/nw8++IDKykoiIyPRVluIIo5wotEo8sYUaNQ6FSknxBA3M5zWagd5K8poyJcltIcbk5akAbD15fwAWyI5FGuqmfTT4zBF6ildU0Ph15XSqzoMcAsXroQmKj2llLeU0NTUhMViYd68eZx33nlccsklMrROIukjUhBJJL2goqKCjz76iOXLl/P555/T1tbGmDFjsO8WRBGPlQjpBRpGRIwPJf20ODR6Ffu/rqT0pxqQV7phyfjFyQDsWFYYYEsknaGoIH52JMnHRuO2e8j7tIyaHbKx63BBCEFbSCNNtmqqXGWUl5ej1WqZOnUqJ510EjfccANJSUmBNlMiGfZIQSSRdMHu3bv53//+x/Lly1m9erWvIII3jEjiiSIesxISaBMlh6C3ack4I57wrBBqdjaSt6IMR6Mr0GZJJEGP3qol/bQ4IsaGUrevidyPy2To6TCkRTThSKyntKWIinpf36PU1FTOPPNMLr30UmbPnh1gCyWS4YkURBJJB3bs2MHbb7/N22+/zfbt2zGZTJhbbUQRTyRxsiDCcEWBhNkRJB8fg6vVTd7HZdTuaQq0VZJeoDGoAHDbZShWMBCeHUL66XFoTRr2f1VB6RrpfR2uuFROGkxVNIZUUVxdiNPpJDU1lRNOOIErrriCY445BpVKFWgzJZJhgRREklGNEILt27f7RdDOnTsJDQ3F1GgjhkTCiUGtqANtpqQbjBE6ss5JJCTRSOlPNez/qhKvS06ug4VZd/nKbq95TJbdDhZUWhWpJ8YQf1QEjYUt7H2/hLYa6S0azgiNlzqlkqaoakrqCmltbSUrK8vfEHb+/PlSHElGNVIQSUYdQgi2bt3KO++8w9tvv82uXbuwWq2YGmxEk0AEMaikCBr+HPAKpZwQg6PBxZ7lJTQVtQbaKkkfiZ0RBkD5uroAWyLpK6HJJrLOTkAXqqXwm0pKfqyW3qIgQKi8tIbVUdJWSJW3lLa2NhITEznrrLM499xzOfHEE6U4kow6pCCSjBq2bt3KW2+9xdtvv82ePXuw2Wycc845XHDBBZx00kksMF4WaBMlveQgr9DqGvZ/VSGbSEokAUClUUg5IYb42RE0l7Sx53/F0lsURLzf8irLli3j888/5/3336e1tZWoqCiuuOIKzjjjDI4//nhZMEgyKpCCSDKiKSwsZNmyZbz22mts27aNsLAwFi5cyKJFizjppJM403BpoE2U9JG4meGknhyLs1F6hUYC8XMiACj9sSbAlkj6Q0iikaxzEtFbteR/Wkb5eunxCzY+aP03b731Fm+++SY//vgjDQ0NJCYmsmjRIm655RYyMjICbaJEMmhIQSQZcdTV1fHOO+/w2muv8e2332I0GjnnnHO49NJLOeWUU6QIClK0JjVZZycQPiaU0jU1FHxeLr1CIwCZQzRyUGkV0k6JI25GODW7G9n7fgnuVk+gzZIcAe+3vMprr73Gq6++yrp167Db7YwfP54FCxZw5513EhMTE2gTJZIBRQoiyYjAbrfz0Ucf8frrr/PRRx/hdrs56aSTuPTSSzn33HM5z7o00CZK+oEtw0L2wgQURWHP8hLq9soKciOG9lQFWQdjxBCeHULW2QkIIdi7vIS6fc1Dclx1TDSeisohOdZo4r3Gl3j66ad599132bBhAxqNhkmTJnHllVeydOlSLBZLoE2USPqNFESSoMXr9fLtt9/y2muv8c4779DQ0MD06dO57LLLuOiii7gi4bZAmyjpJ4paIfWkGBJmR1K3r4k9/yvB1eIOtFkSiaQHtGYNWeckEJ4VQsnqago+r0B4B2+6oY6JPuhvKYwGh1eKn+S5557j1VdfJS8vD7PZzIknnsjixYu54IILUKtlQSJJcCIFkSToKCws5JVXXuGll14iPz+ftLQ0LrvsMr74w0+YldBAmycZIPQ2LWMvSMYcrafgiwpKf5I5JiORiZenArDt3wUBtUMyOMTNCiftlFhayuzseqcIR8PAN0o+VAx1RAqjwcNttTP7hok8//zzVFdXEx4ezvXXX8/FF1/M5MmTA22eRNInpCCSBAV2u53ly5fz4osv8vnnn2Mymbjooou46qqrePCYJ2QVnBFGeHYI2QsTcds97PxPIS3l9kCbJBkkpCAa+VjijYy9IAm1XsWe9wY+5LU7QdSRgRZHeW/k+P+ffsmmAd13MCGE4KZ3L+HVV1/ls88+o62tjQkTJnD99ddz9dVXYzKZAm2iRNIjUhBJhjUbN27kxRdf5PXXX6euro558+axdOlSXl36PhpFE2jzJAONAiknxJA0L4qaXY3sWV6Mxy6TSySSYEdjUJO1MIGIMaEUfV/F/q8qBqRnUe4bOWTfUdqn9xypMOoogLpiNAsjAK/Gw8m/n8XLL7/M7t27MRqNnHLKKVx//fWcdtppcvFSMmyRgkgy7KipqeGNN97gxRdfZNOmTcTGxnLllVfy7SObMCshgTZPMkhozRrGnJ+INcVMwZcVlKyqDrRJkqFAFlUYVSQcHUnqiTE0FrWy6+1CXC39q0KX20GkDLQwyj1EAPVlKj/ahRFAm6aZlAvC+eSTT6irq2Ps2LGcfvrp3HnnnSQmJgbaPInkIKQgkgwLhBD8+OOPPPvss7z99tt4PB7OOussli5dyuNnvYRKkV2zRzKWeCPjLk5GAXa9W0TjftlbaLQgy26PPkKTTIy9IAnhhZ1v7ae57MhCYg8VLB3pizg6VBh1t1+QwqivePFy438W8/TTT/PDDz8AcNZZZ3HllVdy9tlno1LJ+7sk8EhBJAkoTU1NvP766/zjH/9g8+bNpKenc/311/Phr79DrxgCbZ5kCIiaZCXr7ASay+zs/E8hrmZZRW40EX/0gcasq2TRjNGELkTDuAuTMcUY2PdBCVVbG/q8j56EC/RNGO15PL5Px5fCqO94jS7GL03io48+Ij8/n+TkZC699FLuueceQkNlUSRJ4JCCSBIQtm3bxrPPPsu///1vWlpaWLBgATfeeCOPnv68jDEeLSiQemIMiXOjqNhYx76PShEeeTmSSEYLiloh+fYpJFncFP9QRcGXfcsr6o0gaqcnYbTzwVT//9VWZ++NQAqjI0EIwRWvnM2zzz7L2rVr0el0HH/88dx5552ceOKJgTZPMgqRgkgyZDgcDt59912effZZvv/+e2JjY7nmmmv45o8bMCiyCs1oQq1XMea8JMIyLeR/Xk7paukdGK3ETA8DoGJ9XYAtkQSCuitnkxbqYkKYg/rcJna9U4TH0XNCWe7rU33/Ufo2helMGHUUQ4fSF3EkhdGRYRetZC+N5b333qOuro6ZM2eycOFCfvGLX2A2mwNtnmSUIAWRZNApLS3lmWee4ZlnnqGuro7jjz+eG2+8kY+f+RKvHUp/qkFRKURNslKf14yzSYZMBQtasxqtSUNrlQOAmBwbbbVOGgtb0Vu1pJwYw/6vKnDUu4iZGkb4mBDyVpQx4ZIUDOE6KjbWk/tRKVqzhswF8ez/uoLWSgehySZCEk3+wgqGMB1uuwd3W/8SsCVDhzFSj8aopqnIlw+WenIMdfuaachvwRJnIO20OHb9p4ipN2SgMarZ9XYRtbubCEk0kjQvit3vFeNxeAnLCkGlVajZ0QiA1qLxNeeVd65hj8aoRq1X4aj39R5KODqSpuJWGgtbMUXrSTk+hnWmOJxeFZPC7SRZXLS4VaypMDKttYya3U1UbKxDb9OSckIM+7+swNHgIjTZRNM9Weyz+nJPbA6BXSOwa3ovSdqFUXdi6FB6K46ORBj1poKd0oX4S1u8uQ9HHB4oaoWoiVYai1qx1zqxppqJnWVj0vHjePnll1m9ejUmk4lLLrmE+++/n5SUlECbLBnhyEw2yaCxfv16Lr/8clJTU3nyySc5++yzuWDepai/ieBfF/0HjU7rv3NoLRqyFyZiivLlDUVOCGXshUl9u7NIBoXICVZCknwePGOknpzrMzBG6ABImBPJuIt/vlHFzYrAlm7x/aGAzqJBpfFdZlytbtx2D1OuTkdRK5Svr6Nhf4tvU5Xv0T7JNUUbiJ5i8+937AVJpJwYA4DGpGbshUmYovQAqLSKHCcBwppqxhDuGwuhySZm3J6N1uwrh58wO4L00+L824YkmNCHaAHwuAT2WidCCDY8u5eqbfW4W38WuwLwun2DIWJcKDGTbf7XZt6eTdyMcADMsQbST49DrfeNMUUlB8KQoxz4DQKmKD1jL0xCY1QDvpDYcRck+zeNnmLDFH0gN1T4fvPtp6zGoaaoWYNGEcyLa6UlIZy6ozIAUGlU6Cwa/+/clm5hbP3P4+WEUjfjawUIhVAHnFXgxurwjZ+oVkFq4+Eepz2Px/e5/LanQYenQdfjdoKu9Xr6JZsOevQFIRSEOHyM5y+b0qtHoEk5MYbMsw7kaQnIPCuB0ETfvUV4BSqVmndv+RLLT4mcO2Mx8+bN46233iI9PZ0TTjiBDz74IIDWS0Y60kMkGVA8Hg//+9//eOKJJ/j+++9JTU3ltttu4/07V6JRtN2+V6VREF7fhTF8TAhhWSHkfuhbxRuzKInq7Q3U7Gwcio8xqlDrVUSOC6V2bxOuFg/xsyOImWJj4z9zAZh6Qya1e5vY/2UFWrOG5GOjKF5VjaPehS5Ui0av8nuIuiMsK4Sxi5JoqbSzY9n+gybAPWGOMeBxerHXOdHbtGQuSCDvk1LaapwkHx9N1EQb65/eA0BIopHWKkevwm4kfSMsK4SQRCOFX/smkjPvGEPl5jr2f1WJ3qoldno4JT9W427zoDGpEV4xsH2kFAjLsNBa5cDR4MKWYSHtpBg2PZeL8MK4i5LxugW73y0CICTJREtZm19cSfqPWq/CFKWnqbgNgOm3ZlO1rZ7CrysxRuhIPz2efR+W4Kh3YQjTodapaKnouopc3ZVzDvpbp/IyK6aNEK2X9VVGKtt8AjvslR8P2s4fMofPQ+RUQatWweISTKj1sjlChV0L06o8JLQIPkj17eesfDe5VhWOW7agNasJzwqhemcjO5+Y0bfvoZfeoow+ip7eeIqga2/RkTIYXiZTtJ4x5yay/Y39OJvcxEwNQ6VRKFtbC/i8RD3ljXoUN1NvT+e1116jsrKS6dOns3jxYm699VZ0up7FqUTSW6QgkgwIDQ0NvPDCCzz99NMUFBQwf/58br/9dv7fea/3u0iColbIOieByk311Oc1ozaofJNdOXJ7jaJWMEboaK30CZeMBfE4G1wUfVeFPlTLjNuz2fZqAQ0FLYQmm7DEGSn9yZfXo6hA9HNOGzs9jIwz4qnd3cTu/xYN6ATVHGPAEKajZlcjigpm/3ochSurKFlVjdasRm/V0VzaNmDHG03oQjSMOT+JvE/LaCmzEzsjnIgxIWx/fb/v9VAtrmZXv8bHuIt9HoSdbxb2296wTAtCQH1uM4YwHTNuy2b76wXU7WvGFO0L4ZMl3fuOJd6Io8GJq8VDwtxIkudHsfqRnQivz4Nnr3V2K3q641BBBKBWBFMj7cSa3Gyt1bO/6eeJb7sw6iiIekLBizhwHxpX66XGoBByzWasqWYmXpHK2if24Gx0kXRMFG1nJrDK6jtemMtLo0bB0809rDNh1FcR1BmBEkaH0mehpIAxQk9btQO1XkXGGfEUflOJva5vhSoORQjBNcsW8ec//5nNmzdjs9m47bbbuPnmm4mOju7XviUSkIJI0k/y8/N5/PHHeemll3A4HFx88cXs/ncpoUrYoB1z3EUHJlBv9X8CNVJR1Aqx08Koz2+hrdpB7Ixw0k+L48c/7UB4BYnzonA1u6jYVA/4vHODtYqeckIMScdEUfpTDXmflg26kNXbtHhdXp+366gIUk+KYfVfduF1edGFaGSOWg+knRKLxqhm7/ISFJVC9sIEildV01J+ZBPenph0VRoAW1/KH9gdK2CONtBW68Tr8pJ+Why2dDMbntkH+CbyjUWtssx7F7T/VlRaFbPvHkv+5+WUralFa1aj0v6cF9Rfcl+fSvhnnbVYEEwIc5BudbG3Xseueh0dY2NrTzmC8XhAPHQULB2vfTFTw9Ca1RR/X82+Z2ZyRUUbq0O17DJpsbm9xDk87DFpOhVIaqtzQITQoQwXYdSR7kRSyokxxE4LY+0Tu/G6Bscmp60F7TQn3333HQALFizgvvvuY9q0aYNyPMnoQAoiyRGxZcsWHnnkEd566y1sNhs33ngjK/+4Eb1iHPRjhyaZUNQKDQUtg36sYY+CX2AkHB2JPlRL3ooyUGD2r8aRt6KMyi31aM0a9FYtzWVtQ+dZUyDzzHhip4eT/1kZJT8OfSU5ReXLe2qtdIDiC/GqWF9H4cq+5Q6MZExRerLPTWTnm4U4Gl1ETbah0ihUbBh5Vd90Fg3OZjdqnYqjfjWW3I9KqdhUjz5Ui0qnoq2659DP0UDycdHETPVNahG+0KfWKsegXDs6eno6E0bpoU4mhDsoaNSytVYPKKgPmWhXndm385Zx6caeN1LAEmdk5/9NpE2tkNnm5qhGJ29EGxGKwuxGJy0qha0WLQhB9s1rB+3a2ltRBEMrjA4lbfFm1DoVpuifQyoHE6/BSdKFYbz77ru0trZy0kknceedd3LqqacO+rElIw8piCS9RgjB999/z5///Gc+/vhjUlJS+OUvf8l/b/0StaIZeoMUiJ5ko3JL/dAfO0BojGpUGgVnkxtLgpFJV6Sy8R+52OucxEwLQx+qpfCbA5P9DmJpqFFUCtnnJhI5PpS9y0uGzTmypplxNLiw1zqJGBdKxJhQ9r5fgvCOrstgzNQwVFqFsjW1vrCWMw+EtdT2L6wlmFDrVQivwOsSpJzgW9Ve87ddCC+odSo8ztGTg6aoFLLOTqBmdyM1OxsxhOvQW7U05A/+olNXoW8dxVGSxcWUCDulrRo2VhlQdeGc6o0w6pUY6oK9z8z0h95Na3LSolYh7tqAIVzH1Osz2PpqAc0lbehCNHjdYsCrYg5HbxGAIgRHlQu2RSg06w54zwp8xRLS7v2xm3cODELt5ezHjuUPf/gD1dXVTJo0iccff5zjjz8elUrWDpP0DjlSJD3i9Xr54IMPmDdvHvPnz6ewsJB///vfZOyfzvLbVgZGDOGLa886JwFr2sjtU6A1qwnPDvH/PWlJGknzowBoq3ZQuLIKj9N3063YUPezGIKAiSGVRmHcxclEjA1h19uFw0YMATTkt/w86Vd8BTzaxZA5trOwnZGBolaInGBFdaAssTFChzHSV6XP4/Cy57/FARNDM+8Yw8w7xgz5cT0Orz+kp3BlJVtfzUd4fRXTZt4xhqgOle1GKu1jXngFQgh/RJq91jkkYqg7ak+x+8Piipq1rKsyEGtyMzO6DVUXE/6oj/REfaQfNJuyblpL9o1rANgQokPctQEAj8ND4coqv4cxaX40k5ak+d8Xnh2C1qzu9/F7W5muq2p0g4XRDVFtAlPH6NNUX65e/sNzDnoMBopHxQe3f8fkmvn89a9/paWlhZNOOomsrCyeeeYZPB7ZrkHSM9JDJOkSl8vFsmXLeOSRR9ixYwdz587l3nvv5fEFL/W7UMJAoTGp+1StbLijqCByoo3m0jbaqh3E5NjIPCuB1Y/sxOP0Ykkw4mpy42gcmPj9gUatVzF+cQqWOCM73twf8ElVbzHHGph6fSbb/l1AfV5zoM0ZMNrzI/Q2LTNuy2bHskLq9jYF2qyDSDrWlxBdNEzCGFUahahJNupzm3E0uojOsWGM0LP/y4pAmzag2NItTLw8lY3/3Ddo+WG9obfFEcI/MxBp8AmiRoeKdaVG3N7u70OdeYz64yHqLfpQLdoQDc0lbah1Kmb/ehx7PyihclM9pig95jgj1dvq+12sZqAYkJLcQkBX84KCrhuvD4YHSQjBZS8t4LHHHmPbtm1kZmayZMkS7rzzTozGwQ/rlwQnUhBJDsPpdPLKK6/w0EMPsX//fhYsWMCvf/1rfjf/yUCb1iUDUQktUFhTzZhjDZSu9uXYHPXLsRR+W+kLZ9KpUNRKUDQk1RjUTLw8FUOYju1vFAxJDPlAYku3+MVQTI6Nhv2t/a6MFEhSTogmLDOETf/ylU/XhWpxDlMhPZyJPyoCY6Se3I98LQBsGRbqc4NTNBvCdFhTTP5iKh3HfCDpS8W49G+0HBXTSqtLxZqSnkUR/CyMhkIMdYbGqEZ4BB6nl7hZ4STNj2bNo7sAiJ8dQUu5fVjnxHYnmIwugUZAk5auBRF0K4o6MtAC6bblV/D000/z+eefExERwU033cR9992HXj94nkRJcCIFkcSP0+nk5Zdf5qGHHqKoqIgLLriAwv/UYVGsgTatWyZfnU59bvPB4WLDGI1BTcLcSCo21GGvc5JwdCQRY0LYcqDKlkqrDFp1nsFCY1Az8YpU9FYt214tOOISvMMBRa0w7aYsytfXUrKqOtDm9B4FYnLCaClvo7nMjiXBiDFcR9XWhkBb1i1Rk3zXl+FuJ/h6XE25OoPNL+bRVBR85bsTjo4kdnoYG57Z12P/l6GkL4IIYPJdO5lwTWafRBFA6Burj8S8AafjNX7yVWnU7G6iZFU1hjAdMdPCKPmhGrd9+C+CASQdG0XsCTH8J0vVvSBqJ0DCyGVtxTupie+//57w8HCuvfZa7r//fszmkRtyL+kbUhBJDhNCF154Ifvfqh32Qqid6Ck2HA2uYb3CFjnBitaspmxNLSqtwrSbs8j9sJS6fYFfne0v7Z4hvU3L1lfy/b2OgpmOTYJjcmzYG1zDNvyvo3d02k2ZVGyqDyohN+suX/7Qmsd2B9iS3mGONfhDzDLPiqexsJXKzfWBNaobrGlm9FYtlZvqUVQKioph16i2r4Io49KNmGMMTLwilVaVjjUlRly9EEXDRRB1RVimhYwz49nw//bidQvij4rA2eymevvwXSxQ61QYInS0lB28CNZtGF4vRREMvDBqURrRzrPz3XffYbPZ+O1vf8u1114rhZFECqLRjNPp5KWXXuJPf/oTRUVFXHTRRRS8WYtFCQ20aUGPLkRD4twoCldW4m7zkHJCDHqrlj3vFQfatAFlJIqhQxm/OIW2Ggf5n5UH2pTDCEk0Mu7CZDY/n4ej0TWo/aQGC0OYrwlmMIYnZpwZT2NhC1VbG9AY1AivGHbV6dJOjcUYrmPHsuHbt+1IBBH4yoFPuiINR6OLH1sjexRFw10QHUr2uYk4Gpzs/6oSjVFN8rHRFP9QFbS91A4TSQHyFgG4rW2EHKPio48+wmq1cs011/Db3/4Wi8Uy4MeSBAdSEI1CXC4XL730En/84x8pLi4OeiFkjNSjMagCnrMSMS4URa1Qva0BrUXDlKvT2fV2Ec2lwZVL01vUBhWTLk9Dbwv+MLmeUFQKwisIzw7B1eKmqSRw57Rjnw+VVkXysVGUrKrGNYKKiwQj6afFEZZpYf3f9wbaFEISjGhMGur2NvnH7lCz56XpAGRftb7HbY9UEMHBomjrq/nUnTery/cFmyDqiCXByNhFSWx+Pg9Xi5vIiVaER1CzszGgdsXPjsBe56R295EVa+lL5bnBEEYeqx31DDtffvklsbGxXHHFFTzwwAOy+MIoRJbdHkV4vV7efPNNxo8fzw033MDcuXM5SpxM9VvuoBVDAHGzwsk8M37Ij6uzaEicF4mi9q1KhmeHEJbhW11yNbtZ9+SekSuGdComXpY6KsQQ4J9Qxs4IJ25WREBtST4umrEXJvtCn1xeCr6oCGoxNGZRImMWJQbajH5T/EMVuZ+UAb6Qy5hpYSgBusPGzYogbmY4QMB7bO15abpfHA0GrZUOtr6Sj96qZcIlqdjeXtOp8AlmMQTQXNLGuif34GrxeYfCMiyEZ/laMihqhcR5kegsQ98Cw5pixhxz5C0L0u79kbR7fyRjWR0Zy7pvBj0YZbvVDQb40sZc/WnMmDGDv/zlL6SkpPD444/j9Q4vb69kcJEeolGAEIJPP/2Ue++9l02bNrFgwQKqPrQTotgCbdqAoNKq0BrVQ1KK2hxrQKVRaCpuwxSlZ/LV6Wx9Kd8nCALYCHUoUWkUxl/iK6299ZX8gJbsHWoUlW/y4XUJzDEG7PVOPI7Bv2mGZ4cgvIK6fc1oTGpUGtWIqRg35Zp0ADY/nxdgSwaO8OwQxixKYsMze3HUD815UutVGGw6WirsqLQKwiMCWnmzOxF0qNeoPx6idixxBiZemUZzSRvb39jvLxrReMlsIPgFUaccuOeYYw1MWpLGlhfyaK1yEJJoxOsWQXdtVk0ee9hzuYvDDntuMJu9ukJaaR1Txdq1a0lOTub+++/n6quvlg1eRwFSEI1wfvzxR+69915WrlzJvHnzePjhh4d1+exhh+ILP2kPx5twaQpet2DnW754fEWtDKtqTYONooKxFyZjS7ew/d8FNAZhpa2BYuqNmTSXtrF3ecmgH2vcRcm42jzse3/wjyUZGLQmtc9zp0DmmfGU/lRDa9Xg5dhlnZOAJc7Ixn/sG7Rj9IXeeIXahdFACCKA0GQTEy5LpT6vmV3/KQzaVgxHQsd70biLk1FUCjve2A/4cg2bStqCYsGuM1HUkY4CaTCF0b1f3MjNN9/Mrl27GDduHM888wzHHXfcoB1PEnikIBqhbN++nfvuu4/ly5czefJkHn74Yf525ovDpqHqQJJxZhzVOxoHrgqY4usb4W71YE01M+nKNDb+ax8tZXa0Zg2uVndQ3FgGg+xzE4mcYGXnm/tHRIW8/mAI1+Gxe/yT3oEcEyqNQurJsVRva6CxqDUoS7FLfOhDtYy/NIW9y0sGJ4T2wNjTmtSoDWrstcOjOEVfwuTUur4pl+76CdkyLIxfnEz19sYRV8Sm1yigNWlwtbgxxxmYel0mW1/Jp6GgxdfMvM0zYNer+NkRRE20DriHtydhBD5xNJiiSAjBpS+eyWOPPcb27dv9IXXHH3/8oB1TEjikD3CEUVZWxtVXX82kSZPYunUrr7/+OlFbsnh8wUsjUgwpKjCG69Ho1QO2z4mXpZJxWhwAjYUtbH4h119S1NUyesVQ+hlxRE2ysue/RaNeDAHYa524Wj2odSqmXpdBxPiBy8PzugXGCD16q9b39wgWQzNuy2bGbdmBNmPQcDS62PjsPr8Yyl6YQHh2yIDsO2J8KDnXZaDWqXC1eoaNGOorHqeKrKt3Dsi+6nOb2f1uMVETraSfETcg+ww6BP5co5YyO5tfzKNhv2/BMOP0OCZeljpgh2oubaN6EAo7eLfs6nGbjGV1qCaPJe+NHPLeyBlwGxRF4Y2rPyZ2+1j++te/UlxczIknnsjFF1/Mjh07Bvx4ksAiPUQjhLa2Nh577DH+/Oc/YzAYePDBB3nv1q9RBSqrN4gwxxoYd1EyW17Kx9nowppqxm33BF389WCSdEwUKSfEsPeDEio2dJ/4OtpQVJB6Uizl62tpqznyCanOoiFrYSJ5K8poqx555cu7IvWkGAAKvqgIsCWDj0qjkLUwkcrNddTt7f+igjFCR+z0cAq+KB+W4WF98RKNvXH7QX/vfWFcl9t25yFqJ2ZqGFlnJ5D/RTklPwRPX67BxhxrQGNQ01DQgj5Uy6Sr0tj5VuGwvd/1xlMEsO+egws7pF+yacBtEYqXU/88m4ceeojW1lYuueQSHn/8ccLCDs9zkgQfUhAFOV6vl2XLlnHvvfdSXl7ObbfdxrrH9qJVdIE2bUhQ61VHlNQeNzMclUah5Mca1DoVKSfFUPJDNY6GkZGoPpBET7aRfW4i+7+uoOjbqkCbM6xRVApRk6xH1KhTUSuMvSCJ4u+qAlrWWzJ0ZC6Ip6XSTtma2j69L3qKjaqtDQGvINcTuW/k4HH0znt/qCBqpzNh1BtBBL6KjMnHRrP7v0VUbR2+zU0Dhd6qJWFuJPu/qMDj9JIwJwKvW1C2tm/j0RStR1EpgyqqjlQYtTOQAkloPcRfZOGNN94gKiqKG2+8kfvuuw+1euAiVSRDj3QfBDGrVq1izpw5XHbZZcycOZOZrhPZ/Lf9o0YMAYw5N5GxFyT1uJ1aryL+qAhUWt+Q11o0aA+UKPU4veR9XCbFUCdYU81knp1A+cY6KYZ6QVimhcwF8Rgj9b3aXm/VMuHSFHQhGoRHsPPNwlEnhsLHhBA+ZmBCyIINt92Dx963BR1jpJ7MBfHYMoKjgaRa70GtP/Ky8FlX7zzicLrCbyqp2FhH1jkJWFPNR2zDSMXR4CLv4zJ/M2GtReu/L6q0vnumWt/zNDH9tDiS50cPqq29CaEDyPxz56KsPaxuIELrFJeastfamKM6lcmTJ/PAAw+QlZXFe++91+99SwKHFERBSEFBARdddBFz587F7XYznWNpfE+FSQmOG+RAUvJjTZerWYpawRDmE4cag5rUk2IISfA1Wyv8upKCz0d+iE5/MEXpGXdRMg35zeR+KKub9YbaPU2sf3pvr0Pe3A4PilpBYxy9K4uZC+LJXDD0fcSGAwVfVFC5pR6A5OOjiT+q5x5XbdUO1j+9l7q9R9YIM1C0C6MjFUdHKoz2fVhCQ34L4y5KxhTdu4WK0UrB5+UUfl0J+Kqrpp4Ug8bguzYZwnQoqs7zkPf+r4Rd7xYNun3eLbv8j+7oShS1M1DiyOA24f08lP/9738AnHfeeRx99NFs3Ng7D6ZkeCFD5oIIu93OX/7yFx5++GHCw8OxlcYTR8qILJYwEGSdk4A51sCmf+YCvmai7Sthku7RWTRMviYdd5uHrS/ly+/tCEg+Lhq1TkX+Z+UHPa8L1ZJ2cgz7Pirts3dgJNLe1HGkN/ftidSTYnC1uCn5sabT19NOicXj8FK4snKILTtycnuYcHYMp+sqZK4zvPa+jRW1TsWkJWloTRo2P5+Ls9ndp/ePVjreM6den0FzuX1I2gwcCV2F1HUVQteR9klwRj/C6oQQ1IWWkafaQXNzM0uWLOHJJ5/EZDId8T4lQ4v0EAUJH3/8MRMnTuSPf/wjMfYUsktnEa+kjmoxFDE2hIixP4faaM1qpt6Y6Q+NKFlVzZ7//lx2VU7qe4dKozB+cQoKvj4W8ns7Mlwtbpwth0+8FHxhT/pQ7dAbNQxpqbCPejEEPm9RuxiKnR52WNVCZ4vbV/J/GKAek4l6TGb/99PPcLre4nF6/T15xl2cjEozeu+bfaHjtX/3f4spWeUrTmFNMzP1xky05p8Fbfrpcb3ycA4WHb1HHT1IPXmLwHdNVvAJ+J5EfJf7UBTCm+KZ1nQ8ExKn8Oqrr5Kamso//vEPvF55Dw0GpIdomFNQUMDtt9/O8uXLCSeaMeRgVgauvG8wk3VOArpQDQ35LRR/77tQp58WS8XGejnB6gdjzk8kPDuULS/mye9xgDBE6IieaKPo+6pR1ci3N2QtTAB8YTcSH9kLE3G1usn/rBx9qBZH4/DKb+xMDHl2H94Qti+Ty4xLNqEy9LyaD333ELVjjjMw+ap0anaO4h5FA4A5xkB0jo38T33e78R5URijdDTubx2WVUhVk8f2ylMEh3fVOFKvkV3XQmH4TgrLCpgxYwbLli0jM7P/iwiSwUMKomGK3W7n0Ucf5aGHHiIyMpKw4kSiSRjVHqF2dKFahMeLq8VD3IwwoqeGs+WFvGFfcSkYSJwXSeqJsez8TyE1g9BbYjRijjUw5ZoMvC4v218voKl4dBVN6ImcGzIA2PSP3ABbMsxQfEVNJlyayu53i4bV77En71C7OOqrIGqnJ2F0pIIIIHJCKGMXJVPwRTnFshx3v1FUCpOvTqdiQy3l6+vQmtUoahXOYSbi2+lN3lBXM4m+iiMhBG0JdRSIXVRVVXHZZZfxxBNPEBoqF7WHI1IQDUM+/fRTbrnlFgoKCkhwZ5DGODSKJtBmDQsUFcy6ayzlG+rY/2WFv0u7pP+EZYUwfnEyRd9WUfhN8OQpDGesqWYa9rcQPdlG9c5GvDL8UNIXFJh2UxZNxa3DKnejt+Fynt37ei2KuppsdiaO+iOIwFfAIumYKHa+WUjtnuAqTjFsUUBr0pB8XBSR462seWzXsOyNdShdCaSephV9EUce3NQmF7G9ZDM2m40XXniBs88+u9fvlwwNUhANI6qqqrjjjjt4/fXXCSOKsUyV4XGALd1M2ilxbH4+F69bEJJkIvm4aOw1DnI/Lgu0eSMCY6SeKdek05DXws7/FAbanBGBIVzH9Juz2PVuETU7fKv7Q9GvQxL8mGMNCI+gtcrhy3dRFLwuL4ZwHY56Z8Anmn3JH9p7dRQAIrF7z2hPE8yOwqi/gghg7IVJ2NItbHkhj9aq0dMIeTCZeEUqXo+g6NsqmopaUWkUplyTQf5nZdTntQTavB45VBz1ZnLcF2HkDrWz07WBitZS5s2bxyuvvEJ6enqfbJQMHlIQDQOEELz++uvcfvvtCCGIrc0gjuQew+O8x0xF9d3ILO9oTfMVRmjIb8EQpiNhTgT7v67E3eZLwI0YF4rH4aU+r//d3kc7ar2KnGsz8HoEW17Ik0UU+knHZsGWOAPNZT9P3iZclorwCn+C94hGUaAXt5fpt2QBsP7vewdsn8HO+EtSUFQK218r8D+nqBWm35JF9Y5GCj4v7/rNQ8CRCKJ2uhJGvZ1YqgyGARFEKq2KKVeno6gVNj+XK697A4AxUo+rxe2/T2uMalKOj6bkxxrsdU5s6WaE8N3Xhzvt4qgvV5t9x73MqfE53W4jhKA1qYZt9etxu9088cQTXHPNNahUssZZoJGCKMDk5+dz44038umnnxJDEmOYgk7pOn7ae8xUgBEphFRaFV6X76Y0/uJkPE4vu/8rE18Hm7EXJmFLs7DpX7nY65yBNieo0RjV5FyfQeE3lVRuqj/sda1Zg9flHR2Tr44LOt3cZtJPjwMg75NuvL293NdIQa1TodIquFoOrsAWmmSirdaJq5PqhUNNb0XRoYKonUOFUX9KHh8phnAdOddlUL+vmV3vDH4fndHOmPMSUelU7HzTF4XQ8Z4/XDlSYQR0K468Bje52q3sb8xlwoQJvPLKK0yfPv2I7ZT0HymIAoTH4+Gpp57i/vvvJyIigoiiZCKVuMO2axdA7YxEIQRgjNAx5doMdry+n8ai1oNW2Q8l4ehI6nObZQW0ASB+dgTpp8ax48391O6WsfQDQfzsCKq3N+Bs6nrSqrVoiMmx+asjjkgO9XAf6a1moPYTBCTOi6RiUz2uHvrkqPUqJl6Wyv6vKwPmJe+vIGqnXRgFQhABRIwNZdxFyeR9Wkbp6s57QEl6T3SODWuKucuct/Z7e2iyifGXpPgW4mqDZyGuL4VC2oVRO50JJHtsPXs8W6itreU3v/kNv/71r9HrZQPhQCB9dAFg+/btzJkzh7vuuouI1ngyiqYdJIa8x0z1Pzoy0sSQNdVM4jzfzbKtxknRykraDlwYuxJDKq1C3IxwTDG9K6Ep6ZqQRCOpJ8VSvKpKiqF+Ej87grAsCwClq2u6FUMA1mQTcTMj0JpHUbEURTlc3OALj20Pke3N9iMVrUVD3MwIrMk9N3IUXl9+kaMhcBPJvQ9Y2PuApd/7UYqNKMXGAbDoyKjZ1UjxqmpST4olJEk20ewvXpe3W69P+729/Z7fLoYS50X5ewgOZzIu2eR/9ETmN0sO+vvT0k3+RzuGchsTa+eSHjKG3/3ud2RlZfHNN98MqM2S3iE9REOIx+Phb3/7G/fffz8ZGRlYdsZiVXyNzA4VPx0ZSUJIpVWhqHwXxbhZ4USOt7L1lfy+V4qT1eX6hcakZur1mdjrnGx7NT/gSdrBzrgLk2kub6Po26pevycYwkX6RU9i5sCtZ9ZdYwBY89juPr1vJHIkY0JRQdzMCErX1AzpNbGz6lxZvzvcW9WTh6id9Lt/7K9JR4yigolXpGEI07Hpn/twtQ5+s1hJBxSYdGUa1dsbKFtbi1qvQngJyutjVx6kQ71FHWn3HLkimikw76S4uJhf//rXPPDAA+h0uoE3UtIpUhANEfv27WPJkiWsWrWKZJFFOhNQ5s/o8X0jSQyhwIzbsqnaWs/+r46srHN3oXSS3jPh0hTMcUY2/XNfj94MSeeoNAq6UK1vhfMIBbparyLt5FgKv6nE2UOYVNDRG++OEIQc8Ig0Fbb2+j0jCZ1FQ/Jx0eR/Xn5E17bQJBMTLkthy8v5tJQNXRhxd/1cOgqjYBBE4DsPOddn0FJuZ/vro6DoySCi0iiEJJmOuHhCygkxRE2ysu6pPUG98HmoOOpOFLVzSuJkysJz2VWzlZSUFN58801mzZo1OAZKDkKGzA0yXq+XZ555hilTplBWVsbUydeQMf/KHsWQ6ruNI0IM6W1a0s+IQ1ErICBvRRnl64+sk7UpWs9RvxqLJT5w4RUjgYSjI7FlWNj9bpEUQ/0g7dRYJlyS0i9vpUqtEJpswhgxSmPGFYWmwtbei6ERiDFCT0iSCZX6yD5/Y1Era5/Y4xdDKm3gv8f2cLqBCKkbKpzNbva8V0JYZgjxsyMCbU5QEzE2lElXpKELObKQ4PL1tb4iK8JXXTH9jDj0Nu0AWzn4dAyvy7hkE5nfLDksjO5QPivewtYtLbzz0jjsdjtz587lD3/4Ax6P9FoONtJDNIgUFRWxdOlSvvjiCxLiZpGRfhoadc8Tn5EghLRmNa4WD8YIHRMuTWXHsv397vWgMaiJmmylfF0dwiuH7ZFgjjUw5Zp0SlfXUPBFRaDNCWq0ZjV6q47m0u77q/TISA3/7KXAyTjTlz+Z+1Eve4qNxFvWAI2BhKMjiZ5sY9NzuQjP4H5P3XmIOpJ+INci7y9zet42wF4igNSTY4k/KpzNz+fJfmFHyEHe835iitIzfnEK214rwF7r9M8tgp2OeURd0dCkcMOvXfznvQLGjBnDW2+9xZQpUwbfuFGKFESDxBtvvMGNN95ISEgIkWEnExGe1e32pfOMJD68aoisG1wyF8RjjjOy+bncQJsi6YBKq5BzXSZep5fNL+RJUXkEGMJ1pJ0cy57/FQ9o6KaigrRT4qjb10TdvhHWW6sHYTTtxgwANjzbw/VihN2qwjIthGWGkP9Z2YDl8Bkj9djSzJStrR2YHXZDXwXRQe/tQhwNB0GkqBWmXJ2OSqti07/24XWNrHEX7ORcm0FzWRv7PiwNtCkDRk/i6K33ddx2XyWNjY088sgj/OIXv+ixT6Wk78iQuQGmqamJK6+8kksvvRSjPo30lKu6FEOl84z+RzCLIUUFsdPDMB+o/Fa+vpb8T3u52ttLzHEGkuZH+bq2S46ItFPi0Fu17P5vkRRDR4hKo6AxqlHrBvbSKbygC9Ggs4zAqnM9CJkNz+aOOjEEvpwVXYhmQAuatFU7/GIofEwIxsjhGYqZfvePw0L8dIbwCHa/W4Q+VEv6qYe3wpD0Dr1Vy+Sl6ZiiB3YM5n1aRtl63xg3xxqInR6GEuQz2VPjc/yPzrjobCdbvw7n+GNiueOOO5g/fz6VlUeWhy3pmiAfRsOLdevWMW3aNP773/8ybswiJoy7EK3m4HyXjiKonWAVQ+0XISEgfnakv3Ruc5mdxsLWAT2WOdpA5AQrXvfImxgNBeFjQoibEU7eijLaaoKn58NwQW/VggKtlQ62vpw/KLlXu94uoqKTZq4jAiGOTNQc6fuCgIpN9ex6e5CagSqQfGw0cTPCB2f/A8RwFUZtNU7yVpQROz2ciLEhgTYnKHE2uXHUOwfck9FY2OrPl7Ommok/KsJ/iQh2YQRdi6PoSC8fv6bj0d+PY/369YwfP55PPvkkMEaOUGTI3ADg9Xp57LHHuO+++zDoo5kw7iJMxp+TMjuKn44EqxACX2WjsRcksem5XJxNblQaRYqVYYrWrGbaTVk07m9l538KA21O0KHSKEy/NZuKjXUUfjP4q3KJcyNxO7yUrxv8sKeA0WGSNPUGX8jcxn908BKN4NtS3Mxw1DoVxT8MblNejUGN2+Hx5SYNQp5a/jJfLoMQ3U94OwuZCxbGXZhMSLKJDc/sxS1LcQ9L2uceuhANOddmsOvtIhqLBnZBdjjQMaxu03YNi2+oITe/lqVLl/L//t//Q6sNvqITw40RoKcDS3l5Oaeddhp33303cTGzmZ5zHSZjRKeeoI4EoxjSmjV+L1BLhZ3KrfX+xN3BFENakxpFJUPljpSMM+JBwN4PO+8cLuker1uw9/0SSn8ami72WrMGrUk9JMcKGB0ET3NJG80lbZ2+NhLRGNVD0pDXbfeJIVOUnmk3ZWGKGpzwOUUR/sdIY99HJSgKZJweH2hTgpaQJBOG8MHrpdM+9xAeQeXWeloqDniP0swjqvF1R89RzgQ3W74KZcniZJ5//nlycnLYvXt3oE0MeqSHqB988cUXXHLJJahUKmKjTsdx9uQe3xOMQqidjDPisKVbWP/3vUN63DGLktCa1Gx7tWBIjzsSiBwfytgLktn5diE1OxoDbU5QMZQJ6qOadm+RvBUNChqDmtRTYsn/rAyPfeASlto9RF3R7jkKZg8RQOQEK2MXJclr6BEy4/Zsqrc1DHlV0+m3ZFGX10zexwObzzzcWPqvbdz0q3JUKhWPPvooV111VaBNClqkIDoCvF4vDz/8ML/5zW8wpmYRf/alaMw9xxkHnRhSIPWkWJqKW6nZ2YjGpEZ4xJA3RjVF69EY1TTuH3lu8MFEY1Iz/aYsGgpa2PXOIOUqjGDaSxhvfj43IOGg0ZNt6MO0FK2sGvJjDyUhCT4velNJP8uXD3OSjo3CUeeickt9wGxoLwjiaHD1e189CaJ20hZv7vexAs3YC5KwppjZ8MxeXDJ0rk/ordoBGW99Ra1XoagV3K0eIsaFEpJo9ImyETjjdQoHeeGbKakrYsmSJfzzn/+UIXRHgAyZ6yN1dXWcffbZ3H///YTPPZmki67rUQwJVXCJIbW+vVqCr/JVe/iOu9Uz5GIIfInsUgz1nYzT40GB3I9HTnnSoaRkVTWbXwiMGALQWjToQ0f+TW3cxcmMuzg50GYMOvpQLdoAVxHMOjuBMecnBdSGYCT3I981NONMGTrXVwIhhgA8Dq8/70trUqML0frFkH+OM0LQKXrG1M5kctw0Xn75ZU455RT2798faLOCDukh6gMbNmzg/PPPp6GhAfPJ52PJHN/ltuLA7y3poeARQuCLN59yTQbbXiugaRgkJqadEktdbjP1uSOsN8sgEzEulHEXJrPrnUKqt8swj96iMaqZeFkqBV9VyDE3RIRlWQCo2yu/78FGb9Wi0igDUmlyNHmIACLGhzLugmR2vrWfml1NgTYnqEg7JRa1Qc2+9wOfxxqaZGLCZalsfj63383ihyP1uir26DeiVqt55ZVXOOusswJtUtAwsmTyIPLCCy9w9NFHU253E7b45k7FkFD9/IDgEUNqnYrwbJ+Xq7XKwf6vK2gbBhcKReUTaCMpMXIoUOtVpJ8eR83ORimG+ojH6aW5rA173fApTR6WFULCnIieNwxS6vY2j2gxlDAngrCs4VG62dHgoq3GiaJSSD4uGpVWTgF6S82ORmp2N5J+evyA9yEb6bRU2GkuCfwCKxyY43xV4RdD4dkhI+p82pxRTPcei1boOffcc/nb3/6G1zv0kT3ByMgZBYOEw+Hg2muv5ZprrsE4fhrJV9yKznZwb4eOIqidnsRQ8f8dTfH/HT3Q5h4R0Tk2ss9L9LuRS1fX+CoUBRjhhe2v76cqgDH3wUjK8TGodSpyP5Ghcr1G8YWHCo9g34el2GuHjyCyxBoITTYH2oxBI+2UWNJOiQ20GYNGaLIZc6wh0GYchCFMS+yMcCzxw8uu4U7ex2VoDCpSTogOtClBReXmesrX1wXaDMBXfbG9YqharyL7vESic2yBNWqAUbfomdR4NKmmLO666y5OOukkmptH7qLTQCFD5rqhsrKS8847j7Vr1xJ+ynnYJs/yv3aoAOpIV2LoUAGU+KfAeZCiJlnRGNSUra1FUStoTepBaTbZH0zRelorA++pCiYscQamXJNB/ufllK4emjLRI4HkY6OJmRbG+qf3DL9+WoPQQ2Y4Mf3WLADWPz201SuHlGF4DlVaFV7Xka8cj7aQuXYS5kSQenIsm5/LpflAg1BJz+itWkISjcMuakEXosHV6kF4BHEzw3HbPVRtbQi0WQNGa1I1a8t+IDExkZUrV5KUJHMIu0LGInXBpk2bOOecc3A4HMRdfAPGxNRuRRB0LoS68gIFUgwBmGONaAy+DyQ8YtiJIXOsganXZ7L1lXwaCloCbU5woEDGggRaKu1D1jNnpFC6tobm8rbhJ4bAP5EOSTRiijZQsWF4rLQOFCNVCMVMC6O10k5TcduwE0OAXwwlHxeNx+mlZNXgNoodKZSsriFqso3MBQlsej53WJ7b4Uj4mBCSj4umdnfTsLrOdpz7mOOMuNvcI0oQmYoiOTrqZLY3rWH69Om8/PLLnHHGGYE2a1giQ+Y64d1332Xu3LlUOL2YL7wOQ3LfxFB7OFxnYijxT6sCIoYUtcLkq9OJmRoGQMHn5ez7YPiGVLVU2Nn2WgGNhVIM9Za4GeFY4gzs+7BU3qR7iS3djFqvwt3qoXb38E6UDssKIXqyzedtkAxvFIieYhs2uUPdoiDHVF8QsO+DUsxxBuJnjdzcvoGmYmMdax/fPazE0KHse7+Egs99/ZJipoYxeWk6ijr4fxzaKhPjqo9CLTQsXLiQhx9+ONAmDUukh6gDQgj+8Ic/8MADDxAyPoeEsy5Gpe25w3LSQ6t6lQ8UCCGkC9XibHQhPIK6fU20VQdJCJpAVvnqA1qzhpQTYyhfV0vzCO/nMlCoNApZCxOp2FhH4deVgTanR4pWVlIoGHFiN+e6DAA2/Ss3wJYMIAK2vpzv7zk7nOk49hW1gvCMsAE2CDSXtlG2rpbk46Kp2laPqyXwObfDHa/rwLgahuGjndFW7aBuX5P/99A+lwpW9IqR8XVzKIzZzv/93/9RWVnJo48+ilqtDrRpwwbpITqA3W5n8eLFPPDAA0Qcexpx517eoxhKfmQNiug6LK4jgRBDpig9M27LxpbhK2tbtLKKxmFQSrsnrKlmss9NlBWQ+kDqiTEIj6Dgq6HtBh7MeN2CLS/mUfRtcDQ+FV5AgDFChy3dEmhzBozWagetwbJQ0wtsGRaMEToQB85ZkBA+JoTpN2ehNcsJUm8o/LoSIQQpJ8QE2pSgwZJgZNadY9AFQX+1xqJW/73BlmFhxm3ZGCP1Abaqf6i8KlJKJ5KtncyTTz7J/PnzaWwcXjldgUTOOIHa2lpOPvlkli9fTvz5VxJ5zCkoXSztJT+yxi+Eiu6e1ek2hzKUYkhRKX4B1FrlYO/7JTTuD66wM7VOhVrXv4Tf0YQ5zkB0jo39X1fiscvvrCcUtULC3EgUlYKj3hV0K+JJx0STfGxUoM0YMPb8t5g9/y0OtBkDRvKx0SQdE3xVyJpK2qja3oC7TV5DeoO7zUPh15XETA0bdlUEhyttVQ4qN9eDN7iuuY37W9j7fok/wsaWYUFRBYH7txMURSHZnc3RsSewbt06Zs2aRVVVcCwKDjajXhAVFBQwd+5cdu7cyVdffUXIuN5VzhmuRE2yMn5xCroQXzRk1Zb6YR2z2xm1e5rY+VZhoM0IGtJPjaO10kH5+tpAmxIUhCQYSZoXhSkqOFf7cleUsvXVgkCbMWAYI3UYI3sOTQ4Wtr2aT+6K4Zuf2RWuZjf7v6xAeIXs/dZLytbV0lrlIP20uECbEhR4nF4KvqjA2Ty8ijj1hNct/O0/dCEaxi9OIWqiNbBG9RNjeRjvvfceNTU1TJo0iTVr1gTapIAzqstub9iwgTPPPBOTycQnn3zC2f/+qNPtkh85eKD01jMEQ+MdMscYsMQZqNhUDwoYI/TBkyt0CIYwHV63d9hVvRuuRI4PZewFyWx9NZ+G/ODyBAYStUEV9N40nUWD2qAO2t96O7PuGgPAmsd2B9iS/mGM1OO2e3AF2WSvIzXXzsGg8nJCdAtbGgwUt2mJeO7HTrcdrWW3D8WaZmbSFWnseqdw2JWUHo4oaoWoSVYa97cOqwbYfcEYqaetxgHCV3yhubSNlorgLMH+1w33cfrpp9Pc3Mzrr7/O2WefHWiTAsao9RCtWLGC+fPnk5SUxI8//niYGGoPjeurGPIYBB6DGNJqchHjQombFeFPVgzmCVLysdFMuDQ10GYEBSqNQurJsdTsapRiqBeY4wwkzvOFmgW7GALIPjdxRKxM531SRt4nZYE2o9+knxbHmHMTA21Gv7F7VWxr1FNu93mJaq6d439IDqchv4WaXY2knhyLShOcYVRDTdopsVhTg7fZdFu1TwyhQNzMcCLGhQbapCPmV9MeYt26dSQkJHDRRRfx3HPPBdqkgDEqPUQvv/wy11xzDWeccQa7xh2NSvdz6MyhAqgjXYkhj+HgrzDlt52vqA0kMTk2BFC5qd5XFlKIoErg7Qq1XoXeqpUNWXtB4rxIko+LZsMz+7DXBudK21ASNyucqEk2tr6cH3R5Q51hCNfhanWPCHE3EtAY1GiM6qBd9QYOEz06lRevUHCLwyf6jSf0rkDPSPcQgS+yYdrNWez/qkL2c+oFap0Kj3NkXLcUlQKKr59jdI4NBXzROkGGR3gQx9WxcuVKfvOb3/C73/0u0CYNOaMuUPjJJ5/k9ttv59prr2VlVDYqlbpbEdTOoWLoUBHUzlCIIQBLggnhEVRSPyImd+14HF4phnqBxqAmcW4U5etqpRjqJWVrailfVzsiFg4A/3lX61QoKgW3PThL/yaf4CtAUPjV8C993hkagxrhFbjtnqA9B50jmBvRRp1TzaaGw4sGRL1n9P+/6tzOS/2PBjEEYK9zUr6hlqR5UZRvqJWLFD3QLoZGQpl30aFAhCXWiKIOTkGkVtSIlRGce+65/P73v0etVvPb3/420GYNKaMmZK69x9Dtt9/O3XffzcrosaT8dX2fxFB7OFwgxJCigqyzE/yu2dyPSslbEfxhJh1JPy2OuFnhgTYjKEicF4miImhKRgeS2BnhROfYgOAqg9xbJi9NJ+Wk4C39Gz3Z5ms4G6SknhTD5KXpgTZjEFDY0qBnV1PPBS+i3jMeJJBGI0Urq1DUColzR04FyMFkwmWppAbxdasz8laUkfuRb14WMT6UrLMTUIJolq2g0PBfhTvuuIMHHniASy+9FK93BN40u2BUeIiEENx99908+uijPPTQQ3z9wBZSlN5VMSv47Ux600WsOzHUdNFs//9D3lrdq+MeSvtETjUCuiZ3hdftDbqKeIFAF6IhblYEJauqcbWOpBXpwcEUrQ/6VcjuyP+sPKjzBtc9sSfQJvSLom+rRlSVvI7UOH1TBLUiMKgELR7f7E7f0PnvqTdeo5GKq8VNyepqEuZEUvZTTdBVUhtqKjfXjejiSaoDZbmDbRFOURS2PlHELbfcwt///ncaGhpYvnz5qGjgOuJziDweDzfddBP/+te/eOqpp/jgrp4LHQi370e6//e9SyLtTAx1FEHt9FUMaUxqxl+cQsGX5TTuH/4NVSVDQ8aZ8USOD2XdU3vwOILsaisZNBRV8N18g52R9p13VThhmq2NEI2XldUmQOlSEB2K5T9HtgAYrKj1Kmbclk31zkZyPwy+0uuSwcGaYiblxBh2LNuPuy14FjFn3zeWhx56iPPOO4833ngDnW5kLvy0M6I9RG63myuuuIK33nqLl156iTeu+7Tb7fsqhOBnMdSZAOpIn8TQgWpx7lYPbdWOUeE1CU020VzWhtc18j9rfzCE6YiZGsb+L8ulGOqBpPlRNJe1Ube3OdCmDDpqnYop16RT9G0VVdsaAm1On2gPN9vyYl6ALekbUZOsJB0Txebn80ZMgnhX7G7SoygHympJusTj8FL0XRVpJ8dSsqpa5nf2QGiyCWOknooNdYE2ZVDxuL20VTt+FkMH5njDndUP7eK5557juuuu48QTT+Tzzz/HYBi5TYiDKLqxb7jdbi677DLefvtt3nrrrS7FkHC7/Q/omxgK3y5oumj2gIohY4SO6Tdn+ZtG7n2/hOaSkR16oNIoTLgslbgZMn+oJ5KPi8bV4qZsrWzC2i0KWOKNGMODs/lqX/E4vVRta6ClMvh6YTibXTibXYE2o8+0VNip2tYwYsRQ/rIpXVaOa/GoaHarURCY1CPj8w4WZWtrcTa7STpG5hL1hC3NQuzUsECbMeg0l7Sx9/0SwBfCPf3mLIwRweFtefPaFTzzzDP8+OOPnH766bhcwXet7i0jMmTO4/H4PUNvvfUW/1z8zmHbtAugjvQkhpK+/Hmy0RLbu4lWb8WQolIQXoGiVsg4PY6i76tw1I/cgXcoepsWj8MbVO7kocYQ7hPLeSvKpCCSSCQDSleNVkO/Mvn/PyHUTrzBzXd7TYheeItGW8hcO3Gzwkk/NY71f98b1GXYB5v2ec9oQm/TkjQvitxPyhAeETTfwaUvnsl1113H9OnT+frrr0ekp2jEeYg8Hg9LlizhrbfeYtmyZQeJoUO9QR3pSgwlfWn3P9oZaDEUmmRi+m1Z6EK1CI9g34elo0oMATjqXVIM9UDSvCicLW7KR3h4QX9JOSGGkITRWfFKH6plwmWp6G3aQJvSa3QWDTpL8ERv620HvuPQ4PmO+0PjCa3+x+YpHtbVGXslhkYzFRvqcLW4SZReom5pFwIq7egZT456F/s+LEV4BLpQLTNuyyY0ydTzGwPM60s/4sknn2Tt2rWccMIJOBzBW8inK0aUIPJ6vVx99dW88cYbvP766zx36X8BuhRB7RwqhjoTQe0MqBg6cA1oqbRTs7MR7wgJvegLikph4uWphCYP/wtCINHbtERPsVGyqnpEV0zrLyqNgjXNjDFydITKHYrrwKKCxhg8FYFyrs8g5/qMQJvRa9q/W1fbyK2Q1RWtWoX9xziw/Gc1YR+v63bb0eodAvC6BcWrqomebAuqxYlAEJNjY+YdY3wNTkcZXqeX6p0dQp2H+Vfw35u/4sknn2TNmjVccsklOJ0jy/s5YkLmvF4v1157LS+//DL//ve/eemy93r1vnYx1Jn4OZSBFEO2DAvpp8Wx5YW8EdbMr29ozWoyTo+n8NtK2ZC1GzIWxBMxNpR1T+weFUU2+kWQJKxKfLT3iKoMwmaGI4muQuYOJW3xZpKPiyZ6io31f9+L8AiaLzw8j3Y0CyLwLc7M+MUYanbLinPdYQjTYU01U7llZDWZ7ysag5rJV6eTt6KM+tzhXQjommWLuOSSSzj22GP57LPP0GiCx8PfHSPCQySE4I477uCll17i5Zdf7pMY6soTdCjdiaHKGYr/0dswudYKO/V5zUEROzqYuFo87HqnSIqhbtCFaonJsVHyY7UUQ90QNzPc5xmSXxF6q5akY4MjXKdyU33QiKHkY6PRW+WKf8WmOnI/LvNPYC3/We1/SHx43YKSH6uJybGhGyXhlUeCvc5Jxca6US2GwBc+WJ/XTGvF8C+M8/zid/jLX/7CN998w7nnnssI8auMDEH0pz/9iaeeeor/9//+H69e+X6v3uM9dmqvhBB0LoY6iqB2Mn7VdXNWgIixoeRcm4FKo+BsdpP3SdmIqVB0pIQmm4a9mzjQJB4dgcfppVwWUugSlUYhblYEYZmWQJsyLDBG6IidHh4UE7HEeZEkzosMtBk9ogvVEjM9DEN4cFSH6gu99Q6146h3Ube3CTg8/0MKo58pW1uLx+kl/qiIQJsyrNHbtKO+Kp/H6SXvkzKczW5UGoWc6zKIGBsaaLO6ZMWvVvPAAw/w4Ycfct11140IURT0guhf//oX999/P7/73e/4781f9eo93mOn9nr/7WKoowDqKILa6UkMAbRWO2gsbpUC4ACWeCOTr0oPioTCQKE2qIiZGkbZmtpRL567w+sWbPrnPkp/qgm0KcOC+rwW1j25B2fj8C/OEj8rgvhZw3/C6Gx0se7JPTTktwTalGFD4rwoplydgRL0M4nBwevyUr6ujtjpYaj18kvqCoNNR/zsiFFTqKRHFGgsaqW1anh7i77/3TbuvPNOnn/+ee6+++5Am9NvgjqH6N133+XCCy/kpptuYuffy1CU3imN3gqi/AW9KyvYnRgKHxNC7PRwdizbL0N5OsGSYKS5tE1+N12QMDeSlOOiWfvEblwtozfXrDvCMi20VNhxNo2+JPee0BjUGKP0NBV13l9G0jtCkky0VTlGbL5nXzxEaYs3+/9vjjVgjjUETchjINBaNMy8PZv9X1ZQ8qNcsOmU9qmbnAccjgLjF6dQvq6W2j1NgbamU6IX63jjjTf417/+xbXXXhtoc46YoF2y+PLLL7nkkku46KKLBlQMqVZuRLVy44CIIQBXixt3qweVRrqFOqO5RIqhrlBpFOJnRVC5tUGKoa5QIP20OBLnDv+Qq0CQcmIM2QsThq9X+oBdw/r6qED2wkRSTowOtCUBp6MYAmgpt0sx1AOuZjdVWxqInx05vMd5IBG+x2isNNcTKo0Kd6sHV+vwXfCreMPBRRddxI033sgLL7wQaHOOmKAURFu2bGHhwoUkJSVh/1GNoijETAtj8lVp/m2sKWYMYQfHenclhtpFkGrlRgBy/9p9g9Z2uhJD1lQzGQviAWgqbmPP/4rxuuSsvyO6EA3jLk4+7ByNBCzxRn8Xaq1ZTerJsf7Sq1GTrIy7KNm/7YTLUkk9ORbw5SjM/e0EbOm+PJjMBfHoQ7WU/lgNwKQr03yTW3yhdEfdPZawrBDA5yWZcFmqf7/ROTYiJ1r9f4ckmVAbgvLn3j0CNj2Xy/6vKwNtybCk8JsKtryYF7BFB0u80V+EICTRyKQlaf6y1ZlnxTNlaTqTrkzj6PsmEDPN17Helm5h2s1Z/u3CsiyEZ4cE5gMACNjyYi6F38gx1hVJ86P897yRhNqgIqRDSHfkRKu/KiL4rt/teYthWSEcdfdY/3U2e2ECk670zUlKfqxGH6r1f0e2DAtzfzvBn+OXdkrsQdfvcRclE3Xg+q23aUk9ORat2fd7MEbqscSPvD5rIYlGZv96rCxacghel5c9/yumqbgN8M0LrKnmgNiiC9EcNK9IPyOOjDPiUBSF6nfdZGZmcuONN7JixYqA2Ndfgm6GVF5ezoIFC8jMzGSqfi5tVb4YeXutk/qCn2O7M8+OJ25mOOC7qEVfPAW15udZwaEiqJ3+iiH7gll45o5BlxWJSht0X++QoTGqUetUQdOMVWtW+5tHas0a0k79WeQkHB3JjNuy/dtmnhVP3IEkWkWtIjw7BK3Z916Pw4uz+eeVnqpt9dTn+Upsutvc7Puw1B83bI4z0lzWRmuVrwJf8apqKg6sxgq3oPiHatpqfK95PQJXy8/7taaY/blZar2KKUvTCTsgtCLGhzLtpkz/alzE2BBs6YG5wPYHQ5gOtV6Fx+HF45D5VZ3havHgavGgqJUhyWGwppoPSiCfcEkK0VNsALjbPDjqXf58k4pN9RR9V4XX5aW5vM2fm+NqcVO3t8kfnhY10UbMVJ9YUlQw+ao0rGlDM17VehWKWvF/jyORvhZU6AxHowtHfXD2JLGlm4kY6xPcilph2k2ZRIz3JbOHpVuYsjTd/9sJTTJhTfl57Lla3XgPVEdrq3FQ/EM14kAl0IpN9RSv8i1mtVY5aCpr8wuZ1ioH+z4sxX2gl1V9XjNVW+v9+3U2u/05o1qzhvDsEBS1z4b4WeFkdhCfM27LJuFon4dcb9OSdmqs/36js2j8Qmq401rloOhb3/VA0jkqrQq9TYdaNzRzS0UFsdPD/OM2JNHE2POT0Jh8Y6qlzO5LeQAUj0KOYQ4JCQlcfvnlFBQUDImNA0lQ5RC1trZy3HHHUVJSwpo1a1iSdHuX26p1KhSNgrvVg/XcKUyY6GHdk7txNrrQmjUHTR7b6asYsi+Y5X/ObPASZfNQUO6bJBs+XNOHTyYZDuitWtxtHjxOL2FZFiLGhrLvA1//iJzrM2gqbiX3ozJ0Fg0Tr0hl7/ISmkp8NzlzrIGKDXW+/YRqcTs8/ZqkW1PMTFqSxrZ/51Of188kbgWMEXqcTS48Di+WBCMRY0PZ/2UFABMuTcHZ7Gbv8hLUehUzfzGGXe8WUZ/bjDFSjylSR83upmEX2jhpSRoep5cdb+wPtCnDninXpNNSYfeP54FCbVCRcFQklVvqsdc5STg6kohxoWx5IQ8AQ7gOZ5O7/5OcA72lNAY1aafEUrqmhpZyO7EzwomaaGXrK/mDMj4zz4rHHGNg8/N5A7/zYcKR5g8FDQpEjAmhtdpJW7UDW4aFsecnsfbJ3XgcXrLOSUBr1vivIyknxlCzq5HmkjbUehW6EK1v4amf48uWbmbi5WlseTGPxn7k9Kn1KjR6NY4DBVNipoXRUu6bmIYkGMk6J4FtrxbgbHaTcWY8IQlGNv0rF/CN55qdjdTta0atU6ExqnE0DP/CK5LOSZwXRe3uRv+i6UBhjNDRVuNb4Jh2UyblG+ooXV2DSqOgqJRuCzy9UvwkM2bMQK1Ws3HjRiIjgyecPWgEkdfr5aKLLuLjjz9mYuscQpWwPr1frVP5T+K0mzKp3dNEwRcV/td7I4ai1wm0LZ0PhPhIN0lRLtbtNuDxKlIQdYOiUjCEaf0/uEARnWNDeARVWxvQhWiYdedYtr+xn7q9TUSMCyUmJ8xXDANf6I+r1Y2jfmhuHmMWJWGO1rPhmX1Dcrz2CafaoCJuRgRV2+px1LtInBdF/OwI1jy6C/Dl6zSXtVG5uR4U37kMVP8IXYgGtV5NW7XsYdUTYZkW7HXOAfnN6SwaTNF66vNaUGkVpt+Szb4PS6jbe2TNBFUHVju9R1BF0Zrm84QWfVsF+EKNytbVDlhjQ2OEDkOYjrp9w7tRYn/oS0PWnkg4OhJ7nZOanY39NavPKGrF19dP+K7tllgjeSvKADjql2MpWV1N8ffV6G1aoibaKFtXg8fuHdJGztNuzqK5rI09/y0ekuPpbVq0Jo1/FX/8JSlUbKyjZmcj4dkhjF+cwpq/7cLZ5CZqkhVFrQQ0J0xrVhM5wUr5ulqEdBR1i0qrYsrV6ZSuqfEvxg4EUZOsZJ2T6HMgNLlRVPT5XLisraxxfM24ceNYvXo1Wm1whEEGTUzX/fffz7vvvktm65Q+iyHgIEWb/1k5lVvqAd8Fo/gvR3X6nuh14qDHoWJIrRJE23yeptJqNWt2STHUG0KTTUy/JRtTdNfNbgcKS7wRXYgvfCByfCizfz3OHypmTTYTkugLK3M2udn2WgGNRT5vTM3ORr8YAmgubRsyMaQ1a4gYG0r5+oG7yPXIgQmBx+6l+Psq/2ct/r6K9X/f499MObBCBGCOMTDnnnGYY3wFSAxhOn9Y4WCiqHwPZ5NbiqFeUrevuf9i6EC+c8LRkWQu8OWyeV2CtY/vPmIxBDDj1ixm3Jp1RO9tyG/xiyG1ToXXI/C6fddpc6zB1+esH7TVOEe0GBpoQuKNvubIQ4DOovHnoB56LVIUBaVDAYN1f99D8fe+8DVHvYvi76t8YgiG1PNdvq6WyPGhQxbG5qh3+cUQwI439vvFakNhC9teK/BX5wxJNGFN9oUDKmqF2feMI/JA6KAuRDMkeUu6UC1pJ8diiupdUavRjNflZdNzuX4xFDEu9IjDorUmNbYMX0h9za4mdr653z8ujkSYahtMTLfNZdOmTfziF784IpsCQVB4iF599VWuvPJKsphEijJmQPed+vspaAWsMBqJXt/1dp15hpKjXaTGuVi1zYjb47v4SjHUMyqNgjXVPCgTjfAxIRjCdJSurgEF5tw7nv1fVVC6ugZDuI7w7BDK19cO6yIXicdEkXRMFGse2zWsc2P8q3nrfV3Gs89LxGDT+ZL48a00NeS3HJQzNRDEHxVB7PQwNv4zd9R3N+8LOouvkEnux2UHTZJ6QqVRmLw0nbI1NVRsqkdjVCO8YsDGZtwsX65n2ZqBbTyccWY8IYlGNv0zt8/vtSQYyTg9jh1vFuIa4PE7nAimcDmdRYM1zUzV1gYAJl+djr3WyZ73ilHUCrHTw6jePrwrcqoNKmbdOZaib6so/r4q0OZ0iUqrEDs9nNo9TdhrnSTMiSD5uBh+/PMOEBA/OwJ7nZPa3QNfBlqlVYb1/Xk4otarmHFbNkXfVfnmPn0k7dRYwrNDfYufA/jVlxny2d62nt/85jf8/ve/H7gdDxLD3kO0ceNGrr/+euJIJZnsnt/QR3bv0rN7n/6AGOp8JBwshgQWo+/vwkoNP+0wSDHUR7xu0W8xpKh937kxUs+Uq9P9BQ7MsYafk14FbPpXLuXrfBMte62T0tU1w/tiq0DstDCqtjUMazEEvoT9sjW1flGS/1k5+z4sAXwrTtkLE/0VmsyxBqImWbvcV1+oz2+mbG2tFEN9xNniprXK4Qsr6gXt1Q69bkHNzp/j1N1t/cuPO5SyNbUDLoYAcj8qZfvrPi+vIUxHznUZGMJ7V9VSeAWtVY5Oc00lPRM50Togid9Rk6yYY33egpAkE9kLE9EeSOje90EJ+Z+XAyA8grI1tcNaDIHPA1+1rYHYGWHDtxQ+Ps9v6eoa7LU+r3LZ2lo2PZfrnyJZU83+86K3aZlydbrfM9h+b+7PsSV9w+PwsvGfuf7G5L2NvtEYfL+l/V9VsOWlga9GGmdPY+z/Z++9wywpy7z/b4WT8zmdT+c8PXl6IjIEEcEAiIAoQUARRTDu6ru8uz/fa/fd19V11wWFxYwiwmJEAZUgOUzO0zOdc+5z+uRcVb8/qk/16Z4OJ9TJ9bmuuWCmq6uerq5Tz3M/9/f+3lUb8c1vfhN//OMfxT15GsjpgMhms+GjH/0oZAEV2rE97l5D8eK+eS9CDAlviAQBDrtqAqgzrS0rqSmNYFdbADKaA0AgGOZvoRQMxYdMQ6P5mqrEOlITgLp08QO++c4GNF7FW1WHvRH4bSFBxjX6+izOPT0iHOufC4KN5M8L1tyig9Iox9Th/GvgF/ZE4JvhF81hH4MD3z4nNJIzNetQe1m5cGxFpylpyaRvJojJw+IvoAseDuj94zi8U+t3Pzc0aLDp9nph0TP65izc4/FnlRKhao9liTOdmESzOwRFwG8LIrRQiB51SVoN72QAvX8czzkjkWyRSHZIpqXRcq0V5rbErdLVZQpUdC5K4usuLxdsred73Tjw7XMI+/igxzcTzMvs3eRhG5QGOcwtWbSSTxA2wi2RJ5/7nxGMvs5nuAiSgN8WEn4XjVdXCHbjwMLcncDSTWdVYeeXWwWnPIn4CLnCAMdvRm69u0nIvK9G+XYTdtzfApmGAhvm0vZZsk61waItwb333ovBwcG0XEMscjYgYhgGt956K1wuF7ZgLyhCXM2t++a9S/7OAZj3k3AHll4nmh0iCX5mHJ+jcaJPgXBk8RMuBUPxo9DT0FWrBZ3/auisi/1LyreZsP1zzcKO48RBG2bP8LKJiJ9BzzNjwk5WvlPRaYJ73AfP5PqL1lyHCbFCFmfsrVkcf7QXAD+B1lxSBv2CXl1plqNko37dpny0mkLHLXVx7/JLrIzKIkf9+8ov+He5jhZ6ATkHvTj+o764gqdUqb64BNUXp9eJyD8XRPfvxsBGONBqCjvvbxXswJdT/75yoY9YIdP/5DawHHHBn1QJeyI4+v0eQdq2FgRJoGSjXqgF0tdqUHNJmfAuOPbfvULtDxvh1nS3yhe8kwG4x32ClXy+E7CH0PPMmGCTP3vaiYlD/IYepSCx/XPNKN/G/6wKgww669q1SIH5EGxdLsGeXyIxwj4GXU8OCzXIq2XsbOddGH5lOu1ZVYIj0ercCY/Hgw9/+MMIhXJ3rZazj9w///M/48UXX0SdvQMqQtyeE8uDIR4CfXMK2P0UAA4qGSsEQ2Ydg4s2BaCQsWA5AvMePmgauYaTgqEE8UwGcPzRPmGXL4q6VIGSjXrh7x23LvYvsXW7cOqxATAL1r22cy64RpK3Lc1VZFoapmYdpo9n0Ewhg0QzdRzLF+JHf05TkxbNH7Iiuh2vr1MLTTljkWtokDSRN72rchW5XgbLBsMFBhjmNj1qLysTCnO9GQrKjzzUiyMP9WbkWgC/iTL44qSQvYzNVsu1NH9vEslgFxhiBEjRguyooU0stIqCvi5qdsGh+UNWIQs0fXweh/+rW5B15lN2PxGmTzgW+tPlR4+gRHCN+ATjBibE4tRjA7B1838v22pEx611wrElG/VL1B8Av6AffHFKeIYkEsc55AXHcFDoZdj5xVZB/gzwDXBpJYWInxHVnW4tlIQKW5X7cP78edx+++0ZuWYy5KSpwnPPPYdrrrkGTdiIBmKDqOdeORhaSp0phGZLSDBLoCkOpovDOKGjwcTI9lo/e1jUsRUDtJJCJMCAlBEo3WTEfL8HIVcY1ftLUdlpxuEHuwHwWYOgI1RU1pvWfRbUvbccB/8jt80U0kG0wSoIYM/X2jF50I6R12f4fmKUFASJzoLVsMIog75GLezmC7+HIoGgCOz8QiumT85j5NUZ/t+SsJnNR/qf3BbXcU23nEjq/OU7TGi8qgKHH+RdKjmGz/DUXlqGyj1mHPzOed7qv8ieOYCfB3f/XRuG/jadVBF8vkKQgMIoFxQdu77ShsnDdoy9NQuFXgZjkxazZxwgKRKGeg1s5zNv315IEBSB2svKMP72HJ/BI4Adn2+Bc9CD/j9PZnw8topRHJ88iEcffRSf+9znMn799ci5gGhsbAxbt24FaVdgKy5KS93QeqgDDKhLI7AGGbxtlCO0ipRHCogSo2SjAW03VOPM40Nwj/ux52vt6H1mDHNdLt5ZJsIVtWZ/++ea4ZsNovt3o9keSlaRaWhwHIeIj0HlLjPq31eB3ufG4Z3wZ713VSEh09Kou7wMhjoNjj3alzWTio0LO8ZRA4RMY2zUwjcXhFxLI+JnEJgv/Gcs3mAISD4golXUgpuoG3u+tgFDL01h8rAdtJoCQRBFb1jRdmMN1CUKHP9BhnrN5SIE72LJhjmUbNSj5bpqHPzOeRgbNOj4RB3O/WYEti4pKBIDWkmh+ZoqjL8zB/98CBFf5jcZOY7DYMVJTDjGcPDgQWzZsiXjY1iLnKpaYxgGn/zkJ6FSqdCEHRkNhnRPHwAA9PxwFwBAGyHR7otAF2Fhk1+Y1paCofWhlCTKthgxc8oBJsDCUK+G3xaCZ8IPNszi4HfOCY4yxe4so6lQQlOuxNDLU9keStaJXSjNdTkRdIVRf0U5bN1umJq0mDhgE/qISSQOSRPQVKpg3WuBwiDDiR9l1748VVeqVHEM8I6XGz5WA5VFgbG3Z4W6FYnkKNtiRNUeC+9MBqD7t6Nwj/My52wsxHKRmRPz2Hgrb1ySiVq9nIRbnPvnzrpg7+HXBI4BD1yjPuhr1LB1uS5YS0gkjr5WBaVRjpAnkrXPIEEQqLdvgkvvwEc/+lGcO3cup5q25lRA9J3vfAevvfYatnP7ISfEbe62PBiKBkDLafBHMKKk4KFJ9CkpvHc+jN+XkZJULk60lUpQSgrOQS8oGYmGKyvgmw3COejFwF+nliy8ij0IiqV8mxEhdxjz/VITyFjCXgb2bjfm+zygFSRvh2zj3Y6MjXxj3dE3Z4s6s5goNZeWoXy7Cad+2o+wj8l6ofqZx4eyev0oZ345hIodZth7xe+tko8klBkigJr9pXCN+uAc9MJnC8Le5wZJE6h/fwXC7ohQsyXBM9/vQcgdRvk2Ewb+mnn5Ui4ibJBGOJz62YCwWaKtVKHhygrYzrn4zdUGDZgAUxDmQxmBABo/UIX5XjeCzjAIioClXYe5s5nPvpFhGhvQiXeGXsZXv/pVfP/738/4GFYjZ0wVDh06hP/v//v/UMe1wkyUiXpu9817oXv6wJI/KzHxSCf2z4dRt1CvMKaicFJLI3a5IAVDSyFp/oMVdQWq2leCmv2lAPjC2gP/fg7OQS8A3k1Kcgi7EIIESjcZMXPaKS3sl0HSBGglBY7hEPYxGHl1Bp4F+2eVRcH3nFq4Z7pqVU739sg2JB21pp/B6Z8PIjAfBhNkQcrIrGdpsglBESBlfB3L+Ltz8M8FQZAE2m+sgb5Gvf4J8oxE5HJrQix85gCA43vTqBd60XjG/Rh5dQZshEPIFUGoyOVxK8IBM6ccKN1skBzVVsDUosOGm2sB8K6XB/79nGC0ULO/FFX7eGdKguTXINH3m8QKcPyGz+ibvFV6yQZenhh18s00CpsOG8u34ZFHHsEf/vCHrIxhJXLiY+h2u3HLLbdAHdGhERtFP/9qAVAUSkmi5wc74aFJ/L5MgQE1nzhz0SR6NDS4heyQFAzxUHJSaISqKlFgw811gpXmwJ8nceaXQ8Kx0R0fmZZG5S4LlEYpIFqOsVELmYbGrCQDu4CyrUbs/FKr4HwWy+Rhu/Cs8c0Bm1CyQX/BcRKAuU2HzvtbIdfRS3qKkDSBzvtbULlz7Z4V6WT337Vh99+1Ze36lTvN6Ly/ZcmCipQRKz5zEouUdOix9dNNwlxw5vGhFfuDjb01mzE3q3xj9owTMjUNQ712/YOLDDbMIuJjhM9lrKLkzC+HMLBgCqCzqrDh5jqhMazSJBelKXDBsPBaC9hDQkA5e8aJY//di6CT78tGKTN/v0on61FhqsSnPvUpzM7OZvz6K5ETpgp33303nn76aWzxXAw1kdkXA0kT2PSNTehRUzilWyFa5jjsdkUwJyNAf+V4RseWS8Q6AW28tQ4gCJx9YggA/wIqhkLkdNFyrRW6GjWOPZI56+F8QaamYGjQYu7s+j1NtFYVvFMBcAyHhqsqQFJEVpx0chFaTaFqtwWjb8xc4KBWttUI57AXQUc4K2OL9iDKVt2OwiiDoU6DmZOOVY8xNWsx31cYctbR324S/j8UWlk1v5pcrumDlWAjHAZfnAJBEdCUK+GZWL9hL62iULbFiImDxeOoFi+d97fAOexF37MT2R5K3hK7Btl4Wz3AcYJJSzG6GMZSvt2Eip1mnPrpgGBnH0v1xaUo327E8Uf7Mm5zz2pDOEK8hksvvRR/+tOfMnrtlch6GP3SSy/hpz/9Kao9rRkPhgBeq3pCR6N/hb4nAACCgIzjUPPkhQ5I4//roiV/ChVtlQp7vtYOdRm/AzP08jT6nh0Xvi4FQ8nDp/v1mOtaf8FfjIR9TFzBEMDLdKI1ar6ZILzTvL6ckpMo3VScspSqvRZQShIRH4OR1y4MhgBg5qQja8EQwAdC2TQxCDrCawZDhgYNNt5aD23V2g0l84HYYAgA5PLIkj/LIUgCpZsMwo67dzoA3yyfXeQYLq5gCOCbAdddUS7MIRKLzJ51wrJh/cbUxQhJE3HJ7GPXIH3PjmPo5WkAgKZciT1fa4e2Upm2MeY6vrkg7N2uFYMhAJg95cDoG7NZ6flFeuRoU27Fs88+ix/96EcZv/5yspohcrvd2Lx5M9zDfmzHftFd5daicpcZbITDm59rXvO45icimLxo/YnQ+u13xBpaTtBwVQUoGYm+5yZAkAQqOk2YPeNMuh/MtnuaMH1iHpOHLpRUFDOmZi023lqPY4/2wjcTzPZwcorW66thO+8Smvwli2WDHm03VOPIQz1F1exPrpdh+2eb0Pf8xLrWtdoqFeqvKEfXU8MZnxjLdxgBANPHHBm9Likj0PHxOgz9bXrdhb2mXCkE2PnM8oBoNWpuPAOAb6y680ut6P7dWMqfw2LfqV8NdZkCO+5twdlfDRVMFlIsGq6qgLlVh6PfT049QasolG4yYOroPDiWQ/M1VWBCLAZfkNxcV6J8uwkkTawofU0XHMehp/QInMF59PT0oLy8PGPXXk5W90z/4R/+AbOzs9iAzowGQwD/EvJ/om7JvzU/EbngTzQYosHBRKwcDBRCMCTXy9BynRUyDS+h8E4F4F5YJHAsh8nD9pSaY86ecRavtegalHQY4JsLSsHQMgiSADisuquVCLZzLhx5cDEY2nZPE8q3m1I+b05DACFXGEe+3xNXH4+wLwKW4UCrM288Wnd5Oeouz/wkSKtosAyHsG/9IDkaDJVtM6Lxg5XpHlpW2fn/xrHtM00AeGOcIw/2pBwMAQATZEGQkGqzluGbCcI3G0DJRkO2h5JzTB6y4/yvk+/LF/EzmDxsF+YR97hfWIfItDRarrNCrs8d22exMbfpoK+N3xhGVSKHujSzWVyCINDs2wqWZfHFL34xo9deTtZst19//XX893//N1qxDSpCk5FrkjQBVYkC3qkA+p+fBOuqQDPi2zHeSgdQQUbwfEi35N/zORjSVqkg19Kw97jBhBhoK1VQGGUIeyNrSkiSYfwdqa/HcqJyuYnDkq5+ORzLoeeZMdHOF/Lwn3OCImA77xIWuOoyBcBBkAEVAg3vr4BMTaPnmbG4e3YEHWF0rSALzgQnftifleuGXEn8zByQ4b27jGBY2KtyKgHvTAC2bhcIigDHcMJnRwy2fKoR7gm/UBAvwTPX5ULVHgv6npvIak+wXENsOX6suYfCIIO2UgUmxG/0mlt1CHkicctA84HKXRYEnSG4RnxxHT/00rTw/5oKJfxzwYwoBiifHK2Wzfj1r3+ND37wg7jjjjvSfs2VyIpkzu/3Y/PmzZjrd2AnLstYdqjuinKUbzXiyPd6ENm3bd3jY6VyarDgAPiXJdXyLSCS62iEfQw4hkPThyqhKVfh1M8G0npNXY0aTIApqEWnGBibtNh0mySXWw4lJ6Gv4zvcp9uGvPUj1VCXKXDiR9lZlKcDS4ceMhWFqaOJO3vprCrIdTLYzhd2d3hLux4hdxju8eQXP3ItLWqwkG5WlctxwNV9gEMJjH/lTFrHYGrRIegMSe+7ZURlc2d+OQjHgDfbw8kpKjpNYMJc2l1Yt3yqEd4pP/r/PAmCIiBTUwUhsSZlRMI9H0mawM4vtWL6hAPDf5te/xtEgOM4nDMfhI/1oL+/H2Zz5p1Ps5K7/va3v42RkRF0YGdGpXJjb87i7JPDCQdDAOADWRDB0K4vt8HSxme5hl6axqnH0hsMAUD9+8pRvdCbSGIRc5sOfru0OFiOqVmLjo/XQr6S66PI9P5pHOd+PQKAdyraeFt93kooosXHti5XUsEQAJRtN6Fyd2Ynog031wr9RjJF5W4zyrYlL5uU62jsuL8FJRvz0+ZdHQIuGwS0QQAE8GYdcLA6/ded73VL77sV8M0EEXCEYG7Lz+cpneisamjK02+KcOqxAcGMwdKuw64vt0Guy5qISjQSDYYA3mzs7K+GMfZm5uywCYJAW2Q7/H4//vmf/zlj140l4wHRwMAAvvWtb8EaboSG0K3/DSmiLlNgy6cbIdfRYEJsXHUsq5ko1JFhbKf578+XYKii08TbZIPXg5//zYhQuMmE2Iw0Aj37yyEMviBJJJZjbtFhvlfq3r6cuS4Xjj7Si5Ar/c5nHMsJDmu0kgQ4DpGFmhJFHgVG6lIFdny+BebW1N6pgy9M4czjQ+IMKk5kGlqoXcwUZx4fwuCLyRdWh9wRDL44hfne/CqCVy8okIILt1u+UBbqlQPVN6U3OxRFX6dG04eqMnKtfMLe407581uI9P5pHEMvZcAEgVtYEwGY7/Xg/G9GhAzRxlvrUNGZX3WnGz5Wi/orK5L+fu9UAEyIhVxHY8unGzPiEEm5FWjWduCRRx7Bu+++m/brLSfjAdFXvvIVIEiiARsycr1IgEXYzRcMAwC7f3vS56IIDjS4nA6GCIqAdZ8Fmgp+RyXgCMMz6Reac9nOu4UPfaZgIxzC3uQNGQoRdZkCSqMc9h4pIFqJgD3zVu6eyQDO/op3WaMUJLbf24zKXdlrWJoIvtkgun8/CnuKATYb5t8NCoMMpCwz08Opnw2kXbYbhZSRQnf26M+aLNPH5vkFg5aGypLbDadHf7sJLXPAB3oBGQMwJPBaA2CPv95aNCg5CXWJQmqeuQx7jxtKo1yyJl+FTLZNYEIsbOcX3qUE4Jn0I7CwcaapUMK6zwKCyu1iQnuvG+7R+GqH1oJjOITdkZRMtRKh3NEAjVKLe+65Byyb2bVqRt9If/7zn/GnP/0JrdgKikjvjqC+Vg1SRiDkCuPcr0cQ8TFxBUNrWWwPMHIcjuRmL4rohMyxHMp3mIWeGY5+D4ZfmclIJmglLBv0aP1IBrQYeYa5VQcmxMA5LOnFY2m4qgKt12f/eWGCLHr+MCb0hzI2aaG15t5nn1KQgouQrcslyuecUpDY8fnmvNsRjYfKnSbs+HyzqE5nzR+uQvO1VtHOJyZaqwrGJr6/36gBOFADhFf40aM225lgvteD078YzPjGXK7jHPIiEmRgbpVkc0sggF1fbUP5jixtTnHA8CszcPTz2WBtlQrlO8yCc12uboZMH58XpRY07GNw7td8toyUEQm51iUDyZLYpN+JM2fO4De/+U1ar7WcjOkUgsEgvvSlL8GMMpQhvZMHpSCx4eO1GH/XlpAGMp5+Q9XfeRfEe7chEl55d4B883jc1xOL8h0mNH2gEoe+242In8HxR3tXbMCYDQrRkUkMzC06zPd7JEehZbhGfaCVqzRJzjCx2buq3RYwYRbdv03eAjYdWPeWoHKXGYcf6kk54xGFCbI49/QIXCLsLsbDzi+3AgCOPNiT9mtNHrHDMxUQtR9O/58nBQVCrlG9rwSkjITbsthXpH6F47KRv1eXKeCfC+bMXJVtOIaDo98Dc6sOY29lrnYj5+GA0TdmRcl2iMH0sXnMnJgHOIBWU9h+bzP6n5/E9PHk6jbTgbqUz8CmYhqzElV7S2DdZ8GRh3rS2lNMPWVCla4G9957L66++moYDJmxpM+Yy9x//Md/4B/+4R+wi7kCWiL9OyDqMgXvarbw08WbHQrrVr8dtS8EsK0zAp8P6Dl3YSyZyWCo6YOVCMyHMP6uDbSKgqZcCeeQlG3IB2gVhT1fa0ffn8YxfcKR7eFIxAOx0FgywMLYqEHZNhP6nh1PqmBV7HGpLPzCMl3nT3d2ufbyMgDAyKsz6b1Qmn8WSk7CUK/JqgyWlBFovsaKmRPzcAx4QSn5ZqjUK2vX7DCXT2RohDyqEgU672vB2SeH8q4OK52UbTOi5VorDn7nfMYkShKpYajXwDsVQCTAwLrPAoVJnnVb+aYPV0FvVeG42C0NCD7YyoQxCqMP4k3vX3DXXXfhRz/6UdqvB2RIMudwOPDNb34TFUxdWoMh60UlaPwA3zTPN7N6MES+efyCPyNXKdcMhqIM9pMYH838DjZJEyjbZhR0tGEfg8hChB7xMzkZDBEkMl4snQ8Ym7QgCAJ2qSv5Esq2GqEqyVH9PAehpw8pI0GSi1amJJ35NKi2Usk30OOQtmDI1KxF5/0taa/1GHl1Ju3BECUn0Xl/iyAfSwcVnSa0Xl8NWpWd+QHgHaVIihDqv5hA7gVDAP/Mnn58UJAhSfA4+j0gCAKGhsz0ZswXZGoKZVuNfMPuHMM55EUkwAevkSCLiI//f4LkA9xszA8Df57E2adGxD8xByEYavxAJawXlYh/jQUolwLt1o144oknMDubmYxpRgKif//3f0cwGERjmo0UIgFGeBhjWR78LGfoX/ete+7aF3h3OaeDhNdz4QOetuzQwqVUFgVarrFCV83rN0dem1nSZCwX0VSosOfv26GpTL9lZj5hbNDAOxNAOI96mKQbgiRQd3k5TM3pW7CKhb3bjfML0jl1mQK7vtommJhkitrLytB4dWVar+GdDsDe4077IqRkoz7t9tUEScDe44ZvZn2X0WQZP2DD8R/0ZXxnX1OhxK6vtgnF+Od/Mwp7d+6btTgHvZJcbhkhdwS+2QCMjbn/HswkSosCrR+pztl6nSjTx+Yx8hq/uaOrVqPlGqvQDgEZjIs4lku7S2vEzwiBYLowD9eCJEnce++9ab1OlLRL5iYmJtDc3Ixyfx2aiVUaw6WIpkIZl532aqwXEEWDIQCgZRzKK1jMTJEIL9QRpSsYqr20DPo6tWCDK9PSebWIphQkjA1a2HvdUq1MDDu/2Ap7jxsDf5WsyJdA8AvXfHpWaBWFyt1mjL05C45deBdNB9IuMyNpApSSyqv3wWrs/rs2AMCh/+zO8kjEgSAJmFu1iy5VabkIoCnn5z2CBGr2l2HikG3FYIx6NfcyRAAAAmi51or5Xjfmugq7EXAiNH6gEqZmHY5+P/01dfkCQQIkTeadEUfsmm3zHQ1wDnkx8np6s+EKvQwNV1Vg6OVpBOYz49aa6hp8LWw1wzg9cRyHDh3C9u3Ju0THQ9ozRP/yL/8ClUqFerSl5fymFh223dOUtFVlIsEQAFAkUN/IQq0Rf8VDkATKd5h4KQwA54gXc2edwtfzbfHDBFnYzrvyaoGbbhRGGZQmORyDklRkCQv1Hfn2rET8DEZf54MhSkliy12NsO61pO16+ho15Dqat7LP0PugdIsRpZvTV9R66ueDOPXzwbSdv3SzAaVbjGk7/3IsG3Rou7EWSlP6drOtey3YclcjKCUJjgVGXp/Jr2AIWNw0yEEZVDZxDHigMsuhMOZPH7R0w7HIu2AIWLpmmz3jgHOEL21QlypQvsOUluw7KSdBK6mMGb2oyxTYdk8TTC3p6aFlGq+GSqXCAw88kJbzx5LWgKivrw8/+clPYLFXgybS8+Ge73Xj7BPDGet+HQwCb79Ow+ngb50Y2SFSFv1QcKjZXyroh52D3qQ7zucCFTvN0NdkodFFDmNs0IJjuZys+coWlJzEnr9vz/umhEyAxelfDAqfWWOTVvRFccNVFWhIodleMhjrNWm1Wg3YQgjY0reTqa9Vw1ifuZqMubMuHH+0V/TdWaVJLkippo7O89bVgfxbJMbS+8dxzJ1xrn9gEeEc8oJjORgbJNlcLOU7TGjJUXv7eJg6Og/nID/vGxo0qNlfiqhAa3ENmDr+uSDO/HIoI43NAb6m6OyvhtPWZJ5kKdQEW/Hiiy/irbfeSss1hGul8+Tf+ta3QDEyVKNJ9HPXXFIKXfVCr52B5HbbE80O8RCIikHFCIbMbTrs/ko7aBUFjgWOPdKLyUP29b8xD6joNEFfJwVEsRgaNPBM+tNqWZl3EMD4u7a0pdwziWfCL+xk1l9Rjur9paKe/8wvhzDwQga6tsfQ++w4+p9Pn7yz9YZqtN6Qvt5T/c9PovfZ8bSdfyX8CwGeTsTeVTX7S1F/RTkAfrfcMyGupW62kGnotGbT8g0myMI94ZfqiJbBhlgwocJw3ps8ZMexR3oF6+7dXxFvQzBTDbVjiZqj6KpVqBF5zgOASqYeep0e/+f//B/Rzx1L2u7c6OgoHn/8cdShBRQhrusOQREwNmiF5qPJEI+RwmrUNzJoakn+g6mvVcPcxj/8rhEfRt+cARvhdwqi/y0ETvywH2NvzWV7GDmFsUEDx6CUHYqFCbIYe2sWwQztaGWKUz8bwNCLfPBibNKibJsx6XMpzXLe9jvIIuzNsHR24ZVkqNOkReKhNiugNovvLkiQxOKGTBZeq6VbjNjyqUYoDMmrI8q2GQVnvMEXp3DqsQGxhpdduVwMHbfUoe695dkeRk7hHPJKm4nLmD3jxMBfM7sZlE6ENV+Yw+ibM0LfN3ObLqWMfPtNNWi/sUaUMSaKtkoFY6MWBCXuPEGwBJq1HXj11Vdx9OhRUc8dS9oCov/8z/+EVquFFY2inpek+aLr048PpjWTsnJ2iCcQIBA8m+COY8zzUb7dhIodfBf4iJ/B+Ls20ZoqSuQuSpMccq0MrmEpIIpC0gSq9liyYlWcbtgIJ7jwGBs0KOlIvg6n5Ror2m7IziQH8AHZ5jsbhI0cMTnx436c+LHI/TLALyy23NmYtezD3BkHTj02gKAz+UC/dKMBhgW5XyTAJLRhtl79UK7Q+8cx9D+fG8FZruAe9UGhk0l1RMuglRQoZeYzIOmEDbMYf3fREKVihxnl20yLByQYW4y/O4fJI9lRGU0esuP044PgGE50u3HDdCVMJhO+973viXreWNLiMjc7O4u6ujpU+OvRRGwU7bxlW4youaQUJ38ykJLdX7xSub47Vl6ktT+8dsdk9kTXkr/TKgrb7mnC4AuTsJ13g5SRBR8AVe42w9KuFxzyJPgd47brq/Hut7vyXvsvFtoqFbbc1YATP+rnGykXMARJgGM5aK0qVO40Y+Avk3EXCsu1NGgVldV7pK1UwjOZX7LGXBkzraLisuOm5CQaP1CJySN2eMb9wjOTDLo3V+8R4ovIcyZDJHEhtIrC3q9vQPfvRzF7WqqxirLvgQ0YeW0G4+/asj2UtBJdI1ra9Wh4fwVO/Lg/rxr10koKW+9uxOgbs5g55RDtvDOlQzhrO47Tp09jwwbx2/ikpWvmQw89BJIkUYNmUc/rHPFCcVKWsvd5/T+9u+bXe36yc82vEySgUAEBHy6QYkSDIUpBwtSiw9wZJyJ+BtPH5+Gb43XlhR4MAbyGXpKGLUVfrYJvNiAFQzF4Jvw48O/nhCanhUx0YSvX0pDrZGDieA8QFAFwQMgTQSjLLpPRwIKgxLVG3/mFVgDAERFthqNjzIVgqPriUlR0mnD04d517xsTZiHXySDX8lNzssHQeuRaMFT9nhJwHDD+jiSxBnjliG8uCH2NWgqIYjj361H4C3zjDFhcI/rmgpg+MS8EQyWbDJjvda9ag0yQBEo3G+AY8CDkzt58EQkwmDnpgFNkNUzJfA0Uii584xvfwG9+8xtRzw2kQTLn8/nw3//937B4qyAnxNGF66pVIGkCQUcYo2+mt2PtesFQ+8M+6C3AjveRUKzRi9HUokPrdVbIdfzENvrGbNo6yucijn4PxtL8u8o3dDVquMYKoxBaTIohGIrF3u3G2SeGAG5BinZXw6p1Jta9Fmz/XFPOdGi37rNg22fENcmZ63ZirlvcRd+2zzTBui999ueJMNflxOCLU6sGQwqDDJvvauAbOHLA2SeGUm6sulZ2KBch5SSoLBSD5zKuUZ/k0roMR7+n4GpN18I/F8ToG/w6Sq6j0XqddU17a7mWRutHqqEuy2yj8JUYfXMWQWcYJE0IBmipQkYoNJnb8ec//xkul/i9y0R/Az311FNwOByiOctRchIdn6iD9aL0v+DjCYYAwOsAzrzNIrwsvqnSzqL+Sr44dO6sE0ce6slqlJ5NdNUqUHJpgotCyUloypRwj64ttywmFEYZdn25DZqK7L+8swVJE4j4mFWNEuw9bowfsKUtU5AozmEfr08XMT4benEaQy9Oi3dCApg8Ys8Za/uAPQTbudUn77A3goiPEV1zn0+MvDqT9oaV+YZ7xAt1uVKaR2NQlShQc4n4Lmb5QMgdwZGHeoTelPVXVqD64qX3IugK4+1/PQtnDvU5tF5Ugo5P1In2HBvGKhEIBPCv//qvopwvFlE/aRzH4ZFHHoGFK4eaEMcykgmxOPP4EMbezp1UeiQMuOYAluWlcyTNS+WYELOYylyQuRQjci2NrZ9uEoqBJQCtVQWCJAQnGQkALDB3zomAPTPdtHMR30wQ554eARvhINNQ6Ly/ZcmusG82iOljudOLzDPhx9QRu6iubaYWnbhN/Thg6og9J+RysTR+oBLVF/Mbe/oaNTrvb4FMQ4GNcDj39EjGeum59+fOXBoLKSMg10smAlFcoz4QhHi764WA0iRH5S4zaHXhmfDEQ8gTEd69TJABE+SldJScFFQGHMOByyFV/tjbczjz+JBojXWVhAp1ZY146qmnwDDi1lWJGhAdOHAAx48fFyU7JNfLhB4e3ulA2jvYx5sdilLVBOjMwLb3Eqio4/9t8pBdSG8WM2FfBMce7RVdP5rP6KxqRAJMUckm1yPoCmPwham87ECeFjjAMeSFby7IZ8ZvqYW6VHw76lQhSKDuinLBDjpVWq6tQsu14jiiGZu0qLuiHEQObqqHPRGh/tU3F4RjyJsWO/B8k8tF6fhEHZo+UJntYeQMflsIkSADTaUUEEWZ73Xj0H92I+LLH4OBdDH6xiwmD/NuchWdJuz4fDPM7Tq0fyx7bqQrwTEcvNP85lT1/lKhjCQVrJEGjI2N4Q9/+EPK54pF1GnjkUcegQoaWJB6J3VDvQYV2005YccbGwzJlUBNO4GqZgIqLXD+IIeJP53L4uhyD47ld76l5qOLaCuU8ExK9UOxlHToC85CNRXCPgb9z00g4megMMlgqNfmZJaVYwFNuTKl/jqxnH1yGGefHBblXAqDDJpyZU7tkEYJzIdg3VcCSk4i4ud/12FpYScw+NIUhl4unD4zYuCdCkBbxJJiifiYPGJH11Mj4CIcCBCovbxMlMBDTGgVhYrtJlHmNMWcHjrKgB/96EcijGwR0Wy3Z2dnUV1djbpQO+qIVjFOCZImMtKoNJHskMYIdOwlcOYtDn7PhRbbEkDpJgNoNZXWPlH5RucXWmDvcWPwBWnCB3gteOd9LTj980Epk7gCBEWg+uISzJxwCIWphdS0uZiI/u4UBhkqOk1gwiwm3rWl7fe5VoYoV+VyEivTcFUFzC06HH24N9tDyRnab6qBZyogmTatgqpEgS13NuDMr4bgzTHZsJjzmKtuEkdG3kV3dzeam8VxtBZte/bpp58Gy7KoRF1K52m+pgrl2/mmVLmwAGh/2IfKRmDDHr7g1esAjrzIB0MSK6MuU0BXJbnjRKEUJFRmRc69nLKJfy6Ig/9xXqqpWgFdjRoqsxyjr/MuPQRJYOvdTRkxlkkEgiJg2aBP+Twt11nRcp015fNYNuhF75CeKtaLSrD1040gSAJBZxjTxx2oubgM2jTJoPJVLhfFus8Cc6v4zX/zFe9kACqLQjJWiME95pOk56tAUAT8c0Ec+q9uYb3RcUsdqvbkhuNmdE1fvt2E5mtSk0lrJ8pAURS++93vijE0ACIGRE888QSMkdLUrLYJ/obF059DLFbLDikZDqqFuiW/B3DPLwZnHAs0bCZQYyns5mDJMvzKDHqeGcv2MHIGTTkvefBMSZK5WMLeSM64p+UStZeUov7KRdkxx3KYPGKHo5/fhSFzxJ7Y1KRF+401UFnkKZ1HW6lKOUBQWeRov6kGxkZx6ppSJfo7cvR7MHl0XnjOA/MhaSNgDQz1WqjLcq9uLltEZdbF7MS5nPF3bWu6NhYzrddZsen2+sWaewJwj/rgt/EBpFxLQ5YDhhRsmOWDoxT2r8gwhSptDV577TWIJHQTRzLX09ODtrY2bMZelBPVSZ0jW5KQFQMijsMNUyH4+1gMnFx5TJWNQGRoMqccoCRyk6o9FtS/rxzv/ltXTtY2ZIONt9Vj4sAc5vukVOtyCJIAraYQXsWlcvMdDfBOBzDw18kMj+xClCY5AvO54RKYK2NpvLoSmnIlTv9icNVjCBKgFJTo3ecluVyBQQD7HujA8N+mMXFQ2oAFeDdCdYki51wkcwF9rRokTcIxsPK82nxNFQx1mpySYKay9ndqZnHY8zpefPFFXHnllSmPRZSqq1/96lfQ6/UocSXnEKMpV2LjrXXoemo44w95691HAPCpxopOE2ZOOcAEWLz1H7vg3EoitH3lENb7GgvUtgC1F35N9cyhdA45p5GpKXTe34pzvxmBc1CqDQH43T3vdEAKhhag5CTCnjAikunGBRAknxFaLRgCgImDNoT9/NdJGSl0Nc8G0QCEkpNZcwuMXjvbwVD0dzF3zrluD6SNt9Uj7I2g+3fiZdKrDugArC4lSq3Va4YhkBYHvryDA3wzAUFlIAGYmnTYcHMtDn7nnGRKsgzXyNqZ56GXpqEq4TP6lJJE2RYjpo7Op93FeTW0VSp0fLwWZ54YSqrtgM5rgU6nw2OPPSZKQJSy9oLjODzxxBPQusygiORScYH5EKZPOuCbzZ4ulFaSqLu8HMYGXnIxS1MIrdId3voaC4rkoKClBd1yWJbD2NuzRd1bZjnqUkXGeozkA0yIRc8z41KT2mVQShK7/64dpua1ZV+28y64hvl713KdFe03Zddmtf3GmpRqgHbc14wd9yVfFNtynRVtN2b5Hty0eA9cwz7Yzq8t6Rl9YxZjb2UuYzOxNz/CIZImsOfr7SjdZMj2UHIG/1wQqhJJRhjFMeTB8R/2CRb2EouYWrRrBs+RAAP3GC/DNDZoUXd5OegsOr36ZgKYPulA0BFO6vtJkKg1N+Cvf/2rKD2JUr4TR48excDAACpWSpWsA0ESkKkpMCEWw3+bzrhkLhqdEiSBsJfB4Qe749amNlWEsaNJWuQuhwmwGHt7DkFncg94IaIqUcAnFYEKKAwykLLcKn7PFSYO2OCZij9LPnXEjukTvGw3W4YC0yfmhX4YyeAc8sE5lHxwPHnYjpkTWZAuE4v3fPqEA1MJ3APnkFfozSGxCBvhMPLajCSHisE3F8zJfmTZggmw8E5JiouVaHh/JUq3GOM61nbOhcMPdiPsZUBQBDo+XgttVWZ7XrERDsN/mwYTYiFTUyBWSUKshXrUgvn5eTz33HMpjyflgOhPf/oTTCYTjEjc3ab2slJsvbsp4xM5SfPXY0IsSBkJmYbPbEX75vQ9uHfdc4zZaHSNXlhMXMxyOYAvbs70hyqXketo0ApKcsWJofX6arRcm7qrWKHBBFiMvjm7plxuOc4hL+Z7eb14w1UV2Hhrai6fyTDf51lXIrYW/c9PoP/5iaS/3znkzUot2sZb6tDwft78Yr7XnbB9vKFBg4arUu/ZV2hMHrJL78sYfLNB0EoKMm1u9ZXJJtaLSnLGQCWXOP6DPoy8Oh338dE1r0xNgZQtyp6ja+RMQVC8k2rtZaUJf6+eNUOn0+HJJ59MeRyiBEQf+tCHQCbRGnzykB2DL05mVL9Ye3kZNt/RAIBPRZ/55RBC7vgXINbX+AfGFyTh9C2VCBZ7MAQAFTvNaP2ItNiNEpU6SBmiRfr/PIFRqYfEEpQmOar2WlLKnM2dcWLmlIP/C4GUHHwSRa6j0X5TDeT6xJu1Guo1STXrk+tl/DUz2YAw5r7OnHJg7qwz6VPJ1BQ05UpRNgT5+qHCQKahUb7NmNHnN5eJlhJIWaJFzC06yY1wBTiGS0ppFXJHcOaXQ8JGxOY7G1B7WZnYw1sVjuEw+OJUUr0rCYLA/v378corr4BlU0sbphQQDQ8P4+TJkzj5RGKOFUqTHKSMRMgTge18+rXNlIIUJs35Xvea8o54skMAoFGwqC2RZGHLGXl1Bmd/JU7X+UJAXaIAy2S/4DuX8M0EpZqqZWgrlajZX5pSIblrxIfZ0/wCvWZ/Kb/xk6FFJRNkIdfJoEgiOGm7oRptNyTuTqrQ0ZDrZMIuZ9oheIe/mov5XczZ0851i5jXYu6sC2ceH0r7hmC+1A9FUZcq0HytFUpjanbuhUJgPgQ2wkIt1REJnP7FICYOSK57y2m7oQbGxsQ3l5YzeciO+T7+vSHX0aAU6a8zsp13IeSJgJSRUJoS++zb3vFhbm4O58+fT2kMKf2Uzz77LGQyGSxILO3f/rEaNH84taZMibDp9no0XMU74LnH/Iu7qAkSzQ4BgF7NoqkijOgKRsoO8TAhVqofikFVooDfFpIckxbQ16pRfXHiafFCZ67LhUP/2S1aHaVj0MtnL6KnS3NgxIRYnPrZANzjiffa6v7dWFJua+5xP079bCD97nbRe8cBc2edcKQgD1yJRCf/Qsc14sO7/3ZO2kSKwgF+ewgqKUMksQ6UgkyqDmc5M6ccgvlCw1WV2HR7fcrnjJfma6oSNgpSO0yQy+V4+OGHU7p2Sn2IrrrqKnAcB+7lxBxhVCUKsBE2aWeJeDC16OCZ8CHsZaCzqhB0hhFaR5u/VnYoNhhaCSkg4mm8uhL2HhccA5LlNsDb6zIhBud/PZrtoeQEFTvNqOg04cQP+7M9lJyBoIi0ZgnKd5hQvt2EM78YTLtxjVxHQ12mFJrIpgtjkxa+mUBCcudkIGkCm+9owNTx+bT0nLO067Hh5loc+q9uhFzJzYfryeXyLUMkcSEbbq4FQRHoelJSXwBA5S4zyraZcPLH0jySbuRaGnKDDJ5xP2QaCtoqlVC3mg4URhlImky4jtC7dxwOhwNdXV1JXzvpDFEwGMSbb76JoZfiL+DSVqkAgq/dSWcwRMlJtF5vRelmIwB+J3G9YCgVpGBoEU25ErRaKv6MojTKEJiXMmZRpo7YpWBoGRWdJuz8YiuSKMOMC990APO97oy4eFovKkHTBxPrR9f0wcokvqcK1osSN/JJFDbCwd7rhi9NjnCOQQ/O/moIYW965qd8DYasF5VIhhMxBBwhKI2J1+cVKt6ZQNyOwBKpEfJE4FnI/JdtMaL1+mpQ8vRJ6IKOMB8MEUjIoIsZJ9Hd3Q2nM/m6zqR/qsOHD8Pv98OE+OQvlJLEpk/Ww7rXkuwl14RWUqi7ohykjAATYnHih/0JaUwTzQ4Z1Ax2NgWg/euRpMZbqJz+xSDmziT/QBYaCoMMQack/ZBYHdeoD6NvzabNRtY97sfoG7yJhblNh813NqRtQht9fTbhgNfQqIUhQceoEz/sw+jr6THmoOQkNt/ZAHMrn3kZfWM2KSlgPDBBFvN9nqw1RsxVmBCbudqwPCDoCEMh1VQJuIZ9GHtLMuaJRaal8Z5vbFy3j10qjL9rw4kf9i84NBOou6IctDK5/qPrYd1Xgk2frAcVZ58kalQDlmXx4osvJn3NpGfF119/HXq9HjoY4zqeCbA48/hQSv0q1oJSkijfZhSaUqW7joVhCfhDhFQbIrEqMi0NkibTmg3NJ0ia4BuPtkh2qbF4JwNpkWOtRNjHwDsdSFvdTSTA8JMlTcStZT/2cC+OPRyfMQ9BEiBpftMrXY0ZmRAL73QAYX9mGj+qShRo/nBVUm5za8nl8jU7BPCZ5JHXZrI9jJwh4AiBkpGQaST1BcDLjLWVyrRmKvINJsii77mJtBsWRdfWmnIlyrcZ4w5YEmXykA1nHh8CE4hvrlJzOmi1WjzzzDNJXzPpn+S1117D/v37QRDrv8T1dWoAgGfCL6psQ1OhROv11QDB76AcfrBHKARLhGRqhzwBEgPfPyntYsVgqNdg79c3QJGE9W4hojTw9yHgkDJEAD+JTR628SYTEgD4xXDpZkPa5HLLcY/6MPCXSQCArkaNjo/Xiu4gRClI7PxSG8q2JFZbGg9lW43Y+aU20RdClIJEx8droavh56qBv0zCPZq8g1wikDQBXbU6s/bheQC90BtFAoLBhCSb45HraGy7pxlaq9TzMAobZjF9bB7BJGsRE8U95sfhB3v4DV+C7y+oqVCKdn42wsEzwa/nDXXrO+cRBIHt27fj0KHkS1iSegOHQiG88847sPqaUEe0rXmsplyJLXc24uyvhsRvnkcAKrMccg2NkCeStOyg+csHVv2a7dP7Vrk0h/lv7kEIBLgVgsKGB95Naiz5TMARwuhbswj70lvonC9EJQ6S6x4PE2QF6ZYEj7FRg5pLygS77ExC0gRYhhM9W8QEWQy/Og3HYHzGKts/1wyAbyq4Ho4BD0BA/DGHWLAMl/GGhADgnQrE9bMvp+2IDEB6apuyDaUgsfdrG3D+d6OSBBsQVAYKkzxt8s18IuQK4/gP+6TNtRgoOQlDgwbOYW/cWZVUia655RoaKnN6JJ2mZi023lqP4z/og3edWk73uRCGHEPwer3QaBK3H09q++XEiRPw+XwwxlE/5J0O4MRP+kULhsq2GrHhY7X8uScDOPnTgbQZJqwWDAGArJHFx4JeGFYQ/hdjMATwL+3xd+YyUrydDyiMMkT8jJRFXEBlkUvN9JYxeciOIw/1ZOXazkEvzv9mFOD4TFXrR6yiZYumj83HvRHgmfTDMxnfIi/oDIsmL6QUJFo/YuWbJ3PA+d+MwhlnEJcOxMx6de/M700YJsii66lhOEW2OM9XmBCLsD8iqA6KHY7lNxLYsDS3RlGa5Oj4eB1U5szPsSFPBCd/OgDvFB+wbLi5FmVbjaKce77PgxM/6V83GAIAjceISCSC5557LqlrJfUGPnbsGGiahhZrSyK0lXz6zCPGjsbCxl3YG0HQFRbFa30t1gqGXM2AiyDxqkwJ7zKtS7EGQwC/qErEFaTQUehlGUtf5wPWi0rQel3iDTgLnVyY1BUGGZQmuajF/YYGDS9pXofeP46j94/j6x7Xen01DA2pNx2MwjEclGYFFDmwyCzbYsTuv29P+7yWT9h73Ain0R023wi5I5BpJVllFOs+C0wta1vOFxPemQAO/Ps5eKeym0EkSAJBZ3jROVOEV1o0hojGFKuhCGogl8uTls0lFRAdP34cHR0doIjV3SX0tWpsu6cZuurUF8gNV1Wg9SP8xDrf58HAXyfBsdnNQoQIAmOUDOE4aqiKhaq9loTtcwsZ2YKUU4Jn8KUpnP+t1I8piqZCie2fbYIiB+oCHP0enHqM71Mk19FouKpClPoNWkmtm3XSVCqhWWeioxSkKG5GpIxEw1UVkOtosBEOp342kPaeSfHgGvWh/7mJuBcPvFxuZfI9OxTFUK9B2RZjtoeRM4Q9EcglUwUBQ4NWMNGSAMABET+TNrfSuIfBchj466SgCmu9vloUC31dtQrb7mmGvla96jEkSFRXV+Po0aNJXSOpT9exY8cwe8qJsjVe3q4RH04/PpiUyUGUaMNC96gvo24i62WHAEDGcahnwhijaPgXskTFnB0CgKGXpiTXlxjkGlrKEMXABFgwAUnzHYWNcHBP+HNuF1xTroS5RYfR12fBpvD4Oge9cUnQNt5SBwA49J/dqx4TlVClCkkTMLfo4Oj3IOTOfiAUJTAfEgrnJXhMLVroq9WYOeXI9lBygpAnIhlvxCA1qV2KqkSB6veUYOjlKYS9mXHIjAfngEeo+UylCbl7zI/Tjw/CNbK22U14lMSUbCqpayS8eg2Hwzh9+vSadttKE19clYoee+Nt9ai/ohwAMNflwvQJR9LnSgdycNgdCcLAZl/ukiswQTbtnePzCZmWTlvDxbyDAJqvqVo35V1M+OeC6Ht2Iudq7ub7PDj6SC8iAQaUgkT1xaUpSbn0NWqoS1fXtfc9O4G+ZydW/bq6VAF9zeq7gutBkASqLy4FpSAR8TM4+kiv+AY/IqCvUcPctr4EqBiyQwAw9NI0Tj02mO1h5AxhbwRySTInsQokTUBpksfl/JxJpk84MNfFN9Gtf185Nt5Wn/S5ojFFNMZYicqKCvT09GB+PvFa04QDonPnziEYDK4aEBnqNei8v2VdCcSKg5ERgv3s7GkHbN2Z70QcT3YIALwEiV8pdZii+BdUsWeHAKDmklKUbBTfajdfkUuSOQFKQUJTrgSlSE8Tt3xEW6VKWw+HlFmI0fS1Glj3WlJaiDVfa0VFp3nVr9t73LD3rN4zp2KnGc3XWpO+vlxLw7rXAn3tQv1RbsWfAmXbjLDuK8n2MCRylJAnArk2+/LaXKH20jJ0fKI228PIGbxTAZz++WBOrzls512YPe0AABAkv+ZPFG2lEp33t8BQv3I9qdKjBcdxeOeddxI+d8Kz3Pnz5/lBrWKo4Bz2ovv3o/BOJmYHStIEtn+uGVNH5zH+zhxmTjoSHZpEllGVKHKiQDwXICgCtIqSMkQLMAEWJ38ykO1h5A4EsPnOBgy/Mo2JA7Zsj2ZV5nvdOPK9HjAhFgRFoKRDn7BF+JnHB9fMHNdfySsBhl6aXvHrA3+ZTEoqVLrZgLkuF4KusPAz5DL9f54U1dQi31Ga5Gi7oRq9fxyHbza9zSbzgZAnAlpFpSQ7KiQ8k36E/dL8mk+4hn1wDfOSt6p9JajYYcLxR/sSUkl4JgPo/v0onMMrK9DkXl5N0NsbX7PvWBKeZfr7+2E0GiFzXpiyohQkmCCLubPxZ3ZoFYWInwEb4TD21lxWbTbjzQ4BgJzjsD/sxwlaAf0/Jt8IqpDo+f1YtoeQM0Q7iufybo1EFuGAEz/qR8SfO1rv1YgGEuZWHVqutcI95k+o3iUaDFFKcsX+GCUb+M21lQKi6PckKsVVmuRoudYKNsLBds6V88EQgLgWucUilwMAJsjAOx0AKy3+AQCRhf5+MjUlSdOBNbPKxYipWYv2m2pw+KEeRHy5P6/YulyI+BghGIrGAvEQjTGiMccSwiRKSkqSCogS1mv09/ejqanpgn9Xlyqw6yttQqfveJCpKXTe3yL4lU8fn8+bwlIOQBgEKh8+le2hSOQg9IIUKh8WvJmgdLMBu/+uHUSOKsSygX8umFcZRNs5F44+3Cu8oxN515uatdj91fYVLa6PfK8HR753YS8mhUGG3V9th7FJG/d1orVGgfkQjj7cC9u5zMuuk4VSkNj0yfpVpSDFRtjHoO/ZCQTs+bEmSDeRAD+XiOG2WAjQSgqaCqkmNYrfFsLwqzNg82DzB+Df0dPH+Tqfsq1GdN7fApk6/mdbX6PGrq+0rVifajabcfbs2YTHlPDypK+vD2NHL9zJCzhCGH1zNq6eQ7SK/6HDPgbDr0zD3pv9SD+R7BAAhAkCb8hVCUsDCxWCIrD36xtg2aDP9lByguikxQSlgAgAfDNBjB+Yy7olaK5gbtWhev/6ja1zjWizVUuHHlvubIAyzu7kzmEvhl6aQtgXfwAY9kUw9NIUXCPxqQaUZjk239UAS4d+yVjzhagpDRtZ+UNSTNmhKDINBTqBRVIhE1nIrorVPDnfsXTosf2zKyzOipTAfAgTB2w5Z9ITD/ZeN4ZfmUZ4IbMVjRHWwj3hx+gbsysnUbwkhocTdyFMKkOkwoU7dmyYw/jbc+v2B1Ka5dj5pVaYmvlzTB2dz+n03krBEACA49D0jQOiNJ0qFEbfnpW03gtEJ63I8nRukeKdDmD87blsDyNnUJrkMKzRTyHXsXW5cOqxAWH3fr1eSmyYw+RhO9jwhfPD1s80YetnLlQdrPU9sUSvHbCHcOpnA7B15U9WaDk9fxhLqVVFobHlrkZUXyQZTQAAI2WIlmA778LxH/Zlexg5g0xDwdioyUsVRsTHYOoony0yNWux80ut6262cQyH8XfmVgwASZcCTmdita5AgjVEoVAI4+PjaMeOxQvTBLbc1YjhV6fXtDKllRQiAQYBewjDr0zDNbq2l3imsfx0ZZe4MsvK7ki0ksCu/70Rr8qVGKUvXAyUHlt5Etc9fSD5QeYwHMNJC94YaIWUIYpFXcantX0zUsAMABMHbZg4mLtmCvEQXbib23Rov6kGx/67b115U/V7SsBxwPg7i++KwPyFz4T1ohIQBDC2zjtFZZFj+73NOP+bUdi73XkfTJAyArTywhqRzuMsgJU/O0e35+EKKE56/zgu1WEuEFmYSygpIALAL6JzeTM90+hrNdjwsVq8++2uFWs18wXXqA/Dr0wLc0k0dlgNU7MWdZeX49RjA0JwpFcbcH56Hna7HWbz6g6ny0noTTo3NweO4yDHomaPoAl4pvzwrzERaqtU2PWVNmirVACAyUP2CwuhchBqlWAIALq/0II35UrYyAtfTqsFQ4UMSRPQ16mldP4ClIIEx3Lr7m4XC3WXlaP+fal3q5bIPeb7POj5w7gwga3VnJmUk6BkS7/e/dsxdP92qSELJSNBylY/T/QaflsIPX8Yx3xv7vUVSobGqyux4WbJSjiKa9SXN3XF6YYNc2AZTsoQLSDXy1D33jLINNL9AHhH0MMPdud1MATw0uHJQ3YA0dihVYgdVsJvD8Ez5QdBLcq1ZBwfowwNDSV07YRWr7OzswCwJCBiAuyqhY/RCc0z6cfwq9PwzRROvQ1LEBikZfCRS2/hWsFQoWaHAEBhlGPLnY1rNmAsJiglJezoSQC9z42j79nxbA8jZ+i8vwUVnaZsD0MUOIbD3FlenmBo0GDnl1eXO4y8OoOR12eW/JvSJL+g0d7I6zMYeW3pccLxZjl2frkVhgbefGDurHNdqXa+MHHAhv6/TC75Nz47tDKFnB0CAGOTFiWbpN52UZggIxj2FDsyNYXSzUYpQFyAjXB5Vze5Hr6ZAIZfnYFnks/8r7RJFrCH0PfsxJIkCx3ixW8jIyMJXS+pgEi2EBDVXlYGU8vKDkD6OjV2fbkVKosc4JB3xV5rZYd6v94GguPQEAlDw+Z3NC4WAXsIR77fA+9U4QS9qUDJV7CDLGIiPkayio1h6tg8PAVoyOKZ9GP87bnFDbIVaiwJkkDZVqOwo7flUw3Y8qkG/mvUwtfIlb6R/0/AHsL423PCJFlI+GaDcRkTFQvmNh3KF1xoJfgsEUlLARHANyI98lAP/DYpgwjwDUubPlS5JFOS77ARju/Tx/Hy6F1fboW+buXaW1OLFrWXlfHf5+CD5EgksTVH8hkiAtBWKC/Y2YsWdHnG/Zg4aCu4iDUKBWB/KIBSdjELUKzZIQDgWA4Beyivgt50QtKEdC9iqL2sDOZWXbaHkTOMvzMHz0ThLXyZACvU/Wgqldjx+ZYL5giFUYaWa62CvfTAi1MYeHEKAGBs0KDlWusFJg1Kkxw7Pt8i2OyOvT2X99KQlVAYZLDus8TVwb3Qs0MAMPDnSZz9VeJuUYUKy7Ag6cJZ8EqIB62moatSgyjQxyPoCmPioE3YMFpuHqE0yfn5gQBk4OeckydPJnSNhAMihUIBCjTAAV3/MyJo/QBeLtH5hVbItDTYCIfRN2bzclG4XnYIACIAnlBpMUwl3kG9EFGVKNBwVQUoKZ0PACClbuJL0FYqV+xBU4yQMhL6WvWaNTKFQMTPwDnkvWBTLGAP4fCD3XD083U/c6edmDvNS+7m+zw4/GD3BRLsoDMM55B3zeLaQkBpkqPmkjLIVPy8spZcTqL4YCNcQWUAUkGhl2H7vc1r1pcUE45+D078uD8v19zxwIYXYwq5lkbnF1qX9GybPGTHuf8ZATiAJEhoNBo4HI6ErpHQjOxyuWAwGKAuVQoN8GLxTgVgO+/Km8ZQiRINhgAABAGWIMAthOPFnB0CeD2vsUELciWpSxFCSAHRErqeGsHkYfv6BxYB6hI5ttzVyMuJC5igI4z+5yfAsRyUJjk23V4PuZ4PiqPySVpFoebSMtRcWib0noh+Ta6XYdPt9VAYZeBYDv3PTyDoKEzFQRTnkBcHvn0OQdfaP2cxZIcAoGSjAZtur8/2MHIGjuGkDNECTJiFY8BT8JskEhfChFjYzrvgnb5Qdq6vUUNVooBWq0UwmJirbUJv1WAwCKVSicqdZjRfawUIPiu07Z4mUAoSET+DwRemwORxQLRWdigWguNwadCPcmZtjWIxBEMA4Brx4fgP+oTGWsUOQZFgpYBIYgW8M0EcfbinqHp2UXLedZGJWbw0XFWBTZ+sR8UOEyp2mLD5k/VouGrRiZAJMOBYTrCwLzak7BCfZfTbiudzsh5shANJFUcwvB7R9eZ6Vv/FQkmHHrv/rn3l+ssCgwmxGHxhChE/A0pBYts9TbzJDgE0X2tF5U4zVCoVwuHENtAS0nsFg0EoFAoM/HUSch0vmwvYQ3whfYH/DpZkhxagOA4EitNmW2JtSFLKEMWy80utGH19BtMnHNkeStbhGK7oCoG90wGhFkSmplD3vgrMnnZgvs8jSOeMTVqwDIvma60YenkKER9TdPUjtJJCxydqobh1EixW7tVXLNkhAHAMeOAYKAxLdTHgGEkyJ0AAKrMcIXckrzfhxcI3F8TkIRs4rsjWHQSvTgvYQwAHnPnlEEKuMNgaFjZbYr3+EnqzBgIByGQy6KpVaP5QFQiKQNAZRu+fxguiwDXe7BAAcASBV5RqTK1RQ1Qs2SGAX8zs+nKbIHspdgiKkDJEMUwdtcMrNWUFwDepbbiqouBriFZDaVFAX62CbyYgBEMAr4H3z4agr1ZBZSlO+36O5YNljsr/+VQMSJqATCvV6UZhGQ6kFBAB4LPOnfe3wti0stNxseGbCWL0zVmgyJYdTIBF75/GEXSGQVAEmj9YCV21CiRJwu9PzLgooRnZZrPB4XBAaVaAoAjQamqJGw4pIxd3L4iF5nnRv1LEkgVAYscSS3ZFlhxLEksaAZI0sURjm8ixpIwQnCsIEsLP1vv1NlAcByom8qY5DiTHofQYBwIcKJJD9EkkCQ4ksXgsJScX05jE0saF/M+6zj1M5Nhk7qEI9zvoCGH6xDxAIuYerv+7ib3f6x+78n1J5NjU7mH8xxIUEPtmWvMepvh8J3YPEzk2vnsYz7Fjb/Guavn+jkj2HsYeK9PQMDZqQclFfGYTOTZL74govukAjv+wD2EvA7lehov+sQMX/WMH5HoKYW8Ex3/YB1+MNlz0z3cO3yuO5aD/xhg4Y4B/fYRJIBobsQRO7FkMDorhfVq21YjdX2lL7Hkr4PcpiKXr3WJ+nwLAqccG4BzyFtU7YrV7KNNQ0Nepi3bNRcr4mISgCCjNcrAsC7k8sTrdhAKirq4ukCQJ95gPZ381jJr3lGLrp5uEr3fe34Kai0sBANpKFfY90CE06qy9rAzbP7d47LZ7mlD3Xt4zXF2iwL4HOqCz8m4h1ReVYOcXWoRjt9zVKGjLFQYZ9j3QIbhLVO42Y9dXF+VsG2+vR9OHqgAAtJrCvgc6YG7h7X7Ltxux939tEI7dcHMtWj9SDQCQlVuw57OVMDfxY7A0q7Dns5XCw3NxKIBLg4vR5i1+D27ze1BtCKNMy+D9rV5EfzebKoLYq1hsKrj779pRsdMEADA2arHvgQ5ecgig8QOV2HxHg3Dsri+1wrrPAgDQV6ux74EOofi6/opybL178R7u+Hwzai7h77emXIl9D3RAU87b0tZcUoodn28Wjt16dxPqrygHwPu573ugA/pq3hjDus+CXV9qFY7dfEcDGj9QCQCQ62jse6ADxkZ+F6Zipwm7/6598X7fWo/ma6zw20KYOGDD3r/fAHOrHgBQttWIfQ90CMe231SL1o/y95ugCOx7oAMlG/mme5YOA/Y90CF8cFo/Ur2kY/ve/7UB5duNAABziw77HugAreazUU0fqsLGmMLbXV9tQ+VuMwDAUK/Bvgc6BIezhqsqsOWuRuHYnV9oQfVFJQAAnXXhmS3hn9m695Zh2z2L93v755oEn3t1Kf/Maiv556Xm4lJ03r/4zBobtMIut9LE329DLf/MVu21YOeXF+/3ptsb0PRB/n7LtPz9NjUv3O9OE/Z8bfF+d3yiDi3XWgHwL4d9D3TA3M7f79LNC/d74YXRdmMN2m6s4f9CAPse6EDp5oV72K7Hvgc6hBdXy7VWdHyiTrjOnq+1C41DTc38MxvdqW36YCU23b74zO78ciuq9vLPrKGWv99Rq+WGKyuw9dNN0FWrQKupvH5HkDL+mbV08M9syUb+mY2+sFs/Wo32mxaf2X0PdKBsoYeKuZW/37SSgnPQC+9UAO03Lh5bDO8IgJeE8febf2ZrLysDSZMgaRK1l/HXNrcs3isAaL7Gio231hfNvZIdqQEYAghTUD2/CeQUf6+oEVPRvU/n+zzo+p9hbP10Exqu5D/fxfw+VVvkMMVkRIr6ffoPHfDNBBHxM0X3jrjgfdqqh7lVjy13NhbdO0K4359uQs17SnH2V8Nwj/lBURSGh4eRCASXgODwuuuuw5EjR/Ae7fuhMivgHPFCpqYF2YO5VYfAfAi+2SBoJQVjowbz/R4wQRbqMgUUehnm+/hjTc1ahNwReKcDoBQkTE1aOAa9iPgZqEoUUJnlsPe4AfAPdNgfgXcyAFJGwNyig3PYi7CXgcoih7pUCdt5FwD+l8GEWHgm/CAoApY2HVyjPoTcEd6nvFIJWxd/rL5ODY7h4B7zAwRQskEP95gfQVcYCoMMOqsKc+dcAAfoanh/d9cIr+su6dCj8RsysFUucDQLyq4GU+ECKA6EXY3eT1NwDnkBAJYNenineY2jTEPDUKeGvccNNsJBW6kEraLgGOCPNbfp4LeF4J8LglZTMNZrMN/nARNioSlXQqZdvN+mFh2CzhB8M0FQShKmRi3mBzxgAgv32yDHfO/CPWzSIuxZuN9yEqZmLRxDXkR8C/fbIoe9O3q/NYj4GXgmAyBpAuZWHZzDPoS9ESjNcmjKlbCdW7zfbJiF3xaCqkQOhUEG1wh/vxVGGXRVKsxF73etGhwHuEd9i/d73I+gMwyFnpdiCve7WgWCIuAa5u+3pUMP72QAgfkQ5Doa+ho1bN1ucAwHbZUKlJxcvN/tevhmA/DbQpBpKBjqNLD3usGGOWgqlZCpaEGXbm7VwW9fuN8qCsaGxWdWU66EXEcveWaDrjB/v6PP7ABvBawuVUBpWnxmN91RD4omcfKnA8L9dg55Efbxz6yqRCHcb0ODBkyQf2aj99s14kPIExG89YX7XacBy7Bwj/lBkPzP6hrzI+QKX3i/F5wgXaOLz6x7wo+gIwy5XgZ9tQq28y5wLH+/SYqEczjmmZ1auN9aGvramGe2SgVKQcI5GPPMzgX5+62mYIh9Ziv4Z3bTrfXo+eMYIj6mqN4Rwv1e9szqrCqQMrKo3hHu8Qvvt6lFKywczz41DEevp6DuFWUxw1CjQCTIwjsTBkkTMNUrcOL6GgQIEjqWhYllMELzi4eqSBjvCwVwYlyBaQ+NMm0EDj+FQISESsai4tj5onyfGpu0CHsj8E4Fivp9uvXuRjAhFmceHxLud7G+Tw31GiiMcsyddUKmovL2HSHW+5QJs9BWqSBTUsX7jvBFYKjVIGAP4mDwVZSXl+PgwYOIl4QCovvuuw8vv/wyOpX70Xh1JY492oewp7i7z6/lBFRMxa+WDj023FSLd7/VBSYo6d9bP1oNuZYWJq5iR12qQNAVlp4N8IuN5murcOIH/UVpGSvX0bBeVIKhl6bAsUDHLbV8X7unRkCQQP2VFRh/ew6hAphb4ulpFwvBcdjQE4E7SCIQuXD+KKa6VIB/b+hr1Zg6Op/toeQEmz5Zj5A7gp4/jGV7KFmHVlHovK8FPc+MCQtoieJGpqWx495mDPx1Au+6XkFTUxNefvnluL8/oRW7UqkEQRCYPe3Eke/1IOyJgKQJWDr0CQ+8ELC063Hm0uIs/l2OY8CD4z/ok9xeorAAUagto5PANxuUgqEFgs4QZk44itZ0Q66TwdKuh6aS3xnnWIDjAEpBQlOhgqVdL/QryncYW2K9tziCQFebbMVgCADcN+8VY1h5g75WjYb3V6x/YJFAEETRFc2vRsTP4OB/nJeCoQW0lUr+s1KEy46SDj1ImkDYE8GR7/Vg9rQLLMtCJktsHkk4IAoGg6jcbRZ0t5Z2Pdqury66LvQERWDDzbXQx3TKXU4x9ZFgAizfJEt6WQMAb31ZhC+m1ai9rGxJV+lixm8LYeS1GbDh4nk/UHISVXt4nb5nwo+j3+9F2VYjtn0mpsbhM00o22bE0e/3wjPB12tW7bEsLSovIFr+vfuCf5NzHNrCISgklzkAwNTRebz7b+eyPYzcgQCkSVZiJeR6GUwtuqLbiFUYZGi9vhqWhdq/lmutqNxtRjgcTq+pgkKhQDAYRNAZhm8uCBDA7Bknjj7Si6AzDBAQCsEKHY7hcODfz2HurLOopHGroTTJUXdFOSildC8AAByKokFavJiatUJhcLFD0gS0lcqist3WVatQe3kZVAvFsxzLYeyNWfQ9NyEc0/fcBEbfmAXH8gs+VYkCtZeXQVetysqYxSKRLJGKY7ErHERg0+rHFFuWSGIRgiTASrEyAF4yt/XuRugWaruKHXu3G8ce6RXen4WOsVELEEDQGcbRR3oxe8YJEHw/pqAzjHA4DJUqsbkjoRlZo9HA4/HA3u3GyKszwkZF0MF3g7W067HxtjrBoaPQifiZdZtvFkuWSKahUNJhAC2X+hABAMuwUr+IGE7+ZADTx6U6AIDfPNh2TzM05QUutyX4gmUAcAx4ceShHvjnFntRhTwRoSgXAF8kH1M35J8L4shDPUuKnwst67o8S+QkKTyh1mGOJDG7o8B+2CQo22pE6/XV2R5GzkDJiKLKLK8Fx3HwTAbAFGEdZrGjssix8bY6WNr4rFA0BgEHjLw6A3u3G4FAABpNYqqUhAKikpISuN1usBwDELz9YqwMxnbOhRM/7Be6sGur8ntnby0IikDr9dXC7uVaWaJiCIrcY34c/X4Pgq5wtoeSEzAhDmSBSn0kUsNvD+H4D/vgnQqsf3AeY27VYcPHaoUNsoifX7hQChLb7mkSLH9j0VlV2PaZJlAKcsn3qEoU2PCxWphbdRkavbgkWkuEdWQvxZIlYsNsURqPrAYpI6WAaAEmwKL/+Qn4ZqWG3wDvgLfzi61L+gMVGtGYwm8L4cQP+wWnQ4B336vcbeZ7dXEcfD4fSktLEzp/Qiu26MlDCAIcUNJhgHbZpOZdaKhnbNJi22eaoKlQJjSgfIEgAIVeVlSyF4n4YcMsKOnZENjwsVrUvbc828PICTiGg3cqADZSmNKG6Dvf3u3GsUf7hA2yKJSchN8WRMB54eZJwBmG3x68oG7IPxfEsUf7BJvaQppXYrNENZEwrgj4eJcJoOizRHNdLgz8ZTLbw8gZ+ICoMN8biUJQBBR6mdArstgJOkOYPeNE/L7R+YWmQoltn2mCcaEPl3d66Yai1qpCSYcB4ABWFgHLsigrK0voGskHRADOPD6E8bfnVjzW0e/B6V8MCrugUe14ocBGOJz+xaDQOwAo7iyRyiLHjvtaoC4rrN9zsjAhFqS8uBczsTgGPfBM+LI9jJyh+uKSgqy3tLTrse2eJiErFCuRixJyR9D9u7EVWzaEPfzXQu4LvxY9l8oix7Z7moQi2kKCIQgECGLdDBFQHFkiSh7TqV4CpIwAI2WIAADaCiV2faVNaIBe7Phmghh+ZXrdMo58Ixo7eKcCOP2LQaEn1HLG354T2pywSn7+qKhIzKEyqYAovBAQRYu3LO36FZ2AovpwXbUKnfe1QF8rFb8VKpEgC3uPW7JWXkDKEC1l8rAdtvPubA8jZzA164SO8oWATMt3gbd1u3D2iaELskJRzK06GBvX13UbGzWryuP8thDOPjEEW7drybVznbVkc9Es0QRF421F4UrNE6Xthhq031iT7WHkDJQkmRPwzQVx5okhBBySTB9YaFtQriyoOkt9rRqd97UI8urYmtMolJyEZQO/ORaNSVgVHxDV1tYmdL2UMkQAPxm1frRaGNBKuMf86PqfYaHjcCFkiygFiX0PdAhFw1GKNUsU9kQw9NIU7zYowWeIaLKgXk6pINfSBRUApMrpnw9i4qAt28MQBXMbr11XmuUAB8EEYSXKthpRts207jnLt5lQttW46tcdA16AA5RmOXZ+sTVva4uWo+RYEMs0L2vJ5go9SzT61izG3llZhVKMkDRZsFLbRGGCLBz9HilAXMDYqMX2zzWDVuS/sVU0RnCN+ND11DDc4/5Vj7V06NF6ffWSjTFWwa9D6+vrE7puwi5zZrMZASxKX8KeCI79dy9mTjrW/N6o9ltplmPHvc1rBlD5ABvhMPzKNHwzF0pCitWGW1WiAK3M/w+jGERlDYXaQyVRqi8uRdsN0k5vIREt3nX0ezDwl0kE7CtnhWI5/5tR9D07vu5xvc+O4/xvRtc9LmAPYeAvk5hfkFHkekHxelmiKwJ+7AlLReJR3KM+uEclqS0AYW6VTCZ4VBY5qvZYJEnlAo5BD078qA+RYH4/H5YNeuy4t5nfYANg71lbWTJzwoFjj/QukWAHKT9kMhmqqqoSunbCWoOmpiaM2WeX/FvU8k5Trryg0Gk5AXsI554ewXwf/0OqLPJV5RW5DMdwa+7wepiVd8PbjgDdOwsvi0KQQOd9Leh5Zmzd4LgYiLpj0SpKkhECGH93DpOHCyMjIgZlW42ovrgUxx7pzfZQksLYpEXLdVac/MkAQq5wXJbqSrMcAXsorqLw6DHR71mL6LXlehm23t2I3j+Or6ozzxS2T+9b9Wuu5tW/T/PoSTBBFo3rzKPFQtlWIzwTfslJDPxcAizOLcWOukyJuivKMXXULrWqBe+655nM3/dGNBawd7tw7umRuDbYojHHcmWSj/WgpKQEJJnYhnTC29fNzc3w48LJRlulwvbPNcNQt74+3N7jBscCMjWFbZ9tRsVOc6LDyDoEScDYpIVMvXJGZK2gp+2ILF3DyhocC5z82QDsvVKdCABEfPykJVPnR31Dugk6w3m58ZEufHNBzJ525K2k0j3uw/TxeUR8F5ofrISpRYfO+1sSkkurShTovL8Fppb4zCcivgimj8/DPZ79jILlp++u+jV93+rf5xrxrbupWEw0fbAK+jjWFMUAvbDWCMf5mSt0bOdcePebXZKEcAGVRY7ay8ry0vm4YqcZ2+5phkxNgWPXzwoBvM329s81r9jexxNyJZwdApIIiJqamqCuurDxqmfCj7O/GoJzeHX9+HLCPgbnnh4RMgqqEkXeLBBoJYlNt9VDVy0ZRURxj/qEQKDYCcdkiCT4ZqT17ysX+ssUO55xP0bfmEU+bW3qa9XYdk8TKCUJJsBi5NWZuBcjjgEPzv96ZEXXudXwzwVx/tcja9YkxcJGOIy8OgMmwIJWUth2T1NeGfloWRby/9uZlwuadPHuv3Vh+liCPZwKFJmUIZJYA7lehvJtJpCyPFlEE4u1QjMnHTj36xGEE1g/Ooe8OPurIXgmLqwv8kW8qKurS3hISQVEExMTYLgLBz7fx2eOZJr4F4HRojiSJrD5jgbUXpaYb3i2CPsZHPqvbjgGVpdmFFuWqKLTJHjEFzvRnfPVMojFBqUkYdlgkDJmMWgqlIJOOh8IOMLwzQRBxGEJvRyO4ZJyGbSddydnI0vwNrTZdKBaK0u0EmaOwY5IEAXbSCRJOElxDECSzC2ncrcZrR+xZnsYOYNz0IvDD3bnzaZ07WVl2HxHA0iaABtmE5I5R2OMaMwRC0dwsNvtaGlpSXhMCQdEra2tAAAfVp7cDHUa7PpyW8L9aNgIh66nhjF5iK8zUJcpcns3mQNCrrCUro2hZKMB+pr82ZFNJ2yEAxNmpQBgAe9kAEe/34PAvCSbi9J2Qw2qdluyPYw10ZQr0f6xGpA0gZArjJ5nxhJekLXfWMN3EE+Syt1mtCVovRzxM+h5ZgwhVxgkTaD9YzW8JW2OsJJsboSS4X8UWvT/38J2josXfY0aG2+ty+11QAahVRSYMCutORaI+BgEXZJ8MJ+gFKQQG0wesqHrqeGEn2dNuRK7vty2ankOawiCZVls2rQp4fEl/KbZvHkzCIKAG44Vv+4a9WLghSn45xJf+Hgm/Ah7+cm27fpqNH0ocQ1gpqDVFJo/XCU0IFyNYsoSnXl8CCOvzWR7GDlDxMdIkjmJVel6chhDf5vO9jDWhGM5yNR0Ss+xzxZEyJV8pibkCsNvS76onlZRkKlpoUdFLsMlkX0rVDiO31SSbJV5ZGpayg7FMHvGieFXcvv9mUl01Spsv7c5p/uyNX2oCm3XVwMAwl5mRbnbevhmgxh4YQqu0ZWl1AE1n6y5+OKLEz53wgGRTqdDS0vLqgERxwJTR+zgWC4ly+GzTw5jeGGxoC5VQGnKLWkJSZPQVChBxvEzFlNQJLFI2BfJ6ZdTptl8RwOs+3I7I5JJAvOhnFzsqSxyNH6wkpedzQZx+ueDCLmT34kdeXUmpaa8tvNujLya/EZLyB3B6Z8P8k5lBND4wcp1N7LEIm5zBY7Dh4Je1DKF50CaLO4xP87/elSSzC0g19EIuaXnIwqtpvKnXiYDRPwMHAOe5CTGaURpkgs9CIf/No2zTw4nfS5KToJjuYUYY+VjPJQLRqMxMzVEALBjxw64sbbNqs6qSko6FyXkjghWenXvLUfrQlSZK4RcYZz8yQC8eWxzKDbVF5dKXcVjCLrCUOikgCiKvdcN7wp9u4oVuY5G6/XVOVdHJNPQMNZrIE8xmFea5KjcbRalTwhBEajcbU55Y0yu5X82mSa3PpcUgEmSgo/gp+TBf1vdtrtYoNUUCEktJyDXyRCSJGICHZ+oQ+MHcldFlGn8thAGX5jKuSxi6/XVqLu8HADvNpvs5lpUKqezXugqF4sjZEdjY2NSta5JvW62b9+OiDYIbo3iT89UAOMH5hCYT31Ho/v3o+j+Pd+kT2mWw9Scf4X7xZAl8tuCcE8mngItVEKuMOT6wvjdisH4O3NZ7w+TSzBBFkqzPCdklQqDDDWXlALgrZ+PPdqXUlYI4G1Rqy8qFWN4AIDq95TCUJ+aBXPIHcGxR/vgGuGtuWsuKYXCkP3PKEMQOCZTYo7M/rOQK2z4WC1arsutjdBsotDLEJQyRAJDL05hco1ekMUGQRFQmuU50ajW1KIVNvq6fz+K7j+s32R7Pfz2EMYPzMEztXoSguM42N1zSdUPASkERB6PB74V+hEJA2M4jL4xCzbMpvwLYsOc0Py1bKsRTR+syvovXVOhxJ6/bxdSgalSCEGR7ZwL42/PZXsYOUPQFYFCl/+/V7GglCR0kumGABNiceqnA/CMZ38TQVupQvkO02LmRATVxfTxeRx9uEcUCQfHcDj6/Z64GsCufzL+PzINjfIdJmgr195xTJV4ZHMWloFqmQak2LNEw3+bxsQBaT6JwkvmpAxRFNeo1LMrFnWJAju/0ApNkqossSAoAk0frELZViMAIOgIx9WMe71zsmEWo2/MrjmfcLowvF4v9uzZk9R1kgqIdu/eDZIk4cD6Lyt1qQI7v9QK7TpprngZeXUGJ382AI7hIFNTqL20LCs60rAngvEDNoS88b+g1soSFQIkTeRVL6l0E3KFIdPQWQ/ecwVLqx5bP9UIkpbuRyzZkm/JNBTKd5gAALbzLhx7uBfhBN5naxGt0RHTESt6LrHqf8LeCI493AvbeRcALASE2cnQXBz2Y1NEcmCMxTXqg0eSpAPgF4QytVRDFIUgCVTtsUBhlDYco/jtIZz6+UBWGqCTMgK1l5bxjVUZDid/OpBS3WcsWqsKO7/UGlfywW9wAgCuuuqqpK6VVEBkMBiwbdu2uAIivy2ImZMOBOzi/ZLCHn7S1tWoUb7DBJLOvNA45Ilg7K3ZhD3fC1k6Z2jQoPO+lpRrDwqFqLxBIcnmAPDdp48+3AM2x4o+s4mpRYs9f98OeRZqzSztetRdXi5I9sQKXigFia2faULVXvENNKz7LNj6mSbRrJijPzOtolB3eTnMbXpRzpsoL8jVOEvnVi1ZNpHraFTuNkuW2wtE3w/BFNwaCwmZmkLdFeVQWbKbDckl2DAL17APTCjzLiQkTaJ8h0lQgETX6GIQsIcwc9IRl9Oog7ShvLwcTU1NSV0r6Vn4sssuw2/nfgtuhFuzeIljIbjFkTIi5dRZLPZuN+b7eEkGKSPRck0Vhl+dyUivE1pJQV2mgHvcn7AkxB1ZvR9G1QElJvYm78iUTdyjfpz62UBC3YYLmajVsEIvk/rvAIgEGEQC0rMRi2vEh/O/GcnYfaEUJAz1Gti73Zg6Oo+5sy7Rr80EWXQ9OQz/nPgGGjMnHXCP+8EExZ30I34Gxx7pFe6FuU0H55A3oev0PbhW/yAO1tdWPpfaBqieOZTIcAsedakCDVdWYO6ME9IbA1Aa+WA5ajRV7IQ8Ebz7za5sDyOnoOQkKnaZYetyZWS9oTTJUXt5GfqeHUfEz+DI98SRR8dCyghE/IwQQ6yHPTiL7du3J3+9ZL/x0ksvxcjICALwxXU8pSSx494WQVcoFtFfgMIgg7pUsabRg5joqlXYclcjZEkUROdrwLMekQAD16gv52wfs0V08lKYpAxRFOt7SlCyMTu78LkIE2Qx1+USdaNoLSo6zWi51iq0REhXIOYa8aVlYyTsYwRDBLGJ3gtKTqLlWisqOhNrJtv85QNJXbe5MoSKnck3ri1EHANevPtvXdLm2gJKsxwcu1hLLSGxHFJGoPqikoy1qOE4DppSBRQG/npir/vKthmx494WUMr4whRWGcL09DQuv/zypK+ZdEC0f/9+EASBeczGdTwTYDF5xA7n8MrNlFLFPxfE8R/28y8MAthyVwNKOtK38HIOe3H04Z6EaohiWSsoqjqgS3ZYWcd6UYlo9WL5DhvhEHCGoMoxW+Vsoi1XQmmSZA6xqCxy1F9ZnrbaO0pOQl/HSxkmDszh+A/60iarqNxtxoaP1abl3LFsuLkWlbvTE0QwIRbHf9AnFPTr69Qp9dRbD5KAZC+9AlL/oUWUJjmCrnBeNBfOBJZ2HTbeVp/tYeQUYS+Dg985D8dA+pxcSzr02HxXA0DwZgnHf9ifFiUAADiHvJg8YgcTiO9F4LfwtaAf+chHkr5m0q9hk8mEbdu2wY74C6fG35lD0BEGQRFpLawmaQKeqQD8C2nDdOiQ2TDHF69J76clVOwwQVuxuiSw2AjYQ1CapQAgSvfvxzD2VnybKMUCraRQstGQNvvnaH8wkibAsUirU1XQGYZ3Jv2F8N7pQFrlQyF3BBzLzyXtN9ag+uKStF2rZ0KOgarmtJ0/H9l4W71g+CEBqExyUeuw8x0mxEn1VBkkuoYOzIfgnQqkff1OUASCjjDG34nfZdJBzaKsrAytra3JXzvp7wTw4Q9/GEGTG2yCWzmbbq9Hw9WVqVx6Tdgwh4G/TApNUzfcXIuWa62iXkNXrULD+ytSOkchZomOPtyLqaMiWOMWCH67lCGSWBv3uB9HHuwRVQ5DKUhoq/hM7dhbszj50wFRHd9Ww97txshr4rgLrcXIazOwd6dfesxGeMeksbf4iVlbpVozW7SWbG78sgu/T6tkQRLSrtpyvFN+qV4mBqVZLmzwSgCOAQ/6/jSe7WHkFgSw9dONMLWI26ez5VorNtzMZ/09kwEM/GUyrRLvhqsrsen2+oS+h+M4jNlHsH///pSunVJAdO2112J+fh5OJNYca+KADVNH7KlcOiFG35zF9El+kS7X0qK4fin0MhgbU3/wCjEokliEzxBJAVEUdZkC+x7ogEbKIl6AmJns+isr0HZDNUDwErBM1B7UXFqaUbc8uY5GzaXiNX5djaAjzEsMCaDthhrUX5naRtgiHHY0BtFUIS38lzP08rTUxDkGpVnKEMUi00rtLC6AA7wzAUT8qdfdKfQywS14+uQ8Rt/MnKpj6ogdEwcSiynCJV643W7cdNNNKV07pRl4x44dqKqqwiwmEvo+23kXvFMBgEBGuoQ7B71wDS90Jr+0FJvuaEj5nHNdLhz/QV/K51mPfAuKrPss6Ph4+msI8gW/LQhaQWWtv0muEZgPY+T1GYREtOUsBFQlCuz5Wjv0tck3rqUUpNCrYeTVaZx5fChjkl6VRY6q3ZaMWswrDDJU7bZkbsOBA848PoiR13jHI3WpIsUglsCRfgVG5/iFh/8ju0UYZP6jMMikVgUxyNQUaAUlOZXGsPGWOjReLdbGROHQ9+wE3GOpN/refGcDai7hN5tcwz44B9NT+x9LNBbwTgWE3nDx4tTMQq1Wp1Q/BKQYEJEkiQ9/+MOQNbFJubvVvbccm+9syGikP/TSNLp/NwqAd76z7rNkvVFkIbnO+W0huET4QBYK0V09qV8CDxtmMf7OnKh9CgoB/1wQA3+ZhC+FAtXma6xovb4aAF9gm0nJkd8WwuH/6oZ7PHOfffeYH4f/qzujO+dBZxhhL78D23p9NZo/nJgUe7lszhckEQhLjgqxVF9cgo231WV7GDmDupTPpvtm01O8no/0/2USk4czpzLKF2RqKm5XtlhImoB1n0X43vO/HcXgS/FZXYsBQRHYfGcD6q4oT+r7bcw0du7cCYUitXVWym/ia6+9Fv39/fAi8UX95CEb+p4dz6hNMxNi4ZngJ21DnQbV+0uT2uWr2V+KTZ+sF21chSKds/e4paL5GPy2EFiGg7pMkohFUZrkKNloyPYwco6po/MJN3qmlKTQrX3o5Sl0/c9IOoa2JgqDDJSczEiN0nLYCAdKTmZEabCcrv8ZwdDfpgAACqNMWEzEY79NEhx2NAagV0m20ssZeXUG3b8by/YwcgZ1mQJshEXALgVEUdyjPvhmpPuxnC2fakTNxYnLiCkFhZr9ZTDUagAAngk/2HDmbB45hkPfs+OYPJiYVA4AWH0IY2NjKWeHABECoiuuuAIGgwHTGE34e0PuCBwDfCrOUKdJdSgJY+9248iDPQh7GRAUgY231gmddtfDPeFPOK2XCvkSFBEkLyUhZdKuJwBwLAf/XBCaMilDFMXYqEHLdVZJA74C1ftLYWqJ/7PefmMtWq7hsxRBR1hoBpxJmj9cJRTdZoMNH69F04eqMn7dkCss1Ga1XGNF+43x3wMZzYHjgAgjfQaWE/Yx8E6n36kwX1CXKeGfC0o25AvItDSq9lpAJ9EDstDp/dM4po7FZ2qlq1Fj4611IEgCYW8Ehx/shr0n82ql6NrfMeBNSkrvME1DJpPhzjvvTHksKa9alUolbrzxRkxhJOmmqLoaNTbf2ZCSfj5Zov04aCXFT1D+xeZ8a+Ho92DykJSyXY5cL8OOz7dAH2dgWQx4ZwJShiiGmZMOHPj2OamB7wroq9VQl6xdEyPX0oJ5weALk+h5Jru76b3PTmDwpamsXX/wxSn0PZdYHavY9DwzhsEXJgHwZg8qdu3VazBM4vigEr6QtHEUi6ZCicarK9Pa9ynfUJcp4JWyIQIqsxx17y0HJW26XoBrxLeuhFhoyu1nwHEQAst09aZbC30tv/bXVSfXu5LjOAw7+7B3716YTKnb9IvyRN1+++3ww5uw21wU96gPJ3/an7YO5PEQ9kbQ9eSw0GRq0yfr13QTUlnkglRFLAqhlijoDOPUzwbgHsve7zLX8M0EoCmXAqIobISTgqFV6HpqGOPvrv0e3XhbPerfx7+bfLPBtPYVioeQK8yb5GQJ71QgK5mxWELuiFDjUf++ClzpCQCrbBAqZSwMagYrOV4Uu7GCXEfDUK8Bk0G5Tq6jKVPCNytlzKK4Rnx495tdUh+iFTC1aGFuW11hUH9lhWBp7Z8LouvJYYS92Zs/XCP82j9ZI4iwyQfbvA2f/OQnRRmPKB6p+/fvR21tLSZHRmBEcg3sojfE3KqD3x5KW/fbeBl7aw4hD/+BU5rloJWUUHsEAI0fqEIkwKD7t4lLBddiYq8bujdXvoe6NxVw74+/UVVW4ADXqBQMxeKdDoJWUpDrZVlfuOUKNftLIdPSGPjLZLaHknMQJKAuVwp91ADehS7sjSDiZ9DzzFhGbLTXQ12mQPuNNeh6aiTrDlhKkxwdn6jF+d+MZqz4vOcnO1f89yGGw+Yn/Wh1ukHLAJkC8Mc4SFe3AZVWFoe+2y1tDCxjvteD+d70u7fmC3IdDVpJSfUyEnFRuskISkYu6dGmrVIhEmAQsIdgO+eEOwfWZ+pSBZQmOew97pRc8Wy6CWjDWtx+++2ijEuUDBFJkrj11lsxjdGEm7QugQBqLy9D5c7sd6i2nXcJv6iq3Ra03VADxMi9+54dx9DLmZeJrBYs5RKWDXpU7DRnexg5g2+GX9hqyqU6oighb0Sy3l6Fqr0l2HJngyBtICgCm++oR/V7+M++dyqASCD7xfgcw8E16kPQmX074KAzBNeoDxyb/QAjRBHwOvn/t7YQ2PgeAkTMTDvWDZz86YAUDK2AVHu6lGi/Nu+MlCGK0viBStS9Nzk3skKn5w9jOPfrGGMdAmi/sQZVu/n1mHsss7Xvq1HRaULtZWVL1tSJwhEshmx9eN/73peyu1wU0d4+t912GyIIJ9yTaAkccObxIQz8NXt69JUYeGESZ345CHCATEOj7YYacCyXtl3a9bJAuR4U6awqGOszb5KRqwSdYUT8DLQVyelkC5HpY/MYy2Czt3xi+vg8Tv50AOoyBUiaAMdw6HpqBMOvzmR7aEvw20Loe3YiJ4q9OZbvweG3ZT84A4Dz9/M1lKPnOZw/yIFjAZICdAv7RFKTzQvRlCux939tgKZSkhdH0VWpEfZFciIjnCsE7CEEHNLnZzXkOhptN1RDpqEBDjj9+CAGXsixNfVfp3Dml0Mp9ckLVbng9Xpx7733ijYu0QKijo4O7N+/H6NILd0dNTXQVCp5J6pc2DDiILyQFEYZlGY5qvZaoKtWpa34M+elcWsw9PI0zossJcx33BN+aKukgCgWmZaGypKhppp5RMTPIOSOYNMnG1C+g8+Weyb8OZVRiL7/cg1dtQpVey3ZHoYAywIeB///5fXAposJVKTeF7wgCbrDGPjrpCQPi0FbpVwi1ZcAJg7aMB2nk1oxQclJWDbo0Xp9NVRmhVDjHnSEM9agey0IEmi5zipseETX+skywvShrq4O73//+8UYHgARAyIAuO++++DAHDycM+VzyVQ0lCY5yBxzm/GM+3Hyx/0wt+igsiiw4/6WrMjDcj1LJLEU97gvJxeQ2aTto9WCOYAEj6VdBxAAE2TgmwnkRPZlOQQJlG4yQGfNPSdJnVWN0k2G3NhIW8bUIDDRz8ExC5DbO/jftYRAxMdg6og9pwL/bKOtUsMtBUQCpIyA0ixPSWpViFTsNGPHfS18v6r5EE78uB+eDDbJjgdSTkJpkkOmSt26IKwJYHhySBSr7VgILlmv7BUIhUKoq6sDPaVGO7FDrNOCoIicfEkSJIGyrUY4h7wIzId423CRTQXWC3xyMZMk18uw5a4G9PxhLKvOgbmEuU2Hjo/X4dB/dUvGCguoShSI+CMIe7NfD5MLqEsV2H5vM7qeHMZ8nwc1l5TCNeqDc9Cb7aGtDAFRdh43fJzv33NOjKayIo0pXlYzVgCA9odXf/eZyoH2PQSOP9qXMROInIYAqt9TgtnTTgSd0vsRABR6GXZ9pQ1dTw1npT9MLmJs1GDT7Q048r2erBu5ZBt9jRogeKc2pUkOQ70GMycdOVFHuRyx1/BTNb3on+3BxMQEjEajaOcVdR9NLpfjnnvuwSRGEOHEealRchLb7mkSpCO5BMdymD4+L3wwK3eaUXNpmajXyMd6orAnjNkzzqzaOeYa7oXdGp1VyhJF8c8Fiz4YImUkKjr5d5tvNohjj/Rivo+3JBt9YzbngiGZhs/cA8gJGcYFLIxJaZLzGvocobwOsLYu/n1+Gjj2SK8QDFV0moraUEBplKP6PaVCfy0JQLswV0gZokXcY36c/sWgVEMEoObSMlQuqJMC8yFMH58Hx3GQaeicanpe0WnCtnuaRCsv4WgGfdPd+NCHPiRqMASIHBABwD333ANQHCYwLMr5mBCL2dMOuIZzZ2Ggr1Gj8wstF7y8u38/hu7f8bUzWqsKW+9uhEyb+gs+F7NAa8GxwPDfpnOmwDkXCHsiCDrDUkC0jOr9pUXtSKivVaPhqkqhlmr5Z0ZhkKHpQ1U5s1iu2mvBlk83giBzZ8JdDkES2PLpxqzXEkWNFQDeeluuWHrPor9rlUWOhqsqs9KYPFcIzIdw8DvnhI0jCd4uOegKIyy5cQowIRbOIW9ubsakGZmWxta7G4Va5O7fjaL790ubcqvMcuz5+/ackuc7h7yYPe0QrfGrx2pDMBTEP/3TP4lyvlhEn2WtVituuukmjKAnNQvuGMbemoPfFgJBEjnxiw77IrCdc61YFCb8G8vBNxsUXma6alXadO26N0tyLlMk19FFPcGvhHvcl5N1F9lEpqaETtnFQtSUBQAc/R4ceah7zc0DY6MmZ8wnRl+fQdevhnJSpZMk6AAAmsBJREFUlhGFYzl0PTmM0ddzx5VvrAcYPL30npHbOgDwgdGRh7rh6Oczg1V7LXydRDFB8BtpxbjQXQ19jVpqcL6Mqj0WGJu02R5GxiBICGvesHeh+fNClctK68+gM4yup4ZzwpiEX/MS8NtCGHtLnE19juPQ6ziDzs5ObN26VZRzxpKWJfoDDzyAAHyYgrhOY1V7zNh4Wz1oZXYXUH5bCEMvT4ONrP729kwG0PvHcQAAraKw+c4GVHQmvxMeT5Yol4Kiih1mtN9Um+1h5BSuUR+0VlVOpbOzzeALU0Vnv62vVaNqtwWUgn/9riUbDDrDOPr9Xninst+HhCABNsLBM5n9sayHZ8IPNsJl3VxBoeLlcusRfQYoBYmq3Zai2kyS62js+Vo7dDXF8zOvB0ER0FlVcOaQMiYXMLfqikplUdFpxuY7GvhNQw7o/eP4mu9fNsLB3uNO2cEtVWglhY231aNqj7jqD1+VHXaHHd/4xjdEPW8UUU0VYrnmmmvwynOvYx/eD4IQZwFIkHyvgmxPyEqzHOCQUFGfukyBoCMMJsSiaq8FtILCSBI7mOsFPb6IHMzlKfSCEgmZmgJIQkr3x6CpVGL7Pc049bMBUY038h2SJkCrKITchfuslGw0QGmSY+wtPvgjaWLNDZXl0CoK5jYdZk440jTC9a+//XPN6P3jOBwDHlHPLaqpQgzGRi1arrPi+A/6kl4gDP3rvjW/XvtCAH13rL5Bd9nzPlhbCBz/Gwd2hSGwJ7ou+LfYZ6P64lIE5kOYO5u6c2uuItNQqNxpwfjBOTCBHLRVzAL6WjW23NWI4z/og3c69zcgJMSj9tIyRIIMJg7YQMlJKAyyhIxXLO06sBFOqEXNFtpKJbzT4jmlchyH05Y3YSmzoKvrwvemGKStgvF//+//jeeeew6zmEAZrKKck2MhBEM1+0vhGPTAPZZ5zXHde8shU1F8Y6k4iU1hEhQBYmEOJUgCKos87gfevX8O1KtVax5DvVqV9aAo7CvuYvmV8E4FEAky0NdrpIAoho5b6sAEWZx7WtwFcS6hNMmgLl3spp1IMAQAphYdGq+qxHyvOztGFBwwc8oBz1T+1Hh4pvyYOeVIuwyr+Rer/z4m3uzCtIIEE4x/VRD7bKhLFYJEplAJe5mkNgcLGUOdBpEAA++MFAwVA+pSBfy2IDgWICgIKhImxCbsQlm+w4ywJ5KVgEhXrYKhQYuxN2dFT1wEK52YmZzBfz74n6KeN5a0ZYgA4PLLL8fR105iN94rWpYI4B+WTbfXw3bOhYmDNtHOGy9yLQ1KQYpiGlCyyYC2j1bjyEM9CdmNrhcUZTsgAoCGqyrgHPRKlqExdNxSB4IkcPaJoWwPJWfQWVUI+xkE7IVlwtFynRW+mQDG3xXnHSXTUAXpypeuDJEYrJchAvgs0XJIkoPRxMFuI0G+eVyUsVgvKoG6RIHeP42Lcr5cgJSRKNtq5IuuEwgaC52Nt9WDYzh0PSWOOVUhULnLjIpOM47/oC/bQxEVhUGGXV9uw/nfjuZ9JrhqjwWWDXqc+eWQ6K1yzpUdgEIjR29vL0gyPVrotCqs//Ef/xFuzGMOk6Kel2M4nHl8UAiGolr8TBHyRERzULN1OXHml0NCMNRynRWmltQb9q0XMGUCpVHOS+ckBJzDXuhr0mewkY+4x/0FEwyR9OLGT8ARQkhEyWjYy4CgiIwXFVd0mlC21ZjRa4pJ2VZjxts2lJZz6NjEQC4Xb1EQcocRcC5+TmKftXxFV6VC49UVWa8LzikIQF+jgnNEqh+KxTsV4DO+BYCpRYeW63jlVNAZxunHB2E7l7/BUHQNPnHQhjOPD4oeDIUq3BifHsPXv/71tAVDQJoDoiuuuAKXXXYZ+nAGYieiorpEQ70GO7/UClWJYu1vEAlaSaHx6srFXhwpwrEQeo2QNLHEq11hlEFhlK34ffFkgLIdFJ17egTTWap5yFVcQ15QcgqayuIpDI2Hkg496t4rbg+vTEMpSXTe34rSLUYAwOjrs5g9Le4kV7HDhA0fq82oM5+mQgltpTJj1xMbbaUK2orkxl//T+8m9X3TkwSOHqYRCokXtMyedmL0db4GrWyLETvubwGlzO+dFeewFwe/c15qxhqDtkoFSk7lVKuRXMA16sP4O/nVgiSW2PUcQfA9NqObGs5Br2i1NjqrCtvuacrYJoOqRIGdX2qFoV4DAKL9HFE4jkN3+CQaGxvxmc98RtyTLyOtb1OCIPCtb30LXrgwifTIIdzjPoy/PQe/LTM2gzINBUODJi27c2yEw/nfjGK+l5eYVV9cik231696fD4ERYWwiykmnkk/IkEGxobisQ6NhyUNP/OMaANFJsBi/MAc3GmsD5s6aseJHyVvEpAM/c9PYuCvUxm7ntgM/HUS/X8WV6WwGiTJQW9gARDw+9L37nON+jBxwCaYEGjz0Xlr4fZIUrmlmJq0iAQYeKSGrEswtWjzegNg0+0NqL64FABg73Hj/G9GE64ljYewj4Fn0g8iQ2svvy2I8bfn4B5Pz7znq7Jjem4K//Iv/5LW7BCQ5oAIAPbs2YOPfvSjGMBZsJz4kzgb5jD29hzA8Q500Sg1XfhtIRx/tC/hQrdkGPzrpFBoLlNT2HZPEzTlS3c6czko0lpV2PdAx5Ji8mInmhE0FVEvhXiYPGxH9+/G1j8wxzDUa7Dt7iahWd7EAVtC7pOJwrELDT0JpF06R9KZl+elE2OTNu0bNJVVLDZvZUDT6TVCCMyHMHGAl4xrrSpsu7sp7XOf2JRuNqLzCy0gZdKmWSzGJi0cgx7Rd9rzGZVFjo231EObR8oKTbkS2+5pEsoGzj09jMG/pn9jJjAfQt+zE2l3+DXUa/j1KAeMvT0HNiz+O48jWJz3nsCWLVtwyy23iH7+5WQk3P5//+//IUQGMIaBtF7HelEJai/Nb9lNLGyEE9zpSDlv4hCVFphatEJwxFw+sW5glI2gyD8bRN/zE6LWURQC831u6GrUGa99ywfyIXhWGGVCTYpzyIvTPx/M+G6upU2PjbfUpbVhq2UDfw2FYWXZbj6hMMiw8ZY6WDbo03qd8TESJ4/RiEQyt8j3jPtx+heDcA7xEqvyHaZVpda5hG8mgOlj82lZSOUrlIKEvlotNOmV4PHbQjj8YHdas+9ioClXwtTCbyIFnWH4bSGQC2UQvplgWjJCK0GrqLS/A2ovLYP1ovT2vnTXzGDeOY/vfve7ohqzrUZGVmTt7e341Kc+hUGcQ5hL3+5p75/GhYwKQabn5m2+owEN769Iy7nXIugIo/t3o4gE+Cxb7SVlqNzFN70iyNyUpjEhFtPH5rPeJCzXmO/3gKQIGBvya0c33ZRvN2HbZ5tB57gRh7lVh5pLSkHK+NdnNpon2s67cOJH/aKZu6zE7Gknjv+gryDqO4LOMI7/oG9JTRe7f/uSP6mgUHDQaDkABDyepe/iVM8dD9FgiJSRqL2kDGYRjHnSjXcqwKs7JASMDVoQJJH1HjK5SNAZzlhAkQgkTQgmSZW7zai5hN+UjwQYdP9uFEFH5t+fzR+uQsu14rS7WU50bX3u6ZG0Ol5yMgZdcydwySWX4IorrkjbdWJJq+12LBMTE2hra4PJU4E2Yltar0XJSWy5qwHjB22iNzIs3WxA2BuBYyDLBY8Ev5vEBFiUdOjRfI0VR77fA+758jW/LdN23JpyJdRlCtGLy/OdHfe1wDnsRf9z2bdHzxUoJQlNmRKukdzbBay9vAwcw2H0jVkQJD8B5srkXLLRAHu3S9TxUAn2zkmFTNtuR3+2eAOVyYtUCOtWv7e1LwTQ2h6B3sDhyEEaQnFMDGJZb8cDSRPgWIBjOdRcUgqCIjDyam71+TG36sBxEOplJXiaPlwFQ50Gxx7pzfZQcorGqyvhHvNh9kxurSNkagqdX2hF77PjsHW5QCkX3ptZnhrUpQqwDCe6e2vZNiOseyw49dggmFB654fpmn6cmziNo0ePYsuWLWm9VpSMaXaqqqrwjW98A6Pog5tzpPVaTIiFrdudlqats6ed2Q+GAICDUFDrHvNj6G/TiPgYMJdPoKFHDf38yj13My2dMzVrUX9F5jNquY6j3y3VES2DCbA5FQzRKkrYDWMjHNgw/3njWC5ngiG5XoaWa62wdBhEOydJE+i8rwUVnZm1qs4EFZ0m7LivJeGMusxNrPpn8iIVBh47gzOnVg6GMg0b4cCxnPD/0WeVIImMuhOuRclGA8rz2Mo9XZgatZJcbgVoJZkzKhhDgwaNH6gEwBsYDP1tGp6FtSYTyH4wBAC+2WBaWlm4x/ywdbvTHgxF9AGcHTuJW2+9NWPBEJDBDBEAhEIhbN26FVPn59CJSzOiCSRIoGybCdPH5lM+F2+HSQryhFyEpAl0fKIOZy7TYtQA6IKAMgLMqrFkrq658UxGxkNQhOie9IWAqVmLjbfW4+gjvfDPZcYhMR+QqSk0X2PFyOsz8E5lr0s7pSSx60ttGHp5ClNHU393pBOFQSaqrI0ggbKtJjgGPRmRe2QyQ6QwymBs0GLm5DyY98SfIVqNejKEGZaG6dsHxBpi2qjoNKH+fRU4/FC3sJmWTUiayJmNhVxAXarAjs+34OyvhiTJXI6hr1Uj5IkgYA/BskGPyp1mdD01nNPPb80lpfBM+EV5lsp3mDBzYj4jRh8cx6Gn4gh8YQ8GBweh02VO/pvRqm65XI7vfe97cGAOUxjNyDX1dRo0Xl15gTtbMlTsNKPuvWtL0rING+Fw5pdDwKf5gKdxHtgXc6tlC+U8o7/dlJHxSMHQyjiHvGBCDCztua/1zyRhP998NLYfV6ag1RSq9lgA8Dt9/c9PYK7LlfFxJEo0GDK36lDSkbppAMcC08fns6J9TzdBRxjTx8WZ2Clw6KCDqKfy4z7NnXOh//kJIRiq2mPJSr1e1Do5lxeT2cDSrkckyMAxmLsbrtmAUpJpqwlf77oAAAJo/Wg1yrfzGXPbORfO/HIo559fQ50GSnPqpjuaciUar66Evi4zNc8Bqx2jU8P4v//3/2Y0GAIyHBABwJVXXokbbrgBvTiFCJf+icQ56MXR7/XAO83vNqdi8dn3p3F0PTUs1tDSTs2NZ3CyHHi5EQAByCPAR84BNQ7+65kKihqvrkT9lbkdSGYaNsJhvtcDS3t6Xa/yDg7oenI4K9I5TbkStZeXCZPI7BlnXhmCWNr1MKf4PFXuNqPuisL/rNZdUY4qa2q/WwYEXg5p0cXkR/+siI8RajCUZjnq3lsGTVlmG+6SNIFdX2wrSDlmqpjb9ZjvdUubiMuov6IcWz/TmNFrlnTosfur7XxzUw44/dgghv82ndExpMqZXw5h8pA96e+PrpW90wEc/V4PnBkI1DmawWnXUWzbtg2f/exn03695WTF9/e73/0uaDWJPmRGthW1fbZeVIKtn25KSYuaTwskAKi56Qx8C/M1QwJHq4CZhdKVtjmg9HvpD4r8tmBa3bDyFdt5F3RWNeT63LfIzTQKoywjzSZrLy1D20erAfCbJ4f/qzst2utM0PfcOHr+sNDLKclXHEEsOiYVMgQJkIPJOSQZCQbvkflAg0MIBHKhbihRAvYQDn23W5B/t91QjZpLS9N+XY7l0P/nCcxLdTJLkOtl0FWpYDsvmUwsZ/KwHUMvpT8Yaby6AlV7eYWAc8iLgT9PgI3w2dR8ddokSAhuqIlA0gS23t0E6z7+fmSqdcpM1SB8fh9+8pOfpL0J60pkZeqrra3Ft771LYyhH/PcbMaua+9xY+qYPalUZ80lpWj9SHUaRpV+ovVCDAkMmIHggt8CQwARks8Ujf1mE+rfV54W7/rJw3ZRargKDXuvGyzDSrK5FWi6uhL1acpUaKtUkGv5D4F3NgB3TA+hTDmrpQOOBcABqhIFdtzbnFRPp4mDtowsPrLN0EvTmDhoi+vYyneWmvNQ4CDLhcrpFIl91t3jfqHZuFxHC42GxYZj+cxrIcoxU8HSpgPLsJjvkwKi5fhmgnAMiB9AK4wy1L+vXNgAYkKsYJwT9jGYPuHIeVncenR+oRXVSfQKYiMcpo7aYe/J3PMYKvHgzMhJ3H333ejs7MzYdWPJ2l7gfffdh/e85z3owhEwXGaiT/9cUEghlmzUw9Qcv8tXwB6CdyZ7Rd6pspKJQp8FOLVgAKcLApZLS4XaDW2lUtSmj6oSBeS6lZ3vihUmyMIx4JVkcyvQ9+dJdD0pvjyVpAlsuq1eaKxq63Jh4kB8C+N8IeQJwz3uT2hXj5SRqNxtzhknp0xA0gSqqhmQVHyLHhX4iNPG0XgtrEYkDzNDqzFxwAbbQr1c+XYTNt1WL/qzoKtWoemDlUntWBc6lnY9nIPevN6QSQeaCiWq9lhEy1qrLHJoKnmZKK2gULbFCKWZ3zgafmUm5w10EmXo5WnMnnHEfbypWSvUoU4esmdM2cORLM5GDqO2thYPPvhgRq65Ell7M5EkiZ/97GfglAz6cTbj17dsMKAkAava2TNOjL9TuE3kXErgj+1A9yMtAIDay8rR+IFFi26lKbXgaMtdDajYYU7pHIWI7bwLhjpNztjh5goh10ITPhHWZIY6DbZ+pklwtTr5swGMvpm5zHSmYQIsev84joifAa2m4jKUMdSrUX9FBWTq4tm0kKlp1LWx8F1Pou+2tX9uGTi8X+FFGxVdIBROMLSc0TdncfJnA2AjHC+d+UwTDCIUVMt1MqhLlcIuvAQPraJgqNfAdj73DVwyjbZKhaq9lpRMUGLXLk0frELdZXzjVO90AIf+q7ugXV7nzjoTCmpKOgywbBCvhUO8zFUPw+Fy4Oc//zkUisSVDWKRUdvtlfjOd76Dr3/969iFy2EgLJm7MMHr5TmWg8oih98eWtU/3tKuh3c6gMB8ftYWxBKvkULtzWch19AIusLQVCix/bPNOPXYAFwjvqTsUjXlSgTmQ2n3r883ZBoKu7/ajr7nJyRZ4TL0dWq031iD4z/sRzhBDbPSLAetouAZ90NhlKHusnIMvjSJsDe/agBTpfkavtHj0Ud61+2PQSnJrNgxZ7oxayxDj+5EaB0Hq+YnIpi8SAUrGcYsSy/UDV2I9dvvpGOIWUWmodBwZSWGX5tG0BGGzqpC2M/kbZ1dLlLRaULTB6tw8D/PI+IrrvdTXBBIuLdPdI2ir1Vjy12NOP6DPninA1DoZQh5I0VlXFGyUQ+Zhl7dYIEAVGY5/LYQCJIAx3EZ7aUUtvjwhu0vuOOOO/DYY49l7sIrkPXc9Ve/+lXs3r0bZzMonQMAcHyBJ0kT2HxHA2oXdg1WouH9FSjbYszc2NJIPP2HQiEafb/ciqCL13n754I49/Qw3GO881fzNVa031ST0HW90wEpGFqBsJe3WS3bbMz2UHIO71QAMycdcU9esbKKhvdXCDVIQUcYPc+MFV0wBACDL0yh639G1pzgoq56udCbJtOESALgOOgjK//sDf4IqOsXgp1/O4zSb78L67ffKcjgZyXCXgY9z4wJNT91V5Sj4crFRtvxSpn0teqsWOnnA6WbjZjv90jB0GokuDhvv6kGzddYAQDuMR/OPT0Cv43PAgVd4aIKhgBAXaqEvmb1DG/d5WXYfEcDSJpPEGQyGGJJFl3cYVitVjz66KOZu/AqZP0NRVEUfvGLX4BTRdCDkxm/PhvhcP63o5h4d/U6gmOP9mL8QOHI5VYKikIhWvgTpf/JbQD4e2Q77xbS1jMnHZg56QDAF+B23t8CTcXashxaSaH5Wuu6xxUjs6cdMNRrJLe5ZTBBFkMvT8fl7KgwyLDrK23Q16oBAP3PT+Dsr/LHIj9dMCGWl4QQQNsNNYKLUhSSJrD1042o2Z9+h7FcZasngg/PBUGxF64EykIsSlfZyIkGRsUUIJ391TD6/zwBgA9ydn2lDQrD2u8tggTab6pFzSXF+4ythkIvg6FOI9ihSyyitaqw68tt68r1NRVKdN7fItQoz5xaXJ9wLC9Lz3dzhFQYeW0G3b9bve/n+Ds2nP/taFbu0Ux1P+wOO37+859Dqcz+2jDrAREAtLe346GHHsI4BjHDJWeFmgquER8iAQa0isK2e5pgqOejaZLmG0SyYa7gih1rbjyzYhC0nGhQFItjwCO4jxAkAeeQFwEHL6GovawMDe+vuOB7mBADdYkCsiw0Asx1bOdcYMIsSjdlXrubD5RtNa6YoTU0aFB9Mb/ICjrDmDo6L2Q1Q+7ikkWsCwf47cELZL9shMO5p0cwfaJ45Zq9ahp/M8nBLEjnaJYTgqCDehneSoPzZr7CMRxCbl7JEXQtfOYWLImrLy6FoeHCnWiOBU78qA9jBVyDmywlmwxgwizsUv3QBfB9sxwrWl43vL9CUPUEHCE4h7xC81Z7tzstrnT5jr5uMUtrqNdg22eaQKsoRAJMVvr++SscODN8El/84hdxxRVXZPz6K5ETAREA3H333fjoRz+KLhxBgMv8LwfgX/be6YCwuK++uBQ77m8pWOelpltOxHXcSkFRlKAzjL7nFrufh70Rwd2KkpPYdHs9NBVKcCxw6mcDcAxIXbiXw4RY2HvcKN0sBUQroa9VQ1vN2wDratTCTqC6VME7RS58PEdem5HsfNdg5NUZ2Lv5jYyqPRZBKuca8QmL3ELBffPeuI/1UQSmFfxGDcFx2OaJ4Ap7EBTHAQTB/5G4gKAjjJHXZvi/ELxDlbqEL4iW62joqlW8pI7gNygkSdiFlG4ywN7tluTkKxCYD2Ho5WlwLAdNhRKbbq8XFvQhbwRhL//OYgIs+p6byNteQZmAVlHYeGs9yrYZAfBBpHcmkLVNQ1YVxnHnu9i6dSv+4z/+IytjWImcCYgIgsCPf/xjlFvLcAaHkA2vBybEuzMFHWEQFJ8dGnxxsqDTrU23nIgrMForKIpl8rBdcOOj1RTYCIdIgJ8IKzpNaLy6opANmpJm9rQD2gpVUr1jCp2hl6Yx8OdJkDSBjbfWoXQhWzR5yI7TPx/MqOa5EKAUJCp3mdH0wUqhKW0h4r55r/BnXTgOV9iC2OmK4ISWxl8sCjBSIBQ/HHD654OYPMwXbpduMWLjrby9/Y7Ptwh9vyQWUZUooK1UJWSLXCwQJG+2UrmHd6ZlgizYCCe4sY6/PSc8axLrE/EzOP3YAGQaGgRFIOgIo/eP41kJxDmOQ5/hJEiSwB/+8IesNGBdjdwZCQCz2YwnnngCTsKGQZzP3kAIQF+tQukWI/yzxeGmI2ZQFCXoCKPrqWFh115hlKNqTwl0VhVAABtvrYO+Tp3EaAuP+V4Pwv6IsNiX4KncbUbnF1tAkHx26MSP+zH+tiS9SQUmyOL4D/owdWQezmEvLO06UMqcmgpEZ73gaLMngsoQC5uMQIQk4JR65aTE+NtzOPHjfrhH/Zg6Zsf2zzejcrfUdiGW8m1GhH0RzPdJ8i6Al3RtvLUOIAB1uRKWNj0Uej6LHZgP8WsJKQuUNBwLVHSaYdmgy+qmtLNuAiOTQ3jooYfQ0NCQvYGsQM699S+77DL80z/9EwZwFjYuOx3Tay4uRdOHrTj6cA+803wz1mJYuKcjKIpl+JVpdP9+FP65EGgltdAZmt/eL91sQNsNhbtbvR4cy2H2tBPlW43FnUEjgC2fbhQap873etD/3ARUFjk2f7JBkORIpAZvlOLC7Bknmq+xomK7KdtDyhiLwdEeKBYkI31qGm8Z5Rgooj5M6SZgD/3/7d13fGPVnf//173qliwXufcyvTANBoZOCC2QhN5SCAlkk7DZJJtN+Oa3+91kSbLZ5Ju+yRKyQAoE0oBAgBDK0AemML2P+7j3Iqvr3t8fsmV7xjNje2yrfZ6PhxkhXV0d2/LVfd9zzucw3OGjbXMvtc+20nckcuJfsC6LMz5VldLHOUWFvFVZdO6eehXNZLT4htLoUHEtqBMOaBitBobbfGz+/kEaXm6PcQsT3+i563CHj90P1bLowyUxq5ocyBti+9HN3HjjjXzyk5+MSRtOJu4CEcDXv/51Lr/8cvayOSbzibr2DtD8Vld0XkzOMicrP14ZHXOfzKYaimYUjHTo2jNAyBcm5A1z8E9Hcbd6AdDC+oRqYqvuqiJ/9CQtRT44O7b3YU43kb0oPdZNmVfZi9NZdnt55H906DsyFC2T6usL0L1/EE9XgB0P1ETnwIiZs2aZqb66KLLukF9jx/01tG6ODD/JXpR+yqphyWJhToBrG/2UPwu5z6toLxupeh7O7Q+QfoIy3GJqFFVh0fUl2POt6JpO9/7BaEEPb3eAvsND0aGuy24vJ3txih3zFqVjdhjp2JEixUxGPsPz12ax6q6q6N0hXwhtJBC6W70c/NPR6HlAcDgkw6FPkzU7ciHRtcwJgK8vyP7fN9G1p3/e2xJOC/Ke+y0WLVrE7373u3l//amIy0BkMBh47LHHKCovZDfvENbnZzKmvcCKYlDw9QWiZRsBuvcPsuvhuuhidAZLXP7YZs1Uiy3UP75q2vu2ZJgovzT/uEIVPfsHqX2+LfI/SqRnYPSk2LXYyTlfXYrRaojuIxkLXQx3+Bhq8VCwNrmv1iuqwqJrSyIFEYgM4Qq6Q9Hf6dE3uhhsPP5CyHB7pLdWleFMp8XmMuMssaGPzI0MuEOR9ScUqLisgML187hA9jwzqjo2UyTstA2aqGk2oetjxxJNg+JujQVvQ9lfleiXmB5zuhFbtjnyvjrGQOMwR9/sAiKVXIPuULSKa9YCB4uuLYlWDEtW+WuyGWr24On0x7ops041KtGLKkargXO+uhTXSOD1dvsjPYUjv97a59ro2T943PNX3VWFszT5R+XMldFzVF9vgF0P1034GffXutE1SMuzkFl14vWJZpOuaByyb8NoNPLcc89hNsdn50Lcnlm4XC6efPJJ/BYPh9k556+nmiIV0coumnytBHdLpCcjb1Um6+5ZmPTlo08UilRFj37B9EORwaySvzrz5GsL6ND0eme0FORwp4+mNzqjxRkW3zC28JpiUMhdmRENS4muY0cfWQvSo5XUkkXOcicLPxz5nY0uiKwaI4efgYZhjjzTMqXiJYXrs1n72QUohuQ+YZpLfTVudjxQe/zPW4dd/1vL0dcjlcNyljspPCu55n2sKfaxoiByEuoOqHQNTPw703SFzQes9Awmx/EkVvwDQXY9WIen6+Qn/FpI58gzLQw0RKqPqkZ1bIFIYOGHi8lZ7pzz9s4nc7qRrAUO2pOkd8hoNZC7MiN6TF7woWIW3xBZuD3kC9P0RifDI8FvsMlD0+udJ+35MVgNeLr8BD3JVflyvpjSDKz7x4XkrcoExs5dj1W8IYeyi/PnpU3tJTV09LTzq1/9iqqqqlM/IUbiNhABrF27lvvvv58W6mnR6+fsdRQVtKDG3kcaaHq966Tb9tW4OfpWF8EUKCE6GoqODUHHmk4o8nT52fKDQ6f8oBzP1xug9d2xhXNrnm2h+e3I78meZ2Hx9aVYRtYKcS11UnxuzpT3HW+69gyghfSx4YKJZiSnGNMMrLyjMrpQqn7MCKSDfz5KzwzW3uivjfz9EYMqlMkgZ3lGtHTtZMIBLVp5yF5gI71k7CptIvbMqYpOVXYAuznyPR3sNLO77VTz0BQMqk5+1tgJme+a9XPYyuSSWe2Y8fDynoODHPzzxEUkR48dzrI0Vt5RiXH0YmSCXhPJX52FFtLpTuDFWIvPzcG1NBJULVkmFl9fij0v8nfV/FYXNc+OrSfZ+m5PdHTNVATdIY483YK3JzUKWs22oCdM81vdpyzWUfNsK/seawCY0wvKwyXd7GvazZe+9CWuu+66OXud2RD3n3B33nkn//AP/8BBdtCnnzyszMTSm8uoeH9kIdHh9lPXZQ8Oh2jbEhlvn7XQwcpPVCb1ELq5Gj53Olf4PZ3+6FADd5uPd793IFr8wpZjiVSxG7H2cwuiV0oMVhVbjiWuP0jDAY2ufQORQBTH7Rw1vqev6gOFLLu1DIgsqucfDEb/nnoODHLk6dNfdNnbE6Bje99xAUucmjndyKJri6c8R63xlQ4OP9UMRIYyrf/SYszOxJhfNLBu7Dhemhkk0xq5gDXkN+APnfp4nZMRZllFAItJ3mjTVf6+fErOm52LUkeebqHnQOTCiR7W8Q8Go+sZLbu1nKoPFEa3Pemog3ihRObRdO8biO+1h5TIZ+lo9cm8VZms/dyC6MPpxTZsrkgAGm6PfAa72yKfweM/n2fCWZYmIwCmyWBRWfmJSrIWRoaht27uia7TdCJ6WI/Mk1dgxccrqLqq8KTbz0Qwd5itbW9xySWX8N3vfnfW9z/bEuJM/qc//SkXX3IRu3kHj376JSoNVjU6X6G3ZmjGZS9D3jCeLn90/HOyqrxt15S2m2oocpalcc69S2dt8nbIG452wTe/2cXBP0WuMCpqpECGpztycM5e5GTdPQsxjFzpLjgzm/yRhcpGt48H7dt6sWaayV4YfxONc1dkRMd2O8vTOPOfFkVCJpF5X517xq56Hn6qmaETdNefrtKLcqMrlYupCQyF2PbTw3Ttm/6V6eEOH0ff7CQwGCl7W/6+PDIq52f8+XTlrcrkhuFh+tZB+zqVN+rSaBmc3rGmo8/Apr1W/ME4OSgkkD2/qqPhpdmvEDvU4o0GdIDOPf30HYkUWUnLtXDmPy2KVtRylqaRuyL+Frp2LU7HmmmmdWvPqTeeB+M/8/JXZ1JwZmSIrMGssu6ehdHPIE+3n669A9HtD/7pKM1vjVyg1plQEOl0mNONnHFnVXTOkZiasF/D0+Wf2e9Bh4aXO6IFPixO06wswxB2BNjmfoOKigqeeeaZuFpv6ETiv4WA2Wzmz3/+M5WLKtjJ2wT1mXelqiaVMz+/KPqH37G9j/66mQWioWYvtc+1AuAoslF5RUHSXtmovG3XlILRVELRcIePplc75vwKma5FJuiPjqHtPTTI7ofrxoYE5VtIy7MCkZC84f9bHr3C4ii0UnT2uMnl8/hrdbd6GTzqmfj680RRI8VFRns9c1dkRHt9IDLuOGukh8Hd6mPf7xrwD0T+HvuODM3bMBAtqKNJJbApMztNoERC0UwqNwWGQrS8EzmJU1QFZ6kd68gFDZvLTN4ZmTGdCL/4+hKKzon8vfTVunnHYmX01KDjTJXOMxU6z5xO+xT8QRUFXXqJpsjsMB63GPdc6t47EC3l7esPsO93DbhbI70UWYvSKdow1ku17NayaEAyWNRIAaUYnP0Urncx2DTM8EhvyrwY97YvOtuFozDymZe10MGG/2959FiflmfFnh+5uBX2a+x+uI7ew5HA6W7xcvSNrjnvmQ8Mhdh+/xFZm2kKFINC5RUFOIoiI2Jqn2tlqHlmFyD769zRokWVVxSw4iMVp9U2zRhmj2kTFquFl156CYfDcVr7my8JEYggsmjrc889hzXbxG7eQZvGX2ZGhZ0lN0cm+WlBjdrnWme97KDNZcZRYEv6MpGzEYrCfo2Wd3pm7arSVIX9GoNHx6qX1T7XRv2LI+scaFD3Qlu0q99RnBY9wQJY+YlKqq6MDK00WFQqryiIjpM3pRlmvVRx65YeMqscpOXO/ro7JruBjIqxq/tlF+dFv1eT3ciaf1hARnnk8ZAvjH9orOt910O1NL4SufqrBTX6atzRtaTmU8umbprfkgVap2rZrWUs/FDxrOxL13T2/Kaejp39AGRWOai8ogB9ZF5X/pos0ktsJ9nDzI2exGZWOzjjzsroyZ63J0BgKNJ7FXSHqDeZ0JTjA9BoMJpqOFpWEWBVtZ+kP7DPgvJL81l5R2wWWtSC+sixKHJe0PhKB7sfqo08qIB/KERw5PMmo9zOmn9YgGlkzaniDa4Jvc0ZFXZM9tmfU5GWZyGz0kHryJD72WLJMEWLPFmzzVReURANOVVXFk74nRRtcOEojvSieTr91L3QFn1r17/YTu1zbdFtB496YjL6xdPpj+/hhPFCB0eBDZtrdoeK1j7fRu3zkQv9lgwTZ3yyalpzAjU0anN2MDQ8xFNPPUVFRcWstm8uJUwgAliwYAFPPfUUblM/FZ/MxGBTox+INpc5OoEbYOUdldEFv3RNR0HBaIscNLr3DxIcnt2T8a49A+z5TT26pmPNNk84mU42sxGKTA4jRee44maYWjig0b6tN7oSdvu2Xrb95HD08bbNPfQcjFwtM9oMZFU7MI586BSsy2b13dXRbZfeUkbphZFqhUargaorx8JTWq4luiYARN630YpySqS7WjEo9OwfwD8YpGjD2PvImGaIvodRwJ4/1pNjzTZPWGyt8KzsaGEGo9XAmV9cFO39yl7sZMXHKqI/e0VVolf3A0Mhdj5YS3995ApdX4072gsKxxdHiCVFHbniWTw3J9/J5MgzLRMKk8ymtq29bP3x4eiJVdHZLjIrI++1tFwLK++ojF4wSMu1TAhLxjQDo7lFMShYs8zR96WzfNywJwXW/8sS8m45A+2iNYQ8ITw9gWiBiKbXO+neN1ako/or75yy3Z1nKlif3YL12S0n3Kaxw8SBRgsJMaEvxupfbKfmmdOfJzhboscqPXL1vL82ckzrr3ez88FaAu6RCz2KMuFYuOLjFWQvihyjsxamc+YXF0WHEOWvyZpQeTFvVWb02G6wqNjzrWOFZWyGsQIQQNE5LvyDQXoODKAYFCwjvbYwUqZ83Imta5kzejHMmm2m6sqC6MT30gtzWXrLWK/96k9Xk78u0iajRY18No18TvQcHKRty9jf/bYfH6Z9WySQ+QeCtG/rjZvwoRgUlt1WFu3xEJMrOseFdaSk/Z7f1NO1Z3ZHZQSHQ9H5YEarAf9gMHqxqeqqQhZcUxTdNntROiZ75PxFMSgYrCppVwc42tHE/fffz4UXXjirbZtrcXI6OnUXXnghDz74IA8//DDBc7qjH7SF611Uf2DsF+Vu80YnlQ02eTjwx6Z565HIrHJQsC4b1ZS8H6KnG4osThPl78uPTsyMd937B6OlYf39Qbb/T030oNGxo4/9v2+MbjvQOIynM/KYwaqSUemIBpfsJc4J79NF15VQelHk6qQ53cRZX1pMRoUdXYPhdi/5q7OiH4RLby6j6opIL5XRamDNZxaQOTKPI6PczqLrSqL7Tcu1RD9gQ/4wnbv68fdHDmrd+wbY9pPD0ROGxo0dtGwa621xt3hj0uszXboOuSszyCiT9SpOaOQQNNzuixYemQujV+YBdvyiJlIJkMgJZmAoGB1CVXxuDpWXj03ePfMfF2EZmQzvLI3MSbNkRP7ftcQ5tiaSHnmfDg5E/o4GFy3l8EDerF3BHg1G478A3F6VIa8aaUDyHs5PjxIZih7yhudszuBs0oL6hFLELZu6adwYKTWvazrbfnyY7v2Rk0x/f2RNwtH3mc1lxjbaa6/AomtLor3pmZUO1nxmQfR4XXVFIUtvigQXg1Ulf3UWw+1edC3SC3XWlxZjdkROJssuyptw/F7wgSKyF0dCmcEy8hkyEso8nT4GGoej2+5/vJHOkfkf7jYf2/+nJnqsH2gYpvuYdX7ilSnNAIoiQ6FPQjUpFKzLJrNqfoagDXf4OPTno9HzAXeLN/o3brCoLLutPDraJGd5BvoF/Tz77LPce++93HnnnfPSxtmk6Hpi1q/993//d775zW+yzLCOIq0yckVEZ17GLk+FalTQQjomu5GMSntCl9g8makWUpgsQI3+jFLN+O/b5jKjhXX8/UFUo4Kz3I671UvIG8ZRZOWMT1bRuLGTlk3dOIpsaCEtMqxPAUehDW9PpKiHoo5Uok6xH6eiKpMu/igiSs7LIaPSwb7fNcTFe0M1qRjMSrSHPmuBg+INOYSDGof/0oyjwMZQs+eExwXtojWT7/f1HcfdV/v/NpyyPVPpSUKB5R+poL/eTcvbMkzzWAVnZlNyXg477q+Jm96GeaOAokR6owwWFZvLgrvNC3pkiJxqVHG3eik5L4eyS/LY/as63C0+jDYDjiIbg43DaCEdS6YJ1aBES02n6mejmFzuigz664cJDofi6r1hshsIB3S0oIa3uoe3a17ltttu47HHHot102Yk4XqIRv3Hf/wH//iP/8hBfQcdejMhbzhuwhAQfcPmrsig6orCpC3NfToV6OLlj3q+jf++vT2B6NU8LaTTX+uO9mS6W3107h6IDC00KLhbvWPlTPVI8YXRK5e6Rlyc8M630TCUszxjTsb9Jzp3m5f+2qG4eW9oQW3CcOW+Gjfhkd6lsE9joGF4RscF7aI1JwxLp02H/tohhtviv/cjFvpqhmh+uzv1whCAPjY0L+zXcLd6o39rnk4/7lYvikGh6BwXnTv7cbdEemlD3jD9te7oe93fH5yw7k4qfjam5SXGaJH5FpmzXBgdPhxP743gcBgtqOEp6OOdute57LLLePTRR2PdrBlL2LN0RVH4yU9+wi233MIh83Z69c5YN2lSrZt72PGLGsJ+DYNZJWtBYlTbmI6ZhqK0XAvrv7x4TgoHJIuWt7swO4wT5geJiQwWleoPFJKzLP7K7MZaf91wtDpcKhgNRlMNR1PpRQJoeaeH/rrhU2+Ygvz9wei8FHG8vFWZmOxGmjdJ7+KJ2Fxm1n52YVKeH81U1gIHBrNK2K+x4xc1tG6Oz+O4L2eQLV2vs3btWp599tmEKK99IonbckBVVX79619zySWXcNixnUG9L9ZNmtToXKa8VZksvrF0bGJ8EplJKPL2jozPTsUri1Pk7QnQc2AwstChzGGYVNivsf3+Gtq2yknZKGuWmUXXlSTlsWaq8rbp5G2bvaupRpuBRdeVJMYCoPMgo8LOms8skJ7Zk1Gg5NwcevYP4uud+XIhyc7XF2DPb+uj83RTndFmYPGNpdFF5U+1yGqshLK9bBt6gwULFvDKK69gNif2sTGhAxFE1ih64oknWL58OXU5u3Dr8TuBsG1rLzt/WUvIG0YxKEl3NWS6axXpYZ2Glzuild3E5Jrf7sbmsuBa6jz1xikqOFIxKqPCHl10OZVZMkxYs80Tih2kqtFgdLrhSAtqWLPNs15iP1GFvGEGGodnvWJrMnEtdWJzWWh+uyvWTYlrugYD9TMbLptMshY4UFSFkDfMzl/WxvVFvnCmn/cCb5Cbm8vrr7+O05n45ycJH4gA7HY7zz33HIWFhdTn72I4jkPR6FWinKVOlt5anpQfrtMJRapJIe+MzEmvMrpvPgf3zefMevsSjbvVS3+dm9Lzc2PdlLhmshtYdns5eauzYt2UmBtoGGb3Q3VJd4Jx9FLraT3/dIKRFtLZ/VCdXMUeMdzho+5vbafeMIWVnpdLf507WpFUHM+cbmTx9SVJeS40HZYME0tvLSdnZFmOeO5RDDv9bNfeIC0tjddff528vLxTPykBJEUgAnC5XLz88su4XC4aCvcwrA/Fukkn1bV3gJ0P1ER7RzKrk6+36FTqH1+FalRZ8KEinGVjC4UeG4QkFMHRt7pwFNqS7n0ym4LDYXY9WJvy8xmKznFFS/Qmo9MNRXB6vUYGq5rU68ydSnqxjRUfr0jp4ZhTkVntwFFkk96hUzA7jFizzYT8qdnTOPqZ7h8IsvOBGrrivCJxyOFnh/ImFouFt956i8rK2CzGPBeS6lMzLy+PjRs3kpmZSWPRHjy6O9ZNOilPV6RiWNYCBys+WpF0VVamEoqOPLyCPy0x0nMg0qt3ovCT6qFooH6YoWYPZRclx5WYuTJahc+eb0UxpN7QOZvLTNnFeTgKEmtxQ0VRUIzGKW9/9FLrrASjmXAU2Ci7OG/WV4hPGErk4kM8VXWNR+WX5DF41CPFOE7B3eZj14N1hH2pN7w3Lc/Cio9WRKdPjJ4Txquww88u41sYjUZee+01FixYEOsmzaqkCkQA+fn5bNy4kfT0dJpK9sZ9KIJI6dkdD9RET+ZcS9KTZgL9VEJRwKDQc/c5uG8++6TbpXooanytE2dpWtLNPZttRpuBMz5VRcG61Bs65+0JsPXHhxJ2WNd0QhHEJhgNNAyz9ceHJpRJTiVDzV4OPXE0bkq5x6OshQ7Si9NofLUj1k2Ja6pJxexMsaFyysg5HpELeDseqKGvJv7PU8PpAXaZ3sZgMPDaa6+xdOnSWDdp1iVdIAIoKChg48aN2Gw2jpbuS4hQNNweGWOclmdhyc1lZCXR0KgThSLnxjScG9PI2Gjj4lwPBYWnrqSSyvOK+mvdDDQNU3ZJfqybEtdC3jD7fteQckPnnGVpKAYl4a+0KkZj3AejsE9DMSg4y9Lm7TVjLb3ExuIbSzGYk/K0YVaVX5zPQOMwA/WJeWFivriWOjnri4swpqXO8MusagdLbi6LjggaPfeLZ5ozyC7jWyiKwmuvvcby5ctj3aQ5kbRHtqKiIl599VWsViv1hbtw6/E9LnOUp9PP9p8fiV4xyFnuTIoPoPGhaDQIjdJRaPEaGQwa8GdMrWssVUNR06udpBfZyF6cHuumxLXBRg+6BtZsc9Iuijyewayy7PbypJrbMt1QBGPBaD7CUfE5LpbdXp4Ux+epMFoNqEYlupCumFz24nQcRTaaXo3PtRHjSe+hQfY/1kjIk9zDLw1mlZzlkWIJfTVutv/8yNgi63EulOFju/I6QFKHIUjiQARQXFzMm2++SU5ODkdc8btO0bFGh2KY0gws+GAxOSuSY8HJk5XlPuK20BeMXCWSUHRiAw3D9Ne7KbtY5hKdimJQWHlHJaUXJv/PKhzQ2PVgHW1bkqtXbCa9RaPS//Au6X94d5ZbNKZ1S29k7kOKrKPWV+PmwO+bZKjcKZRdnEd/vZuBRukdOpWwX0uI4WKnK2dFBgs+WIxppCcsUYbbBjI9bAu9htVqZdOmTaxYsSLWTZpTSR2IIDKnaHTy14H0LfTpiVPxJegJs/3nR+jYEQlyuWdkYs1O/Im8rv99Z9L7c8wh8iyRYXMSik6s6dVOHAU2XMsSv+7/XNLDOgf/1ETTa8l9pdZkjwQGb7c/adcdmmkogrkLRlpQw9sduco7+jtIRnlnZFL9gcKkmdc6l3KWO3EU2JL+mDMbshenU3l5QaybMWes2WZyz8gEoGNHH9t/foRgAvWEBVxDbPW9SlZWFps2bWLx4sWxbtKcS/pABJCdnc1LL73EmWeeyX7bFrr19lg3acoCQyHQQVGh9Pwc8lZmxrpJs2KyUFRhD1KeNrZIqz9DmVIwGl3TKFUMHvXQe2SIivflo6hylnIyQ81etKCGyWFM2nUuln+0nOqri2LdjDmnGI0YfDN/v48Go9kOR9XXFLH8o+Wzus94oqhEwpD0DJ2UYlCouLSA3kODDDZ5Yt2cuGeyG5O6oELeGZmUnp8T+fvRR87lEoS/YJB3B1+luLiYzZs3J1Vp7ZNRdF1PmcOc1+vl5ptv5u9//ztLguvIV0pi3aRpUY0Kuh658p23KhMtpNO9LzHmRp1Iz90boreNik5kHcnjT3osA5O/Tbuu8074/6lUtUsGabkW1nxmAXV/b0u6YVJzYeUnKgn7NfY/3hjrpsw6Z1kaYb/GcEf8T86dzNJby/AuzKbxO3tPue3Rr66P3g5bT/7RVf7vk/dEzzZ7vhWDRZWT4BRXdLaLyssL2H5/TbTnUKSWnOUZqEaFzl39KAYFRSHhFsf2lfbzbmukitzrr79OVlbqVGtNiR6iUTabjSeffJIbb7yRvcpmmvSaWDdpWrSQjh6O/HFllNvJqLSf4hnxb3xPUUhXAAV1kkuRx/YUdV3nPS4MQaS3KBV6jDxdfjp29lF2UV5KFA04XTXPtnLkmZZYN2NWjfYODjZ5EjYMjdd07/pTbzSOwaecVo/RbBnu8EXDUDKtfVV9dSHF5+bEuhkJwWBRKb0wl/YdfRKGpsCaZU7KYiSZlXac5ZHzMj2sJ1wYGipr5+2jr7Bu3TrefffdlApDkGKBCMBkMvHoo4/ypS99icPs5LC+i0TsJDvyTAu1z7UCkdKVVVcl7hhv1/++Ew1G1fYAl+QNM9n4DH+GcsIgdKxUCEWNr3aiGlVKL8iNdVPinrfbT3A4hMGsklGR+BcSABZ+qIiFHyqOdTNm1XRDEcRPMFr4oWIWXJM8QxeD7jAhT+IM84ml0gtyUY2KzB2aouqri1hyU2msm3H6FKi6qhDX0sh83prnWqlJwAtvuq7TWVrH5sa3uPrqq3nrrbdIS0udJQVGpVwgAlBVlR/84Af85Cc/4ahSg+tmA2E9cSa7RY1kBqPVgNFiGMsQsT83mBHX/75DT8BAjds86bfg+t93pjUkLtlDUdAdonlTF0Vnu5J2fsxsKz4vh8U3lKAaE/SPZJyeQ0P01QzFuhmzrune9ScMRqXf23LC58U6GPXVDtF7OAl+HyM/wqbXO+nY2R/TpiQCi9NE0dkuWjb1EHRLgJyKmr+20PByAi9aO3qY0UfPv9To/ycaXdEIX9zD7qbtfOYzn+Hpp5/GeBpFbBJZSs0hmsyTTz7JRz7yEdavX4/yRiYmJbGruDnL01j4wWL2/KY+oSbxjTd+XtGJKtLB1ANPMs8rUk0qZ35+IQMNwxx6sjnWzYl7qlHBnG7C15cYZU9Twegcoje1469Iln33+AA0fh7RyZT856bTbluqMVhVzrizisZXOpIj3M2DxTeUkFFuZ9t/H0naKo9ijDndyMo7KjnyTEvCzxvUzCHaqw9z6NAhvv3tb3PvvffGukkxlZI9RONdf/31vPLKK+zdu5dtvIpXT+y1A4LDYXqPDEXDkDk98ZK+zaCx2OFHScTLLfNMC2o0vNJB7spMnOWp18U9XVpIx9cXQFGhcH12pAJQgik5LydSBlnEpeqrCyk+LzHn3mhBnYGGYYY7E39O2nzIqLCTuyKT+pc7JAxNUfXVRdEhZolk9FwqMBSi98hQQpXQnoyWHmS3/W3q6up49NFHUz4MgQQiAM4991w2bdpEXmUOW9hIv94d6ybNmLfbT/3fI2XFbS4zZ35hEVkLHDFu1fTkPb2LaqOH4ie3n3S7qfb8JHuhhc5d/Qwe9VB9VVFCnuDHQlq+lYpLC0gvSbwQGfSECaTI0JyTDZ+LV4GhEKEEPFkypRnQwzp1f2vD3x889RNSnKJG5o8MNA3Ttbs/1s1JDAoYLSpqghUfyVrg4MwvLMLmiowgqv97e0IXzwjmDLMl/AohLchLL73ErbfeGusmxYWUHzI3XldXFzfeeCNvvvEmS1hLsZLgtdeVSC38rr0D6GGdjAo77lZvQqysrqgKuja1t+Z0wk6yDp+zF1hZ/elq6v/eTuvmnlg3JyEY0wwJeeKabE42ZO5YZd/dIkPm5kDeqsxIyej/qSE4nBph+3SNltne+cvapKjyKCYymFUcRTYGGoZRDAq5KzLo3N2fkPOExhsq7GRbx9tUVFTw4osvUlVVFesmxQ25njxObm4uL730End/+m4O8B6H9J1oevyHhxPSI70HelhHMSgsvrE0YYZy6JqOalSmtPCoFFqA4XYf7dt6Kbs4D5M98YZJxsJoGCo+NychSti7ljopuyQvYYumzIaE6S1SoOySvIQZGtRzaJCGVzokDE2RyW6k7OI82t7rlTA0Dc7StIQ5fhWfl8PiG0tRDAp6WKdzV39ChyFd1+korWVz6xucf/757Nq1S8LQMSQQHcNsNvOLX/yC//7v/6aZWnbxNkE98Sdg62GdnQ/U0PJOZDhgznIneasyY9uokzClGVj/L0vIXpw+pe0rb9uV8kPoGjd2oms6lZflx7opiUOJzANIL7LFuiWnZHGasGaZE/pD+USmc45U8p+b4r/3RwdblhmLM76rP9pcZow2A2GfRsf2vlg3J2FUvD8fXdNp2ihltqcqLc/CGZ+sIqs6fofw563KJGd55CJGyzvd7HygJrr2YyLTzWFqi3aw9+hO7rnnHjZu3IjdHv8XAeebDJk7iZdffpmbb74Zf1+QVZyHXZnayXkiqLqyEKPNwOGn4rcyWcGZ2fQdGcI/MP3x7KlagS5/TRYLP1TMnl/XM9CY2AVC5o3CxJL1ckScV0tvLcO3MJs3Q2noU7hEV/rtiWGo+f87d9Lt4j40xYFVd1fjHwhw8I9HY92UhJFRYY9WGevYISFyOhxFNobbvcTrwJtF15UQ8oaoe6E91k2ZNVqmn13KO7iHh/jZz37GXXfdFesmxS3pITqJ97///WzevJmyJSVs4RU69cRbcOtE6l5o4/BfImEoa6GDVZ+qwmCJr7dD+7beGYUhmF7BhWTSsaOPgaZhFnywKCnW2pkXIwEoe1E6q++uxmCNr7+DrAUOCtdnx7oZ80LRIl/TEe89RoXrs+O2sM2hPx+l7vm2WDcjYahGhQUfLGKgYVjC0Ay4W+MrDBmsKqs+VRX9+zz8l+akCkPewj42eV5CNSi8+uqrEoZOIb4++ePQwoUL2bx5M9fe8GF28w5H9N2JPa9ovJETwZAnzFCLl7A/8n3ZciwxbNREhWfN/GQiVUNRzTMtWDJMlF6UF+umJBRPt5+hZg9aIL66iNKL0+J6mMlcmG4ogvgNRlnV6aQXx081Q9WoUHZxHopBwdcXSJmKhbOh9KI8LE4TR/6aPBdH50NGpZ1lt5fHzUXX0XOcsE9jqNVLyDtSXCe+Dv0zpus6naV1vN36CstXLGfPnj1s2LDh1E9McfHx7oxzTqeTP/3pT/zwhz+kiSNs5w38ujfWzZo1Qy1e6l6IXCVMy7Ww7p6FcXNFM3vR6Z1MTHVuUTLNK/L2BDj6Rhcl5+ZgL7DGujkJw9cboPb5NnRNx5JpipsS5k2vd7L/902xbsa8m0lvEcRfMNr/+0aaXo+fuSb2AiuFZ2ZHSwiLqbEXWCk5N4em17vw9Sb+vOJ5pUPIG45edI2lrAUO1t2zkLTcSCiq+1sbQy3Jcz4XtgU5XLCVPUd38OlPf5rNmzeTny/ziqdC5hBN05tvvsktt9xCT1sfKzmbLCU31k2addmL0uk9MgQ65K/NwtPhS4oDRirNK1JUhdWfro4U03iwNmmufM0H1aiw7vOL6NzdT+MrHTFrR0aFHWOagZ79gzFrw3wYP4foZEbnFx07hyhRuJY5CXnCDDTEfm6falJlIdHpUGD1XdUoBoWdv6yJq2Ff4tTSi22k5VsjhUMUyF6YTu/hoVg3a9YFct3s8LyNjs7999/PRz/60Vg3KaHEyTXQxHHBBRewfft2Nlx0Ntt5g0b9EMmWKXsPR8IQChSszSIzDobrmOyG095HKg2h0zWdI8+0YC+wUrwhMUqtxwstpHPk6WZaNsV2gWbXUicFa1Nj7tBUzKS3KJ4UrM3GtSR2ZbgXfrg4UrYdJAxNU/GGHOyFVo480yJhaJrsBdaYD8PPrHZQsDYrWjQn2cKQrusMVrTyVveL5Bfks3XrVglDMyA9RDMUCoX4t3/7N7773e+SQwHLOAuzEj9zb2bTaB3+4g0unGV2DvxhfofvLPhgEfY8K7seqpu1fU4l9Oi6QtXtO2ftNWOh8vICCs/KZscDtQm9snasGG0G8tdkxSwcqUYFLZTch+ip9hCNKvlOYvYQxfp3WXSOi8BQiO59AzFrQyJKy7Ww+tPVtG3tpf7F5JlwP1+W3FSKyWFkz6/q5/V1l95SxmDTMC3v9ETPYZJR2BKk0bWXupZarrvuOh577DGsVhkqPxPSQzRDRqOR//qv/+LZZ5+FnBDv8hI9euyG18yl0QOJtyeAu3Vk6NzI+i3zof29Pupfnt0PolP1Ful6pEJb3WOrZ/V151vjxg58fQEWX1cypUVuxUQZFXaKN+RgTp+/xW5dS51klEf+tpI9DAGcc9kA1p5wrJsx50Z/lxnl9nldsHV0HmHruz0ShqZJURUWXVeCtzdAQwyHzyayQ082c/jJ+VneI6PCHl3UzN3qxdsTmeuVrGHIlzvINuNG2vva+NnPfsaTTz4pYeg0SCA6TVdffTW7d+/mwvefzw7e5Ii+J3mq0B2j9/AQR9/sAiCzysHKOyqx58/9H5+71ctgo2fW93uiUDQahkYlcijSQjqHn2omLd9K6UXJN99trvUcGOS9nx0mMBSatyILeasyyVudOT8vFkPPt2zn+Zbt0f8vetND0Zuz/3ceb/JWZ5J3Rua8vFbuigxW3VWNJTO+F4iNV6UX5ZKWZ+XwX5qT9qR6rulhfcbLZ0yHvcDKyjsqyayKDPE/+mZX0g2NG6Wh0VVWz1udL1JUXMSWLVu45557Yt2shCdD5maJpml8//vf5//c+39IJ5MVnE2aEvu5N3PJUWjF3eYDoPrqIvqODM3ZAchRbCPvjEzq/jY3a2aMDqE7NgwdK1GH0JVemEvZRXnsfrguKQpkxMKi60vQAho1z7bO7QspoBqSe6jc+CD0pxcu4d33yti3e2yeYOsFJx4+l6hD5kapRgUtrM9PoRMFMivt9NfFvpBDokkvtnHGJ6toer2To290xbo5CWn5RyvoOThI+7beOdl/9qJ0shY6qH0ucl7gKLKNjWJJUuF0Pwet79He1cadd97JL37xC0wmueAxG6SHaJaoqspXv/pV3t38LrnV2WzmZdr0xqQruDDeaBhSDApmuxFlZCFQo80w64uCGq0G0ottGK2nX1xhMpW37TplGIKp9xbVfS++av4ffbOLoVYvi64rQTXJ0LmZ6Ds8RF/N3F1xLFiXRVqeBfTkHSp3bK/QiSRzb5EWioShtDwLBeuyZn3/iqqw4JqiSO+9joShGVBNkaFy7lZvdFSEmCYFhpo9+Ppmt0S5alQw2gzR22a7CcUQ+UxL9jDkKe1hk/9FfEEvTzzxBA899JCEoVkkgWiWrV+/nu3bt3PbR29lH1vZw2YCenJPZtfDOgf+2BQtD1xxaT6r7qqe1dfor3Wz68E6Qr65m2sw1d6fU4Wi0TBU970N8ROMdDj8VDNmp4nKKwpj3ZqE1LV3gJ6DkUDkWuqMfgjPBkVVKFiXjWtx7KqQzaWpBqFjJXMwci1xUrAue9bn9qlGBVuuBUuGnCjNVNWVhZidJg7/pVmWLJgpHZpe66S/1j2ru111VzUVl0bW1eneP8iBPzYl/XDGsDlIY/EeNjW9yrp16zhw4ADXXXddrJuVdCQQzQGn08kjjzzCH/7wB8IuL+/yIl36HA+ziSNH3+qi/sVIF7bBqlJ9ddGsTUqf67HwVbfvnFIwqnts9aTBaLIAFC+hyNcboO6FNgrXZeNalpwn3vPBkmli0XUl5Mziz1DXdHY/XMfRt5LvavRMgtCxkjEUHX2zi90P16Frs3MyZ7ComBxGwgGNPb+qT9r5E3MtZ3kGBWuzqftbW3RSvpi+vFWZ0Z6c02FON1J9dREGS+R0tf7FtqQ8Tp6IN7+frcZXONrdyHe+8x3eeustWWh1jkggmkM333wze/fu5fJrLmMXm9inbyWoJ/8B1t8fjA7TsLksZFY5oms3nE4wsudbOesLi3GWT6087+mYSW/RyYJPvPQWdWzvo2tvPws/WCwTrWfI3x9k+/8coWtPpGLXaV3hV6DyigLMTlN0KFWymGmv0IkkXW/RyNDISK9tQbQ61kwtvr6UxdeXzE7bUpQ1y8yCDxbRtaefjh19sW5OwrJmm1n4oWIchTMvujR6rqBrkSJOo2sZ9dcN4++f+yINsaabwjSXHuDt9pepqq5i+/bt/J//839QFBnyPlekqMI80HWd3/zmN3zhC1/APxhkGWfiUlIw4Stw5ucX0b1/gIaXZ1bC1LXUSV/NEFpw/t62U64y12yb0mZVX31n5o2ZBQazyup/qCbkDbP74fpZu0KdijIq7Sz8YDF7fl2Pf3D6H9KWTBMrP17J4b80M9iUHCf7tSN/L4cuenhK23/5y9cCsK95aovQqm/tnEGr4pezLI1F15aw57f1p3Wil5ZrQdeR9cZmSFEVzvhkJUabgZ0P1BIOJGe12PliTDMQ8oZndJGn4v355CzLYNt/H06qi0RT5c8fZNfwZnx+L1/+8pf51re+hapK/8Vck0A0j5qamrjzzjvZuHEjJVSzgBUYldS6Sp9RYSfgDuHt9pNRacdZlhap4BPn78JThaKF/xEZJ33kU1MvbR3LYOQotHLGp6po2yKLDZ4Os8NI8bk51L/UPuP3sKJCMlTqrz3mb2QqgegDxWtZemsZAAd+34R2/uqTP4HkC0Qw8/dARoWd/LVZHH5K5rqcrsrLCyhcn83uh+qiBYPEPFEilVAHmzwM1A9jy7FgdhgZaEitgiCaUaOzuJa9DbtYvHgxjz/+OGvWrIl1s1KGRM55VFZWxksvvcTPfvYzetPaeJeX6Nbnpox0vBpoGI5ewUzLsZBRZo9+kKflWk75fMWgUHVV4bwtCjvqZEPoRsMQwMKHulj40NTGN8dyCJ27zUfDSx0Ub8ghe1F6zNqR6ALuUCRQjlQNy18ztaphabkWFl1fgsGsJnwYqn1s9XFhaCo+ULz2uPuSMexMha5Fem4XXV8ypePgKEUFo0VFNcpH+enIXpRO8YYcGl7ukDB0mjIq7az7/CJMjlMPj4++1/XIgsVpI8PivN3+lAtDvrx+3rO9wsHmfXzxi19k3759EobmmRxF55mqqtxzzz3s3buXCy8/n528zR59MwE99Q7CbVt72ftIAxAZc7z2cwvJXnzyk3M9rGNzWTDZ56b89skcW3Bh4X+4J4Sh8aYTimIVjFo399BzcJBF15VgzTLHpA3JxLXESeFZU6saZnIYsaSbEros/+kEocnC0Cj1rZ0pGYx0HSzpplOfSCqRif8QmU+x//EmtGCCp+oYsmabWXRdCT0HBml9tyfWzUl4QXeI7v0DBN2hk26XvTidtZ9biDU78tmz97cNtG2dm/WK4plmDdFUso+3Ol6msKiQd955hx/96EcYDPN/jpPqZMhcDOm6zqOPPsoXv/hFhnrdLGQVhZSl7KS5zGoHAw3D6GGdskvyCAc0Wt7ujnWzJmVYvGDK255qGJ1eElk7oToGi74aLCqr7qpGD+vseqhOTqxOk2pS0YIaJocRLagR9iffz3OqIejYIXMnCkHjh8xN5thhdKkYlsbLWuBg6a3l7PxlDZ5OmS90OlSTyqq7qlBUhV3/K/OG5lrJeTmoZpWmVztRDAoZFfZZL8udKHRdx1Paw66eLWiaxle+8hW+8Y1vyFyhGJKffAwpisLHPvYxDh48yM0fuYn9bGUHb+LVU6ureFR/rXtsPQEdGJnsb7CokWFd43KiwaJiccZu/lX4UA3hQzVT2vZkvUWjYQhmfsX9dIT9Ggf+0IQl08TCDxXP62sno9FAuejaEpbcWHrc49UfKIxUFEtQUy4wcoyT9QidSioGoKorC6j+wMT1wkZLGPfVuNn+8yMShmbBwg8XY8kwceAPTRKGZkF6sQ3XknGjPJTIcMTRktm6Doz8mPWwnrJhKJweoKZoO+8cfY1Vq1axZ88e7rvvPglDMSY//TiQm5vLo48+yvPPP4+jzMo7vEiDfggt0ScXnIam1zppeScyfCFrYTpLbi7DZI8MJVGNCis+Xkn5+2NfqW86oWiqw+imGopUqxXVOvOypqO83X6OPN1C7ooMis/NOe39Cah9rjVaSXH8EDp3uy8hT2RPtO7WqZxqeNxUpdowuuEO/4S5LLYcC2d9cRGZVQ4AfH3Jv3zDXCve4CJ3eQZH/tIilflmiWupk7KL8lCNkWOeyW5k6S1lZC2MhKSWTd00vd4ZyybGlIZGf3kLb3n/xoCnj//5n/9h06ZNLFgw9REnYu7IkLk443a7+b//9//y4x//GDtOFrOabCUv1s2KOUuGCf9ApCTt2nsW0l87RPOmHgIzKHU8V6Y6jG50CN343qETOdkwumPDkOY7vXlo5ZfmU3JuDnsfbWCgPjV7KefCstvK8A8EqX0+MQuoTBaEpvKhMdUhoKcaMpfqzE4TgcEgheuz6djRN69LDiSrjEo7Kz5aQfOmbhpfmdkSEGJypRfkkrsyg+3/E7lYOP6zO5X5c4c4ENpOd28X11xzDQ8//DC5uVOvSivmnvQQxRmHw8GPfvQjdu7cyerzVrKdN9ijb8avn/rkOZlFD6gKtLzdRceufgKDQTIq7ZRfmn96i2POkun0Fk215PZ0htCdbm9R48YO+uvcLLmpNDrRVZw+d6uP/LXZZFTOb2XE2TDTIXKxmA+XbEwOI2vvWcCZ/7QIe4GVti29EoZmgc1lZulNZfTXuWncKGHodCmqQvml+dHKr701Q7Rs6o4OcU/1MKTZAjSV7OXNzr+TnuHg+eef569//auEoTgkPURxTNM0HnnkEb761a/S09lLFcsoZQGqIjkWoPCsbJxlaZjsRvb+tgGITDgeaPTEvDjAyXqLxgen6QSe8SeZpwo/M+0tMlhVVn2qGkWBXQ/WEfKFZ7QfMVHe6kw6d/VTeXkB7lYvXXsGYt2kk5pKEDrRB8d0w5D0EE1OUWHhh4rx9PhpfjM+i8skGqPNwKq7qtBCOrsfrkvKoifzQTWpZJSn0VcTmQO04uMVoOuEfBoH/3Q0to2LExoaQ2Xt7G5/D4PBwD//8z/zjW98Q6rHxTE5s45jqqpyxx13cOjQIT73+c9yhN1s5mV69dQdgzueOd1IYCgUDUMmu5Flt5XjWuoEIgftWDlRb9Gx91ffvnPKJ5DT7S2aSY9R2Kex/7FGjDYDS28pi4uet0TlKLSSXpoGQOfOfgCMFkPcrxkz014hkJ6h02WwqCy6thhrthldg8N/aYmGofTSNOyFpz9nMFUpqsLSm8swWgzsf7xRwtAMjH6m5ix1suy28ujyF3t/20Drll76jgzFsnlxI5A3xJ7sN9nauIn3ve99HDp0iG9+85sShuKc9BAlkJ07d3LPPfewadMm8ilhASuxKYk3DGcuWTJMBIdDaCGdqisLcBSlsfvhupi2abS36FRD6qYaeMJ+A0s+u29abZhuj5GzNI0VH6+ga+8AR55umdZzRcSSm0sxmA3se7Rh0seLznEx3O6LmwUI1VVLo7dr7p3a4qDjPzxmGoakh2iMalJZ+fEKGl/tpL9uYgWu5R+tIBwIc/CPcgV+JhZ+qJjclRns+W0DQ0c9sW5OwjnjU1UMNXuo/3s7qlHBZDem/HC4Y4XtfpqzjnDk6EEqKyv5+c9/zlVXXRXrZokpkkCUYEaH0X3ta1+jo62DMhZSwRKMSuxKUMeSooLRaiDoOX5ol6PIhiXDRM+BQQxmlaW3lFH/YjvDHfG9CO6pglHYP3aVaS6DUe7KDBZfX0rDK+00vyVDdqZLNSkoqjL5lWgFln+kgoEGd8x/tuOD0KjpBKLT7RVK9UCkmhRKL8yj9d0egsMnXszSYFHRNV3mEc1A8Xk5VL6/gENPHo374arxwl5gpfKygmhJctdSJ/6BIO7W4+czO4psqEaFwabUDJqaMUxv0VH2tuzEarXyxS9+UYbHJaD4HrshjjM6jO7w4cP86//9VzpsTWziBVr0uoRe9X6mln+0gqoPFE36mLvVS8+BQQCMaQZ0TSfojQQn1xJndGhdvDnZMLrxYQjg4P3Lp7Xv2t+tofZ3a6a0bdeeAZpe76Ti0gJyVmRM63VSlaPIxqq7qzE7jGhB/cTDcnTY97sGmkcWHs5bnUlmtWPe2qmuWhr9msyC706tDLEMkTt9qlEld0UG6cW2k24X9mtoQR2zw8iqu6txFJ18exGRuzKDyvcX0PRGp4ShU3AtdeJaEvlcDHrC6JqOMS3ymdNzYHDSMASR+bzll8Z+GYz5pus6Q6WdbLO9wt6Wndx4443U19fL8LgEJYEoQTkcDu677z4OHTrEzR+9iQNsZzMv06OnVtWcptc6aX7r1Ov7+PuD7PtdY7RMd/aidHKWjQQiJbLWkWKIr/kyUz3ZPHj/8jkLRk2vddKxs49F1xZH10ARJxZ0h/D1+glPpaiHTnTMmWuxk+yF8/PzPVEImq4qCUMzZrQZqLyiAINZJeQN895/H6H38NTmX4RDGr5eP0H3iXuTRERmtYOFHy6hY0cfTa/K3NtjKQZlwqLnOcuckf8HAoORz0x//6mHxR15uoWDf0itHt5A3hB7XG+yuekNVq5cyXvvvcfjjz9OTo6s5ZeoZMhcktiyZQv//M//zNtvv00OhSxkJXYlPntA4oWigq5FJiuv+mQVO/+3FnerF5N9ZAheHP1l1D62+rjeoRM52TC6Iw8dfzJc/ZEdJ92fosLSW8rJqEhjz28aTniVMJVlVjkYbBpGC838TaOoCrqm41rqRDWpdO3un70GjjOdQHSioXOzGYZSccicJcPEyjsrOfTnoww1z/zvSTUpOEvtx803EpHe2pV3VDDQMMz+3zfF1fE8phQwpRkIDodxFNlYfXc1ux6uY+ioJ/qZKE4slOGjyX6AupZaKisr+eEPf8i1114b62aJWSA9REli/fr1vPnmm/zxj3/EUWFhi+EVDujv4dOTfEyvEpmcPpPqS6MH/qGjHt77+ZHoif6ia0tYelPZhNeIterbd7LozvemtO10e4xO1Vuka3Dwz00Md/hZfnu5rFF0DKPVwJKbSik4M/u09qNrkTO2jAo7WQviszeu6vad0jM0Q7YcCws/XIyiKvgHgrz308OnFYYACtZls+SmUoxWGZ4znjXbzPLbyxnu8EfKQKd6GBr3Gbb0pjIWfrgEiAwrf+9nh6NFJmYShjKrHCy7vRzVFAcflHMonBaktfQgbww+T+9wD//1X/9FTU2NhKEkIoEoiSiKwk033cSBAwf4f//v/+FzDbLV8gpH9N0E9KnNCUg4OhStd+EsSTut3Xi7x34+ja920vJOZG5HWq6Fs/9lCWl5U5tkPtemGorg+PlFk/UOjXeyYKQFdfY/3kjQE2LFxyowO4xTbkeyUgwKKBDyhdn1UB2t7/bMyn7r/tbGkb80A5EhP1VXFc7qcE5t14Epbzt+LpEEodOjqOAotGF2Rv52ZuNKfOu7Pex6aGS9MIW4G/YbC2aHkRUfrSDoCbH/8cbT6rVNBvZ8a+QzLDfyGdbybjdNr40NH/T2BE5r/7qmE/aFk7bYh2YO0VlWx1uB56nvquUzn/kMjY2N3HvvvaiqnEInExkyl8QGBwf54Q9/yA9+8ANUVSV3sJQyFmJQ5GR2qszpRgrWZXP0zS70sE7VVYWEAxqNr8R+rtbhX62b1vYG8/TOwCYbSmd2mlj1ySpC/jB7flNPaJLqfqlixccrcLd5aXhp7t4LeWdk4lrq5MDo+HyFWbnaPZ1hc9MJUDORzEPmXEud5J2ROfb7m0MVl+XjKLRF12VLRaY0Ays/UYnBbGD3w3X4B1OzLHT5pfkYTCp1L7ShGBRKL8il/b1eAkMy72yqdEOYvuJW9nfsIhwOc9NNN/GDH/yAgoKCWDdNzBEJRCmgs7OT//zP/+T+++8nKyuLzI5CiqlCVeTqxnQVrs9GD+u0v9eHyW5gwTXF1L/Yjq/v9K6ynY6pBKPxPUtTrTI36thgZHOZWfmJKgJDQfb+tiFydToF5a/JYrjTh7tlfuZU2QutLL2pjL2PNMzK++1Uoaj21szo7cqvvXPar3ciyRiIDBaVsF8jo9JO7ooM6v7WNuc9FenFNtLyrHTs6JvT14lXRquBlXdUYLIb2f3reny9sTsmzzdrlpnKywuoebaF4HCYgnVZKAaFti29c/7apjQDIb+GHk6OU0kNDXdpJwf7d+N2u7nqqqv48Y9/zIIFC2LdNDHH5Iw4BeTl5fHjH/+YQ4cOceWVV3JY2cU7/J1WvREtCWZQFm9wsfTmslNvOAvatvTS/l7khMPsMGG0GaKBoPCsbArXn948kpmYzjA6iAScUxVSGO/YoXTengB7f1uPJcPE8o+WY7AcfxgZvP0cBm8/Z1rtSgRlF+dRdLYLgI4dffMWhgDCPo3ew0P4+iMnejbX3M3lGh+GAOq/s2HOXivZLL21jIUfKgZgoH6Ymr+2zsuwraEWbzQMFZ3jouzivDl/zXhhsKgs/1gF5nQTe37bkBJhqHB9NoVnRT5vQr4wRpsBsyOyHmH7e33zEoZgZOmLKxO/10RHZ7ikmx3OV9nS9BarV69m69atPPvssxKGUoQEohRSUVHBr3/9a/bs2cMV117GfrbyDi/SqjckdDDyDQQZapn/4hHDHT72/Lqe0MjaRpYME9bMyEmqalSovroQa9b8FCBYdOd78xqMPF1+9j7SgC3bwvLby1FNkx9Kki0YKQYFxRibeRq+vgB1L7SBDia7gTWfWUD+mqwZ70/bdWDCcLjaWzOjX2J6shY4MI3Mq2vb2hudgxgrikFJmflEqkll+e3l2LLM7H2kYcJ80GRizTJTfXUh6sjxx5ppxpIRCUAhb5g9v66PyaLj9X9vp23r/ISvuRAJQl3syHiVd46+RkVVBa+88gqvv/46a9eujXXzxDySIXMpbMeOHdx333385S9/wYadSpZSQJkMpZsFthwLy24tY99jjfh6A+Qsd2K0GWnfNj8fHKPD6KYakqY7jA4igcpRZGPFxysYbvOx73cN0SvhJwpBzsfenfbrxFrxuTkEBoN07Y2vRR0zqxwMNXsIBzRyV2YQ8mn0HZnaWjbjTaf3Zy6GziX6kDmDReWsLy6m6bVOWjfPTmGN2ZS7MgNzuomWTbENaXNBNSksu60cR1Fk7lSyLQlQcGY2IU+I7v2D2Fxmlt1Wzv7fNyVt6JtPGhqekh4ODe2hr7+XNWvW8O1vf5urrroq1k0TMSKBSCR8MLJkmgj7tWhPTTwqvzQfa6aJQ080gwLVVxfRvrU3Jlf0TmYmwWj1vQdZ8bEK3K0+9j/eSDignbJXKJGC0cIPF+PrC3D0jVMvABwrS24sJegNUftcGyigGpSTDtOqf3zVxDsapl6lcbZDUSIGovRiG+WX5rP/sUgVM0uGCf9AfE7gL70wF2uWmSNPt8S6KbPKYFZZdns59gIr+3/XyODRxF9iwp5vpeCsbGqfbQVg8Q2l+PoDcVHE50Sc5WmY7Ua69w/GuilToqHhKe7mkHsvff29rF27lm9961sShIQEIjFm586d3HfffTz11FMJFYzO/KdF9BwapP7v7bFuypSYHUaW3V5O3d/aGDzqIXtROuklaTRujJ8PvekGo1yvxuVHAni6/Oz7XQN9N6yf0vPiMRgpBoWFHyyia+8AfTWJs+Dl6MKuOSsyqL6ykPd+fmTCRYLjQtCxphiKUjUQmdONmOxGhtt9kUnsVxRQ+1xrQlXuylroIHd5Bkf+2prQk+ANFpXlH60gLcfCvkcbGJrHuXyzrfx9+Qw1e+g9PISzLI2qKwvZ/1gjAXdivK+qrizAnm9jz2/qY92Uk4r0CHVzaHAPfQN9rF27lm9/+9tceeWVsW6aiBMSiMRxdu3axX333ceTTz6JlTTKWUQRFXFbrjst14IW0mNa6e10FJ6VTWaVI1qad8lNpXTu7qf30PSHP8226QQjl0/jsuYwgWYv73pzCGpTn8PQdbV/WvOZ5oJqUtGCkbl0i64voefAID0HEuOq53iWTBPZC9PZ9M+lAKzu0mhKV+i1nuL3EaNeokQJRMtuLcNgNbDn1/F94ncyrqVOXEudHH4yss7V+Pd8ojDaDKz4aAWWTBN7H21guC2+etlPJXtxOnlnZEYWjCXy/u+vdSfsPBzVePLe6FjTDRpDxZ0c7t9L/0A/69at41vf+pYEIXEcCUTihHbv3s1//dd/8Yc//AGXy4WzK48SqjEp81MoIBUpqsLCDxfTtaefvho32YvSKb0gl72PNBAOaNFegPk21WCU5de5rDlE0KuypdlKIDy13sWuq8fGxMciGNnzray8s5I9v6lPuBOsUZP1AJnCOlc1auzIVTmarmAP6miA90Sryk8hFKVKD5HFaWLlJyo5/FQzg0c9WDJMhLxhwoHEChAn4ii0suLjlTGbjD8TpjQDKz5WgSndxL5HGuK63aPHaoNZZcXHKmh6o4u+I0NkLXCQuzKTI0+3xORYPldUkxJXi7Nq5hD9ha0c7t7P8PAwGzZs4Bvf+AaXXXZZrJsm4pQEInFKdXV1/OAHP+Dhhx/GaDSS7S6kjEVYFVtM22V2GFl6axlHnm7B05Wck0zTS2zkrsyk7m9tAKy8sxJ3q5f6v7ejqAo2l3lev/epBKMMv86VtWGCmsK7HTaCvqn1FI0PRTD3wcjmMpNenEbn7n5QoOS8HNrf64vruWinHPY2mdFDvKJwTptGnlfnmSoDAEZNJ6SO+/2cIhAle1GFrAUOHIU2jr4ZmS9WeXkB7dv7knISu9FmoGBdFs1vd4MeWQR4qMWDtyc+e9otzkiZf6PVwJ7fxlk1OSUyUsHbHUDX9MgwsgJbtDex6qpCuvb0M9ScuEP7TiZvVSaVVxSw439qYj7UL2wL0J17lMPt+wmFQlx22WV885vf5Mwzz4xpu0T8k0Akpqyjo4Of/vSn/PznP8fj8ZAbLKacxdiV9Ji0x+wwsuCDRRx6spmwPzmu2p6Ka5mT0HCYgcZh0ktsrPpUNTt/WYO7zUd6iQ2D2UB/3dzPezlVMCrZaGZDgQcFeLfDhjtowHCKq4fHBqLxTjccHb4/Mqdpyee3oqgK4YBG8Xk5FK7L5r2fHZmXK7V1j62e0naKMndtMYV10gPQa1OwhHSur9V4o1ilxaFEgpOiTBqKknVhVsWgkLsig4GGYfwDQQrXZ5O9yMm+3zVACn0yKqrCun9cSNu2Xlo2dWMwq+iaHjdDodJyLSz/aAV6WJ+1hYlPV2aVg3AgzFCzF0eRjdV3V7PrwVqGWrxkVNgxphnoSZBCA6fLYFHJOyOTtm29Mfu7CaX7aM+s50jLQYxGI9deey3f/OY3WbhwYWwaJBKOBCIxbYODgzzwwAP88Ic/pKOjgxy9iHIWkoELRZn7tS8MFhXFoBDyxO+V/PmgGhXSi9MYPDqMrkWqoVkzzdHJrYtvKKV9ey8D9cOgMCcfVCcKRtkvWrEYNM7J92I1aGzptNHnj8xBO1EwOlkgGjXTYHT4/vUous4tXV72p5nY7TBh0HUW/OO2eRu2Eg+BaDxTWKdqQKfBqeA3Kqzq0sjy67xWYoiGorkMQqPmOxDZXGZsLgu9h4dQjQrr/2UJdS+00bmzf15eP14pqoKighbSKTk/h6L1Lrb++BCxXqLOWZrGstvK8Q0E2Pe7RoLz3QMxcuzMqLRTsDYrUikUWHlHJb7+AEeebkFRwVlqZ6jFEzchMlYyKuy4272EffPzxgnmDdNiqqG2pQa73c7tt9/ON77xDQoLC+fl9UXykEAkZszn8/HII4/w/e9/n8OHD+MkizIWkkfJnFamW3lHJVpIY9/vGufsNRKVwawSDmioJoUlN5bSurmH/rphcldmUHVlIVt+eAg9rJNRaSfkDTPcPjtj8I8NRtkvWgEwqjpn5XnJMod5r8tGh3diYY7x4WgqgWi8qYSj3BUZlF2Sx++XZqIrCuW+ED1GFbdx8vfnos9umVYbpiveQtF4JUM6jqCO/549KAaFNf9QTf2L7fTVuFFU5uzEeK4DkcGskrPMSW+Nm6A7RPn78sldkcG2nx6OPp4s84JmiyXThKPQFikqosC6f1xI06ud874WV/aidBbfWIq7xcv+3zfO+UgAe4EVo83AQP0wqlHhrC8tpu6FNrr2DJBZ5aDo7GwO/vkoWlCX980kFIPCmf+0iI6dfTS92jlnr6MrGt7iPur9B2nrbCM3N5dPfepTfO1rX8PpdM7Z64rkJoFInDZN03jhhRf48Y9/zEsvvYQFKyVUU0wVZsVy2vtXVIXclRkMNA7j7w/iKLQS9ITjdt2PeJSWayGz2kHru5GFI1d9qorhLj81z7RgtBpYcnMp9S+2M9zuw5xuxGg1zHhuUt8dExf6VBWdNTk+CtNC7O6x0OQ+viiHIahPOxCNUnSdJZ/ZS8AdQlFhzWcW0PJODx07+rDnW8lenE7Lpm4O/vdZ09qvISNA9e07Z9SmE4nnQFR5267obaPVQOmFudH5M0XnuCg8y8V7/x0JEfZ8K/6BICHf6ffSzkUgyj0jE9Wg0LGjD6PNwNn/soQDf2ii9/AQBouKFtITuuz0fFJNCsUbcug5OIin00/+2iyKz3Gx4xc16Fpk6HJgODTrPdD5a7JYcE0RPQcHOfRk86z9vtJyLYR8YQJDIewFViovL+DAH5sI+zQWfqiYtFwLux6qA6DoHBf9te6knaM6FyyZJkKeSPER1zInCszaGkVhc5CBgnaO9OxnyD3EsmXL+Kd/+ifuuusuDAbDrLyGSF0SiMSs2rt3Lz/5yU945JFHUBQFl6+QUhbiUKZ31cbmMmPPt9K9fxBFhbO+tITmt7uiJ/Ti9CgqqGaVsE/D7DRReXkBTa924O0JUHZRHgXrstjyw0MAVF9dyFCzl85d/RjMKhkVdgYah095tXZiMNJZke2n0hnkcL+ZQ/1mImNRxmT95p2Tz00ameNiCelUD2nUpav4jApndYYpHtb4S6WJ6o/soOT8HAbqh49bm2R0HtFUGTKOn6dwugFpqoEI5j4UjQ9Ap+IotOIostH+Xh8AZ31pMZ27+mnc2IElw0TR2S6a3+4mOByKlOEN61M+QZ5pIMqosOMfCOLrC5BRYWfhtcXs+J8awgGNqqsKUY0KNX+NLHCZiOWl41V6sY2MCnukGAOR3qPeI0PU/70dk91A7spMOnf3n9aQ5vJL8yk9P5e2bT3UPt82rbBlsKhklNvprx9GC2rkrc4kvcgW2Q+w/suLadvWy9HXu7C5zJRdkk/9i+0EBoMYrCpaQIv5MMFksfBDxSgGhcNPNaMYFIrOdtG1u3/ahRdCTi+dGU0caTuIrutcdNFF/Ou//iuXXHLJHLVcpCIJRGJOdHV18ctf/pKf//zntLW14SKf6vSllBVU0D+y2KVrqZOQL8xA/TBmh5HFN5RS9/c2htt9lJyfQ+F6F1tHTspleML8MdoMWJymaEnb6qsLcbd46djZH508vOOBmsjv6YJcXEuc7PrfWiCySN9Qi5euPQMY0wzkr87iyJJq/GEVhylEtTNIqSNEm8dIs9uIN6wyGDBgUnUW7j1Mz4FBAu4QmdUO1H+sYmte5KrflU0hum0K23INOII6H2oI8VKJgS6bSqZfxxLW6UibOAzu2CF10w1EMHkoOtZ0Q1KseommE4BOxZptRgvpBAaDpJfYWHRtCbsfriPoCVN9TRGOAiu7HoxcZV/44WK69g7QX+vG4jThWuqkY2cfYb+GvdBK9VWFBD1hDvy+CddSJ95uP54uP5ZMEwVrs2l+u4uwX6P0wlwchbboel1nf2UJre/2cPTNLqxZZvLXZtGyqTuuqwQmI2d5GiFPGE+XH2dpGss/WsH2/zmCfyBI5eUFOIpt7PnVSLW1KwvoPeKmv9aN2WHEtdRJ555+wj4Ne74Vs9NI/uqsyHtkRx+t7/bg6fJjdhjJPSOTjp19hDxhcldm4CiyRRfjXn13Nd0HB2l+swt7oZU1n14QLTaTvzoTR7GN2ucigcieb8U/GJT3yXwZmYOVlmdh1aeq2f1wHcMdPgrXZ+MsTYvOycpfk4Wny8dQszcSaivT6PC00RA8TGNrPQ6HgxtvvJF///d/p7KyMrbfk0hK8bnSpkh4ubm5/Ou//itf+cpX+OMf/8iPfvQjtmx/jcOGTHL0UoqooOhsF55OHwP1w4SDGgF3MHolsG1LpNrRKAlD8yfkDU84WRg9kQBwt3rZ/P2D0ceHmjyEPGNX+wwWA+rI/Byzw0jJ+Tn0/3YXw+0+8r6wllxbmG1dVtbk+Mi3hWgeNrK7x4ZJ1am8vIDhDh8BdyhyArRtgOrfNVL7uzUcylQZnX7kNsJjC4yRimhAv0Xh2N4mmDivqfojO1j02S0zCkWnUjsScI5tQdVp9ibpujLjUDSb4Wcyvt6xoDjU7OW9nx2J/n/nzj56rWPDV4w2AwZz5D1hyzFTfmk+3fsGCPs1Ctdlk5ZjYaDJA0D11UUjJ8FdmNKM5K7IGAlPATydvgnHgR0P1BJ0R4bN+voCNL7SMaffs5jcYKNn7PZRD+98Z3/0/3uPDOFuHeuptbksmEfW+bK6zFReXkDvkSHCPo3C9dnkrswEHQ78oYnqDxQRGArR9FonppFjSd+RIUKeMKpJxTjuPda+vRdvd+Q96enws/n7BwkOR45LHTv76RhXMCOe1y5KSiOHME+nn3e/uz/a+xZwh/D1jw17L97gomvvAAPdQwyVd7G14wC9vb2UlpZy33338aUvfQmHwxGDb0CkCukhEvNC13XeeustfvGLX/DEE08AkOXPp4SqeatOJ2JLURVUk0L3rWeTYQ5zVl7kRGpLZxqDAQNZvzl1RbOpLhB7Iov+uSV6+8A3Kk65/VR6iEZN5x08Gpam0lt0olA016FnPqhGhSU3laHrOgd+3xR3izuK+WHPt7L0tjIURWH/440Mt/sic72CelItXiomp+s6wRw37bYm6tqOoOs6GzZs4Atf+ALXX389qjp3RZqEGCWBSMy77u5ufvWrX/HAAw9QW1uLgwxKqKKAMoyKKdbNE/PEnG5k0T3LcJg0dnRb8d+/bVrPn0k4Gh+IxjtZOJqLUHS6vUfJJJ4WZhXzL2eZk4UfLsbbE2D/440EhmK7sKeYP5ohjLugi3rvYbp6OsnOzubmm2/m3nvvpaKiItbNEylGApGIGU3TeOmll7j//vv561//it1uJ2MolxKqcSgZsW6emAeqUWHhtSXkLs/g6FtdNG7smHa1qtkMRqPGB6S57iVKdRKIUpQCFZfmU3JeLl17+jny1xbpHUwR4WwfnY4matoPEQgEWL16NZ/97Ge58847MRplJoeIDQlEIi4cPXqU//3f/+XBBx+kra0NJ9kUU0E+pdJrlAKKN7ioeH8B/fXDHHri6IwnPE81HJ0qEI134BsVEormkASi1GO0GVh8QymZlXbqX2qX6qEpQDeFcRd2c9RXR2tHC+np6Xzwgx/k3nvv5Ywzzoh184SQQCTiSzAY5JlnnuHhhx/mhRdewGKxkOnNo4gKMsmRuUZJLKPCzpIbSwkHNQ78oem0F409WTiaTiACCHeMLTJYe4p5PxKIpkcCUWqxF1hZeksZBpPKwT8fZaBhONZNEnNE13UCeUN0Wo5S115DKBTijDPO4BOf+ASf+cxnsFqtsW6iEFESiETcamlp4be//S0PP/wwNTU12LBTRAWFlGNV0mLdPDEHLE4TS24uxZ5vpfa51gnVoU7HZOFoOqFofCCadP/HhCQJRVMngSh15K/NourKQjxdfg7+oQn/oCyunYzCNj/9OR3UDxyhf6APl8vFtddeyz//8z+zbNmyWDdPiElJIBJxT9d13nzzTR5++GH+9Kc/4fP5yNJyKaKSXApRFVmhOpkoBoXqDxRSsDabzt391D7XOutl12t/t+a0eommaipV5CQQSSBKdgazyoJrishdmUn7e73UvdCGFpJTj2Siqzq+oj5awvU0tjVgNBrZsGEDn/70p7n11lsxGORzWsQ3CUQioQwODvLHP/6Rhx9+mHfeeYfs7GzSejMpoEzKdyeZ3JUZVF9dRNAd4uCfj572ELoTMeTnTWm7mQSikxkfllI5FEkgSm72AitLbirFZDdS89dWuvcNxLpJYpbouk4ob5jutFYaumoZHh6mqqqKW265hX/6p3+ioKAg1k0UYsokEImEdeDAAX71q1/x+OOP09zcjA07BZRSQBl2xRnr5olZYM0ys+TGUtLyLTS81EHr5rmffH2ygDTboUhIIEpmheuzqbysgOFOP4f+fBRf39SLk4j4FUz30p/ZTuNALf0D/WRkZHD55Zfz+c9/ngsuuCDWzRNiRiQQiYSnaRpvvPEGv/vd7/jTn/7EwMAAa9euZWh7iAJKsSi2WDdRnAbFoFBxaT7FG3LoPTTIkWdaCHpmVoVuJsYHJAlEs08CUfIx2Q0s/GAx2YudtLzbTcPLHehhOdVIZGFrgKGcLroNbTQ0NGCxWDj//PO58847ueWWW6Rctkh4EohEUvH5fDz//PM8+uijPPfcc4RCIS699FJaXuojj2Ip4Z3Ashams/DDxQDU/LWF3kND894GQ36ehKJZJoEoubiWOFlwTRG6PvJ3enj+/07F7NDNYTz5vbgzetm7dy+qqrJ69WpuvfVW7r77bjIyZL1AkTwkEImk1dfXxxNPPMGjjz7K66+/jtVq5ZprruHgn4+SQyFGRa5oJRpTmoEFHyzGtcRJx84+6l5oI+yf3YILYn5JIEoOBotK1ZWF5K/OoufAIEeebSE0jz25YnZoxjC+gn60Yi/vvfcewWCQxYsXc/311/O5z32OkpKSWDdRiDkhgUikhKNHj/L444/zxz/+kffeew+bzcZVV13F4SdbJBwloLxVmVRdVUjIF+bIX1pkLZMEJoEo8WWU21l4bTFGm4G6v7XRuas/1k0S0xBWw/jy+tDLfdEQVFZWxtVXX83nPvc5VqxYEesmCjHnJBCJlFNXV8ef//xn/vSnP7Ft2zasVitXXXUVR54aDUcyrC4RWDJMLPxwMZmVDlq39ND4Ssesl+cWc08CUeIyWFQq3p9P4ZkuBhqGOfyXZvwDsrZQItCMYbz5fWjFXrZv3x4NQVdddRWf/vSnWbt2baybKMS8kkAkUlpDQ0M0HG3ZsgUVFRcF5FFCroSjhFC4PpuKS/MJeTVqnmul74jMWUgkEogSU/aidKqvLsJgUWl8pYO2rb2xbpI4hcicoH46wkdp6mggFApRXl7OlVdeyac+9SnOOuusWDdRiJiRQCTEiMbGxmg42rx5MyoqWeSRSxG5FEq1ujhmyTBRfXUR2QvT6do7QN0LrQSHZf5CIpBAlFhMdgNVVxaRuyKD3iND1D7bin9QeoXiVdgawJPbR2e4hab2RsLhMJWVlXzgAx/grrvuYvXq1bFuohBxQQKREJNoamriiSee4Omnn+b1118HwEnWSDgqwo5TFoGNQzkrMqi6shBFhYYX2+nY2R/rJolTkECUOPJXZ1JxeQFoUPdCG117ZZHVeKPrOqEML4POLtq8zbR3t6EoCosWLeKKK67g7rvvljlBQkxCApEQp9DT08Pzzz/PM888w1N//gthQtiwk0MhuRSRSQ6qosa6mWKE0Wag8vIC8ldnMdA4TN3f2hju8MW6WeIEJBDFP3uBleoPFOEsTaNzVz91f28j5JUe2HihoRHMc9Nn7aC5r5H+wX5MJhOrV6/mmmuu4Y477qC8vDzWzRQirkkgEmIafD4fr732Gk8//TTPPPMMra2tGDGRQwG5FOGiQOYdxYmMCjtVVxWSlmOhbVsvTa92EvLJSVy8kUAUv4xWA+Xvy6PgzGw8nX5q/9bKYKMn1s0SROYDefMG6KaVpq4GfD4fTqeTDRs2cMMNN3DLLbfgdDpj3UwhEoYEIiFmSNd1tm/fHg1Hu3btQkEhAxc5FOCiAAcZMrQuhhQVCs9yUXZxHnpYp2FjBx07+kCOenFDAlF8yl+TRcWl+SgGhabXOmnb2oMuRRxjRtd1glle3Ok9dAZaae1sQdM0iouLueSSS7j11lu58sorMRgMsW6qEAlJApEQs6ShoYHnn3+eF154gef/+jxhwpix4iIfFwW4yMekmGPdzJRkshupeH8++auzGGr1Uv9im1zpjhMSiOJLRoWdyssLcBTa6NzVR/1LHQSHQ7FuVkoKm4P4cgboVTtp6W3CPezGZDKxYsUK3v/+9/ORj3yEVatWxbqZQiQFCURCzAG/38/bb7/NCy+8wAsvvMCePXsAyCA7Go6cZEvv0TxLL7FRdUUh6SVp9BwapOHlDrzd/lg3K6VJIIoPthwLlZflk73IyeBRD/UvtjHU7I11s1KKruuEcoYZtPfQ7mmhvbsNXdcpLCzk3HPP5UMf+hDXX389Docj1k0VIulIIBJiHjQ3N/P3v/+dF154gb/8+WlCBDFhJpt8XOSTTR5WJS3WzUwZOcudVFxagCXDRPuOPppe7ZSr4DEigSi2THYDZRfnU7A2C19/kIZX2unZPxjrZqWMsD2AN2uAHtpp6T6Kx+vBYrGwatUqLr/8cm655RapCifEPJBAJMQ8C4VCbN68Odp7tG3bNgDScJBFHlnkkk0uZsUa45YmN8WgUHhmNqUX5qIaFVre6aHlnW7CfpkoMZ8kEMWGwaJSvCGHonNc6JrO0Te6aNvaix6WU4K5pFmDeLMHGDB00zbYSl9/ZEHbsrIyzj//fK677jquueYarFY5/gsxnyQQCRFj3d3dvP7662zcuJGNGzdy8OBBAOw4ySZvJCTlyPyjOWKwqJRekEvhehdaSKPlnR7aNvcQDkgwmg8SiOaXwaxSdI6L4g05KAaFtq09NL/ZLRUY54hmCuF3DTJg6qHd3Up3bxcAeXl5rFu3jssuu4wbbriBsrKyGLdUiNQmgUiIONPa2sprr70WDUj19fVAZGHYSO9RHpnkYFCMMW5pcjE7jJScn0vBuizCAY2WTd20bulFC0owmksSiOaHalIoXO+i5NwcDGaV9vd6OfpmtwwVnWWaMUzANcSAuYdOTxudPR3ouk5WVhZr167lfe97H9dffz1LliyJdVOFEONIIBIiztXX1/Pqq69GA1JbWxsKCk6yycRFJjlk4MKsWGLd1KRgTjdSckEuBWuzCPs0mjd1076tV3qM5ogEorllsKgUnplN0Tk5GG0qHdv7OPpmF4EhCUKzQbOECLiGGDT10u3tpL2rDU3TSE9PZ9WqVVx88cVcd911rFmzRoroCBHHJBAJkUB0XefQoUNs3LiRN954g7feeouWlhYA7KRHw1EmOdiwywfwabA4TZRcmEv+6ky0oE7b1l5aN3cTHJahRbNJAtHcMNmNFJ3jovDMbFSjQseufprf7MI/EIx10xKWruuEHX68mYMMKD10uTvo6esGwOl0smLFCs4991w+/OEPc+6556KqaoxbLISYKglEQiQwXddpamrirbfein7t3bsXADPWaA9SJi4cZKIq8gE9XeZ0I0Xn5FCwLgvVoNCxs5+WTd34+gKxblpSkEA0uyyZJkrOzSF/TRZaWKd9Wy8t7/YQdEuP0HRpaISzvQyn9dMb7qJzoB33sBuAwsJCzjjjDC688EKuueYaVqxYIQFIiAQmgUiIJNPX18c777wTDUhbtmzB7/djwDAyzC6HDLJxki3D7KbBYFUpPNNF0dkuTGkGug8M0vput6zVcpokEM0OZ1kaRetduJY6CXnDtGzuoW1rD2GfDPWcKt0WIpA1jNvcT7evg/buNoLBIEajkYqKCtauXcvFF1/M1VdfLUUQhEgyEoiESHJ+v5/t27dHA9Lbb79NT08PAFbSouHISRbpZGGUYg0npRoV8lZnUXyOC5vLgrvVS+uWHrr2DkjJ4hmQQDRzikEhd0UGRWe7cBTa8HT7advSQ8eOPrSQvBdPRlPCBLKG8doHGdB66RrsZGCwH4C0tDSWLl3K+vXref/738/ll18ui6EKkeQkEAmRYnRdp76+nq1bt7Jlyxa2bNnC9u3b8Xg8QKTcd8ZIQHKSjYMMGWp3AlkLHBSud5G9MJ3gcIj27X20beslMCjzNKZKAtH0mdONFJyZTcG6bMx2I72Hh2jd0kN/rTvWTYtLGhrhLC8e+yCDeh89w1309Hej6zomk4ny8nJWrlzJhg0buPzyy1m5cqUMfxMixUggEkIQCoXYv3//hJC0Z88ewuEwKirpZEZ7kZxkkUa6FGwYx5ptpvCsbPJXZ2Ewq/QdGaJ9Rx99R4bQZcTSSUkgmhpFhexF6eSvySZrgYNwUKNzZx+tW3rx9cp8tlE6OnpWAK9jiCG1jx5PF129nYRCIRRFobi4mKVLl3LmmWdyySWXcMEFF8giqEIICURCiMl5PB527twZDUlbt27lyJEjAKgYcOAknUwcZET/NSqmGLc6tgxmldyVGeSvySK9OI2AO0jnrn46dvTh7ZGT1slIIDo5a7aZ/DVZ5K/OxOwwMdjsoWN7H937BlK+FLxmCBHM8OCzuRlS+un39tHd30UoFCkgkZuby5IlS1i7di0XXnghl1xyCVlZWTFutRAiHkkgEkJMWW9vLzt37mTnzp3s2rWLXbt2sX//foLByBAxG/ZxASmTdDKwkpaSvUn2fCv5azLJXZmJKc3IQNMwnTv76T4wIBPdx5FAdDyj1YBrmZO8MzLJKLcT9Ibo2t1P+/Y+PJ3+WDdv3o2Wuw6ke/CYBhkM9dPr7qZ/ZM6PqqoUFBSwYMECVq1axdlnn80ll1xCUVFRbBsuhEgYEoiEEKclEAhw4MCBaEAaDUujhRuMmCb0IqWTgR0nhhQp3qAYFFxLIkOdMqvs6JpO3xE3XXsH6D08iBZM7UOwBKII1aiQvTid3BWZZC10oCgK/XVuOnf1031gMGUKdujGMOEMH16bG7cyQL+/l57+bnx+HxApeFBeXs7ixYtZvXo1GzZs4Nxzz5WiB0KI0yKBSAgx63Rdp7W1dUJA2rVrF4cPH2b0kGPDjh1n9MuBEzvpSR2UzA4jOcszyF2RQXpJGuFAmJ5DQ3TvHaCv1p0yJ73jpXIgUo0KmVUOcpY5yV7ixGgxMNjsoWtPP937BpJ7EWCTRijDhz9tmGFliKFgP33uXvoH+qOb5OXlUV1dzfLly1m3bh0XXHABS5culYIHQohZJ4FICDFvPB4Pe/fuZd++fezbt4/9+/ezb98+mprGToYjQSmdNNKj/6aRjhlLUg29s2aZyVkRCUf2PCvhQJi+I256Dg3Se2QoZYbVpVogMlhUshel41riJGtBOgaziqfLR9feAbr2DCTVgr+6rqOlhQjZvQRsXjzqEEPBQfqGeqMlrgGysrIoLS1l0aJF0fBz3nnnkZ2dHbvGCyFSigQiIUTMDQ0NceDAgQkh6dChQzQ0NKBpkWBgxDQuJDmit23YE75XKS3XQvZiJ64l6aQXp6GFdQYahuk9NEjv4SH8A8lbxjsVApE1y0zWAgfZi9LJqHSgGhSGmj30HByk5+Bgwhfc0E0aWoafgM2Hz+DGHR5k0NdP30BfdKiboihkZ2dTWlrKwoULWbFiBevWreOcc87B5XLF+DsQQqQ6CURCiLjl9/upqanh0KFDHDx4kEOHDkW/+vv7o9uZsZKGAxsO0rCPu+1IuMp35nTjSDhyklFhRzUoeHv89NW66atxM9AwjBZMnt6jZAxEqkkho8JO1oJ0sqod2FwWtLDGYONYCAoMhWLdzGnRLWFCDh8Bixe/0cOw7sbtH2RguB+3e2z9I6vVSlFREeXl5SxYsIBly5axevVq1q1bR3p6egy/AyGEODEJREKIhKPrOl1dXdTU1ES/amtro7d7e3uj25owY8OOFTs20kZup0XvMyiGGH4nJ2ewqGRW2smsjpxYW7PMkRPrJg/9dcMMNg4z1OpN6LlHyRCIFINCeomNjHI7GeV2nGVpqEYVX1+AvpqhaJCN5zLZukEjnB4gnObDb/ThUzx4wkO4fW4G3QN4vJ7otjabjfz8fEpKSqisrGTx4sWsWLGC1atXU1ZWllRDW4UQqUECkRAi6fT29kYDUm1tLQ0NDTQ0NFBfX09TU1N0nRKI9C7ZSMOKHSs2LKRhxYaVNCzY4mrukjXbTFa1g6xqB84KO0aLAS2kMdTsZaBpmMFGD0PNnrg+8T5WIgYi1aROCEDpJTZUo0rIG2agcTgy3PHIUNwsmKrrOnpaGM0eIGjxETD48OHFFx7GHXAzODzA8PBwdHtVVcnKyiI/P5/i4mLKy8tZtGgRy5YtY9WqVRQXF8fN34QQQswGCURCiJQSDodpaWmhvr4+GpJGA9PRo0dpbm4mEBg7kVVQR4JSJCSN3o6EJSuWkS91vnualMhaR6M9Es5yO2a7EV3TGe7w4W7zMtTixd3qxdPpR9fi81Af74FIUSEtz0p6sQ1HcRrpRTbSci0oqkLQE2KgMRJEBxqGGe70wTz/mHVFI2wPolmChC1+gsYAfsWLV/PgCQzj9g4x5B4iHB6rWGcwGMjMzCQnJ4fCwkLKy8uprq5m0aJFrFixgkWLFmEyJdZQUyGEOB0SiIQQYhxN0+ju7ubo0aMn/Gpra4suRjvKiGkkKFnHBaVIaDJjwYwFExZMmFGVuSkbbHOZcZbbSS+2RU7c86woqoIW0hhu9zHU5sXT4cPT6We4yxcXleziKRAZLCr2fCtpeVbs+Rbs+TbsBVYMJjUaNIdavbhbvAw1e/B0zc0iqZquodvC6LYQYUuQsClIUPXhx49P8+ILevD4hxn2DOP1eSc8V1VVMjIyyMnJIT8/n6KiIkpLS6msrIyGnvLycgyG+B0qKoQQ800CkRBCTJOmafT09NDW1nbcV2tr64T/9/l8xz3fhBnTuJAUCUyj91lHHjdhxIwJM0ZMMxqipBoV7AVWHEU20ovScBRZsbkivRsA/sEgnk4fni4/ni4/vt4A3r4AgcH5q2oXi0BkcZqwZpuxZpuxucyk5Vqx51mxZER6RbSwjrfbz3CnD3drpKdtuM2LFpr+x6Wu62jmELo1jG7R0E0hQsYgQTVAEB9+3Y8/5MMf8uH1e/H6PXi93uP2YzQaycjIICsrC5fLRX5+PgUFBdHAM9rLU1paKmFHCCGmSQKREELMEV3XGRgYoKuri66uLjo7O6O3J/vq7OycMFxvPAPGkXA0GpZM0bA0er8RE0aMGDBgwDjhy4gRBRXVqGJzmbHnWUnLs5CWG/nXmmWOhi4tpOHrD+LrC0S/AkNBAkOhka/gjMLBZGY7ECkGBXO6EYvThNlpivybbsSaORKAss2oxkgPna7p+AeCeLp8DHf68XT4GO704e0OoIU1dEVDN2noRg3dGEYzauimMLpRQzOECatBQgQJEiCoBQiEAwTCfvxBP/6AH7/fhz8weS+SwWDA4XDgdDrJzMwkKyuL7OxscnJyyMvLo6CggOLiYsrKyigrKyM3N1fm7QghxByRQCSEEHFC13WGhobo6emhr6+P/v5++vr6ol+n+v/xxSImo6AcF5QMI3HJoBgxm82YrWZMNiNmmwmTzYQ5LfJlNBlQVRWDIfIvmoIe0NGCQAj00a9A5F8toEMI0ICwAmEFPTx6G9AUFFTKr8hFVRSa3+gBRUNTdFAAo45iBMUIukFHMQBq5D5G7h/9wqCDEVAj22iaRjgcRtM0QsEw4WCIUCA8cjtMKBQiFAwRDAUJaUGC4SChcJBgKPIVCAYIBAKc6uNRVVVsNht2ux273R4NOKMhZzTo5OTkkJubOyHoZGdnS8ARQog4IYFICCGSgK7reDwehoeHGR4exu12H/c12f3H3ufxeAiFQgSDweP+Hf91qvAVK+ND2/h/j/2yWCzYbLboV1paWjTU2O120tPTJwQcp9NJRkYG2dnZ0d4cp9MpoUYIIZKABCIhhBAzEg6HTxiaPJ7IXBifz4ff78fv90+4HQgECIfD7Nu3D4/HQ1VVFUajEaPRiMlkwmKxYLFYsFqt0X9Hv0wmE2azObrd6DYWiwWDwYDRaMRgMEhYEUIIMSUSiIQQQgghhBApa25qvwohhBBCCCFEApBAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUJYFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWRKIhBBCCCGEEClLApEQQgghhBAiZUkgEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyJBAJIYQQQgghUpYEIiGEEEIIIUTKkkAkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsoyxboAQyaijo4P+/v5YN0MIIUSSyczMJD8/P9bNECKpSCASYpZ1dHRw0/U3gSHWLRFCCJFsrFYrjzzyiIQiIWaRBCIhZll/fz8YwHjIieI1o0QHpqooqhK5qYz7d+S2oqowcnf0SYoC6vHbTvb8E98et081+j/j7h+5oSpjGyvK2IDa0e0Y26c+/nHGXkeP7mvsfn18O0afP36w7vh2jNzWT3h77En6uG/luMG/yrhtlXHbMm4/0e+F4/c/7j4UBf2Ytk76nOOeP+7nMv75k7zW+Mcn7OPYtsBxbTn2Oad6nCk+fsL7TrbNhMf1SR/XJ22DPnF/x30v+vH7VyKvccLXn7CvSZ6PPu7tro9tOm5bZdy+lGNeS1EmPn9s0+Ofryr6uNfQR54TuX/0tjLufgAVPdruyPPH9jX6OqPPOfbx0ddSGfs3ep/C8Y8rx+xr3O3Rf9Vxz1HQovsavU9VtHHbjt6vRX8+BsbabRjZdvR1DIqOMnKfYVxbDeNeK/p8RcfAuNeKtlUb15bR52tjr3GC54y2cfQQoirapG0d/7NUGde+cW0d3c+En0t0v2AYeZeMvlcMCigj/2dAmXA7sp2COnJbVVRUFBpbjHz7vzPp7++XQCTELJJAJMQcUTxGVI9pXAhSJ9wGRs9ORu5Sx50NHR+IlPGBZnzwGb/thPuP3faY5x8brsa1RVfGnY1OErKiIWf84yOnaJENxu4fO1WMbDP68IRAEt3/uNvqZPef4D712H2dZNvo48rx244LgZMGqvFh5kS3o89Xxt0+vl0Tt5389qSPc4rHT/H8U73+pOGQ47/XyV5r4uOnCETHbDvhNY/b9gSBaPz90defLNBMIRCNvz3J85Vx4WWy54y9XcZO3JVou/QJ90f3M+6+0ZNsJnkOij7uexgXiMY//wTh5bj7Tvj4ZIFhLDgYxj1n/LYQCQPj7xvbdtx9428fEzIMioY68sMav6/IbUZuj4Ww0cBgUMYCh2H0MMbY60/clzbuOaO3tbH9jmvLWLjRom01jPuZGBjfvomBaGKbJ7ZvtN1j940FHsO48GNQRrdTx90X+T8hxNyQvy4hhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUJYFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWRKIhBBCCCGEEClLApEQQgghhBAiZRlj3QAhkpWeFkJTVJToZQcVRVUiN5Vx/47cVlQVRu6OPklRQD1+28mef+Lb4/apRv9n3P0jN1RlbGNFGbtcMrodY/vUxz/O2OvoE15zZNuxHYy7b/Q/HPdY9DkaY6+ljN4e21Yf960ct69x3wrjnj/xcWWSbY/7VsfdOGa7Y59z3PPH/Vwmadf49o9/XJ+kLeNfY8K+JnnOqR6frK2TPX7C+062zYTH9Ukf1ydtgz5xf8d9L/rx+1cir3HC15+wr0mejz7u7T72BlLGbauM25dyzGspysTnj216/PNVRR/3GvrIcyL3j95Wxt0f3U+0LTrH/azQo/vSFR1t3OP6hG0i/2oj96nK2PeoMnqfHn39Y2+P/quOe44y8sc5ejhR0VEVbdy2o/dr0Z+PYfT7Q8cwsu3o6xgUHWXkPgNjPyvDuNeKPn/cvtRxh6Gx11Sitw0oKCNbGKLb6agjP0xVUcZuRx/XJm1r9GeFHr19bFtH9zPh5zKufYaR1xr9VRkUUEb+L9LWsduR7ca1T1FRUWhskdM2IeaC/GUJMcs0TcNoNBJaPBjrpiQG/Zh/Z8lk591CJIuxOBS9dpCCxifc1BnwYjQa0bTU/a0LMRckEAkxy1RVJRQK8W//9m+Ul5fHujlCCCGSRGNjI9/61rdQ1dQJgELMBwlEQsyR8vJyFi9eHOtmCCGEEEKIk5BLDEIIIYQQQoiUJYFICCGEEEIIkbIkEAkxy1wuF5/4xCdwuVyxbooQQogkIp8vQswNRdf1Wa7tJIQQQgghhBCJQXqIhBBCCCGEEClLApEQQgghhBAiZUkgEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyjLFugBDJIhAI8NBDD/Hiiy8yNDREdXU1d911F2eddVasmyZE3HniiSf46U9/yoEDBxgcHCQ7O5tly5bx2c9+lhtuuCHWzRPilDweD7///e/Zv38/Bw4cYGhoiK997WtcddVVE7b761//yosvvkhTUxNutxuXy8WaNWv4xCc+QWFh4YRte3t7eeCBB3jnnXfweDyUl5fz0Y9+lEsuueS419+2bRuPPPIIdXV1hMNhSkpKuOGGG7jiiitmtM/XX3+djRs3cvDgQXp7e8nLy2PDhg3ccccdpKenz9JPTYj4JIFIiFnyne98h9dee42bbrqJkpIS/va3v/HVr36Vn/zkJ5xxxhmxbp4QceP+++/nc5/7HIWFhVx33XW4XC7a29vZsmULTz31lAQikRAGBgb49a9/TX5+PgsWLGDHjh2TbnfkyBEKCws577zzSE9Pp62tjWeffZZNmzbxq1/9ipycHACGh4e555576Ovr48YbbyQ7O5tXX32Vr3/964RCIS677LLoPt966y3+9V//leXLl/OJT3wCRVF49dVX+fa3v83AwAA333zztPf5/e9/H5fLxeWXX05+fj61tbU89dRTvPvuuzz00ENYLJY5/GkKEWO6EOK07du3T7/gggv0xx57LHqfz+fTb731Vv0zn/lMDFsmRPxZu3atbjab9Y6OjuMe6+7ujkGLhJg+v98ffb8eOHBAv+CCC/Tnn39+Ss89ePCgfsEFF+iPPPJI9L7HHntMv+CCC/Rt27ZF7wuHw/rdd9+tf/jDH9YDgUD0/i996Uv6ddddp/v9/uh9wWBQv/XWW/VPfOITM9rn9u3bj2vn3/72N/2CCy7Q//rXv07p+xIiUckcIiFmweuvv47BYOBDH/pQ9D6LxcLVV1/Nvn376OjoiGHrhIg/JpMJk8l03P0ulysGrRFi+sxm84zfrwUFBQC43e7ofbt27SIzM5N169ZF71NVlUsuuYTe3l527twZvd/j8ZCeno7ZbI7eZzQaycjImNCTM519rlmz5rh2XnjhhQA0NDTM6PsUIlFIIBJiFhw5coSSkhLsdvuE+5cuXQpATU1NLJolRFy69dZbGR4eZsWKFXzlK1/h+eefZ3BwMNbNEmJODQwM0NfXx8GDB/nOd74DMCGoBIPBSYelWa1WAA4dOhS9b/Xq1dTX1/Pggw/S3NxMS0sLv/nNbzh06BC33XbbjPY5mZ6eHgAyMzOn+F0KkZhkDpEQs6Cnp2fSK4Wj93V3d893k4SIW//yL/+Cy+Xi/vvv5wc/+AHf//73MRqNXH311fzoRz+isrIy1k0UYtbdcMMNBAIBADIyMvjCF74woehOWVkZ7733Hu3t7dEeJIDdu3cDEz9H7rjjDtra2njkkUf47W9/C0RCzn333ccFF1wwo31O5rHHHsNgMHDRRRfN9NsWIiFID5EQs8Dv9086/Gd0OIPf75/vJgkRtxRF4ZOf/CRbt26lq6uLp556iuuvv56nn36aa665hnA4HOsmCjHrvve97/G9732Pe+65h7y8PLxe74THr7nmGlRV5etf/zp79uyhpaWFRx99lDfffBOY+DliMpkoLS3l4osv5utf/zr/9m//xuLFi/nWt77Fvn37ZrTPY7300ks899xz3HzzzZSWls7mj0KIuCM9RELMAovFQjAYPO7+0auBUp1HiMm5XC6uvfZarr32Wrq7u9m4cSM1NTUsXrw41k0TYlatXbsWgHPOOYfzzz+fO+64A5vNFq2qWF1dzb//+7/zgx/8gHvuuQeA7OxsPv/5z/ODH/wAm80W3dePf/xj9u/fz4MPPoiqRq5tv+997+PjH/84P/3pT3nggQemvc/xdu3axXe/+13Wr1/P3XffPTc/ECHiiAQiIWaBy+Wiq6vruPtHx1+PllUVQsBrr73GRRddhKIo0fuCwSC9vb3A2PwGIZJVcXExCxcu5OWXX55QZv7iiy/mvPPOo6amBk3TWLRoUbSc92gvTTAY5LnnnuP222+PhiGIFFU4++yzeeqppwgGg9FRC1PZ53g1NTV87Wtfo6qqivvuuw+jUU4VRfKTd7kQs2B0DYrh4eEJhRX2798ffVwIEXHttdfidDo555xzKC8vJxgM8tJLL7F//35uvPFGysvLY91EIeZcIBCIjiIYz2QyRQvyALz33nsAnHnmmUCkOEM4HJ50aGk4HEbTNDRNm9Y+R7W0tPAv//IvZGVl8b3vfY+0tLQZfndCJBaZQyTELLj44osJh8M888wz0fsCgQDPP/88y5YtIz8/P4atEyK+fOc732HNmjVs2bKFn/3sZzz66KM4HA7uv/9+HnvssVg3T4hZEwqFGBoaOu7+/fv3U1dXx5IlS076/KNHj/L0009z7rnnRntzsrKycDgcvPnmmxOGans8Ht5++23KyspOOkx7sn1CZETDl7/8ZVRV5fvf/75UlhMpRXqIhJgFy5Yt45JLLuGXv/wl/f39FBcX88ILL9De3s69994b6+YJEVc++9nP8tnPfjbWzRDitD3xxBO43e7o8Oi3336bzs5OIFJVTtd1brzxRi655BIqKyuxWq3U1dXxt7/9Dbvdzsc//vEJ+/vYxz7GJZdcQl5eHm1tbTz99NM4nU6+/OUvR7cxGAzceuutPPjgg3zmM5/hiiuuQNM0nnvuObq6uvi3f/u3ae8T4Ctf+Qqtra3cdttt7Nmzhz179kQfy8rKmlART4hko+i6rse6EUIkA7/fz0MPPcSLL76I2+2mqqqKu+66i/Xr18e6aUIIIebAzTffTHt7+6SP/eEPfyAnJ4f777+fHTt20N7ejt/vJycnh3Xr1vHxj3+cwsLCCc/5j//4D/bs2UNfXx8ZGRmcd955fPKTnyQrK+u4/b/00kv8+c9/5ujRowSDQaqrq7n11lu5+OKLZ7TP0UVYJ7N69Wp++tOfTvGnIkTikUAkhBBCCCGESFkyh0gIIYQQQgiRsiQQCSGEEEIIIVKWBCIhhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUJYFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWf8/yM5KEYtoypYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "cd627fef", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm375nt2pW06r03y3KRey8Ug+mmY0w1JUAIAUIIfPCGhBQgpFDyhpDQQg2BvKGG3o2xce9Vlmyr967t5/tjvWtVa2VL2qK5r0sXeHbKmTPt/M7TJCGEQEFBQUFBQUFBQUFBYQwi+7sBCgoKCgoKCgoKCgoK/kIRRAoKCgoKCgoKCgoKYxZFECkoKCgoKCgoKCgojFkUQaSgoKCgoKCgoKCgMGZRBJGCgoKCgoKCgoKCwphFEUQKCgoKCgoKCgoKCmMWRRApKCgoKCgoKCgoKIxZFEGkoKCgoKCgoKCgoDBmUQSRgoKCgoKCgoKCgsKYRRFECgoKCiFAZmYmmZmZ/m7GiPGLX/wCSZL48ssvfVr/mmuuQZIkysrKRrRdA1FWVoYkSVxzzTV+OX6w8cILLyBJEi+88IK/mzJkRvNaS5LE4sWLR/w4CgpjDUUQKYwpJEka9M/XAZeCwlhnrA/OAvX8Ozs7KSgoQKVS8e233/a7znfffYdarSYnJ4e2trZRbqHCQIT6xIaCQqCi9ncDFBT8wQMPPDDgb8rHSCEY+eyzz/zdhIDioYce4p577iElJcXfTRl1wsLCeOmll5g3bx5XXXUVW7ZswWQyeX9vb2/nyiuvBOCll14iPDzcX031cv755zN79mySkpL83ZQhk5KSwq5du4iMjBzxY+3atYuwsLARP46CwlhDEUQKY5Jf/OIX/m6CgsKwkpOT4+8mBBRJSUlBObgeLmbOnMl9993HL3/5S3784x/z7LPPen+7/fbbKSkp4f/9v//H3Llz/djKo0RGRo6KoBgJNBoN48aNG5VjjdZxFBTGGorLnILCAJSWlmI2m4mOjubgwYM9fuvo6KCwsBCVStXDxc4Tt3DgwAH++Mc/Mm7cOPR6Pampqdxxxx20trb2e6wNGzZw4YUXEh8fj06nIyMjg1tuuYWqqqo+69bU1HDXXXdRUFCA0WjEbDZTUFDANddcw4EDB7zrDeaT35+7T/c4jVdffZVZs2ZhMpl6WM06Ozt56KGHKC4uxmg0YjKZmDNnDq+99tqxO7QXHteQ9vZ27rjjDtLS0jAYDBQXF/PWW28B4HA4+M1vfkNeXh56vZ6cnBz+/Oc/99mXzWbjz3/+M2eeeSYZGRnodDqio6M59dRT+eCDD455/JaWFm699VZSUlLQ6/WMHz+eJ554AiGEz+eyePFiJEnCarVy//33k5WVhU6nIycnh1/+8pfYbLY+23j6v7q6muuvv56UlBRUKlWP6/Wvf/2LhQsXEhkZicFgYOLEiTz00ENYrdYBz6c/XnvtNU466STMZjN6vZ7CwkJ+/etf97sfgN27d7Ny5UoyMzPR6XTEx8ezYMECnnrqKeDovQXw1Vdf9XA57T3ZsHbtWi666CISExPRarWkpaXxgx/8gMrKyn6PvWHDBpYuXUp4eDgRERGceuqpfPfdd/2ueyz6iyHqHutRVlbGZZddRmxsLHq9nunTp/Pee+/5tO+hnL/nuEM51lCv10Dcf//9zJgxg+eee877TL399ts8++yzTJ06dUgTQ3v37uWee+5h+vTpxMXFed9TN954I+Xl5T3WtdlszJgxA0mSeOedd/rs66qrrkKSJH71q195lw30vtq6dSvLly/33otxcXFMnTqV22+/HbvdPmi7u1/z3bt3s2zZMqKjozEajcyfP5+PP/643+2sVisPP/wwEydOJCwsjIiICBYsWMC//vWvYx6jO93vwaeffpqJEyei1+tJSEjgxhtvpKWlxbvul19+iSRJHDx4kIMHD/a4p7rvd7D39ptvvsnMmTMJCwsjOjqayy67jIqKin7Pcd26dZx22ml9nrWhxuspKIQEQkFhDAGIodz2b7zxhgDE3Llzhd1u9y6/6qqrBCB+8Ytf9Fj/6quvFoA499xzhdlsFjfeeKO4++67xeTJkwUgpk2bJrq6unps8+677wqtVis0Go1Yvny5uOeee8SSJUsEIJKTk8WBAwe863Z0dIicnBwBiCVLloif/OQn4s477xQXXnihMJvN4t133/Wu+/zzzwtAPP/88wP2xaJFi3ose+CBBwQgzj77bKHT6cRFF10kfvazn4mbbrpJCCFEU1OTmDJligDE1KlTxa233ipuueUWb5vuu+8+n/s2IyNDJCcni9mzZ4v8/Hzxwx/+UNxwww3CZDIJWZbFp59+Ki644AKRkpIirr/+evHDH/5QxMfHC0D885//7LGvqqoqIcuymD9/vrjuuuvEPffcI66++moRHR0tAPH3v/+93+MnJSWJ6dOni9zcXHHnnXeKW2+9VSQlJQlA3HLLLT6fy6JFi7zXPSkpSfzoRz8Sd955p7dfzj77bOFyuXpsA4iJEyeKjIwMUVRUJG699VZx2223if/+979CCCHuvfdeAYjY2Fhx0003ibvuuksUFRV5r5vVau1zPhkZGX3adu211wpApKamipUrV4o777xTzJ07VwBi8eLFPe5rIYR47733hMFgELIsizPPPFPcc8894qabbhJz5swRmZmZQgghNm3a5L1XMjIyxAMPPOD9++KLL7z7evbZZ4VKpRJhYWHisssuEz/96U/FsmXLhCzLIikpSRw8eLDHsb/99lthMBiESqUSF198sbj33nvFGWecIbRarVi6dKkAeuz/WHiexdLSUu+y0tJS73nHxcWJWbNmidtvv11cddVVQqfTCVmWxeeffz7ovn05/+M91lCv12Ds3r1bhIWFibi4OLFlyxYRFxcnDAaD2Llz55D289BDD4nIyEixbNky8aMf/Uj85Cc/EUuXLhWSJInExERRXl7eY/2SkhIREREhoqOjxaFDh7zLn3vuOQGIU045RTidTu/y/t5XW7ZsEXq9XhgMBnHppZeKe+65R9xyyy3itNNOExqNRrS1tQ3abs91WLhwoTCbzWLBggXe94NerxeyLPd5n1itVu8zPW7cOHHXXXeJW265xfv+uffee/s9xtVXX91juecevPjii0VERIRYsWKFuPPOO73v0JNOOqnHPh544AERGRkpIiMje9xT//nPf7zrHeu9ffHFFwudTicuvvhicdddd4kFCxZ4z8FisfTY5quvvhI6nU6o1WpxySWXiHvvvdf73j/jjDOG9KwpKIQCiiBSGFN4BFH3j033v4ceeqjPNjfffLMAxD333COEEOKFF17wfsy6f9CFOPoBjImJEWVlZd7lTqdTXHDBBQIQDz74oHd5W1ubiI6OFrIsi6+//rrHvh5++GGv8PHwzjvvCEDcfvvtfdpptVpFa2ur998nIojCwsLExo0b+2zjOb9HHnmkx/Kuri5x+umnC0mSxKZNm/o9Xm8yMjK8YqH7x/rrr78WgIiKihLTp08XTU1N3t9KSkqERqMRxcXFPfZlsVjE4cOH+xyjublZFBUViaioKNHZ2dnv8efNm9fj+A0NDSI7O1sA4quvvvLpXDyDp7y8PNHY2Ohd3tXVJWbPni0A8eKLL/bYxnMvXnnllX0GuatXrxaASEtLE1VVVd7ldrtdnH322QIQv/nNb/qcT29B5LkHzj///D7n77nWjz32mHdZXV2diIiIEBqNRnz55Zd9zrN3H/d3D3nYs2eP0Gg0Iicnp89g+dNPPxWyLItly5Z5l7lcLlFQUCAA8dZbb/VY/7HHHvP213AIov4mMz788EMBiDPOOMOn/Qtx7PM/nmMN9Xr5yp///GcBCJ1OJwDxxBNPDHkf5eXlfQbVQgjx0UcfCVmWvZMm3Xn99dcFIObPny8cDofYuXOnCAsLE/Hx8T3uayH6f1/deeed/d4PQgjR2NjY5/3bH92vw1133dXjt3Xr1gm1Wi3MZrNoaWnxLv/tb3/rvT7dn82amhrve+Pbb7/tc4yBBFFaWloP8W+3271iZe3atT22GWhiw8Ox3tvh4eFi69atPX5bvny5AMTrr7/uXeZ0OkVubq4AvBMwHp566qkhP2sKCqGAIogUxhSeF/1Af5GRkX226erqEpMnTxaSJIknn3xSGI1GERcXJyorK/us6/kAdhc9HkpKSoQsy95ZdiGEePnllwUgli9f3md9u90uMjMzBeD9mHoEUe8Zyv44EUHUn+Cqr68XKpVKTJ8+vd/9bd68WQDipz/96aBtE+KoINm/f3+f37KysgQgPvvssz6/LV68WKjVauFwOHw6zh/+8Id+xY3n+L2FqBBH++6aa67x6RgeQdRb9AghxBdffOGd3e8OILRaraipqemzzfXXXy8A8fTTT/f5bc+ePUKWZZGVldXnfHoPpIqLi4Vare4hKj04HA4RExMjZsyY4V32+9//XgDitttuO9bp9jiHgQTB7bffLgDx3nvv9fv7smXLhEql8or4VatWeWfy+2urx9o2HIIoIyOj3/snPT1dxMTE+LR/IXwTREM51lCvl6+4XC7vu2T27Nl9rJUnysSJE/vcjx5+8IMfCED85Cc/ERMmTBCSJImPPvqoz3rHEkT9re8rnusQGRnZY8LIg+c+eeGFF7zLcnNzhSRJYteuXX3Wf+aZZwQgrr322j7HGEgQ9Weh9ljKnnzyyR7LT0QQ9Weh//zzz7397+Gbb77pY6Hy4HQ6RX5+viKIFMYcSlIFhTGJGEJ8iF6v5/XXX2f69On86Ec/QpIk3nzzzWMGbC9atKjPsuzsbNLS0igrK6O5uRmz2czGjRsBOPnkk/usr1arWbhwIWVlZWzatIn09HQWLVpESkoKDz/8MBs3buTMM89k3rx5FBcXo1KpfD6nwZg5c2afZevWrcPpdA4YJ+Hx59+1a5fPxzGbzf0mA0hOTqa0tJRp06b1+S0lJQWHw0F1dXWPDGI7duzg0Ucf5euvv6aqqgqLxdJju/786NVqdb9B5R4f/U2bNvl8LtD/dZ8/fz4qlarffWVmZhIfH99n+bHui/z8fFJTUyktLaWlpWXAQPTOzk62bNlCbGwsjz32WL/r6HS6HtdrzZo1AJxxxhn9rj8UPHE/X331FevWrevze21tLU6nk7179zJt2jTvOffXhyqVivnz51NSUnLC7QIGfF7S0tKOK15pOI51PNfLV1544QVvLNWWLVvYt28f+fn5A67jYfHixd5nQQjBK6+8wgsvvMCWLVtoamrC6XR619Vqtf0e+7HHHmP16tX84Q9/AODee+/ltNNO86ndl156KY8//jjLli3joosu4tRTT2XevHnHlUBk6tSp/WbTW7x4Mf/4xz/YtGkTV199NW1tbezfv5+UlJR+Exh4nsmhvBumT5/eZ1laWhoATU1NPu9nuI7jafv8+fP7rC/LMnPnzmXv3r3D1i4FhWBAEUQKCj6Qn5/PpEmTWL16NePHjx/0g56QkNDv8sTERA4ePEhLSwtms9kbVDuQuPIsb25uBiAiIoI1a9bwwAMP8M477/DRRx8BEBsbyy233ML999+PRqM5nlPs087eNDQ0AG5h1N8A10N7e7vPxxloMK9Wqwf83fNb94DqNWvWcPLJJ+NwODjllFM499xziYiIQJZlNm/ezNtvv91vQHpsbGy/g1XP+XcPevaF/q67Wq0mNjaW2traAY/TG1/ui0OHDtHc3DxgHzY1NSGEoK6ujl/+8pc+td9znw1HqmrP/fLoo48ecz3P/eI552M9O8OF2Wzud7larcblcg3bcYZyrOO5Xr5QVlbGj3/8Y8xmMw888AB33HEHV111Fd9++22Pe/+FF17gq6++6rO9RxDdeeedPPbYYyQlJXH66aeTkpKCwWDwbts78YwHvV7PWWedxbZt21Cr1fzwhz/0ue0zZ87km2++4Te/+Q1vvvkmL730EgAFBQU88MADLF++3Od9DXZfee6/ob6TfaG/e8DzHusuKk8UX48z2LM20HIFhVBGEUQKCj7w8MMPs3r1amJjY9mxYwcPPfQQ991334Dr19TUUFBQ0Gd5dXU1cHSg7/mvZ3lvPFnmug96U1NTefbZZxFCsHPnTj7//HP+93//lwcffBCXy+XN3CTL7iSSDoejz34H+5h7Mmh1x9OGO+64gz/+8Y/H3H60+fWvf01XVxdffPFFnwxMDz30EG+//Xa/29XX1+N0OvuIot7XyVdqampIT0/vsczhcFBfX09ERESf9fvr5+7Hra6u7nc2vL/7YqB9TJkyxWt9GQzPgKqiooKJEyf6tM1gx29paen33Adav6ampt/fB3pGQoXjuV6D4XK5uPLKK2lra+PVV19l+fLlrFu3jldffZWHHnqI+++/37vusTKK1dbW8sQTTzBhwgRWr17dx9JyrAyTq1at4tFHHyU2Npb6+npWrlzJhx9+OOC935s5c+bw3nvvYbVa2bBhAx9++CFPPvkkl19+OXFxcZx66qk+7Wew++pE3snBhud5HKhPBlquoBDKKGm3FRQGYfXq1fz85z+noKCA7du3e2cnV61aNeA2/c20HjhwgMOHD5OZmekdeE6ZMgXofzDicDj45ptvALe7R28kSaKoqIgf/ehHfPLJJwDe1LoAUVFRABw+fLjPtuvXrx+w7QMxc+ZMZFn2timQ2L9/P9HR0X3EEPR/LTw4HA5Wr17dZ7nneniuj6/0d6xVq1bhdDqHtK9j3Rf79++nvLycrKysAa0PACaTiaKiInbs2EFjY6NPx509ezbAgKnKeyPL8oAz3J59+Xq/eO7x/vrQ6XQe83nzF8c6/6FyPNdrMH73u9+xatUqLrvsMq815X//939JSUnhwQcf9Nnt68CBA7hcLm+K5u6Ul5f3SPffnYaGBpYvX45Go+Hzzz9nxYoVfPzxxzzyyCNDPhedTsfcuXN58MEHeeKJJwAGnOjoj40bN9LW1tZnee9nPTw8nJycHCoqKti3b1+f9b/44gug/3fycKBSqYbVatQfnnPt75lyuVz9vhMVFEIdRRApKByDpqYmli9fjkql4p///CcJCQm8/vrrqNVqLr/88gEHLo8//ngPFxKXy8VPf/pTXC4X1157rXe5pybGa6+95o3f8PDYY49RWlrKqaee6rU67Nixo9/ZO8+y7hXMp0+fjizLvPrqq3R2dnqXNzY2cvfddw+5L+Lj41mxYgXr16/nV7/6Vb8f7ZKSEkpLS4e87xMlMzOTxsZGtm7d2mP5s88+63UrHIh77723hztdY2Mjv/71rwF6XCtf+NWvftXDV99isXDvvfcOeV8rV64E3Javuro673Kn08ldd92Fy+XiuuuuG3Q/d955JzabjZUrV/ZrFWxqauphjbj66quJiIjgqaee4uuvv+6zfu96MzExMf0KboBbb70VjUbDHXfc0W88gs1m6yGW5s6dS0FBAV9//XWfge6f//znYYsfGk6Odf7Hw1Cv17HYvHkzDzzwACkpKfzlL3/xLjebzTz33HM4HA6uvPJKn2obeepbecS9h/b2dm644YZ+rdDgvufLy8v505/+xMSJE3nqqafIzc3lf/7nf3wadK9evZqurq4+y/t73w1GS0sLDz74YI9l69ev55VXXiEyMpLzzz/fu3zlypUIIfjpT3/a43zr6+u9FnjPMzrcxMTEUFdX1+95DxeeOKwvvviiz+TH3/72NyV+SGFMorjMKYxJjlWQcNmyZRQXFwPuj96hQ4d44oknvMsmT57MH/7wB2699VauueaafgsPehIdXHrppURGRvLRRx+xZcsWpk2b1kOMmEwmnnvuOS6++GIWLVrExRdfTHp6Ohs2bODjjz8mMTGRp59+2rv+J598wk9/+lPmzJlDfn4+8fHxlJeX8/bbbyPLMj/96U+96yYlJbFixQpeeukliouLOeuss2htbeW///0vCxcuHHLCAHAPTPft28fPf/5zXnrpJebPn09CQgKVlZXs2rWLdevW8dprr5GVlTXkfZ8It99+Ox999BHz58/nkksuITIykvXr17Nq1Souuugi3nzzzX63S0pKwmq1MmHCBM4991zsdjtvvvkmVVVV3HLLLSxcuHBI7SgsLKSoqIiLLroIjUbD22+/TUlJCWeddRZXXnmlz/uZO3cud999N7/73e+YMGECF110EUajkQ8++IDt27czf/78Htd6IFauXMmGDRv4y1/+Qk5ODqeffjrp6ek0NjZSWlrK119/zbXXXstf//pXwB1T9eqrr3LRRRdx0kknccYZZzBp0iRaW1vZunUrhw8f7iF4TznlFP75z39yzjnnMHXqVDQaDQsXLmThwoWMGzeO5557jpUrV1JUVMTSpUvJz8/Hbrdz6NAhvvnmG+Li4ti9ezfgtng+++yzLFmyhAsvvJALLriA3NxcNm/ezGeffcbSpUv58MMPh3Q9Rppjnf/xMNTrNRAWi4UrrrgCu93OCy+84LUWezjttNO4+eab+ctf/sJ9993H73//+2PuLzExkcsuu4x//vOfFBcXc9ppp9HS0sInn3yCXq+nuLiYzZs399jmscce49133+XCCy/kpptuAtzWl9dff505c+awfPlyNm/e3Kdt3fnd737H559/zoIFC8jKysJkMrFjxw4++OADoqKiuPHGG4/Z7u4sXLiQZ555hrVr1zJv3jyqqqp4/fXXcblcPP300z3cOu+66y4++OAD3n77bSZPnsyZZ55JZ2cnb7zxBrW1tdx99939JiQYDk455RTWrVvH0qVLWbhwITqdjsmTJ3POOecM2zFkWeaZZ55h6dKlnHvuuVx44YXk5OSwdetWPvnkE8444ww++OADr9u1gsKYwJ8p7hQURhsGSbtNt7SvTzzxhAB3sc3+OP/88wUg/vjHP3qXedKslpSUiN///veioKBA6HQ6kZycLH784x/3qHXRne+//14sW7ZMxMbGCo1GI9LS0sRNN90kKioqeqy3c+dOcccdd4hp06aJ2NhYodVqRUZGhrjwwgt71MXwYLFYxF133SVSUlK8NWF++9vfCrvdfsz0rcdKt2q1WsWTTz4p5syZIyIiIoRWqxVpaWni5JNPFn/6059EfX39gNt251jpZT1prPujv3TKQrgL3M6aNUuYTCYRGRkplixZIr766qsB0497jt/c3CxuueUWkZycLLRarRg3bpx4/PHHh5Sa2NNei8Ui7rvvPpGZmSm0Wq3IysoSv/jFL/qt39Jf//fmtddeE/PmzRMmk0nodDoxfvx48etf/7pPcd/u59Mf7777rjjrrLNEXFyc0Gg0IiEhQcyYMUPcd999/aYW3r59u7jyyitFcnKy0Gg0Ij4+XixcuLBPGvCamhqxfPlyER8fL2RZFhyp8dWdrVu3iquvvlqkp6cLrVYroqKiRFFRkbjxxhv7Tau+fv16cfrppwuTySRMJpM45ZRTxOrVq326N7tzrLTbvdMjezjWfdcfxzr/EznWUK9Xbzwpz4+VPr2jo0Pk5eUJWZZ9qrfV0dEh/t//+38iJydH6HQ6kZqaKm655RZRX1/f51zWr1/vfTf1l0L88ccfF4A477zzvMv6e04/+ugjcc0114jCwkIREREhwsLCRH5+vvjRj37Uo87bseh+HXbu3Oktmm0wGMTcuXPFhx9+2O92XV1d4je/+Y0oKioSer1emEwmMW/ePPHqq68e8xjdGehdJcTRdPy9n5f29nZx0003iZSUFKFSqfrsd6jv7WPdh2vWrBGnnnpqn2fthz/8oQB8rimnoBAKSEIMIf+wgoLCMbnmmmv4xz/+QWlpqdfNRCEw8Vyf3qmGj4fFixfz1VdfDSmd+3CTmJhIZGQke/bs8VsbFBQCjbKyMrKysrj66qt54YUX/N2coGDevHmsXbuWlpYWjEajv5ujoDAqKPZQBQUFhSCnsbGR+vp6UlNT/d0UBQWFIKCzs7PfOLUXXniB1atXc9pppyliSGFMocQQKSgoKAQpLS0t/P73v+ejjz7C6XRy0UUX+btJCgoKQcChQ4eYMmUKS5YsITc3F4fDwaZNm1i1ahVms9lbSFdBYaygCCIFBQWFIKWpqYmHHnqIrKwsHnroIX7wgx/4u0kKCgpBQEJCAitWrOCrr77iiy++wGq1kpiYyLXXXst9993Xb/0zBYVQRokhUlBQUFBQUFBQUFAYsygxRAoKCgoKCgoKCgoKYxZFECkoKCgoKCgoKCgojFkUQaSgoKCgoKCgoKCgMGZRkiooKCgoKIw6Qgi6urqoqKjAZrORlpZGeHi4t5aTLCvzdQoKCgoKo4MiiBQUFBRCGCEEFouF9vZ2Ojo6aG9v9/61trbS2dlJR0cH1dXVWCwWhBB0dnZSXV1NREQEkiRRW1tLU1MTycnJ2O12Dhw4gCRJxMTE0NHRQUVFBSaTCb1eT21tLRaLBbPZjMPhoLGxEZfLhVarxWq1YrVacblcuFyuftsryzKyLKPVatHr9VitVmRZJiYmBrVaTXNzM2q1muTkZFpaWrDZbCQkJGA2mykvLwdg/PjxaDQadu/eTUREBAUFBbS2tlJRUUFhYSExMTFUVVXhdDpZsGABJpOJ0tJSUlNTGTduHBqNhra2NnJycoiNjUWr1aJSqUbzsikoKCgojCKKIFJQUFAIUDzipKmpiaamJpqbm73/39+/GxoaaGtrw2az0d7eTktLC11dXQOKDw+yLKPRaDAYDMTExCCEoL29ncjISKKiomhoaMDhcKDVatFoNHR1daHRaIiOjsZoNNLZ2UlsbCx5eXns27ePjo4O5s2bh06nY+3atajVak466SRsNhtr1qwhLS2NadOmsXv3btavX48QgqKiIqZOncq3335LTU0Ns2bNwmAw8Omnn+JwOJg7dy5Wq5Vvv/0WrVbL+PHj2bFjB62trSQkJGA0GqmoqMDpdNLZ2Yndbqe5uZmWlhasViu1tbV0dnZSXl6OWq2mrq4Oq9XKa6+9Nmj/SJKEVqslJiYGk8lEe3s74eHh5OXlodfraWhoYPLkyWRkZHj7e+HChZjNZmw2G6mpqcTHxyNJ0nDeHgoKCgoKw4SSdltBQUFhlLBardTV1Xn/amtre/zbs6yhocEreOx2e7/7MhgMREZGIoQgIyODhIQEOjo66OrqYt68eZhMJjZu3EhbVSe169swxRrJX5pC9XcttB2wkrUoiaSJMWz680FkZKbemI21w8HOVw+jDVcz8/Y89r5bSe3mFqILTCRNi2LHq4cBuOIpM06nimuWfYzLBa9/tJg5k3eRmVxDl1VLVV0UibFNhOltrNlaSE2DmfNO+q7f8/jnh4tZ83EEu/55qN/f885LoaPGQuWaBlR6GVOCgfaaLpwWF5EZRpLnxHi3nXhtFsIhuPzBf+FySqz7dAlp+XtIzjrIoT35bP9uPidd9BoGUxdrPzwdq0XPgvPewmaF9164kMj4ErKK1rF/WwZ7t+STNu579MZ6tq6eSEebgVmzZtHe3s5XX32FLMvEx8dz6NAhKisrEUJ4+78/NBoNERERAKSmppKZmYnL5UIIwcknn0xcXBwtLS1kZGRQXFxMXFwcOp1uSPeXgoKCgsLxoViIFBQUFE4Ap9NJXV0dVVVV/f5VV1d7hU9ra2uf7cPCwoiMjCQ2NpbU1FTS09PR6XScf/75pKWl8cZf3iahIJoDb9ejQUvRhZk4GqH8y0YMLg3jL03nwMfVNG3oIGNBOqknxfDdI3sAyF6aiVljRyU3IrfLRNri6JLUCKkTqVlLRHQ4Gq0al11Qs7UFl91tKXln51rKa0rQX2IlLqqNA+WJvPL+qby0dT/x0S0crIz3tl+WYfkZX/Y4p399dBILp21lbvFOZk/adUL9u+/tCu//J06NJn1RPN//aTcALQc7aDnY4f390Oe1CCH4f1kzCYvTMfWWVL58xE5LaQL6GC1qfQmrfjmR35Z+T2LmQVxOFZIkoVKpMejNjJvUTmqulgijRGy0iknz7Wi0RvLzDHS1hVM0+zmEgIjIq8iZuIW84i3UHEpl17ormX7qR5gi29j87RRqDkVQMONTWltcfPX2IrSGSqZMvIzdu3ezceNGYmNjsdvt7Ny5k+bmZj7//HM6Ozv7nLtWqyU+Pp60tDRUKhVqtZpTTjmFpKQkOjo6yMnJYdq0acTFxSkufQoKCgongGIhUlBQUBiArq4uysvLOXz4cI+/yspKKisrqaqqora2FqfT2WO7uLg4EhMTSUhIIDU1FbPZTFtbG+tf247UqSZ1aiLpU5PY9Uw5KknNpOuyaT3YQdnn9agNKtIWxFK9sYmuehvR40wkTT1qnZmwIh2Hxcnuf1cgqSQKzk+m/NsG2qssqMNU6M0a2is6QEDGyfEY4/XsPGJBKf5BDuXf1lO/vQWVTkZrUtPVaIMjXwGdWYO12W2RKr4xhzkLq1h28mocTpnahigSYxuR5b6fDJdLYsvebCblHUClElTWxhAf04Ra5RZYua/dNGAfn9zZRdiOpgEtRN2RVBLGBD3tlV1IMsRPjqJmc5O3/T1XBlOSgY4aC8IpyF+WSli8js1/K+lzrkhgiNZia3fgtLqInRBJ6rxYNj/tXnf88nQ6aiwc/LwWJLh77QEM4e3o9Baa62M4sG0Skxd+hUrlYuMXJ2G3aZl1+kcIAes+Pp20gt0kZR6ktclM+d58cos3o9XZ+HbtYiy1UaScvgZrl5Ndr8zEFX4YVcJe6g7oaN6ZSWJiIjabjU2bNlFbW4vD4aCurq7HqapUKsLCwkhNTSU7Oxu1Wo1Wq+Wss84iLS0Ng8HAuHHjiIqKGrSPFRQUFMYiiiBSUFAYkwghqKuro7S0lLKyMsrKyvoIn/r6+h7beKw4qampJCUlERcXx/89/CFal56YZDNJ+QlUf9mCLMkU35BDW1UXJe9VoglTMeHqLPa/W0FbeRdh8ToMMToadrWCrCIq14TaIFO3rRVZLTHnngL2vVNF7dYWIjPCSJ4ZxZ7/K8dld6GP0uKwOnF0ukWYIVaHJEFnnRVTioHi63PY9PR+OqotRBeEow3XUL2+cdD+iBkXQeGl6Xz/x93Y2hyExemwttr5b+nGQbetaTDz1Jtn80mYnhr10BwPhiKIuhOZaaToigw2/62EzlrroOurdDK6CA2ddVa0ERpm3lHArtcP0bC7r9WuN4nTo7G12mnc24YxUc+UH+Sy+e8ltFd2ERanQwjoqne3QR2mQq1TYWmyIWtkCi5I5cwfryImqZrD+/LY9u18Tr/iRVRqJxUlOai1VhLSytltS6L9UALaiA605nYsdWbqvp9A8info9LbqFtbhLUxktQzVuOwu9j/QR42dSV2bQX1pSra9uQTHh5OS0sL27Zto66uro/VKTY2lsTERIQQTJkyhQkTJqDX64mJiWHJkiVKnJOCgsKYRRFECgoKIUtTUxMHDhzwip7e/+0e7xEZGUlaWlqPv9f+5230hKHHgI4wEiZGg4D6HS1ojCpm3VXIzn8epHFPG7HjI0iaGcO2f5SCgMgMI/Yuh3ewLmskJJWE0yZhStKTe2Yi218uw9HlJOfMJLQRGq8oiBkXQVtlF7bWvvFDGpMac6aRuu0tAEy+LpuuRht7/1OOrJaIyg+nuaQdp/XYiQIACi5Kw9pip+yTalQ6mcgMI00l7Qhn38/CR5WbgZ7Wnmink0ZZBknC6HLRcRypso9XEAHoIjRYj/SRMUlPR5XFp+0klURUjomWsg6cNhdZpyWiDdew59+HB91WpZMx55ho3NPmtjxdkIo+SsvWZw8AEDchkuayDuztjj7baiM0hCfradjdBsD4y9KxtNo58N8q1AYVE67I5LQbP8Yc28COtnQklQtZ7Ra+tmYTTqsWQ0IjwgVVn80iIv8gpoxqOg7HU/PNNNLP/wy1wUZ7WZL7eIkVNFbbOLTWTGtbC3nhF7J9+3Y2b94MQHV1NS0tLd72GQwGwsPDSU1NZfbs2SQkJOBwODj55JOZPHmyYmFSUFAIWRRBpKCgELR4rDz79++npKSE/fv39/hrbDxqGTGZTGRlZZGVlUVmZiaZmZm8cOcbGDCiJwyNpAUJonJNdNZZsTbbiSmMIO+8FNY+utvrduVyutj/biUAcRMjaSntwNbP4FcfpcWYoPMOfmfcXkDt1iYOfl6LLlJD2qJ4Dn1Rg62t77a9iS4Ix9Jko7PWSkxhBOMuSuP7P+zG3ulEH6XF1mbH5Rj8Va4xqUmdG8vBL2px2V0kTovC3uEc0Epy+M0JPf5tO2jy/n+k08V5HZ18YdBzWDM0q1DOT9Z4/7/wsnSA4xJEHmLGhTPuknQ2/mW/11IztO0j0BhVVG9oQtbIZJwUT/nq+n5FTW9ktYQ2XIOlyYYmTMXMn4xj95uHadjVSli8Dn2UlsY9bYPuRxuuJv2kBA5/VYu1xU7GyQnETzKz7rE93nPsqLFiabJx1Z6ews3RqcNSG40xowpJgrq1ExBOmfi5W3E5ZQ7++xTiZm/DlF6Nvd2AvcWEIameF1eehSR14JKaqa9r4dqbZvLuu+9isVhoa2tj//79PSYNjEYj0dHRLFiwgJycHKxWKzNnzmTBggXExcUp1iUFBYWgRRFECgoKAY/NZmPfvn3s2rWLXbt2sXv3bnbv3s2+fftoazs62ExKSiI3N5fc3Fy+fv57wjAdETxGNGi9AzaVTvZaUBKnR6M3ayj7tAaAOfeO5+DnNVSubUAfrSU6L5zqjY247Md+Vap0Mqnz46jd0kxXvZWUOTGkLYxnze92gQBzjglLkw1Lo23Q89VFaDClGNwudcD0H+dTu7mZQ1/VIquPWJp8sAB5UIepcHQ60UVqmHx9NjtePdjHmtJb/AyErcwIR/oxyeGgSqXy/rs33YXPQAyHIAKIzDLSUtox+IqDYEzSU3R5BlueOYC1xY4mTIW90zn4hkdQ6WSEU+ByCNIXxxM/ycz6J/YCEDM+gvbyLq9V61joo7Xoo7Q0l7SDBLPvLuTw17VUfNeAIVZH/GQz5avqBrwPPKLJ5VDRtj8NQ3It2ohOmndn0rQ1j8yLP0GSoGFTARv+nUNVuQwIVGpwOtzXUwgnGl0XjY3NdFma0BkbMEU4cLlclJSUUFlZebTfjEYiIyOZNWsWU6ZMwWQykZeXx2mnnYZWq/W5/xQUFBT8gSKIFBQUAobW1lZ2797tFT0eAVRSUuJNXBAdHU1hYSGFhYV8+cxar+gJw4RK6t9SEZVrwtbhoKPKQkR6GJOuzWb9k3uxNNpImhGNPlpL6UfVAGiMauwdg1sGANIWxKE2qCj9uBpJJTHth3mUfFBJ0752VFoZ4RI+WW4AjAl67J0ObG0OEqdHk3lqAt//fjcuh0Cll3FafBdA3clemkhklolNT+13L5Dg8Bu+iZ/eyC6Yu0dFqUZNqUbT4zdfxE9/DJcg8hA7IZK4CZHsfuNwv65/PiHhTdQw5eZcmg+0e++PoeK5drJaYtZPx1H6SQ3V6xvRhqvRhKnpqPHNzU9WS0iyhNPmIirPRM4ZyWz4330IpyDrtEQcXU4Of1M3+I6AyzfXoDa4hXn9+kI04R1EFhziX7ecxfT5LrZ8L9PaLGEKF2h00FTfv+CVVBa6uppobWtCVtcTFtGOLMvs3r2bhoYG9/mrVGRnZ6PRaJgyZQpLliwhPT2dzMxMsrKyfGqvgoKCwkijCCIFBYVRRQhBTU1ND2uP5/8rKo6mWE5PT6ewsJCdH5VgJAIj4RiJQCsNXpslKtdEzLgI9r/nnsGeclMuLWXtHPjQHSsTnRdO4742n60skkpCOAWmZAPjLklj67MHsLU5SJoZjUqnotzHgWhvPDEwkuweLFd8V8/hr+uQNe5YHE8a7KESUxiBpdlGR5WFsHgdLY/kUW3CPdA/EQRMr4Qyix7Dz9af4M7cDLcgMueYiCkIp+S/VcO2P1ubnc5aK8YkPXqz1mu5Gyrdr2vawjhSZsey9ve7ES7RIx5qqKQuiMNpcVK1zi20Jl2Xze5/HXZn4zty7/qC59loiMrA6ZDILnARGS3Y9J07pXfueBcNtdIRgeTZ5wA3ldyG1V5HXV0DFlstemMTLS0tVFcfFZbJyckUFhai0+nIycnh/PPPp6CggISEBCWNuIKCwqiiCCIFBYURw2q1snPnTjZv3syWLVvYsmULW7du9cb2qNVq8vLyKCwsZOP/7fSKnjDCUQ9g7fGg0slowtTu2A2jiik357HvrXKa9rcTUxhBQrHZnW5aMGQLS3eXukkrs2mr6KT0o2o0YSpS5sVRuabep9ifY5EyN5a0BXHuAbFTEBano6vBijg+DdSDKTfl0ri3jYOfu90AfXWHGwjZBWaXkzb90WWJy06svpCH4RZE3THE6rA02Y7fUtSLjFMSiM4LZ9Nf95/wviQZDDE6OuusSCqJWXeN87rEnQjacDXJs2Mp/7YOR6eTrNMTCU8JY+tz7qQP3e9tX2h4sxC7GhAw74BM8zcq6mskomIF+RNcbFwtY7dJ6A0Cu/2ou91AOFdvQMRYEfE2Du2qYOoF4/n222+pq6vD5XK3S6/XU1hYyMKFC0lOTiY1NZULLrgAvV5/zH0rKCgoHC+KIFJQUBgWamtrvaLHI4B2796Nw+FAkiRyc3OZPHkyG9/chemIxceACVnyLTOZxqgiOj/CW3em8JJ0VDqZ7S+VAe5Z8oadLXQ1DB6j0xtJJSGr3O5IcRMjyTs3hTW/24XLLogdH4G1zUHb4b6FM4d2EJh0TRa1W5up3tCELlKDIUZLc2lH/3V0hoA2QkPeOcnsf78Sa7O930HvUEWRRn00bmZCpURGg8SHRS6cRy5XoAsiWS0x/cf51GxyJ7IYLjx9qzNryD0rmX3vVvabDXBISGDOMtLVYMPaYidxejTxEyPZ+kLpCd8b4Wlh6MLV1O9sRdbIzL57HPveqaBuWwsqrYzLKXwSjNVvFfbcrwVSmiV2JwiQYOE+GblEYtcWFUiChGRBY52E3dZXIEnfbemzzCVcdNGBPbwTbY4gOtXM3r172bdvH0IIVCoVhYWFGI1GJk+ezIUXXsjEiRNJSEhAPo7shgoKCgrdUQSRgoLCkHA4HOzdu9crfjwCyOMKYzQamTRpEpMnT+bLv67FhBkTkYNafPojbWEcHdUWGve2EZEWxsRrstj4lDuTWFicDpdT+JSkoD/UBhWOLvegf+ZPxlG5tp7yVfVoIzREZoTRsKvV5/ifgTAlG0iYYqbkfbf7VtqCOFoPd9JSduLB/3DUlU/WSBRemsHBz6ppP0bq6WOJou4CqDdqJ5i7oP5okrmAF0QAEelhdFRbcNqGwezWC1OSnoxTEtn1z4O4HGJIrmmDEZlpJCItzBsTlHNWEjWbmmmv7Bpky2MjqyViCiNoOdiJrdVO6vw4kmfF8P0fdgM9n4mB6C2MPJgsIAtoNbjF0mm7ZL7Mc9FggsLnNBjDBYcP9BQu/QmjPuhcOKIsVFdVs/immXzwwQfU1NRgsbjvc5PJxNSpU5k9ezZxcXEUFRWxZMkS1EOsh6WgoDC2UQSRgoLCgLhcLvbt28f333/PunXr+P7779myZYt3MJKWlsbkyZPZ/t5+wjETTiQGTMedfje6IJyE4ih2ve4eHBdelk5LWQeVaxqQZJBU8nHH1SCBJEkIlyBlTgyp893uagh32uWOWstxi6vuaMPVyBoZS6ONyEwjWUsS2fFK2ZAylflCVK6J3HNS2PTUfhwW3/d9+M0JxxQ/3Ultkqg3CSya/n8fDlE0koLIg8akJjLDSP2OlsFXPg7UBhVTbspl/7sVNO1vH9Z9a8JUFK3IpPTjaloOdqCP1uKyu07YZRPcmeyM8Xp32nUJt9veN3VHnjcJIcSAFqqBhJEHlRNcMggJ8mol4tolVme7n905B2TKol24nnZnn/NJGHVDCEEXHThiOyHJRlx6DFu3buXwYXdmPb1ez6RJkzAajSxZsoTzzz+f/Px8xZKkoKAwIIogUlBQ8FJRUdFD/Kxfv95buDE/P58ZM2bw/Svbjogfs7t2z3EgqyVcDoGskZl8XTaHvqyhYXcb5mwT8ZPM7Hu3Ythm28FtSZn+43wOfVFLzaYm70CwcW/rsMTsdKf4xhy6Gqzs+Xf58O74CCqtjNPmQhOmInlOLIe/rvNJJDa+lw+AzeFbsLrKBaftlCmNFexO7Hkthss6BKMjiNIWxJEwNYqN/7vvhK1+/SFrZNIWxlHxXT2OTqf3Go0EBRemYYjRsvlvJcO6X0mG6PyjEwMJU6JIXxzP+if2HpdL3UDILph2SOJQtKAmApKboahKpmvxAYRaUDrHevzXyOTEGtZBTU0Nky/O5/PPP/dmuwsLCyMpKYkLLriA2bNnk52dzcSJE5XkDQoKCoAiiBQUxixNTU2sX7++hwCqqnK7diUlJTFz5ky2v72fCKKJIOq4xQ8cibuwuUDQJ8g789QE6ne2nrA7UG+SZkaTMCWKzU+7B46J06NpPdhBZ93QC3cei7B4HYWXprP9xTKsLXbC4nRYW+wjMiBOnhVD8qwYNv7Ft4G9RwT1xldRpLODVQ1IwyuCujMagggJNIah1RM6XmS1xNQf5lG5poHKtSeWIKE/VFoZXaSGzjorOrOGCVdmsuv1Q3TWDvN9HacjIsNI9Xp3ApQpP8ihelMTVd83DrJlTwYTSlEdkNossS3FfT+fW2rHFmWhrageXCA5ZfbPPf74Pbuw0UoTpFtxRVmpq6vz1k+KjIxk0aJFFBcXExERwWWXXUZKSspxH0tBQSF4UQSRgsIYwOVysWPHDlatWsW3337L999/z759+wD3oGDGjBns//TwEfETjV4ynNDxJJWExqDC1u7AEKtj6s25bHuhlNbDnUSkh6Exqo87dfFAyBqJggvTqFrXSHNJO+GpBiLSwqhY03DCgem90UVqCIvX0bSvHVkjkX16EodX1WFtPsHg+gGQNRIuu0AfpSUyy0jNxqYB1x1IBPVmIFEku2B8tUTTHbuHlI3seBkVQXQElU4mdV4ch76qHVYLZG8SpkbRUtqBpcnmvXYjgc6sIW1+HAc+rMLlEETlmeistWJtGeb7UIKU2TG0Hu6krbwLc46JpBnR7Pn34eM6t2OJpJRmyEuswh5jQdOgJ+a7FOoXHcIRbke2qHBpnHDk1i2Z4VsNp95YRBfqAju1jdUkT45nzZo1tLe7XR1zc3PJyMigoKCAH/zgBxQVFSlWJAWFMYAiiBQUQpCuri7WrVvnFUCrV6+mubkZtVrNlClTmD17Np8/uYYIogk7gZif7hhidXTVu2epi1Zk4HIIdyyQBAnFUTTuaR32GfrITCPmbJM3vXT++anUbm2muWR44zh6k3VaItEF4Wx4ct+IHgfc7l4x4yPY8vcDCFf/r2tfRVB3+hNEict2YUzSU3R5JjteLvO5aOiJMJqCyJigp+iKTHa8WkbHMZJPDBeSLFF8Qzb1O1t9Lpp6Ikz7UT6Ne1op/fj4isj6ijnH7dq69z9ut9CMkxNoPtB+QslC+hNJC2IPoasJoyutDSSIWpeE5JJonFUJAtTtGhwmu7cU0vEKJCEEqjQnFYcrOOW2Obz99tscPnwYl8tFZGQkSUlJLFq0iOXLlzNz5kwMhhObMFJQUAg8FEGkoBAC1NfX8+2333oF0Pr167Hb7URERDBnzhz2fVSOmRgiiUZ1HNne+kPWyKh0MvZ2B+YcExOuyGTDn/fS1WAjPMWA0+4adjceJIjKMdHVYMPSZCN+spmEKVFsf7F02GOBehxWlii6IoO6rc3UbG5GpZcRTjFiM//ugwICjIl6TIl6ajY39/j5eERQf0SfvbfPMk+M12gwmoIIRvfcABKKzbRXW+iotniv6UghayQklYTT4iJhShRxEyPZ8fLBAYX0cCDJMOGqLGo2NVG7pRl9lBZDjJamkvYTPtfqtwqZl1Lq/be6VYvklLBHWVG1a4j/MoOGmZXY4juRLSqE2oVQ9zzo8Yokp3DQQiPt+iakDBvl5eV0dHSgVqtJSkri4osvZsGCBUyZMoWMjIwTOk8FBQX/owgiBYUgQwhBaWkpX3/9tVcA7d7tTpubmpqKvVzCTAxmYjEROSzWHw86s8brFlb8gxzaK7vY/24lsloiIsNIS1nHiLgi6SI1WFvsSDLMuHMclWvcKbJHmoiMMFoPuuMXMk6Op7m0g5bS4UmZfSySZ8UQlRfOjlfKjjmoPB5R1Lo5pse/M+//DnBnM0uaFcPhr+tG1J2sN6MtiMAtilIXxFG5tgHHKMQVASBB0YpMmva1jUhsUW8is4xEZho59IW7BlP3e3kkSZ0fS/LsWHcqb3H02R0uctYdKc7qlNA2GLDFdIFKELklHk2LjvqF7kxzqk41ToPDaz2qtxq9+2iZP/T+F0LQTgsis4sWqZFOR7s3q11iYiJnnnkmM2bMoKioiLlz5ypudgoKQYYiiBQUgoCKigq++OILPv/8cz7//HMOHjyIJElMnDiRxq3tmInFTCx6KWxYjyvJIKvdCRHiJkSSf0Eqax/djaPLSURaGNY2+4jFzXhImhFN5qkJrP39blx2gcakxt5+4imHByMiPYxJ12az5dkS2sqHN+HDYERmGolIP1KHZpgEUW8h1J3M+78jOj+cnLOS2fy3/dg7Rkkk4B9BpDGqKL4xl5L3K2nc2zY6B5WO1KE6NHx1qHwlPNXA5Oty2Pr8AVoPjbwo8jyjskZm1l3jKPu0mqp1Q0vGMBRy1ulRdaiRrWrs0RZkq0z8J1k0T6nBktKOZJcQKkG93djv9scjkAAsohPNJAflFYcxpGjYtm0bQghSUlJYsmQJeXl5nHLKKcyaNetETk9BQWEUUASRgkIAUl9fz5dffukVQHv27AFg0qRJNG3tJJp4zMSeUOa3gZBkyetiM+3WPOp3tnLw8xrUBhXhKQaaS0fGCtSdcZek0VLWQdX3jWjD1YTF62k+cOIuOIMRmXlkVv1L96x6eIqBtorREUPmHBPR+eEc+KBqSNsdSxQdSwR1x2MlGs7ior7iD0EE/jnX7mSfkUTj3rYRj3fz0P1eTl8cT0tZx8gLMwnM2SY6ayzY2h0kz4ohIiOM3f86PKKHzVmjR1cfhi3KgtC6CN8Vg77aSN3iQ9TbjEguEMcoSXS8AkkKdyHSu9i7fT9Rk8PYssVdXyk/P5/FixcTExPDypUryc3NPa79KygojBxKKWcFhQCgpaWFr7/+2msF6v4h7djrYCKziSIO7TYd8cPnAdeH2KIIcs5M5vs/7kE4BWWfVtPV4C5W6uhyDnvRSQ/acDXxk6MoX+UOPO+stWJrdVuBbG0ObG0jPGg8Etuhj9YSmWH0isLREkPgLu6pN2uHPFCPPntvD1HkqwjyoBWCpJnRVK1r9KtAGG2EUyDJ7nTsddtacHSNnlVMUknozVrU+tFzq/Lcy5IsEZlhxNpqdwuikYxrEvQQfNYWe4+4wtQFcdRubhqWIrPdKZltAY7GDoXF1ZP5rDuGK1bdSdynWVSOa6El0eI+917v1MhV/T9Dgwkl0SbDDiP50mTYCqdEZNGmbaJy72E+tn1MWVkZDz30EJMmTWL8+PEUFRVx6623YjabT+yEFRQUThjFQqSg4AccDgdr167lww8/5OOPP2b9+vW4XC7S0tJwHJaJJp4o4obdBa4/JlyVScPuVqq+b0QfpSU6P5zqjU0+Ffs8ESRZQmNUYWtzEJ5qoOjyTLY8W+IVYKNFwYVpWFttlH1SM6rHBXcQfHR+OPU7TiwFeeN7+UMWQh4yXXZmOC1sfnTXqNTp6Y2/LETgdp2bekseJf+ton5Hy6gf30NsUQSNe9tGNknHAGQuSUQXoR6xQsIDYYjRMvn6HHa8XEZbRRfacDX2DueIJoAAdzKYxKlRmB6xUqPWEXMojIhaPaXTGvsIo8EYqiVJinVSWV9Oo6jDEtVCU1MTsiwzbdo0kpKSWL58ORdddBFqtTJXraAw2iiCSEFhlKioqOCjjz7igw8+4JNPPqGlpYXo6Gg0jWFHBFA8BozDmgShPyIzjSTPinGnxAZS58fRXtU1aq47HsZf7s7MtPPVg8DoZv/SmtTYO92Dr8RpUdg7nDTsHt66SL6QMCWKrNMT2fDnfccVF/VR5Wbv/xc8d/NxtSHz/u/chXNHoeZQf/hTEAF+PXdw34vTfpTHgQ+q+mQSHA1ixkWgMaqo3tDknqQIc9cPGw26P/O93wejhTnHhCnJQNvD7sLR6VuiaEjvoCPat4mZJuvRSSv5FN9dAYUQOIxWajuqaNHV0yTX0tXVRWRkJNOmTaOgoIB77rmH9PT0IZ+TgoLC0FEEkYLCCGG1Wvn222/58MMP+fDDD9m2bRuSJBEhooghkRgSiCB6xAUQQNLMaDrrrLSUdhCeFkbqvFj2vVWBwzJ6FgGNUUX20mQOflGDpdFGeKoBh8XlrV00Wqh0MjNuL+DgFzVUfT9ygd6DtcEzCD+eLFzdhZAHXwWRJ14ICaLzw2ncM0pJBQbA34LIQ3RBuDvBgh++iN3vAX8KtORZMaQvjmfdY3tGvQ2GWB1qnUxbRReGGC3pixM48GHlqCb4UOtV5C1LofzbeuTXDBgbtOg71DSkdR7TetRdFHkYijgCEJKglSYaXNV0xTZR3VCNEIIJEyaQkZHBeeedx1VXXYVOpxvqaSkoKPiAIogUFIaR0tJSrwD67LPP6OjoICEhAblGTwyJRBOPVhr5D5raoMKcZaR+p9vqMfGaLJr2t3tjdEYLWS1hTNDTVtGFpJKYcFUmBz+vGZX0v72JyjV5Y6BixkXQXNrul4GnKdnAhCsz2f5yGe1DjFHqTwh151iiyCuEjhBdEE7hpels/Mv+URel3QkEQWSI1TH1llx2/fPQ6GWd64fwFANFV2Sy/aUy2itHN7MhuMWYOcvktZZG5Zlo2je6lmNwpwjPODmB7S+WIZyC8FQDHdWWUa0fBe4Yp6gcE9tecNdCSn8zhfZoK05t33b0J4q6M1SB5FTZqHPU0CjX0BpWT3t7O0ajkRkzZpCdnc1dd91FYWHfYrYKCgrHhyKIFBROAJfLxdq1a3nnnXd4++232bVrF2q1GpPDTCyJxJA47LWABkJSSai0Mo4uJ7HjI8i/II11j+1xu2KNcEHIgUhfFE/yrBjW/mG3XwP2TSkGiq/PYdsLpbQcHN2Ux72RZEiZE0vFmgaf+2QwIeShP0HUWwh1xxCjHfWYrd4EgiCCwOgLSSWRPDuGyu/qR7TQsC9EZhiZeE0Wm/9e4hdx5kFSScy6axyVaxo49FWtHxoACLdr44w7Ctj978M07GxFbVBh+tCM6JYXYzBR1J2hute1yy00uKrpjG2murESl8vFuHHjGD9+PBdccAGXXXaZUvtIQeEEUASRgsIQ6ezs5NNPP+Wdd97h3Xffpba2ltjYWDT1JuJIIpp41JJm1Ns15aZcWg93UPJ+FZJKQq2T/RIkn700iY4aCzWbmlCHqVDrVFiaRn+gqdLKxBRGULulGYCweF2PDFejTfpJ8dRta/HZGuOrCOpNwXM3H1MEAWgjNNhaR7Z+lK8EiiDyECh9Y4jVETcx0ltY1R90f2biJ5tp2NWK0zb6Sk0fpcVhdeLodJIwJQpjgp4DHw4tPf1woAlT4bC6EE5BzlnJRKQa2PR0CQCR38SANDRR5GGo1iOXyk69o5Z6qmgx1tHR0UF8fDwnnXQS48aN47bbbiM6OnrI7VBQGMsoqUwUFHygpqaG999/n7fffptPPvmErq4uCgoKMNSamc54IutjRsUK1J3wtDDyzk1hy7MlOC0uSj+uxtLsFh7CKUZVDBkT9XRUH0lzK7mtIACOTvcgxh9E5ZnIOTOZltIOrK12v4ohlVYmOj8cS6NtUEFkWzqDL577+3Ed5/TkYjIZRAyFq5l2ax7736mgbrv/MqsFInETI8k9J4UNT+4d9lTQQyU8xUB0fjgV39b7RYQA3mdGF6Eh58xkXA7XCWdEPB66T6hIMj3ieXq8e0aY7u/Uiu/qaTC7J77UehU5/4xm3zsVyIfdmedcn6X5vN/u67bbtEScUXLM9WWnhngphXhSEF2Cdm0T1bUVfPvtt7z++us88sgjLFmyhKKiIi699FKKi4uHcJYKCmMTxUKkoDAAe/bs4a233uLtt99mzZo17oQIrihiSSaOZIxS+Ki3KW5iJAB121rQmNRkLI7n0Je1o5YVqj9MSXqKb8xl24ultJT61x1NH6XFnG2kekMTABqT+riytw0XkiwhayWcFlePgrf9YVs6o8e/hyKKTk8uHlK7Yosij6R59rNfFoFlIVJpZaLyTH4Z9PeH555R6WVcNjHiKamPRfdnKXFaFM0HOvxi+e1OZJaRiVdlselv++moGh1R1B/acDXpi+I5+EUt9g5Hj/e0h6EIpHbb0YLbg4mj3jjNFsqbDlFHJS2SW5zNmjWL008/nblz53LaaacNaX8KCmMFRRApKHRj586dvPHGG7zxxhvs2LGDsLAwjJ1m4kgmlqRRSYjQG1OKwe3DLyDvvBRcTkHJe5Wj3o7uRGYaicwyet15zNlGmg/4VwwBpMyJIXF6DJue2jfqAdj9kXdeCvpoLdueLx1wnd5CyIMvgmioQigQCSRBFKhMujaLrkYb+96u8HdTkNUSU27Oo2pdA5VrhlaHZ9iRwJx19N2TflI8LaUd7oKzfiT37GQkWWLfOxUguROpdE+gMpg46i6IujNUcYTJST1VVLQdpk3fgMViIT8/n+XLl7NkyRJmz56txB0pKBxBEUQKYxohBDt27PCKoF27dhEREUFYq5kEUokmAZXkvw9GWJyOqbfkseOVMneGND8lR/DgqRsSX2wmoTiK7S+V+TVZAriD4Y1JBuq3t4B0pI1+KHDZH8YEPRqjql+xOJAQ6s5Aouh4hVDeeSlYm+3+CU4fgEAUROmL4tFHadj7lv8FCLgnHOwdTjpq/GcF6Y6skXE53HV7YidE0lHVFRAJKSZcmUnNpiZqtzSPal2z/hsECLfrbtHlmWz8yz466/q6yw4kjgYSRd0ZikCSDAJHRju7d+2mM7KZlpYWEhMTueGGG7jwwguZMGGCIo4UxjSKIFIYcwgh2LZtG2+++SZvvPEGu3fvJjIykrAWM/GkEEMCsh9FUNrCOMJTw7wFCiPSw2g93OlXIQQw8eos2qu7KP2o2r8N6UXmqQlE5Yaz6en9fu8jcAuypJkxVHxX3297fBFCHnoLohO1CCXPjsHe7gio2KFAFERxEyLRmNT+t4D0RnJnKKz6viEgLKBIMOUHuTTtb6Ps0xp/t6YH2UsTMSYY2PaPga2zo4IEEalH3uFA0YoMWg93cvjr/ksg9I4n8pWhiCOXcCJPsFJSsY8mUUdzczOxsbGsWLGCa6+9lkmTJo16TKyCgr+R/d0ABYXRYtu2bdx///2MGzeOyZMn8+STTzJr1izee+89ampqKJJmECclj7oYklQSSTOiMcS63fHaK7toLjla+6P1kP/EUFSeCVnt/jBWb2j01jXyN4YYLVF5JgAOfVnLlmdKAkIMAYSnhpG2II6w2MAroFi5piGgxFCgUre9JfDEEBAWqyNtQRzhKUPPZDYiCNjyTAmHvnRbHKPyTBhifB/EjyR1O1qp3uAuvCyrJe/7YtQReMUQQNP+dm8ac0OsjqQZ0Uiq0RUfsqSCHWHkNE+mpqaGp59+moKCAl588UWKi4tJSEjg4osvZvPmzShz5gpjBcVCpBDSHDp0iNdee42XX36Z7du3ExUVxbJly7jooos49dRTOUu/wm9t0xjV2DscSDJMuy2fw1/XUbOxyW/t6Y0uQsO02/LZ93Z5j+DgQCDv3BQMcTq2PnvA303pF5Vexmnpm7BgKNYhD1889/cTtgyFxemIGRdBxXf1gWFZ6EYgWojAPYhOmRNL/a5Wvxau7c1A91YgMOm6bDrrrOx/JzBcDT3ETYwk77xU1j+xNyBSqntImBpF2oI4Njy5F+E6+k3w4PosbUhWIg9DjjU6wvuWV/j000/51a9+xY4dO2hrayM3N5cpU6bwi1/8gvHjxx/XfhUUggFFECmEHE1NTbz55pu8/PLLfP311xgMBs477zxWrFjBaaed5lcR5CG+2EzOGcl8/8fdOK0uJJXk91gccNcdSZoRTcn77hofgVCs0oMmTIUuUkN7lQWVVkYIETCxQkgw7qI02so7qfiuf8vC8YghflKLdsnBE2ycu4ZM6vw4Nj2136+ZyvojUAWRJEtMvSWXw9/UeWtZBRIpc2IITw1j95uHA8Y6KmskJEnCaXNhStJjabH7Le1+b7q/y3LOSqLq+8Z+Y3pGG8+7X6WXmXnHOEo+qKR2c3Of9Vo/yBnSfjusbiGVtGzXcbXrv9ZX+eSTT3j00Uf59ttvsdvtLFiwgFmzZnHdddcxbty449qvgkKgoggihZDAYrHw/vvv88orr/D+++/jcDg49dRTWbFiBeeffz4XRK70dxNJmRODvdNJ7ZZmNEY1kRlhNOxu9XtF+u6EpxrIPSeFHS+X+b0OS28KLkjFEKdj89PHN/s50qQtjKO9ykLTvrYB1/FZFP2kZ9KD4RBF/k7IMRCBKoiAgO0zgKi8cExJ+gFjUfxN8Q9y6Kyzsvf/yv3dlB5ow9UUXZHJ/ncqaOuW+c3fSDLEjIug5WAn9g4H8ZPNaMJU/U6w+CqOPKLIw/GKozca/857773HSy+9xCeffIIsy5x99tlcfPHFnHXWWZjN5uPar4JCIKEIIoWgxeVy8fXXX/Pyyy/z5ptv0tLSwrRp07jiiiu49NJLuSrlNn83EX20Fkuje1Yy95xkbK2OgMrwBZAyL5bItDB2BuCAVJIltCY11lY7GpMaBD1cSgIBXaQGa4vvbjjHFEU/6f/eOBFBZEzQ01FrCdiBfUALIgAJjPH6gMnw1h9DvQdHA41RDRLY2x3oIjTY2h0BZ50EGL88nZaDnVSsrvd3U3qQvigebYSa/e+6Syx0/5Z0ZzBx1FsUeThecfTkzl/xn//8h//85z+sW7cOnU7HJZdcwjXXXMPixYuRZSU0XSE4UQSRQtBx6NAh/vGPf/D8889TWlpKVlYWV1xxBZ/+ai1GKcLfzfNiiNUx7Yd57Hi1jKZ97YNvMIpIKglZLeG0uojKMxEWr6fi28AaEIA7VsiUpGdTgFqFYsaFU3BhGhuf2t/vYKU/+hVEAwih7hyPKJLVEjN/Mo6K1fUc/iYwLQmBLojSFsSRMjeW7/+wO+Dir8A9UJ56cy57/n2Yht0DWyf9yZSbcmmv7HLX5QkwUubF0llroWlfOyqdjMshAsJ9uTtReeEUXZ7Bhj/vPaYLc3/iaCBB1J3jFUdSkoOYhXrWrVtHSUkJUVFRnHPOOfzyl78kMzPzuPapoOAvFEGkEBRYLBbefvttnnvuOT755BPCwsK49NJLufbaa/nFgscCJkVoVJ4Jc7bJm5o6Zlw4jfvaA+4DO+m6bLrqrAE5QAG3ZUi4BPpoLWq9ypuVKdCQZInY8RFDztzmFUU+CCEPx2slMibosbXbsXcERixHbwJdEGmMKrQmTUBbiOImRFK/szUgLTDgLkzqsDixNNq8z3YgknduCoZYHVufC6xkLZJKIjrP5BW8Wacn0lzS7q5NNwDdxZEvosjD8YgjIQT3fHITP//5z9myZQudnZ3MmDGDBQsW8OCDD2I0Goe8TwWF0UYRRAoBzaZNm3juued45ZVXaGpqYv78+axcuZIXV76DWlL7u3mAexZeVss4LE7iJkYSN8HMrtcPBdxH35igp6vRhsvutgpZmuwBlT3LQ8rcWKILwtn+j9KAiq/qjinFgKPL6bNVqDe2pTOGJIZgmOKIApBAF0TBROBPILjrmTXsbh0w+Yg/McTq0Js1NO1vR6WV0UdpA04IS7JE4aXp1G1rpm57C2q9CpfDdUzrZesHOUMSRR6ORxw5hYOrX1jGQw89xJ49ezCbzVx++eWceuqpnHvuuUrxV4WARRFECgFHQ0MDr776Ks899xybN28mMTGRq6++mq8f2YxRCvd38/ow5eZcWg52cOC/Vf5uyoCodDIz7ijg8Nd1Aecr35vwVAMR6caAbufEq7NwWJzsen3og/izd7hTq/9fZbHP2xyPGIoZF07y7Fh2vHIQlz1AlSXBIYhkjUzRigwqvquncU9guqUBFF6ajlqv8n8x0mOQMjeW1oMdAZXQoD9S5saStjCOdX/ag9MauM9P9plJRGYY2fTUfp/Wr3qrcEj7t9nUZFyy7XiaRpe6g4V3FfPcc89RU1NDdnY2t912GytWrCA2Nva49qmgMFIogkghIBBC8N133/HUU0/xxhtv4HQ6Oeecc1i5ciV/Oud5ZClwAjXVBhXJs2Oo+LYep81FVK6Jznor1ubACmoGiC2KpGFXC8Lltmp0VHUFpNXFlKQnvjiKAx8ErqjsjkonI8kSji7f3dA8QsiDL4LoRKxCERlhxI6PDPg+DQZBBJB9RhL1O1toPdg5+Mp+Qm1QIVwioAfw3ck+I4mazU10VAWWFQbc1ixjkoH2ii53BrjCSOp3BFY9NgCdWUNYrM5r1UqZF0vlmgaf3k2+iCObracnxvGII5fkYslvZrB27Vref/99hBBMnTqVP/zhD8ybNy9gXN4VxjaBM8pUGJO0tbXx17/+lSlTpjBv3jxWr17Ngw8+yBzHUtreUvH4uf8IGDHkaYaslkiaHo0xUQ+4K48HohgKi9NRcEEq5mx3hfb2isAUQwDaCA2mJAMqXWBc636RIP2keNRhKpxW1wmJIV84URe51oOdAS+GgokDH1QFtBgCcHQ5cVpdqMNUpJ8U704bHqCodDKmJAO6CI2/m9IvwuV+ZwKYs03utP+xOj+3qi/WZrs3lsiYpCdpejSy2n3hB/t0Ji3b5f0bCK22Z1bPg/+a2OPPF2Qh89n/20D722rm2JeyfPlyDh06xIIFC5gwYQLXXXcd5eWBlZ5dYeyhWIgU/ML27dt56qmneOmll+jo6ODss8/m5ptv5vdnPBOQs0WJ06JImhHDpqf3gyBgCqn2RqWTSZgSReUat3++zqwJSLEGgATReeE07g1cF6Tu6KO0TLw2i73/KaeltMOnbQYTQv1ZiYYjVih2fASd9VY6awMvRqw3wWIhAnfhYkOsjoadrf5uyjGJzDKSf34qW587ELjPfy+i88Np3NcWsOnhu79Lk2fHULOpKSAtcd5vkwRTfpBL1boGqjf4PiHTn9Wot5WoP4ZqORJC8LOPf8CvfvUrVq1aRVhYGFdccQVXXHEF8+fPH9K+FBSGA0UQKYwaVquVf//73zz11FOsWrWKxMRErr/+er789Ub0Upi/m9cHbbgalVamq8GGMVGPOdtE5dqGgBRCHszZRsZdks7mv5Ucd8D/aBFdEE7hJelsfGp/QCZ36A9ZLfmUetlXi1B3QTScSROm3JRL4742Dn5WM2z7HCmCSRBlnppAVG44m/7qW7yGP/H1Xg0EDLE6pt6cy65/HQroGC1wJ64ovjGH3f86RPMB3yZG/IGkkkieFUPzgXY6qi0YYnU4rc4hFdzuLo58EUUehiqOnGE2Ft41hb///e9UVlaSk5PDAw88wMUXX4xerx/SvhQUjpcA9k9RCBUqKyu5//77SUtLY8WKFdTV1fHyyy8zvnoulasbmXBurnfdSddmETchEnAH1xffmOMu8AekLogj//xU77oTrswkYUoU4M6gVnxjDjqz2/0ieXYM4y5O8647fnk6STOiATDEuD9oHveHxOnRjL88w7vuuIvSSJkTw7iL08k+I4niG93pSytW1xM3MZIJV2V6181flkragjgANGEqim/MITzVALjjdyatzPaum3t2MhknxwOg0soU35hDZJY7HWl0Qbj3OADZSxPJOi0RcLs9FN+YQ1Se2/XNnGOi+MYcr1tE9plJTLwmC4DmAx10NVgxJrg/IhHpYRTfmINa787sk74onrxzU7zHmXhNFnGTzIA7NW7xjTlow4/097xYCi442t9FV2SSMNXd32HxOopvzEEf5c5clDwrhsJL073rFl6aTtJMd397BhBhce7+TpoRRdGKDBr3tLHpr/tJXxRPyjx3gK02QkPxjTmYkt19GD/JzMSrs7z7zTsvhbRF7v5WG9z9HZHuFtOx4yOYfP3R/s45K4mMUxIAkDUSxTfmeN0Ho/Pd/e1xKck6PZHspe7+RnL3d3SBO4FHfLGZWT8dh8aowuUQZJycQM7Zyd7jTLoum9gid/2riLQwFv0pE5fFfR9adqTRsTbfu277FxOxlbnvAUejiSXbJXQWCe2Sg6TMjaXgom737OUZJE5z97ch9kh/R2uP9GG0V0gAjLskjeTZMYB7Jlu4BI173FaMhClRFF2R6V03//xUUue7+1tjUrvv2RR3f8dNjGTitUf7O/fcFNIXH7ln9Ufu2Qz3PRtTGMHkG7rds2cmkbnkSH+r3f0dlevu76hc9z0rqdz3bOaSRLLPSPJuG5lhJGacuw8jM40U35jjdZ9MPyme3HO69bcf3xGHv65j09P7ve8IcBdFLb4xx+tCG19sDoh3xKSV2agNMrnnppB7TjI5Zx7t78nXZxNTeOSeDYB3hHAJuhqs3kkczzvCQ8GFaQHzjrA02lj/+F4yT00kuiCcpJnRxIyPcN+zWvfKg70jim/MQR3m7u+0hXHknXe0vydclUn8ZHd/G5OO3LNH3AqH8o5InBpFRHoYHdUW734995rOfOSePfKdGOgdkbRsF+lX7OPU3TIxnW5xndksWFJ6VGjPqhBMqnX/W+sUnFEi6Hp+Agf/NdHnd4SqU8vOVw9y6ZmXc//99xMXF8dVV11FXFwcZ511FqWlgZskRCF0CIy8xQohyYYNG3jsscd4/fXX0el0rFy5ku2vlpKXm8mLK99BlmQsjbYesRhtlV3Y2t0zWA6Li7byTlxOt1uCtckG3VJZt1d1YW11uzA4bUfWtbt/t7bY6dAeDdRtr7Z4K7k77cK9rs29X1urnfaqLlQ6mfTF8Vjb7Fia7ex7uxzhEqTMifW6RtjaHLRXHc2O1FFnwXakDS6ne7+ede3tDtorj8YcdNZZcVjd5ypc7nU9527vdNJW3m3dehscMd4KAW3lndg73es6Oh20lXd6fkZWSRgT9ajDVDg6nbSVd2Hv8PShe7+eFOCWJhtO29H+bq/swtZ2pF+s7nU9s8qWZht0c19sr+rynuvR/j5ybVpsdFQfTafaUXO0v11297pOmwudWUP6ogSaDrR7+6Sj1oK12T0QcjmOrHukn6xt9h793Vln9bbX24cW97q2DkePzFWddVbv/SBcR/qwy90v9o6efdhVbz16rp7+PtKHKq2McImjfdhoRdVx9FzbK7qwtzvJW6cj196Edb8eZHe/yCYLqI7es6rodiS9+1wljYPyT6yo76vFfqS/ZdXR/u6otmBtdfToQ29/t9q9A53e/Q3u9nueI1ufPrRgaTrSh0fuWYfn/m539EjZ3FVn8d53wkmP/ra3O2ir6Oy2rhWXs1d/d/a6v490eFeDtce5OrqcR+/ZLs89y5H+Dpx3hPPIvzvrLViOuE8dvWcD8x0RFqujvbKLrsajVti2isB7R7SUdeC0uTBnG0lblED9zqMJDALtHeG9R52CtAVxVH7f0LMPB3hH9Ohv59H+7m7Ja6/q8lpxnNYjfehwefv7eN8RNZubsB95brThaiTJ7bYGg78jLF83Evd9I6Z6K13PTaChm9GmRQfWIyNJF1BvANuRUz98dzqqFtj/8hRyr9g06Duis8rK9ufLMLlSOafoYrqSmvjss8/Iz8/n4osv5oILLuCCCy5AlpW5fIXhR3GZUxhWnE4nb731Fo899hirVq0iMzOT2267jXfu/Aq1FJjBsx5ktcTk63M4+EVN4LttRGkxZxu9vuEqnRyQ/ux9kNyzp5Vr6gO2UOjxkLfuaLB1QVi1T9u8VxQ17O3QR2mZcnMuO14qo/VwYCcA8BBMLnPgnuEvujKTjX/ZFzTxOcGExqgieXYsBz+vCdh4ou50f/cmToui+UAHlqbAd1fOOCmBLc+UnLBbpS+JFezd3O1yr9g0pP07hJ3zHz+ZP/zhDxw6dIjx48fzi1/8gvPPPx+1WpnTVxg+FEGkMCy0tLTw7LPP8uSTT1JWVsbChQu5/fbb+d8LXgnIJAkeIjLCyDs3hS3PHBhS1jB/kzI3loQpUWz66/6AjmnykDgtirbyroArcngskmfHoDWpKft04Dic7kLIw2CCaCSEkAe1QUXClCiqvm8ImviRYBNEsloiaaY7qD6Y3hmZpyZga3d4E64EA8YEPeGphiElBfAXkkpi6s25VG9oDMiiswOhNqiYfH02+96pOKEsioMJI3s/MUhDEUdCCBb/qphPPvmEr7/+mpiYGM4880wef/xxoqJG7p2qMHZQBJHCCVFaWsqf/vQnnn/+eaxWK5dddhl7XqokQgrsF5QnY5A6TEXG4ngOflmLozOwBze6SA2mZAMNu1pBOhI0bQ/8x1dSSUxemU3D7lYOf1Pn7+b4TPKsGDRGtXumuh/6E0Me+hNFIymEgplgE0TBSsbJCdg7HFSuDZ7BetqCOGLGRbDluQNBMfEja44kshDuGLv2yq4erqyBSO9v4IlmJh1IGPUniDwM1WrUJpqRZrezfv16dDodV1xxBcuXL2fRokVD2o+CQncUQaRwXGzdupVHHnmE119/HbPZzM0338xXv96ETjL4u2mDkrkkkdjxEWx4cm/A1uXpj8xTE4gZF8HGv+wLjnZLR9xJLK6gyng1GMcSQh56C6LREEPhqQYiMoxUftfgjWUIBoJREEmyRPKcGFrLOnrEpCgMP553h0rvfpcEA5IMU2/Jo35Xa1BkevQgyTDttnzqd7RQ9smJt7u3ODqWKIKhCyOrsHDyA9P405/+RFtbG+eddx4///nPmTJlypDbqqCgCCIFnxFCsGrVKh5++GH++9//kpGRwV133cX//egzVFJg+/KGxemQ1BIdVRb0UVo0RhVt5YE/kNEY1YTF6Wgp60BWS0gqKThihXBnwYpIM7L5mZKgiAXwkHNWMh01FqrXN/b5zRcx5KEgrHpUrUKJ06NJnBrF5r+VjNoxh4NgFETgzupWvbGp3/skkEmcHo0xQUfJ+0FUtFeC4utzaD3cwYEPfYvR8zcqnYxwClwOQWSmkc46qzeRRSATnmrA3uHE0mTDmKRHOASddSdWFsEjjAYTRN0ZijiSdC4m3JzBW2+9RWlpKYWFhdx5551cd911Ae2yrxBYKKk6FAbF5XLx7rvvMn/+fBYuXMihQ4d46aWXyDk4jbdv+yrgxRBAztnJ3tS3liZbUIghgPTF8e50uRK4HCJoxBBA9YYmDn1dG1RiCNzZsTyZmrozFDEEo+8iV72+MejEUDCz+W8lQSeGwJ2NzGkLsodSwOFvaoMilsiD0+pyW8UlyDkzyZu+PtBpK+/yJoVIWxBHzlnJg2wxOBmXbCPjkm1DEjn7X57C/pd9s/QIq8y2xw6TVTqFp556iqamJm644QbmzJnDyy+/jMMR+EJUwf8oFiKFAbHb7bz22ms88sgj7Ny5k3nz5nHvvffyp7OfD/hZF0mGpJkxNJe001lnRRuuxt7hDApXIkkloY/S0lVvRaWTkVWSNzVpoKPSyaTMjeXwV7XB4dbnA5ov3fVbMo2+D373zRjdQrNqg8qdWjjwb+8+BKuFCAAJ1HpVUCVXCHYkGdIWxVOxuj5oJog0YSpcTveEliFWh6XJFhQxUZJKQhOmwtbmICxOhznHRNX3DcPybvdV7LiO5PDOX7ne530LIbjjvWv53e9+x9dff018fDwPP/wwK1asQKvVHld7FUIfxUKk0Aebzcbf//538vLyuPrqq8nOzuabb77BsDqJx855IeDFkBvJXZjuSBFJW5sjKMQQQPbpiYxfngGSe5YxWMQQgCnJQOKUKHTm4PvojLs4zVus0oNHDAGUdUQPuo99M6yjLoYAcs9KpmhF5qgfd6xTtCJzWGbQ/UFMYUSPwrTBgj5KS+KUKExJgR+v6sHe6XSLNwnGL88g+/REfzfJJ4RTeGsiRWQYSZwaBQzP9z/3ik0+WYxkrfv7t/e56ex9brpP+5YkicfOeQHtN/E8++yz5Ofns3LlSrKysrjhhhtoaWkZfCcKYw7FQqTgxWaz8cILL/Cb3/yGw4cPc/HFF3PoX02YpEh/N80ntOFqcs5IpuSDSmxtDiSVFBSzcB7UBvdMszZcjSZMHVQpqrv3dTAmUJDVErlnJ1O7tZnmAx1ATzHk4VhWIn8IIQ+mJD0qnYqWsg6/teF4CWYLUWSmEafVSXtV8DyrHszZRuInmdn/XmVQPq+eNgfbe96YoMfe6cDW5vC+84MFT1/3/tYOB8eyGHmsRN0ZisUIoF20oFtk46uvviIlJYX77ruPa665BoMheIS1wsiiCCKFPkLokksu4eDrjUEjhDyodDJFKzI58GEV7ZXBESPkIeOUBKLzw9n89P6gczXzpNWu294cVPU3BqI/IdSd3qLIn0IoFAhmQaTgX1LmxBA3wRw0abm7I8lQ/INcGve2BVUmOgBTsoHspUnseKVs2N0W+xNG/Qmi7gxFHFkNHaQti+K1114jPDycG2+8kV//+tfodEOLEVUIPRRBNIax2Ww8//zz/Pa3v+Xw4cNceumllP2zEZMUMfjGAYIp2UD26YnsePVg0PiT94chVkdYvI6Gna3+bspxkTw7huYD7XTWBp84yD8/lZpNTbSUdQwqhqCnIAoEMZS2MI62ii6aS9r93ZTjItgFkTnHRHiyIahqbHUnMtNIwpQo9v6n3N9NGTLGBD2RWcagKjbbnZjxEXTWWOhqsPm7KceNSidTdHkGBz6qHvaJyO7iaDBRBEMTRg5zF23Z1WzatInk5GSuu+46br/9dsxm8/E0VSEEUGKIxiB2u52//e1v5ObmcvPNNzN37lxmiSXUv+4IHjF0xI3Z1mbH3ulEpQ2+WzmmMILxl2cgydBVbw06MaTSy5iz3TFalWsaglIMqXQymjD3h9YXMQRHY4kCQQwBRKQbMcQEX8xWqGCI0XpjFYMVTZgKlS743qEdNRavGDJnG1Hpg+scGna20tVgQ5Jh/OUZfWIYgwGVVsbe6cTWdqSY6zCGGPsaZ+RhKHFG6mYDURuzmOVawqJFi3jwwQfJzMzkL3/5CzZb8ApUheNHsRCNIVwuF//617/4n//5H0pKSoLSIgQQNyGSlLmxbHk2+NwkuhORFkbClChK/ht8PvwA6SfFkzAlig1P7A3K9nfHVzEEYF8cRPVbgoBgtxAp+B9ZLTHttnxqNjZx6MtafzdnyMhqiZwzk6ne1ETb4U5/N+e4kVQSk6/Lpnx1PfXbhz9xga9iBwC7RP4P1vm8unpBIlrzId577z2SkpK49NJLeeSRR1CrA7+siMLwoAiiMYAQgo8++oh7772XzZs3c/bZZ1P3noVwyezvpg0NCRDuIqvxxVEc+qIm6AbiuggNCVOjgvKj3QfJnfHJ0hics2mZSxIpuyGcFpP7HooNGzwhQaCJIY1Rhb0jeIKy+yNUBFGwXwtTsoHYogjKPgmueBYP+mitu35OcH0S+iV9cTw1G5uwttr93ZQhIasl0k9KoHZzk7uY65Fv9nDjszCyu81VvggjafoEANq7arFq17Bx40YmTZrEb3/7W84888wgya6rcCIEl31ZYch89913nHTSSZxxxhmYTCa++eYbLO/rg04MJc+KYeJVWQB01lkp+6Q66MQQuAcd8ZPMaIzBOeskyZB7TjJh8ToQBK0YUulkTEuiMdh8/8gFmhiSZIlpt+aTNHPwdOAKI0vSzGim3ZqPJAfvoEkXqSEy0xSUrnNw5F0kICxeR+45yUjBeRpojGriJ5kxJQdf9jOXQ1D2SbVXDE28OovkWTHDfpz8leuHFC+09+kZ7H16xjHXEeu3A2AyxBOjOpfPPvuMqKgozj77bLKzs/n3v/99Qm1WCHyC9JWhMBg7duxg2bJlzJ07l6amJt5//310qxL45cLH/d20oXFkfNFe1UXT/rZh9U8eTTwft4bdrWz4333YO4KzcrZKq8IYr0cbrvF3U06Ixv9k822Rjeqoo4k46jsHjgMJNDHkRrD3P+U07m3zd0PGPI17244kJQi+SRoPDbta2fJMSVAnpwHQhmswxutRaQcPwg9E7B0ONvzvPhp2u2NKg1EYeWja10Z71ZFECyPw7R4JYeTh4Xu+QdOxmKeeegqbzcZFF13E2WefzapVq463uQoBjuIyF2JUVVVx//338/zzz5OVlcWvfvUrnlvxf0Fp7s04JYGwGB27/hXcrjSRmUYmXp3F5mdKaK8IrnTg3QnG+kK9aflvLuk1KhoiXHQY+p5Lb7e5wBRCoUWouMyFCvpoLZGZRmo2Nvm7KSdMsL+zTCkGiq/PYds/SoOyxlh3Ci9Np7POysHPR84ls48rnf3Y457ernQet7neCOHi+rvGc++991JaWspJJ53Eiy++SGpq6gm1VyGwUCxEIUJXVxe//vWvycvL4+233+aJJ54g80Axz1/xn6AUQwBthztpKgni2e8j3d5S1sG2F0uDWgylzIlh0spsJFVw3kvgFkOyC7KqVSQ09//q624lCnQxlHV6ott1USEgCIvXkXV6or+bccLEjIsgZU5sUD/r4A7wn7Qym5Q5w++yNVq0V3Sx7cVuYiiIL0nT/jbaykc2YUQfi5Hm2GLYV2uRJMk8+4fd5MZewQ033MC2bdvIz8/nhz/8ITU1wRlzp9AXxUIU5LhcLl577TXuvfdeqqurue2221j/h31opOBMw5u5JBGVTqbkvUp/N+WE0IarmXBVFiXvVwb9zB64B3vmLBOVa4Oz3kfLf3O9/y+73I5NYoDpoNiwjoAXQ1qTmglXZ1HyXiUtB4P7/goVC1FkppGcs5LZ/o9SbO3B6RIL7jhBSQ5uy4qH5NkxNJe0u2Naghzv/fViKba24L2/AHLPTsZhdY54Ao+9z00f1ErkwWMtGshK1B2H08KMU1384Q9/wGQy8fjjj3PllVciy4qNIZhRBFEQs3r1au644w6+//57LrjgAqr/r5MwyeTvZp0Q8cVmZLVM9frGwVcOYCQZsk5PouK7eqzNwZUpqDthcTo6661BGxpx6I2JRBrdljlzm0SXTmAdZK4g8sz9o9AyBQ+hIohCDY1Rjd6soS2ILdteJAiL1QW1MNKZNaTMieXAh1VB+z72kDg9GpfdRe2W5lE5nq+WIICCv/t+v9ee2knatp289957FBYW8qMf/Yibb775eJqoEAAocjYIKSsr49JLL2XevHk4HA6msYjW/8hBK4YyTo4nfVE8ALWbm4NaDMUWRRAWp0O44MAHVUEthlRamYnXZJG2IM7fTTkuDr0x8eg/BEwo01B46NjJIIJFDAVjIeKxQqhcm+ylieSclezvZgwLaQvimHhNVlBfG2uznQMfVHlLT8SOD676gd2pXt/oFUPpi+LJODl+RI+X/4N1Ptckqp4bQfVc3/q2JSGe7acuZtWqVXR0dHDLLbdwwQUXUFJSciLNVfATwft2GINYLBYefPBBCgsLWbVqFeOZTtTGLKKk4BywenDaXDhtwVu/w4MkQ+r8OOInm/3dlGHBaXOx61+HvJXgg4nuYqilwwASrC20sSt9YIEaLGJIbVAx6+5xRBeE+7spCr2ILghn1t3jUOuDM8NZd0o/rmb7i2X+bsawULmmgV2vH8JpC+4Meh7iJ5tJXRAX1DFFHpw256hlNhxKoVZfhFHeK+0AXLF+DdJtt5B6+WWsW7eOwsJCzj33XBobg3dydyyiuMwFCf/973+57bbbOHToEMn2bLIoRC0FZy0bgKQZ0bicIiQyGSGBWqfCYXGi0ss4LcH90ZXVEjGFEdRtG/5K46NBD8sQoHMIjCYLzgHGqMEihDyotDKx4yNo3NcetOnbuxNKLnMao5roPBP1O1tDZvCt0spIKglHV/BPWgHETTLTsLMl6GOkPN8atV6Fw+oMejc6gISpUcgqiap1Iy8kBnKji9zRvxdB4urWfpfvW9HTM8dlsxH+wcfs/vobUlNTeeKJJzjnnHOCNrnVWEKxEAU4ZWVlLFu2jLPOOoumkjam208iT5oY1GIIwBCnwxAdnIkfepN7TgrjL88ACHoxBBBdEEHuOSnoIoOv1lBvMQQwpRpmbtf3O2AINjEEbstdzebmkBBDoYa9w0HN5uaQEUMAE6/JIuu04M+eB+44nNyzk0PCuur51oy/PIPcs0PDtdEQrcUQOzqZMwdyo2sp6t+LwFc3OlmrpeO8s0m++05qDHrOO+88ioqKWL169Qm1V2HkUSxEAYrFYuH3v/89v/nNb4iNjSWqPJV4UoJ6liEy04islmja3+7vpgwrxgQ9GpOa5pLQOS9dhAZra3DFP/UnhgCMNoHRBtYES4/lwSiGwB0PUbe9BUuTzd9NGRZCyUIEoI/SEjchksPf1Pm7KcNCZKYRS5MNa0twvQ8GIhjfbcfCnGPC3u6go8Yy+MpBRFSeCZddjFqW1u4Wo4GsRB66W4t6W4i6I4QgcuMWDr37Hl1dXfzsZz/j7rvvxmgcuAi4gv9QLEQByEcffcTEiRP55S9/SYIlg9zy6SRIqUEthsDtJpdQHOXvZgwLmjCVOxBUgo4aS0iIoej8cGLGuWfBgm3AMJAYQgg6tBK1JskdS3SEYBVD2ggNybNj0JmDz3o3VtCZNSTPikEbHtxWfA8tZR0hI4bg6LstpjCCqLzgtxQ1l7S7xZDkTlCkDgv++DWAhMlRJE2PHrXjjUTiBUmSaJ1WTMQ9d6FfOJ+HH36YtLQ0nnjiiRNtrsIIoFiIAoi6ujruuOMOXnnlFaKIYxxTMErBm0kG3PVSNEY1HTUWZI2My+EKCV9nc46JvHNS2Pr8gZAZLOSek4xar2L3G4f93ZQhMZAYim8XTK+CzzPBonFPJqRfvG0UWzZCeOZFQuA5gtCzECERMtfGg8akZsKVmZT8t5LWgyNbXHO0GHdxGg6Lk/3vBnfNOw+6SA2Trs1m37sVITFBhwSyWsZld2FM1GNvd4xafa+a2+b6vG5blu/usYaqaixvvkVpyX4uvfRS/vSnP5GUlHQ8TVQYARRBFAAIIXjllVe4/fbbEUKQ2JhDEulBbxECKLwkHY1JzdbnDvi7KcOC2qDyBhfL6tAoXtgdSSUhnP49J1WCOwWrs6Z20HX3vTgVAJ2hryg1WwQ5jbAhCZCk0BBDIUjICaIQJXtpEtUbG+msDd5aPt0JhHfdcNP9m9T9WxXsTFqZjb3dwa5/je47wldhlPCEOz5o/59mD7quEIKudZtxffwRHR0d3HrrrTzyyCMhMd4LdhRB5GdKS0u5+eab+eijj0ggjQImo5X0/m7WCaMOU+HodKI1qREugb0z+F/MmjAVU27Oo+yzamo3N/u7OcNG9plJ1G9rofWw/2d+PWIIBhdEHjEE/Qui7oSCGJJkiRl35HPggyrqd/af8SgYCUVBFDs+guylSax7bA8idPIrhCQRaWHEToh01/gJERKKzWScksjGp/bhCJFvryRL2Nod3rHFaDKYMPIIIg+DCSPZLqFta0N6+z/s2rKFU045haeeeoq8vLwTbqvC8aPEEPkJp9PJn/70JyZMmMDOnTspZh4TpVkhIYaylyYy4cpMkMDW7ggJMQRg73Ry6KtaGve0+bspw4ZKK2OM06Mx+t/vvLsY6u/f3ekuhgCsXUdjaiQhmFkhiLS453pCQQyBe0a7ck0DHSEyQx/KdNRaqVzbgKQKrU9sWJyO3HOSQ6L+jQeNUY0xXh/URVt707CnjUNf1YaEGAL3t9fW7gAJJl6ZSfbS0c162FvwDEbuHWsGXccWHo71iqtIvP5GSkpKGD9+PFdffTUOh5I91F8oFiI/sGPHDq699lrWr19PqsghhyLUUugESYfF6dBFakImm5wxQY82XB0y5xOIDCR++rMS9RZDHjxWIoNdcFIZrE0B49Xbh62NCiNDKFqIQhVTioG8c1LY8UoZtjZl4BYMROWasLWFTha6qFwT1hY7nXX+mRjqz1p0LMHUn7VItvecUZAtFowfvM+2NWuYPHkyzz77LFOmTDnxxioMidCZEgkCnE4njz76KFOnTqW9vZ3pYjEFUnFIiKGYceGMvywdSYbOOmtIiYfkWTHuquAhhMaoouiKTPQBUAvqWJag3r8NJIbgqJWoSyPx39zQE0Mx48KV7HJBhM6sIWZc8Gcx6057RReb/ro/JMWQPlpL0RWZaEIkS5uH1AVxJM+K8Xczho2m/e101lmRZBh/WfqoP2MJT6weksUo9441g1qMXHo9bedfSOKtP8LhcDBjxgwuv/xyxVo0yiiCaJTYv38/ixYt4mc/+xlJtkwSd40jUgqdl5S9y4m9ywkhGBi4/71Kdr560N/NGFZUOvdH3+XnApLHEkO9OZYY8hDdKTDaBOmXhJYYQoK881K9adEVAp/Ywgjyzk0NKfcyDzqzBlNS8Lt3d8fzLlTpQ0sQ7Xz1IPvfC41Mej2QpKPjDj8wEm50+rR0Oi+7nMlz5/L6668zf/589uzZc7xNVBgiisvcCONyufjrX//KT3/6UxITE4k6kEaUFBrWBpVWJr7YTNX3jf5uyrATFqej4MI0dv3rEJbG0CiAGYj4Koh2P5rq03pLq23ot7Sx45XQErDgziAlyRJOP4vY4SZUXeZUWhnhEiGXiRKgaEUGSBI7Xi7zd1MUfMQQo2Xcxens+fdhv7mbjSRJM6Op3dwcFO/HA7+bM+g6lrIyjB9/SFlZGStWrODZZ59FlhUbxkii9O4IcvjwYU4//XR++MMfknVmCukHJoWMGAKIzDKScVJCSLrx2DsddFR3Ye8ILZO1MVFP0RWZAVG8r/S1yT6tt++OHN/3+f92hExdkd64HCIoPvYKbpw2V0iKIYD971ay65+hN+kA7gypRVdkYkwMLQuYrT00v2kA+igtGSclEJll9HdTfCL77u8GXUefmYn9qmuYMGkqL7zwAieffDKlpaWj0LqxiyKIRohXX32VCRMmsGvXLs7+88ksvGcmaik0Kpd7KrA37mlj/RN7sTaHRmFSAF2EBpVOxt7hZO9bFTitoTUAldUSLrsLp8W/5zVUMaSq1B17RSEYd/1mXA7hrUQfSuSdmxJScQBjheTZMeSdm+LvZgw71lY7LocIqcxsHpxWFy67C1kdWr6OTquLvW9VYO90otLJaCNCZyLT0mRj/RN7vRlgPWOUQCb77u8GFUayXk9Y+oUUzb+R0tJSxo8fzx133IHi2DUyhN7bzM+0tbVx9dVXs2LFChLmRnP6y3NJmx06lYjD4nVMvy0fc44JIGQKv3kYd0kaueeE3gDGQ1t5F7teP4Rw+e+F2l0M7X9seJ6NGb/cx4w7CtBFhs5HvjvWNrvffOUVjh97pxNrW+gJdABdpIYZdxRgzg6OWXlfEU7BrtcP0Vbe5e+mjBh556RQeEmav5sxrHjGIuYcE9NvyycsfpBJtADBF2uROS6XpEkryc0bx2OPPcbll19OS0vLKLRubKHEEA0j69evZ/ny5VRXVzPzpxMpOCu7x+/7ZoSG325CsZnarS1+HVSPFMYEPQ6LE2tLaA1iYsaFEzfBzJ7/lPu1Ont/lqHc2/sviNifq5wzue8zlHfVRrQmNXETI6n4ruHEG6kwqoRqDNFYIGVODHXbWtw1YkIMSSVRcH4qddubadgdOrXnwC1mVTqZzhCsaSbJEvGTIqkJwuLp/cUWJa3uORFWV76J6j3vYzAYeOihh7j22mtHq3khj2IhGgZcLhePPvooc+fOpUXbyLkvndxHDAUzkiyRc3YyEelhANRsbg4pMSSrJVLmxYIEHTWWkBNDHhxWZ8CJIejfSuRr3FDeVRsBt398qIohnVkTEIVzFY4PjVEdknGWABXfNYSkGAK3pchhcxGKU8bWFrtbDEmQMi82pNwDhUt4xVBEehg5ZycjycFxfr5Yi+JSp5A3+ybUag3XX389v/3tb3E6Fe+B4UARRCdIdXU1S5cu5e6776ZoeR7nP3sakWmhVXsC3LE1weCXezyEp4WRNi8OQ0xwmNiPh4bdbUGTbOBYYqh7LJFHDKWfFE/s+NBNR51xUgLjl2f4uxkKx8n45elkLE7wdzNGjNjxEaSf5Hv6/GBi/zsV3riUUMQQoyNtXhzhaWH+bsqIoA3XoAuyWCmfEi4YY8mcfjOp+Yu4//77mTVrFhs2bBiF1oU2isvcCfDpp59y+eWXI8syM/6naNBYoWBzmdMY1ai0Mpam0E87rdLJIZdAASBmfASRGUYOfFgFfnzSfUmikHt7lU+WIY/bnEcQFVyYSuvhzpBM/w7uAGFNmDpkKs33JtRd5owJeuydjpAsZgrudMcRaWHs+Xe5v5syMkiQvTSJlrIOGna1+rs1w06ofvt6o4/S4rS5girL3oHfzenjMteb5rp9HNryT1wuF2+++SZLly4dpdaFHoqF6DhwuVz85je/4bTTTkOXrWLpS/NDKnGCh7xzU8g7L3QTDKQtjCNlbixAyH4Q1FrZnQkqwMUQ+O4mp6rUecUQwJ5/l4esGAKwtTlCVgyNBTpqLCErhgCqvm8MXTEEINw1pdS60Bwueb59KXNjSVsQOmVBepO3LIW8c5P93Ywh4VvChTymnnI7+ohUzjzzTG6//Xas1uCafA8UFAvREGlqauLKK6/k/fffJ4tCTltbjKw69ovygz3jyb1i06D7tp45AwDdf9cNS1tPFF2EBiRCNqYmfXE8Lqeg/Js6fzclZNn34lTUmsH9m7OWb+HAw4MXqwPIvsf9kVBpZUzJBlrKOk6ojYFMRHoY0QXhHPysBhGamj3kLUSSDBmnJNC4p43WQ53+bs6IEZllpK28C5c9RG/UECd1QRyySuLQl7X+bsqIoIvUgCBoyzJ0LZt5zN+FcFH7zsuUiB0UFhby1VdfERsbO0qtCw1Cc8pjhNi4cSNTp05l9erVFDOPpeunHlMMfbBnvE9iyHrmjIARQ+FpYYy/LB1ZLWFttYekGPIEkB76sjZkxVB0QThpC/0727fvxak+rZe1fAtwVOgMRPY93/VYJ3pcBBOuzAzZ2DZwf8Qj0owhK4bGAsIFEWnGkE0JD263zglXZBIzLvTiZ7uTtjCO6ILQPMfyb+q8YiiUkix4sLbYsbbakdUS45enB13clOGt7zG89f2Av0uSTMJ5V3FK4ZlUV1d7x6oKvhO6I4lh5tlnn+WHP/whWmsYk5jNpPXRA677wZ7xPu/XI4TA/2II8GYhc2dlCT3joc6sYdLKbPb+X3lIWxYMMTqMCf6ptO6rEIKjYmgw+hNLdVub6ajqCml3pLptLdRtU+pNBDtbnzvg7yaMKLY2B5v+up/OutB21TEm6kPeAhaZZSR/WSpbnz8QUkXXPUiyBAK/Zlw9ETyiaCCLUVfBIsbvFGxrWsvChQu54YYb+Mtf/oIkhZ7IHW4UQTQIVquVW2+9lWeeeYYUsslnMiqp/xS4/QmhgaxD3YVQIGBM1NNRbaG9soudIeq6Au4Pd+3mZtqrQrfoHkDF6nq/HHe0xJCHUB+ASbIUUinuxzKhfi1D/VkE2P2vw/5uwojTXtlF7dbmkJ1octpcPcY4nrFPsHEsYaSXwpihWkRDQRl//etf6ejo4G9/+xt6vX8mSYMFxWXuGNTW1nLKKafw4osvMp7pFEpTUUkq8tb1TM/scY3zhe7ucd3xp3VIG65m8nXZJEyJ8lsbRhwJtBEahFNw8POakE2iYErS++06DiSGHPa+EwgnKoYKLkgl67RE3xsXhBhitMy5txBTisHfTVE4QUwpBubcW4ghRuvvpowoWacnkn9Bqr+bMeIkTI3CmBSag0un1eWOWXQKtEfiiEOVhClRTL4uO6jdrvtzpetaNhOcMjE7s5nATN544w0KCwvZvHmzfxoZJATvXTDCbN68mfPOOw+r1cok2zzMUkyfdQYTQd2tQ4FmEeqOrc3BjlcO0nIwdF3I0hbGkTgtmg1P7sVlD91ZWnNuOLGFEdRsbhpVj8ehxgv5wrEsQ82lHTitoV2MztHlpPSTarrqQ3/mPdTpqrdS+kk1jq7QvmfbyjtRaUO8iLAESdOjqd/ZSkdV8FkWfEXWSBRfn03V+kYOfx2asbY1m5uwNNlCwho2kMUoUUonNjKWDQ3fsGTJEj744AOmT5/ujyYGPEqWuX7497//zVVXXYWqU8tk5qKXjgbf5a3T+WwNyr1ik89CyB8WorhJZlQaieoNTaN+7NFGbVARkRZG497QLbLnQVZLuByj91j7IobUGqfPYujAw3MGTbCgEDqEepY5hdBjtN+x/iI6P5zWQ504LKEt5AESp0XhtAvqtjb7uynDQteymT0sR3aNlU22Vdj0Xdx3333cf//9fmxdYKK4zHVDCMGDDz7IRRddRHhnNNNZ3EMMge8JE9JeVQe0GAK3e5UpKbTdcQyxOtR6FY4uZ0iLIY1RRVSeO/vRaH2o9/5txqhbhpAgbUFcULs4+EpsUSSGWN3gKyoEBYZYHbFFkf5uxoijDVe769mEsKuV5x0bnR+Oxhi6FrHGvW04LE7UelXIv4tMSQZMIeQG2duNTmPXMY3FJIen8T//8z9cf/31uFyhGTpwvCiC6AgWi4Xly5fzwAMPkM14JjALldRz0LX/5SmD7ifqKz1RX/n2UB08R+LgOT5+NSTJ/TcMqI4UmCv9qJr971UOyz4DlYILUsk5K7iKsR0P8ZPM5C9LcRdhPU4OPDKHA4/4Vgto7998dwHtXkT1RDHE6EiZG4s2PHRTGHvIOSOJ6DyTv5uhMExE54eTc0boFfDujTZCQ8qcWAzRoR0vpdLJ5C1LIW6i2d9NGXFyzk6mIMRjw/a/V0npR9XA0TFSqKGSVGTVTWJq2kyee+45LrzwQtrb2/3drIBBcZkDGhsbOe+881i/fj15lmISpP4f/MEEUXchZKoY2Ce1uwjKv3ngvPJATxE0DJcqMsNI4aXpbH3hAJ21oR+boIvUIATYgrQY21DQRWqOu25UdyGU/bNju6t1F0OS/tiuFMMphrzHVElBmzJ1SEggq0LfNWesuMzJagmXU4RiNYM+jJVn9ETeucGENkKDFMJF2rsTFq9j0jXZ7Hr9UEjHVdeJSnbrNhAfH8+XX35Jdna2v5vkd0JTBg+BsrIy5s2bx65du/j8888HFEOhQltFJ+Xf1oV8itTo/HAklYS1xR7yYigs3u3KEOofK1ktjZmBFgBi9NwfFUYel2NsiCFw13iR1VJIFvjsjued63kHhyq2I0XaJZVEdH5oFqb10FlnpXx1HW0Vnf5uyogSJyXzzDPP0NzczOmnn87+/fv93SS/M6YF0caNG5kzZw42m43Vq1fz83l/HHDdY1mHervJ+WodOibD6CIHEJEWhi5Sg8shKP+2PqQ/zFqTmoKL0oifZPZ3U0ac6Pxwpt6cd0L+3b66yYHvrnJ5V20cdutQwtQoZtxegKQK7UEWQOr8WLLPDH33qrFGzplJpM6L9XczRhxZLTH99oLQLuVwBEOsjqk353ljOEOZ+MlmCi5KQ2MK4RhOAeWr6nE5BLpIDeFpYYNvE6T846q32bx5M7IsM2PGDJ577jl/N8mvhPBdfWw+/PBDLrroIsaPH897773HisQfDnkfvsYKwRCEEAyrEHLvD3LOSqa9sot971QM774DEFu7u2q6pdHm76aMOI372tjxStlxp2buTwwdeGROH7c5f8UMdadpXzsOi2tMWIjsnU53RXWFkMLW7sAe4qm3wW0NK/24mrbDoT3LDu6U6jteKaOpJPRjMWo2NtFS1oG9PfjTVPtC+uJ4TEkGNj29P2QnkX+Q+zNW161m+vTp3HTTTURHR7Ns2TJ/N8svjMkYohdeeIHrr7+eM888k/Z3VX2SJ/RHdwvRYEKou4XoWEKoT/zQsYTQCV4mjUmN0+oM6Ro84E4lXretOWRfXt05kdSvg1mFuguiwcRQ9ziikRJDCqHLWIkhUgh9xko6biSIm2gOmRTVAyFrJFRaFfaO0BeAQuMi7HQ777//Po8//ji33nqrv5s06ow5l7nHH3+ca6+9lpUrV9LxrmZIYsiXDHIeMeSvDHLd0RjV5J7rzjxmb3eEvBiKSA8j/7yUkE8lDqDSy0y/LZ+YcRFD3nYkXORgZMVQ4vRo4saACyS4B1U6c+hn0Rur6MyakI+t8RA3yUzi9Gh/N2NUiCmMYPpt+aj0oT+sMiUZyD8vhYj00HUnA3DZBfYOByqtTO65KSGdYl2yy3S+q+WGG27gRz/6EVdddZW/mzTqhP6TewQhBL/61a+4/fbbufvuuznw90ZkybfTD4ZU2v2hj9IQkWpArQ/dh7g7rYc6Wf/EXtoru/zdlBFHOAVV6xppHaJLSjCKIThSMysxdGpEHIuI9DBm/LgAfVRopy0ei+ijtcz4cUFIxyV0x5SoD6naLsei9VAnVesax4RLb3tlF+uf2EvrodB3iQRQ61VEpBpC/p0sSRL7n67nvPPO46WXXuK+++5jLDmRjQlBJITg7rvv5uc//zm/+c1v2PC7EqQRECIxfz92uuLuyFbfu77k0VlDaoc6LQWAtvIuNj61H2uIZ1lTaWXiJrgLHoZ6pjUPLrtgw8S8IZny9z822+d1VWbfC0iOhpvc/ncrKf24esSPEwi0VXSx/eUyLE2hHwM31rA02dj+ctmYmLQBKP24mv3vhnatOw/2DgeHv6kLeU8MD55vbdyEyBOqfxcMWFvtbHxqP23lR57bEDbwSpJExzsaHn30UX77299yxhlnYLONjW9RyCdVcDqd3HLLLfztb3/jiSee4J0ffz0kMdRww+Az6h4htPepmYOu6xFCuXesHXRdjxDKuWvNoOsCqFPdQih7GjiKkjjwYdWYiKWJHR9B1tIkmks7xoSvb9xPp9LhlMEy+LpDEUEAeQ/t9Hnd/BvXDWnfx8tYqfXhwWl10TwGArTHJIIxeW3H0jOcMDUKfZSWg5/V+LspI47GqCbn7GTkD6uo2dzs7+aMLEfGUtlLk1DrZfa+FdoJqj66ey133303v/vd77jkkkt48803UatDWzKE9Nk5HA6uuuoqXn/9dZ5//nleWfn+sO4/ECxCHhHUnebSjrER2HmEms3NNJW0jwkxVHvLHJIki0+m3VAQQ5IsUfyDHCpW11O+qn5UjulvUufF0nq4c8y4o4w1ItLDiEgLc5c/GAOkzo8jZU4M3/9hD8IV+t8lWS2FvMXEg73Dwcb/3YetLfS/vR5aD3eOmRjAjY8e4KmnnuLWW2/lkksu4eWXXyYsLHTdfUNWEDkcDq644gr+/e9/8/rrr/P0Ja8P276HIoRg9MSQxiBh7xLUbmn2eR/BjFqvwpRioLmkfUy8kGtvmQvAlvbBk0aEghgCEC7B7n8dHlPuY7ETInFYXYogClHC4vXETogcM4KobnszbeWd/5+99w6M46r39p+Z2V60u+q9F0vuPQppJoWQAiQkIYF0akiA0MJNuAVe+F3g8r73AqFcekmABAiBFALphRQ77t2WLVmy1Xvbvju/P0aS7dhJLFnS7M6c5y9iZmc/OnvmzPmebzOFMQTQuWFAbwnzyuS711/lYbQ9SCKc1FnR3NK3a3jqf1s9FsOXIH/ok8/w57/8mfe///2cccYZvP7669jtxmxEbMhjjEQiwU033cSf/vQnHnjgAd2MITkin7IxdPDba0/ZGLIUF51gDDkyZJZd7SNQap7qVHkrAix4fwmK3ZDTeIqeT55JzyfPxC0nKbbHeLs4yLcyhpL2Ez/7ZsZQ/V37T/i3+TSGJhk+NG6acBuArT8+SNdGc22qzETXxgG2/vig3jLmjchQjOFD43rLmF8k7WDDLNUiFbvMgqtKyDdBI95JMuu8rPpULY5MYxdaALj3fffxla98hd27d/OhD32IWMyY72PDeYgSiQQ333wzDz74IL///e/536sfmPG9js0fStXwuEnCI0la1wcZajfmRD0Z7a/00b93hETEuCdSk14hgAJ7jBpnlI6Ih+Qx/3/uD18Bpu8VgtT1DAFIikTN5YUcebmPYO/MGs8KBAL9ceXYKX5HNk2PdpiiCpusSFRelM+RV/roeK1fbzlzTiKSZOtPD5qiGfokQwfHaP5Hp2n+5uf/bSsPPfwQV111Fe9+97t55JFHDBc+ZyiDKJlM8uEPf5jf/e53/O53v+MnH/jDad/zVA2h/T9aMy1DCGbHGJIUcPoUggMJevaZ48G0OBTsASvjnWFDL0bHGkMAB0J22sJWkicpcWOUELljsXktuHLMUbJ3kqIzs8lakMH2XzTrLUUwhyy5tZL+PcO0v2r8zfIkrhwHNq+FyJDxD+2ScZXNPzpAPJR4+4sNwuS72F3gIDIYIx429t+ejKt0bx4EwJ3nINgXMbyx//0r7uenv/gpH/7wh7nwwgt54YUXDFVowTCxRslkko9+9KPcd9993Hffffzsuj+d9j3nyiskxU/dGHL2yG/pGSpY6KDhEg/KhGe+6ZOlp6xjLpHn8OSgcG0Wi64vR7bqm9gYueTU+/Qc+vqp9/+BE40hl6z5hKLqifNsusZQ5ZdOfV7rZQyBFmqz9acHTeUdGusM0bd7+O0vFKQ1/XuGGes6hTKRBiHYG2HrTw+awhiaZNIYMkvYHIBslVh0QzmFa7P0ljJvKHaZxTdXUNRojr/5t7c+zre+9S3Wr1/PzTffTCJhHMPXEKadqqp89rOf5Ze//CW//vWv+eX1D+st6aRU36mVzz74f09tA+vseXsjq3NnmJGuGInY9Iyhkes0DRm/f/uS3kpDLQCJ3SfmlJyMuTSGAA6/1EP/3pG37/cgTzSkTZ7aA2sp18Yvfqjtba+dK2Oo5Zvate5jJDjlJBdljrFx1MmRyPEv1/x/DpD/T9h/q/+U7j85B0+FxJCOG3MJ7F6r4XtovZHhlnGGW0yWb2FCzOQZOhZ7hpXIaMwU7SBAyyOqfV8RG7/XRNQEa1kyprLz14cI9prH2E9Ekuz67SHGOs3zN//jrvX87oHfcd1113HkyBGeeeYZFEXRW9ZpYwgP0X/+53/yve99jx/84Af85qZH9JZzUqazEXX2yG9rDLmyFOxemf2fKGXLVUUzMoZOhUlj6FSQXa45NYYkWcLut6ImYbz7bRYfWTn5/z4JlvLSKWPoVJhrYwhgvPTojiGUlNgw4qQzcvT8QjOEppd4nzbGEJBR4mL1Z+tw55krZM5X4UZxGGJZFrwFikPGV+HWW8a84s5zsPqzdWQUGyvv4K0Y2DfKvj8dJjpqfGNokvHuMGpS84xJsjnKU48eCaEmVBwBG+58c7yzfnrtH/nkJz/JCy+8wD333KO3nFkh7T1EP/nJT/jXf/1XvvrVr/Ln25/VW84JTNcQOlXK1jgZK57egzdXhhDMvVcIoGBNJqXn5fL6d/a9eWnPtzF+3shcGUJwojF06OuNlP/rycPVjjWGTkSiI3rUMzQdQ+jN5l9iaBjF73vT/09vxrvC7Plj29sbvgbC5rGw+MYKdv++lYH9o3rLEcwhvjI3DdeWsf7/7TV82d5JxrvN90wnY0n695rvWVYcMss/UU3bcz10rDePN7Ty3QXIFomdvzmkt5R5Ye8PuvjGN77B3XffTV5eHp/73Of0lnRapLVB9NBDD3Hbbbdxxx138OJ/bEeSUuc0YjqGEEzPGGr6ZCmHVBVlGnEHs2EMKQ21J4TNzYchNEnXpgFC/ZGTG0PTNIRgdoyhyCWrsf/t+Dyb6eYLvZUxVOWM4FWSbB1zANKbGkO1vxg6IWxuunMQUsMYAkhEk/TvHtFbxrwSHY+z8Xv7TdFg2OwMt4yb8rc22zM9SdWlhYT6IqYxDhLhJPseOmy6cutNj7STjBm36u3JeOaeTdxxxx18/vOfp7Ozk29/+9t6S5oxaRub8eyzz/LBD36Qq6++mr0/6poyhhSbzGQRLkk+vmO0bJWO6zD8ltdaTrxWkiev5YRrFXXCOFFV6u7acGrXAt4eCXeP9j0SKhZUJgOsZY43emQLRD9egF1NEgfiSDBxL1lVsRxzX9kqIykSI9edwch1a1GkY+4rqRP/fXRcJEVCaahFaahFPsZMluQ3RJ9NXAsTIXJW6Zgx5LhCB289htMbb6vHQjKmMtg0duK1Dutbjvcb72utnAiRkzjxb7UcNZQmx1AzhlQU+fgxlOUTx/vQ1xuRJn4L6U1/G20MW77ZSMs3znjTa8dLVZKqREyVmDSGZAtHx/sN+hVVnZpb1Xe+9rZzVlaOOUAIjpIcGT7lMZwKhZBOcq311K6VlOOvnRxDZ5aNyosLsPusR/9WRUK2yidce9x93/Tao3N2UpMea8TbXqtCeDCKmlRPebzfbAxnfO2pjOFsjrdF4thzrNNZI051zp7O/J7+GJ782kQseZwxNK0xVE6cs9MZ71mds2957YljaHEqVF1SgCvP/rbXvt0Yvv08TJ01Ih5KkIgk5n28T3kMp3PtKa4RI61BknFV03aaa8Rs7SPmeo2IjcVJxlXsPgtZ9RmnOIazMN5vHMN5XiP2fL+TM888k+985zs89thjpCtpaRBt376d973vfaxbt47CjBIq31UAaDGrjXc34CvTYrML12ay+rN1U59bdH05VZcUAmB1KzTe3UBmjReAvOV+1t5VP3Vt/bVl1Ly3GNAmaePdDWTVayFGOYv8NN7dMPVA1L2/hPPGw1Tf+RrVn11P490N5C7xA5BZl0Hj3Q1TzUOrLy/i/JAWMuDskXmPY5RKRYsvzpMTXOkcxTmx6V5uDXOeXTthafpkKUtuCnBGPExNIkaOmuC66BjeiQ3wikSEd8eOdrZf/sWF5N62DIAMe5J31YzjtWsnF9WZUc4uP3rtso9WUXH1AgAcXlh7hQ1vlva3FdbKLL/kaLjW4psrqbqsBNnlwuZVOOPOCnxlTgDyl2ew+pNlU9cu/FA51Zdp421xauMdmBjv3GXaGE6y4JpSaq/QxltSJBrvbiB7oTbepevyWPv5BTiztAZotVcUU/+BUs1SkxXOuKuW3KXaeAdqPDR+qQ6LU7Piqi7JZ+EHj3qC1nyhnrw67T6+fIU1H8rA5tb+1vI1DhouPhrXv/KLDeTfvFS71pPkvJVhXA5tvCuL46xpOFr9bMVt1fj+fTkAfpJcGx8joGrjvSgZ5fK49jse+nojSz9cReZ/aL+NV1W5LjxGzkThh/p4lCvDY1P3LXPE8PeEyf/nAFYHnHG5BX+upjevQmLNJUet1QvGwrxjPKIZQ3ZtzmbWaYtyzpI3jPdVJVRfoP1/yZFhGu9uIGexNoZZ9RNzdmLhq3lvEfXXHv1d1961gLwVAW28q7003t2A1W2ZGO9CFt1QMXXt6s/WUbg2UxvDMjeNdzdMVV2quCifJbdWHh3vO2ooPisbu89KZq2X1XfW4crRNk6l5+Wy/ONVU9cu/3gVZetyAXBl22m8uwFvoTYPi9+RzcpP1Uxdu+TWSiouygf0XSMWXF0y9dmTrREFazIpPCOL6suLaPjg0fFe84UF5K/Sxttf6aHx7gZs3onxfncBi288ZrzvrKXoDK3aUUaJi8a7G6YaB5ZfkMfSjxwdwxWfrKbk7BwA3PkOGu9uwJ2rheGWnpvDituqp65d9tEqys/PA8CZadPGeyIXpKgxm1WfPupVXnxzJZUXT6zJGdp4+ys8ABSszmTN54+O98IPlU/liZ3OGpHd4KPx7oapF/nUGjHBGf9ST+4ybbwDNdqcnVojLi1k4fXlR8fwc3UUrNbmrL9iYs76tDlbeXE+S24+OmdXfbqGojOzAfAWOWm8uwFnljZny96Zx7KPHR3DFbdVU3quNmfdudp4l56n/XfJ2TmsuP3otUs/XEX5Bdp4OybGO6NUG+/CM7JY9Zmj473oxgqqLtHG2+axaGNYpY13/soAa7+4YOrahg+WUf0erWrpqawRde/X5qwkMytrRCKaJGeRn7orjz4LM1kjADyF2ninwxrR+mw3vbtGTnuNOHYfkQ5rRFZ9Bqs+U0vVpYWntUbMxj5iXteIW6u08DmrdNprhGciJymV1whJknC+lk9VVRVXXXUVf/nLX0hHJFU95ug6Dejq6mLNmjVkZ2fj21JGdpWfWDDOeFcY2SqTWeNhuHWc2HgCZ5YNV459KobXV+EmEUky1hFCUiSy6ryMtAWJjsW1ZLgCx5RLP6PMhZpQGT0SQpIha0EGo0dCREZi2H1WvEVO+vaMgKotKkgw0qYZGdkNGYx2hIgMxbB5LWSUuOjfO4qaVPEWORm4YTG9SW2xKpJjDKsyY6qCgyTZSoLOhIUEEgEpgVVSOZyhPZQliRhhJPpkBRsq+ckE7bKFuCQRSCZwotIhW8jaoZLrjhOMSYxFFayySpYrTl/QQjwp4bUlcFhVesctxNwStc0DREMQHFZRLODPlxnuSRKPgtMLDq/EYIc2TTLUfuLhBOPdUWSrRKDSxciRMLHxBI6AFVe2lYEmbRy8uRKJWJKx9mPG+3CQ6Ggcu9+Kt9BJ3+R4l7pQVRg9HNS6fNdnMNoeIjIcw13goOiMLPb/pR1U8BY7kSwKI22hifH2MtYZJjw4Od5O+veNoSZUPIUOFJvM9psWU/XLIwRKLYSGkoRHklgdEt48haH2OMk4uDNlLHaJ4c4E4w15ZPsThMIS42EZq0Ul4E3QP6yQSEp4nEnsNpX+YYXOMy0UJeOMSxJDkoJNVclX43RJFqKShE9N4FFV2ifcOflSnLAkMSgrWFSVokScbkUhLMlkJBP41CSHZQu1iRi+l4JEQypjQyDLECiQGOlTiUXA4Qa3T6J/8rfJlkjsO8RoewhJlsha4GXkSIjoSOyk440KI4ePmbMT423PsOItdtK/dwQ1OTHeisRIq3ZtVn0G411hwoNRbB4LGaUuBvaPkoyreAqdKHZ5qlJa1gIvwd4Iof4oVpeCr9zNQNMYyVgSd74Dq8vCULNmAGbWegkPRgn2RrA4FfwVbgYPjpGIJHHl2rFnWBk8oF0bqPYQHY0z3h1GscsEqjwMtYwTDyVw5dhxBGxTeTj+Sk9arBHufG3sercPIVvlqXCTrPoMxru1nltWjwXfseNd4EBxKFPjnVnnJdQfJdQXweJS8Je7GTwwRiI6Md5uC0MHJ8awxktkaGK8HQr+SjeDzWMkwhPj7bMy2HSS8bbJBKqPjrcz244zy8bAvsnxdhMPJRjrDCNbJTJrvAy3BomNx3Fk2nDnOujfq42hr9xN6Xm5xMMJ9v7x8IzXiDeOt7fYiSRLx423tkZEj67J+0a1NaLIiXLseC/IYLxnYrzdFnxlLgaaRknGVNwFDqxOhaHm8ak5GxqYGO/JOTs53nla352pOVvjITIcI9gTQXHILHh/CeM9EQ491YUrx47db2OwaWIMqzzExrU5Oznew4fGiQW1OevMtk+N97FzVrZIZNZ6GW4LEhubGO88B/17Jsa7zE0ynhRrhA5rhNWtUPbOPA6/0Dsr+4h0WSPylgcYORzE6lJmvEbMxj5iXtcIl8J4V4TYePy01ohApYeh5nHi4URarBH+BS42hl6kv7+fTZs2UVNz9NAhHUgrgygYDHLeeefR3t7Ohg0buLnkTr0lzYiOu858+4uAwv96BYCW/+8MapIxWmQr8bfIkyp/VJuUo+XOU7p/bMIzkvvK28c1H7pSO+Eo+++tp3Tv5i9rnpXyL799z5vJnJs3KzjwRlr+s5GKf91wStcCtP6H1vOp6pdHTun69suL8R88xapAE09P5zvePh2v/N+0nJ6Wb7x9Ppc3meTysVH2PNDKiKfkba9Pbt/7ttekA5KihfIlouaKwzYz9ddqp7R7HmjTWYlgvlBsMsmEavhGlsfir3RTf20ZW350gPCgcRuKC44iWyVyl/jp2jSot5R54zs7vsIFF1xAXl4e//znP/F4PHpLOmXSJmQumUxy0003sWvXLoo76tPWGDoVCv/rlSljCCBDVVkVj5D/Jv10yh8NThlDp0LMLU0ZQ6fCpDF0KjR/eemUMXRK936LAgQWp8Kyj1bhKdBcxi3/2UjLf2rXt3x9zSndf9IYOhXaLy+m/XLN3T5UdQrN9KbxLp80hgAq7n77YgfZ96zn9f/eN3US/VYYxRgC7ZRx7V0LsHrSut6LQCB4E2weC2vvWkCgOn02SrPBUPM4r//3PlMaQ54CB8s+WjUVgmYW/BUeKi4qmApJNAN3Lv4K5V2LaW5u5vzzzycSSZ/G6mmz6/jXf/1XHnroIRarZ5AhBfSWM2ccawhNMiLLPGxzE5aOt1+nYwRNMleGEDBrhtAkslUmNBAlPBybMoROlekYQsCUIXRKTPNQ81hj6O2o+JdXkS0SSQni4bdvKGskYwhgrD3EgUc7TFOKeBK738rK22vYed+hqRAOgbHJKHWx6IZyNn2/iciwefrURMfiHHi0g9H2kN5S5p14OKEV81EkknHzeMciwzFCA1GtKEDo1BqlG4GB/aNs/O4+YkHz/M0AHsnHcv8ZvPT601x//fX88Y9/1FvSKZEWHqLf/OY3fOMb36BaXUSuVKS3nDnhjV6hSXKX+pFUdVrGkPfQiS+a2fIKtX5u2Qn/NlteoTf+e3Qkxr6HDtP0r6fmDQLNEHozY+jgLSc3embDGCp4+eQb+OkaQwCFjdms+GTNVBWYNzN6jGYMgbZZ6tk2pLeMeScRSdLyVBeh/vQ5TROcHqH+CC1PdZkyPLRn25DpDj0AkGDl7TUUnjG9w8Z0JxZMsO+hw0RHzGP4TxILJpBkpgo/mQXbER9LM9fwpz/9iR//+Md6yzklUt5DtGXLFj7+8Y9TQDmlTK9ZaKpS+F+vHJdHdDJDCLQqOtWXF9GiJuiRtJ9qrr1CMP0QuWnd+xR79BSfncPed5XTK5/6FJ1tr9BQlfX4XKIZhsidjIq7Xzsul2jSGAIY2DdCdDj2lt9nRGPI7reSu9hPx4Z+EhFzbRLjoQSdG0694a4g/YmNm/c3V+wyhWuy6NkxRGTIRJtkFQ6/2MtYl/m8YwDeEhe+cjdHXurVW8q84i12UX15EcHeCGMd5vntswdKKKaPO+64A6vVyq233qq3pLckpT1E/f39XHnllVjDThawPKUar84Gb+YVmmSsI8Sm7+2nR56ZMTQTr9BsG0OH/j/NADr09cZTNoYkRcJzfgF+9a03xZN5RG/lFXozpuUVglMyhia9RNPxCsHxxhBAsCdCz/ah4/5t0gBKbt9rSGMIwJXjoHBtFmrSPKEkk3gKnXiLT60YisA4eIudeArN97urSZXCtVm4chx6S5l3erYPEewxpyfYnWsnq9Z7XE8cMzDSFmTT9/abyhiapJal5Ofl8/nPf56enh695bwlKVtlLpFIcOmll/L6669TP7AWp+R++w8ZiMw671TJRLVxel4YgIGFrmldH8w/9QUq4ZzmlJnG5eqkia6qSID6NkawHJv+wuroO/Vr/Qemd3pp//vGU7/4JI9e6bm5jBwOTpWZFZiDuqtKsDoVdt53SG8p846Zq8wtuqF8KpxIYB78lR68JU4Ov2AuT4n2UtdbhL4cu7czC3FHmN3eDTQ0NPDUU09hsaRmcFrKeoi++tWv8uSTT1I20GA6YyijzEXDtWV4irSTQ+nVbdP6/HSuz/rZq2T97NTKXQOUfP2VUyqlDVDxlU1UfGXTKd+78utbWPyjXWQkEyBJb2sMVdxz6roByv7jFcr+4809cm8k795XsD/x+ilfP51rT2YMIWmJ1maqSHMc5jo0PI79fz7CXrEpNh17HzrM/odPrR2AITHpM+/ItOErdZvv75947TmzbLhy7fpq0QFPkZOGa8vIKJvegXW6Ywk7KOmp56WXXuK9732v3nLelJQ0iB577DG+9rWvUak2kCXl6y1n3hlpDbLpB02MTbMKj/TqtmkbQ6dKyddfoeTrp25MTMcQAs0YAig+M8A74uGTGwyT977n1Slj6FQNnOkYQqAZQ6eK/YnXjxpDp+JwfbNrVNh53yG6Npovr8CVa+eML9ab8iUJWghR3GSViAQQDyZMGSIK5n7muzYOaN5gc/701F5RTMnZuXrLmHfG2kNs+kHTVANjMxGQcmhcchZ/+9vfeOCBB/SWc1JSziA6cuQIN910E9kUUM4CveXMO+58LaY61HfqMcYnM4TeytiZiVdoOrzRGKr46psbR5Vf3zJlDAE0PdbNS1YnvIl3aLpeITjRGHorYyfv3lembQxNi7cwmJxZJvUMAfFwkvbX+ggPmK9Hh2KXWXBNCe488+VTmB13noMF15Sg2FPuVTznhAeitL/WR9xEZZjfiFnX/L1/Osz+v5jTMzq5t5vc65kJ+5Zs8qRiPv7xj3Po0CG95ZxASq3CiUSCG2+8EafTSQOrDFdE4e3wFDpZ/vFqfOWnFiI4XY8QvLmh9GZGz3S9QtMNkTsW2SahJiDvayf/m+YjRO5kvJnR86bG0Jt6gN7cGHIXOFh5R63pXOmTREdiHH6x11S9OSZRbDKKVSZF0zkFc4iqqihWGcWWUq/ieSEZVzn8Yi/RUROW30YLjV95Ry3uAvNtjCNDMdSEasp5D+CrcLP849WmK6giSRL16kq8Xi/r1q0jGEwtT1lKzcZvf/vbPP/88+S1V2GTzOdGH+sIsfP+QwwfGn/ba6drCMHshsi9MY9opiFyk3jy7az+ZAWunBNPzI4NkTsZJzN63s4QeqPxMx2vEMwgX+htNrvB7gi7f99qzqacEuQtD2B1mauL+STR0Ti7fttq2spTZibYE2HXb1tNaxRYXQp5ywPmy6VBqzy2+/etBLvN+dy78xys+XwdHhMahMMt4+y875Apq85ZJCsN7hW0tbXxr//6r3rLOY6UMYg2bNjAv/3bv1Gm1pIpmS+21OLQNoNDB09eXWzSAJqpV2g+Q+ROes1E2NwbQ+QmCQ/HOPzKAMG+40Om5torBKdmDE0aQMflC50Kp3jqryZVBvaPmjKm3BGwUX1ZoSlL8AKmK0ErOBGzzgFXjoPqywpxBEwYOqbCwP5R0+aQjfeEaXuhl7CZ+lAdw2Ql2cm9n5lQm+yUJxfw3e9+l5deeklvOVOkRNnt0dFRli9fTu/BAVaxDllKGTttXrC6Lay8o4YDj3XQt2tYbzmnjGSd3ktMUqb3uybD4Wldn674ytzkLvVz8G8dpgwZAy1sLBlP8jatpwxJ2fl5ZC3IYPMPmvSWogtmLrsNsOL2Gvr3jtD6TLfeUuYdSQbZIpOImvDBB2SrRNW7C+nZNsRw69tHhgiMRfZCH9WXFbLp+03Exs3lJVZVla22l0i4omzevJmKigq9JaWGh+izn/0s3d3dLGKt6YwhgFgwzqFnuhk8mF616dXYqSfAv9W1pWdnkrPQO/XfyXDYNMYQgOKQsXospjWGABJRcxpDAP27h2l91nybYYFG67Pd9O9On4Ow2URNYlpjCCAZU7F6LCgO8+17Jsld4qfsneaLCgItIujQM93EguYyhkDLJ1oZOItwOMynPvUpveUAKWAQPfXUU/z85z+neKwWl+TRW44+qFoZzkTYeC8GNRadMobezMg59oVgJkNokoF9o+z+XaveMnSj4YNl5Cz26S1DN8Y6w/TvGdFbhkAn+veMMNZpvnVvkpzFPhquK9Nbhm7s/l2r6Rp1HovFqWDzWPWWoQvxcEJrs2HSs9Bkj0xVeDGPP/44jzzyiN5y9DWIRkdH+ehHP0omuRShv7tMDxZeX07+yoDeMuaEU/UgHXyih65Nw6Y0huw+q2mLCQAgQXgoSszEPXiyF2aYtxmvAEemjeyFGXrL0I1YMEF4KGrKwgqTWF0Kdp85jYKO9f00PdKutwxdyV8ZYOH15XrL0IV8Ssm1FnLDDTfQ0tKiqxZdDaJ/+Zd/obe3l3pWmq7ENmjx06PtQUJp3HvlzYyeN/v3Y40e2SIRqHSd8O9movS8XBbdaM7DAABUaP5b55sWEzEDte8rJlBlUu+4gECVh9r3FestQzeGDo7R/ESnaU/JARbdVEHpeeYMG5skUONBtphvHwgQGogy2h7EhBkjSJLEssy1RCIRPvOZz+irRa+iCi+88ALnnXcetSyjVKrWQ4Jglji2uMKpeIVkh1ZNLLPWTd378tn4vf1ETFppxjJxMjhu0pAZR6aNeChh6uaMkiwhyZg2h8zsRRVki4SaxLTVxkALm7I4FVM2ZgatD11kKGbaddDut7Lq07Xs/eNhET5sUtppYY+6ib///e+8613v0kWDLgZRKBRi8eLF9B0cYhXnmdI7lFnnxZ5hpfP1Ab2lzAqS1XbKIXKTBlEyHMaZZSPUb86XoAAW3VhOPJxg7x8O6y1FoBNmN4gEUH9NKYpDZudvDuktRaATYi8ABWsyiQzHTJlTpqoqW5V/ovpi7Nq1i/z8/HnXoIuD7lvf+hZtbW00sMqUxhCAp9CJr8Ktt4xZYzoV55LhMMmI5hEx8wJY9I5sihqz9JahK02PtJuy3PAkvnI3C64pMW2oiEDzEC24pgRfmXHeB9Pl0DNdps8jKWrMoujMbL1l6MbUXsDES6G/3IOn0Km3DF2QJImVeWcyMjLCF7/4RV00zLtB1NzczDe/+U2KYpW4Je/bf8CgtD3Xw94/mvdUvObyIqovK9Rbhq5Y7DKKzcQFFYDIUMzURjGS1ofFrOFyAi1UUrbIKVDzVT9C/VHThk1PotgVLCYuvw1QfXkhNZcX6S1DN/b8sY2253r0lqEbyU6Fcup48MEH2bt377x/v2W+v/Czn/0sRGQqqJ/vr04JJBn8VR4Gm8ZMnUQ62DyGSZ2DU7Q+a96FDyCj1EWgxqv14DHpszDcMs5wi2jIaHbMXHYfAAnK3pnHYNMoI21BvdXoQtvz5n4fAAwfGkefrPYUYeJvD9R4GDo4ZsrefCXxWto5xHXXXcfGjRtRlPk7NJ7X44i//e1vPPLII9SyFEWad1ssJQhUe1n4wXKc2Xa9pehK385heneYsxkhaEmkZg+TcgRs+MvdpjWGANPPAcFRTD0XVPCXu3EEzF1+XrZI2P3mLL8N0LtjmL6d5t0XADiz7Sz8YDn+KnNGUCmSQuOCs9m6dSvf+9735vW7562oQiQSYdGiRQwcGGE5Z5s2dwjAlWMn2BvRW4ZuFJ+VTe/OYVOHSCz5cCWRoSj7HjqitxSBjjRcW4qqwp4HzVtQQBRVgPoPlIJk7jEQQN37i7H7bGz/RbPeUnTD7reSs8jHkX/26S1FN8y+RwTYaX8VW67Cnj17cLlc8/Kd8+Yhuvfee2lpaaGWZaY1hmSr9nebeaLbvBaKzsjGmWVuD1nTX9s5/FKv3jL0xZzLwHG0v9ZPx/p+vWUIdKZjfT8dr4l5YPY14fBLvaYvLuHMslN4RjY2rzmjiODoHnFyz2hGKsOL6erq4p577pm375wXD9HQ0BCVlZW4BgPUSyvm+utSlmUfq2Jg/6jpY4UlGS1O2MShUmbHlmFl5R017Lr/kGlzBgQawkMkAMgoc7HwQ+Vsunc/0dG43nIEeiGBJGHK/JljKT0vl8xaL1t/clBvKbrRV9vM7pad7Nmzh8rKyjn/vnnxEP3Xf/0XkUiESpMWUgBAgvZX+xhoMl99+Skk7cRDTWJqY6hgTSa5S/16y9CVZCxJ67PdhPrM6y0FyF3mx+4zb86AQMPus5K7zK+3DF0J9UZofbbb9BUXc5f6KViTqbcM/VA1Y0i2Sqb2GA40jdL+ap+pxyC3pxyr1cq99947L9835wZRR0cH3/nOd8gNlmKXzFlfHQBVSxgcaw/prUQ3/JUe1n5hgek3gK5ch+mLasRDCTpe6ycWNGdndgDFIVP73mLT9p0QHMVT5KT2vcUodvOWXY4FtTUhHjLvmgBa/ogr16G3DF2x+6ys/cIC/BUevaXoxlh7SCs8ZeLzgeSQTP54OT/84Q9pamqa8++b85C5T3ziE/zxj39kycDZWCRzboTtfitFjdm0PddDPGzexd7mtZBVn0HnhgG9pQh0xlfhJh5MMN4d1luKrkiydvynJs371hMhc2IeTOLOc2BxKaIUvYCCNZn07xkxdfikxalQel4u7a/2mbYIVUKNsynjWerq6tiwYcOcftecHkcdOHCAn/3sZ2QNFJvWGAItSdBX7iYZN3dQbHQ0bnpjyMwnwMdScWE++atNHBYygZpUTb8JFoh5MEnB6kwqLsjXW0ZKYPZ3ReeGAVMbQ6CFlvvK3aYuQqVIFhYXLWfjxo3s3LlzTr9rTp+4b37zmygJK8VUzeXXpDxDB8fY8qMDpo6Nzih1UdSYpbcM3am+rIiGD5bpLUN3tv28mUNPd+ktQ1d8FW7qrymd8g4IzIskS9RfU4qvwq23FF059HQ320xccnqShR8qo/qyIr1l6IsERY1ZZJTOT8nlVCQZV9nyowMMHRzTW4qu2PdkYVedfOMb35jT75kzg+jw4cP85je/oYwaFGn+Os2mGs5sO4rN3Cc9AJ5CJ9kLfXrL0J3ODf1aoqTJURMqibC5PaaSNFFxUXgGTI+aVJFkbU6YmXg4gZoQz8ORV/ro3GDyMuwqZC/0iRxLNG+hM8u8TYtlSabSWc/vf/97nnnmmTn7njnLIbrzzjv5zW9+w9LBc0wdLrfk1kpiY3H2/MG88fECwbH4ytwUrMlk/8NHTO01FWiIHCLBJLJVovZ9xXRuGGC4VeQRCQSgNW62ui2mbtirWpO8Zv0H69at49FHH52T75iTzle9vb385Cc/IT9UbmpjCGDvH9tQ7Ob1kAHIVplkzNzeAABvsRNXtp3urUN6S9EVSQFZkUxvDMkWMQaC4zH7nEjGVGRFwsRBJVPkLfMT7IswesS8lWknMfse4tAz3SQi5i3IBSDFZAqiFTz55JO0t7dTVDT7IaVzEsv13e9+F1mWKaF6Lm6fVkRH46bvtVJ+QR5Lbp37plqpjr/CQ2Fjtt4ydGeoeZzdwhtA9eVFLL6pQm8ZghRh8U0VIm8E2P1AG0PNwjtU2Jht6rLTkyy5tZLyC/L0lqErob6I6QtMABRThdPp5K677pqT+896yFwwGKS4uBjvYDa10tLZvHVaIckSi24sp+25HtO7/j1FTuxeC/17TdyUdgItZ0RvFfpicSqm7zUCkFHiQrbKDDWbO2FWhMxp+Ks8JKNJRg4H9ZaiO2KNEO+KSbIWeImMxk3dwxHAV+6m9Lxcdv7mkKnzTkeXtLNlzyba29vJzp7dA+ZZ9xD9/ve/Z2hoyPSV5SxOhchwjOi4sOrH2kPCGJpAvOBgxe01FJ+do7cM3Rk5HDS9MSQ4ytDBMWEMAcVn57DikzV6y9Ad8a7Q6N87anpjCCA6FicyHMPiNHeRLu/hPBKJBA888MCs33tWR1ZVVX7wgx+Qpebhkszt6o2Nx9n/8BHTh8sFqj2iuhxaieUVn6zG6hLB8Qcebad/z4jeMnQnqz4DZ7Z5+0sIjseZbSerPkNvGbrTv2eEA4+16y1Dd6wuhRWfrDZ9KXbQqs0Fqs29pwz1Rdj/8BFi4+b2nDJoISuRzw9/+EMSidkdi1k1iF577TW2bNlieu+QbJHwV3mQzG3IAxCo8ZK71K+3DN2JBxMMHhwjFjT5YgYM7Bs1/UEBQPXlhWTWevWWIUgRMuu8VF9eqLcM3Qn1RRjYJyIKYpPvDBFlQt4yP4EasVZKshZaK1vMXZ+/MmMBe/bs4d57753V+85qDtH111/Pn3/7F87kYiQTN1TIrPXScF0ZG7+3n/BgVG85uiNioQWTuHLseIucdG8bAvOGQQPac4Ekmb7visgh0pAUCVRVrJUS5C31M9oeItgrDk4EYg8xiSNgY9Wna9n9+1YG9pv30EBVVbb6X2D5qmU89dRTs3bfWfNh9Pb28sc//pFiqkxtDAEM7B9l0w+ahDE0MQ3EQqYlRCoO4TL0lbupuKjA9MYQaM+F2Y0hwVHUhDCGAFCh4l0F+MpFqJjikPGViXGYei7MvbUkPBhl0w+aTG0MAUiSRPZQCc899xzt7bMXXjtrO7QHH3yQZDJJAWWzdcu0RoQEQfn5eSy8vlxvGbqj2GUW31RBZq3ID+h8fYD1/3eP3jJ0x55hpf4DpTgyzdt9XHA8jkwb9R8oxZ5h7t59AOu/vYfO1wf0lqE7WbUZLL65AsUmDtMWXl9O+fnmLr8NYm85SQGlKIrCV7/61Vm756w9Zffffz/+eA42ydxJwoEaDwuvL0e2mvwoA63fTN+uYb1l6E4ikuT17+5jYJ8oJADCYwhaeJTIMRS8EUlmjroDphdijdDo3zfC69/dRyIqBqRv17DoT4XWpHbh9eWmLzJhkaxUlVfx2GOPzdo9Z2Xp3b9/P+vXrxfeIbRO25GRGMmYCIUZah6je8ug3jJSgshQjEREvNQWXF0iimyghT7s/n0b4QGTh9UKpggPaHMiMhTTW4ru5C7zs+DqEr1l6E4ikhTzYYLuLYOiTQGQjCWJjsRIxsUe09GcRWdnJ9u3b5+V+82KQfTb3/6WjIwMsimYjdulNcOHxjnwiCgZ6gjYCNR4TB/zC1C4NouCNZl6y0gJoqNx4mFRaU88F4I3RcwN4qEE0VFRXQ2gYE0mhWuz9JahP5IWgeMIiDDjpkfaGT4kvGWBeC7Z2dn84he/mJX7nbZBpKoq999/P56RTBTJ3D1WbF4L7jyH3jJSgqwFXuquFCd8ALYMCzavyAsAaP57pyipC+Qu8fOOf18owuYEU0iyxFn/sYjcxX69pejOwL5Rmv/eqbeMlMCeYcXmtegtIyWoe38JWQtE+W0Ad57D9PNClmQKA8X84he/IBY7fU/qab+ON23aRHNzM/mUnraYdCd3WYDFt1QgyeKIr/3VfjZ9v0lUEwMOPdVN6zPdesvQHdkiYXWb+9BkkpHDQQ482iFyJQRTqEmVpkfaGTkS1FtKSmB1K6bvtwJw6OluDj0t3h+osOneJtpf7ddbie5IssTiWyrIXRbQW4ru5MSKGB0d5cUXXzzte522QfTII48QCATwk33aYtKd9lf62P7zZtSksAIA0VAOtPAX8U4HtJLba79Qb/pTLdDyRUR+neCNdG8ZFHllgC3Dytov1IvS25OI9wgg9hSTqEmV7T9vpv2VPr2l6M8hB/n5+TzxxBOnfatZMYguvfRSZBH7gZpQRSM5wO63suiGclFSGM0IOPOeBuw+ETI31hFi9wOtRMfES82d78BfKTZ7guPxV7px54uw6+hojN0PtDLWEdJbiu7YfVbOvKdB9CMCnFk2Ft1Qjt0v3qfB3ojoY4fWk+icc87h/vvvJ5E4vfzk07JiWltb2bZtG9vubzotEUbAW+Sk9spiFLswDGWLTDycICGS5wn3R2l5qovIiKgUFAsmtPwhsYaTvyJA+QX5essQpBjlF+STt0KEwaBqeUSxoHiHREZitDzVJTyHaMU24uEEsiLcZYpdpvbKYjxFTr2l6M7A7lG6u7t59dVXT+s+pxW78uijj2K1WsmKiRe7bJOxuS2itDJa47C9fzyst4yUIDISo3ODaDAIkFnn1TY6Ju+yDdD89y7Rq0xwAjt+3SJaNkyQWaslz5t+vVAR75AJYsGE2FtMkIgksbktomkvkNjtwOl08sorr3DWWWfN+D6SqqozXn3f9a53oaoq6tO+GQsQGA+730p0JC5yqYBAtYfoWJzxrrDeUnSn7spiJIvE3j+IF5rgKPXXagV59jzQprMSQSpRf00piXiS/X8+orcU3XHnO7B5LAweEH14JFnClmER/ZkEx+F+T4ze3l5efvnlGd9jxqZlJBLhpZde4tBTovoJEtg8IlF8kqUfqaLknBy9ZaQEFRfli0akE+z78xFhDE1Qui6X/JUiNEpwPPkrA5Suy9VbRkqw5w9twhiaIHepn/ILRSQOQMk5OSz9SJXeMlIGm8ciCm4APbsHeO211+jo6JjxPWZsEL3++uuEQiECiI2vK8fOms8vwFssYjkB9j7YRvdWUUELYMv/HqDtuR69ZQhSDItdFqEOghNQbDIWkYcqeANtz/Ww9ccH9JaREnRvHWTvg8KbDOAtcbHm8wtw5dj1lqI7rtEAyWSS9evXz/geM155X3jhBTIyMvDin/GXG4XIcIw9D7aJsKgJRg4HhTt7AjUJiajIKwNYfHOFaKo3QfPfu0Q/DcEJtL/aT/Pfu/SWkRJkLfCy+OYKvWWkBIloUvQsmyAyFGPksOjVBTDeFWLPg21EhsV+iy4rubm5bNy4cca3mLFB9Pzzz3P22WcjScJXl4gk6d87QjIucmYySl0UrMnUW0ZK4M5zUP+BUqxuEU6JBKH+CPGQeKsLBIK3Jx5KEuqPiHAgwOqxUP+BUtx5oiQ7QMGaTDJKXXrL0J1kTKV/74go5oVWfnvVqlU8/PDDM77HjAyiaDTKK6+8wv7HhdsSoPCMLFH6cAJvsYs80T0ZAEmRkBSJZEwsVqhw4NEOhlvH9VaSEqy+s47is0W4seB4Ss7OYdWdtXrLSAmGW8c58GiHKNMPJKPJqfeJAPKWBfAWC4MIwFPkpPCMLL1lpASj7UH27dtHb2/vjD4/o6PrrVu3EgwG8Yv8IQAKVmWiJlTG2kUTufZX+kT35AnGOkLs/l2r3jJSAtkioTgUYqIpKwCtz3YT7BUhtoLjGTwwKsJfjsHqsZAIJ0wffZGIJsW75Bi2/uSg3hJSBm+hk4JVmXS8JkKwk3ttJJNJdu7cybp166b9+Rl5iDZv3ozFYsGDKLcNsOn7TXS+LvoECI5Htkoi3GOCjDI3az+/AFuG6DAO0LN9iLFOYRAJjmesM0zP9iG9ZaQE9gwraz+/gIwyt95SUgMJ0btMcAKdrw+w6ftNestICewRD06nky1btszo8zMyiLZs2UJDQwOKpMzoSwXGRJJh5adqphrqmZ2a9xSz8EPlestICcY7Q+z6XavwEE2QWefF5hW5ZYLjsXktWgNjAdGxOLt+18p4p4i8AFh0fTk17ynSW0ZKkFnrZeWnasSBo+A4ZEmmoKCAP/zhDzP7/Ew+tHnzZnq3D8/oC41G4RlZLLqhXG8ZKYGkSPTtHhEhHxN0bujnyMszi2U1GrFggsGmUdGsF+05abi2DF+5OPkWHI+vwkPDtWUiVwRQkyqDTaPEggm9paQEh//ZS+cGEYkCWmXfvt0jyBbxnAAsuqFc5BFN4MRNe3v7jD4rqao6rR1KLBbD6/VSFllAqVQzoy81EoFqD+58B0f+KfJmBII3w1PkxJVjp2frkN5SUgKLSyEZTZo+NwKg/tpSAPY8IIr0yBYJ2SYTF0YAAHnL/Iz3RBjrEF4igeDNKD4rm/GuMIMHxvSWojvtajP75K2Mjo7ick2v8Ma0PUR79uwhEomI/kMTDB4YE8bQBFaPBWe2aBA2Se5SP46ATW8ZKYG/0kPJ2bl6y0gZ4kGRKC44kWRcFcbQMRSfnYu/0qO3jJTAEbCRu9Svt4yUwZltx+oRYccAR/7ZJ4yhCbz4SSaTvPrqq9P+7LQNor179wKIggoTeIqcKKKzOAB5S/0suVU00gMtLKrmvUV4i0U5doAjL/Wy6d79estICaxuCzXvLcKZJYxlwfE4s2zUvLcIq1vk5wJsunc/R/4pwo4BvCUuat5bJMIpJ1h6a6UwECdQ7LJo/TKB36P1wXzsscem/dlpm9cHDx7E7/djHRYvc9kqsewjVez782F6d4icqq4tgww2i1MKADWh8vLXdonGxYITkC0Sjkyb2NgITkBStLkhW2RAeIoER+nbOUzvjiHRl2mCHfe1iHzlCTLrMqi7ophX/r9dpo88SI5DVlYWsjx9R8WMDKKqqirYPO3vMhzJuMrmHzURHRWVs0ALAxLhHsegwjRT9AxL2fl5oKq0PtujtxTdiQzH2PHLFr1lCFKQYE9EzI1jKHtnHkjQ+ky33lJ0RxSkOZ5x0bZgisGmUTb/qIlkQswRgPr6erq6uqb9uWmbUAcOHODIJrE4AaBqL7B4SBgBAAWrM0XJ7QlcuXbqry3FJmKcAYiNx0W1KIFAMC1iwTixcXHgCGDzWKi/thRXrsjTBa30dsHqTL1lpATxUIJgT0R4Dyfo2NvD+vXrp/25aRtEBw8exIlIcgTwlbkpPU8kik/ir/LgKRRxrACSJCEBSXGqB0DHa/2ik/YEnkInZ/xLvShAIjgBZ7adM/6lHk+BQ28pKYFYN46STKpIIMKwJ/AUOfFXib3oJKXn5eITTYwByC3MprOzc9qfm9bxdTQapb29nQWsmPYXGRFHpo1AtYe250UYEIiyuccy3h1mtxiPKRSHjBpXTR/fDBAdidH2fI84+RacQGw8TtvzPUREGDag5dtJFolEOKm3FN2JBxPinXIMbc+JfdexBKo9RIZjDLeO6y1Fd8a2xwkSZHR0FK/31KOWpmUQ9fX1oaoqNsTJJkD3lkG6twzqLUOQgkiypOUPif0/AEtuqWS4ZYzmv08/rtdoRMfi4tRbcFLioYSYG8dQfkE+vnI3W/73gN5SUgNJ8xCJfCLBG9n2s2a9JaQMkzZKT0/PtAyiaYXM9fb2HvdlAsEkil1m1adr8VUIly1A0ZlZrP38Ar1lpAzNf++ka7M4PACwOBV8FW5RZU5wArJFwlfhxuIUZbdBO3Rs/sf0Q1+MytrPL6CoMUtvGSmBr8LNqk/XirYnghPIyMkA4MUXX5zW52ZkEFmFQQRA7RXFVL67QG8ZqYEKvbuGRcW9CQb2j3Lwbx16y0gZhlvGtaRPAZ5CJ4tvrMDqFgU3BMdjdVlYfGMFngKRiwla6PFwiwgBmuTg3zoYaBrVW0ZKEB2N07trWERhTFB5SQG1VxTrLSMlkMa0A6VweHqVCKf1RhYeouMZahkjGRNPI0AimhSlUY8h2BMRBsAx5C7xM9YVEmMCjLSO8/p39xEdFT00BMcTGY3x+nf3ERsTB0ugVev05Dvp2T6kt5SUoG/3iN4SUoZQX0TsOY5hpDWIbBFRBwBSSDNtbLbp9UudtofIbrejTL99kSHp2TpE3y7RkBW0JrWuXLsIA5rAU+AQFXCOoeLifAJiPACtf1lkKCZONgUnokJkKCaKj0wQqPZS8a58vWWkDP4qj6hAOIGkaHsO2Sr2HAB9u4bp2Takt4yUQJZkfD4fLS3T6+k2LYNoZGQEn88nyj5O4M5ziLCXCTz5TlbcVoMjMD2L3KjkrQhQ/s48vWWkDOv/ay/tr4pkcQB3voPKSwrEaZ7gBGSLROUlBbjzxaYXoP2VPtZ/e6/eMlKG8vPzyFse0FtGSuAI2FhxWw3ufBFeCmB1W3DniXVjElmW2bJly/Q+M52LI5EIDocY8EkWXl9G3gqxOIEW6731ZweJDEX1lpISND/RxfZfiaovghOxuhQyil0gDpYEb0SSyCh2YXWJogqCE9n+yxZRqXOCyFCUrT87SLB7enkiRiV/RYCFHyrTW0bK4Pf7KSoqmtZnpuXeiEQi2O0if2iSnb85RCyU0FtGSpCIJhlrD+ktI2VQkyqqaJ0xRcN1ZXS+3s/ggTG9pejOUPM4W39yUG8ZghQkGUuKuXEMgWoPBauz2P37Vr2lpATJmHipTJKMq2LPcQxdWwbp3ytyzCbJyMiY2xyicDgsDKJjCPZGRPLrBM4sGyXn5ogwoAmKGrMoPitHbxkpQzKWFAaiQCCYFmpSGAHHUnxWjii7PYFskSg5NwdnlgjTB4iNxQn2iqJFk4RCoWnnEE3LQxQOh7HZbCg2UfcdoOTcXAb2jTDeJVy2rhw7+Ssy6dkySFx0FUexKyhWWTwrEzQ90g4gxgPt1Lvy3YVs+d8mUaUSrYkxiLkBINtkln+8muYnOoQ3FRg9EmT0SFDMjQmsLoVEVBLjAVgcMvkrMgl2h0W7D7Tc1My6DA6/0KO3lJQgFovR19c3rc9Iqqqe8hv5sssuY9u2bXzkIx+ZtjiBQCAQCAQCgUAgmEt+/etfU1BQwMsvv3zKn5mWhygQCOD3+9n7x7ZpixMIBOal7qoSujYNiCaLghMoekc2AO0vT+80T2B8fBVu8ldmsu9Ph/WWIhAI0oisrCzy8qZX6XdaBpHP50OWZfp2iMQtwfH4KtxUXpTP9l+1kIiIkLna9xVj81rYed8hvaWkBNLDRxhtDxEeEFUILU4FZ5aN0faQ6EUE5CzxA6LpJAASeIuchPqjxEXBHsa6woy0BcXcmGDRDeVER+Ps/8sRvaXojmKXWXJzBc1PdomDNsEJ9JX14XROryT7tAJR7XY7kYhI2ppk6UeryF3q11tGShAPJhhuHUdNih0eQPe2QTrWi747k/TuGBbG0AS+cjdLP1yFYhd5AILjsdgVln64Cl+ZW28pKUF4IErvDtH8fJKO9f10bxvUW0ZKoCZVhlvHiQfFwQFA7lI/Sz9SqbeMlEFVVTye6TWDn5aHyOFwCIPoGIYOjhIWfXcArQ+R6I9wFHFidTzZC32MdQoPEcBQ8xibf9gkPKmCE4hHEmz+YROR4ZjeUlICZ5YNd76Tvl3CKAIY2D+qt4SUIRlTxZ7jGMJDUYaaRSGWSdxuN3V1ddP6jPAQnQatz/Yw0hrUW0ZKICkSjoANSRFltwFcuXZxynsMte8rIlA1vdMao5KIJLXyqMKZKngjqtbOIREVxjKAv9JDzXun11zRyPjK3LhyResTEHuONzLSGqT1WVFhbpLx8ekfSk/LIHK73YyNCQt0ErvPis07LSebYXHn2ln16Vpc2WKxBshflUnFxfl6y0gZXvuvPXRuHNBbRkrgyrFTfmEeslW8yAXHI1tlyi/Mw5Uj1lGAzo0DrP/2Hr1lpAyVF+eTvzJTbxkpgStnYs8hDEQAbF4Ldp9VbxkpQ39/P62t02voPC2DKDs7m9HRUZKqiNkEWHBVCaXn5eotIyUI9UfZ8esWwoMiJAqg9Zludvxqek3BjEwypgqPyARWj4XM2gxkReQQCY5Htkhk1mZg9YiDNgBURK+uY9j+qxZan+3WW0ZKEB6Y2HP0iz0HQOm6POquKtFbRkqgqiqhUIgVK1ZM63PTWnVzcnIAiBLBgWtaX2REDjzWQTwijEOARDTJ8CGRNzOJyA85nqpLCxhuDdK3U+QCDLeMs/kHTXrLEKQg8VBCzI1jyF7kw1fm4uDjnXpLSQnEe+UoYs9xPIdf7MFiV/SWkRLEiZFIJKivr5/W56Z1RHmsQSTQCglEhkTyK2jxvEWNWSLUYwJ/lYeqSwv1lpEyyBYZWRYhYgKB4NSRZQnZIjypk1RdVohf5GICWshcUWOWyCGaIDIUY7w7rLeMlEDyawcHsjy9tWNGBlFMGESAVj63YI2I5wWtBGbJObm4ch16S0kJLHYZR8Cmt4yUoemv7fRsH9JbRkrgLXay8lO12DJEvLfgeGwZVlZ+qhZv8fT6ZxiVnu1DNP21XW8ZKYPDb8MiyvUD4Mp1UHJOrmj1MUHBmkx85aKQE4Ac0Awii2V6occzDpkTgLfYRWadl84NIlkcFV77lkh+naRv94hoJig4KdGxOH27hknGRPiL4HiSsSR9u4aJjsX1liJIQXbdf0hvCSlD365hUY79GHIW+xnYNyLCCIG+Fq1XV2Nj47Q+J6mqOi3zOisri8BAARXS9GLzBAKBeVlyayXB3jAHHu3QW4ogxai/thSAPQ+06axEkGpUv6cIV7ad7b9o1luKQCBIE1rV/bS7DjA2NoYknXpI5bR9r1VVVQQRFqjgRKouLaR0nai6B+AtcdF4T4MIm5vgyMu99Gwb0ltGSiApEu48hyi7LTgB2arNDZEXodGzdZAjL/fqLSMlcGTaaLynQYRTTlC6Llfk6QpOirNOxufzTcsYghkYRNXV1YQQvYhAW6CW31Yt6uBPEB6IiCITE4QHo7Q+0008LKoQAgzsG2WkTTQxBnBm2lj+iWrcIt9O8AbceQ6Wf6IaZ6Y4SAEYaQsysG9UbxkpQTyUoPWZbsLiHQtoRQRC/SJ9A7RG8Mtvq8Yh1g0ABgYGKCycvrE87WYHVVVVuApfAFEFk3gowfChcdFVfIL2V/v1lpAyxMbidKwX4zGJO8+BxaUw3CK8y+HBKFt/epBgr3iZC45nvDvC1p8eFP3cJvBVuIkHE6J6Ftp+Q7xTjtK9ZVBvCSnDZAnyeEgcwALYM6ycd9550/7cjELmOjo6SIjmrMRDCZqf6BRekQlkiyROKI7BX+kWnaMnyFsRoOKifL1lpATJuMpYR0gUVRCcQDKW1OZGXFTOAqi8KJ+8FQG9ZaQEdp8Vf6WoIjaJI9OGbBGhpaB5y5qf6BQGEZCUkrS2tlJWVjbtz07bIKqtrQUgiHBjg9Z1XhgBGjmL/ay8owZJ9JsBoOG6MjJrvXrLSAlan+lm+y9a9JaREshWmdJzc3FmiXVDcDzOLBul5+YiW0VpZYBtv2ih9ZluvWWkBJl1Xuqvnf4mz4hIssTKO2rIWeTTW0pK4Mi0YfVMO+DLkNhKIR6fWZXOaa+6ixcvRpIkRhma0Rcajap3F1AtEvsAGGgaZcevWphm4ULDsuneJuHWnyARTQqPyASyRSJveUB4DwUnYPfZyFseQBZFFQDNYyZC0jW6Nw+y+ftNestICVRVZcevWhg4IPLZAaovLaTq3QV6y0gJOtu1SraXX375tD877bLbAHV1dYT2J6mTlk37C42GM8tGMqGKsDmB4C3wlbvJWx5g/8NH9JYiSDFE2W3Bm1F7RTHdmwcZbhW5hwLBm2H3W5FkifCAyD1sUreTLAnR1jb998mM/PIrVqxgFHHyDRDqjwpj6BiKGrPwFIqyoAB5ywMUn5Wtt4yUQLZI2DwWEAffAoHgFJBksHksojz9BMVn5ZC3zK+3jJTAU+ikqDFLbxkpQ2QoJoyhCZJ5EUpKSmb02RkZRMuXLyfuiYjQKMDiUCi/ME/kA0xQsFoYRJPYPBbsPjEvAAYPjLHzvkMglgwAln2siuyFGXrLEKQY2QszWPaxKr1lpARqEnbed4hBERYFaEUVrF4RZguaQZS/ShhEoEUplV+Yh+IQeYeqqjIw1kdOTs6MPj+jLKzly5czNjZGkDHcmDtpPBlPkrXAx9DBcUL9wkLf+L39ektIGQ6/JBoKCk7O8KFxoqMzS/wUGJfoaJzhQyI8THAiBx/v0FtCytC1cYCujQN6y0gJ7D4bWQt8tD3Xo7cU3YkQYnx8nFtuuWVGn59RDtHw8DCZmZnUJZdTJFXM6IsFAoF5sPusrLyjhl2/bRUbPsFxiBwiwcnwlbtZ+KEyNn2/iciwCEsXCARvTRdt7FQ30NXVRV5e3rQ/PyMfm8/nY9myZQzRN5OPCwxMVn0GKz5ZrbeMlCCj1EXjPQ3Y/SLMITYep+XJLhHnPIEtw4rVregtQ5BiWN0KtgyxXgCEB6K0PNlFbFx4Uu1+K433NJBR4tJbSkqw4pPVZNWLkGPB8Sj1UXJycmZkDMEMDSKA8847D2upKvKIgNxlftZ8YYHeMlKCyFCU/n2jSKJsLKGBKK3PdJOIiLKxybhK5+sDREbESS/Awg+WUXJ2rt4yBClGyTm5LPyg6DUDEBmJ0fn6gGhSCyQiSVqf6SYkDpSQFIn+faNEhsRYAKz9wgJyRbENAAbHBli5cuWMPz9jg+jcc8+lra2NMMEZf7lRGOsIcfjFHmEEAGOdYVqf6UZNiJdYbCxOx/p+0T16gowyF65cu94yUoKmvx6hY32/3jIEKUbHa/00/VWUpgdw5drJKBMeEYB4KEHH+n7hLQPUhErrM92MdYb1lqI7kiLR9mIPYx0hvaXoTkQN09bWxk033TTje8zYIDr77LORJIlBROJ4sCdC54YBYQRM4AjYcGSK6moA3mKnqLo3QdXFBeSvytRbRkow1hkmPChOOAXHEx6Mio3eBAWrMqm8WDSbBK2qmrdYvEcAHJk2HAGxvwDNOOzcMECwJ6K3FN1JlmnOmbPPPnvG95ixQRQIBFi2bBkDiMoWoJ1mBao9estICWqvKKb0XBEOBFC2Lo+iM0UvItBK6B56sktvGSlBZp2X7IU+vWUIUozshT4y68xduXWSlie72HXfIb1lpARFZ2ZTtm5meRFGo/S8XGrfV6S3jJQgUO0RURcTjDj6yM7Opqho5nNjRmW3J7nsssv4/qHvkxxMIkvmroGetzyAv9LD4IEDekvRnaa/HiEmwsQA2PvQYRJhkUMEEAuKOTFJZq0Xi0Ohb9ew3lIEKUR2QwbxcIKBfaN6S9GdZFwlGRdrBsD+Px8RfWYmaP57J1anKEgDUH5hPkPNY7T8w9wHjaqq0jvcw7XXXnta95lR2e1JNm7cyOrVq1nJuQSkmTVCMgqKXSYZS6KKva9AcFIy67wEqjwc/Fun3lIEKYQouy04GVWXFjDYNMbAfmEcCgQnQ5JBtsqmL9w0rA7wOs/ywgsvcM4558z4Pqd15LBixQoKCwvpRTQMS0SEMTSJxaFQdWmBcOWihVIuuKYEizjRQrHK2ESndYFAcArYPFYUm/CKWJwKC64pEe9TtPdp1aUFWBzifQqgJjG9MQQgLwnhcrk488wzT+8+p/VhWeayyy7DWpUU5beBsvPzqHhXvt4ydCcRS5JR4sbqPq2ITEOQjKsoNgXFLl7svTuH2fOg8AIA5K0I0CDKKwveQMMHy8hbEdBbRkqw58E2eneKkFKLQ0GxKaL8OGB1W8gocZOICiOg4l35lL1T5JUB9I51s3LlSiyW09tznvYu7T3veQ8HDx5kHOHWjgzHiAyJPitqQmXL/x5guGVcbym6Ex6Isuv+Q2JeHIuoTk90NEawR1QTExxPsDdMdFSsFWKNOEp4UHuHiKbWMNwyzpb/PYCaFMZhZCgm+voBIXWc5uZmPv3pT5/2vU4rhwggHA6Tn59P5nAhVdLC0xYkMA6KTRYnORModhHna3UrrL6zjj1/aGOwaUxvOYIUQeQQCd5IoMZL/TUlvP6dfcTGzV1YQbw7jiL2FII30l/Sxp6e7fT29uLxnF6l59P2EDkcDq666iq6aBNhc4DdZxWxvoCvws0ZX6rHliFyRmreW0TDdSI8KhZM0PJUF8Fe0TNBUiTsPqs4CRccRdLeH6LBt+Ypa3mqS1SmRAujrHmvKDNtz7Byxpfq8VW49ZaiO65cu/b+MDmqqnJ4vJmGhobTNoZgFgwigBtuuIEQ4wwjOq9XXVJIxUWimdx4Z5gDj3WQiIgXWtemAdpeEP26UKFzw4AIHwR8ZS5W31mHXRwYCCawZ1hZfWcdGaUuvaXoTmQoRueGARBnrLQ930PXpgG9ZehOPJLgwGMdjIvGxVS+q4CqSwr1lqE7owzR19/Hl770pVm532mHzAEkk0kqKipItFmol1bMhq60xRGwEQvGhYtbIDgJngIHik1huNXc+WUWh4K7wMHo4aDpk6VFyJyGbJHwlrgY7wwTD5v7IMlX5iYRTTAmNr8CwQkodhmry0J40Nx5ZfvZRiR3hCNHjpx2QQWYJQ+RLMt86EMfopvDJE1eezo8GBXG0ATOLBuFa7P0lqE/EuQt84tQSqDwjGxK1+XqLUN34uEEwy3jpjeGBEdJxlWGW8ZNbwwBlK7LpXBttt4ydMeVaydvmV+E1gKFa7NwZtn0lpESJCJJ0xtDSSnJgLuTNWvWzIoxBLNkEAFcf/31xImJnkRA/qpMqi4T7kx3gZOSc3JELwkVyi/Ix1cmYp8PPtHBzt8c0luG7kiKJF7wguNwZtspXJslcoiAnb85xMEnxF7CV+6m7IJ804cOKjaZknNycOc79ZaiO9WXFZK/KlNvGbozKPcwNjbG9ddfP2v3nLVGMQ0NDZx99tnseGkPeRTP1m3TkmQsSVJUQqF/9zB9u4ZNv5gDbPiffagJMRCJsHguAFCh7J25RMdihPrNfdIn0HDn2Sl7Zy6dr4tcXDWpkoiI9bJzwwBdmwb1lqE7iWiS9f93L5I4KyARFftLgLZ4E6tWreKaa66ZtXvO6tH97bffzhB9jKnmbqbWs22Ilie79JahO2oSYQxNIIwhDbvPSv01pTgyze0ZUZMqr35jD327RvSWIkgR+naN8Oo39mDyqHMcmTbqrykVVbQmEO+OCVRM/2wAtDzZRc/2Ib1l6IpUEKefbm699dZZve+sGkRXXHEF+fn5HOHgbN42LZGtkigPCeQu9bPyjhq9ZeiOO9/B8tuqTV+GPBlLIlslZIs46hMIBCciWyRkq0QyZu7drz3DyvLbqnHnOfSWojsrP1VD7lK/3jJ0x1fhRraKd2entQWn0zmr3iGYZYPIZrPxsY99jE7aiKvmLq2bs9jPouvLsTgVvaXoynh3mO6tg6aPi4+OxhlpGze9yz8WTLDrt60Ee0Qvopr3FFF0pkgcF2gUnZlNzXtEv5lgT4Rdv20VPYgkGGkbJzpm7r2UpEh0bxlkvNvcFQctToVF15eTs9ivtxRdSahx9rbu5rbbbiMra3aLds1K2e1jaW9vp6ysjKrEYkql6tm8dVqh2GQsLkX0XBEIToLoOA4l5+YQGYyZPvxBlN3WyF3ix+63cvjFXr2l6IpYGwSCk2P3W4kHE6Z+Pgay2tnS/xoHDx6koqJiVu896+W/ioqKuPrqq2ljv6lLcCeiSWEMTWDzWshZ4tdbhu4odhlvsaiSU3dVCfUfKNVbhu4cfqHX9MaQ4Cg924dMbwwB1H+glLr3l+gtQ3e8xU4Uu8krtAI5S/zYvLNW/yutiQzFTG0MqapKq7qfxYsXz7oxBHNgEAHcfffdhAnSxeG5uH3aYPdZWfaxKtz55o4BzihzU31ZIRaHucMH85YFWHxThenDBzvX93P4JbHxky2SeNELprB5LSK3Djj8Ui+dG8xdaU9SJBbfVGH6vBmLU6H6skIySs2dj+3Od7DsY1WmLzTSQzv9/f3827/925zcf9ZD5ia5/PLLefaxF2jkIiSTJk5IMlRfXkT7q32mzpmQFAlJFkmyFpeCxa6YvqGaQKN0XS55ywK8/j/79JaiKyJkTmP1Z+vo3jJI2/M9eksRpACOgI14JEHc5LlUik0mmVBNXW3PlWunqDGbA4+2m7bSnqqqbOAZ1py/kqeffnpOvmPO/LH33HMPQUZN3ahVTULTX9tNbQyBVjbU7MYQQDyYEMYQmmckb3kAu9/kp13bhtj/5yN6yxCkCPv/fMT0IZR2v5W85QHhKQPCg1HTG0OgpR+Y2RgCrdBI01/NawwBsCDIKEPcfvvtc/YVc2YQNTY2ct5559HCXubICZU2ZJS48Fd69JahKxmlLlZ9ptb0YXM5i3yUX5Cntwzdqbq0EG+RufOpwgNRhlvH9ZYhSBGGW8cJD5j7wMRb5KLq0gK9ZehO+QV55Czy6S1DVywOhVWfqSWj1KW3FF3xV3nIKDH3GABsP7KF8vJy3vOe98zZd8xpAPuXv/xlLnz+QvroJIfCufyqlKbwjCwkWWKoeUxvKboR6o8ysG/E9PkzikPB5jF33kgyrvLqN3ab/tTP6raQs9hHz7Yh4iFxEmxmLE6F3KV+encMExuP6y1HN/p2DdO/d8T0a4PNYyFs8sNDSZEY2DdCqN/chwQFqzJREyojh4N6S9GNAbWH3rEufvbbv6Ioc/dczFkOEWgxf+985zt5/fnNnMGFps0lUuwyiYiZfZ0CgeCNuPMcLLm1ku2/bGa8y7w9NkQOkZY0veSWSrb9/KDpQ6wFAsHxmHkPqaoqO7NfpqA4n82bN8+pHTGnNR0lSeKb3/wm44zQiXlfdpMT2exNWiVFImexz/QeEiRMPwY5i3wsvL5cbxm6Mt4d5tVv7Da1MSTQGO/S5oLZjaGF15eTbfJQMZvHAuY8O57C5tG852aPKJncM5rVGAIYCfTQ3dfFRz7ykTl3qsx5kfu1a9dy5ZVX0swukqp5w0J8ZW7WfL4OZ7Zdbym6IVskqi8vwldh7hKatVcUU3eVuftsxIIJQv3m3vwJBILjCfVHTF9IoO7qEmrfV6y3DF3xVXqovrwI2cQGkTPbzprP1+ErM+9+Kakm2TW4hXe9611zWkxhkjkNmZtk7969LFy4kOrkYkqlmrn+upREUrTKWj3bBknGzBsfbXEqps+X8BQ4QJIY6wjpLUWgM/UfKGVg3wjdW4f0lqIbImQO8pb5yazLYM+D5h0DgYan0Imqqox3mttzbPa9gmyVyF0aoHvLoGlz6kbKuni99WW2bNnC0qVL5/z75qUN8oIFC7j11ltpYQ8x1ZwJcmpCpWvjgKmNIWBqgZNk8578jHWGhTEEWF2K6RvNhQejxEz80hdoxEKiJL/dZ8XqMndYOcBYR8jUxtDk3sDMxhBAMqbtGc1qDMXVOLv7trJq1ap5MYZgngwigK9+9avYPTaa2T1fX5mSFJ2ZTfFZ2XrL0JWGD5ZRfqG5S09nNWSQvzKgtwxdqb+ujLJ15p4HLU92MbBvVG8ZAp0Z2DdKy5NdesvQlbJ35lF/bZneMnQlf2WArIYMvWXoSsVFeTR80NzzoPisbIrONPc+sYU9xONxfvjDH87bd86bQVRYWMi///u/c5gDjKpD8/W1KYdilZEt8zbsKUnvzmEGm8y9CcwodpFRat7YYICDj3fQ+ly33jJ0RbZI2LzmLrAhAJvXYvpmpK3PdnPwb+Zt5A6QUeomo9jcPWcG9o/Su3NYbxm6IltkZKt514O4L0wbTdx9992sWrVq3r53XnKIJolGoyxdupSuvX2s5FzTluEWCAQCgLLz88hZ6GPj9/brLUU3RA4RrPp0Lb27hml9xtwHBAKBwNyoqsrB0s2MjA1z+PBhXK75OyCYV1eFzWbje9/7HkP00cXh+fzqlEKSIW95wNTx0u48ByVn5+gtQ3cUu3m9hYpdpuz8PFNXXuzZOsj+vxzRW4ZAZ/b/5Qg9Wwf1lqEbzmw7ZefnmXs9dJj3b5+k5Owc3HkOvWXohtWlkLc8gGTiqdBLB4faWrjnnnvm1RiCeTaIAC688ELe//7308R24mpsvr8+JVDsChUX5ROo9uotRTecOXZyl/pRbOZ98isvLmDRjRV6y9CNZFwlZ6EPh9+8hRVC/VFG2szbgVygMdIWJNRv3qIKDr+VnIU+knFzJpADLL6hgsqL8/WWoRuKTSZ3qd/UB2SBai8VF+Wj2Mx5WC7Zk+xnG5dccgmf+9zn5v/75zNkbpK2tjbq6+vJDBawQFo+31+fEpi9pCQSYN53HwCeIidWp8LggTG9pQh0wuJUyF3qp2/nMNGxuN5ydMHsIXM2j4XsRT56tg2Z+51gcgI1HmLBBGPtJq9AavK9gZn3hkOLW9m6ewu7du2itrZ23r9fl+P50tJSvvnNb3KEgwyqvXpI0J3JCe/KMelpyMSCZ/NYTOslGmsPCWMITN2VXbHJlK3Lw5Fp01uKQCccmTbK1uWhWM25DgKmXgMmGWwaM60xpNhkrJ6J4jImNYYm94JmNYaG1X42bd/I9ddfr4sxBDoZRAC3334773jHO9jNRhKqOU9Gcxb5WP6JatP2YlFsMis/VUPeCvOWn/YWO01dXtNf5aHx7gYsDnOGCESGY7z6jd0ibM7EjLQFefUbu4mMmDOE3OJUaLy7AX+VR28pulF0ZjbeYqfeMnQjb0WAVZ+qMe3hqN1nZfknqslZ5NNbii4kpQS72cjKVSv56U9/qpsO3WafLMv84he/QHUkOMguvWToSt+eEXb9rpXIsDlfhIlokr1/PEz3ZvMmE7vzHOQu9pk2iTLYE6b12W5Usx4LCgQmR1VVWp/tJthjzmakkgy5S/ymLibQvWWQvX88TCKa1FuKLkSGY+z6XSt9e0b0lqILY4s6CStBfvazn2Gx6NeGQpccomP59re/zV133cVq1uGTsvSUoiuyRTJ1QqlpMXm8tACqLyskMhLj8IvmDB82ew5RyTk52DOsHHjM3D14TI94F5gSs+/9RtRBXudZrr7mah588EFdteh+Lv25z32ONWvWsMvEoXMlZ+ew+JZKvWXoRs4SPwuuLtFbhj5MrIMWpzlDxgCcWTay6s3bnT00EDVtuJQAoiMxQgPmrTCXVZ+BM8u8OXRTa79J98QLrikhZ4lfbxm6sfiWStO2IEmoWqjckqVLuP/++/WWo79BpCgKv/71r1GdcfazTW85ujDUPEbXxgHTJpbGg3GiY3Ek2ZwD4K/ysPYLC7BlmDOXLGtBBlWXFuotQzfaX+mjZ+uQ3jIEOtG9dYj2V/r0lqEbVZcWkrnAnAci9gwra7+wwLT5U5IsER2NEw+a8zAcCbo2DjDUbM7iSsML2wgpY/zyl7/EatV//6N7yNwkP/3pT/nYxz7GEhrJlYr0liMQzBuKTSZ7oY/encMkY+aLoZatMmpCRU2mxFI070iKhMNvNW0fGrOHzDmzbISHYqgJk85/WUJSJNOufTmLfPTtGjZt/ozAnPSpnWzlZW6++WZ++ctf6i0HSAEP0SQf+chHuPLKK9nNRsKqOSsulZyTQ+W7C/SWoQ8S5Cz2mTKxNBFN0r1l0JQbAoBkLGlaYwggs9bLyjtqTR02aVYsToWVd9SSWWPeJt1qUjX12te9ZdCUxpA7z0HOYp9pI2Mq311g2lC5iBRmNxu55JJL+MUvfqG3nClSxiCSJImf/vSn5BXlspMNpIjjal6JjceJjprUdQyUnJNLwKQbA8UuU35Bnmlj6UvOyTFt2NzwoXG2/6rZlJsis5OIJtn+q2aGW8f1lqILVZcVmnZT6MyyUX5BHoo9ZbZh80qg1kvJObl6y9CN6GicmAlDBVVVpb10N06fg1/+8pdIUupYxPrVtzsJmZmZ3H///bzzne+kRd1LJfV6S5pXujaZt/w0Kmz76UHTbgqTcZWsBRmMtAVNGToVHY2b1ksUDyUYaTWnV9zsqAnV1L99ZChKbMx8m0IAZ5adzLoMWp/r0VuKLhx5qZfO9f2mLSZx5J/mrCraRhPNh5r5v//3/5Kbm1oGccrkEB3Lv//7v/O1r32N5ZxNlpSnt5x5p3BtFolY0rT9eVw5doK9Eb1lCATzRv6qTEJ9EYYPmc9TYOYcIl+5G2e2XSuqIxCYBDO/4/NXBpAtMh3r+/WWMu+MWPt5Pfo8n//C5/n2t7+tt5wTSElf7X/8x39w0UUXsZP1pswncmTacATMGToVqPaw4pM1uHLsekvRBdkqYTdptTmb12LakMG8ZX68JS69ZQjmmYwSF3nL/HrL0AVnlg2bN6WCVOYNe4YV2Zo6oULziSvXzopP1hCoNmdlPbvfnPs7KZBgt+11Fi9ZzDe+8Q295ZyUlPQQAfT397Ny5UoGW0dYyXkokkg4NgWSZhQNNpmzDOWiG8tJxpLs/r35TssX3VhOIpJkz4Pm+9vNjJk9RGam/gOlKHaZnb85pLeUeafhujJki8TO+w7pLUUXAjUeBg+MmTZczmwk1SSbpReQ/Emef/55lixZorekk5KyBhHA5s2bOfPMM8mOFFIvrdRbzryTvciHJEv0bh/SW4ouSDKoJksp8hQ6iQXjRIbM16jTmWUjFkwQDyX0liKYR4RBZE4sTgWrSzFlzqTdb8XqVBjrDOstZV4x4zt9kpwlftSkSt/OYb2lzDsHHds5Em/hhRdeoLGxUW85b0pKhsxNsmLFCn70ox/RTgvtaovecuYdf4UbX5k5w2iKz8pm0Y0VesuYd8Y6QqY0hgBC/VHTGkPZCzNY/vEqvWUI5pnlH68ie6E5m5LGQwlTGkMAkaGY6YwhgEU3VVB8VrbeMnTBV+bCX+7WW8a8E184TEtoP//2b/+W0sYQpFiVuZNxyy23sH79en7y45/iUj0EJPOU6DzwWIdpXcqjh0NaxTkJ042Br9xN0ZnZ7P59q+n+9tLzcomMxExXUCQyFGOweQxJlkxbbc9sSIrEYPOYKQ9A8lYEsGdYaXveZBXWJC1crv2VPvMVUJGgb9cwwW5zFlM48GiH6XouDasDbNr5Aueeey733HOP3nLelpQ3iAC+973vsX//fv753MusVt+JSzJJMt7EvshX4cbhs9K9dUhXOfPJcOu4aXtzxCMJ1LiKxaGYzmNicSqmLL0+2h5itD2ktwzBPKImVA491a23DF2wOBRTNiK2OBTUuEo8Yq51HQAVOjeYr5pi3vIA4cGoZgCb6KxLzk2wvfcVzjhjLX//+99RlNR/3lM6h+hYBgYGaGxs5Mj+TlazDqtkniodFe/Kx5lp1zwGJqP03Fyi43FRllZgeByZNpKxpOmaM5s1h8jmtSBbZcID5gwbE5iH/FWZ2NwW2l4wmUcQaPhgGaG+CC1PduktZd6IqzF2Zb9CPBFnz5495OWlR/uclM4hOpbMzEwef/xxHJlWtvMqSRNl5h16qtuUxhCA4pCxmLSTt6/cbcrynLJVxupJC+f1rLL4xgoKVmfpLUMwTxSsyWLRjeV6y5h3rB6LKUtOOwI2fCbMIQGw2GUUhznf47t/18qhp83jCU6qSXawnnAkzH333Zc2xhCkkUEEUF1dzcMPP8yYdYiKDwdQVRXZKiEpRxdXxSZPxWlKsqT99wSyVUK2nOK1lhOvleTJa5nlaydFHH+tpEjI1qM5BZ4iJ0XvyH7La4/+rfLRcZHe8LcqErL1+HGZ0bWnNYandm3LP7pof7XvlMdwNsb71MdwFsb7jWOoSFN/e+2VxeSt8M/SeM/PnJUtx4/LTMZ7yS0VlJ+f9zZjOEvjnUJrxO4HWul4rW/25+x0rtVhjZCO2RvPZI04dgzf+trUWiO6Ng1MlZifyRpxStem4BpRcUEeS26pPKVrT2/OptYakbvUT92VxciW6YzhdK5N3TWi/bV+Wp/tOfm10xjDE8clddeIosYs3HkObYwmPzrP+4hTunaWx9D+7hBDSi8PPfQQl156KelEWhlEAOeccw4/+9nP+PnPf84h9rLk1koqLsoHtFKWjXc34CvTTmEK12ay+rN1U59ddH05VZcUAmB1KzTe3UBmjReAvOV+1t5VP3Vt/bVl1Ly3GNAmaePdDWTV+wDIWeSn8e6GqQei7v0lLLi6ZOqzjXc3kLvED0BmXQaNdzegTHg5qi8vouGDZVPXrvnCAvJXBQDwV3povLthqlld1bsLWHxMpbXFN5ZTuDYLSZHIKHHReHcDjkzNg1B+QR5LP3K0StWKT1ZTcrZWgMKd76Dx7gbcuQ4ASs/NYcVt1VPXLvtoFeXna1a8M9NG490NeIu16nZFjdms+nTtUQ03V1J5cYE23hnaePsrtJyugtWZrPn80fFe+KFyqi/Txtvi1MY7MDHeucu0MZxkwTWl1F6hjbekSDTe3UD2Qm28sxf6aLy7AU+Bpr/2imLqP1A69dkz/qWe3InmhoEaL413N0zFp1ddWsjC68unrl39uToKVmdq413hpvHuBuw+rRFq5cX5LLn56It61adrKDpTM0C9RU4a727AmaU1jC17Zx7LPnZ0DFfcVk3pubnaeOdq4+3J1/SWnJ3DituPXrv0w1WUX6CNt2NivDNKtfEuPCOLVZ+pRU3C9p814yv3UHWJNt42j0UbwyptvPNXBlj7xQVT9234YBnV7ykCQLFrczazTqtglbPkDeN9VQl179fmrCRrczZnsTaGWfUTc3Zi4at5bxH11x6ds2vvWkDeCm3OBqq18ba6J+bsJYUsuuHonF392ToK12rj7SubGG+/Nt4VF+Wz5Naj473yjhqKz8qm+YlO+veN0Hh3w1SD3tLzco+rwrb841WUrdPG25Vt1+ZsoROA4ndks/JTNVPXpssaER6MEgsmTmuNWH1nLUVnaF6mdFkj3Hnad57WGtGgrRGTL+d0WCNWf6Zuap80kzVikkU3VqTVGiFbjtlMMrM1ArQWBem0Rhx5uQ+b10pmnb77iPlcI3IW+8hflUnRmSmwj5jnNSJnsZ+MMpeu+4hJ5muNUM8d4oknnuC2227jwgsvJN1ImxyiN/K1r32Nf//3f2dFTiMllirGu8LIVpnMGg/DrePExhM4s2y4cuz07x0FtOIEiUiSsY4QkiKRVedlpC1IdCyOI2DDXeCgf/cIABllLtSEyuiREJIMWQsyGD0SIjISw+6z4i1y0rdnBFRtUUGCkbYgANkNGYxOlE+2eS1klLjo3zuKmlTxFjmRrfJUhZms+gzGu8OEB6JYPRZ8pS4G9o+SjKt4ChwoDoXhFu3azDov4aEYwe4wFpeCv9zN4IExEtEk7nwHVreFoYNaQ9NAjZfIUJRgbwSLQ8Ff6WaweYxEOIkr147dZ51qfhqo9hAdjTPeHUaxyQSqPQy1jBMPJXBm23Fm2RjYp42hv9JNPJRgrDOMbJXIrPEy3BokNh7HkWnDneugf682hr5yN4lYkrH2Y8b7cJDoaBy734q30Enf5HiXulBVGD0cBAmy6zMYbQ8RGY7hCFhZfHMlR17ppXP9AN5iJ5IsHTfeY51hwoPRo+O9bxQ1oeIpcqIcO94LMhjvmRhvtwVfmYuBplGSMRV3gQOrU2GoeWK8a72EBqKE+iJYnAr+imPGO8+BzWvRmsuhNZqLDMcI9kRQHDKBSg9DzePEwwlcOXbsfhuDTRNjWOUhNh5nvOvoeA8fGicW1OasM9s+Nd6+CjdqQmWkLYhskcis9TLcFiQ2NjHeeQ7690yMd5mbZDzJaHsISZbIWuBl5EiI6EjspOONCiOHj5mzE+Ntz7DiLXbSv3cENYk23orESGvw6Jztmhhvj4WMY+dsoRPFLk/N2awFXoK9EUL9UawuBV+5m4GmMZKxiTnrsjDUPDY13uHBiTk7Od4Hx0hEJuZshvXoeB87Z+0ygaqjc9aVY8cRsDGwf3LOeogF4ym/RoSHYuQs9tG3c/i01ohQ/8ScTZM1ovS8XOLhBHv/eHjGa8Qbxzsd1oi6K4o58nIfI23B014jJuesWCNSc40Y7w6jJtSU2UfM1xrhCNjIXepn758Oa+Ot4z5ivteI4dYgakJNmX3EXK8RHWoru3mdj33sY/z4xz8mHUlbg0hVVT796U/zwx/+kIXJNeRJxXpLmjfsGVaKz8mh+YlO1ERa/nzTRrZKJGPm+FuPJW9FgNJzc9n4vf2m+a1BOyVMxpKmqqwYqPZQcVE+237eTCJinhxJMxZVUBwyS2+tpOXJrqnNkBnIW+ZHtsp0vm6eIjmSIrHq07W0vdBjunYCoHnPkzFzrGeSIlH57gKOvNhLZMQ85fTVhnGe2/MPbr75Zn72s58hHRsHnUakbeayJEl897vfpb+/n4ceeghr1EamlKu3rHnB4lbwlbmxZ1gJD5qjQtGkMZS1IIPhQ9qJiRkYPjTOYblXbxnzjivPQcIkv/EkgwfGGDxwQG8ZgnkgEU6y+Yfm+62d2XYUe+qX351tDr/Ua6q+Qxantkfp3ztiGmMItMNqX5mbLveAaQyiQbWXHU2vsnDhQn7wgx+krTEEaewhmiQajfKe97yHl19+mYaxtWRIAb0lzQ8SpqppD1oPh1WfqaX12W5TnTAKBEbGjB4igcDIFKzOpOydeWz87n7THF5OYaK9Wdg9xg7lVVasWMFjjz2Gy+XSW9JpkXZFFd6IzWbjoYceYuHChTRnb2NMHdFb0vygaglvdVcWTyWVGp14OMGWHx0wnzEkQdn5eWTWevVWMr9ImK789sIPlVF+YfqUKRXMjPIL849LijcDVo/laLUtk5BZ66Xs/DzT/d2drw+w5UcHTGMMuXLt1F1ZrBW9MIkxlMyKsJV/kp2dzV/+8pe0N4bAAAYRgNvt5vHHH6egoICWvG2Mm8QoUpNg81qnqveYgUk39GRCpClQwZVlx5Zh1VvJvFL7vmIWXFXy9hcaiL7dI1PJzwLjMtwyNpXEbBYWXF1C7fvMk+sLYMuw4syymWaTLMkS3mKtkp9ZQsYArC4LNq91qkWK0QmqY+yzbyYjI4O//vWvZGRk6C1pVkj7kLlj6enpYd26dQwODlLeuQS3ZLITdZNg81pY9ZlaDj7eSfcW8yWpmgVPoRMkGGsP6S1FMIeIkDlz4ClyggpjHeJ5Nip5KwJUXVLAxu/uJzoa11uOYA6QC+Jsjb+C3+/n+eefp6CgQG9Js4ahDCKA7u5u1q1bx/DwMOUdS3BJHr0lzQuV79YmZfMTnTormR88RU7TbZQlRSKrPoO+ncN6SxHMEYpNJqPUxXDruGmqKprNIJKtMr4yFyNtQRJR8yScm43sRT7694yYqjooaAdZZjF6Ky8pANU8+66QOs7uwGtIksTmzZspKzNW2K8hQuaOJS8vj2effRav10tb8U6CqjlKmo53hxnvCustY96YNIZcOfbjOjAbmYxSF3VXFE81sjQDvgo3pevMUT0SwBGwac1K8516SxHMEe58Bws/VD7VfNQMlK7LxVfh1lvGvOHOc1B3RfFUo0yjIynSVC6zWYwhgPFO8+y7Quo47eV7CAQC/OMf/zCcMQQG9BBN0tHRwXnnnUc4HKbk8ELTeIpAK3kZDxk/mdHiUFj92Vpan+uh47V+veXMC3a/lciQeWKz85YHyFnsY+d9h0wRhy/JWt6BmX5js3mIQHuOoyMxVDM4iCRYfGMFPdsGTdVXzExrdeEZWZSty+X1/zFHVTmz7LEmUQqTbAg+h8fj4eWXX6akxJi5vYY1iADa29tZt24dY2NjlHUuwiP59JY052TVZ1BzeRFbfnyAyLDxF2NfmZuRI0HThSVYXQqxoHkWZIFxMaNBJDAuZlybJUUio1gL9TU6dp+V5R+vpunRdlMURhlXR2kt3EEoFOLxxx+nsbFRb0lzhuFC5o6lqKiIl156iezsbJqyNjOiGj8Bf+jgGK3Pd5vCGAIYbh1HTajY/VZkizlC5yovKWDh9eV6y5hXzBRelLvUT9k7zRMmaDbK3plH7lK/3jLmDTM9uwALbyjXcktMgGyVsPutqAnVFMYQQGQ4Ruvz3QwdNEE6RnGEAzmb8fl87Nixw9DGEBjcIAItp+j555+nurqaPd4NDKq9ekuaUxLRJJ0btD49ngIHis3wPzGyRWLprZWUnGOOTWT35kFanuzSW8a8kVnrZfVn6kyzsbI4FFOV0jcbVrei9SsxAXa/ldWfqTNVD7WWf3TRvdn4h68AJWfnsvTWSlMcRio2GU+Blr/buWHA8AVRRuR+/tn7FA6HgxdeeIGioiK9Jc05hg6ZO5bR0VHe+9738tprr1EXWkm2lK+3pDlFtkis+kwt3VuHaH2mW285c46v3M1YZ4hExNiLlBmRrTL+SjeDB8ZMFxppBkTInHGRFIlAtYeh5jHTVE00E4pdxlPgZPiQ8b1DZefnkbfUz8bv7ScZN/ZcHlB72OfeRE1NDX/5y18MWUDhZJjGIAIIhUJcc801/OMf/2BBbCV5krGbxLnzHAT7IqbaRFpcCrIsER0zfg+EBVeXMNIWpGO9OQpKmAlJ1pocGv3FC+YyiGSLRDKhmqJAiNkoXJtFRqmLvX88rLeUOcfmtZBMqMRNlCslKRKubDvj3cauKictCfLcridZt24dDz/8MG63eapDmsNvP4HT6eTPf/4zV111FTul9bSpB/SWNKeMd4en8mtKzsnRW8680HBdmWnit4O9EdPkilkcCjXvKTJNyfE1n19A/qpMvWUIZpmC1Zms/cICvWXMC+48BzXvKUJxmGObERmOEeyJ6C1jXqh8dwEN15nDa1ByTs5UnpTRjaEjajPP7Pg7DQ0NpjOGAEwXqG61Wrn//vspKCjgv//7vwmr49SwBEkybgysr9RNzmI/HRv6SYSNHVJ28PEOU3iHANqe79FbwrwRjyRwZtmweixg/AhQDv6t0/AvXzMy0DRGZMQc65PNa8GZZTNNGHP/3hH69xq/6hhA8986tbXY4CgOmZzFfiJDMXqGhvSWM2eoqkpX/gH2dm3j9ttu53/+53+wWs2Rs3sspgqZeyPf+973uPPOO7n66qvp/UMMRVL0ljRnyJaJ8BsJU4RryFYJZ6bx3duKQ6ZsXR7tL/cRGTGHt0hgLMwUMicwHvYMK0XvyKb1uW7DHzi68x2E+iPmyAeb2CtN7Z0MSlJNIl8wwtNPP80Xv/hFvvWtbxnaQfBWmMOX/SZ8+tOf5k9/+hOPPPIIiXP6ialRvSXNGcm4imyRWHxjhSlKvpZfkE/9B0qRjD7Dk+CvcOOc6BJudCwuBWeWTW8Zc47NY6FgTaYpqjeZBdkiUbAmE5sJTtadWTYsLuMeMB6LM8eOv8KNavB0GkmG+mtKKb/A2AWpQGt9sPjGCsMbQ3E1hnT+MC+++CJf+9rX+K//+i/TGkNgwpC5N3LllVfyzDPPcPnllxMhxjL1LJySMeMmk3GV0fYgoT7jxzm3Pd9D5+sDhu8En4gm2fyjA6bw+oH2Qk5EEuz+vbG9CbYMKxUX5jPcMk6w1/jPqxlwBGxUXJjP6JGQ4cN6Ky4qQLHJ7Ph1i95S5pyhg2OmWIPVJOz6XSuxcWPPXYBQX4TR9qChjSEpO8FuXiW0IcSTTz7Jueeeq7ck3TF1yNyx7Nu3j3e/+90caelgKY34pWy9Jc053iIno+0hvWXMLRJk1Xnp3zuqt5I5RbZI5K/MpPP1fkMbga4cO9GxOPGQ0Y9jQZIw9G85iZlC5iQZVBXDb54tTgWbx2JoY16SoWB1Fl2bBgy9cQbIWpBB/74Rw89bU+yJgGF1gO28gtPv4Le//S2XXHKJ3pJSAqMHFJ0ydXV1rF+/nsZz1rKJF2hXjX2ylbPEz+JbKg3f7DKrzsuCq0sNH2blzLJTdn4eniKX3lLmlGBvxPjGEIBqDmPIbKhJDL+pBIiHEoY2hgA8RS7Kzs/DmWXscGVnlo0FV5cYvrmu3W9l8S2V5Cz26S1lToktHGKT9DwrGpezZ88eYQwdg/AQvYFoNMqnPvUpfvKTn1BCNTUsQTZoIkpGqYuRtqDeMuYcZ5aNUL9x88MmsTgVUxgLgRoPxWflsONXLYbeXJqlr4lZPESm6BsmwZKbKzj8z14Gm8b0VjPnmGXNNcs71Mh7IlVVOSjv5FByH42NjTz33HPY7cY25qeLMXf6p4HNZuN///d/uffeeznCQbbxsmGLLUw++PkrA4Y+FZlcyPNXZWLzGjdtLh5KgAS+CmPmwE0SHY0T6oug2Iy9fEVGYoY/ZTcTwd6I4StBKjaZYF+E6Kix80x8FW6QMLQxZPNapnqhGdkYylnsI39lAMCwxpDkVtlhfZVDyX185Stf4aWXXhLG0Ekw9o5ihkiSxB133MGTTz1JMhDldZ5lXDVuDoqn0ImnwKm3jDlFscuUnJVDZl2G3lLmlOz6DBZdX44j07ghguNdYQ482mH4/ib9e0ZM1WvK6LQ930P/HmP3qUlEkhx4tIPxLuO2O3Bk2lh0QznZ9cZ+l2TWZVB8VjaK3djbRE+BE0+hcfc/QXWMLfYXGFEG+Nvf/sZ//Md/oCjmqAA5XUTI3NvQ1NTEe97zHpr2HmAhq8mVivSWNKfYM6yGPcVU7LLhN9Gg9Yow8oYE0Ipl1Gcw1hEiMmTM+Qra8ygpEuFB457QmiFkzhGwoSZUw66toP2N7gKHZvQZfFdhijUWY78zjbzXmaRX7WAXr1NQks9PfvITLr74Yr0lpTTGNv1ngZqaGtavX8/73v9etvMqTep2kgbNdrZnWFlxe41hw+cmF/as+gyK32HcKoKTL2pXrnFd4pIsUX1JIVkG9/gt+EApJefk6C1DcJqUnJPDgmtK9JYxp2TWeqm6pBBJNm4fk8k11cjGUPE7ssma8H4Z1RjKWeJnxe3V2DKMWVRKVVWGGg6zjVd49+UXs337dmEMnQLCQ3SKqKrKd77zHT7/uc/jI4vFrMUuGc/NmrPYR/+eEUOXES05Owdnjp39fz6it5Q5I3uRj7oritl4737DelDMzN67nQAAZctJREFUkNDsyrUTG48TGzfu32kGD5HVrWB1Wwj2GDsnzMjPpN1vZdWnatn35yP07RrWW86cUXtlMcHeCEde6tVbypwhWySy6jPo3WG83zGqhtnJBgbp5aqrr+J3v/sdFotxc6dnE2EQTZOXXnqJD3zgA/R3DrKYtQQkY57e2n1WClZn0vpst7HL/0oYMrxDkiV8FW6GDhq/0pORwzrMgBkMIqNjlmfQX+VhuGXMmO9Eg74LJ5FkKHtnHp0bBgwbKifXRnjl8HO4PC4eeOAB1q1bp7ektEKEzE2Ts88+m82bN9N47lo28yKt6j6MaFN6Chxk1mWgOIybfOfKtbPy9hpcOcYLLVOT6pQxZNSwAIDSc3NZ+pEqvWXMGbJVovLiAkMn/RodT5GTyosLkC3GDSVb+pEqSs415uEgHF1Dhw4a0xhy5dpZeUeNocOsFYdCZl0G7gKH3lJmHVVVaVObeHr/42RmZ/LKK68IY2gGCINoBuTn5/P0009z15fuookdbONloqqxQiH6946y5UcHiAcTKHYZq9t4hlFkKMbQoXGiY8YtEZtVn8HKO2pwBIxZda5/7witz3brLWPOSMZUvCUuQ5eLNzp2rwVvsdPQYcitz3YzsNeYlVgdARurPlUzlVdjRKKjcYZaxg0ZXm11Kyg2mXgwwZYfHWBgn7HmqZSR5EDOZvazjU99+lPs3buXqirjHhLOJSJk7jR5/PHHufnmmxnpG2Mhq8mS8vSWNOvUXlGMK9vO1p8e1FvKnGFxKqiqSiJsrOM/SZHIXuijd/uQ3lIEgpMiQuYEqU7uEj+9u4ZRE8baLikOGQmJeNiYeV8Ayz5WRbA3wv6HjZczPKD2sN+1mYSa4Oc//znXXXed3pLSGuEhOk0uvfRStm/fzjkXnMUWXqJJ3WG4KnStz3Zz8IkOvWXMKfXXllJzufFKqqsJdcoYMqKXD7RmkNWXF+IpMm5YmWw1briV0THyb+cpclJ9eaFhmyRPrpk924cMZwwB1FxeNHUgYVQOPtFpuCiCpJSkI7uJzbzIilUreOGFF4QxNAsYcxWbZwoKCvjHP/7Bt771LdrYz0aeI6gaJ5k9Mhxj9EgIgMqLCwwZOtDyZBeHnjHWonksGaUuVt9ZhzvfePHTiVgSR8CGzWPMsDJPoZMzvtRgyFw3o+PKtXPGlxoMmwNm81hwBGwkosY6BASt19DqO+vIKHXpLWXOOPRMNy1PduktY9bJqs+g8uICAEYPB4kMGycUMKSOsyfzVfb0befLX/4yzz77LKtXr9ZbliEQBtEsIcsyd911F6+tf42cqkzW8zSdaquhCi5IsoTFpaBYjTdtxtpDhAeiSIpE4RlZWsUdAzFyOEjzP7oI9hiwf4YKO39zyHCx4ZMEe8I0P9FBdNy4uW5GJToWp/mJDmM+d8DAvlF2/uaQ3jLmhGBPmOZ/dDFyOKi3lNlFgsIzspBkifBAlLGOkN6KZh3FJmNxKUgG26oMZXSxnqexuqz8/Oc/5+tf/zqKYszIDz0w2HTRnzVr1rB582auu/5advE6O1hvmIILalJl/5+P0DMRgpW1wGu4ykmeAgel5+XiMZonRYWujQOoSQOHzjlkMmu9esuYdZJxla5Ng8SDxo3zNyrxYIKuTYOGLKiQWetFsRtzC2F1K6hJbc00WilqT/7EO67QWO842SKRWaet/z3bhtj/5yOGqQgYU6O0lexg4/A/ufyKy9i2bRu33HKL3rIMhzFXM53JyMjgvvvu48EHHySRFeI1nqRXNVYOjtVjofaKEnKW+PWWMquMHgmx8bv7Ges05omuI2Bj1adrp14cRiJvWYDaK4oNmc/gCNg0z6UgrSg8I8uQFR4Vm0ztFcXkLQ/oLWXWyazzsurTtYb83QDGOsNs/O7+qTB4o5CzxE/dlSVYDRY6PWjr5lWepHu4iy9+8Ys89NBD+P1+vWUZElFlbo7p6uriox/9KI899hgFlFHLUqySMRZaR8BGeDAKGLMxX+l5uSg22XAx1nkrAvTuGCIZM9ajL1slFJtCzIChZYEaL3XvL2bTvfuJjRvLU2TUKnNWt4WVn6ph30OHGWwyTk7pJFa3hUQ0YcB1RCZnsY/uzYN6S5lVKi7KJxFN0vZ8j95SZpVj9x7H7knSnbgao6fyILubd3LhhRfyy1/+kqIi4xV+SiWEQTQPqKrKr3/9az7zmc8QGYnRwCpDled25ztYfFMFu+4/xGi7cU6d8ldlothk2l/p01vKnGB1W4iHEqhJYy0BkgyyRTZWovdkZKqxfirAuAYRYMjfTbHJJONJw4QjTSLJEhanMQ9UAIrekU0iktTCAA2Ct8jJwuvL2fHrFsa7jBPVMWTpY2dsA7ILrr/+en74wx+KXKF5wHixJSmIJEncfPPN7Nixg3e8s5EtvMRedQtx1RiVT0J9EY683Gu4MLOujQNTxpDRqrPJFollH62i5BzjdZdfcmslZecb58AB0DbUBtpUmwYD/m5l5+ex5NZKvWXMOiXn5LDso1WGy4udfHe1v9xnKGMItPC/Iy/3EuozRp52Qo3TV9vMxtjzrD57JTt27ODHP/6xMIbmCWEQzSOlpaU89dRTfP/732fA1clrPEWf2qm3rNMmGVc58s8+1KSKI9NGw3Vlhkrct/usLP1IJbkGypdKxlUOPtFB54Z+vaXMOkf+2UvXJmO9+AHyVwZY+hHjbUSNytKPVJK3wng5Nl2bBjjyz169Zcw6nRv6OfhEh6EKYOQu9bP0I5XYfVa9pcwaVrdCw3VlODJtqElt72GE36xf6uJVnmTPoV3ceOONPPvss1RWivV+PhEG0TwjyzK33347O3fu5JyLzmIrL7NDXU9UNYZ3xWKXka2SoeLKI8Mxdv22lZ4dQ3pLmVUG9o0SCyZQ7LKhXpj9e0cJ9hjjxPBYgr0RBppGDVcS3pBIMNA0apiT62MJ9kTo32ucEvd2nxXFLhMLJgxXur9n+xC7fttqqD48ybiKbJWwGKTCYVSN0F65hy3Jf9K4bi07d+7k17/+NRaLsYpDpAMih0hHVFXl/vvv584772R0YIwallJAKZJkjB2P1aWQVZ9B1ybjJKe6cu3krwjQ/I8uw4TCNFxbiuJU2PHLFr2lzBp2v5Xa9xWz/y9HiAwZZzNgRAydQ2QgHAEbNe8tMtwztfiWCuKhhHHmnwSV7yqga/OAoQ6G8lcG6N8zQswg7QdUVaXHcoS98a3YPVZuuOEG7r33XhEepyPGMLHTFEmSuOGGG9i7dy/XfOhqdvM6W3iJkDqut7RZIXNBBqXn5WJxGucBd2bb8Ra5DNWctuWpLpr+0q63jFklNhYnEU5gsRtn7oF2mu2vdOstQ/A2+CvdhvK6glZMIRFOEBszVtGBpr+2c+gp41QSVawy3mInzmy73lJmDYtTofS8XDIXZOgtZVYIqeO0lG9lR3w9V1zzXpqamkThhBRAeIhSiCeeeIJPfOITHGlrp5IGSqlBTvNWyxaHQjycQLbKuHLsxuiKLQGq5gFLxFSSMWOUW5JkiYwyF8MtxjDIjUjpulzylwfY8N/79JYyaxjRQ7Tm83V0bRo0XIljI+GrcDPSGjRMlU3ZqoWrx4OJqXdUuuMpdBLsjZCMJaf2EmmNkuSw2syBxA4C2QHuvPNOvvzlL+utSjBBeu+2Dca73/1udu3axafv/BQH2MF6nmZATe8X6uQCVnhGFouuLzdG08yJF82Ca0qpvcI4fQHyVwZouLYMq8s4p1SOTBvFZxmnkl7Ha/1s+n6T3jIEb8Ome5voWG+cgiXFZ+XgyDRG/zw4mphvpKIXdVcUU3+1drhgBGNIscksur58qiF1uhtDg2ov2wP/ZF9iK5+4/RMcPHhQGEMphvAQpSjbtm3j9ttv5+WXXyaPEmpZgl1y6i1rxkgyuHIdjHeFkWRQ7ArxUHovcJ4CB8m4SrDXIHHaEriy7cb5e4CshgwqLsxn608Opv18MypG9BAZCYtTYdnHqmh5sov+PSN6y5k1XDl2gn0RQxgPoP09kkViPM3bX1icColIAjWplQwP9oTTuueVlJlg58AmOtU2amtr+cpXvsJ1112ntyzBSRAGUQqTTCa57777uOuuu+jvGaCSBkqoTvswupJzc8hbHmDz95sMUS4TCaouLaRzfb9hjImCNZn07hg2hBEhKRJqwgDzbIKC1Zm4C5wceMQYeV9GM4iq31PEWEfIUD1fjPIMWZwKOYt9dG4wxm/jyrFTsDaLg493GMKwky0SK++opWvzAIdfTO/S7kk1SaejhWZ1Nzabjf/5n//hlltuQZbTe/9mZMQvk8LIssxNN93Evn37+OSnbqOJ7YYIo+vaOEjLk11TxlC6N8KzOBQ8BU5sGcZIora6LZSck0ug2qO3lFlBTahYXQreEpfeUmaFeCRpCEPVqMRDCRLRND7SPgZviQurSzGEMQQQqPZQcnYuVrcxShrbMqx4CpxYHOkd5jy5B0jGVZqf7Ez7yrRqZYgNPMOe8BYuuOACNm/ezIc//GFhDKU4wkOURmzdupXbb7+dV155hTyKqWYxTim9K04VrMmkYFUmW3960DC9izyFzrQvHqE4ZBJhY2zqAGreW4Sn0MmWHx3QW4rgDRjNQ2Qklt9WzVh7iCaDeCPBGGubEd4xk8hWiWUfq6bz9f6099yF1SCHM/bSOtLMggULuO+++1i1apXesgSniDBX04hly5bx0ksv8atf/Qq5IMGr/IMD6g7iavr2hBg6OEbXpkHDGEOBag/LPlqFO8+ht5TTYnLDkLvET1Fjls5qTp9DT3ez41fG6bOk2GXcBek9x4yIu8CBYpCGkQA7ftXCoWe69ZZx2hQ1ZpG7xA+Q9saQO8/Bso9W4a8yhgc/GVPp2jjA0MExvaXMHGeC/spWXuEfhBxjfOlLX2LHjh3CGEozjLNym4TJMLr9+/fz5X/7Mt3ONl7h77SrzaSjsy/UH52qxpTdkMGSWyuR07jHz+CBMXb8poXx7vRObJ3EkWUzRD+L2HiceCiBbJWwutM7vASg9LxcGj5QprcMwRto+EAZpefl6i3jtLG6Fa2EcyhBbDz9+w45s+04soxRJW+8O8yO37SktQEhW2WW3FpJVoPWV6hjfT+h/qjOqqaPqqp0qIfY7HiB7Yc2c9vtn+DAgQN885vfxGIxRlimmRAhc2nO4cOHueeee7j//vvx4KOGJWRJeXrLmhHeYifZDT5anjRGk7ysBV4K1mSx54E2Q+QUGCGxesmtlUSGY+x76LDeUk4L+0S+WmQkfb3DkxgpZM6eYUUFomn+u9S9vwS7z8r2XzTrLeW0MMKaBVoJ6vprS+lY38/AvlG95cwKFRfl07d7mNEj6Rn6J9WF2dK1nr6hXj7wgQ/wmc98hsbGRr1lCU6D9D2KFwBQUlLCfffdx/r161n6jkVs4SW2qi8zrqZfedTRI6EpY8hX7mbJrZVYnOl7mh8dTxDqjxjCGHLnOVj1qdq0DwU89HQXh55Jf4M7MhIzhDFkNCIjsbQ3hgAOPdPFoafT+zkxypoFkIgmCfVHiAXTt5iKxamw5MOV+Mq0vOeWJ7vS0hgKqqNsU1/hqb2P4fQ6ePHFF3nggQeEMWQAhEFkENasWcNLL73EH/7wBzzldjYoz7BH3URYDeotbUYkokmCfZG0rqY1ejjIwcc7AfAWOcms8+qsaOaEBiL07R4mPJh+YQ3HMtIWJDIUQ5K10+N0Jqs+g+rLC/WWIZig+vJCsuoz9JZxWkiKhCRDZCjGSFt6vjsmCQ9G6ds9TKg/fVshZNZ58RRp/QcPPt7J6OH0/U3ioQTB3giJWHoeEEbUEL0LDrBeeRpHicJ9991HS0sLZ599tt7SBLOEMIgMhCRJXH311ezZs4dvf/vbhLNGeN3+DE3qdqJqer0UxjpCU31W3HkOltxaic2bvjG5ucv8FDVm6y1jxiRjKi1PdpGIJrG6Ldg86ftbIGmhc6Xn5uit5LSQZC0Wn/S264yBpP0Wad4ijtJzc1lyS2Vazymbx4LVbSERTR7X3iEdKWrMJm+ZX28ZM8bmtbDk1kpcuVoe6oFH2tOuOp7kTXKAHWx0PsuBtiauvfZa9u3bx/XXX4+ipG8Ei+BERA6RgRkZGeG///u/+X//7/8hyzI5IyWUUoMipddm1p3noPjsHPY/fCSt48EVm0wimsTus6Z1r5LFN1WQjCfZ9dtWvaXMmNxlfsa7wox3GaP4RTpjpByidMed78Cd56Bn25DeUmbMwg+VIVtkdvw6PatKKjYZi1MhMhybemekK5IiUXtFMUde6k27QkMJNU6n8xCH1L2oqsoXvvAFvvCFL+D3+/WWJpgjhEFkAnp6evjP//xPfvSjHxEIBPB3F1BEJXIaHmfaM6w0fKiMfQ8dJtiTXl6vSZbcWklsPM6eB9NzA+jItKEmVSJD6Z8rkfZI2oFBOht2RjCI3PkObcMn3qa6Y/dbkWSJ8EB6hvfWf6AUq0th+y/T06Bz5dqpu7KE3b9rTc88RyVJqLqf5uH99Pb2cuGFF/KNb3yDpUuX6q1MMMek345YMG1yc3P5zne+w759+7j44ovZL23jVf5Bh9pKUk2z0ycJxrvCRzfjaRjasf8vR6YSltMxjyU8ECUyFEO2SJRfmJe2fVckRWLRjeXkrQjoLWXGFKzKZOlHKtP2NzACil1m6UcqyV+ZqbeUGZO3IsCiG8rTcj0C7TcovzAP2SIRGYqlpTE0OfaHnu5i/1/TsBHuxNSJDMe0w4E0m0qqqtKltrHe8gwv732BlStXsm/fPv72t78JY8gkiLeoiSgvL+dXv/oVO3bs4F3vu5DdvM6rPEmHeihtDKPIcIz9Dx8hEU1icSisvL0m7RrUhQeiWs8FCRZdX07puenZt8Tut5GzyI8rJz37FKkJlZHDwbTcPE3Su3OYbT9vJhFJj+fXiCQiSbb9vJm+XcN6S5kx4YEoI0eCaRuS7Mqxk7PIj92fnr2GSs/NZdH15SBpvfnSbU3yV3lYeXsNikMmEUmy/+EjRIbTwzukqiqxBUNs9j3HTjZwzvln8eijj/Loo49SWVmptzzBPCJC5kzMli1b+D//5//wl7/8BSduKqgnn9K0CaVT7DJl63I5/M8+YmPxtIy3zl+VSbAnnLYVnY7t82GUnh+C+cUIIXMCfTDK+pNR6sKV66Br44DeUqbF5DvX5rFQfFY2rc/1pM3hTFJK0qe0cyC2iyBj1NfX84tf/IIzzjhDb2kCnUiPna9gTli+fDkPP/wwmzdvnvAYbZwIpUsPj1EikqT5713ExuJIisSyj1VR1Jilt6xp0bVxYMoYqrqsMO1Kc09uQErPO3rCmXZIUPf+4rQNnXPl2mm4rhTFJpbz+UaxyTRcV5q2XtL8lQHq3l+cts/tohvKKT1P87CnmzGUWeel6jKtbP5IWzDtjKGixiyWfawKSZGIjsVp/ntXWhhDSTVJp9rKVv/zbI+t5/zL17F+/Xp2794tjCGTI96gginDaMuWLVx8xUVpZxgBqEmVIy/3MdA0BmjlPtMpHl5SJKwOBUlOH83HMnhglN5dw+mZVK5qoZjp2vMqEUkiW2Ws6VwKPU2xeizIVjktNoInIxZMaKFNafrc9u4cZrBpVG8lM2JqzU+z99Rk+4uBpjGOvNyXNoZoUkoSXzzMa9KT7OJ1ampq+N3vfscjjzzCmjVr9JYnSAFEyJzgBLZt28b/+T//hz//+c84cFFGLYWUp1W57sW3VBAbi7P3j4f1ljIjihqzGDw4lpaV9DJrvYwcDqatgSGYX0TInGA6WJwKGSUuBvannyHkyrUTqPLQ/mq/3lJmxIKrS7B6LOxIowp4CTVBJ4c4bGliPD7GmWeeyb333suKFSv0liZIMYSHSHACS5cu5aGHHmLbtm1ccd17aZK3szPnZVrUPcTU9Ej2PPBoB4df6gW0MqzO7PQJaZEtErlL/PjK3HpLmTayVab6skIKVqdnxa2Kd+VTeEZ6hV1O4sq1i2pz84hil6caTqYbhWdkUfGufL1lzIiC1ZlUX1aoNSVOM3zlbnKX+JEt6eMVcmbbsfutABx+qff/b+++4+Oo74SPf2Zme9NqV713F9nGlW6M6cSEECBAIIRccNoBT5LnyvPcc5cnd89druRJeSDkOO4ScgGO5BJyCSY4TqgOEMAYF9xkW1bvva62z/PHSquVJeOCpF1Z3/frJWs89bc/zc7Md36N2ufbkpyiMxPSgwxUtPCu40WOqfvZcutHeOGFF3jzzTclGBIzkhIicVp1dXV8+9vf5oknnsBgMOAZyaWIKiyKNdlJOyPlW3Jxlzl579FjC6ZqSGID4YzlLgabfIRGwklO1Zkxpxlj40/oxNomLJA8Byi+KovAUHjB1ec3WDUu+tOl1L7QRuee/mQn56ws1BKi7LXpVGzJ451v1Sy40tCc9R7MLgONr3QlOylnbuJaooDZaVwwY9wYHQbSimz0HB4CFljnDwqse7CKgRPDnNjenuzUnBHVE6U+dJQOvQm/38+FF17IY489xsqVK5OdNJHiJCASZ6yzs5NHHnmE73//+/h8PjJD+RSzBLuS2h0BKJqCxW1krDeI0aaRs85D69s9REOpf+qrBoV1D1bRsaeP5t93Jzs5Z8WebaHq1gKO/GfTgutGdiFyFlgZafOjR1P/vE60UAMiRVVw5FkYbhlLdlLOexaPiWV3FnHsv1piY9wsIIVXZJK9Np09jx4nGk7976ZqVMi/OIOO9/oI+SJYM8z4+4Ipf13x6SM0cpQOrQmDwcBXvvIVvvzlL5Obm5vspIkFYuGVOYukyc7O5hvf+AZNTU184xvfIJrj523ld+zX32JA7yFVY2s9osfG/QGchTZyN3hQDQvj1I+GdfY+XkvLGz0ApJXaMVi1JKfqzARHw4y0jhEcXhglW4nyLvZSviUv2ck4K8MtYyn/0HI+0aP6gguGym/KI++ihVclNDQyfi0ZXRjXEoNVI600VuW55Y0e9j1+YkEEQwCqQSX3Qg/OQhsAYz2BlL6uBLzDtFQc5G31d4SzfTz44IMcPXqUf/zHf5RgSJwVKSES58zv9/PUU0/xrW99i2PHjuEinSIqyaIgpccyUg0K0bCOalBYdmcRDa90Mtqe+m8dFVVh3UOV9BweouHFjmQn56yYHAZs2RYGTowkOylnJOsCN1avaWFVKQLKbswlMBBcUI22F2IJUf4lXsxpJup2LIxqRBOKr8pirDdI1/6BZCfljKRXOBjt8BNcINWFJ5Rel4N3mYv3vnc8pYOJCfZcCyVXZXPkP5vi98aUDuC0KCNZvRxuO8AQfXi9XrZu3crXv/51rNaFUZVfpJ7UfWoVKc9isfC5z32OI0eO8MILL3DRtes5yC7eZDv1+hGCemr2kDZxoTfYDKAo8fr/Bktql7zoUZ33f1hH887YQ7oj34pmWRhf4byLvVRsyVswXcx27R9YcMEQQNgfWXCDEy9EkWCUcGBhtRsCaHyla8EEQ4qmUP6RvAXTyYnBouHIjz2MN73Wxfs/rEv5YGjinhcei4CixO6JkLLBUEgP0qDX8Lb5Rd5u28naK1exbds2urq6+Md//EcJhsSHIiVEYlYdPHiQhx9+mKeeegpFUfD6cymkEofiSnbSTmvNFyvorx2m4aXOZCfljKx9oJKhZh+121qTnZTTU2KlRMHhcOq/fUzgWeKk8PJMDjxZvyDanC1EC7GEaCFRjSorP11C8+vdC6ar6olrhMlpiJUOLYCvXsXN+bgKbez5/vFkJ+WMlFybTXq5k73/UpvspJzWqD6Eb3k3NScOA3DLLbdwxx13cOuttyY5ZeJ8sjBeL4sFY8WKFfzbv/0bzc3N/NVf/RXRXD9v8zv26q/To7djsGukVzrjA5Dacyw4Cybf6qRXOOJdfBpssXUnuii1ZZlxFdni67rLHFg8pti6lvF1x7titWaYp3RbnVZqx+qNrauZVdIrnfEuiq1eE2mldhpf6aT70CCuYhueKif2HAuqMbbuRLsdS7oJd7kjvl9XoS3e9a5qUEivdGK0xdY1u42kV0yu6yywYs+xALHqb+mVzvhgmmaXkfTKyc4pHHlWHLmWyXypdMYHxDM5DaRXOjn4ZD2NL3dgz7WQtSotvjy90oE5LZaHxon8Hi+ZsWdb4nXDAdzlDizp43loPSm/M0/Ob3s8vzXLeB6aEvK7JCG/S+zxrs41k0p6hZNIKFZysfzuYpbfXTyZh8U2bJnjeWhUPjC/nYU27NnjeaiN56F9PL/TjKRXJqybP5nfKON5OJ7fppnyOy/hPKx0YnLFOuLw9QZwlzuZqAX6Qees0TY9v12ny29jQn4XT6474zlrSjhnT5Hf5jQjhZsy429/LR4T7rLJdV1F089Zwweds9knnbN2Q0J+J+RhfsI5q8x8zjJeQOjItcTfpgMY7QbMrvE8dBhS9hoBse9XepUj4ZxN3WtErGc2ncBwKH6eTXyGlLtGVDrRLCoVN+ez/JPFpJXaY+0P9dS9RtjzYt8Po8PAYP0Ih56Kjc+TqtcIz1IX1gwzmkklMBim5Y1YRz2peI2w55gxrg2wV3+Dt/gddc21fPzjH6epqYmf/vSnEgyJWScBkZgTmZmZ/OVf/iUNDQ089dRTFK/NZx9v8npgO/1FzURMsS5T8y/OoOTqyfEwln6iEO+SWGmSI8dK9d3F8WL83A1eSq+fbCRZdWsBGcvTALBmmqm+uxizK7Zuztp0yrdMrlv50XyyLnADsRto9d3F8Rt35io3lTfn03dsmNF2P+UfyaP4qmyqPl6AyWmg+u7i+M04Y7mLJbcWxPdben0OeRfGqnQYrBrVdxdjz43dCD1VTpbeURRft/iqbPIvyQBANSlU310cvxG6yx1UJwQJRZsyKdyYBcRuMtV3F5NWGrsJuYrsVN9dTNgfJTQaoeCyTEpvyKPipnwAlt1ZHL9hOfNtsTwcf7DLu8hL6TXZk/l9eyHepbEblj3HQvXdxfEHsJz1HspuSMjDWwrIXBHLb5t3PL/HH6qyV7upuGmyE4KKm/Li+W12G6m+uxirJ5aHwdHwlAeL8htyyVkfG7fI5IitO3GD9S51svS2wsn8vjaH3PFG4QZLLL8debE8TK90suzOyfwu2pxNwWWx/NaMaiy/xx/e3KWxPJwIcgo3ZlJ0RWbsPwpU312Mu8zOWE+AvqPDLL+zCG08wMi/NIPizZN5uOzOIjzjN31HXuycNY4/rOVe6KHkusnze8mtBXiXxc5vW1YsD03OWB7mrEun/MbJPKz6WAGZK2N5aPWMn7PjD0pZF6RT8dH8yTzckkf2mvTYMS/yUnxlNrbs8XO2Oo2qj0+es2XX55I7nt9Ge+z8duRM5LeLJbdP5nfJNZPjMmnmWB5OPOi5yx0svyvh/L4yi4LLY3moauPn7HjAkVYykd+xp52CyzMp2pQV39ZVYMM9fs66CmJ5OBGMpNI1QtEUltxaSOVH88leG8vvVL5GaGaNaFhHj0L2msmxwVL5GtFzcJDgaJiqWybzMFWvEVU351F2Qy6uQhtLbi0kHIi99EnVa0TlR/PIv8SLyWWk/MZc/AOxzoZS6RoRUoI06sfY6dvOb957nsylbn784x/T3d3NT37yE7KyJq8bQswmqTIn5oWu67z99tt8//vf59lnnwUgPZBNkamCdDWDyPiNxGjTiASjRMM6iqZgsKiEfBHQY28RFW2yzY/RphEJRYmGdBRVwWA99boGm0Y0pBMNRVHU2INJeCyCHo294VWNCmHf+LpWDT2qY7BoBIZC2HPMFF6eRd1v2gkHImjG8eNMrBvRY+02lFiawv4oeiTWMFUzq4RGJ9so6bo++Vntp15Xs6igM2XdSOCkfJlY16yiWVQUXSEwFMJVZCUa0hlp98+4rqIohP0z5OFp8ntqHp4mvxPy5YPyu+jKLAbqRhjt8E/Nw7EoelRHNSpT8zsxD0+T3zPl4SnXNaugQMQ/c3478iwsvb2Imp814esJfOC60/JQPUV+f4hz9oPyW7OomBwG/H2h8Tyc4fw+1Tn7Qfn9Ic7ZD8rvZXcVoWpKvEH3GZ2zSbxGGKwamkklPBY5s3M2SdcId6mNio8WcPDJ+li1s9Ods0m8RthzLWSuSKPx5c5TX5NPzsMkXSPMLiN6FMJjYTSzRmg0TDSsT8vDVLhGmNKMFG/Kov7FDiLBKCaHIXb94uQ8TO41IhKKMqz1M1LWybH6o6iqyi233MLVV1/N/fffj6aldvtecX6QgEjMu56eHn70ox/x+OOPc+LECRykUUAZORRhUIzJTt40zkIbpdfmcPCpWDsSo91AKIW7f626pQBbtpl9j59IdlI+kGpUWfVHpbS905vyDb0VFYqvzqbljZ6FMwjnAhkUd0G1IVogeQqxh9qCyzPiQUYqy1rtJu9CL+//qJ5oKLUTu/oL5fg6/Rz7Veq23Zy4R6lGlRX3llD/YgfDzb5kJ2uaqDFCeOkg+w/vZTDcT3Z2Nps3b+aRRx4hMzMz2ckTi4wERCJpotEoL774Io899hjPP/88drudtOFMCijHoaQlO3kz0kwq679SRdOrXbS/25fs5MxIURVMTgOBwRDmNCOuIhvdBwaTnawZKaoS74kprdTOYMNoyj9wTnl7mqLMaUZWfqaUo//VkpIPQokWSkDkKrRRdWsBB/69nsBgKNnJOaWTSxxSlhKrJjVYPxr7b8K1INVkrkxjqMkXv6YGh8Mpm9bcDR6KNmex+/8dS9lrVCjNx4mBowy5uhkeHmbDhg389V//Nddffz2qKi05RHLImSeSRlVVrr/+en71q1/R0NDAV77yFSK5Y7zNi+zSX6FVryOsp9aDRyQYpfb5NnprhoBYHWl3meM0W80vParHH9gylrsouSZnSoPqVDLxUGFOM1J9TwlZ4/XhU9mKT5VQdmNqD/gXGAzRc2gwpUsyF5rgaJieQ4MpHQxBbCyq6ntLkp2M08pa6ab6nsk2RqkaYKhGhZJrcshYHmvXExgMpVxa3WWOeMcSvTVD1D7flnLBUFgP0arXc8j7B3YObCeUPcJDDz3Evn37eOedd7jxxhslGBJJJSVEIqWEQiG2bdvGE088wY4dOzCbzbjHssijBDcZKEpqPdhX3VqAZlA58rPY221FJeWqp0zUKzdYNfIvzaDlje54He5UYs+xMNoRGyBXM6kpd0OfkFZixz8QJDCQ2g/GC8VCKSFaKCzpJsxpxlhpawpK/G4nfudTiWZWKbg8k9Y3ewj7I/FraCpJvNcsu7OISCjKsf9qSW6iTqLrOgNqD4ElfRyvO0YwGGTjxo1cccUV/MVf/AU2m+30OxFinkhAJFJWa2srTz75JE888QS1tbVYsZNHCbkUY1FS50I6cYNPK7FTdUsB+5+oIziUeg/L7nIHlTfns+/x2niD2FRkz7aw8r5SDj3TwHDLWLKTc0qKpuAqtKXsgyfEulc22g107RtIdlJOaSEERFmr3YRGwvTXjiQ7KaeUVmJnqNmHHkndW7qzwEr13SUc+HE9o52pFwhNMNo1Vn++guPbWhk4kXp/c5PLyAWfLePYL1sYbBxNuRdIelqY4ZxODtQcYIwRvF4vN954I3//939PYWHh6XcgRBJI+aRIWfn5+fzFX/wFx44dY+fOndxx3+202+r5g7qDvfrrdOotRPXkP9hP3IgCQyG63u+PB0OZq9zxMRZSwcCJEXY/fIyQL4JqUKj+VAnO/NQb2XusN0DLWz2MtKfuAxPE6uovu6soPj5HKnKXOeJdVItz513imjLWTaox2DSWf7KI3A2e06+cRCPtflrf6mGsN5DspEzjzLdS/akSVINCaDTC7oePpVQwZHIayFwZa1sbHL/XBIZj95qUCIaMOv3ODvbqb/Dq0Db21L7Ljbdex6uvvkpXVxdPPfWUBEMipUkJkVhQhoaG+NnPfsYTTzzBW2+9hcfjwdbnJoci0vCmTJW6ic4XGl/upOO9/pTrncrkMFBxcz51O9rx9wVTtkGz2W1k6e2FHPtlC2O9wWQnZyoFbBlmfN2p93A3IRWrcJ5sIZQQQernpS3THOtSOcW+xlaviaqPF1DzbHNKVjOduPZZPCbKbsildltrrJvyVDF+78hZ76F4cxa7H06dzhJ0XWeIPtppos/Wjs/n46KLLuK+++7j+uuvp6ysLNlJFOKMSUAkFqwjR47wox/9iJ/85Ce0tLRgxU4OheRQhF1J/ltxzaQSjejoEZ2Sa7KxZZo5/JPUfOi7YGsZPYeHaP1DT7KTMoXZbaT02hyOb2tNyXZPEwo3ZdJ7eChlgyNrhpmxntRMW6oHRKmcd7ZMM95lLpp/353spJySZlapvDmf+hc7Ui4gyr80g4zlLvb/oC7ZSZnR8k8WMdoVoPHlThRNQdWUlAiGRvVhhrI6aQs10t/fT15eHps2beKee+5hy5YtyU6eEOdEqsyJBWvZsmV885vfpLGxkVdffZV7tn6SvrR23uJ39K2po1E/RkBPXhuUSDAar88/2DBK79FhAFSDQv5lGRgsKVLVSoGu/QMMNcXawpjTjBhTpBpYYCBEzc+biQSiGKwalTfnp0zaJqhGBe8SF87C1GnXlsiWZWbdA5WkV6Rula9UlV7hYN0DldiyzMlOyoychTa8S10p14uk0Rb7rhqssYE3a36eOqVDRpsW79luqGk0NgZaimSfwaKRf1kGqiGWoL5jwww1xq7Lye7qP6D78S3rpKF8H2/xW5rGTrBkyRKeeeYZmpqaeOaZZyQYEgualBCJ84rf72f79u08/fTTvPDCC4TDYa6++mpaX+wni/yUGPjVVWSj+p5i9jxWS2AglHINYpfcVojVa2Lfv6bWwK6OfCtVH8vnwJMNhFKpSgtTx1BJxeqH6ZWOWIcAqZUsIMVLiJRYUNR/PHXakkDqn28mh4EVny7h2HOtjLSmVscoqz9fzlhvkKO/aE52UuIm7gGWdBNrvljOoacbGUqF8cOsUaJVwyjeKK+++iqKolBdXc3XvvY1tmzZgtWaem1QhThXEhCJ81Z/fz+/+MUvePrpp9m5cycWi4WbbrqJmmebySAXg5K8Dg9Uo0I0FPvqrf58OQN1IzS81Jm09CQyWDTMbiOjHf5YQ94VabTt6kup3qtUg0LhpqyU60Lcu9xF8ZVZvP+j+pTrpjdVpXRAlIIMVo1Vf1RK46td9B4ZSnZy4ia6qm7e2UU0nDrXCkVTyLvQQ/fBQYLDYew5FgIDoZQZuLbkmmzcZY74C6jEe0NSWKMMO3opvjKbbdu24ff7Wb16NV/60pe49dZbycjISF7ahJhDUmVOnLfS09PZunUrr732Gk1NTfzN3/wN9fX1HOQd3rH+FtfHo3TozYT1+S9tSLzhNe3somf8wcZZaKPsI7lJrQIT9kfiY4OkFdvJvzQDVUuROiXj7DkWsle7MTlSpxc/gNF2P71Hh1PmYStR3kVequ8pTnYyFozqT5WQd5E32cmYJuyP0HdsmJH21Cp5MTkMZK92Y8+xJDspU6iaQv6lGbiK7QCMdviT+v1UjQplH8nFWRArXek5MkTTzq748mQEQ1FjhE69Gfdt8Pvwr3mnayfHjx/n61//Ou+++y579+7l85//vARD4rwmJURi0amrq+PZZ5/l5z//Obt378ZisXDjjTdy/Jet4yVHyatW513uIm+DlwM/rgcgrdTOcIsvqW8MJ95YqkaV1Z8ro25HOwN1yR97RzUosTfRChRclkn7rt6Uqnpoz7YQGAqlTEmRu9yBI89KyxvdKVV1LiVLiBQouDyTkbaxlOl62WDVMLuMKTV+j2ZSyb3QS8ubsXMq/p1MMneZnbIbctn3b3VEQ9Gkl7qoRgVngY3B+th1c+V9pbTt6k1qCV9YD9NDO/nXu3n55ZcJh8OsW7eOTZs2cfPNN7Np06akpU2IZJCASCxqDQ0N8eBo165dqKh4ySGLAjKTHBwZLBoX/ukS6nZ00LG7L+ltBQxWjeKrsml5vZvAUAhblpnAQCjpQYg9JzaQ68GnGhhpS5G35gqs/eNKhppGqX2+LdmpSWkpGRCloIqb83EV2tjzz8dTJqB15FlZce/4QKsdyQ3UNJOKOc2IrzuA2WWkYGMmja90JvWFxMQ1O2e9h7Ibctj1raNJLZ0K6yF6aMdf3E9DSz3hSJj169dTUVHBgw8+yGWXXZa0tAmRbBIQCTGusbExHhy98847qKikk0UmeWSSi1mZ/wakZreRsC9CJBil+KosXEV2Dvx7/bynYyarv1DOWE+Ao79oSXZSpnRMUXBZBp17+wn5klsyY/GYCI2GU6qNEwrkX5LBSPtY/G11sqVaQJRWaseRa6X1rZ6UCTwg1kbHaDfg70vueFxGu0b26nRa3ox10Z8qncIsua0Aq9ecMp3BrPxMKYONozS92oVmUjHYtKT0tBfQ/Qyn9zDi6aWu7gRRPUpVVRUbNmzgb//2byktLZ33NAmRiqQNkRDjiouL+ZM/+RPefvttGhsb+dZ3vsWKTUuoYQ+v8wK79Jep148wog8yX+8REktgBurGu4gl1lB4yW2FSe0O+PAzjTS+Eqv77ioab/tkSE5bo4k8MqcZyb8kA0de8ns/8vcFiQSiGO0aK+4tweo1JTtJoMd6TXOkWDuPVOLIsZBe7kiJYMjqNbHi3hKM9lj31ckOhgAcuVbyL8mId12drGBINcTa4riKYt3dN77SxeGfNCYlLRDr3n7JbYUo4+0tu/YPxF86RILReQuGdF1nRB9ksKqVA543eJ1fs6//HSLRMF/56ldoaGjg6NGjPP300xIMCZEgtVokC5EiioqK+OpXv8pXv/pVent72b59O9u2beOXz/6KExzCip0MPZdM8nCTgarM/buFwYZRBhtiN1iT04DZbYz3/OYqshENRRlpn79qK8Hhyc4oTE4DNq853n7A7DYm523oYIjdj0yO5F6wMZP+48PJrc6jKOg66Ml/iQ7AwacaUuJhP1W1vtVL69u9yU4GEDtndB1QktupiT3HQnqlk5bXu+mvHZnyHZtvE9eWaFjH5jXHO1bx989/sOjItaAaVIaafegRHbPbiMlpIDAQonNv/7ylI6pHCaQP4c8f4MjhGnzREYwnjCxbvoxvfuef+MhHPiIdIghxGlJlToiz4Pf7ee2113juuefYtm0bbW1tGDCSQQ6Z5OElJyntjpbfVQQKHP5JrNqRxWNK2ttks9vI+oeqqPl5M701yWs0rBpVLri/jNa3euIla8mmGhTsuVaGU2CMEe9yF301w0kfwyZVqswpqoJnqZPew8nvytpZaGO0fSwlOigAyLrATf4lGez/YayTgmTxLnOx9PZCdj9yjMBgcgZ6Tby2Lv9kMbquJ+XcDeshlOoxmvsaaWivI0wIp9PJtddey9atW9m8eTMWi5QEC3GmJCAS4hzpus6ePXviwdH+/ftRUEjDSwY5eMnBQRrKfLzdVcBo1Qj5IjgLrFxwfzn7fnAiNiiiwvyWCCjgXeqi//gw0bBO3kVewoEIXfsG5jER40lRJ0tmCq/IxN8fpPvA4LynY0L+pRkUbszk3YePEvEn78HS6jWx9o8rOfKfTfQdG05aOiB1AiJPlZNldxax55+PM9abvKppmkVlw5eX0Px6N61/6ElaOjJXpmFJN9H8+25g6ndpPmWtdmMwa7S904tqUEivdMZetMzzNQ09Njj06q3l7P/BCYZbxzDaNEJjkXlJi67rhNJ9hIuGOfL+UQb0HnR0cnNzuf/++7n55ptZs2YNBoNU/BHiXEhAJMQsaWhoYPv27ezYsYPtz28nQgQTFrxk4yUHL9kYlblvR6IaFNzljtiDrg5Lby8kNBbhxAvJ6e2sfEseYX+Expc7UQ0KJpcxKaVXlTfn4+sN0Ppm8h4yUWLdcSe7Ry4AS7opKdWMTpYqARGkTp7Ycyyx7rWTeHcuuCwDq9fM8W2t835si8dEcChWLa7kmmw0s8qJF9rnPR0A5TflYbBoHH22GZRY4DxwYmReSu9CehCl2k9LdyNNXY0E8WM0Grnkkku44447uOaaa1iyZMmcp0OIxUACIiHmQCAQ4M0332THjh3s2LGDAwcOAJCGJx4cufDMS+lRRnUaekSnt2YIs9tIxZY8al9oS0obn6zVbio/ms+u7xwlNDr/A+JOKLgsA0e+lZqfNSctDSXXZGNyGDj2q/l/4ExkyzLj6wok7fipEBAlOw8Aqm7JJzgSpuGlzqSlYdkdRQy1+pL60sBoN3Dhf1/C8edbk1KqHL9G/rqNwGAI71IXiqbQc2juS5Z1XSeS5WMse5CaAzUM0gdAbm4u99xzD9dddx3r168nPT19ztMixGIjZatCzAGz2cxVV13FVVddxTe/+U1aWlr47W9/y44dO/jVs89Rx2GMmPDo2XjJxkMWFsU2J2lJvJEbLBoAodFYl9R5F3kJ+cLzVo2s+8AggcFQPBhaflcRnfsG5r2tka9n6sOv0abNezfdI21jGB3JvQS7yx2s+FQJe/+lNqUG/JxP9hwLa75QwcGnGhioS94grMNtY4RG5v8lQeK5P9zmY6xn/gND7zIXWRe4OfLTJkKjYQ4+3cBQ0/y1s8tc5cZojVXLm7g2GqwagcHQnF+b/LoPwwVBGloaaO1tItQVxDxo5qobr+LWW2/liiuuoKqqak7TIISQEiIh5l04HOadd96Jlx7t3r0bABsO0skinUw8ZGJS5r5BbOXN+QRHwzS+3IlmUclZ66Fzb/+8DGaoGhTKP5JH14FY97T2HAsmp4H+4/P7UJq5yk35R3J573vH4g9D8y17tRt/f4jBxvkfGyi9wkF/bfICgVQoIUpWHqQV2zGnG5NSEgKxMYXWPVTFiRfa5r1tXXqlg+BQmNFOP2mldrJWujmxvW1eqqIZrBrZa9LpeK+PSCBK8dXZmOyGeakeGNQDRIpGGLb2UXv0BD5i511RURH33nsv11xzDRs2bMBut895WoQQkyQgEiLJenp62LlzJ6+88gqvvPIKNTU1ANhx4SFrPEjKmPP2R2nFdpbfXcR73ztOcCRMWqmdsD/C6Dx15V1yTTaeKid7/rkWiD20zEdgZrBoeJY64w+lWRe46T0yNK/dCi+/u5ix3gD1v+2Yt2OezGg3JKUaYzIDomR95gml1+dg9Zo5/Mz8jZ+jmVS8y1zxnhezVrvpqxkm7J+H71rCd3rtA5X0HR2atyqC9lwLBovGYP0oJqeBdQ9WcviZpjl/CRHSgwwaelGX+qk7Uc/AWKwaXEZGBrfccgvXX389F198MQUFBXOaDiHEB5OASIgU09bWxmuvvRYPkOrr6wFwkT5eepSFmww0ZfarWymaEh/baOV9pQSGQhz7ZQuKpuCpdNJ/YphoaO4uGRMPTCangfVfruLIfzbTf3z+ekEzu42se6CSmmeb6Ts6j72vKbGhZvRobEyp0S7/vPZCl17pYOknitj3eO2897CWrIDI6jWx+gsV1PysaV5LhwwWDVuWmaEmX6znNp157TzBs8TJ0tsLee/7x+e1HaGnysnSOwrZ/fAxgsPhOX/hoRoV0sud9B2LdS1f9fECzC4jB34cu54mXutmU0QPM0AP0TIfnSPtdHTFOoNwu91s2LCB++67j02bNkkAJESKkYBIiBRXX1/Pq6++Gg+Q2tvbUVBw4cGNFzcZpOHFpJhn98BK7OEtPBbBVWRj1R+Vxdua2LLMRALRORsLRDUqZFan0XNkiEggSuEVmRis2ryUoBgdhnhbjpJrcxjrDdC5Z34GWVRUWPdgFX3HhqjbMX+lRYqmkHWBOzaY5DzfEZJWQqRA9pp0uvYPzMmD8amU3ZCLp8rJe48em7durLPXpmP1mml4MXZOJZ7jc6n0+hzCYxGaf9+NZlbJWOai+9DgnL1UMacZ0cwqvq4A9mwLa75Ywfs/qmOoyRcLwPyz30V2UAkwGO1l1DGA3z1MW2srUT1Keno6ZWVlfOELX+Caa66htLR0dg8shJhVEhAJsYDous7Ro0d55ZVX+P3vf88bb7xBa2us3rsdZzw4cpOBFfus9mI3MUI8QPU9xQAc+o9YVR93mYOhptE5q/+fs96DwazS8mYPqkGhcFMW7bt6CQ7P7UNd+UdyGe300/FeP5pZRTUoc97OyOwyEvZHiASjsTwfDM1rkDJfVRUnJCMgmu/PiBJ7WA8MhNBMKgaLRmBobktnjHaNaFgnEoiSs96DPcvMie1z23W1yWkg90IvzTu7iIZ1Ci7LIByI0rG7b06OpxoUXEX2eGcY1Z8qQY/q8SqIides2aDrOkpGmLaeNgbpwe8Zprcv1iNfXl4eWVlZ3Hjjjdx7770sXbp0fsagE0LMCgmIhFjAdF2nqamJN954I/5z8OBBAExY4iVIbrw4cKMq6qwcVzOpGO0G/P1BbJlm1v5xJQeerGewfhRbphkU5qwbY0euhep7Stj3gxMEBkI4C6yExyJzXtWraFMWuRs87Pru0XkpUVA0hfX/rYruAwPz1s7CmW9lxadLOfDjekbaxublmPMdEDnyrKy8r5SDT9Yz3Do/n7HkmmwyV7jZ/b1j83buXPjfl9C+q4+mnV1zeiyr14TBqjHcMoYl3cQF95dx8D8a5qztoS3LDDr4ugOkldpZ+elS9vzzcXzdASzpJkKj4Vlr/xfVoxjKwnQMttPR28awqZ+xYKz3u+rqakpKSqiuruZLX/oSxcXFEgAJsYBJQCTEeaa/v5+33norHiDt2rWLQCCAhjZezS6DNDy48MxaNTtrhhl/fxA9olP5sXzs2Rb2/esJINZ2YKjZN7tv5MdHjgdY8ekSwv5IfEwhq9c0J8GRZlFx5lkZqBtFURXKt+TS+oeeOQ3EXEU2/P1BgsPh+anmpEDehV7ad/fNWzWy+Q6IFE0hd72Htl29c17yNvE3MzkNWNJNc9qVtNVrIv/SDE680I4e1XGX2RluG5uTtmiJ37FldxShWVQOPtkQW5jw3ZwNBquGq9AWG2gaWP35ckY7/Rx/rhVFU7Ckm2atq/CgHoBiP2OOYU4cqmOQXiJEMBgMXHLJJaxbtw6Px8N9991HUVHRrBxTCJEaJCAS4jwXCATYs2dPPEB688036e3tBcCCLR4cuUjHSTqGD9lZg6IpmF1G/P1BDDaNi/9sGTW/aKbn4CC2LDO2DDM9h2dvbA9FUzBaNYIj4cm2Tv9ay2i7H82kzklvcRaPieV3FXHkZ82M9QQwu40Eh8NzF0QosOaLFQzWj1K3Y26rPU2Yr3Ym8xkQzWevcmU35pJWYmfvv9TOWeClaAomp4HAQAhrhplldxRy+KdN+Pvm4IXA+HfJkWth9ecreP+JOoaafZicBkK+yOyd+wpkLHPh6wng6wqQuSKNqlsLeOdbNYR9ESzpJgJDoQ99vIgeZoh+Ri2DKEUBmhtaGAnGgi6bzcZVV13Fxo0bKSkp4dprr5XBUIU4z0lAJMQio+s69fX1vPvuu+zatYtdu3axZ88efL7Y22s7rvEgKR0XHhykfaiqdka7RiSoEw1FKbg8k9z1Ht79f0eB2MCww60+hltmp+qSoim4yxzxnumW3VVENBTl6C9axldgTh5OV322jOBwiJqfN8/+zselldgJjoQZ6wnM/kPoSYw2jXUPVtHwSuectf+YMF8BUe4GD0Wbs9jz6PE5G4RX0RSMNo3gcBhrhhmTw8Bgw9x167z0E4WYnEbef6Ju9nee8F1ZclshqkHhyH/G/kbplU4G6kZm7fxzFlhx5ttoeyf2ombDV5fQ/m4fLW90oxpVNNOHa7sXVaJoxWGaG1oY0vsIekbp7e9B13WsVivZ2dlceOGFfPzjH2ft2rWUl5ejadqsfDYhxMIgAZEQgnA4zOHDh6cESQcOHCASiaCi4sQdL0VykY4N5znXl08stVnzpQo69/TT9k4vtkwzOes9NL7aOWvVfNJK7SgKDNSNYvWaWHV/GQefbGC0Y3bbN1g8JjSjyminH0eelaJNWRx7roXwHD14r7i3hGg4yuGfzF0QkbEijf7jw0QCc9sV2nwFRJpZJb3SSc/BuRuAdPkni1ANKgefapiT/RtsGlUfK6BpZxcjbWPYsy1EQtFZLxGy51hY8ekS9v+gDn9fEHeZHV2HwfrZCe40i0rx5mw6dvfh6w6Qd5GX7DXpsdI0+FAlu7qu42MEy2qdtrZWOrraGVEHiUQjaJrGypUryc3NpbS0lC984QssX74cg2H2hzAQQiwschUQQmAwGFi1ahWrVq3i/vvvB8Dn87Fv3754kPTuu+9y6Pi7AKhoOHQXTtw4SIv/NijG0x4r8UFn72O18WlzmpG0IhvR8eVlN+YSGg3T/Pvu2ArnULqT+AAXCUZp39UXb29QdmMuiqZw4tdtZ7fTGSQ+kKoGBT2qx9tMZa5IY7h1DH//7D20nvhNO5opVmpnchpQDeqs7h+IBw5Gm4bBZpi1dhrzzZphJuwLE/JF5iQYsqSbiIajBIfDNO3snvUqmpZ0E458Kz0HBwmPRdCjOqoh9jJitHP2Avvym/LQIzp1v2lnrCdA+64+oqHYZxmoO8dAKOE7W3hFJka7gbrftBMN6qQV2+k7NoyvO0DbO73x0iHgzPPQHGEwMshQqB/yAwyFB+js7CRKBPZBVlYWW+6+gVWrVuHxeLjtttvweDzn9lmEEOc1KSESQpyxvr4+9u3bx759+9i/fz/79+/n8OHDhEKxrm2t2BMCJDdO0rBgO6fSpILLMgiNRejc0485zcjaP67g4NONDDf7MDkMRCP6h+qoIesCN4qq0Lm3H4NNY80XKjj6bDNDzbPX8F1RFTZ8pYrWt3pofasXzaKioMTGQ5kl5R/JJb3Cye7vHZuT6oDL7izC5DSw/wdzUC2LuS8humBrGcHhcLy616xSYP1DVfTXDs9ql9YGi4aOTsQfJf8SL3mXZLD7/x1Dj87eH9hVZGPJbYXs/ZdawmMRsteko0d0ut4fOPd0WzVUTSE4EsZZaGPFp4rZ8/1aAkMhstemY7RqtLzZc9b71XUdPz6MlRH6/X20Nbczqg3ii8S62zYYDBQVFeHxeLjjjjtYu3Yt1dXV5OTknPNnEUIsLhIQCSE+lGAwyJEjR+IB0kSwNNFxgwHjlFIkJ2nYcaGdRecNRptG1up0Ovf2Ex6LUHZjLu4yB3u+fxyArNVuhpt959zjm9FhIP8SL61v9RIaCVN8VRb2bEu8SpqiKuf8MKoaFFAgGtIp2JhJwSUZvPOtmll7uFUNClavmdFOPwaLRvYaN+3v9s3amFBGuwHVqMzqeC6J5jogMruNREP6rHWmoBoUcjd46Nw7QNgfwZ5tYaw3MGv5ragKF/3pUlr+0DPehkZBj3LO7XUSz93lnyxipMNP06td0875c2H1mnAW2OjaPwDA2gcqGTgxQt2OdgxWLTbw7b7+s2qzpVijjDJCv6+XaJafMdMwbS3thImdfzabjYsvvphVq1YRiUS46aabuPLKKzGZTOf0GYQQAiQgEkLMAV3XaWtrmxIg7d+/n2PHjjFxybFix44r/uPAhR3nGQVKZpcRk8vAcMtY7AHyz5ZS/2IHnXv6ceRbyV3noW5H+zlXX0qvdGJxG2l/tw9Fiz2gnnihje6Dg2gmFT2qn9MDsNGuYc+xMnBiBBRY92Alja92zVpVLu9SF5U357P7e8dmfeBR1aBQfFU2za93z+q+5yIgMlg1Cjdm0vhK56wPFmywaax/qIrjz7XSWzM7vSVmrEijeHMW7z16HHRwlzsY7Rg7p44EVIOCoipEglEyV6RRviUvFoBHdHI3ePAPhOKdjpwtzaRSdkMu7e/1MdI6RvbadEqvzeGd/xsL8J0FVoJD4TMadDaihxllGGNFFJ8yRPPxNkYZYoxY9TxFUSguLiYtLY0tW7Zw6aWXUl5eTmVlpXR4IISYdRIQCSHmjc/n4+DBgxw6dIhDhw5x+PBhDh06RFPT5MNwLFByYsMZ/23DiQnzqaveKeNvwiM67nIHhRszOfDv9UDsrXhgKMSJF9pBAXepg+EW3xkHS6pRIXt1Ov0nRvD3Bcm72EvRpize/uYR0GMN0P0DwbPuCEI1KuRfkkHvkSF83QEyV6bhqXJx9Bcfrqe6iQbpiqZwwWfLaHyt65wfgBNZPCZW3FvC0f9qYXgWqxXORUDkLLSx5NYCDj7VMCsdDqRXOim+Mov9T9ShR/RZ6c59yW2F9B0bovvAILZMM95lLlrf6iEaOrtbsmZRsbhNsY5CFLj4z5fRtLOLtrd7sXhMpJc76NzXf8b71UwqzgIbA/UjoEP5llzMTiOHx/8+Kz9TSvPr3QycGEHRxkufTrFrXdcJEcBUqdM/2E93Vzdhpx+fNszAwEB8PbfbzcUXX0x1dTUAl112Gddddx12u/2s8kIIIc6VBERCiKQbHh7myJEjU4Kko0eP0tDQQDQae/A0YEwIkhzxaSv2DyxVyliRRjQYpe/YMNYMM+seqOTAj+sZbBglvdKBM89G086uM06r2W3EkWONlw5s+O9L6No/QOPLnRjtBjxVTnoODZ71A7N3mQt3qT3eFqXio3l0vT/AUOO5BR+aWaXkmhza3o4NHmvPsRAeixAYPPeqb4nVrww2bVZ60ZvNgCgxTR+mmiPEOvkwWDVGO/xYM8zkXeSl4aWOc+51L63YTuaqNGqfj3XiUb4ll4G6UXqPnF0pk2ZSyahOo+/YMKHRMMVXZ5O1ys273411Ze9d6mKkY+ysqjgWXZnFcIuP/toR0krtrPx0Ke89eoyx3iCeKieqUaXn0KlLMaNaFFOpTldzF4P+QdT8MKORIbo6uuNV3RRFobS0lNLSUjRN47rrruPyyy9n6dKlpKWlnVUeCCHEbJOASAiRsgKBALW1tRw9epSamhqOHj0a/0l8w2zCgg0HVhzYsCdMO6b1fGdJNxEcDhEN6+Re6MFT6eTQfzQCsTYQXfv6aXmzB4NVw11mp//4yAcGN5Z0E9GITnAoRHqlk+V3FcUGkRyLkLM+1qPV2Y7lo5lUlt1ZROvbPfQfjz2kepe6qP9txzk/5FffU4yiKrPSJXT+JV7yL83gvUePf+huuWcrINLMKuserKLlzW7a3u49/QanseLeEvSoHj83zpaiKpRen0NvzRCD9bHgO//iDI78Z9NZB8uJ55HBpnHRnyzl8E8b6T8+gsllRNWUD+xlUDOppFc6GKgbJTwWoeCyDLIucLPnn2O9PFbfU0zf8WHad/WhGhRMTuP0/VmjKFkhOhq6Yt1aVyr09/fT29NLgMne7tLS0sjLy8PpdHLzzTfHA561a9dKD29CiJQlAZEQYsHRdZ3u7m5qa2vjPydOnIhP9/VNBiBGTFixY8GOFdv4tC0+T1Mm2yPkrEtntNPPcMsY7nIHKz5Vwq7vHiU4FCL/sgxMDgP1v+0AxqvK9QWnPdyqRiVePan0+hzQof53HahGlfX/rZJjv2pl4MTIWXVWkLkijazV6Rx6ugGAso/kMlg3Qm/NmVeFU40KRruBwEAIR66FqlsLOfR0wzmVGBmsGukVDroPfPi2T7NZQpS5Mo3+2pFzauNkdhupvqeEo//VzGi7H7PbSGg0fFZV2LxLXaSV2akbL+Wr/lQJnfv6z6iNWGLnD+5yB1W35LP7kWNEQ/qU8wimnmMTNJOKxWOKj7FVen0OwZEwrW/2YHYZ2fDVJRx8uoGBEyM4C6zYsy10vNcf3z6iRzDk6/gZpbu1h6BpDFOJQndLD0O+QUJMBkgejweXy0Vubi7XXHMNpaWlqKrKFVdcQUlJyTmPUSaEEMki4xAJIRYcRVHIysoiKyuLSy+9dNryvr6+eIB04sQJGhoaaGhooL6+ntqmA4TDk71qmXQLVmxYsHN8txUzNixYGaq10ftP/ahjBhRFIRKIEjHEgh9FhdWfK+fEb9rp2N2HM99K7oVeTrzQRiQYxeQ0EAlG48ETgKJBx+7+eJuWnLXp5F+SEWuLBORd7MXXHYh1uHCS7oODdCc8VJvsBlRjbBwiZ6GNkquyqfl50wf25hUN6fHgKxLSGawfiTd+z7vYi6/Lf8bjzYTHIvFgKGu1m/RyB0f/q2VOuv3+QAosubWA/toRuvYPnHWA5i6zY8uy0PZ2L4HBEIP1I/FA40wCVaNdY+ntRTS83MFwyxiqUcFkn7ytTgSwMx673IEt0xwvzVrzhYpYz3Kvd+PvC9Kxux9FUyCkx88jzayimVSCw2E0k0r5ljzad/Uy3DpG5io3ZTfk8odvHAIdIv5ovPTOPxhk5z/tZSw0gmOlkRPNjQw2D6JkRAibA3S19hDED62xtBkMBooKighHVS69+mIuvPBCPB4PaWlpXHvttWRlZZ1VPgshRKqTgEgIcd7xeDx4PB42bNgwbVkkEqG1tZX6+vp4kDQRMDU3N9PQcphgcPxt+BgoqFh0K+Z3rVjGgyVz1MrAI11oASOabsJhtGB2GYmMD2RZcVMeuj5e6qHA0k8U0vqHHpp2dsV6msu20P5eHwN1k8GPd4kL1TDCwIkRbFlmqj9VwqGnGvB1B7BnW1BNarwzg5qfT3a8oEd1AsMhQuOlIsvuLCI4EubEC7G2KvYcC74uP3pCQdZYT2DKuDneJS4UTWGgbhST00BaiZ2ew0Nn1NVzJBAblHTegyEAHYIj4TOugqZoChnLXQw2jBIcDuPIteIud8SCEp0ZxxJSVLBlWeIlL+Vb8jA5DBz5z1gAGhgOMVHPovvA4JSgzFkYG2h4tNOPLdNM9b0lHHq6AV9XAEeeFXepPR4QHXq6gbH+IPZsC8GREE07u3AWWMm/NCP299ZhyccLADj80yYioShmlxHdqKNkRWg80cDR79UQzgxizIHtO3fh133gCjM8OkxkotTs/fGAp6wIt9uNpmnc++l7WbJkCWazmfLyctasWYPBII8HQojFQ6rMCSFEgmg0Sk9PD83Nzaf8aW9vjw9GO8GAETNWzFiwWexYNCvqqBGL0UrFpkIGD/oJdugUrs+h4sb8+Jv8shtyCI5GaHm9G0WFzBVufD0BPEuctL7ZQyQYpeLmfOxZ5vjgqNWfKqFzbz89hwYxWDWsGWZGWsfQozoZ1S6iIT3WiYTXxLoHqzj4VD0DdaO4imxYM8x07umf6aMDkLnKTcVNeez6Vg2RYJT0SgeBgRC+7sBp885T5SRnbTo1v2g+46pmZ1tlTjUqLL2tkI49/fQdO32VQVumGbPbSP/xETSTyoV/upTaX7fR/QEDkGavTWesJ8BQkw93mYMV95aw+3vH8PdNdDKg0HNoCEVVcORbGesJEB6LkFGdRvaayaqNF2wtY7QrQO22VjSzSv6lGfQdHcKWYaHrwADoULAxE6NNi5UCKXDpX1ZTu72F7hN9qO4o9goTbYe6MOYotB/vwh8eQ/VE8Y2NMtg/NKUqG4CmaTgcDpYuXUppaSmRSISMjAyuu+46CgoKsNvtVFZWSsAjhBAJ5IoohBAJVFWNV8dbt27djOtEo1F6e3tpb2+f9tPW1hafbmmvw+/38/5Lb09uvBuM75kw6mZMmDn+rhOTYiGs61gNNlwVpfR1D9P2Siu5K7Mo31zI+99vxGgzkH9pBqGRMP7+AGF/rK2JyWGg6pYC3v6/Rwj7YgOFGiwafceG8Q+EaHytk8BQrIpgWokd7xJXPCBa8ekSeg4N0vFeP5pFjfWed3iQ/mPD8VKX0mtz6K8dof53HdMGyJ2WLxGdoC8SD4bMacYP1atdIrPLSGAoFGtn44sQPUXp1ckDgmavSSe9wkH/8VoiwSjvfuco0XCUtBI7Ix1jRPxRctalk1GdxsEnGwDIXe+ht2aIoSYfgeFgLA/HP0d6hSNWGndoCINF5YLPlnH0ly2ERsOE/bG/TdYqN0aHgcM/bSLkC3PBQyXUvtpCS3MrYVsQrcJGf3cbhkx4s+YQwaifcFaIscAYv/+75wnq48HnANAw/rm6DeTl5VFUUEA0GsXlcnHllVeSm5tLX18fF1xwAatWrcLr9aKq6qzkuRBCLBZSQiSEEHNE13UGBwfp7u6mu7ubrq6u+PRMP11dXZPV9U6iYcBmtWLUzOgjCiaDmbyVmYw2BFGDBlwZDnJXZDBwZAyTxYjZYkEJKpRdnU/rq70YDSYURaXsulz2Pl6LqiqUXp+LfyBI3fZ20iscVN9Twr5/rWWk3U/+5RmYHUbqf9eOalRJK7GjGtT4wK+hkTD5l3jRLBpNr8a6LTdYtXigZM+xsOYLFbz/ozqGmk7ddfiZlBC5imys+qMy9j5eG6+6lnisos1ZRPwRWt/qxeQwsO6hKo5vayEa1hlsGCUailJ6fS6BoRCtb/bgyLWw+vMVHPqPBvprRyj/SC5mt4n637YTjeis+WJFbJooYT1E3hUeTrzSCkYdxRolFAxhztJoP9SD0asy1DOEwaPS2zyAYosy3DdKMBIgGAkSDM5csmY0GrFarRQXF5Obm4vf78dut3P55ZeTmZlJR0cH1dXVrFy5Eq/XS3p6unRWIIQQc0QCIiGESBG6rjM8PExvby/9/f0MDAzQ398f/0n8f19fH319fQwODsbnJ3YWMRMFBYNmxKgasbosKEEVo8GI2WpBQ8OV7WC0JYA904oSBVuGld5Dw9gzLaQVxKrOjbT6MTvNZFS6GGkPYDRrRHw6ZqeJtEI7fTXDEFFQFJW0Ajsd7/ZjTTfjrUpDVVRadvagGjXsXjOjrQEKr85EURSaXurCXmAmFIwQGAxQcHkGuqIz2DLCQNMIuRs8+Pr8RCNRwuEIniUOfD1+Rvv8qCaIomPNMNJ7dAj/cAB3pQPNrDDYPIKvL4BnqYOxwQDRSJSQP4QxTWOwc4QoYaJqhGAoSCgcYmzYT0QJEwwGOd3t0WAwYDabcbvd5ObmYjAYCAQCrF27luzsbHp6erDZbFx++eWkp6fT399PRUUFpaWlOJ1OCXCEECJFSEAkhBDnAV3X8fl8jI6OMjo6ysjIyJSf4eHh+LK+vj56e3tRFIXR0VHa2trw+/2EQiF8Ph9DQ0Ooqko4HCYSieDz+VAUhXA4HP+JRD78oKxzQdM0DIZYz4CqqmIwGLBYLASDQaxWKwaDAYPBQDgcpqCgAKvVSiAQwGq1UlZWhsfjoaGhgaqqKsrLywkGg/T393PRRReRnp7O2NgYaWlpFBQUYLPZJKgRQojzgAREQgghzkk4HGZ0dBRd1+OB0+DgIKqqEggE8Pv9+Hw+BgYGcDgcdHV1EY1G6evrQ9M0vF4vBw4cAGDVqlXxtldlZWU4nU5UVaWzs5MLLrgAm81Ge3s7LpeLnJwcbDYbra2tFBcXk5aWhq7rBIPBeJfQ0WhU2tIIIYQ4IxIQCSGEEEIIIRYteX0mhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0TIkOwFCnI86OzsZGBhIdjKEEEKcZ9xuN9nZ2clOhhDnFQmIhJhlnZ2dfOLWT4CW7JQIIYQ431gsFp566ikJioSYRRIQCTHLBgYGQAPDURfKmAklXjFVRVGV2KSS8Ht8WlFVGJ8d30hRQJ2+7kzbn3o6YZ9q/D8J88cnVGVyZUWZrFA7sR6T+9QTlzN5HD2+r8n5emI6JrZPrKybmI7xaf2U05Mb6QkfZVrlXyVhXSVhXRL2E/8sTN9/wjwUBf2ktM64zbTtE/IlcfsZjpW4fMo+Tk4LTEvLyducbjlnuPyU8z5onSnL9RmX6zOmQZ+6v2mfRZ++fyV2jFMef8q+ZtgePeF01ydXTVhXSdiXctKxFGXq9pOrTt9eVfSEY+jj28TmT0wrCfMBVPR4umPbT+5r4jgT25y8fOJYKpO/4/MUpi9XTtpXwvTEbzVhG4VofF8T81QlmrDuxPxoPH80JtOtja87cRxN0VHG52kJadUSjhXfXtHRSDhWPK3RhLRMbB+dPMYptplI48QlRFWiM6Y1MS9VEtKXkNaJ/UzJl/h+QRs/SybOFU0BZfx/GsqU6dh6Cur4tKqoqCg0thr4xvfcDAwMSEAkxCySgEiIOaL4DKg+Y0IQpE6ZBiaeTsZnqQlPQ9MDIiUxoEkMfBLXnTL/5HVP2v7k4CohLbqS8DQ6Q5AVD3ISl48/osVWmJw/+agYW2di8ZSAJL7/hGl1pvmnmKeevK8PWDe+XJm+bkIQOGNAlRjMnGo6vr2SMD09XVPXnXl6xuWcZvlptj/d8WcMDpn+WWc61tTlpwmITlp3yjGnrXuKgChxfvz4MwU0ZxAQJU7PsL2SELzMtM3k6TL54K7E06VPmR/fT8K8iYdsZtgGRU/4DAkBUeL2pwheps075fKZAobJwEFL2CZxXYgFA4nzJtdNmJc4fVKQoSlR1PHMStxXbJrx6ckgbCJg0JTJgEObuIwxefyp+4ombDMxHZ3cb0JaJoObaDytWkKeaCSmb2pANDXNU9M3ke7JeZMBj5YQ/GjKxHpqwrzY/4QQc0O+XUIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoGZKdACHOV7otTFRRUeKvHVQUVYlNKgm/x6cVVYXx2fGNFAXU6evOtP2ppxP2qcb/kzB/fEJVJldWlMnXJRPrMblPPXE5k8fRpxxzfN3JHSTMm/iHacvi20SZPJYyMT25rp7wUabtK+GjkLD91OXKDOtO+6gJEyetd/I207ZPyJcZ0pWY/sTl+gxpSTzGlH3NsM3pls+U1pmWn3LeB60zZbk+43J9xjToU/c37bPo0/evxI5xyuNP2dcM26MnnO6TJ5CSsK6SsC/lpGMpytTtJ1edvr2q6AnH0Me3ic2fmFYS5sf3E0+LzrS8Qo/vS1d0ognL9SnrxH5Hx+epyuRnVJmYp8ePf/L0xG81YRtl/Ms5cTlR0VGVaMK6E/Oj8fzRJj4fOtr4uhPH0RQdZXyexmReaQnHim+fsC814TI0eUwlPq2hoIyvocXX01HHM1NVlMnp+PLojGmN5xV6fPrktE7sZ0q+JKRPGz/WxJ9KU0AZ/18srZPTsfUS0qeoqCg0tspjmxBzQb5ZQsyyaDSKwWAgvGQo2UlZGPSTfs+SmZ67hThfTIZD8XcHi1BihLt4KrwYDAai0cX7VxdiLkhAJMQsU1WVcDjMX/3VX1FcXJzs5AghhDhPNDY28nd/93eo6uIJAIWYDxIQCTFHiouLWbJkSbKTIYQQQgghPoC8YhBCCCGEEEIsWhIQCSGEEEIIIRYtCYiEmGVer5fPfOYzeL3eZCdFCCHEeUTuL0LMDUXX9Vnu20kIIYQQQgghFgYpIRJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKJlSHYChDhfBINBfvjDH/K73/2O4eFhysvL2bp1Kxs2bEh20oRIOb/4xS945JFHOHLkCENDQ3g8HpYvX86XvvQlbrvttmQnT4jTOnLkCDt27GDv3r10dHTgcrmorq5m69atFBYWxtd7/vnn+d3vfkdTUxMjIyN4vV7WrFnDZz7zGXJzc6fss6+vj8cff5y33noLn89HcXExn/rUp9i8efO043d3d/Poo4/y7rvvEo1GWbNmDQ899BB5eXmnTPP777/Pgw8+CMC2bdtwu90fep9CnA+k220hZsnf/M3f8Nprr/GJT3yCgoICfvOb31BTU8PDDz/MqlWrkp08IVLGY489xh//8R+Tm5vLRz/6UbxeLx0dHezatYvVq1fz9NNPJzuJQpzW1772NQ4cOMDmzZspLy+nt7eXX/7yl4yNjfHYY49RVlYGwHe+8x38fj9lZWU4nU7a29v59a9/TSQS4Uc/+hEZGRkAjI6OsnXrVvr7+7n99tvxeDy8+uqr7N+/n6997Wtce+218WP7fD62bt3K6Ogod955JwaDgZ/97Gfous4TTzxBWlratPRGo1E+97nP0dLSwtjY2LSA6Fz2KcR5QxdCfGiHDh3SN27cqD/zzDPxeX6/X7/rrrv0L37xi0lMmRCpZ+3atbrJZNI7OzunLevp6UlCioQ4e++//74eDAanzGtqatKvvvpq/f/8n//zgdvW1NToGzdu1J966qn4vGeeeUbfuHGjvnv37vi8SCSif+5zn9M/9rGPTTnWf/zHf+gbN27UDx8+HJ/X0NCgX3nllfrjjz8+4zF/9atf6TfddJP+8MMP6xs3btT7+/unLD+XfQpxvpA2RELMgp07d6JpGjfffHN8ntlsZsuWLRw6dIjOzs4kpk6I1GM0GjEajdPme73eJKRGiLO3cuXKaedwYWEhJSUlNDY2fuC2OTk5AIyMjMTn7d+/H7fbzbp16+LzVFVl8+bN9PX1sW/fvvj81157jaVLl7Js2bL4vOLiYtauXcurr7467XhDQ0P84Ac/4LOf/SwOh2PGNJ3tPoU4n0hAJMQsOH78OAUFBdjt9inzJ24stbW1yUiWECnprrvuYnR0lBUrVvBnf/ZnbN++naGhoWQnS4gPTdd1+vv7Z6xeNjg4SH9/PzU1NfzDP/wDwJTgJxQKYTabp21nsVgAOHr0KBCr+lZXV8fSpUunrbts2TJaW1vx+XxT5v/gBz/A4/FMeWmX6Fz2KcT5RAIiIWZBb2/vjG+2J+b19PTMd5KESFl/+qd/yg9/+EPy8vL49re/zZYtW/B6vdxyyy3U19cnO3lCnLMXX3yR7u5urrrqqmnLbrvtNj72sY/x+c9/nkOHDvHlL395Sqc7RUVFdHd309HRMWW7999/H5i8jwwNDREMBs/4nnPixAmef/55HnjgATRNmzHdZ7tPIc43EhAJMQsCgcCM1X9MJlN8uRAiRlEUPvvZz/Luu+/S3d3NL3/5S2699Vaee+45brrpJiKRSLKTKMRZa2xs5Lvf/S7V1dXccMMN05Z/85vf5Jvf/CYPPPAAWVlZjI2NTVl+0003oaoqX//61zlw4ACtra08/fTTvP7668DkfWTi95necx5++GEuuugiLrzwwlOm/Wz3KcT5RrrdFmIWmM1mQqHQtPnBYDC+XAgx3UTJ0C233EJPTw+vvPIKtbW1LFmyJNlJE+KM9fb28j/+x//Abrfzt3/7tzOWxKxduxaAiy++mMsvv5z77rsPq9Ua72a+vLyc//2//zff/va3eeCBBwDweDw89NBDfPvb38ZqtQKT95Mzuee8/PLLHDx4kB//+McfmP6z2acQ5yMJiISYBV6vl+7u7mnze3t7AeLdqgohYo23N23ahKIo8XmhUIi+vj5gss2EEAvByMgIf/7nf87IyAiPPvroGV3v8/Pzqays5KWXXpoy7taVV17JZZddRm1tLdFolKqqKvbu3QsQH9vI5XJhMpni95dEJ99zHnvsMa688koMBgPt7e3x9AJ0dXURDofJyMg4q30KcT6SgEiIWVBRUcHevXsZHR2d0rHC4cOH48uFEDG33HILLpeLiy++mOLiYkKhEC+++CKHDx/m9ttvp7i4ONlJFOKMBAIB/uf//J80Nzfzne98h5KSkjPeNhgMxktfEhmNxik9vb333nsArF+/Hoj1PFdWVkZNTc20bQ8fPkxeXh42mw2IBT0vvfQSL7300rR1t27dSkVFBU888cRZ7VOI85EERELMgiuvvJKf/vSnbNu2jU9+8pNA7Ga3fft2li9fTnZ2dpJTKETq+Id/+Ad27NjBrl27eP7557Hb7ZSXl/PYY49x//33Jzt5QpyRSCTCX//1X3Po0CH+/u//nhUrVkxbJxwOMzY2htPpnDL/8OHD1NXVcc0113zgMZqbm3nuuee49NJL4yVEAJs2beLxxx+npqYm3jNcU1MTe/fu5c4774yv941vfGPaPl9++WVeeeUV/vIv/5LMzMyz3qcQ5yNF13U92YkQ4nzw9a9/nd///vfccccd5Ofns2PHDo4cOcJ3v/tdVq9enezkCSGEmEWPPPIIzz77LJdeeumMvcpdd911DA8Pc/vtt7N582ZKS0uxWCzU1dXxm9/8BpPJxGOPPTYl0Ln33nvZvHkzWVlZtLe389xzz2Gz2fj+978/JXjx+Xzcf//9+Hw+7rrrLjRN42c/+xnRaJQnnngCt9t9ynQ/8cQT/Pu//zvbtm2bst6H2acQC52UEAkxS/7X//pfZGdn89vf/paRkRHKysr4p3/6JwmGhBDiPDQxvtwf/vAH/vCHP0xbft1112GxWNiyZQt79+5l586dBAIBMjIyuPrqq/n0pz9Nbm7ulG0qKirYvn17fCyjzZs389nPfpb09PQp69lsNh5++GEeffRRnnzySaLRKGvWrOHBBx8858BlLvYpxEIhJURCCCGEEEKIRUvGIRJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohF6/8DNygKpmOj/NwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1fXw8e9sb9Kueu/FttwrbphiAwYMmI7pmF4DhBB44RcSEkIKnQRCQjEdAgRM72Awxrj3bklW771sv+8fa60tW7Ylq6xWez/Powe8Oztzdnd2Zs7ce89VhBACSZIkSZIkSZKkEKQKdACSJEmSJEmSJEmBIhMiSZIkSZIkSZJClkyIJEmSJEmSJEkKWTIhkiRJkiRJkiQpZMmESJIkSZIkSZKkkCUTIkmSJEmSJEmSQpZMiCRJkiRJkiRJClkyIZIkSZIkSZIkKWTJhEiSJEmSJEmSpJAlEyJJkqQhID09nfT09ECH0W9+//vfoygK33//fbeWv/LKK1EUhcLCwn6N61AKCwtRFIUrr7wyINsPNosWLUJRFBYtWhToUHpsIL9rRVE4/vjj+307khRqZEIkhRRFUY74190LLkkKdaF+cTZY339bWxvDhg1DrVbz008/dbnMzz//jEajISsri+bm5gGOUDqUoX5jQ5IGK02gA5CkQHjggQcO+Zw8GUnB6Jtvvgl0CIPKww8/zD333ENSUlKgQxlwJpOJV199lRkzZnD55Zezfv16LBaL//mWlhYuu+wyAF599VXCwsICFarf2WefzdSpU0lISAh0KD2WlJTE1q1bsVqt/b6trVu3YjKZ+n07khRqZEIkhaTf//73gQ5BkvpUVlZWoEMYVBISEoLy4rqvTJkyhfvuu48//OEP/OpXv+KFF17wP3f77beze/du/t//+39Mnz49gFHuY7VaBySh6A9arZbhw4cPyLYGajuSFGpklzlJOoSCggJsNhuRkZHs2bOn03Otra2MGDECtVrdqYtdx7iF/Px8HnvsMYYPH47BYCA5OZk77riDpqamLre1evVqzj33XGJjY9Hr9aSlpXHTTTdRXl5+0LKVlZXcddddDBs2DLPZjM1mY9iwYVx55ZXk5+f7lztSn/yuuvvsP07jjTfe4JhjjsFisXRqNWtra+Phhx9m3LhxmM1mLBYL06ZN48033zz8B3qAjq4hLS0t3HHHHaSkpGA0Ghk3bhwffPABAG63m4ceeoicnBwMBgNZWVn84x//OGhdTqeTf/zjH5x22mmkpaWh1+uJjIxkzpw5fPbZZ4fdfmNjI7fccgtJSUkYDAby8vJ46qmnEEJ0+70cf/zxKIqCw+Hg/vvvJyMjA71eT1ZWFn/4wx9wOp0Hvabj86+oqOCaa64hKSkJtVrd6fv673//y6xZs7BarRiNRkaPHs3DDz+Mw+E45PvpyptvvskJJ5yAzWbDYDAwYsQI/vSnP3W5HoBt27axcOFC0tPT0ev1xMbGcuyxx/Lss88C+/YtgCVLlnTqcnrgzYZffvmF8847j/j4eHQ6HSkpKVx//fWUlZV1ue3Vq1czd+5cwsLCCA8PZ86cOfz8889dLns4XY0h2n+sR2FhIRdddBHR0dEYDAYmTZrExx9/3K119+T9d2y3J9vq6fd1KPfffz+TJ0/mxRdf9P+mFi9ezAsvvMCECRN6dGNox44d3HPPPUyaNImYmBj/ceq6666jpKSk07JOp5PJkyejKAoffvjhQeu6/PLLURSFP/7xj/7HDnW82rBhAwsWLPDvizExMUyYMIHbb78dl8t1xLj3/863bdvG/PnziYyMxGw2M3PmTL788ssuX+dwOPjLX/7C6NGjMZlMhIeHc+yxx/Lf//73sNvY3/774HPPPcfo0aMxGAzExcVx3XXX0djY6F/2+++/R1EU9uzZw549ezrtU/uv90jH7XfffZcpU6ZgMpmIjIzkoosuorS0tMv3uHLlSk4++eSDfms9Ha8nSUOCkKQQAoie7PbvvPOOAMT06dOFy+XyP3755ZcLQPz+97/vtPwVV1whAHHmmWcKm80mrrvuOnH33XeLsWPHCkBMnDhRtLe3d3rNRx99JHQ6ndBqtWLBggXinnvuESeddJIARGJiosjPz/cv29raKrKysgQgTjrpJPHrX/9a3HnnneLcc88VNptNfPTRR/5lX3rpJQGIl1566ZCfxXHHHdfpsQceeEAAYt68eUKv14vzzjtP/Pa3vxU33HCDEEKI+vp6MX78eAGICRMmiFtuuUXcdNNN/pjuu+++bn+2aWlpIjExUUydOlXk5uaKm2++WVx77bXCYrEIlUolvv76a3HOOeeIpKQkcc0114ibb75ZxMbGCkC89dZbndZVXl4uVCqVmDlzprj66qvFPffcI6644goRGRkpAPGf//yny+0nJCSISZMmiezsbHHnnXeKW265RSQkJAhA3HTTTd1+L8cdd5z/e09ISBC33nqruPPOO/2fy7x584TX6+30GkCMHj1apKWliZEjR4pbbrlF3HbbbeLTTz8VQghx7733CkBER0eLG264Qdx1111i5MiR/u/N4XAc9H7S0tIOiu2qq64SgEhOThYLFy4Ud955p5g+fboAxPHHH99pvxZCiI8//lgYjUahUqnEaaedJu655x5xww03iGnTpon09HQhhBBr16717ytpaWnigQce8P999913/nW98MILQq1WC5PJJC666CLxm9/8RsyfP1+oVCqRkJAg9uzZ02nbP/30kzAajUKtVovzzz9f3HvvveLUU08VOp1OzJ07VwCd1n84Hb/FgoIC/2MFBQX+9x0TEyOOOeYYcfvtt4vLL79c6PV6oVKpxLfffnvEdXfn/R/ttnr6fR3Jtm3bhMlkEjExMWL9+vUiJiZGGI1GsWXLlh6t5+GHHxZWq1XMnz9f3HrrreLXv/61mDt3rlAURcTHx4uSkpJOy+/evVuEh4eLyMhIUVRU5H/8xRdfFICYPXu28Hg8/se7Ol6tX79eGAwGYTQaxYUXXijuuececdNNN4mTTz5ZaLVa0dzcfMS4O76HWbNmCZvNJo499lj/8cFgMAiVSnXQ8cThcPh/08OHDxd33XWXuOmmm/zHn3vvvbfLbVxxxRWdHu/YB88//3wRHh4uLrnkEnHnnXf6j6EnnHBCp3U88MADwmq1CqvV2mmfev/99/3LHe64ff755wu9Xi/OP/98cdddd4ljjz3W/x7sdnun1yxZskTo9Xqh0WjEBRdcIO69917/cf/UU0/t0W9NkoYCmRBJIaUjIdr/ZLP/38MPP3zQa2688UYBiHvuuUcIIcSiRYv8J7P9T+hC7DsBRkVFicLCQv/jHo9HnHPOOQIQDz74oP/x5uZmERkZKVQqlfjhhx86resvf/mLP/Hp8OGHHwpA3H777QfF6XA4RFNTk//fvUmITCaTWLNmzUGv6Xh/f/3rXzs93t7eLk455RShKIpYu3Ztl9s7UFpamj9Z2P9k/cMPPwhAREREiEmTJon6+nr/c7t37xZarVaMGzeu07rsdrsoLi4+aBsNDQ1i5MiRIiIiQrS1tXW5/RkzZnTafm1trcjMzBSAWLJkSbfeS8fFU05Ojqirq/M/3t7eLqZOnSoA8corr3R6Tce+eNlllx10kbts2TIBiJSUFFFeXu5/3OVyiXnz5glAPPTQQwe9nwMToo594Oyzzz7o/Xd810888YT/serqahEeHi60Wq34/vvvD3qfB37GXe1DHbZv3y60Wq3Iyso66GL566+/FiqVSsyfP9//mNfrFcOGDROA+OCDDzot/8QTT/g/r75IiLq6mfH5558LQJx66qndWr8Qh3//R7Otnn5f3fWPf/xDAEKv1wtAPPXUUz1eR0lJyUEX1UII8cUXXwiVSuW/abK/t99+WwBi5syZwu12iy1btgiTySRiY2M77ddCdH28uvPOO7vcH4QQoq6u7qDjb1f2/x7uuuuuTs+tXLlSaDQaYbPZRGNjo//xP//5z/7vZ//fZmVlpf+48dNPPx20jUMlRCkpKZ2Sf5fL5U9Wfvnll06vOdSNjQ6HO26HhYWJDRs2dHpuwYIFAhBvv/22/zGPxyOys7MF4L8B0+HZZ5/t8W9NkoYCmRBJIaXjQH+oP6vVetBr2tvbxdixY4WiKOLpp58WZrNZxMTEiLKysoOW7TgB7p/0dNi9e7dQqVT+u+xCCPHaa68JQCxYsOCg5V0ul0hPTxeA/2TakRAdeIeyK71JiLpKuGpqaoRarRaTJk3qcn3r1q0TgPjNb35zxNiE2JeQ7Nq166DnMjIyBCC++eabg547/vjjhUajEW63u1vbefTRR7tMbjq2f2AiKsS+z+7KK6/s1jY6EqIDkx4hhPjuu+/8d/f3BwidTicqKysPes0111wjAPHcc88d9Nz27duFSqUSGRkZB72fAy+kxo0bJzQaTaeksoPb7RZRUVFi8uTJ/sceeeQRAYjbbrvtcG+303s4VEJw++23C0B8/PHHXT4/f/58oVar/Un80qVL/Xfyu4q1o7WtLxKitLS0Lvef1NRUERUV1a31C9G9hKgn2+rp99VdXq/XfyyZOnXqQa2VvTV69OiD9scO119/vQDEr3/9azFq1CihKIr44osvDlrucAlRV8t3V8f3YLVaO90w6tCxnyxatMj/WHZ2tlAURWzduvWg5Z9//nkBiKuuuuqgbRwqIeqqhbqjpezpp5/u9HhvEqKuWui//fZb/+ff4ccffzyohaqDx+MRubm5MiGSQo4sqiCFJNGD8SEGg4G3336bSZMmceutt6IoCu++++5hB2wfd9xxBz2WmZlJSkoKhYWFNDQ0YLPZWLNmDQAnnnjiQctrNBpmzZpFYWEha9euJTU1leOOO46kpCT+8pe/sGbNGk477TRmzJjBuHHjUKvV3X5PRzJlypSDHlu5ciUej+eQ4yQ6+vNv3bq129ux2WxdFgNITEykoKCAiRMnHvRcUlISbrebioqKThXENm/ezN///nd++OEHysvLsdvtnV7XVT96jUbT5aDyjj76a9eu7fZ7ga6/95kzZ6JWq7tcV3p6OrGxsQc9frj9Ijc3l+TkZAoKCmhsbDzkQPS2tjbWr19PdHQ0TzzxRJfL6PX6Tt/X8uXLATj11FO7XL4nOsb9LFmyhJUrVx70fFVVFR6Phx07djBx4kT/e+7qM1Sr1cycOZPdu3f3Oi7gkL+XlJSUoxqv1BfbOprvq7sWLVrkH0u1fv16du7cSW5u7iGX6XD88cf7fwtCCF5//XUWLVrE+vXrqa+vx+Px+JfV6XRdbvuJJ55g2bJlPProowDce++9nHzyyd2K+8ILL+TJJ59k/vz5nHfeecyZM4cZM2YcVQGRCRMmdFlN7/jjj+fll19m7dq1XHHFFTQ3N7Nr1y6SkpK6LGDQ8ZvsybFh0qRJBz2WkpICQH19fbfX01fb6Yh95syZBy2vUqmYPn06O3bs6LO4JCkYyIRIkrohNzeXMWPGsGzZMvLy8o54Qo+Li+vy8fj4ePbs2UNjYyM2m80/qPZQyVXH4w0NDQCEh4ezfPlyHnjgAT788EO++OILAKKjo7npppu4//770Wq1R/MWD4rzQLW1tYAvMerqArdDS0tLt7dzqIt5jUZzyOc7ntt/QPXy5cs58cQTcbvdzJ49mzPPPJPw8HBUKhXr1q1j8eLFXQ5Ij46O7vJiteP97z/ouTu6+t41Gg3R0dFUVVUdcjsH6s5+UVRURENDwyE/w/r6eoQQVFdX84c//KFb8XfsZ31Rqrpjf/n73/9+2OU69peO93y4305fsdlsXT6u0Wjwer19tp2ebOtovq/uKCws5Fe/+hU2m40HHniAO+64g8svv5yffvqp076/aNEilixZctDrOxKiO++8kyeeeIKEhAROOeUUkpKSMBqN/tceWHimg8Fg4PTTT2fjxo1oNBpuvvnmbsc+ZcoUfvzxRx566CHeffddXn31VQCGDRvGAw88wIIFC7q9riPtVx37X0+Pyd3R1T7QcRzbP6nsre5u50i/tUM9LklDmUyIJKkb/vKXv7Bs2TKio6PZvHkzDz/8MPfdd98hl6+srGTYsGEHPV5RUQHsu9Dv+G/H4wfqqDK3/0VvcnIyL7zwAkIItmzZwrfffss///lPHnzwQbxer79yk0rlKyLpdrsPWu+RTuYdFbT21xHDHXfcwWOPPXbY1w+0P/3pT7S3t/Pdd98dVIHp4YcfZvHixV2+rqamBo/Hc1BSdOD31F2VlZWkpqZ2esztdlNTU0N4ePhBy3f1Oe+/3YqKii7vhne1XxxqHePHj/e3vhxJxwVVaWkpo0eP7tZrjrT9xsbGLt/7oZavrKzs8vlD/UaGiqP5vo7E6/Vy2WWX0dzczBtvvMGCBQtYuXIlb7zxBg8//DD333+/f9nDVRSrqqriqaeeYtSoUSxbtuyglpbDVZhcunQpf//734mOjqampoaFCxfy+eefH3LfP9C0adP4+OOPcTgcrF69ms8//5ynn36aiy++mJiYGObMmdOt9Rxpv+rNMTnYdPweD/WZHOpxSRrKZNltSTqCZcuW8bvf/Y5hw4axadMm/93JpUuXHvI1Xd1pzc/Pp7i4mPT0dP+F5/jx44GuL0bcbjc//vgj4OvucSBFURg5ciS33norX331FYC/tC5AREQEAMXFxQe9dtWqVYeM/VCmTJmCSqXyxzSY7Nq1i8jIyIOSIej6u+jgdrtZtmzZQY93fB8d3093dbWtpUuX4vF4erSuw+0Xu3btoqSkhIyMjEO2PgBYLBZGjhzJ5s2bqaur69Z2p06dCnDIUuUHUqlUh7zD3bGu7u4vHft4V5+hx+M57O8tUA73/nvqaL6vI/nb3/7G0qVLueiii/ytKf/85z9JSkriwQcf7Ha3r/z8fLxer79E8/5KSko6lfvfX21tLQsWLECr1fLtt99yySWX8OWXX/LXv/61x+9Fr9czffp0HnzwQZ566imAQ97o6MqaNWtobm4+6PEDf+thYWFkZWVRWlrKzp07D1r+u+++A7o+JvcFtVrdp61GXel4r139prxeb5fHREka6mRCJEmHUV9fz4IFC1Cr1bz11lvExcXx9ttvo9FouPjiiw954fLkk0926kLi9Xr5zW9+g9fr5aqrrvI/3jEnxptvvukfv9HhiSeeoKCggDlz5vhbHTZv3tzl3buOx/afwXzSpEmoVCreeOMN2tra/I/X1dVx99139/iziI2N5ZJLLmHVqlX88Y9/7PKkvXv3bgoKCnq87t5KT0+nrq6ODRs2dHr8hRde8HcrPJR77723U3e6uro6/vSnPwF0+q66449//GOnvvp2u5177723x+tauHAh4Gv5qq6u9j/u8Xi466678Hq9XH311Udcz5133onT6WThwoVdtgrW19d3ao244oorCA8P59lnn+WHH344aPkD55uJiorqMuEGuOWWW9Bqtdxxxx1djkdwOp2dkqXp06czbNgwfvjhh4MudP/xj3/02fihvnS49380evp9Hc66det44IEHSEpK4plnnvE/brPZePHFF3G73Vx22WXdmtuoY36rjuS+Q0tLC9dee22XrdDg2+dLSkp4/PHHGT16NM8++yzZ2dn83//9X7cuupctW0Z7e/tBj3d1vDuSxsZGHnzwwU6PrVq1itdffx2r1crZZ5/tf3zhwoUIIfjNb37T6f3W1NT4W+A7fqN9LSoqiurq6i7fd1/pGIf13XffHXTz49///rccPySFJNllTgpJh5uQcP78+YwbNw7wnfSKiop46qmn/I+NHTuWRx99lFtuuYUrr7yyy4kHOwodXHjhhVitVr744gvWr1/PxIkTOyUjFouFF198kfPPP5/jjjuO888/n9TUVFavXs2XX35JfHw8zz33nH/5r776it/85jdMmzaN3NxcYmNjKSkpYfHixahUKn7zm9/4l01ISOCSSy7h1VdfZdy4cZx++uk0NTXx6aefMmvWrB4XDADfhenOnTv53e9+x6uvvsrMmTOJi4ujrKyMrVu3snLlSt58800yMjJ6vO7euP322/niiy+YOXMmF1xwAVarlVWrVrF06VLOO+883n333S5fl5CQgMPhYNSoUZx55pm4XC7effddysvLuemmm5g1a1aP4hgxYgQjR47kvPPOQ6vVsnjxYnbv3s3pp5/OZZdd1u31TJ8+nbvvvpu//e1vjBo1ivPOOw+z2cxnn33Gpk2bmDlzZqfv+lAWLlzI6tWreeaZZ8jKyuKUU04hNTWVuro6CgoK+OGHH7jqqqv417/+BfjGVL3xxhucd955nHDCCZx66qmMGTOGpqYmNmzYQHFxcaeEd/bs2bz11lucccYZTJgwAa1Wy6xZs5g1axbDhw/nxRdfZOHChYwcOZK5c+eSm5uLy+WiqKiIH3/8kZiYGLZt2wb4WjxfeOEFTjrpJM4991zOOeccsrOzWbduHd988w1z587l888/79H30d8O9/6PRk+/r0Ox2+1ceumluFwuFi1a5G8t7nDyySdz44038swzz3DffffxyCOPHHZ98fHxXHTRRbz11luMGzeOk08+mcbGRr766isMBgPjxo1j3bp1nV7zxBNP8NFHH3Huuedyww03AL7Wl7fffptp06axYMEC1q1bd1Bs+/vb3/7Gt99+y7HHHktGRgYWi4XNmzfz2WefERERwXXXXXfYuPc3a9Ysnn/+eX755RdmzJhBeXk5b7/9Nl6vl+eee65Tt8677rqLzz77jMWLFzN27FhOO+002traeOedd6iqquLuu+/usiBBX5g9ezYrV65k7ty5zJo1C71ez9ixYznjjDP6bBsqlYrnn3+euXPncuaZZ3LuueeSlZXFhg0b+Oqrrzj11FP57LPP/N2uJSkkBLLEnSQNNI5Qdpv9yr4+9dRTAnyTbXbl7LPPFoB47LHH/I91lFndvXu3eOSRR8SwYcOEXq8XiYmJ4le/+lWnuS72t2LFCjF//nwRHR0ttFqtSElJETfccIMoLS3ttNyWLVvEHXfcISZOnCiio6OFTqcTaWlp4txzz+00L0YHu90u7rrrLpGUlOSfE+bPf/6zcLlchy3ferhyqw6HQzz99NNi2rRpIjw8XOh0OpGSkiJOPPFE8fjjj4uamppDvnZ/hysv21HGuitdlVMWwjfB7THHHCMsFouwWq3ipJNOEkuWLDlk+fGO7Tc0NIibbrpJJCYmCp1OJ4YPHy6efPLJHpUm7ojXbreL++67T6SnpwudTicyMjLE73//+y7nb+nq8z/Qm2++KWbMmCEsFovQ6/UiLy9P/OlPfzpoct/9309XPvroI3H66aeLmJgYodVqRVxcnJg8ebK47777uiwtvGnTJnHZZZeJxMREodVqRWxsrJg1a9ZBZcArKyvFggULRGxsrFCpVIK9c3ztb8OGDeKKK64QqampQqfTiYiICDFy5Ehx3XXXdVlWfdWqVeKUU04RFotFWCwWMXv2bLFs2bJu7Zv7O1zZ7QPLI3c43H7XlcO9/95sq6ff14E6Sp4frnx6a2uryMnJESqVqlvzbbW2tor/9//+n8jKyhJ6vV4kJyeLm266SdTU1Bz0XlatWuU/NnVVQvzJJ58UgDjrrLP8j3X1O/3iiy/ElVdeKUaMGCHCw8OFyWQSubm54tZbb+00z9vh7P89bNmyxT9pttFoFNOnTxeff/55l69rb28XDz30kBg5cqQwGAzCYrGIGTNmiDfeeOOw29jfoY5VQuwrx3/g76WlpUXccMMNIikpSajV6oPW29Pj9uH2w+XLl4s5c+Yc9Fu7+eabBdDtOeUkaShQhOhB/WFJkg7ryiuv5OWXX6agoMDfzUQanDq+nwNLDR+N448/niVLlvSonHtfi4+Px2q1sn379oDFIEmDTWFhIRkZGVxxxRUsWrQo0OEEhRkzZvDLL7/Q2NiI2WwOdDiSNCBke6gkSVKQq6uro6amhuTk5ECHIklSEGhra+tynNqiRYtYtmwZJ598skyGpJAixxBJkiQFqcbGRh555BG++OILPB4P5513XqBDkiQpCBQVFTF+/HhOOukksrOzcbvdrF27lqVLl2Kz2fwT6UpSqJAJkSRJUpCqr6/n4YcfJiMjg4cffpjrr78+0CFJkhQE4uLiuOSSS1iyZAnfffcdDoeD+Ph4rrrqKu67774u5z+TpKFMjiGSJEmSJEmSJClkyTFEkiRJkiRJkiSFLJkQSZIkSZIkSZIUsmRCJEmSJEmSJElSyJJFFSRJkqQBI4RACIHX68XlclFXV4dKpSIqKgqNRoOiKAD+/0qSJElSf5MJkSRJ0hDm8XhwOBy0trZSWVlJY2MjarWalpYWtm3bhlqtRqVSUVVVRX5+PtHR0Xi9XsrLy2lrayMmJga3283u3bsxm82YTCYaGxspLy8nLCwMj8dDY2MjTqcTrVaLy+Wira3Nn/i43W7cbjdCCDweD16v1//frqhUKn9MHX8ajcafLKlUKoxGIxqNBpfLhcFgwGq1olaraWpqIiEhgfDwcNrb22lrayMzMxONRkN1dTUmk4mEhARUKhU1NTVkZmYSGxvrj3P48OFYLBY8Hg9Wq5W4uDjMZjN6vR61Wj3A35wkSZI0UGSVOUmSpEFKCEFrayuFhYXY7Xba29spLi5m165dhIWF0djYyI4dO6ivr0ej0dDY2EhhYSFqtRqn00lTUxOtra0c6TCvUqkwm80oiuJvqXE6nQghMBqN/oRBpVL5l98/cdFoNKjVaoxGIzqdDiEEBoMBi8WCSqXC5XJhs9kwGo14PB6EEMTExKDRaFi3bh0AY8aMwe12U1NTg6IoaDQa7HY7DQ0NaDQaPB4PLS0tOBwOFEXB6XTS3t6O2+0+KNHqSLa8Xi9arRaA9vZ2FEVBp9Phdrupra31f76HSs46KIqC2WwmPDwcnU6Hx+MhPT0dq9WK2+0mIiKC3NxcrFYrzc3NZGdnk5KSgtFoxGAwkJ6e7v98JUmSpMFHJkSSJEkDpL29ndraWiorK9mwYQMul4vW1lby8/PZsWMHBoOB6upqioqKaG5upr29HZfL1eW6jEYjERER6HQ6TCYTWVlZWK1W6uvrSUpKIjExEbVazYf//hx7mQvFo8EYZkCr1uJu8KIz6LElWjBHGLHEmDDFGDFF69Fbtf5teD0CR6MLe70TR5MLZ7MLV4sbZ4sbZ7MLZ4sbV4sbrzuwpxG1ToXWrEFrVqM1a9BZNOjCtOitvj+DTYcuXItK7UtIhBA4Gly01Thoq7HTWtNGa4OdxvJmHG0ONDYVLo+L9mY7Qu3GkKjlzOvm4vF4KCsro7S0lIiICBobG9m9ezdtbW04nU7q6+tpb2/vMkatVovRaCQsLIzU1FRiYmKw2+3k5uaSmZmJ2WxGq9UyZswY4uLiiIqKwmg0DuTHKEmSFLJkQiRJktQLHa0apaWlrFmzBrvdTmNjIzt37vR3SauqqqKsrKzLi2WTyURERAQajYbhw4cTHx+P1+slLCyMvLw8/nXLK1hjw/A0KyjtKrQqHVq0KKL7XbgMkTosCQYsCUbM8UbM8QZ0Zl+PaeEVtNc5aau2017joL3OiaPehb3BlwTRz2eIjLkJABR8Xt6/G1JAF6bFYNNijNRhjNZjjNL7/hupQ1H5kiVni4vWCjstFXZaK9pprbDTXufs9ucgFA8uXLi8ToTRizpM0FjVzA3/uJwtW7bQ0tKCoihUVlaydetW3G439fX1tLW1HbQuo9FIYmIisbGxeDwehg8fTk5ODlarFYPBwIQJE0hKSiI6OhqNRvaAlyRJOloyIZIkSTqEtrY2tmzZQnV1NVVVVWzZsoUNGzagVqspLy+noKCAxsbGg7pcxcTEEBUVhVarZdy4cf5xK1+/uBR3lUCLHovFjNKmQdWDxKY7tGYN4akmwlNMWBJ9yY9G79uGvcFJa4Xd91e1NwGqdSK8gTsNTLw1B4DVT+8MWAyKSsEQocUUa8AcZ8Acb8ASb/S3lnmcHlrK7TSXtNFU3EZzSRuuVk+fxuBVeRBGN60trThxoIlVmLNwpn8817p163C5XNTW1lJdXd3ptSqVCqvVSkZGhj+hHjNmDHl5ecTGxhITE0NeXh4mk6lPY5YkSRoqZEIkSVJIEkJQXV3N5s2bWb16NW63m5KSEtatW0dFRQWNjY3U1NR0ek1ERARms5nRo0eTnJyMTqfj53fX4K5U0LN3zEybBkUM3IwGplg94almwpNNhKeaMEToAF/y01zSTktFO63l7bSU23G39+1F/FCnMar3JkcGwpJMhKWY0If7kiR7vdOfHDUUtNJe4xiwuITixWty+8ZUYUcTJ5h23gScTiclJSVs2rSJ1tZW6urqOr0uOjoaq9VKfHw848aNIzk5GbVazaRJk/zJkxznJElSKJIJkSRJQ1Z9fT35+fmsXLmS/Px8f4GCNWvW0NDQgN1u9y9rtVpJSUkhLCyM6OhopkyZwpv/t5jI2AhUzVrU7XrUSuArjeltWmyZFmwZZmwZFrRmDV6PoLWinabivS0YxW04m92BDnVI0oVrCU82EpZiIizZhCXBgEqtwtnioqGglcaCVhoKWnA0dD32ayB5hAeP0YE3zEVdVT0L/ngWK1asoKamhubmZoqLi2lsbPQvbzAYsNlsTJgwwV8IIjMzk0mTJpGVlUVEREQA340kSVL/kQmRJElBq6OVZ9euXXz//ffU1NRQWVnJ5s2b2blzZ6dxGXq9ntzcXDIyMlCr1YwcOZIP//QNJrUFk8aMyjk4x2CodSpsWRYisi3YMiwYInQIr6C5rJ3GghYaClppLm4LeGGDozXu+iwA1j23O8CRHB2VRiE81YQ1w4It3Ywl0YiiUrA3OGnY3ULdzmYa8lvxug5fyS5QvDo3be5W2jwtnPV/c9i0aRMej4eCggJ27NiBw7Gv5ctkMpGTk8PIkSOJjY0lOjqaE044gezsbGJiYmTrkiRJQUsmRJIkDXpOp5NNmzaxZMkSGhoa2LVrF6tWraKoqKhTK09UVBR5eXmkpaWx5ccdeMrV6J1GjGoLGo82aC7Y9DYtkblhROaGY003oVKraKu205Dva31oLGzF4xicF9g9lXt2EgA73i8NcCR9Q61XEZ5qxpZpJiI7DFO0Hq/bS2NhK3U7m6nf2YK93hnoMLtFCIFH7abN04JD14Y6wUPesbns2bOHrVu3dupSajAYSElJYdKkSeTk5GCz2TjuuOMYNWoUOp0ugO9CkiTpyGRCJEnSoNHU1MS2bdvYunUr27Zt47vvvqOsrIyysjI8Ht/4F5vNxsiRI0lMTCR/RRGuPSqMmDGrw1B5A9+l7WiZEwxE51mJzA3DHGvYdxG9o5m6nc2DoguW1HOGCB2RuWFE5IRhTTOh0viS25qtTdRuaaK10n7klQxSXpWHNk8LbbSgTfOSdUwaZWVlbN68mfr6egDUajWJiYnExcUxbdo0IiIimDRpElOmTCEuLi7A70CSJMlHJkSSJA0oIYS/5HBH4tPx/6Wl+1oJUlNTSUxMpG5HE6o6A2YlDKvehsqhPczag4s53kD0SCvReVaMkTpcbW7qtjdTt6OZhvwWPM6h0Qp0OKY4PQBtlQNXlCBQVFoVtkwzUcPCiRwehtaoob3WQc3WJmo2N9JaEbzJ0YG8eheNjgZaRTPeKAfWTBMlJSWUl+8rrx4VFUVSUhKpqamceOKJxMXFMXXqVNLT0/2TAEuSJA0EmRBJktRvHA4HW7ZsYd26daxfv57169ezYcMGf/UrjUZDTk4OI0aMYM3/tmAmDDPhmAhDowzOMT29ZYrREzN6bxIUpcfV5qZ2axPVmxtpLGzt93l/Bpspvx4GwIpHtwc4koGlqMCaYSE6L5yo4eFoTRra65zUbG6kan097bXB0a2up9y48VjtNNkb8EQ4sGWZ2bVrFzU1NbjdvkIgZrOZkSNHkpCQwLhx4zjhhBOYPHmyLBsuSVK/kQmRJEl9oqqqyp/0dCRA27Ztw+12oygK2dnZjB07ljXvbsVCOGbCMGJBpQz9O8Eao5qYUVZix0UQlmjE1e5Lgmo2N9FY2IIY+g1BhxQ1PAyA2m3NAY4kcBQVWNPNROf5EmWNUU1zaRtV6xuo3tQYEuXSvXgRNhcOQwtNzgYSJkSzceNGKisrEUKgUqlITk4mLS2NU045hYSEBGbNmkVWVlbQjA2UJGnwkgmRJEk94na72bFjhz/56UiAKioqAN/d3TFjxjB27Fi+/9cvWLBhwTpkW3wORVFBRHYYsWNtRA4LAxTqdzZTua6e+p0tAZ0MVRq8FLVCZK5vv4nIDgME9TtaqFxfT92O5pBrQfSqPTSLRkhwkDQphi1btlBSUuKvIBkREcHw4cNJS0tj7NixnHzyyYwePRqtduh0rZUkqf/JhEiSpEPyer3s3LmTFStWsHLlSlasWMH69ev9ld1SUlIYO3Ysmz7eRRg2wrBixBLSd2x14VriJ0YQPyECnUVLS3m7707/xgZcbUP/Tn9Ppc+OBaDwm6oARzL4aE1qokdZiRsbgSXRiKPJReXaeipW14X0PFNCCDxhDuzmFupaa4keHcb27dupra0FfF1xMzMzycvL4/TTTycvL48pU6ag0YTWTRlJkrpPJkSSJPmVlpZ2Sn5WrVrln7gxNzeXyZMns+L1jXuTHxtaRZbT7WDLspAwKZLI3DA8Li/VGxqoWF0f1FXEBsKkX+UCsOrJHQGOZHAzxxuInxhJzGgraq2Kuh3NlK+qo2F3S6BDGzQ8OhfNngZIdmLNMrF161bKysoAX1nw0aNHM3r0aMaOHcvxxx/PqFGjZPEGSZIAmRBJUsiqr69n1apVnRKgjgpQCQkJTJkyhU2LdxFOJOFEyOSnC2q9ivgJEcRPisQYqae1op3yVXVUb2wMiQpx0sBT61TEjLYSPykSS7wRe72TshW1VK6pl/tcF7w6N47wFtpNTcSOiGT58uU0NDQAEBcXR2JiIscccwwzZ87k1FNPJTIyMrABS5IUEDIhkqQQ4PV62bx5M0uXLuWnn35ixYoV7Ny5EwCr1crkyZPZ9XXx3uQnEoNiDHDEg5veqiVxahRx4yNQqRVqNjdRvqqW5pL2QIcmhZCwJCMJk6OIHmXF6/ZSuaaesl9qcTTKOasOx6W347C0UNNajSFLYffu3bS3+367cXFxDB8+nHnz5nHMMccwdepUOR5JkkKATIgkaQhqb29n5cqV/gRo2bJlNDQ0oNFoGD9+PFOnTuXbp5cTTiSmEB/z0xOWRCNJ06KJzgvHbfdQvqqO8hV1uFpDdzxHb429OhOA9S/kBziS4KUL05AwOYr4SRFo9GpqtjZR9nMNzaUyQe8OIQR2bSvOyFZSZ8ayevVqSkpKcLvdmEwmhg0bxumnn+5PlKxWa6BDliSpj8mESJKGgJqaGn766Sd/ArRq1SpcLhfh4eFMmzaNnV+UYCMKK5GoQ6zaW1+wZVpImRWDNc1Me62D0uW1VK2vx+uSh8/eGn5+CgDb3ikOcCTBT6VViB0bQdLUKIxRehoKWij+sZrGgtZAhxZ0vIobd2w7japaDClqNm3aRGtrK2q1mry8PMaNG8fUqVM57bTTSE9PD3S4kiT1kkyIJCnICCEoKCjghx9+8CdA27ZtAyA5ORlXiYKNKGxEY8EqW396ISLHQsqsWMKTTTSXtFHyUzW120Ov9LEUfKKGh5F8bCxhiUaaitso/rGK+p2yAMPREkLgDGvFbmumrKqEdnOzf4Lp7Oxs0tPTOeGEEzjttNMYO3asPO5KUpCRCZEkBYHS0lK+++47vv32W7799lv27NmDoiiMHj2aug0t2IjGRjQGRc7k3hcih4WROisWS6KRxqJWin+oltW8+onO6muxdDbKbof9wZZlIXVWDOGpZlrK2yn+oZrabU2BDmtIcJvstFmaqG6twGltpaysDCEEcXFxjBkzhmOPPZYFCxaQnZ0d6FAlSToCmRBJ0iBUU1PD999/70+Atm/fDsCYMWOo39BGJLHYiJaV3/pYRI6FtBPjsMQbfd2NfqimsVB2N+pPU349DIAVj24PcCRDmzXdTMqxMdgyLbSUt7Pn20rqd8kkvy8Jg4cGUUN7RANt+mYKCwsBiI2NZerUqZx44oksWLCA2NjYwAYqSdJBZEIkSYNAY2MjP/zwg78VaP369YBv7p/WHW4iiSWCGHSKPsCRDk3hKSbSZsdhTTPTWNjKnu8qaSpqC3RYISFmjA2A6g0NAY0jVHTa1/e0suebSpqK5b7eHzw6J/VKDc7YJupdtf5pDZKTk5k0aRLnnXcep5xyCtHR0QGOVJIkmRBJUgC43W5++eUXPv/8c7788ktWrVqF1+slJSUFd7HKnwDJLnD9yxSrJ/3EOCKHhdNS3k7hN5Wya5wUEiKy97aGJhip29HMnm8r5STC/cyhtGOPaqRBXUONo5L6+noURSE7O5tjjjmGq6++mmnTpqHXyxtfkjTQZEIkSQOktLSUL774gs8++4yvvvqKxsZGIiMj0daZ9iZAsRgxy8G4A0AXpiF9dhwxY2zY653s+baKms2NgQ4rJKXMigGg+IfqAEcSmqJHhpN2QhyGSB1V6xrY820lzhY5nqu/CSGwq9twJ7dQba+guq2C5uZmDAYD48aN45xzzuGcc84hKysr0KFKUkiQCZEk9ROHw8FPP/3E559/zueff87GjRtRFIVwEUEU8UQRRziRMgEaQCqNQtL0aJJnxOBxein6vpLKtfUIb6AjC12T7/CNIVr5uBxDFDAKxE+MJO34WFRahZKlNZT+XIPXLS8PBooQAnt4M82WWqrd5VTWVOD1eklNTWXy5Mlce+21zJw5E7PZHOhQJWlIkgmRJPWhgoICfwL0zTff0NraSlxcHKpKA1HEE0msHAcUINEjw0mfE48uTEPZ8lqKf6jG45SZkCR1UOtVpMyKJfGYSJwtbgq/rqRmk2w5DQSXcOJMaqLaXU6No5KGhgZ0Oh1jx47l9NNP54ILLmDEiBGBDlOShgyZEElSL3i9Xn755Rc+/PBDFi9ezNatW9FoNFjcNqKJJ4p4ORdQgJnjDWTOTcCaZqZ2WxMFX1Zgr3cGOixJGrQMEToyToonakQ4TcVt7P6kTI4vCqCOOZBawuuodpdTUVuO2+0mKSmJGTNmcNNNNzF9+nS0Wm2gQ5WkoCUTIknqoba2Nr7++ms+/PBDPvroI6qqqoiOjkZbYyGGBCKJRaPIE1OgqXUq0k6MI2FyJG01DvI/L6exQJbQHmxGX5kBwMZFBQGORDqQNd1M5qkJmKL1lK2opei7KtmqOgi4hQtXUjNVnjIqWktpbm7GYrEwc+ZMzjnnHC6++GLZtU6SekgmRJLUDZWVlXzyyScsXryYr776ivb2doYNG4Z9uyCGRKxEyVagQSQqL5zMuQlo9Cr2fFdF2S+1II90g1LeglQAtrxZFOBIpK4oKkicGk3qcbG47R7yvyindouc2HWwEELQHtZEs62Galc5FRUVaLVaxo8fz5w5c7jhhhtISUkJdJiSNOjJhEiSDmH79u188MEHLF68mOXLl/sKIngjiCaRGBIxK2GBDlE6gN6mJeu0RCJzwqjd2kT+5+U4mlyBDkuSgp7eqiVzbgJRw8Op39XM7k/LZdfTQahVNONIbqCstZjKBt+8R+np6Zx++ulccsklTJ06NcARStLgJBMiSdrPli1beOedd3jnnXfYvHkzJpMJc5uNGBKJJkEWRBisFEiaGkXqCXG42tzkf1pO3Y7mQEcldYPGoALAbZddsYJBZG4YmacmoDVp2PNtJWUrZOvrYOVSOWk0VdMUVk1JTRFOp5P09HROPPFELr/8co499lhUKlWgw5SkQUEmRFJIE0KwefNmfxK0detWwsPDMTXZiCOZSOJQK+pAhykdhjFKR85ZyYQlGyn7pZY931bhdcmL62Ax5de+stsrHpVlt4OFSqsifXYcicdE0VTUys4PS2mvla1Fg5nQeKlXqmiOqaG0voi2tjZycnL8E8LOmjVLJkdSSJMJkRRyhBBs3LiRd999l3feeYdt27ZhtVoxNdqIJYko4lDJJGjw29sqlHZiHI5GFzsWl9Jc3BboqKQeip8UAUDFqvoARyL1VHiqiZwzk9CFayn6vorSn2tka1EQECovbRH1lLYXUe0to729neTkZM444wzOPvtsZs+eLZMjKeTIhEgKGRs3buTtt9/mnXfeYceOHdhsNs466yzOP/985syZwzzjpYEOUeqmTq1Cy2vZ822lnERSkgJApVFIOzGOxKlRtJS2s+ODEtlaFEQ+bH2FN998k6+++ooPP/yQtrY2YmJiuPzyyznttNM44YQTZMEgKSTIhEga0oqKinjzzTd57bXX2LRpExEREcyfP5/zzjuPOXPmcLrhkkCHKPVQwuRI0k+Kx9kkW4WGgsRpUQCU/Vwb4Eik3ghLNpJzVjJ6q5aCL8qpWC1b/ILNR22v8vbbb/PWW2/x888/09jYSHJyMueddx633HILWVlZgQ5RkvqNTIikIae+vp53332X1157jR9++AGj0chZZ53FJZdcwsknnyyToCClNanJOTOJyGHhlK2opfCrCtkqNATIMURDh0qrkHFyAgmTIqnd3sTOD0txt3kCHZZ0FD5sfYXXXnuNV155hVWrVmG328nLy2PevHnceeedxMXFBTpESepTMiGShgS73c4nn3zC66+/zieffILb7WbOnDlccsklnH322ZxjXRjoEKVesGVZyJ2fhKIo7FhcSv1OWUFuyOgYqiDrYAwZkblh5JyZhBCCnYtLqd/VEuiQpF54v+klnn76ad577z3WrFmDRqNh9OjRXHHFFSxcuBCLxRLoECWp12RCJAUtr9fLDz/8wGuvvca7775LY2MjEydO5NJLL+XCCy/k8qTbAh2i1EuKWiF9ThxJU6Op39XMjg9KcbW6Ax2WJElHoDVryDkricicMEqX11D4VSXCKy83gt3LJU/yn//8h1deeYX8/HzMZjOzZ89mwYIFnH/++ajVsiCRFJxkQiQFnaKiIl5++WVeeuklCgoKyMjI4NJLL+XrP/6CWQkPdHhSH9HbtAw/PxVzrJ7Crysp+0WOMRmKRl2WDsCmVwsDGofUPxKmRJJxcjyt5Xa2vVuMo1FOlDxUuK12pt4wiueff56amhoiIyO5/vrrueiiixgzZkygw5OkHpEJkRQU7HY7ixcv5sUXX+Srr77CZDJx4YUXctVVV/H7Y5+QVXCGmMjcMHLnJ+O2e9j63yJaK+yBDknqJzIhGvosiUaGn5+CWq9ix/uyy+tQI4Tgpvcu5pVXXuHLL7+kvb2dkSNHcv3113P11VdjMpkCHaIkHZFMiKRBbe3atbz44ou8/vrr1NfXM3PmTBYuXMgrCz9Eo2gCHZ7U1xRIOzGOlJkx1G5rYsfiEjx2ObhEkoKdxqAmZ34SUcPCKV5azZ5vK+WcRUOQV+PhpAensGjRIrZv347RaOTkk0/m+uuvZ+7cufLmpTRoyYRIGnRqa2t54403ePHFF1m3bh3x8fFcccUV/PDXdZiVsECHJ/UTrVnDsHOTsaaZKfymktJlNYEOSRoIsqhCSEmaHk367DiaitvY9k4RrlZZhW6oate0kHZ+JJ999hn19fUMHz6cU089lTvvvJPk5ORAhydJnciESBoUhBD8/PPPPPvss7zzzjt4PB7OOOMMFi5cyONnvIRKkbNmD2WWRCMjLkpFAba9V0zTHjm3UKiQZbdDT3iKieHnpyC8sPXtPbSUyy6xQ5kXLzf+dwFPP/00P/30EwBnnHEGV1xxBWeeeSYqlTy/S4EnEyIpoJqbm3n99df517/+xfr168nMzOT666/n49/+iF4xBDo8aQDEjLaSc2YSLeV2tv63CFeLrCIXShKn752YdZksmhFKdGEaRlyQiinOwK6PSqne2BjokKQB4DW6yFuYwieffEJBQQGpqalccskl3HPPPYSHy6JIUuDIhEgKiE2bNvHss8/y6quv0trayrx587jxxht55NTnZR/jUKFA+uw4kmfEULm2nl2flCE88nAkSaFCUStkz0skblwEJT9VU/iNHFcUKoQQXP7ymTz77LOsXLkSnU7HCSecwJ133sns2bMDHZ4UgmRCJA0Yh8PBe++9x7PPPsvSpUuJj4/nmmuu4fs/rcGgyCo0oUStVzHsnBQisi0UfFVB2XLZOhCq4iZGAFC5uj7AkUiBknhMFBknx9OQ38K2d4vxOOSAslBiF23kLozn/fffp76+nsmTJzN//nx+9atfYTabAx2eFCJkx02p35WVlXH//feTkJDAJZdcglar5b///S9zh59F0dfVGBQTikohdqwNXZisHBdMtGY1phi9/99x42yEp/qSW71VS+45yehtWt9z4yMYcVEqepuWsVdnYssyU7GmnrLltWjNGkZcmIop1reu8FQTSdOj/es1ROjQGOWEf8HEGK0nLGXfjY70k+KwZvgubiwJBkZflYHWrCHt+FiyTk0gcpivYEpYspG8i1JR632np4icMKLy9nWl0Vo0IBuRg4LGqPb//sFXUKHj+GCK1TPiwlS0ZjVlv9RSsaYOa7qZMQsz0Vu15F2UStx4X7Kst+09llh96wpPNRE3zuZfrylGj9Ysjw/BRFH7zvmGSB0GxUTjdx4uPvly/vWvf6FWq7nvvvuIjY3l2muvZc+ePYEOVwoBMiGS+s3q1au57LLLSE9P58knn+TMM8/k/JmXoP4+in9f+F80Oq3/wkZr0ZA7PxlTjG/cUPTIcIZfkCIvfAaB6JFW/4WtMVrPuOuzMEbpAEiaFs2Ii9L8yyZMicKWafH9QwGdRYNK4zvMuNrcuO0exl6diaJWqFhdT+OeVt+iKt9fR3cZU6yB2LE2/3qHn59C2uw4ADQmNcMvSPEnYiqtIveTALGmmzFE+vaF8FQTk27PRWv23dRImhpF5twE/7JhSSb0Yb4LWo9LYK9zIoRgzbM7qd7UgLttX7UxAXjdvp0hakQ4cWNs/ucm355LwqRIAMzxBjJPTfAnT4pK7ggDTtn7G8SXmAy/IMV/8yJ9dhwjzk/1Lxo71oYpdu/YUNHxu/e9tnFPGxVr61FrVYy9OhOX3YOrzTeeUKVRodsvEbZlWkiYEuVfb96CNBKn+m6gGKN0vmNUtO/4EJZiInqktf/ev9RtabPjyD4j0fcPAdlnJBGe7Du3CK9ApVLz3i3fYPklmbMnLWDmzJm8/fbbZGZmcuKJJ/LRRx8FMHppqJNd5qQ+5fF4+OCDD3jiiSdYunQp6enp3HbbbXx45xI0ivawr1VpFITXd2CMHBZGRE4Yuz8uA2DYeSnUbG6kdmvTQLyNkKLWq4geEU7dzmZcrR4Sp0YRN9bG2ud2AzD+hmzqdjaz55tKtGYNqcfFULKsBkeDC124Fo1eRVu144jbicgJY/h5KbRW2dny5p5OF8BHYo4z4HF6sdc70du0ZM9LIv+zMtprnaSeEEvMKBurn94B+FoY2qodsttNP4jICSMs2UjRd1UATL5jGFXr69nzbRV6q5b4iZGU/lyDu92DxqRGeEXfziOlQESWhbZqB45GF7YsCxlz4lj3n90IL4y4MBWvW7D9vWLAdzHcWt7uT66k3lPrVZhi9DSXtAMw8dZcqjc1UPRdFcYoHZmnJrLr41IcDS4METrUOhWtld2vIqc1q8m7KA1TrIFt7xZ3axJXU4wet8OLs8mF3qYleXo0RUuqcbW6SZsdR2S2pdPxrHJdR8u0msicMGq2NsnjRT8wxeoZdnYym9/Yg7PZTdz4CFQahfKVdYCvlehI40Y9ipvxt2fy2muvUVVVxcSJE1mwYAG33norOp1uIN6GFCJkQiT1icbGRl544QWefvppCgsLmTVrFrfffjv/POf1XhdJUNQKOWclUbWugYb8FtQGle/kJffcblPUCsYoHW1VvsQla14izkYXxT9Wow/XMun2XDa9UkhjYSvhqSYsCUbKfvGN61FUIHp5rRA/MYKs0xKp297M9v8V9+kFqjnOgCFCR+22JhQVTP3tCIqWVFO6rAatWY3eqqOlrL3PthdKdGEahp2bQv4X5bSW24mfFEnUsDA2v+7rwqIL1+JqcfVq/xhxka8FYetbRb2ONyLbghDQsLsFQ4SOSbflsvn1Qup3tWCK1aMxqmVJ96NgSTTiaHTiavWQNCOa1FkxLP/rVoTX14Jnr3P2KOk5EpVGYdg5KUQOC2P3Z+VUrKrr1fr2P4YlHhNFS3k7TUVtWNPNjLo8nZVP7MDZ5CLl2Bh0Vq3/RpwpVk97rVMWe+kJBYxRetprHKj1KrJOS6To+yrs9c5erVYIwTVvnsdf/vIX1q9fj81m47bbbuPmm28mNja2j4KXQplMiKReKSgo4PHHH+ell17C4XBw0UUXsf3VMsKViH7b5ogL915Avd37C6ihSlErxE+IoKGglfYaB/GTIsmcm8DPf96C8AqSZ8bganFRua4B8F2A9Ndd9LQT40g5NoayX2rJ/6K83xNZvU2L1+X1tXYdE0X6nDiW/20bXpcXXZgGZ7Ms6304GSfHozGq2bm4FEWlkDs/iZJlNbRW9M9cMaOvygBg40sFfbtiBcyxBtrrnHhdXjLnJmDLNLPmmV2A70K+qbhNlnk/hI7fikqrYurdwyn4qoLyFXVozWpUWhWOBlf/BqD49sWkqdEU/1jFnm+r+mUz+x/74sZHoDWrKVlag6JSmPb/8sj/3JeQGaP12DJ84x5lgnRoabPjiJ8QwcontuN19c/n5LS1op3g5McffwRg3rx53HfffUyYMKFftieFBpkQSUdlw4YN/PWvf+Xtt9/GZrNx4403suRPa9Erxn7fdniKCUWt0FjY2u/bGvQU/AlG0vRo9OFa8j8vBwWm/mYE+Z+XU7WhAa1Zg96qpaW8feBa1hTIPj2R+ImRFHxZTunPA19JTlH5xj21VTlA8XXxqlxdT9GS/rm4CkamGD25Zyez9a0iHE0uYsbYUGkUKtcMvapvOosGZ4sbtU7FMb8Zzu5Pyqhc14A+XItKp6K95shdP0NB6vGxxI33XdQifC0lbdWOgLTKJ02LIuPkBMpX1bL70/6/oeKngCXBiKPRhavVTexYGxmnxPPL37eBgMxTE3A0uihdVuNfXvZaALVOhSl2X5fK/uQ1OEm5IIL33nuPtrY25syZw5133skpp5zS79uWhh6ZEEndJoRg6dKl/OUvf+HTTz8lLS2Nu+66i//d+g1qJQDV4RSIHW2jakPDwG87QDRGNSqNgrPZjSXJyOjL01n7r93Y653ETYhAH66l6Pu9F/sBPEErKoXcs5OJzgtn5+LSQfMdWTPMOBpd2OucRI0IJ2pYODs/LEV4Q+swGDc+ApVWoXxFna9by+l7u7XU9a5bSzBR61UIr8DrEqSd6LurveKxbQiv76LO4wydMSWKSiHnzCRqtzdRu7UJQ6QOvVVLY8HguOkUN85G9hlJ1GxpZMf7Afy97ndMTT0hFkeji8o19RgidYy/PouNrxTSUtqOLkyD1y1wt3d/nGRQUyB7XiLFP1b3f8thF4Tay5mPHscf//hHampqGD16NI8//jgnnHACKpWsHSZ1j9xTpCPyer189NFHzJw5k1mzZlFUVMSrr75K1p6JLL5tSWCSIXz92nPOSvKX8h2KtGY1kblh/n+PvjKDlFkxALTXOChaUo3H6TvpVq6p35cMQcCSIZVGYcRFqUQND2PbO0WDJhkCaCxo3XfRr/gKeHRcXJnjDQGMrH8paoXokVZUGt94PmOUzl+Fy+PwsuN/JQFLhibfMYzJdwwb8O16HF5/l56iJVVsfKUA4fVVTJt8xzBi9qtsN1R17PPCKxBC+Ku42eucgyYZAqhc18C2d4qJGh7OiItS/fvxgNvvmFr0XZW/FdXj8FC0pNrfwpgyK5bRV2b4l43MDRvSZcF1YVrCU0zoww9fOKm/KB4VH93+I2NqZ/H3v/+d1tZW5syZQ05ODs888wweT4gkplKvyBYi6ZBcLhdvvvkmf/3rX9myZQszZszg3nvv5fF5L/W6UEJf0ZjUPapWNtgpKogeZaOlrJ32Gof/zujyv27F4/RiSTLianbjaBr4u3DdodaryFuQhiXByJa39gyqi6rDMccbGH99NpteLaQhvyXQ4fSZjvERepuWSbflsuXNom5V7RpIKcf5BkQXD5JujCqNQsxoGw27W3A0uYgdZ8MYpWfPN5WBDq1P2TItjLosnbXP7eq38WF9zZphJu+iVFoq7Gx5Y8+grQynD9eiDdPQUtqOWqdi6m9HsPOjUqrWNWCK0WNOMFKzqaHXxWqkrgkhuPSleTz66KNs2rSJ7OxsrrzySu68806Mxv7v1i8FJ5kQSQdxOp28/PLLPPTQQ+zZs4d58+bx29/+lj/MejLQoR1SX1RCCxRruhlzvIGy5b4xNsfcNZyiH6p83Zl0KhS1EhRdLzQGNaMuS8cQoWPzG4UD0oe8L9kyLf5kKG6cjcY9bb2ujBRIaSfGEpEdxrp/+8oN68K1OAdpIj2YJR4ThTFaz+5PfJXHbFkWGnYHZ9JsiNBhTTP5i6nsv88HC0uSkZGXpGGvc7Lp1cJBmxTtT2NUIzwCj9NLwpRIUmbFsuKRbQAkTo2itcIetGNidWEaVFrVoO1ue9viy3n66af56quviIqK4qabbuK+++5Dr9cf+cVSSJEJkeTndDpZtGgRDz30EMXFxZx//vkU/bceizK4J7Ubc3UmDbtbOncXG8Q0BjVJM6KpXFOPvd5J0vRoooaFsWFvlS2VVum36jz9RWNQM+rydPRWLZteKezTErwDTVErTLgph4rVdfsGTAcDBeLGRdBa0U5LuR1LkhFjpI7qjY19vqnaa6cR9Z+f+2RdMaN9x5f+iLOvhSUbGXt1FutfzKe5OPjKdydNjyZ+YgRrntkV1JXSzPEGRl2Wjr3eyabXCvt2rqsBsP8xfsxVGdRub6Z0WQ2GCB1xEyIo/akGt33w3wQDSDkuhsRjovjlb9sCHcphuaxteEc3s3TpUiIjI7n22mu5//77MZuHbpd7qWdkQiQdlAhdcMEF7Hm7btAnQh1ix9pwNLoG9R226JFWtGY15SvqUGkVJtycw+6Py6jfFVx3Z7vS0TKkt2nZ+HKBf66jYLb/JMFx42zYG12Dtvvf/q2jE27KpnJdA6XLatj1xNROy2XfvrxPtld77bRO/+5tYjTl177xQyse3d6r9QwUc7zB38Us+4xEmoraqFrfENigDsOaYUZv1VK1rgFFpaCoGBIT1ZrjDIy6PB1Hg4tNrxYGTQJxOBHZFrJOT2TNP3fidQsSj4nC2eKmZvPgvVmg1qkwROloLQ+Om2CtShPamXZ+/PFHbDYbv/vd77j22mtlYiTJhCiUOZ1OXnrpJf785z9TXFzMhRdeSOFbdViU8ECHFvR0YRqSZ8RQtKQKd7uHtBPj0Fu17Hi/JNCh9amhmAwdKG9BGu21Dgq+rAh0KAcJSzYy4oJU1j+fj6PJ1WlOlQMTov31Jjk6MCGC3iVFhgjfbPPB2D0x6/REmopaqd7YiMagRnjFoKtOl3FKPMZIHVveHHrztpli9Yy+PANHk4tNrwyNpGh/uWcn42h0sufbKjRGNanHxVLyU7WcS60PuK3thB2r4pNPPsFqtXLNNdfwu9/9DovFEujQpACRCVEIcrlcvPTSS/zpT3+ipKQk6BMhY7QejUEV8DErUSPCUdQKNZsa0Vo0jL06k23vFNNSFlxjabpLbVAx+rIM9Lbg7yZ3JIpKQXgFkblhuFrdNJcG7jvdf54PlVZF6nExlC6rwbVfcZHDJUMH6kly1FUytL++6kYXjDLnJhCRbWH1P3YGOhTCkoxoTBrqdzb7992hav+kaOMrBUHXfa67LElGhp+Xwvrn83G1uokeZUV4BLVbmwIaV+LUKOz1Tuq2D65iLd3lsdpRT7LzzTffEB8fz+WXX84DDzwgiy+EIFl2O4R4vV7eeust8vLyuOGGG5gxYwbHiJOoedsdtMkQQMKUSLJPTxzw7eosGpJnRqOofRX3InPDiMjy3V1ytbhZ9eSOoZsM6VSMujQ9JJIhwH9BGT8pkoQpUQGNJfX4WIZfkOrr+uTyUvh1ZadkqKd2PDuFHc9OOeJyR0qGurvMgYadl8yw85J7/LrBpuSnanZ/Vg74ulzGTYhACdAZNmFKFAmTIwGGdDIE0FblYOPLBeitWkZenI5KOzQva1pK21n15A5crb7WoYgsC5E5vikZFLVC8sxodJaBnwLDmmbGHBe8UxaoGw3wjY0Z+rlMmjSJv/3tb6SlpfH444/j9Q7N5FrqmmwhCgFCCL744gvuvfde1q1bx7x586j+2E6YYgt0aH1CpVWhNaoHpBS1Od6ASqPQXNKOKUbPmKsz2fhSgS8hCJGZylUahbyLfaW1N75cEDQle/uCovJdfHhdAnOcAXuDc0CqXEXmhiG8gvpdLWhMalQa1SErxnW3dcirP3TcuTeuOOix7iY79cfZyb50bbeWBRh7TSYA65/P7/ZrBrvI3DCGnZfCmmd2DthElWq9CoNNR2ulHZVWQXhE0FbePBqWBAOjrsigpbSdzW/sCeqiEd2295xjjjcw+soMNryQT1u1g7BkI163CKljc19xhbXRNqyalStXkpqayv3338/VV18tJ3gNAfIbHuJ+/vlnTjjhBE499VQsFgs//vgj9k8MQyYZAt9d8n5LhhTfOI0O6bPjSJ7hmxi1rdrBL3/ftq91JBTOvyoYdl4KYckmtryxJ+ROuMKLvzpU7jnJZM5N6PU6y+6e3uXf/uLGRxCV5yty4m7z9Hv57ANbjHra8rPrtfHdXnb98/lDKhkCqNvRzKontvuSIQWy5yViiunfMr+ZcxPIPdvX0uZ1hVYyBNBS7pubKCzFxPDzUwLWOjeg9p5zWivs/PL3bbRV+8ZwJs+MIe3EOP9iYclG/6S70uFpm01YV6XxzTffYDKZuO666xg1ahTff/99oEOT+plsIRqiNm/ezH333cfixYsZM2YMDz/8MI+d/uKgmVC1L2WdnkDNlqa+qwKm+OaNcLd5sKabGX1FBmv/vYvWcjtaswZXmzskkp+u5J6dTPRIK1vf2jMkKuT1hiFSh8fu8XVX60Xr4IHJD4AawRitnWKPlhqvBjWClhgv7Pf7zbrr4LE/fdE6dKCoNepuL1t/XOcEuSctRUOVPlxL3iVp7Fxc2j9daPfue1qTGrVBPWjngxkotiwLeQtSqdncNOSK2HSbAlqTBlerG3OCgfHXZbPx5QIaC1t9k5m3e/rsHJY4NYqYUdYhd1MDfL1rLnnxdB599FE2b97s71J3wgknBDo0qR+Ewj2UkFJeXs7VV1/N6NGj2bhxI6+//joxG3J4fN5LQzIZUlRgjNSj0Xf/ou1IRl2aTtbeO/9NRa2sf2G3v6SoqzV0k6HM0xKIGW1lx/+KQz4ZArDXOXG1eVDrVIy/LouovL4bh+cBwhQvJsW3s7XEik7JEMDuR6Z2+usvllI3ltIjV7U6MBmC7rUUTbotl0m35R5VbMHA0eRi7bO7/MlQ7vwkInPD+mTdUXnhjLsuC7VOhavNE/LJEEDD7ha2v1dCzCgrmaf1vgU3KAn8Y41ay+2sfzGfxj2+G4ZZpyYw6tL0PttUS1k7NQEu7NBfFEXhjas/JX7zcP7+979TUlLC7Nmzueiii9iyZUugw5P6mGwhGiLa29t59NFH+ctf/oLBYOD3v/8979/6HaqQ6DfQO+Z4AyMuTGXDSwU4m1xY08247Z6Q6w52OCnH+rpg7PyolMo19YEOZ1BRVJA+J56K1XW01/bsgnT/1iEDXqbo2lnnMtAk1Pgyb18S1B7bvRadrN/8AsCux4855DI9aR1K+6jz6aEl6dCDtrtKiDocrqUofY6va0/h15XdjitYqTQKOfOTqVpfT/3O3t9UMEbpiJ8YSeHXFSHXRe5I4sZHkHNmEgVfV1D6UxBNsNzPzPEGNAY1jYWt6MO1jL4qg61vF8nzXTcIxcspf5nKQw89RFtbGxdffDGPP/44ERERgQ5N6gMyIQpyXq+XN998k3vvvZeKigpuu+02Vj26E62iC3RoA0KtVx3VoPaEyZGoNAqlP9ei1qlImxNH6U81OBoHZgB0MIkdYyP37GT2fFdJ8Q/VgQ5nUFNUCjGjrd2eqHP/hEiFYJquna0uHXWic+LRnYSoIxk60IHJUW8Sog4HJkaHS4Y6yO5zB8uel0hrlZ3yFXU9el3sWBvVGxuHfAW53ko9PpbU42LZ/r9iqjcO3slNA0Vv1ZI0I5o9X1ficXpJmhaF1y0oX9mz/dEUq0dRKSGTVAmth8QLLbzxxhvExMRw4403ct9996FW911PFWngyeaDILZs2TKmTZvGpZdeyuTJk5nsms36x/aETDIEMOzsZIafn3LE5dR6FYnHRPlLsmotGrR7S5R6nF7yPy2XyVAXrOlmss9MomJtvUyGuiEi20L2vESM0d0bQG9SvMzStWLEixeFn5ymo0qGDif7jl/8fz1xqGQI6NSFrjvJEBy6+1zksDAih/VNF7Jg47Z7ejxvjjFaT/a8RGxZcgLJIyn6vorKtfXknJWENd0c6HAGHUeji/xPy/2TCWstWv95UaX1nTPV+iNfJmbOTSB1Vmy/xjqYKC415a+1M011CmPGjOGBBx4gJyeH999/P9ChSb0gE6IgVFhYyIUXXsiMGTNwu91M5Dia3ldhUkLvBFn6c+0h72YpagVDhC851BjUpM+JIyzJVzGu6LsqCr8a+l10esMUo2fEhak0FrSw++PSQIcTFOp2NLP66Z201ziOuGzZ3dNxCQUF0CkDc6c/+/blXZbUPhrdGVe0v1OHbSFn5cGJYva8RLLnHTyPWPv8KbTPP/L8SMGs8OtKqjY0AJB6QiyJxxx5jqv2Ggern95J/c7gnAhzoO36uJTGglZGXJiKKbZ/K/0Fu8KvKij6rgrwTe6bPicOjcHX6mGI0KGouh6HvPODUra9VzxgcQ4WBrcJ71fhfPDBBwCcc845TJ8+nbVrZWt4MJJd5oKI3W7nb3/7Gw8//DCRkZHYyhJJIG1IFkvoCzlnJWGON7Duud2AbzLRjjth0uHpLBrGXJOJu93DxpcK5Od2FFKPj0WtU1HwZUWnx3XhWjJOimNpVgqubtTC7U13uYN0cbjvalLWw7UO7U//6cpul9g+ddi+Qcg7J+9LGDsmddx/ct/9EyHjB32TwA126XPicLW6Kf25tsvnM06Ox+PwUrSkaoAjC35qnYrRV2agNWlY//xunC09S+ZD1f7nzPHXZ9FSYWfnYnlzrCtCCOrDy8lXbaGlpYUrr7ySJ598EpPJFOjQpG6SLURB4tNPP2XUqFH86U9/Is6eRm7ZFBKV9JBOhqKGhxE1fF9XG61Zzfgbs/1dI0qX1bDjf/vKrsqL+u5RaRTyFqShoLDljT3ycztKrlY3ztaDL7wUfN2eTMqRP9fedpfr5BD3vnJvXNGrVqPsS9cecXzQ/skQ0KmlqLXSfshkqKt/D1WFX1f6k6H4iREHVS10trp9Jf+lHvM4vWx5Yw8AIy5KRaUJ3fNmT+x/7N/+vxJKl/mKU1gzzIy/MRuted+YmcxTE7rVwjlUKYpCZHMiE5pPYGTyWF555RXS09P517/+hdcrz6HBQLYQDXKFhYXcfvvtLF68mEhiGcY4zErflfcNZjlnJaEL19BY0ErJUt+BOnNuPJVrGzpdYEk9M+zcZCJzw9nwYr78HA9DTBvb5eOFZxx8RzDc6yHd62aTWodXUch5pqhb23CXlB6xpHZvWoe64jhtcreW03+68qDHumotOjAZ2t/OyQ5y5if5/v+D0sMmP6HSUgSQOz8ZV5ubgi8r0Idr+2/i6RBjTjAw5qpMareG8BxFfcAcZyB2nI2CL3yt38kzYzDG6Gja0yarkO5l17VSFLmVovJCJk2axJtvvkl2dnagw5IOQyZEg5TdbueRRx7hoYceIjo6moiSZGJJCukWoQ66cC3C48XV6iFhUgSx4yPZ8EK+rLjUB5JnRpM+O56t/y2idojOLXG0DpUAHejAhCjS6+FUVxtu4FutiWqVukcJUVf2T5L6OiGC7iVFXSVEcHBSdLiECMD8QjIAP1cc/u5yKCVEACi+oiYjL0ln+3vF8vfYR6JHhjP8vFQKv66gRJbj7jVFpTDm6kwq19RRsboerVmNolbhlEk8Qgjak+opFNuorq7m0ksv5YknniA8XN7UHoxkQjQIffHFF9xyyy0UFhaS5M4igxFolEPP/xFKFBVM+fVwKtbUs+ebSv8s7VLvReSEkbcgleIfqin6Xo5TOFB3EqIDk6F4r5tKVGQID8WKGpfK10u5OwnRoZKhLh3pRslRHuYPlRgdKhnq0JEUHSkZgn3jibrTNS4Uk6IJN+XQXNImx270odQTYkk5NoatbxVRt0MWp+gTCmhNGlKPjyE6z8qKR7fJubH28uCmLrWYzaXrsdlsvPDCC5x55pmBDks6gBxDNIh03EGYO3cutbsamew+kRxldMgnQ7ZMM+NvyEalURBe2PJWEZZEI1mnJchkqI8Yo/UMOzeZum3NMhnqI2FeL7Nd7aQID/lqLS6VCpvXQ4TX0/cbE2LfXx86UuJzKNmXru1WMgS+8UTdHScUKuOJzPEGTDF6ELDuuV3s/rQcAEOkDjnXdu8VfVdF7bYmcs9J9n3OUu8JX3drvU3HlreKEF7feNTxN2RjywztkudqNMQUZTDTPBd1m46zzjqLY489lvz8/ECHJu1HHloHASEEr732GiNGjOCzzz4jj8lMYFZIjxWyZpixZvgOovZ6F01Frf45hJqL26hYVUftNnlnry+o9SryLkrF0ehixweyX31XuttdDkC7NzFpVqn4TGuiSLXvhsZEt4PxniOX5O6VPk6MDkyKupsk7V9J7nCivktj+vD2bi1bPj00Jj5MOzGOjFMSAPC6BV6XF0WtMOqydNJmxwc4uqFhx/ulOBpcDL8gFbVOXgr1hd2flrPjfyU0F7cBvrmMmopasdf7us/ZMved10ORpsnAqLZpTEs5nvXr1zNq1Cj+/e9/y6ILg4TsMhdgBQUF3HjjjXzxxRfEkcIwxqJTDIEOKyBUWhVel+/AkHdRKh6nl+3/kxfo/W34BSnYMiys+/du7PXOQIczKHU3ISqbZ2Ses5X1Gj271dqDnjcIL2nPl+DtRvf6HnWZGyCO0yYfVatRV/MPdQjbGEPNqii2lx16mf0Tocy7f+7x9oONWqdCpVVwtXZuTQxPMdFe58TVRfVCqecMkTrGXZdFw64Wtr0bevPoDLRh5ySj0qnY+pavy/D+5/xQ4zW42a3dyJ6m3YwcOZKXX36ZiRMnBjqskCZviwSIx+Ph8ccfZ9SoUWzZsoVxzGC0ckzIJkPGKB1Tfj2M8BTfGIzt75ccMhlKmh7tn7tE6p3EqVFEj7Cy44MSmQz1AaeisFWto0zVdUuGXVHhdYHWqJA4Jvj24aPtQne41qLm0dXdToaGuuSZ0WgtGjxO70HJEEBTcRuuVjdqvYqxV2diywy9ybj7kr3Oyc4PSokeaSVxauiWjO5LseNs5JyV1OVz2/9X4q/uF55qYsqvh2GI1A1keIOGyq4hp3k8MxPmUF1dzdSpU3nwwQdxOPq5B4F0SDIhCoDNmzczbdo0fv3rXxPVlkhW8QSilYRAhzXgrOlmkmfGANBe66R4SRXtdb6Lco+j67tGKq1CwqRITDIh6rWwZCPpc+IpWVZN3XbZ/fDoCZLSvERE+xrbt2p0tB9hoEdYvIa4PD1aY9fFEAZj61Bv7Zzs6DIx0lYZiTQf3OJRPl0dUsmQ1qIhYXIU1tQjT+QovIK2ageORnkTo7dqtzVRsqyG9DnxhKXISTR7y+vyHrbVp+Pc3nHOt+895yfPjPHPIRhKDBU2RtXNIDNsGH/4wx/Iycnh+++/D3RYIUl2mRtAHo+Hxx57jPvvv5+srCwsW+OxKqF1V0qlVaGofAfFhCmRROdZ2fhyQc+LI8jqcr2iMakZf3029nonm14pkNWAjuDwXeYEOdMVHCvLKP6hutvr3L+7iCa58x3VoZgQHaijG130lxm4WzX8sMV3MXqkJGgod5k7mi5EigoSJkdRtqJWHhOPkqKCUZdnYIjQse65Xbja+qHwiXRoCoy+IoOazY2Ur6xDrVchvIRcdzpXVAuF5q2UlJTw29/+lgceeACdLjRb0AJBJkQDZNeuXVx55ZUsW7aMVJFDJiNRK6Fz9xMABSbdlkv1xgb2fHt0lczUetUhW4+k7ht5SRrmBCPrntuFs1mORziSpgUHT46qUgQGjaDNpQIE4W92cz6g/aj1KjJOiqfo+yqcLaH3PeSs1KOpNbD71SwaWzXdahEaagmRzqIh9fhYCr6qOKpjW3iKiZGXprFhUQGt5XIi5aOls2gYd30WrRV2Nr++J9DhBDWVRiEsxURjQetRvT7txDhiRltZ9dSOkEvyhcpLeeRuttVuJC0tjbfeeospU0KjumagyS5z/czr9fLMM88wduxYysvLmSBmkaOMCZlkSG/TknlaAopaAQH5n5dTsfroZrI2xeo55jfDsSQa+zjK0JI0PRpbloXt7xXLZKgLtddMO+ivKyNiHExOakdB4Guy7DmVWiE81YQxKjRL/+6c7MAdZe92MjQUGaP0hKWYUKmPbh9qKm5j5RM7/MmQSisn7z4azhY3O94vJSI7TI4n6qWo4eGMvjwDXdjRTRlSsbqO/M/KQYCiVsg8LQG97eAiNUOR4lWRWJPDzKiTsdvtzJgxgz/+8Y94PLLVsr/JFqJ+VFxczMKFC/n6669JJpNsxoTMnEJasxpXqwdjlI6Rl6Sz5c09tFX3brCgxqAmZoyVilX1CK/cbY+GOd7A2GsyKVteS+HXlYEOZ1A4VMLTQdva9b6mU3sxagWNdt+FfPiby48ugBDv/pl1eiLNx8Sx3NC9cYFDrYUI6LN9IGl6NLFjbKz7z26EJ4R3ql5IPymexGMiWf98Pq0VssXtaKg0CrpwrX98UG+YYvTkLUhj02uF2Ouc/muLUCDUHkoid7K9ahPDhg3j7bffZuzY7k8BIfWMbCHqJ2+88QajRo1i69atjGcmw5UJIZMMZc9LJO/idMA3cHLVUzt6nQwBuO0eylfUyWToKKm0CsPOTaGt0nHUXRaHmiMlQwcyab1MSGxHoxI4PSp/MtQrwjeGIXNuAhHZoVc1zJpmItZ75JZKr1bg1Q6d335EtoXMuQm+iVb76G3V7WimYnWdTIZ6Yc+3lbRVORh2bopsbTtKXrfok2QIoK3awaqndvjXN/LidLLnJfbJugc7xaMmpXo4M2NPora2lilTpvDEE08g2zH6h0yI+lhzczNXXHEFl1xyCaYmK9mlE4lShvZEeooK4idG+EthV6yuo+CL8j7dhjnBQMqsGFQaeYI6WhknJ6C3atn+v2KZVB4ltSLQqQRqVd9+fsILujANOkto3DTZ35pndvGh6fCJ4FBKhDroLBp0YZo+LWjSXuOgfGUdAJHDwjBGh2ZXzN4QHsH294rRh2vJPCX0qr/2Fb1Vy5iFmZhi+3YfzP+inPLVvn3cHG8gfmIERyjqGfQM1VbGNh9LWmQmd9xxB7NmzaKqSt7U7GtDfDcaWKtWrWLChAn873//YySTGaUcg1YZuhVCOg5CQkDi1Gj/DNQt5Xaaitr6dFvmWAPRI6143UPvwmggRA4LI2FSJPmfl9NeK0v19pRR40VB0OxUs7zEiMPd94fObe8UU7muoc/XG8yOtlWo8rbp/RBN36pc18C2d/ppMlAFUo+LJWFSZP+sf4hrr3WS/3k58RMjiRoeFuhwgpKz2Y2jwYmi9O1NzKaiNv94OWu6mcRjouhoMBnKiZHiVJNWOYqpCcexevVq8vLy+OyzzwId1pAyhHefgeP1evn73//O9OnTqdpVy5iWmSQoaYEOq1+Fp5iYfPsw36BJAeue20XZ8tp+217V+gbWPrur39Y/lGnNanLOTKJ2axOVa46uoEUoUymCaantZEd1JJL920qZPCOa+BC6kB1/YzZntnWuRtWbRGiwJ0MJkyNJnhHdvxsRsOmVQvI7Wuplw3qPVa6tp3ZrE1nzktCYQrPgR28Ir2D7/0porey/cVhly2tZ9+/dIHwt7JNv3ze5+1BlqYhhqmYOGqHljDPO4LrrrsPlcgU6rCFBJkS9VFFRwdy5c7n77rtJdGUwiRMwKUNzHIDWrPG3ArVW2qna2ODvq96fLTdakxpFJc/oRyvrtEQQsPPjoT+3TU90d/yQVyhsqNBTWD8wrb1aswZtCF2AtZS2UaPadyoaqolQB41Rjdbc/10j3XYPCN+g9Ak35WCKkd3nemrXJ6UoCmSdGhpjVvpDWIoJQ2T/HTs7rj2ER1C1scGfgFkzzAPyOwsEdYuekXXTGR49mueff55x48axffv2QIcV9Ibm3jJAvv76ay6++GJUKhXjmTnkxwqlHheDLdPC6n/sxOP0UvjVwFQpyzwtEa1JzaZXCgdke0NJdF440XlWtr5ThFtONtgjYRoP0XoPJa1aatr2HSqPuppcNxV8WdGv6x9sdn5YRv7MtCHbNe5APZm8ty84m900FbfhaJZ3kXvK1eph96flDD8vhZqtjdRuaQp0SEFn2LnJ1Gxq7Peqpq42T6drkuzTE6nPbyH/074dzzxYqBQVCVXZ2KJi2Fy2kunTp/PII49w1VVXBTq0oCUToqPg9Xp5+OGH+b//+z8iRAwjmIxO6V7J2KCiQPqceJpL2qjd2sSe76so/GbgSzUX/1CFxhg6d8z7isakJuu0RGo2yxP50ciqbCI6VUXLO2sCMnYtdowNfYSW4iUDewE90MKSjEQqLmp6cDoKxkQo5bgYHPUuqjY0DOh23XYPuz70tQ5rjGrUOhWORpkcdVfN5kZq8sLJPi2RpsJWXPLGUo9sfKkgIPvbuv/s9s1/CESNCCcs2ehLyobYMGRjrZUx4ljyI9dz9dVX8+OPP/Lcc8+h1YbGvE19SSZEPVRfX89ll13GJ598QgYjyCSvzwcNBppar/LNmL63X25H951AtTC0VfW+ZHcoyjo1ERTY/WlZoEMZ9GKXHTz+rQyo2OUNWCEPrUWDPnzon9RGXJRKTqud/1qP3NU45/UWKoIwGQLQh2vxugJ7NZZzZhJas4YNL+YHNI5gs/uTMibclEPW6Yn9VwhjiApU8u1x7CvfqDWp0YVp/cmQ/xpniNApeobVTSYqMYZFixZRUFDAokWLSEsb2mPZ+5qcmLUH1qxZw7nnnktjYyNp9XlEK0OvJKcpRs/Ya7LY9FohzcV9WynuaGScHE/97hYadrcEOpSgEjUinBEXpLLt3SJqNsvWoQMV3z+d9P/VHPS4RgcjZmko2uihsdJ3aPRs2THQ4YWUiBwL5dcMp0R3+PtzOa/7jgEV08O7td64p5b1OrahRm/VotIostLkUYjKC2fE+alsfXsPtduaAx1OUMk4OR61Qe1vqQyk8BQTIy9NZ/3zu/tkfsTBpkFXzQ79WtRqNS+//DJnnHFGoEMKGrKoQje98MILTJ8+ndrCRvLqpw6pZEitUxGZ6yst2lbtYM93lbQPggOFovIlaEN1YGR/UetVZJ6aQO3WJpkM7VV8//ROf4ficUNrvcDROnjuE0XkhJE0LSrQYfSb+p0th02Gcl5v8SdDwShpWhQROYOjdLOj0UV7rRNFpZB6fCwqrbwE6K7aLU3Ubm8i89RE1Dr5ufVEa6WdltLA32CFvdc431b6k6HI3LAh9X3anDFM9B6HVug5++yzeeyxx/B6h05rWH8aOntBP3E4HFx77bVcc801RDuSmMTxGBVzoMPqU7HjbOSek4xa79sdypbX+ioUBZjwwubX91A9wH3ug13aCXGodSp2fxa6XeW6mwD5KaAz+Pa5/NUe7IPo+tsSbyA8dWgdc/aXcXI8k9sOLs17tIlQ40gXjSMHzxiZ8FQz5vjBNcbUEKElflIklsTBFddgl/9pORqDirQTYwMdSlCpWt9AxerBMeWD2+6h7BdfF2m1XkXuOcnEjrMFNqg+pm7VM7ppOummHH79618zZ84cWloG0UltkJJd5g6jqqqKc845h5UrV5LtHEOikh7okPpMzGgrGoOa8pV1KGoFrUmNs9kd6LA6McXq5fihHrIkGBh7TRYFX1X067xQg1m3EiDo1GUuOU9NbIaKdZ+78B5wLyDgXeYUhtxA4P1NvDUHV5SB/1n3JX2HS4QO1WXuwCQo9/qVfRNgXxiE36FKq8LrkneOeyppWhTpJ8Wz/j+7aSnvvzl2hhq9VUtYsnHQ9VrQhWlwtXkQHkHC5Ejcdg/VGxsDHVafaUupYWX5TyQnJ7NkyRJSUlICHdKgJVuIDmHdunVMnjyZXbt2McY5Y0glQwDmeKP/rqXwiEGXDJnjDUy4MQdr+tC9M97nFMial0Rrld1/B0zqnopdHgrWug9KhgaFvRfSYclG4iZEBDaWfrD66Z3+ZOhoWoUGW4tQh7gJEYQlG33/GGTJEOBPhlKPjyVpej9PFDuElC6vpbXSTva8JDnhbQ9EDgsj6/REVJrB9aE5m93++RTNCcZB15rbW6biaKZHnERzczMTJ07k008/DXRIg5ZMiLrw3nvvMWPGDOqLmsipnIhNCf7++4paYczVmcSN911QFX5Vwa6PBm+XqtZKO5teK6SpqPXIC0sAJEyKxJJgYNfHZYPyAmwwssYqqLXgdkJ92eD+0CJywogdYxuyF2FDJRECQIHYsbZBM3bosBSG7D7VLwTs+qgMc4KBxCnBf20wUCrX1rPy8e0Bq9rZHbs+LPXPZRQ3PoIxCzP9pbuDmbbaxIiaY1ALDfPnz+fhhx8OdEiDkhytvh8hBH/84x954IEHiCOZPCahVoL7I9KFa3E2uRAeQf2uZtprgqQLmkBWlusBrVlD2uw4KlbV0VLaHuhwgkLxOVFMdDZRVeClePNgbBrqrHhJFUWCIZfsjrsui3F7WljfzeUHbRK0PwEbFxUQDDMyFH1X5f9/Ra3475ZLh9ZS1k75qjpSj4+lelMDrtbBf/wINH/J+UHYfbQr7TUO6nc1+38PHddSwUqvGMmrn0ZR3Gb+3//7f1RVVfHII4+gVss5HjvIFqK97HY7CxYs4IEHHiCTPEZxTNAnQ6YYPZNuy8WW5Zvfo3hJNU2DoJT2kVjTzeSenSwrIPVA+uw4hEdQ+O3AT5wbrDwobPrWRcnWzhczni07Ov0NFsILCDBG6bBlHnnOnmDRVuOgvZv3PsSqTf0bTB+wZVkwRulA7P3OgkTksDAm3pyD1iwvkLqj6LsqhBCknRgX6FCChiXJyJQ7h6ELgvnVmorbKP7BNym2LcvCpNtyMUbrAxxV76i8KtLKRpGrHcOTTz7JrFmzaGoaXGO6Aim4r/j7SF1dHWeddRarVq1iNFOJU5IDHdJRU1QK1gwzDbtbaKt2sPPDUpr2BFe3M7VOhVonB/x2lznBQOw4G7s/Lcdjl5/ZkagQDFOcbBc62lYNnoSnu1KOjcUQoaUhf2i0oO74XwnKJNthlwmGRKhD6nGx2Ouc7PigJNCh9EhzaTvVmxtxt8tjSHe42z0UfVdF5qkJlK+so7VCFlg4kvZqB1XrG8AbBE1E+2na08rOD0v9PWxsWRYaC1oRQfY+ABRFIdWdS0x8DCtX/ciUKVP48ccfiYmJCXRoARfyt+ALCwuZMWMGW7du5dtvvw3qZAh81ePyFqShC/PlutUbGgZ1n92u1O1oZuvbRYEOI2hknpJAW5WDitV1gQ4lKEThIU9xEE5wXvjt/ryMja8UBjqMPmOM1mEcQrVTNr1SwO7PB+/4zENxtbjZ800lwivk3G/dVL6qjrZqB5lzh868hP3J4/RS+HUlzpbBVcTpSLxu4Z/+QxemIW9BGjGjrIENqpeMFRG8//771NbWMnr0aFasWBHokAIupBOiNWvWMG3aNJxOJ8uWLeN3Mx4LdEhHxRxnIG5vHf2qDQ2s/deuQVc1rrsMETp/MicdWXReONY0M/lflAdFv+xASntsHWmPrcP02CbWPl2I9bGNgQ7pqHjsXoRHoLNogr4LB8DoKzIYNa3r58SqTUHTOmSM1qO1aPC6RVC31OrCNEy8JYeY0cF9wTcgBOR/Xo41zUz0yK7LwUudKWqF2HE2DBG6QIdyVJzNbtb+axdVGxsAX/EFc1xwVqZ7fN5LfPXVVyiKwuzZs/nwww8DHVJAhWxC9PnnnzNr1ixSUlL4+eefuXn4fYEO6ahFjQgnYUqUf7Bi0BRO6ELqcbGMvCQ90GEEBZVGIf2keGq3NdFYEFzdIgdKRxKU9tg6zHE6ko6xAeBxBO8Fa4fcs5OHxJ3p/M/KKdh88ONHnQhphe9vgGXOTWDY2cHdwwB8F3wFX1ZQt7050KEEhcaCVmq3NZF+UvygKyk9WGWcHB/UU2q01zh8NyAVSJgcSdSI4E2GfzPhIVatWkVSUhIXXngh//nPfwIdUsCE5MSsixYt4pprruG0006j5SN1UBZPiBtnQwBV6xp8ZSGFCKoBvIei1qvQW7VyQtZuSJ4ZTerxsax5Zhf2Omegwxk0VCZTl4/Hjw8nJs/CprfKEHvrKHjbBn+RkUMxROpwtbmDujWigzJplP//D5cI7Xhu8qFXckASlLtwVa/j6gmNQY3GqMZeP3R+ixqTGuERQ+IGQn8yROiYcHMOe76tpHRZzZFfEOLUOhUe59DYpxSVAopvPsfYcTYUoHJdQ6DD6jGP8CCOr2fJkiX83//9H3/4wx8CHdKAC7kWoieffJKrrrqKhQsX0vqRNiiTIQBLkglLvG/SP+EZGskQ+O7cy2ToyDQGNckzYqhYVSeTIaDwoWn+v0OpWNvEpjf3JUPBzl7nxGP3otap0BiCtzJY6omxpA7z/f9RtQoFqEWog8agRq1T4bZ7hlQyBDD68gwyTo4PdBiDnr3eScWaOlJmxqA2hNxlVY91JENDYY4f4RX+0tyWeCOWJGOAIzo6akWNekkUZ599Ng8++CAPPvhgoEMacCHzy+2YY+j222/n7rvvJv8/daiU4Hn7igpyzkzyN83u/qSM/M/LAxxV38qcm0DClMhAhxEUkmdGo6jwlwUNVUdKggDixoURO8pXpnqo3DjY35iFmaTNCd7Sv7FjbMQmHUUyFOBEqEP6nDjGLMwMdBj9Iv+zcoq+rzryghLFS6pR1ArJM2S1ru4YeWk66UF83OpK/ufl7P7Ed10WlRdOzplJBNFlJgoKjf9TuOOOO3jggQe45JJL8HqH4EnzEIKzeaSHhBDcfffdPPLIIzz00EN8e98alGCYMW8/HRdyqiFwR+VQvG5v0FXECwRdmIaEKVGULqvB1TZEmjt64EgJUP59Y8l8aN80n6Zo3d5WoaFRpvpABV9WBPW4wVVP9LD0+SBIgvZX/EM1xujgHCB+JI17p2xQaRV0Fu2QawHrS65WN6XLa0iaFk35L7VBV0ltoFWtrw/a4k/doVL5rtWC7SacoihsfKKYW265hX/84x80NjayePHikJjANYhy16Pj8Xi44YYbeOSRR3jqqaf47v61QZMMaUxqxizMJDzNNyZi54elVG9qDHBU/afw60oq19QHOoxBL2VWLF6Xl9KfQ6uvuqLVHTEZ6krB17UUflfbDxENDg35LTiaXEF1J/KoDbJkSFGBo8lFQ/7QLmqSPS+J4eenBDqMQa90WQ1el5eU42MDHcqgV72xkcbCofu7qd7UyM4PSwGwppkZszATjTF4kopt/6zg/vvv59NPP+XCCy/E6Rz6N0OG9CnU7XZz2WWX8fzzz/PSSy/x4a9+CHRI3bM3X3O3eWivcYREq0l4qgmVNjgS1UAyROiIGx9BydLqkBnorGh1KNqe34FPnmYjIjM4+3P3lFqnYvwN2UE5N8aYhZlB2eUsZrSV8Tdko9YN6dMoAEVLqtj+v+CaaDYQPA4vxT9WEz8+AkPk0Gw17EvhqSbiJkQEOox+53F7aa9x4G7f26MjSC51lj+0jf/85z+8//77zJ49G7t9aE8+PGSP5G63m0svvZR33nmHt99+m9cXfhLokLrFGKVj4s05mGJ884vs/LCUltL2AEfVv1QahZGXppMwSY4fOpLU42NxtbopXzm0J2HtSIKOJhHyrQAs8XoMNu0hFwnmCnMH8ji9VG9qpLUq+E5YzhYXzhZXoMPosdZKO9WbGodMtazDsdc5fd0yFYJ2/piBUr6yDmeLm5Rj5ViiI7FlWIgfP/QTopbSdn9rkSlWz8SbczBGBcfv6K1rP+eZZ57h559/5tRTT8XlCr5jdXcNyYTI4/FwxRVX8O677/LWW2/x3AVvBzqkI1L29je1N7hoLGzF4xr6J9kOXrdgzTM7g7JU5UAyROqIGWWlZGn1kG017FUStD8B296vpHxNk/8hb1tbp7+hpviH6qCs0Ljtv8Vs+29xn6xLpfP4//pbW5Uj5IqaZJwUz6jL0/3nK+lgwiMo+ama2DHBO/noQCn+sZr1L+QHOowB5XF6aSxsxd7gSyyC4bf07o1f8/zzz/PTTz8xa9asIdtSNOQSIo/Hw5VXXsnbb7/Nm2++yb/OfyvQIR1ReIqJibfloAvXIjyCXR+X4WgYull4VxwNrn3NyVKXUmbG4Gx1UzFEx1n1SSIEjHM7sCToh3wC1BV9uJaRl6ajP0zL2GCjs2jQWXpX32egkiAAvW3vZxwePJ9xXylbXsv294oR3qF5Q6avVK6px9XqJlm2Eh1Wx34USt3lHQ0udn1chvAIdOFaJt2WS3hK13PnDSavL/yEJ598kpUrV3LiiSficATfzbcjGVIJkdfr5eqrr+aNN97g9ddf598X/jfQIR3e3mNAa5Wd2q1NeEOg68WBFJXCqMvSCU8d/AeEQNLbtMSOtVG6rMY/50Eoyvj96sM+n/nAclKLGjBYQvMzcu29qRBMg3fHXZ/FuOuzjuq1A5kIdej4bF3tQ7dC1qE4mlw0l/i6cGt7mcQOZV63oGRZDbFjbEF1cyIQ4sbZmHzHsKBoKelrXqeXmq37dXUe5B/B/27+lieffJIVK1Zw8cUXD7lCC0MmIfJ6vVx77bW8+uqrvPrqqzy/4N1Ah3RYtiwLE27KQWNQ43F4KfiiArc99FpINEYV7nZPSL73nkieGYOr3UPFqqE9duhopd/3M+n3/YzXLdjwYj5V6xsCHVJAeF1eNr9WSGt58HRpKPymksJvKnv0mkAkQh1ay+1sfq0Qrys0k27wjWUce3XmkJhYs79UrKrD3e4heaZsJTqcxj1tFH5VOeiTgf7gtnso+KICj8OLxqBmwk052LIsgQ7rsD649Xtef/11PvjgA+bOnYvbPXRuDA2JhEgIwR133MFLL73EokWLeOnS9wMd0hG1VdppyG8J+a4HrlYP294tDsqxDwNFF64lbpyN0p9rhuzYoaPRkQSl3/czAAmTIzFG60F+ROitWlKOC44Lsap1DVT1YPxgoBIhgNTjYtFb5R3/ynX17P60PKRbq4/E6xaU/lxD3DgbuhDsXtld9nonlWvrQ35fEl5BQ34LbZWD/2bW8wve5W9/+xvff/89Z599NkIMje9uSCREf/7zn3nqqaf45z//yStXfBjocA4pang4467NQqVRcLa4yf+sPCQqFB1OeKopJO8M9UTy9Cg8Ti8VQ7yyXHftnwR1UGkUEqZEEZE9uO+uDRRjlI74iZFBcSGWPDOa5JnR3Vo2kMmQLlxL3ERZThl84yDqdzYDoTX+o6fKV9bhcXpJPCYq0KEManqbNuSr8nmcXvI/K8fZ4kalURh3XRZRw8MDHdYhff6b5TzwwAN8/PHHXHfddUMiKQr6hOjf//43999/P3/4wx/4383fBjqcw2qrcdBU0iYTgL0siUbGXJUZFAMKA0VtUBE3PoLyFXUhnTwXPDDR/9cVr1uw7rldlP0ydCdg7YmG/FZWPbkDZ9PgL86SOCWKxCmD/4LR2eRi1ZM7aCwYupNJ9lTyzBjGXp0VGpMCHwWvy0vFqnriJ0ag1ssP6VAMNh2JU6NCslBJlxRoKm6jrXpwtxYt/cMm7rzzTp5//nnuvvvuQIfTa4oI4rTuvffe44ILLuCmm25i6z/KUZTBl2lEDgsjfmIkW97cI7vydMGSZKSlrF1+NoeQNCOatONjWfnEdlytQ3+c1YGV5g6VAKXfv6+FKCLbQmulHWfz0OnL3Fc0BjXGGD3NxUOjyt6u18Z3e9nsS9f22XbDUky0VzvkWMcDmOMNmOMNPeryGGq0Fg2Tb89lzzeVlP4sb9h0qePSTV4HHEyBvAVpVKyqo25Hc6Cj6VLsAh1vvPEG//73v7n22msDHc5RC9pbFt988w0XX3wxF1544aBNhgBcrW7cbR5UmsEZX6C1lMpk6FBUGoXEKVFUbWwMiWRof4drDepEgcy5CSTP6F6Xq1CTNjuO3PlJg7dVem9cfXV81Orc/r8+o0Du/GTSZsf23TqHiNYKu0yGjsDV4qZ6QyOJU6PldcChCN9fKFaaOxKVRoW7zYOrbfDe8Kt8w8GFF17IjTfeyAsvvBDocI5aUCZEGzZsYP78+aSkpGD/WY2iKMRNiGDMVRn+Zaxp5oBNimZNN5M1LxGA5pJ2dnxQEtIVibqiC9Mw4qLUITlxnSXR6J+FWmtWk35SvL/0asxoKyMuTPUvO/LSdNJPigd8YxRm/G4ktkzfOJjseYnow7WU/VwDwOgrMnwXt/i60h1z93AicsIAXyvJyEvT/euNHWcjepTV/++wFBNqw+D/uXc7EeogYN1/drPnu6r+CyqIFX1fyYYX8wN208GSaPQXIQhLNjL6ygx/2ersMxIZuzCT0VdkMP2+kcRN8M1Yb8u0MOHmHP9yETkWInPDDrudPk+C9idgw4u7Kfpe7mOHkjIrxn/OG0rUBhVh+3Xpjh5lJXaczf/vkZem+8ctRuSEcczdw/3H2dz5SYy+wndNUvpzDfpwrf8zsmVZmPG7kf4xfhknx3c6fo+4MJWYvcdvvU1L+knxaM2+34MxWo8l0dg/bziAwpKNTP3tcFm05ABel5cdH5T4y91nz0vEmm4OSCy6ME2n64rM0xLIOi0BRVGoec9NdnY2N954I59//nlA4uutwX+FdICKigrmzZtHdnY24/UzaK/29ZG31zlpKNzXtzv7zEQSJkcC+8ZhDFQfXrVOhcGmQ6UNuo93wGiMatQ6VdBMxqo1q/2TR2rNGjJO2ZfkJE2PZtJtuf5ls89IJGHvIFpFrSIyNwyt2fdaj8OLs2XfhVv1pgYa8lsAcLe72fVxmb/fsDnBSEt5O23Vvgp8JctqqNx7N1a4BSU/1dBe63vO6xG4Wvet15pm9o/NUutVjF2YScTeRCsqL5wJN2X778ZFDQ/DlhmYA2wHlcGAymDo0WsMETrUehUehxePI3THVx2Oq9WDq9WDolYG5PhnTTd3GkA+8uI0YsfaAHC3e3A0uPzjTSrXNVD8YzVel5eWinb/2BxXq5v6nc3+7mkxo2zEjfclS4oQnFrsJqHN931rta7+S4Tw/XYUteL/HKWuOZpcOBqCc04SW6aZqOG+hFtRK0y4KZuoPN9g9ohMC2MXZvp/O+EpJqxp+46VrjY33r3V0dprHZT8VIPYWwm0cl0DJct8N7Paqh00l7f7E5m2age7Pi7DvXcuq4b8Fqo3NvjX62xx+8eMas0aInPDUNS+GBKnRJK9X/I56bZckqb7Wsj1Ni0Zp8T7zzc6i8afSA12bdUOin/wHQ+krqm0KvQ2HWrdwFxbKiqInxjh32/Dkk0MPzcFjcm3T7WW231DHgDFozDOMI2kpCQuu+wyCgsLByTGvhRUY4ja2to4/vjjKS0tZcWKFVyZcvshl1XrVCgaBXebB1uWhbwFqax6aifOJhdas6bTxWNfMMXqicwNp2RpdZ+uVxo4eqsWd7sHj9NLRI6FqOHh7PqoDPBNHtlc0sbuT8rRWTSMujydnYtLaS71neTM8QYq19T71hOuxe3w9Ooi3ZpmZvSVGWx6tYCG/F4O4lbAGKXH2ezC4/BiSTISNTycPXvnfhl5SRrOFjc7F5ei1quY/KthbHuvmIbdLRij9ZiiddRub+6XVoaukqD8+488TiT9/p8ZfWUGHqeXLW/s6fvAhpix12TSWmn37899RW1QkXRMNFUbGrDXO0maHk3UiHA2vJAPgCFSh7PZ3fuLHAUQUPTyOCZXe9gZI6g3KuTUCdIb4et0EAd0m067YGPvtonv5oY5zsD65/N7vS4pQBSIGhZGW42T9hoHtiwLw89NYeWT2/E4vOSclYTWrPEfR9Jmx1G7rYmW0nbUehW6MK3vxlMvj3+2TDOjLstgw4v5NPViTJ9ar0KjV+PYWzAlbkIErRW+C9OwJCM5ZyWx6ZVCnC1usk5PJCzJyLp/7wZ8+3Pt1ibqd7Wg1qnQGNU4Ggd/4RWpa8kzY6jb3uS/adpXjFE62mt9Nzgm3JRNxZp6ypbXotIoKCrlsAWeXi55kkmTJqFWq1m7di3R0cHTnT1oEiKv18uFF17Ip59+yqi2aYQrET16vVqn8n+JE27Kpm5HM4Vf92wywMOJmxBB4pQo1r+QL+9wHIGiUjBEaP0/uECJHWdDeATVGxvRhWmYcudwNr+xh/qdzUSNCCduXISvGAa+rj+uNjeOhoE5eQw7LwVzrJ41z+wakO11XHCqDSoSJkVRvakBR4OL5JkxJE6NYsUj2wDfeJ2W8nbfxKeK77s82vkjDtUi1J2ECCD3rytR69W018g5rI4kItuCvd7ZJ785nUWDKVZPQ34rKq3CxFty2fVxKfU7W45qfaq9dzu93aiiuOe/ozv9O75FEN0Gm2IVEIJZxbAzAnRXbzqqWA5kjNJhiNBRv+vo3luoSZoejb3eSe3WpgHftqJWfPP6Cd+x3RJvJP/zcgCOuWs4pctrKFlag96mJWaUjfJVtXjsXv+xbyBMuDmHlvJ2dvyvZEC2p7dp0Zo0/rv4eRenUbm2ntqtTUTmhpG3II0Vj23D2ewmZrQVRa0EdEyY1qwmeqSVilV1CHkZdVgqrYqxV2dStqLWfzO2L8SMtpJzVjKrntyOs9mNoqLH34XL2sYKx3eMGDGC5cuXo9UGRzfIoOnTdf/99/Pee++R3Ta2x8kQ0CmjLfiygqoNDYDvgNHRV72n1HoVUSN8TeuVa+pZ95/dMhnqhvBUExNvycUUq+/3bVkSjejCfN0HovPCmfrbEf6uYtZUM2HJvm5lzmY3m14rpKnY1xpTu7XJnwwBtJS1D1gypDVriBoeTsXqvjvIHdHeCwKP3UvJ0mr/ey1ZWs3qf+zwL6bsvUMEYI4zMO2eEZjjfImNIULn71Z4OEfTPW5/ihAoQuBsdstkqJvqd7X0Phna2wCTND2a7Hm+sWxel2Dl49uPOhkCmHRrDpNuzTmq11ZYFF8yBGi84FXAs/esZo43+OY564X2WqdMhnogLNHomxx5AOgsGv8Y1AOPRYqioOxXwGDVP3ZQstTXfc3R4KJkabUvGYIBHV9XsaqO6LzwAevG5mhw+ZMhgC1v7PEnq41FrWx6rdBfnTMs2YQ11dcdUFErTL1nBNF7uw7qwjQDMm5JF64l46R4TDFHf34IFV6Xl3X/2e1PhqJGhB91t2itSY0ty9elvnZbM1vf2uPfL44mMdU2mphom8G6dev41a9+dVQxBUJQJESvvPIKDz/8MNliFLFKUq/XV7+rhbYq34VU1mmJjLgo9Qiv6Frc+Aiy5yX6d8JQn2m5u5pL2tj8eqH/O+hLkcPCSJy6dwyDAqOvzCB6pG8QYEuFnaIlVSh7z0U7Pywl/7Ny/2sbdrfsO0kGUNyECIRXULluABOiw9j/M9n9cRmVa31xOZtdFHxVQdvepCT1hFiGX7DvtxQz2topQeptItRh2sc7Obu8BkUtKxL1hM6iYew1mT2+sOmYJDBu71ig4h+rWftc37VcFv9YTfGPve9q7FYrLE1RqDL79ov4iZFknppwVOuyJBkZe00m2m4k+NI+294tpqQPvsuu6CwaYkbvG9A9/MJUUo/3Vf5rq3FQ8FUFzmbfjZzKtfXs/nhf99DBcFwHqFxfj/BC3PjIQIeCx+6lYfe+ZD//s3J2flgK+MaOFH1fRUuFbzxrzCirr0DE3kNu4tQoIocdvtDJ0Wgtt7P8b1tprRzc8+8MFh3XnGq9iux5if6xlj2VfGwMWaclguJLtPriJpChwsYI/XieffZZfve73/V6fQNh0HeZW7t2LdOnTyfCHk8eE/u8vLbWrEFjUPnunnaz6dwUq/ddzCugC9MGxeSHQ42i9nXVMkbryT0riW3vFeNocJFyXAyWeCNb3y4CfBV5HA1OvO5BvZvvo/gGyTYUtLJr78kpWGgtGrQmNW1VDrQmNVN+PZxt7xZTu7UJc7wBU4ye2p3dS4K76jbXMfeQKVaPNc1M+cq6Po1/yFMg58wkyn6ppbXiyBcctkyLv+BHyrExNOS30FzafoRX9a8Du8wdSsf4Ia1Fg6vFjSFCx/DzU9j2bjH2uiO3lJkTDCROifJdIAbJoWMwiR5lpX5Hc68nk44ZbaWt2kFrhZ2oEeEMPy+FFf+fvfOOcuQs0/1TQTlLndU5d0/OM85gHDA4m2gbGzBeDAYMe2HX97LsWTbBBrLJwZhgTLKxjcEBZ3vGk2PnnJPUyrmq7h/VqlZnSa1Qkup3zhzwTKnq6+rSV2983v/tQtjHQF2iQNjHIOwRrxzxajTeYIWxXoPj3+zJmWeLpAkojHIhI9/2/mp4Jv0YfWUWCqMMrbdWoedP4/DPBYV3s0RmketlfECAi7FRN4BWUogEGJAyApSCSst3aay8E73TXfjDH/6AG2+8MeXnTyWizhDZbDbccsstkAVUaMWutMwaCnsj8NtCIEgCW26vRfn+9SM35fvN2PHRBl5lg4PkDCWITEOj8fqKxCZSE4C6eLEMY9vddai/hpeqjv39AcDoK7OCMwQA/rlg7jhDAMxNOiiNckwdy70BfmFPRNiEwz4GR77aKQySMzXqUH1FqXBs6U491EXxSa7XfvHwkkGsvpmg5AwlAwf0/mk8LmfIUKfB1jtroSnjM3qjr82mzRmqOGBZoky3GeTyCOQxqnPRFzxBEfDbgsJ+HVVJWgvvZAC9f5KcoWSQaWk03WBNKoOgLlGgbM9ilLvmbaWCrPV8rxtHvtqJsI9X+/PNBHPOGQKAyWM2KA1ymJtSn2FJF2yEW1Ke3PmbEYy+wmcCCZKA3xYSfhf115YJcuPAwrs7AdNNZ1Vh7wPNglKeRHyEXLwzJFNT2HFPw4a2bOkuE3bf3wSZhgIb5tL2XbJOtcCiLcJ9992HwcHBtFwjVYjWIWIYBrfffjtcLhe24yAoIr01txzLwT3mWzNVGy3PmT45j45fDyPikyRYk0Ghp6GrVIONrB851FkX55eU7jRh18cbBanJibdsmD3vBMBL+fY8MRZX1DcXKNtjgnvcB89k7pcMMCFWiBSOvT6LU9/rBcCXY1ReZIauMtp7JIOlVSvIMUdZ7gjRagrtH6yB0px/s6syicoiR+07Slf8vVxHC7OAnINenPphX1zO02apvKQIlZdsTolouSO0HP9cEN1/GAMb4UCrKey9v1mQA19O7TtKhTliEokT9kRw4ts9mD3n3PBYgiRQtEUv9ALpqzWouqxECHCd/G6v0PvDRrhNZ5zEgHcyAPe4L+nyJrERsIfQ88SYIJM/e86JiaN8QI9SkNj18UaU7uR/VoVBBp11/ZLdwHwItg7XiveBRHyEfQw6fj0s9CCvVVpu63Jh+MXptI8TIDgSzc698Hg8ePe7341QSLy2mmgfuX/5l3/Bc889hxp7O1REZmakjLw8A9cwL4cZOxzMWK/F3k83Q6GXgY1wcA5vUga5gPFMBnDqe31ClC+KuliBoi164b/bb1+cX2LrduHszwbALAhW2DpdcI0kL1sqVmRaGqZGndCjk29EM3UcC5z47hBmzvHNvcY6NRquKRaOc39xGxr//eiKz8s1NEiayJnZVWJFrpfB0mZYIYBhbtGj+ooSoSfSmyGn/Pg3e3H8m71JfXYjR2g1In4Gg89NCtnL2Gy1XEvz9yaRDLbECqIN2VFBm1hoFQV9TVTsgkPju6xCFmj61DyOfb2bV4sDciq7nwjTpx0L8+lyY0ZQIrhGfIJwAxNicfZnA7B18/9dssOI9ttrhGOLtuiXVH8AvEE/+NyU8AxJJI5zyAuO4aDQy7D3083CsHeAH4BLKylE/ExK1enWQ0mosEN5CF1dXbjzzjszcs1kEGUP0dNPP43rr78eDdiCOqIt49evOGBB1WXFOP6tHjBBFrSSgvXiIoy8PCPVxm6S2JrV4q1GzPd7EHKFUXlpMcr3mHHsG90A+PklQUeooKQ3rYcsqHl7Kd76n668HjS6mrACpSDR8w87QHAc3hPyoIuSw/2lk/w8MUpyglLOQr+kwiiDvkotRPOjg27FSrSHaCMnqPymzrjOR1AE9n6qGdNn5jHy0gz/d0nIzEqspHS3CfXXlOHYN3iVSo7hMzzVl5eg/IAZb/13Fy/1L/JnLh3QSgr7/74FQ3+bxsSR3CuPThaCBBRGuVDRse+zLZg8ZsfY67NQ6GUwNmgxe94BkiJhqNXA1pV5+fZ8gqAIVF9RgvE35vgMHgHs/kQTnIMe9D8zufEJUoytbBSnJt/C9773PXz84x/P+PU3QnQO0djYGHbs2AHSrsAOXJSWvqGNoFUULG06mBp06HtqQkgFS2yOoi0GtNxaifOPDME97seBz7ei94kxzHW4QMoIPhooqqcxs+z6eCN8s0F0/2E020tJK8sdov4vLRVQUHIsOAAV/+8tlO8zo/YdZeh9ehzeCX/WZ1flEzItjZq3lcBQo8HJ7/VlLdizZSFifOFXGw/YnXwivgBZvA4RwFcA+OaCkGtpRPwMAvPSM5YKaBUFQ60G831uHPh8G4aen8LkMTtoNQWCIFI+HD3XaLmtCuoiBU59P0Oz5sQIwQs2sGEORVv0aLqxEm/9dxeMdRq0f6AGnb8bga1DcopSAa2k0Hh9BcbfnIN/PpSVtg+O4zBYdgYTjjG89dZb2L59e8bXsB6i6lpjGAYf+tCHoFKp0IDdWXGGAL6kwtHvRdkeC5QmGTyTkkOUDJSSRMl2I2bOOsAEWBhq1fDbQvBM+MGGWbz1351gwwulEeEC9oTAz0zRlCox9MJUtpeSMZY7QlECMcXjcx1OBF1h1F5ZClu3G6YGLSaO2IQ5YhKJQ9IENOUqWA9aoDDIcPqH/VnNfGdbPj2qpNf23iqoLAqMvTEr9K1IJEfJdiMqDlhw+kf9AIDu34/CPc6XOUv9tzwzp+ex5XZeuCQTvXqihFt8989dcMHew9sEjgEPXKM+6KvUsHW4VtgSEomjr1ZBaZQj5Ilk7TtIEARq7Vvh0jtwyy23oLOzU1RDW0XVQ/Tf//3fePnll1E63gA5kZnhbssp2sJPaw46w5g5M4/W91SDpLP7ws4ltOVKGOr4ni9KRqLuqjJoy/kmyoG/TuHkQ71CY2yhO0GxlO40IuQOY74//4dAsoHAms5QLIP/cQhhLwN7txunftCPicNzsPe64bPxakfGeg2qLitOSMFIAqi6vARt76vG0AtTOP+Loaw3qp9/ZAjnHxnK6hoA4PwvhjD66ixsXe5sLyX3IICqy4qFvd9nC8Le5wZJE6i/rhyaUmXam7dzjfl+D0LusCA4ILFoE7ARDmd/OoChF6YBANpyFequKgMl401WQ50G2nJpeGvcEED9OyvgHvch6AyDoIglPduZhAzTaMMeDA0N4XOf+1xW1rAWonGIjh49in/6p39CDdcMM1GSlTUoDDI03WiFpY1/UOb7PBh9fRas1De0JiRNwNKqE1SBKg4VoepSvkE+5I7gyH91wjnIi1BUXlIkKYStAkECxVuNmDnnLOiSwdUgaQK0kgLHcAj7GIy8NAPPgvyzysLPI4reM12lSnKO1iEa2Bl9ZQbnHh5EYD4MJsiClJFZz9JkE4IiQMr4Ppbxw3P8LBWSQOttVdBXqTc+QaFCLHznAIADDLUaqIv4QKZn3I+Rl2bARjiEXBGECrw8blU4YOasA8XbDJKi2iqYmnRoex8/6Ns56MWR/+oUhBaqLi1GxSFemZIgeRtEClyvA7cQ8FkYmlzUxpcnxoqHZRKFTYctpTvx0EMP4fHHH8/KGlZDFF9Dt9uND37wg1BHdKjHloxfn1LytyHoDOPkd3sxtyDpHLCHeBUOyUhdAiUnoTDyXyRVkQJt76sRpDQHnpnE+V8MCcdGIz4yLY3yfRYojZJDtBxjvRYyDY1ZqQxsBSU7jNj7mWZB+SyWyWN24VlTGGXY8dEGFLVlJ+oldswtOuy5vxlyHb1kpghJE9hzfxPK964/syKd7P/7Fuz/+5aUnU+jSKwHqHyvGXvub1piUPGDCkXxehQtRe167Phog/AuOP/I0KrzwcZen82YmlWuMXveCZmahqFWu/HBBQYbZhHxMcL3Mrai5PwvhjCwIAqgs6rQ9r4aqBaccaVJLozokIAQJAzYQ4JDOXveiZPf7UXQyc9li9rAmaR4shZlpnJ85CMfwezsbMavvxqiEFW455578Nhjj2G75xKoicxuDCRNYNd9TZg+NY+x11f/pdRdXQbPhF+YfVOIxCoBbbm9BiAIXPjlEAB+A5IakZOn6QYrdFVqnHwoOenhXGXwPw5teIySY7Ht112Yu7Dxd09rVcE7FQDHcKi7pgwkRWRFSUeM0GoKFfstGH11ZoWCWskOI5zDXgQd2RkyHZ1BFE/fzlqiCsudIP07++O+vsIog6FGg5kzjjWPMTVqMd+X/+WsG9FwXTnYCIfB56ZAUAQ0pUp4JjYe2EurKJRsN2LircJRVIuXPfc3wTnsRd9TE9leSs4Sa4NsuaMW4DhBpKUQVQxjKd1lQtleM87+ZECQs4+l8pJilO4y4tT3+jIuc89qQzhOvIzLL78cTz75ZEavvRpZd6Off/55/OQnP0GlpznjzhDA16qOvjqzbnSeUpCgVfk3LyBetBUqHPh8K9QlfARm6IVp9D01Lvy75AwlD5/u12Ouo3Cd7fUo/6fjcTlDAF+mExUH8M0EhSHLlJxE8dbCLEupOGgBpSQR8TH82IBV7IKZM46sOUMA7wglK2KgUYQSzggtJ+gIr+sMGeo02HJ7LbQV6w+UzEcIkkDxVoMQcfdOB+Cb5bOLHMPF5QwB/DDgmitLhXeIxCKzF5ywtOmFsnOJRUiaiKvMPtYG6XtqXOg90pQqceDzrQXdb+SbC8Le7VrVGQKA2bMOjL46m5WZX6RHjhblDjz11FP44Q9/mPHrr1hPNi/udrvxsY99DGaUwIq6jF67fJ9ZmBQ9c8aBoGttg6DvqYlVSwHymbprytD47goAgHcqgMFnFweleacDQqo1Xnbe24Dy/dkryxErxnoNaBUVt9FfKNR98SiuOT4GS6suqc9Pn5oXJnUbG7RouskKmUZUopppR66XoerS4iVD+dZCW6HC1jtrs1KHX7rbiNLdxoQ+kwpHiJQR2Hrnxo6Oc9CLU9/vi9v4zydkGgpNN1lhbOCfoakT80kNjnaP+XH0f7vgmwmmeok5z9wFJ2QqGsb6zAygzyVqriwVZPnjJegMC8GwoCuMwWen4J3mn7vG6ytQd01ZytcpZtyjPoy+unZJWtC1GBAq3WVC+b7M2mn6mRJUFdfg85//PKanpzN67eVk1SH6x3/8R8zOzqINezIusa0uUUBlib+fhZKTeR1lkOt5QYmo0eidCsC9YABwLIfJY/ZNDcecPe8sXGnRdShqN8A3FyxIQ6Hu/x5e+XdfPIq6Lx7lszkc/+yB3Fx21tbpwvFv9AgO/c57G4RgSN5CACFXGMe/3RPXHI+wLwKW4UCrM+801rytFDVvK43r2FQ4QlFoFQ2W4RD2bdzwHzWwSnYaUX9deUquL1ZKd5mw82MNAHhhnOPf6IGtc/OzYJggC4KE1Ju1DN9MEL7ZAIq2GLK9FNExedSOrt8mP5cv4mcwecwuZEfc437BDpFpaTTdaIVcLx7Z51RjbtFBXx2/MIyqSA51cWazuARBoNG3AyzL4tOf/nRGr72crIVMX3nlFXz3u99FM3ZCRWQmMkLSBFRFCninAuj/c2K9BbXvKIWxQYcT3+5J0+oyj7ZCBbmWhr3HDSbEQFuugsIoQ9gbWbeEJBnG35TmeiwnWi43cUyqq6/74tEl/82xQM+fUldTH/LwRi9BEbB1uQQDV12iADgIZUD5QN3VZZCpafQ8MRb3zI6gI4yOX288GDUdnP5B/P0+qSTkSuJn5oAsjcdLK1EjyDcbhHcmAFu3CwRFgGM44buTCrZ/pB7uCb/QEC/BM9fhQsUBC/qensjqTDCxkepy/FhxD4VBBm25CkyID/Sam3UIeSJ5lQku32dB0BmCa8QX1/FDzy9maDRlSvjnghkppaN8cjRbtuG3v/0trrvuOtx1111pv+ZqZCVU4/f78dGPfhQGWFCFhoxdt+ryEmz5YE1SZSFjb8zh3M8H07CqzCLX0YLEbukuIyov4SWymQDLl4WMp34z0FWpMx51yAUMdVK5HLDSGaLkJExN2qUS2pvMEkXhGA6jr84KL73Ki4rRfHNlSs4tFlxjPrhGvUl9VmdVwdKaWaW+kCeSUqM7HiytekEZMxFmzjiEYJpcmz8lmM03V6LyYl7cwjPux+irs2kxzEdemcXU8cIqP4+HuQ4naCUFQ40k876csj0mFG83pvy8nnE/Tn2/TwgaVV5SjNKd/HUIioBcl/vf7wu/HMLAXxMPPpA0gS2316Dq8syNwDHNVaDCXIkHHngAdnt29oisOERf/epXMTIygnbszWip3Nhrs7jw6+GkPN6gM4zQOn1GuYBcR2PfAy2wtPB9GUPPT+PszwbSft3ad5SicmE2kcQi5hYd/PZQQZbLAcDwv1wEMrzy+29q1KD9vZUZeSH1PjmOzt+OAOCVirbcUZuzJRTR5mNbh0von0qUkl2mjPf6tb2vWpg3kinK95tRsomBmHIdjd33N2VtuOFmUehl2HJHLZQm/pnpfGwEvU+Ob/CpzTPf6y7Y/W49fDNBBBwhmFty83lKJzqrGprS9LcrnP3Z4iBYS6sO+x5oyQunKFauPO7PRHiVvrHXMieHTRAEWiK74Pf78S//8i8Zu24sGXeIBgYG8JWvfAXWcD00RHIN04mgLlFg+0frIdfRYELspvpYircZUH9tbjXkle0xCU2JIXcEXb8bEeRjmRCbkRlLF34xhMFnpRKJ5ZibdJjvdWd7GRln+F8uwvC/XLTmv891uHHie/0IudKfNeBYTlBYo5UkwHGILPSUKHLIMVIXK7D7E00wN29uTx18dgrnHxlKzaLiRKahMy54cf6RIQw+N5X050PuCAafm8J8b25JcUef6bAvAnAc/8yDD/itpkCYDvQ1ajS8qyIzF8sh7D3uTX9/85HeJ8cx9Hzy39W44RZsIgDzvR50/W5E6DvdcnsNyvbkVt9p23urUXtV8vaqdyoAJsRCrqOx/aP1GVGIpNwKNGrb8dBDD+Hw4ZU9xukm4w7RZz/7WSBIog6rz5NINZEAi7CbbxjeLKSMBCUXt/w2QRGwHrJAU8ZHVAKOMDyTfqH8yNblFr70mYKNcAh7kxdkyEfUJQoojXLYewrLIVrNERr+5wMr/i5gXyUbm6KyubXwTAZw4Vd8BplSkNh1X2PGFXeSxTcbRPcfR2HfpIPNhvm9QWGQgZRl5vVw9qcDOPvTzWeqtfKQ8GctSBkpTGeP/qzJMn1ynjcYtHRCAj3ZonyfGbvuawSlIIUIsGcy80I3lJyEukghDc9chr3HDaVRLkmTr0EmxyYwIRa2roW9lAA8k34EFgJnmjIlrIcsQuuBWLH3uuEeja93aD04hkPYHdmUqFYilDrqoFFqce+994JlM2urZnRHeuaZZ/Dkk0+iGTtAEemNCOqr1SBlBEKuMDp/O4KIb/O/zOmT8xkpK0iG6AuZYzmU7jYLUrKOfg+GX5zJSCZoNSxtejTflF89GqnA3KwDE2LgHE6u1yPX2CgrFKXu6lI037RG9JjNnFPNBFn0PD4mzIcyNmihTaLnJN1QClJQEbJ1uFLyPacUJHZ/ojFnIqIbOUGxlO81YfcnGlOqdNb47go03mBN2flSidaqEiSz5zqc6Hl8LOtDKud7PTj388GMB+bEjnPIi0iQgblZKptbAgHs+1wLSndnKTjFAcMvzsDRz2eDtRUqlO42C8p1Yg2GTJ+ah61r8+qQYR+Dzt/y2TJSRiSkWpcMJEtiq34vzp8/j9/97ndpvdaKa2fqQsFgEJ/5zGdgRglKkN6XB6Ug0fb+alQcLEr5uQmSEN2Q1tLdJuz6eCO/Lg449b3eJWoq2SQfFZlSgblJh/l+T0EoCsXjCEWzRK5RH5zDy6JaLJNRZyiKvcctZDYr9ltgPZT6/WSzWA8Woe291SnN5jBBFp2PjWDqRGYaW/c+0Iy9DzQn9Jl4skGrMXncjo7fjKTUKeh/ZnJT0sDppPJQESr2WwAAYS8jqoy0ukRRkMOS14JjODj6PVLZ3HI4YPTV2ZRkO1LB9Ml5nPpeL8ABtJrCrvsaRTfGQV2sSEo0ZiMqDhah7f3VaZfOV0+ZUKGrwn333QenM3OiUxnbjr797W9jcHAQzdiZdiEFJsji3MODGHs99Q1h2+6uQ90m6jJTRcN15bAe4l90tk4XLvxqWEhpZqoWPB7mOlzoeWIs28sQFbSKgq5KjXkRGSdiwdbpxvQpB/8fWXKEVqPjN8Poe5rPDhvrNWi+pRKkLPve/sirMzj78OCmy7+W4xjw8s24GfgRZ8444pb5T8YJEiD4BmPnYGqzskFXGGFvBJSczLoxS8oINN9SKQz57H16HB2/yY6c+nqoihTYfV+TkL2S4LH3uqGrVIku6Jptpo7bhVEJYiBqY0V8DC78cliY02U9ZBHFnLLyAxY0vjv1fXpjr8/i3MODGckyt5A74Xa78fnPfz7t14qSEYfI4XDgP/7jP1DG1EBLpC8dbL2oCPXv5B9G30wwLWViw3+bxsRbmZ8bQ9IESnYahYha2McgsvBQRvwMnEPiK70iSGS8WToXMDZoQRAE7H251ZCdbkq2G6AqkovKERLgIMizkjISJEkI6j3JyPhvFm25kpey5wD/XHpUu0yNWuy5vyntvR4jL81g5KWZtF6DkpPYc396DfCyPSY031yZFWM2+gyyYQ4kRQgZQyaQGeGcRPHPBXHukUGhDEmCx9HvAUEQMNRlZjZjriBTUyjZYQRBZj8ItRznkBeRAP++igRZoT2DIPlBztl4Pww8M4kLj46k/sQcBJXI+neWw3pR+qomKJcCrdYt+OUvf4nZ2cyo3WXEIfqv//ovBINB1KdZSCESYFLSK7QezmFvZiMVC98llUWBpuut0FXy9ZsjL8+IpixuLTRlKhz4P63QlKdfMjOXMNZp4J0JIJzh2StihuQ4WG+0wlQv/jkc9m43un7Pl0ipSxTY97kWQcQkU1RfUYL6a9MbifROB2DvcafdCCnaok+7fDVBErD3uOGbSd/ePX7EhlPf78tY83EUTZkS+z7XIjTjd/1uFPZu8WefnYNeUVUziIGQOwLfbADGeilzFovSokDzTZWi7deJMn1yHiMv88EdXaUaTddbhXEImci2R+FYLu1jYiJ+RnAE04V5uBokSeK+++5L63WiEBzHpTV+NDExgcbGRpT6a9BIbE3LNTRlyk3JaScCreIjFbPnHGlXTqu+vAT6GrUggyvT0jllRFMKEsY6Ley97oLolYmXvZ9uhr3HndTAtFxloz6ihp+NAQTAjIzm1LNCqyiU7zdj7LVZcOzCXjQdSHtUnqQJUEoqp/aDtdj/9y0AgKP/273hsezfquI6J3ll9np6CJKAuVm7qFKVlosAmlL+vUeQQNWlJZg4asu4M7YpCKDpBivme92Y69h883e+UP/OcpgadTjx7Z5sL0U0ECRA0mTOCXHE2mzb7qqDc8iLkVfSmw1X6GWou6YMQy9MIzCfZHlxgqTTBrdVDePcxCkcPXoUu3btSss1oqQ9Q/TlL38ZKpUKtWhJy/lNTTrsvLchY1KVlIxEzdtLobKk/noESaB0t4kvhQHgHPFi7sJiQ1muGT9MkIWty5VTBm66URhlUJrkcAxKpSJRos4QOICqis/gFQsRP4PRV3hniFKS2P7helgPWtJ2PX2VGnIdzUvZZ2g/KN5uRPE2Q9rOf/bhQZx9eDBt5y/eZkjLpPu1sLTp0HJbtTD0NB1YD1qw/cP1oJQkOBYYeWUmt5whYDFoIMIyqGziGPBAZZZDYcydOWjphmORc84QsNRmmz3vgHOEb21QFytQutuUluw7KSdBK6mUjJqJB3WJAjvvbYCpKT39k6bxSqhUKjz44INpOX8sac0Q9fX1obW1FfXMFtQQiakIJYKxXgvHQAYNzAXjLVWQMr4fgSCBPZ9qxvjhOUwezYzCUzop22uGbzoAl0jUYcRA6S4TGt9dgSP/1Zl1+dtMszxL1PAzXmyDpIFdt2rR/0YAjrEIIkNpqH3OENoKFfxzQTAhFsYGLQL2UEqjdDvuqUfAHkL3HzMnVNJ0gxUsw6L/z9nPaG6UITIp+L3Geclin2fDu8pBUmRGRyaoLHL4bamNzipNcj6YMuABJSehKlLAM+FP6TUksg+lIHHwC23oe3oC06fEXRafSUp3m6CvVIt29EkilO83w3qoCMe/1QNwizZgrmJs0Ka1H3BCNojO8Em8+uqruOSSS9J2nbRmiL7yla+AYmSoREPKz111WTF0lQuzdjLpDAEpdYbMLTrs/2wraBUFjgVOPtSbF84QwDcZ62vE3xOSSQx1Gngm/QXnDC0n6gwBvDT7ZEcIvnk+wk3XVmdrWZvGM+EXIpm1V5ai8tLilJ7//C+GMPBsBqa2x9D71HhanaHmWyvRfGvys8pMCp/wZzX6/zyJ3qcya0RFnaFUSt9WXVqM2itLAfDR8nxxhmQaOq3ZtFyDCbJwT/ilPqJlsCEWTCjHsqBrMHnUjpMPLUp37/9sa8oUKjM1UDuWqDOkq1ShKsXvPAAoZ2qh1+nxz//8zyk/dyxpkwAbHR3FI488glq0giJSq7pDUASMdVpEAgzcY5l/KdRcWQpKTmLgL8kZCfpqNWgVBXu3G64RH0ZfmwEb4b2s6P/mA6d/0J/tJYgOY50G06cd2V5GVqj55zdXdXaYMDBxLjO1zpnk7E8HQNL8y8nYoIVcR2Mmyd+90ixH2BsBE2Qz70wvbEmGGg1coz5hIGGqUJuTKz9eywGKQpAEdFUquIZ9WVFaK95uRPONVhz/Vg+CzuQanEt2GhFyR+Do92DwuSmwkfwLpLR/sIbPev5BnLOcsoFzyIuSHcZsL0NUzJ53YvZ85mbSpBvB5gtzGH1tRqikMbfoEPEzcI0kV1nT+p4qsCFWEP7JJNoKFYz1Woy9OZfSVgmCJdCobcdLL72EEydOYM+ePSk7dyxpcyX/93//F1qtFlbUp/S8JE2AYzice2Qwa5mUwHwIAXuCBlxMqWjpLhPKdvODvCJ+BuOHbSmfIyIhPpQmOeRaGVzD4pNIzwTTn1oprEBQQFmbHLRiaS11LmeJorARTlDhMdZpUNSefB9O0/VWtNyavf4qpVmObXfXwdyS+jrx0z/qx+kfxR88WS8bFIu5RYftd9dnLfswd96Bsz8bSNoZAoDiLQYYankJ5kiAyauAWZTeP42h/88T2V6GqHCP+qDQyaQ+omXQSgqUMr+m+bJhFuOHFwVRynabUbozZtBrgm1G44fnMHk8O7bx5FE7zj0yCI7hUi43bpguh8lkwre+9a2UnjeWtPQQzc7OoqamBmX+WjQQW1J23pLtRlRdVowzPx5Iu9xfKqFVFHbe24DBZydh63KDlJF57wCV7zfD0qoXFPIk+Ihxy82VOPzVDmGmTSGw3BGyPrVYLqexkNjyTg3OPe2F37H0nuRyL9FqECQBjuWgtapQvteMgb9Mxt0oLNfSoFUUfLPpmTkUD9pyJTyT2R2OaHg9PsGKaA+RGNYM8O+AeEQPKDmJ+neWY/K4HZ5xv/DMSBQWtIrCwS+0ofuPo5g9lz9Zkc1y6ME2jLw8g/HDmZ8FmUmiNqKlVY+6q8tw+kf9OSWaQisp7LinHqOvzmLmrCNl550pHsIF2ymcO3cObW2pH+OTFlf7m9/8JkiSRBUaU3pe54gXM2ccWXeGCIrgo47rOMCUgkTRVj4iHPEzmD41D98cn1XKd2cI4GvoHSmeCJ/r6CtV8M0GCtoZWo7XxuL4b9wrnKF8JGrYyrU05DoZmDj2AYIiQJAEQp5IVp0hAIJjQVCpjfzt/VQz9n4qtaI70TWKwRmqvKQYO+9tiOu+MWEWcp0Mci1fzV4ozlDlxUVpHfKYa0T8DHxzQeirpB7cWDp/O4q5C/kv0R61EX1zQUyfnhecoaKtBlCKtc12giRQssMIuS5t3TBxEQkwmDnjgDPF1TBF81VQKBT40pe+lNLzRkm5Q+Tz+fDd734XFm8F5ERqpKl1lSqQNIGgI4zR1zIzsXY9DDUa7P10MxT6tdPZpiYdmm+0Cg/m6KuzaZsoL0Yc/R6MieB3JSZ0VWq4stDzli3WcobGr1/aQM+uoh6db9mhWOzdblz45RDALZSifbgOCsPqe4n1oAW7Pt4gmgnt1kMW7PxYakVy5rqdmOtOYRScA3Z+rAHWQ+mTP0+EuQ4nBp+bWrOmXmGQYduH6/gBjhxw4ZdDOTFYNZWQchJUFprBxYxr1Cc5RMtw9HsQTPPAUTHhnwti9FXejpLraDTfaF1X3lqupdF8UyXUJZkdFL4ao6/NIugMg6QJQQBts5ARCg3mVjzzzDNwuVLvGKd8B3r00UfhcDhSpixHyUm0f6BGVNEjz4Qf534+iLB3qSVXeUkxaq/iVYDmLjhx/Js9CLlza3ZQqtBVqkDJpRdcFEpOQlOihLsAJMinP3XRhpkhAFBoCey6TQu1efE5iQyN5LUztBySJhDxMSv2kij2HjfGj9hEkylwDvv4+vQU+mdDz01j6Lnp1J2QAyaP2+EcEkeGOmAPwda59ss77I0g4mNSXnOfS4y8NJP2gZW5hnvEC3WpUnqPxqAqUqDqstSrmOUCIXcEx7/ZI8ymrL2qDJWXLL0XQVcYb/zbBThFNOfQelER2j9Qk7Ln2DBWjkAggH/7t39LyfliSek3jeM4PPTQQ7BwpVATqZGMZEIszj8yhLE35lJyvlQQCTBwDnnBRjgoDDLhF82EmEUFKA4I5dgg1VQh19LY8dEGoRlYAtBaVSBIIu9nMsXjCAF8lojjAPtwGEE3/50pJEcoim8miM7HRsBGOMg0FPbc37QkKuybDWL6pHhmkXgm/Jg6bk+papupSZfaoX4kMHXcLopyuVjq31mOykv4wJ6+So099zdBpqHARjh0PjYC30zhVBCsBikjIF+n6qLQcI36QBCpi67nA0qTHOX7zKDVqVUuzhVCnoiw9zJBBkyQL6Wj5KRQZcAxHDgRVaCPvTGH848MpWywrpJQoaakHo8++igYJrXtMyl1iI4cOYJTp06lJDsk18uEGR7e6UBKJfxSgfWQBbpqNXZ/ohFle3hFkMmjdiG9WciEfRGc/F5vyutHcxmdVY1IgMn7ssnSb78Z97EhL4fhY0EEewsrK7QmHOAY8sI3F+Qz4x+shro4NWXHqYQg+dEDxobUBL2abqhA0w0Vmz5PkcKLCieHugElCBEG1cOeiND/6psLwjHkzYocuFhp/0ANGt5Znu1liAa/LYRIkIGmXHKIosz3unH0f7sR8eWOwEC6GH11FpPHeDW5sj0m7P5EI8ytOrS+N3tqpKvBMRy803xwqvLS4pT0N1kjdRgbG8Pjjz++6XPFktLXxkMPPQQVNLCgbNPnMtRqULbLBFolrkiAXEej+m0lqDhUBLVFgY7fjGRN4lCscCwf+S704aOxaMuU8EwWTv/QxnDAraXgpsY2PrRACPsY9D89gYifgcIkg6FWK8osK8cCmlLlmn1PiXLh18O48OvhpD5bpPAKfwCA8tOgXXJRRUijBOZDsB4qAiUnEfHzv+uwZNgJDD4/haEXMjt0WOx4pwLQlmW/H0RC3Ewet6Pj0RFwEQ4ECFS/rSTrwgrLoVUUynaZUvJOU8zpoaMM+OEPf5iClS2SMtnt2dlZVFZWoibUihoiNYpBJE2Ibu6CtlyJ9ttrce7hwbyP9idL8VYDaDWVtTlRYmTPp5pg73Fj8NnCeOFvVDpnHQ/i4LYgTnTJ4X/sZIZWlTsQFIHKS4owc9ohNKaKbS/MBobXLYLzsxb9+8RVKhf93SkMMpTtMYEJs5g4bJN+nxIbUndNGcxNOpz4Tm+2lyIaWt9TBc9UQBJtWgNVkQLb767D+V8NwSuysuFUvsdcNZM4PnIY3d3daGxMjaJ1yjJEjz32GFiWRTlqNnWexusrULqLL0ETywuj4qAF7R/gfy7PZADHvt4tOUProC5RQFchqeNEoRQkVGaF6DanbGHsD8MbIPHaKSWcHhHWNmUZXZUaKrMco6/wKj0ESWDHPQ2iEpYBeKfN0qbf9HmabrSi6UZrXMeu5wwpJzUAIy5hAutFRdjx0XoQJIGgM4zpUw5UXVICrVQGtSrWQxaYm1M//DdX8U4GoLIoJGGFGNxjPsn+WgOCIuCfC+Lo17sFe6P9gzWoOCAOxc2oTV+6y4TG6zdXJq2dKAFFUfja176WiqUBSKFD9Mtf/hLGSPHmpLYJ/obFM58j3cjUFGQLsyD8c0G4x3yCshLHcKh/ZzlqrizN4grFy/CLM+h5QiqFiqIp5UsePFOFUzK3Vi+RsX9RMjUUIcBxBILX7cvUsnKC6suKUXvVYtkxx3KYPG6Ho59XDiJFIk9satCi9bYqqCzyTZ1HW67atINAeWQwniiDYk4cjkb0d+To92DyxLygEhiYD+Gt/+nKe3GVZDHUaqEuEV/fXLaIlllrpLI5gfHDtnVVGwuZ5hut2Hpn7WLPPQG4R33w23gHUq6lIROBIAUbZnnnaBPxKzJMoUJbhZdffhkpKnRLTclcT08PWlpasA0HUUpUbvyBVRBbScie+5vgHPKi7+mJVf+94oAFTJgVlQKUhDipOGBB7TtKcfg/O0TZ25BOoqVzsY4QwGFncwij0zRsTn5zVjxzLAurEycESYBWUwivoVK57a46eKcDGPjrZIZXthKlSY7AfChj12s4trZhSHlpMOoI+vdnNxNbf205NKVKnPv54JrHECRAKaicmj4vkQUI4NCD7Rj+2zQm3rJlezWigJQRUBcpRKciKQb01WqQNAnHwOqy243XV8BQoxFVCeZmbH+nZhbHPK/gueeew1VXXbX5tWz6DAB+9atfQa/XowjJKcRoSpXY++lmaMuzFwUhKALl+82glPwt6XliDEMvrD0bY+Itm+QMrYJMTeHgF9pgqBNfM3i20JQpeaXEAnOGoix1hgCKBEJhApEYW1DKEvEQJJ8RWssZAvi9Z66Tn0WR7WxR1BnKZkkPESEADmA0kZTOR0qU6O9irtO5ofG65Y5aNFwnKaqtibgqH7MHB/hmAkKVgQRgatBh572Nosh0iA3XiG9NZwgAhp6fFqp3KCWJ8v1mEFT2vmzaChX2fro56aywzmuBTqfDz372s5SsZ9NvMY7j8Mtf/hJalxkUkdwDGpgPYfqMA77Z7NWF0koSNW8rhbGOl5J1j/kFidTVoOSk6FQ8xADLchh7YxYBe+aixmJHXawo2Bkjxr6VU8UZlkDHoBxOz9L9otCdIkpJYv/ft8LUuL6cta3LBdcwX3LVdKMVre/Jrsxq621VcfcArcbuTzZi9yeTb4o1nC6F8WR2y5db37N4D1zDPti61i/pGX11FmOvi2e2nlggaQIHvtCK4q2GbC9FNPjnglAVSWWEURxDHpz6Qd+69lmhYmrSrus8RwIM3GN8GaaxTouat5WCVmYvmOWbCWD6jANBx0o7IR5IkKg21+Gvf/1rSmYSbfpOnDhxAgMDAyhDdcKfJUgCMjUFJsRi+G/TGS+Z01ao0P7+ahAkgbCXwbFvdMddm1r9thJsvbM2vQvMQZgAi7E35hB0JveA5yOqIgV8UhOogFLOgiTFUx4rJiaO2OCZir8UZOq4HdOn+Ux1tiJ906fnhXkYyeAc8sE5lHxPja/WCX+VO+nPJw2xeM+nTzswlcA9cA55hdkcEouwEQ4jL89I5VAx+OaCopxHli2YAAvvVOFWXKxH3dXlKN5ujOtYW6cLx77RjbCXAUERaH9/NbQVme3BZCMchv82DSbEQqamQJCJv8PUoxbMz8/j6aef3vR6Nu0QPfnkkzCZTDAicQWk6iuKseOehoy/yEmavx4TYkHKSMg0fKQ6kbk5U8ft6H1yPC3ry2VUFnnGv1RiRq6jQSuoglTFCb5z9YzPlvow2mslh3k5TIDF6Guz65bLLcc55MV8L18iUXdNGbbcvjmVz2SY7/PAOZT8EOb+P0+g/8+r92rGQ6jIj2BJ5kUKtnywBnVX8+IX873uhAdRG+o0qLtm8zP78o3Jo/aC3C/XwjcbBK1cFHmS4NUbjfWpGQydT5z6fh9GXlq71WM5UZtXpqZAykgwIf6/ozZypiAoXkm1+orihD+rZ83Q6XT49a9/vel1bPob9uSTT+Jd73oXpn6VeERn8qgdngn/oiJGBqh+WwlM9Vqc+ckA/HNBnP/FUFLn8dukkrDVKNtrhqlBi5Pf7cv2UkRBtNShkDJEKxwhDkt6ArqGZVKLwDKUJjnMLTpMnbCDDSe3H86ddy4OS43e4AxtrXIdjfpryzHw7BRCrsSc3eigvkSdKtJPQ3+hCK4ts3jNvlihUIbOhM6TEDH3deasY1OZcJmagqZUCYIiMvoOFDsyDQ1zkxbTZxwZe37FTLSVQF2sgDOBYEk+Y27SgWO5dftlChGO4ZL6yoTckSW28La76zDf58HIyzMpW9t6cAyHweemeDXnBCEIApdeeilefPFFsCwLkkw+z7OpDNHw8DDOnDmDM79MTLFCaZKDlJEIeSKwdaW/1IFSLPb7zPe6N1XeEUVVpEDFQXFou4uJkZdmcOFXyU2dz0fURQqwDJtRJa5sslZWKHaX9vpJePxLtx7FM8cKWmlOW65E1aXFmzIAXSM+zJ7jxRaqLi3GtrvqMtaczgRZyHUyKJLoq2y5tRIttyauTnphtAo+lwaHZxMv104Kglf4q7qEj2LOnnPCNZJ8ZmruggvnHxmSnKFlqIsVaLzBCqVxc3Lu+UJgPgQ2wkIt9REJnPv5ICaOSKp7y2m5tQrG+s0LWk0etWO+j7fN5ToalCL9fUa2LhdCnghIGQmlKbHvvu1NH+bm5tDV1bWpNWwqQ/TUU09BJpPBEk4s7d/63ir4ZoLoeTwzs2q23lmLgCOM7t+Pwj3mF5rKNoOuQoXqK0p4NSHpfSbAhFgh7SrBO85+W6ggnpE1naEYjFoGBh2L4UkaUWu9kB2hKHMdLti63MK8ms3iGPTyks7R0xFI6zPIhFic/elAUp/t/kP874E3xusW/0MDvNSSgb0meu84YO6CM6Eer3jItHS52HGN+HD4PzvBimAeoSjgAL89BJXURySxAZSCTKoPZzkzZx3C/6+7phxKowxnfpzc/p4ojddXQF2kwOkf9sf9GbXDBLlcju985zv47ne/m/S1NzWH6JprrgHHceBeSEwRRlWkABthk1aWiAdTkw6eCR/CXgY6qwpBZxghKd2cduqvLYe9xwXHQPI9BfnEljtqwYQYdP12NNtLSSvxOEMAYC2JwFoSwdELvBKO5Awh7SVTpbtNKN1lwvmfD6ZduEauo6EuUQpDZFMFd2gHAGD6H3jHodQFuJSAf5VAYtlNqSuZI2kC2+6qw9Sp+bSMWbC06tH2vmoc/Xp3wqWGEoVD2/uqQVAEOn4tVV8AQPk+M0p2mnDmR/EbzRLJIdfSkBtk8Iz7IdNQ0FaohL7VdKAwykDSZMJ9hN6D43A4HOjo6Ej62knnwYLBIF577TUMPR9/A5e2QgUQvIxkOp0hSk6i+WYrircZAQDucb/kDGUITakStFpq/oyiNMoQmM9vQydeZwgAxmdpHL2gLPgSuVjK9piw99PNINJUleCbDmC+150RFU/rRUUJz9dpuK58zc9wh3YIztDiXwK7Rkk0z6S/HpCNcLD3uuFLkyKcY9CDC78aQtgrvZ9isV5UJAlOxBBwhKA0yrK9DNHgnQnErQgssTlCngg843xVVcl2I5pvrkzr3LmgI8w7QwQSEuhixkl0d3fD6XQmfe2kf6pjx47B7/fDhPhUISglia0fqoU1TX03tJJCzZWlIGUEmBCL0z/oT2uNqa5KjW131wmDXCV4zv18EHPnk38g8w2FQYagM7/LYRR/ScCx4aSs0HJcoz6Mvj6bNhlZ97gfo6/OAgDMLTp+30rTC230lVmc/kFiUVtDvRaGZYpRqzpCUQjghVYWHWXpcfAoOYltd9fB3KwDwM8Mco9vvsx6NZggi/k+j9RHtAwmxCak+prvBB1hKKSeKgHXsA9jr89mexmiQqalcfGXtmw4x24zjB+24fQP+hcUmgnUXFkKWpmeAbnWQ0XY+qHauG1salQDlmXx3HPPJX3NpN+Kr7zyCvR6PXQwxnU8E2Bx/pGhlAgarAalJFG60ygMpUr3HBw2tNAoL73HJNZApqVB0mRas6FiIR6niCQ5XLQ/gPCXC3sA63K8k4G0lGOtRtjHwDsdSFufXyTA8C9Lmoi7lv3kd3px8ju8MM+6jhAAggUoFohQQDhNiWgmxMI7HUDYn5nBj6oiBRrfXZHVifFiY+q4PWMKV7lAwBECJSMh00jVFwBfZqwtV6Y1U5FrMEEWfU9PpH0IfNS21pQqUbrTmLakwORRG84/MgQmEN+7Ss3poNVq8cQTTyR9zaR/kpdffhmXXnopCGLjTVxfowYAeCb8KS3b0JQp0XxzJUDwEZRj3+hJiWBCPHinA+j907gUxYrBUKvBwS+0QaGXUvsAoFyQQA448jtDFC8zB2n0kDK40lUbloOoihQo3mZIW7ncctyjPgz8ZRIAn+Vuf391yhWEKAWJvZ9pQcn2xHpL13OEotTME3jnBRJ0in0VSkGi/f3V0FXx76qBv0zCPZqZ2UYkTUBXqRaUUCV46IXZKBIQRDeksjkeuY7GznsbobVKMw+jsGEW0yfnEcxQL6J7zI9j3+jhA74E0HxzJTRlypSdn41w8Ezw9ryhZmPlPIIgsGvXLhw9ejTpaya124RCIbz55pvo+fPIhsdqSpXYfnd9etJ4BKAyyyFfiJpktOyA4DdsaaDKIgFHCKOvzyLsk+rhAQglDunOVoqFtbJEkxfTmLyYRpggcI5SwE2QGPq3QxlenTgx1mtQd015VqaukzQBluFSni1igiyGX5qGYzA+YZVdH2/Ers9tjevYGS2HC+UcImtUaSQrqMCEWLAMl/GBhADgnQrg1Pf7CiKTHC+UgsTBz7fB3KLL9lJEQfTZUCQoR5yvhFxhnPpBX8YC4LkAJSdhbtFltI0janPLNTRU5vQ8m6ZGLbbdXSdUf62HuzOEoaEheL3JiXoldedOnz4Nn88HYxz9Q97pAE7/uB/zfalRpSjZYUTbe/m5E97JAM78ZCArggnaChUOfr4NakkKUyDoCGP8zbmMNG/nAgqjDBE/U1BZxOVO0eTFi1FvPcfCyC2G9iWniJ/3cPybPVm5tnPQi67fjQIcn6lqvsmasmzR9Mn5uAMBnkk/3HH2R/sUwGBRavYXSkGi+SYrPzyZA7p+NwpnnE5cOpDKfxZhgiw6Hh1OeFhvvsKEWIT9EaHqoNDhWD6QIEmzL6I0ydH+/hqozJm3SUOeCM78ZADehZEEbe+rRskOY0rOPd/nwekf98Mbh7CNxmNEJBLB008/ndS1ktqBT548CZqmocX6JRHact6j86SiIXUhcBf2RhB0hVOitb4Z/LYgOn4zXDDR/3hQFSkSUgXJdxR6WcbS12Ik1hkCgDYmhEORpZua5BRBFC91hUEGpUme0iy7oU7DlzRvQO+fxtF7YaPGXA4tW1mUxMzxLrupc8WfROAYDkqzAgoRGJkl243Y/39as/5eExP2HjfCkjqsQMgdgUwrlVVGsR6ywNQkZRCjeGcCOPJfnfBOZTdrRpAEgs7wonJmCra0qA8R9SnWQhHUQC6XJ102l5RDdOrUKbS3t4Mi1n6J6avV2HlvI3SVmzeQ664pQ/NN/It1vs+Dgb9OpmyAYbIwARb2bndBRf83ouKgJWHJ3XxGpqELUu5d8ZdjK5whADhFKfAaLTnMUTRlSuz6uwYoRNAX4Oj34OzP+DlFch2NumvKUtK/QSupDbNOmnIlNLr191GKBmr2TsP0pZGknJ8opIxE3TVlkOtosBEOZ386kPKZScngGvWh/+kJqQQ7BkOtBiXbjdlehmgIeyJCe4AEYKjTxlVGVTBwQMTPZKX8eskyWA4Df50UqsKab65MiYS+rlKFnfc2Ql+tXvMYEiQqKytx4sSJpK6R1Lfr5MmTmD3rRMk6m7drxIdzjwxuqsYzOrDQPeoTXTkBJSdRtNWA+V43Qu7CM3pXY+j5KdH9nrKJXEMXZoaIIFD7T0cw9K8Hl/x1iCAQWsXiG/q3Q6j94uFMrU40sBEO7gm/6KLgmlIlzE06jL4yC3YTj69z0BtXCdqWD9YAMg5vvbLy3+56eGnpg/PvqpJfEPi+KXOTDo5+D0Lu7DtCUQLzIaFxXoLH1KSFvlKNmbOObC9FFIQ8EUl4IwZpSO1SVEUKVF5chKEXphD2ZkYhMx6cAx6hT3UzQ8jdY36ce2QQrpH1xW7CoySmZFNJXSNh6zUcDuPcuXPrym0rFxr/NlOPveWOWtReWQoAmOtwYfq0I+lzpQNaRaHxXRV8/bkEAL7uW3IOF5Fp6cIbuLiG6iTBcTgYCcDMrtyoC9EZAvgB1X1PTYiu526+z4MTD/UiEmBAKUhUXlK8qVIufZV63V7Lvqcm0Hth6fnvevhpwRkKObQIzJiSvj5BEqi8pBiUgkTEz+DEQ70p62lNJfoqtSQiEMPQ89M4+7PBbC9DNIS9EcilkjmJNSBpAkqTPC7l50wyfdqBuQ6+SbT2HaXYckdt0ueK+hTKdcRFysvK0NPTg/n5xEdZJOwQdXZ2IhgMrukQGWo12HN/EzQb1PqtuhgZIcjPzp5zwNYt3knEQWcYb/zrhaw24YqNqsuKUbQlMandfEZeaCVzyzbi2n86Ivx/GQAjGMiWDe4qVGcI4IVZRDvYeeHXpK/WwHrQsilDrPEGK8r2mNf8d3uPG/Y5/j7EOkJRXH1VmD26FVySfqNcS8N60AJ99YJ0q7j8T4GSnUZYDxVlexkSIiXkiUCuzX55rViovrwE7R+ozvYyRIN3KoBzDw+K2uawdbkwe84BACBI3uZPFG25Envub4KhdnUpbqVHC47j8OabbyZ87oTfxl1dXfyi1hBUcA570f3HUXgnN1aEWLIQmsCujzei4iD/Qpg544BrODNzICRSg6pIAYVeimABfGqYVlGFkyFaIyoVdYpCBIG/0hpMk4vPRyE7QyCAbXfXoXRn8pmPTDDf68bxb/XwQjYUgeJtiQc8zj8yiIG/Tq7577VXlaKumV3hCEWx7OlE+duPrfWIrUnxNgMIikDQFcbxb/Vgvte98YeySP8zkzj3sJQRiaI0ybHjnnpJyXWBkCcCWkVJA3wX8Ez6MS+C/j+J+HEN+zBzxgEAqDhUhF0fb0x41IFnMoDuP47CObx6MkLu5XuMent7E15fwg5Rf38/jEYjZMTKlBWlIAEOmLsQf2aHVvHCDGyEw9jrc7B1ijcrFAutpLDl9hpJVS2Gnj+OYfywLdvLEAXRieJijtakjA0s1dhMkfB3hewMAQAHnP5hP2bPObO9kg2J1n+bm3VousG6brnCakTLaNfKhhW1GVDbvvrLjQnRIAiAVicWYFOa5Gi6wQpzs27hPOIXv8noHL0cgAky8E4HwEr3BQAQWZjvJ1NvpMhYGNh73Jg8as/2MkSDqVGLQw+28fMxcwBbhwtjry+OaYn6AvEwd8EFcFhdsCdMoqioKHMOUUNDw4q/VxcrsO+zLcKk73iQqSnsub9J0CufPjWfM42lHMcPNOSSreOQyGvoBeMv4hdPc2NaiDNsX8eGcWvYA4LjJGdoAf9cMKcyiLZOF058p1fYoxPZ602NWuz/XOuqEtfHv9WD6ptWKiqEPSqMPP52+Cb4qoFHWjYWVNAvrCkwH8KJ7/TmTIAN4F/uWz9Uu2YpSKER9jHoe2oCAXtu2ATpJhLg3yW0MjcM3nRDKyloyiSVuSh+WwjDL82AzYHgD8Dv0dOn+D6fkh1G7Lm/KSFnX1+lxr7PtqyaQTabzbhw4ULCa0rYIerr68PYiekVfx9whDD62mxcM4einmDYx2D4xWnYRV7KsBpMkEXX7xIvDcxXCIrAwS+0wdKmz/ZSREH0pcUE89whihP1d8+jk5ShZpVsUSFibtah8tKNB1uLjejcNUu7HtvvroMyzunkzmEvhp6fQtgXvwNIKUMw7+yCsiS+5lilWY5tH66DpV2/ZK25QlSUho3khkGTCWQaKmci3ukmEuCfi1QNT851LO167Pq7xmwvQzQE5kOYOGITnUhPPNh73Rh+cRph34LTH0e2yD3hx+irs6snUbwkhocTVyFMKkOkgnbF37NhDuNvzG04H0hplmPvZ5phauTPMXViHhFfbhqNpIyQ5kbEMPrGLHyzwWwvQxREX1qRfJ9TFWeG1DsdxAWF1AsQRWmSw7DOPAWxY+tw4ezPBoTo/UazlNgwh8ljdrDhlc/Ljo81YOwvF634e5JmYGgZAUmv/36IXjtgD+HsTwdg68idrNByeh4f29Soinxj+4frUXmRJDQBAIyUIVqCrcuFUz/oy/YyRINMQ8FYrxGEyXKJiI/B1Ak+8GVq1GLvZ5o3DLZxDIfxN+dWdQBJlwJOZ+Ll6AndulAohPHxcaiwmNInaQI7P9YgODhrEf0SB+whDL84Dddobgsm0CoKF/3fLbBIMqkAFh7ON+bgn5McIgCgFVKGKJb5f98HI8tg8CuHsr0UUTDxlg0XfpXbczSihru5RYc99zfFlS2qvLgI1mUGbmA+CFq79H3g6KiD40L9hudTWeTYc3+TIFed684EKSOkWTMx9P5pXDCUCp3IwruEkhwiALwR7Z2SKnSi6Ks12HpnHcgcnwXpGvVh+MVpIdi2UQDA1KjFzo81LBFn0KsNmJ+fh92eWI9ZQndubm4OHMdBjsVIL0ET8Ez54V+nzldbocK+z7YIAgSTR+1gcjxyzoRYdP9hFO4J6QsJ8I6xvkYtpfMXoBQkOJZbNSKed6yTJRr8z4MY/M+D2BEOYXeYd5Ylpyi/mO/zoOfxceEFtmI4M0kJf0gFDUq29N+7fz+GsktPL/k7NkLBDB9a5ZPCn1ii1/DbQuh5fBzzvfmhNlV/bTna3idJCUdxjfpypq843bBhDizDSRmiBeR6GWreXgKZRrofAK8Ieuwb3WACOW5bB1lBLIP3HZrXFS/z20PwTPmXqC/KON5HGRoaSujaCVmvs7OzALDEIWIC7JqNj+TCi88z6cfwS9PwzeSP88AxHGbPOxFy5VaderpQGOXYfrckkRqFUlJCRK8gWMUpGvzPg8L/PyJX4LB8sQG20J2iPfc3oWyPuCW344VjOMxd4MsTDHUa7H1g7XKHkZdnMfKabdFJAl8+GHLx5YNR5+eiva+hedepVc+hNMux94FmGOr4SoW5C84NS7VzhYkjNvT/ZW2J8kLD2KBF0VZptl0UJsgIgj2FjkxNoXibUXIQF2AjXM71TW6EbyaA4Zdm4JnkM/+kbOWzH7CH0PfUxJIkCx3is+wjIyMJXS8ph0i24BBVX1ECU9PqpXL6GjX2PdAMlUUOcMjZZq+1IEh+zsVqqkmFSMAewvFv90gp7AUoOZnzWdCEWSdTFCRI+HOxuDlNTJ2chycPBVk8k36MvzG3GCBbpceSIIGS7fyMIJAUtn+kDpMvHESrfBJMhMJYXyNYZpVnZeFcAXsI42/MCS/JfMI3G4xLmKhQMLfoULqgQivBZ4lIWtpHAX4Q6fFv9sBvkzKIAD+wtOFd5Xk1p4qNcJg4YgM4vjx63wPN0Nes3ntratKi+ooS/nMO3kmORBJTcU0+Q0QA2jLlipkUUZvHM+7HxFu2vPNYo5A0iZZbqqCrlOYQAQDHcgjYQ3nl9G4GkiYK+l7EZocAYHs4iEpm6eZUyFmi8Tfn4JnIP8OXCbAYe2MOAKApV2L3J5qgNC0NGimMMjRdXw5DLf9iG3h+Blv38lLstqlynHvjEvi9SwNtXpcOuz/RJMjsjr0xl/OlIauhMMhgPWRJaoJ7PjLwzGTO99qlEpZhEx5kKVEY0Goaugp1wgOsc4WgK4yJt2xCwGh5fFVpkvPvBwKQgfdLzpw5k9A1EnaIFAoFKNAAB3T8ZmTJYCxDnQZ7PtUMmZYGG+Ew+ups3hqFTIjFG/92AXM5rGiUSlRFCtRdU7bm8MVCg6SIwhy0yHErnCEAsLAMNNxKA7YQnSJSRkJfrV41/Z9PRPwMnEPeFUGxgD2MY9/qg6OfH8Y6d94Fa+MAAKCkcgxvu+230OiX7qsqjRfOIa8wiyVfUZrkqLqsBDKVJKwgsRI2wuVVBmAzKPQy7Lqvcd3+kkLC0e/B6R/1563NzYYXfQq5lsaeTzUvmdk2edSOzt+MABxAEiQ0Gg0cDkdC10jojexyuWAwGKAuVgoD8GLxTgVg63LlzGCozcIxHJCfz17CyNQUjHVakKS0WQP8XKaCdIgA1P3jysGrLynU6KZX9pVoRgjMfGKl5HI+oy6SY/uH6/ly4jwm6Aij/88T4CIMlCYZtt5RDbmeN/RDbj5bSKsoVF1ehO5TuxAKKMBxgFLDK875vRq89ey18Ll1+GLjXvT/eQJBR35WHERxDnlx5KudCEq9qQCAoi0GbL2zNtvLEA0cw0kZogWYMAvHgCfvgyQSK2FCLGxdLninV5ad66vUUBUpoNVqEQwmpnqckEMUDAahVCpRvteMxhusAMFnhXbe2wBKQSLiZzD47BSYAnCICBJofW/VmvWMhYZrxIdT3+8TBmsVOgRFgi1QhwhY3SlajmZk8cVeSE6RdyaIE9/pKaiZXZScBMdwS8rc6q4uxdY7qlG204ixnma89ew70Xlsv/DvtCwEgmARCUt9moVKxM/Abyuc78lGsBEOJJXfmeV4idqbqwl6FSJF7Xrs//tWEAUQlGZCLAafnULEz4BSkNh5bwMvskMAjTdYUb7XDJVKhXA4scBSQnn5YDAIhUKBgb9O8rMSOL7B1TsVKMgBpSRNgsjXgk2JTUGShZshilL3j4eFkribAx6cpRXop3njNtYZijLziYtQ8t03M7rGbMAxXME1Anung7jw6CgAPptc8/YSzJ53Yr7PA8eAF//edxhzE1YQBIuzb1yClj3HoVAGsP/q57K88sxCKym0f6Aagy9Mw53js/pSgWPAA8dAfkiqpwKOkUrmBAhAZZYj5I4URBB+I3xzQUwetYGLc1h63kDw1WkBewjggPO/GELIFQZbxcJmsyV0qoRCDYFAADKZDLpKFRrfVQGCIhB0htH75HheNriuB8cCHb8ehnPIm+2liAJjgxb7HmgBrZIkMAG+ZK6QM0RRopmiXkoGB8lvN6s5Q1EKIVOkLuH77fK9h2gtlGY59JUq+GaDcAzw+ydBAMXWceiMDszPlMDr1Gd5ldmBY3lnmQ0X1vt0LUiagEwr9VNFYRkOpOQQAeCzznvub4axYXWl40LDNxPE6GuzBdfGwQRY9D45jqAzDIIi0HhdOXSVKpAkCb8/MeGihN7INpsNDocDSrMCBEWAVlNL1HBIGbkYvSAWhudF/5MilhgAiR1LLImKLDmWJJYMAiRpYkmNbaLHRpUrCBJxHEskfKzwsyL2Z93gHiZybDL3MAX3O+gIYfr0PEAi5h6m534vvy8pv98peGYJCojdmda9h5t8vhO7h4kcG9893OhYmuNwXqaAjaSgHwFI4b5woAlOuE8kOFDgBKcoX/cImYaGsV4LSl5AewS5aOD7ZoI49aMBhL0M5DoKFz3Ygmce/hC8bg0Uaj8uuf4J6M12QcX9i00HCmY/5VgO/c9MCOMLlj5vhbefluwwYv9nWxJ73vJ4PwWx1N4tZJsLAM7+bADOIW9B2lzL76FMQ0Ffoy64PSL2HtJqCgRFQGmWg2VZyOWJ9ekm5BB1dHSAJEm4x3y48KthVF1cjB0fbRD+fc/9Tai6pBgAoC1X4dCD7cKgzuorSrDr44vH7ry3ATVv5zXD1UUKHHqwHTorrxZSeVER9n6qSTh2+4frUXdNGQBelvTQg+2CukT5fjP2fa5FOHbLnbVoeFcFAIBWUzj0YDvMTToAQOkuIw7+Q5twbNv7qtF8UyV/I2QEDj3YDks7PwSuaIsBhx5sF34ZzbdUovU9ixPEDz3Yjov/aQtKd5lgbtbj0IPtwoCwxuut2HJ7rXDs/r9vRdleEwDAWK/FoQfb+ZJDAPXvLMe2u+qEY/d9phnWQxYAgL5SjUMPtgvN17VXlmLHPYv3cPcnGlF1GX+/NaVKHHqwHZpSXpa26rJi7P5Eo3DsjnsaUHtlKQBez/3Qg+3QV/L9T9ZDFuz7TLNw7La76lD/znIAgFxH49CD7TDW81GYsr0m7P/71sX7fXstGq+3wm8LYeKIDQf/TxvMzXx0t2SHEYcebBeObX1PNZpv4e83QfH3u2gLf78t7fz9jn5xmm+qXDKx/eA/tKF0lxEAYG7S8fdbzd/vhndVYEtM4+2+z7WgfL8ZAGCo1eDQg+3CvKi6a8qw/cP1wrF7P9WEyouKAAA668IzW8Q/szVvL8HOexfv966PNwg69+pi/pnVlvPPbNUlxdhz/+Iza6zTQmXhz6M08ffbUM0/sxUHLdj7wOL93npnHRqu4++3TMvfb1Pjwv3eY8KBzy/e7/YP1KDpBisAfnM49GA7zK38/S7etnC/FzaMltuq0HJbFf8fBP/MFm9buIet/DMb3biabrCi/QM1wnUOfL5VGBxqauSf2WiktuG6cmy9c/GZ3ftAMyoO8s+soZq/31E5/rqrynDD8ByKGQamUQ5Xmz1oUfM9ASaaxQ1Fbugp3lhu0wRxpZkvj5n5xEV5sUeULMxQid0jnINeeKcCaL1t8dhC2CMAgFaSOPQPLcL9rr6ieGGuCo3e07sAALPjVXjuVx9COMT/TIW2nzbfXAmSJkArF57NAt5P5/s86PjNMHZ8tAF1V/Hf70LeT9UWOUwxGZFCs7mW7Kf/2A7fTBARP1Nwe8Tifrq4R5ib9dh+d33B7RHC/f5oA6ouLsaFXw3DPeYHRVEYHh5GIhBcAgWHN954I44fP46LtVdDZVbAOeKFTE3D0c8bMeZmHQLzIfhmg6CVFIz1Gsz3e8AEWahLFFDoZZjv4481NWoRckfgnQ6AUpAwNWjhGPQi4megKlJAZZbD3uMGwD/QYX8E3skASBkBc5MOzmEvwl4GKosc6mIlbF0uAPwvgwmx8Ez4QVAELC06uEZ9CLkjvE55uRK2BalsfY0aHMPBPeYHCKCoTQ/3mB9BVxgKgww6qwpznS6AA3RVvL67a4Sv6y5q10NhksPe5QITYqGvUsPW7QbHcNBZVSBlpFBOZ2nTwzvN1zjKNDQMNWrYe9xgIxy05UrQKkooHTG36OC3heCfC4JWUzDWajDf5wETYqEpVUKmXbzfpiYdgs4QfDNBUEoSpnot5gc8YAIL99sgx3zvwj1s0CLsWbjfchKmRi0cQ15EfAv32yKHvTt6vzWI+Bl4JgMgaQLmZh2cwz6EvREozXJoSpWwdS7ebzbMwm8LQVUkh8Igg2uEv98Kowy6CpUgTa6vVoPjwNfGR+/3uB9BZxgKPV+KKdzvShUIioBrmL/flnY9vJMBBOZDkOvoJfdbW6ECJY+53616+GYD8NtCkGkoGGo0sPe6wYY5aMqVkKlooS7d3KyD375wv1UUjHWLz6ymVAm5jl7yzAZdYf5+R5/ZAV4KWF2sgNK0+MxuvasWFE3izE8GhPvtHPIi7OOfWVWRQrjfhjoNmCD/zEbvt2vEh5AnImjrC/e7RgOWYeEe84Mg+Z/VNeZHyBVeeb8XlCBdo4vPrHvCj6AjDLleBn2lCrYuFziWv98kRcI5HPPMTi3cby0NfXXMM1uhAqUg4RyMeWbngvz9VlMwxD6zZfwzu/X2WpxwKRHkCHgZEm6GgozgUCKPYCZEI8wR0FMMVBSL6RC/kbY8dzbn9wjhfi97Zgtxj/j9scOIMCS6hypRVToHvdaHrsEK/O65t4HjgAuPDsPR6ynoe2Vs1GLr7bXo+sMobJ2uJc9mIe+nxgYtwt4IvFOBgt5Pd9xTDybE4vwjQ8L9LiSbK3Y/NdRqoDDKMXfBCZmKKpg9IrqfuseX3m8mzEJboYJMSRXuHuGLwFCtQcAexFvBl1BaWoq33noL8ZKQQ/TJT34SL7zwAvYoL0X9teU4+b0+hD2JTYKVyE8s7Xq0vacah7/SASYo1b8331IJuZYWXlyFDLm9FWodEAwA4wfMcX0mn8UVjPVaNN5QgdPf7y8oydhnJ04DAFxeFQ6fbsc7Dp4ERXH41dNX4PhLenQ8OgKCBGqvKsP4G3MIFeK7hQBMjTp4p/yCNHkhoy5WQF+txtSJ+WwvRRRs/VAtQu4Ieh4fy/ZSsg6torDnk03oeWJMMKAlChuZlsbu+xox8NcJHHa9iIaGBrzwwgtxfz6hkjmlUgmCIDB7zonj3+pB2BMBSROwtBdmA6ylVQ+FXpKEBXg1oFPf75PUXqKwkBQIY/C5ASYMlL1u3/DYfHaGACDoDGHmtKOgRDeizhAAuL1qdA9VYXLOjEBQBooGOA6gFCQ0ZSpYWvWQF+q+ygHzvW7JGVpAX61G3dVl2V6GaCAIouCa5tci4mfw1v90Sc7QAtpyJf9dKUCzo6hdD5ImEPZEcPxbPZg95wLLspDJEnuPJOwQBYNBlO83C3W3llY9Wm6uFOoFCwWCItD2vmroYyblFjJMgOWHZEmbNQDw0pcFuDEth9zO1z5XtZHQF/E3ZD2nKN+dIQDw20IYeXmmoJTEgiEab51rAccB1hIbPvn+J3Gupx4/efydgnjCzo81oGSnESe+3QvPBK8OVHHAsrSpPM+hlCTK9polZbUFpk7M4/B/dmZ7GeKBAKSXrMRqyPUymJp0BReIVRhkaL65EpaF3r+mG6wo329GOBxOr6iCQqFAMBhE0BmGby4IEMDseSdOPNSLoDMMEBAawfIdjuFw5L86MXfBme2liAKlSY6aK0tBKQvHeFkXDgUxIG09os4QABhLCChjYgerOUWF4AwBvEKPtlxZULLb4zNFePnYTsw5+JcWRbG4ZPd5XHfpW4i+v/uensDoq7PgWN7gUxUpUP22EugqVdladsZR6GSov7YcygILMErEB0ESYAsnjrIutIrCjnvqoVvo7Sp07N1unHyoV9g/8x1jvRYggKAzjBMP9WL2vBMg+HlMQWcY4XAYKlVi746E3sgajQYejwf2bjdGXpoRAhVBBz8N1tKqx5Y7agSFjnwn4mcKfvhmFJmGQlG7AbRcmkMEACzDFvS8iFhnCADOvcJgZnjpdyXWKSoUZwjggwc7722EplSR7aWkF4JvWAaA+sopfOqDj6PY5BL+Wafxo846Lfy3c8i7pCfVPxfE8W/2LGl+zvesq282iDf/7QLc44nNz8hXSnYY0XxzZbaXIRooGVFQmeX14DgOnskAmALqw5TgUVnk2HJHDSwtfIAt6oOAA0ZemoG9241AIACNJrEKroQcoqKiIrjdbrAcAxC8/KIhpmTM1unC6R/0C1PYtRX5G9kjKALNN1cWVPRyPdxjfpz4dg+CrnC2lyIKmBAHsoBKfWJZ7gytR9nr9oJyhgDAbw/h1A/6hFkz+Yq5WYe291bjVxcGAABqJf9eCARl+NEfrsPYdNGKz+isKuz8WAMoBf/difh5Y0dVpEDbe6thbtZlaPUSYoANswUlPLIRpIyUHKIFmACL/j9PwDcbzPZSRIGpSYe9n25eMh8o34j6FH5bCKd/0C8oHQK8+l75fjM/q4vj4PP5UFxcnND5E7LYoicPIQhwQFG7AVrrUofAO82/5I0NWuz8WAM0ZcqEFpQrEASg0MsKquxFIn7YMAuqQJ8N9mzXir9rOUCiun3l/ej5iBF93ziYiWWJBo7h4J0KgI3kZ3Y5uufbu904+b0+FMVkhQAgFJbBbHDBoPWu+GzAGYbfHlzRN+SfC+Lk9/oEmdp8fa+YW3TYcnvNxgcWCHMdLgz8ZTLbyxANvEOUn/tGohAUAYVeJgwaLXSCzhBmzzsRv250bqEpU2LnxxpgXJjDFfU1omitKhS1GwAOYGURsCyLkpKShK6RvEME4PwjQxh/Y27VYx39Hpz7+aAQBVUV5Vd5CBvhcO7ng8LsgEJHZZFj9yeboC7Jr99zsjAhFqQ8fyM1G7HcKXLOcPDML92pez5iFP5/oTlFlZcU5WW/paVVj533Nghl0/65ldFbvdaHW9/xOnQavizsxfFFByDsiaD7D2OrqqxFz6WyyLHz3gahiTafYCNcYcqNrwElj5lULwFSRoCRMkQAAG2ZEvs+2yIMQC90fDNBDL84nXdtHFHfwTsVwLmfDwozoZYz/sacMOaEVfJ7aFlZYgqVSTlE4QWHKNq8ZWnVr6oEFB3apKtUYc8nm6Cvlprf8pVIkIW9xy3NIFqgkDNEqzE1yME+uf5GXUhOkalRJ0yUzweiqmi2bhcu/HJIKJteTvdQJQbGFl9SjY9+fNXjjPWaNcvj/LYQLvxyCLZu15Jr5wOOfg96/zSe7WWIhpZbq9B6W1W2lyEaKKlkTsA3F8T5Xw4h4JDK9IGFsQWlyrzqs9RXq7Hnk03QLVSiRX2KWCg5CUsbHxyL+iSsineIqqurE7repjJEAP8yar6lUljQarjH/Oj4zbAwcTgfskWUgsShB9uFpuFCJ+yJYOj5KV5tUILPENFkXm1OiRKbJZIpAVXMVyU2OxRL3zcOFoRjdO7hQUy8Zcv2MlKCuYWvXVea5QAHQQRhNc721OFfn70WjY9+fE1nCABKd5pQssO45r87BrwAByjNcuz9dHPe9BbJ1JRUAhTD6OuzGHtz9SqUQoSkybwttU0UJsjC0e+RHMQFjPVa7Pp4I2hF7gtbRX0E14gPHY8OrysyY2nXo/nmyiWBMVbB26G1tbUJXTeh0JpGo4HZbEbA7hP+LuyJ4OR3exdVHtYgWvutNMux+75GdP1+FLZO17qfETNshMPwi9PwzUgNfVFURQqEPRGpCRYQyhooOVnQWbOoU1R5Rzv0RQTOvMis6QzF0veNg2h84EiaVyexGUiaABvh4Oj3YOAvkwjYl2aFRn+/FQDQ+GiMg8txoOPQoel9ajyuXomAPYSBv0xifqGMIrqmXGXLHbVwT/jR//REtpciCtyjvo0PKhBoJW/oSu9XHpVFDlOjDpPH7XlXJpYMjkEPTv+wD5Fgbj8fljY9Wm+rwomHehGwh2Dvca97/MxpB5yDSxVKg5QfMpkMFRUVCV074VhUQ0MDfFgaAYw6Q5rSjRtdA/YQOh8bgX2h3CFXJbo5hsPEWzYE5lcvDSk0CBLY88kmKWO2QFQdi1blfrQmFYw91Yueo/E5Q1HyOVNUssOI3Z9syvYyksbYoMWeTzdDrpdh+DdbcPz/WTH6+61L/iyB46BjWIAgEIljcGDUGVKaN34/TJ+aB8dwkOtl2PPpZqHpNhcZ+Oskpo6tPbi40CjZYcyr0tLNEH2XRN8thY66RImaK0tRYHNI14QJsPBMBnJ2bm/UF7B3u9D52MiKANtqRH2O5ZVJPtaDoqIikGRiLk7CDlFjYyP8WNnUpK1QYdfHG2Go2Vj3297jBsfy5QE7/64RZXvNiS4j6xAkAWODFjK1ZPACAMcCZ346AHvv+t58oRDx8S8tmTp/+hs2Q9AZhvfNlepz60EGCQx89VCaVpRdfHNBzJ5z5GxJpXvch+lT84j44hMAqIwwuNnrg4GJP1uqKlJgz/1NMDXF5+BEfBFMn5qHezx3swquEd8K9aRCpuG6CujjsCkKAXrB1gjH+Z3Ld2ydLhz+j46czginEpVFjuorSnJS+bhsrxk7722ETE2BY7FhVgjgZbZ3fbxx1fE+npAr4ewQkGSGSF2xMmrnmfDjwq+G4ByOX3Ut7GPQ+dgIZs44ACzUDeaIgUArSWy9oxa6SkkoIop71Cc4AoVOWMoQLUFpkqP2HaVo+YejcR1PBhc3goGvHso7x8gz7sfoq7M5Fc3TV6ux894GUEoSTIDFyEszcRsjEzSFl1VKOKn4Xzn+uSC6fjuybk9SLGyEw8hLM2ACLGglhZ33NuSUkI/SJEf5fnNOGjTp4vB/dmD6pJQxAwCZlCGSWAe5XobSnSaQshwxoonFXqGZMw50/nYE4QTsR+eQFxd+NQTPxMr+Il/Ei5qaxMcXJOUQTUxMgOFWLny+j88cyTTxG4HRpjiSJrDtrjpUX5GYbni2CPsZHP16NxwDq0sAFiJle0w5Xa6SSqKRcymDyEMpSVjaDJCp6Q17g2KdoVjyzSnSlCnjKgkTCwFHGL6ZIIiYGpUVpXHLCA1rAY4DSxAYkSWeLbV1uZPrDyB4GdpcUqDSlClRe2UZ8naQSJJwhduCuQSpZG4p5fvNaL7Jmu1liAbnoBfHvtGdM0Hp6itKsO2uOr7vM8yuKae9GlEfI+pzxMIRHOx2O5qaEi9JT9gham5uBgD4sHpKy1Cjwb4HWhKeR8NGOHQ8OozJo7zykrpEIUwrFyUcEHKFpXRtDEVbDNBX5U5ENp2wEQ5MmJVK5hbwTgZw4ts9Qs9dsoIJ+eQUtdxahYr9lmwvY100pUq0vrcKJE0g5Aqj54mxhA2yy/0BtAbXrgdXX5hf9/Pl+81oSVB6OeJn0PPEGEKuMEiaQOt7q+Lqcc0mtk4XDn9FKgGKoq9SY8vtNeK2AzIIraLAhFnp+Vgg4mMQdEnlg7kEpSAF32DyqA0djw4n/DxrSpXY90DLmu05rCEIlmWxdev6wbrVSHin2bZtGwiCgBuOVf/dNerFwLNT8M8lLjbgmfAj7OVfti03V6LhXYnXAGYKWk2h8d0VOSsKkQ7OPzKEkZdnsr0M0RDxMVLJ3Dqs5hStlR2KJV9K6Dp+PYyhv01nexnrwrEcZGo6+eeY4+AkSfjWaG5t+PuNHeOQKwy/LXk1T1pFQaamhRkVoiYHlpgpOI4PKkmyyjwyNS1lh2KYPe/E8Ivi3j8zia5ShV33NYp6LlvDuyrQcnMlACDsZVYtd9sI32wQA89OwTW6eil1QM0nay655JKEz52wQ6TT6dDU1LSmQ8SxwNRxOziWW3VYa7xc+PUwhheMBXWxAkqTuBwPkiahKVOC3MTPKJHfhH0RUW9OmWbbXXWwHlqaEYl1iuJxhvKJwHxIlMaeyiJH/XXlfNnZbBDnHh5EyJ1kJJYgcFqpWFEu1/D3R+JyhgC+bG7kpeQDLSF3BOceHoRvNggQQP115aIMZO28t2HdeX6FhnvMj67fjkolcwvIdTRC7twpAU03tJrKnX6ZDBDxM3AMeEQnQa40yQWlyOG/TePCr4eTPhclJ8Gx3IKPsfoxHsoFo9GYmR4iANi9ezfcWL/MQWdVJVU6FyXkjghSejVvL0XzglcpFkKuMM78eADeSUkRKErlJcXSVPEYgq4wFDrJIYpi73XDu8rcrsYHjiTsDNX/w+FULStryHU0mm+uFF0fkUxDw1irgXyTzrw2CLSGQiBjemIScYRiISgC5fvNmw6MybX8zybTiOt7SdIEHIMeBF2SwRuFlobULkGukyEklYgJtH+gBvXvFG8VUabx20IYfHZKdFnE5psrUfO2UgC82myywbVoqZzOuv4gO0fIjvr6+iW9rvGS1Fth165dePrpp8F5uDUv6pkKYPzIHALzm9/gu/84KrzAlGY5VGb5qs1UEtnFbwuCkxqCBUKuMHRST5XA+BoT5ymjAU3/2QEA6H2wfcPz5IMzBPCT1pVmuSjKKhUGGUp2GDH66ixcIz6c/F7fpsu3SrzA1mAYkS+eSknUsvLiYrBhblOz30LuyJKfreqyYsyccayYY5Fp2AiHoeel8p9Y2t5bjaAzjJ7Hx7K9FFGg0MsSUvHNd4aemwITktKHUQiKgMIgQ9AZznqWyNSkhd8WQsAeQvcfRxH2bt6R99tDGD8yB8/U2kkIjuNgd8/hbVsvT+oaScVfdu3aBY/HA98q84iEhTEcRl+dBRtmQVCbS2uyYU4Y/lqyw4iG6yo2fc7NoilT4sD/aZWGxsVg63Rh/I3Vjd5CJOiKQKGTZXsZooFSkhs6iFHHaC3yxRkCACbE4uxPBuAZT7yOOtVoy1Uo3W1azJxs4n0qoxnIaAajJQzO/Nv5lLycOYbDiW/3YPrU+pUJ8Z2M/x+ZhkbpbhO05etHHDOBtkIlldcuY/hv05g4Ir1PovAlc1KGKIprVJrZFYu6SIG9n2qGJsmqrFRBUAQarqtAyQ4jACDoCAuDtjdzTjbMYvTV2XXfJ5wuDK/XiwMHDiR1naQcov3794MkSTiw8WalLlZg72eaod0gzRUvIy/N4MxPB8AxHGRqCtWXl2SljjTsiWD8iA2hFHi++QJJEzk1SyrdhFxhyDR01p13sWBp1mPHR+pB0ov3gzIaVhy3llOUT85QLNkq35JpKJTuNgEAbF0unPxOb8KRvKjzE/sHAHQBABxSqogVPVeq+n/C3ghOfqcXti4XACw4hNnJ1rXcUomqS4uzcm2x4hr1wSOVpAPgDUKZWuohikKQBCoOWKAwSgHHKH57CGcfHoDflnwGPVlIGYHqy0v4waoMhzM/GdhU32csWqsKez/THFfywW9wAgCuueaapK6V1JvYYDBg586dmDw5Byvq1j3Wbwti5owDAXvqfklhD//S1lWpUbrbhImjNrDhzNZNhjwRjL0+m9Frih1DnQZbPliLo1/rkiJZAIILLy+FXrapMp98wd7jxonv9IBdiPCs5gxFSaSELpcxNWmz9p2xtOpRfUUpbJ0uRPzMqs6L/enm9U+yypJpBnh7N4mOcm6N4QzJYz1kQdXlJTj29W4wwc2Xy0R/ZlpFCXXu0ydTkIVKkLM/G5T6ZWKQ62hY2vSYOeNIye8515Ev9KJKPWY8MjWFmitL4ZsLCtVDhQ4bZuEa9mXl2iRNonS3CZ4pP+zdbsFGTwUBewgzZxxxKY06SBtKS0vR0NCQ1LWS3oKvuOIKyKq5DXtGOJZPfUf8TMozOfZuN45/q2fh3CRabqnMmBodraSgr1ZL0f8Y3KN+nP3pQELThvOZkGvRIZIAIgGGj15x6ztDsUQdo3zNDrlGfOj63Qgigcx8ZygFCXOLDgAwdWIeJx/qXbMJdyNnKBRZPZsSIYE3GliMmFJfxz5zxoGOXw+n3EiO+BmcfKhXcIbMLbqMzr8JeyNSECkGdbECdVeVgZTerwAApZG3a7Ld6yYWQp4IDv9HR0LDPPMdSk7CenFRxmxgpUmO5lsqQcoIRPwMjn+rB/bu1IbAouce/tt0XGqT9uAsdu3alfz1kv3g5ZdfjpGREQQQn0dKKUnsvq9JqCtMFdF6QoVBBnWxImNN/bpKFbZ/uB4yETREi4VIgIFr1Jf1hj6xEH15KUySQxTFenERirYkJi0cMeWvocgEWcx1uDZdYx0vZXvMaLrBKoxESLkjxgEggDktEEzDYx/2MXCNpCcKGr0XlJxE0w1WlO0xp+U6y6l9RynK9mbmWrmCY8CLw//ZIQXXFlCa5eBYTsqGSKwJKSNQeVHmHCKO46ApVkBh4K+XaruvZKcRu+9rAqWMz01hlSFMT0/jbW97W9LXTNohuvTSS0EQBOYRX9kYE2AxedyeNpUU/1wQp37Qz28YBLD9w3Uoak/fTAfnsBcnvtMj9RAtw3pRUcr6xXIdNsIh4AxBJTJZ5WyiLVVCXRH/97Lzv/gsRc8P96Hnh/vStaysorLIUXtVadp67yg5CX0NL2YxcWQOp77flzZ1psZZAocGyLQPGG17XzXK96fHiWBCLE59v09o6NfXqDc1U28jCIqQyuVWQZo/tIjSJEfQFc6N4cIZwNKqw5Y7arO9DFER9jJ467+74BhIX9asqF2PbR+uAwheLOHUD/rhn0t+aPZ6OIe8mDxuBxOIbyPwW/he0Jtuuinpaya9DZtMJuzcuRN2xN84Nf7mHIKOMAiKWNJYnWpImoBnKgD/Qt9GOkof2DAnlP9ILFK22wRtmTLbyxANAXsISrOkRBil+49jGHk+eRndfHSKaCWFoi0GKAzpySRG54ORNAGORVpLs3xyDk4Vl3ZhFe90IK3lQyF3BBzLv0tab6tC5SVFabvW4LNTmDxqT9v5c5Etd9QKgh8SgMokT2kfdq7DhDipnyqDRG3owHwI3qlA2u13giIQdITXHNWxGg5qFiUlJWhu3qDvdb1rJ/1JAO9+97sRNLnBJhjK2XpnLequLd/MpdeFDXMY+MukMDS17X3VaLrBmtJr6CpVqLu6LKXnzAdOfKcXUycy35QsVvx2KUO0GozDCcbhXPeYaHZoOfmWLXKP+3H8Gz0pLYehFCS0FXymduz1WZz5yUBKFd/WYsIIdJSn/zojL8+kvF59NdgIr5g09jr/YtZWqFKaLVKXKKQ+1FXwTvmlfpkYlGa5EOCVABwDHvQ9OZ7tZYgLAtjx0XqYmrQpPW3TDVa0va8aAOCZDGDgL5NpLfGuu7YcW++sTegzHMdhzD6CSy+9dFPX3tTOfsMNN2B+fh5O2BL63MQRG6aOZy4iNvraLKbP8Ea6XEunpMldoZfBWJ/aB08i/+AzRJJDFEVdosChB9uhWcgiruUUreUMxZJvjlEqM9m1V5Wh5dZKgOBLwNLee8ABbZMEVBm02eQ6GlWXp1+qOugI8yWGBNByaxVqr0pdIGzLHbWoeXtJys6XLwy9MC01zMegNEsZolhkWmmcxQo4wDsTWFMkJxEUehnkC3PRps/MY/S1zCkqTx23Y+JIYj5FuMgLt9uN97znPZu69qbewLt370ZFRQVmMZHQ52xdLninAgCBtJWJxOIc9ApyhFWXF2PrXetLhcfDXIcLp77ft+nz5BvWQxa0v78628sQDX5bELSCytp8E7ERmA9j5JUZhGJkOTfKFG1E7yO7N7usrKMqUuDA51uhr15/cO16UApSmNUw8tI0zj8ylLGSXm2Q7x9ShYGymzqFP+lEYZChYr8lcwEHDjj/yCBGXp4GwCuhbdaJPf/zQalcbhkKg0xS5oxBpqZAKyhpdEMMWz5Yg/prpQqd5fQ9NQH32OYHfW+7uw5Vl/HBJtewD87B9PT+xxL1BbxTAWE2XLw4NbNQq9Wb6h8CNukQkSSJd7/73ZA1sEmpu9W8vRTb7q7LqKc/9Pw0uv8wCoBXvrMesqS1HrLQ8NtCcKXgC5kvRKN6KovURwTwsxLG35xbMacgtoQunuxQFELJR8N6H9md046Rfy6Igb9MwreJBtXG661ovrkSAN9gm8mSI+37O3Hiyx2Q355eJygW95gfx77endHIedAZRtjLP3PNN1ei8d2bK8X220JSadgyKi8pwpY7arK9DNGgLuaz6b7Z9DSv5yL9f5nE5DEpkLAcmZqKW5UtFpImYD1kET7b9ftRDD4/nerlrQlBEdh2dx1qrixN6vM2Zhp79+6FQrE5O2vTNRo33HAD+vv74U1iBN/kURv6nhrPqEwzE2LhmeANdkONBpWXFicV5au6tBhbP1Sb4tXlPvYetzSwNga/LQSW4aAukYQmoihNchRtWX0OUSLZoqgzFEsuO0ZTJ+YRSVBmmFKSwrT2oRem0PGbkZSsZaMZRK7TFiELVHNXHyg5mZEepeWwEQ6UnMxIpcFyOn4zgqG/TQEAFEZZQoYIQRHYcket0OclscjISzPo/kPywiv5hrpEATbCImCXHKIo7lEffDPS/VjO9o/Uo+qSxMuIKQWFqktLYKjWAAA8E36w4czJPHIMh76nxjH5VmKlcgDA6kMYGxvbdHYISIFDdOWVV8JgMGAaowl/NuSOwDHAp+IMNZrNLiVh7N1uHP9GD8Jehn9B3V4DXVV8JSvuCX/Cab1CgCD5UhJSJunIAgDHcvDPBaEpkTJEUYz1GjTdaF0zM9x877FNXyNXHaPKS4thatLFfXzrbdVoup7PUgQdYWEYcKpwnbas+ieWxndXCE232aDt/dVoeFdFxq8bcoWF3qym661ovS3+eyDT0OBYLmMDeXOJsI+BdzqQ7WWIBnWJEv65oCRDvoBMS6PioAW0NANyBb1PjmPqZHyiVroqNbbcXgOCJBD2RnDsG92w96RfqGY5UdvfMeBdUkofLw7TNGQyGe6+++5Nr2XTVqtSqcRtt92GKYwkPRRVV6XGtrvrNlU/nyzReRy0kgLHQWhI20hJyNHvkWq/V0Gul2H3J5qgj9OxLAS8MwEpQxTDzBkHjny1Uxrguwr6SjXURev3xMi1NOQ6vuF18NlJ9DyR3Wh671MTGHx+KmvXH3xuCn1PJ9bHmmp6nhjD4LOTAHixh2hD8lqEXGF0/HpYapRfhqZMifpry9M69ynXUJco4JWyIQIqsxw1by8FJQVdV+Aa8W24pwhDuf0MOA6CY5mu2XTroa/mbX9dZXKZco7jMOzsw8GDB2EybV6mn+CS9WJieOWVV3DFFVdgL66AkUhuXoOuUpWSZrBUseOeejiHfRha40WvssjBMtLk6BUQvFHnnQ5k5QsmRiovKULlxcU48tXM9VfkC2upyK1WLrcWtGzjYxsf4I1ZZjr+uWrZYtfHG+GdDqDn8eQcoWcnTm94TMtP79vwmNovHk7q+stpWxBh6UxRuV+2ab65EppS5ZqiOwq9DHI9Lar3nVgwNWlRe2UZTv2gT5rxt8DBf2jD2BuzgvS7hMRamJq0IEhizZEEtVeVwVCtxpmfDGR4ZWuzGds/ZPTi1fm/4Ec/+hHuueeeTa9l/TBWnFx66aWorq7G5MgIjEjOIYreEHOzDn57KG3Tb+Nl7PU5hDy8s6M0y0ErKaH3CADq31mBSIBB9+8TLxXMazjANerL9ipEhXc6CFpJQa6XpbykKVepurQYMi2Ngb9Mrntc873HVjhF6XKGAIAqXSmBnGkniSABdalSmKMG8Cp0YW8EET+DnifG1g3EhK7dSIr8dErWqS5RoPW2KnQ8OpJ1BSylSY72D1Sj63ejWW8+H/jLpNDXRasoyNQUP8R7gZJdRlTst+Do17qlLOky5ns9mO+V1FujyHU0aCUl9ctIxEXxViMoGbnEIdJWqBAJMAjYQ7B1OuEWgX2mLlZAaZLD3uPeVGDIppuANqzFnXfemZJ1pSTnSJIkbr/9dkxjNOEhrUsggOq3laB8b/YnVNu6XMIvqmK/BS23Vi2Zvt731DiGXshemYiYsbTpUbbXnO1liAbfDG/YakqlPqIoIW8k7nrh5nuPpaSvKBmykTGqOFiE7XfXCaUNBEVg2121qLyYDzZ5pwKi6D3hGA6uUR+CzuyXfQWdIbhGfeDY7DsYkQDDj5UAUHlxEbbdtVRJdfQVflCu5AytROo9XUp0Xpt3RuqpilL/znLUvD05NbJ8p+fxMXT+NibTTgCtt1WhYj9vj7nHxNH7XrbHhOorSpbY1InCESyGbH14xzvesWl1uSgp233uuOMORBBOeCbREjjg/CNDGPiruByNgWcncf4XgwDHN8O23FoFjpXK5dZCZ1XBWJt5kQyxEnSGEfEz0JZJilJRpk/OYyzBYW+JOkbxZIfEyPSpeZz5yQDUJQqQNAGO4dDx6AiGXxJXOZ/fFkLfUxOiaPbmWH4GR2wmRgyMvDyDjt+MgGM4kDQB3UKfrNQ7tBJNqRIH/6ENmnKp3zKKrkKNsC8i2RoxBOwhBBzS92ct5DoaLbdWQqahAQ4498ggBp4VmU391ymc/8XQpspiQxUueL1e3HffxuXd8ZIyh6i9vR2XXnopRrG5dHdU1EBTruSVqMQQMOIgbEgKowxKsxwVBy3QVaqk5s9VGHphGl1SKeES3BN+SWJ3GTItDZUl8aGaTR86iaYPnVz3mHidodhyObEQ8TMIuSPY+qE6lO7ms+WeCb+oMgptTCjpRth0oqtUoeKgZeMDMwQb4YRS67K9Zmy/uw7l+6Xs+WoE3WEM/HVSKg+LQVuhXFKqLwFMvGXDdJxKaoUEJSdhadOj+eZKqMwKoWw36AiLoh+PIIGmG61CwCNq6yfLCNOHmpoaXH311alYHoAUOkQA8MlPfhIOzMHDbW7yPADIVDSUJjlIkTkcnnE/zvyoH+YmHVQWBXbf3ySVh0lsiHvcJ0oDMpu03FKJ2nckP218I6dos2SjXM7SqgMIgAky8M0ERJF9WQ7BcWgenYfOKj4lSZ1VjeKtBnEE0pYxedyO8SM2OPo9ALHwu5YQiPgYTB23i8rxzzbaCjXckkMkQMoIKM3yTZVa5SNle83Y/ckmfl7VfAinf9QPz7i4nhtSTkJpkkOm2rx0QVgTwPDkUEqktmNJ6Wvj5ptvRllZGcbQv+lzOQY8OPfwIJgAu+a8kmxy8rt9mD3nxMhLM/wLDryEoCQ3zUtv7/1Mc1Zk1MWKZ8IPuVYGuT7zAyTFSv8zk+h7enxT51gtW5Sr2SF1sQKt762GqUELjuWHHPttiUXLNxJUeOmnP9rMEgEAHEHgzI8HMHE08SF66WbiqA1nfjwgSkeSi3AYem4KflsIpkYtWt9bDXWx1FcIACB4Nc5sDNgVKwq9DHItLTrDNpvoq9TY+6lmKI2JVxbkG/oqtWBjOfo9GHl5Bo5+L/qeyu4IgtUgKAJMgMW5hwfhGPBs+nw28yhUKhUeeOCBzS8uhpQ6RHK5HPfeey8mMYIIl5qaV0pOYue9DULpiJjgWA7Tp+YFhaXyvWZUXb5SparQCHvCmD3vRNib+JCtfMW98FLTWaUsURT/XBBhb2r6fKKOUa71DZEyEmV7+L3NNxvEyYd6Md/HvzBGX52Fc9CbzeWtQMmx0Ea9DTEG8hfWpDTJ+Rp6kVC2x4TKSxcnyM/3enDyoV5BEa9sj6mgBQWURjkqLy4W5mtJANqFd4WUIVrEPebHuZ8PSj1EAKouL0H5QnVSYD6E6VPz4DgOMg0tqiRC2R4Tdt7bkLL2Eo5m0DfdjXe9610wGo0pOWeUlO/A9957L0BxmMBwSs7HhFjMnnPANSwew0BfpcaeTzWt2Ly7/ziG7j/wvTNaqwo77qmHbIMBffkIxwLDf5sWXYNzNgl7Igg6w5JDtIzKS4tTWnJa94EzqPvAmU2fJ1PlcvpqNequKRd6qZZ/ZxQGGRreVZF1Y7n2i4dR+8XDOPDyEK5zOkGQ4nnhLocgCWz/aL2oeolk6pXDWqO/a5VFjrprygs6ox6YD+Gt/+4UAkcSvFxy0BVGOE41zkKACbFwDnnFGYxJMzItjR331Au9yN1/GEX3H5fOolOZ5Tjwf1pFVZ7vHPJi9pwjZXMpPVYbgqEgvvjFL6bkfLGk3Fq3Wq14z3vegyd+8yQquXqQZC3iOAAAknpJREFUKSjmjg4kI0gC2gpl1gfahX0R2DpdqzaFCX/HcvDNBoXNTFep4hujRVjKkQ7kOr4HzDWSfc17seAe94my7yKbyNRUWs4b6xQNPrpjxb9ns1xOaZbD3KzDxEI/yfFvdq+bKTPWa6CyyAUp53RzTcVO1GL1oaujr8zA1uEUhbz1WnAsh45fDwty92JgdB1FRb8ttOQZqDhogb3HXVhKdAQK5t0YL/oqNdxj0vszlooDFvjmgkKbQr5DkLxj7B7zI+yN8Blljt97V7M/g84wOh4dFoUwCW/zBuC3hVI2VJjjOPQ6zmPPnj3YsWPle32zpCXs+OCDDyIAH6aQWqWxigNmbLmjFrQyPUZUvPhtIQy9MA02srZR4JkMoPdPfH8EraKw7e46lO0pHPGFst1mtL6nOtvLEBWuUR+0VpWo0tnZZvDZqYTltxMlVVmjVKGvVqNivwWUgt9+13OGgs4wTny7N6XO0DUVO9f9sxYEuaCaNikeR2MtPBN+sBEu6+IKCoOML/fe4CsffQYoBYmK/ZaCyhbJdTQOfL4VOqn/VoCgCOisKjhFVBkjBszNuoKqsijbY8a2u+pAqyiAA3r/NL7u/stGONh73JtWcNsstJLCljtqUXEgtTavr8IOu8OOL33pSyk9bxSC47i0hPquv/56vPj0KziEq0EQqTEACZKfVZDtF7LSLAc4JDSdXV2iQNARBhNiUXHQAlpBYeQVcc0VSSUyNQWQhJTuj0FTrsSuextx9qcDcIlgWrRYIGkCtIpCyJ3+Z2XgK4c2PIapCKZcwa5oiwFKkxxjr/POH0kT6wZUlkOrKJhbdJg57VjzmHdfmMcfJ3auex75VcmVMtMqCrs+3ojeP42npCk2lrb384GTzt+MbHBkYhjrtWi60YpT3+/LmoFQvs+MykuKceI7vWDD8aVAYp+NykuKEZgPYe7C5pVbxYpMQ6F8rwXjb82BCUhpIoAPmmz/cD1Ofb8P3mnxByAkUkf15SWIBBlMHLGBkpNQGGRCr2E8WFp1YCOc0IuaLbTlSninU6eUynEczlleg6XEgo6OjtScdBlpa3D5v//3/+Lpp5/GLCZQAmtKzsmxEJyhqkuL4Rj0ZKV8rubtpZCpKH6wVJzEpjAJigCxkOQiSAIqizyhBz4XCPtyq7k9E3inAogEGehrNZJDFEP7B2vABFl0PpZag3gz9D6ye81/U6jWFowxaJbtRxwAAigapyDzk5D9Ky1kC1bLc9dq7KueVzmmg+58Mfb+ZAykMgtDGjlg5qwDnqnc6fHwTPkxc9aR1X6DyWN2zJx1xO0MAVjiKKuLFUKJTL4S9jJ5HRxMBkONBpEAA6+Iyj4l0oe6WAG/LQiOBQgKQhUJE2ITtg1Ld5sR9kSy4hDpKlUw1Gkx9tpsyhMXwXInZiZn8L/f+N+UnjeWtBUUHDp0CFdccQUG0YVUJ6EIioCxQZu1fozBv06i/5nkpQ3H35jD8Iv8C8DSrseu+xrzUm607poymJulWRsCHOAa8cFQo8n2SkTF8N+mMfh8+idpx5Md2oj1nKElcMD2fhnqp3i3p7+CwenGcNLzMwJWN4zXHVvXGdooO7QZIgEGw3+bRiSHAh0R38KaA5lfM0kTMDVpAQBMMPkQac/jYxh7g6+/t15UhKYbUhNcFAukjETZXrNQPirBo6/R8P23+e0LJ0T5PjN2fbwx28tIOQqDDLs/0QRLmwEAMPziDMbfSL7npuPXw+h9cnPjLJJFZ1XD1KBNS1vAINuF+vp6fPCDH0z5uaOkdRf6f//v/8GNecwhtQ3MHMPh/CODmHiLn4OR6c005ImkTEHN1uHE+V8MIejkDZ2mG60wNeWHE6E0ytPWNJ+rOIe90Fepst7bICbc437RNJAzFZvL1JIshKyQX8EiKFuwaOJ4P6yVHYp+nlSGwTEEwlPGTa0xUcr2mFCyI7PXTCUlO4wZH9tQtNWAtvdWp1RGOuQOI+Bc/J6QdO73IuoqVKi/tizrfcGiggD0VSo4R6T+oVi8UwE+45sHmJp0aLqRD24EnWGce2QQts7cLYuN2uATb9lw/pHBlA9XDpW5MT49hi984QsgyfQZT2k1y6688kpcccUV6MP5lGeJonWJhloN9n6mGaqizAy4o5UU6q8th9KUmsFgHAth1ghJE0u02hVGGRTG3M0cdT42gul1eh4KEdeQF5Scgqa8cBpD46GoXY+at6dvhlcqskMbIWM4XHFGAesc/x3urWQwXrSYHShSb97ACQ2UwftGO9hg4oZ2sv1DmjIltOXKpD4rBrTlKmjLMrv+mdMOnPp+X0r74mbPOTH6Ct+DVrLdiN33N4FS5nZkxTnsxVv/3SUEBCV4VTFKTolq1IgYcI36MP5matTKskGsPUcQ/IzNaFDDOehNWa+NzqrCznsbMhZkUBUpsPczzTDU8pUvqVaL5DgO3eEzqK+vx8c+9rHUnnwZad1NCYLAV77yFXjhwiTS0x/gHvdh/I25hCe6J4tMQ8FQp0lLdI6NcOj63Sjme90A+IbarXfWpvw6mSQfopipxDPpRyTIwFinzfZSRIVMQ6csyJBROA4WHx/sUesDGCyLYF6XvjoXecMUdFedAqnInFhJ/58nMfDX9Jc0pouBv06i/5nMyKyTNAH9glpaOuewuUZ9mDhiE0QItLmovLXwathMSWE+YmrQIhJg4JEGsi7B1KTN6QDA1jvrUHkJP5zZ3uNG1+9GExLWiZewj4Fn0g8iQ7aX3xbE+BtzcI+npy/aV2HH9NwUvvzlL6c1OwSk2SECgAMHDuCWW27BAC6A5VJfy82GOb7GmuMV6KJearrw20I49b2+jIggDP51Umg0l6kp7Ly3AZrS3InUaq0qHHqwnW8MlgCwmBE0NUgOUSyTx+zo/sPYxgcmQbzZoY3K5VbrHyrxAtcMQHCKBssZ+JTpc4gIkgOl5+eZhSfTWwZG0nyvZr5gbNCmPUBTtseMLXfU8DK5aSQwH8LEEb5kXGtVYec9DWl/96Wa4m1G7PlUE0iZFDSLxdighWPQI81likFlkWPLB2uhzaHKCk2pEjvvbRDaBjofG8bgX9MfmAnMh9D31ETaFX4NtRreHuWAsTfmwIZT/97jCBZd3tPYvn17WnuHomTE3f73f/93hMgAxjCQ1utYLypC9eXpK7vJNGyEE9TpSDkJvy0klBaYmrSid478s0H0/XkCIUl6ewnzfW7oqtRSI/EqpNp5TkepnCbEocHOb/4zGuCFWsCW4fd0eMIC7+tbwLjSd2FLmx5bPliTF4IvCoMMWz5YA0ubPq3XmThqw9mfDWZU5tsz7se5nw/COcSXWJXuNuVEqbVvJoDpk/NpMaRyFUpBQl+pLpjBo/Hit4Vw7BvdcItcnVVTqhTEVILOMPy2EMiFNgjfTDAtGaHVoFVU2veA6stLYL2oKK3XcFfNYN45j6997WspG9+zHhmxyFpbW/GRj3wEg+hEmEtfGUHvk+NCRoUg03Pztt1Vh7qry9Jy7vUIOsLo/sOooJhUfVkJyvfxQ68IUpylaUyIxfTJ+awPCRMb8/0ekBQBY11uRXTTTekuE3b+XSPoFApx1P/jYdT/4+GUnQ8ArG5g6yxAMxxAEJjREnxR+Dps1D+0rqACgBb10pI1mdUG3VWnQOnTV1Yze86JU9/vy4v+jqAzjFPf78PsufQ0Liv0MiFamsohuvESdYZIGYnqy0pgzgFhHu9UQFDQk+Ax1mlBkETWZ8iIkaAznDGHIhFImhBEksr3m1F1GR+UjwQYdP9hFEFH5vfPxndXpE2RMmpbdz42klY1O07GoGPuNC677DJceeWVabtOLGkbzLqciYkJtLS0wOQpQwuxM63XouQktn+4DuNv2dYdZJgMxdsMCHsjcAxkueGR4KNJTIBFUbsejddbcfzbPaKTxdWUKqEuUaTNEMlVdn+yCc5hL/qfTl6+Pd+glCQ0JUpebjbNLM8cbVQut88VAksA50sIkCwHAgATE3RZMX9oGal2iKJwHBAeLYaswobHZ7av+flEBRUoBZmx3o50DWZdi3T8bE03WKGrUuPkd3uzLpVM0gQ4FuBYDlWXFYOgCIy8JK45P+ZmHTgOQr+sBE/DuytgqNHg5EO92V6KqKi/thzuMR9mz4vLjpCpKez5VDN6nxqHrcMFSrmwt2R5D1AXK8AyXMrVW0t2GmE9YMHZnw2CCaX3/TBd1Y/OiXM4ceIEtm9f+92WStI2mHU5FRUV+NKXvoQvfOELqOBqoSOMabsWE2Jh63anZWiraAx7DkJDrXvMj6GYGSH17yyHrcslqNdlE1OjFuX7LOK5byLB0e+GuSW95Tu5BhNgM+IMAViSNVqrrE7BcAiTAEsQYAiAWYgCsmnKPicD55fD/Woz+v48AfnZ5FTklkPSBPZ8sgkjr8xg6sR8Ss4pFsr2mFB1eQlOfKsnpdHm/mcmINfJsm4IAUsHu7IRDkRU+Z0kQClIUWTsi7YYQFKE5BAtw1Svhb1HuifLoZWkaKpgDHUaWFr1GPjLJMI+BkN/m4ZnwdaM2mTZJl097u4xP2xGd9qdoYg+gAtjZ3DnnXdmzBkCMpghAoBQKIQdO3ZgqmsOe3B5RmoCCRIo2WnC9MnNv9h5OUxSKE8QIyRNoP0DNZg8boet0wWlWQ65ls6YobkcgiJSrkmfD5gatdhyey1OPNQL/1xmFBJzAZmaQuP1Voy8MpOV0qMolJLEvs+0YOiFKdE7BQqDLKVlbQQJlOwwwTHoyUi5RyYzRAqjDMY6LWbOzKekab1kuxHOYW9OlBWW7TGh9h1lOPbNblEYbiRNiLIEKluoixXY/YkmXPjVkFQyJzL01WqEPBEE7CFY2vQo32tGx6PDon5+qy4rhmfCn5JnqXS3CTOnU7NnbgTHcegpOw5f2IPBwUHodJkr/81oV7dcLse3vvUtODCHKYxm5Jr6Gg3qry1PiQBB2V4zat5emoJVpQ82wuH8L4Zg63QB4Psymm+pFP4907KVkjO0Os4hL5gQA0ur+Gv9M0nYz4Cgls7jyhS0mkLFAQsAPtLX/+cJzHW4Mr6ORIka4+ZmHYraN5915Fhg+tR8Vmrf003QEcb0qdS82EmaQNXlxSjZbtz8yTLAXKcL/X+eEJyhigOWlPbrxUv0HSRmYzIbWFr1iAQZOERQ2SEmKCWZtp7wja4LACCA5lsqUbqLV/W0dbpw/hdDon9+DTUaKM2bH2WhKVWi/tpy6Gsy0/McsNoxOjWMf/3Xf82oMwRkOEMU5bbbbsNTf/gzLsI1oIn0q+HItbSgdEbKiE2p2tAqShQlB4mg0MsQdIVBqyjs+2wLep8Yy6ihV39tOViGxdDz0xm7Zi7QelsVFEYZzvw4veqLEvFhqNOg7X3VOP3D/pTXXmeCphusIGgCPX9MXr68fL8Zcp0Mw3/L3Hc10z1EAFBzZSlCrjAmj63fu7URtJIShG5yCaVZjl1/14COR0cyWvFA0gT2f64VQ38Tf+Y10+z4WAMC9mDaxg/kKg3vKoeuUo3TP+jP2DWL2vVouqkSx77WjUiASXkWPheItZVjbeh0wtEMjin/hvqGepw4cSLtc4eWkxXd36997Wug1ST6cD4j14v+Iq0XFWHHRxs2VYuaa84QAARd/BeZDbMYeGZCeAFWHLSg/tr0K+b5bcG0DinMVWxdLuisasj14pfIzTQKoywjwyarLy9By0IG1TnoxbGvd+ekMwQAfU+Po+fxBWMqyS2OIBYVk/IZgkxeiVRTpkTbe6tBycmcdIYAIGAP4ejXuoV3Qcutlai6vDjt1+VYDv3PTGBekpVeglwvg65CBVuX1D+0nMlj9owEU+uvLUPFQb5CwDnkxcAzE2AjfDY1V50hguSVJxOFpAnsuKcB1kP8/cjU6JSZikH4/D78+Mc/zrgzBGTJIaqursZXvvIVjKEf89xsxq5r73Fj6qQ9qVRn1WXFaL6pcuMDRQwb4TB92oHwgvgCG+GE5jiCBGrfUZoW7frJY/aU9HDlG/ZeN1iGlcrmVqHh2nLUXpme8lRthQpyLa8n450NwB0zET5TymrpgGMBcICqSIHd9zUmNdNp4i1bQWRyh56fxsRbtqQ+S9K8OEHmaytSS+yz7h73C43Ych0NbUV6ghEcC8yed+ZlOeZmsLTowDIs5vskh2g5vpkgHAOpd6AVRhlq31EqBICYEAs2zH8nwj4G06cdoi+L24g9n2pGZRKzgtgIh6kT9owKfISKPDg/cgb33HMP9uzZk7HrxpK1WOAnP/lJXHzxxejAcTBcZrxP/1wQk0f5EomiLXqYGuOfwh6wh+CdyV6TdzqYOm7H8Iu8HKvSrEDJdqPQu6EtV0Jl2Xz9aRRVkQJyXcZEDXMCJsjCMeCFpVVSm1tO3zOT6Ph1alTTYiFpAlvvqEXp7oV68A4XJo4kZxiLlZAnDPe4P6GoHikjUb7fLBolp0xA0gT/M8cZQY1mct1jfr6HIJy7zvNyJo7YYOtY7Dvdekdtyp8FXaUKDdeVJxWxzncsrXo4B705HZBJB5oyJSoOWFKWtVZZ5NCU8/3ktIJCyXYjlGY+cDT8Yv6pag69MI3Z8464jzc1aoU+1Mmj9oxV9nAkiwuRY6iursY3vvGNjFxzNbK2M5EkiZ/+9KfglAz6cSHj17e0GVDUboj7+NnzToy/mb9D5PxzQRz9ejd8M3yUsPqKUtS/s0L4d6Vpc87R9g/XoWy3eVPnyEdsXS4YajSgVZlvbhYzIdfCEL4U2GSGGg12fKxBULU689MBjL6Wucx0pmECLHr/NI6InwGtpuISlDHUqlF7ZRlk6sIJWsjUNGqvLIOhRr3hsZSCxM57G9I+mV0MjL42izM/HQAb4fjSmY81wJCChmq5TgZ1sTKvHMlUQKsoGGo1sHWJX8Al02grVKg4aNmUCEqs7dJwXQVqruAHp3qnAzj69e68Vnmdu+BMyKkpajfA0ha/XZwq5iqH4XA58PDDD0OhSLyyIVVkNVTT3NyML3/5yxhBL5xcZqO03X8YRd/CUEyVRb6u4WVp1W/aIcgJYrLDnb8dQd/CFGJNmRJ7P90MfTVvOCQTOTz/yBDGD+evQ5ks9m7+JWhpk7JEy9HXqLH/cy2QaRM30pVmudCDFHCG4J8NglLw251/LiiKeTGZoPbKUrS+p2pDx3K+14OjX+8S+g0LgaArjKNf74pLlpYJsuh/eqIwSn85CEYipSDhnw0i4OSNKp1VlbRyla3ThXM/H0zZMvOFaER+rlNyiJYzfXIex7/Vk/DnojaKvlqNvZ9uFoJCvX8aR+dvYxSOC+A9ULRFj/L96wSjCQjVQH1PT6D7j5lRgI4StvhwduQk7rzzTlxxxRUZvfZysp67/tznPof9+/fjQgZL5wAAHN/gSdIEtt1Vh+qFqMFq1F1dljPSqqmCYzjBOPLPBdH52DDcY/wso8brrbyRlQDe6UDah3nlImEvL7Nass2Y7aWIDu9UADNnHHFLt8eWVdRdXSb0IAUdYfQ8MYawNzcb4DfD4LNT6PjNyLov/qiBK4bZNJkm+jOvZeQXbdEvlld2uXJWRCFZwl4GPU+MCT0/NVeWou6qRSGeeEuZ9NXqrEjp5wLF24yY7/cIg9UllpGg09L6nio0Xm8FALjHfOh8bAR+G+/gB13hghsFoi5WQl+1doa35m0l2HZXHUiaAMdyGXUSWZJFB3cMVqsV3/ve9zJ34TXI+g5FURR+/vOfg1NF0IMzGb8+G+HQ9ftRTBxeO0N18nu9GD9SuNkNNsLB1uUW0tYzZxyYOeMAwDfg7rm/CZqy9ctyaCWFxhusGx5XiMyec8BQq5HU5pbBBFkMvTAdl7KjwiDDvs+2CFnM/j9P4MKvUt+DlGswIZaP9hNAy61VgopSFJImsOOj9ai6NP0KY2Kl6rJi7Pho/aqZb12lGvrKjUvqCoULvxpG/zN8ZYW+Wo19n22BwrD+vkWQQOt7qlF1WeE+Y2uh0MtgqNFg9rwz20sRHVqrCvseaNmwOkdTpsSe+5uEHuWZs4v2CcfygYxcF0fYDCMvz6D7D2tnfcbftKHr96NZuUczlf2wO+x4+OGHoVRm3zbMukMEAK2trfjmN7+JcQxihhvP+PVdIz5EAgxoFYWd9zbAUMt70yTND4hkw5zU7BiDY8AjqI8QJAHnkBcBB19SUX1FCequXinlzYQYqIsUkGVhEKDYsXW6wIRZFG/NfO1uLlCyw7hqhtZQp0HlJbyRFXSGMXViXshqhtyRgosErgsH+O1BBOaX1pOzEQ6dj41g+nQBlIKtwfSpeXQ+NiIYBKSMgG6h3HLw2Sn0Ppn5d5JY4RgOITdfyRF0LXznFiSJKy8phqFuZSSaY4HTP+zDWB734CZL0VYDmDALu9Q/tIKIj8Hseceqktd1V5cJVT0BRwjOIa8go2/vdqdFlS7X0dcsZmkNtRrs/FgDP1czwMA14sv4evxlDpwfPoNPf/rTuPLKKzN+/dUQhUMEAPfccw9uueUWdOA4AlzmfzkAv9l7pwOCcV95STF2399UUMpLiRJ0htH39OL087A3IqhbUXISW++shaZMCY4Fzv50AI4BaQr3cpgQC3uPG8XbJIdoNfTVamgreQNVV6UWIoHqYgWvFLnw9Rx5eUaS812HkZdmYO/mAxkVByxCmZhrxCcYuYVIyB1ZNAgIfjZV6/uqQVDSvr8eQUcYIy/zKqUgeIUqdRHfEC3X0dBVqviSOoK/x1JJ2EqKtxpg73ZL5eSrEJgPYeiFaXAsB02ZElvvrBUM+pA3grCX37OYAIu+pydydlZQJqBVFLbcXouSnUYAvBPpnQlkLWjIqsI45TyMHTt24H/+53+ysobVEI1DRBAEfvSjH6HUWoLzOAouC0MemBCvzhR0hEFQfHZo8LnJgk63JsrkMbugxkerKbARTqi7L9tj4gfBSnbGCmbPOaAtUyU1OybfGXp+GgPPTIKkCWy5vQbFC9miyaN2nHt4sCAaY1MJpSBRvs+MhuvKhaG0EkDb+6pR+45SjLwyi/OPDEkZxkTggHMPD2LyGD/Woni7EVtu5+Xtd3+iSZj7JbGIqkgBbbkqIVnkQoEggbb3V6P8AC8GwARZsBFOUGMdf2NOeNYkNibiZ3DuZwOQaWgQFIGgI4zeP41nxRHnOA59hjMgSQKPP/54VgawroV4VgLAbDbjl7/8JZyEDYPoyt5CCEBfqULxdiP8s7k5tV4MBB1hdDw6LETtFUY5Kg4U8eUoBLDl9hro45C8LQTmez0I+yOCsS/BU77fjD2fbgJB8tmh0z/qx/gbUunNZmCCLE59vw9Tx+fhHPbC0qoDpRTVqyDjWC8qgqFWA+9kAGyYzWsp3kww/sYcTv+oH+5RP6ZO2rHrE43rK10VIKU7jQj7InGpHBYC+ho1ttxeAxCAulQJS4seCj2fxQ7Mh3hbQsoCJQ3HAmV7zLC06bIalHbWTGBkcgjf/OY3UVdXl72FrILo3oJXXHEFvvjFL2IAF2DjsjMxveqSYjS824oT3+mBd5ofxioZ7ptn+MVpdP9xFP65EGgltTAZmo/CFm8zoOXWwo1WcyyH2XNOlO4wFnYGjQC2f7ReUPaa7/Wg/+kJqCxybPtQnVCSI7E5eKEUF2bPO9F4vRVlu0zZXlJWiEacZ8860PvkuNTcnkIC9hC80wFM/v/27js+rupO+P/n3uma0UiaUe/FljtuYEpoDgmBQGihpRISks2GJJvsb7Ps82x2N5t99tnybOqSJewmkEJJCCV0QjEYjME27t2S1Xsv09v9/THSlYSNq6Rp3/frJXs0c+fOV9LMved7zznfs2WIo891MdwQb/gXr83jnC/VZvRxTlGhcGUefXtOvYpmOlr0yQp9qHgsrBENxTBaDXi7A2z5j0O0vNqT4AhT32Tb1dsbYM8vj1J/fXnCqiaHCsfZ0b6Fm2++mS9+8YsJieFEki4hAviHf/gHrrzySvaxJSHzifr3jdKxqV+fF5O/1MmKz9ec8foLYoIG/XtHiQSiRPxRDv2hHU+XH4BYVJtRTWzlXbUUTTbSMuTE2btjGHO2CVd9dqJDmVeuRdks/XRV/BsNhhvG9TKpgeEQAwfG8PWH2Hl/oz4HRpw5a56ZumtKMVjVeG/RfY10bYkPP3HVZ5+0ali6qPpwIed8sRZFVQh5IgweHMNoNVB3TWlmrDs3hxRVof6mcuxFVrSYxsCBMb2gh38gxPCRcX2o69JPV+FalGHHvPpszA4jvTszpJjJxDm8aE0eK++q1e+OBCLEJhJCT5efQ39o19sBYW9EhkOfJasrfiHRPbHWVWA4zIHftdG/d2TeY4lmhdnu2UR9fT0PP/zwvL/+qUjKhMhgMPDII49QWlXCHt4hqs3PZEx7sRXFoBAYDullGwEGDoyx+4EmAkPxA/rkAo/i9FlyTFRdUXRMoYrBA2McfaE7/o0S7xmYbBS7Fzm54K+XYLQa9H2kY6ELb2+A8U4fxWvS+2q9oirU31AeL4hAfAhX2BPR/6btb/Yz1nrshRBvT7y3VjXJ5+9s2NxmnOU2tIm5kSFPJL7+hALVHy2mZJ37JHtIXQaLiiU3nvD17Rml5dWe+M8+IRaJ4Sy36QsVijNjzjZic5ln/G4njbZ6aX+rH4hXcg17InoV17wFDupvKNcrhqWrotUuxjt8+PrSb2imalT0iypGq4EL/noJ7omE1z8QjPcUTvx5jz7fzeCBsWOev/KuWpwVMirnTE22UQNDIXY/0DTjdzxy1IMWg6xCC7m1H7w+0WzSlBiH7e9hNBp5/vnnMZuT8/iatC0Lt9vNk08+SdDi4wi75vz1VFO8IlrlZcdfK8HTGe/JKFyZy9q7F0r56DNkMKsUrco98RVYDdo29umVn7x9Adre7NOLMyz65NTCa4pBoWBFjp4spbrencPkLcjWK6mli/xlThZeH/+bTS6IrBrjh5/RFi8Nz3SeUvGSknUu1vz5AqkAdhaGGz3svP/osb9vDXb/z1HaN8Yrh+Uvc1JyXnrN+1hyayULro2/D/0DwWN6HGMRjZ33H5V5HWcpOBpm9y+a8PWfuMEfi2g0PNPJaEu8+qhqVKcWiAQWXl9G/jLnnMc7n8zZRvIWOOhJk94ho9VAwYoc/Zi84LoyFn0yvnB7JBCl7c0+vBOJ31ibj7aNfSfs+TFYDfj6g4R9mVv58myYsgys/fpCClfmAlNt1/cruzCfysuL5iWmnvJGegd7ePDBB6mtrT35ExIkaRMigDVr1nDffffRSTOdWvOcvY6iQiwcY99vW2jb2H/CbYcbPbRv6icsJUTPiK8/yNYfHD7piXK6wFCIrnenFs5tfK6Tjrfjfyd7oYVFN1XoV33dS5yUXZQ/u0HPo/69o8Qi2tRwwVQzkacYswysuKNGXyhVe18xm0OPtzN4BmtvjByNf/5IQBXKdJC/LEcvXXs80VBMrzxkL7aRPW1R0lTsmVONCmUfytd7fJpf7qHh6Y6TPs9gVslfJmXwz0RuneOMh5cPHhrj0OMzF5GcPHY4K7NYcUcNxsmLkSl6TaRoVR6xiMZACs9XK7soH/eSeKJqyTOx6KYK7IXx+Z0dm/ppfG5q7a6udwf10TWnIuyJ0PB0J/5BKWh1JsK+KB2bBk56UafxuS72P9ICMKcXlL3lA+xv28O3v/1tbrzxxjl7ndmQ9Ge4O++8kz/7sz/jEDsZ1k6crJyJJbdWUv2R+EKi3p6T12UPeyN0b42Pt89b6GDFF2pkCN0ZOJsr/L6+oD7UwNMd4N1/P6gXv7DlW/RFFQHWfG2BfqXEYFWx5VuS+kQaDcXo3z8aT4iSOM5J03v6aj9ewtLbK4H4onrBsbD+eRo8OEbD02e/wKV/METvjuFjEixxcuZsI/U3lJ3yHLXW13o58lQ8echb4GDdtxdhdqbG/KLJRrOmQclal57YeXsDp7Tmkqs+m/obytKup3Y+VH24iPIPzc5FqYanOxk8GL9wokU1gmNhfT2jpbdXUfvxEn3blJj3pcTn0QzsH03utYeU+Ll0svpk4cpc1nxtgf5wdpkNmzueAHl74udgT3f8HDz9/HwmnJVZMgLgNBksKiu+UEPewvgw9K4tg/o6TR9Ei2rxefIKLP98NbVXl5xw+zMRLvCyrXsT69ev59/+7d9mff+zLSVa8j/96U+5fP1l7OEdfNrZD2UwWFV9vsJQ4/gZD4+I+KP4+oP6+GdxapyVWVxwz5JZm7wd8Uf1LviOt/o59If4FUZFjRfI8E2U0HXVO1l790IME1e6i891UTSxUNnk9smg570hrLlmXAuTb6JxwfIcfWy3syqLc79ZH08yic/76ts7ddXzyFMdjH9Ad/3ZqrisQF+pXJya0HiE9356hP79p39l2tsboP2tPkJj8bK3VR8uJKdmfsafn67Clbmc9xeLMFhUtKjG9nsbZswJPRX9+0d576dHMnrB2jO198EmWl6Z/Qqx451+PUEH6Ns7wnBDfMhjVoGFc79Zr1fUclZkUbA8+Xr43Iuyseaa6do2ePKN58H0c17RqlyKz40PkTWYVdbevVA/B/kGgvTvG9W3P/SHdjo2TVyg1phREOlsmLONnHNnrT7nSJyaaDCGrz94Zn8HDVpe7dULfFicpllZhiHqCPGe502qq6t55plnkmq9oQ+S/BECZrOZxx9/nJr6anbxNmHtzLtSVZPKud+o1z/4vTuGGWk6s4RovMPP0ee7AHCU2qj5WLFc2TgF3t4Aba/3zvkVMi0Wn6A/OYZ26PAYex5omhoSVGQhq9AKxJPkC//3Mv0Ki6PESun50yaXz+Of1dPlZ6zdN/P154mixouLTPZ6FizP0Xt9ID7uOG+ih8HTFWD/wy0ER+Ofx+GG8XkbBhILa8QiciHiVJmdJlDiSdGZVG4KjUfofCfeiFNUBWeFHevEBQ2b20zhObkJnQi/6KZySi+If16Gj3poeHZqTtrxJvaflDbxu1JImV6xRDM7jMcsxj2XBvaN6qW8AyMh9j/cgqcr3kuRV59N6YVTvVRLb6/UEySDRY0XUEpA66dknZuxNi/eid6UeTHtY1l6vhtHSfycl7fQwYX/e5l+rM8qtGIvil/cigZj7HmgiaEj8YTT0+mn/c3+Oe+ZD41H2HFfg8zhOwWKQaHmY8U4SuMjYo4+38V4x5ldgBxp8uhFi2o+Vszyz1SfVWwxY5S9ps1YrBZeeeUVHA7HWe1vvqREQgTxRVuff/55rC4Te3iH2Gl8MnOq7Sy+NT7JLxaOcfT5rlkvO2hzm3EU26RM5CmIBmN0vjM4a1eVTud1x9qnqpcdfb6b5pcn1jmIQdNL3XpXv6MsS29gAaz4Qg21V8WHVhosKjUfK9bHyZuyDLNeqrhr6yC5tQ6yCmZ/3R2T3UBO9dTV/crLC/Wf1WQ3svrPFpBTFX88EogSnHaVfPcvj9L6WvzqbywcY7jRo68lNZ86Nw/QsUkWaD1VS2+vZOF1ZbOyLy2msffXzfTuGgEgt9ZBzceK0SbmdRWtziO73HaCPZy5yUZsbp2Dc+6s0Rt7/sEQofF471XYE2Fg3+isrO9Sf30ZS2+rPPmGgqorilhxR2IWWoyFtYljUbxd0PpaL3t+eTT+oALB8QjhifNNTpWd1X+2AFNWfDhk2YXuGb3NOdV2TPbZn1ORVWght8ZB18SQ+9liyTHpRZ6sLjM1HyvWk5zaq0pm/E1KL3TjKIv3ovn6gjS91K23WZpf7uHo8936tmPtvoSMfvH1BZN7OGGy0MBRPPsVMY++0M3RF+IX+i05Js75Yu1pzQmMEeNo/k7GveM89dRTVFdXz2p8cyllEiKABQsW8NRTT+ExjVD9xVwMNlU/IdrcZn0CN8CKO2r0Bb+0mIaCoi/CN3BgjLB3dhvj/XtH2fvrZrSYhtVlntGYFscyOYyUXuBOmmFq0VCMnveG9JWwe94b4r2fHNEf794yyOCh+NUyo81AXp0D48RJp3iti1VfrtO3XXJbJRWXxqsVGq0Gaq+aSp6yCiz6mgAQf9/q8xSUeHe1YlAYPDBKcCxM6YVT7yNjlkF/D6OAvWiqJ8fqMs9YbK3kPJdemMFoNXDut+r13i/XIifLP1et/+4VVdGv7ofGI+z6xVFGmuNX6IYbPXovKBxbHCGRFHXiimfZ3DS+00nDM50zCpPMpu5tQ2z78RG9YVV6vpvcmvh7LavAwoo7avQLBlkFlhnJkjHLgDJxDFcMCtY8s/6+dFZNG/akwLq/WkzRmnjPfsQXwTcY0gtEtG3sY2D/6RfpOJnOdwZpePbs575lguaXe2h8Jnl+V/qxSotfPR85Gj+mjTR72PWLo4Q8Exd6FGXGsXD556tx1ceP0XkLszn3W/X6EKKi1XkzKi8WrszVj+0Gi4q9yDpVWMZmmCoAAZRe4CY4Fmbw4CiKQcEy0WsLE2XKpzVs3Uud+sUwq8tM7VXF+sT3iksLWDItSV/1lTqK1sZjMlrU+Llp4jwxeGiM7q1Tn/v3fnyEnvfiCVlwNEzPe0NJk3woBoWln6rUezzE8ZVe4MY6UdJ+76+b6d87u6Mywt6IPh/MaDUQHAvrF5tqry5hwbWl+rau+mxM9nj7RTEoGKwqWdeEaO9t47777uPSSy+d1djmWpI0R0/dpZdeyi9+8QseeOABwhcM6CfaknVu6j4+9YfydPv1SWVjbT4OPtY2bz0SubUOite6UE0yfO6DWJwmqj5cpE/MTHYDB8b00rDBkTA7/qtRP2j07hzmwO9a9W1HW734+uKPGawqOTUOPXFxLXbOeJ/W31hOxWXxq5PmbBPnfXsROdV2tBh4e/wUrcrTT4RLbq2k9mPxXiqj1cDqry4gd2IeR06Vnfoby/X9ZhVY9BNsJBilb/cIwZH4QW1g/yjv/eSI3mBo3dBL5+ap3hZPpz8hvT6nS9OgYEUOOZWyXsUHmjgEeXsCeuGRuTB5ZR5g588b45UAiTcwQ+NhfQhV2UX51Fw5NXn33K/XY5mYDO+siM9Js+TEv3cvdk6tiaTF36djbfHPoKc7QOMznXN+BdvbG9CHkqRCkZOEUOJD0SP+6JzNGZxNsbA2oxRx5+YBWjfES81rMY33fnyEgQPxRmZwJL4m4eT7zOY2Y5vstVeg/oZyvTc9t8bB6q8u0I/XtR8rYckt8cTFYFUpWpWHt8ePFov3Qp337UWYHfHGZOVlhTOO3ws+XoprUTwpM1gmziETSZmvL8Boq1ff9sCjrfRNzP/wdAfY8V+N+rF+tMXLwIHZv1AwF0xZBlAUGQp9AqpJoXiti9za+RmC5u0NcPjxdr094On0659xg0Vl6aeq9NEm+cty0C4Z4bnnnuOee+7hzjvvnJcYZ5OiaalZv/bv//7v+ad/+ieWGtZSGquJXxHRmJexy6dCNSrEIhomu5GcGntKl9icK5O/o0wz/ee2uc3EohrBkTCqUcFZZcfT5Sfij+IotXLOF2tp3dBH5+YBHKU2YpFYfFifAo4SG/7BeFEPRZ2oRJ1hv05FVc5sjkiGKP9QPjk1DvY/3JIU7w3VpGIwK3oPfd4CB2UX5hMNxzjyxw4cxTbGO3zJdVxQYNlnqhlp9tD5tgzTfL/ic12Ufyifnfc1Jk1vw7xRQFHivVEGi4rNbcHT7QctPkRONap4uvyUfyifyvWF7HmwCU9nAKPNgKPUxlirl1hEw5JrQjUoeqnpTD03iuMrWJ7DSLOXsDeSVO8Nk91ANKQRC8fw1w3yduPrfOpTn+KRRx5JdGhnJOV6iCb94z/+I1//+tc5pO2kV+sg4o8mTTIE6G/YguU51H6sREpzH0eyfKjn2/Sf2z8Y0q/mxSIaI0c9ek+mpytA357R+NBCg4Knyz9VzlSLF1+YvHKpxUiKBu98m0yG8pflzMm4/1Tn6fYzcnQ8ad4bsXBsxnDl4UYP0YnepWggxmiLN/mOCxqMHB3H2538vR+JMNw4TsfbA5mXDAFoU0PzosEYni6//lnz9QXxdPlRDAqlF7jp2zWCpzPe2xjxRxk56tHf68GR8Ix1d5LuMzAPsgpTY7TIfIvPWS7Rhw8n03sj7I0SC8fwFQ/zTtNGPvrRj/LQQw8lOqwzlrKtdEVR+MlPfsJtt93GYfMOhrS+RId0XF1bBtn580aiwRgGs0regtSotjEfsgosrPv/Fs1J4YB00fl2P2aHccb8IDGTwaJS9/ES8pcmX5ndRBtp8urV4cSZ63xnkJEm78k3zEDBkbA+L0Ucq3BlLia7kY7N0rv4QWxuM2v+fKG0j6bJW+DAYFaJBmPs/HkjXVuS8zgeyB9ja/9G1qxZw3PPPZcS5bU/SOpGDqiqyq9+9SvWr1/PEccOxrThRId0XJNzmQpX5rLo5oqpifEZzj80MT47E68sniL/YIjBg2PxhQ5lDsNxRYMxdtzXSPc2aZRNsuaZqb+xXI41s8hoM1B/Y3lqLAA6D3Kq7az+6gLpmT0RBcovymfwwBiBoTNfLiTdBYZD7P1Nsz5PN9MZbQYW3VyhLyp/skVWEyXi8vPe+JssWLCA1157DbM5tY+NKZ0QQXyNoieeeIJly5bRlL8bj5a8Ewi7tw2x67+PEvFHUQxKxl8N0aIaLa/26pXdxPF1vD2AzW3BvcR58o0zVHiiYlROtV1fdDmTWXJMWF3mGcUOxNmJhWNYXeZZL7GfqiL+KKOt3lmv2JpO3Euc2NwWOt7uT3QoSU2LwWhzEg6XnWd5CxwoqkLEH2XXfx9N6ot80dwg20NvUlBQwMaNG3E6U799kvIJEYDdbuf555+npKSE5qLdeJM4KZq8SpS/xMmS26sy/uSqmhQKz8mVq4wn4OnyM9LkoeLigkSHktRMdgNLP11F4aq8RIeScKMtXvb8sinjGxizKRbR2PPLJrmKPcHbG6Dpxe6Tb5jBKj5UwEiTR69IKo5lzjay6KbyjG8LWXJMLLm9ivyJZTmSuUcx6gyyI/YmWVlZbNy4kcLCwpM/KQWkRUIE4Ha7efXVV3G73bSU7MWrjSc6pBPq3zfKrvsb9d6R3LrM7C1SjSoLrivFWWk/+cYZrH1TP44SW8a+T05F2Btl9y+OZvx8htIL3HqJXjH7DFY1o9eZyy6zsfzz1TIc8yRy6xw4Sm3SO3QSZocRq8tMJJiZPY2T5/TgaJhd9zfSn+QViSOOIDuVt7BYLGzatImamsQsxjwX0uqsWVhYyIYNG8jNzaW1dC8+zZPokE7I1x+vGJa3wMHyz1ZnZJWViD/Klv84xODB5O3VSwajzV7GO3xUXpYeV2LmymQVPnuRFcWQeUPnbG4zlZcX4iiWxQ3niqPYRuXlhbO+QnzKUOIXH5KpqmsyqlpfyFi7T4pxnISnO8DuXzQRDWTe8N6sQgvLP1utT5+YbBMmq6gjyG7jJoxGI2+88QYLFixIdEizKmXXITqRnp4eLr/8crxeL5Udy8lSkv+qur3Yqi8A6F6czeDh5CmVO28UMu9nPg25dfHEef/DLQw3Jneyn0hGm4Hzvr2Illd76N6aeb1FBquaUo2LJbfHF688+Lu2BEdy6lLtdyzmV95CB8s+XR0vFNAsCdEHUU0qRpuB0FgGzSNWwL0om8FD8VFM09t+ySyaHWK3cROqqvLGG2+wbNmyRIc069Kqh2hScXExGzZswGaz0V6xP+l7igD9A5FVaGHxrZXkZdDQKEWFVX9WR9FqmftxIiNHPYy2ealcX5ToUJJaxB9l/8MtGTd0zlmZhWJQpKE+D6KBGIpBwVmZlehQ5k12uY1FN1dgMKdls2FWVV1exGirV5Khk3AvcXLet+oxZmXO8Mu8OgeLb63URwSlQjIUc4bZbdyEoihpmwxBmiZEAKWlpbz++utYrVaaS3bj0ZJ7XOYkX1+QHT9r0HsA8pc50/4EpMVgYP8ovr7kPzAkWtvrfWSX2nAtyk50KEltrNWHFgOry5wRiyIbzCpLP12V0XNb5lvZBW6Wfroq7Y/Pk4xWA6pR0RfSFcfnWpSNo9RG2+vJuTZiMhk6PMaBR1qJ+NJ7+KXBrJK/LF4sYbjRw46fNUwtsp7kIjkBdigbAdI6GYI0TogAysrKeOutt8jPz6fBnbzrFL3f5IrVpiwDCz5RRv7y9F9wsmPTAOMdshL8yYy2eBlp9lB5ucwlOhnFoLDijhoqLk3/31U0FGP3L5oycohgonRtHYrPfciQddSGGz3xYY0yrPmEKi8vZKTZw2ir9A6dTDQYy4jh3/nLc1jwiTJMEz1hk228ZBfK9fFe5A2sViubN29m+fLliQ5pTqV1QgRQVFSkT/46mL2VYS11Kr6EfVF2/KyB3p3xRK7gnFysrvSdyJtTY8/4tZlORdvrfTiKbbiXpn7d/7mkRTUO/aGNtjfS+0qtyW4EwD8QlHWH5lEsHMM/EL/KO/k3SEeF5+RS9/ESWRj6FOQvc+IotqX9MWc2uBZlU3NlcaLDmDNWl5mCc3IB6N05zI6fNRBOoZ6wkHucbYHXycvLY/PmzSxatCjRIc25tE+IAFwuF6+88grnnnsuB2xbGdB6Eh3SKQuNR0CLz7OpuDifwhW5iQ5pzpSsdVG0RuYRncxYu4+hhnGqP1yEokor5UTGO/zEwjFMDmParnOx7LNV1F1TmugwMlbdtaUs+2xVosOYM4qKFLw5BYpBofqKYoYOjzHW5kt0OEnPZDdidqbnMRniFxIqLs6Pf360ibZciggWj/Hu2OuUlZWxZcuWtCqtfSJpWWXug/j9fm699Vb+9Kc/sTi8liKlPNEhnRbVqKBp8SvfhStziUU0BvanxtyoU2Ewqxkz/ORsZRVYWP3VBTT9qVuGSZ2CFV+oIRqMceDR1kSHMuuclVlEgzG8vak5By8Vq8xNZy+yYrCo0gjOcKXnu6m5spgd9zXqPYcis+Qvy0E1KvTtHkExKCgKKbc4dqBihHe73mDJkiVs3LiRvLzMuUidET1Ek2w2G08++SQ333wz+5QttGmNiQ7ptMQiGlo0/uHKqbKTU5Nei5lOJkOZuH7M6fL1B+ndNUzlZYUZUTTgbDU+10XDM52JDmNWTfYOjrX5UjYZSgfe3oCeDKXTsavumhLKLspPdBgpwWBRqbi0gJ6dw5IMnQJrnjkti5Hk1thxVsXbZVpUS7lkaLyyh7fbX2Pt2rW8++67GZUMQYYlRAAmk4mHHnqIb3/72xxhF0e03aRiJ1nDM50cfb4LiJeurL06PcZ4l13oZvVX02uxr7nS+nofqlGl4pKCRIeS9PwDQcLeCAazSk51elxIWHhdKQuvK0t0GGLCwuvKWHBt+gxdDHuiRHypM8wnkSouKUA1KjJ36BTVXVPK4lsqEh3G2VOg9uoS3Evi83kbn++iMQUvvGmaRl9FE1taN3HNNdewadMmsrIyZ0mBSRmXEAGoqsoPfvADfvKTn9CuNOK+1UBUS53JbrqJPM5oNWC0GKbGeKdwYjTa4qXznYGU/hnmS9gToWNzP6Xnu9N2fsxsK/tQPos+WY5qTP032ODhcYYbxxMdhpgwfHScoSNp8PeY+Gi0beyjd9dIQkNJBRanidLz3XRuHiTskQTyVDQ+20nLq72JDuPMTZ4+tMn2l6p/n2o0JUb08kH2tO3gq1/9Kk8//TRGY/oWiTmRjJpDdDxPPvkkn/nMZ1i3bh3Km7mYlNSu4uasymLhJ8rY++vmlJrEJ86MalI59xsLGW3xcvjJjkSHk/RUo4I520RgODXKnmaCVJ9DlE4MVpVz7qyl9bXe9Eju5sGiT5aTU2Xnvf9skCqPGcCcbWTFHTU0PNOZ8vMGY+YIPXVHOHz4MP/8z//MPffck+iQEioje4imu+mmm3jttdfYt28f7/E6fi211w4Ie6MMNYzryZA5O/UyfYvTRMVlBdJLdApi4Rgtr/VSsCIXZ1XmdXGfrlhEIzAcQlGhZJ0rXgEoxZR/KD9eBlkkpbprSij7UGrOvYmFNUZbvHhlkexTklNtp2B5Ls2v9koydIrqrinVh5ilksm2VGg8wlDDeEqV0D6eWHaYPfa3aWpq4qGHHsr4ZAgkIQLgoosuYvPmzRTW5LOVDYxoA4kO6Yz5B4I0/yleVtzmNnPuX9Sn3No+JruB0nVubGm85tJs6ts9wli7j7qrS1OygZ8IWUVWqq8oJrs89ZLIsC9KSIbmJK3QeIRICjaWTFkGtKhG04vdBEfCiQ4n6SlqfP7IaJuX/j0jiQ4nNShgtKioKVZ8JG+Bg3P/oh6bO94maf5TT0oXzwjne9kafY1ILMwrr7zC7bffnuiQkkLGD5mbrr+/n5tvvpm33nyLxayhTEnx2utKvBZ+/75RtKhGTrUdT5c/JUpbK6qCFpO35qmyF1tZ9ZU6mv/UQ9eWwUSHkxKMWYaUbLimGxkyl3iFK3PjJaP/q5GwV5LtUzFZZnvXfx+VKo9pyGBWcZTaGG3xohgUCpbn0LdnJCXnCU03XtLHe71vU11dzcsvv0xtbW2iQ0oacj15moKCAl555RW+/JUvc5DtHNZ2EdOSP3n4QFq890CLaigGhUU3V6TMUA4tpqEaFVl49BR5ewL0vDdE5eWFmOypN0wyESaTobKL8lOihL17iZPK9YUylDQVKFC5vjBlhgYNHh6j5bVeSYZOkclupPLyQrq3D0kydBqcFVkpc/wq+1A+i26uQDEoaFGNvt0jKZ0MaZpGb8VRtnS9ycUXX8zu3bslGXofSYjex2w28/Of/5z//M//pIOj7OZtwlrqT8DWohq77m+MV3AD8pc5KVyZm9igTsCUZWDdXy3GtSg70aGkjNYNfWgxjZqPFiU6lNShxOcBZJfaEh3JSVmcJqx55pQ+KWcMDWx5ZizO5K7+aHObMdoMRAMxencMJzqclFH9kSK0mEbbBimzfaqyCi2c88Va8uqSdwh/4cpc8pfFL2J0vjPArvsb9bUfU5lmjnK0dCf72ndx9913s2HDBuz25L8ION9kyNwJvPrqq9x6660Eh8Os5EPYlfRpnNdeVYLRZuDIU8lbmaz4XBfDDeMER2U8+6kqWp3HwuvK2PurZkZbU7tAyLxRmFmyXo6I80qGzCXOyi/XERwNceix9kSHkjJyqu16lbHenZJEng5HqQ1vj59kHXhTf2M5EX+Eppd6Eh3KrInlBtmtvIPHO869997LXXfdleiQkpYkRCfR0NDAddddR8OhRpZxHoVKGi2EONH4y1vooPLSQvY91EI0mKRHKnHKVtxZg9luZOfPG1NupexEctVnU3l5IXt/00w0kDyfg7wFDqwuM91bhxIdypxI94SoZJ2LwFCI4UZPokM5hjXPTCwckyIdp0g1Kqz+8wWExiLs/XVzosMRZ8lgVVn+mWraNvbFP59pdkHMXzLM9sG3yXZm8/TTT3PhhRcmOqSkJkPmTmLhwoVs2bKFGz55PXt4hwZtT2rPK5pu4oMf8UUZ7/TryZAt35LAoGYqOc+VclXyEq3xmU4sOSYqLitMdCgpxTcQZLzDRyyUXGfE7LKspB5mIk4sry6b7LLkqWaoGhUqLy9EMSgEhkOSDJ2GissKsThNNDzbmehQUkpOjZ2ln67CYEmOJudkGycaiDHe5Sfinyiuk1yH/jOmaRp9FU283fUay5YvY+/evZIMnYLkeHcmOafTyR/+8Ad++MMf0kYDO3iToOZPdFizZrzTT9NL3QBkFVhYe/fCpElCXPXJ1ZhIBf7BEO1v9lN+UT72Ymuiw0kZgaEQR1/oRotpWHJNSVPCvG1jHwfStPckExz4XSttG5Nnrom92ErJuS69hLA4NfZiK+UX5dO2sZ/AUOrPK55XGkT80aQYgZK3wMHauxeSVRBPippe7Ga8M33ac1FbmCPF29jbvpOvfOUrbNmyhaIimVd8KmTI3Gl66623uO222xjsHmYF55OnFCQ6pFnnqs9mqGEcNChak4evN5BWB4xMoKgKq75SFy+m8YujaXPlaz6oRoW136inb88Ira/1JiyOnGo7xiwDgwfGEhbDfEj3IXOT3EudRHxRRlsSP7dPNamykOjpUGDVXXUoBoVd/92YtHNgxPFll9nIKrLGC4co4FqYzdCR8USHNetCBR52+t5GQ+O+++7js5/9bKJDSilJcg00dVxyySXs2LGDCy87nx28Sat2mHTLKYeOxJMhFChek0duEgzXMdkNiQ4hpWgxjYZnOrEXWym7MDVKrSeLWESj4ekOOjcndoFm9xInxWtcCY1BzJ7iNS7cixNXhnvh9WXxsu0gydBpKrswH3uJlYZnOiUZOk32YmvCh+Hn1jkoXpOnzxFKt2RI0zTGqrvYNPAyRcVFbNu2TZKhMyA9RGcoEonw3e9+l3/7t38jn2KWch5mJXnm3symyTr8ZRe6cVbaOfj7+b2Su+ATpdgLrez+ZdO8vm46qLmymJLzXOy8/2hKr6ydKEabgaLVeQlLjlSjkvaFMTKlhyjRf8vSC9yExiMM7B9NWAypKKvAwqqv1NG9bYjml9On+th8WXxLBSaHkb0Pzm8RiiW3VTLW5qXznUG9DZOOopYwre59NHUe5cYbb+SRRx7BapWh8mdCeojOkNFo5F//9V957rnnID/Cu7zCoJa44TVzafJA4h8M4emaGDo3sX7LfOjZPkzzq3IiOhOtG3oJDIdYdGO5LHJ7BnKq7ZRdmI85e/4Wu3UvcZJTFf9spXsylEkm/5Y5VfZ5XbB1ch5h17uDkgydJkVVqL+xHP9QiJYEDp9NZYef7ODIk/OzvEdOtV1f+NXT5cc/GJ/rla7JUKBgjPeMG+gZ7ubee+/lySeflGToLEhCdJauueYa9uzZw6UfuZidvEWDtjd9qtC9z9CRcdrf6gcgt9bBijtqsBfN/YfP0+VnrNU356+TjmIRjSNPdZBVZKXisvSb7zbXBg+Osf3eI4TGI/NWZKFwZS6Fq3Ln58XEvCtclUvhObnz8loFy3NYeVcdltzkXiA2WVVcVkBWoZUjf+xI20b1XNOi2rysJWgvtrLijhpya+ND/Nvf6k+7oXGTYsTor2xmU9/LlJaVsnXrVu6+++5Eh5XyZMjcLInFYvzHf/wHf3PP35BNLss5nywl8XNv5pKjxIqnOwBA3TWlDDeMz9kByFFmo/CcXJpe7J6T/ae7iksLqLyskD0PNEmBjDNUf1M5sVCMxue65vaFFFAN6T9UblKmDJmbpBoVYlFtfgqdKJBbY2ekKfGFHFJNdpmNc75YS9vGPtrf7E90OClp2WerGTw0Rs97c7OGmqs+m7yFDo4+H28XOEptU6NY0lQ0O8gh63Z6+ru58847+fnPf47JJBc8ZoP0EM0SVVX567/+a97d8i4FdS628CrdWmvaFVyYbjIZUgwKZrsRxRjvqzbaDKjG2R2eZbQayC6zYbRKcYUz0f5WP+NdfupvLEc1ydC5MzF8ZJzhxrm74li8No+sQgtoMlQuncUi8WQoq9BC8dq8Wd+/oiosuLY03nuvIcnQGVBN8aFyni6/PipCnCYFxjt8BIZnt0S5alQw2gz6bbPdhGKIn9PSPRnyVQyyOfgygbCfJ554gl/+8peSDM0iSYhm2bp169ixYwef+uzt7Gcbe9lCSEvvyexaVOPgY216eeDqK4pYeVfdrL7GyFEPu3/RRCQQndX9ZgwNjjzVgdlpouZjJYmOJiX17xtl8FA8IXIvceon4dmgqArFa124FyWuCpmYX+7FTorXumZ9bp9qVLAVWLDkSEPpTNVeVYLZaeLIHztkyYIzpUHbG32MHPXM6m5X3lVH9RXxdXUGDoxx8LG2tB/OGDWHaS3by+a211m7di0HDx7kxhtvTHRYaUcSojngdDr57W9/y+9//3uibj/v8jL92hwPs0ki7Zv6aX453oVtsKrUXVM6a5PSZSz8mQsMhWh6qZuStS7cS6XhfaYsuSbqbywnfxZ/h1pMY88DTbRvkqvRmaL9rX72PNCEFpudxpzBomJyGImGYux9sDlt50/MtfxlORSvcdH0Yrc+KV+cvsKVuXpPztkwZxupu6YUgyXeXG1+uTujjpP+ohG2GV+jfaCVf/mXf2HTpk2y0OockYRoDt16663s27ePK6/9KLvZzH5tG2Et/Q+wwZGwPkzD5raQW+vQ1244m8TIXmTlvL9YhLMqazbCzEi9O4bp3zfCwk+USXJ5hoIjYXb8VwP9e+MVu87qCr8CNR8rxuw06UOpRIaYGBoZ77Ut1qtjnalFN1Ww6Kby2YktQ1nzzCz4RCn9e0fo3Tmc6HBSltVlZuF1ZThKzrzo0mRbQYvFizhNrmU00uQlODL3RRoSTTNF6ag4yNs9r1JbV8uOHTv4m7/5GxRFhrzPFUmI5lhxcTHPPPMMDz74IF7ncFqX5z4eT6ef7f95hLA3Agqcc2ct1R85s6sb3t4ABx9rS/txwnOt8dkuwr4Ii2+ukFLcZ2jyhJxTY2ft1xdicZ5ZcmnJMeFe5MQqyWnGsubG3wNnO8St5dUejr4gRWfOlKIqLPpkOWFvZO4Lp6S5wFCILT84xEjzmc1fq/5IEefcWQsKhL0Rtv/nETwZVAwoWDTGNssGmnoa+F//63+xc+dOlixZkuiw0p5UmZtHbW1t3HnnnWzYsIFy6ljAcoxKZjWEcqrthDwR/ANBcmrsOCuz4hV85F04rxwlVs75Ui3dW2WxwbNhdhgpuyif5ld6zvg9rKiQppX6T0mmVZk7njN9D+RU2ylak8eRp2Suy9mqubKYknUu9vyySS8YJOaJEq+EOtbmY7TZiy3fgtlhZLQlswqCxIwx+sqOsq9lN4sWLeLRRx9l9erViQ4rY0gP0TyqrKzklVde4d5772Uoq5t3eYUBLbOu6I22ePEPxItMZOVbyKm06yfyrALLSZ+vGBRqry6Zt0Vh05WnO0DLK72UXZiPqz470eGkrJAnEk8oJ6qGFa0+taphWQUW6m8qx2BWMzoZEnFaDAxmlfqbyk/pODhJUcFoUVGNcio/G676bMouzKfl1V5Jhs5STo2dtd+ox+Q4+fB4/b2uxRcszpoYFucfCGZcMhQoHGG77TUOdeznW9/6Fvv375dkaJ7JUXSeqarK3Xffzb59+7j0yovZxdvs1bYQ0jLvINy9bYh9v20B4mOO13xtIa5FJ26ca1ENm9uCyS7lt89W15ZBBg+NUX9jOdY8c6LDSXnuxU5Kzju1qmEmhxFLtimty/KL06NpYMk2nbwhqcQn/kN8PsWBR9uIhSWrPlNWl5n6G8sZPDhG17uDiQ4n5YU9EQYOjBL2RE64nWtRNmu+thCrK37u2febFrq3zc16RcksZo3QVr6fTb2vUlJawjvvvMOPfvQjDAZp48w3GTKXQJqm8dBDD/Gtb32L8SEPC1lJCZUZO2kut87BaIsXLapRub6QaChG59sDiQ4rrRksKivvqkOLauz+ZZM0rM6SalKJhWOYHEZi4RjRoPw+T0aGzJ2evAUOltxexa7/bsTXl95LOsw11aSy8q5aFFVh9/8cJRqSz+tcKv9QPqpZpe31PhSDQk61fdbLcqcKTdPwVQyye3ArsViM73znO3zve99DVaWfIlHkN59AiqLwuc99jkOHDnHrZ27hANvYyVv4tczqKp40ctQztZ6ABkyUozVY1Piwrml5osGinvFEdjElGoxx8PdtWHJNLLyuLNHhpLzJhLL+hnIW31xxzON1Hy+JVxQT4gRqryqm7uMz1wubLGE83Ohhx88aJBmaBQuvL8OSY+Lg79skGZoF2WU23IunjfJQ4sMRJ0tmaxow8WvWolrGJkPR7BCNpTt4p/0NVq5cyd69e/n+978vyVCCyW8/CRQUFPDQQw/xwgsv4Ki08g4v06IdJpbBkwva3uij85348IW8hdksvrUSkz0+lEQ1Kiz/fA1VZ1itTszkHwjS8HQnBctzKLsoP9HhpIWjz3fR8mq8muT0IXSenoA0ZMVJeXuDM+ay2PItnPetenJrHQAEhtN/+Ya5Vnahm4JlOTT8sVOf1yrOjnuJk8rLClGN8WOeyW5kyW2V5C2MJ0mdmwdo29iXyBATKkaMkapONvlfZNQ3zH/913+xefNmFixYkOjQBDJkLul4PB7+7u/+jh//+MfYcbKIVbiUwkSHlXCWHBPB0Xip4zV3L2Tk6DgdmwcJjaX/egTzpeqKIsovymffQy2MnmG5VHGspZ+qJDgalpLIH0CGzJ2Y2WkiNBamZJ2L3p3DxMJyyj5bOTV2ln+2mo7NA7S+ljnLYMyHiksKKFiRw47/agRmnrszWbBgnIORHQwM9XPttdfywAMPUFBQkOiwxDTSQ5RkHA4HP/rRj9i1axerPrSCHbzJXm0LQS1zavAfj35AVaDz7X56d48QGguTU2On6ooiWU9nFrRu6GWkycPiWyr0ia7i7Hm6AhStcZFTI5URxakzOYysuXsB536zHnuxle6tQ5IMzQKb28ySWyoZafLQukGSobOlqApVVxTplV+HGsfp3DygD3HP9GQoZgvRVr6Pt/r+RHaOgxdeeIFnn31WkqEkJAlRklq5ciVvvvkmv/rVr9AKg2zmT7RqRzJ6GB0AGvTuGsHbHaDkPBfFa/LILrOhTcw3ylvgQDXJ2/qMaHDoiXbC3ijLPl2F0SpVbmZD28Y+Gp/rZLTFS83HiilYkZPokEQKiPgieDr9tG3sxduTeVVI54LRZmDpp6sIjoc59Hi7rN10hlSTSt6C+PBNLaaRXWaj4pJ8Ft9Sgbc7QO+ukYz/3caIMVrZxdvRP9Ex2MZ3v/tdGhoauPrqqxMdmvgA0nJMYqqqcscdd3D48GG+9o0/p4E9bOFVhrTMHYM7nTnbSGg8wr7ftADx8cpLP1WFe4kTQBKjMxANxDjwSCtGm4Elt1VKz9tZcJRYya7IAqBv1wgARotB1owRH8hgUam/oQyry4wWgyN/7KTjrXilzeyKLOwl1gRHmLoUVWHJrZUYLQYOPNoqFSDPwOQ5NX+Jk6WfqtKXv9j3mxa6tg4x3DCeyPCSRqhwnL2ut9jWupkPf/jDHD58mH/6p3+SUtpJTuYQpZBdu3Zx9913s3nzZoooZwErsCkyDGc6S46JsDdCLKJRe1UxjtIs9jzQlOiwUo6zIovln6+mf98oDU93JjqclLT41goMZgP7H2o57uOlF7jx9gQybgHC95M5RFNUk8qKz1fT+nofI00zK3At+2w10VCUQ4+1Jyi61LbwujIKVuSw9zctjLf7Eh1OyjnnS7WMd/ho/lMPqlHBZDdm/HC494vag3TkNdDQfoiamhp+9rOfSY9QCpFLlSlk1apVvPXWW/zqV79CLYnyDn+iUdtLRMvcg5Kigilr6qpLcDRMLBLP8fv2jNL5TvzqqsGssvxz1diL5ArrqRhr99HwTCdFq/Iov1gqz52JI091cOgPH9DIVyBvQTbZ5bb5DUokHdUUn4NhssfXrtr9y6ZjkiGAQ39o48hTHQmIMPWVfSifotV5NDzTKcnQKbIXW1n+uWoM5ngzsXPzAP17RwGIRbQZyZCj1IazMishcSaDmDHKQGULbwVepHu4Q4bHpShJiFLM5DC6I0eO8Ld/97f02trYzEt0ak0Zuer9ss9WU/vx0uM+5unyM3hwDABjlgEtphH2RwFwL3bqQ+vE8fXvHaVtYx/VVxSTv1zmvZwKR6mNlV+uw+wwEgtrHzwsR4P9D7fQMbHwcOGqXHLrHPMYqUgWqlGlYHkO2WUnTo6jwRixsIbZYWTll+twlEoyfSoKVuRQ85Fi2t7s0xv04vjcS5y4F8fPi2FfFC2mYZy44Dh4cAxP1/GLO5Wc56LqisxbBkPTNMYr+njP9hr7Ondx880309zcLMPjUpQkRCnK4XDw/e9/n8OHD3PrZ2/hIDvYwqsMaplVNaftjT46NvWfdLvgSJj9D7fqZbpd9dnkL51IiJT4WkeKQebLvF/bG3307hqm/oYyfQ0U8cHCngiBoSDR8CnMT9DQJx67FzlxLZTfb6Yw2gzUfKwYg1kl4o+y/T8bGDpyavMvopEYgaEgYU9kjqNMfbl1DhZeX07vzmHaXpe5t++nGJQZi57nL3XGvwdCY/FzZnDk5CNQGp7u5NDvM2vIa6hwnL3ut9jS9iYrVqxg+/btPProo+Tny4iKVCVziNLE1q1b+cu//Evefvtt8ilhISuwK9IDciKKClosPll55Rdr2fU/R/F0+THZDYR90YyvkjNJUWHJbVXkVGex99ctH3iVMJPl1joYa/PqwzXPhKIqaDEN9xInqkmlf8/I7AWYxDJxDpElx8SKO2s4/Hg74x1n/nlSTQrOCvtxh9hlOkepjRV3VDPa4uXA79rkeD5JiQ8zD3ujOEptrPpyHbsfaGK83aefE8UHi+QEaLMfpKnzKDU1Nfzwhz/khhtuSHRYYhZID1GaWLduHW+99RaPPfYYjmoLWw2vcVDbTkBL8/HSSnxy+plUX5o88I+3+9j+swa9oV9/QzlLbqmc8RqZTIvBocfb8PYGWfbpKlmj6H2MVgOLb6mg+FzXWe1nsnR8TrVdL2kr0oct38LC68tQVIXgaJjtPz1yVskQQPFaF4tvqZAS+e9jdZlZ9ukqvL1BDv1BymtPP4ctuaWShdeXA/Fh5dvvPaLPqzqTZCi31sHST1ehmtL7RBnNCtNVcYg3x15gyDvIv/7rv9LY2CjJUBqRhCiNKIrCLbfcwsGDB/l//+//EXCPsc3yGg3aHkJaMNHhzQ0NSte5cZaf3YRO/8DU76f19T69GENWgYXz/2oxWYWWs9p/qouFNQ482krYF2H556oxO4yJDinhFIMCCkQCUXb/somudwdnZb9NL3bT8Mf45PncOge1V5fIcM40oKjgKLFhdsY/O7NxJb7r3UF2/7KJSCAKCvI+AcwOI8s/W03YF+HAo61n1WubDuxF1vg5rCB+Dut8d4C2N6aGD/oHQ2e1fy2mEQ1E03bR4Jg5Ql9lE5tCL9Dcf5SvfvWrtLa2cs8996Cq0oROJzJkLo2NjY3xwx/+kB/84AeoqkrBWAWVLMSgSGP2VJmzjRSvddH+Vj9aVKP26hKioRitr2XWXK1JZqeJlV+sJRKMsvfXzUR80USHlDDLP1+Np9tPyytz914oPCcX9xInByfH5yuk3dXudB4y517ipPCc3Km/3xyq/mgRjhKbvi5bJjJlGVjxhRoMZgN7HmgiOJaZFVirrijCYFJpeqkbxaBQcUkBPduHCI3LvLNTpRmiDJd1caB3N9FolFtuuYUf/OAHFBcXJzo0MUckvU1jTqeT733vexw9epQ777yTdnMDB4reoV1rJCYDhU9JaDxC2xt9aNF4K9Q/GCQ4Er+iZrLHFy+15mXOELLQWJh9v23GlBW/CpvJQ3X6944ycGBsTl+jb8+I3pi2l1g59xv1GfV+S1UGS/zUGglECfsiqMa577kZPDCW0VXUjFYDyz8XPybt/U1zRiVD1jwzS26r1BdKDY6E8A/FRz1oUY22N/rmLBkyZRnSqmcyRoyxih62Zb3GrvZtXHHFFRw4cICHH35YkqE0JwlRBigsLOTHP/4xhw8f5qqrruKIspt3+BNdWmtaJEZlF7pZcmvlyTecBd1bh+jZPgyA2WHCaDPEh6sQLz1asu7s5pGkAv9giH2/acaSY2LZZ6v0xl8mqLy8kNLz3QD07hzG0zl/BSaigRhDR8YJTCTkNrckRsloye2VLLyuDIDRZi+Nz3bNy7Ct8U4/vTvjx6bSC9xUXl4456+ZLAwWlWWfq8acbWLvb1oIDJ3dMLBUULLORcl58fNNJBDFaDNgdpgA6Nk+TPfWoXmJY9lnq6m9KvUTBQ0Nb/kAO52vs7VtE6tWrWLbtm0899xzLFiwINHhiXmQOS0ZQXV1Nb/61a/Yu3cvH7vhoxxgG+/wMl1aS0onRoHRMOOd8188wtsbYO+vmolMrG1kyTFhzY03UlWjQt01JWl7Nd/XH2Tfb1uwuSws+3QVqikzDiWKQUGZh6v9xxMYDtH0Ujdo8d7J1V9dQNHqvITEImbKW+DANDGvrnvbkD4HMVEUg5JWV+1PRDWpLPt0FbY8M/t+2zJjPmg6seaZqbumRO9ttOaaseTEE6CIP8reXzXj7Q3Me1zNf+qhe9v8JF9zIZ4I9bMz53XeaX+D6tpqXnvtNTZu3MiaNWsSHZ6YRzKHKIPt3LmT73//+/zxj3/Ehp0allBMJaqSGY3buWTLt7D09kr2P9JKYChE/jInRpuRnvdS98RxPI5SG8s/X423O8D+h1vScgJz2UX5hMbC9O9LruFIubUOxjt8REMxClbkEAnEGG44tbVskkmqzyEyWFTO+9Yi2t7oo2vL7BTWmE0FK3IwZ5vo3JzYJG0uqCaFpZ+qwlEanzuVbksCFJ/rIuKLMHBgDJvbzNJPVXHgd21pm/TNpxgxfOWDHB7fy/DIEKtXr+af//mfufrqqxMdmkgQaflmsNWrV/PUU0+xY8eOiR6j9yaG0qVWj5ElNz50LZn4B4Jsv7dBH7phL7aRUzVRCU+BumtLsRedfqnwZOPp8rP/oRYcpVaWfaYagzn9DilZBZakLDU+0uQhGop/Tt2LnLjqJ0p1K8zLnJVMll0WvxCgGhWiwRg7f96YlMkQxHsWJiuMpRODWWXZZ6pxlNo48HBrWiRD9iIrddeW6t/nVNmxl9iA+FDl7fc2JF0y5KzKmlrkPAXEiOEp62Nnzhu8276RmtpqXnjhBXbs2CHJUIZLv9aLOG2TidHOnTu56sYrUy4xWvH5GiouLUh0GCfU+lovh5+Il1I2241kl9r05MFVn03Vh4sSGd5ZGe/ws++3LdiLrSz7bHXKzylSDAr1N5TpawE1PN1J+5v9CY7qxA493k7Tiz0A5C/L4bxvLUq6iwSpzpxtxF4cv4gR9kWJhmL67zg4mrwT+Nvf7Kfh6U4A8hY6qL+hLOWH003OGbIXWdn/2xbG2lN3vb2qDxfhqs8G4j9XdqlNX9bg8BPtSV/RNH+Jk5Lz3IkO46RixPCU97HT+TrvdrxJTW01L774Itu3b5dESACSEIlpVq1axZNPPsmuXbu4+qaPcYD32MxLtGuNRLXkLdd54NHWeZtAOhtCngi7/vuofhK35JhmXMFdfEsFrkXZiQrvjIx3+Nn3m2Zs+WaWf74mJRvjk/OgtKgGqpJy86ImF3Yd7/DRtrFPn9tWub5Qb8iLM7fgmlJqryoB4vO5Dv6uLeXKGKtGFVRFr5qZau9xAKPNwIrP12Bzmdn7m2bG57GwyWxwLcpm8S0V+vdZhRZ9LtBYm49d/32UkCd13lctr/ay99fNiQ7jA2mGGGOVPexwbuDd9jepXVCrJ0JXXXVVosMTSST1joZizq1cuZInnniC3bt3c+OnrqdB3cO+grdp1g4S1pKveo+vP0hgOPniOlXd24b00sqKqhCLaHqDxVWfzcov1eq9SYqavFd2Pd0B9v26BUuOiRV31OglYFOBvcjKuv9vEfaSeOJw5MkOBg/ObUntuRIcCeuTnA0WlfwlTqy58QaXJceEOVvWITsVFqeJc79Zj7MiPtT16IvdHHikNcFRnZ3Bg2MceTLeU+0osbLuLxel1NBdU5aBFZ+vxpxjYt9vWvB2z38RgVM1eaw2mFVWfqmWvIXxi1xaVCMW0fTHD/6uLaWLEkzOG1VNyXVuipkjDFW1scX6Mtva3mbpsqW8/PLLvPfee5IIieOShEh8oHPOOYdHHnmEhoYGbrnlFjqtR9nu2MARbTcBLfFX5cwOIyvvqk2r8fFaTOPIUx0MN3oACPsijHf59bkiy++opuZj8RKniqok3c8+WXnPmGVgxR01mJ2mRIf0gWxuM4Xn5ALg7QvQsamf4EjyDn06E9FgjB3/1cjgoXixhYpLClj++Rr98WRrxCRa3gIHFZfEh98Gx8IMHhojPNHTFhwN65/DdBAYCdPxdj/evnhSUXhOblKXcrc4Taz4Qg0muzFhFdU+kBLv6ZlMcmqvKmb556sBiIZijHf5ifjjvT7DjR6OPNWh9+img8KVuZz37UX6UL9EitpC9FYe5W1eZHf7di6++GK2bt3K22+/zUc/+tFEhyeSmCRE4qRqa2v52c9+RktLC9/85jcZzelji+llDmjv4dUSW9Uq7I2k9QJ84x1+ml7s1r/v2jLI0ETj1lFqZc3XFuKY6NXILreRW+tISJzT+QeC7H2wGdWksvKLtdjykydpU43K1NytxU4qLy+MN2I06Ng0oA8zS1fNr/Rw5Ml2ID706PzvLNGvXGcixaBQuDJXH7JkdZlxVtlhIk9sfrkn6Saxz5aIP0rHpgHQ4hdXKi8vxLUoPjneYFaTqjBHVoGFc75Ui2pU2fNgc1L8TXJrHWSXxwseOEpsrPnzqWPx4KFxurZOFdloerGb8Y7EX0ScK4OHxmh7vY+QN3FD/SLZAToqDvJm8HmO9Bzghhtu4ODBg7z44ouce+65CYtLpA4puy1O29jYGPfffz8//OEP6e3tJV8rpYqF5OBGUeb+JGqwqCgGhYgvvRuvJ6MaFbLLshhr96LFYOH1ZVhzzfp47kWfrKBnxxCjzd54A2+eP+lmh5Fln63G7DRy4NE2xhM88VlR4bxvL6Lr3UE63h5ANSpoMdLqSu3pMJhVClfl0r9vlIgvSuXlhdiLrPrwzfky32W3bW4zNreFoSPjqEaFdX+1mKaXuunbNTIvr5+sFFVBUeNDoMovzqd0nZttPz5MouvqOCuyWPqpKgKjIfY/3Ep4vufXTBw7c2rsFK/J04vjrLijhsBIiIanO1FUcFbYGe/0peXSA6cjp9qOp8dPNDA/b5xwoZdOUyNHOxux2+18+tOf5nvf+x4lJSXz8voifUgPkThtTqeT73znOzQ3N3P//feTV2/nPd5gGxvo0drmvDLd0turWHRj+Zy+RiqIRTRGW716g6Xh6U4OPBqf46CaFAxmhcn8tGB5Dud/Z7FeXSqnxj7nE+1Dngh7HmzC1xtk+eeq9UpK86lgeQ5rv7EQFNBicPSFbvr3x9cTikW0jE2GID6Up3vrkH5hwdPtZ7TFC8R7TtZ8bYFeaS+VlyYzmFWKVuXqC6cWrszTiyPEIhrbfng445MhiF8YmGzM9+8b5eiL3fFjiwJrv7GQguU58x6Tqz6bZZ+r1ofiznUyZC+2klNjB+IXnM7/zmL951aUeO/y5DDTA4+26tX7tBiMtnozPhlSDAr1N5ZTdmH+nL6OpsTXENpf8DYbe19kNDjCPffcQ2dnJ/fff78kQ+KMSA+ROGuxWIyXXnqJH//4x7zyyitYsFJOHWXUYlbOfriUoioUrMhhtNVLcCSMo8RK2BdN6lK3ySarwEJunYOud+PDOFZ+qRZvf5DGZzoxWg0svrWC5pd78PYEMGcbMVoN+PpnZ1iKYlBYdFM57sVOGp/ronfn8Kzsd+oF4qXMQ54Iigqrv7qAzncG6d05jL3IimtRNp2bBzK+sXI6jFYDFZcW0LNjGP9AkNIL3JSc52b7fx4B4kUogqNhIoGz76Wdix6ignNyUQ0KvTuH40MD/2oxB3/fxtCRcQwWdUbhEnFiqkmh7MJ8Bg+N4esLUrQmj7IL3Oz8eSNaLN4THPJGZr0Humh1HguuLWXw0BiHn+yYtb9XVoGFSCBKaDyCvdhKzZXFHHysjWggxsLrysgqsLD7l00AlF7gZuSoZ9aOhZnAkmsiMlGW3r3UiQIMHJidAjVRc5jR4h4aBg8w7hln6dKlfPOb3+Suu+7CYEidIj4iOaXwdT+RLFRV5eMf/zgvv/wye/fu5XN3fZYOSyNbra9wUNuORzv9g6HNbZ622JtG9UeKcS+Of+/pDkgydJp8/UE9GQLY82ATzS/H5yapZpWwL0osHO9qKl7jYvnnqvVt664poXBlLhC/2u6qzz6ttYa0qMahx9vp3j7EwuvKqFxfeFY/izHLQOkFbr2KXc2VxSy/I14oQItB354RfBMTxb29Adrf7Jdk6DRFAtEZ82fGWr10bp5ai2npp6souyh+FdiSY6LmymJM9ngPjGpU9Dk4cymn2o41z6zfPvdb9fr8sOwymz6/I+KP8s6/HmToSHzuXTQYk2ToNMTCGu1v9uPri78XfL0B+naP6D3TK75QQ82V8UIvJnv8s2nMOrvGadUVRSy8royeHUMcerz9tP5eBkv8GDVZUrxwVS51H5/qMVj++WqK1uRN/Gwxwr4oBnM83qaXu9nzYJO+bde7g5IMnabgyFTxEdeCbH1emmJQKLso/4wKL0ScfroqDrMp9gJ7Orez7vx1bNiwgf379/Nnf/ZnkgyJWSEJkZhVy5cv53/+539ob2/nu9/9LrGSAO/yMju1txhzDJC7YGrSv3uJUx+eYHYYWXFHjT6My73ESc3EsBYtBtv/88iMBr04O1oMfYx3aCzM4cfb8Q/GS5d3bR1k/8MzywtPDr2z5VtY+qkqvSFafkkBK79cp29Xe1UxBSviQ0yMWYapE6AGPduG6NkxRMUlBSy+uYK8hQ695K/BqlJynks/WebWOai9qljf74o7pxpdBrNK1foirK5472PvjmEan+vUt+3YNJBya5MkO093gJ7tUz17e3/dTPd78VLB5mxjfDjkxGCDmqtKWPmlWn3bhdeXkVsX/9xbnCZKz3frCbW9xIppWuPZvcSpV0605Jqo+nCRvm3FpQUsua1S33bxLRX6cKbgaJj+vaP6kNCmF7tpfLZL33Yy2Rdnb7zTT8fbA/r3Dc920rsj/t6wuSxUrS/CMJGM1FxZzIo7p6oa1l5VrL8XzA4jJee5MFgn3gtFVvIWOlh8SwXlH8qnZ8dQfH05Lb5t2UX5eqJVsCJHr7YJsOrLdZRPVAe0usws/VQVWfnxY5Si/xO3/6Gpdev8gyEOP95OaKIwTzQQS/icqXTS8EwnR/4Yn3Nlc5upvKxQv3BSss7Fok9ODX0vWp2nX8QwWFRcix2EK8dpKNnOG6PP0zbUzGc+8xmOHDnCq6++yvr16+f/BxJpLfE1EkVaKigo4G//9m/5zne+w2OPPcaPfvQjtu54gyOGXPK1CkqppvR8N76+AKPNXqLhGCFPWB920b11iM7NUyfddCp3m+wi/uiMamtHn5+qcufp8rPlPw7pj4+3+Yj4psb1GyyG+OKPxBsx5RfnM9LkIeSJkL88h7y6bA491kb9jRXk1WfTv3eExme7MNmM1FxZjLc3QMgTwewwYnNPDbfs2TakVzAKjoR5518O6I/JFdz5FxiaWvdrvMPP9nsb9O/7dg0zZJ1Kcow2g95zY8s3U3VFEQP7R4kGY5SsdZGVb2G0LV5wo+6a0omr8v2YsowULM+hd9cw0WAIX19gxnFg5/1HCXviDdnAcIjW13rn9GcWxzfWOlUsZazdN+OzOdQwjqdr6uKEzW3BPLF2kNVtpubKYoYaxokGYpSsc1GwIhc0OPj7Nuo+XkpoPELbG32YJo4lww3jRHxRVJOKcdp7rGfHEP6B+HvS1xtky38cIjxxvOjdNULvtDliSVWuOxNMnNN9fUHe/bcDesIZ8kQITFvmoOxCN/37RhkdGGe8qp9tvQcZGhqioqKC73//+3z729/G4Uh8FVWRvmQOkZgXmqaxadMmfv7zn/PEE08AkBcsopzaeatOJxJLURVUk0I0GMNebGXpp6pAi09OlkZKZlKNCotvqUTTNA7+rg3VpBALyykp09iLrCz5VCWKosSPBz2B+FyvcGYXPskUmqYRzvfQY2ujqbsBTdO48MIL+Yu/+AtuuukmVFUGM4m5JwmRmHcDAwM8+OCD3H///Rw9ehQHOZRTSzGVGJXkXchTzC5ztpElt8eHthx5qpPBQ7Mz8Vaklvkuuy2SS/5SJwuvL8M/GOLAo62ExhO3lo2YXzFDFE9xP83+I/QP9uFyubj11lu55557qK6uTnR4IsNIQiQSJhaL8corr3Dffffx7LPPYrfbyRkvoJw6HMr8l3gV8081Kiy8oZyCZTm0b+qndUPvvK+XJBJLEqIMpUD1FUWUf6iA/r0jNDzbKb2DGSLqCtDnaKOx5zChUIhVq1bx53/+59x5550YjTKTQySGJEQiKbS3t/M///M//OIXv6C7uxsnLsqopogK6TXKAGUXuqn+SDEjzV4OP9E+Yw6TSG+SEGUeo83Aok9WkFtjp/mVHimYkwE0UxRPyQDtgSa6ejvJzs7mE5/4BPfccw/nnHNOosMTQhIikVzC4TDPPPMMDzzwAC+99BIWi4VcfyGlVJNLvsw1SmM51XYW31xBNBzj4O/b8PbIvKJMIAlRZrEXW1lyWyUGk8qhx9v1xYBF+tE0jVDhOH2Wdpp6GolEIpxzzjl84Qtf4Ktf/SpW69wuDi7E6ZCESCStzs5OfvOb3/DAAw/Q2NiIDTulVFNCFVYlK9HhiTlgcZpYfGsF9iIrR5/vmlEdSqQnSYgyR9GaPGqvKsHXH+TQ79sIjsl6cukoagsykt9L82gDI6PDuN1ubrjhBv7yL/+SpUuXJjo8IY5LEiKR9DRN46233uKBBx7gD3/4A4FAgLxYAaXUUEAJqiKLsqUTxaBQ9/ESite46NszwtHnu6TsehqThCj9GcwqC64tpWBFLj3bh2h6qVsWS04zmqoRKB2mM9pMa3cLRqORCy+8kK985SvcfvvtsniqSHqSEImUMjY2xmOPPcYDDzzAO++8g8vlImsol2IqpXx3milYkUPdNaWEPREOPd4uQ+jSlCRE6c1ebGXxLRWY7EYan+1iYP9ookMSs0TTNCKFXgayumjpP4rX66W2tpbbbruNb37zmxQXF598J0IkCUmIRMo6ePAgDz74II8++igdHR3YsFNMBcVUYleciQ5PzAJrnpnFN1eQVWSh5ZVeurbI5Ot0IwlR+ipZ56Lmo8V4+4IcfrydwHDo5E8SSS+c7Wckt4fW0aOMjI6Qk5PDlVdeyTe+8Q0uueSSRIcnxBmRhEikvFgsxptvvsnDDz/MH/7wB0ZHR1mzZg3jOyIUU4FFsSU6RHEWFINC9RVFlF2Yz9DhMRqe6STskyp06UISovRjshtY+IkyXIucdL47QMurvWhRaWqksqg1xHh+PwOGblpaWrBYLFx88cXceeed3HbbbVIuW6Q8SYhEWgkEArzwwgs89NBDPP/880QiEa644go6XxmmkDIp4Z3C8hZms/D6MgAan+1k6PB4giMSs0ESovTiXuxkwbWlaNrE5/SIfE5TlWaO4isawpMzxL59+1BVlVWrVnH77bfz5S9/mZwcWS9QpA9JiETaGh4e5oknnuChhx5i48aNWK1Wrr32Wg493k4+JRgVuaKVakxZBhZ8ogz3Yie9u4ZpeqmbaFAKLqQySYjSg8GiUntVCUWr8hg8OEbDc51EpCc35cSMUQLFI8TK/Gzfvp1wOMyiRYu46aab+NrXvkZ5eXmiQxRiTkhCJDJCe3s7jz76KI899hjbt2/HZrNx9dVXc+TJTkmOUlDhylxqry4hEojS8MdOWcskhUlClPpyquwsvKEMo81A04vd9O0eSXRI4jRE1SiBwmG0qoCeBFVWVnLNNdfwta99jeXLlyc6RCHmnCREIuM0NTXx+OOP84c//IH33nsPq9XK1VdfTcNTk8mRDKtLBZYcEwuvLyO3xkHX1kFaX+uV8twpSBKi1GWwqFR/pIiSc92Mtng58scOgqOytlAqiBmj+IuGiZX52bFjh54EXX311XzlK19hzZo1iQ5RiHklCZHIaC0tLXpytHXrVlRU3BRTSDkFkhylhJJ1LqqvKCLij9H4fBfDDTJnIZVIQpSaXPXZ1F1TisGi0vpaL93bhhIdkjiJ+JygEXqj7bT1thCJRKiqquKqq67iS1/6Euedd16iQxQiYSQhEmJCa2urnhxt2bIFFZU8CimglAJKpFpdErPkmKi7phTXwmz6943S9FIXYa/MX0gFkhClFpPdQO1VpRQsz2GoYZyjz3URHJNeoWQVtYbwFQzTF+2kraeVaDRKTU0NH//4x7nrrrtYtWpVokMUIilIQiTEcbS1tfHEE0/w9NNPs3HjRgCc5E0kR6XYccoisEkof3kOtVeVoKjQ8nIPvbtGEh2SOAlJiFJH0apcqq8shhg0vdRN/z5ZZDXZaJpGJMfPmLOfbn8HPQPdKIpCfX09H/vYx/jyl78sc4KEOA5JiIQ4icHBQV544QWeeeYZnnr8j0SJYMNOPiUUUEou+aiKmugwxQSjzUDNlcUUrcpjtNVL04vdeHsDiQ5LfABJiJKfvdhK3cdLcVZk0bd7hKY/dRPxSw9ssogRI1zoYdjaS8dwKyNjI5hMJlatWsW1117LHXfcQVVVVaLDFCKpSUIkxGkIBAK88cYbPP300zzzzDN0dXVhxEQ+xRRQiptimXeUJHKq7dReXUJWvoXu94Zoe72PSEAacclGEqLkZbQaqPpwIcXnuvD1BTn6Yhdjrb5EhyWIzwfyF44yQBdt/S0EAgGcTicXXnghn/zkJ7nttttwOp2JDlOIlCEJkRBnSNM0duzYoSdHu3fvRkEhBzf5FOOmGAc5MrQugRQVSs5zU3l5IVpUo2VDL707h0GOeklDEqLkVLQ6j+orilAMCm1v9NG9bRBNijgmjKZphPP8eLIH6Qt10dXXSSwWo6ysjPXr13P77bdz1VVXYTAYEh2qEClJEiIhZklLSwsvvPACL730Ei88+wJRopix4qYIN8W4KcKkmBMdZkYy2Y1Uf6SIolV5jHf5aX65W650JwlJiJJLTrWdmiuLcZTY6Ns9TPMrvYS9kUSHlZGi5jCB/FGG1D46h9rweD2YTCaWL1/ORz7yET7zmc+wcuXKRIcpRFqQhEiIORAMBnn77bd56aWXeOmll9i7dy8AObj05MiJS3qP5ll2uY3aj5WQXZ7F4OExWl7txT8QTHRYGU0SouRgy7dQ89EiXPVOxtp9NL/czXiHP9FhZRRN04jkexmzD9Lj66RnoBtN0ygpKeGiiy7iuuuu46abbsLhcCQ6VCHSjiREQsyDjo4O/vSnP/HSSy/xx8efJkIYE2ZcFOGmCBeFWJWsRIeZMfKXOam+ohhLjomencO0vd4nV8ETRBKixDLZDVReXkTxmjwCI2FaXuth8MBYosPKGFF7CH/eKIP00DnQjs/vw2KxsHLlSq688kpuu+02qQonxDyQhEiIeRaJRNiyZYvee/Tee+8BkIWDPArJowAXBZgVa4IjTW+KQaHkXBcVlxagGhU63xmk850BokGZKDGfJCFKDINFpezCfEovcKPFNNrf7Kd72xBaVJoEcylmDeN3jTJqGKB7rIvhkfiCtpWVlVx88cXceOONXHvttVitcvwXYj5JQiREgg0MDLBx40Y2bNjAhg0bOHToEAB2nLgonEiS8mX+0RwxWFQqLimgZJ2bWCRG5zuDdG8ZJBqSxGg+SEI0vwxmldIL3JRdmI9iUOjeNkjHWwNSgXGOxEwRgu4xRk2D9Hi6GBjqB6CwsJC1a9fy0Y9+lE9+8pNUVlYmOFIhMpskREIkma6uLt544w09QWpubgbiC8PGe48KySUfg2JMcKTpxewwUn5xAcVr84iGYnRuHqBr6xCxsCRGc0kSovmhmhRK1rkpvygfg1mlZ/sQ7W8NyFDRWRYzRgm5xxk1D9Ln66ZvsBdN08jLy2PNmjV8+MMf5qabbmLx4sWJDlUIMY0kREIkuebmZl5//XU9Qeru7kZBwYmLXNzkkk8ObsyKJdGhpgVztpHySwooXpNHNBCjY/MAPe8NSY/RHJGEaG4ZLCol57oovSAfo02ld8cw7W/1ExqXRGg2xCwRQu5xxkxDDPj76OnvJhaLkZ2dzcqVK7n88su58cYbWb16tRTRESKJSUIkRArRNI3Dhw+zYcMG3nzzTTZt2kRnZycAdrL15CiXfGzY5QR8FixOE+WXFlC0KpdYWKN72xBdWwYIe2Vo0WyShGhumOxGSi9wU3KuC9Wo0Lt7hI63+gmOhhMdWsrSNI2oI4g/d4xRZZB+Ty+DwwMAOJ1Oli9fzkUXXcT111/PRRddhKqqCY5YCHGqJCESIoVpmkZbWxubNm3Sv/bt2weAGaveg5SLGwe5qIqcoE+XOdtI6QX5FK/NQzUo9O4aoXPzAIHhUKJDSwuSEM0uS66J8ovyKVqdRyyq0fPeEJ3vDhL2SI/Q6YoRI+ry480aYSjaT99oDx6vB4CSkhLOOeccLr30Uq699lqWL18uCZAQKUwSIiHSzPDwMO+8846eIG3dupVgMIgBw8Qwu3xycOHEJcPsToPBqlJyrpvS892YsgwMHByj690BWavlLElCNDuclVmUrnPjXuIk4o/SuWWQ7m2DRAMy1PNUabYIoTwvHvMIA4Feega6CYfDGI1GqqurWbNmDZdffjnXXHONFEEQIs1IQiREmgsGg+zYsUNPkN5++20GBwcBsJKlJ0dO8sgmD6MUazgh1ahQuCqPsgvc2NwWPF1+urYO0r9vVEoWnwFJiM6cYlAoWJ5D6fluHCU2fANBurcO0rtzmFhE3osnElOihPK8+O1jjMaG6B/rY3RsBICsrCyWLFnCunXr+MhHPsKVV14pi6EKkeYkIRIiw2iaRnNzM9u2bWPr1q1s3bqVHTt24PP5gHi575yJBMmJCwc5MtTuA+QtcFCyzo1rYTZhb4SeHcN0vzdEaEzmaZwqSYhOnznbSPG5LorXujDbjQwdGadr6yAjRz2JDi0pxYgRzfPjs48xpg0z6O1ncGQATdMwmUxUVVWxYsUKLrzwQq688kpWrFghw9+EyDCSEAkhiEQiHDhwYEaStHfvXqLRKCoq2eTqvUhO8sgiWwo2TGN1mSk5z0XRqjwMZpXhhnF6dg4z3DCOJiOWTkgSolOjqOCqz6ZotYu8BQ6i4Rh9u4bp2jpEYEjms03S0NDyQvgd44yrwwz6+ukf6iMSiaAoCmVlZSxZsoRzzz2X9evXc8kll8giqEIISYiEEMfn8/nYtWuXniRt27aNhoYGAFQMOHCSTS4OcvT/jYopwVEnlsGsUrAih6LVeWSXZRHyhOnbPULvzmH8g9JoPR5JiE7M6jJTtDqPolW5mB0mxjp89O4YZmD/aMaXgo8ZIoRzfARsHsaVEUb8wwyM9BOJxAtIFBQUsHjxYtasWcOll17K+vXrycvLS3DUQohkJAmREOKUDQ0NsWvXLnbt2sXu3bvZvXs3Bw4cIByODxGzYZ+WIOWSTQ5WsjKyN8leZKVodS4FK3IxZRkZbfPSt2uEgYOjMtF9GkmIjmW0GnAvdVJ4Ti45VXbC/gj9e0bo2TGMry+Y6PDm3WS561C2D59pjLHICEOeAUYm5vyoqkpxcTELFixg5cqVnH/++axfv57S0tLEBi6ESBmSEAkhzkooFOLgwYN6gjSZLE0WbjBimtGLlE0OdpwYMqR4g2JQcC+OD3XKrbWjxTSGGzz07xtl6MgYsXBmH4IlIYpTjQquRdkULM8lb6EDRVEYafLQt3uEgYNjGVOwQzNGieYE8Ns8eJRRRoJDDI4MEAgGgHjBg6qqKhYtWsSqVau48MILueiii6TogRDirEhCJISYdZqm0dXVNSNB2r17N0eOHGHykGPDjh2n/uXAiZ3stE6UzA4j+ctyKFieQ3Z5FtFQlMHD4wzsG2X4qCdjGr3TZXJCpBoVcmsd5C914lrsxGgxMNbho3/vCAP7R9N7EWBTjEhOgGCWF68yznh4hGHPECOjI/omhYWF1NXVsWzZMtauXcsll1zCkiVLpOCBEGLWSUIkhJg3Pp+Pffv2sX//fvbv38+BAwfYv38/bW1TjeF4opRNFtn6/1lkY8aSVkPvrHlm8pfHkyN7oZVoKMpwg4fBw2MMNYxnzLC6TEuIDBYVV3027sVO8hZkYzCr+PoD9O8bpX/vaFot+KtpGrGsCBG7n5DNj08dZzw8xvD4kF7iGiAvL4+Kigrq6+v15OdDH/oQLpcrccELITKKJERCiIQbHx/n4MGDM5Kkw4cP09LSQiwWTwyMmKYlSQ79tg17yvcqZRVYcC1y4l6cTXZZFrGoxmiLl6HDYwwdGSc4mr5lvDMhIbLmmclb4MBVn01OjQPVoDDe4WPw0BiDh8ZSvuCGZooRywkSsgUIGDx4omOMBUYYHh3Wh7opioLL5aKiooKFCxeyfPly1q5dywUXXIDb7U7wTyCEyHSSEAkhklYwGKSxsZHDhw9z6NAhDh8+rH+NjIzo25mxkoUDGw6ysE+77Ui5ynfmbONEcuQkp9qOalDwDwYZPuphuNHDaIuXWDh9eo/SMSFSTQo51XbyFmSTV+fA5rYQi8YYa51KgkLjkUSHeVo0S5SII0DI4ido9OHVPHiCY4x6R/B4ptY/slqtlJaWUlVVxYIFC1i6dCmrVq1i7dq1ZGdnJ/AnEEKIDyYJkRAi5WiaRn9/P42NjfrX0aNH9dtDQ0P6tibM2LBjxY6NrInbWfp9BsWQwJ/kxAwWldwaO7l18Ya1Nc8cb1i3+Rhp8jLW6mW8y5/Sc4/SISFSDArZ5TZyquzkVNlxVmahGlUCwyGGG8f1RDaZy2RrhhjR7BDRrABBY4CA4sMXHccT8DDmGcXn9+nb2mw2ioqKKC8vp6amhkWLFrF8+XJWrVpFZWVlWg1tFUJkBkmIhBBpZ2hoSE+Qjh49SktLCy0tLTQ3N9PW1qavUwLx3iUbWVixY8WGhSys2LCShQVbUs1dsrrM5NU5yKtz4Ky2Y7QYiEVijHf4GW3zMtbqY7zDl9QN7/dLxYRINakzEqDschuqUSXijzLa6o0Pd2wYT5oFUzVNQ8uKErOHCFsChAwBAvgJRL14Qh7GvKN4vV59e1VVycvLo6ioiLKyMqqqqqivr2fp0qWsXLmSsrKypPlMCCHEbJCESAiRUaLRKJ2dnTQ3N+tJ0mTC1N7eTkdHB6HQVENWQZ1IlOJJ0uTteLJkxTLxpc53T5MSX+toskfCWWXHbDeixTS8vQE83X7GO/14uvz4+oJoseQ81Cd7QqSokFVoJbvMhqMsi+xSG1kFFhRVIeyLMNoaT0RHW7x4+wIwz79mTYkRtYeJWcJELUHCxhBBxY8/5sMX8uLxjzPuGScanapYZzAYyM3NJT8/n5KSEqqqqqirq6O+vp7ly5dTX1+PyZRaQ02FEOJsSEIkhBDTxGIxBgYGaG9v/8Cv7u5ufTHaSUZME4mSdVqiFE+azFgwY8GEBRNmVGVuygbb3GacVXayy2zxhnuhFUVViEVieHsCjHf78fUG8PUF8fYHkqKSXTIlRAaLir3ISlahFXuRBXuRDXuxFYNJ1RPN8S4/nk4/4x0+fP1zs0hqTIuh2aJotghRS5ioKUxYDRAkSCDmJxD24Qt68fq8+AP+Gc9VVZWcnBzy8/MpKiqitLSUiooKampq9KSnqqoKgyF5h4oKIcR8k4RICCFOUywWY3BwkO7u7mO+urq6ZnwfCASOeb4JM6ZpSVI8YZq8zzrxuAkjZkyYMWI6oyFKqlHBXmzFUWojuzQLR6kVmzveuwEQHAvj6wvg6w/i6w8SGArhHw4RGpu/qnaJSIgsThNWlxmry4zNbSarwIq90IolJ94rEotq+AeCePsCeLriPW3ebj+xyOmfLjVNI2aOoFmjaJYYmilCxBgmrIYIEyCoBQlGAgQjAfxBP/6gD7/ff8x+jEYjOTk55OXl4Xa7KSoqori4WE94Jnt5KioqJNkRQojTJAmREELMEU3TGB0dpb+/n/7+fvr6+vTbx/vq6+ubMVxvOgPGieRoMlky6cnS5P1GTBgxYsCAAeOMLyNGFFRUo4rNbcZeaCWr0EJWQfx/a55ZT7pikRiBkTCB4ZD+FRoPExqPTHyFzyg5OJ7ZTogUg4I524jFacLsNMX/zzZizZ1IgFxmVGO8h06LaQRHw/j6A3j7gvh6A3j7AvgHQsSiMTQlhmaKoRljaMYoMWMMzRRFM8aIGaJE1TARwoQJEY6FCEVDhKJBguEgwVCQYDBAMHT8XiSDwYDD4cDpdJKbm0teXh4ul4v8/HwKCwspLi6mrKyMyspKKisrKSgokHk7QggxRyQhEkKIJKFpGuPj4wwODjI8PMzIyAjDw8P618m+n14s4ngUlGMSJcNEumRQjJjNZsxWMyabEbPNhMlmwpwV/zKaDKiqisEQ/5+YghbSiIWBCGiTX6H4/7GQBhEgBkQViCpo0cnbQExBQaXqYwWoikLHm4OgxIgpGiiAUUMxgmIEzaChGAA1fh8T909+YdDACKjxbWKxGNFolFgsRiQcJRqOEAlFJ25HiUQiRMIRwpEwkViYcDRMJBomHIl/hcIhQqEQJzs9qqqKzWbDbrdjt9v1BGcyyZlMdPLz8ykoKJiR6LhcLklwhBAiSUhCJIQQaUDTNHw+H16vF6/Xi8fjOebrePe//z6fz0ckEiEcDh/z//SvkyVfiTI9aZv+//u/LBYLNptN/8rKytKTGrvdTnZ29owEx+l0kpOTg8vl0ntznE6nJDVCCJEGJCESQghxRqLR6AcmTT5ffC5MIBAgGAwSDAZn3A6FQkSjUfbv34/P56O2thaj0YjRaMRkMmGxWLBYLFitVv3/yS+TyYTZbNa3m9zGYrFgMBgwGo0YDAZJVoQQQpwSSYiEEEIIIYQQGWtuar8KIYQQQgghRAqQhEgIIYQQQgiRsSQhEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZSxIiIYQQQgghRMaShEgIIYQQQgiRsSQhEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxjogMQIh319vYyMjKS6DCEEEKkmdzcXIqKihIdhhBpRRIiIWZZb28vt9x0CxgSHYkQQoh0Y7Va+e1vfytJkRCzSBIiIWbZyMgIGMB42IniN6PoA1NVFFWJ31Sm/T9xW1FVmLhbf5KigHrstsd7/gffnrZPVf9m2v0TN1RlamNFmRpQO7kdU/vUpj/O1Oto+r6m7temxzH5/OmDdafHMXFb+8DbU0/Spv0oxwz+VaZtq0zblmn70X8Wjt3/tPtQFLT3xXrc5xzz/Gm/l+nPP85rTX98xj7eHwscE8v7n3OyxznFxz/wvhNtM+Nx7biPa8eNQZu5v2N+Fu3Y/Svx1/jA15+xr+M8H23a212b2nTatsq0fSnvey1Fmfn8qU2Pfb6qaNNeQ5t4Tvz+ydvKtPsBVDQ97vjzp/Y1+TqTz3n/45OvpTL1v36fwrGPK+/b17Tbk/+r056jENP3NXmfqsSmbTt5f0z//RiYitswse3k6xgUDWXiPsO0WA3TXkt/vqJhYNpr6bHGpsUy+fzY1Gt8wHMmY5w8hKhK7LixTv9dqkyLb1qsk/uZ8XvR9wuGiXfJ5HvFoIAy8Z0BZcbt+HYK6sRtVVFRUWjtNPLP/5nLyMiIJERCzCJJiISYI4rPiOozTUuC1Bm3gcnWycRd6rTW0LEJkTI9oZme+Ezfdsb979/2fc9/f3I1LRZNmdYaPU6SpSc50x+faKLFN5i6f6qpGN9m8uEZCYm+/2m31ePd/wH3qe/f1wm21R9Xjt12WhJ43IRqejLzQbf15yvTbh8b18xtj3/7uI9zksdP8vyTvf5xk0OO/VmP91ozHz9JQvS+bWe85jHbfkBCNP1+/fWPl9CcQkI0/fZxnq9MS16O95ypt8tUw13R49Jm3K/vZ9p9k41sjvMcFG3azzAtIZr+/A9IXo657wMfP17CMJU4GKY9Z/q2EE8Gpt83te20+6bffl+SYVBiqBO/rOn7it9m4vZUEjaZMBiUqYTDMHkYY+r1Z+4rNu05k7djU/udFstUchPTYzVM+50YmB7fzIRoZswz45uMe+q+qYTHMC35MSiT26nT7ot/J4SYG/LpEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZSxIiIYQQQgghRMaShEgIIYQQQgiRsYyJDkCIdKVlRYgpKop+2UFFUZX4TWXa/xO3FVWFibv1JykKqMdue7znf/DtaftU9W+m3T9xQ1WmNlaUqcslk9sxtU9t+uNMvY424zUntp3awbT7Jv/hmMf058SYei1l8vbUttq0H+WYfU37UZj2/JmPK8fZ9pgfddqN9233/ucc8/xpv5fjxDU9/umPa8eJZfprzNjXcZ5zssePF+vxHv/A+060zYzHteM+rh03Bm3m/o75WbRj96/EX+MDX3/Gvo7zfLRpb/epN5AybVtl2r6U972Wosx8/tSmxz5fVbRpr6FNPCd+/+RtZdr9+n70WDSO+V2h6fvSFI3YtMe1GdvE/49N3KcqUz+jyuR9mv767789+b867TnKxIdz8nCioqEqsWnbTt4f038/hsmfDw3DxLaTr2NQNJSJ+wxM/a4M015Lf/60fanTDkNTr6notw0oKBNbGPTtNNSJX6aqKFO39cdjx41V/12h6bffH+vkfmb8XqbFZ5h4rck/lUEBZeK7eKxTt+PbTYtPUVFRaO2UZpsQc0E+WULMslgshtFoJLJoLNGhpAbtff/PkuO1u4VIF1PpkH7tIANNz3AzZ8CL0WgkFsvcv7oQc0ESIiFmmaqqRCIRvvvd71JVVZXocIQQQqSJ1tZW/s//+T+oauYkgELMB0mIhJgjVVVVLFq0KNFhCCGEEEKIE5BLDEIIIYQQQoiMJQmREEIIIYQQImNJQiTELHO73XzhC1/A7XYnOhQhhBBpRM4vQswNRdO0Wa7tJIQQQgghhBCpQXqIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZy5joAIRIF6FQiF/+8pe8/PLLjI+PU1dXx1133cV5552X6NCESDpPPPEEP/3pTzl48CBjY2O4XC6WLl3Kn//5n/PJT34y0eEJcVIHDx7kpZdeYufOnfT09OB0Olm2bBl33XUXFRUV+nbPPvssL7/8Mm1tbXg8HtxuN6tXr+YLX/gCJSUlM/Y5NDTE/fffzzvvvIPP56OqqorPfvazrF+//pjX7+/v595772Xbtm3EYjFWr17NN77xDUpLSz8w5j179vD1r38dgGeeeYbc3Nyz3qcQ6UDKbgsxS/7xH/+RN954g1tuuYXy8nJefPFFDh06xE9+8hPOOeecRIcnRNK47777+NrXvkZJSQmf+MQncLvd9PT0sHXrVlatWsVDDz2U6BCFOKm/+7u/Y+/evaxfv566ujoGBwd56qmn8Pv93HfffdTW1gLwwx/+kEAgQG1tLdnZ2XR3d/Pcc88RjUZ58MEHyc/PB8Dr9XLXXXcxPDzMzTffjMvl4vXXX2f37t383d/9HR/96Ef11/b5fNx11114vV5uu+02jEYjjz32GJqm8cADD5CTk3NMvLFYjC9/+ct0dHTg9/uPSYjOZJ9CpA1NCHHW9u/fr11yySXaI488ot8XCAS022+/XfvqV7+awMiESD5r1qzRzGaz1tvbe8xjAwMDCYhIiNO3Z88eLRQKzbivra1Nu+KKK7Tvf//7J3zuoUOHtEsuuUT77W9/q9/3yCOPaJdccon23nvv6fdFo1Hty1/+snb99dfPeK2HH35Yu+SSS7QDBw7o97W0tGiXX365dv/99x/3Nf/4xz9q1157rfaTn/xEu+SSS7Th4eEZj5/JPoVIFzKHSIhZsHHjRgwGA9ddd51+n8Vi4ZprrmH//v309vYmMDohko/JZMJkMh1zv9vtTkA0Qpy+FStWHPMerqiooLq6mtbW1hM+t7i4GACPx6Pft3v3bnJzc1m7dq1+n6qqrF+/nqGhIXbt2qXf/8Ybb7B48WKWLFmi31dVVcWaNWt4/fXXj3m9sbExfvGLX/DFL34Rh8Nx3JhOd59CpBNJiISYBQ0NDZSXl2O322fcP3liaWxsTERYQiSl22+/Ha/Xy/Lly/nOd77DCy+8wNjYWKLDEuKsaZrG8PDwcYeXjY6OMjw8zKFDh/iXf/kXgBnJTzgcxmKxHPM8q9UKwOHDh4H40LempiYWL158zLZLliyhs7MTn8834/5f/OIXuFyuGRftpjuTfQqRTiQhEmIWDA4OHvfK9uR9AwMD8x2SEEnrr/7qr/jlL39JaWkpP/jBD7jmmmtwu93ccMMNNDc3Jzo8Ic7YK6+8Qn9/Px/+8IePeeyTn/wk119/PV/5ylfYv38/f/EXfzGj6E5lZSX9/f309PTMeN6ePXuAqfPI2NgYoVDolM85R48e5dlnn+Xuu+/GYDAcN+7T3acQ6UYSIiFmQTAYPO7wH7PZrD8uhIhTFIUvfvGLbNu2jf7+fp566iluuukmnn76aa699lqi0WiiQxTitLW2tvKjH/2IZcuWcdVVVx3z+L//+7/z7//+79x9990UFhbi9/tnPH7ttdeiqir/8A//wN69e+ns7OShhx7irbfeAqbOI5P/n+o55yc/+Qnnn38+69at+8DYT3efQqQbKbstxCywWCyEw+Fj7g+FQvrjQohjTfYM3XDDDQwMDLBhwwYaGxtZtGhRokMT4pQNDg5yzz33YLfb+ad/+qfj9sSsWbMGgAsuuICLL76YO+64A5vNppeZr6ur4+///u/5wQ9+wN133w2Ay+XiG9/4Bj/4wQ+w2WzA1PnkVM45r732Gvv27ePXv/71CeM/nX0KkY4kIRJiFrjdbvr7+4+5f3BwEEAvqyqEiE/evuyyy1AURb8vHA4zNDQETM2ZECIVeDwe/vqv/xqPx8O99957Ssf7srIyFi5cyKuvvjpj3a3LL7+cD33oQzQ2NhKLxaivr2fnzp0A+tpGTqcTs9msn1+me/8557777uPyyy/HaDTS3d2txwvQ19dHJBIhPz//tPYpRDqShEiIWbBgwQJ27tyJ1+udUVjhwIED+uNCiLgbbrgBp9PJBRdcQFVVFeFwmFdeeYUDBw5w8803U1VVlegQhTglwWCQv/mbv6G9vZ0f/vCHVFdXn/JzQ6GQ3vsynclkmlHpbfv27QCce+65QLzyXG1tLYcOHTrmuQcOHKC0tJSsrCwgnvS8+uqrvPrqq8dse9ddd7FgwQIeeOCB09qnEOlIEiIhZsHll1/O7373O5555hk+9alPAfGT3QsvvMDSpUspKipKcIRCJI9/+Zd/4aWXXmLr1q08++yz2O126urquO+++/jSl76U6PCEOCXRaJTvfe977N+/n//7f/8vy5cvP2abSCSC3+8nOzt7xv0HDhygqamJj3zkIyd8jfb2dp5++mkuuugivYcI4LLLLuP+++/n0KFDemW4trY2du7cyW233aZv98///M/H7PO1115jw4YN/O3f/i0FBQWnvU8h0pGiaZqW6CCESAf/8A//wJtvvsmtt95KWVkZL730EgcPHuRHP/oRq1atSnR4QgghZtFPf/pTHn/8cS666KLjVpW78sorGR8f5+abb2b9+vXU1NRgtVppamrixRdfxGw2c999981IdD73uc+xfv16CgsL6e7u5umnnyYrK4uf/exnM5IXn8/Hl770JXw+H7fffjsGg4HHHnuMWCzGAw88QG5u7gfG/cADD/CrX/2KZ555ZsZ2Z7NPIVKd9BAJMUv+9//+3xQVFfGnP/0Jj8dDbW0t//Zv/ybJkBBCpKHJ9eU2b97M5s2bj3n8yiuvxGq1cs0117Bz5042btxIMBgkPz+fK664gs9//vOUlJTMeM6CBQt44YUX9LWM1q9fzxe/+EXy8vJmbJeVlcVPfvIT7r33Xn7zm98Qi8VYvXo1X//61884cZmLfQqRKqSHSAghhBBCCJGxZB0iIYQQQgghRMaShEgIIYQQQgiRsSQhEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZ6/8H4R9LiRRC+SIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5a6488b4", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "510e833d4aff4beb85f205288b492d01", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/278 [00:0019:41:37 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n", + " available \n", + "\n" + ], + "text/plain": [ + "\u001b[38;5;46m19:41:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868719;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=430612;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1266;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828377;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
19:41:38 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m19:41:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=592615;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487884;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=715098;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=629258;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=356515;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=502226;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=565497;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=461713;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=84453;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=437410;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=15358;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=521689;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=256986;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=884611;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
19:41:38 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m19:41:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535446;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741506;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=94178;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451499;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=751666;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=226228;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85570;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=612756;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=50968;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=509890;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=146921;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=794948;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=646350;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265558;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=35839;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=46082;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=913803;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=135607;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370360;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80289;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=219211;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=844281;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=267452;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=556886;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=28294;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519854;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "## 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/ScAttBinning\n", + "- inputs_511keV_DC2.yaml\n", + "- imagedeconvolution_parfile_scatt_511keV.yml\n", + "\n", + "As outputs from the notebook 511keV-DC2-ScAtt-DataReduction.ipynb\n", + "- 511keV_scatt_binning_DC2_bkg.hdf5\n", + "- 511keV_scatt_binning_DC2_event.hdf5\n", + "- ccm.hdf5" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "## 1. Read the response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "573a7c60", + "metadata": {}, + "source": [ + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "98a778c2-73cf-467b-96b6-affc42f17102", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = path_data + \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "\n", + "response = FullDetectorResponse.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "eab660b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 60\n", + " EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "response" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "## 2. Read binned 511keV binned files (source and background)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "04e15347-6b38-42de-a7c5-cd99b2ae66ac", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 149 ms, sys: 806 ms, total: 955 ms\n", + "Wall time: 958 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background \n", + "data_bkg = BinnedData(\"inputs_511keV_DC2.yaml\")\n", + "data_bkg.load_binned_data_from_hdf5(\"511keV_scatt_binning_DC2_bkg.hdf5\")\n", + "\n", + "## signal + background\n", + "data_511keV = BinnedData(\"inputs_511keV_DC2.yaml\")\n", + "data_511keV.load_binned_data_from_hdf5(\"511keV_scatt_binning_DC2_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a409aa7b-9bd8-443b-be46-ee5a053f8349", + "metadata": { + "tags": [] + }, + "source": [ + "## 3. Load the coordsys conversion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "daaf836a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.63 s, sys: 77.8 ms, total: 1.71 s\n", + "Wall time: 1.72 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ccm = CoordsysConversionMatrix.open(\"ccm.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "## 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "### Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "### 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(data_511keV.binned_data, \n", + " data_bkg.binned_data, \n", + " response, \n", + " ccm,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "2a662f5e", + "metadata": {}, + "source": [ + "### 4-2. Load the response file\n", + "\n", + "The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size. \n", + "\n", + "So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0ab4b84c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 13.5 s, sys: 1.48 s, total: 15 s\n", + "Wall time: 15 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n" + ] + } + ], + "source": [ + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "### 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_511keV.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_511keV.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 509.0\n", + "- 513.0\n", + "nside: 16\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "787a76408f87451687d9cad617f808c7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3072 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.5039460293538105\n", + " loglikelihood: -1563364.0277526558\n", + " background_normalization: 1.0048700233481955\n", + " Iteration 2/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1519357.4702937151\n", + " background_normalization: 0.9944142064277177\n", + " Iteration 3/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.4670760938135765\n", + " loglikelihood: -1499867.5506138196\n", + " background_normalization: 0.999275691887223\n", + " Iteration 4/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1496920.474980764\n", + " background_normalization: 1.0004892236020582\n", + " Iteration 5/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.546207203696152\n", + " loglikelihood: -1490909.3204384344\n", + " background_normalization: 0.9998689870447892\n", + " Iteration 6/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1490365.0435509903\n", + " background_normalization: 0.9995258381190871\n", + " Iteration 7/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.854692362839457\n", + " loglikelihood: -1489307.7214813665\n", + " background_normalization: 0.9997388449308033\n", + " Iteration 8/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1489058.487761884\n", + " background_normalization: 0.9998124108372027\n", + " Iteration 9/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.2283812062183777\n", + " loglikelihood: -1488593.384611151\n", + " background_normalization: 0.9997745302553334\n", + " Iteration 10/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1488431.7662045578\n", + " background_normalization: 0.999764145247152\n", + " Iteration 11/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.2705691250781777\n", + " loglikelihood: -1488249.8944230902\n", + " background_normalization: 0.9997686118565604\n", + " Iteration 12/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1488124.8362333952\n", + " background_normalization: 0.9997696073518008\n", + " Iteration 13/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1488012.3045336306\n", + " background_normalization: 0.9997697876916849\n", + " Iteration 14/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.2230022900243092\n", + " loglikelihood: -1487888.5786615435\n", + " background_normalization: 0.9997700189565418\n", + " Iteration 15/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487798.520730182\n", + " background_normalization: 0.9997703163980328\n", + " Iteration 16/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.8098974214440344\n", + " loglikelihood: -1487652.4673017936\n", + " background_normalization: 0.999770562358397\n", + " Iteration 17/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487583.1765680623\n", + " background_normalization: 0.999771015377049\n", + " Iteration 18/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.618448128695514\n", + " loglikelihood: -1487253.9933618857\n", + " background_normalization: 0.9997712604348642\n", + " Iteration 19/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487215.6271944637\n", + " background_normalization: 0.9997727102976933\n", + " Iteration 20/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.541756790045432\n", + " loglikelihood: -1487060.3103523117\n", + " background_normalization: 0.999772909371205\n", + " Iteration 21/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487034.1422262355\n", + " background_normalization: 0.9997739086816684\n", + " Iteration 22/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487009.4576823683\n", + " background_normalization: 0.9997741100024176\n", + " Iteration 23/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486986.1429297891\n", + " background_normalization: 0.9997742950835806\n", + " Iteration 24/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486964.0949290707\n", + " background_normalization: 0.9997744737637747\n", + " Iteration 25/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.967042011343623\n", + " loglikelihood: -1486864.6152302232\n", + " background_normalization: 0.9997746469610125\n", + " Iteration 26/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486848.7990036565\n", + " background_normalization: 0.9997754874062363\n", + " Iteration 27/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.6330713142086324\n", + " loglikelihood: -1486824.3117899313\n", + " background_normalization: 0.9997756319817698\n", + " Iteration 28/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486810.3517182083\n", + " background_normalization: 0.9997758601840663\n", + " Iteration 29/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.1820824055223498\n", + " loglikelihood: -1486794.6074471278\n", + " background_normalization: 0.9997759950994234\n", + " Iteration 30/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486781.9555685548\n", + " background_normalization: 0.9997761488793757\n", + "#### Done ####\n", + "\n", + "CPU times: user 33min 1s, sys: 3min 35s, total: 36min 37s\n", + "Wall time: 5min 41s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0048700233481955,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': -1563364.0277526558,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9944142064277177,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': -1519357.4702937151,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999275691887223,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': -1499867.5506138196,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0004892236020582,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': -1496920.474980764,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9998689870447892,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': -1490909.3204384344,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9995258381190871,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': -1490365.0435509903,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997388449308033,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': -1489307.7214813665,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998124108372027,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': -1489058.487761884,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997745302553334,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': -1488593.384611151,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.999764145247152,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': -1488431.7662045578,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997686118565604,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': -1488249.8944230902,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997696073518008,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': -1488124.8362333952,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997697876916849,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': -1488012.3045336306,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997700189565418,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': -1487888.5786615435,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997703163980328,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': -1487798.520730182,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999770562358397,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': -1487652.4673017936,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.999771015377049,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': -1487583.1765680623,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997712604348642,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': -1487253.9933618857,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997727102976933,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': -1487215.6271944637,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999772909371205,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': -1487060.3103523117,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997739086816684,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': -1487034.1422262355,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997741100024176,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': -1487009.4576823683,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997742950835806,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': -1486986.1429297891,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997744737637747,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': -1486964.0949290707,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997746469610125,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': -1486864.6152302232,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997754874062363,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': -1486848.7990036565,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997756319817698,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': -1486824.3117899313,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997758601840663,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': -1486810.3517182083,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997759950994234,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': -1486794.6074471278,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997761488793757,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': -1486781.9555685548,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "## 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "### Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHMCAYAAADmu70qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUpklEQVR4nO3dfVxUVeI/8M/MMMPzgwyCGkKihGCalmYpKmqYVEubZWaZlj3ZD/vaqpnu7tdq1d3atW2xzMo0TKP6rhvqmmZpKqtpJoooDz60gmiCgiBPwwAz9/fHyJVpBpznOwyf92v9MvfcM/eeOcx3+ey9554jEwRBABERERE5lFzqBhARERF5IoYsIiIiIidgyCIiIiJyAoYsIiIiIidgyCIiIiJyAoYsIiIiIidgyCIiIiJyAoYsIiIiIidgyCIiIiJyAoYsIiIiIifwkroBBDQ0NOCLL75AQUEBCgsLUVtbi0WLFiElJcWu4x4+fBjr16/HqVOnoNfr0bt3b0ydOhXjx493UMuJiIioPQxZbuDq1avIyMhAREQE+vXrh6NHj9p9zG3btuGtt97C0KFD8dxzz0GhUODcuXO4dOmSA1pMREREN8KQ5QbUajWysrKgVqtRVFSE559/3q7jXbx4Ee+88w4mTZqEOXPmOKiVREREZA2GLDegUqmgVqstqnvw4EFs2LABp06dgkwmw2233YYXX3wRffr0Eets3rwZer0ezzzzDADD7UhfX1/IZDKntJ+IiIhMceB7J7Jjxw68+uqr8PX1xQsvvIAZM2aguLgYaWlpuHjxolgvJycHUVFROHjwIB5++GFMnDgRDzzwAD7++GPo9XoJPwEREVHXwStZnURDQwPS09PxwAMP4JVXXhHLJ06ciGnTpmHDhg1i+fnz5yGXy/Hmm29i6tSp6Nu3L7Kzs/Hpp59Cp9PhhRdekOpjEBERdRkMWZ3E4cOHUVdXh/Hjx6O6ulosl8vliI+Px5EjR8QyjUYDvV6PF154AU888QQAICkpCbW1tdi4cSOefPJJ+Pn5ufojEBERdSkMWZ3E+fPnAQAvv/yy2f3+/v7ia29vb2g0Gtxzzz1GdcaPH48ff/wRp06dwuDBg53VVCIiIgJDVqfROpbqj3/8I0JDQ032KxQK8bVarcb58+fRrVs3ozqt27W1tU5sKREREQEMWZ3GTTfdBAAICQnB0KFDO6wbFxeH8+fPo6KiAr169RLLKyoqxGMQERGRc/Hpwk7izjvvhL+/PzZs2ICWlhaT/W3HaY0bNw4A8PXXX4tler0e27dvR1BQEOLi4pzeXiIioq6OV7LcxL/+9S/U1dWhsrISALB//35xdvaHH34YAQEBmDt3LpYtW4ZnnnkG48ePR0hICMrLy3Hw4EHceuut+N3vfgcASExMxB133IENGzaguroa/fr1w3/+8x/k5eVh/vz5UKlUkn1OIiKirkImCIIgdSMIePTRR1FWVmZ235dffomePXsCAI4ePYrPPvsMBQUFaGpqQvfu3TFo0CBMmjTJ6ApVQ0MDPv74Y3z//feora1F79698fjjj2PChAku+TxERERdHUMWERERkRNwTBYRERGREzBkERERETkBQ5ZEGhsbcfLkSTQ2NkrdFCIiInIChiyJlJSU4LnnnkNJSYnZ/T///LOLW+QZ2G+2Yb9Zj31mG/abbdhvtpG63xiy3JRWq5W6CZ0S+8027Dfrsc9sw36zDfvNNlL3G0MWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRN4Sd0AIiIiMqbX6aFr1kPXooe+WQ/t1RbUVWggCAAgGP5z7bUgXCsShNZdrTtN9wmG+oLecACh9TiCYNinN5xf0AtiXegFiKe9dlyT8wPi8a6fVzB63XoM47a2bbNxvXbP9evP3XoSM5/90qWrSEiw//dhK4YsIiJyOEEvoKVJh+ZGHVq0LWjW6tDSqMPV4kb8IlSa/hFvJwhcDwDX9utb9xuHC0NoQJtyQ2Aw2v71OfRty83XQWs7ADFsXD9Xa51ftcXMsfR6Afpm4+Cka7m2/euyJt314NJGDi645pfnaZ6T7tQMWUREHkzQC9DWN0NzVYuGai001Vo0a3WG4CD+u37lQq83BBl92/3C9Tp6vYAWrU7819zYcv21VoeWRkOg0jXp221TPspd2ANE0mHIIiLqZARBQLOmBZqrTdfD01UtGqoN25qrhjDVcFULzdUmCDozl0VIWjJA4SWHQnn9n7x120sOhVJhVFZXX4ugoCBABsgM/wcyWeuxZJDJAJnMUH6tSKzQdp9MLoPsWn1cK5fJZddfy9ocT37t/fLWJl87fnttuPa52r6WiS9gdF7DW2StuwB5m/eYOY9Yr/UYv3r9688LGPaVni91wC/LdgxZREQ2EPQCmhqaDVdxmnTi7bCWJp3xlR6tDrrW22Zt9uma9dDrBOh1euhbrv002ja8FszUab3F5E68vBXw8lZA6a2Al0/ray94+Vwr81ZA6eOFqqtXENa9u/hH3OiPvUxm+IP+q9AglsPwU9b6B1l+vd71utfCgXiM1uO1OZf8V/V/dR5Z6x9rucz4j7fctF3tHaO1rWKbZTJDeFIZQpRMIRPPY4mCggIkSDm4qJOq96uU9PwMWUTU6YiDgpv0aGk23JpqaTKEmZYmw5iWlubWsl/tE+vroW8dE6O7Ph5G39J2fIwgbuua2+xrMdxGO4BzUndFu2QywCfYG37BKviGeMM32PDPL0QFla/SEBhaA0vrP5lpmfzaVQ55mzIvVWtoMvz0UinEqx43YggLtzj50xO5B4YsIrKZIAgmIcaasGOocy34XLs609J0/XVrIBJfN+vR0qz3+NtfMoUMcoUMcoXc8NPr2s/WMi85fINaw5MKfsHehtdttr0DVYaARESSYcgi6kLEJ77aDFBuadSh6mcNztZeRLNGhyZNC5obr/3T6K79bEFzow7NmhY0iduGMnho3jGMhzHc4pF7ya//vDZORtvUiKBugeJtMi+V4cqOQtV6e0wOL28vcZ+Xz7U61+orlPI2oel6oLL2NhIRuS+GLKJOSFvfjNpLDai9rEFteQM0NU3iU16/DlBieaNhLFB7CnHJhZ/AAjLAS2UIIwqVHF7XBgIb/ikMY1uUcrGOl8pQJv5UGgKPl0pu+lOpEN9nCFAyyFsHHFs4XoZjZIjoRhiyiNyQrkWPussaMUjVXGowvL5kKGtqaJGmYTJA6eMFpa9hELPKx0u8QiMGHGU7wUalgJeyddtcILoeoLyU1g8MJiJyNx4RsioqKrBx40YUFhaiqKgIGo0G6enpGDJkiE3Hmzt3Lg4fPoyHHnoIv/vd74z2XblyBR9++CEOHDiAhoYGREdHY9q0aRg7dqwjPgp5sNbH7rV1zdDWNaOxvvna6yY01jYZAtS1YFV/pdEht+EUSvm1wclehp8+v37iy1BeXVeFXr17QOnrZQhRPgoofQ0hSul77d+1Qc4MPkRElvGIkFVaWorMzExERkYiJiYG+fn5Nh9r79697b6/vr4eaWlpqKqqwiOPPILQ0FDs3r0br732GlpaWpCcnGzzeanzatHq8EtBJWovNYgBSisGqNbXTdDWtxhmiraDTC6Dv9oHQeF+COjui6BwPwSG+8Kvm48hGPkYPzIvV1i2PKnh1leMXW0jIiJjHhGy4uLisHXrVgQFBWHPnj1YvHixTcfRarVYuXIlHn/8caxZs8Zk/5YtW3DhwgW88847uOOOOwAAv/3tbzFr1iysXLkSSUlJUCqVdn0W6hzqKjU4d+QSSo9exi/5lQ6ds8g7QGkIUeGtIcoPgd19ERjuhwC1D+ReXNediKgz8IiQ5efn55DjfP755xAEAY899pjZkHXs2DGEhISIAQsA5HI5xo4di1WrViE3NxfDhg1zSFvIvQh6AZf/exXnjlzCuaOXcKWk1uL3qvy84O2vhHfAtX/+qjavr5cHhPkisLsvVH4M6kREnsAjQpYjlJeX47PPPsPChQvh7e1ttk5zc7PZfT4+PgCAkydPMmR5kCZNCy4cr0Dp0Us4d/QyGmuazNbz6+aNqCHhiLilG3wCW0OTCt7+Sqj8vSy+ZUdERJ6FIeualStXIjY2FuPHj2+3TlRUFHJyclBWVoYePXqI5Xl5eQAMA/DbU1FRgcrK69P7l5SUOKDV5Gi1lxtw7shlnDtyCRcLK6FvMT+GqntMMHrf3h1RQ8KhvjmIg8GJiMiE24UsvV6P5uZmi+qqVCqH/HE7cuQI9u7diw8++KDDeg888AA2b96M1157DbNnzxYHvv/nP/8BYBjT1Z4tW7YgIyPDpPzs2bPQ6UznLqqrq0NBQYF1H4Qs7je9TkBjVQs0lc3QVDRDU9mMuotN0Fw2/92TK2UIifFBt36+6NbPF6pALwDNuKS5gEuFFxz8KVyP3zfrsc9sw36zDfvNNs7qN0vnyHO7kHXs2DHMmTPHorrr169HdHS0XedraWlBeno6JkyYgPj4+A7r9u3bF4sXL8bbb7+NtLQ0AEBoaCheeuklvP322/D19W33vampqRg5cqS4XVJSgqVLl6JPnz6Ii4szqc+JDm3Ttt8EQUBjTROuXqxH9S/1137W4eov9ai9rLnhk34BYT7oPSQcUbeHo2d8KLxUCld8BEnw+2Y99plt2G+2Yb/ZRup+c7uQFRUVhUWLFllUV61W232+HTt2oLS0FPPnz8fFixeN9jU0NODixYvo1q2bOO4qKSkJI0eOxJkzZ6DX63HLLbfg6NGjAIDevXu3e56wsDCEhYXZ3V4yTxAEXCy4gvM/XMXl7DwxTFk1aacMCO8Xgqhrwapb7wDeBiQiIpu5XchSq9VISUlx2fnKy8vR0tIiXplqa8eOHdixYweWLVuGUaNGieVKpdLoqldOTg4AYOjQoc5vMJl1cs957Ft94tpWdYd1vbwVCO7pL/4L6eWP4F7+CO7hD6WP2/2/BBERdVJd7i9KeXk5GhsbxduM48ePR2xsrEm9P/zhD7jrrrvwm9/8psPbiKWlpdi8eTNGjBjR4ZUscp7G2ib89PlJk3J/tY8hQPUMMApT/t18IJPzChURETmXx4SsdevWAQCKi4sBGK5CtT71N2PGDLHesmXLkJubi+zsbABAdHR0u+O6evbsaXQFCwCefPJJjB07FuHh4bh48SI2b96MoKAgzJs3z9EfiSx0+P9OQVtnGLAeGueLMTNuR1APP16VIiIiSXnMX6FfTx66bds28XXbkGWvfv36Ydu2baiqqkJwcDDGjh2LmTNnolu3bg47B1muovgqir4vBQAofRSImRgK9c1BEreKiIjIg0JW65WpG1mxYoVdx3vttdcsbhM5lyAIOJBRKC6kPPihflAGNkrbKCIioms4FTV1Wmf2/4LyU1UAgOCe/rg15WZpG0RERNQGQxZ1Sk2aFvyUeX2w+13T46HgwslERORG+FeJOqWjWWfQUG2YYT/qjnD0vq27xC0iIiIyxpBFnU71L3XI314MAFAo5bhrWscz9RMREUmBIYs6FUEQcPDTQuh1htHuA+/vg6AIP4lbRUREZIohizqVczmXcD6vAoBhstHBD/aVuEVERETmMWRRp9HSpMPB9YXi9vAn+sPL23MXbSYios6NIYs6jeNfn0XtZQ0AoGdCKPoM7yFxi4iIiNrHkEWdQl2FBrmbfwYAyOQyjHgqATIZ1x8kIiL3xZBFncKPnxVB16QHACRMiEK3yECJW0RERNQxhixye7/kV+Lsj2UAAJ8gFW5/OFbiFhEREd0YQxa5NX2LHgfWFYjbwx67Bd7+SglbREREZBmGLHJrBd+dQ9X5OgBA977BuGV0pMQtIiIisgxDFrktzVUtjvzrtLh994wEyOQc7E5ERJ0DQxa5rZ++PIWmhhYAwC1JkQjvFyJtg4iIiKzAkEVu6dKZapzacx4AoPT1wtApt0jcIiIiIuswZJHbEfQCDmRcH+x+xyP94BfsLWGLiIiIrMeQRW7ndPYFXP7vVQBAyE0BSEiOlrhFRERE1mPIIrfS1NCMQ1+cFLdHPJUAuRe/pkRE1Pnwrxe5lSP/OoPGmiYAQJ87e6DXALXELSIiIrINQxa5jarztcjfUQIAUKjkGD6tv8QtIiIish1DFrmFJk0L/vPxCQh6AQAwOLUvAsJ8JW4VERGR7bykbgBR7eUGfLs8B1WlhpndA7v7YuADfSRuFRERkX0YskhSZUVXsPOdI2isbQYAqPy8kJR2G7xUColbRkREZB+GLJLMqT3nsW/NCeh1hluEwT39MWH+HQju6S9xy4iIiOzHkEUup9cL+Onzkzj+9Vmx7KaBaox7aQi8A5QStoyIiMhxGLLIpZoamrF75TGUHr0sliXcG427pvWHXMHnMIiIyHMwZJHL1JQ34Lu3c1B13jDAXSaXYcRTCYi/J0rilhERETkeQxa5xMXCSux85yi0dYYB7t7+Sox/eQgnGyUiIo/FkEVOV7S7FPvX5kNoHeDe69oA9x4c4E5ERJ7LI0JWRUUFNm7ciMLCQhQVFUGj0SA9PR1Dhgyx6P1r165FRkaGSblKpcLOnTtNyrdu3YovvvgCZWVl6N69Ox555BE8/PDD9n4Mj6PX6XEo8yRObC8WyyIHhWHsS4Ph7c8B7kRE5Nk8ImSVlpYiMzMTkZGRiImJQX5+vk3HmTdvHnx9r88yLpebDsTevHkz3n77bYwZMwZTpkxBXl4e0tPT0djYiCeeeMLmz+Bpmhqa8f27uTh/rEIsGzAxGsOf4AB3IiLqGjwiZMXFxWHr1q0ICgrCnj17sHjxYpuOM2bMGISEhLS7X6vV4uOPP8bdd9+NJUuWAAB+85vfQK/X49NPP0VqaioCAwNtOrcnuVpWj2+X5+DqL/UAAJlChpFPD0D/cb0lbhkREZHreMQlBT8/PwQFBTnkWPX19RAEwey+I0eO4OrVq/jtb39rVP7QQw9Bo9HgwIEDDmlDZ/ZLfiW2LD4gBizvACXu+/0wBiwiIupyPOJKlqNMmTIFGo0Gvr6+SExMRFpaGkJDQ8X9p0+fBgD079/f6H1xcXGQy+U4deoUJkyY4NI2u5Oyk1XY/uZP4gD3kJsCMGH+HQiK8JO4ZURERK7HkAUgMDAQkyZNwoABA6BUKpGXl4esrCwUFhZi9erV8Pc3PAVXWVkJhUKBbt26Gb1fqVQiKCgIlZWV7Z6joqLCaH9JSYlzPoyECr8rEQNW5G3dMe6l26Dy4wB3IiLqmtwuZOn1ejQ3N1tUV6VSQSaT2X3OyZMnG20nJSUhPj4eS5YsQVZWFqZNmwbAMCbLy8t8l6lUKmi12nbPsWXLFrNPMJ49exY6nc6kvK6uDgUFBVZ8Cun9csowyF0mByLv88WZ4tMub0Nn7Dd3wH6zHvvMNuw327DfbOOsfktISLContuFrGPHjmHOnDkW1V2/fj2io6Od0o7k5GSsXLkSOTk5Ysjy9vZGS0uL2fpNTU3w9vZu93ipqakYOXKkuF1SUoKlS5eiT58+iIuLM6lfUFBg8S/RHbQ06XDgyjkAQLfegbh14ABJ2tHZ+s1dsN+sxz6zDfvNNuw320jdb24XsqKiorBo0SKL6qrVzp0tPDw8HDU1NUbn0+l0qKqqMrpl2NzcjJqamg7bExYWhrCwMKe2V0rVF+og6A23CtVRjnkIgYiIqDNzu5ClVquRkpIidTMgCALKysoQGxsrlrW+Lioqwt133y2WFxUVQa/XG9Xtaq6cqxVfd4viNBZEREQeMYWDNcrLy00GnVdXV5vU27RpE6qrqzF8+HCx7Pbbb0dQUBA2b95sVHfz5s3w8fExCl5dTduQpWbIIiIicr8rWbZat24dAKC4uBgAsGPHDuTl5QEAZsyYIdZbtmwZcnNzkZ2dLZZNnjwZ48aNQ0xMDFQqFY4fP45du3YhNjYWqampYj1vb28888wzeOedd7B48WLceeedOHbsGL799ls899xzDpurqzNqG7JCoxmyiIiIPCZkrVmzxmh727Zt4uu2Icuc5ORknDhxAnv37kVTUxMiIiIwdepUTJ8+HT4+PkZ1H3roIXh5eeHLL7/E/v37ER4ejtmzZ5s8odiVCIKAyhLD2DXfEG/4BrX/AAAREVFX4TEhq+2VqY6sWLHCpGzBggVWnes3v/kNfvOb31j1Hk/WUK2Fts4w7QZvFRIRERl0uTFZ5HhXSjjonYiI6NcYsshuV861meaCIYuIiAgAQxY5gNGgd86RRUREBIAhixyg8trtQrlChpBe/hK3hoiIyD0wZJFdWpp0uHqxHgAQEhkAuRe/UkRERABDFtmJy+kQERGZx5BFduFyOkREROYxZJFduJwOERGReQxZZBcup0NERGQeQxbZjMvpEBERtY8hi2zWUMXldIiIiNrDkEU246B3IiKi9jFkkc24nA4REVH7GLLIZlxOh4iIqH0MWWQzLqdDRETUPoYssgmX0yEiIuoY/zKSTbicDhERUccYssgmfLKQiIioYwxZZBMup0NERNQxhiyySetM7wCX0yEiIjKHIYusJgiCeCWLy+kQERGZx5BFVuNyOkRERDfGkEVW46B3IiKiG2PIIqtxOR0iIqIbY8giq3E5HSIiohtjyCKrcTkdIiKiG2PIIqtwOR0iIiLL8C8kWYXL6RAREVmGIYuscqWETxYSERFZgiGLrHKllMvpEBERWcJL6gY4QkVFBTZu3IjCwkIUFRVBo9EgPT0dQ4YMsej9a9euRUZGhkm5SqXCzp07jco2bdqEI0eOoKCgAJcuXcLEiRPx+9//3hEfo1PgcjpERESW8YiQVVpaiszMTERGRiImJgb5+fk2HWfevHnw9fUVt+Vy0wt9mZmZaGhoQHx8PCorK21uc2fE5XSIiIgs5xEhKy4uDlu3bkVQUBD27NmDxYsX23ScMWPGICQkpMM6K1asQEREBGQyGe69916bztNZcTkdIiIiy3lEyPLz83PYserr6+Hn5weZTGZ2f48ePRx2rs6Gy+kQERFZziNClqNMmTIFGo0Gvr6+SExMRFpaGkJDQ6VultvgcjpERESWY8gCEBgYiEmTJmHAgAFQKpXIy8tDVlYWCgsLsXr1avj72z+reUVFhdEYrpKSEruP6WpcToeIiMhybhey9Ho9mpubLaqrUqnava1njcmTJxttJyUlIT4+HkuWLEFWVhamTZtm9zm2bNli9gnGs2fPQqfTmZTX1dWhoKDA7vM60i+nKgAAMjnwy9VzKCuwv+8dzR37rTNgv1mPfWYb9ptt2G+2cVa/JSQkWFTP7ULWsWPHMGfOHIvqrl+/HtHR0U5pR3JyMlauXImcnByHhKzU1FSMHDlS3C4pKcHSpUvRp08fxMXFmdQvKCiw+JfoCi1NOhy4cg4A0K13IG4dOEDiFpnnbv3WWbDfrMc+sw37zTbsN9tI3W9uF7KioqKwaNEii+qq1WqntiU8PBw1NTU3rmiBsLAwhIWFOeRYUuByOkRERNZxu5ClVquRkpIidTMgCALKysoQGxsrdVPcApfTISIisk6XW1anvLzcZNB5dXW1Sb1Nmzahuroaw4cPd1HL3BuX0yEiIrKO213JstW6desAAMXFxQCAHTt2IC8vDwAwY8YMsd6yZcuQm5uL7OxssWzy5MkYN24cYmJioFKpcPz4cezatQuxsbFITU01Os/+/ftx5swZAEBLSwt+/vln8dyJiYno27ev0z6jlLicDhERkXU8JmStWbPGaHvbtm3i67Yhy5zk5GScOHECe/fuRVNTEyIiIjB16lRMnz4dPj4+RnX37t2Lb775Rtw+ffo0Tp8+DcAwhssTQxaX0yEiIrKex4SstlemOrJixQqTsgULFlh8nt///vddakFogMvpEBER2cKqkJWbm2vziQYPHmzze0laXE6HiIjIelaFrDlz5tg8+eeePXtseh9Jj8vpEBERWc+qkDVjxgyTkFVQUIBDhw4hMjISAwcORLdu3VBVVYUTJ06gtLQUd955JydQ6+QqS7icDhERkbWsClkzZ8402j527Bg+++wzvPLKK7j//vuNApggCPj3v/+NFStW4Mknn3RMa0kSrbcL5QoZQnrZv44jERFRV2DXPFlr1qzBXXfdhQceeMDkCpdMJkNqaiqGDx9u8uQfdR4tTTpcvVgPAAiJDIDcq8tNrUZERGQTu/5injx58oZrB958880oKiqy5zQkIS6nQ0REZBu7QpZSqRTniGrPqVOnoFQq7TkNSYjL6RAREdnGrpA1bNgwHDp0CBs2bEBzc7PRvubmZmzYsAE//fQT7rzzTrsaSdLhcjpERES2sWsy0hdffBF5eXn4+OOPsXHjRvTv3x8hISGorq5GUVERqquroVarMWvWLEe1l1yMy+kQERHZxq6QFR4ejo8++ggffvghdu/ejQMHDoj7VCoVJkyYgBdeeAFqtdruhpLrcTkdIiIi29m9rI5arcbvf/97LFiwAOfOnUN9fT38/f3Ru3dvjsXq5LicDhERke0ctnahl5cXYmJiHHU4cgNX2twq5KB3IiIi6zgsZB0/fhynT59GQ0MD/Pz8EBsbi4EDBzrq8CQBDnonIiKynd0h6/jx43jzzTdx4cIFAIZxPK0Tk0ZGRmLhwoW49dZb7T0NSYDL6RAREdnOrpB19uxZzJ8/H42NjRg6dCiGDBkCtVqNK1eu4OjRo/jpp58wf/58fPDBB7j55psd1GRyFS6nQ0REZDu7QlZGRgaam5vx17/+FcOHDzfa98QTT+DHH3/EokWLkJGRgddff92eU5GLcTkdIiIi+9j1lzM3NxdJSUkmAavV8OHDkZSUhKNHj9pzGpIAl9MhIiKyj10hq76+Hj179uywTs+ePVFfX2/PaUgCXE6HiIjIPnaFLLVajfz8/A7rFBQUcDLSTohPFhIREdnHrpA1cuRI5Obm4uOPP4ZWqzXap9VqsXbtWhw9ehSJiYl2NZJcj8vpEBER2ceuge8zZszAgQMHsGHDBmzZsgXx8fHo1q0bqqqqxLULe/XqhRkzZjiqveQCXE6HiIjIfnaFrODgYKxatQoffPABdu3ahYMHD4r7VCoVUlJSMGvWLAQFceB0Z8LldIiIiOxn92SkISEhWLhwIebPn4+SkhJxxvfo6Gh4eTlsQnlyIS6nQ0REZD+Hrl3Yt29fRx2OJMRB70RERPbj2oVkgsvpEBER2Y9rF5IJLqdDRERkP65dSEa4nA4REZFjcO1CMsLldIiIiByDaxeSES6nQ0RE5Bhcu5CMVJ67Pn0DnywkIiKynV23C91l7cKKigps3LgRhYWFKCoqgkajQXp6OoYMGWLR+9euXYuMjAyTcpVKhZ07d4rb5eXl2LZtGw4cOIDz589DoVCgT58+mD59OoYOHeqojyOp1kHvAJfTISIisoddIWvkyJH46quv8PHHH+PJJ5+Et/f15Ve0Wi0+++wzHD16FA8//LDdDe1IaWkpMjMzERkZiZiYmBsGv/bMmzcPvr6+4rZcbnyhb9++fcjMzMSoUaMwceJE6HQ67NixA3PnzsXChQtx33332fU5pMbldIiIiBzHI9YujIuLw9atWxEUFIQ9e/Zg8eLFNh1nzJgxCAkJaXf/7bffjn/+859GdR588EHMnDkTa9as6fQhq6Gay+kQERE5il1jslrXLpw4cSI0Gg0OHjyI7du34+DBg2hoaEBKSgpWrVrl9LUL/fz8HHaO+vp6CIJgdl+fPn1MQphKpcJdd92Fy5cvo6GhwSFtkEpDlVZ8HRjuJ2FLiIiIOj+uXdjGlClToNFo4Ovri8TERKSlpSE0NPSG77ty5Qp8fHyMbpd2Ro21TeJrnyCVhC0hIiLq/Lh2IYDAwEBMmjQJAwYMgFKpRF5eHrKyslBYWIjVq1fD37/9Wc/Pnz+P7OxsjB07FgqFot16FRUVqKysFLdLSkoc+hkcobGmTcgKVErYEiIios7P7S416fV6NDc3W1RXpVKJS/jYY/LkyUbbSUlJiI+Px5IlS5CVlYVp06aZfV9jYyNee+01eHt744UXXujwHFu2bDH7BOPZs2eh0+lMyuvq6lBQUGD5h3CAX85cn76hsuYyCgo63+1PKfrNE7DfrMc+sw37zTbsN9s4q98SEhIsqmd3yDp8+DC+/PJLFBUVoa6uzux4JplMht27d1t0vGPHjmHOnDkW1V2/fj2io6Otaq+lkpOTsXLlSuTk5JgNWTqdDq+//jqKi4vx17/+FWFhYR0eLzU1FSNHjhS3S0pKsHTpUvTp0wdxcXEm9QsKCiz+JTpKfd5JAFUAgL79++CmhI4/kzuSot88AfvNeuwz27DfbMN+s43U/WZXyNqzZw/eeOMN6PV6REREIDo6usNbZpaIiorCokWLLKrr7Pm3wsPDUVNTY3bf3/72Nxw4cAD/+7//izvuuOOGxwoLC7thEJMax2QRERE5jl0ha926dVCpVPjzn/9sUdCwhFqtRkpKikOOZQ9BEFBWVobY2FiTfe+//z62bduGl156Cffcc48ErXOOxtrrt2kZsoiIiOxj1xQOpaWlGD9+vMMCliuUl5ebDDqvrq42qbdp0yZUV1ebrMv4+eef44svvsCTTz5pMparszMa+B7Age9ERET2sOtKVlBQkNtMW7Bu3ToAQHFxMQBgx44dyMvLAwCjyVCXLVuG3NxcZGdni2WTJ0/GuHHjEBMTA5VKhePHj2PXrl2IjY1FamqqWC87OxurVq1CZGQkoqOj8e233xq1YejQoRZN+eCuWm8XKn29oFDad9uXiIioq7MrZI0ZMwY5OTloaWmRfE6sNWvWGG1v27ZNfH2jGeeTk5Nx4sQJ7N27F01NTYiIiMDUqVMxffp0+Pj4iPXOnDkDwDBtw9KlS02Ok56e7hEhi9M3EBER2c+uZPT8889j3rx5eP311/HSSy8hIiLCUe2yWtsrUx1ZsWKFSdmCBQsseu/MmTMxc+ZMq9rVWeh1enFJHY7HIiIisp9VIWvKlCkmZS0tLSgoKMC+ffsQEBBgduJOmUyGL774wvZWktO1BiwA8AlkyCIiIrKXVSHL3BxYCoUC4eHhHdZpby1Ach9G0zcwZBEREdnNqpD1f//3f85qB0lMU8M5soiIiBzJrikcyHNo21zJ8uWVLCIiIrsxZBGAX13JYsgiIiKym1W3CzMyMiCTyfDQQw8hKCjI7ILH5shkshtOo0DS0nK2dyIiIoeyKmR98sknkMlkGDduHIKCgvDJJ59Y9D6GLPenMRr4znmyiIiI7GVVyEpPTwcA8WnC1m3q/Bo58J2IiMihrApZgwcP7nCbOi9O4UBERORYHPhOAK6HLLlCBqWvtEskEREReQKGLAJw/XahT5AKMplM4tYQERF1flZdshgzZoxNf4BlMhl2795t9fvINQRBaLM4NG8VEhEROYJVIeu2227jVQ4P1Kxpgb7FsPQRQxYREZFjWBWyVqxY4ax2kIQaOUcWERGRw3FMFvHJQiIiIidw2GNkxcXFKCkpQWNjI+69915HHZZcwHiOLE5ESkRE5Ah2h6zCwkL87W9/w3//+1+xrDVk5ebm4pVXXsFrr72GxMREe09FTsIrWURERI5n1+3Cs2fP4uWXX8bFixcxefJkDB8+3Gj/bbfdhuDgYOzZs8ee05CTNXJxaCIiIoezK2StXbsWALB69WqkpaWhf//+RvtlMhkGDBiAoqIie05DTtZYxyV1iIiIHM2ukJWbm4sxY8YgMjKy3ToRERGorKy05zTkZLySRURE5Hh2hSyNRoNu3bp1WEer1UKv19tzGnIyDReHJiIicji7Qlb37t2NBrybc+rUKfTq1cue05CTadvOkxXApwuJiIgcwa6QNWLECPz00084fPiw2f3ff/89CgoKMGrUKHtOQ07W+nSht78ScgWnTiMiInIEu6ZwePLJJ7Fnzx4sWLAAEydOxJUrVwAAWVlZyM/Px65du9CjRw88+uijDmksOYemzeLQRERE5Bh2hayQkBC8++67WLp0Kb7++mux/B//+AcAICEhAYsXL0ZAQIBdjSTn0bXo0axpAQB4B/JWIRERkaPYPRlpr1698P777+P06dMoKChATU0N/Pz8kJCQgPj4eEe0kZyo7USkvnyykIiIyGHsClnZ2dkYPXo0ACA2NhaxsbFm67377rt46aWX7DkVOYnRbO+8XUhEROQwdo1yXrJkCY4dO9ZhnXfffRf/+te/7DkNORHnyCIiInIOu0JWr169sGjRonancXjvvfewceNGrlvoxhiyiIiInMOukPW3v/0Nfn5+eOWVV1BeXm607/3338c///lPJCYm4o033rCrkeQ8jW3nyGLIIiIichi7xmSFh4dj+fLlmD17NubNm4eVK1ciODgY77//Pr788kuMGDECb7zxBhQKhaPaa1ZFRQU2btyIwsJCFBUVQaPRID09HUOGDLHo/WvXrkVGRoZJuUqlws6dO8VtrVaLd955B4WFhbh06RL0ej169eqF++67Dw899BC8vOx+jsDlOCaLiIjIOexOBTfffDPeeustzJ07F6+88goGDRqEf/7zn7j77ruxZMkSlwSP0tJSZGZmIjIyEjExMcjPz7fpOPPmzYOvr6+4LZcbX+jTarUoLi7GXXfdhR49ekAul+PEiRN47733UFhYiMWLF9v1OaTAkEVEROQcDklAAwYMwOuvv44//OEPOHXqFO666y4sXbrUZVd24uLisHXrVgQFBWHPnj02h50xY8YgJCSk3f1BQUH44IMPjMoefPBB+Pv746uvvkJaWhrUarVN55aK8ZgszpNFRETkKFaloG+++abD/cOGDUNBQQFGjhxpdJsNACZOnGh96yzk5+fnsGPV19fDz88PMpnM4vf06NEDAFBXV9f5QlYtB74TERE5g1Uh6y9/+YvZ8CEIAmQyGQRBAAD8/e9/NyqTyWRODVmOMmXKFGg0Gvj6+iIxMRFpaWkIDQ01qdfc3Iz6+npotVqcPHkSX3zxBXr06IGbbrpJglbbpzVkKVRyKH0635gyIiIid2XVX9WFCxc6qx2SCgwMxKRJkzBgwAAolUrk5eUhKysLhYWFWL16Nfz9/Y3qZ2dnGz0x2b9/f7z66qsd3h6tqKhAZWWluF1SUuL4D2KD1tuFvIpFRETkWFaFrJSUFGe1Q6TX69Hc3HzjijA8/WfNbb32TJ482Wg7KSkJ8fHxWLJkCbKysjBt2jSj/UOGDMHf//531NXVIScnB2fOnEFjY2OH59iyZYvZJxjPnj0LnU5nUl5XV4eCggLrP4wVBEEQF4eGUu/087mCK/rNE7HfrMc+sw37zTbsN9s4q98SEhIsqud294eOHTuGOXPmWFR3/fr1iI6Odko7kpOTsXLlSuTk5JiErNDQUPE2YlJSEtavX4+5c+ciMzOz3TFZqampGDlypLhdUlKCpUuXok+fPoiLizOpX1BQYPEv0VbaumYcEM4BAEK6Bzn9fK7gin7zROw367HPbMN+sw37zTZS95vbhayoqCgsWrTIorrOHmQeHh6OmpqaG9ZLSkrC6tWrsW/fPjz44INm64SFhSEsLMzRTbQLp28gIiJyHqtC1pgxYyCXy/Hpp5+id+/eGDNmjEW362QyGXbv3m3ROdRqtUtuS96IIAgoKytrd9HrtrRaLQDDk4mdSduQ5cuQRURE5FBWhazbbrsNMpkM3t7eRtudSXl5ORobG41uM1ZXV5vMj7Vp0yZUV1dj+PDhRvWCg4NNPvPWrVsBwOxtP3fWdo4sb86RRURE5FBWhawVK1Z0uC2ldevWAQCKi4sBADt27EBeXh4AYMaMGWK9ZcuWITc3F9nZ2WLZ5MmTMW7cOMTExEClUuH48ePYtWsXYmNjkZqaKtb79ttvsWXLFiQmJqJXr15oaGjAoUOHcPjwYYwYMQJ33HGHCz6p42jaXsni04VEREQO5XZjsmy1Zs0ao+1t27aJr9uGLHOSk5Nx4sQJ7N27F01NTYiIiMDUqVMxffp0+Pj4iPUGDRqE/Px87Nq1C1VVVVAoFOjduzdmz56NSZMmOfYDuYC2tu2VLIYsIiIiR/KYkNX2ylRHzF19W7BggUXv7d+/v9H8WJ2dpoZjsoiIiJzFqpBlbp4nS8hkshteTSLX09Zen4+Mk5ESERE5llUh65NPPrHpJAxZ7klTw3ULiYiInMWqkJWenu6sdpAEWqdwkMkAVQCfLiQiInIkq0LW4MGDndQMkkJryPIOUEIu71xTcRAREbk7udQNIOmIi0Nz0DsREZHD2fV0YXl5+Q3ryGQy+Pv7w9/f355TkYO1NOnQojUsTM3xWERERI5nV8h69NFHLZ7xPSQkBKNHj8ZTTz0lLq5M0jFat5Ahi4iIyOHsul147733YtCgQRAEAQEBARg8eDDGjRuHwYMHIzAwEIIg4LbbbsNdd90FlUqFzZs347nnnkNFRYWj2k82arukDm8XEhEROZ5dV7KmTp2KtLQ0zJgxA48//rjR7OharRaZmZnYuHEjVq5ciaioKGzYsAFr1qzBp59+irlz59rdeLIdr2QRERE5l11XslatWoWEhATMnDnTKGABgLe3N55++mkkJCTggw8+gFwux/Tp09G/f38cPHjQrkaT/Ro5RxYREZFT2RWyTpw4gbi4uA7r3HLLLeJCzQCQkJCAK1eu2HNacgCjK1m8XUhERORwdoUsvV6PCxcudFjn/PnzEARB3FYoFFCp+Eddao1GS+pwIlIiIiJHsytkDRw4EHv37sWuXbvM7t+9ezeys7Nx6623imXnz5+HWq2257TkABz4TkRE5Fx2DXyfNWsW0tLSsGTJEmRmZmLgwIHo1q0bqqqqcOLECZw5cwY+Pj6YNWsWAODq1as4fPgw7r//foc0nmzX9nahL8dkEREROZxdIatv375477338I9//APHjx/HmTNnjPYPHDgQc+bMQd++fQEAAQEB2LRpk8kgeXK9tiHLmyGLiIjI4ewKWQDQr18/vPfeeygvL8eZM2dQX18Pf39/9OvXDxEREUZ1FQoFAgIC7D0lOYDm2u1CpY8CXiqFxK0hIiLyPHaHrFYREREmoYrcl7Z1cWhexSIiInIKh4Wsy5cvm1zJ6t69u6MOTw6k1wtorDM8XcjxWERERM5hd8g6f/48/v73v+PIkSMm+26//XbMnTsXkZGR9p6GHEhb1wRcm1WDTxYSERE5h10hq7y8HLNnz0ZVVRWioqJw2223Qa1W48qVKzh27BhycnIwe/ZsfPjhh7yV6EaM58hiyCIiInIGu0JWRkYGqqqqMHfuXKSmpkImkxnt37x5M/7+979j3bp1WLBggV0NJcfhHFlERETOZ1fIOnToEEaMGIEHH3zQ7P4HH3wQBw8exI8//mjPacjBjBeH5mzvREREzmDXjO/V1dWIiYnpsE5MTAyqq6vtOQ05mHHI4pUsIiIiZ7ArZIWEhKC4uLjDOsXFxQgJCbHnNORgvF1IRETkfHaFrGHDhmH//v3YunWr2f1ff/01fvjhB9x55532nIYcjFeyiIiInM+uMVlPP/00fvjhByxfvhz//Oc/MXjwYISGhopPFxYXFyM4OBhPPfWUg5pLjmB0JYshi4iIyCnsClkRERFYuXIlli9fjtzcXJNbh0OGDMG8efM4fYObMZrCgbcLiYiInMLuyUh79+6N9PR0i9YuJPfQertQppBB5eewSf+JiIioDa5d2AW13i70CVSZzG1GREREjmFVyHrzzTdtPtHChQttfu+NVFRUYOPGjSgsLERRURE0Gg3S09MxZMgQi96/du1aZGRkmJSrVCrs3Lmz3ffl5eVh9uzZAIAtW7Z0iqcoBUEQr2RxjiwiIiLnsSpkbd++3aaTyGQyp4as0tJSZGZmIjIyEjExMcjPz7fpOPPmzYOvr6+4LZe3//ClXq9Heno6fH19odFobDqfFFq0Ouia9QA46J2IiMiZrApZX375pbPaYZe4uDhs3boVQUFB2LNnDxYvXmzTccaMGWPx1ah///vfuHTpEu6//35s3LjRpvNJgXNkERERuYZVIatHjx7Oaodd/Pz8HHas+vp6+Pn5dThWqaamBh9//DFmzpyJqqoqh53bFThHFhERkWvYNRmpp5kyZQpSUlIwceJELFmyBFeuXDFb7+OPP0ZoaChSU1Nd3EL7cY4sIiIi1+Dz+wACAwMxadIkDBgwAEqlEnl5ecjKykJhYSFWr14Nf39/se7PP/+Mf//733jrrbegUCgsPkdFRQUqKyvF7ZKSEod+Bku1nSPLl7cLiYiInMbtQpZer0dzc/ONK8Lw9J8jpiCYPHmy0XZSUhLi4+OxZMkSZGVlYdq0aeK+9PR0DB8+3OqlgrZs2WL2CcazZ89Cp9OZlNfV1aGgoMCqc1jiwpka8XXF1UsoKKh3+Dmk5Kx+83TsN+uxz2zDfrMN+802zuq3hIQEi+q5Xcg6duwY5syZY1Hd9evXIzo62intSE5OxsqVK5GTkyOGrF27duHEiRNYt26d1cdLTU3FyJEjxe2SkhIsXboUffr0QVxcnEn9goICi3+J1qg7dhKAYRxZv4QY9EpQO/wcUnJWv3k69pv12Ge2Yb/Zhv1mG6n7ze1CVlRUFBYtWmRRXbXauQEhPDwcNTXXr/ysWrUKSUlJ8PLywsWLFwEYUjIAXLp0CS0tLQgLCzN7rLCwsHb3uVLbge/enCeLiIjIadwuZKnVaqSkpEjdDAiCgLKyMsTGxoplly5dws6dO81OUPrss8+iX79+WLt2rSubabW2IcuXA9+JiIicxu1ClrOVl5ejsbHR6DZjdXW1yfxYmzZtQnV1NYYPHy6WLVu2zOR4u3btwvfff48//OEP6N69u9Pa7SicwoGIiMg1PCZktY6TKi4uBgDs2LEDeXl5AIAZM2aI9ZYtW4bc3FxkZ2eLZZMnT8a4ceMQExMDlUqF48ePY9euXYiNjTWapmHUqFEm5z19+jQAYPjw4Z1iWZ3WKRxUfl6Qe3EGDyIiImfxmJC1Zs0ao+1t27aJr9uGLHOSk5Nx4sQJ7N27F01NTYiIiMDUqVMxffp0+Pj4OKW9Umm7ODQRERE5j8eErLZXpjqyYsUKk7IFCxbYfN6ZM2di5syZNr/flfQtejQ1tABgyCIiInI23i/qQhrrrs8/xnULiYiInIshqwvh4tBERESuw5DVhRg/Wcg5soiIiJyJIasL4fQNRERErsOQ1YUwZBEREbkOQ1YXwjFZRERErsOQ1YUYhSxeySIiInIqhqwupLG2zRQODFlEREROxZDVhRiNyeLtQiIiIqdiyOpCNNduFyqUcih9FBK3hoiIyLMxZHUh2mtXsrwDlZDJZBK3hoiIyLMxZHURgiCItwt9OR6LiIjI6RiyuohmTQv0OgEA4M2QRURE5HQMWV2Eps30Db4c9E5EROR0DFldBOfIIiIici2GrC6CS+oQERG5FkNWF8E5soiIiFyLIauLMJ7tXSlhS4iIiLoGhqwugotDExERuRZDVhfBMVlERESuxZDVRTBkERERuRZDVhch3i6UcTJSIiIiV2DI6iJaQ5a3vxJyOdctJCIicjaGrC6isc4QsnirkIiIyDUYsroAXbMOzRodAD5ZSERE5CoMWV2A8RxZDFlERESuwJDVBXDdQiIiItdjyOoCNFxSh4iIyOUYsroArdEcWVxSh4iIyBUYsroADZfUISIicjkvqRvgCBUVFdi4cSMKCwtRVFQEjUaD9PR0DBkyxKL3r127FhkZGSblKpUKO3fuNCobPXq02WM8//zzmDZtmtVtdwUtZ3snIiJyOY8IWaWlpcjMzERkZCRiYmKQn59v03HmzZsHX19fcVsuN3+hb+jQoZg4caJRWWxsrE3ndIW2V7J8GbKIiIhcwiNCVlxcHLZu3YqgoCDs2bMHixcvtuk4Y8aMQUhIyA3r9e7dGxMmTLDpHFJo5MB3IiIil/OIkOXn5+ewY9XX18PPzw8yWcdLz2i1WgCAt7e3w87tLJwni4iIyPU8ImQ5ypQpU6DRaODr64vExESkpaUhNDTUpN4333yDTZs2QRAEREdHY/r06UhOTpagxZZpnSfLy1sBL2+FxK0hIiLqGhiyAAQGBmLSpEkYMGAAlEol8vLykJWVhcLCQqxevRr+/v5i3VtvvRVjx45Fz549UVlZia+++gpLlixBfX09fvvb37Z7joqKClRWVorbJSUlzvxIRlpvF3L6BiIiItdxu5Cl1+vR3Nx844owPP13o9t6lpg8ebLRdlJSEuLj47FkyRJkZWUZPTX4/vvvG9W977778Oyzz+Kjjz5CSkpKu7cPt2zZYvYJxrNnz0Kn05mU19XVoaCgwIZPY0wQBDFkCUq9Q47pzhzVb10N+8167DPbsN9sw36zjbP6LSEhwaJ6bheyjh07hjlz5lhUd/369YiOjnZKO5KTk7Fy5Urk5OR0ODWDUqnEpEmT8Pbbb+PkyZMYNGiQ2XqpqakYOXKkuF1SUoKlS5eiT58+iIuLM6lfUFBg8S+xI421TTggnAMAdAsPcsgx3Zmj+q2rYb9Zj31mG/abbdhvtpG639wuZEVFRWHRokUW1VWr1U5tS3h4OGpqaiyqB6DDumFhYQgLC3NY2yzVyDmyiIiIJOF2IUutViMlJUXqZkAQBJSVlVk0/9Uvv/wCABZN/+BqXByaiIhIGl1uWZ3y8nKTQefV1dUm9TZt2oTq6moMHz68w3oNDQ3YuHEjgoODzd72kxrnyCIiIpKG213JstW6desAAMXFxQCAHTt2IC8vDwAwY8YMsd6yZcuQm5uL7OxssWzy5MkYN24cYmJioFKpcPz4cezatQuxsbFITU0V63311VfYt28fRowYgYiICFRWVmLbtm0oLy/HH/7wByiV7vf0HufIIiIikobHhKw1a9YYbW/btk183TZkmZOcnIwTJ05g7969aGpqQkREBKZOnYrp06fDx8dHrDdw4ECcOHECW7duRU1NDXx8fBAfH49XX30Vd9xxh2M/kIPwdiEREZE0PCZktb0y1ZEVK1aYlC1YsMCi9w4bNgzDhg2zql1SMx747n5X2oiIiDxVlxuT1dVwTBYREZE0GLI8nNHtQoYsIiIil2HI8nCtV7Jkchm8/Xi7kIiIyFUYsjxca8jyDlBCJrd/CSIiIiKyDEOWh9PUtC4OzVuFRERErsSQ5cFatDromvQAOB6LiIjI1RiyPJimzaB3X17JIiIicimGLA+mbTN9gzfnyCIiInIphiwPpmkTsnx5u5CIiMilGLI8GOfIIiIikg5DlgczXlKHIYuIiMiVGLI8GBeHJiIikg5DlgdrrG0WXzNkERERuRZDlgfj4tBERETSYcjyYMa3CzmFAxERkSsxZHmw1itZSl8FFEqFxK0hIiLqWhiyPFhryOJ4LCIiItdjyPJQep0e2jrDwHeGLCIiItdjyPJQrQEL4KB3IiIiKTBkeShOREpERCQthiwPxZBFREQkLYYsD8V1C4mIiKTFkOWhNJwji4iISFIMWR5KyyV1iIiIJMWQ5aE0bcZk+fJ2IRERkcsxZHkobZuQ5c0rWURERC7HkOWh2o7J4pUsIiIi12PI8lCtUzjIFTIofb0kbg0REVHXw5DlodquWyiTySRuDRERUdfDkOWBBEEQ58niHFlERETS8Ij7SBUVFdi4cSMKCwtRVFQEjUaD9PR0DBkyxKL3r127FhkZGSblKpUKO3fuNCm/cuUK1qxZgwMHDqCmpgahoaG4/fbbsXDhQns/ikM0a1qgbxEAcPoGIiIiqXhEyCotLUVmZiYiIyMRExOD/Px8m44zb948+Pr6ittyuemFvvLycqSlpQEAHnzwQYSFhaGiogKFhYW2Nd4JGjlHFhERkeQ8ImTFxcVh69atCAoKwp49e7B48WKbjjNmzBiEhIR0WGf58uVQKBT46KOPEBwcbNN5nM1o3ULeLiQiIpKER4zJ8vPzQ1BQkEOOVV9fD0EQzO4rKSnBjz/+iKlTpyI4OBharRYtLS0OOa8jGS8OzSV1iIiIpOARV7IcZcqUKdBoNPD19UViYiLS0tIQGhoq7j98+DAAoFu3bnj55Zdx5MgRKBQKDB06FHPnzkXPnj2laroRLg5NREQkPYYsAIGBgZg0aRIGDBgApVKJvLw8ZGVlobCwEKtXr4a/vz8A4Pz58wAMtwz79++P119/HeXl5cjIyMDcuXPxySefwMfHx+w5KioqUFlZKW6XlJQ47fMYhSyOySIiIpKE24UsvV6P5ubmG1eE4ek/R8wBNXnyZKPtpKQkxMfHY8mSJcjKysK0adMAABqNBgAQGhqKt956SxwYHx4ejjfeeAM7d+7EAw88YPYcW7ZsMfsE49mzZ6HT6UzK6+rqUFBQYNPnOV9cJb4uv3IRjQVVHdT2LPb0W1fGfrMe+8w27DfbsN9s46x+S0hIsKie24WsY8eOYc6cORbVXb9+PaKjo53SjuTkZKxcuRI5OTliyPL29gYAjB071ujJw6SkJCxduhQnTpxoN2SlpqZi5MiR4nZJSQmWLl2KPn36IC4uzqR+QUGBxb/EX6v4Tx6AGgBA3MBYhPYOtOk4nZE9/daVsd+sxz6zDfvNNuw320jdb24XsqKiorBo0SKL6qrVaqe2JTw8HDU1NeJ2WFgYAMOYrLYUCgWCg4NRW1vb7rHCwsLE9zsbp3AgIiKSntuFLLVajZSUFKmbAUEQUFZWhtjYWLGs9YpTRUWFUd3m5mZcvXr1htM/uIrRmKwAPl1IREQkBY+YwsEa5eXlJoPOq6urTept2rQJ1dXVGD58uFg2ePBgdOvWDd999x20Wq1Yvn37duh0OgwdOtRp7bZG6xQO3v5KyL263K+YiIjILbjdlSxbrVu3DgBQXFwMANixYwfy8vIAADNmzBDrLVu2DLm5ucjOzhbLJk+ejHHjxiEmJgYqlQrHjx/Hrl27EBsbi9TUVLGeSqXCiy++iD//+c946aWXcO+996K8vBwbN27EoEGDMHr0aBd80hsTQxbnyCIiIpKMx4SsNWvWGG1v27ZNfN02ZJmTnJyMEydOYO/evWhqakJERASmTp2K6dOnm0zJMHHiRCiVSnz22WdYtWoVAgICkJqaiueffx4KhcJxH8hGuhY9mhoME6RyjiwiIiLpeEzIantlqiMrVqwwKVuwYIFV5xo/fjzGjx9v1XtcxXi2d4YsIiIiqXDAjodhyCIiInIPDFkepu2Thb68XUhERCQZhiwP03aOLG9eySIiIpIMQ5aHMbqSxZBFREQkGYYsD2M8JotTOBAREUmFIcvDGIUsjskiIiKSDEOWhzFaUochi4iISDIMWR6GUzgQERG5B4+ZjJQM7poej/qKRjTWNsHLW/oZ6ImIiLoqhiwPo44KgjoqSOpmEBERdXm8XUhERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBF5SN6Cr0mq1AICSkhKz+8+dOweFQuHKJnkE9ptt2G/WY5/Zhv1mG/abbZzZb9HR0fDx8emwDkOWRMrKygAAS5culbglREREZK3Vq1cjLi6uwzoyQRAEF7WH2qiursahQ4fQs2dPqFQqo30lJSVYunQp/vjHPyI6OlqiFnY+7DfbsN+sxz6zDfvNNuw32zi733gly42FhIRgwoQJHdaJjo6+YUomU+w327DfrMc+sw37zTbsN9tI2W8c+E5ERETkBAxZRERERE7AkOWG1Go1nnrqKajVaqmb0qmw32zDfrMe+8w27DfbsN9s4w79xoHvRERERE7AK1lERERETsCQRUREROQEDFlERERETsB5stxIU1MT1qxZg2+//Ra1tbXo27cvnn32WQwbNkzqprmto0ePYs6cOWb3rVq1CgMGDHBxi9xPQ0MDvvjiCxQUFKCwsBC1tbVYtGgRUlJSTOoWFxfjvffew/Hjx+Hl5YW7774bs2fPRkhIiOsbLjFL++3Pf/4zvvnmG5P3R0VFYcOGDa5qrlsoLCzEN998g6NHj6KsrAxBQUEYMGAAnn32WfTu3duoLr9r11nab/yuXXf27Fl88sknOHnyJK5cuQIfHx9ER0dj6tSpGDlypFFdKb9rDFlu5C9/+Qv27NmDyZMnIzIyEtu3b8eCBQuQnp6OQYMGSd08t/bwww8jPj7eqOymm26SqDXu5erVq8jIyEBERAT69euHo0ePmq136dIlvPTSSwgICMBzzz0HjUaDL774Av/973/x4YcfQqlUurjl0rK03wBApVJhwYIFRmX+/v7ObqLbyczMxPHjxzF27Fj07dsXlZWVyMrKwrPPPotVq1YhJiYGAL9rv2ZpvwH8rrUqKytDQ0MDJk6ciLCwMDQ2NmLv3r1YtGgR5s+fj9TUVABu8F0TyC3k5+cLo0aNEjIzM8WyxsZG4bHHHhNmzZolYcvc25EjR4RRo0YJu3fvlropbkur1QoVFRWCIAhCYWGhMGrUKGHbtm0m9d5++23hnnvuEcrKysSyn376SRg1apSwefNml7XXXVjab8uWLRMmTJjg6ua5pby8PKGpqcmo7Ny5c8L48eOFP/3pT2IZv2vGLO03ftc61tLSIjz99NPCE088IZZJ/V3jmCw3sXfvXigUCjF9A4C3tzfuv/9+5Ofno7y8XMLWdQ4NDQ1oaWmRuhluR6VSWTRPzN69ezFixAhERESIZUOHDkXv3r2xe/duZzbRLVnab610Oh3q6+ud2CL3N3DgQJMrA71798bNN9+MkpISsYzfNWOW9lsrftfMUygUCA8PR11dnVgm9XeNtwvdxOnTpxEZGWly2bf1FtiZM2eMviRk7C9/+Qs0Gg0UCgUGDRqEF198Ef3795e6WZ3G5cuXUVVVZXZ9r/j4eBw8eFCCVnUejY2NSElJQWNjIwIDAzF+/HjMmjULfn5+UjdNcoIgoKqqCjfffDMAftcs9et+a8XvmjGNRgOtVov6+nrs378fP/74I8aOHQvAPb5rDFluorKy0uz/am4tq6iocHWTOgUvLy+MGTMGd911F4KDg1FcXIwvv/wSs2fPxvvvv49bbrlF6iZ2CpWVlQDQ7newpqYGTU1NUKlUrm6a21Or1Zg6dSpuueUWCIKAH3/8EZs2bcLPP/+M9PR0eHl17f+a/e6773D58mXMnDkTAL9rlvp1vwH8rpmzcuVKbNmyBQAgl8sxevRo/O53vwPgHt+1rvcbcVNardbsALzWX75Wq3V1kzqFgQMHYuDAgeJ2YmIikpKS8PTTT+Ojjz7C8uXLJWxd59H6/brRd7Cr/+Ez54UXXjDaHj9+PHr37o3Vq1dj7969GD9+vEQtk15JSQneeecdDBgwABMnTgTA75olzPUbwO+aOZMnT0ZSUhIqKiqwe/du6HQ6NDc3A3CP7xrHZLkJb29v8YvRVlNTk7ifLBMZGYnExEQcPXoUOp1O6uZ0Cq3fL34HHePRRx+FXC7H4cOHpW6KZCorK/Hqq6/C398fS5YsgUKhAMDv2o2012/t6erftejoaAwdOhQTJ07EW2+9BY1Gg4ULF0IQBLf4rjFkuQm1Wi1e2myrtSwsLMzVTerUwsPD0dzcjMbGRqmb0im0Xk5v7zsYFBTUpa8sWMvb2xtBQUGoqamRuimSqKurw4IFC1BXV4fly5cb/fcXv2vt66jf2tPVv2u/lpSUhKKiIpSWlrrFd40hy03069cP58+fN3lipKCgQNxPlvvll1+gUqng6+srdVM6he7duyMkJAQnT5402VdYWMjvn5UaGhpw9erVLjmxplarxcKFC1FaWoo333zTZOA2v2vm3ajf2tOVv2vmtN4irKurc4vvGkOWm0hKSoJOpxMH8AGGy5nbtm1DQkICnyxsR3V1tUnZmTNnsH//fgwbNgxyOb/ilhozZgx++OEHo+lCcnJyUFpaKj6tQ8a0Wi0aGhpMytetWwdBEDB8+HAJWiUdnU6H119/Hfn5+XjjjTdw6623mq3H75oxS/qN3zVjVVVVJmUtLS3YsWMHvL29xZAq9XeNA9/dREJCAsaOHYuPPvoI1dXVuOmmm/DNN9+grKwMr776qtTNc1uvvfYavL29ceutt6Jbt24oLi7Gv//9b/j4+JgMEu3K/vWvf6Gurk68bL5//35cunQJgGG2/ICAAEybNg179uzByy+/jEceeQQajQaff/45YmJizC7B0xXcqN9qa2vxzDPP4J577kFUVBQA4NChQzh48CCGDx+OxMREydouhZUrV2L//v0YMWIEamtr8e233xrtnzBhAgDwu/YrlvTblStX+F1rY/ny5aivr8dtt92G7t27o7KyEt999x3OnTuHtLQ0cUoLqb9rMkEQBKefhSyi1WrFtQvr6uoQExODZ599FnfeeafUTXNbGzduxHfffYcLFy6gvr4eISEhuOOOO/DUU08hMjJS6ua5jUcffRRlZWVm93355Zfo2bMnAMN6YL9e4ystLQ2hoaGubK7buFG/BQQEID09Hfn5+aisrIRer8dNN92E5ORkPPbYY13ukfr/+Z//QW5ubrv7s7Ozxdf8rl1nSb/V1tbyu9bGrl278PXXX+O///0vrl69Cj8/P8TFxWHSpEkmgVPK7xpDFhEREZETcMAKERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBFRp3Xx4kWMHj0af/7zn6VuikNs374do0ePxvbt26VuChE5AEMWEXmU//mf/8Ho0aOlboZZnhYKiahjXWtFSSLyKN27d8f69evh7+8vdVMcYtSoUUhISIBarZa6KUTkAAxZRNRpeXl5ITo6WupmOExAQAACAgKkbgYROYhMEARB6kYQEdni4sWLmDJlCiZOnIjf//737d4mbN3f6ueff8b69euRm5uLmpoaqNVqjBw5Ek8//TSCg4PNHv/xxx/H6tWrcezYMdTU1ODLL79Ez549kZ2djd27d6OoqAgVFRXw8vJC37598cgjjyApKUk81vbt2/GXv/zFbPvS09MxZMgQsc6iRYuQkpJiVOf48eNYv3498vPzodVq0aNHD4wbNw6PP/44fHx8jOqOHj0agwcPxuuvv45Vq1bh4MGD0Gg06NevH1544QUMGTLE2q4mIhvwShYReYynnnoK33zzDcrKyvDUU0+J5bGxseLrffv24fXXX4dMJkNiYiLCw8NRXFyMr776CocOHcKHH36IwMBAo+NeuHABL774ImJiYjBx4kTU1NRAqVQCAD766CN4eXlh4MCBUKvVqK6uxv79+7F48WLMmTMHDz/8MACgX79+eOSRR7Bx40b069cPiYmJ4vF79OjR4efavXs3/vSnP0GpVGLcuHEICQnBTz/9hIyMDBw6dAjp6enw9vY2ek9dXR3S0tIQEBCACRMmoKqqCrt378b8+fOxevVqxMTE2NTHRGQ5hiwi8hgzZ85Ebm4uysrKMHPmTJP9V69exbJlyxAcHIyVK1cahZtdu3bhjTfewJo1a/Dyyy8bve/48eN46qmnzB7zr3/9K3r16mVU1tDQgP/3//4f1qxZg/vvvx8+Pj6IjY1FQECAGLLMHcuc+vp6/O1vf4NCocCqVavQt29fAMDzzz+PP/3pT/j+++/xxRdfYMaMGUbvO3PmDH7729/i5ZdfhlxueMbp9ttvx1//+ld89dVXmD9/vkXnJyLb8elCIuoyduzYgfr6ejz//PMmV4/Gjx+PW265Bbt27TJ5X2hoKJ588kmzx/x1wAIAPz8/pKSkoK6uDkVFRXa1ed++fairq8N9990nBiwAkMvlePHFF6FQKMxO+eDr64tZs2aJAQsw3DZVKBR2t4mILMMrWUTUZeTn5wMACgoKcOHCBZP9TU1NuHr1KqqrqxESEiKW9+vXT7w9+GtVVVX47LPPcPDgQZSXl0Or1Rrtr6iosKvNp0+fBgAMHjzYZF9ERAR69eqF0tJSNDQ0wM/PT9wXGRlptA0YHhQIDQ1FXV2dXW0iIsswZBFRl1FbWwsAyMrK6rBeY2Oj0Xa3bt3M1qupqcHzzz+P8vJyDBw4EEOHDkVAQADkcjnOnDmDffv2obm52a4219fXAzBcTTNHrVajtLQU9fX1RqGqvWktFAoF9Hq9XW0iIsswZBFRl9EaQjIyMqwa+C2TycyWf/311ygvL8czzzxjMiZqw4YN2Ldvn+2NvaY1LF25csXs/tZyT5krjMiTcEwWEXmU1jFIOp3OZF9CQgKA67cN7dV6y7Htk4Kt8vLy2m2bNVeSWp+MzM3NNdlXXl6OCxcuoFevXia3BolIegxZRORRgoKCAACXLl0y2XfffffBz88Pq1evxtmzZ032NzY2WhXAWgfPHz9+3Kj8u+++w8GDB03qBwYGQiaTmW1bexITExEQEIBt27YZtVkQBHz44YfQ6XQmc2oRkXvg7UIi8ii333479uzZg//93//F8OHDoVKp0K9fP4wcORIhISF47bXXsHjxYsycORN33nknoqKi0NzcjLKyMuTm5uLWW2/F8uXLLTrXhAkTkJmZifT0dBw9ehQRERE4c+YMjhw5gtGjRyM7O9uovp+fH/r3749jx45h6dKliIyMhEwmw7333tvuXFn+/v545ZVX8Kc//QmzZs3C2LFjERISgpycHJw8eRLx8fF47LHH7O43InI8hiwi8igPPPAALl68iO+//x6ZmZnQ6XSYOHEiRo4cCQC4++67sWbNGnz++efIycnB4cOH4ePjg+7duyMlJQUTJkyw+Fzh4eFYsWIFVq1ahcOHD0On0+GWW27B22+/jUuXLpmELAD44x//iHfffRc//PAD6uvrIQgCBg0a1OGEpGPHjkVoaCg2bNiA7Oxsccb3GTNm4PHHHzeZiJSI3AOX1SEiIiJyAo7JIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInKC/w8601vYBKoVfgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "### Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAG5CAYAAACQpg7iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACACElEQVR4nO2daaAcZZ3un+r17Hv2hCwEAgmBqKwmQAIOE3TEewd01HFGQBQZUHGGUfCO6+AyylxuHJERRsVRURxHR7wCwkCAS1jCkkDIIYGQ5CQkOUnOfrr79F73Q52qfqt6q66uqq4+/fy+cNJL1Ut1V/VTz3+TZFmWQQghhBBSR/hqvQBCCCGEkEqhgCGEEEJI3UEBQwghhJC6gwKGEEIIIXUHBQwhhBBC6g4KGEIIIYTUHRQwhBBCCKk7ZqyAicfj2L17N+LxeK2XQgghhBCbmbECZmBgAB//+McxMDBQ8Pk333zT5RXNDHjcKofHzBo8btbgcbMGj1vl1PqYzVgBU45EIlHrJdQlPG6Vw2NmDR43a/C4WYPHrXJqfcwaVsAQQgghpH6hgCGEEEJI3UEBQwghhJC6gwKGEEIIIXUHBQwhhBBC6g4KGEIIIYTUHRQwhBBCCKk7KGAIIYQQUndQwBBCCCGk7qCAIYQQQkjdQQFDCCGEkLqDAoYQQgghdQcFDCGEEELqDgoYQgixiUwqg73PHsHIwclaL4WQGU+g1gsghJCZws6HD2Drz3ch2OzHh/5lA0ItwVoviZAZCx0YQgixieF94wCA1FQGk8emarwaQmY2FDCEEGITqUQm93c8XcOVEDLzoYAhhBCbSMcFASOIGUKI/VDAEEKITYiuS5oODCGOQgFDCCE2kRIdmDgdGEKchAKGEEJsIi2EjdIMIRHiKBQwhBBiE2IIiUm8hDgLBQwhhNhEOsEQEiFuQQFDCCE2kE1nkUlltX8zhESIs1DAEEKIDRjLphlCIsRZKGAIIcQGjGXTDCER4iwUMIQQYgNGB4YhJEKchQKGEEJsIB1nCIkQN6GAIYQQG0gl9ILFKGgIIfZCAUMIITZgzHkxChpCiL1QwBBCiA3kCRg6MIQ4CgUMIYTYgLEKiSEkQpyFAoYQQmwg34FhCIkQJ6GAIYQQGzCWTWczMjLpbJFXE0KqhQKGEEJsoJDjwjASIc5BAUMIITZgbGSnPMYwEiFOQQFDCCE2YEziBViJRIiTUMAQQogNFBIrhUQNIcQeKGAIIcQGCgkYOjCEOAcFDCGE2EC6QL4LBzoS4hwUMIQQYgOFHRiGkAhxCgoYQgixgUJuS6HKJEKIPVDAEEKIDRTuA0MHhhCnoIAhhBAbYBIvIe5CAUMIIVUiyzL7wBDiMhQwhBBSJZlUFrKs/B1s8muPM4REiHNQwBBCSJWIM4+aO8Pa30ziJcQ5KGAIIaRKxJlHooDhMEdCnIMChhBCqiSlc2BCucc5zJEQx6CAIYSQKhFzXXQhJDowhDgGBQwhhFSJKFTCbUH4AhIAJvES4iQUMIQQUiWigAk2+RFsCuQ9TgixFwoYQgipEnGQYyAc0EqpOcyREOeggCGEkCoRy6WDYT8CYf/04wwhEeIUFDCEEFIlYqgo0ORHMJwLIclqhztCiK0Ear0AI9u2bcNnPvOZgs/deeedWLVqlcsrIoSQ0ojJusGmAAJqN14ZyCSzmiNDCLEPzwkYlcsvvxynnnqq7rEFCxbUaDWEEFKcYkm8ynNpChhCHMCzAuaMM87A+vXra70MQggpS0pwYAJNft08pFQ8g+bOWqyKkJmNp3NgYrEY0mkmwRFCvE1al8QbQCAsODBM5CXEETzrwHzzm9/E1NQU/H4/Tj/9dFx33XU45ZRTir5+aGgIw8PD2r8HBgbcWCYhhOirkAwODOchEeIMnhMwgUAAF154Ic4991x0dnZi//79uO+++3DDDTfg+9//Pk4++eSC77v//vtxzz335D2+b98+ZDL5F5BIJIL+/n67lz/j4XGrHB4za9TTcRsbGtf+3rN/D8YmJ7R/v/n6Xgynm11bSz0dN68gZ2VEY1Eetwpx8ru2cuXKsq/xnIBZvXo1Vq9erf173bp1WL9+Pa666ircdddduO222wq+77LLLsPatWu1fw8MDODWW2/F0qVLsWLFirzX9/f3mzpARA+PW+XwmFmjno7bnsA4gDgA4LQzVkE+uBdvQRE18+cswJKVc11bSz0dNy/w+hNv4el7+tG3ugVn/y2PWyXU+rvmOQFTiIULF2LdunV48sknkclk4PfnZ/T39fWhr6+vBqsjhDQ6ahWSP+SDzycZqpAYQvIyux49iHQig8EXJ5HNZOHzezo1lAjUzSc1e/ZspFIpxOPxWi+FEEJ0qH1gVOES0FUhMYnXyySiKeUPGUhNUWzWE3UjYA4fPoxQKITmZvdiyYQQYgY1iTc43e9FdGCYxOttUlM5gZmcotisJzwnYMbGxvIe27NnD7Zs2YKzzjoLPp/nlkwIaXDUMurAtHAJCo3rUhzo6GlE0ZKigKkrPJcD8+UvfxnhcBinnXYauru7sX//fvz+979HU1MTrr322lovjxBCdGSzsiZgVOEidt7lRGrvIn52AMN99YbnBMz555+PRx55BL/61a8QjUbR1dWFCy64AFdeeSUWLlxY6+URQogO8QdQzX0xjhIg3iRt+GwYQqovPCdgrrjiClxxxRW1XgYhhJjCOMgRMCbx0oHxKkbBwhBSfcGEEkIIqQLjIEflv2ISL38UvYpRsNCBqS8oYAghpArEWUcBrQqJDkw9kIwZHJgYBUw9QQFDCCFVkNY5MNMhpJBYhcQfRa9izE9ivlJ9QQFDCCFVYBzkCACST9LcGFYheReGkOobChhCCKkCMcdFLJ9W/2YIybswibe+oYAhhJAqSBUIISl/TzswDEt4Fjow9Q0FDCGEVIEoYMTyaVXM0IHxLsbZR3Rg6gsKGEIIqYK0kKQbDOccGFXMZFJZZDNZ19dFypMfQqLYrCcoYAghpAoK9YEB9GKGibzehCGk+oYChhBCqiBdoArJ+DcHOnoTJvHWNxQwhBBSBSldFZIQQhIHOjIPxpMYBQsFTH1BAUMIIVVQNITEgY6ex/i5JONpyLJco9WQSqGAIYSQKtA5MIKA4UBH72MMIckZGZkUE67rBQoYQgipAn0OTH4fGIC9YLxKodlHTOStHyhgCCGkClR3RZIAfzB3SRWrkJjE600KiRUOdKwfKGAIIaQK1BBSoCkASZK0x/UTqfmj6EUKJe0ykbd+oIAhhJAqUENIomABFEFjfA3xDplUBtlMfsJukmKzbqCAIYSQKlBLpMWyaQAIhpnE62WK5brQgakfKGAIIaQK1PCQmMALsArJ6xQTKkzirR8oYAghxCKZdFYLQxhDSKKgYRWS9xCFij+U+ymkA1M/UMAQQohFinXhBThKwOuIQqW1p6ng48TbUMAQQohF0kW68AJ6QcMqJO8hTp4WBUySE6nrhkD5lxCiXIAHXjiKuI8XYkJUUkUGORr/7VYVUjqRgZxlK3wzJOnA1D0UMMQUz/9iN/ofOYCm7gDedq4MySeVfxMhM5x0iRBSwOUqpKG94/jDrc/B3yJhxf8+BYGQv/ybGhiGkOofhpCIKY7vHQcAxEfTSLJTJSEAig9yBJSuvKrQdyOJd+9zg0jFM4iPpDG4a8Tx/dU7ogPT0t1U8HHibShgiClE0ZKcStVwJYR4h2KDHAFAkiRN1LjhwCSjufOSNxnl0Tsw4YKPE29DAUNMkYwJF8coT3BCAMMgx3B+RF4VNamE8+dMQneO8iajHKJQaemigKlHKGCIKejAEJJPqRASkBM1aRccGHEIIR2Y8oihomBLEP6wlPc48TYUMKQsmVQGmVRW+zcdGEIU9CGkfAdGDCHJsrPVQaIDk6CAKYvotISaA/CHfXmPE29DAUPKYryb490dIQrpEmXUQE7UyFkZ2XQ273k7Ec/LVIwuaTl0DkyTX+vGSwemfqCAIWXJEzAMIRECQB9CMg5zBNwd6Ciep3RgyiO6Z8GmgBZCSicyyLKXTl1AAUPKkjTczTGERIhC2vAjaMTNgY66RHs6MGVRQ0XBZj8kn4RAOPdzyNlV9QEFDClLvgPDk5sQwNCJt5ADIw50dLASKZPOIpPMhaiYx1GepCZglM/ILwgYXuPqAwoYUhbj3VyCJZqEADCGIWoXQso/R/kDXA5V5IVUAROS8p4j3oYChpTF6MCkGF8nBIC+PLpQFZL4mJMDHfPOUeaplUTOytowR9Ul0zkwvMbVBRQwpCzGhMAE4+uEADATQnJnoKPxB5cOTGl0n5vmwOR+Djk9vD6ggCFlMZZk0oEhREFN9vQFJPgC+ZdTtwY6GkNIqXiaU6lLYOwBA0CrQjI+T7wLBQwpC5N4CSmMKkoKVSApjwsOjIshJMg8T0uh6wHDJN66hQKGlCXfnmYIiRAgF4oolMCrPC7mwLjnwCiP8Ue4GIUcGLGMmg5MfUABQ8qSZ0/z5CYEQM5VCRQY5AgYqpAcLKMu1JuJvWCKU8iB8QlVSHRg6gMKGFIWYxJvJpVFOun8cDpCvIyclcs6MAG3HJgCP7h0YIqTKiBg9A4Mr2/1AAUMKUuhuSq8QyGNTjqZAabzZM3lwDgoYAqEdenAFKdwEi9DSPUGBQwpS6G5KoUumIQ0EmJZdMBEDoyjZdR0YCqiYBIvQ0h1BwUMKUuhsmleHEmjI4aECvWAAYxl1C5WIRV5jCikDJOoATow9QgFDCmJLMuFKxx4gpMGR0zKLZrE69Iwx8JVSHRJiyFev0ItLKOuVyhgSElS8QzkAv2wGEIijY6Y01I0idetKiQ6MBVRKInX55fgDyo/iezEWx9QwJCSFErgBXiHQki5QY4A4PP7tB9FJvF6h0JJvEBOzLDbeH1AAUNKIibwBoUTnQ4MaXRSZQY5qqjixtEcmKncSAPtMf4IF6VQEi+QEzO8QasPKGBIScSLYFtfc8HHCWlExKqiYg4MkBM3TlUhKXlqyvnY1iueo7zJKIY+ibeAAzOVhlwodk48BQUMKYl4EWzraxIep4AhjY3oqASKVCEBuQolp5J404mMNrixtZfnqBnUz0LMewFyQjSbkZFJZWuyNmIeChhSEvEi2N7HuztCVPRJvMVDSGqPGFFo2IkYzg21BrWpyhQwxVEdmGBzAJKUC7uJ4SQm8nofChhSElGotIoChjFi0uCkEuX7wCjPCc3sHBjBIZ6L4ZaAVg7Mm4ziqMdMTOA1/pu9YLwPBQwpiS4HRrSnmcRLGhxdCMlEEq/yHgcEjHCOhlqCCDT58h4nejQHpkX/uekKFShgPA8FDCmJeBFs7gxDmr4W8+QmjY6ZPjCAcaCj/eeNLoTUEtCGEmZSWWRSHEpoJJPOavktxtBfqIUOTD1BAUNKItrQodZA7u4uypObNDZm+sAYn3OiF4yxq6y/SegoSxcmj2I9YAC9oOGx8z4UMKQkOnu6Ocj4OiHT6Ic5lgohCXf1DpRSJ3QOTFBzYAD+CBeiUBfeQv92cvQDsQcKGFKSog7MVNqRigpC6gUzwxwBfYl12oEQUqqkA8MbDSPJEg4Mk3jrCwoYUhK9A5OrcIDMMkPS2OiGOYbK94FR3uOEA2NI4g3nyoITdGDyMOvAMM/P+1DAkJKod3CBsB8+v09zYACe4KSxUfNZAmE/JJ9U9HUBXRWSA0m8MX0Sr+jAFJtl1sjoxwjohWeQDkxd4XkB8+///u+44IIL8NGPfrTWS2lIVAcm1Fpg5DwTeUkDo4aQSiXwKs8LfWAcL6MO6HJg6MDkUyqJN0QHpq7wtIA5duwYfvazn6G5ubn8i4kjaAKmOQgAegeGd3ekgVHdlFJdeJXnnXZg9CEkViGVxnQSLwWM5yl95tWY73//+1i5ciWy2SzGx8drvZyGI5vOapUWOQeG024JAXJVSIEyDoxYoeTEQEddCEnMUwNDSIVgEu/MwbMOzPbt2/HEE0/gU5/6VK2X0rDoT3Q6MISoZDO5ZmilBjkChiReB0NIgbAfvoA+T40hpHyKTaIGmMRbb3jSgclkMti0aRPe85734MQTTzT1nqGhIQwPD2v/HhgYcGp5DYMoUMKFcmB4cSQNSlo3B6n0ZTTg9CiBKeU8VbvI6h0YnqNGkqVCSKLYpIDxPJ4UML/73e9w9OhR3H777abfc//99+Oee+7Je3zfvn3IZPIvGpFIBP39/dUsc8YTOZLI/R2fRH9/P1JyUnvsrf2Hgf5oLZZWV/C7Zg0vH7fERO7HbSoVK7nO+GjuRmD42LDt/0/xSeWclP1Z9Pf3I5GZ0p4bOjri2WNYK44fGdL+PnhkAMPpIwCU79tru16DPyQhk5QRGS/9uRJnz9GVK1eWfY3nBMz4+Dh+9KMf4a//+q/R1dVl+n2XXXYZ1q5dq/17YGAAt956K5YuXYoVK1bkvb6/v9/UAWpkDsvDeAWDAIA5C2Zj5coVGB94CcAkAKCzrRsrV55SwxXWB/yuWcPLx23scAQv4hAAoHdWd8l1To0n8BIOAwBawm22/j9lM1k8nVLc5vbuVqxcuRI7Uq8CGAUAhP3Nnj2GteLIw9sAKDdep5y2Am29SpGI+n3b3jaI2EgCUtbHY1eGWp+jnhMw//Zv/4b29nZcfvnlFb2vr68PfX19Dq2qMSkUQgo00Z4mRCyHLpfEG3RwmKOxAgkAfAEJvoCEbFpmnloBSiXxqo/FkGAIqQ7wlIA5ePAgfv/73+NTn/oUhoZyNl8ymUQ6ncaRI0fQ2tqKjo6OGq6ycRAvjmqsmDkwhOi78JbrA+MP+QAJgGx/HxhjDxgAkCQJoZYg4hNJnqMFEIVJoRlW6rUuNZWBnJVLNikktcVTAmZoaAjZbBabNm3Cpk2b8p7/i7/4C1xxxRX49Kc/XYPVNR56B4ZVSISopOPmk3glSUKwyY/UVMb2UQLGLrzi3/GJJJJRnqNGVAcmEPbDV0CcGB0z1dki3sNTAmbp0qX4+te/nvf4v/3bvyEWi+HTn/405s+fX4OVNSbGOUgA4A+xDwwhohApV0atvCaA1FQG6YTzISTx79RUGrIsQ5LoIqioYbxC4SPj46l4hgLGw3hKwHR1deH888/Pe/w//uM/AKDgc8Q5dBfHaQdG8kkINit3kwk6MKRBEXNZyoWQAKU8dwr2l1EXdWCmf4RlefpHuMiPdSOihpCMJdQqxl4wra6siljBs43sSO0pbk9P393RgSENSkqXxFteHKgix9kkXuEcbRV+hHmjoSHLshZCMuXAMJHX09SFLP/ud79b6yU0JIkCISRAuVBGh0EHhjQsuhwYEw6MKnKyaRmZdBb+gD33juVCSNprem3ZXd2TTmQAWfnbrANDvAsdGFKUVIEQEpC7OGaSWWTTWdfXRUit0YeQzDswgL2VSLpEe0MSr/YaJvJqlBrkWOhxOjDehgKGFEW9OEo+SZeoqLs4MoxEGpB0hUm8YqWSnYm8ulYHOgeGLkIhyvWAMT5OAeNtKGBIUdSLY6gloKtiEO1phpFIIyJWIZkLITkzD6lQs0nAEEKiA6NRqQND8edtKGBIUdSLY97IeeHujom8pBERQ0iBMn1gAMOQQBt7wRRqdQDQgSlGqUGOKnRg6gcKGFIQWZa1JF4x/wXQn+B0YEgjYjWJF7C3EqlYCCmsc2D4I6yS0oWQCn9udGDqBwoYUpBMMgs5o6Tri3dzgF7QMAeGNCIV94FxOIlXkvT7COocGN5kqKSmBOFZNIQkuGUUMJ6GAoYURHRWSoWQ2GOCNCJqHovkl+AzURId1OXA2O/AhFqCujy1sLGMmgBgCGmmQQFDClKoC6/2b14cSYOjViEFw35Tbfp1ISRbc2Cm89SMLqmujJrnqErKRBUSQ0j1AwUMKUjKtAPDE5w0Huo0ajM9YAB9Eq9dISRdnppBwDCEVBg6MDMLChhSkEQJBybMEBJpcFQRYqYHjPF1KZv6wOjy1Eok2tOByaFzYIqIT3/QD19Ayns98R4UMKQgxcozAX21Ax0Y0mjIsqzlwJhJ4FVeJzSys8mBSZZwSX1+n7Y2OjA5dMnXJQZcqp8XQ0jehgKGFER3cWxlCIkQlUwqCzmrOB9mBjkCxiReewRMKZcUyOWq0YHJoQshtRT/7FRBaPf0cGIvFDCkIMWGxAHGCgfe3ZHGotIeMIAzfWBK5akBuRsNugg5zCTxAjlxwxCSt6GAIQUR248bT3R/yAfJr8SI6cCQRkPMYQma6MILONMHRufAFHAT1BuPdCLDoavTqNcrySfBHyz+86de8zKpLDIpujBehQKGFEQ39MxgT0uSpCXy0oEhjYZukKPZHBhB6NhVRl3KJVUeY6jXiOqohJoDJcvf9ROpKWC8CgUMKUipJF5AiK/zwkgaDDEvImi2Ckl0YGyqQtLlqRV0YFhKbUQN35VK4AX0Sdd2Nh4k9kIBQwpSKokXEOLrsTRkWXZtXYTUGt0gR5NJvP6AD77psKtdiaGlmk0CxonU/BEGcs5yOQETYjO7uoAChhSkvD2tPCZnZZ2lTshMx0oSr/JatbLFJgemRJ4awInURrLpLDJJJReoVAIvYAwh8dh5FQoYUhDVgfGHfPAXmPUSZHydNCiVDnJUUcNItvWBKZGnBugFTCLKEFJS1wOm9OdGB6Y+MOd/liGTyWB8fBypVOGTZM6cOXbshriIOCSuEMZuvK09Ta6si5BaIybhmq1CAnJix65OvGbz1AAgxZsMU5Ooc89zInU9UJWA2b17N+666y68/PLLSKcLf8iSJGHz5s3V7IbUAG1IXLF5IezGSxoUMYfFbBUSkBM7qXgGsiybGgJZCrN5aoB+unyjYrYHDMAQUr1gWcC88cYbuOGGG+D3+3HWWWfh6aefxvLly9HT04PXX38dY2NjWLNmDebOnWvneokLZLOydrdS6MIIsESTNC5iFZHZYY6AIHZkpb9IIGRe/BTCbJ6a8bWNiplBjioMIdUHlgXMT37yEwDAv/7rv2LJkiW48MILcf755+PKK69EIpHAHXfcgccffxw333yzbYsl7qC/UykcQgpxoCNpUHQOjMkyauNrU/G0DQKmdJ4az1E9dGBmHpaTeHfs2IG1a9diyZIl2mNqOW04HMaNN96Ivr4+3H333VUvkrhLOWsa4N0daVyqrUIybsMq5fLU6JLq0TkwZZwzOjD1gWUBE41GMX/+fO3fgUAAU1NTuQ37fFizZg1efPHF6lZIXEefHEgHhhARfRVS5Um8yjbsEDBl8tRaeZMhovvcSgxyBOjA1AuWBUxXVxcmJye1f/f09OCtt97SvSaZTCIej1tfHakJdGAIKU7KwigBwN7urqby1Jp5kyGSKlO1JcJRAvWBZQGzZMkSHDhwQPv36tWr8fzzz+PVV18FAOzfvx+bN2/G4sWLq18lcZVkmSFxxscpYEgjkRbv5K3mwFTZ/DFlwiUNhP0cuirAJN6Zh+Uk3vPOOw/f+973MDQ0hL6+Pnz4wx/Gk08+iRtuuAHt7e2IRCLIZrP4yEc+Yud6iQuIbcfDpuLrvLsjjYPegbEWQqo2B0acbVTMgZEkCaHmABKRFM9RVJbEK36uDCF5F8sC5n3vex82bNiA9vZ2AMDy5ctx++2346c//SkOHz6MFStW4PLLL8d5551n22KJO4gXx2KxYoaQSKOiig9/0Aefz3wvl4BuInV154yZPDVAudFQBAzP0UqSeH0+CcEmP1LxDB0YD2NZwAQCAfT09OgeW716Nb797W9XvShSW8p1+DQ+zosjaSS0icYV5L8YX1+1A2MiTw1QbzSmtKGr1TbPq2d0SbxlHBhAETmpeIYOjIfhLCSShyhIwgVmrACAL+DTYvq0p0kjoVYQVRI+AoxVSDY6MCUqatTnOHS1shASkBM5dg3fJPZT9Syk4eFhvP7665icnEQ2my34mo0bN1a7G+IioiApVW4YagkgncjQgSENhSoEKnVgdHkV1TowJvLUgPxS6krKvmca+iTe8p+dKnKSU3SvvIrlb3MikcB3vvMdPProo1oDOyPqh04BU1+Yvji2BBAbTdCBIQ1DVnAyKhnkqLxeCCFV6YaYyVMD8kupG3noqurA+EM++Pzlgw9amElWPq9GFn9exfIn8oMf/ACPPPIIFi1ahIsvvhizZs2C319da2ziDXQVDiUdGEXcpOIZZDNZUxcFQuqZtMUeMIC9fWDEm4xS4ZAwm9lpqALGTPgI0AvD5FRju1dexfInsnnzZixZsgR33303QqGQnWsiNUa7OEqls/VDhhO8qY3fAzKzEQVMJT1gAH0fmOodmPJ5aoA+WZUCZto5MylgQqLgjKWBbkeWRarA8i1zJBLB2WefTfEyA0kKdypSiTJRsZQ61eAXR9IYiM5JdUm81QmYRNRcCCncqg8hNSqyLOuua2bQdeNlIq8nsSxgTjjhBIyOjtq5FuIR1ItjqfCR8flGv7sjjYHVQY6AMYm3uvNFvGEomafWzBASAGSSWchZJVfTrAMTZDdez2NZwHzwgx/EU089lTf/iNQ/Wqy4xIXR+Hyige/uSONgdZAjYAghVevAxMzlqQXZMRtAZWMEVEJCpRJ7wXgT02fg9u3bdf+eNWsWzj77bFx77bV4//vfj5NPPhktLS0F37tmzZpq1khcJJ3MIJNSyuErcWAYQiKNgG6MQIU5MD6fhEDYj3QiU3UnXu18K5OnxiRehUp7wAB0YOoB0wLmM5/5TME6eFmW8eMf/7hkjfzjjz9uaXHEfcQTtbwDk/v60IEhjYBukGOFISQAOQFT9Swkk3lqTOIFoBcwVkJIdGC8iWkB89GPfpSNfBqAlMkOn8rzvLsjjYXowFgpqw02+RGfqL4KKZenVuYmg0m8AAw3ZqZDSKKAaewuxl7F9Bl49dVXO7kO4hHE6oZKHJhGvjiSxkHMXak0hKS8x5729Lk8tTI3GUziBVC9A8MQkjdh5zGiQx9CogNDiEiqyhCS+p5MMotstnAH83JYzVNr5DBvJZOoVUIMIXmeqlsLDg0N4bHHHsMbb7yBSCSCtrY2nHTSSbjooovQ19dnxxqJiyRFB6bMnQrLqEmjIeauVNoHBjBOpE6XdTkLUUmemjp0NZ3INHSivSg8mcQ7c6hKwPzmN7/BnXfeiVQqpZuH9PDDD+Puu+/G3/zN3+B//s//WfUiiXvoLo4lOnwCQJghJNJgVNOJFzD0gklkrAmYqLkSavE1jT50teokXjay8ySWBcyjjz6KTZs2obOzE3/1V3+F008/HT09PRgZGcHLL7+MX//619rzF110kZ1rJg6SrCCJN8gQEmkwqukDAxgGOlqsRNKfo+UFEIeuVnZd017HEJLnsSxg7r33XnR2duJHP/qRLlR0wgknYM2aNbj00kvxsY99DPfeey8FTB1Ryd1dsMkPSQJkmQKGNAapKjrxKu+p/q4+abKJXe41HLpqxYHxB32Q/BLkjMzrm0ex/E0eGBjAhg0biua5zJ49Gxs2bMDAwIDlxRH3qSS+LkmS9ppGvrsjjUO6ikZ2xvdYLaWu1E0wDl1tRPRJvOY+N0mSNBeGDow3sSxg2tra0NTUVPI1zc3NaGtrs7oLUgMqja+rrcp5h0IagapDSDYMdKzkJgPQl1I3aiKveKzNJvECObemUYWf17EsYNauXYunn34a6XThDzadTmPLli1Yt26d5cUR96n04hjWBAwdGDLz0fJWJMAfqvzyacdAx4qTeIVmdo1aSm0lhATkRCqTeL2JZQFz3XXXobm5GX/3d3+HnTt36p579dVX8Xd/93doaWnBtddeW/UiiXtU7sAoIieblpFOslslmdmoM4yU/K/KO5Pry6hrEEJqUAdGvTGTpMpCf6pbk0lmkU1nHVkbsY7lJN6PfexjSKfTGB4exvXXXw+/34/Ozk6Mj48jk1FOzN7eXnzsYx/TvU+SJPzyl7+sbtXEMdQT3ReQ4A+W17dhw8UxEKo8L4CQekENRQTD1i6dYhWS1YGOlVchCdWC0cYUMKoDE2wOVCQ8db1g4mk0tYVsXxuxjmUBI8sy/H4/Zs+erXu8t7c373Wl/k28hXpxDLUETZ3o+m68KbR0hR1bGyG1RnVNAhYqkABjFZJVB6byPjDae6caM4SUFARMJRhLqSlgvIVlAfOrX/3KznUQj5DUhsSZbPZEe5o0ELkQkrVLpyh87KlCqtCBadBzNCVM766EYHPu82Iir/dovIYApChyVhaGxJnrEMpuvKRRyKSzyKYVB9lKCTVgCCG51gemsc/RbFbWxGKlDkyQE6k9DQUM0UjF01AjfOYdGN7dkcYgXWUTO8BYhVSdA+MLSKZyzhrdgRErkCp1YNiN19uY/jTvueceSzuQJAkf/ehHLb2XuEslk6hVjEm8hMxUxKRby0m8NlYhmXVJG70KKWVhErX2eg509DSmP80f//jHlnZAAVM/iBUKli6O0cazp0njoJ9EbTWEJA5zrC6EZHqmT4OHkHRdeE0eMxU6MN7G9Ke5adMmJ9ehsW/fPvz4xz/G7t27MTIygqamJixevBgf+tCHsHbtWlfW0KhUGlsHDCEknuBkBpOusgsvoBc+VkJIclbWzrOw6ZuMxi6jriaERAfG25j+NNesWePgMnIMDg4iFoth48aN6OvrQzwexxNPPIFbbrkFN910Ey677DJX1tGIMIRESHFSiepzYPxBHySfBDkr6wSR6TXE08B0nppZN0E3dLUBf4StduE1vp4OjPewXEYtkslkMD4+jlSqsD05Z84c09s677zzcN555+ke+/M//3N8/OMfx69+9SsKGAfRd+G1cHfXgPY0aRzEnBWrVUiSJCEQ9iM1ldYJIrNU2oVX3WeoJYhENNWQYd5kFQKGISRvU5WA2b17N+666y68/PLLRWciSZKEzZs3V7MbrWHerl27qtoOKY0VB6bREwRJ46Af5Gi943SwSREwVpJ4K+0Bo+2zJaAImAb8EdaFkCr83BhC8jaWBcwbb7yBG264AX6/H2eddRaefvppLF++HD09PXj99dcxNjaGNWvWYO7cuZa2PzU1hUQigWg0ii1btuC5557Dhg0bir5+aGgIw8PD2r8HBgYs7beREePj5uPrjZ0gSBoH0TEJWMyBAdT8mYSlPjBW8tQAJdQbmX6/LMuW5jjVKzrhSQdmRmH5LPzJT34CAPjXf/1XLFmyBBdeeCHOP/98XHnllUgkErjjjjvw+OOP4+abb7a0/TvuuAP3338/AMDn8+GCCy7AZz/72aKvv//++wuWeu/bt0+bzSQSiUTQ399vaW0zlcMHR3N/HzuEaP9w3msKHTdfQEI2LWNihMe0EPyuWcNrx+3w/gnt72NDg8j2T1raTlpWREgqnsbOnTsrEhMjb8S0v8ejowWPT6HjlpKTAJShq6++stPUnLOZwqGBMe3vwaEjSPSPFXxdoeOWFprXjR4f89T30Qs4eY6uXLmy7GssC5gdO3Zg7dq1WLJkifaYOucoHA7jxhtvxKuvvoq7774bX/rSlyre/vvf/36sX78eQ0ND2Lx5MzKZTNEcGwC47LLLdFVKAwMDuPXWW7F06VKsWLEi7/X9/f2mDlAjMfL0qzgM5SJ90soT0bekM+81hY7bttYjmBpPwpf185gWgN81a3jtuCV278F+KCJ/yYmLccLK2WXeUZi9XROIDiYhZ4FTTj4F/qD5sMYbI4ewC8cBAAsWz8fKlUvyXlPouB2aNYWJA8cAACcuPqmhZpZNbtuFgxgHAJx48lLMPaWn4OsKHbdsJouteAsAEAo0eer76AVqfY5aFjDRaBTz58/PbSgQwNTUlPZvn8+HNWvW4NFHH7W0/cWLF2Px4sUAgI0bN+Jv//ZvcfPNN+MHP/hBwTuWvr4+9PX1WdoXURDj62ZDSIASi58aTzIHhsxo7OgDA+QPdKxEwKSqOEdVktHGGroqXpcq7QPj8/sQCPuRTmQYQvIgln3Erq4uTE7mLNSenh689dZbutckk0nE43HrqxNYv349du3ahYMHD9qyPZKPOKm2khNdjcUnp9KQs5w2TmYmaV0ZtfUcmGoGOiYs5sDoJ1I31g+xPom38s9NzZuhgPEelgXMkiVLcODAAe3fq1evxvPPP49XX30VALB//35s3rxZc1GqJZFIAFBibsQZdJ14K0h20y6OsvUBdYR4HfG7bbWMGqhuoKOuCqnVooBpsFLqapJ4gdy1kA6z97AsYM477zy88sorGBoaAgB8+MMfhizLuOGGG/De974XV111FSKRCD7ykY9UtN3R0dG8x9LpNP74xz8iHA7rcm6IvagOTLDJD5/f/Fej0YfFkcbAjmGOQHUDHcUQUqi5kjLqxu2YXU0fGCD3WafiGS3Pk3gDyz7o+973PmzYsAHt7e0AgOXLl+P222/HT3/6Uxw+fBgrVqzA5ZdfnteUrhy33XYbotEozjjjDMyaNQvDw8N45JFHcODAAVx//fVoaWmxumRSBtWBqaS/hPL63NcoEUuhDc22rosQL2DHMEflve6HkMKN7MBMCxh/0Ad/oPJ7dlX0yFkZmWS2KveN2IvlszAQCKCnR5/NvXr1anz729+uakEXXXQR/vCHP+B3v/sdxsfH0dLSghUrVuCTn/wk1q1bV9W2SWnUO5VKLozK63OCJ0UHhsxQnEnirex8SVlsZNfIDSfV65oV9wXQh9OTU2kKGA9hyygBO7n44otx8cUX13oZDUc2ndXuBiue2Co6MA12d0caB3V2kS8gWbqTV6lmoKPowFSWaN+4ISTVgal0kKNK3jykBqrg8jqN082IlMRqCTXgfIVDNp3Fwe3HERmaKv9iQhxC7cRbTQWS8n4hhGQxiTfY7IfPZ74BXqMm8cqyrAkYuxwY4h0858CQ2iCWUHsthLTjgX14/pevo6kjhA9uWk8Ll9QENYm32u9fQMifqXSgoypgKkngBRrXgcmksshmlMRbqwKGE6m9Cx0YAsBQQl1lEq/dHOkfAQDEJ5IYO8wyelIb1CTeaiqQjO+vdKCjOgupkhJqoHHDvLoeMBQwMw4KGALA2iTq3OudLaOODOdCR5EhexojElIJsixr+SrVVCABegEjVjaVI5POIpPMArDiwDTmj7CuhNqi8GQIybtQwBAA+ruyygWMGF+39wSXZRnR4ZxoiY4wD4a4TyaZBaZbgFRTgQToBVAlSby6SdQVOjD+oF8b4Jiw+Rz1Mqkqe8AY39dI4q8eoIAhAKyXZxpfL+bS2EEymtZd5OnAkFqg6+ZaZRJvwGIISdeF10pH2Ra1JX4DhZDi1p1l7X10YDwLBQwBYL1BlvH1djswEYPjIroxhLhFyqYuvMr7rfWBSVZxkyG+p5EcGN0gRzowMw4KGAKguotjUHeHYu/dXdTguIj5MIS4hdgxN2BjDkwlnXiTVdxkiO9JxRtn6CqTeGc2FDAEgOFEr3TkvE/STnK7k3iNgoUODKkF+hBStWXU1hrZ6W8yrAiY6RsTuXFCIfokXoaQZhoUMARAdUm84nvsFjBGwRIbjSObydq6D0LKkdI5MNUJGJ/fpyXUVlKFpE/itRJCarxxAkzindlQwBAAxjJq6/H1pM19YCIGASPLQGw0Yes+CClH2kYHBsiJoIqSeKPVJvE6l2zvVUSHy2oIiQ6Md6GAIQD07cWrcWAyySwyafsckmiBnBeOFCBuo0/irb6BubqNipJ4xZuMah2YBknkTdrgwPhDPkjTUxsqnV1FnIUChgDIWcqST7Jkkevtafvu7owODABER5gHQ9xFFBrV9oEBci5ORTkw4k2GFQem1Zlz1MvYkcQrSbkcP4aQvAUFDAEgtChvCUCSzA+JU9HZ0zbd3WWzckGxQgeGuI1YLWSHA6OKoHQiY7oiqGoHptnZjtlexA4HBhBy/ChgPAUFDAEgDImz2uzJgYnUU+MJyNOD2Jo6QtrjrEQibiM6JXYMExW78aaT5lyYqsO8rUzitQodGG9CAUMgy7IgYCq/szO+zy57Oio4LXNO7tb+LhRWIsRJdA6MDQImoJuHZFLAVBkO0SWjNloISaruc1Ndt3QiwypID0EBQ3Q2ti0OjE13d6JQmXViJyS/EtoqlNhLiJPYOUoA0P+Ypk0m8mp5an6reWqNG0IKNgUg+SoPjauI4o+JvN6BAoZUXUINAGEHknhFAdM+qxmt3U15jxPiBroQki1JvJX/IKohpFCzxTy1Bk7itZrAq8JeMN6EAoZUHVsHgKADSbyi09La04TWXkXAJCKpispPCamWtM0OjC6EZFbATP9whi0k8AKNmcSrio1gc5Xzq9gLxpNQwJCqW5QDBgfGphNcdFra+prRNi1gACbyEnexc5ijsg0hideEGBfz1Kwmo4YbLIlXzsra51ZNAi9gCCFRwHgGChhS9ZRb5X1ikyybkninRYokAS3dYbT2NmvPRdgLhriIbphjyI4qpMqSeMU8NasOTLApAExHnhohhCS6tHaGkOjAeAcKGFL1lFvAEEKyy4GZrkJq6W6Cz+9DW5/gwLAXDHERdWZRIOyvKhlURQwhmRknIN4UBC2eo5JP0n7IG8GBsauE2vh+OjDegQKG2B9CsuHimE5mEJ9IAoCW+9LakxMwTOQlbqKGIuzoAQPo+8CYGego3hSELZ6jgDh0deY7MHZMolZhCMmbUMAQgwPjjT4wYgfetunQUVtfLoTEUmriJmqeih35L0DlSbyJaPVhXvG9jebAMIQ0M6GAIbY4MP6QD77pPi12XBzFJF3NgemlA0Nqg5YMakMFkrKdyvrApISbAjta4mdSWWRSM7ufSVJMvGYS74yEAsYiM6kboyg4whbv7iRJytnTNiTxRgSHRc19CbcGNQufVUjELbJZGZmUcr7b0QMGqLwPjC6E1Gr9x1jnJMxwF8ZWB8ZC2TtxHntuJxqEZCyFP37nRUwMRtG3tBN/+rkza70kWxBDPlYTBAHFno5PpmyxWHUOTI8SOpIkCa29TRg/HEVkeAqyLFtq6EVIJeh6wITtuWRWHkISJ1FbDyGJFUzJWBrNnWHL2/I6KUGgVXNdM75/pgu/eoIOTAUEmwMY3j+BqfEkxgejtV6ObdjhwABigmAasmxuwm4xIkNiD5hc6EjNh8kks0hMzvxERFJ7xDJn2xwYcZSAiSRenZtQhQPTSPOQmMQ786GAqQBJktAxpwUAMHl8qiZhpOi082AnduTAKO9VxI+clXV9M6wQHRG68Aq5L6KYiYwwkZc4j1jmbMcgRwAIiCEkE+eKbUm8rY3TjZdJvDMfCpgK6ZirCBg5I+tcAjd47ue78ItPPY4n7nzF1u2qd2L+kA++gPWvhJ0DHdVj6w/60NQe0h4XxUzU5eNPGhO7BzkCxmGOJnJgbOjVBDSYAyN+btUm8TbRgfEiFDAV0jGnVft7wuUw0p6nDgEA3nzmiK3ujyo2qgkfAUYBY/3iKMuyVibd2tuky3NpE7vxMpGXuIDdgxyB6W6+krp9E31g7HJJ6cBYwhfwwR9Ufi45h807UMBUiOrAAMDE0Zhr+03GUpgaVxq7Ke6PfeGT5JQiNqpNdNP3grF+kidjae1HQxQsgLGUmiEk4jz6QY72CBjJJ2kujKkqJBvGfSjvzZ3jiQYSMNU6MOI2GELyDhQwFdJZIwEzMajf1/gRe/adzcpITSkXUFsdmCpKqQv1gFERBQ1LqYkbiDkqdlUhAbk8GDNJvLoQkg19YAB9b5mZiC6Jt8pp1EDuuDOE5B0oYCpEDCG5WYlk3Jdd+07ZZE0r77dnHpK+BwwdGFJb0jZPota2ZcGBCYT9Veap5c7RRnJgqg0hAXoHxu5CCmINCpgKaekOwx9SDpvRFXES477s2rcdYwRy7xfsaYccmEDIj6aOUN7rCHEKcVaRXbOQgFw+jZmKPfU8rfomQywHbhAB4wtI8AdtcGCmj72cyTU2JLWFAqZClFJqxYWZPBZzrZTa6LjYlUBsV3Kg8f3V2Kxifk+bQcAAuaGOsZH4jOqITLxJSufA2BdCUsNRmVQW2XTp77F6nlZ9jraKDkxjhJDscF8AQ/dkhpE8AQWMBdRE3mxGds0FyAshHbFHwCRs6sIL2JfEKw5ybDUk8QK5sJIsA7GxhOX9EGIGJ6qQAEN7+hIuTDaT1VwaO13SRqlCsiOB17gdJvJ6AwoYC4iJvOMuJfIaQ0aRoSlkyty1mSFlUxdewL4QUlkHRsyDYS8Y4jBpB/rAAHoxVGqgo50uqT/ogy+g1G83ShKvXQKG3Xi9BwWMBdzuBROfTCIR0V9sZBmYtEE82RtCygmgak5w1dUKtwYL/mCIoibKRF7iMLoqJFsdGHMDHe0qoQbUoavKNmZyEm8mlUE2rSTa2hZCogPjOShgLKCOEwDcSeQtJpLsqERK2NTh0/h+sfV5JchZWQshtfbluy+APqzEZnbEacQqpICNZdRiN95SISS7uvAatzGTk3jV1hAAHZiZDAWMBdzuBTMuiKTeJR0FH7dKysa7O118fcqaPT01nkA2o9w5qcm6RvQODAUMcRaxCsmuWUiAIYRUoheMnQ6MuI1kLDVjy4GTNpdQA/peMhQw3oACxgIt3U1aW2k3esGIDsyiNbMKPm4VOx0Yn9+nlZkmLTowoqNi7AGjPc5eMMRFHEviDZsNITnjwMiyuR409UjKxknU2nYYQvIcFDAWkHySVok0eSyGbNbZuxjRadELGLtzYOy4u1ObPVlzYMSclkIJvADQ3N0EySdNv54ODHEWNcFW8knajYsdiGLIfA6MfQJG2fbMTORN2jxGAGAIyYtQwFhETeTNpmXHE0nVkmlJAvqWdSLcFtQ9Xg32390pa7MaXxerigqVUAOAzyehtSc8/Xo6MMRZVHERbPLrBotWi+gMlK5Csq/ZpHEbM7WUWhy46EwS78x0ruoNChiLuJXIK8syJo4qQqVtVjP8AR865yriKToSN9XFsxRO3d2l4hlLTebEHjDFHBggJ24SkVTVx4CQUqg5MHaGjwBDH5haOTBVtDvwMnYPcgTowHgRChiLuJXIOzWR1DLqVeHSOU8o465y35pTItkTK652HpLoqBRzYADmwRD3UKuQ7BzkCOjHEqRcTeKd+bkcjiTx6sreZ+ZxqzcoYCzSMdedoY4TQphI3WeH2Eivyn2rSbyh5oCWV1IN+ru7yk9yLadFAlq7w0Vf1+rSVOroSBx//M4LeO7nu2ZsxQYpjizLWomznT1glO2JISQ3k3gbIIQUEx0Yez63YAMIv3qDAsYiuhCSgw6MKFBU4SKKp2orkXIzVqq/s1O2U10pteqmtHSHS07ddcuBefXB/Ti47Th2/GEfju8Zc2w/xJtk01nI02X9dg5yNG6vdB8YsVs2k3jN4HgS7wwVfvUGBYxFWntypdROduMV82vU0FHnPNGBqU48aVNuW206ycW7uwodmEwqg6nxJACgrad4+AjQjxNw0oEZ3j+h/T0k/E0aA6cGOSrbq3yUQNCGG41wIzgwDiTxBsJ+YNqkZg6MN6CAsYjkk9A+WxESE0edK6UWHRg170YcZVBNJVI6aX+77WqGxemGOBbpwqvS5lI33pGDk9rfowcjju2HeBOnesAAlYwSUG4yJMmeMFawARwYJ5J4JUnSPrMkc2A8AQVMFaiCIpuWERtx5kd0/IjisEh+SWvsFmoOoLlLyQ+pxv2xOzlQ2Y71EJKuiV2JBF5AL3CcKmOPjScQn0hq/xbFDGkMxA65djswlfaBCbUEbSnjbgQHxokkXnFbdGC8AQVMFTidyCtncyXUHbNb4PPnPi5VPE2NJy3fRdmdHKhsx3oIKarrAVPagQm3BrUcAqcmUo8aBMvowUkm8jYYuhCSzTkwuiTeklVI02Fe287R6hLt6wEnHBhxWxQw3oACpgqcTuSNjcaRSSq9VMTKI+Xf1ZdSO+HAhKtxYEbKd+FVkSRJEznRkbgjwsIoYJKxtGNOG/EmYo+hgM0OjD/gg8+vOCrFHBhZlrWp0Y7cZFjsmO11xGGOdn5umgMTzzjegZ2UhwKmCkRR4UQzOzFBt1MQLMq/hURei3kwTjgwQZscmHIhJOU1ioBJJzJIROy/EI8UyHkZeYt5MI2EmAxqtwMD5CqRijVjzCRzVVB2JPAq25n5DowaQgo2+eGzoT2EiujmlEq8Ju5AAVMFYjKtE5VIugTeeXoBoy+ltsOBccCertBmFXNgyoWQlNc42wvG6MAAwOgB5sE0Ek4m8QK5MFKxxmjiTYYdJdSAMopDTQaeuQ7MtICxMXykbI8Tqb0EBUwVtPY2wRdQ1L0TISRRmBhDSKKgsZp/oxMwrQ6EkCpsU64m4/qDPjR1hMq+3sleMHJWxui02yL5c3dwo3RgGgrxLtvuRnZAThQVCyElHAjzitua8Q6MzQImxInUnoICpgp8PknLg5k4GoNsc0xUX0JtcGDmVN+NVxdCsqvddhUVDqoD09rTZKraos1BB2by+JRm689f2Qt1OaxEaiyc7AMjbjMdTxfM40o5EOYVtzUTf4RlWdYcrZDdvXs4D8lTUMBUiRpGyqSyiI7a+yOq5rb4gz609uhDKoGQXwuzeCmEpEzsVbdv3oFJxlLaBUEtFy9Hq4MOzOhbOaEy68ROLWQ3dijC5L0GQpxR5EQOjOrqyLJyDTGScOAcVbal3GikExlk05UPXfUy6UQGmD5F6cDMbChgqsSpRN5sVsbksZi2j0JzilRXJhFJIR5J5j1fDieqkCRJytnTFTgwlea/AHqhY7cDIzot3Yva0b2oDYDyI+Nk52XiLfQ5MPY7MLpxAgXyYJw4R5VtWW846XV0YwRsFH0AHRivYf8ZWSWvvfYaHnroIWzbtg2Dg4Po6OjAqlWrcM0112DRokW1Xl4eulLqwSjmr+q1ZbvRoSmtS26HIXyk7XtuCw7vHJ7edwxNy8vnjYg4UYWkbisRTVV0hxIdMl9CrSK6Unb3ghG77vYsasPYoXbs33pUee6tCLrmt9m6P+JNxOogJ3Jg9L1g8vNgnDxHtX1MpUzlnNUL4pwiO5vYAUYBU7z5IHEHzzkw9957L5544gm84x3vwKc//Wm8973vxcsvv4xrrrkGe/furfXy8tA1s7MxkVcsje40JPDmHq9upIATSbyAEF+Ppkz3Z4mIYwRMlFADyt1rU7uy7uiIzSGkaQfG55fQObcVPSe0a8+NsBKpYRCnRNs9zNG4zUKJvM6do9bbHXgdnQNjs2vGEJK38JwD84EPfABf+tKXEAzmTrCLLroIV111FX7+85/ji1/8Yg1Xl48oLuysRCrVA0ZFH76yImDsT+IFcom82YyMTCqLQKj8hT+i6wFjzoEBFLETn0whOpJANivb0vMhk85ibFoQds5vgy/gQ/fCnOMi5seQmY2uD4wjSbylBzqKlXy2tsSvot2B13GqC69xewwh1R7POTCrV6/WiRcAWLRoEZYsWYKBgYEarao4rb3NWjdNO3MjxG0VCyHpS6krF0/q3Z0/6DMlMsxipZRanGdkNgcGyIkdOStjyqYk6vHDUa15WM907kvH3FZt+jiHOjYO+iokZ0NIBR2YKaeSeHPbSlTY7sDr6CdR2/uZ0YHxFp5zYAohyzJGR0exZMmSoq8ZGhrC8PCw9m+3xI5veir1+JGoVkpdKOG2UgpNoTbSPrsFkqRUMFQTQrI9U99QSt3SXf49+iRecyEk42sjw/GK3lsMMYFXDR35fBK6FrRheP8EJgajSCcztoo+4k3EKiQnQkjBMgMddQ6MnUm8QjgqNZOTeOnAzGjqQsA88sgjOH78OK6++uqir7n//vtxzz335D2+b98+ZDL5F4ZIJIL+/n5b1udrU8oQM8kstm/dgXBH9Yd16MCYsu2QhH2H34R0pLAoCnUGkBhLY+zwJHbu3FnRtNqpyWnREMiaPhZmjlskPqH9vXvnG2gfD5fd7ugR5T3+Jh/27Hvd1FoAIJoZz+3r5T0YThd2qyphYNuo9vekPKr9//rale+RLAMv/b9X0Dav/P8XYO93rZHwwnGLjCk3Br6AhF27d9m+/aHR3LkysHcAsdZh3fMjx8a0v/e9tRehURPhWBPHbWgkd8NzYN9bSM+eKPHq+uLIvtz/y/GRo+jvN3dzZ+a4xUdzgnLo6HDNv5+1xslzdOXKlWVf43kBMzAwgNtvvx2rVq3Cxo0bi77usssuw9q1a3Xvu/XWW7F06VKsWLEi7/X9/f2mDpAZJpZLGH1jPwBgTscCzF9ZXSVSNp3FM+MHAADd89uxatWqoq89sDiKt8aGkEnKWLpwOVo6zf2oylkZTycVl6q9q9X0sTBz3KZ2vo4jzysuxoI5C7Fw5ayya3l2Uvn/7Zxtfi0AEB47jIFHxwAAXU29WLlymen3FuPgH17Q/j7jnavQPktxddJ79+L4jt3KvoKzcPLKhaa2Z+d3rZHwwnF7VToOIIVQc8CRtQSOv4V9UATz7N65OHXlCbrn3/RPAFDCq6vXrIQ/WF7AmDluB5PH8TqGAADd7b1YufIkC6v3JonX92jHdMnyxVi8co6p95k5bvGJJF7CYQBAc6iya9VMpNbnqKcFzPDwMD7/+c+jtbUV//iP/wi/v/jJ29fXh76+PhdXl6PDkMhbrYCZPD6ldfU1jhDI33cr8LJyIZo4EjUtYFLxdK7Zk829EvTTbsvbrFMTSWSnc04qyX8B9L1gIjZNilbHBQSb/Wjry62ne1GuEol5MI2Bmk8RCDtzqdRVIZUoo/YHfabEi1nEHJiZFgpxNomXs5C8hOeSeFUikQg+97nPIRKJ4LbbbquZODGDsRdMtehLqEuHRHRTqSvYt1ieGbYxtg4YKhxMJAhGdD1gKsthEQWP2EvGKsmpNCLHle10L2zXheR6dAKGlUiNgJqX4kQCr7Ld0tON1fPUzhJqYIYn8Qr9WezuA+MP+rVkfibx1h5PCphEIoGbb74ZBw8exLe+9a2SybteQD+VuvpS6lIzkPL2bXEqtShg7HdgKuvyGR2pvAuvSktXWEuajtjQjXdMKJHuXtiue66lO6z9v42wlHrGI2dlrbmcE5OoARNJvNMOjN0/xKIgmmk/xE4m8YrbnGnJz/WI5wRMJpPBV77yFezcuRNf/epXcdppp9V6SWVp62vSSqmtlDMbKTWF2oiumV1FDkzurits+91dbnsJEyd5xEIXXhWf34eWbiVsFrVhHtKI2IH3BH23XUmStKqk2EgCicjMunMletJJoYTaqRBSU/FRAtmsrLkJoVYHG7LNOAfGuU68QE50Fhr9QNzFczkwd9xxB7Zs2YJ3vvOdmJycxMMPP6x7/pJLLqnRyorj8/uEUuooZFmuqBrISCUhJFU8ZTMyxo9Yc2Bsv7sT4+smBjpGLZZQq7T1NiM6HEd8MlV1ebMYGjI6MOpjg7uUBMHRtyYx95Qey/si3sbpHjCAXhgZRwnoW+Lbe5MRCPsh+SXIGXlmz0JyQMCo18uZ5lzVI54TMHv27AEAPP3003j66afznveigAGUPJjxI1FkklnExhJo7a7MSRCZOKoImHBrEOH20heuPPFksg9NQhAWTibxmnJgBOdETJo1iy4PZjiua/BXKfohjvnzjsTHRg5SwMxkxDtsJwY5AqVDSMkpZ+YgAdNDV5sDSERSFU2NrwdUB0byS1q+ip2ooiiblpFJZWxNriaV4TkB893vfrfWS7CEsa2/VQGTTma0XI6OuS2mnJzOea058TRqrplbyq0k3kocGAmWjpsoeiLDU5YFjCzLmgPT3BlCc0d+RVcPK5EaBqcHOQJ6YZRO6MW+OKPIziZ2KuHW4LSAmVlOgipgQs2BqpzwYgQN3XibKWBqhudyYOoVuxJ5J4/FtPLmYiME8vatq0Qyt++EQ1NujdszU2qoCraWrjB8gcq/kq09OcEWrWIq9dREEvFJ5biIJdMiYlhphJVIM5qUw4Mcjdt104EBcj/EyVja9NDVekAN7TgRPgL0IXeWUtcWChibsGuoo5kp1Pn7rjyRVz/l1rlSw0SZSbeZVAZTYwkAlVcgqegcmCqmUo8KU6Z7igiYcFsQLT2KMzN6cHJGXfiJnrTDgxwBZUSFP6ScK3kCxsFzFMiJIrHaaiYgOjBOoB8nMHOOWz1CAWMTHRb7sRjRTaE2GQrRh6/MiScnEwSB3MUxNVU6hBQdSWh/V9oDRsWYA2MVccp0ofwXFVXcJGNpxGxqnke8h9hYLuiQAwPkxJGxD4wuhOTEOToDS6mz6SwyKWW0i1Oi0xhCIrWDAsYm2vqaIalTqatwYMxMoTaim0ptcqijLoTkyN2dcnEs58BER6xNoRYRhU+kihCSroS6iAMD6MNLI8yD8RyZVAYHth1DtMrp5PokXgcFzLQ4Mnbi1YWQnDhHZ2ApdTLubAUSwBCSl6CAsQmf36fNzJkYjFkOLVgJIbV2N2khG7Puj2sOTDytjUUohCg4rDow4bagZsNHqwkhqTktEtC1oIQDs5Adeb3MC796Aw9/50X8/svPIpOybvGndWXUztU7qIm8xr4iegfG/v2L/Z9mSiKv0z1gADowXoICxkbURN50IpfXUSlqCKipI2S68kDySVoYafJYDNkSgkHFyTJqQKiakEuf5PoeMNYcGEmSNPETGYpbEo9yVtZmIHXMbin5g9UtNLhjIq+3kGUZbz6tDNuLDE3h2J4xy9tKuVCFJG47k8zqzl3xvLG72SRg+CGeIQLG6R4wABASrg1sZldbKGBsxDjUsVJS8TRi08KnXAM7I+rrs2nZ1Ewg9YIVbPbDZ6JvTKWYHSeg7wFjzYEBcuInncjo7lzNMnl8Sktk7F5Y3H0BgK75bVCrM1XRQ7zB+OEoYqO5m4fDrw5b3paYk+JUFZJx22IyrTijyImbjHCreI7OjBCSzll24JgB+s+C4wRqCwWMjVgdrKhSyQgBI2K+jJk8GG1InAPhI8A4kbr4xdEOBwYwTKW2MFJA14G3RP4LAARCfu14jx2KIJvJVrw/4gyHDILF+O9KSLkUQio20NHxMG/zzA4hOdY9mSEkz0ABYyPV9oLRDXGssBlbZ4W9YLQhcQ4kBwLGidTlHRh/0Ifm9pDl/bX2VFeJNPKWeQGjvEZxaTKpbFVJ28ReDu/UC5bjb45bdhd0fWBcCCEZ95nQzStzIMw7Ax2YpCg6mcQ746GAsZFqQ0j6KdTWHZiJMu5PJp1FJqm4Bs45MOYujqrYaO1pMjUCoRjGbryVMnpArEAqHUJSXsNEXq+RzWRxpF8vYOSsjCOvjVjantgZ16lhjoChmV2igAMjOeMA6VzSGejAMIl35kMBYyPtfc3aj3A5EVEIfQipQgdmnvlmdkmHS6gBcxfHZCzXxrya8JHyfqEbrxUHZlqE+PySqfwjllJ7j6F9E9r3KdyW+/4ZXRmzuDHMUdm2GELKd2BCzYGqxH0xzOap1RPuJPEWnyBO3IUCxkZ8AaGU+mjlpdRi7krHnMocmObOkHaRLRe+cnIStbZdExfH6Ej1JdS59wsOjIkkZpFMKqOJvq4FbabGGdCB8R5iwu4Z712mJVpbTeRNudCJV9l24RCSlqfmUDJqpTPL6oGUCwImyBCSZ6CAsRk1jJSKZzA1nqzovapr09ITrviCKUmS5tpMHp9CNl08sVQnYBwYEqdst/zFUewBU60DIwqgaIXdcceORCFnFLFZrgJJpX1Oi9Z7h5VI3kB0WpacPRd9yzoBKJ9PzEJbA60iSILWZ8gJig101FriO3WOzvAkXsdCSE0MIXkFChib0Sfymg8jJaIpbZBgpSXUKur75KyMyePFXYikg4Mcc9stf3GMiiXUVQqYQNivhQ0q7cYrTpXuOaF8Ai+gzLBRm91NDEaRTnImSi1JJzIY3K3kurTPakbHnBbMP61Pe/7wq0MVb1N1Q4JhvyNTjVWCBQY6ppMZrSW+Ow7MzPghdiOEJPkkBJunuydTwNQUChibEUM/lSTy6kYIzLEmYHTzmEqUUidd6JWgr3AofJJHxBLqKnrAqKgiKDoaN9XMT0VXQr3QnIABcmEkWVbKqUntGHx9FNm08pnPP60XALBg+r+AtXJq1Q0JOBg+UrafL2DEH2KnHBhfwKclEM/EEJJTDgwgTPKmgKkpFDA2U2k5s/ZacYTAvMryX3L7NpfIq0/idcOeLnxxFJNtq3VggJwIkjNyRZ2QRyroASMiDnxkR97aIua5qM7L7JO6tDDf4Z3DFeekiQ6Mk4gVTqpoEmcTOXWTIW57pjgwbuTAALkwEqdR1xYKGJvRlTMfNR9C0k2hthhCMjuV2itJvGK5s9jHxSptul4w5hN51RBSsNmvK8cuhz6Rlw5MLRFDRPNX9QBQGg7OWdENQBHLlfZmUpN4naxAMm5fc2BcOEcBUcDMDAcm6UIjOyD3mZSb9VaOZCyFVx/cj+Nvjtm0ssaCAsZm2maJpdQWQ0gV9oBRMTuVWndxdMyBCQCSur/SDkyoJWCLTd6q68ZrLg8mGUtpVUvdC9srynXoZiWSJ4hHkhjaPwEA6FncjuaOsPacPoxkPg8mm85qISmnQ0jBAmW5brikQC48lYpnZkRHadWBCYT98Pmd+3nT3B05f4p4JWy9dzee/elreODrWxGfrKzog1DA2I4/4NPu4ieORk3b1poDI1VeQq3S1B7Shr6Vcn90F0cnE92aitvTclbWHJjWKkuoVXSl1CYFjFhB1FNB+AgAWrrD2vFmCKl2HOkfAaZPs/mrenXP6RN5zefBuDXIEdALpFo5MMDMyOfQXDMHjxlgTzfedDKDN59RBo+m4hnsf+GoLWtrJChgHEBNwk1NZRCfKK+qZVnWHJi2vmb4g9YvmKp7ExmOF62McSOJF8i1Py/kwExNJrU7XDvyXwBDMzuTvWBEAdNtogOviCRJ2ntiownEI7yDqgWiMFkgCBYA6F3SoYnMI/0jppO73RrkCOhzbNTSbTdcUkCfIDwTBhPmZrw57JrZ0I330CtDuhyafc8eqXpdjQYFjANUmsgbn0xqJ16lIwTy9q2GkeTiVVBuXRyD04m8hRwYUWBU2wNGRefAmOwFYzWBt9B7mAdTG9TQkOSXMPeUbt1zPp+EedM5MYloCsPToaZyuDXIETBWIRUIIbmQxKvss74FjCzLmhvitANjRzO7vQbBcnjnCKYmKu9X1MhQwDiAfiZS+UTe8SPWRwiU3HeRSiQ3QkhAzoHJpLLIpPRuUGTYvi68Ki3dYa37qmkHRhAwPRWUUKuIje9G32IYyW0iQ1Nartmck7oKig0xrGS2H4wuhOS0A6NrZFfAgXFJwCTqPJE3nchAjdg7HfarNoSUTmYw8OIx3WNyVsb+5xlGqgQKGAeodCr1hG6IY3UCRl9KXdqBkfySo/a4zmY13N2JVUKtFVT+lMLn96GlW9mWmRwYWZYxckARHc1dYTR1VD4NW8ybUbdF3ENXPm3If1ERw0pm+8GIYwScTuL1B32a8C6YA+NQHxjjtus9hCS6Zl4PIR3cflwTq7OmO0YDwN5nGEaqBAoYBzBbzqyiL6GuLoRkZip1UhwS52CH0VLdeCM294BRUcVQfCJZtjvu1HgSiYhyLMyOEDAiNr7jSAH3ESuL5hvyX1Q65rZoYcqju0dNdU1OuzTIEVByqVSRVMsQUr07MG71gAGqd2DE8NE73n+SVrgx+NqIpbEXjQoFjAO0z27R7qjMhJD0JdTVOjDlu/FqE3sdzH8BgHCJeUjRIftDSADQ1mN+JpIufGQh/wVQph6rPWxGD05W3CyNWEeWZW3+UbDJj9kndhZ8nSRJWjl1JpXFsTfGym5bP8jRWQEj7iNdQwem3nNgki514QWqc2BS8TQObjsOQLl+zF/Vi6XnzgOgdPXev3XQvoXOcChgHEAppVZ+SMcHy0+lVrvmSn5Jm2ZtlVBLUAuFFHJ/ZFnWLlSOJ7qVcmBGpkNIEtBiQxM7FTEcFS0TRtIn8FpzYMT3JmNpxCocJEmsM/pWRBuYOvfUnpJTxMXw0qEd5fNg0kIOjNMhJCCXB5PLgalFEi8dGLMU6t1jFjF8tPTsufAFfFh23lzteWNyLykOBYxDaFOpp9IlGxQpJdSK0Gif1VzyImwWNQ8mNpbIO7nSiYzWOdILDkxLZxh+G/6fVfS9YEon8lbTA0ZErEQaYSWSa+jLpwvnv6jo+sHsLJ8Ho6tCcjiJF8iVaudCSMp/fQFJG4fgBDPKgYm5GEJqsR5CEgXK0nMV4dKzqF2rIB3cPYroKG+EzEAB4xBmE3ljYwlNjVebwKsizlIyzkTSneQO3tkBxUs0M+ksYuNKnNeuEmqVNl0vmDIhJDXpVoI2WdoKYvUSO/K6hy7/ZVXh/BeVlq6w5pQN7R1HIlrabUgl3OsDA+Tu6LMZGZl0NtfPpCXocJ7azCmjFm/WXA0hVXDcklO58FFTRwjzTlVK/CVJwrLzlDASZGDfcwwjmYECxiHMJvLqhzjaI2D0ibz6fbtVQg3oe8yIJ3lsJK51TrUz/wXQC6JSlUhyVsbo9ATpjtktVfX66D6BQx3dJpvOYnDXCADlh8BMCFANI8nydPfeEqRd7AMDAAFhoGMqns4l2jt8k1HKJa036iGJ9+C2Y8iklJENS8+eqxt3sOzcXBhp37MUMGaggHEIcRxAqUReUWBYnYFkRN9Ir7gD43QIKdRc+OIoCgtHHZgSIaTJ4zHN+bLSwE6ka36blrRNB8Ydju8d17qYLjit15RLsUA3VqB0HkzKxSok4z5SU2ktMdTJBF6gdJ5avVGrJF7xu1IOsUx6qSBYAKWiUa2GPPr6aNkQOKGAcQz9VOoSDoyNFUgF953nwNQmTizuVzwxK5n+bIZwe1DLGSjlwIhdc62WUKsEQn7tmI8djs6IoXheR18+XTr/RWXuKd3aoNVDZfJg3OwDA+gFTGw0oTmUTjswwSa/Jr7rXcC4m8RbeRVSMpbCwZeV8FFzVxhzT+nJe40oahhGKg8FjEN0zG7WpjGXGicwYWMPGG3fc4qXUotOiNop1ymKJQhGdQ6MvSEkSZK0CrDo8FTRCjAx1NNzQnUODJBLAs6kshVNISfW0DewK53/ohJqCWLWcqXUevxwtKRDl3ZxmCOgF0liHxCnBYwkSdp5Wu8hpKSLAsYf9MHnVy7wZkNIAy8d0+a/LT17Lny+fNdw2TnztL9ZjVQeChiH8Af9WjhjYrD4VGpVYPiDPtt+zINNAbT0hLV9i+in3DocQioSX48Ibf7tbGKnovZlScUzRe8qdSXUVTowgL4MmyMFnCUVT2u9XDrmtFTUemCBWE5dwoURwwKuJPEK+xD7FzkdQgJyyfwzyYFxOoQkSZImkswKGDF8tMwQPlLpWtCm3VAd3zOOyeO8GSoFBYyDqDktyVgaicn8uxs5K2Py2HQJ9eyWgorcKmpFU3wypXWbVdYiJPE67cAIOTYJ0YEZcc6BAfRhqWJxZDWE5AtItlR/sZTaPQZ3jyKbUW4IzIaPVHTl1CXGCqSFKiRXknibigkY5/cd1gRMqq4bMboZQgJyIslMCCkRTeHQK0rYs6UnjDkndxd9LcNI5qGAcZByibyR4biWkW5X+EhFPxMpt2+3OnwCBptV58AoF2hfQEKzhflD5WjVJfLm58FkUhnN+eqa32ZL752eRSyldotK+r8YmX1Sl+aoHH51uOgPturA+PySrX2KihEUqpBiLgsYNZE3m5a161E94mYSL5Bzrsw4MAMvHNVE97Jz5mm5WIXQh5EoYEpBAeMgYjLteIFEXl0Cr00l1Ll9F55KLfa/cMNmVV0YfQ6M4oq09jSVPJGtomtmV2Aq9diRqNbMr9oKJJX2OS1a8jBLqZ1FqyCSgHkrKxMw/oAPc09R7n5jYwmMHS5cIagm8brhvij7qV0IKTxDesGoQkKSAH/IBdE5/d3IpLLIpEsLP1GILD2ncPhIpXNeK3qXdABQehaVKgJpdChgHKSzTC8YO6dQ5++78FRqXZzY4RASINis0xfG5FRa+1tNtrUbsTS7kAMzKkyN7qlihICIzydpzfAmjsZMDQwklTM1kcDwgPL59S7uQFN75Q7efBPl1GofmIALCbzKfgQHZtS9JF5lH0KyfZkGf15GdWCCDg+pVTHbCyYeSWpVc629TZi9vKvstnU9YZ5jMm8xKGAcRBdCKjAZ2okeMIW2N1EshORwEi+QuwCr8XWx8qPVxhlIImIvmEKl1OIIAbscGECoZpKBMU6mdgSxAd2C1ZW5L9r7hETeYnkwaideNyqQjPsRHZiwCw6MLtnewmRlr6CG/dwQfYChF0yJ4zbw/FHIavjo3NLhI5WlDCOZggLGQdpnt2il1IUcGDGEZFcXXpWOOS0Fy7gTLg2Jy+1DuQDLsnKBEQWFOw5MfghJX4Fkn4ARq5lGWInkCId2iOXT1gRMzwntaGpXvpeH+0fy+vbIspxzYMLu/BiKlU5iHorT4z4Ag4CpYwcmJTgwbhAyOZG6kvCRSsecFsxappT8D++fyGuHQRQoYBwkEPJr+RiF4pjqlzIQ9qOlK2zrvv1BvyYQxDLu1LQDEwj7bUleLYdu6FksZegB44wDE2wKINym/EAVdGCmq4SCzX5bG+npE3npwDiBGvLxBSTMXZHfCMwMkk/CvGnxk5pKY2jfhO75TCoLNbfXPQem8I+uOw6MEEKqUwcmm8lqvXvcEjBmHJipiYQ2PLRtVjNmndhpevtiNdJehpEKQgHjMOpQx0Q0hXgkN5U6m8li8rjiDnTMbXEkZtsplHGrE7ETLs1YUTGWUut7wDjjwAA5cRQbiSObzVWaJGMpbQ3dC9ttPe7drERylImjMe2cmXNyd1X9WcSxAocMeTC6Lrwu9IABik+8dsclrf8kXnWsBACE3Eq8btaPfyjEwPNHtYKBZefOreh6owsjPcMwUiEoYBym2FDHyeNTWly0c4694SMVXSLvEWXfKW3KbQ1s1lja0APGGQcGyImjbEbG1HguKVLMf+mxMf8FAFq6w9p8KVYi2c9hofFcpf1fjMwvkQfj9iBHZT/FBIzLOTB1GkJyswuvipkQkhg+EsujzdA+q1lL+B09OKkNnyU5KGAcplgi78QR50qote3qZiIpM3q0RDcXEniB/BCS0114VYpVIonOiJ0JvIBSNq525I2NJnSOm1WSU2ldW/tGRtf/xWL+i4rYwffo66O6Y+z2IEeg+Lwld3Jg6j+EJLpmXgkhxcYTONKvfGc75rSgd2lHxftYymqkklDAOEzHnMJDHccdmIFkRD+VOqZv9ORCCTWgvzgmYmlNTASbA47eXRbrBTOiq0Cyp4RapNvGPJhDrw7hF9c/hvtufLzhxxPIWRmHdyqhnmBzAH3LzOcSFEMtp86mZQzuzlU36X4M3XJgCoSQgk1+W7tzF2MmODBujhEotJ9Cwm//1kEtl2rpOZWFj1SWCUm/DCPlQwHjMJ3z9CJCZcKBKdRGRGdn4khUCx8BtXFgkrGUFkKyewq1kWLdeEUHpsfGCiRtmzblwUwej+Gx725HKp7B1HgSj/zvl+p+2F41jBycRHx6HMe8lT3w+au/dIlhKDE8JboxbuXA+AI+rRGiihvhI+N+6tWBqUUISRS3omunogsfnVdZ+EiltbdZGzswdijS8DcyRihgHKZ9duFxAjoHZp4zDkz7rGZI0638x49G9SXUNXBgJgZjWoloa49zCbyAwYGZLqWWZRkj003smrvCaHJgjIGulNqigEknM/jv27fpZlhNDMbw+Pdf0RICG41DVYwPKMb8VbkqJrE8uxYhJCBfLLmWpybsJzEDHBgvhJBio3EM7lJcvc55rVVNvF92nujCMIwkQgHjMIGQX2vYJibxqj1gQi0BS91EzeDz+7Q4/8RgDMmoOAfJ/YvjiNABtxYOzNR4UhMFdnXgNVJtCEmWZWz50U4M71dKe9tnN2sl4QdeOobt//WmPQt1mOGBCWz50U6ds1ENYv6L2Em3Gpo7wuhZrHxewwMTWqVeKiFWIblzngD5Ysk9B8ZcQzYvU5MQUokGgPu2DgJVho9Ulpw9V+vptffZwboeuGk3FDAuoFYiJSJKKXUmlUF0SC2hbnW07bVaiZROZDB2OPeD6trFUXB6REfCyQokAGjtDkM9rGovGKca2ImEW4OaYB19a7Lii81r/30Abzx5CIByR/4nf/cObLjhDO0C9uJ/voGD247Zuma7ObZnDP/3q8/itf8+gAe/sbXq5MNMOqvdzbZ0hdE1376Qq1ZOLUNLuEzXzIHR//C6dZPhD/q18FUiWp8CpiYhJNGBMZSf2xE+UmntbsLcFUoYafxIVHcj2OhQwLiAmMg7eTSGiWNTWnKXUwm8KmKH3+Nvjmt/u1dGnRNK8YlcVY6TPWAAJaegpVsREmo3Xl3+i80VSCKqC2MsGy/H0ddH8cy/v6b9+/xPrEbPonYsPH0WzvzAycqDMrD5jpcLTjf3AsMDE3joW89rYRhZBh773ss4UIXoOvbGmJaXMv+0XlsFv1hOrYap9Em87gmYfAfGPfdH7deUmqr/EFKtk3ijw1M4unsUANC1oFUXVraKKII4WiAHBYwLGKuBdCXUDiXw5raf2/fQPkHA1MBmFXHagRH3MTWuuF76EmpnQkjGbZsNI8VG43j0/2zTegOtfs9SnChctM64bBkWnzUHgCKMHvnf23Q/tF5g9FAED37zea0Zmhr6kjMyHv0/23BoR+HBieWws/+LkbmndMM3nSd2WBMwQhKvS1VIQH7Fk1suKZA/dLXe0DkwNSh9F8/FfVsF9+XcebYI7iVnz9Uc5X3PHrEljDR5PIanfvgqdjywT9fss56ggHEBXTO7o1H9DCSHHRhRIIkDBsUOuU5STMA47cAY9xEdiefEhARtcrQTiO6OmUTeTDqLRzdtR2xMabg3b2UPzvrgybrXSJKEC69djc7p8MnowUk89W+veiYePnE0ige/vlVz2Waf1IW/+D8XYtm5igjLpLJ45H+/pIWCKkHslFtt/xcjwaYAZp/UBSDX6VesQirWIdcJjJOv3XVgpgXMVLouE8V1SbwuHTefT9ISr8X9W5l9VI6WzjDmrVS++xNHY1qOnFWOvj6K333xGex69CCe+9kuPPLPL9ZlBRoFjAvoesEMxgxTqJ11YMRuvOJvnVsOjM/vK1iK2tpj7+ynQoguz+TxKa2TZcfsFkf7e+gdmPIC5rmf7cLR1xXLubWnCRd9ak3BMuFQSxB/8tm3ay3M33z6CHY+tN+eRVdBZGgKD3z9eU2A9S7pwMbPn4lQSxDr/+Z0LH7HbABKHtYfv/MCjr85ZnrbyVgKx/cozmHnvFZdcrZd6Muph/SjBNwMIdWoCgkQQr0yPOfsmUE3SsCla5u4L/XHPzI0hWNvjAFQrgN25trpZiNVEUZ685kjeEC42QCAg9uO4/9+7dmCw2+9DAWMC+i78cYMDoyzAqattymvvwTgngOj7Et/QWnuCsMfdP6HQax0GtyV67ZqdwdeI13z2zS7t5yAeePJQ+h/eACAMqDwXZ99G5o7i4u7rgVtuPCTp2v/fu7nu3HkNXsqfawQG43jga9vFeZLteHSm8/Swh++gA8XfXoNFqxWkmVTUxk89K0XMHzA3B3k4K5RzRGwq3zaiDgX6fCrwwYHxr0fw/wkXhfPUV0pdf0JmFok8Yr7Uh2Yvc/pw0d2suSsOZCmGxvutRBGkmUZ2367B5v/ZbvWzmL2SV3aZz8yMInfffEZDO0dL7UZT0EB4wKBsB8t046DGEJqag9qeQJOIfkkXS8alZrc3U3T1uN8/gug7zVzcPtx7W87kupKEQj5NWdt7HC0qCU/tH8cT/3wVe3fa69ahVkndpXd/pKz5uKMy5YBUDrUPrppe03unOITSTzwjee1DtMdc1tw6RfOzuuv4w/68Sd/+3bMPUWppEhEU3jwG89jzMRsFyfzX1RmLevU8iYOvTqsD0c0ShKvrpld/SXy6pJ4XcxbCgkCRpZl7BP6tNgtYJo7wlrvosjxqYqERiaVwRN3voIX/+MN7bGT1y/Ee754Di776nlon61cK2NjCfzff3wO+58/auvanYICxiXUMFJ8MoXYiGK1Ox0+UimUZ+Pq3Z3BgWl1uAeMiujAiCd7NU2lzKLmwWRSWUyN5N/RxieT+O/bt2l3QqdctAgrNiwyvf13fOBkzdWITyTx35u2IZNyb2ZSIprCg9/KiZC2vma8+3+djZauwu5RIOzHJX9/JmYt79TW/MA3turGaxRCzX+RJGDeqc4IGF/Ah7mn9mjrOiZU67mbxFubPjDKvsRxAvXrwPiDPvgC7v2sqQ6MLCuDYo9PX2d6F7frKkDtYum5lVcjxSeTePCbz2PPU4e1x8764Mk4/+OnwR/woWtBGy772nlax990IoP//j8v4ZU/7PNMjl0xKGBcopCIcOILXgjjsEhJcvfOMs+BcSGBFyhe6eR0CAkAuk/IuTyxY/qhjtmsjM3fexmR44prMmt5J8776KkVbd/nk7DhhjPQNt2o8PiecTzzk9fKvMseklNp/PGfXtASCVu6w3j3/zq77Ocaag5g4+fOQu9087jYaAIPfGOr1ik5bz+RjJZ43be001G3UgxPTY3lppe7NUoAyBdLtUjiBVCXIytUB8bN8JFxf68//pb291Kb3ReVJWfO0bqrmwkjjR+J4v4vPYPBXUqOnT/ow8U3vg1nXHairjqquSOMS79wFk585/S6ZWDrz3dhyw93IpvOOvL/YgcUMC4h5sFojzlcgaRizLMJNgccbZ5nxHghdqOEGgCa2kN5+T++gITOAp+F3YjJe7Hj+h+EF3/1ulZS3NQRwrs+8zZLOUFN7SG867Nv0/4fdz12ELs2H6xi1eVJJzN45J9fxLE9Y8oaOkJ49xfOLvj9LkS4LYiNt5ylVYFFjk/hwW/kEoBFxvfneug4FT7KbT+/u28g7M4wRZWahpCEm4x6LKVWE4/dTOA17u+N/3dI+3vZufZUHxlpag9pYjs6HMfx6fOwEEdeG8b9X3pGczmbO0N4zxfPwdKzC68tEPJj/fVn4O2XL9ce2/XYQTz07Rc8O2KCAsYlCoWLnE7gze1b/+PiZgIvkH8hbnNJwEiSlCeWuha0uWIxi6XUogOzb+sgXr5/r7I+n4SLP7OmqsqaviWdWHfNadq/n/7xTk1c2E0mlcF/3/4SjvQrpdDh1iAu/cJZFZekN3eE8e4vnKWJnvEjUTz4za1aK3+V8X05Z0YNlzlF98I2NHfqc3fcdF+A/IThWiXa15uAkWVZCyHV0oFRx5T0Le3QVZ7azTITYaTXn3gLD37jeU14dC9qx/v+8Z2Yvbyr5LYlScLbLz8J6//mdPgCuf5Iv//KM5g8VjrcWwsoYFyikNvimgNjCCG5eWen7E9/IXaiFLYYxrCGUyMEjLTPaYE/pJxeqgMzdiiCJ//1Fe015/zlClvyOk46fwFW/uliAEA2rTSNmxrPdzSqIZvO4rF/eRlvvaw4R8FmPzbefCZ6T+iwtL2W7iYl7DSdpzR6UGmCp15wZVnG2D7FgfEHfVqvFqeQJEnXlRdwtwcMUKAPTA3KgYH6S+LNpLJaA0i3r22FBJNT4SOVxe+YozVf3PvcEV2RgJyV8fx9r+PJH+xAdvqYLDxjFt775XPQ1mf+urt83QK8+3+dg6Z25do9diiK333pGa3dg1fwnICJxWL40Y9+hJtuugnvec97cMEFF+DBBx+s9bKqpqNAJZBbDkxLV1h3N+lmciAAhFtr48AA+eEqp4Y4GvH5JHRPOxPxkTRi4wk8cvtLWpfXE985D6s2LrFtf+f85SmYMz0vJToSx2P/sh3ZjD2x62xWxhP/+goGXlAqEwJhP/707880VTFVira+Zlz6hVzi7/D+Cfzx2y8gFU8rw0cnlGM1Z0U3AiHnxcQCQxjJzQReQC+YJL/kqgMUFtyeekvi1XfhdTuElP8ZORU+Ugm3BbHgdOW7GhtJaKIinczgse9tx8u/yw18XfknJ+CSm95u6Zo/d0U3LvvaeVrzzPhEEg98fSvefPpwmXe6h+cEzPj4OO655x4MDAxg+fLl5d9QJwSbAmjpzlVotHSFXTvZJEnSuT21vEvx+aWSfU7sxnjX4UYCb6F9PfSt5zF+WCmf7zmhHeuuOc3WPCR/wIeLP/M2TQwc6R/B8798vertylkZT/3bq3jzaaU81B/0TZdE91S9bUAR8Zd+4SztTu/YG2N4+LYXdbOTnOr/YsSYZ+NmojugF0whl/PUxO619RZCEgcp1jKEBACzTuxE+yznnXVdGOm5QcTGE/jDrc9h33RISZKAc//6VLzzqlUFm2KapWNOKy77ynmaO5lJZbH5ey9j22/2eKJCyXMCpre3F7/97W/xH//xH7juuutqvRxbERMd3QofqXQKMdmw6w5Mbn+tPU1aMyY3yHdgaiNgRgaUhnahlgDe9dm3OSJeW7rCuPjGt2n28o4/7MObz1ifBC3LMp7599e06grJL+Hiz7zN9nyU7oXtuPSWszVhfaR/BFvv3a09XyjB1gna+pp156XbAkbcn+thXl0Sb32FkMTOwW4n8RoFjN29X4qx+B2ztRyVvc8cwf1ffEbrWK1OsT/NJoc33BbExs+fiZPXL9Qee/HXb+CJO19BNl1bEePup22CUCiE3l537rjcpmNuq1bO5lYJtbZvYX9uzQpRES8qrRXEYe1ADFcFmwOuVUABQI+xYZ4EbLhhjaMJfnNO7sa5f30qnv5xPwDg/921AxNHo5aqaUbfimi9IyQJ2HD9GTjh7bNtXa9K75IObLz5LDz4ja1IxTNaXD/UEkDvEmt5NlaYv6pXG/XhegipyRth3pEDk3j5/jdLvNpbTB7PJXu77cAYBZNds4/K7rcliEVnzMLAi8d0IwFae5pwyd+/A72L7T1nfAEfzv/4aeia14qtv1BuLvY8dRjHBsJYvvQkNLWHymzBGTwnYKwyNDSE4eFc186BgYEarqYwYi8Yt5rYFdq363cpwsXYzfwXQJ8w3L2ozVVbvtvQMO8dl5+ERWtmOb7fU991Ao6/OY43njyEdCKDF3/1Rvk3leGCa093/O5y9vIuXPL378BD//QCMkklf2f+ql5XS5kXrO7DrkeVUnT3k3iFEJLbYd6mACABkJWqMDvCj7UgWCAnxdn95T6n2Sd1VZQoWy1Lz52HgRdzoda+pR34k5vegdZuZ66xkiTh9PcuQ/ucFjz+/ZeRSWYxcTCB+7/0DP7sy+cWbWLpJDNGwNx///2455578h7ft28fMpn8DqWRSAT9/f0urCxHsj0p/D3h6v4T4TR8AQnZtIxUm/X/dyvHLZPMItDsQ3oqC6kv6er/dzYjo6k7gPhoGs2L4Oq+ZVlG+8IwJt9KoOeUFoRWJFzbf895PrTtCSFyOFn+xaWQgGUbe5DqG0d/vzszUlZc3odd/3Ec2bSMpqVZVz+zdDCLULsfyckM5M6469+XlllBxI6nEJxt/f/b6rWtc0kTxvfFy7/QwyRbJl09bul4Fv6whExCRtdpAVe/L5nWLEIdfiQnMuhZ0YwT39eJgSN7AetRY3O0ASs/Mhu7fnUcqUgGgS4Z+w7tgXTY3huNlStXln2NJHshE6cIu3btwic+8QnccsstuPTSS0u+tpADc+utt+Luu+/GihUr8l7f399v6gDZzcTRGCQJBecTOU10NI5ULF1x3w4Rq8ctPplEdDSOnkXtrroggBLTnxiMoXdJh6v5N4ASn9/21A6cdfEa1/+/U/E0BneNauMKrNC7pN2VpEQj0dE4+l/ehbPWr3F931MTCURH4uhb0un6vlPxNMYPR9G7tMPy98XqOZpJZXCkfwTppHc7r5aie2FbVaF5q8ctNpbA1ETCckuBaohPJDF5PIa+ZZ2uX18iQ1N49O7n8e7PvtP16i+VGePA9PX1oa/PnWS/ajDbsdQJWrubgO7a7LupPVSzOGmoJYi+Ze7/GAGKNd82P+z6xUXdtxshKydo7W5C6+zafF+aO8Jo7nDfDgeUz6xW31V/0I+FZ9Tn96WWtHSFaxI+AZRO2MbhqW7R1teMk97XVzPxAniwCokQQgghpBwUMIQQQgipOyhgCCGEEFJ3eDIH5j//8z8RiUS0pNwtW7bg2DGlXOzyyy9HW5s77eAJIYQQ4k08KWDuu+8+DA7mpmw++eSTePLJJwEAl1xyCQUMIYQQ0uB4UsD86le/qvUSCCGEEOJhmANDCCGEkLqDAoYQQgghdQcFDCGEEELqDgoYQgghhNQdFDCEEEIIqTsoYAghhBBSd1DAEEIIIaTu8GQfGDtIJBIAgIGBgYLPHzhwAH6/380lzQh43CqHx8waPG7W4HGzBo9b5Th9zBYvXoympqaiz89YAaN28r311ltrvBJCCCGEVMrdd9+NFStWFH1ekmVZdnE9rjE2NoatW7di3rx5CIVCuucGBgZw66234h/+4R+wePHiGq2w/uBxqxweM2vwuFmDx80aPG6V48Yxa1gHpqurC5dccknJ1yxevLikuiOF4XGrHB4za/C4WYPHzRo8bpVTy2PGJF5CCCGE1B0UMIQQQgipOxpSwPT29uLKK69Eb29vrZdSV/C4VQ6PmTV43KzB42YNHrfK8cIxm7FJvIQQQgiZuTSkA0MIIYSQ+oYChhBCCCF1BwUMIYQQQuoOChhCCCGE1B0ztpFdIZLJJH74wx/i4YcfxuTkJE488URcc801OOuss2q9NM+ybds2fOYznyn43J133olVq1a5vCLvEYvF8Mtf/hL9/f147bXXMDk5iVtuuQWXXnpp3mv379+P733ve9ixYwcCgQDOO+883HDDDejq6nJ/4TXE7DH7xje+gYceeijv/SeccAJ+9rOfubVcz/Daa6/hoYcewrZt2zA4OIiOjg6sWrUK11xzDRYtWqR7Lb9rCmaPGb9revbt24cf//jH2L17N0ZGRtDU1ITFixfjQx/6ENauXat7ba2+aw0lYL75zW/i8ccfx/vf/34sXLgQDz74ID73uc9h06ZNOP3002u9PE9z+eWX49RTT9U9tmDBghqtxluMj4/jnnvuwZw5c7B8+XJs27at4OuOHTuGT33qU2hra8PHP/5xTE1N4Ze//CX27t2LH/zgBwgGgy6vvHaYPWYAEAqF8LnPfU73WGtrq9NL9CT33nsvduzYgQ0bNuDEE0/E8PAwfvvb3+Kaa67BnXfeiWXLlgHgd03E7DED+F0TGRwcRCwWw8aNG9HX14d4PI4nnngCt9xyC2666SZcdtllAGr8XZMbhJ07d8rnn3++fO+992qPxeNx+YMf/KD8yU9+soYr8zYvvfSSfP7558ubN2+u9VI8SyKRkIeGhmRZluXXXntNPv/88+UHHngg73X//M//LL/rXe+SBwcHtceef/55+fzzz5d/97vfubZeL2D2mH3961+XL7nkEreX51leeeUVOZlM6h47cOCAfPHFF8tf+9rXtMf4Xcth9pjxu1aedDotX3XVVfJf/uVfao/V8rvWMDkwTzzxBPx+v6YaASAcDuM973kPdu7ciaNHj9ZwdfVBLBZDOp2u9TI8RygUMtXM6YknnsA73/lOzJkzR3vszDPPxKJFi7B582Ynl+g5zB4zlUwmg2g06uCK6oPVq1fn3dEuWrQIS5YswcDAgPYYv2s5zB4zFX7XiuP3+zF79mxEIhHtsVp+1xomhPTGG29g4cKFeXagGhbZs2eP7gMger75zW9iamoKfr8fp59+Oq677jqccsoptV5W3XD8+HGMjo4WHHp26qmn4tlnn63BquqDeDyOSy+9FPF4HO3t7bj44ovxyU9+Ei0tLbVemieQZRmjo6NYsmQJAH7XzGA8Zir8ruUzNTWFRCKBaDSKLVu24LnnnsOGDRsA1P671jACZnh4uOAdn/rY0NCQ20uqCwKBAC688EKce+656OzsxP79+3HffffhhhtuwPe//32cfPLJtV5iXTA8PAwARb+DExMTSCaTCIVCbi/N0/T29uJDH/oQTj75ZMiyjOeeew7/9V//hTfffBObNm1CINAwl7CiPPLIIzh+/DiuvvpqAPyumcF4zAB+14pxxx134P777wcA+Hw+XHDBBfjsZz8LoPbftYb5RBKJRMFkIvXAJhIJt5dUF6xevRqrV6/W/r1u3TqsX78eV111Fe666y7cdtttNVxd/aB+v8p9Bxv5R6UQ1157re7fF198MRYtWoS7774bTzzxBC6++OIarcwbDAwM4Pbbb8eqVauwceNGAPyulaPQMQP4XSvG+9//fqxfvx5DQ0PYvHkzMpkMUqkUgNp/1xomByYcDmsHXSSZTGrPE3MsXLgQ69atw7Zt25DJZGq9nLpA/X7xO1g9H/jAB+Dz+fDCCy/Ueik1ZXh4GJ///OfR2tqKf/zHf4Tf7wfA71opih2zYvC7BixevBhnnnkmNm7ciH/6p3/C1NQUbr75ZsiyXPPvWsMImN7eXs3uElEf6+vrc3tJdc3s2bORSqUQj8drvZS6QLVYi30HOzo6GvaOuFLC4TA6OjowMTFR66XUjEgkgs997nOIRCK47bbbdNcvftcKU+qYFYPftXzWr1+PXbt24eDBgzX/rjWMgFm+fDneeuutvOzy/v5+7XlinsOHDyMUCqG5ubnWS6kLZs2aha6uLuzevTvvuddee43fvwqIxWIYHx9vuIZsKolEAjfffDMOHjyIb33rW3mJqPyu5VPumBWj0b9rhVDDRpFIpObftYYRMOvXr0cmk9GSkQDF4nrggQewcuVKViAVYWxsLO+xPXv2YMuWLTjrrLPg8zXMV6hqLrzwQjz99NO6kv0XX3wRBw8e1LL6SY5EIoFYLJb3+E9+8hPIsoxzzjmnBquqLZlMBl/5ylewc+dOfPWrX8Vpp51W8HX8ruUwc8z4XctndHQ077F0Oo0//vGPCIfDmgis5XetYZJ4V65ciQ0bNuCuu+7C2NgYFixYgIceegiDg4P4/Oc/X+vleZYvf/nLCIfDOO2009Dd3Y39+/fj97//PZqamvKS3hqZ//zP/0QkEtGs1C1btuDYsWMAlC7GbW1t+MhHPoLHH38cN954I6644gpMTU3hF7/4BZYtW1Zw7MBMp9wxm5ycxMc+9jG8613vwgknnAAA2Lp1K5599lmcc845WLduXc3WXivuuOMObNmyBe985zsxOTmJhx9+WPf8JZdcAgD8rgmYOWYjIyP8rhm47bbbEI1GccYZZ2DWrFkYHh7GI488ggMHDuD666/XSstr+V2TZFmWHd2Dh0gkEtospEgkgmXLluGaa67B2WefXeuleZZf//rXeOSRR3Do0CFEo1F0dXXhHe94B6688kosXLiw1svzDB/4wAcwODhY8Ln77rsP8+bNA6DMFzHODLn++uvR09Pj5nI9Qblj1tbWhk2bNmHnzp0YHh5GNpvFggUL8Cd/8if44Ac/2JBlrZ/+9Kexffv2os8/+eST2t/8rimYOWaTk5P8rhl49NFH8Yc//AF79+7F+Pg4WlpasGLFCvz5n/95nqCr1XetoQQMIYQQQmYGTGAghBBCSN1BAUMIIYSQuoMChhBCCCF1BwUMIYQQQuoOChhCCCGE1B0UMIQQQgipOyhgCCGEEFJ3UMAQQgghpO6ggCGEEEJI3UEBQwgpypEjR3DBBRfgG9/4Rq2XYgsPPvggLrjgAjz44IO1XgohpEooYAghFfHpT38aF1xwQa2XUZCZJrgIIcVpvAlVhBDTzJo1Cz/96U/R2tpa66XYwvnnn4+VK1eit7e31kshhFQJBQwhpCiBQACLFy+u9TJso62tDW1tbbVeBiHEBjiNmhBSlCNHjuAv/uIvsHHjRnzhC18oGjpSn1d588038dOf/hTbt2/HxMQEent7sXbtWlx11VXo7OwsuP0Pf/jDuPvuu/Hyyy9jYmIC9913H+bNm4cnn3wSmzdvxq5duzA0NIRAIIATTzwRV1xxBdavX69t68EHH8Q3v/nNguvbtGkT3va2t2mvueWWW3DppZfqXrNjxw789Kc/xc6dO5FIJDB37lxcdNFF+PCHP4ympibday+44AKsWbMGX/nKV3DnnXfi2WefxdTUFJYvX45rr70Wb3vb2yo91ISQCqEDQwgxzZVXXomHHnoIg4ODuPLKK7XHTzrpJO3vp556Cl/5ylcgSRLWrVuH2bNnY//+/fjNb36DrVu34gc/+AHa29t12z106BCuu+46LFu2DBs3bsTExASCwSAA4K677kIgEMDq1avR29uLsbExbNmyBV/60pfwmc98BpdffjkAYPny5bjiiivw61//GsuXL8e6deu07c+dO7fk/9fmzZvxta99DcFgEBdddBG6urrw/PPP45577sHWrVuxadMmhMNh3XsikQiuv/56tLW14ZJLLsHo6Cg2b96Mm266CXfffTeWLVtm6RgTQsxBAUMIMc3VV1+N7du3Y3BwEFdffXXe8+Pj4/j617+Ozs5O3HHHHTrh8Oijj+KrX/0qfvjDH+LGG2/UvW/Hjh248sorC27z29/+NubPn697LBaL4W/+5m/wwx/+EO95z3vQ1NSEk046CW1tbZqAKbStQkSjUXznO9+B3+/HnXfeiRNPPBEA8IlPfAJf+9rX8Nhjj+GXv/wlPvrRj+ret2fPHvyP//E/cOONN8LnU+oh3v72t+Pb3/42fvOb3+Cmm24ytX9CiDVYhUQIsY0//vGPiEaj+MQnPpHnelx88cU4+eST8eijj+a9r6enB3/1V39VcJtG8QIALS0tuPTSSxGJRLBr166q1vzUU08hEong3e9+tyZeAMDn8+G6666D3+8vWHbd3NyMT37yk5p4AZRQmt/vr3pNhJDy0IEhhNjGzp07AQD9/f04dOhQ3vPJZBLj4+MYGxtDV1eX9vjy5cu1kJGR0dFR/PznP8ezzz6Lo0ePIpFI6J4fGhqqas1vvPEGAGDNmjV5z82ZMwfz58/HwYMHEYvF0NLSoj23cOFC3b8BJem5p6cHkUikqjURQspDAUMIsY3JyUkAwG9/+9uSr4vH47p/d3d3F3zdxMQEPvGJT+Do0aNYvXo1zjzzTLS1tcHn82HPnj146qmnkEqlqlpzNBoFoLhAhejt7cXBgwcRjUZ1gqVYabnf70c2m61qTYSQ8lDAEEJsQ/2Bv+eeeypKYpUkqeDjf/jDH3D06FF87GMfy8tB+dnPfoannnrK+mKnUYXIyMhIwefVx2dKLxxCZgrMgSGEVISa85HJZPKeW7lyJYBcKKla1DCUWFGk8sorrxRdWyUOiFpBtX379rznjh49ikOHDmH+/Pl54SJCSG2hgCGEVERHRwcA4NixY3nPvfvd70ZLSwvuvvtu7Nu3L+/5eDxekbhRE4F37Nihe/yRRx7Bs88+m/f69vZ2SJJUcG3FWLduHdra2vDAAw/o1izLMn7wgx8gk8nk9YwhhNQehpAIIRXx9re/HY8//ji++MUv4pxzzkEoFMLy5cuxdu1adHV14ctf/jK+9KUv4eqrr8bZZ5+NE044AalUCoODg9i+fTtOO+003Hbbbab2dckll+Dee+/Fpk2bsG3bNsyZMwd79uzBSy+9hAsuuABPPvmk7vUtLS045ZRT8PLLL+PWW2/FwoULIUkS/vRP/7RoL5jW1lb8/d//Pb72ta/hk5/8JDZs2ICuri68+OKL2L17N0499VR88IMfrPq4EULshQKGEFIRf/Znf4YjR47gsccew7333otMJoONGzdi7dq1AIDzzjsPP/zhD/GLX/wCL774Il544QU0NTVh1qxZuPTSS3HJJZeY3tfs2bPx3e9+F3feeSdeeOEFZDIZnHzyyfjnf/5nHDt2LE/AAMA//MM/4F/+5V/w9NNPIxqNQpZlnH766SWb2W3YsAE9PT342c9+hieffFLrxPvRj34UH/7wh/Oa2BFCag9HCRBCCCGk7mAODCGEEELqDgoYQgghhNQdFDCEEEIIqTsoYAghhBBSd1DAEEIIIaTuoIAhhBBCSN1BAUMIIYSQuoMChhBCCCF1BwUMIYQQQuoOChhCCCGE1B0UMIQQQgipOyhgCCGEEFJ3/H+28zjkItrESQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "### Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAG5CAYAAABMX3rVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlWUlEQVR4nO3deVxU5f4H8M8sMKwyAgquqOBGLlRaKSqg5ZbZZmVmaWZeRbva1et2u5pe+5mWFd3rWl5puaZluWQuGSGoqamJmrihQKSAsu/DMDO/P3COM84AM3OGGYTP+/XqJ3POM+c88zj3x9fn+Z7vI9HpdDoQERERkWhSZ3eAiIiIqLFgYEVERERkJwysiIiIiOyEgRURERGRnTCwIiIiIrITBlZEREREdsLAioiIiMhOGFg5WEVFBS5duoSKigpnd4WIiIjsjIGVg6Wnp+P1119Henq62fNXr151cI8aB46b9ThmtuG42YbjZj2OmW2cPW4MrBoYlUrl7C7ckzhu1uOY2YbjZhuOm/U4ZrZx9rgxsCIiIiKyEwZWRERERHbCwIqIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDKyIiIiI7ISBFREREZGdMLAiIiIishMGVkRERER2wsCKiIiIyE4YWBERERHZCQMrIiIiIjuRO7sDJF5leRUuH/wTalUVmgV4IrhfK2d3iYiIqEliYNUIVFVqcOyLCwCA9g+2ZGBFRETkJFwKbARcFDLh56oKjRN7QkRE1LQxsGoE5K4yQFL9s1pV5dzOEBERNWEMrBoBiVQizFpxxoqIiMh5GFg1EnK36nQ5NQMrIiIip2Fg1UjoZ6zUFVwKJCIichYGVo2E3O32UqCKM1ZERETOwsCqkXBRVC8FatRaaKu0Tu4NERFR08TAqpFwcbtTckHNWSsiIiKnYGDVSMgNAisuBxIRETkHA6tGwsXtThF9JrATERE5BwOrRkLO6utEREROx8CqkTDOseKMFRERkTMwsGok9E8FAiwSSkRE5CwMrBoJw+R1BlZERETOwcCqkTBMXq9i8joREZFTMLBqJFjHioiIyPkYWDUSfCqQiIjI+RhYNRKsY0VEROR8DKwaCcMZKy4FEhEROQcDq0bCMMeKyetERETOwcCqkTBeCuSMFRERkTMwsGokuAkzERGR8zGwaiSYvE5EROR88rqbOEdZWRm2bNmC5ORkXLhwAcXFxViwYAFGjBhh0fuLi4uxbt06JCYmQqVSoXv37oiOjkbXrl1N2h4+fBibNm1Ceno6lEolRo4ciVdeeQVyec3Ds3LlSuzevRv9+vXDihUrbP6c9iKTSyGRSaDT6LgUSERE5CQNdsaqsLAQsbGxSE9PR0hIiFXv1Wq1mDdvHn766Sc888wzmDp1KvLz8zFz5kxkZGQYtT127Bj+8Y9/wMvLCzNnzsTAgQPx+eefIyYmpsbrX7x4EXv37oWrq6tNn62+uNx+MpBLgURERM7RYGes/Pz8sH37dvj5+eHixYuYMmWKxe89ePAgfv/9dyxduhSRkZEAgMGDB2PcuHHYtGkTFi1aJLRds2YNgoODsWrVKmGGysPDA19++SXGjBmDoKAgo2vrdDrExMRg2LBh+O2338R/UDtycZOjsqyKS4FERERO0mBnrFxdXeHn52fTexMSEuDr64tBgwYJx5RKJaKionD48GFUVlYCANLS0pCWloYnnnjCaNnv6aefhk6nw8GDB02uvX//fqSmpuL111+3qW/1SZ/AzqVAIiIi52iwgZUYly9fRufOnSGVGn+87t27o6KiQlgOvHz5MgCY5F35+/ujRYsWuHLlitHxsrIyrFu3DuPHj7c46MvJycGlS5eE/9LT0239WHXSJ7BXVVRBp9PV232IiIjIvAa7FChGXl4eevfubXJcHwzl5uYiODgYubm5Rsfvbqs/rxcbGwuFQoHnn3/e4r7s2rULsbGxJsdTU1Oh0ZjOLJWUlCA5Odni6xuq1FQAAHQ64Py5ZEjlEpuucy8SM25NFcfMNhw323DcrMcxs019jltoaGidbRplYKVSqcwmluuPqVQqABCWBGtqW1ZWJrzOyMjAtm3bsGjRIquS1kePHo3w8HDhdXp6OpYtW4aOHTuafUIxOTnZor84czJ8y1CUfgsAENKhM9yaNazk+vokZtyaKo6ZbThutuG4WY9jZhtnj1ujDKwUCoUQNBnSH1MoFADuBFQ1tdW3A4CPP/4YPXr0EJLhLeXv7w9/f3+r3mMrF4VBLStVFdzQdAIrIiKihqBR5lj5+vqaLOMBMFn6M1waNNdWf/7UqVM4fvw4xowZg8zMTOE/jUYDlUqFzMxMlJaW1tfHsZhh9XUmsBMRETleo5yx6ty5M86ePQutVmuUwH7hwgW4ubmhXbt2QjsAuHTpktG0YU5ODm7duoXRo0cDAG7evAkAeOutt0zudevWLbzwwguYMWOGVblX9YEbMRMRETnXPR9Y5eTkoLS0FG3atBFKJkRERODgwYNITEwUlu4KCgoQHx+P/v37C0uAHTt2RPv27fH9999j9OjRkMmqA5MdO3ZAIpEgIiICAPDAAw/gnXfeMbn3e++9h8DAQLz88svo1KmTAz5t7bgRMxERkXM16MDq22+/RUlJibBUd+TIEWH26Nlnn4WXlxc2bNiAffv2YevWrWjVqhUAIDIyEtu2bcPy5cuRlpYGHx8f7NixA1qtFpMmTTK6R3R0NBYsWIDZs2djyJAhuHbtGrZv345Ro0ahQ4cOAICAgAAEBASY9O/f//43mjdvjoEDB9bjKFjOhUuBRERETtWgA6utW7ciKytLeJ2YmIjExEQAwNChQ+Hl5WX2fTKZDCtXrsSaNWvw7bffQqVSoVu3bliwYAHat29v1LZ///5YtmwZYmNjERMTAx8fH4wfPx4TJ06st89VX+QGyetVKi4FEhEROVqDDqy+/vrrOtssXLgQCxcuNDnu7e2NefPmYd68eXVeY+DAgTbNOlnSP0fS7xUIAGruF0hERORwjfKpwKaKTwUSERE5FwOrRsQweZ1PBRIRETkeA6tGhMnrREREzsXAqhExXgrkjBUREZGjMbBqRFyMngrkjBUREZGjMbBqRIyWAhlYERERORwDq0ZEruCWNkRERM4kuo5VWloavvvuO1y8eBHFxcXQarUmbSQSCbZs2SL2VlQHObe0ISIicipRgVVSUhLmzJkDtVoNmUyG5s2bC/vtGdLpdGJuQxaSSiWQuUqhqdQysCIiInICUYHV+vXrodFoMHfuXAwfPtxsUEWO5eImh6aykkuBRERETiAqsEpJScGQIUPw+OOP26s/JJKLQoYKMHmdiIjIGUQlr7u5uUGpVNqpK2QP+jwrllsgIiJyPFGB1SOPPIKzZ8/aqy9kB/qNmKtUGmi1zG0jIiJyJFGBVXR0NEpKShATE4OKigp79YlEMKy+zlkrIiIixxKVY/X222/D3d0d27dvx969e9GuXTt4eHiYtJNIJPjoo4/E3IosdPdGzK7uoitqEBERkYVEl1vQKy8vx+XLl822k0gkYm5DVuBGzERERM4jKrBKSEiwVz/ITgyrr6tVLLlARETkSNzSppExXgrkjBUREZEj2TWwKi8vR05ODsrLy+15WbICN2ImIiJyHtGZzWq1Gl999RX27t2LzMxM4XirVq0wcuRIjB07Fi4uLmJvQxbiRsxERETOIyqwUqlUmDVrFi5cuACpVIq2bdvCz88Pubm5uHHjBjZu3IhffvkFH330ERQKhb36TLVw4UbMRERETiMqsPrf//6H5ORkDB48GFOnTkVAQIBw7ubNm1i3bh3i4uKwefNmvPrqq6I7S3WT86lAIiIipxGVY/Xzzz+jS5cuWLx4sVFQBQAtW7bEokWL0LVrV8TFxYnqJFnORWGQvM6nAomIiBxKVGCVlZWFvn371trmwQcfRFZWlpjbkBVYx4qIiMh5RG/CXFBQUGubgoICuLm5ibkNWcGFW9oQERE5jajAKjQ0FHFxcUhNTTV7Pi0tDT///DPuu+8+MbchK8gVhsnrXAokIiJyJFHJ6y+//DJOnDiBKVOm4PHHH0dYWBiaN2+O/Px8nD59Gnv37kVVVRXGjx9vr/5SHbgUSERE5DyiAquePXti0aJFeO+997B9+3bs2LFDOKfT6eDp6YmFCxeiZ8+eYvtJFjJ+KpAzVkRERI4kukBoVFQUHn74YRw+fBiXL19GWVkZPDw80KVLFwwYMAAeHh726CdZyGhLG+ZYEREROZTowAoAPDw8MHToUAwdOtQelyMRZC5SSCSATselQCIiIkfjJsyNjEQigfz2rBWXAomIiBzLqhmrffv2AQAGDRoEDw8P4bUlhg8fbl3PyGYubjKoy6u4FEhERORgVgVWy5cvh0QiwX333QcPDw/hdW10Oh0kEgkDKwfSb8RcxaVAIiIih7IqsJo/fz4AwM/Pz+g1NSwuXAokIiJyCqsCqxEjRtT6mhoGfS0rrUYHTZUWMjlT6YiIiBxB1G/cpKQkZGdn19omOzsbSUlJYm5DVmL1dSIiIucQFVjNmjULe/furbXN/v37MWvWLDG3ISsZ7RfIPCsiIiKHERVY6XQ6i9rUleBO9mW0rQ2fDCQiInKYek+++fPPP+Hp6VnftyEDhkuBVVwKJCIichirK6+/++67Rq8PHTqErKwsk3YajQY3b97E2bNn8fDDD9veQ7IaN2ImIiJyDqsDK8OcKolEgpSUFKSkpJhtK5FI0K1bN8yYMcP2HpLVuBEzERGRc1gdWG3duhVAde7U2LFj8dxzz2HMmDEm7aRSKby9veHu7i6+l2QVFwU3YiYiInIGqwOrwMBA4ef58+ejS5cuRsfI+bgUSERE5BxWB1aGWCC0YdJvwgxwKZCIiMiRRAVWeiqVChcvXkROTg7UarXZNtwr0HGM6lhxKZCIiMhhRAdW3333HTZu3IjS0lKz57kJs+PpN2EGuBRIRETkSKLqWCUkJCAmJgYtW7ZEdHQ0dDodwsPD8frrr+Ohhx6CTqdDREQE5s2bZ6/+kgVc3FjHioiIyBlEBVbffPMNmjdvjrVr1+L5558HAHTu3BkvvfQSVq5cibfeeguHDh1icruDuShYeZ2IiMgZRAVW165dQ3h4ONzc3IRjWq1W+Pmxxx7DAw88gNjYWDG3ISu5sI4VERGRU4gKrKqqqqBUKoXXCoUCxcXFRm1CQkJw5coVMbchK8mNlgI5Y0VEROQoopLX/fz8kJubK7wOCAgwCaKysrIgk8nufmutysrKsGXLFiQnJ+PChQsoLi7GggULLC7vUFxcjHXr1iExMREqlQrdu3dHdHQ0unbtatL28OHD2LRpE9LT06FUKjFy5Ei88sorkMvvDM2pU6dw4MABnD17Frdu3YKvry8eeOABvPbaa/D397fqszkClwKJiIicQ9SMVffu3XH58mXh9cMPP4zff/8dX375JVJTU7Fz504kJiaiW7duVl23sLAQsbGxSE9PR0hIiFXv1Wq1mDdvHn766Sc888wzmDp1KvLz8zFz5kxkZGQYtT127Bj+8Y9/wMvLCzNnzsTAgQPx+eefIyYmxqjdunXrcPr0aQwcOBAzZ87EkCFDEB8fj8mTJxsFlg2FVC6FVC4BwOR1IiIiRxI1YxUZGYkNGzYgMzMTrVq1wvjx45GQkIBPP/0Un376KXQ6HTw9PTF16lSrruvn54ft27fDz88PFy9exJQpUyx+78GDB/H7779j6dKliIyMBAAMHjwY48aNw6ZNm7Bo0SKh7Zo1axAcHIxVq1YJM1QeHh748ssvMWbMGAQFBQEApk+fjl69ekEqvROHPvTQQ/jrX/+K7777Dq+//rpVn88RXNzkUJWoWW6BiIjIgUQFVoMGDcKgQYOE10qlEv/973+xe/du3LhxAwEBARg2bBhatGhh1XVdXV3h5+dnU58SEhLg6+tr0q+oqCgcOHAAlZWVcHV1RVpaGtLS0vDmm28aLfs9/fTT+OKLL3Dw4EFMmDABABAWFmZyn7CwMDRr1gzp6ek29bO+ubjJqgMrLgUSERE5jF0qrxvy9vbGiy++aO/LWuzy5cvo3Lmz0ewSUL1s+f333yMjIwPBwcHCEubdeVf+/v5o0aJFnQn3ZWVlKC8vh4+PT63tcnJyjJYLHRWIyW9vxMylQCIiIscRFVjt27cPbm5uwpKbOVevXsWVK1ccVnk9Ly8PvXv3NjmunwHLzc1FcHCwEOyYmxm7OynfnG+++QZqtRqDBw+utd2uXbvMlptITU2FRmM6m1RSUoLk5ORar2mJKl0lgOrK6+fPn4dEIhF9zYbMXuPWlHDMbMNxsw3HzXocM9vU57iFhobW2UZUYLV8+XJIJBIMGDAA//znP6FQKEzaJCYm4rPPPnNYYKVSqeDq6mpyXH9MpVIBACorK42O3922rKysxnskJSUhNjYWUVFRePDBB2vtz+jRoxEeHi68Tk9Px7Jly9CxY0ezTykmJydb9BdXl7TmJSi5UR0cdgnualSNvTGy17g1JRwz23DcbMNxsx7HzDbOHjfRv22VSiUOHTqEN954A++++y58fX3t0S+bKRQKIWgypD+mD/70AVVNbc0FiUB1YPTWW2+hU6dOFm3V4+/v75SSDPK7NmJu7IEVERFRQyCq3AIAPPXUU5gyZQouX76Mv/zlL7h69ao9+mUzX19fs8t4dy/9GS4NmmtrbokwOzsbs2fPhqenJ1asWAEPDw97dt2uXLgRMxERkcOJDqwA4KWXXsKSJUtQVFSE6dOn4+jRo/a4rE06d+6MK1euGG2tAwAXLlyAm5sb2rVrJ7QDgEuXLhm1y8nJwa1bt4TzeoWFhZg9ezbUajXef//9BlkY1JA+eR0A1ComsBMRETmCXQIrAIiIiEBMTAzc3NywcOFCfPPNN/a6dI1ycnKQnp6Oqqo7gUNERATy8vKQmJgoHCsoKEB8fDz69+8vLAF27NgR7du3x/fff2+URL5jxw5IJBJEREQIx8rLyzF37lzk5ORg5cqVQnDWkBnuF8htbYiIiBzDrok33bp1w/r16zF//nysXr0aGRkZaNasmU3X+vbbb1FSUiIs1R05cgQ3b94EADz77LPw8vLChg0bsG/fPmzduhWtWrUCUF20dNu2bVi+fDnS0tLg4+ODHTt2QKvVYtKkSUb3iI6OxoIFCzB79mwMGTIE165dw/bt2zFq1Ch06NBBaPevf/0LFy5cwMiRI5Genm5UMsHd3R0DBw606TPWJ27ETERE5Hh2z2gOCAjA6tWr8fbbb2Pnzp1wc3Oz6Tpbt25FVlaW8DoxMVGYhRo6dCi8vLzMvk8mk2HlypVYs2YNvv32W6hUKnTr1g0LFixA+/btjdr2798fy5YtQ2xsLGJiYuDj44Px48dj4sSJRu1SUlIAAHv27MGePXuMzgUGBjbIwMpwI2bmWBERETlGvTwq5uHhgXfffRcff/wxtm/fblMNpa+//rrONgsXLsTChQtNjnt7e2PevHkWPbU3cODAOgMjS/rS0HApkIiIyPFEBVYJCQk1npNKpZg1axaGDRsm1I4ix5EbPhXI5HUiIiKHqPfiRt27d6/vW5AZhnWrOGNFRETkGHZ7KpAaFqM6VtyImYiIyCGsmrGKiIiAVCrF559/jnbt2iEiIsKi/CmJRIL4+HibO0nWM05e51IgERGRI1gVWPXu3RsSiUTY7kX/mhoeJq8TERE5nlWB1ccff1zra2o4WMeKiIjI8Zhj1UgZLgVWMceKiIjIIRhYNVLchJmIiMjxrFoKjI2NtekmEokEEyZMsOm9ZBu5K+tYEREROZpVgdWmTZtsugkDK8eTSCWQK2SoUmmYvE5EROQgVgVWMTEx9dUPqgcubtWBFZcCiYiIHMOqwCosLKyeukH1wcVNjvLCSj4VSERE5CBMXm/E5LdLLvCpQCIiIsew216BGo0GhYWFUKvVZs8HBATY61ZkIf1GzBq1FlqNFlIZ42giIqL6JDqwunTpEjZs2IAzZ86gqsr8khO3tHEOF4VxLStXDwZWRERE9UlUYHXlyhXMmDEDMpkMffv2xS+//IKQkBD4+vri8uXLKCgoQFhYGAIDA+3VX7KCcfV1DVw9XJzYGyIiosZPVGD12WefAQDWrVuHDh06ICIiAgMHDsTEiROhUqmwevVqHDx4EPPnz7dLZ8k6LtyImYiIyKFErQ2dO3cO4eHh6NChg3BMp9MBABQKBWbNmgV/f3988sknojpJtpFzI2YiIiKHEhVYlZaWonXr1sJruVyO8vLyOxeXShEWFoZTp06JuQ3ZyGgpkNXXiYiI6p2owEqpVKK4uFh47evriz///NOoTWVlJSoqKsTchmxkmLzOIqFERET1T1Rg1aFDB/zxxx/C6549e+LEiRP4/fffAQBpaWmIj49HUFCQuF6STeQGGzGzlhUREVH9E5W83q9fP/znP/9BTk4O/P39MW7cOCQmJmLGjBnw9vZGSUkJtFotxo8fb6/+khWMnwrkUiAREVF9ExVYPfnkk4iKioK3tzcAICQkBB9++CG++OIL3LhxA127dsWzzz6Lfv362aWzZB25G5cCiYiIHElUYCWXy+Hr62t0rGfPnli5cqWoTpF9uPCpQCIiIodiKe5GjHWsiIiIHMsuewUWFBQgLS0NOTk5NW5rM3z4cHvciqxgmLyuZvI6ERFRvRMVWKlUKnz00Uf48ccfodGY/8Wt0+kgkUgYWDmB0VIgAysiIqJ6JyqwiomJwZ49exAcHIyIiAj4+flBJpPV/UZyCLmCS4FERESOJCqwSkhIQNeuXbF27VoGVA0Qk9eJiIgcS1Tyularxf3338+gqoFiHSsiIiLHEhVYdevWzWQLG2o4pHIpJDIJANaxIiIicgRRgdVrr72GEydO4JdffrFXf8iOJBIJXG4/GcjkdSIiovonKseqR48eWLVqFRYsWIAuXbogODgYnp6eJu0kEgkmTJgg5lZkIxc3OSrLqrgUSERE5ACiAqvCwkKsX78excXFOHXqFE6dOmW2HQMr55FzxoqIiMhhRJdbOHfuHB555BEMGTKE5RYaIH0Cu7pCI9QUIyIiovohKrA6fvw4wsLCsGLFCnv1h+xMvxGzTquDRq2F3JWBLxERUX0Rlbyu0+nQrVs3e/WF6gFrWRERETmOqMCqZ8+eSElJsVdfqB64GFZfVzGBnYiIqD6JCqyio6Nx8eJFfPvtt/bqD9mZ3KhIaMObsdJqtDj1zWWc3p4CTZXW2d0hIiISRVSO1VdffYXg4GD8+9//xrfffltjuQUAmD9/vphbkY0a+kbMyT+m4/T2qwCA8qJK9J8Q6uQeERER2U5UYLV3717h5+vXr+P69etm20kkEgZWTtKQN2LW6XS48FOG8Dp5fzpaBvsgZEAbJ/aKiIjIdqICq61bt9qrH1RPGnLyetbFPBRmlhodO7zxPHzbN4Nve28n9YqIiMh2ogKrpKQk+Pr64qGHHrJXf8jOGvJGzBfj7sxWKdt4oeB6CapUGvz04W946p3+cPVwcWLviIiIrCcqeX3FihU4fvy4vfpC9cD4qcCGM2NVUVyJ1F+zAAAKLxc88fYj8OvQDABQlF2GhLVnodPqnNlFIiIiq4kKrPz8/KDRNJxf1mSqoT4VeOXQdWirqgOnzoPaQOHpgkffvB8Kr+pZqvRTN3Hm+2vO7CIREZHVRAVW4eHhOHnyJCorK+3VH7IzF7c7M1ZVDWQpUKfT4eLPd5YBu0W1AwB4t/BA5PTewO1dd059fRnXz+U4o4tEREQ2ERVYvf7663Bzc8Nbb72F1NRUe/WJ7Ei/CTPQcJYCsy/lo/BGddJ6YLfmULbxEs61690CDzwbAgDQ6YD4/yShJKfcKf0kIiKylqjk9ddeew1qtRopKSn49ddf4erqCqVSabLRr0QiwZYtW0R1lGzTEJ8KNJqtGtzO5Pz9T4XgVkohMpJuoaJYjbiPTmPU4ochc+E+h0RE1LCJ3itQLpejZcuWaNmyJZRKpXDc8D+tlhW1ncVwKbAhPBVYUVKJ1ON3ktY7PBRo0kYilSAyuje8W7oDAG5dK8TRzy84tJ9ERES2EDVj9fXXX9urH1RPjJLXG8BSYMqhG9CoqwPtzgPbQO5qfhZK4eWCR2c9gF2Lj0Kj1uJiXAZahijRJaKtI7tLRERkFVGBVX0qKyvDli1bkJycjAsXLqC4uBgLFizAiBEjLHp/cXEx1q1bh8TERKhUKnTv3h3R0dHo2rWrSdvDhw9j06ZNSE9Ph1KpxMiRI/HKK69ALpfbfM2GwkVhuBTo3Bmru5PWu5pZBjTk16EZwl+7D4nrzgEAjvz3PHyDvOHfwade+0lERGQrUUuBhqqqqpCamorff/8dqampqKoS90u8sLAQsbGxSE9PR0hIiFXv1Wq1mDdvHn766Sc888wzmDp1KvLz8zFz5kxkZGQYtT127Bj+8Y9/wMvLCzNnzsTAgQPx+eefIyYmxuZrNiRyo6VA585YZV8uQMH1EgDVSevNDZLWa9JlUFt0G1IdgGnUWsR9eBoVJXwKlYiIGibRM1ZFRUVYt24dfvrpJ6OyCwqFAo8++iimTJkCHx/rZxj8/Pywfft2+Pn54eLFi5gyZYrF7z148CB+//13LF26FJGRkQCAwYMHY9y4cdi0aRMWLVoktF2zZg2Cg4OxatUqYYbKw8MDX375JcaMGYOgoCCrr9mQSKUSyFyl0FRqnR5YXYz7Q/i5rtkqQ/1e6Y7ctCLculqI4lvlSFhzFkPnPAiJVFL3m4mIiBxI1IxVUVERpk6dih9++AEKhQJ9+vTBsGHD0LdvX7i6umL37t2Ijo5GUVGR1dd2dXWFn5+fTf1KSEiAr68vBg0aJBxTKpWIiorC4cOHhQAwLS0NaWlpeOKJJ4yW/Z5++mnodDocPHjQ6ms2RPrlwCqV85YCjZLWPV3Q0UzSek1kLjIMmXU/3Lyri4dmJN3C6R0p9dJPIiIiMUTNWH322We4fv06xo4di4kTJ8Ld3V04V1FRgc8++wybN2/G559/jhkzZojurKUuX76Mzp07Qyo1jhu7d++O77//HhkZGQgODsbly5cBwCRHyt/fHy1atMCVK1esvubdcnJykJubK7xOT08X/fmsJXeTA8Vqp85YpRy+k7QeMrB1jUnrNfHyc0fUG2HYt/wEdDrgt29T0KKTEu3CWtRHd4mIiGwiKrA6fPgwwsLCMG3aNJNzbm5u+Mtf/oLk5GQcOnTIoYFVXl4eevfubXJcPwOWm5uL4OBgIeAxNzPm5+dnFBBZes277dq1C7GxsSbHU1NTzW4HVFJSguTk5Bo+mW20qJ6pqixX2/3altDpdDizN1N47RJUaVs/pEC7SCX+iC8AdEDcx7+h12uBcGvuUi/j1thxzGzDcbMNx816HDPb1Oe4hYaG1tlGVGCVm5uLRx99tNY2PXr0wPnz58XcxmoqlQqurq4mx/XHVCoVAAjLdzW1LSsrs/qadxs9ejTCw8OF1+np6Vi2bBk6duxo9mnC5ORki/7irJHiU4iyWwXQqnXo1q07pA7OTcq+nI/yW9X5VQFdmqNPRJjN1+reXYefik8j/WQ2qiq0SP+hBE+8/Qgup1yy+7g1dvXxXWsKOG624bhZj2NmG2ePm6jAytPTE1lZWbW2ycrKgqenp5jbWE2hUJjNedIfUygUAO4ERTW11bez5pp38/f3h7+/v5WfwL4Ma1lVqTRwdXdslY26Kq1bQyKRIGJqT+x4qxhFWWXITSvCL5vOw28Aq7ITEZHziUpeDwsLw8GDB3Hy5Emz50+dOoWDBw8iLCxMzG2s5uvra7SMp3f30p/hMp65toZLhJZesyFy5kbMqhI1rh2tXgZ09ZCj4yOWJ63XxNWjuniofh/EywnXkXm8GDqdTvS1iYiIxBA1dTFx4kQcPXoUc+bMwSOPPILevXvD19cXeXl5SEpKwvHjx6FQKDBx4kQ7ddcynTt3xtmzZ6HVao2SzS9cuAA3Nze0a9dOaAcAly4ZLyPl5OTg1q1bGD16tNXXbIicuRFzyhHLKq1by7e9Nwa+3gPx/zkDAEj7KR8/FyUhfPJ9cPMyXbIlIiJyBFGBVceOHfH+++9j+fLlOHr0KI4ePQqJRCLMHLRu3RoLFy5Ex44d7dJZc3JyclBaWoo2bdoIJRMiIiJw8OBBJCYmCjWnCgoKEB8fj/79+wtLgB07dkT79u3x/fffY/To0ZDJqn/p79ixo3rJKSJCuI+l12yInLURs7WV1q0V3L818v4oxpld1wAAqb9mITslH5HTeqP1fQ1nBlGn06G8QIWCzFIUZpai8EYpCrOq/6wsr4LCywVu3q63/6v+WWHws+E5F3e5ySbnRETUcIhOtunVqxc2b96Mc+fO4cqVKygtLYWnpyc6d+6Mnj17ivol8O2336KkpERYbjty5Ahu3rwJAHj22Wfh5eWFDRs2YN++fdi6dStatWoFAIiMjMS2bduwfPlypKWlwcfHBzt27IBWq8WkSZOM7hEdHY0FCxZg9uzZGDJkCK5du4bt27dj1KhR6NChg9DOmms2NM7aiPlWSgHyM4oBAC27KOHbztvu9+g7tiv8O/kgYd0ZVFVoUZanwp7/+xU9H++IPs91hszFcblXVSpNdcB0O3gSAqnMUqjLax73iqJKFKLUontIZRKjwEvuKoNULoVUJhH+lBm+lksglVX/KZNLIZFJIbt9LDu7GJLMP6DT6gAdoNXqAJ0OWi0A7e1N1LUGm6prAZ1WV/2fDgD0fwK4axVWWJa18Pjdaj1d14pvHUvCdS4Y19EgLy8PeUd/r+sqFl3btKu6Os7Xdu06PrfhaR2Mls51OuMG1a8BXfX/Mdc1q+igQ1FRMW54/3bnUsJ1dcaXv6tvou8t9i/cifcuKSlFmmeJ2WZ3j5FOd/cP4tR5mTqHTdQXRpTy8nKo+rvi/qes27XFXuySxSyRSNCrVy/06tXLHpcTbN261Sg5PjExEYmJiQCAoUOHwsvL/JYoMpkMK1euxJo1a/Dtt99CpVKhW7duWLBgAdq3b2/Utn///li2bBliY2MRExMDHx8fjB8/3mT50pprNjTOWgq0Z9J6bTo+FIgC7U1kxlXgxvlcQAec252KG7/nInJ6b4u2zrHFzZQCXP3lBvL/LEFRVilKciqser9cIYObtytUpZVQl1v296LV6FBWoEJZgfmnUK11FXl2uU5Tk40SZ3fhnpSHsrobkZFCWPf/V6haUZbzvmsSHTN+HerSpUt4/fXX8cknnzis3MLZ3dfw6+ZLAIAhM8PQ8eFWdr2+OapSNTZP/xmaSi1cPeQYt3qwUYBnb8nJyejerTvO7U3DyS2XoNVUf61lrlI8/FI3dH+0vV2W0LQaLdJOZOP3PWm4mVJQ9xskgLe/O3xae8Kn1Z3/lK084eHrJvRJo9agokSNiuJKqIqr/7zznxoVRZW3z91+XVwp5K4REZGxzoPaIGKqfSd7LCV6xqqgoAB79uzBxYsXUVJSYrbopUQiwUcffST2VmQjFydsxHz1yA1oKm9XWh/Qpl6DKj2JVIJej3dEm/v8EL86CQXXS6Gp1OKXTcnISLqFQVN6wt3HfFmMuqhK1bj0cwbO/5iO0lzTf0G6esjh09oTylZe1cHT7UCqWYCHRQn7MhcZPJvL4NnczaL+6HQ6aCq1qFJroK3SQavRQlulhbZKB42m+k9tlfb2cf3POmhu/6mt0uL6n9fRpk2b6j0XpdX/O5VIJZBIcPtPCSRSg5/1x6USQAIhKDSJV2s4Lry2MMCttVkd16jzDnU1qOX8tWupCO7UyW7XlpgeMH5pzb8HLBkXib6pxOCg/q0Sg78ng9fGTW1y+coVdOnSxfhad/fBoKOSuw+KuLnJGJs2qP10faY11nLxSxcvolv3bnc1N2hvwf/GRHW9zu+yyP8d1tOb7+k6VlevXsWsWbNQXFz7o+5MtnUuwzpWjgisdDodLsQ5ZhnQHL8OzfDUsnD8uvkikg9UFybNOH0L3847jIipvazaBqcwsxTn96fjcsKfqLprGbV5O2/0HNEB7e5vAbdmrg79nkskEsgVMlEBa1VyEbqEtrVjr5qGm2Wu8OvQzNnduOcosuXw9LXsHw5UTaaQGv3DmCxT/Q9B58Udov7GVq9ejaKiIrzyyit4/PHH0aJFC+HJOmo4XBSGBULrP3n91tXCO0nrIUr4trd/0npd5AoZ+r96H9qGtUDi+nPVS2lFldi/8iRChwbhoXFda5xJ0ul0yEzOw+970/DH6ZsmiZTt7m+BHiM6oPV9fvxHAxERGREVWJ0/fx4DBgzAa6+9Zq/+UD2QO3gp0FFJ65Zof39LPLNiAA6tP4eMpFsAgOQf03HjfC6iZvSGX9CdmQeNWoOrv2Ti931pyEsvNrqOXCFD50Ft0GN4B/i0cuxOAkREdO8QFVjJ5XK0adPGXn2hemI8Y1W/gVVl2Z1K6y7u9qm0LpaHjwJD//4gLvz0B45/eREatRYF10uw85+/oO8LXREc3hoX4/5A8oE/UFFkvG2Rp68bQocFoWtUWxYeJSKiOokKrMLCwnDp0iV79YXqiSPrWKUcuSEEbyEDWjeY/ACJRILQx4LQqrsv4lefQV56MbRVOhz/30Uc33zRZLmvRbAPeozogI4PBUIqF7XzExERNSGifmNER0fj2rVr+Oqrr+zVH6oHLg5KXr+70rqzlwHNad7WG08u7YeejxvsBnA7qJJIgI4PB+KJtx/Bk//qj+D+rRlUERGRVURNJ3zxxRfo1KkT1q9fj127diEkJASenubzT+bPny/mViSC8VOB9TdjlXOtUMhNahHiY5S/1JDIXGR4+KVuaNvbH4c/+R2VZVXoEtkWoUOD4N3C3dndIyKie5iowGrv3r3Czzdu3MCNGzfMtpNIJAysnMhFceevuT5zrBr6bNXd2vTwx/MfRhjVZCIiIhJDVGC1detWe/WD6pHMVVpdbE1Xf5swV5apcfUXfdK6DJ0eqf/q7vYgkTKgIiIi+xEVWAUG2vbEV3Z2NjIzMxEWFibm9mQhiUQCFzcZ1OUaqOupjtXVo5l3ktbD2zSYpHUiIiJHckpm7p49ezBr1ixn3LrJ0i8H1kfyuk6nw0UnVlonIiJqKPjIUxOhT2Cvj6XAnNQi5KYVAQBadPLhdh9ERNRkMbBqIvRLc/XxVKDhbFXXIZytIiKipouBVROhr2Wl1eigqdLa7bo6nQ6pxzOFewT3uzeS1omIiOoDA6smQm64rY0dlwPV5VWoLKueBWsRrGTSOhERNWkMrJoIw1pW9nwysCxfJfzs0Vxht+sSERHdixhYNRHyetrWpqyAgRUREZEeA6smwnCJrsqOCexl+RXCzx5KN7tdl4iI6F7EwKqJqK+NmLkUSEREdIdTAitPT0+0bNnSGbdusuprI2ajpUAlAysiImranBJYPf/88/j666+dcesmy8XwqUA7bsTMGSsiIqI7rHo2PjY21qabSCQSTJgwwab3kn3I3QyfCrRn8jpzrIiIiPSsCqw2bdpkckwikQg/63Q6k+M6nY6BVQNgNGNl1+T16hkrVw+5Ua0sIiKipsiqwComJsbk2JYtW3Dy5EkMHToUvXr1gq+vL/Ly8nDmzBkcOHAAffv2xQsvvGC3DpNtDJ8KtFfyuk6nE3Ks3JlfRUREZF1gFRYWZvR69+7dSEpKwieffIKOHTsanRs+fDjGjBmD6OhoDBgwwOS95Fj1UcdKXV4l5Gt5NucyIBERkajk9W+++QZDhgwxCar0goODMWTIECaqNwD1UcfK8IlAzlgRERGJDKyuX7+OZs2a1dqmWbNmuHHjhpjbkB0Y5ljZK3mdVdeJiIiMiQqslEoljh8/bpS0bkir1eL48ePw8fERcxuyA8OlQHttwmxUaoEzVkREROICq0cffRRXr17F/PnzkZKSYnTuypUrmD9/PlJTU/HYY4+J6iSJVx+bMBvPWDHHioiIyKrk9bu9+uqruHz5Mo4dO4bjx4/Dzc0NSqUSBQUFqKiogE6nw4MPPoiJEyfaqbtkq/pIXjfeJ5AzVkRERKICK4VCgVWrVmHfvn3Yt28frl27huzsbHh5eaFbt24YNmwYhg8fblTripxDJpdCKpdAW6WzW/J6OXOsiIiIjIgKrIDqQqAjRozAiBEj7NEfqkcubnKoStR2m7EqZY4VERGREafsFUjO4XJ7OdBeTwXqZ6xc3OVG5RyIiIiaKrv8NqyqqkJGRgZKSkqg0Zj/pc0Coc6n33LGbnWsbudYcbaKiIiomqjASqfTYePGjfjuu+9QVlZWa9uDBw+KuRXZgf7JQLVKI+zhaKvK8iphSZH5VURERNVEBVafffYZvvjiC3h5eWHYsGFo0aIFZDJuxNtQCU8G6gBNpVbUpslGieucsSIiIgIgMrDas2cPAgIC8Mknn7AI6D3AeCPmKlGBVVmBQakF1rAiIiICIDJ5PS8vDwMHDmRQdY9wsWMtK1ZdJyIiMiUqsAoMDERpaam9+kL1TG7H6utGgRVzrIiIiACIDKyeeuopHD16FPn5+fbqD9UjFzvuF8gNmImIiEyJyrEaMGAAzp49i+joaEyYMAFdunSBp6en2bYBAQFibkV2YJhTpRZZcsF4OxvmWBEREQEiA6sXXngBEokEOp0O7777bo3tJBIJ4uPjxdyK7MBoxkpkkVDOWBEREZkSFVgNGzaM+wDeQ4yfCrRP8rqLu4xV14mIiG4T9Rtx4cKF9uoHOYDczY5LgQX6qutcBiQiItLjXoFNiOHMkpjkdXVFFdTl1e93Z6kFIiIiAQOrJsTFMHldRI6VYakFT+ZXERERCUQnr1tCIpFgy5YtYm5FdmCvpwINE9c5Y0VERHSH6E2YzSktLUVJSQkAwM/PD3I5k5sbAqOlQFEzVtzOhoiIyBxREc/XX39d47nMzEz85z//QX5+Pj744AMxtyE7kdtpS5sybsBMRERkVr3lWLVq1QpLlixBcXExPvnkk/q6DVnBOHndPkuBrGFFRER0R72u0cnlcvTp0wfx8fF44403rHpvZWUlNm7ciB9//BHFxcUIDg7G5MmT0bdv3zrfGxcXh82bNyM9PR3u7u4IDw/H1KlToVQqjdrl5eVh/fr1OHr0KMrKyhAUFITx48cjKirK5JonT57EF198gWvXrkGj0aBt27Z49tlnMWzYMKs+lzPZaxNmbsBMRERkXr0/FahSqVBUVGT1+5YvX46vv/4ajz32GP76179CKpVi7ty5OHv2bK3v27FjB5YsWYJmzZph+vTpeOKJJ/Dzzz/jzTffhEp1JyAoLS3F9OnTkZCQgNGjRyM6OhoeHh5YvHgxDhw4YHTNw4cPY/bs2VCr1Zg4cSImT54MhUKBd955p9bl0IZG7mr4VKDtM1blRjNWzLEiIiLSq9cZqzNnziAuLg7t27e36n3JycmIi4vDtGnT8OKLLwKorvI+ceJErF27FmvXrjX7PrVajQ0bNqB379744IMPhKrwPXr0wPz587F79248++yzAIBdu3bh+vXr+PDDD/Hggw8CqN5UeurUqVi9ejUiIyPh4uICAPjuu+/g5+eHjz76CK6urgCA0aNH4+WXX8bevXvx/PPPWz84TiCRSiBXyFCl0oiqY1V6O3ldrpDB1Z0PJhAREemJ+q04c+ZMs8c1Gg1ycnKQlZUFAJgwYYJV101ISIBMJsPo0aOFYwqFAo8//jg2bNiA7Oxss5s6X7t2DSUlJRg8eLDRVjv9+/eHu7s74uLihMDqzJkzUCqVQlAFAFKpFFFRUVi7di2SkpKEZceysjJ4e3sLQRVQvczp4+Nj1edqCPSBlZilQP2MFfOriIiIjIkKrJKSkswel0gk8Pb2Rt++ffH8889blBdl6MqVK2jbti08PT2Njnfv3h0AkJKSYjawUqvVAKqDsLspFApcuXIFWq0WUqkUarXabDs3t+qlrUuXLgn9DgsLw+bNm/Hpp59i+PDhkEgk+Omnn3Dp0iW8/fbbtX6WnJwc5ObmCq/T09NrbV/fXNxkqCgCqmxcCqxSaVBZVv1e5lcREREZExVYJSQk2KsfRnJzc+Hn52dyXH8sJyfH7Pvatm0LiUSCc+fOYeTIkcLxP/74AwUFBQCA4uJi+Pj4oH379jh16hSysrIQGBgotNXncBneY8KECcjMzMQXX3yBzz//HEB1ALZ06VIMHDiw1s+ya9cuxMbGmhxPTU2FRmM6a1RSUoLk5ORarymGBtVBUWV5lU33qchTCz9XSVX12ldr1Pe4NUYcM9tw3GzDcbMex8w29TluoaGhdbZpkAkyKpVKyG8ypF+KM0xCN6RUKhEVFYV9+/YhKCgIgwYNwq1btxATEwO5XI6qqirhvaNGjcLOnTuxePFizJgxA76+voiPj8ehQ4dM7uHi4oJ27dohMjISgwYNgkajwffff49ly5bhgw8+wH333VfjZxk9ejTCw8OF1+np6Vi2bBk6duyIrl27mrRPTk626C/OVinKQpTdLIC2SoduXbtBKrPu+YWsi3n4DTcAAIFBLREa2r0+umm1+h63xohjZhuOm204btbjmNnG2eNmt8CqqqoKGRkZKC0thaenJ9q1a2dzxXWFQiEs6xmqrKwUztdkzpw5UKlUWLNmDdasWQMAGDp0KFq3bo3ExES4u7sDAIKDg7Fo0SKsWrUK06dPBwD4+vrijTfewKpVq4R2APDRRx8hOTkZn376KaTS6kBk8ODBeOWVV/Dxxx9j/fr1NfbH398f/v7+Vo5A/XFRGFdfd/WwLrBiDSsiIqKaiQ6sioqKsG7dOvz0009C4ANUBz+PPvoopkyZYnWSt5+fH27dumVyXJ+rVFug4uXlheXLlyM7OxuZmZkIDAxEYGAgpk2bBqVSCW9vb6FtZGQkwsPDkZKSAq1Wiy5duuD06dMAgHbt2gGoztv64YcfMG7cOCGoAqqT1x9++GFs374darXa7AxbQ3R3LStXD+v6bbSdDXOsiIiIjIgKrIqKijB16lRcv34dzZo1Q69eveDn54e8vDxcvHgRu3fvRlJSEtauXYtmzZpZfN2QkBCcPn1amP3S06+ZhoSE1HmNgIAAIcG9uLgYly9fRkREhEk7FxcXISkeAE6dOgUA6NOnDwCgsLAQGo3GbD6URqOBVquFVqu1+LM5m9iNmMtYw4qIiKhGogqEfvbZZ7h+/TrGjh2Lr7/+Gu+//z4WLFiA9957D9988w3GjRuHP//8U0j4tlRkZCQ0Gg127dolHKusrMSePXsQGhoqBEzZ2dkWPWW3YcMGaDQaPPfcc7W2y8jIwM6dO9G/f39hxqp58+bw8vLCoUOHjJYny8rKcOTIEbRv377WpcmGRuxGzKy6TkREVDNRM1aHDx9GWFgYpk2bZnLOzc0Nf/nLX5CcnIxDhw5hxowZFl83NDQUUVFR2LBhAwoKCtCmTRvs27cPWVlZmDdvntDunXfeQVJSEhITE4VjX375JVJTUxEaGgqZTIZDhw7hxIkTmDx5stHMFAC8/PLLiIqKQsuWLZGZmYmdO3eiWbNmmD17ttBGJpNh7Nix+PTTTzF16lQMGzYMWq0WP/zwA27duoW33nrLmiFzOrEbMRsFVsyxIiIiMiIqsMrNzcWjjz5aa5sePXrg/PnzVl974cKFCAgIwP79+1FSUoJOnTphxYoVCAsLq/V9wcHBOHToEI4cOQKtVovg4GAsWbLE7P5/ISEh2LNnD/Lz8+Hj44OoqChMmjQJzZs3N2r3yiuvoFWrVti2bRtiY2OhVqsRHByMpUuXIjIy0urP5kyGOVa2bMRcVnCn6roLq64TEREZEfWb0dPTU6iuXpOsrCyTQp+WUCgUiI6ORnR0dI1tPv74Y5Nj/fr1Q79+/Sy6x+LFiy3uz2OPPYbHHnvM4vYNleFTgWoRS4EeSoVRdXsiIiISmWMVFhaGgwcP4uTJk2bPnzp1CgcPHqxzlokcx/ipQOtmrKoqDaqucxmQiIjIhKgZq4kTJ+Lo0aOYM2cOHnnkEfTu3Ru+vr7Iy8tDUlISjh8/DoVCgYkTJ9qpuySW3CB53docK8P8KncmrhMREZkQFVh17NgR77//PpYvX46jR4/i6NGjkEgk0Ol0AIDWrVtj4cKF6Nixo106S+K5KAxzrKwNrO7UsPJkqQUiIiITorOPe/Xqhc2bN+PcuXO4cuWKUHuqc+fO6NmzJ/NwGhijpwKtzLEyrGHFGSsiIiJTogKrd999F506dcLzzz+PXr16oVevXvbqF9UTozpWVuZYsdQCERFR7UQlr//000/Iz8+3V1/IAVzsNGPF4qBERESmRAVWrVu3Fvbvo3uD3LDcgtUzVgb7BDLHioiIyISowGrkyJE4evSo2Q2TqWEyLhDKGSsiIiJ7EpVjFRERgdOnTyM6OhovvvgiunXrBl9fX7MJ6/r9/ci5xGzCXH47sJK5SuHqwarrREREdxP123Hs2LFCeQVzVdD1JBIJ4uPjxdyK7ETmIoVEKoFOq7O5jhWrrhMREZknKrAaNmwYf8HeYyQSCVzcZKgsq0KVFcnrVZUaqErVAJhfRUREVBNRgdXChQvt1Q9yIPntwEqtsnwpsJz5VURERHUSlbxO9yb9RszWJK8bJa6zhhUREZFZDKyaIP2TgeoKjbD9UF2MSi1wxoqIiMgsUUuBL7zwQp1tpFIpPDw80L59ewwcOBCDBw8Wc0uyA/1GzDqtDhq1FnJXWR3vuHvGijlWRERE5ogKrHQ6HTQaDXJycgAAMpkMPj4+KCwshEZTvczk7++P/Px8pKSkID4+Hrt378aKFSvg4uIivvdkk7s3YrYosMpnjhUREVFdRAVWGzduxOzZs9G+fXtMnjwZoaGhQvmF5ORkbNy4ESUlJYiNjUVhYSH+85//4NixY9i6dSvGjx9vr89AVrp7I2ZL5p+YY0VERFQ3UTlW69atQ2VlJVatWoX77rtPKL0gkUhw33334b333kNlZSXWr1+Ptm3bYsmSJQgICEBcXJxdOk+2MdqI2cInA41zrLgUSEREZI6owOrIkSN45JFHIJWav4xMJsMjjzyCw4cPAwAUCgUeeOABXL9+XcxtSSQXo+rrlj0ZqJ+xkrlI4erJqutERETmiAqsSktLUVZWVmeb0tJS4bWPj4+YW5IdyN2s34iZVdeJiIjqJiqw6tChA3766SfcuHHD7PkbN24gLi4OHTp0EI7dvHkTSqVSzG1JJGs3YtaoNVCVsOo6ERFRXUSt6YwfPx6LFi3CpEmTMGrUKPTo0QPNmzdHfn4+fv/9d/zwww8oLy8XEtXVajVOnDiBvn372qXzZBvDwMqSGasyVl0nIiKyiKjAKiIiAnPnzsW///1vfPPNN9i2bZtwTqfTwd3dHXPmzEFERAQAoKKiAnPnzkXHjh3F9ZpEkSuMnwqsi2GpBXc+EUhERFQj0VnIjz/+OCIiInD48GGkpKSgrKwMHh4eCAkJwYABA+Dl5SW09fb2xsCBA8XekkQyeirQgqVAwxkrTwZWRERENbLL411eXl4YPnx4jec1Gg1ksrqLUJJjGD0VaEG5BaMZKy4FEhER1UhU8vp3331XZxuNRoMlS5aIuQ3ZmfFTgZYsBRrUsGLyOhERUY1EBVYff/wxDh48WON5rVaLJUuWIDExUcxtyM6sfSqQyetERESWERVY9ezZE8uWLcNvv/1mck4fVCUkJODpp58WcxuyMxcr61gZ7RPIHCsiIqIaiQqs3n33XbRr1w5vvfUWrly5IhzXarX417/+hYMHD+Kpp57CzJkzRXeU7MfqpwINqq4rPLl5NhERUU1EBVaenp54//334eXlhb///e+4ceMGdDodli5dip9//hlPPvkk3nzzTXv1lezE6qXA2zlW7qy6TkREVCtRgRUA+Pn5YdWqVdBqtZg9ezYWL16M+Ph4jBo1Cn/729/s0UeyM7kVTwVqqrR3qq4zv4qIiKhWogMrAGjXrh1WrlyJ/Px8JCYmYtSoUfj73/9uj0tTPZDKpJC5VP/V1zVjVV7A/CoiIiJLWVXHKjY2ttbz3bt3R0pKCvz8/IzaSiQSTJgwwZb+UT1xcZNBo9bWmbxuVGpByVILREREtbEqsNq0aZNF7T777DOj1wysGh65mxwoVtdZx6qMM1ZEREQWsyqwiomJqa9+kIPpE9ir6ngq0KjUAnOsiIiIamVVYBUWFlZP3SBH0yewV6k00Gl1kEjNP+3HGSsiIiLL2SV5ne49LgqDjZgra561Yo4VERGR5UQFVnv37sXkyZORk5Nj9nxOTg4mT56MAwcOiLkN1QPDWla15VlxxoqIiMhyogKrffv2wcXFBf7+/mbP+/v7Q6FQ4IcffhBzG6oHcgu3tdHnWEnlEii8WHWdiIioNqICq7S0NHTu3LnWNiEhIUhLSxNzG6oHllZf189YeSjdWHWdiIioDqICq9LSUnh7e9faxtPTEyUlJWJuQ/XAko2YNVVaVBRVAuATgURERJYQFVj5+fkZbb5sTkpKCpo3by7mNlQPLNmIubyQ+VVERETWEBVY9enTBydOnMCJEyfMnv/111/x66+/4qGHHhJzG6oHLgrDpUDzM1asYUVERGQdq+pY3e2ll17Czz//jLlz52LYsGHo06cP/P39kZOTgxMnTuDHH3+Eh4cHXnrpJXv1l+xE7lb3jJVhYOXOGSsiIqI6iQqsWrdujRUrVmDJkiXYu3cv9u3bJ5zT6XRo0aIFlixZgtatW4vuKNmXYY5VTcnrZQV3alh5soYVERFRnUQFVgDQq1cvbNmyBYcPH8aFCxdQWloKLy8vdO/eHeHh4XBx4SP6DZFxHau6lwI5Y0VERFQ30YEVALi4uCAqKgpRUVH2uBw5gHEdq5pmrJi8TkREZA1uadNEGSWvW5BjxeR1IiKiutllxurmzZs4ffo0cnJyoFarTc5LJBJMmDDBHrciO5FbshR4O8dKKpPAzcvVIf0iIiK6l4kOrNasWYNt27ZBq9UKx3Q6nVClW/8zA6uGxWgT5jpmrNyVCkikrLpORERUF1GB1ffff4+tW7eiT58+ePLJJ/HPf/4TI0aMQN++fXHmzBn88MMPGDBgAJ5++mmrr11ZWYmNGzfixx9/RHFxMYKDgzF58mT07du3zvfGxcVh8+bNSE9Ph7u7O8LDwzF16lQolUqjdnl5eVi/fj2OHj2KsrIyBAUFYfz48TXmisXFxWHbtm24evUq5HI5goKCMHnyZDz44INWfz5nq2sTZq1h1XXmVxEREVlEdGAVGBiI9957D1JpdbpWYGAghgwZgiFDhmDw4MH429/+ZlNS+/Lly3Hw4EE899xzaNu2Lfbu3Yu5c+ciJiYGvXr1qvF9O3bswAcffIAHH3wQ06dPx61bt7Bt2zZcunQJ69atg0JRHSSUlpZi+vTpyM/Px5gxY+Dr64v4+HgsXrwYVVVVeOyxx4yu+9///hefffYZIiMjMXz4cFRVVSE1NRU5OTlWf7aGoK4tbYyqrrPUAhERkUVEBVbp6ekYNmyYEFQBgEZzZ/YjLCwM/fr1w5YtWxAZGWnxdZOTkxEXF4dp06bhxRdfBAAMGzYMEydOxNq1a7F27Vqz71Or1diwYQN69+6NDz74QFiO7NGjB+bPn4/du3fj2WefBQDs2rUL169fx4cffijMOD311FOYOnUqVq9ejcjISKFUxPnz5/HZZ59h+vTpeP755y0foAZM5ioFJAB05utYlebziUAiIiJriX4q0MvLS/jZzc0NhYWFRufbtWuH1NRUq66ZkJAAmUyG0aNHC8cUCgUef/xxnD9/HtnZ2Wbfd+3aNZSUlGDw4MFCUAUA/fv3h7u7O+Li4oRjZ86cgVKpNFrGk0qliIqKQl5eHpKSkoTj33zzDXx9fTFmzBjodDqUlZVZ9XkaIolEIiwHqlVmZqwK+EQgERGRtUTNWLVo0QK3bt0SXrdp0wYXLlwwapOamgp3d3errnvlyhW0bdsWnp6eRse7d+8OoHpj54CAAJP36Z9I1C/3GVIoFLhy5Qq0Wi2kUinUarXZdm5u1ctely5dEvK5Tp06hR49emDbtm344osvUFhYCF9fX7z88svCDFhNcnJykJubK7xOT0+vtb0jyRVyqMs1ZnOsWMOKiIjIeqICqx49euDs2bPC6wEDBuDzzz/He++9hwEDBuDs2bM4fvw4IiIirLpubm4u/Pz8TI7rj9WU19S2bVtIJBKcO3cOI0eOFI7/8ccfKCgoAAAUFxfDx8cH7du3x6lTp5CVlYXAwEChrf7z6O9RXFyMwsJC/P777/jtt98wceJEBAQEYO/evYiJiYFcLseTTz5Z42fZtWsXYmNjTY6npqYaLZvqlZSUIDk5ucbr2ZNOUn1/VWmlyT3/uFwg/JxTdBOa5GKH9MlWjhy3xoJjZhuOm204btbjmNmmPsctNDS0zjaiAqthw4YhNzdXCE7Gjh2LX375Bbt378YPP/wAnU6HwMBATJs2zarrqlQqs1vhuLq6CufNUSqViIqKwr59+xAUFIRBgwbh1q1bQgBUVVUlvHfUqFHYuXMnFi9ejBkzZgjJ64cOHTK6h37Zr7CwEIsXL8aQIUMAAJGRkZg4cSI+//zzWgOr0aNHIzw8XHidnp6OZcuWoWPHjujatatJ++TkZIv+4uzhUrM8VOQXQ1ulM7ln7pFzAKqXdbv17gy/oGYO6ZOtHDlujQXHzDYcN9tw3KzHMbONs8dNVGB1//334/777xdee3h4YN26dTh8+DCuX7+OwMBAIb/JGgqFwmyh0crKSuF8TebMmQOVSoU1a9ZgzZo1AIChQ4eidevWSExMFPoSHByMRYsWYdWqVZg+fToAwNfXF2+88QZWrVoltNPfSy6XGyXgS6VSDB48GP/973+RnZ1tdmkSAPz9/eHv72/V53cU/bY22iodNFVayOR3Uu5YdZ2IiMh6dqm8DlTP6KSkpKC0tBTe3t4YNWoUfHx8bLqWn5+fUe6Wnj5XqbZAxcvLC8uXL0d2djYyMzMRGBgozJoplUp4e3sLbSMjIxEeHo6UlBRotVp06dIFp0+fBlCddA8AzZo1g6urK7y8vCCTyYzu1bx5cwDVy4U1BVYNmWEtq6oKDWReBoHV7RwriUwCN29WXSciIrKE6MAqMzMTH3/8MY4dOwadTiccl0gk6NevH9544w20atXKqmuGhITg9OnTKC0tNUpg16+ZhoSE1HmNgIAAIdgpLi7G5cuXzeZ6ubi4CEnxQHWiOgD06dMHQPXMVOfOnXHx4kWo1WqjJUp9HtbdhUfvFYbV19WqKii87ny2svzq7Ww8fFh1nYiIyFKiyi1cv34d06ZNwy+//ILWrVtj+PDhePHFFzF8+HC0adMGR44cwbRp03Djxg2rrhsZGQmNRoNdu3YJxyorK7Fnzx6EhoYKAVN2drZFT9lt2LABGo0Gzz33XK3tMjIysHPnTvTv31+YsQKAqKgoaDQa7Nu3TzimUqlw4MABdOjQocEu9dVFXkP1da1Gi3JWXSciIrKaqBmrdevWoaCgALNnz8YTTzxhVDtKp9Nh165d+PDDD7Fu3TosXbrU4uuGhoYiKioKGzZsQEFBAdq0aYN9+/YhKysL8+bNE9q98847SEpKQmJionDsyy+/RGpqKkJDQyGTyXDo0CGcOHECkydPNpqZAoCXX34ZUVFRaNmyJTIzM7Fz5040a9YMs2fPNmr35JNP4ocffsCHH36IjIwMBAQEYP/+/cjOzsby5cutHbYGw0VhuBR4p5ZVeWElcHvykflVRERElhMVWJ06dQrh4eFGhTz1JBIJnnzySRw7dgwnT560+toLFy4UApiSkhJ06tQJK1asQFhYWK3vCw4OxqFDh3DkyBFotVoEBwdjyZIlZrfVCQkJwZ49e5Cfnw8fHx9ERUVh0qRJQu6UnkKhwEcffYS1a9diz549qKioQEhICFasWIGHHnrI6s/WUMiNtrW5M2NlXMOK29kQERFZSlRgpdVq0aFDh1rbdOrUSUgIt4ZCoUB0dDSio6NrbPPxxx+bHOvXrx/69etn0T0WL15scX+aN2+OhQsXWtz+XmCUvK4yCKxu51cBnLEiIiKyhqgcqy5duiAtLa3WNqmpqWbrNZHzuRjlWN1ZCjScsXJnjhUREZHFRAVWr7/+Oo4fP47du3ebPb9r1y78+uuvmDx5spjbUD0xWgo0mrG6E1h5csaKiIjIYlYtBZrbmuX+++/H+++/jy1btqBnz57w9fVFXl4ezp07hz///BN9+/bFb7/9hp49e9qrz2QnNSWvGwZWnLEiIiKynFWB1aZNm2o8l5GRgYyMDJPjv/76K06cOIEJEyZY3zuqV3KF+XILZQUGOVZMXiciIrKYVYFVTExMffWDnMClpqcCb89YSaQSuLPqOhERkcWsCqzqKnVA95Yanwq8nbzurnRl1XUiIiIriEpep3ubcR2r6hwrrUaLisLqwMpDyWVAIiIiazCwasLu3oQZAMqLKqHf8pHb2RAREVmHgVUTdvcmzABQbvBEIIuDEhERWYeBVRNmbhPmUsOq65yxIiIisgoDqyZMJpdCKqtOTtfXsSo33CeQOVZERERWYWDVxOlLLtyZsTLcgJkzVkRERNZgYNXE6ZcD9eUWjGesGFgRERFZg4FVE6d/MlCfvG64ATOrrhMREVmHgVUTp38yUF2hgU6nQ9nt5HWJBHBrxqrrRERE1mBg1cQJTwbqAE2l1qDqugJSVl0nIiKyCgOrJs5wI+bKMrWQY8X8KiIiIusxsGriDDdiLr5VblB1nflVRERE1mJg1cQZbmtTmFUq/MwZKyIiIusxsGriDGesirLKhJ9Zw4qIiMh6DKyaOMMcq8JMzlgRERGJwcCqiTNcCiwyWAp0Z2BFRERkNQZWTZzhUmChwVKgJ5PXiYiIrMbAqokzXArUb2sDAO7MsSIiIrIaA6smznApUE8iAdxZdZ2IiMhqDKyaOLnBUqCem48CUhm/GkRERNbib88mzkVhOmPFJwKJiIhsw8CqiXMxM2PFGlZERES2YWDVxMnN5Fh5KPlEIBERkS0YWDVxZpcCOWNFRERkEwZWTZy55HUGVkRERLZhYNXEyZm8TkREZDcMrJo4qVRiElx5sOo6ERGRTRhYkWlgxRkrIiIimzCwIuPq6xLA3YdV14mIiGzBwIqMalm5N3Nl1XUiIiIb8TcoGS0FMr+KiIjIdgysyGgpkPlVREREtmNgRUa1rFjDioiIyHYMrMio+jpnrIiIiGzHwIqMkteZY0VERGQ7BlZktBEzZ6yIiIhsx8CK0DrUD0B1EntAl+ZO7g0REdG9y3QHXmpy2oW1wLMrB0Dh7Qq3ZiwOSkREZCsGVgQAaN7W29ldICIiuudxKZCIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDKyIiIiI7KTBPhVYWVmJjRs34scff0RxcTGCg4MxefJk9O3bt873xsXFYfPmzUhPT4e7uzvCw8MxdepUKJVKo3Z5eXlYv349jh49irKyMgQFBWH8+PGIioqq9fp/+9vfcPLkSTz99NN48803xXxMIiIiakQa7IzV8uXL8fXXX+Oxxx7DX//6V0ilUsydOxdnz56t9X07duzAkiVL0KxZM0yfPh1PPPEEfv75Z7z55ptQqVRCu9LSUkyfPh0JCQkYPXo0oqOj4eHhgcWLF+PAgQM1Xj8hIQHnz5+32+ckIiKixqNBBlbJycmIi4vDlClTEB0djdGjR+Ojjz5CYGAg1q5dW+P71Go1NmzYgN69e+ODDz7A008/jSlTpuDtt9/G1atXsXv3bqHtrl27cP36dbzzzjuYPHkynnnmGcTExKBbt25YvXo11Gq1yfVVKhVWr16NcePG1cvnJiIiontbgwysEhISIJPJMHr0aOGYQqHA448/jvPnzyM7O9vs+65du4aSkhIMHjwYEolEON6/f3+4u7sjLi5OOHbmzBkolUo8+OCDwjGpVIqoqCjk5eUhKSnJ5PpfffUVdDodxo4da4dPSURERI1Ng8yxunLlCtq2bQtPT0+j4927dwcApKSkICAgwOR9+lkmhcJ0I2GFQoErV65Aq9VCKpVCrVabbefm5gYAuHTpklE+V3Z2Nv73v/9h/vz5Zt9Xk5ycHOTm5gqv09PTLX4vERER3VsaZGCVm5sLPz8/k+P6Yzk5OWbf17ZtW0gkEpw7dw4jR44Ujv/xxx8oKCgAABQXF8PHxwft27fHqVOnkJWVhcDAQKGtPofr7nusXr0anTt3xpAhQ6z6LLt27UJsbKzJ8dTUVGg0GpPjJSUlSE5OtuoexHGzBcfMNhw323DcrMcxs019jltoaGidbRpkYKVSqeDi4mJy3NXVVThvjlKpRFRUFPbt24egoCAMGjQIt27dQkxMDORyOaqqqoT3jho1Cjt37sTixYsxY8YM+Pr6Ij4+HocOHTK5x2+//YaEhASsW7fO6s8yevRohIeHC6/T09OxbNkydOzYEV27djVpn5ycbNFfHBnjuFmPY2YbjpttOG7W45jZxtnj1iADK4VCYTZ5vLKyUjhfkzlz5kClUmHNmjVYs2YNAGDo0KFo3bo1EhMT4e7uDgAIDg7GokWLsGrVKkyfPh0A4OvrizfeeAOrVq0S2lVVVSEmJgZDhw4VliKt4e/vD39/f6vfR0RERPeeBhlY+fn54datWybH9blKtQUqXl5eWL58ObKzs5GZmYnAwEAEBgZi2rRpUCqV8Pb2FtpGRkYiPDwcKSkp0Gq16NKlC06fPg0AaNeuHQBg//79yMjIwJw5c5CZmWl0r7KyMmRmZqJ58+ZCblZd9DNhNeVa/fHHH5DJZBZdi+7guFmPY2YbjpttOG7W45jZpr7HLSgoqNbf+Q0ysAoJCcHp06dRWlpqlMCuXzMNCQmp8xoBAQFCgntxcTEuX76MiIgIk3YuLi5GM1GnTp0CAPTp0wdAddJ6VVWVMKtlaP/+/di/fz/eeecdDBw40KLPlpWVBQBYtmyZRe2JiIio4fjkk0/MpvLoNcjAKjIyElu2bMGuXbvw4osvAqheBtyzZw9CQ0OFgCk7OxsVFRUICgqq9XobNmyARqPBc889V2u7jIwM7Ny5E/379xdmrIYMGYLOnTubtP3HP/6BRx55BE888YRVS4QPPfQQ3nrrLbRq1UrIGdPT51+99dZbdX4muoPjZj2OmW04brbhuFmPY2YbR4xbXddtkIFVaGgooqKisGHDBhQUFKBNmzbYt28fsrKyMG/ePKHdO++8g6SkJCQmJgrHvvzyS6SmpiI0NBQymQyHDh3CiRMnMHnyZJMA6OWXX0ZUVBRatmyJzMxM7Ny5E82aNcPs2bOFNkFBQTUOYqtWrSyeqdJTKpUYOnRorW2CgoJqjYbJPI6b9ThmtuG42YbjZj2OmW2cOW4NMrACgIULFyIgIAD79+9HSUkJOnXqhBUrViAsLKzW9wUHB+PQoUM4cuQItFotgoODsWTJErP7/4WEhGDPnj3Iz8+Hj48PoqKiMGnSJDRv3ryePhURERE1Zg02sFIoFIiOjkZ0dHSNbT7++GOTY/369UO/fv0susfixYtt7p/hLBkRERER0EC3tGmq/Pz8MHHiRLPFUalmHDfrccxsw3GzDcfNehwz2zSEcZPodDqd0+5ORERE1IhwxoqIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDbbcQlNSWVmJjRs34scff0RxcTGCg4MxefJk9O3b19lda7BOnz6NmTNnmj23du1a3HfffQ7uUcNTVlaGLVu2IDk5GRcuXEBxcTEWLFiAESNGmLRNS0vDf/7zH5w7dw5yuRz9+vXDjBkzoFQqHd9xJ7J0zP7v//4P+/btM3l/+/bt8eWXXzqquw3ChQsXsG/fPpw+fRpZWVlo1qwZ7rvvPkyePFnYwUKP37M7LB03fteMpaamYtOmTbh06RLy8vLg5uaGoKAgvPjiiwgPDzdq66zvGwOrBmD58uU4ePAgnnvuObRt2xZ79+7F3LlzERMTg169ejm7ew3as88+a1JRv02bNk7qTcNSWFiI2NhYBAQECPtvmnPz5k288cYb8PLywuuvv47y8nJs2bIF165dw/r16+Hi4uLgnjuPpWMGAK6urpg7d67RMcO9TZuKzZs349y5c4iKikJwcDByc3Oxfft2TJ48GWvXrkWnTp0A8Ht2N0vHDeB3zVBWVhbKysowfPhw+Pv7o6KiAgkJCViwYAHmzJmD0aNHA3Dy901HTnX+/HndwIEDdZs3bxaOVVRU6MaOHaubOnWqE3vWsP3222+6gQMH6uLj453dlQZLpVLpcnJydDqdTnfhwgXdwIEDdXv27DFpt2rVKt2jjz6qy8rKEo6dOHFCN3DgQN3OnTsd1t+GwNIxe+edd3RDhw51dPcapLNnz+oqKyuNjv3xxx+6IUOG6JYuXSoc4/fMmKXjxu9a3aqqqnSvvvqq7qWXXhKOOfP7xhwrJ0tISIBMJhOibKC66vzjjz+O8+fPIzs724m9uzeUlZWhqqrK2d1ocFxdXS0qkpeQkID+/fsLm5sDQJ8+fdCuXTvEx8fXZxcbHEvHTE+j0aC0tLQee9Tw9ezZ0+Rf/+3atUOHDh2Qnp4uHOP3zJil46bH71rNZDIZWrZsiZKSEuGYM79vXAp0sitXrqBt27Ym07r65a2UlBSjLwYZW758OcrLyyGTydCrVy9MmzYN3bp1c3a37hm3bt1Cfn6+2c1Ku3fvjmPHjjmhV/eGiooKjBgxAhUVFfD29saQIUMwdepUeHh4OLtrTqfT6ZCfn48OHToA4PfMUnePmx6/a6bKy8uhUqlQWlqKI0eO4Pjx48KewM7+vjGwcrLc3Fyz/0LWH8vJyXF0l+4JcrkcEREReOSRR+Dj44O0tDRs3boVM2bMwJo1a9ClSxdnd/GekJubCwA1fgeLiopQWVkJV1dXR3etQfPz88OLL76ILl26QKfT4fjx49ixYweuXr2KmJgYyOVN+/+1HjhwALdu3cKkSZMA8HtmqbvHDeB3rSarV6/Grl27AABSqRSDBg3Cm2++CcD537em+TfSgKhUKrNJdPq/cJVK5egu3RN69uyJnj17Cq8HDBiAyMhIvPrqq9iwYQPef/99J/bu3qH/ftX1HWzqv/Du9pe//MXo9ZAhQ9CuXTt88sknSEhIwJAhQ5zUM+dLT0/Hhx9+iPvuuw/Dhw8HwO+ZJcyNG8DvWk2ee+45REZGIicnB/Hx8dBoNFCr1QCc/31jjpWTKRQK4ctgqLKyUjhPlmnbti0GDBiA06dPQ6PROLs79wT994vfQfGef/55SKVSnDx50tldcZrc3FzMmzcPnp6e+Ne//gWZTAaA37O61DRuNeF3DQgKCkKfPn0wfPhwrFixAuXl5Zg/fz50Op3Tv28MrJzMz89PmLY0pD/m7+/v6C7d01q2bAm1Wo2Kigpnd+WeoJ8qr+k72KxZsyY9i2ANhUKBZs2aoaioyNldcYqSkhLMnTsXJSUleP/9943+fxe/ZzWrbdxq0tS/a+ZERkbi4sWLyMjIcPr3jYGVk4WEhODPP/80edojOTlZOE+Wu3HjBlxdXeHu7u7srtwTWrRoAaVSiUuXLpmcu3DhAr9/VigrK0NhYWGTLHapUqkwf/58ZGRk4N133zVJvub3zLy6xq0mTfm7VhP98l9JSYnTv28MrJwsMjISGo1GSMIDqqcq9+zZg9DQUD4RWIOCggKTYykpKThy5Aj69u0LqZRfbUtFRETgl19+MSrtcerUKWRkZAhP2dAdKpUKZWVlJsc/++wz6HQ6PPzww07olfNoNBq8/fbbOH/+PJYsWYIePXqYbcfvmTFLxo3fNVP5+fkmx6qqqrB//34oFAohOHXm943J604WGhqKqKgobNiwAQUFBWjTpg327duHrKwszJs3z9nda7AWL14MhUKBHj16oHnz5khLS8P3338PNzc3k2TPpuzbb79FSUmJMCV+5MgR3Lx5E0B11XovLy+MHz8eBw8exKxZszBmzBiUl5fjq6++QqdOncxuf9PY1TVmxcXFeO211/Doo4+iffv2AIBff/0Vx44dw8MPP4wBAwY4re/OsHr1ahw5cgT9+/dHcXExfvzxR6PzQ4cOBQB+z+5iybjl5eXxu3aX999/H6WlpejduzdatGiB3NxcHDhwAH/88QemT58ulKBw5vdNotPpdPV6B6qTSqUS9gosKSlBp06dMHnyZDz00EPO7lqDtW3bNhw4cADXr19HaWkplEolHnzwQUycOBFt27Z1dvcajOeffx5ZWVlmz23duhWtWrUCUL3/1t17ak2fPh2+vr6O7G6DUNeYeXl5ISYmBufPn0dubi60Wi3atGmDxx57DGPHjm1yj7//9a9/RVJSUo3nExMThZ/5PbvDknErLi7md+0ucXFx+OGHH3Dt2jUUFhbCw8MDXbt2xTPPPGMSaDrr+8bAioiIiMhOmIhCREREZCcMrIiIiIjshIEVERERkZ0wsCIiIiKyEwZWRERERHbCwIqIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDKyI6J6SmZmJQYMG4f/+7/+c3RW72Lt3LwYNGoS9e/c6uytEZAcMrIjonvfXv/4VgwYNcnY3zGpsgSAR1a7p7eBIRPe0Fi1a4IsvvoCnp6ezu2IXAwcORGhoKPz8/JzdFSKyAwZWRHRPkcvlCAoKcnY37MbLywteXl7O7gYR2YlEp9PpnN0JIiJLZWZm4oUXXsDw4cOxcOHCGpcA9ef1rl69ii+++AJJSUkoKiqCn58fwsPD8eqrr8LHx8fs9ceNG4dPPvkEZ86cQVFREbZu3YpWrVohMTER8fHxuHjxInJyciCXyxEcHIwxY8YgMjJSuNbevXuxfPlys/2LiYnB/fffL7RZsGABRowYYdTm3Llz+OKLL3D+/HmoVCoEBgZi8ODBGDduHNzc3IzaDho0CGFhYXj77bexdu1aHDt2DOXl5QgJCcFf/vIX3H///dYONRHZgDNWRHRPmzhxIvbt24esrCxMnDhRON65c2fh58OHD+Ptt9+GRCLBgAED0LJlS6SlpeG7777Dr7/+ivXr18Pb29voutevX8e0adPQqVMnDB8+HEVFRXBxcQEAbNiwAXK5HD179oSfnx8KCgpw5MgRLFq0CDNnzsSzzz4LAAgJCcGYMWOwbds2hISEYMCAAcL1AwMDa/1c8fHxWLp0KVxcXDB48GAolUqcOHECsbGx+PXXXxETEwOFQmH0npKSEkyfPh1eXl4YOnQo8vPzER8fjzlz5uCTTz5Bp06dbBpjIrIcAysiuqdNmjQJSUlJyMrKwqRJk0zOFxYW4p133oGPjw9Wr15tFNDExcVhyZIl2LhxI2bNmmX0vnPnzmHixIlmr7ly5Uq0bt3a6FhZWRmio6OxceNGPP7443Bzc0Pnzp3h5eUlBFbmrmVOaWkp3nvvPchkMqxduxbBwcEAgClTpmDp0qX4+eefsWXLFkyYMMHofSkpKXjqqacwa9YsSKXVzyY98MADWLlyJb777jvMmTPHovsTke34VCARNWr79+9HaWkppkyZYjJLNGTIEHTp0gVxcXEm7/P19cXLL79s9pp3B1UA4OHhgREjRqCkpAQXL14U1efDhw+jpKQEI0eOFIIqAJBKpZg2bRpkMpnZ8gzu7u6YOnWqEFQB1UuiMplMdJ+IyDKcsSKiRu38+fMAgOTkZFy/ft3kfGVlJQoLC1FQUAClUikcDwkJEZb+7pafn4///e9/OHbsGLKzs6FSqYzO5+TkiOrzlStXAABhYWEm5wICAtC6dWtkZGSgrKwMHh4ewrm2bdsavQaqk/19fX1RUlIiqk9EZBkGVkTUqBUXFwMAtm/fXmu7iooKo9fNmzc3266oqAhTpkxBdnY2evbsiT59+sDLywtSqRQpKSk4fPgw1Gq1qD6XlpYCqJ41M8fPzw8ZGRkoLS01CqRqKkEhk8mg1WpF9YmILMPAiogaNX3gERsba1XytkQiMXv8hx9+QHZ2Nl577TWTHKcvv/wShw8ftr2zt+kDpLy8PLPn9ccbSy0vosaEOVZEdM/T5xRpNBqTc6GhoQDuLAmKpV9ONHzCT+/s2bM19s2aGSP9E41JSUkm57Kzs3H9+nW0bt3aZNmPiJyPgRUR3fOaNWsGALh586bJuZEjR8LDwwOffPIJUlNTTc5XVFRYFXTpE+DPnTtndPzAgQM4duyYSXtvb29IJBKzfavJgAED4OXlhT179hj1WafTYf369dBoNCY1r4ioYeBSIBHd8x544AEcPHgQ//znP/Hwww/D1dUVISEhCA8Ph1KpxOLFi7Fo0SJMmjQJDz30ENq3bw+1Wo2srCwkJSWhR48eeP/99y2619ChQ7F582bExMTg9OnTCAgIQEpKCn777TcMGjQIiYmJRu09PDzQrVs3nDlzBsuWLUPbtm0hkUgwbNiwGmtZeXp64u9//zuWLl2KqVOnIioqCkqlEqdOncKlS5fQvXt3jB07VvS4EZH9MbAionveqFGjkJmZiZ9//hmbN2+GRqPB8OHDER4eDgDo168fNm7ciK+++gqnTp3CyZMn4ebmhhYtWmDEiBEYOnSoxfdq2bIlPv74Y6xduxYnT56ERqNBly5dsGrVKty8edMksAKAt956C//+97/xyy+/oLS0FDqdDr169aq1SGhUVBR8fX3x5ZdfIjExUai8PmHCBIwbN86kOCgRNQzc0oaIiIjITphjRURERGQnDKyIiIiI7ISBFREREZGdMLAiIiIishMGVkRERER2wsCKiIiIyE4YWBERERHZCQMrIiIiIjthYEVERERkJwysiIiIiOyEgRURERGRnTCwIiIiIrKT/weqdrja+6W3tAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "### The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "2769b6e5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADSIUlEQVR4nOydd5gUxdbG3+6emc2RtOQooMCnKCAoChIUxYAJVBQwYM4ZsxiuV71exYsZRZQrKFzMiIAiGQQDOee0sCxs3p2Z7vr+mO2mZ6ZDzUzvzobze559drf7dNWZng71Vp06JTDGGAiCIAiCIAiCIIhqR4y3AwRBEARBEARBEPUVEmQEQRAEQRAEQRBxggQZQRAEQRAEQRBEnCBBRhAEQRAEQRAEESdIkBEEQRAEQRAEQcQJEmQEQRAEQRAEQRBxggQZQRAEQRAEQRBEnCBBRhAEQRAEQRAEESdIkBEEQRAEQRAEQcQJEmQEQRAEQRAEQRBxggQZQRAEQRAEQRBEnCBBRhAEQRAEQRAEESdIkBEEQRAEQRAEQcQJEmQEQRAEQRAEQRBxwhFBtmvXLgiCAEEQMGbMGCeKrJf0799fO48EQRBmjBkzRntW7Nq1K97uaEyePFnza/LkyfF2h3AYRVFwxhlnQBAE3HPPPfF2hwiB7j8inixYsEC7/p577rl4u+MohYWFyM7OhiAIeP/996ukjmobIZs8eTKee+65OvclWfH1119rn/n48ePxdoeoxO/3Y968eXj88ccxYMAANG3aFAkJCUhNTUX79u1xzTXX4Ouvv4YsyxGVu27dOtxzzz3o3LkzUlNTkZGRgW7duuHxxx/H7t27q+jTEARRH/H5fPjwww8xcOBA7RnWokULXHLJJZg+fToYY47X+cEHH+CPP/5AYmIixo0bZ2jz3HPPaY0ynh/eDgWnnq/l5eV49913MWTIEOTk5CAhIQGNGjXCmWeeiZdffhlHjx7lLisSli1bhptuugnt27dHcnIysrOzccYZZ+DFF19EXl5eldQZD7p166Z9t/Pnz4/4+MWLF2vHn3LKKREfrxelPD8LFiywLO/o0aP4+eef8fLLL+PKK69E69atg47n5dixY/jmm2/w1FNPYciQITjllFPQuHFjuN1uZGRkoEuXLhgzZgx++umniD8zD/WlfXLJJZdo382kSZMiPn7Pnj2QJAmCICA7Oxvl5eUAgPT0dDzwwAMAgCeffBLHjh1z1G8AAHOAnTt3MgAMABs9erShTb9+/TSb+sLo0aO1z7xz505b+/p4jqqbX375hWVnZ2vn2eqnZ8+ebNu2bVzlvvbaa8ztdpuWlZaWxr744osq/nREfSHSZ0t18cknn2h+ffLJJ/F2p86yc+dO1r17d8vn16BBg9ixY8ccq7OkpITl5OQwAOzee+81tXv22We5nq+RXL9OPV9XrVrF2rRpY+lP48aN2U8//RTJqbFEURT2wAMPMEEQTOts0qQJmz9/fsx11YT771//+pfmw/XXXx/x8TfddJN2/Kuvvhrx8fpzwPPz66+/mpa1Zs0a2+N5effdd7l9Ovfcc9nBgwcj/uxmVFf75Ndff9XKfPbZZ2N3PApmzpyp+dC3b9+Ijx8/frx2/J133hm0r6CggGVlZTEA7PHHH3fKZQ1XmEKLgjZt2lRJb1x9w66nhoid/fv3Iz8/HwCQnZ2NQYMGoXfv3mjatCl8Ph9WrlyJKVOmoLCwEL///jvOO+88rFy5Ejk5OaZlvvfee3jkkUcAAG63GzfccAP69esHn8+HOXPmYMaMGSgqKsINN9yAzMxMDBkypFo+K1F3mTx5MoUk1VOOHz+OCy+8EJs2bQIAnHzyybjpppvQokULbNu2DR988AH27t2LefPm4YorrsDPP/8Mlyv2V/0777yDQ4cOQZIkPProo1zHvPDCC+jataulTePGjS33O/V8Xb9+PQYMGIDCwkIAQJcuXXDDDTegbdu2OH78OGbPno1vvvkGhw8fxuWXX4558+bhrLPO4vqcVowbNw7//ve/AQApKSm4+eab0atXLxQXF2PmzJmYO3cucnNzcdlll2HRokU47bTTYq4znlx//fV47LHH4Pf78b///Q/vvPMO0tLSuI4tLS3FV199BQCQJAk33HBDTL7cc889GDBggKWN1fUZGiUjSRI6d+6MHTt2oKysLGJ/RFHEqaeeip49e6JTp07IycmBx+NBXl4eVq5cienTp6O0tBQLFy7Eeeedh9WrVyM5OTnievTUt/bJJZdcgoYNGyIvLw+LFy/G9u3b0b59e+7jP/30U+3vG2+8MWhfeno67rrrLrz44ot4++238fDDD6NBgwaO+V5tQzH1cfSnpvZi12c+++wz1q1bN/bf//6XlZeXG9rs27ePdenSRfvuRo0aZVregQMHWHJyMgPAXC4Xmzt3bpiNvseuZcuWrKyszLHPQxA1iZrQQ1/Xuf/++7VzPGTIkLDnydGjR4NGz/7zn//EXKfP52MtW7ZkANj5559vaasfIbMafeDByefrmWeeGTRy4/P5wmxmzJjBRFFkAFinTp0MbSLhjz/+0EbGMjIy2N9//x1moz9fPXv2ZIqiRF1fTbn/LrvsMs2PSZMmcR83ZcoU7biLL744qrqdPAfbtm1jo0aNYm+99RZbsmQJKykpYYwx1rp164jbs/v372dHjx61tNm9ezfr0KGDVvYrr7wSk//V3T6pCSNkjDF23333aX48/fTT3MctXLhQO65r166GNlu2bNFsXnrpJadcZowxRoKsCiFBVvM4duwY1wtv7dq12neXlJSkPYhD0TeOHnnkEdPyrr76akcbSARRE6kpDcK6Sm5uLvN4PAwAS0lJYbm5uYZ2a9eu1YRATk4O8/v9MdU7a9Ys7XudMmWKpa2Tgsyp5+vy5cu1/c2bN7dsdN55552a7UcffRST/8OGDdPKmjhxoqGNoiisV69emt33338fdX015f77+uuvNT/OOecc7uMGDBigHTdz5syo6q6OcxCNIOPlf//7X1Tnzojqbp/UFEH2119/aX60bt2au5NDHy77r3/9y9SuZ8+emoCNpQMllCrPsqhmDvztt9+0bUYTK82SfSiKgi+//BIjRoxA27ZtkZycjLS0NHTu3Bl33HEH1q5da+mbfoKxGhI4f/58XHvttWjbti0SExPDJhb7/X7MmTMHDz30EPr27YvGjRvD4/EgLS0NHTt2xJgxY7Bw4ULTOtUMaPqhz7Zt24Z9ZrNzxTNRdMWKFbj11lvRqVMnpKWlISUlBe3bt8fo0aPxyy+/2B6v1tO/f38AQElJCV5//XX06NEDWVlZSElJQZcuXTBu3LiqmbwYJzIzM7nOb9euXdG5c2cAQFlZGbZt2xZmwxjTwivsso7de++92t/Tp0+P1O2YWLZsGe644w6ccsopyMzMRGJiIlq1aoURI0bghx9+sDzWKGvSnj178NBDD6Fz585ISUlBZmYmzjrrLLzzzjvw+/1cPhUXF+PNN9/E4MGD0axZMyQkJCA7Oxs9e/bEM888gyNHjlgeH3qvyLKMyZMnY/DgwWjevDlcLhfatGkTdlxubi4effRRnHLKKUhJSUF2djZ69eqFf/3rXygtLQUQCMEWBCHs+J9++kmrU/99WnHvvfdqx8yePZvrGB7ssixW1ff2/fff45JLLkFOTg4SExPRpk0bjBw5EsuWLYv4M3i9XkyaNAmXXnopWrZsicTERGRmZuL//u//8NBDD5kme9i8eTNSUlIgCAIyMjKwc+dO0zqOHTuGVq1aQRAESJJk+dyuDXz99dfwer0AgGuvvdY03K9r165aqNahQ4eC3r/R8NlnnwEAkpKScPnll8dUFi9OPl/178Srr74aiYmJpmWNGjVK+/u///1vRD7rKSoq0u759PR00wzUoZ+tOt4Pv//+Oxo1agRBEJCQkIAvv/wyzCaWttfQoUO1a3Px4sXYsWOHrU979uzBr7/+CgBo2LAhLrnkkig/Xe1Gn8jk0KFDUZdTk9snahihIAgQRVEL6Q3lp59+wpgxY3DSSSchLS0NycnJaN++PcaMGYPFixebln/qqaeie/fuAIDdu3dr15UV+nBZl8uF66+/3tR25MiRAIC9e/c6O9XICVVnldRDPzJm9WOkprdt28ZOO+00y+NEUbQcktT31v3yyy/srrvuMixHP4LVv39/Lp9Hjx7NKioqwurUj4zZHW92rszw+Xxs7NixtmUPHz6clZaWmpaj2vXr149t376dnXLKKaZltW7dul6O8Km9IADY8uXLw/brR9HMhrdVZFlm6enp2jVbWFhYVW5rFBcXsxEjRtheK0OHDjX1J7THa/bs2SwzM9O0rMGDB5uGgqr8+OOPrHHjxpY+paWlsW+++ca0DP29cvToUda3b1/D61bPL7/8ok3INfrp1q0b27Nnj9b7GXq8LMusbdu2DADLysqyDe0oKyvT6mvVqhWTZdnSPhLsRt+d/t78fr/lc00URfbPf/6Tu3f6999/186l2Y/H42Hvvfee4fEffPCBZtenTx/TEaCrrrpKs3vyySctz2lt4Morr9Q+z4wZMyxtX3vtNc3WqnfcjvLyci3s6dxzz7W1d2qEzMnnq37U691337UsKz8/X7OVJMk0OsKO7777TivHLvzu8OHDmm2jRo2iqo8xvtGhOXPmsNTUVAaApaamGoaxOdH2evDBBzXbZ555xtZ3fTKF++67j/cjh1HbR8h++OEHrexYRsji0T7hGSH7448/WJMmTRgQCKP87LPPwmwOHz4cNFpq9nPzzTczr9drWM+ECRM0O6tpJyr6cNnLLrvM0vbvv/925FoNxZGkHlaoKV2feuoprF+/HgAwa9asMDt1NEJl+/bt6N27t5YOtm/fvrj44ovRunVryLKM1atXY/LkyTh27BheeOEFiKJom1L/tddew+zZs5GTk4MxY8aga9eu8Pv9WLlyJRISEjS7srIypKamYuDAgTjjjDPQpk0bJCYm4uDBg1i/fj2mTp2KkpISfPrpp8jMzMSbb74ZVM+9996LYcOGYcKECZoyf//998N6M1u1asV1DvXccMMNmDZtGgAgMTERo0ePxllnnQVJkrBq1SpMmjQJRUVF+PLLL1FQUIDZs2dbjggVFhZi6NCh2Lx5My677DIMGTIE2dnZ2LFjB959913s2bMHu3fvxqhRo2p973IkeL1ebN26Vfu/devWYTbr1q3T/j7jjDMsyxNFEd27d8dvv/0GRVGwceNG9OrVyzmHQ6ioqMCgQYOwfPlyAED79u0xYsQInHzyyXC73di2bRumTJmCLVu24IcffsCwYcMwd+5ciKL5oPlff/2F1157DYwx3HbbbejTpw8SEhKwatUqvPfeeygpKcHcuXPx0ksvYfz48YZlzJw5EyNGjIAsy3C73bj00kvRv39/NGnSBIWFhfj111/x5ZdfoqioCJdffjnmzp1rOyn7+uuvx+LFi3Hqqafi2muvRZs2bVBYWIg1a9ZoNhs2bMDFF1+sjYJ1794d119/PVq0aIHc3FxMnz4dS5YswYgRI0xHi0RRxNixY/HEE0/g2LFjmDlzptZTZsSMGTO00eWbb77Z8txWJU58b/fee6824u/xeDB69Gj07dsXoihi5cqVmDRpEh577DEMGzbM1p9ly5Zh0KBBKC0thSAIuOCCC3D++eejefPmKCsrw7Jly/DZZ5+htLQUt99+OxISEsJGF8aOHYs5c+Zg5syZWLZsGZ5//vkw3ydNmoQZM2YAAHr37l0nllyJ5JnTo0cPw+MiZcmSJdp9E+kz65lnnsH+/fuxf/9+eDweNGnSBL1798bw4cNx8cUXW76bnHy+siiTjsmyjA0bNgSdS14i8b9Ro0Zo3bo1du/ejSNHjuDw4cO2yU6i4YsvvsDo0aPh8/nQqFEj/Pjjj2Gfzam214033og33ngDADBlyhQtWskMq2QK0fLOO+/glVdewd69ewEEznPPnj0xbNgwjBgxwpFkN05y5MgRPP7449r/V1xxRdRl1cT2ya+//ophw4ahsLAQycnJmDFjBi688MIgm/z8fPTp0wfbt28HEBjtuuKKK9ChQweIooh169Zh8uTJ2L9/PyZNmgS/32+Y4Oq6667Dww8/DK/Xi5kzZ2LixIlITU019U1fht3117VrV6SmpqK4uBhz5szhPwF2OKHqnE57L8syO/300xkAlpCQwL788ktDu0OHDmm9OKIosnXr1oXZhKbg7du3LysoKLCsf968eZajS3l5eVqPvCiKbMeOHYZ2Tqe9nzZtmra/SZMmbP369WE2u3btCup5NosH1p8Tj8fDvvvuO8PPqS9rxYoVtp/BjJKSEjZr1ixHflavXh21H7x89tln2uc+/fTTDW2ef/55294gPaNGjdLsjXqFnCQ0dtxocrrX6w3yyajnWN/jhcqRni1btoTZrVixgrlcLobK0SOj0ZY9e/ZovXCtWrVia9asMfR9xYoVLCMjgwFgLVq0MOwBCx15v//++y1HoPQjaHfeeaehbeizInSEjLHAM0dNH9yvXz/T+hhj7Nxzz9V62ffu3WtpGymRjJDF+r3pJzpnZmayVatWhdls2rRJS4mu/hj1ThcWFmrJITIzM9mCBQsMP9/WrVtZq1atGBCYK3XkyJEwm/z8fNaiRQvtHC9atEjbt3nzZpaSksIAsPT0dLZ9+3bDenjZuHGjY88vo8/CgyzL2nclSZJtwokdO3Zo30X79u2jqpMxxl5++WWtnK+++srWnjft/Zlnnsl27dplWo6Tz1d9WQ888IBlOfr5ZgDY559/blu3ETfeeGNEIzXq8wJA0LUcCVajQxMmTNDmFbZu3Zpt3rw57Hgn216MMdajRw/Nn19++cXU799++02z6969O/8HNoA37X2nTp0Mk6zwEOsIWW5urvY8mDlzJvvoo4/YHXfcERTFcP7555uO/vAQj/aJ1QjZjBkzWEJCAgPAsrOz2dKlSw3LUOddCoLA3nzzTUOboqIidv7552t1zZ4929BOHyHx8ccfm/q9a9cu7d5o3LgxVzIfNZJOEAR2/PhxW3seaqQg068jMGHCBEvbzZs3M0mSGAA2duzYsP36l0NKSgrbv38/12eyY/v27Vq5L7zwgqGN04JMnznrxx9/NC1nxYoVQQ9eo3Ae/YNp/PjxpmV9+OGHXHZ26K+RWH/MrjGnyM/PZ02bNrVthDzwwAOazdtvv21bbqT20XLgwAFt4v8VV1xhaev1elm7du0YAHbSSSeF7Q9t2C9cuNC0rJEjR1ra3XPPPVpj8s8//7T0a9KkSVpZU6dODduvv1fOOOMMSzH2+++/a7Zdu3a1THCgL9dIkDEWPAHaSOQwFnguqTZDhw61/KzREKkgi+V702dMmzx5smk533//fVCdRo1Q/RpF3377reVnnD9/vmZrls1qwYIFWla81q1bs2PHjjGv18vOOOOMmBsXeiJdW8vqJ9owvoKCAq2MBg0aOG5vxnXXXaeVY9aJoufZZ59liYmJ7MILL2Tjx49nn332GZs+fTp766232BVXXKG9rwGwZs2asX379hmW4+Tzdd68edq+5s2bW4bnhk5riDbJweWXX66VYdThGau9EWaC7Mknn9S2d+nSxfScO9n2YoyxiRMnauVZhY3pxatdvXZ88sknzOVysX79+rGnn36affrpp+yrr75i77zzDrv++utZYmKiVldaWlpUoixWQTZ79mzT50Pz5s3Z+PHjY07EE4/2iZkge++997TndPPmzQ0HExhjbPXq1drxDz74oGVd+fn5Wsft4MGDDW304Z9W4dZ68WpXr8odd9yhHRNtB0oo8YmhsUGdQJyeno6xY8da2nbs2FEbWv35558tba+88ko0a9bMER/btWunrU21YsUKR8q0YteuXfjzzz8BAN26dQsb5tXTq1cvLcxr9+7dWL16tamtJEm4++67Tffrw8U2bNgQqdu1DlmWcc011+DgwYMAApOTr7rqKkPb4uJi7W+rSeIqSUlJ2t9FRUUxemrOl19+qU38f/jhhy1t3W43RowYAQDYunWraSIFIBDmd84555jut7pWGGOYOnUqAGDgwIG2a+3ow0ns7uu77rrLMhzwm2++CbKVJMnU9r777rOsCwBuv/127e+PPvrI0Ea//dZbb7UtsyqJ5XurqKjQEhM0adLEcqLz0KFDcfLJJ1v6oj7bO3bsaDtpf8CAAdrz2uwa6Nevnxbis3v3btx+++146qmntGfeyJEjLX2uTcTrebN7927t7+zsbFv7q666Cvv378ePP/6Ip59+Gtdffz2GDx+Oe++9FzNnzsTff/+NDh06AAAOHDhgmuzCyc/bv39/rc79+/fjtttuC1tjCgg8K957772gbeq6ZZFSE94Psixj7NixeOmllwAAZ511FhYtWoTmzZsb2jvd9rr22mu1zz5z5sygc6JSWlqqhRZ7PB5cd911HJ/MnL59+2L37t1YsGABxo8fj1GjRuGqq67CHXfcgc8++wxbtmxBz549AQTOsxpCXxNQE6317dvX8j3FQ024/gBg/PjxuP3226EoCjp16oSlS5cGJS7Ro15/giDgoYcesiw3KysLF110EQBg4cKFqKioCLO54IILtHfIokWLDBNAMcYwZcoU7X/ecNmsrCztb/0zMhZqVgBtJYsWLQIANG3aFD/99JOtvXrh7t69G2VlZUEXlh6rRkkohYWFmDp1Kn788UesXbsWeXl5KCkpMbTdt28fd7nRsnLlSu3v888/39b+/PPPx/z58wEEBKNZPHDHjh2DLqxQ9A/uWLIt1pbFw++77z7t5dKqVataufiuev8AgWvz66+/trTXf68bN240zE4IBObhWGF1raxfv15bkDstLc3WJwBITU3F8ePHsXHjRks7u/t61apV2t/nnXeepa2addSK8847Dx07dsSWLVvw6aef4sUXX4Tb7db2+3w+bT5Es2bNMHToUNsyq5JYvre///5bE/f9+vWzbSQMHDjQ9PsqKCjQ5vU1adKE+xoAYHkNPP/885g/fz5WrFgRlCGsbdu2eOedd2zr4OG5556rE3PQokG9bwE+QWa3EHSXLl3w008/oWvXrigvL8e8efOwYsUKnHnmmTH7aoYkSXj33XcxZMgQyLKMTz/9FKtXrw5aGPqnn37CrFmztAyraudUvOZ+xkp5eTmuvvpqbc7+RRddhK+++spyoWGn215ZWVkYNmwYpk2bhpKSEsyYMSNMgKsLEwPApZdeGvNCu6rwNqNly5aYPXs2unbtikOHDmHTpk2YMWOG1jFZHQwZMkRrD/n9fhw+fBiLFy/GG2+8galTp2Lq1Km4++678e9//7vGzXPjRVEU3H333Zg4cSIAoGfPnvjxxx/RsGFD02PU6y8zMzOozWuGKsIqKiqwY8eOsA5BSZIwatQovPLKK2CM4dNPPw17ji9atEibr9ajRw/b55eK/jp1KhN5jfumi4uLcfToUQCB9MaRptg9duyYqSAz6xUK5ddff8V1113HnXI02h60SFBHbICAiLJDb6M/NhSrmwNAULKT8vJy23prM08++aT28GjSpAnmzp1reX70E0R5zk1ZWZn2d1paWgyeWqMf5Ro+fHhEx1o9WGK5VvQ+zZw5EzNnznTEJ8D+vj5w4ID2d7t27Sxts7KykJmZiePHj5vaCIKAW2+9FQ8//DByc3Px3XffBU2+/vbbb3H48GEAgd62WHs6YyWW701/7uwaOnY2e/fuhaIoAAIvQX3HgR1W14DL5cJ///tfnHbaaVrDTt2Wnp7OXUdNJ17PG7XRI0mS6bs1UtQlWt5//30AwA8//BAmyJz+vIMGDcL06dMxZswYFBcXY926dXjssceCbDweD95++2389NNP2jPLqsPSini/Hx5//HEUFBQACCQ++uSTTywb91XV9rrxxhu1RGSTJ08OE2T6Ts+bbrop7Hirjpvk5GSuDupQGjRogPvuuw/jxo0DELj+qlOQ6XG5XGjWrBmGDx+Oq666CjfeeCOmTJmC//znP0hKSsKrr74aVbnxvv4mTJigXX+DBg3CrFmzLJNqACfaCceOHYvq+jNizJgxeOWVVwAEkss8++yzQcll7K4/M/TvFv25i4UaJ8jULzBa1N5cI3heJlu3bsXQoUO1E9ypUydceOGFOOmkk5CdnR009HvrrbfiyJEj1TLcrR9CTklJsbXXX/hWw8+1tffPaV588UW8/PLLAAIN2Hnz5tkK38zMTO1vNSOVFerLLvRYp4nlHrK6f2K5VqrKJ8D+vlZHtl0uV9BIlhkpKSmWggwIPOSffPJJVFRU4MMPPwwSZB9++CGAgHC7+eabbeuramL53vRhL1Y96ypWz6ZYrgGfz2e5v2HDhsjOztaede3atbPNLFbbSE1Nhcvlgt/vx/Hjx+H3+y0b2E49b1TBLssySktLua4DHvr3768Jsk2bNoXtr4rn65VXXom+ffti4sSJmD17NrZt24bS0lI0bdoUAwcOxP33349u3bpp4dUAtKkJkRLv94M+W2xJSYlthEpVtb0GDRqEFi1aYN++fVi4cCF27dqlRWGooYVAIJrASFxZNcxbt25tGWZvhT4awuj6iweiKGLixIn45ptvUFBQgAkTJmDcuHFRdQrUtusPqJp2QqdOnXDWWWdh6dKl2LlzJxYuXIh+/foBCA6XTUxMxLXXXstdn95Xpzqqapwg0wuJc889N+YFLSPlH//4hybGnnzySbzwwgumqVrtYqydRN9jYRY6qUffkKrK0RheSktLbecC8dKqVSucfvrpjpQFAK+++iqefvppAIHe0Llz53INW+sFG89LQR9nzDPKGS3qPSQIAvx+f40Q3fr7+plnnsHzzz9fbXWrIsHv98Pn89mKMp77q0GDBrjqqqswdepU/Pzzz9izZw9atWqF3bt3Y+7cuQACDZG2bdvG/gHiiP57U1OfW2F17vRljRo1KijNdazceeedQffXli1b8NRTT+Gf//ynI+Vv2rTJsUZb3759bUctjRBFEe3bt8fmzZshyzL27dtnGl4MOPe80Ycp5ufnOybI9CE/Rh0gVfV8bdKkCcaPH2+6xAMQPJdSnW8UKfF+P/zjH//AtGnTsHTpUsyaNQsjRozA9OnTTZ9/VdX2EkURo0ePxksvvaSFjT377LMAAqnu1Yb6qFGjqjWawO76ixepqano27cvfvjhB1RUVGD58uWWOQPMiPf1d99992Hjxo2YNWsWli1bhgsuuABz5syxbI+q0xTUd6lT3HjjjVi6dCmAwIiYKsj04bLDhg2LSIhGGsrNQ40TZBkZGVp+/+qYmxXKvHnzAACNGzfG+PHjTcVYUVFR0BdS1TRt2lT7W78+lhl6G6cSmcTC4cOHIx6CNmP06NGOze3697//rYWtZGRkYM6cObYJJ1T0os0qcQoQiKdWk7KIomib/CAWmjdvjr/++guMMezfvx8tW7assroi8Umluu/rZs2aaXOXduzYgU6dOpnaHjt2jPvlfPvtt2Pq1KlQFAUff/wxnnvuOXz88cdaWF68k3k4gf7ZsW3bNlt7K5uqugbUORdAYL2dvLw87N69G6+//jouuOAC23XseJg2bZpjnQi//vor11xFI7p27YrNmzcDCDxzrASZfu4k77wII9q0aYMlS5YACDRCWrRoEXVZeux65OP1fN2wYYM2otC+ffugd28kROL/kSNHtAZoo0aNHFmDLC0tDT/99BOGDBnCJcqqsu01ZswYLbHIlClT8MwzzwAIXnvMLLlLVc09r66IlWjQi5ZoxWK82ydutxvTp0/HNddcg//9739coqx58+Y4fvw4Dh8+zNV5ysvw4cNx3333aSNi//nPf5CSkoJPPvlEs4l07Tt9+99ondpoqLauc30vvd0Ndu655wIINJ54GgFOkpubCyAwIdxqZGHevHlaw8uMSD6zHfqkHGoPvBX60aiqXIC4NjNx4kQ8+OCDAAIPwNmzZ0fUG9qlSxetcbJ+/XrLl9jSpUu1uYZnn312lY5aqr0/gH2Gwuqie/fuWsz1/Pnzbe8dJ9EvfKou1G6GGj7DQ9++fdGlSxcAwMcffwyfz4ePP/4YQKBD57LLLovc2RrGqaeeCo/HAwD47bffbMOz1URCRjRs2FDLrrV8+XJH5t7u3LkTd955J4DASOgXX3yBzz//HJIkQVEUjBo1KqjhVdu54IILtL/tFiTVJ2UYMmRI1HXqG3aqGHQC/QiMUY98vJ6v+kZaLCHH/fv318I9Fy5caDnPRP9dxvJdhaKKsrPPPhsAMGvWLAwfPtw0BLiq2l4dOnTQki/t2LEDixYtwsKFC7Fjxw4AgeyPVh1lVYHd9RdP9Oc+mtF0oGa0T1RRduWVVwKAJsrMnv1q26W8vBwLFy50xAcgMN9L9aG4uBgzZ87Erl27tGugRYsWGDRoUERlqommBEFAt27dHPGz2gSZfjjcLiRo9OjR2t9qT0p1oYZj7Nixw1REybKszTeyIpLPbEebNm20ML2///7bUpStWrUKv/zyC4CAcq8JcynULItO/DgxOvbhhx/innvuARBoyP3444/o06dPRGUIgoCrr74aQEBwv/3226a2EyZM0P6u6snD11xzjdaI/uc//xnztecEkiRh5MiRAAKhEWbp4qsCvTCaOHGipah46623Iir7tttuAxBIWHH//fdrL73Ro0c71rsXTxISErTUwrm5ufjvf/9rajt79mzbjJjqs720tFSbaB0tsixj5MiR2st9woQJOOmkk9C3b1888cQTAAIpzm+55ZaY6gECWRaden5FOzoGBMJq1Hv7iy++0JLHhLJu3TrtHZCTkxPUSRMp+mQbTi3xsn379qDREfUa0xOP5+umTZu0ejIzM2O6dlJTU7XPVVhYaPreYozhP//5j/a/0+8HVZT17dsXQCBJhpkoq8q2l34EYvLkyUHnI9LRiVjJz88PetYbXX/x4o8//tBGtNxud9QhszWlfeJyuTBt2jRt+aBly5ZhyJAhhqJs1KhR2t/PP/+8o/kZQq8/fbjs6NGjI5raIcuyFoHQuXNn55JHObGYGc/C0Pfee69m89tvv1mWJ8sy69mzp2Z/3333sYqKClP70tJS9sknn7AvvvgibJ9+QU+eBTkHDx6s2b/xxhth+71eb9AihrBYQPaNN97QbD799FPbuu0Whp4+fbq2v2nTpmzjxo1hNrt372bt27e3XdRS3d+vXz9bvyKxrQ18+umn2sLZycnJUS/Uyhhj+/fvZ8nJyQwAc7lcbN68eWE2+sU6W7ZsycrKymLwno+HHnpIq/O8885jBw8eNLWVZZnNnTvXcIFzs4UejbCz3bt3L8vMzGQAWEJCgu09kZuby8aPH2+4cGckC80zxljfvn01+zvvvNNwIenQxX/N7ms9x48f175//Y/ZgtFOEcnC0LF+b4sWLdL2Z2VlGS7qvWXLlqDF1AHjhaGLi4u1RVUFQWCvvvqq5aLex48fZ2+99RabO3du2L6nn35aq+uqq64K2ufz+VifPn20/e+//77lOahN3H///drnuvDCC8OeJ/n5+ax79+627wBeysvLWUpKCgPAzjnnHEvbb7/9ln311VeWi9quW7eOdejQQfOvf//+prZOPl9zc3PZhg0bTOtavXo1a9mypVaW1SLo+jaP1TPojz/+0N41GRkZhs+y5557TiunZ8+epmXxYLYwNGOMFRUVBT0HL7vsMub1eoNsnGx7hVJUVKRdR6mpqSw1NVV7BxcUFET1eUNZunQp+/DDDy0X/t67dy/r1auX9hlPOukk5vP5Iqon0oWhi4qK2Lhx49jhw4ct7VavXs1atWpl255mjAVdf0bvAMaqv31i9S7x+Xzsqquu0vb37t3b8Hu/8sorNZsRI0ZYXhs+n4/NnDmT6xmnKApr06aN9u5p0qSJVs/WrVsj+px///23duz9998f0bFWVNscsoEDB2oq/Oabb8YDDzyA1q1ba5M4O3TooKVMFkURM2fORJ8+fbB//3689dZb+PLLL3H11Vfj1FNPRUZGBoqLi7Fnzx6sWrUK8+fPR0lJCV544YWY/bznnnu00acHH3wQCxYswAUXXIAGDRpg69atmDJlCrZu3YrzzjsPW7dutRwGHjhwoPb3o48+iiNHjqBTp05aZqzmzZtHNNQ5fPhwzJo1C9OmTcPBgwdx+umnY8yYMejTpw8kScKqVaswadIkrefh/PPP18J5iACzZ8/GTTfdpPWM3HTTTTh+/Ljtmkinn346WrVqFba9WbNm+Ne//oU77rgDfr8fF154IUaNGoV+/frB7/dj9uzZWhYfl8uFDz74wHKRRv2cxZ07d1rOEbHiH//4B/766y/Mnz8fv/76K9q1a4crr7wSffr0QaNGjeD1enHo0CFttPXQoUMYOHAgnnrqqajq46FFixaYNm0aLr30UlRUVGD06NF44403cOmll+Kkk05CUlISCgoKsGXLFixfvhxLliyBLMu2a4fx8P7776Nnz54oLS3FO++8g2XLluH6669HixYtkJubi+nTp2PJkiXo06cP9uzZg/3793P1mGVkZGDEiBFBYU79+/fHSSedFLPPNYW+ffvizjvvxDvvvINjx46hd+/eGD16NPr27QtRFLFy5UpMmjQJJSUlGDZsmOW9lJKSgq+//hr9+vVDYWEhHn30Ubz//vu48sorccoppyA1NRWFhYXYsWMHVq5ciQULFsDr9WoLhqosXrxYi1Jo0aIFPvjgg6D9LpcLU6dOxWmnnYbCwkI88MAD6NevX7WHRVUFzz77LH766Sds2rQJs2fPxumnn45bbrkFzZs3x7Zt2/D+++9j7969AALXYqxzGRMSEjBkyBDMnDkTq1atQnFxsWn66u3bt+OBBx5Ao0aNMGTIEJx22mnIycmB2+1Gbm4uFixYgG+++UbLwNasWTPL5C5OPl/37NmDnj17olevXhg4cCA6d+6MpKQkHDp0CPPmzcMPP/yg9cg/+uijQaNF0dK9e3c8+uij+Oc//4mCggKcddZZuOWWW9CrVy8tdEoNK09NTQ27jp0kNTUVs2fPxkUXXYRFixbhm2++wdVXX42vvvpKG82vyrZXamoqrr76akyePDko6diVV17p2AhDbm4uxo4di4ceeggXXHABzjjjDDRv3hyJiYk4evQolixZghkzZmjho2lpaZg+fbplttJJkyaFLSisn9cV+s7MysoKW9TY7/fjH//4B1577TWce+65OPPMM9GhQwekp6ejoqICe/bswYIFC4KmwnTu3Bmvv/56LKfD8fZJLLhcLnzxxRcQBAFfffUVli9frs0p03//H3/8MbZs2YK1a9di+vTpmDNnDoYPH44ePXogKysLZWVl2L9/P/7880/MnTsXx44d4wotFgQBY8aM0aId1OlJ55xzDteSLnr0Ux+GDRsW0bGWOKHqeEbI/H5/UO9M6I9Rz+yBAwfYwIEDTY/R/0iSxD788MOwMiIdIWOMsXHjxlnWdfbZZ7PDhw9rvSRWPenXXnutaTmh54qn19/n87FbbrnF9nxcddVVrLS01LQc1a6+jZCFjoLw/hj19ut57bXXmNvtNj0+LS2NqxdRf4xZrxcvFRUV7O6772aSJHF9xlGjRoWV4eRIi8qyZctYu3btuHxKTU1la9asCSsj0hEyxhj75ZdftBE6o5+uXbuyPXv2sObNmzMA7P/+7/+4yl2xYkVQOVOnTuX2KVqqc4SMscDz+4YbbjA9d6IosldffdWyh17Ppk2bgkZxrH4SEhLY7NmztWOPHTumPXtFUbR8rn/++edaOd27d7fs7a9N7Ny50/b8DRo0iB07dsyR+r7++mut3ClTppja/fvf/+Z+pp5zzjls165dXPU78Xz9/fffbX1KS0tjEyZMsPWHd4SMsUDP/P3336+NlBn9NG7cmM2fP5/rXFjBc/8VFxezc889V7O79NJLw0bKnGh7GfHbb7+FHf/LL7/E+rE1Zs2axX39de3a1XDEMhT9u4bnx6g9eOzYsYjKuPLKK1lubq6lX3p7u7aCU+0TO3jeJT6fjw0fPlyzO/PMM8NGwQoKCtiIESO4z9fTTz/N5d/OnTvD7sOPP/444s+pjrC2atWKKYoS8fFmVJsgY4yxsrIy9sorr7A+ffqwrKysoIaiVaNhwYIF7LbbbmNdunRhmZmZTJIklp6ezk455RQ2YsQI9u6777IDBw4YHhuNIGOMsdmzZ7OhQ4eyhg0bMrfbzZo2bcoGDBjAPvzwQ214m0eQ+f1+9u6777L+/fuzhg0bMpfLZXquImlkLlu2jN18882sQ4cOLCUlhSUlJbG2bduy66+/nuvBrtZDgozvx06QMcbY2rVr2V133cU6duzIUlJSWFpaGuvatSt77LHHuBoeJSUlWn0ej4cdPXrUgU/M2NatW9njjz/OzjzzTNaoUSPmcrlYcnIya9u2LbvooovYyy+/bCh6GKsaQcZY4KH8+eefs+HDh7O2bduy1NRU5nK5WHZ2NuvRowcbO3Ysmz59OisuLjY8PhpBxhhjhw4dYg8//DDr1KkTS0pKYpmZmaxHjx7s9ddfZyUlJUxRFJaUlMQA61AqPYqisIyMDAaAZWdnW4bLOEV1CzKV7777jg0dOpQ1atSIJSQksFatWrFrr72WLV26lDHG1yBUURSFffPNN2z06NGsY8eOLD09nUmSxDIzM9mpp57KRo0axSZPnszy8/ODjtO/qB9//HHLOhhjbOTIkZr9Qw89ZGtfW/B6veyDDz5gAwYMYE2aNGEej4c1a9aMDR06lE2bNs3RhoLf79dCqQYPHmxql5eXx7788kv2wAMPsHPOOYe1b9+eZWRkaPf2qaeeym677baowsRjfb4WFxezyZMns9GjR7OuXbtq7/acnBx29tlns1deecUytFtPJIJMZenSpWzMmDGsXbt2LDExkWVmZrLTTz+djR8/nh05coSrDDt47z8jUWbUWRFL28sIRVGCplS0adPG0eu0qKiIffPNN+zxxx9nAwYMYB07dmTZ2dnM5XKxzMxMdvLJJ7PRo0ezb7/91jJUWo8TgowxxjZs2MDefPNNds0117Bu3bpp5zMxMZHl5OSwfv36sccee4xLJDIWeedtrPcPD7zvEr/fH/QcNxJljAVCfu+//37WvXt31qBBA+ZyuVhqaio76aST2LBhw9gbb7zBtm/fHpGPAwYM0OpNSUlhRUVFER2/ZcsW7fiXXnopomPtEBiropyiBEFExJw5c7QMW/fee2/ECSaI2Fm7di3+7//+DwD/dzBv3jwMHjwYQGDtlTfffLMqXSSIuPDvf/8bDz74ICRJwq5duxxLf08QBFFbeOaZZ/DCCy8gJSUFu3fvDlrPLlbiv2IsQRAATqyBl5aWVqVzuQhz9NnOeOeuvfvuu9rfdWHtMYIw4vbbb0dOTg5kWcarr74ab3cIgiCqlcLCQkycOBFAIN+Ek2IMIEFGEDUGVZA9+OCDaNSoUZy9qXssWrTIcv2ziRMnapPqmzdvjosvvti2zL/++ktLYjFo0CBtnS2CqGskJSXhueeeAwB88MEHOHDgQHwdIgiCqEYmTJiA/Px8NGjQAI8++qjj5VPIIkHUAPLy8tC4cWM0bNgQ27dvr9KFo+srHTp0QHl5OS688EJ0794djRo1gs/nw/bt2zFr1iz8+eefmu13331nKsh++uknKIqCLVu24NVXX8XBgwcBBDL/qQuwEkRdRFEU9OzZE3/88Qfuvvtuy7WNCIIg6gqFhYVo27Yt8vPz8d5772lrkDoJCTKCIOoFHTp0wPbt2y1tkpKS8OGHH2qLWBuhX5pAhXe+2c8//4zS0lJ7Zw1o2LChtrgrQRAEQRB1BxJkBEHUC5YvX46ZM2di+fLl2L9/P44ePYrS0lJkZWWhY8eOGDRoEO644w40adLEshxVkKWmpqJjx4644447cNNNN3GtW9amTRvs3r07Kv/79euHBQsWRHUsQRAEQRA1l2pbGJogCCKe9O7dG7179465HOrDIgiCIAjCSWiEjCAIgiAIgiAIIk5QlkWCIAiCIAiCIIg4QYKMIAiCIAiCIAgiTpAgIwiCIAiCIAiCiBOU1IMgCIKIClmWUVZWhtLSUu1H/39JSQkqKirg9Xrh9XqD/jb63+v1QpZlKIoS9Fv9URQlaB8QyHpp9qNmvhRFEZIkweVywe12az9m/3s8HiQkJCApKQmJiYlITExEcnKy9rd+e1JSElJTU5GcnAyXi16pBEEQROTQ24MgCKIewxhDUVERCgsLUVhYGPZ3QUGBtk39XVJSgtLSUpSXl8fb/RpFcnIyUlNTg37S0tKC/k9PT0dmZiYyMjKQmZmJzMxMJCUlGa5vRxAEQdQPKMsiQRBEHUNRFBQUFCA/Px/Hjh0L+x36tyzLMdUnSRKSk5ODfpKSkpCSkoLExETMnbwQAgMgCwATAEUAFEBQ1L91/zMAqPzNELBX31LsxHZB3abbDb2mEVBpqPtfYIFAfYGBier/LGgfEysLlwI/Q8YOQHl5OcrKylBWVoby8nLtf/V3RUVFTOfP4/Fo4kz/k5WVhYYNG6Jhw4Zo0KABGjZsiJSUFBJvBEEQdQwSZARBELUIWZZx7NgxHD58GEeOHMGRI0fC/s7Ly4Pf74+o3OTkZKSnpyMtLQ3p6elIT0/Hb/9dDsEvAH4Rgl8EfELgtyxAkAVADvwNBRBQf0UCqxRwzKUALgZICpiLAa7K3xLDpfedr404Hj9+XPvt9XojqisxMVETZ6pQa9CgARo3bozGjRsjJycHDRo04FqonCAIgqgZkCAjCIKoQciyjLy8PBw8eDDs59ChQzh69Cj3iFZGRgays7ORlZWFv37aAMEnAj4RgvfEb20bq7+CKl4wVI7QuRmYWwFzK4Du96Cbz8HRo0eRl5eHvLw8FBcXc5XrcrnQuHFjNGnSBDk5OWG/GzduDLfbXcWfjiAIguCFBBlBEEQ1U1FRgf3792PPnj3Yt29fkOjKzc21Hd2SJAkNGjRAo0aN0LhxYyz8fAVQIULwShAqf8NLIquuwUQGeGQwj1L5I2P4k5doI6O5ubnIy8uzFeyiKKJJkyZo3rw5WrRogRYtWqB58+Zo3rw5mjZtioSEhGr6RARBEARAgowgCKJKUBQFubm52Lt3b9hPbm4urB69kiQhJycHTZs2xR/fr4dQLp348YoBsVWPQwQJcxgYkKCAJcjaz0X3DMChQ4eQm5uLQ4cOWYZJCoKAxo0bayKtZcuWaN26Ndq0aYPGjRtTKCRBEEQVQIKMIAgiBmRZxoEDB7Bz586gn/3791s2fFNTU9GqVSu0aNEC8z9ackJwVUiB0S4SXEQVwMACYZFJMliijGtfuAz79u3D/v37sW/fPpSWlpoem5iYiFatWqFNmzaaSGvdujWaNWtGKf8JgiBigAQZQRAEB+qI165du7Bjxw5NeO3evdtUeLndbm2UYel/V0Mod0EolSCUuQC/QKKLqFEExBoDS/SDJcm47sVh2Lt3L3bt2oW9e/eahtK6XC60bNkS7dq1Q/v27dG+fXt06NABDRs2pIyQBEEQHJAgIwiCCMHv92PXrl3YunUrtmzZgq1bt2Lbtm2mowcJCQlo06YNti7cDaHUBaHUBbFUAiokEl1EnYCBgSXKYMl+sGQZA289C7t378aePXtQVlZmeExGRkaQQGvfvj3atGkDj8dTzd4TBEHUbEiQEQRRrykrK8O2bduwdetW7Wfnzp3w+Xxhti6XC61atcKu5QcCI12lLoilLqCchBdRP1HnrCnJfrBkP84b2xvbtm3D3r17DZOLSJKEVq1aoVOnTujcuTM6d+6M9u3bUyIRgiDqNSTICIKoN/j9fuzcuRMbNmzAxo0bsXHjRuzatcswwUZqaio6dOiAtT9sgVDiglDsglDmosyFBMEBE1hgNC3Fj2FPnI/t27dj27ZtKCoqCrOVJAnt2rXTBFqnTp3Qrl07mpdGEES9gQQZQRB1EsYYDh8+jA0bNmgCbPPmzaioqAizzc7ORseOHfH7l2shlLggFrso3JAgHIaBAR4FSqoPI/85DJs2bcKmTZtQUFAQZuvxeNChQwecfPLJ6Nq1K7p27YomTZrEwWuCIIiqhwQZQRB1Ar/fjy1btmDNmjVYu3Yt1q9fj/z8/DC7lJQUdO7cGX99vQlCkQtikRuCT4qDxwRBaCGPqT4Mf2EoNm/ejM2bNxsugt2oUSN07doV3bp1Q9euXdGhQwcaRSMIok5AgowgiFpJaWkp1q9fj7Vr1+Lvv//Ghg0bwka/1FCo7Qv3BYRXkRtCGY18EURNRksgkubDZU8Mxtq1a7F9+/awOWkJCQnaCFq3bt3QrVs3pKamxslrgiCI6CFBRhBEraCgoAB//fUX1qxZgzVr1mDbtm1hDbS0tDR069YNK6auCQiwYjcEhcQXQdR2mKiApfkx+q0rsW7dOqxfvz5sPpooiujYsSNOO+00dO/enQQaQRC1BhJkBEHUSEpLS7FmzRqsXr0af/zxB7Zt2xaWfKNJkyY4srYAYqEbQqEnkPmQRr8Ios7DwAKLW6f7cP59ffH3339j//79QTYk0AiCqC2QICMIokbg9XqxYcMG/PHHH1i9ejU2bNgQNgLWunVr7F1+GGKhG2KhB0IFzf0iCCIA88hQMrwY8tC5+PPPP00FWs+ePdGzZ0906dIFbrc7Tt4SBEGcgAQZQRBxgTGG3bt3Y8WKFVi5ciXWrFkTNgcsJycHh/86DrHAA/G4h5JvEATBjZ1AS0pKQvfu3dGzZ0/06tULLVq0gCDQCDtBENUPCTKCIKqN0tJSrF69WhNhhw4dCtqflZWFgi2lEI9XCrAKyqBGEIQzMI8MJdOL/nf2wqpVq3D8+PGg/Tk5Odro2RlnnIG0tLT4OEoQRL2DBBlBEFUGYww7d+7EihUrsGLFCqxZswZ+v1/b73a7ceqpp+LPLzdBPJ5Ac8AIgqgWGBhYih83vXc1fv/9d6xduxY+n0/bL0kSunbtirPOOgtnn302WrZsSaNnBEFUGSTICIJwFL/fj7/++guLFi3CkiVLcPjw4aD9zZo1w6FVxyAeS4BY4KEsiARBxB0mMigZXgx7dhBWrlyJPXv2BO1v3rw5zj77bPTp0wennnoqrX9GEISjkCAjCCJmSkpKsGLFCixevBjLly8PWtTV4/Gge/fuWPXFBoj5HgjlNApGEETNhiXIuOPzkViyZAn++uuvoJH9lJQU9OrVC2effTZ69+6N9PT0OHpKEERdgAQZQRBRkZeXhyVLlmDx4sX4448/gsJ9srKyULCxDGJ+YmAuGI2CEQRRS2GSAiXTi8EPnoVly5YFzT2TJAndu3dH//79cc455yArKyt+jhIEUWshQUYQBDeHDx/GggUL8Ouvv2L9+vVB+1q2bIkDy45CPJoAochNo2AEQdQ5GBhYmg/XvH4xlixZgh07dmj7RFHE//3f/6Ffv34499xz0ahRozh6ShBEbYIEGUEQluTl5WkibO3atUH7unTpgk0/7IZ4NAFiGc2pIAiifqEk+nHjB1di4cKF2LRpU9C+Ll26oH///ujXrx9ycnLi5CFBELUBEmQEQYRx9OhR/Pbbb/j111+xZs0aqI8JQRDQrVs3bJi1MzAS5qV1wQiCIIDAvLOxk0fgt99+w7p164L2denSBYMHD8Z5551HYY0EQYRBgowgCACBxBwLFizAzz//jL///huKomj7unbtio3f7oaURyKMIAjCDuaRccfUkVi4cCH++usvrVNLkiT06NEDgwcPRt++fZGcnBxnTwmCqAmQICOIeozf78fvv/+On3/+GYsWLYLX69X2nXLKKdj8/R5IeYkkwgiCIKKEuWXc+tk1mDdvXlBYY0JCAvr27YtBgwahV69ecLvdcfSSIIh4QoKMIOoZjDFs2bIFP//8M+bPn4/8/HxtX+vWrbHvt6OQjiRCqCARRhAE4SRKoh8j/3MJ5s2bh3379mnb09PTMXDgQFx00UXo2LEjLUJNEPUMEmQEUU/Iy8vDnDlzMGfOHOzatUvbnpmZiaINFRAPJ0EodlF2RIIgiCqGgYGl+jHspYFhHWPt27fHRRddhMGDByMzMzN+ThIEUW2QICOIOowsy1i5ciW+//57LF26FLIsAwgs1uzfL0A8nBRYJ4yRCCMIgogHDAws04tz7zsjKHTc5XLh7LPPxkUXXYSePXvC5aJMtgRRVyFBRhB1kNzcXPzwww/48ccfcfjwYW17ly5dsPnrPRDzEiHIYhw9JAiCIEJhLgV3ThuJ2bNnY/Pmzdr2hg0b4oILLsDFF1+M5s2bx9FDgiCqAhJkBFFH8Pv9WLp0Kb777jusXLlSy+qVnp6Oko1+iLlJEEuph5UgCKI2oKT4cNlLAzB37lwUFBRo288880wMGzYMvXv3hiTRXF+CqAuQICOIWk5eXh6+/fZbfPvtt0HzELp3746107YHRsMoJJEgCKJWwgSGp+bfje+//x4rV67Utjdp0gSXXnophg4diuzs7Dh6SBBErJAgI4haCGMMGzZswMyZM7FgwQL4/X4AQFZWFgrXVARGw8ppNIwgCKIuwRL9uOL1wfjxxx9RWFgIIDDXrH///hg2bBi6detGGRoJohZCgowgahFerxe//PIL/ve//wWtZ9OtWzds/GoPxKMJNBpGEARRx2Eiw8Pf34Kvv/4aGzZs0La3a9cOV111FQYPHoyEhIQ4ekgQRCSQICOIWsCRI0fw9ddf47vvvsPx48cBVGZK3CtCOpAMsYQWFCUIgqiPKCk+XPD0WZg7dy4qKioABKIlLr/8cgwbNoxS5xNELYAEGUHUYHbu3Ilp06Zh7ty5Wlhio0aNkP97GaRDSRD8lCmRIAiCAJik4JbPrsaMGTO07LoejwcXXHABrr76arRp0ya+DhIEYQoJMoKoYTDG8Pfff+OLL77AsmXLtO2nnnoq1k/bFQhLpMWbCYIgCAOYwDDu5zswffr0oND2M888EyNGjMAZZ5xB88wIooZBgowgagiyLGPx4sX44osvtDkBgiBAOOKBtC8FYjGFJRIEQRB8MDCwdB9639UVixcv1pZCOemkkzBy5Ej069eP0uYTRA2BBBlBxBmv14vZs2dj2rRp2L9/P4DK+WG7JUj7kylbIkEQBBETLNGPS/7RHz/++CPKysoAAC1btsTIkSMxePBguN3U4UcQ8YQEGUHEiYqKCnz//ff473//iyNHjgAA0tLSULpegXQwGYKP5ocRBEEQzsFcCka+fzFmzJiBoqIiAEDjxo1x7bXX4uKLL6bMjAQRJ0iQEUQ1U15ejm+//RZffPEFjh49CqAyUceKckiHEiEoJMQIgiCIqoNJCm6echWmT5+O/Px8AIHMjNdccw0uv/xyJCYmxtlDgqhfkCAjiGqirKwM33zzDaZNm6a9AJs0aYKjS0oh5ibR+mEEQRBEtcIEhnv+dwOmTp2KQ4cOAQCys7Nx3XXX4bLLLqMRM4KoJkiQEUQV4/V68e233+Kzzz7DsWPHAAA5OTnIW1QC8TAJMYIgCCK+MIHhoe9vxqeffooDBw4AABo0aIDrr78el1xyCTweT5w9JIi6DQkygqgi/H4/5syZg8mTJyM3NxcA0KxZMxxeUAzxSCIJMYIgCKJGwQSG+78Zg08//VR7bzVq1AijRo3C0KFD4XJRkimCqApIkBGEwyiKgt9++w2TJk3Cnj17AAReaMeWltOIGEEQBFHjUUMZp0yZoiWdatGiBW699Vb069eP1jEjCIchQUYQDrJq1Sq899572LJlCwAgIyMDxX/JgayJCr3ACIIgiNoDExhun34NpkyZguPHjwMATjnlFNx+++047bTT4uobQdQlSJARhAPs2rUL77zzDpYvXw4ASE5ORsVGAdKBZAgyZU0kCIIgai9MUnDd+0Mxffp0bR2zPn364LbbbkO7du3i7B1B1H5IkBFEDBw7dgyffPIJvvvuO8iyDEmSgL0eSHtSIfhJiBEEQRB1B+aWcdE/+mrvPFEUcdFFF2Hs2LHIysqKt3sEUWshQUYQUVBRUYGvvvoKn3/+OUpLSwEA4tEESDtTIZbTpGeCIAii7qIk+nH2w92wYMECAEBKSgpGjx6NK6+8Em63O77OEUQthAQZQUQAYwxLlizB22+/jYMHDwIAOnbsiJ0zjkAspLTABEEQRP3hjb+fwdtvv41NmzYBCCT+uPvuu9GnTx9K/EEQEUCCjCA42bdvH9566y2sWLECQGXmxMUVgRT2oBcPQRAEUf9gYHjoh5vx/vvvIz8/HwDQs2dP3HPPPWjTpk18nSOIWgIJMoKwoaysDJ9//jmmTZsGn88Hl8sFttMDaW8KBIXmiREEQRAEkxRc9fZgfPXVV9q78pprrsGoUaOQmJgYb/cIokZDgowgLFi4cCEmTJiAw4cPAwCEYx64dqRBLKN5YgRBEAQRCkv0o8e9nbB06VIAQE5ODh544AH06dMnzp4RRM2FBBlBGHDkyBG8+eabWLRoEYDACyXv1zKIRxMoPJEgCIIgbHjmt3vx1ltvaR2a5557Lu699140btw4zp4RRM2DBBlB6FAUBd988w3ef/99lJaWBtLY70qsDE8kIUYQBEEQvDBRwZVvD8KXX34JWZaRlJSEm2++GVdeeWXg/UoQBAASZAShsXPnTrz22mtYt24dAEAodMO1LQ1iKaXwJQiCIIhoUZJ96Dy6OdauXQsA6NKlCx5//HG0bt06zp4RRM2ABBlR7/H7/fjss8/w2Wefwe/3IykpCb51LogHkyg8kSAIgiAcgIHhnlk34N1330VpaSk8Hg/GjBmDa665Bi4Xzcsm6jckyIh6zc6dO/HSSy9hy5YtAADxqAeu7ekQvBRKQRAEQRBOwzwyut/TXltCplOnTnj88cfRvn37OHtGEPGDBBlRL5FlGdOmTcPHH38Mn8+HtLQ0lK0SaE0xgiAIgqhiGBge/vEWTJgwAcXFxZAkCTfeeCNGjhxJc8uIegkJMqLesXfvXrz88stYv349AEDM98C1jUbFCIIgCKI6YW4ZZz58spbRuGvXrnjqqafQrFmzOHtGENULCTKi3sAYw3fffYe3334bFRUVSE5OhvcvF8TDNCpGEARBEPFAHS178803UVpaiqSkJNx333248MILIQj0bibqByTIiHpBYWEhXn31VSxcuBAAIBz3wL01HUIFjYoRBEEQRLxhCTI639wMa9asARBYt+zhhx9GZmZmfB0jiGqABBlR5/n777/xwgsv4PDhw4HY9G1JkPYn06gYQRAEQdQgGBjGTBmGSZMmQZZlNGjQAM8++yxOO+20eLtGEFUKCTKizuL3+zFlyhRMmTIFiqKgefPmOPxDGcRiWleMIAiCIGoq/9n4Il544QXs2bMHoijipptuwvXXXw9RFOPtGkFUCSTIiDpJfn4+nn/+efz5558AADE3Ea4daRBkepgTBEEQRE2HiQrOe/50zJkzBwDQs2dPPPXUU8jKyoqzZwThPCTIiDrH2rVr8eyzzyIvLy+wyPNfbkhHkuLtFkEQBEEQEcDA8OD3N+Hf//43Kioq0LBhQzzzzDMUwkjUOUiQEXUGxhhmzpyJiRMnQpZlCKUSXBszIZa54u0aQRAEQRBRoiT70ezyVOzevRuiKOLOO+/E1VdfTVkYiToDCTKiTlBaWorXXnsN8+fPBwCIRxLg2poOQaEQRYIgCIKo7TCR4bznu2shjOeffz4eeeQRJCQkxNkzgogdEmRErefgwYMYN24cduzYEciiuDUZ0oEkyqJIEARBEHUIBobbv7xGi4Tp2LEjXnrpJTRp0iTerhFETNDwAVGrWbNmDW677Tbs2LED2dnZEP9Ih+sApbQnCIIgiLqGAAHvD5+ON954AxkZGdiyZQvGjh2Lv/76K96uEURM0AgZUWuZPXs2XnvtNfj9fgjFLrg3ZELw0kLPBEEQBFHXYQkyWl+Xha1bt0KSJDz00EO4+OKL4+0WQUQFCTKi1iHLMt5//31MmzYNACDmJcC1JQOCQqNiBEEQBFFfYCLDuc/8H+bNmwcAuP7663HLLbfQemVErYMEGVGrqKiowPjx47Fo0SIAgLQnBdKeFApRJAiCIIh6CAPDtR9eiE8//RQAMGDAAIwbN46SfRC1ChJkRK2hsLAQ48aNw9q1a+F2u8HWJkHKo/XFCIIgCKK+8+APN+HVV1+FLMvo1q0bXnrpJWRmZsbbLYLgggQZUSvIzc3Fww8/jN27dyM1NRUVS90QCz3xdosgCIIgiBrCK78/jqeffhrFxcVo0aIF3njjDeTk5MTbLYKwhQQZUePZvn07HnnkEeTl5QEVItzrsyCW0mLPBEEQBEEEoyT50WCoG4cOHUKjRo3wr3/9C23atIm3WwRhCc16JGo0a9euxT333IO8vDwIJRI8f2eTGCMIgiAIwhCxzIX8b/1o06YNjhw5gnvuuQcbN26Mt1sEYQkJMqLG8ueff+Lhhx9GcXExhAI33GuyKa09QRAEQRCWCF4JB6aV4OSTT0ZBQQHuv/9+/PHHH/F2iyBMIUFG1EhWrlyJRx55BGVlZRCOeeBenwVBpsuVIAiCIAh7BL+I7R/n4fTTT0dZWRkeeeQRLFu2LN5uEYQh1MIlahxLlizBuHHj4PV6IeZ7Ags+0xpjBEEQBEFEgCCLWPf2Ppxzzjnw+Xx46qmnSJQRNRISZESNYuHChXjqqafg8/kCCz5vzITASIwRBEEQBBE5AhOw4pXN6NevH4kyosZCWRaJGsPy5cvxxBNPwO/3QzycCNeWdFrwmSAIgiCImGECQ58nTsZvv/0Gt9uNl156Cb179463WwQBgAQZUUP4448/8OijjwbCFI8kwLU5g8QYQRAEQRCOwQSG3uM6Y+HChfB4PHj55ZfRq1eveLtFECTIiPizdu1aPPzwwygrK4N41APXJgpTJAiCIAjCeZjAcObjnbBo0SIkJibijTfeQNeuXePtFlHPIUFGxJUtW7bg/vvvD6S2P1aZwIPEGEEQBEEQVQQTGLo/2BYrVqxAWloa/vOf/6Bt27bxdouox5AgI+LGwYMHcccddyA/Pz+wztj6LMqmSBAEQRBElcNEhpPGNsL69evRsGFDTJw4EU2bNo23W0Q9hQQZERcKCwtx5513Ys+ePRBKXHCvoXXGCIIgCIKoPphLQfNrU7Fz5060aNECEydORFZWVrzdIuoh1AImqp2KigqMGzcOe/bsAcpFuNdnkhgjCIIgCKJaEfwi9k8vQk5ODvbt24cnnngCFRUV8XaLqIdQK5ioVhRFwUsvvYS1a9cCfgHuDVkQvFK83SIIgiAIoh4ieCUc/d6HtLQ0rF+/Hq+88gooeIyobkiQEdXKRx99hAULFsDtdsO9MRNiqSveLhEEQRAEUY8Ry1148cUXIUkS5s+fj8mTJ8fbJaKeQYKMqDZ++eUXfP755wAAti4JYoEnzh4RBEEQBEEAj57xMh566CEAwCeffIJ58+bF2SOiPkFJPYhqYdu2bbjzzjtRXl4OaV8yXLvS4u0SQRAEQRBEEJf/5zxMmzYNHo8HEydORKdOneLtElEPIEFGVDnHjx/HrbfeikOHDgXWGlufCQGU3p4gCIIgiJoFA0OPRztg6dKlyMnJwUcffYT09PR4u0XUcShkkahSZFnG888/j0OHDgFlEtybMkiMEQRBEARRIxEgYNW/tqJZs2Y4dOgQXnzxRSiKEm+3iDoOCTKiSvn888+xevVqJCUlwb2R0tsTBEEQBFGzEWQRL7zwAjweD5YvX67NfyeIqoJax0SV8ffff+OTTz4BAPj+clNGRYIgCIIgagV3dnoCDzzwAABg0qRJWL16dZw9IuoyNIeMqBIKCgpw00034ciRIxBzE+HemhFvlwiCIAiCICJi0D964IcffkCDBg0wefJkZGRQe4ZwHhohIxyHMYZ//OMfOHLkCIQyCa7tlFGRIAiCIIjax9wnf0erVq1w9OhR/Otf/6JFo4kqgQQZ4Tg//PADli5dCrfbDdemDAgKXWYEUe8QOJL3OGVTU+ohCKLOISgCnn76aUiShAULFmDOnDnxdomog1BLmXCU3Nxc/Oc//wEAKFsSIJa44+wRUeUIgn1jlhq79Qv1+7b63iOxsavLqXrsbOg6Joh6yd0nP4WbbroJAPDmm2/i4MGDcfaIqGuQICMcgzGG1157DaWlpRAK3ZD2J8fbJaKq0TdQzRqrPI1dou5QFSNjdtdWVdUbbRkEQdQ5Ph39Dbp164bS0lK88sorFLpIOAoJMsIxfvzxR6xcuRJQANfWdFpvrK7D03ANtaHGbN3G6PvluQZqmw1dxwRR7xAgYPPHB5CQkIA///wTP/30U7xdIuoQJMgIR8jLy9NCFaXdqRDLKMV9ncUqdItGw+ov1RU2WFNs6BoniHqHUOHSQhcnTpyI48ePx9chos5AgoxwhHfffRclJSUQilwUqliXcSrki5Is1B6q8/vksRGl6rNx6rPzQPcEQdQKJl0/Ex06dEBhYSEmTpwYb3eIOgIJMiJm/vrrL8ydOxeCIMC1jUIV6yzV2Rh0IpkDbzn1Gd7zVx2jRIJ44sfKRv/byESSIIhCzOVw7dfsYkwG4tSoHkEQVY7ABDz88MMQBAFz5szBqlWr4u0SUQcgQUbEhN/vx5tvvgkAEA4kUlbFukpVNALN5u44lcyBGrDWRCq2qnIeVajwMRJCgghBFAJiy8RGkCSduYko46lLvz0WURbptcxTjlVZBEFUC/d1fRZXXHEFAODtt9+G3++Ps0dEbYcEGRETX3/9NXbs2AH4BLh2p8bbHcJpqivVdyRhb9UZRlZXqYXnRxNiIX/zHhNhZdEdZ1uukyK29n2HBFGX+O7hhcjIyMDOnTvxww8/xNsdopZDgoyImqKiInz88ccAANfuVAh+upzqFNUlxHhtKAFD1cE7AlMVo452I1ScNvrRsVjKiWq/ZudQGn7ecui6Joi4IcgixowZAwCYNGkSSkpK4usQUauhFjQRNV988QWKi4shlEgQDyXF2x3CSWrifLFYbZwcXatJPvPWZWer1lWd8/J4hFBlqGL4rhOhi6ZirNJOkCR+0RWtaNPsbM5hJOeZEn0QRI3m3eFfoFWrVjh+/Dg+//zzeLtD1GJIkBFRcfToUcyYMQNAIM09JfKIEt7GmZP1OWFTF+H93E6LMadGSWpSKCdHcg4rEaWZSZKt2BI9bsCuLJty1LJsfbL7XPGivt6zBBFnBCbgjjvuAAB89dVXOHz4cJw9ImorNfDNQtQGpkyZgvLycgiFboj5CfF2p3bixKhGJMeTGAsQS9IEpxOOmOGkOIzEzgnsQgR1I15Wc7yCxJGJCBJcgfUOBUEwF2XqdgvBFfH8NBJlBEFU8uw5/8app54Kr9eL//73v/F2h6il1MC3ClHTOXjwIL777jsAlXPHaHQscnhEgbrNCTFWHfXUJqoz+12kNk76Y1VeVWCX1dAg/NAwHNFIOIWUrYox7X8jURb6v4EoswyHtIJEGUEQAAQI2lyy77//Hnl5efF1iKiV1MA3ClHTmT59Ovx+P4TjHogFnni7U/uIdlQjmsZWrOFwdR3ekapYQwZ5bZz0x87OaTjmaJkJnaARKquwwco6QsWYtlsvyszK0YkyyxE6EmUEQXDyWM9/oFu3bjRKRkRNDXybEDWZ48ePa+ldXXuT4+xNLSLShAlONKpq0pwioOY1XuM1ZyxWeOuqKfPFKm3sBA7XHC5RgJBknUBIkCRbG6vwxVCfOIzsbaqbmnbvE0QdRz9K9u233+Lo0aPxdYioddTANwlRk5k1axYqKiogFLsg0OgYH5E2fJzK0FaT4Gm0OtmwrYmN5NoIT3IO/WLNZmYcWQ4FlwuwKkcUICYkBEbBbBAEAYLH+vkkuF2mI20Bg8oMjxzJQHizRVaLjWbrQCeBk9kgCaKOM+7Mf6JLly7wer343//+F293iFoGtVoIbsrLy7WHjLQvheaO8VDdDZWa2DiKZB2oWBukNTULXm0kguQcgX9NwhEjTc5hVE6lGNNwu419FsWgssxEmeaTzj7YQDS2DzPTJSdxaD01RzsvakICG4KoJwgQcM011wAIjJJVVFTE2SOiNkEtF4KbOXPmoKCgACiTIOZRZkVbqrqB4sQcs6rGLskDz/9G26Mpl+AniuQcgc0hCTuiTc5hN+ImCOGizEBcGY2mhfkUepyZaLRJBmIoyniuU8PKHLy+45nAhiDqGS+c9zZycnJQUFCAuXPnxtsdohZBLRaCC8YYvv32WwCAdDCJRsesiMcoVU1sCMXS0x9pwzbWxXyJE3CMQPIkw4g5OYdaR+jomN5GFWVmI11A0CiZqU/q8XZhlTbJQIJEmd15NPo7FhsrqiJhTCw2BFFHESDg8ssvBwDMmDEDjLE4e0TUFqi1QnCxceNGbN26FVAA6bDNhPn6TF0PUeQVWU7Nl7Gr0+l5NzWN6vaboz6eRBeC22JuFhBIqmEgsoLKEAQIkmgoxoJsPB7LuWCajW3CEBGCxyQUUl+ezWfjSk4SMHT2PuGpz9bGoYQxTj6TSOARtYxJo2YgISEBO3bswMaNG+PtDlFLqKWtFKK6UUfHxLxECP56etnYNUTqesMhHsKnugSJ6juP+KvOBA48OFFfZfIKruQcdvDYAIAoWtuKIoTUFMBKJEkShPQ0CGmpFuUIEBITISTbdCTx+s1py5VV0gGbSkN7Gx47Jzs4eJMT1aTkI5TEhHAAQRbRr18/AMCPP/4YZ2+I2kI9bVkTkVBeXo5ff/0VACAdqqejY3bzMGr7C5pHjBj9bbWtGuBusAaMI9tuZVPVCRx4kzxE6rsTyTms6tQLFbPvRRROjGiZiTJRDAgo9bo0EmWSBCElOXDviaKxKBMFwO0J/BZEc1GmT/JhJQD1n8kuJNMitJPrfHPYhNXJs6+6rktB5H8uVnVikapIUFLbn/lElfLrv34HAMyfPx/l5eVx9oaoDZAgI2xZsmQJysrKgHIRQqF9SE+dojammI+UaMRWpFnhqoCIG6wBQ+v/eW14ynayvqo6LtrkHEblGgorIez/QHp7i3OqF2P6+vRCSS/G9Mel6NZG1Isx9X8rUaYvx0iUGV1jdklLDM4v1/nmsDGkKq+daJ8N0WR1NLNzKrFItKGZtSGRElEjEArcaNq0KUpKSrBo0aJ4u0PUAkiQEbbMnz8fACAdqWfJPJxYD6ymE0vYXBznZnELMOODg3/HamNnx2MTqU+xjmBU7o8pOYe+fMvQwxOCyFCM6UfJjMSYvj6P21iMqbhcgX2hYkzvS6goMxuh04syq+vNLq2/7jzznG8ruEVZVVzj0droRVk8EovEOiJm51NtfwcQVYIAAYMHDwYALFiwIL7OELUCgVEKGMKCoqIiDBs2DD6fD+4/GkAstZmsXxeoyy9YtfHElGoTU4IogCnmjxm1kWllY2RvRCRl2Nny2DhJdfvE1biXJMDOJ0m0zSQmCEKgLKuRMQBCgsfyuhRcElhWOoSiUgufRbCkBCC/wNxGYQBTwCq8lv5AUcD8fmsbBD4fkxVbOzAOGw54roFqv8Y5nimCKIDJsnU5gujYeeKCpz4eGyebUoJgXx6PDRFXlGQffKfnw+Px4Ntvv0VycrL9QUS9hUbICEtWrFgBn88HoUSqG2KsOhNzOJ2UIdZyHA4zdKJHX0sTzjFaw5V0wmZOGe+cM0GSqs0n1cbWJ3V0hyPxBo/fttdABMk5jNb70urjyHIoCALE1BQIZgs+IyDGlAaZYDaiDgCYxwU0yLTwOZDoQ0xNsSxHkCTTxaU1G95nhijYn1POZ4FdchWeETmtLJ7riaM+bp947LhG3Ryy0f/msTXd72DSEP1vHtuq9ikSO0JDKHWhZcuW8Hq9WLp0abzdIWo4JMgIS9SHiJhfyxeCrvZUzZzhZZE0BGIRWw6PhkUagmU6J4bDL+61ndT9vPOi7JJXROBTVSdv4D5XusQbXOfcrEye5BwIjI4FbIxFmSrG9P8b2qQkB0bPRBGCK/z8q2IMkgBIAli6iZCSRCjpgV5o5pZMRZkm/CTJVJSpvoZ+BiMbQHcujOBJBiKIATur71q3nSvjJTiuO6vrV1eHWX36a4o3lNi0LP06b7GE5UbT+RRrWerz3KmkIVZ2VZWkxEnfCQgQ0L9/fwCgeWSELSTICFP8fj9WrFgBoJYLMruJ3073/FVl4oZo6qsiMWb2P882wwaXWQKEaBpUAmfmQI7kFVw+VWHyBiMRZXicje+m5zJ0G09yDlQKEIvRKjMhEyRi9GJMqytYlAWJsUqYSwwXZaoY05XP3BKQnRFcf+gonIEoCxWOVqIsyM5IlBlde0bPA72dyTUWXp+BeHXomjIsO2SbUWcJ9/MgtCyrsnV+GhQevo3Hpqqe01aiLOgYg/dOdScyqcr6CADAtIe/BwCsWrUKsl24LlGvIUFGmLJ+/XoUFRUBPgFCUS3NrsiTmMPR+qo4cQNPg0G/r4rFmNF2rpBBi95o1cY0rC6CbZGEC1olrwgaEeQd1bOrj9fG4rNp/9r4buu3uo8nOQdMxJhulMxOwAiCYCzG9GW5JEMxphIkygzEmGbncWmizDQkUifKzEIQeUb7gBBRZvYdhwoZIzvOkeGgUSyHrinL8FKrJCYGoszSJ3VEjGP0jev6tbLTPw+dek6b2YWKsliShkRqY2Wnf+c5WR9hilDkRmpqKoqKirBp06Z4u0PUYEiQEab8+eefAADxuKd6sis6PlLlUFmxhrw4baOFxjhz+3KHGTkwV6rS0H5/JHNtYj0PggjBbTM/UhDt510JfIsrc9fndtnXxzF3h+taEXVrg9nZWY2MiSLXvCtIUmDdMJv093C5DMWYCnOJUDJSTcWYZidJlvPTVJ/EjHRLE20+nM2zJXCObK4D9Zxb2UUQqsp93dlcU6LVOmw89elEGdfcSLs5eryj5JzPRK5QT8ee05zvNJHHpxjDDqMpywmbSOzqIAIE9OjRAwC0iCOCMIIEGWGKJsgKTF6Y+tTvPCNRTqQyjqQ+J+DtLY1x1CRSeJNAxJpMQhut4hVadueJpzGk1mWbbICjPEmyX8CXe94LXyM75voEEYJUOdpkdw5cLuu5Swj4bTe/SajMgGiXeEPweGw+nwAhIcHaRk1bL9qEdrkk+JtmQUkwF4rM40JR5wyUtDUXUkwU4c9MhL9ZtqXfkERAEiGkp5nbVQpSW8Fpcy4BnDjnHOLO7juO6LqzvYZtOgxEAYLbZX0OBDFwbXKIfEGw7wzgSizCaRM6umxox/PslCQILmvxqvrkRCITnnK4O+p47LjLsnuecYy2qfudtKlBIrBnz54ATrSpCMIIEmSEIV6vF+vXrwcACEaCLNqesaqOWa/quWCh+y3mTQSb2oep8e53IqEGj01EApInhIenQRiJOAKsRYt+u9kCvqKghc/xJK+wslNFlJbi3aQ+O5/0jW+7+oz+DrOpHIUym99kN5dH80MdYTITUqpgEwVzgWC1hpgelwR/k8xAWKIkGooy5nGhuHUyFJcAf6KIkjbhQoqJIuQUNyAJUBJc9qKsUpgZijK10VzZsWAqSET992KdvEK1twqTPHGM2agk33VueozeVCfEDEVZyPViJtyCrjsLsaXfZ2onRHY+eUfAYkqyE2l9Vnb6d4jJO4ervtDwZKvQTaO/I7VR90UyEhhL0pBoEovUEFH25jUfAwA2bdoEP8cyGkT9hAQZYciWLVvg9XoBrwChLDRZAOcDs7of0FUtxgxeUjwCiTu7X4TlmOFEMomoxZjRNt4GIee20IapoWgxKit07kulGLMqx2h0wswuzMagPjufbEdCTOoz9EEfWmgkynjCHREixrRjw+fIaGJMV37Q5zMSY0b3rU6MBWwQJsr0Yky1CRVlejEW8AfGoiz0+zQSZUaNZSNRZhCCydVgNxBlhhkpQ793u2vKss6Q+gzEVdA2k+sl9DjD685gtMxIgIVtM3i2cHUg8GwzEGVcz07e+gyfXZEn3ommPtN5ozzzb6OZt6sXZkE2VdgBa/TsiKUztwoRyiSkp6ejoqIC27Zti7c7RA2FBBlhyObNmwEAYrE7eP6YUyEFTpbl9AOXMzyRN2yQr0rrhkGsYo/Xhjs88cQB9vt5RrA4Rs24QrfsylLngYWIMc1dXePcqi6ekQtNlNmFKaphVFbliPb16feZJd04sc9ajGnJFozEmL68yvsvTIxpNoIWNmo6Mqa/h0PFmGZzQpSFiTGdjSrKwsSY5k+IKFPPrVHDThVlVuFkelFmlXGSZ4QjJCmKeVmq2LG5pgD7a0+91i1CFAW3y/56CRJuBtddyGgZ16gZZyITKxu7pCF6QcQbccDjE08iE7NROu7EQVbJVYzK4k1SEqsNz/s9Ehuny4oDAgR06dIFALB27dq4+kLUXEiQEYZs3boVACAU6xpjjo5AOVmWky8Tmzh+0XpOlX4/r/DhKSsWn4zqtDDiE1m8dnY+cYgsQRBsk2BoosWuvsqy7Bcy5kls4JzvdvUJgsA5l0iEkJhgmXQDIsccKFQ2+GwSYQiSBCEp0fq8u1wQUlPsG0wet7EY02wAf5oHh/qkhYsxnU1FuoQD52WYJwPRizIjMab3SRIhpKaa+w0ERFmi/bIgXHOARJFv3pVdUphKv3hCgHmudTGB4/O5beYzqtdeUpJ9WTz18ZxPwD5JCU+SHVQ+PznmqHElRfF47AWgmkjIpj6esrgTmXA803mSGzmZpITrfuBJSORkmGMU7ZeTTz4ZwIm2FUGEQoKMMGTLli0AAKFY7a2MQw+TY5mu+HoIY53fZVinjR2XQOKtz86W50XKUxeH8NGSH9gIH33vuamNJAWuP6uMfEBlggvrpBRaWVa43YG6LFPAiwE7nqQidueAsz7B47EWSLyNeZfLfJ7bCccgeNz2319CgnUDTJQgJCcGEmZYijYJ/iYZ5mIMgJzkwuHuCfClAMXNjO1kj4DCtgK8mQy5PSwa/iIgJ7vhs5pTBpwQZSnJNnaitbBRz7dtUobKc8RhZ5uAhSeZhIvz+S7aNIwrG85c2TWtRl31RVqdT7GyY8Wus8Ptsk9SgsrzZfn5Avcfd30cHR5237HgdnE9X2zvZYD7/eboXGhecWdlYjfCaWBrbeRQ9A5vWTqbKY/MBADs2LHDvmyiXkKCjAjD7/dj165dAACxxB1fMcYrIKKJe9dtc2r+lq1PofucsrGrU31Zmb0o1W2q2LJLzKHaGqGGA6o94qahgSfqME0kERSWYyHKtDAgk3kuoWWZlaNvKJqJJP12KyFlE6YW1jC1qE8L9TJrzIbamCU/0CdRMLPTj+pZhXZyjGKo5Wm/ja4ZVYxZ3GOqGFM8QCB80bw6xc3ABMCbYS7KmCAAAqAkSPA1zbL3n6uBZiLKKq9by4QvOjvt2rQIbVTtTa8rnsQiYfO1TJ59Lt21YCRa1Oul8tlhKmxU8QCL67jSTiva6HyqIz5quKxZYpHQuW1WCUjUvw0/n2if7MSoPjNRFjKv0szG9noJPZ82SUOsRFmkSaCs7IL2WyQNsVvzjmeuYOj2mEQZz3y00O0R2Iglgetj165dlNiDMIQEGRHGoUOHAg8MGYCXc4K4kzg1yZizrmjnb3H5xGPn5ERrI0JfUqEvSr0Ys7IxmyMU8n9ogzBUlIXtV7frX6wWYiHs2LCJ8oJ9WUblmAidMCEXdj4NtvH4xFlfWDIEAyFnaMObsCNE9IY1OENEmakYCx0lU0fHgisMvmYiFWOVKC6gpGnw9yd7BBS2OVGOmShTxVjAH05RJgr2o2RAuCjTibETmziuR6uQ05DGXth1xZFYxDyjoRBuF/JcCDrW7HoJLV8nHoJ8Db0HjASm/nzqxZiFD9yiySg5TtDnMx5d464vVJQZ3ZMGzw7b60XdHvq/QdKQ0P+jSWRiBldyKB4fOBPRRJvQJdyI953OIdJ4bSpcSExMhNfrxYEDB/jqJ+oVJMiIMPbt2wcAEMpd1bMgtIpV2F0kI0+cYYxWi5vyhmbY+sQ7gsXz+SIdfQMsetmF4HNlJrZUG57zYCTGtH26EQKb5Ac84XQaFqMNtmXpfeEIobIcDdPv4/HJJvQwMP/HPARRH+poaaNvrNvZWYw2BC0PYBlKJmm/heRE88aJKATEWKP0iMVYoAzAn3hClKliTHGzILNQURYkxnRl2Yoy3tBF4IQoMxBjJ4rTfTc8I79AuBjT+aZdVxyJRWzDWtVRF7NFq1XBZXe9hI7GGlaluxesQjA9bmMxpvOZa14dTogwy+Q4LpepGNNseOtTz4PVM0337LC9XizKCr6uOEanOBOZxGIXmljEcikBQTzxt1l9HGGM3KKMJ0QxEhur6iCgRYsWAECCjDCEBBkRxglBVk2jYxHMubKzcyy5BTjFmNNJMHhseCdo2yYQELSMe1Y2XIshW4kxzU60Fz52YkWFZz6OZLFWlN7GLiED53wxgacsHp8q67RfLFcMJNSwshEErgV6tUWfrZCkE3PGrHC5zMWYriw5M9V2zlheNwMxpjkdEGWFrUVDMaaiirJDPZPCxZiuLOYRIWdZLAodsSjzmAqRQHGVyVysRsMATZzbNgidmmcjipoAMrcROO6bSlFmd98IPGWJgcQiNueAZ16Z9vls4LLhrc8mvFcQAguq287ZrHzu2V5XtqKbY/4yKt+VPAlPLDo31XJ46hREwXaxbQD8SYl44ElAwpukxEaY5eTkAAhEIRFEKCTIiDByc3MB2AiySERGLPuDTO0zFxr9bWbDUaG1fxEkuOAdYbJ1SU2UYddYskmoESiLL6TNrhytLCsxpgoDmxErtaff0rfKSfq2Nnbp3VXRI1hnL1QbzpapurVRJo6MbZLEVR+syhEFwOUKNBTs7DiTA1giiJX1cVx7STZiTBShpCcDIiB6ZUMTOcmFvK4BMSYYmwAAfBkM/a9ajZMHWWcuY2LlSNkZJgKWAYJXAXPbiLJKeMSI6eLYoWXZZCYUeDof1Llndveq3X2q3jccoptLBHrcEBI4hL7VfaP6JEn2STU4Oh+0c2DV8cMjgiOsz5FEHzz1qbZ2GVl1I1K2/tiN7nEk8bDNzqgvi3M00Q7bdxzPPO1QW6v9NjaqIDt48KB9fUS9gwQZEcbRo0cDf/jM5hlEGIbHG85nAVdYRARlcBgb/63fFqnIshuJsrEJmnxuJsqM5vsYlnUiKYVlOJFNOUFlmRpwpF02sDE8RtSJJzOxJVoLLM0mdK6I0XwSQTgheEwSFmhiTJcQxbDhqPfLrj61t9WwnEoxpoWbmogyfcPGqpET4nu4Uzoxpi/boD67ETtVjDGzlPQIFmNggMCMRZkvneGiwb+jXdIRnJm1C136mSy4Kpz4bSbKBMYgMAaIgrkoYwyQlcDfVqOhoefJKmxYrd9qDTr1t91Imvq32b0aGv5oUA63GDvhoPnn09uZCamg+YsWokwf8maanOPEdWyVWMTyfxX9wtZmz0ddBwVvfUaijDcckcsmtGyz56D+fWOXCIq3TpskHoZ/x1Ifp43VGnSW/xttj9Fm1ms/AzjR6U0QekiQEWHk5+cDAASvwQMr2rlSvA8/w6KtBVgsmaNMDrTeZiTGeBJe8G4z+rycCyKbzj8IKis8KYXhBHGbcgzLCj8oXGiFNkAsBJsQ0ogMOw+hoozXxiybWqjotUlYECTGdDZhDUejxq5ZfSEJC4J8CBVj2nYp3C7sezbYZuK73scwMaa31f0dlRhjLGiULEiMaTbhokwVY60SAs8qtyAbi7JQt41EWeXomP6zhIkyvRhTMRJlZufJ6LsIdS3kujW8J00W+w7bFnqvmnRc6P82uj7DMMmyGFa+UQbH0HvJyCez+8bKBjoxph1nnFgkDJ6EPAbn0zbZiVl9CBZlphEDPOIkWlFm9L4J/a55RKHR/0Zl8SSkirY+q2P11YXaxDLnm9fGYLvgC2wrKCgwc5Wox5AgI8LQBJlPF2IQyZB+tCNmhodYhyg6NV9Md4D1PquRsUhHw6zseHvPdT2dtvMPYCGgdKKMJ0TRsqwTlZoLLX0iCY65WZajXqrg4rWxW29IDfe0SVhgKMZ0NidGsCxGHkLrM0uCoaYVNxJjWp3SCTurURl9yI+V71ZiTG/LNZ/IYmRMJ8qYAOM5YzpR5ktnGDJolSbGVMJEmZnbAiCr7jJArJADo2Mhn0sTZUZiTEUvyuzOk3600sw1NeGE1ai1fvTGtD6diLAJ7bW7PrnQCwurDI7qPWXlkyq47O6byrLCxJiKXiTZnYOge8Ja5NomO+FAm18Ya2hepKLM6n2jnmfe8GarZwzPu96p+njKAMf7KtQvHt95p2RU/hb8JMgIc0iQEWGUlJQE/vBXPrwjEFDcDyiuoiIQUrHCMx/O6flidmJSsg+9C8y3sp8vps1FidFGnVPGI8ZsF3LmzYzG09BxygYIvNztJvSLQsDG7jv0eOzDwAQxUJZd0ga3h+P+smnkAdDmldkJCDsxBpxIBmIzZ4wleizDFMEYmCTiaBcLYccAXyrDeQP+QpvEo4YmbkHGuQ22YtjFyyz9lhMZDp+eaCzGNL8FwCWCcSRqsb1e1PJinVMGk5Eyw/o4FwoXLELNgGBxbl1Q4Bq1s+E5V8KJ+Z2WNh6P7XXMdc+rc8rs5tfxJDvhSGQCgHNx7NjnnWll2YZx8wtKrmcMj1+c7QEuvzjK4prHxllWRO0iFRJkhAUkyIgwysrKAn/I8bs8HMtw6BTVKQ7BP0oFQOvlttzPkQEqyD6W/bwNRvXlaCcMeEQ+z8Ry/Vwpy/rUjggbgSQYhIaFliUZhESFojY8Y/UdsPcJ4LsW1KxiiolYQeU1qjaUTEWNCJYQaHgKFebZOZhbQnkjDxKPmdfnTWfoO3gtmiUUoNQk9WKC6MPpSbtwacYfGDbUXJSJsgDPcYaSFuZhloLMIJZ6AUkEC11PTY8sB58LK3gbqjxC2C7hBMeItzbKzkxGAPX+mH3HWmERREBwiAPuzi2OjjSuji2bc8oVNg7YJu0Jqs/iWuBJ766vkweuBE0c1xVvsieuDkxOf+w7HTk7PKrzXR5yX6kjZMXFxdXnA1FrIEFGhKEKMkGpXhGiwi3GjP6OrkLr/TVdjBn9rd8WOicp0nJ5tuvL19kws0ZcyGR+27A/1S6svpBjeQScamdYX8h2sxBCfePT7JzqhZ3ZNRQ218bAd475R2Fl2PkU+rcVBqJMEyBqGUbCTRVjaoNKUQxFGXNLKG2aBEUCXOUMybnhZalirFVSIExRZmKYKEsQfeiWuBeJgg9uQTYVZaJfQMo+BtEP+JNEFLdMCrPRxJh6/boka1GmNlB5Rxh4iKCxarfddE6ovg4zURZkY3I/RzNH2C7hRCRwjY5YhH5b/G91rKkfgnl0g+2cXoNt1SHKuJJBcZyrMHhC/E2Iqr6aIsr095P6d2WbyufzVX39RK2DBBkRhN/vhyxXNprk6hdkEYsxq218FVrvry1izGibxUKyUZUf5chYmCgzmczPJazskquYHWs4oT+0Pp5rz6BsIwFk9H+or6ZzbXTlc2ToMy2DV1yGlW1Qp05whYkxFf33HCLGtGNDRJkmxlwnyggVZaFiTEUvyvRiTMVIlGlirNKMCeGiLEyMqRiJMlknMCMRZbzzWRxstIY1uI3KDhVlhjYh54U3QYIRdgknzLZFWZ9d4hSj7RGLMd3/3PU5NQcqSlHGlQyKU6QZYpRIxIaY6ou3KDPq3GAKUHnr+P1+885Kot5CgowIIp4PiajFWPQVWu+vbWJMv49nTaJI6okxTFG7rmwm82thSrEkVwH4J6lr9VmUpR/psmp82oU66hvBHAu3cs3TsCuDN/xSK9OiToWZi7HK/WDMVIxp1VWKsjAxpqITZWZiTEVmImQIYWJMRS/KQsWYVp1OlJmKMRW9KJMNQjDjLMp4w80sy1Qbk5Y2lefHiTnDdgkn7PZFWJ9d4hTNTrAPdbStVyfKeNeF5AljtCRCUcaVDIozPNYSXQIqXt9iqi9eoswq/Fe3r6ioyPm6iVoNCTIiiIhEgZP1OvFgdHpOmcX8mVqPU+LPaXi/P7s5L5GWV11lCYL9/BkniSRLHneZFraqKLNrUFUm8QgTYyqMQVAY/KnMVIzpMRJjKm5BRpekffAnhosxrToBUNwCFJdoP1dKsunsUEUP14hrHF7BPM9anvurujvveO/56n5u29UXyXdcnc9awnnsrlF24t6TjTp0iHoN3f1EEEGCrBq1GeN9ifK8lJ1s1NdUUabE2GDibUzxNCy1eUTmPmnXle0LS7G30+LxLT6DwipDRBR7O1VEmNZXuU+xeIEyhe+cssq6eM6D3bWncJSj+mznG89nFIXASKfV/IfK5A9CudfcRhCgJLkh+GQkHTEuS/YIKGwrQioTMPn3s0yLynaV4JaMtejk9pva7PA2xrNLh0FJZCg4ycRtP0PKAS8gCpBTrTI9MghlFdCyUJrYMDVNvp14BeyfVxzPIHUEmivCgee6UpjxCGCYrY0Nz30hc9zPqi9217tqZ1GW+t04dq709RrV5/dz1cfjD+P5TiJo6Nt1wPJeVxGdywiuZ8v96nVqBsd54G538MDViXHiz+TkZOfqJuoEJMiIIER9D51QvWKkvouyiMNFYxVldvAkgAjdbuBT0EvfSkSEbjeLw9f/bfTdhNZhZRd0DE+jwuAlH9roNCsn1MbuPFiJMv1nNCsn1Fcev4yOA4JGVUxFmT70U1GMRVmlGIMgQGCAVOoLE2WyR0BhOxGyh0GQAfdht6Eoy3aVYFTGJmRJycgQkwxF2Q5vY4xbciWEIlcgNDE1XJSJfobU/V6IvsqGulsyFmWqGFPPl5EoU8WY/jsxC+8MOi8mz6soGq8xCY3QeyIWUaa/L8x8Cl3fzcivUB/MrvdQO4OyWEh9jp0ro/pxQozZ1affbmrjsBizg/e6iuocxiDKNDFmRU0UYwAgBuoUBAEeniUNiHoFCTIiCEEQkJRUOcFdrP4hdRJl1SDKeOrgSQBhJtJ0Phn2wBqJMh6RZibQwoRVlN+nkSgzOlf6BqjZCABPOUaizOh/o8aM3XGmjeQorgWDEDdDUWYgzoNEmU6MaZtCRJlejGk2BqJMFWMZ4olkHKGiTC/GNL9DRFmoGNPsQkVZqBgzOjdGYszs3BgR+ryKtdFqB08jOVpRFsnImJ1fRoSeYzMfdWWFijFtu5OCQudHqBgzqy8eI2O29XFeV44KWt767L6LmirGADApUG9ycnLcpocQNRcSZEQYKSkpACofHhE8bJyCRFkVirJoxZh+H08Yo6JYv3B4RnhUeMP77EbfeEJm9KLM6lwpsn2jUwtPtLOxOQ+hvlvZMYUjjIzz8wGW842CRJmZnSrKDMSYiirKPIVymBjTbHSizEiMqaiizEiMaX5XirKitgJSD4SLMc1OFWVmYkzF5bIWY9qHUEcPLc67+rxyKqzLDt57IhJRxtNJYSbGQv2yqlc91zwNcJv6HA25k2VTMRZaH9eIWQ0RY6H7HQ355K3PTtzVYDEGANAJMoIIhQQZEYYqyODibDDribVxrZkxvgenQ/Vx2/L4xGtjNc+BMe3HjsCLisN3J17arLJxZlcWY7YNCSYrtg0XAIDC7O04GkGQZcDHUZ8sA16bdWIUBtjVp7BAfRznyrYspgR84rlG7erj9Z3ju9FEmaX4rvTdwoZVJjrJ2G4xD1EGXHlufLK9t6EYU8mTZTz398WGYkxFrBCQvV6G7OHItOrz23Zk2IoxFdtrQeESD1yNdPA15u3q02zs7h2FAT6LDJVAYJ/dvaWactyDzGsxVxGV54q3Pp7rnaMs5ue45wE+33l84kyhznddcb6feex4rlHe9oDfX71hilzzwaLorJYCx2hRSAShgwQZEUZaWhoAgLl0D69IHlA8c2M4sXqAaqKNd06STT2WZanl8SSJ0P+2srGjUrRZvWyDew8tfFcULhsonMkpAPMXoFqPLJs2CDVfFJsGqFLZ+LSyi8CG2YnJygZxQGiYNIYqBSKTFdtGgNara2Wnijar8+D3B649u4aQ12ddn7rPzka91nkaxbIClFdYmgl+GWJBqXERLhH+lIB4cpVbXOsuwJ8h49jhNPRdc4WhzU5fMS7/cyy8ZW6wVPPGrMAAd4kCJgnwpZoIN4VByi+BoDDz7Hd6UWA3Gq82ri2eV3YJJ7T7hqcTpnK/lShTy+N+xpjWxXFdAYCvUjzY3Tdeb8Avq3tQli07frR6FPv7VN1vJYC05Bx2NjydY+rIslWCHJ/P1ndNqNi9J9Tryipsk3cEUH0+xJqEhSmBdy7nd8NTll17gYtIEktFCPMEjsvKyorqeKJuQ4KMCKNRo0YAAOYxmhfAKX4i/d8CowepfpuhkKr8n2ekzbasUH95kkQY/c9rE7rd5mWruWXWSNM1uKxsgv42CzkKPTZswn2IjYEoC/PBTEjpGl1quWF2kdio9ZuJspDRCUNRFjJaZyrKdA0NS1GmL99MlOkbgFaiTC+ejOoL3WZmE3qtm4my0Pk5VqKMMQg+f5goU8UYkwKjZ65SBdkbDe53F+DLlAOT4mUB+/dlh4mynb5iXPbnWBQXBHqfBZdiKMqkcgGNVuu+ZyNRpjC4jhZD8FeeH6N19lQxpr9XzURZaCPe4Hlll3AiSIwFNpg3/kO2G4mWoPvQRJSFbTMSSDzXVeWxQc8hMyEVMnIUJsr093ygMONnjCrGAGthE3qsgeAKS85hZhPy7DMkVIQZibLQbWYJQ0LnzxoQdl0ZXWeRvJfskg7xJGFRxRhgLcoiLEsrL8wkypExu7ZAhKiCrEGDBlGXQdRdSJARYaiCDAkW2bOs/g/d7tAIltHfQdtCyrM7hrssnmQSZnC8MHmFHM+EakOxY5iYQjH+W79Nf5xV40/rwTSxsRgpC/JT31AIbXTpytfseGxMCBNlJqFiQaLMJHQyTJRVNjDCMqeFNjyMGrehosyoN95IlBmJJn19Zo2eUBuzaz20fKP7hleUFZYFb5aCE2MkHJODRFmQGFOpFGXnrr0cQLgYUxFcCljKiXMolQtovJrBXRLyOUMygQaJMb2NeGKOV5gY0+xCXqtmIyq656NdwokwMXbCIPyeM7lPgzolTI6zy/YX1knBc10BQWIsqKxQMWQTxmd4zwcK0z5fmBjTjjUQZTxhbmbJOfQdM6FiTP07tHyzETH9dg5xYhbCF3aOza4r/UhsJO8lu3e/adRE8Ps09L1rKMo4Qx65Omx5iDaxVCRUdnI3bNgwtnKIOgkJMiIM9WGh9uYYoo6WOZGQgROukAQLnwxfAlGWVWnEF+ahWLz0Qm1syuEJH9LmmNj1evOEPOlGniwxagCF7GeqSLHo1WeyYt7oCjivhTLZ2ujLMkATZTbzdtR5KJahSqooMxBj+nK079dqPo4sBxrxVvNH9KLMKqxQYfbz2HjChvSizOq+4RFlXh/EwjIwSdBCFfUIyglRZijGVGQBe/c2QJdlIw3FmFaeOyDKNDFWbDDaICIwSmYmxrTCAqLMVIxpdpWvVo65gVwJJ6xCiUNGuizL4rkHeZI6+Pz214167RmIsaCyVCFlIcZYZX2m93ygsBP3tNXIoeqzXSig7reVnWmYYqgoswpPVOF5jlrNp9K/I2w7pTg6FfXvN7N3oWrD8wwxEVCB3YzruwnqyLB5h8d9zlgI/Uf1AUAjZIQxJMiIMJo2bQoAYIkcyQicgEfYcRfFLB/EdvuNbG2MOCfqy3zi1M5G4Zh4XSnsbEUGV+IN+9EtdfK5rV+ybN8okeVAw8wmMYCdQFKTj9hOnPf7OZIHKAG/7c6Dzw/m9dqLZZv5VkCgsWQ6f0ZFlsHKyq3LUb8bu4alrNiPTjAFqLDxnSlgPp+1X5WiTCosDx4d06GKssxNMBZjql25BGFlBvyrbeZk+EQ0+sNYjGllMcCVX2Iuxip9Z6VlfL33PAkZbBNlVD5f7J61jPE1+DnnnvFkCWR21wLAd+0xBlZWZmkTuOdtngtqfTyj8XbXOgCF5/P5/NbfoTpPlueeL6+wF9Q8CUNMRvLDyuIZHZTlwOezm7/FkSyJd/oAV1myzPdu5sEpMaZ2Xlqwd+9eAECLFi14PCPqGSTIiDBat24NAGBJfjBwNATs9vMKN54RKSdEDe/onmbO0QtnNVFfHytvYxdzYhH9yB5PAhKDUEitKl2YHVdWLZvQKyYr1okwmJp4Q7FumGijAdaCUivLtj57oaiNKpgmwlBOZJ+0TGrgs80IqY0aMIvGidro4k1qYNHI5qoPOPH9+Uwas0w3iuP324uysgok7i82NREYkHzEj4YrjJNuCD4RKbslSOWAuwhI2J5oXFWZCzmLxEASD5P0/ILMkLivMPDdmKXwDxVjVvepz2s74q2da6vRHPW640zgYT2yYDPSFmpnVZY6Au9QggvLRB+654Ld/c6D+lwztVeTidiIA1uhovml2D8bK5P2WHaihc4lNTVUbN8jWngn5/nkSZbhSMSJOopm5xdPWfrfVvXxYNeO4WjjMDBNkLVs2ZKvXqJeQYKMCKN58+aQJAlwMcBt/pI0/DtSG8PjDB6SPHHc0cR6xyDKuJKBGB1jNKGfpyyexCJGx5jMSdP/bboAp808l7CGlFlyAv3nMxJJWpilLtzGdC6MbrtJwyqsLLP69D4aiTJdw9RUlIVuM2vM6ss3acyGn0+DRqEqxnRZMW2TGpjAVR+Cz7mhKNOLMRUOUSaWlBmLsso5XYICpBwKF2WqGBNVNxjgKQwXZazMhZyFIjyFOv9DBJcgMyTtLQwK/QwTZWYjY0b3qc8bdn+FEv6dWoiySGwAk4Q1IWGNvOGPRmXpryuz61gvxqzEnSrGYHAtVvqjv5ct7/egw2w6mczKMph/ang/6MWYldjSL4dg9mzkmcvKszyIerxNB2DYueI4n+bVMcv/Df2IIVFGmF88ZcVQX8DWph1jNK/TyMYto6ysDJIkoXnz5vz1E/UGEmREGG63G82aNQMAsGSDNXhieSjxEukDnPehG8vLwGaisNGLx9aOx8bK79CGH69dKKHz08yEY2gWQsPGX0j6bqPPpxdJoY0uvU1otjiTLG9hWRSNygqtL9SnUFGmpu7XXbdhosyssRm63UTsBSUGMD2fOpGkF2P6unSfySqpQcT1AcYNRKuRsqA67UdjwkRZyHplqihrsFInyhhOiDHdNkkXGWYkxrR9lYLLSIyF2mjwNFJDxZiK/tlhOuoZ/p1a2hj9rxIisg2PM3pm2yXC4LmujEbGjO4TnRg74QKzfS4Y3u8GmHYymZVlkQwo6H4wGhkzEltGa9OFPhttnp+AhRiz6dgLbAp+jlvOp7Wz4RBfodu5OxdtfLLyq8o6awH7dkwEndEsOfA9Nm3aFG63m98Hot5AgowwpEOHDgAARU0brQ7ZxzhsH7Eo4wlLsCuDx96B8EVtvxp2YRfqaBMHzzXqpootnlBHmxCqoJEyq9BKdZ0um4nXdpPGg0SS2ctdJ8qs52rowg+tyuKYD6df/8cyk6XdvDK7sK9KG21hV5twM23enEVWTH3jMub6fNbzAjVRZjQ6ptVnP88tSJSZLB4tKEDqwYAoE3wiUvZIhnZSRWCUzEqM6cs0E2Oaa6IAbXTM1KiyDjMxpsIzP0Y36skdpmiGOvfMLiQS4KvPasRVva6swhT194OBGFNhle8Zq3s56H63IKyTyaQsrsys6nwxm2cjYCLGQv2ye35yzL+z69gL7FIjBRyYL8wRnhhkG2PIIE9oZVB5dvtjFWOR7tfZqG2pTp068ftA1CtIkBGGdO7cGQDAUjkmiuuxE216m0jEmWlZHA9Z3gcxpx3XxGQnXiCcZakvUlu/1Nh7K+zmQAWcCjROHKiPJ5kEb8IJZpdNUC3LplEcqM+8wQhAm/fBk17f/vPZ2wRllrSw4UlkoolJG5jfbz+3TlbAKmzq8/vBSuyTNoglZUjcV2RqIihA2n4/mv9iMDqmlQMk5gEtZ8NSjIl+hqTdxyGUW/suyApYcam9eC0vtx0NVOf82WIXaqpYz7E54RbHc0gd3bKrr3KhZsv67BJc6MqyzeSoZnG0gudZBbVTh+O7sS2HQ7Co80Pt5ng5lQSD99nv50n4wvcu5U0GEpH4sSvL1ojn/c7ZYczbhomQs0edDoAEGWEOCTLCkJNPPhkAoEQqyCLFbsTNCdFmV0+YrUXYA68AtCqHp66QOnnXUeMewTOpiycLJe8ooG19wInGBIcNl8Dj6JU1XRgaODHSGMEcPcs1pCrrsrTREqdYJBnQr71mJRTVVP82NrwJEkzn1qmon88u9b4DokxQGNyFXiQdKkfWVuP6pAqG7E0VSDxSAXexcaM3SIwxBsHke9bEmCKbPz8qRy7t0sUHJ2SwuK44hZb+t5UNlx3vNWU3WsqBJo6s7q1IkjZYod7nHGXxJsGwQj96VB1JMDSfeM9VDYs2iUggxVqWfiQ4Fn9iYNOmTQBOdHYTRCgkyAhDOnbsCFEUgUQFzMM3wTdqoo3TjrT8WEQZz5w1nnKMtnPa8K6pElUCErP5B0bl8M6Ts6oPwY0c7gnoHL5bzVsIagyFTegP/2za2mKh2EzEjyjZiVonRw+86qdhKGVoshMeG14BYCTKQuYWGYoy/bmLQZQJCoOr2AdBCQgoz3FvmCiTKhiytnghlQfEj+iVw0SZ4ciYgSgLEmM6u1BfVTEW+Kwm6/7xJmSIQIyZ/W+2zbQs9XPzXC8G/0diE7bd7r4CTO9jy2PMtvE8E3ifQWHFRLeN5xlraMOZdIPrvRWNDW99pnYRCiQeO575XGZ2VSzGWIKMw4cPQ5IkdOzYsUrrImovJMgIQ5KTk7UHh5LBMXk/VuwevjVppEy/v6peeGaNB114Ck8vrJkdT2IRw2NtGjVc9cG4QRFVpkorQWgjHINEmc3IYVDjkSeRCW+yE4PGZdC5MZvbEtKAjsmGY/J8mCgzaQQHiTKjayoKUaYXYyqhokyqYMjaekKMqehFWcRhiorRd3ii8RckxlRCRJl5QoaQcxOFGDPazmOj/R/6/fBcLyHbY7FR69SIJWlDaOIRHsyeCTbPKc3O4G/r6uyfsVwdTrznycHOwJjqCzvOIYFkNHrGU3bo9ioWY8CJNlSnTp2QnJxc5fURtRMSZIQpp58eiHlWMqtBkAHGD9hI9psdw7PN9HjOEEWesBEnwnAq7XgnVcecNERXjmWdunBHy3JsRoH0PtnZ8SRFUcMcLRtDvHMU7OasMMV+4Vb9SJlF45JVziOya8wajjxEZWM/eV4TZVafTxVlVtdKBKIsaU9BmBhTUUVZw3UVATFWZhKi6JWRkF9hLcYqR8ksxZhK5RxDywQX6lwim88YKC96Mabfz2Oj/Tb7ftTOHtu5kRxJMDhsNDjmrdo+qzjnv6q/LZ8JamizZVGcCx1z2OnrNfOba25yRMIoig7HWOoDYhNIkYgop0IdHWLQvWcBALp3714t9RG1ExJkhClnnHEGgEDvju0C0dUJr3CL1SYe8L7gHHpZRvSSr6YXeERJUXhH1GKsj7dhxdX4UsWdFTwNerUsJ74XhSMDINRGto3vPp99YhG/H6y4xMYnBUJJmekcLwAQfQoS9h5HwkHzZCCqnVBUalsfKyq2FmMKC3w2ju+PZ1Fku+9YXVDdFsVCZOnLcyjBhaON9QjmZ9nZcNnxJkCyr9CxZyJXEgyr61Iri1eI8LxjohylMrNxQkTx2vBQTe9+BoY//vgDAAkywhoSZIQp3bp1g8fjCcwjS67ieWTRUB1hjE72tDn98gIse1QN/zaz4ymHFyd8shOBkZZlRaWNbUiRjZ3hMSb7uEYTbUYwtWQnduGWqj8858kyiyPTflslIAFgne1RrcdKlDEWSEfv9cF1uNDQRJAZxOMlEPwyhHIvXMeNR90EvwLpSEGgTDPRyVhAjFmNcKpizG7OiiyfGLGyEGVBiVMMXWJB59wU/T4rO4cSXPCMhgfZxFiWEyHa6nauqAC7Z6LdPiMbu+eY00kprEaZeDssI6kvFps6Dkv24/Dhw/B4PPi///u/eLtD1GBIkBGmJCYmnhgly7ZZSyhe8MaM85RTlS+fSEMyeOzMRJnRy9/IhmdbtETjUyTbIj2OU9iZTrq3sQuyNfk/GhurBCVhx5icc7ukBWHbjASJ0XwjnlG+UFHGlGCRYSTKVDGmUlYOKS8kyYfMIBaUQtCNHhmJMsGvwHW44IQQMxJlqhizmocUKsbMkE0WEg8hbN4e5xyvMHi3cSbL4LlWgq5ZDhvespy6p4zQfIi0A4r3WWpnY7Q/VIzF8l6I9v3Es80pm3qK0iCwWn2PHj2QmJgYZ2+ImgwJMsKSvn37AjjxUKmR8PTmRVqWUXnRxrabbXOihzFUlMXaq8tbllPlROqT1TF2NpwNKacSmYRuj9aGJ0FJmF2IGLMqy5CgxCIm12CoKDMaDdKLMr0Y05etF2WhYqwSoaRME2WaGPOHC0K9KAsTYyp6UWYkxnS+a5/TTIzpt4WIsRMmwaLMNFFEBHO8wv62gjMJBM+1Eo2NWd1cnRGGh0ZhE22nTuh2J2z0QszuHVNdc67M/KnK+uoJJ13QEsCJthRBmOGKtwNEzeass86CIAhgaX4wjwzBK8XbJWOcfAHYjXQJgrVtqE20dRmVZ1VfLI2OaO2cKIcpgCDy9SrHWp9al40NUzj6qjjteHvwBdH8mgnst/dds7OoV29jiSwDks39rjBAgvV8KVkGq6iA4DJ53ehEmeB2mxYjlJQFqspMMRRjGn7ZXIypVAo/Vl5un6TEZ7Ogc+X9x5Nu3nauopUYU+ERPAoDRIE7YQ3PteKITeV9zjMXM5b9QTZWAkm9n5x6tvCW4WQYfFWXUVV29QCWIGvrj/Xu3TvO3hA1HRohIyxp0KABunXrBgCQG9XQsMXqhjcGn3cULJI6o90fqa2TNlw+8TRmnDqX/PPKIgo9iqUc8DVCuRIScCQ34E2AwJVwgSsZiE2SEoWBlZWDlVlnXxRKyiAdzLe28fnh2n/UXIwBAaFVVGy7oDXz2mSVBALJQHiSc3CcJ97FyLmuS57vjjPBhWMZBzmvX1ucuDd5bVQ7W5sYR6EiseGtr7qpiT7FEblhoM102mmnoWHDhnH2hqjpkCAjbBk8eDAAQGlMgqzGYycEowljibYcfShprOKVNyw1Xo2ZWBt1PMLNKZsgc/PzwJuUAcw6vbkWimchyrQEFz6/uShjgdBBVloGVmKSMbEyUyIrLQOrMAmzluXAfi3Vv4HvCgv4qlv02bS+SEa17JJz8Hy/Rn/rt5mEq4abcgofHhunxU+sYc5OjfADzj2fSKzUO1oPbAwAOP/88+PsCVEbIEFG2DJgwAC43W6wFD+UZIseZaJm4dREbycneVdXiI0T4i5Sop3sX1WJBGIQZREnFjERZWHJKjjS+RuKMsbAfLr1zby+cFGmKIG5aKofshIuyhQlSIwZCq1QMaY7NqwsvRjjmfdlZhdJ9j+zbTohZpeZMCoxFss1xzPHiscu2nssGnjmeBlt451HTNRplGQfduzYAbfbjX79+sXbHaIWQIKMsCUtLQ19+vQBAChNaJSsVuHUZGwne4Dt6ou2geNU4ykWQifuW9lY2UVqw1OXpRkz/DtoG0djWS/KTNO5h4gyo3C4IFEWKsZU9KIsVIyp6EWZooCVlBrXpx5nJsZUdCNmXJkQeZNz2AkNTrEWbaZCs/Istzs9H5VTcDrik60vUTzLzLaTGKuXKDmB51efPn2QlpYWZ2+I2gAJMoKLoUOHAgDkJmVgIr1gahXVOR8skpBBp8IYrXyL1MYJnAjLirScWEO8EDyyYrrfbgFbm/BFjUphYzU3ifn8AQFlJMZUvD6wohJjMaYiK2Dl5aZi7IQvNuGJOnvbTIiKxf5QOyuhEcF1EutaXqHlWe53ssOBt85YfIoE3mdlbZ3nRVQ5TGRI6hhIiHTppZfG2RuitkCCjOCiV69eaNq0KeBiUCi5B1FTcDpBSXWFVPLiWCPTuTk+to16xpfkQjGb43XCKDBnrMziecMUsNJSsAqTRahVs7Jym6QiSkBomS1mrbnEAsKN4xzY4pCI4E3Q4ticMR4iud6c6Jjg8qm6710SY/UVpVE5iouL0axZM/To0SPe7hC1BBJkBBeSJOGyyy4DAMhNS8FALxuijhJL2KZdGfr98WiwOTHHh1mnLdcEglVmvsrRIVORxCoz8qm/jcQbU06kpLdKGFJRoQkuq3PO/H4wWTEPtVRHxXhHiKpp1JKzIMdGUmskvB0plHSDqGIYGNpf3BRAYHRMFKmZTfBBVwrBzUUXXQSPxwOW6gdLp+QeRB0m2pEyp8IoqxInko+YiLKwuWiGIYLB86fChBRj4aGFoWGEejGmYiTKmBJ8rIkoC8wbYyd8Ck1Gohdj+rLDCnIu6QTXvD6+ghzzqUZiJ7Yo6QZRjbAMHzZv3oyEhARcdNFF8XaHqEWQICO4yczMxIUXXggA8LcsibM3BFHFVEXykZrSGIw0IYhZEg8e0aAXVyYZBjUhZSTGUBkqqI6SGYkxldCEIUbrjIWIsiAxpvep0sZQjJ34gMZ/R2oTdgiH2OUryDGfaiRV2XFCEFFw6o3tAQTm3WdmZsbXGaJWQYKMiIhrr70WkiSBZXmhpNAoGVHHcSr5SCQJSqoLJ+aVVYoy27A6WbZdg8syuyEQHLpodb7UJB1qqKKZjSreLJJzaPPFOMI4LYlgvhhXOChfQc7Y1ETM7if9aBkl3SCqGSXFh1WrVkGSJIwYMSLe7hC1DBJkREQ0a9YMAwYMAADINEpGEM4Rr3llscIhNrQMjVZYzSlTy5FlKFZJPgBAlqGUltpmS+RNzmHnN49IcsqGm7oqxpxKvBOJHUFw0vfBUwEE1m5t2rRpnL0hahskyIiIGTlyJABAaVABJcm6AUUQRITwjLbZHe/EqF2k8GRoNBM3lcLHNhmILAdGtnwmzx1F0YSWVfp95vdzj/5ZEWl2w5gWaualNgotHkhAETUYJdmP3377DQBw3XXXxdkbojZCgoyImHbt2uGcc84BBEBuUxxvdwii7mE31yyWBAY8dUVLNKLMaC6akSjTb1PnkelRxZhOaBmJMsPEH2FGnPPjLP432xaNDTckxggiLvS6pzMURUG/fv3Qvn37eLtD1EJIkBFRMXbsWIiiGBglS7Neu4cgiCiINKkITzmxlsVVXwSizCpbo16AGQk0vSjTi7EQP/SizDzNfhQZJA2LccYmKkiMEURcUNK8WLJkCURRxC233BJvd4haCgkyIiratGmjpXT1tymmdckIoiqIZL4MT9KQ6koswinKuJKBWIUwVoqyMDEW4geT7RerVkfWYk2qUe3zxQIFOldWTYLEGFHDYWA4+YaWAAJLA7Vu3TrOHhG1FRJkRNTceOONSEhIAMvwQck2WLiVIIjYcWqRaV4bp+ae8WQm5EkGYiduZNk68YZ+flqMdTmWLMPJzIxOibGaJn5qmj8EYYCSXYE1a9bA4/HgxhtvjLc7RC2GBBkRNY0aNcLVV18NAJDbFoMJ9AIliDpBtGuqhR0T5eLJ6nabUStHwwg5knxY+hupjZUd7zphvGKMd6TVqSUe7OqqictAEESEMJGh0cBkAMBVV12FRo0axdkjojZDgoyIiZEjR6JBgwZgSTLkFpQGnyCIWkikCyXXhLTykYoxM5HtxAhsqE1V1kUQNQS5eQkOHjyIRo0aYdSoUfF2h6jlkCAjYiIlJQV33303gMC6ZCyR0uATRJ0gmqyOhjYRjgiZ/B9NVsNobWz9c9KGZ8SQd1QxyCbKUahIv/dYwmUjLYcgaggswQ/pJB8A4K677kJycnKcPSJqOyTIiJgZMGAAevToAYiAv10RJfggiLqCUwvx8s6Z0v822K+KJ9tkIJHY2AmgWMIKIw09jNVGs7UQQFU1KmbmA42KEXWQHvd1gtfrRY8ePXDeeefF2x2iDiAwRk9CInb27t2LMWPGwOfzwbUxA9LRxHi7RBBEdSII1ViXA32JdTUzIUAChyCqELlBOfwnF8DlcuGTTz6hzIqEI9AIGeEILVu21Fan97cvAnPX4cYOQRDhxJrswa6MILsYMzjWZTFGEESVwdwyUnoH/r7++utJjBGOQYKMcIwbbrghsEK9R4G/fSGFLhJEfcMuO6MTIW6avUPzseoi1TlaSRD1BAYGf/siFBQUoEOHDrjhhhvi7RJRhyBBRjiGx+PBE088AUmSoDSsgNKoPN4uEQRR3UQz5yyalPqAs/O46hokygjCUZRG5VAaVkCSJDzxxBNwu93xdomoQ5AgIxzlpJNOwpgxYwBUhi56LBZsJQiibmI32uV0+GJNSENPEESdhXlkJPUIPJPGjBmDDh06xNkjoq5BgoxwnJEjR6Jz586Ai8HXsYBCFwmiPuLUAsFOJKggMUYQRJQwMHS+pRmKiorQqVMnjBw5Mt4uEXUQyrJIVAl79uzB2LFjUVZWBmlPClx7UuPtEkEQtRWr8Dv1FRaLjf41aFdObQkFpFc7QTiCv1Ux5FYlSE5OxkcffYQWLVrE2yWiDkIjZESV0KpVKzz00EMAAgtGKxkVcfaIIIhaS1UuYsw7f602CZza5CtB1GCUjAoorUsBAI888giJMaLKIEFGVBnnn38+LrnkEkAAfJ0Kwdw0n4wgiCjhEU7R2ERad00XOzXdP4KoJTC3jLR+IhhjuOSSSzBw4MB4u0TUYUiQEVXKvffei3bt2gEeBb7OBWACNRYIgogSntT4kaTPd2pUraZQU/0iiFoGExg63dIU+fn5aNu2Le655554u0TUcWgOGVHl7N69G7fddhtKS0shHkyCe3t6vF0iCIJwhpoyp4xe5QThCAwM/g5FUHLKkJqaivfeew+tWrWKt1tEHYdGyIgqp3Xr1njmmWcgCAKUpmWQc0rj7RJBEETVw5MlkoQUQdQolJwyKDllEAQBzzzzDIkxologQUZUC2eddRZuvfVWAIH1yZQMb5w9IgiCcAAnEo7EKspI1BGEIygZXrBOgU7j2267Db17946zR0R9gQQZUW1cd911GDx4cCDJR+fjYIn+eLtEEAQRO7yZGiO1iaZugiCiQkn0I7mvAlmWMWjQIFx77bXxdomoR5AgI6oNQRDw6KOPBhaNdjN4uxwHc9OCrQRB1AHsRruqIlEIiTGCcATmltHwEg8KCgrQuXNnPPbYYxBqyvxQol5AST2Iaufo0aO48847cfDgQQhFLrjXZkFQqG+AIAiCO0kIvboJwhGYpMDX7RhYqh/NmzfHO++8g6ysrHi7RdQzqBVMVDsNGjTA66+/joyMDLA0P3wnUzp8giAIAHxJQEiMEYQjMIEFluRJ9SMzMxOvvfYaiTEiLpAgI+JCy5Yt8c9//hOJiYlgWV74TyoEAzUyCIIguMIeCYKICQYWaHtkeZGYmIhXXnkFLVq0iLdbRD2FBBkRN0455RSMHz8ekiRBaVwOf7siEmUEQRBGkBgjCMdgYIGMz43LIUkSnn/+eZxyyinxdouox5AgI+JK79698fjjjwfWKGtWBrltMYkygiAInrT5BEFEDAOD3LYYStPAWmNPPPEE+vTpE2+3iHoOCTIi7lxwwQV45JFHAABy81LIrUmUEQRBACAxRhAOwsAgty6G3Dyw1thjjz0WWI6HIOIMCTKiRnDxxRfjgQceAADILUshtyqJs0cEQRBxhsQYQTiK3LIEcsuAGHvwwQdx0UUXxdkjgghAgoyoMVx++eW4++67AQByqxL4W9FIGUEQBEEQscHA4G9dBLl1oLP37rvvxrBhw+LrFEHoIEFG1CiGDx+O22+/HUBAlNGcMoIgCIIgooWBQW5XpI2M3XnnnRg+fHicvSKIYGhhaKJGMnPmTLz11lsAAPFQElzb0iCAc8FUgiAIgiDqPQwM/g5FUHLKAAAPPPAALr/88jh7RRDhkCAjaiw//vgjXn31VSiKAvFwIlxb0yEwEmUEQRAEQVjDhMA6Y0rjcoiiiMceewwXXnhhvN0iCENIkBE1ml9//RXjx4+HLMsQ8z1wbcqEoJAoIwiCIAjCGCYq8HcugJLthSRJeOqppzBw4MB4u0UQppAgI2o8y5Ytw9NPPw2v1wuhyAX3hiwIPpr+SBAEQRBEMMwtw3fKcbA0PxISEvD888/jrLPOirdbBGEJCTKiVrBu3TqMGzcOBQUFQJkE9/pMiOWueLtFEARBEEQNQUn0w9flOJAkIyMjA6+88gq6dOkSb7cIwhYSZEStYe/evXj44Ydx8OBBwCfAvSETYpEn3m4RBEEQBBFnlFQfkvvJKCgoQNOmTfH666+jZcuW8XaLILggQUbUKvLz8/H4449j06ZNgAK4NmdAOpoYb7cIgiAIgogTcsMyiP9XDq/Xi06dOuGf//wnsrOz4+0WQXBDgoyodZSVleG5557DsmXLAADSnhRIe1IoLT5BEARB1CMYWGDN0laBBZ/79OmDZ599FsnJyXH2jCAigwQZUSvx+/1477338OWXXwIAxLwEuLakQ1Ao2QdBEARB1HWYqMDfqRBKgwoAwLXXXotbb70VkiTF2TOCiBwSZEStZvbs2Xj99dfh8/kglLjg3pAJoYIexgRBEARRV2EJlZkUU/xwu9145JFHMGTIkHi7RRBRQ4KMqPWsW7cOTz31FPLz8wPJPjZlQCxIiLdbBEEQBEE4jJJZgeSzGQoKCpCdnY0XX3wRXbt2jbdbBBETJMiIOsHhw4fx5JNPYvPmzQCrnFe2l+aVEQRBEERdgIFBblkCpU0pGGPo1KkTXnzxRTRp0iTerhFEzJAgI+oMFRUVmDBhAr777jsAgHDMA/fmDAh+mldGEARBELUV5lLg61QAluUFAFx66aW45557kJBA0TBE3YAEGVHnmD17Nt544w1UVFQA5SLcmzNovTKCIAiCqIUoqT74Oh8HEhUkJCTgoYceovliRJ2DBBlRJ9m+fTuefvpp7Nu3D1AAaXcqpP3JFMJIEARBELUABga5eSnQoQyyLKNFixZ44YUX0L59+3i7RhCOQ4KMqLOUlJTg1Vdfxa+//gqgMoRxazoEL2VhJAiCIIiaCvPI8HUsBMsMhCj2798fjz76KFJTU+PsGUFUDSTIiDoNYwzfffcd3n777UAIo0+Aa2s6pPzEeLtGEARBEEQIcnY5UvoABQUFSExMxL333ouhQ4dCECjChai7kCAj6gW7d+/G+PHjsXXrVgCAeDAJrp1pEBR6wBMEQRBEvGEig79NEZRmZQCAk046Cc8++yxatWoVZ88IouohQUbUG7xeLz766CNMmzYNACCUSnBtTaeEHwRBEAQRR5Q0L/wdC8GSZADAiBEjMHbsWHg89H4m6gckyIh6x6pVq/DSSy/h6NGjgTXL9idD2p0KgdFoGUEQBEFUF0xgkFsXQ2lZBsYYGjVqhMceewy9evWKt2sEUa2QICPqJUVFRZgwYQLmzJkDoHK0bEsGxGJ3nD0jCIIgiLqPkuqDv2MBWHJgVGzIkCG45557kJaWFmfPCKL6IUFG1GsWL16M119/Hfn5+YHRsn3JkPbQaBlBEARBVAVMZJBbFoO1LoeiKMjOzsbDDz+Mvn37xts1gogbJMiIek9hYSHeeustzJ07F0DlaNn2dIgFFLtOEARBEE6hZFTA16EIqJwrNmjQINx3333IyMiIs2cEEV9IkBFEJYsWLcIbb7wRmFsGQMxNDGRi9Itx9owgCIIgai/MpcDftghKk3IAQMOGDXH//ffj3HPPjbNnBFEzIEFGEDqKi4vxwQcf4JtvvgFjLLBu2c40iIcTIYDCGAmCIAiCFwYGpVE5/O2KADeDIAgYNmwYbr31VqSkpMTbPYKoMZAgIwgD1q1bh9deew07d+4EAAjHPXBtT4NY5oqzZwRBEARR81GS/PC3LwLL9AIA2rZti0cffRRdunSJs2cEUfMgQUYQJvj9fkybNg2TJ0+G1+s9kSJ/bwoEmcIYCYIgCCIUJimQW5UArSogyzI8Hg/GjBmDa665Bi4XdWoShBEkyAjChgMHDmDChAlYunRpYINXhGtXKoUxEgRBEEQlDAxK43L42xQDHgUAcM455+Cuu+5Cs2bN4uwdQdRsSJARBCfLly/HhAkTsG/fPgCAUOiGa0carV1GEARB1GuUFF8gPDHdBwBo2bIl7rvvPlrgmSA4IUFGEBHg8/nw1Vdf4dNPP0VZWRnAAPFwIly7UyF4pXi7RxAEQRDVBvPI8LcphtI4kD0xKSkJY8aMwVVXXQW3mzorCYIXEmQEEQV5eXl477338PPPPwc2KIC0PwXSvmSaX0YQBEHUaZikQG5RAqm9PzDHGsD555+P2267DY0aNYqzdwRR+yBBRhAxsGHDBrzzzjtYs2ZNYINXgGtvKsRDSRAYzS8jCIIg6g5MYFCalMHfqhjwBJqPp512Gu666y506tQpzt4RRO2FBBlBxAhjDIsXL8Z7772HvXv3AgCEUgnS7lSIRxMo8QdBEARRq2FgUBpUQG5dDJYsAwBatWqF22+/HWeffTYEgd5zBBELJMgIwiH8fj++++47fPLJJzh+/DgAQChyBeaXHfeQMCMIgiBqFQwMSpY3IMRS/QCAjIwM3HTTTbjkkksojT1BOAQJMoJwmJKSEnzxxRf46quvAok/AAgFbrh2p0Is9MTZO4IgCIKwR0n3wt+6GCwjkDkxOTkZw4cPx4gRI5CSkhJn7wiibkGCjCCqiOPHj2Pq1KmYNWuWNulZOOYJCDNKlU8QBEHUQJRUX0CIZQXeWx6PB1dccQWuu+46ZGZmxtc5gqijkCAjiCrmyJEj+Oyzz/D999/D7w+EfIj5Hkh7UyAW0YgZQRAEEX+UdC/8LUs0ISZJEi6++GKMGjWKMicSRBVDgowgqokDBw7g008/xc8//wxZDkyKFo574NqbAqHATXPMCIIgiGqFgYFleOFvVaKFJkqShMGDB2PMmDFo1qxZnD0kiPoBCTKCqGb279+PqVOnYvbs2SeEWYE7IMwo+QdBEARRxWjJOlqWgKUHhJjL5cKFF16IkSNHkhAjiGqGBBlBxInc3FxMnToVP/zwA3y+wAtRKHJB2p8CMY/S5RMEQRDOoqWvb1miZU30eDy45JJLcM0116BJkyZx9pAg6ickyAgizuTl5WHatGn45ptvUFFREdhYLsG1PxlibiIERYyvgwRBEESthomVCzo3KwWSApEZiYmJGDZsGEaMGIEGDRrE2UOCqN+QICOIGsKxY8cwa9YszJo1CwUFBYGNPgHSoWRIB5Ig+KT4OkgQBEHUKphbhtysDHJOKeAONPfS09MxbNgwXHXVVZQ1kSBqCCTICKKGUV5ejp9++gnTp0/H/v37AxsVQDycGAhnLKOFOAmCIAhzlGQ/5GYlUBqXA5VBFs2bN8fVV1+NCy+8EElJSfF1kCCIIEiQEUQNRZZlLF68GNOmTcP69eu17cIxD6QDyRCPUQIQgiAIIoCWqKNpKVi2V9vetWtXXHPNNTj77LMhSRRpQRA1ERJkBFELWLt2LaZNm4bFixdDu2XLRUgHkyHlJkHw0zwzgiCI+ghzKZCblEHOKdPmhwmCgHPPPRcjRoxA165d4+whQRB2kCAjiFrEgQMH8PXXX+OHH35AUVFRYKMazngwGWKJO74OEgRBENWCkuKD3KwUSqMTYYmpqam46KKLcPnll6N58+bxdZAgCG5IkBFELaS8vBzz58/H//73P2zdulXbLhS6IR1MgpiXCIFROCNBEERdggkMSsNyyM1KwdL82vaTTjoJl19+OQYNGoTExMQ4ekgQxP+3d+/RUZWH+sefPZPbhARCIGIwyP3WA5QIQhGhCHIRobWoPXo8Bz3oz/YsLT2rx1Usq4qFKl6WFZeuZa3roLUa7dEuoVIVRC6KhvtdbuEqt6S5kJCQmSQzs39/zMzODLlPAnsC389as/ae/e733e+EDcyTvff7RoNABrRjpmlq7969+uijj7Ru3Tp5vcH/oGsMOQuT5Mh3yVHJVTMAaM/8yTXyX+uWL8NjjZYYFxenW265RXfccYeGDBkiw+CXcEB7RSADrhDFxcVasWKFVqxYoYKCAmu7UR4nZ4FLjsIkGT6eNQOA9sB0+uXP8MjXzR1xNeyaa67Rj370I82YMUPp6ek29hBAWyGQAVcYn8+nbdu26R//+Ie++uqr2qtmPkOOokQ5810yyuMZoREAYowpU2bHGvm6ueXv6pGCgyLGxcVp7Nixuv3223XjjTcyWiJwhSGQAVew0tJSrVy5UitWrNCJEyes7UalU47CJDn/6ZJRxX/sAGAnM9EnX4ZH/m5umcGREiWpV69euv322zV16lQmcQauYAQy4Cpgmqa+/fZbrVixQmvWrJHH47HKjLL4wPNmRUkMnw8Al4kZ5w8M0JHhkdmpxtrucrk0ceJEzZgxQ9/73vd4Ngy4ChDIgKtMZWWl1q9fr88//1zbtm2rndfMLznOJcrxzyQ5ShIZpREA2phpmPKnV8l/jUf+zlXWcPWGYSg7O1tTpkzRhAkTlJycbG9HAVxWBDLgKlZYWKjVq1fr888/1+HDh2sLvIYcRUlyFiXKKE3geTMAiJIpU2an6sAtiV2rpLjar139+vXT5MmTNWnSJF1zzTU29hKAnQhkACRJR44c0apVq7R69WoVFhbWFtQYchQHw1lZAlfOAKAJpkyZadXydamSv4tHSqj9qtWtWzfdeuutmjx5svr06WNjLwHECgIZgAg+n087d+7UmjVr9OWXX6qsrKy2sMaQozhRzqIkwhkAhDGN4JWwrh75u1RZ84VJUqdOnTR+/HhNnjxZw4YNk8PB87oAahHIADTI6/Vq586dWrt2bYPhzFGcJEcp4QzA1cc0TPnTquXv6pE/PTKEpaWlafz48ZowYYKGDx+uuLg4G3sKIJYRyAA0i9fr1a5du6xwVlpaWlvoCw4IUhJ4MVojgCuVGecPDMyRXiV/WnXEM2Hp6elWCBs2bBghDECzEMgAtFgonK1fv15ff/115DNnpmScj7fCmcPNFxIA7ZcpU6bLZ4Uws2ONwsc56tq1qxXChg4dyqTNAFqMQAagVUzT1KFDh/T111/r66+/Vl5eXkS5UekMBLNziTLOx3NrI4CYZxqmzI41tSEsbLJmSerfv7/Gjh2rsWPHasCAAcwVBqBVCGQA2lRBQYEVznbs2CGv11tb6DPkKI0P3N54LkFGFVfPAMQGM9Erf+fqwKtT5K2I8fHxys7O1tixY3XTTTepW7duNvYUwJWGQAbgkqmoqNDmzZuVm5urzZs369y5cxHlhtsp41xCIKCVJcjw81tmAJeH6fDLn1Yjf1qVzM7Vda6CpaWlafTo0Ro7dqxGjRrFZM0ALhkCGYDLwu/36/Dhw9q8ebM2bdqkvXv3yucL+wLkl4zzCXKUJshRFi+jPJ4JqQG0GVOmzBRvYFTEtOCzYGHjDzmdTg0ZMkSjRo3SqFGj1L9/f4anB3BZEMgA2OLChQvavn27Nm3apM2bNys/Pz9yB68hx/l4GWWBkGZciCOgAWg2U6bMDoEAZnaqlr9jTcRtiJKUmZlpBbAbbrhBHTp0sKm3AK5mBDIAtjNNU9999522bt2q7du3a+fOnSovL4/cyWsEbmsMXUGrJKABqGXKlJkcCmA1dZ4Dk6SUlBQNHz5cI0aM0KhRo5SVlcWAHABsRyADEHNCtzfu2LFD27dv165du1RZWRm5U+gK2vmEwLIinmfQgKuIaZgyU2vk71gjs2O1/Kk1ERMzS1JycrK+//3vKzs7W9nZ2erXrx/D0gOIOQQyADHP6/Xq0KFD2r59u7Zv3669e/fK4/FE7uSXjIr4YEiLl+N8AhNUA1cQM94vf2p1YDj6jjUyUyKfAZMkl8ulYcOGKTs7W8OHD9eAAQOYnBlAzCOQAWh3vF6vDh8+rN27d2vv3r3avXu3SkpK6uxnVDpllMfLUR68gnYhjnnQgHbANAK3H5qpNfKn1sjsWFNnFERJSk9P19ChQzV06FANGTKEAAagXSKQAWj3TNPU2bNntXv3bu3Zs0d79uzR8ePH6+7oVyCUhYc0t5Nn0QAbmTJlunyB8JVSIzO1RmYHb52rX5LUu3dvDRkyxAph3bt35xkwAO0egQzAFamsrEz79u3T/v37rdf58+fr7ug1AgGtIk7GheBVNEIacEmYMmUm+WSmeGWmBANYirfO4BuSlJqaqkGDBmnQoEEaMmSIhgwZotTUVBt6DQCXFoEMwFXBNE2dOXNG+/fv14EDB7R//34dPHhQ1dXVdXf2yQpnVlCrjGPQEKAFTEfwtsOUGvk7eGUGX3LW/dqRmJiogQMHWgFs8ODBXP0CcNUgkAG4anm9Xh07dkz79+/XoUOHdPjwYR05ckRVVVV1dzYVuHJWEQxnlU45KuMkD1fTcHUzZUpJPvmTfYEA1iFwy6Hp8qm+vxoJCQnq27ev+vfvb4Wvnj178uwXgKsWgQwAwvh8Pp06dUqHDx9WXl6etTx37lwDFSTDHRcMaQQ1XLms2w2TvTJD4SvZK9PllRoYST49PV39+vVTv3791L9/f/Xr109ZWVkMPQ8AYQhkANAE0zRVXFysw4cP6/Dhwzp27JiOHz+uEydO1H/Lo1Qb1NzOwNLjrF1nOH7EMDPOL9PlDYQvly+w7goEsPoG2pACV72uv/569erVy7r61bdvX3Xp0uXydh4A2iECGQBEyefz6ezZszp27JhOnDjRvKAmSTVG3ZDmccrwOAODjHBlDZeY6fQHQlZSMGyFgleSr87kyuESEhLUs2dP9erVS71797bWMzMzueUQAKJEIAOANhYKasePH9epU6d06tQpnTx5UqdOnVJhYWHjlb2GjCqnDI9DRpUzcOtjldMKbIaPq2tonClTcgZvL0zyyUz0SUk+mYl+mYmBbfWNahguIyNDWVlZ1uv6669X79691a1bN243BIA2RiADgMvI7XbrzJkzVkALLU+fPl3v5NZ1hAJblUOqDiyN6vB1rrJdyUyZUpwpMyEQsJTgD6wn+KXE2tDVVOCSAs93hYeurKws9ejRQ927d5fL5boMnwYAIBHIACBmVFVVKT8/X/n5+Tp79qzOnj0b8b60tLR5DfkUCGjVjuDLKdU4ZNQYwWUwxNU4Gco/BpgyJYcpxftlxpuBcBXvlxkfXAYDVyCA+Rp8juti6enpuvbaa61XZmamunXrZr1PSkq6tB8MANAsBDIAaCfcbrcKCgqUn5+voqIiFRYW1lmWlZW1rFGfakNajUPyOmR4A8HNWq9vaRLk6mM6TCnOL9MZXMYFloozZYYvg4ErFLoaGqWwIZ06dVJGRoa6dOmijIwMde3aVRkZGcrIyLCCF4ELANoHAhkAXEGqqqpUXFxshbSioiKVlpbq3Llz1vLcuXMqKSlpfOCRpvgk+RySz5DhM6Tgy/AbF21zBNb9kvxG4GUaMiLeB9YNf3A/M7hNF68HFk3djmnW7hi2NANLQ4GrUYYp0xFaDy4dpsywdTkUCFYOf+CZLGfg2Sw5zUDwCn8fDGDNvXpVn4SEBKWnpystLU1paWnq3Lmz0tLS1KVLFytwhdYTEhKiPxAAIKYQyADgKmSaptxud0RIKy0tVXl5ufU6f/68ysvLVVFRYb2vqKiQ7f9tmIoMaRHBS/VORnw5ORwOpaSkKCUlRampqdYr9D4lJcUKXKHQlZaWJpfLJcPgyiMAXG0IZACAZvP7/bpw4YLKy8vldrtVWVlZ7/Li9aqqKlVXV6umpiZiWd82v99/ST+D0+lUQkKC4uPjrVf4+9B6QkKCkpOT5XK5rFdSUpJcLled7S6XywpcycnJcjgYDRMA0DwEMgBATPH5fDJNUz6fT36/v9718KVhGHI4HNYy9Lp4u2EYiouLY9h2AEBMIZABAAAAgE24pwIAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbBJndwcAXPlM05TH47G7GwDQIklJSTIMw+5uALjCEcgAXHIej0dTp061uxsA0CIrV66Uy+WyuxsArnDcsggAAAAANuEKGYDLKmHzNTLM4O+CDIcMhyEZDslhSIYhwxEqC243DMlhyAjtY5UZVh3rJYVtc0SWBypa20zDqP2VVFgb1naj9ljh20wj0IxV5gi0G9huWGWhOmZwm1Uu1bbhCO4fKlfkMSLqBLtvOuopi9hfEX2s3WbUKatTR+H9uKhcDWxvoL2G+lGnTmPtWtvNuvXD6ljlYW2Zwe0KqxcoM8P6Eyg3wsusfUNlptWmEb6/YVpl1ikW2h5qLrhP4FQwrfehOo7g+0BZ4H2onlVmmDJUW88R3Ga9ZFr1HIYitgfq+2vrKbS/X85QneD72rb8VnvOsPadCmx3htqz9vXLGWpToX74a/dXbduBNv1yKHD8QFmgPWdwmyG/nKH6YXWcUqCeAscJ/TxC7wPHMoPrCpaZcgR/Lk4ZckhyBv+wHTKC2ww5DUMOOWQE/+Rqqp268/9dKwC4XAhkAC4vnxH8aqRAIFMwPAW/6daWGZKjNn0YgXQTbCT0zdyhOt+4a9NOZAoItVnnG7ou2hZ+DNWz7eJ6qg1iYYGszrawABX+/uIuRu5fTx1HI2UNfYw6/WjgYzdW1tCPKtr2wtqsL6xd0kBWX7kufm9abYf3I/yY9ZVZAU5h+4TvX6eOWc+xzIhXeCCrDXnBV0NlCoW2QJPh4S0U3KRQsJIVaMLLAoHMXxtojPBAE1h3GEYgLAWXstYNq16gHQXbDNVVsF5we31lYXWcwTDptPoZCmRmk4EsvD1n6OehyG0Ohfcx7M8QAC4DblkEAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCfOQAbi8nKZMMzAZbGBeLSNsaVw0WXNoGbau8G1m2HozysImpaqdvreh7bVLM2JdEfVMSTJD22vbNGVIpqy64eVWGxGTZ4X3pZ73ZkSXLvp5NPC6eN/mzDXWWFmzj9XMsvBDNlrPbKJNs4E+NjwxdOTcYWFl1r7RTwxd24+wecgU/TxkpmrrmYYZ+VJgGShTxHa/YUqGv7ZNhY7lD5svLbhPsNw0/FZ7img/uAwdK/jeEdwntJRUZ5s/7K91aN1vSH7VzkPmD24z1NA8ZIY1mbNTtX9mofeOYJ2L5zZr/sTQhmonhq7v7yUAXDoEMgCXVfWof9rdhUsj9H03ShfnCSAk/NTy29mRqIUnYm7MAYCL8S8jgEvO4/HY3QUAAICYxBUyAJdcYmKitb58+XIlJSXZ2Bu0Fx6PRz/+8Y8lcd6gZdrq3OGcA3A5EMgAXHKGUXsTXlJSklwul429QXvEeYNoce4AiHXcsggAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYxDBNsxUz5wAAAAAAosUVMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJnF2dwBAbKmsrNT777+v9evXKz8/Xw6HQz169NDEiRN15513Kj4+Puq2S0pKlJOTo9zcXBUUFCgxMVG9e/fWtGnTdPvtt8swjEbrnz59Wjk5OdqyZYtKSkrkcrk0YMAAzZw5UxMmTIi6X2i9WDxviouLtWvXLh06dMh6nT9/XpL08ssvKzs7O+o+oW3E4nlz6tQpbdiwQTt37tSRI0dUUlIip9Oprl27atiwYfrJT36igQMHRt0vALiYYZqmaXcnAMSG/Px8zZ07V/n5+ZKkpKQk+f1+VVdXS5L69++vJUuWKDU1tcVtHzx4UI899pjKysokSS6XS9XV1fL5fJKkUaNGafHixQ1+AcvNzdWCBQvk8XgkSR06dJDb7Zbf75ckTZ8+XfPmzWsy1KHtxep5s3TpUr311lv1tksgs18snjd79uzRI488ErEtOTlZNTU1qqmpkSQ5HA79x3/8hx588MEW9wsA6sMtiwAkSV6vV48//rjy8/PVpUsX/eEPf9CqVau0atUqLViwQMnJycrLy9OiRYta3HZFRYXmzZunsrIyXX/99frTn/6klStXatWqVfrv//5vxcXFafPmzXrllVfqrX/mzBk99dRT8ng8Gjp0qN599119+umn+uSTT/TAAw9Ikj755BO99957rfkRIAqxfN4YhqFrrrlGN998sx588EH9+te/bu3HRRuJ1fPG6/XK6XRq3LhxWrhwoT7++GN99tlnWrVqlV5//XUNGzZMfr9ff/7zn7VixYq2+FEAAIEMQMBnn32mo0ePSpIWLVqkkSNHSgr8NnjSpEl67LHHJEkbN27Utm3bWtT2+++/r5KSEiUmJur555/XoEGDJEnx8fGaNWuW5syZI0n6+OOPdfLkyTr1ly5dKrfbrfT0dD377LPq0aOHpMBvrufMmaOZM2dKkv7yl7+ovLw8ik+PaMXyeTN79mx9+OGHeuaZZ3T//fdrxIgRUX9OtK1YPW+uu+46vf3223r66ac1YcIEderUSZLkdDo1ePBgvfTSS+rbt68k6d13343y0wNAJAIZAEmBL0iSlJ2drSFDhtQpnzRpkjIzMyP2ba6VK1dabXTv3r1O+axZs+RyueTz+fT5559HlLndbq1fv16SdMcdd9R7+9K///u/S5IuXLigr776qkV9Q+vE6nkjBb5EIzbF6nlzzTXXWL/wqU98fLymTJkiKfBMK78AAtAWCGQA5PF4tHfvXknSD37wg3r3MQxDo0ePliRt2bKl2W1/9913KigokCSr/sWSk5M1bNiwetves2ePqqqqGq2fmZmpnj17trhvaJ1YPm8Qu9r7eZOQkGCth55JA4DWIJAB0IkTJ6zBMXr37t3gfqGykpISa7S6poRuS2qq7T59+kiSjh8/3mD90D6N1T927Fiz+oXWi+XzBrGrvZ83O3bskCR16dLFuqURAFqDQAZARUVF1npGRkaD+3Xt2rXeOo0pLi5uUdsXLlxQZWVlneOkpqYqMTGxyfrhx8OlFcvnDWJXez5v9u7dqw0bNkiSZsyYwaiuANoEgQxAxBeSxkJPUlJSvXUuZdtut7tOeWP1+VJ++cTyeYPY1V7Pm9LSUi1cuFB+v19ZWVm69957m1UPAJpCIAMAAGhEZWWlfvOb3yg/P1/JyclauHChkpOT7e4WgCsEgQxAxBeL0AAa9QlNynxxnUvZtsvlqlPeWH2+JF0+sXzeIHa1t/PG7XZr3rx5+vbbb+VyufT888+rX79+zeoPADQHgQxAxLMahYWFDe4X/hxHeJ3GdOnSpUVtd+jQIeILUug45eXljX7BCtUPPx4urVg+bxC72tN5Ewpju3btksvl0nPPPWeN0AgAbYVABkA9e/aUwxH456CxUQpDZenp6erYsWOz2g4fGbGxtkOjo/Xq1avB+uEjqDVUv7GR1dC2Yvm8QexqL+dNKIzt3LlTSUlJeu655zR8+PBm9QMAWoJABkBJSUnW5KybNm2qdx/TNLV582ZJ0o033tjstnv06KFu3bo12rbb7dbu3bvrbXvo0KHWw/mh418sPz9fJ06caHHf0DqxfN4gdrWH88btduvXv/61du7cad2mSBgDcKkQyABIkqZNmyYpMMfOvn376pSvXbtWZ86cidi3OQzD0NSpUyVJa9as0dmzZ+vs89FHH8ntdsvpdGry5MkRZS6XSz/84Q8lScuWLVNFRUWd+jk5OZICz4KMGzeu2X1D68XqeYPYFsvnTSiMhd+mSBgDcCkRyABICnzp6dOnj0zT1BNPPKFt27ZJkvx+v9auXasXXnhBkjR69GiNGDEiou7SpUs1fvx4jR8/vt4vQPfcc4/S09Pl8Xg0b948HTx4UJJUU1OjZcuW6X//938lSTNnzlSPHj3q1J8zZ45cLpeKi4v1+OOP6+TJk5ICX5zeeustLV++XJI0e/ZspaamttFPBM0Ry+eN3+9XaWmp9SovL7fKKioqIsqqq6vb5geCZonV88bj8ejxxx+3whhXxgBcDoZpmqbdnQAQG86ePatf/vKXys/PlxS4tcjv91tfVvv3768lS5bUCT1Lly7VW2+9JUn661//qszMzDptHzx4UI899pjKysokBa5mVVdXy+v1SgrcOrR48WIlJCTU27fc3FwtWLDAGh0tJSVFbrdbPp9PkjR9+nTNmzePiVptEKvnzdmzZ/Wv//qvzfoMv/nNb3Tbbbc17wOjTcTiefPZZ5/pmWeekSQlJCQoJSWl0c+waNEiDR06tIWfHAAixdndAQCxIzMzU2+99Zbef/99rV+/Xvn5+YqLi1Pv3r01adIk3XnnnYqPj4+q7YEDB+rPf/6zcnJy9M033+if//ynkpKS1KdPH02bNk3Tp0+3HvSvz5gxY/Tmm28qJydHW7ZsUUlJiVJSUtS/f3/96Ec/0oQJE6L81GitWD5vELti8bwJ/x11dXW1SkpKGj1OKOABQGtwhQwAAAAAbMKvFQEAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAECEl19+WePHj9cvfvELu7sCm1VUVOj222/X+PHj9eWXX9rdHQC4IsXZ3QEAuFJcuHBBeXl5OnDggA4ePKiDBw/q9OnTMk1TkvTXv/5VmZmZl+TYpmnqrrvuUmFhoe677z797Gc/i6qdvLw8LVu2TJL08MMPt2EP7XX06FFt3rxZe/bs0dGjR1VcXCyfz6fU1FT17dtXY8aM0bRp05SSkmJ3V2NKSkqK7rnnHr3xxht65ZVXNHr0aCUmJtrdLQC4ohDIAKCNzJ07V3l5ebYc+8CBAyosLJQkjRs3Lup2XnvtNfl8Po0ePVpDhw5tq+7Zau7cudq5c2e9ZSUlJSopKdGWLVv0zjvvaP78+Ro1atTl7WCMu+uuu/TBBx+ooKBAH374oe677z67uwQAVxRuWQSANhK6EiYFrixkZ2crPT39shz7q6++kiRlZGRo8ODBUbWxe/dubd26VZKuqC/doaCampqq6dOna/78+Xr11Vf1xhtvaOHChRozZoykQDibP3++du3aZWd3Y47L5dKdd94pScrJyVFlZaXNPQKAKwtXyACgjUyfPl1paWkaOHCgsrKyZBiG5s6dq5KSkkt+7FAgGzt2rAzDiKqN9957T5KUmZmp73//+23WN7tlZWVp9uzZmjRpkhISEiLKBg4cqAkTJujdd9/V66+/rurqar344ot6++23beptbJoyZYqWLl2q8vJy/eMf/9Ddd99td5cA4IrBFTIAaCN33XWXbr31VvXo0SPqUBSNkydP6sSJE5Kiv12xsLBQubm5kqSpU6de1v5fai+88IJuu+22OmEs3H333af+/ftLko4fP64jR45cru61C5mZmRo2bJgk6e9//7vNvQGAKwtXyACgnQuNfhe6TTIaq1evlt/vlyRNnDixWXW8Xq/WrFmjDRs26MCBAyotLZXP51NaWpr69OmjkSNH6tZbb1WXLl0i6o0fP16SNG3aNM2fP1/fffedPvzwQ23ZskVFRUXq0KGDBgwYoH/7t3/T8OHDrXpVVVX69NNPtXLlSp06dUoej0fdu3fX5MmTdffdd7d6sIkbbrjBegbw5MmT6tu3b9RtHT9+XMuXL9euXbt09uxZeTwepaSkKDU1VZmZmRoxYoRuvvlmXX/99VG17/V6tWrVKq1du1ZHjx5VWVmZDMNQx44dlZaWpsGDB2vkyJEaO3as4uPjI+pe/PM/fvy4PvroI23dulVFRUVyu916+umn64T7iRMnateuXTpx4oQOHDigQYMGRffDAQBEIJABQDsXul1xzJgxiouL7p/1b775RlLgOauePXs2uf/hw4f15JNP6tSpU3XKCgsLVVhYqE2bNunIkSOaP39+g+2sW7dOzzzzjDwej7WtqqpKGzdu1KZNm/TYY49p5syZKioq0vz583XgwIGI+seOHdOf/vQnbdy4US+++GKrQpnX67XWHY7obyBZvny5lixZIp/PF7G9rKxMZWVlOnXqlLZs2aIjR47oiSeeaHH7paWl+p//+Z96B5AJ/ezz8vL097//XTk5OcrKymqwrU8//VQvvviiqqurmzxu+CAv33zzDYEMANoIgQwA2rGioiLt379fUvS3K1ZXV+vbb7+VJA0ePLjJ2xXz8vL06KOPyu12S5Kys7M1ZcoU9ezZU/Hx8SouLta+ffuanLfqyJEjWrNmjTp37qyHH37YOva2bdv0l7/8RR6PRy+99JKGDx+u3//+9zp8+LDuuOMO3XzzzUpLS9Pp06f19ttv68iRI9q9e7dycnL0n//5n1H9DCRp+/bt1nrv3r2jauPo0aNWGOvYsaNmzpyp4cOHKy0tTT6fT8XFxTp48KA2btwY9W2hS5YsscLYiBEjNGXKFGVmZqpDhw66cOGCTpw4oV27dlm3oDbk4MGDWr16tTp27Ki7775bQ4cOVXx8vI4fP65rr722zv69e/eWy+WS2+3W9u3bNWfOnKj6DwCIRCADgHZsw4YNMk1TCQkJGj16dFRtHDlyxLo6NHDgwEb39Xq9evLJJ60w9stf/tIagS/cTTfdpIceekgFBQUNtpWXl6f+/ftryZIlSk1NtbZ/73vfU1ZWlhYsWCCv16tHH31U58+f1wsvvKCRI0da+w0YMEA33nijZs+eraKiIi1btkyzZ8+W0+ls0eeXArd9Hjt2TFIglPbo0aPFbUjS2rVrrStjL730kvVcWrhx48bpoYceUllZWYvbr6qqsoLuuHHj9Pvf/75OsBs+fLh+/OMfy+12N3ql79ixY8rKytKrr74aMRpoQ6N0Op1ODRgwQLt27dKhQ4fk9/tbdSURABDAv6QA0I6FblccOXKkXC5XVG2E33bY1DD9q1ev1unTpyUFRpWsL4yF69atW6Pljz/+eEQYC5kwYYIyMjIkSefOndOsWbMiwlhISkqKbrvtNmu/48ePN3q8+hQVFekPf/iDJMkwDP3Xf/1Xi9sICY2omZKSUm8YC9epU6cWt19eXm6F5+HDhzd6lc3lcjV5C+evfvWrFk3NENrX4/GoqKio2fUAAA0jkAFAO1VRUaEdO3ZIat1k0MXFxdZ6x44dG903FAAl6d577436mFLgFriGQothGBFlU6ZMabCd8P3OnDnToj54PB7Nnz/fClIXDyTSUqEQWVFRobVr10bdTkM6depkjRb5xRdftGpOsIyMjHpDbmPCz4/w8wYAED0CGQC0U7m5ufJ6vXI6nRo7dmzU7VRVVVnr9V2tCnfo0CFJgSslzRn8ozFN1Q/vS2OjEYbv15KAUlNTo9/+9rfWQCE333yzHnrooWbXr8+UKVOsq1ILFizQI488onfffVe7d++2bvNsjfj4eE2bNk2StG/fPv30pz/VCy+8oC+++KLFYTSaUSTDA1n4QCwAgOjxDBkAtFOhq1VDhgxRWlpa1O2EP3PV1Gh7paWlkmqvBLVGUlJSo+Xht+M1djtm+HNMoaH7m+L1evXEE09o8+bNkqRRo0bpqaeeiur5s3Ddu3fXs88+q2eeeUaFhYXas2eP9uzZIynwcx40aJDGjx+vGTNmNBl+G/KLX/xC1dXVWrlypc6fP6+PP/5YH3/8saRAUB41apSmT5/e5JW+pq6G1ic8vEc7oicAIBJXyACgHaqurtamTZskte52RSnwvFPI+fPnW9VWe+D1erVgwQJrqP+RI0fq6aefbnTi6JYYMWKE3nvvPf3ud7/T9OnTrWHnfT6fvv32W7322mu69957rTDYUomJiZo/f77eeecdPfjgg7rhhhuswFpSUqLPPvtMc+fO1W9/+9uIAHWxaAbkCB+IJPy8AQBEj19vAUA7tHXrVusWuNYGsvAhzpsKZGlpaSooKGi3AzqEwljo6uINN9ygxYsXt3pS6YslJCTolltu0S233CIpcGVx27ZtWrlypTZu3Kjz58/riSeeUE5OTp2Js5urR48euv/++3X//ffL5/MpLy9P33zzjZYvX65z587pyy+/1BtvvKFHH320zT5XeXm5td7UgC0AgObhChkAtEOhQNG/f39lZma2qq3wObe+++67RvcNDYtfXFzc5L6x5uIwlp2drWeffbbNw1h90tLSNGnSJD3//PO64447JElut1sbNmxok/ZDt0POmTNHf/zjH63bQVevXt0m7YecOHFCkpSZmank5OQ2bRsArlYEMgBoZ/x+v77++mtJgYEoWqtbt27q2rWrJFmTTDdk/Pjx1npOTk6rj325eL1ePfXUU1YYGz58uJ577rkmn2O7FEaNGmWth57Ja0uZmZnWPGrRzHXWkNLSUmvKg3/5l39ps3YB4GpHIAOAdmbPnj3WF/nwgNQaoZBw4sQJXbhwocH9Jk6caH3Z/+STT/S3v/2t0XYbmxj6cvF6vVq4cKE1ofKlDGPr169vMmSFnv2TpOuuu65F7Z85c0Zbt25tdJ+zZ89aV7K6d+/eovYbs2/fPmv9Bz/4QZu1CwBXO54hA4A2curUKWtEvZDQ/FaStG7duojREF0ulyZMmNDi44Su8nTv3j2qocvrc8stt+iTTz6R3+/X1q1b9cMf/rDe/eLi4vS73/1OjzzyiNxut15++WV9+eWXmjp1qnr27Kn4+HgVFxfrwIEDWrdunQYOHKj58+e3SR+jtWjRIq1bt05SIAD9/Oc/19mzZxut07lzZ3Xu3LnFx/rb3/6mRYsWacSIERoxYoR69eqlTp06qaamRgUFBVq9erV1dfPaa69t8XQFBQUF+tWvfqXu3btr7NixGjx4sLp166bExESVlZVp3759WrZsmTVaZlMTd7fEli1bJAWejxszZkybtQsAVzsCGQC0kT179mjx4sUNlr/22msR76+99tpWBbK2uF0xZOTIkcrIyFBhYaFWrlzZYCCTpH79+umVV17Rk08+qTNnzmjHjh3WBNUXCz1zZqfwCZpPnz6tn//8503WeeCBBzRnzpyojlddXa3c3Fzl5uY2uM91112nxYsXNzqcf2POnDmjDz74oMFyh8Ohe++9Vz/5yU+iav9iXq9XX3zxhaTAVdloh+wHANRFIAOAduTw4cPW1Z3Wjq4Yzul0atasWXr99de1ceNGlZaWNjq32YABA/TOO+9o5cqV+uqrr5SXl2c9r9S5c2f17dtXN954o2699dY262N7sGDBAm3evFm7du3S0aNHVVJSYt3C2KlTJ/Xr10/jxo3TlClTohpmf9iwYXr11Ve1detW7du3TwUFBTp37pwuXLigpKQkde/eXcOGDdOMGTPa7OqpJOuckKS77rqrzdoFAEiGaZqm3Z0AADTPm2++qTfffFOdO3fWRx99FNVcUg2pqKjQPffco/Pnz+tnP/uZ7rvvvjZrG+3bvHnzlJubqxEjRuill16yuzsAcEVhUA8AaEdCtyvedNNNbRrGpMBEv6EQ9v7776uysrJN20f7tG/fPuXm5sowDD388MN2dwcArjgEMgBoJ2pqajRu3Dg98MADmjVr1iU5xp133qmsrCyVlZXp//7v/y7JMdC+vPHGG5KkqVOnavDgwTb3BgCuPNyyCACIsH//fuXm5iolJUU//elP7e4ObFRRUaEPPvhApmlq1qxZjT5XCACIDoEMAAAAAGzCLYsAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADb5/+URRBi+dvnLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "7ac96b22", + "metadata": {}, + "source": [ + "An example to plot the image in the log scale" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "71f5f43f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZikV3XniX9jX3Opysyqyto3VWnfkIWRQCAE2AJjjw3GNG03NmNouj1+bM8Puz3ddANeGuMee4bunm48thsz5hnjMd00NmZp24jFCIGEhXaVVPu+575nxvv7I/JE3Lh5l3MiI6syq86HRw9Sxn2X2N64n/d77r2pJEkSKIqiKIqiKIqiXIekr/YJKIqiKIqiKIqiXC1UiBRFURRFURRFuW5RIVIURVEURVEU5bpFhUhRFEVRFEVRlOsWFSJFURRFURRFUa5bVIgURVEURVEURbluUSFSFEVRFEVRFOW6RYVIURRFURRFUZTrFhUiRVEURVEURVGuW1SIFEVZs3z4wx9GKpXC1772tat9KlG+9rWvIZVK4cMf/vDVPhXlKnH06FGkUin87M/+bEf2l0ql8LrXva4j+1pN/OzP/ixSqRSOHj16tU9FUZTrBBUiRVEa7Ny5E6lUyvnPpk2blrSfm5vDxz/+cfzcz/0c7rzzTuTzeaRSKfzRH/2R9xgnT57Eb//2b+Mnf/InsXfvXqTTaaRSKRw8eHAln5qI+++/H6lUCl/84hejbffv349UKoUnn3zyCpyZsnPnTuzcuVO83Te+8Q38zM/8DG699Vb09fWhWCxi165d+NEf/VH83d/9nXe7qakpfOhDH8L+/ftRLBaxYcMGvOMd78ALL7zgbH+1JWUt3CRYC+eoKMr1RfZqn4CiKKuLnp4e/PIv//KSv1er1SV/m5iYaLTduHEjNm3ahBMnTgT3/8QTT+CDH/wgUqkUdu3ahZ6eHgwPD3fgzDvHe9/7Xjz66KP4oz/6I7z5zW/2tvv617+Ol156Cffccw/uuuuu4D7vvfdevPDCC+jv7+/06SoMvvrVr+KrX/0qXvnKV+L1r389KpUKjh8/jr/8y7/EX/3VX+GDH/wgfvM3f7Nlm5mZGbzxjW/Et771Ldxzzz34pV/6JZw4cQJ/8Rd/gb/+679u7O9q8cILL6BcLl+1468UH/3oR/Hrv/7r2LJly9U+FUVRrhNUiBRFaaG3t5dd1lUul/HFL34Rd955JwYHB/HhD38YH/nIR4Lb3HPPPfjGN76BO+64A93d3Xjd616Hr3/96x04887xUz/1U/jlX/5lfOELX8C5c+ewceNGZztKwt73vvdF91kul3HjjTd29DwVPr/+67/u/FyfOnUKd999N/7tv/23+Of//J9jcHCw8djv//7v41vf+hbe/va348///M+RTteLKn7qp34K/9P/9D/hPe95D5555pnG36801+rnaXBwsOV9UBRFWWm0ZE5RlLbJ5/N4+OGHRZ2XrVu34jWveQ26u7tX7LyOHz+OW265Bfl8Hn/6p3/a+Pvk5CQ++tGP4s4770SlUkG1WsWrXvUq/Nmf/VnL9qVSCT/90z+Nubk5/Mmf/InzGMPDw/jsZz+LarWKf/SP/lH0nHxjiF73utchlUphbm4Ov/Ebv4E9e/agWCxi//79+MM//MNGu0984hO47bbbUCqVsHXrVnzoQx9CrVZbcpw/+ZM/wdve9jbs3r0bpVIJ3d3duP/++/HpT3/ae26PP/443vSmN6Grqwvd3d14wxvegG9/+9vB0qYXX3wRP/uzP4tt27Yhn89j48aNeNe73oUDBw5EXwtidnYW//E//ke8+c1vxo4dO1AoFLB+/Xq84Q1vwJe+9CXn63fs2DEcO3aspZyTMyanWCw6/75lyxbcd999qNVqOHz4cOPvSZLgE5/4BADgd3/3d1uk58d+7Mfwmte8Bs8//3xD5v/kT/4EqVQKQD05NM/PJWJHjx7FO9/5TvT396NYLOKee+7BF77whejzMLHL83bu3Nm4IfHggw+2nIMJ93sAtH5uv/vd7+Itb3kL1q9f3zLG55FHHsH73vc+3Hzzzeju7kapVMKtt96Kj3zkI5ienm7ZH+ccQ2OI/r//7//DAw88gJ6eHpRKJdx222346Ec/ipmZmSVtqbxyYmICv/qrv4rt27ejUChg7969+NjHPoYkSVivs6Io1z6aECmK0sLMzAw+/elP4/jx46hUKrj99tvxwAMPIJPJXO1TY/HUU0/hzW9+M8bGxvDFL34Rb3jDGwDUBeb1r389nnzySdx99914z3veg1qthq985St417veheeeew6/9Vu/1djPe9/7Xvxf/9f/hT/+4z/Gv/gX/2LJcT796U9jenoa733ve53lhFLe+c534jvf+Q7e/OY3I5fL4bOf/Sze9773IZfL4emnn8anPvUp/MiP/Ageeugh/OVf/iV+4zd+A+Vyecm5/bN/9s9wyy234IEHHsDg4CAuXbqEL37xi/iZn/kZHDhwYElZ2De+8Q286U1vwsLCAn7iJ34Ce/bswTPPPIMHH3wQr3/9653n+uUvfxk/8RM/gbm5Obz1rW/F3r17cfLkSfy3//bf8Nd//dd45JFHcPfdd0ef8+XLl/FLv/RLuO+++/DGN74RAwMDOHPmDP7qr/4Kb37zm/GHf/iH+Pmf/3kA9c7thz70Ifyf/+f/CQAtZZ133nkn/4W2OH/+PL7zne+gUChg//79jb8fOnQIx48fx759+7Br164l2z388MP45je/ia9+9at48MEHceedd+JDH/oQPvKRj2DHjh0tkmaPKTp27Bjuvfde7N69Gz/zMz+Dy5cv48///M/xYz/2Y/jbv/1bPPjgg209l1/+5V/Gf//v/x1f//rX8e53v9s51kr6PSC+/e1v46Mf/She/epX4z3veQ8uXryIfD4PAPjYxz6GF198Effddx/e8pa3YHp6Gt/61rfw4Q9/GF/72tfwt3/7t43rB+ccffzLf/kv8dGPfhT9/f1417vehWq1ii996Uv4l//yX+IrX/kK/sf/+B+NcyLm5ubwQz/0Qzh9+jQefvhhZLNZ/Pf//t/x67/+65iensaHPvQh/gusKMq1S6IoirLIjh07EgBL/tm1a1fyta99Lbr9hz70oQRA8od/+IfsY772ta9NACQvv/yy+HzpeI888kiSJEnyN3/zN0l3d3cyODiYfP/7329p++53vzsBkHzsYx9r+fvU1FTyQz/0Q0kqlUqefPLJlsfuvffelv2b3HHHHQmA5PHHH2ed6yOPPJIASD70oQ+1/J2e/z333JMMDQ01/n7o0KEkl8slvb29yc6dO5OTJ082HhsaGkr6+vqS/v7+ZG5urmV/Bw8eXHLsmZmZ5PWvf32SzWZb9rOwsJDs3bs3AZB88YtfbNnmP//n/9x4/83nf/ny5aS3tzfp6+tLnnvuuZZtnnnmmaRSqSR33XUX6zWZnp5OTpw4seTvw8PDyS233JKsW7cumZycbHlsx44dyY4dO1j7d/H4448nH/rQh5J/9a/+VfLud787Wb9+fZLJZJL/9J/+U0u7L3zhCwmA5Ed+5Eec+/mLv/iLBEDyjne8o+XvAJLXvva1zm2OHDnSeE0//OEPtzz25S9/OQGQPPzww+zn4jqW/Z2wkX4P6HMLIPnEJz7h3OehQ4eSWq225O8f/OAHEwDJZz7zmbbO8ciRI42/PfroowmAZNu2bcmZM2caf5+bm0t+5Ed+JAGQ/PZv/3bLfuh69vDDD7d8js6dO5f09PQkPT09yezsrPMcFEW5vtCSOUVRGvzcz/0c/u7v/g5nz57FxMQEnnnmGfzTf/pPcfToUTz88MN46qmnrvYpevn0pz+NN7/5zdiyZQsee+wx3HHHHY3HLl26hE9/+tO455578Gu/9mst2xWLxUb5zP/7//6/LY/R2CB71rzHH38cTz31FO666y7cc889HTn/3/md30Fvb2/jv3fv3o1Xv/rVGB4exr/+1/+6ZYB5b28v3vrWt+LixYs4depUy3727NmzZN/5fB6/8Au/gPn5+ZYZ1R599FEcPHgQDz74IB5++OGWbd73vvdh3759S/b1//w//w+Gh4fxkY98BDfffHPLY7feeive+9734sknn8Tzzz8ffc6FQgFbt25d8veenh685z3vwdDQEB5//PHofiQ88cQT+MhHPoLf/u3fxqc+9SnMzc3hk5/8JP7ZP/tnLe1GRkYa5+KC/t7OhCA7duzABz/4wZa//dAP/RC2b9+O7373u+L9cWn3ewDUU7h/+k//qXO/u3fvXlKWBwC/8iu/AgD4yle+suxz/y//5b8AAD74wQ+2zHiZzWbxe7/3e0in097ZLf/9v//3KJVKjf/esGEDfuzHfgwjIyOiEk9FUa5dtGROUZQGdvnIrbfeik984hOoVqv4vd/7PXz4wx/G5z73uat0dn4+/vGP4/Of/zzuv/9+/OVf/iXWrVvX8vjjjz+OhYUF73iOubk5AFgylfI73/lO/Mqv/Ar+63/9r/gP/+E/NPZLY3ve+973duw5uMRq8+bNAIBXvOIVSx4jQTp58iR27NjR+Pvx48fxsY99DH/3d3+H48ePY2pqqmU7U6BoqvBXv/rVS/afTqdx33334aWXXmr5+7e//W0A9dJE12tJ7V944YUlwuTiueeew7/7d/8O3/jGN3DmzJklY05s4Vsu73//+/H+978f09PTOHLkCD7xiU/gn/yTf4JvfetbjTFDK82dd97pLEHdtm1b4/VdCdr9HgD1WRJ9TExM4OMf/zg+97nP4aWXXsLY2FjL+JxOvIf/8A//AADOMs59+/Zh69atOHLkCEZGRloktqenB3v37l2yzbZt2wAAQ0NDyz43RVHWPipEiqJEef/734/f+73fwze+8Y2rfSpOvvGNbyBJEjz00ENLZAio3xkH6h3CUOIwPj7e8t+VSgXvete78Ad/8Af49Kc/jV/8xV/ExMQEPvOZz6BSqeAf/+N/3LHn4Eoistls9DHqxALA4cOHce+992JoaAivec1r8KY3vQk9PT3IZDI4evQoPvWpT7UMPqcUxDeLnuvv9FqaEz64sF9LF4899hhe//rXY35+Hg899BB+9Ed/FN3d3Uin0/j+97+Pz3/+887B8p2gWCzipptuwsc//nHMzMzgD/7gD/CGN7wBb3/72wE0X3N6jWzo72aqx8W3TTabdU6U0Sna/R4AcK5DBtQ/f69//evx3e9+F7feeit+6qd+CgMDA8jlcgCAj3zkIx15D+n19k3gMjg4iOPHj2N4eLjl+xJ6rQFgYWFh2eemKMraR4VIUZQoAwMDAOp3glcjf/zHf4zf+Z3fwUc+8hHUajX8xm/8Rsvj1EH6lV/5Ffz+7/++aN/ve9/78Ad/8Af4oz/6I/ziL/4iPvOZz2BsbAzvec97VnSmvHb4/d//fVy6dAmf/OQnl8y89md/9mf41Kc+1fI3Ov9z58459+f6O72WTz31FG6//fZlne9v/dZvYWpqCo888siSiQc++tGP4vOf//yy9s/l4Ycfxh/8wR/ga1/7WkOIaIIFOyEjXn75ZQBwlhWuVpbzPXCVxAHA5z//eXz3u9/Fz/7sz+KTn/xky2NnzpyJTsPPhc797NmzzrLQM2fOtLRTFEWRoGOIFEWJ8thjjwGojxVYjfT29uJv/uZv8JrXvAa/+Zu/uWR8xL333ot0Oo1vfvOb4n3ffffdeMUrXoGnn34a3/3ud0VrD11pDh48CAB429vetuQx11pPtJjs3//93y95rFar4dFHH13y9x/8wR8EgLZeS5uDBw9i/fr1S2QIcJ8vAGQymY7f1aeSLkoNgPpYrO3bt+Oll17CkSNHlmxD04LbJVzpdPqqpg5Uiuc6h+V8D3zQZ+4nfuInljwWeg995+iDPquuKeAPHjyIkydPYteuXW0ldoqiKCpEiqIAqI8bcCVAR48exf/yv/wvAICf/umfvtKnxaarqwtf/vKX8dBDD+Hf/bt/h1/6pV9qPLZhwwb843/8j/HEE0/gN3/zN50dsUOHDjk7vkBzrNAHPvABPPbYY7j99tvxyle+cmWeyDKgKYztTuNXvvIV54Dz+++/H3v27MEjjzyyZN2f//v//r+d6cjP/dzPobe3Fx/5yEecEwDUajVnp9V3vpcvX8bTTz/d8vc//uM/9g7E7+vrw4ULF5aMjYrhm6zg0KFD+Lf/9t8CAN7ylrc0/p5KpfD+978fAPBrv/ZrLaVsn//85/HNb34TN998M1772tcuOb8TJ06Izq2T9PX1AaiPJbNZ7vfAhe8zd/jwYed09bFz9PGe97wHQD1VvHDhQuPvCwsL+MAHPoBarYb/+X/+n9n7UxRFMdGSOUVRAAB//ud/jt/7vd/DAw88gB07dqCrqwuHDh3CX//1X2N6ehpvfvOb8YEPfGDJdr/zO7+DF198EQDw/e9/HwDwyU9+spE6vPrVr26sJUOY5Vy07b/4F/8CXV1dAICf//mfdw70j1Eul/GFL3wBb3vb2/Dv//2/x/T0ND7xiU8glUrhP/7H/4iXX34Z/+bf/Bv86Z/+KV796ldj48aNOH36NF544QU8/vjj+LM/+zPnmjPvete78IEPfKBxZ72Tkyl0kn/+z/85PvnJT+Inf/In8fa3vx2bN2/Gs88+iy9/+ct4xzvegT//8z9vaU8zc/3wD/8wfvRHfxRve9vbsGfPHjz99NP4m7/5Gzz88MP40pe+1LIoaV9fHz772c/ix3/8x/GDP/iDeOihh3DLLbcglUrhxIkT+Pa3v41Lly4tmRzBxS//8i/jK1/5Cl796lfjHe94B3p6evDEE0/g7//+7/H2t78dn/3sZ5ds89BDD+Hxxx/HD//wD+OBBx5AoVDAHXfcgbe+9a3BY73pTW/Chg0bcNddd2Hbtm2Yn5/HoUOH8OUvfxnz8/P4xV/8RbzxjW9s2eZ//V//V3zhC1/AZz/7Wbzyla/EQw89hOPHj+Mv/uIvUC6X8V/+y39peW3o/D7zmc/grW99K+6++27kcjk88MADeOCBB6KvRyd48MEHkU6n8b/9b/8bnn322caYOprVbjnfAxe0DtXv//7v45lnnsFdd92F48eP4wtf+ALe8pa3OKUndo4u7rvvPvzar/0afvd3fxe33nor3v72t6NSqeBLX/oSnn32Wbz61a/Gr/7qr0pfLkVRlDpXd9ZvRVFWC1/72teSd77zncn+/fuTnp6eJJvNJv39/ckb3vCG5FOf+pRznZEkaa6j4/vn3e9+95JtQu0BJJ/85CdZ5+xbz2RmZib58R//8cbxFxYWGn//D//hPySvetWrku7u7iSfzyfbtm1LXv/61yf/x//xfyQXL170Huvnf/7nEwBJqVRqWS+IS2wdIheu9VgI33P/1re+lTz44INJb29vUq1Wk/vvvz/53Oc+5z1+kiTJY489lrzhDW9IqtVqUq1Wk4ceeih59NFHk1/4hV9IACxZnylJ6mvq/MIv/EKyd+/epFAoJF1dXcn+/fuTn/7pn04+97nP8V6UJEn+6q/+KnnlK1+ZVKvVpKenJ3njG9+YfP3rX08++clPOj8L4+Pjyfvf//5ky5YtSSaT8X7GbD7+8Y8nb3nLW5Lt27cnpVKp8d6//e1vT7785S97t5uYmEj+9b/+18nevXuTfD6f9Pf3J29/+9uXrMFEnDt3LvlH/+gfJRs2bEjS6XTLa07rEPnON/RZcAHPmkd/+qd/mtxxxx1JsVhsfKdMJN+D0OeGOH78ePKud70r2bx5c1IsFpObb745+djHPpbMzc21dY6hz/2f/dmfJffff39SrVaTQqGQ3Hzzzclv/dZvJVNTU0vahtasiq2FpCjK9UUqSYy5MRVFURRlkfvvvx/f+c53MDIygkqlcrVPR1EURVFWBB1DpCiKch0zOTnpXFz0T/7kT/Doo4/iTW96k8qQoiiKck2jCZGiKMp1zIsvvoi77roLb3zjG7F3717Mz8/jySefxN///d+jt7cXjz76KG666aarfZqKoiiKsmKoECmKolzHDA0N4Vd/9Vfx9a9/HWfPnsXMzAw2bdqEN7zhDfhX/+pfOdd8URRFUZRrCRUiRVEURVEURVGuW3QMkaIoiqIoiqIo1y0qRIqiKIqiKIqiXLeoECmKoiiKoiiKct2iQqQoiqIoiqIoynWLCpGiKIqiKIqiKNctKkSKoiiKoiiKoly3ZK/2CSiKoigrRyqll/lOkCTzV/sUFEVRlBVC1yFSFEVZxajQXBuoUCmKoqxeVIgURVGuECo3igSVKEVRlCuDCpGiKMoyUMlRVgMqT4qiKO2jQqQoiuJBZUe5llBpUhRFcaNCpCjKdYsKj6I0UWFSFOV6RYVIUZRrEpUdRek8Kk2KolyLqBApirJmUelRlNWDypKiKGsVFSJFUVY1Kj2KsvZRWVIUZTWjQqQoyqpAxUdRrj9UlBRFWQ2oECmKckVR8VEUJYaKkqIoVxIVIkVRVgyVH0VROoVKkqIoK4UKkaIoy0bFR1GUq4WKkqIoy0WFSFEUESo/iqKsdlSSFEWRoEKkKIoXlR9FUa4VVJIURfGhQqQoCgCVH0VRrj9UkhRFAVSIFOW6RQVIURSlFRUkRbk+USFSlOsAlR9FUZT2UElSlGsfFSJFucZQ+VEURVlZVJIU5dpChUhR1jgqQIqiKFcXFSRFWduoECnKGkMFSFEUZXWjgqQoawsVIkVZ5agAKYqirG1UkBRldaNCpCirDBUgRVGUaxsVJEVZXagQKcpVRgVIURTl+kYFSVGuLipEinKFUQFSFEVRQqggKcqVRYVIUa4AKkGKoihKO6gcKcrKo0KkKCuACpCiKIqyEqggKUrnUSFSlA6hEqQoiqJcSVSOFKUzqBApyjJQCVIURVFWAypHitI+KkSKIkAFSFEURVkLqCApCh8VIkWJoBKkKIqirGVUjhQljAqRojhQCVIURVGuRVSOFGUpKkSKsohKkKIoinI9oXKkKHXSV/sEFEVRFEVRFEVRrhaaECnXNZoKKYqiKIqmRcr1jQqRct2hEqQoiqIoflSOlOsNFSLlukAlSFEURVHkqBwp1wMqRMo1i0qQoiiKonQOlSPlWkWFSLlmUAFSFEVRlCuHCpJyraBCpKx5VIQURVEU5eqhYqSsdVSIlDWJSpCiKIqirD5UjpS1iAqRsmZQCVIURVGUtYPKkbJWUCFSVj0qQoqiKIqydlExUlY7KkTKqkQlSFEURVGuPVSOlNWICpGyqlARUhRFUZRrHxUjZTWhQqRcdVSCFEVRFOX6ReVIudqoEClXDRUhRVEURVEIFSPlaqFCpFxRVIIURVEURYmhcqRcSVSIlCuCipCiKIqiKFJUjJQrgQqRsqKoCCmKoiiKslxUjJSVRIVI6TgqQYqiKIqirBQqR0qnUSFSOoaKkKIoiqIoVwoVI6VTqBApy0ZFSFEURVGUq4WKkbJcVIiUtlERUhRFURRltaBipLSLCpEiRkVIURRFUZTVioqRIkWFSGGjIqQoiqIoylpBxUjhokKkBFEJUhRFURRlraNypIRQIVKcqAgpiqIoinKtoWKkuFAhUlpQEVIURVEU5VpHxUgxUSFSAKgIKYqiKIpy/aFipAAqRNc9KkKKoiiKolzvqBhd36gQXaeoCCmKoiiKorSiYnR9kr7aJ6BceVSGFEVRFEVRlqJ9pOsTTYiuI/RLriiKoiiKwkPTousHFaLrABUhRVEURVGU9lAxuvZRIbqGURFSFEVRFEXpDCpG1y4qRNcgKkKKoiiKoigrg4rRtYcK0TWEipCiKIqiKMqVQcXo2kGF6BpARUhRFEVRFOXKo1J0baBCtIZREVIURVEURVkdqBytXVSI1iAqQoqiKIqiKKsTFaO1hwrRGkJFSFEURVEUZW2gYrR2SF/tE1B4qAwpiqIoiqKsHbTvtnbQhGiVo18mRVEURVGUtY2mRasbTYhWKalUVmVIcZJK5a/2KSiKoiiKIkD7dasbTYhWIfqFWX3kcxsAALNz56Ntc9l+AMDc/MVo20ymGwCwsDAabUsilCSz0baKoiiKoqxONC1afagQrSJUhFYfJEJAXIZIhIC4DJEIAXEZMhMhlSFFURRFuTZQMVo9aA98laAytLowRSiGKUIxTBGKYZfGqQwpiqIoyrVDKpVVKVolaC/8KqMitLrwiZArHfKJkCsd8omQKx3SMUKKoiiKcn1A/UAVo6uL9savIipDq4dOJUK2DIUSIVuGQiKk6ZCiKIqiXLtoWnR10R75VUBFaPXAESFKh65UaZyNypCiKIqiXPtoWnT10EkVrjAqQ6sDSSKUJDVWu7n5i2wRWlgYZZfGqRApiqIoyvWFStGVRdchukLo/PMrRzG/md12oPsH2DLUXdzKlqHe8i62DNVq0ywZ6irtYstQNtPLakekNBxWFEVRlFWL9huvLPpKXwH0A70ykAhNz55mtR/o/gFWu+7iVvY59JZ3AQAuTxyItl1f2Q8AuDj2VLBdV2kX+/gkQvMLw6z2JEIJ9M6ToiiKoqx2dGzRlUF76iuIitDKIEmEgFYRGpk65m1ni9DI1HFvWxIhDiRCQFiGbBEanfRL1nISIZUhRVEURVk76NiilUd77CuEylDncYlQKB3iJkIAPxVyiZAvHTJFKIQrEfLJkEuEXOmQryROZUhRFEVR1iaaFq0c2mvvMCpCKwM3FZJIEOAXITsdajcRMrHToXZK42xsGdKxQYqiKIpy7aJp0cqgvacOojLUeTopQma53HISIRMzHVpOImRipkPc0jiOCGk6pCiKoijXBpoWdRbtwXcIlaHOwhEhKpfrdGkcpUPcVIgjQpQOcWWII0LzC8PsREhlSFEURVGuLVSKOoeuQ7RMVIQ6DzcV6ipuYe8zSRbYbVOpDLsth4tjT7HL4yZnzrHaLSyMi85BhUhRFEVRrl1UjJaHrkO0DFSGOsv6rjtZMrSl8gPYUuGnQn0ZnoxsyO5ny1BvZhu7HVeGSrn1rHbFfB+rXT7X3/iHA3ehWEVRFEVRVhfaJ10e+uq1iX7wOsf6rjvZbUmERhfiaw9xRQioyxAHrghJ2nJFCJDJkASVIUVRFEVZ22gJXftor16IilBn4cqQJBECZKkQF0kqxKXTqRAgkyEVIUVRFEW5dtBZ6NpDe/cCVIY6h0uEJmfOO9tyZcgnQRfnDzr/rqmQypCiKIqiXItoWiRDe/hMVIY6QzvlcRxWojwO8AvO8MIJVjsXKkOKoiiKoqw0KkV8tJfPQGWoM3SqPM4cPyQRIeDqpkLA6i+RS6XySJJZ9v4URVEURVm9qBTx0J5+ABWhzrASqdBKiRBwdccKAZoKKYqiKIrSOXRcURxdh8iDytDyWVe9HakUb2b3ddkd7P3mUBCdRxq8qbTzSQkTqWHRvjmM1s6w2mVTRYzMHGe1nZufEJ3D7PxldltuQpTN9GJ+YVh0HoqiKIqiXD1UitzoOkQOVIaWj0SGBrO3sNpVk15Uk172OVSTHlSTHlZbiQx1Jby0J4cCW96yqSKrHQAUs7znBAD5XBfyuS5W21y2F7lsL6ttNsNrVyclaKsoiqIoykqhfVw3+qpY6Adleayr3s5uyxUhACIRqrfnixAXrggBshSrHRnqKm7G2LR/LSauBBFcEQLalaEUAA2jFUVRFOVqo+OKlqIJkaIoiqIoiqIo1y0ahxhoOrQ8uOnQSiVD3FSIuNrp0EqWydlUSzswPnXM2X5l0iEtk1MURVGU1YqmRK2oASyiMtQ+q6FMTiJDV1uEgCsrQyFcMpTPbcDsXOsiuTpmSFEURVGuLVSKmlz3FqAi1D5rTYSAa1eGrtaYoaUzzYVkSMcRKYqiKMpqQqfkrnNd24DKUPtcyzK0lkQIWI0TKCiKoiiKspa43tOi69YIVIba41oWoUrSi7RgnhGVIROVIUVRFEVZy1zPUnRdzjKnMtQeuWw/u+1Abh9/vwlfLGqosdtKkchQf22Q3XZDai+77cbirfxzqNzEbgsAA113sdv2CPadz21gt02ny+y2KYFEgrn4rrF3QcvVcL1Q4VQURVFWnuu1j3zdPevr9Y1eDipCTQqCc84k/M9aMdXNP4cMP0EqZfnlfwBQyvex26bTeUFb/tit1SJC9dar4Xohl7cE1+cdvisHvSc6Jk5RlGuP6zEpWg2/9lcMlSEZtghVi5uD7VWGmqgMmW1XgwzJE5bVJ0PhSSnM800hq1K0YvDfE0VRlLXK9SZFq+EX/4qgMiRjuamQb3zNtS5CwPUpQ/ncAGbnLjjaLpWhdLqMWm1yyd9dMpRKFZEk046zcMlQBsCC4+8+GfJ3Zm0ZujqCsdbK+q5XVIoURbk2uZ6k6Lr4FVUZ4rNS5XHAtS9Dq0GEgLAM9ZZ2YXjqSGt7jwxVioOYmD7T8rdrPRlaPWLBlzjfOWtKtBLI5VpRFGUtc71I0TU/qYLKEJ+VHCvElaHa4v9WirUgQz3Zbc1ziMhQd35r499L2fXXZJlc6+MxGTIf58hQyvi38Ht45WSpc8nQ6hG8a4HY+6ITXyiKcm1yPfSlr+lneD28gZ1gJURoDjPIgS9CwNpMhQCeDK3HVlzGyWumRM4Flc1xZIjK5tZaMrTyqQtX4hKVnVWJJkWKolybXOtJ0TWbEKkM8VipVKia9LJlKIvMmpShntp6djJUQHHVyNCmyp3stusqN4j2vRrK5CSfaQAo5DaJ2q8UkvPOCt7z1SRO5cIOdlvZOlgrDV+wJZ+n1fUcFUVRwlzLfetrUoiu5TfsarChehs2VG9jt5csspoVdHQLKKIASSdaRikpIr0CZS+Scy6iiiKq7PbZVAGlzDr+/tOCRV8zgvNIl5AVyFAxN4BSfiNv35kqclnec+S2Iwo53jk02uc3oJgPz7ZIZLPr2eIikyHZcywWNqFU2BpvuEi1tAfV0h5W23JhB1tyJDJEcIWhmN/Mfl8qxV2oFHexz6G+b/66Y8DKSFE20ysQqAzkU9IriqLEuVb72NecEF2rb9TVQipCXBnKIiOWoXaJSU4pKaKUrIxoSWWI6E2FO3fZVAHZlKy0r10Z6imFO7KmCBVzA+FzyA1E27TsWyBlpgzlsvGSQFOG8rm4kBTy/AVoJQmOKUOx8zZlKJONJ47Fgiz9MkUoJkWm4Ehkh9NWkpyYIhSTIlOEJFJU33dciszPVEyKzOcoeb6yVEmlSFGUznMt9rWvKSG6Ft+gq8X1lAqtFPZ5r0v8HWppKsSlmO5p/GPSk9vm2UKeDLHPxSFCoZTIlqFQ+nMlkiGTUMfblqGQHEnL+2xCUmTLUCwl4qZCgFtqQqJjPxZqa3f4QwLgeh+4SREQlyJ7XyEpkn6mbELPU/KaLJUglSJFUTrPtdbnvmaE6Fp7Y64mPhGaSC4t+ZskFQLkMrSSdEKGqsnSDqlU4johQ66yOUkiRHRChlziI0mFgPaToda/L01bCrmN3o6rLyXqRDLk+rtPhnwpkaRUzpcM+aTIJ0MSSfLhkx/X330d/U6MtfHJj+/vPrGSlM/5UiLJ8+zMa6JSpChK57mW+t7XhBBdS2/I1WSlUyGuDF2JVCgkQ8sZR9TJ8UJ22Zw0GZKQz1SDMmSXzS03GfKRzVSDMmTLjyQZ4tzBt6UoJEN2h7ndMjn3461SFJIhOyVaTpkc5/FOJUFSbAEIJUH2Y7EkaLnlc6HPli1FMZFZXvlc6BqrUqQoSue5Vvrga16IrpU34mqzUmOFAF4qRCKxFlIhH5xzp7I5aSq0EjJEZXOSVAjgyRBJEEeGqGxOkgoBPBkisWinnImTDFHHmyND1EZaJsdJhkiKODIkmWDBhiM41EbSFuCJALXhlMVJSufa2ZakiPPZks5kSM9T8prwhEelSFGUznMt9MVTSZKs2UUTroU34GpTKe5Cb3Enu/1G8EtoVmLGtnaZSk2it8ZPE2qCtUTmUrPic+EyjqVliiGSRDZ9+VRtiN02ncpibPq0aP9c5hYmVmS/QP28paRS/HtF87Vpdtvu0naMTZ1kt08E09HnMmV2WwDIpGWTctRqK7f+xOz8CLttdoWf50JtRtRe8p1bEHxWukrbMTZ1nN1+fmGM3RZYELRVFEXhsZbXKVrzCZHSPpIykX5sRz+2s9tLZKiGRCQg3LV/CImAAEBK8LXIIYtywuugZZKs6NwT1FCBbLIACblUCd0Z3l10qVTksvxOayaTRzEvGB8jaFvK96GQk5UPdhX5yUIxvx5VZvvuEv/7AwDlwgAqBV6yta68B9UCf2zLQOlmrC/swfoC7wZHX/EGDJRv4u9f0La/tB+bu+5lt99YuZ3ddkvlB7CpxGu/rrgb64q70S849+7itugsjI22pW3idb26mJ+Zamkreqv8817uZB6KoijXGmtSiFKprKZDy0C6DodUhKQyxMUUCq5YSGQotXj2AJBhlJbkBAtemudbrcWnS5YkAybcZCOX4o8BaleGOFKUyeRF+yYZ4khRKR+fetukq7i5IUNVRulZMc8fM2TKUFcpXrJWLvDHXa0rG1NlM6RooHQze99AXYYa2zJkgdpw2vaX9jf+nSNFW7p/EABPirZUfqDx71wpapwX49y7i82ZGrlSBPAWO+5q+bzwr78cKaJS01y2X8VIUZSOspb752tOiNbqC71auJ5SIakMcckh27YMxUgWX5mVIpcqLUuGQulJLlsWJ0MmIckp5teJkyGTWEokSYXq59MqQ6GUqJ1kyCSUEpkyxMElQ6GUyJQh1v4tkQhJkSlDREiKSIYISVIEhKVoXXH3kr9JkiIgLEXdpdZp7juZFFUtwZYkRYCmRYqidJ612FdfU0K0Fl/g1UKnUqEFzC35W6dSId/fJUIREqHhtHu8jFSGXPjK5qQy5KJTZXM+EfKVzUmSIZ8I+f4uSYZ8IuT7uy8Z8kmRT4Z8KZEvGXJJkU+GfCmRLxnils4B/pQolAxxS+cAv+RI/y7BliHCJ0VmOhTDJUOET4rMdCiGLUON43qkyCc/rr/bMkT4pMg/Rb1KkaIonWWt9dnXjBCttRd2NSGdUnalUiGg/RI5Du2MFQrJkF02J02FQudul811MhVylc1JUiEgLEO2QEhSISAsQ7bkxFIh+/F2yuRC2FIkKZOLHtvqzErK5IBwOmRLkbRMDginQ5IkyPW4Kx0i7JTIJ0OELUUhGZKWzgFLpSgkQ5LSOWCpFEnK42LYUhSblVGlSFGUTrOW+u5rQojW0gu6mmgnFVpLJXLURloeB8hSIYAnQ5QSScv7ODLUbkrELZGjlCidynYkGfK14SRDknFCJhwZKuR6GknRcsvkXJgpkaRUjiNDZkrEKZUjKeLKkJkScUrlJGOFTEIyREgmWQCaUsRJhkwpCqVDJiRFnGTIlCJfOmQiKZ8zhcmXDplo+ZyiKFebtdKHXxPTbq+VF3M1IU2F9hYfYLfNQTYQXiJCuSQn2vd4elTUHgDW1fgpgjQBmwF/Cu400hhJX2a3nwB/imwAyEI23fB47byo/fT8sKh9bQWn45QKbj5TEbWfT2RTq0ukUjrNs2TdqFJaLtKSKcelSKeFl5yL9PM+k4yL2gPAbI2/jTT1nRd8DqT7npg+K2o/N39R1F5RFCXEWpiOe9UnRCpDctJpfodpY+lWbCzdym5fTMrsBKSYlFBM+KVa1aSCgkC2pDKUTtJIJ5IOVlokRLK2sq9eDQsoIT47HSFpS1TT8YVIiUKqi922mO1FMdvLbl/KrkeJsdAp0Z3nLzRKU01Xs/yFMqvZTejN8dOe7iw/eerNbkNffi+7fV9+L7oyvHPfnL4Z68CfihsAtiQ3YHONP55oW20fu+2e2k3Ym9zCbn9Dciv21vilfrtr/NdxS20ndif86x4A9GMHNqd559+T2YLeDH+c0brMDgzk+K9lX47/HhUyXVgvSKEy6fyyFrVVFEWxWQt9+VUtRGvhBVxNpNNVsQxxKSZlFJnr7dTby8asVBP+Hfvx9GhbMiQhK/hqmJNKlBh3qduRIS4ldDdkKCe8Y86FZKgnF+/wmSJUzsXLcSQiBDRlqIvRgbMnDuBIkUScgKYMVTNxuezNNl8/jhRJxMmEK0VbkmanmSNFJEMcKdpTa5ZucaToBkNWOFK0r1bfJ0eKttR2Nv6dK0X9kI0NIjhStC7T3DdHitbn6um/RIoAsKQok27ekCrmN6sYKYrSMVZ7n37VCtFqf+FWEy4Rmpq94G3fTiokwZah0MKl1aQiliEptgyNpPylZ1mkxTIkOhdr3z01vwDUsCCWoeUSSokKqa4lyVBIiiSpELBUhmJyZCdDISmSzKJG2DIUS4nsZCgkRaYMcbBlKJYSbU63SkRMikwZ4mBLkCQpAsJSdIMwuSEZIiRJERCXIluGYilRT2ZLy39LkiIgLEUkQ0RMigqZ1u+rJCkiVIoURekUq7lvv2qFSIkjTYQAfyo0lnKPZZGmQtISORe+srkrUSLn3I9Henx/96VEkmTIJ0I+6fH9PYdCR5IiSYkc4JchX0okLZGTlsn58CVAvr/7pEhaJufClwD5/u6TIluGYvhkyJcS+eTH93czHTJxSZFPhnwpkS1DhE+KzHSopb1QwnxSZMsQ4ZMiMx0y6UT5nC1DhE+KzHTIRqVIUZRrnVUpRKvZIFcLUhECOlsiZ48jWmslcnZKJEmFAPl4oZAM2SmRJBUCOpMMmdgpUUyG7JRouclQ6LGYCNkpEScZsuWn3TI5576tlCiWDNnyIy2TC8mQnRJtSW6IJkO2FMWSIPtxnwy1gy1FPhkibCnyyVCjfXLrEjEKlcpxxxMRthT5ZIiwpchOh0yWWz4XkiFCpUhRlE6wWvv4q06IVusLtVpoNxW6kiVyLqhsbqVL5KSpEMCTIRIg6SK0KzFeyBQgrgy1mxJ1KhkyMVMiTjJEbSSpENCZMjkXZkrESYZIipZbJufCTIk4yZB0kgWgKUXSsjiODJkpEadUTjLJAtCUopgMueCMGzKlyJcOmbRbPheSIcKUIl86ZKLlc4qiXC1WY19/VU27vRpfoNVEO6nQzp4H2W0HarIOZw6yKbKl420upWVTv0pFqC+RLeIpZQZzovZDaf+4r04wB9n0znPJlKj9TDLGbtuT3oLhhRPs9rm0TNKlC9G2g2Qa8WxqZSa4ILoS2WQU5UR2LbEXKY6RF7ZPicfiSafDl035Oprif5YBYCI1LGovnSZ+QXAtkU6fPzJ1TNQeAKZnT4u3URRFsVlN03GvuoRI6QwDXbdhoOs2fnuhDFVRQoGxWCkhaStdxLWdVKiadIuEpZzKo5ziTwleTPFlMYcsa+FXoqfWhx7BWkq0TX+Nf3e3mvSK0oQebIw3orbp+J30lvaZLSin+OvpDGAXehNZ2Vtvskm0TZdApvuxHb0J//XZWNuOjTX+NN87a3vRJxCiPenNGMzIyiw3Zvmp7u5iN7YW+e33Vau4ocpvf0O1gj1VviBvLcnkuD9Txu40//1an/RgW40/C9362kasq8UX4iW21rZhR423gCwAbMft8UaLpJBBb4m/bwDIZkqolvjpaypVRCpVFB1DhkyOFUVRXKwaIdJ0KE6NuSigRISA9mSISwHZhgzlGHeNTRHiLKAqFSGgLkMSpCJEMtSTinfaTBHaUIsLiClCHClqR56qSS+7bQ82NmRoQype4mXKEKd8yCxD4kjRAGQLEgMQyxPJEEcC+9EUG44UmSLEkaKdwhnV9qTlJU+bs/XvC0eKdheb3y2OFO2rNpMqjhSZbThSRDK0pyQr/QQgkiIALClaX2vukyNFW2vN7whHitbX6p9liRQBEEsRAJYUmSK0MlKUMv5fxUhR1hqrqe+/KoRoNb0gax1bhiZq/rKzgdpWkQxVURLLkARJKgR0RoZCKZErFQrJkSQVAiBKhQCeAMXax1IiW4ZCKZFLCEJS1E4yJMGWIY7o2G1i29jJUEiKTBlq7t/fXpIKAUtlKJYS2TI0mOmOJkUkQ4QkKQLCUmTKEBGSIkmKBCxNhmJS1J8poz/TKlkxKVqf9LT8tyQpAsJSZMoQEZIikiEiJkUp6wYVR4qymdbXVJIUAZ2WIpcAqRQpylpjtTjAqhAiZXlQedxKl8i58EmP7+++lOhKlMhJkiFJKgT4ZciXEvlkyJcS+WRI+ncf1aRXnAxJ8MmQLyXyyZAvJfIlQyHB8T3m+7u0TE6CT4Z8f/clQz4pCiVDPimyZahxTh4pMtMhE0n5nA+fDPlSIl+ZnE+KbBEy8UmRLUOET4rMdMhEUj4H8JIiwidFtgwRISmyZYjwSZFPfla2fA5QKVIUpR2uuhCtFjNcK9hlc9LyOODKlchxiI0XssvmVqJEzk6JYjJkP76akiFOiZydEsVEyE6JYjJkp0SxZMiWolgyZEvRlSyTc2G/HjEZslOiWDJkPx4rk7OliFMmZ0uRT4Ya52RJkU+GfLjSIUKaBNlSFBszZEtRSIYIW4p8MkTYUuSTIcKWIlc6ZGJLkZ0OmVyN8rmY9CxfimLSo1KkKGuJ1eACV1WIVsMLsFaRJEJUNrdSJXIkQGuhRC5Gp5IhE0qJuJMnUErEHf9DbSTiRFLETYVIijqVDHnbL7NMzoUpP9zJE8w2nGSIXhduMkRSxC2To3bcMUMkRZIxQyRFMRmy4ciQmRKFZIgwpYgjSJJJFoCmFHFkiCApiskQQVIUkyGCpCgmQwRJUUiGCFOKfOmQiS1FvnTI5OqWzzmPsML7VxSlk1xtJ7iq025f7Se/VtnY8yrxNjtxp6i9JBVqB+k0uPZCqjH6kj7RLHLrUrK70t25HIbnZtntuzI5nJufYLefAX/f7TKdmhS1r6Emaj+Tkk3bnQj3XxGU+LVDd9KFodRldvueZB0mBa/pQNKLUfBfo83ZbgzNT7Pb92bkHc6UsA9Zycqm1y5nV7aTOrMg+zkbmZUtggwAwwv896A7U8CZhRF2+63ZXtF7PJAr4fDcJXb7PHI4hO+z2wPA+OwZUfuJ6VOi9knCf751pJ+hVbOySFtkMt1YWJCsx5fCWn/OyvXL1ZyG+6olRCpD7VEu7MDYtGwNiA2pvZhM8WaoA2QyVE7nUE4LpphOZZBLyTpREvqSPvH6Qu3IkISujKz9unQJm9K8u9AA0J/qQr9wAdW+VBe2CNKevmQ9BpL+eMNF1iXrsanGT3vW1QbYd9IBoL82iBJjQWBiIFmHgYQ/dXd3Ins9ewT7rp9Pr6i9NLXZVa5gXUH2PdtYzmJDiX9d3tWVw4YS/yfkpt40dlT5ndn9PfV/uGytpLCnm38+fcU0dncLv5uFDHaVZdeLwYzgSQBYl5WJ7O6c7Hq3h3lzrCu9AV3pDRgs3sHed29hJ7b03M9u31Xage7yfnb7Qm4TCjn+dSKT6UJGMMV8OwufF/ObRQvW5nMbkM9tEB1D8hzqrO10LIUsUsKKk9XEWj//q8nVdIOrIkQqQ3LKhR0oF2QzGG1I7WVNhUxIZ5EzRYgjRaYIVYULVXI6nLYIFRgLxy5Hhnpz8fI6U4Y4M3StSzdff44UmSLElaI+ox1HiiRr3AB1GRK1Fw4q72dMT05IRQholSHOczE/m+UkXoJlylA34/tmyhCns2x22LlStLFsTP/OkKJdXc3PNUeKbupttuFIkSlCHCnaWmnukyNFfcVmG64Uma8lR4q6M81rHEeKtmZ7m8divM8DueZnhyNFeeN6yJUiYrB4h0iMJFIEQCRFAERSBPCEwhQhrhSZIsSRIlOEOFJknjdPilKef187mCKx1qVCxag9rpYjXPVJFZQ4UhECeGvCmEhL5CSpEIAVTYWApTLEYTUmQxKkqRDQKkOs9pYQxFIiWyBiKZEtQ6GUqL82uESGQimRS4RiguRKhkJS5BL1kBS5kqGQFLmSoVBn2dVRj0mRKUNESIpMGWq29/+UmDJEhKTIJUAhKTJliAhJkSlDREyKXK9hSIpMGSJCUmTKUOOYgffZlCEiJEV5x82hkBR1pd2d9ZAU9RZ2tvz3lp77g2LUVWr9XYtJUSG3yfrvsBRlMl3Wf8tSFmlSBPCkyESTojjXglBcC8/heuCKjyHSdEhGSIa6iu6Lb0iGysnSi3wnZWiytnTcTkiGxpMZ0bFdY4liMmSPJeq0CNljiWIiZI8lionQ2VrrGISYCF1Mxpb8LSZCp3CutX0kGbmQal3fKpaknE23jiuIpUKX063nE0uFpqzxSpxU6IL1WYqVydnjiWKppT2eKFYmZ48nipXJ2WNNYqnF0EzreBmXCNmcn2qt53bJUGv71nFgLhkyOTbe+vMTS4MOWMNxXDJkcmi09XxcMmRzeNS6XkSE8shk6/fZJUMm9pgilwyZ2O+zS4ZM7DFFLhkysccU+WTI5Mz0Uy3/bcuQzamRb7UeoxS+yTc6eaDlv20ZspmZa71e2DJkY4/JicmPa1H0mPxMz7aWtsfkZ3bufMt/x+Rn6biimPys/nFFIXFIhOOOrxbXwnNYLVzp8USaEK1SVmuJnI4XCrPaUqG+VNeyU6EYq6lEDuDJkM1aHDNkJgicEi6zY8+RIaA1KYrJUL198yclJkNAa1LEKY0z28RkCGhNijgyBLSmRZySQ/O1j8kQsHbHFJlIyueAtVlCZ9Lu2CIJmhaFuRbKz66F53Atc0WFSNMhHlwRoskVJCJEkyusVIkcteOKULtjiSQiRGOJVkqGaCwRV4ZoLBFXhmgsEVeGqJ1EhGgsEVeGqHSOK0NUOseVISqd48oQlc5JZIjacmWInitXhqh0jitDVDrXzgQKErgydD0jnWyh3YkWYukQQVIUS4cIkqJYOkSQFHHSIYKkKJYOESRFsXSIICmKpUMESVEsHSJIKCSiQ225skPtuLJD7biy02zHlZ3VK0VcUVjNQnEtPIfVxJV2hitaMne9CVEqlUeSyKZPlqZCe0oPiNoDwIZEdodeOl5oLpFNnywtm8u24fHS9YU2FPOYFkzh25tP49I0fwrfvmIGZyb504J35zO4PMNv31fI4+KM7LPXncvh/Cx/2ujuTAGXF/jTRq9Ll5aU/4XoS3VhKOFPVT6Y6cbYgvA5Z/O4MM9/zuvSJVyq8dv3Z8qYWuDH/v2FAqYXZN+f3rwshc1n5J2iinC67D7ZfQ4UM7KfoYl52fkMtzGL/dCM7H24NCMr79hQzIm2GSxncWGKf42p5tJ4cXKY3b6MAo6mj7DbA/W1ll5KPc1uvyXZhxfmvspu31/Yh1Pjj7Pb95Z34eL4c+z268p7cXniJXZ7AOgp78bU7MV4Qzqn0m5cnuQfo1zYgLGp44L2GzE2eZDdvlTYgqmZk+z2VwqpJKzG8rOVfg7F/OYlpZjB80kV25jWfnVxJcvmrlhCdD3KkPn/MaqlPaiW9iCd5r1OA+WbMFC+CaOpC+xz2o5BbMcgisz3oidTQE+mgFyK9zFJI4U0UigIyuQWkhpKzLuYANCTKqIilJuBbBmVDP/zt6Eo239vXvY16ivKOrDdwg5vX0F2/oC8NJBTGmRCaRh3OnFKt7ipHi0q2pXhP/fubL3tQJa3OCc9h740rz0t+llifvb6C/XXtJjhf562VnKo5iTt09hQlMnEzmoKA4KqrVt6FrCpyO+439U7hZu6+D/aW0vz2N/FvzkwUKjhhi6pZAK7uvivazWXxo4q/7O3oVj/vvUVeJ+NwcVUb6DETN4XPxM3lntZ7cuof/Z21uILHRO08Oy+5PZIyzpbkn0AgJtyr2e17y/U22+p/gD7nACgv3qLqP36yj5RewAo5flLEADA+rLsGF0l3oLNjfZl2SRKpQJ/gfZUqiheRDeb6UU20ys6n2KBlwTW228RDStIpfKNf1am/eJrlMrW/+Fsky6KSjEpbZSWYq78Asgry5V0Bx1DtAJwv0SEdIXvgfJNovZAXYYk9Ag7vGlhFL+Q1LAgSJJ6UkX0GF9sjhQNZMstnd2YFG0o5ltkqMi4k27KEEd0zDaD5biEmDK0vhBvb8pQP1OMTBnakI939k0ZWs9YwV46Tko65mlQXEvflCEu9nOISRHJEMGVIoIjRVsrzfeNI0VbK802XCnaaYzx4UjRLT1NEeJI0V29zYSRI0VbS827hRwpGig0rzFcKeo1PhocKTJfe44UkQxxGbRKHGNSZH8WuFJESKSI4EoRwZUigiNFveXmeXOkaJ0hEVwp6invbvw7R4p6S832HCkqF5qldRwpKheaY6c4UlQqbDH+fWtUjMzONFeMTBGSilGxsEkkRoC8qkbaP5O2r28ku96vxPg0+71T4lwRIbpe0iHJHQXCJUOhlMglQ6OpC8GkyCVDoZTIJUOhlMglQ6GUyCVCoZSop40vM/euP9FOKiRJhvqKmY4kQyEpciVD/YV8UIxcyVBIilzJUEiKXDIUSolcMhRKiVwyFEqJurN5pwyFPi/iiS8yss8e0EyHTEJSZMoQEZIiU4aIDcVUUIx2OqbGDkmRKUNESIpMGSJCUmTKEBGSIlOGiJAU9eZbZYgISZHrNQ9JkUuGuCmRCTcpIkJSROmQSUyKKB0yCUkRpUMmISmidKhlHwEpMmWosY+AFK1zyENIinrKu1tkiAhJkSlDjWO0kRRJ0qKu8t4VTYuA9jrXISlyHT8kRabUESEpcvXJQv00eXvP6xHoY6XSS7dZ6QWB20n6VgtXyiFWXIiuJxmSPEYlclyoRE4ClchJuBLJkA+XFIVkyJUS2anQkm0cd+pDMuRKiUIi5JKekAi5UqLufGbNlcm5pCgkEi4pCiVDLikKJUMuKYqlQq7PTeg5uFKikAz5UiKXDIVwyVC4ffgy75IilwwRLilyyRDhkiKXDBEuKXLJEOGSIpcMES4pcomQiaR8DuAlRSY+KbLTIROXFIWk2CVFLhkidtZ2OcXIJUOES4pcMkS4pMglQ419OaTIJUONfa3S8jmXGJnpkI1Lisx0aEl7hxS5RKL52FIpCXWefZ3rkPi4HgvJ2GpMisRpkaCEDvDPZhgSH9djsfduLXIlXEJL5jrASpTImSkRV4TMlIgjQmZKROOFQpgpEY0XCmGnRJISOUCeDElTIYCXDJlSxEmFTAHipEKmFHFEyEyJ+gp5lgzZKVFMhuyUqN0xQ1w4ZXKmFHHK5Ewp4pbImZ8hznMwpYiTDNlSFJMhOyWKyZDdIY7JkIuQDBGmFIVkiDClKCRDhClFIRkiTCkKyRAhHVMELJWiWJmiLUWxUjlbikIyRJhSxCmbNKUoJEMmphSFZIgwpSgkQ8RKlM+Z2FLkSodMbClyJUM2pXx/ixi50qElxzGkKCRDhClFIRlqtDeeZ0iGmm1kSREg71xLyueApVIUex72uKJY38yWHE5frrU98/kbfS1XOmSz0lO8r1UpWmlWfJa5azkhkopQksyKUqFabV6cCnUnA6JUaDqZF6VCc0lNnAq5FmsNkReuXTSRzIplaGJhXlQmN72QiErkLk0viErkzkzOiVOhVBtTqM7WZF/387OTIhm6vDAlkqGztRHRmKGhZEI0ZmhsYVY8XggA5oWvU0r4VkwtzIuSoemFmigZGp+riWXo/HTCkiHiwjRPhkwGi7Lp3sbmZb8fB8ZyLCEiXh5LR9MhmyNjNdFEFsfGZ0Xjhi7NzLNkyGRqXvZ5PT7Jnx2SOJo+whIi4qXU0ywhIl6Y+2owHbI5Nf54MB2yuTj+XFSGbBbamOGqIBzTeHnyJZYQEWNTx1lC1Gg/eZAlRMTUzElxhzlJpsWyk8vKOv0pyH4fJ2eOifpoSTLbRnuhWCTzLCEiarVxsezMzF2ONzJPaQ3NQrfSM86taELkkyHpnQjpIm0AkMvKYmzpOUnbD3TdJZKhXYX72ppSewtkMfOWokwk+hkD+00qWdlFrDcrSyIGinnsLMkurACwtSw7zkZhzf6ublmH5oYe4SB/xoKRNuaimVz2VGSv7Y0VWWfgjorse3pDUbYg6q6KPDVcLxzTsbGUEw+U39slS9D29cj2v79H/l7f2ydLTV7dL5Obu9bzp1wn9vWMitq/qo8/JToA3NErEzoAuHWdzH7v7pN9t29ZJ3uv1xdS2CKU371d8u/F/YWbRe3fUHyVqP3riz8uav8D5XeI2v9g9Z+I2gPAYE5WcgcA2yDb5qbKw6L2N3a/VdR+e+8bRe03dL9S1B4A1nfdie7yTtE23cVtovYbyrLXtbd6q6i9tJ8pFRWgnnAVBQsnp9NV5LOySYY2dt8jas9d52s5pJkzszZx929WOmC5oiVznFlNTLrL+6+oDHHPjdoV87y7OgNddwEAyjneee0q3MdqR9yU3Nb4R4J03EnPYoLB7TCSDA3keXdESIbKzBm5BoQTIQB1kZDKRI9wWu3ufKrl/2NUc/V2XOmi8+8t8M+LZGhrhXeMrlwaXYK74ECzJGhjiblA7WI7rpxS2V81x3sO/cX650gyaJ0+2xuEz0HClsUSSW7iuL1af77c0GDL4m9PRfDbsbNSF4MNBZ4g7K/WZWhdjteeZGhTmZ9MDFbqcsOVovX5ehK9t8q741leXPtoR5kvRZVsfZudVV4iQ+sxba3wrgWbyvV26wvy9JcrRbQOlUSKtpTqAr+9xJsGn9rdVOJ1/mih2ttTvE7v5sUyvhsgK5/bn74P+9O839cN2XrfQyJFezN1CeRK0cZU/SbpjuwrWO235OqL4W4v3Ms+JwAYKMlkdqDrDgx03SHaBgBbivqq9coXrhRtLNfLMLlSlM/VJaJHOCasqySbYbGQW49Cjrc4uQlXiqrFerLHlSIq1eRKUX5xYegrJUUyMcrAJ0YrxYoJkW1ytmzE5MMWIY4Y5bL9LTIUEyOpoNE2EkiGiJgU2TLUHVlE1SVBCwj/WNvjTmIdzJ58piFDXJabDMWkyJahCqPzbotQPh3udPTk0y0yVGBMw82VIIJkiIhJkf0cYlK0oZRekgzFpMgWoQFG+iFNSKQiYY+Bin1mSYYIjhTZoh+TIvs5cF6DLYyp1k1IhoiYFG2xfm84UkQyRMSkiGSI4EoRwZEikiEuJENETIrK1kKwHCkiGSJiUmQvTsuVIoIjRXabmBTZi/JypIhkiIhJkf04V4oIrhQRHCnai1bhiEkRyRAxmLslKkYkQ0RMikiGCK4UERwpWpdvdvAHSjdHxajLKq3jSNG66o0t/x2TIpKhRvsVTop6KvuiYmSKUFdpV1SMClY/jiNGpXxrmWNMikiGiCuRFK2EGNkSFJci+7e99b9XMiVa8YSoHem4miVyob87p4f0pEQDXXctkaEY7SRDUnypkK+D6RMhX0pUyWacMhRKidopk5PiS4V8UuRLhXxS1J1POWUoJEi2DMWQJluhEjmfFPlSIZ8UbSi6y8VCwuN6LJQScddTarQvuj+bISnyfZ59UuR7fiEpcslQKCWyZSiGLUOET4p2VhaWyBDhkyJbhoiQFLlK5UJS5JKhUEpkyxDhkyJbhogd5QWvGNkyRHCTIiIkRZQOmYSkyPeYT4psGSJ8UrSlVFoiQwQ3KSJCUkTpkElIijY7Zr67AT/gFSNbhgifFNkyZCItoZOWz4WkiNIhk+2Fe71iZMqQiU+KbBlqtF/BpKjRPiBFlA6ZbCjf4hUjSodsfFLkkx9pWgRAnBZJyueAuhT5xMg1kcfG7nu8YkTpkM3qLaFb+bRoRYSIDC4mQvbjsRI532MhGXI9dqVTIRs7JdpVuC8oQ66UKCZDrpSo3RI5LrFUyJai3mwhKEOulCgkQ76UqNMlcrYUxVIh1+MhGXKlRKHn4EqJ2hkvFCuRs6Uoloi4pCEkSi4pCsmQS+J9MhQiVgJqS1Es3XK9LqFkyCVFIRlypUQ+GfLhEyETW4p8MkS4pCg0bsglRaFkyCVFPhkibCnyyZCJpIQOcEuRnQ6ZuKTIJUOES3xi6ZEtRT4ZItoZU+SSopAouaTIJUOES4pcMmRiS5FPhghu+ZyJS4rsdMjEJUV2OmTikiKXDJnYUuSTIaKdEjoXdjpk4pIiOx1qaV/ctkSMXDJk0k5aJMElRXY6tPTxpVJkp0MmxVzfEjGy0yGbtTKuKCQ+7hK6WF+t/vhKpUQrlhBdqVSIkwxRG25aZbbhtDdToiuRCnGTIVOKODJkdjA5MmR2JFdq8gSSooFinpUMVXLpFjHiyJCZErU7XohLNZdiJUOmFHGegylFXBkyU6J2xwvFMOWBUyZnShEnGTI/sxwZ6itkW5KidiZQ4GC+PpwyOVOKOMmQKUUcGTJTIo4MEdwxRYQpRZxJFEwp4pTJmVIUkyEbjgwRphT50iETU4pCMkSYUhSSIcIUIO74ouVMtOBLhmxMAeKkRqYUhWSIMKUoJkNEO+OKiFA6ZGJKUUiGCFOKQjJE7Mi+YkVK6ExMKfKlQy3tDSlaV70xKENEd3lnQ4xCMtSyzTJK6HzpkIkpRZwUyGwTk6FmO/nYonbSIoIzzbspRb50yGSlSuhsOjXhQifo+LTb5eJO8Ta5jCx+n5q9JD5GNrPy865zLiomG9OyuxXSGeQAYINw0cfxuQVxMjSzIPsIzQmnNOaMD7KZmKuJk6FSViY30onehE8b56YWxM9B6HMAgJFZ4RTT8kOImRZ+plwL6MaQXvjaed7Sj65UsNcJq0cHhIIDAOdnMtF0yGZn17iofSolezcuTslm6Ts4XhQJUeM4s7I3cGxO9v4JZ8tuiwvTsoNIp/Buh+FZ+fS5Fxdk48oSyGZNHErL+xWVmmxWzRN4jiVEJvMp2Ws1llyINzKYrslmf7ww9hRLhmxywrXpSmnZjKLDc8dF7UcmXhKXxc3Oj4naA0A6JRs3Ku2rlnPhceYuhiYPitrPzJ0VH0MqOrXajPgYSSLfJkTHE6KiwIp3lV+DXeXXiPa/qSAfNzNYvVsUEW8r/yC2lX+Q3X5z+RXYXJbdzbktdb+o/c3ZbejJyr5YW0oFUYdsoJjGri7ZMcpCiejOp0Xr8wxWsugW9PL7Cmn0FdLYXpXd+e8vSgc8y2bx6snJOq/r8sCNPZ0ZQxKiOwdsEwz2HiimRK/V1kpKPJh8Q0nWfrCcxjrhrFwbSilsFBxnczmFQcad/NbzkrXf2w1sKPI7o7sqNfTm+J2+vdVZ9AgnQACAV/fLOgF3bryAXsFsctu3Xsa2LUPs9usqU7ihX7bWxl3r5B2ZSnYBO8r8FKonW8PWEv/13VisYUtJ1mnfUJDJSjUL7BKsLTVQTGF7VdYt2NWVXrJobYxbhSa/pZzDHV3xRIm4qdKDmyv8DvW2fA9uz8bvstvszMru6r8u/1rclONXz+xMDWIv+InJtmQzboZszM++lGya7Vt7fhJbMrdhS4bfF7s1/VrsBz/BuhWvwp6aTLpuyrxW1P7m3p/EtgK/lGxj4RZsq/D7hQCwoXwr+kuy6qcu4XTevenN6E3zt8mmChio8EsNU6l0W1OMZzOyJTuqpZ2olnay26+rysolOVzRabdNTBHaWrg72n5T4baGDO3qeh12db2OdZzBanzfJhIRAtAiQl2ZeIJzW+r+hgxtiMwgR9yclUXIQF2GJAwUmx+F9YzpnMvZVEOG1jGnf5aIDVCXIcm2fdZ5dDEnLaAOPldw1steWphLyHD6AWabjcybRSRDA4KbS93CGaMHDBHiSJEpQlwpIhnidsoGy8JSv1KqRbg4UrTZEBuu5FA7rjzuld1oxq5KsyPNkaK9RsIjkaJ9XfW78gNF3p24Ozc2705zpGj71qbYcKRoXaW5T64UdeXqUrO/m59aVbLN14gjRT3Z5nsgkSIAbCkiGeJKkXlPiCNF5vdbKkUA2FJECwZzpcgsOeVI0U2VZhuJFAEQSdEt6Xq6wJWiPflmuRVHinammgusS6QIAFuKtid16eBKkV3VwpGiW9NNUZFIEQC2FA0ullPelHktS4zMMVkSKQIgliIAbClat1j61pXfzBKjzYXm85BIEQCRFAH8dZfyuQ3I5+rDSLKZKkuMyoXmZ10iRZ2mo0K0vqsuH7GU6EqlQrYMxVIiW4ZictSJVCgkRTdnty2RIU5KZMtQLCUyZYiDKxWKSZEtNLGUaFASv2CpDBEhKep3pB2xw9oyFGsvXE/TKUwhKdpSXpoMcaTIlqFYSjQgTNBcAhSTIjsZinXKbBmKpUS+5CkkRZsdAhSTIvvxmBTZMhRLiUwZIkJStNdR7saRIpIhIiZFpgxxMGWIkCRFQFyKSIYIjhSZMkSEpMiUISImRRuLrdvEpMiWoJgUuQLykBS5vt/bq+nod9CWoJgUbbXGNcWkyDX+TpIUAXEp2pZv3R9HikiGiJ3ZvqAYmTJESJIiIC5F25LWDmtMikiGiH2pVwbFyFfiL0mKgLgU3YrWMVkxKRp0jC2TpkUxKdpYaJUHjhRtKLcuDNtf2h8Uo3WOcUDtpEUhsqnWDkxMilKp1u9rMb/5iqVFISgdIufoFCuWEPmkyCdDvpQoJEO+lKidVMgnP76/+2TIlxK1UyLnIyRFvmTIJ0U+GfKlRO2UyPnSHZ8U+WTIux/BAqWEtEQO8CdDPinyyZCvDyAdDxIqkQtJkS8Z8kmRT4Z8r6G0RA7wy4qvQ+ZLhnxSJC3DA9wy1Dy++zHf332vlS8Z8kmRS4bapSe34BUjW4YInxT5ZMiXErlkiPBJkZkOmfikyJYhwidFleyCU4baxSdFtgwRPinyyY/v76FqYUn5HOH7Dvrkx/d3W4YIafkc4JciMx0y8UmRLUNESIpsGTKRltD5pMhMh0x8UmTLECEtnwPkJXSAX4rMdMjEJ0W2DBF7ajd2rITON2OfT4psGWq0D0iRLUMmnSqhM9MhE58U2TJEDFRu6VhaRMmQ8/geKTLTIROfFK1EqRxxxUrmVmq8kC1FMRmyU6J2SuRiyZAtRTEZslMiaYncllKh8Y+EWDJkS1FMhuyUSFoiB8SToSVJE0OG7JQoJkP2KawvxMvk7G1iyZDdB4j1CeyUqJ3xQkC8TM6WolgyZL+WMRmyH7dL2FzYHbJYmZwtRRwZslOikAz5iCVH9msVK5OzpSgmQ66UyJUO2dhS5JMhwpaiWDJkS1FIhghbinwyRNhS5JMhwpYijgi5UiJXOmRiS5FPhghbimJJkHRMEbBUijjpr/0djCVB9uM+GSJuXZdfIkax2RltKfLJEGFLkU+GiHbGFAFLpciVDpnYUuSTIcKWIp8METfjjiViZKdDNrYUcSaAsqXIJ0OEtHwOWJoWudIhE1uKYtOXt1M+14kSOlc6ZGJLkU+GCOm4ImBpWmSnQza2FIVkiFjpcUXLpWNC5IquKCXiihClROZ4IQncZIikiCtD1E5aIgfwkyGSIq4MUUokkSBKiQaK6Y6UybkgKeLKEKVEg5Vsx8rkXJAUcZMhOhXpeCGAXyZHv//cG6QkRVwZslMi7pghkiJumRy9ptxkiNq1k9pwxwyRFEmOQVLElaHBNsYW0WvFHTNEUsRNhkwp4sgQQVIUkyGCpIhbJieZZMEmJkMESVFMhgiSIkkqZEpRTIYIkqKYDBEkRVzZMdtx55IhKZKUwpIUcccKSSdaAJppEWeqeqApRTEZIkiKYjJE2FIUSodMSIpiMkSQFMVkiJCOKQKaaVFMhgiSIslsuO2Uz5EY+dIhG5KimAwR7ZTPkRj50qEl2xhiFEqHTEiKYjJESMvngGZa5EuHbEiKYjJEtFs+R2LkS4dsSIpc6VAny+au2qQKiqIoiqIoiqIoV5uOrUPkszTXqs4h9qV24PlENkf6jtoOHEg9I9qmmJJN67SjtgOH0/zzuidzCy7OTccbGvTnZPPPV9tYn2dLJY0J2XqG4jVhhM2xvpDCuHBZCuYEci1I1w1aX0gwMc8/0IZCDZeF65ZIGSwu4MIs/4msW0wMzk7LzmtaOJRiZ6UmOsbW0gIOT8jekDnh8Jlt5QRnp2UflG3lGk5Prex7uL9rHudm+M99V3kO52eE08gX5Ou8bGTOJEfcMHgRk5Oy8R/d62VJ0fiw7JpYqc7i0CnZOI6Tk7L1UQBgWPAdBIC+wjzOTvNnWNlYmMfJKdmMLJMLwqUD8jUcn5R91reXazgl/H5Iv7dbSjU8O8x/Ljf1AE/J5uLAmPCkdnXV3++DI/zv1c3rsjgwIruQTs3L2t/Ym8dTQ/zv1C09JXxneFh0jJGU8MUFsC6RLUr6it4ePD0sW7tsErLr1Wh6WNT+xvR2PF07INoGAGYS2fNYgKxDdhvuwdHUMXb73clOPI3viY5xcfIFUfu+8n5cmHhOtM3O6gM4Pf2kaBvfmqWXx/5BtB8fK/bLf1vmQdyWeRD9tXhdIbEvtUN8nB21+jb7E15Uuz+5DfuT2xrbSY7B5Z5MXQK5grOvq4J9XRWsF6zPs1m4Pg/QXLm8wvyd7cnX/5Gs19KTT7FXUgf4q64TfYX6P93CcbjSdYPWC2vzNxTqP7Dr8/wf2o3FGruMBqjLkIR1RvnUJsFxevMJNpX4z3+ncKA/lRDtrvCfz4Zigi1l/jltE7RtblN/HpsFa8NsK9ca23HY3yUTlV2LJVobBIKzqzKNrqzsOHu6x1DN80vsbhi8CAAol/nbDN4+icpW/vtS2Zpg4638zl5lsURwzxb+Apul7Bxu6B5ltweASmYBW0r85923+N5tKso6PltL/PYDhXnRmkl0ndou+OwSkrWT9lXncUs3/7NI+761V/b9vUMwu/be7hTu6hPckOhqtt3bI7sxsV+wltz2agb7e/k/bDcutr1jnUzoX9nby267t9SNVxRl/Z97SztwQ7kLN5S7RNvd3ssfX7KzXMbNZf6bPpjpxv7UduxPbWe1vzFdb3d7WjYBwu7abtyU3M5vn9yMG5I7cEPCm/ziNtRL+XYmsvfkdvCHe5RT67C9ch+2V+5jte8r118j6cQMALC5eBe77fbivRjM3SIOWSR0RIjsdOi2zIMt/82RIlOGbk7tZR1XKiq2NHG2N9vsrsXPi2SIy76uVuPlSNFm4fo8QFOGuPRY12WOFPXkm204omO24dS+91llsFwpMscBcaTIlKFKNv7DTDLU2J4hRaYIcaTIlKGBfFwk1jkG2HOkqDfffL4cKTJliLN/e5A5R4rMyQU4UmTK0CbmQqe21HCkyNyGI0WmDG0sxJ/3LquDy5GiXZVmKs2Voj3dzUVLOVJEMkRwpGjw9ubYJI4UmW04UlSxxktxpKiUbb6+XCmqZJrvG0eK+qz3jCNFG41tOFI0YLTnSJF9feJKkdmOI0X7qs3z4kiRvU+OFN1kDAXiSNHe7uZvDkeKTBlq7IMhRTeva7bhSNH2arMNR4putNpwpOiWnmYbjhTtLTWraLhSdG+ptR1Hil7R23wTOVK0s9wcRMuRosFMazUQV4oa58SQot213dhda44F4kjR7qR1gi+uFBEcKdqd7Gz8O0eKyqnW15MrRQRXinZWH2j8O0eKthdbJ+CwpahT44g6nhDZMhRjX2qHOBnaUdvhlJlQSsRNkGLHCEmRS4ZCKZEtQzE2V7ItMkSEprYG3DIUSolsGYrRk0+1yBARkiLXYyEpsmWIi2tShJAUuZKhkBTZMsTBJUAhKXIlQyEpcskQB1OGiJAUuZKhkBRJF6wE3NNPh6TIlQzFpEiS8IS2Ce3HlQyFpMiWISIkRaYMESEp2tM91iJDREiKbBkiQlJkyhARkiLXYyEpsmWICEmRKUPEDd2jQTEyZYgISZEtQ0RIijY6tglJ0YCjvSQpImJS5Ho8JEWmDBGSpIgISZEpQ0RIikwZIiRJUcu+AlJkyhARkiJThhrtBUkREZIiU4aIkBSZMkRIkyIiJEWmDBEhKTJliLi5vE6UFgFhKaJ0qOWcAlJkipDJTcntorQICEsRpUMmISkyZYi4Ha8QpUVAWIooHTJpZxrvzcW7RGkRIB+Ow6GjQhSSIVdKFBIhV0rkkxQTl/iEZMi1P2nyBISTIZcUhWTIlRK5RIhDKBlySVFIhlwpkUuEYoREySVFIRnypUScqbKXbhPopDmkKCRDrpRIWiIHhMvkXFIUkyGfsLhkqLGNQ4pCZXKuY4RkyJcShRYodUlRqEzOJ0UhifGlRKFtXI+FyuRcUuSToRAuGSJcUuQSIROXFPlkKIRLhgiX+IRESVI+R7ikyCVDJi4pcskQISmfI1xS5JIhwiVFLhkifFIUSq99UhSSJZcUuWSI8ElRSK5cUuSSIcIlRS4ZInxS5EqHWvbpkCKXDBGS8jmgLkUuMbLTIROXFLlkiJCUzwF1KfKJkZ0OmbikyCVDhKR8jnBJkZ0OmbikyCVDjXMSls8RLimy0yETlxS5ZIiQls8B7rTITodMXFLkkiETnxiZ6ZCNS4rsdMik01K0bCGiqKqdZCiGKUXtSArAS4bMfXOOY6ZE92RuWXaZnAtTirgyZKZEWyrpZZfJuTCliCNDtvy0M2YohilFXBFautYQo4zHkCJOMmR2PjgiZLfhjBkypYibDJnC0ptPgjLkgjNmyDwGJxmypSgkQy44Y4ZsKeIkQ7YUcbYx23DGDJlSxJEhOyUKyRBhSlFMhghTijgyZKdEIRkiTAHilNLZUuRLh0xMKYrJEGFKUUiGCFuKfOmQiSlFIRkiTCkKyRBhSxGnlNeUn+3lGqucTjKmCFgqRZztTSkKyRAhGVME1KXIFKOYDBGmFIVkiLClyJUOLdnGEKCQDBGmFIVkiLClyJUO2dhiFJIhYrljilzpkI0pRSEZItopnzPFyJcO2ZhSFJIhop3yOVOMXOmQjSlFIRkipOVzhClFIRki2k2KOlE2t+xZ5l7b+/8Ttb+YPi8qkXs+Odi2DEk4lj4mPs76nCyCuDg3LSqTuzy90FYy1CWbnAgTc7IyuXNTSVvJkITxeXmZHHOppBYm5mUTKEzMp8RlctLJAM9Np0UTKFyYzbRVJjddk71gZ6dS4gkUsinZ5eXwREYkQ6cmU21NoJBLy7Y5PZUWldadmEyLJ1AoZ2Sv7fmZLEuGTDa0sR7Q+GxelA5NTuZZMrQczj1bYskQcehUH1uGTE5PyMqaT03lWTJkkiSy7+HJqRxLiIhjkznRZC/tcmoqHUyHbJ4bzYplakH4Wj01FE6HXAzLAz8cHJlnCRFxYGSBJUMm0p+3p4amWEJEfGd4mCVDNhnhib08ORZMh1yMzso+J89PDrGEiDiQHA+mQy7G5+XXkxdST7OEiHg59VQwHXKRFn5Snsb3WEJkMpHwJ64hLkw8xxIi4vT0k8F0yMVzl/9UelotXPF1iB6s8CZMIO4r8BYRM9lZKWNnhbl65SKvK90kar+nKtv/jq4sXrFeFgPfvl4uQzsr8s7h3i7ZxWa/7FqGTSXZrGUAsL9b1l76wwrU75hKx4/sqcg6O4PFefTnZdvc3iObTvSOHnknd0NhHtsFs1gBwKv6ZOe1oyxrXz+GrIP/qj5Z72V3ZQa7KzPYJixzemBA1sF/7cCEqP2OylRjsVMu9/YPi9rf0DeEnpLs9QWAm3acF7Xfcr/stc3dNoDcbQOibTY/KLxm7ZE9BwAo5Oaxq3dEdpxu2edkoDCDDUXZe3Kz8BjS68PGwhw2FuSdvTds5CWPxJsHZbP7AcBN3bLn8o7tsvbbSvO4rUc+1ulHtso6oT8kXM9yb7WGPVXZZ/6nd8rujP6T7d24T/Y1BADc1Ct77j+9XZYUba8kuHWd7Biv65NNvf+2vj2i9gBwd5+sDwgAP1x+paj9O3teI5JaALipR7ZUwRuKvAVxiR21Hbg5kacxD1ffI2r/Q+V3iI+xXJZfMpfhvVm3dXXjtq66sXNXoe7N14VgS4n/gZCK0K5KGbsWt9nF3JZkaB1zYZsdXXKx2bq48n2/ICUhGepjlkANFmsYXCxtGmCmHlRexRUcqQgBzfEh/czkhmRIMj7HvGNayTCfy2JpUxdzhfrBYhtrwSx2RLh3gDcvduy3C+TDLLniStGuxXKoQebUwSRDkvEVGxf3vafCey507tzpiXcz92uzt1rvsHLTmN2VeidsE1NwdlSanTauFO3sqq91McAUnBv65GuJAMC2wWEAQJaZMKxbrHZIM695pghxpSgzUL8o9vwA7xjZxbR1+472XgOuFFVz9e9Vf4H3mR8oNN9rrhR15+j6wDtG7+I5bSvJP/sSMbqpu34DYHuFJyA7KnWpu6OXv2bLvq7pxWPxjrG/q97u7l6eQG4rNa+LEim6sUu2jMDOxXY3dcsnmeFKEZ3/Xet4z2N/d3O/EikiUeFK0Sv76/9/U7f8BiZXijaU6t3a/b28fuat6+vtblmXwy3reNvs66m3k0jRjkq9H7uvIhNCgFf6aLbjStGGYr006L7CjeLwQSJF96TqIngTeIHIbekb6u3TO3FTeidrm3aW7bFZlhD9eN8HAcSliERIAskQwZEiW4ZicsQVIBM7GYpJkS1DXYwVRUmGiJgU7awkS5KhmBQNCgf3A0sH3sdkx36cI0f2YPmYFNnJEGfignbKRzZZg99jUmTLECclsjsfMSnabMkGR4ok69kQu+yxIREpspOhmBRtLM41ZIiISZEtcjEpcskQJyUiGSJiUrTb6hDGpGiHowMZkyKSoUb7iBTZMsRNiUiGiJgUrbNKv2NS5BKgmBSRDBExKcpapadcKSrkrHFaESmqWu1jUmTKEBGTIpKh5j7Cx+i1zokjRS4BikkRyRARkyKSIeKO3vGoGJEMNY8ZPgbJEMGVIhOOFJEMETEp2mk9zpGivZYExaTIPm+uFJnEpOjWdaklghKTIpKhRnuGFG23+jUxKSIZIrhSZBKTIpIhgiNFJEONfTCk6BW9rf3mmBTZj0uTIiBekWUPK+FIEclQ47yYUtSyTUSKSIbISdqlYyVzPinyyZAvJerNZ5fIEAef/Pj+7pOhkCT5yuR8UuRLhnxStLWcWiJDMUIlcj4p8slQKCXyDbz3SY7071vKsoU3gXCZnE+KfDIUSolsGSJ8UuRLhnxS1E6Jii1DREiKfDIUSolsGSJ8UuQrk/NJkS1CHHzn65OiUDIUkiJbhgifFNkyRPikyCVDMWwZInxS5EuGYlJkyxDhkyJbhghuUsTBliHCJ0W2DBExKbJliPBJkS1DBDcpMvFJkS1DhE+KbBkiQlIUugb5HrNliOAmRSY+KbJlqHls9zFsGSJCUmSmQyYhKbJliJAsOA3UpcgnRrYMET4p8p1vSIr2e8TEJ0UhKZGWz93UXfOKkS1DsePbMkSEpIjSIRufFNkyRNzdVxaX0O2rdHnFyJahxnl5pMj395AUUTpk45Mi3xj7dsrnbsJerxhROrRkG48UdSIZIlZ0DFEsGbKlKCZCvpSonTI5yeN7quW2xgyFsKUoJkKulIgzXsiWolgy5JIi6Sxk0uQoJkKulIgzZsiWolgy5JIinwz5iJXJ2VIUEyFXSuSTIcIlRbFkyCUZPhnyERszZEtRTIZcKVGsxM+WIk6ZnEuKfDJE2FLkkyGCWz5HuFIinww1trEkJ1Ym11OadoqRT4YIW4p8MkS4pCiUBLke88kQYUuRT4YIlxQVcvNeGSJsKfLJEOGSIlc6FMInQ839tR7DJ0OES4o4N2TsNj4ZIlxSZKdDNrYU+WSoeQ4y8XJJkU+GCJdk+GSIcEmRnQ7Z2FLkkyFCOqbIJUU+GSJsKeKUrbmkyE6HlmxjnYdPhiTnYeKSIp8MEbYU+WTIxCVFdjpkY0uRT4Ya59XGmCJbjHwyRHSqfM5Oh5acmyVFPhlqtGeWz7VLR4XITImkZXLcVMiUIu7kCWYbbpkcteOKkJkSSccMcVMhU4ramTyBWyZHUsSdktkUHOnYIm4qZEpRuxMocDCliCNDZkrEHTNEUsRNhUwpiskQQVK0oTDPLpMzZYMjQ2ZKxJ1AgaSImwyZUsQd70RSJBkzZEpRTIZsYjJEmFLESYdMKYrJUGObRcGRjBkypSgmQwRJUUyGCFOKOGOFzDYxGSJIimIyRJhSFBMhE5KimAwRphRxZMhMiWIy1Nyv7OaFKUWSdJraxmSIMKUoJkMESVFMhghTinzpkIkpRTEZIm7raU62EJMhwpSimAwRJEUxGSJMKeKU+JlSFJMhYrkTLcRkqLHN4vnEZIgwpciXDpns7801xCgmQwR3TJGJKUUxGSKk44pMKeIKEklRTIYIU4o4MzDfnNzdIkYxGWqcl7CEzpSiTqZDwDKm3Q7V6nEnTSAm5mWn0Feof/hH52TbSaetTLcxjXO3cDpqxk2HFraXF3B5Vu6xeeE0w725Gi7MtreKNxfpdJ0AUBA+DwCYE/rTQGEe0wuy17jKnGiB2FCcxqUZ2bziubTsGNML7b1/GeFU2XnheW2qTOLkuGw647ma7P3Y2TWO0xPyMYIF4dTXKcg/j9JjVJidYmJT3yimp+Q/5N29MhHsukV+HcrslE3vWjsrn4ls4hlZAnPutHyQcz67gFMjspt+0s9KO99f6fdkVtgeALZVJzAxJ/t8SZ/7huokjglf35rwq3hhRrDWhMGccLkC6e27raUZHJmQjf+QTtm/qzqF50Zk1+DRefkPdrdjQfMYEwuy45yflrXfU63h+KTscy/tQwDAYCnBs8J5XDhjzJfLpRnZkzk1JUth93XVf3dPTsh+t7LCDvdCQF0+d+m3RPsiOpoQ3dSbx02MhcNMqrkUNjLsniAZkrKtksLWCv8F39udwu4u2Ru0t1u2oOSOimxRzO3l+t0j6aQAGwoL6BWsUyNpS6zPLWB9jl9etrkoHzezvTQr3mZ9fh4bBbO9URpTFPzAbC9PY32ef4dWOs0uAGwuT2JAsN36wiw2t7HmzJbyJDaV+Ntt7xrHJuadXwCNtlur/GmpB4ozoufCTVNsdvWMYnOVv+3m6jgGBc8DAAarE1gveH03VidQFdz939RXF4iicEr1vs2TyAmmoO+6LSO+Y5S57wZgM/N2MQDs2oz0q4TLLqRTqNzB70ym0sCmrbLpovPZ+nVuSw9f1taXprBOMOV5V34WA4LPCQD05GfRL7hG9ORnRdcUE4mkD3aPYVM3/3u1oVq/RuwQvL6DlQlsEXwX1xdmsJ+5QLHJzsokbujiH2d3dRJ7q/IJHSTri93SM4FdVf5nhdre0sN/HltKs7ipS74chHSdtF2VadwqKIMcyC8sWeiXA2fBYWJfdV58jMHFCphbBfd/bl0H7Kjy+4O39y7g9l5ZSf++7hpeJUj8Bstp3NMnE2dia4V/02R/bx57umU3Wfb15LFPsoAmg44JkSlC3JSkatgwR4psGepm2vQ2Q4Q4UmQu5MaRor3d9X8k7DBiYY4UkQxJ2WCUfXFEx2wzkOcd0xQhjhRtblmhPf7Dur00i+1GSRNXitYb43U4UiRZ7LBxbuXmBZ8jRaYM9THHEmwuN39QOR2Y9UYHenN5ii0TW4zjcKRouyEeHCmSiBNhlo1xnocpQ5sFx9tldL44UmS24UqR2Y4jRRuN9hwpIhmS0re5+TpxpKjrNiO5YEpR5j6jNpwjRbuaC7Wwpcg4F44UpYyfE6kUERwpMt9rjhR1GdcRrhT1GNtwpMhsL5GibcZnkiNFg4Z0SKSI4EjRYKV5ThwpWm9cd7lStLMyiZ3G9YQjRbsNEeJK0VajlJEjE6bUSKTItb0Pc+wnV4rMta92VaZZz8Vsw5Eis3/CFRazxJAjReZCw+2IF8CTIrONRIoAvhjtM0okOVI0WG5eILlSROkQwZGi/YY7cKXIbNdJKeqIELlSoZgUVYXRoC8ZCknRtkqqRYY4uFa1DkmRS4RiKdEOR41sSIpcMsRJiTY4xsCEpMj1WEyKJKkQ0CpDREhwtgsX0CTWO2Z0C0mRS4ZiKZEpQ83j+s/XlQzFpMiUISLUgVnv6TjHZGKL4zghtjtSmJDwuB6LpUSuiQVCz8OVDHGkaJej0xWSItdjMSlyPR6Soo2O9iEpcslQLCXq2zzZIkNESIpaZIiISFGLDBEhKTJkqHGImBQ5ziEkRSnHz8mmrWNRMaJ0yCQkRa73OCRFXY7rR0yKehzbhKTI1Z4jRdscn8mQFA06ZCMmRRsc4hCSIlOGCElSBMSlaKfnGhKSot2O5xGToq2OyS5CIuGSmZgUuR4PSZFrdlBpUtQ4duC5uB6TJEVAXFhck1CEpMiUIe4xgGY6ZBKSItdjMSlyCVBIivY5xotJkiKgLkUhMbJliJAkRUBcilyPd0qKli1EoRI5lxRVcymvDPlSoliZnEuKQiLkS4lcMkS4pCiUCvmkyCVDhEuKQslQSIpcMhQiJEouKQqVyPn+7pIhwiVFIRnySdT6/LxThhrbOaQolAz5pMglQ81zWHreoTI5nxS5ZCiET4aa+3P/wPhkyJcSuWSosY2j8xASJZ8UhdbicT2PUJlcSIpcMtTYziE+IVHySZG0rM4lQ4SkfA7wS5FLhExcUuSUIcIjRU4ZIlxS5JChxiF8UhQQMpcUuWTIxCdFLhkKERJeSfkc4Jcil9wQLikKtQ9JkUuGCJcUuWSI8EmRS4YIlxS5ZIjwSdF6z7XWJ0U+GSIk5XOAX4pcMkS4ZCEkMT4pCsmSa3+h9eNu6prxipGZDi05B8dzCYmST4p8N2pv6XaXt4Vm5JOUz9ExfLhkiHCJT0iUfFIUEh/XYy4ZInxSZKZDNi4p8skQ4ZOi/R5/2NOdc4pPSJY6IUXLEiLOeCFTijipkC1F3DFDphRxUiFbikIy5IJTImdLUUiGXHDK5FxSFJMhW344pXTmBYiTCtltQjJEmJLDSYZsKQqJUMt2hhRxyuRsKQrJkAvOmCFbimIyZHdeYjLU3G/zB2ZLeTKaDNlSFJKhxjZGJ4JTJmdLUWxhUqD1eXDGDLmkKCRDzn0wSuls+YnJkN1pDskQYUtRrFTOlqKYDBGmFAVliLDEJChDhClFARlqHMKWIkbJnilFMRkibCmKyZCdEnFKIm0pcqVDJrYUheSGkIwpAtxSFJIhwpSikAwRthSFZIgwpSgkQ4QtRT4ZIvZ3j7WIUUyGCFuKXOmQiS1FIRkixGNxLPnhlNOZUhRbTJuwpSgkQ41zMZ4L53nZUsQp5TelhTM9uS1FrnTIt3+gLkIhGSIkY4qApVLEKY2TjiuypSgkQ4QpRTEZImwp8smQiSlAnHK65UpRW7PM/XjfB0WTJ4zOJuISuXNTNfEECqNzibhE7uREIpKhw2OJeLzQ+emUSIaGZ1NtjRnKCmcHG55LiydQWBB+Wi7PZVgyRJybyYnL5M7N5Ngy1NhmOiseMzS9kBbJ0OXZvHgChUszBVEydGG6yJYhE+msT2enSiwZWg4nxyssGSJOT5bEEyjQzHMSGTo9XhVNtgAAZ8YromTo8lSJJUMm4zN50bih6akcW4ZM5ibTPCEiaglPhkwKsh+y2rdfFE3qMPHUNFuGTM6e7BIlQ6dGukWTZgDA0FQxKkMmF6ZKLBkyuThdFG1zYbrIEiGbibkcS4iIs6NVlgyZzM7LZt87NV6JypDNTBsz/L08VonKkMnB8TJLhkyOTBRFkyEcGS+JxxY9N1JhCxHxwliBJUMmRyaKItF7drTEHtdMTAtnUTw+mY7KkM3lOfln5dkhmRwdG0+JRefp4UwwHbL59gWeDJk8cWmCLUTEyYk5lgyZHBqdE0268NLIbFszzbUlRL97029gWPB92VRMcHpKJirlLDAq7OcNlhNMCqeG3FpawEXB9NKDxQWcm5F9aAbyNYwLpnHeWprF6Bx/LaP1+aZwSLbryc1jRNC+vzCLc9OyD/LW8jQuCqY3HSzN4LJwOtSB4jROT8kWK+vKyp47AGwuTWNecIHdWJ3ApUnZefVXJjE2zZ+Ou7c8jUvC6aV7FztsI1P82bg29oxjaIL/XPq7J3BxVDY7zbrKFM6O8KdA7q9OYFTwHABg47p6Z214TPBc1k3g4pDsufRUpzAyzj9GV2kG07OyWut16yYxN8f/PHZtmkVtRj6ta2FLGqki/xqZuWcXkOW3r915KwAg/cJLovOqfecAu20yvYCpl2Uz7wFAbSGF4Qv89zGbqWFsSjadfrkwh9FJ/jaF3LzoGgEAhewCxgWfr57iDGbmZddHoP4dXhBMS12tzGBU8F0EgO6uKVwcqrLbV4qzuDjGv0auW1w76ewo/xhAPeU6M8a/TnQXZnFe+PswUJoWTXk+2D2GM6OyaeV7CjM4NiZ77oPlKVwSfiY3lKdEz7+QruH4pOx635VbwIUZ/uu1rTQjar9u8UbsoQnZc99cnMPpaf5x9lWnxX2vTcVZHBVcV8qZBM+PyuSuv5DgsHA+mt1dwDnhVOndOWBUcPnuKwC/9sK/kZ0YllEyxxW8TYtlY5uZC3YCdRkCgG7B+z+4uMBnWTDv/dZS3bj7mXcdBhcX/NtYYC5wmq9hQDhF9tbFOzPdzEX/TBmS0LO4/x7h4oIbi3xL3bqYprhWa3cxuHi3TJJ4UInHZsFd2a6s7LnX918/Tpa55g7d7e8TTBfdv1ii0cVMSXoXX98+wWxqvcK710BdhoBmRyFG/+Kijf3MxRvNfW/q4V1d+xdf327BWAySIQDoZSzgCNRlyPx/Dj2Ld2R7mHdmuxY/90XBd3nduvp7nmMmvF2b6t+pdEF2/6uwpf4TkUzzrpGZe3bV/2W+vVkxJaRfuZ/Vjs69dINMOGuL66H0DvDex+xiaW2X4K5/ebHst5u5sDEtIMu9RgB1GQKAKvPz1bO470J2HoUs/xpJ3+EMc6246uLCyd3M76LZtn8dL7GtLP5e9XfJk9F2pgofZI4p6l78jdsg+H2gRZe5U55TUidJ7HoWk7QdguR9cPE59Ak+k/S8uc+/sPi7K6nQ6Fos2x9gzkpLixVz25vsqcy0LCIegipmJJUzQL3vxe1/bVpst5N5XSkvLkh/czf/ut2/+FuyW+Db1HajYHkaCoa4AVGfzE1b6Og6RDabrCfNkaKy/KZUQ4aa+wgfZ2tpoSFD7GNYq5/HpMgWoSpjXZutVkwdkyKXDHFEyhaBmBjYQsP5Um61LlwxKRq0OhEcKbLr3TlS1JWVPff6fluPE5Miu/SJI0X9wimpe63XlyNFtgz1MGSCZIiISZEtQRwpsvcZk6J+6/XlSJEpQ0RMimwJ4kiRLUExKbI7zxwpIhkiYlJEMkRwpYhkiIhJUUOGCIYUUToEALWb9rHOyyQmRfY5c6WoZi0OGZOirHV950hR2ep4xaSoYF2rOFJUsMr9YlLU49gnR4rs73BMiqpW55EjRXabmBRVrN8pjhQtuRYxpMgu+eNKUWN7xu/DgHWNi0mRLUEcKeqxygo5UjRonTtHiuznG3v+hbR8DG+XNYY5JjnbrO8rR4rWOcr0Y1JkSxBHivZVW59vrP+1yXqcK0XEzd0LUTHqt35DJFJEcKTIliDhUkViliVEoZTIliHCJ0XlrFuGYimRLUPN/bn/7hOhUEpkyxDhkyJfKhSSIluGCJ/ghJKhkBT5BMD3d5/IhL6UtgzF9mXLEBGSonYWFLRliAhJkS1DMXzjQEJS5JKhUGfHlqHGMQJS5EuGQlJkyxDhkyKf/ISkyLcvnxTZMkSEpMglQ4RPinzyE5Iin/z4/u7rNIekyJYhwidFtgwRMSmyZSjGEhkiAlJkylDjbysgRTYxKbJliPBJkS1DREiKbBkifFJky1DjGIHrhC1DhE+KXDLU3Jf/Gun7DvukyJYhIiRFvsd8UmTLUKN9QIq816KAFPnGP4WkqNvxuxaSAluGCMniuEBYimwZIiRJERGSIt/z9P3dliEiJEW2DBE+ybFlKNYecMsQ4ZMin/yEpMiWIcLX/7JliAhJEaVDNj4psmWIiEmR6/GNxcQrRj75CUnRctIhoAMJkUuKfDJE2FIUS4V8UuSToeZ+Wx+PpUIuKfLJEGFLUaxEziVFPhkibMHhlMm5pEhSIgbEUx3Xl9InQz58MkS4pCgkQ5tLU86kyCdDhOu1CcmQKyWKDYp3SVEoGXJ1dnwy1DiGtb/e0lS0TM4lRT4ZIuzOQywJcj0eS5tsKfLJEOGSopAMEbYUxZIg1+OxJMh+PJYguKTIJ0M+fDJEpAuJU4xCMuRKibwyRDikyCVDjcc6JEWhRMslRbWFlFeGCG75HOF6n30yRNhS5JOhxjGcqU74d8uWopAMNfe59Dxi32FbinwyRLjEJ5Ye2VLkk6FGe4cURa9F3ePimfFcUuSSocb+HL8PPhkipFOeux7zyRDhkqLB8tSSdMjEJUWxJEhSPgi4pcgnQ4S0HM7VPiRDhC1FsSTI9bhPhgi7/+WTIcIlRT4ZImwp8skQ4ZOimCzZUhRLglyPL1eGgA6VzJlSFJMhgqSIWyJnStFgOYnKEEFSxC2RM6UoJkM23PFCphTFZMhGMmbIlCKODJltuON+zC8lR4bM/cZkiDCliJsMmVIUkyHCfP6cZMiUIu4MYaYUccrkzM5OTIYaxxCW3wGtUhSTIYI6EdyxQmY77ngkkqKYDBGmFHFkiOhtjE1gPhejHXesEMEdY2JKEUeGzJQoJkMmphRxkiFTNKIyRBhSFJKhRptlShFnzJMpRTERMjGlyJcOmZjvd0yGCO6YosYxjOtETIYIkiKODDX33bxGcr/DJEUxGSJMAeKOLyIpislQo70hRdznYcKdGc+UopAMNfZr/D7EZIiQTnlutonJEGFKUUiETEwp4sqO2c6XDpmYUhSTIcKUHF865GvPkSGCO6aIMKUoJkOEZEw30CpFMRkiSIpiMkTs7moVIG45HUkRtyzObNcJGQKWMcuciyJzMCUxPCef8agimDSBWC+cWhoAckJVrMlPC73CqaKl02oT0lc5x5w4YDnb5ISfFQDIpOTnNSaYkYeoCAYSA7KJE4iU8L3kDlQ2kcz2RBSFn8licQ5zwmlHFwQzLgLAvLA9AJSEA1YBIJuVf74ks7wBQK2d51KRPZdin+w9JHL9svcx++q94mPU7rlD1F468xwALHz9eVH7iRfbe73GL8t+hReEUwADwIzwuzXbxsxwmTau91yxMykJb/61w9SUbCaudq6RtTbexwnhDJJJIj8vyQQzADApnM0VAGbbmI68nc/XiHDGuqE2fueLwvOab+M9AYAp4TW/KlwAGpD38c638d6fF86u3C5TgptTgL+vfkVnmbORylAqBazLy7bJp4E54QVsY6EmlpuuXG3JYpwhUkiQkXZwUwnGBD925cwC8m1cWEqZBRQz/C9YOzJUyc6Lzq3eXvalr+ZnURKW/GVSCXqF63X05OeQFXyW15WmURNeKEuFOZF4lAtz0bIZm2JhDhVhB6RSmkVG8Llvh1xuAUWBrOQL8yiXZc+jqzojlptCZQ6ZyILGNql0grxgm3QmQVa4jkahOC9KL/Ld86i1MfFktiuFZIb/mmX2rkdy9rLoGLW7bxfdOUoKRSzcebvoGDhzAZl9nuXXHSwMzaG4UX6zoTaXQrmL/7lMpRNkhR2dVCoR36DIC2/mFHPzyAm/8/nsgvgmRTa7ILpxks3XkBXO0Colk66J1pgC6olgXngtBoCKoLIjn1kQze4HyGUok05EsyHWt6mhJBy31F2cET13oH4DTDI+aj5JsatAiHW5OZQE/aJCZkF8oxSoi0pZ8P3qyc2L+5KV7DzKgnNbSFLoa2N24g3M2ZWJXFoeLKRTstBjIQGYE6Dyjt+JnbQjQwRXivLGmc7VUiwxMsf3cN+YLiNN4kiRucAl94NstuNIUdn44krEw/zCc6SoXRkiOOfW2p5b2tHseHClyHyNuVLUY1wkOFJkrjTPlaKS8M6qeSeWK0XFNu7emvLElSISmxyzVMFsx5GivLFwLleKuqrNH3muFBWMBIYrRSnj88GRorRRnsCVokKx+fw5UpQ3Vk+XSFG2q7lvjhRl9q5vtmdKUe1uQ2wYUpQUmuuNsKXozIXGv3KkaGGo+SJJpKhmVDZwpMj8rHClyEyQV0qKisb1hCtFpkBwpch8zhwpMkVIKkXcFMpMLaRSBGDFpQjgze4HtCdDBFeKzNeLK0XdRskc97mbnymOFJmpDVeK1hn75UhRwWgjkSLzis2RIrNkn9uXNM+HI0ULxuu1UlJkixC3722us82RogWjSaekaNlCtBwZImJSlPecZUiKXDPAxd6YLkdpXUiKTBkiYh9k1+MhKSo7vrAc8XB90UNStFwZIkLn5m4fG/wrSwcyKXdaF5OiHuHFYZ3jRygmRbYMxTo6rrKUmBTZMlQpzUaTItfjMSmyhSYmRa7HJUkREJciU4aImBQVHOVoMSlKOa55ISlKO2q1Y1JkyhARkiJThhrtIy9vtivVIkNESIpMGWq0j0hRiww1/ui/TpoyRESlyJAhIiRFpgwRxY1JVIxqjjLvkBS5PisxKXKV03ZaioqO60hMilziEJMiaSrmEqBOS5GrhCsmRdlMbcl4sZWQorz1Gx2TIqkMuYhJkev1KuXmxGlR7Lm7PkshKXKVsMWkaJ1jfyEpKjge40iR60odkiLXGO9YX9J1HiEpWnC8Xp2WIl8fO9b3TjtesJAULTge6oQULUuIOiFDhE+KfDJEuKQotEaQ741xyRDhkiKXDBG+D3LoA+6SIpcMESHxkETBQOdkqN32PinyyZAvJYpdQHxS5JMhX0rkkiHCJ0W+ZMjX0QnV6PukKJQM+aQoJEs+KfKJjE+KQrLk25eZDpn4pMglQ0Q7Y4N8UuTq4BIuKXLJUOO8PFLkkiHCJUUuGWq093wkXCJk4pIilww12nukyClDjQeXvjYuGSK8UuSQIcIlRS4ZMvFJkUuGCJcUhT4rPlEIjS3slBS5ZCi+L/932CdFvufoS4lC4tMpKQqNZ/E9x9DEGZ2UIluGCJ8UtSNDvrGoPimKjf/xSVG3Z6IO33MPibV0enGfFLlkiJD2mUL9mdCV1SVFoQmvfH2a0PFdUuSSIaJTUhSTHt/jLhkiXFLkkiFiuVLUthB1UoYIW4piMkSYUhRbMBVY+saEZMhFSIYI+4MsrQsNyRDhkqLYF9tOiVZChuzz4siTLUWxZMiWIu7ra0tRLBmypSgkQ4QtRbEyObujwxmwbEsRp0zOlh/OGCNbimKpji0/nHI6e58+GSJsKQrJEOGSIlc6ZGJLUaiDS0jGFAFLpSgkQ4QpRSEZarS3nmZMhghTikIy1GhvSVFQhhqNmq9pSIaIJVIUkCHClKKYDBG2FIVkiDCliPNZsYVBOtEKB1uKYjLkSok4JWV2hzaWDNlSxBGe5UoRZ3C//Vw5swh2Qop8MkTYUtRJGSJsKeJOhmBLkU+GCPu5c0ovbSmKTXBgS1FIhgi77+RKh1rOydGv4VxZJWOKgKV9G05/SjKmCFi+FHHL4ux2IRkiTCkKyRCxHClqS4hWQoYIkiKuDJlwZIigN4YrQ5QScWSIoA8yt7NOKRFHhghTPrh3OUiKVjIZovOSJEkkRdwyOZIiqWySFHHL5EiKODJEkBRxxwyRFElmbyIpkowZIgmSTLhAUsQtcSMJ4o4tMvcdkyGCpIgjQ4QpRTEZIkiKOB1cgqQolA61nNeiFHFkiJBMtAA0pYgrQ4RkogWgKUUsGSJqCUuGiIYUMWSoZTumDBEkRRwZMpF8VkgcuDIkTYmAphRxkyGSonx2QTS+hjq23DI5kiKJ6LQrRZKZzug5c2Sosc0ypCgmQwRJ0UrIEEFSJJ0ZjqQoJkMEPXfJ5BwkRdzZ3kiKODJEUB8qJkONc1o8Rgqymd5IirhrQ1IfR9KfIikKpUMmV2KiBaDZ9+bIEFHJJiwZItqVoiszj56QdiY3bEeg5MeQv/mSNxEAptuYljefronPba6NKSQlH2CgvQ+XdPa5dqQOANYz119Y7nEktDO19pU6jnQa2KSN6WylM9wV2ugcptKJqMPaLu1Mmys/hrB9e7NLI5UVfpMrpfYOJCApyqblFT+HRTI54eyhbZRnSrkSn610m2nV3LxsWmbplP2AfNp++cIi7U31Pz0nn/Jc+l5y5clkRnhe3A60TVGYSrQ1Db1wG8nNZUL6cWl3Om4p0ucOANPCbebb+K5I+4VA+5+xlaatX4njE/wnk0nJDjI8W9/3XBu/K0OCNUFo/2PMbaiyQ7J+zuxip3CW2TmkfV8WrllAcD9kY4trVUwK1hSgD/3UAu/iOr/4RZxqY12MWeaPKv1oSX+8043kjvcho1RwXDB3Px1jaob3XlJHQvLjRW2nmccw20q2mV88N+4aH7Mz2Zb/50Ado4V53veR2s3O8j/D5pojs1O8c1uYqe9fIngz0/V9c5/L/OJzoO04SKWOUvq5IeF3pSL7/qb2bKlvd+Bl9jZJdw+QE3y3XjxQ327XVtG5ZQdkEjW3WAGYK8t+jNKC94a+W9yOMV1PJB1pWpuI22Gn78n8QlokBnROU9OyNU6mJvjXopnF7y1XiiYn6+cieR6TdI2c5X/2RyfrCadEiuj3ZIb5G0mv77Sgf0C/EZPM6/3w4vOQrjdE58b97R5dXGdIUj10eaa+DbefQ+0kIkF9omnm8x9ZXP9oLkmJbjJPLn4eR5ifFzqvy7P87xa15Z7XucXPiESKLs62IWkL1Mfnv16nJlMYEwRYo20uedZ2rsKRoozRhHMgkiGCK0VmjSFHiuz9cqWI4EiRLUFcKSJWSorGrIsvR4rsOwAxKZq3LkArIUX2DxxXiux2MSmySyQ5UmQfIyZF9l1VjhTZbTiCY7fhbDNvnVtMimwJ4kiRfZc4JhL24xwpci3AGJMikiGCI0USqQGaMiTZ3pShmRFGe+u0uVJkylDt6HD8OIsy1NieIUVJd0/zPxhSRDLU2J4hRbXDlxr/zpUikqHGqTGkaMb4PHGkyP5uiVNYRnt7odZYh931PeHIhH0uKyFFM9b3NSZFJEME53nY4sCRIpKhxjaM67f9OxKTIvv15UiR/RsRk6Jh63lwpcg+t9hv96i16CpHikiGiFg/x36cI0V2XygmRSOOxWA58jEpTB/t8+JIkUScgKYMERwpMmWIWwk1vWD38eOv16nJZhuOFLUrQ8AyS+ZCUpRxPBQ6mC1DREyKXLNQhKTIt7+QFLlmiA1JkU9+QlLk2t9KJ0VESIp8cSg3KWq076AU+X7YYlLke9wnRb7xYiEp8h3DJ0W+EpOQFPkeCwmO77HQNnaHjfBJkU9+QlLkK5nxSZHv7yEpamc1eluGiJAUuWQmJHe2DIX2Q7iSoZAU+TobMSlyJUMhKbJlqLGfgBS1yBARkCJbhhr7CUiRKUNETIpsGWqcWkCK7M46EJYi33crJDmua0iovS1DRDulXSGZ8J1DJ6XI9foCfimyZYgIPQ+fMISkyJahxjaB19j3++GTIt/rG5Ii32+E7znaMkTEpMh3br7fbluGiJAU2TIUw9f/CUmRpFoGcMsQEZIilwyFUiLfeYWEx/VY6JxsGSJCUuRKhmJSZMtQ49wCv6mmDBEhKVqODAEdGEPkkiKXDIUO6JMhwicxoXnKXVIUkyuXFIXWEHRJTCwJcj0ekqtOSpGdDpm4vnix2lCXFNnpUEv7FSyfI9KpxCklMVnils8Rrh+12DHsDk2s3t71oxZLj1wpUCwJcj3u67ARthTFkiDX49LxA7HkyCVFMRlypUQ+GSJcUhSSGNd5+2QotL9QmZxLimJ3XueGEqcYhcrkXFLkk6HG/hxS5JQhwiFFPhlq7M8hRS4ZIlxSNHfZL0ONU3NIka+zDrilKPbdcnUyQymzq71PhghXhz32XXHJRCyl6oQUhV5fYKkU+WSIcD2PWHoyPZtdIkY+GWps43iNYxUGthTFXl+XFEnHDPlkiHBJUZKkxImmT4YI1/UqJEOuPk7sZrBLikIy5EqJQjJEuAQklAy5pCgmaS7xCYmS65x8MkS4pChUJueTIp8MNc7Nce1xyRDhkqLlyhDQoUkVTCkKyZDroDEZIkyZqWQT1kq2phRxy+9MKWIsqN4iM9yyOLMdp/yuE1IUkiHC/AJyB8qZUhSSoUb7ZUoRtxbclBNuOZ0pRZzZBM0fN+4xuGOKCPPHjftDJxkf5Nom1mEjSIq4Y4XMdhwZMkWCOx7HlCJuMmRKUUyGCFOKOGVu5vnHZMi1X86YIVOKJLX5phRxxgyZUhSTocZ+DSkKyhBhSFFMhhr7NaQoJEOEKUUxEWo5NUOKYp11oFWKuN8ts7PJuWaY7WMyRJgddu53xbz+ssc9LUOKOK8v0JSimAwR5vPgjq8xickQYb7GkjGoAP/1NaWI8xthPt+YDBGmFHHPy/zdjskQYV63OMmQ2cfhVsaYUsRJhkwp4sgQYQoIp0zOlCJuYmUKEKdMzjynmAwRphRxxgwtJK1iFJOhxrkZ16CQDBGmFHVChgAglSTyOVg+sPM3nH/fVZXt6jJThkx6PQu4hqgKZ68CgIpwtqAJZodtOcdY38a0iIA8Dq4KVxcHgJwwYSkJZ6QB2p/5SIpvcVUf3KlGTSRTul5JpOdVKs2KJk8A5BMCtEM7s321M/ueZFIHoL3Z94pl4XTRve1NJ1fYKusYZh66RXyMhR+4R9Q+/cwz4mMkf/eUqP3UAfn3FwDGL8k6uLOCQfqEZGA/AMwJr/UAkGtjJq52viuloqzXIpmcAqjPUskVIkJagVDfpo2SQ+FsX+3MJiddx0o6cQLQ3myr0228XpeYArUcpEML2pnlDZBNHgDIJu5ql8ttXIuGhWPtAflzB4DzwlnlfQbzvx/9N+Jjd2yy6rkEeGlM9uSHhFZ3cQY4KDwGAJyeln3xxxfSOCfo5J2byWJcOFDu8lwaJ5h3v4D6dNynp+QXiXPT+cb6RhzG5jI4w5xNjLg8m8M5QZ3v+HwWF6b5644A9btFF4XbjM3lMCa4owMAF6eLoprl4dk8jo92iY4xMl3EpYkyu/25sQrOjVVExzg7VsXZsapom8sTJZwflR3nxPleUfuLYxVcGBGe1yj/tQKAkfESLg/LngcADI3Ipos+d6kLQ2P8cxsZL7HvLBPTszkMD/OPMTuTweg5+XUiWUhh+hhfpNJ9RSTfPyQ7RlcV6Rdf5B/j4MtASfZ64YkXkerhP//pg9NIMdeLMpHK0NhEATPCEtGhiRKmBNevoakixoXVBFNtjCeans9iQngcqXhMTOUxNiH7HJ+/LLsOnx2t4vKk7Dt/YaKCEeGYlnOTZVwS/HZdni7grOD3AQDOTpRxZpx/zTszXsGlKdl36+R4BUeEv3WnxitiuTk0VsWw4HN/YSaPC8L07eJMHkOCz/C56TyG25CIk1N5dhIDAIcn8jgwJnu9Tk/lcHqKf4wDYwVcYFZCEKem5PJ8fCKFM1PSbWTX4pMTCzg1uYyVWC06IkRzxnPgStGh8Xo7rhRdNG7iHRxLscVodHFRPa4UmWIjkSJ72xCXDdOWSBEAkRSdM0oVOFJktuFKkVnOx5GiceNuEVeKTEHhSpEpQlwpMvfNkaJhI6LmStGIcQyOFJkixJUiqQgBdRkiuFJ0cVEGzjEF56Jx/lwpIhniStHIePN5SKRodKz+vnCl6Nyl5vstkSJAUG5jfLc4UjRr/MhJpCgxSho4UpTua54/V4qSrub7zZGi9EFj3BFXip5o7pcjRdMHm7ciJVLUjgwRXCkampB11IeMzi1XikiGuOVMQOvdfq4UkQyZ380QE8ZvD1eKLo3Uv+vjzOdydrT5eZRKEQC2FJ2bbH5vOVJ02Th/rhSZ7ThSZLbhStFJYxuuFJ0yj8N8Xw4Zv10cKTJFiCtFF412HCky+1ESKTopvLF8eKLZnitFEhGy98uVIpKhiXlen/v4RKplGA1XikiGpplT1p2caIpQp6Ro2UI05zj3mBSRDBExKbroqWiISdGotcJ4TIpcQhOTIvvxmBRddsSOMSmyF2vlSNE5R922JCkC4lLkGtskSYqAuBS5xCQkRb5UKCZFrn2GpGjYUa8bk6IRxzFCUuQSoJgU2TLESYouOzpfMSm6aElATIouOs47JkW2BMWkyNXh4kgRyRARkyJThhrbRKTIPrfogGzHd0uSFAFxKUoWUi0y1Dh2QIpMGWrsJyJFpgw19hOQohYZImJS9MTS/YWkyJShRvtMEhWj5cgQEZMiW4ZiKdGQo1MbkyI7GeJIkav0KSZFdjIUk6IJx29OTIpIhoiYFJkyRMSk6MJEBRcmWo8TkyJThoiQFF12nHdMilyPh6TI9VhMik46tjky2hUUo1Ou40Tel0PCG3kuAYpJ0UVhkuTqR3GkyJahWEpkyhARkyJbhmJy5NpfTIrsZCgmRb6Zp2NSZCdDMSkyZYjohBQtS4hcMkT4pMiWIWJo1i1GPhkifFJkyxDhk6KQyPikyPd3375cMkT4pMiWISIkRa4vMeGTIt/ffVIUmujBJ0XjnlpinxSFhERaPgf4pSi0L+mUnz4pcskQ4ZKikPj4HguJj+8xlwwRPimyZahxXh7BcckQ4ZMin/z4/h7qaIWkyJYhwidFLhlqbON5XXzn5p2yN/Dd8knRrOeHzSdFLhFqOQdB+RzglyKXDBEuKXLKEOGTIocMhXDJkIlPijohQ4RPinzJkE+KXDJE+KTIVyYXkqLQOBCfFPnK5HzfB5cMEb7X0pYhwidFLhkifFJki5CJT4pcMkS4pMglQ4RPiqRldSFR8kmRS4ZiuGSocRzP8/TJkC8lComP7zGfDPlSolA/KiRFvmTIJ0UuGSJ8UuSTH9/fQ3LlkyJfmZxPimJrk7qk6PhE4i2T80mRS4aI5UpRx8YQubClyCdDJtJxRcBSKfLJEHF6OiMeV2TLTyw5sqUoJEOELUU+GSJcUhT6EhO2/MSSI1uKOLPe2VLkkyHCliKOiNgiwymNs9twxMo+F1c6ZGJLUUiGCMmYImCpFHHK5Ow2IRkibCnyyVDjvCzBCckQYUtRLAmyH+eU4rikyCdDhC1FIRlqbDMmO7clizoyvlu2FPlkqHEMS4piMtQ4F0uKXOlQy34tKQrJUGOfhhQFZYiwpSgiQ3ZKFJOhxnaWFHVShghbimJlcrYUhWSIsKUoNmbIJUWcQfG2FMXGDNnfi5AMEfZr6pMhwpaikAwRthSFZIiwpSgkQ85jMtI5W35iMmTLD6eUzpYijgzZKVFIhhrHsZ5vLBmypYhTGme3iSVDthRx+lEuKYqVydlSFJIhwpaZWBJkPy4dk3RqKhMdM2RLUUyGXHDGC9lSFJKhTtC2EIXSIROSIo4MESRFsXTIhKQoJkMmJEXcsT8kQdyxReMLafFkCyRFMRki2ploAWhKELeMjqRIMgU4SVFMhgiSIkkqQ0IjmTyB2kpSJjqnmAwRJEUcGSJIirhjhaidZMxQO+OLSIpiMtQ4r0XB4cgQQVLEHStE7bjjEoBWKYrJEEFSxJGhxjZjsnMjKeLIEEFSFJOhxjEWpYgrQwRJUUyGCJIijgy1DUkRMxkiKeLKUGO7RSlaCRkiSIq4Y4ZIijgyRJAUcSdQICmans+KZggjKeJOoEDfD44MEfTaxmSIICniyJANR4YIkiKuDFFKxJEhgiSImwyRBEkmWyApkiRDJEUcGWocZ/F5c8vkSIokkydQW26ZHEkRR4ZsTk7l2WOGSIo4MmQimTyB2nFliFIiyeQJJEUSGaKUSDJ5AkkRV4aWkxK1JUTfGx4Vtf/qGfk0sI9eEE5PAeCx8/IpIZ8ZkSVFj12Sr1nw/WHZMb4/LDvG6akCTk8VxF/kZ0dkMiWdfQ4Avs/84SKeGZbNYgMAzw53i7d5coixForFty/Jtnn8fJ/4GN85OyBq//VTG8THODtWZaVDJo+dlh2HO9GCyT+c2ihq/33hOQHA86cG8Pwp2Wv89AnZeQHAs2dkxzh8cZ34GMfPyrY5d0z+3QKAyUOdKZ/zkX7xRV46ZCIsk5t6WTiX6yKXTsvu9l9sY3bDM8Lvyqk2bmpIOquArBNtclooHi+fXy8+BleGiGfO94vaX54siWSIeFH4O/R8G79b37kge72+dkb23AHgsQvya9HfnJYf55vCGUq/e1n2XQTkY4a+c1n2uzg8mxVPngAAXzsv6+P9jzPyY/zNWdk2374g14FnHQt7x3j0vLwM7LtDI6L2Ukch2hKiR4b/dzw9IjvgMdfSsh5eGKnL0Eujcil6fohvh5cWE6gjzPSK2nHbA83kimvRl2bq7V4c40vUhdk0LsymcXYmg7PMO8bHJrMt/8/h1HQWhx0rifs4s7iw5EHh9KmnBBeYs4sSeEzYwQeAE4J07cB4/c7ZC2PMWcgWz+slwTTWBxcTlaPMO4AvLu77gHBa6iPjJRwQdFwOL3aODgo6Yicnyzgm6FSdWGx7dEzWaZdMA2veWT3J3O7EaL3TIimDoc7nCebrdXGxTEfSmaS7+GeHeJ0qWhzz/ElZh7XW3pJGwDf5awGlTp1F6tgpwb6/Lz8f+Ner8HHxRP19nGFWBJAMcRdQBpolWtPMVIUShUlBcjOymGpzk/eJxX0PTRcwJEgwRoTTK5+nz73kujLa1diOA10fJMs8HBmv4Ljw9+TM4m/JEHMWMvp9OCt4zY4tJsnHmLNUHlj8rTrA/M0CgJcFiTtxcLz+HJ4f5W8raQsAL43V+x1HJvif+5fHs3hpnN+e2h6d5H0XD4xlcGAsw1pE1OSFxb49NyU5Nl5v9+ww/zjPjVC/k3eMg6P1dsfH+RfJI2PyAOLIWF2GTk7wfeDpUZlrnJ2dwCPD/7toG2JZY4g4UnRyvPnEOVJEMkRwpejiVFOEOFJ0ySrHk0gOt709tklaZ8mRoguOlYNjUmRLEEeKTk0323Ck6Mx06z45UnR2urlfjhSdtRIxrhQdHG92bjlSRDJEcKWI4EjRQau8LCZFL1r75ErREeMH78BoNSpGhy2p4UjRSUMeOFJ0wmrDkaLj483z4EiRq8yEK0UER4rsO/ExKbpode44UmSP84hJ0ZT1PeFKkSlD498dZ23TAkOKUqfONv+dI0VtyNDkE827i1wpIhkiYlJkJ0McKbLHq8SkyC6v4kjRCLPEl5hw7JMjRaYM2Z9pF7bUcKTI/L5ypMi+LsSk6Mh4BUeM7y9Xis5YvyExKbIrOThSxJUgwpYgjhSZMsRNPUiGCI7omG1OM5YdIRkiOFL0siFCHCmy28Sk6IDVNzs1mWKJ0QuyoKMhQwRHikiGuJAMERwpMmVodJYnRiRDBEeKTBk6PRv/DTo7O8E6Fx/LnlQhJEWmDBHHxua8YmTLEBGTIlOGiJAU2TJEhCTH9ViovW/2u5AUUTpkEpIilwwR3KSICEnRqemljx2eyHnFyJYhIiRFpgw1jhu4KNsyRBybKAXFyJQhIiRFtgwRISlylS6GpMiWIYKbFBExKTriufvnkyJbhoiQFJ10SENIimwZIkJSZMoQEZKiUM19SIooHTIJSZGvLImbFBEhKZKsGQMslSEiJkWuZKjTUmTKUONvISlapgwRMSmyZYjgJkWN9gEpkq594xtrEpIilwyFUiKXDBEhKXIlQyEp8slMSIpc39OQFPmuBz4pOuL57sakyJahGL6y9pAUuWQoJEg++QlJkSsZCknRwfHCEhkiQlLkeiwkRbYMET4penk82yJDjf0EpEiSIgFLZcgkJEUuGQolOLYMESEpcslQ6Bi2DDW2CUiRKxmKSZEtQ4RPip4eHXUmQyEpWq4MAR2aZc4lRS4ZMpGU0AF+KXLJEPH80IKohA6Qi4/rsdj6SC4pcskQ4ZKikAwRLikKiY/rMZcMmUhK6AC3FLlkqHH8NupzAXda5JIhwiVFPhkiXFIUGsflkiKfDBEuKbLTIROfFPlkqLmdrNPukiKXDBEuKfLJEOGSIpcMEa5OEGcAsquz5ZIhwiVFsTEaLikKdRpdUhSSIVdK5JMh4vzJqlOMQmVynZIilww1HnNJUYdkiHBJ0cUTFa8MES4pCo0bcklRSIZcKVFs4L1LikLJkEuKQjJEuKQoVCbn+nzHkh2XFIVuWrj2JymjBfwyRPikKCRDrpQoNsbXJUUh8XE9FkuCXI+HyuRcUuQToRghUXJJkU+GfLhEqGV/QlFypUQhGSJcUhRKhlzC4pMhwiVFoWTIdQyfDPk4MlYLlsn5pMgnQz5iJXIuKeqEDAEdnHbblKKYDBGmFPnSIRNbikIyZGJKkS8dMjElh1Mad2Q8JS65M6UoJEOEZEyRiSlFnNI4s01MhghTinzpkIkpRSEZapzHVL5FjHzpkI0pRSEZIiRjighTijiTWphSFJMhwpSikAwRphQdGS9FZai5XbMz4kuHTEwpCskQIRlTRJhSFJIhwuwMSdbpMDtdIRkiTCniDlg3pYhTVmRKEScZ4o4nsjGliDNmaLlSFJKhRhtTijosQ4QpRTER8sGZRMGUIk4yZEoRdxYyU4o4ZXKmFHFkiDCliDNmyPycS8b+EJyyVnO/HBkyU6KYDBHHJ0otYsRJhkwp4k54ZEoRp0zObCMZK0RwxgyZUsSVIVN+nh8tsUrpTCniyJCZEsVkqLFfYSmdKUUcGXLBKZMzhSUmQzbPjaRYZXLmMTgyZKZE3PFCthRxZMhMibjjhUwp6pQMAUAqSaRDTes82PsB72PrM7Iv5qRw5O6+7vr+uUJEbCy394GWEFlgdwkVWVqLG7sWWOmQzYxwut0d5Xm2EBGlyCrvNtWMfFBeRj7dPeYS2UbbSjPRdMhmfU72WdzXPcEWImJa+B7m0219tZETblcUvo87qhPRdMgmnZKd067uMfHChQCQQPYaz9fkH8hSRvZZqeZlafqmdaPRdMhF/yaZ6FTvlc92ltotm7EvOX5BfAyODJlcOimXoUJhXjyj3IRgaQBANnECMVeT/TYUhJ9FAFhXnBFPoCC90m/uGheP8ZOIHQCMMyeysMmlZc9mVviebCrOiMcMSX8b9ndNiSdQkB6jXcY9C3/6mBf+zO2rzovL5GbamMl5SzkRjxmS9sZTbbwls8LnsiA8qe58/fMuTYYuL8gmUUsHfqvbnVShbSEC3FJ0IV3/Aduf2s7ax1PJ8wCAG5J97OOeQv0O42053jEA4NJsPRq6uZffSTo9MY/NAmN5aaQ+teuebt7F7NxkXQR3d/OPMTpbf7t2CX4rjozV/39zmf/tOTxWw74e/oX80OIdh1sFM3aenEzhxi7+t/PwRP0H7IYqfxu6q7O7yv8Re/Jy/XXaz5xl+9hiOnjXOr7YH5rI4oYqv/3zo/XPyO4K/7m/PJ7BLd2ymw2HF++67e/idcIPjtc7ebf28BcNOziex74q/2L50ni9c39jF/8YRycLuKlrkt0eAI5O1L+3Oyq84xxZbL+txD+vC4trUGwv86aBPr84bezuLv5dsNHZHLb1jLHbA80UY8u2YfY2tYUUul/Fl4LapfpzzvzADlb7he8dAwCkB/jX7PFHR5HO83/STh+pf8kLOdn35MRwN3oL/Pf9/FT9OVSyvO/VpcUERyLPlxaToe4s77mMLQpBf0HWcTk3XcBgkf/cjy0mONvK/A7PyckiNgu+V6cW18/pZb6PRybrr9VAXtY7PDuTwbYS/wbFicX1YDYW+Mc5OJ7FtjK//Quj9fdxV4X3G3d0ov67LvlNfG6kvs2eKv+79dxw/f9v6WVvgicu1XBjD19UXxypv057u/nbPD80j5vX8ftcB4brx9jZxT/GgZH6Z2SwzD/OC6P1a/yNXbxr6pHx+vdjdxf/5sSRsRlsKQvaT9R/Q7eX+fJ8YLKe8vRn+Nftl5L6tb6/xltK41T6KABgW23XksfalSGggyVzQFOGAOBAcly07cupl1jtSIYA4Jm543hmLn4ckiEAeH6Y10k6PTHf8v8xSIYA4NCobM2Lw6O8Y5AMAU3JkXB6kncxO7wYj740UsNLI/GL5iEjfn12iHcuJydl04uTDAH1jr6Uw+O8jzrJEAAcYNzdOWaUSj45xLv4HVqUDm7MTzIEtL4OIeg1em40i+dGuaWPzXYHGCULJEMAf02rg4tyQ5ITw2z3InORuaOT9XYvMBeSBZoyBADHhNPEc0stLxirlB9n3AE+b6yhcZiZJo4uLi54YoR/x8Qs6Tp1ope1TW3xbvHot3miRjIEAAuPH4u2JxkCgNoF3jV7/NH6D3Ftlnfjh2QIkE2VfWJx/Zhh5jTWJEMAMDEf/15dMvY7tcD7vl8SziY3ZqQjkrVazi0mQ2eYCdExo5ztBLNk7uTid4O76PgpY5HaYcb7SDIEABdmea+vuaTFCebimGa7c8xJjg4u/iacYE79TDIEAEcm4r9xR4023N9EkiEJJEP2v4d44lK9r0GSE8Nsd3A0vs3zQ/N4fmi+8e8cSIYkkAwBwJlJ3nFIhriQDAHA4THmDbzFdqcmuTf8mtfd45PxmxkHJkcbMgQAFxd4122SIS4kQwBwIn1EtG2MjgqRTUyKKB0iYlJkypAJR4pMYlJkS9DpiXm2GBExKTpnfVFiUmTKEMGRIrtNTIoOO2pFOVJkEpOik9agw5gUuSSAI0V2zW/sB8CUocY+hJF3TIoOWbPjxKToeYfMxKTI9drEpOiwY9YejhSZxKTooCVBMSlyPR6TIpIhgiNFpgwRMSk6Ym0TkyJThjicd3RSY1JEMtQ4p4gUzcxlnSIQk6KaVToTkyJThoiQFJky1NhHRIpIhhrtI1JkyhDhez1MTliLacakyJQhgiNFJjEpsmVoNFI6NuYoFeNI0TlLgmJSdMwhQDEpOmndKIhJkSlDHEwZImJS5JqcKCZFrsdjUnTQ+i2ISZEpQxyOOoQp9ptoy9AhxlhplwDFpIhkiIhJEVeaCJcAxaTIlqGjY/FjmjJExKTIlqEXx8LXU1OGOBwZm2nIEBGTIlOGOJgiZBKTIluGLqbPB9ubMrQSdEyIzHTIxCdFtgwRL6deYqdFJj4pMtMhE58UhcTH95iZDpn4pMiWIeLw6Dw7LSJCUuR7zCdFLhkifFJ0yDM4zydFtgwRL45lxBNHhKTINwDS9wPgkqHGvjxSdMzz4+CTIluGCN9UoSF8UhR6TXxS5JIhwidFZjpk4pMiW4YIblJk4pMiW4aIkBS5ZIjwSZEtQ4RPinwyxEmJbHxSZMtQ45w8UhTr+PukyJahxvE9UuSSoXbxSZEtQ432HilyyZCJ77WxZYjwSZFLhmJc8uzLJ0W+ZMgnRS4ZIkJSZMsQ4ZMilwzFsGWI8EmRT4Z8KZFLhgifFIWWr/BJETdBIg6OZ5fIUGNfHinyyZAvJXLJEOH7TfQlQyEp4qZBxBOXaktkiPBJj+/vvpQoJD6+x3zJkE+KDozMOWUoxAujE95kyCdFPhnypUS2CJn4pMgnQ76UyCdDIV5KjnmTIZ8U+WSokynRsoSIavV8MkRIy+eApWmRLx0ysaXIJ0MEt3zOxJYinwwRthT5ZMjEliJXOmRyZGyp/MTSI275nIktRT4ZImwp8smQiS1F0jSEVo8OwS0VaNmvJUU+GSJsKfLJkIktRa50yMR+bTipGbd8zsSWIp8MEbYU+WSIeGk8v0SMYqJkS5FPhgiXFIVkiLClyCdDhC1FsWTIJUWudMjEliKfDDXOyZIibnmYLUU+GWqchyVFMRlypUSudKhln5YU+WSo0d6SopgMEfZr5JMhwpaimAy5UiKfDBG2FMXK5GwpCskQ4ZIinwwRthTFZMhOiU5OFr0yRNhSFEuGbCkKyZAPzlp+tvzEZMhOiXwi1LJPS4piyZAtRSEZ8hErkzs0nloiRjEZsh/3iZCJLT+xZMiWIm5pnEmsTM6WIo4I2SkRp0TOlqJYMmRLUUiGfMSSIVuKODJkp0TSEjkgngyRFC1n/BDQgYQoJkPEgeR4Q4x86ZANSRFHhoh2yudIjLhlcdQuJkOEdEwR0JSimAyZkARxxxednkwaYhRKh0xIimIyRHDHFJmQFEnHy0imxTSlKJQOmZAUxWSosV/mmCITkqKYDBH0GknGVT3XMiaJdxySopgMESRFMRkyeUk4voikKCZDhGRMkQlJUUyGCJIibpmcKUUxGSJIimIy1DgnwZgiE5KimAwRJEXcZMiUopgMESRFMRlqtF+UIq4M2cRkiCAp4iZDphTFZIggKeKOGSIp4siQzbnpQlSGCJIibjJEUhQTIROSIm6ZHEkRV4bMlEiysDlJEDcZIiniyJANt0yOpIgrQ+bvoWTMEEkRNxmidhwZsuGWyZEUcWWI2h0YXmCPGSIpkqRCJEXS8UIAv0yOpIgrQ5QSHZmY7FiZnAuSIq4MUUp0Kn2UXSbXiaRoWbPMAcCt698tan9u/gX0ZLex21+eO4Kt2Tukp4XNiWx613Opy9if3STaZnxedvfhaOoUbs3wZlgCgMmFBWyvtLcwqYQXxsaxq8yfLerFyWHcUhFMJwegtyCbH/LY2Dxu6JH9YNTa+CT/w+Up7Knyf5RfHJvAnb2y6Ya7hW/hC8MLollzDo8uYIdgBhyiJNzkyFgNe7tl91CKwqnYT06msLXM3+bMVAq7BDMfESXh1LknpzLYXOJvc3Y6jZ1l2fVBOn358FwWe6uyH7ENgpm+iOn5LHZtv8RuPzWWw8ArhB0e4a25i0+kUe7hz4525GgfSjlZSQsAnBdO3X5hpoAe4Yx10wuyJ39xJodylv/6Ds1msD4vO6cF4VIFAHBsMofBIn9sx8mpDLaVZOclnRb/+GQGXTnZ9UG6dAYAnJ1KYVNJcPNyPIV+4bJ348Kw44XhGdzcyz/Is0PT7BlyTaaF814/OXEeNxb7xceR8OL0RezO9bHbH50bwp78etExZmpyqXum9jK21fizIx9MP49bkttFx5B+c4+mTmFzTdb3nYL8Wno09Ry6U7xZ5ADg6OSjGCzfKTrGwcv/VXhWrSw7ITo3/wLOzb/AbgsAI/MnRMc4Ob90pfMQQziN51JP4rnUk6LtDszzk6iX58/jDC6z2x9N1RcafHZBFhcen5BNiXp8Yla0zQtj9bVHjkzK7lo8N8GPfo5PTuPpoSk8PcTrjB0bq1/5Xx7h/wIcGJ4XtQfqMgQAh8ZlCd73h/nrtRwZm8NTl/gXjxcW71BxZs0xOcYY8Nl6Xgt4XjCDDi3MdnCU/yNwcjLBQcFsiFRSySmtBOoyBPAWTyZOTaZwajKFg4JE7eRUve3pKdnl8ihjIWTi7EwGRyf5Yw/o7jdnwWFiZC6Hl0dki7dOC9d2mVpMEi98j/9aTR6ax+TL/O/uxSfq+54ckd1pmBKuA3RwuAejgm0uLKY8I4IZ6y7O5ETr4VwUTs4xtJh6XJ7ln9O5mRwuCtoDdRkCgDPTvOdC36kTU/zjnJ7OsvcP1GUIAMbm+NeH4xP164OEs1Oy9nS9uiioaHp5dAFnJgVTcQ/LyqWeHar/BkqrWR4fuYRnJvj9oCcn6nf+X5y+yGr//ZnjjX+4cPdNHJ2r92UOzfKfxzNzx/HSwknRcZ6pvSxqfzBdr6R6LvU0e5sTOIPjOMNuT/1SLi+ln8NL6edwIi0b53809Zys/eSjAIAzk99ntR+ZPyH2ChfLL5kb/S4AsKWI4Jz85blmBCaVIoIjRedSzS8CR4penm8O+jqDyyIxAnhSNLnQvPhxBcdsJxUjgCdFL04ON/6dI0XHJ1svsFwpIjiSc2C42eblEZ4YkQwRHCkya3o5UnRkrClCHCl6wRIUjhQdNtpwpeiI0e75YZkY1c8rLkUnjTFqHCmyJYgrRQRHiuyODkeKqONGcKTo7HSzDUeKzPIcjhTZ4yM4UjRidOy5UmTK0JHj8butU9ZYM44UTR5qflc5UkQy1NiGIUVHjjbPnStFB4eb5XUcKbpglbxxpMiUG44Ume0n5+Ov7ZA1UQBHis4Zx7g4m2WJ0TGByANLv1McKTptLBLOkaLjzGmrG+0nUjg+0bw+cKXIlCGOGNnXKY4UvWxc4zlSZMrQ8wwxIhkiOFL0+MglPD7STI05UkQyxMWWII4UmTJ0eC6eapMMcbGXeuFKkSlDJ9Lx50EyxOUEzuCEIUIcKTJl6HQ63u99KS2TmuZxmtuNJvHPAMkQF3IJcpHl0NFpt0NS5HosJEWmDBEn55+KitEQTi/5W0iKTBkiJEkREZIil4WHpMiUIUIqN5ztKB0yCUmRKUOEJCkiQlJE6ZBJSHBMGbK3kSZGISlyzfoSkiJThoinLsnSIiAsRYcdj8Wk6Ijn8ZAUHXGMLwtJ0UnHhB0hKfLJT0iKzjg6HyEp8nVwQlJkd9yIkBSZMkSEpMg1VkGSFBEhKRpxdOhjUuRKhjhSZBOSIlOGGn8LSJEtQxxMGSJiUmTKEBGSIluGOLiSnpAUudqHpMiWISIkRec86VNIilwyFBIW33cqJEWmDHGO4ZKhUEpkipBJTIpcAhSSIkmSDdRF6GXHNT4kRa5kKCRFtgzFsEXIJCRFLhkKJTmSRCi0v5AUuWQolBJJx6c3tnMkQyEpcslQKCU6IUiECFefNCRFLhmKpURHU885k6GQFLlkKJQSdSIVMun4OkTtJEXtlNC5xMglQ0Q75XMuMTLTIRuXFIUiyXbK51yCE0uDXI+5ZIhop3zOJUZ2OmTikiKXDBFSuQltZ6dDJi4pCq0LICmfI1xSZKdDJi4pcskQIS2fI1xS5JKh5nktfcwlQ432bSwm7JIilwwRrk5HrGMjKZ8jXFLkkiHCJUWhgds+KQotPOmSIpcMES+PdDvFKFQm55MiOx0ycUmRS4YajzmkKCRDvpTIJUOES4oODvc4ZYhwSVFIhnwpUajszSVFofYuKfLJUAifDDXOwSFFoWTIJSw+GQrhkqHQMULJkEuKfDIUIyQ+rsdCMuRKiVwiFCNUJueSopAMuVIinwjFCCVDLokJyZDrsRenL7ZdJufCJUUhGfKlRM/UXm67TM6FS4pCMuRKiY6mTrVVJufDJUU+EQpxdPLRtpOhTtIRIbKjKluKOJJkPjlXOuRCWkZnS5ErHbIxpSgkQ8Ryy+dc6ZCNXRrHYbnlc650yMaUopAMEaYUhWSIsOXGlw6FtgvJEGFKUWyRNGCpFLnSIRtTikIyRJhSFJIhwiVFvnTIxJSikAw1z6vZJiRDjfaWFHFK48w2IRkizM4Ht/TFliJO582UopAMEaYUcWaxsqUoJEOEKUUhGTIxpYgzZsiWopAMEaYUhWSo0caQIk4yZEtRSIYIU4pCImRiShEnGbKliDMGyJQiTntTijgyZKdEMRlqnIuxHadMzhQWzvfJTolCMuQ6BqdMzpQijgy5rh+c0jizDScZMqWII0N2SsQZM2RKEScZMqWIK0N2SsQpkzNlhpMMmW04ImSnRO2UycV4aeFkixhxRMhOidopk4thShFHhOyUSFomxxUhMyXiiJCdEtky1IlyOaADs8wRA933dmI36MluYwsRsTV7RzAdctEP/mxvALA/u4klRMQg1otNfDe2itq3w/ZKPpgOuZgRzijSlZItynf7uhJLiEzamVFubEH2PPZUiywhIu7srbJkyCSfkd2T2NudYQkRQbPPcWTIpJSR3Tnd251mCVGjfZd8nJDwlLCrmogHSO+tLojvZKeF57WzPC+a1ndneY4lQyYDBfksQNsqshnrdm2/xJIhk0qv7MaMdOKEcs8sS4ZMTglnkgOAmZrse9uTmxdNiFDNLognUJipyT6I6/PzbBki+vPz4jFD0lnbtpXmWTJEDBYXxGOGhoQV6FsWZ76UTKCwqZSIy+SGZmTX6cFyRjSBws29BXGZ3OVEPk30PGS/5zcW+8VlcsVE9r1NC+//78mvb6tMbiYlGyc9A1l/7JbkdlGZ3HYMivui45Clgdtq+8SpUHdqgzgVKufd1/ZOCVHHS+ZsRqZkH6gT498WH+PAxFdwfuIZ0TYvTz8iav93M18Wtf/2wv/AmXnZB+R5vChqf7kmv1A9MnFQ1P45PIaD+J5omxdSsvfir4cPido/P38CLy7I49LDKZlof35c9mX9y9Fn8UxyQLTNwTnZQNOvXRwWtf/2pVF8+9Iozs7KPisvT8lWn/7medmPwGPnZT/8pyfmcUI47+xjF+TToj5+WXZJPDOV4JRwkePvD8vk5ntDMim4PJvGgTH5uJYXhWsV/cPLm0XtL41UcPwYf7r+Uyd6MTQq6/Q8eWBQ1P7lUfn6TOdnchiZk3XAuWtYEdy1tYjLc2lMMNeKIp4flS/p8PhlmQwdHktwbFz2/Xjskuy1/YchWftzwmUBL03X8PTlBE9flj2PJy7Krj8HRmQ3JL43exhfGJaVZP234WdF7b9bk/WTAOCZ2S/jhdm/FW3z2eFPidofnX1M1P44nsZRfF+0zZen/1rUHgCOzco65kfHvyFqf3nmEL45+znRNk8k3xS1Pzz5dVH7oZkjeHruK6JtAOD5oc+I2k/NysdKSVlxIVIURVEURVEURVmtdEyIXJEVpUPclGh0ul6DOTFzFhMz8pneuCnR0PRhAPyU6OTC9wEAxxf+QXxO3JRoejE25aZElA5JUqJDqL8PZ9NncZYxzaIJNyU6ma4nUNyU6ESqXur47MIx8SQTkpToqVp98B83JXoW9ff6QEo+3Ts3JTpeq9c/c1Oik7P1ATjHZ3mzE5y2UiFuSkTH4aZEZ6YXV7tmrud0caqeDp2UrjQIsFOic4vHODHBT6KGZut3gM9M8e4Em+24KdHwYqkOt/Tm0ky93aFx3qX68myznSQlmlgct8JNiYYWx8+8cHaA1f7SCH/h5yXHYqZEB87WyymGZ3jJB6VDkwv8hOG8UWLGTYlozM4Yc70hGqszzlyw9fJcsx03JaIxb/T54kDlX+eZCcvhMXldM32Pjk9wv4P1/+eu6UPp0CwzvLk03drw/BRvw5OL151L07zrD6VD56d5T+R7s4dZ7UxeRD1NeinFqxKhdOhgwk89npmVVdI8O/3XeHYxiTk4xeuPUTr04txXWe2Pg7+ODwC8XPs2Xq7VK5VOLfD6Mcdmv9tIh87O8LahdOjMOK9feXlGVkkDAOeT+nt9scb7vFA6dH6SlyQOzciqbgDg5PBXcXK4/t5NMsskKR26NL70vDpVLgdcwYRoZOq4uHyOI0V2m5gUkQwR0tK54wv/EBWjowtPtPx3TIqmrRrSdkrn6B8JMSl6Dq2xdEyKSIYIaekcEJ9573lrMB1HikiGiJgUkQwRB1JPRcXoePpoy3/HpIhkiIhJ0UlLgrhSZBOTIvs4MSk6Y/2Ax6SIZKhxvPH5qBidnmh9PCZF56xjcKSIZIjgSpFJTIqGrXELMSmyO6sxKTJliOBI0YTVUY9J0ZA1mUBMimwZ4pTNnTrR23rMiBSRDBExKbJL5ThSdN4x3iYmRfYEBjEpsmdzi0mRKUNc7AlAOFJkj4WJSZEtQ7GyuVOTS0tPY1J0xqrSjUmRXSoXkyJbhrictK43MSmyS+ViUmTLEN3o9PEiXm7IEBGTIrtUjiNFtgzFyuaebaMkzS6Vi0mRLUOxsjkSIS6mCEmwS+ViUmTLUKxk8HxysCFDXOxSuZgU2TI0Ohtfk4lEiMvU7JkrUipHrJgQ+eTH93dKh2xCUuR7rJ3xRD4xonTIxidFtgwRnRxPFBIf32O+i6ZPimwZItoZT+QTI0qHbHxSZMsQcSXGEwH+tMiWIcInRbYMEdLxRCEpstMhE58U2TJE+KTIliGCmxS1HNsjObYMET4psmWo0V6QFBEhKfI95pMiW4YInxT5OqncpIjDxHxmiQwRPimyZYjwSZEvGQpJkS1DjWN7pMiWIcInRb5xQ5MLGVFaFMO35o9Pinzr/fikyCdDoZSIMxuijW9iAJ8U+ZIhnxRJx+ABS2WI8EmRb9yQT4pCMhRKiWwZiuEbN+STIl8y5Pt9t0WIQ7vjhlz4pMgnQ76U6OjsY22NG3LuyyNFPhnypUQhEQqlRO2MG3Lux/N6+ETIlxIdnvx6W+OGXISkyCdDvpTIJ0KulKhTdFSIKLqKJUErkRTZnJ94ZokY2emQjS1FPhkipCV0Limy0yGT5/HiEjHipEB2m9gdpE6Uz9npkI0tRT4ZIjpVPmenQyaHU0eWiJGdDtnYUuSTIaITkyz4RAWoS5EtRiEZImwpCh0DkE+y4JIiOx2ysaXIJ0OELUU+GWq093RW7HTIxCU+sfTI7uD5ZIiwpSh2x94lRa50iHClRD4RMrGlyCdDBLd8jnBJkU+GfPhkiLCliDOJgkuKXOkQ4UqJQgugAkulKLT4KbBUimLJkEuKQjLk+swdGU9FZ0mzpShWJmdLUUyGXCmRT4Z8xCZRsKWIkwzZUnRyYiEoQ66UqJ1JFELYv/MxGbJTou/WHgnKkC8laqdMLoQtRTERcqVE7ZTJhbCliJMK2VJ0dPwbQRlypUTSMrlYKmRLUUyE7JRoaOZI22VyEmKpEElRJ8vlgKs4qYIpRb50yMQcVyQZY7TSs8+ZUuRLh0zOzD/XEKOQDJlIS+gA+Qx0phT50iGTg/heQ4xiMkRIS+hMKfKlQya2FIVkyISkKCZDhHRckSlFvnTIxJSimKg09rvYjiNDxHJmnvOlQyamFMVkiCApiskQIZ157sTEQosYhWSIMAWIW0pHHb2YDBGS6XyBVikKyRBhShFHhgiSopgMEaYUccYNmVLEkSEzJYrJEEFSJJlRzpSikAwRphTFZMgmJkMESRG3TM6UIk4yZEqRdLpogD9miKSImwyZUsSRITMlamdGOS4kRdxUyJQijgyZKZF0zBA3GSIp4qZCthRxZMhMiaRlctxUiKToOJ5myZCZErVTJieFmwqRFF2eOcSSIfP1WW6JXAyuCI3OnmwkReZ4oRBmSnQlS+RsOrYOEZHPbZKfRGrlvSyXkQ3qLeX408MSNchqjtdlZWshbaptE7UHgKG0bD75l8a+gr7KftE2xTRvUUOiCtk6IelE/vk4OPUItpV/ULTNZCJbsK2Ukj3vnkT2vC+kTmBbbZ9om2wb9zjmhZ/bako2JXBXRjZVLyBf2ycvXaQIQDW38tedSlZ2XtJTWiecOXlrST6Rxdh8Gnursp7lhpLs7ncmLfsZOj8pW+vs4HgZPTl52eT4vOwNWUhk77d07SDuZAAm5mKkHEblS1hhfE72/mXb+OrlhBcF6fpHY228uLPCBfEOzJ5HXyL73TiRlq0hMwf+ukQAMCwsOb8w+jiqpT2ibQBgoSY7r2xG9h0v5/pF7Ycnj6BSlPVX5xeE8SSAaeFCsIWc7PMhfd4AMDote8+l/WcAGJ3k3ZAmUil5P6FWk/3OxOh4j2B27izm5uN3wYm5+YuYFYydmJ073/hHwsS0LOa7OPYPuDjGL4m7PPEihif4H4CJ6bM4Of4ddvuR+RM4UJOtiwMAp+eewek5WTJzaYJf5nVh7CmcGOHXxJ6beBqHJmQp3KEpWc0tcWKSX3N8ZuYpjMzySzkvTx3EqUn+eKrzsy/g5bm/Z7cnTqT5n6nz6dM4nY6nrSan0sdxTrDN5fQFHE/JjnF8fgjH5/k/CufmJ3Bmjp9enZwbxeHpEdE5XZiZFY11ujy9gMvMGaOIkZkaTgvGFJybCpfd2AzNJKKZvMbngRfHZOkFcXCcv47Ouek8nhnqZbc/MV7FUUF689JwD4Zn+SZ4cFy+8CoAHJ/MstI34sJMRtg+jVGBrFyaSYnl5vx0CsxwFgBwciLBKCM1NTk2Ns+eTQ2oJyXnJiWf8xqGZmSycmm6hmHBNqcm5jA6J/t+H5uawJkZfofswKyszwIA36t9Fefn+b/HL419BUfGvsZuf3D4i7g4xu8fXBh9nN3WZHxKVvo1NXMSY5P88U/jk0dwfoR/bsOTsv7g0PiLGBqXV+qMTr6E2bkL7Pazc+dlz3vqBM6PPsluf27k2zg3IkvEpmZkv/ejkwcwOnkAgOQ6kiBJ+KslJ8lsx2UIWMGSOYkUARALDm3D2Y7aTEwfYYmR2YYjRZcnml8UiRQBEEkRAByoPcoWo+cWvtb4d44UvTTWXFyLI0UXxpqlYxIpAsCWoiOTdYk4NPUNlhgdnHqkpQaZI0VnZprPQyJFAERSBAAvz/09S4wupJp3cDhSdD7dHJPFlaJT6eZzlUgRALYUDSXNslCOFJ2bb4oQR4pOzjXL+DhSdGFmFhdmmhde6QQQXCkaMTpjHCkyxz9xpGhopvljw5Eis7JQIkVjwoTk3HRTVDhSdGK82vh3jhS9NNy8eyqRIoA/TTZQlyGCIzkXZsySOU77ZhuOFJnlbFwpOj8tk6eTRmkaV4qOjTU/WBwpMttwpMgUofNMs5PODndqohmJcaXo2JRxnWJIkSlDl1Lx69T3al/F92qycRfm7zeHg8NfbPw7R4pMGRqfOsSSHLMdt2Mt7YCPG3LDkSJThiam40MvTBEam+KNbR6dfEmckEj7wONTzT4CR4pMEeK8xlMzJxvt6oITpilCUmQ3YCTiJGVFhChJ6hfJmBTZj8cEx/eYdJt20iIJMSmyv4Qnx78TFKMRx/iZmBSZMkSsZFIExKXo3ERrbe+hiUeCYkQy1LJNQIp8M9RIkiIgLkWXp1prdWNSdH72hSV/C0mRKUNESIpMGSKkSREQl6LL6dY7XTEpMmWosU1AikwZIkJSZMoQIU2KgLgU2RIUk6IRx53pkBS5JoMISZEpQ4R0zReOFNkyFEuJTBkiQlJkyhARkiJThoiYFNnpEEeKTBniYMoQEZIiU4aIkBS5JjyISZEtQzGXOMlc98fElCEiJEWux0JS5EqFYlJky1AsJTJliIspQ0RIilzJUEiKXCIUS4lsGYqlRKYMcfAlQyEpcj0W6oibHXAilpaMC5OedpIhm5gUuUQolBK5+r3R5z0lK3nrRCoUkh3/Y6HrSrLk8Zjs0OPkGJ1mxYvo5+YvXrG0SIJPinx/95XQmemQyfDES1ckLZLikyLf3SWfFJnpkMmJkW84xciWIZMrUULnkyIzHTLxSZEtQ8Spye85xcglQ4S0hE5SPgeEpchMh0x8UmTLEHE8ddIpRi4ZamzjkCKXDBGS8jnAL0VmMmTjkyKf/Pj+7pIhwiVFoZnxpFP4+qTIN+/Ei2NZrxj5kiGfFLlkiHBJkUuGCJcUuWSI8EmRr1TOJ0XHJ7NeGfIJjkuGQrhkiHBJUWjGQZ8U+ZIh30fNJ0Ojs/7yOZcMhQiJkkuKQiVyLim6NF3zJkM+KfLJUCglcslQCGmZXCgVcknRS2Nf8f52+6TIJ0O+lKidMrl2SuR8uORgfPKIV4Z8KZFPhnwpUbslchLaSYV8MuRKiUIlcr7XvJ0SOTnyVGglkyFixYTINjhbimKSZH9QuKVxZrvYNtwSOpPlpkWxiNaWIlc6ZOKSIlc6ZGKPK4pF7ZcmDnQ8LbKxpciVDrW0t6SIs8q1LUU+GSJGZo+3iJFPhkzaKaEzcaVDJrYUudIhk9Ppk0vEyCdDhC1FPhkyaWdckQRbilzpkIktRSEZImwpiiVB9uMhGSIkY4qApVLkSodMbCniTMJnS1GsTM6WopAMuQjJECEZUwQslaLYuCFbijipkC1FMRla2l72c8tZMNWWoliZnO0SnGTIlqKYDNnyIxlfBIRlyH28eHtbimLJkC1Fx6YmojJkp0QxGbJTopUokTOl6ODwF6PJkC1FHBmy5ScmQ3aHezklchyGJ49EkyGzX8YZL2SnRJwSOTslivVPbRG8EqlQ7L0w5YdfImdfY8LXHFt8lv73yqRDwBWedluaFrUzeQJtJ4GkiCtHJEW+dMiGpIhTrwq0P65Imhi1W0LnS4dsSIpC6ZAJSVFMhhrt20yKOl1CZ0NSFEqHTEiKYjJEkBTFZMiEpCgmQ8S59Mm2xxWF0qGW9otSFEqHTEiKYjJEkBRxZIggKeKOFZJOtAA0pSi2bhJBUhSTIYKkSDIjOUkRd8wQSRFXhigl4sgQQVIUSodMSIq4kyiQFElK5EhyuMlQsz3vdaWUiCNDNtwxQ/Sxk5TJkRRxkyGSIK4MUUrElSFKidoZL8QtkyMpkqRCJEXcZIikiCtDlBItZ7wQhwujj69oMkQdb64MkRxwZYhSok6UyIVoZ6wQwO+jNp43U4YoJeLKkPR9INpPhfjXnCuVCpl0fNrtJQdItTer0VognZbNXlSrTaIgmJZ8Zu4s+rvuFh3j4tiT6K3ewm4/PP4sstn17Pbz85fFzzuf7RW1TwunX5ycOYZSYatom6mZk+gq38BuPzZ5EOXCdtE59VRuErS/gM1d97DbA0AB/M4lkQin2B6aP4oNWf407JdrJ7ADt7Hbn0sfw/Ya/304nn4ZW2q72e3Ppk/ghkQ2dTkA9GRln8FMStaBPTs7iS1F/vfo/PQMdlX509Beml7ATetk197hWeCWHsHMXFNp3Nglu1vXm5O1n63J7tm9MJbHQIH/HA6Np9FfEE75PZ1Cn2Dm+aFZoFvwcRqaBarCn03JTHIAcGla/rN/cnIGlQz/xCYW5kXtJxfm0Zvnv1DjcwvoyfP3f2lmFsWMrMRxaF64kBGA0RTvhhDx3NSXUMlvYLe/OPYP4t/sVIo/S2SSyJ/zlSAF2Zciwby4vyV/naQ3LuTfO8k5Aav3/esEK5kOAVdxYdZrgVptkj31H7WbmeOlRIS0RA8AhsefE7Wfn78sai+Z7rBWm8T07GlMz/LSjOnZ05icOYbJGd5sLtROcoeD2kqmt6wfS5YUjUzwEiLi9Fh8YV9iePYYzs3K3ucLcy/h4txBXJzjLeA2NH8UQHxAL3G5Vr+LdQy85PFcuv7eHU/L3odTadkihS+nZHfwxpIpdgoFABfnpnFulr8+xdnZ+vfn1DTve0QLNB4Z5x2D7sq/MMT/8aAFZJ8bkf0kSGasOz2dwfNjfJM4PFHAySl+B/mFMVnpHi1ue1GQxlAKc4m5pMrQ4uvKXduH2kvSvZFZYFYgRGcna5gTrp9zclK2hszEgqzjMrnYfniW90KNL6Y3I7PMxGoxJZ5eYKay88M4OT+MCcg6l8/jcZxM+Nf956a+JNq/tD8g/W1fzZ3pBPzPlKQtIO+Xtfc6tZc9cI+VJNOr+v1bC6gQdQDpfOicL5/ZhnsRvDjWHFTHkaLh8Wcb/z4/fzl68TQf58ig/ThXigiuFBHS2BfgSdHYZFMgOFJknjdHiiZnmrXFHCkanm3u/9zscywxujDXKgUxKSIZIiRrYQB8KSI4UmS24UjR2XSzzIArRWNJUzo4UnRxrvkDxJEikiEiJkXmavVAXIrsEiWJFBEcKTo11WzDkaLT08078xwpOjzRbMORIlOGOOVpJEMS7JK0mBQNWdUeMSmy23OkaMTYhiNFZyeb6RlXikwZ4oiO2YbTflIoT+PC9YIuWSWzMSk6OT/c8t8cKXoej+N5NEvMOFJkytAEo8TO7AdwRMdsw+kor4XOdEx0Esy3tIn1tWbmzra0kb9OXMlZ0UKsNfHerQVWXIhWOuJaLYTkwPWY/UWMIV0oFqhL0WpKi4CwFLkeC0mR67HYwEDXYyEpMmWoeVy/FLnOKSRFpgwRp8eeEKVFAMRpERCXIpuQFFE6ZBKSIkqHTEJS5HosJEWmDBExKTJliAhJkSlDREiKbBkiuEkRwU2KiJgUDTvKtENSZMoQEZIiU4aIkBSZMkSEpMiVDIWkyCVDsZRIuqaPLTfttg9J0Yhjm5AUmTJEhKTo5P+/vTuPkqOs9/j/qZ6ZzGQPJBCIkEgksgheQBavkgCymigBoriBeBRFjyQRF1BAw0X5KXoAo/fghcMNXC8IeOH3A5QgNxBCjEoUSeSyRSB7SCaZJDOZfev6/TGp7urqWp5npmeml/frHHRS9dTSy/TUp7/P81RbZ2hlKC7khK2Lax8WhuKqRGFhKK5KFAxDSYJhyIQ/CJl4tf2p0MpQXCgK+9sf97c6bF3cRXM5XFAPRVXI/nmyGzcTd+z+rCsnQ5ElBn0MUeZAZTyWKCg4xiYpNAT7uSb9ogbHFfkrQ1GC44r81aEwwT7KSUHJ9jHXjZiS8++k6tGo2ml5y5IqSGHjiuLCUtiYorBAlHteueOKks4pOK4oLBD5BccV+atDYSaPyH2dg5WhMJNqjsz5d7A6FBQcUxQWhvyCY4rCwpBfcExRUvUoOKYoLAwFBccVhYUhv8NqxuUtCwtEnskj8sf7RAUiT3BMUbA6FBQcU5Q0gD04pigsCAUFxxSFhSG/4JiisDDkd+zY3McYFob8DhuZe7Gc1E0uOJ7IpDIUHFOUFIaC44mSwlBwPFFS+7DxRGFhyDMi5CkPC0N+Nancx2jSRS44PiipGhRsn1QZCo4nSqoMBccTJYWh4HgikzA0WrnjOZLC0GFO7ud9Uhe54FiipC9Bbf9Oh41HKcUL6uB4oqQwZHuNFXyekp+jsM+Iwl5a259T+Riqwgpd5gbBYHSh8yv1cUWSrMYVScobV2TSnS5YLUrqUtfc9mZOtSgpDPWdx2bfz8nn5K8WJYUhKbcLXVIYknIrRSZhSMqtFCWFISm3UpQUhqTB6T7nZzumSLIfVxSsFMWFISm/UpQUhoKSwpCUWykymc3LXykyCUNSbqUoKQxJuZWipDAk5VaKksKQlFspMhkz5K8UmXaT81eLTCpD/q5zJpUh0/FEnmCVKC4MSflVoqQwFGQ7Xkjq/5ghUybd5PyVIpPKkL/rnGllyN99zqQy5O86ZzJeyF8lMvk77/87bfI3238RXS5jTsppvJDx3svgdStGQ1YhkiqrSiT1VU1sg4I9++lZB/uXtRyMHTXDKBB5RtVOtRrzNH70MUaByDNl7MlGgcgzecT7jAORZ1LNkUaByHNw9VFGgcgzTccnVof8pqZnWIWjd6WnG1WH/Ga4702sDvkdVjMuMQz5TR4x0ioMvatulFEY8htXbTeZwKGj7T+HJ9gdQuNq7D5j6iy/mmvusfvcsw0hkmQ574BSlh/F42rsutaNqU4OQ34jquzCUE3KsQ5Do6uqrcLQ6KpqqzA0YUSN1Zih8SOqrbrJ1VVVWXeTG606q25yhznHWE2eMHrEwVZfelZXH2j1Babj1HFBXaIq8bUbymE3BKKyMPhTP1Ymm+fV/jmtqZ5k3La7p8FqGu/Wju0aO9J8mnBJam7frAmjzKe0bmzfqEmjj7Vov16HjD7BuH1DxzpNqjOf8ruhY50m1x1n3F6SWtI7daQ+YNx+b2q3Dk0fatx+e2q7DkmbT/26JbVJ0y2mFd/tNOmIqoOM27f19ug94+ymcW3YP6fzkePNpize3tb3u3CU2e2DtK2t7/fsPWPMfoc2tPS1n2T4MLz7Mk2qs/uc3N3h6oBa8232dLpWx9jd4WqCxf6bu12NqjJv39iVtgp1W9vbVePYTUvd5nZplGOelnvdtKod8/TbK1e1FufUlO7QaIvz2ehs05h0fnfYOG/0rNDI6onG7Xc0rbK6LUR/JgcCytVQBqIh7TJXKRMsDD2bgXuEIXOD+5ya3qTYa2c6jXdrx3ZJfQHHlNe2sc2s+1lj+0ZJUkPra4bt+/a7o3WtUfuGjnU5/2/avr4jfmycX0u6r3vKW/q7Ufu9qd2S+kKOCa/djpRZF40t+6tn6y27AG7oNa80StLb+yrrG8b+sL1Pzx7Dm+YG999ouF1zd1+7tl6z9o1dfZUh06rV1va+Kmm3a16Nadt/08Q2w5sn9rp959TjmlWtevd/rnYanlNTuu993Wp4PhudbZKklpT5FPtv9KyQJLX37DZqv6Op76bbpiGHMARkDXVmYAxRWSnMjCbwG9zn0zQUeWzvbdTcvtkqGEnmochjGoo8pqEos3/DUOSxCUUe01DkMQ1FHtNQ5DEJRd5d7iWzUOTvqmQaihp8d/x8qyn5wtSrDknSuqaYhvt51SFJersl+ep9g69Ng8FD8KpDfe3Nfpf9YWivQWDxhyGTY9iGLS8MmfLCkCkvDNkwDUGeXsMQlGlv+bnrhSFTXhgy9UbPikwYMuWFIVOEIWB4DWmXucxB6To3BAZ/1pPKM7jPaVgXurjAFNaFzqsORQnrRhcXmMK60HnVoTBhXei86lCYsC50UQEoqvtcVPu47nNedSgoqvucVx0Kiuo+FxWYorrPbYkYWxXVfc4fhvyius/FjduI6kLnD0N+UV3n/GHIL6rrnD8M5ZxPRNe5DRGBKarrnD8M5bYP309cUInqOhdVGbI9RlTXuagwFNV1LioMRXWdiwpDcV3nosJQVNe5qDAU1nUuLgiFdZ2LC0JhXefiglBY17mkEBTWdS4uCNnOfApUquHoUUaFqGwRfgqvtKtFkl03Oim/WhQXhqT8alFcGJLyq0Vx1aCGjnV56+Pah1WKWtI7I8OQFF4pigpDUnjwiasehVWKosKQFF4pigpDUnilKGkQe1i1KCoMSeGVoqgwJIVXiqLCkBReKYoKQ1J4pSgqDPW1z1+XVLUJqxTFdZOzPUZY17m4ylBY17m4ylBY17m4ylBU17m4ylBwXa+bjq0MBbvOJVWFgl3nkqpCwa5z/akK2aIqBJSuYQlEjCUaKnShKzw34ufC8Icik4DkD0VJ1SGPPxSZBKRS7kJX3/GKdRc6fyiKC0MefwAy6UrnD0VxYcjjD0VxYcjjD0WmM3r5Q1FcGPL4Q1FcGPL4Q1FcGMqcjy8AxYUhjz8UxYWhbPtsG9MubP5QZDJmyPYY/lBk0k3OH4pMusn5Q5FtN7k2t8uqm1wpdpHzjyUyDUP+sUQmYcjmNhBApRqujDAsXeYyB6frHEqWo2IKm9VVEwb/IBazQ0lSdcpuNrPqqvybmRZS8KaHSY7UB4wCkefQ9KFWY4sOSR9iFIg809PTjQKRZ7IOMG7rGV9Tk9zIZ3SN3XtiTI3dTG+239jtsxxvM9g3LZhU51iNGZpQ61iNGRpV5ViNGUq79mGoW+YTLUhSrez+rjuO3avQ4drNob4rZTfpyNYu+/v89adaDyDfcBZM6DIH9EvxhCFJ6ultHPRtbO510dOzx+rGux1d9WpJ6I7n19K+0ap9e9cuNVjenPjV3hV6p9v8prJr0sut9v9S7zKr9n/t/V+r9q869pNL/LM7ujth0I6uNr3d2mLc/p22Tv2zyfyb/a0tPdocvCtpjLf2dWlnu/nFsk1bz+5Ouz/W6/fZtd/eZhc+dhrckDfbtlsNneaPuUUdalGHOmX3PHVa3CizW73qsrgAanE71SPzALjbMf9CQ5I2d/7Vqr1EGALKxbAGIrrOAYVjE3C8tqbbZNpbhCJJVqFIklXIMW3f3pX9hrih5VWjYNTZ25z52SQU7eh5Pef/k3j7NL15bkN3302C3+5ZbdZ+fxchm1BUr72S7EKRJKNQ9I7vhp8moWirLwiZhKK39tnNeuaFoXqLUOSFoT2GoWhfV19YaeoyCy3tvX0X+i3dZhf8Xrsug5sN7ezIPs66VHIFp0W5r5FtKDJhW3lqce1uGuuFoZRrdpnjhaG0xXUJYQgonOHOBMNeIRruJwAoJz29jYkhJ7jeun1CKAquTwpFHV31Of9OCjnB9bYhSpJ1tSguFAVDUFIoCu4rKRR5YciTFIoaAuMlTEKRF4Y8SaFoR1db7jlZVIqk+FC01aIqJOWHoaTKT3C9SSgKVoaSQtG+QAhKCkVeGPIkhaLg+rhQ5A9DJoJhqD+SqkTBMJRUJQqGoaQqUbAylBSKgpWhpFDU1Po6YQgooGLIAsMeiAAUnnV3OIMgldO+QJWiYBjyRIUc2+X+6lBQVCjyV4f8bLrPmVaKPFGhKBiGPFGhKBiGPHGhKBiGPFGhKBiGMucUEYr81aH+iqoSRVWGokJR1PK4UBTVTS4qFAXDkCcqFAXDUBLTCpIUHYaiqkRxYahQXeeiKkNRoai/lSETmzv/at1NjiAElKeiCETFkAyBchMWcApZPQoLRXFBaai7z8WFIU8wFEWFIU8wFMUFn7B1caHKtPucJxiKosKQJxiK6rU3Mgx5gqEoKgxFiQtDYVWiuOqQzXgiKT/8JFWO6tu784JR0pihYCiKCkNR4sJQWPCJC0PBKlFSZSgYikwqQwPtOlfIbnJhVaK4MBSsEiUFobAqEWEIKLxiyQBFEYik4nlCgHJiW/nxtjFu27MnE4JMqkb+UBRVHfLzhxyTgDSU3edMqkD+NiYVJn8oiqoO+ZmOKfIMZKIFkzDkrxKZVIb8ocikq5w/FJmMG/JC0FBMoGAShvxVIpPKkD8AmVSGvFA0HN3kwvirRCZhyF8lMqkMeaFot7PbujJkgy5ywOAopmv/YZ12O4hpuIHKUDdiilEg6q+qqtHW24wdOdWqfcri88pmoLYkOZbfVY2vOcyq/ST3XVbtx7ljrNqPdOym7x5VZffZ35W262ZmqzrsTqZx7S2njh5R1Z8Jv800dtm91xrSduO/JKlWdq9vymKC8xFOtVU3uSYnvsoZtLHrBav2zW1vWrUHYK6YAlHRVIik4npiAAyevkqRTfcZu7a9vfuSm/m36G1Wo0WlqKV9q/a1bTRuv8/i5rb72jaqyaJ9c8dWbW02v8hr7N6st3r+Ytxekv7pvGzcdkdqhzY4W4zb12tvzs1kk2zs2a130uYXwTvS5vdukqTmdKf29phXTPb1dGlPt/kFfFtvr1Voae42f++3dqdVY3G/sD3pVquw4rHpOtcu8+emVR3a65oHtDanTTWqNW6/I/2G6qonGLcnDAGDp9iu+YsqEEnF9wQBGEwmF3u9gf833LNlKJJkFIpa2rN3mDcJRY2t/9zf1jzkSDIKRc0d2XMxCUWN3ZutzkGSdqjvPGxCkSSjUOQfw2QSijb22N1XxgtDtqFIklEo2teT7bZnEoraeu3ew14YMglFrb4udSahaE+61epc+sMLQ60GXfL8bboNAlebYzeebUf6Dav2hCFg8BTjtX7RBSKpOJ8oAIMl7mIvuC7pwjB3vUko6g1MpGBTKZLiQ5EXhrJt40NOcF82lSIpPhQFw9BbPX9JrBR5YciTFIp2pHbk/NumUpQkGIaSqkTBEJQUiprTnWpO54aauFDkD0MmgmEoqUoUDEFxoajVYuY5KT8MDUaVKFgZigtFJoHJLxiGkqpEwTAUVyVqbnuTMAQMomK9xi/KQASg0th2nzNvHxeKgmHIExWK/NUhv0J0n4vaR1Qo8leH/Gy6z0mKDEXBMOSJCkXBMOSJCkVhM9xFVYmiKkNRoSgq/EQtDwahJFFhKKpKFFUZigpFtt3kwkRViaIqQ/0JRWHa1WndTS5MVJVoMCtDBCGgchVtICrWBAlgsAysGhTXvhDd56LCkCcYaILVody2A+s+FxWGPMFQlNRVbqBjiqLCUJS46b5txhNJ+aGoP2OG4gSrREmVoWAo6m83OZN1SZWhYCgqdDe5YJUoKQgFw89AK0N+wSrRjvQbsWEoWCUiDAGDr5iv7Ys2EEnF/cQBGAx2F48244uCoSiqOuTX3+5zcWEo23a97+eNie1tu895TMcN+UNRVHXIzwtFJmHIXyVKuveRlBuKTMYNeaHIJAz525hWhmwmWfAzCUP+KpFJZchrM9BucmEG0nXOpiokmYUhf5XIpDLkhSLGCwHFp9iv6Ytq2u0oTMcNoLAsp1WuGm/VPu3ajC+x+14qlRph3HZM3RSrfUvSmOrJVu3HOQcbtx1lOX2345o/NynL53G06qzaS1KVxTGCNz5N3LfF1N22waXeIPz7pWV3WZAOuUlqoXQ7dvdU2pL+h1X7Xfv+ZtUegL1iD0NSkVeIAGBw2FzwuXY3q+1tVDptNs4hnW5T2uI+MOl0i9ENcD2NLXY3Ym1u36ztzeYXiPu64rvu+e1Ob9QW1/x8dmi9tjvJN6fNtE9tMG7blNqtd1LbjNtL0i6nwbjtXmeftrvmr1NzulONvWZVqI50r9rS5hcXTb2dqpN5iLa9x1CtajTSYurrTse8kmQbhhqdeo2tOsS4PWEIgKckAlEpJEsApcbuW3CTUORvYxqK+tomhyJ/G5NQ5LUxDUXN7dmudSahyAtDWztfMtq/xyQUmXTZ89uZ2tS3nUEoakplu+CZhiIvDO1wdia23etku2aahCKbCR060tkudSahqKnXrhubF4ZGGgYo2/DkhSGTUNSfMGRq176/EYaAIVIq1/AlEYik0nlCAZSSpFCUu96mUpQkGJhsKkVSfCgKrrOtFEnxoShYGUoKRbvTG3P+HReKgmEoqUrkhaHM9jGhyB+GTAUrQ3GhyB+GTATDkGmVyEQwDCVVifpTGfJLqhIFQ1BcKBpoGIqrEhGEgKFTStfuJROIpNJ6YgGUiqhQFL48KhSFLY+qEkUvDw9FNmEpKijFhSJ/dShJVDe5qFAUDEP9ERWKgmHIY9N9Lq5KFNVNzqRS5ImqEkVVhqJCkb865ImqEkVVhqJCUVgYGqkRkZWiqPAUFYoGu5ucKcIQMHRK7Zq9pAKRVHpPMIBSMLDuc3GVI5uuc33tW2L/nXNci/FEUngoigtDNuOJpPxQFBeGwqpEcV3lgqEoKgxFiasOhYUimzFDUnx1KBiKbO97FBaGPMFQ1N9uclGCocimktTpdMaGoeA6mzDU6NTHhqFglYgwBAydUrxWL7lAJPU90aX4ZAMoZq6ywSg5INl0n/OHIpOA1N+KkElAsu0+5w9FJpMoeKHIpDLkD0Um44a8UGQShvxVItuuciZhyF8lsukqZxKG/FWiuDAUZBKGvCpRrWoG3E0ujFclsqkKSfZhyAZhCBgapXx9XhLTbkdhOm4ApSSVGmVdMRosVVXjrNqPrj3Uqv3ImgON29Y4o4zbVjl2F/EjZfc4a1zzGdMkqdZi+u4x7mjjthOq6qzCULdr3ta1rIhKdlNxN1qOpbKZMt0mDDX37iAMAUOoVMOQVKIVIk8pP/EAKk+xhCGp70a1wZvVxrXd17bOeN8tHVuSG+3X2LZBu1rNb4Db0G5+Hvu631F9t9lNOvf0btKe3k2qTyffVNezW+bd9tqcFu1MmV/Mb+9Nvsmsp8M1r670JwzZaFenai1CZYdjXg1tdsy7iK7f+3vt2veicXsAA1Pq1+QlHYik0n8BAKBUmIQiLwztak6+QWZjW7Zbm0ko2tvR163OJBTt634nsU0Uk1DkhaF3lHwubRYX/VJfqJCkvW7ydl4Y6jW4OepAwpDJzWC98zblhaE2g4qSF4aqDLrtrd/7e6vzADAw5XAtXvKBSCqPFwIAhkNSlSi4Pi4UBStDJqHIlBeGPHGhKBiGkqpEe3rtJmgIVobiQlEwDCVViWxCRbAyFBeKhqIy5BdXJepwWga1MpQrOcgB6L9yuQYvi0Aklc8LAgBDLSoUmXapixMVivzVoUzbiCpRMAz1R1QoigpDUVUi225yYaJCUVgYiqoSDUc3uagqkVWIs6yWhYWhqCoRlSFgaJXTtXfZBCKpvF4YABhKNuEnrEoUN24oGIrCwlCmbSAUxYWhsCqRTVe5pMpQMBTFhSGTrnNx4kJFMBTFhaFglWioK0N+wSpRXBgK6zY3sMoQgMFUbtfcZRWIpPJ7gQBgqPhDUVJA8oci20kUkvR3koWkMOSvEg20m1wYfyhKGjfkrxINpJtcnMEIQ/4q0WBVhpqdPYlhyF8lSg5DdJsDCqkcr7VLetrtOEzJDQCDL5UynzL7oLH/YhSIJOmg0e+z6io3onqscdua1EjjtpJUnTKfNW2KjjKeROHg9GSrUOHd48eEySQI/ZWWa3XeNveB6pX5hdabe/8/47a2N18GEK4cw5BUhhUiT7m+YABQTGymEq9v+otx262Nzxq3be8yn866tXOHGtvNQpmnodVs6m5JeqvH/DGud14zbmszU12L02rcVpI6ZV51kqRWtRu33ZvaZdx2n7vDuO1be58wbgugMMr52rpsA5FU3i8cABQLk1DktensTr7o9dq0diQHFy8MNbW9ldi2P2zCU1tPXzevd7r/L7Fti9tXNdnuvJ283/1haLeTXGnxwtA+wwBlG4aaZR6A+xOGWt2GxLZeGHJUZbBnV1SHgIEr92vqsg5EUvm/gABQ7AZyQ1qTUORJCkWtndkwZhJ0/G2SqkReGDLhhSETA6kMJYUifxgyCUb+MJROuO+RPwwltR28yhBBCCiESriWLvtAJFXGCwkAw8km9MRViUwqSB7brnJBcaEobF1UKAoLQ1FVorAwFFUlCgtDUVUim25yneouusqQCcIQMPQq5Rq6IgKRVDkvKAAMl7BQFBWUwoJPVBgKqxJFhaGwKlFYGIrTn25yJoaqMuQXrBLFBaGodVFhKKzyExWGwtpGhaGwbnNRYSi82xxhCCiESrp2rphAJFXWCwsAw8EfgJKqRv4AlFQZ8oeipMqQPxQlhaFg+EkKQ/4qUVIY8leJksKQv0qUFIb8VSLbypCpZrVl/jNFZQgoH5V2zVy2027HYUpuAChNNtN8V1eNGbTzGFV7sFG7KTXHG1eGDnXfY1wZmuhONA5D49wxxmGoVjVWISillHEQSillHIRGO5OMg5CrXhGEgMKptDAkVViFyFOJLzQAYOiZzDjnMZlxzvOWY77fjSnzGfjWp9YlN/LZ4L5k3HZL+9+M27659/+1OAvCEFAolXqNXJGBSKrcFxwASpnp5A3pdJu6uncate3q3pn5z7R9Y8srRm1bO3Zoe4tZaGju2aGtPf9IbLdX7xjtT5L2OOZd07alzG+EK0mb3LXm+27/u3HbdxpXGrd1LW7kCiBeJV8bV2wgkir7hQeAUpUUivzrk0KOaQjqT/vWDvMw0txjN/GDJO1QfIDxh6HtqU2xbf1haFdqS+Kx/WGosTe+vT8MNXXEtyUMAcOj0q+JKzoQSX1vgEp/EwBAubCZ/jss3MQFnuC6uCpRMAzFVYmCYSiuSmRaHSqHylBc4CEMAYXBdXCfig9EHt4MAFA6bKb4HmjwSWofNFiVobAwFFYligpDYVWiqDC0K7UltFJENzmgfHDtm0UgAgAAAFCxCEQ+JGUAKB023eP8CjluKNhtLq46FOw2F1cdCnabK/aucsFxRINRHXLVQ3UIKBCueXMRiAJ4gwBA6UkKR/0NQSbbeaFoKLvK+Xnd5kzCkNdtbjjHDXkTK7zTuDIxDHkBiCAEFA7Xuvkq8sasJrh5KwBUthE1BxsHqZrqScb7HVM3xbjt6OqDjNqNcMxvWJtWr3FbSWrrNbux7ISqw40rQ60dG6zOAUBhEIbCUSGKwBsGACqbTVWpu6ehoO0kaV/7RqN2u1pf1bYWs5uebt73R+PjS9LGvUuN2u3ct1r/3PuIUVvCEDA8uLaNRiCKwVSEAIBC8cLQ3paXE9vahCFTXhjauu/PiW037l1qFYZMEYaAocf1bDICkQHeRACAJHHVn/5WhrY3m1V+kthUhoJBKC7wEIaA4sY1rBkCkSHeUACA/ggLQ1FVItPKkJRfHYrqNjeQMBSHMAQUN65dzRGILPDGAgDEsakEBUWFobAqkWlXuagwFNZtrhBhKCz4EIaAocc1qx0CkSX6YQIATMUFJH+VaCCVIT9/laiQlSF/AKIyBBQvrlP7h7ml+8l1e5iaGwCQp7unQTXVk4yrRYUKQ37D3U2OIAQMPYJQ/3EfogEiFAEA+quqapxx2+qU2b2GetMdRu16ehuNjw2guBGGBoYucwNEaRIA0F+9vfsK2q6zewdBB6ggXIcWBoGoQHgzAgAGg00YMkVoAkof156FQyAqIN6YAIBC6e3dlxOG4gIPYQioLFxzFhaBqMAoXQIABsq0KiSFh6Go0EMYAkob15mDg0A0SHizAgBMBMPPQMNQFMIQUNq4thw8BKJBRIoHANhICkP+AEQYAioD15ODjzmjhwD3LAIAJCl0ZYgQBJQ+gtDQ4D5EQ4xgBAAAgDgEoaFFl7khxhscAAAAUbhWHHpUiIYR1SIAAABIBKHhRIVoGPHGBwAAANeEw4sKUZGgWgQAAFBZCELFgQpRkeAXAgAAoHJw7Vc8qBAVIapFAAAA5YkgVHyoEBUhflEAAADKD9d4xYkKUZGjWgQAAFDaCELFjUBUIghGAAAApYUgVBroMlci+IUCAAAoHVy7lQ4qRCWIahEAAEBxIgiVHgJRCSMYAQAAFAeCUOkiEJUBghEAAMDQIwSVBwJRGSEYAQAADA3CUPkgEJUhghEAAMDgIAiVHwJRGSMYAQAAFAZBqHwRiCoAwQgAAKB/CELlj0BUQQhGAAAAZghClYNAVIEIRgAAAOEIQpUnNdwngKHHLzoAAEA+rpEqExWiCke1CAAAVDqCUGUjEEESwQgAAFQeghAkAhECCEYAAKDcEYTgRyBCKIIRAAAoNwQhhCEQIRbBCAAAlDqCEOIQiGCMcAQAAEoFIQimCESwRjACAADFiiAEWwQi9BvBCAAAFAuCEPqLQIQBIxgBAIDhQhDCQBGIUDAEIwAAMFQIQigUAhEKjmAEAAAGC0EIhUYgwqAiHAEAgIEiBGEwEYgwJAhGAADAFkEIQ4FAhCFFMAIAAEkIQhhKBCIMG8IRAADwEIIwXAhEGHYEIwAAKhdBCMONQISiQjgCAKD8EYJQTAhEKEoEIwAAyg9BCMWIQISiRzgCAKB0EYJQ7AhEKBkEIwAASgdBCKWCQISSRDgCAKD4EIJQighEKHmEIwAAhg8hCKWOQISyQTACAGDoEIRQLghEKFsEJAAACocAhHJFIEJFIBwBAGCPEIRKQCBCxSEcAQAQjRCESkMgQkUjHAEAQAhCZSMQAfsRjgAAlYQQBPRJDfcJAAAAAMBwoUIEhKBaBAAoR1SFgHwEIiAB4QgAUMoIQUA8AhFggXAEACgFhCDAHIEIGAACEgCgGBCAgP4jEAEFQjgCAAwlQhBQGAQiYBAQjgAAg4EQBBQegQgYAgQkAEB/EICAwUcgAoYY4QgAEIcQBAwtAhEwzAhIAFDZCEDA8CIQAUWGgAQA5Y0ABBQXAhFQ5AhIAFDaCEBAcSMQASWGgAQAxY0ABJQWAhFQ4ghIADC8CEBAaSMQAWWGgAQAg4sABJQXAhFQAQhJANA/hB+g/BGIgApFSAKAXIQfoDIRiABIIiABqDwEIAASgQhADEISgHJB+AEQhUAEwAohCUCxI/wAsEEgAjBghCQAw4XwA2CgCEQABg1BCUChEHwADBYCEYAhRUgCkITwA2AoEYgAFAWCElB5CD4AigGBCEBRIygBpY/gA6CYEYgAlCzCElA8CD0AShWBCEBZIiwBhUfoAVCOCEQAKhahCcgi7ACoVAQiAIhAYEI5IfAAQDgCEQAMAKEJxYCwAwD9RyACgCFCeIINQg4ADA0CEQAUMUJUeSDcAEDxIhABQBkjUBUGgQYAyheBCAAAAEDFSg33CQAAAADAcCEQAQAAAKhYBCIAAAAAFYtABAAAAKBiEYgAAAAAVCwCEQAAAICKRSACAAAAULEIRAAAAAAqFoEIAAAAQMUiEAEAAACoWAQiAAAAABWLQAQAAACgYhGIAAAAAFQsAhEAAACAikUgAgAAAFCxCEQAAAAAKhaBCAAAAEDFIhABAAAAqFgEIgAAAAAVi0AEAAAAoGIRiAAAAABULAIRAAAAgIpFIAIAAABQsQhEAAAAACoWgQgAAABAxaoe7hMAylF9fb0aGxuH+zQAAGVmwoQJmjx58nCfBlBWCERAgdXX1+uSSy5RVVXVcJ8KAKDM1NXV6b//+78JRUABEYiAAmtsbFRVVZXeeONNtbe1S46zf01Kjvb/7F/mpEJ+dvb/byr7s5Ndn91PSo6Tbevs7wXrOP6fnZBl/v1W7T+67/xUpVRgvSMnu72C++pblvKWudl9pZS/fUopOa7/MXrPjpO3r5Tv8ea2VWa/mXP1L3Oyy7yn22snJ/tzyslumXn2Hd8xHa+Nb/+Or61v/95znfI1TuUcP3cf2eNnf/Yf19tN7nm5OdvlPr7c7TLbh7Z1fc9FyLmEPL6+/bshx8qeU/a4rm9/2fWZfto5x3V9x/U/vuBjdXOeN++43jk5vu0dx8057+CyvvPztfW1yT++b7uUm9k++7rn/py3LJV9fP5l2bbZk8xdlv3Z95GRef78y/wfHYGPETm5L0z2CfW9sRz/m8w7l5wXy//EO7nrnfD1ucf3rc+8oGHbBNZn9pvK7jOzPpX/i+Q42bYp34PMOT/fMid4Lqnwffnauf5lqcD+c84pcH77j+vmrPdtH3IsBY61adMu/T+3PKrGxkYCEVBABCJgkLS1tauttS3nqsUfZDLLMj9X5YQLyQsbvpATst6/LBNeHNd3Yei19V9su3kX3n0XuF6IcLLhJizwqCobTjKBKZUJPyk3G5hcVeVtL6WUcrM/97XzPT9u9nErEJSy5+edf/Zn/xZeIErJyQtETiAQ5QSZwPrcQJTdxh8ystdP2f2EhRR/IMi9sPf/nD1GcP/+EBC6PrDf2PXKXmz7A1H2XNyI7bOByB9U8p8X1/d6+LZR/vrMufiOmwpsl90mbL3/seSHGH9Iyr5WuYHIH5qy20cHIv/6nPCVCg9EOUEnuMx3XexflhOIcn9dcq67cwJRKqyt/4Xd/2//E5vyBSLfixgZeDLrQ0JOSOBxotb7w0RooElqm4pY7w88wUCUCm/rJKz3tXP9y4KBKCfkhO/LDV2fCj1W6HoABcdvFwAAAICKRSACAAAAULEIRAAAAAAqFoEIAAAAQMUiEAEAAACoWAQiAAAAABWLQAQAAACgYhGIAAAAAFQsAhEAAACAikUgAgAAAFCxCEQAAAAAKhaBCAAAAEDFqh7uEwDK1ahRI+VIkuPsX5KSo/0/+5c5qZCfnf3/m8r+7GTXZ/eTkuNk2zr7v+NwHP/Pvu0z+/KOnz2VviO5+5e6Simdu73czPq+n739pzPHT6m372c3e6yUqjLn7G2TUkqO63+M3mPKPi/+72vcnOV9/05nnqnsdq5vmbv/vNM5j9F73rI/pxxlts88+458z5XXJnt2juNr69u/91ylfI1TCj7H2X1kj5/92X9cbze55+XmbOc/fiqwXWb70Lau77kIOZeQx9e3fzfkWNlzyh7X9e0vuz7zquYc13vlsueV8m/n26f/neB/P0qS42a3D7YNLnNcN3Ncx/Etd/zPr/ezm32srm//TnYb/895y1LZx+dflm2bPcncZdmfnfwHk7PM/9ER+BiRk/vCZF9o3xvL8b/JvHPJebF8b1jvMyFnm/z1ucf3rc+8IcO2CazP7DeV3WdmfSr/F8lxsm1TvgeZc36+ZU7wXFLh+/K1c/3LUoH955xT4Pz2H9fNWe/bPuRYChxr06ZdAlB4BCKgwNLptKqrq3X00TOG+1T6wbtw6/Et6x6OE8nhBv4/HdUQ8LjKvmGAMlJdXa10mk9BoJAIRECBpVIp9fT06MYbb9S0adOG+3QAAGVi06ZN+tGPfqRUKpXcGIAxAhEwSKZNm6ajjjpquE8DAAAAMfiKAQAAAEDFIhABAAAAqFgEIqDAJk6cqC984QuaOHHicJ8KAKCM8PcFGByO67rMwwMAAACgIlEhAgAAAFCxCEQAAEnSY489Jsdx9Oc//3m4T6UsPfPMM3IcR0uXLh3uUwEA+BCIAKAI3H///brqqqt08sknq7a2Vo7j6L777hvQPq+++mrV1NSosbExsW13d7euvfZanX/++frQhz40oOMWwqpVq/Stb31LH/jABzRx4kTV1dXp6KOP1nXXXWf0eIrROeeco9NPP13XXnutent7h/t0AAD7MYYIAIrAu9/9bm3atEmTJk3S6NGjtWnTJt177736whe+0O99Tp06Ve9973v1zDPPJLZdsmSJvvSlL+nZZ5/VRz7ykX4fs1AOOeQQNTQ06PTTT9eJJ54ox3G0YsUKrVmzRtOnT9ef//xnTZ48ebhP09rvfvc7XXjhhbr//vv1uc99brhPBwAgKkQAUBTuuecebdy4Ubt27dJXv/rVAe/vpZde0pYtWzR37lyj9r/61a90+OGH66yzzhrwsQvhmmuu0ebNm7VixQrdcccduv322/X3v/9dX/va17R+/XrdfPPNw32K/XLBBRdo0qRJ+o//+I/hPhUAwH4EIlS0trY2LVmyRN/+9rc1Z84czZo1S0899dSgHGvXrl1atGiRZs+erQsuuEDf+9739M477+S1mzVrVuh/999//6CcF4rDOeeco2nTphVsf48//rgk6cILL0xs+8orr+jFF1/UvHnz5DhOaJuVK1fqoosu0uTJk1VbW6vDDz9cl1xyiVatWpVpc9NNN2UqOffee6+OP/54jRw5UkcccYR+8YtfSJJc19Vtt92mo446SnV1dZoxY4Z+/etf5x3vuuuu05QpU3KWOY6j73//+5Kk559/3uyJUF84/MQnPqGpU6eqtrZWBx10kE455RTdcsstRts3NTXpBz/4gY499liNGTNG48aN05FHHqkrrrhCmzZtCn389913n0466SSNGjVKZ555ZqZNTU2NLrroIq1atUpvvfWW8WPA4Orq6tKvfvUrXXzxxTrnnHN01VVX6W9/+5vRtiaf7fX19br33nv1la98RbNnz9bHP/5xLViwQC+++GLe/tauXavvfve7mjdvns455xxddNFF+va3v63/+7//y2m3ffv2yL8Xs2bN0k9/+tPIc/71r3+tWbNm6Yorroh9bM3Nzbrwwgs1a9YsrVixIrTNunXr9N3vfldz5szRueeeqyuuuEKPPPJI7H6BYlM93CcADKempibdd999mjx5so488kitWbNmUI7T1tamhQsXqrW1VZdddpmqq6v129/+VvPnz9eSJUs0fvz4nPYnn3yyLrjggpxlM2bMGJRzQ3l67LHHdMIJJxiFrGeffVaS9MEPfjB0/eLFi3XNNddo5MiRuvjiizV16lRt27ZNq1at0iOPPKLTTz89p/3Pf/5zrVixQnPnztVHPvIRPfroo1q4cKFGjRqlNWvW6NFHH9XHPvYxnX322XrooYd0xRVX6N3vfrdmzZqVeK41NTWSpOpqsz9fa9eu1Yc+9CFVVVVp7ty5mjZtmhobG/Xaa6/p7rvv1g033BC7veu6Ov/887V69Wp9+MMf1gUXXKBUKqVNmzbpiSee0OWXX573HP/sZz/Tc889p7lz5+q8885TVVVVzvp//dd/1T333KPly5fryCOPNHocGFw//vGPtWLFCn3yk5/UYYcdpqeeekrXXnutFi9erPe///2R25l+tq9atUq/+c1vNHPmTF1wwQXq7e3V008/rW9+85v67ne/q9mzZ2f2uXXrVqVSKc2dO1cHHnigmpubtWzZMs2fP1+33nqrTjvtNEnShAkTdOONN+ad0+rVq7Vs2TKdcsopoee8c+dO3X///Ro5cmTi87JkyRJ1dnZGrv/rX/+q733ve5oxY4auuOIKjRw5Utu2bdOuXbsS9w0UFReoYJ2dnW5DQ4Pruq77+uuvuzNnznSXLl1a8OM88MAD7syZM93XXnsts2zjxo3umWee6d511105bWfOnOnefvvtBT8HlI4f//jHriT33nvv7df2GzZscCW5N910k1H7T37yk64k980338xbt3btWjeVSrlTpkxxN2zYkLMunU6727Zty/x70aJFriT3wAMPdN9+++3M8s2bN7sjRoxwx48f7773ve91d+7cmVn3wgsvuJLcj3/840bneuutt7qS3O985ztG7b/5zW+6ktzHHnssb533ux/n5ZdfdiW5F110Ud66jo4Ot7m5OfNv7/GPHj3affnllyP3+Y9//MOV5H7+8583egwYXK+++qo7c+ZM9ze/+U1mWUdHh/vpT3/a/epXvxq7reln+/r16929e/fmbNvZ2el+7nOfcy+55JLEc2xvb3fnzp3rfutb30ps+41vfMO94IIL3I6OjtD1ixYtchcuXOjOnz8/9j349ttvu2eeeaZ73333uTNnznSfe+65nPUtLS3u3Llz3euvv97t7e1NPC+gmNFlDhVtxIgRxnf8fuGFF3T11VfrvPPO0/nnn69rr71WGzZsMNp2xYoVOvroo3XMMcdklk2bNk0nnXSSnnvuudBtOjs7Y7+ZA6J43eVMxw9t3bpVkkInKbjrrruUTqf1ox/9SO9+97tz1jmOk9etTZIWLlyo6dOnZ/59+OGH6/TTT1dTU5NuuOEGHXTQQZl1p512mqZPn65//OMfiee5du1a/du//ZsOPvhgXXvttUaPzRP2bbjp737U9rW1tRozZkze8q985Ss6/vjjI/flPc/e847h9fzzz6uqqiqne2ltba3mzJmjV199VfX19ZHbmn62H3HEEZowYULOtiNGjNAHP/hB7dq1S21tbbHnWFdXp/Hjx6ulpSW2XUNDg9asWaNZs2aptrY2b/3atWv1/PPPa/78+bH7kaRf/OIXmjVrVmSF7JlnntGePXv05S9/WalUSu3t7Uqn04n7BYoRgQgw8PTTT+u6667TyJEjddVVV+mKK67Qxo0b9fWvf13bt2+P3TadTmv9+vU6+uij89Ydc8wx2rZtW94fwz/84Q8677zzdO655+ryyy/XsmXLCvp4UN4ef/xxTZ06VSeccIJR+927d6uqqkpjx47NW/fXv/5VknTeeecZHz/suIceemjsurDxdH7r16/XnDlz1Nvbq4ceekiTJk0yOpdLL71UqVRKF198sb74xS/qwQcf1LZt24y2lfp+R9///vfrwQcf1KxZs3T77bfrpZdeir3wO/XUU2P3eeCBB0rqu3jF8HvzzTd12GGHafTo0TnLvZATNdarP5/tQXv27FFdXV1oeGltbVVjY6M2bdqku+++Wxs2bNAHPvCB2P0tX75c6XRa5557bt663t5eLV68WHPmzNF73vOe2P0899xzeuWVV2IneHnxxRc1evRoNTQ06HOf+5zOP/98ffSjH9Vtt93Gl3koOQQiIEFbW5sWL16sj33sY/rZz36mefPm6bOf/WxmlqikyQ727dunrq6u0G+jvWX+C6PjjjtOV155pW655RZ961vfUiqV0g9/+EM99thjhXtQKFt79uzRH//4R+PqkNRX/ejt7VV3d3feuqamJjmOkwk0JsaNG5e3zBvzE7Wup6cncn8bNmzQWWedpYaGBj3yyCNWM+GddtppWrFihWbNmqXf/OY3+uxnP6vDDjtMp556amR1Nnhuy5cv19VXX6233norc2+kQw45RDfffHPo/YSSpgNvb2+XJI0aNcr4cWDw7N692/jz2c/2sz1o69atWrlypc4444y8cWaStGjRIl144YW6/PLL9fDDD+vCCy/U5z//+djHsmzZMk2cOFEnnXRS3rrHH39c9fX1uvLKK2P30dnZqTvvvFOXXnpp7O/91q1b1dvbq+uvv16nnnqqfvjDH2r27Nl6/PHH9ZOf/CT2GECxYVIFIMGLL76olpYWnX322Tk3hEylUjrmmGP00ksvxW7vfVPmDQb3GzFiRE4bSbrzzjtz2syePVtXXnml7r77bn30ox8N/SYR8Dz55JPq6enRRRddZLyN14Vtz549eRfzEyZMkOu62r59u971rncV8lSNrF+/XmeddZa2b9+u//mf/9HHPvYx633MnDlTTz31lNrb27V69Wr97ne/05133qk5c+bolVdeyeneF2bixIn65S9/qV/84hd64403tHz5cv3yl7/UokWLVFNTo+9973s57aNm6vPs2bNHknK6DmL4dHZ2Gn8+B7eTzD/b/To6OrRo0SLV1tbqqquuCm1z1VVX6VOf+pR27typP/zhD+rp6Ym9oe+WLVu0bt26TFXUr6mpSUuWLNHnP//5vK57QQ888IB6enp02WWXxbZrb29XR0eH5s6dq4ULF0qSzjjjDHV3d+uJJ57QF7/4RR1++OGx+wCKBRUiIIHXz/8b3/iGLrzwwpz//va3v2VCUmdnp3bv3p3zn6RMgAn79r2rqyunTZiamhpdcsklamlp0bp16wr50FCGHn/8cR1wwAFGM7Z5vPEuYe8vr/vX//7v/xbmBC34w9DDDz9sVfUKM3LkSJ155pm67bbbdP3116u9vd2qO6rjODrmmGP09a9/PbPdE088YX0e3vMcN84IQ6e2trZfn8/9/Wzv7e3VTTfdpI0bN+rmm2+O7P45Y8YMnXLKKZozZ45uv/12vf766/rx2X1eRgAACARJREFUj38c+Ti892RYd7l77rlHY8eO1bx58yK3l/qm8n7wwQf15S9/ObGC6T22s88+O2f5OeecI0l69dVXY7cHigkVIiCBN1bgxhtvzPT99/O6Oixfvjzvj9XKlSs1btw4jRgxIhOQ/LxlSeMhDj74YEl9XTSAKJ2dnXr66ac1d+5c42mppb5vde+44w6tXr06L0h99atf1V133aUbb7xRH/nIR3KmmPYqR2ETKwyU103unXfe0cMPP6yLL764X/v5y1/+ohNPPFF1dXU5y72B8sHlQRs3bpSkvAklTLcPs3r1akl9zzuG38SJE0OniU76fO7vZ/vPfvYz/eUvf9H3v//9xDFBnpqaGn34wx/WAw88oM7OztCgtWzZMk2dOlVHHXVUzvItW7bod7/7nebPn5/Tha+rq0s9PT3avn27Ro8erXHjxmnJkiWaNGmSTjjhhMz4WK+i2djYqO3bt2vy5MlKpVKaOHGiNmzYkPd38YADDpDUdw8joFQQiIAEXjehCRMm6OSTT45sd8opp+j222/PW55KpTR9+nS98cYbeetee+01TZkyJfGbOG/AeVJXB5Sue+65J3OTU+8GjPfcc0/mZoinn356Yt//Z555Ri0tLdaVlLPPPltjx47VsmXL9J3vfCdn3fHHH6+f//znWrBggd73vvfpoosu0rRp07Rjxw6tXLlSc+bM0c9//nOr45k466yztHnzZn3wgx/Uyy+/rJdffjmvzU033ZS4n1tvvVXPPfecZs2apSOOOEJ1dXV66aWX9Oyzz2r69OmJQWvt2rW65JJLdOqpp+rYY4/VIYccom3btumxxx5TKpXSNddcY/3Yli1bZl3Fw+Dx7kHX2tqaM7HCa6+9llkfpj+f7XfeeaeWLl2q+fPnZyoppjo7O+W6rtra2vIC0WuvvaZt27bpS1/6Ut52DQ0NSqfTWrx4sRYvXpy3/lOf+pQ+8YlPaMGCBaqvr9e2bdv06U9/Oq+d9/ftySef1NixY3XUUUfpxRdf1K5duzR16tSc40n8vUJpIRABCU499VSNHj1a999/v0466aS8b94bGxs1YcIETZo0KfKbxDPOOEN33XWX3njjjcyMRJs3b9aaNWv0qU99Km9ffm1tbXrkkUc0fvz4vG/+UD5WrVql//qv/8pZ9qc//Ul/+tOfMv9OCkSPP/64amtr9dGPftTq2GPGjNFll12mu+++W9u3b88bSH311VfruOOO02233aannnpKLS0tOvjgg3Xaaafp0ksvtTqWqU2bNknqm+7+hRdeCG1jEoi+9rWvafz48Vq9erWef/55ua6rqVOn6vrrr9c111wTOsmD38knn6zrrrtOK1as0JNPPqnGxkYdcsghOuecc/Sd73wn8ma2UTZu3Kg//elPWrhwYb+qSyi8M888Uw899JCeeOIJfeYzn5HUVz1ZunSpjj322My4uvr6enV0dORUSU0/2yXpwQcf1EMPPaTLL79cn/zkJyPPZ+/evZkqi6e5uVnPP/+8Dj744Lx1Ura7XFjIOuKII3TLLbfkLb/nnnvU1tamBQsWZKq8V155pZqamnLarV+/Xv/5n/+pz3zmMzruuOMyU9CfddZZeuCBB/Tkk0/mVLqefPJJVVVV6cQTT4x8jECxcVzXdYf7JIDh9Oijj6qlpUW7d+/WY489plmzZmnGjBmSpHnz5mnMmDFatmyZbrnlFk2bNk1nn322JkyYoPr6er3wwgs67rjjEr8lbmtr05e+9CW1tbXp05/+tKqqqvTb3/5W6XRaS5YsyYSgJUuWaNWqVfrQhz6kyZMna/fu3Vq6dKnq6+t1ww03WE19jMriuq6mTJmiE088UUuXLrXeft26dTruuON000036YYbbhiEM4TU1/X2pz/9qV5//fXEqY8xdBYtWqSVK1fq0ksv1bve9S794Q9/0Ouvv6477rgjM1X8ggULtHbtWq1cuTKzneln+8qVK3XjjTfqsMMO0xe+8IW845988smZrmdXXnmlDjroIB177LE64IADVF9fr6VLl2r37t266aabdOaZZ+Zs29vbq3nz5unQQw/Vr371K+PHvGDBAjU1NeV9ERO0Zs0aLVy4UDfffHPesX/yk59o6dKlOuuss3TCCSdo7dq1eu6553TZZZfpK1/5ivG5AMONChEq3sMPP6wdO3Zk/r1y5crMH7zzzjtPY8aM0bnnnqtJkybpgQce0EMPPaSuri4ddNBBev/736/Zs2cnHmPUqFFavHix/v3f/12//vWvlU6ndeKJJ+rqq6/OqQgdf/zxeuWVV/T73/9e+/btU11dnY455hhdd911xn3NUZlWr16tHTt29HvigaOOOkpXXnml7rjjDi1YsCD0nkQYmL179+qXv/ylvva1rxGGisz111+vyZMn6+mnn1ZLS4umT5+uW2+9NfFeXqaf7d69jLZu3aof/ehHeftZvHhxJhDNnj1by5cv129/+1u1tLRo7NixOvbYY/WDH/xA//Iv/5K37d///nft2bNHl19+ef+fgH769re/rcmTJ+upp57SH//4R02ePFlXX331oFWOgcFChQgAIEnauXOn7rzzTs2bN48Z0AbBSy+9pCeeeELz588PvXcNAGB4EIgAAAAAVCzuQwQAAACgYhGIAAAAAFQsAhEAAACAikUgAgAAAFCxCEQAAAAAKhaBCAAAAEDFIhABAAAAqFgEIgAAAAAVi0AEAAAAoGIRiAAAAABULAIRAAAAgIr1/wNj8rQy7AnlPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration_idx = 29\n", + "\n", + "result = all_results[iteration_idx]\n", + "\n", + "iteration = result['iteration']\n", + "image = result['model_map']\n", + "\n", + "data = image[:,0]\n", + "data[data <= 0 * data.unit] = 1e-12 * data.unit\n", + "\n", + "hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8fd8b4e1", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb.txt b/_sources/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb.txt new file mode 100644 index 00000000..221b934f --- /dev/null +++ b/_sources/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb.txt @@ -0,0 +1,1940 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, 511keV, Upsampling\n", + "\n", + "updated on 2024-01-30 (the commit 26cfdeacb25335bd511a91c4f8a29bdeb36408f2)\n", + "\n", + "This notebook explains image reconstruction using the pixel resolution of the model map finer than that of the response matrix.\n", + "\n", + "Note that this notebook is advanced. It is assumed that you have already performed the two notebooks (511keV-DC2-ScAtt-DataReduction.ipynb, 511keV-DC2-ScAtt-ImageDeconvolution.ipynb).\n", + "\n", + "## Point\n", + "\n", + "In the current implementation, the pixel size of the model map can be differnt from that of the response matrix. The model pixel size is used in the following instances:\n", + "\n", + "- coordsys_conv_matrix\n", + "- image_deconvolution\n", + "\n", + "Thus, make sure that NSIDE in these instances must be the same. In this notebook, I present the case with NSIDE = 32 in the model map.\n", + "\n", + "When we convert the model map in the galactic coordinate to the detector coordinate, the pixel size will be downscaled so as the converted model map has the same pixel resolution matching the detector response.\n", + "Thus, using finer resolution in the model space does not improve the angular resolution in principle, while the reconstructed image will be smoother.\n", + "\n", + "There are three different NSIDE defined in the analysis:\n", + "\n", + "- NSIDE for the pixel resolution of the model (coordsys_conv_matrix, image_deconvolution)\n", + "- NSIDE for the pixel resolution of the response/data/background CDS (full_detector_response, inputs_511keV_DC2.yaml)\n", + "- NSIDE for the pixel resolution of the spacecraftattitude binning (exposure_table)\n", + "\n", + "Normally, these three values are set equal, but in principle they can be different." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e246b643", + "metadata": {}, + "outputs": [], + "source": [ + "nside_scatt_binning = 32\n", + "nside_model = 32" + ] + }, + { + "cell_type": "markdown", + "id": "8d093a5f", + "metadata": {}, + "source": [ + "**In this notebook I change the NSIDE in the exposure table, so the binned data need to be reproduced.**" + ] + }, + { + "cell_type": "markdown", + "id": "7d93d4e9-d70f-41b5-93b6-fa8c556403c8", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/ScAttBinning\n", + "- inputs_511keV_DC2.yaml\n", + "- imagedeconvolution_parfile_scatt_511keV.yml" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16.4 s, sys: 1.14 s, total: 17.6 s\n", + "Wall time: 17.2 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "16" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside_local = full_detector_response.nside\n", + "npix_local = hp.nside2npix(nside_local)\n", + "\n", + "nside_local" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 60\n", + " EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "This section is the same as in 511keV-DC2-ScAtt-DataReduction.ipynb, but the nisde is changed to 32." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 1.8322594196359498 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f8fbe1f0f5ca49299ffcaa7ce1ecabf1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(8272, 427)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.49705286596814, -21.370653963754705][44.49899938347305, 68.62948123249228][0.9999999999969589, 1.0000000000065512, 0.999...22051.0220510
11(8399, 427)[[44.78167623289732, -21.840823005240516], [44...[[44.781676232897325, 68.15917699475948], [44....[44.84546317102121, -21.94574666279381][44.845668028631366, 68.05426833879696][0.9999999999969589, 0.9999999999969589, 0.999...7207.072070
22(8528, 427)[[44.937249783176014, -22.096275698920152], [4...[[44.93724978317603, 67.90372430107985], [44.9...[45.280789592422735, -22.65671255168847][45.28405398202019, 67.34354151639131][0.9999999999969589, 1.0000000000065512, 0.999...29025.0290250
33(8528, 488)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.792486557202956, -23.48162697469867][45.79313907872797, 66.51842748236865][1.0000000000065512, 0.9999999999969589, 0.999...13091.0130910
44(8656, 488)[[45.978454945885545, -23.778456203550505], [4...[[45.978454945885545, 66.22154379644951], [46....[46.11600105920392, -23.997057178710705][46.11666483156788, 66.00300061062126][0.9999999999969589, 0.9999999999969589, 1.000...13268.0132680
.................................
562562(3526, 515)[[19.469949806943756, 24.43289490159796], [19....[[199.46994980694376, 65.56710509840204], [199...[19.471417500535573, 24.430350678106848][199.47141729115225, 65.56964934798671][1.000000000001755, 0.9999999999969589, 0.9999...257.02570
563563(745, 3302)[[289.1161733315789, 62.182064711183735], [289...[[109.11617333157892, 27.817935288816265], [10...[289.1158698854739, 62.181869345669945][109.11587008833249, 27.818130910219594][0.9999999999969589, 1.0000000000065512, 0.999...216.02160
564564(11555, 3438)[[129.37391657068838, -62.722167168565605], [1...[[129.37391657068838, 27.277832831434402], [12...[129.3748932372682, -62.7229126247577][129.3748932228599, 27.277087393995096][0.9999999999969589, 0.9999999999969589, 0.999...38.0380
565565(749, 3438)[[309.37452108662, 62.72183635479668], [309.37...[[129.37452108662, 27.27816364520332], [129.37...[309.3747190421793, 62.723149712157756][129.37471903379148, 27.27685031183828][0.9999999999969589, 1.0000000000065512, 1.000...57.0570
566566(11205, 2781)[[83.68502160846401, -56.50792179772638], [83....[[83.68502160846401, 33.49207820227362], [83.6...[83.68453862559674, -56.50760146476969][83.68453900120738, 33.49239873132499][0.9999999999969589, 0.9999999999969589, 0.999...10.0100
\n", + "

567 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (8272, 427) \n", + "1 1 (8399, 427) \n", + "2 2 (8528, 427) \n", + "3 3 (8528, 488) \n", + "4 4 (8656, 488) \n", + ".. ... ... \n", + "562 562 (3526, 515) \n", + "563 563 (745, 3302) \n", + "564 564 (11555, 3438) \n", + "565 565 (749, 3438) \n", + "566 566 (11205, 2781) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[44.78167623289732, -21.840823005240516], [44... \n", + "2 [[44.937249783176014, -22.096275698920152], [4... \n", + "3 [[45.66020516346508, -23.269427365755966], [45... \n", + "4 [[45.978454945885545, -23.778456203550505], [4... \n", + ".. ... \n", + "562 [[19.469949806943756, 24.43289490159796], [19.... \n", + "563 [[289.1161733315789, 62.182064711183735], [289... \n", + "564 [[129.37391657068838, -62.722167168565605], [1... \n", + "565 [[309.37452108662, 62.72183635479668], [309.37... \n", + "566 [[83.68502160846401, -56.50792179772638], [83.... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[44.781676232897325, 68.15917699475948], [44.... \n", + "2 [[44.93724978317603, 67.90372430107985], [44.9... \n", + "3 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "4 [[45.978454945885545, 66.22154379644951], [46.... \n", + ".. ... \n", + "562 [[199.46994980694376, 65.56710509840204], [199... \n", + "563 [[109.11617333157892, 27.817935288816265], [10... \n", + "564 [[129.37391657068838, 27.277832831434402], [12... \n", + "565 [[129.37452108662, 27.27816364520332], [129.37... \n", + "566 [[83.68502160846401, 33.49207820227362], [83.6... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.49705286596814, -21.370653963754705] \n", + "1 [44.84546317102121, -21.94574666279381] \n", + "2 [45.280789592422735, -22.65671255168847] \n", + "3 [45.792486557202956, -23.48162697469867] \n", + "4 [46.11600105920392, -23.997057178710705] \n", + ".. ... \n", + "562 [19.471417500535573, 24.430350678106848] \n", + "563 [289.1158698854739, 62.181869345669945] \n", + "564 [129.3748932372682, -62.7229126247577] \n", + "565 [309.3747190421793, 62.723149712157756] \n", + "566 [83.68453862559674, -56.50760146476969] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.49899938347305, 68.62948123249228] \n", + "1 [44.845668028631366, 68.05426833879696] \n", + "2 [45.28405398202019, 67.34354151639131] \n", + "3 [45.79313907872797, 66.51842748236865] \n", + "4 [46.11666483156788, 66.00300061062126] \n", + ".. ... \n", + "562 [199.47141729115225, 65.56964934798671] \n", + "563 [109.11587008833249, 27.818130910219594] \n", + "564 [129.3748932228599, 27.277087393995096] \n", + "565 [129.37471903379148, 27.27685031183828] \n", + "566 [83.68453900120738, 33.49239873132499] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 22051.0 \n", + "1 [0.9999999999969589, 0.9999999999969589, 0.999... 7207.0 \n", + "2 [0.9999999999969589, 1.0000000000065512, 0.999... 29025.0 \n", + "3 [1.0000000000065512, 0.9999999999969589, 0.999... 13091.0 \n", + "4 [0.9999999999969589, 0.9999999999969589, 1.000... 13268.0 \n", + ".. ... ... \n", + "562 [1.000000000001755, 0.9999999999969589, 0.9999... 257.0 \n", + "563 [0.9999999999969589, 1.0000000000065512, 0.999... 216.0 \n", + "564 [0.9999999999969589, 0.9999999999969589, 0.999... 38.0 \n", + "565 [0.9999999999969589, 1.0000000000065512, 1.000... 57.0 \n", + "566 [0.9999999999969589, 0.9999999999969589, 0.999... 10.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 22051 0 \n", + "1 7207 0 \n", + "2 29025 0 \n", + "3 13091 0 \n", + "4 13268 0 \n", + ".. ... ... \n", + "562 257 0 \n", + "563 216 0 \n", + "564 38 0 \n", + "565 57 0 \n", + "566 10 0 \n", + "\n", + "[567 rows x 10 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt_binning, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it.\n", + "\n", + "**With NSIDE = 32, this process may take a few hours. I also prepared a python script to create the conversion matrix. If the notebook does not work, you can use mk_ccm_upsampling.py**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a6488b4", + "metadata": {}, + "outputs": [], + "source": [ + "%%time\n", + "\n", + "coordsys_conv_matrix = CoordsysConversionMatrix.spacecraft_attitude_binning_ccm(full_detector_response, exposure_table, nside_model = nside_model, use_averaged_pointing = True)" + ] + }, + { + "cell_type": "markdown", + "id": "427fd56f", + "metadata": {}, + "source": [ + "You can save CoordsysConversionMatrix as a hdf5 file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dea7c0f6", + "metadata": {}, + "outputs": [], + "source": [ + "coordsys_conv_matrix.write(f\"ccm_nside{nside_model}.hdf5\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "3f45b3cc", + "metadata": {}, + "source": [ + "You can also read the saved file." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "60f38738", + "metadata": {}, + "outputs": [], + "source": [ + "coordsys_conv_matrix = CoordsysConversionMatrix.open(f\"ccm_nside{nside_model}.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "b6cda81d", + "metadata": {}, + "source": [ + "**Check the matrix shape**" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "96a387db", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Formatcoo
Data Typefloat64
Shape(567, 12288, 3072)
nnz27869184
Density0.0013020833333333333
Read-onlyTrue
Size850.5M
Storage ratio0.0
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coordsys_conv_matrix.contents" + ] + }, + { + "cell_type": "markdown", + "id": "4ae2fcdb", + "metadata": {}, + "source": [ + "# 3. produce the binned data" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "d6bdd700", + "metadata": {}, + "outputs": [], + "source": [ + "def get_binned_data_scatt(unbinned_event, exposure_table, psichi_binning = 'local', sparse = False):\n", + " exposure_dict = {row['healpix_index']: row['scatt_binning_index'] for _, row in exposure_table.iterrows()}\n", + " \n", + " # from BinnedData.py\n", + " \n", + " # Get energy bins:\n", + " energy_bin_edges = np.array(unbinned_event.energy_bins)\n", + " \n", + " # Get phi bins:\n", + " number_phi_bins = int(180./unbinned_event.phi_pix_size)\n", + " phi_bin_edges = np.linspace(0,180,number_phi_bins+1)\n", + " \n", + " # Define psichi axis and data for binning:\n", + " if psichi_binning == 'galactic':\n", + " psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = 'galactic', label='PsiChi')\n", + " coords = SkyCoord(l=unbinned_event.cosi_dataset['Chi galactic']*u.deg, b=unbinned_event.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic')\n", + " if psichi_binning == 'local':\n", + " psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = SpacecraftFrame(), label='PsiChi')\n", + " coords = SkyCoord(lon=unbinned_event.cosi_dataset['Chi local']*u.rad, lat=((np.pi/2.0) - unbinned_event.cosi_dataset['Psi local'])*u.rad, frame = SpacecraftFrame())\n", + "\n", + " # Define scatt axis and data for binning\n", + " n_scatt_bins = len(exposure_table)\n", + " scatt_axis = Axis(np.arange(n_scatt_bins + 1), label='ScAtt')\n", + " \n", + " is_nest = True if exposure_table.scheme == 'nested' else False\n", + " \n", + " nside_scatt = exposure_table.nside\n", + " \n", + " zindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[0] * 180 / np.pi, \n", + " unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)\n", + " xindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[0] * 180 / np.pi, \n", + " unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True) \n", + " scatt_data = np.array( [ exposure_dict[(z, x)] + 0.5 if (z,x) in exposure_dict.keys() else -1 for z, x in zip(zindex, xindex)] ) # should this \"0.5\" be needed?\n", + " \n", + " # Initialize histogram:\n", + " binned_data = Histogram([scatt_axis,\n", + " Axis(energy_bin_edges*u.keV, label='Em'),\n", + " Axis(phi_bin_edges*u.deg, label='Phi'),\n", + " psichi_axis],\n", + " sparse=sparse)\n", + "\n", + " # Fill histogram:\n", + " binned_data.fill(scatt_data, unbinned_event.cosi_dataset['Energies']*u.keV, np.rad2deg(unbinned_event.cosi_dataset['Phi'])*u.deg, coords) \n", + " \n", + " return binned_data" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "6c921875", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7.34 s, sys: 362 ms, total: 7.7 s\n", + "Wall time: 7.71 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "signal_filepath = path_data + \"511_thin_disk_3months_unbinned_data.fits.gz\"\n", + "\n", + "unbinned_signal = UnBinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "unbinned_signal.cosi_dataset = unbinned_signal.get_dict_from_fits(signal_filepath)\n", + "\n", + "binned_signal = get_binned_data_scatt(unbinned_signal, exposure_table, psichi_binning = 'local', sparse = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "291c718a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1min 37s, sys: 4.49 s, total: 1min 41s\n", + "Wall time: 1min 41s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "bkg_filepath = path_data + \"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "unbinned_bkg = UnBinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "unbinned_bkg.cosi_dataset = unbinned_bkg.get_dict_from_fits(bkg_filepath)\n", + "\n", + "binned_bkg = get_binned_data_scatt(unbinned_bkg, exposure_table, psichi_binning = 'local', sparse = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c01bdfaf", + "metadata": {}, + "outputs": [], + "source": [ + "binned_event = binned_signal + binned_bkg" + ] + }, + { + "cell_type": "markdown", + "id": "6952e6a5", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "42ae33b7", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "dc875668", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(binned_event, \n", + " binned_bkg, \n", + " full_detector_response,\n", + " coordsys_conv_matrix,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "20f9c0be", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "8982e77a", + "metadata": {}, + "source": [ + "## 4-2. Load the response file" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "9f4407c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 20.5 s, sys: 2.81 s, total: 23.3 s\n", + "Wall time: 23.8 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()\n", + "dataloader.calc_image_response_projected() # mandatory" + ] + }, + { + "cell_type": "markdown", + "id": "e6091c9c", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "a1c17851", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_511keV.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "1b162894", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_511keV.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "89aeb1ad", + "metadata": {}, + "source": [ + "**Do not forget to make sure that NSIDE of the model map is modified to 32**" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "46c7a9f0", + "metadata": {}, + "outputs": [], + "source": [ + "image_deconvolution.override_parameter(f\"model_property:nside = {nside_model}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "1e5a7300", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 509.0\n", + "- 513.0\n", + "nside: 32\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ef13726b066d4ba1899e84c14267ab97", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/12288 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.4918880393981695\n", + " loglikelihood: -1756598.0322312904\n", + " background_normalization: 1.0024218882576656\n", + " Iteration 2/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1711635.518049215\n", + " background_normalization: 0.9971577453519401\n", + " Iteration 3/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0871086083508616\n", + " loglikelihood: -1701368.15366006\n", + " background_normalization: 0.999685900356176\n", + " Iteration 4/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1695610.545668051\n", + " background_normalization: 0.9999373176079243\n", + " Iteration 5/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1691748.2580263622\n", + " background_normalization: 0.9999267553231147\n", + " Iteration 6/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.3352964931227564\n", + " loglikelihood: -1684493.5281347963\n", + " background_normalization: 0.9999159811049237\n", + " Iteration 7/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1683748.9067139933\n", + " background_normalization: 0.9998932072705006\n", + " Iteration 8/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.2014651710448034\n", + " loglikelihood: -1682463.6552417497\n", + " background_normalization: 0.9998941090155609\n", + " Iteration 9/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1682061.3451082548\n", + " background_normalization: 0.9998924718443246\n", + " Iteration 10/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1681719.0622706544\n", + " background_normalization: 0.9998916199988997\n", + " Iteration 11/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1681425.6162618792\n", + " background_normalization: 0.9998911255697669\n", + " Iteration 12/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.715627885915885\n", + " loglikelihood: -1681000.181726581\n", + " background_normalization: 0.999890734568304\n", + " Iteration 13/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1680801.790441107\n", + " background_normalization: 0.9998901905185211\n", + " Iteration 14/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.2122797273704515\n", + " loglikelihood: -1680427.7005234426\n", + " background_normalization: 0.999889956371463\n", + " Iteration 15/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1680295.699487886\n", + " background_normalization: 0.9998895673515545\n", + " Iteration 16/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1680177.476488873\n", + " background_normalization: 0.9998894604073867\n", + " Iteration 17/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.1526900219311305\n", + " loglikelihood: -1680055.2851265944\n", + " background_normalization: 0.9998893892247812\n", + " Iteration 18/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1679960.7616204866\n", + " background_normalization: 0.9998893341848446\n", + " Iteration 19/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1679875.0225631895\n", + " background_normalization: 0.9998893073627257\n", + " Iteration 20/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1679796.9820035975\n", + " background_normalization: 0.9998892961410736\n", + "#### Done ####\n", + "\n", + "CPU times: user 1h 9min 8s, sys: 3min 24s, total: 1h 12min 33s\n", + "Wall time: 13min 17s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "8b9266e3", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0024218882576656,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': -1756598.0322312904,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9971577453519401,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': -1711635.518049215,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999685900356176,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': -1701368.15366006,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9999373176079243,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': -1695610.545668051,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9999267553231147,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': -1691748.2580263622,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9999159811049237,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': -1684493.5281347963,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998932072705006,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': -1683748.9067139933,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9998941090155609,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': -1682463.6552417497,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998924718443246,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': -1682061.3451082548,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998916199988997,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': -1681719.0622706544,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998911255697669,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': -1681425.6162618792,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999890734568304,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': -1681000.181726581,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998901905185211,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': -1680801.790441107,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999889956371463,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': -1680427.7005234426,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998895673515545,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': -1680295.699487886,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998894604073867,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': -1680177.476488873,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9998893892247812,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': -1680055.2851265944,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998893341848446,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': -1679960.7616204866,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998893073627257,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': -1679875.0225631895,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998892961410736,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': -1679796.9820035975,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45404e60", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "ed1e8893", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "eef989ce", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f96c2978", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHMCAYAAADmu70qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABie0lEQVR4nO3deVxU9f4/8NcsDMgmMCiiCIogiqLgnorimrZom7bcTLOyuua1r612+1mWtm+YZYsULrkU3dIM9YIbV5NcEWURNZnQBBlAYAYGhpn5/YGMTAw4MDPMMPN6Ph49nHPO55zz/gjIq3M+53MEOp1OByIiIiKyKKGtCyAiIiJyRAxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFYgtnUBBFRVVWHLli3Izs5GTk4OKisrsXTpUkyfPt2s4x47dgwbNmxAXl4etFotevbsiQcffBCTJk2yUOVERETUHIYsO1BeXo7ExEQEBAQgLCwMJ0+eNPuYycnJePfddzFs2DA88cQTEIlE+PPPP3H16lULVExEREQ3w5BlB6RSKX766SdIpVLk5uZiwYIFZh3vypUr+Pjjj3HPPfdg8eLFFqqSiIiIWoMhyw5IJBJIpVKT2qanp2Pjxo3Iy8uDQCDA4MGD8fTTT6N37976Ntu2bYNWq8Vjjz0GoP52ZKdOnSAQCKxSPxERETXFge8dyO7du/HSSy+hU6dOePLJJzF37lzk5+dj4cKFuHLlir7d8ePHERwcjPT0dNx7772YNm0a7rjjDqxduxZardaGPSAiInIevJLVQVRVVSE+Ph533HEHXnjhBf36adOm4eGHH8bGjRv16y9dugShUIh33nkHDz74IPr06YO0tDSsX78eGo0GTz75pK26QURE5DQYsjqIY8eOQaFQYNKkSbh27Zp+vVAoRP/+/XHixAn9uurqami1Wjz55JP4xz/+AQCIi4tDZWUlkpKSMGfOHLi7u7d3F4iIiJwKQ1YHcenSJQDAs88+a3S7h4eH/rOrqyuqq6sxefJkgzaTJk3C77//jry8PERHR1urVCIiIgJDVofRMJbq1VdfhZ+fX5PtIpFI/1kqleLSpUvw9fU1aNOwXFlZacVKiYiICGDI6jB69OgBAPDx8cGwYcNabBsREYFLly5BLpeje/fu+vVyuVx/DCIiIrIuPl3YQYwYMQIeHh7YuHEj6urqmmxvPE5r4sSJAIBff/1Vv06r1WLnzp3w9vZGRESE1eslIiJydrySZSd+/PFHKBQKlJSUAAAOHTqkn5393nvvhaenJ5YsWYKVK1fisccew6RJk+Dj44OioiKkp6dj4MCB+L//+z8AwNixYzF06FBs3LgR165dQ1hYGP73v/8hMzMTzz//PCQSic36SURE5CwEOp1OZ+siCJg9ezYKCwuNbtu6dSsCAwMBACdPnsR3332H7Oxs1NbWokuXLhg0aBDuuecegytUVVVVWLt2Lfbu3YvKykr07NkTDz30EKZOndou/SEiInJ2DFlEREREVsAxWURERERWwJBFREREZAUMWTaiUqlw9uxZqFQqW5dCREREVsCQZSMymQxPPPEEZDKZrUuxugsXLti6hHblTP1lXx2XM/WXfXVctu4vQxZZXU1Nja1LaFfO1F/21XE5U3/ZV8dl6/4yZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRWIbV2AJcjlciQlJSEnJwe5ubmorq5GfHw8YmJiWnWcPXv2ICkpCRcuXIBYLEZISAgef/xxDB06VN9GoVBgw4YNSEtLQ3FxMXx9fTF06FA8+uijCAgIsHTXiIiIqINyiJBVUFCATZs2ISgoCKGhocjKymr1Mb755husW7cOcXFxmDZtGurq6nDx4kXI5XJ9G61WiyVLlkAmk+Guu+5Cz549cenSJfz88884evQoNmzYAHd3d0t2jYiIiDoohwhZERER2LFjB7y9vbF//34sW7asVftnZWVh3bp1WLhwIWbPnt1iu9zcXDz77LO455579OuDg4Pxzjvv4NixYxg3blyb+0FERESOwyFClrlXj3744Qf4+fnhvvvug06nQ3V1tdFjVlVVAQD8/PwM1kulUgCAq6urWXUQERE5Cp1OB50O0Gm00Gp00Gl10Gp00Gp10Gl019c12maw/kb7xtsaPms1Oug0Wui09XeZdA3H1RruX1RUjshI2/0dOETIMtfx48cxcOBAJCUlYcOGDSgvL4efnx/mzJmDe++9V98uIiICnTp1wtq1a+Hl5YXg4GBcvnwZa9asQb9+/QzGbhEREZlCp7sePuq00NRpoa2r/6zVaKFp+FxXH0Y0DZ/rrn/W6KDVaPXhRNsQaBo+NwouWo0OxVdLUX40W7+s1Wjrg0mdDlpt430bbWtYp/1bMDIITMaDlM0JADxhu9M7fciqrKxEeXk5zpw5gxMnTmDevHkICAjAzp07ER8fD7FYjJkzZwIAfHx88Prrr+O9997D//3f/+mPMWLECLzxxhsQi5v/65TL5SgpKdEvy2Qy63WKiMiJabU3gklDaNGory9rDJe1dVqUXqzCRUWhPrzUhxutPvjcCEDXw4TRbY3W6ds1BKEbwUmjaRyi6re3dxi5gsp2PZ9N6epDrEAgsMnp7S5kabVaqNVqk9pKJBKz/+IabgGWl5fjtddew6RJkwAAcXFxmDdvHtavX68PWQDQuXNnhIeH45577kGvXr1w/vx5bN68Ge+88w7eeOONZs+zfft2JCYmNll/8eJFaDQas/pg7xQKBbKzs21dRrtxpv6yr47L2v3V6XTQqnWoq9aiTqVt9KfmxvL1dZqahisn0F91qb96ghu3l65v12p0QBsySy6KLd9JRyIABEJAIBQ0+bN+W9P1AhEgEBhZLwTQeLnRsfH3to2O3ex5BM0fT1WjQnZ2tsVDVqSJ9yDtLmSdOnUKixcvNqnthg0bEBISYtb5GsZRicVixMXF6dcLhUJMnDgR33zzDYqKihAQEIC//voLzz77LF555RV929jYWHTr1g1vv/020tPTMWrUKKPnmTFjBsaMGaNflslkWLFiBXr37o2IiAiz+mDvsrOzTf6GdATO1F/21XGZ0l+dtv6KkLqmDrXKOtQoalGj/1Nd/59CjVplHVTX19VeX1ejUNcHIgcnEAkgEgshFAkgFAshFAsgEgmvf65fL7q+vn5ZCFHDZ/H1z/r2fz/W9c+ihj8FEPx9WXi9rVAAoVgA2Z8yhPYJ1e8nEAn024RCAQQNbf+2XSC0zZUgc9n659buQlZwcDCWLl1qUtuGAefm8Pb2hkQigaenJ0QikcE2X19fAPW3FBtuIdbW1mL06NEG7caOHQsAOH36dLMhy9/fH/7+/mbXS0RkqrpaDWoqa6GqVEOtqkOdWgtNrQZ1NRpoarWoq9Wgrtbwc12NFhq1BqXya/jT9Rg06vr2dbXX923UXqPWtn+nBLgeSm6EkYZl/TqX6+tE14OJS6M2IiFELo0Ci1iIklI5ugUGGASdJoHm+jp9CGoUfBrWCcTC6wFKoA9AtrpN1ZwyXRG6hvnYugynYXchSyqVYvr06e12PqFQiPDwcOTm5kKtVsPFxUW/rWGOLB8fHwBAaWlp/SVureE/LHV1dQDg8Lf9iMh2tHVaqJRqqCpqoaqs1YcnVWXt9f/U19fdWF9XY96/SaWoslD1N7i4iSDxcIGrpwtcPa7/59l0+UYbCSSdxPpgVH87yLLBJTtbjcjIUIsekwiww5BlbUVFRVCpVAa3GSdMmICsrCzs2rULd955JwCgpqYGKSkp6NWrl/4KVM+ePaHT6bBv3z6DIJiamgoACA8Pb8eeEFFHo9PpUFejQW11HdRVdfV/Vtf/WatUGwSk+iB143NtVZ1Naxe5CCF2FUEkEULsIrrxWSKCWNJMcGr0p+T6nyIx3+ZGzsNhQta6desAAPn5+QCA3bt3IzMzEwAwd+5cfbuVK1ciIyMDaWlp+nUzZ87Er7/+io8//hgFBQUICAjA7t27UVRUhLffflvfbvr06diyZQs++OAD5OXloXfv3sjLy8Ovv/6K3r17cyJSIgel1WihrtKgsrhKH5AawlHjP9Uq4wFK/6eqrk2DsltDIABcvSRw85LAzcsFbl4SuHpK4NJJpA9EYlchRBLR9bB0/bNEBLHkxuc/ZBfQf0A/iCUiiFyEHXZMDpEtOUzISkhIMFhOTk7Wf24csoxxdXXFJ598gjVr1iA5ORkqlQphYWF49913MWLECH27zp074+uvv0ZCQgJ+++03bN++Hd7e3rjtttvwxBNPGNxqJCL7odXq6oNPVf1g7Nqquut/1g/Krq1So6aq/mpSw/bG29Sq+ttuR3Gp3Wt39XCB6/Ww1BCc/h6iGv5z9XKBq7uLRQKRa5kYbl4SC/SAyHk5TMhqfGWqJatWrTK63tfXF6+88spN9+/SpQtefvnlVtVGROZruNWmqlSjRlELlaJ+DFKNQl3/5Jriejj6W1CqUdZfSbIVsasIkk5iuHQS6/90cRdD4nb9cycxJJ1EkLi7wM3bMDi5erpAKOLtNaKOymFCFhF1HFqNtv7x/kp1fVhSXB9/dD0sGQSpRtu0de33yL9IIoSruwskHmJI3F1Qq1XBr4tvfShyF8Ol0/Xw5GYYoOq31S+L3cQQ8jYbkdNiyCIiq6lRqnE1rwyFZ8tQdO4aqkpV7TaIWygW1A+4vh6UXN0bffZwgcRdDMn17a7XP+vXu4shcjGc0sXW8+0QUcfDkEVEFqMsVaEwt7Q+VJ0tQ2lBpdkDvUUuwvqxRh7XxyN5usDNs/5WmquXBG7XH/9385LUB6XrgUksEd384EREVsSQRURtotPpUCVXI3dvgT5YKYqrW9xH/0i/142g1DD2qPFnN0+Jvo3YlWGJiDomhiwiMom2Tgt5fkX9VarroapGoQbwl9H2AgHgF+KNbhG+6NbPFwERfnD3cW3foomIbIghi4iMUqvqcPXcNf2tv6vnr7U4g7jIRYguYT76UNU1zAcSd05rQkTOiyGLiKDT6qAsU0H+RzkKc+tDlTy/Ajpt8wOqXD1c4N5djLBhwegW4Qv/0M6czZuIqBGGLCInoVFrUFlcjcqiKlRcrUJF4fU/i6qgKK6+6ct+PaRu169S+SEgwhe+PTyRk5vDd74RETWDIYvIgdRWqVFxtao+SBVVoaKoGhVFSlRerYKiRNWqJ/18gzwREOGrD1ae/p2sVzgRkQNiyCLqQHQ6HarLa1FRVHXjilRRVX2QKqqCqlLd6mOKXITwDnCHV4A7fLp7IKCvLwL6+vKVKkREZmLIIuoAdDodTv50Hqd/vQh1dfODz5vj6uGiD1LeAe7w7nrjs7uPK1/+S0RkBQxZRB1A7t4CnEg632Ibdz9XeHd1h3c3D4MQ5d3VHa6efMqPiKi9MWQR2bkSWQXS1+fol3tE+aNzoAe8AzrBq2t9kPLq6s4ZzomI7AxDFpEdq62uw574k/on/yJvDcHouXx/HhFRR8BJbYjslE6nw6GEM6gorAIA+Pf2xsiHImxcFRERmYohi8hOnd13CRd+uwIAcOkkxsR/RUPkwluCREQdBUMWkR0q+bMCh9dl65fHLRgI7wAPG1ZEREStxZBFZGfUqjrsjc/Qj8PqPyUYvUcG2rgqIiJqLYYsIjui0+lw6JsslF9RAgCkvbwx8h/9bFwVERG1BUMWkR3JO3AJ5w/+BQBw6STCxH9Fc2oGIqIOiiGLyE6UFlTit8Qb47DGPh6Fzt04DouIqKNiyCKyA2rV9fmwauvHYfWb1BN9buE4LCKijowhi8gO/PZtNsr/qh+H5RfihVFz+tu4IiIiMhdDFpGN5R24hHP/uwwAcHETYdK/YjgOi4jIATBkEdlQ2aVKHPo2S7889vGB6BzIcVhERI6AIYvIRurHYWXcGIc1sSf6jO5u46qIiMhSGLKIbOTwumxcu6wAAPgFe2HUIxyHRUTkSBiyiGzgXNpl5B2oH4clduV8WEREjoghi6idlV1WGI7DemwAfLp72rAiIiKyBoYsonZUV6PB3lUnUVejAQD0jQtC2NgeNq6KiIisQWzrAixBLpcjKSkJOTk5yM3NRXV1NeLj4xETE9Oq4+zZswdJSUm4cOECxGIxQkJC8Pjjj2Po0KH6NqWlpfjyyy9x+PBhVFVVISQkBA8//DAmTJhg6W6RA/ptXTbKCurHYfn29MTouZE2roiIiKzFIUJWQUEBNm3ahKCgIISGhiIrK+vmO/3NN998g3Xr1iEuLg7Tpk1DXV0dLl68CLlcrm+jVCqxcOFClJWV4b777oOfnx/27duH1157DXV1dZgyZYolu0UO5tzBy8jbfwlAwzisGIhdOQ6LiMhROUTIioiIwI4dO+Dt7Y39+/dj2bJlrdo/KysL69atw8KFCzF79uxm223fvh2XL1/Gxx9/rL+6ddddd+Gpp57CZ599hri4OLi4uJjVF3JM1y4rcCjhRvgf8+gA+PbgOCwiIkfmEGOy3N3d4e3t3eb9f/jhB/j5+eG+++6DTqdDVVWV0XanTp2Cj4+Pwe1DoVCICRMmoLS0FBkZGW2ugRxXXa0Ge1Zl3BiHNb4HwsdxHBYRkaNziJBlruPHj6Nfv35ISkrCjBkzMG3aNNx111348ccfDdqp1Wq4uro22d/NzQ0AcPbs2XaplzqW9PU5KCuoBAD49PDELRyHRUTkFBzidqE5KisrUV5ejjNnzuDEiROYN28eAgICsHPnTsTHx0MsFmPmzJkAgODgYBw/fhyFhYXo1q2b/hiZmZkAYDB+6+/kcjlKSkr0yzKZzEo9Inty4be/kLu3AED9OKxJi6Ph4ub0P3ZERE7B7v6112q1UKvVJrWVSCQQCARmna/h1mB5eTlee+01TJo0CQAQFxeHefPmYf369fqQdccdd2Dbtm147bXX8Mwzz+gHvv/vf/8DANTU1DR7nu3btyMxMbHJ+osXL0Kj0ZjVB3unUCiQnZ1t6zLaTUN/q0vUOJVwRb++11QfXKkowBUH+qtwpq+tM/UVcK7+sq+Oy1r9jYw07Y6E3YWsU6dOYfHixSa13bBhA0JCQsw6X8PtP7FYjLi4OP16oVCIiRMn4ptvvkFRURECAgLQp08fLFu2DB9++CEWLlwIAPDz88OiRYvw4YcfolOnTs2eZ8aMGRgzZox+WSaTYcWKFejduzciIiLM6oO9y87ONvkb0hFkZ2ejb1gEtm84DG2tDgAQPq4Hxj84yMaVWZ4zfW2dqa+Ac/WXfXVctu6v3YWs4OBgLF261KS2UqnU7PN5e3tDIpHA09MTIpHh4/S+vr4A6m8pBgQEAKi/wjVmzBicP38eWq0Wffv2xcmTJwEAPXv2bPY8/v7+8Pf3N7te6hjSN+SgVNYwDssDo+c5zz9qRERUz+5CllQqxfTp09vtfEKhEOHh4cjNzYVarTaYgqFhjJWPj4/BPi4uLujf/8bLfI8fPw4AGDZsmPULJrsnz1Iib0/9945IIsTEf8VwHBYRkRNyuqcLi4qKmgw6nzBhAjQaDXbt2qVfV1NTg5SUFPTq1avFK1AFBQXYtm0bRo8e3eKVLHIO5YVKXPj1xgMOo+dFwq+nlw0rIiIiW3GY/71et24dACA/Px8AsHv3bv1Tf3PnztW3W7lyJTIyMpCWlqZfN3PmTPz666/4+OOPUVBQgICAAOzevRtFRUV4++23Dc4zZ84cTJgwAV27dsWVK1ewbds2eHt747nnnrNyD8ne1dVqsHdVBjTXx2GFje2OvuODbFwVERHZisOErISEBIPl5ORk/efGIcsYV1dXfPLJJ1izZg2Sk5OhUqkQFhaGd999FyNGjDBoGxYWhuTkZJSVlaFz586YMGEC5s+frx+/Rc6puqIGaV+cRkl+BQCgc6AHxswfYPbTr0RE1HE5TMhqfGWqJatWrTK63tfXF6+88spN93/ttddaVRc5voJTxUj7IhPV5bUAAKFYgEmLOQ6LiMjZ8bcAURvV1WpwdMtZZO26McbPzVuC0Nt94BfMcVhERM6OIYuoDUoLKrFv9Sn963IAIGhwF4x7Kgr5ly/YsDIiIrIXDFlEraDT6ZD9XxmObDoLjVoLABC5CDHioQhETg2pH4N12cZFEhGRXWDIIjJRVXn94PZLp4r163x7emHCM4M5TQMRETXBkEVkgj9PXkXal6ehqqjVrxswLQTDH4iAWCJqYU8iInJWDFlELair1eDId7nITvlTv65TZwnGPTUIPQd3sWFlRERk7xiyiJpRIqvAvtWncO2yQr+uZ0wXjHsyCp28XW1YGRERdQQMWUR/o9PqcGZXPo5uOQttXf3s7SIXIUY+3A/9JwdzglEiIjIJQxZRI8oyFdK+yMTl0zfePygN8ULcM9Hw7eFpw8qIiKijYcgiuk52rAhpX51GjUKtXxd1e28Mmx0OkQsHtxMRUeswZJHTU6vq8Pt3ucjdU6Bf5+7jivFPD0KPKH8bVkZERB0ZQxY5NfnFcuxbfQrlV5T6dSHDAhD7xEC4eUlsWBkREXV0DFnklHRaHTJ/vYjj3+dBq6kf3C52FWHUnP6ImBDEwe1ERGQ2hixyOsqSahz44jT+yroxuN2/tzfiFg6GT3cObiciIstgyCKncvFIIQ5+fQY1yuuD2wXA4DtDMeS+cIjEQtsWR0REDoUhi5zG6V8v4vfvcvXLHn5uGP/PQegeKbVhVURE5KgYssgp5O4tMAhYvUd0w5jHB8DNk4PbiYjIOhiyyOFd+O0vHEw4o18ecm8YYu4J4+B2IiKyKg5CIYf258mr2L8mE6h/gBBRt/dmwCIionbBkEUO66+sEuz55CR016doiJjQEyMeimDAIiKidsGQRQ7p6vlrSPnwODRqLQAg9JZAjHlsAAMWERG1G4Yscjilf1Zi97vHoFZpAAA9Y7og7ulBEAoZsIiIqP0wZJFDKS9UYufbR/TzYAVG+mHS4hgIOQcWERG1M/7mIYehKKnGzreOorq8FgDQpU9nTHluKMQSkY0rIyIiZ8SQRQ6hurwGO986CoW8GgDg29MTt740DJJOnKWEiIhsgyGLOrwapRq73jmK8itKAIB3gDumLx3BiUaJiMimGLKoQ1Or6rD7/WMokVUCqH9VzvRXRsDdx9XGlRERkbNjyKIOS6PWIPXjE7iadw0A4OYtwfRXhsOrSyfbFkZERASGLOqgtBot9q4+hcunSwAAEncxpr88HD7dPW1cGRERUT2HGBUsl8uRlJSEnJwc5Obmorq6GvHx8YiJiTFp/9mzZ6OwsNDoth49emDz5s0G63bs2IEtW7agsLAQXbp0wX333Yd7773X7H6QaXRaHdK+PA3Z0SIAgNhVhFtfHAZpL28bV0ZERHSDQ4SsgoICbNq0CUFBQQgNDUVWVlar9l+0aBGqq6sN1hUWFmLt2rUYPny4wfpt27bhww8/xPjx43H//fcjMzMT8fHxUKlU+Mc//mF2X6hlOp0Oh9dl4/zBvwAAQrEAU5YMQUBfXxtXRkREZMghQlZERAR27NgBb29v7N+/H8uWLWvV/rGxsU3WrVu3DgAwZcoU/bqamhqsXbsWt9xyC958800AwJ133gmtVov169djxowZ8PLyMqMndDPHvj+H7JQ/AQACoQATF8WgR5S/jasiIiJqyiHGZLm7u8Pb27K3ilJTUxEYGIioqCj9uhMnTqC8vBx33XWXQdu7774b1dXVOHz4sEVrIEOntl/AqW0X9MvjnoxCr+EBNqyIiIioeQ4RsiwtLy8PMpkMkydPNlh/7tw5AEC/fv0M1kdEREAoFCIvL6/danQ22SkyHN1y4+939KORCI/tYcOKiIiIWuYQtwstLSUlBYDhrUIAKCkpgUgkgq+v4fgfFxcXeHt7o6SkpNljyuVyg+0ymcyCFTu2cwcv47fEbP3y8Af6InJKiA0rIiIiujm7C1larRZqtdqkthKJBAKBwOLn37t3L8LDw9GrVy+DbTU1NRCLjf+VSSQS1NTUNHvc7du3IzExscn6ixcvQqPRmFOy3VMoFMjOzr55QyNKz1YhN6kY0NUv9xjtDZewmjYfrz2Y09+Ohn11XM7UX/bVcVmrv5GRkSa1s7uQderUKSxevNikths2bEBIiGWvaGRkZKC4uBizZs1qss3V1RV1dXVG96utrYWra/OzjM+YMQNjxozRL8tkMqxYsQK9e/dGRESE+YXbsezsbJO/IRu7fEaO9J+O6QNW/ynBGD0v0uLB2tLa2t+OiH11XM7UX/bVcdm6v3YXsoKDg7F06VKT2kqlUoufPyUlBUKhsMl4rIbzaTQalJWVGdwyVKvVqKioaLEef39/+PvzKThTFeWVIeXDE9DW1SessLHdMXqu/QcsIiKiBnYXsqRSKaZPn26Tc9fW1uLAgQOIjo42GojCw8MBALm5ubjlllv063Nzc6HVavXbyTwlsgrsfu8Y6mrqb6OGDO2KcU9GQSBkwCIioo7D6Z4uLCoqanbQeXp6OhQKRZMB7w2GDBkCb29vbNu2zWD9tm3b4ObmZhC8qG3Kryix8+2jqK2qvy3bfaAUExZFQyhyum9VIiLq4OzuSlZbNUwemp+fDwDYvXs3MjMzAQBz587Vt1u5ciUyMjKQlpbW5BgpKSmQSCQYP3680XO4urrisccew8cff4xly5ZhxIgROHXqFP773//iiSeesPhcXc6mRqnGzrePQFVRCwDoGu6DKUuGQCwR2bgyIiKi1nOYkJWQkGCwnJycrP/cOGQ1R6lU4vDhwxg1ahQ8PZt/yfDdd98NsViMrVu34tChQ+jatSueeeYZowPlqXUyf/kDCrkKAOAX4oVbXxwGFzeH+RYlIiIn4zC/wYxdmTJm1apVRtd7eHggNTXVpGPceeeduPPOO02ujW6u6loNsnbX38ZteB+hq4eLjasiIiJqOw50IbuQ8dN5/UD3/pOC4dXF3cYVERERmYchi2yuoqgKuXsLAABiVxGi7+pj44qIiIjMx5BFNnfix3PQaurnw4q6rRc6dW5+UlciIqKOgiGLbKr0z0qcP/QXAMDV0wVRt/e2cUVERESWwZBFNnXshzz9a3MGzwiFxJ2D3YmIyDEwZJHNFOWV4c/jVwEA7n6uiJxq2fdQEhER2RJDFtmETqfD0a15+uUh94Rz0lEiInIoDFlkE5cz5SjMKQUAeHdzR9/xPWxcERERkWUxZFG702kNr2INndWX7yYkIiKHw99s1O4uHilESX4FAEAa4oXQkd1sXBEREZHlMWRRu9JqtDj+wzn98rAHIiAQCmxYERERkXUwZFG7yku7jPIrSgBAt36+CBrkb+OKiIiIrIMhi9pNXa0GJ388r18e/kAEBAJexSIiIsfEkEXtJiflTyhLVQCAnjFdENDX18YVERERWY+4NY0zMjLafKLo6Og270sdX22VGhnbLtQvCIBh9/e1bUFERERW1qqQtXjx4jbf3tm/f3+b9iPHcDo5HzUKNQCgz+jukAZ727giIiIi62pVyJo7d26TkJWdnY0jR44gKCgIUVFR8PX1RVlZGc6cOYOCggKMGDECkZGRFi2aOha1UoMzyZcAAAKRAEPvC7NxRURERNbXqpA1f/58g+VTp07hu+++wwsvvIDbb7/dIIDpdDr88ssvWLVqFebMmWOZaqlDunSoHGqVBgDQb0JPeAd42LgiIiIi6zNr4HtCQgJGjRqFO+64o8kVLoFAgBkzZmDkyJFISEgwq0jquBTyahQerwQAiCRCxNzdx8YVERERtQ+zQtbZs2cREhLSYptevXohNzfXnNNQB3bix3PQ1V/EwsBpveDu62bbgoiIiNqJWSHLxcUF586da7FNXl4eXFxczDkNdVBllxU4l3YZACBxF2PQHaE2roiIiKj9mBWyhg8fjiNHjmDjxo1Qq9UG29RqNTZu3IijR49ixIgRZhVJHdPxH/Kg09V/HnRnKFw9GbaJiMh5tGrg+989/fTTyMzMxNq1a5GUlIR+/frBx8cH165dQ25uLq5duwapVIqnnnrKUvVSB1H8RznyjxQBAFw8RRhwa8u3lYmIiByNWSGra9eu+Oqrr/Dll19i3759OHz4sH6bRCLB1KlT8eSTT0IqlZpdKHUsx7ae1X8OGtsZLm5mfasRERF1OGb/5pNKpXjllVfw4osv4s8//4RSqYSHhwd69uzJsVhO6q+sElw+XQIA8OrSCQExnjauiIiIqP1Z7PKCWCxGaCgHNjs7nU6Ho1tuXMUaMiscalG5DSsiIiKyDYuFrNOnT+PcuXOoqqqCu7s7wsPDERUVZanDUwchO3YVxRfqQ5VvTy/0Gd0dubkMWURE5HzMDlmnT5/GO++8g8uX6x/V1+l0+olJg4KC8PLLL2PgwIHmnoY6AK1Wh2Pf5+mXh80Oh1DYtnddEhERdXRmhayLFy/i+eefh0qlwrBhwxATEwOpVIrS0lKcPHkSR48exfPPP48vvvgCvXr1slDJZK/OH7yMa5cVAICu4T4IHtLVxhURERHZjlkhKzExEWq1Gu+99x5GjhxpsO0f//gHfv/9dyxduhSJiYl4/fXXzTkV2TmNWoMTSef1y8Mf6NvkVUtERETOxKyQlZGRgbi4uCYBq8HIkSMRFxeH48ePm3Oam5LL5UhKSkJOTg5yc3NRXV2N+Ph4xMTEmLT/7NmzUVhYaHRbjx49sHnzZv3yzz//jBMnTiA7OxtXr17FtGnT8Morr1ikHx1Z7t4CKOTVAICgQf4I7M9pO4iIyLmZFbKUSiUCAwNbbBMYGAilUmnOaW6qoKAAmzZtQlBQEEJDQ5GVldWq/RctWoTq6mqDdYWFhVi7di2GDx9usH7Tpk2oqqpC//79UVJSYnbtjkCtqsPJny7ol4fd39eG1RAREdkHs0KWVCq9aaDJzs62+mSkERER2LFjB7y9vbF//34sW7asVfvHxsY2Wbdu3ToAwJQpUwzWr1q1CgEBARAIBLj11lvbXrQDObMzH6qKWgBA71Hd4N+7s40rIiIisj2z3l04ZswYZGRkYO3ataipqTHYVlNTg2+++QYnT57E2LFjzSryZtzd3eHt7W3RY6ampiIwMLDJNBTdunXjWKNGVJW1yNxxEQAgEAowbBavYhEREQFmXsmaO3cuDh8+jI0bN2L79u3o378/fH19UVZWpn93Yffu3TF37lxL1dsu8vLyIJPJMGfOHFuXYvdO/fIH1NV1AIC+43ugc6CHjSsiIiKyD2aFrM6dO2PNmjX44osvsGfPHqSnp+u3SSQSTJ8+HU899ZTFrzJZW0pKCoCmtwrNIZfLDcZwyWQyix3bVpSlKmTvru+HyEWIIfeE2bgiIiIi+2H2ZKQ+Pj54+eWX8fzzz0Mmk+lnfA8JCYFY3PrDa7VaqNVqk9pKJBKL37rTarXYu3cvwsPDLTq31/bt25GYmNhk/cWLF6HRaCx2nvZ0IbkEGrUWABAw1BOyootAUdN2CoUC2dnZ7Vyd7ThTf9lXx+VM/WVfHZe1+hsZGWlSO4u+u7BPnz5mH+fUqVNYvHixSW03bNiAkJAQs8/ZWEZGBoqLizFr1iyLHnfGjBkYM2aMflkmk2HFihXo3bs3IiIiLHqu9lB+RYnDGX8CAFw6iTBx3nC4eUuMts3Ozjb5G9IROFN/2VfH5Uz9ZV8dl637a3fvLgwODsbSpUtNamuNpxZTUlIgFAoxefJkix7X398f/v7+Fj2mLR1POgedVgcAiLq9d7MBi4iIyFnZ3bsLpVIppk+fbm5ZbVJbW4sDBw4gOjraoQKRpZXkV+CPw1cAAG7eEgyc3tvGFREREdkfp3t3YVFREVQqldHbjOnp6VAoFBYd8O6IGr8EOnpmH0g6WeyCKBERkcNwmHcXNkwemp+fDwDYvXs3MjMzAcBgComVK1ciIyMDaWlpTY6RkpICiUSC8ePHN3ueQ4cO4fz5+nf01dXV4cKFC/pzjx071iLj0uxZYW4pCjKKAQCe/m7oP7mnjSsiIiKyTw7x7kIASEhIMFhOTk7WfzZlni6lUonDhw9j1KhR8PT0bLbdgQMHsGvXLv3yuXPncO7cOQBA165dHT5kHU86p/885J5wiFxENqyGiIjIfjnEuwsBGL0yZcyqVauMrvfw8EBqaupN93/llVec9oXQ2jotCnNKAQBeXTshLLa7jSsiIiKyX2a9Vsde3l1I7UNZqoKu/oFCSHt5Qygy69uHiIjIoTnEuwupfVTKq/WfPf072bASIiIi+8d3F5LJFI1DlpQhi4iIqCV8dyGZTClX6T/zShYREVHL7O7dhWS/DG4XdnGzYSVERET2z+7eXUj2S8ExWURERCbj42FksoaQ5eImgquHi42rISIism9mX8k6duwYtm7ditzcXCgUCuganvFvRCAQYN++feaeimxIp9VBWVI/JsvTv5P+/ZRERERknFkha//+/Vi+fDm0Wi0CAgIQEhICkYgzgDui6opaaNRaALxVSEREZAqzQta6desgkUjw1ltvYejQoZaqiewQx2MRERG1jlljsgoKCjBp0iQGLCdgGLL4ZCEREdHNmBWyvL294erqaqlayI4pinkli4iIqDXMClnjx4/H8ePHUVdXZ6l6yE4pSjgRKRERUWuYFbIWLFgAT09PvP766ygqKrJUTWSHOCaLiIiodVo18P3+++9vsq6urg7Z2dk4ePAgPD094eHh0aSNQCDAli1b2l4l2VxDyBKKBHD34S1iIiKim2lVyDI2B5ZIJELXrl1bbGNsHXUsDSHLQ+oGgZBzZBEREd1Mq0LW999/b606yI7VVqlRW1U/7o63ComIiEzD1+rQTVVyPBYREVGrMWTRTXH6BiIiotZr1e3CxMRECAQC3H333fD29kZiYqJJ+wkEAsydO7ct9ZEdUMhvTN/gxZBFRERkklaFrG+//RYCgQATJ06Et7c3vv32W5P2Y8jq2BpP3+DB2d6JiIhM0qqQFR8fDwD6pwkblsmxKUp4u5CIiKi1WhWyoqOjW1wmx2QwEamUV7KIiIhMwYHvdFMNY7LcfVwhchHZuBoiIqKOgSGLWlRXq0H1tRoAvFVIRETUGq26XTh+/HgIBK2f7VsgEGDfvn2t3o9sT8kXQxMREbVJq0LW4MGD2xSyqOMyGI/VheOxiIiITNWqkLVq1Spr1UF2SsHZ3omIiNqEY7KoRYZPFjJkERERmapVV7Jakp+fD5lMBpVKhVtvvdVShyUbazzbO69kERERmc7skJWTk4P3338ff/zxh35dQ8jKyMjACy+8gNdeew1jx44191TNksvlSEpKQk5ODnJzc1FdXY34+HjExMSYtP/s2bNRWFhodFuPHj2wefNmAEBRURGSk5Nx+PBhXLp0CSKRCL1798YjjzyCYcOGWaw/9sRwIlKOySIiIjKVWSHr4sWLePbZZyEUCjFr1iz8+eef+P333/XbBw8ejM6dO2P//v1WDVkFBQXYtGkTgoKCEBoaiqysrFbtv2jRIlRXVxusKywsxNq1azF8+HD9uoMHD2LTpk2IjY3FtGnToNFosHv3bixZsgQvv/wybrvtNov0x540vBxa4i6GxN3FxtUQERF1HGaFrG+++QYA8PXXXyMoKAjffvutQcgSCAQYMGAAcnNzzavyJiIiIrBjxw54e3tj//79WLZsWav2j42NbbJu3bp1AIApU6bo1w0ZMgQ//PADfHx89OtmzpyJ+fPnIyEhweFCllarg6K0/nahZxfeKiQiImoNswa+Z2RkYPz48QgKCmq2TUBAAEpKSsw5zU25u7vD29vbosdMTU1FYGAgoqKi9Ot69+5tELAAQCKRYNSoUSguLkZVVZVFa7C16jIVdBodAI7HIiIiai2zQlZ1dTV8fX1bbFNTUwOtVmvOadpdXl4eZDIZJk+ebFL70tJSuLm5wdXV1cqVta9KDnonIiJqM7NuF3bp0sVgwLsxeXl56N69uzmnaXcpKSkADG8VNufSpUtIS0vDhAkTIBI1/14/uVxucEVPJpOZX6iVcY4sIiKitjMrZI0ePRo//vgjjh07ZvTpur179yI7Oxtz5841+ZharRZqtdqkthKJxOIz0Gu1Wuzduxfh4eHo1atXi21VKhVee+01uLq64sknn2yx7fbt25GYmNhk/cWLF6HRaMyo2HouZZfrP19TyZGdXd1C6+YpFApkZ2dbqiy750z9ZV8dlzP1l311XNbqb2RkpEntzApZc+bMwf79+/Hiiy9i2rRpKC0tBQD89NNPyMrKwp49e9CtWzfMnj3b5GOeOnUKixcvNqnthg0bEBIS0qbam5ORkYHi4mLMmjWrxXYajQavv/468vPz8d5778Hf37/F9jNmzMCYMWP0yzKZDCtWrEDv3r0RERFhkdotrfTwGQDXAAD9Boeja5hPm46TnZ1t8jekI3Cm/rKvjsuZ+su+Oi5b99eskOXj44NPP/0UK1aswK+//qpf/8knnwCoT3rLli2Dp6enyccMDg7G0qVLTWorlUpbVa8pUlJSIBQKbzoe6/3338fhw4fx//7f/8PQoUNvelx/f/+bBjF7YzARKZ8uJCIiahWzJyPt3r07Pv/8c5w7dw7Z2dmoqKiAu7s7IiMj0b9//1YfTyqVYvr06eaW1Sa1tbU4cOAAoqOjWwxEn3/+OZKTk7Fo0SKTB8d3RA1jskQuQnTylti4GiIioo7FrJCVlpaGcePGAQDCw8MRHh5utN2nn36KRYsWmXMqiykqKoJKpTJ6mzE9PR0KhaLFAe+bN2/Gli1bMGfOnJveUuzIdDqdPmR5+ney+Ng3IiIiR2dWyHrzzTfxwQcfYPDgwc22+fTTT/Hjjz9aPWQ1TB6an58PANi9ezcyMzMBwGDg/cqVK5GRkYG0tLQmx0hJSYFEIsH48eONniMtLQ1r1qxBUFAQQkJC8N///tdg+7Bhw+Dn52eJ7thcjUKNupr6Afl8nQ4REVHrmRWyunfvjqVLl2L16tUIDQ1tsn316tVISkoyOqO6pSUkJBgsJycn6z+b8nSjUqnE4cOHMWrUqGbHkJ0/fx5A/bQNK1asaLI9Pj7eYUIWp28gIiIyj1kh6/3338c///lPvPDCC/j8888REBCg3/b555/jhx9+wNixY7F8+XKzC70ZY1emjFm1apXR9R4eHkhNTW1x3/nz52P+/Pmtrq0jYsgiIiIyj1kzvnft2hUffPABampq8Nxzz6G8vH5epc8//xxbt27F6NGjsXz58hYn6ST7xJBFRERkHrNCFgD06tUL7777LoqLi/HCCy9g9erV2Lp1K2655Ra8+eabEIvNfoCRbEDBV+oQERGZxeyQBQADBgzA66+/jvPnzyMpKQmjRo3CihUrGLA6sEqDK1kc+E5ERNRarUpBu3btanH78OHDkZ2djTFjxjQZ3zRt2rTWV0c2o7wesgQCwMOXIYuIiKi1WhWy3n77baPzJel0OggEAuh0OgDARx99ZLBOIBAwZHUwDWOy3P3cIBRb5IInERGRU2lVyHr55ZetVQfZEbWqDqrK+pd0czwWERFR27QqZNnqdTfUvhQlHPRORERkLt4HoiY4fQMREZH5GLKoicYhy4tPFhIREbVJq24Xjh8/HkKhEOvXr0fPnj0xfvx4k14cLBAIsG/fvjYXSe1LUcwrWUREROZqVcgaPHgwBAIBXF1dDZbJsTS+kuXBkEVERNQmrQpZf3/vX3PvAaSOzWC2dylvFxIREbUFx2RRE4qS+itZbl4ucHHjrP1ERERtwZBFBrR1WlSV1l/J4ngsIiKitmvVZYrExMQ2nUQgEGDu3Llt2pfal7JMhesT9zNkERERmaFVIevbb79t00kYsjoOzpFFRERkGa0KWfHx8daqg+yEopizvRMREVlCq0JWdHS0lcoge8ErWURERJbBge9koLJxyOrC6RuIiIjayqzn84uKim7aRiAQwMPDAx4eHuacitqJwZUsKa9kERERtZVZIWv27Nkmz/ju4+ODcePGYd68efDz8zPntGRFDSFL7CqCq6eLjashIiLquMy6XXjrrbdi0KBB0Ol08PT0RHR0NCZOnIjo6Gh4eXlBp9Nh8ODBGDVqFCQSCbZt24YnnngCcrncUvWTBel0OihLbsyRxVcmERERtZ1ZV7IefPBBLFy4EHPnzsVDDz0EN7cbY3hqamqwadMmJCUl4bPPPkNwcDA2btyIhIQErF+/HkuWLDG7eLKs6opaaNRaABz0TkREZC6zrmStWbMGkZGRmD9/vkHAAgBXV1c8+uijiIyMxBdffAGhUIhHHnkE/fr1Q3p6ullFk3Uoihs/WchB70REROYwK2SdOXMGERERLbbp27cvMjMz9cuRkZEoLS0157RkJY0HvXt14ZUsIiIic5gVsrRaLS5fvtxim0uXLkHX8J4WACKRCBKJxJzTkpVwjiwiIiLLMStkRUVF4cCBA9izZ4/R7fv27UNaWhoGDhyoX3fp0iVIpVJzTktWopBztnciIiJLMWvg+1NPPYWFCxfizTffxKZNmxAVFQVfX1+UlZXhzJkzOH/+PNzc3PDUU08BAMrLy3Hs2DHcfvvtFimeLItXsoiIiCzHrJDVp08frF69Gp988glOnz6N8+fPG2yPiorC4sWL0adPHwCAp6cnfv755yaD5Mk+NIQsgUiATj6uNq6GiIioYzMrZAFAWFgYVq9ejaKiIpw/fx5KpRIeHh4ICwtDQECAQVuRSARPT09zT0lW0hCyPP3cIBRyjiwiIiJzmB2yGgQEBDQJVe1FLpcjKSkJOTk5yM3NRXV1NeLj4xETE2PS/rNnz0ZhYaHRbT169MDmzZsB1M/99fHHHyMnJwdXr16FVqtF9+7dcdttt+Huu++GWGyxv852V1ulRm1VHQDAk08WEhERmc1iqaC4uLjJlawuXbpY6vAtKigowKZNmxAUFITQ0FBkZWW1av9FixahurraYF1hYSHWrl2L4cOH69fV1NQgPz8fo0aNQrdu3SAUCnHmzBmsXr0aOTk5WLZsmUX6Ywsc9E5ERGRZZoesS5cu4aOPPsKJEyeabBsyZAiWLFmCoKAgc0/TooiICOzYsQPe3t7Yv39/q8NObGxsk3Xr1q0DAEyZMkW/ztvbG1988YVBu5kzZ8LDwwP/+c9/sHDhwg775CQHvRMREVmWWSGrqKgIzzzzDMrKyhAcHIzBgwdDKpWitLQUp06dwvHjx/HMM8/gyy+/tOqtRHd3d4sfMzU1FYGBgYiKirpp227dugEAFAqFg4QsPphARERkLrNCVmJiIsrKyrBkyRLMmDGjyQuFt23bho8++gjr1q3Diy++aFah7SkvLw8ymQxz5swxul2tVkOpVKKmpgZnz57Fli1b0K1bN/To0aOdK7WcSl7JIiIisiizQtaRI0cwevRozJw50+j2mTNnIj09Hb///rs5p2l3KSkpAAxvFTaWlpaG5cuX65f79euHl156qcWB73K5HCUlJfplmUxmoWotg7cLiYiILMuskHXt2jWEhoa22CY0NBRHjhwx+ZharRZqtdqkthKJpMnVM3NptVrs3bsX4eHh6NWrl9E2MTEx+Oijj6BQKHD8+HGcP38eKpXKaNsG27dvR2JiYpP1Fy9ehEajsUDl5ikuuPE+yYKr+bhcarm/V4VCgezsbIsdz945U3/ZV8flTP1lXx2XtfobGRlpUjuzQpaPjw/y8/NbbJOfnw8fHx+Tj3nq1CksXrzYpLYbNmxASEiIycc2RUZGBoqLizFr1qxm2/j5+cHPzw8AEBcXhw0bNmDJkiXYtGlTs2OyZsyYgTFjxuiXZTIZVqxYgd69e9/0Jdvt4aSyfgqLTj6uGDhogEWPnZ2dbfI3pCNwpv6yr47LmfrLvjouW/fXrJA1fPhw7Nq1Czt27MAdd9zRZPuvv/6K3377DdOmTTP5mMHBwVi6dKlJba0xyDwlJQVCoRCTJ082eZ+4uDh8/fXXOHjwYLO3Tv39/eHv72+pMi1Ko9ag+loNAA56JyIishSzQtajjz6K3377DR988AF++OEHREdHw8/PT/90YX5+Pjp37ox58+aZfEypVIrp06ebU1ab1dbW4sCBA4iOjm5VIKqpqQ8oSqXSWqVZlaKEc2QRERFZmlkhKyAgAJ999hk++OADZGRkNLl1GBMTg+eee85mM8EbU1RUBJVKZfQ2Y3p6OhQKRbMD3q9du4bOnTs3GQe2Y8cOALCL235twUHvRERElmf2ZKQ9e/ZEfHy8Se8utKaGyUMbgt7u3buRmZkJAJg7d66+3cqVK5GRkYG0tLQmx0hJSYFEIsH48eONnuO///0vtm/fjrFjx6J79+6oqqrCkSNHcOzYMYwePRpDhw61cK/aR+OQ5cWQRUREZBEO8e5CAEhISDBYTk5O1n9uHLKao1QqcfjwYYwaNarZl1gPGjQIWVlZ2LNnD8rKyiASidCzZ08888wzuOeee8zrgA3xlTpERESW16qQ9c4777T5RC+//HKb9zWFsStTxqxatcroeg8PD6Smpra4b79+/Qzmx3IUvF1IRERkea0KWTt37mzTSQQCgdVDFrUdX6lDRERkea0KWVu3brVWHWRDiuL6kCVxF0Pi7mLjaoiIiBxDq0JWw4uQyXFotTooSuvHZPFWIRERkeUIbV0A2Vb1tRroNDoADFlERESWxJDl5DjonYiIyDoYspwcB70TERFZB0OWk+OVLCIiIutgyHJylcUMWURERNbAkOXkDGZ778KQRUREZCkMWU6u4XahyEWITt4SG1dDRETkOBiynJhOp9OHLA+pGwQCgY0rIiIichwMWU6sRqlGXY0GAMdjERERWRpDlhPjk4VERETWw5DlxBTFNwa9ezFkERERWRRDlhPjlSwiIiLrYchyYgYhqwtneyciIrIkhiwnxitZRERE1sOQ5cQaQpZAAHj48koWERGRJTFkObGGkOXu5wahmN8KRERElsTfrE5KraqDqlINAPCU8lYhERGRpTFkOSllSaN3FvrzViEREZGlMWQ5KQ56JyIisi6GLCdlOH0DQxYREZGlMWQ5qUp549uFDFlERESWxpDlpHi7kIiIyLoYspyUQciScuA7ERGRpTFkOamGkOXm5QIXN7GNqyEiInI8DFlOSFunRVVp/ZgsD86RRUREZBUMWU5IWaaCTlf/mU8WEhERWYdD3CeSy+VISkpCTk4OcnNzUV1djfj4eMTExJi0/+zZs1FYWGh0W48ePbB582aj2zIzM/HMM88AALZv3w4fH5821d/eFI2eLPTioHciIiKrcIiQVVBQgE2bNiEoKAihoaHIyspq1f6LFi1CdXW1wbrCwkKsXbsWw4cPN7qPVqtFfHw8OnXq1GRfe2f4ZCEHvRMREVmDQ4SsiIgI7NixA97e3ti/fz+WLVvWqv1jY2ObrFu3bh0AYMqUKUb3+eWXX3D16lXcfvvtSEpKan3RNsTpG4iIiKzPIUKWu7u7xY+ZmpqKwMBAREVFNdlWUVGBtWvXYv78+SgrK7P4ua2NIYuIiMj6OPDdiLy8PMhkMkyePNno9rVr18LPzw8zZsxo58osgyGLiIjI+hziSpalpaSkADB+q/DChQv45Zdf8O6770IkEpl8TLlcjpKSEv2yTCYzv9A2ahj4LnYVwdXTxWZ1EBEROTK7C1larRZqtdqkthKJBAKBwOLn37t3L8LDw9GrV68m2+Pj4zFy5EiMGDGiVcfdvn07EhMTm6y/ePEiNBpNG6ttPZ1Oh8riKgCAi5cQOTk5Vj+nQqFAdna21c9jL5ypv+yr43Km/rKvjsta/Y2MjDSpnd2FrFOnTmHx4sUmtd2wYQNCQkIsev6MjAwUFxdj1qxZTbbt2bMHZ86c0Q+Kb40ZM2ZgzJgx+mWZTIYVK1agd+/eiIiIMKvm1qgqr8Hhuj8BANIenU3+RjFHdnZ2u5zHXjhTf9lXx+VM/WVfHZet+2t3ISs4OBhLly41qa1UKrX4+VNSUiAUCo2Ox1qzZg3i4uIgFotx5coVAPUpGQCuXr2Kuro6+Pv7Gz2uv79/s9vak6KY47GIiIjag92FLKlUiunTp9vk3LW1tThw4ACio6ONBqKrV68iNTUVqampTbY9/vjjCAsLwzfffNMepbaZsoQhi4iIqD3YXciytqKiIqhUKqO3GdPT06FQKJqdG2vlypVN1u3Zswd79+7Fv//9b3Tp0sXi9VpaZaPZ3hmyiIiIrMdhQlbDOKn8/HwAwO7du5GZmQkAmDt3rr7dypUrkZGRgbS0tCbHSElJgUQiwfjx442ew9ikpefOnQMAjBw5skO8VofTNxAREbUPhwlZCQkJBsvJycn6z41DVnOUSiUOHz6MUaNGwdPT0+L12YvGIcuLr9QhIiKyGocJWcauTBmzatUqo+s9PDyMjrW6mfnz52P+/Pmt3s9WGkKWQCRAJ1+GLCIiImvhjO9OpuHpQk8/NwiFlp1jjIiIiG5gyHIitVVq1FbVAQA8u3A8FhERkTUxZDkRReMnC6UMWURERNbEkOVEFAZzZHE8FhERkTUxZDkRTt9ARETUfhiynAhDFhERUfthyHIiimLO9k5ERNReGLKcSOMrWR5SjskiIiKyJoYsJ9IQsjr5uEIsEdm4GiIiIsfGkOUkNGoNqq7VAOCThURERO2BIctJKEo4RxYREVF7YshyEnyykIiIqH0xZDkJpZxPFhIREbUnhiwnUSnnbO9ERETtiSHLSRjcLuTLoYmIiKyOIctJNA5ZXrxdSEREZHUMWU6iIWRJ3MWQuLvYuBoiIiLHx5DlBHRaHZTXp3DgoHciIqL2wZDlBKqu1UCr0QFgyCIiImovDFlOwGDQO99ZSERE1C4YspwAJyIlIiJqfwxZToDTNxAREbU/hiwnoOBs70RERO2OIcsJ8HYhERFR+2PIcgINIUvkIkQnb4mNqyEiInIODFkOTqfT6UOWh9QNAqHAxhURERE5B4YsB1ejVEOt0gDgrUIiIqL2xJDl4Dgei4iIyDYYshycorjxk4WciJSIiKi9MGQ5OF7JIiIisg2xrQuwBLlcjqSkJOTk5CA3NxfV1dWIj49HTEyMSfvPnj0bhYWFRrf16NEDmzdv1i+PGzfOaLsFCxbg4Ycfbn3xVqYoYcgiIiKyBYcIWQUFBdi0aROCgoIQGhqKrKysVu2/aNEiVFdXG6wrLCzE2rVrMXz48Cbthw0bhmnTphmsCw8Pb33h7aDxlSwvhiwiIqJ24xAhKyIiAjt27IC3tzf279+PZcuWtWr/2NjYJuvWrVsHAJgyZUqTbT179sTUqVPbVmw7a5jtXSAAPPw4JouIiKi9OETIcnd3t/gxU1NTERgYiKioKKPba2pqAACurq4WP7clNVzJcvd1g1DMIXhERETtxSFClqXl5eVBJpNhzpw5Rrfv2rULP//8M3Q6HUJCQvDII48YveJla3U1GqgqagFwPBYREVF7Y8gyIiUlBYDxW4UDBw7EhAkTEBgYiJKSEvznP//Bm2++CaVSibvuuqvZY8rlcpSUlOiXZTKZxev+O8MnC3mrkIiIqD3ZXcjSarVQq9UmtZVIJBAILPuaGK1Wi7179yI8PBy9evVqsv3zzz83WL7tttvw+OOP46uvvsL06dObvX24fft2JCYmNll/8eJFaDQaS5TeRNmFGyFLBSWys7Otcp6bUSgUNju3LThTf9lXx+VM/WVfHZe1+hsZGWlSO7sLWadOncLixYtNarthwwaEhIRY9PwZGRkoLi7GrFmzTGrv4uKCe+65Bx9++CHOnj2LQYMGGW03Y8YMjBkzRr8sk8mwYsUK9O7dGxERERap/e9yr/wJ4CoAoFe/nugfGWyV89xMdna2yd+QjsCZ+su+Oi5n6i/76rhs3V+7C1nBwcFYunSpSW2lUqnFz5+SkgKhUIjJkyebvE/Xrl0BABUVFc228ff3h7+/v9n1tYaipPFs7xyTRURE1J7sLmRJpVJMnz7dJueura3FgQMHEB0d3apA9NdffwEAfHx8rFRZ23BMFhERke043TP9RUVFzQ46T09Ph0KhaPZJwWvXrjVZV1VVhaSkJHTu3Nlqt/3aiq/UISIish27u5LVVg2Th+bn5wMAdu/ejczMTADA3Llz9e1WrlyJjIwMpKWlNTlGSkoKJBIJxo8fb/Qc//nPf3Dw4EGMHj0aAQEBKCkpQXJyMoqKivDvf/8bLi4uFu6VeRpClqunC1zcHOZLTURE1CE4zG/ehIQEg+Xk5GT958YhqzlKpRKHDx/GqFGj4OnpabRNVFQUzpw5gx07dqCiogJubm7o378/XnrpJQwdOtS8DliYVqOFsrR+wlRexSIiImp/DhOyjF2ZMmbVqlVG13t4eCA1NbXFfYcPH270XYb2SFlaA51WBwDw7MKQRURE1N6cbkyWs+CLoYmIiGyLIctBNQ5ZHlI+WUhERNTeGLIcFJ8sJCIisi2GLAelkN+YiJS3C4mIiNofQ5aD4pUsIiIi22LIclANIUvsKoKrl33N30VEROQMGLIckE6ng6KkPmR5+rtBIBDYuCIiIiLnw5DlgFQVtdDUagHwViEREZGtMGQ5II7HIiIisj2GLAfEkEVERGR7DFkOqLLR9A2enIiUiIjIJhiyHBCvZBEREdkeQ5YDUjYOWXw5NBERkU0wZDmghitZApEA7r68XUhERGQLDFkOqOGVOh5+bhAKOUcWERGRLTBkOZja6jrUKNUAOB6LiIjIlhiyHEzjQe98MTQREZHtMGQ5GMMnCzkei4iIyFYYshxM45DlwStZRERENsOQ5WA4RxYREZF9YMhyMIriG7O9c0wWERGR7TBkORhFSaPbhXylDhERkc2IbV0AWda4BVGoKKpCVXkNxBKRrcshIiJyWgxZDsanhyd8enjaugwiIiKnx9uFRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQ4xhYNcLkdSUhJycnKQm5uL6upqxMfHIyYmxqT9Z8+ejcLCQqPbevTogc2bNxusKy0tRUJCAg4fPoyKigr4+flhyJAhePnll83uCxERETkGhwhZBQUF2LRpE4KCghAaGoqsrKxW7b9o0SJUV1cbrCssLMTatWsxfPhwg/VFRUVYuHAhAGDmzJnw9/eHXC5HTk6OeZ0gIiIih+IQISsiIgI7duyAt7c39u/fj2XLlrVq/9jY2Cbr1q1bBwCYMmWKwfoPPvgAIpEIX331FTp37tz2oomIiMihOcSYLHd3d3h7e1v0mKmpqQgMDERUVJR+nUwmw++//44HH3wQnTt3Rk1NDerq6ix6XiIiInIMDnEly9Ly8vIgk8kwZ84cg/XHjh0DAPj6+uLZZ5/FiRMnIBKJMGzYMCxZsgSBgYG2KJeIiIjskENcybK0lJQUAE1vFV66dAlA/S1DFxcXvP7661iwYAEyMzOxZMkSqFSqZo8pl8tx9uxZ/X8ymcx6HSAiIiKbs7srWVqtFmq12qS2EokEAoHA4uffu3cvwsPD0atXL4NtDYPj/fz88O6770IorM+oXbt2xfLly5Gamoo77rjD6HG3b9+OxMTEJusvXrwIjUZj0T7YG4VCgezsbFuX0W6cqb/sq+Nypv6yr47LWv2NjIw0qZ3dhaxTp05h8eLFJrXdsGEDQkJCLHr+jIwMFBcXY9asWU22ubq6AgAmTJigD1gAEBcXhxUrVuDMmTPNhqwZM2ZgzJgx+uXz58/rg5pIJLJoH+xNaWmpUz0k4Ez9ZV8dlzP1l311XNbq79mzZxESEgI3N7cW29ldyAoODsbSpUtNaiuVSi1+/pSUFAiFQkyePLnJNn9/fwD1Y7IaE4lE6Ny5MyorK5s9rr+/v35/APrbhStWrLBE2URERNSOvv76a0RERLTYxu5CllQqxfTp021y7traWhw4cADR0dEGgahBw1+mXC43WK9Wq1FeXg4fHx+TzzVixAi8+uqrCAwMhEQiMatueyaTybBixQq8+uqrFr/qaI+cqb/sq+Nypv6yr47L2v015Zh2F7KsraioCCqVyuhfTnp6OhQKRZMB7w2io6Ph6+uLlJQUPPzww/rbhzt37oRGo8GwYcNMrsPHxwdTp05tWyc6oJCQkJsmfkfiTP1lXx2XM/WXfXVctuyvw4SshslD8/PzAQC7d+9GZmYmAGDu3Ln6ditXrkRGRgbS0tKaHCMlJQUSiQTjx483eg6JRIKnn34ab731FhYtWoRbb70VRUVFSEpKwqBBgzBu3DgL94qIiIg6KocJWQkJCQbLycnJ+s+NQ1ZzlEolDh8+jFGjRsHT07PZdtOmTYOLiwu+++47rFmzBp6enpgxYwYWLFjg8APYiYiIyHQOE7KMXZkyZtWqVUbXe3h4IDU11aRjTJo0CZMmTTK5NmcmlUoxb948qzykYI+cqb/sq+Nypv6yr47LHvor0Ol0OpudnYiIiMhBccZ3IiIiIitgyCIiIiKyAoYsIiIiIitwmIHv1H5ycnKwa9cunDx5EoWFhfD29saAAQPw+OOPo2fPni3uu3PnTrz99ttGt/300092OSDz5MmTzb7qac2aNRgwYECL+xcXF2P16tU4evQotFotYmJisGjRInTv3t0a5Zrlrbfewq5du5rd/uOPP6JLly5Gt33zzTdG388pkUhMfqjEmqqqqrBlyxZkZ2cjJycHlZWVWLp0qdHJj/Pz87F69WqcPn0aYrEYt9xyC5555hmTJxw+ePAgvv32W8hkMvj4+OC2227DI488ArG4ff7JNaWvWq0Wu3fvxoEDB3Du3DlUVlYiMDAQEydOxAMPPKCfB7Al//rXv5CRkdFk/YgRI/DBBx9YskvNMvXr2tz3dnBwMDZu3GjSuWz9dQVM729LUwoNGzYMH330UYvnmT17NgoLC5usnzFjBp5//vm2Fd8Krfk9Y88/rwxZ1GqbNm3C6dOnMWHCBPTp0wclJSX46aef8Pjjj2PNmjUIDQ296TEee+wxBAYGGqxraeoMe3Dvvfeif//+But69OjR4j5VVVVYvHgxlEolHn74YYjFYnz//fdYtGgRvvnmG7t7h9iMGTOaTKqr0+nw4Ycfolu3bs0GrMaee+45dOrUSb/c+D2ftlReXo7ExEQEBAQgLCwMJ0+eNNru6tWrWLRoETw9PfHEE0+guroaW7ZswR9//IEvv/wSLi4uLZ4nPT0d//73vxEdHY3Fixfjjz/+wPr161FWVobnnnvOGl1rwpS+qlQqvP322xgwYABmzpwJX19fZGVl4dtvv8WJEyfwySefQCAQ3PRcXbp0wZNPPmmwrj3/Z8nUrytQH/hffPFFg3UeHh4mnccevq6A6f199dVXm6zLzc1FUlIShg8fbtK5wsPDcf/99xusCwoKan3RbWDq7xm7/3nVEbVSZmamrra21mDdn3/+qZs0aZLujTfeaHHf5ORkXWxsrC4nJ8eaJVrUiRMndLGxsbp9+/a1et/vvvtOFxsbq8vOztavy8/P18XFxem+/PJLC1ZpPadOndLFxsbq1q9f32K7hIQEXWxsrK6srKx9CmulmpoanVwu1+l0Ol1OTo4uNjZWl5yc3KTdhx9+qJs8ebKusLBQv+7o0aO62NhY3bZt2256njlz5ugeffRRnVqt1q/76quvdOPGjdPl5+dboCc3Z0pfa2trdZmZmU32/fbbb3WxsbG6o0eP3vQ8ixYt0j3yyCOWKbqNTP26rly5Ujd16tQ2n8cevq46nen9Neadd97RjRs3TldUVHTTtrNmzdK9+OKLZtVqDlN/z9j7z6t9/C8mdShRUVFN/u+gZ8+e6NWrl/7F16aoqqqCRqOxdHlWVVVVhbq6OpPb79+/H/369TO4AhYSEoIhQ4Zg37591ijR4lJTUyEQCIy+NL05SqUSOjubHUYikZh0heXAgQMYPXo0AgIC9OuGDRuGnj173vRrlp+fj/z8fNx5550Gtxruvvtu6HQ67N+/v831t4YpfXVxcUFUVFST9bGxsQDQqp/luro6VFVVta5ICzH169pAo9FAqVS26hz28nUFWt/fBo3fzdu1a1eT91Or1aiurm71+cxl6u8Ze/955e1CsgidToeysjL06tXLpPaLFy9GdXU1XFxcMHz4cCxcuPCm47ls7e2330Z1dTVEIhEGDRqEp59+Gv369Wu2vVarxR9//IHbbrutybb+/fvj6NGjqKqqgru7uzXLNktdXR327duHgQMHNrm925z7778f1dXV6NSpE8aOHYuFCxfCz8/PypVaRnFxMcrKyoy+56x///5IT09vcf+8vDwAaLK/v78/unTpgnPnzlmuWCspLS0FAJNvZRcUFODWW2+FWq2Gn58f7rjjDsybN69dxymZSqVSYfr06VCpVPDy8sKkSZPw1FNP3fRn0BG+rjd7N68xJ06cwNSpU6HRaNCtWzfMmjULs2bNsmKVLfv775mO8PNqfz8F1CGlpKSguLgY8+fPb7Gdq6srpk+fjpiYGHh4eODs2bP4/vvv8c9//hNr1641+L8ReyEWizF+/HiMGjUKnTt3Rn5+PrZu3YpnnnkGn3/+Ofr27Wt0v4qKCtTW1hr9v86GdXK5HMHBwVat3xxHjhxBeXm5Sf8we3l54Z577sGAAQPg4uKCzMxM/PTTT8jJycHXX39t8tgXWyopKQFgfEyRVCrVf00lEkmb9m/Ybs82b94MDw8PjBw58qZtu3fvjpiYGISGhkKlUmH//v1Yv349CgoKsHz58nao1nRSqRQPPvgg+vbtC51Oh99//x0///wzLly4gPj4+BZDoSN8XW/2bt6/Cw0NxaBBg9CzZ09UVFRg586d+PTTTyGXy/H0009buVrj/v57piP8vDJkkdlkMhk+/vhjDBgwANOmTWux7cSJEzFx4kT9cmxsLEaMGIFFixZhw4YN7fLUSmtFRUUZ3FYZO3Ys4uLi8Oijj+Krr75q9imqmpoaADA68LLhh76hjb1KTU2FWCzGhAkTbtr27/+HGxcXh/79++PNN9/ETz/9hIcffthaZVqMqV+z5v7Rrq2tNWj79/1tdUvNVBs2bMCxY8ewZMkSeHl53bT9yy+/bLB866234v3338cvv/yC2bNn3/TJ2/b098H5kyZNQs+ePfH111/jwIEDLb4qraN/XRvezTty5EiTvq4A8M477xgs33bbbXjhhRfw/fff4957723VLUdLMPZ7piP8vHJMFpmlpKQEL730Ejw8PPDmm2+26SXZgwYNQmRkJI4fP26FCq0jKCgIY8eOxcmTJ5sdV9bwCLxarW6yreGH25TH5G2lqqoKBw8exIgRI9r8FOSUKVPg5+fXYb625n7NGv6xbmj79/3t+eu9Z88erF27FrfffjvuuuuuNh+n4Wm0Y8eOWagy65k9ezaEQuFNa+3IX1egftxSbW1tq24V/p1AIMDs2bOh0WiMTtthTc39nukIP68MWdRmCoUCL774IhQKBT744AP4+/u3+Vhdu3ZFRUWFBauzvq5du0KtVkOlUhnd7u3tDYlEYvSSc8M6c/7OrO3gwYNQqVRm/cMMdKyvbcNtg+a+Zg1f07bub4/zwAHA0aNH8dZbb+GWW24x+7H1hisclZWVlijNqlxdXeHt7X3T78+O+nVtkJKSAk9PT4wePdqs4zR8bdvz57ml3zMd4eeVIYvapKamBi+//DIKCgrwzjvvmDzgvTl//fWXyRPH2Yu//voLEonEYE6oxoRCIUJDQ5Gbm9tkW3Z2Nrp3727Xg95TUlLQqVMnjBkzps3H0Ol0KCws7DBf2y5dusDHxwdnz55tsi0nJwdhYWEt7h8eHg4ATfaXy+UoLi7Wb7cn2dnZePXVVxEREYHly5ebPWD9r7/+AoAO8TWvqqpCeXn5TWvtiF/XBnK5HCdPnsS4ceNaDBymaO+v7c1+z3SEn1eGLGo1jUaD119/HVlZWVi+fDkGDhxotJ1cLodMJjOY8uDatWtN2h0+fBhnz57FiBEjrFWyWYzVfP78eRw6dAjDhw/XT7ZZVFTU5LH38ePHIzc31yBo/fnnnzh58iTi4uKsWbZZrl27hmPHjmHcuHFwc3Nrst1YX439Pf3888+4du2aSYOo7cX48ePx22+/oaioSL/u+PHjKCgoMBibVldXB5lMBrlcrl/Xu3dvBAcH45dffjG4jfzzzz9DIBCYPOi4veTn5+Oll15Ct27d8O6777Z4e0Qmkxn8nSiVyia3WXQ6HdavXw8AJk942R5qamqMjq9Zt24ddDqdwfenI3xdG9u7dy+0Wm2zV6SN9beioqLJMIi6ujp89913cHFxQUxMjFVrBkz/PWPvP68c+E6t9tlnn+HQoUMYPXo0Kisr8d///tdg+9SpUwEAX331FXbt2oWtW7fqH/9/+umn0bdvX0RERMDDwwN5eXlITk5G165dMWfOnHbviylee+01uLq6YuDAgfD19UV+fj5++eUXuLm5GQymXblyJTIyMpCWlqZfd/fdd2PHjh146aWX8MADD0AkEuH777+Hr68vHnjgAVt0xyR79uyBRqNp9h9mY32dNWsWJk6ciNDQUEgkEpw+fRp79uxBeHg4ZsyY0V6lt+jHH3+EQqHQ3x44dOgQrl69CqB+Rn9PT088/PDD2L9/P5599lncd999qK6uxubNmxEaGmrw6pLi4mLMmTMH06ZNwyuvvKJf/89//hNLly7Fc889h0mTJuGPP/7ATz/9hDvuuMPsK76W7KtQKMTzzz+PyspKPPDAAzh8+LDB/t27dzf4xTZnzhxER0dj1apVAOoff1++fDkmT56MHj16oKamBv/73/9w+vRp3HnnnUYfq7eWm/W1srISjz32GCZPnqx/mvfIkSNIT0/HyJEjMXbsWP2x7P3rCpj2fdwgJSUF/v7+zQYjY/09dOgQ1q9fj/HjxyMwMBCVlZVISUnBxYsXsWDBgna5PWrq7xl7/3llyKJWO3/+PADgt99+w2+//dZke8M3vzETJ05Eeno6jh49CpVKBalUijvvvBPz5s2z27mUYmNjkZKSgu+//x5KpRI+Pj4YN24c5s2bd9NXTLi7uyM+Ph6rV6/G+vXr9e8ubM17tWwhNTUVvr6+GDp0qMn7TJkyBWfOnNEPsg0ICMCDDz6IRx55xOjVMFvYunWrwfvY0tLS9EFx6tSp8PT0REBAAFatWoXVq1fjyy+/1L8LbeHChSbdbhk9ejRWrFiBxMRExMfHo3Pnznj44Ycxb948a3XLqJv1FYD+F/OXX37ZZP9p06Y1e/UAAAICAjB48GCkpaWhtLQUQqEQISEheO6559o9VJvydR09ejSOHj2KXbt2QavVokePHliwYAEeeOABk179ZC9fV8C0/gL1V83Pnj2rH+BvqtDQUISEhCAlJQXXrl2DWCxGeHg4li9fbtKTxpZg6u8Ze/95FejsbVpmIiIiIgfAMVlEREREVsCQRURERGQFDFlEREREVsCQRURERGQFDFlEREREVsCQRURERGQFDFlEREREVsCQRURERGQFDFlEREREVsCQRUQd1pUrVzBu3Di89dZbti7FInbu3Ilx48Zh586dti6FiCyAIYuIHMq//vUvjBs3ztZlGOVooZCIWsYXRBNRh9WlSxds2LABHh4eti7FImJjYxEZGQmpVGrrUojIAhiyiKjDEovFCAkJsXUZFuPp6QlPT09bl0FEFiLQ6XQ6WxdBRNQWV65cwf33349p06bhlVdeafY2YcP2BhcuXMCGDRuQkZGBiooKSKVSjBkzBo8++ig6d+5s9PgPPfQQvv76a5w6dQoVFRXYunUrAgMDkZaWhn379iE3NxdyuRxisRh9+vTBfffdh7i4OP2xdu7cibfffttoffHx8YiJidG3Wbp0KaZPn27Q5vTp09iwYQOysrJQU1ODbt26YeLEiXjooYfg5uZm0HbcuHGIjo7G66+/jjVr1iA9PR3V1dUICwvDk08+iZiYmNb+VRNRG/BKFhE5jHnz5mHXrl0oLCzEvHnz9OvDw8P1nw8ePIjXX38dAoEAY8eORdeuXZGfn4///Oc/OHLkCL788kt4eXkZHPfy5ct4+umnERoaimnTpqGiogIuLi4AgK+++gpisRhRUVGQSqW4du0aDh06hGXLlmHx4sW49957AQBhYWG47777kJSUhLCwMIwdO1Z//G7durXYr3379uGNN96Ai4sLJk6cCB8fHxw9ehSJiYk4cuQI4uPj4erqarCPQqHAwoUL4enpialTp6KsrAz79u3D888/j6+//hqhoaFt+jsmItMxZBGRw5g/fz4yMjJQWFiI+fPnN9leXl6OlStXonPnzvjss88Mws2ePXuwfPlyJCQk4NlnnzXY7/Tp05g3b57RY7733nvo3r27wbqqqir885//REJCAm6//Xa4ubkhPDwcnp6e+pBl7FjGKJVKvP/++xCJRFizZg369OkDAFiwYAHeeOMN7N27F1u2bMHcuXMN9jt//jzuuusuPPvssxAK659xGjJkCN577z385z//wfPPP2/S+Ymo7fh0IRE5jd27d0OpVGLBggVNrh5NmjQJffv2xZ49e5rs5+fnhzlz5hg95t8DFgC4u7tj+vTpUCgUyM3NNavmgwcPQqFQ4LbbbtMHLAAQCoV4+umnIRKJjE750KlTJzz11FP6gAXU3zYViURm10REpuGVLCJyGllZWQCA7OxsXL58ucn22tpalJeX49q1a/Dx8dGvDwsL098e/LuysjJ89913SE9PR1FREWpqagy2y+Vys2o+d+4cACA6OrrJtoCAAHTv3h0FBQWoqqqCu7u7fltQUJDBMlD/oICfnx8UCoVZNRGRaRiyiMhpVFZWAgB++umnFtupVCqDZV9fX6PtKioqsGDBAhQVFSEqKgrDhg2Dp6cnhEIhzp8/j4MHD0KtVptVs1KpBFB/Nc0YqVSKgoICKJVKg1DV3LQWIpEIWq3WrJqIyDQMWUTkNBpCSGJiYqsGfgsEAqPrf/31VxQVFeGxxx5rMiZq48aNOHjwYNuLva4hLJWWlhrd3rDeUeYKI3IkHJNFRA6lYQySRqNpsi0yMhLAjduG5mq45dj4ScEGmZmZzdbWmitJDU9GZmRkNNlWVFSEy5cvo3v37k1uDRKR7TFkEZFD8fb2BgBcvXq1ybbbbrsN7u7u+Prrr3Hx4sUm21UqVasCWMPg+dOnTxusT0lJQXp6epP2Xl5eEAgERmtrztixY+Hp6Ynk5GSDmnU6Hb788ktoNJomc2oRkX3g7UIicihDhgzB/v378f/+3//DyJEjIZFIEBYWhjFjxsDHxwevvfYali1bhvnz52PEiBEIDg6GWq1GYWEhMjIyMHDgQHzwwQcmnWvq1KnYtGkT4uPjcfLkSQQEBOD8+fM4ceIExo0bh7S0NIP27u7u6NevH06dOoUVK1YgKCgIAoEAt956a7NzZXl4eOCFF17AG2+8gaeeegoTJkyAj48Pjh8/jrNnz6J///544IEHzP57IyLLY8giIodyxx134MqVK9i7dy82bdoEjUaDadOmYcyYMQCAW265BQkJCdi8eTOOHz+OY8eOwc3NDV26dMH06dMxdepUk8/VtWtXrFq1CmvWrMGxY8eg0WjQt29ffPjhh7h69WqTkAUAr776Kj799FP89ttvUCqV0Ol0GDRoUIsTkk6YMAF+fn7YuHEj0tLS9DO+z507Fw899FCTiUiJyD7wtTpEREREVsAxWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERW8P8BeA/K3zYCGtoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "5e58ab72", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "74e8bf4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABudElEQVR4nO3deXxU5dk//s/sk2SykISERfZ9U1zAyr60FKzap1qt9acV17oWv49WhKePVWuLX2u/PtpaFdpKtbXCo8Vqq1S0LBVEEUGRsC8BRciezGQy+/n9MTkn50wmyeznnszn/XrxeiWz3oeZzLnmvq77vgySJEkgIiIiyiFGvQdARERElGkMgIiIiCjnMAAiIiKinMMAiIiIiHIOAyAiIiLKOQyAiIiIKOcwACIiIqKcwwCoCx6PBwcOHIDH49F7KERERJRiDIC6UF1djVtuuQXV1dV6DyXtjhw5ovcQMobH2nvl0vHyWHuvXDpevY+VARDB6/XqPYSM4bH2Xrl0vDzW3iuXjlfvY2UARERERDmHARARERHlHAZARERElHMYABEREVHOYQBEREREOYcBEBEREeUcBkBERESUcxgAERERUc5hAEREREQ5hwEQERER5RwGQERERJRzGAARERFRzmEARERERDmHARBRCoSCIRz76DRqjzTpPRQiIoqBWe8BEPUGh7eewpbn9sBoMuB7T81BQald7yEREVE3OANElAJ1R5oBAKGghIbqFp1HQ0REPWEARJQC3la/8rNH9TMREYmJARBRCnhd/qg/ExGRmBgAEaUAAyAiouzCAIgoBdQpMC9TYEREwmMARJQCnAEiIsouDICIkhQKSfC6GQAREWUTBkBESfK5/YDU8bu31affYIiIKCYMgIiSFDnjwxkgIiLxMQAiShIDICKi7MMAiChJnQKgVj+kkNTFrYmISAQMgIiS5HVF1PxIgM8d0GcwREQUEwZAREmKtu8PC6GJiMTGAIgoSdFqflgHREQkNgZAREliAERElH0YABElKXoKjAEQEZHIGAARJYkzQERE2YcBEFGSGAAREWUfBkBESWIKjIgo+zAAIkqSsg+QQX0ZAyAiIpExACJKghSSlGDHUWZXLvdEbo5IRERCYQBElAS/JwCpvetFYUW+cjlngIiIxMYAiCgJHmdHoJNXZIMlzwyAARARkegYABElQV3sbHNYYHNYOl1ORETiYQBElAR1I1SbwwJbQXsA5PJDktgRnohIVAyAiJKgTnXZCjpmgKSQBH8bO8ITEYmKARBREjQpsEIL7A5r1OuIiEgsDICIktDVDFDkdUREJBYGQERJ0ARADisDICKiLMEAiCgJnVaBFViiXkdERGJhAESUBO0MEFNgRETZggEQURJYA0RElJ0YABElwdsa3gfIYjfBZDYyBUZElCUYABElQZ7lkWd+1DNAHicbohIRiYoBEFGCJEmCRw6ACuQAiPsAERFlAwZARAnye4KQguF2F3LgYyswK9ezBoiISFwMgIgSFFkADQAmiwlmm6nT9UREJBYGQEQJkgugAW3tDzvCExGJjwEQUYIi9wCS2eUAyOVjR3giIkExACJKUFcBkFwPFApICHiDGR8XERH1jAEQUYIi22AoP3MvICIi4TEAIkqQtgi6Y/k7d4MmIhIfAyCiBHWdAmMAREQkOnPPN8msY8eO4YUXXsCBAwfQ0NAAu92OIUOG4Pvf/z6mT5/e4/2dTieee+45bNmyBV6vF+PGjcMdd9yBMWPGZGD0lEuYAiMiyl7CzQCdPn0abrcbCxcuxI9+9CP84Ac/AAAsW7YMb7zxRrf3DYVCWLp0Kd59911cfvnluO2229DY2IglS5bg5MmTmRg+5RDOABERZS/hZoAuuugiXHTRRZrLLr/8ctxyyy1Yu3YtLrvssi7vu2nTJnz++ed45JFHMGfOHADAvHnzcM011+CFF17Agw8+mM6hU47xulT7ABV0FQCxHxgRkYiEmwGKxmQyoaKiAi6Xq9vbbd68GaWlpZg1a5ZyWUlJCebOnYv3338fPh9PRpQ6cnrLZDXCbDUpl2saonIGiIhISMLNAMna2trg9XrR2tqKrVu34sMPP8TcuXO7vc/BgwcxatQoGI3auG7cuHF48803cfLkSYwYMSLqfevq6lBfX6/8Xl1dnfxBUK/mdWo7wcvUK8KYAiMiEpOwAdAzzzyj1PwYjUbMmjUL/+f//J9u79PQ0IBzzjmn0+VlZWUAgPr6+i4DoDfeeAOrV6/udPmxY8cQDPbuzexcLheqqqr0HkZGpOpYJUlCm9Mb/sUc0jymtyWg/Fz3Vb1u/7e59LoCuXW8PNbeK5eON53HOn78+B5vI2wAdOWVV2LOnDmoq6vDxo0bEQwG4fd3/23a6/XCarV2uly+zOv1dnnfyy67TLPKrLq6Go8++iiGDRvW61eQVVVVxfRm6Q1SdawBbxAfBE8AAIrKCjWPGfAFsRNfAgCsxjzd/m9z6XUFcut4eay9Vy4dr97HKmwANGTIEAwZMgQAsHDhQvznf/4nHnjgATz//PMwGAxR72Oz2aLW+ciX2Wy2Lp+vvLwc5eXlKRg55QJ1cbM9IgVmtppgshoR9IWYAiMiElRWFEEDwJw5c7B///5ul7OXlpZq6nhk8mVyKowoWZ4u9gCKvEzdMZ6IiMSRNQGQnL7qbiXYqFGjcOjQIYRCIc3l+/btg91ux6BBg9I6RsodXe0BpFzWXgjNGSAiIjEJFwA1NjZ2uiwQCOCf//wnbDYbhg4dCiC8aqu6uhqBQEfB6ezZs9HQ0IAtW7YolzU1NWHjxo2YNm1a1PogokRo+4B1PQMU9IUQ8PXuInoiomwkXA3QE088gdbWVpxzzjno27cv6uvrsWHDBpw4cQJ33nkn8vPzAQArV67E+vXrsWbNGvTv3x9AOE326quvYsWKFTh+/DiKi4vx+uuvIxQK4cYbb9TzsKiX0bbB6BxYazZDbPVr9gkiIiL9CRcAzZs3D//4xz/wt7/9Dc3NzcjPz8eYMWNw2223YcaMGd3e12Qy4fHHH8dvf/tbvPbaa/B6vRg7diyWLVuGwYMHZ+gIKBf0nALTtsMo6GPPyLiIiCg2wgVA8+fPx/z583u83fLly7F8+fJOlxcWFmLp0qVYunRpOoZHBCD2FFjkbYmISAzC1QARZYOeZoDs7AdGRCQ0BkBECVAvb48lBUZERGJhAESUAKbAiIiyGwMgogTIQY3RbIDZ1nmFl3plmHrFGBERiYEBEFEC5ADI5rBGbc3CFBgRkdgYABElQJ7ViewDJrMVMgAiIhIZAyCiOAV8QQS84d2doxVAAxEzQEyBEREJhwEQUZx8rd0XQAOA2WaC0RxOjXEZPBGReBgAEcXJ20MneAAwGAxKITRngIiIxMMAiChO2k0Qu26wK88OsQaIiEg8DICI4tTTHkDKde2zQ35PEMFAKO3jIiKi2DEAIopTT20wol3HNBgRkVgYABHFyRNDDRAQsRLMyUJoIiKRMAAiilO8KbDI+xARkf4YABHFSb2snSkwIqLsxACIKE4x1wCxHQYRkbAYABHFKfYUmKohKgMgIiKhMAAiipOczjKYDLDkmbu8nZ0pMCIiYTEAIoqT0gm+wBK1E7yMRdBEROJiAEQUJ29ruAi6u/qfyOsZABERiYUBEFEcQoEQ/G3dd4KXaTvCcx8gIiKRMAAiioM3hk7wMkueGQaj3BGeM0BERCJhAEQUB3UgY++mESogd4RnQ1QiIhExACKKgzfGNhjKbeSO8FwFRkQkFAZARHGIdQ8g5TbtQZLPHUAoyI7wRESiYABEFIdYd4GOdhvOAhERiYMBEFEcPDH2AVNuw3YYRERCYgBEFIdEU2CR9yUiIn0xACKKQ9xF0EyBEREJiQEQURy0NUDdL4MHtEvlOQNERCQOBkBEcUiqCJoBEBGRMBgAEcVB6QRvAKzddIKXadthMAAiIhIFAyCiOHjbV4FZCyxKm4vucAaIiEhMDICI4iAHMbGkvyJv53WxISoRkSgYABHFKBSS4HMHAMQRABWoiqCZAiMiEgYDIKIY+TSd4HteAQYA1nwz0J4pYwqMiEgcDICIYhTvCjAAMBgNHQ1RGQAREQmDARBRjOLdBFG5LQMgIiLhMAAiilG8bTCU27YHS163H6GQlPJxERFR/BgAEcUo3kaonW4rAT43Z4GIiETAAIgoRonUAAHsCE9EJCIGQEQxUgcv9hj6gMlshewHRkQkGgZARDFKtgg68jGIiEg/DICIYpRsEXTkYxARkX4YABHFKOEaIAZARETCYQBEFCNva8cqMGscM0B2TQqM/cCIiETAAIgoRvLsjTXfDGMMneBlnAEiIhIPAyCiGMXbCV5mc3AVGBGRaBgAEcVACklKM1RbHEvgAe4DREQkIgZARDHwtQUgtXexiGcFGABYC8zKzwyAiIjEwACIKAaJrgADAKPJCGt+OAjiPkBERGJgAEQUA2+CfcCU+ygd4bkKjIhIBAyAiGKQ6CaIyn3kjvAuPyR2hCci0h0DIKIYJNoGI/I+kgT4PYGUjYuIiBLDAIgoBok2QpVxKTwRkVgYABHFIJki6Mj7MAAiItIfAyCiGCSdAlPVDXm4EoyISHcMgIhikKoi6MjHIiIifZh7vklm7du3D+vXr8euXbtw+vRpFBUVYcKECbj55psxaNCgbu/79ttvY8WKFVGvW7duHcrKytIxZMoBnmSXwWsCIC6FJyLSm3AB0Msvv4w9e/Zg7ty5GDFiBOrr67Fu3TrcfPPNePbZZzF8+PAeH+Omm25C//79NZc5HI50DZlygCYFlsgMENthEBEJRbgA6KqrrsKDDz4Ii6XjhDFv3jzccMMN+POf/4z//u//7vExLrzwQowdOzadw6QcIwctljwTjOb4M8dcBUZEJBbhaoAmTZqkCX4AYNCgQRg6dCiqq6tjfhy3241gMJjq4VGOUjrBF8S/BB6ISIGxCJqISHfCzQBFI0kSGhsbMXTo0Jhuv2TJErS1tcFisWDKlCm48847e6wfqqurQ319vfJ7PMFWPHxtAbQ2eGDNM6Og1J6W56DUkiRJCVoSqf+JvB9ngIiI9JcVAdCGDRtQW1uLG2+8sdvb2Ww2LFq0COeeey4KCgpw4MABrF27FnfccQd+97vfobKyssv7vvHGG1i9enWny48dO5aymaTGI23Y95caAMBZM4oxeE5JSh43WS6XC1VVVXoPIyMSOdaANwQpGG5fEYAvof+rULCj/UVjTXNG/r9z6XUFcut4eay9Vy4dbzqPdfz48T3eRvgAqLq6Gk8++SQmTJiAhQsXdnvbefPmYd68ecrvM2fOxNSpU3H33XfjpZdewn333dflfS+77DJMnz5d87yPPvoohg0bhjFjxiR/IAAaHE4lAMozOmJ6gTKhqqpKmLGkWyLH6qx14yOcBACUVpYk/H+10/4l/J4gTJI5I//fufS6Arl1vDzW3iuXjlfvYxU6AKqvr8fSpUtRUFCAn/3sZzCZTHE/xtlnn43x48dj586d3d6uvLwc5eXliQ41JuqUV2uDJ63PRamT7C7Q6vv6PUGmwIiIBCBcEbTM5XLh/vvvh8vlwhNPPJFUcFJRUYGWlpYUji4x1gIzzLZwEMcAKHtoA6DEiqDV9/W6/JAkdoQnItKTkAGQ1+vFAw88gJMnT+Kxxx6Lufi5K6dOnUJJSUlKxpYMg8GgzAK11nt4EswSybbBUO7bvhdQKCgh4OUKRSIiPQkXAAWDQTz00EPYu3cvHn74YUycODHq7erq6lBdXY1AIKBc1tTU1Ol2H3zwAQ4cOICpU6ema8hxkQOggDcInzvQw61JBJpO8AlsgijjSjAiInEIVwP0zDPPYOvWrZg2bRqcTifeeecdzfULFiwAAKxcuRLr16/HmjVrlF2fb7/9dowePRpjxoxBQUEBDh48iLfeegsVFRW47rrrMn4s0RSUaeuAEtlVmDIrlTVA6sd0lOclNS4iIkqccAHQ4cOHAQDbtm3Dtm3bOl0vB0DRzJs3D9u3b8eOHTvg8XhQVlaGSy+9FIsXL0ZpaWnaxhyPyELo0kGFOo6GYpHqFFjkYxIRUeYJFwA9/fTTMd1u+fLlWL58ueayW265Bbfccks6hpUymhmgehZCZwNvko1Qo93X42RDVCIiPQlXA9TbcSl89tGkwFJVA8QZICIiXTEAyjAGQNlHHaxYkwmACtgQlYhIFAyAMkybAmvTcSQUKzlYMdtMMFvj34xTxlVgRETiYACUYbYCC0zW8H87Z4CyQ0cn+ORW7DEFRkQkDgZAGabZDJEBkPAkSYKnvQg6mQLoyPtzBoiISF8MgHTgKAvv/+JvC8Ln5olQZAFvEKFAeMfupAMg9TJ4F1eBERHpiQGQDlgInT1StQcQAJitJqUXHFNgRET6YgCkg/xS7gWULbRL4BNvhNrxGJZOj0tERJnHAEgHBaU25WfOAIktVW0wIh+DARARkb4YAOlArgECABdngISWyhSY+jGC/hACPnaEJyLSCwMgHbAGKHukfAaogCvBiIhEwABIB+oAyM0ASGiaPmBJ7gMERPQD40owIiLdMADSga3QApMl/F/PFJjY0pUCAzgDRESkJwZAOuBmiNmDKTAiot6JAZBO5J5g/rYAN0MUmDpIsackBaZqiMq9gIiIdMMASCeaQuhGr44joe5oU2Ap2AeIKTAiIiEwANKJJgBiV3hheZzhIMVkMSpNbJPBFBgRkRjMqXiQYDCI5uZm+P3RP9ArKytT8TS9ipwCA1gHJDJva3sj1AILDAZD0o/HGSAiIjEkFQAdOHAAK1euxKeffopAIBD1NgaDARs3bkzmaXol7gWUHeQgxVaYfP0PANjVAVArl8ETEekl4QDo0KFDuOuuu2AymTBlyhRs27YNI0eORGlpKQ4ePIimpiZMnjwZ/fr1S+V4ew3NDBCXwgsp4Asi6AsBSM0eQEBEETRngIiIdJNwAPTHP/4RAPDcc89h6NChmD17NmbOnInFixfD6/XimWeewaZNm/DAAw+kbLC9CWeAxJfqAmgAMFmNMFmMCPpDXAVGRKSjhKs69+zZg+nTp2Po0KHKZZIkAQBsNhvuuecelJeXY9WqVUkPsjeyF1qVzRAZAIkp1XsAAeGUMDvCExHpL+EAqLW1FQMGDFB+N5vNaGvrWM1kNBoxefJk7Ny5M7kR9lKazRCZAhOSJgBKUQoMYEd4IiIRJBwAlZSUwOl0Kr+Xlpbiiy++0NzG5/PB4+HJvSv57QGQzx2Ary16ETnpJx0zQOrHCniDCPrZEZ6ISA8JB0BDhw7FiRMnlN8nTZqEHTt24PPPPwcAHD9+HBs3bsSQIUOSH2UvxaaoYlOv0kppAMS9gIiIdJdwAHTRRRfhs88+Q11dHQDgmmuugSRJuOuuu3DppZfihhtugMvlwrXXXpuywfY2DtVKMBcDIOGkOwUGsB0GEZFeEl4F9u1vfxtz585FYWEhAGDkyJF48skn8dJLL+HUqVMYM2YMrrjiClx00UUpG2xvo5kBYh2QcNKXAuNSeCIivSUcAJnNZpSWlmoumzRpEh5//PGkB5UruBRebNpl8EyBERH1JuwFpiO2wxCb16lOgaVmHyCA7TCIiESQdC+w+vp6HDx4EE6nE6FQKOptFi5cmOzT9ErqGSAXU2DCSdsMkOqxPKwBIiLSRcIBkNfrxS9/+Uu89957ygaIkSRJgsFgYADUBXuhFUazAaGAxBkgAXld4VVgRpMBFrspZY/LGSAiIv0lHAA9//zz2LBhAwYNGoT58+ejb9++MJlSd5LIBQZjeDNEZ00bl8ELSJ4BsjlS0wlepg2A2BCVslfd0WZsW12FgWeX4/zvjtJ7OERxSTgA2rhxI4YOHYpVq1bBak1dfUSukQMgb6sffk8AFnvSWUlKEaUTfArTX4C2nkiUZfDeVj8av3ChYlQJjMbUBXvUu336xlHUHG5CzeEmjJ0/CAV97D3fiUgQCRdBu1wuTJ06lcFPkrgSTEzBQAh+T3iX5lQWQAPipcBCIQlvPPgB/v7wduxed1jv4VAWafrKpfzc/FWrjiMhil/CAdDgwYPR2NiYyrHkJK4EE1O6CqABwGI3wWAKz7KIEAA5z7iVk9fJ3bU6j4ayhSRJcNZ09H90nnHrOBqi+CUcAF199dV4//33O/X/ovgUlOYpP7MpqjjStQkiIF5H+JaajhNXC09iFKO2Ji8C3o5ednzvULaJueBk9+7dmt/79u2LqVOn4oc//CGuvPJKjB49Gvn5+VHvO3ny5GTG2KsxBSamdLXBUB7TYYGnxafpN6YX9Td3r8sPb6s/LcdMvUtkwKMOpImyQcwB0JIlS6KuhJEkCS+88EK3q2Q2bdqU0OByAVNgYlKvzkr1DJD6Mf1tQYQCIRjN+u1JGnkic55xwza8WKfRULaIDHiYAqNsE3MAdP3116d0KTCFMQASUzprgICIdhitfuQV21L+HLGK9k2+nAEQ9UBd/xPtdyLRxRwA3XjjjekcR87KK7TCaDIgFJRYAySQdKfA7BENUYUKgPhNnmIQ+T7xtvrhdfnT8oWBKB3YC0xnBqMB+e11QJwBEkc6i6AjH1PPvYCkkARnDQMgil+0lBfrgCibJL3rXl1dHf71r3/h0KFDcLlccDgcGDVqFObNm4fy8vJUjLHXc5TZ4aptg9flR8AbhNnGHbX1pg2AUr/XlSgd4d1NXgT92h5+kQERUTTRgp2WM270ZfqUskRSAdBf//pXPPvss/D7/Zp+YO+88w5WrVqFO+64A9/5zneSHmRvF7kSrLh/gY6jIUAblNjTMQNUKEYAFG22hzNA1BNfWwCels4rGFkITdkk4QDovffew1NPPYXi4mJcd911OPvss1FaWoqGhgZ8+umnePXVV5Xr582bl8ox9zr5DICEo16env4iaP2Wwkc7YbU2eBDwBWG2ciaSolO/b0qHFKKh2gmAKTDKLgkHQC+//DKKi4vxhz/8QZPqGjx4MCZPnoxFixbhpptuwssvv8wAqAcO9UowFkILQZ6VMRgNsOSlvj+bKO0wmlUnMluBJVyPJAHO2jb0GejQbVwkNnWgM3BiuRIAMX1K2SThIujq6mrMnTu3yzqfiooKzJ07F9XV1QkPLleoU2CuBi4lFYHSCLXAnJbtH2wRq8D0ov4mP2BiWdTLiSKp3x/lw4qUgJ7pU8omCQdADocDdnv3nX/z8vLgcPBbZE80NUCcARKCvDIrHQXQQOd9gPSifJM3aAMgnsioO+oZoMKKfBRVhrsAtDZ4EPQHu7obkVASDoCmT5+Obdu2IRAIRL0+EAhg69atmDFjRsKDyxVshyGWUDAEnzv8vk5XSwh1Cszj1H8GyFFm16S8WMtB3VEHyEWVHQEQJG6ISNkj4QDo9ttvR15eHu69917s3btXc93nn3+Oe++9F/n5+fjhD3+Y9CB7u7xim9Id3M0ASHe+1o6gPl2bulnzzJAza3rNAMl9vwDtt3iAKTDqnvz+sOabYXNYUFjR8d5h8EzZIuHqzptuugmBQAD19fW48847YTKZUFxcjObmZgSD4SnQsrIy3HTTTZr7GQwGvPLKK8mNupcxGA0o6GOHq64NLqbAdJfuNhhA+DW3FljCQYhLn1Vg6hNVUWU+8kpsMNtMCHiDTIFRl0KBkPI5VViRD4PBgCJ1AMT3DmWJhAMgSZJgMplQUVGhubysrKzT7br7ncIKSsMBkNfl5xJknWkaoaaxK7rNIQdA+swARaYxDAYDCivy0HjSBWetG6GQBKOR/f9Iy1XfBikU/hyXA59C9ewhZ4AoSyQcAK1duzaV48h5kU1Ri/txLyC9pLsNRuRj+9wBXYKNljOtys9yCqOoIh+NJ10IBcK96Qr75mV0TCQ+deAsBz7q9ClngChbsBeYILgSTByeDKTAAMBW0LHCzKdDHZAzYgYI4Dd56lnkzCEA5JfYYLKETyd831C2YAAkCK4EE4fXmd5O8Mpj67wZYrQTGb/JU0/Uq7zk94vBaFBmEZ01HSkyIpHFnAJbvXp1Qk9gMBhw/fXXJ3TfXBKZAiP9aIqgC9OzDxCg7TGmx0owuQjaXmiBNT88FgZA1BNNCkxV/FxUmY+mL10I+kNwN3pQUMb0KYkt5gDohRdeSOgJGADFhikwcWhqgHrpDFDAF4S7wQtAm/biUnjqiRwAGU0GzRe3woqOgKelxs0AiIQXcwD01FNPpXMcOY8zQOLQrALLQBF05HNmgrpOQ72E2VGWB4PRACkkcT8X6kSSJOW94+ibpync1wbPbeg/LuPDI4pLzAHQ5MmT0zgMkjdDlIISAyCdZWIfIEDfdhjR6n8AwGg2wlFuh7OmDS1n3JAkKS290Cg7tbX4EPCG93lTv28AbSDN4JmyQUraXAeDQTQ3N8Pvj/4hXllZGfNj7du3D+vXr8euXbtw+vRpFBUVYcKECbj55psxaNCgHu/vdDrx3HPPYcuWLfB6vRg3bhzuuOMOjBkzJuYx6MFoNKCgjw2uOg9a67mVvJ6UdJQBSm1MOujZEDXaUmZZUWU+nDVt8LcF4HH6kFdky+jYSFyalYMV2vdNIevHKMskFQAdOHAAK1euxKefftplTzCDwYCNGzfG/Jgvv/wy9uzZg7lz52LEiBGor6/HunXrcPPNN+PZZ5/F8OHDu7xvKBTC0qVLceTIEVx99dUoLi7G66+/jiVLlmDVqlUxBVB6yi+1w1XngcfJzRD1pHSCz7ekdW8eTT+wDAdA3Z7IKvIB1Cu3YwBEsu4C58K+eYAB4X5gDIAoCyS8DP7QoUO46667sHfvXkyZMgWSJGHEiBGYMmUKiouLIUkSzjnnHCxYsCCux73qqqvwv//7v1iyZAkuueQSXH/99fj1r3+NYDCIP//5z93ed9OmTfj888+xbNky3HDDDbj88svx9NNPw2g0JlzEnUnqQmh3I9NgeunoBJ++2R8gIgWW6RkgdQ1QxKabXAlGXekqdQoAJosJjvZaRqbAKBskHAD98Y9/BAA899xzWLFiBQBg5syZ+OUvf4m1a9fi29/+No4dO4bFixfH9biTJk2CxaI98QwaNAhDhw5FdXV1t/fdvHkzSktLMWvWLOWykpISzJ07F++//z58Pn16LsXKoVo1wTogfUghqSMASuMKMEDfVWDyicxsMyGvWLvUv6iyIyDiiYzU1MXzhREzh+rL1I12iUSVcAC0Z88eTJ8+HUOHDlUuk/t82Ww23HPPPSgvL8eqVauSHqQkSWhsbERxcXG3tzt48CBGjRoFo1F7WOPGjYPH48HJkye7vG9dXR0OHDig/Osp2EqHgtKOVAObourD5w4A7Xu4pXsGyKopgs5ccB4KSXDVhuvM5GaWapGreYhkLd2kTgFtUMQdoUl0CdcAtba2YsCAAR0PZDajra3jw9JoNGLy5Ml47733khshgA0bNqC2thY33nhjt7draGjAOeec0+lyuUFrfX09RowYEfW+b7zxRtTNHo8dO6Z0t0+3BndHb6Zj+07AX9qcked1uVyoqqrKyHPpradj9TR0fGv1BN1p/38x2Y0IekJwNrSm/Lm6OlZPUwChYDjKM+QHOt0m6AspP58+Vpc17w2+j9Ov8VQLAMDiMOHgkQOdrvcYXMrPVTsPorwt+Z6GufS6Arl1vOk81vHjx/d4m4QDoJKSEjidTuX30tJSfPHFF5rb+Hw+eDzJzWRUV1fjySefxIQJE7Bw4cJub+v1emG1dt65V77M6/V2ed/LLrsM06dP1zzvo48+imHDhmVsBVmNtQkHX6sDADjMRTG9gKlQVVWVsefSW0/HWnukCZ/gFACgYkB52v9f9hTVwOlpg+QzpPy5ujrWLz+vA/AlAGDgyH4YP35sp9t8VlKDtiYvAq7YPkhEwPdxevk9AWxrDc+Mlw6M/vlkb/kKJzbuBgAUW0sxfnz0L5zxyKXXFcit49X7WBMOgIYOHYoTJ04ov0+aNAn//ve/8fnnn2PixIk4fvw4Nm7ciCFDhiQ8uPr6eixduhQFBQX42c9+BpOp+1VRNpstap2PfJnN1vVqlvLycpSXlyc81lRQF0G7WAOkC0+GOsF3PIcVzpo2+Fr9kEISDBnoCK9tZRB9t96iiny0NXnR1uSF3xOAxZ6SHTMoi2kK5ys7p7+AiL2AWEBPgku4Buiiiy7CZ599hrq68IzFNddcA0mScNddd+HSSy/FDTfcAJfLhWuvvTahx3e5XLj//vvhcrnwxBNPxBSclJaWor6+vtPl8mVyKkxUeSU25QTIdhj60LTBcHSeTUw1uR+YJAG+tuhbSaSapo6jX/QUhWYlGGs5CN1vnSDjXkCUTRIOgL797W/jtddeUwqTR44ciSeffBJTp05FcXExzj//fDz22GOaFVmx8nq9eOCBB3Dy5Ek89thjmkLr7owaNQqHDh1CKBTSXL5v3z7Y7Xbh9wEyGg3I7xOepeIqMH14Mz4DlPmVYLGcyNgTjCLFMnNoK7AoqydZBE2iS3he22w2o7S0VHPZpEmT8Pjjjyc1oGAwiIceegh79+7FL37xC0ycODHq7erq6tDa2oqBAwfCbA4fxuzZs7Fp0yZs2bIFc+bMAQA0NTVh48aNmDZtWtT6INEUlNrRWu+Bp8WHoD8Ik4WbIWaSejVWRgIgHdphyDM6BpMBjnJ71NvwmzxF6m4PILXCynx4jzbDVe9BMBCCyZzw92yitBIusf/MM89g69atmDZtGpxOJ9555x3N9fLGiitXrsT69euxZs0a9O/fHwAwZ84cvPrqq1ixYgWOHz+u7AQdCoV6XEEmCk1X+AZvtx80lHqZ6gSvPEeGG6JKkqTM6BSW58Foin5y4maIFMlZ07HKN3IXaLWiinzUHW0GJMBV24bi/smvBCNKB+ECoMOHDwMAtm3bhm3btnW6vrudpU0mEx5//HH89re/xWuvvQav14uxY8di2bJlGDx4cNrGnEraAMjDACjDensKzNPig98T3tYh2kZ2siLu50IR5PeBJc8Ee2HXs+mRs4cMgEhUwgVATz/9dEy3W758OZYvX97p8sLCQixduhRLly5N9dAyoqBMGwBRZmWqE7zyHAWZbYgaaxrDVmiBJc8Mf1uAM0CEUDAEZ114BqgoyuaZakWVHfVBfO+QyJicFYxmBohd4TNO3xRYBgIgdSuDbgIgg8GgBEiuOg9CgVCXt6Xez1XngdS+eWZ37xsgooCes4ckMAZAgomsAaLMkoMQS565y/qYVNIEQBkogm453XFCKu7pRNaeBpNCkvLtn3JTSw89wNQKuRcQZQkGQIJxMAWmq0x1gpdluiO8M8YZIAAo6sel8BTmjDF1CgAFfewwWcKnFs4AkcgYAAkmr8QGOb3OFFhmSZKkBCGZSH8B2kDLk4FVYD01s1Qr5GaI1E6zC3QP7xuD0QBH3zzlfnKTbCLRMAASjNFkRB43Q9SFvy0AKRT+sNZlBigTKbD2ACi/xAazrfs9ptjWgGTxzACpbxP0heBuYiqfxMQASECO0vC3p7ZmH4IsPs2YTC+BBwCj2QhLnqnT86eDry0AT0t4lqmn9BfA3aCpg3rzTPVK1a5otlHge4cExQBIQOpCaDdngTJGHYDYM9AHTCb3HEt3AOSMoZmlWn6pHUZzOB/LFFjuinXzTDXuJE7ZgAGQgLgXkD48Gd4DSHmu9jSYt9Wf1nqJeOp/gHBvusK++cp9WcuRm2LdPFON6VPKBgyABBS5GzRlRqb3AFKeS+4IH5SUE006aLvAx3giYy1Hzot180y1Qu4FRFmAAZCA1DNArnoGQJmi7sWV0RmgDG2G6DwT+14uMtYBUTxbJyi365sHtK9mZfqURMUASECcAdJHpttgKM+lWQmWvqXwyX6TZyojN8WzBF5mtppQ0Cf8OcbAmUTFAEhADID0oV8KTNUPzJm+GSD5RGbNN8cc4LErPDnPdOxHFk9zZjl49jj98LnTv8UDUbwYAAkoX7UZopspsIzRYxl85HOlay+gYCCE1vZ2FoU9NLNUY1d4atGkTvO6uaVWETfSJMExABKQ0WxEXkl4M0QXZ4AyRpsCy9wyeHsG2mG4atsgL+KK61t8haqWgzNAOUkOXvKKrbDYzTHfTx0sMQ1GImIAJCg5DdbW7OVmiBmiTYHF/kGfrEwUQbfEuQeQzGQxKe9FBkC5x+8JoK199V+sBdAyzVL4Grb1IfEwABKUshJMAtyNXH6cCXLwYbaZYLJ03yYilTKRAlN3gY8nAFLf3uvyZ6RdB4nDWauq/4mxAFq5PVcQkuAYAAlKUwjNpqgZkelO8DLtDFB6VoElspRZxhNZ7oq3B5gaVxCS6BgACYorwTIr3Ak+HHxkPADKQA1QIkvgo92exay5RVMAHef7xu6wwpofTiXzfUMiYgAkqIKyjgJCBkDpF/AGEQq0d4LP4BJ4IEMpsPYTmcliVPZniVUh2xrkrET2AFKT3zutdW2sZSThMAASlDYFxgAo3fRqhAqEC43NtvR1hJdCkpICc/TNg8EY2xJ4GfcCyl3OJGaAgI73jiSFVyISiYQBkKCYAsssvfYAinzOdARA7iYvgv7wt+9401+R9+FeQLlFDnjNNhPyiuL/YsD3DomMAZCgCvrYlP1XGACln15tMCKfMx0d4ZOp/wEAa75FGZ96NRn1bqGQBGf75plFlbFvnqlWyPoxEhgDIEEZzUbkF4c3Q2QAlH6aRqgZrgFSP2fQH0LAm9qO8C1nWpWfEwmA1PdrbfQg4Etfx3oSR2t9G6RgOBhPJP0FROwFxPQpCYYBkMDkNJi7yYsQCwjTSpQUGJD6QuiWM4nv5aLcTz4BStq9Yaj30swcJvu+AbdQIPEwABJYvnozxCZuhphOuqfAClQNUVNcB5RsISvAE1kucibYA0wtv9QOoymcOmMKjETDAEhgDhZCZ4xHpBmgFAdAyonHABT2TexExk3tck+i7VPUjEaDshTeWdOW8vo2omQwABKYeiWYi0vh00rbByyzy+CB9KbA5G/yjjJ7wi0+tH2dGADlgmSL52VyABTwBtHWnJ6dzokSwQBIYEo/MHAGKN10T4GlaQZI3b+rMME6DoApsFzkbG9gajAa4ChLbOYQ4D5SJC4GQAJTzwC5GQClle5F0AXp6QemTWMUJPw4eSU2ZbNGnsR6P0mSlNfZUW6H0Zz4qaKosiN4YvBMImEAJDD1DJCLDVHTSg6ATBYjzNbMdYKXpSsF1nJavQQ+8W/xBoNBKYR11rgRCrGWozfzOv3wtwUAJJf+AiJaqTB9SgJhACSw/D52boaYIXo1QpWlKwWWikLWjvuHZ5BCQYntWVKo6ZQLxz46LVSvLPX7JpnUKcAUGImLAZDATGYj8rgZYkbIQYctw33AZOr+Y6kMgFKxBF7Gtgap53P78eZPt+O9/9mFz944qvdwFKnYA0imDqCYAiORMAASnFwH1NboRSgozjfE3iTgCyq9soSYAUplCiylJ7KOFBq/yafGV/salNf7+MdndB5Nh1QGzmarCfl9wl/kmAIjkTAAEpwcAEncDDFt9C6ABsInCZPF2Gk8yZJPOPZCC6z5yR0bUxmpd+Zgk/Jzwwkn/J6AfoNRSWXqVP0YnhYffG1iHCMRAyDBabrCs+4iLbR7AOkTAAEdwZcnRavAgv4Q3A3hoDmZFWAyLoVPvTMHG5WfpZCEmsNN+g1GxZnCGqDIx2D6lETBAEhw3Aso/bytqkaoOs0AqZ87VTNA3qaOb9rJpjEAwFGWB4Oxva2BqsEqJSboD6LuaLPmMnVApCd5hs9eZIU1z5z043H2kETEAEhwnAFKP3XAYdczAJI7wvtCKem47mnsCIBSkcYwmo1wlIffjy01brY1SFLdsRal9kx25kCTPoNRCfiCcDe2zxymYPYHYCE0iYkBkOAK2A8s7cRJgalWgqWgEFoTAKXoRCan0vxtQXicbGuQjGizPTWHG3XfY0mT/kpB4AxEzAAxBUaCYAAkOAdTYGknQhF05HOnIg2mDoDScSLjN/nkqAugSwY6AIQDy8aTTp1GFJaqHmBqRawBIgExABKcvHwUYAosXbR9wPTZBwiIbIeRigCo4zFSdSJjV/jUkCRJmQGy5psxZs5ZynV61wGpA5RUzRzaCi2wtNcS8X1DomAAJDiTxQR7UfikzBmg9BAnBZaeGSCzzYS84tQEduwKnxotp93wtIRTiJWj+6ByTB/lujMH9A2AWs50tN1J1cyhwWBQgnBXnQchgXa9ptzFACgLyGkwdxM3Q0wHIVNgrcnV14RCkrIKrKgyHwaDIanHk2lTYOxPlyj1LE/l6D4oH1oEk9XYfl2TTqMKS0cKDOgInqWQxN6GJAQGQFlA2QwxJKGNmyGmnHrfHV0DoBSmwFrr2yC1x8qp+hYPaHeDbuZS+IRpAqAxJTCajeg7ogQA4Kpr03W2V06BpXLmEAAKK7mTOImFAVAW4Eqw9JJrgIxmA8y2zHeCl9kLU9cPrOV06us4AMBiNyOvJFyXxiLoxMkBkMFkQN/hJQDCM0GR12daKCQpAVBhRV7KZg6BiPQp3zskAAZAWYCbIaaXuhFqKj/w46WZAUpyGXyqWxmoyY/X1uwTpnVDNvG4fGj6Mjx7Vj60SAm6+40uUW6jVx1Qa70HoWB4GX4qA2dAOxPprGEKjPTHACgLcAYovZQASMcCaCC1RdAtKWxmGYl7uiSnRlXjo571qRil/wxQOvYAkvF9Q6JhAJQF1DNALi6FT6mgP4iAN7zrsp71P5HPn2wA5ExhF/hIRdzVNyna+p+OoMfmsKDPWeH9gOqr9WmMms6Zw4KyPBhN4RlWvm9IBAyAsgBngNLH29pxktE7ADLbTMoJwptkQ1T5RGYwGZT2FanCvYCSE7kCTE3+XQpJqD2i7ROWCekMnI1GAxx9w4XQLWfYSoX0xwAoC+T3YQCULupAQ+8UmMFg6GiImkQNkCRJyomssDwPRlNq/8zZ2DJxwUBICWwKK/KQX2LTXK8phNahDkiTOk1xAAR0BFUBbxBtLWylQvpiAJQFzFbVZohMgaWUKHsARY4hmRSYp8UHvyec1kt1GgPgap5k1B9rVhqgRs7+AOEl8TI96oDk19NggDJbk0qFbKVCAmEAlCXkNJi70at7s8TeRNsGQ4AAqCAc6Po9QQQT3C03nQXQgLatAU9i8TmtLoAe0zkAKqzIV/beOXOoKaN/65LUsQS+oDwPJnPqTw/cSZxEwgAoS8iF0FJIQlszN0NMFVHaYChjcCS/FL4ljXUcQERbg3q2NYhHd/U/QPj/Vr7c3xZA4xeZa4zqbfXD527fPTwN7xuAzXRJLAyAsoSmEJppsJTRpsD0a4TaMYbkV4Klq5WBmvy4UkiCs457usRCkiSlrseab0af9g7wkfSqA3Jm4H3DAnoSCQOgLMGVYOkhXgos+QAonXu5yPhNPn4tZzoaoFaM6gODMfqmm5rGqBnsC5bu1CnAFBiJhQFQltDsBs0ZoJRRBxl20VJgCS6FT3cKDIj4Js8TWUwi+391pWxoEUwWuTFq5maANHsAVaS+ABpo7y/GViokCAZAWYIzQOmhaYRaKFgAlGQNkLXQlLbeZppv8qd5IovFmQNNys/R6n9kJrMRfUcUAwBctW1obczM37szAzNAQMd7h61USG8MgLIEa4DSQ7wi6OQaovraAkqaxV5iTtm4IrGtQfzUDVAr2ju/d0WPOqBMzBwCEelT9gQjHTEAyhKcAUoPOcgwGA3K0m49JVsEra7/sfVJ3/Hkl9phNLOtQazCDVBdAIDyIUU9zsxp64AyEwDJwYi90AJrfvq+DBRWdqTXWAhNetL/Ez+C2+3GK6+8gqqqKuzbtw9OpxPLli3DokWLerzv22+/jRUrVkS9bt26dSgrK0v1cDPGbDXBXmiBx+lnAJRCcprJ5rDo2gleZk+yCFp9QrGnMQAyGg0orMhH86lWtNSE2xqI8P8nqppDTcrP0fb/iVQxqkT5OROF0AFfUEm1pTP9BbAQmsQhXADU3NyM1atXo7KyEiNHjsSuXbvifoybbroJ/fv311zmcERfcppNCkrt4QCo0YNQSIKxi1UkFDtROsHLkp0B0gZA6T2mospwABT0heBu8qKgT2p7jvUm6jRW5eiSHm9vd1hRMtCBpi9dqD/eAr8nAIs9fR/Xzto2oH3PxXSmvwCuICRxCBcAlZWVKbM1+/fvx6233hr3Y1x44YUYO3ZsGkanr/xSO+qrnZCCEjzNXk2PMIpfKBCCvy1chCnCEnggsgg6/lVgzgzNAAGdu8IzAOpaTxsgRlM5ug+avnQpjVEHTEjfDLYzzT3A1ArZSoUEIVwNkNVqTUmqyu12IxgMpmBE4nCUdeTOmQZLntct1h5AAGDJMyv7wyQ9A1Sa3gCIm9rFRtMAtW9ezF9cMtkXLBObZ8rsRVZY7OEaKCdTYKQj4WaAUmHJkiVoa2uDxWLBlClTcOedd2LQoEHd3qeurg719fXK79XV1ekeZtzUhdCueg/6jtBxML2AaCvAgPaO8AVmeJz+xAKg9hOKNd8MS156lsDL2BU+NvXHWzoaoMZQ/yPTrARLdwBUk7kAyGAwoLAyHw3VTjjr2hAKhmA0CfddnHJArwqAbDYbFi1ahHPPPRcFBQU4cOAA1q5dizvuuAO/+93vUFlZ2eV933jjDaxevbrT5ceOHRNmJqnJ41J+Plp1HG2OhpQ8rsvlQlVVVUoeS3TqY3V+0dFTrdXnFOf/wBIuxnC3eOIaUygowdXelsJSbEz76+p2dgRoXxz8CvlV+u7pIur7+NT2FuXnUGHsr6kkSbAUGOFvDeGr/fXYu3evUmie6mM9daRG+fl08xdoqDqdsseOKi/8mSoFJezevqfbejVRX9d0yaXjTeexjh8/vsfb9KoAaN68eZg3b57y+8yZMzF16lTcfffdeOmll3Dfffd1ed/LLrsM06dPV36vrq7Go48+imHDhmHMmDFpHXesSqR6HH4jPEvlsJZg/PjU1DlVVVXF9GbpDdTHesJbgz0If9D3H1yJ8eNH6Tk0xeHSZngamhD0Shg7ZmzM346bv2rFdukEAKBiSCkcDltaX9egP4jdz58CJMDgsej+HhL1fXzqn58oP0+ePR6lgwtjv+94L6p3nEHQK6F/4WDlvqk+1r3uOgCAyWrEOVMnpX1Fn3PkfjTsPwYAqCwaiIHjy7u8raiva7rk0vHqfay9KgCK5uyzz8b48eOxc+fObm9XXl6O8vKu/whFoE6BuVkDlDRtCkz/RqgydT2SrzUAe1FsY+u8kV16Zy5NFhMcZXa46jxcztwFSZKU9JU134w+Z8W3GrVydB9U7zgDIJwGiyd4inmMIQmu2vDMYVFFfka2M4jcSHNg2p+RqLOcSLxWVFSgpaWl5xsKLrIGiJKj7QQvRg0QkHg7jEwWssrkFT1elz/h1h29mbPGjbZmuQFqSZcNULvST7VkPl11QK2NHqVGKd0rwGRcCUYiyIkA6NSpUygpKdF7GEkz20zKyZGrwJKnbjZqFzUAiqMhqnpFTVG/zJzIuKdL92Lt/9WVsmHFHY1R09QSQ4/AOXILBSI9ZG0AVFdXh+rqagQCHYWXTU1NnW73wQcf4MCBA5g6dWoGR5c+cld4d4MHUkjSeTTZLStmgOJYCZapXk5q7AnWvUT2/1FTN0Z11rbBnYbGqJncA0jmKLfDYGpvpcL3DelEyBqg1157DS6XS1mWvnXrVtTUhFcpXHHFFXA4HFi5ciXWr1+PNWvWKLs+33777Rg9ejTGjBmDgoICHDx4EG+99RYqKipw3XXX6XY8qVRQakdDtROhoIS2Fh/yS2x6DylrqVM2QgVAqnokTwIpMJPFGN5r5kzKh9ZJIbvCd0tpgGo0KIFMvCpH98Hp/Y3K4w27sH8P94iPHjNARpMRheV5aDnjZisV0o2QAdCaNWtw+nTHMswtW7Zgy5YtAIAFCxZ02dZi3rx52L59O3bs2AGPx4OysjJceumlWLx4MUpLSzMy9nSLbIrKAChx2VAE7XXGFgBJIUn5Jl1YkRd3rUmiOAPUNa/Lj8YvwltXlA0tSriVhXY/oKaUB0DqjuyZCoCAcPDccsYNf1sQHqcPeUX8LKPMEjIAWrt2bY+3Wb58OZYvX6657JZbbsEtt9ySrmEJQU6BAUBrvQd9hyf2rZJUAZAhvEJHFIkUQbubvBkvZAW4GWJ3zhyKr/9XVyrUhdBpqANSAlcD4Oib1/2NU6ioMh9f7gn/7DzjZgBEGZe1NUC5SjsD1NbNLaknSif4AkvGZkxiYUugI3zLmVbl50x+i7fmW2AvDI+Xxaxa2gao8df/yMKNUQsAAHXVLQh4U7u9gfy6OcrsMJkzd0oorOgIthg8kx4YAGWZyBQYJU60TvCyRFaB6VHHIZN7grU2ehDwibFrugg0BdBxtMCIRg6gpKCEmiNNST2Wmnr7gkzOHAJMn5L+GABlGU1DVO4FlLBQSFKaoYpUAA0klgJrOaOu4yhI+Zi6o6w4k8IrlUjbANXRNw8FMTZA7Uq6+oJlsgdYJHUzXXUdElGmMADKMvl9OvLknAFKnM/tB9p3ERAtALLmW4D2jFysKTCnjjNA3AuoM00D1CTSXzJNAKTaWyhZes4cFnEzRNIZA6AsY7GblZQNZ4ASJ2IneJnRaIAtPzymmGuA2r/JGzJcyApov8mra5Fymbb+pyTpxyvql6+0RKk51AhJSs0eYOo9eDKdArPYzcgrDh8TA2fSAwOgLCSvBGtt5GaIidJugijOEniZPCsVawpMPoEUlOVltJAViPwmz1QGkNr6HwAwGAzKLJDPHYC7NjVtR/ScAQI6gmd3kzflxd1EPWEAlIXkQuhQQILHGXurBOog6iaIMnlWytvq7zHI9bh8yvHocRIr6tdRc8RUhrYBqiXPjD5npaaBqXomyXnSm5LH1HMGCIgInlkITRnGACgLaVaCMQ2WEK8qcBQyAGpfWg4p/I2/O3q0MlDLK7bCbDOFx8KTmKYBauWoEhhTtMWCug7I+UVqAiA5YLU5LLqkggvZE4x0xAAoC2k2Q2QhdEKyZQYIALyt3c/yadMYma3/AcLpGflE5qxxI5TjadlkG6B2pXxYkdIYtSUFM0BBf1D5/MhU77hI3EiT9MQAKAtxL6DkqWuA7IIVQQPauqSeCqE1S5n7ZXYJvPK87SeyUFDK+VnJVNf/yEwWE8rbd373NgXgbkouCHLWtCkrIQt1SJ0CESsIOXtIGcYAKAupAyBXjp9sEiVqJ3iZekyeHgIgpw5d4CPxRNYhFQ1Qu5LK/YCcOu4BJCvkZoikIwZAWYgzQMnTpsAEXAUWRzsMdepAr2/ymrYGp3N3KbymAeqQwoQboHalMoV9wVo0BdCZT50CQF5RR/0YU2CUaQyAshBrgJIn8j5AQGQ7jNhSYPYiK6x5+jR1ZVuDsJpDqen/1ZVUzgDpvQQe0NaPuWrbcr5+jDKLAVAWstjNSvfy1nruu5IIdVBhLRCnE7xM2w6j6yLogC8Id0O4FkSv9Begbb+Ry9/kTx9sUn5OZf2PzF5oRfGA9saox5NrjNoiQOoUiKwf4+cZZQ4DoCylbIbY4EnZrrC5RE6BWfPNMJrE+zOINQWm2cdFp2/xAOAot8NgCi/3zuXlzJoC6DTMAKkfVwpKqD3alPDjyO8dk8WI/CR7lSWDK8FIL+J98lNMCkrDOXtuhpgYucu6iOkvIPYUmAhpDAAwmowoLA+/J1tq3DkZlIcCIdS2d2p3lOdpavVSqV8K+oJJIUlpQFpYkQdDivYqSoS6/ohNUSmTGABlKRZCJ04KSUpQIeIKMCD2jvCiBEBAx6Z2/rZgTgbldcdbEPTJDVBL0vY86tRaonVA7iav0qxVj80z1TgDRHphAJSlCspUXeG5FD4ufk8AkqCd4GUxp8AECoByvSt8uvb/iVTULx/mfKPynIn0AxSl/gfgbtCkHwZAWcpR2jFtzBmg+GhXgIm3BB4Ip5Qs7Su6uk2BCVIDFPn8zTl4IstE/Q8QXjlVdFb4C5DPHUDTKVfcj+EUYOsE5fnLO1JwubyCkDKPAVCWyi9jP7BEaQKgQjFngADAHkNHePmbvNlmQl6RvsFcUQ5/kw83QG0C0N4AdVBqGqB2pXBQxwxwIvsBtQiwCaLMaDbC0f551nImN+vHSB8MgLIUa4AS53GpGqEKWgQNdKTnvC5/1JNCKBiCqzZcNFpUmQ+DQb9CViCcmpHlWi2Hs6YNbe2tKSpGpq4BalcKz1IFQKql97ESKQUGdMxC+dsC8Dq73/eKKFUYAGUpBkCJE70NhkwemxSS4G/r3BG+td6DUDAcGOmdxgC0J9JcS2Vo639K0v58jv42pTFqIoXQygydQb9doNW4kSbpgQFQlrLmqTdDZAAUD9E7wcvU9UnR6oBEWgEGhNNw+SXhmYlcS4Flqv5HZjQbUD4s3Ges5Ywb7ub4GqPKQUZBqR0miynl44uXJn3KAIgyhAFQFpNngbgZYnxEb4Mh62kvIJHqOGTyTFRbsw9+T+dZq95K3QC1YmRJRp5TPdMUTx2Qz+1X3k96L4GXFXIpPOmAAVAWkwOgoD/EvHkctCkwMVeBAREd4aMUQotWxwHkZirD29rRALV0cOoboHYl0b5gos0cAhHpUwZAlCEMgLIYm6ImJntSYN3PAIm0B5BMcyI7nRsnsppDTUD7BGw69/+JVDkqBQGQIIGzegaIKTDKFAZAWYyF0InJtiJooKN1h5o8w2IwGTTBsJ4Kc3AzxEzX/8jsRVYU9w83Rq0/1oKAL7bGqKL0j1Oz5plhb9/GgTNAlCkMgLKYOgBysYtyzLKyBigiBSZJkhJgFJbnCdPQNRdTYOoAqF8aW2BEI884hYISao80x3QfEVNgQMdslLvRG3MwR5QMMT41KSHaFFh8q0Bymbc1PJtisZtgMov7J9BdCqytxQe/J3ySUO+/o7dc6+sUCoRQc7gJQHsD1LLMLinvl0AdkLrhqCgpMIBpMMo8cT/9qUfqGSA3U2AxE70Rqqy7VWBOAes4gPCY5e0ZciEFVl+dmQaoXUmkMaocmFrzzUL9DRSp9iPKheCZ9McAKIsxBRY/SVJ1ghc4/QVoV6hFpsBaBOrlpGYwGJSl1a56D0KBkM4jSq9MNUDtSlG/fKV2puZgU4+NUYOBEFrrO3YPFwlngCjTGABlMWu+RWmYySLo2IT8krJ7sshL4IHuZ4BEreMAOsYjhSQ463p3YH7mQJPycyYLoGUGgwGVo0oAhIPknhqjumrbIG8ZJlLgDEQuhe/d7xsSAwOgLMfNEOPjd3fMSIg0/R+NyWyExR7epbdTCkzATRBluVIHFG6AGp4BykQD1K5o9wNq6va2Ii6Bl+XK+4bEwQAoyymbIfpCUfeKIa2AJ3sCIEDVELW7FJhgJ7JcWQrvqm2DO4MNULsSTx2QyDOHeSU2mG3hgJ8pMMoEBkBZjpshxifQ1rG8VvQaIKBjjF6nTzPDJ5/I8vvYYLbq38tJLVe+yZ/OcAPUrpQPK+pojNpDSwwR9wCShevHwoXQzlo3Qj3UMxEliwFQluNmiPEJtGXbDFC4TikUlBDwhoM3X1sAnpbwUn7RvsUDubMXkDrY0KP+R2aymGJujKrpHyfYzCHQMZsZCkhc2UppxwAoy2lmgNgVvkdZFwBF2QtIxBYYagV97MqMRG9Ogcn1NplsgNoV9QxUTTdpMPn1MJoNyC8VY/dwNfYEo0xiAJTlOAMUH00NUIHYq8CA6CvBWgROYwDhgMDRN5zKaKlx98ri/HADVCeAzDZA7UoshdCSJCnvncK++brVLHUnV2YPSQwMgLKcgzVAccm6GaAo7TBEXskjk09kQV9IKRTuTWoON+nSALUrmsaoXdQBuZu8yqaNIs4cArlTQE9iYACU5TQzQEyB9UhTBJ0NAVBB54aooqfAgN7fFV6U+h+ZujFq3bHmqL20nIJunqmmed9k+QyQFJLwxWe1qD0aW482yjwGQFnOkmdW9orhDFDPsnUZPKBKgWXBiay3f5PXswFqV9SNUeuinHRFL4AGAEffPBjaM3PZ/L4JBULY/NxnWP/Yx/jbT7bh0zeO9MpUcLZjAJTlDAaDUgjNzRB7pkmBZcMy+GgpsJqOXk52QXezLu7FtRyhQEjpvO4ot2e8AWpX1L3Iou0HpJkBqhBjzJFMZqPy/5mtRdABXxDv/s8uHH7/lHLZjlcO4qOXD/DzWTAMgHoBOQ0W8Abhaw3oPBqxyQGQyWoUbv+caNQBkMflD/dyam8vUdSvQK9h9aiwF+8FVH/CqWxJIEL6S6Yey+kodUAib4KoJo/N5w7A0572zRY+tx/rH9uBE5/UAAAMpo5C8z3/OIZ/r/ocoWDv7o+XTRgA9QKapqgN7KHTHTkFlg3pL0C7Us3r8mt6OYmaxgCAwr55QC9IZUQjWv2PrLh/AeyF4fd1zaHOjVE1qwdFfu9UZGf6tK3Zi388+hFO729vj2I3YdEDUzDjpgnK38LBTV/gvad3R63RosxjANQLqKfg3SyE7pIkSfC7wx88oqaOItkKtSmwbKj/AcKb88krFHtbCkzTAV6gAMhgMKCifTxelx9NX7VqrpeDifxS8XYPVyuq7Pg8y5bZQ2dtG/7+yIeoP94CIPwF6+L/mooBE8owdv5gzLt7Mozts0HVO87gnV/uhK+Ns/V6YwDUC3AvoNgEfSFI7V+8smcGSFsErU1jiFnHIZO/yXtd/l7Tp07bANWEPoP1aYDaFe1+QB2Bms/th8cZfg1EnjkEtOk5Z434M9qNX7rw94e3o7k94CwoteOSn34NfUeUKLcZ/rX+WPDj85VeZ6f21uOtn3+k7OhO+mAA1AtoUmCcAeqSV1VPkA0F0ABgtppgsob/TL0un9Bd4CP1xk3tXHVtcDfq3wC1K5oASJWqUwcSor9vCrPofVN7pAl/f3i78sWzuH8BLn3oa+gz0NHptmed3RcXL5+ifPbUHW3Gm49sh6te/CCvt2IA1AuwIWpsPKqO6tkyAwSoOsJHzgBl0Tf5bEll9ETU+h9Z+bAiGM3hoEw9A5Qt9T9A9rTD+PLzOrz184+U2c2yoUW45KcXwlHe9cxsxag++NaDFyK/xAYAaD7Vir8/vB1Np1wZGTNpMQDqBZgCi406DZNVAVB7IbQ6ADJZjMjvI14vJ7WiXrgXkLrNhIgBkNlqQvnw9saop91oa2+Mmi0rwADAmm9R/j5Ffd8c33Ea/3z8Y/g94Zx6v3Gl+NZPpiKvyNbjfUsHFeLSh76mvA6uOg/+/siHqDvGDRMzjQFQL2DNNyu55XQFQO5mL7b9sQov3rwBb/3io3ArgCyjCYCyJAUGdARrQX8ILafDdQaFFfkwCJZ+iZRNqYxYybMqBgPQV+cGqF2J1hdMuweQ2AEQ0BGktTZ6EAqItXfOgU0n8d7/7FLGNfj8CixcegGs+bF/phRW5OOSn34NpUPCNWSeFh/+8eiH+GpffVrGTNExAOoFDAaDMgvUWp/azRB9bj8+XnsQa+/ZjKp/VsPnDuDU5/V448EPsOFXO5WGkNnAq0mBZccqMEA7WxUKhl9b0b/FA9mTyoiVz+1Hw8n2BqhDimDN07cBalf6RSmEzqYZIEA1RgnwNImzWuqzvx/Fv1d+rmxFMWrWQHz9nnMTWlWXX2LDt35yoRKw+tuCWP/Yx2g4mP1/K9lCzL9giltBmR3NX7WGN0N0B5Ke4Qh4g9j7TjU+e+OoJnBQq95Zg+pPajBqxkCc992RKOwr9gdr9qbAOo81G05i1nwL7IUWeJx+YVMZ8ag51NTRAFXA9JesIsqO0Ordw7Phva+epfI06r+CUJIkfLzmID5946hy2cRFQ3Hh/zc2qZlYW4EFi5ZNwXtP7cLJ3bUI+kPY/7+1qCz9EqNmDUzF0KkbDIB6icg6oEQDoFAghAObv8Cuvx5WVrsAgNFkwNj5g3HOpcNwYnctdr12ONzlWwIO/ftLHNl2CmPnD8bk74xAfnHPeXA9ZHsKTC0b0hhAOA3mcTajtcGDgC8o9P4zPdHu/1Oi30B6kFdkQ3H/AjR/1Yq6Y83wtQWU3cMLK/JhMIidOgW0Ab63Ud8ZoFBIwrY/7MX+f51ULjv/qlGY/O0RKfm/NNtM+MZ/nofNz32GI9u+AiRg83Ofwdvqx8RFQ5N+fOoaA6BeIrIrfOmg+PYnkUISjm7/Cjv/95A2XWFAeIbnipHKSXfc/MEYNWOgZoYoFJRQ9U41Dm7+AhMXDcWkbw0TLsjI1hkge5SxZsMMEBBOg9UeDhd3Omvc6HOWWPvmxENTAD1G3BkgIBygNX/VilBAwvEdp7Ni93A17QyQfgFQ0B/Ept9+hmMfng5fYACmLR6P8d8YktLnMZqNmHPHObAVWFC14QQAYPtL++B1+XDed0dlRdCajRgA9RKOBJfCS5KExsNtWPfSVjRUa+t5hpxfgfOvGh01mDLbTDjn0uEYO28Q9vzjGD5/+zgC3iAC3iB2v34E+zacwNmXDceEBUOUAm29eVtV+wBlUQCUrSkwoPNS+GwNgELBkFL4X1Bmh0OQBqhdqRzdBwc3fwkAOPzvjqacIu8erqZ+3+gVAPk9Abz75Cf4ck+4MNlgMmDO7WdjxLQBaXk+g9GAixaPR4unGV/8O/ylYde6I/C4/Jh2/XjhFz1kIwZAvUQiS+FP72/AjjUHNXubAED/8aWY8r3RqBjV87dcW4EFF1w1GuO/OQS7Xz+C/e+eQCgowdvqx46/HMDet4/j3CtGYszss2A061tz31tSYAYD4Ogr9glYVlTZ0bDVmcUrwRqqxWyA2hX1GE9VdawsypbAOb/EBpPFiKA/pEsNkMflwzuP71SCXpPViK//n/Mw6Jy+aX1eg8GAwbNLcNawAdj+4j4AwL4NJ+Br9WPWbWfDpPNnaG/DAKiXyFfPAPWws2j98RZ8vPYgTu6u1VxePqwIF1w9BgMnlsU95ZpfbMO068dj0sVD8clrh3Ho318CEuBu8mLr7/diz9+P4fwrR2H41/rr9k1GLuY2WYzCzErFInLFWkF5XtZ8EGq7wmfvjrenBe3/1ZXiAQWwOSzhoF+1KDRbAiCD0YDCinw0femCpykAKSRl7HOjtdGD9St2oPGL8OaE1nwzvnn/BRl93ScuHAqbw4Itz+2BFJJwZNtX8LYGwivOsuizS3QMgHoJR2nHjEBXM0DNp1vxyauHwoV2KnllZky7bhKGTqlMOtdc2Dcfs287G2dfMgwfrz2E6o/PAAinPzb+5lN8+uZRTLlqNM6a3DfjeW1vey8kW4Elq3LqkTNA2VLHAfSe3aA1BdBjSvQbSIwMBgMqR/fBiU9qNJdnS/E8EH7vNH3pghQE3I0eTdPndGk+3Yq3V+yAqzYcrOeV2LDwgQtQNrgo7c8dadSMgbDmmfGvp3cj6A/hi09r8faKHVjw4/OzagZbZMIFQG63G6+88gqqqqqwb98+OJ1OLFu2DIsWLYrp/k6nE8899xy2bNkCr9eLcePG4Y477sCYMWPSPHJ9WQvCmyEGvMFOAVBrowe7/noYBzZ9ASnY8XWwoMyO864YiUB5C4ZN7JfS8fQ5qxDf+M/zUHO4CTteOYCvqhoAhFMJ//zlTlSO6YMp3xuNfmNLU/q83ZFngLKp/geIEgBlybd4AMgrtirvy2xNgWkaoNpNcS8w0Evl6BJNAGQ0GTRtc0QX2Usu3QFQfXUL1j+2A23N4VrBwoo8LFo2RZPGzbQh51di4QNT8M4TO+FvC+DMwUb842cfYuHSC4TfCT4bCDeP3tzcjNWrV6O6uhojR46M676hUAhLly7Fu+++i8svvxy33XYbGhsbsWTJEpw8ebLnB8hims0Q2wMgj8uHD1/ej7X3bMb+904qwY+90IKvXTcWV/5qFsbMGZTWqeWKkSW4+L+mYuGyKcoW/UC4p9LfH/kQ/3z8Y9Qfb0nb88sCvqBSw5F1AVDEt71sKWQFwu9LedbBWeNGKCTWrr6xcNV54G4IbwnRd2QJjCbhPjajikzZOPrmCde8tTuFFR0BT7pnD0/vb8A/fvahEvz0GeTApT/9mq7Bj6z/uFJ867+nwl4UToU3nHDizYe3Z/WMqiiEmwEqKyvDunXrUFZWhv379+PWW2+N+b6bNm3C559/jkceeQRz5swBAMybNw/XXHMNXnjhBTz44INpGrUYCkrDmyH624L4eO1BVL0T3rlZZskzYdK3hmHiomEZ3cXWYDDgrEnlGDixDMd3nMHHaw+i+VS4pcPJ3bU4ubsWI6b1x3nfHYXifun5wPG1ZmcBNBBecWc0G5St97NpBggIj7fxpBOhoITW+jbhN8yMdCbL6n9k5cOLs/t9U5GZ+rGTu2rw7lO7EPSFAAAVo0rwzR9fINQXpfKhxbj0p1/D2ys+gqvOA2dNG/7+8HYsfGAKSgdnx4ykiIQLgKxWK8rKyhK67+bNm1FaWopZs2Ypl5WUlGDu3LnYsGEDfD4frNbsaYEQL/X09u7Xjyg/myxGjF8wBOdcOlz5FqEHg8GAYVP7Ycj5FTj871P45K+H4KoLz1Yd2fYVjn54GqNmDkRxv9R/UHuc2bkHEBD+f7M5rGhrCs9CZN2JTDXeT984isI0rWA7U9MM/+EjPd8wTl98Vqf8LPr+P2pmqwnlw4rDO1gju2rHAO1M5xef1sKal/riX587gM/+cUyZHT/rnHLMX3IuLHbhTo0o7l8QDoIe+xhNX7rgbvLi749sx6RvDYPRlD0ze2pnappRamzIaCmEmnivchIOHjyIUaNGwWjUTlGPGzcOb775Jk6ePIkRI0ZEvW9dXR3q6zuWi1ZXV6d1rOmgXgoPhFdSjJ49EOdePlKofUuMJiNGzzkLI6b3x753T2L3347A0+KDFJRwcNMXaX/+bOoDJrMVWJQAKJsKWQFtALT/vfSmok+gKW2PbTCEU7rZpHJ0HyUAyqbUKYBwoGwAIIVXrqY7VT78a/0x+w6xl5oXlOXhkgcvxD8f/xi1R5rhcwew838P6T2spJT3qWcAlAoNDQ0455xzOl0uzyjV19d3GQC98cYbWL16dafLjx07hmAwmNJxpovf0VH8XDY+H4NnlyCvzIQTZ44BZ7q+n8vlQlVVVQZG2JlxCHDODytx6sMWnNregqAv/TUigaJW3Y43UXkDDGj6EigabMPhYwdjuo+er6uaJ88PgxGQQnqPJDklI/Ni/r9Pt1hfW0M/bziIAOAtaBbi/RCPkmF2NB2NfWPXRFWe70DlPAsOHNyf9ufqSSyv7fDLi+B71YvmY+n/v0m32tpaVFWlfq+n8ePH93ibXhUAeb3eqCku+TKv19vpOtlll12G6dOnK79XV1fj0UcfxbBhw7JnBdl4YOzZTpgsxriK96qqqmJ6s6TTpHMBz7U+1BxqUmoW0qHO/RUumD05bY+fLuPGSqg92ozSwYUx99MS4XWVjR47GnVH0/sN/uQXJzHorEFpeWyzzYh+Y0uF6WUW82s7HhgzoRUGgyHrUqcAMOanY7B9/W4M7HdW2p6jsDJPl2XuXYn1tZ14Tnh1ojq9n21OfnESk6aORclAhy7P36sCIJvNBp/P1+ly+TKbresmneXl5SgvL0/b2DIlW1sNAIDdYcXgcyvS+hxu1a642cRgNGRd+kXNUZaX9jSsu6AeQ8dXpvU5slG6FhZkgsliQp8ReXxdozAYDbqljlLFXVCvW/ADCLgMPhmlpaWaOh6ZfFmixdVERETUu/SqAGjUqFE4dOgQQiFtscG+fftgt9sxaFB6pseJiIgou2RtAFRXV4fq6moEAh373MyePRsNDQ3YsmWLcllTUxM2btyIadOm9eol8ERERBQ7IWuAXnvtNbhcLiV1tXXrVtTUhLd0v+KKK+BwOLBy5UqsX78ea9asQf/+/QEAc+bMwauvvooVK1bg+PHjKC4uxuuvv45QKIQbb7xRt+MhIiIisQgZAK1ZswanT59Wft+yZYsyq7NgwQI4HNGLpkwmEx5//HH89re/xWuvvQav14uxY8di2bJlGDx4cEbGTkREROITMgBau3Ztj7dZvnw5li9f3unywsJCLF26FEuXLk3H0IiIiKgXyNoaICIiIqJEMQAiIiKinMMAiIiIiHIOAyAiIiLKOQyAiIiIKOcwACIiIqKcwwCIiIiIco6Q+wCJwOv1AgCqq6t1Hkn6nThxAiaTSe9hZASPtffKpePlsfZeuXS86T7WIUOGwG63d3k9A6AuyDtRP/roozqPhIiIiOK1atUqjBkzpsvrDZIkSRkcT9ZoamrCRx99hP79+/fqJqrV1dV49NFH8ZOf/ARDhgzRezhpxWPtvXLpeHmsvVcuHW8mjpUzQAkqKSnBggUL9B5GxgwZMqTbSLk34bH2Xrl0vDzW3iuXjlfPY2URNBEREeUcBkBERESUcxgA5biysjIsXrwYZWVleg8l7XisvVcuHS+PtffKpeMV4VhZBE1EREQ5hzNARERElHMYABEREVHOYQBEREREOYcBEBEREeUcboTYC+3btw/r16/Hrl27cPr0aRQVFWHChAm4+eabMWjQoG7v+/bbb2PFihVRr1u3bp1wqxN27dqFJUuWRL3u2WefxYQJE7q9f21tLX7zm99gx44dCIVCOPfcc3H33XdjwIAB6Rhu0n7xi19g/fr1XV7/2muvoW/fvlGv+8Mf/oDVq1d3utxqteLdd99N1RAT4na78corr6Cqqgr79u2D0+nEsmXLsGjRok63PX78OH7zm99gz549MJvNuOiii3DXXXehpKQkpud6//338cILL6C6uholJSW4+OKL8YMf/ABmc2Y+DmM51lAohH/+85/YvHkzDh06BKfTif79+2PevHm4+uqrYbPZenyeH/3oR9i9e3eny6dOnYonnngilYfUrVhf267e24MHD8af/vSnmJ4rG15bAJg1a1aXj3HBBRfg//2//9ft81x11VVKuya1yy67DPfdd19ig49TPOcZUf9mGQD1Qi+//DL27NmDuXPnYsSIEaivr8e6detw880349lnn8Xw4cN7fIybbroJ/fv311zmcDjSNeSkXXHFFRg3bpzmsoEDB3Z7H7fbjSVLlqC1tRXXXnstzGYz1q5di7vvvht/+MMfUFxcnM4hJ+Syyy7DBRdcoLlMkiT86le/Qr9+/boMftTuvfde5OXlKb8bjfpPBDc3N2P16tWorKzEyJEjsWvXrqi3q6mpwd133w2Hw4FbbrkFbW1teOWVV3D06FE8//zzsFgs3T7P9u3b8V//9V+YPHkylixZgqNHj+LFF19EY2Mj7r333nQcWiexHKvH48GKFSswYcIEfPvb30afPn2wd+9evPDCC/jkk0/wP//zPzAYDD0+V9++ffHDH/5Qc1mmv8TE+toC4WD8/vvv11xWUFAQ0/Nky2sLAD/5yU86XbZ//368+uqrmDJlSkzPNWrUKHzve9/TXHbWWWfFP+gExXqeEfpvVqJe57PPPpN8Pp/mshMnTkjz58+XHnnkkW7v+9Zbb0kzZ86U9u3bl84hpswnn3wizZw5U9q4cWPc9/3zn/8szZw5U6qqqlIuO378uDRnzhzp+eefT+Eo0+vTTz+VZs6cKb344ovd3u73v/+9NHPmTKmxsTEzA4uD1+uV6urqJEmSpH379kkzZ86U3nrrrU63+9WvfiV9/etfl06fPq1ctmPHDmnmzJnS3/72tx6f57rrrpNuuOEGye/3K5etXLlSmjVrlnT8+PEUHEnPYjlWn88nffbZZ53u+8ILL0gzZ86UduzY0ePz3H333dIPfvCD1Aw6CbG+tj//+c+lBQsWJPw82fLaduWxxx6TZs2aJZ05c6bH21555ZXS/fffn9RYkxXreUbkv1n9v/pRyk2aNKlTVD1o0CAMHToU1dXVMT+O2+1GMBhM9fDSxu12IxAIxHz7TZs2YezYsZqZoyFDhuC8887Dxo0b0zHEtHj33XdhMBjw9a9/Peb7tLa2QhJoCzCr1RrTzMTmzZsxbdo0VFZWKpddcMEFGDRoUI+v2fHjx3H8+HFceumlmqnz73znO5AkCZs2bUp4/PGI5VgtFgsmTZrU6fKZM2cCQFx/x4FAAG63O75BplCsr60sGAyitbU1rufIptc2Gp/Ph82bN2Py5MmoqKiI+X5+vx9tbW1xP18qxHqeEflvlimwHCFJEhobGzF06NCYbr9kyRK0tbXBYrFgypQpuPPOO3usH9LTihUr0NbWBpPJhLPPPhu33347xo4d2+XtQ6EQjh49iosvvrjTdePGjcOOHTvgdruRn5+fzmEnLRAIYOPGjZg4cWKnlGVXvve976GtrQ15eXmYMWMG7rzzTpSWlqZ5pMmrra1FY2Nj1MaJ48aNw/bt27u9/8GDBwGg0/3Ly8vRt29fHDp0KHWDTZOGhgYAiDk9e/LkSXzzm9+E3+9HaWkpLrnkEixevDhjNTHx8ng8WLRoETweDwoLCzF//nzcdtttPf4dZvtru337drhcLnzjG9+I+T6ffPIJFixYgGAwiH79+uHKK6/ElVdemcZR9izyPCP636yYfwWUchs2bEBtbS1uvPHGbm9ns9mwaNEinHvuuSgoKMCBAwewdu1a3HHHHfjd736nieJFYDabMXv2bHzta19DcXExjh8/jjVr1uCuu+7Cb3/7W4wePTrq/VpaWuDz+aJ+W5Mvq6urw+DBg9M6/mR99NFHaG5ujumDs7CwEJdffjkmTJgAi8WCzz77DOvWrcO+ffuwatWqmGst9FJfXw8geg1LWVmZ8ppardaE7i9fL7K//OUvKCgowIUXXtjjbQcMGIBzzz0Xw4cPh8fjwaZNm/Diiy/i5MmTePjhhzMw2viUlZXh+9//PkaPHg1JkvDhhx/i9ddfx5EjR/DUU091G7Rl+2u7YcMGWK1WzJ49O6bbDx8+HGeffTYGDRqElpYWvP322/j1r3+Nuro63H777WkebdcizzOi/80yAMoB1dXVePLJJzFhwgQsXLiw29vOmzcP8+bNU36fOXMmpk6dirvvvhsvvfRSxlYYxGrSpEmaVMGMGTMwZ84c3HDDDVi5cmWXq128Xi8ARC3Ak/8Y5duI7N1334XZbMbcuXN7vG3kt8M5c+Zg3Lhx+NnPfoZ169bh2muvTdcwUyLW16yrD1Ofz6e5beT99UwTxeKll17Cxx9/jP/8z/9EYWFhj7d/4IEHNL9/85vfxC9/+Uu8+eabuOqqq3pcIZlpkcXa8+fPx6BBg7Bq1Sps3rwZ8+fP7/K+2fzatra24oMPPsCFF14Y0+sKAI899pjm94svvhg//vGPsXbtWlxxxRVxpdFSJdp5RvS/WdYA9XL19fVYunQpCgoK8LOf/Qwmkynuxzj77LMxfvx47Ny5Mw0jTL2zzjoLM2bMwK5du7qsYZKXEfv9/k7XyX90sSw11pPb7cb777+PqVOnJrxi7Rvf+AZKS0uz4rVN9jWTP0Tl20beX+TX+7333sPvfvc7fOtb38J//Md/JPw48qqhjz/+OEUjS6+rrroKRqOxx/Fm82u7efNm+Hy+uNJfkQwGA6666ioEg8GoWx+kW1fnGdH/ZhkA9WIulwv3338/XC4XnnjiCZSXlyf8WBUVFWhpaUnh6NKroqICfr8fHo8n6vVFRUWwWq1Rp1Dly5L5/8qE999/Hx6PJ6kPTiB7Xlt5Gryr10x+TRO9v2h7XMl27NiBX/ziF7jooouSXvYrzww4nc5UDC3tbDYbioqKenx/ZutrC4TTRg6HA9OmTUvqceTXNtN/y92dZ0T/m2UA1Et5vV488MADOHnyJB577LGYi5+7curUqZg3rRLBqVOnYLVaNfvdqBmNRgwfPhz79+/vdF1VVRUGDBggfAH0hg0bkJeXh+nTpyf8GJIk4fTp01nx2vbt2xclJSU4cOBAp+v27duHkSNHdnv/UaNGAUCn+9fV1aG2tla5XiRVVVX4yU9+gjFjxuDhhx9Ounj51KlTAJAVrzcQnuVsbm7ucbzZ+NoC4fHt2rULs2bN6jYQiIUer21P5xnR/2YZAPVCwWAQDz30EPbu3YuHH34YEydOjHq7uro6VFdXa5aONzU1dbrdBx98gAMHDmDq1KnpGnLCoo338OHD2Lp1K6ZMmaJs8nfmzJlOS4dnz56N/fv3a4KgEydOYNeuXZgzZ046h520pqYmfPzxx5g1axbsdnun66Mdb7T/q9dffx1NTU0xFdWKYPbs2di2bRvOnDmjXLZz506cPHlSUwcVCARQXV2Nuro65bJhw4Zh8ODBePPNNzWp0ddffx0GgyHmAtRMOX78OJYuXYp+/frh//7f/9vtdH91dbXm/6S1tbVT2kCSJLz44osAEPNme5ni9Xqj1nP88Y9/hCRJmvdnb3htZf/6178QCoW6nMWNdqwtLS2dUvuBQAB//vOfYbFYcO6556Z1zLJYzzMi/82yCLoXeuaZZ7B161ZMmzYNTqcT77zzjub6BQsWAABWrlyJ9evXY82aNcoS6ttvvx2jR4/GmDFjUFBQgIMHD+Ktt95CRUUFrrvuuowfS09++tOfwmazYeLEiejTpw+OHz+ON998E3a7XVNU+fOf/xy7d+/Gli1blMu+853v4O9//zuWLl2Kq6++GiaTCWvXrkWfPn1w9dVX63E4MXvvvfcQDAa7/OCMdrxXXnkl5s2bh+HDh8NqtWLPnj147733MGrUKFx22WWZGnqXXnvtNbhcLmW6e+vWraipqQEQ3unb4XDg2muvxaZNm3DPPffgu9/9Ltra2vCXv/wFw4cP17QbqK2txXXXXYeFCxdi+fLlyuV33HEHli1bhnvvvRfz58/H0aNHsW7dOlxyySVJz5Km8liNRiPuu+8+OJ1OXH311fjggw809x8wYIDmhHPddddh8uTJePrppwGElw8//PDD+PrXv46BAwfC6/Xi3//+N/bs2YNLL7006rLkdOrpeJ1OJ2666SZ8/etfV1ZefvTRR9i+fTsuvPBCzJgxQ3msbH9t1Tvqb9iwAeXl5V0GLdGOdevWrXjxxRcxe/Zs9O/fH06nExs2bMCxY8dw6623ZizdF+t5RuS/WQZAvdDhw4cBANu2bcO2bds6XS+/MaOZN28etm/fjh07dsDj8aCsrAyXXnopFi9eLOReMTNnzsSGDRuwdu1atLa2oqSkBLNmzcLixYt73BY+Pz8fTz31FH7zm9/gxRdfVHqBxdOjRi/vvvsu+vTpg/PPPz/m+3zjG9/A559/rhRdVlZW4vvf/z5+8IMfRJ1FyrQ1a9Zo+htt2bJFCeAWLFgAh8OByspKPP300/jNb36D559/XukrdOedd8aUQpg2bRoeffRRrF69Gk899RSKi4tx7bXXYvHixek6rKh6OlYAyknz+eef73T/hQsXdvmNGwAqKytxzjnnYMuWLWhoaIDRaMSQIUNw77336hLsxvLaTps2DTt27MD69esRCoUwcOBA3Hrrrbj66qtjateSLa+tHACdOHECBw4cUAq9YzV8+HAMGTIEGzZsQFNTE8xmM0aNGoWHH344ptWgqRLreUbkv1mDJNJ2sEREREQZwBogIiIiyjkMgIiIiCjnMAAiIiKinMMAiIiIiHIOAyAiIiLKOQyAiIiIKOcwACIiIqKcwwCIiIiIcg4DICIiIso5DICIKC2++uorzJo1C7/4xS/0HkpKvP3225g1axbefvttvYdCRCnAAIiIMuZHP/oRZs2apfcwouptARsRdY/NUIkoLfr27YuXXnoJBQUFeg8lJWbOnInx48dnrNs2EaUXAyAiSguz2YwhQ4boPYyUcTgcSidvIsp+7AZPRGnx1Vdf4Xvf+x4WLlyI5cuXd5n6kq+XHTlyBC+99BJ2796NlpYWlJWVYfr06bjhhhtQXFwc9fGvueYarFq1Cp9++ilaWlqwZs0a9O/fH1u2bMHGjRuxf/9+1NXVwWw2Y8SIEfjud7+LOXPmKI/19ttvY8WKFVHH99RTT+Hcc89VbrNs2TIsWrRIc5s9e/bgpZdewt69e+H1etGvXz/MmzcP11xzDex2u+a2s2bNwuTJk/HQQw/h2Wefxfbt29HW1oaRI0fihz/8Ic4999x4/6uJKAGcASKijFi8eDHWr1+P06dPY/Hixcrlo0aNUn5+//338dBDD8FgMGDGjBmoqKjA8ePH8de//hUfffQRnn/+eRQWFmoe98svv8Ttt9+O4cOHY+HChWhpaYHFYgEArFy5EmazGZMmTUJZWRmampqwdetWPPjgg1iyZAmuuOIKAMDIkSPx3e9+F6+++ipGjhyJGTNmKI/fr1+/bo9r48aNeOSRR2CxWDBv3jyUlJRgx44dWL16NT766CM89dRTsNlsmvu4XC7ceeedcDgcWLBgARobG7Fx40bcd999WLVqFYYPH57Q/zERxY4BEBFlxI033ojdu3fj9OnTuPHGGztd39zcjJ///OcoLi7GM888owk83nvvPTz88MP4/e9/j3vuuUdzvz179mDx4sVRH/Pxxx/HgAEDNJe53W7ccccd+P3vf49vfetbsNvtGDVqFBwOhxIARXusaFpbW/HLX/4SJpMJzz77LEaMGAEAuPXWW/HII4/gX//6F1555RVcf/31mvsdPnwY//Ef/4F77rkHRmN4Lcp5552Hxx9/HH/9619x3333xfT8RJQ4rgIjIiH885//RGtrK2699dZOsy7z58/H6NGj8d5773W6X2lpKa677rqojxkZ/ABAfn4+Fi1aBJfLhf379yc15vfffx8ulwsXX3yxEvwAgNFoxO233w6TyRR12XxeXh5uu+02JfgBwqlAk8mU9JiIKDacASIiIezduxcAUFVVhS+//LLT9T6fD83NzWhqakJJSYly+ciRI5WUV6TGxkb8+c9/xvbt23HmzBl4vV7N9XV1dUmN+dChQwCAyZMnd7qusrISAwYMwMmTJ+F2u5Gfn69cd9ZZZ2l+B8JF46WlpXC5XEmNiYhiwwCIiITgdDoBAOvWrev2dh6PR/N7nz59ot6upaUFt956K86cOYNJkybhggsugMPhgNFoxOHDh/H+++/D7/cnNebW1lYA4VmoaMrKynDy5Em0trZqAp6utgYwmUwIhUJJjYmIYsMAiIiEIAcIq1evjqsI2GAwRL38H//4B86cOYObbrqpUw3On/70J7z//vuJD7adHMg0NDREvV6+vLfshUTUm7AGiIgyRq55CQaDna4bP348gI5UWLLkNJp6RZfss88+63Js8czAyCvYdu/e3em6M2fO4Msvv8SAAQM6pbuISH8MgIgoY4qKigAANTU1na67+OKLkZ+fj1WrVuHYsWOdrvd4PHEFR3Ih9Z49ezSXb9iwAdu3b+90+8LCQhgMhqhj68qMGTPgcDjw1ltvacYsSRKef/55BIPBTnsGEZEYmAIjoow577zzsGnTJvz3f/83LrzwQlitVowcORLTp09HSUkJfvrTn+LBBx/EjTfeiKlTp2Lw4MHw+/04ffo0du/ejYkTJ+KJJ56I6bkWLFiAl19+GU899RR27dqFyspKHD58GJ988glmzZqFLVu2aG6fn5+PsWPH4tNPP8Wjjz6Ks846CwaDAd/85je73AuooKAAP/7xj/HII4/gtttuw9y5c1FSUoKdO3fiwIEDGDduHK6++uqk/9+IKPUYABFRxlxyySX46quv8K9//Qsvv/wygsEgFi5ciOnTpwMALrroIvz+97/HX/7yF+zcuRMff/wx7HY7+vbti0WLFmHBggUxP1dFRQWefvppPPvss/j4448RDAYxevRo/OpXv0JNTU2nAAgAfvKTn+DXv/41tm3bhtbWVkiShLPPPrvbzRDnzp2L0tJS/OlPf8KWLVuUnaCvv/56XHPNNZ02QSQiMbAVBhEREeUc1gARERFRzmEARERERDmHARARERHlHAZARERElHMYABEREVHOYQBEREREOYcBEBEREeUcBkBERESUcxgAERERUc5hAEREREQ5hwEQERER5RwGQERERJRz/n84IVVKrouugwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "c49100a2", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "f672d9cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAG5CAYAAABMX3rVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnZUlEQVR4nO3deVxU5eI/8M8wwLCDgIL7Au5LmFopsmm5Zd66aVnX0sxMMa/9rl6321fTa9c2K7rlmle0rmnXck0tNRExNTVJDUVJIFNB9p2ZYeb8/sA5MjLADGc2hs/79erVzDnPOed5HHA+nuc5zyMTBEEAEREREUnmZOsKEBERETkKBisiIiIiM2GwIiIiIjITBisiIiIiM2GwIiIiIjITBisiIiIiM2GwIiIiIjITBisrq6ysRGpqKiorK21dFSIiIjIzBisry8zMxCuvvILMzExbV8XifvvtN1tXwWqaU1uB5tVettVxNaf2sq3Ww2BFFqNUKm1dBatpTm0Fmld72VbH1Zzay7ZaD4MVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZk427oCJJ2qXI20E7egLFXDJ8gDIUPa2LpKREREzRKDlQNQKzX4cVMKAKDjwCAGKyIiIhthV6ADUHi6iK+VpSob1oSIiKh5Y7ByAM6ucshdqz9KZZnaxrUhIiJqvhisHITCq/qulbKUwYqIiMhWGKwchMLTFQCDFRERkS0xWDkIN+/qO1YatRZVKo2Na0NERNQ8MVg5CP0B7LxrRUREZAsMVg5CN8YKYLAiIiKyFQYrB6EXrMo45QIREZEtMFg5CHYFEhER2R6DlYNQeLmKrysZrIiIiGyCwcpBcIwVERGR7TFYOQh2BRIREdkeg5WD4B0rIiIi22OwchB8KpCIiMj2GKwcBLsCiYiIbI/BykE4K+RwcpYBAJRlDFZERES2wGDlIGQyGdy8uBAzERGRLTFYORDdOCsGKyIiIttgsHIgumBVpdRAo9bYuDZERETND4OVA9EbwF5WZcOaEBERNU8MVg5Efy4rTrlARERkbQxWDqTmeoEcZ0VERGR9zraugCHl5eXYtm0bUlJScPnyZZSUlGDRokUYPXq0UceXlJRg7dq1SExMhFKpRM+ePREbG4vu3bvXKpuUlIRNmzYhMzMTfn5+GDNmDF588UU4O9/7ozl37hwOHTqECxcuICcnB/7+/njwwQfx8ssvIzAw0GztlopzWREREdmWXd6xKioqQnx8PDIzMxEaGmrSsVqtFgsWLMDhw4fx5z//GTNmzEBBQQHmzJmDGzdu6JU9deoU/vGPf8DLywtz5sxBREQEtmzZgri4OL1ya9euxfnz5xEREYE5c+Zg+PDhOHr0KKZNm4a8vDzJ7TUXLmtDRERkW3Z5xyogIAA7d+5EQEAArly5gunTpxt9bEJCAi5duoTly5cjOjoaADBs2DA8//zz2LRpE5YsWSKWXb16NUJCQrBq1SrxDpWHhwe++OILjB8/Hh07dgQAzJo1C/369YOT070c+tBDD+Gvf/0rvvnmG7zyyitmaLV0NYNVJScJJSIisjq7vGPl6uqKgICARh177Ngx+Pv7IzIyUtzm5+eHmJgYJCUlQaWqHtSdkZGBjIwMPPHEE3rdfk899RQEQUBCQoK4LSwsTC9U6bb5+PggMzOzUfW0BHYFEhER2ZZdBisprl69iq5du9YKQj179kRlZaXYHXj16lUAqDXuKjAwEC1btsS1a9fqvU55eTkqKirg6+tbb7nc3FykpqaK/1kyiPGpQCIiItuyy65AKfLz8/HAAw/U2q67A5aXl4eQkBBxbJShO2MBAQENjp363//+B7VajWHDhtVbbs+ePYiPj6+1PT09HRqNeSfxrCy8N3dVzu08pKSkmPX8piotLbV5HaylObUVaF7tZVsdV3NqL9tqHr169WqwjMMFK6VSCVdX11rbdduUSiUAiF2CdZUtLy+v8xrJycmIj49HTEwMBgwYUG99xo0bh/DwcPF9ZmYmVqxYgc6dOxt8SlEKVbkaP+MmAEDh5G7UD4AlpaSk2LwO1tKc2go0r/ayrY6rObWXbbUehwtWCoVCDE016bYpFAoA9wJVXWV15e6XmZmJN954A126dMGCBQsarE9gYKDVpmRwcXeGTC6DoBE4xoqIiMgGHG6Mlb+/v8FuvPu7/mp2DRoqa6iLMDs7G3PnzoWnpyfeeecdeHh4mLPqkslkMnEAu5JPBRIREVmdwwWrrl274tq1a9BqtXrbL1++DDc3N7Rv314sBwCpqal65XJzc5GTkyPu1ykqKsLcuXOhVqvx/vvv29XEoDXpBrDzjhUREZH1NelglZubi8zMTFRV3Ru0HRUVhfz8fCQmJorbCgsLcfToUQwZMkTsAuzcuTM6dOiAvXv36g0i37VrF2QyGaKiosRtFRUVmD9/PnJzc/Huu++K4cwe6YKVuqIK2iptA6WJiIjInOx2jNXXX3+N0tJSsavuxIkTuHPnDgDg6aefhpeXF9avX4+DBw9i+/btaN26NQAgOjoaO3bswMqVK5GRkQFfX1/s2rULWq0WU6dO1btGbGwsFi1ahLlz52L48OG4fv06du7cibFjx6JTp05iuX/+85+4fPkyxowZg8zMTL0pE9zd3REREWHhPw3j6c1lVaaGu6/hsWJERERkfnYbrLZv346srCzxfWJiongXasSIEfDy8jJ4nFwux7vvvovVq1fj66+/hlKpRI8ePbBo0SJ06NBBr+yQIUOwYsUKxMfHIy4uDr6+vpg0aRKmTJmiVy4tLQ0AsH//fuzfv19vX3BwsF0FK7f7FmJmsCIiIrIeuw1WX331VYNlFi9ejMWLF9fa7u3tjQULFhj11F5ERESDwciYutgLvUlCOYCdiIjIqpr0GCuqjcvaEBER2Q6DlYPRX9aGwYqIiMiaGKwcjH5XINcLJCIisiYGKwfDrkAiIiLbYbByMOwKJCIish0GKwejqDndAp8KJCIisioGKwfDO1ZERES2w2DlYFzdnSGTVb9msCIiIrIuyROEZmRk4JtvvsGVK1dQUlJSa/FjAJDJZNi2bZvUS5ERZE4yuHq6QFmqZlcgERGRlUkKVsnJyZg3bx7UajXkcjlatGgBuVxeq5wgCFIuQyZSeFUHq8oSTrdARERkTZKC1bp166DRaDB//nyMGjXKYKgi69ONs1KVV0GrFeDkJLNxjYiIiJoHSWOs0tLSMHz4cDz++OMMVXZE4XnvyUAVuwOJiIisRlKwcnNzg5+fn5mqQubCJwOJiIhsQ1KweuSRR3DhwgVz1YXMRH9ZGwYrIiIia5EUrGJjY1FaWoq4uDhUVlaaq04kEZe1ISIisg1Jg9fffPNNuLu7Y+fOnThw4ADat28PDw+PWuVkMhk++ugjKZciE+h3BfLJQCIiImuRPN2CTkVFBa5evWqwnEzGp9KsiV2BREREtiEpWB07dsxc9SAzcmNXIBERkU1wSRsHpPCusRAzgxUREZHVmDVYVVRUIDc3FxUVFeY8LZlIb/A6uwKJiIisRvJagWq1Gl9++SUOHDiA27dvi9tbt26NMWPGYOLEiXBxcannDGRunMeKiIjINiQFK6VSiddffx2XL1+Gk5MT2rVrh4CAAOTl5eHWrVvYuHEjfvzxR3z00UdQKBTmqjM1wJVjrIiIiGxCUrD673//i5SUFAwbNgwzZsxAUFCQuO/OnTtYu3Ytjhw5gq1bt+Kll16SXFkyjpOTDK4ezlCVV6GS0y0QERFZjaQxVj/88AO6deuGpUuX6oUqAGjVqhWWLFmC7t2748iRI5IqSabTdQfyjhUREZH1SApWWVlZGDRoUL1lBgwYgKysLCmXoUZQeFU/GagqU0PQCjauDRERUfMgeRHmwsLCessUFhbCzc1NymWoEXRPBgoCoKqosnFtiIiImgdJwapXr144cuQI0tPTDe7PyMjADz/8gN69e0u5DDUCnwwkIiKyPkmD11944QWcOXMG06dPx+OPP46wsDC0aNECBQUFOH/+PA4cOICqqipMmjTJXPUlI3FZGyIiIuuTFKz69u2LJUuW4L333sPOnTuxa9cucZ8gCPD09MTixYvRt29fqfUkE+lNEsonA4mIiKxC8gShMTExePjhh5GUlISrV6+ivLwcHh4e6NatG4YOHQoPDw9z1JNMxK5AIiIi65McrADAw8MDI0aMwIgRI8xxOjIDN68a6wWyK5CIiMgquAizg+IdKyIiIusz6Y7VwYMHAQCRkZHw8PAQ3xtj1KhRptWMJGGwIiIisj6TgtXKlSshk8nQu3dveHh4iO/rIwgCZDIZg5WV6Q1eZ1cgERGRVZgUrBYuXAgACAgI0HtP9qfmHavKEj4VSEREZA0mBavRo0fX+57sB+9YERERWZ+kwevJycnIzs6ut0x2djaSk5OlXIYawcnZCS7ucgAcY0VERGQtkoLV66+/jgMHDtRb5rvvvsPrr78u5TLUSArP6ikXGKyIiIisQ1KwEgTBqDINDXAny9CNs1KWqY36rIiIiEgai89j9ccff8DT09PSlyEDdOOsBI0AdaXGxrUhIiJyfCbPvP7222/rvT9+/DiysrJqldNoNLhz5w4uXLiAhx9+uPE1pEa7fy4rV3ezTLRPREREdTD5m7bmmCqZTIa0tDSkpaUZLCuTydCjRw+89tprja8hNZpesCpTwbuluw1rQ0RE5PhMDlbbt28HUD12auLEiZgwYQLGjx9fq5yTkxO8vb3h7s4vc1vRm3KBA9iJiIgszuRgFRwcLL5euHAhunXrpreN7IfCu8ZCzAxWREREFidp0A0nCLVvbpwklIiIyKrMMppZqVTiypUryM3NhVpt+AucawVaHxdiJiIisi7Jweqbb77Bxo0bUVZWZnA/F2G2HQYrIiIi65I0j9WxY8cQFxeHVq1aITY2FoIgIDw8HK+88goeeughCIKAqKgoLFiwwFz1JRPoBysuxExERGRpkoLV//73P7Ro0QJr1qzBM888AwDo2rUr/vKXv+Ddd9/FG2+8gePHj3Nwu43wqUAiIiLrkhSsrl+/jvDwcLi5uYnbtFqt+Pqxxx7Dgw8+iPj4eCmXoUZy5eB1IiIiq5I0xqqqqgp+fn7ie4VCgZKSEr0yoaGh2Lt3r0nnLS8vx7Zt25CSkoLLly+jpKQEixYtMvopxJKSEqxduxaJiYlQKpXo2bMnYmNj0b1791plk5KSsGnTJmRmZsLPzw9jxozBiy++CGfne380ubm52LFjBy5fvowrV66goqICcXFx6N+/v0ntsjZnVzmcFXJUKTW8Y0VERGQFku5YBQQEIC8vT3wfFBSEa9eu6ZXJysqCXC436bxFRUWIj49HZmYmQkNDTTpWq9ViwYIFOHz4MP785z9jxowZKCgowJw5c3Djxg29sqdOncI//vEPeHl5Yc6cOYiIiMCWLVsQFxenV+7GjRvYunUrcnJy0KVLF5PqY2u67kAGKyIiIsuTdMeqZ8+euHr1qvj+4Ycfxo4dO/DFF18gPDwcFy5cQGJiIgYOHGjSeQMCArBz504EBATgypUrmD59utHHJiQk4NKlS1i+fDmio6MBAMOGDcPzzz+PTZs2YcmSJWLZ1atXIyQkBKtWrRLvUHl4eOCLL77A+PHj0bFjRwBA9+7dsW/fPvj4+CAhIUHvHPZO4eWCsvxKKMvU4hOaREREZBmS7lhFR0dDpVLh9u3bAIBJkyahZcuW+Oyzz/DSSy/hgw8+gLu7O2bMmGHSeV1dXREQENCoOh07dgz+/v6IjIwUt/n5+SEmJgZJSUlQqaqfjsvIyEBGRgaeeOIJvW6/p556CoIgICEhQdzm4eEBHx+fRtXH1nRPBmrUWmhU2gZKExERkRSS7lhFRkbWCjD/+c9/sG/fPty6dQtBQUEYOXIkWrZsKbmixrp69Sq6du0KJyf9zNizZ0/s3bsXN27cQEhIiHin7f5xV4GBgWjZsmWtLs3Gys3N1esuzczMNMt5jaX/ZKAKzgqu3UhERGQpZpl5vSZvb28899xz5j6t0fLz8/HAAw/U2q67A5aXl4eQkBAx7Bi6M3b/2DEp9uzZY/CpyPT0dGg0GrNcoz4VVfcmbk25kArPINd6SptXaWkpUlJSrHY9W2pObQWaV3vZVsfVnNrLtppHr169GiwjKVgdPHgQbm5u4lgmQ3777Tdcu3bNajOvK5VKuLrWDg+6bUqlEgDELsG6ypaXl5ulPuPGjUN4eLj4PjMzEytWrEDnzp0NPqVobqW/pCL7fCkAoG1Qe7Tp1bgu1sZISUkx6ofQETSntgLNq71sq+NqTu1lW61HUrBauXIlZDIZhg4div/7v/+DQqGoVSYxMRGbN2+2WrBSKBRiaKpJt01XR12gqqusobY0RmBgIAIDA81yrsbgsjZERETWI2nwOlA9rur48eOYPXs28vPzzVEnSfz9/Q12493f9Veza9BQ2cYOnrc3esGKk4QSERFZlORg9eSTT2L69Om4evUqXn31Vfz222/mqFejde3aFdeuXdObAR4ALl++DDc3N7Rv314sBwCpqal65XJzc5GTkyPub+r0Bq+XcL1AIiIiS5IcrADgL3/5C5YtW4bi4mLMmjULJ0+eNMdpG5Sbm4vMzExUVVWJ26KiopCfn4/ExERxW2FhIY4ePYohQ4aIXYCdO3dGhw4dsHfvXr1B5Lt27YJMJkNUVJRV2mBpvGNFRERkPWZ7KjAqKgpBQUFYuHAhFi9ejNjYWEyYMKHR5/v6669RWloqdtWdOHECd+7cAQA8/fTT8PLywvr163Hw4EFs374drVu3BlA9t9aOHTuwcuVKZGRkwNfXF7t27YJWq8XUqVP1rhEbG4tFixZh7ty5GD58OK5fv46dO3di7Nix6NSpk17ZzZs3A6ie/woAvvvuO1y4cAEAMHny5Ea309I4xoqIiMh6zDrdQo8ePbBu3TosXLgQn376KW7cuNHoiTW3b9+OrKws8X1iYqJ4F2rEiBHw8vIyeJxcLse7776L1atX4+uvv4ZSqUSPHj2waNEidOjQQa/skCFDsGLFCsTHxyMuLg6+vr6YNGkSpkyZUuu8Gzdu1Hu/f/9+8bU9Bys3TwYrIiIiazH7PFZBQUH49NNP8eabb2L37t1wc3Nr1Hm++uqrBsssXrwYixcvrrXd29sbCxYswIIFCxo8R0REBCIiIhosV7NrsSlReN2bToJdgURERJZlljFW9/Pw8MDbb7+Np556CpWVlZa4BBlJ7uoEuUv1x8w7VkRERJYl6Y7VsWPH6tzn5OSE119/HSNHjhQn5STrk8lkUHi6oLxQyWBFRERkYWbvCrxfz549LX0JaoDC626wYlcgERGRRVmkK5Dsi+7JwCqlBlUqy69PSERE1FyZdMcqKioKTk5O2LJlC9q3b4+oqCjIZLIGj5PJZDh69GijK0nS1BzAripTw9lVbsPaEBEROS6TgtUDDzxQPWbn7jp6uvdk3+6fJNSjReOe1CQiIqL6mRSsPv7443rfk31ScC4rIiIiq+AYq2ag5h2ryhIGKyIiIkthsGoG9LsCuRAzERGRpZjUFRgfH9+oi8hkMrte9sXRsSuQiIjIOkwKVps2bWrURRisbIsLMRMREVmHScEqLi7OUvUgC7r/qUAiIiKyDJOCVVhYmIWqQZak8KyxEDPvWBEREVkMB683A+wKJCIisg6zrRWo0WhQVFQEtdrwF3dQUJC5LkUmcnGTQyaXQdAI7AokIiKyIMnBKjU1FevXr8cvv/yCqqoqg2W4pI1tyWQyKDxdUFms4h0rIiIiC5IUrK5du4bXXnsNcrkcgwYNwo8//ojQ0FD4+/vj6tWrKCwsRFhYGIKDg81VX2okN++7wYrzWBEREVmMpGC1efNmAMDatWvRqVMnREVFISIiAlOmTIFSqcSnn36KhIQELFy40CyVpcarHsBeBnWFBtoqLZycObyOiIjI3CR9u168eBHh4eHo1KmTuE0QBACAQqHA66+/jsDAQGzYsEFSJUk6TrlARERkeZKCVVlZGdq0aSO+d3Z2RkVFxb2TOzkhLCwM586dk3IZMgO99QI5zoqIiMgiJAUrPz8/lJSUiO/9/f3xxx9/6JVRqVSorKyUchkyAy5rQ0REZHmSglWnTp3w+++/i+/79u2LM2fO4NKlSwCAjIwMHD16FB07dpRWS5JMfy4rDmAnIiKyBEmD1wcPHoxPPvkEubm5CAwMxPPPP4/ExES89tpr8Pb2RmlpKbRaLSZNmmSu+lIjcYwVERGR5UkKVn/6058QExMDb29vAEBoaCg+/PBDfP7557h16xa6d++Op59+GoMHDzZLZanx2BVIRERkeZKClbOzM/z9/fW29e3bF++++66kSpH5cVkbIiIiy+NkRs2EwqvGQszsCiQiIrIIs6wVWFhYiIyMDOTm5ta5rM2oUaPMcSlqJHYFEhERWZ6kYKVUKvHRRx/h+++/h0ajMVhGEATIZDIGKxtjVyAREZHlSQpWcXFx2L9/P0JCQhAVFYWAgADI5XJz1Y3MyNXdGTIZIAjsCiQiIrIUScHq2LFj6N69O9asWcNAZedkTjIovFxQWaLmPFZEREQWImnwularRf/+/RmqmgjdAHZ2BRIREVmGpGDVo0ePWkvYkP3SDWBXlVdBq9HauDZERESOR1Kwevnll3HmzBn8+OOP5qoPWVDNAeyqMsNPbxIREVHjSRpj1adPH6xatQqLFi1Ct27dEBISAk9Pz1rlZDIZJk+eLOVSZAb3L2vj5uNaT2kiIiIylaRgVVRUhHXr1qGkpATnzp3DuXPnDJZjsLIP+nNZqQDUDsFERETUeJKnW7h48SIeeeQRDB8+nNMt2DnOZUVERGRZkoLV6dOnERYWhnfeecdc9SELqhmsKjmXFRERkdlJGrwuCAJ69OhhrrqQhXFZGyIiIsuSFKz69u2LtLQ0c9WFLExvIWYGKyIiIrOTFKxiY2Nx5coVfP311+aqD1nQ/U8FEhERkXlJGmP15ZdfIiQkBP/+97/x9ddf1zndAgAsXLhQyqXIDNgVSEREZFmSgtWBAwfE1zdv3sTNmzcNlpPJZAxWdkDhzWBFRERkSZKC1fbt281VD7ICVw8XQAZAAJRlXIiZiIjI3CQFq+TkZPj7++Ohhx4yV33IgpycZFB4uEBZpuYdKyIiIguQNHj9nXfewenTp81VF7IC3QB2BisiIiLzkxSsAgICoNFozFUXsgLdAHZlmRqCVrBxbYiIiByLpGAVHh6Os2fPQqXieJ2mQpxyQQBU5VW2rQwREZGDkRSsXnnlFbi5ueGNN95Aenq6uepEFqQ/lxUDMRERkTlJGrz+8ssvQ61WIy0tDT/99BNcXV3h5+cHmUymV04mk2Hbtm2SKkrmUWsuqyAbVoaIiMjBSApWgiDA2dkZrVq1qrW9vvfGKC8vx7Zt25CSkoLLly+jpKQEixYtwujRo406vqSkBGvXrkViYiKUSiV69uyJ2NhYdO/evVbZpKQkbNq0CZmZmfDz88OYMWPw4osvwtnZudHntFd6d6w4gJ2IiMisJAWrr776ylz1qKWoqAjx8fEICgpCaGgozp8/b/SxWq0WCxYswG+//YaJEyfC19cXu3btwpw5c7Bhwwa0b99eLHvq1Cn84x//QFhYGObMmYPr169jy5YtKCgowNy5cxt1TnvGZW2IiIgsR1KwsqSAgADs3LkTAQEBuHLlCqZPn270sQkJCbh06RKWL1+O6OhoAMCwYcPw/PPPY9OmTViyZIlYdvXq1QgJCcGqVavEO1QeHh744osvMH78eHTs2NHkc9ozhScXYiYiIrIUSYPXa6qqqkJ6ejouXbqE9PR0VFVJe+LM1dUVAQEBjTr22LFj8Pf3R2RkpLjNz88PMTExSEpKEp9izMjIQEZGBp544gm9br+nnnoKgiAgISHB5HPaO3YFEhERWY7kO1bFxcVYu3YtDh8+rBcuFAoFHn30UUyfPh2+vr5SL2OSq1evomvXrnBy0s+NPXv2xN69e3Hjxg2EhITg6tWrAFBrjFRgYCBatmyJa9eumXxOe8euQCIiIsuRFKyKi4sxY8YM3Lx5Ez4+PujXrx8CAgKQn5+PK1euYN++fUhOTsaaNWvg4+Njrjo3KD8/Hw888ECt7bo7YHl5eQgJCUFeXp7e9vvL6vabcs775ebm6p0nMzPTxNaYF+9YERERWY6kYLV582bcvHkTEydOxJQpU+Du7i7uq6ysxObNm7F161Zs2bIFr732muTKGkupVMLV1bXWdt02pVIJAOIdtrrKlpeXm3zO++3Zswfx8fG1tqenp9tk1np12b1r5mblIyUlxWLXKi0ttej57UlzaivQvNrLtjqu5tRettU8evXq1WAZScEqKSkJYWFhmDlzZq19bm5uePXVV5GSkoLjx49bNVgpFAqDY5502xQKBYB7oaiusrpyppzzfuPGjUN4eLj4PjMzEytWrEDnzp1tMk2DVqPFGfwBAHCBwqgfksZKSUmx6PntSXNqK9C82su2Oq7m1F621XokBau8vDw8+uij9Zbp06cPfv31VymXMZm/v79e95vO/V1/NbvxgoKCapXt2bOnyee8X2BgIAIDAxvRCstwkjvBxd0Z6oqqZtEVqNVocfHbdFw7fgvaKi3kLk5wcnaC3NUJcmcnyF10/5ff2+dS4z9nJzjd977WPmcnlN5SIt+rRNzn5OIE5xrnu3/SXCIickySgpWnpyeysrLqLZOVlQVPT08plzFZ165dceHCBWi1Wr3B5pcvX4abm5s451TXrl0BAKmpqXrpNjc3Fzk5ORg3bpzJ52wKFF4u1cHKwQevF/xRgmNrLyL3epFVrncBdf8uODnL7oYuuV440w958lqhThfSXBRyuHq4wNXTGQoPF7h4VP/f1dMZru7V752cGN6IiGxNUrAKCwtDQkICRo8ejYEDB9baf+7cOSQkJGDo0KFSLlOv3NxclJWVoW3btuKUCVFRUUhISEBiYqI451RhYSGOHj2KIUOGiF2AnTt3RocOHbB3716MGzcOcrkcALBr1y7IZDJERUWJ1zH2nE2BwtMFpTkVUJaqIQiCw91N0WoFXPo2Hed2XINGrQUAyGSAq6cLNGotNGotBK3pqwFIqlOVAG2VBuoKy42rc3F3hquHM1w9XKDwdIaLuzMUni7Vgczj7j5PFyg8nOHiUf1/3T6ZXAYIqP4PgHDvBcQ/KQHA3VUUVCVVKMuvvLtdEHeLh9V8I5JB5gTIgOoPRHbfaxkg022s8Vr34ym7GxxlMt2Bd/fJZHfPgxobobfN0X7Gich+SQpWU6ZMwcmTJzFv3jw88sgjeOCBB+Dv74/8/HwkJyfj9OnTUCgUmDJlSqPO//XXX6O0tFTsbjtx4gTu3LkDAHj66afh5eWF9evX4+DBg9i+fTtat24NAIiOjsaOHTuwcuVKZGRkiLOka7VaTJ06Ve8asbGxWLRoEebOnYvhw4fj+vXr2LlzJ8aOHYtOnTqJ5Uw5p73TPRkoaAWoK6rg6uHSwBFNR9HtMhxbdwF3rhaK23zbeCJqRj+0CvUTt2m1ArR3Q5ZGrYGm6u7rKi00Ki20Nd/fLacV32tq7BOgUWuQeycPvt6+Ylnxv7vltWotqnTnuO+85gp56ooqqCuqUJZXaZbzNeQsblrlOhZxL5vVSG41t+l2ySAIAk7Lbuht1+0zeOqam/WKyAyXqXV8zYvUV66uN8aVM1S1qqoqJLtk1dhsuC6yOtqFBjbXWcu6TlHvH5SRZWuVu/daqVQhRVF7iIe5mJznTc7/xh+gVFbisiLf1AtYjCX/rVNZWYmKcGcMmNDNcheph6Rg1blzZ7z//vtYuXIlTp48iZMnT4p/EQFAmzZtsHjxYnTu3LlR59++fbteV2NiYiISExMBACNGjICXl5fB4+RyOd59912sXr0aX3/9NZRKJXr06IFFixahQ4cOemWHDBmCFStWID4+HnFxcfD19cWkSZNqhUFTzmnv7p/LyhGClaAV8Ov3mTizLRUaVfVdKsiAvmM6Y8CErnB2leuVd3KSwUkhh7NCDkB6+6UMltRq9MOW1kAwU1dqoCqvgqpcDVVZFVQV1f9XlquhLq/+f/X2KqjK1OKdOqqD3p04oebm2gXr2OOoVLD+08q2VAHHHhJRU3kzamuplf6BaYhMaMwKyfcRBAEXL17EtWvXUFZWBk9PT3Tt2hV9+/blLfj7pKam4pVXXsGGDRtstnhz0sZLuHKk+l/gT741BIGdLTOBq7WezCjJKUfiuou4nXLvX2M+QR6IfLUvgnv4W/z6gO2fQrmfRq0LYtVj6XSBSwxn5Xff68ba6f4WMHRHpub/7m4rKSmGt4+Pfncb9MuL3Xm427V4t6tR91q427Wo6zUU/yoSanQl3t0u1Oym1HU91uiaFO7LP0LN5GSge7PmS90Jav1NeLdulZWVcHNz08tW+mUFwy/rKKO3vZ6/ffX+am5kOcNVMFCXu/9Xq9VwdnGufUxdl2jg60PSt8t9B9d7Lr0/97oL3v+ZaDVaOMnNtgBJnXUyqriFs/v944Prr0vT/oeEoBXQLbIdhk7rY5Prm2WtQJlMhn79+qFfv37mOB1ZmMLLMdYLFAQBqT/cwOn/XoG68t6/sns91gGDnusOFze7XQrT4uQucrj7yuHua3gaEKnsLUhaEtvquJpTe9lW62m+3zzNmCMsa1OWV4HjGy7hjwu54javQDdETO+Ltn3sZ3oLIiJqXiQHq8LCQuzfvx9XrlxBaWmpwdnEZTIZPvroI6mXIjNx82y6y9oIgoBrx2/i1JbLUJXfW+i7e0w7PPyXHg4xXoyIiJouScHqt99+w+uvv46SkpJ6+2Q5zsq+KLybZrAqL1Qi6bNL+P3nO+I2jxYKRLzSF+3DWtqwZkRERNUkBatPP/0UxcXFePHFF/H444+jZcuW4lxQZL8Unk2vK/C3k7fx46Zf9YJg6NA2GPxiL72uTSIiIluSFKx+/fVXDB06FC+//LK56kNWUDOIVJbUXv/QnlQUK/HjphSkn7437YabjyuGvtwHnQYF1XMkERGR9UkKVs7Ozmjbtq256kJWovdUoB3fsco4k42kjZdQWXwv/HV+OBjhL/WGm0/TmemeiIiaD8lL2qSmppqrLmQlCs97H7s9jrFSlqpxcksK0pJuidsUXi4Y8lJvhAxubcOaERER1U/SzGixsbG4fv06vvzyS3PVh6xA7qKbcdz+gtWN5Bx8veC4XqjqMKAVnn43gqGKiIjsnqQ7Vp9//jm6dOmCdevWYc+ePQgNDYWnp6fBsgsXLpRyKTIzhZcLqpQau+kKVJWrceqLK7ia8Ie4zdXDGY+82BNdI9ryyVIiImoSJAWrAwcOiK9v3bqFW7duGSwnk8kYrOyMwssFZXmVUJaqIAiCTYNL4c1SHHznDEpz763t1LZvICKn94FngLvN6kVERGQqScFq+/bt5qoHWZluygVtlYAqpcamy79cOpAhhioXNzke/ksPdB/WnnepiIioyZH0bRocHNyo47Kzs3H79m2EhYVJuTxJcP+yNrYMVoW3SsXXT74VDt/WhruTiYiI7J2FlvWu3/79+/H666/b4tJ0l8LTfhZiLrpdBgBw93VlqCIioibNJsGKbE/vjpUNg5WqXI2Koup5qhiqiIioqWOwaqbu7wq0leKscvG1TzCDFRERNW0MVs2Um53csSrKKhNf+wZ72KweRERE5sBg1UzpdwXabr1AvWDFrkAiImriGKyaKb2FmG15x+o2uwKJiMhxMFg1U/byVGCx7o6VDPAJYlcgERE1bQxWzZQ9DF4XBEGcasErwB3OrnKb1IOIiMhcGKyaKXuYbqGyRAVVeRUAwIcD14mIyAHYJFh5enqiVatWtrg03eXsKofcpfrjt1WwqjnVAgeuExGRI7BJsHrmmWfw1Vdf2eLSVIPurpWyzDZPBeq6AQHAlwPXiYjIAZi0QFx8fHyjLiKTyTB58uRGHUuWo/ByQXmB0mZ3rPSDFbsCiYio6TMpWG3atKnWNplMJr4WBKHWdkEQGKzslMKz+o6VRqVFlUpj9cHjerOusyuQiIgcgEnBKi4urta2bdu24ezZsxgxYgT69esHf39/5Ofn45dffsGhQ4cwaNAgPPvss2arMJmPwqvGlAtlaqsHK93koDK5DN4t3a16bSIiIkswKViFhYXpvd+3bx+Sk5OxYcMGdO7cWW/fqFGjMH78eMTGxmLo0KG1jiXbu//JQM8Wbla7tqAVxGDl08oDTnI+oEpERE2fpG+z//3vfxg+fHitUKUTEhKC4cOHc6C6nbLllAvlBZXQqLQAONUCERE5DknB6ubNm/Dx8am3jI+PD27duiXlMmQhtlyIuYhTLRARkQOSFKz8/Pxw+vRpvUHrNWm1Wpw+fRq+vr5SLkMWohu8Dlh/IWZOtUBERI5IUrB69NFH8dtvv2HhwoVIS0vT23ft2jUsXLgQ6enpeOyxxyRVkizDll2BuvFVAO9YERGR4zBp8Pr9XnrpJVy9ehWnTp3C6dOn4ebmBj8/PxQWFqKyshKCIGDAgAGYMmWKmapL5nT/U4HWxDmsiIjIEUkKVgqFAqtWrcLBgwdx8OBBXL9+HdnZ2fDy8kKPHj0wcuRIjBo1Sm+uK7If+l2B1g1Wujms5K5O8LDi04hERESWJClYAdUTgY4ePRqjR482R33IimzVFajVaFF8pzpY+QZ7QubE4E1ERI6Bkwc1Y3rByopdgSU5FRA01Q88cKoFIiJyJJLvWAFAVVUVbty4gdLSUmg0GoNlOEGo/XFWyOEkl0GrEaz6VGAxnwgkIiIHJSlYCYKAjRs34ptvvkF5eXm9ZRMSEqRciixAJpNB4eWCiiKVVe9YcQ4rIiJyVJKC1ebNm/H555/Dy8sLI0eORMuWLSGXW3e9OZJGDFZWHGNVc6oFH96xIiIiByIpWO3fvx9BQUHYsGEDJwFtohSergDKoK7UQFOlhdzZ8sPu9KZaaM0xVkRE5DgkfYvm5+cjIiKCoaoJs8UAdt1UC64eznDzdm2gNBERUdMhKVgFBwejrKys4YJkt6w95UKVSoPSvAoAd6da4BxnRETkQCQFqyeffBInT55EQUGBuepDVqYXrEos/2RgcXY5cHdpSR8OXCciIgcjaYzV0KFDceHCBcTGxmLy5Mno1q0bPD0Nf1kGBQVJuRRZiLW7AouzOL6KiIgcl6Rg9eyzz0Imk0EQBLz99tt1lpPJZDh69KiUS5GFWHtZmyLOYUVERA5MUrAaOXIkx8g0cXoLMVsjWNWcw4rBioiIHIykYLV48WJz1YNsxJZdgVzOhoiIHA3XCmzm3GzUFeju6wpXD5cGShMRETUtDFbNnDWnW1CVq1FRVP3kIZeyISIiRyR58LoxZDIZtm3bJuVSZCH6XYGWnW6huMb4Ki5lQ0REjkjyIsyGlJWVobS0FAAQEBAAZ2fTL6NSqbBx40Z8//33KCkpQUhICKZNm4ZBgwY1eOyRI0ewdetWZGZmwt3dHeHh4ZgxYwb8/Pz0yuXn52PdunU4efIkysvL0bFjR0yaNAkxMTGNPmdT4+LuDJmTDIJWsPgdq5prBPpyfBURETkgScHqq6++qnPf7du38cknn6CgoAAffPCByedeuXIlEhISMGHCBLRr1w4HDhzA/PnzERcXh379+tV53K5du/DBBx9gwIABmDVrFnJycrBjxw6kpqZi7dq1UCgUAKrD36xZs1BQUIDx48fD398fR48exdKlS1FVVYXHHnvM5HM2RTKZDApPZ1SWqK0brNgVSEREDshiY6xat26NZcuWoaSkBBs2bDDp2JSUFBw5cgTTp09HbGwsxo0bh48++gjBwcFYs2ZNncep1WqsX78eDzzwAD744AM89dRTmD59Ot5880389ttv2Ldvn1h2z549uHnzJt566y1MmzYNf/7znxEXF4cePXrg008/hVqtNvmcTZVuygVLPxVYdLvGVAsMVkRE5IAsOnjd2dkZAwcONHly0GPHjkEul2PcuHHiNoVCgccffxy//vorsrOzDR53/fp1lJaWYtiwYXrzaw0ZMgTu7u44cuSIuO2XX36Bn58fBgwYIG5zcnJCTEwM8vPzkZycbPI5myrdOCtVeRW0Gq3FrlOsmxxUBni3YlcgERE5HkldgcZQKpUoLi426Zhr166hXbt2tZbH6dmzJwAgLS3N4BI5urtMhrrmFAoFrl27Bq1WCycnJ6jVaoPl3NzcAACpqakYNGiQSec0JDc3F3l5eeL7zMxMg+Vs6f65rNx9zN+1KQiC2BXoFeAOZ1e52a9BRERkaxYNVr/88guOHDmCDh06mHRcXl4eAgICam3XbcvNzTV4XLt27SCTyXDx4kWMGTNG3P7777+jsLAQAFBSUgJfX1906NAB586dQ1ZWFoKDg8WyFy5c0LuGKec0ZM+ePYiPj6+1PT09HRqNpo4/AeuqrLrXRZfyyxW4B5hnfqnS0lKkpKQAANRlGqjKqwAAcm9B3O4oara1OWhO7WVbHVdzai/bah69evVqsIykYDVnzhyD2zUaDXJzc5GVlQUAmDx5sknnVSqVcHGp/eXu6uoq7jfEz88PMTExOHjwIDp27IjIyEjk5OQgLi4Ozs7OqKqqEo8dO3Ysdu/ejaVLl+K1114TB68fP35c7xqmnNOQcePGITw8XHyfmZmJFStWoHPnzujevbtJfy6WUnQ2BTkXq+8mtQvqgKBuLcxy3pSUFPGHMCu1AMAfAIA2oa2M+uFsSmq2tTloTu1lWx1Xc2ov22o9koKVbhzS/WQyGby9vTFo0CA888wzRk2RUJNCoRC74GpSqVTi/rrMmzcPSqUSq1evxurVqwEAI0aMQJs2bZCYmAh3d3cAQEhICJYsWYJVq1Zh1qxZAAB/f3/Mnj0bq1atEsuZck5DAgMDERgYaFL7rc0ay9oUZ3HxZSIicnySgtWxY8fMVQ89AQEByMnJqbVdN1apvqDi5eWFlStXIjs7G7dv30ZwcDCCg4Mxc+ZM+Pn5wdvbWywbHR2N8PBwpKWlQavVolu3bjh//jwAoH379o06Z1Ok8LT8Qsy6pWwAzmFFRESOy+KD1xsjNDQU58+fR1lZmd4Adl2faWhoaIPnCAoKEge4l5SU4OrVq4iKiqpVzsXFRRwUDwDnzp0DAAwcOLDR52xqrLGsTc05rHw41QIRETkos023UFVVhfT0dFy6dAnp6emoqqpq9Lmio6Oh0WiwZ88ecZtKpcL+/fvRq1cvMdxkZ2cb9ZTd+vXrodFoMGHChHrL3bhxA7t378aQIUP07lhJOWdTYJ2uwOoB8jK5DN4t6+46JSIiasok37EqLi7G2rVrcfjwYXEMFFA9DurRRx/F9OnT63xiri69evVCTEwM1q9fj8LCQrRt2xYHDx5EVlYWFixYIJZ76623kJycjMTERHHbF198gfT0dPTq1QtyuRzHjx/HmTNnMG3aNL07UwDwwgsvICYmBq1atcLt27exe/du+Pj4YO7cuXrlTDlnU6TwtOwdK0F7b6oFn1YecJJz7W8iInJMkoJVcXExZsyYgZs3b8LHxwf9+vVDQEAA8vPzceXKFezbtw/JyclYs2YNfHx8TDr34sWLERQUhO+++w6lpaXo0qUL3nnnHYSFhdV7XEhICI4fP44TJ05Aq9UiJCQEy5YtM7j+X2hoKPbv34+CggL4+voiJiYGU6dORYsWLRp9zqZIvyvQ/AsxlxVUQqOqnnjUh+OriIjIgUkKVps3b8bNmzcxceJETJkyRe/puMrKSmzevBlbt27Fli1b8Nprr5l0boVCgdjYWMTGxtZZ5uOPP661bfDgwRg8eLBR11i6dKlR5Uw5Z1Nk6a5AXTcgwKVsiIjIsUnqk0lKSkJYWBhmzpxZa8oBNzc3vPrqqwgLCxPnhiL75OrhAtxdrccSXYH6TwQyWBERkeOSFKzy8vLQp0+fesv06dNHb0kXsj9OTjIoPKrvWlk8WPGOFREROTBJwcrT01OcXb0uWVlZtdb8I/uj6w60SLDK4hxWRETUPEgKVmFhYUhISMDZs2cN7j937hwSEhIaHHBOticGq3I1tFrBrOfWjbGSuzrBo4WbWc9NRERkTyQNXp8yZQpOnjyJefPm4ZFHHsEDDzwAf39/5OfnIzk5GadPn4ZCocCUKVPMVF2yFHEAuwCoytVw83Kt/wAjaTVaFN+pDla+wZ6QOcnMcl4iIiJ7JClYde7cGe+//z5WrlyJkydP4uTJk5DJZBCE6jsebdq0weLFi9G5c2ezVJYs5/65rMwVrEpyKiBoqn8eOHCdiIgcneQJQvv164etW7fi4sWLuHbtmrgMTdeuXdG3b1/IZLxD0RQovCyzXmBxjYHrnMOKiIgcnaRg9fbbb6NLly545pln0K9fP/Tr189c9SIrs9RcVkWcw4qIiJoRSYPXDx8+jIKCAnPVhWzIUsva6D0RyGBFREQOTlKwatOmDeeochD6y9qYMVixK5CIiJoRScFqzJgxOHnyJHJycsxVH7IR/a5A860XqJtqwdXDGW7e5hkQT0REZK8kjbGKiorC+fPnERsbi+eeew49evSAv7+/wQHrQUFBUi5FFmaJrkCNWovSvAoA1d2AfJCBiIgcnaRgNXHiRHF6BUMLIuvIZDIcPXpUyqXIwizRFVhZUAXcnWvUh1MtEBFRMyApWI0cOZJ3IRyEJZ4KrMyvEl/7tub4KiIicnySgtXixYvNVQ+yMUt0BVbk3zsPJwclIqLmQNLgdXIcTnInuHpU52yzdQXmMVgREVHzwmBFIt1dK2WpeZ4KrNkVyKkWiIioOZDUFfjss882WMbJyQkeHh7o0KEDIiIiMGzYMCmXJAtSeLmgJKcCylI1BK0gecFkXVegu68rXD1cGihNRETU9EkKVoIgQKPRIDc3FwAgl8vh6+uLoqIiaDQaAEBgYCAKCgqQlpaGo0ePYt++fXjnnXfg4sIvWnujG8AuCIC6skpSGFKVq6Eu0wLgjOtERNR8SApWGzduxNy5c9GhQwdMmzYNvXr1EqdfSElJwcaNG1FaWor4+HgUFRXhk08+walTp7B9+3ZMmjTJXG0gM1F46i/ELCVYFddYI5BTLRARUXMhaYzV2rVroVKpsGrVKvTu3VucekEmk6F379547733oFKpsG7dOrRr1w7Lli1DUFAQjhw5YpbKk3mZcy4rvTUCOb6KiIiaCUnB6sSJE3jkkUfg5GT4NHK5HI888giSkpIAAAqFAg8++CBu3rwp5bJkITWDVaXEuaxqrhHIrkAiImouJAWrsrIylJeXN1imrKzGl6yvr5RLkgWZcy6rohpdgQxWRETUXEgKVp06dcLhw4dx69Ytg/tv3bqFI0eOoFOnTuK2O3fuwM/PT8plyUL0uwKlTblQrLtjJQO8W7ErkIiImgdJg9cnTZqEJUuWYOrUqRg7diz69OmDFi1aoKCgAJcuXcK3336LiooKcaC6Wq3GmTNnMGjQILNUnszLXMvaCIIgjrHyCnCHs6tcct2IiIiaAknBKioqCvPnz8e///1v/O9//8OOHTvEfYIgwN3dHfPmzUNUVBQAoLKyEvPnz0fnzp2l1ZoswlxdgZUlKqjKqycH5RqBRETUnEgKVgDw+OOPIyoqCklJSUhLS0N5eTk8PDwQGhqKoUOHwsvLSyzr7e2NiIgIqZckCzHXU4FFtznVAhERNU+SgxUAeHl5YdSoUXXu12g0kMvZHWTvFN7681g1VnHNJwIZrIiIqBmRNHj9m2++abCMRqPBsmXLpFyGrMRcXYF6c1jxiUAiImpGJAWrjz/+GAkJCXXu12q1WLZsGRITE6VchqxE7uwEF7fqO4vKssY/FVgzWHHxZSIiak4kBau+fftixYoV+Pnnn2vt04WqY8eO4amnnpJyGbIi3TgrSV2Bd+ewkjkB3i3dzVIvIiKipkBSsHr77bfRvn17vPHGG7h27Zq4XavV4p///CcSEhLw5JNPYs6cOZIrStah6w5UlqohCILJxwvae1MtuLVwhpNc0o8YERFRkyLpW8/T0xPvv/8+vLy88Pe//x23bt2CIAhYvnw5fvjhB/zpT3/C//t//89cdSUrUHhVD2DXagRUKTUmH19WUAmNSgsAcPNv/CLORERETZHk2wkBAQFYtWoVtFot5s6di6VLl+Lo0aMYO3Ys/va3v5mjjmRFUgewF9dYysbN3ywPnRIRETUZZumnad++Pd59910UFBQgMTERY8eOxd///ndznJqsTOpcVjUXX3bnHSsiImpmTLqlEB8fX+/+nj17Ii0tDQEBAXplZTIZJk+e3Jj6kZVJXdZGP1jxjhURETUvJn3zbdq0yahymzdv1nvPYNV06HcFmj7lQs2pFtwCeMeKiIiaF5OCVVxcnKXqQXZCalegboyVs0IOV2/Otk9ERM2LScEqLCzMQtUgeyGlK1Cr0aL4TnWw8gnygEwmM2vdiIiI7B0nGSI9uukWAKCyxLRgVZJTAUFTPfcV1wgkIqLmSFKwOnDgAKZNm4bc3FyD+3NzczFt2jQcOnRIymXIiqTcsaq5+DKXsiEiouZIUrA6ePAgXFxcEBgYaHB/YGAgFAoFvv32WymXISuSMsaKiy8TEVFzJylYZWRkoGvXrvWWCQ0NRUZGhpTLkBVJeSqwqMbkoAxWRETUHEkKVmVlZfD29q63jKenJ0pLS6VchqzI2VUOuWv1j4WpXYFF7AokIqJmTlKwCggI0Ft82ZC0tDS0aNFCymXIynTdgaZ2BRbf7Qp09XCGm7drA6WJiIgcj6RgNXDgQJw5cwZnzpwxuP+nn37CTz/9hIceekjKZcjKFJ7VociUYFWl0qA0rxJAdTcgp1ogIqLmSNKaI3/5y1/www8/YP78+Rg5ciQGDhyIwMBA5Obm4syZM/j+++/h4eGBv/zlL+aqL1mB7o6VRq1FlUoDZ9eGJ/oszi4HqmdagA+nWiAiomZKUrBq06YN3nnnHSxbtgwHDhzAwYMHxX2CIKBly5ZYtmwZ2rRpI7miZD33Pxno7N9wsKo5vsq3NcdXERFR8yR5ldx+/fph27ZtSEpKwuXLl1FWVgYvLy/07NkT4eHhcHHhenFNjf6TgWp4+rs1eExxzakWeMeKiIiaKcnBCgBcXFwQExODmJgYc5yObEx/klDjplzQm2qBwYqIiJopswQrS1CpVNi4cSO+//57lJSUICQkBNOmTcOgQYMaPPbIkSPYunUrMjMz4e7ujvDwcMyYMQN+fn565fLz87Fu3TqcPHkS5eXl6NixIyZNmmQwIJ49exaff/45rl+/Do1Gg3bt2uHpp5/GyJEjzdVku+HWiElCOdUCERGRmYLVnTt3cP78eeTm5kKtrv1FLJPJMHnyZJPOuXLlSiQkJGDChAlo164dDhw4gPnz5yMuLg79+vWr87hdu3bhgw8+wIABAzBr1izk5ORgx44dSE1Nxdq1a6FQKABUz8E1a9YsFBQUYPz48fD398fRo0exdOlSVFVV4bHHHhPPmZSUhH/84x/o3bs3pkyZAplMhqNHj+Ktt95CUVERnnnmGZPaZu/u7wo0hq4r0N1PAVcPdv8SEVHzJDlYrV69Gjt27IBWqxW3CYIgPm6ve21KsEpJScGRI0cwc+ZMPPfccwCAkSNHYsqUKVizZg3WrFlj8Di1Wo3169fjgQcewAcffCDWoU+fPli4cCH27duHp59+GgCwZ88e3Lx5Ex9++CEGDBgAAHjyyScxY8YMfPrpp4iOjhbHh33zzTcICAjARx99BFfX6qkIxo0bhxdeeAEHDhxwvGBVYw6qSiOClapcjYqi6i5DX96tIiKiZkzSPFZ79+7F9u3b0b9/fyxfvhyCIGDUqFFYsmQJxo0bB7lcjujoaHz00UcmnffYsWOQy+UYN26cuE2hUODxxx/Hr7/+iuzsbIPHXb9+HaWlpRg2bJjePEpDhgyBu7s7jhw5Im775Zdf4OfnJ4YqAHByckJMTAzy8/ORnJwsbi8vL4e3t7cYqgDA2dkZvr6+4h0wR2LqHaviGuOrONUCERE1Z5KDVXBwMN577z1ERkYCAIKDgzF8+HD87W9/w6pVq3D8+HEUFhaadN5r166hXbt28PTU/5Lu2bMngOrZ3A3RdUMaCjsKhQLXrl0T76yp1WqD5dzcqp+AS01NFbeFhYUhPT0dn332Gf744w/cvHkTmzdvRmpqqnhHrS65ublITU0V/8vMzKy3vD0wdSFmLr5MRERUTVJXYGZmJkaOHAknp3v5TKPRiK/DwsIwePBgbNu2DdHR0UafNy8vDwEBAbW267bl5uYaPK5du3aQyWS4ePEixowZI27//fffxXBXUlICX19fdOjQAefOnUNWVhaCg4PFshcuXKh1jcmTJ+P27dv4/PPPsWXLFgDVAWz58uWIiIioty179uxBfHx8re3p6el6f1b2RFlUJb7OuZ2HlJSUesvfuFAovi5W5yMlpXoG9tLS0gaPdRTNqa1A82ov2+q4mlN72Vbz6NWrV4NlJI+x8vLyEl+7ubmhqKhIb3/79u1x9uxZk86pVCoNzn+l64pTKpUGj/Pz80NMTAwOHjyIjh07IjIyEjk5OYiLi4OzszOqqqrEY8eOHYvdu3dj6dKleO2118TB68ePH691DRcXF7Rv3x7R0dGIjIyERqPB3r17sWLFCnzwwQfo3bt3nW0ZN24cwsPDxfeZmZlYsWIFOnfujO7du5v052It6soqnMNNAIDCya3BH6Tso78AqP7c+zzUHS3aVS/MnZKSYtQPoSNoTm0Fmld72VbH1Zzay7Zaj6Rg1bJlS+Tk5Ijv27Zti8uXL+uVSU9Ph7u7u0nnVSgUBp8uVKlU4v66zJs3D0qlEqtXr8bq1asBACNGjECbNm2QmJgo1iUkJARLlizBqlWrMGvWLACAv78/Zs+ejVWrVunV+aOPPkJKSgo+++wz8e7csGHD8OKLL+Ljjz/GunXr6qxPYGAgAgMDTWq/rTkr5HBylkFbJUBZZsQYK91UCzLAuxUHrxMRUfMlKVj16dNH7DoDgKFDh2LLli147733MHToUFy4cAGnT59GVFSUSecNCAjQC2w6eXl5AFBvUPHy8sLKlSuRnZ2N27dvIzg4GMHBwZg5cyb8/Pzg7e0tlo2OjkZ4eDjS0tKg1WrRrVs3nD9/HkD1nTageizWt99+i+eff16vy9PZ2RkPP/wwdu7cCbVa7VAzzMtkMii8XFFRqGxwjJUgCOIYK68Ad6PWFSQiInJUkoLVyJEjkZeXJ45TmjhxIn788Ufs27cP3377LQRBEEONKUJDQ3H+/HmUlZXpDWDX9ZmGhoY2eI6goCAEBQUBqB5XdfXqVYMBz8XFRRwUDwDnzp0DAAwcOBAAUFRUBI1GY3A8lEajgVar1ZtqwlEoPF2MClaVJSqoyqvHZHGNQCIiau4kBav+/fujf//+4nsPDw+sXbsWSUlJuHnzJoKDg8WpDkwRHR2Nbdu2Yc+ePeJTdyqVCvv370evXr3EwJSdnY3Kykp07Nix3vOtX78eGo0GEyZMqLfcjRs3sHv3bgwZMkS8Y9WiRQt4eXnh+PHjePnll8U7U+Xl5Thx4gQ6dOjgmFMu3H0ysEqpgUatgdzF8J2ootucaoGIiEjHbEvaFBUVIS0tDWVlZfD29sbYsWPh6+vbqHP16tULMTExWL9+PQoLC9G2bVscPHgQWVlZWLBggVjurbfeQnJyMhITE8VtX3zxBdLT09GrVy/I5XIcP34cZ86cwbRp0/TuTAHACy+8gJiYGLRq1Qq3b9/G7t274ePjg7lz54pl5HI5Jk6ciM8++wwzZszAyJEjodVq8e233yInJwdvvPFGo9po7/TXC6yCh5/hYFV8m4svExER6UgOVrdv38bHH3+MU6dOQRAEcbtMJsPgwYMxe/ZstG7d2uTzLl68GEFBQfjuu+9QWlqKLl264J133kFYWFi9x4WEhOD48eM4ceIEtFotQkJCsGzZMoPr/4WGhmL//v0oKCiAr68vYmJiMHXqVLRo0UKv3IsvvojWrVtjx44diI+Ph1qtRkhICJYvX27SNBJNif4koSp4+Bm+K8c5rIiIiO6RFKxu3rwprrfXrl079O3bFy1atEBBQQEuXbqEEydOICUlBatXr0abNm1MOrdCoUBsbCxiY2PrLPPxxx/X2jZ48GAMHjzYqGssXbrU6Po89thjeusHOjpjJwmtGay4+DIRETV3koLV2rVrUVhYiLlz5+KJJ57QW0ZGEATs2bMHH374IdauXYvly5dLrixZj5vXveV76g1Wd8dYyeQyeLc0bSwdERGRo5EUrM6dO4fw8HC9Nf10ZDIZ/vSnP+HUqVMmTxBKtmfMHStBK6A4u/qOlU8rDzjJJa2QRERE1ORJ+ibUarXo1KlTvWW6dOnikNMROLqawaqyjklCywoqoVFVf7bsBiQiIpIYrLp164aMjIx6y6Snp9vt0i1UN/3B64aDVdFtDlwnIiKqSVKweuWVV3D69Gns27fP4P49e/bgp59+wrRp06RchmxAvytQZbBMcda9OawYrIiIiEwcYxUfH19rW//+/fH+++9j27Zt6Nu3L/z9/ZGfn4+LFy/ijz/+wKBBg/Dzzz+jb9++5qozWYH+PFZG3LHiHFZERESmBatNmzbVue/GjRu4ceNGre0//fQTzpw5g8mTJ5teO7IZo7oCa85hxTFWREREpgWruLg4S9WD7IyLuzNkTjIIWqHOYKXrCnRWyOHRws2a1SMiIrJLJgWrhmY9J8chk8mg8HJBZbHKYFegtkqL4jvVwconyAMyJ1mtMkRERM0NJx6iOum6Aw3dsSrJqYCgqV7CiOOriIiIqjFYUZ10A9jVFVXQVunPRVZccykbPhFIREQEgMGK6qH3ZGC5/l0rDlwnIiKqjcGK6qS3XmDJ/cGKc1gRERHdj8GK6lTfXFacw4qIiKg2BiuqU31zWenGWLl6OEPh7QIiIiJisKJ66C9rcy9YVak0KM2rBFDdDSiTcaoFIiIigMGK6qHfFXhvvcDi7HKgeqYFjq8iIiKqgcGK6lRXV2DN8VU+fCKQiIhIxGBFdaqrK7A4iwPXiYiIDGGwojrV9VSg3lQLDFZEREQiBiuqk8KzxjxW7AokIiJqEIMV1cnVwxm4+8Cfoa5Adz8FXD041QIREZEOgxXVSeYku7cQ892uQFW5GhVF1U8IcikbIiIifQxWVC8xWN29Y1VzfJUPx1cRERHpYbCieukGsCvL1dBqBf0nAjmHFRERkR4GK6qXQrcQswCoytT3rRHIrkAiIqKaGKyoXvfPZaUXrHjHioiISA+DFdXr/rmsinVjrGSAdyvesSIiIqqJwYrqpbesTYkKRXfHWHkFuMPZVW6rahEREdklBiuqV807VoW3y6AqrwIA+Lbm3SoiIqL7MVhRvWoGq5y0IvE1l7IhIiKqjcGK6uVWoyvwTlqh+JpzWBEREdXGYEX1qnnHqjS3QnzNJwKJiIhqY7CieonzWN2HY6yIiIhqY7CietV8KlBHJpfBK9DdBrUhIiKybwxWVC9XT+da23xaecBJzh8dIiKi+/HbkerlJHeCq4d+uOL4KiIiIsMYrKhBNQewA4AP1wgkIiIyiMGKGnT/AHbesSIiIjKMwYoadP8Adk4OSkREZBiDFTXo/q5AX3YFEhERGcRgRQ2qGaycFXJ4tHCzYW2IiIjsF4MVNahmV6BPkAdkTjIb1oaIiMh+MVhRg2reseL4KiIioroxWFGDagYrHz4RSEREVCcGK2pQ657+kMmru/86PtjSxrUhIiKyX7XXKyG6j3dLDzz7URQ0Ki3nsCIiIqoHgxUZxSuAiy4TERE1hF2BRERERGbCYEVERERkJnbbFahSqbBx40Z8//33KCkpQUhICKZNm4ZBgwY1eOyRI0ewdetWZGZmwt3dHeHh4ZgxYwb8/Pz0yuXn52PdunU4efIkysvL0bFjR0yaNAkxMTF65Z555hlkZWUZvFbbtm3x5ZdfNrqdRERE5DjsNlitXLkSCQkJmDBhAtq1a4cDBw5g/vz5iIuLQ79+/eo8bteuXfjggw8wYMAAzJo1Czk5OdixYwdSU1Oxdu1aKBQKAEBZWRlmzZqFgoICjB8/Hv7+/jh69CiWLl2KqqoqPPbYY+I5Z8+ejYqKCr3rZGVl4bPPPjMq6BEREVHzYJfBKiUlBUeOHMHMmTPx3HPPAQBGjhyJKVOmYM2aNVizZo3B49RqNdavX48HHngAH3zwAWSy6ikC+vTpg4ULF2Lfvn14+umnAQB79uzBzZs38eGHH2LAgAEAgCeffBIzZszAp59+iujoaLi4VM/fFBERUetamzdvBgC9AEZERETNm12OsTp27BjkcjnGjRsnblMoFHj88cfx66+/Ijs72+Bx169fR2lpKYYNGyaGKgAYMmQI3N3dceTIEXHbL7/8Aj8/PzFUAYCTkxNiYmKQn5+P5OTkeut4+PBhtG7dGn379m1kK4mIiMjR2GWwunbtGtq1awdPT/05k3r27AkASEtLM3icWq0GALG7ryaFQoFr165Bq9WKZQ2Vc3OrXmA4NTW1zvpdvXoVmZmZePTRRxtsS25uLlJTU8X/MjMzGzyGiIiImia77ArMy8tDQEBAre26bbm5uQaPa9euHWQyGS5evIgxY8aI23///XcUFhYCAEpKSuDr64sOHTrg3LlzyMrKQnBwsFj2woUL9V4DAA4dOgTAuG7APXv2ID4+vtb29PR0aDSaBo9vykpLS5GSkmLralhFc2or0Lzay7Y6rubUXrbVPHr16tVgGbsMVkqlUhzfVJOrq6u43xA/Pz/ExMTg4MGD6NixIyIjI5GTk4O4uDg4OzujqqpKPHbs2LHYvXs3li5ditdee00cvH78+PF6r6HVavHDDz+ga9eu6NSpU4NtGTduHMLDw8X3mZmZWLFiBTp37ozu3bs3eHxTlpKSYtQPoSNoTm0Fmld72VbH1Zzay7Zaj10GK4VCIXbr1aRSqcT9dZk3bx6USiVWr16N1atXAwBGjBiBNm3aIDExEe7u1TOIh4SEYMmSJVi1ahVmzZoFAPD398fs2bOxatUqsdz9kpOTkZOTgwkTJhjVlsDAQAQGBhpVloiIiJo2uwxWAQEByMnJqbU9Ly8PAOoNKl5eXli5ciWys7Nx+/ZtBAcHIzg4GDNnzoSfnx+8vb3FstHR0QgPD0daWhq0Wi26deuG8+fPAwDat29v8PyHDh2Ck5OTUeOriIiIqHmxy2AVGhqK8+fPo6ysTG8Au67PNDQ0tMFzBAUFISgoCED1uKqrV68iKiqqVjkXFxdxUDwAnDt3DgAwcODAWmVVKhWOHTuGsLAw3oUiIiKiWuzyqcDo6GhoNBrs2bNH3KZSqbB//3706tVLDEzZ2dlGPWW3fv16aDSaBrvvbty4gd27d2PIkCEG71idOnUKpaWlnLuKiIiIDLLLO1a9evVCTEwM1q9fj8LCQrRt2xYHDx5EVlYWFixYIJZ76623kJycjMTERHHbF198gfT0dPTq1QtyuRzHjx/HmTNnMG3aNL07UwDwwgsvICYmBq1atcLt27exe/du+Pj4YO7cuQbrdejQIbi6uhq882Us3aD45jDtwu+//w65XG7ralhFc2or0Lzay7Y6rubUXrbVfDp27ChOzWSIXQYrAFi8eDGCgoLw3XffobS0FF26dME777yDsLCweo8LCQnB8ePHceLECWi1WoSEhGDZsmW11v8DqrsU9+/fj4KCAvj6+iImJgZTp05FixYtapUtKyvDyZMn8cgjj8DLy6vR7dKtObhixYpGn4OIiIhsY8OGDfU+1S8TBEGwYn2avcLCQvz0009o3bq1OH2EI9JNK/HGG2+gY8eOtq6ORTWntgLNq71sq+NqTu1lW82ryd6xclR+fn4YMWKErathNR07dnT4+bp0mlNbgebVXrbVcTWn9rKt1mGXg9eJiIiImiIGKyIiIiIzYbAiiwgICMCUKVMMrvnoaJpTW4Hm1V621XE1p/ayrdbFwetEREREZsI7VkRERERmwmBFREREZCYMVkRERERmwmBFREREZCacIJSMdvnyZRw8eBDnz59HVlYWfHx80Lt3b0ybNs3gotU1HThwACtXrjS4b+fOnXb3tMr58+cxZ84cg/vWrFmD3r1713t8Tk4OPvnkE5w5cwZarRb9+/fH7Nmz0aZNG0tUV7J//etfOHjwYJ37v/76a7Rs2dLgvv/85z+Ij4+vtd3V1RWHDx82VxUbpby8HNu2bUNKSgouX76MkpISLFq0CKNHj65VNiMjA5988gkuXrwIZ2dnDB48GK+99hr8/PyMulZSUhI2bdqEzMxM+Pn5YcyYMXjxxRfh7Gy9v2aNaa9Wq8V3332HY8eO4dq1aygpKUHr1q0xbNgwTJw4EQqFosHr/PWvf0VycnKt7Q899BDef/99czapTsZ+tnX9bHfo0AFffPGFUdey9WdrbFsjIyPrPMfAgQPxwQcf1HudZ555Rlx2raZx48Zh3rx5jau8iUz5nrHX31kGKzLa1q1bcfHiRcTExCAkJAR5eXnYuXMnpk2bhjVr1qBLly4NnuPll19G69at9bZJWXvR0p5++ulai3e3bdu23mPKy8sxZ84clJWVYdKkSXB2dsZXX32F2bNn4z//+Q98fX0tWeVGGTduHAYOHKi3TRAErFq1CsHBwXWGqprmzp0Ld3d38b2Tk+1viBcVFSE+Ph5BQUEIDQ3F+fPnDZa7c+cOZs+eDS8vL7zyyiuoqKjAtm3bcP36daxbtw4uLi71XufUqVP4xz/+gbCwMMyZMwfXr1/Hli1bUFBQUOei7pZgTHsrKyuxcuVK9O7dG3/605/QokUL/Prrr9i0aRN+/vlnfPTRR5DJZA1eq2XLlnj11Vf1tlnzH0jGfrZAdcifP3++3jZPT0+jrmMPn62xbX3jjTdqbbty5Qp27NiBQYMGGXWtrl274tlnn9Xb1q5dO9Mr3UjGfs/Y9e+sQGSkCxcuCCqVSm/b77//LgwfPlxYvnx5vcfu379fiIiIEC5fvmzJKprNzz//LERERAhHjx41+dj//ve/QkREhJCSkiJuy8jIEKKjo4V169aZsZaW9csvvwgRERHCli1b6i23ceNGISIiQigoKLBOxUygVCqF3NxcQRAE4fLly0JERISwf//+WuVWrVolPProo0JWVpa47cyZM0JERISwe/fuBq/zwgsvCC+99JKgVqvFbevXrxciIyOFjIwMM7TEOMa0V6VSCRcuXKh17KZNm4SIiAjhzJkzDV5n9uzZwosvvmieSjeSsZ/tW2+9JYwYMaLR17GHz9bYthry9ttvC5GRkUJ2dnaDZSdMmCDMnz9fUl2lMvZ7xp5/Z23/T0pqMvr27VvrXwHt27dHp06dkJmZafR5ysvLodFozF09iykvL0dVVZXR5RMSEtCjRw+9O10dO3bEgw8+iKNHj1qiihZx+PBhyGQyPProo0YfU1ZWBsGOpsZzdXU16i7KsWPHMGTIEAQFBYnbBg4ciPbt2zf4mWVkZCAjIwNPPPGEXhfCU089BUEQkJCQ0Oj6m8qY9rq4uKBv3761tkdERACASb/LVVVVKC8vN62SZmLsZ6uj0WhQVlZm0jXs5bM1ta06KpUKx44dQ1hYGFq1amX0cWq1GhUVFSZfzxyM/Z6x599ZdgWSJIIgoKCgAJ06dTKq/Jw5c1BRUQEXFxcMGjQIs2bNanB8li2tXLkSFRUVkMvl6NevH2bOnIkePXrUWV6r1eL69esYM2ZMrX09e/bEmTNnUF5eDg8PD0tWW7KqqiocPXoUffr0qdV1W5dnn30WFRUVcHd3x9ChQzFr1iz4+/tbuKbS5eTkoKCgwOCCrT179sSpU6fqPf7q1asAUOv4wMBAtGzZEteuXTNfZS0oPz8fAIzuqr5x4wZGjhwJtVoNf39/jB07FlOmTLHqmDJjVVZWYvTo0aisrIS3tzeGDx+OGTNmNPh72NQ/21OnTqG0tBSPPfaY0cf8/PPPGDFiBDQaDYKDgzFhwgRMmDDBgrVs2P3fM/b+O2t/vwHUpBw6dAg5OTmYOnVqveUUCgVGjx6N/v37w9PTE6mpqfjqq68QGxuLzz77TO9fHfbA2dkZUVFReOSRR+Dr64uMjAxs374dr732GlavXo1u3boZPK64uBgqlcrgvy5123Jzc9GhQweL1l+qn376CUVFRUb9hezt7Y0///nP6N27N1xcXHDhwgXs3LkTly9fxoYNG4wey2IreXl5AAyPDwoICBA/U1dX10Ydr9tv77788kt4enri4YcfbrBsmzZt0L9/f3Tp0gWVlZVISEjAli1bcOPGDSxbtswKtTVeQEAAnnvuOXTr1g2CIOD06dPYtWsXfvvtN8TFxdUbBJv6Z3vo0CG4uroiKirKqPJdunRBv3790L59exQXF+PAgQP497//jdzcXMycOdPCta3b/d8z9v47y2BFjZaZmYkPP/wQvXv3xqhRo+otO2zYMAwbNkx8HxERgYceegizZ8/G559/brUnTozVt29fve6SoUOHIjo6Gi+99BLWr19f55NPSqUSAAwOnNT9kuvK2LPDhw/D2dkZMTExDZa9/1+z0dHR6NmzJ/75z39i586dmDRpkqWqaRbGfmZ1/SWtUqn0yt5/vK26ykzx+eef4+zZs/jb3/4Gb2/vBssvXLhQ7/3IkSPx3nvvYe/evXjmmWcafGrWmu4fYD98+HC0b98eGzZswLFjxzB8+PA6j23Kn21ZWRlOnjyJhx9+2KjPFADefvttvfdjxozB3//+d3z11Vd4+umnTepONBdD3zP2/jvLMVbUKHl5eViwYAE8PT3xz3/+E3K53ORz9OvXD7169cK5c+csUEPza9euHYYOHYrz58/XOUZM96i6Wq2utU/3y2zM4+y2VF5ejqSkJDz00EONfoLxscceg7+/f5P4bKV+Zrq/nHVl7z/e3j/vI0eO4LPPPsPjjz+OJ598stHn0T1JdvbsWTPVzHKeeeYZODk5NVjXpvzZHjt2DCqVyqRuwPvJZDI888wz0Gg0BqfXsLS6vmfs/XeWwYpMVlpaivnz56O0tBTvv/8+AgMDG32uVq1aobi42Iy1s6xWrVpBrVajsrLS4H4fHx+4uroavJWs2yblz8sakpKSUFlZKekvZKDpfLa67oC6PjPdZ9rY4+1tjraazpw5g3/9618YPHiw5EfMdXczSkpKzFE1i1IoFPDx8Wnw57Mpf7aHDh2Cl5cXhgwZIuk8us/V2r/L9X3P2PvvLIMVmUSpVGLhwoW4ceMG3n77baMHrdfl1q1bRk/mZg9u3boFV1dXvfmaanJyckKXLl1w5cqVWvtSUlLQpk0bux+4fujQIbi7uyM8PLzR5xAEAVlZWU3is23ZsiX8/PyQmppaa9/ly5cRGhpa7/Fdu3YFgFrH5+bmIicnR9xvb1JSUvDGG2+ge/fuWLZsmeRB57du3QKAJvGZl5eXo6ioqMG6NtXPNjc3F+fPn0dkZGS9AcMYtvhcG/qesfffWQYrMppGo8Gbb76JX3/9FcuWLUOfPn0MlsvNzUVmZqbeFAWFhYW1yp08eRKpqal46KGHLFXlRjNU37S0NJw4cQKDBg0SJ7/Mzs6u9Xh6VFQUrly5oheufv/9d5w/fx7R0dGWrLZkhYWFOHv2LCIjI+Hm5lZrv6H2Gvqz2rVrFwoLC40aCG0PoqKi8OOPPyI7O1vcdu7cOdy4cUNvnFlVVRUyMzORm5srbuvcuTM6dOiAvXv36nUR79q1CzKZzOiBw9aUkZGBBQsWIDg4GO+88069XR+ZmZl6fy5lZWW1ulAEQcCWLVsAwOiJKK1BqVQaHC+zefNmCIKg9/PpKJ8tAPzwww/QarV13nU21Nbi4uJaQxyqqqrw3//+Fy4uLujfv79F66xj7PeMPf/OcvA6Ge3TTz/FiRMnMGTIEJSUlOD777/X2z9ixAgAwPr163Hw4EFs375dfFR/5syZ6NatG7p37w5PT09cvXoV+/fvR6tWrfDCCy9YvS0NWbp0KRQKBfr06YMWLVogIyMDe/fuhZubm95g2LfeegvJyclITEwUtz311FPYt28fFixYgIkTJ0Iul+Orr75CixYtMHHiRFs0x2hHjhyBRqOp8y9kQ+2dMGEChg0bhi5dusDV1RUXL17EkSNH0LVrV4wbN85aVa/T119/jdLSUvG2/4kTJ3Dnzh0A1TPre3l5YdKkSUhISMDrr7+O8ePHo6KiAl9++SW6dOmit2xITk4OXnjhBYwaNQqLFy8Wt8fGxmLRokWYO3cuhg8fjuvXr2Pnzp0YO3as5Lu65m6vk5MT5s2bh5KSEkycOBEnT57UO75NmzZ6X2YvvPACwsLC8PHHHwOoflR92bJlePTRR9G2bVsolUocP34cFy9exBNPPGHwEXhLaaitJSUlePnll/Hoo4+KT+L+9NNPOHXqFB5++GEMHTpUPJe9f7bG/BzrHDp0CIGBgXWGIUNtPXHiBLZs2YKoqCi0bt0aJSUlOHToENLT0zF9+nSrdXsa+z1jz7+zDFZktLS0NADAjz/+iB9//LHWft0PvCHDhg3DqVOncObMGVRWViIgIABPPPEEpkyZYpdzHUVERODQoUP46quvUFZWBj8/P0RGRmLKlCkNLu/g4eGBuLg4fPLJJ9iyZYu4VqApa1jZyuHDh9GiRQsMGDDA6GMee+wxXLp0SRwsGxQUhOeeew4vvviiwbte1rZ9+3a99c8SExPFYDhixAh4eXkhKCgIH3/8MT755BOsW7dOXHds1qxZRnWlDBkyBCtWrEB8fDzi4uLg6+uLSZMmYcqUKZZqVp0aai8A8Qt53bp1tY4fNWpUnXcJACAoKAgPPPAAEhMTkZ+fDycnJ3Ts2BFz5861epA25rMdMmQIzpw5g4MHD0Kr1aJt27aYPn06Jk6caNSyS/by2RrTVqD67nhqaqo4QN9YXbp0QceOHXHo0CEUFhbC2dkZXbt2xbJly4x6OthcjP2eseffWZlgT9MkExERETVhHGNFREREZCYMVkRERERmwmBFREREZCYMVkRERERmwmBFREREZCYMVkRERERmwmBFREREZCYMVkRERERmwmBFREREZCYMVkTUpNy+fRuRkZH417/+ZeuqmMWBAwcQGRmJAwcO2LoqRGQGDFZE1OT99a9/RWRkpK2rYZCjBUEiqh8XYSaiJqVly5b4/PPP4enpaeuqmEVERAR69eqFgIAAW1eFiMyAwYqImhRnZ2d07NjR1tUwGy8vL3h5edm6GkRkJjJBEARbV4KIyFi3b9/Gs88+i1GjRmHx4sV1dgHq9uv89ttv+Pzzz5GcnIzi4mIEBAQgPDwcL730Enx9fQ2e//nnn8eGDRvwyy+/oLi4GNu3b0fr1q2RmJiIo0eP4sqVK8jNzYWzszNCQkIwfvx4REdHi+c6cOAAVq5cabB+cXFx6N+/v1hm0aJFGD16tF6Zixcv4vPPP8evv/4KpVKJ4OBgDBs2DM8//zzc3Nz0ykZGRiIsLAxvvvkm1qxZg1OnTqGiogKhoaF49dVX0b9/f1P/qImoEXjHioiatClTpuDgwYPIysrClClTxO1du3YVXyclJeHNN9+ETCbD0KFD0apVK2RkZOCbb77BTz/9hHXr1sHb21vvvDdv3sTMmTPRpUsXjBo1CsXFxXBxcQEArF+/Hs7Ozujbty8CAgJQWFiIEydOYMmSJZgzZw6efvppAEBoaCjGjx+PHTt2IDQ0FEOHDhXPHxwcXG+7jh49iuXLl8PFxQXDhg2Dn58fzpw5g/j4ePz000+Ii4uDQqHQO6a0tBSzZs2Cl5cXRowYgYKCAhw9ehTz5s3Dhg0b0KVLl0b9GROR8RisiKhJmzp1KpKTk5GVlYWpU6fW2l9UVIS33noLvr6++PTTT/UCzZEjR7Bs2TJs3LgRr7/+ut5xFy9exJQpUwye891330WbNm30tpWXlyM2NhYbN27E448/Djc3N3Tt2hVeXl5isDJ0LkPKysrw3nvvQS6XY82aNQgJCQEATJ8+HcuXL8cPP/yAbdu2YfLkyXrHpaWl4cknn8Trr78OJ6fqZ5MefPBBvPvuu/jmm28wb948o65PRI3HpwKJyKF99913KCsrw/Tp02vdJRo+fDi6deuGI0eO1DrO398fL7zwgsFz3h+qAMDDwwOjR49GaWkprly5IqnOSUlJKC0txZgxY8RQBQBOTk6YOXMm5HK5wekZ3N3dMWPGDDFUAdVdonK5XHKdiMg4vGNFRA7t119/BQCkpKTg5s2btfarVCoUFRWhsLAQfn5+4vbQ0FCx6+9+BQUF+O9//4tTp04hOzsbSqVSb39ubq6kOl+7dg0AEBYWVmtfUFAQ2rRpgxs3bqC8vBweHh7ivnbt2um9B6oH+/v7+6O0tFRSnYjIOAxWROTQSkpKAAA7d+6st1xlZaXe+xYtWhgsV1xcjOnTpyM7Oxt9+/bFwIED4eXlBScnJ6SlpSEpKQlqtVpSncvKygBU3zUzJCAgADdu3EBZWZlekKprCgq5XA6tViupTkRkHAYrInJouuARHx9v0uBtmUxmcPu3336L7OxsvPzyy7XGOH3xxRdISkpqfGXv0gWk/Px8g/t12x1lLi8iR8IxVkTU5OnGFGk0mlr7evXqBeBel6BUuu7Emk/46Vy4cKHOuplyx0j3RGNycnKtfdnZ2bh58ybatGlTq9uPiGyPwYqImjwfHx8AwJ07d2rtGzNmDDw8PLBhwwakp6fX2l9ZWWlS6NINgL948aLe9kOHDuHUqVO1ynt7e0MmkxmsW12GDh0KLy8v7N+/X6/OgiBg3bp10Gg0tea8IiL7wK5AImryHnzwQSQkJOD//u//8PDDD8PV1RWhoaEIDw+Hn58fli5diiVLlmDq1Kl46KGH0KFDB6jVamRlZSE5ORl9+vTB+++/b9S1RowYga1btyIuLg7nz59HUFAQ0tLS8PPPPyMyMhKJiYl65T08PNCjRw/88ssvWLFiBdq1aweZTIaRI0fWOZeVp6cn/v73v2P58uWYMWMGYmJi4Ofnh3PnziE1NRU9e/bExIkTJf+5EZH5MVgRUZM3duxY3L59Gz/88AO2bt0KjUaDUaNGITw8HAAwePBgbNy4EV9++SXOnTuHs2fPws3NDS1btsTo0aMxYsQIo6/VqlUrfPzxx1izZg3Onj0LjUaDbt26YdWqVbhz506tYAUAb7zxBv7973/jxx9/RFlZGQRBQL9+/eqdJDQmJgb+/v744osvkJiYKM68PnnyZDz//PO1JgclIvvAJW2IiIiIzIRjrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEz+Pz696Wyz7YRHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "0f6be4ef", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "6a3118de", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "b8fa452b", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "e35ad147", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADdd0lEQVR4nOydd5gURfrHv909M5sTOWcBBU5RUFAUDJgDngEVBczhZ856Zk/PU88zHIbzUEQ9QeXMIoKKICCYRZCckbSEzbsz012/P3q6t6enurtmdmZndvf9PM8+O1NTXf12T093fet96y2JMcZAEARBEARBEARBNDpyug0gCIIgCIIgCIJoqZAgIwiCIAiCIAiCSBMkyAiCIAiCIAiCINIECTKCIAiCIAiCIIg0QYKMIAiCIAiCIAgiTZAgIwiCIAiCIAiCSBMkyAiCIAiCIAiCINIECTKCIAiCIAiCIIg0QYKMIAiCIAiCIAgiTZAgIwiCIAiCIAiCSBMkyAiCIAiCIAiCINIECTKCIAiCIAiCIIg0QYKMIAiCIAiCIAgiTZAgIwiCIAiCIAiCSBNJEWQbNmyAJEmQJAkTJ05MRpMtklGjRpnnkSAIwomJEyea94oNGzak2xyTKVOmmHZNmTIl3eYQSUbTNBxyyCGQJAnXXXddus0hbNDvj0gnc+fONa+/Bx54IN3mJJXy8nK0atUKkiThpZdeSsk+Gs1DNmXKFDzwwAPN7kty4/333zePed++fek2h4gQDocxZ84c3HnnnTjmmGPQsWNHZGVlIT8/H71798Z5552H999/H6qqxtXub7/9huuuuw79+/dHfn4+ioqKMGjQINx5553YuHFjio6GIIiWSCgUwssvv4xjjz3WvId16dIFp512GqZPnw7GWNL3+e9//xs//vgjsrOzcdddd3HrPPDAA2anTORPdEAhWffX2tpavPDCCzjxxBPRoUMHZGVloW3btjjssMPw6KOPYvfu3cJtxcOiRYtwySWXoHfv3sjNzUWrVq1wyCGH4K9//StKS0tTss90MGjQIPO7/eKLL+Le/ptvvjG3P+CAA+Le3ipKRf7mzp3r2t7u3bvx+eef49FHH8VZZ52F7t27R20vyt69e/HBBx/gnnvuwYknnogDDjgA7dq1g9/vR1FREQYMGICJEyfis88+i/uYRWgp/ZPTTjvN/G4mT54c9/abNm2CoiiQJAmtWrVCbW0tAKCwsBA33XQTAOAvf/kL9u7dm1S7AQAsCaxfv54BYADYhAkTuHVGjhxp1mkpTJgwwTzm9evXe9Zvieeosfnyyy9Zq1atzPPs9jd06FC2Zs0aoXafeOIJ5vf7HdsqKChgb731VoqPjmgpxHtvaSxeffVV065XX3013eY0W9avX88GDx7sev867rjj2N69e5O2z6qqKtahQwcGgF1//fWO9e6//36h+2s812+y7q/ff/8969Gjh6s97dq1Y5999lk8p8YVTdPYTTfdxCRJctxn+/bt2RdffNHgfWXC7+8f//iHacOFF14Y9/aXXHKJuf3jjz8e9/bWcyDy99VXXzm29euvv3puL8oLL7wgbNNRRx3Ftm3bFvexO9FY/ZOvvvrKbPP+++9vuOEJMGPGDNOGESNGxL39Qw89ZG5/zTXXRH1WVlbGSkpKGAB25513JstkE1+MQkuAHj16pGQ0rqXhNVJDNJytW7diz549AIBWrVrhuOOOw7Bhw9CxY0eEQiEsWbIEU6dORXl5Ob777jscffTRWLJkCTp06ODY5osvvojbbrsNAOD3+3HRRRdh5MiRCIVCmDVrFt59911UVFTgoosuQnFxMU488cRGOVai+TJlyhQKSWqh7Nu3DyeddBJWrFgBANh///1xySWXoEuXLlizZg3+/e9/Y/PmzZgzZw7+/Oc/4/PPP4fP1/BH/fPPP4/t27dDURTcfvvtQts8/PDDGDhwoGuddu3auX6erPvrsmXLcMwxx6C8vBwAMGDAAFx00UXo2bMn9u3bh5kzZ+KDDz7Azp07ceaZZ2LOnDk4/PDDhY7Tjbvuugv//Oc/AQB5eXm49NJLceihh6KyshIzZszA7NmzsWPHDpxxxhmYP38+DjrooAbvM51ceOGFuOOOOxAOh/G///0Pzz//PAoKCoS2ra6uxjvvvAMAUBQFF110UYNsue6663DMMce41nG7Pu1RMoqioH///li3bh1qamritkeWZRx44IEYOnQo+vXrhw4dOiAQCKC0tBRLlizB9OnTUV1djXnz5uHoo4/GDz/8gNzc3Lj3Y6Wl9U9OO+00tGnTBqWlpfjmm2+wdu1a9O7dW3j71157zXx98cUXR31WWFiI//u//8Nf//pXPPfcc7j11lvRunXrpNneaK6Yluj9ydRR7JbM66+/zgYNGsT++9//straWm6dLVu2sAEDBpjf3fjx4x3b++OPP1hubi4DwHw+H5s9e3ZMHeuIXdeuXVlNTU3SjocgMolMGKFv7tx4443mOT7xxBNj7ie7d++O8p7961//avA+Q6EQ69q1KwPAjj/+eNe6Vg+Zm/dBhGTeXw877LAoz00oFIqp8+677zJZlhkA1q9fP26dePjxxx9Nz1hRURH75ZdfYupYz9fQoUOZpmkJ7y9Tfn9nnHGGacfkyZOFt5s6daq53amnnprQvpN5DtasWcPGjx/PnnnmGbZgwQJWVVXFGGOse/fucfdnt27dynbv3u1aZ+PGjaxPnz5m24899liD7G/s/kkmeMgYY+yGG24w7bj33nuFt5s3b5653cCBA7l1Vq1aZdZ55JFHkmUyY4wxEmQphARZ5rF3716hB97SpUvN7y4nJ8e8Eduxdo5uu+02x/bOOeecpHaQCCITyZQOYXNlx44dLBAIMAAsLy+P7dixg1tv6dKlphDo0KEDC4fDDdrve++9Z36vU6dOda2bTEGWrPvrt99+a37euXNn107nNddcY9b9z3/+0yD7x4wZY7Y1adIkbh1N09ihhx5q1vv4448T3l+m/P7ef/99044jjzxSeLtjjjnG3G7GjBkJ7bsxzkEigkyU//3vfwmdOx6N3T/JFEH2888/m3Z0795deJDDGi77j3/8w7He0KFDTQHbkAEUOynPsmhkDvz666/NMt7ESqdkH5qm4e2338bYsWPRs2dP5ObmoqCgAP3798fVV1+NpUuXutpmnWBshAR+8cUXOP/889GzZ09kZ2fHTCwOh8OYNWsWbrnlFowYMQLt2rVDIBBAQUEB+vbti4kTJ2LevHmO+zQyoFldnz179ow5ZqdzJTJRdPHixbjiiivQr18/FBQUIC8vD71798aECRPw5Zdfem5v7GfUqFEAgKqqKjz55JMYMmQISkpKkJeXhwEDBuCuu+5KzeTFNFFcXCx0fgcOHIj+/fsDAGpqarBmzZqYOowxM7zCK+vY9ddfb76ePn16vGY3iEWLFuHqq6/GAQccgOLiYmRnZ6Nbt24YO3YsPvnkE9dteVmTNm3ahFtuuQX9+/dHXl4eiouLcfjhh+P5559HOBwWsqmyshJPP/00Ro8ejU6dOiErKwutWrXC0KFDcd9992HXrl2u29t/K6qqYsqUKRg9ejQ6d+4Mn8+HHj16xGy3Y8cO3H777TjggAOQl5eHVq1a4dBDD8U//vEPVFdXA9BDsCVJitn+s88+M/dp/T7duP76681tZs6cKbSNCF5ZFlP1vX388cc47bTT0KFDB2RnZ6NHjx4YN24cFi1aFPcxBINBTJ48Gaeffjq6du2K7OxsFBcX409/+hNuueUWx2QPK1euRF5eHiRJQlFREdavX++4j71796Jbt26QJAmKorjet5sC77//PoLBIADg/PPPdwz3GzhwoBmqtX379qjnbyK8/vrrAICcnByceeaZDWpLlGTeX63PxHPOOQfZ2dmObY0fP958/d///jcum61UVFSYv/nCwkLHDNT2Y2uM58N3332Htm3bQpIkZGVl4e23346p05C+1ymnnGJem9988w3WrVvnadOmTZvw1VdfAQDatGmD0047LcGja9pYE5ls37494XYyuX9ihBFKkgRZls2QXjufffYZJk6ciP322w8FBQXIzc1F7969MXHiRHzzzTeO7R944IEYPHgwAGDjxo3mdeWGNVzW5/PhwgsvdKw7btw4AMDmzZuTO9UoGarOLamH1TPm9sdT02vWrGEHHXSQ63ayLLu6JK2jdV9++SX7v//7P247Vg/WqFGjhGyeMGECq6uri9mn1TPmtb3TuXIiFAqxyy+/3LPtc889l1VXVzu2Y9QbOXIkW7t2LTvggAMc2+revXuL9PAZoyAA2LfffhvzudWL5uTeNlBVlRUWFprXbHl5earMNqmsrGRjx471vFZOOeUUR3vsI14zZ85kxcXFjm2NHj3aMRTU4NNPP2Xt2rVztamgoIB98MEHjm1Yfyu7d+9mI0aM4F63Vr788ktzQi7vb9CgQWzTpk3m6Kd9e1VVWc+ePRkAVlJS4hnaUVNTY+6vW7duTFVV1/rx4OV9T/b3Fg6HXe9rsiyzv//978Kj09999515Lp3+AoEAe/HFF7nb//vf/zbrDR8+3NEDdPbZZ5v1/vKXv7ie06bAWWedZR7Pu+++61r3iSeeMOu6jY57UVtba4Y9HXXUUZ71k+UhS+b91er1euGFF1zb2rNnj1lXURTH6AgvPvroI7Mdr/C7nTt3mnXbtm2b0P4YE/MOzZo1i+Xn5zMALD8/nxvGloy+180332zWve+++zxttyZTuOGGG0QPOYam7iH75JNPzLYb4iFLR/9ExEP2448/svbt2zNAD6N8/fXXY+rs3Lkzylvq9HfppZeyYDDI3c+zzz5r1nObdmJgDZc944wzXOv+8ssvSblW7SQlqYcbRkrXe+65B8uWLQMAvPfeezH1DG+Ewdq1azFs2DAzHeyIESNw6qmnonv37lBVFT/88AOmTJmCvXv34uGHH4Ysy54p9Z944gnMnDkTHTp0wMSJEzFw4ECEw2EsWbIEWVlZZr2amhrk5+fj2GOPxSGHHIIePXogOzsb27Ztw7Jly/Dmm2+iqqoKr732GoqLi/H0009H7ef666/HmDFj8Oyzz5rK/KWXXooZzezWrZvQObRy0UUXYdq0aQCA7OxsTJgwAYcffjgURcH333+PyZMno6KiAm+//TbKysowc+ZMV49QeXk5TjnlFKxcuRJnnHEGTjzxRLRq1Qrr1q3DCy+8gE2bNmHjxo0YP358kx9djodgMIjVq1eb77t37x5T57fffjNfH3LIIa7tybKMwYMH4+uvv4amafj9999x6KGHJs9gG3V1dTjuuOPw7bffAgB69+6NsWPHYv/994ff78eaNWswdepUrFq1Cp988gnGjBmD2bNnQ5adneY///wznnjiCTDGcOWVV2L48OHIysrC999/jxdffBFVVVWYPXs2HnnkETz00EPcNmbMmIGxY8dCVVX4/X6cfvrpGDVqFNq3b4/y8nJ89dVXePvtt1FRUYEzzzwTs2fP9pyUfeGFF+Kbb77BgQceiPPPPx89evRAeXk5fv31V7PO8uXLceqpp5pesMGDB+PCCy9Ely5dsGPHDkyfPh0LFizA2LFjHb1Fsizj8ssvx9133429e/dixowZ5kgZj3fffdf0Ll966aWu5zaVJON7u/76602PfyAQwIQJEzBixAjIsowlS5Zg8uTJuOOOOzBmzBhPexYtWoTjjjsO1dXVkCQJJ5xwAo4//nh07twZNTU1WLRoEV5//XVUV1fjqquuQlZWVox34fLLL8esWbMwY8YMLFq0CA8++GCM7ZMnT8a7774LABg2bFizWHIlnnvOkCFDuNvFy4IFC8zfTbz3rPvuuw9bt27F1q1bEQgE0L59ewwbNgznnnsuTj31VNdnUzLvryzBpGOqqmL58uVR51KUeOxv27Ytunfvjo0bN2LXrl3YuXOnZ7KTRHjrrbcwYcIEhEIhtG3bFp9++mnMsSWr73XxxRfjqaeeAgBMnTrVjFZywi2ZQqI8//zzeOyxx7B582YA+nkeOnQoxowZg7FjxyYl2U0y2bVrF+68807z/Z///OeE28rE/slXX32FMWPGoLy8HLm5uXj33Xdx0kknRdXZs2cPhg8fjrVr1wLQvV1//vOf0adPH8iyjN9++w1TpkzB1q1bMXnyZITDYW6CqwsuuAC33norgsEgZsyYgUmTJiE/P9/RNmsbXtffwIEDkZ+fj8rKSsyaNUv8BHiRDFWX7LT3qqqygw8+mAFgWVlZ7O233+bW2759uzmKI8sy++2332Lq2FPwjhgxgpWVlbnuf86cOa7epdLSUnNEXpZltm7dOm69ZKe9nzZtmvl5+/bt2bJly2LqbNiwIWrk2Ske2HpOAoEA++ijj7jHaW1r8eLFnsfgRFVVFXvvvfeS8vfDDz8kbIcor7/+unncBx98MLfOgw8+6DkaZGX8+PFmfd6oUDKxx47zJqcHg8Eom3gjx9YRL0Q8PatWrYqpt3jxYubz+Rgi3iOet2XTpk3mKFy3bt3Yr7/+yrV98eLFrKioiAFgXbp04Y6A2T3vN954o6sHyupBu+aaa7h17fcKu4eMMf2eY6QPHjlypOP+GGPsqKOOMkfZN2/e7Fo3XuLxkDX0e7NOdC4uLmbff/99TJ0VK1aYKdGNP97odHl5uZkcori4mM2dO5d7fKtXr2bdunVjgD5XateuXTF19uzZw7p06WKe4/nz55ufrVy5kuXl5TEArLCwkK1du5a7H1F+//33pN2/eMcigqqq5nelKIpnwol169aZ30Xv3r0T2idjjD366KNmO++8845nfdG094cddhjbsGGDYzvJvL9a27rppptc27HONwPA3njjDc9987j44ovj8tQY9wsAUddyPLh5h5599llzXmH37t3ZypUrY7ZPZt+LMcaGDBli2vPll1862v3111+b9QYPHix+wBxE097369ePm2RFhIZ6yHbs2GHeD2bMmMH+85//sKuvvjoqiuH444939P6IkI7+iZuH7N1332VZWVkMAGvVqhVbuHAhtw1j3qUkSezpp5/m1qmoqGDHH3+8ua+ZM2dy61kjJF555RVHuzds2GD+Ntq1ayeUzMeIpJMkie3bt8+zvggZKcis6wg8++yzrnVXrlzJFEVhANjll18e87n14ZCXl8e2bt0qdExerF271mz34Ycf5tZJtiCzZs769NNPHdtZvHhx1I2XF85jvTE99NBDjm29/PLLQvW8sF4jDf1zusaSxZ49e1jHjh09OyE33XSTWee5557zbDfe+onyxx9/mBP///znP7vWDQaDrFevXgwA22+//WI+t3fs582b59jWuHHjXOtdd911Zmfyp59+crVr8uTJZltvvvlmzOfW38ohhxziKsa+++47s+7AgQNdExxY2+UJMsaiJ0DzRA5j+n3JqHPKKae4HmsixCvIGvK9WTOmTZkyxbGdjz/+OGqfvE6odY2iDz/80PUYv/jiC7OuUzaruXPnmlnxunfvzvbu3cuCwSA75JBDGty5sBLv2lpuf4mG8ZWVlZlttG7dOun1nbjgggvMdpwGUazcf//9LDs7m5100knsoYceYq+//jqbPn06e+aZZ9if//xn83kNgHXq1Ilt2bKF204y769z5swxP+vcubNreK59WkOiSQ7OPPNMsw3egGdD6/NwEmR/+ctfzPIBAwY4nvNk9r0YY2zSpElme25hY1bx6rVfL1599VXm8/nYyJEj2b333stee+019s4777Dnn3+eXXjhhSw7O9vcV0FBQUKirKGCbObMmY73h86dO7OHHnqowYl40tE/cRJkL774onmf7ty5M9eZwBhjP/zwg7n9zTff7LqvPXv2mAO3o0eP5taxhn+6hVtbxavXfg2uvvpqc5tEB1DspCeGxgNjAnFhYSEuv/xy17p9+/Y1Xauff/65a92zzjoLnTp1SoqNvXr1MtemWrx4cVLadGPDhg346aefAACDBg2KcfNaOfTQQ80wr40bN+KHH35wrKsoCq699lrHz63hYsuXL4/X7CaHqqo477zzsG3bNgD65OSzzz6bW7eystJ87TZJ3CAnJ8d8XVFR0UBLnXn77bfNif+33nqra12/34+xY8cCAFavXu2YSAHQw/yOPPJIx8/drhXGGN58800AwLHHHuu51o41nMTrd/1///d/ruGAH3zwQVRdRVEc695www2u+wKAq666ynz9n//8h1vHWn7FFVd4tplKGvK91dXVmYkJ2rdv7zrR+ZRTTsH+++/vaotxb+/bt6/npP1jjjnGvF87XQMjR440Q3w2btyIq666Cvfcc495zxs3bpyrzU2JdN1vNm7caL5u1aqVZ/2zzz4bW7duxaeffop7770XF154Ic4991xcf/31mDFjBn755Rf06dMHAPDHH384JrtI5vGOGjXK3OfWrVtx5ZVXxqwxBej3ihdffDGqzFi3LF4y4fmgqiouv/xyPPLIIwCAww8/HPPnz0fnzp259ZPd9zr//PPNY58xY0bUOTGorq42Q4sDgQAuuOACgSNzZsSIEdi4cSPmzp2Lhx56COPHj8fZZ5+Nq6++Gq+//jpWrVqFoUOHAtDPsxFCnwkYidZGjBjh+pwSIROuPwB46KGHcNVVV0HTNPTr1w8LFy6MSlxixbj+JEnCLbfc4tpuSUkJTj75ZADAvHnzUFdXF1PnhBNOMJ8h8+fP5yaAYoxh6tSp5nvRcNmSkhLztfUe2RAyK4A2wvz58wEAHTt2xGeffeZZ37hwN27ciJqamqgLy4pbp8ROeXk53nzzTXz66adYunQpSktLUVVVxa27ZcsW4XYTZcmSJebr448/3rP+8ccfjy+++AKALhid4oH79u0bdWHZsd64G5JtsaksHn7DDTeYD5du3bo1ycV3jd8PoF+b77//vmt96/f6+++/c7MTAvo8HDfcrpVly5aZC3IXFBR42gQA+fn52LdvH37//XfXel6/6++//958ffTRR7vWNbKOunH00Uejb9++WLVqFV577TX89a9/hd/vNz8PhULmfIhOnTrhlFNO8WwzlTTke/vll19McT9y5EjPTsKxxx7r+H2VlZWZ8/rat28vfA0AcL0GHnzwQXzxxRdYvHhxVIawnj174vnnn/fchwgPPPBAs5iDlgjG7xYQE2ReC0EPGDAAn332GQYOHIja2lrMmTMHixcvxmGHHdZgW51QFAUvvPACTjzxRKiqitdeew0//PBD1MLQn332Gd577z0zw6oxOJWuuZ8Npba2Fuecc445Z//kk0/GO++847rQcLL7XiUlJRgzZgymTZuGqqoqvPvuuzEC3FiYGABOP/30Bi+0awhvJ7p27YqZM2di4MCB2L59O1asWIF3333XHJhsDE488USzPxQOh7Fz50588803eOqpp/Dmm2/izTffxLXXXot//vOfGTfPTRRN03Dttddi0qRJAIChQ4fi008/RZs2bRy3Ma6/4uLiqD6vE4YIq6urw7p162IGBBVFwfjx4/HYY4+BMYbXXnst5j4+f/58c77akCFDPO9fBtbrNFmZyDPum66srMTu3bsB6OmN402xu3fvXkdB5jQqZOerr77CBRdcIJxyNNERtHgwPDaALqK8sNaxbmvH7ccBICrZSW1tred+mzJ/+ctfzJtH+/btMXv2bNfzY50gKnJuampqzNcFBQUNsNQdq5fr3HPPjWtbtxtLQ64Vq00zZszAjBkzkmIT4P27/uOPP8zXvXr1cq1bUlKC4uJi7Nu3z7GOJEm44oorcOutt2LHjh346KOPoiZff/jhh9i5cycAfbStoSOdDaUh35v13Hl1dLzqbN68GZqmAdAfgtaBAy/crgGfz4f//ve/OOigg8yOnVFWWFgovI9MJ133G6PToyiK47M1XowlWl566SUAwCeffBIjyJJ9vMcddxymT5+OiRMnorKyEr/99hvuuOOOqDqBQADPPfccPvvsM/Oe5TZg6Ua6nw933nknysrKAOiJj1599VXXzn2q+l4XX3yxmYhsypQpMYLMOuh5ySWXxGzvNnCTm5srNEBtp3Xr1rjhhhtw1113AdCvv8YUZFZ8Ph86deqEc889F2effTYuvvhiTJ06Ff/617+Qk5ODxx9/PKF20339Pfvss+b1d9xxx+G9995zTaoB1PcT9u7dm9D1x2PixIl47LHHAOjJZe6///6o5DJe158T1meL9dw1hIwTZMYXmCjGaC4PkYfJ6tWrccopp5gnuF+/fjjppJOw3377oVWrVlGu3yuuuAK7du1qFHe31YWcl5fnWd964bu5n5vq6F+y+etf/4pHH30UgN6BnTNnjqfwLS4uNl8bGancMB529m2TTUN+Q26/n4ZcK6myCfD+XRuebZ/PF+XJciIvL89VkAH6Tf4vf/kL6urq8PLLL0cJspdffhmALtwuvfRSz/2lmoZ8b9awF7eRdQO3e1NDroFQKOT6eZs2bdCqVSvzXterVy/PzGJNjfz8fPh8PoTDYezbtw/hcNi1g52s+40h2FVVRXV1tdB1IMKoUaNMQbZixYqYz1Nxfz3rrLMwYsQITJo0CTNnzsSaNWtQXV2Njh074thjj8WNN96IQYMGmeHVAMypCfGS7ueDNVtsVVWVZ4RKqvpexx13HLp06YItW7Zg3rx52LBhgxmFYYQWAno0AU9cuXXMu3fv7hpm74Y1GoJ3/aUDWZYxadIkfPDBBygrK8Ozzz6Lu+66K6FBgaZ2/QGp6Sf069cPhx9+OBYuXIj169dj3rx5GDlyJIDocNns7Gycf/75wvuz2pqsgaqME2RWIXHUUUc1eEHLePnb3/5mirG//OUvePjhhx1TtXrFWCcT64iFU+ikFWtHKpXeGFGqq6s95wKJ0q1bNxx88MFJaQsAHn/8cdx7770A9NHQ2bNnC7mtrYJN5KFgjTMW8XImivEbkiQJ4XA4I0S39Xd933334cEHH2y0fRsiIRwOIxQKeYoykd9X69atcfbZZ+PNN9/E559/jk2bNqFbt27YuHEjZs+eDUDviPTs2bPhB5BGrN+bkfrcDbdzZ21r/PjxUWmuG8o111wT9ftatWoV7rnnHvz9739PSvsrVqxIWqdtxIgRnl5LHrIso3fv3li5ciVUVcWWLVscw4uB5N1vrGGKe/bsSZogs4b88AZAUnV/bd++PR566CHHJR6A6LmUxnyjeEn38+Fvf/sbpk2bhoULF+K9997D2LFjMX36dMf7X6r6XrIsY8KECXjkkUfMsLH7778fgJ7q3uiojx8/vlGjCbyuv3SRn5+PESNG4JNPPkFdXR2+/fZb15wBTqT7+rvhhhvw+++/47333sOiRYtwwgknYNasWa79UWOagvEsTRYXX3wxFi5cCED3iBmCzBouO2bMmLiEaLyh3CJknCArKioy8/s3xtwsO3PmzAEAtGvXDg899JCjGKuoqIj6QlJNx44dzdfW9bGcsNZJViKThrBz5864XdBOTJgwIWlzu/75z3+aYStFRUWYNWuWZ8IJA6toc0ucAujx1EZSFlmWPZMfNITOnTvj559/BmMMW7duRdeuXVO2r3hsMmjs33WnTp3MuUvr1q1Dv379HOvu3btX+OF81VVX4c0334SmaXjllVfwwAMP4JVXXjHD8tKdzCMZWO8da9as8azvVidV14Ax5wLQ19spLS3Fxo0b8eSTT+KEE07wXMdOhGnTpiVtEOGrr74SmqvIY+DAgVi5ciUA/Z7jJsiscydF50Xw6NGjBxYsWABA74R06dIl4baseI3Ip+v+unz5ctOj0Lt376hnbzzEY/+uXbvMDmjbtm2TsgZZQUEBPvvsM5x44olCoiyVfa+JEyeaiUWmTp2K++67D0D02mNOyV1SNfe8sSJWEsEqWhIVi+nun/j9fkyfPh3nnXce/ve//wmJss6dO2Pfvn3YuXOn0OCpKOeeey5uuOEG0yP2r3/9C3l5eXj11VfNOvGufWft//PWqU2ERhs6t47Se/3AjjrqKAB650mkE5BMduzYAUCfEO7mWZgzZ47Z8XIinmP2wpqUwxiBd8PqjUrlAsRNmUmTJuHmm28GoN8AZ86cGddo6IABA8zOybJly1wfYgsXLjTnGh5xxBEp9Voaoz+Ad4bCxmLw4MFmzPUXX3zh+dtJJtaFT42F2p0wwmdEGDFiBAYMGAAAeOWVVxAKhfDKK68A0Ad0zjjjjPiNzTAOPPBABAIBAMDXX3/tGZ5tJBLi0aZNGzO71rfffpuUubfr16/HNddcA0D3hL711lt44403oCgKNE3D+PHjozpeTZ0TTjjBfO21IKk1KcOJJ56Y8D6tHTtDDCYDqweGNyKfrvurtZPWkJDjUaNGmeGe8+bNc51nYv0uG/Jd2TFE2RFHHAEAeO+993Duuec6hgCnqu/Vp08fM/nSunXrMH/+fMybNw/r1q0DoGd/dBsoSwVe1186sZ77RLzpQGb0TwxRdtZZZwGAKcqc7v1G36W2thbz5s1Lig2APt/LsKGyshIzZszAhg0bzGugS5cuOO644+Jq00g0JUkSBg0alBQ7G02QWd3hXiFBEyZMMF8bIymNhRGOsW7dOkcRpaqqOd/IjXiO2YsePXqYYXq//PKLqyj7/vvv8eWXXwLQlXsmzKUwsiwm4y8Z3rGXX34Z1113HQC9I/fpp59i+PDhcbUhSRLOOeccALrgfu655xzrPvvss+brVE8ePu+888xO9N///vcGX3vJQFEUjBs3DoAeGuGULj4VWIXRpEmTXEXFM888E1fbV155JQA9YcWNN95oPvQmTJiQtNG9dJKVlWWmFt6xYwf++9//OtadOXOmZ0ZM495eXV1tTrROFFVVMW7cOPPh/uyzz2K//fbDiBEjcPfddwPQU5xfdtllDdoPoGdZTNb9K1HvGKCH1Ri/7bfeestMHmPnt99+M58BHTp0iBqkiRdrso1kLfGydu3aKO+IcY1ZScf9dcWKFeZ+iouLG3Tt5Ofnm8dVXl7u+NxijOFf//qX+T7ZzwdDlI0YMQKAniTDSZSlsu9l9UBMmTIl6nzE651oKHv27Im61/Ouv3Tx448/mh4tv9+fcMhspvRPfD4fpk2bZi4ftGjRIpx44olcUTZ+/Hjz9YMPPpjU/Az2688aLjthwoS4pnaoqmpGIPTv3z95yaOSsZiZyMLQ119/vVnn66+/dm1PVVU2dOhQs/4NN9zA6urqHOtXV1ezV199lb311lsxn1kX9BRZkHP06NFm/aeeeirm82AwGLWIIVwWkH3qqafMOq+99prnvr0Whp4+fbr5eceOHdnvv/8eU2fjxo2sd+/enotaGp+PHDnS06546jYFXnvtNXPh7Nzc3IQXamWMsa1bt7Lc3FwGgPl8PjZnzpyYOtbFOrt27cpqamoaYL0Yt9xyi7nPo48+mm3bts2xrqqqbPbs2dwFzp0WeuThVXfz5s2suLiYAWBZWVmev4kdO3awhx56iLtwZzwLzTPG2IgRI8z611xzDXchafviv06/ayv79u0zv3/rn9OC0ckinoWhG/q9zZ8/3/y8pKSEu6j3qlWrohZTB/gLQ1dWVpqLqkqSxB5//HHXRb337dvHnnnmGTZ79uyYz+69915zX2effXbUZ6FQiA0fPtz8/KWXXnI9B02JG2+80Tyuk046KeZ+smfPHjZ48GDPZ4AotbW1LC8vjwFgRx55pGvdDz/8kL3zzjuui9r+9ttvrE+fPqZ9o0aNcqybzPvrjh072PLlyx339cMPP7CuXbuabbktgm7t87jdg3788UfzWVNUVMS9lz3wwANmO0OHDnVsSwSnhaEZY6yioiLqPnjGGWewYDAYVSeZfS87FRUV5nWUn5/P8vPzzWdwWVlZQsdrZ+HChezll192Xfh78+bN7NBDDzWPcb/99mOhUCiu/cS7MHRFRQW766672M6dO13r/fDDD6xbt26e/WnGWNT1x3sGMNb4/RO3Z0koFGJnn322+fmwYcO43/tZZ51l1hk7dqzrtREKhdiMGTOE7nGaprEePXqYz5727dub+1m9enVcx/nLL7+Y2954441xbetGo80hO/bYY00Vfumll+Kmm25C9+7dzUmcffr0MVMmy7KMGTNmYPjw4di6dSueeeYZvP322zjnnHNw4IEHoqioCJWVldi0aRO+//57fPHFF6iqqsLDDz/cYDuvu+460/t08803Y+7cuTjhhBPQunVrrF69GlOnTsXq1atx9NFHY/Xq1a5u4GOPPdZ8ffvtt2PXrl3o16+fmRmrc+fOcbk6zz33XLz33nuYNm0atm3bhoMPPhgTJ07E8OHDoSgKvv/+e0yePNkceTj++OPNcB5CZ+bMmbjkkkvMkZFLLrkE+/bt81wT6eCDD0a3bt1iyjt16oR//OMfuPrqqxEOh3HSSSdh/PjxGDlyJMLhMGbOnGlm8fH5fPj3v//tukijdc7i+vXrXeeIuPG3v/0NP//8M7744gt89dVX6NWrF8466ywMHz4cbdu2RTAYxPbt201v6/bt23HsscfinnvuSWh/InTp0gXTpk3D6aefjrq6OkyYMAFPPfUUTj/9dOy3337IyclBWVkZVq1ahW+//RYLFiyAqqqea4eJ8NJLL2Ho0KGorq7G888/j0WLFuHCCy9Ely5dsGPHDkyfPh0LFizA8OHDsWnTJmzdulVoxKyoqAhjx46NCnMaNWoU9ttvvwbbnCmMGDEC11xzDZ5//nns3bsXw4YNw4QJEzBixAjIsowlS5Zg8uTJqKqqwpgxY1x/S3l5eXj//fcxcuRIlJeX4/bbb8dLL72Es846CwcccADy8/NRXl6OdevWYcmSJZg7dy6CwaC5YKjBN998Y0YpdOnSBf/+97+jPvf5fHjzzTdx0EEHoby8HDfddBNGjhzZ6GFRqeD+++/HZ599hhUrVmDmzJk4+OCDcdlll6Fz585Ys2YNXnrpJWzevBmAfi02dC5jVlYWTjzxRMyYMQPff/89KisrHdNXr127FjfddBPatm2LE088EQcddBA6dOgAv9+PHTt2YO7cufjggw/MDGydOnVyTe6SzPvrpk2bMHToUBx66KE49thj0b9/f+Tk5GD79u2YM2cOPvnkE3NE/vbbb4/yFiXK4MGDcfvtt+Pvf/87ysrKcPjhh+Oyyy7DoYceaoZOGWHl+fn5MddxMsnPz8fMmTNx8sknY/78+fjggw9wzjnn4J133jG9+anse+Xn5+Occ87BlClTopKOnXXWWUnzMOzYsQOXX345brnlFpxwwgk45JBD0LlzZ2RnZ2P37t1YsGAB3n33XTN8tKCgANOnT3fNVjp58uSYBYWt87rsz8ySkpKYRY3D4TD+9re/4YknnsBRRx2Fww47DH369EFhYSHq6uqwadMmzJ07N2oqTP/+/fHkk0825HQkvX/SEHw+H9566y1IkoR33nkH3377rTmnzPr9v/LKK1i1ahWWLl2K6dOnY9asWTj33HMxZMgQlJSUoKamBlu3bsVPP/2E2bNnY+/evUKhxZIkYeLEiWa0gzE96cgjjxRa0sWKderDmDFj4trWlWSoOhEPWTgcjhqdsf/xRmb/+OMPduyxxzpuY/1TFIW9/PLLMW3E6yFjjLG77rrLdV9HHHEE27lzpzlK4jaSfv755zu2Yz9XIqP+oVCIXXbZZZ7n4+yzz2bV1dWO7Rj1WpqHzO4FEf3jjfZbeeKJJ5jf73fcvqCgQGgU0bqN06iXKHV1dezaa69liqIIHeP48eNj2kimp8Vg0aJFrFevXkI25efns19//TWmjXg9ZIwx9uWXX5oeOt7fwIED2aZNm1jnzp0ZAPanP/1JqN3FixdHtfPmm28K25QojekhY0y/f1900UWO506WZfb444+7jtBbWbFiRZQXx+0vKyuLzZw509x279695r1XlmXX+/obb7xhtjN48GDX0f6mxPr16z3P33HHHcf27t2blP29//77ZrtTp051rPfPf/5T+J565JFHsg0bNgjtPxn31++++87TpoKCAvbss8962iPqIWNMH5m/8cYbTU8Z769du3bsiy++EDoXboj8/iorK9lRRx1l1jv99NNjPGXJ6Hvx+Prrr2O2//LLLxt62Cbvvfee8PU3cOBArsfSjvVZI/LH6w/u3bs3rjbOOusstmPHDle7rPW9+grJ6p94IfIsCYVC7NxzzzXrHXbYYTFesLKyMjZ27Fjh83XvvfcK2bd+/fqY3+Err7wS93EaHtZu3boxTdPi3t6JRhNkjDFWU1PDHnvsMTZ8+HBWUlIS1VF06zTMnTuXXXnllWzAgAGsuLiYKYrCCgsL2QEHHMDGjh3LXnjhBfbHH39wt01EkDHG2MyZM9kpp5zC2rRpw/x+P+vYsSM75phj2Msvv2y6t0UEWTgcZi+88AIbNWoUa9OmDfP5fI7nKp5O5qJFi9ill17K+vTpw/Ly8lhOTg7r2bMnu/DCC4Vu7MZ+SJCJ/XkJMsYYW7p0Kfu///s/1rdvX5aXl8cKCgrYwIED2R133CHU8aiqqjL3FwgE2O7du5NwxIytXr2a3Xnnneywww5jbdu2ZT6fj+Xm5rKePXuyk08+mT366KNc0cNYagQZY/pN+Y033mDnnnsu69mzJ8vPz2c+n4+1atWKDRkyhF1++eVs+vTprLKykrt9IoKMMca2b9/Obr31VtavXz+Wk5PDiouL2ZAhQ9iTTz7JqqqqmKZpLCcnhwHuoVRWNE1jRUVFDABr1aqVa7hMsmhsQWbw0UcfsVNOOYW1bduWZWVlsW7durHzzz+fLVy4kDEm1iE00DSNffDBB2zChAmsb9++rLCwkCmKwoqLi9mBBx7Ixo8fz6ZMmcL27NkTtZ31QX3nnXe67oMxxsaNG2fWv+WWWzzrNxWCwSD797//zY455hjWvn17FggEWKdOndgpp5zCpk2bltSOQjgcNkOpRo8e7VivtLSUvf322+ymm25iRx55JOvduzcrKioyf9sHHnggu/LKKxMKE2/o/bWyspJNmTKFTZgwgQ0cONB8tnfo0IEdccQR7LHHHnMN7bYSjyAzWLhwIZs4cSLr1asXy87OZsXFxezggw9mDz30ENu1a5dQG16I/v54oow3WNGQvhcPTdOiplT06NEjqddpRUUF++CDD9idd97JjjnmGNa3b1/WqlUr5vP5WHFxMdt///3ZhAkT2IcffugaKm0lGYKMMcaWL1/Onn76aXbeeeexQYMGmeczOzubdejQgY0cOZLdcccdQiKRsfgHbxv6+xFB9FkSDoej7uM8UcaYHvJ74403ssGDB7PWrVszn8/H8vPz2X777cfGjBnDnnrqKbZ27dq4bDzmmGPM/ebl5bGKioq4tl+1apW5/SOPPBLXtl5IjKUopyhBEHExa9YsM8PW9ddfH3eCCaLhLF26FH/6058AiH8Hc+bMwejRowHoa688/fTTqTSRINLCP//5T9x8881QFAUbNmxIWvp7giCIpsJ9992Hhx9+GHl5edi4cWPUenYNJf0rxhIEAaB+DbyCgoKUzuUinLFmOxOdu/bCCy+Yr5vD2mMEweOqq65Chw4doKoqHn/88XSbQxAE0aiUl5dj0qRJAPR8E8kUYwAJMoLIGAxBdvPNN6Nt27Zptqb5MX/+fNf1zyZNmmROqu/cuTNOPfVUzzZ//vlnM4nFcccdZ66zRRDNjZycHDzwwAMAgH//+9/4448/0msQQRBEI/Lss89iz549aN26NW6//fakt08hiwSRAZSWlqJdu3Zo06YN1q5dm9KFo1sqffr0QW1tLU466SQMHjwYbdu2RSgUwtq1a/Hee+/hp59+Mut+9NFHjoLss88+g6ZpWLVqFR5//HFs27YNgJ75z1iAlSCaI5qmYejQofjxxx9x7bXXuq5tRBAE0VwoLy9Hz549sWfPHrz44ovmGqTJhAQZQRAtgj59+mDt2rWudXJycvDyyy+bi1jzsC5NYCA63+zzzz9HdXW1t7Ec2rRpYy7uShAEQRBE84EEGUEQLYJvv/0WM2bMwLfffoutW7di9+7dqK6uRklJCfr27YvjjjsOV199Ndq3b+/ajiHI8vPz0bdvX1x99dW45JJLhNYt69GjBzZu3JiQ/SNHjsTcuXMT2pYgCIIgiMyl0RaGJgiCSCfDhg3DsGHDGtwOjWERBEEQBJFMyENGEARBEARBEASRJijLIkEQBEEQBEEQRJogQUYQBEEQBEEQBJEmSJARBEEQBEEQBEGkCUrqQRAEQSSEqqqoqalBdXW1+Wd9X1VVhbq6OgSDQQSDwajXvPfBYBCqqkLTtKj/xp+maVGfAXrWS6c/I/OlLMtQFAU+nw9+v9/8c3ofCASQlZWFnJwcZGdnIzs7G7m5ueZra3lOTg7y8/ORm5sLn48eqQRBEET80NODIAiiBcMYQ0VFBcrLy1FeXh7zuqyszCwz/ldVVaG6uhq1tbXpNj+jyM3NRX5+ftRfQUFB1PvCwkIUFxejqKgIxcXFKC4uRk5ODnd9O4IgCKJlQFkWCYIgmhmapqGsrAx79uzB3r17Y/7bX6uq2qD9KYqC3NzcqL+cnBzk5eUhOzsbs6fMg8QAqBLAJECTAA2QNOO15T0DgMh/Br2+8ZRi9eWSUWb5GFZNIyFS0fJeYnqgvsTAZOM9i/qMyZHGFf3vxMuPQW1tLWpqalBTU4Pa2lrzvfG/rq6uQecvEAiY4sz6V1JSgjZt2qBNmzZo3bo12rRpg7y8PBJvBEEQzQwSZARBEE0IVVWxd+9e7Ny5E7t27cKuXbtiXpeWliIcDsfVbm5uLgoLC1FQUIDCwkIUFhbi6/9+CyksAWEZUlgGQpL+X5UgqRKg6q+hARJarkhgEQHHfBrgY4CigfkY4Iv8VxhOv+F40+O4b98+838wGIxrX9nZ2aY4M4Ra69at0a5dO7Rr1w4dOnRA69athRYqJwiCIDIDEmQEQRAZhKqqKC0txbZt22L+tm/fjt27dwt7tIqKitCqVSuUlJTg58+WQwrJQEiGFKz/b5axliuo0gVDxEPnZ2B+DcyvAZb/x116JHbv3o3S0lKUlpaisrJSqF2fz4d27dqhffv26NChQ8z/du3awe/3p/joCIIgCFFIkBEEQTQydXV12Lp1KzZt2oQtW7ZEia4dO3Z4ercURUHr1q3Rtm1btGvXDvPeWAzUyZCCCqTIfwRJZDU3mMyAgAoW0CJ/Ks79y2mmZ3THjh0oLS31FOyyLKN9+/bo3LkzunTpgi5duqBz587o3LkzOnbsiKysrEY6IoIgCAIgQUYQBJESNE3Djh07sHnz5pi/HTt2wO3WqygKOnTogI4dO+LHj5dBqlXq/4KyLrZacIgg4QwDA7I0sCzV/Dv5umOwfft27NixA9u3b3cNk5QkCe3atTNFWteuXdG9e3f06NED7dq1o1BIgiCIFECCjCAIogGoqoo//vgD69evj/rbunWra8c3Pz8f3bp1Q5cuXfDFfxbUC646Rfd2keAiUgAD08Mic1SwbBXnP3wGtmzZgq1bt2LLli2orq523DY7OxvdunVDjx49TJHWvXt3dOrUiVL+EwRBNAASZARBEAIYHq8NGzZg3bp1pvDauHGjo/Dy+/2ml2Hhf3+AVOuDVK1AqvEBYYlEF5FR6GKNgWWHwXJUXPDXMdi8eTM2bNiAzZs3O4bS+nw+dO3aFb169ULv3r3Ru3dv9OnTB23atKGMkARBEAKQICMIgrARDoexYcMGrF69GqtWrcLq1auxZs0aR+9BVlYWevTogdXzNkKq9kGq9kGuVoA6hUQX0SxgYGDZKlhuGCxXxbFXHI6NGzdi06ZNqKmp4W5TVFQUJdB69+6NHj16IBAINLL1BEEQmQ0JMoIgWjQ1NTVYs2YNVq9ebf6tX78eoVAopq7P50O3bt2w4ds/dE9XtQ9ytQ+oJeFFtEyMOWtabhgsN4yjLx+GNWvWYPPmzdzkIoqioFu3bujXrx/69++P/v37o3fv3pRIhCCIFg0JMoIgWgzhcBjr16/H8uXL8fvvv+P333/Hhg0buAk28vPz0adPHyz9ZBWkKh+kSh+kGh9lLiQIAZjEdG9aXhhj7j4ea9euxZo1a1BRURFTV1EU9OrVyxRo/fr1Q69evWheGkEQLQYSZARBNEsYY9i5cyeWL19uCrCVK1eirq4upm6rVq3Qt29ffPf2UkhVPsiVPgo3JIgkw8CAgAYtP4Rxfx+DFStWYMWKFSgrK4upGwgE0KdPH+y///4YOHAgBg4ciPbt26fBaoIgiNRDgowgiGZBOBzGqlWr8Ouvv2Lp0qVYtmwZ9uzZE1MvLy8P/fv3x8/vr4BU4YNc4YcUUtJgMUEQZshjfgjnPnwKVq5ciZUrV3IXwW7bti0GDhyIQYMGYeDAgejTpw950QiCaBaQICMIoklSXV2NZcuWYenSpfjll1+wfPnyGO+XEQq1dt4WXXhV+CHVkOeLIDIZM4FIQQhn3D0aS5cuxdq1a2PmpGVlZZketEGDBmHQoEHIz89Pk9UEQRCJQ4KMIIgmQVlZGX7++Wf8+uuv+PXXX7FmzZqYDlpBQQEGDRqExW/+qguwSj8kjcQXQTR1mKyBFYQx4Zmz8Ntvv2HZsmUx89FkWUbfvn1x0EEHYfDgwSTQCIJoMpAgIwgiI6mursavv/6KH374AT/++CPWrFkTk3yjffv22LW0DHK5H1J5QM98SN4vgmj2MDB9cevCEI6/YQR++eUXbN26NaoOCTSCIJoKJMgIgsgIgsEgli9fjh9//BE//PADli9fHuMB6969OzZ/uxNyuR9yeQBSHc39IghChwVUaEVBnHjLUfjpp58cBdrQoUMxdOhQDBgwAH6/P03WEgRB1EOCjCCItMAYw8aNG7F48WIsWbIEv/76a8wcsA4dOmDnz/sglwUg7wtQ8g2CIITxEmg5OTkYPHgwhg4dikMPPRRdunSBJJGHnSCIxocEGUEQjUZ1dTV++OEHU4Rt37496vOSkhKUraqGvC8iwOoogxpBEMmBBVRoxUGMuuZQfP/999i3b1/U5x06dDC9Z4cccggKCgrSYyhBEC0OEmQEQaQMxhjWr1+PxYsXY/Hixfj1118RDofNz/1+Pw488ED89PYKyPuyaA4YQRCNAgMDywvjkhfPwXfffYelS5ciFAqZnyuKgoEDB+Lwww/HEUccga5du5L3jCCIlEGCjCCIpBIOh/Hzzz9j/vz5WLBgAXbu3Bn1eadOnbD9+72Q92ZBLgtQFkSCINIOkxm0oiDG3H8clixZgk2bNkV93rlzZxxxxBEYPnw4DjzwQFr/jCCIpEKCjCCIBlNVVYXFixfjm2++wbfffhu1qGsgEMDgwYPx/VvLIe8JQKolLxhBEJkNy1Jx9RvjsGDBAvz8889Rnv28vDwceuihOOKIIzBs2DAUFham0VKCIJoDJMgIgkiI0tJSLFiwAN988w1+/PHHqHCfkpISlP1eA3lPtj4XjLxgBEE0UZiiQSsOYvTNh2PRokVRc88URcHgwYMxatQoHHnkkSgpKUmfoQRBNFlIkBEEIczOnTsxd+5cfPXVV1i2bFnUZ127dsUfi3ZD3p0FqcJPXjCCIJodDAysIITznjwVCxYswLp168zPZFnGn/70J4wcORJHHXUU2rZtm0ZLCYJoSpAgIwjCldLSUlOELV26NOqzAQMGYMUnGyHvzoJcQ3MqCIJoWWjZYVz877Mwb948rFixIuqzAQMGYNSoURg5ciQ6dOiQJgsJgmgKkCAjCCKG3bt34+uvv8ZXX32FX3/9FcZtQpIkDBo0CMvfW697woK0LhhBEASgzzu7fMpYfP311/jtt9+iPhswYABGjx6No48+msIaCYKIgQQZQRAA9MQcc+fOxeeff45ffvkFmqaZnw0cOBC/f7gRSimJMIIgCC9YQMXVb47DvHnz8PPPP5uDWoqiYMiQIRg9ejRGjBiB3NzcNFtKEEQmQIKMIFow4XAY3333HT7//HPMnz8fwWDQ/OyAAw7Ayo83QSnNJhFGEASRIMyv4orXz8OcOXOiwhqzsrIwYsQIHHfccTj00EPh9/vTaCVBEOmEBBlBtDAYY1i1ahU+//xzfPHFF9izZ4/5Wffu3bHl691QdmVDqiMRRhAEkUy07DDG/es0zJkzB1u2bDHLCwsLceyxx+Lkk09G3759aRFqgmhhkCAjiBZCaWkpZs2ahVmzZmHDhg1meXFxMSqW10HemQOp0kfZEQmCIFIMAwPLD2PMI8fGDIz17t0bJ598MkaPHo3i4uL0GUkQRKNBgowgmjGqqmLJkiX4+OOPsXDhQqiqCkBfrDm8VYK8M0dfJ4yRCCMIgkgHDAysOIijbjgkKnTc5/PhiCOOwMknn4yhQ4fC56NMtgTRXCFBRhDNkB07duCTTz7Bp59+ip07d5rlAwYMwMr3N0EuzYakymm0kCAIgrDDfBqumTYOM2fOxMqVK83yNm3a4IQTTsCpp56Kzp07p9FCgiBSAQkygmgmhMNhLFy4EB999BGWLFliZvUqLCxE1e9hyDtyIFfTCCtBEERTQMsL4YxHjsHs2bNRVlZmlh922GEYM2YMhg0bBkWhub4E0RwgQUYQTZzS0lJ8+OGH+PDDD6PmIQwePBhLp63VvWEUkkgQBNEkYRLDPV9ci48//hhLliwxy9u3b4/TTz8dp5xyClq1apVGCwmCaCgkyAiiCcIYw/LlyzFjxgzMnTsX4XAYAFBSUoLyX+t0b1gtecMIgiCaEyw7jD8/ORqffvopysvLAehzzUaNGoUxY8Zg0KBBlKGRIJogJMgIogkRDAbx5Zdf4n//+1/UejaDBg3C7+9sgrw7i7xhBEEQzRwmM9z68WV4//33sXz5crO8V69eOPvsszF69GhkZWWl0UKCIOKBBBlBNAF27dqF999/Hx999BH27dsHIJIpcbMM5Y9cyFW0oChBEERLRMsL4YR7D8fs2bNRV1cHQI+WOPPMMzFmzBhKnU8QTQASZASRwaxfvx7Tpk3D7NmzzbDEtm3bYs93NVC250AKU6ZEgiAIAmCKhstePwfvvvuumV03EAjghBNOwDnnnIMePXqk10CCIBwhQUYQGQZjDL/88gveeustLFq0yCw/8MADsWzaBj0skRZvJgiCIDgwieGuz6/G9OnTo0LbDzvsMIwdOxaHHHIIzTMjiAyDBBlBZAiqquKbb77BW2+9Zc4JkCQJ0q4AlC15kCspLJEgCIIQg4GBFYYw7P8G4ptvvjGXQtlvv/0wbtw4jBw5ktLmE0SGQIKMINJMMBjEzJkzMW3aNGzduhVAZH7YRgXK1lzKlkgQBEE0CJYdxml/G4VPP/0UNTU1AICuXbti3LhxGD16NPx+GvAjiHRCgowg0kRdXR0+/vhj/Pe//8WuXbsAAAUFBahepkHZlgspRPPDCIIgiOTBfBrGvXQq3n33XVRUVAAA2rVrh/PPPx+nnnoqZWYkiDRBgowgGpna2lp8+OGHeOutt7B7924AkUQdi2uhbM+GpJEQIwiCIFIHUzRcOvVsTJ8+HXv27AGgZ2Y877zzcOaZZyI7OzvNFhJEy4IEGUE0EjU1Nfjggw8wbdo08wHYvn177F5QDXlHDq0fRhAEQTQqTGK47n8X4c0338T27dsBAK1atcIFF1yAM844gzxmBNFIkCAjiBQTDAbx4Ycf4vXXX8fevXsBAB06dEDp/CrIO0mIEQRBEOmFSQy3fHwpXnvtNfzxxx8AgNatW+PCCy/EaaedhkAgkGYLCaJ5Q4KMIFJEOBzGrFmzMGXKFOzYsQMA0KlTJ+ycWwl5VzYJMYIgCCKjYBLDjR9MxGuvvWY+t9q2bYvx48fjlFNOgc9HSaYIIhWQICOIJKNpGr7++mtMnjwZmzZtAqA/0PYurCWPGEEQBJHxGKGMU6dONZNOdenSBVdccQVGjhxJ65gRRJIhQUYQSeT777/Hiy++iFWrVgEAioqKUPmzqmdN1OgBRhAEQTQdmMRw1fTzMHXqVOzbtw8AcMABB+Cqq67CQQcdlFbbCKI5QYKMIJLAhg0b8Pzzz+Pbb78FAOTm5qLudwnKH7mQVMqaSBAEQTRdmKLhgpdOwfTp0811zIYPH44rr7wSvXr1SrN1BNH0IUFGEA1g7969ePXVV/HRRx9BVVUoigJsDkDZlA8pTEKMIAiCaD4wv4qT/zbCfObJsoyTTz4Zl19+OUpKStJtHkE0WUiQEUQC1NXV4Z133sEbb7yB6upqAIC8OwvK+nzItTTpmSAIgmi+aNlhHHHrIMydOxcAkJeXhwkTJuCss86C3+9Pr3EE0QQhQUYQccAYw4IFC/Dcc89h27ZtAIC+ffti/bu7IJdTWmCCIAii5fDUL/fhueeew4oVKwDoiT+uvfZaDB8+nBJ/EEQckCAjCEG2bNmCZ555BosXLwYQyZz4TZ2ewh704CEIgiBaHgwMt3xyKV566SXs2bMHADB06FBcd9116NGjR3qNI4gmAgkygvCgpqYGb7zxBqZNm4ZQKASfzwe2PgBlcx4kjeaJEQRBEARTNJz93Gi888475rPyvPPOw/jx45GdnZ1u8wgioyFBRhAuzJs3D88++yx27twJAJD2BuBbVwC5huaJEQRBEIQdlh3GkOv7YeHChQCADh064KabbsLw4cPTbBlBZC4kyAiCw65du/D0009j/vz5APQHSulXNZB3Z1F4IkEQBEF4cN/X1+OZZ54xBzSPOuooXH/99WjXrl2aLSOIzIMEGUFY0DQNH3zwAV566SVUV1fraew3ZEfCE0mIEQRBEIQoTNZw1nPH4e2334aqqsjJycGll16Ks846S3++EgQBgAQZQZisX78eTzzxBH777TcAgFTuh29NAeRqSuFLEARBEImi5YbQf0JnLF26FAAwYMAA3HnnnejevXuaLSOIzIAEGdHiCYfDeP311/H6668jHA4jJycHod98kLflUHgiQRAEQSQBBobr3rsIL7zwAqqrqxEIBDBx4kScd9558PloXjbRsiFBRrRo1q9fj0ceeQSrVq0CAMi7A/CtLYQUpFAKgiAIgkg2LKBi8HW9zSVk+vXrhzvvvBO9e/dOs2UEkT5IkBEtElVVMW3aNLzyyisIhUIoKChAzfcSrSlGEARBECmGgeHWTy/Ds88+i8rKSiiKgosvvhjjxo2juWVEi4QEGdHi2Lx5Mx599FEsW7YMACDvCcC3hrxiBEEQBNGYML+Kw27d38xoPHDgQNxzzz3o1KlTmi0jiMaFBBnRYmCM4aOPPsJzzz2Huro65ObmIvizD/JO8ooRBEEQRDowvGVPP/00qqurkZOTgxtuuAEnnXQSJImezUTLgAQZ0SIoLy/H448/jnnz5gEApH0B+FcXQqojrxhBEARBpBuWpaL/pZ3w66+/AtDXLbv11ltRXFycXsMIohEgQUY0e3755Rc8/PDD2Llzpx6bviYHytZc8ooRBEEQRAbBwDBx6hhMnjwZqqqidevWuP/++3HQQQel2zSCSCkkyIhmSzgcxtSpUzF16lRomobOnTtj5yc1kCtpXTGCIAiCyFT+9ftf8fDDD2PTpk2QZRmXXHIJLrzwQsiynG7TCCIlkCAjmiV79uzBgw8+iJ9++gkAIO/Ihm9dASSVbuYEQRAEkekwWcPRDx6MWbNmAQCGDh2Ke+65ByUlJWm2jCCSDwkyotmxdOlS3H///SgtLdUXef7ZD2VXTrrNIgiCIAgiDhgYbv74Evzzn/9EXV0d2rRpg/vuu49CGIlmBwkyotnAGMOMGTMwadIkqKoKqVqB7/diyDW+dJtGEARBEESCaLlhdDozHxs3boQsy7jmmmtwzjnnUBZGotlAgoxoFlRXV+OJJ57AF198AQCQd2XBt7oQkkYhigRBEATR1GEyw9EPDjZDGI8//njcdtttyMrKSrNlBNFwSJARTZ5t27bhrrvuwrp16/QsiqtzofyRQ1kUCYIgCKIZwcBw1dvnmZEwffv2xSOPPIL27dun2zSCaBDkPiCaNL/++iuuvPJKrFu3Dq1atYL8YyF8f1BKe4IgCIJobkiQ8NK50/HUU0+hqKgIq1atwuWXX46ff/453aYRRIMgDxnRZJk5cyaeeOIJhMNhSJU++JcXQwrSQs8EQRAE0dxhWSq6X1CC1atXQ1EU3HLLLTj11FPTbRZBJAQJMqLJoaoqXnrpJUybNg0AIJdmwbeqCJJGXjGCIAiCaCkwmeGo+/6EOXPmAAAuvPBCXHbZZbReGdHkIEFGNCnq6urw0EMPYf78+QAAZVMelE15FKJIEARBEC0QBobzXz4Jr732GgDgmGOOwV133UXJPogmBQkyoslQXl6Ou+66C0uXLoXf7wdbmgOllNYXIwiCIIiWzs2fXILHH38cqqpi0KBBeOSRR1BcXJxuswhCCBJkRJNgx44duPXWW7Fx40bk5+ejbqEfcnkg3WYRBEEQBJEhPPbdnbj33ntRWVmJLl264KmnnkKHDh3SbRZBeEKCjMh41q5di9tuuw2lpaVAnQz/shLI1bTYM0EQBEEQ0Wg5YbQ+xY/t27ejbdu2+Mc//oEePXqk2yyCcIVmPRIZzdKlS3HdddehtLQUUpWCwC+tSIwRBEEQBMFFrvFhz4dh9OjRA7t27cJ1112H33//Pd1mEYQrJMiIjOWnn37CrbfeisrKSkhlfvh/bUVp7QmCIAiCcEUKKvhjWhX2339/lJWV4cYbb8SPP/6YbrMIwhESZERGsmTJEtx2222oqamBtDcA/7ISSCpdrgRBEARBeCOFZax9pRQHH3wwampqcNttt2HRokXpNosguFAPl8g4FixYgLvuugvBYBDynoC+4DOtMZa5SFL0a4m+K4IgCCL9SKqM357bgiOPPBKhUAj33HMPiTIiIyFBRmQU8+bNwz333INQKKQv+Px7MSRGHfyMxS7G3D4nCIIgiEZGYhIWP7YSI0eOJFFGZCyUZZHIGL799lvcfffdCIfDkHdmw7eqkBZ8zmTcxBZj9Z/TLYYgCIJIM0xiGH73/vj666/h9/vxyCOPYNiwYek2iyAAkCAjMoQff/wRt99+ux6muCsLvpVFJMYylUS9XnSrIQiCINIIkxiG3dUf8+bNQyAQwKOPPopDDz003WYRBAkyIv0sXboUt956K2pqaiDvDsC3gsIUM5aGhCAatxrynBEEQRBpgkkMh93ZD/Pnz0d2djaeeuopDBw4MN1mES0cEmREWlm1ahVuvPFGPbX93kgCDxJjmUcq5oLRrYcgCIJIA0xiGHxzTyxevBgFBQX417/+hZ49e6bbLKIFQ4KMSBvbtm3D1VdfjT179ujrjC0roWyKmUqqknOQ14wgCIJIA0xm2O/ytli2bBnatGmDSZMmoWPHjuk2i2ihkCAj0kJ5eTmuueYabNq0CVKVD/5faZ2xjKcxMiZaBRrdmgiCIIgUwnwaOp+fj/Xr16NLly6YNGkSSkpK0m0W0QKhHjDR6NTV1eGuu+7Cpk2bgFoZ/mXFJMYIHes6ZpQynyAIgkghUljG1ukV6NChA7Zs2YK7774bdXV16TaLaIFQL5hoVDRNwyOPPIKlS5cCYQn+5SWQgkq6zSK8SJc4IlFGEARBpBApqGD3xyEUFBRg2bJleOyxx0DBY0RjQ4KMaFT+85//YO7cufD7/fD/Xgy52pduk4hMh0QZQRAEkULkWh/++te/QlEUfPHFF5gyZUq6TSJaGCTIiEbjyy+/xBtvvAEAYL/lQC4LpNkigiAIgiAI4PZDHsUtt9wCAHj11VcxZ86cNFtEtCQoqQfRKKxZswbXXHMNamtroWzJhW9DQbpNIkTJBA8V3aYIgiCIRuDMfx2NadOmIRAIYNKkSejXr1+6TSJaACTIiJSzb98+XHHFFdi+fbu+1tiyYkjIgE4+4U0miDEDulURBEEQKYaBYcjtfbBw4UJ06NAB//nPf1BYWJhus4hmDoUsEilFVVU8+OCD2L59O1CjwL+iiMRYUyGTxJgVIxOj1T77e6OMSB+88+/1HYl8j421DUEQLRIJEr7/x2p06tQJ27dvx1//+ldompZus4hmDgkyIqW88cYb+OGHH5CTkwP/75TevkmRaR4pXifaKHcqo05248ATyNb/vDKn//Z2Resmso1bXbp2CKLFIqkyHn74YQQCAXz77bfm/HeCSBXUOyZSxi+//IJXX30VABD62U8ZFZOJV2expXQoRTwfRGoR8VSmyusVr5c0XlviGQQgCKJZcU2/u3HTTTcBACZPnowffvghzRYRzRmaQ0akhLKyMlxyySXYtWsX5B3Z8K8uSrdJzQejM2j96UpS/XtrZ7EhP+/m1OlkLHnnpaVgvaasZQD/Wmvu2H9v9jKCIJolx/1tCD755BO0bt0aU6ZMQVER9WeI5EMeMiLpMMbwt7/9Dbt27YJUo8C3ljIqJg23Ef9keYeao5epuR1PKhANOXR639yhMFiCaJHM/st36NatG3bv3o1//OMftGg0kRJIkBFJ55NPPsHChQvh9/vhW1EESaPLLC6cQrFaeoc4maQzyUOqkl14teMWTugm6unaqyeR74AgiCaNpEm49957oSgK5s6di1mzZqXbJKIZQj1lIqns2LED//rXvwAA2qosyFX+NFuU4fA6xPbPG9o+wSeeZA+8eiKexHiSXTjV8fKKirTjZQOROPF+vwRBNDmu3f8eXHLJJQCAp59+Gtu2bUuzRURzgwQZkTQYY3jiiSdQXV0NqdwPZWtuuk3KbOJNdNAYtLTOo6jIsosbkQ53vMkuEkl+Ibovt/pNHUnW/5zeN4oNHt9dczrfBNFCeW3CBxg0aBCqq6vx2GOPUegikVRIkBFJ49NPP8WSJUsADfCtLqT1xtzIxA5aJtqUCYicl3gFUTJpDt+bXUDxRBVPdLkJMaf3bu3y3jeEZInydF5fBEEAACRIWPnKH8jKysJPP/2Ezz77LN0mEc0IEmREUigtLTVDFZWN+ZBrKMU9F+pMNV/ou00MQwDZ/zt9Fq9gchNhXv9TQSJhq251CIJoNKQ6nxm6OGnSJOzbty+9BhHNBhJkRFJ44YUXUFVVBanCR6GKTqSrAxWvh4cgUgFP5Ih4p2xlkux9rYrUEfKUpUqYJZLYRbQOQRApZfKFM9CnTx+Ul5dj0qRJ6TaHaCaQICMazM8//4zZs2dDkiT41lCooiPpjDfnhTxRcgciGTh5oJLg6bILK+O9tVySpZj3XnXiorHno8ULzVUjiEZFYhJuvfVWSJKEWbNm4fvvv0+3SUQzIMOfNESmEw6H8fTTTwMApD+yKatiJkPpy4lkE++8Lvs2rk3XCyueoOIJMZE6CWE9tkwUaDTAQhCNyg0D78ef//xnAMBzzz2HcDicZouIpk4GPlmIpsT777+PdevWASEJvo356TYnc6H5RQThiJMnzGMj7zJOnaR4zjJVmBnwsoESBJFUPrp1HoqKirB+/Xp88skn6TaHaOJk8BOFyHQqKirwyiuvAAB8G/Mhhely4kKdIqKp0wBPl3fTEve/6/5FE4Dw7JRkV89ZXCItk0WZAd1/CCIlSKqMiRMnAgAmT56Mqqqq9BpENGmawNOEyFTeeustVFZWQqpSIG/PSbc5mQl1hrxpCp3aloxI6nihZmJ/CzGeMUXx3r+9Ds8eXh37f06ykISEWVO4fimxD0GkhBfOfQvdunXDvn378MYbb6TbHKIJ0wSeJEQmsnv3brz77rsA9DT3lMjDRksLF7J31N3e87wa9naI9OD1/Qg34z53iyt23LxeBsY21rYVGZIiR7+XpKg6kKVYkea1LwfbHSpFv87Ea9htLTOnNPs055QgXJGYhKuvvhoA8M4772Dnzp1ptohoqmTgU4NoCkydOhW1tbWQyv2Q92Sl25zMoqV1WhJdaFe0E5uJndvmSJJEhVcGRMeQRF6ZLEX/2avYhFjUZxJnO69wyIaKsiSI2ZTiJMTiqdPS7m8E4cH9R/4TBx54IILBIP773/+m2xyiiZKBTwwi09m2bRs++ugjAJG5Y+Qdq6eldVYS7XR6beflcbOWOW3jtK9M7CjbSenCxALJMISaERBbia49pigx4kmy/LYkSYLkj1183l7GC4G0C7cY0eYgRhsz8UijXrOi4YzkPSMILhIkcy7Zxx9/jNLS0vQaRDRJmkDPhMg0pk+fjnA4DGlfAHJZIN3mZA4trUOSTmEj4s3heT4yUYw1pmdFJCxQqBkBceImNKyfCXixJEUBZD0UUZIi4YeSBMiWduxlkf9WUWaIOlOUuYkqF1HmmoDErR2RxCOiyUkyAXuoo5doI4hmyh1D/4ZBgwaRl4xImAy8wxOZzL59+8z0rr7NuWm2JoNoSR2PdM+REdm3l9fByZMm6rlLFiIev2TsP4ltxS3G3DyXHGFmii5EPGFWL5csA37LWoeGOLPWkaToOtBFmWT7jXI9ZW7HYRYl6CkT8dw2Re8uz1Mmslh1S7pnEs0eq5fsww8/xO7du9NrENHkyMC7O5HJvPfee6irq4NU6YNE3jGd5tyx4IUNNifcvA+8sEnediJiQ0RsxWOjSChnCjwrCS+szJsDZiuzCjHjven1Msp8vlhh5ffFhCaa29YXxCb1kOVY7xnPRoHvLSlrm4mSLJHemDh5y0TCIJNxf23O92giY7jrsL9jwIABCAaD+N///pduc4gmRobfxYlMora21rzJKFvyaO4Y0Lwf9I0VRpduEvFUOG3nVu7UdiI2Ou0nyR4VQ1w0aG0uXjgiT4jJcmwIYn0lSD7L/DAjHNGYMybXe9LM/8Y2kXBHyHJ9m5b9WL1nUaLM+l/gexPKJJkskhR62uiIhDY61UnmPgkiBUiQcN555wHQvWR1dXVptohoSjSBOziRKcyaNQtlZWVAjQK5lDIrNusHfFPo3GUiTSHETAAhMSEiCL0yI/KEmD0s0SizebOkbNs9SOaUcbxiMW3bvGd6mCTnOBJI/OFUlhQSFenpJtE10US8ZyLvE22bIAR4+Ojn0KFDB5SVlWH27NnpNodoQmTYnZrIVBhj+PDDDwEAyraclu0da84P6xR34FIZypXSMLFmTIOyB7qFRfLEiXVuGCckEQBgeKwsyTlM75iRfTHgjw1D9Pn0Mr+lLhDlWTP2G+Vts+yXZ6vrMQn+VqxJQBo9pNFa1pB5kpkg7NzElFuCEbd23OpbP2vO930iaUiQcOaZZwIA3n33XTDG0mwR0VTIgDss0RT4/fffsXr1akADlJ056TancWhJo6aNMJLOy0yXUEicYNu8z4l6rOc8ru/Aywsox3qY7PPD7B4v87dlCx+UFMUWqihBys6O3s7n0//MOgqQY6kD8OeeGQLOij0ZSApEmdN7p7KE8ApfFQmj5c1DdDrWxhRriXjG4mknGW3HU49odkwe/y6ysrKwbt06/P777+k2h2gikCAjhDC8Y3JpNqRwC7hsmvMaOylO+iDS0Rfp/DutcxVP2w0ReiId5lR6O0Q77KIdffu5FDTCuSNvYA3nk6VY4cMLSwRiyvTkHLY6AT9gSVEvxYQbypCysmLKJVmGlBWot8/n09uyoijR65bZ7YuUJSTKBAc4vL5Pp+s7KYgmmhE9tmTMlWwq8Oa9JZK0hGiWSKqMkSNHAgA+/fTTNFtDNBUkRv5UwoPa2lqcccYZqKmpgf/XEsjlzTy7YnN+aDaBcESmsZSJHKaJ3e6s+ze2cbNJtF2RfdqPn7d/e5lInQQM8q5jFwtc8cJpxx4eaBdiGouEJcoA03Thpcj1v03GwFQNklVkaRpYWIXks7QdqVf/XgOCoej9My26DgCEQtF2axo/9Mj+vUdsjSnzQOSad7ou0grveHl1WhKMxT5D7GXxdLss1zzRdNCKgggN2ou8vDy89957yM7O9t6IaNE04yEsIlksWLAANTU1QK0MqdzvvUFTgUISG9Cc+yh+stpONm4eN2uZfZuGevN4+3ezwWv/ybI7UlGszI6IGLMn1bDN3+LO55JkPeTQsEFR9GQdVi+YokDKs4VO88r8/npPmbVt2/5ibOAkFeGl1o8RkvbjNfbp9h5i17zodZEqPNebc94w9n0jZAhNG8lKSGIva0hCkub6XMtgpDI/OnbsiKqqKsyfPz/d5hBNgCZ6xyMaky+++AIAoOxqRsk84pkAnpL9pzCkpxFCEu2vmxJOdifjWNzOiX2eW0acO5H06UZIotXeeMSY5TcWlZLeSMAhS9F2BPyIWRPM2L/Pp3uusgL6f8NDJkn6a+MzIFI3unMqKZEQRKtnLdK2IcqiEo7YT5fFfmub9rDN2A1d5mI18F7Au64a+hsVHVCIo8Ho//bXTvWSce/K5PBJt+eQ0zPJKrhEE5Lw2iaRllIkSBg9ejQAYO7cuek1hmgSUMgi4UpFRQXGjBmDUCgE/4+tIVdzspM1JTLhIeQV0mR8Hm+oTxMIR3TZQWKhTYlul+62GxvesSTgBYtp1pgfplnalmXu7yzKw2SIK/vjh5N8A35/vR2SBJaTBaku5GgTk3UxJdVa1gBSNSAcjq7HWEwZACAUjq6jqrF1tNjrIuZRag8plKXYsphGONdbkq5DXoijJEsx5aK/9URCJnn7E9yZSOOx9XnXOO934NV+c7oX8KBuYErQckMIHbwHgUAAH374IXJzc9NtEpHBZOiwEZEpLF68GKFQCFKV0vTEGG/idaPuP45J8yJZzHhtpcALFrvrJJ83p9Akr3NlP16nz5MR+pSITU51EkXk+ERtsv/3Ss5hvLebZM+WaNaV6/8bCzFbPpMMT5jRrhEiaPWeBQKQrNtJkh5e6Kv3tLHc7KjfMVNkaPnZYDm29cd8Cph1TbKAn595MWANZ4zcL/xeIZUSf16cHd7vxuu35PXd2V/HgVNobKLetHhDZnmeYWEvnNu9j2+c+73U/jre5CbNKcQSiH02imSgFM1SmUwbM2FANQ6kah+6du2KYDCIhQsXptscIsNpwncQojEwbiLynia2EHQ6wzMS7aQ3RKgkGaeQpSQ0XP9ftOPjVGZ97yVe3MSctW5DbBLpADrh1hFPpk1OtvDCA+27s4bpGcLMvqBzlBdMjsy9staRolPU643pWRKNrIvG7zU7y3zN/L56MSZJYFl+MEUGywno7xXdc8ZkSziiT9G3URQwWQJT5HpRZtgpy9GiLGKPVZQBqBdl1vAvmyhzzcbIE7oO51lvLMGBGwGSGYooKrpEt3O1x+16jvd8eJ1fp7ZF7jNNFeN3xxvEdHuexhNuGa8tvPaakCiTIGHUqFEAQPPICE8oZJFwJBwO44wzzkBFRQX8v5RArkhjdkVehipe9ql0eMEA9xCZJkJSxZckR4f4NOHzIoRIOJpBY10rPJvsZS7Cy3g0cIUGEOsl4s65snVmDWFjOQeSPR29JIFlByBF7GSKDJanCykppEbKJGi5Acg1oajttIACpSpoFmkBHyRNg1RVG72LmjrYYXWWMuP6DUaHRjJe+KKtzP5IlSRJbHHYRLMmeoXg2e9RvDpO24m0k2jbPNs5WEMc7VlFjTJe2GW8dZJOKr8Xke0yAft1L0n853Uiz3CvtjMErSCI0IF7UVBQgA8//BAKL/EPQYA8ZIQLy5YtQ0VFBRCSIFUIZFdMVpiDfaRONPtUqsWY0wiq0/sMJuF1qfiN8d+nYtTYyauQqjluvP3Zk1zEu29Rj6mXXTyb7J+7lXl4wcz3TmuIWevyxJjP53yskXIpKxDzW2c5WYAs60IsIsaYIoFJEphfAVMkqPlZerhiTn1SDzXXD+ZXoBbo3nwt4ANkgPnqBR0URfeY5Wab25mevKysetvsGIk/eJ0pi7fNvm6ZdZFra5nn2mZu3jM7bl6dhn4m4iWKt20v22OqOHvd4vnMnuzEvl3SifccJOs7M15nwvPIy5Mm8plb2yLJTdKMVOFHfn4+KioqsGLFinSbQ2QwGfCLJTKVn376CQAg7wu4Z1f0ElSJ1jHKePtrLHghY/GEgmUgSUtZzwsDTMZ5sQoe+5+9jvHaXpbIPt3KeDbw6jRkf6J13ISVm4DktGGIA55I4IYkWsMK9Uoxc6wcU9lby2QpOh19pH2WkxXduZJlMMU4ToD5FQTb5Jl1mCJDzQtAzfWbZZpPRl37/KinG+OEU9rno0GWIVnXCpLkSObG6PPrKsqMdpzOp+19jDBzu87t9aIaE/ztOYXcWYlZqkAgvM9pO9H9eQzeiGRFFQ3FTDRcM5GlCYTPQSJ1RLZzGxBpLETnmiX6XE9WOylCgoQhQ4YA0OfkE4QTTacXSTQ6piAr40x8t79uLjSX+QCIHRFO6pww0XMjKg4S9Ta5dVbdRJSbkHLoBHt1sGO2dROTbtvZj8HrWGw2iXT8Y8qsYstaZsf2m7engeemi5elaGEj6wk8otpSIgLJuk9FhlaYo8/9itgTLAqARQktCcGSAIJF0eJO80sIFdV7wbRsH7RC+xplvnpPmWGnIseuW2YXl7KkJykx39tEqrUsajuZe80k5D3jlSXy2xYRfDyPcDzbxbs/ERETz0CZgECJNyGJ2/3Uaz1C0ftwIusRujQmVpZIO5mIyGBvIzJ06FAA9X0qguBBc8gILsFgECeffDKCwSD8P7SGXONrfuLLTlN52AiQ9PlgQPxznwwbjHkadps0lrhHKxHi2J993o/jPCpw0p2nyCY7VpsYY642utYTyRio7zBqG8e1x6zfuyxFCRp97TH7osuSnhHRtp2Wr4cqQmNgioxwns/0lslhBjmoIVjkh+G8l8IM/ooQ1FyfntyDMchhBqW6Po29HNYgl9cA1rltqgapujb6e1A1sLr6uWhgsWnzAYCFwtHnT9Ni57FoWmwdARK+rqy/N7c5UoK/R/t1ZpSZ9olcw7w6TmVWmBZ7v+GV2RHdzjbvimks5t7JK4vdXeLb8Uh0f54InAOLEbGf88qaGmno8mo5YYQO2Y2srCzMnDkTPvsgD0GAPGSEA6tWrUIwGASCMqTaZibGvEZaG9R0akdM40013SBEw1/s8Lw9XqPicPbkuNVxDbezEZVgQqAtSdLD07wETGPY5FZHb4cTRscRWpI9CyJvO14IkD0kz1gM2Yo1tT3gLMasdRQ5WowBgE+BWpRjii/mk1HXOgtqTr0NapaMyi5ZsEZSa1kSKrtm62IMuvcsVKAg2Kre46X5ZYRb5UXbbXjnbGUxnjJ/bFIjyW/3nnHOaYzHkO89E8na2CAvrb2OvW2Fc71wrjP74t5e17DRNq8sZju7DV7hocax2I9HZDsg5n7G+x3FlEXmIca9Hef+KXT/FtgurrZiN4zdVzK8kU6kKjxTlESnRjRgO6nWh8LCQtTV1WHNmjXx20y0CEiQEVxWrlwJAJAr/e7zx5oa9jlPDWoq9gFo/++1xo9TYo140kLHPUFdNLQnEeLwQPGSH9jrWOsKhXbZtrPX5SVZcNp/1NpaXmUe84ackju4fWa+t3ijuEk24rHTYm9U6HH9jmP/27aLSWMPxKSJBwDJ74/+7vzRYYtQInPGokScDLVAT1/PJAlMllDXKgtMAZgMaAF9TllNax/UgIS6Qt0WzSehrlCBmiWhtpUCJgFqtgwmS1ADsi7KJETS30sIF1nCFyUpdt0yIFqUGZ1+v02kSTJXyJgddt455p1Xy/FHV/O+XkQ8o+YxWP9z9hOzPyfb7NcEJ1wz5poVtN08n3ZR6XEMjmG+TtsZn8eTOMOK+R3L0e14bWerF3P/drr3Cjy7RISaa9vx4nZ8TkKO9z8Zn8VtO+del6LPJEgYMGAAAGDp0qWJ2Us0e0iQEVxWr14NAJAqm4Br3euGnAIvWEKLm3LaSVbbjuv2uJWJjnzy4I24exyzqLDiJzsQ8yiIeI7sZVbhw51L5bA/rjDizRvi7M/TTrsdRgfXbd0vtzL7gsteXjCjzLId14MBxIoxKbKumLWdrED09SFJYJykHoYYA3TPWG07XYwZqFkSKrr6zHlkmk9CbbGCYIFsloWzJZR398EcR5J0j1pNe8s6ZoYos54HL1EG1Isye6faTZRZz4P9v4BnM+EEIRyEvGBGW/bFvu3EeE1t3mRZ1pO7xAh6gd8DT+Dbbefcc7jHx9vO/p7nzRIo04/PIvYkmZ/Qxn5PtSUykQxB5yY87O8dnmsJPzME5tY5bufl4UqmF0x0PpyQt45zH0yR92z//fcHUN+3Igg7JMgILqtWrQIASFUC6e5TRSI3Z/tDqgEiLFnCK+Uk+kBMFJHRakR3tBw7i15Cx/7a+t+rLQEPBFeAOT1cvcqM9w21054gwkBRYvdn/W9/zbOT52Hj2WrrYOsddCn2GvL5YtqP6pBKkp7Qw2Yjswk0pigIF1rCDRUZtW0C0BTJDF3U/BKq2ilQAxJCeZEyH1DVWUJ1u8h2MhAskKBmS6hqX2+r6pegBiTUtgnU2+CTES6MDVXkijKrwLSFYurtRYuyGFETOafCIaICQp+HiBfZ1QvmtD+7nU7XntfxGdcKZwHxmM0sdTy9yFG7k7y344RL2r1n9jJe2GVM25F2Y7zIXiHbxtxLXpl9G16ZwKCaV1RFPFEcjfnciyvyw/46Wc+8JDD1tv8BANatW5dmS4hMJXOuViJjCIfD2LBhAwBATpcg8wp7EI1pT3j33g+qjCBZHi9RBOaiAPxOUWxbHLu8svw5dUxFOrC8OkYH0fpXbzi/zPrfWs/6Ph47rdt7hRLy9udkA2873v4dwi/rN7OJMeOaihElnHT3dltkmSvG1ILo+WCQYXq8mKR7uKraKWA+6PUkXYzVtpUioYxATRsJTNK31b1iuihT/dZ9RZsWI8okiS/K7OfbRZRxBY/Xdc3znnlt5yLKhESJffBAVIgleu3Zt1OU6Ouf8xvhzeGM6/gEtot6HxE89oEIu9gW2p99nqVb2KQVe5nTdvb/AmHnIvOORcWaVzh+MkhaOH4GIFfr94sNGzYgzEkQRBCZcaUSGcX27dv1G4YKoK6RL5FkCwihXSZJfCUcNiF4vMkSWk6dAF49t23A7+Rwww3jFUx6Y2ICiRcaJtJp9LLTqUwkSQPPm2Xdzu1Y7N46r/0ZYWAidtoQCYfTC+1tx3Z6YkO1JN07ZnnPYtb1kqHl1mdKBHTvWF1J/XaaX0JlJxmqRTep2UBZX0SlwA/n6mVmOzJQVyyhqlN9JU2xeMmMej7ZXEzatFuRo0MqZVsYZqSMJ8p4yWpi4F1nTiGO9noJ/JYcQ2Lt+/P6bSXzN2I/ZqffMi+pRiLH53Beoj1cSmxIZQP2F9sW/zdof88Vd/btBEI4E30mJbI2m4iHzaleMrdzMFSsXiqpVZCdnY1gMIg//vgj3dYQGUgGXKVEprFlyxYAgFTrS21CD3toYRqEWNJG+UQmIhuv461jrxfPeXIabbW+9hqBFfCC8d7r2zt0Hp0Ek9voOi+00P7aq8x47+Z9cAs5dAufdAo9dBKC8dhg9RpYvRsyP3mCWW577+QhiAlNtBLTIeaIMUWO/f6soYoOYkzNC+jrjEUyUTNFRl1rP5gsQWKRMMUOMjRfJKmHD9D8QFVnDWqOhrpWevptzQfUtVGh5mmo6sQiXjUAEhDORpQoiwpdBACmp9U3RZmRFtsqyjQGSDZRZqQZj1OUcb1TlnNi2xBCJHrN8vbj5LFyuD55x8MNhfRqy3jNO2bjGrQmS7H/zuz3Bq9z7HY+nGxLYH9Ra/XxvM+c//F+Fm2ziyhrSCif4DZu3javz0Q8Ym7bJcP+VCFBQpcuXQCABBnBhQQZEUO9IOPMB0gWyciS5Ni0+805qV4wJ/HkVRZPHZHzk6CHK5HkHICAGHMLf7J22nmeKgGPUIyo4XkYnLwOPO+S3UwPG/R5KILb8doRsMFrxN15LkysSPOaQ6PbbhESxnUQNddHchdjBoriLcYkCVqOXiZFBBCTJVOMAfq8r6r2uhgzULOAiv3CYH4GSIAWYKhtp6GujQooACRAzVdR0S8Ea1IPR1HGGCSLGNRyrVkU9eNlNi+f5PfHrpfFOS8xCSB43mSR7z1eUWZ9zyuzI+rBs29m9y5J+oLZMQMEXt4lo8xtIAOIXb9OkvQy6/2EN2jD207kHuOUyMRrf7zjsyU3aUgCIrGBMI4oa0hyDC8hl2hiEZF7KG93vO0SFWWNKNQ6dOgAQI9CIgg7JMiIGHbs2AFAQJAlmjgiSTdAr7h2a52EJiO7eal4nzcGIuGGCYoq0XqOnjCvDlU8HT+Rzou9oycwIu6UYdH63xAm9rKYUWmZ73HySprgdD7tyQG4IkpgbkmMSBOdy2LHen3LhniO7pxJPltopiwDvuhOKzMy5hkiRpJ04SNJUYsYh4r8pqdM9Uuobi+DKYAUWYNW8wPVPUJAQAPL1gtZgKFVnz3I71auv1cYlMIQlIKQXteCXZQxGQgWWwSYxsAUqV6UMWZ6xlh2dJijFLB38uVYUQbEClqHsN8YvESZm+fVDd52XvsGX0w63odk23UsMP/KXuboPfYqs68RZnxmX4aA95r3mX2gwW4XZ02yGDHHa8tpwErkmHkDNfZ7hf37cXomiERr8LYRjfJwe0YmM6rE/EiKeu2ZfVj0WZ6kZ70hyLZt25aU9ojmBQkyIobdu3frL4LWh4qLOBGYTCz0mQdOIQp20WWv7/TeY2f1/zNlojDvASvy0IVDh8ryX6Qed34Y4Oy90jd07ixaOxwCHQ0nm2KOJ9JOlL02r5HjSDNP3Fg6mrw1kpza4nkKRGyw7kO4c+UUmhrvdqYhDmLM8rnk43REeWLMdj2YYgyAxHTPVLA4Eqao6Uk8qm2eMasYg8QAhQGFIbTpsg9ZvjAKsutQ1KUMcn4IksQgAVDyI6LM4swKZwNVHWXIYb1QC0ioKwlEbIl46nwRT5lFQJqijNWXxSXKPMRvXKLMS0hY64kKEKd92myLuR559yFrubEdb2FoF29PTBik3UYvbyBvO6cMkF4CVZLEPGr2/drnkfLaj0N0uR4fZ+DK/J687gGiUR52RMSatZ5bm6IRIwI2eK3hmbCdSXjmv/fELAD1g94EYYUEGRHDnj17AABSyCZG4gmhS9R7xm0qQQ9XoqRSbInYH4fQ8oIbJuXQMfKqx7fVYyTfqOPR4RAJxeHaJLuLIbftYs4xt8PGuY7t34VAeuqEbeCViXagEul42d/zxBjASSggx4hxFiPYJLCAr17UAPp6YHk+M0xR80moaS1DUus30wJAdbewLsIiKFkqhvTeiCyfnq1MAtAqrxrDe62vtxERUdYr2lMGCahup9vPJH2eWijfNg+MMbCcQEyZPUlJjCh1EmVe343DdRzz+xII5zJsi3qdyG8Zsb/BBnXoRQYDOF5n0bA9rxBAbogoT/wkmgyH533nCStekpLoDflCjifmEriv6nU534X9vUiZ8PXoco9xQnR/Am0lnDrf6/7oVObQthTS65WVlYnZQ7QoSJARMdQLsgYuCp2E0L5GTzffGGLMTWw1QIg5ebdShqgYs74WGIG3l9Vv73CuRLxFXudYNHzGrY6TPdb9uF0DIjaIhhjZOxOiYUFWOw0xBgBMq69qCA5DWJkeTsksi/KMMaaLsSw/mCQBGgBNi4gxXeDIIcPzpIcSShqDUqeLsaruYcDHIvnvJSgBDcN6rkebrCr0KNTvVVm+MA4q2YLOOftwWI8N9bYCUPJCqO6pizKlLmJSZG0ziQFKULclVBjxlIU1sw7LiXjFtEiZLNUvhM2Y7ploqCizeVsB2+/A7kHmeX8aiogY4yEa/mW9vgD337GLSBMKEXb5D1iEk5uHyyVkWmR/UZ87ec/0CtH/jXrWwQ2eB89NZIt+l07nXcTT7vRZonjdo732JyD4ktqXcLuv8myIvJbC+vdOgozgQYKMiKGqqkp/EU7CDaypiLEGePCiEB1ZbIAXzC2Mz3idcWKMg5Odnumc3c6nlxAT9YLF60kyyngerkRGeXnti3jPnNryqmO0F1XHpRNnr2cpZ/Z5ZZIE5ld0MWYp0/xKvTDSGMCAmtaG2NPXDKtrxXQxZmwW0DCkx0YU+msBAIX+WuxfsgMHlWxBlhyGAg3dcvbgqF5r6rcBIOeGUdtWMxN4aD6guq0MpU4zQxo1RYKWpUR78CSLADPKFJvgkuXYazbJnrJYTxXv+0vg/iUwSGK1LbqSwPHxfjfcRCYev2fZJRGNRxn/HiOYREfgvsrbn5eXD4C3Z8wpsYhXiKUDCXnKRMsS3c5e5vQcFNmfQIhjSkRZPDaEyUNGOEOCjIihpqZGf6Gm7/JI6lpgydzGTViJeG8aCG9EVji00CvERWTuglEWbRR/fxzbXT1gQGpGX00DON4mJ2HSEAEtMFLq1XHw9AYmyavKbQOI/U4j3g3J3hk0Ooz2rIMRj5IuxnRBIxlligQ1Wy+Tg5G09YqEYIEMORjZ3C+huqOevl6ujKQNz1JxcM9NyFOCCGl6WYGvFhPbzscJRUsjh8GQqwTRM7fUFGWMSdCqfNByNFR1idjAADkM1JYo5nulTgOTJaiWTIuSquqiLMtapkWfH01/H9UxNzyKUcIt8t2IfPccXEWZ21wkp9+4g4BLWIzx6jmR6OBXvN4b4zXHLp7Yco0wcBr0SWB/9XU97r8ideIYDEvpQF2i300y9sfD4tW30qgDvYYNkf9SRJBVVlY2ng1Ek4EEGRGDIcgkrRFvXBYaLMbiedgnIsbcHsy8+knCa46VIyITxEU7cg0QY552i4yCJguRDqWo182p/UTnHoh4A3nbJNrR8arLE2OAc1pwA8YsGRYRSTHPdDFmCHOVQVIZgkUKmAzIYQY5DFR3YnqGRQZIYQkISTi45yYURTxjGpMQkMM4s+gHFMt16OCrwLGFy5AthyCDQQZDz9xSDO+5DmqlTw93lAA1V1+nzF/FIGmR9PclCpQ6zZLUQxdlUkjV7UbEUxbw62LM8KDFhCpGRJm9I2jPcmk9r9b/VuIRZaKDKF5JL3jt82zx+u243SdF2vFCZMCEV+YgkkTnqiZrfzE4CTG3OpksyhI5Vw3ZHw8HMWbQKKLMbgPTgEifKhQKcTYgWjokyIgowuEwVDUyo15tfEGW0I2yIRNtmwgJP0RTMd/EIIEwRS4NeTgnGl7oZEciiIomr+147YhO8Hdq38umhM+7FBXaZ5SxqOOR671iEZhPhhyuL2OKBDVbhlLHzPfBQgm+yvp2mJ8hv2MldlYXmGUF/lqcU7IEBRGXmh8aDgyU48zCn8w6IaagVvWjU/fd9SZqEnw1QG2bSPsMUIIMoQKrkASksAaWZcuiaBWYxjmIJ5ufeV6kjLw3Od5j7N5Pj84uAPHfQwaehxiS7MWJJ9tkXDQgfFHUppSHwieLZCb6SASn30jkfhgOh8Hs90+ixdME7oZEY9LkbhJeN163z+PtDNg7Jo1EUxdjrpnaGvJQFE1UIUIyR2tFxZj1NdeD4lEWjyhLNFzIOH8aq783GPvVIt4iSTJD8yTVCNWLiBJV00WZDD3DoiRBUhnkkBpJ6qHo6e6ZvgZYTRsJTAGUEOAvk6AFGHK6VcCvqKgK+rG6rK0pxoplPUOHDIYOCuCXZHRSGM4o/Bl1zIeVle0R1mS0zalCpx6lkFQJ/j0yJE2CmgXUtJN0D5ymZ3cMFvr0UMY61bSH5fgjx6XWr0lmZFo0zodxrJH3kjWUM+pcGudNQOC43GtS0Sn2bLOBNrt+1liiLJH7d4q8OPEkJOGicc6//dnNq+NiQ7yJUzKedIkykQELABUVFcnfN9GkIUFGRJHumy1LhehJ1gO/MWPPIzQZMeZY1WWkPA3nM+Wk6vhEvWLphjegYxdyQETcIMqjpvn0RB76NhGhFNAQiKS2Z0yCyiR0DJSZYsxAjrQtSxJaySo6B/YiqCqRMg35/iCYX4NseP0lfX+a1TEmS6Y4NMsk6E9J633J+C6s65Txfm9NwfsTD4mKssYeyIqZz8jSNpjmhldypriIU4w57S/dz/+4ybTv1UuMsfrza0YiEUSEZvbEIBpK9KT9NOw/3k6s4GgUt3Mkui3QtMRDKsWYG5xOQIzHNZkPUOv3Z5s8bb4W/Y4z7cEO8MVNPJ8D9cdl/29/bcV6DzDOn/X6t6a7N0IXDc+YLOsZE7X67ZiiABogBSPCSgK0LN0b5atWI2USJBXI2hdZsNkHPSuiKmHvjkIAQE4ghMPbrUeIKZhf3QcA4Jc09PFnIV/KAgDUMQ2/BFujtVKJo1uvAgBUhwNYu70t4NdQ2z6yblkYyNoD8x4nMcBfperzzHKMeW8MclCFNTEJAEDVy8w5ZJYEJvrpsQgA633HPG/2EFTxOWSpIuHICC9RJvK7iuc+7IXb9Z4uErRB+DtJYVSLYYPVloyKonH7nQhcV0kdABa5ji27y83NTd6+iWYBCTIiCjmqM9/4IzgJ3SAb8kBPZmcgBcT98EuXGDNIhyjjTZ5ORJglu/OWaAiXFafvPx4x5rZPXplL2+Z3aYQqWrexbCepWmStMYsLSmVAWNPFmAxITE/oIQc1BPP161YOAr4qXYwxn54KX6qVsW9PPg5vtx75Sh1UJqM0XIBva3qipy8bfkmBIsnwQ8GPda1Qy/xQJA2d/HsxpHgT1mxrBy0k6+Zmq6hroyJrDyCrDEwGggUy/JUqJDXS+ZT1LJByULWEJUZEmarqghOI9VgaAtV+TiXZ+/uKQ5SlqkOcdFGWLDEm+lsRud7jpaFtpEqMGfd5nmdM0DsWrw2MscwSY25kohgDALk+rDkQCHhUJloaJMiIKCRJQk5Ojv5GYWkRLEkRZV7vRT8zSNbNO4F24noQ2h/GSXo4x2DrgHvt01OU8Tpw9rLGeIDa98ezQcROEVud2oqxlUW/5p33hpwrr7pM49exh9xozCwzQhGlULj+c1n/k+ssZZKeyCNQZSzGDGhZQNZuOWo7f04IC3f2tBQxFCvV+CESuRhiKtaENRTINWadCi0b80r7oLCgur6tsIysXQrC+ZHda0CgUoOaZfVk6fPImD86Y6SkqtEDHryQo8gi2NFlWqx4i9lOLPwv1R1iz/adrm3PUC2HgRPR9r3qCFzvvPuo0L1V5DfPK3P4/rxs4NrDE1oJhikmbIMIDTlXidwzE7kWkSYxBoAp+n5zc3ObXngokXJIkBEx5OXlAai/eTQpUWZ98PPC2ES2FemsJ0IDw2jiFmX2/8nCLhDcbIjazKETxXvAOj10RQWT24Pa6bow3sfT2UqkU2FHJMzKVQAn0Qbr/qLe66JMsnvFDFFiKWeyZb4bY7ook2F6yyRVg1wTBpMlhHMUQNLXAAtUaQgWSmAS4KsFsncogAL4WtdAUTTsq8rB7G394ZdU9MneDkXSsFMtwLxa4PdQCCEmwy+paKuUY5+ai7e3DUF1KID8rCCKW1WChWRkb/VDCushkaF8Cdn7NEgqoPkkhHMVgAFKTRiSqoFJ0BORMBZJgc/08EWfbe01Q6RFzoUkWZK0WK+xBib1aCzvhNB+vDrCvPuw9bVoqKNIyK3D9W4VGTyxEbcAied+5fH9OdngKMbsr2MGQ8TFmJsNvPfCiN7H3c5Vop8ZZLAYA6APcoPCFQk+JMiIGAxBBh/nQRov8czjidk0CTfOhtjNQ3T0T6ROErxlQg9x4739wZ6s8BZHr423KGMqp45XWaKjsEBsR4Yn4p1CHu3XBNdD4hE+yatj2Opmu9P1ItIpEbGJ1xZHlMV8N1ZRFmlDstaJXBtSWIt62kgagxRm5hwuI6FG1l5jEAhQgoBSJcMXuQ8xJqGsJhvf7+uGgKTvM8R8+KWmO76r6QEAUMBQpWXh890DUBnMqt+fxKDs80EKGfsHsvYwqH6rkATkkBZtP6CHMsZ8Pwl6opMlxnj78/rNO5VxEPIkOV171mMyslNa4f1ueMds+x6E7xUC3h7GsUFEmIjYwPVA8fbHE1Ui15WAGOPaLlAmPugncC2IlvHqJCK+UinGRO/jXij6NmYUEkFYIEFGxFBQoK/3w3wunQevuTtOnb44BZpxA01J9kXvnfPL3Ub6RLwdvLbiNS3REBO3jlxDxRkvtI4jAg3b4x29tv4X6TCaZU7fjfHaSQxZr1VrnURG/928c26/JTfPnGGjyH7c7LXvL6p9sU6pNYkHNA1S2OI5iyT+kGvDZpnmVyCpGvyVhqdMBpP0eV0AwBQgnAfIdUDdJj2+UJYZ8rPrUFqTj2k7D4XKZGwOtUIt86FMzcXPtd2wW83DW6XDUB0OoDBLX0S6JuTH3vUlkBgQzq8XfHI4sp9sCZLGECjX7dMCEU8eA6SaiIJT6ufsmGGYRlm4/rjqzwevA5lkMcbznIh8Zm/L4Xfv5EFxtNfNO+1yX2Sq5ng/c/rvWuY18OR0jiL3prj35/BZ/fGp/P052WKvE9WYtzBPeiIOJ/El+oxzI1kDpg7tWPsNDRJj9teJDjIH9O1KSkoSs4Vo1pAgI2Jo27YtAIAFHDwAXt4DESHWXESZG6L2unVk4kB4rlmyRJnTvAa7MHPyzkVtJiiyLKPDdmHnVRZtu8MorJfI5oU1eg1OGPWdvHNO753KrPu11vHy4In+Lm0er+jvU6/L7F4wzncshSPZCI3wPU2DVKdC8yv12Q3DDEqdZmaDlsN6psVwHsBkBokBvioJdVvyUZBTC0Vi0JiEPyqL8NaOQxGK5MlXIWFHqAhvlQ5DWTAbsqTBJ2mQJYbd60og1+mCjymAms2QszNyT5EkQAJ8NZrusQMiWRUVSDWh+hT4kbXWpFA4+nzwOsTWcyNZki/YRb2dRDxjol4VEY85B7sXh++NdxnUsJfZ3ifiXXIffLHcxxLxGGpafPvzslPECyZSR28wtl5MFW8748JLfCXD4xSPuBG5Z5of1fcbkiLG3MpEm4sIstatWyfcBtF8IUFGxGAIMmSlOMtiAje2Bt1cE6UBN+C4sYoAu7dC8GFo9yTFHZbiNKpsLXPqzDl1JGK8Aw4j2V428PYn2PESOS+ek91VLUa0eZZplv2JfKd2QWQVgoZg4iXUsO4v4nVw3Z/bQIBdTNpFmT180fg+w2pUWVRSD+iZFRXD6xRBDmnIKqvfTtKA7F3R5sh1ErZvrO/EqEzC+n2t8PmOAwAAlWo2Zu/oj7Vlbcw6VeEANq5rB0mt91xJKpC7XQKLPPlklSF7T32GRcNuuToU/XRkDAhG2x11rGY1+3Wuca79JImxeBAdqBHwrCX0u3ESMCJCkXcevLZzuueIlNkRFHIx9zRV9d6fsY29zL6d/Vxpzl7FaDvjGHhy284osyMaoh3vgK3odhwS7iM0YNBYmMggd5s2bTwqEi0REmREDMbNwhjNSSmJuv4TuOHatzFu3EJtNaYos5JguIiTCBMKQ4raXxwj8F5eNmOf1v9u3jOjnleZdZ8eYUFR4UOcECXra6cOpWPdSCcmSvipWuy51lh0myKhlIZQcwpftJTFhnDVC8KoEE6OTVG4ibLI56Yok+q9YDA8Y5H3Ul1EyESSX0ghFUq1Xqb5ZYABSp2KQLmKcJa+na+aIWeHnuBD8+ub+8oVbN3QBgxATdCPsKpgd1UuPthyIObt7IOakB9BVUFpTT4qQtlYs7ojpDoZTAaYj0EOA3lbJChBFkkyAl2MhbXIfvT09EpVCJKm6Z4yRTLFmKSx+hDMsKWzHTkuptmEebrEGK/Tb/3vhZcHPcHfTVSdqEEHl4EW6+/d+G8cH6/MfpzxlvFsctuf3U7jvxo9MGH+t9a3t8mrY2/Ldv7rd+EgxqyvvURXvCGIbmGDoqHZTm3G4QVLSVhiip73o8YPB0AeMoIPCTIiho4dOwIAWHYjrUOW4A2QJ6a8ypxEmJAwcwrPFBnZiyPUIqYtOwmOZoqOYos87D23cxJyvJFf3uiwtRPDK+NtFxOiJ1DGCVGKKeN463jhSNwQJWN7W52Y8+eQnCCm/RgvA8d7Yfdo2EbXncKYuIlTYsIuY6/1GNs1DbB6xuzvASCsRae/h+6tytkTyVTIIqJsl1S/QD0DfGUKtq1uC1XTH13BsA9bt7TCxq31I85lNdlYu7wTpLr6x5ukArl/RMRY5H3O7tjvSqkN62LMSihcv/YYY/qx2L8Huxgz6prnwHYureU2hMQYrwPOE2I8D41IW7zfjUdoHwChED3ub4S3P97vW6QsxiiBMp6Xitd2KBRdxvNWh2yeVKOe9TeoqrHngecFC0f/RkTuAfq2AsKEdz16hVXzypyeZbYy3vOVW2a/rzpsZxdiSQ1LTBa272rz5s0AgC5duqRun0SThQQZEUP37t0BACwnDIYEb3KJYI8rjzNEgTdSFu9NWvgm7xTekIhYa2ibBm7eM6fQNDg85G2j3V4j4bzPYuZ0GP+dhJp1dNj+udOovddINU8EWj/3Gv221nc6Hqs9XmUu3oBYz5bNE+EgtLh1vGzh7Q/ghl/GXG88UWYP37OJMEnVgLpg/ecyIIU1+CqDgARoir6gslKn1QslSRdluX8YqRj1OWa+ChkVmwqhajKqducCYRmsVsHOXYWoCfpRuaEISrUMOahvJ4eAvM0y5JC+ELSkArm7VEhhps8r88mQNMBfEQRUBmZZdFeqCQKM6an8ncRYOMwZELHPw4tDjPG+s+hK0f/tr72I14Pk1LaTrW6eckPkeO3PyXPu5E13KnPbzsle6/7jPT6H351TaKFbGLVQVIPTvd6O6LNF9DMPRJ7H9jL7wKnXdnFjHxhNtifM47pmYKYg69q1a/L2SzQbJNagGZ9EcyQUCuH444+HqqoIfNcWUlDx3iiVSOkfN5Dsi71mAomel1Qfi8ai9pHqBTAZY7H7kOXoTpHMOVeaxi+3E8kSGFMWn5Hi29ltt38GOH9u36fX/hyOP+Z8Kpx7gGLbVpIh+Wz1ZBnw+4xGwRQZLDfLso0ELcuHUGHAso2edbG6TaQtCQjnSqhpz2COD0X+B9ta5p6FJfj3ytAsTUkakLNdglKnbyCrQO5OFXKQWeowBPbWQQrVn1OJMUhVteb3JmlMn0MWrxgz4M35s7ZjHUBwIxMe1/bfg/1acbrWRWyPJzTTDbffUBLg3nNc6jYY2z3VLPPceQq9P9zdZcD1ySPV58H+e+ANVmZpCA7dBUVR8Pnnn8Pv96fWJqLJkf6eLpFx+P1+dOrUCQDAcmI7IULwwmUSJV3zt6JMSCxEIqHQSHGjYs+NyLlymtQtWuZUx/7aMMnBA+cV9ii6nfW/+dotbI83Om4vt5bxwheto59eoVROHjzeb8TY1vreWsewh7ediOfDvh0nTIo7oh9lU+S6c/OU8byM0D1lUo3FU8YY5KAKf3mkLNLplMP1+5c0IFBu8ZRBD2kMlEvI3qaLPSkkIXubAl91fR05DORtluCvtp4DQA6x+iyPGkOgLFgfkoiIGLPaGHUAlnXLGiDGYuYkOnmBrYjeT0W9RLzteO3Yt+OF2nld64IJPBJJGGKUuR4Lh2TfczztFLmn8sp4XjBV5d/7k5CUwinixOtZlrYsyCJRKSnbv8M9nFc1Rw9l7dixI4kxggsJMoJLnz59AABafiTsKFFxlUxRFu/DxumB1YAbNO+h5PWZV+y8aGy9i1H8/8ZrtxBHgblnwp0Ip+0if27hj1GHIyq6XLZz3N6pIyoaemh9bxd5dhHCC5e0dmidwiztr433oqLLjtd2vPOiabHn094J9BJlBqFwlJCRwmq94ImUR4ky6Onwc3er+lpgKgAG+KsYcrdJkDQ9FT4Y4KsGcjf5kL1dgRxGJPRQiiTwgO4ZY7pnTFaB3FKLR41BF2PhyDHIFjFmnA9JX6PMPgeuoWLMbMfpmtQ/dBbuZnsuQsst1JdX17qNl2Djhe/xxL39+ARCduNJGOL2mZNAcpxDmYDoct3OYYCq/rg9RJdTmLl9cMT633gdxzOOFypo/9z+OmnztxpCvElFkr7/+I7Z6Ev169cvFdYQzQASZASX/v37AwBYvmWCMq9j51RmRaSOKLwYcLeRQpE61jIhE5xHCuNJGuK0nVtbjg+/RBKL8OoBsZ2ARCd2c9qNmaMEcJJCxHZEeHW4SSiS5ZkTSFgQOwLO6chyyrjzhEQSHfDa99rOqYMtkgCFlwyEI8AQk/5erU9GYByrLWW8FFYh1YaihJpVlEkMUGo05O60dj4BfyVDwfqISIORxp4hZ1f996DUAoVrATlYv50cAvK214cqShoQ2FdXL8YAQEO0GDPst84bY0xMjGmx55OfcZNzzxG5P4rMp3Lazq0d0e04ZVzBwtlOdJ2vmO0EykR+3zxi7eZc6/Hcl3hiy95WVEOcewDvnspLeMFJnuE1cOg279ppO7cyT0Sft6LP6UTaShSnQa44OWL8wQBIkBHOkCAjuOy///4AAC2fkzFKRHTxcBqpTwaJjoi5eZcyCNEHrGBj0f/tZU7ngCfqvDyXiSQgcavjFM7jtJ19G5u3zl4mMvnejtfEfJ7njjvyLppAwOkzeygmr/Pt1KbxXsB7xhVlYVuyC0O4WNvgibLquqgyuTZsijI5zOCrUZFbqrcjaYC/hiFQpQswSdMXkZbDgFIHZO3VX+fuYPBXM/is88Z2hSEHNUiagxhTGeTquhgxJtWFos6FoxizX2NMiyrjZ8JzEGNepHhuVDzhxF6/Cy9vN1coOfxmhTz1Iji14+Slspc5feZki9fgmKhnhyO8jP8iHq5G9WSJHl+KkookjFMfJQn9lhUrVgCoH+wmCDuU1IPgUl1djZNPPhmapiGwpE3qE3ukOPFDQliTZjAtI5KLiJKqJCRMYzFt88ocjLJuFFvG32FsHZHvQvT7kqXYjhRv8rzX8YnUEUAkUYBxy+bVTegzkQQoQExiD0mRo8+dLMUm/5AkSL76pB5QlPokH5Ey5lOiE30AYH4FoYJIdg4JULNkhPIVszMkMV1YBfMtqe01Bl8Ng+aPPr5AhZ5REQAkVZ8zFtWpUhlkSwIP3QCOGLMvDA3oQtSOIcbMpnid+cwUY40K7zeTiGDg/e6S1TbgfC+xiwPefcr+uYCgELmfNnqIYDzPvwwd1HQlxdc+y1IRHFoKRVHwySefIDc3N6X7I5omTaeHSTQqubm56Nu3LwBAK3KY4J5MrCNRDQlpTCbJmhycSMhFEue6eYWwiNZxatupjLNh9H/ea68RU6cyr9FUp3POCx2yj8wbrw2cvHReo/cCI/z2sDY3T0Qinjnua9Ewtpj122LDtXihkFGesnA42lPGGKRQuN5TFrFHqgvBX66XSRqDvyKMrD2hyHvAV6XBV60hq0w162Tt08v8VbpdksqQsysEX7Vqvg+UBYGwBqiRc2CIMZ5nzCiLR4zZFu9ukBgTScQR00z8iSocQ/qcvEJu3qV46tj3wdufyD0w0bZ5+/Ly+Fvrudkq6OESDRtMSdp3a5lXHbv9oiHxmUgqI3UcMPpQ/fr1IzFGOEKCjHDk4IP1mGetuBEEGRB7Y8wUUebVsffanvff2pZXmIpIOCF31/z5Z6LhLfZt4sm65SjuRDo4ovMBRIVuIuFCop1RkTpe23FCpuKeV+PSSYsnAUq0XQ6izBLyyJt74yrKjDbs4YuhcFSaeQCQgmH4y2ohhTRIGoNSqyJrrxG+qHeqlDqGnN1hZO3TIIdZJAkIg6QyZO8JQw7r2/pq1XoxZrQf1hITY2aIpu3a4syNiiEeMWZ97SDG3BJVeIULOtoIJB4uGO+gBG8707g4w9Ti2Z/RrtM+RESJEw514k2ekWhmX9MGkWeLvT6vjXi3y2TS1Mc47vrDAQCDBw9ulP0RTRMSZIQjhxxyCAB9dIc15gLRVjLFW2ZHZFQxEQ9bPA/BJDwI4/GMJdp2IglPeMcmtF1ihsYv5AxEJuLzyryONx4PG6/zHGdbjgLQbZ5Z5H1MAhSNxWQlFBZl1jllGiDV6ZkWAT1M0VejImdHfR0prCGwL4RAWX1bksqQu60Osm2OmFRnqaNpkKpqIVkyQkqqBqk2OqkHC4ZirwOVc23EJPBwSPNuJ0bQOouv6M28E1U4bRe9P4drIxGStZ3ovVN0QIa3ndcAUMwmsYl+uPcyhzpxJ89ojHOQCE1BfPH6DE5ljWEOGH788UcAJMgId0iQEY4MGjQIgUAAyNbAcjnZ3BqTeEMMnG7IybwJxxPOkioS9J4ldd8JbRo7UuyVcTKe7ayfNUjIuXVwREafnUbZeaPXvHasYsta5mW/03ZOZYaJbqLMJZ2/0RGN8tYYosyw1/7bs4qyyG/TTPShRUSTpkGprBdgcl0YSm0Y/ooQJJXBVx3WhVRYg68qbK4rptSpkOsi9yyVwVcRaVNV9Xar6yBFQi4ljdUv/MwT2MZ/nhiLHF+Ux9Ge5dJ6ztzuY4LzwxKe68UT8NbP7GXmDgUHGRK5H4h4cnjtu/12nD6L4x7pJKDijS4QxkkgJnKcTYFkPIutz3Re8g1rvTTCcsPYuXMnAoEA/vSnP6XVFiKzIUFGOJKdnV3vJWtVm2ZrEHvj9RoJc7pJJ1OYZcJDMEXeM8d9iYTCCI46J1ImWiepIUCxO4x9n+iINq8da3tu4VxuZaKhYbaOutAyAJxU/bx05lGeMs3mJQP0Nmrron6rUigMuaqmXqSFVCgVtZDrwmaZXBdGVmmNuaCzZJTtrNazJzI9bFGpDsNXoWdUlBjTwxQrakwxZuwTdcGY9eFiQhWNMEXbuYs6V07LENiFWCrFmMj3LlJH1EtsfMbbxqnMuo3Tex7J+p3BWTB5ZSVsyPxbrk1egjFVYjjVOF2rXoOriQy48soyJLpGa60PKA0ZMgTZ2dlptobIZEiQEa6MGDECQP1NJSNJdHTMS9w1dZw8MvbPre/dypwe+iLtp8ODJ0i8IZUiQk60MydgnFhHzWkEPd6Om1PYIxzEgCFAjN8Pb801q0hRNbBQKOpzZk+Jr2pAKAyppj7Rh1QThFwVea/p6fGlYBhyddC0W64OQQrq5XqZBrm8Rl/vzGynLnoeHON7xljIFqrISXcfs65YkjMniswhjG1LUITH7IwjvkQQEWii2ySIyG8qkeQZDTTK/bfYFL1abnh5f3l1eHVFIlua2HN6vxO6AqjvSxGEEz7vKkRL5vDDD4ckSWAFYbCAmvr094mS6E2a9wDIxBT8icLrkFvTL4uMyDqVxbM/++dWGzJgOQGeCJNkybUTx+u8uS0JYBV+CS1LYP/ujDJePbftRM+7xmJShzPGYtPm2ztLmhaVOp8xBklV61Pia0wXPEY6fI2BQYNUF6wvA4CwCqmmDszv09sNhSFXA1p2wNynFNYgV0YWk44IG0nVvVZypWVdsZDueYsSYqoKhFUHMWY5JmvmRIsX0ROnOoJzxIz/kiTx92fYZHxH9hBE3pIO3J0lIMREaKAXx/i92H+HRpm1jkg7vPq833mcRlqNii2zv28OAsy4Fo37gNvcrHiey8nwnGUYLEs11x8bNmxYmq0hMp3094SIjKZ169YYNGgQAEBtmwFhi41BY3vLGvvh09idAhHvjsiIcjK8fHGZHf93IDpnTSTMSTTZiaBh7mVO55czdy02MYT9fDNuxsGocEWNRXudIuGMVu8ZAKAuWO8pA3RRVlEdtS+5uhZSrTUZiAa5rDpKfEk1dTHhk6gLRtvEWKwYC3E8Y7zjt2Vq5P5+BRJ2CGXXtHswneYUioYgepDotSoaaizikfbariFzReNOqOF2L0pnKKFTCL/b+3i243mqRNoXoQmKLRHUNnqf6aCDDkKbNm3SbA2R6ZAgIzwZPXo0AEBr10IEmUEqHhLxhG14PfyaIyKdRpG5F04hfF71Gxmv5CX2skTCszwqe58LjgCIWcOKl6bdNicLmmZZkyzyufU9AKhqvSgz5l4Z3jAtsmaZEc7I6lPUS2ok7JExSLVBvU7YllyDMT0cUmNAKKSvo2Y9llBI/9zAnikSqM+eyEvWYf2NJriGmCfJ8OS4CLF4MgJ6XatO/0USYyRKQgk1ohtwLsuUsGve9eb2TOH9T2Q7Im66H9sOAHD88cen2RKiKSCxhFM2ES2FiooKjBkzBqFQCP4fW0Gu9qfbpManoWGMyfyZNaeQynTjFGaUAWGUIoiEbiUUHhndgPNnlrZjQhkBPXTRXi7LkBRLm5IMKLH7kIzwRUnSwx0VOVqQMAb4bCHUYTW6LUnSyyxCiYU5iTe06AWdY7ItAvyEHV7eQg72sE/hR7Bo+KH9+xL0grUoEjxPKUUkXJ66a00GLTeE0MF74Pf78f7776OgoCDdJhEZTtPodRBppaCgAMOHDwcAaO1bmJfMgDe6aP/cXidVXi3e6GhjP6ibS8dANGFGujtrDiQyhyapiUWsbXPC7Xgp8vW1yyxtWT1lgO6lUq3eNAZWF9QzIRqEw/qf1YtlZEo0BJfG9AyO4fokH2ayDnvCjqjEI2rMsSRTjPH+c7GHJXo27uIVdt2smfyWRUnwPCVv/w7hf0713OoQGYvWoQYAMHz4cBJjhBAkyAghTjnlFACA2r4GTG6hDwZeCKHog7WxbLLbl8p98gRoc8ItfDKZc7kaSEOyzMUt0DxEGcARGQ6iLGpbY05ZlFDTBZQh3piqASHLumWALqQMsWZcg5olLDEirMz5aVEDGVp0KvvIf8+U/9b924/HhbiyJlrPS7yJOYz3AmGJLVaMeZWlbP8s9r3Tc8WpDpHxMJkhp6/uvT/99NPTbA3RVCBBRghx6KGHomPHjoCPQWspyT2aIvE84N0e+k4iS+S9SIeiKXcw7HNKRBOUuG1nLW8kvNZpc9kw9r2IKIvJZhg9R4upsXXs3jOmamA1NVH7YaFQdDIQxsBq6+pt0Fgktb0t8QYv3T1vnTT7tWxf+JkjxoTFl/18iwqwqMbFrhmR+WFNgkSS+4h4woX3L3hfbE73PCIutLa1qKysRKdOnTBkyJB0m0M0EUiQEUIoioIzzjgDAKB2rAYDPVyaHKJhMSIiS3R/bt7D5tRBcerseXX44k0+0ggIec94iVVsXh2RdcuYTdxErVtmpJs3RJnh0YqEM5p1jbYiYoqFw/qcMGN7qxfMsJGbsMMmrqy2Wb1vEVuN17yFtHn/Y7CeL+t/LxIItWtQkgvRDIONgVfSDXudZP+GePczp/9OZUSzhoGh96kdAejeMVmmbjYhBl0phDAnn3wyAoEAWH4YrDDkvQGReaS7Y9Cc50UkM4wxXfNbzF0KeFK8PGVeogwwRVm9N0vT3weDsdvYwhlRVxdzLTEjdDHyHpoaI3BZ0Hbv0li0GON488xy6+FyhJiQZ4znBRP1TCYg1hMSY8nKdpooIt6sVApD0dBzkUGm5nSPIzxhRSGsXLkSWVlZOPnkk9NtDtGEIEFGCFNcXIyTTjoJABDuWpVma4hmA82Z8EYkxDGFHdS4whmt+zTEDuoFS0yafFXleqOs3rMoz5mxjWYrC4Wj29JYzDpihvCKSttvpLK37t8jbX1cmRHjTc7BI8HvMaHvLJ59iXiARUN67W2mM+mG9b/9NUG4cODFvQHo8+6Li4vTawzRpCBBRsTF+eefD0VRwEqC0PLIS0YkETdhRiJNRyQsqyEdbM/dJzYHKSqrIlAvynjredVXqveeRTxnhtiqF3YR0WVf9Dki1qz17F4w0wZrSK5dLBrrp3G8X57YhVimijHr62RcK/GEDqZqnleikIeLaABaXgjff/89FEXB2LFj020O0cQgQUbERadOnXDMMccAAFTykhGNQaLJRuJNSNJUEO2gioi2BDq79ix93I4/r11O4o8okcNLkGHzntnDGQ0Plz0TojnHzPKemzDEY/8iYYlcL1iqwgQdN40WygklZ0kmIm0nq06yIDFGNJARNx8IADjmmGP0JGgEEQckyIi4GTduHABAa10HLSd2cjxBNApuk+lF67S0UEmvuUDJ9Ma4iTKOaIkJZ7R7z/RK0V4si4fLEGWmJ82oYw+HNP7bBJhTco4Y+622JzIXzNyBgxczzu8hIa9lGuYlZhT2gZ3m/rsnUo6WG8bXX38NALjgggvSbA3RFCFBRsRNr169cOSRRwISoPaoTLc5REsmUc+YmxBz8sI1Z5IQusb1zHh5yjTGFUIxa3/Z1zJjTF+TzB7iGA7Hii479jljHsKMa7fIezeSlAiDxFiciNwfCCIBDr2uPzRNw8iRI9G7d+90m0M0QUiQEQlx+eWXQ5Zl3UtWEPTegCCaIiLCrbmShPC5qHacwiQdsg66ijTrHDBLGTfk0Sq2rBkdrW2zaJGYcDKOeBNYJEjcC3rz7GvO8AZVmvNvlUgrWkEQCxYsgCzLuOyyy9JtDtFEIUFGJESPHj3MlK7hHpW0LhnRfPHq2MXb6WtKQi5BQWGdY2Zu59YuwF2XK8Z7Zp8r5pYR0VYWk7XR3N4lBNGpzI5ISvokZrxMcMOk7D/joblgRCPCwLD/RV0B6EsDde/ePc0WEU0VicWdOoogdHbt2oULLrgAdXV18C0vgrInO90mEURmIUn1r51utdY6Rj17WSYixTeeJ8kOxyTSjtO2gC6YZAmS5Zwxxsz3puiyt9MQD5PV5kYUOuQV84C6M0Qjo7aqRfiAMgQCAbz11lto27Ztuk0imijkISMSpm3btjjnnHMAAGrPSjCJHoYEEYVI0gCeh60pdCzjnAflmpHR/mcvtycDcfCmAfUCLCo1voGbJ8wrE2WSslQmCokxG5SYg0gzTGZoe2wuAODss88mMUY0CBJkRIMYN24cWrduDZajQu1CafAJIoZEwxibQnKRBNY7Syglu1WUGTjNO3MTXU7lXmGZaRQ2NF/MBiXmIDIEtXMVtm3bhrZt22L8+PHpNodo4pAgIxpEXl4err32WgD6umQsm9LgE0TSaQriDEhojlnC62a5zUNzep9msWU/Tt6x29d5S3BHiW2X6WT69U+0GFhWGMp+IQDA//3f/yE3NzfNFhFNHRJkRIM55phjMGTIEEAGwr0qKMEHQaSSpiLMPKvEChHjv+eC007hg06ijReOKGinKHabee95/73KEjAkse0ynUy/5okWxZAb+iEYDGLIkCE4+uij020O0QygpB5EUti8eTMmTpyIUCgE3+9FUHZTgg+CSDn2pCFu79NBnIk/nJtJ/XEwjcXsx17mVCdjIDFGEClHbV2L8P5l8Pl8ePXVVymzIpEUyENGJIWuXbuaq9OHe1eA+Ztpx4AgMgmvxAZeC16nem01rzXIhJtx9p4lOsdK1EMl4tnKCEiMEUTKYX4VecP01xdeeCGJMSJpkCAjksZFF12kr1Af0BDuXU6hiwSRDkRElogwS5o9DnO24hRoIvOv4m3Law5XKvadEkiMEUTKYWAI965AWVkZ+vTpg4suuijdJhHNCBJkRNIIBAK4++67oSgKtDZ10NrWptskgiASxe55S6b3LAVZDZ08ZwklEGlKNEcx1hTmSRItDq1tLbQ2dVAUBXfffTf8fn+6TSKaESTIiKSy3377YeLEiQAioYsBNb0GEQTRMBorxbg90UYDwhu9PFzNhuYqxggiw2ABFTlD9Gtz4sSJ6NOnT5otIpobJMiIpDNu3Dj0798f8DGE+pZR6CJBNDdSLcqs7728aS2V5ngeSIwRGQgDQ//LOqGiogL9+vXDuHHj0m0S0QyhLItESti0aRMuv/xy1NTUQNmUB9+m/HSbRBBEsjGyOBqPkVRldZTkWAFiZHBkWmw2R3sZ7729Dev7TIfEGEE0GuFulVC7VSE3Nxf/+c9/0KVLl3SbRDRDmsjTh2hqdOvWDbfccgsAfcForaguzRYRBJF0GmuuD0+AWL1l9te8bdzWMOPtJ1O9cZloU0MhMUZkKFpRHbTu1QCA2267jcQYkTJIkBEp4/jjj8dpp50GSECoXzmYn+aTEUSzximjY6PtXyDkUaSNeJOOiNaJl2S0kemQGCMyFOZXUTBSBmMMp512Go499th0m0Q0Y0iQESnl+uuvR69evYCAhlD/MjCJHr4E0eyxr4vWHDrdTh44J++daB2nsiQlOclomsN1QTRLmMTQ77KO2LNnD3r27Inrrrsu3SYRzRyaQ0aknI0bN+LKK69EdXU15G058K8tTLdJBEGkg1TNMWvK2OextRSo60FkKAwM4T4V0DrUID8/Hy+++CK6deuWbrOIZg55yIiU0717d9x3332QJAlaxxqoHarTbRJBEOmAtxh1S++YZ+pctVTS0r9zIqPROtRA61ADSZJw3333kRgjGgUSZESjcPjhh+OKK64AoK9PphUF02wRQRBpwWmeGQm05g99v0SGoxUFwfrpg8ZXXnklhg0blmaLiJYCCTKi0bjgggswevRoPclH/31g2eF0m0QQRCZCHffmB32fRIajZYeRO0KDqqo47rjjcP7556fbJKIFQYKMaDQkScLtt9+uLxrtZwgO2Afmb2GhOgRBiGNNCmIXadTBbzrQd0VkOMyvos1pAZSVlaF///644447INGcV6IRoaQeRKOze/duXHPNNdi2bRukCh/8S0sgaTQ2QBCEIJKU+sWoieRAXQwiw2GKhtCgvWD5YXTu3BnPP/88SkpK0m0W0cKgXjDR6LRu3RpPPvkkioqKwArCCO1P6fAJgogDXnIQp89F3hOpgc4zkeEwielL8uSHUVxcjCeeeILEGJEWSJARaaFr1674+9//juzsbLCSIML7lYOBHt4EQSSI09pnXv+N1yQe4sPrnNH5JDIcBqb3PUqCyM7OxmOPPYYuXbqk2yyihUKCjEgbBxxwAB566CEoigKtXS3CvSpIlBEEkTgN9ZSRiBDDay4fnUciw2FgesbndrVQFAUPPvggDjjggHSbRbRgSJARaWXYsGG488479TXKOtVA7VlJoowgiMbDTZSJhEO2JEQ8iS35/BBNAgYGtWcltI76WmN33303hg8fnm6ziBYOCTIi7Zxwwgm47bbbAABq52qo3UmUEQSRRpwyOrbkcEev8MSWch6IJg0Dg9q9Empnfa2xO+64Q1+OhyDSDAkyIiM49dRTcdNNNwEA1K7VULtVpdkigiAIC06LWbt93lxoTsdCtGjUrlVQu+pi7Oabb8bJJ5+cZosIQocEGZExnHnmmbj22msBAGq3KoS7kaeMIIgmRHMULs3xmIgWBwNDuHsF1O76YO+1116LMWPGpNcogrBAgozIKM4991xcddVVAHRRRnPKCIJocvBCG5siTd1+gkAkTLFXhekZu+aaa3Duueem2SqCiIYWhiYykhkzZuCZZ54BAMjbc+BbUwAJtAAsQRBNEOvi1Yw1jcWsqWtANAMYGMJ9KqB1qAEA3HTTTTjzzDPTbBVBxEKCjMhYPv30Uzz++OPQNA3yzmz4VhdCYk2gI0MQBGFHkqJFjiHKMkGg2W2gbgHRDGCSvs6Y1q4WsizjjjvuwEknnZRuswiCCwkyIqP56quv8NBDD0FVVch7AvCtKIakkSgjCKKJYxVo6RRk1AUgmiFM1hDuXwatVRCKouCee+7Bsccem26zCMIREmRExrNo0SLce++9CAaDkCp88C8vgRSi6Y8EQTQzUhnaaBd/9OgnminMryJ0wD6wgjCysrLw4IMP4vDDD0+3WQThCgkyoknw22+/4a677kJZWRlQo8C/rBhyrS/dZhEEQSQPnljiedISfW9vjyCaGVp2GKEB+4AcFUVFRXjssccwYMCAdJtFEJ6QICOaDJs3b8att96Kbdu2ASEJ/uXFkCsC6TaLIAiCIIg0o+WHkDtSRVlZGTp27Ignn3wSXbt2TbdZBCEECTKiSbFnzx7ceeedWLFiBaABvpVFUHZnp9ssgiAIgiDShNqmBvKfahEMBtGvXz/8/e9/R6tWrdJtFkEIQ4KMaHLU1NTggQcewKJFiwAAyqY8KJvyKC0+QRAEQbQgGJi+Zmk3fcHn4cOH4/7770dubm6aLSOI+CBBRjRJwuEwXnzxRbz99tsAALk0C75VhZA0SvZBEARBEM0dJmsI9yuH1roOAHD++efjiiuugKIoabaMIOKHBBnRpJk5cyaefPJJhEIhSFU++JcX4//bu/PwqMpDj+O/M5NtQkJCIEIiOwS0AgVZrMVQFGVTWsSN1nuVy23VWyvep7W15daiVWtvvVqXPtXW69JaKNZ6kYJVFMUFBQFRFtnCFiGBmH0j28y894/JnEzIvp4s38/zzDMz55z3Pe8cDsn8ct7zvlYFP4wBAOipTGT1SIp9vAoPD9ePf/xjzZ071+lmAa1GIEO3t3fvXv385z9XXl5eYLCPA3FyFUY63SwAANDO/PEVip5uVFhYqISEBD3wwAMaN26c080C2oRAhh7hyy+/1H/913/p4MGDkqm+r+wE95UBANATGBn5hpTKP/yMjDEaO3asHnjgAQ0cONDppgFtRiBDj1FRUaEnnnhC69atkyRZ+REKPxgny8t9ZQAAdFcmzK+qsYUy/SolSd/85jd1xx13KDKS3jDoGQhk6HFef/11Pfroo6qoqJDKXQo/GMd8ZQAAdEP+mCpVnVcgRfkVGRmpH/3oR9wvhh6HQIYe6ciRI7rnnnt08uRJyS+502PkzoimCyMAAN2AkZHv3DPS6DL5fD4NHjxY999/v0aNGuV004B2RyBDj1VaWqrf/OY32rRpk6TqLoxpfWVVMgojAABdlYnwqWpMkUx8oIvizJkz9ZOf/EQxMTEOtwzoGAQy9GjGGK1bt05PPvlkoAtjlaWwtL5y50U53TQAAHAWX0K5+lwsFRYWKioqSsuWLdOVV14py6KHC3ouAhl6hfT0dP3yl79UWlqaJMl1yqOwY7Gy/PyABwDAacZl5B1eLH9ymSQpJSVFK1as0NChQx1uGdDxCGToNSorK/W///u/Wr16tSTJOuNWWFpfBvwAAMBB/thKeccUyXh8kqQbbrhB3/ve9xQRwe9n9A4EMvQ6O3bs0IMPPqjc3NzAnGUZ0XKnx8gyXC0DAKCzGMvIN6xE/iFlMsYoMTFRd999t6ZNm+Z004BORSBDr1RcXKwnnnhCGzZskFR9texQnFwl4Q63DACAns8fUyXvmEKZ6MBVsblz5+qOO+5QbGyswy0DOh+BDL3a5s2b9T//8z/Ky8sLXC07GS33F1wtAwCgIxiXkW9Iicywcvn9fiUkJOiuu+7SJZdc4nTTAMcQyNDrFRUV6fHHH9dbb70lqfpq2ZG+chXSdx0AgPbij6tQ1ehiqfpescsvv1x33nmn4uLiHG4Z4CwCGVDtgw8+0KOPPhq4t0ySKysqMBKj1+VwywAA6L5MmF/eEcXyDyyXJA0YMED/+Z//qRkzZjjcMqBrIJABIUpKSvTHP/5Ra9eulTEmMG/ZsVi5voySJboxAgDQXEZG/sRyeUcWS+FGlmVp4cKFuuWWW9SnTx+nmwd0GQQyoB579+7Vww8/rGPHjkmSrIIIhR2JlasszOGWAQDQ9fk9XnlHFcvEV0qSRowYoZ/85Ce64IILHG4Z0PUQyIAGeL1erV69Wi+88IIqKytrhsg/0UeWj26MAACczbj98g0tlYZWyOfzKSIiQkuWLNHixYsVFsYfNYH6EMiAJmRmZuqJJ57QRx99FFhQ6VLY8Ri6MQIAUM3IyH9OubzDS6QIvyQpNTVVt99+u5KTkx1uHdC1EciAZtq6daueeOIJnTx5UpJkFYUr7Ggsc5cBAHo1f5+qQPfEvlWSpCFDhujOO+9kgmegmQhkQAtUVVXp5Zdf1p/+9CeVlZVJRnJ9GaWw9BhZlW6nmwcAQKcxET55h5fIf05g9ESPx6MlS5bo2muvVXg4f6wEmotABrRCTk6Onn76ab355puBBX7JndFH7pPR3F8GAOjRjNsv3+BSuUd5A/dYS5o9e7ZuvfVWJSYmOtw6oPshkAFtsG/fPv3+97/X7t27AwsqLYWdiJHrtEeW4f4yAEDPYSwj/8AyeYeWSBGBr48TJ07U7bffrrFjxzrcOqD7IpABbWSM0ebNm/X000/rxIkTkiTrjFvu9Bi5ciMZ+AMA0K0ZGfn7V8g3rEQm2idJGjp0qG677TZNnz5dlsXvOaAtCGRAO/F6vVq3bp2ef/55FRQUSJKs4rDA/WUFEQQzAEC3YmTk71cZCGIxXklSXFycli5dqgULFjCMPdBOCGRAOystLdVf//pXvfzyy4GBPyRZheEKS4+RqyjC4dYBANA0f99KeYeVyMQFRk6Mjo7W9ddfrxtuuEF9+vRxuHVAz0IgAzpIQUGBVq5cqTVr1tg3PVv5EYFgxlD5AIAuyB9TFQhi/QK/tyIiIrRo0SJ95zvfUXx8vLONA3ooAhnQwbKzs/Xiiy9q/fr18noDXT5ceRFyn+gjVzFXzAAAzvP3rZR3SKkdxNxut6666irddNNNjJwIdDACGdBJMjMz9ac//UlvvvmmfL7ATdFWQYTCTvSRVRjOPWYAgE5lZGTiKuUdWmp3TXS73briiiu0ZMkSJScnO9xCoHcgkAGdLCMjQytXrtTrr79eE8wKwwPBjME/AAAdzB6sY0ipTN9AEAsLC9O8efN04403EsSATkYgAxySlZWllStX6rXXXlNVVeAXolUcJndGH7lyGC4fANC+7OHrh5TaoyZGRERowYIFWrx4sQYOHOhwC4HeiUAGOCwnJ0erV6/W2rVrVVFREVhY7lZYRrRcWVGy/C5nGwgA6NaMq3pC5+QzkifQMyMqKkoLFy7UDTfcoP79+zvcQqB3I5ABXUR+fr7WrFmjNWvWqLCwMLCwypL7dLTcmR5ZVW5nGwgA6FZMuE++5DL5Bp2RwgNf9/r27auFCxfq2muvZdREoIsgkAFdTHl5ud544w299NJLysjICCz0S64vowLdGcuYiBMA0DB/tFe+5FL5zymXqjtZnHvuubruuus0b948eTweZxsIoBYCGdBF+Xw+bd68WatXr9bnn39uL7fyI+TOjJYrnwFAAAAB9kAdSWdkEirt5ePGjdPixYs1ffp0ud30tAC6IgIZ0A3s2bNHq1ev1ubNm2X/ly13yX0qWu4sjywv95kBQG9kwvzyDSyTb1CZfX+YZVmaMWOGbrjhBo0bN87hFgJoCoEM6EYyMzP16quv6rXXXlNxcXFgYbA746louUrDnW0gAKBT+PtUyZd8Rv7Emm6JMTExmj9/vq6++mqde+65zjYQQLMRyIBuqLy8XG+//bb+7//+T2lpafZyqyhc7lMeuXKiZBm6MwJAT2IsI/+AcvmSz8jEeu3lKSkpuvrqq3X55ZcrKirKwRYCaA0CGdCNGWO0d+9erVmzRu+++6683upf0FWW3NlRcp32yHWGq2YA0J35o6vkH1QmX2K5PVpiWFiYLr30Ui1cuFDjxo2TZfFHOKC7IpABPURubq7Wr1+v9evXKysry15uFYfJneWRKztKlo97zQCgOzBuv/yJ5fINLKt1Neycc87RN7/5TV111VVKSEhwsIUA2guBDOhhfD6fPvnkE7322mv64IMPaq6a+Sy5ciLlPu2RVRzOCI0A0MUYGZm+VfINLJN/QLlUPShiWFiYpk+friuvvFJTp05ltESghyGQAT1YQUGBNmzYoPXr1ys9Pd1ebp1xy5UdJfeXHlkV/GIHACeZSJ98ieXyDyyTqR4pUZKGDx+uK6+8UnPmzGESZ6AHI5ABvYAxRp9//rnWr1+vd955R+Xl5fY6qzA8cL9ZThTD5wNAJzFh/sAAHYnlMnFV9nKPx6PLLrtMV111lb7yla9wbxjQCxDIgF7mzJkzeu+99/TWW2/pk08+qZnXzC+58iPl+jJKrrxIRmkEgHZmLCN/QoX855TL36/CHq7esixNmjRJs2fP1syZMxUdHe1sQwF0KgIZ0ItlZ2dr48aNeuutt3T48OGaFV5LrpwouXMiZRVEcL8ZALSSkZGJqwx0SRxQIYXVfO0aPXq0rrjiCs2aNUvnnHOOg60E4CQCGQBJ0pEjR/Tmm29q48aNys7OrllRZcmVWx3OCiO4cgYATTAyMvGV8vWvkL9/uRRR81Vr4MCBuvzyy3XFFVdo5MiRDrYSQFdBIANQi8/n02effaZ33nlH77//vgoLC2tWVlly5UbKnRNFOAOAEMaqvhI2oFz+/hX2fGGSFBcXpxkzZuiKK67QhAkT5HJxvy6AGgQyAA3yer367LPPtGnTpgbDmSs3Sq4CwhmA3sdYRv74SvkHlMufUDuExcfHa8aMGZo5c6YmTpyosLAwB1sKoCsjkAFoFq/Xq127dtnhrKCgoGalr3pAkLzAg9EaAfRUJswfGJgjoUL++Mpa94QlJCTYIWzChAmEMADNQiAD0GLBcPbee+/pww8/rH3PmZGsonA7nLnK+EICoPsyMjIenx3CTN8qhY5zNGDAADuEjR8/nkmbAbQYgQxAmxhjdOjQIX344Yf68MMPlZaWVmu9dcYdCGb5kbKKwunaCKDLM5aR6VtVE8JCJmuWpJSUFE2fPl3Tp0/XmDFjmCsMQJsQyAC0q6ysLDucffrpp/J6vTUrfZZcBeGB7o35EbIquHoGoGswkV75+1UGHnG1uyKGh4dr0qRJmj59ur7+9a9r4MCBDrYUQE9DIAPQYUpKSrRt2zZt2bJF27ZtU35+fq31VplbVn5EIKAVRsjy81dmAJ3DuPzyx1fJH18h06+yzlWw+Ph4XXTRRZo+fbqmTZvGZM0AOgyBDECn8Pv9Onz4sLZt26aPP/5Ye/fulc8X8gXIL1lFEXIVRMhVGC6rOJwJqQG0GyMjE+MNjIoYX30vWMj4Q263W+PGjdO0adM0bdo0paSkMDw9gE5BIAPgiNLSUu3cuVMff/yxtm3bptOnT9fewGvJVRQuqzAQ0qzSMAIagGYzMjJ9AgHMxFXK37eqVjdESUpKSrID2IUXXqg+ffo41FoAvRmBDIDjjDH64osvtGPHDu3cuVOfffaZiouLa2/ktQLdGoNX0M4Q0ADUMDIy0cEAVlXnPjBJiomJ0cSJEzV58mRNmzZNgwcPZkAOAI4jkAHocoLdGz/99FPt3LlTu3bt0pkzZ2pvFLyCVhQReC4J5x40oBcxlpGJrZK/b5VM30r5Y6tqTcwsSdHR0frqV7+qSZMmadKkSRo9ejTD0gPocghkALo8r9erQ4cOaefOndq5c6f27t2r8vLy2hv5JaskvDqkhctVFMEE1UAPYsL98sdWBoaj71slE1P7HjBJ8ng8mjBhgiZNmqSJEydqzJgxTM4MoMsjkAHodrxerw4fPqzdu3dr79692r17t/Ly8upsZ51xyyoOl6u4+gpaaRjzoAHdgLEC3Q9NbJX8sVUyfavqjIIoSQkJCRo/frzGjx+vcePGEcAAdEsEMgDdnjFGp06d0u7du7Vnzx7t2bNHx48fr7uhX4FQFhrSytzciwY4yMjIeHyB8BVTJRNbJdPHW+fqlySNGDFC48aNs0NYcnIy94AB6PYIZAB6pMLCQu3bt0/79++3H0VFRXU39FqBgFYSJqu0+ioaIQ3oEEZGJsonE+OViakOYDHeOoNvSFJsbKzOO+88nXfeeRo3bpzGjRun2NhYB1oNAB2LQAagVzDGKDMzU/v379eBAwe0f/9+HTx4UJWVlXU39skOZ3ZQOxPGoCFACxhXdbfDmCr5+3hlqh9y1/3aERkZqbFjx9oB7Pzzz+fqF4Beg0AGoNfyer06duyY9u/fr0OHDunw4cM6cuSIKioq6m5sFLhyVlIdzs645ToTJpVzNQ29m5GRonzyR/sCAaxPoMuh8fhU33+NiIgIjRo1SikpKXb4GjZsGPd+Aei1CGQAEMLn8+nkyZM6fPiw0tLS7Of8/PwGCkhWWVh1SCOooeeyuxtGe2WC4SvaK+PxSg2MJJ+QkKDRo0dr9OjRSklJ0ejRozV48GCGngeAEAQyAGiCMUa5ubk6fPiwDh8+rGPHjun48eNKT0+vv8ujVBPUytyB53J3zWuG40cXZsL8Mh5vIHx5fIHXnkAAq2+gDSlw1Wvo0KEaPny4ffVr1KhR6t+/f+c2HgC6IQIZALSSz+fTqVOndOzYMaWnpzcvqElSlVU3pJW7ZZW7A4OMcGUNHcy4/YGQFVUdtoLBK8pXZ3LlUBERERo2bJiGDx+uESNG2K+TkpLocggArUQgA4B2Fgxqx48f18mTJ3Xy5EmdOHFCJ0+eVHZ2duOFvZasCrescpesCneg62OF2w5slo+ra2ickZHc1d0Lo3wykT4pyicT6ZeJDCyrb1TDUImJiRo8eLD9GDp0qEaMGKGBAwfS3RAA2hmBDAA6UVlZmTIzM+2AFnzOyMiod3LrOoKBrcIlVQaercrQ11xl68mMjBRmZCICAUsR/sDrCL8UWRO6mgpcUuD+rtDQNXjwYA0ZMkTJycnyeDyd8GkAABKBDAC6jIqKCp0+fVqnT5/WqVOndOrUqVrvCwoKmleRT4GAVumqfrilKpesKqv6uTrEVbkZyr8LMDKSy0jhfplwEwhX4X6Z8Orn6sAVCGC+Bu/jOltCQoIGDRpkP5KSkjRw4ED7fVRUVMd+MABAsxDIAKCbKCsrU1ZWlk6fPq2cnBxlZ2fXeS4sLGxZpT7VhLQql+R1yfIGgpv9ur5nQ5Crj3EZKcwv465+Dgs8K8zIhD5XB65g6GpolMKGxMXFKTExUf3791diYqIGDBigxMREJSYm2sGLwAUA3QOBDAB6kIqKCuXm5tohLScnRwUFBcrPz7ef8/PzlZeX1/jAI03xSfK5JJ8ly2dJ1Q/Lb521zBV47ZfktwIPY8mq9T7w2vJXb2eql+ns14GnprpjmpoNQ55N4NlS4GqUZWRcwdfVzy4jE/JaLgWClcsfuCfLHbg3S24TCF6h76sDWHOvXtUnIiJCCQkJio+PV3x8vPr166f4+Hj179/fDlzB1xEREa3fEQCgSyGQAUAvZIxRWVlZrZBWUFCg4uJi+1FUVKTi4mKVlJTY70tKSuT4rw2j2iGtVvBSvZMRdyaXy6WYmBjFxMQoNjbWfgTfx8TE2IErGLri4+Pl8XhkWVx5BIDehkAGAGg2v9+v0tJSFRcXq6ysTGfOnKn3+ezXFRUVqqysVFVVVa3n+pb5/f4O/Qxut1sREREKDw+3H6Hvg68jIiIUHR0tj8djP6KiouTxeOos93g8duCKjo6Wy8VomACA5iGQAQC6FJ/PJ2OMfD6f/H5/va9Dny3Lksvlsp+Dj7OXW5alsLAwhm0HAHQpBDIAAAAAcAh9KgAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIWFONwBAz2eMUXl5udPNAIAWiYqKkmVZTjcDQA9HIAPQ4crLyzVnzhynmwEALbJhwwZ5PB6nmwGgh6PLIgAAAAA4hCtkADpVxLZzZJnqvwVZLlkuS7JcksuSLEuWK7iuerllSS5LVnAbe51ll7EfUsgyV+31gYL2MmNZNX+SCqnDXm7V7Ct0mbEC1djrXIF6A8ste12wjKleZq+XaupwVW8fXK/a+6hVprr5xlXPulrbq1Yba5ZZddbVKaPQdpy1Xg0sb6C+htpRp0xj9drLTd3yIWXs9SF1merlCikXWGdC2hNYb4Wus7cNrjN2nVbo9pax19mnWHB5sLrqbQKngrHfB8u4qt8H1gXeB8vZ6ywjSzXlXNXL7IeMXc5lqdbyQHl/TTkFt/fLHSxT/b6mLr9dnzukfrcCy93B+uxt/XIH61SwHf6a7VVTd6BOv1wK7D+wLlCfu3qZJb/cwfIhZdxSoJwC+wkej+D7wL5M9WtVrzNyVR8Xtyy5JLmr/7FdsqqXWXJbllxyyar+l6uqdOua7w0SAHQWAhmAzuWzqr8aKRDIVB2eqr/p1qyzJFdN+rAC6aa6kuA3c5fqfOOuSTu1U0Cwzjrf0HXWstB9qJ5lZ5dTTRALCWR1loUEqND3Zzex9vb1lHE1sq6hj1GnHQ187MbWNXSoWltfSJ31hbUODWT1rdfZ741dd2g7QvdZ3zo7wClkm9Dt65Qx9ezL1HqEBrKakFf9aGidgqEtUGVoeAsGNykYrGQHmtB1gUDmrwk0VmigCbx2WVYgLFU/y35t2eUC9ai6zmBZVZerXl7fupAy7uow6bbbGQxkpslAFlqfO3g8VHuZS6FtDPk3BIBOQJdFAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhzAPGYDO5TYyJjAZbGBeLSvk2Tprsubgc8hrhS4zIa+bsS5kUqqa6XsbWl7zbGq9Vq1yRpJMcHlNnUaWZGSXDV1v11Fr8qzQttTz3tRq0lnHo4HH2ds2Z66xxtY1e1/NXBe6y0bLmSbqNA20seGJoWvPHRayzt629RND17QjZB4ytX4eMqOacsYytR8KPAfWqdZyv2Uky19Tp4L78ofMl1a9TfV6Y/nt+lSr/urn4L6q37uqtwk+S6qzzB/y3zr42m9JftXMQ+avXmapoXnILHsyZ7dq/s2C713VZc6e26z5E0NbqpkYur7/lwDQcQhkADpV5bQvnW5Cxwh+322ls/MEEBR6avmdbEirhSZiOuYAwNn4yQigw5WXlzvdBAAAgC6JK2QAOlxkZKT9eu3atYqKinKwNd1LeXm5vvWtb0ni2LUUx671OHYBvfVzA+hcBDIAHc6yajrhRUVFyePxONia7otj13ocu9bj2AFAx6LLIgAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQyxjThplzAAAAAACtxRUyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhYU43AEDnOnPmjFavXq333ntPp0+flsvl0pAhQ3TZZZfpmmuuUXh4eKvrzsvL06pVq7RlyxZlZWUpMjJSI0aM0Ny5c3XllVfKsqxGy2dkZGjVqlXavn278vLy5PF4NGbMGC1YsEAzZ85scv8HDx7U3/72N3322WcqKChQbGysLrjgAi1atEiTJ09u9ecK6onHbtmyZfrss88arTsxMVGvvPJKKz5Vja547HJzc7Vr1y4dOnTIfhQVFUmSHn/8cU2aNKlZ+++N511bj11nnXcA0B1YxhjjdCMAdI7Tp09r2bJlOn36tCQpKipKfr9flZWVkqSUlBQ99thjio2NbXHdBw8e1F133aXCwkJJksfjUWVlpXw+nyRp2rRpeuihhxr88rhlyxatWLFC5eXlkqQ+ffqorKxMfr9fkjR//nzdfffdDX5BXL9+vR555BF7fzExMSotLVXwR9ySJUu0dOnSFn+uoJ567IJfjD0ejzweT7319+/fX88++2yLP1dQVz12zz33nF544YV6621uIOut511bj11nnHcA0G0YAL1CVVWVufnmm01qaqpZuHCh2b59uzHGGJ/PZzZu3GjmzJljUlNTzY9//OMW111cXGy+9a1vmdTUVHPjjTea/fv3G2OMqaysNK+88oq59NJLTWpqqnnkkUfqLZ+RkWFmz55tUlNTzfe//33zxRdfGGOMKS0tNc8++6xJTU01qampZuXKlfWW37Nnj5k5c6ZJTU01y5cvN1lZWcYYYwoKCszDDz9sl3/77bdb/NmM6dnH7o477jCpqanm2WefbXHbm6MrH7vnnnvOXHPNNeZnP/uZeeGFF8y6devs47Vz584m99+bz7u2HruOPu8AoDvhHjKgl3jjjTd09OhRSdL999+vKVOmSJJcLpdmzZqlu+66S5K0detWffLJJy2qe/Xq1crLy1NkZKR+85vf6LzzzpMkhYeHa9GiRfYVgnXr1unEiRN1yj/33HMqKytTQkKCfv3rX2vIkCGSpOjoaC1dulQLFiyQJL344osqLi6uU/7pp5+Wz+fTyJEjdd999+mcc86RJMXFxemuu+7StGnTam3XUj352HW0rnzsbrrpJv3973/Xr371K918880t7l7Ym8+7th47AEANAhnQS7zxxhuSpEmTJmncuHF11s+aNUtJSUm1tm2uDRs22HUkJyfXWb9o0SJ5PB75fD699dZbtdaVlZXpvffekyQtXLiw3q5X//Iv/yJJKi0t1QcffFBrXWZmpnbv3i1JWrx4scLC6t4aGyx/+vRp7dq1q0WfTeq5x64zdNVjJ0lut7tF+wvVm887qW3HDgBQG4EM6AXKy8u1d+9eSdLXvva1erexLEsXXXSRJGn79u3NrvuLL75QVlaWJNnlzxYdHa0JEybUW/eePXtUUVHRaPmkpCQNGzas3vKh7xsqP378eEVHR9dbvik9+dh1tK587NqqN593AID2RSADeoH09HR7gIcRI0Y0uF1wXV5enj1iWlOCXaqaqnvkyJGSpOPHjzdYPrhNY+WPHTtWa3nwfb9+/dSvX796y7rdbg0dOrTe8k3pyccu1FtvvaXrr79es2bN0vz58/W9731PzzzzjHJychr9DI3pyseurXrzedeeOuK8A4DuhkAG9AKhX24SExMb3G7AgAH1lmlMbm5ui+ouLS3VmTNn6uwnNjZWkZGRTZYP3V9o+dC21yfYtrPLN6UnH7tQGRkZysnJUVRUlEpLS3Xw4EG9+OKL+td//Ve9//77zfo8Z+vKx66tevN515464rwDgO6GeciAXiD0y1RjX9yjoqLqLdMRdQe7cpWVldVZ31j5s9sVfN9U+WDbWvrFsicfO0maOHGi5s2bp6lTp6p///6yLEslJSX64IMP9PTTTys/P1/33nuvnnzySV1wwQXN+lyhbQ3qaseurXrzedceOvK8A4DuhitkANCLLV26VPPmzdOAAQPsecpiYmI0b948/f73v1dMTIy8Xq+eeuoph1uKnoTzDgBqEMiAXiD0L9vBQSDqE5xY+OwyHVl3cFLY0PWNlT+7XcH3TZUPtq2lf+XvyceuKeeee66uvvpqSYEBRIITCDdXVz52bdWbz7uO1tbzDgC6GwIZ0AuE3meSnZ3d4Hah96A0dW9MUP/+/VtUd58+fWp9uQvup7i4uNEvh8HyofsLLd/U/TPBtp1dvik9+dg1R3C4dWOMTp061aKyXfnYtVVvPu86Q1vOOwDobghkQC8wbNgwuVyB/+6NjfYWXJeQkKC+ffs2q+7Q0f0aqzs4stvw4cMbLB86+ltD5c8eFS74Pj8/XwUFBfWW9fl8+uKLL+ot35SefOw6Wlc+dm3Vm887AED7IpABvUBUVJT9F+ePP/643m2MMdq2bZskaerUqc2ue8iQIRo4cGCjdZeVldmT6J5d9/jx4+2BBYL7P9vp06eVnp5eb/nQ9w3tf8+ePfZABi35bFLPPnbN8fnnn0sKzHk1aNCgFpXtyseurXrzedcZ2nLeAUB3QyADeom5c+dKkj799FPt27evzvpNmzYpMzOz1rbNYVmW5syZI0l655136u1etGbNGpWVlcntduuKK66otc7j8egb3/iGJOnVV19VSUlJnfKrVq2SFLiPJTU1tda65ORkewLbl156SV6vt075lStXSpIGDRqkr371q83+bEE99dgZYxptX2ZmptasWSMp0IUsPj6+eR8sRFc9dm3Vm8+7tuqM8w4AuhMCGdBLzJ07VyNHjpQxRvfcc48++eQTSZLf79emTZv08MMPS5IuuugiTZ48uVbZ5557TjNmzNCMGTPq/fK2ePFiJSQkqLy8XHfffbcOHjwoSaqqqtKrr76qZ599VpK0YMECDRkypE75pUuXyuPxKDc3Vz/96U914sQJSYG/0r/wwgtau3atJOmmm25SbGxsnfK33nqr3G63Dh8+rHvvvde+L6aoqEiPPvqofRXgtttuk9vt5thVW7lypR588EFt3bpVxcXF9vLS0lK98cYb+v73v6/i4mKFhYXptttua/Fx6+rHzu/3q6CgwH6EHoOSkpJa6yorK+uU783nXVuOXWecdwDQnVimqT9VAegxTp06pTvvvFOnT5+WFOgW5ff77S9MKSkpeuyxx+p8cX/uuef0wgsvSApcDUhKSqpT98GDB3XXXXfZI6JFR0ersrLSvnIwdepUPfTQQ4qIiKi3bVu2bNGKFSvskd1iYmJUVlYmn88nSZo/f77uvvtue4jss61fv16PPPKIvX1MTIxKS0vtv8YvWbJES5cubd6BqkdPPHahbQvuNywsTCUlJfL7/XZdd999t30lrjW66rE7deqUbrjhhmZ9hp/97GeaN29eneW99bxry7HrrPMOALoLJoYGepGkpCS98MILWr16td577z2dPn1aYWFhGjFihGbNmqVrrrlG4eHhrap77Nix+tOf/qRVq1bpo48+0pdffqmoqCiNHDlSc+fO1fz58+1BCupz8cUX6/nnn9eqVau0fft25eXlKSYmRikpKfrmN7+pmTNnNrr/q666SikpKXrppZe0a9cuFRQUqF+/frrgggu0aNGiOlcQWqonHrtLL71UkrR3715lZGSoqKhIpaWlio2N1bBhwzR16lQtWLBACQkJrfpcQV352LVVbz7vWquzzjsA6C64QgYAAAAADuEeMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAFDL448/rhkzZuiOO+5wuilwWElJia688krNmDFD77//vtPNAYAeKczpBgBAT1FaWqq0tDQdOHBABw8e1MGDB5WRkSFjjCTppZdeUlJSUofs2xija6+9VtnZ2brxxht16623tqqetLQ0vfrqq5KkW265pR1b6KyjR49q27Zt2rNnj44eParc3Fz5fD7FxsZq1KhRuvjiizV37lzFxMQ43dQuJSYmRosXL9YzzzyjJ598UhdddJEiIyOdbhYA9CgEMgBoJ8uWLVNaWpoj+z5w4ICys7MlSampqa2u56mnnpLP59NFF12k8ePHt1fzHLVs2TJ99tln9a7Ly8tTXl6etm/frr/85S9avny5pk2b1rkN7OKuvfZavfzyy8rKytLf//533XjjjU43CQB6FLosAkA7CV4JkwJXFiZNmqSEhIRO2fcHH3wgSUpMTNT555/fqjp2796tHTt2SFKP+tIdDKqxsbGaP3++li9frt/97nd65pln9Mtf/lIXX3yxpEA4W758uXbt2uVkc7scj8eja665RpK0atUqnTlzxuEWAUDPwhUyAGgn8+fPV3x8vMaOHavBgwfLsiwtW7ZMeXl5Hb7vYCCbPn26LMtqVR1//etfJUlJSUn66le/2m5tc9rgwYN10003adasWYqIiKi1buzYsZo5c6ZWrlypP/zhD6qsrNQjjzyiP//5zw61tmuaPXu2nnvuORUXF+u1117Tdddd53STAKDH4AoZALSTa6+9VpdffrmGDBnS6lDUGidOnFB6erqk1ndXzM7O1pYtWyRJc+bM6dT2d7SHH35Y8+bNqxPGQt14441KSUmRJB0/flxHjhzprOZ1C0lJSZowYYIk6R//+IfDrQGAnoUrZADQzQVHvwt2k2yNjRs3yu/3S5Iuu+yyZpXxer165513tHnzZh04cEAFBQXy+XyKj4/XyJEjNWXKFF1++eXq379/rXIzZsyQJM2dO1fLly/XF198ob///e/avn27cnJy1KdPH40ZM0bf+c53NHHiRLtcRUWFXn/9dW3YsEEnT55UeXm5kpOTdcUVV+i6665r82ATF154oX0P4IkTJzRq1KhW13X8+HGtXbtWu3bt0qlTp1ReXq6YmBjFxsYqKSlJkydP1iWXXKKhQ4e2qn6v16s333xTmzZt0tGjR1VYWCjLstS3b1/Fx8fr/PPP15QpUzR9+nSFh4fXKnv28T9+/LjWrFmjHTt2KCcnR2VlZXrwwQfrhPvLLrtMu3btUnp6ug4cOKDzzjuvdQcHAFALgQwAurlgd8WLL75YYWGt+7H+0UcfSQrcZzVs2LAmtz98+LB+8Ytf6OTJk3XWZWdnKzs7Wx9//LGOHDmi5cuXN1jPu+++q1/96lcqLy+3l1VUVGjr1q36+OOPddddd2nBggXKycnR8uXLdeDAgVrljx07pj/+8Y/aunWrHnnkkTaFMq/Xa792uVrfgWTt2rV67LHH5PP5ai0vLCxUYWGhTp48qe3bt+vIkSO65557Wlx/QUGBfvSjH9U7gEzw2Kelpekf//iHVq1apcGDBzdY1+uvv65HHnlElZWVTe43dJCXjz76iEAGAO2EQAYA3VhOTo72798vqfXdFSsrK/X5559Lks4///wmuyumpaXpBz/4gcrKyiRJkyZN0uzZszVs2DCFh4crNzdX+/bta3LeqiNHjuidd95Rv379dMstt9j7/uSTT/Tiiy+qvLxcv/3tbzVx4kQ98MADOnz4sBYuXKhLLrlE8fHxysjI0J///GcdOXJEu3fv1qpVq/Rv//ZvrToGkrRz50779YgRI1pVx9GjR+0w1rdvXy1YsEATJ05UfHy8fD6fcnNzdfDgQW3durXV3UIfe+wxO4xNnjxZs2fPVlJSkvr06aPS0lKlp6dr165ddhfUhhw8eFAbN25U3759dd1112n8+PEKDw/X8ePHNWjQoDrbjxgxQh6PR2VlZdq5c6eWLl3aqvYDAGojkAFAN7Z582YZYxQREaGLLrqoVXUcOXLEvjo0duzYRrf1er36xS9+YYexO++80x6BL9TXv/51ffe731VWVlaDdaWlpSklJUWPPfaYYmNj7eVf+cpXNHjwYK1YsUJer1c/+MEPVFRUpIcfflhTpkyxtxszZoymTp2qm266STk5OXr11Vd10003ye12t+jzS4Fun8eOHZMUCKVDhgxpcR2StGnTJvvK2G9/+1v7vrRQqamp+u53v6vCwsIW119RUWEH3dTUVD3wwAN1gt3EiRP1rW99S2VlZY1e6Tt27JgGDx6s3/3ud7VGA21olE63260xY8Zo165dOnTokPx+f5uuJAIAAvhJCgDdWLC74pQpU+TxeFpVR2i3w6aG6d+4caMyMjIkBUaVrC+MhRo4cGCj63/605/WCmNBM2fOVGJioiQpPz9fixYtqhXGgmJiYjRv3jx7u+PHjze6v/rk5OTo0UcflSRZlqX/+I//aHEdQcERNWNiYuoNY6Hi4uJaXH9xcbEdnidOnNjoVTaPx9NkF84f/vCHLZqaIbhteXm5cnJyml0OANAwAhkAdFMlJSX69NNPJbVtMujc3Fz7dd++fRvdNhgAJenb3/52q/cpBbrANRRaLMuqtW727NkN1hO6XWZmZovaUF5eruXLl9tB6uyBRFoqGCJLSkq0adOmVtfTkLi4OHu0yLfffrtNc4IlJibWG3IbE3p+hJ43AIDWI5ABQDe1ZcsWeb1eud1uTZ8+vdX1VFRU2K/ru1oV6tChQ5ICV0qaM/hHY5oqH9qWxkYjDN2uJQGlqqpKP//5z+2BQi655BJ997vfbXb5+syePdu+KrVixQrdfvvtWrlypXbv3m1382yL8PBwzZ07V5K0b98+XX/99Xr44Yf19ttvtziMtmYUydBAFjoQCwCg9biHDAC6qeDVqnHjxik+Pr7V9YTec9XUaHsFBQWSaq4EtUVUVFSj60O74zXWHTP0Pqbg0P1N8Xq9uueee7Rt2zZJ0rRp03Tvvfe26v6zUMnJyfr1r3+tX/3qV8rOztaePXu0Z88eSYHjfN5552nGjBm66qqrmgy/DbnjjjtUWVmpDRs2qKioSOvWrdO6deskBYLytGnTNH/+/Cav9DV1NbQ+oeG9tSN6AgBq4woZAHRDlZWV+vjjjyW1rbuiFLjfKaioqKhNdXUHXq9XK1assIf6nzJlih588MFGJ45uicmTJ+uvf/2r7rvvPs2fP98edt7n8+nzzz/XU089pW9/+9t2GGypyMhILV++XH/5y1/07//+77rwwgvtwJqXl6c33nhDy5Yt089//vNaAepsrRmQI3QgktDzBgDQevx5CwC6oR07dthd4NoayEKHOG8qkMXHxysrK6vbDugQDGPBq4sXXnihHnrooTZPKn22iIgIXXrppbr00kslBa4sfvLJJ9qwYYO2bt2qoqIi3XPPPVq1alWdibOba8iQIbr55pt18803y+fzKS0tTR999JHWrl2r/Px8vf/++3rmmWf0gx/8oN0+V3Fxsf26qQFbAADNwxUyAOiGgoEiJSVFSUlJbaordM6tL774otFtg8Pi5+bmNrltV3N2GJs0aZJ+/etft3sYq098fLxmzZql3/zmN1q4cKEkqaysTJs3b26X+oPdIZcuXaqnn37a7g66cePGdqk/KD09XZKUlJSk6Ojodq0bAHorAhkAdDN+v18ffvihpMBAFG01cOBADRgwQJLsSaYbMmPGDPv1qlWr2rzvzuL1enXvvffaYWzixIn67//+7ybvY+sI06ZNs18H78lrT0lJSfY8aq2Z66whBQUF9pQHF1xwQbvVCwC9HYEMALqZPXv22F/kQwNSWwRDQnp6ukpLSxvc7rLLLrO/7P/zn//UK6+80mi9jU0M3Vm8Xq9++ctf2hMqd2QYe++995oMWcF7/yTp3HPPbVH9mZmZ2rFjR6PbnDp1yr6SlZyc3KL6G7Nv3z779de+9rV2qxcAejvuIQOAdnLy5El7RL2g4PxWkvTuu+/WGg3R4/Fo5syZLd5P8CpPcnJyq4Yur8+ll16qf/7zn/L7/dqxY4e+8Y1v1LtdWFiY7rvvPt1+++0qKyvT448/rvfff19z5szRsGHDFB4ertzcXB04cEDvvvuuxo4dq+XLl7dLG1vr/vvv17vvvispEIBuu+02nTp1qtEy/fr1U79+/Vq8r1deeUX333+/Jk+erMmTJ2v48OGKi4tTVVWVsrKytHHjRvvq5qBBg1o8XUFWVpZ++MMfKjk5WdOnT9f555+vgQMHKjIyUoWFhdq3b59effVVe7TMpibubont27dLCtwfd/HFF7dbvQDQ2xHIAKCd7NmzRw899FCD65966qla7wcNGtSmQNYe3RWDpkyZosTERGVnZ2vDhg0NBjJJGj16tJ588kn94he/UGZmpj799FN7guqzBe85c1LoBM0ZGRm67bbbmiyzZMkSLV26tFX7q6ys1JYtW7Rly5YGtzn33HP10EMPNTqcf2MyMzP18ssvN7je5XLp29/+tq6++upW1X82r9ert99+W1Lgqmxrh+wHANRFIAOAbuTw4cP21Z22jq4Yyu12a9GiRfrDH/6grVu3qqCgoNG5zcaMGaO//OUv2rBhgz744AOlpaXZ9yv169dPo0aN0tSpU3X55Ze3Wxu7gxUrVmjbtm3atWuXjh49qry8PLsLY1xcnEaPHq3U1FTNnj27VcPsT5gwQb/73e+0Y8cO7du3T1lZWcrPz1dpaamioqKUnJysCRMm6Kqrrmq3q6eS7HNCkq699tp2qxcAIFnGGON0IwAAzfP888/r+eefV79+/bRmzZpWzSXVkJKSEi1evFhFRUW69dZbdeONN7Zb3eje7r77bm3ZskWTJ0/Wb3/7W6ebAwA9CoN6AEA3Euyu+PWvf71dw5gUmOg3GMJWr16tM2fOtGv96J727dunLVu2yLIs3XLLLU43BwB6HAIZAHQTVVVVSk1N1ZIlS7Ro0aIO2cc111yjwYMHq7CwUH/72986ZB/oXp555hlJ0pw5c3T++ec73BoA6HnosggAqGX//v3asmWLYmJidP311zvdHDiopKREL7/8sowxWrRoUaP3FQIAWodABgAAAAAOocsiAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBD/h/qQR7Ss4mVGQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "a5a240bc", + "metadata": {}, + "source": [ + "An example to plot the image in the log scale" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "7bdcd79f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebQsS1klvnPOms+50xvhMS3pRhRQGpRJ4eHwcGoFFVGXSAva2i6xFw6t+AMcGtGl3U6rsRXRltVCSzeiiNIODMoguBoVFVQQfKCM793hjHWqMvP3R1VURUbunafq3nPHE/uus27Wl5ERkXPs/L5vR1BVVQUPDw8PDw8PDw8PD49jiPBqd8DDw8PDw8PDw8PDw+NqwRMiDw8PDw8PDw8PD49jC0+IPDw8PDw8PDw8PDyOLTwh8vDw8PDw8PDw8PA4tvCEyMPDw8PDw8PDw8Pj2MITIg8PDw8PDw8PDw+PYwtPiDw8PDw8PDw8PDw8ji08IfLw8PDw8PDw8PDwOLbwhMjDw8PDw8PDw8PD49jCEyIPD4/rFi984QsRBAHe9KY3Xe2uHIo3velNCIIAL3zhC692VzyuEj70oQ8hCAI885nPPJL6giDA53/+5x9JXdcSnvnMZyIIAnzoQx+62l3x8PA4JvCEyMPDY4H73e9+CIKA/t18882N8pPJBD/zMz+Db/7mb8bDH/5wpGmKIAjwy7/8y7KNj3zkI/ixH/sxfPVXfzUe9KAHIQxDBEGA97///Zdz19bCYx/7WARBgNe//vWHln3wgx+MIAjw7ne/+wr0zON+97sf7ne/+6293Vvf+lZ87/d+L/7Nv/k3OH36NLIsw/3vf398y7d8S+u1t7e3hxe84AV48IMfjDzPcebMGXzN13wN3vve99LyV5ukXA8fCa6HPnp4eBwvxFe7Ax4eHtcWRqMRnvvc5zbs/X6/YdvZ2VmUvemmm3DzzTfjwx/+cGv9f/7nf47nP//5CIIA97///TEajXDu3Lkj6PnR4dnPfjbe9ra34Zd/+ZfxlKc8RZZ785vfjL//+7/HIx/5SDziEY9orfNRj3oU3vve9+LUqVNH3V2PFfDUpz4Vn/zkJ/GYxzwGX//1X484jvH2t78dL3vZy/DKV74Sf/AHf4DP/dzPrW0zHo/xBV/wBXjrW9+KRz7ykfiu7/oufPjDH8Zv/uZv4nd/93fxx3/8x3j0ox99lfYIeO9734tut3vV2r9cePGLX4zv//7vx2233Xa1u+Lh4XFM4AmRh4dHDRsbGyuHdXW7Xbz+9a/Hwx/+cNxyyy144QtfiBe96EWt2zzykY/EW97yFjzsYQ/DcDjE53/+5+PNb37zEfT86PC1X/u1eO5zn4vXve51+PjHP46bbrqJljOesOc85zmH1tntdvGv/tW/OtJ+eqyO7/7u78Y3fuM34tZbb63Z//N//s/4wR/8QTznOc/Be97zntq6n/7pn8Zb3/pWPO1pT8OrXvUqhOEsqOJrv/Zr8W//7b/Fs571LLznPe9Z2K80btTr6ZZbbsEtt9xytbvh4eFxjOBD5jw8PC4aaZrirrvuWmvwcvvtt+Pxj388hsPhZevX3XffjU//9E9Hmqb49V//9YV9d3cXL37xi/Hwhz8cvV4P/X4fn/u5n4vf+I3fqG3f6XTwDd/wDZhMJvjVX/1V2sa5c+fw6le/Gv1+H1/3dV93aJ9UDtHnf/7nIwgCTCYT/PAP/zAe+MAHIs9zPPjBD8Yv/dIvLcq99KUvxWd8xmeg0+ng9ttvxwte8AKUZdlo51d/9Vfx1Kc+FQ94wAPQ6XQwHA7x2Mc+Fq94xStk3971rnfhC7/wCzEYDDAcDvHkJz8Zb3/721tDm973vvfhmc98Ju5zn/sgTVPcdNNNeMYznoG/+7u/O/RYGBwcHODnf/7n8ZSnPAV33HEHsizDiRMn8OQnPxm/93u/R4/fP/3TP+Gf/umfauGcq+TkfN/3fV+DDBl7p9PBX//1X+Oee+5Z2Kuqwktf+lIAwE/8xE/USM9XfMVX4PGPfzz+9m//dkHmf/VXfxVBEACYeQ7t/rEPDB/60Ifw9Kc/HadOnUKe53jkIx+J173udYfuhw03PO9+97vf4oPEE5/4xFofbKx6HwD16/ad73wnvuRLvgQnTpyo5fi88Y1vxHOe8xw85CEPwXA4RKfTwUMf+lC86EUvwv7+fq2+VfrYlkP0v/7X/8ITnvAEjEYjdDodfMZnfAZe/OIXYzweN8qa8MqdnR18z/d8D+573/siyzI86EEPwkte8hJUVbXScfbw8Ljx4T1EHh4eNYzHY7ziFa/A3XffjV6vh8/8zM/EE57wBERRdLW7thL+8i//Ek95ylOwtbWF17/+9Xjyk58MYEZgnvSkJ+Hd7343PuuzPgvPetazUJYl3vCGN+AZz3gG/uZv/gY/+qM/uqjn2c9+Nn7hF34BL3vZy/B93/d9jXZe8YpXYH9/H89+9rNpOOG6ePrTn44/+7M/w1Oe8hQkSYJXv/rVeM5znoMkSfBXf/VX+LVf+zV86Zd+Ke6880789m//Nn74h38Y3W630bd//+//PT790z8dT3jCE3DLLbfgnnvuwetf/3p84zd+I/7u7/4OP/IjP1Ir/5a3vAVf+IVfiKIo8FVf9VV44AMfiPe85z144hOfiCc96Um0r7//+7+Pr/qqr8JkMsGXfdmX4UEPehA+8pGP4P/8n/+D3/3d38Ub3/hGfNZnfdah+3zvvffiu77ru/CYxzwGX/AFX4DTp0/jox/9KH7nd34HT3nKU/BLv/RL+JZv+RYAs8HtC17wAvzX//pfAaAW1vnwhz989QPtIAgCxPHsVWhf4x/4wAdw991349M+7dNw//vfv7HdXXfdhT/5kz/BH//xH+OJT3wiHv7wh+MFL3gBXvSiF+GOO+6okTQ3p+if/umf8KhHPQoPeMAD8I3f+I2499578apXvQpf8RVfgT/8wz/EE5/4xIval+c+97n4rd/6Lbz5zW/GN33TN9Fcq3XvA4O3v/3tePGLX4zHPe5xeNaznoVPfepTSNMUAPCSl7wE73vf+/CYxzwGX/IlX4L9/X289a1vxQtf+EK86U1vwh/+4R8uju0qfVT4gR/4Abz4xS/GqVOn8IxnPAP9fh+/93u/hx/4gR/AG97wBvzf//t/F30ymEwm+KIv+iL8y7/8C+666y7EcYzf+q3fwvd///djf38fL3jBC1Y/wB4eHjcuKg8PD4857rjjjgpA4+/+979/9aY3venQ7V/wghdUAKpf+qVfWrnNz/u8z6sAVP/wD/+wdn9Ne2984xurqqqqP/iDP6iGw2F1yy23VH/xF39RK/tN3/RNFYDqJS95Sc2+t7dXfdEXfVEVBEH17ne/u7buUY96VK1+Gw972MMqANW73vWulfr6xje+sQJQveAFL6jZzf4/8pGPrM6ePbuwf+ADH6iSJKk2Njaq+93vftVHPvKRxbqzZ89WJ0+erE6dOlVNJpNafe9///sbbY/H4+pJT3pSFcdxrZ6iKKoHPehBFYDq9a9/fW2b//bf/tvi/Nv7f++991YbGxvVyZMnq7/5m7+pbfOe97yn6vV61SMe8YiVjsn+/n714Q9/uGE/d+5c9emf/unV5uZmtbu7W1t3xx13VHfcccdK9a+CV77ylRWA6nM+53Nq9te97nUVgOpLv/RL6Xa/+Zu/WQGovuZrvqZmB1B93ud9Ht3mgx/84OKYvvCFL6yt+/3f//0KQHXXXXet3HfWlntPuFj3PjDXLYDqpS99Ka3zAx/4QFWWZcP+/Oc/vwJQvfKVr7yoPn7wgx9c2N72trdVAKr73Oc+1Uc/+tGFfTKZVF/6pV9aAah+7Md+rFaPeZ7dddddtevo4x//eDUajarRaFQdHBzQPnh4eBwv+JA5Dw+PBb75m78Zf/RHf4SPfexj2NnZwXve8x5867d+Kz70oQ/hrrvuwl/+5V9e7S5KvOIVr8BTnvIU3HbbbXjHO96Bhz3sYYt199xzD17xilfgkY98JL73e7+3tl2e54vwmf/5P/9nbZ3JDXJV8971rnfhL//yL/GIRzwCj3zkI4+k/z/+4z+OjY2Nxe8HPOABeNzjHodz587hh37oh2oJ5hsbG/iyL/syfOpTn8I///M/1+p54AMf2Kg7TVN8x3d8B6bTKf7oj/5oYX/b296G97///XjiE5+Iu+66q7bNc57zHHzap31ao67/8T/+B86dO4cXvehFeMhDHlJb99CHPhTPfvaz8e53vxt/+7d/e+g+Z1mG22+/vWEfjUZ41rOehbNnz+Jd73rXofVcLD74wQ/iO7/zOxHHMX76p3+6tu78+fOLvjAY+8UIgtxxxx14/vOfX7N90Rd9Ee573/vine9859r1rYqLvQ+AmRfuW7/1W2m9D3jAAxphecAsbwsA3vCGN1xy33/lV34FAPD85z+/pngZxzF+6qd+CmEYSnXLn/3Zn0Wn01n8PnPmDL7iK74C58+fXyvE08PD48aFD5nz8PBYwA0feehDH4qXvvSl6Pf7+Kmf+im88IUvxGte85qr1DuNn/mZn8FrX/taPPaxj8Vv//ZvY3Nzs7b+Xe96F4qikPkck8kEABpSyk9/+tPx3d/93fjf//t/4+d+7ucW9Zrcnmc/+9lHtg+MWJmcl8/+7M9urDME6SMf+QjuuOOOhf3uu+/GS17yEvzRH/0R7r77buzt7dW2swmUkQp/3OMe16g/DEM85jGPwd///d/X7G9/+9sBzEIT2bE05d/73vc2CBPD3/zN3+Anf/In8Za3vAUf/ehHGzknLuE7KnziE5/AXXfdhU9+8pP4hV/4hYbC3OXEwx/+cBqCep/73GdxfC8HLvY+AGYqiQo7Ozv4mZ/5GbzmNa/B3//932Nra6uWn3MU5/D//b//BwA0jPPTPu3TcPvtt+ODH/wgzp8/XyOxo9EID3rQgxrb3Oc+9wEAnD179pL75uHhcf3DEyIPD49D8W3f9m34qZ/6KbzlLW+52l2heMtb3oKqqnDnnXc2yBCARbL8u971rlaPw/b2du13r9fDM57xDPziL/4iXvGKV+A7v/M7sbOzg1e+8pXo9Xr4+q//+iPbB+aJMLktbevMIBYA/vEf/xGPetSjcPbsWTz+8Y/HF37hF2I0GiGKInzoQx/Cr/3ar9WSz40XRKnoMbs5lrbgA4N7LBne8Y534ElPehKm0ynuvPNOfPmXfzmGwyHCMMRf/MVf4LWvfS1Nlr9UfOITn8CTnvQk/N3f/R1+5md+Bt/+7d/eKGOOuTlGLozd9uqtCrVNHMdUKOOocLH3AQA6Dxkwu/6e9KQn4Z3vfCce+tCH4mu/9mtx+vRpJEkCAHjRi150JOfQHG8l4HLLLbfg7rvvxrlz52r3S9uxBoCiKC65bx4eHtc/PCHy8PA4FKdPnwYw+xJ8LeJlL3sZfvzHfxwvetGLUJYlfviHf7i23gyQvvu7v7sRGnUYnvOc5+AXf/EX8cu//Mv4zu/8Trzyla/E1tYWnvWsZ11WpbyLwU//9E/jnnvuwctf/vKG8tpv/MZv4Nd+7ddqNtP/j3/847Q+ZjfH8i//8i/xmZ/5mZfU3x/90R/F3t4e3vjGNzaEB1784hfjta997SXVz/DRj34Ud955J973vvfhF37hFygZAmYT7gJoeMgM/uEf/gEAaFjhtYpLuQ9YSBwAvPa1r8U73/lOPPOZz8TLX/7y2rqPfvSjh8rwrwrT94997GM0LPSjH/1orZyHh4fHOvA5RB4eHofiHe94B4BZrsC1iI2NDfzBH/wBHv/4x+NHfuRHGvkRj3rUoxCGIf7kT/5k7bo/67M+C5/92Z+Nv/qrv8I73/nOteYeutJ4//vfD2A2CakLNteTmUz2T//0TxvryrLE2972tob9cz7ncwDgoo6li/e///04ceJEgwwBvL/ATAnuYr/qf+QjH8Hnfd7n4X3vex9e+tKXSjIEzHKx7nvf++Lv//7v8cEPfrCx3siCuyFcYRheVa+DCcVjfbiU+0DBXHNf9VVf1VjXdg5VHxXMtcok4N///vfjIx/5CO5///tflMfOw8PDwxMiDw8PALO8AeYB+tCHPoT/8B/+AwDgG77hG650t1bGYDDA7//+7+POO+/ET/7kT+K7vuu7FuvOnDmDr//6r8ef//mf40d+5EfoQOwDH/gAHfgCy1yh5z3veXjHO96Bz/zMz8SjH/3oy7MjlwAjYewOGt/whjfQhPPHPvaxeOADH4g3vvGNjXl//vt//+/UO/LN3/zN2NjYwIte9CIqAFCWJR20qv7ee++9+Ku/+qua/WUve5lMxD958iQ++clPNnKjDsM//dM/4QlPeAI+8IEP4Fd+5VcOJbRBEODbvu3bAADf+73fWwtle+1rX4s/+ZM/wUMe8hB83ud9XqN/H/7wh9fq21Hi5MmTAGa5ZC4u9T5gUNfcP/7jP1K5+sP6qPCsZz0LwMyr+MlPfnJhL4oCz3ve81CWJf7dv/t3K9fn4eHhYcOHzHl4eAAAXvWqV+Gnfuqn8IQnPAF33HEHBoMBPvCBD+B3f/d3sb+/j6c85Sl43vOe19jux3/8x/G+970PAPAXf/EXAICXv/zlC6/D4x73uMVcMgZ2OJfZ9vu+7/swGAwAAN/yLd9CE/0PQ7fbxete9zo89alPxc/+7M9if38fL33pSxEEAX7+538e//AP/4D/7//7//Drv/7reNzjHoebbroJ//Iv/4L3vve9eNe73oXf+I3foHPOPOMZz8Dznve8xZf1oxRTOEp8+7d/O17+8pfjq7/6q/G0pz0Nt956K/76r/8av//7v4+v+Zqvwate9apaeaPM9cVf/MX48i//cjz1qU/FAx/4QPzVX/0V/uAP/gB33XUXfu/3fq82KenJkyfx6le/Gl/5lV+Jz/mcz8Gdd96JT//0T0cQBPjwhz+Mt7/97bjnnnsa4ggMz33uc/GGN7wBj3vc4/A1X/M1GI1G+PM//3P86Z/+KZ72tKfh1a9+dWObO++8E+9617vwxV/8xXjCE56ALMvwsIc9DF/2ZV/W2tbnf/7n40Mf+hA++7M/Gx/60IeoqMAzn/nM2rw4//E//ke87nWvw6tf/Wo8+tGPxp133om7774bv/mbv4lut4tf+ZVfqR0b079XvvKV+LIv+zJ81md9FpIkwROe8AQ84QlPOPR4HAWe+MQnIgxD/Kf/9J/w13/914ucOqNqdyn3AYOZh+qnf/qn8Z73vAePeMQjcPfdd+N1r3sdvuRLvoSSnsP6yPCYxzwG3/u934uf+ImfwEMf+lA87WlPQ6/Xw+/93u/hr//6r/G4xz0O3/M937Pu4fLw8PCY4eqqfnt4eFwreNOb3lQ9/elPrx784AdXo9GoiuO4OnXqVPXkJz+5+rVf+zU6z0hVLefRUX/f9E3f1NimrTyA6uUvf/lKfVbzmYzH4+orv/IrF+0XRbGw/9zP/Vz1uZ/7udVwOKzSNK3uc5/7VE960pOq//Jf/kv1qU99Srb1Ld/yLRWAqtPp1OYLWhWHzUPEwOZjMVD7/ta3vrV64hOfWG1sbFT9fr967GMfW73mNa+R7VdVVb3jHe+onvzkJ1f9fr/q9/vVnXfeWb3tbW+rvuM7vqMC0Jifqapmc+p8x3d8R/WgBz2oyrKsGgwG1YMf/ODqG77hG6rXvOY1qx2Uqqp+53d+p3r0ox9d9fv9ajQaVV/wBV9QvfnNb65e/vKX02the3u7+rZv+7bqtttuq6IokteYi8OuOXYsq6qqdnZ2qh/6oR+qHvSgB1VpmlanTp2qnva0pzXmYDL4+Mc/Xn3d131ddebMmSoMw9oxN/MQqf62XQtqn9icR7/+679ePexhD6vyPF/sm4117oO268bg7rvvrp7xjGdUt956a5XnefWQhzykeslLXlJNJpOL6mPbdf8bv/Eb1WMf+9iq3+9XWZZVD3nIQ6of/dEfrfb29hpl2+asOmwuJA8Pj+OFoKosbUwPDw8PD485HvvYx+LP/uzPcP78efR6vavdHQ8PDw8Pj8sCn0Pk4eHhcYyxu7tLJxf91V/9VbztbW/DF37hF3oy5OHh4eFxQ8N7iDw8PDyOMd73vvfhEY94BL7gC74AD3rQgzCdTvHud78bf/qnf4qNjQ287W1vw7/+1//6anfTw8PDw8PjssETIg8PD49jjLNnz+J7vud78OY3vxkf+9jHMB6PcfPNN+PJT34yfvAHf5DO+eLh4eHh4XEjwRMiDw8PDw8PDw8PD49jC59D5OHh4eHh4eHh4eFxbOEJkYeHh4eHh4eHh4fHsYUnRB4eHh4eHh4eHh4exxaeEHl4eHh4eHh4eHh4HFt4QuTh4eHh4eHh4eHhcWzhCZGHh4eHh4eHh4eHx7FFfLU74OHh4eFx+RAE/jF/FKiq6dXugoeHh4fHZYKfh8jDw8PjGoYnNDcGPKHy8PDwuHbhCZGHh4fHFYInNx7rwJMoDw8PjysDT4g8PDw8LgGe5HhcC/DkycPDw+Pi4QmRh4eHh4AnOx43Ejxp8vDw8ODwhMjDw+PYwhMeD48lPGHy8PA4rvCEyMPD44aEJzseHkcPT5o8PDxuRHhC5OHhcd3Ckx4Pj2sHnix5eHhcr/CEyMPD45qGJz0eHtc/PFny8PC4luEJkYeHxzUBT3w8PI4fPFHy8PC4FuAJkYeHxxWFJz4eHh6HwRMlDw+PKwlPiDw8PC4bPPnx8PA4KniS5OHhcbngCZGHh8clwxMfDw+PqwVPlDw8PC4VnhB5eHisBU9+PDw8rnV4kuTh4bEOPCHy8PCQ8OTHw8PjRoEnSR4eHgqeEHl4eADw5MfDw+P4wZMkDw8PwBMiD49jC0+APDw8POrwBMnD43jCEyIPj2MAT348PDw8Lg6eJHl43PjwhMjD4waDJz8eHh4elxeeJHl43FjwhMjD4zqHJ0AeHh4eVxeeIHl4XN/whMjD4zqDJ0AeHh4e1zY8QfLwuL7gCZGHxzUOT4A8PDw8rm94guThcW3DEyIPj2sMngB5eHh43NjwBMnD49qCJ0QeHlcZngB5eHh4HG94guThcXXhCZGHxxWGJ0AeHh4eHm3wBMnD48rCEyIPjysAT4I8PDw8PC4Gnhx5eFx+eELk4XEZ4AmQh4eHh8flgCdIHh5HD0+IPDyOCJ4EeXh4eHhcSXhy5OFxNPCEyMPjEuBJkIeHh4fHtQBPjjw8Lh6eEHl4rAFPgDw8PDw8rgd4guThsTo8IfLwOASeBHl4eHh4XM/w5MjDox2eEHl4EHgS5OHh4eFxI8KTIw+PJjwh8vCYw5MgDw8PD4/jBE+OPDxmCK92Bzw8PDw8PDw8PDw8PK4WvIfI41jDe4U8PDw8PDy8t8jjeMMTIo9jB0+CPDw8PDw8NDw58jhu8ITI41jAkyAPDw8PD4/14cmRx3GAJ0QeNyw8CfLw8PDw8Dg6eHLkcaPCEyKPGwaeAHl4eHh4eFw5eILkcaPAEyKP6x6eCHl4eHh4eFw9eGLkcb3DEyKP6xKeBHl4eHh4eFx78OTI43qEJ0Qe1w08CfLw8PDw8Lh+4MmRx/UCT4g8rnl4IuTh4eHh4XH9whMjj2sdnhB5XJPwJMjDw8PDw+PGgydHHtciPCHyuKbgiZCHh4eHh8eND0+MPK4leELkcdXhSZCHh4eHh8fxhSdHHlcbnhB5XDV4IuTh4eHh4eFh4ImRx9WCJ0QeVxSeBHl4eHh4eHgcBk+OPK4kPCHyuCLwRMjDw8PDw8NjXXhi5HEl4AmRx2WFJ0IeHh4eHh4elwpPjDwuJzwh8jhyeBLk4eHh4eHhcbngyZHHUcMTIo8jgydCHh4eHh4eHlcKnhh5HBU8IfK4ZHgi5OHh4eHh4XG14ImRx6XCEyKPi4YnQh4eHh4eHh7XCjwx8rhYeELksTY8EfLw8PDw8PC4VuGJkce68ITIY2V4IuTh4eHh4eFxvcATI49V4QmRRys8CfLw8PDw8PC43uHJkUcbPCHyoPBEyMPDw8PDw+NGgydGHgyeEHnU4ImQh4eHh4eHx40OT4w8bHhC5AHAEyEPDw8PDw+P4wdPjDwAT4iOPTwR8vDw8PDw8Dju8MToeMMTomMKT4Q8PDw8PDw8POrwxOh4IrzaHfC48vBkyMPDw8PDw8OjCT9GOp7wHqJjBH+Te3h4eHh4eHisBu8tOj7whOgYwBOh6wHR/P/CsQfz/93bNCA2U49bx2HbeHh4eHh4eCh4YnTjwxOiGxieCF0PiKxlm8gE1nJ1iH2VOtx6PDw8PDw8PNaBJ0Y3LvyI+QaEJ0LXAyLnd4EmgQFmJEbZ3ToMVHkPDw8PDw+Pi4UZX3lidOPBiyrcQAiC2JOhaxhRNMSMxNSJTByPwEkMhD1s1BFFPQAlKV9hHTIU+G8kHh4eHh4erfDjrRsPPmTuBoC/Ka8NBEG+WK6q/cXyjAgBRbFTKz8jQsB0erZuj+b24jyxbdXKzogQUDj2MJzZy3LbsXfn9t163+dEqIL/6uXh4eHh4bEqvLfoxoAfSV/H8ETo2oBNhIAlGTJEyIUhQsCSDBnCs7DPyZBrNzBECFiSIUOCDGwyZIhQo+/WI8CTIQ8PDw8Pj/Vgj8U8Obp+4T1E1yE8Ebo24BIhYEaGGBGS56wqG6ZpcZ4SoQrNskWx1SBCwIwMKRJUlQekbv8Q9/Dw8PDwOAp4YnT9wecQXUfwMatXGly0II5PUDKUJScaZChPTtJzliebDTKUJZuz+h0ylCWblAxl8WaDDGXJBoCSkqEkGjbIUBQPEcVNAheGfbqPM6h8Jw8PDw8PDw8/Xrv+4M/WdQJ/Y11JaCIEAEWxzL/JkhOL5UmxDFHLk5O0jnxOevYP7rHq2KRljX1/YpWNl2Vr9mSD1pFYBO1g8qnFsk2CptN7F8th2Aew/LoVBHktH2pJhvycRh4eHh4eHm0Igth7i64T+FH2NQ5PhK4kmBT2kgjZsIkQsCRDLhEaT88vSFCzjrp9PDlL7UCdCAFLMuQSofHk3hoJMjBkyPUGTaf3LkiQwpIUec+Qh4eHh4fHOvBS3dcHfA7RNQpPhK4klEeomccThzyMLAqzhi0IeERqRfKGFFjZPN3E3sGnGvay1A/bomrmDZUkl2jWZrOeqhqrHso2PTw8PDw8POrwxOjahM8hugbhydCVQRh2aa5Nnt7UIEPd9DS66elG2U56qkGGOskmOsTL00lONAiOLrvZKJunm5QM5cmJBhnKkhGyZISiOmiQoSweNchQlmwgSzaQRH2k8UZtXRTmVOQhDHsN71IQ5CL3qDn/koeHh4eHx3GDH+Ndm/Bn5RqCv0muDGwSVJZLz0ee3tQoa5Ogg+lyrp9OeqpR1iY2+9Pzlr0ZcmeX3ZucpfZlv6yyFhnKSb1ZsiQuuwefrK8jHi875K7NwwTMxB6MHDhTtrNRzz3yRMjDw8PDw8PAh9Fde/Aj8GsEngxdfigZapcITct96g0CmkToYLpFSQzQJEK7B5+S3iAXuwf31IgQMCNDjATtjj9RI0Kz7T9JCdCsnk82co9cMpTGGziYnkNEQgRdMhSGfZTldotnyP1d0H55eHh4eHgcJ3jRhWsHPofoKsMTocuPJD6Fotxt2N3QMADoZmcwLfYadpYj1Ik3cGApywFAHm1iXF5olK2qJgnoRqewW5BcICKx3Yk2sTu9p2EvymZuTx5vYOfgEw07AJTVpGHLkg3sjZv9iKPOQuhhaeviYMr2r/lAj8Ic02KrYWeEKAhSVCTPycPDw8PD4zjAE6OrCz8av4rwZOhoEMwvY3dy0SSeeXNcMtTLbwMATKY7C1s3OwMADTJkvDwHxbJsZ06kbDKURzNvjkuGOuHMbhOfbnSqYbPr2C2WxKdjbA4ZyuZKcrvlMiwun/fLJkO258jNPTJeorKcIEtGGE+WYX5x1IFCGg9rpMh4kabW8WCeJQAI58SytM5JEKSiJeNd8h4lDw8PD48bG95bdHXhR+RXAZ4IHQ0C6/I1ZMiQIAZDhIAlGTJEyIUd7mbIUMfyKBkyZEhMY/twaTfExxAhF3Ydhgx1bNucDGWOnPbuZEaGcqtfhgy5IXQ26nlDTY+RTYayZHPhJYqjZsihTXziqF8jRTPbYOElCqkSX1pbXnqJfN6Rh4eHh8fxgs8tunrwIXNXGJ4MXToCwuMrTCkZKsrdGhEySKKmKMC02KMCCFGQNGwhmrZxeaFGhNqwW3yqQaZ2i3tqRMigIGFuu5NP1oiQwVTIY+8dfIrkDTXrHU/ON7xD48lZSoYKIts9Lbapd6ikst+7De/QjBAxMuS9RB4eHh4exweeFF1ZeNntK4QgiD0ZWgvNSUDjaIOSoV7nDkqGRp37NsjQIL2FkqF+dKZBhnrhqZXJUDfYbJChbrDRKAcAJYoGGeoGmw0y1A02KRnqhpsNMpSHowYZ6kSbKKspymraIEN5xPvWy28mtltoWYacqO+p8Dk24W1EJpUNyDmY2Zv1suujfUJZRr68d8rDw8PD4+rCjxuvLPyRvgLwF/Q64IPXmAzge507AKCW+zLq3FfWPEibA/t+NAuZG1fL5P9eyEPbesHMvlct2+sGMxKzX12wbM2+2vbt6h7LNtt+h9ga288J13axzBHKw1HDxrxMi/Lz41hUY2TxEGMrF6gtb8jNMYrCDFGY1aTI46hJUAwZSqIhJsWyrZCq1xGCMydDdRnviyFDAZqTyHoy5OHh4eFxbcPnFl0Z+JH6ZYQnQuvCJkOzwWsbEXLhkqHxPHfFJkL780G5IUK1eh0itD8nPoYIAUsyxEiLS4R2q3MNuyFDfPu6bauckZyu5XkyxMcQIRsuEdqZWoIL1nEsLE+SIUX1vKEl+eEkZ5kLlMYDHEy3auWSuI/JdLuxnYFNfKKoj6LYdmw9FJaIhQubDBmiZJOhAHFDYKOJw8iQlwf38PDw8Lg24HOLLj98DtFlgidD64CFxzUH/Hl6smEbT85Lr1Aa9Zv1ojnAH1db1CsUkdC4gESZhsS2W52jniImqV0R21b5iRoRMmA5QgWaYXUs1G5mb27vEqJFWSLpPS32GzaXEBmwiV4LkkvEHvBFsSND5ZoVNLefESLmbVwnStgTIg8PDw+PawueFF0e+ByiI4aP+Vwds4lS64PWTnYbJUMDQnpG2X0bZGgY34ZhfFuDDPWDM+gHTa9QPzjZIEO9aqNBhnrVBiVD/WqD2EYNMtSvRg0y1K82KBnqVoMGGepg2CBDeTBskKE8GEoylIdDKvrQdyamBYA4aCrCATOPUKO/WXMSW5anpULyEkJc06RJfqNDVO5shGGzTndC2aW92S9mA0SoHpUNv5Khd4z4NdvnE+fqCYuZXdXh4eHh4XFl4MeZlwf+iB4h/AW6GtQArJM11eAMEZpYIVSjrEmOhnFzWwNDhOw8n34wG3DvYxna1SPkhtmAJRHaDaw6q3k+T3C+YWPbuuhWM7KxFdy7sHUwExnYqqzwt6ApPMBswIwEGZTkq1IyH/jn0XARTmiQRUOM7bwf4rFhniFDhty8IwDI4hHGU2u+I0JoGMkxZCiKuiiK3Vo5E3ZnEND8pHYyFIYdlOWeY+ujLK161yZDlzvsTolFrEaG7PswDLuLuaHU/enJkIeHh8e1A59bdLTwI/gjgidDq4ENttqIkAubDI2L2cDaJkP7luCB8gi5cEnPfrDTsBviozxCh9kuBGcb2xviY4iQbTNEyIZLenaqe5q2cpajZBMhoE6GOuEm9sqzjfoNbO+QIUU2GWJ5Q8bGPEMA9w7ZZCiJ+pg4kt1JPMRkeoF6hhRsMhSGPZTlTo0MGbJTlntH6hlazqF0pTxDq3mFgMPJ0GF2T4Q8PDw8rk14UnR08DlElwhPhFYDG2hlZM6fyXSbkqFu3CQyWcByhHioV0zygfaxTT1ALHeI5QmFrXLOS1wIzlIixXJ/pkHzwTbBanlDO+U9DSJkwLxDUzTzgaYkb2gy95zU6+NheVXVDAFk8xWx/CTWR0mISDts+3WgSBJ/2ZBcsIp5gy6Hh2jV3KhCELnVI6XZ+bTV/jw8PDw8rg14YnRp8DlElwBPhlxwgsDmCOrn92nYRvn9GmToRHL/BhnaCG7FRnBrY/th1cxlmdmbeTODcqNBhobVqEGG+lUf/apJvPpV0xPSrZoD927VbZChTpWjUzUHqjnZPquaA/QOaTtHv0GGcvQXfy6SoFlvEjTbTwiRTYUXKCNzCLGySbyaLY0HdFLdNGrmMSUx2UcmqhF16SSzSdRHlrBcKFZH0xYRWxh2RC5Ts31uY+00j3EcjRCTY8LmeWJ9B4CItK/KsnpX9SypfV91ey6tvrp8Ottee8vYuWvagiAXXrTVPph4eHh4HAX8mPTS4I/eRcJfeC6aL39DhIp5bgKgiRDDieT+DZshQntY5rasS4R4WRb2Nhv87AZW/1ckQspuiNB2sJy/Z1UiNNuek6FVbAAnQjP7emQojzewPz036ysZpNtla3W2kCE754iJNzAiNNt+dTJkL0/nuUisrK5Dk6E4HmE6z49SoXfrkiE7j8mQoSgaoCi2GtvU+hk3r2fT9yjs1u5JQ4ZcO7AMW1yUJWTS9N/OQzIEwZ4/ipVTYNsbMlOXVW/L16rb2siQ2yd2/O11ro3sgfW/D8Lw8PC4MvAhdBcPP6pfE54IudBEyIZLhIxIAiNDbUTIhkuEbIGDVclQGxFq2lf3CrlgHiHg0rxCwKWTIUaEgNU9Q6t6hYD1PEPNOg8nQ1mygfHkXI3ImNwk5hUy6w+zp/EGDqbnamQojoaYFhekZ4iBiRhw22qeoVk/RtbyANNiq0aGjAiF8vYo2OVZLlccn8B0eq/0rhyGtv2/+JwlQ4Ca80mtP0+V3dcZAbLPi7GxObGa8KTIw8PjysHPWXRx8DlEa8CTIRuMCDXzfACgQ+YP6pLwpF7It6chX1UzVygWYTJRxc8bK8/nGbq00JeC5JFMRW7JJCBzCq2Ya8TKLeoleUhTZiPzFM3szYEeyy9huUVTMvcQwPOIaJ1kPiMAqMgxZGWZtDnAz7UCy09i9ZYkX2q+ZsWWeJ9Y3g/t/6rlWsDaUvlZZbnadXGpeUt8rqnVX10BuYeDkCkEAutEkrMBR0XvIf+a9fDwuPLwpGh1+ByiFeHJkEEEFp+fJc25bAad2xtkaCO9AxvpHY2yJ0ISSledbpChYbmBIfH0KK/OkOX/oIM+6l/xc6TI0RwgdYjAgrIxe0acsBktlyIj7WeE+KXE28S8SlnVWfw12yMeIGJLgg71LOVh07OWEs9GGvXRJTknKZHBzlhuEPE2pckAabJ6WYY0HnDvFCnPbFkyQp7UvZBJ1EWWbDTK8pylpscniYbUY8XqzOKmBzSJ+0hIW23S6MweOx6uOOxQDx2TTGeeqCQeUvuqtijqIoqbxysi+8BscTRoePLieIPmTQFiXizSfhx1kVB7897QOUY+z8jDw+PywY9dV4cnRCvAX1AGnAi5ZGjQuR2Dzu2NsoYIHVTLWP0T4X0aZGhUncaI5AUZIrQXLFXPlOjBsOpLMgQA+1h+yVdEaB0y5CJDvBYZatiqrEGG0ipvJUPdatiwNdvqtpKhbrAcaCsitA4ZapbrrU2GsmTZniI4bWSotn08oCF5qm5jy9PlcbHrOwyGDNVC0OZkyCZFjCDN2tqY99s6t3MylFqhcSyPalYvI2O9xf/2cVMkicGQoTTeWNrm+8hIQmN7k3dVC0NcfftwMS/Vss9mmZEiBZsUzQipOTerkSK3v0Y23iZFwVzGXocCelLk4eFx+eDHsKvBE6IW+NmADVyvUEmJEABJhFyvECNCACQRcr1CF0OELtUr5NrX9Qq5ZOgovELKM8SgiJDyDLlgRAiok6E8mg/WBRmi/bLIUD4f5K/j7bHLGrJCyY0gQm55s6w8Q7wPXavMBoDVPUPNMv1aPbX2iWdI9SWpiUjkc9tqZMF4iWxvkfESMc9Qow9zkmCTBUaCDtvezlsyXqJwhXmpDCmy1feW4hcbh24PLM+DTYTMsspJs9HuKfIkyMPD48rBj2cPh88hEvAXjkk+bl4eTJ64l9/csA3jW2nuAZscNReiAYwcRMRTlbZMiMnyB2hbQYwJmUtm1RyiNIywT3JYCpI/MiW2BBF2aa4PqTPgOUgqj2gSNHNbWF7RzE7yQkh/M/SxWzUneC1ZzhPJF0rC7mJyXRvFivk6SdjB2FJAaytL81IwI2DjQxTbDquD5UKxuZfWyeUJQ0Kqkw0cTJp9ZblUDGk8wGTaru52GJK4u1ACtHGpc0AxqDpXjYlPov5CSdAGe7aH4nmfJSMcTJvHnPWN5Y9FYY6DuRqjjWszz8iLP3h4HAf4vCIO7yEi8GSIk6EsOd0gQ4P8VgxyogBHyNAmbsEmbmmUHZXNHBPm6TGz6rjoB3wy1jxIkAeOVyaIkZHzy8hQEkRIgibRikmCeBo2y6ntE0LemI15lQAgJbakSpBUxI4UCfFCJVWKblX3gKToIEXTM8Q8SBkRusiCPp0sd1VJbwCIhbqdG1KXCCU3KvUd9ah3KCfS1DP7BrV1yETCVBEvHjRy57JktHJ+Up5uNupl3iK1fVtYIEMSd5HE3UNtevtew3Om+sBsbujeoiwNo+w2QtfisEuvG4YsYcd2RPPJFOKoI/ZNeFCd6ykK85XzjALERC6c53FqG7Orjzzec+XhcaPDj3E5PCFycNwvFPYCZkQIgCRCw7hpV0TIJUM2ERpbngZFhNrIkAtFhJhdEaF1yFDDhmgtMsRgyJAt470OEZqVb9oVETJkyCZAigzRtuZkqBNZuUlsElBrUGtLeVOCcwgZssmTChE7jAzZpIgRJGA5uO+kpxo2GyrMjoXm2blKbdvYyzZZkvlRc7tNclYhPW75WXt27lI7kbD7Y5Ztm8phMqF6ae1ctvc1ruUDmfA8O5Sx/dgmca+2P4vwy0OOaa2/tuT5IaGF6+QZHT4hbURsqmzg/N9szcPD48bGcR/rMnhC5OHh4eHh4eHh4eFxbOEJkYXjzJh5aAbPF2oLk3PBwuSYZwhQEtmrh8mZELl1vEMu1g2TW8c7xGyreofSuc+nUYfwDrnoVn0kVbqWd4hhFe9QJ9hEEnRXDpVT4U6reIeyefiUCpVzkcejhnfIeJRUqJwNEza3SjhYJz3ZDCVrEWxwvUOmPhYu526fJRuN9plHxoB5hoytbd2yvabXq82jovrG4Mp+s9C5hbgBuXZchTgmgLA8ts39aJssOI46DXujv8T7aMLmXK9RW+ic+zye/XafF22hc6uUVd4i7yXy8LjRcZzHvAxeVGGO43xhUCKUnqFJ5JwI3YbSSew+Ud1KE/y7hPR0kVHhAUoiggglSfxVwgdREKBwLnFmU0jDEJOy2bcwaLYXBQEOSNmCHMcoCDF2cqySIMI+mdh0QkQVEsTYI6IIBZmwFZiFye0G2w07m+A1qTLsBnWxgk7Vw16w02yPnOMEGfbQFDtgk74mQQf7JRNGaAoFJEEXY6dsGvapMENJrqc8GuKgaB4DAAgIic3CYaM9ACjIOUrDPvam99RtUR/7JKGeIY83aN9Yv/JoA/tFs96KCIJk0RDjwjlmUV8eBwZVngkLZNEA+9Pm+WBIol5DsCCOcir8QK+HqEcFHtgksFkywrRoioWoCWPzeISDon69x1GHCywQIZUoSqkARkEmslXCC2wy2ijqY+qIgERRD0XRvDcZwrCDslytrAnjq8ikzLx8iqoxCXMErCj6EQT56m0hRkWeix4eHuvDiyzMcOw9RMdZijAIUgQBkX1OzzRsvfzmhpLcML5NkiEXo2oDo2qjYe9Ce3pcMM9LhABRCxla1cbsaUgGVmGEjHiF1qk3IoMwtm/AjBS6xyghBDaZ/2vYlVdIzGmUEFW/jlAATJA1Js5NyPkEgBgZ8qCeDM+kvdOgi5R5loiNzX0EzAbwuSNv7f6ur9tEFtbXu7/tNu18KNUPJjsOzAiDKxChcpTyeKNZNuJls2jQqCdr2Wcqix71G3a1H2nUJ+3pXBvXI9Qm/80EHpRHyfXwZMlIlnUnqE3jgfQiKrh1x1FHT/6bNMuqPCZXeCGO+lIePCbH2Z17KYp6cj6m0JG/D8MOQpGXBzTzmoIg17lO5H3CPFMqImGttmhelYeHx7o4zuNgG8eaEB3XC6CNCBkyZLxDjAgBMzLk4kR1qyRDLrrzKUJdKCKkyFDDNich65AhF2kYSjKk2lutrXBlMqQFGDgZMsitOYgYEQLqcxp1S2vC0BXJUDLXv2N2F/F8itpGWUGGDLLASqY/hAxlVtgRG8DnNZGG+qA/j5oDVJsM2cuU+Fi2Tkzk5K1BLSMM9vpav1j4nkWG7GVWr02GMmf/GWy7Iksr99MiFExUoVavLUwQEYJukSMlxmDgTsDL7KvWBdTDMO1QObofFvmJopTal/1ZXnN2CJ1LioD6nEkROS9sYlq13iY9Lily1wdOSDJVwLNs9vvkMFJkE5lVSJGxKRU+Dw+Po8FxHRMbHNuQueN64ikRSk41bFVVUiK0ETcnUy1RUCLUJ4PpCaaUCDFSUFQltTN/UAVOQhSKqlqZyEzKskGGJlVJy7JQvIOyoESIhf7tVxNKhCYk7GQPY+oVKkSIym6wTb1Ck6AZArYbXKBkiIXY7WObkiE2z9F+dYGSIRZ+Na62KBli8wyNi/NysM9wUGxTMsQwLi9QMsRC5/am9zT6sT89R0kLC4c7KLYpyQjINbFf8HpZqOu4uLD28Vm1vNo/FrZ4MN2iBKRkoaLTXZrPRPdvcp4SHxYSNy32KamJxDvhoNhp5A7N+ty8Zg8mWzVCtChLwurGk7NUiY7VO52eaxCiabElvUAuimJHeIGax7Is9xqEqA1VtU/fKyyEEyg4iSHHflYv8Q7Recp8yI+Hx1HhuIbQHUsP0fEkQwF9aaVxU9ygk56iZGgQE4JU3UTJEBNI6CChZIiJG4QIViZDofDSmHqYjZVPyOApCgLqGcqpmAK/nXpRk7So/vbIOVLhdEMifNA2QS3z1DGhBgDYLJtiGkrGe1A1PSORqHcUNK8hJeAwDJtS7Urem3ksU1FWl+f9GETNPjNSBwCjpPnBYJjeTsuysDy2/axsc19GCa931X4dVflRet+Vyw6z5nFX6GfN4y7r7aze33XqBYB+etPKZbtp815wRRcMennz+lbhd928uX+drLk9sBScsMHEcYBZaF7DFusPBRERqIjJO2RWlnmh+D3J6k3i5oe6WdlmHaEQZuEeJC8Y4eHRhuM5Rj6GhOh4nmgSFhafQBqfaHxBtedUMRjEN0sy5IJNqArMyJALNQcQIzEBNBliCBFIMuQiCUJJhphtVTK1Vr0iF2qdcDpGhhLEi79meXJOqgwZCZ3jk7tmNMyOkaFsHiTZ7AOZ9FVM8KpszK7IUB6MkAckhEqQIZ7PNBvg5g6hYWWNZylz1MSYd6oTzmx2uOCsHaLoNq/XXZeHo0aOkylj6rfbM3+sH6p8vR9Duj9ZRPoxD93rOB6wNOrJ/Cc3DyqLhs2ycwKQOUQgi4cNL5fZ1lUlzKIhneDVbO/moCVhp+EVi+cfM5i3rJl7NPN8sHmntNpgs6xLfsxvRopc9b1lX1gonp7zia2Lov6hIX0GQZgjIJ4xSraivugfJ0WMGGlS5ImRh4fCcRwrHytCdPxOcPOhb4iQi056qkGGXCJkBrob1U2SDDXqRSLJkAtFYhQRYmSojQgpMuRinbwgRXrWqle8mFeV7wbqZKgzJy+MBC3LL89Jr5pPuEnIzayeJRnqzMsyIgTUyZARXGBEaNaHpd0ILigPkG0/rKxNhsyyIkKzMt1Dlw2UZ8gua0iDEn2wyYMhFC7RWJS1CI8hQcxb5JY1ZISRKdaeIkGs/IK4CeEJm/wt+iEEHmxiosQlGDmSZQk50nlTZiLfet+UDLzZB1v6XQlJGLvtHVJiD4YArTJBryFFSWxd44T8KLtNimw5ckWKzJ/5ba9jMEQltAiPCuszpCiy+qnqNf2LavXy82pI0WG5SmaNh4cHx3EbMx+bHKLjdWL5Qz5LmiSmmzUV5QBgmDTD4E5WPESHEaESFSVCLJdGQb2qFBFaBypkjZnXqXu/LCgZmpC8BwAoye2nbsgJiclncuUAMBV2lV80JXYl4c3KAsAkaOYMsXyfWR3NnBFV1lUxXLds2BJGyHBQ7VIyxOoGeM4HkyMHgIB8g1L9U5LQq4Ll2rRhrzwrCRHDOueFyWazHCxgvX6r9hhC8g44KHakGl8ojj/rd1E2r/1Z2ea1wfKlZnZSluQetdVBy5I6JsU2nZ+J9eFiwHIQ1HkNw6b3md0nqt6yIfU9L1sKO72Pj8UwyMPjonBccoqOhYfoeJGhJuJ4k8aFs6+Qvfg0enEz3nxYNW39qkeFE/KAe4XY5KYqcGFdrxBDEHCCo7QXGEmKgwAhKR8RYxgA3YjkPZHtpWeJqNvpMD0t1a3sOQt9E8p1tmLdoi9Vs2yMCDEL11MeJ6J+l1Ud5ORaYpPG5uijg+YgVpVldlU+RQf9oJkHouvgXiRXYhwAtXWCEfV0sbIZ+nxiXGIDgG6wQetldQPAyej+tA5VT6MfQZ/auwF59gQj9MJmeC4L+TN2WpYQuG7UPH+dcLMRigjwDz+zuoc07JKJfAA8BDIOu5RsMe8WkzEH9MSxbLJeZlN1dNLTVNyCTYILAHGYIyZhbswWBSn1svEJcoe8XqI4CNQ9Y4v2wi4i0l5I2gvCVIhLrPfRxMPjOOG4jKFveEJ0XE6kgiJCigy5GFanJRliYLLZcRBKMsRsq+YKqTA4QJMeY7cV3hThiFl4WxhIMsTaUmSIwZAhW/JbebIMGbKPt8otMuu4vV3G24YhQ3ZoHSNCwJIMpY4MuCJDDIaE2HMdufMeXUxZu7xNdA4jTm59hgzZJECF1LEwv44I4VuUbem/QbYIS6yXNYTRJjOKCNnl7PKMCNn1MKLjtmPK9AKeIG+TIhXeZ+z2elXWkCFGioB6fpapQ4UgAvXwS0OG3LYX9hVUC02YXtvcU4t6TUgfITQz+0Zj2SVFh9VhkyIT3qdI0axM3lhmhGZmt0LsTFkVEidIkU2MzDIjRbM2lnWb9z4jRQA8KfLwWBPHYSx9QxOi43ACFa6GV8genAfzgfy15BVidkWEFBliUGTIhiE5yiukPEMMq+QWGQ9d23xGNhnqzNX/GBmKqlh6hmpttuQXuUTISHozMpSiI709tTrmg/5VytoESHmGVHlWr/IM1crOiYHyDNnIFrlOjjAAITyKBJnfzHvm1lsnLRuN8i5MGbceQ3iYl8slTIYUqVwuGyoHihEh4yVySZD5vUoYoE2KmmIZxIM374frMTKkyCYDxkvkCjksBR648EOtf3NCk8SOGESLp8j1AJk6XAnxwzxFLllp8xRFjkqm8hQxYmTqSJx1fH6q2TFz3/HKU8SI0ZIU2c/eCJ4YeXhw3Ohj6hs2h+hGP3EKUTSk+54nm4hIrPaAhIz0g5N0ULtZcXnVLpWKDml+DEMchJiS+PI2BTkXURDQeX0UlPS24DwLglevg887NCW2OAgwKZt21WdWbxQEOCibx6kgxy4OQuyLuN8kiLBPchBY3lGMEHtkPqF18ouSKsFBsN+ws3lqEmQYB3u0bgaWq5NXfewH2yvXsW551u+s6mA3uLDS9t1qiP1gh/Sjt/K+d6oe9kgdofjGxfrcn8uwr9rvvOrTsipfiuVGdasBtoJ7V6qjgyF2q3Mr9Q3gOVc9bGK7umflsgCwi/ONdSpXieUTpUEXu+VZUge5N4IuxmXzmKZhH3tFsw6W45NFA4yLrWbZkp+XguTWJHEPB5NmHbM2m/UkcQ+TafP6U3lC7Pil8QDTonm9s3MTRx1adlo0nyuzPjf3MQxSFOVusyzJ/wqCCJXITfLwOO64UXOKbkgP0XEmQww5kWvN4w36JZLlTwyrEYZV88tsN0glGXKhwuaYDVgvRK5tDqJVpbdnbTZtKpyO9ToIAgRB0PD2MG+Tqds9Vuso3Bl76syJpI4p0C7j7eZ9xeLxECNqKNIpL1JS8fC7tMqRV/WvtmxyV2BGNlxPkpH8zh1BD/e3bWfrLqZ8t3K8OCLkr1sNG2XNbzdfiuVPmbrd+tmEuabuVfvcJ3NStfXb1Mv2h81D1a820K0GTlkeitXBEH3wEDfXe6VymvrByQWhMTC/3WcaK1trA/VnXYouDV9M0ZVhj92GPHlfhvm5an1GndDNpUrDPvJog9fhhLmlYVPKHACiMJNqd+4cSCZkTZV3vVVRmCGOOg0PVBRmci4mt2waD6jHipUFZt4tt3wYxFIp0PUghUGKOBogphMn83nXPDyOO27UMfYNR4hu1BOlEEXDxZ+LPNmUZMhFPzgpyRCDIkKKDDEbs68TIqfIg1teLS/b1GSI190E8yABIg9pBdJzWB6Rzntabpc798I6Mt42GeqgPWfIJkI2UWJkKK1ypBUJgbHasAkAIxtKrMEmA2p53fKH1WP3zyYLLnFog02GDtt3mwzZy3Z7h/XZJUOq34ftg73eJkV2/YwEDSxPsx3eZ5MiFvan8pvs51Yb0Wkr627nkiKgHqJoh0zapMhWJ3RJEVAP+bPD7ZSEOYNNimwixCTA7Wd9FC7vG5vk2MRGTQyryrukyICRFyVBvirRccsG1rOIlrXIT2i9r1hY3axuT4o8PFbFjTjWvqFC5m7EE9QG5RHqpHxW8l7alNhOgi4lQifLZtkIESVCs3qYnHBzwD6tSkqEplW5Vq4QIwMlqrUksiOhIKfqZyiqipKhSVlSMkSi5jCpStoeC5tT9oOyoMe1aAkjZKF2e5hQz9AEq4fIjYOx9AzRfgSsjj1KCFjo136wTQf+yq6wbj0szGs3uECJhLIzqH0fB3vUOxQQkqr6rELqFHaDC2sdQxYWthtsUWI0FWGX9LhW56hnaB1J9e3qHvqsawOThx9jm+aQ0X6XZ6low355nirWsdCyveIsndNqvzhHSRALW9ufnqsRIoOD6RYlNSrcTpWfTHdo/awv03KPep2YLDrAj8m02KPXvZI/p9L45W6NKNl2BR9G5+FRx40UPnfDeIiOExkKw74kQxkRUgCATtLM/+mHZ+gAoS+8QhlTJBNeIUVM1g2RY2DkIQjWn4uI5e8EwvOi+FFMGFUSas8QQ06kulWYndrHTkRED1pD5/i6ftAc1ETiMaEmfu0zT4oIh0uFol2/JJNKCpI1KPk1Pyqb13ZWZXIC2s2Sf0hgdlXHifLmle1uyKAB67eyM28bwD9oAEBXtKnsp8T+sHPcE3WcKbm09bDcaNZLzjsAnMEd1N5l/RB13FQ1ZcXbyqswRjYpNcC9Whuh2PfwFmpn4hQb8X1o2VHC54VjoXn9lPeZfSQDmgIQBu7k3Ys2U55fGkVNwsGiFgBQQgWAhtupsDpZBxFmSIXSn5rwFVhO+upsIct7eNzouJHG3jcEIbqRTshhCMmXwizeXPy56CQnJBlq2KoRJUNdZOiSAa0iQusSk1XrUGFiKzpzauW5Et3M6H6PXEe1LpkfkjSqr6Rhb0LC25ChzMlFWueYGDKUBREyJ1SOnbcoCOmkuYYMufMXKbluplJnyJBLihgZSqqEEh9jc4mIIkmMsNg2d31n7pHpNPJ1moMxs607GDcExyU6jPgcVnaVOgwZco+BISYuQWEkBliSIZcUmd/udm1kqO94gsxv186IjIFL/MwzyX02md+rkCLze1X7so2N2m/joXM9XkaNkJEi12a8S27+kQm3o4p9JCcJaJIfIytO1fgcApAYme2wTi7iudckjXqUGKl8INdzFIazZwQjRWEQU4+QS2jMb9amK8ut6jD9YGWV4p1LioIgXkp5S1LkiZHH8cSNMga/7gnRjXIiDkMY9iUZYmgjQooMMSgitI5XaBWYbdf1CtnmVYiRnp/o8PoPqyMhd5NLWJI5AVIS3swz5BJEc+yVx0l5htzzlpsBiyi/imdIyXUrEmRgk6GOGNib34r02HabMDHiozw6s/b5AM+2m2W3HjMYV94e274uCWJ1GBLkeobM/isvjU1ilDfIXqfK2PUogqVIkPltExjbS2R7hwwpUiRIPa9sYqNIzmEkCKh7h5QAhSFFrjQ7k4NnRAlYkqLUCZ8zpMgmRywnCbDmU3ImnjX22CIILikycElRbd2cFNlEIw47C5Ji21VOkSFFLikxpMj2+BzmKQqc59IqpKit7Mw+P/7WszCK+tJbxEkR4EmRx3HFjTAWv65ziG6EE7AKGBHKEx0L38t4GMQwIhLb1QYSNL/gbYp8BzOIthEFAS7XVaQG/YqUqH6UqGhdbP6fWbsrdQ+AluouuAItFfCNAmBKEoyYVPesDm5v23+GiZDJnVTNXJAYIcYkl4jJdbeB5gSQ3JM2UOlrZJgICWiFdXJqWJttdoYOcuyBSwVfKlT4oTuAPAz9IMN2xXMxGJQkNYO6DtUxVPLuDEG1+n4O0MUWeK4Iy2kDtLw4y4VSZQuRi6dkx/ewusy5kryekuttKnNt9P1TkFyBOMwwKZty2CqXR12LisDQfoi6mQR3GMa0vDxWpZDxlnZ1n6z+PAuC1OcmedwwuJ5ziq57D9GNDOkVIpPxzewjOiN5NzpJZ25XXz7pxKthLMkQA/OuKI+LwrpkSEENwkIEKAjhYGRIhaYl4eoy2VE4+1ulPWDmtUrJBmz/Dwsz5GFyAfKQqMaRepQEd4SQ5pal5EtpjJDWEyFCRki5CsFrC8tr2lNat1nHQv8yWn9SU9uz6+ig+dV5VZuxq/Kr1tNDh+5LF1lDTh2YkR7z59oZWFljHwRND1uf9LGPHEMyKe7M3vzi3kcHIyLGMCSeqVE1wBDN59YQPWoHZqTIhjne7PnXqfKGxwuYeeq6JQlxIx+UsqpDxSVSdLQHidiZkl6GPp0AOAk66ATN8q6kNwAkYRdZxD1vUZjJvKJkxRyfOOxQ4pNGPUTk42YcZjXvll3eRRCESGIltd2sgynbBUHYmBQWmE02m0RDJCRvV0t2N6//IEilah2zB4gRiDxNDw+Po8d1SYjseN4bEW1EyJAhW81JESGgOXs7MCNCjAz1q54kQwyrhLHZ9nWwTt1taCNDzTY1GWJIiGvIJk52HpHNa+zQujYy1LQt99/uk70vtr1NKY8SNgQLMmRLdreRIQZDhmxSZNdhD9wjEWLCSI9ttwmQvWxvp4iQWpchWZChrFaPFd5Xa5fXbwiLTVwuZfmwunsWybCPrR3uapMiRXps2GVWWa5tO+8bI0UAaqTILmOToj4hTsCSDDFSNKujd+iyS4QY+jV589yyLwe/dtiiTYqMQqBSFbRJkQqrU8v5XPpbyYvbpCixiKpNioy6XSfapMRIkSKgTkZssmKTIhYGZ0N5g2xSFNfC87JGGUnOViBFi7wkMmfSrN/6+rBJka1QZ5OiIEjm/+eSGDHYdpsIeVLkcT3heh6fX3chc9frgV4VjAgB3CuUkxwhYPYCYUQoRkaJUIKUEqGBfHE1B9NVxclKm33VuoH1iRCTpo4C4UUJA0lM6KSspGxR8ZC8g6KiXqFJyclQQY7LQVHS/S8qLjOu+gJwgrhfFtQrtF9NKRkaY0rJUEXqPkAhZbwZGRrjQJKhZtkx9QxNMKFkZYwDSWLYcRxjQr1FexjTevawL4nMqmXXtbN+TzCluX97mEgSs12NVyJKbWW3qj1KgraxT+06fK5pPx9sURJ0IdimXqQL2KGeIXaNbmFXnrftYKdGiJb2Larwx8LtdoMLVEZ9N9hq5B8BwB4uUM8QC03cwVk6aex+daFGiBZ1V2ep3PeUhEiOi/MAOIE5KHao92ZS7lGxBBaiVpRjSmyKakrrnpZj6kliIXuT6e5CTMFtk+3PtNhDQLzoZcnDfybFBSrZPS22FoTIRlXtrzynUVUdUBJUiXBLD49rFddb+Nx15SG6kclQFA0P9QrZUGQIAJ2zoodN4RUacK8QeagDgiAgkGFcyr5q3cB6ZKiqNNnSJIz3hYfC8TpSkUiUkQ1mdTfLqlwkFjYHKLU4PVmtsveIZDcA9EP+AmdkSHmRWLgWwMU6ABUOx/unQqGkd0F4BlQfWXhXWz0bZGCq6j4BPgEmq6PNTsuSAS8AnGr58n1GfHFnuEkkzt9M5pYBgJtISBEADIj6GLMBwO0hz5lU9tuI50PhTKA9IqdFWPHJSj9/XSg59xMll8I+KWTKmZreyYpLb58At28Et/G6SVhdLz6DXizk22N+3O1JY20wgqM8RZmaUkLY2UTjylPE5j9qtYuJapNoiDQmk/cm/FwnMZcrZ6INQZAiipv7qoQctAfp0tRe29AezueFJTxmuN7G7NcNIbreDuw6kHMKCSKkyFA3PklfVCq8gsXEA5wMqYG2UodTpGddOe11yZCC9AyFQcMrowkFr5vZA/DXkanbDbdTZEhBHUf7f9quQ6LWUaoz0tyZcy8aMpQ4L0KtUqfC5KIG+TG/17W7UPbOIkRutfpV31X9dhvub9e+7j51kDTW9YxksiO13otmbbGcsa4Iie1FsSTLrt387seOBPi8XfO/a2cYRfWBsiFJQ8dufrskSpGqfphKr/eAeLzM+XG9W8Zr6IbeZcha5nniEu3uvEsm9M7NS+q0KAOqXNBBVX8XZPP+uu8DIwPOSBHAJbyB5oe3aH4Mm/bZ8XJJURJ2EMoPb0pprn4cDKlySVEYJEiiHg3bi8SHHresCadjpMi0y0iRmt8oFu95lxSZ34oUMWJ0NUhRe7ueFHnMcD2N3a8LQnQ9HdB1EEVDSobW9Qq1ESH75TcJZko2M69Q8yGfB4kkQwxsUO4m99uEqW0Q7+JSvUKHtisYyCpkKLBstt0sq67L42iZmXT3zD5bse5xXNVjZCaHjYOwRoYOk+ZeJb/IJhH2shnMJ4iofV1yY9tZfWbZ/F6VkKxSJ1vu1HKPOAli2ym7qtvYe05IjiFFinx0w7hGhuxlm/ActuySI0OKVLu23SYv9rJLigwMCXLJkdlW1Wd7O21S1LGed4Mgo8QIWJIiN4TSkCI7dNMmRbZMu5p7SU1Ga0iRTYbsOpQ0uJ275JIiA/NeSB1SZ0hR7BwHmxTFVl4Mi0ZosxtSVM85ShbEyCY8Nimyl11StOijICLJQjZ8eQ1EYbr4bYf4qbynNBlIb5EiRYYYxRbhsUmRTYSUvDcjRcDSW+TmGi1/28/8oyVFLgmqt2sTIU+KPGa4Xsbw10UO0fVyMNeB8gql5AHYRoQURgGfYX6TzHYPgCpFsa/JwKXNN3QY1s0Vupirl4WgqZA35RVSHh2hkk2zJQIAU7IDE6FizBTxLhYsT4PJfgNamrsQdpUbcqllLwbreCrbsG4/16n/qOpmXj0lK9/Wv3XvQYajeqscxfWh+jIV12/bugmRUz4QEsuFsK8r314FTfu68uUHQTPPBgAm4LLRB0KSnOUaAUAh5LoLUV7JbyuPEUMlju9BsUPtSlKc5Te1SckXBZfIVnLgpcijYG2k0QAHxVazDiH7XZW8L+rY8DfRemgTeWA5ejOsN62Cx42H6yGf6Jr3EN1oZEi5vNN4uBYZUvHUgIgHL4d0IsIuMprPkQURHUiogZRSlmN2nZ/DvR/KK7LuoKstL4iLMPB6YsGGQiHAwIqrMWeAgJKzEELVThG5FjtbFyJASgbPQQBqZ/lLgBiUBxGSoEmukyBqhN8dVp7ZWR1ZEFO7kY9PCdlPw0jamdKiUl9k9oupm9m7YULtzBvTj2Nk5Nx1owi5yEvrJSG6Mdkm5vZezD+a9JOmvZ9Ea9uHSXNfmQ0ABqSOXszr7sQRBgkffOdR1Aj9A2bnhIXcMYGJDhIqJNFBih61ZzW1wKU9p2F4KjSPTcybVAl99idVSmXAE2StKnZM3jsjHqE4yJCFpN2wQ3OKkrC7CK9z63E9VgCoOATA341REFN58CjMhNIcD7cDIBVdmT2Je9SexgNkxLMEzEhRsz9c9lt7kJg0ecZV70Q+kJIJD0ItHMMkyMMwk2F+nFypgHOP6xnXw1j+miZE18MBXAcqKVIRIUaGsmi4eOC7X+W6waYkQwwqsT0jg05FSmzSY/MB9ZV53YR/RYQuhgxxuyrP7YYM2eQnDILFb5ss2byDhdy5CKQ3g/TPIjY2wVF297ftOViH5AJLMmQPzO1QOzt/JVlhuV73enZDemzyYy/b27lEwiYojKy02U1dbp3mt6pbLdv1KKLVDdtD0DLRV5sUdSOrzSisEaOeFa9pkx9GhIAlGXJJkfltE5FLWbYJkFl2SZEhQ4wUufV1rP7apCiPokXoKFDPh1LnJJ1fa4dJkLvo1STWM8tuy3Bbst4W0ckXst7OPEpz1TtGioCW94BFipJaX+oh17G1ziZFhqwwUjSz83YZKQJQI0U2EWLLSdCtEaNgHqalPhgyUgTU5yWylxt5RfPt3aku4iindgNJolYgRZFFSmqy33NiEsXDGjEyhIWRIoDPkQRoz49NiozwUxDmi79FP+dhf2pupmtJFMLj6uBaH9NfsyFz1/qBWwf060gQUyIErOcVioJEJsMmyOhLkClWzZLlm4OJIFhvwNwms902L46NElxOukR1UaE4fJJUrvSmQueYV6isKuoVmpaVkObmj/hpVVEyxELYJmVFPTxFix3gHqNJWdLjfFByme91Qo8OqoKSmImwj6vpWuUnVUE9QAyTqpAD2oOyoKRH2ffLKa1L2ddps61uRob2yyn1DI3LAv149UmU94uyRoYMdqclJUO705J6hnamBbVvTwrqpVkHFyZT6hm6MJlSErQ10X3pEPvWZFIjQzbYfbhVjhdkqFZ/NaZ5YtvYR4dIte9gn074u4M9KgXOQuV2g10qDb4T7CKpmn3ZCS8gqZp92Q22aoSo3p+zNUJkMCUhd+Nym3p0xuUFSkim5RgJeUcW1YTWM63G0s4wLZvhf5NyT8pvM4/RZB6GF5P+jyfnF4TItSdEkZGF6I2n56ln6KDYqhGiZX8uLAiRjWJ6gXpwynIHASPtJIypwpR6hqrqQE4LUpX7NA9qWmwhJMe5LHeFtDgLrbsmh6gel4BrNXzumvYQXV8QX/fFAyQRSZSHeYVqZcOhJEO9aoOSIRaWAYDOQwNoNbN1ZLZjpVCnvDBHkcSAGTFbhwyxkDRAh8ip8kxqG+BXSBhozxBDHvOyqWgzjQK5joVTAZzQyhA5cQxWSai3oSS+GRnKQx5qp3LehrGe/0OtW9fOw+T4MVN1nEj4YFTZN1NRPls9DwMATuacyJ3MuP20KH9zh9tv6QrZ9LR57TAbANze4/t0W5fbb+5w+xlhP52vNkeMwWbMv7KfFF/BTwT8a/2pgCfqnxZS4MwTpcLnTlS8jlHJP7iNhAADAGxUXCKchdZlYR8d0n/lKWKTw5p6GHJRj/RQkYlmlaeoo/J1k1PoJlw6u5/xfN1BzuXTqQcpHlHRBkaSAKCT8vORpVwmPRVy4CGR4g8QU7IVBCkiES6nwuhy0U8tQ872N5BeLS3cwOxH5XFqq8d7ta5nXJOE6PryDvF41zDsUzJkq8/YMMpybqKlnHtBvBSAGRmidkKG0iBqSPQC7Xk+gJbZdu2K3CgyxOwlKvpl1NjZOtOsu854Slyp7XXJEJ+7qH1OIyW1rZTl3LZF2sfaYX8h2sPw3C/lhgy5A3zTv0b5kJdXBEGRrSyIGl5LQ3rcuozdJUWdiJdv20YRK9X/NAzlvq7aTxPK1o243c35YV4OANTTA8zC3lyi3kvCRflG/fPfHcfem3uMug4xHyRB7X/X7kIRn7Z1rt3UPUx4HweOvSvseWT6HjW8TVkYyjwpJUnuevPM87Xj5MeY3646YHf+2yU/yt5BIsOfXWnwRV2O4l0y914xJTzjTXLlvQ+T8XZJURxkSAOhPidCDt2cIlPOLW/KuaRoYXdIURx2kYZ9qoaXhB1JmNhEsoBWuMudkDgz35FLiownySVFcZTrMLx4REPuVORJovKNHFJkfrukyCjkMVKURH1EYU7XqTFPLI4ZJ0Us1C9y/j/MDhxdfpInRZeCa3WMf80Romv1QHGs5xVS8xMwie02r5BNhiZYqs/0qg1KhnroSDLEcBR5PnEQ1MiQGdu7IgPKbrDObPZA+9xFSmjAJiqm1jgMKBlSUtualKxHCBXscak9nlN9cftjfrs3vNl3eWzW9AwpVTObGNjLdv2G/LhEyCy7JMLUowhMR4RAtW2T1/J67Hwf3n+2rMiRIl4uCTJQdpsMpSIHyPYK2mFvynsJLEmRS4LM717sEgxOggxsu71sE5tLWbZhSJHbR0N+3NC/wYII6uNhe1BtUmRf+zYpsq9Zle/lkqJFPXOy03XIkSE/ym6H59mkyJYHt0lRbIUpKRlwZQf0nEdKxtuQIpvApEF/QYzs/B+VL8SEFtwyNtbxFAFLiXCXBJnfrj2NegtiZK+zSZFNnFxStOiPyCtS8t6H5SHFFhmxRZpii/Ak8XBBjELLK888RbMy3DOjyI9Zx6BIkSFGdh+iaLAgRnaoXxDkwlu0jqcIODpSFJBl9tvDxbU41r+mcoiuxQOkwbxCYg4DlSuUcve8mu1beYU2Ku6yn63j27hfJQGdlL1q7o/BuoN9BSZJDXBFOKCdsLEBvxoMKW9Ry9iJQqlkq/4ruW0mZXoxCtzqTlcCs0rmW5FRtV8MWRhiv9DSti7UJbiuIMTFSMavI/2chSHGZXO/pPz3mt0JxI5JL6OaeLelYRXaybDuPXFE0bDyWnY9v232SctNdCAqYucW0JL1bdLeDKpH7BrMwwg7RVNKuhB39B64RLOZn65hF+Xbt+F5PPaHOxtUehpdKvutpLqVRPa6EuFaqlqD5QMBXOJbyq2LfIqyFFLmQmp7XdnvQkh5MyRRX7YbinFbID6mqXrKStiVtLg4jxrkuRz2UJbba9RxMQ+wa2aIfU3iWsonusY8ROtebKx8hMvrKuX1R9GAPgCyZEPY1dcqIfVJvnp1MUIXvJ5e1aVqQ2ryVUWGkjCggyEl3xyFAR20qYGcsjModTmlgGfWMSQhH8Dr0DklIc4HhXJATuy2Sp3bRzbQjQMuzZ2G3D6ri+cSxWKbKOB5STJvSniGmF2VZaFnwMxzwbbJo4jOKaXLhzKnStnX2V+1X6ZdF504REb6n0Xc3olDSuJ7MT+H/SSkOWe9JEAmPpy6oXDLtln9gbT3iddomAbUmzRMAgzXsA+SgHqKesou9on1EZh9KBmmZK6yKKACDiqsLg1DdElYnatmZ9uZV7MTRTI8j+Xk9UQ+3pBECSSIaQ5SVMXIqy5yJuONlHqR0qpDIxQSZPQ9laKLjAj8mHXNeoTnQYQFZiQ8byYFTvoedJGRfC5Xxc5dx0PuutQblUdD5CzqI9qgH0FVGJ4Ju7NhQuua9g4tHwYxzWNu9/zw6yqOOlSIIo0HtO083USebpLyq4f6RWFOleyiqIeIhDXO7NzzxiJ6omhI54oMwx798G3sfB2/xpXqHhfh4hLo154nat1Qwmup79cQIQpWnpAtABquSoPL6R7l9duuXRsmJ6hpX8YDV9Xyi1Qa9hZkyP66lIX9xQPc/hKmiBCgZVcZEZq1ockQgyJCzB4ES4Jkkx9lt2F/3ba5i01y2r74t5EhbtdkiEERIdNte0xrhwTa7dhEyA5nsvtoD3btY2Lb24jQUeRH2f22B/5ZuCQfdoiXbXfLG9h5KyoMzS5T35aHjan5dZR9tn27p9AlOoftl9xHq51OLYzt8GW7vE2K9GBfSGULEgAsyZBLcsw2jPy4dptk9EWYXC18bs1lFXqn9sscH5dYGUKoSNGsfn4MlbS3TYrsa9gmRXlN9pwvd8SyTYrs8EubFBlxD5cUJfN3FyNFgBZmAEBJ0Wyb5UAvrZb12qTIVq2z31k2ibFJkW1nywnyGjEyyym6tfLRPGSQkSKgJaxOiFy0ESObFNlqeTYpSi3yYZMie1ubFJmxQB5v1IiRUcZTZEN+aCVlAS3utC4pAupy5XY/7LZt1T2bFBmVPnc+RtMPO9Sv3iaX+GakaGZfnRTNyq8+zxNbZ5bdnHJDetx5KZXd4NomRvaY3O2Pu85as8ZkzJcb10TIXP2AtHVHnXA12FHhCuvuMnsBlvTmqqqSEqGZvfmwCoKIeoXCIKEP7QChJEOzL3TNm2gQiJegkAlmA+iy4kRIyT1XVUWJTpudYVpxqW0lzW2qpup4YUDJkBosKyLEzIWQGy9K7hWalFyye1xUtI8HZUXDnw7KipKhg7KSROigqCgZOigrSobWfUKsEzq3X5TUK3RQlvS8jMuSfl0/KNrK8xN5UFSUDB0U/NiNy1J6gRjWnYuLYVyUNTJksF9UlAwdlBUlQ/vTSpKGccE9Q3tim71pRYmEsqtwu3Vf3+yqunDA+3jhgB+fC5OKese2J5UMob1wUNLrZGtS0OthZ1rQa3q3mEpp73Wg7i9m3ykPFmTIxgXsISGyx7vBLqKKvxf2g92F+EJ9m+0aIVq0HZyjMt67OE+9OmNsS2/POiggQs2IfVxuIyVEZ1xtSQI0qXbpuoNym8qHj4vzNUJksF9coB6m/eIcHRPsT89RqfCD6RaV/VahadNij9pZaF1R7lPSZOpmRGta7NGxzsF0i8qQ7x+cpf0/mF6gxGwi7NNiixKhotihdhXuqEL9WPmy3JHkSK0ry21KdspyV9qVDDp/il6tIb16oldiXd2+fgjk0eOa8RABmnXPLhJ+sPU2POGSavGjbVIy/qUkJi7xNB5SMpTGA/qAyOMN+uDLwxF366NLyVCvHM7+2IzmQn1IJZWrQfS6du19WM/O3v1qbqQoCGT4XBpxMqTnHaJmub/Ky6BkstXXdv2lW32tFp4AUT4RYhFJyD1D6vio5Hx13lkIGAAMUyGVLezq67ysp2X+G+1FWd0zICXN1fWwpn1TxLZtZryPJ0T5k7l+1J/IeNuncm4/0+H2m4S9L1JDR+RD54b4AD0QHxFv7fI2bxH202KfTrUcn1MdcUyFLPmmsG+kfCcUYT9sQtymvdmukgffFDLgo4p/QZ+t26D2EyWXdD5RcslllfM6rHg9eSVyc4W3S9lZeF4W9pGQD4ZZMJDepX7Ipa37kbDHYn9jLsut7H0hYa1kv5WYg8pdZmOUWWha8/hEYbr4cxFHHUrc0niAjHxE7uW8/92M76+SHFcS38ouQ/SE14yN7cKwR+1t68KwTwUmwrCLmLQdhl06x9PM69S8N45uolteXo2JtdcskHLqoVBzvFq46oTIeId47CV3G7bHa2aUDAVBRslQgJheQErNRLlo1c2lXNXGDe5+jchDE05X/xphvpy5Satq9nHg6MgQnUMIQro54ANrVV7ZVZ9MV9wutX11N4NWN+/ZDPZLh3UdRoZcj5j57fZ13RC8dUhYFgV00N0WIrcIAYvcfs7+dwflqShvfrv2eFHeCTGb/3bt5ry4pNH8dsmG+e3yFdNvt3ybolpbiCEtL/KO2tp128gP6b97/I3XxrV3xPExBM9ttyfq6cWBtQ7Ounlbjt0QE3dqoWFS3861u1DEp22dW5chWiPHbvowdOoxXNENnzPHheU+mWPshs+ZY+ySalPeJdWLa925B8xv195dyJvz8i4pMp4nRor6sZj7S3wc7AtCATRD6/K5Z6jv5BRl1azuQblRsxtPUtcR+8nmdpf8mN+u3ZAel/xE83e5azeTyrqkyNhdUmR+y5C7oE/XKbuSG1dCSWYc4KLjDKSNmp2bb2TU71xSZMiNS4qM58YlRWb84pIiO2TPJUVLe/36Mn1lpGiVFIN6GyOkhPAlUZ8SGkVyjoIUGbu7zvx27aZNlxQZMuSSIqP0x0jRbD0nRZwYBViPGPHyanzcNjZX6SWGFF0LoXNXlRAFQdI4eCbOUiectcVuXm6vECc3F0uGarZwRB+Cbmy0gfEK2TiYhwR0kdXIUDEnV3kY1ciQUS5Sg2h3LqLQ+d+1ryr17G63Ki4mBElOWHpEniEWLugeT9OHOKzXbwZorn058K/Xo4hIZpW3Ye+juy47jFyI8qrtdT1D63rUZPkVPDRurpXKvWLnTC0rsuYeH1O/209FQs1vN4TN2F3PYroYzPMBuxs2Zuph4WSGFLmkxkB5aRTpse22l8gmPLaXaEMs2+2qtlxStCgvyRU/L8Ayr8g9x4YUuffGgoiSeZ6YXZEg89slQea3W96QIjcMz5AiO2zPJkWR9RHOJkV2aJ1LijIrVE7lG7mkyMAlRct6BBkQHqHDPEWR8z439tj5MGhIkWs3JMglRzbBccmO+e2G3WULWfFlXbbcuE2Q7Kk07HrsMUFsjW068UaDGAGrz4W0sK/hKQKapMiGyi1iniKAk6JZ2xutfYpdCXQjOe7IhhtCYxMbmyzZdjtvyR7L2eVtu01+GAnixI7b5RxNKrdrDVIEXD1vUVufDCmyvUNh2EEYdq46KbqqOUSRkJdmuT9x1Me0aEpxAjO3blE210VhF9OiKakYhTkKZo/6VIoyiYdU+jGJ1VeH1YkQoBM51depDRGiAAAbQrWHqREBWhlrXaltVfyo8k+UBLcSTsjjgEpTqwF0G3FiLScBMCEr0hA4IKHJSQCMSYeUTPC6x00pCLdV43rGDqtLQe2DApMRvxioa3TdRz3Aj1MaBjggB6PNzqSc8zigMs6dOMABUfptK79P7NrbRc2tUtlqnfRqyo8U69WjuqSuLXWNToV9LBSV2b162Lp90Yi6JnamzYryiJ/Lbszl6PMoxC6pJw0D7IlrYmfa3Ok4CLA1beaKjFukbydCjlrJ0U9EDs84EDLYorxCGfATo+pRctfrttsGJf1drinlzfJ4kqCDveossXexX57n9qJZPg672C/ONcuHHexPiT3q4WC61bCn8UDmISkCFAlp7qmQ2lYS4kWhJLsvb/6Jyiu6GGipdiG/LmXZhRw5GcOGURdF0TyXSnY8DLsoy+Y5jqORHCOr8XkS9TEl43Mlt10UF6j9SuCqeYjSpBk3GkfdBtOf2fVEcVoNhX/FkuVFG2p25zQeISDJqpebDPWqDUwCfvP30KEvrzyMucR0ENKBBRtoRmFdNe0wu5potW3i1HXgTvxqkMeB9DJcDBliUMJUQpRKlk/CgPYpDXk4XJtkNNvnNJp5oVhaSRry46HqagvRY/Xo8vy4KslwZc+jkHrtUuHtVP0x++C2oc79uvZ1c8jWLT8QEtqDpBkGZ+xuuJtBL+bb9GKApSwNkwrduPkAGSUV+sR+Ii0xjJuDgc2kxEbStI+SEifSpn2YVNhIGZmoMEwIkYx4GF4eaY9TGvLcpyTgE9GmkVasU/l8Op9svZyijqhH5RoNnLC6JAjRJ1/4kyBCEkSNSWGB2YSwPSKw0EGCIYloyJBiSPKTOlUHfeIp6lZ9Ku2dIUeHeKiyqkM9TlnVQYd4lhJkyMnHwxz9Vrta1wGR00af5vyqelJ0kQd8vNEJNqldhdblkSiv5jhcQ+Ib0FLbcZjVvFlLexcxGZO1SY6zPqkQOh1a11TjUwp9bcp93M69PgCQJyeQJ00PXJZsUM9cEvdo/5Oot5h4t27vivykFJEYs66rsKfye9QYmo3dF+vIuY/CLh2nM25wpXBVCJEiQwyMDBmtfHZi1EGW5aM+JUNK5lHFrkrNfXVjBwNKhlQMcq/aoHM89NBZ/DXaDuOFDKuNJAiRkC8ebojcwh4evmyPB+1lu4xd9brhbzb5sZftttzBZG3dJZAhu4Q95rGXbTJkL9tlMhGeZffNbrcW9rXCsr3/rsaAPWi2+5eLuurbaiKxXnlqXp9kqDC8iyBCilRd7HLtvMb82HbEeVqlvH2+7IG5fX7tELNc2F1SZIfJ2dvYdpsU2cTDJkUjy26TIpvY2KRo0yJCNikaWcu1ba36bVJk98EuY+dA2aTI3keXFNn3h02K7HvZPvb2ObRJkX1d9IRsur3crZXhy3YZu/6OeIbYpMh+brqkCAD6YUqJEQB0g5QSI0aKAFBSBICSIgCUFAGgpAgAJUWz8oJQqDA8i5issty2ziZFtt0mRWpbOyzeJkV2yJ1NihIntI7aLVJkD0htApJYg157nJJYqmz2uMYd49Sktq3xkk2Kssi2d+nyKn2yw+Vs8pDEXWpv67exHYXdECNGUBQxytMTlBhJwhePKDFS7UbxkBIjncfTp8TIhLI16hHjaePUoI4N6aS4dkjRVQmZs3d2XVekcje2b7PeTLihmoBMMGb7hrRxlF6hRptVQkkQMIsFZ0QoCgJKhMKgRf2NnJ6i5Pay4l6houQESM82r8PmmFeorPSX9bI6Gs9QBe7pmVTcM3RQ8vJjIYe9X3D57HGLNDSz70+rBhla1sX7ut9SFyMTYyFLvV+0lW+2qyTDFZhMOdAixt9S9bphgetCTXukQsnUvqnymlyuVx7Qx0+1nUX84GnPKS+v6lenZlrxDVRo26Tk5fdFFJOyAzrkjoXBAqChkIB+tqnzrzAV7aoQwzEJwwNAw/MAYFzpg6GGDCqEbgz+/p0Q+3ZwgZKg3WAbGZmYdS/YXQgy1MtfoPa9YIdKge9jm3ptlL1t3R4uUPsuzss2WJ7wfnWBKuDtVWep7Pd+eZ7bi7N0MLpfnKuRj4V9eq5GiAwOplvSYzQt9mqEaGEvxzVCtLTvrt0nNv4aT87T8dd4cp72Ve1Dm11JiCvv0HhyjpKg/cm9dJv9g3upHPl4cp6eBxUeOBEha2r8q8fS3B7S+Y/0eBmYTRNDW1hhTH4w+dihZY4aV5wQ2WQoiXqYkjjFJOphUuxQO4tpBWbsna2bbXO+aY/7mEybsZNpPKJ9ypNNTItm7GSWjOgFelRkqFsNaGher+rSeSQAIA8SSnzSMKQ5N1owgJoRBQF9sSt7AG4PgxlZYlin/iwKZV5KHoWNXBlDkNymtcT0vE/OBoZ4TBy7GXy6gyJT3h14mUGsa1/U47Z7iJ3lJhjvlLvOECHXbq4JN5clPmTf3IGjOXZ7U96uW/9hdjeNwtTv9scQZFUP0MwFSUVd69pN224+kbm+3GvYXI/u+TTeDdduvDauvS/sxjPkXl89y6uyO61f+4O5l8W1Gw/QvtPGcF7XXlEvb7w721PXPuvM+Un92TZKZvZzjn0w9yqddez9aGa/d+IIDsxJ2znHnhv7Qb0/toftvBOab9ZdcOzm/G9N+L2zM+HXl3svGA+guneU3a3fXHeu3TxHtp0HlfkI5uYaGTGGraL5XjNz1+046zoRt5sPc+edvAPjbTpf1QdxRgxoG/V3cMfYg/q4wKjc7Qb1ejpVPi9fHxOkc/tuuO2Unw2q9xr1cDsAdMt+a127Qd1uRCF2gwuOvU/txqu1HZyrl5+Tqm3cU7MbUrVX1cc7ZmyxU9bLGyGHneKT9fJz+27hlI+G2Bf5HZ1oEwckFyULh5hWzXygLOxjTMrHQYZx2WwjDfvYnd7TtEc9mv+URn2Mp816sni4tv2A5Jtn0RAHZXOMOls3wAEZv6ZRD2OSxxMHKbeHHT6mjXsYT8417FGYYX9Ccs2iLg7IviVRn9rjSOXedym5UmPm2boBJtPmsYjCjI7xozCtzZ91pUnRVQmZS6IeZb7r2gHtxpR1xX0qhqBC4fJkE3nSjMdVrs2jCpHrVgN0SXhBr+rS+YaAGRHKiUpHGoZ0okCpLqfyhVRInbAH838uVH6Rgqo/i0KpYpZHIQ2tkt6iQ8hQo7ywyy/3qp41v+ir8sqehUEtVK/ep/VC4VRCvNo3fezW9NjJUD5e/7pKdbN1R2OXbcvwP24XU9/UQthUaJdtV+FzPSfHxw45G6wQDmdP2zO0ynQs75Ed6lYPn1sOwA0Bcpc3rOVBLcRuaTdkCABOWCF2PasPdhhebtutcDv3OrKV7+x1tmKdff7t8Dn73lFziql8MHU9K7ucs0zY5bxbKtcoSjAQYjxKpEfZRyLvYCQmP1XS330R+qaV7/gHSENmXKhQvE7V1WF6oi4V7qfC+pS9L+Z/6uMktXcCnlfUC3n5XsRFmrpRs3weDZETjw8wIy1sotk4yBATpd8s7NP5FrNwuCBltf7EJ9GNSZ/UmCseUq/VuvY06tOJddOwR+eRnG3TW8iM19qI+FxMyn5YmJ4LNV61lfRWscdRn6arBEGMgAhkxGGnJYKqRz1gaoyu5re6EriihChNbm4cAHMQXbv57drb4kLN7+Y2sweES4TMb5cImT65F5aZTdklQuGchBylV8hGNRdKcImQCTlgRGgyd4e6RMiW2mZo8wqx38ruEiFjd5s9rD1Vv0uETHuMCJlwFHfwaUqtSoZMte5g2Iwz3PGGKeeWNwNTl8QYe6OekJdXdrOfjAipOXuWc+TU7bZkeN1e/9/AHDP32Km5cw6TsXbtph9u/aYfLiFR9dhl3X1Q+3aY3W3bHEv3+orE9WjOo0uGjF3JYauJT5VMtkuGPJpgk8YCWsabCS0AS3LiXjPmfnDJkbp/lN3U7157xu4+Swwpcp+rhhSxD2eGFHWdMGxDfox3yLW7YduGFLm5SIYUufPmGVLUce2LuYnqAzBDiox3aFl+9j5NHbshMi7R6SzqaRIgY3NJkKrLkCJXMtyQn9whTcbu5jwZUuSG3BlS5IbcGVLkjjEMKXLnPzKkyCUihhS5JMgmRh1HwMGQIrcuQ4pcEmR+u6TJbO+SLEOKXMJhxl8ueTEkxyU769pNvW4IoE2KXFJj+uj21ZSLnXthYW/Ii8/Htg6xMKTIVfczY9fEyeUx5MedZ8nY3dwfQ4rcPB9DitTY2e6zgem721czXndJUBSmVzyX6IqGzPXyBzZsSdyloWgyBC7uURecWXcwYdt0pXzkZNp0hefpJpWVzOIhpkQOshNvoCBhc51wU8ZKrkqGDNSXrgGJMTboRXykJKW2VyRDh0FLQIu49zXTwvScNy0eACUbLL/cKylmHqev5LalDHfI8xKSkOcyrFt/KuoHZoMz1kZb2yoMj+VQtNl3hUTwOvLWeSTkraOAHotc7O+sjaPbNyXD7oZUAjNRA2bPo/XKmzYYlGchCvQjX+YsrZkf1BF5Rmm43s1eiLwhlR80VnlDwu6G+NW2WTPXqO0a2yFS3Up6e117233lhskBs+c5s6dRgB1xkaVRgD0i+92JQyrv3Y0iKu/djSKcn/JQvPNF893aDRNskXduHiTYJqFYPaTYRnM8kSPFBTTHDT10GmF4wIxcuWF4i7qqDsYg4wDkdJtu1ZVtbAfN0KRO1WmE283a7WI7JGFdVQdbwb2k/kEj3G5mH2IraIafAaDhbQBQtkiUs5D+mV2MM8RcM2wMBWhJ82nVPM/AavkplwK1X8D6OfFSXlyNG6MhlU5Pwx52J59q2JOoh/1J89pI4wHGE5ZK0qP2OOzQELcsGaEseV/ThMuzR2FKx91hGNPye+O7af2XA1fMQzToPrhhU2IEKnGPud0OW7duG3nadDcCza8FBmaCNPcm74SzekLHvZgHQ+TBsHFTGRU59+Fi5EfdhFUz+WpBEuO6YYxuGDdEC4z3xOU3cRggDpvhbUba2h0yBNYfs7uDKhMit45wgwrby6KADtryiAXnmW24qEMeBXQeFSY9DKwfrrZuONxRhckpO3ARoX4toXhtdne9+d0VE5cq2WvXrjxZywll4djr/9fbqG+76j4ou0saTP3usTUKb81JcbndgNl7MbcPkoqSlX5cyXC8QVyhS4jMIK5q4WYGG0mBbtR8/pxIp+hEzUHyyXSCQdy0n0gnOJE2B0OjZErtvbjARkoG23GJzbRZfyeqamp2BllYUblvYEb0mIR3GnKp7jY7g7nm1MS8q9oPu6/cMDnzDG5M5Gsm7CUXk1nXcdzE5rcbctedTxTrKtkZ+yiuHyjjeRpFmWOflRu4X7/n79q+mHC9T8QXAGAIPkZYNwwPADIizNC2jWpDTWarwu36JR+HDKpmEv+s/g1RnoSeoY9+0LR3ghF6wSlaTyfYpFLheTCkH307wYgKSKTo0lC/LOgvxkw2kqCDTri5GGctyw+o3YTzud4mE57nerNU+TTsIwm7SByPiSmbBN2GsIVJl3AjheIgRxaNkEWul6WLLBo2PFHmtytTbjxU3YSfIybwADQjnQ6zq7SVkAh4GajJfNW4nJVn3OFy4YqGzJkDl8Td2gExoWhuvKS9bBMeNybRXk4Te5tlG7peS/rRIkOryEmy2aIBNG7GRf1ijgGmIge0xCCLhzHQDGtYtC3cP8pDwtTcAK1Ipezr5AoBTSJkll35ZLOYR/V5cGyi5s7BE4ht4oW9PnC2u24PbOyxh5LbljLc1rLdN9tu92Hd+lNRP1AnQ/mabdvHyyYEatmGzGFaW257XTs1z9vg9nVJkGs3pMit3xxjV+56FfJjb2Pbe8Ju5wDZpKhfy/Wptzew1tmkyLbXcnCsXB6bFJ2wiIpNik5axMYmRTbhsZdHyZTae9a2Ninq2nlGFimyPVU2KcpCe1/qpMg+ZsPasYRlx1r2npBOt7EuOXKvve7io0DdrsLkZE5RiyShS4oW26w455GBS4oW9oi/21xSZGCTIlsC3CZFuWW3SZGt0moTFpvUuATHDtOzSVHHak9tr9qwSVHHqt9+/+d2eYsU2Up6NimyI01sUmTnKQ2qkwtiZIfi9YOTC2Jkk5RecGpBjDrBZk0G3CYt9jjHzpG260rRpcSoE4xkDpSco0mMt5Sd5TkBzRC/w8q7pKi2TuTGyfSJSJATka+l5pOySZFNYGxSZI9/6/LlPWq3w+DsOu0yNilKk0FtHG6Ppe2wOJsH2Nvbc1wpQnW5cEVC5myGp5KlQuFGVe7SNlQtkqEMenZl3icmCwkAqQiDK6upvJn1vAkiqVR8/QKAQcSPrXqJSY/NmiRGQV1YSnpWQZEzlQcFaE+IGpwrwQA1Nlj3GKk9Hhe6jaOUhtbnYr22j+ppQSKIWqFOtZax5va2Y3pU+6YiTNV5npSavK3ruWOenLbyABCLEDp1bHMR9pYTbxEA6kUCgETUo8LkxiXfiQNh3y+4fVeEySn7rC4Rirdm+Jy63/aLShIlBXW9qnvLVbczYGGpQFMl8VL6pJ75qo2JkARWdjWMmYrxQyHsSjpc2QFQ5dY2qLq2g2353i9Ff9Uk7YUIcdP1iNAtIZlekgngD0MoQusUVBty30SYmSqvQt/WHXO2hdCpfVZ9UmGD4+KCJEdShlsov6ny8vgVB9SuPENtJEaNzW1lOYWt3b87tMyl4rITIpsM5fGInqQ83qAyheYCcGMm7cQ1V67QrHOlGE1dY0c20iTiuf0yiYKulKRJMpw4cqHmy8nEiV82X2DGQb3+YTWrf+rc9OZrUeHaBRGyVX3cB7MiQsDsKyJ7OSchHzQmIc/biMOAzokRBvzlb3o4dS47Q86aksSzfXDbMEnEbv6RnaSs5I3dK96QJ3c3zCDV3Q8zuHTtZvDqhuGb8mMpk83rUTlGLMw/i3h54yVSuUF7MmeI21m/lPy0kg025Xed528u+mrqcfc7P8SuZMlZG4dJpa9qz0Tb6loy69g57UR8cNuLK5pD04srWr9RXZs4RMNWaXNzbIyy265DKowHaHcq7E75M9nsRbc9rb88T2SzAdjWpP7RaTT3Bt07rn/c6cWz+u89qNu7kZHprtdjSNu5Sb3ddGGvD1QSixSed/bNeP22ps1jnoQVtiZNexoCF8i4I4+AHTLuUHlu6p4w9j2nroUkt2M31/eFAy4Fvu1KhFtfFHac3CEzyayyu/lJxuN0wblZzPtJ2if1nTAhd24O0mFS4FtkQKdyk7pBSnOTOphdXzto1tUPMuxW3M7qMl6tC04OjGnDzYE6TIr8gpNvpCTHjcdpuyH7PftKvxWedexzuW4nD8n2Prk5SsYbpey7jT4NWu3r5EDl6GO3apZPgg72q2buVR4MMa6IpHbQp+WNp8vdxp4rys3BSueeItduBCRUXfuO9Hh37u3aLc9S+3bxiXq7c6/WztSRVJ+Pg/ccCXMjGOGOm42zwM3NN54dl8jklsjC1LknjCOByZhHYUbz/OOoU8srutyk6IqEzOXxaHGg3FmIl8ogtlJHM35yZufShIevE25HFfLmqKYYMBlKADK+lsXpAksy5MJ2nUfWl4VVyBBQ//KkyFAaBouXnf1BMgmXL82wZl9Kc9seGZN3ZJYNbElt94On+o6mPFUqzE9JGys521ldIjxLySdbdhUi5x4/tlwLYRN2Fb7mhtQxNTs7LNAu74YLuh6IwxTNVHkX60tuc7vykKwSVrhuuGHb9nb/1l3ORNvqWrLXuZ4gc17cS9ooxCVOfpCxu/X3hMeoL7w2QF3m2sYJEaJWs1v1GjIEAP3YCoHLloODQWKFydnhc9a2PXvbdGnvWiF5G1Y9tgdrI+FfPe2QPxcjsf8DR53PnINB4pKJ2f9uTpE5165aoMpzy8X9ay93rLrs60+FUw7T5QViX7t9KwHODbnrWe+SVZbtUDw7/G4obn5pT9YLt1OS327khMpNMup3bm6SISrALCyvFpo3L9sN0pp6nrH3g6xWn708DJbvdbsN+31vh8fbUuS28t6wFnK33NYWYrLD7/oiKmVQ8nGJCumf1cXXKbsSjdJiUhtOuVnf7XA/YBny1w020A2W2xiC4eYhmWV32hOz7JZnZez6DWylvNQKm7Pt9rIS13JVAA26IgywH52h9l7MJdU7RL4c0GNiOwTORptEdhykDRU9AA0Zc0O63JQZO2zuSoXOXXYP0enhoxq2SblHD/xBsUPJy35xTpKdcbEl16mZeJUSSBxw4sE09AHQGFhg5iViZGgc7FEyNEVBkysLFCuTIYMQQSsZarRR8bCcsuIhaZOyknlH7gSodl0M6sJToXDTsqJkqCg1GSoqHopSVXxwXlZ8cF5UnBSo4zcpefmxsO9fROjcuvlZbXXtFbpfdD8KfvwOCk6GVPndKT/e+6IeFV6m7AfieBuoEKZ1oU7FgehXIa6zScnnIJpWXC57UgbUXlScDE2qQJKh/TKgZGi3CGukZ2GfcjtQJ0A2UiK2AOhreSzC3vYLPog+N0loSN+5SUwV7s5Nopp3yMb5aUjV9bamQYOQAsDWJKDX2oUJP9c7Ldf+OnZA39dMdXFWlwifa4mE2pmWNeJzmH17UtJ8pAsHBX1HSftkuvAO2Tg/ndCc2Z1i0pACB2aeIkOGavZy3JACN2CiRQaB+JC3bgjdhWq/RogMtrFP84W3sdeQIgdmniJXchyYeYpYPvJ2cKGWm2SwFZ5tyIEDM0+RIi7bwTlKgpT9YrBuuN9uda5BWABgv7pAUxjG1TYlKPvVBWofV9u0fmDmEUpJHtG0GtPxpKprv7xASdBueVaSo4OKqyMqBcFC2FXIXVvYW07m8py1fUBTTQ6KbZqycjDdoiTo7NZf0PqPCpfVQ3TzxuOpfZDcSu2j5HZq30juK9tQ26jkNeX96YXcy9MjqiuAnhRtUJ2gZKhfDSkZGlZ9nKiaF1E/yOSkdeyhbqDIUFfahXdG2FV5Ff6uvD9a7lok5ke8T90okHOA5FE9mdlGRwijuEnvi/JiIKLKH9WcMcrppXNIuL1tXRoCI9G+6peaj2Vd+wmhD6LmgVH9UXZ1vIH1j2GbXXnEmPJYW79U+Q2ieDaz80GCsp9o8YzclHESc2vO47tv73LZ29M5t5/ocPtmZx8jsc1Jsc3JnL/EbxXlbW9VrR5B6ADgVMqP4Ullz/g5Op1z+0lx7W+Ia1/Z01Bfm+o5pJ6Zyg4Ap0QjZ8TD8aausvNO3SLsN3f4jt+c8wN4Rthvzvjg9ea0h2HCb7y+8EYBeloLZVcCEzcJhdybxIfeM8J7cAZ8bHOm4mObMxX3Htxc8vHZmfJWOf3HzeV96Lp+tSG3kZPmCjGpIRknAcCo5GOxExDjyYDv3ya4XZUfBXqOnGHAPTb94GRjLikAGASnqT0Ph9TeDTelsqDql5qYV4qACeEGlUOvVO4AoBvzvipPlapLcYqjwhUJmTPIo03khJAwmURgfjGQmz8PR4s/hsPIkLudIUONSczmZCiTk6HVLwxzgSaNieTmk2FV9Qf7UElrCo9UN0woGerF0eKvsU0cSjKk5u0xMqtuxJr52OcOJE01rmfHkCHXHpMQPGBJhtxumcGma3elZut1aTtbp+xAiyKZCHdScsvq+Bm7274hQ2pCVpcstUlMG5s75miTBmceKzcUj7WhJpVUIUFunw4rv6pctZq41ra5Y7nDwpfawppcqHUqHK4j9sOow7ljVeMBcj0cxsvjejGMnclxj+ZEyRVAMCFnrtfFhK51HU+QIUMdx27IUJ/IaCv05224pKg375NLirpzBboTDvkxniE3fM7MxzQkJNGcg5FQoBs6XjlzPbnhc1nEw+rWDZ9z16+yzuyD20ay6Gv9gjKCM4wUqYlkzQSwvYTb+47dbD90bkrz4WrDsZt3lxtW1xF2g0ESYZA01w2TWIbiuaSoM/dKMVJkbC75MZPYNuxzMuSSItPGMHZy5ub1rBruZ6TI1byEbVLkTI58oxpiQ4TWKSLD1pnfq9oNGXJJkSnnkiJTziVFxsPlfpw25IKRjFl9QuQKQ3TQXNfFCF0IVTz0ZTur2k3drt2MNV1SZProkiIztnVJkfFiuePvaD4GXZcUhUGy+GPbsO2YvPnM3oM96e2VwGUjRC6Tc4lQIk6EIUAuETLlGAkyNlfr3dg70Sb1DPXCU9Qz1AtOXpRniJZ3bjBDilwylM5zhlwyFM3D+1wiZKLTlNwp0PQKGSLiSlgbYpJGwYIM1fosBsez/in7ap4h07brGTI/3cG1sbtkSEln29usajddTEOeM9RGCi517qFcDJbV4D4W+2APrNx1hoC4dakBOctRcttcJQdIbdtWXg0QFYlUpNM+fmq/1yVBrl3lbNntKU+jsvfdvJX5+XbD4QwpckPeFnkuMR/YA0syZGBIkUsgDCmy83iAJSlyPUMuKTKwSdGmRXZsL1E/5R6dntMnQ4q6zvxGhhS5YXJmn9zJaW1S5F7/hhS5RNKQIvd6MuQnc86RS4oMlBdnlRwilRvn7oNpw7Ub8uOqb9qkyCVB5rciQa7dkCK3HpcUGbikaFme3yS23Q3RM6TIfU8aUtRzCIohRR0nRK8fJwsS5BIkQ34GkbDHnBy5bbikaFFeqMcqKfJB0FkQo3oOUr4gRm4oniFFPecjryFFPSe0rl8N1iY7h9ldEnRUniI338jAJiw2EepWw8Vvl4gYwsGIiyEvLkFSJMz8dj+sL/ok6mnu3/qeIuYtko6JaGNBjOycIJvgsFQXQ4rsfCGzHbAkXQaGFLkhhS4pupxeosuWQ2Q63QtPyZhGlZuj0CaHuG6+UB8nsYemksigOoE9Mqt0v9poKMUBszkBmPTlsOpjLKQVO+APuDTgb8Ys4C+CPvkCZqC8QmnI8ybSiKvIpUJFLgoDHJCKooArZgE6Z0iRKiWSt650NjAbKCiFL2UnE7MjiyoqC5yGXPmrDep4sHbboPY7D6uGephBGlbYpapZWnmO5SMo+8Vg3XweKQsdccU9peQFzMiMUvlaxw60iYdwuyLLGfHkANzDA8zIE1OlG8QFJkSa2sz1w2Srh8mE5umcyMYyf6cnCFBHCBskIp+oUDLaU/583BP2NCxw77j5jknCEvcesC+Ys4N3YdKsLw4qbE2b/UpCbgf0faGeE+te/ypvKIuaCo7A7DpjCndpCGyTV5UJK94i63oxf060Qe1fIXZEHz9FLANcIC+ffhLiAqmsF4e0fCcKcGHCd64XR9iZijw4ceer/DhXadVASZQrey+OcW7ClPRiqrDXixJq74cpzpfNkNNukOK8GMMdJZQcuTquXWS4gGa/OshwLmiO7TpVBxfCcw17vxxi11HqA2Yfs1l54OKmg1FQ8uJKsntQbmA/aO53t+rT/mZVB+eDTzbt6GK7aqr1xUHWULMzmJb8OlDT5gD1uTttlGLMrmTB07C/UHf+2Lk/ke1dCi6Lh8gmQwxm4i+X8fawufhjduWd6WBYUxYx6AYb1M25vpenWTegZ4023p/MSZQcBV2Mgm6D+AzCDIMwo8RnECVIw+ZpulgyRO0qdE48ySNlX4TO1e3Gw8S+2qchHyhmUUC9THkU0Hlesqh9gHwUdvPF1/26bAaobohSFlaLv0ZdYYWc2OOgonPJZFHV+OIMAN24ogNkVrfbXxeHzXnT5nWptR3pEMROxL0hacjtWVhX57PtLL/qYkKNDgvRW9VubMwr1o35+evH/ProxRUlur24oufJ9SQZDGL+srUnPnW9KMO5YlseuV6XMbUDwMl8HzkhRCf7u+iS/J3NwS76XSJJ3B1j1CdTM6QTbHTZlA1TbJL8ozQ04XP1NpKFl2vi2JfHbygInFLfY/YkqKioRRpycYw8qqSdPQ9U3pC59tQEwK43yty7fT2ekfl57H7txdzj1Yl43lwnaobVATNv0ijl9mEaypC7oXNzGMU75Y1yyy/t+oHBojIGSUQFJIZpSCfA7cYhbaMbhzTUrxdHNNzPeLg2Eje0znit1vM6jUIeWqfymW2vU61+y0u1ir2PfB6UVl83RIe2YTxcQyFspcL9huUGtUtvFCnfLfvoibFfXvWQV80wL2VPqw7yqt8QscirPtKqg9SZl2ow7w8Tw1D9BYCRyBfri0goJtgQBQmdQDYOu5IQpWEfIRKEzlg4Ro406DaEJ9Kg25oOYyLLLpeX6LKFzNlkyN5pdQJcEnSYHWiJ63SkF02ZPk7WyJC9rU2GOtaFa5Mhe1Zomwwl1fJkq7wg9UCRbu8oabjggRkRUmSoLV9IyUWnJHRuVn65bIe52WTI3nbdr986L6cezmdIUR4FtbA6mxTZA9AoqPdFSR6vYrcPJRvMzvaD29XXfZcg2cTFniDTHgRlYrlrDaBSUWfuEC+7nL29fZ7sgY4k0cor1RJW1xHLKqTMJkJqORbnToWvuURt3ZC+VaWR7Xrt42yfP5vE2NeEPTC2r8GeOF92PfbxsMmQPQnqSAz4gSUZMmDkx7WftAiJTYpO9pdfE21StDlY2m1SZC/bpCi3yItNiuy2bFJkyJALdyJYlxTZsEmRfV/a5McmUTW7Vd4mRak4l/a9ruy5qKftWl5b8MV63biiMzYpsre371fbrsr0lV2E6NmkaNWQO0lyrPK2Kp5dvmO9DGzC4ubo2ss2ganLjC+XbVLUrbUdUbvKgZptw0+gS4oWdVnkx1ante19SzrZJkW2+p49hnFJir1sEx6bACm7C5cUsTbq5Zf9stX3bFJkT3hrkwZ7HKekye3y3XJZplcOF8TIJTzrEqPZOj52dEnRsvxyv+2+2/21x6w2KcrAx+R21FY33FwQo8giPFk0osRI5Q4t1hMlRQBUjQ+op8fYOUaJKH8UOPKQuQee+EpqP6h2JRmKxIFSULP8tkG1EVf84aLKj4M96RliUpjAMuHRhQqFYx4hQHtyFAma1cXtysszKSvpGVIXigp5WBdKeW5dUgVoWeO2+nSeFN8/RQLX/cqgZpbfLwJKxMZFUBtkr9q2cvIfVQiPCg1RIWRK6hvQ4UAK6hZoC2I8qgdfmxyyunaUmJcOE12PeHcEkXFFE2wo8rNfRA1Pi0Ev4c/inlCmy1pU3RjGB/z5vE9C3gBgR9jvHWcNQmSwJULuAGB3yk+sCkXdL8RzlYTZAi1hZMJeinqUTD2gQ5iVve2+X3cKAFVetbE9qeQUCiqETr1/1JXuTuZtoELx2o6H2u+dSUkJ2/aklO9rFUK37jE8EDuoQtLUCHAiQprOV7uSnABajlxh3SGo2o+JCD1TqQsXwnNyLBeKN+kU/PlVBGvGj0LLiCtkFR9fqr5eCM/VCJGNfZIWAgD7aIYOAs0JZA0KEd4G6JQYFQqosF+ep6ILAPDhs29Yq67DcOQeopiQgmF1GqdwR8M+KDflZGDK9acuYEArhPSrETrExbhRblLFlEE1QpeU71c9nCybYYBDdKXrts0DRPsqvgr1k5ASlUESNrwiBlkEGl6WRgEtPwvnWI+UKFIgw/CEcEMnDmgb3Zi33Y354NF4ANRXUO3ZWM8DpEL90pD3K26x09CXEBiJJGxlv6gwuQDoshC9sKJ2FcLTjXgIYEeUB4DNVOyHKK/sbWGDbUSC9df1qB1mB/R+dER/1WSpPRE+N4xLHlYXlTXvhcEgLmg44SiZSlIAAJkgS7f2eNz4CRLCBgAnhruU+IxG+8g7TXt3eIDusEmg8s4Uo1EzHC7PJtgY8D5tCinwm0Rf2fEzSIKKetOSsKShiElQ0fC5LKzo3E95yMPqAC2yoe4B9UyIg4peh7NnPatfPzs7Yl0v1v2Vsv3CflNHffTjsuP9GDS0rp8EGJKvDoMkwEamQ/EY2qTIWbgfANwiDuJN3RgD0k43DqhnqxeHGAg7K9+JAoxalPcY1JhDSZHfHA9qIhO1beKUjm1GcUIn1B1ECRWTUPWbNhjWDfe7tbyZjtv66ND5n7rIqCJfBzn6VQ994vnpVl06lgRA554E6t4sG5nIPe8gpXnpp8vTNGIpqZJF6F3dntK0kQgJugEfp2eCqAB1r1KtHeEZdCfJNRhEN1O76tOl4LKFzBkMLTed7RK0iZDthhyWGwsy5Lo2DRkalSdriiK2KohLivpCkWRDELGBKG9f7PaFad9QicV8TV4QACSWsIMdCud6gsyDySUMLAYZAH1QLvooXlAqzM1+RifOMlPuskmY21/zW9ldqC+CdsiH3SfbbpMMpSJn+m7677ZmBhkqN8jt9rphZHYf1XIt9MW2O8vmt/seNoN1lxik4ZIsuAN69Z63B99dEbZjL9fKWNt2WrY1v928CWN3PWDG7g4IlafM7kfmLKuQxXWXgeU+uoNO89u9JnoRP08sfwSYkSG2Hz1rgF0P6Sos+7Iee2DPSNFoHj7mkqITcxW33FVxmxOMzCEMJ4ZLomKTIpvY2KTIJkL2sl2mtm1mhc85pCid99ElRcl8n044Mt3muG0SL5cd9qaOXS0kUYTV2edMTYjrkiIlCW/s7j2Qifvbvi7s67Meurdctp9B7nhehcapMnY5lxQZu0uKbLu9zn7e26TIDr+zSZFNUmxSZBMbRoqAZhiemXdvkDTnuxvO23RJkamjl4S1EDp72SZF9tx+Nsnp1ULo1gsPdEmRadslRSb0zyVFnbl9mCQ1YsTU9xZ9sYiKTYpsIsRIkbutqt/+7ZY3KryjMK8RIxOdY/K3F/VYHi57DNe3wvUYKZqV11LQjBQBaJAi89slRYYMdapOPcxv/uE+Q1obf/as/bBJkZ2/rtI4GCkCdC69S0CMBygL+zViZP+OgqQebjcnNknQqREjm/DYy6rM5cKRhsw9+MTTF8tTjGtkyGA/2KZeod1wm3qF2tya58N7pFdIKZMot+N2sEXJ0G6wSy/yMQ7o14UJCuoVmlSl9AqtK2pwUFbyAVlUnAxVFW+nqPhAflJqr9C6oVQHRUXbPih4eMSk5PHvyj4t25PmlRdL5QUVVUA9DupYKfu05F4hZd8vuIBAG1RI1kHJ9wGYhfswMrRbBNQTsVsE9Mv0fhFQLxLAPZNt2JnyNnaFfV+EDR6UAfXkjEu+bxeL/TKgX973Cm4/KLln6KAMKBkal0GNDNn2nhhYd9SAW6i/GeW5EcmlGRdhg0AAwP40op6h8SSukaGF/SCmXh4ACMXkseWE3wTnz+c1QmRwbqu7IEM2zu7mCzJk4979jHqGzk5mz2d3XieD3YL3a1/Yt6Yhvea2i5BeoztFQJ8jKrR0X9yv+2UgPV9MIXNmp+ZZv6bcA7Qz5eRor+D2rQm3XxB2QIcTKyXO8wcV9dpcmFTU03NuzN9BFw5KOQn51qRakCEX4ZoPvi3RzoVJWSNEy7a5/cKkrOU/GZw/KKjYw9akkFN2qGthUmrv8vZ0QknNVjGhJOj8dELHQxemB9QztD2dSI8RU8EFgHHFw9hUyN8F7NYIkcEuxpQcXcAOOiJ0cDvYkZ4hhUKE/O0FewtCZGOMgxohWpTHQUPQCwAuBNu1fHeDrfBcY45Mg91gi9oPiLofAIzLbek1KqoJJTWTao/ax9U29SaNq+0aOfu7e19J27sYXBYP0ag8iZNytuNbqP3m8qa17ABwa3kbtSuWPhITig2CDm4Bn1n4ZnC2fFJM/noy5u7Ak6n4ArJCAqiNQRriZMvoXz3E3bkhFvY1E2/XzedJQx1WoF4qKsxC2VVfgbakeR0Kp4iECgtRpECGTAlvgAyFU6FiLfkgQzHYBICRUMtyJ6E02BD2E6kagKv+6lHXSVGXakPZGYkA9L4B+viq8wcAm6I+ZT+x5jE8JXJtTgi7UkYDNGk+ne835g4yuFmEyd085LHkN5/iL87Tt/FY9c5p3V+1TtV1RrR9ZsjLn+7w8LlT2QFOEUU8QB9DAOiLa+5Eygc4p4RdXSMb4rmg7ktlB/Q92HpvZnzdTTm3nxH2mzvr2QFgqMKG+esUt/f4O+X2rghtk3Y9NLqtp9cxJT1AhwjeLNq5SbxsbumuZ79dyAcOkkjO96Ttetxxa4cTg9s6/AP0fbq8/O3Cfmsnl8p/o5QfdOWNujXmH9FvIUIBAHBTxMd6N4cb1A7Mxo3DgO+LO9ekgRKTuFmoIp8SY9ATAR//nhTRT5vlSTnZrvIWKbGzYcjnPgKAYcDH2CPwMb6yn8TtNeGzo8SREyI1OdawGlCWq2ZKBpYuS5e195AvmPFGY5KvWV0uOzdkKHdiLaXSSZDTC7ofZPqCnn8hcUPhjCqMCoVzPUGGDOUOuWGxx8BSmS0jX4i6cSBJkprET8kpq8kwD5NlZu1erBS2u4vGo6JyqICmN8YMgN1NUlEXm8xz2f6sLveLrPnK7H5tNuXdL7uLsBdnYCJDxeZkyK1H5fi47bhkKhHtq3C7ruiXIUPuAMv8du1tuTl52F6Xu50KG1THsG2dCoVTNrt9t199ca6MOpxrN6FYrhx2b253w9oMGWKhcEY1zh3Qb1gTn7qqbEaxLXVEFozCm+uN2RzN7c5Af3h65mFK+3W7ITzZBsm3mdtcUmTqGJyqE5Y0m9k3NuoELjHhc706+YmCWf2uVHdkT1TreMyixaS3TSJjHq0uKTL3U8+xm+vMLW+uATesLhP3gLnG1LXIZNjNs9KtS7ZhPUtcb6yp323HTD7rfhQxv9XktIOkaqwzbbqkyHwAc0mR+WDm5hoZMjJyxseGc7jll/Vrbw8NoZv/dkmRaV+GCDrtGI+V+yHR/HbLm4+dGyK8YDOLsOl8GTShdi75GQi7yS1mpMgQFffjrhnHqI++G+Jr5UYaSfLlkiLj5XJJUR7Nvd9iEl3Xm2XU99pkytk6N0Sv0V9nDGnGju4Ysjcfl7qkyIT52Wp/ADCYb98ReTq9IEUvaPa3Ld/dJUVGWMwlRcl8XO6Sogz9xf8ZmVJntk4oygn1PTsdxsXlIEVHRogefOLpDTJk3HMuETJuRpcIGQLURUZdlDYRYljVM2RIkUuGzEW66kWczFXihnEqY2CVRKb7kDCkyPUMGVLkkiFDrhgJMlLVLhGyCY0iHmrg7z7TzParzk2TCjKl+qSksG24z397G/dZGy/aqb9czSZufxf5UcKu5hcCdMiNIkGM1LC+LgYnYtCkyqv2F/0V7TeIRcvACWgOghQJUoTGDilTJEkNDN3yacsxOez4qnwgd7ktt8hADXDdgaSxu4NuQ4p6jt2QItczZJMiV0LbwCZDy3bmBMIhCoYUuXMALfJ1Ro59TooMGVrY+9wrYpMiRpDYtoYUGTJkYEhR4hK2OSkyZGhhn+9rRM4dCyMEdI4WsCQ57v1kSJF7vZnyDaIsCPQqnmi7jbqse30bU5dqgwqnCBLUF2RHeYrtci7RMutc+3BBtOp1GVLkRg8YkuOSEEOKXAcME2yY1c/zhpb9nb+3XfIi8qTMb3c/TL1u+N660RUbWbggRu6YwZAiN+/IkB83DN/YXaElm6y4BEWRH9s+tLbfyKIFMXLHPqYdtw3z2w35M6TIkKGFfc28JZv8uCTI/DY5S4s2LGLkjhPNeNK1m9895yO98hS5pMigEyQLYuQSJEOKEkfZzZCi2LEbUuSqLK/rKQI4MZrZuwti5JIdQ4pccmTKuXOCdqpeLVXnUnHZRRU8PDw8PDw8PDw8PDyuVRyZqMKjNr6D2lXSmctYDQZRiq2i+QWzGybYKXl8dydIsFXxeTJUO4mYA0iJMfSiGDtFM7Z9mCQ02XCYRDggyX6DJMRYZC26IXKLvgpxhbb0zW7MkyPziM8/kUfAWEjpqwtk3bli8ojPJaH61Il0Uq04VHIel9k24rhH4liFFZ0/JAsrWj4NKzmnj5qvQiEPS+yXzZ3JwxIHpI08qjAmdvMFeN35Udadb6QX8f52o5Imo3ejEttTLQxyFOhGlZwvJg/5um5UYU8cq3WhrrdBUtJE/EFc0HPYjwuMybHtRQWm4vypeYgGwmsEAD3hFRn19zCZkFCZE3soxk1798wE5Zj3K2rJF2Eo9nQ9u59oet+jtMSFe5tfWKOwxNlt/uX1wgEPgQaA7Qn38O8V4r0SltgmcxdlYUXvgzQssUPKp2GFHSHWoO5NdWTVMykN+bWeRxV2xT3Qa7k/1hVSUfd5L6pwYdqsbBBXOEcEN4ZxSe2APlZqTiM1N5Px6GyT9LZhMhOMcDFKuX2QAOf4UEa2r6DqGibAWWUfNw9KPwlw/oAfLDU/E7D+e2IzC2k7ozTA2TEZR6UhzhE7oK+fsZiHSc3zNEginDtgY7sYFyZNey+OqH3ZL96OngeK24dxiq2ieQGN4gTb02b7gyTB1qRZvhvFODfl4+NdcPtewHNL1fxF3aqPC8FZum5YbWI3aOaeDsoNam+DmnPpL86+bK16dP1HhNRxsW2gjw30kaH5QhmFecPlCOj4TVbWwLgIB447chBkGAQZ8qDevnGH5mHzJdSL4oaspLEzKJ1+49J1c4OMS9oNcxukIQZpSIlPL+bKQ3mkBQPUDOUqZ8jY3fqyeRssZC0NuT0T/Vo3Z8iENLjEpxPN/phnPosqREFFE6DzsKIkSvbrkIkwm3lGM7sbLmO2YWF0eVgiJ3kfzNZqF+EvNXlpEgKThDwMJxdzEKm5hpTqmQntc0P8zG+WjN6JKpr/oHKj2uZFYrBzllRelMobYvZuVFJxi35c0n4NRMK7CcVq5hkZu5NPNCc8fB6iKbVvZAc0PAwAhvkYEZPj7s/CzZLEyQ86MQ9Dc8LWumdmL+SQJOKnZwJEg+aNG5+IEJ9o3ojRIER6hoQEz0lV90x9UBDNBSpM3xb2+X5t9ptiClFYNcIEF+uCEiMSXhiHFQZifiJgec4MVN6eCoc0YPdVHvLrTc2rlQQVLW+eV+41vQzL1YNgdh8M4pLKig/iks7N1I9KKu5iwmaHbijd/Pc6QhKDuKJCNf24wgkyd1hPzHVkh7ep/KB1hYBUO8w+SHg9h+VMbYowwE0hOc5ypnpxQEUW+kmIfhJS8aeNbGZ3121mRtWSt78pcqBYblQvCWjYYC7mYerEIQZJ1JAdN783nBwkk+qgUh6UvRfHdFzYi2KqqteLYjrnkgnnc7cx4X/9mLc/EGPSjbj50ScNImyQOZoyJNioBo38/KzKMCpPYFTWw+e6c1nvYaXD57pC+pvZ+9UQfZI31K+G6Fb9xjZKEOJicCSE6HEbz6393nDiBg0pchPQbKJjkyF72S7TC+t3uEooc8kRqxfAghT1orhGemxSZNvtZfuiTywRBaWEomSy3ThfQ4p6cVCL3bWL1eascZqzydAqeTgyPyfi5VyBAdUXe9kuo7a1D49Sc3PtZpssqhoS2jYpsgcKsTgmtWNllbeJjMrBcXNtDCly84ySWp/Ki15ODyE6qq+mrD23FKDnEbLtqow9aLP7qBTwXLshRS7hsEmRmv9o3XmR2iaudQeAtqiCyiGy98Vetome3S+bDOVWeZasP6vHHVjzY1qfh2hK7RuWeppLioaWvLZNikaEQACEcGS8/zYpsomNTYpsImQv22Vq2woPU+So9bl9NLBJkX0cGiILVr6RTYri0D6f7XM7ASxHRykzLo9huub9pebVsp83NnF3n1dKmKEb1T+M9MR9YBOefu265st2mVG8JEauLL1Ligxs8mOrStr2gbWtTYrs54pNimzSs5EuSQZTMFVKcjZpsQUfbLu9bBMZt3217UAQMJUDZZMiO5/JJkV2npJNVuzxh02KmHiCIT8ueVFquXY79rJNiuxt7XptxVybFOWRXWe0IEYdJ2xETVDrkqJFGxb5sfOW6vYYvZiPD+1xoz0PpfuhXcmKq+labFJkEyF7uWu1YZOi1IqQ2gi6C2LkynW7pMjAJUUGLimyf3dr85BuULtNhGxi5BIklxS5HORicSQhc3Zn1GRWecgvtkj42beKA+kZKi+iy0nIb0zVvgqdA4BI+IPZPAAAFz4A2uYf4u0eFnal5ttRUtmqvMK6oRqADutT+6JC4dQ+hC1yuEXF56QBdGidEkRQ/VVyvG1fGtokfNfBumF4gJ6HBFg/BFLu+9qhM3oDFTKpcDFfeC7mOAbiqld1Mc8hoK83NcAGdCieCpPri1C4HvF+LLbp8lCKzkBvk40EYRvxsxKIhPFqwvev2OL1j8/ps75zjr+PLuxqcZ4LYz663Jny95Gah2hCwhwN1HWttlHhQRczr5AKs7yY57i6FlX4XNure91+qefVuseEhakatIWwqXt93eeJauNiQof1MVmvbTXP07mDUgonAG3vSbkJhe6vPigHIuSfpS60QR9D8Vw6pPpCVKhC6NTYUx3bQNxsql0A2CXpHwCwV/F3xR74c38S6PeBbDvYlpPCqpA4BftY/em5/7p2X5r1HSFGQZfm5gzjtCFFDQCDOEaXhKjlUYTTaTPeuxtFtPyiviShLsNRktDtBkmELhkZD5KITmZm3MQMSrt/kIaU+PQTHgrXjzkh6sbcm2NCyJRXRc3Rk4WcfCgFOhUil7RKUnN7HvFtVChcHokwuKjS0t4hnwjTbMf7W9GHTlvIG7dXdC6jPCprngF3nbKzdd2Y29OwbMg1GyRhJdtR26j2e3GxVr9UaFkelTJkSPVV1dVtOVZdMVeM6m8nKiTB6MUFrU/V1YsLenx7kbDHU3k+1CSrg2SCmIW8qVC4zj7iqERM+jvs7yMk129/c4xIfLXvnBHe01sThD0SDndTjvBEk6yEJzJENzXJStiLkNzMCUnnJjGwiCoMTjbD4cKoxMagOc9SFJaIwhKbneY2UVBhmDRf/lFQynOirp+0JezN9QoCM0VBdr1lUUXts3tKh9eyUNVuVLaEvvJw0UFccntSyrmZVMhoLy4xSpr7PohLOrfYIC7p3GKDuMSGqGfdeZt6cYUNEloHzLxOA3IvDBMe8tuPuX3WvghjTSo6D5OybyQ8FHCYVNikduCkSJ8jtyYA4L79UK7bSPl8Sycz7sHaTHlY3yDRHq8NEW6XRyKELg6ol4qF9Bm7ki9XY7xhEi7+XHSigI4Ze0lIPVXDJKLlh6kee6roI1vBz0YeBziRNU9UFkbYiJrP3jxIsEnmNuoik3N7AsCw6mNIQuJuKW+hE+AO0aUT5vaRS7tywFwsLpkQGe/QiMQiAi3Shpa7zyYruR2uJsr047jhLlSxkyNhty9GmxTZdpsU2Rej7QnaSMPFjcJygxiUlKbtirc3tcPgbFLikiB7m168JENuN9qIClteJczNLpOFyzbctg/LGWr2afkgr4XBWfZa/8LZ33Kbel1mO/fLpgqHWyXkLRHhefXQNqt8Q+a6bJRhvw26tZAsO5SOL7ttutuYsqu2bxMYu4zqlwots8u4pMiscwdWq4TiqT65g0fVX3sg6w5qFXlTddVDoSx7JOzW4Lo5D9F8/h6nT0ooYaRC4ZwBv02Khv3lOpsU9TetupyBnSFDoZObkN66fPbapMgmPDYpspdrZaxtXVJk2nRJUWiHdFmkKLT21SZFLmm0SZH93GGkCGgSVfN8ca+fdIWwN5sUZeJatkOEFdlXcyDN2uD96NXu1XrInAqT03Mh8fBYlxTZ/bRJkd2GTYoGtfLczkjRzF5v2/R9I6kTJlsy3CVFdgieTYqGIjTPhmvvLdp37KJetWxvb5MiuwwjRUCTFBlScyKrE6OhNZRz122I0LyToowNleuk5ofaSIMaMbJD5WohdLFt56F4KqTPJUVGXt0e78365IQIinGiPX60x5UqfG8V+fJZ/6N5PWGNGNnLNimyj4lNijIrp56RIgCUFAGzaW1sYuQSIXvZLmeTIntuJEZ+2uyGFB1F2Nwlh8x9yeYPUPukKigZOijLGhky2C2KGhky2JlOW71Cyl2omN5uUdCLcHdaUvvORLuI1w2FOygqSoYOSh6XfFBqgYQ2D7TyaB+UnAxNK05U9gvuydkvdBvrhsgdlJwMTUruySmqQHp42ti9ClmaVgElQ2XFSdKkCqS4gQoLUGF9KuRsvwgpGdkvQjr42S9C6VGoWq4U5VFva58RAtUvQJ8TFYmyM41o29vTkJKh3YLbgaMNhdsrIrrvu1N9ThR5WjdM7qAMqRdiXESUDE3LsEaGbPQzHeLQ7fB1ZRnUCJFBMQ2oZ6gcVzUyZCPoa4Echmqbk73JxyYNAgYAex8PamTIYOuevEaGaut2WsLn9kXI3SRtzGsEADvTmIaR7RWRvEdViJdSgNydho2cSWNn987ONJTPTB0GrW8eFSa3VwTUA7Q9DanHaGsSSk9WuWb43PlJSMUbzk0iYQ8lkVPHHdAhf1vTgHpttqcBJUfb00BGMIiIUQn1jL33gPfp7EFAPTn3jLmHB2gPXVbX0IUJ90CdO+Ak6OyBFqFQoX37IkzuwkFFVXsvHJSUBCn7uXHZmID3sD7N1vGDsj0pafTR1qSg+efbE94vAAjXlHU8Ny7oMbl3PKkRokX5Yh+5yNMfV9wrXrUE3l4ItqlHaRt7dLLYbexTEqTsAPB/z71Etr8KjjRkzmCYJDiZ8g6fIq46ADiZ8ZH/SVEeAA13A2bsWIW8ncl5fWc6vP0zwnWhvD+9OAC7f3qxVndRbmv1RUV5eEw7DJ2IK+4AzZnAD7Or2cbVS7cbcyWwi2mDvdyA9oT5Wchd056GXIEJ0J4IlQCvvCmdqKTEqivsALCZ8ofNCWHfIIpXgPZ6AVqtqq2dUxkfnKryXREylEeFXHdS5LucUn2SbavzWiz+XPSiQm53WhAJdUzUfgziKXLSdj+eStGETZHrc0qoo50gIV/AzDPEwucAYNDfR6Su+ZOcXHVvFV7V+/Fnf3gLVxoKTvQQnOBfH9U26QPE5IX3oWaMbuLHJAjqXrH6uqrhTTPYzPgx2RDnnU2GC5hwuOb1kISlvEdYaNmsDfXc0KF77LmVRTq0draer7sp5/t+S873/WZRvh8XjQmHDUbCfnuH13WfLm/71g6vpx+X2BTHd9Y+3/fbO3ybW/P17F2hvjeIeYgeAAxFn+7X423cr8fLP6Bf4lRG2hYhdwYqrPD+fW6/X4/b7yvsbaGLaox0c5ePtW7t8sGTst/eC1tU8TQhUWF3t4gB2m09Pi69vR9zJb80bEwGbKDsqu1bu3wAenPaxQaJsMrDCKOIb+MKn9m4PTxJ7bdFG9R+SzSk9puiAXpCaOJSccmEyM0NapOiNgzY9ayY2ZndGZGNK9RVCenG4YIMuUIGKp6yzQVp1rmzRJv+dB27IUOuJ8jt/9JOzTXVGKUWp8LdGB9TIXJSRSiuFjOCuzkv5rdLZBJhX0g/O3Z3xnG7/FL1jNflnjITvuF+YTdkiOftiNwGq6zrqTEeoIZ9PhBQIW/uF/7OCmTLJS1mG3dbs43rnTK/3YG8qZdJe7epwSmpbBPGs2q/zGDOHfwzMuD2q+duI/bxMFlv1ScGu0217+725rdrN3W57Q9ErknfsjfktefrXO+C8Qy54XPDOXFzr101sAdmZMjAJUW9zVl9gfscOjP735nVAMktsxdl4EjfGmITDOovUpsIuaTIlHVJUTB/OMa31YlXMB+45LfWn8NGz2dwqj44tj+wKlIENI+dUacbOuTHPBf6zqDdnKNu7NrtcDg1QK7bzbPPvbZU2Othkt9sG9vurjNeT5cUGQLj9tdc8+61b+4R9YHJrtP97ZIiU4dLFAfz3y5RNB7dTYco2l4slxQNrVwmlxSZ326uk/mt7G499jlipAhAgxSZMD+XFJnfJ1K3r5WwL38zUgTwkDvzQdMlLCfnCpPuB08T2ud+nDUfQDdTTb7cNkxUi0uKujG3mygcNxrHtisFQZcUmUgfRoqMCl4j7G4+MHMJjvltpl9hUF4il/yY367djG03nYFmHs3qPZnHOJnznWekCECDFBkRtF6YNojRcF7WVXoeCbv5babJYXBJ0VGQpEsiRF958vkAlqTIJUPJws69LJ04aJAQg7xBmmZ1Ma+QIUUuGTJeIpcMdSJur23r9MuQIveCNaTILW+uR5cMmSaVa3jWVv23adL96GDsdr6Qu07OMyGIymxbRVC43SUdmWhDlWdlDMzxcmWRlwODJpFTZM5cUow4Ldp3BhpmYOkODJbE0LVzQqMGJjbcbTpiwG/62Bzwl7W2VtnG3lbPF1QfHBzWL3dQlAty1LWIg9svRSoOI0Gr9sm2uQTMrsfdd0WCVF2mfXdAaI5Fn5AkQ4rcMDkziHXD5MyAe+h4scy12xzQz+vp79fI0GL9fN8NGTIwpMiQoYV9/uwxZGhhn5OiBqGZEx3mFTI2lzgtCJXzcDSkKHAGLIYUueKmhhSxaJNhf39BjAJBKBuS5XNS5D4bDSlyCWt3kQfWvA8NKXI/rJhrq/khaFbOJcu5eA4sZbebbS+2oXN9mevRkYGPzGDcIRwLsuMSl9lv9x4ZxMWC1Lj3m6nbbcOQIpdQGVI0cAiNIUVueOtmWjSI0WLdvA4m6mAIhEtqDiNBrl15nIAlKXJJkJqTaSjIkSE/LglxSZENQ4rcSA1DVpiwgyEsJ505yBakySmvIlbsdnouAUzNexeOffa/O3YydkWCGBRxMqTITXuwSVHPWWdIkTtuVATHLqskzF1xB0WCzG93jO2SIhuGFBmiZGBIkTt/pyE0TBHakKKhQ5wUwWkjP8auSJD533CSi8Ul5RDZjQ+TmMobDpOQxlN24wD7RK8wCbkdaM+b6SUBxuS51k8C7JCg3EESYJe0MxDlAS233Y8h2uYzYvdjHpPbifQM2mrf+3ElZUO7UQU2yXMu2klD3b6SllTbqH3Jwwr7pL+zvvL9UDkX/VjPmt4R9eVhSWPE87CS+6jyj/KopLPAd6MSB0Q+N48KKqubRwUtD+jznkcF9ovmgy2LSuxO+QNPbaPsgM5/6ohtuvGU26MCu6Lt3Sl/O6ncCtXfblzQfe/GhZRG7sVT2b7ad7Uv3ajAHrH3kynGpP1uPMWBOO5MMQ4AeukEU1JXPzvAhNQ16Ixl3kNXhBMBQD4UYZhngIp0Lb4lpw+18NYhqjEPZ4KY3BBiFvigk6H82PnmiihE8TE+79DBJ0Qs/z06tGNrh4eDhAHPKQqDCjuT5oAgCfW9WFT8ekzDAjvkekzCitaVhiX2ybMjC0t5T6t8kCysaF3A7Noek3WDeEqfXT3xHAB0flA3ntJ97wl7J+LHqhdPsSXuafWc7UYFzk9YXQUuEDswI2Nb5Jwoexs6UYELE6aEW+I8sY+SAtvT5r6MkoKWB/TzdJQUuPeA7UeJTxH7KC5x74QfxxNJifOkX4D++j5KSpwl9XWjCucm7F0Nau9EFc4TO6BlxAcJsEUeT6MUOE8ej4NklgPV6Ov8EmHrAD1+GiazXCsXm6m2s36p/gI6J60TAfeOmyuzCLh3v3nAsijAeaJt3olDXBDPbEBPbTNMYmxPSPh4ElF7LwmxxexxhJ3p0v6ae35U9uUwHEkOkZ7NVzx85ozV9QKZSUldex4FyKNAihi4rNxAqbmZJLluI9wuoPX1kgC9JKDCA+pLg8kddj8EmPKuY8ykKjVV2WahZezLnVKyAZYeFderlIt2zG/24SIJ6spt7jYu5L4swrjcL5emr2QfRa6N2nd7Ik13O/NFVYXcscsrj0oh+d0eDtf8asu//hq7+mrLviSrsDNTloXfKC+Nspt6lCQ1g/n6rTxBynPkhhKZdUxIQHqbTFib69GJTfnmfpj6Wfv9eNrqVVIeIvfYLD0F/HpJSRudeEoFFnpzb4QrlW2EEhL3y3tnlufC3ke93gGCgK/rbEwbIXKAFSbnrItvmYeuOQ+18NbhrDzJAw3ObCDYbOYHBZt9BGc2mvbOPHzu5lF9xfxLZnQzzymyJ3W10T/ZHD0EYYUgrDAcEKnueTVDR6zCkOZe4obP6XsxDUt0ouY1l4ZChMN4l526UuH1NR5Gdk8nYUlDee0QWxfm2nbDOQcinLMnngOmLuYVNfege8/3hN3cZ1KGnrURFdggIiRm/9xQPOMRY/lMxjOlQv6Y3faE2TD7MmyE/BnPDveCKWlzlmM2Sgqa62nKunlmJlf3lGM3XqsTSYkTwrvFwv02Ey6TbmybjfBB7lUy4xAlVc68Tp2IR+SoSW7NpLqjlJdXeUtqXS+eER9XsML8du1GcELZ3X65/a61ndQnGjYwY7QTTsifcR6dYAM+YDHZrQvNAWL04qg2oa1dvu9Ej5nfrt1AqfK59V8sLokQDZO4diBSy4Nik6HEsrv5OKwMsCRFLjmySZEhKst1y3I2GbLLKMUQ194T5MgmRTYZqrdNm5DkSclnq1C0WV3L5SysaoN/N7zMwCV0igSZ30mAmkCEfY+kYlnKZzfIiQkhc/bRxOFHZW1G87os7XLZDglUuVKz9pzQNhFyV5fpLi17Re1J7birWHwnD0AMWFRcvz2Ytrexl90B95IIFCuTIPu3PfhSktT18jwkTBGHJqFZbm+v6wl7fdvVyFFdDtvNK1j+tgdsdv9VDpJrN8eomUuybN9uzyZFHctuk6KeSNZ3VeMMKTJkyMAmPr2ezqXpbCzbt4lPI0xuvm5Bhgzmz3dDhhblLVJkEx6bFNWW7TIdJ3zOkCInrONSSFHghsJZpMgNDDCkyPUguqTIwL4O7XvcJkU2GerVrgHn41HMP6CoUFj7nklqbfNnq10XEx8xpMglHHoeM37/1O6xFUmQ+d2Uwp/S5YG4j21S5O6fIUVueOAwmS6IkUtq7N/rLrv7MlyE/LmhdfzZY5Miu4xatkmRW6chRa5wkUuKattY/bSXR7V8LLuPpQw3NOXcMYEiP7bdfvePavZleTtn2yVB5rdLKhT5sAmGCtMDmqkMigQpdT9lt/ulll2dBtMvd4zmkqKF3Rrw2eNumxTZ+f0uH3BJkiEtrl2Rn76YAqc2NU5cX75UYnTRIXPfetuLZGibS2IMVMrOujMym5hIJW3okisDxf6iNWlhP9Zyj2oflTdFldehStr9C2jp5zUVGmfhEyIcTTUvZafVjMyifC8qcaDC5y6CwispZdXfTlTKsBIVPqfC+trCrlgIymwb3rbaDyWR2zZBtwovu5j21T6qU5W3tK3CaVS4h+prJ5pir2AhMLPBkAwR5NWtjV4ywT5pHwCVa57Z+XFMlbKh+Dreyw9QqNCgtjC5Ea8vPcXLswlUASC8dQOYigfkiKvJSWzxUDikEcp/PkdXrRs+t3NWJ3Rub/N9DIIKW0KSW4VBTsUzTV3bByWvJwlKGpoJaFlq1Ya639rCeHvxlIb+Alo6fl35/bbnk+qzgj6+vFedqJAhdwBQrdm+gnrHdKMSO+L8Kqhnh8IgnuIcCfMEQMPA2+xtUM/ntrBCFTqvxiMsLQCAHEMM4gpb0/XeJ+pdqlIMgFn+07mD9Y6ZGpMoe1vbKnyQpXcAwI64IFUKCUuRmbUdzutT77n1dkZJeatz0otD/OI/v2CtNgyOVHZ7kATSA9NLAjo/TxzyULg04uWVCIPdPgtt68UAU9buJU3PiSnP1OHakvF6sVZ/YwP5blzRAXY3qmiImmH2Qm0cnWgpKGAjjyoadtYJS3TIC0zJNRvBAiZxnYcVJQWdUMlO83rUbOnAbP/YHBhMDWnZ55Ie4yyqELNjMq+HXWadqKTtd6OCDgTyqKBfTtvkqGfb8JA3FT7Hwm/yqNDKVS3KTrMwORbWIeSikymtrxsXyFnonvDeLPtMRAaENHFbXxkMGTJtrdrnTjyteW4OsytPgdkmZecxLpCw8MRkSgc7vXTSSPAHZmQIaE40CgC9/rjhCVm0vzkByLp1ydAC7EvdzSeADiERJ0azPxe9zmybRqfaB4vreop6m/p89YnohBFcGJC5nqKgRCdu1heHJb22krCk12IUVPI6BnjYamJNsly3cxntVLRth/Eqzw8N6Yyn/HnXcl+xkDfl4TU21/M6s0/XCr3NwlKqPgJtipAFBiyELpmuZe/FU4ySqZQRZ0Ivvaig9o1kQvur6jdlWfhgLyroNA69uJCy7oOkaIhYzNrnIYLLfvDwQdZ+HpZ0st1cTCeSR1z4Ydk2y3evaCh+P+b1dKNKeq+MGASTC7c9VTY20opON9JmV3LkAA8f7MX1CXUN8gg4STxFeRTgJBmM5nGAYRq2ikO4k9YCM2EIluLiRnsZdOOA1mPqV+suFpdUm+0JsomQPfhXOwrMyJCBTYpSseySIdsTpIgYUCc2NimyXYo2KbLL28s2GXLLK2lt224fF1uBLRHhbvZ1qELRZuuqmsvYJkV22J1NTGwiZC9nYtt2ZTZrXwLehgrps7e1yZDdnrt/sQhfc1/69svZPsZ26GFca6eNjC3X2e3b5CaphbzxMBm7fCbKu1ChcbbdHjy5oW/2wEItu79XqdsemKh6c7HsQoXfKWniVfraNqBstsn7aROeVZZtMpQ77dvlbFJkt2eToo51fG1SZIfP2aSoJ+Z7AWZkyMAlRblNCKx1F0OGwls3lj9sUmQTG5sU2UTIXu5ZpMbe1iJD4W1WW24fLzMpMrBJke35s0mRLZBRO9fi/rfPtXsNJ3Yb4tmjnnt5xMuoMFyGejgfD0GtPe9WuK9UHpC7vb1cf/bwZRV6az93XSJhH1N7XT8uagp4NslZd9mFTVrssGub/Khlm9TY/bXrVKTL3b5er31+LLtDimwiNBBhem7u1Crhg3b7djioTYpyESbnwiYzNhGyl+0yNinqizL2GEaRosV6i7TYRMherpepDrW79dvlbGU++7jYY1GbFNljWZsU2eN7RooMbFLkEhT7d62cSGlRXMElP52It3mpBOmSQuYMZJiY8PMdFFWNDBmMi0pu0+YyZB6etm32ps34ysO2Uc2r8gclJ0mTsk6GbChOpzyMKkxr1n7QyEEyUCFs5ZqhV/tlQL08kyqgniegzSW8XljbtAqkVwjQfVYucXUspxUnStMqkJ4etS9qhndX4tfgoIzkAGXd8Lk27E4j+jV2v4gkqWDetYvB7lTvo1LiUlDHZK+Ia94hG/sF3/e2+hRU6OB+EVNPUts2SmUuF4ObXOQYFWVYI0M2MhEiBwDpCfEcXpUM2ThFvD8A0BF1jQWxu/c8NavQOWD98DlAh9Btb+fyXt0dq/Ajofglw5L4Nb9XxDUyZGMqQrjWDaXdL/S9eFCGkrgoL5J6Rqj7amcat3qvGdS+qLC6nWlMJ0DemsZSLOZinqkKW5NYHkd17hVUeOLWNKYk6Pwklp4v1TZTZAV0GCIAbE0imfOkoMIHlTrouUlExzfnJzxCCIBU21w3neDCJJB52oBWdVPHTI0XtiYB9QApOzAbXzKoZ8SueAXcM65k6osKrSvaUjnEpb0zqSgJ2plUUm+gLRXA4KqFzKlQuF4SUKKUhOurwqWhHhj3Yr6uE+m8HeYyBHQ4XM+awNS1s5uyH1c4IS5Y9SWjG/HwORXu1o14KNiyHX51qnC4JOTrkoC3n4WVnDxuJF5qKqSvG5dURW9m522omczbwjwyEdaXh0pJrv5V0IZ6seQt4XNskJuK8gAwTPjA0PU8GGRRIdelIQ/FA4ATGR8wbwp7N5lSdbQsniJj4SnCDgAbGd9HFlYGzPad7WMeTRtzvhiczPUX/k0S9gTMvvCzHJ08nko7OyYAMBLHUZXP4ikNeeukEzkgV6Fw/cH6ZCjZCKi0dnQ6k2+jhvqbAQt5A1CdOYVq0FSZq0YDVGf4jOa45TRvW3mKqooTuLKi3q+qnP11R5xc9rr8WCpEYUWvlSQsZP5XVzzX3LmnDGIR9jYLnyP2oKSEAABGLaGewxbBCEZ88pg/7wCdE6fu0048oWGIWTyteVHtttVxVM+60+I50I2n8mNKL560rmM4I/Yxjwp6jlUo4CCZSPJ6a4d/BLi1s0fbUG3nUSHfc4N4Ktfd2uHHsidCJDsRD63LwkoSq5ty3vZNWUHHH92oRI+MV3pxc/49g76w35xrsteJKgzZWDGq6HxWw7hET5Cr2zq8/ds7Be1bV4QP9uOqMWeVgRqn3tLRY/HNtLmuG+l0mUESNBSdDU4Lz9PpPGzM7QnMosQYf2ib03QdXBIhku4tET5nL7tzQ5l1SvGMtmMRGPt42+FlrgKaWefKURsy5IamuRODMbtNilz1Nxvmq4J72LQqHK/LvoEZKVKy0+a3S1SVh88mD3Zdatnum0t8lAKcPVGeTYrqdq6g5hKfttnX7X7a+2W74+tKcjyEBVi69l27ekHZdnuQYA+ItRx34dhnLwJ38G//zh31KrsOe9kmFyq8yw1zUwMNm/Cssgws999tw5Ah16uS10L3+HJjIsyE7wewDElz+8UGX7M6pocuuyQnM9eqqyg4/+0OGu2+2KSoY3mAXFLUmYfKuaSo05vMy9f34zAyZGCToui09RXJIUULMuSSJUOGnHyi6sySjdikqBoNrDIOKcrmEkmrkiLrc3CNFFl9tEmRSwBdUlTNPTrdDifw3axe3g5ltK+PxL7/nOvOhEu695ghHO41HIuwt3r4nCDdQqqbkaVcPO9sb05c21/+vAOW17dLisyxcO89+7e9bN8njBQBzeNong1ujp/pbz+ZylA8l/yoZfu3azfedpcU2OfOJiYqFFBta2+v+uS2odqu2V1FzpZ1i8l3hUKgu1wPURQflBL3XVdRu/0ut0lRLQxRfMR1SZEhHC7xMOXcyW/dsH6bFPVqdt6+S4rM9q7d/ght9627QvigS4pMdI9LisyYeTNdSn3b9tm65XuiK1JnXLikyPxWdgA1UmQTHsU9LpUUXVTI3Lfe9iLaoYOCu78mpR50jwu+7qDkZKiodL5OUelcG+VhGpfcM7RXcDK0Ow0kSVLnYlxyF+uk4mRoIsLdZvVov2Rb+8zLo87LuAxaw/FUG6xvB2VAydBBGTRmDQeAccHts3UhDak4KEPpFdovQr7vVSClapXHpqgCGlZRVAElQ5MylCRJhUqpbWbhc82X4riIqGdkv4jlYKitfRXetT+NKBk6KCLp/VEYT2PqHdmfRtQztDeN6b7vF9wOzI4L6+/+XNmIDaLG05iSof1pLL/oK8yOCzmPRUT3fVqG8jiqL+pVFSzIUM1eBgsyVC+/OhmyEYQOITIIA+4ZCgPuGZoWNTLU2Ia1/Yl7lmTIxkc/ScuX/3yOxsYUH9+X3q2DT/HJZgFg93yyIEM1+x7X490dJ1TsAtBhcvvTmApq7E5i6n3Zn0bS+9KmWMdC7sZlSEnQuOXZVVSBDG2blgH9+KCu74NpRO+tvWkiP0yo0O69SUzb3p3E9Bm5M0lkXmNbWM7ONKEeoDY7Cz3emcatx5hhdxpTb85+EVG76hOgw+S2Jgnt19Y0lmHiW1Mejrcz1SGCOyJMcWsa0Xf2+UlEI0nOTyL5LlchfzvTkJKj3SKk3pftIpRjrzb1vQvTgHqALkxDSo52ioB6mHaKQEbkqPvh/CSgIhHnJiFNdbj3IJAOiB3x2jh7UEnvz9akogRpt+DbKPus/YqSnZ0Jt+9Nq4sKm7soD9Gm0C0fEVcawBU1gBnhUetWESlwoULeVM4OAJwULkNpz3TIm4IKX1MXuDsPwLK88EDMld9UjopSblNfS9SXmracHeXa3hBzGKjyyp6HpUwObVcL4vUxtR6gPalYTgIowkmUvU1cYCByQYYpD0MYpPyLtSo/a3/98K4NEVIyWDMcrG2boQifU31q20fV383OPjY7PGxlJMJZRqJ8GheSrLjzAxn0xPnqCnvWkhDNyBAASoaAQ8jQUL/Uw00++A9ONUPeAOgwudtv4fbNEarRkK+7z62iDR5WF97E64lO6tkUkw25CnlfeB+Ep6hN2EJdK2qOKWmX4XOVDDHWoV3rPdPatgG0B7kr6lP3iboXAS03r54fyr4p2lCheAYqtG9duwrfA7QS6CnxXDsp7KdE+BwA9MQ+nhb9Pd3S35tE+2fyfXm9nBT1nRLn61TGr6FTQv0O0HMDns74NmfWtOdhJcdrAHBTJsLuMhEKuGZ5QI9xbhGhfafFmOy0GNsCej6mM7l+b5wRYXcs5M7Y3cixZftiG8FFlP0wXHTInMskF5LQTj9MgpuaFJTBeC1c74VKlrPbdwmmIUPsy4Jhzyq0zQ1v7Ih9MeXdMLE84jlGs21mF77riTHMvWlvL69gSJJLloxHRYWdueTH/GakyNiakwjOwzCcbTpy39vtDG2hHqYetY8q5E3lEwFNz4oJZVAhbw37IoSKHMf5OvdrsRkAqLArZVe5LgoqvEu1n63ZL9umw+e43fW2tLVhBjPuuo4dEuKGrYhQHkNIXGKiBrf2usRp3/x27em8bTdvyLTJ8oZyMTjIO8LLNFyBDLG8oTmRqJxE2uDMYG53jsOtnKhUN89ndk31nD8NZDOvVMOrZNw5Limaz3vR8FrN7czLVc0PS0o4XDmf96QzFPkzHXeC2/l7gxAZc27d68Z4k9xr1dTl3idGyU7ly83W1U+keQa5bRgvk+ttSq1nl3quMWGEVDwjU/FcXYSNuuqg5jlE7jFja4QbHrKP6vmhvFAA9yLni/bdZ2S7XYXvqWkGZuuc8N/5b/f89hbPO+c9O7ez/TBlXVJkzq9LiI19XZn0RR9FmKC7/5lo35xf9+Onecf3CSkx4xGXFJnfjTC52Bx3N0S/lG0YDOKyQYxMZIzrpTHjRfcjuimn0gvcsDxg+VHbJUVm39w+mePl2s24mYXbGeE2lxSZ8XnfeaR3rClu3KluDOFRxIetiw9Jp3HH42084TAciYi3G6ZmSJHqqLtjdjkVWrcKGTIwJ9f1DGXWBcpciUDzIjWkyG3D9Mctb0iRS4QSkQMELC9Sl9ws7auVB+rER3mMFEFozH4uSFCb1LWB+1AxD3FXse3wfeR2QMfBu+UAvY/mJe16hlQ+EbB84bsP82RBJgtuF7kybN3SzgnCqiTEFgFQdQF6wKAJynr9YusUodIE7PA21JfdDksaVsfFDDzcQYwS8rCOnTuIUyTI/E7dAa8ZwDlt2aToqMhQMgyaniHr9nC9KoYUGTK0tM/37TAytOjQ8g1abS7JS81LlNXJy4IUubFthhQ5kwAuSJFjt0lR5RyW9MSSGJXOJJCHkSKXtOY1aXQ+4HdD68x17NZl7hN3Ql+bFClFN5fQqNy1WBAKVoeBTYrc7f5/9v6lV5JtWxOEhpm5+3pHxN7n3HPzZmWVSghBly4STfgD2UD0adClgRAdCpESEqJbLRq0qlM9fkDRhwYCSqhEVmbex7lnn73jtdbyt73NaLhP92Fjfp8t9xUrYsdjfNKKcB82bc5p5mbTxmfjFdZIK8+IPJAie/+M3VuX5GUUj8/D6weLTRI5rieXoJbSueSIWs9ImYHdNkw2LgihOcRfTvFx6DYBoQ8Wj2TlmtyMlW5gcUS2v3D8luSH8e3vy2tEqec/iW1m5MiSHea2r9sh/SsQDUtcgr5p9cVrQpr0/oxoWQ+fQIrsMYb9rU5EPZGmx+QMNot1IEVWTw+kCNX6RDKRIfGxJCh8t+PPCDn6FBKk8awYov/Nf+ffHD6z2JyLbBfTYzFJcHXfjMjHxhDZnQi0GVmERHYnkh0xTbnNjjHtYZrDaYqPXYSnd2Zjz9Ie9nWR9bTy+RhY7Mg07aEvLJNfpD2tKM2y312mHawOfpm10J+ZyUX4cYxVMZ+mHezvIuuozzhTBphr3SzrYKzAbNJKe+axWAUoYJJ10oB0pEz+1DZ2fc8mjTSgYvps0koN+ppNWqlI9XEGVvV9krVSgWrx04yPwWI3UMa2Q3+TVmrQ33TS0vN1bqX6sd+LXSvsOr4g7iEXlw38HWe3LSy4OrlNJBl5HZb9DfaRSP8ldklL/vYNjPXp//RHkZScx5tr3FfBXXOSd+9jYdWIvH+E7btfsLz5jY/R1b1U83jOXStSbmILV9+LFCztNrlWk6SH91aS9FIBeSpYLsLT07M1LUt6uA5O0240nTJLD4zin0R2xANdx1MiF+FrIZ1T2sP1IEs7qcH5ylK+DrJYjGna0XM/y1q4jclFeCwZ+x1ZX1eTmqZ1Z2seewZN01YKuN52sq15nAJLSc5Sq0/TTgpwLEwuImfLs6SXLfiNmc5ymWG9ZAxjutck7WG68Fna0TTirBwIe6l9lXXwWKZkbBGRosWDoHMlstML1k28T5b0sqrR2CIFNxLS9egi2+USsJikWJ4lXL/W+D/+w3/2dCODT7IQTVP8QzJzWLAcWXaXEXmQMbLAWOEYGRLBCuDlmWmvn8rYhuY8S3ustKQ9fNgEa5PtKxzf2FtBpMhPSXppRmCmh2M0byxT7GoosltcoMvZE8TiVJczkR2BQXOe7n3okR996Mf2F9rC6zjt4A1yPWlh+/DmLXrze3gjHM9rlvF03EjBt+4lVm63T7KObgtzs9aLnXzcGmKVoKfcXJB8mnVQPiHWk6NVJd7nYtoc9ovl+JxNw7FYq84Eu/IEmW0f5Kw96mtCrpUApBiOkSGE2e1+nubBObndfQ9ppi2y1xP4dir9w5VIGVtKkr99s/tg6gcdrDpd3Ff/xz+KXAFCdHMj/R9wDJKISP+3xtpU7Y/9Tz/FbYsaxjn1RSvZT7GS19W9dPsiIrM3wzl3+1N5QeKzmNUOXSs0dTqxnoS6cch6kyS4ZlUi+JkSZHYdDN8p6Uk7eE3OJi08HuY+NyXy3baOrnno3jq4G0ZuiN1gLNQfko1Zx2ZZe5ZrMJNP0g4mW8nSftTFmFm1piBxzuWkgc/NWdZCS3no49SshyI7aw4r88BKIDzpQXFGXG8iAhMyhOvXWknGdBaR2HMkyJB8mvS0iPshIyQpEo88aq4nHZRfZbgkRxjbHsuUjC2yOy8oZjxLsKUo6KnWchXOLysSy3TyWYq3MRe6YBliXALp11kybjw5Bc8mRJoIaOVQH4CenI0tmhHioEmR/qzbXWbDk6t/mqfIUEAy6O+4z7Cyt3bPwp81LDnSc9bxRQmR64cRqtcjEh+fJUX6BmKf9Tj6eNln/Z2l8hYZ3ogDlzNSRf3UhVHPXZOdsfkO2+GHvyVOg+tY7aN/Vu0SoNuzujnsYb3bR7u8YLlWEPSDnH1G39k2PTetPGgiMhnIrdvXeW4uw/HwPCypCXOJ426Uu98Uz3coN9cAIUFWzs7zdDDn034XJte/8Wxwfak15wQypC3fBzIUsCdFgQxpDNJrv1ZEQZGi9A9XR7kiRQcydNi2I0VR3I8iRf0f1TZNim5ujm1OIUWVOSeKFPWFmqMiRb16halJUQeqKQZS1JlTqUmRPuenkCJNHvS1aknFKUq2fo7o9UO/ndfrsCU77CURaycyvCZn5LiY+5y9h3Vfej04Zc079aXTdLCWPn2fjpVCGIx3omswW+M1KRrc/yMuxuyaYKncp+SZokmRJVQHN0TrWjbVbn1mnxNKIJwcY3sCKdIrmCZFUVp4QhyYzjIjeor+rD18NCmapH2ki7FwAi3XrnlafkXOnSViTBdlupgmRVo/1aTIvrQPpMieX02KtO5r9fOZ2XaY+4lucoxTnPL5XDzLZe5/+9/9N1DO4n/Y/E4xe506hkgctxMwlsCBXVCfyjSHfRECdab7HLMIBTAzNQMz0zJMk566VLC3nuwYuZsYP4Zz5yvCzbRjfbGK8CzOh6XAHXPVYsfJzgs7v8/FueNQk37GXQEZmMsZ+63GXNTYfJnl5aXP47nuc2Ng18uUZF5klqGLO+63MMEeb7ttwGoiIpL+3Q2UJ/8JrgnU/+kPUQzQcdufoJym3b5/wO3LcpeSG43xz8CtTkS6XxZQXr/ngfXFPb+2izV2k2Puc8xVa+z+YfswVynmjvUcjLmvUavr2JpH18nz7lV2z+3cEJn74Hnn5SXv67HxmzPXThHuSn3ueWTnSoS77z3n+ho790yfYO5wJZEzl7eUuIeKnP8sYNcES+0dcK4OwvS4sRI77K5jKcGZW9165JrIyWOFueKJjDzT6R6cFzR8aYH4P/z9f3beDvJCSRVEOFGZEDNWmvB9mOkrS/gJnqX4xnsOGWIubNOkhwp+luD2YRvCJMH+t4wMTdOO3ihj408SfCNNEvzjs77G6hJN0w76ul4QNwvmujcj8uM+yHzdUQKTJWOug8Sik2IXkHPJ0Cxr6bHs3OHAvIh8QuRZ2o0oGePb0DFORlxW0hFF55zxs7SDrm1pyt1ixiwtbL5jx3eOW87YtjTp4TEmSQ/HZ3IRrixOsg7WwZnNWiifXHbSAv9uEZHsqpceWEJERLLbVHoQEJm8nkm/BW5yf3wlsuVxOFLG2/o//hG7z93cSI/c55J0aE0a6fuAvJDkbwDry6uhlSuMXXYyeY2VrK4Qmd3g36VvUrkAaW37PoHWvDTpoatnmvAYHJEx4oH66mFf7Jof25bt3buRi3eW9lA5zJKeKr8J2UZdRskaxdaPMWQpOy94jWL39dg+Y9sS0l+aYDe5LOHPp0nawd+Er3n42cGuRxHuvpck42sxdUUk46RJD5/PXZ/QuoLIFa+XcSLOdACkszAdb0LmKoLd7QKyBIdiTGmYBA4HuCDtd311MMtuKljH3Z3fWN72IlfkWPpeoqzLAcwQkREdPyM6qd5u0fXnvRB/zstzkRciRGNkKEAfpJ7smJsZ+9z1Q2KkSY9edJ9Lho5jKpMg+TzmkjBGUgI0KRojQwGWFOkx7EWgx2Gf9Slix8KO185NLzADl7OBix425c6IPN5Hm6/x56gddR0c7qMLmQ6yej2DDB3HOM0Vhrt2YDn7jL6zbUP3naddViwpCnMbG5991seVDuRPz+PUduz4xvYZG2dwLvQ9Qc7pKZ/t/mxsTX5mqo6Elk8uj+0tKcqu+AuN7Pa4CmhSlKg8q5oUJX9UhMOQov5PJNOcJjbafU67yWlSpDI+QFKExsqP9VMGpCg/xjZpUtSX6rclpEgkJkV9c5ybJkWaJGhSxNzMBs/BTyRFp7ifWfLBttl2WgHX2/Tx6nXOEp+EbBsjQ2hftn7odmP3+fC84M/svrY4dc1j8x9cE+SZYJ9PA7dI/Tynax5+drDrcdcOz2tsLT3FZdiOw3SCof72NCnSV5AlLGwMprMwHW9C+hFRcX8g3uiU0ASmA7G47jHdiLn5a113eH7xGJYUDdyCTyBF1qChdfyxMBoNq+8HnEJ0nkuGRF6AEJ1ChgKyBE92LBHBmLzrMenZMWC8j8hpZOg4Nn5jMCWWlCA7hQwF9JKcRIYCAilCY4Tzy6xCSJ6Svtixs8Dc3Rg9fltB3rBkSQ8XvrExRLBb23T/Zg1aklJsLQptZ+CNq8inkaHjGD3cNhb8y96Ejlle9P+oPXt7eY5lJigrdm5jY7A5T7IWWp7OTRwxNt+xt5psn7FxJhm2ejKr25i1KOyHgMbuu2RAhrRck6GAQIosGQpWouw2HZCh4/ZuQIYO8m09JEMBe1IUEZS9JQcSmq4bkKHDGFfXgtLfHfooCQHL42KSyd+8GpChgPQPVwMyFDB5nR2IUWe6C6RIk6GAi8sWWkwuZg1NRIDwXFJ0ToKCIGPbuNsV3qfvE/jsCIrXuS6taD1gFpawBtkxxhKW7M4LXqPYfR3+ZySI9ccsXPCaCC+XyIs9mDgjwdfFbs3Dzw4ElgY+zItZ259KJMPGYV4j2MOHkyJ0BYVnPBuD6SxMx4NWpH0fMJlIuCbgfthaxHQgFrc9phuxRFAXKbbQBp3XuqkFUoQCasZIEddjsfwpUoQ8wj6F8DyFF3OZ08gS7COYEle4sM85chGh6a0v0p6m1mauX0w+ISQuHTH70fgQ3FwSwam1R83AIy5sYxcZw7k+02yhYmkiz3UpFMHFVndjY4Ui2ZNURu7YWDyFNn9zh66vadrS6+4Uy5DGc2JdxhQqtu05sTbMZYU9CJnrjQiPU6BKI3XzYArN+edxbPwxnJ8yGJ+vlL0dnHTSAIU8m3bSETc5lHJbRCThmXQluZlIn8duX8lP19KvcrzT1SUUI9IjItLf3eF+son0N3FmuNF9yNiyyiX5CZCuTSXpa14gNp3iczmZ4XPZtSNE9cTEGgHsmuj7hLu9EfcqGqd5RmbDJ/sia+EYaJwiux/G5kXd18aO5bx5jbnojVmRzo3TPCdbncju2TFG4vA+42TFoiOEN5X+8Af7Y8cyMg7Sd1oyvgi3ojC9aUwHob8VlD6RcINdx8LDFBh4Ai88Bvu9mv7888J0zE64IeIpfR2Pj+Vtj+/VuuNxRs/JS6DxyYTIup3rg9Nz0wdmTwCLC2KYpsOTq0+CvoDsQh1+YDtekNv2jFjoYzmVfITp2rHH8vUzhDHRj/cpP6glRayvcAPZQ58Q+dgNzxD6snM4jG36jNyQiJtfbHLej2MmHc6//b208qGvF+2+Yq8jqvie+cAcQ5i/PY404dueQ4b4nIf/W/kYbJ/huz1vCfntzw3Wtv2x+bBjZYRlbJ9T24W+7du8TGUB0qQomyp3E+smd7Hb1pqQm/Rq164rOukKc45vjkxJk6Lkp6M7W0SK/vB612a1GYj7n/eZ4vJh+zEydGhjSRGxNh3G/PnNsL2aoyZF/Ua5zxlS1G076bb7N/J3w3MZzu30eqjQ6QKu1JXRKKHht7XKfFhr7PV8ysuqc0kRa4fan9KHXfPSwzPVXJNkXT03RnHXB7ZCnXK+TiVFes153rp83hrL3BpZ+nK7bZyg4THYvh1xibQkiH1nZIndDxYtGX+3bbcGnupaxjx3hiEH55Ei9vIXjZOSz2Ng7U6pwTgWb6QRdGfrHdXs+7JyvTcLVRlLf23vu9C7ba91er2P5huW/ITvqDboqXgRC1GYADoJveDFJ7R9DhliQGw6LNSW7XZEHtpbosOUStTWwk45jG3JUPhBTyFDqO+X+DHDw+QpMhQQpmMXh4S0H+srwPYV5hKNTRTkp/o/mpytIi57OVFUgNLR9zjAOVxHX5IM2e/Msrmb18uTIfv9HHLEFLJw/piiYs/vkUx9Ghli3w/yTyBFp/YZHjIZqBOBLEUiR8U9kKGAQIoCGRrssydFmgwFIEuRiCJFezIUEAjKgQwF7EnRKWToMEYgRdZNbk+KLAE7kCJixdJkKCCQokCENAIpskQzkKKOZFeCyS6yQATMSyf24uXgsmIJxdh6+jxSxK75dOTNORovrHl2n3AMscK9b/8MKwuLUzrH0+EpUjTm6noOnkuK7G/N0peHbaeQITtGPDa+Tg/9EJLDSNBTpMiOE569KPtceG7bDHhPkaJTyZHI5yFFYy+uz/UmOqcgfei7Mbscz/FQHshPY/oKcnR1jYWmPEWK7JGE9sjKkyaY6IS2dp/nkqIXc5l7jqnq3JR8n9N38BSMjX/uiXxOOkI2PjPFjo4/su1c9znWeqwXeixnLhBPPaDONbc/x5r1ufHSKWB/73EYzlUcTiU13yvOL5jwPCT0ZmU+EMQfb8ITF1BMWF9njjG2eI/4eTDXwgSQVJFxosxeCJx7HZ9idf1UPHUP8ZTYuP25qfbH9mFpyl9yjLFU0dSiMZJC+9xx2G88RnrOHZvhXDJ06vZTgbLvBtDzRdo/x1X/9wa9Vkh7S2CG28gYpH1HzuTYmvOc5YiN/xweUZ7v3U7xLEJUmAmEZw0obi6J4AWJMbje/G/HGDthJXgzF35Imys+JfLQnl1ICIc3XWw7kdu3IMfzGPcUtn2CNTCaz1hfrD7AuXK0gB3fENjj528iRF5OYX8q/3/0Fvdw7cW/S5LgmiDhOmIPSbaws2McO3Z7f4Xv6L4LMlZPoht5qPM54+9Mfg6eqh9y6pzi7addr6z/bqQex3PnbPsM90OL4oZILEC6L5bXlsN9sn1ZoC4Hb0X3UbL9BqSLvsGxNsnrvRva42og79/sLEbJYjnc4W5n7UnybdwZIVBJuc9sYOKQkvl8N9ZPQ+uULPdz+QnHICV3cW2kbr075vQuvofb/bmySSmaKljhSDwbIEthHbBv5o/Wk1OtKjs5UlBY7ZjnXo8MyWGdZsQAyxtSQwbVwwnHb9fP8N3ev2zdGlsL2TzDGGjtDjJ7zk7Z59S+wndmBTvn2XE8j3a+uI+a/EbPBbtGwm9uiXe1f5bi2JHdPtazptkfy0toB/TckvZjZCToRGil7kybwzjh97LXBBmvGRkD6cMiR/3SnuOCyIOOjN4bjVlizo3zQfzhMLcW/wahNpGtUfTcWKJnW4gCKbInTx+U3qQXpKfIkP1ux2j74QHrH0pfBPahEX5Y9oPb9qeQosgXmrUjckYkNCmy8/0UUmT3/dKk6FTL0OciRacWQ+vItaKVDn29aFJkr6NPIUXsc9zX8H8tZ9v0Q1H3/Smk6CVI0FNjnTsnhqdI0ecgQ0+1C33b+0GTIk2GmkqtE1Ozz54UZYYHBFKUXqYHMhSgSdGADC1UTM5rk6hgT4oCGTq0C6TobkhQBqToKTIUsCdFgQwd5htI0XJIzDQp6hfH8TQpCmQoIL3LDsSoNcQxkKJAhg5yRYoGsV2KFNn7P5Af5g7H4m4s9DrzXDJ0brtTXcY+hRSdahkK7Z4iQ+g7W/sYAWu7NNoWzhnbx34eG4etOSxO6txnx25MTI4CxsjQs15mPUGGAqhXyOD5OtwnPK8bcyyfoh18DjJ06Jt8Hoxjfy9CdsK4dnzd7ikyFBDOcUHk1mCQDX4TLT+eJaufazyXDAXo3S0JCt8/JbHCJ7nMEfdyqTp8YXY9J0OMfIyRkrbHrLXsEmriq9hiQC7usfGp2xuRszHaPoGKetWlVIEfIzLnEqbnEKyxY4FjkGPsJaELIltw2BhP4VyXS1qtu0/h9VV3Gb3uaMV58hDq+2T0jR9C1fAHGtvWdnicMVLElJqajNH35z9Qz3eLeR4pYhir4s5w7pv2c96Yi+xIEbIMNVUakaGAviHnpeInpt802DK0yGMyFAAKroqIJA1+SCT59nQyFED6YmPLT7cDMnTo/+4iIkOfguyixdn/Jt3Z1zGTZyQtcZKcT4bYPfHU9YvIEFN6RZ5HitDxIzKi90Goibzr8bz6PqFjlDVPycjXVTznsXEqcl6oNX/kGmLXEZvv2LPjOWso8poYGydN+oN1aCiPyVCAJUMBz9EPziVD5cjzEXn4iOz0LLRStSO/15Zcxzm7vuV0MvTUGExXzhKsx2cJzpZ87O88uUjsjSay+00sGQrYnOPaBfDJMUSbuIi5iIiAMg/S9MTsFdx4nsEe2bYCBLyGGxtt2/V1OilqenZxD8c6ynd9IyLBLuJERMoRxWzMFIu2NT0mcV3PiR9aXELf6Fh6wUSmF5EaHOOOJMfHGBaoc0hReBA8y5ecPNjx3EQqtoiAh1q4FuzDOzwYESmq2wzK2y6FCkWQ2W1Nm9FtoT+kPHQ9VjYCUULjsDH0HOzY57iYhN+VEUW0X9cnVKHoe2ztCTK0rWlT+PBs2gySyK5LqTzsh4AUhyTtpa6B0pD10hTAzXZfLK/ZmLeo+y7aZSvtElSkv0ilW5SRXO4upX9cx/I9SUoeHofym11muuRxHu8znWHi0zbSo/igxUJERPpbY2263495C4ja/UqSu6tI3C9KSa/jMbpVK91qX5PFJJ9o8913lHq7LTOZIDe5JoXWHabEj5Fw9uKkoe5YCVRkmSU3yMaUb6rgE0IW5oGArvu+T+A5aDt8DweZXdfDeobm27QZlNdEHubTtGk0t+YwTjy3ukvhs6NqM/ibBZndxp4du3HTs58dCGGtQddE1WaQ3LR9eviLxn+CDKH1s2gx6SzaDD6bqw5HLAV9AekHbZ9Aed2lWN4nUP8IZAjtU41sq7sE6kB1l0D9L8gK89uHPlBfu/MSy/M2g3NaN8FtcygPOjK6JhBJ2Y2RnK3Dj+n22wbrbNumlxJsQLJz8WxCpE/UKaRIK9wDs1dEHPDnTyVF9of9FFKkP+uh7cVwiqWImTn1LE4lRWPucIM5k8+nkCI7hj6W4e+K5fomHrpRpko+/A0aMr6el1WSP5UU6c/DuR3bn0KK7DVwiqWIfdYPNK1QMHKC0JD+NCkaXBNa3lmFgJOwpz4ztxLmYjL2+zJXlG4gt/sfP2viY0mQ/j44F72WZ6o9Pl/sc7S/6leTokTFmGhSlKoK4ZoUablITIo0NClKLtQ8NSm6O9b6GZAiYzGKSFGQa1I0PRZ9HZCi9mi1GZCiPRmK+rw3Y2lSdH90odOkqFfHpElRIEIIgQwFaFLUlsffQpOigYujIkVfigwF6Ot8zJ1Vf7b3Skfur8F994mkqO/xfab3ZZ93c9z9b1/usDVzuPaxNXbMSm7Hwc8L/Vk/F/Rvx37HsWcHm/8pzw792b546QfPN9WXIjn2t9bfB+1GxtHX1BgZOsxLPY+1pYPpHLt5JU9+1r/PQK6vR/XZWobCPlWXRhaY4ThPfy7JZw1LgvT34Xk5ynN9Hag5rUmmUqsb62tijAwdx+C6+6k6/VYZ8LU+slVKqiZA+nPxCT5zSd+fbxD9X/2n/wbKSfztaOGlczGW5o9tY8WtRHbVdXFf501u7CwytwJaKJSMfTFSeHMM5xLnsYKzbAYvVZB1LPvLuRnoRMYyOI3sRMDS2s5GqsjzeZ039ktnTuMpX1nqXtzPJGtHCdg5Y78kXjoDHY/5+WQj+wEs/fDFDLt3XVxi+eyGX3fTV/z4J3+DF/D0X72G8uQ//Vso73/+6WAdirb96U9YTrLGJff3WL5ex4Qo4M9vobj7ZQ7lzTtgDdujeqCbpFzhOZcFkRPXq89Fhj4Vp6TJt2BrpMjp9W+O4593r6YJd5X7Uq627Fl/buzr2Hl8qWfH2LXCrDxj6yfPvsfHQW5yIkMyNJzX6R4jIsGN67zf/tx476dc9F7AcCEi47oR83Cx1qWA/EyDgAj2+hrrS+T8WCKRIRnSOJfo/Of//L87q73IMy1Eqxr5EousgKWo7jirZOnyihbvU3ciIBGSiOxOcM76Y24AIrIFP2bXYwsSM3lWXUJjasougf6Wu/MS79P3+ALrhV/cYV7MHMtMu8intO2x+VaEv7XY7YNM5ylc2No+of6sTF53qZSwr1Rq8nay6RPqf8wWVnYe2y6B7nBtn0rexIpO2yVSAPlujAz2VbVcjvpi7Z/aVncp3Na0KVTaqmYiBVHmtuUMyqsmg25fdZtCOWsftp0zRtOmMJ6p2Y/N+htzX0NKa1lPoAJWt9gNkclFuIuiiEhZnad4Vxt8HMnIap/MEmkX8eKaXE+kf9jE8tsLkY9z3FdO6gDNpiJzQGKaRpIidp9LFgueXpuMIe8fRK7ia7K/X0tyBe7TRSXJJX+gs9iseptFVjgRkarKBta8g7zJoIL/kmSoJu6czLUpbEMIrqY43gYruV2fUEWajt8l8H4ccw1m9ylbo8pmAte7gsjL5nnratXidaJqMnjfs77qNv3sz46imdDfKm/wi5GqTaUga2fRZNBjomgy+gxGz00RkXU9gfFBRYtd28oupa71jFiVXQp1tpI8/4s2PUuutyOdpmhTqM9tmlQ2wHJTtKlsyLnP2wz2tapTqHuuG+zatmkTAaq9iGA9eTffhBK+bYN1fCbfzRnL13UP44byppccuDZVz0zF/ezXm5oUdQP58bP+MSzBCSzQnhjdTn/WfW2aITHSP64lRWGTJUV6zvrH1j+uJizMzKlhb7BysI/Az8ytj7Fu5k/61Dz1QqJv0IqYjC35CdecHa8l5mS9COpFic1Db7Ny3Vc56EuNZx64zcBcjcc5+dxpszQZny3u9mGkH0K6r1M+675YG/R9OD5x4VDXlSZFlRrTKhxBkbEKjf6uP2ulgLVhfZ06hj6OmshRf8z9j/Wtz5E+LvZZw8qZi6LGp5KiQIaadbyuJDN1rStSlCiXMk2KkluVts6Soquda13ycWjZ6WdKydKkSCVK0KQo0W5yhhQlHz7s+ry+HMjlvTLnKFLU3x9d/DQpahfHQq2IFDWr3Q9jSVG9xS6LVYVdHAeuj4oUvTQZChi4uPUp/Ky/W3mcUho/o7S8G6y3w7mH/u26NFhX1Tk6xTU4vk8n0b4iOzJ0aHPCWlrqdWVkHR1bcxuyzg3WP7J+6zZjzw429inPDv3Z9hnIkL3OqsG8hvsUg3OG29lncH74vYbX2lqtq5oUab2H6RyWFIUx7dgDPYXoPDUZe0xu9Qn2AlvL9WdNhPTnYRvze5FrdFXruR3l60avDUf5Ruu6hl8E/diS0U2j73/VvhlaebSOz+S7OcfzEtmRoQBNijQR0p+fS4ZEnuky97/4j/73h883U6y4301xJorLDJvELjJuSRqpmyc3E2x+u8pwAofLlLt9MVc1Nv407aGJcZr01JrCwNz6rrIeH0fWjb6ZYGDm3VnawW0XaQ9ji6YpN0Wzx/xl1sJ92NiztKNvlybkfNn02RpTMs407em5ZMfC3D+uJg18e3o5aegD7VxcThr4sJ5lLX2Iz7KWnktWUO9i2gwI0WH8aQPf6s4mLbW+nOv+wvoaG+Pcwq6hP/TGeZLxccYKMCJMsw6So2nWwbdrkxHX2Oe4zyHL0OS2HxChaPvfXUJ5+p/8jHf445sDGdLo//iHIRnSuL3D8pK4sDXNgQxpJNtiSIb0+L9gefMW1EMK+xT9gQxpdHUyIEMHeZsMyJAGI7IsgYDIp5GhwRjUVbuDFpsswZnsAs4tFDtNWzjOLGupGxVbVxl292l8jrO0G5AhPTazvjBN6Kl1FW2bZB1dP9jvwp5d7NkxNq9zMU1baBmapB2NlR0Du46maQdfHmZpPyBDx/F7SiyYVWiS9PBZN0076Mkypq89x01uSuY8Szt6LMwbjOmeN5MWkqHLrBuQIQ12jMyDappgy1CW9AMyFJAm3N1NhB/jRYYtQ1kyJEMBk1SgVWi3z3Fe/+e/fiGXuYC272VJIqMeSjzhB/Kseyj7QcBUQNFyNzkRkXmF5UtieluRNLRtP2TJGsxasyQX3oIFq3UJvfhY6sMV6WsFsk0FMHe4MfMuM8eywLtNg820RZuOHAt+EG2InLVv+oQuLOzYRUS2IyZ6hKLNZEseOFtyvpYVVv6WVVwUUmT3Fg25ITC5iMi8wH0xuYjIkri2lc2EukisSH+LHMuXpH3VZlA5CeMjrMl82ZyYa0jdZlBhOoxD+mPysp5gt5gRV5oNuSZyZvUh12PfJ1KUuC9mKUIKvIhIw/mAJJNE2g94oe7fLfFOK9LhfIHlXS+yBH2tVyI1XtRZwgZZgsx3ItK/x2O394UkU/7oszWIAmwNooOcrJF1nfGSAmz9Yu6hI25aSMGuu5SmJUaux2NykZ0CiJTMtk8pUWPEIyfXN3thVDQT2te6JPcvWT/YOlg0GT1+tnaLiKwq3N+ayKsOu5DVXUrjadgY7FiYt0LeTOi2OTmPczLGtpnQ5+m2mVBXtTk5ljlZIx/JGrkm+se2yWRJrq8Fka9GXNGQLrFt09EX3guimz2QlyZMx9u2Kd32ocTH8p7IWT/LJqVxQ/Oa6b1MDsUistPhkcFj0/SUKzySoCUmL9peNiwf94n4JEIUYElRvX/taWONAnu0J0bnDkekaNcmlgULlGWXT8k3TQIZrkhMisLFYklR+G7jgAKjtsRHf7fbwtsGSyTCGxBLSgKpQQsCc4dD+z/VH5PrfhkxscdSH45xuCiEh4NdQMObHFswTL8VGnMfZG539qEXvlu5no+dc5ibJUVhfEvwwoPOPow04RnzzUbft2ZxD9+tXBMrq4hoMmJJUVDASjN+SfoKCotVXIbuKHh8Kw/7WCXwqfZo/EMbFIMV5myPZf/d7sOIyinui1YeFGLbZ7A+WbkOyj6VFIWXZdXaXFv7t/D1vJd6PlxvE5VRxZKi5GLXf0SKLvZKjrHShEQJyfuPw/baLKZJ0Xp1/GxIUfJ+bxkytYuSt/u+L4eK1oEMzYyb1r1yyzOkqHnspHncPSQS81NXm3QvHz7rqn2WudRYNgaZAA0pYvW6WPrjcO3Yt+6DbJasCKZ1fd5/Z3JMethLROWuZN2SQ38kG5u9HwIZsvcvc/XS321fYW2yY4d10Fo89BobPwcmh/9tNjT+7NjPyxAcRngGbsydPS9pNEf93crDM8Y+a/LBWj/cttmfL5vNNrwotMRHfx/bZp/p4blorTThxae1+ASiYmvurMn9o5/Hdp+gj1idIXy3+gJzRdN6DSJFYbvdFlzVrMUlEBWrL+nvlsyEPtZGh13u2+XR+Q3HiNtbaP3Y2juCHh65te3lSH1nBg2t99fGVSJwCitf7ZV4m2DhUzLLaTybELX9qQew+25Nacw9bte2h23Cia272B0vkJ9T5bv+gm+kkbfhYsAkyJKjQIrsxT5mEQpy+7AJN4JdHAIpOtVPNaDq8ELActmHdkzOLE9ojHAsNrYqEAz78A0LqF0wLSk6Zb56rpEPMXmQhe/o7daWzC0swnb8sPjbB1x+IA7YKoS2MTkjQeE7GoO9nd3Nbadox0QEk6P8MM5pisquD0xqSrLPkZid1l6Pb12PNMGxZCeQoDhOaj9fIx+L/2AkKHy3+4a+o/iHvRxlqHqKFFk3pgMpAi5JgRQlIL1kIEWBDAUcSNGFeeO7J0U2a9yBFJ2TcmlPig5kKGBPig5kKGBPiiLL0J4UaTJ0mNeeFAUiNNi2P4RAho7yXduqHP6+gRTBWlF7UvQUGQoIj1d7DQVSdGqcoMjTJMjKw/6obstxW3z9B1Jk3eGOdYEwobOWIfZyZWxb6Muub2FsuxZWRD4YC6SDDjL+7MAvwxjRgbWKOvJ8fOL5wEgQsgoF2ca+JNufF+s1EYgOsgqNbQuwLwnDc9R6gQS9x1ptAsGxZCg8/5HHRtjHkg2mrwR9wZKhIGeeL2Gb3R5IkSUuQU+Mic74ONs2iXTM0LclN/nh/NpjxO2rw8tcpEfJfttQHvRmW+O66Y/EyO4TdPqxAqrcwDKUBxJkydCnWImeRYgWJGrpvsAT+Vjggy9akfc53ucDkd+TvkRE7ok7HstcISIyJ24Qc+IOd18R94CR1IMPZB82BnO5eySm2JCxhFmE5mS/BRmftR8jXw/EtM3mzEzhzKxddKksyYLL9hHhbneLmiiUI4rGR2LufyBuBQ/EDYG5LYiIPJJ97okL14ccx3owuchOaWCuao8F3u+RjM/aM0uNiMgjmdu58sWIi+CCzGtVXJztCrgg4zctztYnIrI605WHuf4wq5SISF4Q958tubZX/NpuFiPpdIlfcv8YZ58TEZGP2LUtefset18uh9Yhvc9ff8Xy9zgddz/Hc4KFZvdoV/wBWm+Ja1uJzyUiQ4dtZ2ZRtC8gApgS3wvPqnmqBTpgbI0aU3zZfhuy3jJ3tDH3X7a2LM50+2JrbdlmtDaOiMiCPAeYfFkT919yTkQwURJ5ueeDSEyGAj6yvsiaOrbtQ3lBXeLfk9/lnrjPfSQvge6Jm5gIJxcfyT73RC9h7m5ll4wSpY9E93tH1g8mf0vkItzSw/p6XxLdtuQ6LLPyPJKQld02/Ez5SHlCS0Nw7okF5ZGkq2Mc5Sk8ixD9lx/+jaxry+J2/y/JSUCucOHgN8a1LnxfmZNT7PtYVj0dB/kx1h1PCS4isqrtWzBs8dkSS5DIjqlvAbsOMrutOLwlMGMHZk0I1hrF7ewtUegNAnPhY8cS2m2Qf26bwpgi9mbj+IbEWmiw/DCHEVdA6r6GrBHE7e4wDpBvSNxQkFmCFaxJ9uEWiBWKTyraTHLwwA0yuy08UOyDhckD2AN320zwvPbKkVVe2BvAoDSwN5BICXrKqmXjbcJ32/4wDpAHsre1v4l2jSGugKdawUR2FjVELKlr3+ENr3mLHVwqwflqu1RyoCAEq5ElRX1w8d1MTfv93BZceajvgZWEJM0JVpf+rSE/+4JVyVtj1en2rmjW2iMiyWolyWIZy4NVqR4u3slv7wZjBRzmMsPHiCxgzQMPUK2Wezc5s1u5IYRzRDGj7pZPxAzF7nO7OSFDW93hKvXBcmPd2p6So7i4o+txvHYyJT5YPCzJYOsHs4QEGbR8E4t8WBtj963db8jWYZqumWYOy+D24mA5spYN7o3w3OeDtZKENR6t9esaxwCxZ8bYs4ZtC89K9DxlLzGD3L7cDTHOVjcI2dhQnPeGxDMHvcPqH0f3NWyFsS+9Q4ps9jKcxauzcUJ7u1/QBRHx2bQJLDcT4nzsGCEuyPKLoB8j3rGqsZzG6df9wTOsMgtV4A02KcJir+vb9iKxxSggb7rB/wFN18t/+eHf4Mk9gWe7zIlIRIoCNFkZptzrVZvhvoEEWXJkSREbRzdbktTfq3rMtQ67kLH861quTaJb8ll/tzcQu3GGqRDVeDptI/RjHSc7jDTF46eqzfGzXkiY72vsQ4svNS3X++iFzy6O1H1Nx6uMuN2xzxsSN2QX9BV5yLKHiX4g6X30g80+5ML3U0mQ/q4/r+rpYF76Ibiuj8TIKhmBzIz5iA/mS3zUNSk6Ne4pkCBLjnQ7PV9NiiwJCaQIvW1nJIi/mdfHeJybHpO69kVuLjt5lPZWnS/tQqdJkXWhC6Soty6+e8XdKtWWFGmFX5MiTYbadyppgonLORARQ1AOpKgbLraaFCWro2VIk6Io7mhPig5kKGA/ZkTMFCnqPhznrkmRJkNRzNDSuMntd/uSZCjg6D43nJPWHTQZ0aSIJTw4lRzp+cSux8fvLA7GEhQdk6PBXIlZnOXg/j8xWU9YezcmXlITDb0O67W6bNPB8eptUfzrwSXrNBLE+hp7PgTYYwykyJIg/V1/3ppnBZrHqc8a/d2+ONTPUE2GdKwPI0k24VPQDWy9Hk2KTtFdNE6N0wm6mx27aJOBXqd1Oq2j0SRZDdYJ7YtxTYr0Nk2KWNIDmyQhkBxrLNByva0YjHH8PNSxuaeB5QuBFC2Mjq9JkeYJlXKNsyQooPnEKrjPSrstIvI/+5v/7PD5IsM/8gXJGbisWrmexPss61ZeTfFDYprivkRELsGbP5Fd6m2EphO5JdbqS26ZhGDnf92I3IL7O293qcLx2LizGaGtk5F0wkWb0P7YnNkpZmd+0yZyN4k727aJ3E3wBTslc56SdKtsTkWbys2Em0XHqjojsMDhVZ3J3TQeZ9uk8hrIRXbpNRFYqnCGVT2Rm8lIisUzwc5J3mZyB8ZZNxO5m+LXQCO3IwRLKZu3E7nKzjtGlrmLXitNJjfkOLbNRK7JOaZV7Okdwce/ImOwNMOzDF9bl1Pcz+UMH1/XJ3J9g/0aLt/w8z77F3ghzP5jkipbRJJ/+TOU93/6A94BpOkWEZGSZJn7SFJr/4rlIiLdX2PLk4hI/Z77UZcPxAqw5i5OjBB9Khk69NPyjHVjRU/PQdMn9JnS9IlMybp27lrAULTZ2WsBuxd5NtWJXIK09tsmk2vyPBkr5XDuvIo2heM/B+w5vmomcgPWj1WTyR05xuekl2ZYkGemCP9dTk0AdRijSeUWnMdVk8oN0ElE+Plivy4/v6lcE91KJK7jc5DT1N5knFrkNfAq3DQir1jBaHp+2ZywfFlz/Zn1NZbYoCLbllUH9fdl1cosJesaoSyaI/wuFiIRkbLrZFnHi1jZdrIEfnxBtiUMb1kj5bOjPoFF28scpOGr2l4W1e4PYX2Ga50tBBuwqrE8BJnZYDPdXzTfDjP7qkuitxQiO7a+bvC2Yxvi2gfk2xb3tW0T6L4XZE+Zhe18oLxLYepL5qJ3mANyqdjHU6FtmyaD8mU9gfKQ2pylOEfpNVmsU95mskKuC00Gs+aEtshFYdVMYGwUk4d+lsCCFQJI2X7I6rVpJvhYauyKt20yeBzMBSTImNy+4d2NcZ4boN3XYlNP4ZvnTTOBAbzbJoNyFvAssnt7juRNl0bufiI75QSl8G67RDYgnigQuu2GxBrNJ1LM4/GTVKR+D9bbNJH2r2vYlwghJk0nya/ATS4vJHmYx/KHuSSbOIV38vaDSBPPaZQM/baC2nrzoYa1c8qH9IuQoaKZSAcU5qKZQBIe3G/RtqrNIPEp2xTWaWn6hMoZwjaWLhq5kRVthpPTsPskJEU4cy1AY6zrCYwFZa7FYT7svmb7sWMs2oycExzMH2QsjTSa16qe0GcDQni+oufsqsmga9mYPPxZsJTTIrvnLMreNq8ncJzHOoMhAizGOugWKDHAok6grrIiOhTTk5iFZ1Enhz8UOrGssWvbvMI6J4t7D7oj0hXHxkD1gZaVSI7kZOxl3cuy7iHxWVbdKOlh++D2u4OoOkB421q2XTzpomtl1Xz6y+NPIkSlmrAmRWWr5FULiZHIkBRpIqQ/6zaWFOmTjEjRcb9jO83D1iOudQGavOjPtg0LOtOkSF+suv3Q3S9RcuyWF48xvKk1ESqYa1+LP7M2LKZJZEiKtgOzsXYxIHL1kNULrDVzrwd9KbOxdqOI/IuzJz/rmgWsFpPIkBRt1Vz0A0AfiyZF+iGgiYQmQiyV6G5eyq3hzM+bZvjg1KTIPpz0fmviSjF0x8NuGEOXDO56ocHcQ9hnTYqsG2DAWAYpu5/+rMlTbs7lsX325GeWEldk6Eqk5dplSZMi/aZWkyKtDCNSdOiLkCIRGZAiXcR1QIoUsTiZFKnFVpOiJFeprxUpGnxWpGgQj6RI0ZNkCMy9+XBcuDUpYkRI5OXJ0GGOihQN5Oq3toq93qatSfo60Mq4JjrnfkbQpEh/PsWdjN4nI4lsTlkL9P76/i+J25d+TliyweZo11F2jNbNDo1pUZB2bC6rGq9Jg3VfP3PGnmvkmXuK3H7Xz0L9vFzWk8FzVj935vpZocbRyZg0KdJkaD2YFz+/i1rrHvjzmnxm+oyWL4iLWoDW6bQOqHPVaH1Sf16oNkzHXNbJSWNoUrRUck2KNBkauuGdlhXOkiK9TevrA/kglAZzhVVby6o9Tk6ToqI77vOppOiTXOZKwOBERC6IqYuhIVOYkBLYr2fBFxfvd01c6G6I/IKsF8wV4GbCGTw7maziMKsPyFz3bif9aMpycogwP/wYbic9jS1ioMdI3eRw+7tJSzO3sOM710VOhLsD3ExaahVi41wQEzo79rtpQ0kQSrMsInKuo8XYXfhqWtNaC+xXp5Xqz2x/M2moT/y5YO4st9MGEqLgOsdioV7q3F9PWkrImJscc0m6IO52l0R+c1lRdz/mPicicvUz7m/6L/C5yv6jWyhP/uXPwzdPGj9xlzuIFclkN8koIRqQIYXmHT724v7LkyEN5j7HkhSkSU9d654iNKdikvS0r2na0bkxV7Fz3bSvsvPXCFaIlh0HvUcmLS28LXL+s+bcJ9Nl1tHx2TOLrU/svN9NWkqUnuM+x93RWDhDOyBDGqzoKfPIYhos03nuJj31bGFgx85czkREric9jechydEoQITJKK6yIRnSYEszd/XDG5hFaLZXBJkFiO2HLEIiImWPT1ZKrq27yeTLu8yxAYuulUUTs4VV00D2Nq8rWYP2YRvCu7yWdznep+p6mYMfomx7eQBWpLLrKftljPy3HLvDLUj2u02DzZBFy4nVglzM9yUvKlsQt7d1Mwz4G84Ny98VxCxdJ1FWvtAPuvnzNqFpIdmi9I4oGts2hX1tiSueSGxdGm7D4/+aT2F/6zaVBXHtewRpObdNSl0IfiUpnld1Bue7Iu5+qzqj5G3szSAbf01cITZtBt0xWPvd+Ph3/EBSx65q7IrH5LuxyRgjqWNZithNM6EZBrH7D6/WzlKx520GXfvKNoXyukth1fumTWkK7xX5bfs+kc2apzPOH/Cx1G/xQsgsRf0/f4RyKSuRtyBd9uNq92fx/kEkx+my+1/wGC9JhvLVlCpb2xyf+205i+pJieySZSCyTWOJumwkDoXEGXUpVNzqLqXubozYoPsggFl68zajbl/MtYwp/vdkjWDt101Gs4baBDuhPU/JzEnwWMZStG3bplGR0J0cZzMdG3/MhQ09GxY1WcubTN4Sa/JyxD2cPUcXdQqfl4smo8/+Xwt8jKxEybLGes+qxjrPnMhFRP6an6cP7MZGcoEuamHb2xz3x4jKusF65abB+qBNeqD7/y3HY7AQkmXdR5nfRHakhsmZQeJj3spHcmJQeI2IyLKppACucIuukKKPD3LbV7Lu8bPhuWRI5BNd5lZtJav2+Etp05UmRZoIMZOWJUXhuyVFRatd6BpZVMf+dHYKTYpK9cMhUiQSmwTD72lvBE1s9MWrL7RzUoKLxBd1eHtgb4Jy4HI3dItjrnEacdrIJOpLf7fkh33W+7M3InZhDJlXLCnSRcuGJmrtjoZN12Nmc7uYhxpM9lzp2kwrYp5fEHcCRIp2fWI3g6VRgDWx0fPVDzX94FsRFwXdDvl6h75tLShtsRqMOXC/wC5/doywD8s2ZK1jmvCc8nmwrxmDxUVtiQuN/c4yDDJFNE5HnkX76nmJWNeeFMq1sopIkUhc1yi89bbuc1oZ/6ykaP/6MbLe6EQJmhRpIqQ/v1f7G1J0yChn3ii+NBk6jGeW80CGLPHZMhJc4wyBY2To0N6QohB8bp9iSOkX4S5u7LMeo+ri2nZ6mwazNjPXOOZKp7+fKtdrCcsaqs/Pmqzf+ntUzFMRno05Vpa1VPehSdFYBtMwNzs+f+mEnw0D97UTXMdFjmTIZlAbiwtiz0v9jNTP68c6lcc6nOPhtR3IkNVHmE6hdRD9HJ8TuXYts32GdlYfoPoMcS2z22zsTiBDdp9z4s1FuIudJlt2jKCj2qKozCCgLTw5yRBt3eBG3ef2ZEjzBJEdGUJYdEfXak2Ktv2xvSZFZd9I2f9OLnMiIv/jN//rw+e7bBYdqIjI68kUkqC7yQRagG4nU2oxuky5Cf31bAJzmL+ZpQNCFPDzRSolaP9qigPTRLjJ9naCmferGX6z8GqK87rfTbkplbnQ3Ux6av25nfSQHF1mPXzbcjPB8jHcTfE+r6Y9rA3watLBVOF3Iy56zBXv1aSj+9xNOvhG63bSwYK0t5OeFqolnpvymrj2/TRrB3FGh/ZT7KbwatpQKw97S8zc+u6mLY2Fupu08Jz8NOPue8yl5W6C97mbtJHCENqjN6K3k5YSHQbmbng3aaBixsYW2bnvjcU2IVxmLbQMXU8aSJqusxbO63ba0LomFyQT1e2skgbsc3uB3eRuLivqBnhzy4uVPst9DvhiJP/yZ5o1Ti5IXFNN3hxdXcTptUVE0vSzkSGNJMGWoSztIBnK0g7WlhIRqUdiSmyqapGdayjKxJUKJkNZ0lPrD8M07Wi2rxnZNks7eG2PuX0xMFe1MTlaBy7TDq5BIjwL13XWwbX8OuuoVegma+G2yxT3JcLX8+sMH8t11sFnBpPfTFpKYNjVcDNpoWXoZtLBvtgzVGT33EVeFCJcf7rOKpCfBQAApxNJREFUemgZuiEuZzeTHnqp3E76KLV0AHPpezXFOtItHRu/2A4Z2dhLb5aZ7SrDZOh2gsnQ6xm2Ct1NueWJuajdTBJIhq4mCXR3Y/LLDMsDEC8QEblMM0iGLtPJgAwd5Ml0QIYCbpOLARH6v83/T3QuT+GTLEQaH1rsPvHXGst/qZdQ/muzlKVge99jR+yAIvK+xA/39yiNhoi8JaznQ9HLmjBmZDoUEfl1iy+G34j8XY77uS/5mwJ2o41VF/5Atn0k8vcFJnAiY+6DuC9mLn5LXPHeFSlc5ES4xesdqbgsIvJbQVzVRuQscQR7S/RrgZXDX3Imx8rRL/mMPkSYy8FvxOXgVzKGiMhfyT6/EPcfEZEVefD9RlwumCvGOyL/bWRs5qLB9nlH3OR+G6l6z/bZjc9cWvD4TP5ArDvMrU6EW8MeyXwXxA1wucXyp16DnW0p+mdMSLp/fI/HX/G1vF/EWeZERPp/wH11f8HPkvrt+WRIhMeRbbbEzZT8Jhvyu48l+2BWSCZnlhnWfizGaOzFAMpQKSLyALIejskZURDhrmLnytnYY0lzPlb42B+IXETknh47dylEWNWpvCNrM1vnf6PPHnbsxN2tSan7Gnu+sWeoiMhfyLNvXuHr7rFKqAvbX7d4H6Zz/JXIWVjCuhb5lYzB5H/FS5P8lvfyG9HrmJvavOyojsjluK+/bnB7lmxsVXdUB36HUtIJ16U/FtwqoxMhDORdKR8afDLfdgsov+/xOn/f42fPc/BJhCgwsUJ2D55VP3zIBXPWso/ZnojIWgpZC95mSVEuuxOLSFEIurIWp2rvXmez0wVL0uNIZjpLisJ3S4oCM7ZmyPDdMudjMaqRAlbm+gpdWFJUKLc+S1jCtc5Ms8wKFvpD36089GXnFe4n6/IX5GxxFJGIFAUrkyVFYf7W5U5n3LPblqTYmYbdFvqwpChYxeaGMIT9H4w8uBOwN2siEpGi8N2SovDdpiQdGyPsw4jXvM5kHrnd7faxpCgQlchNLrjpmX62h36sm1xwn4vjvFg18TXpK7xBtm6IgdSgon9hGyI+bBtzaQnfbftjOuGhPLxtR0po2GZJUXi7bVOhhzo0KxN3EVy6bExRIEPr1YWsVy/gPrd/A9n+OkyA0Je7dt2v86F8T4b6j/GDL8gsKep/27fdDhebLrjsmfU3kCFL/MbI0HY5k+1yX+TWEIft/hxGRXH3SrG1zoUECrF8dx2gWJ9wrdi32cGKaPti6biDZciOEcgQIkXhmkNWJVZQNFzrNkYmWGOt9YS5o23bdHTbmNzGLIV1wFpew9oUF/lOKUkLfSNr/7E4KF7r7Lzywzk0a/bY80Ctj0M5dvcOrmjWdfywjtt+xjKzhRTWUWHQ4zPUbgvPQvusDM97+2x/HNEDgrXDkpmga1gdabGXWx1lReSo7MphjAq3YXOaK13O6oFBz7N641hW5NVe4bO643bfh9VNDzqoyfAQxtiasVcjmSBCljdb+HS1z/ysQ1Z2cxlPkS0iUvemrw4bL+aykbngJDqbPR/IDV8o99xjvd/+KdYhkRewEAUyFGBJUcCyLw7EaNEPH3aBFFkStDychOEV+NjlB2JkM1CwRAysjtFj2R2IkXVXCxeevQBzQnbszXA4DmJO1HWSbJNww1t5WBCQy92GkB1GfvKWx0oxEhS+2wUpzMu+XGDJIeZVclgobd7+sHBal7vwALDHsyL+v3qbhV7MLeFgNZbCQm9dBMODwD4gLCkK0ITFjh0IiyUuoZ1tH0hR9LCrj+3ZGLs5D7fNiR/56vAQxr7tVjEIhMUqE8w1UPd9Kjk6jmF94Sf79oZgjrjmjaVAZ+SIKWuhnVUg2RvizSAdtz3G3Tbr6hNIkS3KGUiRjW9hiRZE5NNIkXHHCKQokKGAQIqsZUiTIkuQAik6kKGAPSnqovilfj+34aITSNFTZIhuiwjlfh0yFoJATGw2uaN8+PtrwkITJZhrK/TF0nFbQtMSEqS/Mzc5VGcnfLf3Qn64F3B8zalEB7V5ap8jcRmOXRLSUj0xJ93nYVuTUrIT+rdrXWhn7/sgt2RIr7nM7c2+7ArPvEfyAi5axw8vxvBzBG0LWIJnaXjm2ReD4VlpX36GZ7slQ+GZPq+465d98Rp0kIWRBx3FEpeD7mJJVnX8f0n1leH30PccJtHCL72D3mjJUCBAq6o7fLawpOY4d6OD7smOHSPsb8lQKGszVh5nBWqDihzJUEAgRTZFtsiRFFkyVMruR7FEKJddu43kBzJkURrusSbtzsEnxRCJiPyP3vwvoXyTbOW2j9OyrpO13PTXkXyZLOS2fxXJ8ySXVz1P1Xqd4AfZNYk3KrtW3sxiE3HRdvLzBcpw1ckdyQ/N0hEybOpO3oAc33XXy6tZPEbd9TRVOGh+AIv7WNY7H1iLVY3HWda9vJpi+R2Qi/C02CzFdtHuYqos8nbnF2uxbXZxSwhj0U/sl5pXCRxnXuF5rWqRN0R3mrJ0ymRiLDZp3SRyC6ptj8lvSNpvNoaI0Kr02zaR15N4YV63qdwB+abBcpHzU9Ru2lRuQPwMk2/JnER42u/nzCtvM7kC1d83TSY3oPp70aZye+Y5YWm3yy6V19P4lWbdpfJ6FsubLpFXF/jJfnvJ44Zu70hGty6R6z/G43StyMW/iNezvuok+7sr2Fdyx8kXxBa/ym3ebiUFa2n1tpYErHHFh0wSco+MkaGcuHquy5lMwO+V1xOYVr1oMno9slgfJq86nHC26lJ4bVVdSq8tlnp6LMUyS2ect5lcgnt03aRyje7pJpUbco+ci22byiU473mbwGfPtk1kRtbrsbfE7Nmatwk8xm2byhW47pZNKlfkN2FujSwGpybtV3Uir8GzclEn8Bm6exbiQdjYIjwu67ESeQ2eoY8Vfrbfl7vYGQQ2PJsX02nWRL5psHxedXJLlJd2RHVmqa3nVSdXICh6XeNxtk0nr2aYHHdkfGYA2jStXGbxGOsayxdNLTcZ/kEaovuyFNkiO2PJVOL+5slSLvr4ubBK53LTxZxgm67lFshFRP4f8/+cjn8KPtlCtE5Wsk6GPnybZLvftjZt14PtcV9LKF+a/gNKqeSxj2OUqr6ReVvIvDXmtX1w17zCD9mHEvtCIhPjvGwjE6XIkWlbtn1k7kN5IFXMioSsTlU3npUE+cwuqUkZZx457oflKyDf1D10Bdw0+M1PsHLZNz8HdzialQ8taDzN5rrBKTuPpnwrx/Oy24fjY1fATZPAQM/VPk35qdlumPwwDnAD3OzTsKN9Nk0CXetCkgr2BpFl8jsnTfmmTSPLVJDr/5+Sb0fmlLcJ9JsPLjIoIDlvM2jFyYnb24ZYxwJQDFTeptBFr+wSIt+/0TVuckFZXhgrRajFsgTxSW2fyCLHMUVdn8hyGW/ribIT4mTLt8P1rN+vYy3I+9qva+l+i9fr/jGX/jFu373bSLeKb7bm7e750Zm1tHq7u2FZoqEe3SPzC3qM6+3FoODpQb4/t40hLPnemmf3CZYhRD6qNsPpuEnabWbNqYib3JgrXNmlUJkuiFxkd/+gOTCXsHAPWGvMhlgwQltkOSraFKf1Jlam4GFgH9NhjavAb7tt08gVWWSXFbXoEpjEByUP0vOy24PFPrdW3H1mVdTfqsFjL1l7Evcaioja7cytLWxj/T2UCXxOPxJLyyNxO7vfv4uJPU92ZVGQvrGsetkAOWorEnv6BATdx+pAIVPxGup5HRw7zAtZdFA5GN2/HUdbbzRWdSeruoM627rupGzRy4fTrDwBIUv0ph3+IOumlnVTwxTZq66Uiiy+zHNsTnT+VTrfjZ8Ot2/T3fNjbeRFspWC8Ipz8MmE6P/z+H8REYlIUYAlRQGaFC2To0uEJkV5kqs2x/5LqQbmssd+DYmRiESk6CBXpEj7RWpSpImQ/qxJzabuDmTHXrjMBGlJ0bH9cQxtfdIXvr6n7OKhyY7OUW8Ve544QaVQrJ/+rBcevThoV0A71qnm8OMYx8/bwfEdF2hNdiwB0J83ihjFpvyn58XSW+pj1P3qeWlSxFzxGAmyoMfX4s9RO/V5UacHYmQfuMx1QhMQrdCckqZckxr2WX9n8rE5aQVBz28sla0mO+wz+n4c5yjXStt6MC8tP7bXhQiHcusGuSM/Vrm1pChAkyKtKFtSpBV1TYo0Udh+PI5hkwYFUtSbB74mRb3yU9GkSBMh/bl7d3Sh0KQokKHDtv1aGsjQoS91TxYfjudUk6LN/PhW0pKitUqgoAkOq/2UG3fMsI91k9PnWhdXHaTjJmm3NRHRqtBTJClAXzf62tLkpzByvU3fP7pvdk/YFwJhf0uC2D3KXNgK1kb9TpykWMKYHPrRfa1Jv7YPPQ6bu4Z1Xw6kyL7U0f3q58WWuHoP2td6fcefNZhbm3Zrt/0+lIk8lHrbcX9NhhZErnFPjNb2ZWzQN5am3uOG6SRKn1kTOXsRbMnL+qDjDVNLW1Kk56VJke4vb/W8mIscT4agsTnEFXWDvjQp0mRI67qaDA3K2ZAszyz786orB65wVd8MiJEmQ7Uc5ZoMlclx/0CGLAIZsghEKHCRT8Enu8yJiPwPfvqfHzuU81JttoJPcpFs5KZ/A7ch81rAjeA3oFcJVhouMzzfacq5YkvMhcyEmhG/pRtiir0ifmdTZq/fg21lPzAzuY6ZxxHGWPWEzJmlEWeudSz19tgpWdXYNC/Czcrs2NkwbL5MLvK8Y3kpjA3BXP7ofNkYpD1z0XsO2HGwMcZdB88fn3nLMnc4dg6ZKxP7LUR2KXoRbib4TccNcKsTEbkbcZ+7Iym5L3/i0cizn/FBpnfY7SIhi4AlVgEdeZPTPHK3q/IRj7FdcTc5W8Mp4NwU2mNpr6116bBPz/rC55aNMebyxs7W2D5sfLYPc6sb0zbYPcrOIjsONgazeo1l3htbs85dNuj45EDYOdxtO68vBva8Y/LHiru17eaF5Wy9ZNmamW4ydv2cez0wsFAIdgxP6UuoHIwI1yOZHpCQG4Sp8M2oS995Lm9sjFq4i1xJdPt5+ihTosNXCbYkJWQVmPTHi/ElCNEnW4g0tslKNsmcbMOmsSLZSJGQzBKgryrJZZXOIYssk1IelLUpIJdKHno8xrzBD/5lXcsS1MNY1bVs2/jBvGwq2YAUg5u2hrnWq66TR+KiR93nlDVKI292VYaRmXZN9llWHTQhMzN06AvOt+5kCbZtmx4eS9li17q8xZaiTXN6UdtTts8rbCWbV9g0v9qb7dG8mMWLydmxrOrzqlGjzIJj8gDmark799i1jslRworgpmdRtNzixWpJMXe/LchwtDuGBLrPbduUpp0tyHzH5rVtE1hLq+gSaMEqOuwiWHUJdLerupS64dVdApNDtH0CUyM3XSoLkBa67VKZb69kvo1jfboulcUyljdNKusP+EHWlqnkv8XnpM17qd+D+KNVI+2HeO1tP5TS2Shp2dUT6tbxWlK97aUjZQTyjxPpkDvR4jJKOiGyS1G+3OJt63IG3ee29YRmZmNkoWgzqNDmbXZweRy2T2FfZZdCJbDsEqqYloTYFG1KSc+2wdvWxF1r3QwLhQdsGp7RzbqPHcYmLmzbFo+xbVPY17pN4bFv24Qq5SOlVUbXIObyhhIhrRu8lqwa3E/YB2FBnmvrBq/7yxq3Z3Jm4Ql4KIm1pRxadALuC5xEYF52sP2iwnoG0z9EuM4S3M6isSvsirbTl9DYLXVHW1SNLCqi45Faa6u2hhaaVdNQfXQN6nyumkbyFsS8tk3kBneYL6j9I7Kz8KBs0EvJJZf4oljJVlaylQoQonn6CMeYJ29lnryF27YS6/QiIrksZZU8wG3PxYsQIsvMLJEJZGibLAfESLfTpEh/1m0se2SmNUSKRCQiRcXerDdvygEx0heSvghX6rMmRZrwIFJk22hYUqRjiljVX01wbDrH7cBM3MF9NKhfbZR2/OjnqvvVn/WipOehj0MXydWkSGeOY+SHuf4h0nBKJeehqxs2u6+Iu6CGJT+hXxs3pcdjrniaFLFj0P2cUzdKZwjUD8jhuceudUy+Ii57p7j7iRxJx7Yd+sgzt0DdZkNcV1bEBYeRonPmpT9rRUZ/3gzcbbBboI5fYOTHyk95S69JkbZCaFJkFX5Nijq9DyBFIhKRopbUA2tVXQ5NirrV8eLTpEh/1qRIF1dFpEhEIlKUf8SvsVeLoweBPg+2XpPept3kNCnaKmJ6qqXmlHpCmhRp9zDdl3Z502dEK/360VB2yWGbvY5QXI7IMLOa3W9N3LX0faQJC3OLy7sjgRnL+jaU4zFsv4c5Kbk+P7ofrZdX3fE7einCXpTkdD3S8z22H5yrDre35zbsY8kVy+aq1/k1ef6w55KWazJkydVD2R/IkCUyc0KS7gsVjqBOvs6OpvtaVFjPWBJdROspmyiFNF5DWIyP1l+G+o4KnWiGxEgTobwZ6pNBp7TEhNbsAYRHZKiPalKk22tdVo+nLUGLrjiQoaIfzoFmjSYZ3VYydGnWpEiToVq5yGkipMnPVhaH7xsZEqlchgaWl7AOibyQy5yIyH/v5/8pHoBwrp4YOC/7G2gxuunfUHPaXfdm4IOocdXjh/q14DedFyhFkYi8mk4HF+Chn2wCyc5NNoXk6NVkBnO2i4jcTvHD8pL426QjfkDXkwS+0biZptBqcztN4FsZEZGeOt1hTMi8Xs3SASEKeD1LYGrwV1Ou8DMXpDEw0/bNBKfPvJsm0GL0aooL2L6Z8fkyFzp2GGMVqdEYN6SydcgqeO55PFd+N+nhG9PbSQ/fjN5OeqpYMNcE5krAaM7dhFeMv5l08A3z2LzOBTtXN1kHA7pvJi2MB7mZtJAMvZ421ArB3OpuifuciMgr4kL3+lUuDSCTt39TQjJ09Xf9gAxpZFfnnduuIG4lt6lUb+Nt6UUPyVCa9QMypMFc5ETi2KAAm/Y6YJp2kPRkSQ/lk6SHMTiTtKdEhblLnevWNiVjTNMe1t4J21jBZO5+hcdnj6/rDN+3t1kH783LrKf3+bkuYQzX+0xxaPybrIfWnKush1b0y4y/MDrXlfsyw2ToZoKtQrcT/MLxhshFxi1lFZkYW8NfzZIBGQq4m6WwNs+rWTIgQ58CNqe7aQrJ0M0kIbpSOiBDFswdzdbjOcyL6FevJ1NIhpguejuZwPZXWUatQpYAHeYquD2b65XMIjIUMJMptAxN+wtqFWJISUjO3z/8X8/qh/f/Qtj22BRWkOqyJUmCsJB3UD524j6mv8oquY/HTtbymH6A+9wT1z5W9faXCst/bfDx/dYuIYt+12xgcVkRnv2OBf6xwDsRkXek+NBvRDP+bdtA0++ybmgeepY0gi0WdE6kKvO7vIcWrE2NTfC7OfFtzBWQjc+qP/9K2v+6ZVn2eki4RLgL268kYcp7kmr/A7Z2y4di94eKT29JRkKR8+XvidvSRyL/QKwKW+Jus8sad54LyYeKxzN+KPG2jxV3rcMuOjj7U0kyUomIPJAaI6zCPZN/JAH+dZdGWelEdor0nOwjIvK4xYThYR6XSRARWfyGXzat/hEfX7NKpHwfy+vHXurH+P6oPoo0a3wON/8ExbL8Fb/omj+SuY7VZ6pmUZ0nEZFtM6FKvi2aG4AK8IqIrInc1tQJKDvsPld1Kc1Kx+fKat3w++aB3FOs2PWqSamVhd3P9+Qe/EDkD0TO6u+h+zjI0baiTeShSuk4bL5UTtbEscQ+6LH9UPLnxG/khcSv2/PkrHj9fdHKPXrTJTtLC3JhW1St/IU88H4hlVJ/2RCrCdExxuRIv1nXrfxGUvv/lmOz2685edgK9wRi7mihNmc0r76Uv9axjrztK3lb4fCPdzW+GD40WG7rgQawzG/LZAEzQa+TpXxIPsJ9RETuU7Doi8hH+TOUb9tYlxcRKbrzuMRz8KIxRA6Hw+FwOBwOh8PxLeHFCNEvj/9VZCUKzM1aicJ3y+zC97JfQ9anfQoRkJVIRCIrUUjnba1EodKttRIFFr8wbH6+Z9hrKWDQmQj3tbRWomZvTrVWomCRtlaiYr8BWYlWB99ZmxJyLyeJFnb7nPbmJViHrJXokDvftA+pJq1pOsQazctuYDLPScrM4Rx4yku2LU6T2UXj6fa2nzCXRdVRUz6yEonEbnk6pgfJ7RvDfC+3L82C9cdagZ76HmDH2ZLxmTy8ibVvMcMLRGvBCe4l9g3xlsQfaLB97BjBJ9++udYWHZuAIexj32jruQxjFvBnO55GiGGwgeIHeYPltm5SiFl5rHB9IpG4dlEAshKF2BhrJQry5drI9/NcPwwtLE2xjwd5O7R8NCviIqQsQ8hKJBJbifKPuzHqYihf3++OqzZWjJBK3CZFCNYhVB9oXWFL2lZZdFh8kI0nCnLWntUOsvOyadhtexGepjsee38Oo5TSezk4J+F+se6e4R6zyQFYzbJBHGC0Ngz/t3J0P4vEMTWhvV2iw/0bx1Fxq9Ep3+19zmodheO1lTfCmmqPg7mxPYykqg6xrtbdOzzL7PN0QeTBOmR1BW0ZsvE4LA5nofQErbMsqvawzdbEWdbNfgxbh6d9ltyC1eAZi/MJFiCbgnrZVIdt2264LViHtv3QehT0ynU//DHt9wC7f8Cmr2Sz32bbhL6sPFiHbCa4YB2ytUKXJC6f1Q4VEVmlj7ICrnKL/q0s+p3HV2OONViHrJUoWIe2Xcwxfnn8r+gczsWLW4jGXOeQ+xwjP2GbiEhtyIYmRqXxWwykqDD1jwIpyk0c0pjrHHKfW/RFRIwCAimyJCh8z83FF0hR09tFZdfOuueOuc6FP4tN09P9wkJnF4xAisKCFBDasXpLdnzmOjevOrpwIj9ikeNizfL+Izc5tm1zqGcwHCuQIkSmmBteIEU2w9+xDpMJMiX1mQIpigvnhrkN5YEUIdLDiI9ub9usSH9Pya3iEuZvH+yBsFhfe10byiIoG2if3ZyMQtxgxWxDlBaRo9LGao0wFxqEsI/NZsXkgRRF8gbLAymyCncgRSiwP5AiG3cyJ4kCRI6kyMoDKWqNohtIUSBDAYEUWTIU3OYQAQqyynhgBFIUyNCh/Z4UBTJ0kO9JkS02G47Juspp8mHJUHCb2wL3tkA0bHxQ+C2snLUPchtDFuZlyRBrH4Dkx7HNOVS1eAZyVYfIkpuKvHAoOtx+O3IPiuzWEUaCojWG9FWQ9mGZt/dtOG5Gcth9HrbZ7ewYD+fKrFeBFNkXTKxgeVhbLRkKcpb0Bz2/ji/2sNy6ygVdAbnJBVJkn+nBbW5BXOuZfFk3ke5xHOvTyFHQbSwZyg86D0+KhdzhmDzAusoFYmJd5QJxsWQotLOEJhCgDSFJ676ExGrRb092lQukyJKhQIIsGQr1gBARCuV1AhGy2Lb30FWu6JZfxFUu4MWSKoiI/Kuf/ieHz1W3lqv0p6hN0S3kMn0dyat+K7Mk9lWv+q1cpq/geHWfy2WCt01J0oTL/hbKt8lSfur+JpKv0rn8DOSL5FFe9fFxLJOF3PbxnLbJWl6Tukp3CZ7r3RS/4c2bliZgWNetXE3ibau6lussfqCv2lpugHzZVHKT4fHZFcNqDuVtK6/AseRNK69n8dh508mbC3QMnbwC2QmWRP4UWN2oedXKDTiHm6aVO3De86aTVzPQvu7k9UU8r7zp5dUMy69JURxWK4cFJudNT+tZsW1508vtFMhbXHsib3mdp3OTMmybYwIIjU0jcg3krD2bE2sfwOr+sKuq6BKZgX2qLpGrDMlFrsAtW3W7oGzUz80kfjlQd4ncAbmIyO3kvPpEQUF+M4sfqm2fyE9X8Yufqsnkp9vY6l3WE3n9OpZXZSa3P+OHdjolSVyYdfBxKrOr+FjW80uZTkH84/pSpuCcLPNLmYD6T6GQ7YRcC+WZ9YaKNoN1poo2g/Wqii6VKZGj9mWbwrkWLW6/myux1I3U4lk1iYBlQVZNIpfg2l3VCawzl7f4HihakevJeWoIm23RJnIB5lS0iYAlV4oWJ7ypOoHtwz6sjh4DS5awbvA4yxqPsax6uQCL6KLq4Nq9rHq5A/J51ckdeWayOjzFSCaKeVVDfWVeV/J6guVIv1i0pdxlsXV22ZbyKuPxfudg09ZyncZjr7pSLkG9ymVfyI2AOUkut6Tu5VzWciM4brGhFZMwtslWXgG9dZ1s5La/ieeVrIl8BZOMPaYfqF7M6oQybJK5zMhxL/u3kkp8ftfNO5ml8XyrbiOX2RsgX8tVduQWX62FKEys6nbMLTfmrYCiw+a3ijBXxhBFcNKGol/Kqv8gq964yslSHpNf5TH5dSAPqcCta11I6/1AEjOca0ZcAGtULY089JsoJXgrvczrSub1UJnIyRsOLcsb+7Zkd1Gj+kkisVn4KI9vhmU7rEocsO1q+LYkpH20b17CHG2e/nxvZZpbn4Iw/kgtJCZntQuQ9Wy+f2tlXQfDd/vGKczXWs3CG7UFsXixWlOollTZYivfdi+324Kly7oBjm0L35l7Ikv+gAKBixYHAZctT+4gEu+zIdYs1j68GWbBySzTXtXFb29FdkoUeqMd3oJbd5jw3Vq0wk/N3lzbt+zHN8p4eUauSE2fyBxkRKv7RObAdU67UM0ji8jefS4fPuyrvYXqcT184JX7cRcLkqb7IVYmytVE8od4XsV8IuUKvFx4xMx7Pd/NsTaJAII1qzauhsv9MdnCqEtlMUO1gLYNrivE6g2x9NrUfa7DrmpBbtsHcmbnGqw/eE4JzFa2bROosK9IrbGwLfQ5kNfjLmz2HgjtrLU3yJC8ILV+TnV7s2PbYw/3JVqiwz7o+JCVS2S3HuEaRHBavOzE3ppjM7UGLwW7dof21nUuWHKsu9tj2cpj2cLstPclTrq0648U4Kzxi5Agt/rFot3pFavWuJbt5eH/gFVbHf4smJyVRUE6jcjRQrMx9XaC1w8KlZjLer/P8AXRPFnKPFnK2ngvrZLF4c9im2CdeE1qdy4TbDVZJjtvJ+shFXRe61G1TD7IMvkAS+jY8jkBrAapyI4MIawbnESt6vDxHbhFu+MWL0mGRL5AUgVNijQR0p81Ear67eG7lmvTWd3nUqv86NodzxIkS4oCLCk6yAn50aRokRyPSZMi/XmdLA/EaKsutkUyPxAjm9owkKLWpDZkCwvzgRWJSVGAJkU67/1mpK5SWET0grTqjsTI+syG/W1hMGaOZsXLNClaDfL/P/0ZbQvfbbtAKOaW1DSYHJ2bdW9BYqM0KdJyTYr0w0+Tn615KG5GiM5TJMhCP1j1A57VLtIERD/4NQHR/Fa79VmysyFk56n2FnpOeh9buFYrPRsSw8RqD+32x+QoKGxWqWKxDSxL14bUgdGkSLvDaVJUD+RHQoGU5UCK7LZAiipDLAIpKg0J06SoUpn8NCkqV8d9NCkq5hPV5rivJkNVfmwTyFBAIEU23imQoqUheIEULUFMlSYaOuObPj+a9DC5th5RkmTIWfjdrDyMYS1VzcH1C7ffbUuU/NhGX9t6WbRESOvUlCSZAs7MhS0npGKrXGE1EWKxhZoUaXlJ5PqeIwnSovvy6G4X7/PU8dn6eAVZS/WYS9L+KZdtC9s+kCLr1haeq4/mBWQgRfdlI/eqVqJ9FmoypFNBa51FFxplusyiJYTEyJeENIXvlgiFz1qPERnqLJoM6TTULAMciwsXOZKhSG4IRCBFlgSF79tkOyBDgeisk82ADOnPmgwN5ThDMtN1lwmWWxK0PcQbzYf1QiWXan+Olv3bARnq9handfNuQIY0AdKfi1b12728i5zFi7rMiYj86fX/EMrLZimXkzdwWwrMlGPIzmwvIjIhbmkXgk2FE2DaExFZ9/fyWv72rLFTwjuviZnyNXAdFBG5SM6000scnxRgSVfAY7+WV4LHb4mpNyPHNyXznSa4/SzF8owVoBnBsq6hm94YalIfioHVW8qIfEb8xabk+LYNdmsoWu4O95JvONh5Z25vzGuRufsxF5rngF0iY/Wq2HzZPmyMMRca5rpEzyGRI/c8EYHueSK72kUId8R9TkTkbopfWFRtJj9dYuXg+gLvc3WJFZ/pFN9jCTk+VP9IRKQqsf9jXuJ7fllcyDQjVllSa0iEx+gwN7lTC7Qe2hM5a4+sVyI7os7uM+auZWPUdF8MzNrCxmDKBXd54/cSu/9YX2xsVo/m3PZj+2xqEeD1LeuGHx8lacRVjbmwsfkyF3FWN6ckz8OHNqdu/iJct2CqJnMhY/UPE/qLY6Sk/VoKuQKucCIileAfoyXyhtTtERGpE7xG9qSvjOie7DhYbaBV8iA3JEzDWoQCKkL2zq0nKiJS9NiDats80H0Q6mYjF9M4PEVE5H75/zyrr6fw4hai94v/u+Q1PuCimUeyqtsMWGBA022l6WJzYdWtJW8fDyYzDSYXEVk12GQ3b/8i8/Yvsbz/q8z7v8J9UK2kVXIPs9xtkrmskvh81EklizSWN9LIPXAD3PYVrV+07ipZd09nIBnsQ4LuRESWoMDWY7KE5tiVbOFbkVxq+IZl21cwJ/+2q2Xe4Pmwt0o6GwzbHs23rmFRs1VdS9HGC9SmbaBLYd62sAjalsiLtqMWpFXd0erZTI6sO0XTQ5c7kZ3VCW0bk6/A28ei6WE9p6LtYRFbkZ0SwNxDkItJ2cZZmERi647uA8mZ617Ydo67X0Hc/fR2i52LYPwQK1vsClR1CbQUlR1+K1/3iSwBYag7kTmoF1N3iTxU+GFbd6k8lFzJeSxiX/mqzWQOahfl1VQelrFPeF7MZLmK22+3M9ms47HXqwspcuBzvr6UCpCYxeYysmSJ7MgQw6qaUvKxaSaQ4GyZvM0gwWG1gAoiL9sUEp+SuLyNEZi8TWAh13WbwrluyBgiOwsQWo42DXYvy4FVRWQnQ/f9mNWG1easut39YVGSfapOBC2RBVlztg2f14YksCGlc7iL3EjSnmXVQeLzWLYHd+1h+xZ6jiyqBsrnVS1r8Lz6WBfQ5eyh5dYR5Pp/mC8JgH+QlSwl3meRrKC+sUzWsgAWj6VsYD9bKaFbG80KnKyxnkNc2kQE6nGH/dJHSD5Wyb2sgYtZnmygvEg2A0+jgHWygO5rSOcUERgyIhJbcjRsZrfDnPolTGywbt/Lun0vDXBDXFfvpOviG6Ss51LW80heN8R1rlm9OBkS+Ywuc5oUlap4KSJFIgJJkYhAUnQY40RiFD6vmrcDYqTbaFK07o+FpDQpWvdHwqNJkSZCLPU3u0DZzXTfLyExeuzyATHSRMgSI008NCnSWfI0KdKLliZFj+qG04uFrkzMTMXM7MwKlc2bckCMglufjafSZMd+ZttWJ3zWpEgTIRZnhcjPmHxZtQNipB92mvzojH1arttrUlQQlztLeM79jEiRCC9ya0kRcxPRCpH+XJLPmqRsSD9azlz3rOvLufFGVgHSfRVk7pr8aHceLdcud5oUaWVPkyKtzC4HbnXH9poUaXc7RopEJCJFFXHz0nJNinLVtyZFeXF8E6tJ0XZ7lGtStF4dP2tStFbucJoULTZKToqa1salbDVyHnQhVU1+tkyu3eR6/bvi1NcFkWt3OE2KSuLypsmQVfRRnI1InPI9YEPGEBm6w+lrjLmf5uS+KMh9z9qMubkxkkTCNgft9bni9+2wDVtTBi65aj0pydrHXOG0JWhZdTTO1Lq3HfchLtvKJV2TIu3upknRx/r4bNakSJOhVV/KSukOmgjpLGaP/fqgV8wVYXmQlTwIduVChEdkJD5G9as/b+U4P02A9OdcxQbp/gsVa6OJ0CD8IX046G+bdCmb9KgnsZTT7MW5yI4MIRREvh7MS42tdE3tyqaJUC5Kp1NESFt1tt3jgQxtunvVBmeMDkSIYV3heCFEhESGZKisVYhNg6+Pl8CLu8wF3F3/90VE5Gr684AQaaQg04eIyCTBZszuzOwcY7ib/AtIpt5k//GAEB3kyX80IEQBr+Vv4QV+1/+BBpldEje9mw5nzLsimUymwv2NmHvbTTKDacNvkwv4FueVXA8I0UHe3w4IUcAbuY3SiwdMmGsdOY6MuNYx0/EYXk2n0DJ0R+SXWQZJ0E02iWKjRETuJhPZArnIiItgRlwEqUsa3sDOxvUkoRYjto3J72bpgHQF3EwT6rrB5ktd0rAYvtEV4S40NxP8VpfJRXaZ6c7Z53qkL/Z7sOOeUFdDfODM5ebVpINv8N/MWphd7OfZ7rpH1o6fL0pIhn66LChJuiBuelczsh4QFzb2RGrIuHmFXd5mkxZah6ZZB8lQcG/cgPTa07SDabenaTcgQxr9mW5yzB2OWWxYP5MEk6FJ0kMyNE16aJkM16uNDRLZuZuylwYjycgg2P3C7m8mv0gxGZqlmDxNEnwPX2TcGnyZ8eNm1y15d3S2KxyyCImIXE1SSIZupxmMz72dZjARwu1kMiBDAXfZbNQyZGOhA5i+xuR9cp5+97q/g1ahV3IzIEMBt3IJLUNXMoNk67K/olahOuGptjviCleDOYlwFzkWtnHd3w7I0FH+Cr54v+nfQKvQlbyCVqHL5DW1CrFwlXrEcMGMIHWLiR4LobmYvj6QodX2v6XjfQo+e1KF+fYfJa8wIy4q5lpHLkJyAkWGDFIjtwUt9viw/f9B+W/lfw3lv9b/X1k28UX1W/vfyBq4473v/4NsOjw2y8X+kGL5IzV/8ux7LAvJXwXP6S8kycRf0tidUETkl/Qvskjj3/Vt8n6QdCJgm2zpGx52HCxfPpMza5SIyK8VHvtthc/ThwaPweTv6i3NvocCRouupe5+LJsPK6abkweorSWhcU+2UTnR/u+LDlqLqraH863aHrv7tX2UKCLAZlUKYFaqjwWW35dcU7snhQ4fyXNvTuRj7kAw817HM/Kx+kxLoKCKiDxUeDn/QOJtPpQz+QASCoiIvAMuciIib7c4vhCRBRGRvJ7IwybOPrcuZ9DdbpVfyBqQmEV+KRti0SnI2B/JXO/JsT1WM3kkBVlZkdsFiT+yCQ4C8jPd4aougW51VZdQBdwWKQ5ghVLnNZFXicwr3Be7/m29tABivJCKuKpVHSYrTF62PDsbswJzFzYsF+HrAa31R+TM8j4nLnL3ZQ1fuD3Upfw1x2TllwI/2/5c4jfs/1RjJfgfu9+gXGRENyEB+0hnEBFoTRERWSaPsgT6xDpZyF/TXyL5Nl3L2xRbIt4nRBck8o9EH2PePiJyqI8Zyfs5lLNaOsgCI7LzUnovf47n1H+Qd/L3kXzZ/Sa/9VjXfd/8Oyh/qP8Rz7XFc9o0+LcWEdlU2GK0rfA+dUNqkjYLWeb/TMd5KXw2QmQZnCVFgelZUtTs30RYUlS2u/aIFAUyVNaLATEKZCivPkJitC7fyrqML/pV9ZusKrwIIFIkIpAUiUhEisINYElRKDBrSVEodmUXnkB4EJkIJmdLiuaHglrrQerHx/0itU6Xsk6BKTRZwDcSInyBQ6RIJDZ7s+MIb3Is+VntswtaeSBDy76gRc9WJmaKFTdbqerOuiBa+DwWf8XSd9IsOoYUBZc9S4rC20RLMsLD05KiQCLKto8IRU72YfKqC2/O8di7eTHScnoMlAjPnhcdQxPOB5bbFLRhrihN+SH9tVGQnkqXzbJO2X2Yq40Glw8V0uBaZ0lR+Gms0husCHOTlrolmen0Po+GBITioNatLpChR0NkckIW1oqEaVKki6UiUiQiESkKRWQtKVpWu/2rzqTdrmdErjLZGYtZsABZi0woZGqtbwUpuJsTklQS1zbtRtkO3PCOny0pCkkPrE4dLEa2fbi+7DFoq1BcIFz2+5gx9nJLfsJ3JrcYixdCYG62+ruVh3vSLkOhnTXG6JTaUYbIJzJ/WktQIEN2TWPFyu9LzOgeahJz2xYyb3fPQP08uu+2cr9/k2+9RD7ui9CvTVD9x733iy0Z8pg8HHQSW2YkkCGrG4TvlvyE71bHQEQItQvYpliZ3iZrEn9zzARcapc6pe+UJk11IEOFCRHYyuJAhqJtezKkMyOLHHXBbT88zkCGrEcS8lAS4ZmUl4TI2tCRwzybB5jwoGyXBzK0bY5z2DQfDmQIpckOZKg18e2BDNXtUIcLZKg0xLw0XOBzWYdEvoCFSCOv7qG1qKgeoLWoaBbQWlS3m8MfwlPWoqIanvBAinJzMQRSZC+SQIq27ZDsBFJk6y8FUmTfBjzHUoTeyDwmy8OfhU3TONyGF5BAiuyCFhYJu1CFdoXJmR9Ikc2lr1NI2uMQiQMeA/lZmQWFWYpEuLXI+j4HsOQTInGV6IC1Ik6DMUg68kCKim74dA6kyCZ1CKTIPlADybBvEvMWkwctYyTIIm97uG3TdBExOs4LKwBhvlYeyIs9jq0iL/AYGts/lgdShN64HpSVSLkRKGfKEHOb0/vEY+/+t8a4g7y18mQ/9lBpDaTI/hyBFFkFPpAimHZ7T17sPoEUlYYkBFJkLUOBFFkyFKxEa2KRQgikaGHSZQdS9GgsTIEUBTIUEMhPIEOxPLb+BFJk3eHC+dkaclOT1NeBFFkyFKxElgyFS9X+1sd5nZ4BLvRl3ecCKbJkOxwDcpFrD/sM5YEUWcvQUyTIyssn7i8mJ+E0NDELSp9t5xDQkBciej52jWJrV1j7rGUorGmWDIU1y5KhYCWyZCjE+gQiZHFPXJo+9qsDGRrIk/sDGbJgViGR2DIUdAOrSwQSZMkR0zHCd0uGwv6WDC33NSQtEdoedA9igSFka5U8QMuQJkLRtn7+yZahQIIsGQr9WjIUyJUlQ6HMjSVCxYHoPBj5rv9zrUKb6v3hz2JbfYCWobpZQ8tQ2SwiMvS58dliiAJm038RyZp2LRfTn4F8K5ezP0TyqlnRtHtF9SizyR3c1vX4zUrCYlZAhWQRkSzFbytZrFPRLORm9qdIXrYruZn8TSSvurW8yv5l3E+/lJ/lX0XyVXIvP/dx+922B3ndx+fwMXkvd0A+T97KjfwU99N/kOvkDZTfJHE/IiIXoAqyiMhU8PljsUDTHp/XZTqXN10813WykrseXx/rZC2v+vj62CZbWM15IzmM2cqloHJUkTqXUm6BvJRGXiVxP2XfwArdIjwGiaXFHnvLwZzoiraVyyy+L6q2kysQ5FK0ndxMQPuulxuQ/7doe5hCfNv0cgNyTedNL5cg6GZL5EXbyzUYt2xx/wEszunclNwMRYtTi1fdLg7Jomx3cUuonzvgtVV3Iq+ngAB3ibwGKa6bPpGfplgjLLtEfp7FpqqqS+UNSMm9bTP5eYZfFlxmeIwZiTNi6clZBjiWOGFezeQajDGvpnIJYpYW9UQuUnxXrJsM7rNtMpmCfYo2lSlIH151KYwHK7pEplCeQnnZJTSujKXQZgQKFRwWGSf46xrHu+UtThdfdr1cgPur7nH7psf3Xd3hFNZ1t4sPivrp8DyrDvdfkPmHuTLUJF0106iY6++iamE86X1VyGUaLwYP3UauwTP1PlnIG/Cs+5B8lNd9/Nx8SD/IXfcmkn9Mf5VbkK55nryTV32sv4iIPMqvcgv0glX/Qe4SvA8DizFi5UtYDE4ha3gc22Qll+jZn8xlBp7Z234Oy7YU/UJmCY4HL7qlzED5lKJbyCyN96m6tVymsQ6Td49ylQL9rHkr1xOshzXkZXBNshR3PXZPODfVdl5+lEmGdcC8+iBpCuq9NY8yyeLjbtqFTCbxcdc1T9rwEvjsFqKGBFSVLDU3iTdiVh8RnHUirz7AVH5F9VHy6p3kJuNF2TzKtnwn23Ioz6t7WRe/yroYusrl5UdZFb/KysiDRcsy5ODyZ5l1KDa1bLEr3oPEfrIiIg8k5kdEZEEz3WH5RrBpmr3d2ADTbdEvYTrybbKURfJBFqbY1zqZQ//gbbIeZG8JCG985tEbpX2QHXizEyxgtjBZsFhZC1WoLJ2TlJxMbitSH8Yncmq9AmlOi64dFNDV8g1M793S5A7btpVi/2f30f8HVO1u4bPBvMVeHrn1dfjtaHjbaVOIb59we2PBxUzOEkgwd76qxdvqDqci36XRRvPh6YXhuF2Yb9y/SPwWPvRjYyHC6VyYN/pBOV6Y2JDm4AoXa5dhnweToCBYSuYkhuYBxNxsmwlM4b1pJpFbnYjIuprJArRflBeyBv0vigvJQdzQnMT/zPcWJWu9CfE/1volsiNDaJ9QpNUmoiiI+1w4fzb1dcgOZy1yIfscTbwA5HmXSgdeLhVdAlWXdZPAWjWbhidEWJM4HGYFLQlZCLebve3C7Wbd8MJ3a70Jcms5CkuVtZqGdrb/cG/Z+Wz3MY2M9GzqDiZF2NR47VhWHSREC+I3eF/hZ8QDcE0S2ZEhBBYfEwrNr/bP1YCP6U6vsKmf58nu2Y6Kdj7Kfh+jFwTrhbVirPv7wx+SIxeyol9CfSSXpawF6CMk6+2WZLBjCbCYDsRq7IjsyBCW432CDmi3B08j63EUrDzafU1EZFX9Kqvq16jsTbDYWD05hJJYHbmqV1LVq0jnrpqVVM0KpsLOS3yd7cbB1qSmwXpn0+Lz1JLkbC+JL+Iy1zTzAzFq2uOFWtYPB2LUKH/CorqHxMjGCGmEHwuBpfWzpCjAkqIAS4oCLCkKYAFlzNyoSZE2nWpSpEmNJUXapKtJ0WPyXrU5pn2cJ0fz6UYeD8RIL2Da7Kvlm/7+QIz0XBfy7kCMbH58S4oCmK8wS0luSVEAywizGwNfG8ydMB+k5nz6syZF+SDd51Feqmw8mhSV6g2NJkXatW7V1gdipOWbpjkQI01otoYYWZLESFD4HsjQ4ZiYmxxLAMGCiUlMESMtmvxoRUPLWRutgNj+tR6it2kFaNiXKLme39OftdJoFbgtdZOL+xE5kiJ7GgMpspYCS4oCECkKsKQoQJMi7UqmSZF2odOkSGdu06RIEx5NivTnQRu1ryZF88EcVEpwkoiBJUMQOZIhi62RB1JkSVMgRTYWKZAZWzeoPshx/JfI8HfVpChX+2hSpMfQl4pOuKB1fU3Crd6uyZBeBvR1rW8vTYb0Z2ZtYVkkWbFXJidLVHTPhf3tvRXmZ2OB9JqwqbtBXOQxtnNYny2sHTZ9tl6TNBnS660mQ0V3/GE0GdJZ1DQZmqvnnCZDOqb3gSQ8CGTIIpAhhECGLFhcC4uDYXLrQhZ0kVyWg9TRgRQVsh6QoUDstslqQIZCKutNMh+QoVCY1Lq7NcrNXpOhyri+aTJUKZd+TXYCAbKfNSwJCmD1NFfVeTooSzZW1VhPYrp1Xn6kZCivPkAy1DSPAzIUCFDTLgZkKLRpm+UXIUMiX8BlTkQk1S5CCX4QZSnO/IPMbAF9j1fAltS46YlpkI2RsLkSV7npJDbDiuyI3M1l7DooIjJNsYkRmVVFRKYJbi8iMiXpuVkayJakx2YmVNaemazZXM9NM8lMt5OeKzXMLXJC5En/Mu8GmFl/So6tlFJeCb5upgmeK3WhS8705xoBc2dkQ0zT81KIs7mylLpj1eLPGZe5yImIzAhHOHeu586paLGb4dg+LPU2k99M+Am8JumvbydYPiMuZpdEfkHc55B72Rha4v6FLDwiMSF5qj1KTR7QEYsNs6j05P5hyn/VJfS3Ztc+syKx5AOoGLAIt/KwjHG7sbG8I+pESu6hc1csmoqbtGcuwjSVOTnZLEX2bh8sb0hfRYt3eGhzWoICpZEWEckT4h5F2rcJ/lFLUEJDRKRh/ZBwBBHuUsWe4wwpe1aT59+Euubjfpg+05CESQ3xEOmIHrrbxs8TAjt32+ojDQ1pSSInqseR9kxnYue7IanY6xaTPBGRjlg4GfScupEswi+FL2Ih0gfSk4NqSGHWuplLTdzumnYpDQj66roNPPF9X8Dx23YpLeinaR6kQVk36g9S1jHz3Za/ybbEmT02Rczsq3olmzJm8GWzhIw/bx9hlrttey/b9l4W7V+jbavu/aCoVsC6ew/fQqybt1GyCJFd0S1Ut6lsF7B91W/huEW/pC539O0RMImLcIuTCHcPZO6EG5BdT2QXrImy1zA5y9Q3Vuka1VKopYXJHKq+kU0H5F0rOaiblLfN4Y9tsyi6VrYdlqMaTFXXUfc9ZEEq2g7K86aDWenyppMSKBF500HLVdl2g8K2x3n2NClE3fXUSsUy4jE5ryPClSpkUWOpupsepwyuOpx6uO4Epk+uut0fSrtcdYk8VPEDctukMgcWpG2TwYKvmzaDbnWbZgKtN6t6IitgvVlUU1kDN7lFPZUC1AFa1BOY1W1ZTwbFT4/zyaTqUkiiijaFsTh5m0B50aUwpidvE0i6xhIlnBsbxNw0bcKFgE2DCdem2ZEJpJ4VbS8t2Knuekg0+l5g+7brIWlo+15aQKzaHruw1V0PXfTKDrevyPzzpodWpk3dS91h4rOu8dq0rBvoujyv6yipjojQOj8fkkf5ADwo7tP3cp/GusND8it0p3+UX6k15777JyhnbvzMSiGy00UQSuIGVbSPUiC9oltC/aToFlAPqfut5D3op19LDtzbtv0jTGyw6T5KCZJM5N0jjMEp2iW18hTtHGZf01nbBmM0D7Bmz5ZYc7ble9kC/ZEnL8OeV1WzlApYYKp2JVUbnwuW7KBq5lIRXb3r1tKR8yTCnotH+ZcgQyJfOMtcv3cZssQkfG7a+YAYtSoziiZFliRpUlQrv0pNivSPgcYWkQEp0p81KWrUhYBIkYicRYpEBJIiEW4GZam/RQSSIhGB5ESEm2YRyRERuBiNtWfjapc7DetbHNz41nI/IEZBbuOT1sn8YCa3VaGDaXyR3A+IUcg8Y6tNa8Jz7mdNinT2PU2KSvX2TZOiWln0NCmq1BsfTYoq9YDVBMeSHbZNf9YPa02KisEYytWjOyoDiBTt5MytjsjJK1ekeIhwdz5Eio5jn+a6F7xaLJlhGe8CGbKkqHqivQVL1a1316RIWwU0KdKnUpMia0XQpEgr25oUbVVKb02KtCuZJkUb4la3Gbi6HdtrIqQ/L1QbTYp0bSBNirQ7nCZFSyXXpGhjXOE0KdLucPq86MxtWq7d3krSnlmi7KVQkjijMF6ccnv3v9X1Axmy1pVzU8Dv+iKxQWcmGECEREQgERqT18Q9b+Cqpz5rS4+eg74v9dJg1wN9P63VF702LevjCdSkaK5KLOj1VJMhvfZrIrRRzxBNhLRbuiZC+rmnidBSFZ2/7/7pQIbW3VG+bH89kCFNcHS65vAS9nicx+9aRyjbxYEMaeIzRoTKM2NwapJtlmVyszFKAaxuJNORCpKBbbdtjudE9rEZjgPGyBDsRxEeHV6iiZDO6KaJUKnc2DQR0uRHf261bqL08b5vBt5YQyLUm8/9qLwnRX8/F76Iy9xhMOCCliSX0Gozyd4MCFHAdPKGWowm2asBIQpI0xvITtnYWfYKWowmk58HhCjgYvo3UoP21xd/R2Oephl2k5pk2O2NZe9A2U8CWMXfnrnQMdPrmVlfJikuiMiqHDMXOmaqZaZ31o8IN5uzDHg33StoAbrubs+S33avonTkIiJ3/esBIQp4JTeDh+Kh/2Q2IESHeaazASEKuMom0Poztu0qm8C3l9cpll9l2YAQHeY0mUSxSTt5Bt1FbiYZJDU30xTKLzIsv5qkkDRdT9JDwod47BQqczfTBNZJuZokMDj6apJAZfEyS6C7DWt/M0ngW/6bCXe3Qpm2RHB2OxGR61H3Obztkri3zYj8grjhsYxuLMscd1Vj7nNYbpMgBKAkBcexsZx5T6HEBiIiF2kfpb4W2bkMIktPluDjmCa4fZJgy1CaYMtQ12PSkyacDKWCyVCWJvD+yRJMhrI0gWRokiaQ9GQJlk/JuBdpAq1F0xTfh1maQMvtJOVxjdN0SIYOY2fpgAwFXGfZgAwFXKYZtAxNJYNWoZv+GlqFrvtX0Cp01/8BWoVeJX+iViHqZnWm65cI1w8YEuIiTl3mSfbflOgBzB2NZWV7zrlg+/Q91rlY+w54aIiIzCZ3kAxdTF9Dq9DF9DW0Ck0nt9AqdDH5CVqFLiavoVUoS2bUKpQkE2IVSgRbhbCchbp8DnxRCxHCmAtdD1yG6mYnR9t2lqL4hDK/RTY2IkMiwVIUX9hl/UE6QN625W+QoImIFDWx2JAse+yNAAuaExHZEgsWMsuKHDPhRXJW14lUtmbjMusSfQND3gix9votVzQn8lZIvzHT+JD+BcpZjSgmZ4GqrAo2q/1wTypXs6xDzAVjbNu58scG3z8fKtz+vsIpmj+WWP6hwPJ70p7JH0q+oD6SQiYLEojB5I+2qNAecyJn7R9KrIQ9VljO6rDQuIaR119Vl0D3uaLF8i2R520ic+Ju9wjc7dZNBpMcrJrJwMp0lGdRHSCRXS2lHLRf1hkkJKsmhfIAm/wggMXuMDK2bPBjdkPkLCU2m+u5bnIsZshmMdRgSVIKIqcJDgibZCmp2YsMZqli82TkxtYFCliyQCzha8b7Er9Q/LXCa/RvRM94m+Bn0l/Tf8Dy/r+B8l+a/xrLy/8XlKMi9SLcg0WE6wZUznQMJifB9MgVTYRbbZA1SiTO1BZgM7Ud+qFZk3nCL5bUy9bDfFJe30M9sGrmUG9s2iUkQ227hmSo6wpIhtp2C8lQ0ywgGQoeYJ/iIvd74cu6zD2D6Vnio7/zbfbEvvSJtgvi7rslRd3e59SSopD0wZKiUGjWXtwhw4e9GcINiAphhRvXkpN8Pxd7Y2/rffFYc0ME0mNv9vDdkqJqfwx23OBna0nRQW5ITvDjtaQofLftw/d19z4iRiFTjSVFwbfYkqJQaM2mIw/Za2xKz6fkNoVpqH5ti9JV+wBZWxU8ZLNbmcDXch8UagvZ5nt5DoJG2bbw3cYtFf243MYzhWK0NoV4sDBtIjc+LN/uv6+NG174vj2xfbBIrWsQ+7RXquzb3mb/Rjo31qagnFllrGDucKGCPXGTi93wBLYP466YUkcUWRRPtJO/XPKN7xW0Tg8hPTlN4DDu9mbd50J7q+8HghG71cFhaYxRsAAx9znEP8J1ascOt401ygaDjm3fPiG3JOqp9uwcRSm3Q2rtKMNjv2/fG3m37z8+GWEdsdapRRNnABU5Fkq16+djv3tOlmYdvt+/ELMB/yEjrH3GPHa7F3f2ebiod5lpbUbbZbWTW4U/kCHrohXIkFXSNQE4VTcIuoXVMcJ3q5MEMmTlgQzFxUT3z3kTxxTIkI1jCmQo6CwB4dxYMhbmUZv2+vhtSupAhmyWtnA+bVa3g9y23+uKjdExK5C9efd9N3frZdXu23Wt1VWLwfZj++3g/0P/e4LUG2sZMzI8F1/SOiTyFViITgGzCI1v0/6JnwOtIGtR122htahu7qG1qKjvobWIBcaxQDoRTIxEduQEWW2KZg7feJTtCr6xYW9B8voRWovYuHn7CK1FefdIAymRtYi1F8HESOR8SxGr0cTqHDC5JUUBlhQFWFJ0aE+yAVlSFJBLDYlR2IaAkjmMyVGSBxFcV0kkJj9PyS3JOcznzPaIFB23kfgkErd0buIEViPp3PaaFOkX1SsSN6RJke7SkiKtQGurj7YyaPmWyLUVY07ij7SVSKe41lailYoV0lailWqvrUTzQdzQsc1SpRfXc1s1eM67fnVMEP5ck9TX2kp0bkIE1p5ZW55Lhk6V501Pr09mgaQxQ59Zzi1SWM7uLxZ3uK5bun4EMmQRyJBFIEMW98Q7QJfHGPTTYS+GQIYsAhmyOMcyNG4JwduoPsHkzRJahqpuAy1DRbuEliEWp7Rt7qFlKK8foGWI6klPWIWQZaioHqEFiMqJfsgSGLBEY227jsiOyI4IdSArc9tuIxIksiNCKGyEJSz71vBFY4gOg5J01t8f0IOplxSk1O66XKagMm/TruVi+nMkr9u1XE5xpeKyWcj1LK4OXdYLuZzFYxTVo8ymcUrHql7B2KWqWcEUkE2by8X0dSRvu4rIS5ll8bmou1wusrj/sl1BedHM5XLyJpKL7N7+oIrOVbeWi/RVPHa/hZWh6z6XyyRuX/ZruQDVqot+Sdujit6FrOU1qAKeJxt53YH5J4XcgqrkZVLKdY9juHIp5AqkZh+T34DK3bmUcgPab6SQW9C+kEruQAr2bV/JLYiBeyn7xYTEoImIzEia8Eua/vq8WbHWNG0w6X9CDmFGOmJpt69HllyawvvcuKEz27O02+emXmfptbnbIB7gOQ/CsRgkOAaNPzqv/Vj6bgRGeph1kbmwifDf4dw09KzvDPycbYflTYdT09ddD+/Zou1h+5zI13VL7/1FW8LSCIt+KxcgjmWeLOWqj9fBx/SDTPt4HXyUX2GM8LL5FZbrWJdv4XN5W76Hz99t+U4upkAfqO/lAugiVbuSi0ncj4hIWT/Cvup2A8eu6hXUOepmA4+halZyOYv1oLKey9Xsj0C+kCswn7x+hP0X9QOM666aFSynUlS4n93YjzKdxDpB1SxhfHXdLiUD8qaZS5rF8o68gKSrCEsLTp+PWG6tQUfwF42fgi9tHRL5RixE3y7wk4P5Vtakcm/J/FlJHJKIyJZUB2b+qawgF8s1z4vgnudTXJGc9ef6GjPfXhHuJ8yy2dCYJhLHw7LZsPYsvThLI75ISTpyUmx2C5I4BOTUkmTd7nbfdcHZnbzcy4ftw/e1aV/IbvFe9UN5sDatTc2Hoq8l3/8Nxj1TXvSNrMGDo+47qfsOWqPqvpMVca1DSRyKtoeWoqLtJQfyssVv3Iu2h2+mi7aDlquq7bG862UJ3OqaTmQJnqEhlTBSisv2WOx1MKcugTEx2zaRRxBPtG5TeQBFYDdtKnMkb1JZgX5WdQpjbhYkPmjZpNCNbd2m0O2t6BIp93/RtjaB8TjbNoE1f0I687gfbNUpSUrnqsP1fsougUklijbBLm8tJiubBsvzph9NKIEc0nuJrTddf/w7VS4Su+CF71bO3AiDO5t1eQv3qm2P7lWRcYvyosXxQguS8Wye4GfBIymSylJkswyzzMrDvElY8XmmU6DYkoCSxBJb17JDX0TXsO5mh/ZU15gT+XkxzwXRr9i4TIfajU30KxILhZJxiezIEELbLqElZmehiRf5vq9gprZeGt6e9I+Jz+chQ78XfhcLkciPZCUKCE+e4ekO1qLO5LgP1iLrGxqsRaj4VbAY2QC4YC2yC0WwFtkbPLy50QtXsBTZRSK8JbHEKbwVao1SepQPHyjBUmRz/QeLkCVCQW6JkLYUWd/gYCmydQOCpcim7wyWotoo88HyY4lQsBRZIsTaB0uRdbMLlqI8Gc4/WIoqU4wvWIrKZHhOtaXIEp5gETpVHixFucmMFyxFliAFS1EgRAHBUmTd74KlqDDE5mqfmdASnqfkhXm7dLsvvlyDt2U32STadjfdKes2CPxqb7KxROhy/3rZyq/2cvvG/WqC218f+h/O83aawvkc5Ea7fDXd9W951qt99mukgN/tX2rbmPHX033slCELr/aFW228zU/TfdyWSXzw8zTEiw3lb4LcEJ67fT+WIN3sx10YQnW1z5BnCdtViucTLGCIIAVrlyVCl/sx7DGHTH+WCAW5TXxwsZdbgjQl/ex/zoiwhex8dp6B6NgECuEy0RajILNkXZMlyxnw0+xorbFkJz1THqxBlgQFub2uw7g2tidYd+x9lh3OD5ZbMqStRJYMBSuRJUPBSmTJULASWTIUrESWDAUrkSVDwUpkyVB4JlsyFJ69lgwFy44lQ8FKZMmQthJZAhD6smQojG3JUNA1LBkKx2D1jWAlsmQoWImsjhOsRJoMhb4tEQoWIjtmsBBFetK+H0SCgoXIEqFgIbJEKFiILBEKFiKb6CtJds9dS16SZLaXD5+vieyecZYc0fakfzlk6/28ROj3sA6J/I6ESORHJEUMrEIwTh+ZpnGhw+M++JxmCd/nHLA0kSkZl6YLJ+nFWepNBpbO8nLyJiJEIjtShAqpXaSvYD2Dq/SniBCJ7EgOsgxdJLfQMsTas7TpM8Fub1c9Ttc+Ffz7Jv3LGYHPTaM6Idd1RuSTFzJYJyz98ch6g1zo7qYZSZmd0hTbSH6VnZeq+3qSwvTkt9MUzmeGfH1E5JrIr0aWXZbC+4LclhOSLnvK+mHuc6QfBuaqxjLAjXiAUZzr3oYwS3EWuIsUW4umKbYuTRMcY5QlPbRepQnOJsdSbrMsbCLnuxJ+7pQdbD4drVWE27MMdjmpjyYi0OosIrIFJRRERPIEe1gUCYk1Bd4Dk+QCWoam6RW0DI2lZkaWoYvpT9AyNJqCmVhCmG7CUmez0hoMrD0rMcLQEfevnriX2Re7x/ZccWdpvtk+PRvjBWrxJDKB/STJDFqKWEmana76fZIhEXeZ+0qAL7Bz04KLiLQsTSUxwSJLk8gxE148J5Kbn7RHZvOur6E5umkLaDavmw2UV/VK6ga7KKyKX6HpfFn9At3r1s076I63bH6FCSBW7VtIrFYtdl1gVb9ZZe81SfLA3OrWSXysIrtisag+kojA+khj8i17iKfxNbdN1rIEc9okW1kCV79cCpgwYiNFZH0ak+dSQeWklEaW5H6q+1Y2bfyAfChrmKDhkaTxnldY/sjkJH0vSxP+QPIrs4QQyH1uJ4diuq1oRRbgWb1tcMa6vE2oHKXpXjfY3W7VpIPkB1qO02jjGk6bBru8sbTUY9tYljkWu7NuSEzPmam1z03FjcjQtsHkLG966DrX9r20fU+JBsM5rYO73alyNh+bKS6AkSFW5HkF6gWJiCy6QhbkGbcgrsvMHY4lSZh3+BnxUP49br/9x0iWVx9ksY3Tc1f1R1lt436adi6bIu6nbVeyLf85ljdL2RY4mUPbFVID/aNpt1DPaDosr5oldDFjOgxzR0OposfkumDpKeMytzYRkYa4GDLdDSXi6qV5scKkrB+erIwlSPi+XOQsfldC9Hsywa8POGsdy97Rtsvo5gqpFNtmOSBGIVuIzUwSFqO6XQ8WpkBu2q4YEJ3w2f5u4bslReENCfUlJj66zJeYy3nMDPMnPrcWE6uhhEhR3W2lVgtcaGOrcAe5rfpd7S1J6/79gBhVe8JgSVFI421JUa6IjSVFgfRY8vOU3JKiQIYQKRIRSIp2cnyeWRY9RH7G5JoUlephsOyLATGqlYVRk6JaFZzVpChYbuxb5FCI1hakDd+3kTz000G5jSliKcLDW+4odfj+qyVF4SsjPmybCCZFu/ZYKdfynGSl04RBkyJNhNhnjRUjHkQeCM8YUbIWmUCGLPmpnpBba1b4zuQ2PqgmqbiDJclSAWR52qolWxsOtZvc0EVu2Ou5pOgUsB6ZHKXBFjmSIcuJniJD1jkmkKHGWAk0EWrNW/9AhurEpNXekyFtCZonb2H67Hn364EMNSqmcln9csgMp13SN8Vb2RQxqcpJ3HBVf4Typp1DecuUeUI8RPgL0QZkKhOJ00cHMHIT9BYbTx3aWwtXID2a/JTN4vC9VvOqm/WBDOn5an1Jp69umvmBDNnMbU27gmQI6WsiPCvxSxGhbw2/Nyf43S1Ev/cJ+PrQmv93CKTIkqPfy1rU9w387SyJOva9gcSoalaQGAXyY0lQ+G59kQMpqpttRJACKWpMfNKhroCRB1Jk5YEU1bYWwJ7YWHJk2x36J8kczrEWLZIP0Fq0Thaj1iKR80mQlQdSZElQ+G5JUyBFG9NPIEU2XimQIpa4gclzE6/E3FhEhFqLkKVIBKfyDqSIkSAr3x7kQ6UqkCIrD6TIuskF8mNdfoLcxlcEUmQNRsv6SH6s5YDJAynaNrb9Tpu2FgtGlpClKICTnqE8jGXJUJizJUOMBGm53RZIkbUMPUWCrPwpEmTlgRTZOkXhUrBudeGnfYoMabCU2ox4nIOnekCJGcbkjKBZy1D4eqplKJAiaxkKpGjMKoQsQ4/pB2gZOtcqxFJkWyIUiJIlQ+FZbslQUOAtGQp6hCVDzT7Rk9UldBpn+7wPViJLhsKcEBkaswohfYW116THyhFeyiqEiFC713eiF9f747dEKJAgJ0O/H37XGKLDJDyW6MUQgueGQnx+2XlH8UBdX0kK4pC6vqHxQ8ifuO87GD/UdhVMe1m3G54OE8p3C98MpAdtOpwWPEtxHA+NiwJxP3WXw1SoVbfB8nYtFxlI+93lcgVSiDddKddZnH677nO5S+J03YWs5UZ+gvMvZC3XPUgJnuRyAdLCMnQJ1jpSEreUgVS0VZLLTRfPpUi2ct3HqUu3yRrKWfs8yeUWyEVEaqnlFYjVqqWVG3CtV30r12l8DGdm5JaURFmgfoq2ldtJfB2WXXdI/DCYY9vLq1ksL9te3lzg36Voenk1Q5aS/pCcQSNvRV4Bl30mZ/FELP6IZD6HWNSJ3EziftZNIlcg7ilvBcqLlqcfL1ocQ1W+kJxhLNMbAstsx4qton5sUgILlB6+63uaNh5JW9K+6XqZAN89Zp069/wgNzlWs2zVl/Q+fUweYczmY/JephI/G1b9B5mCsgPr5i1Mw7wq/yoZeHZuy3eSpfGzs6w/SAqeMT1ze6cKNzreHuoUoY8QfD/Y1peSpvGzuetyycAzu21XpP1aUnB+um4rGXh2du1Wskksb5sllLN01B1zIwMxPrvzwG7q79u97KXxNRCi391CJPJ1nIjvBXax26VXjN3u+r6QrltHKcD7ruBFvPoKLhYs0QLLl9+QgnXMte5UeaXeAlXmjVCwDlkXuqbNYRG1ps2h9artSinbpZTAMmctSk/JUR8iIjl5C8UsSKt++HYwuGOgorJh29ZkPgpud6UJAi6SzeFvMJdkCYvQ5rKUDSgqWyQbKBcR2RB3OxazdKo8P7gSArfGfVHapXHRq/cPsY25zqu9a922M+m9u0ZykMI7b7kcWaG2XXN2YVqbIjxYkpamGmVI6DA35oOi6aVowj44RbF1ucuJWx2KWRHZWSfOiT/aNAlM971qkpPd4oIbnp1T+G7lwaJUtLFFLHy34V7lE3ILJg+pz5EcKfbViNwizN1yjGAZsjk3niJDIjE5OdeV7im3NyRHm1D6bxGRpu+lN1vKtjubDImIdGCEx2TvJWCs0Y8Jjvm0a/NxbGwxWpV/hXKWJrsEhc/Dcx3qAqPWB2yfQ/0cPkd6BbbK2yy6Acw9j5UmQe5lIsdwgUHfJnTgOOZOv2lNX8HK05kMuMGtjZ+H7z8d9efG18IBvgpCJPL1nJDvATyADhMRtvggUiSC36B0fQOJUddVB2KkM7g0bXEgRjqDiyY57LMmKYws7dqRoMqR6tK4H1YTCZOiQIB0Ve2BXJ1X3YcmTpoUNWqB1qRIZ79jD96NPEJiJBKTosOcaGakTbRfIesDMcrlKN8k8wMB0mRKk6JKjaNJkXbR0ySHfWbtNRApCrCk6DCn/XVemUyGgRQV3fF61+TnlM+aFG07LdfxSsdxtfJWqvgmVDdJJCZFAZYUDfcJKZyHilEgRYz0aLkmStpVS5MiLdekSBMbTYo0EVqRNixWiJGgXJEgBrbtFNJzymdNhNhn/VNUJ8gD7NwPabiJm9wpZMhCkyFGjLS0Je01GWKfDzWK+uGxh49N30uj+gykiCVPeIoMWTwmjwcyFG87kqFauenqNVmv1ZoMafcxTYbCM3FbvhuQoeCeVtYfKBlCON8Ni/2eI1nV1Lnr1LNPk6FWPa81GQrt7Uta7V6GyFDXbikZQmA6DUuCwAjY+Pl0MnQOvibd/6twmQtw17nfF2l6C83sCU3zzVJgnueid27qTZYak91Ys8nrKH5IRKBbwk6OXehYe5byk6fdxAsm6we53E2BK4GIQNeMAOSyNiZn8+9YVkTSHvV/078ZEKJD2/68NYClAk+IG8MFqAgfcAXcXUREpqQv5FJzlU2gZYghIa5GGXHXmYL04CIiF0yeYfklScktIgI87mSK0pDJmDsclrP2bDpkWOoudc7D7HOnhx4DOy4GZBXKktPIUABLrY1Svz8XzHXuHLe3SZpAi9G5yRZQinqR88nQgli2RUTWZBsqvVC2+EUcKxjKUlsz5f1zKuIsbXPYisGe6+ylzHnXIQwPGN0hnk+WXpPz6aTmS+FrIkRfjYVI5Os6MT8ikJl9JyeZUEhiBeZCx35f5FrHkjM07ZbI1zTTTV69g+lAdXYZDZ79Dr8tQlaqpsuj4rMiPFV40xZw3LYrYUa8vH2Eme+YW52ISN7jByx8eMv6kNVu2McC1lMq+iWUl/1atmDcx+RXaLliVivrsndsH5+zMslhnY86KWWdLmFGvDqpZQn2KaWWNUzvXctG4uv2I8mqhNqKxAVqRUSqvokKzorsis2u2rh90bWyaOL2ZdfJso7vuarrZUmizplyvESat4isgJJdtCJrcKvnLc5gl4+0RzVzVjWppUMeHzSpANF5qg4TjZeStz13k2PzQUDHVbZYPS1akQywsKpjcUHHP7YNyRGYOxy61HrB1qqXIkPbtoXHa11kA8bI0KP8FslW7VtYemHTfJAGjLEu38LnxLb8jTzn5vJ7uGid52oXZGyerP2ngbkEUnlfkUx7Toa+FL42nf+rIkQiX98J+hHBFj9qPiakCBEjS6LCZ+1ap8FIzpic1kQiZnRNioKrgo0f6vZuTTaLXWjPXPfQwy70g8DImCZFOjWrJkUhq51N4y1yTOVtSVFw5UCkSEQgKRIRSH7G5JoU6T41KSolpPZeDt3y9mTIkqKjCx85ZyNucjxNuHJnlKP2rklRruSa6ITPlvwweegHkSIRgaRIRAakqOiOD29NirRbnSZFrBiliIobMvFE+SHOyKYIDxm62Jt41Qdxq9Ny1l4TnRVJCR7aWJKwJfJgRWGkSGRIRD7lswYzxgQyZElR6MfuF1zvdEZB7Y6nVX5tMdKkiM1xzHuObQtyS35QSmzt9qZbn/JZ4zlkCCGQIWvxZWToUX47kKGB27IiQjrD6KYhcUSgqKrIjgwhsDTZX58CT38x0vZlyNBZcrLmfn3n8vvF16jrf1UucxruPvd1AJnK0/Qauq2dk7UutEc3RZrOIKnJ0ktY14DdWFl6CfuZTl5B8jWd3MKK1LPJ3YEQDdtfw/bT7Aa66LXg7f50cg2TTMwmd5BMXU7eDAhRwFX2E0zzHTLTVYCoXCU/DR7oAciFcSbXkvexy8dFcgvJ1EVyC8nRdfITJFk38tOBEGmkwF3tsr+BFqPr/g7GP132t1InmJjedq+kTmIt+1V/OyBEh/ZyOSBEY7iRGbQM3cgM9nGdzKQC1/JVMpUCyO+y2YAQBbyeTAeEKOAyw65/r6YptAy9miUw5uTVDLe/m+LCqLcTTDxeTWM5a3szwWToZoItQ9cTbEG5nmCXsquMEwSEWYrbj8mRnj5NsWVoSvrJEhzDxKwt6Fjbrod9dz1OYCCyc/FD25j8HLe35Ey5yMuQoRVYXzvpz7YKTZMraBWapteQDE2SGSRDWXoByRCO/c3k21De2TzHft3TwVz5kDxJZoQIfSvn8vvB10iGRJwQOT4BKOWmSCcJSFks0sG03QhtV8CU3V27lQSkHe26jSQgFbbI7mEC59k3kmVxOmaWKhyl+O76WiZZHLPTtLlMJ3H7sl7IBMQD1e1GZpO7SI5iltqugqnDmzaXS5Sue0+eLkGa0qYr5TKN+6r6rVyk8blpicUCxQ5V3VpmoI+mL+CYdb+VqyROE172a7lK4vZlv5aLJO4/A37lYynIaynltn8T95/k8qqL5SyN9zbZynWP47qi+SQ5bJtLIXcgDXgulVyD+KZSGrkF133VN/Iqi+WMEBVtK6+mILV328ktCPop2l5ezWJ53nD5LUjffU480abB6bI3TS83IGBpLL32NXi0VK3I1RmPnKrbkRyLusPHVXc4rfdY+wmQ2xpTIiJNz93k0MO9aGwettD3y6gCveD5NH0vGXBXa58hRziHDG26ajSLXCQHRChg1byFcZ7b+iN8PhTVQyQrq/ewPAZLhORwfMv4WgnRV+cyF/C1njDHEWyxjt/C7J7iNjtdSOMNs9YRFzpaW4EExMJ57q8tm3Gm6xtp2i20QrHCsrqC+KB9g13orOUo9Gld5XbpwBcwIx7LkodijQ7bSIrvohv2VfW7Yy9NtqKiW0jdb6XuTdHbbhkVpD30ReR2zNCndecrD25+Cyi3FqhKtoNMdxos055IHBgdrEzLdChnaby3yXbwv5Zbmd3HYmWsZKHYrC0yW+7ffq7NdR8sTMvWyLtOljW3bKFYI5FjsdeAo1udLS47Lrco2h662m0bLBeJLUebfd8bM8ZT6bUtSEK+wz52v3CI1srC3N7Cd9sPixniRUVjS1A4dHvGwliWToQ061b+kmQIzSdkgLNkpn1CbsHkdRcnKCnaToq2i1zhNh12kXsuGULYmoKoIiLb8r1sy/eRK3lZ7bPUGbmTIcf3iK9Zt/9qCZHI133iHDsMaxx1So59dFnRMyonpCgQI53es+/Lw1+Ym54nAk/DOZ5AoVPWkqbND8RIEyRNijSJQe50IiPpvQkpCnI9ZtHMD8TIutZpUqRTeVuCchiDEJr6QJqO/VXd+kCANBHSnxv1G7AxWeIH5K4nciRF2g1PkyJdK8mSIp0il2WLsqTo2D7Uc4pJkJXrz4Vy6dPyXMUoWVJ0aC+Y9AdShNztRHZkKECToqJtB6m9NSnS6YotKTq03zMCS3qQfK1Ijna30+Rn22C5dokLJMeSoPCdxQRpMqJd6TQZypvdH9qHkilCggJOkbPPLD4onD7LNcNXNteCkNOXJkNR/2eSGy1nnwNsHadAigqSbntDauOdS4ZWzdsBGQolE7b1R0qGEA5kyMDJkON7xNeu03+1LnMa7j73bQC7yp33+7GU2vbt2UE86vuLL22UrhO54okIrAy+k5/m/heAEkxM0itodWIxV8j9YmwurL2IyAS4WvH04fgcs2yCDOi4MjJmSlKBo5giEZ66PSHvfGbANU1EYKV5EZEpSdfN0n7jtjg9bdLjPiYkrWxGzsEMxVuR8zsjabpFeArvCU29jdzhcFvkBiYylnb79DTOrC1LCsxSg4uIkK5guuxz03ePZDyHYPFBCKxG0kvWH0I4N9bnJcDIZt7gk4BihkRE7pPYhe05ViGWWIdmLa3jcSWZOBlyfJf42smQyFduIXJ8W6BWIfAg6rtKemT96WvpQawKr7J9/gMXpxbfDKxNAU27lgZYkZgFqQEufTVJCV7UH6Jq2bv2S6mBixuqSxFc6yzarqKudW1XwqKySCYiUoEHfdmuBoVkD3NXBWgH8+xK2E9FLHTI3a7q1tCyVHQLmIK87NZSdPiYUCpwEexaV8haVkmcznybLKFlaZ3MoXwJ3kJvk/WgKO1hzGQra5CCPE9yWGS2IMV0F318fW37SuYgkYcIT+FdtJ2sQRFY9iZ+BbTVXR+xPG/6gQVJyzegPZKF9tGYTQ/lVdfLlsSclF0Pk0awpAvIIsNSbjcdJi1jqbst2h4nMqg7TNiqrhdUjuqlyMq5ZIhcMmel+KYpytsOxh2tiWXoIYnXkzEytGx+hTGTefURuk/nVZxUoarfS1XHlqFeGidDDsfviG+CEH0LzNKxQ99XA2IUipB2XUmJEe6HBfA34DNK3Tn+sOepxUnsj1Lcw/Vo440CGUKkSGQsVfgWftak6Fih/BESI0Z+WBySyJAABRJTtsuBPHxGZEbvNybX7nm6n5BFr2rXA2IU2p8agxSgSZF299OkqOnLgyuhJUXB7Y7FG2lSpNOCa/Lz1GdEikQEkqLdfkd5rkiPJkWBDNk6SiFLHiJFIiLzthgQI5bCuxi4z7WRfGWI0jEdN9ZaNSlibnXMohHIkN0eSIaWaxcxLdepxzUpKrteSmIxCcTEkp8wrpaz9NsoIYJtg+Sam+nPeqr6VGtSxNKsB7JyboFYi+eSIU2KNOnpyPGxY9WoCNMKZChRtryHZHEgQ7qIMyNDy+ZXWTa/wm15FbvI5dWHAxnS674mQvhZ5nB8f/hWdPhvghCJfDsn1LHDS1qL7Fsz/vA4741nsDpZl7BAiuw1hyxFOzkotNoVkBiFh6PtC1mKRARaikSwtSgQH5QK/LjNBOez/oG8ajdStRspTWXvQH4sOWJkiZGrql0PyJOIwLgkkSMpsuQIWYp27cYtRTYVeCBFOgZJRKClSITHIKFtgRRtDYEJpKgwcUnIUrSTryPLUCBFNmV4IEWo5hGzFi2amlqArDyQImtZCaTItmdxSSIx2QkkyFqGQjtrcWFkKm96ShAQEQrHYglLID923KLl5MaSobCvbc8SNrD6RSJjBV2HOwUrkSUrzyVFn2oZarun6xpZnEqGsiSRdVdByxCyComMkyGLYCViZAjOEViFdn25buP4fvEt6e7fRAyRhscTfYuIYxsS4Hm/ezCg+IgvUSMAaQU9TNmN4oq6vpIUyNt2O5JC/LQ4pK4rZZLFabnbrpAZSLXd9pVcTF7DviYZmGNXwbTidbuB8qpZwbTiCE2bwz6aLpcLcExNX8ksPa3vqtvAtnWXywVMM76Vywyn30YxVVW/pqnAr4F82z9COULRL+U2+UMsl7XcgDTgRbKB8gm4X/JkK2+6eB6bZCtv+vi8iOwI1Oskjqu6SOL+i66R20kcm5S3rbyaAnnTyqtZ3A9ybdrJYxlNr930cgPyVm+bTm5AwBJyHSuaXm5AWnCRHXG5AuMWTQ/l0GWt7eUSHFTdn5e6G4G6ybXIsWtHQhBhYTWG2DYRTIi6XgQl9Ua8uhP8W7c9lyMgy9CmraUBZ+AxWUoH5A/yC+ybWYU2xVsYu1nWH8lzAL/UcDi+Z3xLZEjkG7IQBXxrJ9ghEhOadiQmqAXtvwTw0xal7G7bNcxO1xGXOJQpTyR2F+y6/PBn0bQ4MLciqbbLBsUVldSFjgUEW3kIELZpxetmc/g7tW9raWr21ovKuC2GuCRkcbJtj30PFZBmb4Er2kcpjBWp6taybbHlh2W9s+524buVF/0SFq4VEVn3eMyNsSiFIrSxfC1r8rZ7nuJ5z4G1ibnWVX1DA9HXJs4o32ers6m9Q4D70uS23jZd5Gq3ax/HGdH02kFu2m+Jb1rVxfFExaGP+P5nCQpYtrayjfsPtXGs5YxkFh/NSsfSeVvCwurxsNgdkZhU6e+nWpAQcWo7ToZEYpLDSA+S110ndddFCTA27e4anBj15pFYWhEZmld/lnn1Z+m62HV7U+CkCiXILifiZMjxY+Jb1NW/OUIksjvR3+LJ/rGBtQvuLvB7kaJefd5/OiNld9cVB2LUKlc6TYo6JWcxVIwUBWI08EtXpKhVLlGIFB22EVIUyIsmMZQskVpLQT5IQa760GnHLSkKYEQnkCK9XX+uB31zRcSSIhGRbXt/IEaVqnGkSZGufcQSMwS5JkLssyZFgxThxAUvyAvlbqdJUa7c7TQp2mg5UQw1dArv1SBF+1FuSVFAIEUs25cmLJoU5UrOXOoO6bUJKdF9b9Rn7T7G9tXQZOiUuKSyjeWMmGgypF3jTknFzWodHfpTY+qHuyYlzDJ32O9EAqSbaTIUrP80eQLpj8VKMTKEEMiQhSZDITPkg/xCyRCDJkPaNVmToeP6v3Qy5Pjh8C3r59+cy5yGu885vjRwym7s+nZOCvEknUESxN5ZJCSdcpbhdNITkj58LDW3xTS7oSlkEWgqbCDPUpzWmqXNRg5Bs/QGWpGykXWCpRqfgPmwVOC0b5gG+xW0GCGXPRGRjIyZgeuQtWUpw696/Nu/Tq5hTaMpSfedkd95CuQsdfeEpcwGcvYWj+n5KAX41SShlh42R8YTUHOWWjs7o+9pyokPAqsnhPp4ToY51H1P5GwuZxwOBSNDiKA30kHL0Ef5Z9gHI0N5ha25DSE8LIbW4fje8a2SIZFv1EIU8C2feMe3CZyyeysdSIrQ99jdiPWB3faIZQ1ZrfpG2oakzqbymODoQrMa2/I9lJ9Tf6NuNlLVsbys5yf3UTUraJ3akCKH1ArVbg5FbAfybiPbJq4RwtzqkLWp7JaSd7H8scUK16aL3W3Kfg2tUNpKpbGWeH4sZXiV5LJIH2SRxsf5HmTZy6WSpYC0wlIfCsMOxiVZIpHSWrStrJv4nti2+NrfAMtT0XYDC1NA1eLU3Y9lLCvbXkrSftt0A4vTcVxmqYrldYfd7VgtIOsiKLIjGohs8GxysawXXrPpJcDIEE+2EMv7vhf0rpZbhuLr50FWspR4nXhIfoU10RgZ2pbvoLxuPkLi42TI8aPiW9fJv2lCJPLt/wCObw88ZTcmRZoYBSJzXqY8G1fVDvqKWo+QIk2MQmFVZvVB5MfKkYud/s761qQo9GdJUSA9tLChIkW6rW7fHNKJc8sWIkUiMiBFxf5NsCVFgQwhUiQiA1IUPluiVPa7uSFSJDJ0zQtkaNsP55zLbn6IFIkMs+NVpGaRiEiZ7K7VeYLPlyZFuWDSE8iQjT8K7nbrQUrv43WtSVEgQxtDlIIbHiJFu+3KTY6QlUBi8pHUbZoUsZik0I8lPyWQ89igkMnOxB4BOSMaoY0dIhyeNkp9ijuI7acH8qfIkCU5gQxpUsScVp4iQ9qa+CD4+n1IcJIERIa25btRMoTgZMjxo+J70MW/eUIk8n38EI5vCywpRCBF1v0NWYueLjZrFYNYCez7AhKjQIq6roqSOiBrkSUSAYGsWIsMsxQhaxFLxMAsRchaFPqwc2RxTOhYNCmyqb8DKbKxS2OWIkuCwvfSpPhGlqIgC2QoIJAiawVClqJAigIZCgik6NSU4cFKFMhQQCBFuQyvH2QpClYiaxkKpEjHHonw+COR2DIUSJGNSQqkCKUGt2Roc0j/bRIz7L+X1NJjEzzgfrYN78eSoWAlspYhRIICLNFoSFuWrEAkXk2eayVipOocy1Db9dQyhL4jMrRpG2oZ0sj6nasnIkMheYKFJUI6LgKRIVt/z+H4kfC96ODfdAyRhccUOb4u4FTen280FN+EY4dERCYg3qjtCplmt5GcxUOhWJ6m3cK+WTxQmsbzbtpCZpM4LTdC1axg27rdyMX0NdwHzWXX/k3cf72Sy1mcxjoFfZTtSi5BKvSyWcrFJE55jVx3qnYj15M4JXfZLuQ6+2MkRzFZZbeWmzTu40JwjJmIyGUfpzAvko287n6O5FNwrYnEmb1ERDZSyBuJ+56Q2COkqG+7Wm5BrB5P3Q1SZXet3EzieY+9FUTdF20nNxOURjxu2/S9XIFc33XXyyVI243QkjTcdYfTiKMnet318Lw2XX9WHSJmVKu7Ho6LyFDT95KCtZHNowF95G0rHVhL70lGxw/pXyLZvP5nmEWOWYVERJp2Trc5HD8ivhcyJPKdWIgCvqcfxvE9wD6wP++7B2yxWh/+Bm37SmriKlaD7HlNtz2krtbtUFFakbhYbdsV0f4iu6x4NenDWnmYFQu1DbDZ9EJqcN5+DuVFZdzc6oXkoDiuSOyCV+4tcqWxzFXtesRdb2jNKVucMTDvHmls06YzffRrWfYkzkq2skhwQUkbZ5QnuSyBS10uhawE/5ZzE8uxkUoWwLK56avI1W4LlFaRndUJZRUrujayHBQdc7Frqfvdto23sUK1ZdtR17rc7MNihqq2jyxbYVeWctui6WLSwsajiQ96kkJ7hAwhMDLE2qJ+ENHKSWwZIkMf0r9QMoSwKX+LXvI07fzw53A4jvjedO7vihCJfH8/kONbx5c1wGpSZAmSJUUichIp0p8RqdHkh33W+6M+6sF+OqU4TqqAoOXadQ+lGB9vPz+2UW59lhSJyIAUaZc8RnQQdFvtymdJkYjItj2662hXPE2KSvU7W1IkIhEpKhWJ0aQo1D9i0KQol+NvpknRRgDpUS54mhRtlMsRqn+0Vq6f2gVPkyJGfA5tVUySdsGzxAcldNBkSLcvWxxvhJR/rfTrBAss3glBkyHNtRAf0+N1aj7NQC7ws8ZLkyFt3UFt6w4TJE2GtJWJkSGEMTIUzdlJkMMB8T3q2t+Vy5yGu885vi4k8iXJUSITmrghTW+hvzuqsD7NbqHFiKYUB5hk14O6SYc5gnt0ml0PCNFzMJvcwVgm5J421j4haaaRi9rV9CeYuAG55l1MXkkFzunl5E0U2ySC04ZfZ3+EsUkZSd+N0nq/Sv4kIkNCdJgjcK173f0sOUjIMO1xum/kUvhGbgaE6DA/0PYuvYDWIdRWBKf/vskmkCQhl63gBofIEHPNQ+nCrycpJEOo7eUkgWRoliWjhVQHc0sxGerIox1xmDThZIitWoiwMKsTOh+pJCen/04SbBn60OOXHeeQoVUeyxJJnQw5HATfIxkS+Q4tRAHf6w/m+Fbx+1mKLJClSARXVC8q7E/fkcKpSF7XcWKC3XjxPErWFliVREQa0McWvOkVwa6Au/b4GCuSmQ4VvF0WcYFHEWzNWhV/hW2XBVbikGveY/WPuC2wKlXk977v/knuu3+K5My17n2Kj3GVxvPbpnjMt8Atr0hyWQNr1PsOx4OsgdWJZby7b2ICV3QNJFr3VSn3FU6Vj4L3C+K6tahiObMALSvMejZ13J6l1j4nlTe39MSypu+pixvq/1wrUgUSJdTkRQtKwvG5yJCIW4YcDobvWbf+bgmRyPf9wzkcnwKbFSl8RqSobTfSAsuFJT/hOyJFnXGfO1ZzjxXntttCAmRlgQwhUlSbeJ1goarbNSRGdTOUBRc+S4rCd0SKULySCMl4Z9qGNoUhhEGOXPOsW16wOiFSZOOM6v54LtcdjisazHdvRbKZ6opkNyYiRet0adqGPrAiq5HLjpisTUa7AliXAhmy9ZBCxrtN93T2L+2Cl58QfxTIkK2fFJR/nba7OqThHir7geDYjHWInLAMdCzuRiQmKOF7lLsS8BVNhKwVZ4wM2UK6zIqELEmBDFlShOLEziFD8/qfTyZDbbuEa6DD4fj+dervmhCJfP8/oMPxKUCuc0whCKSoVSThKUtRr1zlunYbEaNdf8RitSdAmgg9ZSnS5MiSIo360P7YnyVFAYEEWXIUSNE58UqaHLG2gRSxWKlB25Au3JzDQIq0dYglXxA5kiKd7pslYAikKJAhC20dCqQokKFo/soFD1mJRI6kSJMhZCUS4em/D+Mp4hOsRDYl+LC9ijPaEyVrGQqkiFlCNAIpYtYeTYYCUeJt45ggO4dAVJj1RsvDZ2YVQv2P9a3bhi6ZSx2yDG3aekCG2n2bc8kQAiNDDocD40fQpb/bGCILjylyOM4FjqGJS0BysDgcAfEe59yj58QwpSBd82FM8E6o7baSgdTjtH8wbxavBOdA00/HsTkoRTkbL0txPNE0vYLyqt3IzeRvIvlFgs/FVOL+M8HxRJMexIsJ/l0y0HZCrqMMyGmMEZDnUssNmYe1dhz7ieUXKZ7fFOSSnpD80ihOiaWi/tSE/nXXw/H6kV7OyTxXgQAoFi+E0mdXJDkGKrh6bvIEJ0MOx3n4EciQyA9gIQr4UX5Qh+Pl0AoqBotVrx7KUSxTLw20TNlitjtZKR3IOAYL3bIitcDdb9d3QS1O1mrVtmvs3tduoSUKFb891V1v13Z7kltekOVVbP1BWfHqdiPbOi4syVD3W+hSV4CsXrksD0Vhrdxim6xkAQrFbpO1rNJ5JF8CN7s8KaBVCaX+zqWiViWEjVSRC54ItjxVfSurNr6eS+hq18m6Pi3GqOniNNwi2EpTkaxsKJX3WBpulsgBuvG1uLgqiq2q+w4Sn7KP2266Smqw7tyDa+B9+mdYCw3F2K3yf3Yy5HCciR9Jd/5hCJHIj/XDOhwvhxZ8Zm+S++gzS/AwjGHaKZqIFO3kpfqc7/fBAfCaFIV+WRyUCHfJwwQIu4lpUhTc8BApEjFpzPdtmbueJkXBNY+52mlSVDe7fhEpEpGIFIXsdpsG1yLSpCiQoVVP2ipSFMjQKsHJMjQp2jIXvL1ck6I8weQmpP/WpCgHcUc7+T7GyGxHWfBEVEySum4roNCLHMmQjjFiNYwCYcl1yu4n3OS0Gx1zqXuKTLUkDfex7fFv1368b5EjGdLkhyVKCGRIb2fxXoEM9cmx7fv0z7BtIEO9+m1Y8gQnQw4Hx4+mM/8wLnMa7j7ncDwHmWCLEUopjtOMo3TgSTI7EBeNNL2KrENpegFJU5JcRNahJLmE/YqIZNnNIbHDQZZeQ4tRlt1GRGgni9tOJ6+i+kuzyStoGZpmt1Hb6eQWFqq9mLyOUoNfTF9DcjQBLnGXs59ganHW/mbyN4PEC4e2SZya/S75G2gFQu5zd/3PsgVFXZH73V33BpIk1Pa2vxnUQjrMV+K1/lYuaVY6hNvkAlqGpsBd7y6bRZah28kEkqHbaRYRi6tJCsnJLEsiy84sTSAZmqZxKm+0v8jOTc+Ol6W88GuWxGQoSxNoFUolichQKgm0Ck2TNCJDU8mgVSjp04gMJZJCq1CSZG4VcjiegR+NDIn8oIRIxEmRw/F1gUVFoNgMpK2xZYzFQbWSJDy2aNBzX5G2sYG970tJ05uBrOtyybKbqC2MX2rXkk1exSOB9apuljIFbRHBqduNXM5+iuSsfdPlcj39Y9wWEKKyXcjN5E+RHBGiol/ITRL3i0hOIWu56d+c1jbZyE0HzgUgRNtkLXf960jOUCS53Pbx74cIUS61vAbnaALixMq+lbssPkco7qhoO7mapJHsMkPXYCSSsju9bdF2MgNtRQS6yG3bRqYpuJZB55uukhm4liugfH1IPsqFxOfyQxLHDD2Ufw/vkTVIce9kyOEYx49IhkR+MJc5jR/1B3c4vk4wQmPfJrcjbU/ZX41o4phsKvKn22K3LZR5z7rrte1GGlLnqLUpw0mckkicSa9pt1LUOJucdZ9r2lyaNo9SfQdYt7qyXVGXuk0zjDMquoVsOhyrtOlNv/1a1r1J5y3Yfa5INpH7XUGy0xXJVtbJ8Pxwt7zt4W/YB3bhzKWUpYlVYlanom9kbawfyEoisstqtzKpvJF1ibnfFW0npanvY7+PtWX9iojkTRvVDtqC+kwiu9TlNjECc4db9NvIrfFDgq+dt/IP0hpr3UP597DtKv9z9Jx3MuRwjONH1o1/WEIk8mP/8A7H14c4/miHpxI7PEWQbAzU8TsiQKg+E2+r45XimCbt3odimDQp0m55lhSJDMkP+xygSZF2lWMxRZoUNcAlsVTz1KSobGOXpqI7yjQpKkC6ZJ3m25IiEZFNMj/ur4gPiknaqLpHOs23JUW7/Y9zsSTo2AdOCR5qJGloMrRQ10QBnjGaDK1UWmlc7+hIQPJmnBghMqMJz1NttcxmicubeG6aDNVqHFvHSWRIhrQ1aAHcMhEZeiv/IG/lHyI5IkOr/M+yyuP4IidDDsc4fnSd+Id1mbNwFzqH42sHimHCsUqn78+xi216uqjnru1lRIjS9IYmibCYZHc4YQNYl6aTV5AEoTXscvqHKHbocvaTNC2e1ySL3eeup38cEKJDW+BGeDP504AQBWQghfhN8scBIRIRuU3+AK1DLB4JWYdQ2u7b/hW0DrE04df9dWQd2sUpxWRoCvp4nVxCMjRNUNzRFJKhKXCzu5qkEZm5zGIZA2uLtIDgNofIUAMSJUzTNCJDszSDliGU6OJKZpAMPcqvkSxLppAMbYCLXJJMnAw5HCP40YlQwA9tIdLwC8Lh+Npxagrwc/bnOJUM7drG7nOsaC2aR9POT+63qnHBVIRtGQeUI6UxAKXvnm/jYHURkU0VzwMpqYhMiYg8Nv8UyT62sRVAJHazExH5KPGxMVe79+kvkQwldzi2j5Xwt0DG8E5iS9wWkCkRkXdNfJ2wYrGIzDxWsateDpIciIjcV/E1vW6wq999Vch9FV9/iw7I+gJaht53MRG5JxkH/5zGv/37/j/AttAytI3377qtkyGHYwSu+x7hhMjhcDgcDofD4XD8sHBCpOBM2eFwPB/WWtULTgohQB7XawrfkZXIyvq+kK4bWkeChapuYqtPCRIphHTfyEqUlyYRQj2P+9xbglDh120zHK8i9ZxERNatSdAwEnv0VNyRiMgWxBAF6xCKRVqb/Xey3RwW6XC8bbKWRTK0BqFEDME6ZGNmtsAKGaxDttjrtmtkY6wwyBIUZHab3VfkaB3atEMrESo0K8KtQyJx/aa5xJYvZh1CFjxkHXrI/4M85P9BWjM/Zh1yOBwcrvMO4YTIwC8Qh8PxfCAXPuaqF5MjVsT2sH2QxKGIZJYUBQRSpOsslfUDJEYaVX10KwukSJMh5Danod3lAinSZGjbqqQLKvYokCJNhpDbnIZ2lwukSJMhRHQ01sl80Ga5JzprUAtn1/dxvECKNBlajLjkiQzJUCAazFVuC+Sa8DASFKDJUPjMXOVOIUOhOO2CZFp8igyFc/c+/eVJMhTqYT3k2H3OyZDDcT5c143hSRUIPMmCw+H4mrBL3IAVUNA6kkwnf4CFZ0VE0jSu95KBpAlXF3+E1iGUjCFL43pBIjgZQwqSLkzY/qA2zSSJ2970b6B1KAX1g1BNKBGRV/1PkBBN+3g8VDPndX8HY4emoD7SBZCJiGQguUIK63ZhdICko8f+TTalZKhGcW+gHtiNzCAZKkAmP0RQr/tX0DK0KuL4rW0ZE6ld4WYnQw7HGJwMYbiFiMAvGIfD8TXhdDIkgixVdYMtLF2XS9PESQAq4Pq2BG/j62YteRnXJ7Judrs+Y6tJ2a4kb2JLlXWzE8GudmW/gjWPPvRxMoiijwlS3i9k2+N05O8lTt+MEjdsk6U8JrG17Lf0N9A23j+XQuag37XEv/kapHdf9oUswfWBZCjV9YOs5C8tthbeA0L4IY1/74/pW/lzGie6+AAsQO/6OCnCff338pfm/x3PbfPvI9m2jH8XkdbJkMPxBFy35XBCNIK+b/zicTgc3yjiWk2nKoyhDpImRfU+W9dTbna7/XbER5OiINuCGKVo/338kyZFgQxpNzuGbbcjOJvuOFYgQ4z8WBzbz4+yPWlZJU8fAyI+QbZ4wn1PZJwMaaKDSA+TBzK0lKNr34Ng1777ZDFKhh5VPNXH9C3sY4wM6d/mvsbFVcfJkK0v5nA4GFyffRpOiE6AX0QOh+PbRGwpCqSo6/JBnSRkJWIIpKhujkp/sBIhK5BFIEU6xihYiSqarlztvydFZa8Kxu6tRIEMnYJcxSht+8cDWUKWJJbSW7vlBSvRIL4ofYhkgzko4hOsRJoMBRKDLEMMmgyF/ZhlCMESoeV+7swyhKDJUEhewSxD0bw2//4sy5DD4eBwHfY0eAzRGfC4IofD8f0Ax6EkKMYmjeN+RERSEA+UoXgkEA+UZbhP1BbFHaF2aO4iuDAsixtCMUYiIilY/1Fh1wu5jmTTHh/rrAfxUCCWKCNzOhUtjAHCSlKbYIJRgux5rcSJGSrBRX8RUS1A/a1NgQkWc/l0OBwcToZOh1uIzoBfWA6H4/tBLyhVOMp0h1ztkKxpV1LWQytC3S6lqFGMUSxD1qW62UheD5Xpsl3B9N45SjEOCnPm7aNs22Hbon2Uon2ELnk6A96hD6Dg5/2jzPu48O2jxLFEKKnAKo37XKbzgXtagE33LSKwHbLgfEx/kzmw9nxI/xLJRETeSWzF+djF8WQfm/8gyyY+/g/lv41kD9t/F8kWm38njfm96uajkyGH4xlwnfU8OCE6E+6H6XA4vndoUhQ+awIUPjfgDf8pqJodwdCkCMUdnYOi2c1Fk6JAhrZKlrenu9SJHMmQJlCBDK27YyKFnMQmoVpJgQw9KLISyNCjIirLdA77HCNDKLZH9/kRJHoQeZoMzftjprdAhh674z4fG5wW+xwyZOFEyOE4H66nPg9OiJ4Jv9gcDsf3gd78r7cM1zlsFZrv/z9ad4KVqFZv+4OVKJChMQRSVDfHeKJgJRrUNtpbiQIZ0rCWoS2wHgWSUxiSFKxEp1qGLIKVSJOhYCU6xzKEoMlQ+HyOZQhBk6GHZEd83snfn2UZivos/+2TZGhb7gilkyGH42Xguunz4TFEnwiPK3I4HA4RAXEuKYjzOTXuCNU2StN4vS3rhVzN/gDGAXFDsKYPiSUC+xfNXK6mP0dyFKOE6iVNk/iYphKfo2X/Vn5K/uN4Tn081y6J6wGh2J4WuEJ+qP+dvJn+J5G87nEcUAMy17VdnOxBk9aA1fbfy2z6p3gsQGb7HtdDcjgcHE6GPg1uIfpEuGnS4XA4RFC2L2xRetpCVCGLTx1bUco67qusF1BegHThqJ0Iro2ErFAiIjnoF9VQWrdxnaJ1937gdiayI0MICyB/lLhg6WP/l6iPh/bPsmjj2B6Ej8V/C+UPeZz17XH797Ishqm1Hzb/TjYFtkRZVHV8TpwMORznwfXQl4EToheCX4wOh8NxOilCxKhq5p9MhiyK+uFsMhT1AeaU1w9nk6HH5pg2WscfBTyHDOltj30cB/TQolTVO+uQRSBDi3JYYDWQoWVx7P9xi2sHIay2u/01AQqfNQFyMuRwnAfXPV8OToheEH5hOhwOR2v+35Gip6xFjAhpMhSSMJxDhlA73VbHJp1Dhiy2zcOADC2bHWFhliELRIYW/dsh4dmTIGYZsrBkKFiJNBma1zvyc65laDD3vZXoQcUCBStRIEMabhlyOD4drnO+LDyG6DPBY4scDocDIa5/lCSgThGIK2rahcymfxPJUY0gGC8EYn3KBscg7WZ62jvDsl7I1cUfT5rXNI3jiFAM0rp6J69m/+qk8TsQM7Qo/iI3szhmBxW+bVpQYwjEBomI5OUvMBaoaVFqdlyM1uFwPB9OhD4P3EL0meAXrMPhcCA8/Q6uB8H7yMWubpZSN3GdIWRtqpqlFPUwG1tJMt6xOKRTZXn5EaYPz6tYtqney7Icxvesq3dwXqs6tgwtq1+i9osCp9Ce5/8Y77/9B9mWw5ifdf5Pkpe/SW7keTmMFwpAFh8nQw7Hy8N1y88HJ0SfER7o5nA4HAioKOyOCJ1DhixYDFIF2o6RoTG53s7IEEIgQzoOZ1MBd7onyJAmRcsqJihPkaGQ6lpkR4ai8fN/gvtroFggTYCcDDkcLwvXJz8/3K/rC6DvG3ehczgcjgi9BBe6U4mQCCdDsSxuJ4LJ0FNE6BS5JUOb4i1MFS5yGhlaVr9A17+wzcKSoU31Xuo2dpETOZ0M5eVvcnXxd9A65JYhh+Pzw4nQl4HHEH1hODFyOByOUxDHGon0kiRxbBEiDV23lSx7NZC17VImk7iOEIr1ERGp6weZTYexQVXzIDPQB0LVPMgliOPJQH2mvPogNxd/N5Btqw9yc/G3Udu+j2sPrYu/ytVsGF+1Lf4iU1A3qWlj0rJLehHXktohzh7ocDg+L5wIfVm4y9wXhl/gDofD8Ryc7mKHMtq1bWwtappHaZo4pbfIjgxZVCCldpDbbahtUX2UAsQR5dWHSLYFMhGRTfku2rYu4hpDW+I6V9Xvo/ODztcRToYcji8N1xW/PJwQ/Q5wX1CHw+E4FTzeyIKl92ZkKKCqhwTjVDKEiBBrq4nQRhGYU8nQpnwnmzKOL3qKDOljwS5u+ny15rOTIYfjS8L1w98P7r/1O8JjixwOh2MMpxEhkdOtQiICrUKIBAWcYv0Z23aqVUgkJkOIBAVYMpRXH6Tv8PmxZMitQg7H1wUnQr8vPIboK4ETI4fD4fgSILFJ4P1gL40kySyW91UkR7Kj/NLIiii+SQTHODXNA4x7apoHSdPbgazr1vQ4HA7H1wknQl8HXAv/SuDWIofD4fg9gN8JMhLR99VJMt42tuBwS1ZsbUIyEZzdzYmQw/F1w8nQ1wOPIfqK4L6jDofD8bnRq/+fJkOB1PR99SQZerrtkQwFEnQKGQqfTyFDYe5OhhyOrxeu7319cJe5rxRuLXI4HI7vA0lySWOfHA7HjwUnQl8nnBB95XBi5HA4HA6Hw/Ftw4nQ1w0nRN8InBg5HA6Hw+FwfFtwIvRtwGOIvhH4DeVwOBwOh8Px7cB1t28HbiH6BuHWIofD4XA4HI6vE06Evj04IfqG4cTI4XA4HA6H4+uAE6FvF06IvgM4MXI4HA6Hw+H48nAS9H3ACdF3BCdGDofD4XA4HF8GToa+Hzgh+g7hxMjhcDgcDofj88CJ0PcHJ0TfMZwYORwOh8PhcLwMnAh9v3BC9APAiZHD4XA4HA7H8+BE6PuHE6IfCE6MHA6Hw+FwOE6DE6EfB06IfkA4MXI4HA6Hw+HAcCL04yH9vSfg+PLwG93hcDgcDocjhutIPybcQvSDw61FDofD4XA4fnQ4Efqx4YTIISJOjBwOh8PhcPx4cCLkEHFC5DBwYuRwOBwOh+N7hxMhh4YTIgeEEyOHw+FwOBzfG5wIORCcEDlG4cTI4XA4HA7Htw4nQo4xOCFynAwnRw6Hw+FwOL4VOAlynAonRI6z4cTI4XA4HA7H1wonQo5z4YTI8Ww4MXI4HA6Hw/G1wImQ47lwQuT4ZDgxcjgcDofD8XvBiZDjU+GEyPFicGLkcDgcDofjS8GJkOOl4ITI8eJwYuRwOBwOh+NzwYmQ46XhhMjxWeHkyOFwOBwOx6fCSZDjc8IJkeOLwImRw+FwOByOc+FEyPEl4ITI8UXhxMjhcDgcDsdTcCLk+JJwQuT43eDkyOFwOBwOR4CTIMfvBSdEjt8dTowcDofD4fhx4UTI8XvDCZHjq4KTI4fD4XA4vn84CXJ8TXBC5Pgq4cTI4XA4HI7vD06EHF8jnBA5vno4OXI4HA6H49uFkyDH1w4nRI5vBk6MHA6Hw+H4duBEyPGtwAmR45uEkyOHw+FwOL4+OAlyfItwQuT45uHkyOFwOByO3w9OghzfOpwQOb4bODFyOBwOh+PLwYmQ43uBEyLHdwsnSA6Hw+FwvBycADm+VzghcvwQcHLkcDgcDsf5cBLk+BHghMjxw8HJkcPhcDgcHE6CHD8anBA5fmg4OXI4HA6Hw0mQ48eGEyKHYw8nRw6Hw+H4keAkyOHYIf29J+BwOBwOh8PhcDgcvxfcQuRwALi1yOFwOBzfI9wq5HDEcELkcDwBJ0cOh8Ph+JbhJMjhGIcTIofjDDg5cjgcDse3ACdBDsfpcELkcHwCnCA5HA6H42uAEyCH4/lwQuRwvBCcHDkcDofjS8JJkMPxMnBC5HB8Bjg5cjgcDsfngJMgh+Pl4YTI4fgCcILkcDgcjufACZDD8fnhhMjh+MJwcuRwOByOMTgJcji+LJwQORy/M5wgORwOx48NJ0AOx+8LJ0QOx1cGJ0gOh8PxfcMJkMPxdcEJkcPxlcMJksPhcHzbcALkcHzdcELkcHxjcILkcDgcXzecADkc3xacEDkc3zicIDkcDsfvCydADse3DSdEDsd3BidIDofD8XnhBMjh+L7ghMjh+AHgJMnhcDieByc/Dsf3DydEDscPCidJDofDMYSTH4fjx4QTIofDISJOkBwOx48HJ0AOh0PECZHD4RiBkySHw/G9wMmPw+FgcELkcDjOgpMkh8PxtcPJj8PhOAdOiBwOxyfDSZLD4fi94OTH4XB8KpwQORyOzwYnSg6H46XgxMfhcHwuOCFyOBxfFE6SHA7HU3Dy43A4viScEDkcjq8CTpQcjh8PTnwcDsfXACdEDofjq4YTJYfj24cTH4fD8TXDCZHD4fhm4WTJ4fh64KTH4XB8q3BC5HA4vks4WXI4Xh5OehwOx/cIJ0QOh+OHhZMmh+MIJzsOh+NHhRMih8PhIHDC5Pie4ITH4XA4MJwQORwOxyfASZPja4CTHYfD4Xg+nBA5HA7HF4KTJ8c5cJLjcDgcXwZOiBwOh+MrhpOo7wNObhwOh+PrhRMih8Ph+I7hhOpl4ITG4XA4vl84IXI4HA6Hw+FwOBw/LNLfewIOh8PhcDgcDofD8XvBCZHD4XA4HA6Hw+H4YeGEyOFwOBwOh8PhcPywcELkcDgcDofD4XA4flg4IXI4HA6Hw+FwOBw/LJwQORwOh8PhcDgcjh8WTogcDofD4XA4HA7HDwsnRA6Hw+FwOBwOh+OHhRMih8PhcDgcDofD8cPCCZHD4XA4HA6Hw+H4YeGEyOFwOBwOh8PhcPywcELkcDgcDofD4XA4flg4IXI4HA6Hw+FwOBw/LJwQORwOh8PhcDgcjh8WTogcDofD4XA4HA7HDwsnRA6Hw+FwOBwOh+OHhRMih8PhcDgcDofD8cPCCZHD4XA4HA6Hw+H4YeGEyOFwOBwOh8PhcPywcELkcDgcDofD4XA4flg4IXI4HA6Hw+FwOBw/LJwQORwOh8PhcDgcjh8WTogcDofD4XA4HA7HDwsnRA6Hw+FwOBwOh+OHhRMih8PhcDgcDofD8cNi8ntPwOH4HvHu3TuZz+e/9zQcDofD8Z3hzZs38rd/+7e/9zQcju8KTogcjhfGu3fv5F//638tWZb93lNxOBwOx3eGy8tL+S/+i//CSZHD8YJwQuRwvDDm87lkWSb/9t/+e8m3uUiS7Lekksj+s5YlKfic7P9Nj5+T4/ZjP6kkybFtsveCTRL9OQEy3W+2H13NTzJJzfZEkuP+YvvaydIg6499pRLvn0oqSa+PMZydJOorVcc7bCuHfg9z1bLkKAunO7ST5Pg5TY57Hs5+osZMQhvVf6Laqv7DuU5V43Qw/rCP4/jHz3rc0M1wXv1gv+HxDfc77A/b9upcgLmA49v134OxjnM6jtur/o7bD37ag3F7Na4+Pnus/eC8hXHDnBK1f5L0g3lb2W5+qq1qE4+v9kv7w/7H3334OZKlx+PTsv9/e/cdFsWd/wH8PbsozdiwIoLBiu0JxhIViIKH2EETU06jz+mdJSh6trN7d5Yzd9b42GIsOYIlcoeaYFfkMAE1aIyinHcUPcQCBiKsFNnv7w/c2ZndxV0M/lD3/Xoek9lvn9ndYT4z35k1ljUOUp1mXFbsMuTtp0xT7jpMdiOQ1G+McYMqPliS8kNmGIvqzVJueEmdL1nOV/evyJffUEt1TPLldjXGNuV8jfkXSZKMZTWKlVSNT5EmmY5FY7ktRTmhTNOYtK8ak8n4nvQrVPmK+hb6gklfmZn3sXxZNPLy8hgQEVUhBkREz4lO9wi6Qp3qqEUZyMhp8rJWFVwAhmBDEeRYyFemycGLJBQHhoayyoNtYXbgXX6AawgiJGNwYynggdYYnMgBk0YOfjTCGDAJaM3qAxpohHG5vJxi+wjjesMkUDKOzzB+47KyhiEg0kAyC4gkk4BIFciY5KsDImMdZZBhPH4ytmMpSFEGBOoDe+WysQ/T9pVBgMV8k3afmg/jwbYyIDKORVRQ3xgQKQMV8+0iFO+Hog7M8+WxKPrVmNQz1rGUr1wX8yBGGSQZ3yt1QKQMmoz1Kw6IlPmq4EtjOSBSBTqmaYrjYmWaKiBSf11Ux92qgEhjqazyjX3yWrlhNYqASPEmVhjwyPkWghwLAY9UUb4ymLAY0Fgrq6kgXxnwmAZEGstlJSv5inJCmWYaEKmCHMttCYv5Got9WcwnoirHbxcREREREdktBkRERERERGS3GBAREREREZHdYkBERERERER2iwERERERERHZLQZERERERERktxgQERERERGR3WJAREREREREdosBERERERER2S0GREREREREZLcYEBERERERkd1iQERERERERHbLoboHQPSqcnFxhgQAkvQkRQMJT5aVaZLGwrL05L8a47JkzDe2o4EkGctKT85xSJJyWVFfbsvQv3Eo5T2JJ6kCGujV9SHk/PJlQ/t6uX8NysqXhbEvDbTymA11NNBAEsp1NKyTcbsoz9cIVXr5a728pYz1hCJNPBm3XrWOhu1mXNZIkOvLW1+CYlsZyhhHJ0mKsor2DdtKoyisgek2NrZh7N+4rOzX0Ix6XEJVT9m/xqSeXN9iWaHYFhbGYmH9ytsXFvoyjsnYr1C0Z8yX31VVv4Z3zjgujbKeok3lJ0H5eQQASRjrm5Y1TZOEkPuVJEW6pNy+hmVhXFehaF8y1lEum6VpjOunTDOWNQ5SnWZclsxXRpWm3HWY7EYgqd8Y4xut+GBJyg+ZYSyqN0vxgTXsE1R1zPPV/Svy5Q+kpTom+XK7GmObcr7G/IskScayGsVKqsanSJNMx6Kx3JainFCmaUzaV43JZHxP+hWqfEV9C33BpK/MzPsgoqrHgIioiun1ejg4OKBdu9bVPZRnYDhwe6xIK62OgagIk//rKypIZCBg/MAQvUIcHByg13MvSFSVGBARVTGNRoPHjx9jwYIF8PLyqu7hEBHRKyIzMxNLly6FRqOxXpiIbMaAiOg58fLyQtu2bat7GERERET0FDzFQEREREREdosBERERERER2S0GRERVzM3NDWPHjoWbm1t1D4WIiF4h/PtC9HxIQgg+h4eIiIiIiOwSrxAREREREZHdYkBEREQAgJiYGEiShG+//ba6h/JKOnHiBCRJQmxsbHUPhYiIFBgQERG9ACIjIzFhwgR07doVjo6OkCQJO3fu/EVthoeHo0aNGsjLy7NatrS0FLNnz0b//v3Rq1evX9RvVUhISMCMGTPw5ptvws3NDU5OTmjXrh3mzJlj0/q8iPr16wc/Pz/Mnj0bZWVl1T0cIiJ6gvcQERG9AFq0aIHMzEw0aNAArq6uyMzMxI4dOzB27NhnbtPT0xNt2rTBiRMnrJbdvn07xo0bh5MnTyIwMPCZ+6wqTZo0QU5ODvz8/ODr6wtJkhAXF4eLFy/C29sb3377LRo3blzdw6y0Q4cOYejQoYiMjMSvf/3r6h4OERGBV4iIiF4I27ZtQ0ZGBu7fv4+JEyf+4vaSk5Nx69YtDBs2zKbymzZtQvPmzdG3b99f3HdVmD59Om7evIm4uDisWbMGq1evxvfff49JkyYhLS0Nf/rTn6p7iM8kJCQEDRo0wObNm6t7KERE9AQDIrJrOp0O27dvx8yZMzFo0CAEBATg8OHDz6Wv+/fvY/HixRg4cCBCQkIwd+5c3L5926xcQECAxX+RkZHPZVz0YujXrx+8vLyqrL0DBw4AAIYOHWq17JUrV3DhwgWMGDECkiRZLBMfH4/Q0FA0btwYjo6OaN68OYYPH46EhAS5zJIlS+QrOTt27ECnTp3g7OyM119/HevXrwcACCGwatUqtG3bFk5OTmjdujW++OILs/7mzJkDd3d3VZokSVi4cCEA4MyZM7ZtCJQHh++88w48PT3h6OiIhg0bolu3bli2bJlN9fPz87Fo0SK0b98etWrVQu3atdGqVSuMGTMGmZmZFtd/586d6NKlC1xcXNCnTx+5TI0aNRAaGoqEhAT85z//sXkd6PkqKSnBpk2bEBYWhn79+mHChAk4f/68TXVt3bfHxMRg0aJFeOeddxAQEIDly5dX2GZqairmzJmD0NBQ9O/fH2PHjsX+/fvNplrqdDqsX78eI0aMQFBQEEaNGoWYmBiz9g4fPlzh35bc3Fyz8jqdDps2bcLIkSMRFBSE4cOHY+HChSgqKpLL5OTkYPPmzYiIiED//v0REBCAixcv2rTNiF40DtU9AKLqlJ+fj507d6Jx48Zo1arVc9uZ63Q6REREoLCwEKNGjYKDgwP27duHKVOmYPv27ahTp46qfNeuXRESEqJKa9269XMZG72aYmJi8MYbb9gUZJ08eRIA8NZbb1nMX7duHaZPnw5nZ2eEhYXB09MTWVlZSEhIwP79++Hn56cqv3btWsTFxWHYsGEIDAxEdHQ0IiIi4OLigosXLyI6OhqDBw9GUFAQ9uzZgzFjxqBFixYICAiwOtYaNWoAABwcbPvzdenSJfTq1QtarRbDhg2Dl5cX8vLykJKSgq1bt2L+/PlPrS+EQP/+/ZGUlITevXsjJCQEGo0GmZmZOHjwIEaPHm22jf/617/i9OnTGDZsGIKDg6HValX5PXv2xLZt23Dq1Cm0atXKpvWg52vFihWIi4vDu+++Cw8PDxw+fBizZ8/GunXr0Llz5wrrVWbfHhUVBZ1OBx8fH4tBiEFqaiomT54MDw8PfPjhh3B0dERSUhLWr1+PrKwsREREAADKysowc+ZMpKamIiwsDB4eHjh37hxWr16Nhw8fYvTo0WZtjxs3Dk2bNlWl1apVS/W6oKAAU6dOxf379zFkyBA0a9YMeXl5uHz5MkpLS+Hk5AQAuHXrFqKiouDh4QFvb29cvXrV+oYmelEJIjtWXFwscnJyhBBCXLt2Tfj7+4vY2Ngq7+fLL78U/v7+IiUlRU7LyMgQffr0EVu2bFGV9ff3F6tXr67yMdDLY8WKFQKA2LFjxzPVT09PFwDEkiVLbCr/7rvvCgDixo0bZnmXLl0SGo1GuLu7i/T0dFWeXq8XWVlZ8uvFixcLAKJ+/friv//9r5x+8+ZNUbNmTVGnTh3Rpk0bce/ePTkvMTFRABBDhgyxaawrV64UAMSsWbNsKv/73/9eABAxMTFmeYbv/tNcvnxZABChoaFmeUVFReLhw4fya8P6u7q6isuXL1fY5g8//CAAiI8++simdaDn6+rVq8Lf319ERUXJaUVFReL9998XEydOfGrdyuzbs7OzhV6vF0IIERwcLJYtW2axzU8++UQEBgaK/Px8VXp4eLgICQmRX586dUr4+/uLr7/+WlVuwYIFIigoSDx48EBOi42NFf7+/uLatWtPXR8hhFi1apUYMGCA6rttSWFhoTzG06dPC39/f5GcnGy1faIXEafMkV2rWbOmzb/4nZiYiPDwcAQHB6N///6YPXs20tPTbaobFxeHdu3awcfHR07z8vJCly5dcPr0aYt1iouLUVxcbFP7REqG6XK23j/0v//9DwAsPqRgy5Yt0Ov1WLp0KVq0aKHKkyTJbFobAERERMDb21t+3bx5c/j5+SE/Px/z589Hw4YN5bwePXrA29sbP/zwg9VxXrp0CX/84x/RqFEjzJ4926Z1M3B2djZLs/W7X1F9R0dHs7PrAPC73/0OnTp1qrAtw3Y2bHeqXmfOnIFWq1VNL3V0dMSgQYNw9epV3L17t8K6ldm3N2nSpMIpqUqFhYWoWbOm2WfLzc0Njo6O8uvLly8DAIKCglTlgoKCUFJSoprOqqTT6Sp8yuHDhw8RGxuLIUOGwN3dHaWlpSgpKbFY1sXFBbVr17a6PkQvAwZERDY4evQo5syZA2dnZ0yYMAFjxoxBRkYGPv74Y2RnZz+1rl6vR1paGtq1a2eW5+Pjg6ysLOh0OlX6kSNHEBwcjF/96lcYPXo0jh8/XqXrQ6+2AwcOwNPTE2+88YZN5XNzc6HVavHaa6+Z5Z07dw4AEBwcbHP/lvo1TNOpKM/SPRdKaWlpGDRoEMrKyrBnzx40aNDAprGMHDkSGo0GYWFh+M1vfoPdu3cjKyvLprpA+Xe0c+fO2L17NwICArB69WokJydDr9dXWKd79+5PbbN+/foAyu/BoOp348YNeHh4wNXVVZVuCHIqutfrWfbttvD19UVhYSH+9re/ISMjA3fu3MGBAwcQHx+vejJhSUkJtFqt2fRRQ9CUmppq1nZERARCQkIQHByMP/zhD7h165Yq/8cff0RJSQk8PDywcOFC+e/Q5MmTcePGjUqvC9HLgvcQEVmh0+mwbt06DB48GLNmzZLTQ0JCMGrUKERGRqrSTf38888oKSmxeDbakJaTkwNPT08AQMeOHdG3b180bdoUubm5+Mc//oE///nPKCwsRGhoaNWuHL1yHjx4gH/961+YNGmSzXWcnZ1RVlaG0tJS+R4dg/z8fEiSZHbfwdNYOmtsOGirKO/x48cVtpeeno6+ffsiJycH0dHRlXoSXo8ePRAXF4fly5cjKioKO3bsAAB069YNK1eutNqWg4MDTp06hSVLliA6OhozZswAADRs2BDh4eGYP3++2T1C1h4H/ujRIwDlZ9ip+uXm5lrdP1tS2X27rQYPHoz09HQcPHgQX3/9NQBAq9Vi2rRpqqu+np6eKCsrQ0pKiuo+J8OVI+W4HR0dMWDAAPj6+sLV1RWpqanYt28fJk+ejG3btpldtdy6dSvc3d0xb948FBYWYufOnZg2bRp27dpl88kIopcJAyIiKy5cuICCggIEBQWpfhBSo9HAx8cHycnJT61vmPZmeqAJlE/ZU5YBgI0bN6rKDBw4EOPHj8fWrVsxYMAA1ZQJIlPffPMNHj9+XKng2TCF7cGDB2YH83Xr1oUQAtnZ2WjWrFlVDtUmaWlp6Nu3L7Kzs/HVV19h8ODBlW7D398fhw8fxqNHj5CUlIRDhw5h48aNGDRoEK5cuaKa3meJm5sbPv30U6xfvx7Xr1/HqVOn8Omnn2Lx4sWoUaMG5s6dqypvbVrUgwcPAEA1dZCqT3Fxsc37Z9N6gO37dltptVq4u7uje/fu6NOnD2rWrImTJ09i7dq1qF+/Pvz9/QGUP5ly165d+Mtf/oLp06fDw8MD58+fl58yp+w7MDBQ9fti/v7+6N69O6ZMmYK///3vmDlzJgBjsA4Aa9askYP21q1bY9KkSfjnP/+J3/72t5VeJ6IXHafMEVlhOGM2bdo0DB06VPXv/PnzcpBUXFyM3Nxc1T/AOH2htLTUrG3D3OynBTk1atTA8OHDUVBQYHEKBJHSgQMHUK9ePZue2GZguN/F0ufLMP3r2LFjVTPASlAGQ3v37rX5nqiKODs7o0+fPli1ahXmzZuHR48eVWo6qiRJ8PHxwccffyzXO3jwYKXHYdjOT7vPiP7/ODo6PtP++Zfu2ysSGRmJqKgoLFq0CCEhIQgMDMSyZcvQuXNnrFmzRr6a6ubmhuXLl6O0tBQzZszAe++9h02bNslPobN035tS586d0b59e3z//fdymiGQ6927t+oKZocOHdC0aVNcuXKl0utD9DLgFSIiKwz3CixYsECe+69kmC5z6tQprFixQpUXHx+P2rVro2bNmhYfs2pIszYFoVGjRgDKp2gQVaS4uBhHjx7FsGHDbH4sNQC8/fbbWLNmDZKSkswCqYkTJ2LLli1YsGABAgMDVY+YNlw5svRghV/KME3u9u3b2Lt3L8LCwp6pne+++w6+vr7yo4INDDfKm6abysjIAACzB0rYWt+SpKQkAOXbnaqfm5sb7t+/b5Zubf9cFft2S2JiYuTfsFLq3bs3NmzYgDt37sDDwwNA+T15e/bsQVpaGoqKitCyZUu57+bNm1vtq1GjRrh586b82jDeevXqmZWtV68eCgoKKr0+RC8DBkREVhimCdWtWxddu3atsFy3bt2wevVqs3SNRgNvb29cv37dLC8lJQXu7u5W7yUw3HBet27dSoycXibbtm2Tnwr1448/ymlxcXEAAD8/P4wfP/6pbZw4cQIFBQWVvpISFBSE1157DcePHze7H65Tp05Yu3Ytpk6dig4dOiA0NBReXl64c+cO4uPjMWjQIKxdu7ZS/dmib9++uHnzJt566y1cvnxZvi9CacmSJVbbWblyJU6fPo2AgAC8/vrrcHJyQnJyMk6ePAlvb2+rgdalS5cwfPhwdO/eHe3bt0eTJk2QlZWFmJgYaDQaTJ8+vdLrdvz48UpfxaPnx/AbdIWFhaoHK6SkpMj5llTFvt2Sn376yeJDOwxXhkyfEKfValW/U3f06FEAwJtvvmm1r9u3b6v+rrRt2xaA5fumnuV+KKKXBQMiIiu6d+8OV1dXREZGokuXLmZn3vPy8lC3bl00aNCgwrOBb7/9NrZs2YLr16/LTyS6efMmLl68iPfee8+sLSWdTof9+/ejTp068h8revUkJCRg165dqrSzZ8/i7Nmz8mtrAdGBAwfkm6cro1atWhg1ahS2bt2K7OxsswcohIeHo2PHjli1ahUOHz6MgoICNGrUCD169MDIkSMr1ZetMjMzAZQ/7j4xMdFiGVsCokmTJqFOnTpISkrCmTNnIISAp6cn5s2bh+nTp1t9bHDXrl0xZ84cxMXF4ZtvvkFeXh6aNGmCfv36YdasWRX+mG1FMjIycPbsWURERDzT1SWqen369MGePXtw8OBBfPDBBwDKp7zFxsaiffv28n11d+/eRVFRkeoqqa379srw8PDAhQsXkJ+fL/+wa1lZGU6fPg0XF5en3suXl5eHqKgotGzZUnUCz9Lflu+++w6pqakYMWKEnObp6YlWrVohISFBVefcuXO4d++eqizRq0QSQojqHgRRdYqOjkZBQQFyc3MRExODgIAA+WzbiBEjUKtWLRw/fhzLli2Dl5cXgoKCULduXdy9exeJiYno2LGj1bPEOp0O48aNg06nw/vvvw+tVot9+/ZBr9dj+/bt8h+d7du3IyEhAb169ULjxo2Rm5uL2NhY3L17F/Pnz6/Uo4/Jvggh4O7uDl9fX8TGxla6fmpqKjp27IglS5Zg/vz5z2GEBJRPvf3kk09w7do1tGzZsrqHQ08sXrwY8fHxGDlyJJo1a4YjR47g2rVrWLNmjfyo+KlTp+LSpUuIj4+X69m6bwfKT3AYHuH9xRdfoEWLFvJVQj8/P/nzcOzYMSxduhTNmjXDkCFD4OjoiBMnTuDq1asYP348PvroI7nNKVOmoEOHDvDw8EBubi4OHTqER48eYf369arP1wcffIA2bdqgbdu2cHV1xb///W/ExsbCzc0NW7duVU0HT05OxowZM9CsWTMMHToUBQUF2LdvH9zc3PDZZ5+prnoZTuJkZGTg5MmTGDhwoHxCZcyYMVXx1hD9v2BARHZv5MiRuHPnjsW8vXv3yjv3ixcv4ssvv0RKSgpKSkrQsGFDdO7cGcOHD7fpys29e/ewYcMGnD9/Hnq9Hr6+vggPD5fnggPA+fPnsXv3bqSlpeHnn3+Gk5MTfHx88OGHH9o0/YHsV2JiInr27InNmzdjwoQJz9TGpEmT8NVXXyE9Pd3ibxLRL/PTTz+hRYsWGDt2LNatW1fdwyGF4uJifP755zh27BgKCgrg7e2N8ePHq35TylJABNi2bweA5cuX48iRIxb7nzt3rurK7rlz5xAZGYn09HTodDo0b94cYWFhZtNhN2zYgISEBOTk5MDFxQVdu3bF+PHjze7r++yzz5CYmIjs7GwUFRXBzc0NPXv2xNixYy3eG3vhwgV8/vnnuHHjBpycnNCzZ09MnDjR7BHjT5v2abqdiF5kDIiIiAhA+YHdxo0bMWLECD4B7TlITk7GwYMHMWXKFIu/XUNERNWDAREREREREdkt/g4RERERERHZLQZERERERERktxgQERERERGR3WJAREREREREdosBERERERER2S0GREREREREZLcYEBERERERkd1iQERERERERHaLAREREREREdktBkRERERERGS3GBAREREREZHd+j+vtFb2zSQsBwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration_idx = 19\n", + "\n", + "result = all_results[iteration_idx]\n", + "\n", + "iteration = result['iteration']\n", + "image = result['model_map']\n", + "\n", + "data = image[:,0]\n", + "data[data <= 0 * data.unit] = 1e-12 * data.unit\n", + "\n", + "hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bcda4052", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb.txt b/_sources/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb.txt new file mode 100644 index 00000000..9598a15f --- /dev/null +++ b/_sources/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb.txt @@ -0,0 +1,2761 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# DC2 Image Analysis, Crab, Image Deconvolution using CDS in the Galactic coordinate system\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on the image deconvolution with the Compton data space (CDS) in the Galactic coordinate system.\n", + "An example of the image analysis will be presented using the the Crab 3-month simulation data created for DC2.\n", + "\n", + "In DC2, we have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) in the image deconvolution. Please also check the notes written in Crab-DC2-ScAtt-DataReduction.ipynb." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e751bbd5", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "import os\n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip (please unzip it)\n", + " - a pre-computed continuum response file converted into the Galactic coordinate system\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/GalacticCDS\n", + "- inputs_Crab_DC2.yaml\n", + "- imagedeconvolution_parfile_gal_Crab.yml\n", + "- crab_spec.dat" + ] + }, + { + "cell_type": "markdown", + "id": "cbb84ad7-5fcb-4a56-abc3-6acac81c0879", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6a1764ad-7fa3-4c86-9702-4862b819bda2", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip\n", + "# File size: 6.7G\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip')\n", + "os.system(\"unzip psr_gal_continuum_DC2.h5.zip\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18da2d27-a27a-41ea-9979-0051deace5f4", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (Crab):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "# File size: 619.22 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "adbfb183-e74b-4a79-90f5-83500dbe46d8", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 1. Create binned event/background files in the Galactic coordinate system\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "markdown", + "id": "90fec91e-8209-4f03-bbe3-b9acb78682b8", + "metadata": {}, + "source": [ + "**Source**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9cae1835-e54b-4720-b3a6-196c42cbd1ce", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 15.9 s, sys: 528 ms, total: 16.4 s\n", + "Wall time: 16.6 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "signal_filepath = path_data + \"Crab_DC2_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_signal = BinnedData(input_yaml = \"inputs_Crab_DC2.yaml\")\n", + "\n", + "binned_signal.get_binned_data(unbinned_data = signal_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "3544076d-3475-48d6-9aec-55dab18567c2", + "metadata": {}, + "source": [ + "**Background**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "801ba251-96e0-4243-8f55-1678823f1d58", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 1min 49s, sys: 3.88 s, total: 1min 53s\n", + "Wall time: 1min 54s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "bkg_filepath = path_data + \"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_bkg = BinnedData(input_yaml = \"inputs_Crab_DC2.yaml\")\n", + "\n", + "binned_bkg.get_binned_data(unbinned_data = bkg_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "4eb8577f-d394-49b9-a13f-a527d4512f77", + "metadata": {}, + "source": [ + "Convert the data into sparse matrices & add the signal to the background" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f224b957-d0df-4b4b-98dd-90d3a5bda3fb", + "metadata": {}, + "outputs": [], + "source": [ + "signal = binned_signal.binned_data.to_dense()\n", + "bkg = binned_bkg.binned_data.to_dense()\n", + "event = signal + bkg" + ] + }, + { + "cell_type": "markdown", + "id": "217e40dd-5587-4c43-bb77-44ddba2a8dbb", + "metadata": {}, + "source": [ + "Save the binned histograms" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "24289425-380b-4d26-a7c0-cbbd5c58e7b2", + "metadata": {}, + "outputs": [], + "source": [ + "signal.write(\"crab_dc2_galactic_signal.hdf5\", overwrite = True)\n", + "bkg.write(\"crab_dc2_galactic_bkg.hdf5\", overwrite = True)\n", + "event.write(\"crab_dc2_galactic_event.hdf5\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "badfd194-59f0-46d4-90b3-73cce60207c8", + "metadata": {}, + "source": [ + "Load the saved files" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "e0f3dcae-5d3c-45af-931d-057d5681859c", + "metadata": {}, + "outputs": [], + "source": [ + "signal = Histogram.open(\"crab_dc2_galactic_signal.hdf5\")\n", + "bkg = Histogram.open(\"crab_dc2_galactic_bkg.hdf5\")\n", + "event = Histogram.open(\"crab_dc2_galactic_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "0e7bb933-0ec0-47af-a18c-ac241abfea82", + "metadata": {}, + "source": [ + "In DC2, the number of time bins should be 1 when you perform the image deconvolution using the galactic CDS.\n", + "It is because the pre-computed response files in the galactic coordinate have no time axis, and all of the events are assumed to be projected into a single galactic CDS.\n", + "In the future, we plan to introduce more flexible binning." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "88efdbfa-aa5e-40b3-bdd6-2635946318e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[1.8354873 \\times 10^{9},~1.8434673 \\times 10^{9}] \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bkg.axes['Time'].edges" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 2. Load the response matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b5b295cf-0a96-4501-aa4e-4182a21dfe63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 2.24 s, sys: 17.7 s, total: 19.9 s\n", + "Wall time: 29.7 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "response_path = path_data + \"psr_gal_continuum_DC2.h5\"\n", + "\n", + "image_response = Histogram.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "fbdbd818-8a58-4d25-a657-d43fc7f88ea4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi'], dtype='FormatcooData Typefloat64Shape(1, 768, 768)nnz768Density0.0013020833333333333Read-onlyTrueSize24.0KStorage ratio0.0" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ccm.contents" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader()\n", + "\n", + "dataloader.event_dense = event\n", + "dataloader.bkg_dense = bkg\n", + "\n", + "# the loaded response matrix should be assigned to both full_detector_response/image_response_dense in the Galactic CDS method.\n", + "dataloader.full_detector_response = image_response\n", + "dataloader.image_response_dense = image_response \n", + "\n", + "dataloader.response_on_memory = True\n", + "dataloader.coordsys_conv_matrix = ccm" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis Time of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 1.38 s, sys: 1.65 s, total: 3.03 s\n", + "Wall time: 3.09 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_gal_Crab.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_gal_Crab.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 158.489\n", + "- 251.189\n", + "- 398.107\n", + "- 630.957\n", + "- 1000.0\n", + "- 1584.89\n", + "- 2511.89\n", + "- 3981.07\n", + "- 6309.57\n", + "- 10000.0\n", + "nside: 8\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47c41cb7e171425fbd02a1fe23f0ea9d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 260079415.0311088\n", + " background_normalization: 1.077578659034381\n", + " Iteration 2/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260401557.7357421\n", + " background_normalization: 1.0747057018207677\n", + " Iteration 3/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260682519.76500124\n", + " background_normalization: 1.0571054446248327\n", + " Iteration 4/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260809172.77131456\n", + " background_normalization: 1.0309768887336166\n", + " Iteration 5/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260886454.33277905\n", + " background_normalization: 1.021384848051889\n", + " Iteration 6/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260948848.85980994\n", + " background_normalization: 1.0108113971582602\n", + " Iteration 7/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260990804.146106\n", + " background_normalization: 1.010467249618972\n", + " Iteration 8/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261020956.71722955\n", + " background_normalization: 1.0006157261333617\n", + " Iteration 9/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261042859.29807213\n", + " background_normalization: 1.0058641809947886\n", + " Iteration 10/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261043269.8568107\n", + " background_normalization: 0.993741326854415\n", + " Iteration 11/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261060491.10965943\n", + " background_normalization: 1.0058657276309866\n", + " Iteration 12/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261007827.2710289\n", + " background_normalization: 0.9877974265453751\n", + " Iteration 13/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261076265.054812\n", + " background_normalization: 1.009811538136611\n", + " Iteration 14/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261099396.40515625\n", + " background_normalization: 1.0048700520907765\n", + " Iteration 15/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261065843.9794334\n", + " background_normalization: 0.9909347457044095\n", + " Iteration 16/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261110094.00162172\n", + " background_normalization: 1.0063495429365543\n", + " Iteration 17/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261122168.5957638\n", + " background_normalization: 1.002376744947073\n", + " Iteration 18/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261096313.19243956\n", + " background_normalization: 0.9913786458527394\n", + " Iteration 19/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261129961.28983143\n", + " background_normalization: 1.0040459860775908\n", + " Iteration 20/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261137407.31313634\n", + " background_normalization: 1.0006492242650211\n", + " Iteration 21/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261116234.46936882\n", + " background_normalization: 0.9913697621614236\n", + " Iteration 22/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261143530.8942464\n", + " background_normalization: 1.0023744856891161\n", + " Iteration 23/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261148417.64207026\n", + " background_normalization: 0.9993636106475906\n", + " Iteration 24/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261130513.34431684\n", + " background_normalization: 0.9912144784871131\n", + " Iteration 25/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261134896.0466035\n", + " background_normalization: 1.0010662808202762\n", + " Iteration 26/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261066166.29685706\n", + " background_normalization: 0.9857849794974954\n", + " Iteration 27/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261132943.80258343\n", + " background_normalization: 1.0068265206936726\n", + " Iteration 28/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261148296.52335072\n", + " background_normalization: 1.002108052281045\n", + " Iteration 29/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261099965.81865662\n", + " background_normalization: 0.9892543515924257\n", + " Iteration 30/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261148351.3486695\n", + " background_normalization: 1.0052136331020776\n", + " Iteration 31/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261157018.92679334\n", + " background_normalization: 1.0011610943268634\n", + " Iteration 32/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261118727.1099544\n", + " background_normalization: 0.9902093594726253\n", + " Iteration 33/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261157889.93501914\n", + " background_normalization: 1.0039161394431217\n", + " Iteration 34/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261163498.17249128\n", + " background_normalization: 1.0003082708761435\n", + " Iteration 35/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261131700.08152235\n", + " background_normalization: 0.9906204498077124\n", + " Iteration 36/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261164799.9998866\n", + " background_normalization: 1.0028450774020168\n", + " Iteration 37/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261168573.0233805\n", + " background_normalization: 0.9995616625471752\n", + " Iteration 38/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261141391.23569417\n", + " background_normalization: 0.9907927868095415\n", + " Iteration 39/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261170119.05511898\n", + " background_normalization: 1.0019485964391688\n", + " Iteration 40/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261172684.28548497\n", + " background_normalization: 0.9989160733417498\n", + " Iteration 41/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261149001.1256929\n", + " background_normalization: 0.9908537644843672\n", + " Iteration 42/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261174372.75896752\n", + " background_normalization: 1.0011848359144828\n", + " Iteration 43/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261176099.88843274\n", + " background_normalization: 0.9983550801218972\n", + " Iteration 44/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261155194.31362218\n", + " background_normalization: 0.9908594816570173\n", + " Iteration 45/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261177870.56885752\n", + " background_normalization: 1.00052012791432\n", + " Iteration 46/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261178995.64073008\n", + " background_normalization: 0.9978600300598851\n", + " Iteration 47/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261160372.66833794\n", + " background_normalization: 0.9908343850485126\n", + " Iteration 48/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261180809.8795411\n", + " background_normalization: 0.9999277350857754\n", + " Iteration 49/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261181491.66160578\n", + " background_normalization: 0.9974136084439371\n", + " Iteration 50/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261164793.80599907\n", + " background_normalization: 0.9907885000950185\n", + "#### Done ####\n", + "\n", + "CPU times: user 6min 3s, sys: 3min 40s, total: 9min 43s\n", + "Wall time: 4min 9s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': 1.0,\n", + " 'background_normalization': 1.077578659034381,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 260079415.0311088,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0747057018207677,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 260401557.7357421,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0571054446248327,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 260682519.76500124,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0309768887336166,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 260809172.77131456,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.021384848051889,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 260886454.33277905,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0108113971582602,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 260948848.85980994,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.010467249618972,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 260990804.146106,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0006157261333617,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 261020956.71722955,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0058641809947886,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 261042859.29807213,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.993741326854415,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 261043269.8568107,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0058657276309866,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 261060491.10965943,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9877974265453751,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 261007827.2710289,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.009811538136611,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 261076265.054812,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0048700520907765,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 261099396.40515625,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9909347457044095,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 261065843.9794334,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0063495429365543,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 261110094.00162172,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.002376744947073,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 261122168.5957638,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9913786458527394,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 261096313.19243956,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0040459860775908,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 261129961.28983143,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0006492242650211,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 261137407.31313634,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9913697621614236,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': 261116234.46936882,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0023744856891161,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': 261143530.8942464,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9993636106475906,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': 261148417.64207026,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9912144784871131,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': 261130513.34431684,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0010662808202762,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': 261134896.0466035,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9857849794974954,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': 261066166.29685706,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0068265206936726,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': 261132943.80258343,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.002108052281045,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': 261148296.52335072,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9892543515924257,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': 261099965.81865662,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0052136331020776,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': 261148351.3486695,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0011610943268634,\n", + " 'delta_map': ,\n", + " 'iteration': 31,\n", + " 'loglikelihood': 261157018.92679334,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9902093594726253,\n", + " 'delta_map': ,\n", + " 'iteration': 32,\n", + " 'loglikelihood': 261118727.1099544,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0039161394431217,\n", + " 'delta_map': ,\n", + " 'iteration': 33,\n", + " 'loglikelihood': 261157889.93501914,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0003082708761435,\n", + " 'delta_map': ,\n", + " 'iteration': 34,\n", + " 'loglikelihood': 261163498.17249128,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9906204498077124,\n", + " 'delta_map': ,\n", + " 'iteration': 35,\n", + " 'loglikelihood': 261131700.08152235,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0028450774020168,\n", + " 'delta_map': ,\n", + " 'iteration': 36,\n", + " 'loglikelihood': 261164799.9998866,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9995616625471752,\n", + " 'delta_map': ,\n", + " 'iteration': 37,\n", + " 'loglikelihood': 261168573.0233805,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9907927868095415,\n", + " 'delta_map': ,\n", + " 'iteration': 38,\n", + " 'loglikelihood': 261141391.23569417,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0019485964391688,\n", + " 'delta_map': ,\n", + " 'iteration': 39,\n", + " 'loglikelihood': 261170119.05511898,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9989160733417498,\n", + " 'delta_map': ,\n", + " 'iteration': 40,\n", + " 'loglikelihood': 261172684.28548497,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9908537644843672,\n", + " 'delta_map': ,\n", + " 'iteration': 41,\n", + " 'loglikelihood': 261149001.1256929,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0011848359144828,\n", + " 'delta_map': ,\n", + " 'iteration': 42,\n", + " 'loglikelihood': 261174372.75896752,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9983550801218972,\n", + " 'delta_map': ,\n", + " 'iteration': 43,\n", + " 'loglikelihood': 261176099.88843274,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9908594816570173,\n", + " 'delta_map': ,\n", + " 'iteration': 44,\n", + " 'loglikelihood': 261155194.31362218,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.00052012791432,\n", + " 'delta_map': ,\n", + " 'iteration': 45,\n", + " 'loglikelihood': 261177870.56885752,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9978600300598851,\n", + " 'delta_map': ,\n", + " 'iteration': 46,\n", + " 'loglikelihood': 261178995.64073008,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9908343850485126,\n", + " 'delta_map': ,\n", + " 'iteration': 47,\n", + " 'loglikelihood': 261160372.66833794,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9999277350857754,\n", + " 'delta_map': ,\n", + " 'iteration': 48,\n", + " 'loglikelihood': 261180809.8795411,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9974136084439371,\n", + " 'delta_map': ,\n", + " 'iteration': 49,\n", + " 'loglikelihood': 261181491.66160578,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9907885000950185,\n", + " 'delta_map': ,\n", + " 'iteration': 50,\n", + " 'loglikelihood': 261164793.80599907,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "1a69308c-c13b-4162-820a-7ac3a514e0ba", + "metadata": {}, + "source": [ + "**(If you want, you can save the results in the directory \"./results\" as follows)**" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "44d94156-fc95-43f0-ac56-3e784bbad1eb", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.mkdir(\"./results\")\n", + "\n", + "for result in all_results:\n", + " iteration = result['iteration']\n", + " result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')\n", + "\n", + " with open(f'./results/result_itr{iteration}.txt', 'w') as f:\n", + " paramlist = ['alpha', 'loglikelihood', 'background_normalization']\n", + "\n", + " for param in paramlist:\n", + " value = result[param]\n", + " f.write(f'{param}: {value}\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHMCAYAAAD8h12kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABu+UlEQVR4nO3deVyU1eIG8Gdm2HcYEBd2UBREcTdXBDMqs0yvXTNzSbPtavenuZSVXbW05Xo1za5pkaI3u3ZdKiXNXQkVBRdAEBUEZZd9hm3m/f0xMjqBwDDDDODz/Xz6xLzved/3cDB5Oue854gEQRBARERERDoRG7sCRERERO0BQxURERGRHjBUEREREekBQxURERGRHjBUEREREekBQxURERGRHjBUEREREekBQxURERGRHjBUEREREekBQxURERGRHpgYuwKPKplMhh9++AGJiYlISkpCaWkplixZgieffLLZ90xOTsa3336L5ORkyOVydOrUCWPHjsX48eMhkUj0WHsiIiL6M/ZUGUlxcTEiIiKQnp4OPz8/ne+XnJyMN954A9nZ2XjxxRfxxhtvoHPnzli3bh3Wr1+vhxoTERFRQ9hTZSRSqRS7d++GVCrF1atX8eqrr+p0v3379gEAvvzyS9jZ2QEAnn32Wfztb39DVFQU5s2bp3OdiYiI6OEYqozEzMwMUqm0SWVjYmIQGRmJlJQUiEQi9O7dG6+//jq8vb3VZcrLy2FmZgYbGxuNa6VSKTIyMvRadyIiIqqLw3+t3G+//YZFixbB0tISc+bMwbRp05CWloY333wTWVlZ6nJ9+vRBeXk5Pv/8c6SlpSE7Oxt79+7FiRMnMGXKFCN+B0RERI8G9lS1YjKZDGvXrsXYsWPxzjvvqI+Hh4fjpZdeQmRkpPr42LFjcfPmTezbtw+//PILAEAikeDtt9/Gs88+a5T6ExERPUoYqlqx2NhYlJWVISwsDEVFRerjYrEYPXr0wIULF9THJBIJOnfujIEDByIkJARmZmY4fPgw/vWvf8HJyQnDhw83wndARET06GCoasUyMzMBAG+//Xa9562trdVfR0ZGYteuXdixYwesrKwAAKGhoZg3bx7WrFmDxx57DCYm/HETERG1FP6WbcWUSiUAYOnSpXBycqpz/sG1p/bs2YO+ffuqA1WtoUOHYv369cjOzoabm1vLVpiIiOgRxlDVinXp0gUA4ODggP79+zdYtrCwUB3CHlRTUwMAUCgU+q8gERERqfHtv1Zs4MCBsLa2RmRkpDocPejBeVZubm6IjY1FcXGx+phCocDRo0dhZWWlDmhERETUMkSCIAjGrsSj6qeffkJZWRkKCgqwZ88ejBgxAl27dgUATJgwATY2Njh06BBWrlwJT09PhIWFwcHBATk5OYiJiUHPnj3x97//HQBw8OBBrFixAl26dMEzzzwDc3Nz/P7770hISMCsWbPw8ssvG/NbJSIiavcYqoxo0qRJyM7Orvfczp070alTJwBAXFwctm/fjsTERFRVVcHFxQW9evXC888/D39/f/U1Z8+eRWRkJG7evAmZTAZ3d3eMHz+eSyoQEREZAEMVERERkR5wThURERGRHjBUEREREekBQ5UBVVRUIDk5GRUVFcauChEREekZQ5UBpaenY/bs2UhPT9fquuvXr7dQjag+bG/DYnsbFtvbsNjehmXs9maoagMqKyuNXYVHCtvbsNjehsX2Niy2t2EZu70ZqoiIiIj0gKGKiIiISA8YqoiIiIj0oNVtqJyUlISoqCjExcUhOzsbdnZ2CAwMxKxZs+Du7t6ke8TGxmLbtm1ISUmBUqmEu7s7Jk+ejLCwMHWZw4cPIzo6GomJibh9+zaCg4Oxbt26FqkPERERtX+tLlTt2LEDly9fxqhRo+Dr64uCggLs3r0bs2bNwsaNG+Hj49Pg9fv378fq1avRv39/zJ49GxKJBLdu3UJubq5Gub179yI5ORndu3dHSUlJi9WHiIiIHg2tLlRNmjQJH3zwAUxNTdXHQkNDMWPGDGzfvh3vv//+Q6/NysrCmjVr8Pzzz2PevHkNPue9996Di4sLxGIxpk2b1iL1ISIiokdHqwtVQUFBdY65u7vDy8ur0fWd9u7dC6VSiVdeeQUAIJPJYGlpCZFIVKesq6tri9eHiIiIHh1tYqK6IAgoLCyEvb19g+XOnz8PDw8PxMTEYMKECQgPD8fYsWOxefNmKJVKg9eHiIiIHh2trqeqPocOHUJeXh5mzpzZYLnMzEyIxWKsWrUKkydPhq+vL06cOIGtW7dCoVBgzpw5Bq1Pfn4+CgoK1J/Zs0VERNR+tfpQlZ6ejjVr1iAwMBDh4eENlpXL5VAqlZgzZw6mTJkCAAgJCUFpaSl27dqFqVOnwsrKymD12bdvHyIiIuocv3nzJhQKRZOfWVZWhsTERG2rSs3E9jYstrdhsb0Ni+1tWC3Z3gEBAY2WadWhqqCgAIsWLYK1tTWWL18OiUTSYHlzc3PI5XKMHj1a43hYWBjOnDmDlJQUBAcHG6w+48aNw9ChQ9Wf09PTsWLFCnh7e8Pf37/Jz01MTGzSD5P0g+1tWGxvw2J7Gxbb27CM3d6tNlSVlZVh4cKFKCsrw/r16+Hs7NzoNVKpFJmZmXB0dNQ4Xvu5tLTUoPVxdnZuUjkiIiJq+1rlRPXKykosXrwYGRkZWLVqFby8vJp0XW3vT35+vsbx2s8ODg4GrQ8RERE9OlpdT5VCocCyZcuQkJCAjz/+GD179qy3XH5+PsrLy9GlSxeYmKi+jdDQUBw+fBi//vorZs+eDQBQKpU4cOAA7OzstBpy07Y+REREpL3SPBmKs8qhrBGgVCihqBGgrFFCWaOEokYJpUL12dLOHN6DOsLEvOGpN8bU6kLVhg0bcPr0aQwZMgSlpaU4ePCgxvkxY8YAADZt2oSoqCjs3LkTnTp1AgAMGzYM/fr1Q2RkJIqKiuDn54eTJ0/i0qVLWLBgAczMzNT3iY+Px8WLFwEARUVFkMvl+P777wEAvXv3Vs+9amp9iIiI2gNZUSVuX8lHtbwGNVVKKKoUqKlUQFGtRE3t11WqZYo8B7jCd0ineteDbExNpQLnfkhGwm9NfzM+9scU9JvUFV2HdYFIrP0zW1qrC1WpqakAgOjoaERHR9c531CIEYlEWLlyJTZv3owjR44gKioK7u7uWLp0aZ3rLly4UOfNvC1btgAApk+frg5VutSHiIhIV4IgIO96MUpzZaiS16BaVoMqeQ2qZDWoltegSlat/uzkbot+k7rCRmrZrGfdiMnCyW8uo1retDfUb57NRvLRDAydEQiHLjZNfk5OSiGOf30JJdkyrepXfrcCJ76+jIQDaRj4Ynd0CWpd85ZFgiAIxq7EoyI5ORmzZ8/GN998w7f/WjG2t2GxvQ2L7a0/NZUKyEsqIS+uQkVpFSqKq1SfS6pQce8fWUU5Bk8KQucAabOeUV1Rg+MbLyHtXE6TrzGzMsGQGYFa9SApqhU4E3kViYduNaueYokIvZ7xQfBzvjAxe/jwXE2VAhd+uobLv9xEbfqQmIrRY7QHzG1NIZaIITERQWwihlgihthEBImJGBCJkHrqNjLi8jTu59bbBQNf9IeTuy0A4//5bnU9VURERPqiqFGivECO0jw5yvLkKC+sQMfuTs0OOQBQXiDH0Q0XkX21sEnlD6w8i/5/9Uevsd5aDZOV363Awc/PoyCtRKv6VclqcGzDRaSfz8HQmYGwsDFrsHxJTjkOr43XeI734I5wD3aBiZkEJmYSSMzEqq/NJfeOiVFwqxR/RCSiNE8OpUJA/J7ruB59B0NnBMKtt0ud5+TfKMaxjZdQdLtMfayDnwNGvBYEh86N93L5PtYJdxIKcGb7VXVdMy/m4falPHQLcUO/iV2b2kQthqGKiIjavJoqBW6eyUZxVjnK8jVDFP48HiMChkwPQMDjnlo/pyRHhv0fn0VZnrzJ1wgCcO4/yci7XoQRc3rBzLLxX735N4px8IvzkBVWAgBMLSXoPc4XlvZmMLMyhamlCcwsTWBmVftvUyiqlYiOSMD16CwAwM2YbORcLcTwOUFwryfkAMDNM1k4sekKquU1AFS9Ro+93AP+oe6NBkBrqSU6B0gRt+c6Lv9yA0qFgNJcOaJWx8J7cEcMntoD1o4WUNQoEb/nOuL3XIegVP0wxCYi9JvYFUFPe0MsafpCBJ0DpXhuxRCknr6D2B9TUF5QAUEAko9m4np0FjoOtEFXnxqYWhgn3jBUERGRQQhKASU5MhSkl6AgvRR300tQcKsEEhMxRr3ZGx26OjZ+k3pUlFXh1+VnUJhR1nhhABCA6O8SISusRL+/dG1y71Hh7TIc+PisOuhYOZnDtasjLO3MYHHvH0t7c1jYmqmO2Zrh2PZYZJ4sBgCknc1BYWY0Rv+9LxwbmH9080wWjm28pJ4MbutiiTHv9IOjm22D9TMxl2DUW8Hw6OeK6G8TUFleDVlRJX5bHYsej3tg4GR/ddhQVCtwZnsyEg/enyRu19EKYfP6QOpp16T2qH3mgBe6wW9oJ5z+NkHde3czJhuZF/PQ6xkfpJ3JRkH6/XUipV52GPl6L/WQnbZEYhG6Du8C70EdkRCVhvi9N1ST6isVyDxZjP9ePoHnVw+DhW3DPXQtgaGKiIhaRHFWOe4kFqAgrQR300txN6MUNZX1T4COWh2Lp5YOhLOXdhvV11QqcPDz8/UGKgs7M9i6WMLGxVL1b2dLFGeVIyFKFSTi91yHrKgSw14JbLS3pCCtBAc+OYuK0moAgEMXGzz17gBYOVo0eJ3HSAf0GOiL4xsvoUpWg+I75dj3fjRGvNYL3gM7apQVBAHxe6/j/I/X1Mdcuzli9P/1gaWdeZPaA1ANk3X0d8SJf1/G7cuqdRqTDt3C7cv5CHmjNyxszXBkXRzyb94f7vN5rBOGzerZpF60+ji62eLp9wfh2snbOLv9KipKq1EtV2h8LyKJCMHP+qLPc74Qm+i+TKaJmar3rluIG+L+dx1Jh29BUAjo0M3BKIEKYKgiInrkCUoBBWklyIjPQ8bFPBRmlqJnuBf6/aVbs++ZevoOjn99CYKi4XehxBIRlAoBVbIaRH1yDk9/MLjBXpwHKWuUOLwuDrkpRQBUIWr4rJ6w62QNG6nFQ4eA7Fyt8MfWJEAAUo5lQl5cibC5fR66/lHutUJErY5FlUw1RCb1ssOTiwfAwq5pv7g9+7ni2RVD8PuaOBRmlKK6QoHD/4pD0FhvDHihG8QSMWqqFDi1+QpST91RX9d1eBcMmxUIian26zJZO1kgfHF/JP1+C2e2X4WiSomSbBl+XhYDEzMxqitU4Vab4b7GiEQidBvhBo8+HXDuh2QkH81Un3N0s8HI13rB2Ue70NwUlnbmGDI9AIFPeOLwN7EY8IL2a1LqC0MVEdEjqLKsGpmX85F5MQ8Z8XmoKKnSOB+3+zpsO1ih20g3re9991YpTn5zuU6gsu1gCamnHZw8bVX/9rCDha0pDqw6h9yUIlSUVuPAx2cx9oPBsHO1avAZgiDg5OYr6rfBTC0lCF/cv0k9XYFPeMHS3hzHvroIZY2AjLg87P/4LMYs6Fenh+NOQgEOfn5e3cPWoZsDwhf2h5mVqTZNAvuO1hj30WCc2nxFPefp8i83UXCzBI9N64GTm6+owyEADPhrN/R6xkenoCMSiRDwuCc6B0pxfOMl5F0vhqAU1IHKzvXecJ9X04f7msLC1gzDZweh6wg3JPyWBid3W/Qa692scKgN+07W6D7RBfadrFv0OQ1hqCKidq+mSoHi7HKUZMtg19EKUg/9/hJpSYIgIP9GMcysTWHfUbdfFrLiSmSeKsb1/8YgN6UQjS2oc/rbBDh52MLZu+m9C1Wyavz+rwvq+UDegzsicIwnnDxsHxpEnninP/avPIuCtBLICitVwerDwbB2evjQ2tn/JOPaidsAVJOeH/+/floNHfoM7gQLWzMc+ud5VMsVyL1WhJ8/ikH4ogGwdVGt8ZQRl4vf/xUHRbXqe+kcKMXj8/s2exK0qYUJQt7sDRc/B5zZfhWCQsCdhAL8tPCUuoyJuQQhb/SC14CODdxJOw6dbfDMssGI33sdcf9TTRb3GdwJw2YFah0OtdHR3xEd/Zs3T66tYqgionajSl6D4jtlKLpdjsLbZSi6U4aizDKU5so0AoTP4E4YNMUf1s1cINEQBEFARnwezv/3GgrSSiAxE+PppYPQwc+hWferKKnCnndPqydZP8jEXILOPaVw7+0Ct94uuLjvOq4ezoCiWonf18ThuRVDmjTUJQgCTmy6rF7QUeplh5Gv9Wpw3SIAMLc2Rfji/vh1+RkU3S5HaZ4c+z8+i7HvD4Klfd25RJd+uYHLv9xUfRABo94KRudA7ZdI6Bwoxdj3ByPq01jIiypRfKccPy/7A+GLBqA4qwxH11+E8l5vm0ffDgidG9zo99IYkUiEnuFecPayw+F18ZAX3f95WDmZY8z8flqF2KYSS8To+3xXdB3uhoqSSjj72Os83Ed1MVQRUZuXfj4HZ3ckozirvEnlb8Rk4VZcLoKf80XQU14tPiyhDUEQcPtSPs7vuoa868Xq44oqJU5tvoLnVgxp1iTfMzuuagQq+87WcO/tAvdgF3Ts7qjRBo+93AN300uRm1qEsnw5jqyPR/jiARA3si3Ilf1pSDurWqTSzMoEYfP6NDmEWNqZ48l3B+KXj2JQmitH8Z1yRK06h6eWDoK59f3elGsnbuPsjmT156EzA+tM+NaG1MsO45YNxoFV51CSLYOssBI/f/QHaioU6iDuM7gTQt7opZfJ1bU6dnfC+JVDcOTLeGRfLYSLrz1G/19fWDcy8V1Xtvcm7VPLYKgiIqPSdVOHpMO3EP1twkOHskzMJbDvZA1HNxtYOVog5VgGKkqrUVOpQOzOFKQcy8RjL/eAe58OOtVDV4KgGgo6v+uaxtwa4P5k7ru3SnElKg29xvpode87CQXqoTKJuQjPrRjW4GRwiakEYW/3we53T6OipAp3rhTg/I8pGPDXh08Azr56F2f/cz/sjHy9V6Pzov7M2tECT703ED9/FAPZ3UoUpJfit9WxePLdATC1MMGtuFyc2HRZXb7fxK7oEeah1TPqY9vBCs8sG4yDn55H3o1ijS1auoW4Ydisno0GyuawcrTA0+8PQlmeHDYuluw5agcYqojIYARBQGmuDFlJd5GdVIispLuQFVeg6llz9H7WR6tFAAVBQNzuVFzYlao+JvWyg9TLDo5dbODQxQYOXaxhI7XU2Hi19zM+OP/TNSQdTIcgqBZz/O2z8/Do2wGDp/ZoNAgoqhUoyVENJzq62ejlF2FW0l2c/29KnRW6nTxs0XdCV1g5mmPfh38AAnDhp1R4D+oIW5emBRZFtQKnv01Qf/YMdWzS23XWThYImxeM/SvPQVAKuLjvBpx97OvtFZIVVeLIunj1wo69x/nAs59rk+r3Z7YuVnhqyUD8svwMKkqqkJtahENfXEDwc744vDZO/YyAxz0QPN63Wc+oj6WdOZ5aOhCH18Yh86JqGYLAJzwxeGqPFt24VyQSwbaDduGTWi+GKiJqMYIgoCRbFaJU/xRAdrfunJ7zu64h42IeQt7oBTvXxidjK5UCor9LwNXDGepjQWO9MfCv/o3+AjS3McWQaQHwD3HDH98nqoPMrQu5uH05H73GeiPoaW/Ii6vuTW4vR3G2TP3v8ny5uldswF+7ofe45v9ilxVV4thXF3HnSoHGcYcuNug30Q9eAzqqv5+Axz2ReDAdNZUKRH+XiDHv9GtSoLu474Z6WLRDVwe49m36predekgxaIo/YrZdBQCc+PqSOrDWUiqUOLo+HrJ7c4M6BTih31902y7EoYsNnlwyAL8uP4MqWQ3uJBTgTsL9NvIZ3AmPTQvQe8+OqYUJxszvh+vRWTCzMoFHvw7sPSKtMFQRkd4pqhU4tzMF16OzNCbi/pnEVAxFjRIQgNxrRdi95DQGv9wD3Ua6PfSXWU2VAsc2XNTYYHbQlO4IetpbqzpKPe3w9PuDcD06C2e3X4WsqBKKaiXidl9H3O7rTbrHxX03EDDGs9lvg5349yWNQGXfyRp9J/jBe3CnOsNN/Sd1Rdq5bMgKK5ERn4e0s9nwHtSpwfsX3SlD/F7V9yKSiDDslZ7ILsto8Jo/Cwz3Qt71YlyPzkJ1hQKH1lzAs/94TP3W2Pn/XkNW4l0AgJWDOUb9LVirHseHkXraIXxRf+z/+JzGgqGde0ox8vWgFus9EpuI0XVElxa5N7V/+pt1R0QE1UKSxzdexpX9aXUClYm5BF2CpOg3qSvGfjAIL28ejaBpHWHbQTVxtrpCgZObruD3NXF11k0CgMryakStjlUHKpFEhJA3emkdqGqJRCL4De2MiV+MQNBYb4gkDf+iNrMygbOPPRy6qHrTqmQ1SDl+u1nPvnurVD3MZGFnhpGv98KET4fBd0jneufvmFmZ4rFpAerPf3yfhCpZ9UPvLwgCTn+bAGWNqlst6ClvOHlovy2ISCTCsFk94XhvS5HiO+U4/u/LEAQB6edzcHHfDVU5iQih8/rAqp639ZqrQ1dHjFnQDxJT1a8qZx97jP5731b1YgHRg9hTRURqVbJq3Em4C2cfO9g0Y7kBQRBwZvtV3IhRLW4oNhGhc6AUnXo4oWN3J7j42Nd5g8rWzRzjPxmGmG1JSDmmWoE5PTYHualFGPFqENyDVRvBlhdW4LfVsbh7S7WHmIm5BKPf7gO3h2wUqw0zSxMMerE7/Ee64cL/UlGSXQ7bDlaw62gN+473/21hZwaRSISC9BLsXnIaAJAQlYaAxz207jm5vP+m+us+433RdXjjvSNeA1zh3scFGXF5kBVVIvbHaxgyPaDesqkn76h7kGxcLNH3eT+t6vcgUwsTPP5/fbDnvWhUyWqQfi4Hf2xNQurJ+4Fy4GT/FlmTqHOgFOP+8RhyUgrhN7Rzs7dRITIE/ukkesQJgoC81CJcPZKB639kQVGlhKmlBKFz+zx0Z/uHufzrTVw5kAZAtenp6Lf7wqNv42/VmVmaYMSrQfDo0wGnNl9GRWk15EWV+O3TWAQ87gH/Ue449M8LKMuXAwAsbE3xxML+cPF10PbbbZBDFxuE/i240XJSTzt0DpTiTkIBSnJkyIjPa9L3Wau8sALXT6u2IzG3Nm3yquUikQhDpgfip8STqKlUIPFQOvyGda6zdlVFaRXObE9Sfx46I/ChW7A0lZ2rNULe7I2Dn50HACT+dn8jXu+BHdHzSS+d7t8QqaedVpv8EhkLh/+IHlGV5dVIPJiO3UtOY9+HMUg5flu9Cna1XIGDn51H4qH0Ru5y37VTmusHDZsVqFXQAFQ9Mc+vHq7R+5R46BZ2v3taHahsXCzxzLLH9B6otBUY7qn+ujZINlXib+nqRSW7j/bQak6WrYsl+k68NxFcAE5tuQKlQqlR5ux/ktUb/3oP7qju7dOVR58O6DtBs8fLvpM1hr/akxO6icBQRfRIEQQBudcKceLfl7DjzSOIjkhUD6cBqjlDLr6q1ZwFpYDo7xIRE5kEpbLhtaQyL+XhxL8fWD/oL13hH+LerDpaOZjjiYX9MGRGACRmmn9FOXnYYtyywUbd26uWR58O6uUX7iQUoOBWSZOuq66oQdLvtwCohkcDx2i/zlLPcE84earmON1NL8WVqPvhNyvprnoY1dTSBI9N7aH1/RvSZ7wf3PuoQpqJuWo9q5bc6oSoLeHwH9EjIiupAH98n6QRomp18HNA9zB3+AzuBImpGGd/SFZvA3JlfxpKc2QIebN3vT0q+TeKcfhfcerNc7uHuSP4Od3WD1JvBBsgxbGvLiL/Zgk6B0ox+u+t5xe4SCxCYLgX/vg+EQCQcCANI+b0avS65GOZqJLVAAD8hnaGVTNW0BZLxBj2Ss/7a1ftugbvgR1h5WCGU1uuqMsN+Gu3Zt2/ISKxCKP/3hc3Y7Ig9bZv0ppXRI8KhiqiR0BpngwHPzuv3p0eUPVK+Q3rAv9QtzobDA96sTvsO1rj9LcJEJQC0s/n4tflZ/D4gn4a22iU5JQj6tNY9X09+7tiyIxAvQ0FOXSxwbMrhqAsvwI2zhatboip28guOP/fFFTJapB6+g4G/NW/3r3qaikVSo2hwua+tQiogrDG2lURCejg64DiO6o1qVz87NFdD6uN10diIobfMC47QPRnHP4jaucEpYDjX19WBx+plx1GzAnCixtCMWR6QJ1AVat7qDueWNQfpvfetsq/WYJ97/+hHuaSF1cialWseukDV39HjHqrt9638xCJRLBtpVt4mFqYwH+UaphTWSOoh/UeJu1cDsryVHPD3Ho7w9FN+yUOHtR/kmq1dQDIiMvDhZ+uAVD1Jg17pWW2ViGih2OoImrlcq8VIvNyfrP3yEv4LQ3ZSfderXe2xNNLB6LbSLcmvQ3mFuSMcR8Nho2zanmF8rsV+GVZDG6eycJvn51HSY4MgKpHacz8fk3ePLc9CRjjidq8l3joFhTVinrLCYKgHlIFdOulqvXntatq/4j0fNKLb8sRGQFDFVErVVOlwKktV7DvwxhEfXJOY7Papiq6XYZzP6SoP4+YE6T1nCRHN1uMW/6YegJ7dYUCh9fGI/9GMQDAyskc4Yv7w9ymdcx1MjRbF0t43dsPr6KkCtf/yKq3XE5yIfLutZnU0xadA6V6eX7t2lW1bJwt6ryhR0SGwVBF1AqV5srw87IYjb3tLv9yE1cO3GzgKk1KhRLHv74ERbXqdfvAcM9m/yK3sjfH00sHwWug5ia5ZlYmCF80oFkLhbYnD67RdOVAWr29ipd+1eyl0tdwZu3aVdZSC0jMxBg+O6jZ2+YQkW74Xx5RK5N+PgfHN15SvyEmNhGptxqJ2XYVlvbm8B3SudH7XNx3A3nXVT0j9p2sMeCv/jrVy8RcgrC5fXBuZwou/XwDphYSPD6/H5zcdZsX1B506OoAF1975F0vxt30UmQl3UXngPsBtuhOGW5dyAUAWDtZwGdww3v2acvWxRJ/+XwElAplq3k7kuhRxFBF1EooFUrE/ngNl36+oT5m52qFsLf7IO1cDuL+lwoAOL7xEizszNClp/ND71WQVoIL98qLRMDI13vpZb6TSCzCwMn+6DHaHaYWJrCwNdP5nu2BSCRCzye9cHT9RQCq3qoHQ9WVA2nAvc6rwHDPOlv16INqjtyjN6eNqDXh8B9RKyArqsT+j89pBCqvAa54buUQSD3t0HeC3/23zBQCfl9zAflpxfXeS1GtwLGNF9XrRvV+1rfONia6snWxYqD6E++BHWHlpHoT79aFXBRnq5Y2kJdU4toJ1R55ppYSdA9t3qKoRNT6MVQRGVlW0l3sfve0+g09kUSEQS9111ipWiQSYejMAHj0U237Ui1X4LfVseq37x50flcqCjPKAABOnrboo8NGutR0YhMxAsfc27pGABLu7Y2XdOiWel6b/yh3Ds8RtWMMVURGIggCLv58A/tXnoW8qBIAYOWomhAe9FTdicxiiRihbwWjQzcHAIC8uApRq85BXlypLpOTUojLv9y4V16Eka/3gqQFhpqofv6h7uqtdVKOZUJWVInEg6pwJRKL0DPcy4i1I6KWxr9tiYwk+Vgmzv0nGcK9ffU6B0ox/uOh6Ojv+NBrTMwlGLOgHxy6qPa+K8mpXSm9BtUVNTi+8ZJ6raJ+f+n60IU9qWVY2Jih63DVSuM1lQr89mmsemNjn8Ed1et9EVH7xFBFZASCUsClfffnTwU/54vwJQMa3OKkloWNGcIXDVDP38m7t/feme1X1cOBHfwc9LK4JGnvwd6ogrT7myzz50HU/jFUERnBrbhcdQDqHChF/0ndtNpSxMbZEuGLBsDMSvUCb+alfPWaVhIzMUa+3gtiCf/zNgaHLjZw6+2icaxTgBOcve2NVCMiMhT+rUtkBA9uqtvzKa9m3cPJ3RZjFvSDxFTzP+OBk/1h38lah9qRrno+6anxuRd7qYgeCQxVRFrKSSlE/J7rKL9b0azrC9JKkJWoetPPvpM13P/Uq6GNjt2dMOqt3uq95zoHShHwuGfDF1GL6xLkDGcfVc+U1MuuTs8VEbVPXPyTqIlKc2U4+59k3DyTDQBIOZ6J51cP03pRzQd7qQLDPSHSYtivPl4DOuLJdwci51ohAsfofj/SnUgkwhML+yEjPg/uwS78mRA9IhiqiBpRJa/Bxb3XceVAmnq9IUD15l1CVBp6j/Nt8r1khRW4Hn0HAGBubap+U0xXnQOletugl/TD0s4c3Ua4GbsaRGRADFVED6FUCrh2IhOxO1MgL65SH7ewM0NlaRUEAYjfcx1dR7jByqHxt/YAIPHQLSjvrXTuH+rOjW+JiNoRzqkiqkdWUgH2Lo3GyU1X1IFKbCJCr2d8MOmfI+B/b6uR6goFYn9MadI9a6oUuHr4FgDVqumBYzxapvJERGQU/N9kemRUyapRnFUOpUKAoBSgVKr+LTzwWakQcDUqD3evpmtc6zXAFQNf9Iedq+qtun4Tu+J6dBaq5TVIOZ6JgMc9Gn1lPvXUnfsLQQ7qCGspF4IkImpPGKqo3RMEAclHMxGzLQk1lQqtrpV62mLQ1B7oHKA5X8nS3hx9nvfD2e1XAQGI2ZaEp98fVGdrmQfroLGMwpNe2n4bRETUyjFUUbtWWVaNk5svI+1sjlbXWdqbof+kbug60u2hi3IGPuGJq4dvoSRbhuyrhbh5Jhs+gzvVW/b2pXwU3VZtcuzazREuvg5a1YeIiFo/hipqt7Kv3sXRDRdRXnB/PSnvgR1hLbWASCyCSCyCWHLv3/c+iyQi3C3Jw9DxfWFmZdrg/SUmYgya0h2HvrgAADi7IxkefTvUu8TClag09dfNXeyTiIhaN4YqaneUSgHxe1IR91OqenNhc2tTDH81CF4DXBu9PjGxotFAVcujbwd07inFnSsFKMuX48r+NAQ/p7nEQuHtMmRezAcA2LhYwrN/43UgIqK2h2//UbtSViDH/hVncGHX/UDVsbsjxq8a2qRApS2RSITBU3uoVzSP33sd5YWaK60nPLjY5xOeWu3xR0REbQdDFbUbN89mY/fi08i+WggAEIlUb+k9tXQQbFrwTTsnd1t0H61aHqGmUoHYnfeXWKgoqcK1k7cBAKaWEviHcDFIIqL2iqGK2jxFtQKntlzB4X/FobJctWSBjbMFnv5gMPo872eQnqF+E7rCzEo1mn7txG3k3SgGACQduaVehd0/xL3Jw4pERNT2MFRRm1ZTpcChf8bh6uEM9THvgR0x/uNh6OjvaLB6WNiZoe+ErurPMVuToKhWIOmgarFPiICAMdzomIioPWt1E9WTkpIQFRWFuLg4ZGdnw87ODoGBgZg1axbc3d2bdI/Y2Fhs27YNKSkpUCqVcHd3x+TJkxEWFqYuc/jwYURHRyMxMRG3b99GcHAw1q1bV+/9qqqqsGXLFhw8eBClpaXw9fXFrFmzMGDAAL18z9Q8NVUK/L4mDpkX8wAAEjMxHns5AP6j3B66XlRLCnjcA0m/30JxVjlyUgpx5MuLkBVVAgA8+7vCztXK4HUiIiLDaXU9VTt27MDx48fRr18/zJ07F8888wwuXryIWbNm4caNG41ev3//fsyfPx8mJiaYPXs23njjDfTu3Ru5ubka5fbu3YtTp06hQ4cOsLW1bfCen3zyCX788Uc8/vjjmDt3LsRiMRYuXIhLly7p9L1S8/05UJmYSxC+aAC6h7obJVABgNhEjMEvdVd/To+9vzZWEBf7JCJq91pdT9WkSZPwwQcfwNT0/tyT0NBQzJgxA9u3b8f777//0GuzsrKwZs0aPP/885g3b16Dz3nvvffg4uICsViMadOmPbRcYmIiDh8+jNdffx2TJ08GADzxxBOYPn06Nm7ciI0bN2r5HZKu6gtUTyzsj049nIxcM8C9Twe49XZWL6EAAM7ednA14FAkEREZR6vrqQoKCtIIVADg7u4OLy8vpKenP+Qqlb1790KpVOKVV14BAMhkMgi179X/iaurK8Tixr/948ePQyKRYNy4cepj5ubmePrpp5GQkICcHO1W6ibdqALVhT/1ULWOQFVr0Es9IHpgcnzPJ72M1ntGRESG0+pCVX0EQUBhYSHs7RvesPb8+fPw8PBATEwMJkyYgPDwcIwdOxabN2+GUqls1rOvXbsGNzc3WFtbaxzv0aMHACA1NbVZ9yXt3Q9Uql6g2kDVsXvrCVQA4NjFRr0AqNTLDt4P2bqGiIjal1Y3/FefQ4cOIS8vDzNnzmywXGZmJsRiMVatWoXJkyfD19cXJ06cwNatW6FQKDBnzhytn11QUACpVFrneO2x/Pz8Oudq5efno6CgQP25sZ42eri2Eqhq9ZvYFb5DOsHayQISkzbx/y5ERKSjVh+q0tPTsWbNGgQGBiI8PLzBsnK5HEqlEnPmzMGUKVMAACEhISgtLcWuXbswdepUWFlp9wZWZWVlneFIADAzM1Off5h9+/YhIiKizvGbN29CoVA0uQ5lZWVITExscvn2Rlkj4Op/c1F0XbVSudhUhO4vOOOuMht3E7P1/jy9tneRfm7Tnj3qf74Nje1tWGxvw2rJ9g4ICGi0TKsOVQUFBVi0aBGsra2xfPlySCR1N6p9kLm5OeRyOUaPHq1xPCwsDGfOnEFKSgqCg4O1qoO5uTmqq6vrHK+qqlKff5hx48Zh6NCh6s/p6elYsWIFvL294e/v3+Q6JCYmNumH2R7V9lDVBipD9FA9yu1tDGxvw2J7Gxbb27CM3d6tNlSVlZVh4cKFKCsrw/r16+Hs7NzoNVKpFJmZmXB01HzTqvZzaWmp1vWQSqXIy8urc7x2WK+hejk7Ozep3lQ/QRBwctPlNjPkR0REj7ZWOdmjsrISixcvRkZGBlatWgUvL68mXVfb+/PneU61nx0cHLSui5+fHzIzM1FeXq5xvLZ70c/PT+t7UtNcO3kb16OzADBQERFR69fqQpVCocCyZcuQkJCAjz76CD179qy3XH5+PtLT01FTU6M+FhoaCgD49ddf1ceUSiUOHDgAOzs7rYbcaoWEhEChUGDfvn3qY1VVVdi/fz8CAgLg6uqq9T2pccXZ5Yj+7v64+Ig5QQxURETUqrW64b8NGzbg9OnTGDJkCEpLS3Hw4EGN82PGjAEAbNq0CVFRUdi5cyc6dVK9sj5s2DD069cPkZGRKCoqgp+fH06ePIlLly5hwYIF6snlABAfH4+LFy8CAIqKiiCXy/H9998DAHr37q2eexUQEIBRo0Zh06ZNKCoqQpcuXRAVFYXs7GwsWrSopZvjkaSoUeLo+ouoqVRN5u8W4gYfLktAREStXKsLVbXrPkVHRyM6OrrO+dpQVR+RSISVK1di8+bNOHLkCKKiouDu7o6lS5fWue7ChQt13szbsmULAGD69OkaE9rfffdduLq64rfffkNZWRl8fHywevVqrSe9U9Nc2HUN+TeKAQB2Ha3w2Ms9jFwjIiKixomEhy05TnqXnJyM2bNn45tvvuHbfw9xJ6EA+z8+CwiAWCLCuI8eg7NPw4u+6tuj1N6tAdvbsNjehsX2Nixjt3erm1NFj66K0ioc++oicC/m95/UzeCBioiIqLkYqqhVEAQBJ7+5AlmhajHVzj2lCHra28i1IiIiajqGKmoVrh7OQHqsanNqC1tThLzeS2NTYiIiotaOoYqMrjCzFDHbktSfh78aBCtHCyPWiIiISHsMVWRUNVUKHF1/EYpqJQAg4HEPePbj2l9ERNT2MFSRUZ37IRl3b6m2D3J0t8HAKd2NXCMiIqLmYagio8mIy0VCVDoAQGIqxqi3gmFi1vCm2URERK0VQxUZhaJagVNbEtSfB03pDid3WyPWiIiISDcMVWQU107cRvndCgBAlyBn9Hjcw8g1IiIi0g1DFRmcskaJ+H031J/7v9ANIhGXTyAioraNoYoM7np0Fsry5AAAt17OcOGq6URE1A4wVJFBKZUC4vddV38Ofs7XiLUhIiLSH4YqMqi0s9kovlMOAOjYwwkduzsZuUZERET6wVBFBiMIAuL33O+l6sNeKiIiakcYqshgbl3IVS/06eJnj849pUauERERkf4wVJFB/LmXKvhZX77xR0RE7QpDFRnE7SsFyLteDABw8rSFR98ORq4RERGRfjFUkUHE705Vf81eKiIiao8YqqjFZV+9i+yrhQAA+87W8BrY0cg1IiIi0j+GKmpxf55LJRazl4qIiNofhipqUXnXi5B5KR8AYOtiCd8hnYxcIyIiopbBUEUt6sFeqt7jfCCW8I8cERG1T/wNRy2m4FYJ0s/nAgCsnMzRdUQXI9eIiIio5TBUUYu5uOeG+uteY30gMZUYsTZEREQti6GKWkTRnTLcOJMFALCwM0P3Ue5GrhEREVHLYqiiFnFx3w1AUH0d9JQXTMzZS0VERO0bQxXpXfndCqSeugMAMLc2RY/RHkauERERUctjqCK9SzmRCUGp6qbq8bgHzKxMjVwjIiKilsdQRXolKAWkHM1UfRAB/pxLRUREjwiGKtKrO4kFKM2TAwDcgpxh62Jp5BoREREZBkMV6VVybS8VAP9RbkasCRERkWExVJHeVJRWIe1cNgDAwtYUHv1cjVwjIiIiw2GoIr1JPXUHyhrVBHW/4V0gMeEfLyIienTwtx7phSAISD6Wof7sH8KhPyIierQwVJFe5F0vRmFGGQCgQzcHOLrZGrlGREREhsVQRXqRfPR+L1X3EC6jQEREjx6GKtJZlbwG16NV+/yZWkrgPbijkWtERERkeAxVpLObMVmoqVQAAHwf6wxTCxMj14iIiMjwGKpIZ1ybioiIiKGKdHQ3oxS5qUUAACcPWzj72Bu3QkREREbCUEU6STmm2UslEomMWBsiIiLjYaiiZlNUK3Dt5G0AgMRUDN+hnY1cIyIiIuNhqKJmS4vNRWVZNQDAa4ArLGzMjFwjIiIi42GoomZ7cG0q/1Fcm4qIiB5tDFXULKW5Mty5UgAAsHO1QqceTkauERERkXExVFGzJD8wQb1biBtEYk5QJyKiRxtDFWlNqVAi5YQqVInEInQd0cXINSIiIjI+rZa+jo+Pb/aDgoODm1QuKSkJUVFRiIuLQ3Z2Nuzs7BAYGIhZs2bB3b1p83ZiY2Oxbds2pKSkQKlUwt3dHZMnT0ZYWJhGuVOnTuG7775Deno6HBwc8NRTT+Hll1+GiYlmsyQnJ+Pbb79FcnIy5HI5OnXqhLFjx2L8+PGQSCRNqlN7knkpH7K7lQAA9z4usHa0MHKNiIiIjE+rUDVv3rxmr0N07NixJpXbsWMHLl++jFGjRsHX1xcFBQXYvXs3Zs2ahY0bN8LHx6fB6/fv34/Vq1ejf//+mD17NiQSCW7duoXc3FyNcjExMXjvvfcQHByMefPm4caNG9i6dSsKCwsxf/58dbnk5GS88cYbcHNzw4svvghzc3OcOXMG69atw+3btzFv3jyt26Kt01hBPYQrqBMREQFahqpp06bVCVWJiYk4e/Ys3NzcEBQUBEdHRxQWFuLKlSvIyMjAwIEDERAQ0ORnTJo0CR988AFMTU3Vx0JDQzFjxgxs374d77///kOvzcrKwpo1a/D88883Gna++uor+Pr64osvvlD3TFlZWSEyMhITJ06Ep6cnAGDfvn0AgC+//BJ2dnYAgGeffRZ/+9vfEBUV9ciFKllRJW5dUAVUKwdzuAe7GLlGRERErYNWoWrmzJkany9evIjt27fjnXfewdNPP60RuARBwM8//4x169Zh6tSpTX5GUFBQnWPu7u7w8vJCenp6g9fu3bsXSqUSr7zyCgBAJpPB0tKyThBMS0tDWloa/v73v2sM9Y0fPx7btm3DsWPHMG3aNABAeXk5zMzMYGNjo3EPqVSKjIwMPGpuxeVCUAoAgK4jukAs4bQ8IiIiQMeJ6lu2bMHgwYMxduzYOsFFJBJh3LhxGDRoELZs2aJTJQVBQGFhIeztG95X7vz58/Dw8EBMTAwmTJiA8PBwjB07Fps3b4ZSqVSXS0lJAQD4+/trXO/s7AwXFxdcu3ZNfaxPnz4oLy/H559/jrS0NGRnZ2Pv3r04ceIEpkyZotP31RZlJ91Vf+3Rt4MRa0JERNS6aNVT9WfJycmYOHFig2W8vLywa9cuXR6DQ4cOIS8vr05P2Z9lZmZCLBZj1apVmDx5Mnx9fXHixAls3boVCoUCc+bMAQAUFKjWV5JKpXXuIZVK1ecBYOzYsbh58yb27duHX375BQAgkUjw9ttv49lnn22wPvn5+Rr3aqynrS3ITi4EoNqWhpsnExER3adTqDI1NdXo1alPSkqKxvwobaWnp2PNmjUIDAxEeHh4g2XlcjmUSiXmzJmj7kUKCQlBaWkpdu3ahalTp8LKygpVVVUAADOzutuqmJmZQSaTqT9LJBJ07twZAwcOREhICMzMzHD48GH861//gpOTE4YPH/7Q+uzbtw8RERF1jt+8eRMKhaIp3z4AoKysDImJiU0u31IqS2pQlicHAFh3MkVyylUj16hltJb2flSwvQ2L7W1YbG/Dasn2bsr8cJ1C1YABA3D06FFERkbihRde0AhP1dXV2LlzJ86dO4fQ0NBm3b+goACLFi2CtbU1li9f3ujyBebm5pDL5Rg9erTG8bCwMJw5cwYpKSkIDg5Wh6nacPWgqqoqmJubqz9HRkZi165d2LFjB6ysrACoJs7PmzcPa9aswWOPPVZnCYZa48aNw9ChQ9Wf09PTsWLFCnh7e9cZemxIYmKiVpP9W8r16DsAVBso+/R1Q0BAN+NWqIW0lvZ+VLC9DYvtbVhsb8MydnvrFKpef/11XLp0CZs3b8auXbvQvXt3ODg4oKioCFevXkVRURGkUilee+01re9dVlaGhQsXoqysDOvXr4ezs3Oj10ilUmRmZsLR0VHjeO3n0tJSdTlAFdpcXV01yhYUFKBHjx7qz3v27EHfvn3VgarW0KFDsX79emRnZ8PNrf5lBZydnZtU77Yi+2qh+uuO3R0bKElERPTo0WmieocOHbBp0yaMGTMG5eXl+OOPP3DgwAH88ccfKC8vx5gxY7Bp0yZ06KDdhObKykosXrwYGRkZWLVqFby8vJp0XW3vT35+vsbx2s8ODg4AgK5duwJQzQn7c7m8vDz1eQAoLCzUmOReq6amBgC0GsZr67KTVZPURSKgQ1eGKiIiogfp1FMFqHp93n33XSxcuBC3bt1CeXk5rK2t4e7u3qy5VAqFAsuWLUNCQgI+/vhj9OzZs95y+fn5KC8vR5cuXdTDb6GhoTh8+DB+/fVXzJ49GwCgVCpx4MAB2NnZqUOXt7c3PDw88PPPP2PcuHHqYcU9e/ZAJBJh5MiR6ue4ubkhNjYWxcXF6rcPFQoFjh49CisrK3Tp8mhs0VJRVoXCjDIAgNTLDmaWOv/RISIialf09pvRxMSk0dXOm2LDhg04ffo0hgwZgtLSUhw8eFDj/JgxYwAAmzZtQlRUFHbu3IlOnToBAIYNG4Z+/fohMjISRUVF8PPzw8mTJ3Hp0iUsWLBAY2L6G2+8gSVLlmD+/PkICwvDjRs3sHv3bowdO1ajZ2zKlClYsWIFXnvtNTzzzDMwNzfH77//juTkZMyaNeuh86nam5zkB4f+nIxYEyIiotZJb4ng8uXLuHbtGmQyGaysrNC1a9d6F/JsTGpqKgAgOjoa0dHRdc7Xhqr6iEQirFy5Eps3b8aRI0cQFRUFd3d3LF26tM51Q4YMwYoVKxAREYG1a9fC3t4eL730EqZPn17neQ4ODoiMjMR//vMfyGQyuLu7Y/78+Y0uqdCeZD8Qqlz9OfRHRET0ZzqHqsuXL2PVqlW4fVv1VpggCOqFQN3c3LB48eKHDuHVZ926dU0q9+677+Ldd9+tc9zKygpz587F3LlzG73H8OHDG1wSodbAgQMxcODAJtWrvcp5cJI6QxUREVEdOoWqmzdvYsGCBaioqED//v3Rp08fSKVS3L17F3FxcTh37hwWLFiAr7/+usmTzan1qalUIO9mMQDAvpM1LO3NG7mCiIjo0aNTqIqIiEB1dTU+/fRTDBo0SOPclClTcObMGSxZsgQRERFYtmyZLo8iI8pNLYKgUO33x6UUiIiI6qfTkgrx8fEICQmpE6hqDRo0CCEhIYiLi9PlMWRktUspAEBHf05SJyIiqo9Ooaq8vFz95t3DdOrUCeXl5bo8hoyMi34SERE1TqdQJZVKkZCQ0GCZxMTEejcuprZBqVAi91oRAMDKyRw2LpbGrRAREVErpVOoGjp0KOLj47F582ZUVlZqnKusrMS3336LuLg4DBs2TKdKkvEUpJWgplK1anxHfyf1m51ERESkSaeJ6tOmTcMff/yByMhI7Nu3Dz169ICjoyMKCwvVe/917twZ06ZN01d9ycA49EdERNQ0OoUqe3t7bNy4EV9//TUOHz6MmJgY9TkzMzM8+eSTeO2112BnZ6dzRck4Hlz0k5PUiYiIHk7nxT8dHBywePFiLFiwAOnp6eoV1T09PR+ZLVzaK0EQkHPvzT9za1M4utkYuUZEREStl173/vP19dXX7agVKLpTjorSagBAh24OEIk5n4qIiOhhWt3ef9R65Fx9YH0qbqJMRETUoFa39x+1HprzqThJnYiIqCHc+48eqvbNP4mZGM4+9kauDRERUevGvf+oXmUFcpTlywEAHfwcIDHRaUkzIiKido97/1G9NNan4tAfERFRo7j3H9Ur+4FJ6q6cpE5ERNQo7v1H9cq5N0ldJBbBtauDcStDRETUBnDvP6qjorQKhZllAACplx1MLbiIKxERUWO49x/VkZPC+VRERETa4t5/VAc3USYiItIe9/6jOrKTH5ikzp4qIiKiJuHef6ShuqIG+TdLAAD2na1haWdu5BoRERG1DVzRkTTkXS+GoBAAAB39uZQCERFRU+ncUxUbG4udO3fi6tWrKCsrgyAIdcqIRCIcPXpU10eRAWRrbKLMoT8iIqKm0ilUHTt2DB999BGUSiVcXV3h6ekJiUSir7qREXCSOhERUfPoFKq+//57mJmZ4eOPP0a/fv30VScyEmWNErmpRQAAaycL2DhbGrdCREREbYhOc6oyMjIQFhbGQNVO5KeVoKZSAUDVSyUSiYxcIyIiorZDp1BlZ2cHc3O+HdZe1G5NA3ApBSIiIm3pFKpGjhyJ8+fPo6amRl/1ISMqzr6/8bWLj70Ra0JERNT26BSqXn31VdjY2GDZsmXIycnRV53ISMrvVqi/tuZ8KiIiIq1oNVH9hRdeqHOspqYGiYmJOHXqFGxsbGBtbV2njEgkwg8//ND8WpJByO6FKrFEBEtbMyPXhoiIqG3RKlTVtwaVRCJBhw4dGixT3zFqfWp7qqwcLSASc5I6ERGRNrQKVT/++GNL1YOMrKZKgYrSagCAlRNfPiAiItIWt6khAICssFL9tbWThRFrQkRE1DYxVBEAQFb4wCR1R4YqIiIibWk1/BcREQGRSITx48fDzs4OERERTbpOJBJh2rRpzakfGYjGm3/sqSIiItKaVqHqu+++g0gkQmhoKOzs7PDdd9816TqGqtbvwVBlxVBFRESkNa1C1dq1awFA/bZf7Wdq+9hTRUREpButQlVwcHCDn6ntkt19cKI63/4jIiLSFieqE4A/Df9xojoREZHWGKoIAFB+7+0/CzszSEz4x4KIiEhbWg3/jRw5EiKR9itti0QiHD16VOvryDCUSkG9ThXnUxERETWPVqGqd+/ezQpV1LpVFFdCUKq2EmKoIiIiah6tQtW6detaqh5kRHzzj4iISHecPEMof+DNP+77R0RE1Dxa9VQ1JC0tDenp6aioqMATTzyhr9uSAbCnioiISHc6h6qkpCR89tlnuHHjhvpYbaiKj4/HO++8gw8//BDDhg3T9VHUQrjvHxERke50ClU3b97E22+/DbFYjL/85S+4desWzpw5oz7fu3dv2Nvb49ixY00OVUlJSYiKikJcXByys7NhZ2eHwMBAzJo1C+7u7k26R2xsLLZt24aUlBQolUq4u7tj8uTJCAsL0yh36tQpfPfdd0hPT4eDgwOeeuopvPzyyzAxqdssTb1nW8SeKiIiIt3pFKq+/fZbAMA333wDNzc3fPfddxqhSiQSITAwEFevXm3yPXfs2IHLly9j1KhR8PX1RUFBAXbv3o1Zs2Zh48aN8PHxafD6/fv3Y/Xq1ejfvz9mz54NiUSCW7duITc3V6NcTEwM3nvvPQQHB2PevHm4ceMGtm7disLCQsyfP79Z92yruO8fERGR7nQKVfHx8Rg5ciTc3NweWsbV1RVnz55t8j0nTZqEDz74AKampupjoaGhmDFjBrZv347333//oddmZWVhzZo1eP755zFv3rwGn/PVV1/B19cXX3zxhbpnysrKCpGRkZg4cSI8PT21vmdbVRuqTC1NYGapt2l2REREjxSd3v6Ty+VwdHRssExlZSWUSmWT7xkUFKQRqADA3d0dXl5eSE9Pb/DavXv3QqlU4pVXXgEAyGQyCIJQp1xaWhrS0tLwzDPPaAz1jR8/HoIg4NixY1rfs60ShAcX/uSbf0RERM2lU7eEi4uLxgT1+qSkpKBz5866PAaCIKCwsBBeXl4Nljt//jw8PDwQExODjRs3Ii8vD7a2thg/fjxmzpwJsVisrhMA+Pv7a1zv7OwMFxcXXLt2Tet7tlVV5TWoqVQA4HwqIiIiXegUqoYMGYKffvoJsbGx6N+/f53zR44cQWJiIqZNm6bLY3Do0CHk5eVh5syZDZbLzMyEWCzGqlWrMHnyZPj6+uLEiRPYunUrFAoF5syZAwAoKCgAAEil0jr3kEql6vPa3LM++fn5GvdqrKfNGMoLuZEyERGRPugUqqZOnYpjx45h4cKFCA8Px927dwEAu3fvRkJCAg4fPoyOHTti0qRJzX5Geno61qxZg8DAQISHhzdYVi6XQ6lUYs6cOZgyZQoAICQkBKWlpdi1axemTp0KKysrVFVVAQDMzMzq3MPMzAwymUzre9Zn3759iIiIqHP85s2bUCgUTfr+AaCsrAyJiYlNLq+Nwuty9ddyZcs9py1pyfamutjehsX2Niy2t2G1ZHsHBAQ0WkanUOXg4IAvv/wSK1aswK+//qo+/q9//UtdgQ8++AA2NjbNun9BQQEWLVoEa2trLF++HBKJpMHy5ubmkMvlGD16tMbxsLAwnDlzBikpKQgODlaHqdpw9aCqqiqYm9+fW9TUe9Zn3LhxGDp0qPpzeno6VqxYAW9v7zpDjw1JTExs0g+zOZJzMgCo3mL07OaGHgEeLfKctqQl25vqYnsbFtvbsNjehmXs9tb5Va/OnTvjq6++wrVr15CYmIiSkhJYWVkhICAAPXr0aPZ9y8rKsHDhQpSVlWH9+vVwdnZu9BqpVIrMzMw6k+drP5eWlqrLAarQ5urqqlG2oKBAo95NvWd9nJ2dm1RvY+IaVURERPqh0yzrEydOqL/u2rUrnn32WUydOhUTJkzQCCZffvmlVvetrKzE4sWLkZGRgVWrVjU6Qb1Wbe9Pfn6+xvHazw4ODuq6AkBycnKdcnl5eerz2tyzreK+f0RERPqhU6havnw5Ll682GCZL7/8Ej/99FOT76lQKLBs2TIkJCTgo48+Qs+ePestl5+fj/T0dNTU1KiPhYaGAoDGUKRSqcSBAwdgZ2enDkje3t7w8PDAzz//rDG3ac+ePRCJRBg5cqTW92yr2FNFRESkHzoN/3Xu3BlLlizB+vXr613pfP369di1axeGDx/e5Htu2LABp0+fxpAhQ1BaWoqDBw9qnB8zZgwAYNOmTYiKisLOnTvRqVMnAMCwYcPQr18/REZGoqioCH5+fjh58iQuXbqEBQsWaExMf+ONN7BkyRLMnz8fYWFhuHHjBnbv3o2xY8dq9Ixpc8+2qHbfP7GJCBa2bft7ISIiMiadQtVnn32GN954A++88w6++uorjflJX331Ff773/9i2LBh+Oijj5p8z9TUVABAdHQ0oqOj65yvDVX1EYlEWLlyJTZv3owjR44gKioK7u7uWLp0aZ3rhgwZghUrViAiIgJr166Fvb09XnrpJUyfPr3Z92yLanuqrB0tIBKJjFwbIiKitksk6Lg8eFpaGt566y04ODhgw4YNsLe3x1dffYWdO3diyJAhWL58eb0bFD+KkpOTMXv2bHzzzTet4u2/mioFIqaregJd/R3xzIeD9f6MtsjYb488atjehsX2Niy2t2EZu711Xg7cy8sLq1evRl5eHt555x2sX78eO3fuxGOPPcZA1cpxPhUREZH+6GWPlcDAQCxbtgypqanYtWsXBg8ejBUrVjBQtXKyQoYqIiIifdEq9URFRTV4fsCAAUhMTMTQoUPx+++/a5xrbDV0MrzyggdDFZdTICIi0oVWoeqTTz6pdzKzIAgQiUSonZ71z3/+U+OYSCRiqGqFygsfWKOK+/4RERHpRKtQtXjx4paqBxkB51QRERHpj1ah6sknn2ypepARyBiqiIiI9EYvE9WpbVL3VIkAKwfOqSIiItIFQ9UjrPze23+W9uYQm/CPAhERkS60Gv4bOXIkxGIxtm7dCnd3d4wcObJJq3CLRCIcPXq02ZUk/VMqlJDfm6jOoT8iIiLdaRWqevfuDZFIBHNzc43P1PbIi6tQu5a+tSOH/oiIiHSlVahat25dg5+p7eCbf0RERPrFiTSPqAdDlRVDFRERkc4Yqh5R7KkiIiLSL62G/yIiIpr1EJFIhGnTpjXrWmoZ3PePiIhIv7QKVd99912zHsJQ1fpo7vvHUEVERKQrrULV2rVrW6oeZGCa+/7x7T8iIiJdaRWqgoODW6gaZGi1W9SYWZnA1EKrPwZERERUD05UfwQJgqCeqM6hPyIiIv3QqYsiJyen0TIikQjW1tawtrbW5VGkR5Vl1VBUKwEwVBEREemLTqFq0qRJTV5R3cHBASNGjMD06dPh5OSky2NJR+WFXKOKiIhI33Qa/nviiSfQq1cvCIIAGxsbBAcHIzQ0FMHBwbC1tYUgCOjduzcGDx4MMzMz7N27F7Nnz0Z+fr6+6k/NIOObf0RERHqnU0/V5MmT8eabb2LatGl48cUXYWFx/xd0ZWUlduzYgV27dmHDhg3w8PBAZGQktmzZgq1bt+L//u//dK48Nc+Db/5x3z8iIiL90KmnauPGjQgICMDMmTM1AhUAmJubY8aMGQgICMDXX38NsViMl19+Gd27d0dMTIxOlSbdcDV1IiIi/dMpVF25cgX+/v4NlunWrRsuXbqk/hwQEIC7d+/q8ljSEff9IyIi0j+dQpVSqcTt27cbLJOZmQlBENSfJRIJzMzMdHks6UjGnioiIiK90ylUBQUF4fjx4zh8+HC9548ePYoTJ06gZ8+e6mOZmZmQSqW6PJZ0VPv2n8RUDHMbUyPXhoiIqH3QaaL6a6+9hjfffBPLly/Hjh07EBQUBEdHRxQWFuLKlStITU2FhYUFXnvtNQBAcXExYmNj8fTTT+ul8tQ8tfv+WTtZNHlJDCIiImqYTqHK19cX69evx7/+9S9cvnwZqampGueDgoIwb948+Pr6AgBsbGywZ8+eOpPayXCqK2pQJasBwD3/iIiI9EnnTd/8/Pywfv165OTkIDU1FeXl5bC2toafnx9cXV01ykokEtjY2Oj6SNKB7MHlFDifioiISG/0tpOuq6trnRBFrQ/f/CMiImoZegtVeXl5dXqqXFxc9HV70hOuUUVERNQydA5VmZmZ+Oc//4kLFy7UOde3b1/83//9H9zc3HR9DOmJrJChioiIqCXoFKpycnLw1ltvobCwEB4eHujduzekUinu3r2Lixcv4vz583jrrbfw73//m0ODrUQ59/0jIiJqETqFqoiICBQWFuL//u//MG7cuDqv5+/duxf//Oc/8f3332PhwoU6VZT0g/v+ERERtQydQtXZs2cxZMgQPPvss/Wef/bZZxETE4MzZ87o8hjSo9o5VSIRYOnAUEVERKQvOq2oXlRUBB8fnwbL+Pj4oKioSJfHkB7VblFj6WAOsUSnHz8RERE9QKffqg4ODkhLS2uwTFpaGhwcHHR5DOmJskYJWbFq+I/zqYiIiPRLp1A1YMAAnD59Gr/88ku953/99VdER0dj4MCBujyG9ERWXAnc29uaa1QRERHpl05zqmbMmIHo6Gh8/vnn+O9//4vg4GA4OTmp3/5LS0uDvb09pk+frqfqki745h8REVHL0SlUubq6YsOGDfj8888RHx9fZyiwT58+mD9/PpdTaCU01qjim39ERER6pfPin+7u7li7dm2T9v4j4+Jq6kRERC2He/89Qsrv3l+jinOqiIiI9EurULVq1apmP2jx4sXNvpb0gz1VRERELUerUHXgwIFmPUQkEjFUtQLc94+IiKjlaBWqdu7c2VL1IAOoffvP3MYUJmYSI9eGiIiofdEqVHXs2LGl6kEtTBAElN/rqbJyZC8VERGRvnGfkkdERWkVlDWqlT859EdERKR/env7T1+SkpIQFRWFuLg4ZGdnw87ODoGBgZg1axbc3d2bdI/Y2Fhs27YNKSkpUCqVcHd3x+TJkxEWFqZR7tSpU/juu++Qnp4OBwcHPPXUU3j55ZdhYvLwZvn000/xyy+/4LHHHsPq1at1+l4NSfbAm3/WTlyjioiISN9aXajasWMHLl++jFGjRsHX1xcFBQXYvXs3Zs2ahY0bNza6gfP+/fuxevVq9O/fH7Nnz4ZEIsGtW7eQm5urUS4mJgbvvfcegoODMW/ePNy4cQNbt25FYWEh5s+fX++9r169igMHDsDMzExv36+h8M0/IiKiltXqQtWkSZPwwQcfwNTUVH0sNDQUM2bMwPbt2/H+++8/9NqsrCysWbMGzz//PObNm9fgc7766iv4+vriiy++UPdMWVlZITIyEhMnToSnp6dGeUEQsHbtWjzxxBO4cOGCDt+hcZQ/8OYf16giIiLSv1Y3pyooKEgjUAGqVdu9vLyQnp7e4LV79+6FUqnEK6+8AgCQyWQQBKFOubS0NKSlpeGZZ57RGOobP348BEHAsWPH6lzz22+/4ebNm5g9e3Yzvivj475/RERELavVhar6CIKAwsJC2NvbN1ju/Pnz8PDwQExMDCZMmIDw8HCMHTsWmzdvhlKpVJdLSUkBAPj7+2tc7+zsDBcXF1y7dk3juEwmw9dff42XXnoJUqlUT9+VYWnu+8dQRUREpG+tbvivPocOHUJeXh5mzpzZYLnMzEyIxWKsWrUKkydPhq+vL06cOIGtW7dCoVBgzpw5AICCggIAqDcgSaVS9flaERERMDc3x6RJk7Sqd35+vsa9Gutpa0kPzqmy4kR1IiIivWv1oSo9PR1r1qxBYGAgwsPDGywrl8uhVCoxZ84cTJkyBQAQEhKC0tJS7Nq1C1OnToWVlRWqqqoAoN4J52ZmZpDJZOrPGRkZ2LVrFz744AOtJ6jv27cPERERdY7fvHkTCoWiyfcpKytDYmKiVs/+s8KcEgCASAJcT78GkUik0/3aM320NzUd29uw2N6GxfY2rJZs74CAgEbLtOpQVVBQgEWLFsHa2hrLly+HRNLwKuDm5uaQy+UYPXq0xvGwsDCcOXMGKSkpCA4OVoej2nD1oKqqKpib3+/JWbduHXr27ImQkBCt6z9u3DgMHTpU/Tk9PR0rVqyAt7d3naHHhiQmJjbph9mQCxVZAABrR0sEBgbqdK/2Th/tTU3H9jYstrdhsb0Ny9jt3WpDVVlZGRYuXIiysjKsX78ezs7OjV4jlUqRmZkJR0dHjeO1n0tLS9XlAFVoc3V11ShbUFCAHj16AFDN0Tpz5gxWrFiBrKwsdRmFQoHKykpkZWXBzs4O1tbW9dbH2dm5SfVuacoaJSpKVQHS0qHtLQdBRETUFrTKUFVZWYnFixcjIyMD//znP+Hl5dWk6/z9/ZGZmYn8/Hx07txZfTw/Px8A4ODgAADo2rUrACA5OVkj0ebn5yMvLw/jxo0DAPXaVkuXLq3zrLy8PLzwwgt46623tJ5rZWjy0irg3kuQVvacT0VERNQSWl2oUigUWLZsGRISEvDxxx+jZ8+e9ZbLz89HeXk5unTpol4WITQ0FIcPH8avv/6qXvpAqVTiwIEDsLOzUw+5eXt7w8PDAz///DPGjRunHlbcs2cPRCIRRo4cCQDo27cvVq5cWefZn332GTp27IipU6c2uhhpayAvur+auqUDQxUREVFLaHWhasOGDTh9+jSGDBmC0tJSHDx4UOP8mDFjAACbNm1CVFQUdu7ciU6dOgEAhg0bhn79+iEyMhJFRUXw8/PDyZMncenSJSxYsEBjovkbb7yBJUuWYP78+QgLC8ONGzewe/dujB07Vt0z5urqWmd4EAC+/PJLODo6Yvjw4S3UCvqlEarYU0VERNQiWl2oSk1NBQBER0cjOjq6zvnaUFUfkUiElStXYvPmzThy5AiioqLg7u6OpUuX1rluyJAhWLFiBSIiIrB27VrY29vjpZdewvTp0/X6/bQGsuL7ocqKPVVEREQtotWFqnXr1jWp3Lvvvot33323znErKyvMnTsXc+fObfQew4cPb1Zv048//qj1NcYkL7r/liN7qoiIiFpGm1hRnXSj2VPFt/+IiIhaAkPVI4AT1YmIiFoeQ9UjQF7MiepEREQtjaHqESC711NlZmUCE7OGV6UnIiKi5mGoegTU9lSxl4qIiKjlMFS1c9UVNaiWqzZv5nwqIiKilsNQ1c7Ji+8vp8AtaoiIiFoOQ1U7pzFJncspEBERtRiGqnZOVsTV1ImIiAyBoaqd43IKREREhsFQ1c5x4U8iIiLDYKhq52RFnKhORERkCAxV7Zy8hD1VREREhsBQ1c7VDv+JRICFHd/+IyIiaikMVe1c7UR1CzsziMUiI9eGiIio/WKoascEQVAvqcChPyIiopbFUNWOVZXXQFkjAOAkdSIiopbGUNWOyYo5SZ2IiMhQGKraMY01qthTRURE1KIYqtqxB1dTt+K+f0RERC2Koaodk7GnioiIyGAYqtoxOedUERERGQxDVTsm5xY1REREBsNQ1Y5x+I+IiMhwGKrasdrhP7GJCGbWJkauDRERUfvGUNWO1fZUWTmYQyTiFjVEREQtiaGqnVIqlKgoVc2p4tAfERFRy2OoaqcqSqoA1Q41fPOPiIjIABiq2qkHt6jhm39EREQtj6GqnXpwOQX2VBEREbU8hqp2SnPfP25RQ0RE1NIYqtopjeE/9lQRERG1OIaqdkrOhT+JiIgMiqGqnWJPFRERkWExVLVT7KkiIiIyLIaqdkperHr7z9TSBCbmEiPXhoiIqP1jqGqnHtyihoiIiFoeQ1U7VFOpQLW8BgCXUyAiIjIUhqp2SP7AJHUu/ElERGQYDFXtkKyIW9QQEREZGkNVO8SeKiIiIsNjqGqH2FNFRERkeAxV7VDtcgoAe6qIiIgMhaGqHdJY+NOBb/8REREZAkNVO6SxRQ2H/4iIiAyCoaodUvdUiQALO/ZUERERGQJDVTtU+/afha0ZxBL+iImIiAzBxNgV+LOkpCRERUUhLi4O2dnZsLOzQ2BgIGbNmgV3d/cm3SM2Nhbbtm1DSkoKlEol3N3dMXnyZISFhWmUO3XqFL777jukp6fDwcEBTz31FF5++WWYmNxvlvPnz+PQoUO4dOkS8vLy4OTkhL59++KVV16Bs7OzXr93fRAEgVvUEBERGUGrC1U7duzA5cuXMWrUKPj6+qKgoAC7d+/GrFmzsHHjRvj4+DR4/f79+7F69Wr0798fs2fPhkQiwa1bt5Cbm6tRLiYmBu+99x6Cg4Mxb9483LhxA1u3bkVhYSHmz5+vLvf111+jpKQEISEhcHd3x507d/C///0Pf/zxB7Zs2QKpVNoi7dBcVeU1UNYIAABLzqciIiIymFYXqiZNmoQPPvgApqam6mOhoaGYMWMGtm/fjvfff/+h12ZlZWHNmjV4/vnnMW/evAaf89VXX8HX1xdffPGFumfKysoKkZGRmDhxIjw9PQEAb775Jnr16gWx+P4w2sCBAzF37lz873//w+zZs3X5dvVOY5I6e6qIiIgMptVNuAkKCtIIVADg7u4OLy8vpKenN3jt3r17oVQq8corrwAAZDIZBEGoUy4tLQ1paWl45plnNIb6xo8fD0EQcOzYMfWx4OBgjUBVe8zOzq7R+hgDl1MgIiIyjlYXquojCAIKCwthb2/fYLnz58/Dw8MDMTExmDBhAsLDwzF27Fhs3rwZSqVSXS4lJQUA4O/vr3G9s7MzXFxccO3atQafI5PJIJfLG62PMWhsUcPhPyIiIoNpdcN/9Tl06BDy8vIwc+bMBstlZmZCLBZj1apVmDx5Mnx9fXHixAls3boVCoUCc+bMAQAUFBQAQL3zoaRSqfr8w/z3v/9FdXU1QkNDGyyXn5+vcS9D9GxpbFHD4T8iIiKDafWhKj09HWvWrEFgYCDCw8MbLCuXy6FUKjFnzhxMmTIFABASEoLS0lLs2rULU6dOhZWVFaqqVNu4mJnVHR4zMzODTCZ76DPi4+MRERGBUaNGoV+/fg3WZ9++fYiIiKhz/ObNm1AoFA1e+6CysjIkJiY2qWzG9UL117lF2ahMLGryc0hFm/Ym3bG9DYvtbVhsb8NqyfYOCAhotEyrDlUFBQVYtGgRrK2tsXz5ckgkkgbLm5ubQy6XY/To0RrHw8LCcObMGaSkpCA4OFgdpmrD1YOqqqpgbl5/D096ejqWLl0KHx8fLFq0qNH6jxs3DkOHDtW4fsWKFfD29q4z9NiQxMTEJv0wASDv+CUAJQCA7r27wbGLTZOfQyratDfpju1tWGxvw2J7G5ax27vVhqqysjIsXLgQZWVlWL9+fZPWhJJKpcjMzISjo6PG8drPpaWl6nKAKrS5urpqlC0oKECPHj3q3DsnJwfz58+HtbU1Vq9eDSsrq0br4+zsbPC1rDSG/zinioiIyGBa5UT1yspKLF68GBkZGVi1ahW8vLyadF1t709+fr7G8drPDg4OAICuXbsCAJKTk+uUy8vLU5+vVVxcjPnz56O6uhqff/55q1z0s1btRHWxiQhm1q02MxMREbU7rS5UKRQKLFu2DAkJCfjoo4/Qs2fPesvl5+cjPT0dNTU16mO1E8d//fVX9TGlUokDBw7Azs5OHbq8vb3h4eGBn3/+WWNu0549eyASiTBy5Ej1MblcjoULFyI/Px+ffvppk1d1N5YHV1MXiURGrg0REdGjo9V1ZWzYsAGnT5/GkCFDUFpaioMHD2qcHzNmDABg06ZNiIqKws6dO9GpUycAwLBhw9CvXz9ERkaiqKgIfn5+OHnyJC5duoQFCxZoTEx/4403sGTJEsyfPx9hYWG4ceMGdu/ejbFjx2r0jC1fvhxJSUl46qmnkJ6ervEGn6WlJYYPH96CraEdpUKJilLVPDEup0BERGRYrS5UpaamAgCio6MRHR1d53xtqKqPSCTCypUrsXnzZhw5cgRRUVFwd3fH0qVL61w3ZMgQrFixAhEREVi7di3s7e3x0ksvYfr06fXWZ//+/di/f7/GuY4dO7aqUFVRUgXcW+vUksspEBERGVSrC1Xr1q1rUrl3330X7777bp3jVlZWmDt3LubOndvoPYYPH95oKPrxxx+bVJ/WQGOLGvZUERERGVSrm1NFzScvur9EBHuqiIiIDIuhqh3R2PfPnvv+ERERGRJDVTuiMfzHnioiIiKDYqhqRzR7qhiqiIiIDImhqh1hTxUREZHxMFS1I+ypIiIiMh6GqnZEXqx6+8/U0gQm5g1vPk1ERET6xVDVjjy4RQ0REREZFkNVO1FTqUC1XLUPIpdTICIiMjyGqnZC/sAkdS78SUREZHgMVe2EjJPUiYiIjIqhqp2Qc98/IiIio2Koaic0eqocOKeKiIjI0Biq2ona5RQA9lQREREZA0NVO6Gx8CcnqhMRERkcQ1U7IePbf0REREbFUNVOqCeqiwBLW86pIiIiMjSGqnZCXqSaU2VhawaxCX+sREREhsbfvu2AIAjqniquUUVERGQcDFXtQJWsBopqJQDAisspEBERGQVDVTsg52rqRERERsdQ1Q7wzT8iIiLjY6hqBx7sqeLCn0RERMbBUNUOyNlTRUREZHQMVe2ArOiBLWoYqoiIiIyCoaod0Oipsufbf0RERMbAUNUOcN8/IiIi42Ooagdq3/4TS0QwtzY1cm2IiIgeTQxV7UBtT5WlgzlEIpGRa0NERPRoYqhq45RKARUlqonqXE6BiIjIeEyMXQHS3dgPB0NWVAmJKTMyERGRsTBUtXFisQiu3RyNXQ0iIqJHHrs2iIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPTAxNgVeJRUVlYCANLT07W67tatW5BIJC1RJaoH29uw2N6GxfY2LLa3YbV0e3t6esLCwuKh5xmqDCg7OxsAsGLFCiPXhIiIiLT1zTffwN/f/6HnRYIgCAaszyOtqKgIZ8+eRadOnWBmZtaka9LT07FixQosXboUnp6eLVxDYnsbFtvbsNjehsX2NixDtDd7qloRBwcHjBkzplnXenp6NpiOSb/Y3obF9jYstrdhsb0Ny5jtzYnqRERERHrAUEVERESkBwxVrZxUKsX06dMhlUqNXZVHAtvbsNjehsX2Niy2t2G1hvbmRHUiIiIiPWBPFREREZEeMFQRERER6QFDFREREZEecJ2qVqqqqgpbtmzBwYMHUVpaCl9fX8yaNQsDBgwwdtXaPJlMhh9++AGJiYlISkpCaWkplixZgieffLJO2bS0NKxfvx6XL1+GiYkJHnvsMbz11ltwcHAwfMXboKSkJERFRSEuLg7Z2dmws7NDYGAgZs2aBXd3d42ybGvd3bx5E9999x2Sk5Nx9+5dWFhYwNPTE5MnT8bQoUM1yrK9W8bWrVuxefNmeHt74/vvv9c4d/nyZXz99ddISUmBtbU1Ro0ahdmzZ8PKyspItW1b4uLiMG/evHrPbdy4EYGBgerPxmprhqpW6pNPPsGxY8fwl7/8BW5ubjhw4AAWLlyItWvXolevXsauXptWXFyMiIgIuLq6ws/PD3FxcfWWy83Nxd/+9jfY2Nhg9uzZkMvl+OGHH3Djxg38+9//hqmpqYFr3vbs2LEDly9fxqhRo+Dr64uCggLs3r0bs2bNwsaNG+Hj4wOAba0v2dnZkMlkCA8Ph7OzMyoqKnD8+HEsWbIECxYswLhx4wCwvVtKbm4uIiMjYWlpWefctWvX8Pe//x2enp546623kJubi507dyIzMxOfffaZEWrbdk2YMAE9evTQONalSxf110Zta4FanYSEBGH48OHCjh071McqKiqEv/71r8Jrr71mxJq1D5WVlUJ+fr4gCIKQlJQkDB8+XNi/f3+dcl988YUwevRoITs7W33s3LlzwvDhw4W9e/carL5t2aVLl4SqqiqNY7du3RLCwsKEf/zjH+pjbOuWU1NTI8yYMUOYMmWK+hjbu2V8+OGHwrx584S//e1vwssvv6xxbsGCBcJzzz0nlJWVqY/9/PPPwvDhw4UzZ84Yuqpt0oULF4Thw4cLR48ebbCcMduac6paoePHj0Mikaj/rxIAzM3N8fTTTyMhIQE5OTlGrF3bZ2Zm1qR1TI4fP44hQ4bA1dVVfax///5wd3fH0aNHW7KK7UZQUFCdXg93d3d4eXkhPT1dfYxt3XIkEgk6dOiAsrIy9TG2t/7Fx8fj+PHj+Nvf/lbnXHl5OWJjYzFmzBhYW1urjz/xxBOwtLRkmzeDTCZDTU1NnePGbmsO/7VC165dg5ubm8YfCADq7s7U1FSNvwxJ//Ly8lBYWFjv/lE9evRATEyMEWrVPgiCgMLCQnh5eQFgW7cEuVyOyspKlJeX4/Tp0zhz5gxGjRoFgO3dEhQKBdauXYunn34avr6+dc7fuHEDCoWiTpubmpqia9euuHbtmqGq2i588sknkMvlkEgk6NWrF15//XV0794dgPHbmqGqFSooKKi3J6X2WH5+vqGr9MgpKCgAgIf+HEpKSlBVVQUzMzNDV63NO3ToEPLy8jBz5kwAbOuWsGHDBuzbtw8AIBaLMWLECPz9738HwPZuCXv37kVOTg7WrFlT7/nG2vzixYstWr/2wsTEBCNHjsTgwYNhb2+PtLQ07Ny5E2+99Ra++uordOvWzehtzVDVClVWVtY7UbT2L7nKykpDV+mRU9vGjf0c+ItHO+np6VizZg0CAwMRHh4OgG3dEv7yl78gJCQE+fn5OHr0KBQKBaqrqwGwvfWtuLgY3377LV5++eWHvjnZWJtXVVW1ZBXbjaCgIAQFBak/Dxs2DCEhIZgxYwY2bdqEzz//3OhtzTlVrZC5ubn6L8AH1f5hMDc3N3SVHjm1bcyfg/4UFBRg0aJFsLa2xvLlyyGRSACwrVuCp6cn+vfvj/DwcKxevRpyuRyLFy+GIAhsbz3bvHkzbG1tMWHChIeWaazNGWCbz83NDcOGDUNcXBwUCoXR25qhqhWSSqXqLswH1R5zdnY2dJUeObVdxw/7OdjZ2fEvQi2UlZVh4cKFKCsrw+eff67xZ5ht3fJCQkJw9epVZGRksL31KCMjAz///DMmTpyI/Px8ZGVlISsrC1VVVaipqUFWVhZKSkoabXP+na6bDh06oLq6GhUVFUZva4aqVsjPzw+ZmZkoLy/XOJ6YmKg+Ty3LxcUFDg4OSE5OrnMuKSmJPwMtVFZWYvHixcjIyMCqVavUE9Rrsa1bXu2QSFlZGdtbj/Lz86FUKrF27Vq88MIL6n8SExORkZGBF154AREREfD29oZEIqnT5tXV1bh27RrbXEd37tyBmZkZLC0tjd7WDFWtUEhICBQKhXqiKaDqtty/fz8CAgL45p+BjBw5EtHR0RpLWJw/fx4ZGRnqN6moYQqFAsuWLUNCQgI++ugj9OzZs95ybGv9KCwsrHOspqYGv/32G8zNzdWBlu2tH97e3li5cmWdf7y9veHq6oqVK1fi6aefho2NDfr374+DBw9CJpOpr//tt98gl8vZ5k1UVFRU51hqaipOnz6NAQMGQCwWG72tRYIgCC36BGqWDz/8ECdOnMCkSZPQpUsXREVFISkpCWvWrEFwcLCxq9fm/fTTTygrK0NBQQH27NmDESNGoGvXrgBUq/Xa2NggJycHs2bNgo2NDSZOnAi5XI7//Oc/cHFxwaZNmzhE0gTr1q3Drl27MGTIEISGhtY5P2bMGABgW+vJe++9h/LycvTu3RsuLi4oKCjAoUOHcOvWLbz55pt44YUXALC9W9rcuXNRXFyssU1NcnIy3nzzTXh6emLcuHHqVb579+6NL774woi1bTvmzZsHc3Nz9OzZE46OjkhLS8PPP/8MExMTfPXVV+r/aTBmWzNUtVKVlZXqvf/Kysrg4+ODWbNmYeDAgcauWrswadIkZGdn13tu586d6NSpEwDVXmp/3h/tzTffhJOTkyGr22bNnTsX8fHxDz1/4sQJ9ddsa90dPnwYv/76K27cuIHi4mJYWVnB398fzz//PIYNG6ZRlu3dcuoLVQBw6dIl9X50VlZWGDVqFObMmcO9/5po165dOHToEG7fvo3y8nI4ODigX79+mD59Otzc3DTKGqutGaqIiIiI9IBzqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiNqUrKwsjBgxAh9//LGxq6IXBw4cwIgRI3DgwAFjV4WIdMRQRURt3ty5czFixAhjV6Ne7S0EEtHDmRi7AkRE2nBxccG2bdtgbW1t7KroxfDhwxEQEACpVGrsqhCRjhiqiKhNMTExgaenp7GroTc2NjawsbExdjWISA9EgiAIxq4EEVFTZWVl4YUXXkB4eDjefffdhw771Z6vdf36dWzbtg3x8fEoKSmBVCrF0KFDMWPGDNjb29d7/xdffBHffPMNLl68iJKSEuzcuROdOnXCiRMncPToUVy9ehX5+fkwMTGBr68vJk6ciJCQEPW9Dhw4gE8++aTe+q1duxZ9+vRRl1myZAmefPJJjTKXL1/Gtm3bkJCQgMrKSnTs2BGhoaF48cUXYWFhoVF2xIgRCA4OxrJly7Bx40bExMRALpfDz88Pc+bMQZ8+fbRtaiLSEnuqiKhNmz59OqKiopCdnY3p06erj3ft2lX99alTp7Bs2TKIRCIMGzYMHTp0QFpaGv73v//h7Nmz+Pe//w1bW1uN+96+fRuvv/46fHx8EB4ejpKSEpiamgIANm3aBBMTEwQFBUEqlaKoqAinT5/GBx98gHnz5mHChAkAAD8/P0ycOBG7du2Cn58fhg0bpr5/x44dG/y+jh49in/84x8wNTVFaGgoHBwccO7cOURERODs2bNYu3YtzM3NNa4pKyvDm2++CRsbG4wZMwaFhYU4evQoFixYgG+++QY+Pj7NamMiahqGKiJq02bOnIn4+HhkZ2dj5syZdc4XFxdj5cqVsLe3x4YNGzTCzOHDh/HRRx9hy5YtePvttzWuu3z5MqZPn17vPT/99FN07txZ45hMJsMbb7yBLVu24Omnn4aFhQW6du0KGxsbdaiq7171KS8vx2effQaJRIKNGzfC19cXAPDqq6/iH//4B44cOYIffvgB06ZN07guNTUVzz33HN5++22Ixar3kPr27YtPP/0U//vf/7BgwYImPZ+Imodv/xFRu/bbb7+hvLwcr776ap3eobCwMHTr1g2HDx+uc52TkxOmTp1a7z3/HKgAwMrKCk8++STKyspw9epVnep86tQplJWV4amnnlIHKgAQi8V4/fXXIZFI6l2CwdLSEq+99po6UAGqYVCJRKJznYioceypIqJ2LSEhAQCQmJiI27dv1zlfVVWF4uJiFBUVwcHBQX3cz89PPdz3Z4WFhdi+fTtiYmKQk5ODyspKjfP5+fk61fnatWsAgODg4DrnXF1d0blzZ2RkZEAmk8HKykp9zs3NTeMzoJrY7+TkhLKyMp3qRESNY6gionattLQUALB79+4Gy1VUVGh8dnR0rLdcSUkJXn31VeTk5CAoKAj9+/eHjY0NxGIxUlNTcerUKVRXV+tU5/LycgCq3rL6SKVSZGRkoLy8XCNEPWyZCYlEAqVSqVOdiKhxDFVE1K7Vho6IiAitJmqLRKJ6j//666/IycnBK6+8UmdOU2RkJE6dOtX8yt5TG47u3r1b7/na4+1lrS6i9oJzqoiozaudQ6RQKOqcCwgIAHB/GFBXtUOID77JV+vSpUsPrZs2PUW1by7Gx8fXOZeTk4Pbt2+jc+fOdYb6iMi4GKqIqM2zs7MDAOTm5tY599RTT8HKygrffPMNbt68Wed8RUWFVoGrdrL75cuXNY4fOnQIMTExdcrb2tpCJBLVW7eHGTZsGGxsbLB//36NOguCgH//+99QKBR11rQiIuPj8B8RtXl9+/bFsWPH8P7772PQoEEwMzODn58fhg4dCgcHB3z44Yf44IMPMHPmTAwcOBAeHh6orq5GdnY24uPj0bNnT3z++edNetaYMWOwY8cOrF27FnFxcXB1dUVqaiouXLiAESNG4MSJExrlrays0L17d1y8eBErVqyAm5sbRCIRnnjiiYeuVWVtbY133nkH//jHP/Daa69h1KhRcHBwwPnz55GcnIwePXrgr3/9q87tRkT6xVBFRG3e2LFjkZWVhSNHjmDHjh1QKBQIDw/H0KFDAQCPPfYYtmzZgv/85z84f/48YmNjYWFhARcXFzz55JMYM2ZMk5/VoUMHrFu3Dhs3bkRsbCwUCgW6deuGL774Arm5uXVCFQAsXboUX375JaKjo1FeXg5BENCrV68GFwAdNWoUnJycEBkZiRMnTqhXVJ82bRpefPHFOgt/EpHxcZsaIiIiIj3gnCoiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPfh/VyUHiZKp9EwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACe5UlEQVR4nO39eZxU1Z3/j79uVW/Q3dB0N40g0N1sDYUoJlGjCAJOHIwTZuISjZ9EccG4k0z8BOEzk8Xgx/kYM/5wXNEoiYkjRKPiREmMQfiKUQmCAsW+NA30Qu9dvVR31b2/P4rat7uc875Lnefj4cOm6t465546dc77vM/r/T6SoigKBAKBQCAQCHIIl9kVEAgEAoFAIKBGGEACgUAgEAhyDmEACQQCgUAgyDmEASQQCAQCgSDnEAaQQCAQCASCnEMYQAKBQCAQCHIOYQAJBAKBQCDIOYQBlIaBgQHs378fAwMDZldFIBAIBAIBY4QBlIb6+nosXboU9fX1mu47fPgwpxoJUiHamxbR3rSI9qZFtDctZre3MIAY4/f7za5CTiHamxbR3rSI9qZFtDctZre3MIAEAoFAIBDkHMIAEggEAoFAkHMIA0ggEAgEAkHOIQwggUAgEAgEOYcwgAQCgUAgEOQcwgASCAQCgUCQcwgDSCAQCAQCQc4hDCCBQCAQCAQ5hzCABAKBQCAQ5BzCABIIBAKBQJBz5JldgUR27NiBZcuWpXzvmWeewcyZMzPef/r0aTz55JPYtm0bZFnG+eefj/vuuw/jxo3jUV2BQCAQCAQ2xHIGUJhrrrkGM2bMiHvt7LPPznhPX18fli1bht7eXnznO99BXl4e1q9fj/vuuw8vvvgiRo4cybPKAoFAIBAIbIJlDaDzzjsP8+fP13TPm2++iRMnTuC5556LGE8XXXQRlixZgnXr1uGOO+7gUFOBQCAQCAR2w7IGEBDy6BQUFCAvT101P/jgA0yfPj3Oc1RdXY0vfelL2LRpk20MoN62fhz9tBnBoaDZVbE8zS1dGDp02PDnFBbno/arY1FYnK/7M+SAjPrtzehu7st6bUX1CJx9biUkSdJdXm/HAI5+0oTgYOZ+4spzoeaCs1A6epjusgCgcW8bTnyUvb2LK4ah9sIxcOe7dZc1NBDAkY8bMdA9qPsztFJcXoSaC89CXoGxeh/9uAn93dlPuR53TiVGTzLmle486cPxHS1QZCXjdfnD8jDpq2NRVFqguyxZVnB8ezO6GnuzXjtqfCkmzB4NyaW/f/d1+XH04yYE/IGM17ncLlR/pQojxhTrLgsAmg90qOrfw8uKUPtVY/0k4A/iyCeN6O/M3k/GzihH1dRRussCgK7GXtR/1gIlKGe8Lr8oD7VfPQvDRhTqLkuRFRzf0YLOk76s1za3dKHc1Y6zppfrLs8IljWAHnnkEfT398PtduPcc8/FXXfdhenTp6e9XpZlHDlyBF//+teT3psxYwa2bduGvr4+DB8+POX9ra2taGtri/y7vr7e+EPoZOOj29HR0GNa+XbjODqZfE7jvg4suOc83fcf2HISH76wW/X1V/37hRg7o0J3eX/5z89w+nCXqmv3/uU4rvvlPN0GV1t9N/74808BqGvv3vY6nPeNSbrKAoBtrx6A98/0v8GvtA1g9j9P1n3/39cfwJ6N6uotuQ/ihifmo3hUka6yAoNBvP2zj+H3Dam6/uQXrfjaD7+sqywAOPpxIzY9+bnq66/431/GxPOrdJe36b92otHbrura3e8ew/WrL4PLrS+up6uxF2//9GMA6vp3d0sfvnztVF1lAcCONw7h8w1HVF0rScC3/n+XoXR06rkrG8GAjP/5+SeqjC0AOP5ZCxY9eIGusgCgfnsz/vL4DtXXV45qEwZQmLy8PFx22WX46le/ipEjR+LYsWNYt24d7r33Xjz99NOYNm1ayvu6u7sxODiIiorkCSX8WmtrKyZOnJjy/g0bNmDt2rVJrx89ehTBoHpPjM/ng9frVX19IoqiCOPHJE4dOG3ouzuyoy37RTHs+eQgOpRm3eW1HlNn/ABAd1Mfdn+xB+58fRNEyxfZV3OxHP2iAfmTB3SVBQANe5t032uEo7tOoGCquokiFQ1e9fVWggo+37oHZZPSe+YyjSf97UOqjR8AaDrUZqh/H9veoen6fdsOw1fYqru800c6VV/b2z6ALz7bg4JifV6Ztr3ZvVqxHNt9EsM86ts+kfo96n/3igJ8/pEX5VP1GUD+7oBq4wcAmg+3G+onx//eqen606dPw+vV35bp8Hg8Wa+xnAE0a9YszJo1K/LvSy+9FPPnz8ctt9yCNWvW4LHHHkt5n98f+oLz85O3MAoKCuKuScXixYsxZ86cyL/r6+uxatUq1NbWoq6uTnX9vV6vqoZPR2AwiL/hOABg1IQSfPna1AafIETDiQZMGD/B0GdsfuZzDA0Eke/KN/TdtX64C00IGQpfvWkGSiqSJ7bThzsjK7/RFVXwePR5SRRFwUfBkKdh5NhiXHBD6j66441DaDvWDQCYNrkOhSX6tvhcTQ04hJCB5/naRIw7pzLpGn/vIP6/NSEPWMnwUkNteTC/Ez0I/V7/4Qdf0v05ahjsG8KW53YBMF7vQwVd6I7U+3wAyR63o5804vBHjQCA8WdPwERPei9JpvGkvaEHO3AKADDunAp4vlad8roPf7UbA92DcEt5hp6t6+9enEKoL13w7TqMPCt5y6mtvhs7/nAIAFBRXgmPR7+X5FPlBACgpLIIX/1u6np/8ccjaDnQCQCYMmlKyt+cGg51nMJ+hIy1afPHp/RcBQaD+OCpkAesuKjYUFseLexBJ0ILhIX3z07puarf3oyDW04CAM4eOx61nrN0ldXd3IvtCH3OWdNH4Zwra1Ne99HaPejr8ENSXIaezff5fpxAaHH25eumYtT40rTXNpxowKwLp6Ps7BLd5RnBcgZQKsaPH49LL70UW7ZsQTAYhNudbOUXFob2LIeGki3JwcHBuGtSUVlZicrK5EGdmuBQdI+2eFQRai4YY2JtrE9fcRtqPMbaaOtLeRgaCCIYyLw/ng055v4J543GyLHJE4QrLzohykP6y4sta9jIgrT95OCWExEDyMjzxfbL0VPLUpYXq3sx2pbh+935Lu6/gQFfVGcUNPCdANF6u9wSai5IPWF1NfoiBpCR8mL7z8izitO206ev7MNA96Dx7ySmvLNnVaCyJlm/VFCchx1/SL7eSHlFpen799FPGiMGEKu2HD1pZMryAjFaO1b9GwBqLjwLrhRaKV9bf8QAMvJssfeOGDM8bVtuf+0A+jr8TMfBcTMrMGZaev1SX3GbacYPYKNEiFVVVRgaGsLAQGq3+ogRI1BQUBCn4wkTfs0KBk42YjufS+d2hUAb7rxQO7MasIGQ8DhTWQA7gyTTtlZsHzI0iMbU1a3m2Ri1Zbp2ZElsvWVGRkKm7yT2PSPlxX0nKsoz+p3IGvuAkWeTZSUi7M40DnJpS4L+HTa4JJeU0vgBEp6N0W830+8p/HxGygISxiaC368RrF27GE6dOoWCggIMG5baxelyuTBp0iTs27cv6T2v14tx48alFUBbCdlGnccphAcaw5OfignJzcEgUTOoAQYnJBUGF6vJCIj3APGG1XcCRJ8703fiYjSRqjG4Y99j6QHi3b/VjoNc2jLNs0kuCZJbMlwWoK5/s1osqfntAtHnVhRAzhItlgk7LeItV7vOzs6k1w4dOoStW7figgsugMsVqnJzc3NSpNZll12Gffv2xRlBx48fx44dOzTnFDILtSt7ATtcjDxAagZtF/GgxsPgUvVsjNqSYhHgcrsQDo5jZSSo/k4IPUBKUMkaLq+6vHReElbPZmb/VmGUMPMUZlq8mPRshsuz0SLechqgn/zkJygsLMQ555yDUaNG4dixY3j77bdRVFSE733ve5HrHn74YezcuRNbtmyJvPbNb34T//M//4Ply5fjhhtugNvtxvr16zFq1CjccMMNZjyOZtSu7AXsiGwRBGQoiqI7VFyrB4iVWzvjIMphyy3tClmS4MqTIAcUphogClz5LgQHZXYre7XfCYGXJNEo0Zu/Rk0fYOaRUdu/GRlcWtoy4A+y8xRm8sjw2C7X0JZ6M6KpXZxZAcsZQHPnzsV7772H9evXo7e3F2VlZZg3bx6WLFmC8ePHZ7x3+PDhWL16NZ588kn85je/iZwFdu+996KsrIzmAQxip87jFCKDghJaJUt5Og0gFROEXTVAavQf4brIAeMTBKUGCAg9U3BQZrayV61bYbUNqmFlr9cAUqUBYvVsKn5LifWgbEtmnkKVBokT29IKWM4Auvbaa3Httddmve6JJ55I+XpVVRUeeugh1tUiQ+3KR8COxJWP3kk3PNCoFTbaSQOkeksiz4UhBI0LKYk9QKyFwhmNUuKVvYuRl0SVBojVFq/KcZDLs6koj5WBT6IBsmhbWgFr1y4HERogeli57VVNfjxc9hbSSEQmCAPPpsgKlGBIq0I1gLpZ1FtRLK/t4B1NxOzZNBjcTMqj1gCpEMs7vS2tgLVrl4MIDRA9rIWbavUfzDRAFAaQyogjFikFzHChh5/JUG6mYFRgTCGC1qUBYqA5cuVJaXVyzLxbFtYAAQxF/hSeQou2pRWwdu1yEKEBooe1UaJW/0ERaWFW1Bmz7TYbeYC0GokAjbaD9URK4m2yqG4lVgOkKPoi6uSgjPCtTtYASW7J0GG4FIgZ1mIIDRA9rI0Sq0RlAeZFndnNhc6i3lrzrQD0K3sWE2mmsiSXBFc4V44DdSuR8s4ETBguy6oaIM79xCpYv4Y5htAA0cPMS6JihSy5pcjxUKyOwqA2uNRM7rKBnDNmuNAjSeBkRXcSOF2pCai1HQwMrmzbkiy2iayqW2HRlqoDGMzUAHEeB62C9WuYY9gphNApsB5oMg1qkiQxCaUN6AqDD6a9Lht6os50TxAqvVssYTGR6kneZyg7N7UObFDdyj6aWNRAf6NuS0I9lRWPsUmsC29PoVWwfg1zDDsJyJwCi0FUUaLJ//IIVsiqB2wTk+7pbUtTtsAYbKWoX9lH8/BQrOwpPZyx77Pa3iNvywK+W27Uv93gUNQTq1qfyFkrZhWsX8McQ2yB0cNiVacEFeDMOJPNa8HibCbVok3Gg5rkQkZhI4uUAmYEArAQgKoWipsY3UOxsmdxqKYVj3pJfE/v85nqKSTccrPDDob1a5hjCBE0Paz39bNOEPnGJwjV6e0ZR+Vky5LN2pNCrQFKLF8LauvNWmya+JmJsOjfIW1U9tPZY9+nMO54RDmGDzxNBZMtMD3byQ70FFoB69cwxxAeIHpYTEhhfQSgYouARcSRxsSEgFERdEjP4cowOQAJg/agzrY02QOkX9sR1bxYKRVCXHl6vxMdBr6xZ6Nty7CmLlOOI4BWKxYbMMHitwvwb0u1yUCtgvVrmGOYIQDNdZgMahrE62GNAbuorPRnO+Ux3iJwZfMAxZwzxUQETZYHiG29M+nAYo1I8m0ivbqVgLr+FlueHFB058pR25bMNG6R3DWZr2PflhkMIEliHlGXl+G7Y9GWap/NKli/hjmG2v1aATtYaCS0JO9jkiuHOJIk3C6ZtgcAWo0ES1j3gUxGcNzERqADY+Lh1PCdsDh/Tk+oOIvkm9kMfLPa0tCz6WlLFr8BG8xf1q9hjiG2wOhhrgFSqZFQZAWyzlw55IehqvUA2VQDxML9r2Xx4mJtBPNOTaBjCwzgL4RndY5fbPbiTJjVliQJOonHQStg/RrmGHbrQE6AxapOS/oC0ogj1pEdWbYI7BoFxmTw17KyZy0UVhtNxNm7BdBOpKzPr8qqcSNuS+b9hHMUmN3SuFi/hjmG3VyIToB5DhiVgxrARnPEe/WvKArkQMhTRR0FRpYIMd+4LkfTyp51qDjnPqBF20G5pcz8/Kps/Zt1W6r0FDKLGOVsTNptAW/9GuYY4jBUepjrVjR4gHh7G5h4t2INEmoNENUWGHEGa5Yr+2yHTjLXrRD3b5I8Vyo9QOQaIEKtGOvfrh0W8NavYY4h8gDRwzwHjEoNEMAo6oyzBii2jtk0EtRtyQo7a4A0bbkSbu8l3qcFygM8ZTl6bp0WjRulp5BJAINLgkutoWyj364RrF/DHEOIoOlhEv6pVwPEIp0+Zw1QvLGlYYvARjoCO2qAtB5NAfA3uBPf5+7hdEW9Xyz6W9YweGJPIcuACS3Re3b67RrB+jXMMbQMNAI2OFkDxGIyUpslF7CzBsiclb0SjHofNJen1gPEIneNTg8QSVtG8g4xMEi09G8CkT/LbSkt/YRJ+gIbLOCtX8Mcw24WtBNwsgZIkqSI14bFZJQtCiy3NUDqDp1MfN+ooagpKovQIEm8T1N5WvRUBreJYuuYTQTNPMKNIqWAyn7CPMu1DeYv69cwx4gMalmEjQJ2MD/hmVoDxHm7JV7YyF8kakY2WWoNEMvJRtPKniJ0m3VG4Wxbbiz7t9XC4BkultS2I4uyAHtIOKxfwxwj0llt0HmcAuujMCg1QNmEjbHlMVkhUySKyyENkJHyVGuAiL0WZmVLpo5ytFtbkmiAbBbEY/0a5hgRd6UNOo9TIHfZM/QAqTGUja6QZQ0eIOaCWztpgHSu7PWUp+XQSVN1K5yPwoitD5MoR4L+bVZbqm1HQ2Vp+A1YAevXMMcQHiB6mOhWdCaK4739EXsNi2fTIoJmEnJtxlEYFAnuDPYBOahBb2RH3Uo4L0+W09lD17DzcGrKdG6ztsy6Nc/aE26DOcz6NcwxIit74QEig/ooDCaRWSqFjQBjDVC2PEA2PQqDuQCU8xaYXtG9bXQrGjycsf1bz+nzej1AdmhLOSgj3CTZ+klswISdtq+NYP0a5hiRjKQ2sJ6dgplh8LxDW2OvYTGxUx+GSvU7YC1M522UaDESJZcUMVzt4N2KvU9L/4YSSiugFWoNEGVbahUlGz181YwABiNYv4Y5hlpho4AdsYOe3cLgtWiA5ICia4UcO6hpShRno1Ba1tmSNenA9HiANBqJRic2PaJkgIFuRcOzxd6nqSy9ea5s0JZa88oZ3i4f0lae2Vi/hjmEFmGjgB2SJBnfJjLpKAwtgxqgcxDV6QFiIYB1ahi80a1CrUZi5FBNuxyFoWEcZNmWmtI82EADpHU72XBKAZt5gPLMrkA2fvOb3+CFF15AbW0tfv3rX2e89sUXX8TatWuTXi8oKMBf/vIXTjVkR6yw0Q6dx0m48lwIDsnkR2EYjczS4tYGQoOoOz+LGycBLSJo5hogWyVCJNQAaZxoDHuAtERlmaQB0ltevAia9rBf3hGjWs+WNL5dHjOH2WARb2kDqKWlBb/97W8xbNgwTff98Ic/jLvH5bL+FwHYz33oJNz5Lgz120MDpEXYCBgXXes+KsBgW2Y75ZwlLL1ykgS43IQaIC0TG3miT77HfCReY7QtScLgtXiLGf52tRiTuvOTCQ8QO55++ml4PB7Isoyuri7V91122WUoKyvjVzFOmBH9IgjBcu+btwdI76AG6Jwg4lb/dCtkyhUkSw2QGt2K0a0UrRogF0MPEO9En4qiQA6cOZ1dh4dTK3qPerFD5mm9GiA2ARPWn8MsW8OdO3di8+bNuO+++3Td39vbq0vwaSZa3ZUCdthJA6R3UEu8V3V5ekWinDMcs4Tlyl6r14JCA8QyWSBvDZDWbMIsvSTZ+rfkloAzlxjNq+XOd2XNcWQ4DF6nBkjWeUiv3Y7CsKQHKBgMYvXq1bjqqqswefJkzfdff/316O/vx7Bhw3DppZfinnvuQXl5ecZ7Wltb0dbWFvl3fX295nKNYrfO4ySMJlPTqwHSMyFpHdSYrpAJzgIzwwPE8igMat2KqvJi+reiKFkn3kzlZTO6zQrd1l2ehv4tSRLcYb2gUU+hGuOOui0Tfgd5Bdr0gnY7CsOSBtBbb72F5uZmPP7445ruKy0txdVXX42ZM2ciPz8fX3zxBd544w3s3bsXzz//PIqLi9Peu2HDhpQC6qNHjyIYDKqug8/ng9fr1VTvMH2tQ5G/u33duj8nlzDS3rEMBQcBAMGhoK7P6+7sifx98PABuAvT//h9jf7I36dbWjWXN9AZiH5WX0/W+7t6otvHBw8cRkl3gabymhs7omUPDmSvrwRAAXp7+nS1pX/gzHehBEh/A5IbUIJAn+F6Z+9DLS2+yN8nG05B9vakvC5d/24/0hf5u62jFV5vIOmauLoNDkT+3rPbm3XrJZGu9mgfOnz0EApOp58Y+9ui41h7a7vmthzqjY63fQPZv4vO7mj/PHLoCFoHizSV13Qy+mz+IX/2+rpCnpH+3n5d/WSgL/T7VyQ56/2tTb2Rv0+dbITk7c1wdTKdR/sjf7d3tmUtr98fvd67ey/yirQZMe1tMd/FscMo6srPeD2r8TsVHo8n6zWWM4C6urrw4osv4qabbtKs47nuuuvi/j1//nzMmDEDP//5z/HGG2/gO9/5Ttp7Fy9ejDlz5kT+XV9fj1WrVqG2thZ1dXWq6+D1elU1fCrajnVjJ04BACpGl+v+nFzCSHvHcqikC70YhCIDM6bP0Cy+PVzYjS6EJhnPLE/G1U/HiB58gSYAwMjSMs317zzlw2c4CQAorxiV9f6uv3vRjNCEWzOhGlVTR2kqr2fHPpxENwCguGRY1vI+LTiBgD+IgrwCXd/NNuUkABlFw4tIfwPbCk5gqD+IfJ313q6cAhBE0fDCrPcXdjXiEEIe56qKKng8tSmvS9e/j/qasA+nAQBnjTsLHs+kjOUdG+lDd0No4p02pQ4Fw7QN/ceH9aIdoclxhmc6CkvST2w9p/uw48w4Vlo8QnNb9rb1YxtOAABGjsp+f++uAzh1pn9OOHsizvZUaiqv33sQx9EJABiuon9/VtiIoH8Qble+rn6yU2oCEEBhUfZ+Vt/fjANoBQCMLh8Nj0fbjkiDvwVetAAAxoytgsczNfP1ZX2RcWzq5KkYNrJQU3knN36GNoSM8zpPHYpHZTZGWY3ferGcj+qFF15AaWkprrnmGiaf97WvfQ3l5eXYvn17xusqKytRV1cX+a+6uppJ+VoQGiDzMCpKlTUIGw3nLdGqAWKZKC7LFgFgXEhpVjJQwwJQLaHbLIXwGvuALjGtzuR9hrf3VD1btE/yjnIMlccmYIKkn2huS9p+aTaW8gA1NDTg7bffxn333YfW1tbI64ODgwgEAmhsbERxcTFGjBih6XOrqqrQ3d3NurrMsdtJuk4iUZSqde9bk7DRaFSWkX19o4niVEwQRpKpmZkM1HASOC2h28QJ7lhOpFkPXzVTt2JQdJ0t03lseYbP8bO6BsiogN0Gc5ilDKDW1lbIsozVq1dj9erVSe9ff/31uPbaa3H//fer/kxFUdDU1ISpUzO7/qyA8ACZB6uVD3VUlpbIjsR71aIlDB4w5knRcso5a4ykQpDlaNSM1tBto0ccUBpckkuCK8v2MPnxDUbbUkMm6NjyDIv8NRokdmtLO8xhljKAamtr8fDDDye9/sILL6Cvrw/3338/xo0bBwBobm7GwMBA3FZVZ2dnkm7ozTffRGdnJy666CKudWeByANkHkbz1+jOXEscBm90UMsWJgwYC7k2cwA1kgpBa2JCpsc3qDGCGXmAKPq35tBthlvKavq3y4AHSJGViJFvRU8hs7aU1LWl2VjKACorK8PcuXOTXv/9738PAHHvPfzww9i5cye2bNkSee26667DwoULMWnSJBQUFGDXrl14//33MXXqVCxevJj/AxhEeIDMw7CXRO/ZRYbD4NUbJAD/RHGAsZQCZi4CjHiuDIVuEx6FARjTAKnq324XJAlQFPpnM6wB0uABUs7kytESMKH3ENvEe/WUR2FwxfYTrakWzMBSBpBRvva1r2H37t3YvHkzBgcHMWbMGHz729/GTTfdhKIibaGRZiA0QObBaqDR7NYmPN8n8V7V5WkVQcd4UrTmnNE6QbAkkgQuoBiqN0UiRL1HYQA6je6wbkXld+LKdyE4qO9sPc0Cb4ZtqUUEDWjPlWMoyaMNDHOzAhj0YgsD6IknnlD12o9+9COK6nBDbIGZh2GjRIMGSHJJcLklyEHFfhogNRNEuA2U0CpZjdGUqn7kW2AJW4VaDo3VunhhqQHSfPQGZw9Q+LrgoGxck0Ph3dK4BWYkYIL6GBtD2+Wcx0ErYI9a5ghiC8w8KD1AsdfZTQOkZYsA0N6WWrc/WGLE/W/qyp7QC0jRv808CkNN/zaSMoPae6v3KAy95WkdB83GHrXMEcRRGOZhZEJSZAWKBmFjbHl2OgpDkqBK72CkLbVu7bDEyETqeA2QhtDt2PKoD/s1LoLOfr0RL4kR75bRZyMJgzcphYVe7FHLHEHryl7ADlZeC7UaCVYeIMrVv9Zn01OemRogI0aCke/EcC4oQk+C2oVZxMCn6N8sk5hq9XAa8RRSRO8ZSJgpPEACUoQGyDxYreq0aCQAmhVyvP5D+wnPWk45T7yOoi1ZYcRIMLSyt7gGSA7KUM50G9V9gJEHSFVbMgoqkNySKuE7M08hoSYHIGpLoQES6EVogMyD2b6+higZwF4aIK36j9h7VZeVKxoglhl+OR+FoWdr3lAyTCNtaaR/azTuAP5tGQ6YAIxFZQH82zI2GahdFvD2qGWOIDRA5mFk71uPbsVIskCzNEBatz9i71VLrmiAXC4poqci13YY2ZZUq3EL58qRFciyNq+jWcc3aDXuAJq2NLRdTtiWdtzBsEctcwShATIPQ7oVHfmbYlfIiqJxgtCqI2CU5FHrgK2nPNtqgPR4SVgZwZwT3OmZ2AxtgxrQABnycBL0bz1taSRggrIt7XYMBiAMIEthRwvaKTAbsHVsE8Wef6WqPCM6AsIQfz3lWeEoDIBoZc8o8zTvozD0bM0bMoKHtJ0HZ/iwX61JHk1qS4p+YqQtzVy86MUetcwRhAbIPAyJRHVM2kZCxclDaTWukJmFwVN7gIjrbeT0ecoweCMaIEDHNmiOaIA0e4upNUA2CmDQiz1qmSMIDZB5sNrX1+Ul4Sy4NTQZaTzlHEDc+WQUK2RWGBr89azsjQiFYydSrdmLCTVAgMGJ1MEaINULCrM0QEYMV5vMX/aoZY5gRxeiUzDmste//QEQCG6JvVuG3Og6VsisMLJVqGtlb0ADFLstqSZ021QNEGFKAa1lKYpieQ0Qi34CqIwYZeXdEh4ggVbMjIDJdQzpVgx6gHh7G1hNRiQaIJuGweta2TPQAKn2yBAa3InXWflYkVj9nZaDXiPlUWiADARMRAMYVOY4Ik4HYjb2qGWOILbAzIP6+AZWExJvDZCRiV1PeWYuAgy5/w0YCcGA/khAii1XIwLvxPtVlac1V44kRTI4805MmHgdiQbISMCEke09oQESUCJE0OZh1lEYAH8NkMvtQnjxRxLiT9yWrDBLAwQFkbPk1KL1zCV2xl12LwJgQlvq1MkYMVx1lUe8oDC0vSc0QAJKIj9GKZSWXUAH9cqHcoUM6BdS6hmw7bqKNEsDBOg3FK245Zp4HUlbhnPlEIRuU/92WXjv9Dyb0AAJSIkMannqhI0CdlDrVlitkLVuSZBrgAhyKrHCjit7XVFZDtMAAfpTCugxuCkj3BLrpdd7p+vZCPqJ2dijljmC1jOXBOyg1q2wGNTUChsB/VsEhjVANjoKw8yVPXcPEKNEnyTZwA0YCRRnzxnyblG3JaUGyIYSDnvUMkeIuCtt0nmcBPlRGAy8JFoMZb2ncxve2rFRNtn4lT3f40kA/UaJIisRzZBVQ7dZZEuWpJB+TQ16Q8WNnOMH2KAtKTVAwgMkMIIsPECmQXl2UeJ1vAc1IOY8IQoNECs3ul01QJwnUnLdisE+oFdLosUAZuEBclpbKooCOaAtiWlswASFnsps7FHLHCFWAySghdmkTagB0jRBsNBIEG+32EoDRLiy12MkSm4J0DuxUetWdIyD4d+CHIxmLleDkzVAehYvAK2eymzsUcscQWiAzMNQtmTqozB0eIB0r5CNGnc20gCZFbqttTw9RqIkSbrPlDLrKAxNW7x6jUkbaID0tqVeUTKlnsps7FHLHEFogMzD5ZIguc4kUyMI/2ThRtcyyIQHUUVWIGtZIRtNgkeQKI4VdsmYrddIJM2VQ9y/KdvSzGNF9Bp3WuYUSj2V2dijljlAnLDRJtaz09D7wyc/CsOABwjQ5nEymiguF4/C0HU8hc6VvRYj0cXAA0Tp4dQyaetuSx26FfKjMHS2pV5RMouIUaEBEmjCju5Dp8Fkm4hzqLgeYSPAaLuFwAOk9ZRzljDLlqx6Yos+H+9tm9hrDWmALOrh1KvhM/MoDEoPkJ6ACTslMdWLPWqZA9ix8zgNveI/Sg2QXmGj7kFUh7eBxQrZnU+fDJSJMN0d3UrNhl5DUfcWmF4PkNE+QOzh1N2WhPmbAP5tqVsDRDgOmo09apkD2NF96DRYeIB4a4D0Dmq6B1GTjsIwQwfHQgNEoVsx6gGiPg5FkyZHjkZx6fVw6m5LQg+n5JLgUmso61ws6dYA6T1WxIaLeHvUMgewo4DMadhBA2R0UAMMiEQJNUBmrCBZHN9AolvRYXDHXmvlozD0joOUeirJJUXOauSdmRkwEAZvcLGkKIAc5KunMht71DIHsOM5Kk5D7963nkFbrwbIqLAR4O8BYnGsiBmLgNgkcLqTU1LoVgx6gBStuXIIk2Ea3bZJ/Iys5elty7CXhCCJqVnPprk8Gy7iLV/L3/zmN5g3bx5uvvlmVdefPn0aP/nJT/D1r38dixYtwooVK3Dq1CnOtTSO3pW9gB2xe9+KonOC4KwB0itspNQASZIEV56kuazY681aBER0YHpX9tS6Fb0TKW8dGIOoLIpnI08poCOJKWXCTIBRW9pkEW/pWra0tOC3v/0thg0bpur6vr4+LFu2DDt37sR3vvMd3HrrrTh48CDuu+8+dHV1ca6tMezYeZxGZJBQEElJoAZd52XZRAOkW3St15AwUQMEGF/Z69atcA7dBgwYXISh23pD/PVGZhltS4pjbJzelmaSZ3YFMvH000/D4/FAlmVVBsybb76JEydO4LnnnsOMGTMAABdddBGWLFmCdevW4Y477uBdZd3Y8SRdp5G48lE7CYcHGr3CRitrgJIMroD68oYQJDnolSVGV/aajFLilb3e6Dw7Hd+gtbyktlS57tHtKdSzVWrXtrQBlq3lzp07sXnzZtx3332q7/nggw8wffr0iPEDANXV1fjSl76ETZs28agmM4QGyHz0uu11TX7EbmZqHYGelAJ6TjlnjZ4QYEVRbKft4B1NpPvZ9PZvFltuFBogHWJ5p7elmVjSAxQMBrF69WpcddVVmDx5sqp7ZFnGkSNH8PWvfz3pvRkzZmDbtm3o6+vD8OHDU97f2tqKtra2yL/r6+v1VV4nQgNkPkY1EhSZmY0KYAGaiCM9KQWs4EIPP6Om3Ewx26UUImgmGiAdmiNXnqQ6N5Nu75bZGqBBbeXpFvlTeArNbksbYEkD6K233kJzczMef/xx1fd0d3djcHAQFRUVSe+FX2ttbcXEiRNT3r9hwwasXbs26fWjR48iGAyqrofP54PX61V9fZj2I32Rv9s6WuH1Dmn+jFxEb3un/Ky+nsjf+737UTQqX9V9A/1+AIAsyarrEhyMDhbdnT2q7+s83B/5u72jXfV9p9u6I38fP3YcfcVtGa6OKa+9M/L3kaOHMeQeUFVmQA7tlQ0NBlTXMTAQbZMBfx+z71ULgWDod6el3kF/tN79/n7V9/Wc8Ef+bm1uTXlfqv596kT0u2xsPoUhrzp9Y7cvet+B/QdR3FGg6r6+3gEAgOSC6meLDSLwdav/jXY3DET+7ujuUH1f8+nob/dE/QkMlatrk7bW9sjfR48fhVzkV1XmYCD03QWHZOzZs0eVYajICsLN4h9U9zsCgN7mqFXW1tKm+r6mhmibNLU0Qfb6VN3X1RNtu0MHDqPZV6iunr7QHCa5gL379qq6h+X4nYjH48l6jeUMoK6uLrz44ou46aabUFZWpvo+vz/UIfPzkyetgoKCuGtSsXjxYsyZMyfy7/r6eqxatQq1tbWoq6tTXQ+v16uq4RM50t2IfTgNABg77ix4PLWaPyMX0dveqTi9+Qu0IfQjnlQzGWVnl6i67zM0AgiisKhAdV3kgIxP0AAAKCocpvq++v5meNECABgzrgoezxRV9+FkPY6hAwAwdsw4TPWcreq2E+9sj7TJdE8djp48rKqu+4vb0d86BATVDUQA0Nflx6dn2mRE2Qhm36sWDpR0oO/0EBQN9R7oHox8lyPKSlXf1zq8C7vQBAAYOaIs5X2p+vfgwcOR73JizUTUeMaoKq/jkz1oQWgSrJ1Yi8pJI1Xdt8vVAmAI+YV5mr6TT9wNkIMKCvOLVN93SmnDbjQDAKrGjIbHo27szWs9gSMIGTNjqs6Cx1Ot6r6m93fiNHoBANPqpuJE2zFVdT1c2g3fGXfRjLoZqryjQwMB/A3HAQClI0tUt0nnSB8+RyMAYETpSPVjTP3RSJtMqB6PyZ5xqu7r/mwvmhAynqrHV+Os6eWq7vO62wAMwp3vVl1HluO3HixnAL3wwgsoLS3FNddco+m+wsKQlTo0lOw5GRwcjLsmFZWVlaisrNRUJkuEBsh8dOfm0aEBktwSIAFQ7HMUhh4NkHwm54ya4yGs4EKPJIGTFciyokrUziQ1AbW2Q8dWitZtSXe+C3Iw6EjdSmJbqjGAjJ7ODli7n+gZB83GUjVtaGjA22+/jWuvvRatra1obGxEY2MjBgcHEQgE0NjYiO7u7pT3jhgxAgUFBXE6njDh18w0cLJhBf1DrmN0oNEyqEmSpCuU1syjMPRGnal9Pr1huyzRo81ikbxPU3ZuYh2Y3uSUET0VcSJE3ZnOORslRjMzA/QaID1h93bR/wAW8wC1trZClmWsXr0aq1evTnr/+uuvx7XXXov7778/6T2Xy4VJkyZh3759Se95vV6MGzcurQDaClhh9Zvr6BlEFUXRHbrtznchOCSTZFuNXyGr17SxmCDkgAwUuLPeY4UokthyA0NB5BVqq7duI5HwKAxAp8hfR/8GQu2ouiwz25KzUcLktzuo5dmiOiy9+akoPIVmYikDqLa2Fg8//HDS6y+88AL6+vpw//33Y9y40D5mc3MzBgYGUF0d3eu97LLL8Nxzz2Hfvn2YPn06AOD48ePYsWMHrr/+epqH0InYAjMfPWHwSlCJ5A7Ru0LWu6ojHdQ0nHIO6GtLKywC9HiATF3ZUyRe1Lmy13OoJpO2tGhKAVM9hYTnqtlpAW8pA6isrAxz585Nev33v/89AMS99/DDD2Pnzp3YsmVL5LVvfvOb+J//+R8sX74cN9xwA9xuN9avX49Ro0bhhhtu4P8ABhCJEM0nT8+qzoDXInL4KrEHSNfkp/PZAJq2ZIWulb3urYaod8mq2g5FViJh/lpX9npyQTFpSz1bYFLIyFdfnnYjwUzvFkl6hrAnvMA+85elDCCjDB8+HKtXr8aTTz6J3/zmN5BlGeeffz7uvfdeTRFlZmAF/UOuo2cVacRzp0cDpFf/oTvxoo7EbYC+QdsKXlCj9dZ9FAbByt7opK3ZA6QjVw6TttThAXLnuVTnOApfn/gZWcvS2b9jAyZ4n+GWWDe1bak3GajZ2MIAeuKJJ1S9BgBVVVV46KGHeFeJOXoHNQE79BwXYUS8bnSCoIw4MuIB0tWWJmeCBvh7gGI9DhQrez1GsF6DG4jZAgsoUBRFlYFh1mG/Wp9Nz2JJb1uGAya06gUpI0b1JgM1G/vU1OFYYfWb6xiO7KDQADFY1enRSOh9Ni3lWeFAYEoNkCRJuo7eYHEYqh7dimYvoA4j2KyjXox4OFUb+AzakjqiTpcX1EYLePvU1OEIDZD5ULq1Y69XzuTKUVUei9BWHYOoXu9W7GdkLcsCvwFd26AG6h0xgvUKhSm3wLR6SfRsJ7IQ7urQABnSuOlqS/XbbYC+fkLZllZYvOjBPjV1OEIDZD7Uk5+e7RbdUTKEB70mXk9hTLKCOn+RLiE8o+R9qsoy4OE02geoNUBaMKstraoBssLiRQ/2qanDERog89H1wzcy+RlcIfMOgzcibNS13WKBZKB6+oCR1a/hZJhaVvaEuhVA53ai0AClRFdKAcLDUK2weNGDfWrqcOzagZyELvGfke0Ps5KpqR2wDQgbdQlurZAHiFAEHVueHhG0pDE3k1m6FYD/RJorGiCKrPGGF2Y2WsDbp6YOxwqr31zHrDB4QKermXPItaEB26Zh8Lp0Kwbqree4CFnvtg1x/zasAeIc4abISiiRqcayEq+n1FPpMe4kCXC5OXsKLfDb1YN9aupwrLD6zXV07euz0gBxjjqjjsqi9qSwwmi9da/sKVITGO3fxDowTcd8uKLeMN6LCcA8DVD4kF4t5RnZmteTwsJO85d9aupwrJAFN9eh1gDpibZgEQJNYtwZDbm2gAiaUgMk64gENLTlSpDmgbwtNW4TGTFIqL0kurRpJnkK7bSDYZ+aOhwjP0YBG6g1QEYNLi3lSS4pkniP99lFAIOke1YIgycwFI3owKhX9nqPwkj8HLXl6TW4eAcUAMYjpSi3lMk9hTaav+xTU4ejV9goYIeZGiDKLQmSrR2baoCo663HKDFNA2TxPhD+/epKukgdBk9oTJJEuFngt6sH+9TU4egd1ATsoN77NqIB0ipsBLQLKZm57G20ijRLAwTwX9kb9sgQC4X1Gt2Uxpam8lhpjjT+fkki3Czw29WDfWrqcPQOagJ2UO99G9EA6dlnN+IBol7955oGCFD3vSiKwiR5n65nI5hIDZWnUVDOzMNJ+GyAdqOExHC1wG9XD/apqcPRO6gJ2GF4UKPQEehMTBh7D4nA22iiuFzUAKloJyWoAEryvWow7N0i9JK4dEgBtJ6tR/7bNdKWRjRAWvukOApDQI1eYaOAHeRHYRgQXesZZFxmeYBslE2WXAOkcWVvpleO8igMPd+/1mNFTO3fnNtSlqNRhVrnFEmS4MozkFLARot4+9TU4RiZ2ARsMJwskNDVbGSCsGrYrhWSgRrWrXDWdhgxtiSXBOlMJCD1URhay9OTTThcnqIAcpBvW5p5rIia8ozmlTOUUsBGc5h9aupwhAbIfMJh4gCNB8hQCLSRLbCAAkXJnnOG+tmskAxUjxHMStuhygAyaCRG+wCt10JreUYM/NjPyVgWIw2QFdvSqEFiKKWA8AAJtGBE2ChghyRJmlc+rASwWr0kRicIrYMo9UGvuXYUBqBya4PVyp5a5K+1f+t4NkNtSR3hxrktjW5Jad0uFxoggW5ihY126jxORGuouFlh8IYnCK1udArBrcU8QNTHoagxgpmt7KnTPHBO8phYnqq2tKsGSGM/MeQpFBogAW/s6j50IpqFlKy8JGpWrEEZis4IIED7hGTWURhmJgM1km8FEiIaG13lcf5OgJiVPXWI/5C6Yz6MaCE1t6VdNUBqxgqD/URogARk2LXzOBGtK2QjA43WQdSoh0SrUWLWURhmriAN5VvJc0GSNIZum7WyJwiD19qWiqIYS/NAqKcyHDBhF0+h0AAJeGNX96ETMaKR4H0MglGNjBEPkJXPLmKJoXwrBF4LZit7gjB4zVuuwaiXSFeaB0I9lZGACVeeZMxQJvQUqg2YEBoggW7s2nmciMvACpn3vr5RAazlNUBW8AAZyc5t0GtBrQHSHAnIWShsxEOSWB7vttQTMMHMUCb0FAL881OZiX1q6mCM/vAF7KCMkjGi/7C6BsjldiG8yNWqATIzGajkkiKre63HRZDoVhit7KGcCb7IAuVRGEYXgka2wIwsKCgCGDQnQmTkKQR0bM/baBFvn5o6GCuE/wpCRDQSwWgm1UwYEjYW6B9k8vLdmsoCTPA2FITqaCcNEBD9Xnifug2YoAEyYgRr7HOa+7fBcVDrFhirttSewoL4t1tA0JYWSGKqB/vU1MFYIfxXEELzXnvsIKoxAshlwM1sdItA++RHIKS0gAYIoK23Zi+JjVb2hqKydD1b9PenxkgwK1KKPMKNYDvRCklM9WCfmjoY2abWsxPRu/ftztceAWRIA0SgI5ANrpCjQsrsZVkpGajeM9OsbpAAtNuumr1bjAzuxM9KWx5xpJSRYz6c3pZmYZ+aOhjhAbIOsT/egJqBZtCAAJbwHCjAvLD7wKAKY8vAKees0ZIETpaViJbG8JYUxXcSW56a7yWcm8klwaUxN5PmxcRQMPK3YQ8nYVta0VNot7Y0C/vU1MEIDZB10Jwrh9HRFLzPLgL0DKJsRKmayzJbA6TBA0QdmWdUt6JX20HRv416OI0cF2GkLdW0oyIrkTB/Ck+haW2pIxmomeSZXYFEjh49ipdeegn79+9He3s7ioqKUF1djW9/+9uYM2dOxnvfffddPPLIIynfe+ONN1BRUcGjyoax0uCf62j1kjA7mkJzlIz2QcbKUTJWSgWhZWuDlZEIEOmydIppdX3/ZyIBFYX+2Sh1MsqZgIlM2cvtFMGZVJ7GfqJVCmAmljOAmpqa0NfXh0WLFqGyshIDAwPYvHkzVqxYgQceeACLFy/O+hm33XYbxo4dG/daSUkJryobxuiqTsAOvQONYbc2gUFiZF/fyKAdzjmTaWC0UhRJYhI4tfU2/J0QiE31Jl7U+5248l0IDsrkmc5JNHUJY0VeQfroLqOCayOeQgpj0sgRJmZiOQPo4osvxsUXXxz32tVXX42lS5di/fr1qgygiy66CNOnT+dVReZYafWb6+g9LkLPllQ454wcVEiEhpq9W6wm9zM5Z6S8DIaEhbygiVuFmcKWWYala44EJNSB6f1O3HkhA0jrNij1YahGkwUGhzIbQCwNEs3PRnhsjt3y2Nmitm63G1VVVfD5fKrv6evrQzAYzH6hBbBrFk0nQukBir3PyRogIHtbWkkHp8X9b+rKntALSNG/mbYlwRaYlpQZ1N5bwxog4nHQLCznAQrT398Pv9+P3t5ebN26FZ988gkWLFig6t5ly5ahv78f+fn5uOCCC3DPPfdgwoQJGe9pbW1FW1tb5N/19fWG6q8Fu4YQOhEtE5ISEwGk13ANlRe0dKZcSQrpObSS2Jb5RemvtVIeES0TqeM1QAZCt2PLIwlLNzFUPFtbMk1gSR0Gz1kLaSaWNYCeeuopbNiwAQDgcrkwb948/OAHP8h4T2FhIa688kqcf/75KC4uxv79+7F+/XrcfffdeOGFFzBmzJi0927YsAFr165Nev3o0aOaPEk+nw9er1f19QDQeLIr8vepplPwezs13Z/L6GnvTLR3dkb+PnrkGDql5rTXxg4MA4P9uuqhSKHPGOjzZ72/8UR35O+m5kYEvT2ayupo7I/ef6oZ+V5/xuv7fH0AQlEd4bppae++gajHdp93HwpK0w83PSejdens6WT6nWqlt7838vc+734Ujkhfb9+paL27ero01zvQHx1buju6k+5PbO+2lphF2vFjaB0s0FRea3t0rKk/Wg9fUWvG68N9fDCQvX+mIiAHAABDA0NZ728+Hu0vzaebIXn7NJXVdXIg8ndL82l4vYGM1/u6o+XtP7gPkiRp6t++3ujvb/++AxhWnp/22r7Tg5G/e3za+4kciGal7+nqyXr/6eb2yN/HG46jQ0k/jqW8vy061jTUN2BgREfG64cGz3zPcvbvORbW43csHo8n6zWWNYCuu+46zJ8/H62trdi0aROCwSCGhoYy3rNw4UIsXLgw8u+5c+fiwgsvxH333YeXX34ZDzzwQNp7Fy9eHBdlVl9fj1WrVqG2thZ1dXWq6+31elU1fCz+fYdQj04AQHXtREz0VGm6P5fR096ZGDxwGCcQmiTGjx2Pak96o9nfO4RP0AAAKB1Zqqseu4paMNjTD5fkznp/4MgRHEVoIJpYMwG1nrEZr0/kpNyKvWgBAJSPqoTHMy3j9XvcrQCGkFcQrZuW9m4aNYh2hIyuybVTUFo1PO21jVI7dqEJADC6qhIej3kavubynWhHaPKdXDsZI8YUp722yd2BL87Uu7KqAh7PDE1lBfxBfIoTAIBhRcOT2jaxvU9v+QLNCE3cU+qmYNTZ2oI75OPHImPN2LPOxhTPuPTXBmV8pIQ84SWlxbr6997iNgy0+wBFyn7/yXocRsjAGz/xbEzzjNdUVkt+B/YgNNGPGjEqa3n78zvgwyAkt4SZM2cC0Na/Wz/chdMIGcu11ZNQPqE0/bVHu7ATjQCAitEVmttSkRV8jOMAgKKCYVnvb//bbjQiZKBNnjYJlTUjNZXnajweGWvOqhqLOk/mHZS/BUN1G16cvW6xsB6/tWJZA6i6uhrV1dUAgEWLFuFf//Vf8eCDD+K5557TFGZ37rnnwuPxYPv27Rmvq6ysRGVlpaE660VogKyD7n19A1EygLU1QEb1H7GflbasXNUAmZgIUcu2je4+oCUVAsu21NK/DW7vAfzbUmvABGVbynL03ESzf7tasU1t58+fj3379qGhoUHzvVVVVeju7s5+oUkIDZB10LL3zUK3oiVZoFkaIN3GnQYtTa5qgFwuKZI/xmpHHBg1uIHoRKrICuQshwszPeZDg8Fl1LgDaNpSU8AEYVvaOYrZNrX1+0N77VoiwcKcOnUKZWVljGvEDhY/DgEbNEUuMcjfFLtCVpQsE4TR07J1Jnk0OmCrKc9KeYDIvSR6jWDOCe5YTGyahMIMk/dp8nAS9G8WbRn+HWpNl8C7La2UwkIrlqttR0ey2CoQCOBPf/oTCgsLUVNTAyAUtVVfX49AICp064wRsIb529/+hv379+PCCy/kVWXD2NmCdhq6B2wG20ThVPlpy2MYAq31oFc92HUQ1Ru+r9tQ1Jl5mvdRGCy25jUZwUPR/s8iL082IhFuBB5Olm1J0U+0tKWVFi9asZwG6LHHHkNvby/OO+88jB49Gm1tbXjvvfdw/Phx3HPPPRg+PCSkXLNmDTZu3Ih169ZFsj7fddddmDZtGurq6lBcXIwDBw7gnXfeQVVVFb773e+a+VgZERog66DFS8Ji2yYxVDzT55CH0hpcIWtJKWClRQC1+1/L6fOUYfAsNUCAim3QHNEAGfYWU2uAtPQTm81fljOAFi5ciD/+8Y9466230NXVheHDh6Ourg533nknLr300qz3fvzxx9i2bRsGBgZQUVGBb3zjG1iyZAnKy8uJnkA7QgNkHfTu6zPxkgzJwLD01zLLzAxtwkbdA3bMeWUUK2RWaBr8WazsdZ6Z5tJx6KRZGiBA40TqYA2Q7gWFWRogLYarzeYvyxlAl19+OS6//PKs161cuRIrV66Me23p0qVYunQpr6pxw84uRKehzWXPbvsDIBDcEnu3NLnRGayQWaFlq5DJyl6DBih2W1LPoZOmaoA4t6WWLVdFUWynAdLTTwCdEaN6vVs28wDZq7YOxUoRMLmOJt0KYw8Qb2+D3smIRANkoVUk5XcCRCcNLSt73R4ZQoM78T4rHSsSq7czctBrpDwKDZCGgIloAIOky1CmTgdiFvaqrUMRW2DWQbduhXhC4q0BYjmxqynPSosATe5/hkZCMKA+EpDZlquKsgB7eDglSYLrzIG7mspi8GwkGiAtARMst/ccrAGyV20dipX0D7mO7gggggnJ8ArZ7UJ4MUgS4k/clqwwSwMEBZGz5dJh9Mwl/caddi8CYEJbqtTJsDRcVZVHvKBgur3nYA2QvWrrUCI/Ril07pLAPKhXPpQrZEC9kJLFgG3XVaRZGiBAvaFohy3XxPtI2jKcK4cgdJv6t6vHe8fi2YQGSMCVyKCWp0/YKGAHtW5F7wrZ6JYEuQaIIKcSK+ywsmcSleUwDRCgPqUAC4ObMsIN0Oe9Y/JsBP3ELOxVW4di9MwlATuodSt6BjW9wkZA/RYBcw2QjY7CMHNlz90DpDPRJ0k2cIZGAsXZc5q8W9RtSakBsrGEw161dSgRd6XNOo8TIT8KQ4eXxIih7NaxQmaytWOjbLLxK3u+x5MA6o0SRVYiGiG7hG7ryZYsSSG9mh7UhoqzPMcPsGBbUmqAhAdIYARZeIAsA+XZRYn38R7UgJjzhCg0QHrd6BbyAGnSrXCeSMl1K4z7gFotiREDWI8HyGltqSgK5ICxJKaxARMUeiqzsFdtHUqsBkhgLronbUINkKEJQo9Ggni7xeyFgFVX9iyMRMktAWonNmrdCoNxMPzbkIPRTOapcLIGiMXiBaDVU5mFvWrrUIQGyDpoypbM4yiMTOUx8ACpXiGzNu5spAEyK3Q7W3ksjERJklSfKWXWURiGtnjVGpM21ACpbUtWomRKPZVZ2Ku2DkVogKyDyyVBcp1JpkYQ/qnHjW5kkAkPooqsQM60QmadBI8gURwrrJoxm5WRSJorh7h/U7almceKqDXujMwplHoqs2ByFlgwGERXVxeGhoZSvj9mzBgWxTiSOGGjzaxnp+LOdyHgD1rvKAyGHiAgNHC5Ct0pr2OdKC4XjsJgcjyFypW9ESPRpcMDROnhNDJpq25LBroV8qMwVLYlK1GynohRsxcvWjFkAO3fvx9r1qzB559/jkAgkPIaSZKwadMmI8U4GisN/IIQ7ryQAUSRvE+t/oOFsBFIntzz0hhAzAXeGlbIek45Z4nubMm6J7bo8/Letom9V5MGyCYeTrUaPjOPwqD0ALEImLBTElOt6DaADh48iHvvvRdutxsXXHABPvroI0yZMgXl5eU4cOAAOjs7MXv2bJx11lks6+s47Nx5nIpa8R+lBoiVsFH1IMrA26BnhezONz8ZqC5huju6daoVtYYisy0wtR4g1n2A2MOpui0J8zcB/NuSmQaIcBw0C90G0K9//WsAwLPPPouamhpcdtllmDt3LpYsWQK/34+nnnoKH3zwAR588EFmlXUidnYfOhU9QmHeGiBWg5rqQdSkozCsoIPTowGi0K2w9gBRH4eSUZMjR6O2WHk4VbcloYdTcklw6TWUVS6WmGmA1B4rYuNFvO7a7tq1C3PmzEFNTU3ktfBJxoWFhfj+97+PyspKPP/884Yr6WTsLCBzKmrFf5QaINaDGqBBJEqoAbLCClLP8Q0kuhUGBnfsvVY6CoPVOEipp5JcUuTsRt6ZmQENYfCMF0uKAshBvnoqs9Bd297eXowbNy7y77y8PPT390c/2OXC7NmzsX37dmM1dDh2PkfFqajd+2YxaKvVALEWNgL8PUB6jhWxwiIgNgmc6uSUFLoVxh4gJVuuHMJkmKy3bRI/M6k8Vm0Z9pIQJDE169mylmfjRbzu2paVlaGnpyfy7/Lycpw4cSLumsHBQQwMDOivXQ7AamUvYEfs3nfYq5kKyigZVsJGSg2QJElw5UlZy4p93yqLgIgOTO3Knlq3wmoi5a0D0xGVRfFs5CkFGCQxpUyYCehsS4v8ftWiu7Y1NTU4fvx45N+zZs3Ctm3bsHv3bgDAsWPHsGnTJlRXVxuvpYOxc+dxKpFBQ0EkRUEqmJyXZVENEDPRtVpDwkIaIED7yp6ZboVz6DagweAiDN1mFeKvNjKLdVtSHGPj9LY0A90i6IsvvhhPPvkkWltbUVlZiRtvvBFbtmzBvffei9LSUvh8PsiyjO985zss6+s47HySrlNJXPmkm5TDAw0rYaOVNEAss8kOIUhy0CtLtK7sDRmlxCt7tdF5dj6+IVt5rNvSSlmu7dqWZqDbAPrnf/5nLFiwAKWlpQCAKVOm4PHHH8fLL7+MU6dOoa6uDtdccw0uvvhiZpV1IkIDZD0S3fb5RamvYzL5EbuZqXUEalIKsDjlnDVqQoAVRbG9toN3NJHqZ2NocKsqj1oDxEAs7/S2NAPdBlBeXh7Ky8vjXps1axYeffRRw5XKJYQGyHpo1UiwzMyctizGAliAJuJITUoBK7rQw8+cMTdTzPYohQiaiwZIhebIlSfpzs2k2rvldA0QAw+Q09vSDOxVWwciNEDWQ6tRwjIzc9qyeIQJE3qcVG+3WWQAVeMBYm0kAjTaDq0TKYm3yaa6lVgNULqACTkoI/yWkzVAkoFkoGZh+CywtrY2HDhwAD09PZDl1I20aNEio8U4FqEBsh5ajRK7RGUB5kWd2c2FrqberPOtAPQrezUTqZGyJJcEl1uCHFQcqVuJlHcmYELKSzYAuGxJUbcl535iFroNIL/fj1/84hd4//3301q+iqJAkiRhAGVAaICsh2ovCYMVsuSWAAmAYt2jMFhM7vKZnDOpVohWdKFHksDJCmRZSSly55KagFrbocLgMrot6c53QQ5mPlvPrrqVxLZM5QlkfTo7YK1+wmIcNAvdBtBzzz2H9957DxMmTMDll1+O0aNHw+1OfbCiID1W1D/kOloHGiODmiRJcOe5EBySLRUGzyPqLBiQkVeQPEaw8m6xJNH970pxaCyP5H0Zs3MT68BYJacM9Z8gTdSh2rbkpKdKFTAhPIXWRbcBtGnTJtTU1OD5559HQUEByzrlFFZc/eY6agZRRVGYaCTC9weHZJpEcXo0QKwG0YAMpDKArLgFljCx5aUygHgYiQTCdEoNUOz95AY3hZ5KhVHC47eb2SCJ7sgw0ycSeArNQHeNfT4fLrzwQmH8GERsgVkPNdlrlaACMBA2xpZHrQEKDgXTlxce1AwKG9W0pRUXAfETaep2MnVlT6EDG2Szso/qqdL3Ny5taZGUAuF2NFwWcRJTreeqWeW3qwXdHqCJEyeio6ODZV0AAEePHsVLL72E/fv3o729HUVFRaiursa3v/1tzJkzJ+v9PT09ePbZZ7Flyxb4/X7MmDEDd999N+rq6pjXlQVCBG093PnRCV/Vqo7RClltZAfNKpLt6h+gaUtWmLWyp4gEVOMFVGQlEuZvdGWvJheUmR5Ol1u/ga/GKDHTu0WSnsHGGiDdNb7hhhvw4YcfJp3/ZZSmpib09fVh0aJFuP/++3HTTTcBAFasWIENGzZkvFeWZSxfvhx/+ctfcPXVV+POO+9ER0cHli1bhoaGBqb1ZIUV9Q+5jpqBhtV2RGx5qiM7KBIvMkjcBtC3JSs019thGiCWCzNVW2AmRTm68126cxwB6gwuVgZJJGAiQ1mJ5fEOg2eVDNQsVHuAdu7cGffv0aNH48ILL8T3vvc9XHfddZg2bRqGDx+e8t7Zs2errtDFF1+clD366quvxtKlS7F+/XosXrw47b0ffPABdu/ejYceegjz588HACxcuBA33ngjXnrpJfz4xz9WXQ8qWLkrBexw50f1HukmpLgJooB2gqD0NrD0AKlqS4ssAjR7rgi3GhLrp7k8Fc/GytgCom0jB5RIZHAi7IS70d+uqiSmjLxbsZ+ZCKu2jAuYoIgYVdNPYpOBGhwHzUC1AbRs2bKUHVdRFLz00ksZregPPvhAV+XCuN1uVFVVYd++fRmv27x5M8rLyzFv3rzIa2VlZViwYAHee+89DA4OWk6zJDRA1kPNCpmlbsU8DZCKFTKjZ8tUnhWTgapZ/bKqtyRJUSG8ym0i3it7ph7OBCM41khJVQ/Ko15YejjTGviM2zI4JJNH1NnJe6sF1QbQzTffbMhVqJX+/n74/X709vZi69at+OSTT7BgwYKM9xw4cABTp06FyxX/RcyYMQNvv/02GhoaMHny5JT3tra2oq2tLfLv+vp64w+hAqEBsh6Ubu3Y+5UMuXK4hLaqGERZ5IBJ/Myksiz4G1CzsmdZb5ealT2n0O1UsPTKJRrBqQwgLt40FRogpho3VW1pbA6NLJYIIkbVtKUVFy9aUG0A3XrrrTzrkcRTTz0V0fy4XC7MmzcPP/jBDzLe097ejvPOOy/p9YqKCgChrNXpDKANGzZg7dq1Sa8fPXoUwWD66IVEfD4fvF6v6uvbTrdHyzp+FC0D1vJQWR2t7a2G0y29kb9PNZyC4vUlXdPbPBj5u7uny1AdBgb7I3/v3rUn5UDS2hLtJ/Un6tEuN+kqq799KPJ3e2tH2noHBgMAgKHgYNw1Wtu7oysaKHHk0FG0BRqTrmk5Fm3flrYWeL39SddQ09EZU+/DR1O29+lj0X5yuq0FXu+A7vIUKTSRDPT507Z3d1dP5PUDh/brnnDaG/sifzeeaoI7RXvH9hNfb4+h/t0/EC1v7559yC9ONoBamqLt3XCyAd35p3WVNeiLjtVd7el/l4P+0PMF5YCh/t3W0Rn5++iRY+hytyRfczT6/K3trfB6h5KuUYuM0PP5BwbT1rOroyvy98EjB5E/TF9+vs5T0X7RfKoFXu9g0jX+7kDk797+Xs39hMf4Hcbj8WS9xvBRGLy47rrrMH/+fLS2tmLTpk0IBoMYGsrccfx+f8otrvBrfr8/7b2LFy+OizKrr6/HqlWrUFtbqymCzOv1qmr4MC0ffI4WhCaAaXVTMXJssep7BdrbWw1HfU04iFYAwOiKKng8k5KuaSnoxOcITeYVVRWG6nB8ZC+6Eeqb06bUobA4P+matq270ITQBDhl2mRUTByhqyxfWz924BQAoKS4NGW9FUXBR8GQB7S4ZHjcNVrbu3/PAZxCNwBgwtkTMN4zOukaV3MDDiHkfT17wjhM90xQ/0CcGNh7ECfD9R43ARM8VUnXHGg5Eekn4yaMwwzPRN3lfV7UjEDfANySO217HyroivSTc2bN1J2eoGHoNPYhZGBUjKqExzM16ZqOEz2RflJeOcpQ/z41agAdCE2mUyZNQXHFsKRrurfvjbT3pCm1GDNtlK6y/L4h/B2hwJzhw4rT1vtTOXTNsOIiQ/176PARNCBkcJw9djxqPWclXXO48xT2n2nvcWefBY+nVvXnJ7J72GkMdvfBpbjS1vNYkQ+dCBnjnpkzkF+kb5pvlNrgRcigKx9VDo9netI13c192I6TAIBR5SM19xMe47cWDBtAra2t+Otf/4qDBw/C5/OhpKQEU6dOxcKFC1FZWan7c6urq1FdXQ0gdJbYv/7rv+LBBx/Ec889l3YrrrCwEIODyVZq+LXCwsK05VVWVhqqr16EBsh6qNkCYyleVxVyTSiCZnXKOaBScGvFPECEIujY8tSIoI0eOmmGbiXyuZy3lHNBAwSo1wvyPlaEVYi/WRgygP7whz/gmWeewdDQUNx5YH/+85/x/PPP4+6778Y3v/lNw5UEgPnz5+Oxxx5DQ0MDJk5MvdIqLy+P0/GECb8W3gqzEuIoDOuhSv/BUgOkRpTKIwkexYCtMZzcKosANeJtlvUOl6cmDJ6VsQXQPlvG8gjTPCiyEkpkarCsxPsp9VRqjDtJAlxuRm1powAGLeg2gN5//32sXr0aI0eOxHe/+12ce+65KC8vR3t7Oz7//HO89tprkfcXLlxouKLh7SufL1mPEWbq1Kn44osvIMtynBB67969KCoqwoQJ5rvWE7Hi6jfXUSWC5rD6B/hHnVFHZVF7Ulihtd7MVvYUqQm09m+KPsDqmA9XyDumyAr3xQSgI2CCUT/JeEgvqwAGNd4tC/52taC7xq+88gpGjhyJF198ETfddBNmz56NiRMnYvbs2bj55pvxq1/9CqWlpXjllVc0fW6q7NKBQAB/+tOfUFhYiJqaGgChrbf6+noEAlER1mWXXYb29nZs2bIl8lpnZyc2bdqESy65xHIh8IA1c6DkOmqSqbFMYKkm2oJHCDSJcac15NoivwHKMPjY8uQzkYCpYJaagDjNA3lbZtkmYmmQUHtJ1IxNZnkKrfLb1YJuD1B9fT2uuuqqtLqZqqoqLFiwAO+++66mz33sscfQ29uL8847D6NHj0ZbWxvee+89HD9+HPfcc08k2eKaNWuwceNGrFu3DmPHjgUQ2iZ77bXX8Mgjj+DYsWMYOXIk3nzzTciyTB7FphaWP0YBG6g1QFoNLiPlSS4JLrcEOZhhhcxy+0Nr0j2L/AYoj8JIVV5eqkNjTVrZszoKI/Fz05XHwuAK+IPqdCsEBglTT2GCBzflIb1meQot8tvVgm4DqKSkBEVFRRmvGTZsGEpKSjR97sKFC/HHP/4Rb731Frq6ujB8+HDU1dXhzjvvxKWXXprxXrfbjUcffRRPP/00Xn/9dfj9fkyfPh0rVqxIqxsyG1bCRgE7zNQAUW1JyMEgzdaOTTVA1PVOMkpSGECmaYBs1gfCv990xh0v7xZFzjAtxiRJlmsL/na1oNsAmjNnDj766CMsXboUeXnJHxMIBLB169asRksil19+OS6//PKs161cuRIrV65Mer20tBTLly/H8uXLNZVrFqwGNQE7qPe+tWiAjAobgbBRk36FzM1lb6NVpFkaICC7kUA5ibIoj/LAUCDahyiNrYzl8dIcZfn9kkS4WfC3qwXdNb7rrrswbNgw/PCHP8SePXvi3tu9ezd++MMfYvjw4fje975nuJJOhtWgJmAH9d63Fg0Qi332rBoJThogO+kIzNIAAam/F0VRmGmAND8bwUTKtLwsgnJuHk7CZwOyGyUkhqsFf7ta0O0Buu222xAIBNDW1oZ77rkHbrcbI0eORFdXVyRzckVFBW677ba4+yRJwquvvmqs1g6C1aAmYIfmQY1CRzDErp9EBLcUxp0a75YFV5GmaoBStJMSVAAl+Vo9aPZuEXpJXAykANnO1iP/7bJsSw0LCqbn+OX6URiJKIoSOaQ0lsRcO7H5gVL9O9dhJWwUsIP6HCgtomsWg4zLLA8QgUaCFeQaoCwrezO9cky3eLP0ARbff/gzVIXBU/dvzm0py9EoQqNziiRJcOVJkAMqUwpYZPGiBd0G0Pr161nWI2cRGiDroTlZIKGrmeUEYZWwXSsmA9WsW+Gs7WBpbEkuCZJbghJU1HnlKHQrjDIzx5anKIAclJM0c9QaIMq2ZJ1Xzp3vghzIEDBhwcWLFuxXY4chNEDWw+WOuuBJTgLXsEJmOUHIASWlR5b62ayYDFSNEcxL25HSAGJsJEb7AK3XIlt5LA382M+NK4uTBsgKbcnaIMkqKLf5URj2q7GDYClsFLBDkqSsQmFeAthsXhLWE0S2QZS3ZwNgGyXDCrOOwgDSbG1wWNkDJoj8s/VvBs+mqS2pI9w4tyXrLals2+U5owFau3atrgIkScLNN9+s616nw1LYKGCLK8+F4JBMowHSEAbPfIIYkuHOj885Q34UhsU9QNTHoaQygrmt7KnTPGTzcLI28DkbCaZqgLL0E6aewlzXAL300ku6ChAGUHrs3nmcjDvfhaF+mkipbIOoHJShMDSUs01IZh2FYaVkoFryrUAK1Z1ZeZy/EyBmZU8d4j+UOgiGpcg/a1s6RQOUaqxg3E80HStiw0W8agNo9erVPOuRk9i98ziZbCtklgNNtkGUtYckm1Fi1lEYVloEaMq3kueCJBkM3TZrZU8QBp+tLRUlKsZmOWkD/PVUmgMm7OopdKgGSLUBNHv2bI7VyE2sGP0iCKFFI8H8GITEshhrZLR4gCiPwrDSIkBTvhUCrwW3lT1BGHy2tpSDUa8QkzQPhHoqLQETrjyJraFM6CkMB0wk1j9nNECZCAaD6OrqwtDQUMr3x4wZw6IYx2HF6BdBCJeGFTLvfX3W/STrhEStAbKiB0hLdm7GXgtqDVCqiY3yKAyWHpLE8ni3ZThgIjgk0+Q40pAugaWnEAiNhYl6QbvLOAwZQPv378eaNWvw+eefIxAIpLxGkiRs2rTJSDGORWyBWRfKKBkt+g+7aYBcbhck6UxOlixtaSUvqOSS4HJLkIPpk8DJhB4gXit7KKFgDCkvw8qec6g4ay+Cli0wVguKTAETLAMYsiZC5OQpBFIHTNh9DtNtAB08eBD33nsv3G43LrjgAnz00UeYMmUKysvLceDAAXR2dmL27Nk466yzWNbXUdjdenYyEY1EMJRZNVGcy1LY6GQNEBB6vuBg+hWyFTVAQOjZ5WCGJHAsQ7dN0gABoedI9Lzw0slQGSSpPjtVHVgtKDIGTIQ9haw9MhS/XeLFGTW6DaBf//rXAIBnn30WNTU1uOyyyzB37lwsWbIEfr8fTz31FD744AM8+OCDzCrrNOx+kJyTSdxrzytIv/JxMYwAotAAadERsEq8GBzMkFLAghogIPzsQXINUEovCeeVfX5R/PtMNUDZ+htzD1D095jKSGDeltlSCrBMYUHelpkNLrvLOHTXeNeuXZgzZw5qamoir4WzyhYWFuL73/8+Kisr8fzzzxuupFOx4iGQghBqjRJ3vvEIIGoNkKZ0+gwH0bQRQBb2AAH0GiDeR2EAGsW0nJNh8jC4U312qjqQHC3DK8TfgW1Jje4a9/b2Yty4cZF/5+Xlob+/P/rBLhdmz56N7du3G6uhg7F753EyaickFoOMllUdcw0QwZZEpgnCyslAMyWBU2QlVHfYU7eSbSsl/JokIeksLc1lZQkVd4IGCFBxzAdrgbcD25Ia3TUuKytDT09P5N/l5eU4ceJE3DWDg4MYGBjQXzuHY/fO42SyhiXz2v6gnvwIVnXhCcJuA2imYwCYb0uaoFtJ9dmJdWCuN3KoBijxc8MoshIJ83diW7JMBmoGuluopqYGx48fj/x71qxZ2LZtG3bv3g0AOHbsGDZt2oTq6mrjtXQoQgNkXbKKUhlu22SN7OC5/cE5URyQeSvJyl7QTBMbc2G6Fq0FRdQZQ6+F5JYAKXtZAM1RGLw0QOGAiVi4Re/BGm3JMhmoGegWQV988cV48skn0draisrKStx4443YsmUL7r33XpSWlsLn80GWZXznO99hWV9HITRA1kXtgaHU+/oUiRB5aY6yebestgiIZktOTgLH63T2xM9O9RpF1BlL3YokSSEhfJpQcZ4eTgqjO1PABMtoUYDeA5Q1ZYZFAxjUotsA+ud//mcsWLAApaWlAIApU6bg8ccfx8svv4xTp06hrq4O11xzDS6++GJmlXUaVl795jpZhcIMBbCSS4LklqAElazeBubCRkLBraKEzjWL1ZRYOYok0QiOzYHC63R2gD4MnreBH/6c4JBsOd0Kl7aMMYCokzxy9RRm2iq12G9XLboNoLy8PJSXl8e9NmvWLDz66KOGK5UrsF7ZC9ihdkJiNkHkuRAIBsmPwshaHgeDK9YAsvIiIDFjdqwBZGa+FUqDi9XERqkDozwKA8jclmamsCDxFNrcA2TPWjsEKw/+uU6mQTRW2MjKa5FJb2LaURiMhI2Z3OhWFkGrrbftV/ZZ0jywQK0OjFK3knit7vIytCXPJKaW8BRaNIWFWuxZa4cgM3aPCtiRaRDloVvJlEzNrKMwWAkbM0W5WTkQIFO9zTJIEq/Vi+qVPSsDP4MOjOsWWDYNEOe2ZK4ByqbfM8lTaNcFvD1r7RDEFph1yTQh8RCvuzJ4gPiuIpWk91kPapnc9lYOBKD0XFlJAyQHZSiMczNl9ABx3nJNKi+c48gtJR1xo6u8DFvKPPV7lIfmApm/O7su4O1Za4fAemITsCPTqo7H1mU04sg6GiBWg1qmCcnK28CZtgqpMzNTrux5jEsZNUDEaR5Ynz1H2b/DAROACmOSc1uyTgZqBvastUMQHiDrknFfn4PXwooaINb6D0BogNLhckW9EWav7HmMS+HPUWQFcoZcOcy9JEQRbomfHfk3j7ZUaUzybksnzF/2rLVDEBog65JRA8RBtxKrAQqfqRcpj6cGiHOSx8TPERqgDOURbhNl1K1w8ABl+j2ZFQbP2rsV+9lheLal2SkFnLCDYc9aOwQnWNBORbUGiLVORkHErRwpn6MGiGKFrFokarFBNNO2FBcvoNqVPedIKZ4ifyCLl4QwESJrfRNAHDBhclJJKycxVYvuPEC82Lt3LzZu3IgdO3agqakJI0aMwMyZM3H77bdjwoQJGe9999138cgjj6R874033kBFRQWPKuvGCRa0U1GtAeKhIwjIabepKFfIXDRAmcKELTaIUmuXXJlW9jYO3QayGJNO0gARtiV5luuEgAkrJzFVi+UMoFdeeQW7du3CggULMHnyZLS1teGNN97A7bffjmeeeQaTJk3K+hm33XYbxo4dG/daSUkJryrrhocnQcCGjHvfHLc/wp+fXxR9j3U/yTQZ8RA2ql0hW20QVavtIFnZx3qAGORmymjgc9StZCvPjhogs9oya5Zr3hogCy9e1GI5A+hb3/oWfvzjHyM/Pz/y2sKFC3HLLbfgd7/7Hf793/8962dcdNFFmD59Os9qMsHK+odcR/XkR7xC5n0UBk8BbOLnJ5Zvtd9AxlBxjtqOjLqVfPa5mSh1K0CWtuTs4VQUhavGzVIaIMIs13bVsFqu1rNmzYozfgBgwoQJqKmpQX19verP6evrQzAYZF09plh59ZvrZPrhcxHAZhIKE4bB8wyBTvx8gE9bsoI6FUIkVDyTboVAlMzDKM2YUoDwKAwlqACcchwB9BqgdAETLkY5jlSL5S3221WL5TxAqVAUBR0dHaipqVF1/bJly9Df34/8/HxccMEFuOeee7Lqh1pbW9HW1hb5txZjSy9OcCE6lUyDKM8weIC/5kj1doQIg4/8TdkHMmVL5rIlRd2/OW+lSJIEV54EOaCQbLmaqaeSgwrceVFDh8cZhZGybPTbVYstDKD33nsPp0+fxq233prxusLCQlx55ZU4//zzUVxcjP3792P9+vW4++678cILL2DMmDFp792wYQPWrl2b9PrRo0c1eZJ8Ph+8Xq+6a7t8kb/3H9zPZG8/19DS3po+95Q/8ndrS1tcGa1HeyN/n24/Da/XD6N093RF/j544BCKuwqi73X2RN87fBB5RcYGm9hVo6+nN+7Z/F2ByN+9fcltq6e9m1ui9T9x/CQC3u7oe42d0fdONcBX1Krps3nS0hL9fZ5sOIWgN/ocTac6I3+faDyBXm8bjOIfHAAAKAqwZ/ceSC4p0t7+gUEAgKwEmfT3vtahyN9tp9vjPrPjSH/k7/bONibldXZ3RP4+fPAwTg9ERW6d7Z3R944eQkGr8WlJOvMT6esdiKv/UF90LO/z9zHp363N0fHg1IlGwBv9d+PJ6O/6VNMp+L2dmj47FQP+6Pfj3eWFuzA6Hgz0nelDksLkexvojI4H7W0dcZ/ZdWwg8ndHV7uu8niN3wDg8XiyXmN5A6i+vh6PP/44Zs6ciUWLFmW8duHChVi4cGHk33PnzsWFF16I++67Dy+//DIeeOCBtPcuXrwYc+bMiSt31apVqK2tRV1dner6er1eVQ0PAAcLOgH4AQmYeY6Hyd5+rqGlvbXQXtKDL9AEABhZOjKujIPtJ3EAoYl63Nlj4fFUGy6vc5sXzQhNuNUTalA1pSzy3pHCbnQhNNh4zpmBvAJ3qo/QxKf5JxAcklGQVxj3bF2NvdiOkwCAURVlSW2rp73z20/iMNoBAGNGj4HHUxN5r2fnPpxAaJKonVyLsTPK9TwOFwo7T+EQQoZNVWUVPJ7ayHu9X+yP1ntSDcZ5jEeYHhvpQ8+JkDE9bUod8ovyIu29XTkFIIii4YVM+nt3cx924hQAYETJiLjPPNbbhL1oAQCcNW4MPJ7Jhsvr/WI/GhEyICeOr45rr4ZhfWhHaFKf7pmOotKClJ+hhc8KTyE4OIQ8V17cs/V2DGAbTgAARo4awaR/H+ttjowHoytGx7XXwN6DOI5OAEBN7URM8FTpeZw4Gsr6IuPB1MnTUDQi2l6fS80AAigoymfST/o6BvDZmfGgZHhp3Gc2DJ3GHjQDAKrOqoLHM1Xz5/Mav9ViaQOora0Ny5cvR3FxMX7+85/D7dY+8J977rmhAWT79ozXVVZWorKyUm9VdcH60EkBO8g1QJl0OZyEycEhmaSsPJvqCFRvS/LQyQRkxCohw98TMw1QAe2zkbdlmlBxLqJktW3JYOECqNuaJcnhZeHfrlosW2ufz4cf/ehH8Pl8eOyxxwwZJ1VVVeju7s5+ITF2P0nXyZBrgFQIhV15EjNDOV3EEY8JgrotWWHWcRFAemEytQaIh+iaMlQ8k8DbjiH+gDpjUmiA1GFJD5Df78eDDz6IhoYG/Od//qdq8XM6Tp06hbKyMiZ1Y0l0YrNn53Ey5EdhEK7qYj+LIrsrdVuyIlMSOO4Tacz3oMgK5HBuJoJJlMfKXs1xEZIEuNxsn89sgTd5W7IO8Sf23FFjuVoHg0H89Kc/xZ49e/Czn/0M55xzTsrrWltbUV9fj0AgKtLq7OxMuu5vf/sb9u/fjwsvvJBXlXXDY2ITsEH1URiEJ0qzXGW51KyQKSYIC68iM+YBIlzZ8z6agmJlryZUnKUBnC5ZIM9z/ACaRJ/p2lJRFObHfLjcLoSdzuIoDAKeeuopbN26FZdccgl6enrw5z//Oe79K664AgCwZs0abNy4EevWrYtkfb7rrrswbdo01NXVobi4GAcOHMA777yDqqoqfPe73yV/lmzwmNgEbDBLswCkn5CYThBqVsgUWwQWXkWarQEKw8NIlNwSIAFQiDRAKkLFmRr4kWSBChRFiWwd82hLymM+gPRtKcecIci6LYODMsl2OTWWM4AOHToEAPjoo4/w0UcfJb0fNoBSsXDhQnz88cfYtm0bBgYGUFFRgW984xtYsmQJysutE10SRhYeIMtCPqip2JJgOcikWyFzcdmr1X9YbBClrne6lT2P/iZJEtx5ISE8hQZITVsy3eJN8HC5891JZdtVA5SuLXktJtx5IQNIHIVBwBNPPKHqupUrV2LlypVxry1duhRLly7lUS0usM7uKmCHyxXKpKrImZOpkRwYymGCCA+iiqxAlhW4zmSN5f1smQZRq7nRVR+FwdkI5mUkhiMBqTOdp9PJ8NC4AaG2jBhADtAApfUADbH/7QLpAyasvHhRiz1r7QDihI0WG/gFIdL+8HlPfoP8twjS6RZiy7ZrCDQrMtU7wGGySXdcROx3wtJIdKXxApoV4cZy0k7bljyO+bCMpzCY8hpW5cV+fujf1l28qMWetXYAPAYZAVvUCCl5h4origI5EDKUeWiAAP7eBjUh/gCbU85ZQn/IZcyRBoE03wmHPkAihCf2cKbzyvB+NvKw+3T9hIMxSTEOUmPPWjsAK0e/CEKkTaZGuELm1U/SDqK8V8gZJj+rJQNVs7JndegkkN5Q5CU2jRj4BNuSag6W5da/07UlYQoLgH9bctMAEY6D1Niz1g7ACe5Dp6MqlJbzCpnXoJZ2EDUpxN+KOjg12iVeXguZ0AOU5JXj3AdiP1+WFSgyXw9n2rYk9HBKLimiszNcXrotMA76PSD6fBSeQmrsWWsH4AQBmdOJbBEQZwFOmwOGlwYojZCS8pgPK64gM0bmMT6aIvGz0upWeGxtmBjlyMu7RakBklxSKK0AUhj4nCPc0omguQRMKIAcTDM2WfD3qwZ71toBWFn8KQiRbu+b8rgIXoMapQYo3WQE8AnxZ0XGJHC8I5cIPUBKMOqFSSqPc6QU722bxDK4tWXYS0KQ48isZ0sqT3iABHrhkUlWwJbYvW9FSTNBcNYAcQuBJtQASZIEV15ymH3sv626CIjowNKt7Kl1K7wmUt46sHSTKMcQ/1Rl8G7LtJ5CDtF7AH+BN6CyLS36+82GPWvtAHiEGwvYEhlElNAqOQzvdPpmaoC4ia6zpBSw6iIg28qem24l3TYowcqeiwZIRZJHXs9G2ZYUWa6d3paU2LPWDkBogKxPthUyL2GjmRogntlkgfRnJVl1EZBtZc/UKCVe2aeLziM9voFX6DZhGHxseWkj3Cg0QA5pS0rsWWsHIDRA1ied257L5EfsZqbWEaRKKaDISsSzZtUBNFUIcOyhk07RdvCOJkr7bJwN7qTyqDVAHMTyTm9LSuxZawfAa2UvYEc2DxBJZmbOAliAJuIoVUoBO7jQXSk8V3GHThKIoEk0QCk0R648iVluprTeLadrgDh4gJzelpTYs9YOwAkCMqeTzSghycxMESZM6HFKu91m0QE0lQeIt5EI0Gg7sk2kJN4mh+hWYjVA4YAJOSgjHDvhZA2QxDAZKDXWHHVyAKEBsj7ZjBK7RmUB5kWd2c2FnqrevPOtAPQr+1QTKcuyJJcUOerEibqVSHkxARMkW1LUbcm5n1Bj35rbHKEBsj5pvSQcVsiSWwLOLKKschQGj8ldjsk5YwcXeiQJnKxAPlNvktQE1NqOFAYX623JVNtETtGtpGpLbgEMZmqAOI+D1Ni35jbHDvqHXCfbQMNyUJMkKWUorZlHYfDa3olMEJy8WyxJ5f6nSN4np1vZE2y78kpOGdFTESdCTJvpnLNRIjyF1se+Nbc5dlj95jqpBlFFUbiFbqdcIRN7gCgmCDnFCtmqq8hUExuJkUggTKfUAMV+HrnBTaGnSmGUUPx24w2SqDifmz6RwFNIiX1rbnPEFpj1SRUGrwQVgIOwMbY8K2iAWJ5yDqRuSzssAlIZiqau7Cn6AKeVfSoPJ0lbmpRSgPqYD24aoCzGpFV/u2qwb81tjhBBWx93ftQASLmq47RCtoIGiNezxZZnBw9QqonUVA0Q5z6gKArkAPvT2WM/zyoezrAom0l5ZnkKibcThQZIwAQ76B9ynVQTEq/tiNjy6DVAwcjfPE45B+jbkhXx9Q6e+T+BV84kDRDP1ATRLbBofzPLw+nOdzHLcQSk0bhxOu4oNmCCYnsvlXeLVzJQauxbc5vDa2UvYAe1biVrlAyht4GnB8i2GiDO2o5sWw2J1xguL8Wz8TK2gGhbyQElkiuHW1tmCYNnbXCn8hTyasu4gAmKLbBU/STIR29EjX1rbnOEBsj6UOtWzNIApdqS4PVsseXZTQMkp6o344nNlZecK8cs3QpzL2AKI5hb4s0sYfC8jDsgxsAnaEvKc/xiy7BDElM12LfmNkdogKxPXr478neq0G13AZ9BTYnJlUMS2ppqhcxTA5RKS2PRRQClBggA3Gf6HEXiRervJJURzK9/J/92AT5HUyR+Xuq2ZJsp2ZXCA0R5FIbMcRykxL41tzlCA2R96Ce/LAMNSw1QmhUyL2Fjyq0kG3hBqfMXpRLCkybvI9AApSuPVAPEU+NG2JZmRYw6ZQFv35rbHKEBsj4pf/g8J78sK2TeuT14ChtTbrfYIBloqj7A8xy/rEJ4zkccUGiAgJi2dEiUo1ltSRIxatPFixrsW3Ob45QO5GRS5oDhaLimTKZGKILmdco5kEZIaQMdAaUIOra8VCJo1odOmqVbAfhPpNk0bjyjHCnbkiQMPtvCzKK/XTXYt+Y2xw6r31wn5RYYweofSONq5hxyTRHiH1uOHRYBKXUrHOud6rgImde2DXH/zqoB4pxUUpGVyEGl9BogPm2ZyriTJMDl5uwptMFvVw32rbnNscPqN9fJdsAhxYTEq59kjcqiToRo0d9AtnpzW9lTpCbI1r+JdWBMQ/xdUW8Z78UEYJ4GKO6QXl4BDKm8Wzb47arBvjW3OXaIgMl1qDVAqc5m4qYBojbusoVcW/Q3QBkGH1uenCISkOuWK0FqAvK2TNgm4mmQUHtJUmrTTPIUWvW3q4Y8syuQyN69e7Fx40bs2LEDTU1NGDFiBGbOnInbb78dEyZMyHp/T08Pnn32WWzZsgV+vx8zZszA3Xffjbq6OoLaq8cpeRScDLUGKJvBxbI8ySXB5ZYgBxXuZxcBKpLuWfQ3QHnIZdryTFrZ8zoKI7Yc3kZ3wB/kHlAAZI+U4r2lnFfoNs9TaNHfrhosV/NXXnkFmzdvxpe//GXcf//9+MY3voHPP/8ct99+O44cOZLxXlmWsXz5cvzlL3/B1VdfjTvvvBMdHR1YtmwZGhoaiJ5AHbyEjQJ2mKkBotySINnasakGiLreqYwS0zRANu8D4d9vyqSL1GHwhMYkSYSbDX67arBczb/1rW/h97//PZYtW4Z/+qd/ws0334z/+q//QjAYxO9+97uM937wwQfYvXs3VqxYgVtuuQVXX301nnjiCbhcLrz00ktET6AOXoOagB3Ue9+ZNECshY1AspCSzGVvo1WkWRogINlIoJxEeZRHeWAoEO1TlMZWXHlUmqOE3y9JhJsNfrtqsFzNZ82ahfz8/LjXJkyYgJqaGtTX12e8d/PmzSgvL8e8efMir5WVlWHBggX48MMPMTg4yKXOeuA1qAnYQb33nUkDxGOfPZMHiHr1b1UdgVkaICD0fSiKQpK8L+WzEUykXMtLEJSTeTgJnw1INkpIDFcb/HbVYIuaK4qCjo4OjBw5MuN1Bw4cwNSpU+FyxT/WjBkzMDAwkHEbrLW1Ffv374/8l83YMgqvQU3AjqyDGoWOgFNiwtjPJBF4Z0sUZ9HfgakaoCEZigxASX6PBVm9W4ReEhcHKUDi2Xrkv12ebZlhQcH1HD+CtqTEciLoVLz33ns4ffo0br311ozXtbe347zzzkt6vaKiAgDQ1taGyZMnp7x3w4YNWLt2bdLrR48eRTAYVF1Xn88Hr9eb9brBgZA3KqgEVF0vSI3a9tZD0B/9kXd39sDr9aLxVGfktZONJ9DvbWdWXmtbd+Tv+mPH0Tu8DQN9fgCAIsnMnzMgDwEAhvyhPth5pD/yXkdne8ry9LZ394mByN8tzafh9QbR0dYZee3IscMo7LDecNRzwh/5+3RzK7xeLzpaOyKvHTl2GEVd+alu1Veeryvy98H9BzHkjpY/4O9n2gfCJ7IDgK+7F16vF6dORPtgU3MjAt7uVLfqouV0T+TvhuMnMejtQp/vTJ9zg3n/HgyE2i44FPrtdDdE+2BndwfT/t3bFN1daD3dBq/Xi7bT0bHhWP1RtPQVaP7cdHT3dEb+PnTgEIq7CyJRg/4hP/O2lNyAEgT6evrg9XrR1BD9LptbmqB4fbo+l+f47fF4sl5jvREngfr6ejz++OOYOXMmFi1alPFav9+PgoLkThZ+ze/3J70XZvHixZgzZ05cuatWrUJtba2mCDKv16uq4f+unAQgo2h4karrBalR2956CAZkfIKQ13BY4TB4PB707T6ABoQmqZpJNRjvqWRX4Il6HENoch07Zhymes7GDqkRQBCFwwqYP+e+knb0t/VAkUODxfGBFnjRAgAYM7YKHs+UpHv0tvfpwk7sRjMAYNSIUfB4PDjx7na0oQ8AUOepw/CRhQaehg+tw7qwC00AgJGlZfB4PDj5p8/QGlPv4lFFzMrr+HgPWtALAKiZWIuTbccBhCbSEWWlzPvAx+4GKEEFBXmF8Hg8GDp0ONIHJ9ZMQI3nLGZl5Z0+gSNnnmXM6DHweKqx230a/RhCfkEe82c7XNqN3sZBQAGm101Hk9IR6YNVY0bD40ke1/X2746RPnyORgDAiJKR8Hg8aP7rTpw+811Omz4VI8YUG3iaeLq370UTQkbHxAk1qKwZgb/hOACgZEQx87bcVnACQ/1B5OeFxiG5/ljku5xQPR6TPeN0fS7P8VsNljaA2trasHz5chQXF+PnP/853G53xusLCwtT6nzCrxUWph9gKysrUVnJcDLLgtAAWR+XO+qSpzgMNWMINM8tsIASpzWJfY8VTjgKg1K3ApzZAos5noSLDizPhUAwmDIbOIluheM4mNiWVBogM9qSd0SlO8+FIaRJKWDR364aLFtzn8+HH/3oR/D5fHjsscdUGSfl5eVoa2tLej38WngrzGx4ChsF7JAkKUkoTCWATdQR8J4gEgdR6oNerboQMOsoDCDUPnIg5nw2HkZwolCYSuSf2L85PFtSW1JlOjdBA8Q7KstFOA5SYsma+/1+PPjgg2hoaMB//Md/oKamRtV9U6dOxcGDByHLctzre/fuRVFRkapEihQoQYWbsFHAlsRQcbPC4LlPEEOEEwTBCpkVZh2GCoS+ezmY+j1m5SUIhcn6N+ckj4nlyZyNBLOOwgiXwzsqKylgwgYBDGqwXM2DwSB++tOfYs+ePfjZz36Gc845J+V1ra2tqK+vRyAQiLx22WWXob29HVu2bIm81tnZiU2bNuGSSy5JqQ8yA6d0nlwgPNBQREolDqJyUIbC0VBOnJDMOgrDyslAM+VbgRSqO7fyAvFbYFxX9tQh/kOh55J5ejgT2pI6D5DM0cOZNFZwnlMyHiti40W85TRATz31FLZu3YpLLrkEPT09+POf/xz3/hVXXAEAWLNmDTZu3Ih169Zh7NixAID58+fjtddewyOPPIJjx45h5MiRePPNNyHLctYIMkqc0nlygcQVMs+BJnEQ5e0hSTRKzDoKw8qLgIz5VvJckCTGodsJfSB2C4zryp4gDD6xLRVF4ZvmIZMGiCLRZ+xiibOnkEIDBNDkVKLEcgbQoUOHAAAfffQRPvroo6T3wwZQKtxuNx599FE8/fTTeP311+H3+zF9+nSsWLECEydO5FZnrfD8IQrYkkkjwfsYBN4amUweIMqjMKy8CMiYb4XAa8HbA5Sxf/PMJzMkQ459Ng5tmVEDxPrZMgRMuPIkvoYyZ+9tbHnhgAmnaIAsZwA98cQTqq5buXIlVq5cmfR6aWkpli9fjuXLl7OuGjPsEP0iCOHKsELmva/Pu5+YrgGygwcoU3Zuzl4LOcEDxFsDlBQJyFkozNNDklgeby9JOGAi1tNEZigTaoCAFIszC/9+s2HfmtsYsQVmHyijZJI0C5w9hZQaIJfbhfAiOFEDZGUvqOSSIqv7xOMiKDxAMpEGCEooOIPyKAzeXoRMW2A8FxQUAQyJv10qDRCQYnvewr/fbNi35jbGKdZzLhDRSAQVKLLCVdjoZA0QkCKU1gYeICCFAJRn6HZSHqDU77GC0ug2yyABkkXQPBcUiZFS3D0yFL9d4sUZFfatuY1xykFyuUDSXnvsd8cxAohCA5RJR8Az8aKdNEBAilQIRB4gmTAPEMDf6M70W+LjAYr+PkPbiTQLiqQtMN6GMklbJmzNOkTGYd+a2xg7HAIpCJHOKHHns48AotYAJeoIqLYkIhFANvcA8datJGaCpjaC+YbB0xncAK2RkBgGT6IBclhbUmHfmtsYp3SeXCDdCpnHIJPR2+QAjUTsBGGnZKCxSeAUWYkYJRS6Fe4eoIStlLARLEkh3RbTshJCxZ2qAUo65oO3wNuBbUmFfWtuY5zSeXKBJFEq1fYHhUGS6N0i0hHYbQCN1S5x35bMEAZPaQRz1xs5WAMUPGMohwXsTmxLnslAKbH2yONQhAbIPiQJkzlu2yRFdhCJkgH+ieKA+K0kO3lBYyc27sL0RK0F5y2wdFsbPJ5NckuAlFwWQHMUBpUGSA7yPVgYMNdbLCeMg6ylAJRYe+RxKEIDZB/SHRhKva9PkQiRSnOU6N2y+iIgmi1Z4T/RJB1xQBQGj/CWG7/+LUlSnBCe0sNJYXTHtuVQf/SIJvKxgmBxZpcAhmzYu/Y2xU6r31wnSSjMUQAruaSIO5kkUVyGZGo8JwhFAQL+aHy31RcBsW0xNBAzsZGIoKPvkSS44zyxxQrhzdSt8G7LwRgDiCRhJu+2TGNw2fkYDEAYQKZgJ/1DrpNOBM1tgogRUlJ6gCiyu8Z+Ju8VMktchPVO0loQHYUB8Bf5x36uqboVTuW5CT1AZh2FAcRHjFr9t5sNe9fepggNkH1Id34RL8M1Vm9i2lEYnISNsYNl7ArZ6ouAdPWmWNkrREdhAPETKW8PkJm6lcT3mJWXxgNEkcLCrKMwrP7bzYa9a29TnHKQXC6QbvuDl+Eam0zNrKMweAkb03mArL4IoPRcmXYUBhJW9rwM/BgdGOkWWKIGiHNbcu8nifo9k47CsPv8ZbnDUHMBsQVmHyhXdUBMyDXxURjBIYX7oOZymAeIYqKRFc5h8DHPEBgMQuGcmynOA0Qpgo75PUluCZKLzsPJW79HcRRGOk+h0AAJNCO2wOwD5aoOsIYGiNegJjRAKspKWNkrhBqgIQoDP1YDRJzmgffZc5T9Oy5ggvrYnEGZazJQSuxde5siPED2Ie2g5mANEG/9B0DTlqxIV28u2cBdUe9EKA9Q6nqwgtooDX+uIisIDEYfjruXhDDCDaBdLFFHjMZFQgoDSKAVoQGyD3Fu7T4Ha4A4J3lM/FyKtmRFunpTCIUVwjxAcc/G2cAHiHUyBP3bla6fcG5L6pQCFM9Ghb1rb1OEB8g+UK+QIxOSAgQG+ObKoV4hp91OtPhvgLresSt7mfAoDAphOqVHNV0iRN76JoC2LamTStopgCEb9q69TREaIPtALdxNK7omXCFTaIB4PxtLqOvtilnZU4bBU4r8k8pzmAaINGCCOMu1nQIYsmHv2tsUcRSGfTBLI0FRXuygFhgKchc2Ok4DRLCyj/MAccjNZJbIP7E8J2iAzGrLpCzXIompakQYvAmIozDsA2VoK5B+peWEQS1tW1r8N0C9so8VwktBKfIa79xMlM+WVJ4DNEBmtWWSBohztCDFOEiFvWtvU4QGyD6YFdlBUZ5ZIdBJ5VncAKJe2UdCxWO2wLhtSxJ7t9L2Ac5RjgF/ECDKcQSYpwFyccpxRP0boMLetbcpQgNkH1xWWSFz9gBReGScdhQG95V9TBg8hcHtNA+QJElw5UnJZTnEAxRnlJwJTXdKP6HC3rW3KTLnpFUCdlgmSobHBOGWAClFWcSJ4qy+CKCud7g8RQH3oyksowHibHSTRnASlZeqLak9hXafv+xde5sS5wHiIGwUsMMqUTI8BjZJkiLPQRndlFSexVeRZnmAACDo5yxMJ45wI2/LFP2bYvFiljeNup8IDZBAM7EnLvMQNgrYETcZDfL33MXlLhnkrxWLCG4H+UaRABmezeKrSBdxvWPLkwk1QBR9gLwtU/RvEsN1kL/MIfF4CoBmYWan32427F17m+KUk3RzgXQTAcUgGqkDJ2EjkPr5KFb/ca9bfBVJXe9U5VEY3CTlUbelg/t3qs+l8G6ped0u2Lv2NiW8r29392EukG5QoxxoeBrKKSdbwgEbsJcGKBbSPkCwsqcoL+XnSogc7Mm8PML+nXaxRGhwkRt3Fv/tZsPetbcpsVtgAmtDvfJJNSHxNJQpDS7qyZYVVvAAUUTmmVWeO4+fFIDUS2KFxRKvccntQqqvyOqLl2xYLhFiX18fXn31VXi9Xuzduxc9PT1YsWIFrrzyyqz3vvvuu3jkkUdSvvfGG2+goqKCdXV1EeQc2SFgB/XKxwoeIAoNULY6WAnqlX3KbUluE1tqw4PSwOf5/acsj7p/O6gtY/U/gP3nMMsZQF1dXVi7di3GjBmDKVOmYMeOHZo/47bbbsPYsWPjXispKWFVRcPIwgNkG9J6LYhXyLwQGqDsWMJLwqksSZLgznfFRabyLC+lR8YhHk4rLJZ4t2WSAWTzOcxyBlBFRUXEW7Nv3z7ccccdmj/joosuwvTp0znUjg1BoQGyDS5XSICsyEr86w4QNgLEGiBiQ4IV1Ct7M4zgJAPIAQLvtOVRa4BEW1oWy9W+oKCAyVZVX18fgsEggxqxRZGVyAGHdreecwXKgYbarU36bDbdAqNe2adqJ2oj2Am6FYC2LZ2sAQJo+wkVlvMAsWDZsmXo7+9Hfn4+LrjgAtxzzz2YMGFCxntaW1vR1tYW+Xd9fT2XugVFFmjb4c5zhc4SSniNS1nEqyxLiEQtngyUPFIqP7k9uBrBJkedOcVr4XgNELHBRYGjDKDCwkJceeWVOP/881FcXIz9+/dj/fr1uPvuu/HCCy9gzJgxae/dsGED1q5dm/T60aNHNXmSfD4fvF5v2vcDA1EDqH+gL+O1guxka28WyJKc9NrR+iNo8uUzL6u9sS/pNf/gALdn7B3oTXqtqbkRsrcn5fVG2nuwN/l3JLmBvXv36vo8Kob6UtTbBezdx6fere1dSa919XRy6wNBJZD0Wn3DMbQFGpmX1XVyIOm1wcAgt2fz9Sb345bWZni9yb8zwFj/TtxGDHPg0H4uebxOt3Unvdbt6+bWloHgUNJrx0/Uo1Nq1v2ZPMdvj8eT9RpHGUALFy7EwoULI/+eO3cuLrzwQtx33314+eWX8cADD6S9d/HixZgzZ07k3/X19Vi1ahVqa2tRV1enug5erzdjw/d3+fEpGgAAI0aNUPUlCdKTrb1Z8EVRC4Z8/XGvTZs+DaWjhzEv60SwFftwOu61kpEl3J6xcZQfHYh/tok1EzDJMzbl9Ubae7BvCH/HibjX8gryLP8bGBoIYFtCvd35bm71luuP4jg6414bXVUJj2cGl/K8w9sw0OGLe21q3RSMGl/KvKzmvA7sQfyEWVw6nFtbtv5/X6AV8cbO+AlnY5pnfMrrjfRvWVbwyZmxPYwkATPPmanr87IhnTqOY+iIe61idDm3tjxQ0oG+0/FG0JSpk1E5aaTuz6QYvzPhKAMoFeeeey48Hg+2b9+e8brKykpUVlZyr0/cFpjN3Ye5gtmZeZ2yRUAZccYS6u8kpW6FWtvhgMzMAK0GKFXABFftFrWeyoEaIHvXXiVVVVXo7k52F5pBrJvUDoO/gHbv2wph8E4RbbJCcktAwg4GtdiUXANEKfJ3UlsmfLaTDBK7/n4zYe/aq+TUqVMoKyszuxoAojmAABEGbxeEB4gNkktKEjzbYREgSVJSmzhpojE7WaBT0jyk+myn/HbTlmeD328mbFv71tZW1NfXIxCICvg6OzuTrvvb3/6G/fv348ILLySsXXqEB8h+UA7aTj4KI9Vn22URQLmypw43NjtZoFOiHFN9tlM8d+nKs/sWmCU1QK+//jp8Pl8kLH3r1q1oaWkBAFxzzTUoKSnBmjVrsHHjRqxbty6S9fmuu+7CtGnTUFdXh+LiYhw4cADvvPMOqqqq8N3vfte054klzgCyyeCf6yQOKpJLgovT6exmGyTp6sCKkMETjaqyyyIg0VBzUrgxpQbIyUdhpPpsngY+9bNRl0eBJQ2gdevWoampKfLvLVu2YMuWLQCAK664Iu2xFgsXLsTHH3+Mbdu2YWBgABUVFfjGN76BJUuWoLy8nKTu2RB5gOwH5eTnZA0QQOtJYYnZHiCn5AFy8lEYqT7bSR4Z6rakwJIG0Pr167Nes3LlSqxcuTLutaVLl2Lp0qW8qsUEeUhogOwG6eSXYxoJu7jQSTVAJq/sXW6JS94awHxRMkC7oHCUoexAD5C9a29DhAfIflBOfma77AHaLQm7DKC5ZAQ7xduU7rMp29JJYvnEz5Y4GspU2GP0cRBCA2Q/HL39QS24JZxsWUKqATLbK8exLMklhdIKxJbv4LYk1+SIxYsm7P8ENkN4gOwH6eSX4lwsJwkbKScIlpi+sneQUUppcDm5Lc3WUzlh/rL/E9iMOA2QAzpQLkAZui1JUk5Ntnb5DTjZC0ipWwGIjQShAeJWnl0WL5mw/xPYDHEUhv2gXiHnUtSZXVaRpAnuTD4Kg7dRSukFFBoghuXZdPGSCfs/gc0QiRDth+krZAcJG+26iqTUP1BrO6i3NiiTBZrelg7qJ9TjIAX2fwKbIQsPkO1w59Me32DmFkGeg56NJWZrOyhX9o7q36k8QCl0dszKK0h8Nje3slL9Vp2ib6LC/k9gM4JCA2Q7KEWbqcqjXCFTP5tdcmGZngfIQdoO0m2iFJO2JHE0gAh/u6kO6aXccnPCAt7+T2AzRBi8/TB9heygyA67riIpv5OU2bkJt1Koo8BIkzxyHnMp2zLVIb2kbWmT324m7P8ENkOEwdsP6r3vxPKcdDSFXXUEpCt7SYIrj27bldzDaeIWmJNC/AGT29Imv91M2P8JbIYsPEC2w9EeIOoIIJuuIqmTwJnZB8ijHCmfjdwg4Zsp2dS2tMlvNxP2fwKbEesBssvgn+s4eVVHHZZu1ygw6jPMzAy7d5QGyGQPkJPb0gnzl/2fwGYIDZD9cBe4E/5N7EZ30BZY0gTBuS1ZQe8FjO9zlOfPOclISGxHJ4X4A8RtmfBb5R0xSoH9n8BmCA2Q/aBe1VFut5ieA8YmiwAzt1IktwQXz9xMDvZwUmZxBxzeljaN4MyE/Z/AZoijMOyH6as6B08QdlkEUG8VxpbnpKMpAHMPlnValGNsW0oS4HI7py0psP8T2AxxFIb9MHtf30lHU9hWA0RtKMaU5ySDO9Xncw3xd8VnNnfSlhQQ/zxOOsKECvs/gc0QR2HYD+rIJdIweOoB26ZCSjPFtE7ack31+ZQGF3lbOujZ7BrBmQn7P4HNEB4g++FkD5DkkuKOBhAaoNRQ19tl4sqeu4FvosFFnuaB8Nmc5t2iwP5PYDPCGiDeh04K2OFkDVDi5wsNUGqc7AEyPRKQ0OBy9LM5LMKNAvs/gc0Ie4CcYD3nCmZ6gHgLG4EEwa3QAKXEyRogs4XCTvKSmLlYIl+82OS3mwn7P4HNCGuAnGA95wpmaoAo9tlJdQRCA6S5PHKvhdPKM9PD6SBDWWiABIaRhQfIdjhZtJlYhtP0H6xwtAaI2sCPfTYCKYCZHk7KxRL5OX7CABJoJewBcoL1nCuYKdqkGGScrJFghZONYCd7LZLKc3Bb8p5TEg/ptcviJRP2fwKbEdkCc0DnyRXMPDCUfIJw2AqZFeR9gNAIllwSJMJIQErdSmJ5TtYAkXiLiccm3tj/CWxGRATtgM6TK8SGiQPE2x/UE4TDcs6wwsyjMEh0YCZFnVEb+EIDZLA8YuOVN/Z/AhuhKEokDN4uA78g5Po1KzMv+QThsBB/Vjj5KAyAtg9QP5vQADEsT3iABHpRggoUJfS3XVz/ghBmnc3k9AnCLgsBMz1A1Ct7x3m3hAaIXXnEBhdv7P8ENkJkgbYvZnlJnDxB2CkZaFy7SIjTzPAuz2kre3IPp9AAsSvPYR6gPLMrkEhfXx9effVVeL1e7N27Fz09PVixYgWuvPJKVff39PTg2WefxZYtW+D3+zFjxgzcfffdqKur41zz7IhzwOyLWToZ6jB4J2XlZUmikShJnEO3TVzZk4r8Hba95+SEmYDQAHGnq6sLa9euRX19PaZMmaLpXlmWsXz5cvzlL3/B1VdfjTvvvBMdHR1YtmwZGhoaONVYPbEeILEFZi9yRgPksBB/VlBuEwImr+wJ88mQpHmgXLzEeAZdeRKpoew0TyEFlnuCiooKvPHGG/j973+Pu+66S9O9H3zwAXbv3o0VK1bglltuwdVXX40nnngCLpcLL730Eqcaq0ceEltgdkVogNhA/WysIA/dNlMDRNgHnNaWsQET5B4ZBxrmvLHcExQUFKCiokLXvZs3b0Z5eTnmzZsXea2srAwLFizAhx9+iMHBQVbV1IXYArMvQgPEBpfbhfCi2E5eUMklRVb3TvQAmZUM02mJEIGoUec0z11SeTb6/abD/k8Qw4EDBzB16lS4XPGPNWPGDAwMDGTcBmttbcX+/fsj/9XX1zOvnxBB2xcn62TMyjxtt9+Am7DeQgPEDrPO1iP3yBBvJ9ppAZMOy4mgjdDe3o7zzjsv6fWwR6mtrQ2TJ09Oee+GDRuwdu3apNePHj2KYDCoug4+nw9erzflez0n/ZG/O3s6014nUE+m9mZJfpUMHAJKxxdi/4F9XMuSgwoKSt0Y7AlCKfNzf77giD4AgLtQwun+U2j3NqW9lkV7j5hYiI5D/SgaK9nqN1AysQAdB/oxbJyLe739UgCSC1BkYKCoi3t5eaNDY9zwMfk4XH+Qq3ZFkRUUjcrDQEcAUvkg92cbKu4HALjyJbQPNaHHezrttSz6d/H4PAx4B1E8Lo/7sw3KQbjyJMgBBf7hPdzLc1cEAADDKvJw7NRhSI3G+gnP8dvj8WS9xlEGkN/vR0FBQdLr4df8fn/Se2EWL16MOXPmRP5dX1+PVatWoba2VlMEmdfrTdvw/uohjK08G8EhGSOqhqOiZoTqzxWkJlN7s2TGdAWtV3Zh1IRS5BW4uZc39T+nwdfaj4pqgj7iAWZe0INhIwpRNCL59xMLi/au+/F0tB3rRuWkkXDZJAweAKb/23S0EtZ7Wt007NuzH1++NHlRx5oZMxS0/UM3ys4uQV4hQf9+rA7dzb2oqB7BXSgMD+A534fCknwMG1mY8VIW/Xv6NDnUT2pHwOXm7yWZ9sQ0DPUHMHJsMfeyZsxQ0LagGyPHFiO/yLj5QDV+p8NRBlBhYWFKnU/4tcLC9J2/srISlZWV3OoGAIXF+Zh4fhXXMgR8kFwSRk8uIyuvsDgfhcX5ZOWNGl9KVpY7z4WqKWVk5bHCRVzv4lFFGFZO0wckSULlpJEkZQFAwbA8VNbQlVd2dglZWdT9ZHhZIVCW2bBjhSRJqKyl+954Y/9NvBjKy8vR1taW9Hr4Nb3iaoFAIBAIBM7CUQbQ1KlTcfDgQciyHPf63r17UVRUhAkTJphUM4FAIBAIBFbCtgZQa2sr6uvrEQgEIq9ddtllaG9vx5YtWyKvdXZ2YtOmTbjkkktS6oMEAoFAIBDkHpbUAL3++uvw+XyRrautW7eipaUFAHDNNdegpKQEa9aswcaNG7Fu3TqMHTsWADB//ny89tpreOSRR3Ds2DGMHDkSb775JmRZxq233mra8wgEAoFAILAWljSA1q1bh6amaCjuli1bIl6dK664AiUlqQVtbrcbjz76KJ5++mm8/vrr8Pv9mD59OlasWIGJEyeS1F0gEAgEAoH1saQBtH79+qzXrFy5EitXrkx6vbS0FMuXL8fy5ct5VE0gEAgEAoEDsK0GSCAQCAQCgUAvwgASCAQCgUCQcwgDSCAQCAQCQc4hDCCBQCAQCAQ5hzCABAKBQCAQ5BzCABIIBAKBQJBzCANIIBAIBAJBzmHJPEBWwO/3AwDq6+s13Xf8+HG43W4eVRKkQLQ3LaK9aRHtTYtob1p4t3d1dTWKiorSvi8MoDSEM1GvWrXK5JoIBAKBQCDQyvPPP4+6urq070uKoiiE9bENnZ2d+PTTTzF27FjVh6jW19dj1apV+Ld/+zdUV1dzrqFAtDctor1pEe1Ni2hvWijaW3iAdFJWVoYrrrhC173V1dUZrU4BW0R70yLamxbR3rSI9qbFzPYWImiBQCAQCAQ5hzCABAKBQCAQ5BzCAGJIRUUFlixZgoqKCrOrkhOI9qZFtDctor1pEe1NixXaW4igBQKBQCAQ5BzCAyQQCAQCgSDnEAaQQCAQCASCnEMYQAKBQCAQCHIOYQAJBAKBQCDIOUQiRAYMDg7iV7/6Ff785z+jp6cHkydPxu23344LLrjA7KrZmr6+Prz66qvwer3Yu3cvenp6sGLFClx55ZVJ1x47dgxPPvkkdu3ahby8PFx88cW49957UVZWRl9xm7J3715s3LgRO3bsQFNTE0aMGIGZM2fi9ttvx4QJE+KuFe1tnKNHj+Kll17C/v370d7ejqKiIlRXV+Pb3/425syZE3etaG/2/OY3v8ELL7yA2tpa/PrXv457b9euXXj22Wdx4MABFBcXY8GCBVi6dCmGDx9uUm3tx44dO7Bs2bKU7z3zzDOYOXNm5N9mtbcwgBjwyCOP4IMPPsB1112H8ePH491338WPfvQjrF69Gueee67Z1bMtXV1dWLt2LcaMGYMpU6Zgx44dKa9raWnBfffdh5KSEixduhT9/f149dVXceTIETz33HPIz88nrrk9eeWVV7Br1y4sWLAAkydPRltbG9544w3cfvvteOaZZzBp0iQAor1Z0dTUhL6+PixatAiVlZUYGBjA5s2bsWLFCjzwwANYvHgxANHePGhpacFvf/tbDBs2LOm9gwcP4gc/+AGqq6tx7733oqWlBevWrcOJEyfwi1/8woTa2ptrrrkGM2bMiHvt7LPPjvxtansrAkPs2bNHmTt3rvLKK69EXhsYGFBuuOEG5c477zSxZvbH7/crra2tiqIoyt69e5W5c+cq77zzTtJ1v/zlL5V/+Id/UJqamiKvbdu2TZk7d67y1ltvkdXX7nzxxRfK4OBg3GvHjx9XLr/8cuWhhx6KvCbamx+BQEC55ZZblP/1v/5X5DXR3uz5yU9+oixbtky57777lJtuuinuvQceeED5l3/5F8Xn80Vee/vtt5W5c+cqn3zyCXVVbctnn32mzJ07V9m0aVPG68xsb6EBMsjmzZvhdrsjqzUAKCwsxFVXXYU9e/agubnZxNrZm4KCAlVJsjZv3oxLLrkEY8aMibz2la98BRMmTMCmTZt4VtFRzJo1K8mbMGHCBNTU1KC+vj7ymmhvfrjdblRVVcHn80VeE+3Nlp07d2Lz5s247777kt7r7e3F3//+d1xxxRUoLi6OvP6P//iPGDZsmGhvnfT19SEQCCS9bnZ7iy0wgxw8eBDjx4+P+/IARFx+hw4dihu4BGw5ffo0Ojo6Uh6mN2PGDHz88ccm1Mo5KIqCjo4O1NTUABDtzYP+/n74/X709vZi69at+OSTT7BgwQIAor1ZEwwGsXr1alx11VWYPHly0vtHjhxBMBhMau/8/HxMnToVBw8epKqqY3jkkUfQ398Pt9uNc889F3fddRemT58OwPz2FgaQQdra2lJ6KcKvtba2Ulcpp2hrawOAtN9Bd3c3BgcHUVBQQF01R/Dee+/h9OnTuPXWWwGI9ubBU089hQ0bNgAAXC4X5s2bhx/84AcARHuz5q233kJzczMef/zxlO9na+/PP/+ca/2cRF5eHi677DJ89atfxciRI3Hs2DGsW7cO9957L55++mlMmzbN9PYWBpBB/H5/ShFieEDy+/3UVcopwu2b7TsQE4R26uvr8fjjj2PmzJlYtGgRANHePLjuuuswf/58tLa2YtOmTQgGgxgaGgIg2pslXV1dePHFF3HTTTeljZ7L1t6Dg4M8q+goZs2ahVmzZkX+femll2L+/Pm45ZZbsGbNGjz22GOmt7fQABmksLAwMljFEv7iCgsLqauUU4TbV3wHbGlra8Py5ctRXFyMn//853C73QBEe/OguroaX/nKV7Bo0SL8v//3/9Df348HH3wQiqKI9mbICy+8gNLSUlxzzTVpr8nW3sLQNMb48eNx6aWXYseOHQgGg6a3tzCADFJRURFx48USfq2yspK6SjlF2HWa7jsYMWKEGLQ04vP58KMf/Qg+nw+PPfZYXB8W7c2f+fPnY9++fWhoaBDtzYiGhga8/fbbuPbaa9Ha2orGxkY0NjZicHAQgUAAjY2N6O7uztreYjw3TlVVFYaGhjAwMGB6ewsDyCBTpkzBiRMn0NvbG/e61+uNvC/gx+jRo1FWVob9+/cnvbd3717R/hrx+/148MEH0dDQgP/4j/+IiJ/DiPbmT3hbwOfzifZmRGtrK2RZxurVq3H99ddH/vN6vWhoaMD111+PtWvXora2Fm63O6m9h4aGcPDgQdHeDDh16hQKCgowbNgw09tbGEAGmT9/PoLBYETECIRcd++88w48Ho+IACPgsssuw0cffRSXcmD79u1oaGiIRNMIshMMBvHTn/4Ue/bswc9+9jOcc845Ka8T7c2Gjo6OpNcCgQD+9Kc/obCwMGJ8ivY2Tm1tLR5++OGk/2prazFmzBg8/PDDuOqqq1BSUoKvfOUr+POf/4y+vr7I/X/605/Q398v2lsDnZ2dSa8dOnQIW7duxQUXXACXy2V6e0uKoihcS8gBfvKTn2DLli341re+hbPPPhsbN27E3r178fjjj2P27NlmV8/WvP766/D5fGhra8Obb76JefPmYerUqQBCGUZLSkrQ3NyM22+/HSUlJbj22mvR39+P//7v/8bo0aOxZs0asUWgkieeeAKvvfYaLrnkEixcuDDp/SuuuAIARHsz4v/8n/+D3t5enHfeeRg9ejTa2trw3nvv4fjx47jnnntw/fXXAxDtzZP7778fXV1dcUdh7N+/H/fccw+qq6uxePHiSGbi8847D7/85S9NrK29WLZsGQoLC3HOOedg1KhROHbsGN5++23k5eXh6aefjhj4Zra3MIAY4Pf7I2eB+Xw+TJo0CbfffjsuvPBCs6tme771rW+hqakp5Xvr1q3D2LFjAYTOVUo8K+mee+5BeXk5ZXVtzf3334+dO3emfX/Lli2Rv0V7G+f999/HH//4Rxw5cgRdXV0YPnw46urqcPXVV+PSSy+Nu1a0Nx9SGUAA8MUXX0TOpho+fDgWLFiA733ve+IsMA289tpreO+993Dy5En09vairKwMX/7yl7FkyRKMHz8+7lqz2lsYQAKBQCAQCHIOoQESCAQCgUCQcwgDSCAQCAQCQc4hDCCBQCAQCAQ5hzCABAKBQCAQ5BzCABIIBAKBQJBzCANIIBAIBAJBziEMIIFAIBAIBDmHMIAEAoFAIBDkHMIAEggEAoFAkHMIA0ggEHChsbER8+bNw//9v//X7Kow4d1338W8efPw7rvvml0VgUDAAGEACQQCMu6//37MmzfP7GqkxGkGm0AgyEye2RUQCATOZPTo0Xj55ZdRXFxsdlWYMHfuXHg8HlRUVJhdFYFAwABhAAkEAi7k5eWhurra7Gowo6SkBCUlJWZXQyAQMEKcBi8QCLjQ2NiI66+/HosWLcLKlSvTbn2F3w9z+PBhvPzyy9i5cye6u7tRUVGBOXPm4JZbbsHIkSNTfv6NN96I559/Hp9//jm6u7uxbt06jB07Flu2bMGmTZuwb98+tLa2Ii8vD5MnT8a1116L+fPnRz7r3XffxSOPPJKyfqtXr8b5558fuWbFihW48sor467ZtWsXXn75ZezZswd+vx9nnXUWFi5ciBtvvBFFRUVx186bNw+zZ8/GT3/6UzzzzDP4+OOP0d/fjylTpuB73/sezj//fK1NLRAIdCA8QAKBgIQlS5Zg48aNaGpqwpIlSyKvT506NfL3hx9+iJ/+9KeQJAmXXnopqqqqcOzYMfzhD3/Ap59+iueeew6lpaVxn3vy5EncddddmDRpEhYtWoTu7m7k5+cDANasWYO8vDzMmjULFRUV6OzsxNatW/HjH/8Yy5YtwzXXXAMAmDJlCq699lq89tprmDJlCi699NLI55911lkZn2vTpk146KGHkJ+fj4ULF6KsrAzbtm3D2rVr8emnn2L16tUoLCyMu8fn8+Gee+5BSUkJrrjiCnR0dGDTpk144IEH8Pzzz2PSpEm62lggEKhHGEACgYCEW2+9FTt37kRTUxNuvfXWpPe7urrw8MMPY+TIkXjqqafiDI/3338fP/vZz/CrX/0K3//+9+Pu27VrF5YsWZLyMx999FGMGzcu7rW+vj7cfffd+NWvfoWrrroKRUVFmDp1KkpKSiIGUKrPSkVvby9+8YtfwO1245lnnsHkyZMBAHfccQceeugh/PWvf8Wrr76Km2++Oe6+Q4cO4V/+5V/w/e9/Hy5XKBblS1/6Eh599FH84Q9/wAMPPKCqfIFAoB8RBSYQCCzBn/70J/T29uKOO+5I8rpcfvnlmDZtGt5///2k+8rLy/Hd73435WcmGj8AMHz4cFx55ZXw+XzYt2+foTp/+OGH8Pl8+PrXvx4xfgDA5XLhrrvugtvtThk2P2zYMNx5550R4wcIbQW63W7DdRIIBOoQHiCBQGAJ9uzZAwDwer04efJk0vuDg4Po6upCZ2cnysrKIq9PmTIlsuWVSEdHB373u9/h448/RnNzM/x+f9z7ra2thup88OBBAMDs2bOT3hszZgzGjRuHhoYG9PX1Yfjw4ZH3xo8fH/dvICQaLy8vh8/nM1QngUCgDmEACQQCS9DT0wMAeOONNzJeNzAwEPfvUaNGpbyuu7sbd9xxB5qbmzFr1ix85StfQUlJCVwuFw4dOoQPP/wQQ0NDhurc29sLIOSFSkVFRQUaGhrQ29sbZ/CkSw3gdrshy7KhOgkEAnUIA0ggEFiCsIGwdu1aTSJgSZJSvv7HP/4Rzc3NuO2225I0OL/97W/x4Ycf6q/sGcKGTHt7e8r3w687JReSQOAkhAZIIBCQEda8BIPBpPc8Hg+A6FaYUcLbaLERXWG++OKLtHXT4oEJR7Dt3Lkz6b3m5macPHkS48aNS9ruEggE5iMMIIFAQMaIESMAAC0tLUnvff3rX8fw4cPx/PPP4+jRo0nvDwwMaDKOwkLqXbt2xb3+3nvv4eOPP066vrS0FJIkpaxbOi699FKUlJTgnXfeiauzoih47rnnEAwGk3IGCQQCayC2wAQCARlf+tKX8MEHH+Df//3fcdFFF6GgoABTpkzBnDlzUFZWhp/85Cf48Y9/jFtvvRUXXnghJk6ciKGhITQ1NWHnzp0455xz8Nhjj6kq64orrsArr7yC1atXY8eOHRgzZgwOHTqEzz77DPPmzcOWLVvirh8+fDimT5+Ozz//HKtWrcL48eMhSRL+8R//MW0uoOLiYvzv//2/8dBDD+HOO+/EggULUFZWhu3bt2P//v2YMWMGbrjhBsPtJhAI2CMMIIFAQMY//dM/obGxEX/961/xyiuvIBgMYtGiRZgzZw4A4OKLL8avfvUr/Pd//ze2b9+Ov//97ygqKsLo0aNx5ZVX4oorrlBdVlVVFZ544gk888wz+Pvf/45gMIhp06bhl7/8JVpaWpIMIAD4t3/7N/zXf/0XPvroI/T29kJRFJx77rkZkyEuWLAA5eXl+O1vf4stW7ZEMkHffPPNuPHGG5OSIAoEAmsgjsIQCAQCgUCQcwgNkEAgEAgEgpxDGEACgUAgEAhyDmEACQQCgUAgyDmEASQQCAQCgSDnEAaQQCAQCASCnEMYQAKBQCAQCHIOYQAJBAKBQCDIOYQBJBAIBAKBIOcQBpBAIBAIBIKcQxhAAoFAIBAIcg5hAAkEAoFAIMg5hAEkEAgEAoEg5/j/A6HJ2FSHFy/EAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG5CAYAAAB802v0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJW0lEQVR4nO3deXhU5dk/8O/MJJlkMkkmmewQICRhX6KCGztaxGqtVatU+7rVldKC1RahfW21vj/3VqwLaimgVkFFrVrABYHIIgiyJ0ACSQjZ92SyTJKZ8/tjOCdnkklmOWcySfh+rovrysycmfPkJGTuuZ/7uR+NIAgCiIiIiKhH2kAPgIiIiKi/Y8BERERE5AYDJiIiIiI3GDARERERucGAiYiIiMgNBkxEREREbjBgIiIiInKDAZMKWltbceLECbS2tgZ6KEREROQHDJhUUFhYiHvvvReFhYVeP/fUqVN+GBH1hNe7b/F69y1e777F6923An29GTAFmNVqDfQQziu83n2L17tv8Xr3LV7vvhXo682AiYiIiMiNoEAPoCfNzc1Yt24dsrOzkZOTg8bGRixbtgxXX321R89vbGzEypUrkZWVBavVirFjx2LhwoUYPXq003FWqxUffPABvvjiC5SVlSEiIgITJkzAXXfdhdTUVH98a0RERDTA9NsMU319PdasWYPCwkKkp6d79Vy73Y6lS5fi66+/xg033IAHHngAtbW1WLx4MYqKipyO/etf/4pVq1bhggsuwOLFi3Hdddfh0KFDePDBB1FWVqbmt0REREQDVL/NMJnNZnz88ccwm804fvw47rvvPo+fu23bNhw9ehRPPPEEZs+eDQCYO3cubr31VqxevRqPPfYYAKCyshJZWVlYsGABFi5cKD1/0qRJWLJkCbKysnDzzTer+n0RERHRwNNvM0whISEwm80+PXf79u2IiYnBzJkzpftMJhPmzJmDHTt2oK2tDYBj2g8AoqOjnZ4vnlev1/t0fiIiIhpc+m2GSYmTJ08iIyMDWq1zPDh27Fh89tlnKCoqQlpaGoYMGYK4uDisX78ew4YNQ0ZGBqqqqrBy5UokJSVh7ty5Ll+/qqoK1dXV0m1f2gkQERHRwDEoA6aamhpMnjy52/1i5qi6uhppaWkICgrCX//6V/z1r3/FsmXLpONGjx6NV199FRERES5f/9NPP8WaNWu63Z+fnw+bzebVWC0WC7Kzs716DvmO17tv8Xr3LV7vvsXr3bf8db3HjRvn0XGDMmCyWq0ICQnpdr94n7yXQ0REBNLT0zF79myMGzcOxcXF+Pe//40///nPeOGFF1xOy1133XWYNm2adLuwsBBPPvkkUlNTu63Ccyc7O9vjHxYpx+vdt3i9+xavd9/i9e5bgb7egzJg0uv1Up2SnHifGARZLBb85je/wYIFC7BgwQLpuDFjxuC3v/0tNm3ahOuvv77b68TGxiI2NtY/gyciIqJ+p98WfSsRExPjVGMkEu8Tp+a2b9+Ompoap2wRAGRmZiI8PBxHjhzx/2CJiIio3xuUAVNGRgZyc3Nht9ud7s/JyUFoaChSUlIAALW1tQDQ7ThBEGC3272uRyIiIqLBacAHTFVVVSgsLERHR4d036xZs1BTU4OsrCzpvrq6OmzduhWXX365VMs0dOhQAMCWLVucXnPHjh1oaWlBRkZGH3wHRERE1N/16xqmDRs2wGKxSFNpO3fuREVFBQDgxhtvhNFoxBtvvIHNmzdj/fr1SEpKAgDMnj0bH374IZ566ikUFBQgKioKn3zyCex2O+6++27p9adNm4bU1FSsXbsW5eXlUtH3Rx99BLPZjGuuuabvv+kuBEGARqMJ9DCIiIjOa/06YFq/fr3T9iRZWVlS1mjevHkwGo0un6fT6fDss8/i1VdfxYYNG2C1WjFmzBgsW7YMw4YNk44LDg7Gyy+/jLVr12L37t3YsmULwsLCMGPGDNx7770wmUx+/f7csbXbkPXGUcSnR2H8VSMCOhYiIqLzWb8OmN5//323xyxfvhzLly/vdn9ERASWLl2KpUuX9vr8iIgILFq0CIsWLfJ5nP5g77Bj8zP7UJpdg1O7SmA0h2H4lIRAD4uIiOi8NOBrmAYrbZAW8RnntmwRgG9ePoiKvLqAjomIiOh8xYCpH5tycwbSLnfUZdna7Pjy+f1oKG8K8KiIiIjOPwyY+jGNRoOZ909E0rgYAEBrQxs2P7MPrQ3dm3ISERGR/zBg6ud0wTpcueRCmIY4Ctwbyprx5d/2o6ONPaKIiIj6CgOmAUBvDMZVf5iCMJNjS5eKk3XY/uphCHYhwCMjIiI6PzBgGiAi4sJw1e8vQpBeBwDI31uGve+dCPCoiIiIzg8MmAaQ2NQoXLH4Ami0jkaWR/6bj2NfFAR2UEREROcBBkwDTEpmHKbdNU66vfutHBTuKw/giIiIiAY/BkwD0JgrhmHyT9McN9ijiYiIyO8YMA1Qrno0NddbAzwqIiKiwYkB0wDlqkfT6d2lAR4VERHR4MSAaQDTBetw0c9HSbfrS9kFnIiIyB8YMA1wUYkG6euGsuYAjoSIiGjwYsA0wIVGhiA4zNGbqaGMGSYiIiJ/YMA0wGk0GkQmhAMALFUtsHXYAzwiIiKiwYcB0yAQeW5aThCAxgpOyxEREamNAdMgEJUYLn3NOiYiIiL1MWAaBCITZIXf5axjIiIiUhsDpkEgUpZhqmeGiYiISHUMmAYBthYgIiLyLwZMgwBbCxAREfkXA6ZBgK0FiIiI/IsB0yDB1gJERET+w4BpkHBqLVDOgImIiEhNDJgGCafWAqxjIiIiUhUDpkGCrQWIiIj8hwHTIMHWAkRERP7DgGmQYGsBIiIi/2HANEiwtQAREZH/MGAaRNhagIiIyD8YMA0ibC1ARETkHwyYBhG2FiAiIvIPBkyDiLy1AFfKERERqYcB0yAiby3AXkxERETqYcA0iDi1FijnlBwREZFaGDANIk6tBSrZWoCIiEgtDJgGGbYWICIiUh8DpkGGrQWIiIjUx4BpkGFrASIiIvUxYBpk2FqAiIhIfQyYBhm2FiAiIlIfA6ZBhq0FiIiI1MeAaZBhawEiIiL1MWAahOStBSyVLQEeDRER0cAXpPQFCgoK8NFHH+H48eNobGyE3d49o6HRaLBu3TqlpyIPyVsL1Jc1ISopvJejiYiIyB1FAdPBgwfxyCOPoL29HTqdDtHR0dDpdN2OEwRByWnIS2wtQEREpC5FAdPrr78Om82GP/zhD5g/f77LYIn6HlsLEBERqUtRwJSXl4crrrgC11xzjVrjIRWwtQAREZG6FBV9h4aGwmQyqTQUUgtbCxAREalLUcB06aWX4vDhw2qNhVTC1gJERETqUhQwLVy4EBaLBStWrEBra6taYyIVsLUAERGRehTVMP3lL39BWFgYPv74Y2zatAkpKSkwGAzdjtNoNHjxxReVnIq8xNYCRERE6lHcVkDU0tKCkydPujxOo9EoOQ35wLm1AAu/iYiIlFAUMG3fvl2tcZDKnFsLsPCbiIhICW6NMkixtQAREZF6VA2YWlpaUFVVhZYWFhkHGlsLEBERqUfxXnLt7e147733sGnTJpSWlkr3JyUl4cc//jEWLFiA4OBgpachL4mtBaoLGqTWArogJhSJiIh8oShgslqtWLJkCXJycqDVajF06FCYzWZUV1ejpKQEq1atwq5du/Diiy9Cr9erNWbyUGSiAdUFDVJrAa6UIyIi8o2igOnf//43srOzMXfuXDzwwANISEiQHquoqMDKlSuxZcsWvPvuu7jrrrsUD5a8w9YCRERE6lAUMH3zzTcYNWoU/vznP3d7LD4+Ho899hjOnj2LLVu2eB0wNTc3Y926dcjOzkZOTg4aGxuxbNkyXH311R49v7GxEStXrkRWVhasVivGjh2LhQsXYvTo0S7PtXbtWmzduhXV1dWIiorC+PHj8cc//hGhoaFejbs/YWsBIiIidSgqaikrK8PUqVN7Peaiiy5CWVmZ169dX1+PNWvWoLCwEOnp6V491263Y+nSpfj6669xww034IEHHkBtbS0WL16MoqIip2MtFgsWLVqEjRs34sorr8Tvfvc73HjjjWhra0N7e7vX4+5P2FqAiIhIHYoyTKGhoairq+v1mLq6Op+yNGazGR9//DHMZjOOHz+O++67z+Pnbtu2DUePHsUTTzyB2bNnAwDmzp2LW2+9FatXr8Zjjz0mHfvGG2+grKwM//znP5GcnCzdf9ttt3k95v5G3lqgoZwZJiIiIl8pyjCNGzcOW7ZsQX5+vsvHCwoK8M0332D8+PFev3ZISAjMZrNP49q+fTtiYmIwc+ZM6T6TyYQ5c+Zgx44daGtrA+CYttu4cSN+8pOfIDk5Ge3t7dJjg4G8tUA9M0xEREQ+U5Rh+p//+R98//33uO+++3DNNdcgMzMT0dHRqK2txYEDB7Bp0yZ0dHTgl7/8pVrj9cjJkyeRkZEBrdY5Hhw7diw+++wzFBUVIS0tDUeOHEFbWxuGDh2K//3f/8WOHTtgt9sxfvx4PPTQQ8jIyHD5+lVVVaiurpZuFxYW+vX78RVbCxAREalDUcA0ceJEPPbYY3juuefw8ccf45NPPpEeEwQB4eHhWL58OSZOnKh0nF6pqanB5MmTu90vZqyqq6uRlpaGs2fPAnBMyyUnJ2P58uVoamrCmjVrsGTJEqxduxaxsbHdXufTTz/FmjVrut2fn58Pm83m1VgtFguys7O9eo5XDB0AAEEADu4+gjDz+d0Ty+/Xm5zwevctXu++xevdt/x1vceNG+fRcYobV86ZMweXXHIJduzYgZMnT6K5uRkGgwGjRo3C9OnTYTAY3L+IyqxWK0JCQrrdL95ntVoBwKkj+d///ndprBkZGXjwwQfx8ccf49577+32Otdddx2mTZsm3S4sLMSTTz6J1NRUl6vwepOdne3xD8sXzUdPojr7FAAgzpiEYePi/XaugcDf15uc8Xr3LV7vvsXr3bcCfb0VB0wAYDAYMG/ePMybN0+Nl1NMr9e7rEUS7xObaIoB1LRp05wCu/HjxyMpKQlHjx51+fqxsbEuM0/9EVsLEBERKTcoC1piYmKcaoxE4n3i1JwY9ERHR3c7Njo6GhaLxY+j7BtsLUBERKScVxmmzZs3AwBmzpwJg8Eg3fbE/PnzvRuZAhkZGTh8+DDsdrtT4XdOTg5CQ0ORkpICANL0WVVVVbfXqKqqwrBhw/pmwH7E1gJERETKeRUwPfXUU9BoNBg/fjwMBoN0uzeCIECj0fgtYKqqqkJTUxOGDBmCoCDHtzNr1ixs27YNWVlZUh+muro6bN26FZdffrk0FTds2DCkp6djx44dqKurg8lkAgDs3bsXFRUVuPHGG/0y5r4kthZob7GxtQAREZGPvAqYHn30UQCdU1ribX/ZsGEDLBaLNJW2c+dOVFRUAABuvPFGGI1GvPHGG9i8eTPWr1+PpKQkAMDs2bPx4Ycf4qmnnkJBQQGioqLwySefwG634+6773Y6x6JFi/Dwww9j0aJFuO6662CxWPD+++8jJSUFP/3pT/36/fUFthYgIiJSzquAqes+bp7u6+ar9evXO22rkpWVhaysLADAvHnzYDQaXT5Pp9Ph2WefxauvvooNGzbAarVizJgxWLZsWbdptgsvvBDPPfccVq1ahTfeeAOhoaGYMWMGHnjggYCs8POHyEQDqgsaIAiApbKFm/ASERF5SdEquYMHDyIpKQkJCQk9HlNeXo7S0lJkZmZ6/frvv/++22OWL1+O5cuXd7s/IiICS5cuxdKlS92+xpQpUzBlyhSvxzdQRMkKv+vLmhgwEREReUnR3MySJUuwadOmXo/54osvsGTJEiWnIYXYWoCIiEgZRQGTIAgeHeOuMJz8i60FiIiIlPF79e/Zs2cRHs4poECKiA2Vvm6qtQZwJERERAOT1zVMTz/9tNPtb7/91qkwW2Sz2VBRUYHDhw/jkksu8X2EpFholF76uqWOARMREZG3vA6Y5DVLGo0GeXl5yMvLc3msRqPBmDFjsGjRIt9HSIrpgrQIjQhGa2M7mhkwERERec3rgGn9+vUAHLVJCxYswM9//nPcdNNN3Y7TarWIiIhAWFiY8lGSYmGm0HMBUyvryoiIiLzkdcCUmJgoff3oo49i1KhRTvdR/2QwhaC2CLB3CGhr6oDeGBzoIREREQ0Yivow+btxJanHYOos/G6ua2XARERE5AVFAZPIarXi+PHjqKqqQnt7u8tj+nLzXeouzCQr/K5vQ/TQAA6GiIhogFEcMH300UdYtWoVmppc9/fx9+a75BmDKUT6urm2NYAjISIiGngU9WHavn07VqxYgfj4eCxcuBCCIGDatGm49957cfHFF0MQBMyaNcuj7UnIv8KcpuS4Uo6IiMgbigKmDz74ANHR0Xjttddw8803AwAyMjJw22234dlnn8Wf/vQnfPvttywK7wcMXabkiIiIyHOKAqbTp09j2rRpCA3tzF7Y7Xbp6x/96Ee48MILsWbNGiWnIRXIAyZOyREREXlHUcDU0dEBk8kk3dbr9WhsbHQ6Jj09Hbm5uUpOQyqQF31zSo6IiMg7igIms9mM6upq6XZCQkK34KisrAw6nU7JaUgFwaE6BOkdP4eWegZMRERE3lAUMI0dOxYnT56Ubl9yySU4evQo3nnnHeTn5+M///kPsrKyMGbMGMUDJWU0Go00LdfMDXiJiIi8oihgmj17Ntra2lBaWgoA+OUvf4m4uDj885//xF133YW//e1vCAsLwwMPPKDKYEkZcVqurbkDHW22AI+GiIho4FDUh2nmzJmYOXOmdNtkMuFf//oXPv/8c5SUlCAhIQFXXXUV4uLiFA+UlDNEyVfKWRERZwjgaIiIiAYOVTp9y0VEROAXv/iF2i9LKgiLlq+UY8BERETkKUVTcps3b8a2bdt6PebUqVPYvHmzktOQSpx7MbGOiYiIyFOKMkxPPfUUNBoNpk+fjv/93/+FXq/vdkxWVhbWrl3LrVH6AfmUHFsLEBEReU5Rhglw1C19++23+M1vfoOamho1xkR+0nVKjoiIiDyjOGC6/vrrcd999+HkyZO4//77cerUKTXGRX7QteibiIiIPKM4YAKA2267DY8//jgaGhrw61//Grt371bjZUllThkmTskRERF5TJWACQBmzZqFFStWIDQ0FMuXL8cHH3yg1kuTSkIjQqDRagBwSo6IiMgbqgVMADBmzBi8/vrrGDFiBF555RX87W9/g83GBon9hVarQVhkCABOyREREXlD1YAJcOwn98orr+Diiy/Gf/7zH2aa+hmx23dLfRvsdiHAoyEiIhoYVA+YAMBgMODpp5/Gz372M7S2tvrjFOQjw7k6JsEuwNrYFuDREBERDQyK+jBt3769x8e0Wi2WLFmCq666ClYrp3/6i7AuvZjkt4mIiMg11bdG6Wrs2LH+PgV5Qd7tu7nOCvPwAA6GiIhogPDLlBz1XwZZa4EWthYgIiLyiFcZplmzZkGr1eKtt95CSkoKZs2aBY1G4/Z5Go0GW7du9XmQpJ6uU3JERETknlcB0+TJk6HRaKQ948TbNHB0nZIjIiIi97wKmF566aVeb1P/Jw+YOCVHRETkGdYwnWfCmGEiIiLyGgOm80xQiA4hBkdikRkmIiIiz3g1JbdmzRqfTqLRaHDHHXf49FxSX5hJj7bmDmaYiIiIPORVwLR69WqfTsKAqX8xmPSoL2lCh9WGtpYOhIT5vR0XERHRgObVO+WKFSv8NQ7qQ10LvxkwERER9c6rd8rMzEw/DYP6UtfC76ik8ACOhoiIqP9j0fd5iL2YiIiIvKPaXIzNZkN9fT3a29tdPp6QkKDWqUihMPZiIiIi8origOnEiRN44403cOjQIXR0dLg8hluj9C/MMBEREXlHUcCUm5uLRYsWQafTYerUqdi1axfS09MRExODkydPoq6uDpmZmUhMTFRrvKQCdvsmIiLyjqKAae3atQCAlStXYsSIEZg1axZmzJiBO++8E1arFa+88gq2bduGRx99VJXBkjrY7ZuIiMg7ioq+jxw5gmnTpmHEiBHSfYIgAAD0ej2WLFmC2NhYvPnmm4oGSerShwdDF+z40TNgIiIick9RwNTU1ITk5GTpdlBQEFpaWjpfXKtFZmYm9u/fr+Q0pDKNRoOwKEeWqaWeARMREZE7igImk8mExsZG6XZMTAzOnj3rdExbWxtaW1uVnIb8IMwUAgBobWiDvcMe4NEQERH1b4oCphEjRuDMmTPS7YkTJ+L777/H0aNHAQAFBQXYunUrhg8frmyUpDqDKVT6mlkmIiKi3ikq+r7sssvw8ssvo6qqCrGxsbj11luRlZWFRYsWISIiAhaLBXa7Hb/85S/VGi+pxKm1QH0bws1hARwNERFR/6YoYPrpT3+KOXPmICIiAgCQnp6Ov//973j77bdRUlKC0aNH48Ybb8Rll12mymBJPeKUHAA017YCiArcYIiIiPo5RQFTUFAQYmJinO6bOHEinn32WUWDIv9zmpLjSjkiIqJecS+581RYlCzDxBomIiKiXqmyl1xdXR0KCgpQVVXV4/Yo8+fPV+NUpBJDdGeGqbmWARMREVFvFAVMVqsVL774Ir788kvYbDaXxwiCAI1Gw4Cpn+H2KERERJ5TFDCtWLECGzduRFpaGmbNmgWz2QydTqfW2MiPwiJDAA0AgVNyRERE7igKmLZv347Ro0fjtddeY6A0wGiDtAiNCEFrQxszTERERG4oKvq22+244IILGCwNUOK0XHOdVdoDkIiIiLpTFDCNGTOm21YoNHCI+8nZOwRYm9oDPBoiIqL+S1HA9Ktf/Qrff/89du3apdZ4JM3NzfjXv/6FRx55BNdccw1mzpyJTZs2efz8xsZGPPfcc/jJT36CefPmYfHixThx4kSvzykuLsaVV16JmTNn4vjx40q/hX7PEM3CbyIiIk8oqmGaMGECXnjhBSxbtgyjRo1CWloawsPDux2n0Whwxx13ePXa9fX1WLNmDRISEpCeno4DBw54/Fy73Y6lS5fi1KlTWLBgAaKiovDJJ59g8eLFePPNN5GSkuLyef/4xz/Oq+lFMcMEOKbloodGBHA0RERE/ZeigKm+vh6vv/46GhsbsX//fuzfv9/lcb4ETGazGR9//DHMZjOOHz+O++67z+Pnbtu2DUePHsUTTzyB2bNnAwDmzp2LW2+9FatXr8Zjjz3W7Tl79+7F999/j1/84hd46623vBrrQOW0nxwzTERERD1S3FbgyJEjuPTSS3HFFVeo2lYgJCQEZrPZp+du374dMTExmDlzpnSfyWTCnDlz8NVXX6GtrQ0hIZ2drjs6OvDSSy/hpptuwpAhQxSPfaBwmpJj80oiIqIeKQqY9uzZg8zMTDzzzDNqjUcVJ0+eREZGBrRa5xKtsWPH4rPPPkNRURHS0tKk+z/44AM0Njbi9ttvR1ZWltvXr6qqQnV1tXS7sLBQvcH3IacpOfZiIiIi6pGigEkQBIwZM0atsaimpqYGkydP7na/mLGqrq6WAqbq6mqsXbsWCxcudFl/5cqnn36KNWvWdLs/Pz+/x47nPbFYLMjOzvbqOWppqelcGVdWWIHs7MHfWiCQ1/t8xOvdt3i9+xavd9/y1/UeN26cR8cpCpgmTpyIvLw8JS/hF1ar1WnKTSTeZ7V2ZlNWrlyJ5ORkXHvttR6//nXXXYdp06ZJtwsLC/Hkk08iNTUVo0eP9mqs2dnZHv+w1Nbe2oEDKAEABAuhARtHXwrk9T4f8Xr3LV7vvsXr3bcCfb0VtRVYuHAhjh8/jg0bNqg1HlXo9Xq0tbV1u1+8T693TEUdO3YMX375JRYtWtRt+q43sbGxGD16tPRv+PDh6gy8jwWHBiFI76g5Y9E3ERFRzxRlmN577z2kpaXhH//4BzZs2NBjWwEAePTRR5WcyisxMTFONUYi8T5xau61117DpEmTkJSUhNLSUgBAXV2ddGx5eTkSEhL6ZtABYjDp0VDezD5MREREvVAUMMkbSRYXF6O4uNjlcRqNpk8DpoyMDBw+fBh2u90pc5STk4PQ0FCpD1NFRQXKyspwyy23dHuNZcuWwWg0YuPGjX027kAwRDsCprbmDnS02RAUcv70oSIiIvKUooBp/fr1ao3DZ1VVVWhqasKQIUMQFOT4dmbNmoVt27YhKytL6sNUV1eHrVu34vLLL5dqmR555BGneiYA+OGHH7BhwwYsXLhwwE61eUO+Uq6lzoqIeEMAR0NERNQ/KQqYDh48iJiYGFx88cVqjcfJhg0bYLFYpKm0nTt3oqKiAgBw4403wmg04o033sDmzZuxfv16JCUlAQBmz56NDz/8EE899RQKCgqkTt92ux1333239Pquxm2xWAAAmZmZ/XIFoNq6Nq9kwERERNSdooDpmWeewQ033OC3gGn9+vUoKyuTbmdlZUl9kubNmwej0ejyeTqdDs8++yxeffVVbNiwAVarFWPGjMGyZcswbNgwv4x1oApjt28iIiK3FAVMZrPZ675D3nj//ffdHrN8+XIsX7682/0RERFYunQpli5d6tU5r776alx99dVePWcgk2eYWPhNRETkmqK2AtOmTcO+fftcLuGngYH7yREREbmnKGC69957ERoaij/96U/Iz89Xa0zUhzglR0RE5J6iKblf/epXaG9vR15eHvbu3YuQkBCYTCZoNBqn4zQaDdatW6dooOQfnJIjIiJyT/FeckFBQYiPj+92f2+3qf8IjQiBRquBYBeYYSIiIuqBooDJk6Js6t80Wg3CokLQXGtlhomIiKgHimqYaHAQp+Va6q2w25kNJCIi6kpRhkmuo6MDRUVFaGpqQnh4OFJSUqTO29S/iYXfggC0NrbBIOv+TURERCoETA0NDVi5ciW+/vprp/YCer0eV155Je677z5ERUUpPQ35kVPhd62VARMREVEXigKmhoYGPPDAAyguLkZkZCQmTZoEs9mMmpoaHD9+HJ9//jkOHjyI1157DZGRkWqNmVTWtReTOYBjISIi6o8UBUxr165FcXExFixYgDvvvBNhYWHSY62trVi7di3effddvPXWW1i0aJHiwZJ/hLG1ABERUa8UFX3v2LEDmZmZePDBB52CJQAIDQ3F/fffj8zMTHz77beKBkn+xW7fREREvVMUMFVXV2PChAm9HjNhwgRUV1crOQ35GQMmIiKi3ikKmMLDw1FWVtbrMWVlZQgPD1dyGvIzTskRERH1TlHAlJmZiW3btmHfvn0uH9+/fz+2bduGzMxMJachPwuLYoaJiIioN4qKvu+8807s3r0bjzzyCC699FJMnjwZMTExqKmpwcGDB7Fnzx7o9XrceeedKg2X/CEoRAd9eDCsTe1oqWfARERE1JWigCk1NRXPP/88nnrqKezevRu7d++GRqOR9o5LTk7G8uXLkZqaqspgyX/CTCGwNrWjuc4KQRC6baBMRER0PlPcuHLSpEl49913ceTIEeTm5kqdvjMyMjBx4kS+8Q4QBlMo6oqb0GG1ob2lAyGG4EAPiYiIqN9QZe8SjUaDSZMmYdKkSWq8HAVAWFSI9HVLfRsDJiIiIhluvksAAEN0qPR1c11rAEdCRETU/yjOMNXV1WHjxo04fvw4LBYLbDZbt2M0Gg1efPFFpaciP5K3FmiuZeE3ERGRnKKA6dSpU1iyZAkaGxulQm9XWMfU/xmcpuQYMBEREckpCpheeeUVNDQ04Pbbb8c111yDuLg46HQ6tcZGfch5So4BExERkZyigOnYsWOYPn06fvWrX6k1HgoQTskRERH1TFHRd1BQEIYMGaLWWCiADLJu35ySIyIicqZ4a5QTJ06oNRYKoJDwIOhCHL8O9WXNAR4NERFR/6IoYFq4cCFOnz6N9957T63xUIBoNBrEpZkAAJbKFjRWMmgiIiISKaphevvttzFy5Ei8/vrr+PTTT5Geno7w8HCXxz766KNKTkV9YMh4M8pyagAAJUerMXqOIcAjIiIi6h8UBUybNm2Svi4pKUFJSYnL4zQaDQOmASB5ghn7P8wFABQfrcboOSkBHhEREVH/oChgWr9+vVrjoH4gLi0KwWE6tLfYUHKsmpvwEhERnaMoYEpMTPTpeeXl5SgtLUVmZqaS05PKtDotEsfEoOhAJVob2lBbZEHMsIhAD4uIiCjgArKX3MaNG7FkyZJAnJrcGDLBLH1dcqwqgCMhIiLqP7j5LjlJHh8rfV18tDqAIyEiIuo/GDCRk+gUI0IjHfvKlR2vgd1mD/CIiIiIAo8BEznRaDRIHu+YlmtvsaHyVH2AR0RERBR4DJiom2SnOiZOyxERETFgom6GjGfAREREJMeAibqJiDcgIi4MAFB+shYdVluAR0RERBRYDJjIpeQJjtVy9g4BZSdqAjwaIiKiwGLARC6xjomIiKhTQAKm8PBwxMfHB+LU5KHk8THS1yXsx0REROe5gARMN998M95///1AnJo8FBapl7ZFqSpoQKulLcAjIiIiChyv9pJbs2aNTyfRaDS44447fHouBU7yeDNqzjQCAlCaXYPUi33bO5CIiGig8ypgWr16dbf75LvZC4LQ7X5xx3sGTANP8gQzjm4qAOCoY2LARERE5yuvAqYVK1Z0u2/dunXYt28f5s2bh0mTJiEmJgY1NTU4dOgQvvrqK0ydOhW33HKLagOmvpM4JgYanQaCTWAdExERnde8CpgyMzOdbn/++ec4ePAg3nzzTaSmpjo9Nn/+fNx0001YuHAhpk+f3u251P+FhAUhLi0KFSfrUF/ahKaaVoTHhAZ6WERERH1OUdH3Bx98gCuuuKJbsCRKS0vDFVdcwQLvAcyp6zezTEREdJ5SFDAVFxcjMjKy12MiIyNRUlKi5DQUQGIDSwAoPloVwJEQEREFjqKAyWQyYc+ePU7F3nJ2ux179uxBVFSUktNQAMVnmBCk1wFwFH739LMmIiIazBQFTFdeeSVOnTqFRx99FHl5eU6P5ebm4tFHH0V+fj5+9KMfKRokBY4uSIvE0dEAgOZaK+pLmgI8IiIior7nVdF3V3fddRdOnjyJ7777Dnv27EFoaChMJhPq6urQ2toKQRBw0UUX4c4771RpuBQIyePNOHvYMR1XcqwapiHGAI+IiIiobykKmPR6PV544QVs3rwZmzdvxunTp1FeXg6j0YgxY8bgqquuwvz58516NdHAI99XrvhYNcbNGx7A0RAREfU9RQET4GhQefXVV+Pqq69WYzzUD5mHR0JvDIbV0o7SY9Ww2wVotQyCiYjo/BGQveRoYNFoNUga59iMt625A9UFDQEeERERUd9SnGECgI6ODhQVFcFiscBms7k8ho0rB7bk8WYU7C0HAJQcrULcSK58JCKi84eigEkQBKxatQofffQRmpubez1227ZtSk5FATZE1o+p5Fg1Jl+XFsDREBER9S1FAdPatWvx9ttvw2g04qqrrkJcXBx0Op1aY6N+JDLRgPCYUDTVtKLsRC062mwICuHPmoiIzg+KAqaNGzciISEBb775JptTDnIajQbJE8zIzSqGrc2Oitw6JMu2TSEiIhrMFBV919TUYMaMGQyWzhPy9gIlx7ivHBERnT8UBUyJiYloamLn5/NFMjfiJSKi85SigOn666/H7t27UVtbq9Z4qB8Ljw6FaUg4AKDydD3aWjoCPCIiIqK+oaiGafr06Th8+DAWLlyIO+64A6NGjUJ4eLjLYxMSEjx+3ebmZqxbtw7Z2dnIyclBY2Mjli1b5nFzzMbGRqxcuRJZWVmwWq0YO3YsFi5ciNGjR0vH1NfXY+PGjdi5cycKCwths9kwbNgw/PznP8cVV1zh8VjPN0ljzagrboJgF1CRV4ehE2PdP4mIiGiAUxQw3XLLLdBoNBAEAU8//XSPx2k0GmzdutXj162vr8eaNWuQkJCA9PR0HDhwwOPn2u12LF26FKdOncKCBQsQFRWFTz75BIsXL8abb76JlJQUAMCxY8fw5ptv4tJLL8Xtt98OnU6H7du34/HHH0dhYSHuvvtuj895PkkYHY2cr88AAMqP1zBgIiKi84KigOmqq67yyz5xZrMZH3/8McxmM44fP4777rvP4+du27YNR48exRNPPIHZs2cDAObOnYtbb70Vq1evxmOPPQYAGDFiBN59910kJiZKz/3Zz36Ghx56CO+++y5+8YtfICwsTNXvazBIHBMtfV12glOxRER0flAUMC1fvlytcTgJCQmB2ezbkvXt27cjJiYGM2fOlO4zmUyYM2cOvvrqK7S1tSEkJATJycndnqvRaDBjxgz88MMPKCkpQVoamzN2ZTSHwRgbBktVCypy62DrsEMXxB12iIhocBt073QnT55ERkYGtFrnb23s2LFobW1FUVFRr8+vqakBgF5bJVRVVeHEiRPSv8LCQuUDH0DELJOt3Y6q0/UBHg0REZH/qbKXXH9SU1ODyZMnd7tfzFhVV1f3mDlqaGjA559/jkmTJiE2tufanE8//RRr1qzpdn9+fn6Pe+n1xGKxIDs726vnBJo9slX6+nDWcQzpGDh9uAbi9R7IeL37Fq933+L17lv+ut7jxo3z6DjFRd+e0Gg0WLdunZJTecxqtSIkJKTb/eJ9VqvV5fPsdjv++te/wmKxYMmSJb2e47rrrsO0adOk24WFhXjyySeRmprqtBLPE9nZ2R7/sPqLpCgLTm/8FgAg1IUMqPEPxOs9kPF69y1e777F6923An29FW++60pTUxMsFgsAR2YnKKjvEll6vR5tbW3d7hfv0+v1Lp/34osvYs+ePfjjH/+I9PT0Xs8RGxvbawZqsDMlhyM0Ihitje0oP1ELwS5Ao1W/+J+IiKi/UBTJvP/++z0+Vlpaipdffhm1tbX429/+puQ0XomJiUF1dfcu1OJ9rorJV69ejU8++QT3338/rrrqKr+PcaDTaDRIGB2Dwn3lsDa1o7bYgpiUiEAPi4iIyG/8VvSdlJSExx9/HI2NjXjzzTf9dZpuMjIykJubC7vd7nR/Tk4OQkNDpT5Moo8++girV6/Gz3/+c9x22219Ns6BLmG0rL3A8ZoAjoSIiMj//LpKLigoCFOmTPGqaaU3qqqqUFhYiI6Ozi06Zs2ahZqaGmRlZUn31dXVYevWrbj88sud6pu2bNmCl156CT/60Y+waNEiv4xxsEqUBUzl7MdERESDnN+Li6xWKxoaGrx+3oYNG2CxWKSptJ07d6KiogIAcOONN8JoNOKNN97A5s2bsX79eiQlJQEAZs+ejQ8//BBPPfUUCgoKpE7fdrvdqXt3dnY2/t//+3+IjIzERRddhK+++srp/BMmTHDZq4kcYkdEIkivQ4fVhrLjtRAEwS9NTImIiPoDvwZMhw4dwpYtWzBs2DCvn7t+/XqUlZVJt7OysqSs0bx582A0Gl0+T6fT4dlnn8Wrr76KDRs2wGq1YsyYMVi2bJnTOAoLC9He3o66ujqX27osW7aMAVMvtEFaxKebUHKsGk01rbBUtSAizhDoYREREfmFooBp8eLFLu+32WyoqqqSAp477rjD69furaBctHz5cpfdxiMiIrB06VIsXbq0x+deffXVHm/mS64ljolGyTFHBrDsRC0DJiIiGrQUBUwHDx50eb9Go0FERASmTp2Km2++GVOnTlVyGuqnEsfESF+XH69FxvQhARwNERGR/ygKmLZv367WOGgAik83QaPTQLAJKDvBlXJERDR4Dbq95KjvBOl1iE2NBADUFTehtaF7w1AiIqLBQLWAqaOjA/n5+Th69Cjy8/OdlvrT4JU4unNaroztBYiIaJBSvEquoaEBK1euxNdff+20JYler8eVV16J++67D1FRA2dzVvJO4uhoHPlvPgCg7EQNRkxNCPCIiIiI1KcoYGpoaMADDzyA4uJiREZGYtKkSTCbzaipqcHx48fx+eef4+DBg3jttdcQGRmp1pipH5F3/C4/zgwTERENTooCprVr16K4uBgLFizAnXfeibCwMOmx1tZWrF27Fu+++y7eeustdtIepEIjQmAaYkRdsQVVBQ1ob+1AcGjfbbZMRETUFxTVMO3YsQOZmZl48MEHnYIlAAgNDcX999+PzMxMfPvtt4oGSf1b4hhHlkmwC6jIqwvsYIiIiPxAUcBUXV2NCRMm9HrMhAkTpO1NaHBKdNqIl9NyREQ0+CgKmMLDw522L3GlrKwM4eHhSk5D/ZxTA0uulCMiokFIUcCUmZmJbdu2Yd++fS4f379/P7Zt24bMzEwlp6F+zhgbBmNsKACgIq8O9g57gEdERESkLkXVuXfeeSd2796NRx55BJdeeikmT56MmJgY1NTU4ODBg9izZw/0ej3uvPNOlYZL/VXCqGhYqkrRYbWhqqAB8emmQA+JiIhINYoCptTUVDz//PN46qmnsHv3buzevRsajQaCIAAAkpOTsXz5cqSmpqoyWOq/EsfE4NSuUgBA2fEaBkxERDSoKF7/PWnSJLz77rs4cuQIcnNz0dTUhPDwcGRkZGDixInQaDRqjJP6OXGlHODo+D3p2gAOhoiISGWKAqann34aI0eOxM0334xJkyZh0qRJao2LBhhTshF6YzCslnaUn6iFYBeg0TJYJiKiwUFR0ffXX3+N2lquiiJAo9VIXb+tlnbUlVgCPCIiIiL1KAqYkpOT2WOJJE79mNhegIiIBhFFAdOPf/xj7N69G5WVlWqNhwYweT8mNrAkIqLBRFEN06xZs3DgwAEsXLgQv/jFLzBmzBjExMS4LPROSOAu9oNd7IhI6EK0sLXZUX6iJtDDISIiUo2igGnBggVSG4GXXnqpx+M0Gg22bt2q5FQ0AGiDtIhPN6E0uwaWqlZYqlpgjA1z/0QiIqJ+TlHAdNVVV7FtADlJHBOD0mxHdqnseA3Spw8J8IiIiIiUUxQwLV++XK1x0CDRtfCbARMREQ0Gioq+ibqKzzBJ/Ze4ES8REQ0Wijt9E8kFhwYhdkQkKk/Xo/asBe8/tB0R8QZEJhgQkWBApPh1fBiCQ/nrR0REA4Oid6xbbrnF7TFarRYGgwHDhg3DjBkzMHfuXCWnpAEgeYIZlafrAQAN5c1oKG9G8ZHux4WZ9EgcFY0Z909ESBiDJyIi6r8UvUsJggCbzYaqqioAgE6nQ1RUFOrr62Gz2QAAsbGxqK2tRV5eHrZu3YrPP/8czzzzDIKDg5WPnvqlidekorWxHVWn69BQ0Yz2FpvL41rqrMjfW4b4DBMmXsMNmomIqP9SFDCtWrUKDz/8MIYNG4Z77rkH48aNk9oMZGdnY9WqVbBYLFizZg3q6+vx8ssv47vvvsP69evxy1/+Uq3vgfqZ0IgQzLh3AgBHUN3a2IbGc5mmhopmNJa3oL60CRV5dQCAkmPVgy5gqi9rQm1RI4ZdlAAt99QjIhrwFBV9r1y5Em1tbXjhhRcwfvx4qcWARqPB+PHj8dxzz6GtrQ2vv/46hg4discffxwJCQnYsmWLKoOn/k+j0SAsUo/4jGikTx+CC2/IwKwHJ+Enj1+KsKgQAEDZiRrYbfYAj1Q97a0d+M+fduHrvx/AvvUnAj0cIiJSgaKAaefOnbj00kuh1bp+GZ1Oh0svvRQ7duwAAOj1elx44YUoLi5WcloaBDQaDZLGmQEA7S02VOU3BHhE6qk9a0FbcwcA4NjmQjRVtwR4REREpJSigKmpqQnNzc1uj2lqapJuR0VFKTklDSLJ4zr3nis5Nng2cW6qaZW+trXbcfDT0wEcDRERqUFRwDRixAh8/fXXKCkpcfl4SUkJtmzZghEjRkj3VVRUwGQyKTktDRJihgkASrMHUcDUJaN04psiWKqYZSIiGsgUFX3/8pe/xGOPPYa7774b1157LSZMmIDo6GjU1tbi6NGj+O9//4uWlhapwLu9vR3ff/89pk6dqsrgaWCLTDQgPCYUTTWtKDtRC1uHHbqggd9L1VLV6nTbbhNw4ONTUiE8ERENPIoCplmzZuEPf/gD/vGPf+CDDz7Ahx9+KD0mCALCwsLwyCOPYNasWQCA1tZW/OEPf0Bq6uBaEUW+cdQxxSBvRwlsbXZU5tUhcUyM+yf2c03VnQGTVqeB3SbgZNZZTL5uJCITDAEcGRER+Upxt8BrrrkGs2bNwo4dO5CXl4fm5mYYDAakp6dj+vTpMBqN0rERERGYMWOG0lPSIJI8zoy8HY4p3ZLs6kERMFlqzk2/aRw9qQ59ehqCTcDBT/Iw8/5JgR0cERH5RJX2ykajEfPnz+/xcZvNBp1Op8apaJBJGi+vY6oBbgjgYFQiZpjCovSY9JORyPn6DNqaO5D7bQkmX5eGqKTwAI+QiIi8pahg5KOPPnJ7jM1mw+OPP67kNDSIRcSFISIuDABQfrIWHW2uu4IPFLYOO5rrrAAAY0wo9OHBUlNOwS7gwMd5gRweERH5SFHA9NJLL2Hbtm09Pm632/H4448jKytLyWlokBOzTPYOARW5dYEdjELNta2A4Pg6PDYUADD+quHQGx1bAZ3aWYLaYkughkdERD5SFDBNnDgRTz75JH744Yduj4nB0vbt2/Gzn/1MyWlokBtM/ZjkBd9GsyNzFmIIxqRrz2WZBODAR8wynQ/OHqrE6e9KIQhCoIdCRCpQFDA9/fTTSElJwZ/+9Cfk5uZK99vtdvz1r3/Ftm3bcP3112Px4sWKB0qDl7yOqWSA92OyyAKm8JhQ6etx84YjNNKxFczp70pRU9TY52OjvlN9pgGbn9mHb146iOwvCwM9HCJSgaKAKTw8HM8//zyMRiN+//vfo6SkBIIg4IknnsA333yDn/70p3jooYfUGisNUuHRoVIhdOWperS3dgR4RL6TN60MN3cGTMGhQZj0k5GOGwLww4bcrk/1WVtLB3b+6xgOf34agp3ZjP6g8lS99PUPG/LQ1twewNEQkRoUdwk0m8144YUXYLfb8fDDD+PPf/4ztm7dimuvvRa/+93v1BgjnQeSzk3LCTYB5SdqAzwa38kzTMbYMKfHxl05DGEmPQCgYG85qgvU2T/v2KYC5Hx9BnvfPYHj3xSp8pqkjKWyM3C2Wtpx5L/5ARwNEalBlbbKKSkpePbZZ1FbW4usrCxce+21+P3vf6/GS9N5IlnBtNzBT07hvUVbkZulbFPnuhILPvx9Fr56YT/sPmZq5DVM8gwTAATpdZh83UjptlpZpsr8zmzG3vdOoKm2tZejqS/Ifw8A4MjGAjTXWwM0GiJSg1d9mNasWdPr42PHjkVeXh7MZrPTsRqNBnfccYcv46PzRNLYzsLv0mM1Hj+vrsSCfR+cBARg/4ZcZMwc4vMYjm4qQF1xE+qKm1B2vAbJsr3uPCVOyWl0GoRF6bs9PmZuCg5/dhrNtVYU7q9A1el6xI5UtiF13dnOVXftLR3YvTYbVy65UNFrkjKNXfYO7LDacPCTU7j8jnEBGhERKeVVwLR69WqPjlu7dq3TbQZM5E5YlB7RKUbUFllQlV+PtuZ2hBiC3T7v8GenpWX8lsoWtDRYERbZPVDxhLzupKG0yaeASZySC48OhVar6fZ4UIgOmdenYdfqbADA/g9zcdUfpvg0XgDoaLOhsaLZ6b6CveUo3FeO4VMSfH5dUqbpXMAUpHc07O2w2nD86zOYMH+EX7bHaW1sw4ltZ9EaZgUYkxH5hVcB04oVK/w1DiIkjTOjtsgCQQBKc2ow/KLe3/AbK1uQe25bFVHVqXqkXBDv9bk72mxOK9fqy5t7ObqH17DaYLU4inu7TsfJjZ49FIc+PY2m6lYUHaxERW4t4jOivT4fANSXNkFctW6I1qO51jHts3PNMSSNi/Eo6CR12e0CLDWOwDkq0YCUC+Jx8JNTsNsE/LAhF7MXTlb9nPveP4njW4qg0QGjxloQPcTo/klE5BWvAqbMzEw/DYPI0Y8p+wvHEuzSbPcB05H/5kOwOdcaVZ72LWCqOdPo9FqNPgRMFtkKOWMvAZMuWIcLfpaOHf88CgA4+J/TmPfIRV6fDwDqZE0wx/1oOMpO1ODsoSo011ix74NcTgEFQEttq/S7ZIwNw6RrU5Hz9RlYLe3I21mCidemwjwsUtVzigslBBuw81/HcM2fLoZG0z3DSUS+U6Xom0gNiWNjgHN/490VfjfXW3Fiq2NFmFbX+cZQebq+p6f0qvJUndPtBh8CJueC77BejgRGzRyCsChHX6bSnBqfmxvKA6booUZMu2u8NA2U/WUhKvLqfHpd8p1TL67YMIQYgjH5p2mOOwRg3/qTqp7PbrOjvrRJul2WU4Pcb5UtgCCi7hQFTJs2bcI999yDqqoql49XVVXhnnvuwVdffaXkNHSeCDWGwDzc8cm7prARrY1tPR57dGMBbO12AMA42dYjlafqfQo+5PVLgCNg8vZ1PM0wAYA2SCsVe7e3dMBS5dvKNvk2K6YhRkTEG3DhTRmOOwTg2zePwt5h9+m1e9LRZkNFXp3PKwkHO4us4FtsLTHuR8OkRqZFBypRdtzzhQ3uNFa0wN4l07r338d7/f9DRN5TFDBt3rwZwcHBiI2Ndfl4bGws9Ho9/vvf/yo5DZ1HkmTbpJTmuH5TsVrakfO1Y+pOG6TBxGtSEXcu+GhtaOu2pNsTXTNTHVYbWuq9e8PpraWAKzEpEdLXNWd868kkZpi0QRpExDvenCfMHw7zCEfgWVvUiCMb1e0B9M0/DuLTx3bji2f2MWhywSlgOvd7EBSiw4U3pUv3f7/upGpbptSVdAbNGkdyEa2N7dj73glVXt+Vo5sLsPmZ71XrJUY0ECgKmAoKCpCRkdHrMenp6SgoKFByGjqPyPsxlfawr9yxLwvQ3mIDAIyaNRTh0aFOS/O7Tq+509bc7jSlIWoo635fbywu9pHrTcwwecDk/VYp9g476sscU4dRSUZodY7/zlqdFtPvmQCxhOWHDXmo9/J76UlbSwfO/FABACg+UsV98VyQZwvlzUszZgxBVLKjo335yVrpOipVV9L5sx02JxrBYY7S1JPbzqqayRI11bZiz9s5OHuoCl8+vx/WJnYxp/ODooCpqakJERERvR4THh4Oi4W7s5NnEkdHQ3NuOX5Jdvc/9u2tHTi22ZFd0mg1mHxuu5G4NFnA5GUdU1V+g9SaQBfc+V+iocK7OiavM0zDOwt/fQmY6subpeLirqui4kZGYfz8EQAAW7sdO1cdUyWjUVPYea0A4MDHeQN+w2S1uZqSAxyB7NRbRkm3971/UpUMXb0swxQ1XO90jh2rjsKm8pRsdUGDtDKzqaYVu1YfU/X1iforRQGT2Wx22nTXlby8PERH+7Zkms4/IYZgxKY6Aom6Yku37sg5W4qkpftplychIt7R0ybOKcPkXcAkD7BSMuOkrxvKvAuYxBomXYhWqqnqTVSiQQrQfAmY5AXfpqHh3R6/6OcZMMY6AreSY9XI+7ak2zHeqsrvcm0FYNsrh9DCLtYS6fcgWIuwcxsui4ZPSUBcuuN3tbbIglM7lP9M5BmmMHMwxlw5TPr/UFfcpPq2LDWFzr+rp3aV4tQu5d8HUX+nKGCaMmUKvv/+e3z//fcuH9+7dy/27t2Liy++WMlp6DzT07RcR5sNR2V//OXbjBiiQ2GIcTSsrMpv8GoT2ipZgJV2eZL0ddeGkL0RBEHKMBnNYR4t6dbqtDCdyww1lDWhw2rz+HyAc4dvU3L3vjvBoUGYdtd46fZ37+SgpUFZYFOV31mzIm6Y3FxnxfaVh7nxLxy/B2KGKdwcKmVLRRqNBlMXjJZu7/8wF7Z2737uXc8nBs7G2FDoQrTQajWY9qvx0pTsgY/yfFr12ZNqF/V2O/91zGnjaTW11Fvx+V/3YMuKA9zEmAJKUcB02223ITQ0FH/4wx/w9NNP4+uvv8bBgwfx9ddf46mnnsLSpUthMBhw2223qTVeOg84FX7LpuVys4rRXOd4wx8xNQHRQ52ng+NGmgA4Vp25qknqiZhhCtLrMHRynNTawJsMU1tThxTweDIdJxLrmATBecWbJ+TFvtFDXTcqTLkgHiMvdQSBVks79rxz3KtzdCUGTFqdBlcvmyq1Rjh7qAqH/bTBbEebDa2WgbHiq625Q6qv66mOLXmcGUMnORbKWKpakLPF9w2TWxra0NbcAcBRxyaKTXWekt21Rp0pWaAzw6QL1iL1kkQAju97+8ojfgmaj24uRFlODfL3lOHbN46q9n0QeUtRwJScnIxnnnkGMTEx2LRpE5588kksWbIETz75JDZv3gyz2YznnnsOycnJao2XzgMJo6Kl3kpiPyZ7hx2HPjstHZMp9rWRcZqW87COqaXBKmUEYlMjERwaJK1s8uZTuaXG85YCck6F34XerTgSAyyNVoPIxO5TcqJLbx+LEIOjEDhvR4nPhcDtrR1SvUx0SgSMsWGOrtXnAsx9759E+clan167J811Vry3aCvW/WYbCveXq/ra/uBUvxTXc+H/lAWddUYHPzmFtpYOn84nr18yDXH+HbjwpgyplcHZQ1XI31Pm0znkOqw2aTFE9FAjpv9qgpTZLTlWjWNfFio+R1fyRRz5e8ukGkaivqa4ceWkSZOwbt06/OUvf8HNN9+Ma665Brfccgsef/xxvPfeexg/frz7FyGSCQ4NQly6CYAjy9NU3YJTu0thqXS8GQ2dFOtyw9pYHwq/5dNx4muKdVHWpnaPMxveNK2UM/tY+G23C6g/V7sSmWiALqjn/8oGk95pGqjge98Cj+rCRqnYV6wzGzIxVgpeBZuArS8flGrM1JC/pxRWSzs6rDZsffmQy+mg/sRVSwFXYkdEYeRljsxfa0Ob1OHeW3XFnZnUrtOyIWFBuOyOsdLt3W/lKJ7Sqinq/B2IGR4JvTEYs+6fJD3+/XsnUHvW+3q8ngiCgKou/5f3vHtc9cBcrqaoEXvfO+5TXSENbqp0+g4ODsacOXOwcOFC/P73v8eDDz6I2bNnIziY+1iRb5Jl03LFx6px6NNT0u3M67tnlwAgLrUzYKrysPBbHliJGarIhM5P6p5ukSJ/o/RmSi46pfNNTr6XnTuNFc1S406TB/uGiVMnAHx+s5EXfMfKrvWFN6YjYbRjYYelqhVZbx5Rbdqk/ESd9HWH1Yavnt/fbSFAf9JTSwFXLvp5Z0uWs4crfTqffFpWbFkgN3xKAoZd6NgqqKXOqrjLuDyIELOjQybGYvz84QAc03/bXj2s2sq8hrJmacpRXCAh2AR889JBxfV4Pdn2yiEc/iwfnz3+ndfT5DS4cWsU6peSxnUWfv/wYZ70STpxTDQSx8S4fI7eGIzIREd2qLqwwaMO104B07kMlfgagOfTck1OPZg8D5jCIvUwmBxTGjVnGj0ONJy2RPEgYAqNCJHeUKsKGtDR5n2hcbWs4FvMMAGO4vW5iyZLKwMLvy9H9pdnvH59V8pznYM7S1Urvv7bDz6Nvy/01FLAlajEcOmY6gLvFiqI6kt6zjABjiLzy+4Y17ldztdnFG2XI582lk8nT10wWgrcqwsa8MOHva+e9pQ8SJ90bSoSxzgC86aaVmx75bDqjVOb661SUNje0oGvnt/PjukkUSVgqqiowBdffIF///vfWLNmTbd/a9euVeM0dB6JzzBJnyjlb0KTXdQuyYlZIlu7HTVupgYEQZBaEOiNwdJUXGSCDwFTjW9TckDnG4/V0o7mWs8+Ndd12RLFEwmjHG82gk3wuvUCAFQVOJ6j0WkQneJccB9uDsPM+ydKt/f8O0c63leW6hYpEDUPj5DqcSpy67Djn/4p/u1os6FwX7nTz9MbTtvjxLoPnM3nAs/2VptPK9nEDFOIIUgqwO8qIi4MF954rsu4AOxcdRR2m28ZoGpZhkm+gXBQiA6zfz1Jqj08/NlpVZpmyn9P4zOiMfc3mdL3WXykCgc/VrdxasXJOqfbDeXN+Oalg6pvLyQS7AJ2rcnGV3/7AY2V6q1kJP8IUvoCr776Kj788EPY7Z2/UIIgSMuqxa/vuOMOr163ubkZ69atQ3Z2NnJyctDY2Ihly5bh6quv9uj5jY2NWLlyJbKysmC1WjF27FgsXLgQo0eP7nbsjh07sHr1ahQWFsJkMuHHP/4xbr/9dgQFKb485KOgEB3iM0xOq+TMIyKl1UU9iUuLwqldpQAcf2xjR3SvdRI1VbeitcHx6TE2NUr6nfUlYLL4mGECgOhhETh72LEfY82ZRikw6I28dsWTDBMAJIwy4eS2swCAitxaJI11nalzpcNqk9oYRA81IihE1+2Y4RclYMLVI3B0UwHsHQK+WXEQY283dzvOU+WyN6+UC+Ix4uIEfP74HnRYbcjbUQLTEKPL4n8l9n+QiyP/zYcxNgw3/20mtL3UhrkiBfcaePRzjB0RicJzNWVV+fVSqwZPtLd27kFoSjb22spiwvwRyNtRgpozjagubETJsWoMnRTX4/GuCIIgZV/CzaHdeo3FjojChTdlYN/6kxAEYPtrh/Gzp6cjJMz3v6PyDHDsyEiEReoxZ1EmNv2/vRAE4IeP8hCfYfL6e+lJRV5nRlOj1UCwCyg5Vo3db+Vg2t3q1+MWHapE9rlC+dqzjbjuL5chNNJ14EuBpyjD9Nlnn2H9+vW44IIL8MQTT0AQBMyfPx+PPfYYrrvuOuh0OsyePRsvvvii169dX1+PNWvWoLCwEOnp6e6fIGO327F06VJ8/fXXuOGGG/DAAw+gtrYWixcvRlGR8xLe7777Dn/84x9hNBqxePFizJgxA2+99RZWrFjh9ZhJXcnjnN9sM69Pc9vfKPZcawHAfQNLV9NxQGfRN+BFhuncG2WIIQjBod69QZiHeb+nnFRboXFdu+JKQkZnA9myE97VMVUXNsgKvnsOQqf+YrRUPN9Q3ozTm33PMshrrRJGRyN2RBRmPdhZYLxv/UkUfK985ZdIEASc2u1owGipavFpOxkxgDFE6aEL7h5UdhU7ojNLI+9x5Qn5+Nz9DmiDtE59y8qOe1/HZqlsQfu51Xzy6Ti5ST8ZKWUyGytb8N3bOV6fR2S3C9JedcbYMIRFOqauk8ebcdHN51YZCsDWlw85ZfaUkAfpVyy+ANogx9+bnK/PIPsr9VfnyT8QNpQ148vn93vdj80btg47zvxQ4beeWYOd4oApMTERzz33HGbOnAkASExMxBVXXIHf/e53eOGFF/Dtt9+irq7O69c2m834+OOP8cEHH+DBBx/06rnbtm3D0aNHsWzZMtx111244YYb8NJLL0Gr1WL16tVOx7766qtIS0vDCy+8gJ/85CdYvHgxbrvtNnz66acoLOTy1UBKkjWwNA0Jx4gpCW6fEzsiUmoW2HV1TVfy5crygCkkrHN6w5OASbAL0hSOu7oVV2KGebdSTt6sMCIuzGW2x5Wo5HApK1CRW+fVlFZVD/VLXemCtJj7m0xpP7PKI00+T29VyAKm+HOrJlMvTsRFN3cWS2979bDiqT9RQ1kzmms6p0Rrz3pX8Gtrt6HlXJ8wT38PzLLVnt5uZOtUv+RBljFxdGfA7Evhf7Wsw7d8daecVqvBrAcnITjU8Tt5cttZn1dl1hVbpOAhrsuq2Mk/GYmUCxxZJaulHd+8dFBxobmtwy79zYiID8OIqQmYfs8E6fHda3NQfLRK0Tm66rrBeEVeHb55+aDPU6buHPzkFL58fj8+eORbv640HKwUBUyFhYW45JJLoNV2vozN1hkdZ2Zm4rLLLsO6deu8fu2QkBCYzb6l87dv346YmBgpiAMAk8mEOXPmYMeOHWhrc0zDFBQUoKCgAD/5yU+cpt9+9rOfQRAEbNu2zafzkzoSMkwYeWkSDDF6TP/VhG5dk10J0uukJo61Zy29flqTZ6C6/kEWV8q11FnR3tp7j5yWhjbYz+3p5s0KOVFUcrhU++FJwNRU3Sp9X57WLwGOAuD4DBMAx5uM/A3XnZ5WyLkSmWDA+KuGS7eLj3j/JtPe2iG9QUcPNUIf3jn9k/nTNKkju2Pl3A9SQ1MlSrOd98Sr83KFlHxaNtyD+iXAkYkyRIsd6uu9CmKd6tg8yDKGm8OkuqrKU/VevynLs589ZZgAx8//0ts72xl8v+6EV+cRObX8SHP+ndOcC8zEwLQitw7fv+fbeUTVBQ3SylMxSzZq5lBMvDYVgOOD0TcrDnrVFLc3bS0dqD73/8oQo0dwmCPIPLO/ArvWZPulRu/0bke5QofVhi+e3ed1kO4tW7sNDeXqXK/+QHHRt9HY+Qc7NDQU9fXOn/ZSUlKQn++fDsA9OXnyJDIyMpwCOQAYO3YsWltbpWm5kycdS2y71jXFxsYiLi6ux33yqqqqcOLECekfM1H+odFqMPe3mbj15bk9roxzRZwSEuwCqnr4gyDYBSlrYojRwxDt/AbnVMfkZosUeXrbk7qVrnRBnVuk1JU0ud0qQ77UuacO3z1xyjLkev4JU/zDqtFqen2zFMlrzXwJmCpP1UurxsQ3L5FGo8GM+yZKe7I11bTiq7/tV7xyruSY86d9b5eUO62U9CLTaD43LdfW3CH1GvNEnZsVcq7En5uW7bDauu0J545TwXcPGSbRqFlDpeC8vrQJjV58X6LK/J4/0ABAqDEEVyzpnDY7uqkA+XtKvT6PqEL2/0EcO+BYAShls5ra8eXz+2FtUt5rrOJkrTTNPfyiBFy55EJozn1wOr6lCAf/c6qXZ3uvqbrFKdhra+7Apqe/d2pNoSa7XcBnj+/B+w9lIeuNI6qvaAwERVXNcXFxqKzs7B8yZMgQ5OQ4z1nn5+cjLMz7aQolampqMHny5G73ixmr6upqpKWlobq62un+rseKj3f16aefYs2aNd3uz8/Pd8qwecJisSA7O9ur51DvOsI6A5yju06gxtb5x1283s1V7VI9RmicttvPoFXb+Ucke99JmC0G9KQ6p/OPULOt0aefpy7S8clWsAv44dsjCE/sufCzZH9nENiMBq/O1xzc+aZ+Yk8+bPHu3zRt7XapR1RYbBBO5rn/JG+3CdCGaGBvE3DmUDmOHTvm0f56oqIdddLXHeHNLr/H4ddGoP5fFrQ12FCZV4/Pn9uBjOtjvTqPSBAEFB1xnjoqP1Xt1bUtP9T5O2PpqPf4uYKxc9n6wW+PwTzWs5q08nzH3yeNFjhbXYDiWo3bvydCZOfP/1BWDpJaew98nM6X5zifNlgjna83+mQBOPeZc99XR5CQ6V1wX3Sssz6tylqKumzXU3sjfhSN05scwe621w6htqMCodHe9wDM3df5Xtakq0V2duf/66QrQ1F1Nhgtle2oL23CZ0/twNgF8WhqbvL573fhjs4AzRbRjHpdBdKvjUHufxzXef/7uahvqUH8ZO+uW08qZL+fGh0g2BxNUz99fBcm3JGIUJO6i5wai63SFOfJbWdRW12L9J+YPZop6Im/3i/HjRvn0XGKrtCECRNw+PBh6fb06dPx1ltv4bnnnsP06dNx+PBh7NmzB7NmzVJyGq9ZrVaEhHR/wxHvs1od6Xtxaq6nY5ubXWcWrrvuOkybNk26XVhYiCeffBKpqakuV+H1Jjs72+MfFnkmPqwepzftAgDomkKdrq94vXO/LQbgKPAdOTkF48Y5r7bS15WgaPshAEBUcAzGjRuJnhwtzAfgyKKkjhuGjHFDvB5zx+nTqDzqCESigmIxatzQHo+t3nkEgOOP7bipo6T6Ho/Ok25D9rtfQbAJsFZ69oeiIq8OEBxZ2SFj4j3+fS2Z0IozP1SgvcmOxPAUKZPiiTOf7ZO+vmDOeET1sPVLSvxwfPb4d+iw2lB1rBmjLjZi3I+Guzy2N7VnG9He5Nw7qrWmA2NGj4FW51kiviU7F4DjzS59/AgMH+e+5g4AwpvLcfbbHwAAoR1RGDdulJtnOD6976l1/EyikowYP8Gxgsvd35N4Qz3yv3D830CD3uOfZVtLB3bVOjLp5uGR0vl6E6OrRdH27xw3aj0/F+CoJ/quwvHziEoKx6QLJ/R47NixAjT1h3BqVylsbQLaC/S4cNoYj88lOvjqNwCA4FAdLpo1qdvPfUTySPznf3fBamlH3elWNB7QIvIio89/v0+9/5309ZQrJjqy3OMAU9gpfL/OMftxamMN0selOva4VKhye+d79ZVLLsQPH+aiurARbY025H1Qi2sfu6Rbpl2JA8fzAHQGvZVHmmAymTDj/onQ+hg0Bfr9UtGU3FVXXYUhQ4agrMxxURYsWID09HR8/vnnWLZsGd59910kJCR4XbStlF6vl4IhOfE+vd5RMyAGSj0dKx7XVWxsLEaPHi39Gz7c+z/Q5D8xKRFSD6eetkhxWq6c1j3d781KOSUtBUROe8q5qWOq9aEHkygoRCetzKovafKoKZ839UtyQyZ2Zm69mZYT7II0PRIaGeI0PdqVeUSkYz+7c45/49tGtvLpODFBZbcJXvVGkk/N9raPXFdmWRF9tYcF7JZKWad3D1dJAo7/G2JBdvnJWo/rZGplXejl/Zd6E5cWJTXMLD1W7VVNTu2ZRtg7HMe72gZJTmzOKf7cig5WeHwekaW6RSr4j0szuQySIxMMuPKhC6Rps6ObClB+wLftUzrabNKik8hEg1OgMuknIzFunuM9RbAJ+PrFA07/B30hCAKKjzn+D4qbjM9/dKrUxqKhvBmbnvpe1SadYqsUANI1y/22GN++PnCn5xQFTBdccAGee+45JCY6tl0wGAxYuXIlHn/8cdx777147LHHsGbNGunxvhITE+NyOq3rFJx8is7Vsb4WnVNgaYO0iBnuCEAayppd7m0mLyiNcxEEeNPt22kfuRjfpp89XSknCILUDyncHOpTjxt5TVBFbp3b4z1dIdfVkImyOiYvVhfVlVik7TASRkW7nWIbMTVBqnGpKWz0qQGgvOBb3EoE8K7w22lbFC+al4bHhCI0wjGFVJXf4FFgUeflCjmRVqdFXJoJANBcY3X63e1NtbzD93D3NWyAozZPrD1srrM6jdkdV1sW9SY0IgRx5+qO6oq9r5mStxOQ1y91lTTWjGl3dWbX8r+o9Xi/SbmKvDppoUjX+kyNRoNLbx+L4VMdGUqxQLvRTS1lb+QrQBNHR0MXpEVYlB4/Xj5VqrerPWvB5mf2Kd5vEADamtuljvJRSeG44reZgyJoUm1rlPr6euzfvx+7du1CREQErr32WlxxxRV9Xr8EABkZGcjNzXVqpgkAOTk5CA0NRUpKinQcAJw44VyTUVVVhcrKSulxGnjENwXAuXgUAOwddukNIDLB0K0BH+AoKA0xOIIR9xkmedG366ykO2FRIVLDut4Cppb6NimY8LRhZVcJo0zS154sLRY/3Wo07ot95aKSwhES6cgwlB2v9bgoW/7mldDLm5fcsCmdQU7hfu8yDIJdkJZ368ODMfLyZOkxb1oLiE0rg8OCnFb1uaPRaGA+12C1taHNo27v8kDO0z5cogQf2gs47yHn+e9A8vjOYKD0mOuaUFecG1Z6ltVMkU1bnT3k3d588hYWXRcZdDVmbgoyZjqm3e0dAooOeL8PYJmsnYCrBrJarQZzfj1ZGktLfRs2P7NParTrLfkHFnm7lnBzGH78x6nS9kxVp+tV6QVVcqxaWrQxdFIsRkxNHBRBk+KAqbS0FMuWLcP111+Phx9+GI899hgefvhhXH/99Vi+fDlKS31fteCJqqoqFBYWoqOjc+n3rFmzUFNTg6ysLOm+uro6bN26FZdffrk0FZeamophw4bhs88+cyrW/uSTT6DRaPq89orUI/9U2nUj3pqzjdJ0RpyL6ThR5Lm6GUt1S68r18RP6WFRIR41K3RFo9Eg5tx2I60NbT1uMOvLlihdxY/y/A2zo80mBQ2mIUZpisUTGo0GplTHVIOt3e5xs8yuDSs9MfyiznqhM14GTDVnGqUsZOLYGMTINkT2NMMk2AUpcPalF5c8c+fJ9IsvK+RETgGzhz8T+Yo6T1ZJipInyKZlvQiYxGJhjVbj1NyzNymZnQFT0UEvAyZZptWTmsDRsztrDAv3ed9nSt44tKcVwEEhOvzokQulgLi+tAl73zvu9bkARwAjGjLeeeYkMiEcVy+fKn1wLDtei69fPKCor5V8Ok5cMTsYgiZFAVNxcTEefPBB7Nq1C8nJyZg/fz5+8YtfYP78+RgyZAh27tyJBx98ECUlJT69/oYNG7B27Vps3LgRALBz506sXbsWa9euhcXi+EP2xhtv4H/+53+cVuvNnj0b48ePx1NPPYU1a9bg448/xuLFi2G323H33Xc7nWPhwoU4deoUHn74YXz22WdYsWIF3nnnHVx77bUYMWKEbxeGAk4eMHWtY3Lq79LLp1epdkZAjyl+e4dd6gHkzTSMK57UMckzHr4GTOHRoVKNTeWp+l73yaotaoRwburAm/olaYwjO6+Jp3VMYsCkDdJ4XCgePdSIiHjHuUpzalxOw/akRDYdlzw+BpGJ4dJKHk9bC7TUW6WaG0/2kOvK7GXHb+dNd73LMMWnm4Bzs5yeZJgEuyCtkoyID/NqGtg8LLLzjTi7xqM3xw5rZ5AePdTzIN08PFJqOFtyrNptew75+arOZZxNQ4wuM85dxY+KljLCZw9XedXSwtZhl1p6GGNDEdFLvVuoMQTzl06VGsHm7ynzun2GYBekjuIhhiDEuPg/FT00AvMfnSr1gjp7qBLbXj7k04bQgiBIAZM2SINEWQZtoAdNigKmlStXoq6uDg8//DDeeecdPProo7j//vvx6KOP4u2338bvfvc71NXVYeXKlT69/vr167Fq1Sp88sknAICsrCysWrUKq1atQmNjz9MWOp0Ozz77LObOnYsNGzbgtddeQ1RUFF588UUMGzbM6djLL78cTz75JBobG7FixQpkZWXhl7/8JR566CGfxkz9Q1RSeGe36dN1To95Wh/hyZ5yTbVW4Nz/dV+aVsrJa0Pku8LLqZFhAjqnHWzt9h57VQHOb95mL+qXRFGpodKbsycBU0u9FQ1ljmsdOzLK4y7mGo1GyjIJdsGrwl/59hRJ48zQBWmlGrb6kiaP/phbfOzBJIp1KvzuPWASBEHqnRMeE+r1VjwhhmApm1lzphFtLb03Zm0ob5amaGK8mJIFHBmipHGON0xrU3uPv9dy1YUN0hu1p9Nx4rnE1WQdVhtKPdz+pfJ0vfShoLf6JTmtViPVunVYbSg56l32zNbm+JDiSX+5iLgwpF7s+N1ub7Xh7CHv+ppVn2mQPkAkjTf3uEItbmQUrvr9FOhCHGFB/t4yr6e3AUe9lNhPLHF0TLffz4EcNClqK7B//35MmzYN1113XbfHNBoNfvrTn+K7777Dvn37XDzbvffff9/tMcuXL8fy5cu73R8REYGlS5di6dKlbl9jxowZmDFjhk9jpP5Jo9UgNjUSpdk1aK6xorm2VVqJIgZMGg16zWA4BUxlPQRM8volpQGTBxkmeZM50xDvMgtyCaNMOLXTkfmtyK3tcRrC1xVyomCDDubhkaguaEBNYSOa660wRPVc5yWfGpHvfeeJ4VPicXRTAQBHHVP6dPftHew2u1S/FBoZIjUCjR5iRH1JE2ztdjRWNPfY1kAkbboL31ZKRsQbEGIIQltzh9utXlob26Q3QG/rl0QJo6JRc6YRggBU5tU5Feh3Je/wbfZiOk6UPN6Mgr2OaauSo9Vuf49668DvTkpmHHKzigEAZw9WYmgv35dI3rBSPl3pzvCL4qXNrAv2lTstFuhN2fHOAD3Rww2wUy9Nwsntju8rf08pRkz1rGUFAKdgrut0XFeJY2Iw8/5J2PqPgwCAvB3FXp0LcJ6OG9LDZuli0LTlpYMQbAJyvy1GiCEIl93Rv1vsKMow2e12t9NWI0eO7FZ8TdQX5PVJYpBka7ejtuhcTc7QiF4/nXvS7dtpOwyFU3KmZKM0FVRT1PuUXFhUCEKNvu9qLi9sLT9R1+NxUoZJA5g9XB3Vlbzrt7tP4mVeFN92lTAqWppOOXuo0qMpmeqCBqmBadK4GGlFnjx750kdk1PA5EOGyVH47Qjem2usPdawAV2n4/xf+F9d6FvBtyhZ9iZdku0+E1PlpsN3b4ZMiO1sL+Bh4Xe5j0H6kImx0AY7TnbmhwqPMySlOZ3XO8nDHQyGjDdLCwkK91d4NS0nb5mR5CZgAoDUixOkqc0zByq87mp+9nDndR/aQ8AEdM80ZX91ptff+/5AUcA0atQoFBQU9HpMfn6+180cidTgVMd07lNrU1mblO7vreAb8D7D5GsPJlFQiE7qi1J31tKttqi1oU1aJaNkOg4AolMipHqF8lzX/Xhs7Tap/44pOdzrqR+RU3sBN9NyFfLl3V582gccS+aHXeD4lN/eakOJbKqtJ/Ji2ORxnW8m8i1nPAuYlE3JAc7Zzt6m5ZynZX3MMHmxUq7GaUsU74PmqKRwab+8suO1bouJxf+r2iANor3MaOmNwdKihvqSJrdL8QVBkFbI6cODpf9/nggK0cGU5vhZtza0Oa2064ndZkf5ScfvZZhJ79S+pDfaIK1TmwFPi9ptHXYpo2Uw6T2qd9PqtEg7t1LU3iEgf2+Zm2c4n0+c4g6LCnG7QGDE1ERM/HHnXn15O3yrd+4rigKme++9F3v27MHnn3/u8vFPP/0Ue/fuxT333KPkNEQ+iR1pkr4WV91YSjuX5br79Bpm0ksFpz394W1SoWmlnPgHxm4TUNdlk0/5dJyvLQVEWq1GmoZrrrU6ZUhEtUUWqVeML9NxooRRJqkuovhIVY99hmztNim7EJlg6HXqrifDLpK1F/Bg9ZJz/VLnp32TLGDypLWAvLWErwGTfDVYdS+F30pWyImMsWHSUvKKvLpesyPilFxwWJBXDTlFGo1GyjJ1WG2oPNefx5W25nZpvzPzsEjogrx/i5K3F3CXZWoob0ZroyODEp9h8nrbjphRndfDk3qfmsJGtLc4skOJY9z3GJMbeUlnP8P8PZ4FMZWn6qX6s6TxZo/Plzats7WGN0FM+Yla6XxDJnq2TZF8xWHu9rN+2XRYLV59ZHS1f9oFF1yA559/HuvWrcPEiRMRExODmpoaHDlyBGfPnsXUqVPxww8/YOLEiWqNmcgjxthQhEaGoLWhzVHYKQiwFHemfN1lmDQaDSITDKg504jGimbYbfZuHYDVnJIDHJ/gxR3Fa840SsW5QJfMgpeb7roSnxGN4iOODEv5yTpExDl/2nWuX/J+KkakC9YhaWwMzh6qQnOtFXXFFkQP7f7Jsyq/+27x3ho6KRa6YC1s7Xac+aECwl1Cj2+Cto7OVgeGaL1TdiEqMRwaDSAIHgZM5wJOrU4jBSLeMsuC0t7qmOQBk681TBqNBgmjopG/twztLY5MoqseW1ZLu5Q9ixkW4dM+fYBjWk584y05Vt1jsbNTk1Q3/z97MjQzFvved2wtUnSwstetcpRkNAEgOiMMGq0Ggl1A4b5yXHzr6F6vUamsfsnT6ThR8ngz9MZgWC3tOPNDBTqsNrcrCEuOyeqJPJiOE8WmRiIqKRz1pU0oy6mBparFow8C8gxyb9NxclFJ4YgfZULFyTrUnrWg6nS9Ux+9/sSr8H316tXd/u3du9excWVRETZu3Ih33nkHGzduRFFREQRBwN69e7F69Wp/jZ+oRxqNRsoiWS3taKxokTJMumCtUzDSk4hz03J2m+CyK7I4JafRaRDm4xulnHxM8mJbQNmWKK64m5Zx7vDte4YJcNSWiHqalnPqv+TDmxcABIcGSb1/mmutva4AdPr0Pc7503dQiE762deVWNwurxZXBYXHhPq8uWhUUrj0Bth7hsnxexAcFuRzcAYACaNN0tc9TcvVFCkr+BY51TH10o/JaQWrj79z5uGR0nUpOVbda71Pubzg28tFBgAQHKZD4hjH8xrKm91O33rSf6kn2iCtVIDdYbV5VKMlrxn0pH5JpNFokC7LMp3a5VmWyang24OCe9HoWZ1ZJrG4vT/yKsO0YsUKf42DyC9iR0ZJ8/3FR6rQWuMo8I0ZHgGtB+n+rq0F5HvMAZ0ZpvDoUJ83lJTrbaWcWi0FRPFpUVIWxVX9hZRh0ni/nLwr5zqmaky4OrXbMfLi23gfM0yAo4ml2H25cF95j1Ov8u1Qksd1f/OKHmJEQ1kzbG12WKpauv3sRW3N7VL3dV+mrERarQbm4ZEoP1mLxsoWWC3t3XoCdVhtUjbLlBzuc8YH6Fr4X+syE+NU8K3gd8AYG4bIBAMayptRkVuH9tYOlzVxTj3SfMwwaTQaDJ0ci5Pbi2Frs6Msp6bHzWvFrvIajfuMc0+GT0mQpnYL9pW7zJ4CjhodsZ5Ibwx2qpPzVOqlSTix1bEy7/R3pUi9uOdtxzqsNmnVaWSCodd+T66kTUvG/g9zAQB5O0sw+bq0Xo9vrrdKtXfmEZEI82JKPfXSJOx+KwcdVhtO7SrBJb8c43FLkb7kVcCUmZnpp2EQ+Ue87I9gzpbO3ejjZPVNvekaMA2RzSx3WG3S8m6lLQVEhphQ6MODHT1rugRMYoZJbwxGWKTvK+REIYZgRA+LQE1ho9SPR2xKaOuwSyv1ohLDfdqzTi46xYgwkx4tdVaU5tTA1m5z6oouCILUdTrEEKSoRmvYhfGO3k+Co65kys2jXB4nr19KdvHp2zTEKNWl1BZbegyYnDdfVjYta06NlLI91YUN3cZVX9Yk9f3ytX5JOtfwSOhCtLC12Z22o5Fz3hLF9wwT4LjGDeXNsNsElJ+sxdBJ3YMYcRujIL1O0YeCoZPjpExF0aFKlwFTW3M7as86vr+Y4ZE+L2oYflECvnsrBwBQuK8CF1yf7vK42mJLZ0f50dE+ZSKTx8VI03JFByp7DDwBoOxEjVSD6Or3253IBEPnVFmRBdVnGnrdeNmX6ThRSFgQUi9ORO63xWhr7kDhvnKp8Lw/UW0vOaL+SP4pVb69g6fLlXtrXmlRcYWcSKPpXBnUXGuVVsW1NbdLm2eahhgVZRbkxCyD2I9HVHtWtlu8gvolkUajwZAJnYW/5V02/W2saJa+V1+Kb+UMJj3iz9VA1BY1uizY72izSYGJMTbMZTAkrxOr66WOqcmppYCy34NYp47f3euY1FghJ9IGdW7Ea6lqQVNN9ylnqdGkBj5lROTk26S4mpZrabBKU5vmEZGKMrZDJsZKv0M9NXqsOFUvBZ+e7lnoSkRcmLTCsep0vdPfBTmn/kteTseJtDqtlFVyt1rOaQXoBO8DJgBO03Luir+LPei/1JuMWZ19005uP+v18/sCAyYa1MIi9S6LFT1N90cmdL4pdQ2YmpwKvtUJmADnWhExyyMv9FW6Qk5O/kYhr2NRs35J1HVaTk7eC8rXgm+54U6b8XZfLVeRVycVmCe5mI4DnK9zb1ukNCrswSRndtpTrnsdk1PBd5IKdWy97Ctot9mlgveoRN/bSojk11neG0gk/3697b/UlT48WKqDqy9tQkN5U7dj5NPQnnb47on8962nvQxL3Wy466nUS2Wr5b7rebWcU/+lHn7H3Rl5SZLUJ+nUrpIea/kEuyBlmIJDdT79H04aEyNNGxYfrXa5cjfQGDDRoNf1j29wmA4mD/uthJtDoT33B6PrH90mFadi5JzrmBxvInVn1cssyDkXftdJX1c57RavPMMEQMowAUBJl8Jvp+JbFQKmYbLNeF0t93Y3HQecm/I6l+TorZhX3oMpXGHAFJ1shC7Y8WfZVS8mJXvIuZLYSwPL+tImKahUOh0HOD68iK9TnV/fbb8/ef2Sr/VEcs6b8XbPMjl1lVf4Ozd8ivz3rXuALgiCVPAdHKZz2gbJW0ljY6R97M4crEB7a/etbayWdilDGTMsAmGRvi0OCI0MkabXmmusTkGfXM2ZRrTUOzLE4vZC3tJoNZ1ZJsGxZUp/w4CJBr2u2aTY1CiPp3y0Wo00XdNQ3uzUI8RSo962KHKuCr/VXiEncu7HUyv145Gv0nK13NwXhuhQRJ9bBViZX4/Wxs6eWOKbtUarUeXN0pQcLjUFLDtei1ZLm9Pjzg0re9gtXq+TPvHWFVt67A8jb14aoTBg0gZ1rt6sL21CW7NzUCGukNPoNE7Txb6Kc8ow1jk95lS/pOANXk4MTgUB3d585Svk1MhqyuuWuk5dCXZBmhYOM+kVFesDjtWt4muUZNd0647dUNaMlnObdCeMiu7WnsQbWl3najlbm93ltFxpTo003ehL/ZKcfIuhvJ2up+U87e7tTsaModKHlNys4n7Xk4kBEw16XTNM3mzoCUB647W12dFc19nHySmzoGLAFD00QvqjIb5pqdm0Uk7sxwPA0Y/nbCPssoLvyEQDQgzud2/3lPTHVOgMWqxN7dLUT8yw3rer8VS3zXgPdP5BlzdPjEww9No/SwxO21ttLmt8AOcpOTV+D+TTcvKgxW4XpKaOkQkGj1Z5uhNqDJG+x+qCBqdshXyFXG/Fvt5wmpbrsk2KmNUMMQR53AG7NzHDIqQO46XZzu0Faost0pY48RkmxTWBGo0GI85lmQSb0C2IKVWhfklu5KVJ0tenvyvt9rjTBwKFAdPwC+OlXQHy95S5bNPgazuBriLiwqTxNpQ3O7Vh6A8YMNGgF5saKQUggPf1EZGyguBGWR2T05RcjHpTckF6nbTZa+1ZC+w2uzQlFxymgyFGveAMcG7YV36iFrXFFmkqRq36JZF8Wk6sY6rMq+ssvh2tfDpONPwi13VMZSdrPV49FO1Bx++mc4FzaGSIKkuhnQu/OzN9TVUt0s9F6Qo5Oanw3y44ZXnkfcDUyjAljY2RsrvyHkFNNa3Sh5HYkVGqLGpwtBdwZJls7XanjJbzJs8mxecCutTNdekyX6ZS/ZIocUy0NC0nrpaTExtWarQaqU+Ur4L0OoyY6qibam/pQNEB5ynu9tYOaYVrRFyY4mB3lFNPpv5V/M2AiQa9EIPzHlHeTvnI/wDI95RrOjclpwvRQh+hXhYG6JyWs7XbUVPYKGUxTMnqrZATyes3KnLrVOvw7UrimBhogxzjF7dJcWpYqdKbF+Do5SS+qZw9VCV9Mi6Vffp2VwzrtAmvi4DJ3mFHc60jYFJa8C2Sd/yW1zHVqVy/JOqpgaW4qlQfHoxwlYL0EEOwVBNXV2yRgqRKef2SwoJvOec6ps6sT7mCTZ570nXzZ3kmRsyU6IK1Xme4XZGvlhO72ouaa1tRV+z4XYkbGaVKhthptdxO54xWaU5n+4IhkzzbDqU3I6YmIMTgyDLn7ylDW0v3Gq1AYcBE54XRc1IAAFGpoV6/sckzTPXnMkyC0Nn522gOUz2Ikdcxnd5T1tl7R8XpOJF5RKRUaFx+otYvK+REQXodEkc7ghRLVQsaypqdamfUzDBptRoMu8DxhtlhtUmBknwqKGmcmwyTm5VyTTWtEMsslLYUkM451CitTJJvkeLUUkDNDJOsw7W4WrGlwSoFMzHDfd8SxZXk8Z1TNuLUkVOQrmLANGSCWbqWZ2UBk5hh0uo0TpseK6HVaR09wOCYwhV/3xorW6QVX/EZJp8Kol2Rr5Y7LdtbTo12Al0ljTdLtY5FByqcagLl03Guemt5KyhEh5GXOaYcO6w25O/pPuUYKAyY6Lww6ZpU3PrqXIy7Nd7rP/6RiZ2f5sUpubamDrS3Oj5BqvXpW84pYJLVKKhZvyTSBWmlrFtjZYvTG4tabyZyQyZ2/hEvOlSJinP1ROExoaquNgQg1TEBjtVybc3tqDrtCAhNQ4xutxaJkgUmrlbKqbHpbldBITppKrDurEXavkWNPeRciUw0SJm4itxaCHZB1YaVXSWPl7cXODct66cMU4ghWMogNZQ3o760Ca0NbVItWGxqlKodpUdM6b46U95/SY3pOFHimBiERZ3LoB6slDIxatYvibRaDUZe7ghi7DbBafNfsf+SRqtx+tkqMaqfbpXCgInOGwaT3qdPysa4MIhPE1sL+GuFnEj+JiU28wPU2XTXFfm0ROO580UmGKAPV3eqEXAuCj22uUAKCHzZ/NSTc4nZs8IfKlB2vFbqJdPT6ji5kLAgKXPkaqWcpdI/rSXEOiZB6OzFVV8qzzCpFzDJC//bmjtQW2xxavKqVsG3KGFUtPQzKTlWDUEQpAxTaGSI6v+fUiZ3/r7JA3RA/d+5IRNjoQs59/u2v9xpOxRAnYJvkVar6TYtJwiCFDDpgrWK+0vJOe0td261XGNlsxR8xmeYVFsgEpcWJbVPKT9RK50j0BgwEbmhC9JK/XXE1gJOBd8qZRbkjLFhCHaxHYmaUzFyruo4zCrXL0mvOzwSoedqvhorOoNBtWpJ5IL0OilAa6mz4vDnp6XHPN2MVJwGbWvucFolCfgnwwQA5hGdWRYxmBAzXIZovaorFwHnzY4rTtb6paWAKChEJ72RWypbUHKsWurJFJemTsG3XEpmZzH22YOVfquZAxy/b0PF37f6NlTk1Un1S1qdBvHp6p4vVbZaLv+7UjRWNEurdxNGRauaPTOPiJSCmLLjtWisbHbq7q2knUBXGo3GOcuU1T+yTAyYiDwg9rxpa+6A1dLuty7fIo1G020qRBeiVdwvpieuPomqXb8k0mg1SJ7Q/Y+rPwImwHm1nHyZsqfTI70VfltU3BZFTl5sX13QgNaGNrQ2OoIKfwTNzh2/61B9boWcRqvxS92cvLbm8GedQaw/fueiU4wwxJxrL5BT4zRlpWST557Im1jmfH2mc/ovLQpBenU3lE0YHY2wc9PKZw9XoWBfZ/G3WtNxIo1Gg/RpnT2ZTu0s7VK/pF7ABDj6P4krKnO/PSv1iAskBkxEHui6p5zTG6UfapiA7rUjpmSjov21ehMaEdKtLkbtFXJy8jomwPHJ3KxyrYwoRdyMVyZmeARCIzzbwNiptUBxbwGTyt3ez425Kr8BdaX+qV8SxaZ2Fv6X5tRIgaEpOdwvu8Ynj+veXgJQp8N3VxqNBimTHUGzrd0u1UsZY8MQHq3+/91hF8RLU/jyRo9JKk7HibpOyx38OE96TK2Cb7m0aZ0ZrdwdxVLwqTcGO63uVIPBpJdWOTbXWLvtDhAIDJiIPNA1YJI3MfRHhglwETD54ZO+XNcMjz8KvkVdm9vFpUWp0ojRFUOUvlsGLdnN6jg5eaF918JvcfojSK+TlpSrITg0SKpTqi1qdOqJ5I8Mky5YJ2V3LFUt0jJxtQu+RXEjoxAc2j0QU3OFnFxKpquMpskv5wqNDEGCGBzJkiKJKhZ8y42UrZZra3YUfgeHBfnlA09EnEFayVpf0iSdb8iEWL98mBsl25D3RD/oycSAicgDzpvwNsHiNCXnn2kycYsMkT9WyMnJ30Ai4sIQavQsA+MLoznMKVPir+k4kXy1HODdZqTyQFXevFIQBKmGyRgbqnrtjRjAdF2VpGbBt5y8H5MoRqVtcbrSBmm7BRDh5lAYonzb88yd5PGd7QVEahZEdyWfBgYAjUb9eilRwqjobqs9k8bGKNp+pTfy4m+R2tNxopQL4qV6x8J95Whv6d5lvC8xYCLygDzD1FjeIu0fFmIIQoiL4mw1RKd0zTD5541SJPZHAoA4lYtTXZH/kVWz/5Ir8jcwjca75d0hhmCpBqbubOdKudbGNtjaHJ23/VH4L8/wybtU+y1gynBR+O+nDBPQPcunZjuBrkIMwUjs8jvm6vtVS9cA3ZyqTgNJVzRaDVIvSXS6T+36JbnUSxKlDclFQ/wUMOmCtNJedvYOAVXHmt08w78YMBF5ICK+8w2xvrRJKvr2V3YJcCxplwdq/p6Si0oKx5SbRyF5ghkX3JDu13MBwKSfjETyeDNGzR4qrSzyF1OyEXHpjjfk5AmxXr95idk9a1M7WhocTfvkewmq3T8K6FJDdm5qJzhU/a1xRK6W2PsrwwR0r7HxR/2SXIpsM94gvc5v042A4wOW/PWVbk/ijny1HODfgCk0IsSpg3p0itEvvehEGbJpuYpDrrcn6isMmIg8EBwaJG3kWV3YINV4GP1UvyQS31SMsaGq7E7vTub1afjx8ov9Pv0HAOHRofjxHy/GzPsmSqth/OlHD1+E2QsnYc6iyV4/19VKOX8VfIvMLoKVKD9sjSMKi9Q7bSEUGhnitrGnEjEpEdJ0C+C/VZmilAs63+RjR/qvZk40YmpnlsmfAQzgmO4TaykN0XpEp/j3/2/69M5pOTW6e/fGPCxS+vDQVNrm1PKir/lnLoFoEIpMMKC51iptgAr4r+BbdPGtY5AwKhoJo6L9VpNwvjBE6aX0vre6Fn4njzc7BUzhKrYUEIUYghGZYECDbMNnf03HiRJGmaRl8GaV+y91pdFqkJIZj9xvixGk1/k9w2QaYsTYK4fhzIEKZF6f5tdzAcDEa1JhqW5FWKRzRsYfNFoN5vx6MrK/OoMxc1P8FlSLhk9NxLh5w9FY2YxJ16b69VyAo/N3VX42whND0Nbc7vfz9YQBE5GHIhMMTn18AP9MxciFhAUhY4Zvb/KkHpOLPeXkAVOEHzJMgKN5qHPA5N/MQfyoaGkrihiVO3y7cvGtoxFuDkXSuBi/1fiINBoNpt09HtMw3q/nEQWHBmHmfRP75FyAo4u4mp3Ee6PVanD5neP65FwAkDYtGQljolFuOdtn36Mr/MhK5CH5SjmRvzNM1D/It6QRWwtY/NztHejcIkXkjx5McqlTExERF4YQQxAyZvo/UA+L0mPKzaMwxEUjUyKRPjxY9S16fMEME5GHIlzUEDFgOj+EGkMQZtKjpc4qtRYQ9/jTaDVSfZvaujYD9PeUnN4YjJ//fRbsHXa/NKwkGsiYYSLyUJSLgMnfRd/Uf4h1TK0NbWhtaJOm5MJj9H6rL4uVFX5rtBpEJvo3YAIc0y0Mloi6Y8BE5CGXGSY/Lqel/kVex1R5ul7aMNafrSVCI0OkrVliR0RC5+eVXUTUM07JEXlIHx4MvTFYeqMMiwqBLpifxM8X8sahZw9VSl/7q35JNGdRJk7tKkE6i/+JAooBE5EXIhMNqMxzbN7pz8wC9T/yTXjlu7T7e1o2ZlgEYoaN9us5iMg95neJvBAZ3zktx4Lv84t8Sk7sVQQAxjgGzkTnAwZMRF6QF92y4Pv8Ehapd+pMLfL3lBwR9Q8MmIi8IN86IiLO/1uVUP/iaj8/Bs5E5wcGTEReGDE1AUMmmhGfYUL6tGT3T6BBxWXAxAwT0XmBRd9EXggK0eHqZRcHehgUINFDnfdX0xuDERzKP6NE5wNmmIiIPCRfKQcwu0R0PmHARETkoa5TcgyYiM4fDJiIiDwUFhUCfXjnSjkWfBOdPxgwERF5SKPROGWZmGEiOn8wYCIi8oJzwMQME9H5ggETEZEXRkyJBwAE6XVIGBMT4NEQUV/helgiIi+kXBCPG5+dDr0xBIYofaCHQ0R9hAETEZGXuvZjIqLBj1NyRERERG4wYCIiIiJygwETERERkRsMmIiIiIjcYMBERERE5AYDJiIiIiI3GDARERERucGAiYiIiMgNBkxEREREbjBgIiIiInKDARMRERGRGwyYiIiIiNxgwERERETkRlCgBzAYWK1WAEBhYaHXzz1z5gx0Op3aQ6Ie8Hr3LV7vvsXr3bd4vfuWP6/38OHDERoa2usxDJhUUFZWBgB48sknAzwSIiIi8tabb76J0aNH93qMRhAEoY/GM2jV1dVh7969SEpKQkhIiMfPKywsxJNPPok//elPGD58uB9HSACvd1/j9e5bvN59i9e7b/n7ejPD1EdMJhPmzZvn8/OHDx/uNrIl9fB69y1e777F6923eL37ViCvN4u+iYiIiNxgwERERETkBgOmADKbzbjzzjthNpsDPZTzAq933+L17lu83n2L17tv9YfrzaJvIiIiIjeYYSIiIiJygwETERERkRsMmIiIiIjcYMBERERE5AYbV/axtrY2rFq1Cl9++SUaGxuRlpaGe+65B1OnTg300Aa85uZmrFu3DtnZ2cjJyUFjYyOWLVuGq6++utuxBQUFePnll3HkyBEEBQXhsssuw6JFi2Aymfp+4ANQTk4ONm/ejAMHDqCsrAyRkZEYP3487rnnHqSkpDgdy2utXH5+PlavXo0TJ06gpqYGoaGhGD58OH7xi19g2rRpTsfyevvHW2+9hX/+859ITU3F2rVrnR47cuQIVq5ciZMnTyI8PBxz5szBvffeC4PBEKDRDiwHDhzA4sWLXT722muvYfz48dLtQF5rBkx97KmnnsK2bdvw85//HEOHDsWmTZvwhz/8AStWrMCkSZMCPbwBrb6+HmvWrEFCQgLS09Nx4MABl8dVVFTgN7/5DYxGI+699160tLRg3bp1OH36NF5//XUEBwf38cgHnnfffRdHjhzBnDlzkJaWhurqanz88ce455578Nprr2HkyJEAeK3VUlZWhubmZsyfPx+xsbFobW3F9u3bsWzZMjzyyCO47rrrAPB6+0tFRQXeeecdhIWFdXssNzcXDz30EIYPH45FixahoqIC69evx9mzZ/Hcc88FYLQD14033oixY8c63TdkyBDp64Bfa4H6zLFjx4QZM2YI7777rnRfa2ursGDBAuGBBx4I4MgGB6vVKlRVVQmCIAg5OTnCjBkzhI0bN3Y77oUXXhCuvPJKoaysTLrv+++/F2bMmCH85z//6bPxDmSHDx8W2tranO47c+aMcMUVVwhPPPGEdB+vtf90dHQId911l3DbbbdJ9/F6+8ef//xnYfHixcJvfvMb4fbbb3d67JFHHhGuv/56wWKxSPd99tlnwowZM4Q9e/b09VAHpB9++EGYMWOGsHXr1l6PC/S1Zg1TH9q+fTt0Op30aRAA9Ho9rrnmGhw7dgzl5eUBHN3AFxIS4lFTs+3bt+Pyyy9HQkKCdN+UKVOQkpKCrVu3+nOIg8bEiRO7ZStSUlIwYsQIFBYWSvfxWvuPTqdDfHw8LBaLdB+vt/oOHjyI7du34ze/+U23x5qamrBv3z7MmzcP4eHh0v1XXXUVwsLCeM190NzcjI6Ojm7394drzSm5PpSbm4uhQ4c6/bABSCnIvLw8pz90pL7KykrU1ta63Lxx7Nix+O677wIwqsFBEATU1tZixIgRAHit/aGlpQVWqxVNTU3YuXMn9uzZgzlz5gDg9fYHm82GFStW4JprrkFaWlq3x0+fPg2bzdbtmgcHByMjIwO5ubl9NdRB4amnnkJLSwt0Oh0mTZqEBx98EGPGjAHQP641A6Y+VF1d7TIDIt5XVVXV10M671RXVwNAjz+HhoYGtLW1ISQkpK+HNuB99dVXqKysxN133w2A19ofXnnlFXz66acAAK1Wi5kzZ+Khhx4CwOvtD//5z39QXl6Ov//97y4fd3fNDx065NfxDRZBQUGYNWsWLr30UkRFRaGgoADr16/HokWL8Oqrr2LUqFH94lozYOpDVqvVZdGl+AfMarX29ZDOO+I1dvdz4JuKdwoLC/H3v/8d48ePx/z58wHwWvvDz3/+c8yePRtVVVXYunUrbDYb2tvbAfB6q62+vh7/+te/cPvtt/e4wtDdNW9ra/PnEAeNiRMnYuLEidLt6dOnY/bs2bjrrrvwxhtv4Pnnn+8X15o1TH1Ir9dLf9zkxB+0Xq/v6yGdd8RrzJ+Deqqrq7F06VKEh4fjr3/9K3Q6HQBea38YPnw4pkyZgvnz5+OZZ55BS0sLHn30UQiCwOutsn/+85+IiIjAjTfe2OMx7q45g1PfDR06FNOnT8eBAwdgs9n6xbVmwNSHzGazlFaUE++LjY3t6yGdd8R0bk8/h8jISP6R84LFYsEf/vAHWCwWPP/8806/w7zW/jd79mwcP34cRUVFvN4qKioqwmeffYabbroJVVVVKC0tRWlpKdra2tDR0YHS0lI0NDS4veb8m65MfHw82tvb0dra2i+uNQOmPpSeno6zZ8+iqanJ6f7s7GzpcfKvuLg4mEwmnDhxottjOTk5/Bl4wWq14tFHH0VRURGefvppqdhbxGvtf+I0hcVi4fVWUVVVFex2O1asWIFbbrlF+pednY2ioiLccsstWLNmDVJTU6HT6bpd8/b2duTm5vKaK1RSUoKQkBCEhYX1i2vNgKkPzZ49GzabTSraBBypxI0bN2LcuHFcIddHZs2ahV27djm1cdi/fz+KioqkFUfUO5vNhr/85S84duwYHn/8cUyYMMHlcbzW6qitre12X0dHB7744gvo9XopWOX1Vkdqair+7//+r9u/1NRUJCQk4P/+7/9wzTXXwGg0YsqUKfjyyy/R3NwsPf+LL75AS0sLr7mH6urqut2Xl5eHnTt3YurUqdBqtf3iWmsEQRD8fhaS/PnPf0ZWVhZuvvlmDBkyBJs3b0ZOTg7+/ve/IzMzM9DDG/A2bNgAi8WC6upqfPLJJ5g5cyYyMjIAOLrIGo1GlJeX45577oHRaMRNN92ElpYWvPfee4iLi8Mbb7zBaQsPvPTSS/jwww9x+eWXY+7cud0enzdvHgDwWqvkj3/8I5qamjB58mTExcWhuroaX331Fc6cOYNf//rXuOWWWwDwevvbb3/7W9TX1zttjXLixAn8+te/xvDhw3HddddJ3acnT56MF154IYCjHTgWL14MvV6PCRMmIDo6GgUFBfjss88QFBSEV199VfpAEOhrzYCpj1mtVmkvOYvFgpEjR+Kee+7BxRdfHOihDQo333wzysrKXD62fv16JCUlAXDszdV1v61f//rXiImJ6cvhDli//e1vcfDgwR4fz8rKkr7mtVZuy5Yt+O9//4vTp0+jvr4eBoMBo0ePxg033IDp06c7Hcvr7T+uAiYAOHz4sLS/mcFgwJw5c3D//fdzLzkPffjhh/jqq69QXFyMpqYmmEwmXHTRRbjzzjsxdOhQp2MDea0ZMBERERG5wRomIiIiIjcYMBERERG5wYCJiIiIyA0GTERERERuMGAiIiIicoMBExEREZEbDJiIiIiI3GDAREREROQGAyYiIiIiNxgwEVG/UFpaipkzZ+L//b//F+ihqGLTpk2YOXMmNm3aFOihEJEKGDARUb/129/+FjNnzgz0MFwabAEeEfUuKNADICICgLi4OLz99tsIDw8P9FBUMWPGDIwbNw5msznQQyEiFTBgIqJ+ISgoCMOHDw/0MFRjNBphNBoDPQwiUolGEAQh0IMgIiotLcUtt9yC+fPnY/ny5T1OxYmPi06dOoW3334bBw8eRENDA8xmM6ZNm4a77roLUVFRLl//1ltvxZtvvolDhw6hoaEB69evR1JSErKysrB161YcP34cVVVVCAoKQlpaGm666SbMnj1beq1Nmzbhqaeecjm+FStW4IILLpCOWbZsGa6++mqnY44cOYK3334bx44dg9VqRWJiIubOnYtbb70VoaGhTsfOnDkTmZmZ+Mtf/oLXXnsN3333HVpaWpCeno77778fF1xwgbeXmoh8wAwTEfVLd955JzZv3oyysjLceeed0v0ZGRnS1zt27MBf/vIXaDQaTJ8+HfHx8SgoKMBHH32EvXv34vXXX0dERITT6xYXF+PBBx/EyJEjMX/+fDQ0NCA4OBgA8MYbbyAoKAgTJ06E2WxGXV0ddu7cicceewyLFy/GjTfeCABIT0/HTTfdhA8//BDp6emYPn269PqJiYm9fl9bt27FE088geDgYMydOxcmkwnff/891qxZg71792LFihXQ6/VOz7FYLPj1r38No9GIefPmoba2Flu3bsUjjzyCN998EyNHjvTpGhOR5xgwEVG/dPfdd+PgwYMoKyvD3Xff3e3x+vp6/N///R+ioqLwyiuvOAUqW7ZsweOPP45Vq1ZhyZIlTs87cuQI7rzzTpev+eyzzyI5OdnpvubmZixcuBCrVq3CNddcg9DQUGRkZMBoNEoBk6vXcqWpqQnPPfccdDodXnvtNaSlpQEA7rvvPjzxxBP45ptvsG7dOtxxxx1Oz8vLy8P111+PJUuWQKt1rNW58MIL8eyzz+Kjjz7CI4884tH5ich3XCVHRAPSF198gaamJtx3333dsjpXXHEFRo0ahS1btnR7XkxMDP7nf/7H5Wt2DZYAwGAw4Oqrr4bFYsHx48cVjXnHjh2wWCz48Y9/LAVLAKDVavHggw9Cp9O5bEMQFhaGBx54QAqWAMfUpE6nUzwmIvIMM0xENCAdO3YMAJCdnY3i4uJuj7e1taG+vh51dXUwmUzS/enp6dIUXFe1tbX497//je+++w7l5eWwWq1Oj1dVVSkac25uLgAgMzOz22MJCQlITk5GUVERmpubYTAYpMeGDh3qdBtwFMnHxMTAYrEoGhMReYYBExENSI2NjQCAjz/+uNfjWltbnW5HR0e7PK6hoQH33XcfysvLMXHiREyZMgVGoxFarRZ5eXnYsWMH2tvbFY25qakJgCPL5YrZbEZRURGampqcAqSeWi3odDrY7XZFYyIizzBgIqIBSQwo1qxZ41XRs0ajcXn/f//7X5SXl+NXv/pVtxqid955Bzt27PB9sOeIgU9NTY3Lx8X7B0svKqLBhDVMRNRviTU7Nput22Pjxo0D0Dk1p5Q4rSdf8SY6fPhwj2PzJsMjrvA7ePBgt8fKy8tRXFyM5OTkbtNvRBR4DJiIqN+KjIwEAFRUVHR77Mc//jEMBgPefPNN5Ofnd3u8tbXVq2BKLBw/cuSI0/1fffUVvvvuu27HR0REQKPRuBxbT6ZPnw6j0YiNGzc6jVkQBLz++uuw2WzdejYRUf/AKTki6rcuvPBCbNu2Df/7v/+LSy65BCEhIUhPT8e0adNgMpnw5z//GY899hjuvvtuXHzxxRg2bBja29tRVlaGgwcPYsKECXj++ec9Ote8efPw7rvvYsWKFThw4AASEhKQl5eHH374ATNnzkRWVpbT8QaDAWPGjMGhQ4fw5JNPYujQodBoNLjqqqt67MUUHh6O3//+93jiiSfwwAMPYM6cOTCZTNi/fz9OnDiBsWPHYsGCBYqvGxGpjwETEfVb1157LUpLS/HNN9/g3Xffhc1mw/z58zFt2jQAwGWXXYZVq1bhvffew/79+7Fv3z6EhoYiLi4OV199NebNm+fxueLj4/HSSy/htddew759+2Cz2TBq1Ci88MILqKio6BYwAcCf/vQn/OMf/8CuXbvQ1NQEQRAwadKkXptXzpkzBzExMXjnnXeQlZUldfq+4447cOutt3ZrWklE/QO3RiEiIiJygzVMRERERG4wYCIiIiJygwETERERkRsMmIiIiIjcYMBERERE5AYDJiIiIiI3GDARERERucGAiYiIiMgNBkxEREREbjBgIiIiInKDARMRERGRGwyYiIiIiNz4/46i2SSRQmzEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 50th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "2769b6e5", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACrqElEQVR4nOzdd3hT1eMG8PfejO4JhVJKKRuhKCigCAoiqIAIKgKKAg5UUBScuPdWVBT3AJQvIPJDBUSW7Cmykb1X955Z5/dHmkvSZidtOt7P8+Rpmpzce9Im9973nnPPkYQQAkREREREREQA5EBXgIiIiIiIiGoOhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIoVfQuLJkychSRIkScLYsWP9sch6qU+fPsrfkYjIkbFjxyrbipMnTwa6OooZM2Yo9ZoxY0agq0N+ZjKZcMUVV0CSJEycODHQ1aEK+P0jqmzNmjXK9+LVV18NdHX8Kj8/H7GxsZAkCV9//bXfl19tLYkzZszAq6++Wuf+Qc789ttvynvOzc0NdHWo3KuvvqpsMNy5uXsQvm/fPkycOBHt27dHeHg4oqKi0KlTJ0yZMgWnTp2q2jdFRPWKXq/Ht99+i+uvvx5NmjRBUFAQEhMTMXjwYMybNw9CCL+v85tvvsGOHTsQHByM5557zmG5kydPYsGCBXjuuedwww03oEGDBsr2tE+fPl6t25/b11OnTmHKlCno1KkToqKiEB4ejvbt22PixInYv3+/V/VzZfPmzbjvvvvQqlUrhIaGIjY2FldccQXefPNNZGZmVsk6A6FTp07K/3rVqlUev37Dhg3K6zt06OBVHS5cuIBFixbh1Vdfxc0334wmTZooy0xOTnZ7Odbhwp2bO8HcYDBgzpw5uO2225CcnIzQ0FBotVo0btwYffr0wVtvvYXU1FSv3rcn3n77bZu6u9vAk5OTg6lTp6Jfv36Ij49HUFAQQkNDkZSUhMGDB+P7779HaWmpW8vKy8vDBx98gD59+qBRo0bQarVo0qQJevfujWnTpqG4uNiHd1izDB48WPlbf//99x6//vTp01CpVJAkCbGxscrfODIyEpMnTwYAvPDCC8jJyfFrvSH84MSJEwKAACDGjBljt0zv3r2VMvXFmDFjlPd84sQJl+Xr498oEF555RXl7+zOzZ3/3QcffCA0Go3DZURERIg5c+ZU/ZujesHTbUt1+fHHH5V6/fjjj4GuTp114sQJ0aVLF6fbrX79+omcnBy/rbOoqEjEx8cLAOKxxx5zWG7atGlO69W7d2+P1+3P7evPP/8swsPDHS5Lq9WKqVOnelxHR0wmk5g8ebKQJMnhOhs3bixWrVrl87pqwvfvo48+Uupw9913e/z6++67T3n9+++/7/Hr//jjD6efv+bNm7u9rNWrV3t0rODqb37s2DFx2WWXuVxORESEmDVrlsfv3V0HDx4UQUFBNut0dOxubenSpSIuLs5l/Vu0aCH+/fdfp8v666+/RIMGDZwup2XLlmL79u0+v1/r/+Mrr7zi8/K8sWDBAqUOvXr18vj1r7/+uvL6CRMm2DyXl5cnYmJiBAAxZcoUf1VZCCGEGn6QnJxcJWct65s1a9YEugr1zhtvvIGUlBSnZRo1auT0+a+++gpPP/00AECj0eCee+5B7969odfrsWzZMvz6668oKCjAPffcg+joaNx0001+qz/VTzNmzGB3snoqNzcXAwYMwMGDBwEAl1xyCe677z4kJibi6NGj+Oabb3DmzBmsXLkSt912G5YvXw612vdd/RdffIHU1FSoVCo888wzDssZjUab30NCQtCmTRvs2bPHq/X6c/u6ZMkSjBkzBkajEZIkYdiwYbjxxhuh0Wiwdu1a/PTTT9DpdHjiiScQERGBBx54wKs6W3vuuefw8ccfAwDCwsJw//33o3v37igsLMSCBQuwYsUKpKWlYciQIVi/fj06d+7s8zoD6e6778azzz4Lg8GA//u//8MXX3yBiIgIt15bXFyM+fPnAwBUKhXuuecej9df8fOn0WiQkpKCnTt3erwsayNGjMDIkSOdlrn88ssdPpefn4/rrrsOp0+fBgBERUXh3nvvxSWXXIKwsDCcOnUKc+fOxd69e1FQUIAxY8YgNjYWgwYN8qneFQkhMG7cOJSVlSEsLAxFRUVuvW7btm0YMmQIdDodAKBVq1a455570KJFCxgMBhw5cgQ//PAD0tPTceLECfTr1w979+5F06ZNKy1r9erVGDx4MPR6PQDgqquuwogRI5CQkID09HQsXLgQf//9N44fP46bbroJmzZtQps2bfz3RwiAwYMHo2HDhsjMzMSGDRtw7NgxtGrVyu3Xz5w5U7l/77332jwXGRmJRx55BG+++SY+++wzPPXUU2jQoIF/Ku7XyOlEfWwlq6ln++s765bE1atX+7Ss8+fPi9DQUAFAqNVqsWLFikplrM/uNmvWTJSUlPi0TqKaqia0ZNR1kyZNUv7GN910U6XtSVZWlk0r4+eff+7zOvV6vWjWrJkAIG644QanZRcuXCgeeeQR8cMPP4jdu3cLg8Fg09vIk5ZEf25fi4qKREJCglJ2xowZlcosX75cqNVqAUCEh4eL1NRUt+tqz44dO5QWxKioKLF79+5KZaz3R926dRMmk8nr9dWU79+QIUOUenz//fduv27WrFnK626++Wav1r1x40Yxbtw48dVXX4l//vlHlJWVCSGEzy2JvrZAWbcEde7cWWRlZVUqYzKZxAsvvKCUu+yyy3xapz1ffPGFACDCwsLEa6+95nZLYt++fZWy9957r9Dr9ZXKFBUViX79+inlHn/88UplSktLRVJSklLGUcvXxx9/rJTp27evN29VURNaEoUQ4vHHH1fq8dJLL7n9unXr1imvS0lJsVvm8OHDSpm33nrLX1UWDIlViCGxZvJnSLQ+YHv66acdlrvjjjv8etBGVBPVlIPUuiotLU1otVrlIC8tLc1uub179yrhJD4+XhgMBp/Wu3DhQuX/6k03OG9Doj+3r5988olS5o477nC4rKefflop99RTT7ldV3uGDh2qLGv69Ol2y5hMJtG9e3el3OLFi71eX035/v32229KPa655hq3X2cdRBYsWODXOgU6JPbs2VNZ1pIlSxyWMxgMonHjxkrZ/Px8n9Zr7cyZMyIyMlIAEB999JHN58VZSCwtLRUqlUo5WZObm+uw7N69e5VlXn755ZWenzt3rvJ8165dnZ4UGThwoFJ25cqVHr1XazUlJO7atcvmc+juCSHrLtgfffSRw3LdunVTTpb5crLJWpWPbmoZsXPt2rXKY/Yu+HU0oI3JZMIvv/yCESNGoEWLFggNDUVERATat2+P8ePHY+/evU7rZj1IiaU756pVq3DnnXeiRYsWCA4OrjQ4icFgwLJly/Dkk0+iV69eygW1ERERaNu2LcaOHYt169Y5XKdl5EHr5uEWLVpUes+O/lbujG66detWPPjgg2jXrh0iIiIQFhaGVq1aYcyYMfj7779dvr7iIAJFRUX48MMP0bVrV8TExCAsLAwdO3bEc8895/8LYesIIYTSNcbVaH+PPfaYcn/evHlVXjdrmzdvxvjx49GhQwdER0cjODgYSUlJGDFiBJYsWeL0tfZGBTt9+jSefPJJtG/fHmFhYYiOjsbVV1+NL774AgaDwa06FRYW4pNPPkH//v2RkJCAoKAgxMbGolu3bnj55ZeRkZHh9PUVvytGoxEzZsxA//790bRpU6jVarsDFKSlpeGZZ55Bhw4dEBYWhtjYWHTv3h0fffSRcpF8cnKy3QEO/vrrL2Wd1v9PZx577DHlNUuXLnXrNe5wNbppVf3fFi9ejMGDByM+Ph7BwcFITk7GqFGjsHnzZo/fg06nw/fff49bbrkFzZo1Q3BwMKKjo3HppZfiySefdDhg1KFDhxAWFgZJkhAVFYUTJ044XEdOTg6SkpIgSRJUKpXT7XZt8Ntvvyndve68806HXeFTUlLQt29fAEBqaqrN/tcbP/30EwBz19Fbb73Vp2W5y9/bV+vHH3/8cYfLmjhxorJd+eWXXzyqs7WCggLlOx8ZGelwYJCK76069g///PMP4uLiIEkSgoKC7L5PX469Bg0apHw2N2zYgOPHj7us0+nTp7F69WoAQMOGDTF48GAv313NlJ6ertx31nVSpVKhZcuWyu/udgd1x/jx45Gfn48uXbo4/Q5UlJWVpXTjbdSoEaKiohyWbdu2rXLfXt2tj0/vvvtup8e7o0ePVu7/73//c7u+3rJ0AZUkCbIsK93EK/rrr78wduxYtGnTBhEREQgNDUWrVq0wduxYbNiwweHyL7vsMnTp0gWAefAsy+fdGesu2Gq1GnfffbfDsqNGjQIAnDlzxn+Xr/kjaTobuMa6BdHZzV66P3r0qOjcubPT18my7LTZ1rrV6O+//xaPPPKI3eVYt/T16dPHrTqPGTNG6cpgzboF0dXrHf2tHNHr9WLcuHEulz18+HBRXFzscDmWcr179xbHjh0THTp0cLis5s2b16mWUH+1JFqfMXPUBcDCaDQqZ/BkWfbr2UFHCgsLxYgRI1x+VgYNGuSwPhXPwC1dulRER0c7XFb//v1FaWmp03r9+eefolGjRk7rFBERIX7//XeHy7D+rmRlZYlevXrZ/dxa+/vvv5WLu+3dOnXqJE6fPi2aN29u9/VGo1G0aNFCABAxMTEuuw2XlJQo60tKShJGo9FpeU+46qXg7/+bwWBwul2TZVm89957brdk/PPPP8rf0tFNq9WKr776yu7rv/nmG6Vcjx49HLaUDRs2TCn3wgsvOP2b1ga333678n5+/fVXp2U/+OADpayzVjhXSktLlS6f1157rVfL8KYl0Z/b17y8PJtun66+ix07dlTWvX//frfqW9GiRYuUZbjqOpmenq6UjYuL82p9QrjXkrhs2TJl4J7w8HC7XXj9cez1xBNPKGVffvlll3W37o5pr5uirxztF5zxZwuU9T7K3ZbEBg0a+G2/MWfOHAFAqFQqZTAYd1sSS0pKlG7YGo3GaUvivn37lGUOHTq00vPWrYNLly51WucdO3YoZePj4917o3a483/csWOH8ndXq9Xip59+qlQmPT3dprXb0e3+++8XOp3O7nqsB/YaPXq0y7pbd8EeMmSI07K7d+/2+3eoykPi+vXrxcKFC202ugsXLqx0O3DggM3rjh49Kho2bKi8plevXuLdd98Vc+bMET///LOYPHmyzQGfo3+8dSAYMGCA8mGbMmWK+Pnnn8WMGTPEhAkTxPnz55XXXHnllSI8PFwMGTJEvP7662LWrFnil19+EZ9++ql48MEHRVhYmNN/xL///isWLlworrvuOqXc119/Xek9Vxz9yZ2QOHLkSKVMcHCweOihh8TMmTPFzz//LCZNmiQiIiKU52+88UaHTc6WMl26dBHt27cXkiSJIUOGiC+//FLMmzdPvPPOOzb9xj3pMlLTWX8mrrnmGtGyZUsRFBQkIiIiROvWrcXdd98t/vjjD5fN9ZaNrqsNrIX1/3fr1q1+ejf2lZaWiquuukpZX6tWrcTzzz8vfvrpJzF37lzx5ptvirZt2yrP9+3b1+7OyHrjOmTIEBEaGipCQkLEQw89JGbMmCHmzJkjnnzySZvvhLMDh19//VXptqLRaMTtt98uPvvsM/HLL7+I7777TowaNUoZxVCWZYcj/ln/LS3f68suu0y8++67Yu7cueKbb74Rjz76qFJ+//79yoGu5XP/0UcfiXnz5olp06YpXYF69OghmjZt6vBg4u2331aW8fPPPzv9H/z0009K2ddee81pWU95EhL98X+bMGGCUk6r1Ypx48aJmTNnip9++klMnDhR+dtad69zdJC6adMmpbwkSeKmm24SU6dOFfPmzRMzZswQDz30kM3/ytFyrAOTvbp/9913yvNXXXWV3Wtoapt27do5/b9bs/4MDBgwwOt1rlq1SlmOt90vvQmJ/ty+bt682aP1W3+/5s2b51Z9K3rnnXc8ChiWk1MAHHYjdsVVSPzf//6nbF/j4uLEP//8U6mMv469rEN+cnKyy/1pq1atlPK7du3y5u07ZVm2tyExJSVFdOrUSYSHh4vg4GCRmJgobr75ZvHll186PSFvYX3Sxtk1iS+++KJS7tVXX/XkLTqUmZmpjEo6adIk5XF3Q6IQQgwaNEgpe9999zm8JrF///7Ktt3eSXjL/hrwLCQCEBkZGW6934pchcS///5bOckUGhoq/vzzz0plsrKybD6jl112mXjttdfE7NmzxZw5c8QLL7ygHDs4+3tmZmbaXDJQUFDgtO7WofS3335zWtZoNCongNq3b++0rLtq5BQYRqNRXH755QKACAoKEr/88ovdcqmpqcrZLlmWxb59+yqVqTjdQa9evUReXp7T9a9cudLplz4zM1M5KyTLsjh+/Ljdcv6eAsO6L3fjxo3tnuE8efKkzRl6R9dnWP9NtFqtWLRokd33ab0sX4JNUVGR3ZMD3txcDa3sirtTYFx55ZXi5MmTDpdjfdG3OwcBo0ePVsrbO0vlTxWv5bG3QdfpdDZ1+vLLLyuVqTgEeFJSkjh8+HClclu3blXONMbExNhtlTp9+rSyIU5KShJ79uyxW/etW7eKqKgoAUAkJibaPSNXsYfCpEmTnJ5xtT6LO2HCBLtlK34u7B1MpKamKgdZrg42r732WgGYz9yeOXPGaVlPeRISff2/WV80Hx0dbXdI8oMHDyrTIzg7SM3Pz1cGQImOjhZr1qyx+/6OHDminKQKCwuze3CQnZ0tEhMTlb/x+vXrlecOHTqkBODIyEhx7Ngxu+tx14EDB/y2/fL2QMdoNCr/K5VK5TL0Hj9+XPlftGrVyqt1CmF7YmT+/PleLcObkOjP7evMmTPdPhgWQoiXX35ZKf/GG2+4Vd+K7r33XqffhYos2wsANp9lTzgLidOmTVNaU5s3by4OHTpU6fX+PPYSQoiuXbsq9fn7778d1nvt2rVKuS5durj/hj3gbLvuiLtTYDRp0sTp+xOi8onbqKgoMWnSJPHNN9+I2bNni7ffflt06tRJeX78+PF+O7F1zz33CMB8rZp1KPEkJB4+fNimB1CrVq3Eq6++KmbNmiV++OEHMWXKFKUlLigoSPzwww92l2P9vfj000+drtP6mBeA2LBhg8fvXQjnIfHXX39VpgOJjY0VmzZtsrsMywlQSZLEJ598YrdMQUGBuOGGG5R1OQrB1j1cHP2dhDAfz1u+s40aNXLr82DpCSlJktMWX3fVyJBoPZ/ItGnTnJY9dOiQ0jIxbty4Ss9bH/iFhYWJc+fOufWeXDl27JjLnYi/Q6L1iHX2znRYbN261WZnYK8rlvUX7/XXX3e4rG+//datcq5Yf0Z8vbmzk3fmlVdeEcHBwWLAgAHi9ddfFz/99JOYN2+e+PTTT8Vtt92mfJ4AiISEBHH27Fm7y5k8ebJS7rPPPnO5Xk/Le+v8+fPKmarbbrvNaVmdTidatmwpAIg2bdpUer7iTnLdunUOlzVq1Cin5SZOnKgc4O7cudNpvb7//ntlWbNnz670vPV35YorrnAaEP/55x+lbEpKitNBPKyX6+hgwnqQDHvBSwjzdslSZtCgQU7fqzc8DYm+/N+sRyq0NyKkxeLFi23Wae/A2HoOtT/++MPpe7RuwXI0WtuaNWuELMvK/ysnJ0fodDpxxRVXKK/1xwkZT+dWdXbztot7Xl6esowGDRr4vbwjd911l7IcRyd2XPEmJPpz+/rpp58qzz355JMul+VpeXtuvfVWZRn2TsL6Wt4eRyHResTMjh07Otyn+fPYSwghpk+frizPWdc66+Dgar3ecrVdt2f16tVCkiTRvXt38eyzz4offvhBzJ8/X3z77bfiwQcfVE5mAuYuisuXL3e6vOLiYvHggw+K4OBgh9uH66+/3un22lN//fWXsuyKl3B4EhKFMIeWfv36OZ3zc/z48eLIkSMOl2Hdw8PVaL7WrZeA94M6OQqJX331lbL/aNq0qcOu5f/++6/y+ieeeMLpurKzs5XPRf/+/e2WWbJkibI8Z134rU+UuVqvxfjx45XXeHuyyZpfBq7xN8tF8pGRkRg3bpzTsm3btkX37t0BAMuXL3da9vbbb0dCQoJf6tiyZUvEx8cDMA8iU9VOnjypzPPTqVMnDBgwwGHZ7t27K4MWnDp1Cv/++6/DsiqVCo8++qjD5y3LAYD//vvP02rXSMOGDcO5c+fw559/4qWXXsLdd9+N4cOH47HHHsOCBQuwe/dutG7dGgBw/vx5hwMOFBYWKveDg4NdrjckJES5X1BQ4NubcOKXX35RBrd46qmnnJbVaDQYMWIEAODIkSMOBwsBgC5duuCaa65x+Lyzz4oQArNnzwYAXH/99S7nAhsxYoQyt5ur7/UjjzwCWXa8Kfv9999tyqpUKodl3bmY/+GHH1buf/fdd3bLWD/+4IMPulxmVfLl/1ZWVqYMvtG4cWOnF80PGjQIl1xyidO6WLbtbdu2dTkwRd++fZXttaPPQO/evTFlyhQA5m3dww8/jBdffFHZ5o0aNcppnWuTQG1vTp06pdyPjY31ejme8uf7DcTfribsH4xGI8aNG4e33noLAHD11Vdj/fr1dueuA/x/7HXnnXcq733BggU2fxOL4uJi/PrrrwAArVaLu+66y413Vj3atWuHQ4cOYevWrXj33Xdx7733YtiwYXjggQfw9ddf48SJExg4cCAA84CHd955J/Lz8x0uLyQkBK+99homTZrkcJ+1evVqvPPOO8o8qL4oKirCQw89BAC47bbbcMstt/i0vObNm2Pq1KlOlzNr1iy8//77Dj/Dw4YNQ3R0NADzAEovv/yy3XKff/55pYH1nP1tPfX666/j4YcfhslkQrt27bBp0yZ06NDBblnL90KSJDz55JNOlxsTE6N8JtatW4eysrJKZW688UZl37Z+/Xq7g68JITBr1izl94pzIzpbv4X1tttbvs+wWwXWr18PAGjSpAn++usvl+UtB32nTp1CSUmJzcbWmrMDpYry8/Mxe/Zs/Pnnn9i7dy8yMzMdjjJ19uxZt5frrW3btin3b7jhBpflb7jhBqxatQqAOcRaNuYVtW3b1uZDVZH1zsSXUU6Tk5MhhPD69f6UkpLi9PmOHTvir7/+QkpKCkpLS7Fy5Ups3boVV155ZTXV0DeW7w9g/mz+9ttvTstb/18PHDhgd1RQwDzhrTPOPiv79+9HdnY2ACAiIsJlnQAgPDwcubm5OHDggNNyrr7X27dvV+5fd911TstaRvt15rrrrkPbtm1x+PBhzJw5E2+++SY0Go3yvF6vV0Y2TkhI8PtkyJ7y5f+2e/du5YRD7969nQZswHwCwNH/Ky8vT5lQvXHjxm5/BgA4/Qy89tprWLVqFbZu3WozMmSLFi3wxRdfuFyHO1599VWHI3DXdZbvLVC9IZF8U1paijvuuAMLFy4EAAwcOBDz589HaGiow9f4+9grJiYGQ4cOxdy5c1FUVIRff/210knXX3/9VQkUt9xyi/8mAfeDJk2aOH0+JiYGCxYsQPfu3bF3715kZWXhyy+/xLPPPmu3/IwZM/Dwww+jrKwMt912GyZPnozOnTtDo9Hg6NGjmDVrFqZOnYqlS5diy5YtWLJkCXr06OF1/Z9//nmcOnUKkZGR+Oyzz7xeDmAOwZMmTcL06dOhVqvxzDPPYPTo0WjdujX0ej127dqFqVOnYuHChfj222+xbds2LF++vNIIzFFRUfj444+V0PPmm2/i77//xvDhw5GQkICMjAwsXLgQK1euREhICKKjo3HhwgUAcHoy2F0mkwmPPvoopk+fDgDo1q0b/vzzTzRs2NDhayzfi+joaJtjcUcswbCsrAzHjx+vdPJUpVJh9OjRePfddyGEwMyZMyvtX9avX49jx44BALp27eryuNXC+vvjj5kJalxILCwsRFZWFgDzUOeeDredk5PjMCQ6OntW0erVq3HXXXchNTXVrfL+PLvhiOVLAtgOMeyIdRnr11bk7IsBAEFBQcr90tJSl+utKyzTiXz99dcAgCVLllQKiZYDWMC9v01JSYlyPyIiwk81rcy6NXD48OEevdbZRsWXz4p1nRYsWIAFCxb4pU6A6+/1+fPnlfvWQ4vbExMTg+joaOTm5josI0kSHnzwQTz11FNIS0vDokWLcNtttynP//HHH8pw5/fee6/LYFXVfPm/Wf/tLK3rzjgrc+bMGZhMJgDmHaD1yQxXnH0G1Go1/ve//6Fz587KwablscjISLfXUdMFantjOeBRqVQO961VwZ/vNxB/u0DvH6ZMmYK8vDwA5qkGfvzxR6V3hj1Vdex17733Yu7cuQDMIaliSJwxY4Zy/7777qv0emcnk0JDQ906aV6VgoOD8fzzz+POO+8EYD5WsBcSv/32W6VXyRNPPIGPPvrI5vmOHTvivffew9VXX42hQ4ciJycHw4cPx5EjR9xqia5oy5Yt+PzzzwEAb7/9ts+96MaMGaNMQ7FgwQKb1sSgoCD06tULvXr1whNPPIGPP/4Yu3fvxiOPPKJM32Bt7NixKCwsxBNPPAG9Xo9NmzZh06ZNNmUiIiIwe/ZsvPLKK8oxrLMGDXdNmzZN+V7069cPCxcutPmu2mM5fsnJyfHqe2HP2LFj8e677wIwt76+8sorNtOBuPpeOGK9z7PepnirxnU3tfzzvGU5622POzu4I0eOYNCgQUpAbNeunXL2ZM6cOVi4cKFyi4uLAwBl/piqZN10HxYW5rK89YfeWdcVf5yZqausW5Xsdf2wdJkAgMzMTJfLs+yAK77W33z5Djn7/vjyWamqOgGuv9eWHgBqtdqmxc8Rd75fY8eOVcLVt99+a/Oc5XdJknD//fe7XFZV8+X/Zt09zFkLhIWzv50vnwG9Xu/0+YYNG9q0crVs2RJXXHGF1+uricLDw5WD/NzcXJdzW/pre2P5nBuNRmUu0ergz+1rILbVgd4/WH8+ioqKXPbkqapjr379+iExMRGAufud9QnDU6dOKfO5JSQk2A18t956q8NboLvyW7g6VigtLVW6xcfGxuLNN990uKwhQ4bgxhtvBOBeTyB7dDod7r//fphMJlx55ZUYP368x8uwtm3bNiUg3nTTTU67m7711ltKmFuwYIHNiUZrjz76KA4ePIjJkyejU6dOiIiIQHBwMFq3bo3HHnsMe/bsweDBg22+F5ZLvHzh6fcCqJrjl3bt2uHqq68GAJw4ccJmDl/rLtjBwcHKCQh3WNfVHyf1alxLonW4ufbaa32eBNhT77zzjpK+X3jhBbzxxhsOJ/t01Wffn6zPLLozuar1wV1Vtlq5q7i42OW1Ze5KSkrC5Zdf7pdlOWPdbG+vZcm6tdbZtXwW1v3D3WkN9pblOyRJEgwGQ404EWD9vX755Zfx2muvVdu6LcHFYDBAr9e7DIrufL8aNGiAYcOGYfbs2Vi+fDlOnz6NpKQknDp1CitWrABgPjhq0aKF728ggKz/b+4EBGd/O+tljR49WumS6w8TJkyw+X4dPnwYL774It577z2/LP/gwYN+uUYIAHr16uWyddceWZbRqlUrHDp0CEajEWfPnnXYNRzw3/bGOnxnZ2e7dbLAH/y5fQ3EtjrQ+4d33nkHc+fOxaZNm7Bw4UKMGDEC8+bNc7j9q6pjL1mWMWbMGLz11ltK17pXXnkFADBz5kzlIH306NEB73XhLVfHCps3b1a6bV999dUuD9779euHZcuWATAHtJEjR3pUn82bNyvXl7dq1Qpvv/223XKWcS4AYM+ePUp4bdeuHe644w7lOetrA/v16+d03SEhIbj66quxZMkSCCGwfft2h6GyZcuWmDp1qsNlFRYW4syZMwDMJykdXTPoiccffxwHDhzAwoULsXnzZtx4441YtmyZ0+Nky6Uvln28v9x7771KC+qMGTPQu3dvALZdsIcOHerRSSN/Xx5Q40JiVFQUwsPDUVhYWC3X+lW0cuVKAECjRo3w+uuvOwyIBQUFNv+MqmbdN/7IkSMuy1uX8ddgPb5IT0/3uJnekTFjxtg0xVcVV2d2rfuIOxscCDD3g7dskGVZdjnAhy+aNm2KXbt2QQiBc+fOoVmzZlW2Lk/qZFHd3+uEhATlWrjjx4+jXbt2Dsvm5OQ47Wpq7eGHH8bs2bNhMpnwww8/4NVXX8UPP/ygdKmsKWe5fWG97Th69KjL8s7KVNVnYPbs2cqgSFdccQUyMzNx6tQpfPjhh7jxxhttBubx1ty5c/12YmP16tVuXftqT0pKCg4dOgTAvM1xFhKtr8V193oWe5KTk7Fx40YA5gMQS6tQVfPn9rVDhw6QZRkmkwm7du2CyWRyevLMH387T+qfkZGhHHzGxcVVuo7LGxEREfjrr79w0003uRUUq/LYa+zYscrgObNmzVIGK7E+UeRogLiaMpaBM66OFaxb09zpAh8VFaXcd+ekZUXWfzNLC6ArO3fuVL5DQ4YMsQmJ1V1/i3Xr1invpUePHk67S7tLo9Fg3rx5GDlyJP7v//7PraDYtGlT5ObmIj093a0Tze4aPnw4Hn/8caXl8PPPP0dYWBh+/PFHpYy7A9ZYWOeS5s2b+1zHamtisN4gu/rSX3vttQDMB3TuHJj4U1paGgDzoAfOdiIrV65UDgYd8eQ9u2I98IylpcIZ61Y7R4PWkHPWZ1Ltndnt2LGjcsC0f/9+pzvWTZs2Kdeu9uzZs0pbdy1nowDXI4NWly5duig7l1WrVrn87vhT165dlfurV692WtbS9ckdvXr1QseOHQEAP/zwA/R6PX744QcA5pNMQ4YM8byyNcxll10GrVYLwPx9cNW13jJYlj0NGzZUzgRv2bLFL9dynzhxAhMmTABgbjGeM2cOfv75Z6hUKphMJowePdrmAK62s3RDA6C0NDhiPfDITTfd5PU6rcOOJaBWB39uXyMjI5UBnPLy8rBlyxaHyzpz5ozSCpOUlOR160WfPn2Urrrr1q1zen2Q9f/Sl/9VRZag2LNnTwDAwoULMXz4cIfdt6vq2Kt169bKAGPHjx/H+vXrsW7dOhw/fhyAuXXN2cm7ms7VsYJ1sLK0jDlj3VpVEwbyCVT9rcOSPy/dsATF22+/HQCUoOhon2Q5piotLbXpFuqryMhIpQ6FhYVYsGABTp48qXyeEhMTXbbcVmQZ5E2SJHTq1MnnOlZbSLTuyuDqzMKYMWOU+46Gx60qlq40x48fdxjsjEajw+Z7a568Z1eSk5OVLpa7d+92GhS3b9+Ov//+G4D5TEJNuDbHMrqpP27V0Yp47Ngxm7OcliGNrUmSpJxtE0I4HT1s2rRpyn3LlBNVZeTIkcqB/XvvvefzZ88fVCoVRo0aBcC8A3E0dURVsA5r06dPdxp0Pv30U4+WbRle/MyZM5g0aZJyIDtmzBi/nW0MpKCgIOWzn5aW5vSs9NKlS12ORGvZthcXFysX7XvLaDRi1KhRyo592rRpaNOmDXr16oXnn38eAHDu3Dk88MADPq0HMI9u6q/tl7etiIC565Hluz1nzhxlgKSK9u3bp+wD4uPjbU4cecp6wK7qmO7Jwt/bV+vHnX3PP/vsM2Xf7+nAX9bCw8OV705+fr7D/ZYQQhlgpGI9/cESFHv16gXAPBCMo6BYlcde1i0iM2bMsPl7eNpaUpOUlZXZHA/aO1awPtGyZcsWp10WjUajcj0aYHuS0119+vRxa1tkHcLGjBmjPF7xOkjr+s+fP9/pPvTkyZPKdkKWZa8vDVq9erXyd2jZsqUSpvxFrVZj7ty5GDZsGABzULzpppvsBsXRo0cr91977TW/jkNS8Xth3QV7zJgxHl0uZDQalV4Q7du398/Abb5Ns2hmPVGuowk5H3vsMaXM2rVrnS7PaDSKbt26KeUff/xxUVZW5rB8cXGx+PHHH8WcOXMqPWc9CbI7kxj3799fKT916tRKz+t0OpuJX+FkctapU6cqZWbOnOly3dYTedszb9485fkmTZqIAwcOVCpz6tQp0apVK6Xc559/bndZlufdmdjYk7I13R9//CHmz5/vdEL1ffv2idatWyvvu0+fPg7Lnjt3ToSGhiqT6a5cubJSGesJa5s1ayZKSkr88l6cefLJJ5V1XnfddeLChQsOyxqNRrFixQrxxhtvVHrO0SS09rgqe+bMGREdHS0AiKCgIJffibS0NPH666+L3bt3V3rO1Xelol69einlJ0yYIIxGY6UyFSdMd2fS5dzcXOX/b307fPiwW/Xy1pgxY5R1nThxotLz/vy/rV+/Xnk+JiZG7Ny5s1KZw4cPiyZNmtj8Dawn87YoLCwUzZs3FwCEJEni/ffft/u/sMjNzRWffvqpWLFiRaXnXnrpJWVdw4YNs3lOr9eLHj16KM9//fXXTv8GtcmkSZOU9zVgwIBK25Ps7GzRpUsXl/sAd5WWloqwsDABQFxzzTVeLcP6GMGT/Yg/t69FRUUiISFBKTtjxoxKZVasWCHUarUAIMLDw0VqaqrL9+NsG7Rjxw5l4vGoqCi727JXX31VWU63bt0cLssd1n+Lit+/goICm+3gkCFDhE6nsynjz2OvigoKCpTPUXh4uAgPDxcARGhoqMjLy/Pq/XrCk+26EEIcOXJEfPDBByI/P99hmezsbDFw4ECb7WNOTo7dsldeeaVS7qqrrhJZWVmVyhgMBvHwww8r5Ro1aiQKCwsrlXP38+eK9efF0bG7EEJkZGQo/zsAYvz48XaPobKysmze58CBA+0u7/jx4+LUqVMO17d8+XJlQnpJktw6dnfG2T5Or9eLYcOG2fxv7H0eb7/9dqXMiBEjnH5m9Xq9WLBggVvbXpPJJJKTk5X32rhxY2U9R44c8eh97t69W3ntpEmTPHqtI9V2TeL111+vnO27//77MXnyZDRv3ly5ULl169bK8OmyLGPBggXo0aMHzp07h08//RS//PIL7rjjDlx22WWIiopCYWEhTp8+je3bt2PVqlUoKirCG2+84XM9J06cqLTSPfHEE1izZg1uvPFGNGjQAEeOHMGsWbNw5MgRXHfddThy5IjTLjDXX3+9cv+ZZ55BRkYG2rVrp/Srbtq0qUfNwcOHD8fChQsxd+5cXLhwAZdffjnGjh2LHj16QKVSYfv27fj++++VMyE33HCD0hWLzI4dO4bJkycjLi4ON910Ezp37oz4+HhoNBqkpaVhzZo1+P3335URsBISEpwOsJGQkICPPvoI48ePh8FgwIABAzB69Gj07t0bBoMBS5cuVc6GqdVqfPPNN06Hs7a+BvbEiRNOrzly5p133sGuXbuwatUqrF69WjkT16NHD8TFxUGn0yE1NVVplU5NTcX111+PF1980av1uSMxMRFz587FLbfcgrKyMowZM0aZmLdNmzYICQlBXl4eDh8+jC1btmDjxo0wGo0u5zZ0x9dff41u3bqhuLgYX3zxBTZv3oy7774biYmJSEtLw7x587Bx40b06NEDp0+fxrlz59w6gxcVFYURI0bYnJHt06cP2rRp43Oda4pevXphwoQJ+OKLL5CTk4OrrroKY8aMQa9evSDLMrZt24bvv/8eRUVFGDp0qNPR+MLCwvDbb7+hd+/eyM/PxzPPPIOvv/4at99+Ozp06IDw8HDk5+fj+PHj2LZtG9asWQOdTqdMZmyxYcMG5ex9YmIivvnmG5vn1Wo1Zs+ejc6dOyM/Px+TJ09G7969a3WXNotXXnkFf/31Fw4ePIilS5fi8ssvxwMPPICmTZvi6NGj+Prrr5UuYX369PH52tigoCDcdNNNWLBgAbZv347CwkKXQ8ZX3I5Yj7h34sSJSs9ffvnlNtPIWPhz+xoaGopvvvkGQ4YMgdFoxL333oslS5ZgwIABUKvVWLt2LWbNmqVs+z/++GM0btzY9R/IiS5duuCZZ57Be++9h7y8PFx99dV44IEH0L17d6V7meWSgPDw8EqfY38KDw/H0qVLMXDgQKxfvx6///477rjjDsyfP1/p9VCVx17h4eG44447MGPGDJuB9W6//Xa/T1Xz0UcfOZx6IDc3t9Lnr0WLFpW6MxYWFuLpp5/GSy+9hP79+6Nbt25o3rw5wsLCkJubi3/++Qdz585VPtuWaXccDTLy6aefok+fPigtLcWWLVvQvn17jBkzxmaexNmzZytdnQHzZ9Cd0barWsOGDfHWW29h0qRJAIAvv/wS69atw1133WUzT+LMmTORkZEBwLxvrDjNh8W///6LkSNH4pprrkGfPn3QunVrqNVqnD17FkuXLlUuW5AkCZ9//rlPvS9cUavVmDNnDiRJwvz587FlyxblGkXrz+UPP/yAw4cPY+/evZg3bx6WLVuG4cOHo2vXroiJiUFJSQnOnTuHnTt3YsWKFcjJyXGri6wkSRg7dqzSW8Vyyds111zj1rRT1qwvpxk6dKhHr3XIH0nTnZZEg8Fgcxar4s3eGezz58+L66+/3uFrrG8qlUp8++23lZbhaUuiEEI899xzTtfVs2dPkZ6erpwRd3Zm6s4773S4nIp/K3daR/R6vXjggQdc/j2GDRsmiouLHS7HUq6+tSR+/PHHbn2eUH7W/OTJk24t94MPPhAajcbhsiIiItw622r9GnstRJ4oKysTjz76qFCpVG6939GjR1dahj9bpCw2b94sWrZs6VadwsPDxZ49eyotw9OWRCGE+Pvvv5WWTHu3lJQUcfr0adG0aVMBQFx66aVuLXfr1q02y5k9e7bbdfJWdbYkCmHeft9zzz0O/3ayLIv333/faUuGtYMHD9q0djm7BQUFiaVLlyqvzcnJUba9siw73a7//PPPynK6dOnitFWkNjlx4oTLv1+/fv0ctmp46rffflOWO2vWLJfl3d3GOtoXVuSv7asQ5s+EpRXL3k2r1drtRWTNk5Yck8kkJk2apLQo2rs1atRIrFq1yq36O+PO96+wsFBce+21SrlbbrmlUouiP4697Fm7dm2l1//999++vu1KLNsHd2/2jm127tzp9uuTkpLcOr5cvny5iI+Pd7m8sLAw8cMPPzhcTnW3JFp8+OGHQqvVuqx/cnKy2LJli8PlzJ8/3+UyGjduLObNm+f1e7Pmzj5Or9eL4cOHK+WuvPLKSq2FeXl5YsSIEW5/Ll566SW36nfixIlK2wdn/39HunfvrnweTSaTx6+3p9pCohBClJSUiHfffVf06NFDxMTE2By8OjuQWbNmjXjooYdEx44dRXR0tFCpVCIyMlJ06NBBjBgxQnz55Zfi/Pnzdl/rTUgUQoilS5eKQYMGiYYNGwqNRiOaNGki+vbtK7799luh1+uFEMKtkGgwGMSXX34p+vTpIxo2bKh0ZbH3t/LkwHfz5s3i/vvvF61btxZhYWEiJCREtGjRQtx9991u7WycbRx9KVvTZWZmil9++UVMnjxZXHPNNaJVq1YiKipKqNVqERsbKy677DLx0EMPedW9Ye/eveKRRx4Rbdu2FWFhYSIiIkKkpKSIZ5991q2wWVRUZHOgYq87ijeOHDkipkyZIq688koRFxcn1Gq1CA0NFS1atBADBw4Ub7/9tt0gJkTVhEQhzBvkn3/+WQwfPly0aNFChIeHK/+Drl27inHjxol58+bZ7WojhHchUQghUlNTxVNPPSXatWsnQkJCRHR0tOjatav48MMPRVFRkTCZTCIkJEQAzrsZWzOZTErXmNjYWFFaWupRnbxR3SHRYtGiRWLQoEEiLi5OBAUFiaSkJHHnnXeKTZs2CSHcO0i1MJlM4vfffxdjxowRbdu2FZGRkUKlUono6Ghx2WWXidGjR4sZM2aI7Oxsm9dZ76SnTJnidB1CCDFq1Cil/JNPPumyfG2h0+nEN998I/r27SsaN24stFqtSEhIEIMGDRJz587120GCEOb9WFJSkgAg+vfv77K8Jwfo7h6g+rp9tXby5EnxzDPPiI4dO4qIiAgRFhYm2rZtKx555BGxb98+l6/35iB906ZNYuzYsaJly5YiODhYREdHi8svv1y8/vrrIiMjw6P6O+Lu989eULR3AsWXYy97TCaTzeUwycnJfv2cWvgjJJaWloq//vpLvPLKK+LGG28U7du3V47hIiMjRevWrcXIkSPF7NmzPTr5lJeXJ6ZPny4GDhwomjZtKoKDg4VGoxFxcXGid+/e4s0333R6eYgQgQuJQpi/Oy+//LLo1auXiIuLExqNRgQHB4vExEQxePBg8e233zptoBDCfBz21VdfiREjRohLLrlExMbGCq1WK5o2bSquv/56MW3aNJGbm+v1+6rI3X2cwWCw2b/YC4pCmLuRT5o0SXTp0kU0aNBAqNVqER4eLtq0aSOGDh0qpk6dKo4dO+ZRHfv27WtzkqCgoMCj1x8+fFh5/VtvveXRa52RhKgF4wsT1QPLli1TRrZ77LHHPB5EhXy3d+9eXHrppQDc/x+sXLkS/fv3B2Ceg+mTTz6pyioSBcTHH3+MJ554AiqVCidPnqy2qTCIiMi5l19+GW+88QbCwsJw6tQpv42KG/hZtokIwMU5OiMiIqr02kByzHqUQXevhfzyyy+V+3VhbkQiex5++GHEx8fDaDTi/fffD3R1iIgI5tGTp0+fDsA8roo/p01hSCSqISwh8YknnkBcXFyAa1P3rF+/3un8jNOnT1cGjmjatCluvvlml8vctWuXMlBLv379vJ5TjaimCwkJwauvvgoA+Oabb2wm2CYiosCYNm0asrOz0aBBAzzzzDN+XTa7mxLVAJmZmWjUqBEaNmyIY8eOVZoMmnzXunVrlJaWYsCAAejSpQvi4uKg1+tx7NgxLFy4EDt37lTKLlq0yGFI/Ouvv2AymXD48GG8//77uHDhAgDziJuWSauJ6iKTyYRu3bphx44dePTRR53OXUhERFUrPz8fLVq0QHZ2Nr766itl7mZ/YUgkonqhdevWOHbsmNMyISEh+PbbbzFq1CiHZaynKbFw9/rF5cuXo7i42HVl7WjYsKEyITYRERFRVWJIJKJ6YcuWLViwYAG2bNmCc+fOISsrC8XFxYiJiUHbtm3Rr18/jB8/3uXcaJaQGB4ejrZt22L8+PG477773JpXMTk5GadOnfKq/r1798aaNWu8ei0RERGRJ9SBrgARUXW46qqrcNVVV/m8HJ5XIyIiorqOLYlERERERESk4OimREREREREpGBIJCIiIiIiIgVDIhERERERESk4cA0REQWc0WhESUkJiouLlZv170VFRSgrK4NOp4NOp7O5b+93nU4Ho9EIk8lk89NyM5lMNs8B5pFrHd0so9fKsgyVSgW1Wg2NRqPcHP2u1WoRFBSEkJAQBAcHIzg4GKGhocp968dDQkIQHh6O0NBQqNXcPRMRUeBwL0RERH4hhEBBQQHy8/ORn59f6X5eXp7ymOVnUVERiouLUVpaGujq1yihoaEIDw+3uUVERNj8HhkZiejoaERFRSE6OhrR0dEICQmxO5cnERGRJzi6KREROWQymZCXl4fs7Gzk5ORU+lnxvtFo9Gl9KpUKoaGhNreQkBCEhYUhODgYK2asgyQAGCVASIBJAkyAZLLct/pdAED5TwFzecseT1x8XLI8ZvU0rHOWhPKCVr9LwnzBhiQgZMvvwuY5IZcvXGW+3TSuL0pLS1FSUoKSkhKUlpYqv1t+lpWV+fT302q1SmC0vsXExKBhw4Zo2LAhGjRogIYNGyIsLIyBkoiI7GJIJCKqp4xGI3JycpCeno6MjAxkZGRUup+ZmQmDweDRckNDQxEZGYmIiAhERkYiMjISa/+3BZJBAgwyJIMM6CXzT6MEySgBRvN9mAAJ9Te4iPJQKdQmQC0AlQlCLQB1+U+VwC2P36C0zObm5io/dTqdR+sKDg5WAqMlPDZo0ACNGjVCo0aNEB8fjwYNGihdbYmIqP5gSCQiqqOMRiMyMzNx4cKFSrfU1FRkZWW53fIXFRWF2NhYxMTEYNdf/0HSy4BehqS7+FN5TNTfkBcoAuUtmRoBoTFBaEyA1c9+91+DrKwsZGZmIjMzE4WFhW4tV61Wo1GjRmjcuDHi4+Mr/WzUqBE0Gk0VvzsiIqpuDIlERLVYWVkZzp07h9OnT+Ps2bM2QTAtLc1lK6BKpUKDBg0QFxeHRo0aYd3PW4EyGZJOBan8J3QMfnWNkAWgNUJoTeU3I4a/MFhpQU5LS0NmZqbLkwiyLKNx48Zo2rQpEhMTkZiYiKZNm6Jp06Zo0qQJgoKCqukdERGRPzEkEhHVcCaTCWlpaThz5kylW1paGpxtxlUqFeLj49GkSRPsWLwfUqnq4k0nmwNgPe7eSY4JCCDIBBFkVG4DJ/ZFamoq0tLSkJqa6rSLqyRJaNSokRIcmzVrhubNmyM5ORmNGjViN1YiohqMIZGIqIYwGo04f/48Tpw4YXM7d+6c04Px8PBwJCUlITExEau+23gxBJapzK2CDIFUBQSEuUtriBEi2Ig73xiCs2fP4ty5czh79iyKi4sdvjY4OBhJSUlITk5WgmPz5s2RkJDA6T+IiGoAhkQiompmaRk8efIkjh8/roTBU6dOOQyDGo1GaY3Z9L9/IZWqIRWrIJWoAYPEIEg1ijlACohgA0SIEXe9ORRnzpzByZMncebMGYfdoNVqNZo1a4aWLVuiVatWaNWqFVq3bo2GDRtyJFYiomrEkEhEVIUMBgNOnjyJI0eO4PDhwzhy5AiOHj3qsJUlKCgIycnJOLLuFKRiNaRiNeRiFVCmYhCkOkFAQAQbIUINEKFGXP/g1Th16hROnz6NkpISu6+JioqyCY2tWrVCcnIytFptNdeeiKh+YEgkIvKTkpISHD16FEeOHFFuJ06cgF6vr1RWrVYjKSkJJ7ecN7cIFqshF6uBUoZBqp8s10CaQg0QoQZcN+4qHD16FGfOnLE7gI5KpUJSUhLatWuH9u3bo3379mjVqhUHyyEi8gOGRCIiLxgMBpw4cQL//fcfDhw4gAMHDuDkyZN2B5EJDw9H69atsXfJYUhFakiFakglao4YSuQGIQlzq2OYAUOfvwHHjh3D0aNHUVBQUKmsSqVCy5YtldDYrl07tGzZktc5EhF5iCGRiMgFIQTS09Px33//KaHw0KFDKCsrq1Q2NjYWbdu2xT+/7IVUpIZcqGZXUSI/ExCA1gRTuB6j3huKgwcP4uDBg8jLy6tUVqvVonXr1rjkkkuQkpKClJQUNG7cOAC1JiKqPRgSiYgqMBgMOHz4MPbs2YO9e/di//79yM7OrlQuLCwM7du3x67fDkIqUEMu0EDSqwJQYyJSuquG6zH8jUE4dOgQDh06hMLCwkpl4+LikJKSgk6dOiElJQWtW7dmayMRkRWGRCKq94qLi7F//37s3bsXu3fvxn///VepldDSje3YurPmMFiggVTCFkKimkwZJCdCjyHP98fevXtx7NixStc4BgUFKS2NnTp1QqdOnRAeHh6gWhMRBR5DIhHVO3l5edi1axf27NmDPXv24OjRo5UOGiMiItCpUydsnb3HHAoLNZBMDIREtZ2QTRARBoz59Hbs27cP+/fvr3R9oyzLaNu2LTp37owuXbowNBJRvcOQSER1XnFxMfbs2YN///0XO3bswNGjRysNMNO4cWNk7M2DnK+BlK81jzjKVkKiOk9AQIQYISL1uOHxXti9ezfOnTtnU4ahkYjqG4ZEIqpzdDod/vvvP+zYsQP//vsv/vvvv0othc2bN8eZLemQ8zWQ87WQyngtIRGZCa0RpigdbnryWuzcudNhaOzWrRu6deuGjh07QqPRBKi2RET+x5BIRLWeEAKnTp3C1q1bsW3bNuzZs6fSNYXx8fFI35ULOU8LOVfLAWaIyG2uQmNISAi6dOmCbt26oXv37khMTIQksScCEdVeDIlEVCsVFxfj33//VYJhamqqzfMxMTHIO1wMObc8FJZx5EIi8g+hNcIUrUOfCd2xfft25Obm2jwfHx+vtDJeccUViIiICExFiYi8xJBIRLWCEAInTpzA1q1bsXXrVuzZswcGg0F5XqPR4LLLLsPOXw5Czg3iNYVEVC0EBESYAfd9dQf++ecf7N27F3q9XnlepVIhJSUFV199NXr27IlmzZqxlZGIajyGRCKqsQwGA3bt2oX169dj48aNSE9Pt3k+ISEBqdtzIOcEQc7TcvRRIgo4IQuYonQY+ko/bNu2DadPn7Z5vmnTpujZsyd69OiByy67jPMzElGNxJBIRDVKUVERtm7dig0bNmDLli02E2FrtVp06dIF2+f8BzlbC6mUrYVEVLOJICPG/zwKGzduxK5du2x6QISFhaF79+7o2bMnrrrqKkRGRgawpkREFzEkElHAZWZmYuPGjdiwYQN27Nhh01UrJiYGeQdKIGcHm68tZGshEdVSQmWCKVqH/k9cjc2bN9tcy6hSqdClSxf06dMH11xzDWJiYgJXUSKq9xgSiSgg0tPTsWbNGqxevRr79++3ea5Zs2Y4vzkLclYQpAINWwuJqM4REBAReoz88GZs3LgRx48fV56TZRmXXnopevfujWuvvRZxcXEBrCkR1UcMiURUbTIzM5VguHfvXpvnOnbsiINLTkHOCoJcwmt0iKh+MQUbcO83t2PdunU4ePCgzXMdO3ZEnz590Lt3b8THxweohkRUnzAkElGVysrKwtq1a7F69Wrs2bMHlk2OJEno1KkT/lt4wtxiqOO8hUREgPk6xnEzRmDt2rXYt2+fzXMdO3ZE//79cd1117FLKhFVGYZEIvK7oqIirFmzBsuXL8fu3bthMpmU51JSUnDgj1NQZTIYEhG5IrRGjJ89CuvWrcOuXbuUE20qlQpdu3ZF//790atXL4SGhga4pkRUlzAkEpFfGAwG/PPPP1i+fDnWr18PnU6nPNehQwccWnwaqsxgBkMiIi8JjREP/jQSK1eutOmSGhQUhF69eqFfv37o3r07NBpNAGtJRHUBQyIReU0IgcOHD2P58uVYtWoVsrOzleeaN2+Os2uzoMoIhlTGYEhE5E+mYANGfT4YK1euxNmzZ5XHIyMjcf3112PgwIFo27YtJIkDfxGR5xgSichjmZmZWLZsGZYtW4aTJ08qj0dHR6PgvzLI6SGQCtUclZSIqIoJCIhwA4a+dX2lk3WtWrXCwIED0b9/f0RHRweukkRU6zAkEpFbjEYjtm3bhsWLF2PTpk0wGo0AzBPcG85JkNNDzPMYCgZDIqJAEBAQ0Tpc+/gVNt3+1Wo1evbsiYEDB6Jbt25QqzmCNBE5x5BIRE6lpaVhyZIl+PPPP5Genq483rFjRxz67TTkzGBIRjmANSQiooqE2oQJc0dh6dKlOHTokPJ4w4YNceONN+Lmm29G06ZNA1hDIqrJGBKJqBKDwYBNmzZh0aJF2LZtmzKaXmRkJIoOGCCnhUAu5ploIqLawBSmx5C3+mLFihXIy8tTHr/yyisxdOhQXHXVVVCpeO04EV3EkEhEiszMTPzxxx/4448/bK5r6dKlC/bOPWZuNWR3UiKiWklIAi+uehSLFy/Gtm3blMcbN26MW265BYMGDUJsbGwAa0hENQVDIlE9J4TAf//9hwULFmDNmjUwGAwAgJiYGOTvKTO3Gpay1ZCIqC4RwQbc9mF//Pnnn8jPzwdgvnaxT58+GDp0KDp16sSRUYnqMYZEonpKp9Ph77//xv/93//ZzLfVqVMnHJh/GnJWEFsNiYjqOCELPLX4Afz222/477//lMdbtmyJYcOGoX///ggKCgpgDYkoEBgSieqZjIwM/Pbbb1i0aBFyc3MBlI9QekaG6nwo5CJOwkxEVB+ZwvS48aWrsWLFCpSVlQEw9yq59dZbMXToUE6jQVSPMCQS1RMnTpzA3LlzsWLFCqVLaVxcHLL/KYEqNQSSgSOUEhERIFQmPPDTHfj111+VUa21Wi1uvPFG3HHHHUhOTg5sBYmoyjEkEtVhQgjs3r0bc+bMwebNm5XHL7vsMuyfe9LcpZQT3hMRkR1CEnhu+XjMmzfP5rKEK6+8EiNGjMAVV1zB6xaJ6iiGRKI6yGg0YsOGDZgzZ45yjYkkSZAytFCdDYNcyC6lRETkHgEBEanHVY+kYMOGDcq0SG3atMGoUaPQu3dvTqFBVMcwJBLVITqdDkuXLsXcuXNx7tw5AOXXG55SQXUulKOUEhGRT0SwAYPf6YM///wTJSUlAIBmzZph1KhR6N+/PzQanoQkqgsYEonqgLKyMixevBj/+9//kJGRAQCIiIhA8X4TVBdCIel5vSEREfmPUJsw6uub8euvv6KgoAAA0KhRI9x55524+eabOSIqUS3HkEhUi5WWluKPP/7AnDlzkJWVBaB8MJqtpVClBkMyMRwSEVHVESoT7p81DPPmzUN2djYA84ioI0eOxK233org4OAA15CIvMGQSFQLlZSU4Pfff8fcuXOVnXLjxo2RtbEYcloI5zckIqJqJSSBif93D2bPno3U1FQAQGxsLO666y4MGTKELYtEtQxDIlEtotPp8Mcff+Cnn35CTk4OACA+Ph6Z64sgpzMcEhFRYAlJ4MnF92PmzJk4f/48AKBBgwa4++67MXjwYGi12gDXkIjcwZBIVAsYDAYsW7YMM2bMQFpaGgAgISEB6WsKIWcEMxwSEVGNIiSBSb+PxcyZM5X9VlxcHEaPHo1BgwZBreZAakQ1GUMiUQ1mMpmwdu1afP/99zh9+jQA8042Z1MpWw6JiKjGs3RDnTVrljKwWmJiIh588EH07t2b8ywS1VAMiUQ11Pbt2/HVV1/h8OHDAICoqCgU7jKaRys1cadKRES1h5AEHp43ErNmzUJubi4AoEOHDnj44YfRuXPngNaNiCpjSCSqYU6ePIkvvvgCW7ZsAQCEhoai7IAE1flQSEaOVkpERLWXUJlw19eDMG/ePGWexR49euChhx5Cy5YtA1w7IrJgSCSqIXJycvDjjz9i0aJFMBqNUKlUwBktVKfDIRkYDomIqO4QGiMGvtNL2efJsoyBAwdi3LhxiImJCXT1iOo9hkSiACsrK8P8+fPx888/o7i4GAAgZwVBdSIccikv7CciorrLFGxAz6c6Yc2aNQCAsLAwjBkzBrfffjs0Gk1gK0dUjzEkEgWIEAIbN27EZ599hgsXLgAA2rZtixO/ZkDO5xDhRERUf0zd/TI+++wzHDx4EIB5cJtHH30UPXr04OA2RAHAkEgUAGfPnsWnn36KrVu3AigfsXRDmXk6C3BnSERE9Y+AwJNL7sfXX3+N7OxsAEC3bt0wceJEJCcnB7ZyRPUMQyJRNSopKcHPP/+MuXPnQq/XQ61WQ5zQQnUmDJKJ1x0SEREJlQnDPuuP+fPnK/vKkSNHYvTo0QgODg509YjqBYZEomqybt06TJs2Denp6QAAKUcL9fEIyCW87pCIiKgiEWxA18faYdOmTQCA+Ph4TJ48GT169AhwzYjqPoZEoiqWkZGBTz75BOvXrwdg3sllri6BnBXErqVEREQuvLz2MXz66afKSdZrr70Wjz32GBo1ahTgmhHVXQyJRFXEZDLh999/x9dff43i4mLzlBYng8u7ljIcEhERuUvIJtz+WT/88ssvMBqNCAkJwf3334/bb7/dvH8lIr9iSCSqAidOnMAHH3yAffv2AQCkfA3URyMgF3M4byIiIm+ZQvVoP6Yp9u7dCwDo2LEjpkyZgubNmwe4ZkR1C0MikR8ZDAb89NNP+Omnn2AwGBASEgL9PjXkCyHsWkpEROQHAgITF96DL7/8EsXFxdBqtRg7dixGjhwJtZrX+RP5A0MikZ+cOHECb731Fg4fPgwAkLO0UB+LhKRjNxgiIiJ/E1ojukxspUwn1a5dO0yZMgWtWrUKcM2Iaj+GRCIfGY1GzJ07Fz/88AP0ej0iIiJQsl3inIdERERVTEDgqT8fwLRp01BYWAiVSoV7770Xo0aN4rWKRD5gSCTywZkzZ/D2229j//79AAA5Wwv1UbYeEhERVSehMeLKpy5RRhJPSUnBiy++iISEhADXjKh2Ykgk8oIQAosWLcJnn32GsrIyhIaGQrdLDTmdrYdERESBYGlV/OSTT1BcXIyQkBA8/vjjGDBgACSJ+2YiTzAkEnkoPz8f77//PtatWwcAkHK10ByJhFTG1kMiIqJAE0FGtL8/AXv27AFgnlfxqaeeQnR0dGArRlSLMCQSeWD37t144403kJ6ebr7W4WgIVOdC2XpIRERUgwgIjJ01FN9//z2MRiMaNGiAV155BZ07dw501YhqBYZEIjcYDAbMmjULs2bNgslkQtOmTZG+pARyIec9JCIiqqk+P/Am3njjDZw+fRqyLOO+++7D3XffDVmWA101ohqNIZHIhezsbLz22mvYuXMnAEBOC4b6eAQkI3cwRERENZ2QTbjutcuxbNkyAEC3bt3w4osvIiYmJsA1I6q5GBKJnNi7dy9eeeUVZGZmIiQkBPpdGqgyQgJdLSIiIvKAgMATi+/Dxx9/jLKyMjRs2BAvv/wyu58SOcCQSGSHEAILFizA9OnTYTQaIRWroD4QDblEHeiqERERkZdMoQYk3BqOU6dOQZZlTJgwAXfccQdHPyWqgCGRqILi4mJ88MEHWLVqFQBAzgiC+kgkJBO7lxIREdV2Qha47rUuSvfTG264AU8//TSCgoICXDOimoMhkcjKhQsX8Nxzz+H48ePm0UuPhEJ1PoSjlxIREdUhAgIP/zJS6THUtm1bvPXWW2jcuHGgq0ZUI7BphKjcnj178NBDD+H48eOIjY2FvCMS6vOc3oKIiKiukSDh6+HzMHXqVERFReHw4cMYN24cdu3aFeiqEdUIbEkkArB06VJ88MEHMBgMkArV0PwXDUmnCnS1iIiIqIqJICOa3xWDI0eOQKVS4cknn8TNN98c6GoRBRRDItVrRqMRX3/9NebOnQsAkDODoD4cBcnE1kMiIqL6QsgC1758KVauXAkAuPvuu/HAAw9wPkWqtxgSqd4qKyvD66+/jvXr1wMAVKfDoDodxu6lRERE9ZCAwJ3fDsDMmTMBAH379sVzzz3HAW2oXmJIpHopPz8fzz33HPbu3QuNRgOxNwSqTM5/SEREVN89seQ+vP/++zAajejUqRPeeustREdHB7paRNWKIZHqnbS0NDz11FM4deoUwsPDUbZJAzlfG+hqERERUQ3x7j9T8NJLL6GwsBCJiYmYOnUq4uPjA10tomrDkEj1yrFjx/D0008jMzMTKJOh2R8DuVgd6GoRERFRDWMKMaDBIA1SU1MRFxeHjz76CMnJyYGuFlG14NW4VG/s3bsXEydORGZmJqQiFbS7YxkQiYiIyC65RI3sPwxITk5GRkYGJk6ciAMHDgS6WkTVgiGR6oWdO3fiqaeeQmFhIaQ8DTR7YjnFBRERETkl6VQ4P7cIl1xyCfLy8jBp0iTs2LEj0NUiqnIMiVTnbdu2DU8//TRKSkog5Wih2R8DyciPPhEREbkmGWQc+yETl19+OUpKSvD0009j8+bNga4WUZXikTLVaRs3bsRzzz0HnU4HOVsLzX/RnAORiIiIPCIZZez77CyuueYa6PV6vPjiiwyKVKcxJFKdtW7dOrz44ovQ6/WQM4OgPhANSTAgEhERkeckIWHru4fQu3dvBkWq8zi6KdVJW7ZswfPPPw+DwQA5PRjqw5GQwIBIREREvhGSQI/nL8HatWuh0Wjw1ltv4aqrrgp0tYj8iiGR6pwdO3bgmWeeMXcxzQiC+lAUAyIRERH5jZAErnquPdatWwetVou3334b3bt3D3S1iPyGIZHqlL179+Kpp55CSUkJ5Cwt1AfZxZSIiIj8T0gCV05ph/Xr1yM4OBhTp05FSkpKoKtF5BcMiVRnHD58GJMmTTJPc5FTPkgNAyIRERFVESEJdHmiBbZu3YqIiAh8/vnnaNGiRaCrReQzhkSqEy5cuIDx48cjOzvbPA/i/hiOYkpERERVTsgCbcbFYf/+/WjYsCGmT5+OJk2aBLpaRD5hSKRaLz8/HxMmTMDp06chFamh2cN5EImIiKj6CLUJTe8Mx4kTJ5CYmIjp06cjJiYm0NUi8hqPpKlWKysrw3PPPYfTp08DpTI0+6MZEImIiKhaSQYZ5+YVID4+HmfPnsXzzz+PsrKyQFeLyGs8mqZay2Qy4a233sLevXsBgwTNfzGQdCrvFiaxayoREVG9J0leHxNIOhWyFusRERGB/fv349133wU77FFtxZBItdZ3332HNWvWQKPRQHMgGnKx2vOF+LAzICIiojrKy+MDuVSNN998EyqVCqtWrcKMGTP8XzeiasCQSLXS33//jZ9//hkAIPaHQs7Ter4QhkMiIiJyxotjhWeueBtPPvkkAODHH3/EypUr/V0roirHgWuo1jl69CgmTJiA0tJSqM6FQn0yEvDkY+xog8+vAhERUf3mLBR6eKxx62d9MHfuXGi1WkyfPh3t2rXzvX5E1YQhkWqV3NxcPPjgg0hNTS2fCzEGEiT3N9z+2vgTERFR3eOq5dCD4w0Bga5Pt8KmTZsQHx+P7777DpGRkb7XkagasLsp1RpGoxGvvfYaUlNTgRIVNIeizQHRHbz2kIiIiHzlzvFE+fMSJGyfehQJCQlITU3Fm2++CZPJVA2VJPIdQyLVGj///DP+/fdfhISEQHOgwlQXjjbYDIdERETkb24eX0hGGW+88Qa0Wi22bNmijKdAVNMxJFKtsHv3bvz4448AAP1uLeQSjesXMRwSERFRVXLjWGNC+xcwefJkAMD333+Pf//9t6prReQzXpNINV5eXh7uu+8+ZGRkQE4PhuZItP2Clo+yt+GQXwUiIqL6zZcTzC6OQ/q9fQWWLFmCBg0aYMaMGYiKivJ+XURVjC2JVKMJIfDOO+8gIyMDUokK6mMuLvj2ZePOlkciIqL6y9fjABevX/HidiQlJSErKwsfffQR2E5DNRlDItVoS5YswaZNm6DRaKA+FA3J5OQj64+Qx6BIRERUP0l+OCyWJEgqlf2nTBJeeuklqFQqrFmzBsuWLfN9fURVhCGRaqy0tDR8/vnnAADT4WDIRQ6uQ/THRp2IiIhIkv1yXOEoKD7a4SXcd999AIBPPvkEFy5c8HldRFWBR9dUIwkh8MEHH6C4uBhSvgaq86GVC/lpQ05ERERkw09B0V5YnDn2D3Tq1AnFxcV499132e2UaiQeYVON9Oeff2Lbtm2ACVAfjao8H2LFjTfDIhEREXlLttPy58XJaHuhsOJjEiQc+vECgoKCsHPnTvz1118erYOoOvDImmqczMxMpZup6lQE5BL1xSero/WQ1yUSERGRRRW0KkplaqXb6fTp05Gbm+vzOoj8iSGRapwvv/wSRUVFkAoqdDNlayEREREFgp+OQayD4vf3/B9at26N/Px8TJ8+3S/LJ/IXHnVTjbJr1y6sWLECkiRBfSzS3M3U3dZDhkgiIiKqKi6ORxwNVmOvnKRSQRISnnrqKUiShGXLlmH79u3+qimRz3hUTTWGwWDAJ598AgCQzpePZsrgR0RERFXJ3vWIzvixVfHxTq/itttuAwB89tlnMBgMflk2ka94BE41xm+//Ybjx48DegnqM1GBDYi8LpGIiIgc8eNUGYunbEJUVBROnDiBJUuW+KFyRL5jSKQaoaCgAD/88AMAQH06EpLBy48mWx6JiIjIXZ62IlZUftzhbldTu4swyhg7diwA4Pvvv0dRUZFvdSLyAx5RU40wZ84cFBYWQipWQ06zMyeimyRZ8l9QZGsiERERuSLJkNRq1+Wc+Oqu+UhKSkJubi5+/vlnP1WMyHsMiRRwWVlZ+PXXXwGYp7yoNCeim/waEImIiIjcJfsWFCUhYfz48QCA+fPnIz093V81I/IKj6gp4GbNmoXS0lJIRUFQFYZ7tQzrgCipVAyLRERE5JyvXU0ti9Fqyu/4FhRfu/FrXHbZZdDpdPjf//7nl7oReYtH0hRQFy5cwKJFiwAAmvOxHrciSrJUtaGQXU6JiIjIGVm2uS+p1V6FRUm6eG3i4sWLkZmZ6acKEnmOIZECat68eTAYDJALQqAqDPHotc66l7I1kYiIiBzydyuizYOy162Kz/WZhk6dOrE1kQKOR9EUMLm5ucpQz+rUaAAwn33TuN6oVuv1h2xNJCIiIntkJ8ciHgRFSas1/4SktCb+8ccfyMrK8rWGRF5hSKSAWbhwIcrKyiAVayEXBrv1mirvXkpERER1m59aEd1bl5vdT61OSL/Q93N07NgROp0O//d//1fFFSSyj0faFBClpaXKhk+dFm1zLaKj1kRPWw/9GibZmkhERERW7HY1tVvQefdTSyui8jskjBw5EoC5NbGsrMynehJ5gyGRAmLZsmXIy8uDVKaGKjfMZXlOb0FEREQ+82crorOupg7K2w2Kdk5Ev3XzD4iPj0deXh5WrFjhZQWJvMejbqp2Qgj88ccfAAB1RqTdEU0trYmSLPkUENmaSERERP7mditipRfadj+t2IpoIUHCrbfeCgD49ddfIYTwbn1EXmJIpGp34MABHDlyBDBJUGVHOCwnSeXh0MeQx2sYiYiIyG8jmoaFet6KaLMAq+6nTk5A/zj+TwQFBeH48eM4cOCA9+sj8gKPnKnaWVoRVblhkIz2N9iSVgspIgJyiHsD2lQLnsUjIiKqnSQJECbzzR9UvgdOKakppKbxjp83qtC7d28AwJ9//unz+og8wZBI1aq0tBSrV68GAKgyK7ciSlotpPAwQKsBZP917/S5NZEBkYiIqG7wISjanLz2NSiqZEAlQ2oa7zAsrpm+FwCwatUqlJaW+rY+Ig8wJFK12rhxI0pKSiCVqSEX2bYSSlqtORxaCwmGFBxUjTW0gwGRiIio9rLXpdPboFixm6lK5VVYlBKbWC3jYlistLrCYDRp0gRFRUVYv369x+sh8hZDIlWrVatWAQBUOeG2017YC4iW5/w0YIxXrYkMiERERHWTh0HR6SUwngZFlZ3jETtBUYKE/v37AwDWrFnj2TqIfMCQSNWmoKAAW7duBWAOiRbOAiIAv7YmehQUGRCJiIhqN1cnmt0MinJIsOvBatwMijatiJWWUTkoznvOfIJ969atKC4udmsdRL5iSKRqs3XrVuj1ekglGsilWvP1h6GhzgNiOSk0pPoGsRGCAZGIiKi2c7cnkjsD2rg7mqmLoCglNrHfimizDNvrFKVSLZo1awadTodNmza5Vw8iHzEkUrWxbNhUeWEXWw/9ODiNu5y2JjIcEhER1U8OgqLHJ6mdBUVXAdG6nCUsQkKfPn0AgNclUrVhSKRqYTAYLnY1LY50q/WwkqrudsqASEREVDd4O55BhaDoVjdTe+wMaOO0m6nD5ZiD4rwXzV1Ot2/fDqPR6PlyiDzEkEjVYv/+/SgoKAAMKsjGSK+XI4WGVM1opwyIREREdYOvA95ZB0VvAqK18qDoVjdTh8uQoYppjvDwcBQUFODgwYO+1YnIDQyJVC127twJAFCV2I5q6g2/j3bKgEhERETWhMl/YyGoVN4HxHKSSoWuXbsCgNIzi6gqMSRStbCERLkkzPeFBQX53pooTBCW7hp+Cp1ERERUA/jh5K8cFGRejh+6dhpTWkLfwPfjn27dugG4eExFVJUYEqnK6XQ67N+/HwAghyX6vkBZghTsw/WJwgRhYushERFRneWPXkImk/nmQ1A0prSE0MqASvI5KH7wxTYAwMGDB2EwGHxaFpErDIlU5Q4fPgydTgchaVHWJA6iSUPfFypL3nU7tRcQJZmtiURERHWNl0FRDqpwEtqHoCi0Vofa5UHRm7BY3CIaQhOByMhIlJWV4ejRo17Vh8hdDIlU5Q4dOmS+o46BUMkoaRrmn6DoabdTZy2IDIpERER1j4dBsVJAtPAiKBpTWlZ+UCV53KpY3CIaQiUBkoSOHTsCAPbu3etRXYg8xZBIVe7IkSPmO6ooAICQJQi1Hz56nnQ7daeLKYMiERFR3SOEW2HRYUC08CAoKt1MHfEgKArVxWOTSy65BIDVsRVRFWFIpCp3+PBh853ykAgApY1D/Nft1FVQ5DWIRERE5K/rFF0ERZcB0cKNoFicHG3z+/fz9gAAjh8/7nr5RD5gSKQqZTAYcPLkSfMvqovzIwpZQkmCn7qdOguKngZEtiYSERHVXQ6CostWRGtOgqLbAdHCSVAsTo6GUFc4Jik/ljp58iQHr6EqxZBIVSo1NRUGgwECMiCH2DwnVH4OihXDnbctiAyKREREdVeFoOhRQLRwEBQ9CogWdoKi3YAIAHIogoODodPpcP78ec/XReQmhkSqUmfPnjXfkcPsBi+h8tP1icDFgWzK50D0qYspgyIREVHdVR4UvQqIFpagWB4W7Q5U464KQdFuQAQASUJionk6MYZEqkoMiVSllJCoctznvrSRH69PVKsBlcr3ZREREVHdJvnhMLh8LkUpMd67VkRr5UGx4nWIFcXHxwMw99YiqioMiVSl0tLSzHfkUIdlDCEyClpHwJTU2LeV6fQQOh0klQqSr0FRmMw/2ZpIRERU98jm4wThh+v6pOaJECoV1LmlPi8r8+lSFEzIc1rGEhIvXLjg8/qIHGFIpCqVlZVlviMH233eqJVg0kgwaiQUJId6HxTLA6Kl+4ikUXsfFC0BkYiIiOo0YRI+BUWpeSKERm3+xSh8Corpk0vRLDoXTSPzUTDOcVCcv+Q/AFYn4omqAEMiVans7GzzHcm2z79RK0EfKsOkkSDKG+tMai+DYoWAaOFVULQXENmaSEREVHfItscG3gZFm4Bo4WVQTJ9ciuYxOcrviVF5KBiXZz8slh9T5eU5b3Ek8gVDIlUpJSTKF0OipfVQyFACooXHQdFBQFTIHgQ8Zy2IDIpERES1n2z/5LE3QbFSQLTwMChWDIgWiVF5SIzKQ/4D+bZPyFoADIlUtRgSqUoVFRWZ70gaAFYB0UnmcjsougqIgPvXJ7rTxZRBkYiIqPZyEBAtPAmKUvNE5wXcDIqOAqK1ZtG5ti2KEkMiVT2GRKpSJSUl5juS2q2AaGFSSzBpnHw83QiIFi67nXpyDSKDIhERUe3jIiBauBMU7XYztceNoOgqIFrYtCiWn3gvLCx067VE3mBIpCplCYlGrdrtgGhR1DTYfmuiBwHRwmFQ9GaQGgZFIiKi2sPNgGjhLCi6HRAtnATFtMmeXbvYLDrXHBTLp+7Q6/UevZ7IEwyJVGUMBgOM5RPMmrRqjwIi4KDbqRcB0aJSUPRlFFMGRSIioprPw4BoYS8oehwQLewExbTJpUh2sxXRWrPoXBSMMl/KYzAYILw4HiJyB0MiVRnrDZfwMlSZ1BIKm5cHRR8CooUSFP0xzQWDIhERUc3lZUC0sA6KXgdEC6ugmDqpzKuAaJEQefFaxIKCAu/rROQEQyJVGckmRHkf7IwaCYYwDaDV+BQQFZ6MeEpERET1ljAJSFqtbwHRwihw9E4NWsRm+7Ycq+MYS48tIn9jSKQqYxMSfch2IRl6aNMKIIWFQooI96lOwmgEjEalP79vC2MXDyIiohrL5HuAksNCAQBSaobPyzo0PgrqSB2OpMf5tBzrQ5jQ0FAfa0VkH0MiVRlZvvjxyuhb5tUyQjL0CD6XD+gNELLkU1C0BERhKg93vgRFBkQiIqKaz4egKIeFXjzhrdP7FBQPjY+CKsZ8LGTQq3wKim83WQTAfDJeq9V6vRwiZxgSqcpIkoSQkBAAwKwuPyBtgM6j11sHRAtvg2KlgKhU0ouvAAMiERFR7eFFULQJiBZeBkXrgGjhbVD8osWviNabj4FCQ+3UkchPGBKpSoWFhQEAGurDsKL3NI+ComwQNgHRQgmK5ct2xWFAtPAkKDIgEhER1T4eBEW7AdHCw6BoLyBaGPSeDazzRYtfkagOR3GpuW7sakpViSGRqpQlJBYVy2ilCceK3tOQPtB111PLdYiOCFmCFBHmskXRZUC0cCcoMiASERHVXm4ERacB0cLNoOgsIFq425poCYgAUFxiPmax9NYiqgoMiVSlIiIiAAB5heaPWitNOJZe+7nTFkV73UztcbfrqcuAaOEsKDIgEhER1X5OgqJbAdFC53wi+0MPuw6IgHvdTq0DIgDk5JmPV2JiYtyoKJF3/DCeL5FjcXHmDV9m9sUA1lYThr96f4aDPeIwafNINF568aJrdwOihSUoAoAoKLR9zjKSqSckufIcigyIREREdYfJWGkORY8CYjkpNQMivnLAO/RwFFSx7g/YZwmKbRrZtk5+0eJXALAJiACQlW2ue4MGDTyqL5En2JJIVcoSEjOybDfGbTVhuCWsGH/1/kxpVfQ0IFoIWYIUGmLTouh2N1N7/DE9BhEREdUK3gREAHa7nXoaEC0qtih+Xt56WDEgAkBmjvk4pWHDhh6vh8hdPBqmKmXZgFUMiRaWVsW0q+BVQLQQKlkJij4FRAtLUGQrIhERUd1T3u3U64BoYRUUvQ2IFpag+HmLX5FkJxxaZBYPAcCWRKpaDIlUpZo0aQIAOJ/meASv508PQfhpGWUJkT6tS6hkZUPvU0C0YIsiERFRneaXKSR0eogQjU8B0eLZTsuQYXQ+9+GZM2cAAImJiT6vj8gRHgVTlWrevDkA4PR5tcNGuQtFkVCVAHkttChrHuv1uqSiEpgKCiFJEmStBpLKs6GlKxEmgPMPERER1T3l+3dTcbFPixEtE803CUiY49vE9i9c/idaatNRJBwvR4iLIbFZs2Y+rY/IGYZEqlJNmzaFSqVCcYms9KG3Nvz49chbEw8AMGol34KiEDYD1Ugq2fugaD14DYMiERFR3SFJSm8hYRJeB0XRMhEmrQomrflYIzitxOsqWQKixb9l9keBz8qRUVJSApVKhaZNm3q9PiJXGBKpSmk0GiQkJAAATp21HUx3+PHrsX9JO2jyLz7mbVC0tCJWetyboFhxdFOAQZGIiKgusAqIFt4ERUtArMib1sQpXf6yCYgAUCS0doPiiTPmY6kmTZpAo9F4vC4idzEkUpVr3bo1AODQ8YsbM0tA1OZVLu9pUJSKSmDKL3A43YVPLYo2C2JQJCIiqrXsBEQLT8YycBQQAXNroidBcUqXv9AmKNXuc/aC4uHyY6l27dq5vQ4ibzAkUpVr3749AODQ0Ysh8VxhlN2AaOFuUHQVEJVy7gZFe62INguSGBaJiIhqE8u+28WAdO60JjoLiBbBaSVoMs91UHQWEC0qXp946NzNABgSqeoxJFKVu+SSSwAAB4+ZN3TDj1+P3LXxLl/nKii6GxCV8q6CoquAaLMwBkUiIqIazxIO3Rix3FW3U3cCokXIBedB0Z2AaLGr7OKoqQcPHgRw8QQ8UVVRuy5C5Ju2bdtClmWkZwG37uiNwxvtdzO1xxIUVU3jEXZeh+CT2RefrDBQjTskVfmF6hVf50lAVBYmcR5FIiKimsqN1sOKLEFRDg21fdyDgGgRcqEEgO1rpnT5CwDcDogAkC+CsKusDPH5oUhPT4dKpULbtm09qguRp9iSSFUuNDRU2Zid+r8ItwOihVErQRcuIT/5Yquio4Fq3OG3axQBtigSERHVRF4ERIuK1yeKFk09DogW1q2JT3dZjjZBqR4FRIt8EYQ/dpuPOdq1a4fQCiGWyN8YEqlaXH755QCA4IwMr5dhaVU0NI7yqJupPZJKNs+lKEvetSLaLIxBkYiIqMbwISBamIqLIVo0NQfEIO873lm6nT7dZTnaB533qU7Zp+8BAHTp0sWn5RC5gyGRqsUVV1wBAFAXZvjURdOolWAIUfmlJVAI4dFoZkRERFQL+BgQAQAqFaTTqT4FRGVRZcLngCgEsGPHDgAMiVQ9GBKpWnTq1AlarRayvgSq0nzXL3Ag8rQBIUczgKAgSFrP5yKyYQmI/tiZEBERUc1g8r6nEQBIGnMwFCUlPldFFxMEoQIe+3iCT8uZ8PVdSE9Ph1arxaWXXupzvYhc4dExVYvg4OCLrYn5FyB50ZoYedqA8H2pECWlgCyZg2J4mFdhUQhhO3iNL0GRg9cQERHVLF4GRUtAtFAdO+fVcnQxQeaAqDZfkhJ9XI/HPvEuKI7733hEHDNfx9i1a1cEBwd7tRwiTzAkUrXp1asXAECTfwEAPA6KKp3JHBAtZAlQqTxuVRRCQOgNlZ9giyIREVG9VTEgCiEgioo9DoqWcGgJiBbRx/Qe12nc/8Yj7BzQOcZ8zGQ5liKqajwqpmpz9dVXQ5IkqEpyIenM8xBJQrgVFiNPGxByON3+k5ZWRXeDorPrEN2cS0nBVkQiIqKayc3WREmjrhQQLSxB0V3WrYf2uNuaOO5/45WAKOmKlfkRr7rqKrfrQuQLhkSqNg0aNECnTp0AAJo827NyzoKiTTdTR9wMipW6mTriTlBkQCQiIqrZXARFR+GwIndaE10FRMDcmjjxU+dBcdwcczgMK1+lJu8sAKBz585o2LChW/Ul8hVDIlWr/v37AwA0uWcqPecoKKpKjc4DooWLoOiwm6kj7H5KRERUZ7kbEN3pdupOQLSIOeq42+m4OeMRdtb2sQ6h5mOgG264wa3lE/kDj4KpWvXt2xcajQaq0nzIJXmVnq8YFJXRTN3lbEAbb6a7cBQU2YpIRERUO9hpTXQ3IFo46nZacYAad02cVrk10V5AlEvzcPz4cWg0GvTu3dujdRD5giGRqlVERAR69OgBANDknLZbxvo6RbdbEa3ZGdDG7W6mdivErwkREVFd4WlAtGbdmuhogBp3xBy52Jo4bs54uwERADTZpwAAPXr0QEREhOcVJvKS7zOEEnlo0KBBWLduHbQ5p1EWfwkg2/8YRp42IORYJrxus7O0KgKeB82KLEFRmNiKSEREVNsIk8/zKwshgPLWRG9aDyuaOG0CShoJhNsJhwAAkwENytJRCOCWW27xaV1EnmITCVW77t27o0mTJpBMemhyHffvV5UaIYp9nMhWLt+ACxMk2beNOYTJt9cTERFRwHg0LoEdkmTuqaQ6leZzQASAJhsLEF55iAaFJvccCgsLkZCQgK5du/q8PiJPMCRStVOpVBgyZAgAQJt13G7LXMQZI0KOZ0GSJPNG2VtlZTCVlSm/+hwUAcCX+hAREVH1ki6eMPZ+EeWXssgyRHEJwnaf93pZwemlCE4vhaQzoMFeByfDhUDncHOr5S233AJZ5iE7VS9+4iggBg4cCK1WC1VpHlRFWZWeV5UaAatWRK+DokkAFa5FZFAkIiKqJyrsr71pTbQOiBamvHyvqmMJh5LOXA91QZndcqqiTBw6dAhBQUEYOHCgV+si8gVDIgVEdHQ0BgwYAAAIyjhs85ylFbEij4NihVZEm2V5GhTtnX2UJIZFIiKimsjRPtrD1kR7AdHC09ZES0CsqMG+yuMm9G5gPn4ZNGgQoqOjPVoPkT8wJFLA3HnnnVCpVFAXpkMuyVUer9iKaM2j7qd2WhFtliVLbFUkIiKqa1zsl91pTZQkCZJa7TAgAu63Jlp3L7VHnW8bEuWSXGzfvh0qlQojRoxwax1E/saQSAGTkJCAvn37AgCC0s2tiY5aESvy6TrFistyFRTdOevIoEhERBR47uyPXezXbVoPfbwWsGL3UkesWxMHNzO/h759+6JJkyY+rZ/IWwyJFFCjRo0CAKjzz0MuLXDailiR06DopKup3WX5q0WRYZGIiKj6ebgPdtSa6Kx7qT1hey44fC4ow3HrYUWW1kS5NB9r164FANx1111uvZaoKjAkUkC1bNkS11xzDSQAQWn/efx6h91PXXQ1tbsse91PvRkJjUGRiIio+niz362wf3ene6k9pty8So8FZZQiKKMUcpnng+Tc2KgMJpMJvXv3RqtWrTx+PZG/SEJwZnAKrJMnT2Ls2LEwmUwIzugAVZ7aq+UoH+WyMphKSj0OiTbLMgnLHa+XYW9qDyIiIvIjX07MSjIkjdrj1sOK5OgoFF1q7hbqbTgEAF1ECYzYClmWMXPmTDRv3tyr5RD5A1sSKeCSk5OV4Z114Sch4F24UloUvWhFrLQsdj8lIiKqufyxjxUmr1oPK7K0JvoSEAUEOl5qvtxm4MCBDIgUcAyJVCPce++9CAoKgimkGMYw7+YeAsqDoj8CHhEREdV9fhicBkajTwERAEyqLOzZswdarRb33nuvb/Uh8gOGRKoR4uLicMcddwAAdA0uQEjedfMUZTpzV1PJDx9tX7qaKstgl1MiIiK/89P+VZS4N1ieQ0YjYDJBdeyc93WAEQ1amUd2HzZsGOLi4nyrE5EfMCRSjTFq1Cg0aNAAQquDPuw8hMGLM3LCZO5uCvgUFJVrEomIiKjOEt5enmI0KgERAERRsVeLkc5nwlh2CBcuXEBcXBxGjx7tXX2I/IwhkWqMsLAwPProowAAfaMcGEWRd0HRmiR7FxbZikhERFSzBao10RIOTb4dK0jnM2E05EFKyAUAPPLIIwgNDfVpmUT+wpBINUrfvn3RtWtXQBbQJ6TDVFYGUVziVlhUupra40FQZCsiERFR/eF2a2KF1sOKpLNpbi1GOp8J6XwmRHExrhjXDDqdDl27dsV1113nbpWJqhxDItUokiRh8uTJ0Gg0MEWVwBRZAGE0QpTpXAdF666mdhfuZasiERER1W9utB660+XUEg5FcTGM0YXYtGkT1Go1Hn/8cfvzPhMFCI+YqcZp1qwZ7rrrLgCALjETQm3eMIsyndutik5VR1BkV1MiIqKqVx37Wyeth+6ybj0EAKE2IKRzGQDg7rvv5pQXVOMwJFKNdM8996BVq1aAxgRdswzz3Ikmk8NWRaddTe1xFhT9cT0iERER1Rp2r0t00b3UHntdTq1bDwHznIi6ZpnIy8tD69atcc8993hdb6KqwpBINZJWq8Xzzz8PlUoFU3QxjDFFF5+016roqqupPXa6n/J6RCIiovqn0nWJXg5OY93ltGLrobLomCKYoouhUqnw/PPPQ6PReF1voqrCkEg1Vps2bTB27FgAgD4xE0Jj1XropFXRY7xOkYiIiACvWg/tqdh6aCE0BgR3Mrdajh07Fq1bt/ZpPURVhUfHVKONGjUK7du3B9Qm6Jqnm7udWrO0Kur0vnUT5aA2REREtZO/rkv0w9QWwmCw23oImLuZtr0rGgUFBWjXrh1GjRrlS22JqpQkBEfYoJrt9OnTGDduHEpKSqC+EA1NamylMsJggNAbIMmS92FPmLyfVLfSsvi1IiIiqjb+GBlUkiFrve/6KQwGCJOAHBJs93l9k2wY4nMRGhqK7777DomJiV6vi6iqsemEarykpCQ8+eSTAABDfC6M4Y4nvRUmYQ56XrQq8npEIiKieszLHknCYFACoiPGiGIYm+QBAJ5++mkGRKrxGBKpVrjhhhswePBgQAJ0yekQaufXIQqT4CilREREVKUs4dBZQBRqA8K76yCEwODBg3H99ddXYw2JvMOQSLXGY489hpYtWwIaozkoVrw+sQJfWhV9wq6mRERE1aua973utB4CgJAE2twVhezsbLRo0QITJ06sphoS+YbXJFKtcurUKTz00EMoLi6GKiMC2rNxgNHo1oba1fWKfguU/EoRERFVPz9clygHBTl93jKiurNjDkmlgqTVQEBA3ywTxoYFCA8Px1dffYWkpCSf60hUHdiSSLVK8+bN8fLLL0OSJBjjCmBomA8hnHfzsGAXVCIiIvKWO11LgYtzLhob5sPYsACSJOHll19mQKRahSGRap2rr74aDz74IADz/InGiFK3XxuwLqhERERUK7nbtdSaMbwEpuRcAMBDDz2Eq666qopqR1Q1GBKpVrrrrrvQv39/QAL0rTMhgp0PZFMRWxWJiIjIFXdbD62Zgg0I6VoMo9GIfv364c4776zCGhJVDYZEqpUkScIzzzyD9u3bA2oTdJdkQWg8m+OQrYpERERkjzethwAgNEY0HKRCXl4e2rdvj2effRaSP+ZwJKpmHLiGarWsrCxMmDABFy5cgFSogWZfA0gmH859cOAaIiKi2skPYUxSqQB4N3eykE3Qp2RBhOvRtGlTfPHFF4iJifG5TkSBwJZEqtUaNGiADz/8EFFRURDheujb5UBIXoY0tigSERHVX+UD4XkVECVhPgYJ1yM6OhoffPABAyLVagyJVOs1a9YM7733HoKDgyFiymBoleNyDkUiIiIiAOYeQD70AhIQ5mOPmDIEBwfj3XffRWJioh8rSFT9GBKpTujQoQNef/11qFQqmBqVwtAiz7ug6OOOgoiIiGoRH/f5AgKGlrkwNSqFSqXCa6+9hg4dOvipckSBw5BIdcZVV12FKVOmQJIkmJoUw9g8D0J4NpiNgkGRiIio7vLDSWEhjDAm58EUXwJJkvD888+jR48efqogUWAxJFKdcuONN+Lpp58GABibFsPYvNAcFL253pCtikRERHWLP/btwmQOiEmFMCYUAwCeffZZ89RcRHUEQyLVOTfffDMmT54MADAmFsHYrND8hDAxLBIREdVXfgiHluMIY7MiGJsVAQCeeOIJDBw40NfaEdUoDIlUJ91666149NFHAQDGpCIYkgouXqPoKChKsvPhsxkUiYiIah93T/Y6PQYwHzsICBiSCmBMMp+AfvTRRzF06FA/VJKoZmFIpDpr+PDhePjhhwGUn/FLrhAU2apIRERUd3m6z5bsHBZbHS8ICBhbFCgtiBMmTMDw4cP9UVOiGkcSgke8VLctWLAAn376KQBATg2B+lgkJFQ4W2jZMQiThzsUO2cd+ZUiIiKqXtb7Y2/3w7LKahm2J5LN01zkwxRfAgCYPHkybr31Vu/WQ1QLMCRSvfDnn3/i/fffh8lkgpwRDPWRKEjCQbcSb74SFcMiv1ZERETVx7If9mX/K6vs9jISkoChdR5MjUohyzKeffZZDBgwwPv1ENUCDIlUb6xevRqvv/46jEYj5OwgqA9FQTI56HHtS1DkV4qIiKh2cXA9opBNMLTLhSlWB5VKhRdffBHXX399NVeOqPoxJFK9snnzZrz00kvQ6XSQCjTQHIiGpFdVLsivBRERUf1hJyQKjRH6DjkQ4QYEBQXhtddew9VXXx2AyhFVP4ZEqnf27duH5557Dnl5eUCJCpr/YiCXqi8W4FeCiIiofqkQEk3BBug75AAhRkRFReHdd99Fx44dA1Q5ourHkEj10pkzZ/DUU0/hwoULgF4yB8VCrflJfiWIiIjqF6uQaArXIfRaI/Ly8tCkSRN8+OGHaNasWQArR1T9GBKp3srOzsaUKVNw8OBBwCRBfTgKqqxg85P8WhAREdUPVgHR2LAEcqcS6HQ6tGvXDu+99x5iY2MDWDmiwGBIpHqtpKQEr776KjZv3gwAUJ0Og+pMOCR+K4iIiOoHSTLPgZhUqMyB2KNHD7zyyisIDQ0NcOWIAoMhkeo9g8GAr776Cr/88gsAQM4KgvpQpOORT4mIiKjOECoBQ9s8mBqUAQDuvPNOPPjgg1Cp7AxsR1RPMCQSlVu6dCk+/PBD6PV6SEVqaP6LhlTGHQQREVFdJYJN0F+SAxFmgEajwdNPP42bbrop0NUiCjiGRCIr+/btw4svvojs7GzzgDYHoyDnBQW6WkRERORnpugyhPYUyMvLQ2xsLN58802kpKQEulpENQJDIlEF6enpeOGFF3Do0CFAWK5TDIME+xPtEhERUe0hIGBsVgRTcjGEEGjXrh3efPNNNG7cONBVI6oxGBKJ7CgrK8O0adOwaNEiAICUo4XmUBQkA69TJCIiqq2E2gR9uzyIGB0A4JZbbsHEiRMRFMReQ0TWGBKJnFi6dCmmTp2KsrIyoFSG5lAU5AJtoKtFREREHjKF66FvnwsEmxAUFIQnn3yS1x8SOcCQSOTCsWPH8NJLL+Hs2bOACVCdCofqXCi7nxIREdUCAgLGpsVA6xIYjUYkJibijTfeQKtWrQJdNaIaiyGRyA1FRUV4//33sXr1agDl3U+PRELScfRTIiKimkpojdC3zYeINncv7dOnD5555hmEh4cHuGZENRtDIpGbhBBYtGgRPvvsM3P3U70E9ZFIqLKDA101IiIiqsAYW4qwHkBeXh6Cg4Px2GOPYdCgQZAk9gQicoUhkchDp06dwuuvv44jR44AAOQLIVCfiIBk4k6HiIgo0IQsYEgugCmhBADQpk0bvPLKK0hKSgpwzYhqD4ZEIi/odDp89913mDt3LgBAKlZBfSSSg9oQEREFkClCB0PbfIgQIwBgxIgRGDduHLRa7p+JPMGQSOSD7du346233kJWVpZ5TsVzoVCdCock2KpIRERUXYQkYGxeCFOzEgghEBcXh2effRbdu3cPdNWIaiWGRCIfFRQUYNq0aVi2bBmA8lbFw1GQCzUBrhkREVHdZwrXw9A2DyLU3Hp40003YeLEiYiIiAhwzYhqL4ZEIj/ZsGEDPvzwQ2RnZ5tbFc+GQnWarYpERERVQcgCxmaFEM1LYTKZEBsbi6eeegq9evUKdNWIaj2GRCI/ys/Px6effooVK1YAKG9VPBYJOY/XQhAREfmLKaoM+tYFQPm1h/369cPjjz+OqKioANeMqG5gSCSqAuvXr8fUqVPN1yoCkNOCzSOgGuQA14yIiKj2EmoTDC0KYGpcCgBo2LAhJk2ahGuvvTbANSOqWxgSiapIYWEhvvnmG/z+++8QQpjnVTwRATk9GBLYBZWIiMhdAgKmuFIYWhYAGgFJkjB06FA8+OCDCAsLC3T1iOochkSiKrZv3z588MEHOHHiBABAytVCfSwCcok6wDUjIiKq+UwhBhhaFUBE6wAALVq0wDPPPIOOHTsGuGZEdRdDIlE1MBgMmDt3LmbMmAGdTndxuowzYZCM7IJKRERUkVCZYEwqApLKYDQaodVqMXbsWIwcORJqNU+0ElUlhkSianT+/HlMmzYNmzZtMj+gk6E+Gc4uqEREROUEBEyNSmFILgS0JgDANddcg0ceeQQJCQkBrh1R/cCQSBQAW7ZswbRp03D27FkAgJSvgfp4BOdWJCKies0Upjd3LY3UAwCaNWuGxx9/HN27dw9wzYjqF4ZEogDR6/WYP38+Zs6ciZKSEkAAcnow1KfCIelUga4eERFRtRFaIwzJhTA1Mo9aGhISgrFjx2LYsGHQaHgClai6MSQSBVhmZia++uorLF++3PyACVCdC4PqbCivVyQiojpNqEwwJhZB1cpgvmYfwA033ICHHnoIcXFxAa4dUf3FkEhUQ/z333/44osvsGfPHvMDOgnqM+GQU0MgCV6vSEREdYeQBEyNS2BIKgS05kPRzp0745FHHkG7du0CXDsiYkgkqkGEENiwYQO++uornDlzBgAgFaugOhUOOSuIg9sQEVGtJiBgalAGY/NCiFAjACApKQkPP/wwevbsCUnifo6oJmBIJKqBDAYDFi1ahB9//BG5ubkAAKlAbb5eMVfLsEhERLWKgIApRmcOh+EGAEBUVBTuu+8+DB48mFNaENUwDIlENVhRURHmzJmD+fPnmwe3ASDlaaA+FQ45Xxvg2hEREblmitTB0LwQIso8YmloaCiGDx+OESNGICwsLMC1IyJ7GBKJaoHc3FzMnj0bCxcuVC7sl3K05rDIaTOIiKgGMoXrzeEwxrzf0mq1uO2223DXXXchOjo6sJUjIqcYEolqkYyMDPz0009YvHgxDAZzdx05WwvVmTDIBWxZJCKiwDNF6mBoVqSEQ5VKhZtvvhmjR4/miKVEtQRDIlEtdP78ecycORPLly+H0Wi+8F/K1UJ9JgxSnobXLBIRUbUSEBBROhiSipRupSqVCv3798fYsWORkJAQ4BoSkScYEolqsXPnzmH27NlYunTpxbCYpzGHRQ5wQ0REVUwZkKZZEUSkORyq1WoMGDAAo0aNYjgkqqUYEonqgLS0NMyePRtLliyBXm/eSUsFaqjOhUHO5NQZRETkX8pUFs2KlNFKtVotBg8ejJEjR6Jx48YBriER+YIhkagOyczMxNy5c/H777+jrKzM/GCpCupzoZDTgiGZ5MBWkIiIajUhC5gal8CQUAyEmHuwBAcHY+jQoRgxYgQaNGgQ4BoSkT8wJBLVQTk5OVi4cCEWLlyIvLw884N6CarUUKjOh0DSqwJbQSIiqlWExghjQgmM8cWAxnzoGBkZiaFDh2LYsGEcrZSojmFIJKrDSktL8ddff2HevHk4d+6c+UETIKcHm7uilnDyYiIicswUaoAxoQimRqVAeWeUpk2b4o477sCAAQMQEhIS2AoSUZVgSCSqB4xGIzZs2IC5c+di//79yuNSjhaq86GQczjIDRERmSmD0TQphojVKY+npKRg5MiR6NmzJ1Qq9kghqssYEonqmb1792Lu3LnYsGEDlK9/qQzVhVCo0kIgGXjdIhFRfSTUJhgbl8AYX6JcbyhJEq699lqMGDECKSkpAa4hEVUXhkSieur8+fP47bffsGTJEhQUFJgftHRFvRAKuUgT2AoSEVG1MIXpYUwohinuYpfS8PBwDBw4ELfeeiuaNm0a2AoSUbVjSCSq50pLS7Fq1Sr83//9H44cOaI8LuVroLoQAjkzGJJgV1QiorpESAKmhqUwJhRDRBiUx9u0aYNbb70V/fr1Q3BwcABrSESBxJBIRAAAIQT27duHhQsXYs2aNTAYyg8a9BJUGcGQU0MgF7N1kYioNjOF6mGKL4ExrlQZpVStVuO6667D0KFDkZKSAkniiUGi+o4hkYgqycrKwuLFi7F48WKkpaUpj0sFaqjSQiBnBEMy8tpFIqLaQKhMMMWVwti4xKbVsFGjRrjllltw8803IzY2NoA1JKKahiGRiBwyGo34999/sWTJEqxfv/5i66JRgpwZBFVqCKQCDUdGJSKqYQQERKQexsYlMDUsBcoHI1Wr1ejZsycGDRqEbt26cZRSIrKLIZGI3JKbm4tly5Zh8eLFOHXqlPK4VKyCnBEMVXoIpDIebBARBZIIMsIYVwpT4xKI8hFKASA5ORmDBg3CjTfeyInvicglhkQi8ogQAvv378fixYvx999/o7S0VHlOytOYr1/MDOZUGkRE1USoTeZBaOJKIaL0yuMhISHo27cvbr75ZnTo0IHXGhKR2xgSichrxcXFWLt2LVasWIF///334ryLJkDOCYKcHgw5O4ijoxIR+ZmQBEyxZTA1KoUppkyZukKSJHTp0gU33HAD+vTpg9DQ0MBWlIhqJYZEIvKLjIwMrFy5EitWrMDRo0cvPmGQIGcGQ5UZBClXy+sXiYi8JCAgonTm7qQNywD1xUO41q1bo3///rj++uvRqFGjANaSiOoChkQi8rtjx45h+fLlWLlyJTIyMi4+oZcgZ5UHxjwtWxiJiFwQEBDROhgblMHUoBTQXjxsa9y4Mfr164f+/fujZcuWAawlEdU1DIlEVGWMRiN27dqFv//+G+vWrUNeXt7FJ/US5KwgqDKDGRiJiKwIqbzFsGEpTA3KlPkMASAqKgrXXnst+vfvj0svvRSyzOu/icj/GBKJqFoYDAbs2rULq1evdhgY5axgyLkMjERU/whJwBStg6lhKUyxtsEwOjoa1157Lfr06YPOnTtDrVYHsKZEVB8wJBJRtTMYDNi9e7cSGHNzcy8+aSwf9CbbfOMoqURUVwm1yTz4TGwZTNE6m2sMY2NjlWB46aWXMhgSUbViSCSigLIExrVr12Ljxo221zAKQMrXKIFRLuFBEhHVXgICIsSoBEMRqYf1WF4NGzZUgmGnTp040T0RBQxDIhHVGEIIHD58GBs3bsTGjRtx5MgRm+elYpU5LOYEQcrXsFsqEdV4QhIQkfqLwdBqgnsAaNOmDXr27ImePXuibdu2nMuQiGoEhkQiqrHS0tKUwLhz504YDIaLTxolyLkac9fUHC2kMrYyElHNIIIMMMXozLco226kGo0GXbp0Qc+ePXH11VejcePGAawpEZF9DIlEVCsUFhZi27Zt2Lx5M7Zt24acnByb56USFaQcrTk05mkhmXg2noiqh5BNMEXrYYoug4jRVWotjI6OxpVXXomePXuie/funOCeiGo8hkQiqnVMJhOOHj2Kbdu2YevWrdi3bx+MRquDMhMg5Wsh52oh52kgFWgggaGRiPxDQECEG8yjkUaXX1toNcaWSqVCSkoKunfvju7du6NNmzacqoKIahWGRCKq9YqKirBjxw5s3boV27ZtQ2pqqm0BgwQ5XwMpzxwcpSI1QyMRuU1AQISZQ6GI0sEUqbfpQgoATZo0UULh5ZdfjrCwsADVlojIdwyJRFSnCCFw+vRpbN++HTt27MCuXbtQUFBgW8ggmbukWloaixkaiegiAQERagmF+krXFQJAeHg4OnfujCuuuALdu3dHYmIiB50hojqDIZGI6jRL19SdO3dix44d2L17N4qLi20LWVoa87Xmn4UaXtNIVI8ISUBE6GGK1ENE6mCK0NtMZg8AoaGhuOyyy9ClSxd06dIFrVu35hQVRFRnMSQSUb1iMBhw+PBh7NixAzt27MC+fftQWlpqW8gESIWa8uCogZyvhWTg9UREdYXQmGCK0JmnpojUQ4TbXlMIACEhIbj00kvRpUsXdO7cGW3btuWE9kRUbzAkElG9ZjAYcPToUezZswf79u3Dnj17kJ2dXamcVKyCVKCBXFDe0lik5jyNRLWAkMxdR0WEHqYIPUSkvtLoowAQGxuLTp06oVOnTkhJSWEoJKJ6jSGRiMiKEAIXLlzAnj17sHfvXuzduxcnT56sXNAEc1C0Do4lKl7bSBRAAgIixGgOhOF6iAg9RJihUishALRo0QIpKSlKMExISOA1hURE5RgSiYhcyMvLw3///YcDBw4ot/z8/MoFDZI5NBaqIRWVtzYyOBJVCQEBEWyECDdAhJeHwnBDpQFmACAiIgLt27dH+/btkZKSgpSUFERERASg1kREtQNDIhGRh4QQOH/+PA4cOICDBw/iwIEDOHToEHQ6XeXCRiiBUQmPxWoOjEPkASGXdxkN18MUZoAov0FV+RAmKCgI7dq1U0LhJZdcwlZCIiIPMSQSEfmBwWDAiRMncODAARw+fBhHjx7FsWPHUFZWVrmwgLmFsbA8MBarIBergVK2OlL9JiCAYCNMoUZzKAwzdxcVIUbY+2potVq0atUKbdq0UQJh8+bNeS0hEZGPGBKJiKqI0WjE2bNncfToURw5ckT5mZOT4+AFgFSiLg+ODI9UdyldRUMNEJZAGGqACDEADmaViI2NRevWrdG6dWu0adMGrVu3RmJiIqehICKqAgyJRETVSAiBrKwsHD16FEePHsWJEydw8uRJnDp1yn53VeBieCxRmX+Wqi7e59QcVIMJtQkixGAOhCFG8/0Qcyi0N5gMYG4dTEpKQnJystJK2KpVKzRo0KB6K09EVI8xJBIR1QBGoxEXLlzAiRMncOrUKffCIwDopcrBsVQFqVRlHkiHLZBUxYTKZA5+weUB0BIGg42VJqS3ptVq0bx5cyQnJ6NFixbK/SZNmrC7KBFRgDEkEhHVYJbwePLkSZw9exZnz57FmTNncPbsWWRkZDh/sUGCVKaCVCpDKlOZu62WqZQQKRnZCknOCQhAVd41NNgIEWQEgo0QQSaIIPNj9kYTtRYXF4fExETllpSUhBYtWqBx48bsKkpEVEMxJBIR1VIlJSU4f/68EhotP8+dO4fs7GzXC7CEyDIZ0Jl/Sjrr+2yNrMsEBKAWEFpz6IPWZL6vNQFBF4OgqxAImK8XtA6CiYmJaNasGRISEhASElIN74aIiPyJIZGIqA4qKytDamoqUlNTceHCBVy4cMHm99zcXPcWZIQ5NOrk8psK0MuQ9FL5z/JgqVdxWo8aQEAAsgA0JgiNMAc+jQlCU/6zPASaQ6HR4XWBFcXGxiI+Pl65NWnSBI0bN1Z+Dw4Orto3RkRE1YohkYioHiopKUFaWhpSU1ORmZmJjIyMSj/z8vI8W6gRF4OjXgYMMiSDOUwq9+39FAyX9ghZAGoThKr8p9r8E2oBYf2zPARagqCj0UEdiYqKQlxcHBo0aIC4uDg0bNgQcXFxiIuLU8IgQyARUf3CkEhERHaVlZUhKytLCY6ZmZnIzc1FTk6O8jMnJwfZ2dnOB9dxxQjAKANGCZJRAspvkkmq8Jhsvm8CYJLMNyFBsvndfF8ylZcT5Y+h4n3zD1ddacXFglY/hfmnBHOrnSQgZMv98p+ygLC6DxnmsCebzNf4qczX+kElzGHQ+vfyUOhuK589Wq0WsbGxiI6ORnR0NGJiYhAdHY0GDRooIdByX6vVer8iIiKqkxgSiYjIJ0IIlJSU2ATH3NxcFBQUKLf8/HwUFBSgsLBQ+b2wsBAB3wUJ2AZHmzAIuxO4VydZlhEeHo7w8HBEREQoN8vv4eHhSgi0BMHo6GiEhIRAkthCS0RE3mFIJCKigDCZTCgqKkJBQQFKSkpQXFxs92fF+2VlZdDpdNDr9TY/7T1mMpmq9D2oVCpotVpoNBrlZv275b5Wq0VoaChCQkKUW3BwMEJCQio9HhISooTA0NBQyDJHoSUiourFkEhERHWW0WiEEAJGoxEmk8nufeufkiRBlmXlp+VW8XFJkqBWqzmFAxER1UkMiURERERERKRgHxYiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSqANdASIiTwghUFpaGuhqEBF5JDg4GJIkBboaRERuYUgkolqltLQUN954Y6CrQUTkkWXLliEkJCTQ1SAicgu7mxIREREREZGCLYlEVGtptzWCJMrPdUkyJFkCJBmQJUCSIMmW58oflyRAliBZyijPScprlBtg9Zhs+7z5hcpjQpIunnKzWobyuHRxXdaPCcm8GOU5+f/bu/eoKqv8j+OfA3I5Coqao5BkWqBO6aiQZiaZFhJlF9RW5Yw5TtNlVbZW01r6I83KiiZXZSvXdHGNOWVkU60011SWeUlHVDRTRwLJC+UF4qIgchPO+f1xeB4e4JwDHEC8vF9rsXjOs/f+PpvzHJWvez97u+K6ztvMMqONs/acWS7VxfCrrW+Uq/416rWp7b7Tz01Zvfqq18e6c7ZGZY3ayNqPBuXycN5DPE/9aNTGW1zzvLNxe0sbs9wSy1l7XpZ2rjKnpT+ucpu1zKxrlDnNmDZrfZvTLDM/YsZ5I1xtHddHwWm+Ntr41b52lbleG+3MMptTNtW186s9Z37Jabbzs6neeVd7R107GfUd8jfa1L6ui+Uw4/lb4vvLdd7fiGfWdcjfiCmjH466+qqL7YrpkJ9c13eVueL5156zySF/o72ljb/kaifXdYz3w3jtupaz9li1ZU751b4v/rLJT5J/7c32k632nE3+Npv85Cdb7Z07U+WvyX/tIwA435AkAjh/1dhqf12TK0lUbUJX+9t3XZlN8qvLiGyujKs2iJEt+KlRFlCXgdXPTIyYjbIGNThnvYbcnGvYTnXJoSVJbHTOktRZXzfsYv36btr4eSnz9GM06oeHH9tbmae3ytd4lpjuEsh2TRLdlavha6cZ29oP6zXdlZlJpSx1rPUbtXG6uZaz3pc1SaxLPGu/PJXJSCRdIa0JpZFMSkayJzPJspa5kkRHXZJlsyZZrmM/m82VwNV+l3lsM9u54qg2ptFWte1qz7srs7Txr01w/c1+Gkmis8kk0RrP33g/VP+cn6x9tNxDADiPMN0UAAAAAGAiSQQAAAAAmEgSAQAAAAAmkkQAAAAAgIkkEQAAAABgIkkEAAAAAJhIEgEAAAAAJvZJBHD+8nfK6XRtoO3a989m+W5rsMG98d1yLOs5p+W4GWWWTfPqtjz3dL7uu7Peseq1c0qS0zhfF9Mpm+SU2dZabsaot7mftS9uXjvrdanB++Hhq2Hd5uyF6K2s2ddqZpn1kl7bOZuI6fTQRw/7JDaIa7OWmXUb7HtoHBv1bdb9CY1zlvhmPKclnm/7JDpV185pc9b/kuu7q0z1zjtsTsnmqIsp41oOy36OtXVqy502hxlP9eLXfjeuVfvar7aO8V1So3MOyx9r49hhkxyq2yfRUXvOJk/7JNZufC/XfozGPTNe+9W2abj3op9ZZjP3dpRkxvKTzbXfo2yy1X5IzlS5+3MJAOc+kkQA562qkb91dBfah/E7uI8a5jiAwfrRcnRkR3xmzdKZDAUA7YW/YQEAAAAAJpvT6WzF/1cDwNnldDpVUVHR0d1AG6uoqNAdd9whSVq1apWCg4M7uEdoC9zXOsHBwbLZGNsHcH5guimA84rNZpPdbu/obqAdBQcHc48vQNxXADh/MN0UAAAAAGAiSQQAAAAAmEgSAQAAAAAmkkQAAAAAgInVTQEAAAAAJkYSAQAAAAAmkkQAAAAAgIkkEQAAAABgIkkEAAAAAJhIEgEAAAAAJpJEAAAAAICJJBEAAAAAYCJJBAAAAACYOnV0BwAA55eysjKtWLFCGzduVG5urvz8/BQZGanx48dr8uTJCggI8Dl2UVGRUlNTlZaWpry8PAUFBal///5KSEjQrbfeKpvN5rbdSy+9pK+//rrJ+OvWrVOnTvzT50573NdTp07pxx9/1P79+7V//35lZWWpqKhIkvR///d/uuWWW5oV5+jRo0pNTVV6erqKiopkt9sVHR2tSZMmady4cS3uFwDAO/6lBAA0W25urmbNmqXc3FxJUnBwsM6cOaPMzExlZmbq22+/1aJFixQaGtri2FlZWXrqqadUXFwsSbLb7SorK9OePXu0Z88ebdiwQSkpKV6TlcDAQIWEhHgs95RkXuza675u3rxZKSkprepbWlqa5s+fr4qKCklSly5ddOrUKaWnpys9PV2JiYmaPXs29xYA2hBJIgCgWaqrqzVnzhzl5uaqZ8+eevrppxUbGyuHw6H169dr4cKFys7O1oIFC/TKK6+0KHZpaalmz56t4uJiXXbZZZo7d64GDRqkM2fOaPXq1Vq8eLG2b9+uN998U08++aTHOOPHj1dycnJrf9SLSnveV0nq0aOHoqKiFB0drYEDB2ru3LnNbnvs2DE9++yzqqio0JAhQzRnzhxFRkaao57Lli3Tl19+qcsuu0z33Xdfi/sGAHCPJBEA0Cxff/21Dh48KElasGCBrr76akmSn5+fJkyYIKfTqeeff15bt27Vzp07FRMT0+zYK1asUFFRkYKCgvTKK68oIiJCkhQQEKCkpCSVlZXp3Xff1erVqzV16lRFRka2/Q94kWrP+xofH9/sKaXuLF26VOXl5erRo4defvllcySzc+fOmjlzpgoLC7V69Wp98MEHmjRpkk8j2ACAxli4BgDQLMYzf8OHDzcTCasJEyYoPDy8Xt3mWrNmjRnDSBCtkpKSZLfbVVNTo2+//balXYcX7Xlf/f39fe5XeXm5Nm7cKEm688473SaAf/zjHyVJp0+f1qZNm3y+FgCgPpJEAECTKioq9L///U+SdO2117qtY7PZNGrUKElSenp6s2P/8ssvysvLkySzfUOdO3fW0KFDWxwb3rXnfW2tvXv3qrKyUpLnz0V4eLj69et31vsGABc6ppsCAJqUk5Mjh8MhSerfv7/HekZZUVGRSkpK1LVr1yZjG1Mdm4o9YMAAbdu2TYcPH/ZYZ+fOnbrvvvv022+/qVOnTurdu7diYmJ01113MUXVjfa8r61l/VwMGDDAY70BAwYoJydHhw4davc+AcDFgpFEAECTCgoKzONevXp5rHfJJZe4beNNYWFhi2KfPn1aZWVlbuvk5+fr+PHjCgoKUmVlpQ4dOqRPP/1UM2bM0MqVK5vVn4tJe97X1jKuExoaqqCgII/1jL5ZP0cAgNZhJBEA0CRrUubtF/bg4GC3bdojdufOnc3X0dHRGjRokK677jr16tVL/v7+qqio0LZt2/T222/r6NGjeu211xQWFsa+ehbteV9bq7y8vNG13THKz1a/AOBiwEgiAOC8N2XKFCUlJalPnz7mYinBwcG64YYb9Pbbb5sLr/zjH/+Q0+nsyK4CAHDOI0kEADTJOmpnLCbijrHhecM2HRVbkrp166Y//elPklybxu/fv7/ZbS907f3et4bdbm90bXeM8rPVLwC4GJAkAgCaZH0mLT8/32M96/Nq1jbe9OzZs0Wxu3Tp0uKE4KqrrjKPjx8/3qK2F7L2vK+tZVzn1KlTXhNYo2/WzxEAoHVIEgEATerXr5/8/Fz/ZHhbRdIo69GjR7NXwLSuXOkttrHa5eWXX96suGhae97X1rJ+LqwrnTZklHlbnRUA0DIkiQCAJgUHB5sbrW/bts1tHafTqe3bt0uSrrnmmmbHjoyMVO/evb3GLi8v1549e1oc27Bv3z7z2Hg+Ee17X1tryJAh5mI6xvUbys3NVU5OzlnvGwBc6EgSAQDNkpCQIEnatWuXMjIyGpWvX79ex44dq1e3OWw2myZOnChJWrdundvpoJ9//rnKy8vl7++vm2++uV5ZUwvRlJSUaPny5ZKk3/3ud4qKimp23y4G7XVfW8tut+uGG26QJK1cuVKlpaWN6qSmpkpyPY84duzYs9Y3ALjQkSQCAJolISFBAwYMkNPp1Lx587Rz505JksPh0Pr167Vw4UJJ0qhRoxQTE1Ov7dKlSxUXF6e4uDi3SeA999yjHj16qKKiQrNnz1ZWVpYk6cyZM1q5cqX++c9/SpImTZqkyMjIem2/+eYbPf3009qwYYNOnDhhnq+srNSmTZv0yCOPmEnOI488Yk6vhEt73ldJOnnyZL0vQ1lZWb3z7haomTlzpux2uwoLCzVnzhz9+uuvklwjy8uWLdOqVaskSdOnT1doaGir3wsAgIvNyVrgAIBmOn78uJ544gnl5uZKck1XdDgcqqqqkiRFRUVp0aJFjX5hX7p0qZYtWyZJ+vjjj91O+czKytJTTz2l4uJiSa7RoaqqKlVXV0tyTSdMSUlRYGBgvXZfffWVUlJSzNd2u12BgYEqLS1VTU2NJCkwMFCPPvqo7rrrrjZ4Fy487Xlf4+LimtWHGTNmaObMmY3Op6Wlaf78+WYSGRISovLycvPeJiYmavbs2bLZbM37YQEATerU0R0AAJw/wsPDtWzZMq1YsUIbN25Ubm6uOnXqpP79+2vChAmaPHmyAgICfIo9cOBA/etf/1Jqaqq2bNmi3377TcHBwRowYIASEhKUmJjodhRw+PDh+utf/6p9+/YpJydHxcXFKi0tVefOnXXppZdqxIgRuv322xUREdHaH/+C1Z73tbVGjx6t9957T6mpqUpPT1dRUZFCQkIUFRWl22+/XePGjeuQfgHAhYyRRAAAAACAiQczAAAAAAAmkkQAAAAAgIkkEQAAAABgIkkEAAAAAJhIEgEAAAAAJpJEAAAAAICJJBEAAAAAYCJJBAAAAACYSBIBAAAAACaSRAAAAACAiSQRAAAAAGAiSQQAAAAAmEgSAQAAAAAmkkQAQLt54403FBcXp8cff7yju4IOVlpaqltvvVVxcXH6/vvvO7o7AAAvOnV0BwAAjZ0+fVrZ2dnKzMxUVlaWsrKydPToUTmdTknSxx9/rPDw8Ha5ttPp1JQpU5Sfn69p06bpoYce8ilOdna2Vq5cKUl68MEH27CHHevgwYPavn279u7dq4MHD6qwsFA1NTUKDQ3VFVdcodGjRyshIUEhISEd3dVzSkhIiO655x4tWbJEb775pkaNGqWgoKCO7hYAwA2SRAA4B82aNUvZ2dkdcu3MzEzl5+dLksaOHetznLfeeks1NTUaNWqUhgwZ0lbd61CzZs3Sjz/+6LasqKhIRUVFSk9P1/Lly5WcnKyRI0ee3Q6e46ZMmaJPPvlEeXl5+vTTTzVt2rSO7hIAwA2mmwLAOcgYMZRcIzDDhw9Xjx49zsq1N23aJEnq1auXBg8e7FOMPXv2aMeOHZJ0QSUCRvIcGhqqxMREJScna/HixVqyZImef/55jR49WpIrYUxOTtbu3bs7srvnHLvdrsmTJ0uSUlNTVVZW1sE9AgC4w0giAJyDEhMTFRYWpoEDB6pv376y2WyaNWuWioqK2v3aRpI4ZswY2Ww2n2J89NFHkqTw8HD94Q9/aLO+dbS+fftq+vTpmjBhggIDA+uVDRw4UOPGjdOHH36od955R1VVVXr11Vf1/vvvd1Bvz03x8fFaunSpTp06pf/85z+aOnVqR3cJANAAI4kAcA6aMmWKbrrpJkVGRvqcqPni119/VU5OjiTfp5rm5+crLS1NkjRx4sSz2v/2tnDhQt1yyy2NEkSradOmKSoqSpJ0+PBhHThw4Gx177wQHh6uoUOHSpK++OKLDu4NAMAdRhIBACZj1Uljiqsv1q5dK4fDIUkaP358s9pUV1dr3bp12rx5szIzM3Xy5EnV1NQoLCxMAwYMUGxsrG666Sb17NmzXru4uDhJUkJCgpKTk/XLL7/o008/VXp6ugoKCtSlSxdFR0frvvvu07Bhw8x2lZWV+uqrr7RmzRodOXJEFRUVioiI0M0336ypU6e2ekGVESNGmM+U/vrrr7riiit8jnX48GGtWrVKu3fv1vHjx1VRUaGQkBCFhoYqPDxcMTExuv7663XZZZf5FL+6ulrffPON1q9fr4MHD6q4uFg2m01du3ZVWFiYBg8erNjYWI0ZM0YBAQH12jZ8/w8fPqzPP/9cO3bsUEFBgcrLy/Xiiy82+g+H8ePHa/fu3crJyVFmZqYGDRrk25sDAGgXJIkAAJMx1XT06NHq1Mm3fyK2bNkiyfXcXr9+/Zqs//PPP+uZZ57RkSNHGpXl5+crPz9f27Zt04EDB5ScnOwxzoYNG/TSSy+poqLCPFdZWamtW7dq27ZteuqppzRp0iQVFBQoOTlZmZmZ9dofOnRI7777rrZu3apXX321VYlidXW1eezn5/uknVWrVmnRokWqqampd764uFjFxcU6cuSI0tPTdeDAAc2bN6/F8U+ePKm//e1vbhdJMt777OxsffHFF0pNTVXfvn09xvrqq6/06quvqqqqqsnrWhcy2rJlC0kiAJxjSBIBAJKkgoIC/fTTT5J8n2paVVWlffv2SZIGDx7c5FTT7OxsPfbYYyovL5ckDR8+XPHx8erXr58CAgJUWFiojIyMJvfVO3DggNatW6fu3bvrwQcfNK+9c+dOffDBB6qoqNDrr7+uYcOG6YUXXtDPP/+sO++8U9dff73CwsJ09OhRvf/++zpw4ID27Nmj1NRU/fnPf/bpPZCkH374wTzu37+/TzEOHjxoJohdu3bVpEmTNGzYMIWFhammpkaFhYXKysrS1q1bfZ7Su2jRIjNBjImJUXx8vMLDw9WlSxedPn1aOTk52r17tzl92JOsrCytXbtWXbt21dSpUzVkyBAFBATo8OHD6tOnT6P6/fv3l91uV3l5uX744QfNnDnTp/4DANoHSSIAQJK0efNmOZ1OBQYGatSoUT7FOHDggDmKNnDgQK91q6ur9cwzz5gJ4hNPPGGufGl13XXX6YEHHlBeXp7HWNnZ2YqKitKiRYsUGhpqnv/973+vvn37av78+aqurtZjjz2mkpISLVy4ULGxsWa96OhoXXPNNZo+fboKCgq0cuVKTZ8+Xf7+/i36+SXXlN1Dhw5JciXKkZGRLY4hSevXrzdHEF9//XXzOUersWPH6oEHHlBxcXGL41dWVprJ99ixY/XCCy80SjaHDRumO+64Q+Xl5V5HRA8dOqS+fftq8eLF9Vbh9bQ6rr+/v6Kjo7V7927t379fDoejVSOuAIC2xd/IAABJdVNNY2NjZbfbfYphnTLa1JYda9eu1dGjRyW5VnN1lyBa9e7d22v5nDlz6iWIhnHjxqlXr16SpBMnTigpKalegmgICQnRLbfcYtY7fPiw1+u5U1BQoNdee02SZLPZ9Mgjj7Q4hsFYyTYkJMRtgmjVrVu3Fsc/deqUmdAPGzbM62ik3W5vcvrtk08+2aJtWoy6FRUVKigoaHY7AED7I0kEAKi0tFS7du2S5PtUU0kqLCw0j7t27eq1rpGUStK9997r8zUl1/RFT4mUzWarVxYfH+8xjrXesWPHWtSHiooKJScnm8ldw8VyWspIbEtLS7V+/Xqf43jSrVs3c5XW7777rlV7Fvbq1ctt4u2N9fNh/dwAADoeSSIAQGlpaaqurpa/v7/GjBnjc5zKykrz2N2ontX+/fsluUaUmrPAjTdNtbf2xdsqoNZ6LUmazpw5o7lz55qL4Vx//fV64IEHmt3enfj4eHP0bv78+Xr00Uf14Ycfas+ePeYU3dYICAhQQkKCJCkjI0N33323Fi5cqO+++67FCbIvq7dak0TrYkMAgI7HM4kAAHNU7+qrr1ZYWJjPcazP8DW1yuXJkycl1Y2YtUZwcLDXcutUSm9Taa3PxRnbeDSlurpa8+bN0/bt2yVJI0eO1LPPPuvT84xWERERevnll/XSSy8pPz9fe/fu1d69eyW53udBgwYpLi5Ot912W5MJuSePP/64qqqqtGbNGpWUlGj16tVavXq1JFfyPnLkSCUmJjY5ItrUqLE71v9Q8HUlXQBA+2AkEQAuclVVVdq2bZuk1k01lVzPzxlKSkpaFet8UF1drfnz55vbfsTGxurFF180p3G2VkxMjD766CM999xzSkxMNLegqKmp0b59+/TWW2/p3nvvNRPUlgoKClJycrKWL1+uv/zlLxoxYoSZRBcVFenrr7/WrFmzNHfu3HpJXUO+LDpjXWzH+rkBAHQ8/usOAC5yO3bsMKcvtjZJtG530FSSGBYWpry8vPN20RIjQTRGYUeMGKGUlJRW7a/oTmBgoG688UbdeOONklwjsDt37tSaNWu0detWlZSUaN68eUpNTVXPnj19ukZkZKTuv/9+3X///aqpqVF2dra2bNmiVatW6cSJE/r++++1ZMkSPfbYY232c506dco8bmpRIgDA2cVIIgBc5IwkJyoqSuHh4a2KZd0T8JdffvFa19gio7CwsMm655qGCeLw4cP18ssvt3mC6E5YWJgmTJigV155RXfeeackqby8XJs3b26T+MZU1pkzZ+rtt982p/KuXbu2TeIbcnJyJEnh4eHq3Llzm8YGALQOSSIAXMQcDof++9//SnItttJavXv31iWXXCJJ+umnn7zWjYuLM49TU1Nbfe2zpbq6Ws8++6yZIA4bNkx///vfm3wusj2MHDnSPDae8WxL4eHh5j6PvuzF6MnJkyfN7U+uuuqqNosLAGgbJIkAcBHbu3evmVxYk7bWMBKXnJwcnT592mO98ePHmwnIl19+qc8++8xr3Ly8vDbpX2tUV1fr+eefNzehb88EcePGjU0mfsazpJJ06aWXtij+sWPHtGPHDq91jh8/bo74RUREtCi+NxkZGebxtdde22ZxAQBtg2cSAeAcdOTIEXMlS4Ox/54kbdiwod4qpHa7XePGjWvxdYzRsIiICJ+2MXDnxhtv1JdffimHw6EdO3bohhtucFuvU6dOeu655/Too4+qvLxcb7zxhr7//ntNnDhR/fr1U0BAgAoLC5WZmakNGzZo4MCBSk5ObpM++mrBggXasGGDJFdS9vDDD+v48eNe23Tv3l3du3dv8bU+++wzLViwQDExMYqJidHll1+ubt266cyZM8rLy9PatWvNUeA+ffq0eOuSvLw8Pfnkk4qIiNCYMWM0ePBg9e7dW0FBQSouLlZGRoZWrlxprlI7efLkFv8MnqSnp0tyPW85evToNosLAGgbJIkAcA7au3evUlJSPJa/9dZb9V736dOnVUliW0w1NcTGxqpXr17Kz8/XmjVrPCaJknTllVfqzTff1DPPPKNjx45p165d2rVrl9u6xjOMHcm6qf3Ro0f18MMPN9lmxowZmjlzpk/Xq6qqUlpamtLS0jzWufTSS5WSkuJ1aw9vjh07pk8++cRjuZ+fn+69917dddddPsVvqLq6Wt99950k1+i1r9t3AADaD0kiAFykfv75Z3MUrLWrmlr5+/srKSlJ77zzjrZu3aqTJ0963XsxOjpay5cv15o1a7Rp0yZlZ2ebz791795dV1xxha655hrddNNNbdbH88H8+fO1fft27d69WwcPHlRRUZE5/bRbt2668sorNXbsWMXHx/u05cbQoUO1ePFi7dixQxkZGcrLy9OJEyd0+vRpBQcHKyIiQkOHDtVtt93WZqPMkszPhCRNmTKlzeICANqOzel0Oju6EwCAs++9997Te++9p+7du+vzzz/3aa87T0pLS3XPPfeopKREDz30kKZNm9ZmsXF+mz17ttLS0hQTE6PXX3+9o7sDAHCDhWsA4CJlTDW97rrr2jRBlFyboxuJ4YoVK1RWVtam8XF+ysjIUFpammw2mx588MGO7g4AwAOSRAC4CJ05c0Zjx47VjBkzlJSU1C7XmDx5svr27avi4mL9+9//bpdr4PyyZMkSSdLEiRM1ePDgDu4NAMATppsCANrNTz/9pLS0NIWEhOjuu+/u6O6gA5WWluqTTz6R0+lUUlKS1+dUAQAdiyQRAAAAAGBiuikAAAAAwESSCAAAAAAwkSQCAAAAAEwkiQAAAAAAE0kiAAAAAMBEkggAAAAAMJEkAgAAAABMJIkAAAAAABNJIgAAAADARJIIAAAAADCRJAIAAAAATCSJAAAAAAATSSIAAAAAwESSCAAAAAAwkSQCAAAAAEz/D25mRw5YZJaJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAChcElEQVR4nOzdd3wT5QMG8OcuadJ0Ay2bUvaWJSCCgixRVERAVBBwIOLAjSK4cODG8XMrAooMkSEie4kgG9l7D1voorsZ9/7+SHNN2iRN27RJ2uf7+eTT9O69y5u0Se659733lYQQAkRERERERER+TvZ1BYiIiIiIiIg8wQBLREREREREAYEBloiIiIiIiAICAywREREREREFBAZYIiIiIiIiCggMsERERERERBQQGGCJiIiIiIgoIDDAEhERERERUUBggCUiIiIiIqKAwABLREREREREAYEBloiIiIiIiAICAywREREREREFBAZYIiIiIiIiCggMsERERERERBQQvBJgz5w5A0mSIEkSRo8e7Y1dVko9e/ZUX0ciIldGjx6tflacOXPG19VRzZgxQ63XjBkzfF0d8jJFUdCxY0dIkoQnn3zS19WhAMHPBaLCKnJ2slgsaNasGSRJwsSJE8vkMcqtBXbGjBl4/fXX8frrr5fXQ/rc4sWL1eecmprq6+pQntdff1390PDk5mlAOHDgAJ588kk0b94cYWFhiIyMRJs2bfDSSy/h7NmzZfukiKhSMBqN2LVrF7799ls88sgj6NixI3Q6XbkEhG+//Ra7d+9GcHCw24OSM2fO4LfffsPEiRPRr18/VKtWTa1fz549PX48++DjyW3Dhg1F7jMrKwvfffcdBgwYgLp16yI4OBjBwcGoXbs2+vXrh08//bRcvq8feeQRh7p7emx06dIlTJkyBTfccANiYmIQFBSEsLAwNGrUCEOHDsW8efNgsVg82ld8fDxee+01XHfddahWrRr0ej3q1q2Lm2++GdOnT4fZbC7FM/Qvbdq0UV/rtWvXFnv7v//+W92+ZcuWxd5eCIHNmzfjjTfeQP/+/VGvXj0EBwcjJCQE9evXx6BBg/DTTz8hNze3yH1t2LChWO+Loj4T0tLSsGHDBnz00Ue499570bRpU8iyXKYnSf/77z8sXboUr7/+Om677TbUqlVLfby4uLhi78+b7+ucnBx89dVX6N+/P2rWrAm9Xo+YmBh06dIF77zzDpKSkopdP3/15JNPqq/7K6+8Uuzts7KyEBkZCUmSoNVqcenSJQCARqPB5MmTAQAff/wxTpw44dV6AwCEF5w+fVoAEADEqFGjnJbp0aOHWqayGDVqlPqcT58+XWT5yvga+cJrr72mvs6e3Dz5233wwQciKCjI5T7Cw8PFnDlzyv7JUaVQ3M+W8vLjjz+q9frxxx99XZ0KqUOHDm4/r8rqdc/MzBQ1a9YUAMT48eNdlvvss8/c1q9Hjx4eP6b9/5Mnt/Xr17vd344dO0SDBg2K3E/16tXFypUrPa5nca1fv15IkuTwmK+99lqR282YMUOEhYUVWf+2bdsW+bkwa9YsERIS4nY/7du3FydPniz18/WHz4WPPvpIrcOIESOKvf2DDz6obv/+++8Xa9tDhw6J2rVre/Q/3LRpU7Fz5063+1u/fn2x3hfuXvPU1NRC/4slOQYqjt9//93t49WvX79Y+/Pm+3rnzp0iLi6uyP2sWLGiFK+AlSfZqazt2rVLrUNsbKxQFKVY28+aNUvd/tZbb3VYZzabRdOmTQUAcc8993iz2kIIIbTwgri4OAghvLGrSs2Ts8fkXW+++SZat27ttkz16tXdrv/666/xwgsvAACCgoJw//33o0ePHjCZTFi5ciUWLFiA9PR03H///YiKikL//v29Vn+qnGbMmMGueJVUwdY1WwtBWffy+PLLLxEfHw+NRoMJEyZ4XD+DwYAmTZpg3759pXr8J598Er169XJbxt1n+dmzZ9GnTx9cvXoVgPV1Gz16NJo0aQKtVotTp05h1qxZOH36NC5fvozbb78d27ZtQ7t27UpV74Kys7MxZswYCCEQGhqKzMxMj7ZbtGgRHnjgAfVYq127drj77rsRGxuLzMxMHDx4EDNmzEBaWhr27t2LXr16Yd++fQgLCyu0r59++gkjR45Uf+/Xrx8GDhyImJgYnD9/HnPmzMHOnTuxZ88e9OvXD//88w9iYmK88wL4yIgRI/Diiy/CbDZj4cKF+PLLLxEeHu7RtllZWfj1118BWFuW7r///mI9dlJSktoyFRoaij59+uD6669H3bp1AQD79u3DjBkzkJCQgGPHjqF3797YvHkzWrVqVeS+hw0bhnvuucdtmQ4dOrhcJ4RwOH6XJAmNGzdGYmIiUlJSPHl6xVbwMyIoKAitW7fGnj17ir0vb76vDx48iF69eiEtLQ0A0KpVK9x///1o0KABUlNTsXz5cixZsgSXL1/GoEGDsGbNGlx//fXFfwH8SIcOHXDNNddg3759OHfuHNatW4fevXt7vL39ccgDDzzgsM72XfHwww9j/vz5eOWVV0rUe8Elr0diFypj66K/tpJUdvYtsEWdsS/KpUuX1LPYWq1WrF69ulAZ+7PP9erVE9nZ2aV6TCJ/5Q8tLRXdM888I1599VWxZMkScfHiRSGE42daWbzuJpNJ1KtXTwAQ/fr1c1t20aJF4vHHHxfTp08Xe/fuFWaz2aGloaQtsKV9XvYtaDfffLPIysoqVMZkMomRI0eq5QYOHFiqx3RmwoQJAoCoU6eOeOaZZzxugW3YsKFa9tVXX3XaUpKYmCiuueYatdy0adMKlbl8+bJDK+5XX31VqIyiKOLpp59WyzzwwAMlfbpCCP/5XBg4cKBajx9++MHj7exbmW677bZiP+6mTZtEXFyc+Prrr0VaWprTMikpKQ7HyTfeeKPL/dm3wHrScu9Oenq6uOeee8QHH3wg1q1bJ1JTU4UQjsfs3j5+3bx5sxgzZoz4+uuvxY4dO0Rubq4QQpSoBdab7+suXbo4tNKbTKZCZRYsWCBkWRYARLNmzZyW8ZQ/tMAKIcS0adPUetx///0eb3f27Fm19b5atWrq39He1atXRXBwsAAgxowZ481qCwbYMsQA65+8GWDtv+RfeOEFl+WGDh2qlvvf//5Xqsck8lf+cqBa2ZR1gF20aJG6/1mzZhV7e38IsHXq1FH3dfDgQZflUlJShFarFQBE1apVS/WYBe3atUtoNBoBQPz2228Ofzd3QeT48eNquRo1agiLxeKy7NKlS9Wyd911V6H17777rrp+8ODBLvdjsVhEmzZtBAAhy7I4duxYsZ6rPX/5XFi8eLFajxtuuMHj7Xr16qVu99tvvxX7cdPT04XRaCyyXEJCgkO37lOnTjkt580A60pZBlhXShJgvfW+3rp1q7qfOnXquG1oeOyxx9Sy33//vcd1LchfAuzly5fVS+BCQ0NFenq6R9tNmTJFrf+TTz7pspzt+NdgMLg8gVMSZT4KsW1k3Y0bN6rLnF1k7moAA0VRMH/+fAwbNgwNGjRASEgIwsPD0bx5c4wbNw779+93Wzf7AXtsXXTXrl2Le++9Fw0aNEBwcHChi9TNZjNWrlyJ5557Dt27d0f16tWh0+kQHh6Opk2bYvTo0fjrr79cPqZthNCZM2eqyxo0aFDoObt6rTwZhXjbtm145JFH0KxZM4SHhyM0NBSNGjXCqFGjsG7duiK3LzigRmZmJj788ENce+21qFKlCkJDQ9GqVStMnDixzLqRBDohhNqtqKhROcePH6/enzdvXpnXzd4///yDcePGoWXLloiKikJwcDBiY2MxbNgwLFu2zO229oNF2N6j586dw3PPPYfmzZsjNDQUUVFRuP766/Hll196POhHRkYGPvnkE/Tt2xe1a9eGXq9H1apV0alTJ7z66qu4cuWK2+0LvlcsFgtmzJiBvn37ok6dOtBqtU4HgkhISMCECRPQsmVLhIaGomrVqujcuTM++ugjZGVlAbBeEuFsIIkVK1aoj2n/93Rn/Pjx6jbLly/3aBtPFDUKcVn93f744w/cfvvtqFmzJoKDgxEXF4fhw4fjn3/+KfZzMBqN+OGHH3DHHXeoA5pERUXhmmuuwXPPPedy4JCjR48iNDQUkiQhMjISp0+fdvkYKSkpiI2NhSRJ0Gg0bj+3ybWffvoJgLU78KBBg3xcm5K5fPmyer9JkyYuy0VFRandZT3t3usJs9mMhx9+GBaLBXfccQfuuusuj7e1r3ujRo0gy64P3Zo2bared1Z/++MDd11hZVnG8OHDAViPw+bOnetxfUtqx44diImJgSRJ0Ov1mD9/fqEypTkmHDBggHpJ0N9//41Tp04VWadz585h/fr1AIDo6GjcfvvtxX5eYWFhCAoKKrJc9erVceONN6q/F3V8S957X9u/L4YOHYrg4GCX+7Lvfv/LL78Uq74lceXKFXTq1En9Tn/22WedXrZZ0mO9mJgY3HbbbQCsr42z950z9hmnYPdhe7bPkezsbCxYsMCjfXvEGynY3VkE+7M47m7OziKdOHFCtGvXzu12siyLV155xWXd7M9wrlu3Tjz++ONO92N/hqlnz54e1XnUqFFOm8ztW16L2t7Va+WKyWQSY8aMKXLfd999t9OuFDa2cj169BAnT54ULVu2dLmv+vXrV6gWZG+1wO7fv1/dT+vWrd2WtVgsIiIiQv2f9eZZKFcyMjLEsGHDivxfGTBggMv6FDzTu3z5chEVFeVyX3379hU5OTlu6/Xnn3+K6tWru61TeHi4WLJkict92L9XkpKSRPfu3Z3+39pbt26dqFKlisvHbNOmjTh37pyoX7++0+0tFos6UESVKlWK7AqenZ2tPl5sbKzbVpPiKqp3h7f/bmaz2e3nmizL4r333vO4pcWTQTd0Op34+uuvnW7/7bffquW6du0qzGaz03JDhgxRy02aNMntaxrIyrIFNicnR20Vctet0R1/aIGtW7euui9PW2ratWtXqse0N3XqVAFAhIWFiXPnzgkhhMctsCdOnFDL1axZ0+1nyR9//KGWffrppwutt/+uP3z4sNs6L1y4UC173XXXefZEnfDk77hy5Uq1a3NYWJjTy3G8cUz47LPPqmVfffXVIutu38r01FNPefqUS8y+t9bcuXOdlmELbD5vva/tW1Wddau3l5ycrJbVaDQiMzPT4/ra86QF9vTp0+pASADE1KlTC5XxxrGe/cBannzO//XXX2r5tm3bui1rP1CYNy/LKPMAu2nTJrFo0SLRqlUrtcyiRYsK3Qp+kJ44cUJER0er23Tv3l28++67Ys6cOeLnn38WzzzzjMPBqKs3sf0XxC233KJ+Abz00kvi559/FjNmzBCPPfaYuHTpkrpNly5dRFhYmBg4cKCYMmWKmDVrlpg/f7749NNPxSOPPCJCQ0PdfqDt2rVLLFq0SNx0001quW+++abQc961a5fDdp4E2HvuuUctExwcLMaOHStmzpwpfv75Z/H000+L8PBwdf3NN9/sckQxW5n27duL5s2bC0mSxMCBA8VXX30l5s2bJ6ZOnSpiY2PVcsXpbuPv7P8nbrjhBtGwYUOh1+tFeHi4aNy4sRgxYoT4/fffixyNbc6cOUV++Niz//tu27bNS8/GuZycHHHdddepj9eoUSPx8ssvi59++knMnTtXvPXWWw4fir169XJ6UGT/RTlw4EAREhIiDAaDGDt2rJgxY4aYM2eOeO655xzeE+4OHhYsWKB2oQsKChKDBw8Wn3/+uZg/f774/vvvxfDhw9WuLLIsi7Vr1zrdj/1raXtft23bVrz77rti7ty54ttvvxVPPPGEWv7gwYMOXbPat28vPvroIzFv3jzx2WefiW7duqlhyNYlydmX6DvvvKPu4+eff3b7N/jpp5/Usm+88YbbssVVnADrjb+b/Ze7TqcTY8aMETNnzhQ//fSTePLJJ9XX9s477yzyQHXLli1qeUmSRP/+/cXHH38s5s2bJ2bMmCHGjh3r8LdytZ/Bgwe7rfv333/vcPBdmmuV/F1ZBti1a9eq+37++edLtA9vBNhOnTqJZs2aiZCQEBESEiLq168vhgwZIn7++WeP/rb2J6/dXStn/96aMWNGcZ6mS8eOHVOvA/vkk0/U5Z4GWCGEaN26tUPZoq6B1ev14siRI4XKtGjRQt1PcQJseHh4sUcotSkqwP7yyy/q535MTIzYsWNHoTLeOia0P/EcFxdX5HNq1KiRWv7ff/8tydMvFvsTDP/884/TMvaf761btxZt2rQRYWFhIjg4WNStW1fcdttt4quvvnLbiFGUQAmw3npfjxs3Tl1fnAALwOn/qyeKCrD79u1TR6/WaDROr9v21rGeyWQSNWrUUL+Xixp93P7aY/vPNFdsnzthYWEuTzgXl19Oo2OxWNSpAvR6vZg/f77TcvHx8erZOFmWxYEDBwqVKThlSvfu3cXVq1fdPv6aNWvcvvETExPVFh9Zll1ep+DtaXTmzp2rrq9Ro4bTs01nzpxxaNlwdb2l/Wui0+nE0qVLnT5P+32VJnRlZmY6PXFRklvB4F9cnk6j06VLF3HmzBmX+3njjTc8PvgQQjgMIvDTTz+V6jkUpeC1uc4O8IxGo0OdnH1oFxyuPzY21um1UNu2bVPPblapUsVpa965c+fUVujY2Fixb98+p3Xftm2biIyMFABE3bp1nV47VLBnx9NPP+22VcK+hfaxxx5zWrbg/4WzL9H4+Hj1QKuoA/Ebb7xR/eI5f/6827LFVZwAW9q/m/2Z1qioKKdTPBw5ckSdYsXdgWpaWpo6GFBUVJTYsGGD0+d3/Phx9QRaaGiouHLlSqEyycnJ6tl3jUYjNm3apK47evSoGs4jIiJKPRXI4cOHvfb55ey5lFZZBlj7kza//vprifbhjQDr7tasWTOxd+9et/u6cuWKaNy4sbpNzZo1xcSJE8X06dPFrFmzxGuvvaZ+38myLN58880SPdeCFEVRPwuuvfZah4O34gTYv//+2+GEU7t27cQ777wjZs+eLb799lvx1FNPqZ+vkZGRYtmyZU73Y39i3V0vFyEcr5cFIC5cuFDs5y+E+wD72Wefqa0z9evXF0ePHi20vTePCYUQ4tprr1Xrs27dOpf13rhxo1quffv2nj/hEtq0aZP6eDExMS4P9D2dRqdWrVpun587gRJgvfW+tj+ee+aZZ9w+pv31skDRJ7NdKarxz9ZrKjg4WCxevNjpPrx1rCeEEM8//7xaxl3vhMzMTLWxLCgoyKPvtNGjR6v7Luqz2lN+GWB/++03texnn33mtuzRo0fVFh1nI1zZf0GEhoaqozaW1smTJ9X9unpDeDvAtm/fXl3/559/utzPtm3bHL4QnH0I2r/5pkyZ4nJf3333nUflimL/P1LaW2kvdn/ttddEcHCwuOWWW8SUKVPETz/9JObNmyc+/fRTcdddd6n/TwBE7dq1XX5p248g+fnnnxf5uMUtX1KXLl0SOp1OAM4H8bBnNBrV0S2bNGlSaH3BL8q//vrL5b6GDx/uttyTTz4pAGvY2LNnj9t6/fDDD+q+Zs+eXWi9/XulY8eObsPrjh071LKtW7d2e/bPfr+uvkTtu3i5Gtjk6NGjapkBAwa4fa4lUdwAW5q/m/3Ine5apOy7Ljo7UBXCcS7G33//3e1ztG/5e/vtt52W2bBhgzoiZP369UVKSoowGo2iY8eO6rbeOFlU3Lmj3d1KO3BcUfXzdoC977771H27OulUlNIEWK1WK3r06CFeeeUVMXPmTPHrr7+KL7/8UowYMUJt1QSsLYRFHRglJSWJIUOGOHzGF7zdfffdRX4+FcfXX3+tfu7t3r3bYV1xAqwQQvz777+iU6dOLuuu1WrFpEmT3B7nTJ48WS0/ZMgQl+XsB3Gy3VwFwqK4CrCTJk1Sl7dq1crld603jwmFEOKLL75Q9zdy5EiX+3rggQc8ftzSys3NdRhB+oMPPnBZ1jaPcOfOncWLL74opk+fLn799Vfx3XffiUceeUQ9AWz7n1i1alWx6xMoAVYI77yv16xZo5atU6eO20tqCl6KWNKBOV1lpyVLlgiDwSAA68mojRs3Ot3em8d6Qlh7qtnq4653wsyZM9VyRT2uzXvvvefV72Qh/DTA2rqhRUREeDTlSNeuXV3+09t/Qbj7oCoJW4uDq2HVvRlg7V/jNm3aFLmv3r17q+WdtZza1mk0GpGcnOxyP/ZBvTQTEftTgN2/f79ISkpyuf7AgQMOZ/T69OnjtJz9tcjfffddkY/78ssvq+XfeeedEte/KJ988on6OFu2bCmy/MSJE13+n9oHoaLOQNuHzoLXLiqKIqpWrSqAoqfhEMJ6TYetZdDZ39v+vTJ9+nS3+7I/YCuqa5B9lzlXX6L2wWrChAlOy7zwwgtqmaJaOUqiOAG2NH+3nJwc9QuyRo0aRXb9se+e6CxI2VpHmjZtWuRzFEKo3afchR7799WwYcPUaUoAiOHDh3v0OEWpzAHW1r0eKHkLXEkD7PHjx92GsXPnzjkEuubNmxf5P3ry5Enx8MMPu/z76HQ6cffddztcVlRSFy5cUFtFn3322ULrixtghbB2wXd2zb/tVrVqVTFhwgSXo96ePHlS/Wx1991l3xpTnO8TZwoGWLPZ7PA3uP76690eh3jzmFAIa+8N28kPV6Ou2rcy6XQ6kZiY6PHzLYmHHnrI4TPb2fgqNpcuXXI7KnRycrK49dZb1f1Vq1atyJ6HBQVSgBWi9O9rs9nscNw3atQop58lixcvLhSUS3o85yw7/fDDD+r+a9as6bbbujeP9Ww6d+5c5HeVfS8OZ703nbEft+Ktt97yaJuiaOGHNm3aBACoVasWVqxYUWR5jUYDwDqhcXZ2NgwGg9NyN9xwg8d1SEtLw+zZs/Hnn39i//79SExMdDki4YULFzzeb0lt375dvd+vX78iy/fr1w9r164FYB2xuHPnzk7LNW3aFFWqVHG5nzp16qj3SzMacVxcnNNR03zB3WT3gHXy6hUrVqB169bIycnBmjVrsG3bNnTp0qWcalg6tvcPYP3fXLx4sdvy9n/Xw4cPOx29FwCuu+46t/tx979y8OBBJCcnAwDCw8OLrBNgHbkxNTUVhw8fdluuqPf1zp071fs33XST27K2Ubnduemmm9C0aVMcO3YMM2fOxFtvveUwwqTJZFJH56tduzYGDBhQ5D7LUmn+bnv37oXRaAQA9OjRQ/2sdaV3794u/15Xr17Fvn37AAA1atTw+H8AgNv/gTfeeANr167Ftm3bHEb4btCgAb788ssiH8MTr7/+usuR8is62/sWAKpWrVquj924cWO36+vVq4fly5ejdevWiI+Px5EjR7BgwQIMGzbMafmpU6di8uTJUBQFDz/8MB599FG0bNkSAHDo0CF8/fXX+P777zF//nxs3boVq1evdhjVt7gee+wxpKWloX79+pgyZUqJ9wNYRwcdOXIkFi5ciNDQUEydOhVDhgxBbGwssrKysG3bNkydOhUbN27E+++/j127duH3339HSEiIw34aNmyISZMm4Y033gAAjBkzBr/99hvuuOMOREdH4+LFi5gzZw62b9+OmJgY5OTkID09HQDcjn7sqZycHAwdOhSLFi0CANx666349ddfC9XTnrePCatUqYI777wTc+fORWZmJhYsWFBoVogFCxaoz/uOO+5AtWrVPH6OxfXBBx/ghx9+AABERkZi3rx50Ol0LsvXqlXL7f6qVKmC3377DZ07d8b+/fuRlJSEr776Ci+++KJX6+0vvPG+1mg0+Oqrr9C/f39YLBbMnDkTu3btwv33348GDRogNTUVK1aswKJFi9RZCmwj5XvjfQEA7733Hl566SUA1tHGV61ahYYNG7osXxbHeg8++KCaN2bMmFHomOjs2bPqjC41a9ZE//793T6mjf37x2szm3gjBXuzBTY9Pb1UZ7cLnq21P8PprtutvXXr1hW6nsvdrWHDhk73480WWPszLd98802R+7Kft2/ixImF1tvWeTI4k61scc6cVwRjx45Vn7uzQWL8tQuxfffJ4t4Kdte1b8lzN8hPwbIFWxPs5yYs7s1Zdxf790pRA1XYd8vyZC4+23Un7s4Cf/jhh+o+C84LuGDBAnVdWY18W5wW2NL83ew/R15++eUi62X/OVWwJdB+8JTi3oKCgtw+7smTJx0GsNNqtS4HQKmIyrIF1tbtTKPRlHgfJW2B9ZRthF8A4v7773daxr6l3l130E8//VQtd+2115a4TvPmzVP388cffzgt42kLrNlsFjfccIMArNeAbt++3Wk5i8XiMLiZq0G3FEUREydOVC81cnarUaOG2Lp1q8PASM6uT/WEfQusfffWESNGFDkAl7ePCW1Wrlzp9n/SvpXJ2bGju+vcV65c6fFr880336iPExoaKjZv3uzxtkWxH2iyuANxBkoLrLff1wsWLFBHw3Z20+l04ptvvhGDBg1Sl3lyTO6M/eei/fuibdu2Ij4+vsjtvXmsZ5Oamqp2X3bWO8H+WmFXPdCcWb16tbrdY4895vF27njntIEXXb16tVTb21oLnHHVMmvv+PHjGDBgAOLj4wEAzZo1w9NPP40vvvgCc+bMwaJFi9SbbU4pi8VSqjp7wnYmEABCQ0OLLG9ruSi4bUHeOnNUEdmfeTpy5Eih9VFRUer9xMTEIveXlJTkdFtvK817yN37pzT/K2VVJ6Do97Wt54RWq/VoLj5P3l+jR4+GXq8HAHz33XcO62y/S5KEhx56qMh9lbXS/N0yMjLU++5aSGzcvXal+R8wmUxu10dHRzu0DjZs2BAdO3Ys8eNRPtv/ucViUedK9jdFfVZfvHgRH3zwAQCgRYsWeOKJJ1zu68knn0SLFi0AWHtvbN26tdj1SU5OVucFHzp0aKl7Yfz2229qa8sDDzyATp06OS0nyzI+++wz9T3/zTffOH3vSJKEd955B3v27MHYsWPRrFkzhIaGIiQkBC1btsTLL7+MAwcOoGPHjkhLS1O3qVGjRqmeBwCHOaczMzOL7JlVVseEffr0Qd26dQEAf/31l8O80/atTLVr13ba623QoEEub4888ohHdZs1axYeffRRANbvsaVLl+L6668vxrNzr6j3RaAri/f14MGDceLECbzyyiu49tprERUVBZ1Oh/r16+PBBx/Ezp078cgjjzgcz9WsWbPUz8X+fZGdne1RriiL46rIyEh1ru/MzEz89ttv6johBGbNmqX+7m7u14Ls6+pJFvOE33Uhtg9eN954IzZu3Fiujz916lRkZ2cDACZNmoQ333wTkiQ5LTtmzJhyq1d4eLh635PJ1e0PPO239ZWsrCysWrXKK/uKjY1Fhw4dvLIvd+y7PKSmphZab98Fxf7Lz5WzZ8863dbbbO8hSZJgNpv94iSF/fv61VdfVbuvlQdbqDKbzTCZTEWGWE/eX9WqVcOQIUMwe/ZsrFq1CufOnUNsbCzOnj2L1atXA7AeIDVo0KD0T8CH7P9unoQXd6+d/b5GjhzpMAl6aT322GMO769jx45h8uTJeO+997yy/yNHjnjtALB79+6Ijo72yr7Kg/2JgeTkZI9OZJS3oj6rV61apQa53r17u/xOB6yfm7169VK7rW/fvr3IbvgFLV26FJcvXwYAxMTE4K233nJa7q+//nK4byvXpUsX9O3bV123bNky9X6fPn3cPnbt2rXRokULHDx4EOnp6Th8+DCuueYap2Xbtm2Lr7/+2uW+Dh48qB5IN2nSBJGRkW4f2xNTp07F3LlzsWXLFixatAjDhg3DvHnzXH4ul9UxoSzLGDVqFN5++20IITBz5ky89tprAICZM2eqwXrkyJFFXjpREnPmzMEDDzwAIQT0ej0WL15c5CUuxVXU+yLQldX7ukaNGpgyZYrbbv+HDh1S77s6oVQcQ4YMQUREBD7//HMcO3YMN910E9avX4/atWu73KasjvUeeOAB/PLLLwCs3YhHjRoFwNpl+eTJkwCslyY1b97c432WxaUofhdgIyMjERYWhoyMjHK5trSgNWvWAACqV6+OKVOmuHxDpKenO/xBypr9NQ/Hjx8vsrx9GXdvgPJy+fJl9axOaY0aNQozZszwyr7cKarF1P5a2l27drndl6Io2LNnDwDrF6ftTGBZqFOnDv79918IIXDx4kXUq1evzB6rOHWyKe/3de3atdVrL0+dOoVmzZq5LJuSkuLxF/2jjz6K2bNnQ1EUTJ8+Ha+//jqmT58ORVEAwOOz8P7M/rPjxIkTRZZ3V6as/gdmz56N2bNnAwA6duyIxMREnD17Fh9++CFuvvlm9OrVq9SPMXfuXK+ddFm/fr1H11r7i7i4OGzevBmA9SDE1mrlT4r6rL506ZJ6PyIiosj92Qc1T05oFWTfqujpddjr16/H+vXrAQBPPfWUQ4At7/rb2IfF4owh4k54eDhWrFiB/v37exRiy/KYcPTo0Xj77bcBWFtDX331VQBwOLlW8NpYm6Jajt359ddfcf/990NRFOh0OixYsMCjsU2Kq7x6ffmKr94Xhw4dUnvdNWrUqMhrkj312WefQZIkfPbZZx6F2LI61uvVqxdiY2Nx7tw5bNy4EWfOnEFcXBx+/PFHtUxxWl8BxwBbv359r9Sz3Jpm7M8MFPXGv/HGGwFYDzY9OWjypoSEBADWAUDcnc1Ys2aNeqDqSnGec1HsB2GytfC4Y9/a6WoAJ3LP/svbWYtpq1at1IO5gwcPuv1y3bJli9oVq1u3bmXaKt6jRw/1vrdavUurffv26hfM2rVri3zveNO1116r3rcdILpi6zbmie7du6NVq1YAgOnTp8NkMmH69OkArCfABg4cWPzK+pm2bduqg4ls3LixyG5NtoHjnImOjlYH1ti6dav6fiiN06dP47HHHgNgbWmfM2cOfv75Z2g0GiiKgpEjRzocxFHx2Z+oO3r0qA9r4lpRn9X2B7fnz58vcn/2rfllOXiPp4pb/3Pnzqn3S1N/+xPF3rwcwhZiu3XrBgBYtGgR7r77bpeXCpTVMWHjxo3VYH7q1Cls2rQJf/31F06dOgUAuP76692e8CyJxYsX47777oPFYoFWq8W8efNw2223efUxbIp6XwQ6X72v7YOcty8T+vTTT/HUU08BsPYk6tmzp0NQt1dWx3q23glAfrdh22BngLULsKuB8lyxH4jRVY+QYtfTK3vxgH03kKLOfNheOADqGbHyYusederUKZeh02Kx4J133ilyX8V5zkWJi4tTu83u3bvXbYjduXMn1q1bB8B6psMfrgWzjULsjVt5tL6ePHnS4SzsrbfeWqiMJEkYOnQoAOub/PPPP3e5v88++0y9X9w3fnHdc889auh47733Sv2/5w0ajQbDhw8HYP0S+f7778vtse2D5BdffOE2hH366afF2vfYsWMBWL88n376afUkxqhRozy63tbf6fV69X8/ISFB7VbkzPLly4scMdr22Z6VlYV33323VHWzWCwYPny4GoQ/++wzNGnSBN27d8fLL78MwHqN1MMPP1yqxwGsoxB76/MrkFpfATiMvr5t2zYf1sS55ORkh/ets89q+xC+bNkyt+NCpKWlYfny5erv9ifAPDV69GiP/hdsXVYB4LXXXlOXf/LJJy7rP3fuXLeP/ffff6ufQ1WqVEGjRo2KXX/AepC+Y8cOANaTrl27di3Rflyxhdju3bsDsAY7VyG2LI8J7VuSZsyY4XB8UdxWpqL8+eefGDZsGMxmMzQaDX755RfceeedXn0Mm9zcXIfjVGfvi0BX3u9rwHo5ie1YLyoqyivfLwV98sknePrppwFYe1O6CrFleaw3evRotQfqrFmz8Ouvv6qXJt51113FvpzA9t0RHh6unsguNW+MBOXJKMTjx49Xy7ialNfGYrE4zO321FNPuZ0TKysrS/z4449izpw5hdbZj/Lnyfx7ffv2Vct//PHHhdYbjUaHya3hZsS0jz/+WC0zc+bMIh+7qJGa7Uc1rFWrljh8+HChMmfPnhWNGjVSy7maYNm23pMRIYtT1t/9/vvv4tdff3U7V2DBeWB79uzpsuzFixdFSEiIAKwjn65Zs6ZQGfsRGOvVq+fRPHal9dxzz6mPedNNN4n//vvPZVmLxSJWr14t3nzzzULr3I1QW9yy58+fV0f41ev1Rb4nEhISxJQpU8TevXsLrSvOvNJCCId5Ex977DFhsVgKlSk416cnIyGmpqaqf3/7m7s5+ryhOKMQl/bvtmnTJnV9lSpVnE4Gf+zYMVGrVi2H18DZaLgZGRmifv36AoCQJEm8//77Tv8WNqmpqeLTTz8Vq1evLrTulVdeUR9ryJAhDutMJpM6FyRKMUpkoCjLUYhzcnJEaGioQAlGMrUpySjEW7ZsEd99953IyclxWeb8+fMO8xY2adLE6ai2RqNR1K1bVy03cOBAp6OXZ2VliTvuuEMt17p1a6EoSqFy9u+ZksxZaePpKMQHDhwQsiyrZV3NO3n27FmH7y5Xo30ePHhQXL582eXj/fzzz+r8z8HBweLIkSPFel4FFZwH1l56errD5/PAgQMLjRbvzWPCgtLT09X/77CwMHUE2pCQkGLPnerO6tWr1blnNRqN+OWXX0q0n+PHj4sPPvhApKWluSxTcB7YKlWqiJSUlGI9TklHIbb/Diju6MXFfU95+32dkJAgDh065PLxdu3aJerVq6fuZ8aMGR4/N2eKyk5PP/20w2ebs3m4vXWs54z9/4D997uz41x3UlNT1RHP77zzzmJt6065XQPbu3dvtRXqoYcewjPPPIP69eurF8c3btxYnfNNlmX89ttv6Nq1Ky5evIhPP/0U8+fPx9ChQ9G2bVtERkYiIyMD586dw86dO7F27VpkZmbizTffLHU9n3zySbV189lnn8WGDRtw8803o1q1ajh+/DhmzZqF48eP46abbsLx48fddhvt3bu3en/ChAm4cuUKmjVrBq3W+rLXqVMHbdq08bhud999NxYtWoS5c+fiv//+Q4cOHTB69Gh07doVGo0GO3fuxA8//KC2SPTr10/tXkdWJ0+exDPPPIOYmBj0798f7dq1Q82aNREUFISEhARs2LABS5YsUUeEq127ttvBZmrXro2PPvoI48aNg9lsxi233IKRI0eiR48eMJvNWL58udrtQqvV4ttvv0VwcLDL/dlfc3369GmXc7IWZerUqfj333+xdu1arF+/Hg0bNsTgwYPRtWtXxMTEwGg0Ij4+Xm3Nj4+PR+/evTF58uQSPZ4n6tati7lz5+KOO+5Abm4uRo0ahY8//hh33HEHmjRpAoPBgKtXr+LYsWPYunUrNm/eDIvF4pWBLb755ht06tQJWVlZ+PLLL/HPP/9gxIgRqFu3LhISEjBv3jxs3rwZXbt2xblz53Dx4kWPBkSIjIzEsGHDHLoU9ezZE02aNCl1nf1F9+7d8dhjj+HLL79ESkoKrrvuOowaNQrdu3eHLMvYvn07fvjhB2RmZuLOO+90OxddaGgoFi9ejB49eiAtLQ0TJkzAN998g8GDB6Nly5YICwtDWloaTp06he3bt2PDhg0wGo346aefHPbz999/q60LdevWxbfffuuwXqvVYvbs2WjXrh3S0tLwzDPPoEePHl7vDugLe/bscRgZEnAcDGjhwoWFulk+9NBDJR5QTK/Xo3///vjtt9+wc+dOZGRkOPQucqbg54j9CJSnT58utL5Dhw646667HJYlJCRgzJgxeO6553DzzTejY8eOqFOnDoKDg5GUlITNmzdjwYIF6qCL4eHhmDdvnvr9ai8oKAifffYZBg8eDCEElixZghYtWmDkyJHqeASHDx/GrFmz1G6GQUFB+N///ud2YJjy0qpVK4wfP15tmX355Zfx+++/q/PAZmdnY+vWrfj555/VVqh69eo5tPDa+/PPPzFp0iT06dMH3bt3V79nzpw5g8WLF6vzQOp0OsyZM6dM3zdhYWFYvnw5br31VmzatAlLlizB0KFD8euvv6q9WMrymDAsLAxDhw7FjBkzHAa/HDx4sEfXVXri33//xcCBA5GTk6Pu22AwFDlvZ/PmzQsNlJORkYEXXngBr7zyCvr27YtOnTqhfv36CA0NRWpqKnbs2IG5c+eq7zmtVotffvnF7TWwCxcuxO7dux2WnT59Wr3/0UcfFWpxczUwmac++ugjl/OBpqamFvqMaNCgQaHuut5+X587dw6dOnVC586d0bt3bzRv3hwGgwHx8fFYs2YNli1bpvbgmjBhgkPPgLIwbdo0SJKEadOmqblj/fr1DuNJlOWx3gMPPKB2Q//vv/8AWHt1FndciQ0bNqg9Wr3a48AbKdiTFliz2exwlq3gzdnZx0uXLonevXu73Mb+ptFoxHfffVdoH8VtgRVCiIkTJ7p9rG7duonLly+rLQnuzhbde++9LvdT8LXypFXJZDKJhx9+uMjXY8iQIW7nx7SVq2wtsNOmTfPo/wl5rQ1nzpzxaL8ffPCBCAoKcrmv8PBwj84G229T2rnXcnNzxRNPPCE0Go1Hz3fkyJGF9uHNljybf/75R51bsqhbWFiY2LdvX6F9FLcFVgjr/M62FmBnt9atW4tz586JOnXqCADimmuu8Wi/27Ztc9iPq/nVvKk8W2CFsH5+33///S5fO1mWxfvvv++2pcXekSNHRPv27T36H9Dr9WL58uXqtikpKepnryzLbj/Xf/75Z3U/7du3d9tqEyjsX2NPb55+97myePFidV+zZs0qsnxx6+fsuMF+DuKibq1bt3baU6Ogn3/+WURERBS5v+joaLFs2TKX+ynvFlghrK0nzz33nENLrKtb27Zt3c7Z+sEHHxS5j4YNG4q1a9eW+LnZ8+RzISMjQ9x4441quTvuuKNQS6w3jgmd2bhxY6Ht161bV9qnrSrJe9bV/8SePXs83j42Ntaj977994mnN1fsy7g7hrF9hnt6c3f86a339Y4dO4rcR3h4uNv5ZovDk+wkhBDPPvusWq5x48aFWmK9caznTEZGRqE5cV999dViP8+7775bABAGg8Ftz4HiKrcAK4QQ2dnZ4t133xVdu3YVVapUcXix3X14b9iwQYwdO1a0atVKREVFCY1GIyIiIkTLli3FsGHDxFdffSUuXbrkdNuSBFghhFi+fLkYMGCAiI6OFkFBQaJWrVqiV69e4rvvvlO7KHkSYM1ms/jqq69Ez549RXR0tNBqtS5fq+IclP/zzz/ioYceEo0bNxahoaHCYDCIBg0aiBEjRnj0pePJh0JJyvq7xMREMX/+fPHMM8+IG264QTRq1EhERkYKrVYrqlatKtq2bSvGjh1bogO+/fv3i8cff1w0bdpUhIaGivDwcNG6dWvx4osvehSEMzMz1ddap9OJpKSkEjzDwo4fPy5eeukl0aVLFxETEyO0Wq0ICQkRDRo0ELfeeqt45513nIZEIcomwAphPRHz888/i7vvvls0aNBAhIWFqX+Da6+9VowZM0bMmzdPZGRkON2+JAFWCCHi4+PF888/L5o1ayYMBoOIiooS1157rfjwww9FZmamUBRFncTbXddxe4qiqJOQV61a1W2XR28p7wBrs3TpUjFgwAARExMj9Hq9iI2NFffee6/YsmWLEMKzA1UbRVHEkiVLxKhRo0TTpk1FRESE0Gg0IioqSrRt21aMHDlSzJgxQyQnJztsN2zYMPUxXnrpJbePIYQQw4cPV8s/99xzRZb3d74IsGazWcTGxgoAom/fvkWWL279nB03pKeniyVLloiXXnpJ9OrVSzRt2lRUrVpVaLVaERUVJVq0aCFGjRolfv/9d7fd0AtKSEgQ7733nujdu7eoWbOm0Ov1Qq/Xi1q1aol+/fqJadOmFdnd0hcB1ubgwYPiueeeE507d1ZfD9vn+dChQ8W8efOcdqO2d/78efHJJ5+IgQMHiqZNm4rIyEgRHBwsYmNjxYABA8QPP/zg1UtdPP1ccBZinZ10Ks0xoTOKojhcehUXF+e0i2lJeTPA5uTkiBUrVojXXntN3HzzzaJ58+bqsWVERIRo3LixuOeee8Ts2bM9PmEX6AFWCO+8rzMyMsSMGTPEqFGjROvWrdXj/5o1a4pu3bqJd999120X3eLyNDsJ4dhV2FmIFaJ0x3quPPjgg+rjSpIkTp06Vaztr169qh5TjRkzpljbFkUSIq9dl4h8auXKlejfvz8AYPz48cUeUIhKb//+/eoIeZ7+DdasWaNOefHUU08VGoCFqCKYNm0ann32WWg0Gpw5c8Yvp9MhIiL/MX36dDz00EOQJAkHDhzw3gBOKMdRiInIPdscxOHh4WV6LSq59r///U+97+m1t1999ZV6vyLM/UrkzKOPPoqaNWvCYrHg/fff93V1iIjIj9l/VwwbNsyr4RVggCXyG7YA++yzzyImJsbHtal4Nm3a5Hb+2S+++EIdDKhOnToezc3377//qgNx9OnTx+sf0ET+wmAw4PXXXwcAfPvtty7nJiQiIpozZw6OHj0KnU7nlUF2C2IXYiI/kJiYiOrVqyM6OhonT55EeHi4r6tU4TRu3Bg5OTm45ZZb0L59e8TExMBkMuHkyZNYtGgR9uzZo5ZdunSpywC7YsUKKIqCY8eO4f3331dH5/v777/RrVu3cnkuRL6gKAo6deqE3bt344knnnA79zUREVVOFosFrVq1wtGjR/HSSy9h6tSpXn8MBlgiqhQaN26MkydPui1jMBjw3XffYfjw4S7LOBt+39PrZVetWoWsrKyiK+tEdHQ0unfvXqJtiYiIiCoKBlgiqhS2bt2K3377DVu3bsXFixeRlJSErKwsVKlSBU2bNkWfPn0wbtw41KhRw+1+bAE2LCwMTZs2xbhx4/Dggw96NG9sXFycOh9dcfXo0QMbNmwo0bZEREREFUXhGb+JiCqg6667Dtddd12p98NzfkRERES+wxZYIiIiIiIiCggchZiIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIHMSJiIgqFEVRkJ2djaysLJe3nJwcGI1GGI1G5Obmqved/W40GmGxWKAoisNPZ8sURQFgHa3a1c02YrUkSdBoNAgKClJvWq3W6X3bLTg4GAaDAcHBwS7vGwwGGAwGhIaGIjQ0FFotv+qJiKji4LcaERH5HSEEMjIykJaWhrS0NKSnpzu9b78sIyMD2dnZyM7O9nX1/YrBYEBYWBjCwsIQHh6u3re/RUREICoqyuFmMBiczntMRETkSxyFmIiIyoUQAlevXkVycjJSUlIcfqamphb63WQylerxNBoNDAYDQkJCCt0MBgNWz/gLkgCgSHY3QHL2uwCAvJ8CgLAts7svYN2fXVHbfTjcF/nLJFg3kq0/Rd5P+2WQASHnLdMAkAX6P3ITcnJykJ2djZycHJf3S0On0yEyMhJRUVHqz6ioKFStWhXR0dGoVq0aoqOjER0djbCwMIZdIiIqFwywRERUaoqiICUlBZcvX8aVK1dw5coVh/tXrlxBYmIijEZjsfZrMBgQERGBiIgIhIeHIyIiAn/N2QbJLAFm2e6nDJglSBYJsEiARbaGT1TeUCUkAWgEoFUgtALQ5P3UCgitAmgEBj59s9qinZqaqt5yc3OL9Vg6nU4Ns/bBNjo6GjVr1kT16tURHR0NjUZTRs+WiIgqCwZYIiIqkqIoSEpKwn///YdLly7hv//+U28JCQm4cuUKLBaLR/uKiIhAlSpVULVqVexddQiSSQaMmryfMiSTnH9fVN4A6ktCFkCQApF3s92HVkHfMTciMTERSUlJSEpKQlpamkf71Gg0iImJQc2aNVGjRo1CP2vUqAGdTlfGz4yIiAIdAywREQEAjEYjLl26hPPnz+PChQsOQTUhIaHI1lNZllGtWjXExMQgJiYGf/+ywxpCczWQ8n4ylFY8atjVWSB0CoRewd2TbkNiYiKuXLmC+Ph4j05wSJKEGjVqoE6dOuqtbt26qFu3LmrXrg29Xl9Oz4iIiPwZAywRUSWiKAquXLmC8+fP4/z58zh37hwuXLiA8+fPIz4+Xh1F1xmNRoPq1aujVq1a+PfPQ5ByNNZbriY/nFbiLrvkmoAAdApEsAVCb4HQKxgwvhcSEhIQHx+PhISEIq/ZjYmJQd26dVGnTh3Uq1cPcXFxqF+/PmrWrKmO7ExERBUfAywRUQWkKAr+++8/nD59Wr2dOXMG58+fd3t9Y0hICGJjY1G3bl2sn/6PNZzmBVXkMqBS2RAQQJCACDZDGCy47607cfHiRVy8eBEXLlxARkaGy211Oh3q16/vcIuLi0PdunU5hRARUQXEAEtEFMCEELh8+XKhoHrmzBmXLVparRa1a9dGvXr1sHXeHkjZGkjZWkjZGsDEkEr+RSBv4CmDGSLYghFT78K5c+dw9uxZnD9/3mXXdo1Ggzp16qBRo0Zo2LAhGjdujMaNG6N69eocMZmIKIAxwBIRBQiz2Yxz587h+PHjDjdXrVO2lqmTm89DytRCytJCztYAORqGVKoQBAQQbIESYoEwmNF3XHecPXsWZ86ccTkfcHh4OBo1aqTeGjdujAYNGvAaWyKiAMEAS0Tkh3Jzc3Hy5EkcP34cx44dw/Hjx3Hq1CmnrU0ajQb16tXDuR3/QcqyBlUpU2vt+sugSpWQes1tiBlKqBm9x16PEydO4OzZs04Hk5JlGfXq1UOzZs3QvHlzNGvWDE2aNEFwcLAPak9ERO4wwBIR+ZjFYsGZM2dw+PBhHD58GIcOHcKZM2ecHmgbDAY0adIEB1cch5QRpLascmRfoqIJSUCEmCFCzbhrcn+cPHkSJ06cwNWrVwuV1Wg0iIuLQ7NmzdCiRQs0a9YMDRs25FQ/REQ+xgBLRFTOrly5gkOHDqmB9ciRI067O0ZFRaFJkybYvfAgpMwgSBlsVSXyNltrrRJqxsiP7sKRI0dw5MgRJCcnFyobFBSERo0aoXnz5mjTpg1at26NmjVr8ppaIqJyxABLRFSGzGYzTp48ib1792L//v04dOgQrly5UqicwWBA8+bNsW/pUUjpQZDTgzgtDZGPqKE2zIR7p96BI0eO4OjRo0hLSytUtlq1amjdurV6a9KkCVtpiYjKEAMsEZEX5eTk4NChQ9i/fz/27t2LgwcPFmpdlWUZDRo0wOnNlyCnayGlB1m7ATOsEvktAQHoLVDCzRj0Sj8cOHAAx44dK9TVX6fToVmzZmqgbdu2LSIiInxUayKiiocBloioFNLT07F3717s27cP+/btw9GjRwsd0IaGhqJ169bYOe8g5LS8rsCK7KMaE5G3CFlAhJnw4Bd348CBAzhw4ECh62klSULjxo3Rrl07tGvXjoGWiKiUGGCJiIohJycH+/fvx+7du7Fr1y4cO3YMiqI4lImOjkby4XTIaTpIaXkDLbF1lajCExAQwRaICBNuea4H9u7di3PnzjmUKRho27Vrh/DwcB/VmIgo8DDAEhG5YTabcfjwYTWwHjx4ECaTyaFM3bp1cWlnEuSrQZDTdEAur10lIisRZIESacKAF3tiz549LgPttddei86dO6N169ack5aIyA0GWCKiAs6fP4/t27dj27Zt2Lt3b6FrWGNiYpB0IB3yVR3kVB0ko8ZHNSWiQFNUoNXr9WjXrh06deqEzp07o379+hzlmIjIDgMsEVV6OTk52LNnD7Zt24Zt27bh4sWLDusjIyORfjLHGlZTdZzKhoi8RgRZoEQZ0eep67Fjxw4kJSU5rI+JiUGnTp3QqVMndOzYEVFRUb6pKBGRn2CAJaJKRwiB8+fPY+vWrWorq9FoVNdrtVq0adMG+xYet4ZWXsNKROVAQECEmDHm+3uwY8eOQp9NkiShZcuW6NatG66//no0aNCArbNEVOkwwBJRpWA2m3HgwAFs2rQJmzdvxqVLlxzWV69eHYl70yGn6CBf1UGycJRgIvItIQuICCMGv9Uf27dvx6lTpxzW16xZE9dffz2uv/56tGvXjvPPElGlwABLRBVWdnY2duzYgU2bNuGff/5BWlqauk6r1aJt27b4d8FRyMl6SNnsFkxE/k3oLHhy3ihs3rwZu3fvdmidNRgM6NSpkxpo2dWYiCoqBlgiqlBSUlKwefNm/P3339i5c6fDAV5ERAQyjhshJ+shp+g4FysRBSwhCyhRubjlxRuxZcsWh2tnZVlG27ZtceONN6JHjx6Ijo72YU2JiLyLAZaIAl5SUhI2btyI9evXY9++fbD/WKtVqxYu77wKOUlvnZOVraxEVMEICIhQM4Z/ege2bNmCY8eOOaxv3bo1evTogR49eqBmzZo+qiURkXcwwBJRQEpJScFff/2FdevW4d9//3UIrc2aNcOJVResoTWLAzARUeUi9BaMmTEMGzZswMGDBx3WNW/eHDfeeCN69uyJunXr+qiGREQlxwBLRAEjNTUVf/31F9avX489e/ZAURR1XcuWLXH0j3PQJAVDyuW8rEREgPW62XGzh2Pjxo3Yt2+fw+dm8+bN0adPH/Tq1YvdjIkoYDDAEpFfy87OxqZNm7Bq1Srs2rULFotFXde8eXMcX34BmkSGViKiooggC56cPwobN27Enj171M9TSZLQoUMH9OnTBz169EBYWJiPa0pE5BoDLBH5HYvFgj179mDlypX466+/kJ2dra5r2rQpTq68BE2iHlKu1oe1JCIKXEKr4LG5w7FmzRocOHBAXa7T6XDdddehT58+6Nq1K/R6vQ9rSURUGAMsEfmNU6dOYeXKlVizZg2uXLmiLq9Tpw7it6RCvhIMOYehlYjIm4TeglHfDsLq1atx5swZdXloaChuuukm3HrrrWjVqhUkieMJEJHvMcASkU+lpqZi1apVWLlyJY4fP64uDw8PR+YxMzSXgyGlc/RgIqKyZhvNeMj7Nxc6kRgbG4sBAwagX79+qFatmg9rSUSVHQMsEZU7RVGwe/duLF26FJs2bYLZbAYAaLVaKAkayJeDISfrIQmGViIiXxAQEJEm9Hq+MzZs2IDc3FwAgEajQZcuXTBgwAB07doVWi17xRBR+WKAJaJyk5iYiOXLl2PZsmW4dOmSurxZs2Y4+eclyFeCIZllH9aQiIgKEhoFTy96AMuWLXOYlqdKlSro27cvbr/9dtSvX9+HNSSiyoQBlojKlMViwfbt27F06VL8888/6qiXoaGhyD6hQBNvgJwZ5ONaEhGRJxSDGUM+7IeVK1ciOTlZXd6+fXsMGjQI3bt3Z6ssEZUpBlgiKhOpqan4448/sHjxYly+fFld3rp1axxZeA5yYjAkhV2EiYgCkZAE3vjrGfzxxx/4559/1Pllq1Wrhttvvx233347YmJifFxLIqqIGGCJyKuOHj2KhQsXYu3atTAajQCAiIgIZB42Q04wQM7imXkioopE6C0Y9tkt+OOPP5CSkgLAeq1st27dMGjQIHTo0IEjGBOR1zDAElGpmc1mbNy4EQsXLsT+/fvV5c2bN8eJ3/OubeWATEREFZqQBCauGofFixdj79696vLY2FgMHjwY/fv3h8Fg8GENiagiYIAlohJLSUnB77//jiVLliAxMRGA9ay7+C8Imv8MnP6GiKiSUkLMGDDlBqxatQpZWVkArL1xBg4ciEGDBiE6OtrHNSSiQMUAS0TFdv78ecybNw8rVqxQuwlXrVoVV//NtQZXk8bHNSQiIn8gNArGzb0Pv/76qzr6vFarRe/evXH33XejSZMmPq4hEQUaBlgi8tihQ4cwZ84c/PXXX7B9dLRo0QLHF1+0DsrEbsJEROSEgMCrG8Zj/vz52Ldvn7q8Q4cOGDZsGLp06QJZ5jRqRFQ0BlgicktRFGzbtg2//PKLwzVNcrIOmguhkNLYTZiIiDynhJnQ4/kOWL9+vTq1Wv369TFixAj07t2b0/AQkVsMsETklNlsxurVqzF37lycPn0agLXbl3JRC82FUMjZPMAgIqKSE3oL7vqoD5YuXYrMzEwAQM2aNXHffffhlltugV6v93ENicgfMcASkQOTyYSVK1fip59+wn///QcACAkJQe4xQHMpBJKR17cSEZH3CI2C0T8Owvz585GamgrAOq7CsGHDMHDgQISEhPi2gkTkVxhgiQgAYDQasXz5cvz8889ISEgAAFSpUgVpu03QxBsgWXhtEhERlR0hC4ybdy/mzJmDy5cvAwDCw8Nx9913Y8iQIQgNDfVxDYnIHzDAElVyubm5WLZsGWbPno0rV64AyBtReKcRmvgQSAqvbyUiovIjJIFnlz6I2bNn4/z58wCsU/Dcc889uOuuu9giS1TJMcASVVJmsxl//vknZs6cqQbX6OhopG7LhZxgYHAlIiKfEhCYuHocfvzxR5w7dw4AEBkZifvuuw+DBg1CcHCwj2tIRL7AAEtUySiKgnXr1uGHH37AxYsXAQDVq1dH8pZsa3DlVDhERORHBAQmrHgEP/74o/q9VbVqVdx3330YOHAgB3siqmQYYIkqCSEEtmzZgu+//x4nT54EAERFRSF9l8V6jSuDKxER+TEBgeeWPYQZM2aogwzWrFkTDz30EPr27ct5ZIkqCQZYokpg//79+PLLL3Hw4EEAQFhYGLIPCOuowgq/8ImIKHAISWD8opEOl8A0btwYjz76KDp16gRJ4glZooqMAZaoArt48SK+/vprbNy4EQCg1+thPqGB5mIoJDODKxERBS4hCzwwcxBmz56NjIwMAECHDh0wbtw4NGvWzMe1I6KywgBLVAGlp6dj5syZWLhwIcxms7Vb1SU9tGdDIZk4jysREVUcQqvgzo9vwqJFi2AymQAAffv2xdixY1G9enUf146IvI0BlqgCMZlMWLx4MWbOnIm0tDQAgJSig/Z0OOQsrY9rR0REVHaE3oKbJnfEqlWrIIRAcHAwhg8fjnvuuYcDPRFVIAywRBXEjh078Omnn6pTDTRo0AAXlqZATuWXNhERVR7/O/wWPv/8c+zbtw+AdaCncePGoWfPnrw+lqgCYIAlCnAJCQn43//+p17nGhUVhYwdFuuUOOAXNRERVT62OWS/+uorXL58GQBwzTXX4KmnnkKTJk18XDsiKg0GWKIAZTQaMXfuXPz000/Izc2FRqMBzumhORcKycIBmoiIiIQsMPy7Afjll1+Qm5sLWZYxePBgPPTQQwgJCfF19YioBBhgiQLQ9u3bMW3aNHVCd+lqELQnwyFnBfm4ZkRERP5H6Czo9mIbrF+/HgAQHR2N8ePHo0ePHuxWTBRgGGCJAkhKSgo+//xzrFmzBgBQrVo1XN1ignwlmN2FiYiIivD21hccTgB36dIFTz/9NOrUqePjmhGRpxhgiQKAEAIrVqzAF198gbS0NMiyDOl8MLsLExERFZOQBO777lbMnj0bJpMJOp0Oo0aNwr333gutliP2E/k7BlgiP3fhwgV89NFH2LVrFwBAytBCeyICcga7CxMREZWUEmxG20cbYOfOnQCAJk2a4KWXXuIgT0R+jgGWyE9ZLBbMnz8fP/zwA4xGI3Q6HSxHddBcCoEk2F2YiIiotAQEJqx4BJ999hnS0tKg0WgwYsQI3H///dDpdL6uHhE5wQBL5IcuXLiAqVOnYv/+/QAAKVWHoBPhkHLYtYmIiMjbRJAFXSe0Uqeka9CgAV588UW0bNnSxzUjooIYYIn8iKIoWLRoEb755hvk5OTAYDDAtE/LOV2JiIjKwaR1j2PatGlISUmBLMu477778MADDyAoiJftEPkLBlgiPxEfH493330Xu3fvBgBIqUEIOh4JKVfj45oRERFVHkKr4MbJbdUR/5s2bYrJkycjLi7OtxUjIgAMsER+YdWqVfj444+RlZUFvV4PyyEd5P/Y6kpEROQrk9Y9jg8//BBpaWnQ6XQYN24c7rrrLs4bS+RjDLBEPpSVlYVp06Zh5cqVAAApLQjaYxGQea0rERGRzwmdBW0fb4AdO3YAsM4b++KLLyI6OtrHNSOqvBhgiXzkyJEjeOONN3Dx4kXrvK5nDNZ5XdnqSkRE5DcEBMb9ei+++uorGI1GREZGYtKkSbjuuut8XTWiSokBlqicKYqCefPm4bvvvoPZbEb16tWRssYEOY3D9RMREfmr7059gDfffBPHjx8HAAwfPhwPPfQQtFr2miIqTwywROUoLS0Nb731FrZu3QoAkBP10B6PgGSRfVwzIiIiKoqQBG794HosXrwYAHDNNdfg1VdfRfXq1X1bMaJKhAGWqJwcO3YMkydPRnx8PHQ6HZRDesjxHKiJiIgo0ExcMw7vv/8+srKyEBkZicmTJ6NLly6+rhZRpcAAS1QOli1bhmnTpsFoNAI5GgQdjoScyTnliIiIApUINqP+vVXVLsUPPvggRo4cCVlmryqissQAS1SGcnNz8emnn+KPP/4AAMjJOmiPRrLLMBERUQVQsEvxDTfcgEmTJiEkJMS3FSOqwBhgicpIYmIiJk2ahMOHD0OSJMinQ6C5wFGGiYiIKppn/ngAH330EUwmE+Li4vD222+jXr16vq4WUYXEZiCiMnD06FGMHTsWhw8fRkREBLT7I6G9EMbwSkREVAFNu+1HfP7554iOjsaZM2cwduxY/PPPP76uFlGFxBZYIi/bsGED3n77beTm5kLK0iDoUBSkHA6xT0REVNGJIAuaPlQTBw4cgCRJePzxxzF06FBIEk9gE3kLAyyRlwghMHPmTEyfPh0AICXrEMTrXYmIiCoVIQnc/G4XLF26FABw11134YknnuB8sURewgBL5AUmkwnvv/8+Vq5cCQDQXAyB5jS7DBMREVVGAgIPzR6Mr776CgDQtWtXvPbaaxzcicgLGGCJSikrKwuvvPIKduzYAY1GA+lICDQJ/IIiIiKq7CatexxvvfUWjEYjmjRpgvfeew/R0dG+rhZRQGOAJSqF5ORkTJgwAceOHUNwcDDMu4KhSdH7ulpERETkJz7Z/zomTpyI1NRUVK9eHR9//DFiY2N9XS2igMUAS1RC58+fxwsvvIBLly4BRhlBh6IgZwT5ulpERETkZ4TegpqDQ3Du3DlERkbiww8/RLNmzXxdLaKAxNFliErgxIkTePzxx63hNVsD3b4qDK9ERETklJSrQfz8bDRr1gxXr17FU089hX///dfX1SIKSAywRMV0+PBhjB8/HqmpqZAytNDtq8JpcoiIiMgtySzj9IxktG/fHllZWXj++eexefNmX1eLKOAwwBIVw/79+/HMM88gIyMDUloQgvZXgWTS+LpaREREFAAki4yD/7uIbt26wWg0YvLkyVi7dq2vq0UUUBhgiTy0e/duPP/888jKyoJ0NQhBB6M4xysREREViyQk7HjvOG6++WZYLBa8+eabDLFExcCjbyIP7NixAxMmTEB2djakFB2CDlZheCUiIqISkSBh/St7cOutt0JRFLz11ltYt26dr6tFFBA4CjFREfbu3Yvnn38eubm5kJN10B6OgiQkX1eLiIiIApyAQO+3O2L58uXQaDR49dVXcdNNN/m6WkR+jU1IRG4cOnQIL774IsMrEREReZ0ECWsn7UL//v1hsVgwZcoUbNiwwdfVIvJrbIElcuHEiRMYP368dcCm1CAEHaoCSWF4JSIiIu8SEOj1VgesWLECWq0W77//Pq699lpfV4vILzHAEjlx7tw5PPHEE9apctKCEHQgCpLCDgtERERUNgQEur3SCuvXr4fBYMC0adPQsmVLX1eLyO8wwBIVkJSUhHHjxiE+Ph5ShtY6VQ4HbCIiIqIyJiSBa56Kxc6dOxEZGYnPP/8ccXFxvq4WkV9hgCWyk5WVhfHjx+PYsWOQsjUI2lsVkpnhlYiIiMqHkBU0eigahw8fRkxMDL788kvUqFHD19Ui8hs8MifKYzab8dprr+HYsWOAUbbO88rwSkREROVIUmSc/DERsbGxuHLlCiZMmIDMzExfV4vIb/DonAiAEAIfffQRtm3bBlgkBB2KgpSj9XW1iIiIqBKSzDLiF2ShWrVqOH36NN544w1YLBZfV4vILzDAEgGYM2cOli1bBlmWoT0aCTkjyNdVIiIiokpMMmrwzjvvQKfTYevWrfjyyy99XSUiv8AAS5Xetm3b8M033wAA5OOh0CTrfVwjIiIiImB8q1cxadIkAMCvv/6KJUuW+LhGRL7HQZyoUjt//jzGjh2LjIwMyPEGaE+EQwLneiUiIiL/cf+M2/H9999Do9Fg2rRpaNeuna+rROQzDLBUaWVmZuLRRx/F2bNnrXO97q8CSTC8EhERkX8REOjxRlusXr0aVatWxffff4/o6GhfV4vIJ9iFmColIQTeeecdnD17FsiVEXQ4kuGViIiI/JIECRvf2IuGDRsiOTkZr7/+Osxms6+rReQTDLBUKS1cuBCbNm1CUFAQgg5HQTJpfF0lIiIiIpckRcKbb76JkJAQ7Nu3D99++62vq0TkEwywVOkcO3ZMHclPHAnmiMNEREQUEB6s/ywmTpwIAJg7dy7++usvH9eIqPzxGliqVLKysvDwww/jwoULkJP00B6O5KBNREREFFDu/Lwn5s2bh/DwcMyYMQMxMTG+rhJRuWELLFUq06ZNw4ULF4BcGdrjEQyvREREFHAWjV+PZs2aIT09HVOnToWiKL6uElG5YYClSmP9+vVYuXIlZFlG0NFISGb++xMREVHgkYSEyZMnQ6/XY+fOnVi4cKGvq0RUbngET5VCamoqpk2bBgCQzhggp+l8XCMiIiKiknu4wfN47LHHAABff/01zpw549sKEZUTBliqFD755BOkpqZCytRCcz7U19UhIiIiKrUvBs9Gly5dYDQa8fbbb3NqHaoUGGCpwtuwYQPWrVsHCEB7LILzvRIREVGFIEHCns9OIiwsDEePHmVXYqoUGGCpQktPT1e7DmvOh0LO5JQ5REREVHFIJg3GjRsHAPjhhx+QkJDg4xoRlS0GWKrQvv/+e6SkpEDK1LDrMBEREVVInw6ciWuuuQbZ2dmYNm0aOEsmVWQMsFRhHT9+HEuWLAEAaE+x6zARERFVTBIkPP/889BqtdiyZQs2btzo6yoRlRkGWKqQhBCYNm0aFEWBfEUP+SpHHSYiIqKKa0zDFzB8+HAAwJdffonc3Fwf14iobDDAUoW0cuVKHDhwALBI0J4O93V1iIiIiMrcnLHLERMTg/j4eCxYsMDX1SEqEwywVOHk5OTg22+/BQBozoVCMmp8XCMiIiKisicpEsaOHQsA+Omnn5CSkuLjGhF5HwMsVTgLFy5EYmIikCNDcynE19UhIiIiKjfv9/8WzZs3R1ZWFqZPn+7r6hB5HQMsVSjp6emYPXs2AEB7LowDNxEREVGlIkHCY489BgBYunQpzp496+MaEXkXAyxVKHPnzkV6ejqkTA3ky8G+rg4RERFRuXuhw9vo1q0bFEXBTz/95OvqEHkVAyxVGCkpKeqABZpzYZDA1lciIiKqnEaPHg0AWLNmDc6fP+/byhB5EQMsVRi//fYbsrOzIaVrISfpfV0dIiIiIp95osVkdO3ala2wVOEwwFKFkJWVhUWLFgEANBdC2fpKREREld6oUaMAAKtXr8bFixd9XBsi72CApQph2bJl1mtfszVsfSUiIiIC8FTr19ClSxdYLBbMmzfP19Uh8goGWAp4ZrMZ8+fPBwBoLoSw9ZWIiIgozz333AMAWLlyJdLT031cG6LSY4ClgLdx40YkJCQARhnyZYOvq0NERETkN17sNBUNGjRAdnY2li1b5uvqEJUaAywFvN9//x0AoIk3cN5XIiIiIjsSJAwdOhQAsHDhQlgsFh/XiKh0GGApoJ07dw579uwBhDXAEhEREZGjT+6cgfDwcMTHx2PXrl2+rg5RqTDAUkCztb7KKTpIRo3rghJbZomIiKhikrRaSFqt6/WKhL59+wIA/vzzz/KqFlGZYIClgGU2m7Fq1SoAgBwf4ryQJDG8EhERUaXgLsgufWUDAGDTpk1IS0srx1oReRcDLAWs3bt3IzU1FTBJkFN0hQsUDK4MskRERFTBOAuszpbJmUFo0qQJTCYT1q5dWx5VIyoTDLAUsNasWQMAkK8EFx68iWGViIiIKjFnIdbWjXjDhg3lXBsi72GApYCUm5uLTZs2AQA0icGOK92FVwZbIiIiqiDcXffqbP33D8wHAOzduxfJycllVi+issQASwFpz549yMzMBHJlSGlB1oWeXu/KEEtEREQBrqjwal/OVlbK1aBFixZQFAV//fVXWVaPqMwwwFJA2rJlCwBATtZDAgdqIiIiInLHFmJ79uwJAAywFLAYYCngCCEcAmyJwisDLxEREQUoT1tfnW33/cPWbsT79u1DTk6ON6tFVC4YYCngnDp1CpcvXwYsgJymL/mOGGKJiIgowJQ0vNrIJj2qV68Oo9GIvXv3eqlWROWHAZYCzp49ewAAUpoOksIQSkREROQpCRI6d+4MANi2bZuPa0NUfAywFHBsAVa+6mTu1+JiKywREREFCDk4GJKu9Mc/nTp1ApB/TEUUSBhgKaAoioJ9+/YBADRZod7ZKUMsERER+Tk5OBiQrYfupQ2x7w6dAQA4ffq0dVYHogDCAEsB5dy5c7h69SqgSNCYw71yFpKIiIjI78mOh+2STlei4yA5JASSEoRatWpBURQcPnzYWzUkKhcMsBRQjh07BgCQs4MhyTJkvd47IZatsEREROSn5OBgl+uKcxwkh4QAsvWYp3Xr1gCA/fv3l65yROWMAZYCSn6AzRt9WJYgeSt8MsQSERGRn7HvOuyKxyFWzj/WadGiBQDg+PHjJa4bkS8wwFJAUQNsTv70OSXtQuMUQywRERH5CU/Cq01Rx0JySIjD7988sxCAdXpCokDCAEsBQwiBkydPAgDkHLuuNLLkva7EAEMsERER+VxxwquNq2Mh+67D6rK8xoBLly4hKyurZJUk8gEGWAoYV69eRXp6OgBAyg1yXOntEEtERETkS8UMrzYFj4WchVcAkCwaVKtWDQBw5syZEj0WkS8wwFLAuHDhAgBAMmkhCSf/urweloiIiCoAd4M2ecIhxDoJrzb16tUDYG2FJQoUWl9XgMhTaoAt2PpqR9LpIAkBYTSWV7WIiIiIvEbSakvc+uqwH53Oui83atasCQCIj48v9eMRlRe2wFLASEhIAABIRtcBFrIE2RAMWa93XcYTQpRueyIiIqJikrRaQJIhTOZS7+vMC+1w+tnWbsvYAux///1X6scjKi8MsBQwkpKSAACS2c3ZREkGJBlSsL7kIZbhlYiIiMqZLbzalCbEnnmhHYyRCowRCk4/1cpluV/eWg4gv5GAKBAwwFLASE5OBuAiwOYFV/vfSxRiGV6JiIionBUMrzYlCbG28GpjjLSGWGdBVjJrAFgHyiQKFAywFDDyA6zGcYWTD3zb8mKFWIZXIiIi8gVXxzIoXog987xjeLUxRipqkHVgYYClwMMASwEjMzMTgHXYd5WbD3zbeo9CLMMrERER+UBRAy0BnoXYM8+3gzGqcHi1VzDESgywFIAYYClgZGdnW+8oecPBFxVebSTZ/Wh+DK9ERETkA666DjtTVIgtKryq5SIVnB5vDbG2AJudnQ2zufQDRxGVBwZYChi2ACspsufhNY+kC3LeCsvwSkRERD5QnPBq4yrEnnm+XbH2Y4zKC7Eif45YBlgKFAywFDByc3Otd4TGfUFnnHUlZnglIiIiHyhJeLUpGGI96TrsjDFKwZnH8rsTm0ymEtWHqLwxwFLAEGrglNyWc8k+xDK8EhERkQ+UJrza2ELs2edKFl5tjFXyj4c4FywFCgZYChiSZAuupQiftuthpRKGYCIiIqLSKGV4tUke3Ba5VUoeXq11YRdiCjwMsBQwJC+ETmE0QsnJte2w1PsjIiIiKg5hLn1X3dRhHWAKA8LOlvJQ3q5HWvXq1UtZK6LywQBLAUOjsV77ev6BBiXaXhiNULJzAGF3tpIhloiIiMqTEKUKsanDOsAYbj1+0RhFqULsnNs+V+8HBweXeD9E5YkBlgKGwWAAAEzt9xNOPdO8WNs6Da82DLFERERUnkoYYu3Dq01JQ+xvgz5FEyU/tIaEhBR7H0S+wABLASM0NBQAUNeix9z7P8Gpp1t4vrEQzsOrDUMsERERladihlhn4dVGYyze+CDzB32Gdno9srKt+zMYDJBlxgIKDPxPpYBhC7CZWRLa6fWYO3KaRy2xDte9usMQS0REROXJwxDrLrzahJ3z7LB+/qDP0FGvAwBk5eQHWKJAwQBLASM8PBwAcDXd+m/bTp/XEusmxLrtOuwMQywRERGVpyKm9vMkvAKAJlcUGWLnDPpcDa8AkJJqLV+lShUPKkrkHxhgKWDExMQAABKTNeoyW4i9c8vRQkG22OHVhiGWiIiIypGrVlhPw6uNqxA7Z9DnmDPoc3TWBzksT0qxHlNVq1atGLUl8i0GWAoYtgB7JUnjsLydXo9HIi9h9v2fqtfFlji82jDEEhERUXlx0pU49e7ihVebgiHWFlwLhlcASMwLsNHR0cV+HCJfYYClgGH7cL2S7PzftqNeh9kjP8HpJ1uULrzaMMQSERFRebELsal3d4AxouTHIbYQ66zV1V5i9ggAbIGlwMIASwGjVq1aAIBLCVqXZUbsfAj1/0yDHMqh4ImIiCjACAFJI5cqvNrc99BqBEsWt2XOnz8PAKhbt26pH4+ovDDAUsCoX78+AOBSvAZGFwP25SQZoIlPgRwRDjksrHQPWMSgCkRERETeIun1kPR6AECtP86Xal9Dxq3DTWGHkCM0bsvZAmy9evVK9XhE5YkBlgJGtWrVEBoaCkVIuBhfuBW2xeb70XR6tvUXSfJOiCUiIiIqY5JeD0mSIOVdvqRcSSzxvoaMW4c+4QfU3/cZc5yWy86RcOXKFQBAbGxsiR+PqLwxwFLAkCRJ/YA9e8ExwLbcMgKxHwDaS8n2G5Q8xLL1lYiIiMqBLbwWVJJW2ILhFQByhMZpiD2TdywVFRWFiIiIYj8Wka8wwFJAady4MQDg6Kn8AQlabhmBeu9LjuHVpiQhluGViIiIyoGr8ApYW2E9DbFCkpyGVxtnIfZY3rFUs2bNilFjIt9jgKWA0qKFdZqcoyfzA2x2Yojz8GpTnBDL8EpERETlwF14tfEkxApJwuBHXYdXm4LXwx69dC8ABlgKPAywFFCaN28OwBpgFcXa+tp0hvNrOxx4EmIZXomIiKgceBJebdyFWFt47Re+36N9HTRmq/ePHDkCgAGWAo/r+UiI/FBcXByCg4ORmZ2Da5YOQr2ZMrQXkjzb2BZiQ0MgsrJhSU8v28oSERERFVCc8GpjHdQpf6RgW3AF4HF4BYBMocVBYzZijSE4ffo0gPzebUSBgi2wFFC0Wi1at24NAKg5K8Xz8GojSYBWCyk8zLE1lq2vREREVMZKEl5tav15AYA1vN45dgP6he8vVni1yRRaLN0PCCEQGxuL6OjoEtWHyFcYYCngdOjQAQAgcuJLvhP7LsUMr0RERFSGbHO8ljS8AoCScAW1/ryAO8duwC0Re0tVn+TzTwAA2rdvX6r9EPkCAywFnI4dOwIALIYMCJQifEoSJA3fAkRERFS2hNFYqvCq7udqWqnDqyJk7N69GwADLAUmHr1TwGnatCnCwsIA2QLFkFXi/YjsbFjSMrxYMyIiIiInvNDbSwrWA5KMFx8dV+J9KELGC8+MxqlTpyDLstqrjSiQMMBSwNFoNOjatSsAwBJyFShBK6rIzoZyNQ1QLN6uHhEREVEhSm5uibaTgvVqeAUAw/aTeHHcY8V/fCHj+Rceg+HkcQBA69atERUVVaI6EfkSAywFpO7duwMAzIYUCFkqfoi1WCDM5jKoGREREZETQhQ7xKrBVXI8zjFsO1Gs/djCa+TueFzTJwYA0K1bt2Ltg8hfMMBSQOrSpQuCgoIgtLkQ2mxAloEgrUdBVmRnQ8nILIdaEhEREdkpRldi+1ZXZzxphVWEjGeff0INr0Iy499//wXAAEuBiwGWAlJISAg6deoEADCH2E2lI8tuQ6yt6zBbX4mIiMgXPGmFLSq8AtZW2AmPuQ6xipDx/ARrcI3cbZ25wWxIhtlsRuPGjREbG1u8ihP5CQZYClh9+/YFAJgNSY6jEbsLsew6TERERL5URFdiT8KrTchW512J1fC6y3HKweY9IgDkH0MRBSIGWApY3bt3R2hoKITWCEWX7rjSSYhl12EiIiLyC066EhccrMlTEx53bIVVhIznXiwcXhVNLvbt2wdJktCnT5/i15nIT2h9XQGiktLr9ejRowf+/PNPmEMSoTFGOBaQZetNUQCLwtZXIiIi8htKbi5kvR5A8VpdCwr5x9oKawuuABC1M75QOXPIFQDWuV9jYmJK9FhE/oABlgLagAED8gJsEnRXYyEJJ//SsgyRmcXWVyIiIvIfea2wpQmvNhOeeAymUA2idv7n/KGgIKJBLpKSgNtvv71Uj0Xka+xCTAGtdevWaNy4MSAJmEOvuC4oBISFc74SERGR/1CMplKHVwAwrN2PqB3OwysAWIJTkZSUhCpVquDGG28s9eMR+RIDLAU0SZJw5513AgBMoZcdB3PKIzKyoFxNs21gvRERERH5mmKBkp5edDkXRHa29WZRoCQmuyzXul8kAGvPtaCgoBI/HpE/YIClgNe3b1+EhYVBaHNhCU4tXECxFG59ZYglIiIiP1DS8TlswVVYFOvvOc5HNrYEZWLXrl3QaDS44447SlxPIn/BAEsBz2AwYODAgQAAU/glh1ZYh9bXghhiiYiIyA8UtxXWFl4L7cdJK2zXYdUBAL1790bNmjVLVkEiP8IASxXC0KFDodPpoOgyHafUcdb6ao9diomIiMjHPG2Fte8y7HR9gVZYRZODjRs3AgDuvffe0lWSyE8wwFKFULVqVQwYMAAAYAy/BKCI1teCGGKJiIjIjxXsMuyKfStsnzH1oSgKunbtikaNGpV1FYnKBQMsVRj33HMPNBoNlOA0WIIyim59LYghloiIiHzEXTdid62uhcrmtcIqmlysWLECAHDfffeVvoJEfoIBliqMWrVqoV+/fgAAY+R5pyMSF4ldiomIiMgHnHUjLqrLsDs3jqoJk8mEjh07om3btt6oIpFfYIClCuXBBx+0XgurT4dZSiz5jhhiiYiIqJzZt8J62mXYGXPGf1i1ahUA4JFHHvFa/Yj8AQMsVSg1atTAXXfdBQAw10stWSusDUMsERERlSNbK2xJW11tOj5QD0II9OzZEy1atPBW9Yj8AgMsVTgjRoywzgsbaoYSk+Pr6hARERF5rLThVQnPwZYtW6DRaDBmzBgv1ozIPzDAUoUTERGBESNGAADM9dMhNCX8EhClaL0lIiIiKgElN7foQi4ICNS9LRwAMGDAANSrV89b1SLyGwywVCENHjwYderUAfQKLPUyGEaJiIgoMJTwmEWYTTDHXMWpU6cQERGBhx9+2MsVI/IPDLBUIen1ejz99NMAAEvtLCghJoZYIiIiqpCE2QShNSO4jbXX2SOPPIKoqCjfVoqojDDAUoXVpUsX9OzZE5AAc6N064BOQngWZBl2iYiIyEeE2eRxOWG2nqTv+UoHZGZmonnz5hgwYEAZ15DIdxhgqUJ74oknYDAYICJNUGpk569gQCUiIiJ/5cFxii24QggoUblYtWoVJEnCs88+C41GUw6VJPINBliq0KpXr44HH3wQAGBukAGht+Sv9LQ1loiIiMhP2Le6AoDQKIi6KQgAcNddd6F58+a+rB5RmWOApQpvyJAhaN26NaAVMDVJKzw3bMEQy1BLREREPuasG7F9q6uNuWE6rly5gjp16uCRRx4pzyoS+QQDLFV4Go0GEydOhF6vh4gyQqmZXbgQW2OJiIjIn9gdlxRsdbWxVMmFUiMHkiRh4sSJMBgM5V1LonLHAEuVQr169fDoo48CyOtKHGx2XpAhloiIiPyIs1ZXABBaBZE3Wq91HTp0KK655hpfVI+o3DHAUqUxaNAgtG/fHtAImJpdhZAYVomIiMh/OWt1BQABgY7PNEZSUhJiY2MxZswYH9SOyDckIdjkRJVHQkICHnroIaSlpUFzyQDtqQhfV4mIiIioWMx1MmFpkAGdToevv/4ajRs39nWViMoNW2CpUqlRowZefvllAICldjYs1XJ8XCMiIiIizylhJqCxdTyPJ598kuGVKh0GWKp0rr/+etx7770AAHOTNMepdYiIiIj8lNAoqNZfB4vFgptuugl33HGHr6tEVO4YYKlSGjNmDFq1amWdWqdFKoTMnvRERETkvwQE2j/dEPHx8ahVqxZeeOEFSJLk62oRlTteA0uVVkJCAh5++GFcvXoV8hU9tEcjIYFfBEREROR/zHHpsNTNgl6vxxdffIGmTZv6ukpEPsEWWKq0atSogTfffBMajQZKTC4sdbN8XSUiIiKiQiwx2epxyksvvcTwSpUaAyxVau3atcPTTz8NALDUz4ClKgd1IiIiIv+hhJkgt7Een4wYMQK9e/f2cY2IfIsBliq9gQMH4s477wQkwNwsDUqIyddVIiIiIoLQWRDZR4bRaMT111+Phx9+2NdVIvI5BlgiAOPHj0f79u0BjYCpVSpHJiYiIiKfEhoFte8OQ2JiIuLi4jB58mTIMg/diTiIE1Ge9PR0PPHEEzh9+jSkLA2C9lWFZOYXBREREZUvIQmYWqdARJoQExODL7/8EjVq1PB1tYj8Ao/OifKEh4fj/fffR0xMDESIBaaWnF6HiIiIypeAgLnZVYhIE0JDQ/H+++8zvBLZYYAlslOjRg18+OGHCAsLg4gwWb9AwBBLREREZU9AwNwwHUp0LrRaLd5++200atTI19Ui8isMsEQFNGjQAFOnToVOp4NSLRfmpmkMsURERFSmBAQscRlQamcDAF5++WV06NDBx7Ui8j8MsEROtG3bFq+99pp1jtjqOTA3ZoglIiKismOpl6nO9frcc8+hT58+Pq4RkX9igCVy4YYbbsCrr74KWZah1MyBuVE6QywRERF5nblOJiz1MwEATzzxBAYOHOjjGhH5LwZYIjduuukmvPzyy5AkCUqtbFgaZDDEEhERkdeYa2fB0iADAPDII4/g7rvv9nGNiPwbAyxREfr164cJEyYAACx1smBpyJZYIiIiKj1znUxYGqYDAEaPHo0RI0b4uEZE/o8BlsgDAwYMwHPPPQcAsNTO5jWxREREVGICAubYDLXldeTIkXjggQd8XCuiwCAJIXgUTuSh5cuX47333oOiKJCv6KE9FglJSL6uFhEREQUI22jDtgGbHnnkEba8EhUDAyxRMW3YsAFTpkyB2WyGnKSD9kgUQywREREVSUDA3CgdSi3rVDnjx4/HkCFDfFwrosDCAEtUAlu3bsXkyZNhNBohpQYh6HAUJAt75BMREZFzQhIwN70KJSYXkiThhRdewG233ebrahEFHAZYohLas2cPJk6ciKysLEiZWgQdjIJk1Pi6WkRERORnhEaBqWUqRKQJWq0WkyZNQu/evX1dLaKAxABLVArHjx/HhAkTkJSUBOTKCDoYBTkryNfVIiIiIj8hdBaYWqVAhFoQGhqKt956Cx07dvR1tYgCFvs8EpVCkyZN8PXXXyMuLg7QKzBdkwIlMtfX1SIiIiI/oISYEHErIEItiI6Oxv/+9z+GV6JSYgsskRekp6fj5Zdfxt69ewEF0J6IgOaywdfVIiIiIh+xVM1FUMdcZGdnIy4uDh988AFq1Kjh62oRBTwGWCIvMRqNeOedd7Bu3ToAgOZiCDSnwyCBIxQTERFVFgICljpZUBpmQgiB9u3b46233kJ4eLivq0ZUITDAEnmRoiiYMWMGZsyYAQCQUnQIOhLJEYqJiIgqASEJmJukQameAwAYOHAgnnrqKWi1Wh/XjKjiYIAlKgMbNmzAO++8g5ycHEjZGmgPRUHO5pcXERFRRSWCLDC1uAoRYYJGo8H48eMxaNAgX1eLqMJhgCUqI8ePH8fLL7+MhIQEwCxBeywCmuRgX1eLiIiIvEyJMCLiJhlJSUkIDw/HlClTOFgTURlhgCUqQykpKXjllVewb98+AIDmQgg0Z3hdLBERUUVgu94VjbNhsVgQFxeHt99+G/Xq1fN11YgqLAZYojJmNpvx9ddfY/78+QAA6WqQ9bpYk8bHNSMiIqKSEhrFer1rtHX6vD59+uD5559HSEiIj2tGVLExwBKVkw0bNuDdd99FVlYWYJQRdDQS8lWdr6tFRERExaSEmGBucRXCYIFWq8WTTz6JO++8E5LEHlZEZY0BlqgcnT9/Hq+++ipOnjwJCEBzLhSa86HsUkxERBQABASUWtmQW+TCaDSievXqmDJlClq2bOnrqhFVGgywROUsJycH06ZNw/LlywHkdSk+Fgkpl12KiYiI/JXQKjA3uQqlmhEA0KVLF0yaNAlRUVG+rRhRJcMAS+Qjq1atwscff2ztUmyWoD0RDk2iwdfVIiIiogKUyFxE9NQgKSkJQUFBGDduHAYPHswuw0Q+wABL5EOXLl3Cm2++iYMHDwIA5MvB0J4Mh2SRfVwzIiIiEpKApX4GlHrZEEKgfv36eO2119C4cWNfV42o0mKAJfIxs9mMWbNmYdasWVAUBciREXScAzwRERH5khJqgrlpGkSoGQAwcOBAPP744wgO5pzuRL7EAEvkJ/bv348333wT8fHxAAD5kgHaM2GQFLbGEhERlRchCVjqZQINcmCxWBAVFYUXXngBN9xwg6+rRkRggCXyK1lZWfjqq6+wZMkS64IcDYKORUBOY2ssERFRWVNC8lpdw6ytrj179sSzzz7LgZqI/AgDLJEf2rlzJ9577z0kJCQAADSXDNCcCYekcLAIIiIibxOSgKVuJqRGuTCbzYiIiMAzzzyDXr16caAmIj/DAEvkpzIzM/Hll19i6dKl1gU5MrQnI6BJ0fu2YkRERBWIEm6EuXEaRKgFANCtWzc8//zzqFatmo9rRkTOMMAS+bnt27fjww8/zL829ooe2lPhkEycN5aIiKikhEaBOS4DSq1sAEBUVBSeeOIJ9O3bl62uRH6MAZYoAGRnZ2P69OlYsGABLBaLdd7YM2GQ4w2QwC9ZIiIiTwkIKNVyYW6YDugVAMCtt96KcePGITIy0se1I6KiMMASBZBjx47hww8/xJEjRwAAUloQtCfDIWcG+bhmRERE/k8Em2FumA6lqhEAULduXTz//PPo0KGDj2tGRJ5igCUKMBaLBYsWLcJ3332H7OxsQAByvAHas2GQzJxyh4iIqCAhWwdpkhsZYTKZoNVqcd999+H++++HXs+xJYgCCQMsUYC6fPkyvvjiC6xfv966wCRBe5bdiomIiGzU7sIN0oFga3fhTp06Yfz48ahfv76Pa0dEJcEASxTg9uzZg08++QSnT58GAEgZWmhPhXPuWCIiqtSUEGt3YRFl7S5cs2ZNPPnkk+jevTsHaSIKYAywRBWA2WzGkiVL8MMPPyAjIwNA3mjFZ8Ig5Wp9XDsiIqLyI4IsMMdmAnVyoSgKdDodhg8fjvvuu4/dhYkqAAZYogokNTUV3333Hf744w8IIQAF0PwXAs35UF4fS0REFZqQBSx1MqFrrljHiADQo0cPPPbYY6hVq5aPa0dE3sIAS1QBnThxAl999RV27NhhXWCWoDkfCs2lEEiC3aaIiKjiEBBQqufAXD9DnRanZcuWePzxx9GmTRsf146IvI0BlqgC2759O7788kucOnXKuiBHtg70dCWYAz0REVFAExBQqhhhicuACDUDsF7nOnbsWPTq1YvXuRJVUAywRBWcxWLBypUr8f333yMxMREAIGVqoTkXCjlJzyBLREQBR4k0wlw/AyLCBAAICwvDyJEjcdddd0Gn4yCGRBUZAyxRJZGTk4Nff/0Vc+bMUQd6ktK11vljU3UMskRE5PeUMJM1uFaxjiys1+sxePBg3HfffYiIiPBx7YioPDDAElUy6enpmDt3LhYsWKAOciFdDbJ2LebUO0RE5IeUUBMssZlQquUCALRaLe644w6MGDEC0dHRPq4dEZUnBliiSiolJQWzZ8/G4sWLYTRaz2RLqUHQng+DdDWILbJERORzSpgJlnoZUKpZv6dkWcbNN9+M0aNHc2RhokqKAZaokrty5QpmzZqFZcuWwWy2DoIhXQ2C9nwouxYTEZFPKBFGmOtlql2FJUnCTTfdhNGjRyMuLs63lSMin2KAJSIAQEJCAn755RcsW7Ysv0U2XQvN+VDIyRzsiYiIypaAgIg0wVwvAyLKOjiTRqNBnz59cP/99yM2NtbHNSQif8AAS0QOEhMTMXfuXPz+++/IyckBkDdq8YUQyInBnEeWiIi8Sp0Op16mOqqwVqvFLbfcguHDh6N27do+riER+RMGWCJyKjU1FfPmzcPChQvVwZ6QK0NzKQSaeAMki+zbChIRUUATkoBSPRuWOlkQIRYAgE6nw2233YZ7770XNWrU8HENicgfMcASkVvp6elYvHgxfvvtNyQnJ1sXmiVo4g3QXAqBZNT4toJERBRQhFaBpVYWLLWyAZ0CAAgNDcXtt9+Ou+++m6MKE5FbDLBE5BGj0YjVq1dj7ty5OHv2rHWhAsiJwdBcDIGcGeTbChIRkV9Tgs2w1MmCUj0H0FgPP2vUqIEhQ4bgtttuQ2hoqI9rSESBgAGWiIpFURRs27YNc+fOxZ49e9TlUmoQNP+FQE7igE9ERGRlHZjJCEvtbIhoI2yHnU2bNsU999yDnj17QqvV+riWRBRIGGCJqMSOHDmCefPmYcOGDbBYrNcvIVe2di+ON0AysXsxEVFlJDQKLNVzoNTKv74VAK6//noMGzYM7dq1gyTxZCcRFR8DLBGVWkJCAn7//XcsXboUqamp1oW27sX/GSClB7FVloioElBCTLDUynboJmwwGNC/f38MGjSIc7gSUakxwBKR1xiNRmzYsAGLFi3CwYMH1eVSutbavTgxGJLCIEtEVJEISUCplgtLrSyISJO6PC4uDoMGDcLNN9+MkJAQH9aQiCoSBlgiKhNHjhzBokWLsHbtWhiNRutCswT5SjA0CQZIGVq2yhIRBTDFYIZSIxuW6jnqaMIajQY33HADBg0axG7CRFQmGGCJqEylpqbizz//xNKlS3Hx4kV1uZSphSbeAPlKMCQz55QlIgoEQlagROfCUjMbIiK/tbVq1aq44447cPvttyMmJsaHNSSiio4BlojKhaIo2Lt3L/744w9s3Lgxv1XWdq1sggHSVV4rS0TkbwQERLgJlho5UGLyr23VaDTo0qULBgwYgK5du3I0YSIqFwywRFTu0tPTsWrVKixbtgwnTpzIX5GjgeZyMOTLwZBzeCBERORLQmeBJSYHSvVsiND8kYTr1KmDAQMGoH///oiOjvZhDYmoMmKAJSKfEULg2LFj+OOPP7BmzRpkZmaq66R0LTSXDdaBn0zsYkxEVB6ERrEOyFQ9ByLSCFunGL1ej549e2LAgAFo27Ytr20lIp9hgCUiv5CTk4O///4bq1atwo4dO/LnlRWAnKKztsomcxRjIiJvE5KAUiUXSkwOlGq5gN05w2uuuQZ9+/ZF7969ERYW5rtKEhHlYYAlIr+TnJyMdevWYdWqVThy5Ej+CosEOVEPOTEYcqoOkmCYJSIqCQEBEWGydhGOzgGC8g8H69evj379+qFPnz6oVauWD2tJRFQYAywR+bWzZ89i9erVWLVqFeLj4/NXmCXISQyzRESeEhAQkSZYquVAic5Vp74BgGrVqqF3797o168fmjRpwi7CROS3GGCJKCAIIXDgwAGsWbMGGzduRHJycv5KhlkiIqfU0Bqd1z3YLrSGhYXhhhtuQN++fdG+fXtoNBof1pSIyDMMsEQUcCwWC/bv348NGzZg48aNSEpKyl9pliAn661djVP1vGaWiCodIQmISCMs1XKhVMsBdPmHeuHh4bjhhhvQs2dPdOzYEUFBQT6sKRFR8THAElFAs1gsOHDgANavX184zFoA+arO2jqbrIdkYusCEVVMQqNAqZprvVUxAtr8w7vIyEg1tHbo0IHztRJRQGOAJaIKQ1EUtWV28+bNjtfMApDSgqyts8l6SFkaSGDrLBEFLhFshiUvtIpIE+w/0qpUqYLu3bvjpptuQrt27RhaiajCYIAlogpJCIFTp07h77//xubNmx1HMwaAbA00yXrIKTpIV3ndLBH5PwEBEW5SW1pFqMVhfYMGDdCtWzd069YNLVq0gCxzDm0iqngYYImoUkhMTMSWLVuwefNm7Nq1C0ajMX9lXldjKUVvHQQqm62zROQfhN4CJcraLViJcuwarNFo0LZtWzW01q5d24c1JSIqHwywRFTpZGVlYefOndiyZQu2b9+OxMRExwI5MuQUa+usfFUHycJWDCIqH0IWEBFGa2CtkgsR4tjKGhERgc6dO6Nbt27o3LkzwsPDfVRTIiLfYIAlokpNCIHTp09j27Zt2L59O/bt2weTyZRfQAGk9CDIqXlhNj2I3Y2JyGsEBESoGUqUtYVVRBoBu3NmsiyjZcuW6Ny5Mzp37oxmzZpxuhsiqtQYYImI7GRlZeHff/9VA+3FixcdC1gAKc0aZuVUHaQMLbsbE5HH1MAaaYSINEGJdOwWDAAxMTHo0qULOnfujI4dO7KVlYjIDgMsEZEbFy5cwM6dO7Fnzx7s3r0bV69edSxgliCnBUGytdBmMtASUT4BAWGwQEQZoURabwhyPPQKCQlB27Zt0bFjR3Tu3Bn169eHJPFzhIjIGQZYIiIPKYqC06dPq2H233//RUZGhmMhs2TtcpwWBDktr8uxwgNRospCSAIizAQlwgQRYYISbgR0jodaBoMBbdq0Qfv27dG+fXs0bdqU09wQEXmIAZaIqIQsFgtOnDiB3bt3Y8+ePdi3bx+ysrIcCymAlKm1htk0a7CVTLx+jaiiEFrFGlbDjXk/TQ7XsAKAXq9HmzZt0K5dO7Rv3x4tWrRgYCUiKiEGWCIiL7FYLDh16hT27duH/fv3Y//+/bhy5UrhgtkayOlB1pbaDC2kDA4MRRQIhCQgQszWFtZwM0SEsdAowQAQGRmJNm3aoE2bNmjdujWaNWsGnU7ngxoTEVU8DLBERGVECIGEhAQ1zO7fvx+nTp1CoY/dvFZaKSNIDbaci5bItwQERLAFItwEEWaGEm6CCDUBTjpQxMbGqoG1TZs2qFu3Lq9hJSIqIwywRETlKD09HYcOHcLhw4fVW2pqauGCZglShhZyRpAabhlqicqGgACCLVBCzdawGpbXFVhb+BApNDQUzZs3R/PmzdGqVSu0bt0aUVFR5V9pIqJKigGWiMiHbK209oH22LFjyM7OLlzYAkhZeS21mVprsM3UQlLkwmWJyCkh53UDDjVZA2vezVlY1el0aNKkCZo3b44WLVqgefPmqFu3LmSZ7zkiIl9hgCUi8jMWiwVnz57FoUOHcOzYMZw4cQInT550HmoFrC2zmVpruLXd2FpLlZyAAPQKlBBzXmC1hlYRYoGzt4ZOp0ODBg3QuHFjNaw2bNiQgy0REfkZBlgiogCgKAouXryIEydO4MSJEzh+/DiOHz+OpKQkFxsAUrYWUpYmP9RmaiHlMNhSxWINqhYooRYIQ15Yzbs5u14VsA6y1KRJEzRu3BiNGzdGkyZNUK9ePYZVIqIAwABLRBTAkpOT1VB7+vRpnDlzBmfPnkVOTo7zDWzBNluTd9OqP2GWGG7JbwmNAmHIC6nBFuv9EDOEwXVQ1Wq1qFevHuLi4hzCarVq1TjIEhFRgGKAJSKqYBRFQXx8PM6cOaOGWtstNzfX9YZmKT/U5mgc7jPcUnkQGiU/nNoHVYMZCHJ9uKLT6RAbG4u4uDjUr18fcXFxaNCgAWrXrs1WVSKiCoYBloiokrAF27Nnz+L8+fO4cOECLly4gPPnz+Py5cuFp/exZ5Eg5ciQcjVAjgZSrsYacvPuM+CSJ9SAqrdABCuA3pL/u97iNqQCQLVq1VC3bl31ZguttWrVYlAlIqokGGCJiAi5ubm4ePGiGmhtPy9evOj6Olt7ZskaZHNlSEYZklEDKVcGjBrr7wy5FZqAADQCQq8AOguEXoHQWSB0dr8HW5yO9FtQlSpVHEKq7VanTh2EhISUw7MhIiJ/xgBLRERu5ebm4vLly/jvv/8QHx+v/rTdT05O9mxHCqyB1hZyTTJgst6Hyfq7bRksDLv+QMgCCFIg8m62+9DlLdPnh1RX16EWFBUVhZo1a6JWrVqoWbOmw61GjRoMqURE5BYDLBERlUpOTg4SEhKQkJCAK1euIDEx0eHnlStXkJqaWrydWuAYas0yJLMEmB3vF/qpMPQ6IyQBaBUIreNPaAWE/c8CYdXTUGoTERGB6OhoxMTEoFq1aoiJiUF0dDSqV6+OWrVqoUaNGjAYDGXzJImIqFJggCUiojJnNBqRlJTkEG5TU1ORkpKClJQU9X5qaqrz+W49ZQFgkQBLXpg1S4AiQbJIectt9/NaeRUAirUMBKzb2P0ORbIuy7sP2zemyAvKAuqyolqMRX5Bu5/C+lMCIFvvC1mo95F3X9jdh5xXRiMAjWLtuqvJW2e7n3cTcl5QLWYQtafT6RAVFYUqVaogKipKvdkHVFtg1ev1JX8gIiIiDzDAEhGRX8nOznYItykpKUhPT0dGRgbS09ORlpaG9PR0h1tGRgYURfFtxe3CLAQKBFW7nz4iSRLCwsIQFhaG8PBwh5ttmX1ArVKlCqpUqQKDwcApZ4iIyG8wwBIRUcBTFAVZWVlIT09HVlYWsrKykJ2drd7sf7fdz8rKQm5uLkwmE4xGo/rTdjOZTA7LyjogazQaBAUFqTedTufyp8Fg8PhmC6ehoaGQZblMnwMREVFZY4AlIiLygMVigRBC/akoitP7FosFiqJAlmXIsgxJktzelyQJWq0WGk0p+vkSERFVEgywREREREREFBDYl4iIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCgtbXFSAi8hUhBHJycnxdDSKiYgkODoYkSb6uBhGRTzDAElGllZOTg5tvvtnX1SAiKpaVK1fCYDD4uhpERD7BLsREREREREQUENgCS0QEQLe9OiSRd05PkiHJEiDJgCwBkgRJtq3LWy5JgCxBspVR10nqNpDslqvL8veprkP+eiFJ+acWpfz9qMvttrNfJvJ2o66TAcC2XFLX2bYRecuE/Ta2fch55dVtHNer+wQgkLdMdrLOoTwc6pi/TCq0rtA2cNzGYT3yt3H1WA6/u6hHoW1c7NdxG+GwfcH9qevt9iXylqPAdpCE3fbW9ZL9OrWsULeR1HJ25fP2I0ki/18wb3n+n1qo62UI9XfrOkDO+926zvq7bTt1nSQgIX87OW+ZeoP9cjgsz99GUZfJEJAlBRrburzf1fV59wFAoy4T0MC6XCMpBbZToMm7D0C9r5ZH/v5kWLeXYX186zrbdtZlEhRobNvDVg8FGsC6HayPZ3tutt+tjyXy7iO/LrC+zTSQ1Le7RpIgQ8pbJuX9Luf960gwGTUYPKYmiIgqOwZYIiIAsEj5h5KSDAl5YTMvGeSvkwA5P61J1jSYtxNb2pFRIJ3YJRu5cLrKTxl2y1Fgmf1jwMmygtshP7jaBdhCywoth5NAXHA97IJ0/tNyuc7V03C2X1fbuVvu8WMVb59Fh14vB1hn61Hwd+FkuXB4TGfrbMEqf539emG3nd0yCCf7zL/ZB9j8UJx3g+vlanCUYBdQ84MuYAuiUAOg/TprgFXyA6BkDX/W7fKCoCRZw2Xectt9tTwku7AMaKT8nxrALmw6WZf3Mlp/F3kBWKiB1bqdKDLAOtufjPxl1t/t62j3NyQiqsTYhZiIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMB5YImIAEAjIIRivS/BOhGk+lPKP93nMI+q3X3YLxP59x2Wu1hnNymocDG5af7y/J/C4T4cthMAINTZONU1AhIgoG4rCm6Tt11hBZfZJj51qFKB18PFrWDZouZmhYvlRa1zN9eru3X2z9DtNs7mc3WyvlAdXcwDC8f1kv06tWz+PiX7OV5t5R3mZbX/93IxDyxKPg+sQP52QhKON9gvh8NyRd2fkv84EICk2M1XKxzWC0mBsKuHgMj7Pe+nrR55v8t5ZWS75fbLrPWw7k4GoEj5PxXkzwOr5C2T4GoeWAkyrPPLapD/N7P9LudtU3BuWVldJ9ntL39fMiT1d+ufRYLJ6Ox9SURU+TDAEhEBMHa+7OsqlA1bPiiFgtGZCHD811J8WZESs//PZoc0IqJAwU9sIiIiIiIiCgiSEKKU5+aJiAKTEAI5OTm+rkZAycnJwcCBAwEAS5YsQXBwsI9r5P/4mhUPX6+iBQcHQ5LYJ4KIKid2ISaiSkuSJBgMBl9XI2AFBwfz9SsmvmbFw9eLiIgKYhdiIiIiIiIiCggMsERERERERBQQGGCJiIiIiIgoIDDAEhERERERUUDgKMREREREREQUENgCS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigKD1dQWIiKhsZGVlYe7cudi4cSPi4+MhyzLq1auHXr16YfDgwQgKCirxvpOTk/HLL7/gn3/+QUJCAvR6PRo0aID+/ftjwIABkCTJ6XbvvPMOVqxYUeT+161bB622fL+iyuL1Sk9Px7///otjx47h2LFjOHr0KJKTkwEAEydOxC233OLRfi5evIhffvkFO3bsQHJyMgwGA5o2bYrbb78dPXv2LHa9vMUfXzN//h8jIqLS4yc3EVEFFB8fj/HjxyM+Ph4AEBwcDJPJhCNHjuDIkSNYvXo1PvnkE4SHhxd730ePHsXzzz+Pq1evAgAMBgOysrKwb98+7Nu3Dxs2bMDUqVPdhhedToewsDCX610F4LJSVq/X33//jalTp5aqbv/88w9ee+015OTkAABCQ0ORnp6OHTt2YMeOHbj11lvx4osv8jUrwN/+x4iIyDsYYImIKhiz2YyXXnoJ8fHxqFatGiZNmoRrr70WiqJg/fr1+OCDD3D8+HG8+eabeP/994u174yMDLz44ou4evUqYmNjMXnyZDRv3hwmkwlLly7F//73P2zfvh2ff/45nn32WZf76dWrF15++eXSPlWvKMvXCwCqVq2KJk2aoGnTpmjWrBkmT57s8baXLl3C66+/jpycHLRp0wYvvfQS6tWrp7Z8zpgxA3/++SdiY2Nx3333FbtuJeXPr5mNP/2PERGR9zDAEhFVMCtWrMCpU6cAAG+++SZat24NAJBlGb1794YQAlOmTMHWrVuxa9cudOzY0eN9z507F8nJydDr9Xj//fdRu3ZtAEBQUBDuuusuZGVl4dtvv8XSpUsxdOhQ1KtXz/tP0MvK8vXq16+fx92EnZk+fTqys7NRtWpVvPvuu2prZkhICB588EEkJSVh6dKl+H97dx5U1Xn/cfxNEAQFRQ1VEGvE4NJEi4IaF3ANEhpTRc1obI211sTRmJk0M2Zo1OwmdYxm4lRTp2oTQ5JqRkymsaQqbhURjEUqgoiCGxIWAUEWL/D7g7nnd4msl8tymc9rJjNXznO+5+HxjJnPfZ7znM8++4xZs2ZZNaNujY48ZiIi0rlpEycRkU7G/PzfqFGjjGBhafr06Xh5edVq21TR0dFGDXN4tRQeHo6rqyuVlZX8+9//bm7X20Vrjpejo6PV/SotLeXYsWMAzJ49u85w+pvf/AaAkpISTpw4YfW1mqujjpmIiHR+CrAiIp1IWVkZ//vf/wB44okn6mzj4ODAuHHjAIiPj29y7WvXrpGdnQ1gnP9T3bp1Y+TIkc2u3V5ac7xaKikpifLycqD+8fby8mLgwIFt2reOPGYiItL5aQmxiEgnkpmZSVVVFQCDBg2qt535WH5+PkVFRfTo0aPR2uYlo43V9vX1JS4ujoyMjHrbnD17lueee44ff/yRLl260LdvXwICApgzZ06bLjtuzfFqKcvx9vX1rbedr68vmZmZXL16tdX7BB17zCx1lHtMRERsSzOwIiKdSG5urvHZ09Oz3nYPP/xwnec0JC8vr1m1S0pKuHfvXp1tcnJyyMrKomvXrpSXl3P16lX27dvHkiVLiIqKalJ/bKE1x6ulzNdxd3ena9eu9bYz983y76ct+gUdb8wsdZR7TEREbEszsCIinYhlYGwo9Li4uNR5TmvU7tatm/HnIUOGMGzYMCZMmICnpyeOjo6UlZURFxfH9u3buXnzJh9++CEeHh5t8n7T1hyvliotLX3g2nUxH2+rfnXkMYOOd4+JiIhtaQZWRETazLx58wgPD6dfv37GZj0uLi5MnjyZ7du3Gxv//OUvf6G6uro9uyp2SveYiEjnpgArItKJWM52mjcAqktZWVmd57RXbYCePXvy29/+FoDbt29z6dKlJp9rrdb+nVrC1dX1gWvXxXy8rfrVkcesMe1xj4mIiG0pwIqIdCKWzx3m5OTU287ymUTLcxrSp0+fZtXu3r17s4PLY489ZnzOyspq1rnWaM3xainzde7evdtgUDT3zfLvpy36BR1vzJqire8xERGxLQVYEZFOZODAgTz0UM0/7Q3tSms+1rt37ybvDmu5E25Dtc275z7yyCNNqtueWnO8WspyvC13JP4p87GGdgS2pY48ZiIi0vkpwIqIdCIuLi48/vjjAMTFxdXZprq6mjNnzgAwZsyYJtceMGAAffv2bbB2aWkp58+fb3ZtswsXLhifzc8qtqbWHK+WGjFihLFJkvn6P3X79m0yMzPbtG8decyaoq3vMRERsS0FWBGRTiY0NBSAc+fOkZyc/MDxmJgYbt26VattUzg4ODBz5kwAjhw5Uufyy/3791NaWoqjoyNPPvlkrWONbZhTVFTEnj17APjZz36Gn59fk/vWEq01Xi3l6urK5MmTAYiKiqK4uPiBNpGRkUDNM6ZBQUFt1reOOmYd9R4TERHbUYAVEelkQkND8fX1pbq6mrVr13L27FkAqqqqiImJYePGjQCMGzeOgICAWufu3LmT4OBggoOD6wyoCxYsoHfv3pSVlbFmzRpSU1MBuH//PlFRUfztb38DYNasWQwYMKDWud9//z1/+tOfOHr0KHfu3DF+Xl5ezokTJ1ixYoURelasWGEsU21trTleAAUFBbX+M7t3716tn9e1WdPSpUtxdXUlLy+P1157jevXrwM1M927d+/mwIEDACxevBh3d/cWj0VTddQx66j3mIiI2I5DtfaQFxHpdLKysnj55Ze5ffs2ULPss6qqioqKCgD8/PzYsmXLA6Fn586d7N69G4CvvvqqziWWqampvPrqqxQWFgI1s38VFRWYTCagZsnohg0bcHZ2rnXewYMH2bBhg/FnV1dXnJ2dKS4uprKyEgBnZ2dWrlzJnDlzbDAKTdea4xUcHNykPixZsoSlS5c+8PPY2FjWr19vhDU3NzdKS0uNMQsLC2PNmjU4ODg07Ze1kY44Zh35HhMREdvo0t4dEBER2/Py8mL37t18+eWXHDt2jNu3b9OlSxcGDRrE9OnTmTt3Lk5OTlbVHjp0KH//+9+JjIzk1KlT/Pjjj7i4uODr60toaChhYWF1zmyNGjWKP/zhD1y4cIHMzEwKCwspLi6mW7du9O/fn9GjR/PMM8/g7e3d0l+/2VpzvFpq/Pjx7Nq1i8jISOLj48nPz8fNzQ0/Pz+eeeYZpkyZ0i796ohj1pHvMRERsQ3NwIqIiIiIiIhd0MMfIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRERERERE7IICrIiIiIiIiNgFBVgRERERERGxCwqwIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRETswkcffURwcDAvvfRSe3dF2llxcTG/+tWvCA4O5vjx4+3dHRERaUNd2rsDIiLSukpKSkhLSyMlJYXU1FRSU1O5efMm1dXVAHz11Vd4eXm1yrWrq6uZN28eOTk5LFq0iBdeeMGqOmlpaURFRQGwfPlyG/awfV25coUzZ86QlJTElStXyMvLo7KyEnd3dwYPHsz48eMJDQ3Fzc2tvbvaobi5ubFgwQJ27NjBxx9/zLhx4+jatWt7d0tERNqAAqyISCe3evVq0tLS2uXaKSkp5OTkABAUFGR1nW3btlFZWcm4ceMYMWKErbrXrlavXs1///vfOo/l5+eTn59PfHw8e/bsISIigrFjx7ZtBzu4efPmsXfvXrKzs9m3bx+LFi1q7y6JiEgb0BJiEZFOzjzTCjUzV6NGjaJ3795tcu0TJ04A4OnpyfDhw62qcf78eRISEgA6VUgxB3t3d3fCwsKIiIhg69at7Nixg7feeovx48cDNWE2IiKCxMTE9uxuh+Pq6srcuXMBiIyM5N69e+3cIxERaQuagRUR6eTCwsLw8PBg6NCh+Pj44ODgwOrVq8nPz2/1a5sD7MSJE3FwcLCqxhdffAGAl5cXv/zlL23Wt/bm4+PD4sWLmT59Os7OzrWODR06lClTpvD555/zySefUFFRwaZNm/j000/bqbcdU0hICDt37uTu3bv885//ZP78+e3dJRERaWWagRUR6eTmzZvHjBkzGDBggNUh0hrXr18nMzMTsH75cE5ODrGxsQDMnDmzTfvf2jZu3MhTTz31QHi1tGjRIvz8/ADIyMggPT29rbpnF7y8vBg5ciQA33zzTTv3RkRE2oJmYEVEpFWYd4c1L1u2xqFDh6iqqgJg2rRpTTrHZDJx5MgRTp48SUpKCgUFBVRWVuLh4YGvry+BgYHMmDGDPn361DovODgYgNDQUCIiIrh27Rr79u0jPj6e3NxcunfvzpAhQ3juuefw9/c3zisvL+fgwYNER0dz48YNysrK8Pb25sknn2T+/Pkt3lxo9OjRxjPM169fZ/DgwVbXysjI4MCBAyQmJpKVlUVZWRlubm64u7vj5eVFQEAAkyZN4uc//7lV9U0mE99//z0xMTFcuXKFwsJCHBwc6NGjBx4eHgwfPpzAwEAmTpyIk5NTrXN/Ov4ZGRns37+fhIQEcnNzKS0t5d13333gy5Bp06aRmJhIZmYmKSkpDBs2zLrBERERu6AAKyIircK8fHj8+PF06WLd/25OnToF1DwnOnDgwEbbX758mXXr1nHjxo0HjuXk5JCTk0NcXBzp6elERETUW+fo0aO89957lJWVGT8rLy/n9OnTxMXF8eqrrzJr1ixyc3OJiIggJSWl1vlXr17lr3/9K6dPn2bTpk0tCrEmk8n4/NBD1i+cOnDgAFu2bKGysrLWzwsLCyksLOTGjRvEx8eTnp7O2rVrm12/oKCAP/7xj3VuGGYe+7S0NL755hsiIyPx8fGpt9bBgwfZtGkTFRUVjV7XclOvU6dOKcCKiHRyCrAiImJzubm5XLx4EbB++XBFRQUXLlwAYPjw4Y0uH05LS2PVqlWUlpYCMGrUKEJCQhg4cCBOTk7k5eWRnJzc6HtD09PTOXLkCL169WL58uXGtc+ePctnn31GWVkZmzdvxt/fn3feeYfLly8ze/ZsJk2ahIeHBzdv3uTTTz8lPT2d8+fPExkZye9+9zurxgDghx9+MD4PGjTIqhpXrlwxwmuPHj2YNWsW/v7+eHh4UFlZSV5eHqmpqZw+fdrqZdpbtmwxwmtAQAAhISF4eXnRvXt3SkpKyMzMJDEx0VgSXp/U1FQOHTpEjx49mD9/PiNGjMDJyYmMjAz69ev3QPtBgwbh6upKaWkpP/zwA0uXLrWq/yIiYh8UYEVExOZOnjxJdXU1zs7OjBs3zqoa6enpxuzj0KFDG2xrMplYt26dEV5ffvllY4daSxMmTGDZsmVkZ2fXWystLQ0/Pz+2bNmCu7u78fNf/OIX+Pj4sH79ekwmE6tWraKoqIiNGzcSGBhotBsyZAhjxoxh8eLF5ObmEhUVxeLFi3F0dGzW7w81y7CvXr0K1IT4AQMGNLsGQExMjDHzunnzZuO5WktBQUEsW7aMwsLCZtcvLy83vhgICgrinXfeeSAI+/v78+tf/5rS0tIGZ5KvXr2Kj48PW7durbVbdn27WDs6OjJkyBASExO5dOkSVVVVLZqpFhGRjk3/wouIiM2Zlw8HBgbi6upqVQ3LZcCNvfbn0KFD3Lx5E6jZdbmu8Gqpb9++DR5/7bXXaoVXsylTpuDp6QnAnTt3CA8PrxVezdzc3HjqqaeMdhkZGQ1ery65ubl8+OGHADg4OLBixYpm1zAz7zjt5uZWZ3i11LNnz2bXv3v3rvFlg7+/f4OzuK6uro0uqX7llVea9aonc9uysjJyc3ObfJ6IiNgfBVgREbGp4uJizp07B1i/fBggLy/P+NyjR48G25oDM8DChQutvibULEmtL+Q5ODjUOhYSElJvHct2t27dalYfysrKiIiIMILnTzeOai5z6C4uLiYmJsbqOvXp2bOnsZvy4cOHW/ROVk9Pzzq/FGiI5f1hed+IiEjnowArIiI2FRsbi8lkwtHRkYkTJ1pdp7y83Phc12yopUuXLgE1M3FN2eypIY2db9mXhnbrtWzXnEB3//59Xn/9dWNjqEmTJrFs2bImn1+XkJAQY9Zz/fr1rFy5ks8//5zz588by65bwsnJidDQUACSk5N59tln2bhxI4cPH252eLdml2XLAGu58ZaIiHQ+egZWRERsyjwb+vjjj+Ph4WF1HctnRhvbjbagoAD4/5nGlnBxcWnwuOXy2IaWR1s+h2l+FVBjTCYTa9eu5cyZMwCMHTuWN954w6rnZy15e3vz/vvv895775GTk0NSUhJJSUlAzTgPGzaM4OBgnn766Ua/LKjPSy+9REVFBdHR0RQVFfHtt9/y7bffAjVfLIwdO5awsLBGZ5Ibm22vi+WXHdbueC0iIvZBM7AiImIzFRUVxMXFAS1bPgw1z2uaFRUVtaiWPTCZTKxfv954dVBgYCDvvvuusTS3pQICAvjiiy948803CQsLM15jU1lZyYULF9i2bRsLFy40wnNzde3alYiICPbs2cPvf/97Ro8ebQT8/Px8/vWvf7F69Wpef/31WoHzp6zZgMly4ynL+0ZERDoffU0pIiI2k5CQYCxJbWmAtXxlSmMB1sPDg+zsbLvdwMccXs2z16NHj2bDhg0ten9sXZydnZk6dSpTp04Famauz549S3R0NKdPn6aoqIi1a9cSGRlJnz59rLrGgAEDeP7553n++eeprKwkLS2NU6dOceDAAe7cucPx48fZsWMHq1atstnvdffuXeNzYxt0iYiIfdMMrIiI2Iw5gPn5+eHl5dWiWpbvPL127VqDbc2v2cnLy2u0bUfz0/A6atQo3n//fZuH17p4eHgwffp0/vznPzN79mwASktLOXnypE3qm5cnL126lO3btxvLsw8dOmST+maZmZkAeHl50a1bN5vWFhGRjkUBVkREbKKqqor//Oc/QM3GQy3Vt29fHn74YQAuXrzYYNvg4GDjc2RkZIuv3VZMJhNvvPGGEV79/f354IMPGn0OtzWMHTvW+Gx+ptiWvLy8jPfYWvOu2foUFBQYr1B67LHHbFZXREQ6JgVYERGxiaSkJCP4WAbKljCHqszMTEpKSuptN23aNCMcfffdd3z99dcN1s3OzrZJ/1rCZDLx1ltvcfz4caB1w+uxY8caDaXmZ5cB+vfv36z6t27dIiEhocE2WVlZxkypt7d3s+o3JDk52fj8xBNP2KyuiIh0THoGVkSkk7tx44ax46yZ+f2iAEePHq21W7CrqytTpkxp9nXMs4je3t5WvQqlLlOnTuW7776jqqqKhIQEJk+eXGe7Ll268Oabb7Jy5UpKS0v56KOPOH78ODNnzmTgwIE4OTmRl5dHSkoKR48eZejQoURERNikj9Z6++23OXr0KFATGF988UWysrIaPKdXr1706tWr2df6+uuvefvttwkICCAgIIBHHnmEnj17cv/+fbKzszl06JAxe96vX79mv/4oOzubV155BW9vbyZOnMjw4cPp27cvXbt2pbCwkOTkZKKioozdpOfOndvs36E+8fHxQM3zvePHj7dZXRER6ZgUYEVEOrmkpCQ2bNhQ7/Ft27bV+nO/fv1aFGBtsXzYLDAwEE9PT3JycoiOjq43wAI8+uijfPzxx6xbt45bt25x7tw5zp07V2db8zOz7SkmJsb4fPPmTV588cVGz1myZAlLly616noVFRXExsYSGxtbb5v+/fuzYcOGBl8P1JBbt26xd+/eeo8/9NBDLFy4kDlz5lhV/6dMJhOHDx8Gamb9rX0FkIiI2A8FWBERabHLly8bs4ct3X3YkqOjI+Hh4XzyySecPn2agoKCBt8tO2TIEPbs2UN0dDQnTpwgLS3NeN6yV69eDB48mDFjxjBjxgyb9dEerF+/njNnzpCYmMiVK1fIz883lhT37NmTRx99lKCgIEJCQqx6bc/IkSPZunUrCQkJJCcnk52dzZ07dygpKcHFxQVvb29GjhzJ008/bbPZecC4JwDmzZtns7oiItJxOVRXV1e3dydERMS+7dq1i127dtGrVy/2799v1bs861NcXMyCBQsoKirihRdeYNGiRTarLfZtzZo1xMbGEhAQwObNm9u7OyIi0ga0iZOIiLSYefnwhAkTbBpeAdzc3IzQ+uWXX3Lv3j2b1hf7lJycTGxsLA4ODixfvry9uyMiIm1EAVZERFrk/v37BAUFsWTJEsLDw1vlGnPnzsXHx4fCwkL+8Y9/tMo1xL7s2LEDgJkzZzJ8+PB27o2IiLQVLSEWERG7cPHiRWJjY3Fzc+PZZ59t7+5IOyouLmbv3r1UV1cTHh7e4HPRIiLSuSjAioiIiIiIiF3QEmIRERERERGxCwqwIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRERERERE7IICrIiIiIiIiNgFBVgRERERERGxCwqwIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRERERERE7ML/AaGY0i/Eb7FdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAClpUlEQVR4nOzdd3xTVeMG8OfeJN2lpVA2peytIEuWILIRAUWGyHICCqK8ojgRJw74uX3llSXIFlEQ2SggQwQE2aOlrFK6RzqS3PP7I80labM607TP9/PJp2nuufeetBn3uefccyQhhAARERERERFRGSd7ugJERERERERE7mCAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCsUSYKOjoyFJEiRJwoQJE4pjkxVSz5491b8jEZEjEyZMUD8roqOjPV0d1eLFi9V6LV682NPVoWKmKAratWsHSZIwdepUT1eHvMTu3bvVz4XZs2d7ujpEZUZkZCQkSUJkZKSnq1LsnnjiCUiShC5dukAIUezbL7UW2MWLF2P27NkV6sPrp59+Up9zcnKyp6tDuWbPnq1+mbpzczcg/Pvvv5g6dSqaNWuGoKAghISEoHXr1nj55Zdx+fLlkn1SRFQhxMXFYenSpXjsscfQtm1bhIaGQqfToUqVKujQoQNmzJiB06dPl8i+v/32Wxw5cgR+fn6YNWuW3TJGoxHbt2/Hyy+/jF69eqFmzZrw9fVFUFAQGjZsiFGjRuGnn36CyWRyuT/rEyLu3Hbv3u10ewkJCdi6dSvee+89PPTQQ6hXr57N+iUhOjoa69atw6xZs9C3b19UqVJF3V/Pnj0LvL2kpCTMmzcPvXv3Ro0aNeDr64uAgABERERg8ODB+O6775CVleXWtlJSUvDRRx+hZ8+eqFatGnx8fFCzZk306NEDn332GfR6fYHrV1YNHjxY/bt/9913BV4/JiYGGo0GkiQhLCzM7b+xRWxsLFavXo0XX3wRvXr1QtOmTVGlShXodDpUrlwZbdq0weTJk7Fv3z63t2kymbB8+XIMHToUderUga+vL8LCwtCmTRu89tpriImJcXtbQghs2rQJjzzyCBo3boygoCDodDpUrVoVXbp0wSuvvIKLFy8W6Dk7c+PGDfzyyy+YPXs27r//ftSsWVP9/xQ2zF2+fBkvv/wyWrdujZCQEAQFBaFZs2aYOnUqTp486XJ9S5gs6M3V505Ztm7dOvV5dO/evVDb6N27t7qNVatWqY+/+uqr0Gq12L9/P5YtW1ZcVb5NFIOoqCgBQAAQ48ePt1umR48eapmKYvz48epzjoqKclm+Iv6NPOHNN99U/87u3Nz533300UdCp9M53EZwcLBYsWJFyT85qhAK+tlSWhYtWqTWa9GiRZ6uTrkzdepUodFoXH5mybIsZsyYIYxGY7HtOyMjQ9SoUUMAENOmTbNbZufOnSIsLMytz9UOHTqICxcuON2n9evJnduuXbscbuv48eMu1y9un332mdP99ejRo0Db27x5swgPD3f5POrXry/+/vtvp9v67bffRJUqVZxup0GDBuLw4cNF+AuY7dq1S93mm2++WeTtFca6devUOnTr1q3A68+ZM0ddf8qUKQVe/6WXXnL7dfzggw+KtLQ0p9u7cOGCuPPOO51uJygoSCxdutRl3W7duiV69uzpsl4+Pj5i7ty5BX7uef38889O91OvXr0Cb3PZsmUiKCjIad3nzZvndBv16tUr0OcNACFJkoiOji7kX+L2PgvznItDdna2zeeAq8/kvC5fviwkSRIAROXKlUVWVpbN8scee0x9ftnZ2cVZdaFFMYiMjCyR5uGKxpvP4nirt99+G61atXJaplq1ak6Xf/PNN3jxxRcBADqdDmPHjkWPHj1gMBiwZcsWrF27FmlpaRg7dixCQ0PRv3//Yqs/VUyLFy9mF90K6NSpU2rLZcuWLdGrVy+0bt0aoaGhiIuLw6ZNm7B582YoioJPPvkEKSkpWLBgQbHs+6uvvkJsbCw0Gg1mzpxpt8y1a9eQmJgIAAgLC0Pv3r1x9913o2bNmjAYDDh06BCWLl2K1NRU/PXXX7j33ntx6NAh1KhRw+X+p06dil69ejkt4+yzPG+Lr0ajQbNmzXDp0iVkZma63H9h5N2nv78/GjdujOPHjxd4W4cOHcKQIUOQk5MDAGjYsCHGjh2L+vXrw2g04vz581i4cCHi4uIQFRWF3r1748SJE6hdu3a+be3atQuDBw+GwWAAANx9990YOXIkatWqhbi4OKxfvx47d+7EpUuX0L9/f/z5559o3LhxIf4CZcfgwYNRtWpVxMfHY+/evbh48SIaNmzo9vpLlixR70+cOLFQddDpdGjXrh3at2+Pxo0bo1q1atBoNLh58yb27NmDH3/8EUajET/++CMSEhKwc+dOyHL+jpI3btxAz549cfXqVQBAREQEHnvsMTRr1gx6vR67du3CihUrkJ6ejgkTJiAgIAAPPfSQ3ToZjUYMGDAAhw8fBgD4+flh3LhxuPPOO1G5cmVcuXIFv/zyC/bu3YucnBy89NJLCAoKwpQpUwr1NwDyvy90Oh1atWqFo0ePFmp7mzZtwvjx42EymSBJEoYPH45+/fpBp9Ph999/x/fff4+cnBy88MILCA4OxhNPPGF3O99++61bvQ7Wr1+PpUuXAgDuvfde1KtXr1D1Lgt8fHwwZswYfPbZZwDMxxZvv/222+svWbJEzX+PPPIIfH19bZbPmjULCxcuxOXLl7Fw4UJMmjSp+CpfrHHYiYrYulhWW0kqOusWWGdn7N1x/fp1ERAQIAAIrVYrtm3blq+MdStC3bp1RWZmZpH2SVRWsQW2ZPXt21eMGTPGaavYmjVrhFarVf8PO3bsKPJ+DQaDqFu3rgAg+vbt67Dc999/L1q3bi1++OGHfGfiLa5evSpatmyp1m/cuHEOt1ecr6cLFy6IcePGiU8//VTs27dPZGRkCCFsW12K2/r168UzzzwjFi5cKP755x9hNBpteqwVpAW2V69e6noTJ04UBoMhX5mMjAzRu3dvtdxzzz2Xr0xWVpaIiIhQy7z88st29zd//ny1TK9evdyupz1loQVWCCGee+45tR6vv/662+v98ccf6nqtWrUq1L6joqJctqoeO3ZMVK1aVd3XypUr7ZYbMWKEWua+++4T6enp+crs3btXPTapUqWKSEpKsrutpUuX2hyfOGpN/Pbbb9VyVatWtfv6c9e+ffvEk08+Kb755hvx119/qS1zlu0XpDUyIyND1KpVS1138eLF+cps3bpV/UwMCgoSsbGxha67EEJ06tRJ3d+yZcuKtC1Pt8AKIcTRo0dt/vaKori9bsOGDdV1HX0vdenSRQAQTZs2LdC2XWGALUEMsGVTcQbY6dOnq9t68cUXHZZ7+OGH1XJffPFFkfZJVFYxwJasxMREt8rNmDHDrYDorvXr16vbc9YlMSkpya0DlBMnTqjb8/f3V8NkXqXxeirJAGtPYQJsVlaW2nVcq9WK5ORkh2Wt/7Z33XVXvuUrV65Ul7dv397p/2vgwIFq2e3bt7tVV3vKSoA9duxYoQ7ULd0gAYhPPvmkROs4b948dV9jx47Nt/z69etql01/f39x8+ZNh9v68MMP1W299tprdsuMGTNGLfPll186rVu7du3UssePHy/YE3NDYQLs//3f/6nrPfzwww7Lvfjii2q5//znP4Wu48mTJ9XthISECL1eX+htCVE2AqwQQrRp06bAJz2tT+y0bt3aYbkvv/xSLWevkaewSnwUYsvIur///rv6mL2LoB0N7qQoClavXo2RI0eifv36CAgIQHBwMJo1a4bJkyfjxIkTTutmPWCPpYvujh07MHr0aNSvXx9+fn75BuoxGo3YsmULZsyYgW7duqmDGwQHB6NJkyaYMGEC/vjjD4f7tIwQat3lpH79+vmes6O/lTuDSRw8eBBPPfUUmjZtiuDgYAQGBqJhw4YYP348du7c6XL9vINIZGRk4OOPP0b79u1RuXJlBAYGomXLlpg1axaSkpJcbq8iEkJgzZo1AOByVM5p06ap960vci8N+/fvx+TJk9GiRQuEhobCz88PERERGDlyJDZt2uR0XXujR8bExGDGjBlo1qwZAgMDERoaii5duuCrr76C0Wh0q07p6en4v//7P/Tp0we1atVSB5/o0KED3njjDdy6dcvp+nnfKyaTCYsXL0afPn1Qu3ZtaLVauwNB3Lx5EzNnzkSLFi0QGBiIsLAwdOzYEZ988onadcjRqIC//fabuk/r/6cz06ZNU9fZvHmzW+u4w9UoxCX1f9u4cSMGDx6MGjVqwM/PD5GRkRgzZgz2799f4OeQk5OD7777Dg888ADq1q0LPz8/hIaG4o477sCMGTMcDp529uxZBAYGQpIkhISEICoqyuE+kpKSEBERAUmSoNFonH5ue4PKlSu7Ve7hhx9W77v6jnTH999/D8DcBXbYsGEOy4WGhrr1/dWqVSs0a9YMAJCZmYkLFy4UuY7lWUJCgtrtslq1aggJCXFYtkmTJur9jIyMfMutjw8effRRp/+vcePGqfd/+OGHAtW5MCzdeiVJgizLmD9/vt1yv/32GyZMmIDGjRsjODgYAQEBaNiwISZMmIC9e/c63P6dd96Jtm3bAjAP+LNr1y6XddLr9er3vFarxaOPPlqIZ+a+Fi1aqPdjY2PzLd+9e7faZbNfv35OL3Gy/v+tWLHCbpm4uDj1vqtu4q5eW55gfTz13HPPOSw3depU9bW+evXqQu9v0aJF6v1Ro0bB39+/0Ntyl8lkUkf0tRy3p6Sk5CsXExODV199FR07dkR4eDh8fHxQo0YN9OnTB19//bV6+YE91t3i3b08ybqcs271I0eOhFZrvmLV8l1SLIojBTsbxMm65dXZzd5ZuQsXLticFbB3k2XZaVcQ69a2nTt3imeeecbudqxbSN25mN3yXO1dlGzd8upqfUd/K0cMBoN48sknXW57xIgRTs8MWcr16NFDXLx4UbRo0cLhturVq1euWpCLqwXW+ky3q25FJpNJVKpUSX3NpqamFnq/7kpPTxcjR450+VoZNGiQw/rkPXO+efNmERoa6nBbffr0cdh10OLXX38V1apVc1qn4OBgsWHDBofbsH6vJCQkiG7dutl93VrbuXOnqFy5ssN9tm7dWsTExDg8I2oymUT9+vUFYB6swFVX8MzMTHV/ERERwmQyOS1fEK56dxT3/81oNDr9XJNlWcydO9ftFrO//vpL/Vs6uvn4+IhvvvnG7vrW3dk6d+7scLCi4cOHq+VeffVVp3/T8sS6laBZs2ZF2lZWVpbaFfGee+4pphoK0aFDB7WOBw4csFuGLbBmmZmZahdInU7ntAX233//Vbc/dOjQfMutW1U3b97sdL9HjhxRy9aoUcOtutrjTgvskSNHRPXq1QVgbmX+/vvv85WJi4uz6Urt6Pb444+LnJwcu/uxHljLnd4J1l1shwwZUpCnXSjWrVX2WmCtW1Vfeukll9uzHHcAEGfOnMm3/NFHH1WXu2qBbd++vQAgNBqNSEhIcP9JucnRd7cjKSkpamt0SEiIy+9Y60sXTp48WeD6GQwG9TUKQBw8eLDA28jLVQtsZmameOCBB2ze0/aOPd577z3h6+vr9H3RuHFjcfbsWbv7iY+PFz4+PgKACAwMdNndPSMjQwQHB6ufSXFxcU7Lt23bVgAQYWFhxXYsVOIBds+ePWL9+vU2L5z169fnu50+fdpmvQsXLthcC9CtWzfxwQcfiBUrVohly5aJ559/3uZg1NGHonVYGTBggPpB/PLLL4tly5aJxYsXiylTpojr16+r63Tq1EkEBQWJIUOGiDlz5oilS5eK1atXi08//VQ89dRTIjAwUN2mvWtM/v77b7F+/Xpx7733quX++9//5nvOeUcJdCfAjho1Si3j5+cnnn76abFkyRKxbNkyMX36dPUFBUD069fPYRcZS5m2bduKZs2aCUmSxJAhQ8TXX38tVq1aJd5//32b62S6d+/usE7exvo10b17d9GgQQPh6+srgoODRaNGjcSjjz4qfv75Z5fdi1asWOHwdW+P9f+3OD74nMnKyhJ33323ur+GDRuKV155RXz//fdi5cqV4p133hFNmjRRl/fq1cvuh4r1gceQIUNEQECA8Pf3F08//bRYvHixWLFihZgxY4bNe8LZCaW1a9eqXeF0Op146KGHxOeffy5Wr14t/ve//4kxY8aooznLsuywK4v139Lyvr7zzjvFBx98IFauXCm+/fZb8eyzz6rlT548qR6EW173n3zyiVi1apX47LPPRNeuXdUwVLt2bYdfKO+99566DVfXvnz//fdq2bfeestp2YIqSIAtjv/blClTbILlk08+KZYsWSK+//57MXXqVPVvO3ToUJeB488//1TLS5Ik+vfvL+bNmydWrVolFi9eLJ5++mmb/5Wj7Tz00ENO6/6///1PXX733XcX6Zotb7Nq1Sqb74Gi2LFjh7qtonS9s5adnW1zQuXGjRt2y1kH2A4dOoimTZuKgIAAERAQIOrVqyeGDx8uli1bVqT/rTcEWCGEGDRokLreY4895vAa2D59+qjvLXsnaC2fl0DBAiwAcevWLbfra81VgN25c6catAICAsSvv/6ar0xCQoLN9XZ33nmneOutt8Ty5cvFihUrxKuvvqp+djv7Ti7ogbp1YP7pp58K8/TdduHCBZvnsH79+nxl5s6dqy4vaIBds2ZNvuVr1qxRl7t7DeyECRMK/NzcYdm+uwF2//79BXovWX9vrlq1qsD127Bhg7p+y5YtC7y+Pc4CbFJSkujevbu6z8cff9zuyVrrS9lCQ0PFpEmTxHfffafmFussUqNGDYeft9bfqQsXLnRab+sTO/ZOlOU1efJktbyjE5YFVSan0TGZTOKuu+4SAISvr69YvXq13XKxsbFqC60sy+Lff//NVybvlCndunUTKSkpTve/fft2p62X8fHxaouPLMvi0qVLdssV9zQ61teuVK9e3e4ZpOjoaJuWDUfXW1r/TXx8fMQvv/xi93lab6sooSsjI8PuiYvC3FxND+CKu9PodOrUyenw6G+99ZbTL+W8xo0bp5a3d3a5OOW9NtfewU5OTo5Nnb7++ut8ZawPPABzS+K5c+fylTt48KDaQmBvKHUhhIiJiVG/TCMiIhxeQ3Pw4EEREhIiAIg6derYPZOet2fH9OnTnZ7Vs26hnTJlit2yeV8X9r5QYmNj1YDt6gvznnvuEYD5bPWVK1ecli2oggTYov7frK9zCQ0NtTtQw5kzZ9QpViw3e8EzNTVVHQwoNDRU7N692+7zO3/+vHoCLTAw0O6Bc2JioqhTp476N96zZ4+67OzZs2o4r1Spkrh48aLd/bjr9OnTxfb5VdgQUBD33Xef+n/47LPPirQt65M29g6AC8P65I696zQt3J1Gp2nTpuKff/4pVF28JcCeO3fOpudKw4YNxezZs8XSpUvFwoULxcsvv6y2Dvn6+jo8AJ04caK6jU8//dTpPq2POQCIvXv3FuSpqpwF2LVr16otR2FhYeLPP/+0uw3LyTFJksT//d//2S2TlpYm+vbtq+7LUUC37pnh7EA9OjpabeGrVq1asZ0Ei4qKUj8P1q5dK7755hsxYcIE4e/vr9Zr4sSJdtddsmSJWmbYsGFO9xMbG2vz/3vnnXfylVEURQwbNkwt4+fnJ5566inx1VdfiRUrVogPP/zQ5vtz2LBhLkN/YTn77rXH+m/hTiPCG2+8oZZ/++23C1y/IUOGqOsX17XQjgLs9evXRevWrdX9ORps7aefflLL9O7dW8THx9st980336jlRo4cabfMxo0b1TKuettYh2JnveUsFi9e7PbnjrvKZIC1nq/L1Zfv2bNn1RadJ598Mt9y64PSwMBAce3aNbeekysXL150+UYo7gBraYIHYPcMpcXBgwfVD9169erZPWNj/aE2Z84ch9tasGCBW+VcsX6NFPXmzgeVM2+++abw8/MTAwYMEHPmzBHff/+9WLVqlfj000/Fgw8+aDPPYq1atcTVq1ftbuf5559Xy33++ecu91vQ8oV1/fp19Qzzgw8+6LRsTk6OaNCggQDM3UvyyhuE/vjjD4fbsh4Mwl65qVOnqmHj6NGjTuv13Xffqdtavnx5vuXW75V27do5Da9//fWXWrZVq1ZO58a03q6jL1HrAbnshUIhzJ9LljKDBg1y+lwLo6ABtij/N+svbXsjPFpYf/kB9gPsJ598oi7/+eefnT5H65a/d999126Z3bt3C1mW1f9XUlKSyMnJsRlspDhOFhV07mhnt6IOHOeKdc+Q6tWr2x2htCAeeeQRdXvFMXBLYmKiqFmzprpNZ6F40aJFQqvVih49eojXX39dLFmyRKxZs0Z89dVX4tFHHxV+fn7qdoKDgwsVYr0lwAphDlS9e/dWv9/t3SZPnizOnz/vcBvWPRM6dOjgtKeRdasvALFx48YC1dfCUYD95ptv1Pdv7dq1HXbr/Pvvv9X1X3jhBaf7SkxMVE+A9unTx26ZTZs2qdtzdqBufZLa1X4L4uuvv3b4/2vUqJHTrrwXLlxQywYEBDjtuvnRRx/ZbNtRDwqj0SheeeUVmx58eW933XWX2LhxY7GOIpuXq+/evD799FN1nRkzZhR7eWs3b9606cbvqsusu+wF2HPnzonIyEgBmE/YzJ8/3+H6d9xxhwDMreeuPuvHjh2rHoPFxMTkW240GtXPZkmSHJ74tT6xU716dbdO7Bw8eFD92z/++OMuy7ujTAZYy5m2SpUquTXlSOfOnR2+6K0PPIpjNEZrlhaH+++/3+7y4gyw1n9jZ6N9WVifgbfXcmpZptFonI5saR3UR40a5XK/jpSlAHvixAmn12/8+++/olGjRur+evfubbec9bXICxYscLnfV155RS3/3nvvFbr+rliPyufobLa1WbNmOXydWh94tG3b1ul2rENn3msXFUURYWFhAnA+DYdFenq6+mVh7/9t/V5x1dXltddeU8vaa2W29uOPP7r8ErUOVjNnzrRbxnrEQ3fOThZUQQJsUf5vWVlZ6smQ6tWrOw3/QgjRvHlzdVv2Aqylx0yTJk1cPkchhDo9grMDfev31ciRI8XMmTPV38eMGePWflzxlgB78uRJm4NQR72XCsLSvR6Aw5N57jIajTYtZK5O7pw/f97pSeeYmBiba2mbNWvm8jWalzcFWCGEOH78uM1Jpby3wMBA8eSTTzoc1yA5Odmm+7aj0Wk///zzfNv+4YcfClxfIewHWOtw2LRpU3H58mWH61t6FEmS5FYjxOjRowVgbom216vEaDSqny2SJNntRacoik2X5RMnTrj/hF1wFGB1Op2YPHmy02myhLBt/erTp4/dUbz3799vc4kIAPHUU0853GZSUpL46KOPnF5H2a1bN7Fv374iP39HXH335vXuu++q67gzxoF1N2hnfwt7Pv74Y3VdVy3fBZE3wB4+fFiEh4cLwPG14BbWo2q7c0y5ZcsWp9/PQgib709HPQut37vungg4d+6cy2PqgjIPC1XG7NmzBwBQs2ZN/Pbbby7LazQaAOZR5TIzMx2OCta9e3e365Camorly5fj119/xYkTJxAfH+9w1DXLZNIl6dChQ+r9vn37uizft29f7NixA4B5xOKOHTvaLdekSROnI1taT4JelNGIIyMj1ZHzPM3ZZPcA0LJlS/z2229o1aoVsrKysH37dhw8eBCdOnUqpRoWjeX9A5hfmz/99JPT8tb/19OnT9sdvRcwT3bvjLPXysmTJ5GYmAgACA4OdlknAAgKCkJycjJOnz7ttJyr97VlgnbAPOm4M5ZRuZ2599570aRJE5w7dw5LlizBO++8A51Opy43GAzqCOS1atXCoEGDXG6zJBXl//bPP/+oIxf26NFD/ax15L777nP4/0pJScHx48cBANWrV3f7NQDA6Wvgrbfewo4dO3Dw4EGbESnr16+Pr776yuU+3DF79myHI+WXFbGxsRg8eDDS0tIAAFOmTLEZjbiwLO9bAAgLCyvStp577jls3boVABAREeFytMtGjRo5XV63bl1s3rwZrVq1QmxsLM6cOYO1a9di5MiRRapnWWQ0GjF9+nR8+eWX0Gq1mDlzJsaNG4dGjRrBYDDg2LFjmDdvHtavX48FCxbg0KFD2Lp1a75RakNCQjB//nx11NB33nkHO3fuxIgRI1CrVi3cunUL69evx/bt2+Hv74/Q0FDcuHEDACDLRZ+4QlEUPPvss/jyyy8BAB06dMCvv/6KqlWrOlzH8p0WGhpqcyzkSHZ2tvrz0qVLaN68uc1yjUaDcePG4YMPPoAQAkuWLMn3/t6zZw8uXrwIAGjfvr3L44aCmDRpEiZNmgTAPBr7jRs3sGvXLnz44Yf4+uuv8d///hfvvPMOZs2aZXf9zz77DHfffTcyMjKwbds2tGzZEo899hiaNm0KvV6P3bt344cffoDBYECDBg1w6dIlAI7/f7/99htGjRqFlJQU9OzZE7NmzUKnTp3g7++PmJgYrFmzBu+++y727t2L++67DytXrsSQIUOK7e/hDaxHH37sscdKZB/bt2/HsGHDkJ6ejoCAAKxduxYDBgxwWN76WC87O9vld+q1a9fU+46+UydOnIgPP/wQALB06VK8+eabNiOVCyGwdOlSm/LuqFKlinq/uGY2KXMBNj09HQkJCQDM0yU4G7LfnqSkJIcB1vpAzZldu3bhkUcesTuEuT2pqalu16+wLF8ggO1Q5o5Yl7FeNy9nXxoA4Ovrq97Pyspyud/ywjIl0X//+18AwKZNm/IFWMvBNeDe3yYzM1O9HxwcXEw1zc96+pERI0YUaF1nHyxFea1Y12ndunVYt25dsdQJcP2+vn79unq/QYMGTstWrlwZoaGhSE5OdlhGkiQ89dRT+M9//oObN2/il19+wYMPPqgu//nnn9WpCSZOnOgy9JW0ovzfrP92rsKEqzJXrlyBoigAzF+81l++rjh7DWi1Wvzwww9o06aNGt4sj1WqVMntfXizxMRE9O3bVz1QHT58OD777LNi2bYlDGg0miJNGfHqq6+qoaV69erYtm2by9emO6pUqYLnnntOPdjftGlTuQyw48ePV6eyWbduHR544AF1ma+vL7p164Zu3brhhRdewPz58/HPP//gmWeeUaeAsTZhwgSkp6fjhRdegMFgwJ9//ok///zTpkxwcDCWL1+ON998Uz2GcHcaJ2c+++wzdQqQ3r17Y/369TbfpfZYvj+SkpIKdUxoz4QJE/DBBx8AsH+gbn1yxV5g2bp1qzr1mj1Dhw51q34+Pj6oV68eJkyYgFGjRuH+++/Hjh078MorryAkJARTpkzJt06rVq2wefNmDB8+HHFxcYiOjsYbb7xhU0aSJLzxxhtIS0tTpyOy9//77bffMGjQICiKguHDh2PVqlU2QbdRo0aYNWsW7rvvPtxzzz3IysrC2LFjce7cOdSoUcOt51hSSusY7NChQzh58iQAc8Oas1BZWDdv3sSgQYOQk5ODypUrY9OmTejcubPTdayPq956660C7c/R+6JZs2bo3Lkz9u/fj6ioKPz+++82J/atT+x07NgRLVu2dGt/1t/F1v+HoiiWeWCLk725jQrC2TxH7nz5nj9/HoMGDVLDa9OmTdWznitWrMD69evVW3h4OACo87OVJMuBGQAEBga6LG/9xrZeN6/iOKNaXlm/ac+cOZNveWhoqHo/Pj7e5fYsJ2byrlvcivIecvb+KcprpaTqBLh+X1t6Tmi1WpuWUkfceX9NmDBBDX4LFiywWWb5XZIkPP744y63VdKK8n9LT09X7wcEBLgs7+xvV5TXgMFgcLq8atWqNq2DDRo0QLt27Qq9P2+SkpKCvn37qvO9Dh48GD/88EOxnTixvM5NJpPTA3Zn3nnnHbz33nsAzP+r7du3u3Ui1l2uPqu93aFDh9Tw2r9/f5vwmte7776rBpV169bZnISy9uyzz+LMmTN4/vnn0bp1awQHB8PPzw+NGjXCtGnTcPz4cQwePNjme6s4Aov1nNMZGRlu9cwqie+Ppk2bokuXLgCAqKgomzmi9Xo91q5dCwDw8/PD6NGj863/1FNPYdiwYQ5vheHn54eFCxeqn9lvv/22etIvr+7du+PcuXOYO3cuunXrhrCwMOh0OtSqVQsjR47Enj178NZbb7n8/82YMQOKokCWZXz66acOvy86duyICRMmADAfU7o7V2hJKq1jMOvW13HjxpXISWkhhJolcnJyXB73ACV3XGXdqmrpTWbh7tyveVnXtbjmzi1zLbDWweuee+7B77//Xqr7f//999WzA6+++irefvtthxN9P/nkk6VWL+uzRe5MIG194FmSrX3u0uv1atexooqIiMBdd91VLNtyxrrLg70WOesDMOszYY5cvnzZ7rrFzfIekiQJRqOxTJyksH5fv/HGGwU+W1gUllBlNBphMBhchlh33l9VqlTB8OHDsXz5cmzduhUxMTGIiIjA5cuXsW3bNgDm1oX69esX/Ql4kPX/zZ3w4uxvZ72tcePG5ftiLIopU6bYvL/OnTuH1157DXPnzi2W7Z85c6bYglG3bt2KpeURMB9I9uvXD3///TcAoF+/flizZo1bJ2rcZX1iIDEx0a0TGdY+/PBDvP766wDMLUDbtm0r1u6YgOvPam+3adMm9X7v3r2dlvX390eXLl2wadMmCCFw+PBhh4G3QYMGmDdvnsNtpaen48qVKwDMJ7BatGhRiNrbeu6553D69GmsX78e+/fvR79+/bBlyxanxymWy0ksn7HFZeLEiWrL8+LFi9GjRw8AwNq1a9UT/0OHDi3RE855RUREoHnz5jh58iRiY2Nx9uzZfF2gLUJCQjBz5kzMnDnT4fZOnTql3u/QoYPNsqioKHV5ixYtUKtWLad16927t9orzZ2u3CWtNI7BsrKysHLlSvX3kuo+XKNGDcydOxdjxoxBRkYGBg0ahE2bNqmvSXusv1N37tzp8hIpd40cORLPPfccMjMzsXbtWnzxxRcIDAxERkaG2qPDz88Po0aNcnubxXkpikWZC7AhISEICgpCenp6qVxbmtf27dsBANWqVcOcOXMchte0tDSbf0hJq1mzpnr//PnzLstbl3H1oVQa4uLiCn1WMq/x48eXytk/V2frrA/CLAeQjiiKgqNHjwIwt4g5+kIqDrVr18axY8cghMC1a9dQt27dEttXQepkUdrv61q1aqnXXl66dAlNmzZ1WDYpKcntA+BJkyZh+fLlUBQFCxcuxOzZs7Fw4UL1jPlTTz1V5Lp7mvVnx4ULF1yWd1ampF4Dy5cvx/LlywEA7dq1Q3x8PC5fvoyPP/4Y/fr1Q69evYq8j5UrVxbbSZddu3a5da21K+np6RgwYAAOHjwIAOjVqxd++uknmy7hxSEyMhL79u0DYD4IqVOnjtvrzp8/Hy+99BIA83f7li1b0KZNm2KtH1B6vVs8xboV1Z1u8SEhIep9d07IOfLHH3+oLaSdO3eGVlv0Q0adTodVq1Zh1KhR+PHHH90KsbVr10ZycjLi4uLcOgnprhEjRuC5555TW1wtB+rWLW6OWpncCUyFZf13KMoJmaSkJPW7LzAwEG3btrVZ7qnXVXFp0aIFZFmGoig4duyY2pLsiPV4GO6eRPvxxx/V/0HXrl1LtPFh5MiRkCTJ7RBbUt+plSpVwkMPPYRly5YhPT0da9euxfjx47F27Vq1cWzYsGEF+qy1zkv16tUrlnqWWtOM9YvKVZeRe+65B4D5YNOdg6bidPPmTQDmAUCcvRG2b9/usGuHRUGesyvWgzBZWnicsW7tdDSAEzln3fpv70OrZcuW6sHcyZMnnX6A/Pnnn+q10l27di3RVnHrD7viavUuqrZt26pfkDt27HD53ilO7du3V+/v2rXLadndu3e7vd1u3bqp138sXLgQBoMBCxcuBGA+AVYeBrm488474ePjA8D8fnB1uYRl4Dh7qlatqrbgHDhwoFjGDoiKilKvEQsMDMSKFSuwbNkyaDQaKIqCcePG2YSb8kKv1+P+++9Xg+U999yDX375BX5+fsW+L+sDvbNnz7q93pdffokXXngBgPmAfPPmzflagIqLq89qb2cdLiwtos5YtzRZt04XlHWQK87LISwh9qGHHgIANcQ6+kywfKdlZWXZdPUtKsuBOmA+IbRu3TpER0err6c6deq4bPEubkII9RpDwPUYBs788MMPalfRMWPG5Pt88NTrqrhUqlRJHaQwJSUFBw4ccFj2ypUramtzRESE270JLN/pQMm1vlobMWIEli9fDq1Wi4yMDAwcONBhT9SSPNaz1424sN2HAdtBo+64446iVS5XqQVY66ZuV2duxo8fr97Pe2F6SbN0j7p06ZLD0GkymdTreZwpyHN2JTIyUu02+88//zgNsYcPH8bOnTsBmM90lIVrwSyjEBfHrTRaXy9evGjTxXHgwIH5ykiSpI7yKYTA559/7nB71gOqlPQAI6NGjVJDx9y5c8vEmVKNRoMxY8YAMH8J/u9//yu1fVsHyS+//NJpCPv0008LtO2nn34agPnLcfr06epJjPHjxxdrN05P8fX1VV/7N2/eVK/Ds2fz5s0uR4y2fLbr9Xp1AJXCMplMGDNmjHrQ+9lnn6Fx48bo1q0bXnnlFQDmURefeOKJIu0HMI9CXFyfX0Vtfc3KysKQIUPUg5quXbti06ZNBe7a6y7rwessrb2uLFiwAFOnTgVgPrHw66+/uhyQpLASExNt3rf2Pqu9nfVJhDVr1jj9DIuOjlb/T7IsF/pym127dqnXgTZo0EANesVFq9Vi5cqVGD58OABziO3fv7/dEDtu3Dj1/ltvvVWs445YH4gvXrwYS5YsUY/9xo8fX+qX4Pz000+4desWAPNgZw0bNizUduLi4tReIzqdDtOnT89XplGjRmqovXLlSr6BvPKy7kprfWLYk6yPp5x9f3/++efq/9XdwS0vX76sHksHBQUVeFDMwhoxYgR++OEHaLVa6PV6DBw40O7J9fbt26sn0VetWqUONFUc7r33XnVGit27d2P37t3qd07dunVx3333FWh71t8dxTajR3HMxePOPLDTpk1Ty/z+++9Ot2cymWzmdnvuuedEdna2w/J6vV4sWrRIrFixIt8y6/n73Jl/r0+fPmr5efPm5Vuek5MjJk6caDM3lqM5q+bNm6eWWbJkict9u5ord9WqVerymjVritOnT+crc/nyZZu5y7744gu727Isd2ceuoKULet+/vlnsWbNGqdzBeadB7Znz54Oy167dk0EBASoc3Zt3749X5lFixap26pbt65bcxsX1YwZM9R93nvvveLGjRsOy5pMJrFt2zbx9ttv51vmaAJ6e1yVvXLlijr/oK+vr8v3xM2bN8WcOXPEP//8k29ZQeaVFkKIbt26qeWnTJkiTCZTvjJ55/p0Zy665ORk9f9vfTt37pxb9SqsgswDW9T/2549e9TllStXFkePHs1X5ty5c+oE6JabvXnm0tPT1XnvJEkSH374od3/hUVycrL49NNPxbZt2/Ite/3119V9DR8+3GaZwWBQ5wcHIP773/86/Rt4i+zsbDFw4ED1eXXq1EmkpKSU6D6zsrLU+SS7d+/usvySJUvUSe4DAgIKPe/tn3/+KRYsWGB3Hk+LK1euiI4dO6p/j8aNGwuDwVCg/RRmHti885oXRGHmgb1165bNnJ6TJ0+2+x2WkJAgOnXqpJYbOHCg3e1dunTJ6byrW7duFSEhIer7tKhzFzv7jDEYDGL48OHq8rvvvtvua/qhhx5Sy4wcOdLp695gMIh169Y5PP6xpiiKiIyMVJ9r9erV1f2cP3++wM/VnvPnz4u5c+e6fK9u27bNZo5eR5/der1eHDx40OF2Lly4IO644w51O7Nnz3ZYduTIkWq5Ro0aOXxdWM+56uvrK65cuWK3nPX7wt53kzMF+e61yMjIUOf0BSAWL16cr8y2bdvUeeWDgoJEbGysW9uePXu2ut2JEye6XaeCyDsPrLU1a9ao9Xb0Wfrzzz+rdYyIiBCHDh1yur+TJ0+KSZMmuVU362Mi6+93R3NHO9O2bVsBQFSpUsXpd35BlNo1sPfdd5/aCvX444/j+eefR7169dTRvBo1aqROwSDLMtatW4fOnTvj2rVr+PTTT7F69Wo8/PDDuPPOOxESEoL09HTExMTg8OHD2LFjBzIyMvD2228XuZ5Tp05VWzdfeOEF7N69G/369UOVKlVw/vx5LF26FOfPn8e9996L8+fPO+02an2GYubMmbh16xaaNm2qXkdSu3ZttG7d2u26jRgxAuvXr8fKlStx48YN3HXXXZgwYQI6d+4MjUaDw4cP47vvvlPPYPbt29fuEOwV2cWLF/H8888jPDwc/fv3R5s2bVCjRg3odDrcvHkTu3fvxoYNG9SREmvVquV0sJlatWrhk08+weTJk2E0GjFgwACMGzcOPXr0gNFoxObNm9Wz2FqtFt9++63Tbn7W11xHRUU5nJPVlffffx/Hjh3Djh07sGvXLvUMeufOnREeHo6cnBzExsaqrfmxsbG477778NprrxVqf+6oU6cOVq5ciQceeADZ2dkYP3485s2bhwceeACNGzeGv78/UlJScO7cORw4cAD79u2DyWQqloEJ/vvf/6JDhw7Q6/X46quvsH//fjz66KOoU6cObt68iVWrVmHfvn3o3LkzYmJicO3aNbfOvIeEhGDkyJE2Xe169uyJxo0bF7nOZUW3bt0wZcoUfPXVV0hKSsLdd9+N8ePHo1u3bpBlGYcOHcJ3332HjIwMDB061OlcdIGBgfjpp5/Qo0cPpKamYubMmfjvf/+Lhx56CC1atEBQUBBSU1Nx6dIlHDp0CLt370ZOTg6+//57m+3s3btX7QVTp04dfPvttzbLtVotli9fjjZt2iA1NRXPP/88evTo4fT6Z28wYcIE/PrrrwDM3XInT56sthA44+6UHvb4+vqif//+WLduHQ4fPoz09HSH055s3rwZjz32mNrS8dhjjyE5Odnl/IR33XUXIiIibB67efMmnnzyScyYMQP9+vVDu3btULt2bfj5+SEhIQH79u3D2rVr1UEXg4ODsWrVKqfXaX733XeIioqyecz6GsO8n3+VK1fGjBkznNbdlbzbtB6NMyoqKt/yu+66y2ZaLsDcjfTdd99VW9G+/vpr/PHHH3jkkUds5oFdsmSJ2noXEhKCTz75xG6d/v77b4waNQrdu3dHz5490ahRI2i1Wly9ehWbN29WLwWQJAlffPFFsVyz7YhWq8WKFSsgSRLWrFmDAwcOqNfEWndxXbhwIc6dO4cTJ05g1apV2LJlC0aMGIH27dujcuXKyMzMxLVr13D06FFs27YNSUlJbnV7liQJEyZMUHtZWC4j6969u1tTh7kjPT0dL730Et58803cd999aN++PSIjIxEcHAy9Xo9Lly5h69atNi2gXbt2xcsvv2x3exkZGejUqRNatmyJ/v37o2XLlggODkZ8fDz++OMPrF+/Xp1WZvTo0U6/19977z1s27YNiYmJuHDhAlq1aoVHH30Ud999t808sNYtaG+++WaBroW355NPPnE4lUtycnK+OtevX9/u/zMgIADffvsthgwZApPJhIkTJ2LTpk0YMGAAtFotfv/9dyxdulQ9pps/fz6qV6/usn4id35gi9LoPpzX8OHDIUkSRo0aBb1ej0GDBmHjxo02x0SDBw/GG2+8gTlz5iAmJgadOnVC37590bt3b9SpUweSJCEhIQEnT57E7t27cerUKWg0Gnz99dcu9z9+/HjMmTMHQgib6Tgto1G7KyEhwWaU/GLr1VAcKdidFlij0WjTCpL3Zu9M0/Xr18V9993ncB3rm0ajEQsWLMi3jYK2wAohxKxZs5zuq2vXriIuLs7pmROL0aNHO9xO3r+VO61KBoNBPPHEEy7/HsOHDxd6vd7hdizlKloL7Pz58916PSG3tSE6Otqt7X700UdCp9M53FZwcLDdHgJ5Wa9T0LOXeWVnZ4tnn31WaDQat57vuHHj8m2jOFvyLPbv3y8aNGjgVp2CgoLE8ePH822joC2wQgixc+dOm7PbeW+tWrUSMTExonbt2gKAuOOOO9za7sGDB222s3z5crfrVFil2QIrhPnze+zYsQ7/drIsiw8//NCmt4G9FliLM2fOqGdkXd18fX3F5s2b1XWTkpLUz15Zlp1+ri9btkzdTtu2bZ325PEG1q2FBbkV1U8//aRua+nSpQ7L5e3F4O7N3mtl/fr1bq/fqlUruz018rL+3HDn5ui7vSAtsAX9Wzg6hhJCiI8//lj4+Pi43EZkZKQ4cOCAw+2sWbPG5TaqV68uVq1a5fJv6g53PmMMBoMYMWKEWs5e74KUlBSbFkNXt9dff92t+kVFRam9Biy3hQsXFvVpq44ePep2nWVZFk899ZRIT093uL1bt2653I6Pj4947bXX3Grt+vvvv0Xjxo1dblOr1Yp33nnH6basyzs7hinoZ5mr489ly5aJoKAgp38Pe70qHdmxY4e6bpMmTdxer6DcyRHr1q2zaYnduXNnvjILFiwQlSpVKtLnmj333nuvzbr33HNPgZ/jV199pa5vr5diYZVagBVCiMzMTPHBBx+Izp07i8qVK9scWDs7yNq9e7d4+umnRcuWLUVoaKjQaDSiUqVKokWLFmLkyJHi66+/FtevX7e7bmECrBBCbN68WQwaNEhUrVpV6HQ6UbNmTdGrVy+xYMECtYuSOy88o9Eovv76a9GzZ09RtWpV9UVo729VkIPy/fv3i8cff1w0atRIBAYGCn9/f1G/fn3x6KOPih07drhc390PhYKWLevi4+PF6tWrxfPPPy+6d+8uGjZsKEJCQoRWqxVhYWHizjvvFE8//XShukydOHFCPPPMM6JJkyYiMDBQBAcHi1atWomXXnrJrSCckZFh82GbkJBQiGeY3/nz58XLL78sOnXqJMLDw4VWqxUBAQGifv36YuDAgeK9996zGxKFKJkAK4T5YGXZsmVixIgRon79+iIoKEj9H7Rv3148+eSTYtWqVQ6/xAsTYIUQIjY2VvznP/8RTZs2Ff7+/iI0NFS0b99efPzxxyIjI0MoiiL8/f0F4LzruDVFUdTudmFhYU67PBaX0g6wFr/88osYNGiQCA8PF76+viIiIkKMHj1a/Pnnn0II4XaAFcL8d9uwYYMYP368aNKkiahUqZLQaDQiNDRU3HnnnWLcuHFi8eLFIjEx0WY96wPYl19+2ek+hBBizJgxavkZM2a4LF+WeSrAGo1GERERIQCIPn36OCxXnAE2LS1NbNiwQbz88suiV69eokmTJiIsLExotVoRGhoqmjdvLsaPHy9+/vlnt7ukeXuAFUKI6Oho8cYbb4hu3bqJ8PBwodPphJ+fn6hTp44YPHiwWLBggdOT10KYvwe/+eYbMXLkSNG8eXMRFhYmfHx8RO3atcV9990nPvvsM5GcnOx0GwXh7meM0Wi0eX876iJ/5MgRMX36dNG2bVtRpUoVodVqRVBQkGjcuLEYOnSomDdvnrh48WKB6tirVy91v4GBgSItLa2gT9MhRVHE33//LT744AMxbNgw0bx5cxEcHCw0Go0ICAgQtWvXFn369BFvvfWWuHDhgsvtGY1GsWrVKvH000+LNm3aiOrVqwudTifCw8NF+/btxeuvv+7WdqxlZmaKJUuWiGHDhonIyEgREBAgtFqtqFKlirj77rvFyy+/7Nbf1Pq1XJoBVgjze2PmzJmiZcuWIjg4WAQGBoomTZqIZ555Rvz7778F+GsI8eijj6r7fv/99wu0bkG4kyOEMIdYSyOJoxCblJQkPvnkE9G3b19Rq1Yt4evrK3x9fUWNGjXEPffcI1588UWxY8eOAnXhXbp0qcvPale6dOkiAIimTZsKRVEKvL4jkhBFHB6XiIrFli1b0L9/fwDAtGnTCjygEBXdiRMn1BHy3P0fbN++HX369AFgnuPw//7v/0qyikQeMX/+fLzwwgvQaDSIjo4uchdCIiIq3y5evKh2xf/6668xadKkYtt26Q6vRkQOWeYgDg4OLtFrUcmxL774Qr3v7rW31teSlIe5X4nsmTRpEmrUqAGTyYQPP/zQ09UhIqIy7v333wdgnhGluK8jZoAlKiMsAfaFF15AeHi4h2tT/uzZs8fp/LNffvmlOhhQ7dq1cf/997vc5rFjx9QBanr37u323HJE3sbf3x+zZ88GAHz77be4fv26ZytERERlVlRUFJYuXQoAePvtt9XpHYsLuxATlQHx8fGoVq0aqlatiosXLyI4ONjTVSp3GjVqhKysLAwYMABt27ZFeHg4DAYDLl68iPXr1+Po0aNq2V9++cVhgP3tt9+gKArOnTuHDz/8UB2db+/evejatWupPBciT1AUBR06dMCRI0fw7LPPOp37moiIKq4nnngC3333HTp37ox9+/bZzLJRHBhgiahCaNSoES5evOi0jL+/PxYsWIAxY8Y4LGPvQ9jd62W3bt0KvV7vurJ2VK1aFd26dSvUukRERETlBQMsEVUIBw4cwLp163DgwAFcu3YNCQkJ0Ov1qFy5Mpo0aYLevXtj8uTJLueIswTYoKAgNGnSBJMnT8Zjjz3m1txmkZGRuHz5cqHq36NHD+zevbtQ6xIRERGVF45n/CYiKkfuvvtu3H333UXeDs/5EREREXkOW2CJiIiIiIjIK3AUYiIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCtwECciIipXhBDIzMyEXq+3e8vMzERmZiays7ORk5Njc7P3WE5ODkwmE0wmExRFyXc/70/APFq1OzeNRgOdTgetVgudTqfeHP3u5+cHPz8/+Pv729zP+7ufnx+CgoIQGBgInU7n4f8IERFR8WGAJSKiMkcIAb1ej5SUFKSlpSE1NRWpqal271t+pqenqwGV4xPeZgmz9m7BwcHqz9DQUISEhCA0NBShoaEICgoq9snniYiIioqjEBMRUakQQiA9PR0JCQlISkpCYmIikpKS8t23/J6Tk1Ok/UmShICAALs3f39/bF+6B5ICQJGsboCU53cIyVwOEiCQe8u9D6v7ApAsj1kthnUGlAB1iWS5CfMFPZKAkADIwuYxyICw/C4LQCMwcNJ9yMzMRFZWFrKystRW5by/F4VWq7UJtNa3qlWrqrcqVaogJCSEYZeIiEoFAywRERWZEAIpKSmIi4vDrVu31Fve37Oysgq0XT8/PwQHByM4OBiVKlVCcHAw9q35C5JRBowyJINk/mmUAaMEmCRIJgkwyeYwioobqgQEoBWARoHQmu8LrQJocn9qBYY+3x/p6elISUlBcnKy+rOg4Ven06FKlSqoUqWKTbCtWrUqatSogerVqyM8PBxaLTt+ERFR0TDAEhGRS0IIJCUl4caNGza369evIzY2FvHx8W63mAYFBaFy5cqoXLky/t15FsiRIRlkSDkyYLDc15jvKxU3gHqSkAWgVSB0CqAz/7Tc7/d0TyQkJCAhIQHx8fFITk52a5uyLKNKlSpqoLX308/Pr2SfGBEReT0GWCIiAgAYjUbcuHEDV65cwdWrV3H9+nU1qMbGxrpsPZUkCZUrV0a1atUQHh6OfasOQ8rWQMqR1Z/I0TCUljNCEoCPAuFjgvBRAB8Fo94cgoSEBMTFxSE2NhZxcXEwGAwut1W1alXUqVMHtWvXRu3atW3uBwQElMKzISKiso4BloioAhFCICEhAVevXsWVK1cQExODK1eu4MqVK7h+/bo6iq49kiQhPDwcNWvWxImtZyFlaczBNPcncmRIguGU8hMQ5pZcPxOErwLha8Lg53vj5s2b6i0jI8PpNsLCwtRAW6dOHdSrVw+RkZGoVasWuyYTEVUgDLBEROWQEAJxcXGIiopSb9HR0YiJiYFer3e4nq+vL+rWrYu6devij6UHbUIqsjUMqFRihDY34PobMW7ucFy9ehXXrl3D1atXkZKS4nA9rVaLunXrqoG2Xr16qFevHurWrQtfX99SfAZERFQaGGCJiLyYEAKJiYmIjo7GpUuXbH46atGSZRk1a9ZEnTp1cPjHE5AyNbk3rbkVtQIPfERlk9BYwq0J4z8yh1vLCRlHA05ZXuf169dHo0aN0KBBAzRq1Ai1atWCLMul/AyIiKi4MMASEXkJRVFw7do1nDt3DufPn1dvjgbR0Wg0iIiIwOVD1yHptbdvWWxJpfJBQAC+CoS/EUqAEQOm9cTly5cRHR2NtLQ0u+v4+/ujQYMGaNiwIRo1aoSGDRuiYcOGvMaWiMhLMMASEZVBBoMBUVFRNkH1woULdlubJElC7dq1cf2fW5AyrIJqJoMqVUzqNbcBJigBRvSb2h0XL15EVFSUw9Gya9eujSZNmqBZs2Zo2rQpmjZtisDAwFKuORERucIAS0TkYUIIXL16FadPn8apU6dw6tQpXLx40e6orT4+PmjYsCHO7oyGnKGFlK4zh1WO7EvkkoCA8DdBBBox8u37ceHCBVy8eBHx8fF2y0dERKiBtlmzZmjcuDGn+iEi8jAGWCKiUpacnKyG1dOnT+P06dN2uzsGBQWhcePGOL7xLKR0LaQMHSS9hteoEhUzoVUgAg2Y+PkInD17FmfOnMHNmzfzlZNlGZGRkWjevDlatWqFVq1aISIiApLE9yQRUWlhgCUiKkGKoiA6OhonTpzAP//8g1OnTuH69ev5yvn4+KBx48Y4szUKUpoWcroOyGJYJfIUoVOgBBkw7pMHcebMGZw5cwaJiYn5ylWqVEkNs61atUKzZs3YSktEVIIYYImIipHBYMDZs2dx/PhxHD9+HP/++y9SU1PzlYuIiMDVv+Igp+nM3YAztLxelagMExCAjznUjnhnEP7991+cOXMm3zW1Go0GjRs3RsuWLdGqVSu0adMGVapU8VCtiYjKHwZYIqIiyMzMVFtXT5w4gVOnTuU7oPXz80OLFi3wz09nIafqIKXpIJk4jQeRtxOSgAg04un/PYKTJ0/ixIkTdq+njYiIQNu2bdGmTRsGWiKiImKAJSIqAIPBgFOnTuHIkSP4+++/cerUKRiNRpsyISEhSLuUBSlVBznFh62rRBWEZVofJdiAIa/2xvHjx3HhwgXkPdRioCUiKjwGWCIiJ0wmEy5cuIAjR47gyJEjOH78eL6pbKpVq4b4f1Mhp+ggpfqYp6/htatEBPMAUUqlHAx7sy+OHTvmMNB26NABHTp0QJs2bTgnLRGREwywRER5xMXF4dChQzh48CCOHDmSb4TgkJAQpF3IgpzsAznFh4MtEZHbXAVarVaL1q1bq4G2cePGkGVeckBEZMEAS0QVnsFgwIkTJ3Dw4EEcOHAAUVFRNssDAgKQddUIKdkHcrKPed5VBlYiKgZCq0AJycGgl3vi0KFDuHHjhs3ykJAQtG/fXg204eHhHqopEVHZwABLRBXSzZs3ceDAARw8eBB///23TbdgSZLQokULnPk12hxY03QMrERU4gQE4GfCM8vH4a+//sKRI0eg1+ttyjRu3BhdunRB586d0axZM7bOElGFwwBLRBWCoig4c+YM9u3bh7179+ZrZQ0NDUXquSzIiT6Qk30hGXlQSESeJSQBEWzA6I8H46+//sKZM2dsuhuHhYXh7rvvRteuXdG+fXv4+/t7sLZERKWDAZaIyi2DwYCjR49iz5492Ldvn830FrIso0WLFji9KQpyoq95pGC2shJRGSa0CmZseAL79+/HoUOHbFpnfXx80LZtW3Tp0gVdunRB9erVPVhTIqKSwwBLROVKeno6Dhw4gL179+LAgQM2B3j+/v7IvqJATvCFnMRWViLyXkISEJVy8MDs+/Dnn3/mu3a2efPm6NGjB3r06IHatWt7qJZERMWPAZaIvF5aWhr27t2LnTt34u+//7aZlzUsLAzJJzMhJ/qar2flfKxEVM4ICAh/Ex5f8DD+/PNPnDhxwqarcePGjXHPPfegR48eiIyM9FxFiYiKAQMsEXml9PR07N27F7t27cJff/1lE1rr1auHq3tvQU7wg5TOrsFEVLEInQlTV4/H77//jqNHj8JkMqnLIiMj1ZbZhg0bQpL4+UhE3oUBloi8hl6vV0ProUOHYDAY1GUNGjTA5V03Icf7Qc7UerCWRERlh9AqeH79Y9i9e3e+HioRERHo06cPevfuzW7GROQ1GGCJqEwzGAw4cOAAtmzZggMHDiAnJ0ddVq9ePVz9I56hlYjIDUKjYOamp7F7924cOnTI5vO0ZcuW6N27N+69916EhYV5sJZERM4xwBJRmSOEwKlTp7Blyxbs3LkTqamp6rK6devi+r5Ec2jVM7QSERWG0CiY8fMT2LZtG44cOQJFUQAAGo0G7dq1Q+/evdG9e3cEBgZ6uKZERLYYYImozLh+/Tq2bt2KrVu34urVq+rjVapUQfI/mZBv+XG6GyKiYiZ0Jjy9bDS2b9+O06dPq4/7+Pige/fuGDhwINq1awdZ5sjtROR5DLBE5FF6vR47duzAli1bcPz4cfVxPz8/5MQAmjg/SMk+DK1ERKVA+Bnx6FdDsG3bNly5ckV9vHr16ujfvz8GDBiAWrVqebCGRFTRMcASUakTQuD06dP45ZdfsHPnTmRmZgKAeTTMRB00cX6QE3whKTzbT0TkCQICIsiIQbPvwfbt25Genq4ua9u2LQYNGoR77rkHfn5+HqwlEVVEDLBEVGrS0tKwdetW/PLLL7h06ZL6eEREBK79ngjNLT9IORoP1pCIiPISksCsrZOxadMm/P333+ocs4GBgejVqxfuv/9+NG/e3MO1JKKKggGWiEqUEAL//PMPNm7ciN27d6ujXvr4+MB4VYYm1h9Sqo5dhImIvIDwNeHRrx/A5s2bcePGDfXxZs2aYejQoejVqxdbZYmoRDHAElGJ0Ov1+O233/Djjz8iJiZGfbxhw4a4vDUOcpwfJBO7CBMReSMBgQ8Pv4KNGzfi999/V+flDg4OxoABAzBkyBDUrVvXw7UkovKIAZaIitWVK1fw448/YvPmzdDr9QAAf39/ZEfB3NqazlGEiYjKE6FVMHHRg9iwYQNiY2PVx9u3b49hw4ahc+fO0Go57RkRFQ8GWCIqMkVRcPDgQfz44484ePCg+nhERASu70piaysRUQUgIPD2vhn46aefcODAAfVa2fDwcAwbNgwPPPAAKlWq5OFaEpG3Y4AlokLLyMjAr7/+ih9//BHXrl0DYB5JWErQQXM9gNPfEBFVUMLXhIf/rx82btyIlJQUAObp0QYMGICHH34YderU8XANichbMcASUYHFx8djzZo1+Pnnn5GRkQEACAoKQuZZBZob/pCy2FWMiIjMIxjP2Pg4Vq9ejYsXLwIwn+js1q0bHn74Ydx5553mKdSIiNzEAEtEbouOjsbKlSuxdetWGI1GAEC9evVwbUeiuZsw520lIiI7BATm/jULq1evxv79+9XHmzVrhhEjRqBnz568TpaI3MIAS0ROCSFw4sQJ/PDDD/jzzz/Vx6UUHTRXAyEnsZswERG5T/E3YsBbXfHbb7+pU6tVq1YNo0ePxv333w9fX18P15CIyjIGWCKyS1EU7Nu3Dz/88ANOnjwJIPf61ls+0FwLgJzm4+EaEhGRNxNaBWMXPID169cjMTERAFC5cmU8/PDDGDp0KIKCgjxcQyIqixhgiciGoij4448/sGTJEvV6JR8fHxgva8zBlde3EhFRMRKSwNQfx2L58uXqNDxBQUF48MEHMXz4cISGhnq2gkRUpjDAEhEAwGQyYffu3ViyZAmio6MBAIGBgcg6A2iu+0MyaDxbQSIiKteEJPDir09i2bJluHz5MgDzyMUPPPAAxowZg8qVK3u4hkRUFjDAElVwRqMRO3fuxNKlSxETEwMgd0ThUwKaawGcv5WIiEqVgMAbu6fh+++/x9mzZwGYg+ywYcMwevRotsgSVXAMsEQVlKIo+P333/Hdd9+pwTU4OBj6fxXzHK4MrkRE5EECAu/ufxELFy7E6dOnAQD+/v4YPnw4Ro4ciUqVKnm4hkTkCQywRBWMEAIHDx7EggULcP78eQBASEgI0v8xmedwZXAlIqIyREDg7X0z8N133+HcuXMAzJe4PPzwwxg5ciQCAwM9XEMiKk0MsEQVyPHjx/Htt9/i+PHjAICAgABkn5bY4kpERGWegMCbvz+HhQsXqoMMhoSEYPz48RgyZAh0Op2Ha0hEpYEBlqgCuHTpEr755hscOHAAgHlUYdMlLTRXAyEZGVyJiMh7CAi8uuMZm0tgatWqhSeffBL33nsvZJnfa0TlGQMsUTmWkJCAhQsXYtOmTVAUBRqNBuKqD7RXAiHlcFRhIiLyXgIC034ah4ULF6rzyDZt2hSTJk1Cu3btPFw7IiopDLBE5VBWVhZWr16N5cuXIzMzEwAgx/tCEx3EeVyJiKhcEbLA2O8GY8WKFdDr9QCATp064dlnn0W9evU8XDsiKm4MsETliKIo2LZtG7799lvcunULACClaaGNCoac6uPh2hEREZUcoVUw+KN7sGHDBhiNRmg0Gjz44IOYMGECgoODPV09IiomDLBE5cSZM2cwf/58daqB6tWrI+H3TMjxfpAgebh2REREpWNRzHx8+eWX2LdvHwDzQE9PPPEE7r//fmg0vHyGyNsxwBJ5uZSUFHz77bfYuHEjhBDw9/dHzmmNeWRhhcGViIgqpvcOzsTnn3+O6OhoAEDDhg0xbdo0tG3b1rMVI6IiYYAl8lImkwkbN27EggULkJqaCgCQ4/ygjQqCZOAZZiIiIgGByWtGY+HChUhLSwMA9O3bF1OmTEFYWJiHa0dEhcEAS+SFTp06hXnz5qkTuksZWmgv8jpXIiIie4RWwcAPumLDhg0QQiAoKAhPP/00Bg8ezGl3iLwMAyyRF9Hr9ViwYAF+/PFH9Qs46x8J8g1/XudKRETkwmcn5+CTTz5RTwA3b94cM2bMQJMmTTxcMyJyFwMskZf4888/MW/ePMTFxQFgd2EiIqLCsHQrXrBgAfR6PWRZxkMPPYQnnngC/v7+nq4eEbnAAEtUxiUkJOCzzz7Drl27zA9kaaC7EAw52dezFSMiIvJiwseEbi/fgZ07dwIAatWqhZkzZ+Kuu+7ycM2IyBkGWKIySgiBLVu24LPPPkN6ejpkWYYU4wdNTBBHFyYiIiom7+z/Dz766CO1h9OQIUMwadIkBAYGerhmRGQPAyxRGZSQkICPP/5YncNOStdCe74S5Aydh2tGRERU/giNgoFzu+Knn34CAFSrVg0vvvgiOnXq5NmKEVE+DLBEZczOnTsxf/58pKSkQKvVQlzwg+ZqAAdpIiIiKmFzD8/Chx9+iOvXrwMABg0ahKlTpyIgIMDDNSMiCwZYojIiJSUF8+fPV6/FkdK10J6rBFnPVlciIqLSImSBIfN7YO3atRBCoFatWnjttdfQqlUrT1eNiMAAS1Qm/PXXX3j33XeRmJgIjUYDRPlBcyUQkmCrKxERkSd8dORVvPvuu7h58yZkWcbYsWMxfvx4aLVaT1eNqEJjgCXyIIPBgP/9739YsWIFAEDSa6A9FwI5na2uREREniY0Cnq+2RZbt24FADRr1gyvv/466tat6+GaEVVcDLBEHnL16lXMmTMHZ86cAQDIN/yhjQrmCMNERERlzMvbJuGTTz5Beno6/Pz88Pzzz2PAgAGerhZRhcQAS+QBW7Zswbx585CZmYng4GBkHpKhSfDzdLWIiIjIgeWxX+K9997DkSNHAAADBgzA9OnT4e/v7+GaEVUsDLBEpSg7Oxvz58/Hr7/+CgCQUnTQnQ2BlKPxcM2IiIjIFQGBsYsGY9GiRVAUBZGRkZgzZw4iIyM9XTWiCoMBlqiUXL9+Ha+//jrOnz8PWZYhRfmbB2ri9DhEREReZe7hWZgzZw4SExPh5+eHF154Af379/d0tYgqBAZYolKwf/9+vP3220hPTwcMEnRnQiCn+Hq6WkRERFRIQmfCHc9E4vDhwwCABx54AM899xx0Og7ESFSSGGCJSpDJZMLixYuxZMkSAICUqoPuDLsMExERlQeWLsULFy6EEAKtW7fGnDlzUKVKFU9XjajcYoAlKiEZGRmYM2cO9u/fDwCQr+eOMsy5XYmIiMqVOfteUHtahYeH4+2330aLFi08XS2icokBlqgEXL9+HbNmzUJUVBR8fHygnPCD5hZHKSQiIiqvFl6eh1deeQWXL1+GTqfDjBkzMHDgQE9Xi6jcYYAlKmbHjh3D66+/jpSUFCBbhu50KOR0Xg9DRERU3gmNgk4zm2HPnj0AgJEjR2Ly5MmQZdnDNSMqPxhgiYrRxo0bMW/ePBiNRkhpWuhOh/J6VyIiogpEQGDMd4OwaNEiAMA999yD1157DX5+nO+dqDgwwBIVAyEEvv32WyxfvhwAIN/yhfZ8CCSF17sSERFVRC9tfRrvv/8+DAYDmjdvjvfffx9hYWGerhaR12OAJSoio9GIuXPnYsuWLQAATUwgNDGc35WIiKii+/joa3j11VeRmpqKGjVq4MMPP0RkZKSnq0Xk1RhgiYpAr9fjjTfewKFDh6DRaCCdCYTmJgdrIiIiIrOFl+dh5syZuHbtGoKCgjB37ly0bt3a09Ui8loMsESFlJSUhJdeeglnzpwBTBK0Z0KgSfL1dLWIiIiojBFaBU2eqI5///0Xvr6+eOedd9CpUydPV4vIK3FINKJCiI2NxZQpU8zh1SBBd6IywysRERHZJRllnPs2Dp06dUJ2djZmzZqFHTt2eLpaRF6JLbBEBXTt2jVMnz4dN2/eBLJk6P6tDDlL6+lqERERURknJIHub7TGjh07IEkSZsyYgQceeMDT1SLyKgywRAVw+fJlPP/884iPj4ek10D3b2VOk0NERERuExAY8FFnbNiwAQAwefJkjB492sO1IvIe7EJM5KaLFy9i2rRp5vCaoYHuBMMrERERFYwECZtf3I+xY8cCAL7++musXLnSw7Ui8h5sgSVyw4ULFzB9+nSkpqZCSteaW16NPP9DREREhTf6fwOwePFiAMAzzzyDkSNHerZCRF6AAZbIhejoaEybNg3JycmQ0nLDq4nhlYiIiIrOOsQ+++yzGDFihGcrRFTG8SicyIlr167hhRdeMIfXdIZXIiIiKl4/PPErxo8fDwD44osvsGbNGg/XiKhs45E4kQM3b968PWBThobhlYiIiIqdBAkrntyshtjPP/8cv/32m4drRVR28WicyI7ExEQ8//zziI2NhZSp4TWvREREVGIsIdZyDezcuXOxb98+D9eKqGziNbBEeej1ejz33HM4e/YskCXD53gYRxsmIiKiEicg0Oudu/Dbb7/Bx8cHH3/8Mdq0aePpahGVKQywRFaMRiNmzZqFgwcPAgYJPv+EQcrSerpaREREVEEICHR4qTH27duHwMBAfPbZZ2jcuLGnq0VUZrBPJFEuIQTmzZtnDq8mCbqTlRleiYiIqFRJkPDXR+dx5513IiMjAy+99BJu3brl6WoRlRkMsES5li5dio0bNwIC0J6tBDld5+kqERERUQUkKRJOf3Md9evXR3x8PGbNmoXMzExPV4uoTGCAJQKwY8cOfPfddwAA7cVgaBL9PFwjIiIiqsgkk4z3338fISEhOHfuHN555x0oiuLpahF5HAMsVXjnz5/HBx98AADQXA2AJjbAwzUiIiIiAsbXeQ7vvfcedDod9uzZgwULFni6SkQexwBLFVpycjJeffVVZGdnQ0rygSY6yNNVIiIiIlK9cOccvPTSSwCA5cuXY+vWrR6uEZFnMcBShWU0GvHmm2/enuv1TAgkSJ6uFhEREZGNj/ovwNixYwEAH3/8MS5duuThGhF5DgMsVVhff/01jh49CpgkaE+HQjLx7UBERERl06qnt6B9+/bIysrC66+/joyMDE9XicgjeMROFdLevXuxZs0aALkjDus5XQ4RERGVXRIkvPHGGwgPD8eVK1cwd+5cCCE8XS2iUscASxXOzZs3bw/adC2AIw4TERGRV3g47EnMmTMHWq0Wu3fvVk/GE1UkDLBUoRiNRrz99ttITU2FlKbloE1ERETkVaa3no1nnnkGAPDNN9/gwoULHq4RUeligKUKZcmSJTh+/DhglKA7GwJJcNAmIiIi8i5fP7wCXbt2VU/MZ2dne7pKRKWGAZYqjJMnT+L7778HAGgvBEPK4nWvRERE5H0kSJg5cyYqV66MqKgozg9LFQoDLFUI2dnZeP/996EoCuQ4P2ji/T1dJSIiIqJCG1HlKbz88ssAgNWrV+Pvv//2cI2ISgcDLFUIixYtQkxMDJAjQ3sp2NPVISIiIiqyN7rOw5AhQwAA77//PvR6vYdrRFTyGGCp3Dt16hRWrlwJILfrsJEveyIiIiofNr+0H7Vq1UJcXBz+97//ebo6RCWOR/JUrhkMBnzwwQe3uw5zyhwiIiIqRyRFwowZMwAAP/74I86cOePhGhGVLAZYKtfWrl2L6OhoIEdi12EiIiIql17p9CH69OkDRVHw0UcfwWg0erpKRCWGAZbKrfj4eCxevBgAoI1m12EiIiIqv5599llUqlQJ58+fx9q1az1dHaISwyN6Kre++uorZGZmQkrVQY5j12EiIiIqv0ZUeQqTJ08GACxevBhJSUkerhFRyWCApXLp2LFj2L59OyAA7cVgSJA8XSUiIiKiEjV/8CI0a9YMer0eCxcu9HR1iEoEAyyVO4qi4IsvvgAAyLH+kDN0Hq4RERERUcmTIOGZZ54BAPzyyy+IiorycI2Iih8DLJU7u3fvxrlz5wCjBO3lIE9Xh4iIiKjU/KftO7jnnnugKAq++uorT1eHqNgxwFK5YjQa8d133wEANNcCOHATERERVTiTJk2CVqvFwYMHcfjwYU9Xh6hY8eieypXffvsNV65cAQwSNNcDPF0dIiIiolI3MeJ5DBkyBIB5QCchhIdrRFR8GGCp3MjJycGiRYsAAJorgZBMfHkTERFRxTRmzBj4+Pjg+PHjOHr0qKerQ1RseIRP5cbWrVtx69YtIFuG5gZbX4mIiKjiGl1tMgYNGgTA3ApLVF4wwFK5oCgKVq5cCQDQXA+AJDhtDhEREVVsY8aMgU6nw7Fjx3Ds2DFPV4eoWDDAUrmwb98+xMTEAEYJmlh/T1eHiIiIyOPG1HgGAwcOBAD88MMPHq4NUfFggKVyYcWKFQAAzQ1/XvtKRERElGvEiBGQJAkHDhwwD3RJ5OV4pE9e79SpU/j3338BBRx5mIiIiMjKY/VeQOfOnQEA69at83BtiIqOAZa83oYNGwAA8i0/SAaNh2tDREREVLYMHz4cALB582akp6d7uDZERcMAS14tLS0NO3fuBABe+0pERERkx8sdP0C9evWQmZmpHjcReSsGWPJqW7duRXZ2NqQMLaQ0naerQ0RERFT6ZI355oAESZ1S59dffy2tWhGVCAZY8mqbN28GYG59lcCpc4iIiKgCcxJk/zd+NTQaDU6dOoXo6OjSrRdRMWKAJa8VExODc+fOAYr5+lciIiKiCsdeYLXzmGTQoEuXLgBuNwAQeSMGWPJa27dvBwDIyT6QjHwpExEREanshNg+ffoAAHbt2gUhRGnXiKhY8KifvJIQAjt27ADA1lciIiKqoJxc92pv+Tu9v4Cfnx9iY2Nx9uzZEqwYUclhgCWvdPnyZfNk3AogJ/p6ujpEREREpctVeLUul1tWUiR1Tthdu3aVVM2IShQDLHml/fv3AwCkZB9IJr6MiYiIiJzKDbE9e/YEAOzZs8eDlSEqPB75k1fat28fAEDD1lciIiKqaNxtfbWz3rt9v4BGo8HVq1dx/fr14q0XUSlggCWvk5aWhn///RcAICcxwBIREVEFUtjwmksSOrRs2RIA8NdffxVHjYhKFQMseZ1//vkHiqJA0msgZRftQ5yIiIioounYsSMA4ODBgx6uCVHBMcCS1zl27BgAQErx8WxFiIiIiEqRpPOBpNMWeTsdOnQAYD6mUhSlyNsjKk0MsOR1LAFWk87pc4iIiKhikHQ+gCzl3i9aiH2u/bvw8/NDeno6YmJiiqN6RKWGAZa8il6vx4ULFwAAGn0AJG3Rz0ISERERlXm54dVC0mkLFWRlHx0kSYPmzZsDgDquCJG3YIAlr3LhwgXz9a85GkgmH0haLUMsERERlWuSzvFlUwUJsbKPDpDNh/+tWrUCAJw4caJolSMqZQyw5FXOnTsHAJD0uaMPyzIg8WVMRERE5ZN112HHZdwMsfLtYyZLC+z58+cLXTciT+CRP3kVS4CV9bfPREoama2wREREVO64E15vl3V+LCT76Gx+f+uBrwAAly9fhtFoLFwFiTyAAZa8ysWLFwEAcqZVVxpZZldiIiIiKlcKEl5vr2P/WMi667BaNkcLf39/GAwGXL16tdD1JCptDLDkNYQQ6geslGV7FpEhloiIiMqVAoZXi7wh1l54BQAJEho0aADgdgMBkTdggCWvkZCQgMzMTEAAUo4ufwFeD0tERETlgLNBm9xb3yrE2gmvFnXr1gUA3Lhxo0j7IypNbK4ir6G2vuZoIQn7ZyUljQwILQSv5SAiIiJvJGsK3fpqTdJpIUnOt1OjRg0ADLDkXdhcRV4jLi4OACBlOznvIsuQfHzYlZiIiIi8j6wx/zSZirypa9Pa4eq0u5yWqVmzJgAGWPIuDLDkNRISEgAAkkHjsixDLBEREXkV+fbxjVBEkULstWntkFNJICdY4OozbRyW+2TiIgC3GwmIvAEDLHkNNcAa3QumDLFERETkFeT8J+cLG2It4dUip5I5xNoLspLRvN+UlJQC74fIUxhgyWskJiaa77jRAmvBEEtERETeqqAhNm94tcipJNQga00ymqNAamoqTMXQbZmoNDDAktfIyMgAAEimgr1sGWKJiIiozLLT+mrN3RDrKLxayxdiTeZ9CyGQnp7uch9EZQEDLHmNzMxM8x2lECPzcXodIiIiKmtchFcLd0Ksq/BqXe7qlDYAYJ7VwWQ+rmKAJW/Bo3ryGllZWQAK3gIL5A4lz1ZYIiIiKivcDK8WzkLstantCrStnJDbIRa5UxMaDIYCbYPIUxhgyWtYAmyhWmDBrsRERERURhQwvFrYC7HXprZDToh7ra/W1BCrMMCSd2GAJa8hRME/nPNiiCUiIiKPKmR4tbAOsYUNrxY5IQLwMW/r6NGjRaoXUWlhgCWvIUmFa3nNvyG+7ImIiMi7pQ9uU6TwmpfRaCy2bRGVJB7Jk9cojgArTCYIowEorjBMREREVBBK0aarkWQJ6UPaISdQRnBM0asjSeYQ3LJly6JvjKgUMMCS19BozF1ubo5oUKj1hckEkZNz+wGGWCIiIvKEQoZYNbwGmQ/h5RwUKcR+/+hnCK2kAAACAwMLvyGiUsQAS14jICAAAPB8958Q/WKbAq2bL7xaMMQSERGRJxQwxOYNrxaFDbHfP/oZOvrqoM80b89ynEVU1jHAktewfLBWM/hg2YT/Q/R/2ri/suLkGhGGWCIiIvIEobhVzFF4tZDtnKN3ZsmYL9DRVwejCcjOMR8HMcCSt2CAJa8RFBQEAMjQy2jn64NlE/8P0TPbuFxPve7VGYZYIiIiKm1CuAyxrsKrhbutsEvGfIG7/cyXZWVm3T7+YYAlb8EAS17DEmBT0s0ftu18fbBs/P857U7ssOuwPQyxREREVNqcTBMoyRIyHnAdXgH3uhIvHPOlGl4BICnFvN3AwED4+Pi4V18iD2OAJa8RHh4OAIhPvP3B287X3J14yOHL+YJsgcKrBUMsERERlTY7rbCW8Jod7P7huqMQu3DMl1g45kt09bPdVkLuMVWVKlUKVl8iD2KAJa9hCbC3EmwnAG/n64NJoddsrostVHi1YIglIiKi0pSnK3FhwqtF3hBrCa55wysAxCeZH2OAJW/CAEteQw2wiRq7yy3XxV6e0abw4dWCIZaIiIhKU26ILUp4tbCEWHutrtbic14GAFStWrXQ+yIqbQyw5DVq1qwJALgRp4HJwXgHow8+gXrrEyH7+pZizYiIiIiKgRCAJBcpvFqMfG4rwjWZTstcuXIFAFC7du0i74+otDDAkteoXr06fHx8YDBIiI2z3wprTPCHdCMOkr9/0UKskwEViIiIiIqbpNVC0moBAOFbLhVpWw/9Zzv6BZ1ElrB/vGRx9epVAEBERESR9kdUmhhgyWtoNBrUrVsXABBzXZtveZM/xqHpf1PMv8hS0UMsERERUSmQtFpAks03AKaEpEJv66H/bMeA4BPq7+cMGQ7LxsSYL5a1HF8ReQMGWPIqljOEl6/aBtime8ah4fsGSNfibj9Y2BDL1lciIiIqJWp4zaMwrbB5wysAZAmN3RCblCIjOTkZkiQxwJJXYYAlr9K4cWMAwNlLOvWxpnvGocF7BkhXb+ZfoaAhluGViIiISomj8AqYW2ELEmLthVcLeyH2XO6xVN26dREQEOD2fog8jQGWvEqzZs0AAGcv3g6whnh/++HVwt0Qy/BKREREpcRZeLUwJSQhfGuUy20NnbHTYXi1yHs97Lm4FwHcPrYi8hYMsORVmjZtCgC4flOLlDQJTfeMQ9NvU12v6CrEMrwSERFRKXEnvFqY4hOdhtihM3bi/kr/uLUt61bY06dPA7h9bEXkLfKPhENUhgUHB6Nu3bq4cuUKuv3YHw1WOug6bE9uiNX4+UJkZUPJzi7ZyhIRERHlUZDwamGKTwRQ3+axoTN2AoDb4RW43ZW4kSYQ//77LwCgRYsWBaoLkaexBZa8Tps2bQAA1dcnuB9eLWQJ0GhsW2PZ+kpERESloDDh1cK6FfaBGbtwf6V/ChReLbKEBrsuGZCamgp/f3+2wJLXYYAlr3PXXXcBAExKnIuSTnCaHSIiIiol6hyvhQyvwO2uxA/M2IUHKh0rUn2Srn8IALjjjjug1bJDJnkXBljyOm3btgUACL9sCI2x8BuSJUDmW4CIiIhKljCZihReLZSU1CKHVwA4cuQIgNvHVETehEfv5HXCwsLQoEEDAIApKLPQ2xFZ2VCyeB0sERERlbBiuFxJ0mkBScLzjz9TpO1MmzIFf//9NwCgQ4cORa4XUWljgCWv1LVrVwCAqVIaIGtclM5PZGVDycwCFFNxV42IiIgoH2E0FGo9SadVwysA+Bw4g+lPFC7ETn12GnzPnEZ2djaqVauGRo0aFWo7RJ7EAEteqVu3bgAAU0CaeSztgoZYIRheiYiIqPQIUeAQqwbX3PBq4bv/TIF3P/XZaQg6fBl9n24NwNwYIOXZLpE3YIAlr9S0aVOEh4cDsgKTfzokjQxotW4FWXYdJiIiIo8oQFdi61ZXe9xthZ367DQ1vAoI7N27F8Dt3mxE3oYBlrySLMvo3r07AMAYnAwAkCTJHGSdhFh2HSYiIiJPcqcV1lV4BcytsNOfetZpmWefMwfXoMOXAQCmgHQkJSUhJCREndWByNswwJLX6tu3LwDAFJgCId0OpE5DLLsOExERkSe56ErsTni18N132uGyZ5+bhuCDl20e6zmxCQCgV69enD6HvBYDLHmt5s2bo06dOoAsYAxKtVlmL8Sy6zARERGVCXa6EucdrMldzz2dvxX22en5w6uQFPzxxx8AgD59+hRoH0RlCQMseS1JktCvXz8AgDE4Mf/yvNfFsvWViIiIygjrVlhHgzW5w2/v7VbYZ6dPM4fXA5fzlTMGJSMzMxO1atVCy5YtC1dpojKAfQfIq/Xv3x+LFi2CEpABRZcF2eBns1ySJEAjQWSz9ZWIiIjKkNxW2MK0uub13KSpMPrLqHQg2mGZBj2CcOYMMHjwYI4+TF6NLbDk1apXr44uXboAAAwhCQ7LCba+EhERURkjjIYih1cA8N3xDyrtj3a43OSrx5kzZ6DVajFo0KAi74/IkxhgyesNHToUAGAMTrIZzMlCZGVBydCXcq2IiIiIXBDCPDtCYVfPMUDkGAChQElOcVjuvklNAQA9e/ZEaGhoofdHVBYwwJLXa9++vXkwJ40CY6WkfMuFSWHrKxEREZVNhTxGsQRXCMX8u9Fof/MaA7Zu3QoAGDZsWOHqSFSGMMCS15NlGSNHjgQAGEJvQUBRl7H1lYiIiMq6grbCquE173bstMIOfaUNDAYD7rjjDrRu3brQdSQqKxhgqVzo378/qlSpAqEzwBicrD7O1lciIiIq89w8VrHuMmx3eZ5WWCGbsGHDBgDAI488UrQ6EpURDLBULvj6+mLEiBEAAEPlOAgItr4SERFRuZG3y7Aj1q2wj37QFXq9HvXr18fdd99d0lUkKhUMsFRuDBkyBMHBwRA+OTAFpbD1lYiIiLyGs27Ezlpd85XNbYUVkgmrVq0CYG59lWUe9lP5wFcylRsBAQEYPnw4ACAnLBYCwsM1IiIiInKTnZPurroMOzPi7Q5ISUlB3bp1cd999xVHDYnKBAZYKldGjhyJypUrQ/jkwBgU7+nqEBEREbnNuhXW3S7D9pjSE9XW1yeffBJarbbY6kjkaQywVK4EBARg/PjxAABj3TQIueAf+kREREQekdsKW9hWV4uBczoiMzMTzZo1Q48ePYqrdkRlAgMslTuDBw9G7dq1AR8FptocxImIiIi8R1HDq+JrxM8//wwAePrppyFJUnFVjahMYIClcken0+HJJ58EAJjq6CF8OZATEREReQdhNBR+XQi0nRQJo9GIjh07ol27dsVYM6KygQGWyqV7770Xd9xxB6ARMNZP83R1iIiIiNwjCjcIpTCZYArR4+DBg9BqtZg2bVoxV4yobGCApXJJkiS88MIL0Gg0UKpmw1Q529NVIiIiIioRwmSCkBRUvdcPADBq1ChERER4uFZEJYMBlsqtBg0a4OGHHwYAGBukQcicVoeIiIjKPmFy7/InYTKZywqBUd/0R2xsLKpXr46xY8eWcA2JPIcBlsq1CRMmIDw8HPA3wVQnw9PVISIiInLNjW7EluAKIaAEGPDDDz8AAKZOnQp/f/+SriGRxzDAUrkWEBCgXgNiqpsBJajwAyMQEREReZp1qysACEkgcmQVGI1GdO3aFd27d/dwDYlKFgMslXs9evTAfffdB0iAsUkKhMSuxERERFS22etGbN3qamGqk4Hz58+jUqVK+M9//sNpc6jcY4ClCmH69OkICwuDCDDBVC/d09UhIiIics4qpOZtdbVQAg1AgywA5mOdKlWqlGoViTyBAZYqhJCQELz44osAAFNtPZRKOR6uEREREZFr9lpdAXPX4YjhlWEymXDPPfeYe5sRVQAMsFRhdO3aFQMGDAAkwNAkBUKreLpKRERERA7Za3W1GPRxV1y8eBEhISF44YUX2HWYKgxJiELOlkzkhTIyMvDEE0/g2rVrkBN8oT0dAgn8wCciIiLvYaqSBWPzFADARx99hE6dOnm4RkSlhy2wVKEEBgZi9uzZ0Ol0UKpkw1RL7+kqEREREblN+Brh294IAHjkkUcYXqnCYYClCqdp06Z49tlnAQCmyHROrUNEREReQUgCDcaGIyMjAy1btsQTTzzh6SoRlToGWKqQhg4dip49ewIyYGiWzOthiYiIqEwTEOj3QSecOXMGwcHBePPNN6HVaj1dLaJSx2tgqcJKT0/Hk08+iWvXrkFK0UH3b2VIgtfDEhERUdljqqGHsVEaJEnCBx98gM6dO3u6SkQewRZYqrCCgoLw/vvvIzAwECLEAGPDNAjwfA4RERGVLUpIDkRT87gdTz/9NMMrVWgMsFShRUZG4o033oAkSVBqZEKpmenpKhERERGphK8JAd0UmEwm9O7dG6NHj/Z0lYg8igGWKrzOnTtj0qRJAABjgzQoodkerhERERERIDQKao8IRkpKCpo0aYKXXnqJ871ShccASwRg1KhR6NevHyABhmYpUAI5MjERERF5jpAEWk6pg6ioKISFheHdd9+Fr6+vp6tF5HEcxIkoV05ODl588UUcPXoUyJHh808YpGyNp6tFREREFYyAgLFpCpTwbAQEBODzzz9H48aNPV0tojKBLbBEuXx8fPDuu++iYcOGgI8CQ6skTq9DREREpc4UmQ4lPBsajQbvvPMOwyuRFQZYIitBQUH46KOPUL16dQh/EwwtkyBkdlIgIiKi0mGsnQFTHfOIw7NmzUL79u09XCOisoUBliiPqlWr4uOPP0alSpUggo0wtEhmiCUiIqISZ6qhh6l+OgDzdDl9+/b1cI2Iyh4GWCI76tWrh7lz58Lf3x8iNAeGZskQEkMsERERlQxTtUwYG6UBAMaMGYNHHnnEwzUiKpsYYIkcaNmyJT788EP4+flBhOXAyBBLREREJcBUNROmpubw+vDDD+Opp57idDlEDjDAEjlx55134v3334ePjw+UKjkwNk2BAEMsERERFQ9TlSyIlhkQQmDIkCF49tlnGV6JnGCAJXKhXbt2ePfdd6HT6aBUzYaxWQpbYomIiKjITOGZEK3SYTKZMGDAADz//PMMr0QuMMASuaFTp06YM2fO7RDbnAM7ERERUeGZquthapYGk8mE/v37Y+bMmZBlHpoTuSIJIXgUTuSmQ4cO4dVXX0V2djakFB10p0IhmfhlQ0RERO4z1tTD1NB8zevQoUMxffp0hlciNzHAEhXQ8ePH8dJLLyEjIwNSqg66kwyxRERE5B5jnQyYIs1T5YwcORJTpkxht2GiAmCAJSqEs2fPYsaMGUhNTYWUoTWH2ByNp6tFREREZZSAgKl+Oky19QCACRMmYOLEiQyvRAXEAEtUSJcuXcKMGTOQkJAAZMvQnawMWa/1dLWIiIiojBGSgLFJCpTwbADA5MmTMXr0aA/Xisg7McASFUFsbCxefPFFXL58GTBK0J0OhZzi4+lqERERURkhNAoMLZIhQgzQarWYNWsW+vTp4+lqEXktXrhHVAQ1atTAl19+iTvuuAPQChhaJsEUnunpahEREVEZIHxNqDU6ECLEgMDAQHz00UcMr0RFxBZYomKQnZ2N9957D7t27QIAaC4HQnMlEBJ4XQsREVFFpATnIPheCYmJiahatSo++ugjNGzY0NPVIvJ6DLBExURRFHz11VdYvXo1AEC+5Qvt+RBICkMsERFRRWIKz4TcOgs5OTmoX78+PvzwQ1SvXt3T1SIqFxhgiYrZzz//jPnz58NkMkFK15rniuUIxUREROWegICpXjpMdc0jDXfr1g2vvfYaAgICPFwzovKDAZaoBBw7dgyvv/46UlJSgBwZutMhkNM4uBMREVF5JTSKeaThKjkAgLFjx+Lxxx+HLHPIGaLixABLVEJu3LiBV155BRcvXgQUQHsxGPJNf14XS0REVM4oAUbUHBqImJgY+Pj44KWXXuJgTUQlhAGWqATp9Xq8//77+P333wEAcpwftBcq8bpYIiKicsIUngntnTnIyspCeHg43n77bbRo0cLT1SIqtxhgiUqYEAIrVqzAggULzNfFZmigPRMKOVPr6aoRERFRIQlJwFg/DUot8/R57du3xxtvvIHQ0FDPVoyonGOAJSolx44dw+zZs5GYmAiYJGjPV4Im3s/T1SIiIqICEr4mGJolQwQbAQDjxo3DxIkTodFw0EaiksYAS1SKEhISMGfOHBw9ehQAIN/whzYqmF2KiYiIvISpShb8OpiQnp6O4OBgvPbaa+jcubOnq0VUYTDAEpUyo9GIRYsW4fvvvwcASHoNtGdDIGfoPFwzIiIickTIAsYGqVBqZAEAmjdvjtmzZ6NmzZoerhlRxcIAS+Qhhw4dwnvvvWfuUqwAmuggaK4HcJRiIiKiMkYJNKDGA4G4cuUKJEnCo48+iokTJ0Kr5XgWRKWNAZbIg5KTk/HBBx/gzz//BABIST7QnasEycBraIiIiDxNQMBUSw+pSRaMRiPCw8Px6quv4q677vJ01YgqLAZYIg8TQmDDhg344osvkJOTAxgkaC9UgiaBAzwRERF5ivAzwtA4FSLEAADo3r07Zs6ciZCQEA/XjKhiY4AlKiOio6MxZ84cXLhwAQAg3/KF9mIlSEbZwzUjIiKqOAQElBqZ0LYyICsrC/7+/njmmWcwePBgSBIv8yHyNAZYojLEYDBg6dKlWLZsGUwmE5AjQ3sxmK2xREREpUD4msytrqE5AIC2bdvipZdeQq1atTxcMyKyYIAlKoPOnj2L9957D1FRUQDYGktERFSSLK2uutZGZGZmwtfXF5MmTcKwYcMgy/zuJSpLGGCJyqicnBwsWbIEP/zwg7k11iBBGxUMOc6PIxUTEREVEyXACGOjVIhK5mtdW7dujVmzZqFOnToerhkR2cMAS1TGnTlzBh988AEuXboEAJCSfaC9EAw5i0P3ExERFZaQBEx1MyA1yIbRaIS/vz+eeOIJPPjgg9BoOBsAUVnFAEvkBYxGI1atWoVFixaZRypWAM2VQGiuBkISbI0lIiIqCCUkB8aGqRABJgBAly5d8Pzzz6N69eoerhkRucIAS+RFrl+/jk8++QR//fUXAEDSa6C9WAlyio+Ha0ZERFT2CZ0Jxsh0KNWzAABhYWGYPn06evTowRGGibwEAyyRlxFCYPv27fjiiy+QlJQEIHeQp6hgSDns8kRERJSXkARMNfXwbaVAr9cDAIYMGYKnnnoKwcHBHq4dERUEAyyRl0pNTcX//vc//Pzzz1AUBTBJ0FwJgOYauxUTERFZKCHZMDZIgwg0dxdu1qwZpk+fjhYtWni4ZkRUGAywRF7u/Pnz+PTTT3H8+HHzA1kaaC8FQU705WjFRERUYQlfE4yRaVDCswEAISEhePrppzFw4EBOjUPkxRhgicoBIQR27NiBr776CvHx8QAAKckH2uggyBk6D9eOiIio9AiNAlOdDGgaGpGTkwNZljFs2DA89thj7C5MVA4wwBKVI3q9HsuWLcOqVatgMBgAAchxftBeDuL1sUREVK4JSUCpkYnAu2SkpKQAANq2bYtp06ahYcOGHq4dERUXBliicuj69ev49ttvsXPnTvMDCqC5FgjN1QBIJnabIiKi8kNAQAnLhikyXZ0WJyIiAlOmTEHnzp05ujBROcMAS1SOnTp1Cl999dXt62NzJGivBEGO9edAT0RE5PWUSjkw1kuHCDEAAEJDQ/H4449j0KBB0Gq1Hq4dEZUEBliick4Igb179+Kbb77BlStXzA9mydDGBEGO8+NAT0RE5HWUQANM9dKhhOUAAHx8fDBy5Eg88sgjCAwM9HDtiKgkMcASVRBGoxEbN27EkiVLkJCQAACQ9BpoYoIgx3PEYiIiKvsUf6M5uFY1jyys0WgwcOBAjB8/HtWqVfNw7YioNDDAElUwWVlZ+Omnn7B8+XJ1kAspQwvN5UBOvUNERGWS8DPCWDcDqJkDRVEgSRJ69+6NiRMnok6dOp6uHhGVIgZYogpKr9djzZo1WLlyJTIyMgAAUroWmiuBkBMYZImIyPMUfyNMdTMg1TTAZDIP0NStWzc8/vjjHFmYqIJigCWq4FJTU7Fy5UqsW7cOmZmZAHJbZK8EsmsxERF5hBJggKluBkS1HFgOVTt27IjHHnsMLVq08HDtiMiTGGCJCACQnJyMNWvW4Mcff7zdIqvXQHM1kIM9ERFRqVACDTBFZECpkq0+1q1bN4wdOxbNmzf3YM2IqKxggCUiG2lpaVi3bh3WrFmDtLQ084NZGmivBUC+6Q9JYZAlIqLiIyAgKhlgqpOhjiosSRJ69uyJsWPHolGjRh6uIRGVJQywRGSXXq/H+vXrsWrVKiQnJ5sfNEjQ3AiA5oY/JIPGo/UjIiLvJiCgVM2GqXYGRLARACDLMnr37o1HH30UkZGRnq0gEZVJDLBE5FRWVhZ+/fVXrF69GtevXzc/qABynD801wIgZ3KieCIicp/QKDBVz4KpVgbgpwAwz+Par18/jB49mqMKE5FTDLBE5BaTyYQ9e/ZgxYoVOH36tPq4nOADzbVASKk6XidLREQOCR8TTDX1MNXMBLTmw8+QkBAMGzYMw4YNQ+XKlT1cQyLyBgywRFQgQgicOHECK1euxL59+9TRIaV0LTTXAyDH+/E6WSIiUilBBphq6SHXMsJoNHcVrlOnDkaOHIn+/fvD19fXwzUkIm/CAEtEhRYTE4PVq1fjt99+Q06OeeANGCRobvpDcyMAUjavkyUiqoiELKBUzYKppl69vhUA7rjjDowaNQpdunSBLMserCEReSsGWCIqsuTkZGzatAkbNmxAbGys+UEByIm+5gGfkn3YvZiIqAIQvrndhKtnAjrzIaZOp0OvXr0wbNgwzuFKREXGAEtExcZkMmH//v348ccfcfjwYfVxSa+BHBsAzU0/SCaecSciKk8EBJTKOVBq6iGqGNRLS2rUqIEHHngA999/P0JDQz1bSSIqNxhgiahExMTEYP369di8eTP0er35QQWQ4/2guekPKYWDPhEReTPha4KpWqa5tTV3NGEA6NChA4YNG4bOnTtDo+GlJERUvBhgiahE6fV6bN26FRs2bMDFixdvL8jUmK+VjfODlMMDHCIibyAkASUsG6YamUDY7dbWoKAgDBgwAEOHDkXdunU9XEsiKs8YYImoVAghcPbsWWzcuBHbt2+/3SorADnRB/JNf8iJvmyVJSIqg5QAI5TqmTBVu31tKwC0bdsWgwYNQo8ePTiaMBGVCgZYIip1mZmZ2L17NzZt2oTjx4/fXpAjQ3PLD3KcH6QMLcMsEZEHCa1iHkm4WhZEJYP6eNWqVTFgwAAMHDgQtWvX9mANiagiYoAlIo+6fPkyfv31V2zevBnJycnq41KGBvItf2hu+XE6HiKiUiJkcxdhJTwLSuVsIHfcPY1Ggy5duuD+++9Hhw4doNVqPVtRIqqwGGCJqEwwGAw4dOgQtm7din379t2eVxaAlKKDJs4PcjxHMSYiKm4CAiIkB6ZqWVCqZAPa24eGjRs3Rp8+fdC3b1+EhYV5sJZERGYMsERU5qSnp+P333/H1q1bcfTo0dsLFPPcsvItP8hJvpAUdjEmIioMAQERaIQSngVTeBbge3sU4Ro1aqBPnz7o06cPIiMjPVdJIiI7GGCJqEy7efMmtm/fjq1btyIqKur2ApMEOckHcryfefAnhlkiIqcEBESQ0Xxda9VswM+kLgsODsa9996LPn36oHXr1pBl9nYhorKJAZaIvIIQAhcuXMD27duxa9cuxMbG3l5oAuQk39ww6wNJ4YEXERGQN7Rm2czX6uvri86dO6NPnz7o1KkTfHx8PFhTIiL3MMASkdexTMmza9cu7N69Gzdu3Li90BJmE3zNLbO8ZpaIKhgBARFsgFI1G6YqtqHV398fnTt3Rs+ePdGpUyf4+/t7sKZERAXHAEtEXk0IgXPnzqlh9vr167cXKoCU6gM5wReaRF+OZkxE5ZaQBZTQbChVsqFUzgF8bENr165d0bNnT3Ts2BF+fn4erCkRUdEwwBJRuWEJs7t378a+ffsQHR1ts1zK0N5umU3nPLNE5N2Ej8k85U1YNpTQHHXKGwAICgpCly5d0KNHD3Ts2BG+vr6eqygRUTFigCWicuvKlSv4888/sW/fPhw/fhyKcrtFAtmyeUTjJB/IKT7sakxEZZ46cnBuaBXBRpvlNWvWRLdu3dClSxfceeednKuViMolBlgiqhBSUlJw8OBB7N27FwcPHkRmZubthQogperM184m+0DKYOssEZUNQqeYuwZXzjG3slp1DZYkCS1atEDXrl3RtWtXREZGQpL42UVE5RsDLBFVODk5OTh27Bj27duHQ4cO4dq1a3kKyOaWWUugNbJ1lohKh5ByB2CqbA6tIsi2ldXf3x/t2rVD165d0blzZ4SFhXmopkREnsEAS0QV3tWrV3Ho0CEcOnQIR44cQVZW1u2FApDStZCTc7sap/pwzlkiKjYCAiLABBFibmFVQnIAre2hWePGjdGxY0d07NgRrVq1gk6n81BtiYg8jwGWiMhKTk4OTpw4gYMHD+LQoUO4dOmSbQEFkNJ0kFN8zK2zaTpIgoGWiNwjICD8cwNrSA6UEINNt2AACAkJUQNrhw4d2MpKRGSFAZaIyIm4uDgcPnwYR48exZEjR3Dr1i3bAqbcqXpSfCCn6CClM9AS0W0CAvA1QQk15AbWHMDXNrD6+PigdevWuOuuu9CxY0c0btwYssxLF4iI7GGAJSJykxACV69eVcPs0aNHkZSUZFvIBEjp5hZaKU0HOVXHEY6JKhDLSMGikgFKpRwolQz5AqtOp0PLli3Rtm1btG3bFi1atICPj4+HakxE5F0YYImICkkIgcuXL+Pvv//G0aNHcezYMaSmpuYpBEh6rXmU41Qd5FQfIFvmKMdE5YTQKOZBlyoZoAQbIIIN+a5h1Wq1aN68uRpYW7VqxXlZiYgKiQGWiKiYKIqCmJgY/Pvvvzh+/DhOnDiRf4RjwDwHbaq5u7GcpoOUroWksJWWqKxTr18NNkAJMkBUMkAEGpH3fFRgYCBatWqFVq1aoXXr1mjevDn8/f09U2kionKGAZaIqAQlJCTgxIkTaqg9f/48TCaTbSFLK22aFnK6zjwwlF7La2mJPMh87apiDqqWwBpkzNe6CgA1atRA69at1VtkZCQ0Go0Hak1EVP4xwBIRlaLMzEycPn3a5pZvYCjAfC1thg5yutY8MFSGlqGWqIQICMBHgRJkhAi0BFZjvtGBAcDPzw9NmjRBs2bN0LJlS7Ru3RpVq1b1QK2JiComBlgiIg+Lj4/HmTNn1EB75swZpKen5y+o5LbUZmhvh9sMLQeJIioAIQkIfyNEkBEi0AglMLcbsC7/4ZBGo0HDhg3RrFkzNGvWDM2bN0e9evWg1Wo9UHMiIgIYYImIyhxFUXDt2jWcPn0aZ8+exYULF3D+/Hn7oRYAsmTIGVattHotpEwNW2upQrO0qooAI5QAc1gVgUaIACNg55yPRqNBvXr10LhxYzWwNmrUiIMtERGVMQywREReQAiBmzdv4vz587hw4YIaamNjYx2sAHOI1Wttbwy2VM7kC6oBRogAkzmo2rleFTAPstSoUSM0atQIjRs3RqNGjRAZGcmpbIiIvAADLBGRF0tLS1PDbFRUFKKjoxEdHY2MjAz7KyiAlKWBlJkbZjNz72dpgBxO70Nll5AV8wjA/iYIP+Pt+06CqkajQe3atVGvXj00bNhQDas1atSAJPG1TkTkjRhgiYjKGSEEbt26pYZZS7CNioqCXq93vKJJyhdqpUyNOdwaGG6p5AlZ3A6nfibztaq5QdXegEoWGo0GderUQf369REZGYl69eohMjISdevWZasqEVE5wwBLRFRBWAfbK1eu4OrVq+rtxo0bUBTHAQEmQMrWANnmQCtlaSBl3/4Jg8SASy4JWYHwUyB8TYCfCcI3N6j6mm/wcX5IEhISgjp16qi3iIgI1K9fH7Vr14ZOpyulZ0FERJ7EAEtERDAYDLhx44YabK0Dbnx8vPNwC9gG3BwZUo4GUrZs7pac+xhbccs3oVEgfBTAxwTha74vfEyAr/mn8DPZHek3r+DgYJuQan0LDg4uhWdCRERlGQMsERE5ZTAYcOvWLdy4cQOxsbHqT8v9+Ph4uPVVosAcaHNyA22ODMlgvsHyM/cxmNiiWxYISQA6BUKXG05z70NnFVB9cpc5uA41r+DgYNSoUQM1atRAzZo1UaNGDVSvXh01a9ZE9erVGVKJiMgpBlgiIiqSnJwcxMXFITY2Frdu3UJ8fLz603I/MTHRvZBrocA21BplwCi5+CmbB6li8M1HSALQCgitAmgVCK0AtAqgsTyW+1MnzGE1N6S6G0otgoKCULVqVfUWHh6u3q9VqxaqV6+OoKCgEnqWRERUETDAEhFRiTMajUhISFADbUJCApKSkpCUlITk5GSb+w5HUHaHAsAkmVtwTbLVfcn2vmJ1X+T+rgCSYvkduY9JkBTcLmP5xhQAkPt77mOugrO4XTDPT2G+LwlANg9kBDn3MVkAkoCQb9+HDHPw1AhAIwCNYl4n93ehyV3fcl+rAJrC/0m1Wi0qV66M0NBQhIaGqvfDwsLyhVR/f//C74iIiMgNDLBERFSmZGdn5wu1qampSEtLc3ozmUyerbh1uLXcl5A/sHpQUFAQgoKCEBwcrP60vh8SEoLKlSvbBNagoCBOOUNERGUGAywREXk9IQQyMzORlpaGjIwMZGZmIjMzE3q93uV9g8Gg3nJyctRb3sdKOiDLsgydTgedTgcfHx/4+PjY/G5939/f3+2bJZwGBgZCoylCUywREVEZwABLRETkBkVR3LqZTCYoigJZliFJEmRZVm/Wv1vuS5IEjUYDrVbr6adIRERU5jHAEhERERERkVeQPV0BIiIiIiIiIncwwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCswwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCswwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCtoPV0BIiJPEUIgKyvL09UgIioQPz8/SJLk6WoQEXkEAywRVVhZWVno16+fp6tBRFQgW7Zsgb+/v6erQUTkEexCTERERERERF6BLbBERAB8DlUDTBIkWQIkWf0JWQJyu+pJsmy+L+X+lCVIUu55QEu53MfV+0Cex2y3af55e7mwPC7j9jYsj1tOOeZ9TJIgLL0JpdzfZfMvQoLVvqCuIyQp9/fb2xS5VTHXBVbr2C63WcdSRrazzLq8zTLrx/LWw8E6uP2Y9XIAah0c7cumvIN65N2myt7+1HWE7Tp5tqcuR97l4nYZ3C57e9tCXSblK2+9zHz/9s/b25EkcfslaP24usy8XIb5vvU6cu5y8zLzvtTHrH/i9npy3lvuMvPvyPe4eR1FfUyG+XcA0Ei3f5cl22WyJKyWC2hgLmNeT7FaT4HGepu59y3lrdeTIXLXVaDJXWbel7m8RhKQoECT+7v1OhrAvB7M+7M8N8vv5n0JdZks5dZFvS+pb2uNJEGGlPuYBE3uH1+GDAkSDDkaPPRkDRARVXQMsEREgDm8KuYDRUi3f95OBjAfakoSIN9Oa+rhp00SkoG8CeV2OkS+1CNZrWuToNx5HA6WIzfowibA2jxmswmr3/MF4rzL7ayT7ynnKW+vunbr4eDmaJmjP1Vht2e1TYeBOW9Atfdvtl6OvMsdBNi8y/Msyxtgbz8ubPZpb5klpN5eZr3c3jrCzr5sb9YBNt/N0TJ7wRZC/V1dhtvLNbBdZg6wyu0AmLvMHABzf0qSOVzmvvYt9y3lNZCgUQMsoJFu/9TAsi/zfbvL1N9Fbpi1Dqm3Q6uzAGvZ3u0Am7tdq+2b92Upb/U/JCKqwNiFmIiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiKi/2/v3qOiLhM/jr9H5DIKipqroGRqoG7pqqBmKnkLkbILaqdy11y37XIqO8f1HP2RpmWFq8e0o2e1PKtuGdlWJ82zlWXibUVFM3UlkLxQXiAuCiIMMDC/P3C+DTrcZrg4+nmd43GY5/k+32fmO8r5zPN8n0dExCNoH1gREQAvGzYqKjdqNHHN38aGjNfso2q6Zt9T+x/bb4/rUuawCamtms1NnT3/23P23TWp+rPN2I3TKLFhAhvGsbZrj7l63PWqec7mUFRlb1OTY/dr2H/VVEPZNad1paymvV5rKrM/rPE4Z/u5Oim/ro/V7APL9ceZrqvvWOawx6vJoS72/VcdP17V7AOL6/vA2vjtONu1f66W2a7uhXvt8xUmG5gqfjsPV3+2vy6qltuultkczm0zyhz6cfXnFlcft7haZn/s+HeFwz/rCtNvf1dcfcktrj6uuPoRdb4PrIkWVO4vay8zXX3eC4e9ZB3atO/zauxje7Wsch9b029tXv0/onJXahNlpc7+DYqI3HoUYEVEgNLBvzZ3FxqHPR+4wXTN3yLw28fKxm+hz7M4frI1IU1ExFPof2wRERERERHxCCabzebmd/MiIp7JZrNhsViauxvSgCwWCw8//DAAmzdvxs/Pr5l7JO7Q9XTOz88Pk0lzIkTk1qQpxCJyyzKZTJjN5ubuhjQSPz8/Xd+biK6niIiAphCLiIiIiIiIh1CAFREREREREY+gACsiIiIiIiIeQQFWREREREREPIJWIRYRERERERGPoBFYERERERER8QgKsCIiIiIiIuIRFGBFRERERETEIyjAioiIiIiIiEdQgBURERERERGPoAArIiIiIiIiHkEBVkRERERERDyCAqyIiIiIiIh4hJbN3QEREbn1FBUVsXHjRnbu3ElmZiYtWrQgJCSE0aNHM3HiRLy9vV1uOy8vj4SEBJKSksjKysLX15fu3bsTHR3NAw88gMlkcnrcW2+9xddff11r+9u3b6dlS/36vFZjXNPLly/zww8/cOLECU6cOEFaWhp5eXkA/N///R/jx4+vUzvnzp0jISGB5ORk8vLyMJvNhIWFMWHCBEaOHFnvfomISPPRb2AREWlSmZmZzJgxg8zMTAD8/PwoKysjNTWV1NRUvv32W5YvX05AQEC9205LS2PWrFnk5+cDYDabKSoq4ujRoxw9epQdO3YQHx9fY5jy8fHB39+/2vLqAvCtrLGu6Z49e4iPj3erb0lJScyfPx+LxQJA69atuXz5MsnJySQnJxMTE8Ps2bN1XUVEPIQCrIiINBmr1cqcOXPIzMykQ4cOvPLKK0RERFBRUUFiYiJLliwhPT2dhQsXsnjx4nq1XVhYyOzZs8nPz+f2229n7ty59O7dm7KyMrZs2cLKlSs5cOAAK1asYObMmdW2M3r0aOLi4tx9qbeMxrymAO3btyc0NJSwsDB69erF3Llz63zs+fPnWbBgARaLhb59+zJnzhxCQkKM0eL169fz5Zdfcvvtt/Pkk0/Wu28iItL0FGBFRKTJfP3115w6dQqAhQsXcvfddwPQokULxowZg81m4/XXX2ffvn0cOnSI8PDwOre9ceNG8vLy8PX1ZfHixQQHBwPg7e1NbGwsRUVFvPfee2zZsoXJkycTEhLS8C/wFtSY1zQqKqrO04SdWbt2LcXFxbRv355FixYZI8CtWrVi+vTp5ObmsmXLFj744AMmTJjg0qi/iIg0LS3iJCIiTcZ+j+mAAQOMoONozJgxBAUFValbV1u3bjXasIdXR7GxsZjNZsrLy/n222/r23WpRmNeUy8vL5f7VVxczM6dOwF45JFHnIbTP/7xjwBcuXKF3bt3u3wuERFpOgqwIiLSJCwWC//73/8AuOeee5zWMZlMDBkyBIDk5OQ6t/3zzz+TlZUFYBx/rVatWtGvX796ty3Va8xr6q5jx45RUlICVP+ZCAoKolu3bk3eNxERcZ2mEIuISJPIyMigoqICgO7du1dbz16Wl5dHQUEBbdq0qbVt+xTW2tru0aMH+/fv58yZM9XWOXToEE8++SS//vorLVu2pFOnToSHh/Poo49q2vE1GvOausvxM9GjR49q6/Xo0YOMjAxOnz7d6H0SERH3aQRWRESaRE5OjvG4Y8eO1da77bbbnB5Tk9zc3Hq1feXKFYqKipzWyc7O5sKFC/j6+lJSUsLp06f59NNPmTZtGps2bapTf24VjXlN3WU/T0BAAL6+vtXWs/fN8TMkIiI3Lo3AiohIk3AMjDUFCj8/P6fHNEbbrVq1Mn4OCwujd+/e3HvvvXTs2BEvLy8sFgv79+9n9erVnDt3jrfffpvAwEDtHXpVY15TdxUXF193bmfs5U3VLxERcY9GYEVERIBJkyYRGxtL586djcWD/Pz8uO+++1i9erWxENE//vEPbDZbc3ZVRETklqUAKyIiTcJxtNO+uI4zFovF6THN1TZA27Zt+dOf/gRAZmYmJ06cqPOxN7PGft/dYTabrzu3M/bypuqXiIi4RwFWRESahON9kNnZ2dXWc7xH0vGYmnTo0KFebbdu3bregeWuu+4yHl+4cKFex96sGvOaust+nsuXL9cYru19c/wMiYjIjUsBVkREmkS3bt1o0aLy105NK77ay9q3b1/n1WodV5mtqW37yrR33HFHndqVmjXmNXWX42fCcUXia9nLalpFWUREbhwKsCIi0iT8/Py4++67Adi/f7/TOjabjQMHDgAwaNCgOrcdEhJCp06damy7uLiYo0eP1rttu+PHjxuP7ffD3uoa85q6q2/fvsbCUvbzXyszM5OMjIwm75uIiLhOAVZERJpMdHQ0AIcPHyYlJeW68sTERM6fP1+lbl2YTCbGjRsHwPbt251O8f38888pLi7Gy8uL+++/v0pZbYsyFRQUsGHDBgB+97vfERoaWue+3ewa65q6y2w2c9999wGwadMmCgsLr6uTkJAAVN7/OmLEiCbrm4iIuE4BVkREmkx0dDQ9evTAZrMxb948Dh06BEBFRQWJiYksWbIEgCFDhhAeHl7l2LVr1xIZGUlkZKTTgPr444/Tvn17LBYLs2fPJi0tDYCysjI2bdrEP//5TwAmTJhASEhIlWO/+eYbXnnlFXbs2MHFixeN50tKSti9ezfPP/+8EcKef/55Y9qsNO41Bbh06VKVP3ZFRUVVnne2WNP06dMxm83k5uYyZ84cfvnlF6ByNH79+vVs3rwZgKlTpxIQEOD2eyEiIo3PZNNeACIi0oQuXLjAyy+/TGZmJlA5DbWiooLS0lIAQkNDWb58+XWBYu3ataxfvx6Ajz/+2Ok03rS0NGbNmkV+fj5QObJWWlqK1WoFKqeJxsfH4+PjU+W4r776ivj4eONns9mMj48PhYWFlJeXA+Dj48MLL7zAo48+2gDvws2lMa9pZGRknfowbdo0pk+fft3zSUlJzJ8/3wi4/v7+FBcXG9c1JiaG2bNnYzKZ6vZiRUSkWbVs7g6IiMitJSgoiPXr17Nx40Z27txJZmYmLVu2pHv37owZM4aJEyfi7e3tUtu9evXiX//6FwkJCezdu5dff/0VPz8/evToQXR0NDExMU5HTwcMGMBf//pXjh8/TkZGBvn5+RQWFtKqVSu6dOnCwIEDeeihhwgODnb35d+UGvOaumvo0KGsW7eOhIQEkpOTycvLw9/fn9DQUB566CFGjhzZLP0SERHXaARWREREREREPIJu4hERERERERGPoAArIiIiIiIiHkEBVkRERERERDyCAqyIiIiIiIh4BAVYERERERER8QgKsCIiIiIiIuIRFGBFRERERETEIyjAioiIiIiIiEdQgBURERERERGPoAArIiIiIiIiHkEBVkRERERERDyCAqyIiIiIiIh4BAVYERERERER8QgKsCIi4hHeeecdIiMjeemll5q7K9LMCgsLeeCBB4iMjGTXrl3N3R0REWlCLZu7AyIi0riuXLlCeno6qamppKWlkZaWxrlz57DZbAB8/PHHBAUFNcq5bTYbkyZNIjs7mylTpvDss8+61E56ejqbNm0C4JlnnmnAHjavU6dOceDAAY4dO8apU6fIzc2lvLycgIAAevbsydChQ4mOjsbf37+5u3pD8ff35/HHH2fNmjWsWLGCIUOG4Ovr29zdEhGRJqAAKyJyk5sxYwbp6enNcu7U1FSys7MBGDFihMvtrFq1ivLycoYMGULfvn0bqnvNasaMGfzwww9Oy/Ly8sjLyyM5OZkNGzYQFxfH4MGDm7aDN7hJkybxySefkJWVxaeffsqUKVOau0siItIENIVYROQmZx9phcqRqwEDBtC+ffsmOffu3bsB6NixI3369HGpjaNHj3Lw4EGAmyqk2IN9QEAAMTExxMXFsXLlStasWcPrr7/O0KFDgcowGxcXx5EjR5qzuzccs9nMxIkTAUhISKCoqKiZeyQiIk1BI7AiIje5mJgYAgMD6dWrF127dsVkMjFjxgzy8vIa/dz2ADts2DBMJpNLbXz00UcABAUF8Yc//KHB+tbcunbtytSpUxkzZgw+Pj5Vynr16sXIkSP58MMPeffddyktLWXp0qW8//77zdTbG1NUVBRr167l8uXL/Oc//2Hy5MnN3SUREWlkGoEVEbnJTZo0ibFjxxISEuJyiHTFL7/8QkZGBuD69OHs7GySkpIAGDduXJP2v7EtWbKE8ePHXxdeHU2ZMoXQ0FAAzpw5w8mTJ5uqex4hKCiIfv36AfDFF180c29ERKQpaARWREQahX11WPu0ZVds27aNiooKAEaPHl2nY6xWK9u3b2fPnj2kpqZy6dIlysvLCQwMpEePHkRERDB27Fg6dOhQ5bjIyEgAoqOjiYuL4+eff+bTTz8lOTmZnJwcWrduTVhYGE8++ST9+/c3jispKeGrr75i69atnD17FovFQnBwMPfffz+TJ092e3GhgQMHGvcw//LLL/Ts2dPlts6cOcPmzZs5cuQIFy5cwGKx4O/vT0BAAEFBQYSHhzN8+HBuv/12l9q3Wq188803JCYmcurUKfLz8zGZTLRp04bAwED69OlDREQEw4YNw9vbu8qx177/Z86c4fPPP+fgwYPk5ORQXFzMm2++ed2XIaNHj+bIkSNkZGSQmppK7969XXtzRETEIyjAiohIo7BPHx46dCgtW7r262bv3r1A5X2i3bp1q7X+Tz/9xKuvvsrZs2evK8vOziY7O5v9+/dz8uRJ4uLiqm1nx44dvPXWW1gsFuO5kpIS9u3bx/79+5k1axYTJkwgJyeHuLg4UlNTqxx/+vRp3nvvPfbt28fSpUvdCrFWq9V43KKF6xOnNm/ezPLlyykvL6/yfH5+Pvn5+Zw9e5bk5GROnjzJvHnz6t3+pUuX+Nvf/uZ0wTD7e5+ens4XX3xBQkICXbt2rbatr776iqVLl1JaWlrreR0X9dq7d68CrIjITU4BVkREGlxOTg4//vgj4Pr04dLSUo4fPw5Anz59ap0+nJ6ezosvvkhxcTEAAwYMICoqim7duuHt7U1ubi4pKSm17ht68uRJtm/fTrt27XjmmWeMcx86dIgPPvgAi8XCsmXL6N+/P2+88QY//fQTjzzyCMOHDycwMJBz587x/vvvc/LkSY4ePUpCQgJ//vOfXXoPAL7//nvjcffu3V1q49SpU0Z4bdOmDRMmTKB///4EBgZSXl5Obm4uaWlp7Nu3z+Vp2suXLzfCa3h4OFFRUQQFBdG6dWuuXLlCRkYGR44cMaaEVyctLY1t27bRpk0bJk+eTN++ffH29ubMmTN07tz5uvrdu3fHbDZTXFzM999/z/Tp013qv4iIeAYFWBERaXB79uzBZrPh4+PDkCFDXGrj5MmTxuhjr169aqxrtVp59dVXjfD68ssvGyvUOrr33nt5+umnycrKqrat9PR0QkNDWb58OQEBAcbzv//97+natSvz58/HarXy4osvUlBQwJIlS4iIiDDqhYWFMWjQIKZOnUpOTg6bNm1i6tSpeHl51ev1Q+U07NOnTwOVIT4kJKTebQAkJiYaI6/Lli0z7qt1NGLECJ5++mny8/Pr3X5JSYnxxcCIESN44403rgvC/fv35+GHH6a4uLjGkeTTp0/TtWtXVq5cWWW17OpWsfby8iIsLIwjR45w4sQJKioq3BqpFhGRG5v+hxcRkQZnnz4cERGB2Wx2qQ3HacC1bfuzbds2zp07B1SuuuwsvDrq1KlTjeVz5sypEl7tRo4cSceOHQG4ePEisbGxVcKrnb+/P+PHjzfqnTlzpsbzOZOTk8Pbb78NgMlk4vnnn693G3b2Faf9/f2dhldHbdu2rXf7ly9fNr5s6N+/f42juGazudYp1TNnzqzXVk/2uhaLhZycnDofJyIinkcBVkREGlRhYSGHDx8GXJ8+DJCbm2s8btOmTY117YEZ4IknnnD5nFA5JbW6kGcymaqURUVFVduOY73z58/Xqw8Wi4W4uDgjeF67cFR92UN3YWEhiYmJLrdTnbZt2xqrKX/33Xdu7cnasWNHp18K1MTx8+H4uRERkZuPAqyIiDSopKQkrFYrXl5eDBs2zOV2SkpKjMfORkMdnThxAqgciavLYk81qe14x77UtFqvY736BLqysjLmzp1rLAw1fPhwnn766Tof70xUVJQx6jl//nxeeOEFPvzwQ44ePWpMu3aHt7c30dHRAKSkpPDYY4+xZMkSvvvuu3qHd1dWWXYMsI4Lb4mIyM1H98CKiEiDso+G3n333QQGBrrcjuM9o7WtRnvp0iXgt5FGd/j5+dVY7jg9tqbp0Y73Ydq3AqqN1Wpl3rx5HDhwAIDBgwezYMECl+6fdRQcHMyiRYt46623yM7O5tixYxw7dgyofJ979+5NZGQkDz74YK1fFlTnpZdeorS0lK1bt1JQUMCWLVvYsmULUPnFwuDBg4mJial1JLm20XZnHL/scHXFaxER8QwagRURkQZTWlrK/v37AfemD0Pl/Zp2BQUFbrXlCaxWK/Pnzze2DoqIiODNN980pua6Kzw8nI8++ojXXnuNmJgYYxub8vJyjh8/zqpVq3jiiSeM8Fxfvr6+xMXFsWHDBv7yl78wcOBAI+Dn5eXx9ddfM2PGDObOnVslcF7LlQWYHBeecvzciIjIzUdfU4qISIM5ePCgMSXV3QDruGVKbQE2MDCQrKwsj13Axx5e7aPXAwcOJD4+3q39Y53x8fFh1KhRjBo1CqgcuT506BBbt25l3759FBQUMG/ePBISEujQoYNL5wgJCeGpp57iqaeeory8nPT0dPbu3cvmzZu5ePEiu3btYs2aNbz44osN9rouX75sPK5tgS4REfFsGoEVEZEGYw9goaGhBAUFudWW456nP//8c4117dvs5Obm1lr3RnNteB0wYACLFi1q8PDqTGBgIGPGjGHx4sU88sgjABQXF7Nnz54Gad8+PXn69OmsXr3amJ69bdu2BmnfLiMjA4CgoCBatWrVoG2LiMiNRQFWREQaREVFBf/973+ByoWH3NWpUyduu+02AH788cca60ZGRhqPExIS3D53U7FarSxYsMAIr/379+fvf/97rffhNobBgwcbj+33FDekoKAgYx9bV/aarc6lS5eMLZTuuuuuBmtXRERuTAqwIiLSII4dO2YEH8dA6Q57qMrIyODKlSvV1hs9erQRjr788ks+++yzGtvNyspqkP65w2q18vrrr7Nr1y6gccPrzp07aw2l9nuXAbp06VKv9s+fP8/BgwdrrHPhwgVjpDQ4OLhe7dckJSXFeHzPPfc0WLsiInJj0j2wIiI3ubNnzxorztrZ9xcF2LFjR5XVgs1mMyNHjqz3eeyjiMHBwS5theLMqFGj+PLLL6moqODgwYPcd999Tuu1bNmS1157jRdeeIHi4mLeeecddu3axbhx4+jWrRve3t7k5uaSmprKjh076NWrF3FxcQ3SR1ctXLiQHTt2AJWB8bnnnuPChQs1HtOuXTvatWtX73N99tlnLFy4kPDwcMLDw7njjjto27YtZWVlZGVlsW3bNmP0vHPnzvXe/igrK4uZM2cSHBzMsGHD6NOnD506dcLX15f8/HxSUlLYtGmTsZr0xIkT6/0aqpOcnAxU3t87dOjQBmtXRERuTAqwIiI3uWPHjhEfH19t+apVq6r83LlzZ7cCbENMH7aLiIigY8eOZGdns3Xr1moDLMCdd97JihUrePXVVzl//jyHDx/m8OHDTuva75ltTomJicbjc+fO8dxzz9V6zLRp05g+fbpL5ystLSUpKYmkpKRq63Tp0oX4+Pgatweqyfnz5/nkk0+qLW/RogVPPPEEjz76qEvtX8tqtfLdd98BlaP+rm4BJCIinkMBVkRE3PbTTz8Zo4furj7syMvLi9jYWN5991327dvHpUuXatxbNiwsjA0bNrB161Z2795Nenq6cb9lu3bt6NmzJ4MGDWLs2LEN1kdPMH/+fA4cOMCRI0c4deoUeXl5xpTitm3bcueddzJixAiioqJc2ranX79+rFy5koMHD5KSkkJWVhYXL17kypUr+Pn5ERwcTL9+/XjwwQcbbHQeMD4TAJMmTWqwdkVE5MZlstlstubuhIiIeLZ169axbt062rVrx+eff+7SXp7VKSws5PHHH6egoIBnn32WKVOmNFjb4tlmz55NUlIS4eHhLFu2rLm7IyIiTUCLOImIiNvs04fvvffeBg2vAP7+/kZo3bhxI0VFRQ3avnimlJQUkpKSMJlMPPPMM83dHRERaSIKsCIi4paysjJGjBjBtGnTiI2NbZRzTJw4ka5du5Kfn8+///3vRjmHeJY1a9YAMG7cOPr06dPMvRERkaaiKcQiIuIRfvzxR5KSkvD39+exxx5r7u5IMyosLOSTTz7BZrMRGxtb433RIiJyc1GAFREREREREY+gKcQiIiIiIiLiERRgRURERERExCMowIqIiIiIiIhHUIAVERERERERj6AAKyIiIiIiIh5BAVZEREREREQ8ggKsiIiIiIiIeAQFWBEREREREfEICrAiIiIiIiLiERRgRURERERExCMowIqIiIiIiIhHUIAVERERERERj6AAKyIiIiIiIh5BAVZEREREREQ8ggKsiIiIiIiIeIT/B2Ip3L+2Nh8DAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACp5ElEQVR4nOzdd3hTZcMG8PucjO7BKC1QoOwtIEOWgiyVIagI+qogbv0EGYqoICIuREVw40JAGYqAqCAgoIBsUGaZbYFCB3TvJnm+P0IOSZvZpE3T3r/rytU0OeNJm+Sc+zxLEkIIEBEREREREVVysrcLQEREREREROQMBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/gkQAbHx8PSZIgSRIefvhhT2yyWurbt6/ydyQisuXhhx9Wvivi4+O9XRzFokWLlHItWrTI28UhDzMYDOjcuTMkScL48eO9XRzyETxHJLKush7LPWHp0qWQJAnh4eFISUnx+PYrrAZ20aJFeO211/Daa69V1C69bs2aNcprzsjI8HZx6JrXXntN+cJw5ubsl8rRo0cxfvx4tGrVCsHBwQgLC0P79u0xbdo0JCQklO+LIqIqr7i4GFu2bMGcOXMwcuRIdOjQAfXr14e/vz+CgoIQExODESNG4Ntvv0V+fr7H979w4UIcPHgQ/v7+eOmll6wuc+LECXz99dd46qmn0KNHDzRp0gShoaHQarWoU6cObr75ZsyYMQPnzp1zer+ZmZmYO3cu+vbtizp16kCr1aJu3bro06cPFixYgLy8PKe3lZeXhy+//BJDhgxBdHQ0/P394e/vj3r16mHQoEGYP3++x47XQgicOnUKP/zwA6ZMmYK+ffsiNDTU7TC3a9cuPPLII2jatCkCAwNRs2ZNdO7cGW+88QauXLlid13zMOnqzZeNHz9eeR0zZsxwef28vDyEhYVBkiSo1WpcunTJrfIUFBTg22+/xZ133onGjRsjMDAQ4eHhaNWqFe666y589NFHSExMtFmWDRs2YPbs2bjzzjvRrl07REVFQavVIiQkBM2bN8fo0aPx448/Qq/XO12m4uJifPnll+jfvz/q1q0LPz8/REdHY9iwYVixYgWEEG695pL0ej2+//57jBgxAtHR0fDz80PNmjXRsWNHTJ8+HefPn3dqO668h+195szDpCs3X841ycnJ0Gg0kCQJQUFByM7Odnkbb7zxhvK3ePrpp5XH77//frRo0QKZmZk2jxduER4QFxcnAAgAYuzYsVaX6dOnj7JMdTF27FjlNcfFxTlcvjr+jbxh5syZyt/ZmZsz/7u5c+cKjUZjcxshISFi2bJl5f/iqFpw9bulonz77bdKub799ltvF6fKOXHihNPfWzExMWLnzp0e23dubq6IiooSAMSECRNsLnfTTTc5VT6NRiNmzZrlcL8bNmwQtWrVsrutJk2aiP379zvc1r59+0Tjxo0dlq1OnTrijz/+cOnvY83kyZPt7sfW+ZItBoNBTJo0SUiSZHObkZGR4s8//7S5DfPzNVdujRs3LvPfwZlzxPJ24MABpQwNGzYUBoPBpfUXL16srD948GC3yrJ582bRpEkTh3/zefPmWV1//fr1Tv/fbrjhBnHixAmHZYqLixOdOnWyu60BAwaI9PR0t167yZkzZ0SHDh3s7i84OFgsXrzY4bZceR/be/+ZH1dduX333Xdl/jtUhmP5sGHDlDJ89dVXLq/ftGlTZf29e/daPGf63MiyLI4fP+6pIgshhFDDA2JiYjx+ZaY62rZtm7eLUO3Mnj0b7dq1s7tMnTp17D7/+eef44UXXgAAaDQaPPTQQ+jTpw+Ki4vxxx9/4KeffkJ2djYeeughhIeH4/bbb/dY+al6WrRoEZvoVmNNmjTBTTfdhLZt26Jhw4YIDAxEdnY2jhw5ghUrViAxMRHx8fEYOHAg9uzZ4/A7zhmffvopkpKSoFKpMHXqVLvLhoWFoVu3bujUqROaNm2KGjVqQK/XIyEhAb///jv+/vtvFBcXY+bMmdDpdHj99detbmfr1q0YNmwYiouLAQDdu3fH6NGjUa9ePaSkpGD16tXYsmULzp07h9tvvx3//PMPmjdvbnVbCQkJGDBgADIzMwEAUVFRePjhh9G8eXOo1WqcO3cOixcvRlxcHFJSUjBs2DDs2bMHHTt2LPPfrGTtV0hICBo0aIDjx4+XaXsvvfQS5s2bBwAICgrCo48+im7duiEnJwerVq3Cpk2bkJycjOHDh2P79u1Wy16nTh2sXr3aqf3Nnj0bBw8eBACMGzeuTGWuLG688UbccMMNOHz4MM6fP48tW7agf//+Tq9v/n3rzt/i559/xn333Yfi4mLIsow77rgD/fr1Q7169SCEQGJiIvbs2YMNGzY43FabNm3QrVs3tGrVSmlNkJGRgYMHD2L58uVIS0vD4cOH0adPH/z333+Iioqyup2MjAzccccdiI2NBQC0bt0ajzzyCKKjo3HmzBksXLgQFy5cwObNm3H33Xdj48aNUKvLHh8uX76Mvn374uLFiwCAhg0b4pFHHkGrVq2Ql5eHrVu3YtmyZcjJycHDDz+MwMBA3HPPPQ6327ZtW7zxxht2l2nYsKHN5yZMmIARI0Y43M/p06eV78CQkBCMHDnS4TqV2bhx47Bu3ToAxvf5o48+6vS627dvx9mzZwEY//5du3a1eP5///sfZsyYgYSEBMyaNQvLly/3XME9GoftqI61i5XhygqVZl4Du3XrVre2denSJREYGCgACLVaLTZt2lRqGfNaqQYNGoj8/Hy39klUWbEGtnzl5OSIc+fO2V0mLy9P3Hnnncr/4fbbb3d7v8XFxaJBgwYCgBg0aJDdZY8fPy6Ki4vtLrN06VKlFlGtVouLFy+WWqagoEA0bNhQeR3Tpk2zuq158+Ypy/Tr18/mPh955BFludtuu03k5eVZfZ1jxoxRlhs+fLjd1+HIF198ISZNmiS+//57ERsbKwwGg9i6dWuZaiMPHjyo/M3CwsLEf//9V2oZ82Nb165dXa5lNJeeni78/f2V2pPz58+XeVuVoQZWCMv3ykMPPeT0egkJCcrfvlatWqKwsLBM+z969Kjw8/MTgLHVgLX/oUlBQYFITk62+tyVK1fEpUuX7O7r6tWrFq0hnnrqKZvLTpw40eL7ouQ5ytWrVy1qZz/++GO7+3Zk1KhRyrb69+8vcnJySi2zY8cO5dyqVq1admt+Tdvq06ePW+Vy1osvvqjs87HHHnNrW5UhJxQVFYnatWsr5Thz5ozT65p/r7733ntWl3n55ZcFAKFSqURCQoKnii0YYMtRZXhjUmmeDLDmX/wvvPCCzeXuvfdej335E1VWDLCVQ0pKilCpVEpALOsJt8nq1auV/6szTfqcYR6yv/7661LPL1++XHm+S5cudsPY4MGDlWU3b95sdZn69esryxw7dszmttLT04VarRYARM2aNV1/YQ6UNcCOGDFCWe+TTz6xuozBYBDdunVTlvv111/LXM5PPvlE2c7AgQPLvB0hKk+ATUlJUbr6BAUFiezsbKfWe/3115Xyjx8/vsz77969uwAgQkNDPXoib8vBgwctLp5bk5ycLLRarfI3sRWajxw5ooT4qKgoodPpylSmS5cuKdsJCAiwuT8hhHj33XeV8k+fPt3mchUZYHU6nahbt66yT3e7aVSWnGB+Ljtjxgyn1snNzRUhISHKcSYpKcnqcseOHVO2/corr3iszOU+CrFpZN2//vpLecyVTtAGgwErV67E6NGjlY7uISEhaNWqFZ5++mkcOXLEbtnMB+wxNdH9888/cf/996Nx48bw9/cvNVCPTqfDH3/8gSlTpqB3797KoBEhISFo0aIFHn74Yfz9998292nqCP7dd98pjzVu3NhhZ3JXRiHes2cPnnjiCbRs2RIhISEICgpC06ZNMXbsWGzZssXh+qb99O3bFwCQm5uL9957D126dEGNGjUQFBSEtm3b4qWXXkJ6errD7VVHQgj8+OOPAOBwVM4JEyYo91esWFHuZTO3a9cuPP3002jTpg3Cw8Ph7++Phg0bYvTo0fjtt9/srrtt27ZSn9Hz589jypQpaNWqFYKCghAeHo6ePXvi008/hU6nc6pMOTk5+PDDDzFw4EDUq1dPGbyha9euePXVV5Gammp3/ZKfFb1ej0WLFmHgwIGoX78+1Go1YmJiSq2XnJyMqVOnok2bNggKCkLNmjXRrVs3vP/++8pAMDExMZAkqdT6GzZsUPZp/v+0Z8KECco669evd2odZzgaubC8/m+//vorhg0bhqioKPj7+yMmJgYPPPAAdu3a5fJrKCoqwtdff40777wTDRo0gL+/P8LDw3HDDTdgypQpNgdPO3nyJIKCgiBJEsLCwhAXF2dzH+np6WjYsCEkSYJKpbL7vV2VREREICIiAoDxeOZoYB9HlixZAgAICAjAXXfd5Xb5AGPzR5OkpKRSz5sfxx588EG7x8UxY8Yo93/44Qery5iPgmmrmTEAhIeHK3+73Nxcm8tVpOzsbOX7IzQ01OZANCWPQ+4ca7799lvl/iOPPFLm7bgiNTUVXbt2Vb67Jk+ebLV7WlmPaRERERg6dCgA4/925cqVTpXL/FyurM2Ht2/fjt27dwMApkyZYrcpq6c4+owBxsFGi4qKABgH3bHVZapdu3bo16+fsi3zc3pXbNu2Tfmf3nbbbXa7aJl/rpctW1am/Xnahg0bcPnyZQBAq1at0LNnzwrZ71dffQW1Wg1JkhAdHY1jx46VWsad8yrz9/XixYud6ha6atUqZdCnwYMHIzIy0upybdq0UbozLF261HNdTj2Rgu1dXTOvebV3mzlzZqntnjlzRnTs2NHuerIs271aYF7btmXLFvF///d/VrdjfuWjb9++TpV57NixVq9sO9sR3N7fypbi4mLx+OOPO9z2qFGjrDaRMjEt16dPH3H27FnRpk0bm9tq1KhRlapB9lQN7JEjR5TttGvXzu6yer1ehIaGKu/ZrKysMu/XWTk5OWL06NEO3ytDhgyxWR7z2oKZM2eK9evXi/DwcJvbGjhwoCgoKLBbrt9//13UqVPHbplCQkLE2rVrbW7D/LNy9epV0bt3b6vvW3NbtmwRNWrUsLnP9u3bi/Pnz4tGjRpZXV+v1ysDwNSoUcNhU/D8/Hxlfw0bNhR6vd7u8q5wdNXW0/83nU5n93tNlmUxZ84cp2tgnRlMR6vVis8//9zq+gsXLlSW69Gjh83agJEjRyrLefLKb2WXkZGh1DRpNBq3ui0UFBQoTfluueUWj5XRvFWKtRpY81rV9evX292WeU1TVFSU1WWio6OVZZytge3YsaNrL8oJZamBXbdunbLO0KFD7S6bkpKiLBsREVGmMpof22rUqOHwO90RZ2pg4+LiRIsWLZTl3n777VLLeOKY9ssvvyjLOfN+/vvvv5XlO3To4MrLtjBu3DhlO2fPni3zdlxhXvNlqwb2nnvuUZb56aef7G5v7ty5yrL2WpzZY16r+uKLLzpc3nTeBEDExsZaXcb8fLa83X333cr+5syZ4/b2nKmBffPNN5VlWrZsabX23hPnVTfeeKOy7JYtWxyWvV+/fsryq1evtrvspEmTlGUPHTrkcNvO8MggTvaYhnWfPn26csXA2gACrVq1svj97Nmz6N69u3LluHfv3hg6dCgaNWoEvV6PAwcOYNGiRUhPT8fs2bMhy7LDoaznzp2L9evXK4M3tGvXDjqdDnv37oWfn5+yXH5+PoKDg9G/f3907twZMTEx8Pf3x+XLl3Hs2DF8//33yM3NxXfffYfw8HB8+OGHFvsxdQRfsGABtm7dCgD44osvSl1pKssVuIceekjpBO3v74+xY8eiZ8+eUKlU2L9/P77++mtkZ2dj5cqVyMzMxPr16+1euc7KysKQIUNw8uRJDB8+HLfffjtq1qyJc+fO4bPPPsP58+eRkJCAMWPGVMnai1dffRWJiYlITEyEVqtFZGQkunfvjlGjRmHo0KF2/3ZHjx5V7nfu3NnufmRZRqdOnfDXX3/BYDDgxIkT6Natm8deR0mFhYUYMGCAcsW3adOmGD16NFq3bg2NRoMzZ85g8eLFOHXqFH777TeMGDECmzZtgizbbpTx77//Yu7cuRBC4Mknn0SPHj3g5+eH/fv34/PPP0dubi42bdqEN9980+agLKtWrcLo0aOh1+uh0Whw5513om/fvoiMjERWVha2bt2KlStXIjs7G3fddRc2bdqkXPW15cEHH8SOHTvQoUMH3H///YiJiUFWVhYOHz6sLHP8+HEMHTpUqWXt1KkTHnzwQURHRyM5ORkrVqzAzp07MXr0aJu1kbIs4/HHH8fLL7+M9PR0rFq1Cg888IDNcv30009K64VHH33U7t+2PHni/zZhwgSlFkKr1WLs2LHo3bs3ZFnG3r178fXXX+PFF190agCMXbt2YcCAAcjLy4MkSbjtttswaNAg1K9fH/n5+di1axeWLFmCvLw8PPXUU/Dz8ytV4/T444/jjz/+wKpVq7Br1y7MmjWrVNm//vpr/PTTTwCMg//48lQHrtDpdHj22WeVgY8GDx4Mf3//Mm9v586dyufGU99Zv/32G37++WcAxuPY4MGDSy0jyniVPikpCVeuXEHt2rUtHh8+fDg++eQTAMDkyZOxevVqBAQEWCyj0+kwceJE5Ttg4sSJZSqDp7lyrImIiECjRo2QkJCA1NRUpKSkOByIsKRvvvlGuf+///3P4vyoPBw5cgS33347Ll26BJVKhYULF5aq9fXUMe2OO+5AZGQkkpOTsX37dpw7dw5NmjSxWTZPDd5kOn+qVasWmjRpgkuXLmH+/Pn45ZdfkJCQAK1Wi5iYGAwaNAgTJkxAdHR0mfcFGGuYzVsK3X333VaXc+W91aVLF6vruaKsn2vA+D5p2bKlzedPnjyJ3r1748SJE8jOzkaNGjXQsmVL9O/fH08++aTNQaycdeXKFWWwI7VabVFDXB6EEJg4cSIWLFgAAOjatSt+//33Ut9tnjqvGjdunDJo26JFi3DrrbfaLFtCQoKSbyIiIjBkyBC7r6V79+7K/T/++MOtwfEUnkjBnp5GR6/XK1cC/Pz8xMqVK60ul5SUpNTQyrIsjh49WmqZklOm9O7dW2RmZtrd/+bNm+3WXl65ckWp8ZFl2eagGp6eRse8T1BkZKTVq8jx8fEWNRu2+lua/020Wq1Yt26d1ddpvq09e/Y4fA225ObmitWrV3vkduDAgTKXQwjnp9G56aabRHx8vM3tzJo1S1nWWguCkswHB1myZIlbr8GRkn1zrQ2qUlRUZFGmzz77rNQy5rUFgLEm8dSpU6WW27Nnj1JrYeuK/fnz55WrqQ0bNhSHDx+2WvY9e/aIsLAwAUBER0eLoqKiUsuUbNkxceJEuzWc5jW0zzzzjNVlS74vStbACmH8zjHVbDm62nvLLbcIwDhwwYULF+wu6ypXamDd/b+Z10CEh4dbna4kNjZWmWLFdLNWA5uVlaUMBhQeHi62bdtm9fWdPn1aGcAnKChIpKamllomLS1NqVVTqVRi+/btynMnT54UQUFBAjD2N3O3xuPEiRMe+/6y9lrKQq/XW2x3yZIl4uWXX7aY0iAmJsbud5gz3nrrLWV7P/74o0vr7tu3TynfihUrxAcffCDuuOMOZXsqlcpq7asQljVW8+fPt7sf82MjALFjx45Sy6SmpopmzZopy0RFRYmXXnpJfPPNN2Lx4sVi5syZyvFOlmUxe/Zsl16rs8pSA2v+t3Cmb7npuweAxefCGUVFRSIiIkJZ393jrRD2zxG3b9+utA7x9/cXa9assboNTx3ThBDi+eefV5Z59dVXbZbbvI+fRqMp82c3PT1d2V/Hjh3FH3/8Ybc1kL+/v9NTs2RnZyufsZ9//lksWrRITJ482aKfZseOHa0OgqTX65Xvf5VK5XDwtXPnzinbbNq0aVn+FOK7775TtnHXXXfZXTYpKcni7/LGG29YXc6Z8zk/Pz/x4YcflqnMJuaDgA0bNsytbZnYOpYXFRWJ+++/X3lu4MCBVvtse/K86urVq8ogY476iJuf/06aNMnh64yPj3f6/+6sShlgV61apSy7YMECu8uePHlSGazi8ccfL/W8+UlpUFCQSExMdOo1OXL27Fllu7YOdJ4OsOajwP3+++82t7Nnzx6lk3yjRo2sNq8z/2C//vrrNrf15ZdfOrWcI2Wde87azd1BIGbOnCn8/f3FHXfcIV5//XWxZMkSsWLFCjF//nxx9913K+8nAKJevXpWR8gUwrJJxEcffeRwv64uX1aXLl1SBmW4++677S5bVFSkzEfXvHnzUs+XDEJ///23zW098MADdpcbP368cqB01ITk66+/Vrb1/fffl3re/LPSuXNnu+F13759yrLt2rWzO/iE+XatBVghLJs+WguFQhi/l0zLDBkyxO5rLQtXA6w7/7fhw4crzy9atMjmdn799VeLfVo70X7//feV53/55Re7r/HPP/9Uln3zzTetLrNt2zYhy7Ly/0pPTxdFRUWic+fOyrqeuFjk6tzR9m7uDhxnkp+fb3MfwcHB4pFHHvFIWP7f//6nbNfWyZEt9pp79urVy+58pV999ZWyrKMRdYcMGWKxbVuDF129elWMHDnS4ju+5G3UqFEea+JmTVkC7F133aWsY+1is7vLm/v555+Vdd1pMmvO1jni2rVrRUBAgACMIyv/9ddfVtf35DFNCMumtTExMTbfW+Zhy9F+7TGfv7l+/frKxbUbb7xRvP/++2LFihXiww8/FD169LB4L65atcqlbZe81axZU0yaNEnk5uZaXTczM1NZtlatWg735ery1pw5c0bZRmBgoEhJSbG5rHmTZQDi+eeft7ocYAzUTz/9tPjss8/EypUrxXfffSemTp1aar5dexcsHLnhhhuU7ThqMussa8fynJwcMWjQIOXx0aNH2xyIz5PnVUJYnt988803VpcxGAwWF0qdPS6YPutlvfhRUqUMsKbR9kJDQ53qu2P60Fs74TQ/8RgzZozDbbnCVONgq0+KJwOs+d+4ffv2DrfVv39/ZXlrNaem51QqlUhLS7O5HfOgft999zncry2VKcAeOXJEXL161ebzR48etbhSP2DAAKvLmfdF/vLLLx3u1zSUOADx1ltvlbn8jnz44YfKfv755x+Hy7/00ks236fmJ1udOnWyux3zL8eSfRcNBoOoWbOmABxPwyGE8QvcdGXY2v/b/LNi60vWZPr06cqytq7Im5ifvNkKsObBaurUqVaXeeGFF5Rl7PU5KStXAqw7/7eCggLlxDEyMtLhyJOtW7dWtmUtwJpazLRo0cLhaxRCiHr16gnAfm23+edq9OjRYurUqcrvDzzwgFP7ccTXAmzv3r3F0qVLrV5ld1WvXr2U7dq6mGeLrQAbGRkpZs2aZbdlQkZGhkW/bVujkH700Ueltv/DDz/Y3O7Zs2fFY489ZvNvp9VqxahRoxxOU1JWZQmwAwcOVNaxNlVbSeYXHez9LawZOnSosq6jmm9nWTtH/Prrr5ULCVFRUeLff/+1ub4nj2km5qM12/pM3nrrrcoyrl4IMLdr165S7zNbLYGmTZumLFOrVi2rU8yYsxdghw4dKtasWWMzoCcmJirL1q9f3+HrKCoqsviclJX533XgwIFWA/auXbuUoG+6PfHEE1a3Z+vChxDG8RvMzwEA11slCCHE/v37lfXr1KnjsLbaWSWP5ampqRbvzf/7v/+zeYHe0+dVQhj70pr2beu4+9dffynLdO7c2dmXqhzPtVqtW1N8mZR7H9iy2L59OwCgbt26Tk3mrFKpABjbZOfn55fq12Jy8803O12GrKwsfP/99/j9999x5MgRXLlyxeaIhKbJmMvT3r17lfuDBg1yuPygQYPw559/AjCOWGyr71KLFi1Qo0YNm9upX7++ct+d0YhjYmI8N/KYm9q1a2f3+bZt22LDhg1o164dCgoKsHnzZuzZswc33XRTBZXQPabPD2B8b65Zs8bu8ub/1xMnTlgdvRew7MNgjb33yrFjx5CWlgbAOPG3ozIBQHBwMDIyMnDixAm7yzn6XO/fv1+5b69PBwBlVG57br31VrRo0QKnTp3Cd999hzfeeAMajUZ5vri4WOkvWq9ePYd9Q8qbO/+3//77Txmhsk+fPsp3rS39+/e3+f/KzMxU+iVHRkY6/R4AYPc9MGvWLPz555/Ys2ePxairjRs3xqeffupwH8547bXXKl0fWn9/f+U7VQiB9PR0/Pvvv/jqq6+wbNky7NixAwsXLsRPP/2kjKpbFqbPLQDUrFnTpXWXL1+ujNmQl5eHuLg4rFu3Du+++y5mzpyJefPmYfny5bjttttKrRsWFoZ58+Yp/Q7feOMNbNmyBaNGjUK9evWQmpqK1atXY/PmzQgICEB4eLgyOqit/uZvv/02pk+fDoPBgMceewxPPfWUMlLr8ePH8fnnn+Orr77CypUrsXv3bmzatAktWrRw6TX7sqSkJOWcS6vV2u3j7445c+Zg2rRpAIx9WTdu3Gi3H2p5HNMeeeQR5bxq0aJFpb77ExISlJkroqKicPvtt9vdpz0Gg8Hi99atW2P+/PlW36dvvfUW/vzzT+zbtw9Xr17F999/jyeeeMLmtlu1aqV8D+j1ely9ehV79+7Fxx9/jF9//RW//vorRo4ciUWLFiEoKKjMr8GTFixYgO7duyvjL7Rt2xaPPPIIWrZsiby8PGzbtg0//PADiouL0aRJE5w7dw6A7c/1LbfcYnNfKpUKs2fPRnJyMr788ksAwJtvvunyrADmo3I/9NBDUKs9H5/Onz+PJ554AidPngQAzJw50+5xpzzOq0zjUSQmJuLvv/9GXFwcGjdubLFMWfuF16pVC5cuXUJRURFyc3OV43uZuR2BhWdrYLOzs926ul2yibD5lXN7zW7NbdmypVR/Lnu3Jk2aWN2OJ2tgza9AfvHFFw63ZT5v30svvVTqedNzN998s8NtmZatqEmiK4snn3xSee3WRrqurE2IzZtPunor2azEvLbA0dxgJUe+NWc+iqarN2vNwMw/K/b6qwth2ezHmRopU62PrRpYIYR47733lG2WbOb1008/Kc+V18i3rtTAuvN/M/8eefnllx2Wy/x7qmQNrPnIpq7eNBqN3f2ePXtW6asGGOek27Vrl8PyVlXmXT9uuukmt652m5rgqVQqj5UvPj5emZdVo9HYrX376KOPlH7n1m4hISHil19+sehi88cff5TajnlNvb2uSfPnz1eW69Kli0der7nK3IR4zpw5ynr33nuv0+s5Yn6OaOqHBxibKNuaO9KcJ49pJhkZGUqTRmv9/cz7+FlrabN9+3a7fd3NaxUPHz5sUaZ3333X7uv94osvlGVHjRrl8O9ji3nNo7X/pzeaEJv8/fffdkfNlSRJvPrqqxbnTdbOZZ2VmJiodK3z8/NzeN5grqCgwKLPsr1RzF1lfiw3fTYkSRKffvqpw3U9fV5lYt6CoeQ5gXm/cD8/P7stOEsyb81jr+m4s7wzLKYdmZmZbq1vqi2wxlbNrLnTp09jyJAhypxZLVu2xMSJE/HJJ59g2bJlWL16tXIzXdXW6/VuldkZprmWADh1Fc38yob5uiV5a2RUX2B+RTY2NrbU8+Hh4cp9Z+ZZvHr1qtV1Pc2dz5C9z48775XyKhPg+HNtajmhVqstakptcebz9fDDDysjc5qu6pqYfpckCY8++qjDbZU3d/5vOTk5yv3AwECHy9v727nzHjCNqGtL7dq1LWoHmzRp4nBEzarsscceQ//+/QEYW+A405LJFtP7XK/XK6MRu6tRo0Z45513ABj/t2+99ZbNZZ999lnExsZi0qRJaN++PUJCQuDv749mzZphwoQJOHz4MIYNG2bx/VpytNHExETMnTsXgLH269lnn7W5v/Hjx6N169YAjK03TKPeelNFHWsqYu5X81He8/PznTp/Ko/jR1hYmDKncW5uLlatWqU8J4TA4sWLld+t1TJNnz4dd911l82b+bzDJf8Hjr6bzJ8/e/as3WXtmTVrltKC4Mcff8Tx48ctng8ODlZqEjMyMhzOB+7Jc5ibb74Zp06dwpw5c9C7d2/UrFkTGo0G9erVw+jRo7F9+3bMmjXL7ufaFfXq1VP+FoWFhXbnDy9pzZo1Sq3+TTfdZDG/rieZ/v5CCKfmoC6v8yrzUf9Lzgn7008/KZlixIgRdltwlmReXmfymCOVrgmxefC65ZZbyjxZclm9/fbbyM/PBwC88sormD17ts2pVB5//PEKK1dISIhy35k3tvmJp/m63pKXl4eNGzd6ZFsNGzbEjTfe6JFt2VOrVi3lfkZGRqnnzZuWxcfHO9xeQkKC1XU9zfQZkiQJOp2uUlykMP9cv/rqq5g1a1aF7dsUqnQ6HYqLix2GWGc+X7Vq1cLIkSPx/fffY+PGjTh//jwaNmyIhIQEbNq0CQAwYMCAUk1vfI35/82Z8GLvb2e+rTFjxijNrD3hmWeesfh8nTp1CtOnT8ecOXM8sv3Y2FirF7HKonfv3qWmQSgPt99+u9KNZNu2bbjjjjvKtB3zCwNpaWlOXchwtnwmpqaatjRp0gQffPCBzedzcnJw4cIFAMYLLSVPMDdu3KhcBOnfv7/d6dEkSUK/fv2UJnZ79+512Ay/vFXEsWbXrl3Kezw6OtqprkplMXLkSISGhuKjjz7CqVOncOutt2Lr1q2oV6+ezXXK65g2btw4/PDDDwCMzSLHjh0LwNhk2RQcu3fvXmqaR1dFR0cjKChI+X4MCwuzu7z58+6EFFmWMXDgQJw6dQoA8Ndff1l8NmRZRtOmTXHy5Eno9XpcvHjRZhciwPPnMGFhYZg6dSqmTp1qcxnz0N21a1e39ufonM4W82mlyuvCDgCsXLkS48aNQ0pKCl544QUAwPPPP29z+fI6r2rRogV69eqFnTt3Ii4uDn///Tf69OkDwL1ppUzNnbVarUeas1e6ABsWFobg4GDk5ORUSN/SkjZv3gwAqFOnDl5//XWbB7rs7GyLvkHlrW7dusr906dPO1zefBl7B4aKkpKSolztdNfYsWMtPkTlxdHVRvO+tAcOHLC7LYPBgEOHDgEwHjRMV/jLQ/369fHvv/9CCIHExEQ0aNCg3PblSplMKvpzXa9ePaXv5blz5+zOI5eenu70ge2pp57C999/D4PBgG+++QavvfYavvnmG6W/k71+S77C/LvjzJkzDpe3t0x5vQe+//57fP/99wCMNRdXrlxBQkIC3nvvPdx2220O5xF2xvLlyz12crB161an+lq7y/zCpSsnayXFxMRg586dAIwnIO7OT2niqfIBxjk2TbUEPXr0KNU/7dKlS8r90NBQh9szDxDOXNAqb64ca1JTU5WgERER4fQcsOa1r2PHji3XC58LFiyAJElYsGCBUyG2vI5p/fr1Q8OGDXH+/Hn89ddfiI+PR0xMjMXfwtZJuqOLLuYkSUK7du2wZ88eAI5DqfnzjsKuI44+Z+3atVP6XB44cMBugDUfT8LRWCKekJ6erhy7g4KC0KlTJ7e2V5Ya5IsXLyq5IDAwEPfdd59bZbCnTZs22Lp1K/r164fk5GSHIbY8z6vGjRunfO8vWrQIffr0QXx8vPK+j46OxsCBA13apikzNWzY0O5FRGdVWNWM+ZehcDCYj6lD9rlz55w6afKk5ORkAMYBQOx9gW/evLlUx/ySXHnNjpgPwmSq4bHHvLbTU5PPVzfmtf/Wrja2bdtWOZk7duyY3S+Qf/75B1lZWQCAXr16lWutuOlKGQCP1Xq7q1OnTsqJ459//unws+NJ5pOvmybetsWVk5LevXujbdu2AIxXaIuLi5UrtXXq1MHw4cNdL2wl06FDB2i1WgDGz4Oj5n6mGj9rateurVz93717t/J5cEdcXByeeeYZAMYTnGXLlmHp0qVQqVQwGAwYM2aMxUlLdWJ+7HSnxtf8RNV0ousJniofYBm+rDXbNw+tpppae8xrmsxrbbylb9++SlPuv//+W2klZs0ff/yh3Hd24KG8vDxlADRJklyuWSmL+fPn47nnngNgbDHRt29fiwsN5srrmCbLslLramo2nJubi59++gmAsZnj6NGjPbIv8xYQji5CmD/vbk2no8+Z+QBq5u8da8y7IrgzqJWzfvjhB6Wp6wMPPAB/f/8yb+vy5ctKTbRWq0WjRo2cWm/RokXK+co999zj1AUwd5hCbGRkJADghRdeULo/lFSe51WjRo1SWtv89NNPyM3NxXfffadkmTFjxrh0kSs+Ph4FBQUAgBtuuMEjZaywAGte1e3oiqbpCwUwVotXJNM/7Ny5czZDp16vt9tnx8SV1+xITEyM0mz2v//+sxti9+/fjy1btgAw9jWqDH3BTKMQe+JWEbWvZ8+etWjiOHjw4FLLSJKEe++9F4Dx4PfRRx/Z3N6CBQuU+546INpy3333KaFjzpw5laIGQaVSKSNaJiQk4KuvvqqwfZsHyU8++cRuCJs/f75L237yyScBGE+KJ06cqFzEGDt2rFP9bSs7Pz8/5b2fnJysNLezZv369Q5HjDZ9t+fl5Sl9IMtKr9fjgQceUILwggUL0Lx5c/Tu3Rsvv/wyAGPfx8cee8yt/QDGUYg99f1VEbWvOTk5Fv+rnj17lnlb5qOvm2qQPGHhwoXKfXfKt3XrViVwNGnSBPfcc0+pZcxD+G+//WZ3XIisrCyLEUrNL4B5S3BwsPI5zMrKsnkMFELg448/Vn539lizatUq5XN0yy23oGnTpu4V2EkffvghJk6cCMDYasxWiC3PY9rDDz+s1AYtXrwYP/74o9IF6+6773a7BtTkvvvuU/bz7bff2uxvKoSwOD66ExQvXryI33//Xfnd2udsxIgRyt922bJlFn13zR09elQ5r4yKirK4qFAeUlJSlFYvGo1GeZ+Ulek7HDBeEHG2Cav5Z608mw+ba926NbZu3ar0+Z06darVEFue51UhISEYOXIkAOPx5KeffrLoF27eT9YZ5scOj83o4fYwUMK5UYgnTJigLGNvziYhhNDr9aJr167K8s8995zNSXyFECIvL098++23YtmyZaWeMx+F2Jn598znW/vggw9KPV9UVCTGjRtnMZqXrdFKP/jgA2WZ7777zuG+HY3UvGLFCuX5unXrihMnTpRaJiEhwWKC4Y8//tjqtkzPOzOysCvLVna//PKL+PHHH+3OZ1lyHti+ffvaXDYxMVEEBgYKwDjy6ebNm0st8+233yrbatCggVNzG7trypQpyj5vvfVWcfnyZZvL6vV6sWnTJjF79uxSz9kbodbVZS9cuKCM8Ovn5+fwM5GcnCxef/118d9//5V6zpV5pYUQonfv3srytubfKznXp71RiE0yMjKU/7/57dSpU06Vq6xcGYXY3f/b9u3bledr1KhhdbL0U6dOibp161r8DazNA5uTkyMaNWqkjLT47rvv2pzjTgjj33f+/PlW576cMWOGsq+RI0daPFdcXKzMDw44N3K7L3j99dfF0aNH7S6TlJRkMQ948+bN7R4/HSkoKFDmY3Q0av3atWvFypUr7c6RqNfrxXvvvaeMCApAbNmyxeqy586dEwkJCTa3tXHjRouRO20d44uKikR0dLSyv+HDh1sdhTQvL0/ceeedynLt2rWzOoKz+WfGme8JW+u6Mqf5wYMHlb9ZWFiY1e/F1157Tdl2165dnd523759XTpXcZWjc8SJEydavF+tzTfsqWOaNebHE/PvMWvHc3c89NBDFscha+8t8xFgGzRoYPWzO3XqVBEfH293X2fOnBEdOnRw6vzN/O9/xx13lDpHSUtLsxjl29Z5pRCWf0trxwAhjJ+zPXv22C27+ewBr732ms1lp02bZvc7QqfTWRwrAIht27bZXN7ctm3blHWaNm3qkblLS7J3LD9x4oTFjChz5swptb4nz6tKMv+uMv9c9O7d26XXKITlLBz2Rp13RYX1ge3fv79SC/Xoo49i0qRJaNSokTKvYLNmzdCsWTMAxmYdq1atQo8ePZCYmIj58+dj5cqVuPfee9GhQweEhYUhJycH58+fx/79+/Hnn38iNzcXs2fPdruc48ePV2o3J0+ejG3btuG2225DrVq1cPr0aSxevBinT5/GrbfeitOnT9ttNmoaBRIwXkFJTU1Fy5Ytlf459evXR/v27Z0u26hRo7B69WosX74cly9fxo033oiHH34YPXr0gEqlwv79+/H1118rV1IHDRqkNK8jo7Nnz2LSpEmIiIjA7bffjo4dOyIqKgoajQbJycnYtm0b1q5dq1wdrVevnt3BZurVq4f3338fTz/9NHQ6He644w6MGTMGffr0gU6nw/r165XaAbVajYULF9ptBmPeLyAuLs5ufxR73n77bfz777/4888/sXXrVqVmokePHoiIiEBRURGSkpKU2vykpCT0798f06dPL9P+nBEdHY3ly5fjzjvvRGFhIcaOHYsPPvgAd955J5o3b46AgABkZmbi1KlT2L17N3bu3Am9Xu9w7lZnfPHFF+jatSvy8vLw6aefYteuXXjwwQcRHR2N5ORkrFixAjt37kSPHj1w/vx5JCYmOtU8JiwsDKNHj7Zowti3b180b97c7TJXFr1798YzzzyDTz/9FOnp6ejevTvGjh2L3r17Q5Zl7N27F19//TVyc3MxYsQIu3PRBQUFYc2aNejTpw+ysrIwdepUfPHFF7jnnnvQpk0bBAcHIysrC+fOncPevXuxbds2FBUVYcmSJRbb2bFjh9IKJjo62qI2DzB+1r7//nt07NgRWVlZmDRpEvr06WO3/7MvWLVqFV599VV06NABt9xyC9q0aYOaNWtCCIHk5GTs2bMHa9euVWqogoOD8d133yk1LGXh5+eH22+/HatWrcL+/fuRk5Njc/6+c+fOYdKkSahduzYGDRqEjh07om7duspn+/jx41izZo3FyKpTpkyx+Rk/cOAA7rvvPtx8883o27cvmjVrBrVajYsXL2L9+vVKk3VJkvDxxx/brN3WaDRYsGAB7rnnHgghsHbtWrRu3RpjxoxRxiM4ceIEFi9erDQf1mg0+Pjjj93qq5WRkYH33nvP4jHz5smHDh0q9Z3br18/q/22O3XqhKlTp2LOnDnIzMxEz5498dhjj6Fbt27IycnBqlWrlOa1wcHBpT4TtsTFxSndZUJDQ5Val4o0b948SJKEefPmKedXW7dutejjV57HtHHjxil/A9Ncwo0aNfJI/3lzc+fOxY4dOxAXF4dPP/0Uu3fvVo5DSUlJWLZsGXbt2gXA+B22ZMkSq5/dL774AnPnzkX37t3Rs2dPtGzZEuHh4dDpdLh06RJ27NiB33//XWl+GxUVZbd2bubMmdiwYQNiY2Oxfv163HjjjXjsscdQv359nDlzBl988YXS9L5v375uj++Qm5uLm266CW3btsXtt9+Otm3bIiQkBFeuXMHff/+N1atXK81N77//frv/w88++wxz5sxBz5490atXL7Ro0QJhYWHIz8/H8ePHsXLlSmUeWcA4OKuztcfmx3XzmvqK0qpVK2zbtg233norLl++jBdffBEALAa9Ks/zqj59+qBx48aIi4tTPheA64M3Ade7b8XExKBDhw4ur2+VJ1KwMzWwOp3Oohak5M3alf9Lly5ZXEm2d1OpVOLLL78stQ1Xa2CFsLwCZu3Wq1cvkZKSotQk2LsCe//999vcTsm/lTO1SsXFxeKxxx5z+PcYOXKk3XmuTMtVtxrYefPmOfV+wrXaBkdXOU3mzp3rcK5Cay0ESjJfx5m5g+0pLCwUzz77rFCpVE693jFjxpTahidr8kx27dqlzC3p6BYcHCwOHz5cahuu1sAKYZzf2XSl0tqtXbt24vz588r8lDfccINT292zZ4/FdmzNO+hJFVkDK4Tx+9u89qDkTZZl8e6771q0NrB19V0IIWJjYy2u6Nu7+fn5ifXr1yvrpqenK9+9sizb/V5funSpsp1OnTq5VRNZGZjXqDi6dezYURw4cMAj+12zZo2y3cWLF9tczpXv15CQEPHhhx/a3e+PP/7ocDuRkZFixYoVTr2OpUuXitDQUIfbrF27tvjtt99sbsfZGljzcyNnb/Y+rwaDQUycONGi9rrkrU6dOuLPP/906u8hhGVLhscff9zp9VzhzDmiEEJMnjxZWa5Zs2alamI9cUyzJicnRwQHB1us++qrr7rzkm06ffq0w89xjRo1xIYNG2xuw3wuXUe3vn37ijNnzjgsV1xcnMPv5AEDBoj09HS723GmBjY1NdVhubVarZg+fbrdFjqu/C0CAwPFRx995PDvYJKVlaW0PJFlWVy4cMHpdV3h6FguhPF4aV4D+s4775RaxhPnVdaYz4cMWJ8z2ZHjx48r60+fPt2lde2psAArhBD5+fninXfeET169BA1atSw+BKy96W9bds28eSTT4q2bduK8PBwoVKpRGhoqGjTpo0YPXq0+Oyzz8SlS5esrluWACuEEOvXrxdDhgwRtWvXFhqNRtStW1f069dPfPnll0rzKGcCrE6nE5999pno27evqF27tlCr1Tb/Vq6clO/atUs8+uijolmzZiIoKEgEBASIxo0biwcffNCpg5dpP9UtwF65ckWsXLlSTJo0Sdx8882iadOmIiwsTKjValGzZk3RoUMH8eSTT7r0XjE5cuSI+L//+z/RokULERQUJEJCQkS7du3Eiy++6FQQzs3Ntfjyvnr1ahleYWmnT58W06ZNEzfddJOIiIgQarVaBAYGisaNG4vBgweLt956y+aXWXkEWCGMF2KWLl0qRo0aJRo3biyCg4OV/0GXLl3E448/LlasWCFycnKsrl+WACuEsXnl888/L1q2bCkCAgJEeHi46NKli3jvvfdEbm6uMBgMyuT29pqOmzMYDMpBtGbNmqKgoMClMpVFRQdYk3Xr1okhQ4aIiIgI4efnJxo2bCjuv/9+8c8//wghhNMBVgjj323t2rVi7NixokWLFiI0NFSoVCoRHh4uOnToIMaMGSMWLVpUaqL00aNHK/uYNm2a3X0IIcQDDzygLD9lyhSHy1dmly9fFosWLRKPP/646Natm4iIiBAajUZotVpRu3Zt0blzZ/HEE0+IP/74w+GJnyt0Op1o2LChACAGDhxoc7mCggKxadMm8fLLL4uBAweKmJgYERgYqByzmzZtKu666y7x6aefOvX9duXKFfH555+L0aNHi9atW4uaNWsKrVYr6tevL/r37y8WLFggMjIyXHotycnJYs6cOaJ///4iKipK+Pn5CT8/P1G3bl0xaNAgMW/ePIcn6d4KsCb//POPePjhh0WTJk2Ev7+/CA8PFzfeeKN4/fXXRWpqqtN/C71er/xfAYhdu3Y5va4rnD1HFMKyqbC1ECuEe8c0Wx555BFlv5IkiXPnzrm0viuKiorEV199JQYOHCjq1asnNBqNqFmzpujRo4d48803Hb7/4uLixOeffy7GjBkjOnXqJGrVqiXUarXw8/MTderUET169BATJkwQO3bscLlcCxcuFP369RORkZFCq9WKevXqiSFDhojly5c71YTWmQCr0+nEihUrxJNPPik6duwoIiMjhUajEREREaJLly5ixowZToVuIYTYvXu3eP/998XIkSPFDTfcIOrWrSu0Wq0ICAgQ0dHRYvDgweL99993+Xzqq6++Ul7Hbbfd5tK6rnAmwAohxMmTJ0W9evXshlh3z6usiY+PF7IsO/35tebll18WgLGi0V5zb1dJQrg5PC4RecQff/yhDNgwYcIElwcUIvcdOXJEGSHP2f/B5s2bleHkn3vuOXz44YflWUQir5g3bx4mT54MlUqF+Ph4j02nQ0REVZNer0ezZs0QHx+P0aNHY/ny5R7bdoWNQkxE9pnmGgsJCSnXvqhkm/kIns72vf3ss8+U+1Vh7lcia5566ilERUVBr9fj3Xff9XZxiIioklu2bBni4+MhyzJmzpzp0W0zwBJVEqYAO3nyZERERHi5NFXP9u3b7c6T9sknnygDn9SvXx9Dhw51uM1///1XGbRowIAByjynRFVNQEAAXnvtNQDGKXBszdlJRESk1+vxxhtvADAOgmUaMM9T2ISYqBK4cuUK6tSpg9q1a+Ps2bMICQnxdpGqnGbNmqGgoAB33HEHOnXqhIiICBQXF+Ps2bNYvXo1Dh06pCy7bt06mwF2w4YNMBgMOHXqFN59911ldL4dO3agV69eFfJaiLzBYDCga9euOHjwIJ599lm7c18TEVH1tXTpUjz00EMICwvDqVOnUKdOHY9unwGWiKqFZs2aWUzfYU1AQAC+/PJLZXJwa6wNpe9sf9mNGzciLy/PcWGtqF27Nnr37l2mdYmIiIiqCgZYIqoWdu/ejVWrVmH37t1ITEzE1atXkZeXhxo1aqBFixYYMGAAnn76aURGRtrdjinABgcHo0WLFnj66afxyCOPODVvbExMjMU8kK7o06cPtm3bVqZ1iYiIiKoKtbcLQERUEbp3747u3bu7vR1e8yMiIiLyHtbAEhERERERkU/gKMRERERERETkExhgiYiIiIiIyCcwwBIREREREZFP4CBORERUpQghUFBQgLy8POWWn59f6veioiIUFhaiqKhIuZX83XTT6XQwGAzQ6/XKzWAwKI+ZP2ciyzIkSbJ7k2UZGo0GarUaGo1GuanVami1WuVx0+9+fn7w9/dHQECAxU9r94OCghAcHAytVuvF/wYREZFnMcASEVGllJ+fj6ysLGRmZiI7OxtZWVnIysqyeT8nJ0cJqgaDwdvFrzS0Wi2Cg4MRHByMkJAQ5b75LSQkBOHh4Ra34OBgp6aHIiIiqkgchZiIiCpMbm4u0tLSkJaWhvT09FI/ze8XFBS4vb/AwECLW0BAgPJzy9KdgAGQDBKg3K79LiRAD+NPgwRJXLsvcO1mnA/Y4ncBSKbHzJ423YdyX5jdByBfW1EWxs2a/Q5JADIgrv2ELACVwOCn+qOgoAAFBQXIz88vdd8U5N2hUqkQGhpqEWrDwsJQo0YN1K5dG7Vr10atWrVQu3ZthIeHM+wSEVGFYIAlIiK3CSGQk5ODlJQUpKSkIDU1VbmZ/+5qqNJoNAgNDUVoaChCQkIQGhqKf1bth1QsAzoZkk4y/iyWAL0M6CVIegm4dpMs0mP1ImAMu1ALCLXB+FN17adaACoD7n5+MHJycpCZmYnMzExkZGQgIyMDubm5Lu1LpVKhZs2aFqG2Vq1aiIiIQGRkJCIjI1GnTh02ZyYiIrcxwBIRkUNCCGRlZeHy5ctWb6mpqU7XmAYEBKBmzZqoUaMGjm87DRTLkIplSEWy8X6R8XcUycbaz2ocQr1FSALQGCA0BkBt/Ck0xscG/18/XL16FVeuXMGVK1eQnp4OZ08latWqhaioKNSpUwdRUVGIjIxUftatWxeBgYHl/MqIiMjXMcASEREAQK/XIyUlBRcuXMCFCxdw6dIli5DqTO1pWFgY6tSpg4iICOxedQhSoQypSAWpUAau/ZQMbGpalQgIQGuA0BogtHpAa8ADs+/GlStXkJqaiqSkJCQnJ6OwsNDhtmrUqIH69eujfv36iI6ORnR0tPJ7SEhIBbwaIiKq7BhgiYiqmYyMDCWkmt8SExNRVFRkd91atWqhbt26OL7lDKQCFaRC1bWfMlCogiRYW0qlCVxryuyvh/Az3ka8cBuSk5ORnJyMpKQkZGdn291GWFiYRbht1KgRYmJiEB0dzabJRETVCAMsEVEVJIRAWloa4uPjce7cOeXnhQsXkJWVZXM9jUaj1Hz9s+wApAKVMZiawqqBAZXKh1AZjAE3QI9x749CYmIiLl68iMTERFy9etXmeiqVCvXq1UOjRo2UUNuoUSM0bNiQTZKJiKogBlgiIh+XlZVlEVLj4+MRFxeHzMxMm+tERkaiQYMGOPjLMUj5asj5Kkj5aqBQZp9TqnSEbIAI0EP46/Hoh/fhwoULSEhIQEJCAnJycmyuFxkZiZiYGDRr1gzNmjVD06ZNER0dDbWaswgSEfkqBlgiIh8hhEBSUhJOnz5tcUtNTbW6vCzLqFevHi79mwopT33tpoJUoGZNKlUJSv/bAB1EoB5Dp/RHQkIC4uPjkZ6ebnUdrVaLxo0bo2nTpmjatKkSbtnHlojINzDAEhFVQnq9HhcuXMCpU6dw6tQpnD59GmfOnLHZTzAqKgopx9Mg5aqvh9V8BlWqvoTaABGogwjUYciUfjhz5gzOnTuH/Px8q8vXqVMHLVq0QMuWLdG6dWu0bNkSYWFhFVxqIiJyhAGWiMjLhBBITk7G8ePHceLECZw4cQInT560OmqrWq1G48aNcXbHBcg5GmNgzVVD0nNkXyJHBATgr4chSIcH59yFM2fO4MyZM0hKSrK6fN26ddGqVSu0bNkSrVq1QosWLRAcHFzBpSYiInMMsEREFSwnJwexsbE4fvw4jh8/jtjYWKSlpZVaLiAgAE2bNsXxjWch52og5VyrWeVIv0QeJVQGiCAdnlz4AGJjYxEbG4uLFy9aXbZhw4Zo1aoV2rVrh3bt2qFx48ZQqVQVXGIiouqLAZaIqBwJIZCYmIjDhw/j8OHDOHr0KM6fP19qOZVKhaZNm+LMXxcgZ2sgZWsg5as4oBKRlwiVASK4GI98PBqxsbE4efKk1ZrawMBAtGnTRgm0bdq0YS0tEVE5YoAlIvIgvV6PM2fO4MiRI0potVa7GhUVhZQj6ZCyNcbAmqthf1WiSk6oDTCEFOPBuSNw9OhRHD9+HHl5eRbLSJKExo0bK4G2Y8eOiIqK8lKJiYiqHgZYIiI3FBUV4fjx4/jvv/9w+PBhHDt2rNQJrVqtRqtWrXBi/TlI2VrI2WpIxWxySOTrBAREoA7jlz6Mo0eP4ujRo7h06VKp5aKiotCpUyd07NgRnTp1YqAlInIDAywRkQv0ej1Onz6NAwcO4ODBgzh8+HCpwZaCgoKQd6EYcpYWcpYGUg5rV4mqC6HRwxBajJGz7sDhw4dx8uRJ6PV6i2UYaImIyo4BlojIDiEEEhISlMB66NAh5OTkWCxTo0YNZJ7Kg5ylhZR1bWRg9l0lIgBCNkCEFmPU20Pw77//IjY21mqg7dKlC7p27YrOnTsjNDTUS6UlIqr8GGCJiErIyMjA3r17sXfvXuzfv79UH9agoCDkn9dBytRCztBCyuNgS0TkHKEyQITYDrSyLKNVq1bo2rUrunbtijZt2kCtVnuxxERElQsDLBFVe3q9HrGxsdizZw92796NkydPwvyrUavVojgZkE2BNYc1rETkGUJlgCG0GHe9NhD79u1DfHy8xfNBQUG48cYblUBbv3597xSUiKiSYIAlomopLS0Ne/fuxZ49e7Bv3z5kZWVZPN+sWTPEbb0EOcPP2CyYc68SUQUQWj0m//wY9u3bh/379yMzM9Pi+QYNGqBnz57o1asX2rVrx9pZIqp2GGCJqFoQQiAuLg47duzAjh07EBsba/F8cHAw8uKLIaf7QU7XQiriKMFE5F0CAiJYh4c/uQf79u3DkSNHLJobBwcHo3v37ujRowe6d++OkJAQL5aWiKhiMMASUZWl1+tx9OhRbN++HTt37kRiYqLF882bN8e5LZeMgTVLw2bBRFSpCZUBr2x8Fv/88w92795tUTurUqnQvn179OjRA71790aDBg28WFIiovLDAEtEVUpBQQH27duHnTt3YufOnRYneFqtFrokQL7qBznNj3OxEpHPEhDGwaDeHYx//vkHcXFxFs83btwYffr0QZ8+fdCkSRNIEi/QEVHVwABLRD4vPz8fu3fvxpYtW7B7926LeVlDQkKQe7bYGFrTtZAMshdLSkRUPoSfHk8vfQA7d+7Ev//+C51OpzwXHR2Nvn37ok+fPmjRogXDLBH5NAZYIvJJBQUF2L17N7Zu3Ypdu3ahoKBAeS4qKgqpBzMhX/XnAExEVO0IlQHPr3scf/31F/bt24eioiLluaioKKVmtk2bNpBlXtQjIt/CAEtEPqOwsBB79+7F1q1bsXPnTuTn5yvP1atXD8l7MiBf8YeUy2luiIgAY5h9acMz+Ouvv7B7926Li32RkZHo378/Bg4ciKZNm3qxlEREzmOAJaJKTa/X4+DBg9i4cSO2b9+OvLw85bmoqCik7s+CnMrQSkTkiJAFZvw5Hn/99Rf++ecfi+/Txo0bY+DAgRgwYACioqK8WEoiIvsYYImoUjp79iw2btyITZs24cqVK8rjderUwdWDOcaa1hyGViKishCywPTNz2LTpk3YvXs3iouLlefat2+PgQMHom/fvggPD/deIYmIrGCAJaJK4+rVq9i8eTM2btyI06dPK4+HhIQg95QOqhR/SNmc7oaIyJOEyoCJq8dh06ZN+Pfff2E6NVSpVLjpppswePBg9OjRAxqNxsslJSJigCUiLyssLMT27dvxxx9/YN++fTAYDAAAtVoNQ5IKcqq/ccobDsRERFTuhFaPxxaNwubNm3Hq1Cnl8fDwcAwaNAiDBw9GkyZNvFhCIqruGGCJyCvi4uKwbt06bNy4EVlZWcrjUpYGqhR/YxNhHUfHJCLyFkOADve+fxs2bNiAtLQ05fFWrVph8ODB6N+/P0JCQrxYQiKqjhhgiajC5OfnY+vWrVi3bh2OHTumPF6nTh1c3Z8LOcUfcoHaiyUkIqKSBARe3zEZv/32G/755x/o9XoAgFarxS233IIhQ4bgxhtv5PyyRFQhGGCJqNydOnUKv/76KzZt2oTc3FwAxr5VIkUNOSkAcrqW/VqJiHyA0BjwxJLR+O233xAXF6c83rBhQ4wYMQK33XYba2WJqFwxwBJRuSgqKsKWLVvw888/IzY2Vnm8Xr16SP4nC6pkf0jFKi+WkIiIykpA4KNjs/Hbb79h06ZNyrzc/v7+GDBgAEaMGIEWLVp4uZREVBUxwBKRR6WmpmLt2rX45ZdfkJGRAQDQaDTQX5KhSgqAlMnaViKiqkSoDHj2x4ewevVqi1rZtm3bYsSIEejbty/8/Py8WEIiqkoYYInIbUIIHDlyBKtWrcLff/+t9I+KiIhA2r58Y3DlgExERFWagMD7h2ZgzZo1+Ouvv6DT6QAAYWFhGDZsGO6++27Url3by6UkIl/HAEtEZVZYWIjNmzfj559/tpi3VcrUQHUpEPJVP9a2EhFVQ0Kjx9iv7sLatWuRkpICwDg9Wv/+/TFq1Cg0b97cyyUkIl/FAEtELsvOzsaaNWuwatUqZWoFPz8/FCfIUF0OgJzLye6JiMhYK/vqtglYuXIlDh8+rDzeqVMnjB49Gt27d4css4UOETmPAZaInJacnIyVK1fi119/VQbsiIyMxJXduVAls5kwERHZtuDY6/jxxx+xdetWpatJgwYNMGrUKNx2223w9/f3cgmJyBcwwBKRQ2fPnsWyZcvw559/KicdUo4aqsRAyFf8IQk2EyYiIucIrR73zBuIdevWIScnB4Cxn+zIkSNx9913cxoeIrKLAZaIrBJC4NChQ/jhhx+wd+9e5XEpQwv1xUBIGRxNmIiIyk6oDHhq2f348ccfcfnyZQBAYGAg7rrrLtx7772oWbOml0tIRJURAywRWRBCYP/+/fjuu++U/kqyLAPJGqguBrF/KxEReZSAwLSNT2HJkiXKNDxarRZDhw7F/fffj8jISC+XkIgqEwZYIgJgDK579+7FokWLcOzYMQDGEwhdvArqxCBIhSovl5CIiKoyAYFZ2ydhyZIlOH78OABApVLhtttuw5gxY1CvXj0vl5CIKgMGWKJqTgiBXbt2YdGiRYiNjQVgDK76OGMfV6mIwZWIiCqOgMCcfS9h6dKlOHDgAABjkB08eDDGjBnDGlmiao4BlqiaEkLgwIEDWLhwoRJc/fz8oDurMgbXYgZXIiLyrnmHZ+Lbb7/Fvn37AAAajQZDhw7Fgw8+iIiICC+Xjoi8gQGWqBo6duwYFi5ciEOHDgEAAgICUHRagioxCFIxp8IhIqLK5f1/Z+Cbb77BwYMHARhbCt1555148MEHOdgTUTXDAEtUjZw9exZfffUVdu7cCcB4JdsQr4HqImtciYio8nv3wMv4+uuvlUEGAwICcN9992H06NEIDAz0cumIqCIwwBJVA0lJSfjyyy+xefNmCCGMowpf0kJ9IZiDMxERkU8REHhn7zSLLjA1atTAww8/jGHDhkGtVnu5hERUnhhgiaqwnJwcLF26FD/99BOKiooAAHKqH1TngyHn8wBPRES+S0DglT//DwsXLkRiYiIAIDo6Gk888QT69OkDSeJc5URVEQMsURWk0+mwbt06fPPNN8jMzAQASBkaqONCOI8rERFVKUIS+L+fHsCiRYuQnp4OAGjbti3Gjx+PNm3aeLl0RORpDLBEVYgQArt378ann36KhIQEAICUp4IqPgRymhYSeDWaiIiqJqEy4H9fDMGKFSuQn58PALjtttvw5JNPonbt2l4uHRF5CgMsURVx4cIFLFiwAHv27AEAhIWFIfegAXJSACTB4EpERNXDspTP8NVXX+H3338HYBzo6cEHH8SoUaPg5+fn5dIRkbsYYIl8XH5+PpYsWYIVK1aguLgYarUaIl4L1YUgSHpOiUNERNXTgmOvY8GCBTh27BgAICoqCs888wz7xxL5OAZYIh8lhMC2bdvw8ccfIzU1FQAgpWmhPhcCuYADNBEREQkIvPjHk/j888+VY+VNN92EiRMnon79+l4uHRGVBQMskQ86f/485s2bhwMHDhgfKJCNwTXNj/1ciYiIShCywP1f3IEffvgBxcXF0Gq1eOihh3D//fdDq9V6u3hE5AIGWCIfUlxcjB9++AGLFy9WDsD6MxqoLgZBMjC4EhER2fNNwgeYN28e9u/fDwBo2LAhJk+ejBtvvNHLJSMiZzHAEvmIo0ePYu7cuYiLiwNgbC6sORsCqZDNhYmIiJwlIDBt41P4+OOPkZaWBgAYNGgQnn32WYSHh3u3cETkEAMsUSWXm5uLhQsXYs2aNRBCAEWSsbnwFX82FyYiIiojoTJgyLu9leNreHg4Jk2ahFtvvdXbRSMiOxhgiSqx3bt3Y+7cucrAE3KyP9RxIZB0HF2YiIjIE+YfnYU5c+YoLZz69OmDiRMnolatWl4uGRFZwwBLVAnl5ubik08+wa+//mp8IF8FzZkQyJmcv46IiMjThCTwvy8HY8mSJdDr9QgNDcWECRMwcOBATrlDVMkwwBJVMgcOHMA777yD5ORkAIAqMRCqhGAO0kRERFTOPj35Ft555x2cPn0aANCzZ0+8+OKLqFGjhpdLRkQmDLBElUR+fj6++OIL/Pzzz8YHClTQnAqFnMXh/YmIiCqKkATGLhqORYsWobi4GOHh4XjxxRfRq1cvbxeNiMAAS1QpnDx5Eq+//jouXLgAAJAvB0AdHwxJz76uRERE3vD56Xcwe/ZsnDt3DgAwbNgwPPvsswgICPByyYiqNwZYIi8yGAxYuXIlFi5cCJ1OBxTK0JwOhZzBvq5ERETeJiSBEfP7YuXKlQCA6OhoTJ8+HW3atPFuwYiqMQZYIi9JS0vDW2+9hb179wIA5Ct+UJ8J5QjDRERElcw7+6bhrbfeQmpqKlQqFR577DHcf//9kGUes4kqGgMskRfs3bsXb775JtLT06HVamE47gc5KYDzuhIREVVSP2d+g/fffx9btmwBANx000145ZVXEB4e7t2CEVUzDLBEFUiv1+Obb77BkiVLAABSrhrqk2GQ89ReLhkRERE5IiDw3NqxmD9/PoqKihAREYHXXnsN7du393bRiKoNBliiCpKRkYHXX38d+/fvB3BtoKa4EE6PQ0RE5GM+O/U2Zs6ciQsXLkClUuHxxx/HfffdxybFRBWAAZaoAhw/fhyvvvoqUlJSAL0E9ZkQqFI5iiEREZGvEioDbpnRAZs3bwYA9OrVC9OnT0dQUJCXS0ZUtTHAEpUjIQTWrFmDjz76CDqdDlKeCurYcDYZJiIiqgJKNilu1KgR3nrrLTRo0MDbRSOqshhgicpJcXExPvjgA/z2228Aro0yfDqUc7sSERFVMfOPzsKMGTOQmpqK4OBgzJgxAz169PB2sYiqJAZYonKQkZGB6dOn4/Dhw5BlGdLZQKgSAznKMBERURW1PPVzvPrqqzhy5AgkScKjjz6Khx56CJLEYz+RJzHAEnnYuXPnMG3aNCQlJQE6CeqTYVCl+3m7WERERFTOhCRwx7s9sHbtWgBA//79MW3aNPj58TyAyFMYYIk8aNeuXZg1axby8vKAfBU0x8Mh57O/KxERUXUyYe0YfPDBB9Dr9bjhhhvwxhtvcL5YIg9hgCXykNWrV+PDDz+EEAJSpgaaE+GQdOzvSkREVB29s28aZsyYgZycHNSvXx/vvvsuB3ci8gAGWCI3CSHw1VdfYcmSJQAAOckf6rOhkAT7vBAREVVnX56bi6lTpyIpKQlhYWF48803ccMNN3i7WEQ+jQGWyA06nQ5z587F+vXrAQCqhCCoLgRxsCYiIiICAKy48gWmTZuG2NhYaDQazJw5E7fccou3i0XksxhgicooPz8fr776Kvbs2QMIQH0mBKrkQG8Xi4iIiCoZIQvc9GJLbN++HbIsY+rUqRg8eLC3i0XkkxhgicogOzsbL7zwAo4fPw7oJahjOdIwERER2SYgMOCtLvj9998BAM8++yxGjRrl5VIR+R4GWCIXZWRkYMqUKTh9+jRQLBlHGs7WertYREREVMkJCNz9cT8sX74cAPDQQw/hscce41yxRC5ggCVywdWrVzFp0iTEx8cDRTI0R2tAzuM0OUREROQcAYGHF4/AwoULAQB33303nnvuOYZYIidxjg8iJ6WkpGDChAnG8FooQ3OE4ZWIiIhcI0HCd2PWYsqUKZAkCT///DPmz58P1ikROYc1sEROSE5OxoQJE3D58mWgQIb2aA1IBQyvREREVHYT1z2Md999F0II3HPPPZgwYQJrYokcYA0skQOmZsOXL18G8lXQHqnJ8EpERERu+3DYIkydOhUAsGrVKixYsIA1sUQOMMAS2ZGRkYHJkyfj4sWLxprXIzUgFaq8XSwiIiKqIkqG2I8//pghlsgOBlgiG7KzszFlyhTExcUBhdfCaxHDKxEREXnW/Du/U0Lsjz/+iMWLF3u5RESVFwMskRX5+fmYOnWqcaqca6MNS4VsNkxERETlY/6d3+G5554DAHz99ddYs2aNdwtEVEkxwBKVoNPp8Nprr+HYsWPGeV6PhkPOZ3glIiKi8vX5vcvx8MMPAwDmzZuHLVu2eLdARJUQAyyRGSEE5s2bh127dgF6CZrj4ZDzNN4uFhEREVUTPzz2O0aMGAEhBN544w3s3bvX20UiqlQYYInMLFmyBOvWrQMEoD4ZCjlb6+0iERERUTUiQcLvz/+Dfv36QafTYcaMGTh79qy3i0VUaTDAEl2zYcMGfPXVVwAA9bkQqNL8vVwiIiIiqo4kSNgx+yg6deqE/Px8TJs2DWlpad4uFlGlwABLBODw4cN49913AQCqi4FQXQ70comIiIioOpOEhNmzZyM6OhrJycl45ZVXUFhY6O1iEXkdAyxVe8nJyZgxYwZ0Oh3kVD+o4oO9XSQiIiIi3BP+KObMmYOQkBAcO3YM77zzDueIpWqPAZaqtcLCQkyfPh3p6emQctRQnw6DBMnbxSIiIiICADzSaDJmz54NlUqFP//8E0uWLPF2kYi8igGWqi0hBObOnYuTJ08ap8s5EQ7JwPBKRERElcuLXd7G5MmTAQDffPMN9u/f7+USEXkPAyxVWz/99BM2btwICEATGw6pUOXtIhERERFZtWD4YgwZMgQGgwGzZs1CSkqKt4tE5BUMsFQtxcbG4rPPPgMAqOJCIGdyuhwiIiKq3CZOnIjmzZsjMzMTM2fORHFxsbeLRFThGGCp2snNzcWsWbOMgzZd8YPqUoC3i0RERETk0NCABzF79mwEBwfj2LFjysV4ouqEAZaqFSEE3n//fSQmJgIFMtSnQzloExEREfmMsdHP4ZVXXgFg7A61e/duL5eIqGIxwFK18vvvv2Pz5s3Gfq8nwyDp+REgIiIi3/LazR/innvuAQC88847yMjI8G6BiCoQz96p2rh06RIWLFgAAFAlBEPOttLvVZKMNyIiIqKy8tS5hJ3tPPXUU4iJiUFaWhrmzp3L+WGp2mCApWrBYDBgzpw5yM/Ph5SpgepiYOmFGFyJiIjIUzx1UdzGNoYGPIjp06dDrVZj+/btWL9+vfv7IvIBDLBULaxbtw6HDh0C9BI0Jfu9staViIiIyounQqyV7fxfq1fw6KOPAgDmz5+P5ORk9/dFVMkxwFKVd/nyZXz66acAjE2HpQL19SdtHVQYaImIiMhTynKx3NryVh779qHVaNeuHfLz8zF//vwyFpDIdzDAUpUmhMDcuXOvNx02TZnDWlciIiIqD/bOL8qhNlaChBdeeAFqtRo7duzA33//7f4+iCoxBliq0v766y/s378fMOD6lDkMrkREROQt5TDA0xNNp+L+++8HYGxKnJub65l9EFVCDLBUZeXn5+Pjjz8GAKguBkEu1Lh20GDQJSIiovLgqCWYs+cgZtsZM2YM6tevj9TUVHz55ZceKCRR5cQAS1XW0qVLkZKSAhTIUCUGe7s4RERERJY8WBs7NOBBPP/88wCANWvWIC4uzjPbJqpkGGCpSrpw4QKWL18OAFDHhUIysDaViIiIyllZAqkHp9uZ1m0O+vTpA4PBoAxgSVTVMMBSlfT555+juLgYUroWcppf2TfEZsRERERUEUznHG6eezz11FNQq9XYs2cP9uzZ44GCEVUuDLBU5Rw/fhzbt28HxLXaVzCEEhERUTnz2AjD7p2eP9xwEu6++24AwKeffgqdTud+uYgqEQZYqnIWLlwIAJBTAiDnqx0sTURERFTJuBlix44di9DQUMTFxWHDhg0eKhRR5cAAS1XK/v37cfDgQeO0ORc8NHATmxETERGRPR4bjEm2ft9Fd9d4HGPGjAEALF68mLWwVKUwwFKVIYRQal9VSUGQClVeLhERERGRGyS5zEH2zjvvRI0aNZCUlISNGzd6uGBE3sMAS1XGwYMHERsbC+glz0+bw1pYIiIisqY8al9dec6GYcEP47777gMALFmyhLWwVGUwwFKV8cMPPwAA5JRASMUqt/uPEBEREVUazp7XmC03YsQIhIWFITExEZs2bSqnghFVLJ7hU5Vw+vRp7Nu3zzjy8KUgbxeHiIiIqoOKbqHlYpPiO0PGKbWwy5cvhxCivEpGVGEYYKlKWLZsGQBAvhIAqdBs5GFP1sKyGTERERGVB1fPV2wtb+Xx4cOHIyAgAHFxcThw4EAZCkdUuTDAks9LSUnB1q1bAQCqSx7u+0pERERkjbcvbDsZeu8Kfwx33HEHAOCnn34qzxIRVQgGWPJ5v/32G/R6PaRMLeRcTekFWAtLREREVZF5k2I75zv33HMPAGDXrl24ePFiRZSMqNwwwJJP0+l0+PXXXwEAquRA2wsyxBIREZGneHLkYU+cozjYxiONX8BNN90EIQR+//139/dH5EUMsOTT9uzZg9TUVKBYhnw1wOoykixBkiWOSkxERESeIYTxVknIWg1krZVWaGaGDBkCANiwYQOn1CGfxjN68mnr168HAKhSAyAJy6uhSnAtD6yFJSIiIndCrCcvrMsyIMt2g+wbAz9DWFgYrly5Ypy5gchHMcCSz8rJycHu3bsBGOd+NWctuLIWloiIiDzOyzWxFoHVLMiWJAkJgwYNAmCshSXyVTybJ5+1fft2FBUVQcpTQ8q7PnVOudW6lsRaWCIiIgJcD7Gern218pi1EGsKsLt27UJ+fr7nykBUgRhgyWdt3rwZwLW5X2EMk47Cq8drYRliiYiICHA+xHrwPMRuv1crIfb/2r6KunXroqCgAHv27PFYOYgqEgMs+aScnBwcPHgQwLUA60J/VzYlJiIionJRgYM7yVqN9dpXi4Us+8VKkNC3b18AwNatW8u5hETlg2fx5JP27dtnnPs1Tw1Vkf1R98oda2GJiIjInK0QW95Nh20tZ1Ybawqwu3fvRnFxsefKQ1RBGGDJJ/3zzz8AADnDv0zrsykxERERlauSIbaimg7bXMkYYse3fw01a9ZEfn4+jhw54rEyEVUUBljyOQaDQRl9WJVetgALsCkxERERlbNyaE7sVNNhmyvLUGm16Nq1KwBg7969HiwZUcXg2Tv5nLi4OGRmZgJ6CVKO1tvFuY61sERERFSSEN5pOmxnfQZY8mUMsORzDh06BACQs7WQhHuhkU2JiYiIqFx58NxAFRYKyc/P7e2YAuyZM2eQlZXl9vaIKhIDLPmcf//9FwAg5wd5ZHtsSkxERETlxkPnGKrQYECWAFlyO8Te3+oVNGjQAABw7NgxTxSPqMLwrJ18ihBCGXBAVRQOKSDAyyWygrWwREREBHj2nEClun7/WogtS5CVgoIAWUL79u0BAEePHvVUCYkqBAMs+ZTU1FSkp6cDApCLAyD5+3skxLIpMREREXmU5LlzC1VocOkHy1AbawqvANCuXTsADLDkexhgyaecOnUKACAV+UMSsvGL20NhkSGWiIiIPMLT4dW89rUkV0KsfP3cpHXr1gCA06dPQ5TDaMlE5YUBlnyKKcDKhWa1rn5+HmtKzP6wRERE5LaKCq8mToRYKchy7JBner8HlUqFnJwcpKSkuFNMogrFM3XyKWfPngUAyIVm87/KkseaEgMeDrGshSUiIqpePHTsdzq8mtgJseZNh5XHIKNhw4YAgHPnzpW5nEQVjQGWfMrFixcBAHJRiS9oD4dYj2KIJSIiqh482HTYpfBqYiXEWguvJk2bNgXAAEu+hQGWfIbBYEBiYiIAQCrWll6A/WGJiIjIW8p70CZnlQyxNsIrAERHRwMALl26VPb9EVUwtbcLQOSs1NRUFBUVAcJGgAWM/WGFgMjPr9jCERERUfXlwfAq+/uVrfbVYiPXQqza/ql+3bp1AQBJSUnu7Y+oArEGlnxGcnIyAGN4lWDjaqIsQQoM8FxTYk/VwnJ0PyIioqrJ1MpKGNzelOzvB0gSRFGx29s6N6kVzo1vZneZqKgoAMDly5fd3h9RRWGAJZ9x9epVAICkt301UZKMzYjdDbHCYBY43Q2xDK9ERETVgxsh1hReAQAGg1sh9tyEVigOFSgOFTj3f01tLvfinZ8CAFJSUjiVDvkMBljyGWlpaQAASVc6wJqCq8XvZQyxFuFV2WAZPyo8GBAREVVd1sa4KEOItQivJmUMsecmtEJx2PUymEKstSBrqhQoKipCPrtfkY9ggCWfoQTYEjWwtgZuKkuItRpey4rhlYiIqOqyN0CjqyHW1rZcDLElw6uJUhv7TIkmxUICDMZ9Z2ZmOr0fIm9igCWfkZOTY7xjFmAdjTrsSoh1GF5dqYVleCUiIqq6nJldwMkQK/tbn7tV4WSItRVezRWHGSxCrAQJksE4YFRWVpbjwhJVAgyw5DNMTVskYXzbOjtlTsnmxdY4XfPqTIhleCUiIqq6XJkaz0GItdp02BonQqyj8Gq+nEVNrN4YYJWKAqJKjgGWfEZBQYHxjkF2fb7XAH+btbAuNxu2F2IZXomIiKqusszrbiPEOh1eTeyE2LjxrVwqknmINVUMFBUVubQNIm9hgCWfYQqwpi9aV9hqSlzmPq/WQizDKxERUdVVlvBqUiLEuhxeTayE2LjxrVAU7vrAUUqIFcZy6HQ618tD5AUMsOQz3B3evWSIdXvAJvMQy/BKRERUdbkTXk2uhdgyh1cTsxBb1vBqUhxmgCEgDwCwYcOGspeJqAIxwJLPcLnZsI1tSCq+7YmIiMhLPBGGDQYkj2zpVngtiU2IyVfwTJ58hiy7/3YVhUUQBYWASgVJdvMAYt4cyBMHIyIiIqqcPNHSSpIhyRJEYaHbm0p54AYUhUjwT3b/3Cgiylibe+utt7q9LaKKwABLPsMUYFP71SrT+qKwCCI//3pTZHdCrLUBGRhiiYiIqi53Quy18Kpsyo0Qm/LADSgKNW5LLoZbIXbV8PmoHWx8XSEhIWXeDlFFYoAlnxEYGAgAGHPDFpwZ38SldUuFV5OyhFh7Q+IzxBIREVVdZQmxJcKrsqkyhFjz8GpS1hC7avh8dPTzQ16+cXtBQUEub4PIGxhgyWeYAmxYkRYr/vchzjzrQogVBtuDQLkSYp2ZlJwhloiIqOpyJcTaCK/KphzM7WrOWng1kZ3fDABg5fAF6OjnBwDIKzDGAdN5FlFlxwBLPiM4OBgAkJsno6OfH1Y88KFTNbFKv1d7nAmxzoRXE4ZYIiKiqsuZEOsgvBq3Y3tuV3P2wquJs7WwK4cvQGc/rfK7qQaWAZZ8BQMs+QxT34zMbOPbtqOfn7Em1k6Itdl02BpPDOxkjiGWiIio6rJ3buFMeFW2Y/8Ceer/HIdXwLmmxCXDa2GRsWIAAGrUqOFEYYm8jwGWfEbt2rUBAFfSr79tTSF2+NYjpYKsS+HVxFaIdaX21RxDLBERUdVl7RzDlfBq2oyNWtjU/92AwjDnt2UrxK4cvqBUeAWAtAwVAECr1Sot3YgqOwZY8hkREREAgNSrKovHO/r54YmwS/jhf/OVfrFlCq8mJUNsWcOrCUMsERFR9VCG8ArAalNiV8OrSckQu2z4R+jspy0VXgHgSppxuVq1akHi+Qr5CAZY8hmmAHslTWX1gmdnPy1+eGA+zj3VtOzh1cQUYt0NryY8KBAREVVNpvONsoZXZTvXQ2xZw6uJKcQuG/4RuvlpbC53Rf8RgOut3Ih8AQMs+Yw6depApVKhsEjC1XTrb92xh8ahwaY8SJzLjIiIiCqQR8bREAZIGrVb4dVk5rjv0Vxtf4CoixcvAgDq16/v9v6IKgoDLPkMjUaDunXrAgASEtVWl8lNC4A6NRsIC4YcGlr2nRkEhMGNGtyS3KkNJiIiosrrWisrode7tRk5MBByYCAgyWiwNsmtbb3y+DL0C7gEPeyff1y4cAEA0LBhQ7f2R1SRGGDJpzRq1AgAcN5KgG23+wE0W3Lt4CHL7oVYU9NhSTbe3MHwSkREVDWV6CJU1hArBwYCKpXxBgBX0stcpFceX4YBgReV39P1eTaXPX/+PACgQYMGZd4fUUVjgCWfYrpCmHDRMsC23/M/1J2vheZy1vUHyxpirdW+ljXEMrwSERFVTTbGt3A1xCrhtYQGvyS7XKRpj6+wCK8AoIewGmL1BiAhIQHA9QoCIl/AAEs+pXnz5gCAk3HXByRov+d/iPrQzzK8mrgaYg3C9oHH3ZpYIiIiqho8NDijrfAKAEhNcynETnt8BW4LPG/1OWsh9uIlNfLz8xEQEMAaWPIpPCMnn9KqVSsAwJl4DYp1xsdyrgZaD68mzoZYe+HVxJUQy9pXIiKiqkWSnAqvztTC2g2vJk6GWHvh1aRkf9hTVz8EYKwcUDkqB1ElwgBLPqV+/foICQlBcbGEuPNq3LD3fjRd6sRUN45CrDPh1cSZEMvwSkREVLW4WOtq77zCqfBq4iDEOhNeTcxrYWNjYwEALVu2dK4cRJWE9aFciSopSZLQqlUr7Nu3D//7oxfqbA+A9lKmcytfC7Gq4ECInDwYssxqbV2d71WSba/D8EpERFS1lLHJsNDrIZUIqi6FV5PUNACRFg9Ne3wFADgdXoHrTYlrqAJx+PBhAECbNm1cKwuRl7EGlnxOx44dAQAh2zKdD68msgyhUVvWxpZ1yhz2iSUiIqr6PNTfFShjeL3GvBb2hcdW4rbA8y6FVxM9BM5nFuDMmTMAgA4dOpSpPETewjNw8jk33ngjAEDor0I4mN/MJlOT4uAg9+ZtKxliWftKRERUdXggvAq9/vocr+70Nb3WlPiFx1ZicFCCW2W6kPIDhBBo2LAhateu7da2iCoaAyz5nJYtWyIwMBCQdRDq3LJvSJYBtQda0bMmloiIiOww5Be4F16vkbJz3Q6vAHDw4EEA1ysFiHwJz7zJ56jVaqUZsd7fxSbEZqTsXIjMLEiy55oGebKZEREREXmZJ1pWSbJ7rb1Mm/HTArKMu8dPcms7Q6dNxj///AMA6Nq1q9vlIqpoDLDkk3r37g0A0PmlAWrXr2hK2bkwpGdA6Ixz8UiyVPYgW3IwJ4ZYIiKiqsOdEGvWSsuQU7ZWY5Kf1hher9Xghuy7iLsmTC7Ttoa8/DzCjl/C5cuXodVq0aVLlzJth8ibGGDJJ/Xs2ROSJEGosmHQFLscYoXBoIRXcy6HWFsjETPEEhERVW8luhgJvd7lEKsE1xLNj0P3XnC5OENefh41D2dgzMROAIDOnTsjICDA5e0QeRsDLPmkmjVrom3btgAAveYqhFqG0GqcCrKmpsM2n/dUk2InJzsnIiKiSs7VWlgb42O40pTYvNbVGmdrYYe8/LwSXgHg77//BmCsDCDyRQyw5LNuueUWAIBek2wMiioJQi3bDbElmw7bXM6ZEOvs3LEMsURERL7PmRAryQ4Hd3SmFtZReAWMtbB3PWc/xA55xRhcTeHVIOXh5MmTUKlU6NOnj8NyEFVGDLDkswYMGABZlmFQZcEg5RsflOyHWFtNh62xG2KdDa/KxhhiiYiIqjQnZyVw1JTYmfBqErrHdlPiIa88j5r/ZVg8dt//tQYAdOvWDeHh4U7tg6iyYYAln1W7dm1l+He95vrk3rZCrKOmw9a4NbhTqY0xxBIREfk0W7WwLk6pZ60pccnBmpw1YmLpWtjBM0qHVwGBzZs3AwAGDhzo0j6IKhMPTIJJ5D233XYb9u/fD70mCeqiRpBwLSSaQqwsQzIYAJ3epdrXkiRZgjBcO2i5WvtqsSHJM0PyExERUeVQxvngDTm5kIODjJsoQ3A1Cdt9vRZ28IznAQC1DmWU3p8qA4mJiQgICECvXr3KtC+iyoA1sOTTbrnlFgQHB0PIBTCo0iyfNOsXK+UXulz7WhIHdyIiIiKLC9FlDK/A9VpYd8KryYhJk3HHq8+j1qEMq+EVAHoNqQkAGDRoEEcfJp/GAEs+LSAgALfffjsAQKe9ZH2ha7WeQu9GzSkRERGROTfCq4khL8/t8AoAoZtjUftghs3nhVSojD48fPhwt/dH5E0MsOTzRowYAQAwqK5eH8zJjJyZC0NauvEXJ0YHtEUYhHvNhy02xmbEREREPslDragkWQL0ehiupjle2AaRm2u86Q2QLl2xudwDz7WBXq9H27Zt0axZszLvj6gyYIAln9ewYUN06dIFkACdNrH0AsU6iOISfV89cNWUiIiIqhnz8OrGRW3zbkllHZ/DFFxNLcxEQYH15aDHqlWrAAB33313mfZFVJnwLJ6qhPvuuw8AoNdcgpCKlMflTOO8r1a5EGJZ+0pERFTNebLmtQRXa2FN4bXUtq3Uwj79ahdkZGQgKioKt956q0v7IaqMGGCpSujatStatGgBSAboNGa1sNZqX8250aSYiIiIqgF7gy+6eHHb1oCQztbCmjcZtvp8iVpYAQOWL18OABg9ejTUak5AQr6PZ+5UJUiShAcffBCAsRmxgM5+7WupDVTQR4G1r0RERL7Dg7Wu7s5mULLJsM19mdXCTp3bF5cvX0ZYWBiGDBni1v6JKgsGWKoybr75ZjRo0ACQdMYRiR3VvpZkI8R6tPkwERER+QZnw6uDcwRng6u9ZsQiL9/p2RRMtbACAosXLwYAjBw5Ev7+/k6tT1TZMcBSlaFSqcxqYc9DyGUYFKE8mxSz9pWIiKjy8+B87a7UulprRizy8o23Mgz0NPHNHoiPj0doaCjuuecel9cnqqwYYKlKGTRoEBo3bgxIOhT5nS/7hq6FWNa+EhERVSNlDa4lzhXK2mTYvBbWFFzLNErx5RR88803AIAHHngAwcHBrm+DqJJigKUqRaVS4amnngIA6OpkQWjLNjQ9AA7uREREVJ14oda1JFNYLWutq8m4D/siJSUFERERnDqHqhyeoVOV0717d3To0AGQBXTRmd4uDhEREVVmHmoy7JGBmgzC7fAqVHosXboUAPDII4/Az8/PrTIRVTYMsFTlSJKEp59+GgCgr50HQ1Bh2TYkDJz7lYiIqKrz0DFa6PXurW8wlsOQk+vWdm6f3gFZWVmIiYnBbbfd5ta2iCojBliqktq0aYOBAwcCElAckw4h3DuoEBEREZUHYRBKeAXKHoRFQSH0cjbWrl0LAJg4cSLnfaUqiQGWqqxnnnkGwcHBEMHF0Efkem8wJta+EhERVW5eqoU1D65u7begEAa9Ds1G14IQAgMGDMCNN97okW0TVTYMsFRl1apVC4899hgAQNcoCwaVznhgcSbICoPbTYGIiIiIrClZ61rq+QLnuj+JgkLjTa/HxDUP4fjx4wgMDMQzzzzjqaISVToMsFSlDR8+HC1atADUArqYLACcGoeIiIi8x5laV2cuopuCq9DrITR6fPbZZwCMAzfVrl3b7XISVVYMsFSlqVQqTJkyBbIswxCRD33NfADXrnw6WxtLREREVV8FdPnxRJNh81pXABAQ6PJcU2RnZ6NFixacNoeqPAZYqvJat26N+++/HwCga5IJob5+VdNqbawnmw+z/ysREVG1Yu0cwlGTYavbsdKM2LzW1cQQkY9//vkHarUaL7/8MgduoiqPAZaqhXHjxqFx48aA1mAMsTAb7Y+1sURERFROylrrah5SS9a6Ko9r9fDvZJwz9pFHHkGTJk3KXlAiH8EAS9WCVqvFyy+/DJVKBUPtAhhq55dahn1jiYiIyFPKUutqdTtWal0BY9PhTv8Xg5ycHLRq1Qr33Xef2/si8gUMsFRttGzZEmPGjAFwrSmxn67UMp462BAREZEP8tR0Op44lxAGq7WuJo8uGYE9e/YoF+nZdJiqCwZYqlYeeughtG3bFlALFLdMh5CsHGA8VQvL/q9ERETVk7vnEtfWtxVeDcFFWLhwIQBgwoQJiImJcW9/RD6EAZaqFbVajddeew2hoaEQwcXQN8rydpGIiIioqhDi+q1M6xschl+hMqDmQBX0ej369euHYcOGlW1fRD6KAZaqncjISLz88ssAAH29XGVqHSIiIqIyc7fllRO1tgICNz3fHMnJyahfvz5eeOEFSJLk3n6JfAwDLFVLPXv2VAY70DXLgMG/dH9YIiIiqoZcDaLu1LgCTtW6mjy8aBi2b9+utCgLCgoq+36JfJQkBDvqUfWk0+nw3HPP4ciRI5Dy1NAcqQ1JL7MPLBERUXXnbK2mvWO9rHKwrpPnG5KxvklfowD6NukQQmDKlCkYPny4c+sTVTGsgaVqS61W4/XXX0dERAREoA7FLdIhhPXBEoiIiIgUnqh1dYEhoBjazgUQQmDEiBEMr1StMcBStVarVi289dZb8PPzg6hRCH1MtreLRERERJVZBTUXVlZRGRA5zA95eXno0KEDxo8fX/b9E1UBDLBU7bVs2RIvvfQSAEBfPw/6OnleLhERERFVOhVc6woAQhJo/0x9XLx4EZGRkZg9ezY0Gk3Zy0BUBTDAEgHo168fxo4dCwDQNcuCIbzQyyUiIiKiSqECB2myWA0CfWbegAMHDiAgIABvvfUWwsPDy14OoiqCgzgRXWMwGPDmm29i06ZNgF6C5mhNyDluXOXkR4uIiMg3mQZxcudY7ub0NrpG2dBH50KlUmHOnDno1q2bW9sjqipYA0t0jSzLmDZtGrp06QKoBIrbpEOUdXodhlciIiLf5W6tq5v0dXOhj84FAEydOpXhlcgMAyyRGY1GgzfeeAMtWrQANAYUtUmH0HBkYiIiIqoY+lr50DfNAQA8/vjjuOOOO7xcIqLKhQGWqITAwEDMmTMHdevWBQL0KG6bDqH20NywRERERDboa+RDtM2BEALDhw/Hgw8+6O0iEVU6DLBEVtSqVQvvv/8+atWqBRGkQ3HbNAiZNbFERERUDoSAIawAUoc86PV6DBgwABMnToTkZj9aoqqIAZbIhujoaMybNw81atSACNahuF26McSyfysRERF5wrW+toawIkg35qG4uBh9+vTByy+/DJVK5e3SEVVKDLBEdsTExOCDDz5AaGgoRIgOxW0zIGSD1wd3ICIiIh9mdh5hCCmCulsBioqK0LNnT7z66qtQq9VeLiBR5cVpdIiccPLkSUyaNAk5OTmQMjXQHA+HpL92/cdW8x5+tIiIiKone01/zc4PDGHG8Jqfn48uXbrg7bffhp+fXwUUkMh3sQaWyAktW7bEe++9h+DgYIiwYmNzYtPATqyNJSIiIkdKnC/oaxRC6pyL/Px8dO3aFW+99RbDK5ETWANL5IJTp05hypQpyMzMhJSrguZoDUjFJfqoeGLycyIiIvJd5jWwVs4H9LUKgPa50Ol06NWrF2bNmgWtVluBBSTyXQywRC6Kj4/H5MmTceXKFUj510JsIQdaICIiomskyeaFbH1EPkSbXOj1evTr1w/Tp09nn1ciFzDAEpXBpUuXMGnSJFy+fBkolKE5VgNyHg8+RERE1Z6N8CogoK+fB33jHADAHXfcgalTp3K0YSIXMcASlVFqaiomTZqE8+fPAzoJmhPhkDPZ/IeIiIgsCQjoG+dAXz8PAHDPPfdg/PjxkGUOR0PkKgZYIjdkZWXhpZdewpEjRwADoD4VBtUVf28Xi4iIiCoJIQnoWmTCEFEIAHj66adx3333QbI3UjER2cTLPkRuCA0NxQcffIA+ffoAMqBrlQld/VwI8LoQERFRdSdUBrR+pi4MEYVQq9WYMWMG7r//foZXIjewBpbIAwwGAz755BP8+OOPAAD5cgDU50IgCR6giIiIqiODvw5RdwXiwoULCAoKwhtvvIHOnTt7u1hEPo8BlsiDVq5ciU8++QRCCEgZGmhiwyHp2NCBiIioOjGEF8Kvuw45OTmoU6cO5syZg6ZNm3q7WERVAgMskYft2LEDs2fPRn5+PlCgguZ4OEcoJiIiqgYEBPR18yGa58JgMKBt27Z48803UbNmTW8XjajKYIAlKgdxcXF46aWXcOnSJUAvQX0yFKo0Du5ERERUVQlJQNc0G4aofADA7bffjueffx5aLWcoIPIkBliicpKZmYmZM2fi4MGDAABVQhBUF4Iggf1iiYiIqhKh1aP5uEgcO3YMkiTh6aefxujRozlYE1E5YIAlKkc6nQ4ff/wxfv75ZwCAlK6F5mQY+8USERFVEYawQgT2FsjMzERwcDBmzJiBHj16eLtYRFUWAyxRBdiwYQPef/99FBYWAoUyNLFhkLPZpIiIiMhXCQjoG+TCEJMHIQSaN2+O2bNno169et4uGlGVxgBLVEHOnj2LV199FRcuXAAEoIoLgepSAJsUExER+RihNkDXIhOGmkUAgCFDhmDixInw8/PzcsmIqj4GWKIKlJubi3fffRdbt24FAMhX/KA+E8omxURERD7CEFaE8H5qpKamQqvVYvLkyRg8eLC3i0VUbTDAElUwIQR+/vlnfPLJJ9DpdMYmxafCIGeySTEREVFlJSQBfcNcGBoamwxHR0dj1qxZaN68ubeLRlStMMASecnJkyfx+uuvX29SfDEQqvPBkASbFBMREVUmwk+HZmMjcfz4cQDGJsPjx49HYGCgl0tGVP0wwBJ5UX5+Pj766CP8+uuvAAApWw31yTDIBWovl4yIiIgEBAwRBdB20iEvLw/BwcF4/vnn0a9fP28XjajaYoAlqgS2bduGuXPnIjs7G9BLUMcFQ07iAE9ERETeIjQG6JpmwVC7EABwww03YPr06YiKivJyyYiqNwZYokoiJSUFb775Jg4dOgQAkDI00JwOg1So8nLJiIiIqhd9rQIEdQcyMzOhUqnw8MMP44EHHoBazRZSRN7GAEtUiRgMBqxevRpffPEFCgoKWBtLRERUgYT6Wq1rhLHWtWnTpnjllVfQrFkzL5eMiEwYYIkqocTERLz99ts4fPgwAEDK0EJzOpS1sUREROVAQMBQqxAhPWWkp6dDpVLhwQcfxJgxY6DRaLxdPCIywwBLVEkZDAb8/PPP+OKLL1BYWAjoJagSgqC6FMjaWCIiIg8RWr2x1rVWEQAgJiYGL7/8Mlq1auXlkhGRNQywRJXchQsX8O677+K///4DAEg5aqjPhELO4RVhIiKishIQ0NfNh7adDvn5+VCr1fjf//6Hhx56CH5+ft4uHhHZwABL5AMMBgN+//13fPbZZ8aRigWguhQI1fkgSHrZ28UjIiLyKYagYuiaZUGE6AAA7dq1wwsvvIDGjRt7uWRE5AgDLJEPSUtLw8cff4zNmzcbHyiUoT4XAvmqH5sVExEROSBUBugb5gINC6HX6xEUFISnnnoKw4YNgyzzgjCRL2CAJfJBe/fuxQcffIBLly4BAKR0rTHI5nN4fyIiopIEBAx1ChDaXY20tDQAQJ8+ffDcc8+hdu3aXi4dEbmCAZbIRxUUFGDp0qVYvnw5ioqK2KyYiIjICkNQMXRNsyFCiwEADRo0wHPPPYdu3bp5uWREVBYMsEQ+7tKlS/j444+xY8cO4wNFMtTxwZBT/NmsmIiIqi2hNkDXKAeiXgGEEAgICMDYsWNx7733cmocIh/GAEtURezZswcfffQRzp8/DwCQstVQx4dAztR6uWREREQVR0gC+np58G8nkJubCwAYMGAAnn76aURERHi5dETkLgZYoiqkuLgYP/30E7777jvk5eUBAOSrWqji2T+WiIiqNgEBQ+0C1O4biKSkJABA8+bNMX78eHTs2NG7hSMij2GAJaqC0tLSsGjRIqxbtw56vR4QgJwUAPX5IEjFKm8Xj4iIyKMMoUXQNc5WpsWJiIjAE088gYEDB3J0YaIqhgGWqApLSEjAF198cb1/rF6C6mIgVJcCOdATERH5PENgMfSNcmGoVQgACAgIwIMPPoh7770X/v7+Xi4dEZUHBliiauDff//Fp59+itjYWOMDxRJUF4KgSgqEZOBAT0RE5FuEvw66hrkQkYUQQkClUmHo0KEYN24catas6e3iEVE5YoAlqiYMBgO2bt2Kr7/+GhcvXjQ+WChDfSEIcnIAJMEgS0RElZvQ6qFrmAupfpGxiwyAW2+9FY888ggaNWrk5dIRUUVggCWqZnQ6HTZs2IDvvvsOycnJxgcLVFCfD+LUO0REVCkJjR766DyoGuuMc58D6N69Ox577DG0aNHCy6UjoorEAEtUTRUVFWHdunVYsmQJ0tLSAABSvgqqC0GQU/1ZI0tERF4ntHroonOhjtErwbVDhw544okn0L59ey+Xjoi8gQGWqJorKCjA6tWr8cMPPyAzM/PagzLUF9m0mIiIvEP4GYOr3KAYOp1xZOG2bdti3Lhx6Nq1KySJxyai6ooBlogAAHl5eVi7di1WrFih1MiiUIbqYhBUyQEc7ImIiMqdwV8HfYNcSPWKlT6uHTt2xNixY3HjjTcyuBIRAywRWSosLMS6deuwbNkypKamGh8skqG6FAhVUgAkHaffISIizzIEFUMfnQtEFsNgMAAAunbtijFjxqBDhw5eLh0RVSYMsERkVVFREdavX4/vv/8eSUlJxgf1ElTJ/lAlBkEqVHm3gERE5NMEBER4EXT18yBqFCmP9+zZE2PGjEGbNm28WDoiqqwYYInILp1Ohy1btmDZsmU4e/as8UEByFf8oEoMgpyj8W4BiYjIpwhJwBBRAH39PIggY/9WlUqFPn364IEHHkDz5s29XEIiqswYYInIKUII7N+/H8uXL8e+ffuUx6VMDVQXgyCnazkFDxER2STUBuij8qGvlwdojc2EAwICMHToUIwcORJ169b1cgmJyBcwwBKRy86cOYMVK1Zg8+bNyiAbUp4K8uVAqFL8IenZT5aIiIwMATro6+ZB20SgoKAAABAREYF77rkHw4YNQ0hIiJdLSES+hAGWiMosJSUFq1atwi+//ILc3Fzjg3oJcoo/VJcDIeepvVtAIiLyCgEBQ61C6OvmQYQXK483a9YMo0ePRr9+/aDRsAsKEbmOAZaI3JaXl4eNGzfi559/Rnx8vPK4lKExBtmrfmxeTERUDQiN3thMOCof8DM2E5ZlGb169cLdd9/NqXCIyG0MsETkMUII/Pvvv/j555+xY8cOpXkxCmWokgKM0/AUc/RiIqKqREBAhBZDXzcPcl09dDrjwEzh4eEYNmwY7rzzTkRGRnq5lERUVTDAElG5SE5Oxi+//IJ169YhIyPD+KAA5DQ/yMkBkNM46BMRkS8TagP0dfJhiMyHCNIrj7dt2xZ33XUX+vbtC61W68USElFVxABLROWqqKgI27Ztw9q1a3HkyJHrTxTKUKX4Q5UcAKmAfWWJiHyBgIChRhEMkfmQo67Xtvr5+WHAgAG466670KJFCy+XkoiqMgZYIqowCQkJ+O2337Bhw4brtbK41lc2OQDyVX9IBtbKEhFVNsJPD31kPvSR1/u2AkCrVq0wZMgQ9O/fH8HBwV4sIRFVFwywRFThiouLsXPnTvz222/Yu3cvlK8hnQQ51R+qVH9IWRo2MSYi8iIhG4wjCUcWQIQXKY+HhoZi4MCBGDp0KJo2berFEhJRdcQAS0RelZycjPXr1+P3339HUlLS9ScKZKhSAiCn+kPOZxNjIqKKICQBQ3gRDBEFMNQqBFTXTxO7dOmCIUOGoHfv3vDz8/NiKYmoOmOAJaJKwWAw4NChQ9i0aRO2bduGvLw85TkpW329ZpajGBMReZSAgAgphj6iAIaIAkBz/dQwOjoaAwcOxO233466det6sZREREYMsERU6RQUFGDnzp3YtGkT9uzZc306HgFIGVqoUv2Nc8vqZe8WlIjIhxkCdDBEFEAfUQAEXB9FuEaNGujXrx8GDRqEVq1acd5WIqpUGGCJqFLLyMjAn3/+iU2bNuH48ePXnzAAcoYW8hWGWSIiZxkCdDDULoChdoHF1Df+/v645ZZbMHDgQHTu3BlqNbtuEFHlxABLRD7jwoUL2Lx5M7Zt24a4uLjrT5iH2TQ/SDqGWSIi4Frz4EAdDLULjaE18HpoVavV6Ny5MwYOHIjevXsjMDDQiyUlInIOAywR+aT4+Hhs27YNW7duLRVmpQwtVFf9jGGWfWaJqJoREBBBOhhqlQ6tGo0GXbt2Rd++fdGrVy+EhIR4saRERK5jgCUin5eQkKCE2XPnzl1/QgBStgZymp+xmXG+ilPzEFGVJCQBEVYEfc1CGGoWAv7X52rVarXo1q0b+vbti549e3K+ViLyaQywRFSlmMLsjh07cPLkScsn81VQmcIs55klIh8n1AYYahQaa1rDiwD19VM6Pz8/dOvWDbfeeit69OiBoKAgL5aUiMhzGGCJqMpKSUnBrl27sGPHDhw8eBDFxcXXnyyWIKcbmxnLGVr2myWiSk9AQAToYbhWyypCi2F+Ha5WrVro2bMnevXqhc6dO3OuViKqkhhgiahayMvLw969e7Fz507s2rULWVlZ1580NTXO0EJO10LKZu0sEVUOQmWAIbwIhhpFMIRbNg0GgGbNmqFXr17o1asXWrRoAVnmxTgiqtoYYImo2tHpdDh27Bh27tyJPXv2WA4CBRhrZzO0xhraDC2kIg4ERUQVQ0BABOuMTYNrFEGEWNayarVadOjQAb169ULPnj0RFRXlvcISEXkBAywRVXspKSnYt28f9u7di3379iEnJ8fieSlXbQyymVrImRrOOUtEHiMgAH89DGFFxprW8CJAY3lq1rBhQ3Tr1g3dunVDx44d4e/v76XSEhF5HwMsEZEZnU6HEydOYO/evdi7dy9iY2Nh8TUpACnHGGjlTC2kLC0kA5sbE5HzhN+1wHrtVrJZcFBQEDp37qyEVtayEhFdxwBLRGRHRkYGDhw4gIMHD+LgwYNITEy0XMBwrf9s5rVAm61hoCUiC0JrHliLgQC9xfMqlQpt2rRBp06d0K1bN7Rp0wZqtdpLpSUiqtwYYImIXJCcnIxDhw7h0KFDOHjwIJKTky0XMABSjgZylgZSlgZyFkc4JqpOTCMFi9AiGEKLIUKLIawE1pYtW6JTp07o1KkT2rdvj4CAAC+VmIjItzDAEhGVkRACly9fVmpnDx06hKtXr5ZaTspTGcNsthZSpgZSgYqjHBNVEUIWEMHF18JqEQwhxaX6sMqyjObNmyuB9YYbbuC8rEREZcQAS0TkIaZAe+TIERw+fBhHjx4tPcIxABRJxjCbrYacozE2O+bAUESVnjLgUrAOIqQYhpBiiOBioMTH18/PD23atEG7du3Qvn17tG3bFiEhId4pNBFRFcMAS0RUjrKysnDs2DEcPnwYR44cQWxsLIqKikotJ+WrjEE2WwM5Rw0pRwNJsJaWyJuERg9DiM5Yw2oKq5rSp021atVC+/btlcDavHlz9mElIionDLBERBWoqKgIJ0+exIkTJxAbG4sTJ06UHhgKMPalzTUGWTlHDSlXAylPzQGiiMqJ0OghgnTG2tVrgRV+hlLLaTQaNG3aFK1bt0abNm3Qvn171K1bF5LEzyYRUUVggCUi8rLMzEzExsYqgfb48ePIyMgovaC4VlObozHOTXst4HKQKCLnKYMsBekggoqNgTVIB2hLh1VJkhATE4NWrVqhdevWaNWqFZo0aQKtVuuFkhMREcAAS0RU6QghkJycrNTSnjlzBqdPn7YeagGgUDaG2Vy1sZY2Tw0pn7W1REJjgAjUQQTqYAg01qyKQB2gKr2sJElo0KABmjVrhpYtW6J169Zo0aIFAgMDK77gRERkEwMsEZEPEELg6tWrOHPmjBJoT58+jcTERFj9GhcAClSQ89TGUZAZbKmKEhCAxgARqL8eVK/drPVXBQB/f380bdoUzZo1Q7NmzdC8eXM0btyYU9kQEfkABlgiIh+Wl5eHs2fP4vTp04iPj0dcXBzi4+ORmZlpfQVTsM1XGcNsvsp4K1ADhTKn96FKS8gCwl8PEaC79vPafTtBVZIk1K1bF40aNVICa/PmzVGvXj2oVFaqYYmIqNJjgCUiqmKEEEhPT7cItKafWVlZtlfUwzhHbb76+s98FaQCFVDEcEvlT0hmITVAfz2o+uuMAyrZeAtKkoR69eohJiYGjRs3RkxMDBo1aoSGDRuyVpWIqIphgCUiqibMg+2FCxdw4cIFXLx4ERcvXsSlS5eg0+lsr2wAUKiCVGgMtFKBfP1+IQMuOUfIAsJPD/hdC6fKT8O1x0sPpGQuODgY0dHRyq1BgwZo3LgxGjRoAD8/vwp6FURE5E0MsEREBJ1Oh+TkZFy8eFEJthcuXEBiYiKSk5Oh1+vtb8AAY5AtlCEVqSBd+4mia0G3SGbIreKELCC0xhAqtHoIrcEYVLUG481fb3Wk35ICAwMRHR2N+vXrlwqrYWFhnK6GiKiaY4AlIiK7dDodrl69isuXLyMpKUn5abqfmprqOOACxv63RTKkIrNwW2y8me7D9LtOYtitBIR0bYAkjUH5qdy/FkyhNdagQu3c6URAQADq1q2LqKgo5WdkZKRyPzQ0lCGViIhsYoAlIiK36HQ6pKamIikpCampqbhy5QpSU1Mt7qelpTkXck0MuB5mi2VIOgnQycY5b3WSzZ/QM/haIyAAtYBQXwuaagOErZ8aA6C99tPJUGoSEBCA2rVro3bt2oiIiECtWrUQERGBiIgIJbCGhIQwoBIRUZkxwBIRUbnT6/VIT09XAu2VK1eQnp6OjIwMpKenW9xycnLKviMDAP21IKuXAL1svG+QSjxudl9IgEEyNoM2mH7HtcckSOL6fZiOmAIArv1+7TFHwVnA7HAr4fqARJK49rsAZGNTXNN9XLsvlPvXfqqEcTnVtfsqAagMNh4XLgdRcyqVCmFhYahRowbCw8MtfpqCqulnYGAgwykREZUrBlgiIqpUiouLlWCbkZGBtLQ0ZGVlIScnB9nZ2cjOzkZWVpZyPycnB1lZWfYHoaooAhah9npIhc0RdCtSQEAAQkJCLG7BwcHK/dDQ0FJBNSQkBLIse7voREREABhgiYioChBCoKCgANnZ2cjLy0NeXh7y8/OVn+b3zR/Lz89HcXExiouLUVRUhKKiIuV+ycfKOyBLkgSNRgOtVgutVguNRqPczH/XarUICAhw6ubv768E1ODgYKjV6nJ9DUREROWNAZaIiMgJBoPBpZskSZAkCbIsQ5IkqFQqi99lWbZ4zvQ8ERER2cYAS0RERERERD6BnVqIiIiIiIjIJzDAEhERERERkU9ggCUiIiIiIiKfwABLREREREREPoEBloiIiIiIiHwCAywRERERERH5BAZYIiIiIiIi8gkMsEREREREROQTGGCJiIiIiIjIJzDAEhERERERkU9ggCUiIiIiIiKfwABLREREREREPoEBloiIiIiIiHwCAywRERERERH5BAZYIiIiIiIi8gkMsEREREREROQTGGCJiIiIiIjIJzDAEhERERERkU9ggCUiIiIiIiKfwABLREREREREPoEBloiIiIiIiHwCAywRERERERH5BAZYIiIiIiIi8gkMsEREREREROQTGGCJiIiIiIjIJ6i9XQAiIm8RQqCgoMDbxSAicom/vz8kSfJ2MYjo/9u7+6io6jyO4587IwqEipmrEGRqam7lYpBmBmtaSFanUutknrXWWqvNbLe1bDmppZmpx9TNPW15tra2yN3qpLmVuKZmJj5gihZphGL5AMuDoijIw8z+McxlBhiQAYSL79c5nLlzf/f3vT/m0sNn7sMPLYIAC+CCVVJSolGjRrX0MACgQZKTkxUUFNTSwwCAFsElxAAAAAAAS+AMLABIar/9F1KFIcNmSIbNfJWt8jI9w5Bhs0lG5XrDMNsM93aGUbXeqOrnta5aTdd2Ve1Odz+bR7uP9U7DqHovyVlZSoYhp02SDNc6c18y+zgr31f1M6r626raXH282z1rOt3b2OSznlnXY4xVr9XHUb296hjV1i7JHIOvfXmt9zEO79+rap+1tVX1cXrtr8Z+3O2q3u706uPetmpcTrPN8NzeMH/byjZntVd3TacMw+n15+Wu6To0Ve22ynpe6yqXq9o81nm8uupVvff8kVy1Xe9V1eaxP5vhMNe5tnVIkuxG1XvPPu73Ve1O2eWobHPKbjg8+jlk9+hnr1xvl6NGP5vcfR2ye7W5trcbThlyyO4enxxmH7vk6id3m+vzsMu9T6c5Dtf7ylepctmo/Kwku2HIJkN2Vb4a7jabDBkqK7Vr7O96CAAudARYAJBc4dXh+h9FGVWvZtIwDBlyB9fK9ZXpxHAlQlWlHY9+NRKUrVpS8koZHv1UbZ2v9fL96hEOzeXqr2Y5w6OsUWOI3u3Va6oySPuqV/PjqFG31ra6+p3DR+VvvcpXX+G22QKsUTPAerZVD7BV653Vxu+s0Wa4a9bWXmsfZy37qvYjmQG2+o/PNjNUegRbj6BrtqmqvSqIyiPAOrwDoOEOgJWvhiG73PVcy65Xw6ufq5ZkN2S+VvVzLXu2SaoMre5t3QHYM6S6xlxfgPXal+d+5L0/m7m9xzEEgAsYlxADAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEpgHFgAkye6UUw7X5I+GvF8l13ylNlWbR9Xd5vHeMCrnyfToV1+bx0SkTh+Tm9a2vmqd69Xp0e6UJKfhtc61jSE55VXP6dmnsl9NPtY5PZq85jY1PIdfx/yrhv9zvdbVVl+9+trcL3X2qz7/qo/2GmP0MQ+sai4bNfbj2eas9uqu6Z531fPPy8c8sGY9/+aBdcq17Kz2425zVs6Fa7ZV1nQYTslweOyn8r0qfx9Vb5echsNVu7KO06vNe73NY1/u5eqvrnG4/rH2fHVUfky2ymVH5Z9o7fPAGrLJqJpXVq7P3C733LNVc716vreZy65+5vy1lbVsMmQ33G2GDBkqK63tn0EAuPAQYAFAUung/7X0EJqHs9qrH6rnU8DNHSEd9W3YarkTPhekAYBV8G9sAAAAAIAlGE6nsxHfywOAdTmdTpWUlLT0MOCnkpIS3XnnnZKkVatWKTAwsIVHhHPFsWucwMBAGQbXRAC4MHEJMYALlmEYCgoKaulhoAkEBgZyLC2KYwcAaAguIQYAAAAAWAIBFgAAAABgCQRYAAAAAIAlEGABAAAAAJbAU4gBAAAAAJbAGVgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJ7Vp6AACAtu/MmTNasWKFvvzyS2VnZ8tmsykyMlIjRozQ2LFjFRAQ4HftgoICJSUlKSUlRTk5OerQoYN69eqlhIQE3XbbbTIMo9Z+hw8f1ubNm7V7925lZmaqoKBAdrtdl1xyiQYOHKi7775b/fv393tcbUVrPHa+PP3009q2bZskKSoqSn/5y1/8HhsAoHUynE6ns6UHAQBou7KzszV16lRlZ2dLkgIDA+VwOFRaWipJ6tu3r5YsWaKOHTs2uPb+/fs1bdo0FRYWSpKCgoJUWlqqiooKSdLgwYM1b968GiFr7969evzxx73WBQcHq6ysTGVlZZIkm82m3/zmN3rooYcaPK62ojUeO18+//xzzZs3z3xPgAWAtolLiAEAzaa8vFzPPvussrOz1bVrV73yyitau3at1q5dq1mzZik4OFgZGRmaM2dOg2sXFRVp+vTpKiws1GWXXaY33nhDycnJWrt2rf7whz+oXbt22r59u1599dVax2W32xUbG6vZs2dr9erVWrNmjdauXavXX39dAwcOlMPh0Ntvv63//Oc/TfFRWE5rPXa1yc/P17JlyxQSEqKePXs2eDwAAOsgwAIAms2aNWt04MABSdKcOXMUExMjyXV2c+TIkZo2bZokaevWrdq5c2eDaq9YsUIFBQXq0KGDFixYoCuvvFKSFBAQoDFjxmjSpEmSpNWrV+vnn3/26nvppZfqnXfe0dy5czV8+HB17txZkmS32zVgwAAtXrxYffr0kSS99957fv721tZaj11tXnnlFZ06dUq///3v1aVLlwaNBQBgLQRYAECzWbNmjSRp0KBBuvrqq2u0jxw5UmFhYV7bnqvk5GSzRnh4eI32MWPGKCgoSBUVFfrvf//r1faLX/xCkZGRPmsHBAQoPj5eknTkyBGdOnWqQWNrC1rrsatu/fr1+uqrrxQVFaXbbrutQeMAAFgPARYA0CxKSkr07bffSpKuv/76WrcxDENDhgyRJO3YseOca//000/KycmRJLN/dcHBwRo4cGCDa7u1b9/eXHbfl3mhsMqxKyws1NKlS9W+fXs9/fTTDX7oEwDAegiwAIBmcejQITkcDklSr169fG7nbisoKNDJkyfPqbb70tb6avfu3VuSlJWVdU51Pe3atUuS1LVrV/MS4wuFVY7d0qVLdfz4cU2cOLHOM+oAgLaDAAsAaBZ5eXnmcrdu3Xxud8kll9Tapy75+fkNqn369GmdOXPmnGpL0rfffqvNmzdLkm6//fYL7syeFY7d119/rXXr1qlXr166//77z2nfAADrI8ACAJqFZ+jo0KGDz+0CAwNr7dNStU+cOKHZs2fL4XAoIiJC48ePP6d+bUlrP3ZFRUVatGiRbDabnnnmGbVrx7T2AHChIMACAFDpzJkz+vOf/6zs7GwFBwdr9uzZCg4ObulhoZq//vWvysvL01133aWrrrqqpYcDADiPCLAAgGbhGfzOnj3rc7uSkpJa+5zv2sXFxZo+fbq+++47BQUFacGCBbriiivOaTxtTWs+dqmpqfr000/VrVs3TZ48+Zz2CQBoOwiwAIBm4Xl/ZG5urs/tPO+d9OxTl65duzao9kUXXVRnwHKH17S0NAUFBWn+/PnmU3AvRK352C1YsECS9Nhjj0lynTX3/HE/fMrhcJjrLrSnSANAW8ZNIwCAZtGzZ0/ZbDY5HA4dPHjQ53QsBw8elCRdfPHF6tSp0znVdj+h1t3/8ssvr3U79xNvfbVLVeF19+7dCgwM1Pz58xUVFXVO42irWvOxy87OliTNnj27zv3s2bNHCQkJkqS5c+cqNjb2nMYHAGjdOAMLAGgWgYGBuvrqqyVJ27Ztq3Ubp9Op7du3S5Kuu+66c64dGRmp7t2711m7uLhYe/bsqbN2cXGxnnnmGe3evdu8bPhCD6+SNY4dAODCRIAFADQb9xmwXbt2KT09vUb7hg0bdPToUa9tz4VhGBo1apQkaf369Tp27FiNbT7++GMVFxfLbrfrlltuqdHuDq+elw0TXqu01mO3adOmOn/cxzAqKspcx9lXAGg7CLAAgGaTkJCg3r17y+l0asaMGdq5c6ck1/2JGzZs0MKFCyVJQ4YMUXR0tFffN998U3FxcYqLi6s15Nx33326+OKLVVJSounTp2v//v2SpLKyMq1cuVJ///vfJUl33HGHIiMjvfqWlJTo2WefNcMrZ15raq3HDgBwYeMeWABAs2nXrp3mzZunJ598UtnZ2frjH/+owMBAORwOlZaWSpL69u2rmTNnNrh2SEiI5s+fr2nTpikrK0u/+93vFBwcrNLSUpWXl0tyXX46ZcqUGn03btyoXbt2SZIqKio0a9asOvc1Z84cXXPNNQ0eo5W11mMHALiwEWABAM0qLCxM//jHP7RixQp9+eWXys7OVrt27dSrVy+NHDlSY8eOVUBAgF+1+/fvr7fffltJSUnasmWL/ve//ykwMFC9e/dWQkKCRo8eLZut5sVGTqfTXC4tLVVBQUGd+3GHqgtNazx2AIALm+H0/K84AAAAAACtFF9tAgAAAAAsgQALAAAAALAEAiwAAAAAwBIIsAAAAAAASyDAAgAAAAAsgQALAAAAALAEAiwAAAAAwBIIsAAAAAAASyDAAgAAAAAsgQALAAAAALAEAiwAAAAAwBIIsAAAAAAASyDAAgAAAAAsgQALALCEpUuXKi4uTk888URLDwUtrKioSLfddpvi4uK0adOmlh4OAOA8atfSAwAANK/Tp08rIyND+/bt0/79+7V//34dOXJETqdTkvSvf/1LYWFhzbJvp9OpcePGKTc3VxMmTNAjjzziV52MjAytXLlSkjR58uQmHGHLOnDggLZv3669e/fqwIEDys/PV0VFhTp27Kg+ffpo6NChSkhIUEhISEsPtVUJCQnRfffdp+XLl+vVV1/VkCFD1KFDh5YeFgDgPCDAAkAbN3XqVGVkZLTIvvft26fc3FxJUmxsrN91XnvtNVVUVGjIkCG65pprmmp4LWrq1KnavXt3rW0FBQUqKCjQjh079O677yoxMVGDBw8+vwNs5caNG6cPPvhAOTk5+vDDDzVhwoSWHhIA4DzgEmIAaOPcZ1ol15mrQYMG6eKLLz4v+/7qq68kSd26ddOAAQP8qrFnzx6lpqZKUpsKKe5g37FjR40ePVqJiYlatmyZli9frtmzZ2vo0KGSXGE2MTFRaWlpLTncVicoKEhjx46VJCUlJenMmTMtPCIAwPnAGVgAaONGjx6t0NBQ9e/fXxERETIMQ1OnTlVBQUGz79sdYIcNGybDMPyq8f7770uSwsLC9Ktf/arJxtbSIiIiNHHiRI0cOVLt27f3auvfv7+GDx+u9957T6+//rpKS0u1aNEivfPOOy002tYpPj5eb775pk6dOqVPP/1U99xzT0sPCQDQzDgDCwBt3Lhx43TzzTcrMjLS7xDpj59//lmHDh2S5P/lw7m5uUpJSZEkjRo16ryOv7ktXLhQt956a43w6mnChAnq27evJCkrK0uZmZnna3iWEBYWpoEDB0qSPvnkkxYeDQDgfOAMLACgWbifDuu+bNkf69atk8PhkCSNGDHinPqUl5dr/fr12rx5s/bt26cTJ06ooqJCoaGh6t27t2JiYnTzzTera9euXv3i4uIkSQkJCUpMTNRPP/2kDz/8UDt27FBeXp4uuugi9evXT/fff7+ioqLMfmfPntXnn3+u5ORkHT58WCUlJQoPD9ctt9yie+65p9EPF7r22mvNe5h//vln9enTx+9aWVlZWrVqldLS0nTs2DGVlJQoJCREHTt2VFhYmKKjo3XjjTfqsssu86t+eXm51q5dqw0bNujAgQMqLCyUYRjq1KmTQkNDNWDAAMXExGjYsGEKCAjw6lv988/KytLHH3+s1NRU5eXlqbi4WHPnzq3xZciIESOUlpamQ4cOad++fbryyiv9+3AAAJZAgAUANAv35cNDhw5Vu3b+/edmy5Ytklz3ifbs2bPe7X/88UfNnDlThw8frtGWm5ur3Nxcbdu2TZmZmUpMTPRZZ+PGjXrppZdUUlJirjt79qy2bt2qbdu2adq0abrjjjuUl5enxMRE7du3z6v/wYMH9cYbb2jr1q1atGhRo0JseXm5uWyz+X/h1KpVq7RkyRJVVFR4rS8sLFRhYaEOHz6sHTt2KDMzUzNmzGhw/RMnTuhPf/pTrQ8Mc3/2GRkZ+uSTT5SUlKSIiAiftT7//HMtWrRIpaWl9e7X86FeW7ZsIcACQBtHgAUANLm8vDx9//33kvy/fLi0tFTfffedJGnAgAH1Xj6ckZGhKVOmqLi4WJI0aNAgxcfHq2fPngoICFB+fr7S09PrnTc0MzNT69evV5cuXTR58mRz3zt37tQ///lPlZSUaPHixYqKitKLL76oH3/8UXfddZduvPFGhYaG6siRI3rnnXeUmZmpPXv2KCkpSb/97W/9+gwk6ZtvvjGXe/Xq5VeNAwcOmOG1U6dOuuOOOxQVFaXQ0FBVVFQoPz9f+/fv19atW/2+THvJkiVmeI2OjlZ8fLzCwsJ00UUX6fTp0zp06JDS0tLMS8J92b9/v9atW6dOnTrpnnvu0TXXXKOAgABlZWWpR48eNbbv1auXgoKCVFxcrG+++UaTJk3ya/wAAGsgwAIAmtzmzZvldDrVvn17DRkyxK8amZmZ5tnH/v3717lteXm5Zs6caYbXJ5980nxCracbbrhBDz/8sHJycnzWysjIUN++fbVkyRJ17NjRXP/LX/5SERERmjVrlsrLyzVlyhSdPHlSCxcuVExMjLldv379dN1112nixInKy8vTypUrNXHiRNnt9gb9/pLrMuyDBw9KcoX4yMjIBteQpA0bNphnXhcvXmzeV+spNjZWDz/8sAoLCxtc/+zZs+YXA7GxsXrxxRdrBOGoqCjdeeedKi4urvNM8sGDBxUREaFly5Z5PS3b11Os7Xa7+vXrp7S0NP3www9yOByNOlMNAGjd+Dc8AKDJuS8fjomJUVBQkF81PC8Drm/an3Xr1unIkSOSXE9dri28eurevXud7c8++6xXeHUbPny4unXrJkk6fvy4xowZ4xVe3UJCQnTrrbea22VlZdW5v9rk5eXplVdekSQZhqHHHnuswTXc3E+cDgkJqTW8eurcuXOD6586dcr8siEqKqrOs7hBQUH1XlL91FNPNWiqJ/e2JSUlysvLO+d+AADrIcACAJpUUVGRdu3aJcn/y4clKT8/31zu1KlTndu6A7MkjR8/3u99Sq5LUn2FPMMwvNri4+N91vHc7ujRow0aQ0lJiRITE83gWf3BUQ3lDt1FRUXasGGD33V86dy5s/k05S+++KJRc7J269at1i8F6uL59+H5dwMAaHsIsACAJpWSkqLy8nLZ7XYNGzbM7zpnz541l2s7G+rphx9+kOQ6E3cuD3uqS339PcdS19N6PbdrSKArKyvTc889Zz4Y6sYbb9TDDz98zv1rEx8fb571nDVrlh5//HG999572rNnj3nZdWMEBAQoISFBkpSenq57771XCxcu1BdffNHg8O7PU5Y9A6zng7cAAG0P98ACAJqU+2zo1VdfrdDQUL/reN4zWt/TaE+cOCGp6kxjYwQGBtbZ7nl5bF2XR3veh+meCqg+5eXlmjFjhrZv3y5JGjx4sJ5//nm/7p/1FB4erpdfflkvvfSScnNztXfvXu3du1eS63O+8sorFRcXp9tvv73eLwt8eeKJJ1RaWqrk5GSdPHlSq1ev1urVqyW5vlgYPHiwRo8eXe+Z5PrOttfG88sOf594DQCwBs7AAgCaTGlpqbZt2yapcZcPS677Nd1OnjzZqFpWUF5erlmzZplTB8XExGju3LnmpbmNFR0drffff18vvPCCRo8ebU5jU1FRoe+++06vvfaaxo8fb4bnhurQoYMSExP17rvv6qGHHtK1115rBvyCggKtWbNGU6dO1XPPPecVOKvz5wFMng+e8vy7AQC0PXxNCQBoMqmpqeYlqY0NsJ5TptQXYENDQ5WTk2PZB/i4w6v77PW1116refPmNWr+2Nq0b99eN910k2666SZJrjPXO3fuVHJysrZu3aqTJ09qxowZSkpKUteuXf3aR2RkpB544AE98MADqqioUEZGhrZs2aJVq1bp+PHj2rRpk5YvX64pU6Y02e916tQpc7m+B3QBAKyNM7AAgCbjDmB9+/ZVWFhYo2p5znn6008/1bmte5qd/Pz8erdtbaqH10GDBunll19u8vBam9DQUI0cOVILFizQXXfdJUkqLi7W5s2bm6S++/LkSZMm6W9/+5t5efa6deuapL7boUOHJElhYWEKDg5u0toAgNaFAAsAaBIOh0Nff/21JNeDhxqre/fuuuSSSyRJ33//fZ3bxsXFmctJSUmN3vf5Ul5erueff94Mr1FRUZo/f3699+E2h8GDB5vL7nuKm1JYWJg5j60/c836cuLECXMKpauuuqrJ6gIAWicCLACgSezdu9cMPp6BsjHcoerQoUM6ffq0z+1GjBhhhqPPPvtMH330UZ11c3JymmR8jVFeXq7Zs2dr06ZNkpo3vH755Zf1hlL3vcuSdOmllzao/tGjR5WamlrnNseOHTPPlIaHhzeofl3S09PN5euvv77J6gIAWifugQWANu7w4cPmE2fd3POLStLGjRu9nhYcFBSk4cOHN3g/7rOI4eHhfk2FUpubbrpJn332mRwOh1JTU/XrX/+61u3atWunF154QY8//riKi4u1dOlSbdq0SaNGjVLPnj0VEBCg/Px87du3Txs3blT//v2VmJjYJGP015w5c7Rx40ZJrsD46KOP6tixY3X26dKli7p06dLgfX300UeaM2eOoqOjFR0drcsvv1ydO3dWWVmZcnJytG7dOvPseY8ePRo8/VFOTo6eeuophYeHa9iwYRowYIC6d++uDh06qLCwUOnp6Vq5cqX5NOmxY8c2+HfwZceOHZJc9/cOHTq0yeoCAFonAiwAtHF79+7VvHnzfLa/9tprXu979OjRqADbFJcPu8XExKhbt27Kzc1VcnKyzwArSVdccYVeffVVzZw5U0ePHtWuXbu0a9euWrd13zPbkjZs2GAuHzlyRI8++mi9fR588EFNmjTJr/2VlpYqJSVFKSkpPre59NJLNW/evDqnB6rL0aNH9cEHH/hst9lsGj9+vO6++26/6ldXXl6uL774QpLrrL+/UwABAKyDAAsAaLQff/zRPHvY2KcPe7Lb7RozZoxef/11bd26VSdOnKhzbtl+/frp3XffVXJysr766itlZGSY91t26dJFffr00XXXXaebb765ycZoBbNmzdL27duVlpamAwcOqKCgwLykuHPnzrriiisUGxur+Ph4v6btGThwoJYtW6bU1FSlp6crJydHx48f1+nTpxUYGKjw8HANHDhQt99+e5OdnZdk/k1I0rhx45qsLgCg9TKcTqezpQcBALC2t956S2+99Za6dOmijz/+2K+5PH0pKirSfffdp5MnT+qRRx7RhAkTmqw2rG369OlKSUlRdHS0Fi9e3NLDAQCcBzzECQDQaO7Lh2+44YYmDa+SFBISYobWFStW6MyZM01aH9aUnp6ulJQUGYahyZMnt/RwAADnCQEWANAoZWVlio2N1YMPPqgxY8Y0yz7Gjh2riIgIFRYW6t///nez7APWsnz5cknSqFGjNGDAgBYeDQDgfOESYgCAJXz//fdKSUlRSEiI7r333pYeDlpQUVGRPvjgAzmdTo0ZM6bO+6IBAG0LARYAAAAAYAlcQgwAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABL+D+FRaHKNmgFXwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACyNUlEQVR4nOzdd5gT1cIG8HcmZXuFZWkLLL2K0pGm0hTsolgQLFc/yxUbXiuKXS9iQQWvCgKiiICgiIigoIAISFGklwWWsrss22va+f4IGZLd9Ew22d339zx5yCaTMychmZl3zplzJCGEABEREREREVEQyKGuABEREREREdVdDJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNKqEzqNHj0KSJEiShDvuuEONIuulSy65RPkciYhcueOOO5RtxdGjR0NdHcWcOXOUes2ZMyfU1SGVWSwW9OzZE5Ik4aGHHgp1dagWsW0XLrnkklBXhSggdflY/ZVXXoEkSWjdujUqKipUL7/GWjrnzJmDKVOmYMqUKTW1ypBbtmyZ8p4LCgpCXR06Z8qUKcoGw5ubtwf1//zzDx566CF07NgRsbGxSEhIQLdu3fDUU0/h2LFjwX1TRFSvGQwGdO3a1WHbtW7dOlXX8fHHH2P79u2IjIzE008/7dVrDh8+jClTpqBv375o3LgxIiIi0KRJE/To0QP3338/Fi1aBLPZ7PS1R48exfz58/Hwww9j8ODBaNeuHZKSkqDT6dCgQQP06dMHjz32GP7++2+f3sexY8fw1FNPoVu3bkhISEBsbCw6duyIhx56CLt37/apLG9kZWXhhRdeQL9+/dCgQQNERESgefPmGDlyJGbPng2TyeSxDPsTOt7c3P3f+1KOP/vCcDRt2jTlfdx+++1+ldGuXTuljM2bN/v8+rKyMmzatAnvv/8+7rjjDnTt2hVarTag36vRaMQnn3yCoUOHokmTJsp366qrrsLChQshhPC6LCEEFi5ciCuvvBLNmzdXfqtDhw7Fp59+6tX31N6PP/6IsWPHomXLloiMjESjRo0wYMAAvPPOOygtLfX1rXqk5mcRzrZt26Z8Z1q2bOnX+/rXv/6llPHmm28qj0+cOBFJSUnIyMjA1KlT1ay2lVBBRkaGACAAiAkTJjhdZsiQIcoy9cWECROU95yRkeFx+fr4GYXCCy+8oHzO3ty8+b+bOnWq0Ol0LsuIi4sTCxYsCP6bo3rB121LTfnss8+Uen322Wehrk69MmXKlGrbnbVr16pWfmlpqWjcuLEAICZOnOhxeZPJJJ577jmh1+s9bmPz8/OdljF27FivttGSJIn7779fGI1Gj/WaP3++iI2NdVmWXq8Xb7/9tq8fj0vz5s0T0dHRbut/0UUXicOHD7stx/635c3N3f+9L+XYbrGxsaK0tNTvz8FWzpAhQ/wuIxBZWVlCq9UKACI6OloUFRX59PrffvtNeQ+dO3f2qw7Jycl+/585k5GRIS666CK3ZQ4bNszl78teXl6euOyyy9yW1aNHD3Hs2DGPZVVUVIibb77ZbVlt2rQRf/31l0/v1x01PwtPwuFYvVu3bkod1qxZ49NrS0tLRVxcnAAgNBqNOHXqlMPzL730knLceubMGTWrLbRQQatWrerMGYRQUvusNHn28ssvo2vXrm6XadSokdvnP/roIzzxxBMAAJ1Oh9tvvx1DhgyB0WjEqlWrsHjxYhQXF+P2229HYmIiLr/8ctXqT/XTnDlz2H2VFHv27MFrr70GAIiJiQlKK8KMGTOQlZUFjUaD//znP26XNZlMGDduHBYuXAgASElJwQ033IAePXogKSkJJSUlOHjwINasWYOtW7e6LSs6Ohq9evVCz5490a5dOyQnJ0OSJJw8eRJr1qzBypUrIYTAzJkzUVJSgnnz5rksa8WKFZgwYQLMZjMkScKYMWMwcuRI6HQ6/Prrr/j8889hMBjw2GOPIS4uDv/61798/6DsfP755xg/frzy94gRI3DNNdcgJSUFmZmZWLBgAf7880/s2LEDI0aMwKZNm5CSkuKx3IceegiXXXaZ22Xc7deWLl3qVf3/97//4ccffwQA3HTTTYiOjvbqdeEoNTUVo0aNwnfffYeysjJ8/fXXuPvuu71+vf329s477/SrDlVb9Fu0aAGDwYCsrCyfyyooKMAVV1yBffv2AQA6deqEu+66C82bN8ehQ4fw8ccfIzMzE2vWrMH111+Pn376CVqt80N+g8GAa665BuvXrwcApKWl4d5770Xbtm1x4sQJzJ49G3v37sX27dtxxRVXYNOmTYiPj3dZtwkTJii//QYNGuDee+9Ft27dkJubi/nz52PLli04fPgwLr/8cmzevBlpaWk+v/9gfRa1xZ133onHHnsMgPW7OXToUK9fu2TJEhQXFwMALr/8cjRp0sTh+YcffhhvvvkmiouL8dZbb+GNN95Qr+KqRlg3wuHMQE0L19aI+s6+pTPQloBTp04pZ7G1Wq1YvXp1tWXsz1CnpaWJ8vLygNZJFK7Y0lnzzGaz6NevnwAgrrrqKod9rVotnUajUaSlpQkAYsSIER6Xf/bZZ5U63HnnnaK4uNjlsqdOnXLZQnngwAFRUVHhdl0///yziIiIUNb3xx9/OF2utLRUNG3aVFluzpw51Zb56aeflNaw2NhYkZWV5Xbd7uTk5Di0qM6cObPaMhaLRTzyyCMOn5UrNf3bMplMDp/Xhg0bAirPVk6oWjqFEGLp0qVKPQYNGuT16+xbhrRard/fi/Hjx4tXX31V/Pjjj0oLkv1xoi+/V/vvzeWXX17tuOLs2bMOLX8ffPCBy7Leffddh9bMvLw8h+fLy8vFyJEjlWUmTZrksqxly5Ypy7Vo0aJay6jZbBZ33nmnssyYMWO8fs+uqPlZeCMc8kxOTo7Su87Xlnv7Fu3Fixc7XebWW28VAERSUpIoKSlRq9qCoTOIGDrDk5qh035j98QTT7hc7sYbb1Rtg0cUrhg6a957770nAIiYmBhx7NixoIRO+4P1efPmuV12165dSnC79tprVVm/JxMnTlTqN3nyZKfL2B9Y33jjjS7LeuKJJ7w6uPbkjTfeUMq54YYbXC5nNpuVrnKyLIsDBw44Xa6mf1srVqxQ1te+ffuAywuH0GkwGERKSooArF2yPXVptpk3b55S/6uuukrVOvkTOrOzs5Vu6zExMSI7O9vpcrt27RKSJAkAonHjxsJkMlVbxmg0Onwm//zzj8t1xsTECAAiIiJC5ObmOl3uwgsvVN7PihUrnC5TVlYmWrRooSy3a9cur963q3qp9Vl4K1zyzLXXXqvUY9asWV695tixY8rn0KBBA1FZWel0Ofvf/yeffKJanYM+eq1tlKdff/1VeczZBequBhiyWCz4+uuvMXbsWKSnpyM6OhpxcXHo2LEj7r//fuzatctt3ewHjbF1X/35559xyy23ID09HZGRkdUukDeZTFi1ahUef/xxDBw4EI0aNYJer0dcXBzat2+PO+64A7/99pvLddpGlpw7d67yWHp6erX37Oqz8mZErM2bN+Pee+9Fhw4dEBcXh5iYGLRp0wYTJkzAL7/84vH1VUeSKy0txVtvvYVevXohKSkJMTEx6NKlC55++mnk5+d7LK8+EkJg0aJFAOBxNMeJEycq923dTmrKpk2bcP/996Nz585ITExEZGQkWrRogbFjx2LFihVuX7tu3bpqv9Hjx4/j8ccfR8eOHRETE4PExERcfPHFmDFjhtcDDZSUlODdd9/F8OHD0bRpU0RERCA5ORm9e/fG888/jzNnzrh9fdXfitlsxpw5czB8+HA0a9YMWq0WrVq1qva67Oxs/Oc//0Hnzp0RExOD5ORk9OnTB9OmTUNZWRkA6+UCkiRVe/2PP/6orNP+/9OdiRMnKq9ZuXKlV6/xhqfRa4P1//b999/jqquuQuPGjREZGYlWrVrhtttuw6ZNm3x+DwaDAbNmzcLVV1+NtLQ0REZGIjExERdccAEef/xxl4OW7N+/HzExMZAkCQkJCcjIyHC5jvz8fLRo0QKSJEGj0bjdbtdGx44dw7PPPgvAeqlAixYtgrKezz//HAAQFRWF6667zu2y77zzDkwmEyRJwjvvvBOU+lTVuXNn5b6rror2292HH37YZVkPPfSQsl35+uuv/a6T/X7Y3cA1sizjtttuA2A93vnqq6/8XqeaPvvsM+W+v91JfVVWVobRo0cr266xY8fCYDBUW2737t147LHHcOGFFyI5ORkRERFo1qwZrr76anzxxRewWCxOy9fpdBg3bhwA6/7b20sU1Ohaq6Zly5Ypn8stt9zi8hKgrl27Kt2ws7KyHI7DbX755Rdlfzt06FB06dLFaVmNGjXCzTffDACorKzEt99+W22ZgwcPYufOnQCsgy6NGjXKaVlRUVG45557lL8D+Z2p+VmozT5/dO3aFSdPnqy2TG5uLl599VUMGjQIjRs3hl6vR0pKCgYNGoT//ve/KCkpcVm+/XfR2+/y3Llzlcshb7vtNuj1eqfLjRgxQunqb9v+q0KN5OpuICH7MwLubi+88EK1cg8dOuRw1sTZTZZll2c2hXBs1frll1/Egw8+6LQc+5bISy65xKs6T5gwwelZAvszV55e7+qzcsVoNIp77rnHY9k33XSTKCsrc1mObbkhQ4aIw4cPi86dO7ssq2XLlnWqpVatls5du3Yp5XTt2tXtsmazWcTHxyvfWV8HMfBHSUmJVwNxjB492mV91q5d6/AbXblypUhMTHRZ1vDhwz12h/vhhx9Eo0aN3NYpLi5OfPvtty7LsP+tnD17VgwcONDp99beL7/8IpKSklyus1u3buL48eOiZcuWTl9vNptFenq6AKxdTjx1ky4vL1fW16JFC2E2m90u7wtPvSjU/n8zmUxut2uyLIs333zT69aYrVu3Kp+lq5terxcfffSR09d//PHHynL9+/d3edZ6zJgxynLPPvus28+0NrJ1eevRo4fyGajd0llRUaFcQjB48GC3y5aVlSnL+tJ9MVD2rZPOjgcKCwuVs/sJCQkef4tdunRRytu9e7dfdbLfp+7du9ftst98842ybL9+/ZwuU5Mtnbm5uUrrkbOBRvxhf8zhzNmzZ5Vu4gDEgw8+WO3/yWg0iokTJwpZlt1uO/r27StOnz7tdD1///23slyrVq2ExWJxW2/7lqGGDRsKg8Hg1/t3xZ+WzhtuuEF5javukTZTp05VlnXWG+vxxx9Xnn/rrbfclrVo0SJlWWe9Bd5//33l+X//+99uy9q6dauybO/evd0u646an4W3PB2rm81mcd999ynLXHzxxdW6LAth/U3bum27uqWmporff//d6XqMRqNITU0VgPct923atFHK3rFjh9tlr7vuOmX/7qpl21dBv5L2lVdeQW5uLp577jllKHJnF7F37NjR4e/Dhw+jX79+yM3NBQAMHDgQV155JVq2bAmz2Yxt27Zhzpw5yM/Px8svvwxZlj1OxzJ16lSsXLkSjRs3VoarNplM2LJlCyIiIpTlysvLERsbi6FDh6Jnz55o1aoVIiMjcfr0aezevRtffPEFSktLMXfuXCQmJuLdd991WM/EiRNx7bXXYvr06Vi7di0A6wX5Vc/A+HNW+vbbb1fOhEZGRmLChAm4+OKLodFo8Oeff2LWrFkoLi7G119/jcLCQqxcudJty2lRURFGjx6N/fv345prrsHll1+O5ORkHDlyBDNnzsTx48dx7NgxjB8/vs61EgDA888/j5MnT+LkyZPQ6/VITU1Fv379cNNNN+HKK690+9n9888/yv2ePXu6XY8sy7jooovw66+/wmKxYO/evejTp49q76OqyspKDBs2DH/88QcAoE2bNhg7diw6deoEnU6HQ4cOYd68eThw4ABWrFiBa6+9FqtXr4Ysu+78sHPnTkydOhVCCPzf//0f+vfvj4iICPz555/46KOPUFpaitWrV+PVV1/FSy+95LSMJUuWYOzYsTCbzdDpdLj66qtxySWXIDU1FUVFRVi7di2+/vprFBcX47rrrsPq1as9Dpgxbtw4bNiwAd27d8ctt9yCVq1aoaioyGEahT179uDKK69UWjMvuugijBs3Ds2bN0d2djYWLlyIjRs3YuzYsS5b/WRZxj333INnnnkG+fn5WLJkidJC4czixYuVXgJ333232882mNT4f5s4caLSc0Ov12PChAkYOHAgZFnGli1bMGvWLDz55JO49tprPdZn06ZNGDZsGMrKyiBJEkaOHIkRI0agWbNmKC8vx6ZNm/D555+jrKwM9913HyIiIqr1CrnnnnuwatUqLFmyBJs2bcKLL75Yre6zZs3C4sWLAQD9+vWrc9N1ff7551i1ahU0Gg0+/vhjaDSaoKxn48aNyu/G0zZr27Zt1Zb95ZdfMGPGDGzatAm5ublISkpC9+7dceONN2LChAnQ6XQB1e/PP//EzJkzAVh7nDhrid2zZ49ydv/CCy/0+Fvs1auXcrzyzz//OLSkesu2Pl/t3r0bQgi3+54ZM2bgjTfeQGZmJgDrQE29e/fGtddei7FjxwY8SMoXX3yhtB45G2hEbZmZmRg5ciT27t0LAHjhhReq/V6FELjpppuU48cmTZrg5ptvRvfu3REdHY1jx47hq6++wrZt27B582YMHToUW7durTb4Ubdu3dCzZ09s27YNR48exbp163DppZe6rJt9y9C4ceMC/r6qwZdjj169ejl9XajLuvDCC6HRaGA2m5Xfpz/zXqpZfzVUVlbitttuw5IlSwAAo0aNwqJFi6p9D9977z088sgjAKyDpY0ZMwYXX3wxGjRogNzcXPz444/47rvvkJ2djWHDhmHr1q3VtkNarRbjxo3DtGnTIITA3Llz8eKLL7qs2/r163H48GEA1s//wgsvdPte+vXrh6VLl8JisWDNmjUYO3asj5+GE2okV7WnTDGbzaJHjx4CsPYd//rrr50ul5WVpbSEyrLstC961ekxBg4cKAoLC92uf82aNW5bCXNzc5WWFVmWxZEjR5wup/aUKV999ZXD2Q9nZ2CPHj3q0ILg6vpB+89Er9eL5cuXO32f9mVt3rzZ43twpbS0VCxdulSV27Zt2/yuhxDeT5nSt29fcfToUZflvPjii8qyzlrqqxo/fryy/Oeffx7Qe/Ck6rWmzgbqMBgMDnVyNtCFfYsZYG2xc3bN0ebNm5XruJKSkpy2mh0/flxp7W3RooX4+++/ndZ98+bNIiEhQQAQzZs3d3pmuWoPikceecRt64V9S+gDDzzgdNmq34uqLZ1CWLc5tov3PV2bNHjwYKWlIDMz0+2yvvKlpTPQ/zf7qQISExPFn3/+WW2Zffv2KdNp2G7OWmOKioqUAWkSExPFunXrnL6/gwcPKtf8xMTEOB22PS8vTzRv3lz5jNevX688t3//fuX6o/j4eK+v3XJl7969qm2/1BiCPicnRzRo0EAAEI8++qjDc2q3dL722mtKeYsWLXK77DvvvKMs+84774h///vfbrexXbp0cbn/rGr37t3KZ7ho0SLx/vvvixtvvFH5/gIQU6ZMcfrauXPnejxGsff8888ry7/88ste1a+qSy+9VCnDXa8NIRyv/wQgTpw4UW0Zb6dM6dChQ8BTUdj3MFuyZElAZdnYyqu63dyzZ4+yTZBlWcyYMcPp6+2vyR03bpzT6VssFot45plnlOWefPJJp2V98MEHyjLjx493WWeLxeLQMqTmFB82vrZ0ms1m5Tuv0Wg8ThN05MgRpfw2bdpUe97+GM/TcarRaBQajUYA1gGVqrYS23/nvXkv9td1+rOPVPuz8JarY/XCwkKHz+D22293WqetW7cq9b7wwgtdTkOzfPly5Xijb9++Tpf5559/lPV5arm3H8Dpvffe8/g+161bpyxfdT/jr7AMnUuWLFGWnT59uttl9+/fr/wI7rnnnmrP2x9IxsTEiJMnT3r1njw5fPiwx52S2qHTfvStH374wWU5mzdvVrqDtGzZ0mnXM/ud1EsvveSyrE8++cSr5Tyx/44EevPmoMGdF154QURGRoorrrhCvPTSS+Lzzz8XCxcuFO+99564/vrrle8TANG0aVOnBwBCCPHoo48qy73//vse1+vr8v46deqU0jXq+uuvd7uswWAQrVu3FgBEu3btqj1fNbz89ttvLsu67bbb3C730EMPKTsHT906Zs2apZT1xRdfVHve/rfSs2dPt4HTvhtP165d3Q4gYF+us9AphOOgUK4G/di/f7+yzOjRo92+V3/4GjoD+X+75pprlOedjfhp8/333zus01nonDZtmvL8d9995/Y9/vzzz8qyr776qtNl1q1bp3S1a9mypcjPzxcGg0H07NlTea0aJ3h8ndvX3U2NIGibAy8tLa3ayLBqh07bKIYAXJ4osnnyySeVZdu3b6/83seNGydmz54tvvzyS/H000+Lhg0bOvzOnHU9c1d21Vv37t3FwoULXb7WNtgSAPH44497XJevyzvz3HPPKWW4G6HTfiAh283ZCfTPPvtMaLVaMWTIEDF58mQxd+5csWjRIjFjxgwxbtw4ERkZqbw+Li7O74C0fft2pZyUlBTVupPayrQPnZs2bVLmrtTr9S4bGMrLy5VLMnr37u2xe/SgQYMEYD3h5OwyiLy8PGXE45iYGJejK//6669KvXv06OH9m/WBr6GzsLBQWb5BgwYBL29/yYm7Uaa9Wd7+GNWbwYF8Xb4qtT8Lbzk7Vs/OznZ4P4899pjLAHjVVVcpv1NXx5c2kydPVsrcuHGj02V69+6tLPPLL784XcZ+BGa9Xu9Vd9ns7Gyl3KFDh3pc3huh6e/lge2i1fj4eIeLjZ1p37690o3np59+crvsDTfcgKZNm6pSx9atW6Nx48YArIP6BNvRo0exY8cOANbuIVdccYXLZfv06aN0STx27Bi2bdvmclmNRoN///vfLp+379q4Z88eX6sdlsaMGYOTJ0/ihx9+wOTJkzFu3DjcdNNNmDhxIpYsWYK//voLbdu2BQCcOnWqWtc+G/sLvCMjIz2uNyoqSrlvmyMpGL7++mula9SkSZPcLqvT6ZQuEwcPHnQ5eAtg7ZI6aNAgl8+7+64IIfDFF18AsA5W4Klbh30XMU+/6wcffNBtdzn7AQ8efPBBt90Q3Q0wYnPfffcp9z/99FOny9g/fu+993osM5gC+X+rrKxUBkBKTU1VBuFwZvTo0ejUqZPbuti27e3bt8dVV13ldtnLLrtM2V67+g4MGTIETz31FADrtu6+++7Dc889p2zzbrvtNrd1ro2+//575RKLDz/8ELGxsUFd37Fjx5T7ycnJbpctKChQ7h84cACRkZFYs2YNPv/8c9x555245ZZb8Nprr2HPnj3o1q2bUv4zzzzjd/3i4uIwYsQIdO/e3eUyodhW33nnnco2bPHixS63FU8++WS1ARGLioqqLTdw4EAcO3YM69atw0svvYTx48djzJgxuP/++/H555/jwIED6N27t1Jn22UMvpo9e7ZyP5jdSX/88UcMHToUeXl5iI2NxYoVK3DjjTc6XXbVqlXIyckBADz66KMeu0fbfvNFRUXKJSb2kpKScM011wCwDqJo64ZfVbgNIASo/11Ws7ya/p2FyzHYkSNHMGDAAOUY/fXXX8e0adOcdhfOz89XBnC85ZZb0KxZM7dl2++/XO0H7b+b9gOY2rPNFw8AV111FRo0aOB2vYD1d2Jjvx8IRFjOjmqboLZJkybKxMTu2A4ijx07hvLycocvlj13B15VFRUV4YsvvsAPP/yAXbt2ITc31+WE2ydOnPC6XH9t2bJFuT9ixAiPy48YMQI///wzAGsodnUtTvv27R2+WFXZ/yACGcW2VatWfl/jojZ3k2YDQJcuXfDjjz+ia9euqKiowJo1a7B582b07du3hmoYGNvvB7B+N5ctW+Z2efv/17179zod9RWw9u93x913Zffu3cjLywNgPUj0VCcAiI2NRUFBgXKdjyueftd//vmnct/dtTsAlNGc3bn00kvRvn17HDhwAHPnzsUrr7zicGBmNBqVDX/Tpk0xevRoj2UGUyD/b3/99ZdyAmPIkCEerxscOnSoy/+vwsJC5Trb1NRUr78DANx+B1588UX8/PPP2Lx5s8MIpenp6ZgxY4bHdXhjypQpYXFNaHFxMe6//34A1pOonoK7Gmy/W8Bz6Kw6auhzzz3n9DeVkpKCL774At27d4cQAp999hnefPNNtxPOv/HGG8ok5ZWVlTh+/DhWrVqFN998E1OnTsX06dPxv//9DxMmTPDh3QVP69at8eyzzyrXWN1zzz1YsmQJrr76ajRs2BAnT57EggULsGXLFqSkpKCiokI5KHQWqmwnQl1JS0vDypUr0bVrV2RlZWHfvn1YvHixT9dhVVZW4ssvv1T+vuuuu7x+rS/mz5+Pu+66C0ajESkpKfjhhx8crreryn6flp+f73HbYT9K6N69e51+B++66y5l1NQ5c+ZUO7lcVlamhNGIiAjceuutHt4V1Ud//fUXLr/8cmRlZSnX17v73WzcuFHZTmo0Go/fZaPRqNx3tR+85ZZb8Nhjj6GiogKLFy/GBx98UO1kpD8nUHQ6HeLi4lBcXKzaLBZhFzpLSkpw9uxZANah8T0Nz15Vfn6+y9Dp6YyCzdq1a3Hrrbe6HHq9KmdnJdV2+vRp5X779u09Lm+/jP1rq2rYsKHbcuwHWKqoqPC43rrCNv3M//73PwDAihUrqoVO+x+1N59NeXm5cj8uLk6lmlZn31p50003+fRadxuWQL4r9nVasmSJcpF9oHUCPP+uT506pdxv3bq122WTkpKQmJjo0GJTlSRJuPfeezFp0iRkZ2dj+fLluP7665Xnv/vuO+Ws/J133hm0AV68Fcj/m/1n5+mg19MymZmZys52/fr1DgeSnrj7Dmi1Wnz55Ze48MILlYN222PuQkxt9OSTT+LEiROIj4/H9OnTa2SdlZWVAKwHSK72rTZVt2vueip169YN/fr1w6ZNm1BZWYmNGze67cFjLyIiAu3atUO7du1w2223YciQIdi1axfuuOMOpKSkVJuqIVTb6hdeeAEGgwFvvPEGhBD48ccfq51IT01Nxbfffuvw3t2dCHanQYMGePjhh/H0008DsO63fAmd3377rXKSoXfv3h5P0Ppj+/btGD9+PIQQaNGiBVavXu3xmMZ+//Hggw/6tD5X247hw4ejefPmOHHiBH777TdkZGQgPT1ded6+Zeiaa66pdsJl+/btOH78uMv1Dhw40OO21x9qf5djY2OVz6iiosJjzwl35dX07ywcjsGGDBmCwsJCREREYOHChUoLuiv23+WZM2cqg6B5w9V3OTExEddddx0WLFigtNzbn0Sx9ZAArI15l19+udfrjI+PR3FxscNnF4iw615bWFgY0Oudzelk42mHCVi7GI4ePVoJnB06dMAjjzyCDz/8EAsWLMDSpUuVm20OG3+6sPjKvitATEyMx+Xtf4zuuhGEakTN2sD+7Oi+ffuqPZ+YmKjct42y7I7tZErV16otkN+Qu99PIN+VYNUJ8Py7tvVQ0Gq1XnUV8+b3dccddyhh7ZNPPnF4zva3JEm4++67PZYVbIH8v9l3X6o6+p4z7j67QL4D9md7nWnYsKHDQWHr1q09jmRY26xfvx4fffQRAGv3LbUuFfHE9j03m83KyLSu2G/X0tLSXM6ZZ2P/f2QbVdFXSUlJDi3azkZvDNW2WpIkvPbaa9ixYwf+7//+Dx06dEBMTAyio6PRuXNnPPPMM/jnn3/Qs2dP5eS1JElITU31e52e9lvu2M/NGaxWTrPZrPR6qqio8GqO4GDsP2RZxvjx4wFYL/+YN2+ew/OeWoamT5+O6667zuUtWKOjxsbGKt22CwoKPH5+nr7Lvvw2TCaT8j3V6XTVtvc1/TtT+7Pwh22dJpPJq+AbrGMhd11s7UdgHj9+vE8nwm319SY/eSPsWjrtw9LgwYNrZAJXe6+//rqS6J999lm8/PLLLodx9nS9qZrsz8q46uZrz/5gMZitat4qKyvzeG2et1q0aIEePXqoUpY79n3enbV82Z+ddXctpI19n3hvWqv9ZfsNSZIEk8kUFicW7H/Xzz//vNthvdVm2zGaTCYYjUaPwdOb31eDBg0wZswYfPHFF/jpp59w/PhxtGjRAseOHcPq1asBAMOGDXM4c14b2f+/eQocgPvPzr6s8ePHu7z2xB8PPPCAw+/rwIEDeO655/Dmm2+qUv6+fft8PoB3xd8WkNmzZ0MIgaioKOTm5uKVV15xupz95/D5559jw4YNAKy9HvzZ7tiH+by8PLcnHzp06KDcT0hI8Fi2/TKBHIwNGDBA6Qa2detWlJaWOhwQh3pb3b17d+WEgTO7d+9WTl63a9fOq8/OFU/7LVdOnjyp7KOjoqJwyy23+F0Hd3r37o0rr7wSTzzxBHJycnDppZdi7dq1bqelsd92HDlyRLXt6h133IHXXnsNADBv3jw8//zzkCRJmUoFsPakGT58uCrrU4Msy2jTpg32798Ps9mMEydOuLwkBvD8XW7fvj0yMjIAWH8b7so6ceKE8j1t27ZttWPj9u3bK9MEevqdmUwmpRt0TEyM1z0R7an9WfhjxYoVGD16NEpLS5Up1Nz1LrD/Ls+ePVu1a4WHDh2KtLQ0ZGZm4tdff1X+L8W5qVRsXI1R4ozRaFSyhKdLK7wVdqEzISEBsbGxKCkpqZFrJatas2YNAKBRo0Z46aWXXAbO4uJih2tdgs1+nqyDBw96XN5+mZo6I+5OTk6Oz12lXZkwYYLDWchg8XRWzL7rkbvBmgDrtU62i8xlWfY44EogmjVrhp07d0IIgZMnTyItLS1o6/KlTjY1/btu2rSpci3hkSNHHA6Mq8rPz/f6QO2+++7DF198AYvFgtmzZ2PKlCmYPXu20oU01AMIqcF+23Ho0CGPy7tbJljfgS+++EIZpKpnz57Izc3FsWPH8NZbb2HkyJEe53n1xldffaXaiZK1a9d6de1wVbYz1eXl5XjhhRe8eo39oDBdu3b160CrVatW2LhxIwBr6GzevLnLZS+44ALlvjch0n6ZQIKWJEmIiYlBcXExhBAoKipyCJ2dO3eGLMuwWCzYuXMnLBaL25Nx9teBB6OLaVX2J9d9GXvCGX9bc+bOnatsu66//vqA/j88mTRpEiRJwqRJk5Tg+csvv6BLly5Ol6+67VArdLZr1w4DBw7Ehg0bcOTIEfz2228YMmSIVy1Dc+bMqZHjEGe6du2K/fv3A7Aee7gLWp6+y127dsWqVauUstxtm7wpy2bbtm1uA87OnTuVANu5c2e/5ui0rVOtz8IfQ4YMwQ8//IBRo0YpwVMIgZtvvtnp8sHaD8qyjAkTJuCVV15RguYLL7yA3377DUeOHAEA9O/fHx07dvS6TPuM07JlS3XqqUop3qzIbgPvaUCZwYMHA7AeIHpzoKOm7OxsANZBKNztlNasWVNt0ISqfHnPntgPBGRrSXHHvlXR04Te5Jz9gYCzg7UuXbooB2C7d+92uwH5/ffflW4ptrPywTJkyBDlvlqty4G66KKLlOvrfv75Z4+/HTXZD1BhOwvriu3stjcGDhyoHCTNnj0bRqNROchv1KiRx2s7aoPu3btDr9cDsP4ePF1KYBu8zJmGDRsqrRl//PGHKtfCZ2Rk4IEHHgBgPVu+YMECzJ8/HxqNBhaLBePHj3c4CCff2R+c2Q7uXOnYsaMSCDIzM5Vrm12xP1kXSMtDYWEhzpw5A8AaQKuOzBgfH68MqFVYWOh0RFObzMxMZRTnFi1auG2BU4t9eAm0S76n/ZY3dQhW11p7jz/+OKZNmwbAelL6sssuw+7du50uG8x9WtVuiVW72vrSMlRTRo4cqdy3BUZX7K8hdnYtX7iW5a1QrLOqwYMHY+XKlYiNjYXZbMa4ceOUEcadLWsL2Gp/l+2/q/PmzYMQIqARmO0HLrI/oRgQNeZd8WaeTtu8NPBiLqCFCxcqy95yyy0B1c1+fjVv5kBKTExU5qdyNceOyWQSvXr1cphnzBnbvITwcg4iT/N09ujRQ3n+p59+clnO1q1bHeauczdPp6cJ7n1dtq44dOiQiIqK8jg/kv3cm//5z39clmc/t+MHH3wQrGoLIYQ4fvy4Mk9nu3btRElJid9l2c/3+MILLwS07P333688/7///c/vOgnh27y/as/TaW/69OnK8g888IBy/4knnvDl7fjMl3k6A/1/u/baa5Xn582b57KcH374QVkOcD5P55tvvqk8//TTT3t4l+6ZTCbRv39/pbxZs2Ypz9nPbXbttdcGtJ7aRu15On/55RelPG/mrHz66aeV5V955RWXy/3999/KfNKxsbGitLTU7zq+/fbbyjp79erldBn7uTdvuukml2U98cQTynKTJk3yu07emj17trK+AQMGBFTW2bNnRZMmTZTynM1x7Mxvv/2mvCY9Pd3tBPP+cnUcYf9/16hRI6dzlJaUlChzuyYnJ4tTp06pVq/i4mIRExMjcG7eRPvtWKD/H97wdZ5OIYTIyclR9vGxsbEiOzvb6XK7du1SfmONGzd2uu8zGo0iJSVFABCSJDn9/IWwztlo+5wiIyNdzvPozXzy5eXlokWLFj4dH7ui5mfhLVfHH7/99puIjY0VgHV+4i+//NLp66+44grl9atWrfK7Hs4MHjzY4fO31ScqKkoUFhb6VNYbb7yhlOVuHmRf1FjonDhxorLMr7/+6rY8s9nsMNnpww8/LCorK10uX1ZWJj777DOxYMGCas/5GjqHDx+uLP/2229Xe95gMIg777zT4eDK1cGp/cZ07ty5Htft6UDaPow3adJE7N27t9oyx44dE23atPEYcOpr6Pzuu+/EokWL3G5w/vnnH9G2bVvlfV9yySUulz158qSIjo4WAIRWqxVr1qyptsxnn32mlJWWluZ0smq1Pf7448o6L730UnH69GmXy5rNZrF69Wrx8ssvV3tOzfCSmZmpnNSJiIjw+JvIzs4WL730ktNJzn0JnUIIMXDgQIdw6Gxycftthbehs6CgQPn/t78dOHDAq3r5qyZD5/r165Xnk5KSxI4dO6otc+DAAYeDXVehs6SkRLRs2VI5wPnvf//rdqL3goIC8d5774nVq1dXe84+WI4ZM8bhOaPR6BBIAz3JUZuoHTorKiqUg81BgwZ5XD43N1f5nUdGRjqtQ05OjujWrZtST2cn7DZu3Cg+/vhjj9vLL774QkRERLj93glhnRy9adOmynJz5syptszq1auFVqtVDmCzsrKclmV/zONuG7R7926Rk5Pj8vn58+crB8yRkZFi3759Tpf7/fffxSeffCIqKipclpWZmSn69Omj1Kldu3bCaDS6XN7eHXfcobzuxRdf9Oo1vnJ3HPHOO+8oz6ekpDgNPu+//76yzAUXXOBxG/vHH394ffLPfntqvx379NNPvXp9IPwJnUII8cgjjyivu+KKK6r9TvLy8hwCoLuT3e+++66yXI8ePUReXp7D8+Xl5eLyyy9XlnF3MmbZsmUO+9Bjx445PG82m8Vdd93lctttz36f7CpbqP1ZeMPd8cf69es9Bs9t27YJnU6n7FNXrlzpdn1Hjx4Vjz/+uMtAbc/+eNP+uzxu3Djv3+A51113nQAgZFkWZ8+e9fn1ztRY6Pz222+VZdq2bSs+/PBD8f3334uVK1eKlStXioMHDzosf/z4cdGsWTOHD2/ixIli1qxZYvHixWLOnDnipZdeEldffbWyQ3R20Oxr6Pzuu+8cdiZXX321+PDDD8VXX30lXn75ZdGuXTvlQL558+ZuD07/+usvpZzU1FTx1ltvieXLlyvv+e+//3ZY3psD6ZtvvllZJioqStx///1i3rx54osvvhCPPvqoiI+PV54fMWKEyzOW9TV02nZuKSkp4vbbbxfTpk0TX3zxhfj666/F+++/L2644QbloAOAaNq0abWNZlUzZ85UltfpdOLuu+8W8+bNE7NnzxY33nijcnZNq9V63LjYf/echQlvGQwGMXToUIfvyrhx48SHH34ovv76azF//nzx1ltvidtvv100btxYABBDhw6tVo6a4UUIIX788UflIAuA6N69u5g8ebKYN2+eWLRokfj000/Ff/7zHzF48GCh0WgEALF+/fpq5fgaOnfv3u0QDi+66CIxbdo0sXDhQjF9+nQxYMAAAUD0799f2e6kp6d7VXbVk1DuTlKopSZDpxDCoRU3IiJC3HvvvWLevHli/vz5YuLEico22L5V1NXB/44dOxy2U23atBH/+c9/xJw5c8TixYvF7NmzxXPPPSdGjBihfFc+//xzhzLWr1+vfD+aN29e7SBJCCGOHDmirCc6OtrlAX1do3boFEKIG264QdmOeOqpJIQQCxYsULZ7Go1G3H777cqJ4WeeeUZpWbFtA8rKyqqVsXTpUgFYW59uuOEG8eqrr4q5c+cq+/9nnnlGdO/e3eG3N2bMGLetdN9//73yvZEkSdx4441i9uzZYt68eeLuu+9WDgQBiE8++cRlOd6GzqlTpwq9Xi9GjRolXnvtNfHll1+KL7/8Urz22msOAVGv14ulS5e6LMf2WcTHx4sbb7xRvPHGG+Lzzz8XixYtEh999JG4/fbbHXrmxMXFie3bt7ssz559S58syx73d/7ydBxhH3xSUlKctn6NHz9eWUar1Yrrr79evPvuu2LhwoXiyy+/FO+9957417/+JdLT05VtizfWrVvn8P9p22YUFRUF8par+fnnn8Wzzz7rcLvgggscgkHV5/Pz852WlZ+fLzp27Ki8tlOnTmLatGniq6++Eq+88opIS0tz2CcZDAaX9aqsrBSDBg1Slk9LSxOvvPKK+Oqrr8Rbb70lOnXqpDzXuXNnUVBQ4PZ9jh07Vlm+QYMG4plnnhELFiwQH3zwgcP3vkmTJuL48eMuy/E2dKr5WXjD0/HHhg0bPAbPTz/9VNlGAtZW9VdeeUU5Hv3oo4/EI4884tCrMjMz02PdSkpKlHXb337++Wef3qN9C7iaxzQ1FjpNJpNDa0PVm7ODnVOnTjkcOLu7aTQapzsJX0OnEI7dg5zdBgwYIHJycpQz9u5aRG655RaX5VT9rLw5kDYajeJf//qXx89jzJgxTnfkNp52AP4uG+7sz6h6ug0aNEgcPXrUq3KnTp3qcMBS9RYXF+e0Jb4q+9cEEjqFsO5I/v3vfysHWZ5u48ePr1aG2uFFCCE2bdokWrdu7VWdYmNjq52cEcL30CmEtZugrQXG2a1r164OJ7suuOACr8rdvHmzQznedmkLRE2HTpPJJG6//XaXn50sy+K///2vw1lWV6FTCCH27dvncObZ3S0iIsLhZE1+fr6y7ZVl2e12ff78+Uo5F110kdseM3VFMEKnfeuFuy7W9j777DMlzLi6DRkyRJw5c8bp621By5ubXq8Xzz77rFcte/Pnz3d6UGZflrNeTvZ8CZ2e6t66dWuPB4S+fBZdu3Z12jvElVmzZimvHT58uNev85X9/7kr9l2gnQVPi8UiXn75ZYeWbU/fL29YLJZq+yRn+8NAVe1N483N3XFARkaGx+3osGHDXAZXe3l5eeKyyy5zW1aPHj28OilRUVHh0EDi7NamTRuP31NvQ6fan4Un3hx/bNiwQcTFxQnAmk+cHRd89913IjU11avvQYMGDVxuK6uqeiK8VatWPneZt+9mrmaLf42FTiGsTfRvvPGG6N+/v0hKSnI4GHZ3YLRu3Trxf//3f6JLly4iMTFRaDQaER8fLzp37izGjh0rZs6c6bKPvz+hUwghVq5cKUaPHi0aNmwodDqdaNKkibjsssvEJ598ouzYvAmdJpNJzJw5U1xyySWiYcOGDq1o/oROm02bNom7775btG3bVsTExIioqCiRnp4uxo0b59UZDV82yr5uwMNZbm6u+Prrr8Wjjz4qBg0aJNq0aSMSEhKEVqsVycnJonv37uL//u///DpY27Vrl3jwwQdF+/btRUxMjIiLixNdu3YVTz75pFfhtbS01OHAR63uDAcPHhRPPfWU6Nu3r0hJSRFarVZER0eL9PR05Qy8s2AnRHBCpxDWkyfz588XN910k0hPTxexsbHK/0GvXr3EPffcIxYuXOjyelR/QqcQQmRlZYlJkyaJDh06iKioKJGYmCh69eol3nrrLVFaWiosFovSYuDt2T2LxSISEhIEYL3eyF0XOLXUdOi0Wb58uRg9erRISUkRERERokWLFuKWW24Rv//+uxBCeB06hbB+bt9++62YMGGCaN++vYiPjxcajUYkJiaK7t27i/Hjx4s5c+ZUa8W0P4v+1FNPuV2HEELcdtttyvLeXJNY2wUjdJpMJuUaLF+CydGjR8XTTz8tLrjgApGYmCj0er1o1qyZuP7668U333zj9kDIZDKJDRs2iBdffFGMHj1atG3bVsTGxgpZlkVsbKxo2bKlGD16tJg6dao4efKkT+/n6NGj4j//+Y/o0qWLiIuLEzExMaJ9+/biwQcfdHlNmz1vQ2dmZqZ49913xTXXXCPat28vEhISRGRkpGjRooUYPXq0mDVrlleXWxQXF4tvv/1WPPXUU+Kyyy4T7du3F8nJyUKr1YrExETRqVMnMWHCBPHdd9+57a7ujH1jgDcnRv3l7XGE/XXyrlo8T506JV566SUxZMgQ0bhxY6HX60VkZKRo3ry5GDZsmJg8ebLYtGmTT/V76aWXHP5P1frt2FM7dAph7dX08ccfi8suu0ykpqYKvV4vmjZtKkaPHi2++uorn8KGxWIRX331lRg9erRo2rSp0Ov1IjU1VVx22WXi448/9rq7ts3KlSvFjTfeKNLS0kRERIRo2LCh6N+/v3j77be9GmvCl9AphLqfhTveHn9s3LjRY/AsKysTH330kbj66qtFWlqaiIqKEnq9XqSkpIj+/fuLhx56SCxfvtynE6b212h7s1935tZbbxWAtftvIOOCVCUJEeCwqkSkilWrVikjqk2cOBHvvfdeiGtU/+zatUsZpc3b/4M1a9Yo87g9/PDDePfdd4NZRaKQeOedd/DYY49Bo9Hg6NGjbqdOISKi2qmoqAhNmzZFaWkpnnzySbzxxhuqlR36WeOJCMD5OWLj4uLw3HPPhbg29dMHH3yg3L/00ku9es3MmTOV+3Vhbk4iZ+677z40btwYZrMZ//3vf0NdHSIiCoLp06ejtLQUcXFxmDRpkqplM3QShQlb6HzssceQkpIS4trUPevXr3c7P+iHH36Ijz/+GIB1Aucrr7zSY5k7d+7EsmXLAADDhg2rkTn9iEIhKioKU6ZMAQB8/PHHOHXqVGgrREREqioqKsI777wDAHjiiSfQsGFDVctn91qiMJCbm4tGjRqhYcOGOHz4MOLi4kJdpTqnbdu2qKiowBVXXIGLLroIKSkpMBqNOHz4MJYuXYodO3Yoyy5fvtxl6Pzxxx9hsVhw4MAB/Pe//8Xp06cBABs2bMCAAQNq5L0QhYLFYkHv3r2xfft2/Pvf/8b7778f6ioREZFKXnnlFUyePBnp6enYs2cPIiMjVS2foZOI6oW2bdvi8OHDbpeJiorCJ598gttuu83lMpIkVXvM2+s/f/rpJ5SVlXmurBMNGzbEwIED/XotERERUSgxdBJRvfDHH39gyZIl+OOPP3Dy5EmcPXsWZWVlSEpKQvv27TFs2DDcf//9SE1NdVuOLXTGxsaiffv2uP/++3HXXXdBlj1frdCqVSscO3bMr/oPGTIE69at8+u1RERERKGkDXUFiIhqQr9+/dCvX7+Ay+F5OiIiIiLfsKWTiIiIiIiIgoaj1xIREREREVHQMHQSERERERFR0DB0EhERERERUdBwICEiIqo1TCYTysrK3N4qKythMBhgMBgc7jt7zGQywWQywWKxwGw2V/vX/r5tCARJkpTRiu3vy7KsjG4syzK0Wi20Wi10Op3DzfaYVquFXq9X/o2KikJkZCQiIyOd3o+KilJusbGxiIqK8mrUZCIiolBj6CQiohplMplQVFSEoqIiFBcXu71v+7e0tBTl5eUwGAyhrn7YkGUZMTExiI2NdbjFxcU5/J2QkIDExEQkJiYq9/V6fairT0RE9QhHryUiooCZTCbk5eUhPz+/2r9V7xcWFgY89YytZTA6OhrR0dGIiYlR/o6MjMSq2esgWSTAAsAiKTfJ/m9x7m8BQFhbKJX74tx9WO9Lyt/KQ4BkVyHlvjh/XwIgW/8W8rlCbI/JACRhXa0srDeNgJAFRt59CSoqKlBeXo6KigpUVFSgrKzM4b7JZAro84uOjlaCqH0gbdCgARo2bIiGDRsq9yMiIgJaFxEREUMnERG5ZTAYkJubizNnzii3nJwc5OTkKH/n5eX5FCQlSUJsbCzi4+MRFxeH+Ph4xMfH45d5GyGZZMAkWf81ypBMEmCWIJllwHzuvpA8r6SOEjgXWjUWCK0AtBZrYD13X2gFoLFg9IPDUFxcjIKCAhQUFKCwsBCFhYUwm80+rS82NrZaEG3YsCFSUlKQmpqKxo0bIz4+XulaTEREVBVDJxFRPWcwGJCdnY3Tp0/j9OnTOHXqFLKysnD69GlkZ2cjPz/fq3I0Gg0SExORnJyMpKQk/Ln8b0jGc8HRIFvvG2RIRg1glCCBIaWmCZxrUdVZAJ3F7l8B6CwYcns/5Obm4uzZs8jNzUVlZaVX5UZFRSE1NVUJoVX/bdCgAa8/JSKqxxg6iYjqgeLiYmRmZuLEiRM4ceKEEjBPnz6N3Nxcj62Uer0eKSkpaNSoEVJSUvDzrA2QDBqgUoZUqYFkOBcuGSTrDCWg6i2A3gyht0DoLbh20kjk5uYiJycH2dnZyMvL81iWXq9H06ZN0axZMzRv3hzNmzdHs2bN0KxZMzRq1AgajaYG3hEREYUKQycRUR1hMBhw6tQpZGZmIjMzE8ePH8eJEyeQmZnpsbUyKioKjRs3RpMmTbB58Q6gQgOpQmMNlJUaa3dXBkpyQsgCQm8GIs0QEWaICAuG3TMQWVlZyM7OxpkzZ9x26dVqtWjatKkSRFu0aIGWLVuiVatWSExMrLk3QkREQcPQSURUy1RWVuL48ePIyMhQbkePHkVWVhYsFovL1zVs2BBpaWlo1qwZVn6wzhoqzwVLdnelYBEQQIQZIsoMEWnG9c9cgRMnTuDkyZM4deoUjEajy9cmJCSgZcuWSgi1/ZuSksJrSImIahGGTiKiMGUymZCZmekQLjMyMnDy5EmX4TI6OhotWrRA8+bNsXbWJkjlWkjl58KlmdfUUXixBlILRKQJIsqMG54dhWPHjuHYsWPIyspy2e07OjoaLVu2ROvWrdG2bVu0adMGbdq0QVxcXA2/AyIi8gZDJxFRGCgrK8Phw4dx4MABHDx4EAcPHkRGRobLqTHi4+ORnp6OXSsPQC7TWsNlmYbXVVKdIWQBEWWCiLYG0gHjeuLYsWM4ceKEy+66qampaNOmDdq2bauE0WbNmnEQIyKiEGPoJCKqYQUFBQ7h8uDBgzhx4oTTVp2oqCi0bt0ae38+AqlMA7lUC6lMy3BJ9ZaQBESk2RpGY0zoe3N3HDlyBFlZWU6Xj4yMRJs2bdCxY0d06NABHTt2RFpaGgcvIiKqQQydRERBVF5ejv3792Pv3r3Yu3cv9uzZg5ycHKfLNmzYEO3atcOWhX9DKtVCLtFZR4dluCTySGgsEDHWIDpy4mAcPnwYR44cgcFgqLZsVFQU2rdvj44dOyphtFmzZrxOlIgoSBg6iYhUYjabcezYMezZs0cJmRkZGU67AjZv3hzt2rXDb59thVyihVSqs85jSUSqERDWAYxijbjuuZHYv38/Dhw4gIqKimrLxsbGomPHjujSpQu6du2Kzp078xpRIiKVMHQSEfmprKwM//zzD/7++2/s2rUL+/btQ3l5ebXlGjZsiE6dOuH3eTsgl+gglWg5qA9RiAgIiGhrEL3yP5dh//79OHTokNNRdNPT09G1a1fl1rx5c7aGEhH5gaGTiMhLZ8+exa5du/D333/j77//xqFDh6qNIhsVFYUOHTpg1/cHIBXrIBfrIBl47RhROBOSsF4jGmfE0Acvxj///IOTJ09WWy4hIUFpCe3evTs6duwInU4XghoTEdUuDJ1ERC6cOnUKO3bswK5du/DXX385PQht3LgxLrjgAvwyYxOkIh2kMi2vwSSqA4TOAkucATe+PAq7d+/Gvn37ql0fGhERgW7duuHCCy/ERRddxBBKROQCQycR0Tlnz57F9u3bsX37dmzbtq3aaJiSJKF169bIWH8KcpEechFbMYnqCyEJiBgTLPEGDLyzJ3bu3InCwkKHZRhCiYicY+gkonqruLgYO3fuVELm0aNHHZ7XaDTo1KkT9q48AskWMnktJhHB7trQBAMG3t0TO3bscBpCL7jgAvTu3Ru9e/dG69ateU0oEdVLDJ1EVG+YTCbs3bsXf/zxB7Zu3YoDBw44XJMpSRLatm2LI2tPQipkyCQi73kTQhs0aIBevXqhT58+6NWrF5KSkkJUWyKimsXQSUR1Wm5uLrZs2YLNmzdj69atKCkpcXg+LS0NJ7fkQi7QQy7UQzIxZBJR4Gwh1JJYiV63dMHOnTtRWVnpsEy7du2UVtBu3bpBr9eHqLZERMHF0ElEdYrJZMI///yDzZs3Y/PmzTh06JDD83FxcejTpw9+nbkVcoGe12QSUY0QkoCIN2LMa5fjzz//xMGDBx2ej4qKQq9evTBgwAD079+fraBEVKcwdBJRrVdSUoLNmzdj/fr12LJlS7XWzI4dO+LgT5mQ8/WQinUcXZaIQk7ozLAkGjB0Yn9s3boVeXl5ynOSJKFTp064+OKLcfHFF6NNmza8FpSIajWGTiKqlXJycrBx40Zs2LABO3bsgMlkUp5LSEhA7969se7DLZALIiAZ2WWWiMKXgICINeG2d6/G77//jgMHDjg8n5qaiv79++Piiy9Gjx492A2XiGodhk4iqhWEEMjIyMD69euxceNG7Nu3z+H5Fi1a4OTGXMh5EWzNJKJaTejNsCRVos+Ebti2bZvDtaAxMTHo378/hgwZgr59+yIyMjKENSUi8g5DJxGFLSEEDh06hLVr12Lt2rU4efKk8pwkSejSpQv2Lj8KOS8Ccrk2hDUlIgoOIQtYEgwY9fRg/P7778jNzVWei4yMRL9+/TBkyBD0798f0dHRIawpEZFrDJ1EFFaEEDhy5IgSNDMzM5Xn9Ho9evXqhS1zd1lbNI0cBIiI6g8BARFnxHWvDsdvv/2GrKws5Tm9Xo/evXtjyJAhGDBgAOLi4kJYUyIiRwydRBQWjh49il9++QW//PILjh8/rjyu1+vRr18//P7xX5Dz9JAsvD6TiEhAQMSYcNNbV+DXX3/FiRMnlOd0Oh369euHYcOG4eKLL0ZEREQIa0pExNBJRCGUnZ2N1atXY/Xq1cjIyFAe1+v16Nu3LzZ98hfk/AhIZgZNIiJXrHOCmnDb9Kuxbt06HD16VHkuOjoagwcPxrBhw9CjRw9otbwUgYhqHkMnEdWo0tJS/Prrr1i1ahV27twJ2yZIq9WiT58+2PLZP9auswyaRER+sUQbcdO0K7BmzRpkZ2crjycnJ+PSSy/F8OHD0alTJ07DQkQ1hqGTiILOZDLhzz//xKpVq7BhwwaHkRgvuugi7Pr6MORcBk0iIjUJCIh4I0Y/PwRr165FYWGh8lyzZs1w+eWX4/LLL0dqamoIa0lE9QFDJxEFzeHDh7Fy5UqsWbPGYeLzFi1a4ORvedCciYRUycGAiIiCTUgClkQDLnm4FzZs2ICKigoA1pHAe/XqhVGjRmHgwIG8/pOIgoKhk4hUVVZWhl9++QXLly/H3r17lccTEhJQstcAOScKUomW82gSEYWIkC2wNKxEt7FtsGPHDuXxuLg4DB8+HKNGjUL79u1DWEMiqmsYOokoYEII7N+/H8uXL8eaNWtQXl4OANBoNBgwYAB+/+hvyPl6SIJBk4gonIhIE26ePhorV67EmTNnlMfbtm2LUaNGYeTIkZx+hYgCxtBJRH4rKSnB6tWr8f333+PgwYPK482aNUPWhkJociI5lyYRUS0gICASDRg0sQfWr18Po9EIAIiIiMCwYcNw7bXXokOHDiGuJRHVVgydROSzw4cPY8mSJVi9erUyKJBer8fgwYPx6zvbIBXq2H2WiKiWEloL7l9wK5YvX44jR44oj3fq1AnXXnstLrvsMl77SUQ+YegkIq+YTCZs2LABS5YswV9//aU8np6ejuM/51pbNU0cfZaIqK4QEBBxRgx5vCfWrVsHk8kEAIiPj8cVV1yBa665Bs2bNw9xLYmoNmDoJCK3CgoKsHz5cixbtky53kej0WDw4MHY8N5OSEVs1SQiquuEzoI7Zl2H7777DllZWcrjffv2xY033ojevXtz3k8icomhk4icOnDgAJYsWYKff/4ZBoMBAJCYmIjiv43QZEVBMvBaTSKi+kZAwJJkQM+7OmDLli2wHUamp6fjpptuwrBhw9j1loiqYegkIoUQAlu3bsWXX36J7du3K4937NgRh747BflMJEegJSIiANaRb69+41KsWLFCGbU8KSkJ1113Ha699lokJiaGtoJEFDYYOokIJpMJv/zyCxYsWIDDhw8DsHahvfTSS/HrtG2QitmFloiInBMaC+6eNwaLFy9WLsPQ6/UYOXIkbrzxRrRq1Sq0FSSikGPoJKrHysrK8P3332PRokXIzs4GAERFRcFwSILmVDSkSnahJSIi7whJwNKgEm2vbYJ9+/Ypj1988cUYP348OnfuHMLaEVEoMXQS1UMFBQVYtGgRli1bhuLiYgBAcnIyCrcboDkdBcnMUWiJiMg/AgIi3oh+D3bFhg0blOs+e/Togdtvvx09evTgoENE9QxDJ1E9kpeXhwULFuDbb79FRUUFACAtLQ2nfymAnBPF6zWJiEhVligThk/ui1WrVsFsNgMAOnfujHHjxuHiiy+GLPMkJ1F9wNBJVA/k5uYqYdM2Em3Hjh1xaOlpyGcjeL0mEREFlYgw46o3hmD58uXKfqh169a44447MHjwYIZPojqOoZOoDsvJycGXX36J77//XtnJd+nSBQcWnoRUoGfYJCKiGiV0Ztw4fSSWLl2KsrIyAECbNm1w1113YeDAgex2S1RHMXQS1UH5+fn4/PPP8e2338JoNAIAunXrhn0LMhk2iYgo5ITGglv/NxqLFi1CaWkpAKB9+/a4++670a9fP4ZPojqGoZOoDikuLsbChQuxaNEiZc607t27Y8/845AKOe0JERGFF6G1YOyHl2Px4sXKfqtTp064++670bt3b4ZPojqCoZOoDqioqMCSJUvw5ZdfKqPRduzYEYcXZUEqZMsmERGFN6G14Ib3hmHp0qXKQHc9e/bEfffdhw4dOoS4dkQUKIZOolrMZDJhxYoV+Oyzz5CXlwcAaNWqFU6szOcAQUREVOsInRnXvHUpli1bplweMmzYMPzrX/9C06ZNQ1w7IvIXQydRLSSEwB9//IGZM2fi6NGjAIDGjRsj97cyyDmRDJtERFSriQgzLnm2B1avXg0hBLRaLa655hpMmDABiYmJoa4eEfmIoZOoljl8+DA+/PBD/PnnnwCAhIQElGy3QJPFeTaJiKhuscQYcdH/tcWWLVsAANHR0Rg/fjzGjBkDvV4f4toRkbcYOolqidzcXMyaNQsrV66ExWKBTqeDJUMHTWYMJDPnNyMiorrLklCJ9Bsa4cCBAwCAZs2a4YEHHuA0K0S1BEMnUZgzGo1YvHgx5syZo4zsd+mll2Ljf/+GVKkNce2IiIhqhoDAEyvvwUcffYSzZ88CAHr16oV///vfaN26dYhrR0TuMHQShbFt27bhnXfewfHjxwFYh5E/9FUW5GJ2KSIiovpJyBaMnXk5Fi5cCIPBAI1Gg6uvvhp333034uPjQ109InKCoZMoDGVnZ2PGjBlYu3YtACAxMRElWywcJIiIiOgcEWFCv8e74LfffgNg3Vc+8MADGDlyJLvcEoUZhk6iMGI0GrFw4ULMmzcPFRUVkGUZ0okIaI7F8rpNIiIiJywJBjS7KkEZzf3CCy/EY489hlatWoW0XkR0HkMnUZjYvXs3/vvf/yIjIwMAcMEFF2Dv3BOQS3UhrhkREVF4E5LAnfOuw5w5c1BZWQmtVoubb74Z48ePR2RkZKirR1TvMXQShVhZWRk+/vhjLF26FEIIJCQkoHSLgHyGXWmJiIh8ISLM6PVwe/z+++8ArHNYT5o0CX369AlxzYjqN4ZOohDauHEj3n77bZw5cwYAIOdEQnskDpKJXWmJiIj8ZW5QieQheuTk5AAARo0ahQcffBBxcXEhrhlR/cTQSRQCBQUFeOedd5SBgpo2bYozP5VDLowA+JMkIiIKjCRByBZcPW0wlixZAiEEGjRogMcffxwDBw4Mde2I6h2GTqIatn79erz11lvIz8+HRqMBjkVCkxkLySIxcBIREanl3Ai2ljgDGo+OQWZmJgBg2LBhmDhxIhITE0NYOaL6haGTqIYUFxdj+vTpWLVqFQAgPT0dJ5YWOQ4UxJ8jERGROuymTRGywJj3h+Krr76CxWJBYmIinnjiCQwaNCiEFSSqPxg6iWrAli1b8Oabb+LMmTPWaVCOR0FzPBaSqDJQEH+ORERE6nAyV6cl1ojm18YrI8VfeeWV+Pe//43o6Oiarh1RvcLQSRRElZWVmDFjBpYuXQoAaNasGXJWlkMu1jt/AX+ORERE6nASOgHr9CrXT78UCxcuhBACzZo1w3PPPYcuXbrUcAWJ6g+GTqIgycjIwJQpU5SzqZpT0dAci4VkcTMyLX+ORERE6nAROm0sCZVIukyHnJwcaDQa3H777Rg/fjy0Wm0NVZCo/mDoJFKZEALfffcd3n//fRgMBiQlJaFkAyAXRHjz4uBXkIiIqD7wEDoBQGgsGPzcBVizZg0AoEuXLpgyZQpSU1ODXTuieoWhk0hFRUVFePPNN7F+/XoAQJ8+fbDzgwxIRo13BfDnSEREpA4vQqfNk6vuxdtvv42SkhLEx8fjmWeewcUXXxzEyhHVLwydRCrZu3cvnn/+eWRnZ0Or1UIcjILmVDQkeL/TY+gkIiJSiQ+hEwBEhAmtxzXEvn37AAA333wz7r33Xna3JVIBQydRgGzdaadPnw6j0WgdLGhFheNUKN4VFJwKEhER1VZSgHNY+xo8JYGrpg3EkiVLALC7LZFaGDqJAlBRUYG3334bP/74IwBAPhsB7cEESGY3gwW5w58jERHRebbQ6O/+0cfQaWNOrkBkbxNKSkqQkJCAKVOmoGfPnv7VgYgYOon8dfLkSUyePBmHDh2yzr15JBqakzG+dae1x58iERFRdfbB0Z99pZ/BU0SYkH5bA+zfvx8ajQb3338/brzxRkh+lkdUnzF0Evnhzz//xPPPP4+SkhLr6LTrAbnQi9Fp3eFPkYiIqDpnIc+XfWYAIVHIApdOuRCrVq0CAIwcORKTJk1CRESA+3yieoahk8hHS5cuxfTp02E2m9GlSxccnJMDyeDl6LSu8GdIRETkmqvg6O3+M5DgCYH/++omzJgxA2azGR06dMArr7zC6zyJfMDQSeQlk8mE6dOnY9myZQAAOScS2kMJkIQK3Wz4MyQiInLNU2j0tB9VoUusJaES0QMsKCwsRFJSEl5//XV07tw54HKJ6gOGTiIvFBcX4/nnn8e2bdsgSRLkjJjArt+sij9DIiIi17wJje72pSpdhykiTGhxcyIOHTqEiIgITJ48GYMHD1albKK6jKGTyIPTp0/jiSeewPHjxxEVFQXj9gho8iLVWwF/gkRERJ55Gxxd7VfVCp4aCy56OB2bN2+GJEl44IEHcNNNN3GAISI3GDqJ3Dh48CCeeOIJ5OXlISUlBQU/WSCX+Tj/pif8CRIREXnma6irun9VMRQKCIya2l+55Obaa6/FxIkTodVqVVsHUV3i52SCRHXftm3b8NBDDyEvLw/p6eko/AHqB04iIiIKDklSNWg6FA0JPzyxCQ8++CAkScKyZcswefJkVFZWBmV9RLUdWzqJnPj555/x6quvwmQyQSrUQbc3CZI5COdo+PMjIiLyTiAB0ra/DUIINSdXQO5eBoPBgIsuugivvfYaYmJiVF8PUW3G0ElUxTfffIN3330XACDnRkJ7QKURap0J5OcnSQytRERUf4TxNZOWeAN0fStQVlaGDh06YOrUqUhMTAx1tYjCBkMnkZ0FCxZg5syZAADNqWhoMuLUG6HWGX9/fgycRERUH4Vz8IwxIuYSMwoKCtCiRQtMmzaNc3kSncPQSXTO3LlzMWvWLACAJjMGmuOxwQ2cgO/B0X5ny58uERHVN2EcOgHAEmVC0uUycnJykJqaivfeew9NmzYNdbWIQo4DCVG9J4TAJ598cj5wHouF9niQWzj9EeY7WiIiovpOLteiYIVAixYtkJ2djYkTJ+LUqVOhrhZRyLGlk+o1IQRmzpyJr776CgCgyYiD9lQNXfzv7U/PVdjkT5eIiOqbWnICVujMaDwmCsePH2eLJxHY0kn13OzZs5XAqT1cg4HTG0Ec6p2IiIiCRzJqkLW4XGnxfPjhh9niSfUaQyfVW/Pnz8fcuXMBWAOnJivMAicRERHVWrbgmZaWhuzsbDzyyCPIysoKdbWIQoKhk+qlxYsX4+OPPwYAaI7Ghk/gZOsmERFRnSEZNcj+pgJpaWnIysrC448/joKCglBXi6jGMXRSvbNixQpMnz4dAKA5HgPtydgQ1wgMm0RERHWUZLAGz9TUVGRmZuKJJ55AWVlZqKtFVKMYOqle+f333zF16lQAgOZkNDSZYRI4iYiIqM6SDBrk/WBGQkIC9u/fj2eeeQaVlZWhrhZRjWHopHpj7969mDJlCiwWC+TsKGiOhnhaFLZuEhER1RtyhRZlv2oRFRWF7du34+WXX4bZbA51tYhqBEMn1QunTp3CU089hYqKCkj5emgPx4ffPJxERERUp8mlOpi2RkKn0+G3337DjBkzQl0lohrB0El1XkFBASZNmoT8/HxIJVro9idCEn4GTok/GSIionpPkv0+JpALIyB2WQcwXLRoEb799ls1a0YUlngETXWayWTC5MmTceLECaSmpkK3JwmS2Y+vfQA7FyIiIqqj/Dw+0JyNxL/+9S8AwLvvvos///xT7ZoRhRUeRVOdNn36dPz111+Ijo5G3o8WSEaN74UwbBIREZE7fhwrzLtzOUaMGAGz2Yznn38ex44dC0LFiMIDj6apzvr++++xbNkySJIEw7ZIyOU63woI99ZNDkJERET1Sbjv93w8bpAgYd2Lu9CtWzeUlJTgqaeeQnFxcRArSBQ6YXxETeS/Xbt24e233wYAyMdiocmP9K2AcA6bREREFL58CZ5Cwv5ZOWjcuDFOnjyJ119/HUKIIFaOKDR4ZE11ztmzZzF58mSYTCbIZyOhOWE3F6enHUG4t24SERFR+PPmeOLc85JJg7OrTNDpdNiwYQMWLFhQAxUkqlk8uqY6xWKx4JVXXkFeXh7S09OhPZjo3dQoDJtERESkNi+PL+RSPSZOnAgA+Pjjj7Fjx45g14yoRvEom+qUL7/8Etu2bUNkZCROfFMCyeLFV5xhk4iIiILJi2ON92/4EiNHjoTFYsGLL76I3NzcGqgYUc3g0TbVGbt27cKsWbMAAKZ/vBg4qC60bob7oApERERqqAv7Ow/HHRIkrH3xL7Ru3Rp5eXl48803eX0n1Rm1/IibyKq4uBgvvfQSzGYz5DNRkHOi3L8gkLBZ24MqERER+S/Q4wB3wdMiI3NJMfR6PTZv3oylS5cGti6iMMGjZ6oT3n33XWRnZ6NZs2bQHklweh2nJEuQZEmd0BguwZNnQImIiLyj0r5bklVodZVkSBrnc4fL5Trcd999AIAZM2Zw/k6qE8LkyJnIf+vXr8fq1ashyzJyVlZCMlf/Wquygwg3DJxERFQfqNm1VqVLa5QT2YGW4yJ4fnTzIvTu3RsGgwGvvPIKjEZjwOsiCiWGTqrVioqKMG3aNACAlBkNuUTv8LxaO4Www8BJRETkvzBq9ZQ0mmrhU4KEv2YcR3x8PPbv34/58+cHvB6iUGLopFrt/fffR15eHqQyLTTH4xyec7UjUC2EhqKLrRAMnERERGrwo9XTWcukPye4nZZTNXgaNSjban1s/vz57GZLtRpDJ9VamzZtwqpVqyDLMrSHEiEJ6wafrZtERER1hFpda92FyzBu9ZTPRqJfv34wGo2YNm0aR7OlWouhk2qlyspKvPfeewAAKTNK6VZbZ8MmdzJERETBo+K1nmqwBU8JErZ/eASRkZHYuXMnfvjhB1XKJ6ppDJ1UK3311Vc4deoUUlJSoMmM87l1s9aEU4ZNIiKimlMDgwy5GjzI2XKSRgOpUou77roLgHU02/z8/IDrSFTTGDqp1jl9+jQ+//xzAED+BhNkeLfxDopgXtfJwElERPVZTXSt9WF5b8Pi+WLUa/X8dNxStGvXDsXFxZg9e7Yq5RLVJIZOqnU++OADGAwGyIV6aPKjQl0d9bE7LRERUWiF2dQqskaLY98WAgCWL1+OjIyMgMskqkkMnVSr7Ny5E+vXr4dGo4H2aCIk+L8hD8tRbBk2iYiIQtfK6eL1vrZyVi9GCrgcuTgCQ4YMgcViwYwZMwKqD1FNY+ikWkMIgf/973/WP05GQi7X+V9YKKY7ISIiotpHzdFtAzzhvem9A9Bqtdi8eTM2b96sSr2IagKPvKnW+P3337F7925ERERAezLO8wtcUTtwCot6Zal1ZpeIiKg2U+tSE2FRdz8dIEkKLHjKlVpcf/31AICZM2fCYgmf90bkDkMn1QoWiwWffPIJAMB8NAKSRe9fQfaBU5LV6WLLVlMiIqLgUOuykwCCp2qX49imQQkweH739O+IiYnBkSNH8Ntvv6lTN6Ig49Ey1Qo///wzjhw5gtjYWGiz4n0vQKUBAYiIiKiGhUHwVINk15tJCZ5+hE/JrMGYMWMAAHPnzmVrJ9UKPAqnsCeEwPz58wEAFfs1kMw+XoTvLmyGY2snu9gSERE5UjN4+hA+1W7ldChbkvxu9Vz4yM+Ijo7G4cOHsXHjRjVqSBRUDJ0U9jZv3oyMjAxERUVBm2O9llOSJKcb8Gpqa+smgycREZEjNacUq+FWT8nNft2X4Clpzo2ma9bghhtuAADMmTMHgqPfU5irpUfkVJ8sWLAAAGDM0HrfyhmK7rS1NeASERHVJjUUPFVr5fSCP91tFz2+FlFRUTh48CD+/PPPINaOKHA8SqawtmfPHuzYscM6L2e247WcLls7fQ1/anWxVRtbO4mIiJwLUXdbv3g5N6en7ra2Vk7lb5MGo0aNAgAsXrw4sDoSBRlDJ4W1RYsWWe9kR0Iyaj2/INStjaFePxERUX2hZpfSKsFTzZPR7rrWulzey/V/P2UTJEnCpk2bkJmZ6U/1iGoEj5ApbOXn5+PXX38FgGqtnDZKa2eg3WnZ2klERFT7hPt1nl62clZVtbtt1VZOG7lSh379+gEAvvnmG//qSFQDGDopbK1cuRImkwlSqR5yuZ/zcvoiHEeyJSIiIs9UDJ5qnYSW9HqfWzkdXu/l6Lbb5h4GAKxatQqVlZV+r48omHh0TGHJYrFg+fLlAADtmVjXC2o01o26izOAIRHiecCIiIjqHbV6Bql94lgOvDw5Ph5SXJzr54sikZqaipKSEmzYsCHg9REFQxgdqROdt2vXLpw8eRIwS9DkxVRfQKMBdLrzG3MVNuoAAm/tDEbgZBdbIiIi11TcT6rZyqkI9BjlXDdbKS7OafiUIOHsjgoAwIoVKwJbF1GQMHRSWFqzZg0AQJMfDclS5Wuq0VTfgGs0oW/tZAsnERFR7RXMy2Nk2a/w6RAy7cJnVZpc6wn6bdu2IScnx+9qEgULQyeFHZPJhHXr1gFA9VZOZ4HTJpStncEOnGztJCIiqi7cWzmr8vVYxVmdnARP2aDDBRdcACGEMggjUThh6KSw8+eff6KwsBAwypCLIs8/4S5wnntetdZOX4JnTbVwMngSERGdp+Z+UaVWTreB08bL4OnuOk5nwXPv99YpU2wn7onCCUMnhZ3169cDONe1FlL16zfd0elqrpttTUwoTURERMEVimnTPBzTSHFxnufqrHKdpyY/GoB1XIwzZ86oUk0itTB0UlgRQmDTpk0AAE1BtOfWTWdqopttqMImWzuJiIhqX7daZ9wdr3hbJ/tBhoxadO3aFQA4ii2FHYZOCisHDhxAbm4uYJYgl8X4FyCD3c021K2bDJ5ERFSf1dZutc44GWDIbbdal+VYg+e+H08AALZs2eJffYiChKGTwsoff/wBAJCLoyBJGv8LClY321AHTiIiIlJHKLrVunIueHrVrdZlGRK0pgYAgO3bt8NoNKpVO6KAMXRSWNm+fTsAQFPsZG5OX6ndzTacAidbO4mIqD4Kx261Wq0q5VhbPQOrk2SMQmJiIsrLy/HPP/+oUy8iFTB0UtgwGAzYvXs3AEAujQq8QEkKvLXTfrCgYM7fRURERDVHkiEsIvByNOd6ZVkCPzEtp6ZAiokOqAwJEnr16gUA2LFjR8B1IlILj6IpbOzduxcGgwGw6KCJSA68QFkO7PrOcGrZtCeE9UZERFSfqNXKaXcSOdDgKdnXKYDgKaemQGhkCFkKOHj+uvQIALClk8IKQyeFjV27dgEANMYEIDYGcrwfF9JX5W8XWyeBU5Kl0Ld2MmwSEVF9FITAaeN38NQ4GXvCz+Ap7E6Q24KnX+EzMR4aSyIAYM+ePTCbzX7Vh0htDJ0UNvbv3w8AkM1xgEaGiI1WJ3j62trppoUzpMGTgZOIiMh/bvbfPgdPjcaxldOej8FTTk2pXh9Z8r3VMzEe0MiQzNGIjo5GWVkZMjIyfKoLUbAwdFLYOHDgAABANsVaH9DI6pzZ9KWbrRddakMSPBk4iYiovqqhwfOERXgXPt0FThsvg6etW63LOvkSPM+VI0FChw4dAAAHDx707rVEQcbQSWGhuLgYp0+fBgDI5ljlcRETpV43W0/BM5yv4SQiIqqPgtit1hVPwdNj4LTxEDw9BU6lPt4Ez8R4hz93bcoGABw+fNhj+UQ1gaGTwoJtoyiZIyAJu6HH1exm6y54+hg4a6y1k4GTiIjqqxAEThuXwdPZdZzuuAie3gZOpT7ugue5brUO5ZutU88dOXLE63UQBRNDJ4WFEydOAAAks5MNqtrBsyo/WziDHjwZOImIqL4KYeC0qRY8velW64yT4OlL4FRe4yx4OgmcACCZGDopvDB0UljIzMwEAMiWSOcLqHV9J3C+tdN+Dk4/BS14MnASEREFRoX9sxI8/Q2cNhaLEj6dDRzkdX2qBk8X4VW2WOc7z8vLQ0VFhd/rI1ILQyeFhfMtnVEulxExUZBjYwJfmSxbb6Ge/sQVBk4iIqrPamjgIF8EFDjtyPFxfrVy2lOCZ5XrOO1JQovYWOsYGVlZWQGtj0gNYXrUTfVNTk4OADctnYC1m21iXODdbM1m69lGFVoplTOgagbYMNzZEhER1Ri1Tr6qMECgJFv3ycIceFlyYoK1xbTCEHBZe/7TCHsfTXa7TOPGjQFAGaiRKJQYOiksnD17FgAgWfSuF5IkQJYhEmL9D57nAqew7dACCJ5+TybtDQZPIiKqz8IoeNrKCSR42gKntSwRUPDc+3gKdAmV0CVUYu/ERJfLZezJA3D+xD5RKDF0UshZLBbk5+ef+8NJ6JQkxxAmSf4Fz6qB08aP4Ok0cKrdXZfBk4iI6rMQB09bK6d9Of4ET4fAqZTlX/Dc+3gKdImVyt+24Ok0fJ47piooKPB5PURqY+ikkCsqKoLZbAYASELn+KSr4OVr8HQVOP3gtoWTwZOIiEg9IQqe1QKnXTk+B09X06z4GDyrBk4bpdXzoUSHx21T0BUWFnq9DqJgYeikkCspKbHeERpI9l9JT4HL2+DpTeD0srXTqy61DJ5ERETqqeHg6TJw2pXjbfCUExM8lOVd8HQVOO3pEh2Dp+1EflFRkcfyiYKNoZNCrry83HpH+BA47ZdzNvemjS8tnB6Cp0/XcDJ4EhERqaeGgqfHwGlXjqfg6bRbrdOyPAdPT4HTfjlb8LS1dCon94lCiKGTQs42f5Qkzm2YfQxYIjbKeWunP11qXQRPvwYNYvAkIiJST5CDp9eB064cV8HT68CplOU6eO59zLd5PZXgee5kvsEQ+Gi5RIFi6KSQUyYtFhr/gpUsQ8THOAbPQK7hrBI8AxqllsGTiIhIPUEKnj4HTrtyqgZPnwOnUlb14Ln3sRTokrxr5bSnS6zEycut83SaTCbf60KkMoZOCjk1BvdxCJ5qDBp0LniqMi0KgycREZF6VA6efgdOu3JswdPvwKmUdT54+hs4baLzswEAO3fu9L8+RCph6KSQk9QKUbIMaDWARqNOkIUKO6LzBalTDhEREYUfYbGGzUACp1KWwNFbmgQUOAHwJDWFFR4JU8jJ5wYCqkwObEMtlVVAlJZB0moh6Z3M9+krtSaUVrssIiKi+kytMHXuhLAavZpsxx2iOPBBezLuaAVjnIA5KyqgcgxNEgEATZs2DbhORIFi6KSQs4XOtNhcHLgzya8ypLIK64ZeCECWAg+e5+YNBdTpdqMqtboVERER1TYqB06bQIKnpNcr9RJmc0DBM+OOVjAmWOsiG6WAgucT7VcDAFJTU/0ug0gtDJ0UctHR0QAAc4UG3455x+fg6RA4bQIJnnaBU1lHAAMMqIqBk4iI6qsgBU4bf4KnfeBUyvEzeNoHTht/g+f3F89AgjESwPnjLKJQYuikkLNtDMvKJXTRR+GbMe/6FjyFcB7G/AmeTgKnjT9DqauKgZOIiOqrIAdOG1+Cp7PAqZTjY/B0FjhtZKNv7/3b/jPRXheDsnLre2XopHDA0EkhFxtrHdK7rFyG2QJcoI+0Bs+7PAdP63Wc5a4X8CV4ugmcyvp8mDRaVQycRERUX9VQ4LTxJni6C5xKOV4GT3eB08bb1s5v+89EJ/35k/kAQyeFB4ZOCjlb6ASA4hLrBvICfSS+ucF9i6dUVgFRUgZYPIRFb4KnL2c2PQVPBk4iIiJ11HDgtHEXPL0JnEo5Hk5oH53gOXAC3nWztQ+cAJBfaH3PSUn+jZdBpCaGTgo5nU6HxMREAEBu3vkRbG0tnjcv+bla+PQ6cNp4Cp4+BkWXwZOBk4iISB0hCpw2zoKnL4FTKcdFa+fRCa1gSPR+P+8qeH7bf2a1wAkAZ/Otx1QNGjTwobZEwcHQSWEhJSUFAHAmz3HalAv0kRgfn+twnafPgdPGVfD0olutM6rN4ekKAycREdVXIQ6cTovyI3ACzrvZ+ho4bWSjBHP2+eC5tP9H6KSPrhY4ASA33/reGTopHDB0UlhQQudZ53N12lo9D92W7F/gtKkaPP0MnDYOwVPVeT0ZOImIqJ4Ko8Bpa+30N3Aq5dgFT38Dp41ssAbPpf0/Qhe96y63Z/IbAwAaNmzo97qI1MLQSWGhSZMmAIBT2c5DJwD8a/ftaLzZDCTGBbYyW1BUYTJooAZaPImIiCi0VAjCwmwGdNqAAqfNx1d9gnSt62Om0jIJeXl5AIBmzZoFvD6iQDF0Ulho0aIFAODYCa3LZfIKYhGRZ4QpJQ5ITvR/ZUYTYDRaw6dGE/CZUOWaDxW78Kh2lpeIiKi2Uau3jwo9kGwnloXBGFA5cnIS5OQkQJLQerHvc3ja+/D6T9E3ohQWuH5/J7KsgTQpKQlxcQGerCdSAUMnhYWWLVsCAI6fch46++y4EU2WWLvECo0cUPAUQkDY79BkSb1BBhg8iYiIwkcAwbPqJTT+Bk85OQnQaqw3ANozRX7X6cPrP8XFkcXK32UWg9PlMs8dT6Wlpfm9LiI1MXRSWLC1dJ7O1qCyyvaz384x0M9ORuSZ80/4HTxtrZxV+RE8XQ6nzuBJREQUGDXHNvAjeDq9dMaP4KkEzipaf1Pqc53ev362Q+AEAAssToNnxnEdgPMn9YlCjaGTwkKDBg2QlJQEi5Bw6KhOebzfzjHQzmqAqJzqG1Sfg6fRBGEwOLZy2gugxbMaBk8iIqLAhCh4uh2rwYdyXAVOANBmF/oUPN+/fjYGRhY6fc5Z8DyQYT2Wat++vdfrIAomhk4KC5IkoWPHjgCA/YfPh87c/DingdPG6+DpKXDaeBk83U0arZBkFUMsgycREdVDNTiauyRLXg0O6E1rp7vAaeNt8HQXOG3sr+8UAtifYZ0VwHZsRRRqDJ0UNmwbxn3nQme/nWPQ+Bu9u5cA8CJ4ehs4bTwET68Cpz0GTyIiIv/VwMBCPo1E76GbrTeB08ZT8PQmcNrYWjtP52hQVFQEnU6H9PR0r15LFGyuhwolqmGdOnUCAPyzX48+O26Efnay21ZOe7bgKSXFQJNfCuQVnH+u6sBB3pAlwCJX20H5HDhtpOpl+VeOxDk8iYiI/CUs1U4G+zX12bngKel1Dg/7EjhttNmFAGIcHnv/+tkA4HXgBM53s921LwEA0K5dO+j1nk/eE9UEtnRS2OjWrRs0Gg1OZWuh/zTS68BpIzQyLBFax1ZPVwMHeUPNazwBdVs82epJRET1SZCu7wxoru0qJ5P9CZw26UvLlPvvXv8ZBkYW+hQ4bSywYOs/1jalCy+80K+6EAUDQyeFjZiYGHTo0AEAEHEm2+9ylFbP+DjfutU6YzeXp9+tnMHC4ElERPWJysEzoMBpK8ZgPD8Hp5+BEwB0WQVIX1qGd6//DEMiCwKq0z/72wIAevToEVA5RGpi6KSw0rNnTwCARc4LqByhkSH0OkBW4StuEep0jQXUbTklIiKqT8LxZKsswVJQGFDgtNEWVQQcOLOytcjKyoJGo0HXrl0DrhORWngETGHFdlZOWM7ArPV/56LNLwdy8wCNBpIm8B0BEGAXHBu1wqtNOO6AiYiI1Kb2/k6NHkznji+EwbfLgZwR0ZEQGglDn340oHJunToagPWSpejo6IDrRaQWhk4KK927d0dsbCwAAyyaAlh0vn9FtfnlkE7nnB9ZTqOBpNf7Fz6rtHKqee2Hahg8iYioLgtC4LTxO3hWOaaw5PrXQ0tERyqBEwCS/8rH0Gf8C54Dpj6G6NOnrPcHDPCrDKJgYeiksKLVatGvXz/rH+ZsWHSSz8FTMpqcD2Xua6uni261qrR4qo3Bk4iI6iI1929qzZ/t5FhCGAw+B09b2LQFTpvknfk+V2nA1MeQtK8MGlhfe/HFF/tcBlEwMXRS2Bk0aJD1jikLAoBFJ8EcpfEqfOryyqzdal1RqbuttxNIK4LVymmPwZOIiOoKtUdqV2P+bY3GaeBUyvGhm61966Yz3rZ2Dpj6GAZMfQzJ+42AKRtmsxktWrRAWlqa13UhqgkMnRR2+vbti4iICECUAZZCQJIgZMljq6c2vxzIOuN2wmYA3gVPLwcP8ip41kTgtOF0KkREVNsFsTutKx6Dp5cnrL1p7fQUOAFra+dlz7oPngPesobN5P3njntMJwEAl112mVd1JapJDJ0UdqKjozFw4EDrH6YT55+Q3AdPl91qnXEXPH0crZbdbYmIiFQSgsDpkQ89pDx1s/UmcNo02OG6m+2Atx5D8r7zxzzCUgkNrOsdPny4l7UlqjkMnRSWRowYYb1jOgVhHwBdBE9ltFpfBDLAUBUug2dNtnJWxeBJRES1SYgDp9PWTj+OEZx1s606YJC3LnuuemvngGmOgRMAYDoFs9mMTp06sWsthSVtqCtA5Ezv3r2RlJSE/Px8wJwDaBuff1KSYNEBQquBZBKQjRbfWjmr0mggARBmc0BzckqyFPjw62qTJHUn0yYiIgqGGrp+0ycBnJS25OZBbpgMwLfWzaoabD/f2jlg2mMAgOS9jsc7QgjAdByA3Ul7ojDD0ElhSavV4vLLL8eCBQsA4zHH0AlYr/OUAKED9HmVwFnfR3pzYAueFlNAxdhaPEUA4VV1DJ5ERBTOwihwCouApAv88NjW2hlI4LS5dPKjqEyS0GCvi5PrlnzAUoyIiAiGTgpb7F5LYevqq6+GJEmA+QyEpdT5QpIEWCyAv62cQRB2rZ1ERET1gVotnGZzwEVIGg1EfkHAgRMAGq07hQZ73BznGI8BAIYOHYq4uLiA10cUDAydFLaaNWuGPn36WP84t0GtKiK3HFJ2HiBLkDSyNaT6w2yGMJ5r5VRrp6VWOYFiKycREYUztfZTKvUwCvTksW2sCGEwQjqZ43c5cnE55OJywGRG1BHn41YIUQm9fAaA9WQ9UbgKk6NiIueuv/566x3jcQhR/SyfZDABlZXnH5Al/4OnQ8H+/TSq7ajCJXgSERGR9/xs7aw6OKEor/CrHFvYhMlaD6m80vmChqMwGAzo2LEjOnXq5Ne6iGoCj4gprPXt2xetWrUCYKrW2qm0clbla/C0b+W0p2aLZ6jCJ1s5iYioNqgDrZ2uRsP3tbVTCZxVVG3tFMKEuMgsAMCtt96qzkl3oiBh6KSwJssybrvtNusfxiMQ4vxGuForp8MLA+xuq6zE+8DocQfFVk8iIqLaw8vWTsnd3N/wvrXTvjut0/VUbe00HkdxcTGaN2+OQYMGebUOolDhUTCFvaFDh6Jx48aAMADGTABuWjmrCnF326CV4w22chIRUW1SC1s71ZjrG6jendaVqAzraP1CWJCSYL2W89Zbb4VGpXoQBQtDJ4U9rVaLm2++2fqH8TCEMLtv5azKXfB01bXWGTeB0aduOKHsbktERFQfqDVtmZvWTl8Cp7sutu5aN6uVU3au1dSUiTNnzqBBgwacJoVqBR75Uq0wevRoNGjQABDlLkeydSsE3W29KitY2MpJRES1UZjtv5ydVPbUndZpOU662HrqTuuyLGFCcsxJAMC4ceOg1+t9ej1RKDB0Uq0QERGBO++80/pH5UHgzBn/CrJv9fSllbMqu8AY0NDqbPEkIiIKb3atnYF0p7Vv7fS2O60zupw9yMvLQ5MmTThNCtUaPOKlWmPUqFFo0aIFIBlhjMvyvyA1r/OUZEhyGLWeEhER1XZheG2nP62b1co519rpT+umUoZsgr7RWQDA3XffDZ1OF1CdiGoKj3Sp1tBqtbj33nsBAKaG+bBo/WylBIBAgyIRERHVCwGfXLaxWAIKnABgSDiN0tJStG3bFsOGDVOnXkQ1gKGTapVBgwahS5cugCxgbORnF1sAwmiC8HPiZ8eCLIF1r7UrRzVhdj0MERGRT9ScbzLA/astcPp9OY6NxVoPS64XI++7KkJXDpFkbeX8v//7P8gyD+Op9uC3lWoVSZLw0EMPQZIkmJOLYYoohjD7uUNRIywSERGRetQMnAGQZMmxhdPf8GqxKIETAGA0+ldMYSEq4zNgNpsxcOBA9O3b17/6EIUIQyfVOp07d1YunDc2z4Uwm/wPnoFgKycREZE6JCl4gdPH/ayr7rQ+t3ZaVLqmtLAIprhCWGLLodfr8dBDD6lSLlFNYuikWunee+9FYmIiRJQRpkaFyki03oRPYTRBmALsJkNERETqCJPWTcDD9ZvehteqrZtVny4o9KoYUVgEUVgEi8WA+F7W8m6//XY0adLEu3oQhRGGTqqV4uLicP/99wMATE0KYNEbra18ZrN3rZ7sWktERBR6YRI4q3Wn9Zc3rZtedLEVhUUQJutJcmOzPJw9exbNmjXDLbfcEngdiUKAoZNqrcsvvxzdu3cHNALGlrkQOBckfWj1DDl2rSUiovoomN1pnXGzv1VzdNpA2Vo3bT2yzHHlMKcUAwAmTZoEvV4f8DqIQoGhk2otSZLw1FNPITIyEpa4CphTis4/6aLVU7WutWpdz0lERFTf1OLWTafXdXroTuu0nMIip4/ZWjcBQMgWGFtYR+q/9tpr0bNnT5/WQRROGDqpVmvWrJnSzdbYLB+WiCpdVpy1ejIsEhERhUYYBU6/VG0x9bN1UxgM5+9Xad20MTbPg4gwo0mTJrjvvvv8Wg9RuGDopFrvmmuuQa9evaxzd7Y8c76brY0v13rWVuxaS0RE4aymu9O6qoaa126q1Z3WVL0Xljm+DOaG1m61Tz/9NKKjowNeF1EoMXRSrSfLMp588knExMTAElsJU5MC5wuazdYbERER1ZwwCJuqUiNsmi1OWzcBQOhMiOpZAQC44YYbcOGFFwa8PqJQY+ikOiE1NRWPPfYYAMDUuADmuHKnywkhAh+8Jxyv56xrO3QiIiK1qTR4X6BjQwizxXos4SxwQsDQ6gwKCwvRrl07dqulOoOhk+qM4cOH46qrrgIkwNDqDITWzU5BWNQdOTYchEnXJSIiorpIWIRy8+v1ZosSOF0xNSmAJa4CUVFRmDJlCiIiIvytLlFYYeikOmXixIlo3bo1oDPDkO7k+s6q6lrwBBg8iYiIVBZoDyclbLo57jDHlsPctBCAdXqUtLS0gNZJFE4YOqlOiYiIwEsvvYSoqChY4ipgaprv+UWhavUM5joZPImIKFyE0WB3vobHQFo2Ae9aNwHAojciqnc5hBAYPXo0hg8f7vc6icIRQyfVOS1atMCkSZMAAKbGhTAllQAAhKeBhOpal1t2tyUiInLkw35etbDpYp22OT+FbIGhdQ4KCwvRvn17PPzww36vlyhcMXRSnTR8+HDccsstAABjy1xYoiq9f3FdCp4AgycREZEP1Gjd9OpEtrBAQMDYMhci2oCkpCS8+uqriIyM9HvdROGKoZPqrHvvvRf9+vUDZIHKNtkQOh+mS2GrJxERUb1TE11p7ZlSC2FOKoVWq8XLL7+M1NRUv9dPFM4YOqnO0mg0eP7559GyZUtAb4ah7RkIycedSV0KngCDJxERkRM11rppx5xcDnPzAgDAo48+igsuuMDv9ROFO4ZOqtNiY2Px+uuvIy4uDiLWAGO7PM8j2lbFVk8iIqLAhNFgQvZqaqCgqixxlZC6lkAIgeuvv9465RtRHcbQSXVe8+bN8eqrr0Kv18OSXAFTeoHvwROom+GTiIiongr2QEGuWKKMMHQ4C4PBgEGDBuGhhx7yux5EtQVDJ9ULF154ISZPngxJkmBOLYO5WbHfZQU6VxcRERGFTqCtm+cK8etEtNCZYeh4FtAKdO3aFc8//zw0Gk1gdSGqBRg6qd4YMmQIHnnkEQCAKa0YppTS0FaIiIiI6g2hscDQMReIMKNFixZ4/fXXEREREepqEdUIhk6qV6677jrcfvvtAABT6wKYG5SFuEZERERU1wmNBYZOuRAxJiQnJ2Pq1KlISEgIdbWIagxDJ9U7//rXv6wX7EuAsW0+TIkMnkRERBQcFphh6HAWItaIhIQEvP3222jSpEmoq0VUoxg6qd6RJAmPP/44Lr/8ckACTB3yYUoo57WaREREpBphEbDAAmOnPIh4A2JjYzFt2jS0bt061FUjqnEMnVQvybKMJ598EkOHDj0XPPNgSaxQZ3ABIiIiqrdsxxJCEjB2yINIMCA6OhpvvfUW2rdvH+rqEYUEQyfVWxqNBs8++ywGDx4MyICxYx7MSRUA3I9QK8mcaoSIiKi+cnccYDt+ELIFxk5nIZIqERkZif/+97/o3LlzTVWRKOwwdFK9ptVq8cILL2DgwIGADJg65sHcoByASkOqExERUZ1nf8wgNBYYO+dBJBoQFRWFN998ExdccEGIa0gUWpIQgkfVVO+ZTCa8+uqr+PnnnwEBaA8lQnMm2mEZ+zObqoRRP+b3Uh1//kREVFOkMOgpJAXe3uLueEBoLTB2tg4aFBsbi6lTp6JLly4Br5OotmPoJDrHbDZj2rRp+P777wEA2iMJ0GTFVFtOkiX1WkBDHTz58ycioppSh0Kns+MAoTNbA2eMCQkJCXjrrbfQoUOHgNdHVBcwdBLZEULggw8+wKJFiwAAmuNx0JyIhYQg7ChDHTgBhk4iIqo5dSB0ugqclkgTjJ3PApFmJCcn45133kF6enpA6yKqSxg6iaoQQmD27NmYO3cuAEDOjob2cILz4Cks/u/AGDqJiKg+qe2h08U+3xJrgLFTHqCzoEmTJnjrrbeQlpYWQCWJ6h6GTiIXli1bhnfffRcWiwVyfgS0+5MgWex2NlVDoz87MgZPIiKqL2pr6LTfV1d5vTmpAqb2+YBGoEOHDnjzzTeRnJwcYCWJ6h6GTiI3NmzYgBdffBGVlZWQSnTQ7U2GZNScX8BZaPRlh8bQSURE9UWoQ6evgdPDyWVzaiks7YphsVjQt29fvPjii4iOdhyEkIisGDqJPNizZw+efPJJFBYWAhUa6PYlQy7TWZ90Fxq92bkxdBIRUX0Q6sAJeB86Xe2bz71eQMDcqgjmpqUAgFGjRmHSpEnQarVq1JKoTmLoJPLCiRMn8MQTT+DkyZOAWYL2QCI0+VHehUZPOzkGTyIiqutqQ+j0tD+WZAiNBab2+bAkVQIA7rjjDtx5552QwuH9EYUxhk4iLxUWFuL555/Hjh07AACaY3HQnIyF5M1PyN2OjqGTiIjqulCHMjUCZ6QJxo55ENEmRERE4Omnn8Zll12mXh2J6jCGTiIfmEwmfPDBB/jmm28AAHJuJLQHEyBZvNyZOtvpMXQSEVFdF66h08t9sCXBCGPHPEArkJKSgtdee41zcBL5gKGTyA/fffcd3nnnHZjNZusAQ/sSIFX6cC1H1Z1fqIMnNwNERBQsoQ6cgN/7XQEBc7MyoE0ZzGYzOnXqhFdffRUNGzYMQiWJ6i6GTiI//fXXX5g8eTIKCgoAkwTtwQRo8iJ9K8S2Ewx16AQYPImIKDhCHTolN9OduSE0FpjaFcHSoAIAMHLkSEyaNAkRERFq15CozmPoJApAdnY2pkyZgt27dwMANCdioDkWCwk+7mAlOfTBk5sCIiIKhnAInT7uYy0xRhg7FABRZuh0OkycOBFXX301Bwwi8hNDJ1GAjEYjZs6cicWLFwMApEIddPsTHefzrA24KSAiIrXVwpBmblQGU5tiQBZo3LgxXnrpJXTs2DHU1SKq1Rg6iVSydu1avPnmmygrKwMMMnQHEyAX1KIuONwUEBGR2mpR6BQaC0yti2BpZO1O27dvXzz33HNISEgIcc2Iaj+GTiIVZWZmYvLkyThy5AgAQHMqGpqjcZBEDe50hfBvJ89NARERqa2WhE5LrAHGDoVApBkajQZ33nknxo0bB1n2MNUKEXmFoZNIZZWVlZgxYwaWLl0KAJBKtNAeSIRc7sPotoGw/aQZPImIKNQC2RfVQGAVEDA3LwVal8NsNqNx48aYPHkyunXrFvR1E9UnDJ1EQfL777/j9ddfR2FhIWCRoM2Ig5wV5fsgQ76q+pP2ZafNzQEREakl0JOfQQ6dQm+GsX0BRIIRADBs2DA89thjiI2NDep6ieojhk6iIDp79ixef/11bNmyBQAg50VAezgekiGIgww5+0l7u+Pm5oCIiNQS6EnPIIVOAQFLo3KY0osBrUBUVBQeffRRjBw5kqPTEgUJQydRkFksFixevBj/+9//YDQarXN6HomHfCYyOK2e7n7Snnam3BwQEZFaAj3hGYQAKPRmmNoUwZJcCQDo0qULnn32WTRv3lz1dRHReQydRDXk6NGjeO2117Bv3z4AQW719PSzdrcj5yaBiIjUEMiJTpUDp4CAJaUCptZFgFZAr9fj7rvvxk033QSNppZNcUZUCzF0EtUgk8mEr776Cp999llwWz29+Vm72qFzk0BERIEK9OSmiqFT6M3WqVAaWFs3O3bsiGeeeQatWrVSbR1E5B5DJ1EIZGRk4LXXXsP+/fsBAFK+HrrD8ZAqVRrh1pefddUdOzcJREQUqEBPbKoQOgUELI3LYGpZAmgFtFot7rzzTtxyyy3QamtoRHkiAsDQSRQyJpMJCxYswNy5c2EwGACzBE1mDDSnYgKf19Ofn7X9Dp6bBSIiCkSgJzQDDJ2WaCNMbYog4q0j03bu3BlPPPEE2rRpE1C5ROQfhk6iEMvMzMRbb72FHTt2AACkUi20h+Ihl+j9LzSQn7UkMXQSEZH/1DiJ6WfoFLKAuXmJde5NCYiOjsa9996La665htduEoUQQydRGBBC4Mcff8SMGTOs83oKQM6KgvZ4HCST7E+B6leSiIjIG4GevPQzcJqTKqzToESZAQCDBg3Cww8/jEaNGvlfFyJSBUMnURgpKCjAjBkz8OOPP1ofMErQHouDnB3l20BD/FkTEVFt5WPoFJEmmNKLlWlQGjZsiEceeQSDBw8ORu2IyA8MnURhaPv27XjvvfeQkZEBAJBKtNZRbou97HLLnzUREdVWXoZOIVtgbl4Kc7NSQAa0Wi1uvPFGTJgwAdHR0UGuJBH5gqGTKEyZTCYsW7YMs2fPRklJCQBAzomE9lic57k9+bMmIqLaykPoFBCwNDjXlTbCAgDo3bs3Hn74YbRo0aImakhEPmLoJApz+fn5+OSTT7BixQoIIayj3J6IgeZUNCSLi+s9+bMmIqLayk3otMQZYGpVrIxK27hxYzz00EMYOHAgJBXn9iQidTF0EtUSe/fuxXvvvYc9e/ZYH6iUoT0eCznHyfWe/FkTEVFt5SQ8iggTTK1KYGlYAQCIjIzELbfcgltvvRURERE1XUMi8hFDJ1EtYrFYsHbtWvzvf/9DVlYWgHNTrByNg1xQZafLnzYREdU2VQKn0FqsU6A0KQNkQJIkjBo1CnfffTcaNmwYokoSka8YOolqIYPBgG+++Qbz5s1TrveU8vXWkW5LddaF+NMmIqLa5lzoFLKAucm5QYJ01v1Z79698cADD6BNmzahrCER+YGhk6gWKyoqwrx587B06VIYjdbrW+TcCGiOx0Eu4yTYRERUuwgZsKSWwZRWCuitgwSlp6fjwQcfRJ8+fUJcOyLyF0MnUR1w6tQpzJo1C2vWrLEONiQA+UwktMdjIFVoQ109IiIitwQELI0qYGpRCkSaAVgHCbrrrrswfPhwaDQ8kUpUmzF0EtUhR44cwezZs/Hbb79ZHxCAnBUFbWaM52lWiIiIapiAgKVhJcwtSiCirWGzQYMGGD9+PK688krodLoQ15CI1MDQSVQH7d+/H59++ik2b95sfcACyNlR0J6IgVTJ8ElERKElIGBJqYA5rVQJm/Hx8bjttttw3XXXITIyMsQ1JCI1MXQS1WF///03Pv30U+zcudP6gADknEhryye73RIRUQ0T0rlutM1LgShr2IyNjcWYMWNw0003ITY2NsQ1JKJgYOgkqgd27tyJefPm4c8//7Q+cO6aT01mDORyhk8iIgouIQlYUsutYTPSOkBQQkICbrrpJlx33XUMm0R1HEMnUT2ye/duzJs3D5s2bbI+IAD5bAQ0J6MhF+tDWzkiIqpzhMYCc2o5zM3KgAhr2ExOTsbNN9+Mq6++GtHR0SGuIRHVBIZOonpo//79mDdvHtavX688JhXqrOEzLwISJDevJiIick/ozTA3LYO5cTmgtR5qpqSk4NZbb8WVV16JiIiIENeQiGoSQydRPZaRkYGFCxfip59+gslkAgBI5Rpr+MyJgmRh+CQiIu9Zoo0wNyuDJaUCkK2PpaWl4eabb8bIkSOh17NXDVF9xNBJRMjNzcU333yDZcuWoaSkxPqgUYLmVDQ0p6MhmeTQVpCIiMKWgIBINMDUrAwiyaA83r17d4wdOxYXX3wxZJn7EaL6jKGTiBRlZWVYsWIFFi1ahKysLOuDFuuIt5rT0ZBLOV8aERFZCVnAklIOc9NyiBhrbxlZlnHJJZdg7Nix6NSpU4hrSEThgqGTiKoxmUz49ddf8dVXX2H//v3K41KRDprTUZBzIyEJdr0lIqqPLJEmWJqUw5x6/nrNqKgoXHnllRgzZgyaNGkS4hoSUbhh6CQil4QQ+Oeff7B06VKsW7dOue4TBhmarChosqIgGTShrSQREQWdgIAluRLmJuUOXWibNWuGa665BqNHj0ZcXFwIa0hE4Yyhk4i8cvbsWXz//ff49ttvkZuba33QNuXK6WhIhTqOektEVMcIrQXmxuUwNy5T5teUJAn9+vXDddddhz59+vB6TSLyiKGTiHxiMpmwfv16LF26FDt37jz/RLkGmuwoaHIi2fpJRFSL2QYGMqeWw9KgUhmFNj4+HqNHj8Y111yDpk2bhraSRFSrMHQSkd8OHz6MpUuXYs2aNSgrK7M+KAA5Tw85O4pzfhIR1SIiwgxzajnMjcqVVk0A6NixI6677jpcdtllnF+TiPzC0ElEASsvL8e6deuwYsUK/P333+efqJShyYmEJjsKUoU2dBUkIiKnhCRgaVAJc2o5RKIBtvOEsbGxGDFiBEaPHo127dqFtpJEVOsxdBKRqo4dO4YVK1bgxx9/REFBgfK4VKiDJifSOvKtmdf/EBGFioCAiDXB0qgc5pQKQHf+ULBHjx648sorMWjQILZqEpFqGDqJKCiMRiN+//13fP/999iyZQuUTY0FkPMiIOdEQs6P4NQrREQ1RESaYE6pgCWlAiLarDyekpKCK664AqNGjeK1mkQUFAydRBR0OTk5WLNmDVatWoWMjIzzTxglyLmR0JyJhFTE0W+JiNQmtBZYUipgTqmAiDcqj0dERGDQoEEYMWIEevfuDY2GA8ARUfAwdBJRjTp06BB++uknrFmz5vzUKwBQIUNzJgpybgSkUi0DKBGRn4RsgSW5EpZGFbAkGpTRZ2VZRs+ePTFixAgMGjQI0dHRoa0oEdUbDJ1EFBJmsxk7d+7EqlWr8Ouvv6K8vFx5TirXQM6NsF7/yQBKROSR0JwLmg0rYUmsBOwaLjt06IDhw4dj6NChaNCgQegqSUT1FkMnEYVcRUUFNm7ciF9++QWbN2+GwWBQnmMAJSJyziFoJp2fTxMAmjVrhqFDh2L48OFo2bJl6CpJRASGTiIKM2VlZfj999+xdu3aagEU5RpociMgn42EVMIASkT1j9DagqZj11kAaNGiBS655BJccsklaNOmDSSJ20giCg8MnUQUtsrKyrBp0yasXbsWf/zxh2MANcjWUXDPRkAu1EOy8OCKiOomS6TJGjQbVFoHA7Lb3LVq1UoJmunp6QyaRBSWGDqJqFawBdDffvsNmzdvRllZ2fknzYBccC6A5kdAMnIeUCKqvQQERLzRGjSTKx2mNwGA1q1bK0GzVatWoakkEZEPGDqJqNYxGAzYuXMnNm7ciI0bNyInJ+f8kwKQinXWVtB8Pa8DJaJaQWgssCQalKAJ3fnDM41Gg4suuggDBgzAxRdfjCZNmoSwpkREvmPoJKJaTQiBQ4cOYcOGDdi4cSMOHDjguIBBhpyvh5wfAblAD8nEVlAiCj0BARFrgiWxEpYkQ7Vus7Gxsejfvz8GDBiAPn36IDY2NnSVJSIKEEMnEdUp2dnZ+P3337F582Zs374dFRUV558UgFSitQbQfD2kYh1bQYmoxgidGZYkg7VFM8mxNRMA0tLSlKDZrVs3aLXaENWUiEhdDJ1EVGcZDAbs2rULmzdvxubNm5GRkeG4gFGCXKi3toAW6iGVaxhCiUg1QhYQ8edCZqIBItbk8Hx0dDR69uyJPn36oHfv3mjatGmIakpEFFwMnURUb+Tk5GDr1q3YsmULtm7dipKSEscFKmVrCC3UQy7QAZUMoUTkPSELiDgDLAnGcyHT6DClCQB06NBBCZldu3ZlayYR1QsMnURUL5lMJuzduxfbt2/H9u3bsXv3bscpWQCgQlZaQuVCPSSDJjSVJaKwJCQBEWcNmJYEA0Rc9ZCZmpqKiy66CL169ULv3r2RlJQUmsoSEYUQQycREYDKykrs3r0b27dvx44dO7Bnzx6YzY7TFKBChlykh1yks14PypFxieoVobXAEme0dpmNN1pbMquci0pJScFFF12k3Jo0acK5M4mo3mPoJCJyoqysDP/884/SEnrw4MHqIdQkQSrSQS7WQS46NzCRhQeXRHWBgAAizbDEG60BM84AEWOutlxycrJDyGzevDlDJhFRFQydREReKCsrw969e/H3339j165d2L17N8rLyx0XssDa+llsDaJSiY6DExHVEkJjsU5hEmu0dpmNNwJ6S7Xl0tLS0K1bN+WWlpbGkElE5AFDJxGRH0wmE44cOYJdu3Zh165d+Pvvv5Gbm+tkQckaQkt0kIq11n95bShRSAlJQMSYrOHyXMgUUWZUPT+k0+nQoUMHdOvWDV27dkW3bt2QmJgYkjoTEdVmDJ1ERCoQQiArKwu7d+/G3r17sW/fPuzfv7/64ESAdZTcYh2kEi2kUh3kUi1gkNkiShQEQhIQ0abzrZixRogYU7UBfwDroD8dO3ZEp06d0K1bN7Rv3x4RERE1X2kiojqGoZOIKEhMJhMyMjKwd+9e5Xb06FFYLNW77MEoQSqxBlCpVMuuuUR+EFoLRIwRlliTtSUzxgQR5TxgJiQkKAGzU6dO6NChA5KTk2u+0kRE9QBDJxFRDSovL8eBAwewd+9eHDx4EIcOHcLx48erD1IEAGZAKrO2hkplWsilGkjlbBUlEpKAiDJBRJvPtWIaYYkxARFOTugAiI+PR9u2bdG+fXt07NgRHTt25KiyREQ1iKGTiCjEKisrkZGRgUOHDuHgwYM4ePAgDh8+XH2gIhuTZG0NLdNCKj8XRsu0gJFhlOoWpWtstAkiyuxw39VXvVmzZmjbti3atm2Ldu3aoU2bNmjUqBEDJhFRCDF0EhGFIYvFgpMnT+LQoUM4dOgQjh49iqNHj+LkyZPOu+cC1i665Vprt1zbvxXn7nMqFwpTAgLQW6yhMvJcuLQFzEjX4TI2NhYtW7ZEenq6EjBbt26NmJiYmn0DRETkEUMnEVEtUllZiczMTBw9ehQZGRnKv6dOnXIdRgGgUj4fRis05wLpufsMpBRkAgLQWc4HSvtwGWkC3AzoHBcXh/T0dLRs2RKtWrVCeno6WrVqhQYNGrD1koiolmDoJCKqA2xh9NixYzhx4oRyy8zMRFFRkfsXGyRIledaRc/9C/u/GUrJAyVURpohIswQkZZz/5qBCOtj7oKlRqNB48aN0bx5c+XWqlUrtGrVCsnJyQyXRES1HEMnEVEdV1hY6BBCbf+ePn0aJSUlngswyJAqZev8ouf+Vf62PWdxMjwo1QlK91e9BUJvtt6PsN4XegtwLmg6GyHWnizLSE1NdQiWtluTJk2g1Wpr5g0REVGNY+gkIqrHiouLkZWVhaysLJw+fRqnT592+LusrMy7gkwSJINsbSE1yJCMsnVgI6Nsfdxo95hgq1WoCQhAI6yhUWeB0J3/V+gsgH2o1FtcXldpT5ZlNGrUCI0bN3Z6a9SoEYMlEVE9xdBJREROCSFQXFyM06dPIycnB7m5uThz5gzOnDmj3M/NzfU+mNrYAqpRhmSSrQMgmWTr4w7/VnmMI/NWYwuP0AoIrcUaJLWW83/b/6tzDJieWibtybKM5ORkNGzYECkpKWjYsKFys4XKlJQUhkoiInKKoZOIiAJSVlamhNEzZ84gPz8feXl5KCgoQH5+vvJvfn6+8/lIvWWSALMEySwBFrv7Ztt92e6+BAgJsMC6rEWCZMG5x84/LtmWERJg2xs63Lf+4ynwivML2v0rrP9KAGQByAJCBiCJc39b7wtZOC6jORckNXb3qz4uC+BcyPQlPFYVExODxMREJCUlISkpCYmJiUhMTHQIlSkpKUhKSoJG4+aiTCIiIjcYOomIqEYIIVBSUqIE0Pz8fBQWFqK4uBjFxcUoKipS7tvffG5JDUrl4RhE7cNlGDTAarVaxMXFKbfY2FiHf+Pi4hxCpe2+Xq8PddWJiKgeYOgkIqKwZjKZUFJSguLiYpSXl6O8vBxlZWUe7xsMBhgMBhiNxmr37R8zGAxBfw9arRY6nQ56vR56vR46nU7523Zfp9MhMjISUVFRXt9sgTIyMpIjvBIRUdhi6CQionpNCAGLxeLTTZZlh5skScq/Go3G4W+tVgtZ5ui+RERUfzF0EhERERERUdDw1CsREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycR/X979x5VVZ3/f/y1QRQUFDRTUDQtb2OaBmpmmpfyVk6FVpYz5jj9ypnK1mpcS4fJtLGyyWXZ0jXWuMacSrLbUrMpnSxvjahohpZBeMMLwnCRqxwRzvn9cdjbc7gc4MAJ5Pt8rOVisz+fz/vzOZ+2xpvP3vsDAAAA+AxJJwAAAADAZ0g6AQAAAAA+Q9IJAAAAAPAZkk4AAAAAgM+QdAIAAAAAfIakEwAAAADgMySdAAAAAACfIekEAAAAAPgMSScAAAAAwGdaNPYAAMAXHA6HbDZbYw8DAOokMDBQhmE09jAAoEGRdAJolmw2myZMmNDYwwCAOtm2bZuCgoIaexgA0KC4vRYAAAAA4DOsdAJo9loeuF6Gw08y/GT4ld+2ZvhJfoZkGDL8/CTDcJ6TnMd+hgyXOq7nnXWNq9+bZa71DUNSeVn5OYdhOH/VZ7jHrHjeYZb5meXloQxDDutXheZ5QzLk1sZhnXNpr/IYfkZ5rKvlkqw+rDZmfcnZZ8V4ZplbO7n15T6Oatq4fH+1XflXeWhXRX+VxlFFTDce2zgq9+PWl6PCZ73aTi7tZDis7hzG1XLDtcyKbZY5rL6MCvUNw+F2OZp9GOV1jfKYzkvKYZ1zXqoOK6azzHnOMBzuZYZDhtzP+5Uf+5W3dR7LvcxqY7/aTmZ9u/yNq8dWO12tb5abZf4yz9tdztudscyYLvGs+uVf/eRs6xyHs39nmV3+5d87p98u//JzZhv/8v9mfiqvW/7ZzOOrY3SUj0FXz0vl3xvyk+RvGPIr/w/qPGeUn/OTIUP+hp9slw1N/X+dBQDNFUkngOavzHD++Gc4f8iTVJ5gliedKk86/cyMzplFGM4MTu7ZS3m7KrMeP/eMyHAtq5S1eDh2zY4qlpuHZvLo8tWqbriEMiqEN9yTQLd2VbSXypPfasqMKv5UOY4a2tRlquoZs3aJagMmna79upVXnXS6tqlUv4oyw4rjqBDT4d7GtZ5bXw73Mpek82oS65LAVlfmkoy6JZ0u5/zknqyaCdvVpNNMSMsTNMNM2pz8DUN+hiF/ye2r5FJfRnksyd/sq/zY34pdTZl1fHX8/tY4ryaZruOvKumsGM8av9s5c4xXfzEBAM0Vt9cCAAAAAHyGpBMAAAAA4DMknQAAAAAAnyHpBAAAAAD4DEknAAAAAMBnSDoBAAAAAD5D0gkAAAAA8Bn26QTQ/Pk75HDYnfsSmpsEmsdG+SZ6bvtZGhX2wTRczjtcymsoq7BRpKOazScrnr/6vVlexbHDPHbWtdo4rh47KrWXy4aSV2NWZjgbGxWqVdx70+18pY+lWu3TKS/LPMWsoT/rY3lsU3G/zYrxHJXjV9nOZfZd2hke9uk0XGIbFeo798Q0yyr0UXGfTnm/T6ejvK2j/Lyj/NhRXuZw2afU9bzdcEiG3eVzm33Zy/f1LC93GYfDsDv7Mfstj6nyfiqe9yv/3vWrs6er5+zlf63tLntx2g3JLudfe7tLmaGq9uk0ytsZzn0/y+fbPJZc9vt0OTb7svYZlbnPqDOe85xhnTPKj22Xq/p7CADNB0kngGavZOj/GnsIvlH+M7y3KuaUgMm8tOyNPRCvmRk5N3QBQFPAv8YAAAAAAJ8xHA5HPX5PDgBNk8PhkM1ma+xhXDNsNpvuu+8+SdLmzZsVGBjYyCNq+pizumG+aicwMFCGwb0HAJoXbq8F0CwZhqGgoKDGHsY1KTAwkLmrI+asbpgvAPi/hdtrAQAAAAA+Q9IJAAAAAPAZkk4AAAAAgM+QdAIAAAAAfIa31wIAAAAAfIaVTgAAAACAz5B0AgAAAAB8hqQTAAAAAOAzJJ0AAAAAAJ8h6QQAAAAA+AxJJwAAAADAZ0g6AQAAAAA+Q9IJAAAAAPCZFo09AACAu0uXLmnDhg3atWuX0tPT5efnp8jISI0dO1ZTp05VQECA17FzcnIUFxen+Ph4ZWRkqFWrVurRo4cmTpyoe+65R4ZheGx//vx5xcXFKSEhQTk5OQoKClLv3r01ZcoUjR49utp2c+fO1ffff+8xdseOHfXpp5968ama5pxlZ2crMTFRP//8s/UnPz9fkvTmm29q8ODBteo/OTlZH330kb7//nvl5uYqJCRE/fv3V0xMjKKiorz6TM1xvnx9jQEAvEfSCQBNSHp6uubOnav09HRJUmBgoK5cuaKkpCQlJSXpq6++0ooVKxQSElLn2MnJyZo3b57y8vIkSUFBQbp06ZKOHDmiI0eOaOfOnVq6dGm1CUd8fLwWLVokm80mSWrTpo0KCgqUkJCghIQETZ48WfPnz/eYuAYFBSkoKKjKstDQ0Dp/JqnpztnmzZu1bt06rz6T6fPPP9fy5ctVVlYmSQoODtbFixe1Z88e7dmzR7NmzdLs2bPrFLM5z5fZZ0NfYwCA+iHpBIAmorS0VAsWLFB6ero6dOigv/zlL4qOjpbdbteOHTu0bNkypaSkaMmSJXrttdfqFLuwsFDz589XXl6eunXrpueff159+/bVlStXtGXLFq1atUoHDhzQypUr9dxzz1Vqn5aWpsWLF8tms2nAgAFasGCBIiMjrRWzdevW6YsvvlC3bt306KOPVjuOhx9+uM5JkidNec4Mw9D111+v3r17q0+fPurQoUOdxvDDDz9YCefIkSP17LPP6vrrr1deXp7WrFmjzz77TOvWrdMNN9ygsWPH1ipmc54vU0NfYwCA+uOZTgBoIrZu3aqTJ09KkpYsWaLo6GhJkp+fn8aNG6d58+ZJkvbt26dDhw7VKfaGDRuUk5OjVq1a6bXXXlPfvn0lSQEBAYqJibF+SN+yZYvOnj1bqf3atWtVXFys9u3b69VXX1VkZKQkqXXr1po9e7amTJkiSXrvvfdUUFDgxaf3TlOes5kzZ+qTTz7RK6+8oscee6zOt8K+9dZbKisrU8+ePfXiiy/q+uuvlyS1a9dO8+bN09ChQ93q1UZzni8AQNNF0gkATcTWrVslSYMHD9bNN99cqXzcuHEKDw93q1tb27Zts2JERERUKo+JiVFQUJDKysr01VdfuZUVFxdr165dkqT777+/ytsuf/Ob30iSioqKtGfPnjqNrT6a6pxJkr+/f536c5WWlqYjR45IkqZPn64WLSrfmGTOeXp6uhITE2sVt7nOFwCgaSPpBIAmwGaz6YcffpAk3XbbbVXWMQxDw4YNkyQlJCTUOvaZM2eUkZEhSVb7ilq3bq2BAwdWGfvo0aO6fPmyx/bh4eHq3r17ncdWH015zurLNV51/Q8YMECtW7eudf/Neb4AAE0bz3QCQBOQmpoqu90uSerRo0e19cyynJwc5efnq23btjXGNm+nrCl2z549tX//fp0+fbra9j179vTYPjU1VadOnaq2zldffaWtW7cqOztbrVq1UpcuXTR06FA98MADuu6662r8LK6a8pzVlzmHYWFhCgsLq7KOv7+/unXrpqSkJI9zbmrO8+WqIa8xAEDDYKUTAJqArKws67hjx47V1nP9odm1jSfZ2dl1il1UVKRLly5V6ickJEStWrWqsb1rfxWdP39eWVlZCgwMVFFRkZKTk/Xee+/pt7/9rXbv3l2rz1NxXFLTm7P6MsdZU5Jkjs3TnFeM6dquKtfifLlqyGsMANAwWOkEgCbA9QdwT4ldYGBglW18Edu8dbO4uLhSuaf2VY1r0KBBmjRpkoYMGaIOHTrIMAwVFhZqz549euutt3Tx4kUtXrxYK1euVP/+/X36uXwZ25yz+jL7r2nOzbHV5nM15/mSfHONAQAaBiudAACfmz17tiZNmqTrrrvO2sczODhYkyZN0t///ncFBwertLRUq1evbuSR4lrFNQYATRdJJwA0Aa4rPuZLe6pis9mqbOPL2EFBQZXKPbWv6+pVly5d9MADD0hyvrQoLy+vVu2a8pzVlxmrpjk3x1abvpvzfNXE22sMANAwSDoBoAlwfY4uMzOz2nquz9jV9qUoHTp0qFPsNm3auCUEZj8FBQUeEwqzvWt/tWVu3+FwOHThwoVatWnKc1Zf5jhreqbSHFtt5rw5z1dteHONAQAaBkknADQB3bt3l5+f859kT28iNcvat29fq7eKSu5vnPUU23wD6Q033FBte9e3lFbX3tPbSxtSU56z+jLn8OLFi8rNza2yTllZmc6cOeNW35PmPF8AgKaNpBMAmoDAwEBrJWb//v1V1nE4HDpw4IAkaciQIbWOHRkZqU6dOnmMXVxcrCNHjlQZe8CAAdbLYcz+K0pPT1dqamqdx2b68ccfJTn3iezcuXOt2jTlOasv13jV9X/06FHrBT616b85z1dteHONAQAaBkknADQREydOlCQdPnxYx44dq1S+Y8cOpaWludWtDcMwNGHCBEnSN998U+WthRs3blRxcbH8/f119913u5UFBQXpzjvvlCRt2rRJhYWFldrHxcVJcj6nN3LkSLcyh8PhcXxpaWnauHGjJOctkKGhobX7YGq6c1ZfERERGjhwoCTpww8/VGlpaaU669evlyR17txZt9xyS63iNtf58uU1BgCoP5JOAGgiJk6cqJ49e8rhcGjhwoU6dOiQJMlut2vHjh1atmyZJGnYsGGKiopya7t27VqNGjVKo0aNqvIH/unTp6t9+/ay2WyaP3++kpOTJUlXrlzRpk2b9M9//lOSNGXKFEVGRlZqP3v2bAUFBSk7O1sLFizQ2bNnJTlXr9atW6fNmzdLkmbOnKmQkBC3tuvXr9fLL7+sffv2qaCgwDpfVFSkrVu36o9//KMKCgrUokULzZkzp9nMmd1uV25urvXH9bMXFha6lZWUlFRq/+STT8rf31/Hjx/X4sWLrWcl8/Pz9frrr1srinPmzJG/v///6fny5TUGAKg/w1HTrwcBAL+YCxcu6Nlnn1V6erok5y2Rdrvd+iG7V69eWrFiRaXEbu3atVq3bp0k58pYeHh4pdjJycmaN2+e9ebO1q1bq6SkxFpFGzJkiJYuXaqWLVtWObb4+HgtWrTIegNpcHCwiouLVVZWJkmaPHmy5s+fb21XUdXYzH5btGihwsJC2e12K9b8+fOtFdW6aKpzduHCBT388MO1+gx//vOfNWnSpErnP//8cy1fvtya4+DgYBUVFVkre7NmzdLs2bNr1YfruJrbfPn6GgMA1E+Lxh4AAOCq8PBwrVu3Ths2bNCuXbuUnp6uFi1aqEePHho3bpymTp2qgIAAr2L36dNH//rXvxQXF6e9e/fqf//7nwIDA9WzZ09NnDhRkydPtl40U5Xhw4frnXfeUVxcnBISEpSTk6Pg4GD16tVLv/71rzV69Ogq240ZM0aS9MMPP+j8+fPKz89XUVGRQkJC1L17dw0ZMkRTpkxR+/btvfpcTXnO6uvee+9Vr1699OGHHyoxMVG5ubkKCwtT//79FRMTU2k1sjaa43z5+hoDANQPK50AAAAAAJ/hmU4AAAAAgM+QdAIAAAAAfIakEwAAAADgMySdAAAAAACfIekEAAAAAPgMSScAAAAAwGdIOgEAAAAAPkPSCQAAAADwGZJOAAAAAIDPkHQCAAAAAHyGpBMAAAAA4DMknQAAAAAAnyHpBAAAAAD4DEknAKDRvfnmmxo1apSeeeaZxh4KGllhYaHuuecejRo1Srt3727s4QAAGkCLxh4AAMB7RUVFSklJUVJSkpKTk5WcnKzz58/L4XBIkj788EOFh4f7pG+Hw6Fp06YpMzNTM2bM0JNPPulVnJSUFG3atEmS9MQTTzTgCBvXyZMndeDAAR09elQnT55Udna2ysrKFBISohtvvFHDhw/XxIkTFRwc3NhDbVKCg4M1ffp0rVmzRitXrtSwYcPUqlWrxh4WAKAeSDoB4Bo2d+5cpaSkNErfSUlJyszMlCSNHDnS6zirV69WWVmZhg0bpgEDBjTU8BrV3Llz9f3331dZlpOTo5ycHCUkJOj9999XbGyshg4d+ssOsImbNm2aPv74Y2VkZOiTTz7RjBkzGntIAIB64PZaALiGmSuaknOFaPDgwWrfvv0v0veePXskSR07dlS/fv28inHkyBEdPHhQkppVYmEm4yEhIZo8ebJiY2O1atUqrVmzRn/96181fPhwSc4ENDY2VomJiY053CYnKChIU6dOlSTFxcXp0qVLjTwiAEB9sNIJANewyZMnKzQ0VH369FHXrl1lGIbmzp2rnJwcn/dtJp0jRoyQYRhexfjggw8kSeHh4brlllsabGyNrWvXrpo5c6bGjRunli1bupX16dNHo0eP1vr16/X222+rpKREy5cv17vvvttIo22axo8fr7Vr16qgoED//ve/9eCDDzb2kAAAXmKlEwCuYdOmTdNdd92lyMhIrxM/b5w9e1apqamSvL+1NjMzU/Hx8ZKkCRMm/KLj97Vly5Zp0qRJlRJOVzNmzFCvXr0kSadPn9aJEyd+qeFdE8LDwzVw4EBJ0meffdbIowEA1AcrnQCAOjPfKmre0uuN7du3y263S5LGjh1bqzalpaX65ptv9O233yopKUm5ubkqKytTaGioevbsqejoaN11113q0KGDW7tRo0ZJkiZOnKjY2FidOXNGn3zyiRISEpSVlaU2bdqod+/eevTRRzVo0CCr3eXLl/Xll19q27ZtOnfunGw2myIiInT33XfrwQcfrPcLbm699VbrmdyzZ8/qxhtv9DrW6dOntXnzZiUmJurChQuy2WwKDg5WSEiIwsPDFRUVpTvuuEPdunXzKn5paan+85//aMeOHTp58qTy8vJkGIbatm2r0NBQ9evXT9HR0RoxYoQCAgLc2lac/9OnT2vjxo06ePCgsrKyVFxcrJdffrnSLzDGjh2rxMREpaamKikpSX379vVucgAAjYqkEwBQZ+attcOHD1eLFt79r2Tv3r2SnM89du/evcb6x48f1wsvvKBz585VKsvMzFRmZqb279+vEydOKDY2tto4O3fu1CuvvCKbzWadu3z5svbt26f9+/dr3rx5mjJlirKyshQbG6ukpCS39qdOndI//vEP7du3T8uXL69X4llaWmod+/l5f/PR5s2btWLFCpWVlbmdz8vLU15ens6dO6eEhASdOHFCCxcurHP83Nxc/elPf6rypVXm3KekpOizzz5TXFycunbtWm2sL7/8UsuXL1dJSUmN/bq+WGrv3r0knQBwjSLpBADUSVZWln766SdJ3t9aW1JSoh9//FGS1K9fvxpvrU1JSdHTTz+t4uJiSdLgwYM1fvx4de/eXQEBAcrOztaxY8dq3NfxxIkT+uabbxQWFqYnnnjC6vvQoUN67733ZLPZ9MYbb2jQoEF66aWXdPz4cd1///264447FBoaqvPnz+vdd9/ViRMndOTIEcXFxel3v/udV3MgSd9995113KNHD69inDx50ko427ZtqylTpmjQoEEKDQ1VWVmZsrOzlZycrH379nl9C/OKFSushDMqKkrjx49XeHi42rRpo6KiIqWmpioxMdG6Xbo6ycnJ2r59u9q2basHH3xQAwYMUEBAgE6fPq3OnTtXqt+jRw8FBQWpuLhY3333nWbPnu3V+AEAjYukEwBQJ99++60cDodatmypYcOGeRXjxIkT1ipfnz59PNYtLS3VCy+8YCWczz77rPVmU1e33367Hn/8cWVkZFQbKyUlRb169dKKFSsUEhJinf/Vr36lrl27atGiRSotLdXTTz+t/Px8LVu2TNHR0Va93r17a8iQIZo5c6aysrK0adMmzZw5U/7+/nX6/JLzFuVTp05JcibekZGRdY4hSTt27LBWON944w3rOVFXI0eO1OOPP668vLw6x798+bKVzI8cOVIvvfRSpeR10KBBuu+++1RcXOxxxfbUqVPq2rWrVq1a5faW5erefuzv76/evXsrMTFRP//8s+x2e71WhAEAjYN/uQEAdWLeWhsdHa2goCCvYrjeIlvTFi/bt2/X+fPnJTnf1ltVwumqU6dOHssXLFjglnCaRo8erY4dO0qSLl68qJiYGLeE0xQcHKxJkyZZ9U6fPu2xv6pkZWXp9ddflyQZhqE//OEPdY5hMt9UHBwcXGXC6apdu3Z1jl9QUGD9gmDQoEEeV0uDgoJqvN34ueeeq9O2PmZdm82mrKysWrcDADQdJJ0AgForLCzU4cOHJXl/a60kZWdnW8dt27b1WNdMciXpkUce8bpPyXm7ZnWJmWEYbmXjx4+vNo5rvbS0tDqNwWazKTY21koWK768qK7MRLmwsFA7duzwOk512rVrZ72F9+uvv67XnpkdO3asMpH3xPX6cL1uAADXDpJOAECtxcfHq7S0VP7+/hoxYoTXcS5fvmwdV7Xq6Ornn3+W5Fzxqs0Lhzypqb3rWDy95dW1Xl2SsCtXruj555+3Xk50xx136PHHH691+6qMHz/eWl1ctGiRnnrqKa1fv15Hjhyxbkmuj4CAAE2cOFGSdOzYMT300ENatmyZvv766zon3N68ndc16XR9+RMA4NrBM50AgFozVx1vvvlmhYaGeh3H9RnImt5impubK+nqil59BAYGeix3vXXU063Drs8Vmtu+1KS0tFQLFy7UgQMHJElDhw7V4sWLvXoe1FVERIReffVVvfLKK8rMzNTRo0d19OhRSc557tu3r0aNGqV77723xgS/Os8884xKSkq0bds25efna8uWLdqyZYsk5y8Dhg4dqsmTJ9e4YlvTqnZVXH9B4e2bkgEAjYuVTgBArZSUlGj//v2S6ndrreR8/tCUn59fr1jXgtLSUi1atMjaJiY6Olovv/yyddtqfUVFRemDDz7Qiy++qMmTJ1tblpSVlenHH3/U6tWr9cgjj1gJb121atVKsbGxev/99/X73/9et956q5WU5+TkaOvWrZo7d66ef/55tySxIm9eAuT68iPX6wYAcO3gV4YAgFo5ePCgdbtmfZNO1+0xako6Q0NDlZGRcc2+RMZMOM1V4ltvvVVLly6t1/6eVWnZsqXGjBmjMWPGSHKuEB86dEjbtm3Tvn37lJ+fr4ULFyouLk4dOnTwqo/IyEg99thjeuyxx1RWVqaUlBTt3btXmzdv1sWLF7V7926tWbNGTz/9dIN9roKCAuu4ppdEAQCaJlY6AQC1YiZNvXr1Unh4eL1iue5JeebMGY91zS1VsrOza6zb1FRMOAcPHqxXX321wRPOqoSGhmrcuHF67bXXdP/990uSiouL9e233zZIfPPW3dmzZ+utt96ybl3evn17g8Q3paamSpLCw8PVunXrBo0NAPhlkHQCAGpkt9v13//+V5Lz5Tf11alTJ1133XWSpJ9++slj3VGjRlnHcXFx9e77l1JaWqrFixdbCeegQYP0t7/9rcbnSn1h6NCh1rH5jGxDCg8Pt/YZ9WYv0Ork5uZa2+X079+/weICAH5ZJJ0AgBodPXrUSlZck8D6MBOh1NRUFRUVVVtv7NixVkLzxRdf6NNPP/UYNyMjo0HGVx+lpaX661//qt27d0vybcK5a9euGhNJ81lcSerSpUud4qelpengwYMe61y4cMFakYyIiKhTfE+OHTtmHd92220NFhcA8MvimU4AuIadO3fOelOpydz/UZJ27tzp9pbZoKAgjR49us79mKt1ERERXm17UZUxY8boiy++kN1u18GDB3XnnXdWWa9FixZ68cUX9dRTT6m4uFhvvvmmdu/erQkTJqh79+4KCAhQdna2kpKStHPnTvXp00exsbENMkZvLVmyRDt37pTkTPLmzJmjCxcueGwTFhamsLCwOvf16aefasmSJYqKilJUVJRuuOEGtWvXTleuXFFGRoa2b99urVJ37ty5zlvdZGRk6LnnnlNERIRGjBihfv36qVOnTmrVqpXy8vJ07Ngxbdq0yXoL8dSpU+v8GaqTkJAgyfm86vDhwxssLgDgl0XSCQDXsKNHj2rp0qXVlq9evdrt+86dO9cr6WyIW2tN0dHR6tixozIzM7Vt27Zqk05Juummm7Ry5Uq98MILSktL0+HDh3X48OEq65rPgDamHTt2WMfnz5/XnDlzamwza9YszZ4926v+SkpKFB8fr/j4+GrrdOnSRUuXLvW4FYwnaWlp+vjjj6st9/Pz0yOPPKIHHnjAq/gVlZaW6uuvv5bkXF33drsXAEDjI+kEAHh0/Phxa5Wuvm+tdeXv76+YmBi9/fbb2rdvn3Jzcz3u/dm7d2+9//772rZtm/bs2aOUlBTr+cGwsDDdeOONGjJkiO66664GG+O1YNGiRTpw4IASExN18uRJ5eTkWLfbtmvXTjfddJNGjhyp8ePHe7VFy8CBA7Vq1SodPHhQx44dU0ZGhi5evKiioiIFBgYqIiJCAwcO1L333ttgq+CSrGtCkqZNm9ZgcQEAvzzD4XA4GnsQAICm65133tE777yjsLAwbdy40au9FqtTWFio6dOnKz8/X08++aRmzJjRYLFxbZs/f77i4+MVFRWlN954o7GHAwCoB14kBADwyLy19vbbb2/QhFOSgoODrURzw4YNunTpUoPGx7Xp2LFjio+Pl2EYeuKJJxp7OACAeiLpBABU68qVKxo5cqRmzZqlmJgYn/QxdepUde3aVXl5efroo4980geuLWvWrJEkTZgwQf369Wvk0QAA6ovbawEAje6nn35SfHy8goOD9dBDDzX2cNCICgsL9fHHH8vhcCgmJsbjc74AgGsDSScAAAAAwGe4vRYAAAAA4DMknQAAAAAAnyHpBAAAAAD4DEknAAAAAMBnSDoBAAAAAD5D0gkAAAAA8BmSTgAAAACAz5B0AgAAAAB8hqQTAAAAAOAzJJ0AAAAAAJ8h6QQAAAAA+AxJJwAAAADAZ0g6AQAAAAA+Q9IJAAAAAPAZkk4AAAAAgM/8f9sPo8gAPcBpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADAYElEQVR4nOzdd5gT1cIG8HcmyfbGsgtL77AUFRCkCwIqiopevGJF7FevXOv1s/eL9Ypg7xS9iA0siCBNQQVUOtLbIri07TVlzvdHNkOymzJJJpv2/p5nH5bN5MwkuznnvHPOnJGEEAJEREREREREISCH+wCIiIiIiIgodjF0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcjoEjr3798PSZIgSRImTZqkR5FxacSIEer7SETkyaRJk9S6Yv/+/eE+HNWMGTPU45oxY0a4D4d0pigKTj/9dEiShMmTJ4f7cCiEVqxYoX6WH3/88XAfDlFEiOW8Y7PZ0K1bN0iShAceeCAk+2i0kc4ZM2bg8ccfj6vKa/78+eprLikpCffhUJ3HH39crTS0fGnt1G/ZsgWTJ09Gfn4+0tLSkJmZiVNOOQX3338/Dhw4ENoXRURxoX379prrrhEjRui677fffhvr1q1DUlKS107J/v378fnnn+OBBx7AOeecg6ZNmwZ9THrWrwcOHMD999+PU045BZmZmUhLS0N+fj4mT56MrVu3+lXWsWPH8NRTT+H0009HdnY2UlJS0KlTJ1x//fVYvXq1X2VpFS9tzYUXXqj+3bz33nt+P7+goAAGgwGSJCE7Oxs1NTV+l3HixAksXrwYU6ZMwfjx49GuXTuXz5hWzmFFy5eWvrIQAgsWLMCVV16JLl26IC0tDSaTCTk5ORg8eDAefPBB7Nmzx+/X7FBcXIy8vLyA+kNaVFVV4Z133sHYsWPRunVrJCUlISkpCS1btsQ555yDadOmae4719TU4I033sCYMWOQl5eHxMRE5ObmYsCAAZgyZQpOnDih23GH2+TJk9XfxyOPPOL386uqqpCZmQlJkmA0GnH48GEAgMFgwMMPPwwAeOmll7B7925djxsAIHSwb98+AUAAENdee63bbYYPH65uEy+uvfZa9TXv27fP5/bx+B6Fw2OPPaa+z1q+tPzuXnjhBWEymTyWkZ6eLubMmRP6F0dxwd+6pbF88MEH6nF98MEH4T6cmNSuXTvNddfw4cN1229lZaXIy8sTAMS//vUvj9tNnz5d92PSs3798MMPRVpamseyEhISxEsvvaSprO+//140a9bMY1mSJIl7773X79frTWO1NcuXL1fLfOyxx4I/8AB8/vnn6jEMHTrU7+c/+eST6vNvu+02v5+/adMmn58xrZz7yVq+fL3nx44dEyNGjPBZTkJCgnjuuef8fu1CCDFp0qSA+kNa/Prrr6JDhw4+j79Zs2Zi0aJFXsv67bffRPv27X2W89133wV93FryTqj9/vvv6jG0bdtWKIri1/NnzZqlPv/88893ecxqtYquXbsKAOLyyy/X87CFEEIYoYP27dtDCKFHUXFtxYoV4T6EuPPUU0+hV69eXrdp1qyZ18fffPNN/Pvf/wYAmEwmXHPNNRg+fDgsFgsWLVqEzz77DOXl5bjmmmuQlZWFMWPG6Hb8FJ9mzJjB6atxLjc3F2+//bbXbXJycnTb3+uvv47CwkIYDAbcd999Hrez2Wwu/09OTkaXLl2wadOmgParZ/26YMECXHvttbDZbJAkCZdeeinOPfdcmEwm/PDDD5g9ezbMZjPuvvtupKen48Ybb/RY1u+//45x48ahqqoKAHD22Wdj/PjxSEtLw9q1a/Hee++hsrISL774IhITE/H0008H9PpD9V5EgwsvvBA5OTk4fvw4Vq1ahT179qBTp06anz9z5kz1++uuu87v/df/WzYYDMjPz8fevXtRXV3td3kOZ511Fv71r3953SY/P9/jY1arFeeddx5+++03AEBSUhImTpyI0047DU2aNMHBgwfx9ddfY9WqVTCbzfi///s/pKWl4bbbbtN8jN9//z1mzJgBWZaRkJAQ0CixJwcOHMDo0aNRWloKAMjLy8OkSZPQpUsXGI1G7N27F7NmzcK+fftw9OhRXHjhhVizZg169+7doKytW7di5MiRKCsrAwD07NkT11xzDTp06ICSkhIsXLgQX375JY4ePYpLLrkES5YsweDBg3V7LeHQt29fnHrqqdi0aRMKCgqwbNkyjBo1SvPznfsO9T8Xjvr9xhtvxCeffIJHHnkEPXr00OvQG29ILR5H8SJ1NCLeOY90Ll++PKiyDh8+LFJSUgQAYTQaxffff99gG+fRnzZt2ojq6uqg9kkUqTjSGXqOkc527do12j4tFoto06aNACDOOeccr9vOmzdP/POf/xTvv/++2Lhxo7BarS6jA/6MdOpZv1ZWVoqWLVuq286YMaPBNosXLxZGo1EAEGlpaaKwsNBtWYqiiL59+6plPf744w222bBhg8jIyBAAhCzLYtOmTZpftzuN3dZEwkinEELccccd6nE88sgjmp/3448/qs/r1atXQPvevXu3mDhxopg2bZr46aefRGVlpRDCdbaBVnqOkDmPVLVp00bs37/f7XZvv/22ul1OTo6wWCyayq+srFRHISdPnuzyevXoy15//fVqeeeee66oqqpqsI3FYhETJ05Utxs3bpzbsgYMGKBuc/XVV7t9jZ999pmQZVkAEN26ddP8PrgTCSOdQggxdepU9TiuueYazc87cOCAkCRJABBNmzYVtbW1DbYpLS0VSUlJAoC46aab9DxswdAZQgydkUnP0HnnnXeqZf373//2uN3f//53dbtXX301qH0SRSqGztALR+icN2+e+nudNWuW388PNHTqWb++/PLL6jZ///vfPZb173//W93O09TY+fPnq9sMGDDA4/S21157Td3u0ksv9fJKfWvstiZSQueGDRvU42jXrp3mqYTOwea///2vrscU7tB51VVXqWW99tprXrc9/fTT1W21nvi46667BADRqlUrUVZWpnvobNWqlVre1q1bPW5XXFysngTKzs5u8Pjq1avVclq1auX1JMttt92mbvvuu+8GfOyREjqPHj2qTrNPTU0V5eXlmp7nPOV88uTJHrdz1CPJycmirKxMr8MWIV+91rEi6w8//KD+zJ+LphVFwSeffIIJEyagQ4cOSElJQXp6OvLz83Hrrbdi8+bNXo/NedEYx/TVpUuX4oorrkCHDh2QlJTU4OJoq9WKRYsW4Z577sHQoUPRrFkzJCQkID09HV27dsWkSZPw448/etynY2VJ56kdHTp0aPCaPb1XWi5OX7NmDW6++WZ069YN6enpSE1NRadOnXDttddi2bJlPp9ff1EHxzSgfv36oUmTJkhNTUXPnj3xwAMPoLi42Gd58UgIgU8//RQAfK7m6DyVZu7cuSE/Nme//PILbr31VvTo0QNZWVlISkpC27ZtMWHCBCxYsMDrc92tYFhQUIB77rkH+fn5SE1NRVZWFgYPHozXX38dVqtV0zFVVFTg5Zdfxtlnn42WLVsiMTER2dnZ6N+/Px599FEcO3bM6/Prf1ZsNhtmzJiBs88+G61atYLRaET79u0bPO/IkSO477770KNHD6SmpiI7OxtnnHEG/vvf/6rT5BwLtdR//nfffafu09fUKId//etf6nMWLlyo6Tla+Fq9NlS/t2+++QYXXngh8vLykJSUhPbt2+Oqq67CL7/84vdrMJvNeO+993DRRRehTZs2SEpKQlZWFk499VTcc889Hhes2LFjB1JTUyFJEjIzM7Fv3z6P+yguLkbbtm0hSRIMBoPXeps8mz17NgD7VNlLLrmkUfapd/3q/PM77rjDY1mORToA4JNPPvFZlvP29U2aNAkZGRkA7FN7KysrPe7Xm0huaxxTXiVJgizLmDp1qtvtvvvuO3UKZXp6urrg0qRJk7Bq1SqP5Z922mno06cPAPu0zOXLl/s8pqqqKvX9MhqNuPrqqwN4ZZHr6NGj6vddunTxum3Xrl3V77X8/a1duxbTpk0DALzyyitIT08P8Cg903r8WVlZyM3NBeD+2J37un//+9+RlJTksayJEyeq3//vf//z63gDcezYMfTv319th++++263lyEG2j/Lzc3FBRdcAMD+3niqq+rTOuX8qquuAgBUV1fjs88+01S2JnokV2/J33mE09uXuzNpu3fvFr179/b6PFmWvU65cB7VWrZsmfjnP//pthznszdaLs52vFZ3Q9POI5y+nu/pvfLEYrGIm266yWfZl112mdspCw6O7YYPHy727NkjevTo4bGsdu3axdRIrV4jnZs3b1bL8TV9x2azuUy10vPMkScVFRViwoQJPv9Wxo4d6/F46p/tXrhwocjKyvJY1tlnny1qamq8Hte3337rdfENwL4YxpdffumxDOfPyokTJ8TQoUPd/t06W7ZsmWjSpInHfZ5yyimioKDA40iSzWZTpxw1adLE59S16upqdX9t27YVNpvN6/b+8DWLQu/fm9Vq9VqvybIsnnvuOc0jnVoWkUhISBBvvvmm2+c7TxsbNGiQsFqtbre79NJL1e0eeughr+9ptGjskc6amhp1WueZZ54ZUBmBjHTqWb+WlpaqU8oyMzN9fhZ79uyp7tvdSEzTpk3Vx48dO+a1rLFjx6rbLliwwOu2noSjrdEy0rlu3TrRvHlzAdin/M6ePbvBNkePHhUjR4702Q7dcMMNwmw2u92P8+JUEydO9HnsztNPPU3LDEa4RzqvvvpqtSxfI539+vUTAITBYBAnTpzwuq3ZbBannHJKg/dN75HO1q1be/18OTiPdPbu3bvB486jl2+88YbXfRYVFanbGgwGdaq0v7T8Hvft26cuxgNAPPPMMw220aN/9tVXX6nbaambnaecn3baaV63LSkpUetMPT9DIQ+dK1euFPPmzXOpxOfNm9fga9u2bS7P2717t8jJyVGfM3ToUPHss8+KOXPmiA8//FDcddddLh1IT5Wic8A477zzBACRl5cn7r//fvHhhx+KGTNmiNtuu00cPnxYfc6AAQNEWlqaGDdunHjyySfFrFmzxCeffCKmTZsmbr75ZpGamqqWeccddzTY5++//y7mzZsnzjrrLHW7t956q8Fr/v33312epyV0Xn755eo2SUlJ4pZbbhEzZ84UH374objzzjtFenq6+vi5557rcSqKY5s+ffqI/Px8IUmSGDdunHjjjTfE3LlzxTPPPCPatm2rbjds2DCPxxRtnP8mhg0bJjp27CgSExNFenq66Ny5s7j66qvFV1995XMaz5w5c/xqRJx/v2vWrNHp1bhXU1MjBg4cqO6vU6dO4sEHHxSzZ88WH3/8sXj66addKsWRI0e67Yg5dzzGjRsnUlJSRHJysrjlllvEjBkzxJw5c8Q999zj8pnwdhLos88+EwaDQQAQJpNJjB8/Xrzyyivik08+Ee+++6646qqr1CkjsiyLpUuXui3H+b10fK5PO+008eyzz4qPP/5YvP322+L2229Xt9+6davacXb83f/3v/8Vc+fOFdOnTxdDhgxRA4xj6o+7Tv2UKVPUMj788EOvv4PZs2er2z7xxBNet/WXP6FTj9+bc+OekJAgbrrpJjFz5kwxe/ZsMXnyZPW9vfjii9XtPIXOn3/+Wd1ekiQxZswY8dJLL4m5c+eKGTNmiFtuucXld+WpnPHjx3s99nfffVd9fODAgUFdxxNJHB3AtLQ0MWrUKJGbmytMJpPIyckR/fv3F/fdd5/YvXu3bvtbunSp+j4GuhJrIKFTz/r1l19+8Wv/zp+vuXPnujz2119/qY9pCf7O7U2gq4iGo63xFTqXLVumhtuUlBTx7bffNtjmxIkTolOnTi4d3SeeeEJ89NFHYs6cOeKhhx5ymWrp6bUdP35cJCQkCEDbVELnkDt//vxAXr5XwYbOjh07in79+onMzEyRkJAgWrRoIc4++2zxwgsviJKSEp9lffrpp2pZWq/pnDRpks9yHVMv09PTxcGDB92+Xj1Cp/Pgj7drOp0/h+6uwb711lvVx/0JnQDEr7/+GtCx+wqdmzZtUq8dNxgM4r333muwjV79M4vFop70kSRJ7Nmzx+uxO085f/nll32+1u7du6ttjacTu/6KyFum2Gw29SL9xMRE8cknn7jdrrCwUB0JlWVZbNmypcE29W+PMXToUFFaWup1/0uWLPE6Snj8+HF1ZEWWZbF371632+l9y5SPP/5Yfbx58+ZuzxDt37/fZQTB0zUdzu9JQkKC+Prrr92+TueygglKlZWVbk82BPJVP6z7S+stUwYMGOCxMhdCiCeeeMJro1yf80Xx7s4I66n+9T/uOtxms9nlmNxV2s4dD8A+Yrdz584G261Zs0Y9I9mkSRO3o2YFBQVqJ6Vt27Yery9Zs2aNyMzMFABE69at3Z79rj+D4s477/Q6euE8Enrbbbe53bb+34W7DmVhYaEain11Xs8880y14XFuwPXgT+gM9vfmfHY0KytL/Pbbbw222b59u3o7DceXu7BYVlamLkiTlZUlVqxY4fb17dq1Sz3plZqa6nY0qaioSD1jbjAYxMqVK9XHduzYoQbqjIwMn42xL9u2bdOt/vI1MuaLllumGAwGcf/99+vSUXA+0fLpp58GVEYgoVPP+nXmzJk++yjOHn30UXX7p556yuWxH374wa/X8v7776vb33DDDT63dyccbY230PnZZ5+JxMREAdivtfv555/dluE4CSVJksdObnl5uTjnnHPUfS1cuNDtds6zFt5//32Px71//351hKZZs2YhOdkUbOj09pWZmdngREd9iqKISy65RH1OUlKSuPnmm8Xrr78u5syZI55//nmXNu+SSy7xGdT/+OMP9Xc6bdo0j69Xj9B57Ngx0blzZ7XMvLw88cADD4j3339fzJo1Szz22GNq31OW5QafQQfnz8Vdd93ldZ/O138Cvk8ae+JrkM0xoygpKcnjCQ+9+mdCCHHvvfeq2zz66KMej7uyslIdlDKZTJraIedb5mzcuNHn9lpEZOh0vjfT9OnTvW67Y8cOdeTE3SpLzh3J1NRUcejQIU2vyZc9e/Z4bJQc9A6dffr0UR93d1bRYc2aNWql265dO7cdD+cP35NPPumxrHfeeUfTdr74e48qb1/BTk157LHHRFJSkjjvvPPEk08+KWbPni3mzp0rpk2bJv72t7+pf08ARMuWLcWff/7pthzHxfYAxCuvvOJzv/5uH6jDhw+rZ4X/9re/ed3WbDaLjh07CgCiS5cuDR6vH15+/PFHj2U5L27gbrvJkyerHeL169d7Pa733ntPLeujjz5q8LjzZ+X000/3Gjh//fVXddtevXp57Yg7l+tpFMN5oQ53QU4Ie73k2Gbs2LFeX2sg/A2dwfzexo0bpz7u7myzwzfffOOyT3eh87///a/6+FdffeX1NTqPsP3nP/9xu82KFSvUVQnbtWsniouLhdlsdlk8Q48TPP7e29fbV7CLl7Vr1060bNlSXH/99WL69Oli7ty5Yvbs2eKxxx5Tp8bpVVcKIcSVV16plhfoCqyBhE4969dp06apj91zzz0+y/K2/Zdffqk+Nn78eJ9l+bu9O+FoazyFzjfffFP9zLVq1crj9EjnewnefffdXvdVVFSknmg8++yz3W6zYMECtTxvUwmdg4iv/QYqmNDZq1cvceedd4p33nlHfPrpp+L9998Xd9xxhzpi5fjyFqyFsF/y8OCDD7rMbqv/1bdvX/HNN9/4nLVls9nE4MGDBQDRr1+/Bu2p3qFTCPso+KWXXurS36r/ddlll3ntKyxZskTdtlWrVl4vEal/aV2gi2x5yjtffvmlSE5OFoD9xMEPP/zg9vl69s+EsM/ichxP+/btPf6unU+8+dqvw3PPPadrOypEhIZOx9mxjIwMTUt+Dxo0yGMn0bmzoOVaAH84zuxfcMEFbh/XM3Q6v8ennHKKz7JGjRqlbu9uhNLxmMFgEEVFRR7LcQ7XwdwoNpJC5+bNm71e27BlyxaXs3CjR492u53ztbXvvPOOz/0++OCD6vZTpkwJ+Ph9cV6l0dMZaGcPPPCAx79T545Hnz59vJbjHBTrX4unKIrIzs4WgO9bLghhv97BMQLn7vft/Fnx1Tg//PDD6ra+puB88cUX6raeQqdzGLrvvvvcbuO8Aqa3a1MD5U/oDOb3VlNTozaQzZs39zly5piOA7gPnY6ZKV27dvX5GoUQ6jQlb0HF+XM1YcIEcd9996n/v+qqqzTtx5dICp0rV670epLl9ddfV0MBEPgZfQfH1HMAHk/A+RJI6NSzfv3Pf/6jPqbl2l7naYk333yzy2MfffSRX39fixcvVrfXUve5E462xl3odA503bp1EwcOHPD4fMdojiRJmk72X3HFFQKwz25zFx6sVqtaH0iS5HaGmaIoLtN5N2/erP0F+yGQ0FlWVibWrVvn8fGqqipx3XXXqeUmJCR4nEXnUFxcLF544QV1hNLd19ChQ8VPP/3ktZxXXnlF7Q+6O8ZQhE4h7P3LG2+80eOxJyQkiMsuu8zl8jdnVqvVpa927bXXum2j5s+f3yDcBvq5cJd33nvvPbX8vLw8sWHDBo/P17N/5nDGGWf4bF+cL/dzN7PRHed68Omnn9b0HF+MiEArV64EALRo0QLfffedz+0NBgMA+8pm1dXVSE5OdrvdsGHDNB9DWVkZPvroI3z77bfYvHkzjh8/7nHlrz///FNzuYFau3at+v0555zjc/tzzjkHS5cuBWBf6faMM85wu13Xrl3RpEkTj+W0atVK/T6YVWzbt2/vduWucOjVq5fXx3v27InvvvsOvXr1Qk1NDZYsWYI1a9ZgwIABjXSEwXF8fgD73+b8+fO9bu/8e922bZvbVV8BYODAgV7L8fa3snXrVhQVFQEA0tPTfR4TAKSlpaGkpATbtm3zup2vz7XjBtqA/abc3jhWc/bmrLPOQteuXbFz507MnDkTTz/9NEwmk/q4xWJRV4hr2bIlxo4d67PMUArm97Zx40aYzWYAwPDhw9W61pNRo0Z5/H2VlpZi06ZNAIDmzZtr/hsA4PVv4IknnsDSpUuxZs0al9U6O3TogNdff93nPrR4/PHHPa6w3tiGDh3q9fFbb70VxcXFeOihhwAATz/9tLoSYSAcn1sAyM7ODrgcil6KouD222/Ha6+9BgDo378/vv32W+Tk5Hh8jqMdysrKcum/eFJbW6v+u3fvXnTv3t3lcYPBgIkTJ+LZZ5+FEAIzZ85s8JlcuXIl9uzZAwDo16+fz7a+MaWnp6ur8LqTnJyM9957D4cPH8aiRYtgNpvx/PPP44033nC7/XfffYfLL78cpaWlGDFiBB544AEMGDAAycnJKCgowKeffor//Oc/WLVqFUaNGoWPP/4Y48aNa1BOQUEBHnjgAQDAnXfe6fUY9fTMM8/g4YcfhqIouPHGG/GPf/wDPXr0AAD88ccfePPNN/Huu+/ik08+werVq/H999+7rMQL2P8m3njjDYwZMwY2mw0zZ87E77//jmuuuQYdOnRASUkJvvvuO8ybN09dkd6xKros63LzDjz33HO4//77AQCdOnXC4sWL0bFjR4/bh6J/dv3116ufsRkzZjToxxw4cEC9e0deXh7GjBnjdZ8OTZs2dXscwYi40FlRUYETJ04AsC+N7+/y7MXFxR5Dp3Pnypvly5fjyiuvRGFhoabty8rKNB9foP766y/1+/ofPHect3F+bn3eGg0ASExMVL+vqanxud9Y4bj9zFtvvQXAvtx9/dDp6BAD2t6b6upq9ftQLEPu4Hyricsuu8yv53qrWIL5W3E+ps8//xyff/65LscE+P5cHz58WP3eW2MAAE2aNEFWVhZKSko8biNJEm6++Wbce++9OHLkCL7++mv87W9/Ux//6quv1CXhr7vuOp9BLdSC+b05v3edO3f2uS9v2xw8eBCKogCwN7zOja8v3v4GjEYj/ve//6F3794oLy93+ZnjdhXx5u6778bzzz+P0tJSbN++HXv37vX5t++JIwwYDAaPbWso6Fm/RmpZWoW7rZk+fTpKS0sBAKNHj8a8efNcjskdR51fXFwcUD/OnUmTJuHZZ58FAMyaNQuPPfaYy+1qZsyYoX5//fXXN3j+4sWL1VtjuXPxxRf7dZx6c9ziatGiRQDg8ZYZ3333HcaOHQtFUXDppZdi7ty5LiGqc+fOeOCBBzBq1CiceeaZqKmpwTXXXIOdO3ciLy/Ppaxbb70VFRUVaNeuHZ544onQvTgnDz30EKZMmQLA/rdV/xZAp59+Ot555x2ccsopuOOOO1BQUICrrroKv/76a4OyRo8ejblz52LSpEmoqKjAli1b8H//938u2yQkJOCVV17Bd999p/5dehts0Wr+/PnqCebTTjsNixYtQvPmzb0+JxT9s8svvxx33XWXenuTV1991eXzOXPmTHXQZ+LEiTAatUU/5/bTuU4Jhj5RX0eOii1QjrPy7mhpMHft2oWxY8eqgbNbt26488478dprr2HOnDmYN2+e+uW4f5DNZgvqmLVwdKYAIDU11ef2zn9wzs+tT6+zPbHI+WzR9u3bGzyelZWlfn/8+HGf5TlOptR/rt6C+Qx5+/wE87cSqmMCfH+uHTMUjEajy4ikJ1o+X5MmTVLD2jvvvOPymOP/kiThhhtu8FlWqAXze6uoqFC/T0lJ8bm9t/cumL8Bi8Xi9fGcnByXUbiOHTvi9NNPD3h/0S4pKcllhNtd/aWV4+/cZrN57bDrTc/6NVLL0ircbY3zfXwrKys1zVoKRZ3frVs3DB48GACwb98+l/vuVlVVqfcTTEpKwhVXXNHg+TfffDMuueQSj1+R4IwzzlDbtIMHD7r9zN1zzz1QFAWyLGPatGke6/gzzjhDvR98eXm5SygHoM7mA4DXX39dU9sXrEOHDuGFF14AAHTv3h233367x20nT56sjnj/9ttvWL16tdvtxo8fj927d+ORRx5Bv379kJWVhYSEBLRr1w7XX389fvvtN9x8880un4v64TsQzp+L6upqTVkgFJ+LzMxM9e+3srLS5aS+EAKzZs1S/+/t3pz1OR+rXiccI26k0zksnXnmmfjhhx8adf/PPPOMmugfeughPPXUUx5v/HzTTTc12nE5n63UcoNf585iKEfVtKqqqsLixYt1Katt27bo27evLmV54zy1wN3Il/Nosqcb2Ts7cOCA2+fqzfEZkiQJVqs1Ik4sOH+uH3300UY7owqcDEJWqxUWi8Vn8NTy+WratCkuvfRSfPTRR1i8eDEKCgrQtm1bHDhwAN9//z0A+xnYDh06BP8Cwsj596YlcHh775zLmjhxostNqoN12223uXy+du7ciYcffhjPPfecLuVv3749qODmbOjQoT5Hn/Xgq/7SyjnMFxUVaTr5oAc969dILUurcLc1d9xxB7Zt24Z58+bhl19+wbnnnotFixZ57Vs4Lo9w1It6ue666/Dzzz8DsI9sDh8+HADw2WefqSfYL7744pCe2A0lWZbRpEkTtR9aUlLi8pnbt28f/vjjDwBAjx490LJlS6/ljR49Wp2xVX+a87vvvgvAHsDWrVuHdevWuS3DOXy8+uqr6nt70003+RzZq2/x4sXqScRRo0Z57F8D9j7MyJEj1csr1q5d6/FykebNm+PJJ5/Ek08+6bE8x/sG2KeIB+vSSy9FRkYGXnnlFezcuRNnnXUWli9f7vV3Eqr+2XXXXYf//e9/AOyfi2uvvRaA65TzgQMHIj8/X3OZobi0IuJCZ2ZmJtLS0lBRUdEo10rWt2TJEgBAs2bN8OSTT3r8QJSXl7v8QkKtRYsW6ve7du3yub3zNr4qpcZw9OhR3c4kXnvttQ3O2IWCr7PFzteL/P77717LUhQF69evB2BvVOpfr6KnVq1aYcOGDRBC4NChQ2jTpk3I9uXPMTk09ue6ZcuW6rWEe/fuRbdu3TxuW1xcrLmD/o9//AMfffQRFEXB+++/j8cffxzvv/++OoX05ptvDvrYw8257ti9e7fP7b1tE6q/gY8++ggfffQRAPu0rOPHj+PAgQN48cUXce6552LkyJFB7+Pjjz/W7UTJ8uXLNV07HCy9Rrvat2+Pn376CYC9E9K6detgD00TPevXHj16QJZlKIqCDRs2qKNEnjhfB17/usC8vDw0bdoUJ06cQEFBAY4fP+71JIK3srQKd1tjMpkwd+5cXH755fjiiy80Bc9WrVqhpKQER48e1XSyT6vLLrsMd9xxhzqy+eqrryI1NRUffPCBuo2n0RwtgT3cFEVxmUZZ/7PrfMmDlssHMjMz1e/rnxR0jFgXFhbikUce0XR8//3vf9XvL7jgAr9Dp57H748//vhDnSXQqVMnlz51MKZPnw5JkjB9+nRNwTNU/bORI0eibdu2KCgowA8//ID9+/ejffv2mj4XnjhnnHbt2ulynI02BOJcwfuamnHmmWcCsHcQtXR09HTkyBEA9kUovDVKS5YsUTuXnvjzmn1xXgjIMZLijfOooqdFhMg751F2d2eLe/bsqXbAtm7d6rUj/fPPP6vX/g4ZMiSko8+OM78AdBtdDlafPn3UBmbp0qU+Pzt66tevn/r98uXLvW7ruNhei6FDh6Jnz54AgPfffx8WiwXvv/8+APtJK3eLNkSb0047DQkJCQDsnwdf04cci5e5k5OToy4UsXr1al2uhd+3bx9uu+02APYR7Tlz5uDDDz+EwWCAoiiYOHGiS/iKF7W1tS5T0YIZ7XIOPDt27AjquPyhZ/2akZGhjpCUlpZ6nKYH2Kc0OkZE2rZtq/7NOjv33HMB2Nt1b3VsVVWVeu1ycnKyS93sj0hoaxzBc/z48QCgBk9Pn2PHa62pqXGZBhusjIwM9RgqKirw+eefY//+/Wp73bp1a4wePVq3/TW2X3/9VR3lbNWqVYOZBc5B7eDBgz7Lcx5ldp79EC7hOn7n8KX3ZS/Tpk3DHXfcAcA+y2bEiBEu4dpZqPpnsiyro5uOKbWVlZXqlPPk5GRMmDDBrzKdF/A79dRT9TlOXUrRwHlqla+zFY43DrBPxWtMjg/43r17PQZFm82mXgTtjT+v2Zf27durU0o3btzoNXj+9ttvWLZsGQD72YlIuLbJsXqtHl+NMcq5Z88el+l/559/foNtJEnC3//+dwD2D/krr7zisbzp06er3/v7wffX5ZdfrgaF5557Lui/PT0YDAZ1Bc0DBw6o03oag3P4e+2117wGp2nTpvlV9i233ALA3njeeeedamfw2muv1e3MfjglJiaqf/tHjhxRp++4s3DhQp8rDTvq9qqqKnVBkEDZbDZcddVVaqd3+vTp6NKlC4YOHYoHH3wQgP36oRtvvDGo/QD21Wv1qr8aY5TzpZdeUqfEdenSRdMiUJ44L6C2Zs2aoI9NK73rV+efe/ucv/LKK2rb72mhD+eypk+f7rGvMGPGDPXvc+zYsQFfMxcpbY3RaMTHH3+MSy+9FIA9eI4ZM8Zt8Jw4caL6/RNPPKHr2hfOIzYzZsxwWSjl2muvjYhLSgIhhMBjjz2m/t9dv6Nz585ISkoCYG93HFONPfn444/V751PwAL2k6xa6iznUa59+/apP+/du7ffr9H5JNaCBQu8rjlSVlaGhQsXejx+rbZv365+ZrKysnRpE+p7+eWXceeddwKwzzT0FDxD2T+bNGmSOjtz1qxZ+PTTT9VL7f72t7+5jBpr4ajv09PT3Z58C0iQt1wRQmi7T+e//vUvdRtPN011sNlson///ur2d9xxh6itrfW4fVVVlfjggw/EnDlzGjzmfH81LfdHO/vss9XtX3rppQaPm81ml3spAZ7v5/fSSy+p28ycOdPnvn3dy3Tu3Lnq4y1atBDbtm1rsM2BAwdc7lPl6Qa4jse13DPNn20j3VdffSU+/fRTr/cbrH+fzhEjRnjc9tChQyIlJUUAEEajUSxZsqTBNh988IFaVps2bTTdezZY99xzj7rPs846S/z1118et7XZbOL7778XTz31VIPHPN0g3B1f2x48eFBkZWWp92Lz9Zk4cuSIePLJJ8XGjRsbPObPfX+FEGLo0KHq9rfddpvb+xzWvxejp8+1s5KSEvX37/y1c+dOTccVKH/u0xns723lypXq402aNHF7s+6dO3eKFi1auLwH7u7TWVFRod7zTZIk8fzzz3u952RJSYmYNm2a+P777xs89sgjj6j7uvTSS10es1gs6v2bAYi33nrL63sQLZ5++mnxxx9/eN3mjTfecLkn3YwZM4LaZ01NjUhNTRUAxLBhwwIqI5D7dAqhb/1aWVmp3ufR0/vy/fffq/cHTktLE4WFhW7LUhRF9O3bVy3riSeeaLDNxo0bRWZmpgAgZFkWmzZt8vg6nT83nu7F19htjbd6wWKxiEsvvVR9fODAgaK0tLRBGePHj1e3mTBhgtttnMv8/PPPPfZZnCmKItq3b6/WI82bN1f3s2vXLr9fq7/8vU9neXm5eOihh8SxY8c8blNdXS2uv/56tVyTyeTxtUyYMEHdrnPnzh7vl+p8f9rExERx8OBBTcdbnz/36XTe1l2f22w2i9atW6vbjBs3TlRVVTXYrqqqSlx00UXqdr169RKKojTY7siRI17rxN9//120adNGt/rQV95x3J8WgOjSpYvbexvr1T9zx7lv5Nwmu6svvCkpKRGSJAkA4uKLL/brud402jWdo0aNUs/A3XDDDbjrrrvQrl079XYCnTt3Vs/GyrKMzz//HIMGDcKhQ4cwbdo0fPLJJ/j73/+O0047DZmZmaioqEBBQQF+++03LF26FJWVlXjqqaeCPs7Jkyero4h33303VqxYgXPPPRdNmzbFrl27MGvWLOzatQtnnXUWdu3a5XWay6hRo9Tv77vvPhw7dgzdunVTlytu1aoVTjnlFM3Hdtlll2HevHn4+OOP8ddff6Fv376YNGkSBg0aBIPBgN9++w3vvfeeetbxnHPOUaeekd2ePXtw1113ITc3F2PGjEHv3r2Rl5cHk8mEI0eOYMWKFfjyyy/VVclatmzpdcGTli1b4r///S9uvfVWWK1WnHfeeZg4cSKGDx8Oq9WKhQsXqtMbjEYj3n77bfUspTvO1xDv27fP4z0zfXnmmWewYcMGLF26FMuXL0fHjh0xfvx4DBo0CLm5uTCbzSgsLFRHzQsLCzFq1Cg8/PDDAe1Pi9atW+Pjjz/GRRddhNraWlx77bV46aWXcNFFF6FLly5ITk5GaWkpdu7cidWrV+Onn36CzWbzeW9NLd566y30798fVVVVeP311/HLL7/g6quvRuvWrXHkyBHMnTsXP/30EwYNGoSCggIcOnRI09nyzMxMTJgwwWXqzogRI9ClS5egjzlSDB06FLfddhtef/11FBcXY+DAgbj22msxdOhQyLKMtWvX4r333kNlZSUuvvhir/cdS01Nxfz58zF8+HCUlZXhvvvuw1tvvYXx48ejR48eSEtLQ1lZGfbu3Yu1a9dixYoVMJvNmD17tks5q1atUmebtG7dGm+//bbL40ajER999BF69+6NsrIy3HXXXRg+fLjX63mjwaeffoqHH34Yffr0wfDhw9G9e3c0adIEZrMZu3fvxhdffKFevwwAV199tcvMoUAkJiZizJgx+Pzzz/Hbb7+hoqLC5+0y6tcjzguR7Nu3r8Hjffv2dbntkIOe9WtKSgrefvttjBs3DjabDddddx0WLFiA8847D0ajET/88ANmzZql1v1Tp071eL2aJEl4++23ceaZZ6KqqgqPPfYYfvrpJ1x66aVITU3F2rVr8e6776qjGA888IBfbb07erc1wTAajZgzZw4kScKnn36K1atXq9d4Ok+ffP/997Fz505s3rwZc+fOxaJFi3DZZZehX79+6mI5hw4dwvr16/H999+juLhY09RHSZIwadIkdQaC47KoYcOGBTWq7857772Hffv2ufzM+br/+n/LTZo0wT333OPyM6vViv/85z947rnnMGLECAwcOBAdO3ZERkYGysvLsXHjRnz88ccut+l7/fXXPb6WKVOm4Pvvv0dRURF2796NXr164eqrr8bAgQNd7tPpPDPhsccea7Trsb0xmUyYPn06xo8fDyEEvvzyS3Tv3h0TJ05Urz/etm0bZs2apU6tNZlMePXVV92usVJQUID+/fvjjDPOwKhRo5Cfn4/k5GQUFhZiyZIlWLBggTrKft999wVdH/oydepUSJKEqVOnqllh+fLlLmsahLJ/dt1116lTzR23S2zXrp3faxs4RsEBnW8lpEdy1TLSabVaXUYb6n+5O8N++PBhMWrUKI/Pcf4yGAzinXfeaVCGvyOdQgjxwAMPeN3XkCFDxNGjR9UzOt5GRK644gqP5dR/r7SM3lgsFnHjjTf6fD8uvfRSt2ePHBzbxdtI59SpUzX9PaHurP7+/fs1lfvCCy8Ik8nksaz09HS3I/H1OT/H1xlFX2pra8Xtt9/uMurh7WvixIkNytBzxMzhl19+ER07dtR0TGlpaW5HCPwd6RRCiGXLlqkjre6+evXqJQoKCkSrVq0EAHHqqadqKnfNmjUu5Xz00UeajylQjTnSKYS9/r7mmms8vneyLIvnn3/eZaTF3Uinw/bt20WfPn00/Q0kJiaKhQsXqs8tLi5W615Zlr3W6x9++KFaTp8+fbzOmIkGp512mqb3zGg0iocfflhYLBZd9jt//ny17FmzZvncXmsd66ktrE+v+lUI+99EWlqax7ISEhLcznJy5/vvvxe5ubkey5IkSdxzzz1uR2g8vV++6n093wtvtNQLFotFXHbZZep2AwYMaDCaWVpa6jIy5+vrkUce0XR8+/btU0diHF/vv/9+sC+7Aee2RsuXu/5gcXGx5uc3bdpUfPrppz6P6/fffxddunTRVBc8/fTTQb0Heo50Onz44YciIyPD5/Hn5OSIBQsWeCzn119/9VlGenq6mD59eoCv3pWWvCOEEHfffbe6XefOnRuMeOrRP3OnoqKiQf326KOP+v06HZ/r5ORkUVZW5vfzPWm00CmEffrAs88+KwYNGiSaNGni8mZ76xitWLFC3HLLLaJnz54iKytLGAwGkZGRIXr06CEmTJgg3njjDXH48GG3zw0kdAohxMKFC8XYsWNFTk6OMJlMokWLFmLkyJHinXfeURtyLaHTarWKN954Q4wYMULk5OSoU3fcvVf+dKR/+eUXccMNN4jOnTuL1NRUkZycLDp06CCuvvpqsXTpUp/Pd+wn3kLn8ePHxSeffCLuuusuMWzYMNGpUyeRmZkpjEajyM7OFqeddpq45ZZb/Ppbcdi8ebP45z//Kbp27SpSU1NFenq66NWrl/i///s/TeG1srLSpeNz4sSJAF5hQ7t27RL333+/GDBggMjNzRVGo1GkpKSIDh06iPPPP19MmTLF49SvUIROIeydlQ8//FBcdtllokOHDiItLU39HfTr10/cdNNNYu7cuaKiosLt8wMJnUIIUVhYKO69917RrVs3kZycLLKyskS/fv3Eiy++KCorK4WiKCI5OVkA3qdVO1MURZ1Gl52dLWpqavw6pkA0duh0+Prrr8XYsWNFbm6uSExMFG3bthVXXHGF+Pnnn4UQQnPoFML+vn355Zfi2muvFV27dhUZGRnCYDCIrKwscdppp4mJEyeKGTNmiKKiIpfnOXdg77//fq/7EEKIq666St3+nnvu8bl9JNu0aZN49dVXxVVXXSV69+4tWrduLZKTk0ViYqJo0aKFGDVqlHjyySfdTukKhtVqFW3bthUAxNlnn+1ze3866b76DQ7B1q/O9u/fL+677z7Rs2dPkZ6eLlJTU0XXrl3FP//5T7Flyxa/yjp69Kh44oknRN++fUVWVpZISkoSHTt2FJMmTVI/F744vxdaTjbq+V54orVesFqtLp9Jd8FTCCHWrVsn7rzzTtGnTx/RtGlTYTQaRVpamujSpYu4+OKLxUsvvST27Nnj1zGOHDlS3W9qaqooLy/392X6pEfotNlsYvny5WLKlCnioosuEj179hTNmzcXJpNJpKWlifbt24tLLrlEvPnmmx7bPHeqq6vFzJkzxSWXXCLat28vUlJShNFoFE2bNhUDBw4U999/v9/vqTuhCJ1C2KfGPvfcc2LUqFEiLy9PJCYmqnXZOeecI6ZOnSqKi4u9llFRUSFmzJghrr32WtGrVy+1z56XlyeGDBkinn32Wa/TV/2lNe8I4TqN1l3wFCK4/pknztO0JUkSe/fu9ev5paWlaj/opptu8uu5vkhCeLgCnoga1aJFizBmzBgAwL/+9S+/F7Wh4G3evFldpU3r72DJkiU4++yzAdjvZ/fyyy+H8hCJwmLq1Km4++67YTAYsH///oiYqkdERPp6//33ccMNN0CSJGzZskW/RYTQiKvXEpF3jnvEpqenh/TaSvLs1VdfVb/Xei3pG2+8oX4fC/fmJHLnH//4B/Ly8mCz2fD888+H+3CIiEhnzvX7hAkTdA2cAEMnUcRwhM67774bubm5YT6a2LNy5Uqv9wd97bXX1AVpWrVqhQsuuMBnmRs2bFAXzhk9erTuFTRRpEhOTsbjjz8OAHj77bc93oeOiIii05w5c7Bjxw4kJCTosjhrfZxeSxQBjh8/jmbNmiEnJwd79uzR7YbedFLnzp1RU1OD8847D3369EFubi4sFgv27NmDefPmYf369eq2X3/9tcfQ+d1330FRFOzcuRPPP/+8ukLcqlWrMGTIkEZ5LUThoCgK+vfvj3Xr1uH222/3er9IIiKKHjabDT179sSOHTtw//3345lnntF9HwydRBQXOnfujD179njdJjk5Ge+88w6uuuoqj9u4W7Zd6/WfixcvRlVVle+DdSMnJwdDhw4N6LlERERE4cTQSURxYfXq1fj888+xevVqHDp0CCdOnEBVVRWaNGmCrl27YvTo0bj11ls93pvPwRE609LS0LVrV9x66624/vrrNd3Xs3379uq9x/w1fPhwrFixIqDnEhEREYWTMdwHQETUGAYOHIiBAwcGXQ7P0xERERH5hyOdREREREREFDJcvZaIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGCwkREVHUMJvNqKqq8vhVXV2N2tpamM1m9V/nr/o/s1qtsNlssNlsUBTF7b+O7x1LIEiSpK5WLMsyJElq8CXLMgwGAxISEmA0GmEymWA0Gl3+7/gyGo1ITExEUlISkpOTkZSU5PZ7x/9TUlKQlpaGpKQkt7fwISIiijQMnURE1KjMZjPKysrUr/LycrffO/5fXl6uhkqr1Rruw48YBoMBaWlpSEtLQ3p6uvq981d6ejoyMzORlZWFrKwsZGZmIjMzE0Yjm38iImo8XL2WiIiCVltbi6KiIhQXFzf4t/7PKioqgt5fYmIiUlJS3H4lJibiu/dWQFIAKBJQ96/k9L3jSxIAhAQI2L9Q7//CPpIoOf5fN7AocPJ7qN8Lp+/r/pUFIAkIua6Qev+qPzfYv4QscPakM1FTU4OamhpUV1c3+Le6uho2my2o9y89PV0Nos5fTZs2RdOmTZGTk4OcnBxkZ2fDZDIFtS8iIiKGTiIi8qq6uhrHjx/H0aNHcfToURw7dszl6+jRoygtLfWrTIPBgPT0dGRkZKj/ZmRkYMkHKwGrDMkiATYZsMiQrPbvJZsE1H1JcDOtNFabs3pTaAWEPcwaBYRRsYdVowIYBWBQIIwCMCo475aRKCsrQ0lJCUpKSlBaWoqysjK/7zWblZWFnJwclzCak5ODZs2aoXnz5sjLy0NKSoqer5iIiGIMQycRUZyrrq7GX3/95fbr6NGjKC8v11ROQkICmjRpgiZNmiA7Oxur562HZK4Ljha57nsDJIsMWD0ERy3YbDUIoloJ1IVVkwKYFJd/hUnB0An9cOLECZw4cQLHjx/XPJ05PT0deXl5aN68uRpEHd+3aNECmZmZvP6UiCiOMXQSEcU4IQSKi4tx8OBBHDx4EIcOHXIJliUlJT7LSE5ORrNmzZCbm4tmzZph0Vs/QKo1AGYDpFoZktkQXJD0/gL0LzPWhCDQqQE1wQYkKBAJNogEBRfeMVod4S4sLNR0UiIlJQWtWrVC69at0apVK5fvmzZtykBKRBTjGDqJiGJEdXW1Giz//PNPFBQUqN/7uo4yPT0dLVq0QIsWLbDqf79CqjECNScDpWRrxDtssVkKXiOGOGFQIBJtEIk2INH+/fCJA3DkyBEUFhbixIkTXp+flJSkBtFWrVqhffv2aNeuHdq1a4fU1NRGehVERBRKDJ1ERFGmsrIS+/fvx759+7B3717s378fBw4cwLFjxzw+R5Ik5OXloU2bNmjVqhW+emkJpBoDpFqD/d/GDJX1sRkKvTCOJApJQCTZIJKsEMk2XHjXKBw6dAiHDh1CYWEhFEXx+Nzc3Fw1gDrCaPv27ZGVldV4L4CIiILG0ElEFKFqampw4MAB7Nu3zyVgHjlyxONzsrKy0KZNG7Rp0waLXv8RUrURUrUBUo0RkoigKYxsesIngqayCknYR0mT7aH0ontGo6CgAPv37/c6QpqZmYn27dujU6dO6Ny5Mzp16oQOHTogKSmpEY+eiIi0YugkIooAJSUl2LVrl8vXwYMHPa40mpOTgw4dOmDd/K2Qqoz2rxojJGsYRyx9YXMTeSIogNYnDApEihUi2QqRYkX/8afiwIEDKCwsdPu5kGUZrVu3dgminTp1QrNmzXjNKBFRmDF0EhE1IiEEjh49ip07d7oEzKNHj7rdPjMzEx07dsTGBTsgVxshVdYFzHBOh/UHm5joESXBTMhCDaIi1YI+43pgz549KC4udrt9eno6unTpgm7duqF79+7o1q0b8vLyGESJiBoRQycRUQiVlZVh27Zt+OOPP7Bt2zZs27bN4z0tW7Vqha5du+LHD36FXGmyB0yLoZGPWCdsWqJXlIYxYbJBpFqhpFpw1o0DsWfPHhQUFMBmszXYNjMzE/n5+ejWrRvy8/ORn5+PnJycMBw1EVF8YOgkItKJ2WzG7t271ZD5xx9/4NChQw22MxgMaN++Pbp06YLvX//pZMCMltFLT9icxJ4oDaAOQhL2EdE0C867azh27NiBPXv2uA2iOTk56NatG3r27IlTTjkF+fn5SExMDMNRExHFHoZOIqIAFRcXY/Pmzdi0aRM2b96M3bt3w2KxNNiuVatW6NGjB5a/tRpSuQlSpSmyFvUJFpuR2Bfl4dOZkAREqgUizYqzbx+C7du348CBAw1W0TUYDOjatSt69eqlfuXm5obpqImIohtDJxGRBkIIHD58GJs2bVJDZkFBQYPtHNP2fvt0K+RyE6QKU2Qv7hMMNh/xJ4bCpzMhK/apuekWDJ3UF5s3b0ZRUVGD7Zo3b64G0NNOOw0dO3aELMfo55uISEcMnUREbiiKgn379mHDhg1q0HR3C4cOHTrglFNOwbcv/gC53ATUGCAhNjvmKjYbFKPh00FAAIk2KOkWXHj/SGzZsgV79uxpMBqanp6O3r17o3fv3ujTpw9DKBGRBwydRESwj2QeOnQI69atw++//47169ejpKTEZRuj0Yhu3bph+6L9kMpMkMsTYncU0x02F1RfjIdPZ0JWINItUNItOP3vPbB582ZUV1e7bMMQSkTkHkMnEcWt48ePY926dWrQPHLkiMvjSUlJOOWUU7Dus22QyxLsU2WV+Olkq9hMkC9xFD4dHNeGKplm9JvQE5s2bWoQQjMyMtCnTx/0798f/fv3R4sWLcJ0tERE4cXQSURxo7a2FuvXr8eaNWvw66+/Nrgm02g0okePHtj6zV7IpQn2RX9iacEff7F5IH/FYfh00BJCW7dujTPOOAP9+/dHnz59kJKSEqajJSJqXAydRBSzhBD4888/sXr1aqxZswYbNmyA2WxWH5ckCV27dsXupX/aQ2aZCZISx1Ph2ByQXuI4fDqoITTLjJ4XdsTWrVtdbtViMBjQq1cvdRS0W7dunIpLRDGLoZOIYkp1dTXWr1+P1atXY+3atTh8+LDL47m5uRg4cCAWPr/SPmU2nq7JdMaqnxoDw6dKGBQomWZc8MAI/Prrrw3u4ZuVlYVBgwZh0KBBOOOMMzgKSkQxhaGTiKLe8ePH8dNPP2HVqlVYv369y2im0WjEqaeeio2f74JcnACp2hj7q8u6w6qewonhswGRZIWSZcagSadh3bp1qKysVB8zmUzo3bs3Bg8ejMGDB/NaUCKKegydRBR1hBA4cOAAVq1ahVWrVuGPP/5webx58+YYMGAAvn3uR/u0WVscjmayaqdIw+DpkZAERIYZlzx5Nn766acGo6AdOnRQA2jPnj05DZeIog5DJxFFBZvNhj/++AMrV67EqlWr8Oeff7o83qNHD+z4tgByUWL8jWayGqdowvDplYCASLZBaVKLXhd3xJYtW1yuBc3OzsaZZ56J4cOH47TTToPRaAzj0RIRacPQSUQRy2azYdOmTVi+fDl++OEHFBcXq4+ZTCb07dsXv3+0DXJxIiSzIYxHGgasuinaMXxqIowKlKxajPhnf6xevRoVFRXqY5mZmRg2bBiGDx+Ovn37wmQyhfFIiYg8Y+gkooiiKAo2b96M5cuXY8WKFSgqKlIfS0tLw6BBg7D8lV8hl8TZtFlW1RSLGDz9IiQBJdOMc+8bjFWrVqG0tFR9LC0tDUOGDMHw4cPRv39/JCYmhvFIiYhcMXQSUdgpioKtW7di2bJl+OGHH3D8+HH1sfT0dAwbNgzfv/ALpNKE+LlvJqtmiicMn34TEBCZZox9eDh+/PFHlxN0qampGD58OEaPHo0+ffrAYIizmSBEFHEYOokobPbs2YNFixZh6dKlOHbsmPrztLQ0e9B8cbV9IaB4CZoAwybFLwbPgAkIiAwLxj0xEj/88INLfZqdnY1Ro0Zh9OjRyM/Ph8T3mYjCgKGTiBrV8ePHsWTJEixevBi7d+9Wf56SkoJhw4Zh6dQ1kEsS4ytoOrA6JmL4DJIjgJ730FCsWLECZWVl6mOtW7fG6NGjcfbZZ6NNmzZhPEoiijcMnUQUctXV1Vi5ciUWL16M3377DYqiALDfQ3Pw4MH4+a1N9sWA4jFoOrAqJjqJwVMXQhJQsmoxfPLpWLVqFWpra9XH8vPzcd5552H06NFIT08P41ESUTxg6CSikBBCYMOGDVi4cCF++OEHVFdXq4/16tUL278sgHw8CZI1jhYDcodVMJF7DJ66EgYFSnYtTr8mH7/99pt6G5aEhASceeaZOO+883D66afzHqBEFBIMnUSkq6KiIixcuBDffPONyw3OW7RogaNrymA4lgyphveVA8DASaQFw6fuhMkGW04N2o3Oxd69e9WfN2/eHOeddx7GjBmDli1bhvEIiSjWMHQSUdAURcFvv/2Gr7/+GqtWrVLPoCcnJ2P06NH47j8/QSo3QQI7jypWvUTaMXiGhICASLNi7GPDsGTJEpd7gPbp0wdjx47F8OHDefsVIgoaQycRBezYsWP49ttvsWDBAhQWFqo/79GjB3Z++ad9+qzCqVoNsNol8h+DZ0gJWUDJrkHvq7rg999/h6N7mJmZifPPPx/jxo3j6CcRBYyhk4j8IoTAunXr8MUXX+Cnn35SFwVKS0vDueeei68eXgG5yhTmo4xgrHKJAsfg2ShEog1XvXYBFixYgKNHjwIAJEnCgAEDcMkll+CMM87gvT+JyC8MnUSkSXV1NRYvXowvvvgC+/btU39+2mmnYeun+yGfSIKksEPoFatbIn0wfDYKAQEluxZ9JnbBr7/+qv48Ly8PF110ES644AJkZWWF7wCJKGowdBKRV4cOHcK8efPw7bffqtf7JCcn49xzz8WCR1dBruaiQJqwqiXSF4Nno1KSrPjb86Pw7bffory8HABgMplw1lln4bLLLkPXrl3DfIREFMkYOomoASEEfv31V3z++edYvXq1em1Pq1atULiyDIajyZBsvFZTM1azRKHB4NnohCyg5FSj84UtsX37dvXnffr0wYQJEzBw4EDedoWIGmDoJCKV1WrF0qVLMWfOHJdl9AcMGIDf398JuSSBK9D6i1UsUWgxeIaNkmbB8Hv6YPny5eqq5W3atMFll12Gc889F0lJSWE+QiKKFAydRISqqip88803+OSTT9RFI5KTk3H++efjqwd/gMz7agaG1StR42DwDCuRYMP4l0bj66+/Vi/DyMjIwLhx43DJJZcgJycnzEdIROHG0EkUx06cOIHPP/8c8+fPVzsK2dnZKF1nhqEwhVNog8GqlahxMXiGnTAoUJpVo9nQdBw+fBgAYDQaMWbMGFx55ZVo3bp1mI+QiMKFoZMoDh08eBAff/wxvvvuO1gsFgBA27ZtcXhpCeRjyZAEO29BYbVKFD4Mn2HnWPW2+2VtsHnzZgCALMsYOXIkrrrqKnTq1CnMR0hEjY2hkyiOHDhwALNnz8aSJUvU+2v26tUL2z/9E3JRIq/X1AOrVKLwY/CMGEq6Gaff3BWrV69WfzZkyBBcc8016NGjRxiPjIgaE0MnURzYt28fZs2ahWXLlqkr0Q4ePBi/vrkdcnlCmI8uhrA6JYocDJ4RRUm1YOhdp2LFihVqO3T66afjuuuuw6mnnhrmoyOiUGPoJIphe/bswaxZs1wa+WHDhmH1K39ArjSF+ehiDKtSosjD4BlxlGQrzn74DCxatEhd8bZ///64/vrr0bNnzzAfHRGFCkMnUQwqKCjAe++9h+XLl6s/Gz58OH6etoVhMxRYjRJFLgbPiCQSbRjz5CAsWLBADZ8DBw7E9ddfj/z8/DAfHRHpjaGTKIYcOXIEM2bMwHfffQebzQZJkjBixAisemkT5KoAw6ZUt4KtUPQ70FjDapQosjF4eibJwdfvQZQhEq0Y/ajryOeQIUNwww03oHPnzsEdFxFFDIZOohhQXFyM2bNn48svv1RXox0yZAjWvrYTcqXB/wKlerdKYeD0jFUoUXRg8HTPub4Ppq4PshyRZMVZD56O77//HoqiQJIknHPOObjhhhuQl5cX+HERUURg6CSKYlVVVZgzZw4++eQTVFdXAwD69OmDLTMPQq5I8L/hrx82HRg63WP1SRRdGDzd0+NEo7v2I4BylGQFw+7thWXLlgEATCYT/va3v+Hqq69GZmam/8dFRBGBoZMoCtlsNixcuBDvvvsuioqKAAD5+fnY8/kxSKUJJ2994k+D7ylw+ltOvGDVSRR9GDrd0+OEo14nLevKUVLNOOW6tli3bh0AIC0tDVdddRUuvfRSJCYm+lcmEYUdQydRlFm7di1ef/117N27FwDQqlUrHFlaBbkoqeF9NrU09t7CptYy4g2rTaLoxeDpnh4nHnUuQ0BAZNWi7YVNsGfPHgBAbm4u/vGPf2D06NGQ+LskihoMnURRYt++fXj99dexZs0aAEB6ejqqNkkwFKZCEh4aXm+NvK+wqaWMeMVqkyi6Maw0pKVN8NUehKgMAQEltxpNhybiyJEjAIBevXph8uTJ6N69u+99ElHYMXQSRbjy8nK8//77mD9/Pmw2G4xGIy655BJ8+e+VkKwBnFXWGjZ9lROvWGUSxQYGT1f+tA16tC8BnBQVksCkDy7E7Nmz1XUMzjvvPNx0003IycnRvm8ianQMnUQRSlEULFq0CG+++SaKi4sBAMOGDcPqaTsg1xh9F1C/Qfc3bLorI96xuiSKLQyervQ4KdkIZQiTDWc93BuLFi0CACQnJ+Oaa67BZZddhoSEBP/2T0SNgqGTKALt2LEDL7/8MrZu3QoAaNu2Lf5aWAG5NEl7IY6GPJCwWb8MYuAkilUMnicF2l44txWNWIaSZkaXy5vhjz/+AGBvK++++2707ds3sGMgopBh6CSKIOXl5XjnnXfw5ZdfQgiB5ORkmLeZYPjLy3WbocTQeRKrSqLYxeB5UrAnKoN5fgBlOK73zBggq6u5n3POObjtttuQnZ0d3LEQkW4YOokigBACP/zwA15++WW10Rw9ejR+fHYzJLMhTAfFwOmCVSVR7GLoPCnY0BgmwqBg7LODMH/+fAghkJaWhltuuQUXXnghZDk6XxNRLGHoJAqzo0ePYurUqfjpp58AAG3atEHhwirIZWG+DxlD50mBVJOOTiyrWKLowOB5UpQGT8A+5bbDpdnYuXMnAKB79+6477770KlTpzAfGVF8Y+gkChObzYb58+fjnXfeQVVVFYxGI8S+JBj+TA/PVNr6Agmdjo5KLAVWf6tI544rq1ei6MLgaRfFoROom3KbV4mEXla1fb3mmmtw9dVXw2QyhfvwiOISQydRGBQUFOCZZ55RFwrq2bMndn54FHJ1hDSG/obG+h2UWAmd/lSP9TurrFqJohODZ9SHTgdhsuGMu7pg1apVAIBOnTrh/vvvR7du3cJ8ZETxh6GTqBEpioLPPvsMb7/9NsxmM1JSUmDeYoJcmAIJEdTR8Sc0xmrgBLQFR3cdVFarRNGNwTN2gicElKY1SD1DQWlpKQwGA6644gpce+21SEwM82UsRHGEoZOokRw+fBjPPPMMNm7cCADo168fNr15MHwLBXmjJTh66pDESuj0VTV665SyWiWKbgydMRM6HYTRhqH398SyZcsAAO3atcPDDz/MUU+iRsLQSRRiQgh89dVXeP3111FdXY3k5GRYtiRAPhJho5sOvkKjr45ILIROT9Wilo4oq1Si2BDvwTPGQqeDLbsaGYMlFBUVwWAw4IYbbsAVV1wBgyECTwATxRCGTqIQKi4uxpQpU7BmzRoAwKmnnortHxRCqjWG+ci88BQatXRAYiFwAg2Do9bOJ6tTotjC4BnuIwgJYVQw8N6u+PHHHwHY2+YHH3wQLVu2DPOREcUuhk6iEFm7di2mTJmCoqIiJCQkwLYjCYa/UiNzdNOZu+CoteMRC6HTuUr0p8PJqpQoNsVz8IzR0AnUXeuZWw3TqbWorq5GSkoK7rjjDowZMwZSPP/OiUKEoZNIZxaLBe+++y7mzJkDAOjQoQP+nFcBuSpCVqb1xTk4+tPhiIXACdjDYyAdDlalRLEp3gNIDAdPABCJVnSb1BybN28GAIwaNQr//ve/kZKSEuYjI4otsV2TEDWygwcP4p///KcaOC+++GIcmlMTfYFTkmO+o+ERAycROePnO6ZJtUbseOs4brrpJhgMBixduhQ33ngjdu/eHe5DI4opHOkk0smKFSvwzDPPoLq6Gunp6aj+1QhDUXK4D8s/Qgk8bMbKSKe/WIUSxYd4HfGMoxOQSroZWSMlHDt2DAkJCZg8eTIuuugiTrcl0gFDJ1GQrFYr3nrrLcydOxdA3WJB7x+JzFuhhEq8Bk6AoZMoXsRz8Ahj8JRkCUJpvHpWGBWcfkcH/PLLLwCA0aNH49577+V0W6IgMXQSBeHEiRN4/PHH1XtvGg6lwnAgw+/Fghq7UdVdPIZOVp1E8YWhM0y7tr/vgbaRgTxfQMDWshLoVAmbzYa2bdtiypQpaNu2bUDHQEQMnUQB27hxIx577DEUFRUhJSUFlvVJkE8k+VVGsI1pxIi30Mlqkyj+MHSGcfcn3/tA2stAn+883TY1NRWPPvooBg0a5Pf+iYihkyggX375JV5++WXYbDZ06NABh+ZVQqrSfu9N5wYQYOiMGqwuieIXQ2cYd9/wvfen3Qzm+cJkQ/4NzbFp0yZIkoTrr78e11xzDWQ5fq51JdIDQyeRH6xWK1577TV8/vnnAOxLq6965g/Aqq0zEmzDGZHiJXACDJ1E8SyeQycQkcET0N6GBvN8IQmc/9wAzJ8/HwBw5pln4sEHH+R1nkR+YOgk0qi8vByPP/44fv31VwCAsSADhsNpkOD7ekxPjR3A0BkVWE0SEUNnmHfv/f0Pph3W+nxrbiWk/EpYLBZ07NgRzz33HJo3b+71eURkx9BJpMHBgwfxwAMPoKCgAElJSbBtTIGh2H47lFA3dBEvlkMnq0cicmDoDPPufb//3trTYJ/vKENJMyPtTBuKioqQk5ODZ599Fl27dvVZNlG844R0Ih82b96MW2+9FQUFBcjNzYWyNl0NnN5IshT7gTOWMXASkUO8B84IoKW99NbuBvt8B7kiAZVLTOjQoQOOHz+OyZMn4+eff/ZZNlG8Y+gk8mLlypW46667UFZWhu7du6PsOwPkqgSvz9HSaFGEY+AkIopawbbDvp4vmY04/EkN+vXrh+rqajz44IP44osvAt4fUTzg9FoiD7788ktMnToViqJg8ODB+P3lfZAU1/M0zmdOA2ngYmKkM9am17JKJKL6ONIZ9um19kMI7PfgaGuDfX79MoQkMPrJPliwYAEA4Morr8Qtt9wCiX8vRA0wdBLVI4TABx98gBkzZgAADEdTYNybBQnuV57VoxGLarESOlkVEpEnDBFRHTqB4IOno4wGtzyDgK1lBaxtywAAF154Ie6++24YDIaA90MUixg6iZwoioKpU6fiyy+/BAAY/kyH8c90t4EzWDEROmMlcAIMnUTkGUOnXRQsJtQIB+G27bPmVkLpUgZFUXDWWWfhoYceQkKC98txiOIJQydRHZvNhueeew7fffcdJEmCYU8mjEdTQ7rPqA+eDJ1EFC8YPMMeOu2HEOTvwfEagmm/PARPW3Y10LMcFosF/fv3x9NPP43kZN8LDxLFA4ZOIgBWqxVPP/00li1bBoPBAHl7Bgwn3Nz0WY/GyknUhs5YCpsOrAqJyJd4D56xFDqBwNsyL2XYMmtg7FuF6upq9OzZEy+++CJSU0N7ApsoGjB0Utwzm8144oknsHLlShiNRkhbMxreEqV+Q6tD6GLgjDCsColIi3gOnrEQOu2FuP7f33bN3fvgVIaSZkbioBqUl5czeBLVYeikuGY2m/Hwww9j9erVSEhIgNiUDkNJ0skNPDWw8Rg6YzVsOmN1SERaxWP4jNXQ6aC1nfP2PtSVoaSYkTjEHjx79eqFF198ESkpbmZQEcWJ8NceRGFitVrxxBNPYPXq1UhMTITY0HiBM+rE42smIvIm3k5SRUDgDDlJ1vY6vbWJdc+XqxJQ+1MS0tLSsGXLFtx7772oqqrS6UCJok8c1CBEDdlsNkyZMgUrV65EQkIClPVpMJTVBU6tjU48EAoDJxGRJ/EWPONFsH2Aun6EXJUA8y/JavD897//jerqan2OkSjKsGdNcUdRFLz44otYsmQJDAYDxKa6wMmw6Soew2Y8TpcjouAweMYmPfoEkgy5KkkNnps3b8YjjzwCi8WizzESRRH2sCmuCCHwyiuvYMGCBZBlGfK2TBhKUxk2nXF0k4jIP0IwfMYqHcKnXJUE85oUJCUlYe3atZgyZQoUhe0sxRf2tCmu/O9//8Pnn38OADDszIShmKvJuWDYJCIKHINn7Ao2eFYkwrYhDUajEUuXLsW0adPAtTwpnjB0UtxYvHgx3nrrLQCAcX8WDCfSwnxEEYaBk4goeAwSsSvIUU9DaTKkbZmQJAnz5s3DjBkz9Ds2ogjH0Elx4ffff8ezzz4LADD8lQ7jkfQwH1EE4XRaIiJ9MXjGtmCCZ1EKDHszAQAffPABFi5cqNdREUU0hk6KeXv27MHDDz8Mq9UK+UQyjAWZgRcmS7z+M5axo0hEeom16zxj6eSkLNm/giAZZEiGwPoDxqPpMBzKAAC88MIL2LBhQ1DHQhQN2HummFZcXIz7778flZWVOPXUU2Ha0xQSAmhodGigIhZDtF0sdQ6JKHLEUt0SazNjdGjXAw2fxj8zcNZZZ8FqteLhhx/Gn3/+GfSxEEUySfAqZopRVqsVd911FzZu3IjWrVvj2FcCkiWAgFW/UVKELo2uUCLooxdLnYhAsBokolCLtVsyhemEpaTHCWCDoeHP/GyT3QVNYfOvLRWygg7XpGP79u1o27Yt3njjDaSn8/Ifik0c4qCY9corr2Djxo1ISUnBse8USDY3jYw3sTy6SScxcBJRY4i1uiYMJyt1CZyehGHKraTI2D+3HLm5uSgoKMATTzwBm80W1DEQRSqGTopJ33zzDebNmwcAsG5MhVxj8q8Ahs3YF2vXWxFR5Iu1eifWptsCuk251bytxYiyFUYkJiZi7dq1mDlzZtD7J4pEDJ0Uc/744w9MnToVAGA8lAlDaQoAQJI0nMXk6GZ8iKVOHxFFn1irg2IxeDbCqKfjcbk6Aco2+23cZs6ciTVr1gS1b6JIxNBJMaW8vByPP/44LBYLhg0bBuNfGleqDUPYDOk0IX/F02JCsdbZI6LoFGt1UbSMevrT3jXiQkPGojSMGzcOQgg89dRTKCwsDHrfRJEkjnqaFOuEEHjxxRdRWFiIFi1a4Nfp+7WtVBtJ4Y9CK9Y6eUQU3WKxTor04Olvm6/TSWktwXPRo+uRn5+PsrIyPProozCbzUHvlyhSMHRSzPj666+xfPlyGAwGFC0TkGw+/rw5lTa+xGLnjoiiXyzWTSEInmGfHdQIo56SkLDvk3JkZGRg+/bteP/994PeJ1GkYOikmLB3715Mnz4dACDtT4dcmej9CcE0HrIUm9NRY/E1AbG3cAcRxZ5YrKeiZbqtP+pOVgdyX05n3p4vm42oWWfvw8yZMwcbNmwIal9EkSJGe5kUT6xWK55++mmYzWacccYZMB7JcL+hLEMyGPQZ3dTpjGvYz9wSERHFC3f35wyEHHz3WTLIgMn9yvqGkhScf/75EEJgypQpqKioCHp/ROHG0ElR78MPP8Tu3buRkZGBTW8fdn8dpyzH3o25iYgotsTaaKdOIvIErSzrEj49Bc9lT29Gy5YtUVhYiGnTpgW/H6IwY+ikqLZ79271nlbVGxIgWeudxZRl+5lNBk5tYnGKLX/3RBRNYil4xmKbUp9ewbNe+JQUGceX2iDLMhYtWoSVK1cGvx+iMIqD2oBildVqxTPPPAObzQa5OBmGohTXDdyNbkqSfYqtHuKhMY0VDJ5EFE1iKXjGGLd9iEBGPd2NcNb7maEyCfIh+/07X375ZVRVVfm3D6IIwl4zRa05c+Zg165dyMjIQMKBpien1TbW6Cav6yQiolCJxcWFAqBbG6nXCWdvQjDqaTyciVatWuHYsWN45513gi+fKEwYOikqFRYWYtasWQCA6g2mk9Nqee1m8GJ1BJd/F0QUjaI1eMZqW+KLHsETUIOnJGQcW2YBAHzxxRfYtm2bPuUTNbI4rREo2r366quora1F7969YShK9W90U88ptkRERKEWrcEzXvmabuth8SC325lMMJQn45xzzoEQAi+88AKsVqs+x0nUiBg6KeqsXbsWP/74IwwGA7Z9eASSHMaFgnQ6kxtxU2xj9Qw1RzuJKFpFU/CMtLZRpxPNfp+w1nHU88fn/0BGRgZ2796NBQsW6FMuUSOK0Z4lxSqLxYLp06fb/3M4FbIlObxBItLCIhERxa5oCp5kp9OtVSQpCdV/JAAA3nvvPVRWVgZdJlFjYuikqDJ//nwUFBQgOzsbpsLswAuKwFVsOdrZSDjaSUTRLNIXGIq0NjFco5z1OYKn1qm1bhhOZKJt27YoKSnBhx9+GNzxEDWyGO1VUiyqqqrC7NmzAQDlG2RIShB/vnpNeQFid7RTKOE+AiIi8iSSgye5J8uQEgIPnRIkFP5gX1To008/xV9//aXXkRGFHEMnRY1PP/0UJSUlaNWqFQwn0gMvyBE49RrxUvRr+CNutDMWsaNGRLEgUmdt6HTCUigCItj2VZLtbbQe7bQk6fOeS1JQwVMuS0Hfvn1hNpvx7rvvBn88RI2EoZOiQmlpKT7++GMAwLG1gBzo9BTnEU5Z1meKrSzF1lRUocTuKCcDJxHFgkgNnA46tiNBB0+HIMqRjEan/wT+3kvJSWoZgQZPCRL++LwYALB06VIcPHgw4OMhakwx1FOmWPa///0PlZWV6NKlCwwVWf6HPE8X8kd6w93YYjVsAgycRESNLYaCp4tARz2dn1MXPAMJn7I5FYMHD4aiKOo9y4kiHUMnRbzy8nLMnz8fAFCwvBYS/KzovV2/GYGjnWGbYhurgTPSF90gIvJHtJ0sDVfw9NQm+znd1mWUs8GD2n8X6ihn/ecHOOr5+/+OAACWLFmCP//80+/nEzU2hk6KeF9++SWqq6vRoUMHyJV113IaZEgmLw2Bg5YFgyKwAW/04BnLgZOIiMKrsa/z1HISWM9Rz2C38yN4Son226YYapMxcOBA2Gw2dZFFokjG0EkRrba2Fp999hkA4NDP5pOjnJLsvVHR6b5YfonGazt5/SYRUfSIwJOkmkXhdZ5eRzldNtRhkSGt022d+hnr5x4FACxevBjHjh0Lbv9EIRZlPWSKN4sXL0ZRURGaNWsGQ1mW64OeRjv9DZt6TbHVWchHO2M1bAIMnEQUe6I5cDoLdfD09+SvXqvbAh5/R26n1np6vpdRT8cop4OhJgWnnnoqbDabehkSUaRi6KSIJYTA3LlzAQDFW+SG13K6G+0MdHRTr8Y8WkY7GTiJiChcIm3EE2gQPDWPctbnrj/hbx/DU/B007/YvtC+ku1XX32F2tpa//ZD1IiioHdM8Wrjxo0oKChAcnIyjKVN3G/kGO0MdjptPI12MnASEUWXWBnldBaK6zyDPekbghFPzaOcbspwnm5bf5TTwVCRgebNm6O0tBRLliwJbF9EjYChkyLWV199BQAw/5UESfEQCH1d2+kPgyHiVrLVHQMnERFFCh3bJD2v8wx4lNOZJEFKTwvuhIHzdFsP/QoJEoq22L//5ptvAt8XUYhFaM+Y4l1JSQl++OEHAICpJNvjdpJBhpSS7PEMYFjodcaV/BOLIwFERABv/aSBJEu6hFjJZNTt/ZYkCdDjZHZONpCd6fFhY2kWDAYDtm7div379we/P6IQYK+YItLSpUthsVgg1SRBrk1u8LhkkO1n/ozGujOBETLaqef1JXV0nWLLIExEFL1iLXiG4v7Wes7oCeL9ltJS7f/qETwNsv0rO9Nt+JRsJqAkBQCwcOHC4PZFFCLsgVJEclyXYCzNavCYZJBPhk3HzxJM4R/tdBc4IzHkReIx6YWjnUQU62IleIayLQrw9ixuV8QP8P2WnPsojuAZSPhs6rSmhXP4rMdQZt9u0aJFsNls/u+HKMRiuPdJ0erw4cPYunUrZFmGsdy1YlUDZ33hHu0MwQins5DfPiWWMHgSUayLleCpA6/to16jnn6+345RTpefSVJgo54GN30bN8HTUJGO9PR0FBUVYfPmzf7tg6gRMHRSxFm2bJn9m/Jk+5SROh4Dp+NxPUc7/QmevgJnKKYPBV+YfmVFIgZPIop10Rw8G7Nd1Bg83Y5yupSj7f2W0lJdRjkbPO5P8GzqYeV+oEHwlCCh6k97ucuXL9dWPlEjivGeJ0WjlStXAoA6yuly/aY3kgQpMbHxptn6c0PpSAx5kXhMRESkXTQGz3C0PT6Cp8/AqZbje4Ehb4HTZRtfwbNpE/ejnM7qXefp6Df98MMPnGJLEYe9ToooRUVF2LZtGwD7VBF312961VjTbEM8ndYTTrP1A0c7iSgeRGPw1IHf7WEjLDDkblqtJz6Dp6/A6bxdXfiUK1ORlpaGoqIi/PHHH5qPhagxMHRSRPnll18AAHJ1MmQk+h7ddCPk02wDDZycZtv4GDyJKB5ES/AMdzvoZoEhzaOcDcpyfc99Tat1x+MCQ96m1XpikCFlN0H1Yft7/Ouvv/pfBlEIxXiPk6KNI3QaqjICCpwAQjvNNtgRzkgMeZF4THpi8CSieBDpwTOS2pq64Blw4FTLOfme+xs4nZ/nMuqpZVqtJwYZBqkZAGDt2rWBlUEUIhFUA1C8UxQFGzZsAAAYarOCKywU02zDNKXWHU6zJSKiBiI9eOpAt/ZPx5Vt/ZlW68nJUc/g+i6yNRsAsG3bNpSWlgZ9XER6YeikiLFv3z6UlZUhOTkZsjkluMKEgGQ0BD/aqShA3cX4UpANgZ6EngFYz+tcIlEcdMKIiABE9swOndoa3do/gwFCh8V2pOQkwGaDsFqDLsvWIQ/WrOSgypBFItq3bw8hBDZu3Bj0MRHpJXJ60RT3HKOcNTWpENkZgRfkCBmyDMkUxPWdihJxgUUogoHTHxH2+yMiims6Bs+g2kKnayiDDp5OQT+Y4Glt3xyKUYaQpaCD54ED9te0devWoMoh0hNDJ0WMTZs22b+Rs2FpmgIlO92/AtwtZS4H+CfuLnDKsj6jnQFO+9U1bNoL1Le8SMPASUTxJJJHOZ3p2PYE1C66WTE20OApJSc1LCvA4KkYT/YNHMEzkPBpbpYGyPaFiLZs2RLQsRCFAkMnRYydO3cCACQpC0KS/AueXgKG36Od3kY4wxQ8GTj9xMBJRPEkWgKnQ7iCp5dblPgbPKXkJI/vu7/B09q+ecMyZMnvUU9zszQIWYJUFzp37NgBs9ns17EQhQpDJ0WE8vJyHDp0yP4fyT61VkiStpFKXwHDn2m2WqbUNnLwZOD0EwMnEcWTaAucDuEe8XRXjs2mKXx6C5xqWRqDp2Narcdy/AieQl1kKQXp6ekwm804cOCApucShRpDJ0WE3bt3132XDEk6GQ4tTZK8j3ZqDRhagmeEXsOpc4H6lhdpIuz3R0QUUtEaOB0aM3h6GeVsUJav4KnxffcVPH0FTrUcDcHT3CzN6fAklFeYAAB79+7VcKREocfQSRFhz5499m8k1wWEhCTBku1hmq2/AcNb8PQ3cDbCaCcDp58YOIkonkR74HRojODpR+BUy/IQPN1dx+m1HA/BU2vgVMvxEjwd02qdSZK938TQSZGCoZMiwsGDBwEAktTwXldCdhM8Aw0Y7qbrBjrCGcLgycDpJwZOIoonsRI4HUIZPAMInGpZ9YKnlmm1bstxEzz9CZxqOW6Cp7vACQBg6KQIw9BJEeHPP/+0f+MmdAJ11yk4AmOQAUMd7VSU4KfUhiB4MnD6iYGTiCj6hSJ4BhE41bIc9+oOMHCq5Vitavh0t3CQ5nLqBU+3gRMnT+IfPnw44H0R6YmhkyKCI3S6G+l0sGQlQcny8zYq7sgyYDBAMhgiK7AEeCsVrxg4iYhiS6yNcjqLwMWFANjDq07vu9KsSUCjnM4cwdP5Os4GJHswPXLkCBQlxvsCFBUYOinsFEXB0aNH7f+RPF8oLwwSLLkpUJpmeNxGC2G1AlYrYDJCMhqDKguKAiEE4OFMo38HFoJGIRRBNpLEcueLiMidWD7ZpmObJckSoEPwVPsJZkvQZYm8XECWYagMvqyCOxUc+qe3cpJgMBhgNptRVFQU9P6IghXjPVKKBmVlZbCp100kut+oLlsIue7+nQEGTzVwOgQTPB2B0yGY4OkUOCU9AqwzBk8iotgSi8FT78AJ2NvWYINn3aU9QoiggqfIywXqRjglIYIKngWTFTTLrEBuRgUO/cP9fTglSYbNZl/B9siRIwHvi0gvMd4bpWhw4sSJuu8SINVvdCSogdMh0ODZIHA6BBI86wfOYLgZ4WTw9BODJxHFm1gKnqEInA5BBM/6fYNAg6dz4FTLDjB4FkxW0DyrXP1/s0x78HQbPiX7ifzS0lK/90OktxjviVI0UKd9SPVuZeIlR6jBs4m24OkxcAbIY+D0Nyx6mVLL4OknBk8iijexEDxDGTgdAgiektHodsX7gIKnh2s4/Q2e9QOnQ7PMCjV8urKPdDJ0UiSI8V4oRYPKysq670wnf6ghPwhZ2zWemgKn1tFORfF902itYVHDNZwMnn5i8CSieBPNwbMxAqeDH8HTU+BUi/IjeIq8XO/70hg8PQVOZ/WDp1R3Mp+hkyJBjPdAKRpUV1fXfVcX+vzIDS63UnH3uD8jnL6Cpz9TarU0fhrpHjxjHYMnEcWbaA6eOtDcTmoInr4Cp1qUhuDpblqt230KAUO197J8BU6HZpkV+PMWR1n2k/kVFRWanksUSgydFHYnQ6fBr8DpYGmS5Ha0M6AptZ6CZyDXcHqb5uMnXYNnrI92AgyeRBR/oi146tQW+d0+egmeWgOnWpSX4Kk1cKr7tnkOngdu96/f0DyrvC542vdvsQS/Wi5RsOKg90mRrra2FgAgSYHdxNndwkJBXcNZP3gGs2iQuwUNAsTg6ScGTyKKN9ESPMMVOB3cBE9/A6dalJvg6W/gVI/BTfA8cLuCvCbaRjmdNc8qR3kf+2tk6KRIEAc9T4p0eqwC67ywkC6LBjmCpx6r1Dov3R4kBk8iIvIq0oNnuAOng1PwDDRwqkU5Bc9AA6eDc/AMNHA6pG4qAAB89tlnAZdBpBf2OinsJJ1GpIQsQSQFcd/N+nxcL+p3WURERBQ5HCeDdWjrhRCQTKagAqeDZBPYc3liUIGTKNIwdFLYOUJnebvggpmx0gK5vAYiORFSUlJwB2WzQdgUQJIgGQKb9utCERxZJCKixhHJo506zPrRjaN912H6qZyaYv/3RFnQZe24Ph3IsODwiczgCurTDAAwcuTIoI+JKFjsBVPYyXVnGM/K24a9fw8s4BkrLTAUVwGKPSgGFTwdgVOpaxiDDZ7O140EGTxFgDe49lCYfmVFokjudBERhVok14E6tD9Bt4dO7boQIqjgKaemnFxHwGoNKnjuuD4dyLIfi2KVgwqeFzT/AwDQtGnTgMsg0gtDJ4VdSor97KCh1oRF5031O3i6BE6HQINn/cDpVF5AwdNdoxhg8GTg9EMkd7aIiBpLJNeF4QyebtrzQIOnS+B0CDB4OgdOh0CD54fdZ8NYmwgASE1N9fv5RHpj6KSwc1SGVdUSuppS8e2Yl/0KnpJNNAyJgP/B01PgdCrPr+DprTH0M3gycPohkjtZRESNLcbrRL/bRy/tuL/B023gdPAzeO64LqNB4HRQrP71GWbmz0ZbYxqqqu3Hlpyc7NfziUKBoZPCzhE6K6vsf47dE1I0B09jpQVyWbXnDbQGT1+B06k8TcFTSyOoMXjqGjhjXYx3roiIAhKpdaNOJ0E1t5Ma2m+twdNr4HTQGDx3XJcBNDF73UbraOfM/NnoYEoDAFRV2/sZjhllROHE0Elhl56eDgAoLT/556gleLqdVuuO1uDpqxyn8rwGT39Coo/gqXvgjOVRzkjtVBERRYJIrSMbK3j6MVPJV/DUFDgdfNzCTUvgBLRNs3UOnABQXGrvYzRp0kTDgRKFFkMnhV1ubi4AoKhEhtV28ueO4HnLG581CJ+aA6eDt+DpGOX0h6fgGUhI9BA8GTj9EKmdKSKiSBKpdWWog2cAazJ4Cp5+BU7HczyMdmoNnA6egufM/NkNAicAnCi29y+4kBBFAoZOCrsmTZrAYDBAUST1rJxD94QUXJZWim/GTFODp9+B08Fd8NQ6rdZDebrcTgVoEDwZOP0QqZ0oIqJIFKl1ZqiCZxDttKj3XgUSOAG4nWa7c5J/gdNBscr4yyl4OsJm/cCpKMCJYvtrz8nJ8f+YiXTG0ElhZzAYkJ2dDQA4dsJ949AzIRnfjJmG/WNNgQVOB+fgGUzgdCpPDZ7BBsW64MnA6YdI7TwREZH/9A6eepwYrhvtDDhwOjgFz52TMiCy/Q+cDra64OludNOhpEyG1SZBkiS1j0UUTgydFBFatGgBADh8xHMDcfeev6PJNgmWXPcVrGaSdLLhCCZwEhERkX6CvJd1KKijncEETgerFUqSMajA6fDpoLfQ1uh5gaA//7L3p5o3bw6TyRT0/oiCFXmfbopL7dq1AwAc+NPocZvC8nSYKgSqWibB0jwj4H1JNWaImhrAYICUkBDcFFnhdLsWOcgGqe4MrxRsOfVFYCOuGz06AURE8SRS600d2yq1HdVh5pBktPdLRLWXlfI1sLXKga1VDoQsofXnnvs6Wnw67E30TDBCgefXd/Av+z7atGkT1L6I9BLDvVGKJo7QWXDYfUU8ZvtYGBZlAQAUA4ILnkKcnJYpS4DJGFjwrAucLtd8BBoY600pYvD0Q6R2oIiIIk2k1pehCJyAvW0NInhKRiMg1136YlMCDp62VjlQTAYoJgMggKRjtQEf06fD3sSpCSf7LDYPU5IP1vWn2rZtG/C+iPQUwz1RiiaOStHdSOeY7WNx5LN2SCw52XAoBqCqRaLfwVMd5azP3+DpLnA6+BsYPTQYDJ5+iNSOFBFRpIjUejJUgdMhwODpHDjVogIIno7AWV8go531AycAKBBug+e+gwydFFliuBdK0aRz584AgIJDRlTXnGw0HIEzqbhhhaoYJb+Cp1RjtjcWnhaf8TN4ug2cDloDo49FExg8/RCpHSoionCL1Pox1IHTwc/g6S5wqkX5cYs1T4HTMdrpT/B0Fzgd6gdPIYCde+3XcXbr1k3zPohCKYZ7oBRNcnJykJubC0VI2LXvZCX8V1mG28DpoDV4+gycDlqCp/N1nN7IUvDXeYLB0y+R2rEiIgqXSK0XGytwOmhYGVcyGr0GTrUoDaOdHgOnWkhd8PzCd/D8eNhbHgOng/P1ncdOyCguNcBgMKBTp04+yydqDDHc+6Rok5+fDwDYvicBAHD+jvMhL27i83m+gqfmwOngLXh6m1briafG0I+l4Rk8/RCpHSwiosYWqfVhYwdOBy+jnWrY9BE4Ad/TbH0GTrUgIOmo9+D58bC30CdB2/vlGO109KM6duyIxMRETc8lCrXgls8i0lH37t2xcuVKbNlhwvudPU+rdccRPOXcXCQdq4XpiNNNmJ0XDtLKZIQEQNhsruX4GzgdZMm1sQvgXmSSLOl7D09Jjt17eEoS7+FJRPGNgbMhoQCK3OBksJbRzQZF2RSguhpScrLLzzUHTrUge/AEXJ/z8bC3AEBz4ATqRjuFgs3b7VNru3fvrv04iEIshoc7KNqcdtppAIAfN6fhyKdtNQdOB8UowZrkOurpceEgLdyMeAYUOB0cjVwQQU+SJX1HPTniSUQUeyK1/tOpzQmqLax3fWcggVMtqt71nX4HTifOo52O0U1/AqeDAoH1W+0jnX369AnoWIhCIYZ7nBRtunfvjuTkZKDKhuSjJQGX4xj1tDVJ9W9arTsmI6SEBHuDpOU6zkbC4KlRpHa8iIhCJVLrPR0DZ9DqgmcwgVMtqrpavQdnoIHTeZqtP9Np3SmrkLDngH1Kbe/evQMuh0hvMdzbpGhjNBrV0U7JcjyoshSjBCXRqN7UOShC0S9w6n1tJvkWqR0wIiK9sb7TTpaCDpwAAIMBhr+KAg+czkVVK0EFTgDYuDURQgi0a9cOTZs2DfqYiPTC0EkR5fTTTwcASDVHoJgCbzxTjlpg+qsEMBohmUz6HJzBACnYBl0RsT2yGIl4bScRxYNID5w6rSGgy9oGjktnLJagipESTIAkQdTWBnc8EmBNM0HIEvq9MDmoou6f2xcA0L9//+COiUhn7P1SRBk8eDAAwFB1HDaDOaDgmXzMgsQDRZBqLfZG2GiElJwcWPi02SAs1pP/Nxj8upenC+eGUpKDCp+6LigUq4sJAQycRBQfIj1wOoS7vTEYTgZO1K3TEGDwdAROB9PBAGZoSYA13QRrmgmKwV5Wkx0W9HsxsODZ64N/IqmwEAAwZMiQgMogChWGTooobdq0Qfv27SFBwFh5BLYE+B08DRbFHjgdJOlk+PQneNYPnE7lBRw8G5Tl/0eQgVMjBk4iigfREjh1FFA76KHdDmSBwPqBEwBETY1/wbNudFMxSGrgdGiy3f8g3GvG7cjcVgTZZkZaWpp6uRJRpGDopIgzbNgwAICx/C9AAmwJgDVZ0hQ+U45aYDpU4v7BQIKnJ3XBU3P49NZAcrotEREFIhoDZzim2fpqqzWOdkoJJreBUz0mravlOwVOT7SOdvaacTt6zbgd6fvr+k0ABgwYAKMea1oQ6Yi9XYo4Z555JgDAUFEI2CyABAgDYDN5H/VMOeo0rdYTrcHT0yhn/bK0jHpqaRg1Bk+OcmrEUU4iinXRGDgdGrP90XByWMs0WzVs+njffY52agicgH208/T/eg+ePWfaw2b6fgBCwFj2JwBg5MiR3o+BKAwYOinidO3aFW3btoUkFBjLD598QIbX6bayWfEeOB18BU8tgbNeebpMt/URPBk4NWLgJKJYF82BU0c+20U/2mZv02y9jW42KMfbNFuNgdMhe5vnPk3PmbcjY9/J/xuqjkO21iA9PR0DBgzQVD5RY2LopIgjSRLOPfdcAICx9GC9B92PeCYfs8BUWOrPToJbYMhNeW6Dp79BMcgFhuIeAycRxbpYCZyhnGZbb8EgzdyMdvoTONVjqj/N1s2CQVqd/lLD0c6es1wDJ3CyvzRixAgkJCT4tQ+ixsDeLUWks88+G4D9zJ1krnR9ULYHT+frPA21CqQas387cbfAkL+jnPXKC9UCQxzlJCKimAmcDqFoj4Joh+uPdgYSOB3U0U4vCwZpkf3HySDcc9bt9sC5t95GNguMZYcAAOecc05Ax0sUarzKmCJSXl4e+vXrh99++w2mkv0wN+vpuoEMCAA2CUg+ZvNvlLM+R/AEIGy2YA77ZPBUFAhbkI2pJANCYeDUiqOcRBSrYi1s6kwoApIsBRU4VRYLpNQU+/dBvO+ipsbv6bSe9J06GbU5omHYrGMsPQhJ2NCuXTuceuqpQe2LKFQ40kkR65JLLgEAmEoOAIqHMCgDsk1AMgd3g2dIkv0MpyIAOfiPRSBLsHsiyTp2NmJ56i47ZUQUq2L1pFqEtkmipjboNkUyGmE6XBx04ASAFj9VImOPhweFgKlkPwBg3LhxkNgWUoSKzE87EYBBgwahWbNmkGxmGMsPud0m9S8bkg6W2hsHgwwEGtAsFqC2FoD9mlI9gmfAx+LgNCopyZJ+4TNCG3ldsLElolgVa8FTp7bIpX0McmaQ2v4H+V5LRqO9Pao1I2WXH/furCehxIyEEjNkiw1Zu2rdbiNXF8FQW4bExER1PQyiSBTDvU+KdkajERdddBEAwHRij9tGwGCuu5bTcX2mJAUU9tRRzjoBB08hXKfo6jlKCR1HPRk8iYgoXHQMnC6CuISkfrsvqjXec7N+OY7A6fh/ZXVA5TjCpmyx9ymMFe7XrUg4sQuA/VrO9PT0gPZF1BhiuOdJsWDcuHFITk6GobYUhsqjLo+po5zOAgmeTqOcrkXpOOLpb1j00nAyeGrA4ElEsSgWRjtDFTgd/BztlCTJfXsfwHtdP3A6+Dva6Qic9dUf7ZRrymCsKIQkSbj88sv9O1iiRhbDvU6KBZmZmbjwwgsBAAnHd7o8po5y1ucInhqn29Yf5XQtqq4h0hI+649y1qfjqKeuwTNWwyeDJxHFomgNnjq2N17bQD9GO3218VpHOyWj0WPgBLSPdjpPp3Wn/minqcg+ynnmmWeiTZs2mvZBFC4x2tukWDJhwgQYjUYYqk9ArjoBAEgtdDPK6SzI6bauRXk4CxoILceiscHkdZ4aMHgSEYVfKK7f9EbDaKemdl1DwFfDZpDtTf3ptJ44RjslSxWSKg4DAK688sqg9k3UGGK0p0mxJDc3F2PGjAEAJBzfAcCP+3L6Cp4epta6L8pLA+VrlNOZt+m2AVyPwuDpgw6dASKiiBJNo52NMbpZn1C8zmDy50Syt9FOb6Ob9aXsPuHxMW+jm/U5RjsTju+EzWZD37590b17d03PJQqnGO1lUqy58sorYTAYYKw8CrnSz5XgvEy39Ta11n1Rfky39SVSp9vGKgZPIqLGFY7A6eDmJG5AbbibgO9rOq07UkVVg5/5mk7rsazaCiSVHwQAXH/99X49lyhcYriHSbGkdevW6rWdyYe2IPFPL1Nr3XE33daPUU7XouqdJfVnlLO+SA2esRo+GTyJKFZE8mhnY12/6U85QVwm4zzaGcx0WufRTq3Tad1J27cFNpsNgwYNwqmnnur384nCIUZ7lhSLrr32WiQnJ0OylUARhYEV4hQ8/R3lbFhUGFe39UC34GkvTL+yIgmDJxHFikgMno19/aY3itBnXQYhAhrdrM8x2hnI6KaDIpVBCPuKtTfffHPAx0LU2GK0V0mxqGnTppgwYQIAwJxxEAIB3o+rLnhKOoQPKQKvF9Q1eMaqCPudEREFhHWZb3pcEuM8WyoIwmoLKnAKCFiNuwHY78vZqVOnoI6HqDExdFJUufzyy5GVlQVhqoU1OcDRTgCwWCFqNSxE5IOw2QCbLfgAG8SIa31Cx7JiGjtrRBTNIrUOC2BBPPfFBNmW1Y24Bnz5i1qO/X0WlQ2vyfSHsNqPw/Sn5wWFfFHko1AMxUhISOC1nBR1GDopqqSkpKjTScxZh6FYKgBrAA1KXVjUkxTs6KlODbVuIu14QiECR6qJiLxiveVd/etJAw2v9d7nQMOrsNrUwAkAosb/tSQAQD5eBKtsX8H/yiuvRIsWLQIqhyhcGDop6px//vno2bMnICswNz1kXxAokOAZJOEhuPodPDnKGX7swBFRNIiWuipco50erif1OzB6eJ/9He0UOvVNDMdKYU45CGG0oEWLFrjqqqt0KZeoMTF0UtSRZRn33HMPZFmGLb0U1uQye/CsqdUWPs0WXabWeuN38Iy0UcVIO57GEC2dOSKKT6yjvPO2gJE/4dXL+6w1vNYf3azPcKREUzmGY6UwHCuFzVYKkVsMALjjjjuQmJio6flEkYShk6JS586dMX78eACAOfcwFNggFEXbqGcIpta6E/R0W2p8/H0RUSSKxrqpsU5e6nV7Fp2mLWsZ3dQyxdZwrBSiphZKTQ3MzQ/BZrNhyJAhGDx4cNDHSBQODJ0Uta6//nrk5uZCJJhhaWpfVEgI4d+oZyPwGjwjcWptPI5yOovGzh0Rxa44r5O8tm1+hE2vo5Q6vcd6TKd1jG46gqk16ziU5CokJyfjjjvuCLp8onBh6KSolZqaivvuuw8AYG1yArbkCgD24Olx1FOnqbWeruf0xOuoZ7yHvEgU5508IooAXDDIs0BGN92F1wDeY3fXdfqaTuuOuym2jrDpCJyKqQaWpkcAALfffjvy8vL82gdRJGHopKg2YMAAXHjhhQAAc/M/ISSnFeLcjXo20tRaTzjdNoqww0dE4RIrdU8oTqrqMZUWCPg9rj9iGujopvMU2/qjm4D9npzm5n8CskD//v1xwQUXBLQfokjB0ElR75///Cfy8vIgTBZYcl3v3el11DNMQnGtJ6fWhlCsdP6IKDqwzmlAbeMi7NpNvabTOo9uOlibHIOSXK3O6uJJa4p2DJ0U9VJSUnD//fcDAKyZRbCmljbYxjHqKazWxj48IiIibRgsPNMhcAZ6r80G5ehxEttibjC66WBLqoTS/DgAYPLkyWjevHnw+yMKM4ZOigl9+/bFFVdcAcA+zVYxNrxuUwgB2JSgGx17OTqOmuo1VUgPeq0CGGvYESSiUIrF6fw6tieSrNN7E+ysICEAISBqaoIrx2KGsCluA6eQrTDnHYTNZsPo0aNx3nnnBbcvogjB3iXFjJtuugk9e/YEDArMLQog4HmqqLDZ7OExEEoEX6Oil0g7nkgQax1CIooMsVi36NiGqIEz3Jd/OPcZAj3xbDGrgdPtLuqu4xQmC1q1aoV77rmH02opZrBnSTHDaDTi8ccfR0ZGBpSkalhyCr0/QQl+1FNXATbSul3PWR+DZ0Ns/IlIT7FYp+g4uqnbCGcw6kY3g+YY3fQQOAHAmnUCtrRymEwmPP7440hNTQ1+v0QRgr1KiinNmzfHgw8+CMB+GxVrWonP5zhGPQMe+QyAEMLD8u0RNr010o4nEsTiNDgianyxVo9E4nRaN/xa20GnsOltdNPBllwBJe8oAOC2225Dt27dgt83UQRhb5JizuDBg12v70ystj9gs3lubBTFPvLZiMHTq0gLepF2PJEg1jqMRNR4Yq3+CMV02lDRMjtIj9FNp7DpMXDW1t2P02hGbYsC2Gw2jBo1Cn/729+C2zdRBGJPkmLSzTffjAEDBgCyQG2LAxAGC2BTfF+PGUlTbiNtlDHSjicSxFrHkYhCK9ZmSug8uhkx02mDpWEqLQD7NpKC2pYHAIMNXbt2xf/93//xOk6KSexBUkwyGAx49NFH0bZtWwiTBbUtCiAk7YsQBLXQkN4iLehF2vGEGzsHRKRFrNUV4RjdDOViQjqPbmrapWPhoMQaNGnSBP/5z3+QlJQU3DEQRSj2Hilmpaen45lnnkFaWhqU5CqYWxRCwI8GJQpGPUO2iJAvDJ6uYq0zSUT6irU6IpZGNxtxoaD6rM2LYEsvhdFoxFNPPcX7cVJMY8+RYlqbNm3w+OOPQ5Zl2JqUwZpX7HcZHPX0gNNtXcVap5KI9BFLdUOULBakWSMuFFSfNbtU7ZPcfffdOPXUU4M/FqIIxh4jxbwzzjgDd999NwDA2qIE1qZl/hdSN+op9DojGoxIC3uRdCzhFmvXaxFR4GKtPuDopistCwV5YMuohKX1MQDApEmTcMEFFwR3LERRgL1FigsXXXQRJk2aBACwtDkOW2ZlYAXVLUQUKSOfYW+4iYiINIqZNktRAgqbAKCk1MDcrhCQgPPPPx/XXXddCA6QKPIwdFLcuO6663DhhRcCEmBufxS2lOqgymvse3t6EhFnjYmI6KRYGuGkk4K8vZqSaEZt+8OALDBgwADce++9XKmW4gZDJ8UNSZJw1113YciQIYAsYO5cCCW5JuhyIyF4AjF0BpmIKJoxRMSmurAZcOBMMKO24yHApCA/Px9PPPEEjEajzgdJFLkYOimuGI1GPPbYYzjttNMAg0Bt50IoSTVBX9vBUU9SRcDfARGFCQNn7AlydBMAFEMNzB0PAQk2dOjQAc8//zxSUlJ0PEiiyMfQSXEnKSkJzz33HHr27AkYFdR2KYSSUKPLwgIMn0REcSjWFg0il7AZcLtus0HItTB3LoRItKFt27aYOnUqsrKydD1UomjA0ElxKSUlBS+88ALy8/PtwbPbESgJtfZGRqfwGQkYPImIQoxhM/boEDbtgdOC2s5/QSRZ0bJlS0ydOhXZ2dn6HitRlGDopLiVlpaGF198EV26dAFMCmq7HoGSZFbPbnoMnpKk6cL/uBn1FP6v3hezIuD3TUSNKJ4CZzzU9Rqn0krersW02QBFgWIwoza/ECLZimbNmuHll19Gbm6uzgdMFD0YOimuZWRk4L///S86duwIJNhQm38ESkqt/UFvo56y9o9OJIVPIiLSSTwFzljn71Rad32AutFNKAqUBAvM+YUQSVbk5eVh2rRpyMvL0/+4iaIIQyfFvaysLEyfPh3du3dXp9ra0upWtXUe9YyB6z15rScRUZB4/WZUkwxOXV+drtt0hE0oCpQkC2rzj0Ak2tCqVSu88soraNWqlT4HTxTFGDqJYB/xnDp1Knr37g0YBMxdj8KW7nQfT53DpyRJQBjDH4MnEVEAGDajn2OUUuewCQBKshm13QqBBBvat2+PV155Bc2bN9fpwImiG0MnUZ2UlBQ8//zzGDBggP0+nl2Owdak0nUjp8YlmBs6h3vEE2Dw1F0E/E6JKIQYOMNP0qHbGuQtUCSjsUHYBABbeg1q8wsBk4IuXbpg+vTpyMnJCf54iWIEQyeRk6SkJEyZMgUjRoywB8+Ox2FtXtZwwyDv2WUvQ9gXZgh0cQY9Gl89RMpxhBs7pESxi5/v6K/r69rboEY3lbrZTopru21tUglz1yOAQeDUU0/Fyy+/zNuiENUjiUgYciGKMDabDa+88gq++OILAIDhSDpMB5tAwsmOhxDC3gABgU+VdQRPILAGXSgQdccQyMil47lBi4dVDbVilUoUexg6dQmdQc+wCfQYHG2UwRDY853aSudrQgUErM3LYW1TDAAYMWIEHnroISQmJga2H6IYxtBJ5IEQAh9//DHeeOMNAIBclIKEfU0hCacGx1YvbPnboDqHTgd/GlWn0Gl/qn/7Z+gMEVarRLGFoTM6Q2f9tsnf0Fm/jZRP3jJNQMDSphi25uUAgPHjx+P222+HIdBgSxTjGDqJfFi6dCmmTJkCi8UCuSIRCbtzIVntjYrLaGd9WhpXd6HTQUvjWi90nnyqtoadoTOEWLUSxQ6GzugKnZ7aJK2B0EPb6BjlFLICc8fjULLsCw7edtttmDBhQlBrPRDFOoZOIg3Wr1+Phx56CBUVFZBqDUjY3QxydYL30AkEHzwB741s3fM8hUctDbwuwZOh0zNWsUSxId4DRZChs1ECp7e2SEvg9NEeSgbZfg/OLscgki1ISEjAAw88gFGjRvkumyjOMXQSaVRQUIAHHngABw8eBBQJCfuawlCc2nCKbX2+GlpfoRPwGTx9BUdvjT1DZyNgNUsU/Rg6g3x6iEOnr3bIV+j01RbKEpT0Wpg7HwOMCpo2bYr//Oc/6NGjh/fnEREArl5LpFnbtm3x5ptv4owzzrCvbNvpOCwtSyB8fYoUcfIrUMGscgsdp9FSYOK9s0pEFCpBto9a22dbbgXM3Y4ARgXdunXD22+/zcBJ5AeOdBL5yWq14q233sLcuXMBAHJxMkx7siHZNJ7DcXe2V8topzPnM74+ptg2fKrr/nldZyNidUsUveL55FG4r+d0t39/2hx3o5wa2z4hCVg7FMOWa79v98iRI3H//fcjKSlJ+/6JiKGTKFALFy7Eiy++CIvFAqnGCNOuppCrEvwrxNEI+xs6HRwNsYYptg2f6nT7F06xbVysdomiD0NnEE/XcWptIG2Nc+j0o71TEq2wdDkOkWqBJEm44YYbcM0113DBIKIAMHQSBWH79u149NFHUVhYCCgSjPuzYDiW6nI/T5+CDZ5OAg2eDJ1hwKqXKLrEc9AIZ+h0OrkaEEfg9LOds2VVw9LpBGAUyMzMxKOPPor+/fsHdgxExNBJFKyysjL85z//wS+//AIAkI+lwLS/CSQlgEa6kUOnrhg6/cfqlyh6MHQG8fQgQ2cw7Yufxy4gYG1dClsr+/03e/TogSeeeALNmzcP/BiIiKGTSA+KouB///sf3n33XSiKAqnKBNPubMjVfk63jebQaT+A8O4/GrEKJooO8Ro6wxg4hSIgGQyBty3+Bs4EK8ydT0CkmwEA48ePx2233QaTyRTY/olIxdBJpKP169fjiSeeQFFRkX26bUEmDEfStE+31SG0cbQzCrEaJgo9SQr8sxavgRMIS+h0tGONcm/POrbsKlg6FAFGgZSUFPz73//m/TeJdMTQSaSzoqIiPPPMM1izZg0AQC5OgmlvNiSrhhtT1y0IFOyZ4bBh6Awcq2Ki0HEOjf5+1uI5cAKNHjqd27DGCJ1CVmBtVwJbM/vqtD179sQjjzyCli1bBrdvInLB0EkUAkIIfPHFF3jjjTdgNpsBswzT3mwYSpN9PFEJ+gwvp9hGKVbFRKFRPzQydGrXiIHTXdsV6tCppJph6XQCItkKSZJwzTXXYNKkSTAajcHtl4gaYOgkCqE9e/bgySefxL59+wAAhiNpMBZkel5kyM2tT4I5SxwWDJ2BY3VMpD93oVHrZy2eAyfQaKHTU7sVqtApJAFrqzLYWpYBEpCbm4tHHnkEvXv3Dm5/ROQRQydRiNXW1uKNN97AF198AQCQagww7s2GodzNjaU93G8z2LPFjY7BM3Cskon04y00+vqsMXDqUIT399BXexWK0KmkmGHpWASRagEAjBw5EnfffTcyMjKC2xcRecXQSdRIfv/9dzz77LM4cuQIAMBQmAbjwXqjnh5Cp0OwZ40bDUNncFgtEwXPV2j09jmL98AJhDR0ammjgg6c9kJO7lMSsLUog7W1fXQzMzMTd999N84666zg90NEPjF0EjWiqqoqvP766/jqq68A2Ec9TXuzITtGPX2ETkBbQ8zQGQNYNRMFTmto9PQ5Y+gM2dRare2TnqFTSTHD0qEIIs0+ujls2DDcc889yM7ODn4fRKQJQydRGPz666947rnncPToUQCA4WgqjAVZkKz2x4M9Cxz20Gk/iHAfQfRj9UzkP38DY/3PGQNnSEY5/W2X9AidwgD7tZstygEJSE9Px5133onRo0dD4u+ZqFExdBKFSWVlJV5//XV8/fXX9h9YZJgOZEE+ngT4kdfcNcwMnTGC1TORfwIJEs6fMwYROx1DZ6DtUbCh05ZlhrV9EUSSDQAwfPhw3HHHHcjJyQmqXCIKDEMnUZht3LgRL774Ig4cOAAAkEsSYdyTCalW+5LtwZ5RDgmGTn2wiibSLtDQKAQDpzMdptYG2w4FfNswow2WdqVQcqsB2FemveuuuzB06NCgjoeIgsPQSRQBzGYz5syZg9mzZ9vv66lIMBxMg+FwGiShveEN9syy7hg89cFqmsg3hkZ96DDKqQe/bxcGAVuzKljblAEmBZIkYfz48bjxxhuRkpISoqMkIq0YOokiyMGDB/Hiiy9i/fr1AACp2gDDvkwYStzcXiUaMHTqh1U1kXsMm/qKgNDpb+BU0mph6VCq3galc+fOuPfee9GjR49QHB4RBYChkyjCCCGwePFivPHGGygqKgIAyEWJMO7PhFSjfcptxGDw1A+rayJXDJz6ioDACfhxezCTDZa2J6fSpqWl4YYbbsC4ceNgNEZhe0kUwxg6iSJUZWUlZs6ciU8//RQ2mw1QAMPhNBj+THO9t2ekY+jUF6tsIjsGTv1FSegUkoCteQWsbcoBg4AkSTj//PNx8803o0mTJo10lETkD4ZOogh34MABvPLKK1i7dq39B2YZxoJ0yEdTICFKOl0MnvpitU3xjoFTfxESOAEv9/iEgNKkBta2pRDJ9lVp8/Pzceedd3IqLVGEY+gkigJCCPz000949dVXcfjwYQCAVGmE8UAG5Gi43pOhU3+suileMXCGRoSHTiXNDEvbUogMMwAgOzsbN954I84//3zIcuQcOxG5x9BJFEXMZjO++OILzJo1CxUVFQAAqSQRxv0ZkKtMYT46Lxg6Q4PVN8UbBs7QiZDQWT9wKolWWNuUQcmxX7eZmJiIK664ApdffjlXpSWKIgydRFGorKwMs2bNwrx582CxWAAByMeSYTyY7tf9PRsVg2dosAqneMHAGToREjgBp1t/GW2wtiqHrXklIAOSJOG8887DDTfcgNzc3DAfJRH5i6GTKIodPnwYb7/9NpYtW2b/gQLIR1Jh/DMNksUQ3oOrj6EzdFiNU6xj4AytCAqdMAlYW1TA1qICMNjrtn79+uG2225D586dw3xwRBQohk6iGPDHH3/g7bffxrp16+w/sEkwFKbAcCgdkjWCOhMMnqHDqpxiFQNnaEVI4BSyAluLSthaVQBGe32Wn5+PG2+8Ef3794fEvwOiqMbQSRRDfv/9d7z77rvYunWr/QdWCYa/UmE4nAbJFgEdC4bO0GJ1TrGGQSP0whw6hSxga1YJW+sKIMHeRnTo0AE33HADhg0bxrBJFCMYOolijBACq1evxrvvvotdu3bZf2iV7Pf4/Cs1vOGToTP0WKVTrGDYCD09AqdQAipHyApseVWwtTwZNlu2bInrr78eo0aNgsEQYZeIEFFQGDqJYpSiKPjxxx/x3nvv4cCBA/YfWiUYClNhOJwKyepngx5gx8JtORRarNYpFjB0hl4wdbpzXe5HOcKgwJZXCVvLSsBkL6N58+a4+uqrcf7558NkiuCV2IkoYAydRDHOZrPhxx9/xKxZs7Bnz566H0owHEmB4ZCfCw45Ohl6dVQoNFitU7Rj4GwcgdTl9etwjWUIowJbiwrYWlSq12y2atUKV111Fc4991yGTaIYx9BJFCcURcFPP/2EWbNmYceOHXU/BOSjKTAcToNco+FWKwF2NnyWQ6HB6p2iDcNm4/G3/vZUb/soR5hs9gWCWlSqq9G2bdsWEydOxMiRI2E0RuhtvohIVwydRHFGCIG1a9di5syZ2LJlS90PAbkoyR4+yxO8PDmwTofmckh/rOIpWjBwNi6t9bav+tpDOUqKBbYWFVByq4G6TTp16oSJEyfizDPP5DWbRHGGoZMoTgkhsHHjRsyZMwe//PKL+nOpzGQPn0VJkOCmE+itA+JP+GTwbDys5inSMXA2Ll91tdb6uV45AgIi0wxrywqIJrXqz3v16oUrrrgCQ4YMgSxHwErqRNToGDqJCPv378fcuXOxePFiWCwWAIBUbbCHz2PJkBSnTkKAnZEGGDobF6t6ilQMnI3PU/3sb71cV46QBJSm1bC1qoBItQIAZFnGsGHDMGHCBPTq1SuYoyWiGMDQSUSqEydO4IsvvsD8+fNRXl5u/6FFguFoKgyFKZBq66698adj4i18Mng2Llb3FGkYOBufuzo5kLpYkiGMNtiaV8GWVwkk2stISkrC2LFj8fe//x0tW7YM8mCJKFYwdBJRA1VVVVi4cCE++eQT/PXXX/YfCkAuToLhrxRIJSb3U2+90aujQ8FjtU/hxrAZPo66OMD6V0BApFlga1ENJefk9ZrZ2dkYP348xo0bh4yMDJ0OlohiBUMnEXlks9nwyy+/4IsvvsBvv/2m/lyqNkD+KwWGo8mQbAFcnyMFMF2X9MWqn8KFgTN8JDnwsCkLKDnVsLWogkizqj/Pz8/HJZdcglGjRiEhwctCdEQU1xg6iUiTgoICzJs3DwsXLkRVVZX9hzYJ8tEkGApTIFfxHmtRh9U/NTYGzqgjkqyw5VXB1qwaMNnrjISEBIwcORKXXHIJunfvHuYjJKJowNBJRH6pqqrC4sWL8cUXX2D//v3qz6VyEwxHkiEfTwps9JPCg00ANRYGzqhhXxioBrbm1RBZZvXneXl5uPjii3H++ecjKysrfAdIRFGHoZOIAiKEwIYNGzBv3jysWrUKVmvddCubBPl4EgxHkiGVB3DtJzUeVv/U2Bg8I5qSaoGtWbX93pp1o5qSJOGMM87AJZdcggEDBvD+mkQUEIZOIgpaSUkJFi1ahG+++QYHDhxQfy5VGSAfSYHhWBIkCzsqEYfVPzU2hs6IIwwKlNwa2Jq7XqvZrFkznH/++TjvvPPQokWLMB4hEcUChk4i0o0QAlu2bMGCBQuwbNky1NTU2B9QALk4EfKxZMhFiZAEO55hx6qfwoXBM+wEBESWGbbcaig5NeoKtEajEcOGDcPYsWNx+umnc1STiHTD0ElEIVFZWYlly5bhm2++wbZt204+YK2bfnssGVIZp9+GBat9CjcGz0Znv9WJFUpuNWw5NUDCyVVsO3TogLFjx+Kcc87htZpEFBIMnUQUcvv27cPixYvx/fff4+jRoycfqJVhOJYM+WgS5GquftsoWOVTpGDwbBQi0Qpbbg2U3GqIFJv688zMTJx11lkYM2YMunfvDom/DyIKIYZOImo0iqJg48aNWLx4MVasWIHKykr1ManCCPl4MgzHEyHVGsN4lDGM1T1FGgadkBAmG5SmtbDlVkNkWNSfJyQkYOjQoTjnnHPQv39/mEw82UdEjYOhk4jCora2Fj///DMWL16M1atXw2Y7eQZeKjdCPpEEw/EkBlA9sbqnSMPQqRs1aDatgcg0w3HlgizL6Nu3L84++2yceeaZSE1NDe+BElFcYugkorArKSnBihUrsHz5cmzcuBGKcvJaI/sIKANo0FjVU6Ri8AyYSLBBya6BLafGPqLp9Fbm5+dj1KhRGDVqFHJycsJ3kEREYOgkoghTVFSEH3/80WsAlYuSIFUbuAhRIFjlU6Rg2AyISLDB1rQGStOGQbNHjx4YPnw4RowYwducEFFEYegkoohVVFSElStXYvny5diwYYNrAK02QC5KtAdQroLrH1b7FG4MnJoJCIhUK5TsGijZtS730gSAXr16YcSIERg+fDiaN28epqMkIvKOoZOIokJxcTF+/PFHrFy5EuvWrYPV6tTxskj2+4AWJUEuToCkyOE70GjC6p8aG8OmJkISULLM9qDZpBZIPHnCTZZlNWieeeaZaNasWRiPlIhIG4ZOIoo6lZWVWLt2LX766Sf88ssvKC8vP/mgAsglCZCL6wIorwP1jc0AhRrDpk/CZIPSpBZKdi2ULDNgOPm5TE5ORv/+/TFkyBAMGjSI99IkoqjD0ElEUc1qtWLLli1YtWoVfvrpJxw6dMjlcanaALk4EVJJAuRSjoJ6xKaAQoWB0y0hCYgMs31EM6vhtNnc3FwMGTIEQ4YMQe/evZGYmBimIyUiCh5DJxHFDCEEDhw4gFWrVmHNmjXYsmWLy61YoABSWYJ9Km5JAqQqI68FrY9NAumFYbMBkWSFklULpYkZSqbraCYAdOvWDYMHD8aQIUPQpUsXSHwPiShGMHQSUcyqrKzEunXrsGbNGqxZswZHjhxx3aBWhlySCLm0bhTUbAjPgUYiNg0UKAYllTAqUDLNUDLrpswm21wez87ORv/+/XHGGWegf//+nDZLRDGLoZOI4oIQAgUFBVizZg3Wrl2LDRs2wGw2u2wjVRsg1QVQuTQBkoUhlOGT/BLngVMY7CFTZNpHMkWq65RZo9GIU045Bf3798eAAQPQqVMnyDKn/BNR7GPoJKK4VFtbi40bN+L333/H+vXrsXPnTpdbsgCAVGm0h8/SBMhlCZCscdw5ZFNB3sRp2BQGBUpGvZBZ763o0KED+vTpg379+qFv375ISUkJz8ESEYURQycREYDy8nJs3LgR69evx/r167F79+4G20hVBvs1oWUJkMtNQI0h/q4JZZNBzuIsbIoEmz1kplvs/7oJmW3btkWfPn3UryZNmoTnYImIIghDJxGRGyUlJdiwYQPWrVuH9evX48CBAw03MsuQy0yQyutGQiuNkEScdMLZdMS3OAibAgIixQqRYQ+YSroZSFIabNeqVSuXkJmTkxOGoyUiimwMnUREGpSUlGDLli3YvHkzNm/ejO3bt8Nqdb1eCzYJUoUJcrlJ/RdmObZHQ9mExJcYDpvCZIOSZoFIs0BJt0CkWwCj69+3LMvo1KkTTj31VPTq1QunnHIKmjVrFqYjJiKKHgydREQBqK2txY4dO7Bp0yZs3rwZW7ZsQXl5ecMNzbJLCJUqTJBsMXhtKJuS2BZjYVMYFIhUC5R0K0SaGUqaxe0oZkpKCnr06IFTTjkFp5xyCnr06MFrMomIAsDQSUSkA0VRcODAAWzduhXbtm3D9u3bsXfvXtf7hNaRqg2Qyk2QKk2QK42QKk2xs0gRm5TYEgNhUxgU+zTZVIt9JDPdCpHc8FpMSZLQpk0bdO/eHd27d8cpp5yCjh07wmDgKtZERMFi6CQiCpGamhrs2rVLDaHbtm3DoUOH3G9cK0OuNEGqMKphFLVRvlARm5foFKVBU0AACQqUVAtEqj1kilQrRHLDEz8A0Lx5c+Tn5yM/Px/du3dHt27dkJqa2shHTUQUHxg6iYgaUWlpKXbs2IFt27Zh165d2L17Nw4fPux+Y6tkv21LpQlSldH+VW2MnlFRNi/RJYrCppAViBQbRIoFIsUKpS5kwuT+by43NxedOnVSQ2Z+fj6ys7Mb+aiJiOIXQycRUZhVVFRgz5492L17N3bt2oVdu3Zh//79sFgs7p9gliFVGSE7gqjjK1KvFWUzE7kiPGgKgwKRbLVPj02xT4tVUqxur78EAIPBgLZt26JLly7o3LkzunTpgk6dOiErK6txD5yIiFwwdBIRRSCLxYKCggLs3LkTe/fuxf79+7F//34cOXLE85PqwqhUY7CPiFYbINXU/d/XrVzqNwWhCiNscsIvwoKmgACSbBBJNnvATLJBqQuaSHQfLgEgOzsb7dq1Q4cOHdSQ2b59e/x/e/ceHFV5+H/8c3aTkIUEEi5CkIiogLRKQW5SDUVAQNRiQVqtHW2tP2unFlrrVL+pglYqVoaKrTPWMlVsNdVaRyjTWiwIXmoQUARaBCKEcAsh9wvsJtns+f2xuye7yWaT3eSwEN6vmZ095zznec6zj8HsJ+fy9OjR4wz2HgDQEYROADiHnD592gqghYWF1vvJkyfbrmRK8jhleJxyuJtDqTxOGfUtAmlHfiV0VWjh18+Zk+CgacqUegSDZXO4NF1emT2apCgn6fv166dhw4Zp6NChuvjii61Xnz59ztwHAAB0CqETALqBU6dOqaioSIcPH9bRo0d15MgRHT16VEePHpXb7W67oin/GdJ6fyi13j0OGR6n1NCBs6Sh4g03/CrqWmc4ZPpDpU9mjyb/KzX8XSnRg2VKSoouvPBCDRkyREOGDFF2drYVMtPT08/cBwEA2ILQCQDdmGmaKi8vtwJoMIweOXJExcXFqq+vb6cBSfUOGQ1OGYF3K6Q2OGTUO2ILph0NQ/xqio2NIdM0/E+FNVOaZAbelRIImCmBUNnD12oKkpaSk5OVlZUVFiyDywMGDJDDcZbekwwA6DRCJwCcp0zTVFVVlYqLi3XixAnrPXS5oaGhY401GlYwVYNDRqNDavS/Gw3Ny2p0tD8NTKQAxa+qtsUROE2ZUpIpMzkQIJN8UrLPHyqTfWEhUylt31cZKjk5WQMHDtSgQYOUlZWlQYMGaeDAgdZyv379CJYAcJ4idAIAIvL5fKqsrNSJEydUWlqqkydPqqysTGVlZSotLbXeOxxMJf+ZU6/RHES9DsnrkOE1Wr83Nq+ryTi35yztaoGgacqUnKaU5JOZFOHdGQyUZnOwTPa/xzKcycnJ6tevn/r3768BAwaof//+1isYMvv27UuoBABEROgEAMTNNE3V1taqtLTUCqIVFRWqrKxUVVWVKisrreXq6mr5fB07a9b6QJKaDH/4DLw3LwdCqa/Fdp8h+SSZ/mXDJ/82s7nMCK6bgWNIzeuB43Yk7JrBCsFdDUlGYJvDlByBy1Qdge2O5mUzuOzwbzedgSAZuuyMsD3J51/vRBbv3bu3MjIylJmZqczMTGVkZCgjIyMsWA4YMEC9e/cmUAIA4kboBACcEU1NTaqtrVVlZaUVTGtqalRbW9vqVVNTo7q6OtXW1srj8SS6682hNPgbMyxcJqRHYVJSUpSenm690tLSwtbT09NbBcs+ffooKSkp0V0HAJwHCJ0AgLNaQ0ODamtrVVdXJ4/Ho9OnT8vtdsvtdkddbmhoUGNjY9h7pG2NjY22f4aUlBQlJydbr9D10OXU1FT17NlTLper1Ss1NVUul8sq79mzpxUwmZsSAHA2I3QCAM5rpmmqqalJpmnK5/NFXG5qapLP55NpmjJNUw6HQw6HQ4ZhWO9OpzNsPbhPUlKSjATPkwkAQCIROgEAAAAAtuGpAAAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2IbQCQAAAACwDaETAAAAAGAbQicAAAAAwDaETgAAAACAbQidAAAAAADbEDoBAAAAALYhdAIAAAAAbEPoBAAAAADYhtAJAAAAALANoRMAAAAAYBtCJwAAAADANoROAAAAAIBtCJ0AAAAAANsQOgEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA2hEwAAAABgG0InAAAAAMA2hE4AAAAAgG0InQAAAAAA2yQlugMAYAfTNOXxeBLdDQCISWpqqgzDSHQ3AKBLEToBdEsej0ezZs1KdDcAICbr16+Xy+VKdDcAoEtxeS0AAAAAwDac6QTQ7aVsvUCG6ZAMhwyHIRmBv7c5DMkwZDgckhHYHryszWHIMBzWPjIM/7LUvB7cFqzTcn+F1zENw/+nvtD6Uqvt1rpVz9+UDEOmQ4EVBbYbkqGwOqa1rUV96zOrdblabAuuOyKUhdYPKwt9N1qVRayj8PLQ9WAf2jpW2HIb/WjZpiVqHbNVv1q2J8OM0Cezue1IbQXqyfrxMMPbVLAs5D3QXnB/wzBDf3SsY/j/0zSXS5JDZtg2R2C5uax5W1iZYcpQ83ZHyHaHYcqh4HaFl1l1fNZ68FgOwyenVdfXXC9k3RnStiQ5FdzuC9nPFygLtGm9+6x+BOs5FKwbqGOV+fd3GqYMq8y/LVjHKTXXk/84RqC+M6yPZmA90KfAfxb/uiGHJKdhyCFDzsB/aIeMwDaHDBlyGg411Dv1jf93gQCguyJ0Auj+mgz/1z/D/yXPCp2Bb/P+MkNyOBSaUgw5WiSPkHoRU0+L/Y3QskjLoeuRtkeqp5CQKyt0Wu8K3dZiOVAWFqDC6kWo0+ojG627aUR6GW2XtVmng0PVyTbbD6pdHDqN1qEztKxl6Gze3rI9M2JZczgNKQ9bN8PrtzqWGV4WEjqDL0nN622VtQijVuhssS00rDpD1v2h02f9ncYpwx/ejJDwFvi5ckpyGEbIuxE4lr+evy3JaTT/CDuNYD3/e8Qya7m5//6wagYCrdmh0NmyPUegzwrbFuxj87EAoLvi8loAAAAAgG0InQAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2IbQCQAAAACwDaETAAAAAGAb5ukE0P05TZmmLzDvZMi8lA7DP5+kQ+HzXarFuvUyQ8pavKTAXIeh28InhDTbmHyy5fbm9WC9FstmsF6wTqCNwI6mwsvDZgA0Q9turt9qm9miKHT+zQ7Nj2m0XaYo9TtaFq3Ndo5nqL06kebbbNmeGaGNNubpVOt6Rth8nIEyBctC3gN1g/v758ZsHt7wY7SYp1Pxz9NpBuqagZcka9lUcLvCy2TKZ5iS4Qu0FXosX+DzhJb7y0zD528npO3msvDtwfkxzcBcmaHvkqxlX+CfdfBdgWWf/P/sfYH14FC1nqfTkCNQ6pR/PlDDaF5unks0fO7P4LEcVhvBeUZD5hKVYW0zAssN9ZH+HQJA90HoBNDtNUw8megu2CP0e30cjBbvQFDwR8uX6I7ELZjmuaALAM4G/N8YAAAAAGAbwzTNTvydHADOTqZpyuPxJLob5wSPx6O5c+dKktauXavU1NQE9+jcwLjFjjFrX2pqqgyD6w8AdC9cXgugWzIMQy6XK9HdOOekpqYybnFg3GLHmAHA+YPLawEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA1PrwUAAAAA2IYznQAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2IbQCQAAAACwDaETAAAAAGAbQicAAAAAwDaETgAAAACAbZIS3QEAQLPTp0/rtdde03vvvacTJ07I4XAoOztb06ZN0/z585WcnBx32xUVFcrLy1N+fr5KSkrUo0cPDRs2TLNnz9aNN94owzCi1j927Jjy8vK0bds2VVRUyOVyacSIEbr55ps1derUNusVFxdr9+7d2rdvn/bv36+CggKdPn1akvT6668rKysr7s8kdc8xO3DggP7zn/9o586dKiwsVFVVlZKTkzVo0CBdddVVmjdvnrKzs+P+XFL3HLd33nlHn3/+ufbv36/S0lJVVVXJ5/MpIyNDI0eO1PXXXx+1PgDAHoZpmmaiOwEAkE6cOKGFCxfqxIkTkqTU1FT5fD41NDRIkoYPH66VK1cqPT095rb37dunBx98UNXV1ZIkl8ulhoYGNTU1SZImTpyoZcuWtRk08vPztWTJEnk8HklSr1695Ha75fP5JElz5szRQw89FDFMPPnkk/rXv/4Vsd3Ohs7uOGbvvPOOli5dGrYtLS1NbrfbOnZycrIWLlyouXPnxvy5pO45bpI0a9Ysud1uaz0tLU319fVqbGy0tk2YMEFLly6Vy+WK+bMBAOJD6ASAs4DX69U999yjgwcPql+/fvrFL36h8ePHy+fzadOmTVq+fLlOnz6tq6++Wk8//XRMbdfV1ek73/mOKioqdNFFF+mRRx7R5ZdfrsbGRq1bt07PPfecvF6vbrnlFj3wwAOt6h8/flzf+9735Ha7deWVV+rhhx9Wdna2daZs9erVkqT77rtP3/72t1vVf+qpp7Rz506NGDFCI0aMkGma+sMf/iCpc6Gzu47Z22+/rRUrVmjq1KmaPn26Ro8erV69eqmxsVG7du3Sb3/7WxUWFsowDK1YsULjx49n3AJ++9vfasSIEbriiit0wQUXKCUlRaZpqri4WG+88YbefPNNSdLXv/51PfjggzF9NgBAJ5gAgIRbt26dmZOTY+bk5Ji7d+9uVf7vf//bKt++fXtMba9atcrMyckxZ8yYYR47dqxV+Z///GczJyfHnDp1qnn48OFW5U888YSZk5Njzp0716ypqWlV/vTTT5s5OTnm7NmzI5Z7vd6w9U8//dT6LMePH4/ps4TqrmNWVFRklpaWttm3mpoac+7cuWZOTo75k5/8JKbPZZrdd9w64vHHH7f619jYGHN9AEB8eJAQAJwFgpefjh07VldccUWr8unTp1tnBNu6VLUt69evt9oYPHhwq/J58+bJ5XKpqalJ//73v8PK3G633nvvPUnSLbfcEvFyy+985zuSpFOnTumDDz5oVe50OmPqb0d11zG76KKL1L9//zb7lp6erilTpkiS9u7dG8On8uuu49YRX/rSlyRJ9fX1qqmpibk+ACA+hE4ASDCPx6P//ve/kqSrr7464j6GYWjSpEmSpG3btnW47cOHD6ukpESSrPot9ezZU6NHj47Y9u7du1VfXx+1flZWloYOHRpz3zrjfB+zlJQUSbLuc+yo833cdu3aJcl/n2lmZmbM9QEA8SF0AkCCFRUVWeFh2LBhbe4XLKuoqOjwWZqDBw+2qh/JJZdcIkk6dOhQm/WD+0SrX1hY2KF+ddb5PmafffZZu+1Hcj6OW11dnfbu3aunnnpKmzdvliR961vfavcJugCArsOUKQCQYGVlZdbygAED2twv9JLLsrIy9e7du922y8vLY2r71KlTOn36tHr27BnWt/T0dPXo0aPd+qHHs9P5PGYbN27U/v37JUk33XRTTHXPl3HbuHGjHn/88VbbU1JStGDBAt11111RPgkAoKtxphMAEiw4Z6WkqF+2U1NTI9axs+3g9BOh5dHqd7RfnXW+jtmRI0e0YsUKSdLo0aN1ww03dLhuy2N153FLSUlR37591bdvX+ueYqfTqdtvv13f+ta3bLvPGAAQGWc6AQA4B5SXl+vnP/+56urq1L9/fy1evFgOB387jiQnJ0c5OTmS/FPEFBUV6dVXX9XLL7+sdevWaenSpREfogQAsAe/rQAgwYKXF0qyHqQSicfjiVjHzrZdLler8mj1O9qvzjrfxqyyslI//elPdezYMfXt21fPPPOMLrjggnbrtXS+jZskJSUl6dJLL9XixYs1f/58VVRU6LHHHovaRwBA1yJ0AkCChd4/V1pa2uZ+offjRZtSI1S/fv1iartXr15hX+aDx6mtrY36JT1YP/R4djqfxqyyslI/+clPdOjQIWVmZmrlypXWE1xjdT6NWyQLFiyQJJ08eVJbtmyJuT4AID6ETgBIsKFDh1qXSUZ7ImewrG/fvh16sIsU/hTQaG0Hnxx68cUXt1k/9OmibdWP9tTSrnS+jFllZaUWLVqkwsJCK3C2PF4szpdxa0voA46OHTsWc30AQHwInQCQYKmpqdb9ZR9//HHEfUzT1NatWyVJEyZM6HDb2dnZGjhwYNS23W63NX9hy7avvPJK66EwweO3dOLECRUVFcXct844H8asoqJCixYtCjvD2dlQfz6MWzTHjx+3ls/UpeAAAEInAJwVZs+eLUnasWOH9uzZ06p806ZN1hfm4L4dYRiGZs2aJUl69913VVxc3Gqft956S263W06nU9dff31Ymcvl0te+9jVJ0po1a1RXV9eqfl5eniT/l/jgw1vOhO48ZqGX1Pbt21fPPvtsl51F7q7j5vV62+3jK6+8Yi2PGTOm3f0BAF2D0AkAZ4HZs2frkksukWmaevTRR/XJJ59Iknw+nzZt2qTly5dLkiZNmqRx48aF1X3xxRc1ZcoUTZkyJeIX/dtuu019+/aVx+PRQw89pH379kmSGhsbtWbNGv3xj3+UJN18883Kzs5uVf/uu++Wy+VSeXm5Hn74YR05ckSS/6zV6tWrtXbtWknSnXfeqfT09Fb1vV6vqqqqrFdomKitrQ0r60hw6O5jVlVVFRY4O3tJbUvdddxeffVVPfHEE9qyZYtqa2ut7V6vV3v27NEvfvELrV+/XpI0Y8aMLh1TAEB0hmmaZqI7AQCQiouLtWjRIp04cUKS/1JIn8+nhoYGSdLw4cO1cuXKVl+2X3zxRa1evVqS9PrrrysrK6tV2/v27dODDz6o6upqSf4zRQ0NDVbImzBhgpYtW6aUlJSIfcvPz9eSJUusJ4empaXJ7XarqalJkjRnzhw99NBDMgyjVd0dO3Zo0aJFHRqDZ599VmPHju3QvlL3HLPVq1frxRdflOQ/+xd8qmtbXnjhBeuy1o7qjuMW2jfJP3YpKSmqq6uz6krStGnT9H//939R5xIFAHQt5ukEgLNEVlaWVq9erddee03vvfeeTpw4oaSkJA0bNkzTp0/X/PnzlZycHFfbI0eO1Msvv6y8vDx99NFHOnnypFJTU3XJJZdo9uzZmjNnTtQ5HydPnqyXXnpJeXl52rZtmyoqKpSWlqbhw4fr61//uqZOnRrnp+6c7jhmPp/PWna73XK73VH7Gbp/R3XHcbvxxhvVp08fffbZZyosLLTOqrtcLl1wwQX68pe/rFmzZmn06NFxfS4AQPw40wkAAAAAsA33dAIAAAAAbEPoBAAAAADYhtAJAAAAALANoRMAAAAAYBtCJwAAAADANoROAAAAAIBtCJ0AAAAAANsQOgEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA2hEwAAAABgG0InAAAAAMA2hE4AQMI9++yzmjJlin784x8nuitIsLq6Ot14442aMmWK3n///UR3BwDQBZIS3QEAQPxOnTqlgoIC7d27V/v27dO+fft07NgxmaYpSXr99deVlZVly7FN09Stt96q0tJS3XHHHfrBD34QVzsFBQVas2aNJOnee+/twh4m1sGDB7V161bt3r1bBw8eVHl5uZqampSenq5LL71UkydP1uzZs5WWlpborp5V0tLSdNttt2nVqlX63e9+p0mTJqlHjx6J7hYAoBMInQBwDlu4cKEKCgoScuy9e/eqtLRUkpSTkxN3O88//7yampo0adIkXXnllV3VvYRauHChPvvss4hlFRUVqqio0LZt2/TKK68oNzdXEydOPLMdPMvdeuuteuONN1RSUqK//e1vuuOOOxLdJQBAJ3B5LQCcw4JnNCX/GaKxY8eqb9++Z+TYH3zwgSRpwIABGjVqVFxt7Nq1S9u3b5ekbhUsgmE8PT1dc+bMUW5urp577jmtWrVKv/zlLzV58mRJ/gCam5urnTt3JrK7Zx2Xy6X58+dLkvLy8nT69OkE9wgA0Bmc6QSAc9icOXOUkZGhkSNHasiQITIMQwsXLlRFRYXtxw6GzmuuuUaGYcTVxl/+8hdJUlZWlr7yla90Wd8SbciQIbrzzjs1ffp0paSkhJWNHDlSU6dO1auvvqoXXnhBDQ0NWrFihf70pz8lqLdnp5kzZ+rFF19UbW2t/vGPf2jBggWJ7hIAIE6c6QSAc9itt96qGTNmKDs7O+7gF48jR46oqKhIUvyX1paWlio/P1+SNGvWrDPaf7stX75cN9xwQ6vAGeqOO+7Q8OHDJUmHDh3SgQMHzlT3zglZWVkaPXq0JOnvf/97gnsDAOgMznQCAGIWfKpo8JLeeGzYsEE+n0+SNG3atA7V8Xq9evfdd/Xhhx9q7969qqqqUlNTkzIyMnTJJZdo/PjxmjFjhvr16xdWb8qUKZKk2bNnKzc3V4cPH9bf/vY3bdu2TWVlZerVq5dGjBihb3/72xozZoxVr76+Xm+//bbWr1+vo0ePyuPxaPDgwbr++uu1YMGCTj/g5qqrrrLuyT1y5IguvfTSuNs6dOiQ1q5dq507d6q4uFgej0dpaWlKT09XVlaWxo0bp2uvvVYXXXRRXO17vV6988472rRpkw4ePKjq6moZhqHevXsrIyNDo0aN0vjx43XNNdcoOTk5rG7L8T906JDeeustbd++XWVlZXK73frVr37V6g8Y06ZN086dO1VUVKS9e/fq8ssvj29wAAAJRegEAMQseGnt5MmTlZQU36+Sjz76SJL/vsehQ4e2u/8XX3yhxYsX6+jRo63KSktLVVpaqo8//lgHDhxQbm5um+1s3rxZTz75pDwej7Wtvr5eW7Zs0ccff6wHH3xQN998s8rKypSbm6u9e/eG1S8sLNQf/vAHbdmyRStWrOhU8PR6vdaywxH/xUdr167VypUr1dTUFLa9urpa1dXVOnr0qLZt26YDBw7o0Ucfjbn9qqoq/exnP4v40Krg2BcUFOjvf/+78vLyNGTIkDbbevvtt7VixQo1NDS0e9zQB0t99NFHhE4AOEcROgEAMSkrK9Pnn38uKf5LaxsaGvS///1PkjRq1Kh2L60tKCjQ/fffL7fbLUkaO3asZs6cqaFDhyo5OVnl5eXas2dPu/M6HjhwQO+++64yMzN17733Wsf+5JNP9Oc//1kej0fPPPOMxowZo6VLl+qLL77QLbfcomuvvVYZGRk6duyY/vSnP+nAgQPatWuX8vLy9L3vfS+uMZCkTz/91FoeNmxYXG0cPHjQCpy9e/fWzTffrDFjxigjI0NNTU0qLy/Xvn37tGXLlrgvYV65cqUVOMeNG6eZM2cqKytLvXr10qlTp1RUVKSdO3dal0u3Zd++fdqwYYN69+6tBQsW6Morr1RycrIOHTqkQYMGtdp/2LBhcrlccrvd+vTTT3X33XfH1X8AQGIROgEAMfnwww9lmqZSUlI0adKkuNo4cOCAdZZv5MiRUff1er1avHixFTgXLVpkPdk01Fe/+lXdc889KikpabOtgoICDR8+XCtXrlR6erq1/Utf+pKGDBmiJUuWyOv16v7771dNTY2WL1+u8ePHW/uNGDFCEyZM0J133qmysjKtWbNGd955p5xOZ0yfX/JfolxYWCjJH7yzs7NjbkOSNm3aZJ3hfOaZZ6z7REPl5OTonnvuUXV1dczt19fXW2E+JydHS5cubRVex4wZo7lz58rtdkc9Y1tYWKghQ4boueeeC3vKcltPP3Y6nRoxYoR27typ/fv3y+fzdeqMMAAgMfg/NwAgJsFLa8ePHy+XyxVXG6GXyLY3xcuGDRt07NgxSf6n9UYKnKEGDhwYtfzhhx8OC5xBU6dO1YABAyRJlZWVmjdvXljgDEpLS9MNN9xg7Xfo0KGox4ukrKxMv/nNbyRJhmHohz/8YcxtBAWfVJyWlhYxcIbq06dPzO3X1tZafyAYM2ZM1LOlLper3cuNH3jggZim9Qnu6/F4VFZW1uF6AICzB6ETANBhdXV12rFjh6T4L62VpPLycmu5d+/eUfcNhlxJuv322+M+puS/XLOtYGYYRljZzJkz22wndL/jx4/H1AePx6Pc3FwrLLZ8eFGsgkG5rq5OmzZtirudtvTp08d6Cu/GjRs7NWfmgAEDIgb5aEJ/PkJ/bgAA5w5CJwCgw/Lz8+X1euV0OnXNNdfE3U59fb21HOmsY6j9+/dL8p/x6sgDh6Jpr35oX6I95TV0v1hCWGNjox555BHr4UTXXnut7rnnng7Xj2TmzJnW2cUlS5boRz/6kV599VXt2rXLuiS5M5KTkzV79mxJ0p49e/TNb35Ty5cv18aNG2MO3PE8nTc0dIY+/AkAcO7gnk4AQIcFzzpeccUVysjIiLud0Hsg23uKaVVVlaTmM3qdkZqaGrU89NLRaJcOh95XGJz2pT1er1ePPvqotm7dKkmaOHGiHnvssbjuBw01ePBgPfXUU3ryySdVWlqq3bt3a/fu3ZL843z55ZdrypQpuummm9oN+G358Y9/rIaGBq1fv141NTVat26d1q1bJ8n/x4CJEydqzpw57Z6xbe+sdiShf6CI90nJAIDE4kwnAKBDGhoa9PHHH0vq3KW1kv/+w6CamppOtXUu8Hq9WrJkiTVNzPjx4/WrX/3Kumy1s8aNG6e//OUvevzxxzVnzhxrypKmpib973//0/PPP6/bb7/dCryx6tGjh3Jzc/XKK6/o+9//vq666iorlFdUVOhf//qXFi5cqEceeSQsJLYUz0OAQh9+FPpzAwA4d/AnQwBAh2zfvt26XLOzoTN0eoz2QmdGRoZKSkrO2YfIBANn8CzxVVddpWXLlnVqfs9IUlJSdN111+m6666T5D9D/Mknn2j9+vXasmWLampq9OijjyovL0/9+vWL6xjZ2dm66667dNddd6mpqUkFBQX66KOPtHbtWlVWVur999/XqlWrdP/993fZ56qtrbWW23tIFADg7MSZTgBAhwRD0/Dhw5WVldWptkLnpDx8+HDUfYNTqpSXl7e779mmZeAcO3asnnrqqS4PnJFkZGRo+vTpevrpp3XLLbdIktxutz788MMuaT946e7dd9+t3//+99alyxs2bOiS9oOKiookSVlZWerZs2eXtg0AODMInQCAdvl8Pv3nP/+R5H/4TWcNHDhQ/fv3lyR9/vnnUfedMmWKtZyXl9fpY58pXq9Xjz32mBU4x4wZo1//+tft3ldqh4kTJ1rLwXtku1JWVpY1z2g8c4G2paqqypou58tf/nKXtQsAOLMInQCAdu3evdsKK6EhsDOCQaioqEinTp1qc79p06ZZgeaf//yn3nzzzajtlpSUdEn/OsPr9eqXv/yl3n//fUn2Bs733nuv3SAZvBdXki688MKY2j9+/Li2b98edZ/i4mLrjOTgwYNjaj+aPXv2WMtXX311l7ULADizuKcTAM5hR48etZ5UGhSc/1GSNm/eHPaUWZfLpalTp8Z8nODZusGDB8c17UUk1113nf75z3/K5/Np+/bt+trXvhZxv6SkJD3++OP60Y9+JLfbrWeffVbvv/++Zs2apaFDhyo5OVnl5eXau3evNm/erJEjRyo3N7dL+hivJ554Qps3b5bkD3n33XefiouLo9bJzMxUZmZmzMd688039cQTT2jcuHEaN26cLr74YvXp00eNjY0qKSnRhg0brLPUgwYNinmqm5KSEj3wwAMaPHiwrrnmGo0aNUoDBw5Ujx49VF1drT179mjNmjXWU4jnz58f82doy7Zt2yT571edPHlyl7ULADizCJ0AcA7bvXu3li1b1mb5888/H7Y+aNCgToXOrri0Nmj8+PEaMGCASktLtX79+jZDpyRddtll+t3vfqfFixfr+PHj2rFjh3bs2BFx3+A9oIm0adMma/nYsWO677772q3z3e9+V3fffXdcx2toaFB+fr7y8/Pb3OfCCy/UsmXLok4FE83x48f1xhtvtFnucDh0++236xvf+EZc7bfk9Xq1ceNGSf6z6/FO9wIASDxCJwAgqi+++MI6S9fZp9aGcjqdmjdvnl544QVt2bJFVVVVUef+HDFihF555RWtX79eH3zwgQoKCqz7BzMzM3XppZdqwoQJmjFjRpf18VywZMkSbd26VTt37tTBgwdVUVFhXW7bp08fXXbZZcrJydHMmTPjmqJl9OjReu6557R9+3bt2bNHJSUlqqys1KlTp5SamqrBgwdr9OjRuummm7rsLLgk62dCkm699dYuaxcAcOYZpmmaie4EAODs9dJLL+mll15SZmam3nrrrbjmWmxLXV2dbrvtNtXU1OgHP/iB7rjjji5rG+e2hx56SPn5+Ro3bpyeeeaZRHcHANAJPEgIABBV8NLar371q10aOCUpLS3NCpqvvfaaTp8+3aXt49y0Z88e5efnyzAM3XvvvYnuDgCgkwidAIA2NTY2KicnR9/97nc1b948W44xf/58DRkyRNXV1frrX/9qyzFwblm1apUkadasWRo1alSCewMA6CwurwUAJNznn3+u/Px8paWl6Zvf/Gaiu4MEqqur0xtvvCHTNDVv3ryo9/kCAM4NhE4AAAAAgG24vBYAAAAAYBtCJwAAAADANoROAAAAAIBtCJ0AAAAAANsQOgEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA2hEwAAAABgG0InAAAAAMA2hE4AAAAAgG0InQAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2Ob/A0buYGXquHfGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADiu0lEQVR4nOydd3wUxfvHP7vX0hMgoRN6FUVQxIKiFBsqNsSCYG9fe++9Nyw/xS5WwAbYKBZAVEBQBESa9JYAgZCey93O74/LbvYu23eT27s879crL0Jud3bubndn3vs8M8MxxhgIgiAIgiAIgiAIwuXw8a4AQRAEQRAEQRAEQRiBBJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICBwR2M2bN4PjOHAch0suucSJIpskxx9/vPQ5EgRBqHHJJZdI94rNmzfHuzoSkyZNkuo1adKkeFeHcBhBEHDYYYeB4zjccMMN8a4OkSDQfYEg6pPM7hQOh9GzZ09wHId77rmnQY7RaBHYSZMm4eGHH8bDDz/cWIeMO9OnT5fec3FxcbyrQ9Ty8MMPSzcNIz9GBeGff/7BDTfcgF69eiEjIwPZ2dk4+OCDcffdd2PLli0N+6YIgmiSzJw5E5dddhl69eqF7OxspKeno0uXLhg6dCgeffRR/P33344d66233sJff/2FlJQUzU7J5s2b8eWXX+Kee+7BiSeeiBYtWkj30+OPP97w8eTiY+Rn3rx5umVWVFTg7bffxsiRI9G+fXukpKQgJSUFbdu2xYknnoiXX37ZVnv966+/gud5qU6dOnWyXJYSO3fuxKOPPopjjz0WeXl58Pl8yMjIQNeuXTF69GhMnToV4XDYUFkFBQV46KGHcOSRR6JFixYIBAJo3749TjrpJLz33nsIhUKO1j2eHHzwwdJ38tNPP5ne/9dff5X279Onj+n9GWP47bff8Mgjj+Dkk09Ghw4dkJKSgrS0NHTs2BFnnXUWPvroI1RXV+uWNW/ePFPXhd5Dg5KSEsybNw8vvPACLrjgAvTo0SPqHDbzkLSiogILFy7Eq6++iksuuQR9+/aF1+s1dY1awcnruqqqChMnTsTJJ5+M1q1bIxAIIC8vD4MGDcKTTz6JoqKiBnkP8eCGG26QvpsHHnjA9P4VFRXIzs4Gx3Hwer3YuXMnAMDj8eD+++8HALz44ov477//HK03AIA5wKZNmxgABoCNHz9ecZshQ4ZI2zQVxo8fL73nTZs26W7fFD+jePDQQw9Jn7ORHyPf3XPPPcd8Pp9qGZmZmWzy5MkN/+aIJoHZe0tj8f7770v1ev/99+NdnaRm48aN7IQTTtC9f40aNcqR45WXl7PWrVszAOzGG29U3e6VV17RrM+QIUMMH1N+Phn5mTt3rmZ5S5YsYZ07d9Ytp2XLlmz27NmG6ylSVVXFevXqFVVWx44dTZejxqRJk1hGRoZu/fv166d7X/jwww9ZWlqaZjn9+/dnGzZssF1vN9wXXnjhBakOY8eONb3/ZZddJu3/7LPPmtr333//ZW3btjV0Dvfo0YMtXbpUs7y5c+eaui60PvPi4mLGcZztPpBI8+bNbV2jVnDyul66dCnr1KmTbjmzZs2yXW8j7tTQ/Pnnn1Id8vPzmSAIpvb/8MMPpf1PPfXUqNdCoRDr0aMHA8DOP/98J6vNGGPMCwfo1KkTGGNOFNWkaagnU4Q6jz32GPr27au5TcuWLTVff+ONN3DHHXcAAHw+Hy6++GIMGTIENTU1mD17Nr744guUlpbi4osvRk5ODk4++WTH6k80TSZNmkSpeE2YtWvXYujQodLT7sMPPxynn346OnfujJSUFOzevRvLly/Hd99959gxX3/9dRQUFMDj8eDOO+9U3S42+peamoru3btjxYoVto5/ww03YOjQoZrbaN3Lt2zZguHDh+PAgQMAgNatW+OSSy5B9+7d4fV6sXHjRnz44YfYtGkTdu/ejdNPPx2LFy/GoYceariOjz32GNasWYP09HSUl5cb3s8I06ZNw6WXXir1tQ499FCcd955yM/PR3l5OVatWoVJkyahpKQEy5cvx9ChQ7FixQpkZGTUK+ujjz7CuHHjpP+feOKJGDVqFPLy8rBt2zZMnjwZS5cuxbJly3DiiSdi4cKFyMvLc/T9NDZjx47FXXfdhVAohK+++gqvv/46MjMzDe1bUVGBzz//HEAksnTxxRebOnZRUZF0raanp2P48OE4+uij0b59ewDAihUrMGnSJBQWFmLdunUYNmwYfvvtNxx00EG6ZY8ZMwbnn3++5jYDBgxQfY0xFtV/5zgO3bp1w969e7F//34jby+K2Os/Pz8fwWAQBQUFpssygpPX9apVqzB06FCUlJQAAA466CBcfPHF6Ny5M4qLizFz5kzMmDEDu3fvxllnnYUff/wRRx99dIO8r8ZiwIABOOSQQ7BixQps3boVP//8M4YNG2Z4f3k/5NJLL416TWwrrrjiCnz22Wd44IEHLGUvqOK4EqvQFKOLbo2SNHXkEVi7TwN37twpPcX2er3shx9+qLeN/Olzhw4dWGVlpa1jEoRbcUOkJdmpqKhg3bt3ZwBYWloa++yzz1S3FQSBbdu2zfYxa2pqWIcOHRgAduKJJ2puO23aNPa///2Pvffee2z58uUsFApFRRqsRmDtnk/yCNpJJ53EKioq6m1TU1PDxo0bJ21nJnq9fPlyKQtHHu1zKgLbpUsXqcwHH3xQMVKyd+9edsghh0jbTZgwod42u3fvjoriTpw4sd42giCwm2++Wdrm0ksvtVV3t9wXRo0aJdXj3XffNbyfPMp02mmnmT7uggULWKdOndgbb7zBSkpKFLfZv39/VD/5uOOOUy1PHoF96KGHTNdHTmlpKTv//PPZc889x37++WdWXFzMGIvus5vpv44bN4498cQTbNasWWzPnj2Msei+sNMRWCev60GDBkVF6Wtqaupt88UXXzCe5xkA1rNnT8VtjOKGCCxjjE2YMEGqx8UXX2x4vy1btkjR+xYtWrDq6up62xw4cIClpKQwAOzKK690stqMBLYBIYF1J04KrLyRv+OOO1S3Gz16tLTd//3f/9k6JkG4Fbd0VJOZu+66S/qMp02b1ijHnDZtmnTMDz/80PT+bhDYdu3aSWWtWrVKdbv9+/czr9fLALDmzZsbKjsUCrHDDz+cAWCnn3561Pt1QmDXr18vldeqVSsWDodVt/3mm2+kbc8+++x6rz/99NPS6+ecc45qOeFwmB188MEMAON5nq1bt85y/d1yX5g+fbpUj2OPPdbwfkOHDpX2+/LLL00ft7S0lAWDQd3tCgsLo9K6N27cqLidkwKrhlWBVaIhBdap63rRokVSOe3atdMMNFx33XXStu+8847lurtFYHfv3i09fEtPT2elpaWG9nv00Uel+t9www2q24n939TUVNUHOFZo8FmIxZl158+fL/1NaZC52uROgiDgs88+w5gxY9C5c2ekpaUhMzMTvXr1wrXXXouVK1dq1k0+YY+YovvTTz/hggsukNKtYgeph0IhzJ49G7fddhsGDx6Mli1bwu/3IzMzEz169MAll1yCX375RfWY4gyhH3zwgfS3zp0713vPap+VkVmIFy9ejKuuugo9e/ZEZmYm0tPT0bVrV4wfPx4///yz7v6xE2qUl5fj+eefx+GHH45mzZohPT0dBx10EO655x5LaSRNAcaYlFakNyvnjTfeKP0+derUBq+bnIULF+Laa69Fnz59kJOTg5SUFOTn52PMmDG6KYbyySLEa3Tr1q247bbb0KtXL6SnpyMnJwdHH300Xn/9dcOTfpSVleGll17CiBEj0LZtWwQCATRv3hwDBw7Egw8+iD179mjuH3uthMNhTJo0CSNGjEC7du3g9XoVJ08pLCzEnXfeiT59+iA9PR3NmzfHEUccgRdeeAEVFRUAIkMilCZfmTVrlnRM+fepxY033ijtM3PmTEP7GEFvFuKG+t6+/fZbnH766WjdujVSUlLQqVMnXHTRRVi4cKHp9xAMBvHuu+/ijDPOkCY0ycnJwSGHHILbbrtNdeKQtWvXIj09HRzHITs7G5s2bVI9xv79+5Gfnw+O4+DxeDTv24lAeXk5Jk6cCAA44YQTcOaZZzbKcT/66CMAkXTgs846q1GO6TS7d++Wfu/evbvqdjk5OVK6rNE04JdeeglLly5FRkYGXnvtNXsVVUBe965du4Ln1btuPXr0kH5Xqr+8f6CVCsvzPC666CIAkX7YlClTTNXZCkuWLEFeXh44jkMgEMBnn31Wbxs7fcKRI0dKQ4J+/fVXbNy4UbdOW7duxdy5cwEAubm5OP30002/r4yMDPh8Pt3tWrZsieOOO076v17/lnDuupZfF6NHj0ZKSopqWfL0+08//dRUfa2wZ88eDBw4UGrTb731VsVhm1b7enl5eTjttNMARD4bpetOCbnjxKYPyxHvI5WVlfjiiy8MlW0IJyxY6ymC/CmO1o/SU6T//vuPHXrooZr78TzPHnjgAdW6yaNtP//8M/vf//6nWI78CdPxxx9vqM7jx49XDJnLnzbp7a/2WalRU1PDrrzySt2yzzvvPMVUChFxuyFDhrANGzawPn36qJbVsWPHpIogOxWBXblypVRO3759NbcNh8MsKytLOmedfAqlRllZGRszZozuuTJy5EjV+sQ+6Z05cybLyclRLWvEiBGsqqpKs17ff/89a9mypWadMjMz2YwZM1TLkF8rRUVFbPDgwYrnrZyff/6ZNWvWTPWYBx98MNu6dSvr2LGj4v7hcFiaKKJZs2a6qeCVlZXS8fLz8zWjJmbRy+5w+nsLhUKa9zWe59kzzzxjONJiZNINv9/P3njjDcX933rrLWm7o446ioVCIcXtzj33XGm7++67T/MzTQQ++OAD6f2YSYG0Q1VVlRQV0kpr1MINEdj27dtLZRmN1Bx66KG65W7YsEH6fMSUXacjsP/9959UXuvWrTXvJd9++6207c0331zvdXlbv3r1as3jfvXVV9K2Rx55pOX6G/keZ8+eLaU2Z2RkKA7HcaJPeOutt0rbPvjgg7p1l0eZbrrpJqNv2TLybK0pU6YobkMR2Dqcuq7lUVWltHo5+/btk7b1eDysvLzcUt2NRGA3bdokTYQEgD311FP1tnGir/f1119L2xm5z//yyy/S9v369dPcVj5RmFOTCjLmUAqx1pewYMECNm3aNHbQQQdJ20ybNq3eT+yN9L///mO5ubnSPoMHD2ZPP/00mzx5Mvv444/ZLbfcEtUZVbuI5bJyyimnSA3A3XffzT7++GM2adIkdt1117GdO3dK+wwaNIhlZGSwUaNGsUcffZR9+OGH7LPPPmMvv/wyu+qqq1h6errmDe3PP/9k06ZNi5oh8s0336z3nv/888+o/YwI7Pnnny9tk5KSwq6++mr2wQcfsI8//pjdfPPNLDMzU3r9pJNOUp1RTNymf//+rFevXozjODZq1Cg2ceJENnXqVPbUU0+x/Px8aTsz6TZuR35OHHvssaxLly4sEAiwzMxM1q1bNzZ27Fj29ddf687GNnnyZN2bjxz597t48WKH3o0yVVVV7Mgjj5SO17VrV3bvvfeyjz76iE2ZMoU9/vjjUTfFoUOHKnaK5A3lqFGjWFpaGktNTWVXX301mzRpEps8eTK77bbboq4Jrc7DF198wTweDwPAfD4fO+ecc9irr77KPvvsM/bOO++wiy66SEpl4Xme/fTTT4rlyD9L8bru168fe/rpp9mUKVPYW2+9xa6//npp+1WrVkWlZvXv35+98MILbOrUqeyVV15hxxxzjCRDYkqSUsfzySeflMr4+OOPNb+Djz76SNr2kUce0dzWLGYE1onvTd64+/1+duWVV7IPPviAffTRR+yGG26QPtszzzxTt6P6+++/S9tzHMdOPvlk9uKLL7KpU6eySZMmsauvvjrqu1Ir55xzztGs+zvvvBPV+bYzVsktXH755dJ7WrlyJauqqmIvvfQSO+KII1h2djZLS0tjXbt2ZZdeeqlj95iffvpJOubtt99uqQwnBHbgwIGsZ8+eLC0tjaWlpbGOHTuyc889l3388ceGvlv5w2utsXLya2vSpEm65Q4bNowBYIcddpj0IMVpgWWMsb59+0b1d/TGwAYCAbZmzZp62/Tu3Vsqx4zAZmZmmp6hVERPYD/99FPpvp+Xl8eWLFlSbxun+oTyB8+dOnXSfU9du3aVtv/777+tvH1TyB8wLFy4UHEb+f29b9++7OCDD2YZGRksJSWFtW/fnp122mls4sSJmkEMPRJFYJ26rq+99lrpdTMCC0DxfDWCnsCuWLFCmr3a4/EoPrR0qq9XU1PDWrVqJbXLerOPy8cev/TSS7rvVbzvZGRkqD5wNosrl9EJh8NswIAB0k1YbZKKgoIC6Wkcz/Psn3/+qbdN7JIpgwcPZgcOHNA8/o8//qh54e/du1eK+PA8rzpOwelldKZMmSK93qpVK8WnTZs3b46KbKiNt5R/Jn6/n33zzTeK71Nelp0OUXl5ueKDCys/seJvFqPL6AwaNIht3rxZtZxHHnlEt7GUI59E4KOPPrL1HvSIHZur1MELBoNRdVK6acdO15+fn684Fmrx4sXS081mzZopRvO2bt0qRaHz8/PZihUrFOu+ePFilp2dzQCw9u3bK44dis3suPnmmzWjEvII7XXXXae4bex5odTxLCgokDpaeh3x4447Tmp4nJhIR44ZgbX7vcmftObk5Cgu8bBmzRppiRWtjmpJSYk0GVBOTg6bN2+e4vtbv3699AAtPT1dmgxEzr59+6Sn7x6Phy1YsEB6be3atZKcZ2Vl2V4KZPXq1Y7dv5Tei1H69esX1ZmWPxhW+rn++uttdxbkD20+//xzS2U4IbBaPz179mTLly/XLGvPnj2sW7du0j6tW7dm99xzD3vvvffYhx9+yB566CGpveN5nj322GO69Xv33Xel80/eLjWEwP76669RD5wOPfRQ9uSTT7JPPvmEvfXWW+ymm26S7q/Z2dnsu+++UyxH/mBdK8uFsejxsgDY9u3bLdVdS2BfeeUVKTrTsWNHtnbt2nr7O9knZIxJ45WBSGaeGvPnz5e269+/v/E3bJEFCxZIx8vLy1O9do0uo9OmTRvN96dFogisU9e1vD93yy23aB5TPl4W0H+YrYZe8E/MmkpJSWHTp09XLMOpvh5jjN1+++3SNlrZCeXl5VKwzOfzGWrTLrnkEqlsvXu1UVwpsF9++aW07SuvvKK57dq1a6WIjtIMV/JOaXp6OtuxY4eh96THhg0bpHLVLginBbZ///7S699//71qOYsXL45qEJRugvKL79FHH1Ut6+233za0nR7yc8Tuj93B7g899BBLSUlhp5xyCnv00UfZRx99xKZOncpefvlldvbZZ0vnEwDWtm1b1Ub7lltukbZ79dVXdY9rdnur7Ny5k/n9fgYoT+IhJxgMSrNbdu/evd7rsQ3lL7/8olrWRRddpLndDTfcIHX2li1bplkvsWMIgH3yySf1XpdfK4cddpimvC5ZskTatm/fvpodenm5ah1PeYqX2sQma9eulbYZOXKk5nu1glmBtfO9yWfu1IpIyVMXlTqqjEWvxfj1119rvkd55O+JJ55Q3GbevHnSjJAdO3Zk+/fvZ8FgkB122GHSvk48LDK7drTWj50OnPiEHID0VL1t27bsgQceYJMnT2bvvPMOGz16dNS6jlqTaxjhwgsvlMpSe+ikhx2B9Xq9bMiQIeyBBx5gH3zwAfv888/Z66+/zsaOHSvNbglEIoR6HaOioiJ27rnnRt3jY3/OO+883fsTY4zt2rVLivjFdngbQmAZY+zvv/9mAwcOVK271+tl9913n2Y/5/7775e2P/fcc1W3k0/iJP6oCaEeagJ73333SX8/6KCDVNtaJ/uEjDH22muvSeWNGzdOtaxLL73U8HHtUl1dHTWD9HPPPae67dy5cxnHceyII45gd911F3vvvffY559/zt5++2121VVXSQ+AxXNizpw5puuTKALLmDPX9Y8//iht265dO80hNbFDEa1OzKnmTjNmzGCpqakMiDyMmj9/vuL+Tvb1GItkqon10cpOkA9l0TuuyDPPPONom8yYSwVWTEPLysoytOTIUUcdpdpQyDseWjcqK4gRB7Vp1Z0UWPlnfPDBB+uWJaY1AcqRU/E1j8fD9u3bp1qOXNTtLETsJoFduXIlKyoqUn39n3/+iXqiN3z4cMXt5GOR3377bd3j3nvvvdL2Tz75pOX66/HSSy9Jx/n99991t7/nnntUz1O5COk9gZZLZ+zYRUEQpAXO9ZbhYCwypkOMDCp93/Jr5b333tMsS95h00sNkqfMqXU85WJ15513Km5zxx13SNvoRTmsYEZg7XxvVVVVUgPZqlUr3WiePD1RSWDF6EiPHj103yNjTEqf0pIe+XU1ZswYduedd0r/v+iiiwwdRw+3CGwgEIgqa9CgQdKyF3K++eYb6foB1FMRjSCm1wPWI3BWBXb9+vWaMrZ169YooevVq5fuObphwwZ2xRVXqH4/fr+fnXfeeVHDipQQU9jz8/NZWVmZ6vt1UmAZi6TgK435F3+aN2/O7rzzTtVZbzds2BB1bqi1XfJojJn2RIlYgQ2FQlHfwdFHH63ZD3GyT8hYJHtDfPihNuuqPMrk9/vZ3r17Db9fK8iHB/Tv319xfhWRnTt3as4KvW/fPnbqqadK5bVo0UI38zCWRBJYxuxf16FQKKrfN378eMV7yfTp0+uJstX+nJI7vfvuu1L5rVu31kxbd7KvJ3LEEUfoflfyLA6l7E0l5PNWPP7444b20cMLF7JgwQIAQJs2bTBr1izd7T0eD4DIgsaVlZVITU1V3O7YY481XIeSkhJ88skn+P7777Fy5Urs3btXdUbC7du3Gy7XKn/88Yf0+4knnqi7/YknnoiffvoJQGTG4iOOOEJxux49eqBZs2aq5bRr10763c5sxJ06dVKcNS0eaC12D0QWr541axb69u2Lqqoq/Pjjj1i8eDEGDRrUSDW0h3j9AJFzc/r06Zrby7/X1atXK87eCwBHHnmkZjla58qqVauwb98+AEBmZqZunYDIzI3FxcVYvXq15nZ61/XSpUul30844QTNbcVZubU44YQT0KNHD6xbtw4ffPABHn/88agZJmtqaqTZ+dq2bYuRI0fqltmQ2Pneli9fjmAwCAAYMmSIdK9VY9iwYarf14EDB7BixQoAQKtWrQyfAwA0z4FHHnkEP/30ExYvXhw1w3fnzp3x+uuv6x7DCA8//LDqTPmNiSAI0u8+nw9TpkxBdnZ2ve1OO+003HTTTXjhhRcAAK+88orueaCGeN0CQPPmzS2VYZVu3bppvt6hQwfMnDkTffv2RUFBAdasWYMvvvgCY8aMUdz+qaeewv333w9BEHDFFVfgmmuuQZ8+fQAA//77L9544w288847+Oyzz7Bo0SL88MMPUbP6ikybNg1ffvklAOC1115Denq6zXeqT3l5OcaNG4evvvoK6enpeOqpp3DuueciPz8fFRUVWLx4MZ566inMnz8fzz77LP788098/fXXSEtLiyqnS5cuuO+++/DII48AAK688kp8+eWXOOOMM5Cbm4sdO3Zg8uTJ+OOPP5CXl4eqqiqUlpYCgObsx0apqqrC6NGjMW3aNADAqaeeis8//7xePeU43Sds1qwZzjzzTEyZMgXl5eX44osv6q0K8cUXX0jv+4wzzkCLFi0Mv0ezPPfcc3j33XcBANnZ2Zg6dSr8fr/q9m3atNEsr1mzZvjyyy9xxBFHYOXKlSgqKsLEiRNx1113OVpvt+DEde3xeDBx4kScfPLJCIfD+OCDD/Dnn3/i4osvRufOnVFcXIxZs2Zh2rRp0ioF4kz5TlwXAPDMM8/g7rvvBhCZbXzOnDno0qWL6vYN0de77LLLJN+YNGlSvT7Rli1bpBVdWrdujZNPPlnzmCLy68exlU2csGAnI7ClpaW2nm7HPq2VPznXSruV8/PPP9cbz6X106VLF8VynIzAyp+0vPnmm7plydftu+eee+q9Lr5mZHImcVszT86Tgauvvlp670qTxLg1hViePmn2JzZdVx7J05rkJ3bb2DHB8rUJzf4opbvIrxW9iSrkaVlG1uITx51oRU6ef/55qczYdQG/+OIL6bWGmvnWTATWzvcmv4/ce++9uvWS36diI7DyyVPM/vh8Ps3jbtiwIWoCO6/Xayvq6FbELAYA7NRTT9XcVp7G3qpVK8vHFNPOPB6P5TKsRmCN8tRTT0nlX3zxxYrbyCP1WumgL7/8srTd4YcfXu/1/fv3szZt2jBAPQXX6QhsKBRixx57LAMiY0D/+OMPxe3C4XDU5GZqk24JgsDuueeeqFTz2J9WrVqxRYsWRU2MpDQ+1QjyCKw8vXXs2LG6E3A53ScUmT17tuY5KY8yKfUdtca5z5492/Bn8+abb0rHSU9PZ7/99pvhffWQTzRpdiLORInAOnVdi3zxxRfSbNhKP36/n7355pvsrLPOkv5mpE+uhPw+Ib8u+vXrxwoKCnT3d7KvJ1JcXCylLytlJ8jHCqtloCnxww8/SPtdd911hvfTwpnHBg5y4MABW/uL0QIl1CKzctavX4+RI0eioKAAANCzZ0/cfPPNeO211zB58mRMmzZN+hHXlAqHw7bqbATxSSAAQ097xchF7L6xOPXkKBmRP3las2ZNvddzcnKk3/fu3atbXlFRkeK+TmPnGtK6fuycKw1VJ0D/uhYzJ7xer6G1+IxcX5dccgkCgQAA4O233456Tfw/x3G4/PLLdctqaOx8b2VlZdLvWhESEa3Pzs45UFNTo/l6bm5uVHSwS5cuOOywwywfz63I7xt6769Hjx5SO1BYWBj1XZpBPM/D4bC0VrLb0LtX79ixA8899xwAoHfv3rj++utVy7rhhhvQu3dvAJHsjUWLFkW9fscdd2DXrl3Izs7GK6+84kDt9fnyyy+laMull16KgQMHKm7H8zxeeeUV6Zp/8803Fa8djuPw5JNPYtmyZbj66qvRs2dPpKenIy0tDX369MG9996Lf/75B4cddhhKSkqkfVq1amX7vcjXnC4vL9fNzGqoPuHw4cPRvn17AMAvv/wSte60PMrUtm1bxay3s846S/XnqquuMlS3Dz/8ENdccw2ASDv2zTff4Oijjzbx7rTRuy4SHSeva5FzzjkH//33Hx544AEcfvjhyMnJgd/vR8eOHXHZZZdh6dKluOqqq6L6c61bt7b9XuTXRWVlpSGvaIh+VXZ2trTWd3l5uZRpAgCMMXz44YfS/7XWfo1FXlcjLmYE16UQy8XruOOOw/z58xv1+E899RQqKysBAPfddx8ee+wxcBynuO2VV17ZaPXKzMyUfjeyuLq8syLfN15UVFRgzpw5jpSVn5+PAQMGOFKWFvKUh+Li4nqvy1NQ5I2fGlu2bFHc12nEa4jjOIRCIVc8pJBf1w8++KCUvtYYiFIVCoVQU1OjK7FGrq8WLVrg3HPPxSeffII5c+Zg69atyM/Px5YtW/DDDz8AiHSQOnfubP8NxBH592ZEXrQ+O3lZ48aNi1oE3S7XXXdd1PW1bt063H///XjmmWccKX/NmjWOdQAHDx6M3NxcS/v27NkTGzduBADF1OFYsrOzpbbgwIEDUd+BUeQPBvbt22foQUZjo3evnjNnjiRyw4YNU23Tgch9c+jQoVLa+h9//BGVfv3OO+8AAPr06SOlfcYir8OBAwfw+OOPAwBSUlJw++23G3tTMr777jvp9+HDh2tu27ZtW/Tu3RurVq1CaWkpVq9ejUMOOURx2379+uGNN95QLWvVqlVSR7p79+6Gzjk9nnrqKUyZMgW///47pk2bhjFjxmDq1Kmq9+WG6hPyPI/x48fjiSeeAGMMH3zwAR566CEAwAcffCCJ9bhx43SHTlhh8uTJuPTSS8EYQyAQwPTp03WHuJhF77pIdJy8ruW0atUKjz76KB599FHV8v7991/pd7UHSmY499xzkZWVhVdffRXr1q3DCSecgLlz56Jt27aq+zRUX+/SSy/Fp59+CiCSRjx+/HgAkZTlDRs2AIgMTerVq5fhMhtiKIrrBDY7OxsZGRkoKytrlLGlsfz4448AgJYtW+LRRx9VvSBKS0ujvpCGRj7mYf369brby7fRugAai927d0tPdewyfvx4TJo0yZGytNCLmMrH0v7555+aZQmCgGXLlgGINJzik8CGoF27dvj777/BGMOOHTvQoUOHBjuWmTqJNPZ13bZtW2ns5caNG9GzZ0/Vbffv32+4ob/mmmvwySefQBAEvPfee3j44Yfx3nvvSeMUjT6FdzPye8d///2nu73WNg11DnzyySf45JNPAESiknv37sWWLVvw/PPP46STTsLQoUNtH2PKlCmOPXSZO3euobHWShxyyCGYOXMmAGNP38XoGWBMeJXo1KkTfvvtNwCRTogYtXITevfqnTt3Sr9nZWXplif/rNQeyixcuBALFy7ULau4uBgPPPCAVK4VgW2I+htBLotm5hDRIjMzE7NmzcLJJ59sSGIbsk94ySWX4IknngAQiYY++OCDABD1cC12bKyIXuRYi88//xwXX3wxBEGA3+/HF198YWhuE7M0VtZXvIjXdfHvv/9KWXddu3bVHZNslFdeeQUcx+GVV14xJLEN1dcbOnQo8vPzsXXrVsyfPx+bN29Gp06d8P7770vbmIm+AtEC27FjR0fq2WihGfmTAb0L/7jjjgMQ6Wwa6TQ5SWFhIYDIBCBaTzN+/PHHqAk1lDDznvWQT8IkRni0kEc71SZwIrSRN95KEdODDjpI6sytWrVKs3H9/fffpc7kMccc06BR8SFDhki/OxX1tkv//v2lBuann37SvXac5PDDD5d+nzt3rua2YtqYEQYPHoyDDjoIAPDee++hpqYG7733HoDIA7BRo0aZr6zL6NevnzSZyPz583XTmsSJ45TIzc2VJtZYtGhRlFxZZdOmTbjuuusARCLtkydPxscffwyPxwNBEDBu3LioTlyic8opp0i/6z00W7dunTR8pE2bNpair0D0g7q1a9daKqOh0btXyzu327Zt0y1PHs1vyMl7jGK2/lu3bpV+t1N/+YNiJ4dDiBJ7zDHHAIhMinXeeeepDhVoqD5ht27dJDHfuHEjFixYgF9++UXKcjj66KM1H3haYfr06bjwwgsRDofh9XoxdepUnHbaaY4eQ0Tvukh04nVdy0XO6WFCL7/8Mm666SYAkXv48ccfHyXqchqqrydmJwB1acPiZGdAJAVYbaI8NeQTMaplhJiupyOlGEDeeOo9+RA/OADSE7HGQkyP2rhxo6p0hsNhPPnkk7plmXnPenTq1ElKm12+fLmmxC5duhQ///wzgMiTDjeMBRNnIXbipzGirxs2bIh6CnvqqafW24bjOIwePRpA5CJ/9dVXVcuTj5Uye+Gb5fzzz5ek45lnnrF97jmBx+PBRRddBCDSiIhpeI2BXCRfe+01TQl7+eWXTZV99dVXA4g0njfffLP0EGP8+PGGxtu6nUAgIJ37hYWFUlqREjNnztSdMVq8t1dUVODpp5+2VbdwOIyLLrpIEuFXXnkF3bt3x+DBg3HvvfcCiIyRuuKKK2wdB4jMQuzU/ctq9BWIRMHEh2Y//PCD5tCFt956S/rd6EyRSshnX1+8eLHlchqKffv2RV23SvdquYR/9913mvNClJSUSFFuIPoBGABD3/GmTZuk7Tt27Cj93Woap7z+U6ZM0dz2119/le5DzZo1Q9euXS0d8/3338eSJUsARB66HnXUUZbKUUOU2MGDBwOIiJ2axDZkn1AeSZo0aVJU/8JslEmP77//HmPGjEEoFILH48Gnn36KM88809FjiFRXV0f1U5Wui0THyevaKGvWrJH6ejk5OY60L7G89NJLuPnmmwFEsinVJLYh+3qXXHKJlIH64Ycf4vPPP5eGo5x99tmmM3rEtiMzM1N6kG0bJ2aCMjIL8Y033ihto7Yor0g4HI5a2+2mm27SXBOroqKCvf/++2zy5Mn1XpPPQmxk9rMRI0ZI27/44ov1Xg8Gg1GLW0NjlsEXX3xR2uaDDz7QPbbeTM1Tp06VXm/Tpg1bvXp1vW22bNnCunbtKm2ntsCy+LqRGSHNbOt2vv76a/b5559rrhUYuw7s8ccfr7rtjh07WFpaGgMiM5/++OOP9baRz8DYoUMHQ+vY2eW2226TjnnCCSewXbt2qW4bDofZDz/8wB577LF6r2nNUGt2223btkkz/AYCAd1rorCwkD366KNs+fLl9V4zs640Yyxq3cTrrruOhcPhetvErvVpZPbQ4uJi6fuX/2it0ecEZmYhtvu9LViwQHq9WbNmiovBr1u3TpqZVfxRWge2rKyMdezYkQFgHMexZ599VvG7ECkuLmYvv/wy++GHH+q99sADD0jHip0NtqamRloLEjZmiXQj8nV7jzzySN11YHmeZytXrrR8vKqqKpaens5gYSZTESuzEP/+++/s7bffZlVVVarbbNu2LWrdwu7duyvOahsMBln79u2l7UaNGqU4e3lFRQU744wzpO369u3LBEEw/D5FzMxCHLtGuhL//PMP43le2kZt3cktW7ZEtV1qs32uWrWK7d69W7VOH3/8sbT+c0pKCluzZo3me9Ajdh1YOaWlpVH351GjRtWbLd7JPmEspaWl0vmdkZEhzUCblpZmeu1ULX744Qdp7VmPx8M+/fRTS+WsX7+ePffcc6ykpER1m9h1YJs1a8b2799v6jhumIVYbCvU9nP6ui4sLGT//vuvan3+/PNP1qFDB6mcSZMmGX4vSui508033xx1b1Nah9upvp4S8nNA3r4r9XO1KC4ulmY8P/PMM03tq0WjjYEdNmyYFIW6/PLLccstt6Bjx47S4Phu3bpJa77xPI8vv/wSRx11FHbs2IGXX34Zn332GUaPHo1+/fpJE1Ns3boVS5cuxU8//YTy8nI89thjtut5ww03SNHNW2+9FfPmzcNJJ52EFi1aYP369fjwww+xfv16nHDCCVi/fr1m2uiwYcOk3++8807s2bMHPXv2hNcb+djbtWuHgw8+2HDdzjvvPEybNg1TpkzBrl27MGDAAFxyySU46qij4PF4sHTpUrz77rtSROLEE0+U0uuICBs2bMAtt9yCvLw8nHzyyTj00EPRunVr+Hw+FBYWYt68eZgxY4Y0I1zbtm01J5tp27YtXnjhBVx77bUIhUI45ZRTMG7cOAwZMgShUAgzZ86U0i68Xi/eeustpKSkqJYnH3O9adMm1TVZ9Xjqqafw999/46effsLcuXPRpUsXnHPOOTjqqKOQl5eHYDCIgoICKZpfUFCAYcOG4f7777d0PCO0b98eU6ZMwRlnnIHq6mqMHz8eL774Is444wx0794dqampOHDgANatW4dFixbht99+QzgcdmRiizfffBMDBw5ERUUFXn/9dSxcuBBjx45F+/btUVhYiKlTp+K3337DUUcdha1bt2LHjh2GJkTIzs7GmDFjolKKjj/+eHTv3t12nd3C4MGDcd111+H111/H/v37ceSRR2L8+PEYPHgweJ7HH3/8gXfffRfl5eU488wzNdeiS09Px/Tp0zFkyBCUlJTgzjvvxJtvvolzzjkHffr0QUZGBkpKSrBx40b88ccfmDdvHoLBID766KOocn799VcputC+ffuoaCMQudY++eQTHHrooSgpKcEtt9yCIUOGOJ4OGA8uueQSTJs2Dd9++y0WLVqEPn364IorrkCfPn1QXl6O2bNn4/PPP5cyiB577DHdta+1CAQCOPnkk/Hll19i6dKlKCsr001Hjr2PyMfrbtq0qd7rAwYMwNlnnx31t8LCQlx55ZW47bbbcNJJJ+Gwww5Du3btkJKSgqKiIvz222/44osvpEkXMzMzMXXqVKl9lePz+fDKK6/gnHPOAWMMM2bMQO/evTFu3DhpPoLVq1fjww8/lNIMfT4f/u///k9zYpjG4qCDDsKNN96Il156CQBw77334uuvv5bWga2srMSiRYvw8ccfS1GoDh06SJMSxfL999/jvvvuw/DhwzF48GCpndm8eTOmT58urQPp9/sxefLkBr1uMjIyMHPmTJx66qlYsGABZsyYgdGjR+Pzzz+Xslgask+YkZGB0aNHY9KkSVGTX55zzjmGxlUa4e+//8aoUaNQVVUllZ2amqq7bmevXr3qTZRTVlaGO+64Aw888ABGjBiBgQMHomPHjkhPT0dxcTGWLFmCKVOmSNec1+vFp59+qjkG9quvvsJff/0V9Td5FsELL7xQL+ImTkwWy88//yxlAIqI838AwLvvvivNNSNy++23Wxqj6/R1vXXrVgwcOBBHHHEEhg0bhl69eiE1NRUFBQX48ccf8d1330kZXHfeeWdUZkBDMGHCBHAchwkTJkjeMXfu3Kj5JBqyr3fppZdKaei7du0CEMkoMTuvxLx586T2yNGMAycs2EgENhQKRT1li/1RevK/c+dONmzYMNV95D8ej4e9/fbb9cowG4FljLF77rlH81jHHHMM2717t/R0SOsJ6wUXXKBaTuxnZSSqVFNTw6644grdz+Pcc8/VXB9T3K6pRWAnTJhg6HxCbbRh8+bNhsp97rnnmM/nUy0rMzPT0NNg+T52n3pWV1ez66+/nnk8HkPvd9y4cfXKcDKSJ7Jw4UJpbUm9n4yMDLZixYp6ZZiNwDIWWd9ZjAAr/fTt25dt3bqVtWvXjgFghxxyiKFyFy9eHFWO2vpqTtKYEVjGIvfviy++WPWz43mePfvss5qRFjlr1qxh/fv3N3QOBAIBNnPmTGnf/fv3S/denuc17+sff/yxVE7//v01ozaJREVFBRs9erRum6gWqTPL9OnTpXI//PBD3e2N3mPV2kLGotcg1vvp27evYqZGLB9//DHLysrSLS83N5d99913Vj4qxpjzEVjGItGT2267LSoSq/bTr18/zTVbn3vuOd0yunTpwn766SerH0EURu4LZWVl7LjjjpO2O+OMM+pFYp3oEyoxf/78evv//PPPdt+2hPz9m/lRuh8vW7bM8P75+fmG+r3y9sTojxqxmUxGftT6OnoRWBGnruslS5bolpGZmam53qwZjLgTY4zdeuut0nbdunWrF4l1oq+nRFlZWb01cR988EHT7/O8885jAFhqaqpm5oBZGk1gGWOssrKSPf300+yoo45izZo1i/qwtTpZ8+bNY1dffTU76KCDWE5ODvN4PCwrK4v16dOHjRkzhk2cOJHt3LlTcV8rAssYYzNnzmQjR45kubm5zOfzsTZt2rChQ4eyt99+W0pRMiKwoVCITZw4kR1//PEsNzdXSutS+qzMdMoXLlzILr/8ctatWzeWnp7OUlNTWefOndnYsWMNNTricZqawO7du5d99tln7JZbbmHHHnss69q1K8vOzmZer5c1b96c9evXj1199dWWFtteuXIl+9///sd69OjB0tPTWWZmJuvbty+76667DIlweXm59Fn7/X5WVFRk4R3WZ/369ezuu+9mgwYNYnl5eczr9bK0tDTWuXNnduqpp7Inn3xSURIZaxiBZSzyIObjjz9m5513HuvcuTPLyMiQvoPDDz+cXXnllWzq1KmsrKxMcX8rAssYYwUFBez2229nPXv2ZKmpqSwnJ4cdfvjh7Pnnn2fl5eVMEARpEW+t1HE5giBIi5A3b95cM+XRKRpbYEW++eYbNnLkSJaXl8cCgQDLz89nF1xwAfv9998ZY8Y6qiKCILAZM2aw8ePHsx49erCsrCzm8XhYTk4O69evHxs3bhybNGkS27dvX9R+Y8aMkY5x9913ax6DMcYuuugiafvbbrtNd/tEYtasWeyCCy5gnTp1YikpKSwzM5MddNBB7MYbb3Q0jT0UCrH8/HwGgI0YMUJ3e7MdWKV+Q2lpKZsxYwa7++672dChQ1mPHj1Y8+bNmdfrZTk5Oax3795s/Pjx7Ouvv9ZMQ4+lsLCQPfPMM2zYsGGsdevWLBAIsEAgwNq0acNOPPFENmHCBNPplrE0hMCKrFq1it12223siCOOkD4P8X4+evRoNnXqVMU0ajnbtm1jL730Ehs1ahTr0aMHy87OZikpKSw/P5+NHDmSvfvuu44OdTF6X1CSWKWHTnb6hEoIghA19KpTp06WUsfVcFJgq6qq2KxZs9hDDz3ETjrpJNarVy+pb5mVlcW6devGzj//fPbJJ58YfmCX6ALLmDPXdVlZGZs0aRIbP34869u3r9T/b926NTvmmGPY008/rZmiaxaj7sRYdKqwksQyZq+vp8Zll10mHZfjOLZx40ZT+x84cEDqU1155ZWm9tWDY0xlpiKCIBqV2bNnS5Ot3HjjjaYnFCLss3LlSmmGPKPfwY8//ogRI0YAAG666SYpzY8gkokJEybg1ltvhcfjwebNm125nA5BEAThHt577z1cfvnl4DgO//zzj3MTOKERZyEmCEIbcVxIZmZmg45FJdT5v//7P+l3o2NvJ06cKP2eDGu/EoQS11xzDVq3bo1wOIxnn3023tUhCIIgXIy8rRgzZoyj8gqQwBKEaxAF9tZbb0VeXl6ca5N8LFiwQHP92ddee02aDKhdu3aG1ub7+++/pYk4hg8f7vgNmiDcQmpqKh5++GEAkSV61NYmJAiCIIjJkydj7dq18Pv9jkyyGwulEBOEC9i7dy9atmyJ3NxcbNiwAZmZmfGuUtLRrVs3VFVV4ZRTTkH//v2Rl5eHmpoabNiwAdOmTYuaKfGbb75RFdhZs2ZBEASsW7cOzz77rDQ736+//opjjjmmUd4LQcQDQRAwcOBA/PXXX7j++us1174mCIIgmibhcBgHHXQQ1q5di7vvvhtPPfWU48cggSUIoknQrVs3bNiwQXOb1NRUvP3227joootUt1Gaft/oeNk5c+agoqJCv7IK5ObmYvDgwZb2JQiCIAiCSBZIYAmCaBIsWrQIX375JRYtWoQdO3agqKgIFRUVaNasGXr06IHhw4fj2muvRatWrTTLEQU2IyMDPXr0wLXXXovLLrvM0LqxnTp1ktajM8uQIUMwb948S/sSBEEQBEEkC/VX/CYIgkhCjjzySBx55JG2y6FnfgRBEARBEPGDIrAEQRAEQRAEQRBEQkCzEBMEQRAEQRAEQRAJAQksQRAEQRAEQRAEkRCQwBIEQRAEQRAEQRAJAU3iRBAEQSQVgiCgsrISFRUVqj9VVVUIBoMIBoOorq6Wflf6fzAYRDgchiAIUf8q/U0QBACR2arVfsQZqzmOg8fjgc/nk368Xq/i7+JPSkoKUlNTkZKSovp7amoqUlNTkZ6ejvT0dHi91NQTBEEQyQO1agRBEITrYIyhrKwMJSUlKCkpQWlpqeLv8r+VlZWhsrISlZWV8a6+q0hNTUVGRgYyMjKQmZkp/S7/ycrKQk5OTtRPamqq4rrHBEEQBBFPaBZigiAIolFgjOHAgQPYt28f9u/fH/VvcXFxvf/X1NTYOp7H40FqairS0tLq/aSmpuKHD34BJ3CAwAECav/lwLGY/wscILaUrPZ3Jvtd9ndO/L/sJcgdkJM1uZz4U7sjD7DafyP/Z9LrjEfk/zwDPAwnX3kCqqqqUFlZiaqqKtXf7eD3+5GdnY2cnBzp35ycHDRv3hy5ublo0aIFcnNzkZubi4yMDJJdgiAIolEggSUIgiBsIwgC9u/fj927d2PPnj3Ys2dP1O979uzB3r17EQwGTZWbmpqKrKwsZGVlITMzE1lZWfhlymJwIR4I8eBCHFDDgwtzkf+HOSDMAWEeEAAOTVeqGBeRXXgFMC8DPDH/egWMuukkKaJdXFws/VRXV5s6lt/vl2RWLra5ublo3bo1WrZsidzcXHg8ngZ6twRBEERTgQSWIAiC0EUQBBQVFWHXrl3YuXMndu3aJf0UFhZiz549CIfDhsrKyspCs2bN0Lx5cyyfsxpcDR+R0GDtvzWeut9Z0xXQeMJ4AfAJYD4G5hMiEuyL/G3EFcdi7969KCoqQlFREUpKSgyV6fF4kJeXh9atW6NVq1b1/m3VqhX8fn8DvzOCIAgi0SGBJQiCIAAAwWAQO3fuxLZt27B9+/YoUS0sLNSNnvI8jxYtWiAvLw95eXn4dfISoDoio1ztvwh6SEqTDMYzwBcG8wu1P2Gcd99p2Lt3L/bs2YOCggJDDzg4jkOrVq3Qrl076ad9+/Zo37492rZti0Ag0EjviCAIgnAzJLAEQRBNCEEQsGfPHmzbtg3btm3D1q1bsX37dmzbtg0FBQXSLLpKeDwetGzZEm3atMHfM1eDq/JEfqojPwjyTTpll1CHgQF+ASwQln5G3jgUhYWFKCgoQGFhoe6Y3by8PLRv3x7t2rVDhw4d0KlTJ3Ts2BGtW7eWZnYmCIIgkh8SWIIgiCREEATs2rULmzZtkn42b96Mbdu2aY5vTEtLQ35+Ptq3b4+57y+sE9QqTySaSoJKNAAMLJKynBIGSwnjwsdHYceOHdixYwe2b9+OsrIy1X39fj86duwY9dOpUye0b9+elhAiCIJIQkhgCYIgEhjGGHbv3l1PVDdv3qwa0fJ6vWjbti06dOiARZ8tA1fprf3xRMadkqQSLoKBAV4GlhICSw1j7JNnYevWrdiyZQu2bdummtru8XjQrl07dO3aFV26dEG3bt3QrVs3tGzZkmZMJgiCSGBIYAmCIBKEUCiErVu3Yv369VE/atEpMTK14bdt4Cq84Cq84Cu9QBVFUonkgIEBKWEIqSGwtBBGXDMYW7ZswebNm1XXA87MzETXrl2ln27duqFz5840xpYgCCJBIIElCIJwIdXV1diwYQPWr1+PdevWYf369di4caNitMnj8aBDhw7YurQAXLlXklWORJVookhjbtNCENJCGHb1Ufjvv/+wZcsWxcmkeJ5Hhw4d0LNnT/Tq1Qs9e/ZE9+7dkZKSEofaEwRBEFqQwBIEQcSZcDiMzZs3Y/Xq1Vi9ejX+/fdfbN68WbGjnZqaiu7du2PVrP8islrui8gqzexLELowjoGlhsDSQzj7/pOwYcMG/Pfffzhw4EC9bT0eDzp16oSePXuid+/e6NmzJ7p06UJL/RAEQcQZEliCIIhGZs+ePfj3338lYV2zZo1iumNOTg66d++Ov6b9C66sVlYpqkoQjiJGa4X0Gox7/mysWbMGa9aswb59++pt6/P50LVrV/Tq1QsHH3ww+vbti9atW9OYWoIgiEaEBJYgCKIBCYVC2LBhA5YvX46VK1fi33//xZ49e+ptl5qail69emHFN+vAlfrAl/loWRqCiBOS1GbU4IInT8eaNWuwdu1alJSU1Nu2RYsW6Nu3r/TTvXt3itISBEE0ICSwBEEQDlJVVYV///0XK1euxPLly7Fq1ap60VWe59G5c2ds+m0n+DIfuNLaNGCSVYJwLQwMCIQhZNbgrPtPxD///IN169bVS/X3+/3o2bOnJLT9+vVDVlZWnGpNEASRfJDAEgRB2KC0tBTLly/HihUrsGLFCqxdu7ZehzY9PR19+/bF0qmrwJf6I+nAAh+nGhME4RSMZ2AZNbjs/0bjn3/+wT///FNvPC3HcejWrRsOPfRQHHrooSS0BEEQNiGBJQiCMEFVVRVWrlyJv/76C3/++SfWrVsHQRCitsnNzcW+1WXgS3zgSvwUXSWIJgIDA0sJg2XW4JTbjsPy5cuxdevWqG1ihfbQQw9FZmZmnGpMEASReJDAEgRBaBAKhbB69WpJWFetWoWampqobdq3b4+dS4vAl/jBl/iAappoiSCICMwXhpAdxMg7j8eyZctUhfbwww/HEUccgb59+9KatARBEBqQwBIEQcSwbds2/PHHH1i8eDGWL19ebwxrXl4eilaVgi8OgD/gBxf0xKmmBEEkGnpCGwgEcOihh2LgwIE44ogj0LFjR5rlmCAIQgYJLEEQTZ6qqiosW7YMixcvxuLFi7Fjx46o17Ozs1G6oQr8gQC4Yr/9pWy4mPGvTFDejiAI9yG/fh24dpkvDCEniOE3HoUlS5agqKgo6vW8vDwMHDgQAwcOxGGHHYacnBzbxyQIgkhkSGAJgmhyMMawbds2LFq0SIqyBoNB6XWv14uDDz4YK6b9B744BVy5zeVsYoU1qjIkrwSRcKhd0zavZwYGli7gyrdGY8mSJfXuTRzHoU+fPjjmmGNw9NFHo3PnzhSdJQiiyUECSxBEkyAUCuGff/7BggUL8Ntvv2Hnzp1Rr7ds2RJ7V5RF0oKLA3WzBFvpkGoJqwiJK0EkPnrXutXrvLZcxjOwzGqc89iJ+OOPP7Bx48aozVq3bo2jjz4aRx99NA499FBaf5YgiCYBCSxBEElLZWUllixZggULFmDhwoUoKSmRXvN6vejXrx/+/nI9+P0BcJUKMwUb7XwaEVYr5RIE4X7MXP9mrn2Fcpk/jBsmj8Vvv/2Gv/76Kyo6m5qaioEDB0pCS6nGBEEkKySwBEEkFfv378dvv/2GX3/9FUuXLo3q4GVlZaHsvxrw+1Kio6xK6HU0zUqr0XIJgkg8rNwPjNwLNMplvAAhO4hT7jwGv//+e9TYWZ7n0a9fPxx33HEYMmQIcnNzzdePIAjCpZDAEgSR8BQVFWH+/PmYO3cuVqxYAfltrU2bNtj9Zwn4fSmRNVmNjmWN7VxaFVatMgmCSB7s3iOU7g8Gy4yMna3BRRNOw++//45169ZFvd63b18MGTIEQ4YMQevWre3VkyAIIs6QwBIEkZDs378fv/zyC37++Wf8/fffUdLas2dP/PfDzoi0ViikBushdiSdkNbYMgmCSF6cumfI7xcWymSBEK58bzTmzZuHVatWRb3Wq1cvHHfccTj++OPRvn17uzUlCIJodEhgCYJIGIqLi/HLL79g7ty5WLZsGQShrpPXp08frP1uOzxFKeCC3jjWUgGSV4JoOjj54AuI3D9slMn8YVz70fmYP38+VqxYEXXf7NWrF4YPH46hQ4dSmjFBEAkDCSxBEK6msrISCxYswJw5c/Dnn38iHA5Lr/Xq1QvrZ+2MSGu1y6RVhOSVIJoeTkusQzBfGDdMGYv58+dj2bJl0v2U4zgMGDAAw4cPx5AhQ5CRkRHnmhIEQahDAksQhOsIh8NYtmwZZs+ejV9++QWVlZXSaz169MDGHwvA77EvrRxfl1rMhAa4FZK8EkTTxWGJdfp+xbxhXPfpBfjxxx/xzz//SH/3+/048sgjMXz4cBx11FEIBAK2j0UQBOEkJLAEQbiGjRs3Yvbs2fjxxx+xZ88e6e/t2rVD4aIS8EVp4Ku8tjpv8k6gCMkrQRANQgNKrIjd+xfHcxACIYx//Qz88MMP2Lx5s/Raeno6TjjhBJx66qk46KCDwHEm5xMgCIJoAEhgCYKIK8XFxZgzZw5mz56N9evXS3/PzMxExX8CPHtSwZVFzx5stsOm1OmzWpYhSF4JghBpBIkVsXI/i4rsgoGlhXDOU8PqPUjMz8/HyJEjceKJJ6JFixamj0MQBOEUJLAEQTQ6giDgr7/+wjfffIMFCxYgFAoBALxeL4TdXnj2pIEvTgHHrEcbtDp5ZssyBckrQRCxNKLEipi5vylGdsEgZAUx9JbDMG/ePFRXVwMAPB4PBg0ahJEjR+Koo46C1+vS+QcIgkhaSGAJgmg09u7di5kzZ+K7777Dzp07pb/37NkTG2YVwFOUCi7k0SxDq1NmpFNnpBzLkLwSBKFGHCRWRO9+p1cW8wi46fOL8d1330Uty9OsWTOMGDECp59+Ojp27Gi4PgRBEHYggSUIokEJh8P4448/8M0332DhwoXSrJfp6emo2gB4dqeBr/AbKkupE2amE6dXli1IXgmC0MNBiXX63me0PCGlBuc8MwyzZ8/Gvn37pL/3798fZ511FgYPHkxRWYIgGhQSWIIgGoTi4mJ8++23mD59Onbv3i39vW/fvlgzY3sk2iqY68zJO15WO2+x5TgGCSxBEHrEMQqrhJ17KuMYHv75Bnz77bdYuHChtL5sixYtcPrpp+P0009HXl6erfoRBEEoQQJLEISjrF27Fl999RV++uknBINBAEBWVhbK14bh2Z0OvtJnqVwmMNudNbEcxyF5JQjCKC6TWBE791jmD+G8CSfi22+/xf79+wFExsoec8wxOOusszBgwACawZggCMcggSUIwjahUAjz58/HV199hZUrV0p/79WrFzZ8Wwi+KFVxQqZ44ajEkrwSBGEWF6QSaxRo+b7GOIa7v78S06dPx/Lly6W/5+fn45xzzsHJJ5+M1NRUp2pKEEQThQSWIAjL7N+/H19//TVmzJiBvXv3Aog8dWeFAXgL0sGV+aKWvzGF2MFzWBCdWDNRKsdu3RroPRIEkQC4VWLl9bJxbxJSa3DqQ0djzpw5qKioABDJxhk1ahTOOuss5Obm2q0pQRBNFBJYgiBMs23bNkydOhWzZs2S0oSbN2+OAytC8O7OAFfjsdbxie3QuUReYzuHtuS1gd8jQRAJRCJIrIjFezrjBVzz8bn4/PPPpdnnvV4vhg0bhvPOOw/du3e3WVmCIJoaJLAEQRjm33//xeTJk/HLL79AvHX07t0b/31TCH5fWl2asNmOjlonLo4Cq9YZtCSvjfT+CIJIQByS2AYXWBGL9z8Ghgd+uAafffYZVqxYIb08YMAAjBkzBoMGDQLPOzs+mCCI5IQEliAITQRBwOLFi/Hpp59GjWni96fAuysLXKm/fpqw0Q6Ok50kHYzKq1Yn0JS86nVKSV4JghBJNIkFbN0LhfRqHHfzIZg7d660tFrHjh0xduxYDBs2jJbhIQhCExJYgiAUCYVC+OGHHzBlyhRs2rQJQCTti+0MwFOQqT6bsF6nxmhHzUHB05NXo50+QwJr5P2RvBIEIceNqcRm6mTxvsj8IZz1zBB88803KC8vBwC0bt0aF154IU455RQEAgHjdSAIoslAAksQRBQ1NTWYPXs2PvroI+zatQsAkJaWhur/PPAWZICr0XkyrtaRcbIzZBI1gTXT0dOU1zi+N4IgkoREjMLGYvEeyTwCxr81Ep999hmKi4sBROZVGDNmDEaNGoW0tDRz9SAIIqkhgSUIAgAQDAYxc+ZMfPzxxygsLAQANGvWDKXLBXh2Z4ALW4ycWumUNWD01UrnTlFe4/y+CIJIQtwmsVbrY/F+KU74NHnyZOzevRsAkJmZifPOOw/nnnsu0tPTrdWHIIikggSWIJo41dXV+O677/DJJ59gz549ACJPvkuWCfDsTgcnWIwuOtXxsYFcXq126OrJqwveF0EQSUyySCxg+d7JOIZbvhqLTz75BNu2bQMQWYLn/PPPx9lnn00RWYJo4pDAEkQTJRQK4fvvv8cHH3wgiWtubi6Kl4Yi4sosRhjtdr5cJnp2142tLcR+GQRBNA2SSWBFLLYNDAx3f3853n//fWzduhUAkJ2djQsvvBBnnXUWUlJS7NeNIIiEgwSWIJoYgiDg559/xrvvvosdO3YAAFq2bIl9i2vg2ZNetxSOGcSOkhtkj+MbdQIoEwU5Uw7RsDAGcA50/J0qh2iauE1iPR7b93fOw4OFrd0HGRju+OYSvP/++1K71bx5c1x44YUYNWoUTfZEEE0MEliCaCIwxvD777/jnXfewYYNGwAAOTk5KF/BgS+wIK6xHSM7nRu5AFsVPXmHzyFZJHltYojNoR3xlDepJLCEHRyQWEcFVsTGfZHz1L0nKzLLwHDr9IsxadIkaZLB1q1b4/LLL8eIESNoHVmCaCKQwBJEE2DlypV4/fXXsWrVKgBARkYGqtZ64S3MBGpMFqbWIbLSqZGXZVVeYzt5JK+EWWKbQavi6VQ5BCHiVokFLN3z5QIrYikq6+Vw/eTzoobAdOvWDddccw0GDhwIjq49gkhqSGAJIonZsWMH3njjDcyfPx8AEAgEEN4cgLcgC1w40hkx1XnQ6giZ6cwolWNGYNU6dW5LHSZ5dT9qTaCZDrATZRCEEm5KJY4VWBET90olgQXMS6xYDuMFjH/zVHzyyScoKysDAAwYMADXXnstevbsaapMgiASBxJYgkhCSktL8cEHH+Crr75CKBQCz/PgCtPg25ldbx1XQx0Hvc6P0Q6MVvTWiOzpdebcFH0leXU3ek2fEfl0ogyC0MPNUVg5Bu+bahILGBfZ2DKYJ4wznjoa06ZNQ01NJK1oxIgRuPrqq9GyZUtDZRIEkTiQwBJEElFTU4Pp06fjgw8+QElJCQCAP5AC37Zm4Kv8ivtodhiMdnr0Oi5GBFhL+Ix04Nwkr5GCnCmHcB4jzZ6efDpRBkEYxS0SqyWwIjr3UC2BFdETWbUyBH8Ix9/RF3PmzAFjDCkpKbjoootw/vnn00RPBJFEkMASRJKwZMkSvPzyy9JSA507d8aO2eXwlKSq7qPaSTDb0VHrsJgRYCXhM9Npc5PAkry6EzPNnZp8OlEGQZglkQRWROVeakRgRbREVqucV5bdj1dffRUrVqwAEJno6dprr8Xxxx9P42MJIgkggSWIBKewsBD/93//J41zzcnJQfnfPDx7M8BBu6Gu1zmw0sFR6qSYKUdJXs121kheCT3MNnVKnVwnyiAIqySixAKKbYQZiQWURVavDAaGu765FBMnTsTu3bsBAIcccghuuukmdO/e3dTxCYJwFySwBJGgBINBTJkyBR999BGqq6vh8XiAnWnw7cwBFzbWOZA6BXY6NfLOiVUBFqXPagfNAWkkeU1SrDZxcvl0ogyCcAKbEhsXgRWR3WPNCqyIXGSNlsF4ARe8OhyffvopqqurwfM8zjnnHFx++eVIS0uzVA+CIOILCSxBJCB//PEHJkyYIC3ozpcG4NvaHHyl8jhXNRy5/AVmXYBFebXTKaPoK6GGnfNblE8nyiAIp0jUKKwcgVkWWBEWFkyXIfhCOPrmHpg7dy4AIDc3FzfeeCOGDBlCacUEkWCQwBJEArF//368+uqr+PHHHwEALVq0QMkSDp59abrpwkrE/fJ3yYRJJK9JSLzPbYAElmgY4h2F5Xh7WTtiMXG6Ph6bd0PUA+BBgwbh5ptvRrt27eJSH4IgzEMCSxAJAGMMs2bNwmuvvYaSkpLIsji70uHbkQNOMNmZ4WvXzwuHLddH7HjYvn24RBxtC6ydOnA8ya+TuK1JI4klnMYNUVgHJJbzeADB5r3P4wEstGWMYzj/1aH45JNPUFNTA7/fj/Hjx+OCCy6A1+vVL4AgiLhCAksQLmf79u144YUX8OeffwIAuEo//FtzwZf6zBXEx6ybZ6HRj31ingwCGzd5FTuhJK/O4PamjESWcJIkiMJy8jRkqyIrL8NCmyakMxx8cUssXboUANC9e3fcfffdNMkTQbgcEliCcCnhcBifffYZ3n33XQSDQfj9fgibM+HdkwNOYOYaa75+Z8eMwCqlejk2ftYO8ZZXK3WQdzxJXp0hUZoxkljCSeIpsU6lEceOpTUrsrH7m5VYnw8MDLd/fgFeeeUVlJSUwOPxYOzYsbj44ovh95ubV4IgiMaBBJYgXMj27dvx1FNPYeXKlQAAvjQVvu0twQd9kQbeaCOtIK4iRgRWa4wSRV9NHj+2s0ny6gyJ2ISRyBJOkGxRWDlGRVZtfzMi64tkMzFvCIOu6ygtSde5c2fcdddd6NOnj/GyCIJoFEhgCcJFCIKAadOm4c0330RVVRVSU1MRWpcBz76sukmajAishriK6Ams3gQbcRfYRJFXtU4mCax9Ern5IoklnCDBo7CqAgsYk1i92ZCNiKwvejjOPTPGYcKECdi/fz94nseFF16ISy+9FD6fyWE7BEE0GCSwBOESCgoK8PTTT+Ovv/4CUBt13dYSfE1Mo6knsDbl1cjMkJQ+rHN8vU4lyas9kqXZIokl7JLgAgvoSCygL7J2JVZBTJknjME3d5Vm/O/Rowfuv/9+dOrUSbssgiAaBRJYgnABc+bMwYsvvoiKigoEAgEIGzLhKcpWXhpHTWANiKuIksCaWdKAoq8qxzfSmSR5tUcyNlkksoQdElxidQVWRE1kje6vJrIakdV7ZozD888/j5KSEvj9flx77bU4++yzad1YgogzJLAEEUcqKiowYcIEzJ49GwDAl6fAt7Ul+KDGxBFKAmtCXoH6Amu2MSaBjTm+0Q4kyas9krm5og4xYZWmIrCAssSa2V9JYnVSg5k3hIMvycOSJUsARNaNveuuu5Cbm2v8uARBOAoJLEHEiTVr1uCRRx7Bjh07wPM8+J3Z8BY2V466ypELrElxFREF1upTZFu3jWSSV7MdRxJY6zSFpooklrBKAkusKYEVkYuslf3lImtgbCsDw9XvnYaJEyciGAwiOzsb9913H4488kjzxyYIwjYksATRyAiCgKlTp+Ltt99GKBRCy5YtUfy7D57yVKMFRBpfi/IKRAQ2LvIKJLbAise20lkkebVOU2umSGQJsySwwAI2JdbKvkCdxJqYnOnN5Q/isccew/r16wEAF110ES6//HJ4vV5rdSAIwhIksATRiJSUlODxxx/HokWLAAB8cTr821uCC5tMobIVAbUpgPEU2HhHX60fOD7HTQaaahNFEkuYJZ4Sa1UixWPb2V8Q7B3f7BAcTsDJDx6C6dOnAwAOOeQQPPjgg2jZsqX1OhAEYQoSWIJoJNatW4f7778fBQUF8Pv9YBuyo5fHMYIdeRU7xGYXehepbeSNrB+rSiJHX+0dOD7HTQaachNFEkuYId7rwtqQSFsCC4Dzeu21TRYymu6aNhbPPvssKioqkJ2djfvvvx+DBg2yXgeCIAxDAksQjcB3332HCRMmIBgMgqv2wr+lDfjKgKkyOA8PFjawBqzizlykgTayhmwssobdSgdBTFVmjDVNgSV5tQ41TySxhHESWGABexLL1abwWpVYzifub+5+LfiDyD8jIKUUX3bZZRg3bhx4G0N8CILQhwSWIBqQ6upqvPzyy/j2228BAHxJGvxbW5lKGeY8YuTTgnyK4grYltdIHYzvHzvGNt4CS/KaYFDTVAdJLGEUGxKbyAIL1EksYPFhq0++v/F7d2xK8bHHHov77rsPaWlpputAEIQxSGAJooHYu3cv7rvvPqxevRocx8G7qzk8hTmGU4ZFcRUxJbBycRUxI7AqT4+NdgqUJoiyLbCJFH0lcbUHNUvRkMASRmmq42ARLbAiph66+pT2N34vv2nyuXjhhRdQU1ODTp064YknnkCHDh0M708QhHEox4EgGoC1a9fi6quvxurVq5GVlQX/hjbwFjYzJK+ch7curxwX6URYlVeetyWvHMc1jLwmEiSv9iB5rQ99JkQiYGcMKmzOrwCAhUL1/sZ5PIbFmNUo7V+/PVbj5Qu+wKuvvorc3Fxs3rwZV199NRYuXGhoX4IgzEERWIJwmHnz5uGJJ55AdXU1uGo/Alvbg6/06M7eq9VI6gqsUsRVjhGB1Rmzo9e50FqWJ97pw5HdG+FWR/JqD2qOtKFILKFHEx4HCyhHYeXotmMKUdjo/bXv8ZzXC+YNoes5Kfjnn3/AcRz+97//YfTo0ZaXriMIoj4ksAThEIwxfPDBB3jvvfcAAHxpOgLb24Kr0V96Ru8Jr6bA6skroC2wBiebUGv4jTTKSS+wJK72oabIGNQJJrQggdXdRkti9QQ2sr8BieUYht/VA9988w0A4Oyzz8b1119P68UShEOQwBKEA9TU1ODZZ5/F7NmzAQDeombwFbSMpAyHw6oCayQ1SVVejYgroC6vZte+iynDzNPkpBZYklf7UDNkHBJYQosmLrCAMYkFNB7KGpDYyP7K935pRmQwXPJ/QzFx4kQAwFFHHYWHHnqIJnciCAcggSUIm1RUVOCBBx7AkiVL4PF44NmWB+/+nLoNFATW6JgaQEFgjYqrSKzAWpneXxCi3oPZVKikFViSV/tQE2QeklhCjQQXWKBxorBy6j2cNSiwdftHtwOxx7/7ywvx+OOPIxgMonv37njmmWeQm5tr6hgEQURDkzgRhA327duHG2+8EUuWLEFKSgq8G9toyquZCSHqoTZBkxks7iu+B7VJmpokJK/2IXm1Bn1uBOEYZiZ6Ut4/ul2PnUzq6XM+xcsvv4ycnBysX78e11xzDbZu3Wr5eARBUASWICyzbds23HHHHdi5cycQ8iCwpT08VanRG9UKrFVplaKvZqOucgTBdoeXhcO2xDWpIrAkrs5ATY996GESEQtFYE1HYOWI0VizUdjoMgTFOgi+IFoOD2Hr1q3Izs7G888/j549e1o+DkE0ZSgCSxAW+O+///C///0PO3fuBBf0IWVTx/ryynOAz2s94oraVN04RV3r1cMiSbWEDsmrM5C8OgN9joTbsLkUjiPYkHC70dhIGTygILB8jR975vjRs2dPHDhwADfddBP+/vtvW8ciiKYKCSxBmGT16tW48cYbUVxcDK4ygJSNHcEH/dEbiQ2oncac4201xBJu6FC4ANuRBcIZSLqcxe7nSd9HcpEMD9k4zlZ2AasJ2W87vV5FCTVMTVBxfy7sxdbpAvr374+Kigrcfvvt+O2332xUlCCaJiSwBGGClStX4pZbbkFZWRn4ilSkbM4HF5Y1UjwHeHj7qX1208BorCrhRkiW3IX4fdD3klwkg8QC1ttR8XzmOWdE1u7+MWVwggdrPinHMcccg2AwiPvvvx8//fSTveMQRBODBJYgDPLXX3/h9ttvR0VFBfjyVAS2tAcn1KYaOSmuorwyQXe9OcUiSFwJN0KS1HBY+Wxj96HvJ7lgQnKIrM1oLABrEhusqfvdbjRWoQyO8fjrrb046aSTEA6H8dhjj5HEEoQJSGAJwgBLlizBnXfeicrKSvBl6Qhs6RCR14YQV6tFUNS14bH5HTVZSI4aHic+Y/qeko9kkFjAGYmNd1pxTBkcOPzy4maceuqpEAQBjz/+OH7++Wd75RNEE4F6YwShw/Lly3HvvfciGAyCL01HYGs7cKx2fKpao8qYsbGnTUBcOc6BjgORuJAUNR5GP2ut7ej7Sj4aU2IdmIVYFaeisY0lsjVB7TIQkdi5z23AKaecIkVi586da69+BNEEIIElCA3+/fdf3HXXXaiuro7I67b24DiPK8a5ApQuTLgckqHGhyKxhBLJklIMOLN8lBMPVR2KxnLgMO/5jTj55JMRDofx6KOPYt68efbrRxBJDAksQajw33//1Y15LUtDYEd7cLyH0oXjhRPC70SnhdKIjUESFD+ciLDS95ecaEhsQs3UnmjRWJ0yOK8P81/YFCWxS5cutVcuQSQx1BMjCAW2bt2KW2+9VZptOLAjHxxspkaRuBJNBZKf+KP0HZj9Xuh7TE6SLRqbJCLLeX2Y//I2nHDCCQiFQrjvvvvw77//2qsXQSQpJLAEEUNRURFuv/322nVeUxDYnh8Z82oHShcmmgokPe6B0okJLZJFYoGkSSvmwGHRm4U4/PDDUVlZibvuugubN2+2Xy+CSDJIYAlCRkVFBe666y4UFBSAC/qRsj2/bqkcK1DUlWhKkOy4FzvfDX2vyUuySWwSRGM5xmPVp+Xo3bs3Dhw4gNtuuw2FhYX26kQQSQYJLEHUEgqF8NBDD2HdunVAyIPAtnxwYRtPUynq6kpoHGwDQZLjThijSCyhTTJJLJAU0ViOebD5G4b8/Hzs2bMHd955J8rLy+3XiSCSBOqFEQQAxhheeOEFLF68GBA4BLbng6/xmy/I4wHn89lLI5LWlnXJ5Sk41LlxwQQhTGBgghOd+STq8NkVHKcEiXA/9D0nNbbvjRwPOHJ/daAMB7Kf4PHYXhaIC/jBBSz0JQBwYS92z01BixYtsGnTJjzyyCMIG1mejyCaAC7pIRNEfJk8eTK+++478DwP/8728FSlmiugVlw53uYlpbW2bLyw8Z4YY2Au6fQ6Jq7JJq/x3J8gCFfhyH1SYJZFlhOF0akHY048CHZgbVurIsuH/HjyySfh9/uxaNEivP7667brQhDJAAks0eRZvHgx3nzzTQCAt7ANvGWZ5grweJwRVyfWlnURbhFXwEF5TSZivx+aoZYwAn3vSY9jmSoUja1fFQsSe8vxr+K+++4DAHz++eeYMWOG7XoQRKJDAks0abZt24ZHHnkEjDF4S3PhLWlhfGcnoq4NLK4cxznS6JqlweTVZCeEUoZVoMgrYQf6/pMLlfuqqyTWxDnH+VSG8DgVjY1DWvGzl3yNK664AgDw0ksv4e+//7ZVB4JIdEhgiSZLeXk57r333shar1Xp8O/rAA4GRdKpqGsSRVwBAynDjTgO1pHOV6QgZ8pxC1rfj5FOIskLAdB50EQwfB/VkkMbKcXRlXGgLk5EY4G4RGM/feAvjBgxAuFwGA8//DD27t1ruw4EkaiQwBJNEsYYnnzySWzZsgVcyIfA3q7gwANeb2QSJjUSIOoaL5IyZbgpyauRbVz0HRMugM6HJoHrUordNDa2EaKx4uscOPz27l506dIF+/btw8MPP4xQKGTr+ASRqJDAEk2Sr776CgsWLIDP50NgT1fwYQ1pBeIzSZOHj0v6ryIa77vRJ2rS6HhQyrAGlDZMNAR0XiQ2JkSuoSd44sy0dw09NjYQMF5OQ0/yJOszcIzHY489hrS0NKxYsQJvvfWW7WMTRCJCAks0OdatWyfN5McVtoYnmK69A03SpIolcW2gNGJKGVbBSsTC7gRPRNOCzo8mg+J91ko00y0TPAGuicYCxtKKrxr8Iu655x4AwJQpU/DLL7/YPi5BJBoksESToqKiAg8//DBqamrgqciGtzRPfeMkWRqnoSZySrqU4UhBzpTjFuyu72q3DKLpQOdJk8HNKcWqEzjp4dS664205M7T46ZjzJgxAIBnnnkGe/bssX1cgkgkSGCJJsWECROwffv2yLjXok7qkzbZjLpyPA/4fckVda39PFyxtquss0HyqoIT31G8v2cisaDzJbGwKW1OphSbSh9WrExtXey8JycnePJ4wKWk2CpGT2K/eXY9evbsidLSUjz11FMQhCRrwwhCAxJYoskwd+5czJ49GzzPI7C3MzhB4Umt1wME/A5EXflI5NMuTo2DTbaGrVY2SV4JgiAs4qb7nhNtFGOOvCe74ilhNRosgwv4wdKU68OBw/33349AIIClS5fiq6++sn08gkgUSGCJJkFxcTEmTJgAAPDsbwlPdWb9jbweMK9NWeRrhdNFUVfGWKReduvkFgmWdVC4RlyWJ+Fw0TlIEATcGaF2QmKdmrHdZhvDeb2RiK4TEstxzjyE9nntiyzPqUrsNce9hOuuuw4A8MYbb2Dz5s32jkUQCQIJLNEkeOmll1BcXAwumAJfcZvoF70esBS/M/LqMmlwJNVXEKI6FrYadbvrATZUxMCp8U8E0ZRx2f3PlTi1DIyTOHVftVgO55Hdf2PaG0s4JLGAzfZOjkMSqySyb948H4MGDUIwGMQTTzxBS+sQTQLqtRFJz7x58/Dzzz8DDLXjXmWnvULUlfm8gJkFxtWirl5v5IlwHHBsnKqTUVe76b4qHRLHorDJKLEkFERjQeeaNm6f2duC8Cnee52SYackNk7RWC5VIWJqIRrL0lPr/sNzitFYDhxWfFmJjIwMrF27llKJiSZBEvbYCKKO0tJSKXXYVyJbMieRoq4mx8GqiqvZurpFXp1KT2uqkFgQhDtxo8QmaEqx4sNiMePHRF20Jk4yJbFa25qRWKWHBArRWD7sw7XXXgsAePfdd1FYWGj8GASRgJDAEknNO++8g/3790enDjsx1hVwXcqwo1FXnY6D4Ya8kVKGKQpLEHHERfdBV6J1X3abxAKG7ruG7rlGyvHo3HOdTCl229hYOyhEY1+7/icccsghqKysxIQJE+K/WgBBNCDUWyOSlvXr12PGjBkAgMC+fHBen+Goq2YasVsnanICt0RdAYq6OomLzlUiyaBzyz5uFI04j4uthxMS67axsTopxVHpw2rIorEcONx+++3wer34/fffMX/+fPt1JAiXQgJLJCWMMUyYMAGCIMBT3gyecE58oq5OjYPVSCM2Ja9a9TfZQdBswOMgrxSF1YFEg3AaOqf0MXp/TiCJNX2vVStHL/oai0obZaqN1ZBYvXVX622vcv4rjn/VQk1ijX7OsmjstUNexkUXXQQAeP3111FdXW2uLgSRICRpT41o6syePRv//PMPIPDwVXRO2uVxGitl2Fx5NN6VIAjCtJS6dYZit42LdXtKsZV+goPL7Xz2/Frk5eWhoKAAX3zxhb0yCcKlkMASSUdVVRXeeustAICvvD14IWCpHCmN2O5Y1waIwtoSV/n7sbvunvxzccESORSF1cFFD2CIBIfOpYbDbRILSPdn2/dYsRyz0ddYatsuy21rTEqx2ehrLGJbaDr6GkutxBpKH1aC58DxXlx99dUAgI8++gj79++3VyeCcCFJ2ksjmjJfffUV9u7dCy4cgLeijf4OanCc6yZqApJ0vKtDMJfUgyCSGpfdE12J3fu0W6OxbirHiTbM6XGxDo2NFTKsPXgXeeGWuejVqxcqKirw3nvv2a8TQbgMElgiqSgtLcUnn3wCAPCVtY9e89UMHBeJeDqBE50QWWfGqSfX4OnyV4XSmAlCHbeJlRtxSvLd9FlzvDMPCTnemQexHo/9oTQ8B/j8jg3JYR4ezIm+A8dBSLMeFebA4brrrgMAfPPNN9iyZYv9OhGEi6AeLJFUTJkyBaWlpeCEdPBcO2uFyOSV+byA32e9QmKD6PGYWsu1Xhl203NFnIy6ugzHoq8krwShj5vEyq0ko8Qicq+1fb8VmAPyWdeFtS2ftW2srXLS6tJ+7UhsuHlG5BebEnvn1V/jmGOOgSAI+OijjyyXQxBuhASWSBr2798vTVjgCXcFB5OdB44DvJ7oyKvV8T4K6V+Wpt1nDokrUF9exRRpm3AcZ/1ziirIWl0c6UzVFeZMOW6G0j8Jp3CZWLmSZJFYhfuzpfuuvBw70qjwQNiZSQ2tSyyLaQctR2Pl50ytxFoRWcYBl1xyCQDgxx9/xLZt28zXhSBcCgkskTR8+eWXqKysBCdkgWd55nbWSBk2HYVVa/zMRGFFAVbqIHC8Y8sPuA6TEuuouDYFeRUhiSWcIt5ilQg4KbHx+Lw17suO3IOtSKPKw1dzy8pF0ofV6mOqrDT1SZfMSKwUfZVTO7bWisReP34qjjrqKIrCEkkHCSyRFFRUVGDatGkAAE+4IzhwEFJ8YKkGbvh6413NRBd1GjxDUVgjKcNGJVZvyQG3RWFNQFFXm5DEEk5BEquPk9ebyz5vw/dirQeUZiRW50GwIflUk1dZfczUKTb6Wu91oxKrdZ6YkFgho2425PHjxwMAfvjhB+zYscNYPQjC5ZDAEknBd999Fxn7ytLAs5bGdlJKGbaK0SfjelHYhkwZbmAaM5WY5JUgXIbLpMqVODVLLdB4n7fBrBjde7KRcoxGPg0+dG20lGKN6GtUfZyY4MlgSjGTnWY3XfYFBg0ahHA4jKlTp9o7PkG4BBJYIuEJhUL47LPPAACecH7U2FfVKKzJWYY104hNNpKKUVitlGHVgjSisGbk1aEorKM0dMpapCBnyklkKApLOAlJrDESRWItDOlwYnInTWk0ORmiYjl60VeFOmmJtV70td72Ku22YvqwEjopxfLoq8j5558PAJg9ezZKS0uNHYcgXIzLeq0EYZ758+ejsLAQYH7wgoF1X60skaPWQFmdfELeCDs5yzAQ1/GuDZ1KTPLaAJDEEk5CEmuMRJFYC9S7T1uZoE9NYi08bHUqEqtYJ4PR13p1UuqDmD0nVCSWKRRz1/++RefOnVFZWYnvvvvO3HEIwoWQwBIJz9dffw0A8AjtwKH+01kpCmszZbheFNZGoyhFYe2mDMujsHrjXbUr5OooLM003MCQxBJO4kKpciVulliLs8KLNMjkTlaXooNsXKzZ6KtOncxGX6PqJOuLGI6+xhKTUqwUfQUi68KOHj0aAPDVV18hHA5bOx5BuASX9VgJwhxbt27FsmXLAACesMa6rzxvf6wrz0Uk1ue132EQo7Buiro61JlyOgrrmLhGCnOurGSDJJZwEpJYY7hZYm3CBGZbhKOE0YGHrCzsQBsg1sli9DWqPh4eNa1z7J0HspRipeiryEuPL0FmZiYKCgrw559/Wj8eQbgAElgioRGjr7yQCw7KTx6Zz4OanBQI6QF7B3NSNsWnn05MICUwZ6KnDnWAmFMTUZFsNi4u7AATCQw9EDGGk9edk8vsOHD/5XjOmfu42J44EDXkvF5AcKCc1BSAMXBOCDHPQfBbjy6LlHXKQHmHNNXXOXgwYsQIAMD3339v+3gEEU9IYImEJRQKYc6cOQAAXiH6ynwehNN9EPx8JM3HTodKJmSm14WNKkcA5JNB2H06Xds54OymADvwhJsxFnm67bC8ck6OqbX7eScrJK8E0fg01HXnIomVyrFRVtQwGRsSy3m9ddlBdiVW1p+wI7GhvCypPLsSyzwcmIdDeYc0VZH9Zup2AMCCBQtQUlJi63gEEU+oN0ckLH/99ReKi4sB5gPPWkS9xnyeiLhyHFhtQxPK8JmPwipNrmRVhGPlFYg0plaisGKHwBFZjCnD6iQZDThG1VGJJaIheSWchqKv8SfOEqt4z7ZQVr2Z9u1IbGydhLAlkeXS66cOW5ZYeZ1qJdaKyJZ1TJd+l4tsvcOxLHTv3h01NTX46aefLFWZINwACSyRsPz4448AAF5oBU52KsvlVQ4zuwafhpCZjsIqyauI2aigKK4x9bMUhXWgk9PQ8uo4FIWtg+SVcBqSV2M0xrUXJ4nVfODoSEqxeYnlvF6N8kxKrMo5blZipehrbNkWorHMU79OahIrphHPmzfP1DEIwk1QT45ISKqrq7FgwQIAgEdoLf1dTV5FQukGo7C6i7JzxiVWS14Bc1FYnairKYnV6tyYWSjeqZRhnY4NpRI7DMkr4TQkr8ZozGvPSYk1IJ+G7tMGJVZ1nXPAlMRGpQ6rlmewLIXoa9TrBiU2lJelXScTEiuPvsaiJLHvvLQcALB8+XLs27fP0DEIwm1QL45ISJYtW4by8nKABcCx7OjxrhqdKMZzCGX4tSXWqJDpddbEBlZLXkU8Bpb3cTJl2EinRkdi4zFZE0msQ5C8Ek5D8mqMeFx7jk4U5eC4WA005VVEbGP1RNZou6EjsVx6qqHznAsL+iJrpE4GJLasY7pi9FVO7LhYDqno3bs3BEHAL7/8ol8PgnAhTbgHRyQyv//+O4DI7MPweeuNd9WC8Zz62m0mhUw1CiuLuhpeRF1LqEzIq2YUNglmGqbxsDYheSWchuTVGPG89hpBYk3fm51KJ9aIxmqmDiuWpyGxJs9zNYlVTB3WOKaWxOrJq3w7eTT2+OOPBwASWCJhIYElEg7GWJ3A8q10o65KhNNiUomVJmsyglIqsV7KsBpKqcQWJ2tSlFgrHRgFEU6qZXKaWhSW5JVwGpLXxKEBJdbyg0WlSfusTGyoILGGUocVy6o/uZNe6rAasRKrmzqsWIjy5E5aqcNqiBL7zst/AwBWrFiBqqoq0+UQRLxpYr03IhnYuHEjdu/eDYAH8+WallcgJpXYrozJj29VXkXkqcQqkzVZwk7HpVZipWiyC+SVUoktQPJKOA3Jq3Hccv01gMTavh/LxtdakleRWIm1W69aiTWaOqxGlMRarVPM5E5GUofVYB4Ole1z0bJlSwSDQSxfvtxanQgijjSRnhuRTCxbtgwAwHHNAd5kepAM22vDysvyeQGf1568RhVof7yrFIV1ssPi1GzDDkCpxARBJARukVcRN46JdYpaiTWdOqxaXtiRfgIXFhDOzbRfn1qJtSqvIszL44gjjgAALF682H69CKKRIYElEg5RYMG30N5QB44xhNO8EDJMrg0biyCAC9U2ck41mk5GBe02voLDHRQHOjxMYGAukmmCaJK4Tczcitsi1U7Wh+MdvRc78gDY47G+VmwMnN8P1IRslxNungEuzMAH7ddr30FpqGxu/zscOHAgAFmfiiASCBJYIqEQBAErVqwAAASbtbRcDscYwCJrw4bT/NYlVpDNNmh2nVklxEbXw0caYYvUmzzKar1q5VUqy4lUMZs4Kq4Gl4ZICtzWiSaSA5JYYyTj9Sd70Gr7viyWJdjMYvJF5qNgjEXE04Z8cn5/XRaTXYnlOGkFADsSu69PKsK+yESUdiX25s8XAQA2bdoUWdWBIBIIElgiodi6dSsOHDgAxntQ3qE5KvMMrMMqg2MMnBCRVxHmsSiegsJU+V4POJ+5OknEPjG2KLH1Gn+j68LGEiuvUnnOTdZhvogkTn1rDJKxE03EH5JYY7jh+nOqDgpZQpbvz7Fl2ZVYsT7ig1wL8inJa11hliU23DwjtmKWJTbsq/v+RIm1IrLlrXgIqSlo06YNBEHA6tWrLdWHIOIFCSyRUKxbtw4AEErLAfPyqGjFG5ZYMeqqRDjVZy4KqySvQKRz4POal1i1dCeTEqvZ6JvpuKjJq0gclksgeXUIN3SiieSDJNYYTmTq2Dl2A2P6Pq02XMaKxKq0u2Yltp681hVkWmLDzTOUP3cLEruvT/2ZkMVlAc1IbHkrHqx2tFPfvn0BACtXrjRVF4KINySwREIhCmw4LQcAwDyRHz205DVSjolUYjV5lQ5mQmIdXIRds7EXG2MjHRg9eTVTL4dSdGm8q8OQxBINAUmscRr7GnR43KsWhuco0JvrwYzE6rS3piRWK2vJRGpyOEdFXmVlGZVYMXVYtSgTEstkU3X07t0bALB+/XpD+xKEWyCBJRIKSWDTs6W/VeZqR2H15FXEkMTqyat0UANP2Y1OMsFxulFYQ428EYk1Kq9GcCjKSWNeCSKBIIk1TmNJbCPKqxxH7t1GJNZgxpMRieX8fiMFGYvGGpkp2IDE6smrVJQBiS1vFf39PTH7LwCR5QkJIpEggSUSBsYYNmzYAKAuAgtEIrBqqcRG5bWuLA2JNSqvIlrjYc3OkKiRSmxKNrUk1oq8qkVh3SqvRB0UhSUaCpJY4zT0dRgneRVRvYebKUtLYk0O19GSWNXUYfXCVMsK52Qo/l2tHDWJ3dfbmLxKRWlIrDx1WCScmgUA2LlzJyoqKgwfhyDiDQkskTAcOHAApaWlAIBwID3qNSWJNSuvdWUpRE/NyiugnkpsdXp/BYm1FClVaqDtRF5jJZbkNXEgiSUaCpJY4zTUdRhneRWpdy+3UpZDEzsByhJrWl7rCqtXVjgnw1j0NaYcJYkN+81/h0oSqySvAMB8AbRoEVmScPPmzaaPRRDxggSWSBi2b98OABB8qYCn/p1YPh7WqryKSJM6CQK4mpB5eRWJlVi7a9PJJNZ2Yy52bpxIGxYlluQ18SCJJRoKkljjuPk6dGBdcumebqesWIm1OuM/oiXWsrzWFSaVZUleZeXwwbAksvt615+0yXBRMRKrJK8iHTp0ABCJwhJEokACSyQMosCGU9JVt6nM5VGV67Mlr0AkCiv4vYBP465vFI4DPDw4BzsotuVVbKydHPNKJC5u7jwTBGGeZL2mRYm1I5y1SBLrQFlgDMzntS6vsnLAGErzUyxFX6OKqpXY2HGvsbRu3RoAUFBQYOt4BNGYkMASCUNhYSEAQAioCyzzAGVteFS0MjARgwZ8MAy+Jgwh4ANLsVcWBAEIC4DHA85rU4gZA5hgX4YFIVKWEw03ADjxdL0Wir4SRJLgVonieEfuVY7i9ENEJ8tz4D7KOZilI7V/djOaAMDnBauutl0MS0sBAPDl9ssq6ZYBwcvBV27/O+x18Rr0veBfzW1Egd21a5ft4xFEY+GyOzhBqFNUVAQAEHwpqtswLiKx5a2tS6yUwsMYwMOexAoCEKptZO125hira7B5zrrEivIqwtuMDjsxvqkWWi4nTlAEnnAaN8ur0u/xpKGuP5dILOfgPAmch49+8GpDYjl/bQoyY/YlVpJqwZbElnTLkCZt4gTYktieF61Bl/S96JRWhIPOXa263WvzVgCoCxIQRCLgkrs3Qeizb98+AABTEFjGRX6k/1uU2Ch5lf5oUWLl8ipiNQorl1epXhYkNlZepbIsSqyDwum4vFL01Rgkr4TTJIK8av2tMWno688lEutEWfXkVcSCxEryKtXHusSK0de6+liTWLm8iliV2J4XrUG39D3S/7uk78VB565WFFnBF1l14cCBA6aPQxDxggSWSBhEgRVvtiJMpa9kVmIV5VV6EeY6ZUryCkhrupqSWCV5leplQmLV5FUqy6TEagmnyU4hyWucIHklnCaR5NXIaw1JY11/cZTYetFXi2WpyquICYmtJ69SfcxLLEtLUT7nLUis2nI5ZiU2Vl5FuqTvlURWDvNG+kgksEQiQQJLJAzl5eUA6m62gLq8Sq8blFhNea1F8HuNRWHV5FXEjMRqyauIEYnVk1epLIMSa0Q4DXYKSV7jBMkr0VQwci9qbIlt7OsvDhKrKa8mytKVVxEDEqsqr1J9jEusqrxK9TEusSXdtNeNNSqxavIqJ1ZiSWCJRIQElkgYKisrAQCMr11GxuCDfvnyOkoYkdfIhgZSifXkVcSIxBqRV6luGhJrVF6NYkY4dTqFJK9xguSVaAjcGH01I6bxTiduaBpRYg3Jq5GyeM7cZIMabaauvEr10ZdYXXmV6qMvsSVd66cOK2FEYvXkVaRL+l70PncNAIB5Ip9LZWUlQqGQ1m4E4RqS/G5NJBOSwHq8huVVpCJPOQprWF6lHTQk1qi8imhJrBl5leqmILFW5FUrCmtFOFU6hSSvcYLklWgIEl1e7exjlnheg40gsabkVa8sK+eVQttpWF6l+qhLrGF5leqjLrElXTNMLZejJbHdL1xrvE6IyG7vc9dIQQEAJLBEwkACSyQM1bWNCfNohFNVUEolNi2v0o4KEmtWXkWUJNaKvEp1k0msncirksTaEc6YTiHJa5wgeSUagmSRVyf21cMN12ADSqwleVUry2jqsBKyNtS0vEr1qS+xpuVVqk99iTUrryJKEtv9wrXokbHbdFnd0veg1znrpf/X1NSYLoMg4gEJLJEwMKnRtdZAMg9Q0SoisZblVUQusVblVUQusXbkVaqbuN6ezU6KXGKdEM7aTiHJa5xwQ8eZSD6STV6dLCMWN12DDSCxtuQ1tiw78ioSDluXV6k+dRJrWV6l+tRJrFV5FZFLrFV5FemWVZd2TGvBEokCCSyRMNRFBK03vIIXCKVyEAIeBwQPYDzvTAeO49zZEXQ7JK8EET/ceM9yUjyTfUysWzE77rWhEfsKTpzvYQHhFK8teRXhBCBw2m5b8gpEp2lTCjGRKLjoDkEQ2kg3WRve6S9h8JcKqMnwIpQZ0N9Bqz41YXDBGjCvB/CaT2uOIhwGC4UB3gNYSJGOQnCosRWEuqi3k0/WnShLhDqYxnGjbBCJixvPJ7ffD9z2mTkVhXUyu0Ysy24mEhBpS2vsCxnnjwwX4iqtrRMrJ5SbAXAcMnYG7Zd1XhFap5diXVlLW+Uw2XnQsqW9sgiisXD53Z4g6vCIYnd4saX9/SUMKfsF8GEG5gFqMq1LLFcTBldVI3UAmM9rXWJFeRWxI7ECizRGQm1k0mqHSS6vUr0cHNtEEhsf3NaBJhITN55HDXUfcLpct312diXWyfkNOD6qnbElsbVtKGPMlsRyfn9dNFgQbElsKDcDzBMpiw8KtiQ2dF4ROmRFlr0Jhr22JPa6rD+k31NSUiyXQxCNCfX8iIQhNTUVAPBSly+A4/ab2lcuryJWJTZWXqXyrEhsrLyKWJHYWHmVKmyyw6Qkr1K9HJxdkiQ2PritA00kFm48fxr6+ieJVcbJGeZj5FUqy4rExrSdViU2Sl5FLEqsXF5FrEqsXF5FrErszS0WIS1YtwZtWlqa6TIIIh5Qr49IGNLT0wEAWcF0fDvgbVMSy4URJa8iZiVWTV6l8sxIbDgMFiubcsxIrJq8ijjZYXJqfT+QxMYNt3WgicTAjedNY133yX5/MSuxTq7xrSKvllBpM81KrKK8ipiUWCV5FTErsUryKhIMa6wrr8DNLRYh15OOisrIZ5+amgreTWOPCUIDOlOJhEEU2PIKDvneDHw74G1wBiTWX8IQKFEXKaMSqyevUnlGJFaUV71G3ojE6smriJHOp1b0NapeBsoyOMESSWyccKOMEO7FjedLY1/vjk4Q5cLP06jEGvwcDEmsAXk1HIXVaSuNSqymvIoYlFgteRUxKrFa8ipiNAoryisAVFTVCSxBJArU2yMShszMTADAgdLIaZvvzcD0/tqRWKXUYSUMSawAww28psQalVcRLYk1Kq8iWp0mo/Iq1UujLJOzA5PExgk3dqIJwgjxus6busSafP+aEmsi8qorsQazlfQk1pC8iuhIrBF5FeGD2m1mzeh9uvIKGEsllssrAOwvjtSxWbNmBmpKEO6AenpEwpCXlwcA2LuvrqHq7MvAjP5vY8L/3qwnskblVURLYsUZh82gKLFm5VVESWLNyquIUqfJrLxK9XKuA0YSGyfc2Ikm3IXbzpF4X99NVWKdXqLI5D1fVWJNzhehJrGm5FVERWLNyKuIWhS2ZvQ+5GcXGy5HTWJvbrGonrwCQNH+yOfXokUL45UliDhDvTwiYRAFdk9RdGPV2ZeBYalhzJBFY83Kq4iSxBpNHVYsT0lirc7SKJdYq/IqIu80WZVXqV4xnRAba7OSxMYJN3aiCXfgtnPDLdd1U5NYG++3XhTWxpjXehJrccb+WIm1JK8iMe2wFXkFlFOJzcqrSDDsxX/ledL/RXGNlVcA2FsrsLm5uaaPQxDxwiUtAUHoI95c9+xTPm3FaGz5gEpL8ioil1g78iqVJ0qs3qRNRuA9AMfbk1cRjrMvr1K9xDV6bdYJJLEE4RrcKFbJihs/a7FtcOA+KkmsAxM2SRJrc810UWJtyWstYhTWqryKyCXWqryKVIV8+K88TzHqKmdv5VgAFIElEgvq3REJQ5s2bQAAOwvVZ9p7ee/xwO4AKvLsndrMAzCeMzXuVROxc+LEQu88B86pzg7PO1eWA/LqOG6sk1txYweaiB9uPB/c9kDKbfVJBBx4QMnZFNcoPB7b8gpAeqBsR15F+KCAcAC25FXk2Q5fa8orAGzbtg0A0L59e9vHI4jGgu6+RMLQsWNHAMDOAg/UhqMWVGXBE+RQ3h4oa229kfOWheErDYL5PGDpKYDfZ7ksLhSOpCrxPDi7jRurHT/Lc/YbcVHMnZBYJ8S8FktrCBLO4EZpIeKDEw/unMSNsujkAzK3fd5A3f3AycwaK+u6ysuRt3t2y/J6AZ4Dqza/rmssLC0FAOArKrdVzoEuKTjQJQWMB/77vqutsl7p/CXyvRm624kC26FDB1vHI4jGxIUtAkEo06JFC6Snp0NgHHYU1I/C3rZrAP74qzsAgHlhS2I5AZEnqjzAPBwEv9eSxEryCkQ6Ax6PdYllAhAW6joTTkisiB2JFRogzcwJKPpqDZJYQsQtUkXy2vjE3gecnNvAong6GXkV5RUAwJgtiWVpKXWfVyhsWWIPdElBOACEa6fgCOy3fl4YldfKKg579uwBAOTn51s+HkE0Ni5sFQhCGY7jpBvslu3RAnvbrgGY9vtAeMvrTmnmBcrbmZdYb1kY3rKY2QB5mJZYLizUn+nQqsTGyqtUL4sSq9RhsiKxSpNzWITk1UWQxBIi8ZYrktfGR+36t/C+Vec0MCmxqu2cBRmOklcRixLLUgP1P69QGL59FabKEeU1lv9mmo/CGpVXANhc25fKyclBVlaW6WMRRLxwYctAEOp069YNALB2Y51IKsmrCPOZk1hvWRi+kmBEPmMxK7GqSxGYlFg1eZXqZVJitTpMTqQTW+hwkry6EJJYQiRekkXy2vjoXfcm3r9TE/Lptm8mJFZRXkVMSixLDaiPn9VYazYWNXkFgMA+ZkpizcgrAKyr7Uv17NnT8D4E4QZc2DoQhDq9e/cGAKzdUCeRO6pyFOVVxKjEasqriEGJVYy+Rm1QK7F+n77IMqbfaTAqsUY6TEYlVm+BeoOQvLoYklhCpLFli+S18TF6vet8DhzPGZNXA+Jp+OGskbK05FXEwPfCUgPa8lqLkSislryKGJXYCZ3MySsArN15AQASWCLxcGELQRDq9OrVC0BEYAWhdtzrsu66++lJrCF5FdGRWC4UhuosU1EbcvrRWHHSJiPoSayZDpOexBqpE8c3bieU5LVhIIklRBpLupJZXhlLbHnVK8Zs1FVDPE0Pj9Eqy4i81qIVhZXE1cjMxTUhTYk1Iq8iehI7odOX6OwzJ68AsGbNGgAksETiob4eCUG4kE6dOiElJQXllVW4ftnBmLVlILxlxjo7osRWtvQidTdDRkFdY8cJMCavIrUSywNRsho1aZNRRIkFwOR10EsdVqwXBw6e+ou9W4HnwSmtE2s2Ysrxqu/BsegryWvDwnHu7HQTjQ9jDftQI9nl1Y1Y+T6ZUO+7spwyHA7XW9O1wSZsMkJtKjEXiLZLI1HXetRKbE3ztKg/m5FXkcC++ufPhE5fAoAleS0t47Bp0yYAddltBJEouLClIAh1vF4v+vbtCwD49YfWhuVVhPmAcBqLisYqTtpkBAsTO6kSG4m1Iq9SvThwPm90B8Bqxyk2EmtVOBU6pbRcToJBkVhCpKFEjOS18bFzXcs+G9vjXWUPXW3Jq7wcr9e8vIrEjIe1JK8iMQ+1rciryPpZdVFYMepqRV4BYPlqPxhjyM/PR25urrUKEUSccGFrQRDaDBgwAACQuqPIchliNLY6y2M8dViJWoll6SmRxs1s9FVOrcSC56zLa1TduEid7HacnJjYCYjqnNK41wSFJJYQcVrISF4bF3EIi12Y4NhkTYBDkVdBqBNXO3WrlVhb8lqLb1+FtMarVXkFgJQihvWzulpOGZbz96arAAD9+/e3VQ5BxAMXthgEoc1hhx0GAAjs22urY8B8QE0awHw2G0wekTVjBQGwusarCMdFZNGJDoG0PqtDnQsnpNONnVTCHCSxBODseZDs9wW3XTPJ/t3xvOW1ZmOJiLADa5z7PMjeWGVLXkU8QWspw7H89ddfAEhgicTEhXcegtCmR48eyMjIAF9TA2+J9Shs6i4OmdvDCKd4IKTYTAMWEJFpj8eexIbDkXGwYjTWKex0WMRxsE5IdW1Ew8kn9q7sQCU7buuQE41LsguQiJN1c8s10wDfne2MGtmEf7bnb/B4nMkYAsD5fJGHyhVVtsphaQEwDwdPhYWhSjHUZHJgHqDLF1fbKqf3t6OxceNG8DwvZbURRCLh4paDIJTxeDw46qijAAAphQUQvOYbz9QCDjkbQvBUhcE4IJziQSgrYElkuZowuOpIw8R4zrrEhsNgoXBd2hrHAV6vNZEVWN3kS+LTYyuNeuwkTnZSsmLS8UhiExy3dMiJxqWpyKtIItTRKA343VmWWI6v165YlthYebU4pIfz+SLyCkQeTIfDliVWlFeR5mutlVOTyUnyCgDp2z3o8qU1ie25YBx8Kw8AAPr27YucnBxL5RBEPEmiOzPRlBg8eDAAIHXnLgheZlpiPdUMnqq6RpJxgODhTEdjuZowuMpgVCqzZYlVW+/VbDRWLq8idiRWCbPyqTKWjCQ2wSGJbVo0NXkVcaqu8bxeGuG7My2xorw6gVrk1aTESuIqp1ZizRIrrwDgKQuallhRXFlMNyB9m/mH2z0XjENNYSpO9ERymY855hjTZRCEG0igFoQg6hg0aBB8Ph98ZeXwlZZA8AHhFGMim7qLQ+Y25cZIjMYalVgurLymnySxfp8xkRVTh1UP5EBKsVxijXRmlJbQiSovTusGahfmXFmEMUhimwZNVV6dJh7Xixu/Ox15NRyF9XgcSxtWlFf56wajsCwtoCivIh4Tqx7Io65KGE0l7rlgnCSvfHUQf//9NwASWCJxacKtCJHIpKWlYeDAgZHft+4AOAbGMwg+aEps6q661GE1jEosVxOOWgO2Xjk8ZywaG5s6rHpAAxKrFH2VI1+AXavB15NXqTwDnQYDM3lyPOecyDblznG8IIlNbtwoQI1Noo6HdepYsnGqWhiKwhqMvOpKbK246sqrgSisnrwaTSUWxVVNXkWMRGH15BUwlkrc69eLUVOYiprCVABA2vadCIVC6NatG/Lz83XrQRBuJEFbEoIARowYAQBI37K9LgrKaUusJ8g05VVET2KVUodVy9KTWLXUYcUDa0isnrzKcTKlWKsjYnIZCpLYBMapZTkId9HIAuRqEk1infzuTKApsU6lDZuNumpIrK68iuikEmtFXWPRSyU2Iq8iWqnEvX69GMGCtKi/HV/73F3sQxFEIpLgrQnRlBk8eDDS09PhrahEYO++uhdUJDa1IDLrsFG0JndSSx1WLUtNYvVSh5WwM7mTHDWJNRp9jSpLodG2uIYiSWyCQxKbPMRJgFxNoryXOH93ihJrQV4Vo7AOpgwbllf5fgpRWDPyKqKUShw7WZNRunxVPwqrJK+e8gqsWLECHMdh+PDh5g5CEC4iQe7EBFGfQCCAIUOGAADSN22NfrFWYuXjYj3VDJ5KcxMxKE3upJc6rFqWksSaib7GIo/Gmom+yomVWCvyKpXl4GL2JLGJDUls4kPyqo7bJ3Vy23cnRt8t3tejJNaOvMqisFbENVKZ+lFYK/IqIo/Cqk3WZIT0rXU79fr1YkV5BYCM2r5S//79kZeXZ/5ABOESkrBlIZoSI0eOBACkb9sBvjrmaaZsXGxgr7noayzylGKz0deockSJ9Xkj/zcbfY2F4wCOty6dgPPpxG6b3CkZO9CJAEls4uI2AUpmHB1f7GAavwPfHROY4jI5lnEi8loTsi6vMriKKt3JmowgRmFrMsxHXWPpMu1q9P4tIq5K8gpBQJfCIgDA6aefbu9gBBFnqHUhEpq+ffuiW7du4MIC0jdvU96IY+BDAB+0J4uMQ23ElNVJn5VyeK7uKa6TM/Dawcb7qYfdRe2J5IEkNvGg74xwCKceQorS6kTasO2hN1I5PLiySlvyCgBCwIvszTVgXvtVav43j+pdCuJaS+rOAhQVFaFZs2Y47rjj7B+QIOIICSyR0HAchzPPPBMAkLFhk2JkNG2nB5nbwmA8B8HHW25wvJVheEqqI8fw8Pakr7aenN3lcWpTkA3NxKiFIEhpUY50EgDbT/BNrymoXpAz5RDWICFKHGi2YX2Y4Pw9xYnP3enrzOZ7lOTVbjny4S0hc2u6RlG73A54zl45HBdZHo/jwIWsZ3UBEXllPAdPRQgt/jE/LEkksJ8hsJ+BrwGy16r3J06ujrSpI0eOhM+BKDRBxJMkbWGIpsSIESOQkZEBX1kFUncW1HvdUwV4KwWAA8DVLm9jRWIFBi5qLI41ieVCYUBs+ETxtD0hUyRFyyn5tFwORV8JJUhi3Q/Jqz4N+TDMzufvsuurXuTVYrtQrx0SLH7+teIqZTxZHXIjk1cR/kCFpaJEeRXxlVgTWFFc+drdfeXK7823rxh//vknPB4PzjjjDEvHIgg3kaStDNGUSE1NxahRowAAWavXRzVOYvQ1CgsS660Mw1NaXf8FKxLLWHRDXCuxnNmZhZWm9LcisbLoqxxHZNjJGSytFeRMOYR9XNbJJmSQvOrTGPcSK99DQ15XFpZBU0wbtvDZqbU/pqOnorzaKYfjgIC/nrwCsBSFjZVXEbNRWFFeY8leV78fcWE48rdhw4ahdevWpo5DEG4kSVsaoqkxevRo+P1+BPYVI7B7r/R3KfoaS63EGk4pjo2+yvHwtY2k/uUUFX2NeoFzNBrrZCTWcFlq0mly/UeS1ySGJNZ9kLzq49Z7SWNcTwbfu+54V4P3dd02x0wUVkVeARiPwsqjrir1MhqFFQJeVXkFjEdh5SnDiuWURb83b2kZ5s+fDwC44IILDB2DINxOkrY2RFOjefPm0ozEWWvWA1CJvsqxm1Ish+eMRWNjo6/16mRQYnUWVBclVlc+VaKv9avlQOckWTu3hDlIYt0Dyas+jS2vRr8TF11HhiZrYoJuO2H0Yalu9FQ23tVWOQopw4qbGYjCiuKqJq9GiU0ZVkMehb3amw5BEHDUUUeha9euto5PEG4hSVscoily/vnnw+PxILVwL/xF+9Wjr7HoSKxq+rASGhKrGn2tt6FOSrGevIq4ZVxsVCHatxyKvjYRXNT5brKQvOoTr/uI3nfT2NePxudgaqZhrXLMvCeth8Cx410168OUJZbjAJ8P8HoNf9ZaUVitqGssWmnEWlHXWMQorKe8ArNmzQIAXHjhhcZ2JogEIElbHaIp0qZNG5x44okAgJwV/5qbqEErpVgrfVgJtZRivehrVH0aIaXYYPQ1ulpK5ZiUTpXOrmPySiQGJLHxg+RVHzc+BHNynVezKHwelpbJUbjPW3k4qiieBqKu9QuKqQ/HRcTVw0d+DKIUhdVLGVZCKY1YL2VYi8tCHtTU1OCwww5Dv379zBdAEC4lSVseoqly2WWXwe/3I2VPEbI27DK3s0JKsanoq5yYlGLD0dd6dWpAibU4E6PtJXuAhu30urHjSShDEtv4kLzq44Z7SOz35KJrRXWyJiPIPltbbUnsw2Ar8hqLXF4tII/C2kkZlkdhjaYMK9FseRnmzJkDALjqqqvMF0AQLiZJWx+iqdKqVSucffbZAABPickorIhcYs1GX2MRo7EcZ30JAHlKMcebjppKxI6LtVofqVoOSGyydoAJ47ioY570kLzq4wZ5jcUt1wgTrIurHIE5MiSFhUKGx7vqliOmDFuUVyDyoNpK1DUWMQprNeoqclKLKjDGcPzxx6N3797WCyIIF5KkLRDRlBk7diwyMjIAoRSo2W6tkFqJBe9AyhbPgVlcM7auPg6ljsnHBtmpj5Mka0eYMI5bOugE4TbcdG247V7NccbHu+phMmVYEZ53ZKImPhi2La985V78/vvv8Hg8uPLKK23VhyDciMvuRgRhn6ysLIwdOzbyn6o1ADO5blwtvooQPGXV9uUxFAZXE6ptbK1fckwQACFsvxMhyMbiukFiayMejjzZjxTkTDlE4+Kmjnoy4vTn68ZIpRO47f5hcaiH49R+LrbnKhDLsfu+xHkmaqy173X14SJ1qrIwVEhOrbz6isrtFRMMg2NAznob9WEC+gR2AgBGjhyJDh062KoTQbgRl92pCcIZzjnnHLRr1w5ANfjSNfBUW1hIPcTAhWr3EyXWSieQMSAsK8fgmrH1EFjdBBg20m+ljgMni8RaqI9UjlPiCYcl1m0dUYKIF/RwIPFwk7g6cS+NLceqCEspwzZFWGrTa8sJW3wgU9t+SlFXi0LNB8OSvAKAt9xa+DVzWxDpm9dj48aNyMrKwhVXXGGpHIJwO9TDI5KSQCCAm2++GQAgYAu4qmJLEhuFFYkVo69KZZmQRin6Wq8ck5ewEDMTsvz92InGWk3jUpnZkqKxTRQSrcSCorDOw1h9eY2XzDo1Y7xaOWbflyiusW2VWWkUxTW2XmajsCopw7596kvqKBZTK66cza85c1sQfEU50lK2AohM3JSTk2OvUIJwKdS7I5KWQYMG4fjjjwfAEMa/4KtC8JWGDImsr7w2fVgJMyIrj74qlWNUGuXR13rlmBBhtQ6DSYlVLcet0VgicSCJdZaG/jxJYp3DLVFXwLn3r1WOGRHWyFwyJcKyqGu9csxEYeVR11iCxqKnsVHXWLI2GxPqzG1BZG4LwlMRwgmnBFBeXo5evXph5MiRhvYniESEenZEUnP99dcjNTUVjCuGwLaDCwnwVIV1JTYqfVhxAxspxbHlWE0pjirHgTQvmynFEkbF00DHlyS2iUIS6wyN9Tkmq8Q2JnoS1phya+B+aSgKa6QcvfcVkzJsmZiUYcvEpgxbLcZA1NVIGrEorp6KEATsxZw5c8BxHG699VZ47C6/RxAuhnp1RFLTsmVLXHbZZQCAML8WDJWAwOCpChuOxmri1OzAGtFY1fRhxXJ0nnbrLZ1jIKXY0NNuisQSdiGJtQd9fvZprHuGWyKvDTXeVQstEVZLGVZCK41YLWVYCa00YgdnGXYiXViUVwBgqEGz1tsAAGeffTZ69epl7wAE4XKoR0ckPeeeey769u0LIIwQvwoMkXRctWisZvqwEmrRWLXxr1rlKD1p1kofVixHuaE2nWYFNNy4WJMRG8fGxdLkTokFSZg14vG5URTWGmbuyw0puhbui4pRWKfuryajrortm4Woq2IasYWoq9I4WL2UYSWU0ojlUVeRMLcWe/bsQbt27XDVVVcZPwBBJCjUkyOSHo/Hg3vuuQeBQACM2weB21b3okI0Vjd9WAklidUa/6pXlhPL2yRaSrEBKBrbBCGJNUc8P69klNiGvFdYEdKGkNjGGO+qQZR8Opoy7MADS6tR15hxsFYnapKnEcdGXUUE7IHA7wTHcbjnnnuQmppq7iAEkYBQL45oEnTo0AHXXHMNACDMrweD7OmoRjTWNG4cGwsYSx9Wq4dMZC0vWUASS9iBJNYY9Dk1DE7fK5RmGo4XjZ0yrIQYyTWTMqyEmPHksrGuTqUMx0ZdAYAhiOyWkVmHR48ejUMOOcTegQgiQaAeHNFkOOuss9C/f39EUolXgCFG6GqjsXxVjTXZE3FqXCwQqYfdqAbH2xfI2vfD2XlfVpfaUaoOSWzTg+RMG/p8Gg4nI8tuEVfAXfc/Jx7YAs7Ia3XQ0bGuduSVL69Gxvb6UVcAYGA4fHA1ioqKkJ+fjyuvvNJGbQkisXDR3YsgGhae53HvvfciKysLjCtBmFtXf6PaaCxCYXsSWxMyN/5VDbGz44T8OdE5cAmm1yEkkgOSNHXcJEZEw+Dkw1HAtpg78SCR8/DgPLzt81d6uGpHXmvbWWan7QfAhQVwYQGeYnPrwdarTnk1EArDW67clxC4LVi4cCH8fj8efvhhBAIBW8cjiEQieXq0BGGAVq1a4d577wUACPxWCChU3pCxiMTWhKyJrCBYG/+qhthxsdJhYEJdipbN8ayWU4gJwilIYt2LmyJ6TuH0uF6r56+LznunJtXjPLLzxaI0chwXnRlUE7RWGaeyg8KClCLOGVwPtl5VyqsleVVDQDHg2wAAuOGGG9CtWzdLxyKIRCUJWxuC0Oboo4/GBRdcAAAIeVZFj4eVw2rHjdqNxjqJRYmtJ57xisa6LXKajJPONAVc1Jl3FfF8wETy2nC46HxXFFcLn1OUvFqti9LnYqWNcULGa6Oudq9BSVw15JWhBrnttiIcDuOEE07AGWecYeuYBJGIJGGLQxD6XHnllTjooIMAhBDil4NBY51Vu9FYq4TDylP6ixLbmCnFzOIkUIpl2SuH0ocJAK7q1LuKeEgsyas5zJy7LjrPHU0ZViJscL1z2JyPQUSjHeUqjS+lJ4+6Wq6KgagrEBn3OuDoChQUFKBNmza44447nPksCCLB4BjlBBJNlMLCQlxxxRU4cOAAeKE1POzgyCROFdXqDamYyuvRScWtDoKrspjKJBIKgYV0xtEyA2vEMkFZhOXoySljYCY6F+rHYe4RWLdEVwh7UBOmTGN1akleLR7DwHnrku/QkLgaOA8MRV19Pu0yjHwmRsaCGnlPmenadRHbVY3vMpyXrV2N8lpR1hJXnxehrJTIZtw6CPxmBAIBvPbaa+jRo4dm+QSRrCRhy0MQxmjVqhUee+wxeDweCHwBBG4TOEHQfgrstrTieERjrUKRU6IhoOhD/CB5tY7Weev0ZE02MBx11fjcNKOuZurSwFFXU3VxKOqqly4MQFoeKMztgsBvBgDcfffdJK9EkyYJWx+CMM6hhx6Km2++GQAQ5v9D2LPX2I7xSitWQmuCJ/kETnrYnODJEG6JvhLJhUs6+66ioSPTJK8Ng4vOZccnarJTjpnPRW0iJ5eMdTWaLixHwAF4UtYCAMaOHYthw4ZZPj5BJANJ2AIRhDlGjRqFM888EwAQTF0NwVtubMcEicaaHiWQRMvtqOKGjirhLC7q+LuGhpLYZJNX5sB6204Qr3M45r03yCzDVsuInWXYCLEPOh2IukaJa2NEXWUIfDVyWm1AMBjE0UcfjSuuuMLy8QkiWUiyVoggrHHjjTeif//+ABdGdbM1EHjjEzgkTDTWDPJorJMTOBFEQ0ISWx+nJTYZ5TVeyM9Xl5y7DT5Rkx6yITyOpQzbpDEnaYqFcSG0PrwIe/fuRadOnXD//feDbwoPmQlCB5rEiSBqKS0txfXXX49NmzaBC6UipeggcMxrrpBageRqQtK4FcsYmcRJi9oJnmyVAdTOhkwTOBEJBDVr0TgpR8kksHQfqIPjnZFXr8k2Uwmfz768pqbYrgaXlhr5xcb9hKXV1sOkuAIAg4DqnH8h+EuQl5eH119/Ha1atbJcF4JIJpKoJSIIe2RmZuLZZ59FXl4emLcS1c3WgMFkB0eMVtp8WusItR0A2x2B2hQuR56Gu6Xz65Z6EA2DS6JZroDkVRmS1zqc+F453n45tZk/rlgWRmD223ExVdiSvDIEs9ZD8JcgPT0dzz77LMkrQchIotaIIOzTqlUrPP/888jIyIDgL0Mwex0YLDZgbhFZWBxHJKc2ZSneEutEhMCJehBEkySZpI+u/whOyatd3JIWKxhYmk4PUVotZi4xMNSkbUA4pQherxdPPPEEunbtaq9OBJFkuOSOQRDuoXPnznjqqafg9/sRTi1GMOs/exIr2Jux0ElIYp2rB+Fy3BDFiTf0GRBakLxG48QQFVFcbchrKHUTQhm7AQD33nsvBgwYYL9eBJFkuOSuQRDuol+/fnjooYfg8XgQTitCTcYGyw0SgOSJxsok1n5qsvWUM8cllkQ2OWnKAtdQ752isImPE/c8B1OG444Loq4AwAVrEApsQU1mAQDgtttuw/Dhw+3ViyCSFBfcOQjCnRx77LF48MEHwfM8Qhl7EczaDNTURGYktII8GpvIIivrdMQzGuvUUg9260G4nKYosU3xPRPG0LjPGZ4kL1mirk6Lq0V55YI14II1CKbtQE32TgDA9ddfj1GjRtmrG0EkMQ5MF0cQycsJJ5yAmpoaPPHEEwhl7gEY4N/fAZwQkThmZakAcUkanndFR5PjOPNrxQKR+guCJLG2JjQXO0QWojsczzk3OzHHJ1eEiYjAca54aNQoNMY9hQn0wCfRoHThaJxMF7YIF6yRyqnJ3I2a5hF5veqqq3DeeefZrx9BJDEuuZMQhHs58cQTceeddwIAQll7EGy2LbKsTCisHo3leUBvOYGmFI1t4Cf7jkZjKaU4OXHBw6IGpzHfY7I86GkK13ojyqvmg0w3yGtjpgtrLOXDBWukcoJZBQi22A4AuOSSSzB27Fh79SOIJgBFYAnCACNHjkQoFMILL7yAUNYegBPgL8oHFwI4QagXjWU8F1nIXW8JVnk0Foh7J5uisTH1SJZOOhEhmSOxTUHQCfM4MdbVDAIDPDHnolvE1S7icjgGo67M66n3N3nUlYGhJmcXanIiY17HjRuHSy+91H49CaIJQAJLEAYZNWoU/H4/nnnmGYQyi8B4AYE9ncCFOUBgiiJrGCWR9XginW07k0dZwLKEinWvFVlbEgtYFkiSWEKTZJTYeMkrpRK7F0oZrsNCe8ClBOr+Y1JcFcuTiStQu85rsx0IZUdmG77qqqso8koQJiCBJQgTnHLKKUhNTcWjjz6KUPp+VHMCAns6g2M8EGZRImuJmPGxHM9H0pXjgGuisRYlFjAxKYleHSKF2S+LIAj3kWwPqtwgrwkqrhLig2gHx7mKMDAEm29DKGsvAODGG2/Eueeea/kYBNEU4ZjtMAlBND0WLVqE+++/H8FgEHxlBlL2dAEnyJ4HcVykAQwLQEgvj1gFngfCYTCr+wORSJNgL4rL7ESBBSGyv12RtNG5dCwam0wdXCJ5orBuSB1OhihsslzfNr8LzlM/7dV0GT57sRFOb/4IPfw++59DwB/5xWrbl5oSeSAdit6fcQKqczcjnF4MjuNwxx134LTTTrNVV4JoiiRBq0MQjc+RRx6J5557DmlpaRBSy1DZeh0ET7BuA8Yi8ioIYIL1ZXeYOMmT1c52vDu3PB+JxNqdYMlGZ8TRyZ2I5MH2OsZuEEc31CEJrotkkVcXwFkZQuN4JWzUQQhHfmwsi8PEJfNi5ZUPoarVfwinF8Pr9eLBBx8keSUIi7jgTkMQiUn//v3x6quvokWLFmD+KlS1WQvBV1G3gRi5DIfBQmFLIhuRP09deYmIUxJLOAPNslyHVQEU97MjkEkh0ElwHpG8SjjysM8NqcNWEcKRYUA+n6XdmfjAunaVgqiiPcHIg+6UMqSnp+O5557DsGHDnKg1QTRJEvhOQxDxp3v37njjjTfQqVMnMG8NKtusRzilpG4Dj6d2MibBmsiK4iemwbpk2R3L8CSycUUuHMkgH04QTxG0K9DxJBnOH5JXAqiLuortrMnrK0pcw+F6Aiz4KpDevwDMX4Xc3Fz83//9Hw477DCnak8QTZIkaIEIIr60atUKr732Gvr16wfwYVS12oCajKLIi7Hrq1oVWSB6/bpGFFmO45zvMCeiyCZjZzcZJMQJzJzfsdtauTbiGbl1gkQ/b5iQnNdzMuDAGFzDyMXVwlwJseIqIXsPodRioNsW7N27F506dcLEiRPRtWtXBypPEE2bBG+FCMIdZGZm4oUXXsDQoUMBjiGYuwXVzbaDQaVRNCGyHMcB8kktzIqsE7LYUGlhiSaxyUiiy0hjoiaPjS3A8STRzxcSV1fD2b0ejEwgpSWufv30YVVxlW8DhmBWAYKtN6GyshL9+/fHa6+9hlatWhl5FwRB6ECzEBOEgwiCgEmTJmHSpEkAAE9lJgK7OwFBaE8I4fGA05BEJgiAOB1/LLyB8XhhIX4zEQN1E1JpbqPzerxnIk70jq+eeCT6+3MCvXNU6xoz2pSqlWFk/3jLLsmr+7E74Z3d2XvjPQNxIKD9ujxVWOn4Kdr7S+Kqtr/PB+blUN1iK8IZ+wBE1pC/6aab4LX73giCkCCBJYgGYN68eXjyySdRVVUFriaAlJ0dwVXqNF4cD/CcoshqCiwQHclU6uQmgsAC2hJLAmsPIx3TRH+PTqB2nhqRx4YUYJJXezSVc5sEVvnvQm37pdMWqAmslCml0w6ydA+qW26AEKiAx+PBjTfeiLPOOktzH4IgzEMCSxANxPr163HvvfeisLAQEHj4CzrAW5Kuv6OSyDIGZmRNWTWRFQXUhsixcNj6uNvaxt/w7UapniSw9jDaMU309+kEseepGXlsCAEmebVHUzqn4yiwnIe3N9zE47GXQuzz1s3aL2JQXAEAfl+9B8hGxRUAhMxqpB9SjKKiImRmZuLRRx+lyZoIooEggSWIBmT//v144IEHsGLFCgCAd18ufLvzwMFAIx0jsrpRWDlKIpsoUVhp+5htSWDtYaZjmujv1S52BNbu/krXSFxnSiZ5TSgsfl/SEjp2BNZN0Vcz4ioeXxZ9NSOuDAzh3GKEW+1GOBxGp06d8MQTT6BDhw6Gj00QhDlIYAmigQmFQnjjjTfw2WefAQD4ijQEdrQDFza41pwoshxnLAorJ3aSJBtR2EYXWGk/2T4WO6MksDDfMU3092sX8Vy1Io9OCizJq3Wa2jnclNOHxeirBXEFIEVfzYgrADA+jGCbnQhnlgIAhg8fjttvvx1paWnmjk8QhClIYAmikZg3bx6efvppVFRUACEPAjvbw1NhIKVYhONrZy+20CkTRVawJ6F204gt326kWZfjGIVN5M6w1Y5pIr9nJ2DMukA6IcAkr9ZoqudtIgus3fThQEB3giZNxNmHTbSPQqAK1e22g/mD8Hq9uOGGG3DmmWfan0mZIAhdSGAJohHZtm0bHnzwQWzYsAFggG9vHrxFucZSikWYtTXrwHORpXvCguUGNm5RWCDynm12TJusxNrpmCbqeybskagC25TP10Qd/yoI4Px+y8dmjIHz+6zLq8dcvRkYQjn7weXvQzAYRMuWLfHoo4+iT58+1o5PEIRpSGAJopGpqqrChAkTMHPmTAAAX5EK/6524GsMNuBhoa6TZqXDEQ5LEmlWZOMqsIBtiW2yAgvYFxKr713MHCASi0QU2KZ8niVq9LU2ZdeKwErtmIe3Vn/xfDGRusw8IQRb70Q4swwAMGjQINx3333Iyckxf3yCICxDAksQcWLOnDl48cUXIynFYR7+gjbwlmbr7yifjMlKx4MJkbG0tZiRWMZYpMMRjzRigKKwdomHxIrHTOTPrSlCAptYJJrACrLvyuMB5/Gob6uAvB2xNHaWCXURW7+x+SjCaWXI6F+OoqIi+Hw+XHvttTjnnHMoZZgg4gAJLEHEkZ07d+Kxxx7DqlWrAACeA9nwF7YGJ2g05rGzCZudPTJGYEWMNsJNPgobKcR+GfHACSkx895jj5eon1tTJNEEtimfW/GWVzPpw4JC22Mi+qrUdpgSWPE8kbcDOgLLOAE1uXsQzt0Hxhg6duyIhx56CN26dTN+XIIgHIUEliDiTCgUwocffogPP/wQgiCAC/rgL2irPsGT2nI4RjsiKgILGJPYRBdYgKKwtjH6/pWOlcifXVMjUSS2qZ9T8RZYo9FXBXkFjAusWrthWGDlUVc5GgIrBCpR3WYnWEo1AGDUqFH43//+h5SUFGPHJAiiQSCBJQiXsHLlSjz22GMoKCgAAHj3N4NvdytwLKZzobWeq5ForIbAimiJrG2BBeIusU06Cgs0nsSqHSeRP7umRCIIbFM/l+Itr0airyriKpWhI7B6bYWuwCpFXeUoCCwDQ03uHrBW+xEOh5GTk4M77rgDxx57rPaxCIJoFEhgCcJFVFRUYOLEiZgxYwYARKKxu9rCUymLxmoJrIhex0Q2kZMWSiJrexwsEHeBBZp4FBZoeInVKz/RP7+mgNsFls6h+AusVvRVR1wBaI5/NdRG6U3gpBZ1lRMjsEKgqjbqWgUAOP7443HrrbfSRE0E4SJIYAnChSxduhTPPPMMCgsLAQDefc3h29MyEo01IrCAdjTWQBRWRFVi45lGDFAU1gkaUmINprMTLsetEkvnTtzlFVARWCPiKu6vEn012j6oRl/1oq5yagWWgSHUYi9Ym/0IhULIysrCLbfcgqFDh9JETQThMkhgCcKllJeX4/XXX8c333wDAOBqfPAXtIanLCMij0YFTElkTQisiLwBT4Y0YoAkFkDDSayJScUIF+NGgaVzJkK8o69K6cMm5BWoL7Bm24R6AmtGXAHA5wU4DuHUCgRb7wILRMa6HnPMMbj99tvRokULU/UhCKJxIIElCJfzxx9/4Pnnn5fGxnpKsuDf1RJctcknwvIOiwWBFeE4zh1pxABFYZ3CaYm1syYj4S7cJrB0nkRwW/TVpLgCiEofttoWRAmskXThGFgKj5q83Qg12w8AyMnJwfXXX48RI0ZQ1JUgXAwJLEEkAJWVlXjvvffwxRdfIBwOA2Eevl0t4N2XDQ4mGlleFkW1KLBRJHgaMUASK+GkxFotKxk+x2SDBNZ92I2cOimwVsRV3N/vt90GcF6v+agrIunC4awy1LTbC+YLAQBOPfVUXHvttcjONrAeO0EQcYUEliASiHXr1uH555/HmjVrAAB8eQr8O1qCrwqYLsu+PNqMwNaWQRLrItwgK8nwOSYbbjgvADo3RFwQfQXP2Y9Q+rTXX9WD47jIQ1mT92/BH0Sw7R4IWRUAgPbt2+P222/HgAEDbNWHIIjGgwSWIBKMcDiMadOm4e2330ZlZSXAAG9RNnyFLcCFlWdzVEJKAza6AL0SbkgjBuyPxwVJrIQbZCUZPsdkgc4Hd2FXXm2WIZXlsVmGx2O77VGbvVgNxgmoabkPXPsy1NTUwOv14sILL8TFF1+MQMD8Q2CCIOIHCSxBJCi7d+/Ga6+9hrlz50b+EOLhKzCeVixNxCQ+RbfSmRBqZ0S22RFxJAoL0HhYpyBpIUTifS7QeRCNhe+Dkw0dSfjoq5iyzJj++q+1MDCEs8tQ02YvmD+SLjxw4EDceOON6Nixo7V6EAQRV0hgCSLBWbZsGV566SVs2rQJAMBV+uHf0RKeilTN/erNJGxFZEWBFbEowY7chuQCarHTSxIrI97iIpIsn2ei4Ybvn777aEx+J1HiarEMxXLtRl8B8wIrE1epHgYEVghUR9KFMysBAK1bt8YNN9yAwYMH0yRNBJHAkMASRBIQCoUwY8YMvPvuuygrKwMAeIoz4CvIBR9U7iioLoVjRmTFFOLYiTzMiqyTUVg5FjrAJLEy3CAx/9/enYdHVR56HP+emWyTBRIWIciqsqlREIRaBFEUKIKtgFZLr+VSb/XeWuzTeq99aC1aW7W1Kj71uba113qtIi69ggsKRQGrooAiRBFkjawxC9kzmcycc/+YzMlMMplkJhOSSX6f55lnZs457zvvvJPl/OY95z3QffozUXSFz12feagoPpOwwTXKOloUj9HXaA4fDhNcAyIFWCvJS/2AEsz+VZimSUpKCosWLeI73/mODhcW6QYUYEW6kbKyMp544glee+01fyC0IKk4m+Sv+jQ7P7bVS+G0Ncg2HYUNFsVOStxHYYNFsTMclwAb5Wt2aV0hzED36c+urit83vqsm2vD59JicI2ijlZf43SNvkYIroD/EjxhgrRlmHj7nyJpRK1/jgjgsssu4z/+4z/Izc2NtcUi0sUowIp0Q/v37+fxxx9n27Zt/gU+B8mFfUgq6Y1hNe6AtDgKG6y1IBspwAa0IQR3aIANaOOOsUZhm+gKoQa6V592RV3hc9Zn3Fwrn0urwbUNdbS5KR0dYFsLroF2NBl9tbDw5VRQP7AEK9n//+jcc8/lhz/8IXl5ee1qroh0PQqwIt3Y1q1b+e///m8OHjwIgOFJIvlkX5xlWRgYbQuwAS0F2ZYOIw4nUpA9XSEW2rSTrBDbRFcINwHdqV+7gq7y2epzba6Fz6ZNobUN9USlIw8fbmNwDQgEWAsLM6saz8ASLJcH8J/nesstt3DFFVfoPFeRbkoBVqSb8/l8rFu3jr/85S8UFxcD/omekgv74ihPx/BFudNoGOFDbDSXsmlhB+a0BdhgLew061DiFijsdC9d4fPUZ9myJp9P1ME1TB0xN6WjRl9juBybkZSEL6OG+oElmBluADIzM7npppuYP38+KSkp7W+riHRZCrAiPYTb7ebFF1/kueeesyd6MmpSST6eg6MirU2X3rE1HY2NNsAGhAnCnRJiIexOtEJsC7pC6Anobn17unSVz1CfX8uCPqOYgmuTOtolHqOvEBpgoxx1tYtl1lOfW2LPLJyamsqCBQv4zne+Q69evdrfRhHp8hRgRXqYyspKVq1axUsvvWRPcuGoTCXpRA7OqsiX3mkmeIemrYcRhxMUhOP2JynW8Nlkh1ohtgVdJQBB9+vbjtZVPjt9bi0zHLGH1ib1xENcRl+doRMJRh1cXXXU55ZhZtcAkJSUxDXXXMN3v/td+vXr1/72iUjCUIAV6aFOnTrFs88+y+rVq/F4/OcOOSrTSDqRjaMqyhHZgFgDbJBOD7DBGnawdT5sBPHYQbbM9tfTXfs33uLRz/qsOlYXC6/xGH21LMt/3moMf9/N9DrqBzYGV4fDwaxZs1i8eLFmFhbpoRRgRXq4oqIinn76aV5//XW8Xi8AjqpUkk5m46hwtT3INoyexuMwM8tnQnt34EwrdEc51p05y9QobGviFWjaU0937dt40ueUEIymI5UxV9T5o6/Bu5jRvi9fhhvvwDLM3v4jhQzD4PLLL2fx4sUMHz485jaJSOJTgBURAAoLC1m5ciWvv/66PSJrVKeQfDLbP9lTW4Js0CHA7Qmy/mvUNvxpak+QbRpiIfqduniOwgbV1y2140uCdtfTnfs1XvT5dH3dZPS16a6lEW7yv3DlsDAz3XhzyzCz/JMzOZ1OrrzySv7lX/6FoUOHRt0WEel+FGBFJERxcTGrVq3ilVdewe3270AYtckkFfbGeSoTw4qwMxPmHNZYg6zVdHbkWHfqwoXYgLbu5CnEtl2MXxB0WD0SqjM+H302bdPVwivRj762tEvZ2uirhYXZq9Y/4ppZB/jPcf3GN77BokWLGDRoUFTtEJHuTQFWRMIqKyvj+eef5//+7//syZ7wOEn6qjdJxVkYZnSXwok2yIaMwgaLdgcvUoANaMsOn0Js28Uz3ETx2UgbRPmlTYfXI37xCq8NdcVFFKOvre1KthRgLcPE16ca74ByrLR6AFJSUpg7dy433ngjAwYMiK7NItIjKMCKSESVlZWsXr2av//975SWlvoX+gySirNwftUbR31SaIFWZhKOJsg2G4Vtqq07fG0JsQGRdv7ieT5sQ33dWms70vH4TKKpR+L7hUArvyvSdl3tvFdoffS1rbuP4Q4ftpw+vP0r8PavgGT/z0pGRgbz5s3j+uuv16zCIhKRAqyItInH4+Ef//gHq1atoqCgwL/QAmdpBklf9cZRm+pfFsWlcFoLsy2OwjbVliAbTYiF8DuC8R6FDaqz24pnyGmpru7eh/Gkz6Pr6YKHDkcafY12tzE4nJup9XjPKMfXtwoc/noGDBjAwoULmTt3LhkZGbG3WUR6DAVYEYmKaZp8+OGHrFq1ih07dtjLHZVpJBX1wlGWjmFaUe3kRAqyrY7CNtXSjmC0ATZY8I6hQmz0InwZ0Kl19VQd+Xnos4hOVzx0mPCjr7HsLhqGgeUwMLPcePtXYOXU2vWMGjWKG264genTp5OUlNRKTSIijRRgRSRme/bs4fnnn2fTpk34fD4ADI8TZ1Emzq8yMbzRHRYXLsi2eRS2qXA7he0JsQGGQyE2VmG+CGh3XT2h3+JNn0PX0EXDa/Doa3t2ES2nidm/Bm//Svv8VoCvf/3rfPvb32bcuHFxueyaiPQ8CrAi0m6FhYW88sorvPrqq5SVlfkXmuA4lU5SYRZGdUrbryfbIHjHJupR2KYCO4mBwBnHnW2F2Cgp8HS+oC9hulRdPUlXDa/4R1/bs2toujz4zqjC17canP56XC4Xs2fP5tprr9U1XEWk3RRgRSRuPB4PmzZt4uWXX+azzz6zlxvVKTi/ysRZmh5+9uLWxDMkQtx3uBViRaTN4hleG+qLmxjbZRkWZk4N3jOqsLLq7OXDhw/n2muvZdasWaSnp8erlSLSwynAikiH2LNnDy+//DJvvfUWHo/Hv9Bn4CzJwFmUgVET5aisQqyIJLp4h9eGOmMW+FsTqCPKtplp9fj6VeHrV23PJux0Opk6dSrXXnutDhMWkQ6hACsiHaqsrIy1a9fy6quvcuzYMXu5UZPsP1e2JB3D14ZzZYPPX43HiENXDrD+CuNbn4h0urhdLseuMMa/heH+vrSxbZbDxNenBl+/Kqwsj728T58+XHPNNcybN4/+/fvH1i4RkTZQgBWR08I0TXbu3Mlrr73G5s2bG0dlTQPHKRfOokwclamRR2WbTsLU3iCrECsip0tnHzoc6e+J4Yg4+mphYWV48PWvwtenxj631el0MnnyZK6++mouueQSzSYsIqeFAqyInHaVlZWsX7+e119/nf3799vLDbcTR0kGzpIMHHXJzQtGmkU4ljDbAQFRIVZEmumsQ4fb+vejhdFXK9mLr28Nvn7VWK7GmYTPPPNMrr76ambPnk2/fv3a9hoiInGiACsincayLL744gtee+01NmzYQHV1tb3OqErxny9bmh56OZ62XAonmjCrECsiHel0h9do/140GX21nCa+nBrMvtWYWXUEDopJTU1l+vTpXH311Vx44YU6t1VEOo0CrIh0CW63m3fffZf169ezbds2+7qyWOAoT/OPypa5MLxGdDto8RyliELcQ6y/0vjXKSIdp6uHVwCn0z+LcO9afH1rMLNrIOglLrjgAq666ipmzJhBZmZm9PWLiMSZAqyIdDmlpaW8/fbbrF+/nj179jSu8Bk4TqXjLHbhKE/BsKLcMYz3jl8rFGJFerDTFV5j/JtgYWH18uLrV+M/rzWpsZ5hw4Yxc+ZMrrzySnJzc2NtrYhIh1CAFZEuraCggH/84x+sX7+ekydPNq7wNkz+VOLCUZ4anzCrECsi8dDR4bUdodXs5cHsU4uvTy2kNNbTt29fZsyYwcyZMxk5cqQOERaRLksBVkQSgmVZfPrpp2zYsIHNmzdTWlrauNJr4DiV1hBm02IPs4kSYP0Vd0y9ItI+cQ6vlmm1q75IoTUzM5OpU6dy1VVXMX78eJzxvsyPiEgHUIAVkYTj8/nIz89n06ZNbN68mZKSksaVgTBb2jAya8bhmrHt1GEh1l95x9UtEivLgp44ghen8Br8NyOW+izDwuxV1xBa3ZDc+HciKyuLqVOnMn36dCZMmEBycpgZ30VEujAFWBFJaD6fj08//ZSNGzc2D7OmfwIox6k0nKfSMOrbProQ2IGM10iKQqz0CE13KXpSiG1neA33NyKa+iyniZntxpfjxsx2Q1Jjfb1797ZD60UXXaTrtYpIQlOAFZFuwzRNe2T2vffeCz1nFjAqk3GecuE4lYZRm4RByzuH7d2ZbGudcaMQK50p0q5ETwixMYTXtvw9aK1OM9WLmePGzKnF7OUh+E9aTk4Ol156KZdffjnjxo1TaBWRbkMBVkS6JcuyOHjwIO+++y7vvfde6GzGgOF24jiVhqMsDUdF+EmgWtvBjOnQPoVY6U7asgvR3QNsFOE1mt//cHVaWFiZHv8oa44bK90bsn7EiBFMmTKFKVOmMHbsWByOzj+FQkQk3hRgRaRHKC4u5v333+e9997jo48+wuPxNK70GTgqUvyHG5elYrgbR2fbusMZ1aF+HRli/S/QsfWLRLvr0F1DbCvhNdbf9eA6rRQvvuw6zN5uzN51IYcGO51OLrzwQju0Dho0KKbXExFJJAqwItLj1NTUsH37dt5//322bt1KcXFxyHrD7bTDrKM8FbzR73y3FmgVYiUhtWeXoTuF2IaZy5v+nsfl99qJfwKmbDdmdh2WK3SUtVevXkyaNIkpU6YwadIksrKy2v+aIiIJRAFWRHo0y7I4dOgQH374IVu3bmXXrl3U19c3bmCCUZXSEGZTMKpSor9MDy0HWgVZSQjx2lXoDiE2aNQ1Hr+/FhZWRj1mbw9Wdh1mrzoIOvLX4XBw7rnnMmnSJCZNmsTo0aN1uRsR6dEUYEVEgtTU1PDJJ5/YgfbYsWOhG/gMjIqUhkOOUzGqkiNOBtWSeO4AR6QAK+0R712ERA+wRvvPKbWwsNK9mL3rsHp7/IE1KbSf+/fvz+TJk5k0aRITJkzQKKuISBAFWBGRCI4ePcr27dvZsWMHH3/8MeXl5aEbeP3nzxrlqf7JoKojz27cKRRiJVodsWvQQ8OrhYXl8vrDau86/2zByaG/k+np6Vx44YVMmDCBSZMmMWzYMIxE7y8RkQ6iACsi0kamaXLo0CE7zH7yySdUVVWFbuQ1MCpTcFT6R2mNqmQMs4vMBKogK61RcA0vivBqGQ2HBPfyYGV5wgZWl8tFXl4e48ePZ/z48YwaNUqXuRERaSMFWBGRGPl8Pvbv38/HH3/Mjh072LVrFzU1NaEbmWBUJ+OoTPEfelyZglHfieevKcRKUx21G9Adgiu0Gl6tJBMzqzGsWpmekHNYAVJTU8nLy2PcuHGMHz+esWPHKrCKiMRIAVZEJE58Ph8HDx5k165d5Ofnk5+fT1FRUfMNa504qlIwKpP999XJMU0M1S4KsqLgGlmY4GoZDYcDZ3ows+qxsjzNrsUK0Lt3b/Ly8sjLy+P8889n9OjRpKSknI5Wi4h0ewqwIiIdxLIsCgsL7TCbn5/PwYMHafZn1wSjJhmjqmGktioZo/Y0nUurINuzdOS//O4SXAEMh//c1TQfVqYHK7MeM9ODlVEPYQ6gGDp0qB1Y8/LyGDx4sM5hFRHpIAqwIiKnUWVlJbt37+bzzz+3b2VlZc039Bn+QFuV7B+hre7AUKsQ27119L/5bhDULCxI82FmeLEyvf6wmlnfbHZggIyMDMaMGcOYMWM477zzOP/888nOzj79jRYR6aEUYEVEOlFglDY40H7xxRfU1tY239jXMFJbnYwjEGprkuI3SZSCbPeh0Noiy+G/jI2VUe8PrOn1WBnesGE1JSWFkSNHMmbMGMaOHcuYMWMYPHgwDkcXmZhNRKQHUoAVEelifD4fBQUF7N69my+++IL9+/dz4MCB8KHWAsPtbAizDYG2Jtm/LNbRWgXZxHQ6/p0nUHC1sCDVh5nus0OqleHFcnkJ96uRkpLCiBEjOOecc+ywetZZZ2myJRGRLkYBVkQkAZimybFjx9i/fz/79+9n37597Nu3j5KSkhYK4D/kuKbh0ONog61CbOLpoZMyNQZVr39kNXBz+cAZvk969+7NyJEjOeecczjnnHMYOXIkQ4YMUVgVEUkACrAiIgmstLTUDrWHDh3i8OHDFBQU4Ha7wxcIBNvaJAx34N6JUZsEXkfzcKsgmzji+e+8C4ZWy2liuXxYad7G+/SGEdUWrkyVlJTEkCFDGD58eEhY7du3ryZZEhFJUAqwIiLdjGmanDx5ksOHD9uhNnCrq6truaDXaAy2DaE28Jh6Ts+syNI+7fmX3gUCneU0/TP/urzN7klu+b2lpKQwdOhQhg8fzrBhwxg+fDgjRoxg0KBBGlUVEelmFGBFRHqIQLAtKCjgyJEjHD16lKNHj3LkyBG++uqr5pf3CeYzMOqc/jDrdvofNzw36pz+8KuA2zW09d96JwRWy2lipfr8oTTVBw33gVukkArQt29fBg8ebN8CoTU3N1dBVUSkh1CAFRER6urqOHbsmB1oA/fHjh1r+TzbYF5/wMXjwPA4Mer8943PFXJPu6b/3jswsFpY4LT8ITTFxErxYTXck9rwPM0XdqbfpnJyckJCauB25plnkp6e3mHvQUREEoMCrIiIRFRXV8dXX33FiRMnOHnypH0feFxaWtq2ikwgEG7rnRgeB9Q7MOob7wOP8SnsdgWWw4RkE6vhRvB9UFAlxdfieahNZWdnM3DgQHJzcxk4cGDIbcCAAQqpIiISkQKsiIi0i9vtprCwkMLCQoqKiiguLg65LyoqoqysLLpKfTSEWqc/1HoNDK//Hq/Dfmzf+xz+5aZCbziWYUGSiZUUuDf9o6HO4GVWs7Da0iy+LenVqxf9+vWjf//+9O3bl/79+9OvXz/OOOMMcnNzGTBgAC6Xq4PepYiI9AQKsCIi0uE8Hg8lJSUh4basrIxTp05x6tQp+3FZWVn46922lQ/wNYzgmgb4/DfDZ4RfbhoQuFkEPQcs/2Mj6DGB/5gWQMPzhmWtjRhbjRsG3Vv+ewNwWGBYWI7GxzhoWNb4GIeF5fQfsouj4dBd+7nZ+NhebrZ5dDSclJQUsrOzycnJITs7274FB9RAYE1NTY39hURERNpAAVZERLqU2trakHB76tQpKisrqaqqorKykoqKCiorK0NuVVVVmGYnX/InKMxi0SSoBt13EsMwyMzMJDMzk6ysrJBbYFlwQM3JySEnJweXy6VLzoiISJehACsiIgnPNE1qamqorKykpqaGmpoaamtr7Vvw88Djmpoa6urqqK+vx+Px2PeBW319fciyjg7ITqeT5ORk+5aSktLivcvlavMtEE4zMjJwOBwd+h5EREQ6mgKsiIhIG/h8PizLsu9N0wz72OfzYZomDocDh8OBYRgRHxuGQVJSEk5nO47zFRER6SEUYEVERERERCQh6FgiERERERERSQgKsCIiIiIiIpIQFGBFREREREQkISjAioiIiIiISEJQgBUREREREZGEoAArIiIiIiIiCUEBVkRERERERBKCAqyIiIiIiIgkBAVYERERERERSQgKsCIiIiIiIpIQFGBFREREREQkISjAioiIiIiISEJQgBUREREREZGEoAArIiIiIiIiCUEBVkRERERERBKCAqyIiIiIiIgkBAVYERERERERSQgKsCIiIiIiIpIQFGBFREREREQkISjAioiIiIiISEJQgBUREREREZGEoAArIiIiIiIiCUEBVkRERERERBKCAqyIiIiIiIgkBAVYERERERERSQhJnd0AEZHOYlkWbre7s5shIhKVtLQ0DMPo7GaIiHQKBVgR6bHcbjezZs3q7GaIiERl3bp1uFyuzm6GiEin0CHEIiIiIiIikhA0AisiAqRsPQPDavhOz3BgOAwwHOAwwDAwHIF1DcsNAxwGRmAbe51hl8EIWm4va6zTXkfjesswGr9aNBrrsZcHlQteZjVUY69zAASWG/a6QBmrYZkVXCZQh6Nhe7tM6Hq7TsCiYZkjzLqQ7QlpY+Oypu0IU4bQMiHriVAuqM5wZVuqM0TEMlZI+ab12euD6rIaltOkHIYVVN6/3gheZ29r2WUMe7ug7RvqMQyr8UewYXnjR23Z6x1Y9nP/OnA0PPev8z8PlLPXGRYGjeUcDcvsG8HLCVneWMa0lzmwcBgmzsC6huf2+obHAE57mYUT/3KnYTYpZ+JseAzYj+3taazPgb+8A//r+9cFyvmXGZg4A+UJtMPECf5y+F8v8N4Cz/2vZTU8prEt+H/NnBj2r7vTMHBgNCwzGp47Gn50DOo9Thb820BERHo6BVgREQCf0bgraTgwaAibDcmgcZ0Bjsa0ZvjTYEMlgbTjoEk6CUo2jubpqjFlBC2nybLg1yDMsqblaAyuQQG22bJmywkTiJuuJyhIN76tFte19DbCtqMtZdrQVXGos/XQG+cAG249TZ9bYZZbIa8Zbl0gWDWuC15vBZULWoYVps7GW3CAbQzFDTdaXm4HR4OggNoYdCEQRLEDYPA6f4A1GwOg4Q9//nINQdAw/OGyYXngsb09RlBYBqfReO+EoLAZZl1DN/qfWw0B2LIDq7+c1WqADVefg8Zl/ufBbQz6DEVEejAdQiwiIiIiIiIJQQFWREREREREEoICrIiIiIiIiCQEBVgRERERERFJCAqwIiIiIiIikhAUYEVERERERCQhKMCKiIiIiIhIQtB1YEVEAJwWlmX6Hxv4LwRp3xuNX/eFXEc16DHBy6zGxyHLW1gXdFFQq4WLmzYub7y3Qh4TUs4CsOyrcdprLAywsMtaTcs0lGuu6bLAhU9DmtSkP1q4Nd22Pdd6jbQuUp1teD0j3PqQZeGu5xpmfbM2tnAdWELXG8Hr7G0b6zSCr/Ea2D7kuqzBP14tXAeW2K8Da9FYzjKs0BvBywlZbtr1mY2vgwWGGXS9WitkvWWYWEHtsLAanjfcB9rR8NzRsI0jaHnwMn87/NU5ANNovDdpvA6s2bDMoKXrwBo48F9f1knjZxZ47mgo0/Tasg57nRFUX2NdDgz7uf9jMaj3hPu9FBHpeRRgRUQAz6SvOrsJHSOQD9qhaXQWgdAfLbMzGxKz4J9sHZAmIpIo9BdbREREREREEoJhWVY7v5sXEUlMlmXhdrs7uxkdyu12881vfhOANWvWkJaW1skt6rrUV22nvmq7juirtLQ0DEPHRIhIz6RDiEWkxzIMA5fL1dnNOG3S0tJ61PttD/VV26mv2k59JSLSfjqEWERERERERBKCAqyIiIiIiIgkBAVYERERERERSQgKsCIiIiIiIpIQNAuxiIiIiIiIJASNwIqIiIiIiEhCUIAVERERERGRhKAAKyIiIiIiIglBAVZEREREREQSggKsiIiIiIiIJAQFWBEREREREUkICrAiIiIiIiKSEBRgRUREREREJCEkdXYDRES6i5qaGlatWsXmzZs5efIkDoeDIUOGcMUVV7BgwQKSk5Njrru0tJSVK1eyZcsWCgsLSU1NZcSIEcyePZurr74awzAilj927BgrV65k27ZtlJaW4nK5GDVqFPPmzWP69Omtvv7evXt54YUX+OSTTygrKyMrK4vzzjuP+fPnM2HChBbLFRQU8Omnn7J371727dvH/v37qaurA2Dx4sXqqwaWZfHZZ5+xZcsW8vPzKSgooKKigrS0NHJzc3G5XJSXl1NUVNTj+8rr9fLGG2+wZ88e9u/fT3FxMeXl5RiGQU5ODi6Xi9raWsrLy3t8X7WksrKSm266iZKSEsD/u7hkyZKo6hAR6SyGZVlWZzdCRCTRnTx5kqVLl3Ly5EkA0tLSME0Tj8cDwMiRI1mxYgVZWVlR1713717uuOMOysvLAXC5XHg8Hnw+HwCTJk3i/vvvb3HnfMuWLSxfvhy32w1ARkYGtbW1mKYJwJw5c7jzzjtb3AF/7bXXeOihh+zXy8zMpLq6msC/j0g7v0uXLuWTTz6J+P7UV/D000/zl7/8xX5uGAYZGRlUVVWFbJecnIxhGD26r8rKyrjmmmvs54Zh2GUDrw3gdDpxOBzU19cDPbOvWnLffffx5ptv2s8VYEUkkegQYhGRdvJ6vfzsZz/j5MmT9O3bl4cffpj169ezfv16li9fTnp6Ovv27ePee++Nuu6qqiruvPNOysvLGTp0KH/+859Zt24d69ev58c//jFJSUls3bqVP/zhD2HLHz9+nLvvvhu3201eXh7PPvssb7zxBmvXrmXx4sUArF27lueeey5s+U8//dTecZ46dSovvfQSa9eu5ZVXXrFDxFNPPcXbb78dtrzT6WT48OHMnDmT2267jYULF9rr1FeNvF4vGRkZfPOb32TFihWsX7+eV155hREjRgDgcDT+u/7zn//co/sqJSWFBQsWcPfdd/PCCy/w1ltvsWbNGoYPH26vB/D5fCxevLhH91U4W7du5c033+T888+Pui9ERLoCBVgRkXZ68803OXjwIAD33nsvEydOBPyhY8aMGdxxxx0AfPDBB3z00UdR1b1q1SpKS0tJTU3ld7/7HWPGjAH8I3Hz58+3R01effVVjhw50qz8k08+SW1tLX369OGBBx5gyJAhAKSnp7NkyRLmzZsHwN/+9jcqKyublf/jH/+Iz+fjrLPO4p577uGMM84AoHfv3txxxx1MmjQpZLumfv/73/P000/zi1/8guuvv56amhp7nfqq0dSpU3nhhRf46U9/ykUXXURqaipvvvkmhw4dAuDuu+8mNTWV+vp6XnzxxR7dV+np6dx+++1cccUVDBw4kKSkpJDfwUceecQOZ2vXru3RfdVUTU0NDz74IMnJyfzXf/1XVP0gItJVKMCKiLRT4FC88ePHhx3VmDFjBrm5uSHbttW6devsOgYNGtRs/fz583G5XPh8Pv7xj3+ErKutrWXz5s0AfOtb3wp76OR3v/tdAKqrq/nnP/8Zsu748ePs2rULgBtuuIGkpObTJgTKnzx5kp07dzZb73Q6Q57n5+fbj9VXjUaOHNnsNYN/rqZPn8748eMB2LNnj/0+e2JfhRPcV3l5eZx77rkAFBUV2e9TfeUPuYWFhSxatMgesRYRSTQKsCIi7eB2u/n0008B+NrXvhZ2G8MwmDx5MgDbtm1rc91ffvklhYWFAHb5ptLT07ngggvC1p2fn29PmNRS+dzcXIYNGxa2fPDzlsrn5eWRnp4etnxTbrebo0ePRtxGfeUX7ucqcGhs4LxJ9ZVf074yTdN+fuaZZwLqK4BPPvmENWvWMHToUDv0iogkIgVYEZF2KCgosANF4HzFcALrSktLqaioaFPdgUMiW6v7rLPOAuDw4cMtlg9sE6l84HDVgMDznJwccnJywpZ1Op0MHTo0bPmmCgoKaMu8geqr5j9XXq/XDmXB7VNfhfaVZVn8/Oc/Z/fu3QB8+9vftrfryX1VV1fHb3/7WwD+8z//0/4yREQkESnAioi0Q3Fxsf24f//+LW7Xr1+/sGUiCVzioq11V1dXh5xjGnidrKwsUlNTWy0f/HrB5YPbHk6gbU3LN9XW962+av5z9fzzz1NaWgrA3Llzm7WnaZlIulNfPfPMM/zbv/2b/fyPf/wj7733Hi6Xi9tuu405c+Y0a09wG1rTXfrqiSee4NixY8ydO5cLL7wwYl0iIl2dAqyISDsE76xG2kFNS0sLW6Yj666trW22PlL5pu0KPG+tfKBtrb2vtr5v9VXo+sOHD/Pkk08CcOWVV4Zc87On95XL5SIjI6PZ637/+98PCfpNX68n9dXu3bt56aWX6Nu3L7feemvEekREEoECrIiISBf28MMPU19fz4gRI+zZdMVvwYIF/OQnP7Gf33PPPeTl5fHYY49x88038+WXX3Zi6zpffX09DzzwAKZpcvvtt8d0DVwRka5GAVZEpB0Ck6cA9mQt4bjd7rBlOrJul8vVbH2k8k3bFXjeWvlA21p7X2193+qr0PWVlZUMHTqUhx9+uFk59VXo+qFDh/L73/+eKVOmcPToUX7961/b5133xL566qmnOHz4MJdeeinTp0+PWIeISKJQgBURaYfgc9MCl+wIJ/icu9bOZwvo27dvVHVnZGSE7MAGXqeysjLiznegfPDrBZdv7XzBQNualm+qre9bfUXI9Tz79evHihUrwpZRXzX/HTQMg+uuuw7wX3Loiy++aPZ6PaGvjh49ysqVK3G5XNx6663U1NQ0uwV4vd5my0REuioFWBGRdhg2bBgOh/9PaaTZUgPr+vTpQ69evdpUd/CspZHqDsx02vS6jsHlg2dDbal801lWA89PnTpFWVlZ2LI+n88+TDPSLK3g7yvDMCJuA+qrI0eO8Mgjj9jP58yZ02Lg6ul9BeF/B4MnXDp27FjIup7SV0VFRfh8Pmpra/nud7/L7Nmzm90CnnnmGXtZZWVli+0UEekKFGBFRNohLS2N888/H4APP/ww7DaWZbF161YALr744jbXPWTIEAYMGBCx7traWnbt2hW27ry8PHtyl8DrN3Xy5EkKCgrClg9+3tLr5+fn26M2rb23tLQ0Bg8eHHGbnt5XR44cYenSpZSUlNjtCVw+p6me3lcB4X4Hjx8/bq9PT09XX4mIdCMKsCIi7RQYydixY4d9/clgGzdutHeog0c9WmMYBrNmzQLg7bff5sSJE822efnll6mtrcXpdHLVVVeFrHO5XFx22WUArF69mqqqqmblV65cCfh38qdOnRqybtCgQVxwwQUAPP/883i93mbln332WQAGDhzYpstz5OXl2Y/VV6GCw+uQIUP4/ve/D+jnqmlfhds++HcwPz+f5557DoDk5GTOO++8HtlX48eP55133ol4C1i8eLG9TBM9iUhXpwArItJOs2fP5qyzzsKyLO666y4++ugjAEzTZOPGjTz44IMATJ48OeQSKABPPvkk06ZNY9q0aWF3jm+44Qb69OmD2+3mzjvvZO/evYB/dtHVq1fzP//zPwDMmzePIUOGNCu/ZMkSXC4XJSUl/OxnP+PIkSOAf9ToqaeeYs2aNQDcdNNNYXdcb7nlFpxOJ/v37+fuu++2z7WrqKjg4YcftkeFbr31VpxOZ7PyHo+HsrIy+3b22Wfb637+85+zefNmysrKKC0t5e233+6xfXX06FFuv/12SkpKGDp0KI8++igLFy7Uz1WYvnr00Ud56KGH2LFjhz3yOHv2bEaMGIFlWfz4xz/m448/BuDb3/4227dv77F9JSLSHRlWYHo+ERGJ2YkTJ7j99ts5efIk4D+s0TRNPB4PACNHjmTFihXNdlCffPJJnnrqKcA/wpKbm9us7r1793LHHXdQXl4O+EdqPB6PPRpz8cUXc//995OSkhK2bVu2bGH58uX2TKaZmZnU1tbaEwXNmTOHO++8s8XzU1977TUeeughe/vMzEyqq6vt2V0XL17MkiVLwpZ94403uP/++8Oua0lP7KsHHniAtWvXAv6JgAKHnfp8PiorKzFNU33V4L777uPNN98E/COk6enpJCUlNesnp9OJ0+ns8b+DkUybNq1d5UVEOkNSZzdARKQ7yM3N5amnnmLVqlVs3ryZkydPkpSUxIgRI5gxYwYLFiwgOTk5prpHjx7N//7v/7Jy5Uref/99vvrqK9LS0jjrrLOYPXs2c+bMsSexCeeSSy7hr3/9KytXrmTbtm2UlpaSmZnJyJEjueaaa1q9vMbcuXMZOXIkzz//PDt37qSsrIycnBzOO+885s+f32xEK1aB99MT+yo4eFVXV1NdXd3q++ypP1eLFi1ixIgR7Ny5ky+//JKysjKqqqrIyMhg4MCBJCUlUVFRQWlpKYZh6HdQRKSb0QisiIiIiIiIJASdAysiIiIiIiIJQQFWREREREREEoICrIiIiIiIiCQEBVgRERERERFJCAqwIiIiIiIikhAUYEVERERERCQhKMCKiIiIiIhIQlCAFRERERERkYSgACsiIiIiIiIJQQFWREREREREEoICrIiIiIiIiCQEBVgRERERERFJCAqwIiIiIiIikhAUYEVEJCE8+uijTJs2jR/96Eed3RTpZFVVVVx99dVMmzaNd955p7ObIyIip1FSZzdAREQ6VnV1Nfv27WPPnj3s3buXvXv3cuzYMSzLAuD5558nNze3Q17bsiwWLlxIUVERixYt4pZbbompnn379rF69WoAfvCDH8SxhZ3r4MGDbN26lfz8fA4ePEhJSQk+n4+srCzOPvtsLrnkEmbPnk1mZmZnN7VLyczM5IYbbuCJJ57gD3/4A5MnTyY1NbWzmyUiIqeBAqyISDe3dOlS9u3b1ymvvWfPHoqKigCYOnVqzPU8/vjj+Hw+Jk+eTF5eXrya16mWLl3KJ598EnZdaWkppaWlbNu2jWeeeYZly5YxadKk09vALm7hwoW8+OKLFBYW8tJLL7Fo0aLObpKIiJwGOoRYRKSbC4y0gn/kavz48fTp0+e0vPY///lPAPr378/YsWNjqmPXrl1s374doFuFlECwz8rKYs6cOSxbtozHHnuMJ554gl/96ldccsklgD/MLlu2jJ07d3Zmc7scl8vFggULAFi5ciU1NTWd3CIRETkdNAIrItLNzZkzh+zsbEaPHs3gwYMxDIOlS5dSWlra4a8dCLBTpkzBMIyY6njuuecAyM3N5cILL4xb2zrb4MGDuemmm5gxYwYpKSkh60aPHs306dN59tln+dOf/oTH4+Ghhx7i6aef7qTWdk0zZ87kySefpLKyktdff53rrruus5skIiIdTCOwIiLd3MKFC7nyyisZMmRIzCEyFkeOHKGgoACI/fDhoqIitmzZAsCsWbNOa/s72oMPPsg3vvGNZuE12KJFixg5ciQAhw8f5sCBA6ereQkhNzeXCy64AIBXXnmlk1sjIiKng0ZgRUSkQwRmhw0cthyLDRs2YJomAFdccUWbyni9Xt5++23effdd9uzZQ1lZGT6fj+zsbM466ywmTpzIlVdeSd++fUPKTZs2DYDZs2ezbNkyvvzyS1566SW2bdtGcXExGRkZjBo1iu985zuMGzfOLldXV8cbb7zBunXrOHr0KG63m0GDBnHVVVdx3XXXtXtyoYsuusg+h/nIkSOcffbZMdd1+PBh1qxZw86dOzlx4gRut5vMzEyysrLIzc1lwoQJXHrppQwdOjSm+r1eL+vXr2fjxo0cPHiQ8vJyDMOgV69eZGdnM3bsWCZOnMiUKVNITk4OKdu0/w8fPszLL7/M9u3bKS4upra2lt/85jfNvgy54oor2LlzJwUFBezZs4cxY8bE1jkiIpIQFGBFRKRDBA4fvuSSS0hKiu3fzfvvvw/4zxMdNmxYq9vv37+fX/7ylxw9erTZuqKiIoqKivjwww85cOAAy5Yta7GeTZs2cd999+F2u+1ldXV1fPDBB3z44YfccccdzJs3j+LiYpYtW8aePXtCyh86dIg///nPfPDBBzz00EPtCrFer9d+7HDEfuDUmjVrWLFiBT6fL2R5eXk55eXlHD16lG3btnHgwAHuuuuuqOsvKyvjpz/9adgJwwJ9v2/fPl555RVWrlzJ4MGDW6zrjTfe4KGHHsLj8bT6usGTer3//vsKsCIi3ZwCrIiIxF1xcTGff/45EPvhwx6Ph88++wyAsWPHtnr48L59+7jtttuora0FYPz48cycOZNhw4aRnJxMSUkJu3fvbvW6oQcOHODtt98mJyeHH/zgB/Zrf/TRR/ztb3/D7XbzyCOPMG7cOH7961+zf/9+vvWtb3HppZeSnZ3NsWPHePrppzlw4AC7du1i5cqV/Ou//mtMfQDw8ccf249HjBgRUx0HDx60w2uvXr2YN28e48aNIzs7G5/PR0lJCXv37uWDDz6I+TDtFStW2OF1woQJzJw5k9zcXDIyMqiurqagoICdO3fah4S3ZO/evWzYsIFevXpx3XXXkZeXR3JyMocPH2bgwIHNth8xYgQul4va2lo+/vhjlixZElP7RUQkMSjAiohI3L377rtYlkVKSgqTJ0+OqY4DBw7Yo4+jR4+OuK3X6+WXv/ylHV5vv/12e4baYF//+te5+eabKSwsbLGuffv2MXLkSFasWEFWVpa9/Nxzz2Xw4MEsX74cr9fLbbfdRkVFBQ8++CATJ060txs1ahQXX3wxN910E8XFxaxevZqbbroJp9MZ1fsH/2HYhw4dAvwhfsiQIVHXAbBx40Z75PWRRx6xz6sNNnXqVG6++WbKy8ujrr+urs7+YmDq1Kn8+te/bhaEx40bxze/+U1qa2sjjiQfOnSIwYMH89hjj4XMlt3SLNZOp5NRo0axc+dOvvjiC0zTbNdItYiIdG36Cy8iInEXOHx44sSJuFyumOoIPgy4tcv+bNiwgWPHjgH+WZfDhddgAwYMiLj+Zz/7WUh4DZg+fTr9+/cH4NSpU8yfPz8kvAZkZmbyjW98w97u8OHDEV8vnOLiYh5++GEADMPg3//936OuIyAw43RmZmbY8Bqsd+/eUddfWVlpf9kwbty4iKO4Lper1UOqf/KTn0R1qafAtm63m+Li4jaXExGRxKMAKyIicVVVVcWOHTuA2A8fBigpKbEf9+rVK+K2gcAMcOONN8b8muA/JLWlkGcYRsi6mTNntlhP8HbHjx+Pqg1ut5tly5bZwbPpxFHRCoTuqqoqNm7cGHM9Lendu7c9m/Jbb73Vrmuy9u/fP+yXApEE/3wE/9yIiEj3owArIiJxtWXLFrxeL06nkylTpsRcT11dnf043GhosC+++ALwj8S1ZbKnSForH9yWSLP1Bm8XTaCrr6/nF7/4hT0x1KWXXsrNN9/c5vLhzJw50x71XL58OT/84Q959tln2bVrl33YdXskJycze/ZsAHbv3s3111/Pgw8+yFtvvRV1eI9lluXgABs88ZaIiHQ/OgdWRETiKjAaev7555OdnR1zPcHnjLY2G21ZWRnQONLYHmlpaRHXBx8eG+nw6ODzMAOXAmqN1+vlrrvuYuvWrQBMmjSJu+++O6bzZ4MNGjSIBx54gPvuu4+ioiLy8/PJz88H/P08ZswYpk2bxty5c1v9sqAlP/rRj/B4PKxbt46KigpeffVVXn31VcD/xcKkSZOYM2dOqyPJrY22hxP8ZUesM16LiEhi0AisiIjEjcfj4cMPPwTad/gw+M/XDKioqGhXXYnA6/WyfPly+9JBEydO5De/+Y19aG57TZgwgeeee4577rmHOXPm2Jex8fl8fPbZZzz++OPceOONdniOVmpqKsuWLeOZZ57h+9//PhdddJEd8EtLS3nzzTdZunQpv/jFL0ICZ1OxTMAUPPFU8M+NiIh0P/qaUkRE4mb79u32IantDbDBl0xpLcBmZ2dTWFiYsBP4BMJrYPT6oosu4v7772/X9WPDSUlJ4fLLL+fyyy8H/CPXH330EevWreODDz6goqKCu+66i5UrV9K3b9+YXmPIkCF873vf43vf+x4+n499+/bx/vvvs2bNGk6dOsU777zDE088wW233Ra391VZWWk/bm2CLhERSWwagRURkbgJBLCRI0eSm5vbrrqCr3n65ZdfRtw2cJmdkpKSVrftapqG1/Hjx/PAAw/EPbyGk52dzYwZM/jd737Ht771LQBqa2t5991341J/4PDkJUuW8Mc//tE+PHvDhg1xqT+goKAAgNzcXNLT0+Nat4iIdC0KsCIiEhemafLee+8B/omH2mvAgAH069cPgM8//zzittOmTbMfr1y5st2vfbp4vV7uvvtuO7yOGzeO3/72t62eh9sRJk2aZD8OnFMcT7m5ufZ1bGO51mxLysrK7EsonXfeeXGrV0REuiYFWBERiYv8/Hw7+AQHyvYIhKqCggKqq6tb3O6KK66ww9HatWv5+9//HrHewsLCuLSvPbxeL7/61a945513gI4Nr5s3b241lAbOXQY488wzo6r/+PHjbN++PeI2J06csEdKBw0aFFX9kezevdt+/LWvfS1u9YqISNekc2BFRLq5o0eP2jPOBgSuLwqwadOmkNmCXS4X06dPj/p1AqOIgwYNiulSKOFcfvnlrF27FtM02b59O5dddlnY7ZKSkrjnnnv44Q9/SG1tLY8++ijvvPMOs2bNYtiwYSQnJ1NSUsKePXvYtGkTo0ePZtmyZXFpY6zuvfdeNm3aBPgD46233sqJEycilsnJySEnJyfq1/r73//Ovffey4QJE5gwYQLDhw+nd+/e1NfXU1hYyIYNG+zR84EDB0Z9+aPCwkJ+8pOfMGjQIKZMmcLYsWMZMGAAqamplJeXs3v3blavXm3PJr1gwYKo30NLtm3bBvjP773kkkviVq+IiHRNCrAiIt1cfn4+999/f4vrH3/88ZDnAwcObFeAjcfhwwETJ06kf//+FBUVsW7duhYDLMA555zDH/7wB375y19y/PhxduzYwY4dO8JuGzhntjNt3LjRfnzs2DFuvfXWVsssXryYJUuWxPR6Ho+HLVu2sGXLlha3OfPMM7n//vsjXh4okuPHj/Piiy+2uN7hcHDjjTdy7bXXxlR/U16vl7feegvwj/rHegkgERFJHAqwIiLSbvv377dHD9s7+3Awp9PJ/Pnz+dOf/sQHH3xAWVlZxGvLjho1imeeeYZ169bxz3/+k3379tnnW+bk5HD22Wdz8cUXc+WVV8atjYlg+fLlbN26lZ07d3Lw4EFKS0vtQ4p79+7NOeecw9SpU5k5c2ZMl+254IILeOyxx9i+fTu7d++msLCQU6dOUV1dTVpaGoMGDeKCCy5g7ty5cRudB+yfCYCFCxfGrV4REem6DMuyrM5uhIiIJLa//vWv/PWvfyUnJ4eXX345pmt5tqSqqoobbriBiooKbrnlFhYtWhS3uiWx3XnnnWzZsoUJEybwyCOPdHZzRETkNNAkTiIi0m6Bw4e//vWvxzW8AmRmZtqhddWqVdTU1MS1fklMu3fvZsuWLRiGwQ9+8IPObo6IiJwmCrAiItIu9fX1TJ06lcWLFzN//vwOeY0FCxYwePBgysvLeeGFFzrkNSSxPPHEEwDMmjWLsWPHdnJrRETkdNEhxCIikhA+//xztmzZQmZmJtdff31nN0c6UVVVFS+++CKWZTF//vyI50WLiEj3ogArIiIiIiIiCUGHEIuIiIiIiEhCUIAVERERERGRhKAAKyIiIiIiIglBAVZEREREREQSggKsiIiIiIiIJAQFWBEREREREUkICrAiIiIiIiKSEBRgRUREREREJCEowIqIiIiIiEhCUIAVERERERGRhKAAKyIiIiIiIglBAVZEREREREQSggKsiIiIiIiIJAQFWBEREREREUkICrAiIiIiIiKSEP4fnCphdvUMcbsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5jUVNuHf8mU7bu0pXcQUFCwoKIIKNgLKL5ix95RUV/ba0U/e8WCBRWwotgVUWkqKFWliAjSe13YXmZyvj9mk83MpOfMbGb2ua9rL1c2eXJmJpOcO89zzhEYYwwEQRAEQRAEQRAE4XHE+m4AQRAEQRAEQRAEQViBBJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICbgI7Pr16yEIAgRBwGWXXcYjZINk0KBByvtIEAShx2WXXaZcK9avX1/fzVGYMGGC0q4JEybUd3OIBDBs2DAIgoAzzzyzvptCpAjURyQIbdK53//oo49CEAR07twZlZWV3OMnLQM7YcIEPPTQQ3jooYeSdch654svvlBe8759++q7OUQtDz30kHLBsPJjVRCWL1+OUaNGoUePHsjNzUVBQQEOPvhg3H333diwYUNiXxRBEGmP+sGFnR9e993vv/8eX375JQDoxmSMYe7cuXj44YdxyimnoF27dsjMzER2djY6dOiAs88+G++++y6qqqpMjzd79mxbr9PsoUlxcTFmz56NZ599FhdccAG6desGURQdPQwqLy/Hb7/9hpdeegmXXXYZevXqBb/fr8SaPXu25Vh2KC8vx5tvvonTTz8dbdu2RWZmJjIzM9G6dWucdNJJePHFFy33NyorKzFu3DiccsopaNmyJTIyMlBYWIijjjoKjz32GPbs2ZOQ11AfjBo1Svls7r//ftv7l5eXo6CgAIIgwO/3Y+vWrbb2Lyoqwpdffon77rsPp5xyCg466CA0b94cgUAABQUF6NmzJy677DJMmzbNVtxvvvkG559/Pjp27IisrCwUFBTgoIMOwujRo7FixQpbsX7++WdceeWV6NmzJ/Lz8xEIBNCkSRMcccQRuPXWW7F06VLTGNXV1Vi8eDHeeOMNXHPNNTj88MMRDAaT8mBz165deOSRR3D44YejSZMmyM7ORpcuXXDFFVdg3rx5pvurZZLndcfLLF68WHkdHTp0AGPMdoyrrrpKifHkk08q/37zzTejcePGWLduHZ5++mmezY7AOLBu3ToGgAFgI0eO1Nxm4MCByjYNhZEjRyqved26dabbN8T3qD548MEHlffZyo+Vz+7pp59mgUBAN0ZeXh778MMPE//iiAaB3WtLsnjnnXeUdr3zzjv13Zy0Q/252/mZOHGi62NLksR69+7NALCzzjpLc5sVK1aw1q1bW2pTt27d2KJFiwyPOWvWLFuv0+ic27dvHxMEwfW1XqZJkyaGsWbNmmU5llUWLlzIOnXqZPo+NG/enH3//feGsRYtWsQ6duxoGmfatGmu222lj5hoFi9erLShffv2TJIkW/tPmjRJ2f+0006zffxx48ZZPo8HDBjAtm3bZhhvx44d7IQTTjCMEwgE2JNPPmnatvLycnbeeeeZtksURXbLLbewcDisG+uwww5z/B11w48//siaN2+ue1xBENgdd9xhGEPdB7fz89NPPzlutxf6/QcffLDShunTp9vat6ysjOXl5TEAzOfzsa1bt0b9fcyYMQyI9IF37drFs9nMDw507NjRkbUT0STqiS2hzyOPPIJevXoZbtO8eXPDv7/22mv473//CwAIBAK45JJLMHDgQNTU1OD777/HlClTUFJSgksuuQSNGjXCKaecwq39RMNkwoQJKf3Ul3DGzTffjGHDhplut3r1atx5550AgLy8PJx77rmuj/3pp59iyZIlAIB7771Xc5s9e/YomamcnBwMGTIExxxzDNq2bQsAWLp0KSZMmIAdO3Zg1apVGDx4MObOnYuePXuaHn/EiBE4//zzDbc57LDDdP/GGIvqpwiCgK5du2L37t0oKioyPX4s4XA46v/bt2+P6upqbN++3XYsK2zYsAFDhgzB/v37AQAtW7bEZZddhgMOOAB+vx9r167FpEmTsG7dOuzcuRNnnnkm5s+fjz59+sTF+uuvv3DCCSeguLgYANCzZ09ccskl6NSpE/bt24fvvvsOX375JXbu3Imzzz4b06dPxzHHHJOQ15UsDjvsMBxyyCFYunQpNm7ciJkzZ2Lw4MGW91dfby+//HJHbRBFEb1790bfvn3RvXt3tGzZEsFgELt378aCBQswefJklJeX4+eff8bxxx+PxYsXIzs7Oy5OaWkpTjrpJOX72KxZM1x55ZXo3bs3QqEQfvvtN0yYMAEVFRW46667EAgEMHr0aN12XXjhhfjiiy8AAD6fDyNGjMBRRx2F5s2bY+vWrZgxYwamTp0KSZLw4osvIhgM4qmnntKMFfu9kDP7iaxCW7x4MYYOHYry8nIAwIknnojhw4cjNzcXCxYswFtvvYWysjI888wzyMjIwKOPPqoZ59FHH8Xu3btNjzd37lw888wzAIAuXbrguOOO4/di6oHLL78ct912G4DIeW7ne/Hpp5+ipKQEAHDKKaegVatWUX+/5ZZb8OSTT6KkpATPPPMMnnjiCX4N56rDBnjhKUOy8WqWpKGjzsC6fUq+detWlp2dzQAwv9/Pfvzxx7ht1Fmpdu3asYqKClfHJAivQhlYb3DXXXcpn8NVV13FJebRRx/NALDu3bvrbvPLL7+wjh07stdee40VFxdrblNUVBTVHxgwYIBuPHUG9sEHH3TV/pKSEnb++eezp59+ms2cOZPt27ePMRbdN7Fzn7700kvZ//3f/7Fp06YpmQX1PZ93BvaKK65QYp988smsvLw8bpuamhp26aWXKtsNHTpUM9ZRRx2lbHPxxRezmpqauG2mTJnCRFFUPnOtbazihQwsY4w9//zzSjsuueQSy/tt2LBByd43bdqUVVVV2T72li1b2J49e0yP07VrV6WNTzzxhOZ2d955p7LNIYccwnbu3Bm3zd9//81atGjBALBgMMhWr16tGevnn39WYuXn57M//vhDc7vvvvuO+Xw+pa+jl00bPXo0e+CBB9iXX37JtmzZwhiL7nPxvi9IkhSV9X3ooYfitvnzzz9Zfn6+kkVeunSpq2OOGDFCOd6jjz7qKpYX3Gjnzp1KBWF2drbutVsLdRXAlClTNLe58MILGQDWuHFjVlpayqvZjAQ2gZDAehOeAnvrrbcqsf773//qbvef//xH2e7ll192dUyC8CoksPVPKBRirVq1Uj6HuXPnuo75xx9/KPHGjBmju11JSQmrrq42jbdjxw7lwR8AtnbtWs3teAqsHk4FVotECmybNm2U2H/99ZfudkVFRczv9zMArEmTJnF/nzdvnhKnTZs2hg9Ub7jhBmXb8ePHO267VwRW3VHPyclhJSUllvaTyyABsFGjRiW0jZ999plyrOOOOy7u79XV1UrJpiAIhjL28ccfRz2o0OJ///ufpT4MY4wNHz5c2farr76y/JoSKbBffPGFEvuoo47SLQ1/5ZVXlO3OPfdcx8fbu3cvy8jIUGR406ZNjmMx5h03GjZsmNKOt956y9I+Vh/sfPvtt0rsN998k1ubEz4LsTwo+qefflL+zc4kE5Ik4eOPP8aIESPQqVMnZGdnIy8vDz169MD111+PZcuWGbZNPWGPXKI7Y8YMXHDBBejUqRMyMzPjJm8IhUL4/vvvcfvtt6N///5o3rw5gsEg8vLy0K1bN1x22WX4+eefdY8pT7QxceJE5d86deoU95r13isrs5HNnz8f11xzDbp37468vDzk5OSgS5cuGDlyJGbOnGm6v3ycQYMGAYBSXnHEEUegcePGyMnJQc+ePXHPPfc4Kq9qCDDG8MknnwCIvJ+jRo3S3fbmm29Wfp88eXLC26bmt99+w/XXX4+DDjoIjRo1QmZmJtq3b48RI0bg22+/NdxXPYmK/B3duHEjbr/9dvTo0QM5OTlo1KgRjjnmGLz66qsIhUKW2lRaWooXXngBJ554Ilq3bo2MjAw0adIEffv2xQMPPIBdu3YZ7h/7XQmHw5gwYQJOPPFEtGnTBn6/Hx07dozbb8eOHbjzzjtx0EEHIScnB02aNMGRRx6JZ599Vik/6tixIwRBiNt/2rRpyjHVn6cRN998s7LPd999Z2kfK5jNQpyoz+2bb77BmWeeiZYtWyIzMxMdO3bERRddhN9++832a6iursZbb72Fs846S5nop1GjRjjkkENw++23606o888//yAnJweCIKCgoADr1q3TPUZRURHat28PQRDg8/kMr9vpwrRp07Bt2zYAQI8ePbiUfr777rvK7xdddJHudrm5uQgEAqbxmjdvjgEDBij/b3YfJ4CdO3cqvx9wwAG62zVq1AiFhYUAIvf1WNT9g//85z/IzMzUjXXppZcqv3/wwQe22uuEXbt2oW/fvsq167bbbtMcnub0nlZYWIgzzjgDQOS9+fjjjy21S92Xc1o+bJWDDjpI+V2rHH3RokVKyWbv3r1x8MEH68Y655xzkJubCyAyqWhFRUXcNlbPKwDo1q2b8rvWuVUfqPtT8kRdWlx22WXIz88HAHz77beO2//BBx8oE9CdeOKJyvCIRKN2mV69emHLli1x2+zevRv/93//h+OOO04pTy8sLMRxxx2Hp556CqWlpbrx1ee11eFJEydOVL6fF110EYLBoOZ2J510knJNUt9LXMPDgo2erlkdFK31dPXff/9lffr0MdxPFEV2//3367ZN/eRn5syZ7MYbb9SMo37yOmjQIEttHjlypOYTB6sTbRi9V3rU1NSwq6++2jT2eeedp1liJCNvN3DgQLZmzRp20EEH6cbq0KFDWmWQeWVgly1bpsTp1auX4bbhcDiqhMVOiYZTSktLo0pd9H5OP/103fbEZkC+++471qhRI91YJ554IqusrDRs19SpUw0nWwAiA/6//PJL3Rjq78qePXtY//79Nc9bNTNnzmSNGzfWPebBBx/MNm7cyDp06KC5fzgcViZQady4sWkpeEVFhXK89u3bG058YRez6g7en1soFDK8romiyJ588knLGVgrk9EEg0H22muvae7/xhtvKNv169ePhUIhze3OPfdcZbv//e9/hu9punDOOecor9nKBC5W6NKli3Ie80JdlfLRRx9pbkMZ2Dratm2rxLaage3Tp0/c39VZ1XHjxhkec+/evcq2Pp+PlZWVOWq7lQzsunXrWLdu3ZTtHn/88bhteNzTvvrqK2U7o/J1GXWJbe/eve28bEeos1VaGVh1VnXEiBGm8Q455BBle60Jue677z7l72YZWPX19M8//7T8mhKZgW3atKkS22ySoNNPP13Z9ttvv3V0PHW58uTJkx3FUGPW7w+Hw+y6665TtjnmmGPY3r1747Z75513lMy83k+LFi3Yr7/+qnmcmpoapeRcEAS2Zs0a07bL9wUAuqXnMmeffbbSV9i9e7dpbCskXGB/+eUX9vnnn7OePXsq23z++edxP3///XfUfv/++y9r1qyZsk///v3ZE088wT788EP23nvvsdGjR0d1RvVubuovzqmnnsoAsJYtW7K7776bvffee2zChAnshhtuiJo566ijjmK5ubls6NChbMyYMWzSpEns448/Zi+++CK75pprWE5OjhLzlltuiTvm4sWL2eeff86OP/54ZbvXX3897jUvXrw4aj8rAnv++ecr22RmZrJrr72WTZw4kb333nvs1ltvjTqBTz75ZN1yCnmbQw89lPXo0YMJgsCGDh3Kxo0bxyZPnswef/xx1r59e8MLaaqiPieOO+441rlzZ5aRkcHy8vJY165d2cUXX8y++uor01kKP/zwQ9Obshr15zt//nxOr0abyspKZcwaANalSxd27733snfffZd99NFH7NFHH43qLJxwwgmagqXuQA4dOpRlZ2ezrKwsdu2117IJEyawDz/8kN1+++1R3wmjB0pTpkxRxtEEAgE2fPhw9tJLL7GPP/6YjR8/nl100UVKiZcoimzGjBmacdTvpfy97t27N3viiSfYRx99xN544w120003Kdv/9ddfUSWLhx56KHv22WfZ5MmT2dixY9mxxx6ryJBcqhcrsIwx9thjjykx3nvvPcPP4N1331W2ffjhhw23tYsdgeXxuak7vcFgkF199dVs4sSJ7N1332WjRo1S3lt1GZJeR+XXX39VthcEgZ1yyinsueeeY5MnT2YTJkxg1157bdRnpRdHXc6m1fbx48crfz/66KNdjeFLFXbt2qV8f/x+v+lMplZYs2aN8j66Kb2LRf3Q9LffftPcRn0e9+rVix188MEsNzeXZWZmsrZt27IzzjiDjRs3zvBhrRmpIrDqh+9GY2DVbZgwYULcNtdff73ydzsCC4AtXLjQUdvNBHbp0qXK7NU+n0+zhJHXPc1uR1099viFF15w9PqtsnPnzqgZYZ9//vm4bSZPnqz83a7APv3003F/X7hwofJ3q2NgBw0aZOt1JUpgt23bpsTVul8btcPJw70lS5Yo+zdp0sT0Yb0VjPr9lZWVUfe50047TfMh0gsvvKBsk52dzS699FL22muvsU8++YSNGzeODR06VCn1zc7O1n0AdvvttytxHnjgAcN2qx/saD0oi+XJJ59Uttd7YGkXTy6jEw6HlaccGRkZ7OOPP9bcbvv27UqGVhRFtnz58rhtYpdM6d+/P9u/f7/h8adPn254Q9y9e7eS8RFFUXf8Du9ldD766CPl7y1atNA8CdevXx+V2dAbb6l+T4LBIPv66681X6c6lhvpKisr03xw4eQnVvztYnUZnaOOOoqtX79eN87DDz+sbGslO6CeXOPdd9919RrMiB2bq9V5r66ujmqTVmcmdhmL9u3bs1WrVsVtN3/+fOWpf+PGjTUv7Bs3blSy0O3bt9cduzN//nxWUFDAALC2bdtqjqmLrey49dZbDTOc6gztDTfcoLlt7HmhdUPcvn27IggDBw7UPR5jjA0YMEDpkLkdJxOLHYF1+7mpb1SNGjXSXPpk5cqVrGXLllHH1OqoFBcXs3bt2imxZs+erfn6Vq9erTxAy8nJ0XyyvnfvXiUr5fP52C+//KL87Z9//lHkPD8/39LTZCP+/vtvbtcv3ksJqFFPUnPmmWdyifnBBx8YdoCd8MsvvygxCwsLdTPoVpfRadWqFZs5c6ajtqSKwO7atStqgp+WLVuye+65h7399tts0qRJ7MEHH1Tu16IoskceeUQzjvq+NXr0aMNjqsfLAuYP7fQwS3LI1SGZmZnsiy++0IzB657GGGN33HGHpY66eomQQCDA7bu7Y8cO5Xrw6aefsvHjx7Prr78+qkrmpJNO0rz3/fTTT8o2hx56qOFxQqEQy83NVbbXm9BN/d76fD524YUXsrFjx7KPPvqIPffcc1GZy/79+7MdO3bYer2JElj1e2F2P2aMsbffflvZ/sorr7R9vFtuuUXZn9dYaL1+//79+6OSYJdcconmOb9w4cKoiosNGzZoHufrr79W+i5HHXWU5jbLly9XjtexY0fDJM7ll1+ubPviiy+avs7Zs2dbvu5YxZMC++mnnyrbjh071nDbf/75R3kqdPXVV8f9Xf3FycnJUWZFc4v6qbTejYK3wB566KHK36dOnaobZ/78+crTlg4dOmh2DtQ3JaNJOd58801L25mhPkfc/ridBOLBBx9kmZmZ7NRTT2Vjxoxh7777Lps8eTJ78cUX2TnnnKOcTwBY69at2ebNmzXjjB49WtnupZdeMj2u3e2dsnXrVhYMBhkAds455xhuW11dzTp37swAsAMOOCDu77EdyJ9//lk31kUXXWS43ahRo5QbpFm5yVtvvaXEev/99+P+rv6uHH744Ybyqn7C3KtXL93OcmxcvSe66tJHLSlkLHJdkrc5/fTTDV+rE+wKrJvPbejQocrftTI6Mt98803UMbU6Ks8++6zyd7NJQGbMmKFs+3//93+a28yePVuZKbVDhw6sqKiIVVdXs8MPP1zZl8fDIrtrRxv9JGJ9UBl1tuXzzz/nEvPee++1/JlZoaqqyjQrJDNr1iwmCAI78sgj2V133cXefvtt9sknn7A333yTXXPNNcqDLiCScf7hhx9stydVBJYxxvbs2cPOPffcqHtU7M95551neH2dPn26sm2bNm0Ms0ixQ66cTkCo10f88ssvWVZWFgPACgoKdNfT5HlPYyxSkSO3x6ijPnHiRGU7s+Pa4bvvvtP9/Nq0acPGjBmje58qKytT3gtBENiyZct0j/PJJ59ExTaqoHjhhRdYYWGhbrs6d+7MPvzwQ0uTtMWSKIH98ssvlbjDhw/nvr2a6urqqKpQsz6MVbT6/Tt27Ijq799222265+iZZ57JgMiwK72+qsz999+vxNSb3K9v377KNnoPBdUPdoLBoKWS4B07dihxBw8ebLq9FTwpsHIZWn5+vqUlR/r166fb4VR/cS699FLTWHaQMw5nnHGG5t95Cqz6PT744INNYw0ePFjZXitzKv/N5/Np1tPLqEX9/PPPNz2uHl4S2GXLlhlOZ798+fKoJ91DhgzR3E49FtnKzGrqjuBjjz3muP1mqMtJ9MY7qLnnnnt0z1O1CJk97VVLZ+zYRUmSWJMmTRgQebJsRmlpqfJUUevzVn9X3n77bcNY6jE+ZiVz6hkg9QRWLVZ33nmn5jb//e9/lW2MxvI6xY7AuvncKisrlc5SixYtDOWfMcYOPPBAw46KXDHTrVs309fIGFPKCo2erqu/VyNGjIhaYuKiiy6ydBwzUkFgFy1apByjefPm3Eqm1Q845syZ4zrelVdeGXVuGi1JsnXrVt2HRIxFsvCnnXaaEq9p06amFVaxpJLAMha5J1911VW651cwGGTnnXde1LAoNaFQKOr+NnLkSM3v9RdffBEnyk7vW1p9xLfeekuJ37JlS8MxlTzvaTJHHnmk6WelzoBpVak5RU9gBUFgF110kWk1gTr71adPH83M8D///BM1G7nZvbesrIyNHz/ecK6E3r17O3qIlSiBff/9921d63/44QdL74UWU6ZMsXxPtUNsv3/NmjVR30+tseAye/fuVR7gXnPNNabHUj9Y16safPXVV0372uoHO1YfBFRXVyv7dO3a1dI+ZvjhQX755RcAQKtWrTBt2jTT7X0+H4DIQt8VFRXIysrS3M7OYsPFxcV4//33MXXqVCxbtgy7d+/WnbVs8+bNluM6ZcGCBcrvJ510kun2J510EmbMmAEgMmPxkUceqbldt27d0LhxY904bdq0UX53Mxtxx44dNWcTrA969epl+PeePXti2rRp6NWrFyorKzF9+nTMnz8fRx11VJJa6A75+wNEzk15gXI91J/r33//rTl7LwAcffTRhnGMzpW//voLe/fuBQDk5eWZtgmIzGi6b98+/P3334bbmX2vFy1apPx+/PHHG24rz8ptxPHHH49u3bph1apVmDhxIh599NGomVdramqUWStbt26N008/3TRmInHzuS1ZsgTV1dUAgIEDByrXWj0GDx6s+3nt378fS5cuBQC0aNHC8jkAwPAcePjhhzFjxgzMnz8/akbKTp064dVXXzU9hhUeeugh3ZnyvcI777yj/H7JJZfA7+dze5e/twDQpEkTV7GefvppvPXWWwCAgoICTJ48WXfmSiDSBzCicePG+PTTT3HkkUdi2bJl2LNnD8aNG4e77rrLVTu9yuOPP4777rsPkiThqquuwnXXXafMWrtixQq89tprGD9+PD7++GPMmzcPP/74Y9TMsUCkvzRu3DiccsopCIfDmDhxIhYvXoxLLrkEnTp1wr59+zBt2jR8/vnnymzs8ozgoshl4Qo8+eSTuPvuuwEAXbp0wQ8//IDOnTvrbp+Ie9oVV1yh9KsmTJgQd+3fsGGDsnJFy5Ytccoppxge0w6nnHKK0h8KhULYuXMn5syZg+eeew7vv/8+3n//fdx00014/vnnNb/H//d//6fMNv7nn3/ioIMOwpVXXonevXsjFAph3rx5eOedd1BeXo7OnTtj7dq1APQ/v0WLFmHYsGHYsmUL+vTpgwceeADHHXccCgoKsG3bNnzzzTd46KGHsGTJEgwbNgwvv/wyrr/+em7vRyqgvr5eccUVCTnGkiVLcMopp2D79u3w+Xx44403DI81d+5cSJIEIPK9Nvte1NTUKL/r3VMvuOAC3HbbbaisrMSUKVPw8ssvK/dhGfUsxVZn5Q4EAsjLy0NJSQm3lU08J7ClpaXYs2cPgMhyCWeffbat/YuKinQFVt1RM2LWrFm48MILNacw16K4uNhy+5wiL4sAIO6GpIV6G/W+sTRr1swwTkZGhvJ7ZWWl6XHTBXlJotdffx1AZNr1WIFVf6mtvDfqKezz8vI4tTQe9fIj5513nq19jS4sbs4VdZs+/fRTfPrpp1zaBJh/r7du3ar8btRJAiId4kaNGmHfvn262wiCgGuuuQZ33HEHduzYga+//hrnnHOO8vevvvpKWZrg8ssvN5W+ROPmc1O/d127djU9ltE2mzZtUm62v/zyS1Sn1Ayjc8Dv9+ODDz5Anz59lOUl5H+Tl01Id6qqqqKWOeHZwZKXjADcXbfeeOMN3HnnnQCAnJwcTJ061XTZDitkZmbi3nvvxQUXXAAgcq1OR4H93//+h8ceewwAMHbs2Lhl2w4//HC8+eabOPjgg3HLLbdg48aNuOiii7Bw4cK4WEOGDMHkyZNx2WWXobS0FMuXL497z4LBIF566SVMmzZNuX4bPey2yhdffKE84Ovduze+//57tGjRwnCfRNzTzj//fIwePRoVFRWaHXX1EiGXXnppnEjOmTMHu3fv1j3uSSedhOzsbNP2+f1+tG7dGueddx7OPfdcXH755Zg0aRJefvllZGVl4amnnorbp1WrVvjxxx8xbNgw/Pvvv9i1axeeeOKJuO0uv/xyHHLIIRg9ejQA7c9v6dKlGDBgACoqKnDMMcdgxowZUUsrtW/fHjfccANOOeUUHHnkkdizZw9GjRqFY445Br179zZ9fYkkWX2wbdu2Kcm0jIwMw6XE3DBw4EDs378fGRkZmDx5MoYOHWq4vfp7MW7cOIwbN87ysfS+F40aNcLZZ5+NDz/8EGVlZZgyZUrUkp/qBzutWrWy9WAnPz8fJSUlmss5OYHP4zSO7N+/39X+crZACz2xVbN69Wqcfvrpirx2794dt956K1555RV8+OGH+Pzzz5UfeV2jcDjsqs1WkDtmQOTmb4b6i63eNxZeT1TTEfUT2ZUrV8b9vVGjRsrvRjcyGfnBTOy+vHHzHTL6/rg5VxLVJsD8ey1XTvj9fktrVFr5fl122WWK+L355ptRf5P/XxAEXHnllaaxEo2bz029bpyVzpjRe+fmHFA/OdaiWbNmUdnBzp074/DDD3d8vFTjiy++UDokRx11VNRakm5RP+Bw+rB20qRJuO666wBEvq9ff/01l/VpZcyu1anOli1b8PTTTwMADjzwQNx00026244aNQoHHngggEhmbd68eZrbDR8+HP/++y/uv/9+HHHEEWjUqBGCwSA6dOiAK664AosWLcI111wTdd9q2bKl69eiXnO6oqLCUv8pEfePgoICJUFSVlYW9VCVMYZJkyYp/6+VZbrvvvtw9tln6/6o11e1iiiKeOWVV1BQUAAg8qBCTzR69uyJZcuW4dVXX8XgwYNRWFiIQCCAFi1a4IwzzsA333yDt99+O2p/rc/v7rvvVoTiueee010XuHPnzrjjjjsARPq8dmQpUSSrDzZp0iTlPB02bBiXBzlayN+NUChkScgT1a9Sn+/qNZDl/1c/2LHzgF5urxUXs4LnMrBq8RowYAB++umnpB7/8ccfV77M//vf//DII4/oLox89dVXJ61d6qdFVhZgVnc8E5nts0p5eTl++OEHLrHat2+Pww47jEssI5o2bar8rpWRU2e51U/C9NiwYYPmvryRv0OCICAUCnniIYX6e/3AAw/g4YcfTtqxZakKhUKoqakxlVgr36+mTZvi3HPPxfvvv48ffvgBGzduRPv27bFhwwb8+OOPACJZjk6dOrl/AfWI+nMrLy833d7ovVPHuvTSS+NujG644YYbor5fq1atwn333Ycnn3ySS/yVK1dyE6P+/fubZsXt8vbbbyu/8y5vUz8YUJcTW+XDDz/E5ZdfDsYYMjIy8MUXX5iW8tvF7Fqd6vzwww/KQ5zBgwfr9kmAyHX/hBNOUEoEFyxYoDuMoEWLFhgzZgzGjBmjG2/FihXK73379nXS/CjOPfdc5Ofn46WXXsKqVatw/PHHY9asWWjdurXuPom6p11++eVK5cKECRMwcuRIAJEKkTVr1gCIDMHo0aMHl+NZITc3F/3798e3336LqqoqzJs3D6eeeqrmtpmZmbj++usNy3mNPr+qqipMnz4dQKSfqDfUTGbIkCG45557AEQPa6svktUHS0b5MBCpHjn99NNRVlamZHlHjBihu736nvr2229bLuc1Y/DgwWjXrh02bdqEn376CevXr1eGAarv2+rMrBk1NTWKl7gdiiLjOYEtKChAbm4uSktLkzK2NBb5y9y8eXOMGTNG90ZRUlLi6GbuFPVYoNWrV5tur97G6MaQLHbu3Gm7HFyPkSNHRtXgJwqzp3XqsbSLFy82jCVJEv744w8Akaes8hPyRNCmTRv8+eefYIxhy5YtaNeuXcKOZadNMsn+Xrdu3VoZe7l27Vp0795dd9uioiLLHeDrrrsO77//PiRJwttvv42HHnoIb7/9tlIme80117hue32jvnb8+++/ptsbbZOoc0AeMwZEyih3796NDRs24JlnnsHJJ5+ME044wfUxPvroI24PXWbNmmVprLVVNm/erNy3srOzcf7553OLDSBq/KDde94nn3yCSy65BJIkIRgMYsqUKZbmcLBLsqpb6gt1Kb+Vsng5gwdYeyCnx4oVK5TMVpcuXUzHJFtl7NixEAQBY8eOtSSxibqnnXDCCWjfvj02btwY1VFXC4ueFMhllIlAnXRw80BGkiTMmTMHQET+jz322Ki/7969W3kwkpeXZ/hgBOB3XvGiZcuWaNq0Kfbs2YONGzdi9+7dhg8H1fNhmM2FIvPrr7/in3/+ARBJngwZMsRdow0YOHAgpk6ditNOO02RWMaY7jU9UfdUURQxcuRIPProo4q0Pvjgg/j555+V8dT9+vWz9WBHfe/o0KEDn3ZyiWLlQKonZmaT+QwYMABApLNppdPEkx07dgCITABi9JRv+vTpSkdVDzuv2Qz1kzE5w2OEOttp9lSN0Ead/dd6WtezZ0+0bdsWQGSSIqMLyK+//qqU3x177LEJzYoPHDhQ+Z1X1tsthx56qNLxmjFjhul3hydHHHGE8vusWbMMt7XTKenfvz969uwJIPL0s6amRsmENW/e3HT8SirQu3dvZZKdn376ybTcT544TotmzZoppa3z5s3jMnfAunXrcMMNNwCIZNo//PBDvPfee/D5fJAkCZdeemmU3KQjEyZMUL5Pw4cP5z7uV93RkztyVvjiiy9w4YUXIhwOw+/3Y/LkyTjjjDO4tk3G7Fqd6qg/002bNplur840qbPTdlGLHO/hEC+++CJuueUWAJGKiUGDBkWJuppE3dPkjjpQVzYsj/sDIqWORhmwRKHu97qp1vjuu++U4XAnnngi2rdvH/V39Xm1e/du07JVXucVT04++WQAkc/P6NwoLy9X5l3IysqKOqeMUFe3jBw5MuEVbQMGDMB3332H3NxchMNhXHzxxfjoo490t5UfOvDu66mzq5MmTQJjzNHkTTLqSaMOOeQQt80DkESBVae6zZ7cyBcUIFJumEzkcV5r167Vlc5wOKxMpmCEnddsRseOHZWy2SVLlhhK7KJFizBz5kwAkScdXhgLJpcf8PhJRvZ1zZo1UaUSp512Wtw2giDgP//5D4DIxfOll17SjTd27Fjl90TfEM8//3xFOp588klPPCn1+XxKScyGDRswfvz4pB1bLZKvvPKKoYS9+OKLtmJfe+21ACKdyltvvVV5iDFy5EhL4229TkZGhnLu79ixI2qioFi+++470xmj5Wt7eXm55qQjdgiHw7jooosUER47diwOOOAA9O/fH/feey+AyNjBq666ytVxgMgsxLyuXzyzr0D0jJCJKG9TT143f/58S/tMnToVI0aMQCgUgs/nwwcffIBhw4ZxbxsQKYNU34+1rtWpjvohwrfffms4r0VxcTG+++475f/VD/DssHLlSuWe1qhRIy7fo1heeOEF3HrrrQAiVWN6EpvIe9pll12mSMCkSZPwySefKKWO55xzTlTWMRn8/vvvSkVXIBBwXLZdXl6O//73v8r/q3+XycvLU6S2uroan332mWFMtUg5Pa94o+5PjR07VrffPmHCBOVecfrpp1ua66K8vBwff/wxgEh/j1eJrhnHHXccpk6dGiWxH374Ydx2zZs3VyZRmjNnDleJ7dKlS1Qycdq0aa4e7KjvHdxW9OCxFo+VdWBvvvlmZRu9xaplwuFw1GK6t9xyi+FaceXl5eydd95hH374Ydzf1OtPWVmX7cQTT1S2f+655+L+Xl1dHbUGF6C/XuRzzz2nbDNx4kTTY5utlTt58mTl761atWJ///133DYbNmxgXbp0UbbTW3hc/rvR+opOtvU6X331Ffvkk08M17OMXQd20KBButtu2bKFZWdnMwDM7/ez6dOnx23zzjvvKLHatWtnaW1jt9x+++3KMY8//ni2bds23W3D4TD78ccf2SOPPBL3N/V6onrrhlnddtOmTcoacxkZGabfiR07drAxY8awJUuWxP3NzrrSjDHWv39/ZfsbbriBhcPhuG1i1/rU+16r2bdvn/L5q3+M1q7kgZ11YN1+br/88ovy98aNG2su4L5q1aq4NQe11vsrLS1lHTp0YKhd8/Cpp57S/Cxk9u3bx1588UX2448/xv1NvSj7ueeeG/W3mpoaZX1wAOz11183fA9SldmzZyuvsUuXLrqL3btFvqe0a9fOdNsff/yRZWZmMiCyzvgHH3zg6JirV69mTz/9NCsuLtbdJnYd2MaNG7OioiJbx/HCOrDyd0Jvv+rqata2bVtlm6FDh7Ly8vK47crLy9lZZ52lbNerVy/Nc2LHjh1sxYoVuu1ZvHgxa9eunRJnwoQJll+LFmZ9xFtvvVX5+wEHHMA2b94ctw2ve5oW6nNAfR3Tup87oaSkhN1zzz1s586dhtstXryYtW/f3rQ/zRgz7Edv376dnXDCCUqcyy67THfbu+66S9muWbNmmvdbxhh79913mSAIyrYLFiwwfC1qnK4Dq/5c9PaTJIkddthhynYPP/xw3DZLlixhBQUFDAATRZEtXbrU0vEnTJgQdc4lAqO+zC+//MJyc3MNr6WLFy9mgUBAuf599913hsdbv349u/3229mOHTtM26buu6q/FxdffLH1F1jL2Wefrbz/e/bssb2/FkkbAzt48GAlC3XllVdi9OjR6NChgzKDVdeuXZUlGERRxKeffop+/fphy5YtePHFF/Hxxx/jP//5D3r37o2CggKUlpZi48aNWLRoEWbMmIGysjI88sgjrts5atQoJbt52223Yfbs2Tj55JPRtGlTrF69GpMmTcLq1atx/PHHY/Xq1YZlo4MHD1Z+v/POO7Fr1y50795dmY69TZs2OPjggy237bzzzsPnn3+Ojz76CNu2bcNhhx2Gyy67DP369YPP58OiRYvw1ltvKU+ZTjrpJKW8joiwZs0ajB49GoWFhTjllFPQp08ftGzZEoFAADt27MDs2bPx5ZdfKrPBtW7d2nCymdatW+PZZ5/F9ddfj1AohFNPPRWXXnopBg4ciFAohO+++055auX3+/HGG2/ozvIHIGoMyrp163TXZDXj8ccfx59//okZM2Zg1qxZ6Ny5M4YPH45+/fqhsLAQ1dXV2L59u5LN3759OwYPHoz77rvP0fGs0LZtW3z00Uc466yzUFVVhZEjR+K5557DWWedhQMOOABZWVnYv38/Vq1ahXnz5mHu3LkIh8NcJnx5/fXX0bdvX5SXl+PVV1/Fb7/9hosvvhht27bFjh07MHnyZMydOxf9+vXDxo0bsWXLFkulQgUFBRgxYkRUqd2gQYO4LA/iFfr3748bbrgBr776KoqKinD00Udj5MiR6N+/P0RRxIIFC/DWW2+hrKwMw4YNM1yLLicnB1988QUGDhyI4uJi3HnnnXj99dcxfPhwHHTQQcjNzUVxcTHWrl2LBQsWYPbs2aiursa7774bFWfOnDlK1q1t27Z44403ov7u9/vx/vvvo0+fPiguLsbo0aMxcOBAw/HPqYj6vFNnkngzbNgwPPvss9i0aRPWrl2ruxzVn3/+iaFDhyqliMOHD0dWVpbp+oQ9evSIG09VWlqK//73v7j//vtx4oknom/fvujQoQNycnKwb98+LFy4EB999JEys6W8dJLRGNjPPvsMv//+e9S/rVu3Tvn92Wefjcu4Pfroo5qxZs6cqVQ6ycjzHADAW2+9pYxNlrnjjjscjdENBAIYO3Yshg8fDsYYvvzySxx44IG49NJLlfkU/v77b0yaNEkp8wwEAnj55Zc1z4mNGzeib9++OPLIIzF48GD06NEDWVlZ2L59O6ZPn45vv/1WqVS58847o6riEsHzzz8PQRDw/PPPK/2rWbNmRY3xS+Q97fLLL1fK0OVlBzt06MBl/DwQmUDw8ccfx9NPP40BAwbgqKOOQteuXZGfn4+qqips3LgRs2fPjhqa1qNHDzzzzDO6MU877TS0aNECp512Gg455BA0btwYRUVFmD9/Pj755BOlH3j88cfj5Zdf1o1z11134eOPP8a6deuwe/duHHnkkRgxYgQGDhyI/Px8ZR1YdXbvmmuu0c0M//HHH3HL5P3888/K75999lnc0MArr7zS8YSHgiDgjTfewIABA1BeXo4HH3wQc+fOxbnnnoucnBwsWLAA48ePV7L299xzj+V+d7Imb9Kjf//+mDZtGk455RSUlpbikksuAQBlyTAAOOywwzBu3DhcffXVKCoqwqmnnopjjz0Wp556Kjp16oRAIIC9e/di5cqVmDNnjjIOWK58MOI///kPRo0ahdLS0qjlOO1mokOhkDIWe8CAAdwmcUpaBjYUCkVlQWJ/tJ78b926lQ0ePFh3H/WPz+djb775ZlwMuxlYxhi75557DI917LHHsp07dypPTY0yNRdccIFunNj3ykpWqaamhl111VWm78e5556r+YRWRt6uoWVgn3/+eUvnEwB23HHHsfXr11uK+/TTTytPwbR+8vLyNCsEYlHv4zYbUFVVxW666Sbm8/ksvd5LL700LgbPTJ7Mb7/9xjp37mypTbm5uZpPS+1mYBljbObMmUoGWOunV69ebOPGjaxNmzYMADvkkEMsxZ0/f35UnPfff99ym5ySzAwsY5Hr9yWXXKL73omiyJ566qmoJ7ZGT9pXrlzJDj30UEvnQEZGRtRT5aKiIuXaK4qi4XX9vffeU+IceuihhpU8qUZxcTHLyclR3odNmzYl7Fh//vmn8j6OGTNGdzv152/nR+u8++OPPyzv3759e0v3d/X3xuqPHrEVG1Z+9K7pZhlYmffee4/l5+ebHqdZs2bs22+/1Y2zcOFC0xh5eXls7Nixpu+pFaz0ERlj7LbbblO269q1a1wmlsc9TYvS0lIl0yX/PPDAA25echRFRUW2zpPhw4ebZsjk777RNfm6664z7AfKrF27lh1xxBGW2nbTTTexmpoa3VhOrgF657yVDKzMjz/+yAoLC3WPIQgCu/322y1Xqfz7779KxrmgoMDS++gEK32ZOXPmsLy8PAZEXEerj/HVV1+xFi1aWHq/mzZtynbt2mWpfbEVpx07drRd6TN16lRl//Hjx9va14ikCSxjjFVUVLAnnniC9evXjzVu3DjqImTUyZo9eza79tprWc+ePVmjRo2Yz+dj+fn57KCDDmIjRoxg48aNY1u3btXc14nAMsbYd999x04//XTWrFkzFggEWKtWrdgJJ5zA3nzzTeXLa0VgQ6EQGzduHBs0aBBr1qwZ8/v9uu+VnU75b7/9xq688krWtWtXlpOTw7KyslinTp3YxRdfzGbMmGG6v3ychiawu3fvZh9//DEbPXo0O+6441iXLl1YQUEB8/v9rEmTJqx3797s2muvtXWuyCxbtozdeOONrFu3biwnJ4fl5eWxXr16sbvuusuSCJeVlSnvdTAY5FZmsXr1anb33Xezo446ihUWFjK/38+ys7NZp06d2GmnncYee+wx3ZKaRAgsY5EHMe+99x4777zzWKdOnVhubq7yGRxxxBHs6quvZpMnT2alpaWa+zsRWMYipVV33HEH6969O8vKymKNGjViRxxxBHvmmWdYWVkZkySJZWVlMcC4dFyNJElKeVKTJk1YZWWlrTY5IdkCK/P111+z008/nRUWFrKMjAzWvn17dsEFF7Bff/2VMcYsCyxjkfftyy+/ZCNHjmTdunVj+fn5zOfzsUaNGrHevXuzSy+9lE2YMIHt3bs3ar8RI0Yox7j77rsNj8EYYxdddJGy/e233266faowfvx45XWdfPLJCT/eMcccwwCwbt266W7DU2ArKyvZtGnT2IMPPshOPvlk1qNHD+Uemp+fz7p27crOP/989v7771t+MJHqAstYpPz3ySefZIMHD2YtW7ZkGRkZLCMjg7Vq1YqddNJJ7Pnnnzctoy4tLWUTJkxgI0eOZL169VL6OS1btmTHHnsse+KJJwxLdO1itY/IWHSpsJbEMubunqbHFVdcESU7a9eutbW/GStWrGAvvPACO//889nBBx+s9GUzMzNZy5Yt2cCBA9ldd92lW8IbyzfffMNuueUW1rdvX9a6dWsWDAZZkyZN2CGHHMJuv/12y3FkQqEQ++yzz9j555/PunbtynJzc5Xr8WGHHcZuvvlmSzHrS2AZY2znzp3s4YcfZocddhhr1KgRy8zMZJ07d2aXXXaZco+yyn333acc+9prr7W1rx2s9mXmzp1rKrHl5eXstddeY2eddRZr164dy8rKYsFgkBUWFrJ+/fqxUaNGsa+//trWg9yff/7Z9FptxoUXXsiASImzXp/OCQJjLqfHJQiCC99//70yIP/mm2+2PaEQ4Z5ly5YpM+RZ/QymT5+OE088EQBwyy234IUXXkhkEwmiXvj8889xzjnnAIjMqt6vX796bhFBEAThZYqLi9G6dWuUlZXhrrvucj15o5qkzUJMEIQx6gXFEzkWldBHPVbI6tjbcePGKb+nw9qvBKHFsGHD0KdPHwCR8YgEQRAEYcTYsWNRVlaGvLw83HHHHVxjk8AShEeQBfa2225DYWFhPbcm/fjll18M15995ZVXlMmA2rRpY2nNyj///FOZoGbIkCHKOqcEkW4IgqA8Pf/666+VpT4IgiAIIpbi4mI8//zzACLLOLlZ01gLKiEmCA+we/duNG/eHM2aNcOaNWuQl5dX301KO7p27YrKykqceuqpOPTQQ1FYWIiamhqsWbMGn3/+edQMol9//bWuwE6bNg2SJGHVqlV46qmnlNn55syZg2OPPTYpr4Ug6othw4bhyy+/xBlnnIGvv/66vptDEARBeJBHH30U999/Pzp16oQVK1YYrsDhBBJYgiAaBF27dsWaNWsMt8nKysKbb76Jiy66SHcbrWUprI6X/eGHH1BeXm7eWA2aNWuG/v37O9qXIAiCIAgiXSCBJQiiQTBv3jx8+umnmDdvHrZs2YI9e/agvLwcjRs3Rrdu3TBkyBBcf/31aNGihWEcWWBzc3PRrVs3XH/99bjiiissrRvbsWNHZZ1GuwwcOBCzZ892tC9BEARBEES64K/vBhAEQSSDo48+GkcffbTrOPTMjyAIgiAIov6gDCxBEARBEARBEASREtAsxARBEARBEARBEERKQAJLEARBEARBEARBpAQksARBEARBEARBEERKQJM4EQRBEGkFYwyVlZUoKytDRUUFysvL434qKipQXV2t/FRVVRn+fzgchiRJCIfDyo/8/7H/lRFFEYIgGP6IoohAIKD8+P1+w//PyMhAVlYWsrKykJmZiczMTN3fc3NzkZubi0AgUI+fBkEQBEHwhQSWIAiC8ByMMVRUVGD//v0oLi5GSUlJ1H+1fi8tLVXkVJKk+n4JniEjI0ORWfknLy8v7v8bNWoU9ZObm6u57jFBEARB1Cc0CzFBEASRFBhjKC0tRVFREfbu3Rv1X61/q6qqcnU8QRCQlZWFnJwcZGVlITs7W/nJysrCjHfnAJIAQRIABkAS6v5fqvt/SAIE+U7Jardltb9D9TsDBPn/VX+C2gEF1S1X/nexdkeBgcm/R/2XgYm1+/oA+BhOu/YEVFRUoLKyEpWVlXG/yz9u8Pl8KCgoUIRW/r1JkyZo2rQpmjVrpvy3oKDA0lrIBEEQBOEWEliCIAjCNYwxFBcXY9euXdi1axd27tyJnTt3Kv8v/9iVqmAwiPz8fOTl5SE/Px/5+fmYO2URhJAA1IgQQiIQEiP/HxaBkAAhLADhWvFEA8kgCvHyyMAAHwP8EpifAT4JzC8BPhb5r1/C2aNPQUlJCUpKSrBv3z7lp7y83NbhfT5fnNTKPy1atEDLli1RWFhI5cwEQRCEa0hgCYIgCFMYY9i/fz+2bt2Kbdu2Rf1s374dO3fuRHV1taVYOTk5aNy4MZo0aYLlM/8BanwQakQI1WJEStW/S5TVc4yG1FqFCQwISGABCfCHwZTfJZxy3UDs2bMHe/bswe7du7Fv3z5Y6UoIgoBmzZqhefPmaNmypSK28n9btmyJrKwsx20mCIIgGgYksARBEAQAIBwOY/v27di0aRM2bdoUJavbt2+3lD1t3LgxCgsLUVhYiN+m/AGhSoRQ7YsIaZUv8ruUoKyo+nbmhbGbaoFk9TQm14XEWkWR3WAYLBgGghIuePAs7NmzBzt37sSOHTuwY8cOSw84mjRpgrZt26JNmzbKf+Xfc3JyEv5aCIIgCO9DAksQBNGAYIxh37592LhxoyKqamGtqanR3VfOoLVq1QrLp6+GUClCqPJBqPRDqBKBah8ElkRxNLt91bfEWpHHRIptEuTVKgy1kpsRVn6G3jYE27dvVwS3tLTUMEajRo0UmW3bti06dOiAjh07ok2bNlSaTBAE0YAggSUIgkhDGGPYs2cP1q5di3Xr1mHdunVYv349Nm7caCgKwWBQEYS5H/1eK6e+2h8/EEb9ZROd3q7qS2SdCCSP99ZD4moFwecDADCfBJYZAssI4dInhmHLli3YsmULNm/ejKKiIt39fT4f2rRpg44dO6JDhw6K2LZv3x6ZmZnJehkEQRBEkiCBJQiCSHH27duHdevWKbK6fv16rF27VldUBUFAy5Yt0a5dOyz+8q+IpFb6IVb4I1lUjYmPmMTqR1x53aLqQ2J5iaSd9z3F5FWNLLJaMJ8ElhECywzh8qeHY+PGjdiwYQPWr1+vW9oun+edOnVCly5d0KVLF3Tt2hVt2rSBz+BYBEEQhLchgSUIgkgRGGPYunUrVq9ejdWrV2PVqlVYvXo19u7dq7m9nJna/MdOCBUBiOUBCBURWbVa6lsv4pqo21KyJTYRMmn0WaSwvKoxEtlYGBgQDEPKCoFl1uC0mwdg/fr12LBhA/bv36+5T2ZmJjp16oSuXbuic+fO6Nq1K7p06YLc3FxeL4EgCIJIICSwBEEQHiQUCmHDhg2KpK5evRr//vsvysrKNLdv3bo1ti/fC6HCXyuqtbLqcExq0sU1GbeidBDYWNSfUZoIrIwdkdWC+cNgWTWQsmtw6qjj8O+//2Lt2rW66wu3bNkS3bp1Q48ePdCjRw90794deXl5rtpAEARB8IcEliAIop5hjGHbtm1YsWIFVqxYgb///hurV6/WnLU1EAigc+fO+PfnTRDKAxDLAhDKA9yWm0mauNbHrSeZAptmMhmLIAqRcyUZx+JY7svAIuNss2tw/pjTsGbNGvz777/YuXOn5vZt2rSJEtpu3bohOzubW3sIgiAI+5DAEgRBJJni4mKsXLkySli1yh2zs7PRtWtX/PX9mlpZDbrKqqrRlI9EiGt932KSJa0awiqI0cdOlvAlm2S9Tp4iGwvzhSHl1OCqsedi5cqV+Oeff7B169b4NggCOnTogAMPPBC9evVCr1690KFDB4hiej+wIAiC8BIksARBEAmEMYaNGzdi2bJlWLJkCf766y9s3rw5bju/34+uXbti9U+bIZZlQCgNQqjwQeBwiTYVCh7i6qVbSTKk1UKGNVbsYkk3oU3W602kyCqIQq3UVmPk00Pxzz//YOXKldi1a1fcprm5uejZs6citAceeCBlaQmCIBIICSxBEARHQqEQVq1ahWXLlmHp0qVYunSpZna1TZs22La0CGJpRiSzWh6Mzqw6LOW1LQlO5NWLtw2PSGv05tbblE4ya+d1A85ee7IkNhYWCEPKrsL5j5yK5cuX4++//0ZlZWX0bqKILl26KFLbp08fNG/ePPHtJQiCaCCQwBIEQbigqqoKy5cvx5IlS7Bs2TL89ddfcR3aYDCIAw88EMu/WxcR1tIghLBOB9yGuLqSHqvi6uVbhAelNXpXFxNopQFOXz9g/T2oL5GVYWBg2TW4/o0R+Ouvv7B8+XJs3749brs2bdrg0EMPRZ8+fXDooYeisLAwkS0mCIJIa0hgCYIgbBAKhfDPP/9g8eLF+P3337F8+fK4yZZyc3NRvjkEsSQTYmkGhLKgtXGrBvLKTWqMxDVVbgeJFldOEzC5ETiZdJBZHu8DYPxeJFxk7WTTAyFIudU4+94TsHTpUqxatQqSFP29I6ElCIJwDgksQRCEAZIkYd26dYqw/vnnnygvL4/apmnTpihaVQGxJCMirBUBCLDZaY+R14SIi1peU+3SnyLSGh2Sb5tTXWZ5vx9A9HviJYlVw3wSpNwqDH9gMP78809doe3bty/69u2LQw89lNakJQiCMIAEliAIIoY9e/ZgwYIFmD9/Pn7//Xfs27cv6u95eXko21CbYS3OhFDpty+saiQGFg67a7Rh/ATGTjQpKK51oRPTdhJZ0wMkLjaPrLqJ0Pp8Phx00EHo27cvjjzySHTv3h2+ZJRKEwRBpAgksARBNHhCoRD++usvzJ8/H/Pnz8fq1auj/p6ZmYnq7agT1nIHGVY9SF61SaC4ypm6RIhglJzJIpXgdXV5vw75NSRalBMqsol8MOGri82jC8V8EqS8Spx51wAsXLgQmzZtivp7bm4ujjjiCCVD27JlS9fHJAiCSGVIYAmCaJDs2rVLybIuWrQIpaWlUX/v3r071szeAXF/7ZI2HNZejSOR8kriGh1WI4PFbVkXPRHTkiiPy6zWayGR1Qjr047LRWizJIyacD4WLlyIxYsXx12bOnXqhGOOOQbHHHMMDjroIMrOEgTR4CCBJQiiQcAYw+rVqzFnzhzMnTs3Lsuan5+PsvVhiMVZ8BVnQwj5AEni0iGNg7Ku8SRRXNW4kTNT8TKSJ4+KrNFrSlmRTVI2Vgun1w+lSgAMLLsKFz11KhYuXIgVK1YgrLp2FBQU4Oijj8YxxxyDI488Ejk5OY6ORxAEkUqQwBIEkbaEQiEsWbIEc+bMwZw5c7Bjxw7lb4IgoHv37vh31nb49mdBKM+ILgtORXklca0LazErZVfKbEmWVXFKoMzaeX1WX1siRTadsrFa2LmmaFYN+ML475SR+O233zBv3ryo7Kzf70fv3r1xzDHH4Nhjj0Xr1q0tH4sgCCKVIIElCCKtKC8vx4IFCzBnzhz8+uuvUR28jIwM1Ozwwbcvuy7LqgXJa+KpZ3GVsbzeqBOxsitM9Syydl9jSoqsByRWxso1xuh8ZmCQcitx9v0D8euvv8aNnT3ggAMwcOBADBw4EB06dLDdPoIgCK9CAksQRMpTVlaGuXPnYtasWVi4cGHUuqwFBQUoXROGb382xOIsCMxCRzMRAkvyGsEj4ipjuLaoW4lyI0sJklm91+vmtaacyHpIYtVoXXPsnNdSRg2uenUofv31VyxdujSq1Lhjx44YNGgQBg4ciM6dO0NI9OzeBEEQCYQEliCIlKS8vBy//fYbZs6cifnz50dJa5s2bbDj9xKI+3IglmXYmzGY5DUxeExc1cQKGDdp4iFKSRJZHq85USLbkCRWRn0NcnKOM18YN79/Pn766ScsXrwYoVBI+Vvbtm2VzGz37t1JZgmCSDlIYAmCSBkqKiowb948zJw5E7/99luUtLZr1w7bFpTAV5QDodLhMjepJK8krtxiyeLFXZR4SlICRTYRgpjwJYr4BeUfkpPEyjDGXJ3vzBfG7R9fgp9++gkLFiyIe9g3ZMgQDBkyhMqMCYJIGUhgCYLwNKFQCAsXLsQPP/yAuXPnorKyUvlbmzZtsGNRKXz7ciFUuF+blbtocpZXQRQiYtCA5ZWnuEYCJmCt1gTOeqvAu70JEOSUkVj5nOLYXiHgr43J6X0VxUg7XV5PmCjhrs8vw88//4zffvst6nrarVs3DBkyBIMHD0ZhYaHbFhMEQSQMEliCIDwHYwyrVq3C999/jxkzZqCoqEj5W+vWrbHz93L4irIhVARdS2vUcXkKLCd5VXfYU0ZeU0lcZXgIXDLENRa37U7E+xBDSohs7PnFoc2KxCoxXby3ssCq4SCz//30UkyfPh0LFixQxswKgoA+ffrgxBNPxMCBA5GXl+fqOARBELwhgSUIwjPs2LEDP/74I3744QesX79e+fdGjRqhZDWDvygPQlkAQgKuWl6RV72OeUrIayqKqxqn8lYf4hoL77angMgmXGLVOF1XN1ZilXgO3l8tiZVxcf0S/H4wXxjXvzUM06dPx9KlS5W/BQIB9OvXD6effjr69u0Lv1/n9RAEQSQREliCIOqVyspKzJo1C99//z3++OMPZQxqMBhEeEcQvqI8iCXZdZlWSQI4X7bqW16NOuIpIa4Ad3lNqrjK2JU2L4hrLHZeQyLeE9NwHpdYwFhkAdsyqyuxSjwb77GRxMrYvf7ESKkUqMGlz5+EH3/8EevWrVP+vWnTpjj55JNx2mmnoX379raOQRAEwRMSWIIg6oVVq1bhm2++wY8//oiysjLl38XSTPiK8uHblwNBii3rSx95tdLxTgl5TQdxlbEia16UVi14v5aGJrJWz0Or6wibSawSz8L7bEViZaxej3Qyq1JmFc6672h8//332L9/v/LvBx98ME477TQcf/zxyM7OttYWgiAITpDAEgSRNMrKyjB9+nR88803+Oeff5R/b9WqFXb9XhXJttYE9ANwFthky6udTjbJK4+ANmXTSNJSRVzVmEknz/fHAWkjsTImr8eyxCrxDN5vOxIrY3B90hNYGSYw3PvFSEydOhXz58+HVNu2rKwsDBo0CGeccQZ69epFS/IQBJEUSGAJgkgojDH8/fff+OqrrzBr1ixUVFQAAPx+P9juTPj25EMszTKfjMnL2VcDeXXSqfa8vKabuMpoCVoqimssvF+Xh0W23iVWRuc12ZZYJV7Me+5EYNVoXK/MJFZpij+EkS+ehKlTp2LTpk3Kv3fp0gXDhg3DiSeeSFlZgiASCgksQRAJobKyEj/++CM+++wzrFmzRvn39u3bY+u8Mvj35kMI2+iApVD21U0nmuTVTTAOsinLWTqIayxq8XT7+khiraN6bY4FNipe7XvvVmKBKJG1KrAyDAzP/DIa3377LWbMmIGqqioAQHZ2Nk4++WQMGzYMnTp1ctc+giAIDUhgCYLgyrZt2/DFF1/gm2++QUlJCYDaCZm2Z8C3Nx9iWab9pW9SQF55dJobkrx6TlxlmJSe8qqG52vkKLKeLinmdb5KjI/EquHVtnDYtsTKMF8YV447DV988QU2b96s/HufPn0wdOhQDBgwAIGAwfAQgiAIG5DAEgThGsYYfv/9d3z66af49ddflfFRrVq1wq7F1fazrbUIghCZlZiXcNYKGAuFOITiF0uGZyyueFVcAb6yKQpc1v9UYgF84vGMJcfjvTarR0XWkxILvt8Dwe8Hz66c4Pc7vuYyMPzf9BvwxRdfYO7cucrask2aNMHQoUMxbNgwNG7cmFtbCYJomJDAEgThmIqKCvzwww/49NNPo9ZtFUuz4d9VALE42362FbVyWNvxZGHJncAKQqTUDgAkyZUkChxjxeI6liyZibqkc5BYz2Zd1ZLjVp70hMlN3NiYPNvIU2RJYm3BW2Jl3HbrorKwLq69UqAG5z85CF999RX27t0LIFKNc9JJJ+G8885Dx44dXbWTIIiGCwksQRC2KSoqwmeffYbPP/8cxcXFACKzUdZszoB/b2OIVYGIeNpALa0yjuVVLZoyDoVT4BhLD8exYqUy0ZdzhxKbEuIq41ScrEqSk/i8pZjn69aCk8iSxNqMpVH+67SLp1lK7ORaHPCDgeHOj0Zg8uTJWLlypfKno446Cueddx6OOOIImr2YIAhbkMASBGGZzZs34+OPP8bUqVNRXV0NAGjTpg12LqqBf19BZN1WJtmSVy1xlbEtsFqyKWNDOjWl1UEcK9iOpdfRS8al3EEn05PyaiQzdqXJqRjZOY7ZMXjF8qDERkLxaVe6S6zR+FW7XT3DsbB2RbZ2zC8DwzMzR2Hy5Mn45ZdflDZ17twZI0aMwODBgxEMBu3FJgiiQUICSxCEKX///Tc+/PBD/Pzzz8r4VrE8E/7dTeAryYsuE7YosEbiCtiQVyPZlLEonYbiaiOOVSzHMhPHZF7GbUgsN3lNdNZVjVVZ4iVDVo5n5Vg8281LZEliLZMMiZWx2u0zjWVVZDUmrZIC1Tj9rj6YOnWqsrRakyZNMGLECAwdOpSW4SEIwhASWIIgNGGMYcGCBfjggw/wxx9/KP8uluQgsLspxHKNtVtN5NVMWqNCmQmsFXEFTKXTVFptxLKDaRwrolgfl28L7Uq5rGssZrLEe5kWo+PZPRavtnswG+vJkmJe4pngUmItzLp/tmYkNpNZnZmXmRjGZS8MxpQpU7Br1y4AQF5eHoYPH45zzz0X+fn51ttAEESDgQSWIIgoGGP49ddfMXHiRGW8ks/nA3bnILCnKcSqDIOdtQXWjrgCiCxNoyV4dmRTiaUtnbbE1SCOE3Tj2CnRrc9Lt0E7UzLrGoueKPEWVyvHdXLMZAqxVUhiTUlmFjYWva6g7Vh6ImuydBADwy0Th+H999/Hpk2bAETmVRg6dCjOO+88NGvWzF47CIJIa0hgCYIAAEiShLlz52LChAlYvXo1ACAzMxOhzVnw72kCMWRhDb8YgbUtrnKY2OyrE3EF4qTTtrTqxHFDXBwnk5fU92Vbp82ek1de41MTLa5Gx3dzbF6vgyTWnDSQWCBeZJ3GiRNZi2vfMjDc/fEFeO+995T7UDAYxGmnnYZLLrkEhYWFztpDEERaQQJLEA0cSZLw888/Y+LEiVizZg2A2hmFN2YhsKcJhLDFDoxKXp2Ka6RBquyrU+EEoqTTsbjGxHFLVByns2565ZKtan/aiKuMLEjJFletdvBoA6/Xk6YiSxIbj7pr6CZOlMhalFggIrIPfXU53n33XSxfvhxARGTPPPNMXHzxxWjatKnzNhEEkfKQwBJEA4Uxht9++w1vvvmmIq7Z2dmo3pCFwJ7G1sVVCShx6XCzsARIknPhlJEkPrLHSWBZKOR+LVUvXa5rX0vaySvATxy9BG8ZdgtJrC5eEFgZxhiXOAiHbQmscnwwPPHD9XjrrbewdOlSAEBGRgaGDRuGCy+8EI0bN3bfNoIgUg4SWIJogPzxxx9444038NdffwEAcnJyULUuE4G9TSCEHXSe5M6fi0XvAQCC6FoW5fUEuWVNa5cLcowg1manXb43gPcEVhD5dPy9JK8eRBAEx+t5JiJOOkqslwQWqJVPHp95MMDn8woGAJtre2vGcHhdZmB4bNq1GD9+vHLfyszMxDnnnIMLL7yQJnsiiAYGCSxBNCD+/vtvvPnmm1i0aBGAyJPs8NY8BHY1ti+uogCItftIYXfyKnf69CZvsoAgCHVxwmHnAitnSRlzLq+CGCX16SqvgMuOP8+JmmTSUGKVhzIuzgFBlf3nEYcxxkeMPCCxXJfWAfhKrIzDz0wIquYucPN5qeO4EVl1HAfXaAaGMd9cibfeekuZZDA3NxcXXXQRzj33XGRkGEwySBBE2kACSxANgE2bNuH111/Hzz//DADw+/3A7nwEdhdCqLLZeVOLq4xTgVV39BzKa5S4As7lVV3e61Re1eIqtyWN5VX5JycCkAh5BdJaYGWc3LZ5xIiNkw4Sy11eZRJVBuzksw/GTMDn9DOLjeNEZGNjAM6ysgE/HphyUdQQmMLCQlx55ZU4+eSTIzPnEwSRtpDAEkQas3//fkyYMAFffPEFwuEwBEGAuL8AgT0tIIaCkY6Mnc6DlrwC9gVWq3NhQ2DjpFXGibxqjUu1I7Cx0qpuCw95rW1PvaMhrsqf7EpAouQVSDuBjRVPGbu3bh5xtGJwk1iAi8jakdiEyasMj/GweuNP7X7+WuII2Pvs9GLYEVm9GDav20IgEoeBYfQ7Z2H8+PHYsWMHAKBTp0649tpr0a9fP93zniCI1IYEliDSkOrqanz22WeYNGkSSktLAQBiWR6Cu1tCrM6s29CqwOqJK2BPXvU6dBblVVdcZawKrFGnxqq86omr3I4GIq/KJlZlIJHyCjQYgZWxegs3iuM2RqpKbMIFFkisxMpY+Px0BVbG6udnFMeqyBrFsPoQMxAdgwkSLnt2AN59912UlJQAAA499FCMGjUKXbt2tdYugiBSBhJYgkgjGGP46aef8Nprr2Hr1q0AAKEqE8FdreCryI3fwUxgjcRViWFBYM06cSYCayqugDV5NXsabyavRtIa25Z0KR22IK+ABRlItLiqSSOJtZJBMruNW81CuY3jpZJiM4lNirwCiSsl1sLo8xMECFZmATb7/MxEGDAXWSsxTK7lsQIrw8QQht3XB1OmTEF1dTVEUcQZZ5yBq666Co0aNTI/LkEQKQEJLEGkCWvXrsULL7yAP//8EwDQtGlTlKzIhK+4MQRodNaM5NWKuCpxDATWaudNR2AtiauMkcBaLSPTE1ir4iq3o4HJq7K53nuUTHkFGpzAyujdzpMZIxUkNmnyKpOMLKwavc/QijjK6H2GdmLoiaydGEYPNnUkFgAm/HE/XnvtNcyYMQNAZKKnyy67DGeffTYCBvsRBJEakMASRIpTWlqKt99+G59//jnC4XDtzMIFCBQ1g8AMOk5aAmtHXAF9ebXTYdOQV1viCujLq53xT1ryakdc5XY0UHkFdMQg2fIKNFiBBbQFNNkxvC6xSRdYIPkSC2heR2xJLKD9OdqNoSWydmNoPeC0IKJPfHc1xo4di9WrVwMA2rVrh1GjRuHoo4+2d3yCIDwFCSxBpCiSJOGHH37Aa6+9hr179wIAfKX5COxqFZmgyTSASmDtiqsSI0ZgnXTSVAJrW1xlYgXW7sQdsfJqV1zlNjRgeVV2Vb9v9SGvQIMWWBn1rd1JjNiugSMJ9qDE1ou8ytSHxAJR1xTbAiuj/iydxlCLrNMYquu8FYEFIhM93fTGqXjzzTdRVFQEABgwYABuvvlmNG/e3Fk7CIKoV0hgCSIFWbNmDZ599lksX74cACBUBxHc1Rq+8jzrQSQWEVAn4qrECEfiOO0U1sqrY3EFouXV6YyTjIHVhNyJDw+B9cLl2IW8AipBqC95BUhga5Fv725juJJoj0lsgxRYGcasj4XVQ/48nQooEBFZN/sDQChkWWBlmBDGmff2wpQpUxAOh5GVlYUrrrgCw4cPjywtRxBEykACSxApRFVVFSZMmICPPvpIuQGHNhXAX9QUAhwIg5vOJZPcCxePzq1bcWTMvXhKDCxU4y5GbVvqFR7yWp/iKpMmApsuS4BwEVlOa8XWK04qO7TCuJQtVwIrw0P4XAq90+/Hy7+MxnPPPYdly5YBALp27YrbbrsNvXr1ctUegiCSBwksQaQIixcvxjPPPIMtW7YAkMuFW0MM2XsKLd/0mZNF6GXkTpiTBegjjYj8100bAIBJkcypU0QRkCT7a8eqcSOvatmTOC2745R0yLzKeEBgle+Zi1tsuggskEYSK5/fTtvCQWLdCizASWIDQVefiZCR4e7aC0AIBoEa+9dfuaz4tddeQ3FxMQDgzDPPxPXXX4/cXI0Z+wmC8BQksAThcfbv349x48Zh6tSpAAAhFEBwT1v4iu3dZKPKdMNhZwIrCtEdc7udj5g2OBZYuQMYDjsTWLG2E1pf8horeekir5H/4dAgh3hIXGOxe6tNJ3mVSTuJBZy1xwMSy01gZRy8D0JGRt3uDq/DQlDVBicimyVg0NVtlPtrYWEh7rjjDvTr189RewiCSA4ksAThYWbPno3nnnsO+/btgyAI8BU3Q7CoDYSwYOuGHzfG1K7AqsQVcCCvWmNcnQisutPnRF5FdcbTubyqs9i2BFZL7tJJXuv+0UWDHOJheZWxc7tNR4EF0lRiAXttSpdS4oDGZIE2Pxu1xAL2RTZKYAH7EpsR2f/xzy/Fk08+qVQ4nXzyyRg1ahTy8/PtxSMIIimQwBKEBykuLsYLL7yA6dOnAwCE6kxk7O0AX1WuLfHSnRzJqsDGiKuMLYHlIa9anT07AitqiaM9gY19H2zJq57QpaO8Rv7gOKYj6lleeSxT4zZmKpG2EgtYb1c6ZmFlbHw2sQKrhLB6j4sVWBk7IlsrsUwI48zbu+GTTz6BJElo0qQJRo8ejYEDB1qPRRBEUiCBJQiP8euvv+Kpp57C3r17IYoifEXNEdjXqm6SJgviZTqrrxWB1ZFXwKLAGrXBqsDqdfCsyquWuAL2HwLEYFlezUSuPgU2UfIa+aPjuLZJMXmVMbv1prPAAmkisUbnuZW2pYPEagmsjIX3QE9gAWsSqyuwMlZENiM6xjPfXIknnngCGzZsAAAMHjwYt912G/LybMzyTxBEQiGBJQiPUFpaipdffrlurGtNJjJ2d4SvOid6QxP5ci2vBuIKWJBXK0vimAmsWafOTGD1xFXG6kMAHQwF1qq8pau81m3kOL4lUqBk2Ayj22+6CyzQACRWRq+N6S6wMiafkZHEAuYi61piM+L3Z5Aw/N6e+OCDDxAOh1FYWIh7770Xhx9+uHEsgiCSAgksQXiAZcuWYcyYMdixY0dkrOv+QgT3tYHArJe+Wl5LVU9gTcRVRldgbRxfV16tdOaM5NVMXAFrDwAM0JVXO8KW7vIa2dDxMUxJ0ayrHlq34YYgsEADklhAu50NRWIB3c/JTGCV3XWu26YCK6MnshoCK/Pst1fh0UcfxebNmwEA5513Hq6++mpkWGwzQRCJgQSWIOqRcDiMd999FxMmTIAkSRBqgsjY0xG+KoNSJQ0BsyyvkYPGC6xFeQV0BNbm8TUF1monTktgrYirjNEDAAvECaxdUWsI8hrZ2PFxDEkzeZWJvRU3FIEFGpjEAtFtbUgCC2h+TlYFFtCWWMsCC2hLrIHAApGxsUNuaIevvvoKANCpUyc88MAD6NKli/XjEgTBFRJYgqgnduzYgUcffRRLliwBAPhKmyBjb3sIzEQEVQJmS1xl1AJrQ1xlogTW7vG15NVO5y0B8mrn9UfJq1NBqy+BTaa81u3k+HiapKm8yqhvxw1JYIE0kFgn57rc3oYmsUDUZ2VHYJXdVddxWwIroxZZE4GVue+94XjyySexb98+BAIB3HjjjTj77LMb3HeVILwACSxB1AM//fQTnnrqKZSUlCArKwvhTS0QKGtqbedaCXMkr0CdwLqRVxfHhkqeneyvCKwdcZWJlX8bKPLqRspSNPvqSF4jOzrbT4t6lNdkd1AZYw2yU+xaYlMpC6uGSa4lNuUEVqb2M3MjsY4EFqiTWIsCCwAf/H4/nnzySfz6668AgEGDBuHOO+9Ebq69ddkJgnAHCSxBJJGamhq8+uqr+PTTTwEAYlU2MnZ3ghjKtB6EsciPE8JhV51jxlhEQp3IKxDpnDqVOLtr18Yd27m8ApHXbnvd2ajjp6a8Ah4Q2AYkrw2dBiuxQGpnYZ0KLAAwyZHAKruHQs4lFrD9vjMwXPFkP4wbNw7hcBitW7fGww8/jO7duztvA0EQtiCBJYgksWvXLjz44INYvnw5ACCwvwUC+1rXLY9jBTfyKnfEbS4UH7s/kxx2EN3Ia+3+dhe5j95flbm2iSzuzGnHmknOPze31Je8RnZ2vq9MmpcNE/GQxDo8rM9Xd513sn99ZWEBCBlBV9dIlpUBocrG2q+xOHjfn/32Kjz00EPYvn07AoEAbrrpJgwbNoyuGQSRBEhgCSIJ/P7773j44YdRVFQESD5k7O4If0Uj6wF8YqRkNhwGQg4kUBAiMcKSfYGVy4XDYcfyKghCJHtazwKLsL3jK5dHiYHZ3Dc6UD0JrLoj5aBT3dDlFXCerXezf0NH/b1zHiSFJRZwdO4LcmWMw3OuPgUWqJVYwNG1kmVFMrhOJbZu/2p7+wkhHHZ+LubMmQMAGDJkCO68805kZtqoqiIIwjZJXG2eIBoejDF88MEHuO2221BUVASxJhtZ23pYl1efCAT8EXmVJPvyKgiA3+deXh0iCPbH2SYEN/KaigiCq0wMQPIqY/c8iN0+pc+jeiDq/XJ7DiZ6LWIj3Aq0A3lXHrK5qdTxAg6uXUJFFQCAZQTAMgL2968VV5YRBLMxJlZgfvz+YQVuuukm+Hw+TJ8+HTfeeCO2b99uuw0EQViHMrAEkSAqKyvx+OOPY9asWQAAf3kzBHe3017bNRY546rGTvZVzrhG7W9DYLXE1WYGNlZcXWVgk5x9jbssplIGVq/zZ6MzT/Iaja2Zqhvwmq480OySpPLsxEBSS4qF2Ou2zXOv3sbBQpWBVWPjuilnUaNi2sjIau9vPSP72GeX4IEHHsD+/ftRUFCAMWPG4NBDD7W8P0EQ1iGBJYgEsGvXLvzvf//DypUr4ff7Ie5uC//+JhBg0pnQElcgImBWJhDSElfAurzqZVxtyKtWZz1Vyod1L4epIrBGnVWLnWiSV22sSKjR7ZQk1hpG30F3gVNYYgHL34s4gVX+YHF/r5QRx2Lx+qkloYBFkRUF3eyrVZGdMO8u3HvvvVi9ejV8Ph9uvPFGDB8+nL7/BMEZEliC4MzKlStxzz33YM+ePYDkR8b+7vBX5BoLqJ64yphlX/XEVdnfgsAalQtbFFi9m3QqCKzhpTAVBNasg2ShA03yaoxRJ9TKrZQ6scaYvockseaHMBryYeH886zAApauoXoCq8Q3EVnz/Y1FlmUEwRDGcRcX4IcffgAAnHnmmRg9ejT8LmeJJgiiDhoDSxAcmTFjBm666Sbs2bMHQigLmXsPcS+vZpjJq5X9/f70GOvqAMZY6o9TtPLem3TeSV6dY/X8SfnzrL5xe47U55hYoPZBlpulwNzOzpwGY2Nd3mecjI+N3t9Y0IWqagjw4Zf3SnDjjTdCFEV8/fXXuOuuu1BWVubq2ARB1EEZWILgAGMM77//Pt544w0AgFjVCBnF3SAwP4RQWFtgrYqrXvmwVXHVy77amaBJJwNrVVq9moG1fPlzm4EFEpeFtdOh0+nAk7xaR7NE3sbnmqoPepKBne+juwPVcyYWSFg21jADG7Whzv5ezsDGonO+mGVRlWNpZWMNyojj99fOxqr3v2/8GRgzZgwqKyvRuXNnPPnkk2jRooWl+ARB6EMZWIJwSTgcxgsvvKDIq7+8FTL2HwiB6XQE1DMLWyH2Jq2eWdgJdjOuLuXVq9h6dicK1juGyYJDNgIgebWL21mG6ZmxNna/j66o7xmKgXqZpTj6+N7MxjI7y9i4vAZqzlhs4321MmPxo1d9g5deeglNmjTB2rVrcd111+Gff/5x0lyCIFSQwBKEC6qqqvDQQw/h888/hyAICJR0RLC0kzJZU1T21a64xuJWXOUYLkUslcuFgQZUMqxFTKeZ5NUdTs+jlD//vACPcycdJJaHyKY6HMqK3ZQWx4psbGb2lqHv4PXXX0enTp2wZ88e3HzzzVi4cKHj4xEEQSXEBOGYkpIS3HvvvViyZAnABASLD4C/qlnUNkIoHClfdSqtcvmwm3Gu4dryWafiqsrAOhVXr5QQu7rceWUiJ7cPDwTRnbjWxnBNisurIAiuzqdUfgiUCNx+N90dPH1Kil1VighCvZcQAzbLiGNhzHIJseaxq2pslRFrx6jW3J8JIfQ8VcKiRYvg9/vxwAMPYNCgQY6PQxANGcrAEoQD9u7di1GjRkXkVfIhY99BcfIKnwjmJuMK8CkX9onusq6i6Crr6lpeAS4dzLR4VucFeeWBF9rgErfnU1qcj5xw/V544YGMW+q7pBjg84CtxkYJcCLgUVbsUuJZRhAsK15gBebHX1P9OP744xEKhfDQQw/hm2++cXUsgmioeOCqTRCpxa5du3DzzTdj7dq1EMIBZBb1gq+mIHojnwhIDIKVtVs1YD4RzO8Dc1suDEQysKkKjxI5KZL5dJWZkJi7Dqa8b31m3Wo76czt+5mk9SwbAiSxEbhko+m8iryPFtfr1oOFpchDR1dBXO7vUkKFiir3ZcWZAbBM52XFQkW1tsRCxLzJlTjzzDMhSRKeeuopfPjhh26aShANEhJYgrDB9u3bMWrUKGzcuBFCOIiMfb0ghnPqNnA7zhUReYUoOr8BC0Ld/vXYQXY91pRHRkFyWbYrsUj5NQ95dYPbCZt4ZZhIXrlDEhuhXiXWCyXEPHEpsQD4SCwPkXW7v5v7qCC4klgIAlhWfDZWgIDpb+3GhRdeCAAYN24cxo8fT9cCgrABCSxBWGTz5s246aabsHXrVgjhDGQU9YIYzor8USWuTBDAHNw05ayrIr/hsP0MLqeZad3i+kbMI+vKQ17ddsB4yaur/eMv846ysCSvCYM6rhEoE8sR+RroAtcSC9R7NlaJYXeXskplX1fZWFmEY0RWgIAvXliP6667DgAwadIkvPXWW3QtIAiLkMAShAU2bdqEUaNGYefOnRBCWRF5lTL5iyuPrGs9wiXryqlkOBHyann8KI/sA5AQea2XOCQVhEUarMQmahyuV0qK0yQby1tkJ41Ziptuuiny+6RJePvtt0liCcICJLAEYcK2bdtw6623Ys+ePRBC2cgs6glRyojIq464CjUh0+xpOokrYJBFEgVAtDD+lFfJsKv9k1AybPWzInltUFCntY6kSmy6lQ9rkcySYr/BBEheycYmSWSF8ir9GCqJffuB3xWJnThxIt555x1n7SOIBgQJLEEYsGvXLowePRq7du2CEMpCZtFBEMTMqKyrE1yPcwU8VS7siayr3Elz2havlAwDSZFX0zJiQSR5TTIksXVwWW+azr86OJUUp0U21m2MBIyPffuB33HjjTcCACZMmEASSxAmkMAShA5FRUUYPXp03ZjXkl4Q/Nl8x7k6IRWyrlaxKq6CCEFvRma1uJq0R3cmYhvyqltG7AV55SGdchy3kDw4giQ2Gi4S6/VzkcP3Tff6GIuRxFqcqT2txsa6FFmeZcXvPPgHbrjhBgDAO++8gylTpjhvG0GkOSSwBKFBSUkJbrvtttrZhjOQUdobIrJonGstaZV15VEybHd/rc+wHmYa1szCkrzWOySx0SSspLghlA9rkW7Z2BQqKzaMkRXEO0+uwJVXXgkAGDt2LH744QdnMQkizSGBJYgYqqurce+992LNmjWAFEBG6SEQWBaVC9dS7zMMA7ayrobtaEAlw0mLQ/LKBZLYaBrs5E6JxAvL7QDemPDObQxOZcUQBLz/wr8YPnw4AODxxx/HvHnznMckiDSFBJYgVEiShMceewxLliwBmA+ZpQdDYNmOYqVbuTDgQXl10476llf5M61neVWysCSvhMfhKrENNfsaS7pJbKqXFQMQBBHfTtiNE088EeFwGPfffz+WLVvmvE0EkYaQwBKEitdeew0zZ84EmIBgWU8IUp6zQF7JunISX9clw0ziI691DXK8qyAI3um8euDBhCAKJK8ehbKwCcJL52oyx7/qIUmur0WeKSkG0iIbKwgifvm8GkcffTSqqqpwzz33YPPmzc7bRBBpBgksQdTy6aef4qOPPgIABMq7wxdqbD+IXwTL9IP5XXy1RCEiwB6QGwBcntBDECOvySlqAXaVeZVcSwHjkb3lBa/SYR6vh+cDCkLB9fnq9uFTOiKxxK27ahcO0sbtM3Z5rRf8fnfXZ07tiDSGQybVL7q7lwsCwjlBhHOC5ttq7Q4Rf04P4sADD0RxcTHuvvtulJSUOG8PQaQRHrmCE0T9Mm/ePIwdOxYA4K/oBH9NC3sB1OLq5sYpeqhkWB5fKorOS/d4TNbEK3vLS14Bb3R+eWRueGeiSGITgtPzVr0fSawGXvgey3B4iOQFiY0Mz3A+N4GQkVHXDl4i6xJXEluLU5EV4MP//d//obCwEBs3bsSDDz6IUMh4jXmCaAh46OpNEPXDpk2bMGbMGDDG4Au1hr+qnb0A8lNat+Iqlx17gdjOh93XxUtcw+HEyKvF5SKim+MhAUiEvHolq0xoYldOtLZPdYnlI2ix1zaPXHMBb0msG3mUr/9eEGqAy3Ac19nYWpxI7EUnvYQnnngCWVlZWLRoEV544YWU/y4ThFs8dOUmiORTVlaGe++9F6WlpRBYI/hD3SHA4o0uNuvqBLW4JiLrKgiA34asuZnVV4aH6OlkXQVBsCeftR0xbpnX+obDOq+CKPDPvKrxynuVhlg9j422o46vBrzWT+aBXYnV+C7bLinWXR+bUzbWLTaFmmVlaP+BUzbWrcg6ycZef/lk3H///RAEAV999RU+//xzV20giFTHI1dsgkg+kiThkUcewYYNGwCWAT/rDcHqV4JX1tUr5cIAH3E1kher42A5lwy76bAzienLa7I7vMkoGaYsrOfhIaCpKLEJyb7G4iWJ9VI21gKC36+zv7uSYidtMYTTknT1kY196O7ZuO666wAAL7/8MlasWOG6DQSRqnjkak0QyWfixIn49ddfAYjwsz4QkAEp6APLMMjw8c66egEvZV0TVTKshUkm1zNZVyC5411pQqeUhkeW1mskta1ekVjAWxLrpZJiD42NTUY2NpxdN5vx+Ff+xcCBAxEKhfDAAw9g3759ro5PEKmKh67UBJE8fv/9d0yYMAEA4JMOhIiCuj9q3djqY5Imvw8soPNUmxdWOxR6EznxGOsK2Mq6GpYRJ7tkOBmdXS9O1mQFktiEoXd+8xgnm7bYOR9TRWItfq8NK1HsDslwg0k2VpnAKRltAfTv5YIAKS/TcphkTvIkQMDdd9+Ndu3aYefOnXjkkUcQDoddH58gUg0PXaUJIjns27cPjz76KBhjEFkb+NDGeIf6mqSJU6mTLnY7r7FtcSIoWmXE9VkyrNF5S6fMq+PxrlRK7Hliz3MeMxV7kXprX6pIrJ0wCSrj1S0f1tzfYxM8AZ7JxgLWyoqHnvw8xowZg4yMDCxcuBATJ050fVyCSDU8dIUmiMQjSRIee+wx7N69G2A58LHu+hvzKBcG6n+sa+xETg21ZNhSkxxKeSLgIK+uoFJiz8NL7rwqsdza5fQ89LLEOvx+e6KkGEhYSbHuBE5mcLo/Jysbe+3ID/Hf//4XADBp0iQsW7bM9XEJIpXw0NWZIBLPJ598gnnz5iEy7vUQCNB5cuwy68oCPrCsoLfGugLuOgxyGXGSS4a1iCojdiuvgmg8WVN9UN/yyhMvva9piNuJytRxCA28JrE8x8U6WE4sCo4lxbbKhxPRFoDrBE/MLzpaMkeN2f5PjVmAk08+GZIk4dFHH0VZWZmr4xFEKuGhKzNBJJa1a9fi9ddfBwD4pO4QkRe3jRT0Icwh68pEAczH4WboE/mMgw1LHLKufLKcAFx3ChljtdlbDm3yWrmsVzrMXmkH0SDxlFBz+i5we0jGS2I5vMeClZnljZDfEx7jODlN8GRn/KsugoBwpvt7dzgniOoCfZG95ZZb0LJlS2zbtg0vvfSS6+MRRKpAPRSiQRAKhfDEE08gFApBYM0gom3cNlLQBynobqwrEwDmE8Dc3tQBPuVVchy5jNkpEgcBZhIghV3HYYxF2iO4fE0Av2yyh+CSffWavPKaLEyOQ1nhODQnaSMicPyOc5NYl8IXqabhcF0HuGWG3b4mpXzYrcTKfQAO34lwhg9ho5UNLLUHuhI77JQX8L///Q+CIGDq1Kn46aef3B2LIFIEj/VSCCIxfPTRR1i5ciUAP/zsIAiouzFJQR9C2f6IvLogIq8iGI+OIE95BZzfiKXacaq1cQRBcDb2ivHpKCnyygOJKZ0uxxMdJUJeXcT0rLy66bSr9+UVh4jCa/LKPfvq5nvBawIl1fnHbcgCr6wlt/uNg/dKFAD1JFDhML/XxQNO3w1eEqslsrff+DUuvPBCAMAzzzxDS+sQDQISWCLtWb9+Pd555x0AkdJhAXXlQUrWVdXBCWeItkp/9LKuLOCDFLRZQsRrwXcuEzXxfDofE0c0WApHL4yWvAoCBLvjuJRZMKNj2ZI/j2VdAQ/Lq4yTDjsv6dSKQ0LrSRJWOuylceG1cJNYm8IX98DC4bVe89rr4Nqo+QDFQyXFtrOxgoBQXrxoOsnGVufXrQELAbrZ2I/f3YHOnTtj//79ePXVV20dgyBSERJYIq2RJAlPPPEEampqakuHW0f+3SjraqOjY5R1ZYJg7xum14Gwux6sXhw7ZcQeKxlmteNdXSOLqxsBTYa82jyG5+XVCXqde7udfqPtSWI9lX1N+LhXu9+TBGRf7fzNFm6FT77m2/kM9N7P+igpzjCY8MjGvcNw/KuN74pRJZYtidUKo5GNFSDizjvvhCAImDZtGhYvXmz9GASRgnisx0IQfJk6dSpWrFgBdemwVtbVCbK8uiZZWVcrN9+YkmHtMBbKiK2UDFvIwloqGbaahdXIusaFsvK6PEZKyavVzrrZdrzi2ImVhnhJXpNGumZiAUvCZ/iZyxlLC/cjS9dcs+tlbPmwFhYzzMzsc7WajTX7TnAcG+sKjWzszdd8hmHDhgEAnn32WVRVVbk7BkF4GBJYIm0pLi5WzTrcBSyYY3msazhD1L3BeHaiJrcksmTYSZgEjXd13qAky6uF46WUvMokS07tSEEDlFivyWtSZx228r1JQvbVyXamJGtcrNVrj9lDQ6vnIY/XBXhqbKxZSXFU+bBuO6Kzsddccw2aNWuGzZs3491333XdRoLwKiSwRNoyfvx47N+/HwLLBQIdIfltTEAkaj9ltTtRk+E4WDsdNqMyYrslX1plxDblVTcLa1dedbKwtuXVKAtrU141pbC+Mq8Gx01JeZVJdHlwfY63TQEatLzKGH1/kiyvTrfXRSeOrc/d4J5ge94BrffTSvY1Fj2JNSof1kLn3mJ7+Ryt91Nn/KsRuhJr9eNSZWOHnvw8brnlFgCRySu3bdtmqy0EkSqQwBJpyapVq/DVV19F/ifYEyzgc1U65jTrqjkOtj4natKavMOkZNhaWzw63tVt5jVRMw27QBAF9/IqiN4b80oQycaj5cSuRZbVXtfdxtEbF8tp1nZHD1I0SopNy4e10CopdtIejZJiJysR8Fxu5/4n5+Hwww9HdXU13njjDXcxCcKjUA+GSDsYY3jllVcgSRIgtoIQaObohivPRux2eZyoLKwbwVNnYd3EkbOwLkuGlSys25Lh2iys65JhdRbW5WRNgvy6vICqHSmddY0ltnPttLPNK47bfVMEyr7GIMZUk9RT9pX3/rVBlHPa8eceMy7WdvZVq01Osq+xyBJrN/saS+09x3b2NZZakbWbfY1FllhL5cOa7QAgCrjxxhshCAJmzJiB5cuXu2oTQXgRj/RkCIIfCxcuxB9//AFAhBA80HEc5hfB/O7HuipZWK+MdxUEfllgHu0BajtaHhrv6kE8J6882iNnyV1nijjFkWOlKV6TV8/hEXnlGkclsa6QJZbH9z4c5nMuhsPOsq+xSBK39V55rAMfzvChusDdg4Irbv0Mp556KgDglVdeqf8HRQTBGRJYIq1gjOHNN9+M/I+/AwQxy1kcUQAT3d+MBMYgMAbw6BeFIzdZ5ndxY2NMiWN3HVZdRJdxJF5P9mszuBw6NNzGovFAEL0rrx4swXRNOr6mWrzYiU1Lqeb4AI3LtUgU3H/2ohiplAlzeG1+P1go5D5ORhBCKAwh5G6CJ5adAaEmDKHG/URRzC+A+d0O8QCYCFTnu7snXnXVVcjKysJff/2Fn376yV2bCMJjkMASacVPP/2Ef/75B0zwQ8o/wFEMWV6BSBmxlOnsJiKoOgwsIELKcFgSBESk0y2MU4YKtWNV3XaIJFY7/pbXa4vEEVzKudJh9EKprZflNR1J59dWC0msBhyrNpTrh1ckVnUt5PXZs7DERWRZKOReZGuriVxJrOr8cyOx1Y0y6prlVGIFoKIw0ldwK7Gn3zoRI0aMAABMmDAhMqyKINIED/TQCIIP4XAY48ePj/ye3wXMZ29MCxMFSL46eQUQeRJqs3OlZF3VuOkYJ0pea5+o2w+l8drsZmG1OoyixfVcoxtTO1mJt0r/uJAq8pou0pcur8MCJLEqeMurOpZXJFYdx8nDR517hSOJ1Rj76khiY8e+upVYFY4lNuYa4jQbq+6DyBLrRGSZAPznP/9BdnY21q5dizlz5tiOQRBehQSWSBt++eUXbNy4EUwMIJTfxda+StZV415jJwsbJ67qY9jNwoYlbXn1+eyVEXPOvLrGqMNoR2INJn2ym4XVnfmzvrKwqSKvVv6WCqR6+x1AEgv+4+W1YnGWWFsia3ANtPz5mzzo5FJSDIcSGxfEvsSy7AzNf7dbUlxToB0HsJeNlbOvUfuLzrOxg294A8OHDwcATJw40ZPfe4JwAgkskRYwxvDBBx8AAMJ5nQAxgFCWgFC2+SmuLhnWxGIW1kheAdjrJJt1CqxIrDze1ajDYyMLa3jjs5qF5dVhdDtjsTqUWYcw2RKbavJqZxsvkqrt5oAXO7P1Xk7sEMPrCOdJ5XhmY7nEsSqxJjMPW5ZYo5mHayXWisiy7AzTyZusSizzGcexJLECDPsidiS2qlHddueddx6ysrKwevVqysISaQMJLJEWLFmyBCtXrgQTRITyOgOIlM8YiadmybADNEuG9Y5pJQubquNdzSTWqryaZWEtyquVLKynSoaB1JVXJ9t6gVRrbwJosBKbyNJh7Y2SW1LM5cGkjQecZvcti8vmJHVcrMXzzExijbKvUc3iMMGT1ZJipjrMiTeNxznnnAMA+PDDD10dnyC8AgkskRYo2dec9oCv7mail4U1KhnWQq+M2Kq4Khh1mPVKhvXQy8LalVeDTgq3kmG7kzXpSazNzKuRxNqS12RkYVNdXlONdH5tNmlwEpuM0mEe25qG0vncbM4loPn5O5gjgdfkToBBNtbOuq8GEqtXOqyHUUmxWfY1bnsdidUqH9bc36SkWJ19lRk+fDj8fj+WL1+OlStXWm8sQXgUElgi5Vm/fj3mzZsHIDJ5kxqtLKxpybAWGnFsy6t8fK0sLKebfr2Pd43NwvLsKCazbFiLREpsOslrKohhKrQxyTQ4ieWEo2uJRyd34kWcxFrMvsbFSeS4WIfnVqzEWs2+xhInsSblw5oxdCSWaby000ZPxAknnAAAmDJlir0DEYQHIYElUp6vv/4aABDOagkWyI37u5yFdVsyrM7COpVXAPGdZzfyKmdhrYx3NWyTyH+5BbfyKmdhXc40HJuFddXh4y2xggjB50sfeeW1fyLxctvqmQYhsckuHdbfmUsblHbIuFlCTB4u4nCG+qhYicjE2sm+RgWJHhdrN/sai1pi7WZfo5olS6xgPfsaFyOmpFgr+ypz7rnnAgBmzpyJPXv2ODoeQXgFElgipamqqsK0adMAAOG8jprbMAF14uqmLyQAoUyf43Vho9oUEMGCfn6ZVx5P4QUBEHgseB+Jw6ODxjhlXQVBAATRe2NevQgvwSNRTEm8KLFc8YK8cm5LJBRzLZ1KrDCf5WhYWHKcfY2KEwq5f23qcbEcHooINWHH2deoZvkFlLYJupqLQ11SrJV9lbn0/75Fz549EQqF8P333zs/IEF4ABJYIqWZPXs2SkpKwHxZkDKba24TDgqoaCq6WhBcgUeiLMwg1EhgggAWcHlzlzubdpbV0YvDq+Mq1cZymxGUauVVdBeHMRbpADGJT6aTFzwzprxieen9IeqNtJVY3g+weHzvOE3uJIhCpFKFg3wKPh+fOH6OD2kBgMM6rywj6HydV3VTGmVCkBjEGvevT/JF+ilu2d9JREl743Py9NNPBwBMnTo1fb/nRIOABJZIab777jsAQCi3Q9xT1XBQQE2uAClY94SSB6FMH8KZzsRTCDMgxH9MKPOJziVWLa+i6LxkT56sSeLw9F5idVkAQXAssUwuP+YFr4yJquPrOitM8moPysJbwiudW27tkD93Dt+XqO8sr+8fz0mlXFzzoibP43XttDtBYQxCQFVe60JiWWZG5DrHmGuJZarrpRuJLWsZeW1McC+xzBf5KWmvL7JjPlyOzMxMbNy4EcuXL3d1PIKoT0hgiZRl9+7d+OOPPwAAUk7bqL+Fg7XiKtRNaFCdJ/DLwjq4z2jKq1+0n4V1OSY0LlZsB9Hnsy+xEouIqzqWKDjr3KnlVcaBxOrJq+MsbALktS60w0661+XVq1JMEmuJ+pbYhB3fxfdG87tazxKreU1zIJ+aM787lFhBq3TYgcQKgUD8td+pxKrfp1qJdSKyoUaZ8aEdSqykestliXUissUdVA9FVSIbhxjA8ccfDwDK8CuCSEVIYImUZebMmWCMQcpoAhbIUf5dLa9qmINZ/vSwm4XVy7warVOricGYUNtZWKOyYTvtkuVVC7sSqyWvDjDLvNqW2ATKa90hbHbWvS6vyYrvFJJYS9SXxHI9LifpNPyO1pPEGl7LuGVQ7cXRlFclls1rqd6DS5sSyzI1xqvK42JtSizTec/tSqycfY2KLTjLxjKtVed0JPakk04CAPz8888I8ZjpmSDqARJYImWZMWMGACCc3Ub5Nz15leGZhQ1lWZNY07Jhq1lYCxMaWZZYszGvVkuJjeRViWVBYiUGVhMylleLWVirZcOWJJbT+LTaA1o4nIVOuyCmjrwm+zh2IYm1RLIlNuHyKmPju2T5u8kDi9cdS9cwi/KpmX2NjWPlumpl0iaLEhtVOqyFRYlVSod1N7AusVrZVzVWJbasZSAq+xrXJBsSq86+xsXRkNjrn5+JgoIC7N+/H3/++aelYxCE1yCBJVKSXbt24e+//wYDEM5pHT3e1eg+JQBVBckpJRbCDEJV2HTMKxMEc4nltQaqHMdKB9GslNiKvFrBTtbVRGK5jnnlOSaNV8fWS0vleP14ViGJtUR9lxM7wupn68UJ1QB+1yCTa6KpvNqIZT2O8WvTLB3WIhQ2F1lLDyvNJTbUKFM3+xp1uBrJVGSN5FVpkgWJLe4gamZfo+LEjosVRAwYMAAAMGvWLPOGEIQHIYElUpJ58+YBAFiwMcJZWXHjXY1IRimx3cmaDEuJbcqrbhbWyUzDeu2yK696WVgnJcM6EutEXnUzGPUor7qZnlSW1/o+rhkksZZIhsRyn7TJKl4s748cXOcQNr9LOtdGW/JqFsvukjlGEmt34j4didUsHdbDRGKtyKsaPYnVKh3WPaaJxJrJq3o7dTZ20KBBAIA5c+ZA4vFwnCCSDAkskZLMnTsXABDKa2maddUikaXEjmcajs3CupisKU5inS6To1VK7DTzGiuxnMa7Au4yr3EdQQ9kXuM6zOkgr145vh4ksZZIiUwsx0nR6n2CtUgjYkI7/A7xnJE9JpZteVXixF9vTUuH9YiRWNPSYS10JncyKx3WI1ZizUqHNZukM7mTUemwbqxaib3xxdnIyspCUVER/v33X9txCKK+IYElUo6qqiosXrwYAFDTqKVteQUSV0rsZpmcqFJiXiXDgHN5lZFLiXkskyNLrFt5VWVheZQNKx1CD8irjNJxTid5lfFKO2IhibVEoiTWE3LsxSWuAOXa5Hota9W10lH2VSOWY3lV4tQts2O5dFgPtcQ6nnE+enInq6XDeqgl1q68Kk2KmdzJSumwbiwfUNLBj0MPPRQAsGDBAmeBCKIeIYElUo6///4bVVVVkPwZCGfmO47Du5RYCvhcr/HKBAECJ3llPhHwie7kVUbOwvKIxSQ+mVe5TV4b88pzkiWeeFUaiZSEt2zWW+mwDq7lNRFwHBPrWl5VsbghiO7kVSYUtlc6rEetxLqRVxkhxGyVDus2qVZincqrEscHHHnkkQBIYInUxIO9LIIwRp41L5zTzN5yLzEIDKjJEVCd5+5OIIQZfNUSpIAIKcvdk2hBFlcOnQtB7oC57RBIEhivbLDEIj9u28QYWCgU6fRykEUm8YnDE9eZlli81CH3UlvUkORbxvZa0cmK56XPkGdFBwAIIh+x9vnAwmE+DxJ9Pn4SKwpgPJZ1CQYg1PBZHkbKyYCvwn2sisIAxBCDv8r951d0EFDd2P251bdvXwDAX3/9haqqKtfxCCKZeKvHRhAWkAW2snkzxzGE2nsIE4DqfOcSK4QZxBoGyPckN0ItSUC4NpDf51hiBYlBCIXrZhsWrS0/o4laXkUBEF2ItcTqyuAsLomjCeM3dhaIybS4lVhOEhwlrzw7wV4QRy+0QQsviY/H4S2v3OO6/Cy5SGIC5LUuNL/vkKtrae09isvs76oyZFcSGwwo92GhqgZCVY3jUFJuZmSIksRcSywTEeknMLiS2H0HAlKQgfncS+xxX32Exo0bo6amBqtWrXIViyCSDQkskVKEQiH89ddfAICSrk1QWWivoyKwOnmFSmKdlBIr8qpCCjrLwsryKqjL6BxIrCCplslxW5KnlXl1KrGyvKo6Xo4kVkterawzqxdOqyPoVEITIa8y6SKxJK8pT6LklXt8h58pl4djCZTXukM4/C5p3FMcveaYOK4k1u+P+7wcS6zG+eNEYhV5Vf7BucSWNw9G/4MLiZWCdfvJEutEZCtbhsH8QK9evQAAy5cvd9QegqgvSGCJlGLjxo2141/9qGmcg8oWYcsSGyWuMfeOmlx7EzppySsQGcMqZfhsSaymvMrYkNgoeY3FbhbWqGzYrsRqyKsjjDKvDiTWsANoJxbHMa+GZcOpLrEkrylPouWV+3FsfrY8Kzu4wXN5H4N7CY/X7khiNeRViWdXYoP6Y0ztSGycvCp/sC+x5c2D2g/IHUjsvgM1wvhgOxtb2TIM5oscmwSWSFVIYImUQi5zqW6SDwgCmI9ZmswgNusaCxNql9axUEoshBnEkP6Nx6rECpIUmeVQT15lLHTCDOVVHceKxFoZ82pFYuVZiw3k1XIW1krZsA2JtdTxsxKL47hZS2NeU1ViSV5TnmTJK/fjWfxecZPXJM9kblliLTwItfweGImwLLFWYhnIqxLPqsSqSof1sCqxhisb1EqsFZHVlVflQNYldl+P6OxrXCgbEivLKwAceGDEilevXm1pX4LwCiSwREpRJ7AFyr9VNTPOwprJq4yV8bCKvJrGEgxvpuqsq6G8AhHBM+gwWJJXJZaJMPKasEmddTXpYJlKrJ0xrxYkltv4sWTLqwzv8sREQ/Ka8iRbXrkf16Sygds1oZ6+m6bttzEUxfRaa0WEGbOWjbX4HTSVWAvyKmMmsVKuhfVea+9rZhJraWiSBYnd1wOQMszPUSsSW9ky+jM5++dvAQDbt29HWVmZ6TEIwiuQwBIpxZo1awAA1Y3rBJb5WKSUuJnG2BeL8qrEMpBYq/Iqozce1rBkWA+dUmJb8iqjJ7F25VUvC+ugZFhXYp1M2GQgsbY7qnqSWl/yKsOro5xoufSqvBKWqS955X58nbHlnpVXXkMiHEwGqHvNtRnLUGJtrh2rK7E25FVGT2J1S4f1MJDYuHGvRhhIrFV5VUIZSGxli3BU9hUApIwgCgsLAQBr1661fByCqG9IYImUYvPmzQCAmvzcqH9nPobKltESa1delVgakzrZlddInPhSYkfyKhMjsY7kVQ+nmddYiXUx3jVOYt3MNqwhsY47qrEdyfqWVxmvS6yX5ZWyr5aob3mVSYjEppG81jUj5vW4WI4t7trrMJamxFooHdaMpSWxDs+NWIm1La/KjvESa1o6rIWOxNqRVyWUhsRWtgiD+bVjde7cGQAJLJFakMASKUNlZSV27doFAAjl5cT9nfkYWK0rOpVXmZrcSBZWCDP4qiTb8qq0SSWxruRVplZiXcurOgvrtmxYllgOkzUpEpvIpXKcIHcovSKvvOEtmySvKY9X5FWmvmcn1sUj8iqTkCV2XK5LHiWxDuVViaWWWINJm6wgS6xjeZVRSWxFoQN5lamVWFlk9/Vw3qRYidWTVwBo164dAGDr1q3OD0gQSYYElkgZtmzZAgAIBwOQMrTLc6qaqbKwLu7jTABCmQKkoKg5a7G9WAKYTwQTRXfyqgT0QOZVNx6nzhOPNtVmYXl26DyHV8fDelUSvdouj+E1eZXhKbHpfF1gEnMtnbxh8v2Kw3eQhUKRzCuP86Em5E5eZSSGcIYPktu3vfZtKm0vOMq+RoWqldjKFsYPg1u2bAkgMg6WIFIFElgiZdixYwcAIJSbrbsN8zNUtA6horm7O5JYA/hqGGqyRYSy3d2RxLAEISSBBURIQftrxEahdAJcfnXlDC44dAolBkjhSMeE55N6t9RmhLlmOjkKI5cONMeMMEHIMB4Px7yMxPhcFxLxAIlDTEEU+F1HAS6xBDnz6nR9V3WsQO241xr3sRAMQKy0v05sLNWNM8AEIKPY5XslAPu6ipACDP4y9+foFSfOwrWDZhpu06pVKwDAtm3bXB+PIJIF9X6IlGHPnj0AgHCWziyBAiK1wz6GilYhVLRwdvEXa2rHorDIWNiaHOcSK4YlCNVSJPMqCu6+cYwBocjNkfmMZyY2RCWvEEVAEJxLrCyvMi4kNkpeRdGdWMvlzLW47qyqO5VeyXrylNdEZCa9mO1M46wbb7wqsVweuAGAIHqrjF+Ni2tM1GtyKZ6C+lruIpYQWzbsQmIVeZVxIbEsMxi5/4WZa4ll8uuTXEisLK/ycjkM8JU7P0evPGEWOmfsRIfgblzXf5budpfP+R4AsHPnTsfHIohkQwJLpAx79+4FAIQzM6L/IAAQmWrgKxxLrFpeZZxKbJS8yrF8DrOwKnkFULsGrgOJVcur0lCHEhsrry7QzLw6ldgYeZVx3FnV6kxyklhuE0u5IZGdeC8KAkmsZdJOYmM/ezcSm+gHWQ7ia74Wh+IpaN1b3EyqF4sDiY2TVxkHEivLqxLbhcRWN47pkziR2Fh5lf9ZciaxsrzKyBKrJbJSZmRI1v79+z37nSeIWEhgiZRBzsBKaoGVs65a2JRYLXmVYWJkPIlVtOQ18gfBfilxrLzK2JVYLXlV2mVTYo3k1WYW1rBs2K7E6sirjO3OqlEnsr4kNlXkNZnHsAtJrGW82qF19MBNM5ADiU1WFYaN4xi+BpviqSmvTmMZLZdjQ2J15VXGhsTGyqtyDAcSW904oy77qsaBxMbKq9IumxIbK68yHYK7NbOx4do5RcLhMEpLS220mCDqDxJYImWQF9kOZ9TOPGgkrzIWJdZIXmVCmSJCOeZipiuvygY2JFZPXmWsSqyRvCrtsiixVjKvFiXW2mL3FiXWRF5lLHdWrXQeky2xqSav9XEsq5DEWiblJdbss7YjsckeQsDrmmZRPA3l1W4sKzMOW5BYU3mVsSCxevKqHMuGxOrKq4xVia3NvhpuYlFi9eRVTZzE+nyQaj/34uJi8/YShAcggSVShoqKCgAA8/usyauMj0EycEUr8grUlhKbTOpkKq/KhhYk1kxeZcwk1oq8Ku0SjTsKdsqGTSTW1oRNZhJrUV5lTDt89TDO1VRiU1VevQxJrGVSVmJtPBzy4nXB7Li2sscm11tL8mo1lp3lcswk1k623UBizeRVOZwFiTWVVxkziRWA/V3iS4c1N7UgsWbyKtMhuBtXH/tTXTNrlySiDCyRKpDAEilDZWUlAIAF/NbltZaqQu0srFV5lTEaD2tZXpUdDCTWqrzK6EmsHXmNCqdVEuVgzKuOxDqabVhPYm3Kq4xux89urGTMTJwO8upVaSaJtUzKSayD8nxu1wXe8BrXr3PdtSWvZrGcrPWqI7FCwMFarxoSa1VeleMaSKxleZXRk9haeQ3bWC7HSGIvP2G29TYhIruyxDJf5B5TXV1tKwZB1BcksETKIAus5Hdw2mqUEtuVVxktibUtr8qOGhJrV15lYiXWobxqlhK7mbApRmJdLZUTK7EO5VUmrgPoNFYiJTYd5NUrx9eDJNYyKSOxLiZI43Zd4A2vmdVjrr+O5FUvlhN5lYmRWMulw1qoJNauvCrH15BY2/IqEyuxDuRV2VVDYi8/YTa6ZuywHUuWWFa7NF+IwzJHBJEMSGCJlEHpODm9oakk1qm8Km1RSaxjeZVRS6xTeZWRJVYUncmr0iaVxPKabdjn47POqyyxLuU1DrexEiGx6SSvMl5pRywksZbxvMS6/SzVEusVeZXhtbZ17XXYlbzGxnIjrzK1AuVKXmVqQo7lVUYtsY7lVUaWWBfyqrRLJbFO5VWmc8ZOBIsjpcNz5sxxHIcgkgkJLJEyKJ0TN50nH0NNDkM4A47lVYaJgBQQwATBubzKiALgE9zfsAE+MYCIxAJ8OnCi4L2OYC2Ch9vGDa9Joyh4r00EoYbnw6MGgCDw+04LAqd7YSSY+xDhyDruruRVRgJqsgRX8qq0SwJOPfYPV/IaS02Nu/VwCSJZ0BWaSBlE0f3p6ivxIVAqoLpAQHW+u5uRv4rBVykhnCFCynD3FFsISRBCEphfBPwun4hLUkTy3b5fkhTJtAgmEztZisXqsiKuY9W2SxS4dDKZxPh1VjmJMNfsj5dF0cttI3RxvA6rHhyu7YAqM8zjvJK/e14TWUF0vn60mtrMK3NbEaOK5WQ91jjkZXd4iFTAD1S7jxPOiSwzEyx2H6uspR8Qgeyt7s/RAScuRbvMvdha09h1rLy8yHnQt29f17EIIhl47MpMEPrIAtu19XZH+/tKfAjuEyGEI9nTqkbOJdZfxeCrkCJzSQkCQpk+xxIry6ucWWYBn3OJlSQIoXCtwArOO4aSBCZJKul0IbFSpGy4rnPpJpYUXb7oUmKjOoIekViu4+9SQRC90kavtMPjJExeXUpsXFmzm8+TSYm5NrhF1Q5XEhtTNuxKYn2+6HPCjcT6/TGxXAhjwB/JmDLmSmLDOUHlXBLCkiuJLWvpB6v1c18NcyWxA05ciq7ZkRmHa5jPlcSemrMVBbmR+0xeXp7jOASRTDxyVSYIc7KzswEAI3J/R9+ea23tq5ZXGacSGyWvMg4lNlZelbY5kVi1vMo4kdhYeVUa60A8Y+VVaZeTWJL22DuHEqvZAaxnieU6A2oqCVl9t7W+j58iJDzz6lBidcfkOvlcY+VVpr4lVuP4jiRWZ8yrI4mNlVcZJxIbK69KLAfCKMurjEOJVcurjFOJVcurjFOJVcurjFOJPTVnK3KFDFRURs4vuZ9FEF6HBJZIGeQLq68yEy+2/9KWxAphIUpeZexKrKa8KgexJ7F68qq0zY7EasmrjF2JZUx/EhQ7Eqsnr0q77MTSkVcllj2JNez41ZPEcl2DMhWFjJb38TRJKxu2KbGmE0rZ+Xz15FWmviTW4Li2JNZkwiZbEqsnrzJ2JFZPXp0QK68yNiVWS15l7EqslrzK2JVYLXmVqWH2HnrL8goA5RWRNpDAEqkCCSyRMuTm5gIAysoFNPdlW5ZYX4kPgRL9G4RViTWUVxmLEmsmr0rbrEiskbzKWJVYM1EErEmsmbwq7bISy0KbAMsSa6nDl2SJtTyrqJV4qSxkyW57Kr9XSSTpY14tSqzl2ZCtfM5m8iqTbInldU2zONuwJYk1k1cZKxJrRV6tZmH15FXGosQayauMVYk1klcZqxJrJK8yVrOwanmVJKCyigSWSC1IYImUQR6bUVwaOW2tSKxW6bAWliSWwVheZUwk1qq8Koc1klgr8ipjJrF6pcNaGEmsVXlV2mUUy6K8KrGMJdZWtiJJEmt7SQyjeOkgZMl6DenwXiWBepuwyWQ720v5GIqNRXmVSZbE8qoqsblUjqHEWpVXGSOJtZN5NZNYM3mVMZFYK/IqYyaxVuRVxldjfP71H7LMVF4Ba6XEankFgH3FIhiLLJuXn59vrcEEUc+QwBIpQ7NmzQAAu/fW3YxliZ1y0itxImtVXmWMJFaecdgyOhJrV16VtmlJrB15ldGTWDvyKqMnscymdALaEmtXXpVY2hLraLxYgiXW8XqOWvHSScgS/VrS6b1KIPU+27DO9o7XodUsLbUprzKJllhe4/odrvOqKbF25dUIJ2XDehJrVV5ldCTWjrzK6EmsHXmV0cvC9h+yDN1yrC+Voyexp+ZsjZNXANhTFDlHGjduDL/fZqMJop4ggSVShsLCQgDA7j3RN+Tmvmz0CfqjsrF25VVGS2ItlQ5roZeJddj5ipJYJ/IqEyuxTuRVJlZi1cvl2G6XKpZTeVViRUusqxk7PTI7sWG8dBSyRL2mdHyvEkC9y6vOfq6uC0D05+9UXhMNr5nVHcqrEkstsW7kNTYL62bMa6zE2pVXmRiJdSKvMkI4+tpe3sK+vALapcR25VUmVmJlcY2VVwDYUxQ535o2bWr7OARRX5DAEimDLLC79mrflOVsbLuOux3Jq4xaYh3Lq4xKYpXsqwtYwAcIgnN5lZEl1o28ysgSa7d0WLNdHNacVWIJ/NZMTIDEOs6+xsZLZyHj/drS+b3iiGfkldf+cfEEPvKaiCwsr7WtXcprFDwyr7LE8piwSZZYp/IqUyuxbuRVRs7ClrfwQwo4j6OWWKfyKiNLrFbWVc3e0OMA6qrcCCIVIIElUoZWrVoBAPbu86GiUvtm83VZN+yvyERVM5eiKAKSv3btN7f+IwiRm6wguJNOGb+PX4dOFPl1Vp2UDmvB67VJjH/W02sIoruHD6kAL+kkeU1teEqsxOp/WZwEIogC4GZt19h4HB9ocIlVW+bqSl5lAn4u1wY5C+tGXmV8NQzhTOZKXmUuL1iOAjHLcJtNmzYBANq0aeP6eASRLNL3Ck6kHfn5+WjUqBEAYNNW7fqc3TV5CEsi/K3KUdncubwESoFgMUM4KKCqwIdwpvMbnFgtQayWIPnFSAbVDWEGhMJgfp+7J+wSi0w9CEServtcXAqYBNTevLl0TsJhrmLNLdPJA15lzbGQxCZ2fzVuyuRTAO7ZV57wfODGg0Q8IHMZk8v1To5Ve49xtEZsLHIsJ+u6qvH7lSodwcl6s2qCAUAQIJZXu4sDoCY/CADI3unuvSruEvlhIvDavEGuYl3Z6E809pnPKrx582YAQPv27V0djyCSCQkskVJ06NABALBxS7zAvlXcFl9sOgQAEAiE4W/tXGIFCRDDDEwEmA8IZYqOJFasluCrqi33FQAp4HMusWEWuWHXZjldS6wapxIry6vc6RIFdx1MdUfJTWc1JvvqqlOXAHmtC81xbG4aSxUA5xLKW161fk8TEiaHEkfRcyuxqs9NcHP9TGR1h8PYcdc5F+IZ9d4w5k5ifb6o76FjiVXJKwB338FaeQUAIcxcSWxNfhCSLxJLrGaOJba4CxAOMoSDkdclljg/P69s9Cea+XKU//cZVBxs3LgRANCuXTvHxyOIZEMCS6QU8hPCDVui63TeKm6L8WuPRXlVUPk3pxIrZ1/VMNG+xEbJq4xTiY2RV6VdTiRWnX1VY1diY+VVxqnEanWQnHRWdUqHHUlsAuW17hAcZ0BNQ6mKoj7LgLXe2zR6vxOe2fSCxGp8Xo4kNhlDE2weQ/f65kA8Nd8TpxIbI69KOLsSGyuvtTjKwqrkVYnjUGLV8irjRGKLO0MRVzWvzR9ou02x8iqjJbGVVQK2bdsGoC5BQBCpAAkskVIccMABAIDVa+sEVkteZRSJbWGtMxAoBTL2MYjh+BuJXYkVGNMe82pXYnXkVWmXHYnVk1cZJxKrhV2JNeoY2emsmox75VleZxkLY+24rkGZRlKliZ3PkNfnbfSepsH7nbSyXJ4Sa/vY+p+TLYn14Lh60+uaDfE0fC/sSqyOvNpGR14BABKzJ7Ea8ipjV2K15FVGrLZ+XSjuDIQztLcXi/22JFZPXmViJXbNhgDC4TCaNGlCkzgRKQUJLJFS9OjRAwCwck1Q8bndNXma8ioTCIQjY2JNJDZQpi+vMlYlVh73qkutxEpZAVOR1RVhdbusSKyZvMpYkVjVuFddRAGCz4J8WukQWZFYi5M2WZZYHh1VGxPFWJJYq/HSQKoMsfIZJkNe7WzjUZI+ppSXxNp9sGWCJYlNtrzyvJ5ZuM5aew8sSKzPZ0leLWVhjeRVxqrEGsirjGBw/5epyQ8ayquMlSyskbzKWJVYM3nVYs3uRwHU9a0IIlUggSVSii5duiAQCKCkVMS2nT68VdwWX20+2HQ/M4kNlAIZRcbyKmMmsZqlw1oIkVkUDbOxtZM2WcFQYq3Kq4yRxOqVDuvhdlysEsegw2pzxmHTTl89ZVkMJdburKkpLFWWMPoMkymvTrb1CPU2IVIyJdbG52KcfaynzCvPihID8bSXhTZ4T2Vxtdg2Q4m1Iq8yZhJrQV5ljLKwsriayStgXkpsRV6VWCYSa0de1VnYlStXAgC6d+9uaV+C8AoksERKEQgE0LVrVwDAq0ta4u11x6C0Un99s+h9IxJb1asiTmTlSZusoiexluU16uA6JcUmpcOa7Ur0xE525VVGT2LtjqnS6rA6XC5Ht/OXhHGvRmhKrNMlP1JQqmyh9RnWh7y62aeeqPfZfJMhsQ4+D+3xn/VcNsxrTD+gec11Mg5YMwvrsGRYU2LtyKuM3udtQ14B/VJiK1nXWPQk1o68KrGK4yevvLLRn44yr7LELl26FABw0EEH2dqfIOobElgi5ejTpw8A4JdFzS3Lq0wgEEZmVnVUNlZr0iYraEmslXJfTWIl1oG8Ku3y+8CCgTqRtZt9VaOWWKfyKhMrsU5ntUzkEjv1LK91zVBP/OXyMp1CUuUI9WfohbVeU+D9rnd55Y3egy2HRM/A65Exr7xmVY/B8UzMsaXELse7RkmsE3mtJSoLGwzYllclTozEOpFXmdjxsE7kVUadhZXF1a68yuzaHcC2bdvg8/lw8MHmlWwE4SVIYImU47DDDgMACOuKHceQs7GhHGY67tUIWWKrCnxgPhiPezVDllhRdCyvdbGESDZWFN1nOmIl1g2yxLpdV1DdYeW1bqJH5FWG1om1gY2SRUu4fb88/H57Sl4TNTMxr/ffK/IqwyQ+8hoOQ/D53C0jBNRJLK/JmgBX8gqgrpRYFlcXsWSJdSOvMtk7wyju7E5egdpS4gUDHWVdY1my+XkAkfGv2dnm68UShJcggSVSjkMOOQQ+nw++4kqI+yocxwkEwghnMUgB822NYCIghhiEEAPzu7yJCwB8AuBkTdZYJCkiwaLHvuaiu05FHJyEkVscL+KFzGRDw8MSm84krDrDC3C81rla11WNKHK7vjDG+NwbfD7AyfI6GrCAz7W8AkA4Q0T+GnfyqiAJruUVAH7//XcAwKGHHuo6FkEkmzTusRHpSlZWFnr27Bn5feMux3HKtucga7uIULaAkI31XbUQJEBgQDggggWcf63EGglCTRjMLwJ+DmNZGavNTrn4qksSmDzjsN/vfoytVCvVrp6yS5HODlArxB6RWI4S7MkOdEOhPsfRJhjmprKDNzwfrvHM5sqZVy891Kpti+vKDKFOOF1LrHwvcCuLoi/yAwB214eNJRAZJyqYzZJvASnTD4gigvvsrw+rpibPB8kHBMrcf/ekvDDgl3DYohGu4oxYczzmzZsHAOjbt6/rdhFEsvHQ1ZkgrHPssccCADLW7ELQb//mWbY9B7nr/PBV1ZYBZwuobCQ6EllfFYO/ovZmKQqOJVaskSBU15UOM78YGcvqRGQlCYJ69mKnEitJYHIcQaz9EZxLrMRU4ulSYtW4kNi4DqEHOq1R8sqhbJtwAElsYkmgvNpayzqW2LGmHrgexLbBscQK/LKl6nsAY8y5xIrRsxZHYjmU2EDMJEfVzuJImX5FXgFADEmOJVaWV5nGK5y9/1JeWJFXACjak4vDF5/nKNaF647Hlr992L9/P/Ly8mj8K5GSeODKTBD26d+/PwBA2FCMjHClbYkVq0T4qur+n4kA88N2NtZXxRAokyCoOxQuJDZu3KsI+9lYWV7jYjmQWK2OrlOJVcur0iYHEqvOvkbFst/Z1O0IOum0curoamZeXUycRbiAJDYxJCHz6khi9Wb7rU+J1Tm2bYnVkVdHWViNa78jiRW1x846Ojdj5RW1WVibEquIa8w5KobsX4Nj5RWIZGHtSqwirv7oNuzdnWe7TReuOx4bShrjkppDAABHH300/P74944gvA4JLJGStGvXDh07doQgMfj+3YuMQAi5mVWWRLZ8Wy6yt+p0CkR7EitIiJZXmVqJDWf5LYmskn3VwbbE6nUARCESx0oHUl06HIsDidXtlNiRWD15VWLVUzlxMjq4DpYuIjhAEsuXJJYN25JYnuut8oLntczgNdiSWINrvq3zSUdeFaxmYQN+TXmVsVNKrM66amE1C1uT59OUVxk7pcTqrKsWVrOwF647XpFXMIaff/4ZAHDMMcdYbgtBeAkSWCJlGTBgAABA/Gs3RIHBJ0rICIQMJbZsew5y1vuisq+xWJXYqNJhLUQBzGeejY0tHdZtlxWJjS0dNmibYUdSXTqshx2JNeu8i2IkjpHImsmrEsuaxFrKYMhl02bbcMK0o8wsLmNE8soXej/5UA9jXk0l1up3KplZWCvXHdi4hlk4f00l1mdxjXErWVgzeYXFUmIDcY3CQhbWTF4Ba6XEsrjqyauMlSysmbwCkSysmcTK4rqhpDEAQNhaii1btiAzMxP9+vUzbQdBeBESWCJlOemkkwAA4pp9QGnkpiIKzFBiY0uH9TCTWM3SYT2slBRbfHJtKLF6pcMG7dK9YVuNYUVitUqHddvEaVysicQ6Kr+z8+8OsJXlMepwk2wlBh7va0PNwmqUZLrC5oRNuhJro6ohaaXEvIZByLF4nLd2K22MJNaCvEbF0sOqvMK8lNiKvMoYlRIbZV1jMSsltiKvMkalxErWVcWI4u4AgOOOO46WzyFSFhJYImVp3749evToATBAXLFH+Xc9iS3bnqNbOqyF0eROuqXDeuhIrBAyLh3WbJfR5E52O6NaEmtUOqyFkcTakVelTRoSazX7GhVHu8PpagKUBOGoRNFra1Q2BEhi7cN7GS9esw07+P4kXGJ5TUQnx7J5vmpmYR1M2KcrsTbkVUErC2tDXmW0SoljJ2uyilYW1o68ymiVEsdO1mSVvr/HZ2G15BUSw8yZMwEAJ554oq1jEISXIIElUpqTTz4ZACAu3RUlb7LEqsfFWs2+qtGa3Mm0dFgPDYkVGOxLJxA/uZPV0mGddik3cCulw1rIEhuzzI7jjrFaYp3IqxKHc4dTHSuRkzZZJbYTTtnXxEMSax0PyWtUFtbFw5+ESSzv65TD8zRKYl0smRZ1PsnL5DhoU1wpsQN5VVBlYfUma7JCbBbWibzKNP677j3Rm6zJCrt31WVho8a7xiCs2ouioiI0btwYRxxxhLNGE4QHIIElUpohQ4YgGAxC2F4GYUtp1N/U42LLdmXbyr7Goi4ptp19jW6UMrkTBMF29jWuXf6I6NkqHdZpF0TRXQz1MjuC6L6TXiuxrjvWcodTEN2voQhYHp+WNOTOOMlr8iCJTT4cMq+CT+RSucB9UicO1xMmsbprk8v2sXDY/XrfQCQLG7NMjqP2yOely7XR5VJiJ1nXWIL7q00na7JCoDTy2pxkXWPp+/t5uHj9oKjxrrEcvT4fAHDaaafR7MNESuOhXhhB2KegoAAnnHACAEBcvF1zG1FggCRAdLnWOhPrSocln4sOgihACDMIYQmMR4bCx2ncqAyvzhmnOAKv18ak+ptNVAeu7fGgEKUt9F6bwzv7ygHGWP3MUp4EBFGIyDmHawq3a67PB0gOK4NUCKIYeYDBo11WZ+E3gflEZOwLuZJXAAhlCchbL7qWVwDY+28TrCtuYrBBBRYtWgRBEHDmmWe6Ph5B1CfeugIThAOGDRsGABBW7AHK4sfLbN3aBFlb/JD8QDgIMIc3nEApQ0axBEECmE9wJbECY5FOsF8Ec/GkWwgzIBQG84lgARdPlSUGhCKGLwjunpbXNU50thajmton74IgOO9USSwq6+I1iXWNuiNNYpV4eL3HHjwPuYlLInApHUy+5gKu5JNJjE8lR3RQV7tHXdOcrOsqx5Gvs6LoKg4ACHJ2z+V7JajLfG2u6aqGZQTAMgKRiqUK53EAIJzpB/MJEKvdfW6hLAFMBPzlDPlLMxzHEfcHIO4PQAgBW9c2093u4j2RyZuOPPJItG7d2vHxCMILkMASKc9BBx2EHj16QAgz7SxstWrsqwBIfmcSK4QBsUbuADmXWLFaglgV6RwwAe4klrHIjyBEym19Lmb7VJUPOpZYJgHqyTLcSKwkxZUN8upge0ViE9IZJolNHGn83nKV10RlXx3GjZJXF8R9V3lmYR1KLK9rmSKuHD47IbY0NeSs/EmIbY/DEndZXOUMruCiHF2WV5msPc5emyyvMoESZ69NFlehthm+cp3PryKEr776CgBwzjnnODoWQXgJElgiLRgxYgQAQFy4Haiue3K8dWsTZG2OH+dhV2IDpQwZJTE3PYcSK8R0phSJDfptiaycfY3+RwcSq8q+Rofim4m1LbI6nRVbHe2Y7Gt0s7whsUACZkZOY9GqN3i+px4694AUkVeH8XXllddyNfUosbrXMJvZU0Ve3cbx++PlFXD03YmTVxmbWVhFXmPj28zChjP9cfIKwFEWNlZeZfKW2cvCyvIai1YW9obiPqioqECnTp1w9NFH2zoOQXgRElgiLRg0aBDatGkDoSIE8fcddX+o1p952E5JcVT2NeoPEYkNB0VLIqvOvqphAsBEwV42Vs6+xrXJgcQayKLgszgpSGz2NSqQaC8bGw4bTtpiqcNtIK91zfKOSHBbm1aGJJYfJK/WSNa4V4vHMc28WpRP7lUSHDC9dlmUT115tRvHbEIgi1lYQRT15RWwlYXVk1fAXhZWFtdYeZWxmoUNZQm68goAwWJrr00oDujKK6CRha0JY8qUKQCAiy66yNtDBQjCIiSwRFrg8/lw0UUXAQDE+VuBkISt2xprZl+jcFFSrI5hNRsbm32NxWpJsWb2NWoDwdq4WJ3sa3w4k2yskbxGBbIgsRqlw7pt4kBKS6wZHux4pxwkr9bw2KRNCSsb1iLJWVjuZcNu41iZzdbCvUYRV7M2mWRh1eNdDY9nIQurlXWNxUoWVhZXPXm1irg/ALEGuvIqs3VdXRb2rpr+KCoqQsuWLZVJLwki1fHWHYcgXHDSSSehWbNmEEpqIC7ZBVT5LK/7aiSxmuXDWphIrF72NRazkmIhXLtIvNmTaKvjYi0+0U7a5E42nrDrdsAtZF+jmyR4RmS5d5hJYr2BR84vmZSXV4Nj2pJXg++SrQdKSZBY29cpg+ypLXk1imNnKRaD99Mw6xqLwT0idryrEYIk6UqsXsmwHkZZWKOsayxGZcRCsX7WNRZfWe0BQxLef/99AJGhVrR0DpEukMASaUMwGMQFF1wAABDnbIJgc+IIvZJi3fJhLWSJDcSLrFn2VY1hSbFe6bBum3Qk1mL2NTqUhsRazb5GBdKRWJPSYb02pVs21rDj7KSjTBLrjDSdcTjl5dXg2I4yrxrfKa+VDfPMujrKvGpIrC15ldGab8HJ5FEaWVgrWde4Y2vcb8xKhrXQysKalQxroVVGLBQHImXDDiZPHl3aFzt27EBhYSHOOOMM+wEIwqOQwBJpxdChQ9GyZUsIJTVosmCD/QAxJcWWs68xMZgoRGVjrWZfY3E9S7HSJg2JtSvCSigb42INA8VM7mSxdNioXZE49rKv8c3yhmxodqDdZHk81iH3PCSv5nihbFjVBldlw6rvFvdJ1ZzAa+kvlXjymmlYd7ImK6jeW9PxrkbE3LucyKsWdrKusaizsG5KhtVZWFlcncjrtn8K8O677wIALr/8cmRkOF+qhyC8hgfuPgTBj2AwiKuuugoAkLNhFYQaizXEMcgSayv7GosqG8tEwXHHSl1SDEEwHvtq2B7VuFhBcL/On9xZsJt9jQpSO7mTIDheIiEOl2sqAh6XWDeQxFqD5NUcL8iriqSOeTWCp8SC07UoHOYz3jUcdi6uakIh6+NdjaiusTze1QihosZ2ybAWYrXkKOsai5yFdZp1lbkvqzn279+P9u3b45RTTnEeiCA8iLfuQATBgSFDhuCAAw6AEA4ha8s/juNI/lqRdfMtkbOxIlx1ZpWSYrcdUHlsEKfJOyByGhfL47WhtoPOuQNZ3ygd6jR7XUBdOaNbseIVR4GXeHrsgQHj9ZDIi3jsvfYUAp/1XXlco5U4PNrjEy2PdzVEhO2SYS0kP6eJmkLu5VWsqMDHH38MALj66qtp7CuRdqRfj4ho8IiiiGuvvRYAkLl9LcSKEkdxAiUMGSWsTkCdtqeGwVclRQTURcdYqJEgVIdc37CFsBTJ4goC4LY0WWK1nREXN34mgYWlSIfGZXuUDrpL2fPS+DclA8Mhs8wzI+hWGGP3dRqLV5w4SGKNcVHuzxW5HW4/r9rvl+uMJ4/vaaQhteE4ZIRFAcxlxY0inW7j1A4ZYTbXc43D7wMEAUJltaswzB+RYH+Js2otGckfEeCcHe7eH7EGECSg4B9397BLwxIqKyvRs2dPDBgwwFUsgvAiJLBEWtK3b1/069cPAmPIW/0nxCr7nQAxVFc+HBnT6uzJqiAxCLWix0QhcsN00EkS5DGrcrZSFJ2JrCJ5tXH8fkfiyJhqrKkgRDombjt/ssQ6FVl1Z6+2PDmt4NU5dolaErlmPgnCKjFj5h2fg0zi973iEYfXdUuO43quguiKHccPQHyiIq+RQA7fK79PkVcAjh+kML+oyCsACCFncSS/AMkfeYgrMGtL6mghj3MVat/eYKmz9zlnk4iCFXswffp0CIKAW2+9la7PRFqSZr07goggCAJuueUWBINB+Mt2I3PnZojuHtSCyQJq41sj1jD4KlRPZOWlbWxmY5XsqxJYqBNZGzcnJfsa0x5H2VjNSYZsZmPl7KsaeVyUzfbodqxsdgY9mX1V47TDneDxmHY6SXrb2u1o8YqjC2VhjamvLKzece1+XgbL1diGl7xqhnYwq7LGPcZ2FlZv0ie7cXSWTbOdhZXFNbbqwmYWVhHXmDh2s7CyuMa+z9m77L0/srgKLr+WOZtEBMrCOLh6M4DIpJbdu3d3F5QgPAoJLJG2tG7dGpdeeikAIGPbMvjLqhEoZZZENlDCkKExnT1gLxurZF/j/mBPYgW9GYPtSqyu5NmT2Kjsq1YsLuNibUos76Vn6hnTTrSdDjPn0mEnf7O6jVX55BXHFJJYY5ItsQbHs7VWtcn3x5bEJlBeHcXhsl63/jhVW+eO4ZrfNt43ddY1FhvnoDrrGoudLKwir7ExGOCrtBYnNusaS95aa+dEziYxIq/lDHee0Bbr169HQUGBMqElQaQjqderIwgbnH/++WjXrh3EcBUydqyAGAL8leYSqy4f1sJJNjYOlyXFCm5LilXtsVxSbNYZt9KR1Mq+xmJRYi11qCx0EL2UfbVEkkuK3QpqsuWUJNaYlJNYC8ex9Jnz/N4kSV4tXZssyKulLKyVSZasxDGSV7k9ZlnY2JJhh8SWDDtFXTLsBitZVytlxLK4BsoZhOoyvPPOOwCA66+/Hvn5+a7aSBBehgSWSGuCwSBuu+22yO9F6+Ar2wVBikis1WysETwk1iwbG1c+rIWFkuK48mGD9hhlYw2zr7GxkjUu1qoYpEgmlmv2px6WcuEhjokuM7YNSWz9YkeSjT4rG8LJtQpC/yDuY8hxOI93NcLwvIkd72oYyOA91CkZ1sKojFivZFjzkKX6cfRKhu0ihviUC8vyCgBgDMfm7UJFRQX69OlDy+YQaU9q9OYIwgWHH344hg4dCgDI2PY7EK6BIEE3G2tUPqyFXklx3PhXIwyysbrlw1oYZWPtdFSdjovVixV7w7eSfVVjMC7WdgdcZ5KUlMu+qtHrBCapdNjK9k5Ekpd8ksQmgURmYW3G1i0lTsHMa/QhtYaj2J+sSTMLqzfe1QitOFbF1Qy7WVeNc8RJ1lWoiX9NTrKuWuNgxVCtvNo4dbTKiNVZV5lA0Vr8+eefyMrKwt133w3RY+s0EwRv6AwnGgTXX389WrVqBbGmAhk7lyv/rpWNNSsf1kKrpFh3/KseDid4isPhBE967YkrKXbS+U7kuFinMuDRbKzjZTwSWE7sdokbXsvt8Fy2xzFpKLGeLiV2GDPu8/aSvLqYaZjFzrTOYy1ui1nXuLbEnjcO5TWqjJhjybDreyCcZV21xsHK4mpHXoHoMuKczSJyNotR4goAQnUp8vetAhDp67Ru3dreQQgiBfFmD44gOJOdnY177rkHgiAgsG8DfKU7lL8ZZWPt4ma5nboGcR4bKwjWyod12qLOxlouH9aLxbOkGBw63rzWWuQE1zUoOYmWW/HjVU6cyLJk29RDWXai8WQpsVsh5rCGctx3koe88sBlybCShXUor1HYKRnWbEzte2qjZFgLuYzYU2NdHWRdtcjZLCJQxhAoi/meMglHZW1HVVUVDj/8cJx11lnuDkQQKQIJLNFg6NOnD84991wAQMbW3yHUVEb9Xc7G+isYxJDzzpySjXVz31PEk2mWNFlG5JTVldvDqyzJrTDaLXUzwqOZWCIxkMSmCByyuVzXv+SxXqxH5BWofW94yCuvzDaHrCvAR1595TX8xro6yLqqCZZKirxqcX3fAixfvhzZ2dm46667qHSYaDDQmU40KK655hp06dIlMivx1kVx40IFCRDDgBB2J7G+Kgn+8rC9cadayONf3dyQ1eXEbm7IjIFJkqvyN3WbXHUuJQmQJHvLZujBJPx/e/cdH0d55w/8M7NFWlnN2MaWO8YVY7DB2AGDMRhsMDW0hBA6IQklhfxyJH4d7QKBu0BC5wgXyCsQA0cI+EKJOQgEA+424HPDvcpGcpHVVrs78/z+mJ3R7GrblC0jfd6vl16SdnaeeXZ2V5rPfp95RpIl59XPUuNSVbkkK3NUmkrs4NmN164xOsPp3zwXwqtbf6eMv70O948kSY7/zkh+PyS/394IITNZ1j6odfB/RcgyhCxrI5Yc0I8fKr7OMvliFsEWFXI0RdU1ztfyNV566SUAwL/8y79gwIABjrZH5CWl9d+GKM/Kyspw3333IRQKwd/WiGDj+tR3FNo/IV9EtRVkJUV0/hN0PMzV4fmsigopZh4u5tY5tu6EWFeGqLo1XNbrITb5OWGITakkqrAl9lpzvE/cDK8uVF+FEJ2vfzfON3XCpfBqcDIk2vw8Ozi/2JUh/X5/5y+5XJYnlfhoHBHfP1K7vfOAhEuvX0kRgABg4XqwyYItqhFe024nGsbAlnUQQuDCCy/EmWeeabPHRN7EAEs9ztChQ/Gzn/0MABBs3ABfa0PqOwoAqvNqrNaWhZmE07EbYpO37UY1FrAXYoVIPFCJh+GihdgUB4LFCrF5264qXAmyDLFp2HneGF7TcxhehRCJ4dVuO+lm/LXCjdEqSPO3wcbjy9t55DHrlcaE8GpXPLgK2VkodyO8ah9ax8OrA3pwzTiRpBA4rfprHDx4ECNGjMDtt9/ubKNEHsQASz3SrFmzcP755wMAyncvhxRtS39nh9XYxLZyX1+KKl2v/+q0GpvcVq4H0qqa+hNyPcQWckhxmr5IkgTJjUmi4NFKbLbngCG2i6KE2BJ7bXW38Jr2AxsLf6Ncqby6dL5r2r9FVq5nm6liaqHymbYNC/vLGDKcStRCEDZVXe3ShwynEjiceyXXXHW1K5eqq+57kyqwcuVKlJeX47777kNZWZn9DRN5FAMs9Vg//vGPMXLkSEhKB8p3LQHUGPztAoHWFAcGpmqs4yCbYzVWUuOf6HZZkIcQm8OBQNrw4tUhxVkOAAsZYgu2LYbYLgoaYhle03MrvDqUNbzm8ncu3+FVl8Pjzfoc57Df8zJkOJVcwnTSkGG7MlZdVeQ0eaIbVVdzcE0XXssPdj5H/qadePnllwEAd955J4YNG2Z/40QexgBLPVZZWRkeeOAB1NTUwBduQtmeVZCjAlKmcOr2sGIn3Aqybg8pTnfwljx8OF0bxRxSnNyOVyZ3snLAzBCbP5leKyX2OuqR4TXL+6RUKq85/93J9iFcIS89lWEYccaqqxWphgxblKnqaoVbVdesw4UB+Dq05XL7QVQ3rgYAfPe738XMmTPtb5zI4xhgqUerq6vD/fffD5/Ph0DzbsjNX+W2olvDip2eG5stxJoncMqlrRKb4KmLdEOZU5DceDx6W3kMH0UJyAyxCVy93IoH9MjwmqkNVVgLr+n+vuXrfFerbVitmKb5m2qpjTT7z63gaqXqmm4ip1I519XKcGFju7EwhrWuRSQSwcknn4wbb7zRfgeIugEGWOrxjj/+eNxxxx0AAP/h9UC0PrcVS2mSp3RB1mq7xZzgKUUbToeuGesnPx4bs3iWbCXW7n5miE2Q16HEJfTa6fHhNen9UrIzDecqqf+2nt+k56FgQ4ZzYafqmvR43Ki6JgTXAlRdE4gYTgrsQENDA4YOHYq77roLPp/PfieIugEGWCIAF1xwAS699FLtl/AqIHYg95WLNMlTF/k6N9ZC1TOBGxM8leCQYjcVPRQzxCbIS4gt9nNsUlKV5hKpvNqm/13L50zDuTB9GFfQIcOZ2nAyZFifyKkQ57rmqNCTNCUQKqYd04S1a9eiqqoKDz74ICorK+13hKibYIAlirv11ltxyimnAFCB8DJAac595SJM8pSWOcg6ORgxtWE7pJiH8Nq9zl+8HddCrMMDIrfOiy16eKWUXA2xJfQcu/K43Kq+Fju8SrL3znfN1IZbFVOnbSiq86qrqpbMua6FmqQpLSGAttX47LPPEAwG8dBDD2HIkCH2O0PUjTDAEsX5/X7ce++9GD9+PCCiQPsSQG231ogeZFXn14NzxK1KbLwtVw6QXJqZ08lBtPEYSuBcNdeGLjpVKv2gnqHY4RWwdQpByZJk56MgZNnx8wI3hrT6fK5UXd343+dG1dXXodgLrrrwRkiRHZAkCXfffTcmTJhgvzNE3QwDLJFJeXk5HnroIQwdOhQQYaBtCSByvx6cmSRE8YMs4N6QYjj4hN483M6NvjitBLlxji66SRXVhepPd9KdhkSbufK4nIYcwJ0qrpPXbDy8dov3rv43zEmgl2Xn/yN8PucjDkrknE5JCEgO3yu+DgW+DsXR8yIf3gYpvAGAdsm/6dOnO+oTUXfDAEuUpKamBg8//DD69OkDiBagdalWkbVK1SoFkiiREOvG5XbgQmBhiDU4rsK6VdUm8gDHIbybVV4dczO8Om3DDQ7/zzkNrgA6g6uj8LoDUP8PAHDVVVfhkksucdwvou6GRz9EKQwYMAAPP/wwqqurAXEIaF0KKWKvEquH2G5RjTWFWEdB1o2JTyTJGHJmmxsTTcHZeWxFHUrM6muC7lp91Xm5Ctul71ZfuynCqyersG787YxPkOTo/4HP5zy86m24wWFwLYWqq79Vga95F2T8H4QQuPjii3HzzTc76hdRd8UAS5TG0UcfjUceeUSb8U8cBDqWw9cegRy1cQBnqsYWPci6NbkTCliNVUX6g28L1diUbbh17VrYPyC2fB1KbWO2tkWpdffwqvPi43TUZ6GWdOXVlevPwsI+0oNrir/dObdRSkOGHfw/cz242gyv/lYF/lYFiOyFJL6EoiiYM2cOfvKTn3S7DwmJ3MIjIKIMxowZg4cffhihUAgCB6DGVkCOROEPK46DbElUY50GWRSwGpup8uNmNdahog4ptoLVV7KrgFXYjKEq22u4hIOrZdn+NmX725FL1TXb81pKVdduMFxYD65yVAUiX0MOrIaiKDjrrLPw85//HLKb11wm6mb47iDK4phjjsFvfvMblJeXQ2A/FHUlEI3BF1XThlglKEMty3A5gVKpxgL5r8aqAlBzuIROKZwb6+KQYrtKZnbiHsSLVUknSmYocQZCZBh1kVMDufWv5IcRuzVk2OkHljlWXUUslrkNN3hkuHC0Jph2mR5c5agKVXwNOfAFotEopk+fjrlz58JXIpNaEZUqBliiHBx33HF46KGHOkMslkMoWohNVY0VsgThz/JPtrsNK0aGamyuocytc2OdhlgXqrF5PS+2yMOHu1P1taeF15KS5n3a0yZrSvt+L4WJmqxWXVM9dyVQdS3GcGE10LWvCVVXAKqoB3yd4fWee+6B3+m1dIl6AAZYohydcMIJeOSRR9CrVy8IHISCZRBKBFJMpA2yOUkTZNWAD2qwwP/IvHZubKa+eHxIcV4rsaVedaK8K9UqrOV+Jb+WPRZe0yqViZpK6VxXu6vaeK3HKjurp26e5yqbRm6pYjeErA0bPvvss3HvvfciEAjYap+op2GAJbJgwoQJePTRR1FTUwOBJsSwFEJ0ACpcDbIQACQAviIEjVI6N9Ypjw8pLsXhxKy+dh8l8fhN789iVV5LahhxqQ0ZdrK+h6uualDrez6CKwAoYgcUrIaqqjj//PMxd+5cVl6JLGCAJbJozJgxeOKJJ7TrxKIFMSyBEG3aQlOQFZKU+TzYdBKqsQ4P6Pw+CL/NgwiXqrGO6AdzTg6k4iHW9sGxi0OK7egyQ7Hjg1tnz0tJhB4XdJfHUXQuVWEdPR+y1D0qrw7f20KI0rk8jhtsPg4RChb9sjjR6kDK4CqEgCI2QsVaAMBll12Gn//85zznlcgiBlgiG4YPH44nn3wSAwYMANCGGBZDFU2dd1ABWVEhKaoWRK3SP/FVoR0g2v1n7EY11WF4lHwy4Pc7H7bqcEbGUqgcunJerNMD9RKs6vZIfB40qur8wwTuy86/r07+zsmysyHDkgTJ6RBY/X+W3cehh3i7m48qkKLOqq5yJAY5KrrOjSFUKPg/qNgMALj22mtx++23l8T/JiKvYYAlsmnQoEF45plnMHr0aAARKFgKVXzdeQcVkGIqpKgCOaLYC7J+GSLg0/4pO5qR04Vqrl16CHYahoHO87rs9AEOQ6xLw4kBe9XYhHXcCLEODvq9Xr0smf47DV4uBLeingsbX8/2+9Lh69isWMOInXyoZZAlZ6ds2P27aqZv20kl0cnf5/j/OFv/Z/XNRxVAVaGG7IVwORyDHI5BinW9QoEQMShYCYHdkGUZP/vZz3DjjTcyvBLZxABL5ECfPn3w+OOPY+rUqQAUKFgJRewwlouATwugqr0gKyR0HlgI4awaq7dRTHqItRPgzAdoTj5hd3puLlD068UCcGfIZA8MsSXRb/N+t/sc6Ot5tfrodOhx8uMu8szcdrgRXPXwar8NF4KrK6eLOAuvkmo/vHZWXVVAkqAGrIVwORIPrqoKSVWhVCRePkeIDhw9ZicEGlFWVoYHHngAF110ka2+EpHGe3/xiUpMRUUFHnzwQcyZMwcAoGItFLFBu46hLEHoBynxAOqoImtqx3YYtVqNlSRtCLBbJMlxkAXguGpg+aAvDwfMroTYIg4pLokw6DVuBE6XQ2vBq7Buh1cPSvnet/JeLnbV1c3gam4nYOF/jcOqa0JwtfGaNIJrTAuuRrf85onJDqNP/7XYsGEDampq8Nhjj2HatGm2+ktEnSTBIxAiVwgh8Mc//hEvvPACAEBCP/hwPHwRQA5Hu64Q/8ct/HJnyE1BEoDUEdX+0aa8Q5YDCSGAaAxSNM0F5nM5CFFVIJLiMeRIqCqgpOm/yGEYoFBT3sf485XLwUea7ef8JzBdH12aPCbbjMNZw24RJ3fyyjC4kvh3l+55znX/O10/DVeew1wCUYb3ak7PT6b3icP3YqFm/c74Xs7lfZyp6prLEN4Mz5MUzGH4bIbXilRWln39DO2IUA7rx18nqYKrCJVpo54ybVb/X5ritaj2KstagZUj2v9SKZb69RarLtfaEvsQDK1He3s7Bg0ahP/4j//AkCFDMrZNRLlhBZbIJZIk4frrr8fdd9+NYDAIgQbEsAhqIAyR6nqupopspk+QE4YRp7xDlopqLgG3mAf2Ra7GunK5nzxXY3Oq1LISW/oy7eMiVxUL8hzmu/JapJnCrbTvaBtOhwyXatU1V6aKa7r/mTmF13QV1xyGD8uReMU1TXhVKoLxmYY3Q8EqtLe3Y/LkyXj22WcZXolcxABL5LKzzjoLTz75JPr16wegFVFpCRTfgfQrCFH8YcV6G8ViHlZseVX3zo11pFSGFDvRjUNs0fuX76HDpTCsNlNA7eHDhktioiYnihlcAXfPc7VBjsSM8JqJ6hNQ8AVUbAQAXHrppfiP//gPVFdX29ouEaXGIcREedLY2Ii77roLa9asASDBHz0a/vaBkJBp+FjqYcVZhxGnaceQbRhxqvXNhABiSvphwNkIAaHkeL6mMSzY9KcpzRDirquaJ8dJ2paFvqf8s5jrgZMLQ4qThzJaPvjlcOIuivqvzspBd7p9n0sbLlQQHT9/qYKShdDg6L0HlOQwYkvv3+T3rmxxBvXkIcQWg2uXIcQWXg9SIJB+e7m0E/B3vW55huHCyVINH840XDhZquHD2YYLm8UqYhg2Zi82bdoEn8+Hn/zkJ5ysiShPGGCJ8qijowOPPPII/v73vwMAZKUfgq2jISHLRBUpgqwcUSB1WDwP1RxkozFIVs9jNR905PM82JQrCFshVls1xbmxFsN3lz+NVg9sXQyytqo3DLGGov+bs/raSd73bgTgHLl+LqzFilex33duBljH71s7w4XNAdZqeE2+XrfFbac8/9VCGwnnv1oIrjq1uqJzsxaCq7aChFhNyPjVSnAFgGjFIZTXbEJLSwtqa2tx3333YdKkSbltm4gsY4AlyjMhBObPn48nnngC0WgUklqOYNt4yGpl9pVNQRaSZK0Km9wOYK0Km7xuoQMskFiNtRBgtVWTqrH6MGtLm3d4uROXQqyj4YdOgmw3CbGeqb7qihhgARersDaGaxb7PedWgLX9ntXfr3bCqyzHT8WwOR+AXn21+fx3CbAW2zECrI2ZhfXqq+XgGqdXX60GVwEVseBWxMp2AgCOPfZY3HffffFTiIgoXxhgiQpk3bp1uPvuu7Fv3z5AyAiER8IfrcttZb2SGlMh2R3GK0lATLFehTVzMIzYVoA1VhbaujYOLhOqsXb7nstMyWlXdmeWYkd6cIj1XHjV6fvdjQBskSsB1sE5r8V8v7kRYB194BSvoNp6Dnw+Z/MABAOOznU1AqydNgJ+CJ/WdzvnuarVFY7OcVXj127NNbgCgJA6EClfC9XfBAC4/PLL8cMf/hB+Ny87R0QpMcASFVBTUxMeeOABLF68GADgi/RHIDwy+5BinQrtenN237YxxXoF1kxRgZj99R2FWMVpAHWwbfTgEFvsMOSQZwOsE0WuwgohbK/v6H0GFD3AOg2vjt4vgRwugZOGJElALpfQSbd+IJDbJXxSEQIiVOZoEkNRUW47vAqfD/BZ2++Kbz96DdqFgwcPIhQK4Re/+AXOOOMMW9snIusYYIkKTFVVzJs3D//1X/8FVVW1IcXt4yAruc1SKMVUIBrTPuX2WQwlqtACrN3qiMMACyEg7K6vH9g6DbE2hhIbbSgODo57cIgFihdkHf2L0w+o7T7+Ys6cW6QPHvT9bWd9I7wK1d5rVaiOhtwXNbwifg6qXTarr8bzFPA7q76Wl9tbUX9/lgVtrysCfuv/CwFtRJEkQYRy37aAgmjZFijB3QCAESNG4N/+7d8wdOhQ69snItt4GR2iApNlGd/97nfx+OOPo3///hByGB0VnyMa3A6BHA6ghICkxK9jZzVQyZI2TMvutV99sv1P2Z2yeZmdztVN54bZHWZXrHNRi82FIFaMz0pd26bqsCroJUW6lFJCeLXbRrzvdoJoscOr47+rVidsSr4kT6E/YDL/DwrYCO7m15rd8Grxw0xVbsXgSfVGeL300kvx7LPPMrwSFQErsERF1NzcjN/+9rf44IMPAAByrAaB9rGQRfpPs6Vo52zEQpY6z4/N9Z948nmwVg9cijmM2M0qrM7OxE5FHOLoWJHOhzU2X8ADZcf/3lI9z1b2QbFDr9Xny9xfi5MIpdrXua6fNrxaea3Gq6+dq1qcQMjLQ4ctVl+7bMtp9dXK8OFU70kr1dcU64tyC+vHlC7tiF6Zq8cCAkqgHnLNdnR0dKC2tha//OUvcfLJJ+e+XSJyFQMsUZEJIbBgwQL87ne/Q3t7OyB8CIRHwhftn/KaseYAa7Qhx6uLuYTYdBM55XoAU8xhxPH14eA8XiHSBGAr16rsqUOJAU+F2LwEWCD3feClAJvcVwsBNt1+zmX9jJXXXF+nSeG1c/Uc++/locNAzue+pn0+HJz7ClgYPpzu/ZhrgE2zfs4BVq+6Jq+fIcAKKYxI+Qao/oMAgJNOOgm//OUv0bdv39y2SUR5wQBLVCJ2796N+++/H2vWrAEAyNEjEAyPhiQSL02QKsACFqqxmWYizuWA1WmARQlWYc1yCLKer8ICPSLE5i3A6rLtB68E2DSV5pwDaBrZ1s86bDiX12ia8NrZRJY+lMDQ4XxXXzO2X4jqa7b3YbYAm2X9rAFWUTOeNpMqwAoIKP69KOu3Gy0tLQgGg7j55ptx2WWXQXYw0zMRuYMBlqiExGIxvPrqq3j++ecRjUYB4Y9XY480qrHpAqwuazVWn8gpUwDMdkDj4HI6WidLtAprliXIOqrCAgyxyH+IzXuABTLvBy8E2Ex9zBJic9m/6dbP+ZzXTK/RLOFVWz1D/4sdXpHf6mtO7698Vl9zef8F/OkDeA7rZ53AKU3VNaGNpACrXR7nK6j+/QCAY445Br/85S8xbNiwrP0hosJggCUqQVu3bsWDDz6I9evXAwDkaB8Ew6MgibKsARbIoRqb6/Vg0x0AlcIw4nxWYc3SBFnHVViAIRb5C7Gu/GvrzgE2x8eWMYDmINX6liZsSvf6zCG8djaRog/Fvt4rkLfqa85tOqy+AmkCrJX3Xrrqa45tpK2+6h8w5jKiJh5gtarrPpQfuRvNzc0IBAK4/vrr8e1vf5vXdiUqMQywRCUqFovhlVdewfPPP49YLBY/N3YEfB11kKO5Xc81bZDNNcACqQ9wij2MGChMFdYsxYFQtxhKDBQ9xALuB9mCBVhdqv1Q7AALOOtXigBrdb+mXN/qbMPJr08L4VVbPakP3SG8Al2qr5bbc1p9TTV82Or7LjnAWly/S4C1EFz17Qu/DFVqQ7T8K6j+QwCA0aNHY+7cuRgxYoSl/hBRYTDAEpW4LVu24KGHHuqsxsaqEWw5Gr42C9euSx5WbCXA6pIPjkphGHGhqrDJTAdH3WIoMdDtQmzBAyzQdT+UYoC1GMrNz4ndfaq3YftSOebXpsXw2tmE6XF0h6HDpuqrrfeN29VXO68N8/Bhm6+thACrX17OArVXELHgTshVuxGJRBAMBnHdddex6kpU4hhgiTxAURS8+eab+P3vfx+fqVhCoKUOgeZBkHK8nHNCNVYI6wFWpx/0FHsYcbwNx1VYuyEWAFS1+wwlBrpViC1KgNXp+6LUAqyd/sRDrJP9aazv5Dqvkmw7vGqrx0N0CYRXt4YOO2rDYfUViAdYJ++zsqCz9REPsFarrnFKoBmR2m0QvlYAwIknnoif/exnGDx4sKM+EVH+McASecjXX3+Nxx57DAsXLgQASLEyBJuGw99Rm3MbIn4AJtn4tDqBKoo/jBjQDl4ctGF5KHEyhthOJRRiCzKBkxfIkvPH4sbz6iS8xrkx9NeJkgivAKSgheuepuJG9dXvz/3ar+k4DdGSBOH3Wb+WtxRFtGonlF4NEEKgpqYGt956K2bPnl3Q61QTkX0MsEQetHDhQjz66KNoaGgAAPjCtQg2DYOs5Hg9PkD75DumODs4dRgeS6EKCwBCyT5TZUYMsV05vTamzQNJ1/6ldYcAK9TiPpcuhFag+MFVVxLnvfp8kIodHAFIZWXZ75SJP/vlfzKKKRBl1h6HgEAs9DVCQ/bj8OHDAIDZs2fj1ltvRW1trf2+EFHBMcASeVRbWxuef/55vP7661AUpXNYcctASCKHAxxV1QKsfkBl5+DMaYCFi1VYodoOHY6rsIAWYot4PqxQhTsVIl0JhFjAepDtFgHW/Dqw+zw4bSN5favPZTy86uHT7muz24RXuHDeK0qg+irJkHxy8aqvsfjfaSGyX//VRAk0I1K9FSLQBgAYMWIEfvKTn2DixIn2+kFERcUAS+Rx27Ztw+OPP47ly5cDACQlgGDTMPjCRxjXjk1JD7A6O0HWfB6s3YMit6qw5gBq46DXy1VY80F+Tw+xng+wyc+/1ecg1evHjTasBJak8Kp1wfrroDuF125TfZVkSC5UcC33wxRcdbkEWCFHEKnaASXUCACorKzEjTfeiIsuuoiTNBF5GAMsUTcghMAnn3yCJ554Anv37gUAyB2VCB4eBl+0MvVKyQFWZzXIJs9GbOMgzdUqrJnFA2CvhtjkA/2eHGI9G2DTPedW9n8+28g1OKUIr53dsPBBBMNr1zachtdSqb5aGT6cIrjqMgVYISmIVdTDf+R+tLe3Q5IknHfeebj55ps5XJioG2CAJepGOjo68Morr+Cll15CR0cHAMDXfgSCh4ekPj9WUTpncEyWa5BNNxuxlQOlfFRhzXI8GHZtKHEBQ2y6A/2eGmI9GWAzPde57Ptsr5Vcn79s/cj2HGYIr1oTOX4IwfDatS9Ohw4D3qq+ZgiuAICAH8LX9XUtIKCEGlA1ogn79+8HAIwfPx633347jjnmGLs9JqISwwBL1A19/fXX+MMf/oC///3v2gG9kOBv7Y9g8yBIwjRsKl0V1ixbkM12OZ1cDt7cCLB6XzIdhOdwYOy4Cgu4cz4skDWYZDvQL7kQC+Q1yLr676wQISqXDymy7fdCtQGkr7yZJmty+prsVuEV7pz3WhLVV6AwATZbcI1LVX1VgocQqdphnOc6cOBAfP/738eMGTM4uzBRN8MAS9SNbdq0Cc888wyWLVum3aD6EGweBH9rf+36sbkEWF2mIJs8jDjT+mm4Mow41wpqloPkkhlKDGQMF7kc7PekEOupAJtraEy3z62eK+1GO6lCVJaqa9dupH/uu1t4LZmhw4A71dd8Dh/OMbjqzAFW8bcgWrUTalkTAKCqqgrXXnstLr74YgTdqFwTUclhgCXqAZYuXYqnn34aW7ZsAaBN9BRoHgR/Sx9IMYt/AiSpawDJVoVNXj+VQlVhk6U4aC6pocRAysdj5WDf1RCrNehsfRf7Yw4Inhg+7EbwtDNbdXI7dtswP3cWw2tnM4nPf6kEV123Gzpc6tXXmPUPDEV5EKq/DdHKXVDKDwAA/H4/LrnkElxzzTWorq523lciKlkMsEQ9hKIoWLBgAV544QXs27cPACDFyhBoqoO/uXfmGYuTJVdjrQTY5DZMXKnC6v2xeoCedBDt2lDiPJwPa+eAvyeE2JIOsE6uh6rvazfacNqOXoGzGV61rpg+dGB4zdxOqQwddqP6CiQGWItVV51aHkOkZg/Uiv0QQkCSJMyaNQvXX389Bg4c6LyPRFTyGGCJephIJIK33noLf/rTn3DggPbJtRQtQ/DgQPjaau0FWUAbjmwnfJrbcKsK66SCajqgLsUQ6+SAv+RCLOBqkHWN26HKSWAEtP3sRhsu98Xpa5HhNUs7pTB0GHCv+ur3Jb63rAZXXwTRmr0QvQ9q1z4HMH36dNx444046qijnPePiDyDAZaohwqHw3jjjTcwb948NDVp5w5JkXIEmwbA12qxIgs4C42AFmSF0CY/cnqQDdirwiZTRclN6uT0oL8kQyzgTpBVhTvtKIo7j8uN17FLhCpcee5LLXS6paQmbQoE3AnBblRfEX9MTsO0ogCBgK2/paq/A9GavUDvJsTiH3BOmTIFN910E8aOHeusX0TkSQywRD1ca2sr/vKXv+DVV19FS0sLAK0iGzg0AP7WI3IPsoqiDQFG7tfsTEUI0Tkc2cnBlxBA1FTNtXuAqrpTFRaK4tr5sCVVhdUadba+UHO7TEsm5n3itB09eLrxuBxyI3jqrxdX2tGfK2cNId4h5204bcdoonSqr66c9ypLgBthGoBUVmZ/5fiHmkIISAFrVVzVH0a0di9ETZNRcZ00aRKuv/56TJw40X6fiMjzGGCJCADQ3NyMv/71r3jttddw+PBhAIAUDSLQNAD+liO0WYsziVdghaIaAcLuwZxQVEA1VXPttKMP202uCls9UFWFO5M6ofghNi/hNXED9tZLDjR2+pkqXDlpx8zp47LJafBMfo04bsdp8Ey1P6y2lW6fOgixJRNeZdl5O/pj8fmKW301BVcAkOTcz6FVA+2I1O6FWnnIWH/KlCm45pprcNxxx1nvCxF1OwywRJSgra0Nb775Jl599VUcPHgQACDFAggcPhL+5r6QRIaDEEWBMF+Wx2aQTajCmlk9IEsXYpP6l1U3CbF5D7DaRqzdP12osdLX5ICV3A+rbbkVkmwGWKfBM9PrwlZbbgR6N/Zppv1pM8B2m/BqfhwuhVfARvU1Kbga7eRQfVWCrYjW7IXSq8m4bdq0abj66qtxzDHHWOsHEXVrDLBElFI4HMbf/vY3vPzyy2hsbNRuVGUEmvvCf/hIyEqKYW7JAVZnI8h2qcImy7Wt5KHEqeRyEOvxEFuQ8Nq5sdzvmy3Y5PjcuNJOtraS28zGYoBN91xaee6yvR5ybatL1bVrQzn3yZX9mcu+tBhiPR9e0/XfraHDVqqvaYKr0VaaACsgoISaEK35Gmp5/BQWScLpp5+Oq6++GqNGjbLecSLq9hhgiSijjo4O/O///i9eeeUV7NixQ7tRSPC39oa/6Uj4ohWddzYPI07FdMCV7WAtbRU2WbaDvmxV2GSZDmpdOh8WcDfEat/cq7q5JlugyDWUZOt/ttCZazU2l/Caqs10cmzLjdDp5gcZKauuXRvKvjG39qWVDwJyDLElE14BQJatTf6Uqe+FrL6a/qZmOpRMNXxYSCpilfsRrf4aItABQLuO68yZM3HVVVdh+PDhtvtNRN0fAywR5URVVSxevBgvv/wyvvjiC+N2X3sVAk39IYertAmf0lVhk+VQlc1ahU2Wri2rIdbUvwQuVmEBF0MskLYaW7Tw2tmB9MusBpx0jyXX4OlWO6naTCWHttwInlaGkufUjhvB0639aGcYdoZ+ufZ+cDG85tRWLv12M7xmqr5mqbZ2actUfRVyFNHqBkSrGgGf9mFgZWUlLrroIlxyySXo16+fs44TUY/AAEtElq1duxavvvoq/vnPf0LVZx6OlCNwuB/8Lb0hxZD7ZWMyBNmcq7DJUh3E5TKUOB3zwaPHQmzRA6zWia632Q0myY/HSehK1ZbdiZcsPkY3zl+2Oxt12rZKKXQ6mQArTb88GV6t9NmlocNAmuqrxeAKdFZflWAbYlUNkPs0IxKJAAAGDBiAK664AnPmzEFFRUWWloiIOjHAEpFte/bswWuvvYa3334b4XBYu1GV4T98BPwHekOOWpgAJM3wYstV2GR6W3aqsKnIkmdCbEmEVzNzsHAaFPXHZjd0pgqyTgJsqnZTtOVG6HTzWsCWq65dG+v82a1958b1c5NCrKfCq52+5qv6muMw4VQEVKi1rYhWNUAtbzVuHzt2LK688kqcdtpp8LsYuomo52CAJSLHmpub8e677+KNN97A7t27jdvl1koEDh4BubUq9+vJAglVWdtV2HTcCLFxpRxiS5ZbIcWt4ORm5S+5XVNbboROp22kbKuUQqfb4n3zRHh10kcXwysQr77aqLbqVH8EsZoDiFUfBPyxeBd9OP3003HJJZdgwoQJ7uxHIuqxGGCJyDWqqmL58uX461//ikWLFnVeAzASgP/QEfAf7g1JsTFZiaJoFVRXOule6ATcDbFQ1dyHXmdTioGilMXDjlAUVyvXboVO1/WE14ckl3Z4datvblUxhQBkHySfbKPaKqCGWhGr3Q/UtEKJ/03s27cvLrzwQpx//vno27evO/0koh6PAZaI8mLPnj1488038fbbb6O5uVm7UUjwtVTBf6g35LZKa1VZoboXYt2sdqKEQyxQkkFFqMK1YOFmW3p7gDtVu5ILr/l4LQjhavXPFaVWeZVNVX6fFhBd47T6av6bKvssh2rhiyJWfRCx6oMQwYhx+6RJk/DNb34Tp556KocJE5HrGGCJKK/C4TA++OADzJ8/H+vXrzdul6IB+Jpq4W/qDTmW4pqyyYQKmIOd04NTF0OsqwEW6NYh1u1JpsztudmWG22WTIDNV3A1K5UQ62bVNT5pmK3wKqeZSCqY+nqotjgJr/rzp79GZSnnSq6AgNKrGUr1AaCmzai2hkIhzJ49G9/85jdx1FFH2esXEVEOGGCJqGA2b96Mt956C++9956pKgvIbZXwH+oNX0sVJGS5NEdysLN7sFrKQ4mBbhli0wU6t0Oi3fbcvpZu0QNsvp7zdIcNxQ6xxQ6vaUKrwe3qq9XKpvl5S35t+rpeqzWZGugwqq36ua0AcOyxx+K8887DGWecwdmEiaggGGCJqOA6OjqwcOFCvPXWW1i5cmXngpgP/uYa+A7XQg6Hug4xThVgzawevJbyUGKg24XYbIHOavgodHtW2yxqgC1E1TVZMQNsscJrttCqK9bQ4UyhVZeh+ipkBUplE2LVB6GG2ozbe/fujdmzZ2POnDkYPny4hY4TETnHAEtERbVnzx68/fbbePfdd9HY2GjcLkWC8B+uhe9wTeLleLKFWF2uB7M9LcQCRQmyuYY5twNiPgNntraLEmALXXVNVugQ6/b5rrmE11xDq67Q4TWX0JrQXmL1VUgqlIpmKFWHoPRqBmStDVmWMXXqVJx33nk45ZRTeG4rERUNAywRlYRYLIYVK1bgvffew8KFCzuvKwtAbg/Bd7gW/uYaSDE5twBrlu3g1gMhFoCnq7Fuh0OrbbrdXi5tFzTAFju46goZYPNQdQWQ5tqsNgNoocKr1dCqi1dfBQTU8jYo1YcQq2wCfJ1/v4YPH45Zs2Zh9uzZ6Nevn4POExG5gwGWiEpOW1sbFi5ciPfeew8rVqyAGg9wEICvtQq+w9XwNVVAUjOfs5VSugPeUg+xgGeHFDsJcm6Hw0yBx41rtbrZXk5KJbiaFSLE5nvIsN3Aapbv8Go3tOqrQ0BURBGr0aqtIhA1lvXt2xdnnXUWzj77bIwcOZLXbSWiksIAS0QlrbGxER988AHee+89bNy4sXOBKsHX0gu+w1XwNVc6D7MuT+oEeCTEAnkNsm6FOLfDYT7Dpt52XgNsKQZXs3wFnnwOGXYjtOrcDq+Adp6qG6G1vAOx6mYo1c0QZZ2XvunVqxdOP/10nH322Zg4cSJ8WSZ1IiIqFgZYIvKMrVu34v3338dHH32EnTt3di5wI8wCWihwOXQIRXEvFOg8FGLdDnGSLHkvbLoh39Vyt1+jeQiwktuBSg+vbrfrZnjVX5e++DVaHYXWw/HQ2llpDQaDmDJlCs4++2yccsopKCsry9ASEVFpYIAlIs8RQmDLli348MMP8dFHH2HHjh2dC81htqUXJMXqpSa8E2K1tks7yJZ8MNQJ1ajulRQGV/eGC5ufX/1811IMr8nvGVmy/NrUzmkNQ6mJV1qDiaF16tSpOOOMM3DyySejV69ezvpLRFRgDLBE5GkZw6wA5LYQfM2V8DVXQY4Ec2zUIyEW8Ew1tuSDrPkxl0KQZXDVmnUSMNM8j5JPdne4sM5JeM10iZscX49CUqH2aoNS1QKlqgUi0Hmt1rKyMpx88smYMWMGvvGNb/B6rUTkaQywRNRt6GH2o48+wieffILNmzcnLJc6gvAdroSvuRJye4rrzJq5fe4qPBZigZ4TZNM9zkIH2UJMquWR4Gq76prlOSuZ8Jrr+yBLgBe+mBFYlcpW45I3ABAKhfCNb3wDZ5xxBqZOnYpQKJR7/4iIShgDLBF1W/X19fjss8/w6aefYtWqVVDMoTTmi1dme8HX2qvrebN5qMICHgyxQPcPsrk8vnyGWQZXU7sWgqvV5yQf57sCuYdXq6/5FNVXAQFR1gGlqhVKVTPUUBjmz+GOPPJITJs2DdOmTcPEiRMRDOY46oSIyEMYYImoR2hpacGSJUvw6aefYvHixWhpaelcqA81bukFuaUX5HC5Vp31YIjV2vdGNVZrtgT+BVl5bG4F2UJdh9crwRU5DBe2u+/zdb4rkDm8Onltm8Kr8ClQerVCqWyFWtmaMDQYAMaOHYtp06bhlFNO4SVviKhHYIAloh4nFovhiy++wKeffoqlS5cmnjcLaNXZll7aV3MIUtT9A18hhBY4WY2NN1vEf0V2H5OdQMXgmqLtNFVXNz4syGPVFUBieHXpNSxkQK3oMAJrcpW1rKwMkyZNMkJrv379XNkuEZFXMMASUY9XX1+PpUuXYunSpVixYgXa2toSlkvtZfA1V8DXGoLcGoKkujec1JPVWKD7BFk3Hke2oFWo0Ap4N7i6PUS7EFVXtwIrBERZFEqvNqhV7VAq2wBf4mvmqKOOwtSpUzFlyhRMmDCBl7shoh6NAZaIyCQWi+H//u//sHTpUixZsgQbN25MvIMA5LZyyC0h+ForILeWQxLODr7zFmKB/FZjAe8HWbf7bw5iXq22AoUJrnk6rzhvEzUBWnh1uG8EBEQwCrWyHUqvdqiVbRCBxEnjqqqqMHnyZEydOhUnnXQSq6xERCYMsEREGezfvx8rVqzAypUrsXLlSuzduzfxDqoEua0cvpYQ5JYKyO1llgNtXocTA/mvxgLenOipkJXRfPBYcDWqofmaEEuWtHCZr/Aq2R+OrAb0wNoGtbIdIph4HmsgEMD48eMxadIkTJ06FWPGjIEvH9VjIqJugAGWiMiCPXv2YNWqVVi1ahVWrlyJxsbGxDuoEuT2MsitIfhayyG3hSAp2Q9E8x5iEa/0eiQUFqQCywCrMYfWPFSQ8x5ckeeqK2ApvAoIiPIIlIp2qL3CUHt1Daw+nw/HHHMMJk2ahEmTJuHYY4/lsGAiohwxwBIR2SSEwK5du4zq7Oeff46DBw92uZ8UDkJuLdfOoW0LQYr4U16DthAhFqoa305pB1lWX3Pk5LUiZTn/1Ok+yvNQYcA0iVIRw6uQVKgVWlBVeoWhVoS7nMPq8/kwZswYI7BOmDCB12UlIrKJAZaIyCV6oF29erXx1WWGYwCI+uBrK9fOpW0r14Ydx69Da4RY7Zf8dbaEgyyrrxZYfY2kq7ambd/GfupGwVXbVmd4Nc5frQhDreiAWtEONdSB5M+jQqEQxo8fj2OPPRYTJkzA+PHjUVFRkb++EhH1IAywRER5dOjQoYRAu2HDBsRiicMJIQCpIwi5rQxyuxZqpfYgJEXkN8SiQMOKgZyDEMOrDdleI1ZDa5f2c9xfBQiuQAGGCwNG1VX1x+JhNQw1pIXW5OoqAPTr1w8TJkwwvkaMGAG/35/fPhIR9VAMsEREBdTR0YH169dj7dq1WL9+PdatW9d1YigAUCVI7fFQ2xaE3BaEFA44nvE4pUJVY4GMYcizMw8XW/K/8eSJmNwIlJn2WSGDK5CX8CoggIACNRSBWhGB6BWBWhHuMjswAASDQYwaNQpjx47F+PHjMWHCBPTv39/1PhERUWoMsERERXbw4EEjzK5btw7r169HU1NT1zsKQAoHtDDbHg+27cGcJonKSSGHFUuyEYoKeu3X7hZe08lHmDTvu3j7hQiubs8urE2yFIUaikBURKCGOqCGIkCg62vD5/Nh+PDhGDduHMaOHYuxY8eyukpEVGQMsEREJUYIgfr6eiPMbtq0CZs2bUodagFIER+ktjLI4YBWtQ0HnFVri1CRLWiINW23W8l3kEQ8sBZoW06Dq4AA/ArUUBSiPKJVV0MRiFAUkLu+3mRZxtChQzFy5EiMHTsW48aNw6hRo1BeXu70kRARkYsYYImIPEAIgYaGBmzatAkbN240vu/ZsyfNCoDUoQVZuT2gzYQcDkIK+3MPtkUaWlzwMJu0fU8pZGgt1PYsDhU2hv+Wx4NqeRQipH2HP/XzGgqFMHLkSIwcORKjRo3CyJEjcdRRR/FSNkREHsAAS0TkYS0tLdi8eTM2bdqELVu2YNu2bdi6dStaWlpSr2AOth1+088BIOpLeXmfggZZgGE2k0JUPlH40Aoga8VVSCpEeQyiLAq1LApRFtWGAmcIqpIkYeDAgRg+fDiOPvpoI7DW1dVBzvdEUERElBcMsERE3YwQAvv37zfC7LZt27IHW0CbOCocgNThhxwPtlJHAHLEr4VbVRQ2yALFD7Mp+lFw3Tm0AgnBVUgqRJkppJoCK4JdJ1TS+Xw+DBo0CMOGDcPw4cMxfPhwHHXUURgyZAirqkRE3QwDLBFRD2EOtrt27cLOnTuN7/X19VCU9AEBKiBF/NpXhx9Shw9S2Bf/2Q9E5dTVW1cfgJr0azcMtAUMjgmBtUDbFrIKEVS0kFquAGUKRLkCNRiDCMaAFLP+mlVXV2Pw4MHG15AhQzB8+HAMGTIEwWAw7/0nIqLiY4AlIiLEYjHU19cnBFv9q6GhIXO4BbTqbYcPUsQHRLTvUjT+PeKDFMlDyC2lQNvZCWv370aB1QinQQUIKhABxfhdD62pZvpNVllZmRBSzV/V1dWu9pmIiLyHAZaIiDKKxWJoaGjA3r17sXfvXtTX16O+vt74ubGxEaqaQ3AT0MKtHmyjsjY0OSprt8V8WsiN+gBFsh52Sy3QprjsTCG5EViFpE2QJPyqdk3UgArhVyAC8d9NARW+3PZ3r169UFdXhwEDBnT5qqurQ2VlpTakmIiIKAUGWCIiciQajaKhocEIsw0NDV2+HzhwILeQq1MBxDrDLWIyJEXWvsck43cpJicsg2oKvimqoUUPtXnSJaxqNxo/CkkAPhXCr5q+C+27X4Xwxb8nBVX4re2viooK9O3bF/369UPfvn2NryOPPNIIqVVVVU4fLhER9WAMsERElHexWAwHDx40Qm1jYyMOHTqEAwcO4ODBgzh06JDxPeNEU9moAJR4kFVkrZKrStptigRJkeLLpM77qRKEoq0rCW05VAkQknab6WcIPRwDgKR9j/8XzVYxFjD9u5XiX/ptMgBJALLQNiFrP2u3ASL+s+SL/ywLLYDKWjCFD1oINW6PB1Sfvtz+v3qfz4fa2lr07t0btbW1xs+9e/c2gqr+vaKiwvZ2iIiIcsEAS0REJSUSiSQE2gMHDqC5uTnh6/Dhw2hpaUn4Pet5uoUgkBBqO4Oq6XsRVVRUoKqqyviqrKxM+K4HVHNI5ZBeIiIqJQywRETkeUIItLe3o7m5GW1tbWhvbze+61/pbo9Go4hGo4hEIsaX/rv59nwHZFmWEQgEEAgEEAwGjZ+Tfw8Gg6ioqEAoFEr4Ki8vN37Wl5eXlxvhtFevXvD7/Xl9DERERPnGAEtERJQDVVUtfUmSdn1TWZaNL/138+2SJMHn8zFcEhER5YABloiIiIiIiDyh8PP6ExEREREREdnAAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7gL3YHiIiKRQiBcDhc7G4QEVlSXl4OSZKK3Q0ioqJggCWiHiscDmP27NnF7gYRkSULFixAKBQqdjeIiIqCQ4iJiIiIiIjIE1iBJSICEFx6JKBIkGQJkGTjO2QJiA/Vk2RZ+1mKf5clSFL8c0D9fvHb9XW63Ka3aV6GzuVCX082Lddv1z9yTL5NkiD00YRS/HdZ+6XzdgmQYKwj4r8D0O6jtyHpj6WzveTl5jaFfh85xTLz/ROWmW9L7keaddIsB2D0Id22Eu6fph9d1kGK9busIxL6kdyesRzJy0XnfdB5387HKIxlUpf7C2MdKX5753e9PQFJEgkvL7197ansXC5D+xnG7YAcX64t05o0bjN919rr/N38BWhta7+jcxk6tyVLqnGbdl8VAOCTOn+XpcRlsiRMywV8UI3t+STVtJ4KX3xb+s/ad9VYT29Phoivq8KXsEy7v08SkKDCF/9df2za79DWQ+f2pHgbPqOP8f5B2xc+CMhA/Gcp3h7gkyTIkOBD/LukL5MhQUI04sOl3xsAIqKejgGWiAjQwquqHShC6vxuTgYS9ODamdYkPVUmJKH48vhaiclG7pquJNO6qdJTxtuRZjmM0Jrwc/J3Y3XJ1GxyIE5entwm4kE6zbJ03U3Zj1zWyWFX2W3TtPuyh16XA2zy8qRlyQG28/bk9kSXZXpITb1cmG433yZStCkS1tEDbPJX2mVGqDQFW1PQNZahc7ke/PRlWoBVjQCoL9MCYPy7JMEHfR3tZ+27lBActbYAnwTje+d62s8plxm/6wFYmAKz9nO2AJuqPRmIh2Ltd22Zfn/Tc0hE1INxCDERERERERF5AgMsEREREREReQIDLBEREREREXkCAywRERERERF5AgMsEREREREReQIDLBEREREREXkCAywRERERERF5Aq8DS0QEAD4BAVW7+KOEpO/GBRmTrqOafJ1V/Ut0rpNwe5plpguRijQXN011e+dt+tU1kfi7MN+u3VdAAgQS2hPmdeLrdZXmNmFalHAtUsnc/QzXX5XS3J60Trrl2ZZlajPT7fq3jOukup5riuVd+pjmOrDoup7U5f6d95PM13g1vUxhXHfV/PJKcx1YOLsOrIivL5K+9GUifi1cY1m8/6okAEnt3A7ivyP+eJC4XMSXifi29baBzu2Zb5dN29J/Tv6u9UN7W5u/q/GHLMd/VuMv0dTXgZUgQ7u+rL5Mit/uQ+e1ZAEk/C4bP0um9jrbkiHBJ+nLJEiQEI2keg8SEfU8DLBERAAiU74udhfyQyR9tyEp1xEZ9PipZrtjydITPgekERF5Bf9iExERERERkSdIQggHn8sTEXmXEALhcLiofQiHw7jooosAAPPnz0d5eXlR+9PdcX8XFvd3fpSXl0OSOCaCiHomDiEmoh5LkiSEQqFid8NQXl5eUv3p7ri/C4v7m4iI3MAhxEREREREROQJDLBERERERETkCQywRERERERE5AkMsEREREREROQJnIWYiIiIiIiIPIEVWCIiIiIiIvIEBlgiIiIiIiLyBAZYIiIiIiIi8gQGWCIiIiIiIvIEBlgiIiIiIiLyBAZYIiIiIiIi8gQGWCIiIiIiIvIEBlgiIiIiIiLyBH+xO0BE5HVNTU349NNPsWLFCnz11VfYt28fFEVBbW0txowZg3POOQfTp0+31fa7776LBx98MOv9fvvb32Ly5Mm2tuE1hdgnu3fvxrx587Bs2TIcOHAAoVAIo0ePxgUXXIAZM2bYatOrrLx2J02ahMcee8xS+88//zz++Mc/Zr3fvHnzMHjwYEttExFR98MAS0Tk0MUXXwxFUYzfg8Eg/H4/Ghoa0NDQgE8++QRTp07Fr371K5SXl9vahizLqK2tTbs8EAjYatfL8rVPFi1ahHvuuQfhcBgA0KtXLzQ3N2PZsmVYtmwZ5syZgzvvvBOSJNlq32uOOOKIjMtjsRgOHz4MABg7dqzt7fj9flRXV6dd7vP5bLdNRETdBwMsEZFDiqJg3LhxOPfcczFlyhQMHDgQAFBfX48//elPePvtt7FkyRI8/PDD+Nd//Vdb2zjyyCPx3//932522/PysU/27NmDe++9F+FwGBMmTMAvfvELDBkyBG1tbXjllVfwxz/+Ee+88w6GDh2K73znO65uu1S9+eabGZe/8sorePrppwEA5513nu3tHHvssXj88cdtr09ERD0Dz4ElInLo0UcfxbPPPouLL77YCK8AUFdXhzvvvBMXXnghAOC9997Dvn37itVNysHzzz+P9vZ2HHHEEXjooYcwZMgQAEBFRQVuuOEGXHDBBQCAF198Ec3NzcXsasl4++23AQDHHXcchg4dWuTeEBFRd8cAS0Tk0AknnJBxubkqtWHDhnx3h2xqb2/HP//5TwDasPCqqqou9/nud78LAGhtbcXChQsL2r9StHr1amzfvh2As+orERFRrhhgiYjyLBgMGj+rqlrEnlAmq1evRkdHBwBg6tSpKe9TV1eHYcOGAQCWLVtWsL6VKr36WllZiTPOOKPIvSEiop6A58ASEeXZ559/bvw8YsQIW20cOnQIN910E3bu3AlFUdCnTx8ce+yxOP/88zFp0iSXeuotbu+TLVu2GD9nep5GjBiB7du3Y+vWrbb63V20tbXhww8/BADMnDnT9gRluq1bt+Laa6/Fnj17IMsy+vbti+OPPx4XX3wxRo8e7UaXiYioG2AFlogoj5qbm/HSSy8BcHaOYDgcxldffQW/3w8hBOrr6/G///u/+PGPf4yHHnoIsVjMzW57gtv7pLGxEQBQVVWFsrKytPfr27cvAGD//v32O98N/OMf/0B7ezsA4Pzzz3fcXlNTE7Zv346ysjJEIhHs3LkTb731Fr73ve/hueeec9w+ERF1D6zAEhHliaqqeOCBB7B//34Eg0H89Kc/tdxGnz59cN111+H000/HkCFDEAwGoSgK1q5dixdeeAHLly/HO++8g/LycvzkJz9x/0GUoHztEz2MZask6svb2tpsP4bu4K233gIAjBw5EmPGjLHdzuDBg/HDH/4Qp556Kurq6uD3+xGNRrFq1So899xz2LBhA1588UVUVVXh29/+tlvdJyIij2IFlogoTx5//HF89tlnAICf/vSnOProoy23MWXKFNxwww04+uijjXNpfT4fJkyYgIcffhinnnoqAO1SJzt37nSv8yWM+6T4tm7dirVr1wJwPnnTrFmzcOWVV2LIkCHw+7XP1QOBAKZMmYInn3zSuLbsCy+8gJaWFmcdJyIiz2OAJSLKg6eeegp//etfAQC33XZbXmZolWUZt9xyCwCt2quH5Z7MyT4JhUIAtKHJmejLKyoqbPbS+/TqazAYxKxZs/K2nbKyMtx8880AtAr5ihUr8rYtIiLyBgZYIiKXPfPMM3j11VcBALfccguuuOKKvG1r8ODBqKmpAQDs2bMnb9vxErv7RD+3tbm52ZiNOBX9XNk+ffo46KV3RaNRvPfeewCA008/PeXlhtw0fvx442e+xomIiAGWiMhFTz/9NF5++WUAwA9/+EOes+ch5pmHzTMSJ9OXHXXUUXnvUyn65JNP0NTUBMCdyZuIiIisYIAlInLJU089hVdeeQWAFl6vvPLKvG9z9+7dRpioq6vL+/a8wO4+mTBhgjH78NKlS1PeZ+/evdi+fTsA4KSTTnLYU2/Shw8PGjQIEydOzPv29HNtAb7GiYiIAZaIyBVPPfVUwrBhN8KrECLr8qeffhqAdu7nKaec4nibpS6f+yQUCuH0008HoE0AlWrCoHnz5gHQzn897bTTcm67u9i3b59xHup5550HSZIctZft+YxEIsYldEKhEE488URH2yMiIu9jgCUicsh8zuttt91madjwu+++i+nTp2P69OlYtWpVwrK9e/fi5ptvxvz587Fnzx7jYF9VVaxZswY///nPsXDhQgDAhRdeaPsas17idJ/8+te/NvZ3KjfccANCoRD279+PX/ziF8Ysxu3t7fjjH/+I+fPnAwCuueaavJ/7WYrefvttqKoKn8+Hc845J6d1nn/+eWOf19fXJyz74osv8NOf/hQLFizA119/bdwei8WwYsUK3HbbbUYF9tprr+2R+5yIiBLxOrBERA7s27fPOOdVlmXMmzfPqNKl8q1vfctSdXb9+vVYv349AG3G11AohPb2dkQiEeM+c+bMwY9+9CObj8B78rlPBg4ciHvvvRf33HMPvvzyS1x11VWorKxEe3s7FEUx2i7E8PBSo6oq3n33XQDAN77xDWPSKyeEEFixYoVR1S0rK0N5eTlaW1sRi8UAaO+rq666Ct/5znccb4+IiLyPAZaIyAFVVRN+PnDgQMb7t7e359z2EUccgR//+MdYs2YNNm3ahEOHDqG5uRnBYBBDhw7Fsccei/POOw8TJkyw3X+vKcQ+Ofnkk/HCCy9g3rx5WLZsGQ4cOIDKykqMGjUKF154IWbMmOHeA/KQ5cuXY9++fQDcm7xpxIgRuOWWW7BmzRps2bIFTU1NaGlpQXl5OYYPH47jjjsOF1xwga1rKBMRUfckiWwnoBARERERERGVAJ4DS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESe4C92B4iIiIhyEQ6H8fnnn2PDhg346quv8NVXX2Hfvn0AgOuuuw433HBDkXuYu/r6enzrW9/Ker+rr74a3/ve9wrQIyIib2CAJSIiIk9Yt24d/uVf/qXY3XBdTU0NfD5fymUVFRUF7g0RUWljgCUiIk947LHH8Prrr+P444/HE088UezuUJFUVVXh6KOPxpo1axCNRlFZWYmWlpZid8uR3//+96irqyt2N4iIPIEBloiom2ttbcXGjRuxfv16bNiwARs2bMDu3bshhAAAvPrqq3k7eBZC4LLLLkNDQwOuuuoqfP/737fVzsaNG/Hmm28CAG6++WYXe1hcW7ZswdKlS7F69Wps2bIF+/fvh6IoRkg7+eSTcc4556CysrLYXS0Jxx13HN5++20AwIsvvojnnnsObW1tRe4VEREVEgMsEVE396Mf/QgbN24syrbXr1+PhoYGAMBpp51mu51nnnkGiqJg6tSpmDBhglvdK6of/ehH+Pzzz1MuO3DgAA4cOIBly5bhpZdewty5czFlypTCdrAEmYfZXnbZZXjttddw6NAhS21s2bIFr7/+OlauXInGxkbIsoy6ujpMmzYNl19+OWpra93tNBERuYoBloiom9MrrQBQWVmJUaNGYfv27Thw4EDet71w4UIAQL9+/TBu3DhbbXz55ZdYvnw5AOCqq65yrW/Fpgf7qqoqnHbaaZg4cSIGDhyIsrIy1NfX491338WiRYtw4MABzJ07F4888giOP/74Ive6dIRCIVx66aX4wx/+AACIRqNZ15k3bx5+//vfQ1VVAEB5eTlisRi2bNmCLVu24J133sG///u/Y/To0XntOxER2ccAS0TUzc2ZMwe1tbUYM2YMBg8eDEmS8KMf/aigAXbatGmQJMlWGy+//DIAoK6urlsFuMGDB+Oaa67BzJkzEQwGE5aNGTMGM2bMwJ///Gc8++yziEQieOSRR/CnP/2pSL0tTbNmzTICbLZRBm+99Rb+8z//E6FQCN/97ncxZ84c9OnTB4qiYNOmTXjmmWewcuVK/PKXv8SLL75Y0MmT7r33XuzatQvt7e2orq7G6NGjMXPmTMycORN+Pw/ViIjMeB1YIqJu7rLLLsNZZ52FIUOG2A6RduzcuRPbt28HYH/4cENDAxYtWgQAmD17dkH7n2+/+c1vcO6553YJr2ZXXXUVRo0aBQDYtm0bNm/eXKjueUJdXR0CgQAAYMOGDWnv19bWhqeffhoA8Ktf/QpXX301+vTpA0AbljxmzBg8/PDDGDNmDBoaGvDWW2/lv/Mm69atg6Io8Pv9OHDgABYvXowHHngAt956KxobGwvaFyKiUseP9YiIKC8+/vhjANqw5UmTJtlq4/333zeGe5555pk5rROLxfCPf/wDn3zyCdavX49Dhw5BURTU1tZixIgRmDx5Ms466ywjwOimT58OADjnnHMwd+5c7NixA3/5y1+wbNkyNDY2olevXhg9ejS+853vYOLEicZ6HR0dePfdd7FgwQLs2rUL4XAYAwcOxNlnn43LL78cZWVlth677oQTTjCqizt37sTRRx9tu61t27Zh/vz5+OKLL1BfX49wOIzKykpUVVWhrq4OJ554Ik499VQMHTrUVvuxWAzvvfcePvzwQ2zZsgVNTU2QJAnV1dWora3FuHHjMHnyZEybNs0Inrrk/b9t2za88cYbWL58ORobG9He3o4HHnigy4choVAI0WgUTU1NWL9+PcaOHdulX//85z/R0tKCUaNGpT2X2O/3Y+bMmdiwYQOWLVuGK664wtY+yFUwGMTFF1+MM888E6NHjzYqvjt37sRrr72G+fPnY926dbjzzjvx7LPPshJLRBTHv4ZERJQX+vDhk08+2fbB92effQZAO0902LBhWe+/adMm3H333di1a1eXZQ0NDWhoaMCSJUuwefNmzJ07N207H330EX79618jHA4bt3V0dGDx4sVYsmQJ/t//+3+44IIL0NjYiLlz52L9+vUJ62/duhW///3vsXjxYjzyyCOOQmwsFjN+lmX7A6fmz5+PRx99FIqiJNze1NSEpqYm7Nq1C8uWLcPmzZtx1113WW7/0KFD+NnPfpZyKK++7zdu3Ij/+Z//wbx58zB48OC0bb377rt45JFHEIlEsm7XHIQ/++yzlAF29erVAIDt27fj4osvTttWR0cHAGDv3r0Jt9fX1+Nb3/pW1r6k853vfAc/+MEPEm7r06cP7rjjji73HTJkCO644w4MGjQITz31FDZu3IgFCxbgvPPOs719IqLuhAGWiIhc19jYiHXr1gGwP3w4EolgzZo1AIBx48ZlHT68ceNG3HbbbWhvbwcATJo0CbNmzcKwYcMQCASwf/9+rF271qgMp7N582b84x//QO/evXHzzTcb216xYgVefPFFhMNh/O53v8PEiRNx//33Y9OmTbj44otx6qmnora2Frt378af/vQnbN68GV9++SXmzZuH66+/3tY+AICVK1caPx911FG22tiyZYsRXqurq3HBBRdg4sSJqK2thaIo2L9/PzZs2IDFixfbHqb96KOPGuH1xBNPxKxZs1BXV4devXqhtbUV27dvxxdffGEMCU9nw4YNeP/991FdXY3LL78cEyZMQCAQwLZt2zBgwIAu9zd/OLJy5UrccMMNXe6jD8ONRCI5nfutB9liuvzyy/GXv/wFLO4d6QAAC4VJREFU+/btw8KFCxlgiYjiGGCJiMh1n3zyCYQQCAaDmDp1qq02Nm/ebFQfx4wZk/G+sVgMd999txFef/zjH+PSSy/tcr9TTjkFN910E/bt25e2rY0bN2LUqFF49NFHUVVVZdx+zDHHYPDgwbjnnnsQi8Vw22234fDhw/jNb36DyZMnG/cbPXo0TjrpJFxzzTVobGzEm2++iWuuuSbhEjC5+vjjj7F161YAWogfMmSI5TYA4MMPPzQqr7/73e+M82rNTjvtNNx0001oamqy3H5HR4fxwcBpp52G+++/v0sQnjhxIi666CK0t7dnrCRv3boVgwcPxpNPPokjjjjCuD3dLNbm7Xz11VdQVbVL++Zh6Pfee6+lxwYA/fv3x//8z/9YXk9XXl5ueR1ZljFu3Djs27cP9fX1trdNRNTdMMASEZHr9OHDkydPRigUstWGeRiwOcik8v7772P37t0AtFmXU4VXs/79+2dc/otf/CIhvOpmzJiBfv36oaGhAQcPHsTll1+eEF51lZWVOPfcc/Hiiy/i4MGD2LZtm+VzVxsbG/Hb3/4WgBbSfvjDH1pa30yvOuqXUcqkpqbGcvvNzc3Ghw0TJ07MWMXN5fVwxx13ZH3OUwmHw2hsbMSRRx6ZcLveVqYPLjKRZZnXhyUiKhGchZiIiFzV0tKCVatWAbA/fBgA9u/fb/xcXV2d8b56YAaAK6+80vY2AW2YbrqQJ0lSwrJZs2albcd8vz179ljqQzgcxty5c43gmTxxlFX9+vUDoD03H374oe120qmpqTFmU/7ggw/Q1tZmu61+/fql/FAgV+bXjW7ChAkAtOHJXpnVV1VVYxh+XV1dkXtDRFQ6GGCJiMhVixYtQiwWg8/nw7Rp02y3Yz4PMVU11Oyrr74CoFXacpnsKZNs65v7kmm2XvP9rAS6aDSKf/3XfzUmhjr11FNx00035bx+KrNmzTImkrrnnntw66234s9//jO+/PJLY9i1E4FAAOeccw4AYO3atbjiiivwm9/8Bh988IHl8O5klmUACRNv6WbMmIHKykrEYjE89dRTEEKkXV9VVTQ3NzvqQy4y9QGAcf4roL0GiIhIwyHERETkKr0aeuyxxzoadmk+ZzTbbLSHDh0C0FlpdCLb+Yrm4bGZhsOaz8PUz8HMJhaL4a677sLSpUsBAFOmTMG9995r6/xZs4EDB+Khhx7Cr3/9azQ0NGD16tXGzLw+nw9jx47F9OnTcf7552f9sCCd22+/HZFIBAsWLMDhw4fxt7/9DX/7298AaB8sTJkyBXPmzMlaSc5WbW9ubk6YSTl534bDYRw6dAjBYNC4NE1VVRVuv/12PPjgg/jggw/Q0tKC66+/HmPHjoUsy1BVFTt27MDixYvx1ltv4ZprrslYXXfD7bffjpNOOgmnnHIKjjrqKGMyqt27d+Mvf/kL/vrXvwLQAr3+4QARETHAEhGRiyKRCJYsWQLA2fBhQDtfU3f48GFHbXlBLBbDPffcY1w6aPLkyXjggQeMoblOnXjiiXj55Zfx6aefYsmSJfjyyy+xa9cuKIqCNWvWYM2aNfjzn/+Mu+++O+21UjMpKyvD3LlzcfXVV+Mf//gHVq1ahXXr1qG9vR0HDhzA3//+d/z973/H9OnTcdddd6W9tFC2SwXdeOONXS5zY3bnnXcC6LyerO7cc89FJBLB448/jiVLlmDJkiUIBoMIhUJobW1NuFxRIXz99df4wx/+gD/84Q/w+Xzo1asXotFoQkX8mGOOwf33389rwBIRmfAvIhERuWb58uXGAbjTAGu+ZEq2AFtbW4t9+/Z55vzGZHp41avXJ5xwAh588EFH149NJRgM4owzzsAZZ5wBQKtcr1ixAgsWLMDixYtx+PBh3HXXXZg3bx769OljaxtDhgzBtddei2uvvRaKomDjxo347LPPMH/+fBw8eBAff/wxnnvuOdx2221uPrScXHTRRZgyZQreeOMNLF++HPX19WhpaUFFRQUGDRqE8ePHY9q0aTjhhBPy3pdbbrkFK1aswPr167F//37jNd6/f3+MHj0aZ555JmbMmOG4+k5E1N0wwBIRkWv0ADZq1CjHE8+Yr3m6Y8eOjPcdM2YM9u3bh/3792PHjh0Zz00tNcnhddKkSXjooYdcD6+p1NbWYubMmZg5cyZ++9vf4s0330R7ezs++eQTXHTRRY7b14cnjx07Fueeey6uvfZahMNhvP/++7YD7H//9393ue3KK6/E7t27UVdXh1dffTXj+nV1dbjllltsbdtNM2bMwIwZM4rdDSIiz+EkTkRE5ApVVfHpp58CcGfSmf79+6Nv374AYMzGms706dONn+fNm+d424USi8Vw7733GuF14sSJ+Pd//3db1w11yjxsWD+n2E11dXXGdWztXGs2nUOHDhmXUBo/frxr7RIRUWligCUiIlesXr3aCD7mQOmEHqq2b9+O1tbWtPc788wzjXD0zjvv4PXXX8/Yrt3rgbopFovh3/7t3/Dxxx8DyG94/ec//5k1lOrnLgPAoEGDLLW/Z88eLF++PON96uvrsX37dgDapFJuWbt2rfHzN77xDdfaJSKi0sQhxERE3dyuXbuMGWd1+vVFAeCjjz5KmC04FArZGtqoVxEHDhzo+FIoujPOOAPvvPMOVFXF8uXLcfrpp6e8n9/vx3333Ydbb70V7e3teOyxx/Dxxx9j9uzZGDZsGAKBAPbv34/169fjo48+wpgxYxIm+CmGX/3qV/joo48AaIHxBz/4Aerr6zOu07t3b/Tu3dvytl5//XX86le/woknnogTTzwRw4cPR01NDaLRKPbt24f333/fqJ4PGDDA8uWP9u3bhzvuuAMDBw7EtGnTMG7cOPTv3x9lZWVoamrC2rVr8eabbxqzSV966aWWH0M6y5YtA6Cd33vyySe71i4REZUmBlgiom5u9erVePDBB9Muf+aZZxJ+HzBggKMA6+Y1KydPnox+/fqhoaEBCxYsSBtgAWDkyJF44okncPfdd2PPnj1YtWoVVq1alfK+Y8aMca2Pdn344YfGz7t378YPfvCDrOtcd911uOGGG2xtLxKJYNGiRVi0aFHa+wwaNAgPPvhgxssDZbJnzx689tpraZfLsowrr7wS3/zmN221nywWi+GDDz4AoFX97V4CiIiIvIMBloiIHNu0aZNRPXQ6+7CZz+fDJZdcgmeffRaLFy/GoUOHMl5bdvTo0XjppZewYMECLFy4EBs3bjTOt+zduzeOPvponHTSSTjrrLNc66MX3HPPPVi6dCm++OILbNmyBQcOHDCGFNfU1GDkyJE47bTTMGvWLFuX7TnuuOPw5JNPYvny5Vi7di327duHgwcPorW1FeXl5Rg4cCCOO+44nH/++a5V5wEYrwkAuOyyy1xrl4iISpckhBDF7gQREXnbCy+8gBdeeAG9e/fGG2+8kfVanla0tLTg29/+Ng4fPozvf//7uOqqq1xrm7ztzjvvxKJFi3DiiSfid7/7XbG7Q0REBcBJnIiIyDF9+PApp5ziangFgMrKSiO0vvLKK2hra3O1ffKmtWvXYtGiRZAkCTfffHOxu0NERAXCAEtERI5Eo1GcdtppuO6663DJJZfkZRuXXnopBg8ejKamppTXAaWe57nnngMAzJ49G+PGjStyb4iIqFA4hJiIiDxh3bp1WLRoESorK3HFFVcUuztURC0tLXjttdcghMAll1yS8bxoIiLqXhhgiYiIiIiIyBM4hJiIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDzh/wMqAgWFcVhh2AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5gURfrHv9UzszmQlpyjIp6ioqIoBsyncD9UPDF7BkwY7ox3nunMYlYUA5gAw8EZQFRUlBwEBARBcs5pd9ndme76/THbvT0zHSr07s4u9XmefVh2uqtrOtan37eqCKWUQqFQKBQKhUKhUCgUijRHq+0KKBQKhUKhUCgUCoVCwYISWIVCoVAoFAqFQqFQ1AmUwCoUCoVCoVAoFAqFok6gBFahUCgUCoVCoVAoFHUCJbAKhUKhUCgUCoVCoagTKIFVKBQKhUKhUCgUCkWdQAmsQqFQKBQKhUKhUCjqBEpgFQqFQqFQKBQKhUJRJ1ACq1AoFAqFQqFQKBSKOoESWIVCoVAoFAqFQqFQ1AmUwCoUCoVCoVAoFAqFok6gBFahUCgUCoVCoVAoFHUCJbAKhUKhUCgUCoVCoagTKIFVKBQKhUKhUCgUCkWdIBCBXbNmDQghIITgqquuCqLIg5JTTjnF2o8KhULhxlVXXWXdK9asWVPb1bEYOXKkVa+RI0fWdnUUAVNcXIzWrVuDEILnnnuutqujqCP8+OOP1n3hoYcequ3qKBRpQ31u9z/22GMghKBjx44oKysLvPwai8COHDkSDz300EF18xo/frz1nffs2VPb1VFU8tBDD1k3DJYfVkFYvHgxbr31VhxyyCHIy8tDYWEhDj/8cNx7771Yu3Zt9X4phUJxUPHTTz/h2muvxWGHHYaCggJEIhE0atQIxxxzDG6//Xb8+uuvgW/zsccew8aNG9GsWTMMGTLEcZlffvkFr732Gq655hr06tUL7du3R15eHrKystCiRQucfvrpePLJJ7Flyxbm7W7ZsgX//ve/cfzxx6Nx48bIzMxE69atcdZZZ+Gdd95BLBZjLmv37t0YNmwY+vXrh+bNmyMzMxM5OTlo27Ytzj//fLz99ttMja3Nmzfjiy++wEMPPYQ///nPaNGihfXMaN++PXN9RPj6668xaNAgtGvXDllZWWjatClOPPFEPP/88ygpKfFc1y6TPD/V/Z2qm/PPP9/6Lm+//Tb3+uvWrUMoFAIhBI0aNZJukO/duxevvvoqzjzzTLRt2xZZWVlo3Lgxunfvjr/+9a8YMWIEdu3a5bju7t278b///Q///Oc/cfbZZ6N79+5o2rQpIpEICgsLcdhhh+Gqq67C119/zVWnkpISDBs2DCeeeCKaNm2KrKwstGvXDoMGDcKkSZO4yvr5559x1VVXoUuXLsjLy0NeXh66du2K66+/HrNmzeIqywt7AI3lx8tB7DLJ81OXX9bOmzfP+h7t2rUDpZS7jL/97W9WGU899ZT199tuuw0NGzbE6tWr8cwzzwRZ7Tg0AFavXk0BUAD0yiuvdFymb9++1jIHC1deeaX1nVevXu27/MG4j2qDf//739Z+ZvlhOXbPPPMMjUQirmXk5+fT0aNHV/+XUxwU8N5baop3333Xqte7775b29Wpl5SWltKLL77Y976laRodOnQo1XU9kO1u2LCBZmVlUQB02LBhrss1a9aM6b6al5dH33jjDd/tvvfeezQnJ8ezrJ49e9KVK1f6ljVx4kRaVFTkW7cOHTrQefPmuZbz+eefe67frl0737qIUFZWRi+55BLPbXfq1IkuXLjQtYwffviB6/ln/px66qnC9bZv89///rdwOTJ89tlnVh369OnDvf4jjzxirX/TTTdJ1WXMmDFM18m4ceMc13/99deZj9vJJ59MN2/e7FunX375hXbs2NGzrMGDB9Py8nLPcoqLi33PUUJIYPcmu3+w/Hidf/Y2OM/PlClThOufDu3+ww8/3KrDd999x7VuSUkJzc/PpwBoKBSimzZtSvjcvG7y8/Pp9u3bg6w2DSMA2rdvL2TtikR+/PHH2q7CQcejjz6KHj16eC7TtGlTz8+HDx+Of/zjHwCASCSCyy+/HH379kU0GsWkSZPw6aefYv/+/bj88svRoEEDnH322YHVX3FwMnLkyDr91lchzqWXXorx48cDAEKhEAYNGoTjjjsOTZs2xaZNmzB58mRMmDABhmHgxRdfREZGBp5++mnp7T7xxBMoKytDw4YNceONN3ou26RJExx//PE44ogj0KFDBxQWFqKiogJ//PEHxo8fj/nz56O4uBg33HADwuEwrrnmGsdy3n//fVxxxRXW/88880z0798fRUVFWL9+PUaPHo25c+di/vz5OPPMMzFjxgwUFRU5ljV79mz0798fFRUVAIBOnTrh8ssvR4cOHRCLxbBixQq888472LZtG1avXo1+/fph0aJFaNWqVUpZuq4n/D8SiaBHjx6YP3++536R5corr8TYsWMBAI0bN8b111+Pww8/HDt27MAHH3yA2bNnY+XKlTj77LMxa9YstGnTJqWMHj16YNy4cUzbu/XWW7FhwwYAwNVXXx3cF6kFzj//fDRp0gQ7duzA1KlTsXLlSnTq1Il5/VGjRlm/y+yLl19+GbfddhsAICMjAwMGDECfPn3QrFkzxGIxrFmzBtOmTcPkyZM9y9E0DUcccQR69eqFbt26oXnz5sjIyMCOHTswe/ZsjB07FqWlpfjpp59w6qmnYt68ecjJyXEsa+3atTjnnHOwdetWAMCxxx6Lyy67DE2aNMGiRYvw5ptvYufOnfjwww9BCMH777/vWI6u6xg4cKAVrc3NzcXVV1+N4447DpqmYf78+Xj77bexe/duvPjii6CU4sUXXxTdlSmceuqp1r5145BDDnH97LHHHsOOHTt8tzNt2jQ8++yzAOL3kZNOOomvomnG1VdfjTvvvBNAvG1x+umnM6/72WefYf/+/QCAs88+Gy1atEj4fOjQoXjqqaewf/9+PPvss3jyySeDq3igOuxBOrxlqGnSNUpysGOPwP7www9SZW3atMmKDoTDYfrtt9+mLGOPSrVp04YeOHBAapsKRbqiIrDVy08//WTt34KCAjp//nzH5SZOnEhDoZB1X5J9871z507rPnf99dd7Lrt48WJqGIbnMo8//rj1PRo0aEDLyspSltm2bRvNy8uzlnv99ddTljEMg95+++3WMldffbXrNk877bSE5aLRaMoyJSUltF+/ftZyQ4cOdSxr2rRp9LrrrqPDhw+nc+bMsaJS5nrVEYEdP368VX7btm3p2rVrEz7XdZ1effXV1jIXXnih1PaWLl2acK6VlJQIl5UOEVhKKR06dKhVj3/961/M69mvux49eghv/9tvv7XKOeaYYzzbhfv376e7du1y/Gzjxo10586dnttau3Yt7dy5s7W9J5980nXZAQMGWMtdc801KZHRNWvW0LZt21rLfPnll47lvPbaa9YyrVu3pitWrEhZZtOmTfSQQw4JJHpJKVsGaNAMGjTI2uZjjz0mVVY6uNG2bdusDMKcnBy6b98+5nXt99VPP/3UcZlLL72UAqANGzakxcXFQVWbKoGtRpTApidBCqy98fSPf/zDdbmLLrrIWu6VV16R2qZCka4oga1eHnjgAab7DaWUDhw40Fr2888/l9ru888/b5X1008/SZVl8qc//ckqc/LkySmfP/nkk9bnAwcOdC1H13UrBU7TNLp8+fKUZcrKyhKEfs+ePa7lLVq0yNruUUcdxfWdqlNgjzzySKv8r776ynGZ0tLSBNFYtGiR8Pb+8Y9/WOVcd911wuVQmj4Cu2DBgoRj5PeixeSaa66x1nvuueeEtl1WVkbbtWtnvYDYu3evUDk8/Pe//7XqfdJJJzkuY98nbdu2dX3B/tVXXyXItxN2Mf3iiy9c6zVr1ixrOZF0bjs1LbC7du2imZmZ1v1m/fr1UuWlixvZX2K8/fbbTOusXbuWEkIoANq4cWPX9HL7uTNixIjA6lztoxCbnaKnTJli/Y2nY7VhGPj4448xaNAgdOjQATk5OcjPz8chhxyCIUOGYNGiRZ51sw/YY6boTp48GX/961/RoUMHZGVlpQzUE4vFMGnSJNx1113o06cPmjZtioyMDOTn56Nr16646qqr8NNPP7lu0xwh1J5y0qFDh5Tv7LavWEYjmzVrFq6//np069YN+fn5yM3NRadOnXDllVfi+++/913f3M4pp5wCIN55/9lnn8UxxxyDhg0bIjc3F4cddhjuu+8+7N6927e8gxFKKT755BMA8f156623ui5rT2sxU8BqihkzZmDIkCHo3r07GjRogKysLLRt2xaDBg3CV1995bmu0+iR69atw1133YVDDjkEubm5aNCgAU444QS89tprzIOpFBcX44UXXsAZZ5yBli1bIjMzE40aNUKvXr3w4IMPYvv27Z7rJ18ruq5j5MiROOOMM9CqVSuEw2HHQUe2bt2Ku+++G927d0dubi4aNWqEY489Fs899xxKS0sBxLtEOA1a8vXXX1vb9EtTMrntttusdSZOnMi0Dgt+oxBX13H78ssvcf7556N58+bIyspC+/btMXjwYMyYMYP7O1RUVODtt9/GBRdcgDZt2iArKwsNGjTAn/70J9x1112ug6f9/vvvyM3NBSEEhYWFWL16tes2du/ejbZt24IQglAo5Hnfrgts27bN+r1Lly6ey3bt2tX63W9gHz/MlMG2bduiT58+UmWZdO/e3frdaUAn+3Ps8ssvdy1H0zQMHjwYQLy9MGbMmJRldu7caaX9Nm3aFIWFha7lBbnfgmLFihVYsGABgPhxP/fccx2Xy87OxnXXXWf9/+OPPxbanq7rCWmibineQWOm9RJCoGkann/+ecflvv76a2uAoPz8fOTk5KBTp0646qqrMHXqVNfyjzjiCPTs2RNAPG32hx9+8K1TaWmp9ZwPh8O47LLLBL5Z/FiYgzk++uijKCgoECqHB79rDEhsj1x//fXIyspyXO6cc85B586dAQBz587FqlWrEj7fvHkzli1bBgBo1KgRzjvvPNd6HXvssVYq77Rp07Bu3TqGb5MefPTRRygvLwcAnHHGGWjdunWNbNfuMj169MDGjRtTltmxYwf+85//4KSTTrJSyouKinDSSSfh6aefRnFxsWv59rR41u5Jo0aNsrqPDh48GBkZGY7LnXnmmVbXDrf0cyGCsGCvNyCsnaKd3sr98ccfCW8dnX40TfNMBbFH277//nt68803O5Zjj5CecsopTHW+8sorHd842COvfuu77Ss3otEove6663zLvvjii2lpaalrOeZyffv2pStXrqTdu3d3Latdu3b1KoIcVATW/qbeL61I13VaUFBgnbM8KRqiFBcXJ6S6uP2cd955rvVJfnM+ceJE2qBBA9eyzjjjDMd0QDsTJkygTZs29axTfn4+/d///udahv1a2blzJ+3Tp4/jeWvn+++/pw0bNnTd5uGHH07XrVtnvSVPXl/XddqhQwcKxFNh/FLBDxw4YG2vbdu2gQ2mQ6l/dkfQxy0Wi3ne1zRNo0899RRzBHbOnDnWvnT7ycjIoMOHD3dc/80337SW6927N43FYo7LXXjhhdZyDzzwgOc+rQv885//tL6PXwTW/t0XLFggvM1169ZZ5VxxxRXC5STTq1cvq1ynCKz9mbR06VLPsuyRpuOPPz7l8wMHDtBwOEwB0Egk4hmBXbx4sVXWgAEDuL6T271Hlpdfftkq+5ZbbvFcds6cOdayvXr1EtqefZCq7t27C5VhhyUC+8svv1gDG4XDYfr++++nLLNt27aElEW3n2uvvZZWVFQ4buell17iOp/fe+89a/n+/fvzfO0ETj31VAqAZmZmerbNgsQe+XKLwB599NHWMnPnzvUsz95+fvXVVxM+mz17tvXZcccd51u3Cy64wFre7T7PQk1HYI866ihre2PHjpUuz6/dr+s6vfHGG61lTjjhBMfU8nfffdcaTMntp1mzZnT69OmO24lGo9b1RwhhGhSvU6dOVtlu3VlM/vKXv1hthR07dviWzUK1C+zPP/9Mx40bRw877DBrmXHjxqX8JD+g/vjjD9qkSRNrnT59+tAnn3ySjh49mn7wwQf0jjvuSGiMut0U7bJyzjnnUAC0efPm9N5776UffPABHTlyJL3pppsSRs467rjjaF5eHu3fvz995JFH6HvvvUc//vhj+uKLL9Lrr7+e5ubmWmU69ZGZN28eHTdunHXDAkDfeOONlO+cPMohi8DaR3fLysqiN9xwAx01ahT94IMP6O23355wAp911lmuKTLmMj179qSHHHIIJYTQ/v3709dff52OHTuWPvHEEwmpSG43v7qI/Zw46aSTaMeOHWlmZibNz8+nnTt3ppdddhn9/PPPfdOLRo8ezXXjtB/fWbNmBfRtnCkrK6PHH3+8tb1OnTrR+++/n77//vt0zJgx9LHHHqNdu3a1Pj/ttNMcBcve8Ojfvz/Nycmh2dnZ9IYbbqAjR46ko0ePpnfddVfCNeH1QunTTz+1UvkikQgdOHAgffnll+nHH39M33rrLTp48GCrL4amaY4NW0oT96V5XR9xxBH0ySefpGPGjKFvvvlmQkNvyZIlCSOZ9uzZkz733HN07Nix9KWXXqInnniiJUOtWrVybYTa++598MEHnsfg/ffft5Z9+OGHPZflhUdggzhuN910k7VcRkYGve666+ioUaPo+++/T2+99VZr39rTkNwEdvr06dbyhBB69tln02HDhtGxY8fSkSNH0htuuCHhWLmVY0+Rdar7W2+9lSA1Tn0e6xp2OWHtA3vKKadIbfPtt9+2thlU9wf7KKrNmjVzfHly6KGHWsvwCGx+fr7jvfu8886zlrnmmmtc+8CeccYZ1rnJ+4LTLD9ogb3hhht8rweTaDRqHfvc3FzmNFk7ZmMTAH3mmWcEa12Fn8B+//331gvenJwcOmHChJRldu7cmdBgPuKII+jDDz9MP/zwQzp69Gj6wAMPWPdur2fyjh07aEZGhrV/9u/f71l3uzCPHz9e5OvTiooKmp2dTQHQo48+mlJK6e+//05vuukm2qlTJ5qZmUkbNWpEjz32WPrQQw/59m9lYdu2bQmjyz7//PMpy+i6btUrHA773iPtLyiHDBmS8Jk9LZhXYG+++Wau72bH7h8dO3akxxxzDC0sLKQZGRm0RYsW9IwzzqDPPPOM50srVhYuXGhtq1GjRr4v61nwaveXlZUlPOfOPfdcx77oL7zwgrVMTk4OveKKK+jw4cPpJ598Ql9//XXav39/K9U3JyeHLlmyxLEud911l1XOgw8+6Flve7/wI4880vd7PvXUU9byY8aM8V2ehbScRkfXdestR2ZmJv34448dl9uyZYsVodU0jS5evDhlmeQpU/r06ePb9+C7777zfEO2Y8cOK+KjaRpdtWqV43JBT6MzZsyYhIe+00m4Zs2ahMiGW4PDvk8yMjIc+yvs2LEjoSwZ6SopKXF8cSHy4zW9AQus0+gcd9xxdM2aNa7lPPzww54P5WSuuOIKa3mnt8tBktw31+nBVFFRkVAnp0FSkqdcaNu2rWMfs1mzZlkRjoYNGzre2NetW2c1Utq2bUt//fVXx7rPmjWLFhYWUiA+EITTm/TkzI7bb7/dM8Jpj9DedNNNjssmnxdOjdAtW7ZYgt23b1/X7VFK6cknn0yB+NDysv1kkuERWNnjZn9QNWjQwPEt/bJly2jz5s0TtunU0N63bx9t06aNVdaPP/7o+P1WrFhhvUDLzc11HIRo165dtHXr1tY+/vnnn63Pfv/9d0vOCwoKmN4me7F06dLA7l+yAyrZr+1QKEQvvfRS+tJLL9ExY8bQYcOGJYhanz596NatW6W2d/3111vlzZkzh2vdKVOmWN97zJgx9Mknn0y4FrOzsx1lhVKa8ALYKxuD0sT+sgDohg0bUpZZvnx5QuZHp06d6EMPPUTfe+89+s4779B7773XikBkZmbSd955h+u7Ulp9AmvfFyxSbX/5zHvvsQ/oEg6H6ZYtWwRrXYWXwH766adWn8JGjRq5RojMl2OEEPrCCy84LrN//3565plnWtuaOHGi43L27ASv47xmzRqr4d+0aVPhl2Dz58+3tjdgwAD63nvvWeLo9NOgQQM6adIkprK3bt1qXWOfffYZfeutt+iQIUMSMm7OPPNMx+fo2rVruc7Z77//3lr+9NNPdy2rUaNGvi9O7P1l+/Xrx/RdnWCdRqewsFA6YmofBOzWW2+VKsvErd2/d+/ehOv+8ssvdzz/5syZYz3DjzzyyJTB3Uy++OIL67p2e8Fgzz5p37695zG0Dxj34osv+n7PH3/80Vr+jjvu8F2ehbQUWPt8XS+99JLnsr///rv1ttFpoAF7ozQ3N5du3LiR6Tv5sXLlSqvcRx991HGZoAW2Z8+e1uduD31K441S86bbrl07x/Q6+4X9yCOPuJY1YsQIpuX84J2ry+tHNk3k3//+N83KyqLnnHMOfeSRR+j7779Px44dS1988UX6f//3f9b5BIC2bNnSsTFEKaV33HGHtdzLL7/su13e5UXZtGmT9Yb5//7v/zyXraiosOZ+69KlS8rnySLkNYDL4MGDPZe79dZbrUa3X7qJPerz4Ycfpnxuv1aOPvpoT3m1R6169Ojhmm6aXK7bA90+IJeTFFIavy+Zy5x33nme31UEXoGVOW79+/e3Ph85cqRrOV9++WXCNp0E9rnnnrM+9xtYaPLkyday//nPfxyX+fHHH6mmadbx2r17N62oqEhIiwviZRHv3NFeP7IDx1Eaf+PuNZ9px44d6ejRo13TKHk44YQTrHJ5uz4cd9xxjvULhUL0rLPOor/88ovruvZ0aa8Rde2DOJk/Ti+zKY0LSb9+/azno9PPkCFDHEdPZcHv3iGK/dnPMjAT7/J2hg0bZq0rkzJrx01ghw8fbl2/rVq1co0MzZs3z1r/zjvv9NzWrl27rBegZ5xxhuMy9tTak08+2bUs+0tqv+16MXHiRKucTp06JWRHvPLKK3Ts2LH0qaeeSshUjEQidObMmVxlJ/+0atWKPvLII67PPHtE0YwMe+G3vPlCEXAfqZjSxGcy4D4oFAtm27JHjx709ttvpyNGjKCffPIJfeedd+jQoUNT5tsVeTFFabytZM8K9WvDsOLU7t+6dWvCNXznnXe6yuT5559PgXjmiVtb1eRf//qXVea0adMcl7F37fj+++8dl7HP/ZqRkcGUErx161ar3OSXH6KkpcCab9oKCgqYphzp3bu360PD3vAIsv8OpdSKOPz5z392/DxIgbXv48MPP9y3rNNPP91a3ilyam9IuA3VTmmiqF9yySW+23UjnQR20aJFnik6ixcvThh+3u3toL0vMsvIavfff7+1/OOPPy5cfz/s6SRub7Pt3Hfffa7nqb3h0bNnT89y7NKZ3KfFMAzaqFEjCsTfBvtRXFxsvVV0Ot72a8XvgWRvCDtFme3YUxHdGqF2sbr77rsdl7GP4OkXPRKBR2BljltZWZn1MqRZs2ae8k9pYtqnk8CaGTNdu3b1/Y6UUtqyZUsKeEe77dfVoEGD6N133239f/DgwUzb8SPdBLakpIS+9dZbnv2ajzjiCOnRhymlVlpmJBLhXtdNYDt27Eife+45z4bPypUrrXuA1z3273//e0r5Xve9X3/9NeGlTPJPbm4uve6664TGKfC7d4jSpUsXq2wWuba/dGB5BtixvwwI6t7lJLB2OezWrZtr5IjSqqwDQghTEOKvf/0rBeKRdKesklgsZt1bCCGOWXSGYSSkLMuM6GzvbmT+OE1rE41GE14oHnroob6RTDeBJYTQwYMHu0oIpfHpoMzlTzzxRN/vsXz5cmt5p3u4/Zi2adPGMfNly5YtKWOusD4PnNi3b5/ni7DS0tKEaGFGRoZr1qQXn376KfMzlYfkdv/KlSsT2p9PPPGE67q7du2yXgD5TW9GaeKLdbesQftUSG5t7VGjRlnLeI0Qb6eiosJap3Pnzkzr+BFGGvLzzz8DAFq0aIGvv/7ad/lQKAQgPqrcgQMHkJ2d7bgcz2TD+/btw4cffogJEyZg0aJF2LFjh+uIhOZE39XJ7Nmzrd/PPPNM3+XPPPNMayLsWbNm4dhjj3VcrmvXrmjYsKFrOfZJ3GVGI27fvr01Wllt06NHD8/PDzvsMHz99dfo0aMHysrK8N1332HWrFk47rjjaqiGcpjXDxA/N8ePH++5vP24Ll261HH0XgA4/vjjPcvxOleWLFmCXbt2AQDy8/N96wQAeXl52LNnD5YuXeq5nN91PXfuXOv3U0891XNZc1RuL0499VR07doVy5cvx6hRo/DYY48hEolYn0ejUWsE8pYtW3qOxlgTyBy3hQsXoqKiAgDQt29f617rxumnn+56vPbu3Ytff/0VANCsWTPmcwCA5znw8MMPY/LkyZg1a1bCiJodOnTAa6+95rsNFh566CHXkfJrmrlz52LAgAHYuHEjjjzySDz44IM46aSTUFhYiM2bN+PLL7/EQw89hIULF2LAgAF45ZVXMGTIEOHtmdet13PCjZkzZ1q/l5SU4Pfff8cnn3yCF198EXfddReef/55jB8/HkcffXTKuh07dsQDDzyAhx9+GABw3XXX4bPPPsMFF1yAJk2aYOPGjRg9ejRmz56NoqIilJWVYf/+/QDiIxMnE4vFcPvtt+PVV19FOBzG3XffjSuuuAKdO3dGNBrFggULMGzYMIwbNw4jRozA7Nmz8c0336Bp06bc37uuMnfuXGtmh+bNm7uOdiyDYRi45ZZb8OqrrwIAevXqhQkTJqBJkyau65jPtAYNGiS0hdwwR4ktLy/HqlWrcOihhyZ8HgqFcMUVV+DJJ58EpRSjRo1Kub5//vlnrFy5EgBwzDHH+LYbvDAMI+H//fr1wz333JOyXDgcxogRIzBlyhRs2LABS5cuxbfffuvZ5jv77LOttlUsFsO2bdswdepUDBs2DB9++CE+/PBD3HLLLXj++ecRDldvk//OO+/Exx9/jCVLlmD9+vU48sgjcfXVV+PYY4+FpmlYsGAB3nrrLezatQsdO3a0RjJ2ul5Zyc/Pt0aWdiI7Oxtvv/02Nm3ahEmTJqGiogJPP/00Xn/9da7tvPvuu9bv1TUq98KFC3H22Wdjy5YtCIVCePPNNz23NW3aNOvcCoVCvs/UaDRq/e72TP3rX/+KO++8E2VlZfj000/xyiuvWM9hE/soxfbRi72IRCLIz8/H/v37g5vZJAgLDjICu3//fqm328lv5+xvzr3Sbu18//33Kf25vH46duzoWE6QEVh7VO2NN97wLWvcuHHW8vfdd1/K5+ZnLIMzmcv69fmrb9gHznAaJCZdU4jt6ZO8P8npuvY3534Tv3v1c/riiy+E6+SU2my/VvxGdLTPN8mSUmlGtbyiKM8++6xV5meffZbwmf1NbXWNfMsTgZU5bvb7yP333+9bL/t9KjkCax+1m/fHL/q3cuXKhAHswuEwnTFjhm996xoLFy60+s6dcMIJrhlKK1eupI0bN6ZAPMtGZhRi8w1/p06dhMtI5pdffrGOV4MGDVyjaoZh0Pvuu88z5bdZs2Z05syZCYM6/v777yllXXrppdbnXpFF+33aK3XZCXO9uppCPGTIEGs9v1GuebDfY8z0XiCe3eQ3iBKl1DqXRX7cUiWXLVtmLdOhQ4eUSKc9avfaa6+lrD9p0iTPvu527KM6A3Ad18XEnhXlluXjh67rCWNcOB3PoFOIKaV0/fr19JhjjvE8JmeffXbCmC69e/cW+o48zJgxw9pemzZtuNbdtGmTlfadmZnpmbXIi70tY14bmZmZTAOG2Ucn5/1xS6+ntCqDwek5bu8X3qJFC9+sLDtmNk9OTg7zOl4EMg9skOzdu1dqfTNa4IRbZNbOihUrcN5551lzZnXr1s16azt69GiMGzfO+jHnNTLnl6tOzDfLAJCbm+u7vP2NiX3dZGTefNV37NE4c34zOw0aNLB+37Fjh295O3fudFw3aGSuIa/rR+Zcqa46Af7XtZk5EQ6HEyKlbrBcX1dddRUyMzMBACNGjEj4zPw/IQTXXnutb1nVjcxxs88bl5OT47u8176TOQfsb46daNKkCRo1amT9v2PHjo5RvbrOvffeiwMHDgAAhg0b5jpnY8eOHfH3v/8dQPz5xBttsGOe5/v27RMuI5mePXvi7rvvBgDs2bMHL774ouNyhBA8/vjjmD9/Pm644QZ069YNubm5yMnJQffu3XH//fdj8eLFOProo636EULQrFmzhHJmz56Njz76CEA8YnXBBRe41u0///mPFW3+7LPPsGnTJunvK0tNPGvKysowevRo6//VFWWyzzldUlLClJlVHc+Pbt264YQTTgAArF69OmGO6NLSUnz66acAgKysLPz1r39NWf/666/HX/7yF9cfO8nHwO/eZP/cjALzomkaXn31VWvO45deeikl8lUd51Xr1q0xc+ZMfPDBB/jzn/9szUfauHFjnHbaafjggw8wYcIEa951IB7tr26OPfZYq62wfv36hO378d5771nt/AEDBghlo7BgXhuxWAxlZWW+y1dXu8oeVTWzyez/N6/ZK664wjcry45ZXxYXYyHtUojt4nXyySdjypQpNbr9J554wmogPPDAA3j00UdBCHFc1j5heHWTn59v/c4yubq94Wlft7YoLS3FN998E0hZbdu2xVFHHRVIWV40btzY+n3Pnj0pn9snvF+zZo1veeYk5snrBo15DRFCEIvF0uIlhf26fvDBB620wJrAlKpYLIZoNOorsSzXV+PGjXHhhRfiww8/xDfffIN169ahbdu2WLt2Lb799lsA8TSxDh06yH+BWsR+3Fge+F77zl7WFVdckfJglOGmm25KuL6WL1+Of/7zn3jqqacCKX/ZsmWOL7FE6NOnj2e6pBvl5eX47rvvAMTv6W7dQkz69euH++67DwCY0i7daNSoETZu3Bhc2lclZ599Nv71r38BAH788UfPZY844ggMHz7c9fMlS5ZYDcwuXbpYjXaTr776yvq9X79+ntvKzs7GCSecgK+++gqUUsydO9dTeGuCrl274ocffgDg/6yJxWLYuHEjgPi9z95FwItx48ZZz7nevXvjkEMOEa6vF0OHDsXSpUsxbtw4zJgxA2eddRYmTZrk2U4xu5OY99iguPrqqzF9+nQA8bTIvn37AgA+/fRT68X/gAEDpF84d+vWLeH/yednMvbPZSQlLy8Pffr0wVdffYXy8nLMnDkT55xzjvV569atkZ2djQMHDmDjxo2IxWKeacasbZhQKITBgwdj8ODBrsv89ttv1u+9evVi/UrCaJqGhg0bWu37PXv2ML2UBWomfRiI36fOO+88lJSUWPtu0KBBrsvbn6nvvPMOczqvH6effjratGmD9evXY8qUKVizZo3VDdD+3L7qqquYy4xGo5aX2F82y5B2AltYWIi8vDwUFxfXSN/SZMwGQtOmTfHII4+4yuv+/futvkE1QYsWLazfV6xY4bu8fZmWLVtWS5142LZtW8pbSVGuvPLKhBz86sLvbaO9T8y8efM8yzIMA/PnzwcQv5Em98kJklatWmHBggWglGLjxo1o06ZNtW2Lp04mNX1dt2zZ0up7uWrVqpTGhJ3du3c7vqxw4sYbb8SHH34IwzDwzjvv4KGHHsI777xj9Um5/vrrpete29jvHX/88Yfv8l7LVNc5YPbzAuKRix07dmDt2rV49tlncdZZZ+G0006T3saYMWMCe+nyww8/MPW1TmbHjh1WJDo/P9/12WRibwSzvJRxo3379lbjdt++fSgoKBAuy45dWFivOTfsL7qd+sTbo6gs9Q9q3wVF8rPGq+G4YMECS+a7d+/ue56Y1FQjPRKJYOzYsbjkkkvw3//+l0liW7VqhT179mDbtm1MLyFZufjiizF06FAr4vrKK68gNzc3YV+4SQHLS2uTpk2bolmzZti6dSuAuJTaX5AnY5dWP9n1w+s60zQN3bt3x7x58xCLxbBw4ULP6LB9PAmZPsGA/zUbNIZhJLyEY30pMX36dPz+++8A4sETvxdgMvTt2xcTJkzAueeea0kspRSXXHKJ4/LV9UzVNA1XXnklHnvsMUta//3vf+Onn36y+i3zvuSy+1K7du2CqWcgpbBsyBYF8ksZOfnkkwHEG5ssjaYgMW8wHTp08Ixcfffddykd85Ph+c5+2N+2mxEeL+zRTr839Qpn7DdYp7eNhx12GFq3bg0gHgHwuoFMnz7dSnE78cQTqzUqbr5FBhBY1FuWnj17Wg3HyZMn+147QXLMMcdYv5tRDDf8IkF2+vTpg8MOOwxA/O1nNBrFO++8AyDeYOnfvz9/ZdOMI444AhkZGQDi14Nfdwlz4DgnmjRpgu7duwOID+4TRErq6tWrcdNNNwGIR5tGjx6NDz74AKFQCIZh4Iorrkh4EVWXsYvXjh07fFPM7NESr8ayH/aGqtmQCwL7s10kIm3H/kLTKW3fvu/Wr1/vW15Q+y4ozjrrLOv3SZMmeS5rH/jy7LPPZip/3bp11rWbm5vrGfUJAlNiBw4cCACWxLrdE8xnWllZWUKqrywFBQVWHYqLi/HZZ59hzZo11rO/devWgQmLPfLp98Lb/rlstpbfdcZ6blFKEz5nPbecWLJkCebMmQMgHp3u06ePcFmszJkzx4q+tmrVijn6aj7TgXjwpLoz2k4++WRMnDgReXl50HUdl112GcaMGeO6rPmCKui2nv0l2XvvvQdKqdDgTSb2QaP+9Kc/yVYPQA0KrD3U7fdG88orr7R+f/DBB6utTk6YJ/WqVatcpVPXdTz++OO+ZfF8Zz/at29vpc0uXLjQU2Lnzp2L77//HkD8TUc69AUz0w+C+KmJ6OvKlSsTUiWcRmMkhOCiiy4CEL+5v/zyy67lvfTSS9bv1d04uOSSSyzpeOqpp9IigmCmFAHxxuFbb71VY9u2i+Srr77qKWFuffHcuOGGGwDEG8W333679RLjyiuvDCxKUJtkZmZa5/7WrVutfoROTJw40XfEaPPeXlpaiieffFKqbrquY/DgwVaj96WXXkKXLl3Qp08f3H///QCAjRs34m9/+5vUdoD4KMRB3b9Eoq9APJLStm1bAPH+S//97389l7c3euwvcXixj74+a9Ys4XKSefPNN63fzb6IIrz77rtWY/jEE09E7969U5axS/gnn3zieQ9Ys2aN9T01TauR7ip+dOnSxRppdcWKFZg4caLjcmVlZQl98i+++GKm8keNGmW9VLzwwgtrpNtROBzGmDFjcOGFFwKIS+zZZ5/tKLFXXHGF9fvDDz8c6Lgj9ob4yJEjE/r4BSks9n609nM/mQMHDuD999+3/i8jir/88oslw5FIxDFV136OvPHGG64vxiZOnGjJ8DHHHIOOHTsK1UnXddx2223W/82++tUJpRT//ve/rf+zjq5dWlqKjz/+GEC8vRdUiq4fJ510EiZMmJAgsfb+6SZNmza1zo+pU6cGKrGdOnVKCCZ+/fXXVr/w7Oxs7nas/dkR2IweQYwExTIK8W233WYtM2XKFM/ydF1PmEx36NChtLy83HX50tJS+u6779LRo0enfGYfhZhl/r0zzjjDWn7YsGEpn1dUVCSMTgePEQftE4KPGjXKd9t+IzWPHTvW+rxFixZ06dKlKcusXbs2Ye6yV155xbEs83OWkYV5lk13Pv/8c/rJJ594jpyWPA/sKaec4rrsxo0baU5ODkXlyKffffddyjLvvvtuwuh3LHMby3LXXXdZ2zz11FPp5s2bXZfVdZ1+++239NFHH035zGuEWt5l169fb43wm5mZ6XtNbN26lT7yyCN04cKFKZ/xzCtNKaV9+vSxlr/pppuoruspyyTP9ckykuiePXus42//Wb58OVO9ROEZhVj2uP3888/W5w0bNnScwH358uW0RYsWCfvAaR7Y4uJi2q5dOwrE5yl8+umnHY+FyZ49e+iLL75Iv/3225TP7JOyJ48WG41GrfnBAbaR2+sC99xzj/WdmjRp4nhtUErp+++/nzBy7+zZs4W3uX79equcyy+/3HPZd999l06aNMlz7sry8vKE+1NGRgZdtmyZ47JLliyh27Ztcy3rgw8+sOYpzsrKci1n+/btNDc319rmkCFDHJ8BO3fuTJi79txzz/X8vsnw3DtM7Nef13rjx49PWC553lRd1+k111zjek24YRgG7dixI3P7TASve0w0GqUXXnih9fnxxx9P9+7dm1LGwIEDrWUGDRrkuIy9zM8++8y1/WPHMAzavn17657UrFkzazssc+7ycNJJJ1llO80DG4vF6GWXXWYtc+yxx6Yss3//fnrfffd5XheUUjpv3jzatm1b37Y5pZQOGDDAWu7aa69NuSevXbs2oawvv/zStayff/7ZtX21d+9eeskllyS0TbzuFfbnvNPzZP/+/fSBBx6g27dvdy3jwIEDCddFJBJhPq4jR45MqGt14NWW+fnnn2leXh4F4qPJf/TRRynLzJs3j0YiEev5PHHiRM/trVmzht51111069atvnWzt13tz/fLLruM/QtW8pe//IUCoJqm0Z07d3Kv70SN9YE9/fTTrSjUtddeizvuuAPt2rWzRrDq3LkzOnfuDCD+1vOzzz5D7969sXHjRrz44ov4+OOPcdFFF+GII45AYWEhiouLsW7dOsydOxeTJ09GSUkJHn30Uel63nrrrVZ0884778SPP/6Is846C40bN8aKFSvw3nvvYcWKFTj11FOxYsUKz7TR008/3fr97rvvxvbt29GtWzerk3yrVq1w+OGHM9ft4osvxrhx4zBmzBhs3rwZRx11FK666ir07t0boVAIc+fOxdtvv229wTzzzDOt9DpFnJUrV+KOO+5AUVERzj77bBx55JFo3rw5IpEItm7dih9//BH/+9//rNHgWrZs6TnYTMuWLfHcc89hyJAhiMViOOecc3DFFVegb9++iMVimDhxovXWKhwO480333QdORRAQn+l1atXu87J6scTTzyBBQsWYPLkyfjhhx/QsWNHDBw4EL1790ZRUREqKiqwZcsWK5q/ZcsWnH766fjnP/8ptD0WWrdujTFjxuCCCy5AeXk5rrzySgwbNgwXXHABunTpguzsbOzduxfLly/HzJkzMW3aNOi67jt3KwtvvPEGevXqhdLSUrz22muYMWMGLrvsMrRu3Rpbt27F2LFjMW3aNPTu3Rvr1q3Dxo0bmd68FxYWYtCgQQl9pk455RR06dJFus7pQp8+fXDTTTfhtddew+7du3H88cfjyiuvRJ8+faBpGmbPno23334bJSUlGDBggOdcdLm5uRg/fjz69u2Lffv24e6778Ybb7yBgQMHonv37sjLy8O+ffuwatUqzJ49Gz/++CMqKioSIhJA/G2zmQXTunXrlIhGOBzGhx9+iCOPPBL79u3DHXfcgb59+3r2f64L3HPPPfj444+xevVq7NixA8ceeywGDRqEvn37oqCgwJoH1v4m/vrrr5caJKV169Y4+uijMW/ePEyZMgWUUtd+lQsWLMDVV1+N1q1b44wzzsCf/vQnNG3aFBkZGdi1axd+/fVXjBs3LqFP6rPPPut6XCZMmIAHHngA/fr1Q58+faz74Zo1azB+/HhrcKqMjAyMHj3atZwmTZrgP//5D26//XYAwOuvv46ffvoJl156acI8sKNGjcL27dsBxK/t5557znW/PPfcc64DW+3ZsyflXtqhQwepUcn79++PQYMGYezYsVi7di2OOuoo3HDDDTj88MOxc+dOvPfee9b+aNGiBYYNG8ZU7pQpU6x+bZ07d7aiLjVFOBzG6NGjQQjBJ598gpkzZ1p9Yu2p3++88w6WL1+ORYsWYezYsZg0aRIuvvhiHHPMMdbgPBs3bsT8+fPx7bffYvfu3Uz7mxCCq666ysqyMLuRnXTSSVabNCjefPNNnHjiidi1axfuvfdefP3117joootQVFSEtWvXYtSoUVi8eDGAeMaFU9sjFovhiSeewDPPPIOTTz4Zxx13HDp37oyCggKUl5dj3bp1+PHHHxO6uR1yyCF49tlnXev1wgsvYMaMGdi6dSvefvttLF68GJdffjkaN26MRYsW4Y033rC6YgwePNhzbvMbb7wRu3btwnnnnYejjjoKRUVF2LdvHxYsWICxY8di27ZtAOJZEWPGjGHuo+1ELBbDf/7zHzz11FM45ZRTcPzxx6Njx44oKCjA/v37sXDhQowZM8aaVQQAXnvtNebjWlP9wt3o06cPvv76a5x99tkoLi7G5ZdfDiAxmn/UUUfh9ddfx3XXXYfdu3fjnHPOwYknnohzzjkHHTp0QCQSwa5du7Bs2TJMnTrV6sds3gu9uOiii3DrrbeiuLgYmzdvtv7OG4mOxWKYOnUqgHjac1CDONVYBDYWiyVEQZJ/nN78b9q0iZ5++umu69h/QqEQHTFiREoZvBFYShPn4HL6OfHEE+m2bdusSILXW1P7fErJP8n7iiWqFI1G6d/+9jff/XHhhRd6zo9pLnewRWCff/55pvMJiM+Ru2bNGqZyn3nmGestmNNPfn6+Y4ZAMvZ1WOYO9qK8vJzecsst1vxlfj9XXHFFShlBRvJMZsyYkfDG3+snLy+P/vrrryll8EZgKY3P72xGgJ1+evToQdetW2fNVfanP/2JqdxZs2YllJM8l251UJMRWErj9+/LL7/cdd9pmkaffvrphDe2Tm/MTZYtW5YwV6XXT2ZmZsJb5d27d1v3Xk3TPO/rH3zwgVVOz549PTN56gqrVq3ynWfR/LnllltoNBqV3qZ9ft+ffvrJdbmhQ4cy31+bNm3qe0985plnfMvp2LEjnTx5MtP3ePbZZ62IrddP+/bt6cyZMz3LMs9B1h+35ydrBJZSSsvKyhIiWE4/nTp1co3MO2G/rv/zn/8wr8cDyz0mGo3Siy++2FruuOOOS4my7t27lw4aNIh5n/vNgW2yevXqlLmG33nnHdmv7cjs2bNphw4dPOvdpk0bOnfuXMf1d+/ezXXeDRw4kCna9ssvv/g+ly+99FLfe+hhhx3GVCevqKmJXwSWZ180btyYfvLJJ77bNPnjjz+sc6KwsNB3vnlRWNoyU6dOtebNDoVCjm2Mzz//PCF7wG9fsOx/SmlKxmn79u09o+ZOTJgwwVr/rbfe4lrXixoTWErjofwnn3yS9u7dmzZs2DChYe3VyPrxxx/pDTfcQA877DDaoEEDGgqFaEFBAe3evTsdNGgQff311+mmTZsc1xURWEopnThxIj3vvPNokyZNaCQSoS1atKCnnXYaHTFihNUgYBHYWCxGX3/9dXrKKafQJk2a0HA47LqveBrlM2bMoNdeey3t3Lkzzc3NpdnZ2bRDhw70sssuY3qY+z1URZdNd3bs2EE//vhjescdd9CTTjqJdurUiRYWFtJwOEwbNWpEjzjiCHrDDTdwnSsmixYtojfffDPt2rUrzc3Npfn5+bRHjx70nnvuYRLhkpISa19nZGQElmaxYsUKeu+999LjjjuOFhUV0XA4THNycmiHDh3oueeeSx9//HFHSaS0egSW0nhj5YMPPqAXX3wx7dChA83Ly7OOwTHHHEOvu+46OnbsWFpcXOy4vojAUkrpli1b6N///nfarVs3mp2dTRs0aECPOeYY+uyzz9KSkhJqGAbNzs6mgHfquB3DMKwJyBs1akTLysq46iRCTQusyRdffEHPO+88WlRURDMzM2nbtm3pX//6Vzp9+nRKKWUWWErj++1///sfvfLKK2nXrl1pQUEBDYVCtEGDBvSII46gV1xxBR05cmTKpPH2Buy9997ruQ1KKR08eLC1/F133eW7fF0gFovR//73v/SSSy6hnTt3pnl5eda+O+qoo+htt93GJTF+7N6920rBve6661yXKy4upp9//jm988476SmnnEJbt25Ns7KyaCgUooWFhfSQQw6hl1xyCR01apTrtW1n/fr19IUXXqD9+/enXbt2pYWFhTQrK4u2bduWnnfeefTtt9/m7pKxZs0a+uCDD9I+ffrQoqIiGolEaFZWFm3dujU9//zz6YgRI5gaq7UhsCYTJ06kF110EW3Tpg3NzMykTZo0ob1796bDhg1j2q8m+/bts7pAaJpGN2zYwLwuD6z3mFgslnB9O0kspXHZuv3222nPnj1p48aNaTgcpnl5ebRLly50wIABdNiwYXTlypVcdTzttNOs7ebm5tL9+/fzfk1miouL6QsvvEBPOukk2qxZMxqJRGiTJk3oqaeeSl988UXf8++3336jL7zwAr3kkkvo4YcfbrWLs7KyaPPmzWnfvn3pPffcw30PKC4ups899xzt3bs3bdKkCc3MzKRt2rShF110kW9qqsmUKVPoPffcQ0888UTr/CwsLKSHHnooHTJkCJ06dSpzffwEVtd1+sMPP9DHH3+cXnDBBfSwww6z9mdeXh5t3749/ctf/kKHDx/OdV1QSuk///lPa9s33HAD17o8sLZlpk2b5iuxpaWldPjw4fSCCy6gbdq0odnZ2TQjI4MWFRXR3r1701tvvZV+8cUXXC9yf/rpp4T7mF8bwYlLL72UAvEUZ97j4AWhVHJ4XIVCEQiTJk2yOuTfdttt3AMKKeRZtGiRNUIe6zH47rvvcMYZZwCIz3H4wgsvVGcVFYpaYejQoXjppZfQoEEDbNq0KbDJ6BUKhUJRP9m3bx9atmyJkpIS3HPPPdKDN9qpsVGIFQqFN+YcxPn5+dXaF1XhziuvvGL9ztr39vXXX7d+rw9zvyoUTtxzzz3Izs7Gnj17Es55hUKhUCiceOmll1BSUoL8/PzAR5xWAqtQpAmmwN55550oKiqq5drUP37++WfP+WdfffVVazCgVq1a4c9//rNvmQsWLLAGLerXr581z6lCUd9o2bIlhg4dCgB4+umnUVpaWss1UigUCkW6sm/fPjz//PMAgH/84x/S830no1KIFYo0YMeOHWjatCmaNGmClStX1sg8fAcbnTt3RllZGc455xz07NkTRUVFiEajWLlyJcaNG4f58+dby37xxReuAvv111/DMAwsX74cTz/9tDU639SpU3HiiSfWyHdRKGqDkpISdOvWDRs3bsSzzz6Lu+66q7arpFAoFIo05LHHHsO//vUvdOjQAb/99pvnDBwiKIFVKBQHBZ07d8bKlSs9l8nOzsaIESMwePBg12Wchv1n7S/7zTffCEeumjRpgj59+gitq1AoFAqFQlFfUAKrUCgOCmbOnInPPvsMM2fOxMaNG7Fz506UlpaiYcOG6Nq1K/r164chQ4agWbNmnuWYApuXl4euXbtiyJAhuOaaa5jmjW3fvj3Wrl0rVP++ffvixx9/FFpXoVAoFAqFor4Qru0KKBQKRU1w/PHH4/jjj5cuR73zUygUCoVCoag9VARWoVAoFAqFQqFQKBR1AjUKsUKhUCgUCoVCoVAo6gRKYBUKhUKhUCgUCoVCUSdQAqtQKBQKhUKhUCgUijqBGsRJoVAoFPUKSinKyspQUlKCAwcOoLS0NOXnwIEDqKiosH7Ky8s9/6/rOgzDgK7r1o/5/+R/TTRNAyHE80fTNEQiEesnHA57/j8zMxPZ2dnIzs5GVlYWsrKyXH/Py8tDXl4eIpFILR4NhUKhUCiCRQmsQqFQKNIOSikOHDiAvXv3Yt++fdi/f3/Cv06/FxcXW3JqGEZtf4W0ITMz05JZ8yc/Pz/l/w0aNEj4ycvLc5z3WKFQKBSK2kSNQqxQKBSKGoFSiuLiYuzevRu7du1K+Nfpb+Xl5VLbI4QgOzsbubm5yM7ORk5OjvWTnZ2N78fMAqEEMDRAp4BBAEpADJL4OzV/zC9CQGj8X/P/1r80oQKIL2j+P2FvWP+nhAIajS9L4n9P/RsF1SgQ0QBi4Jyr++DAgQMoKytDWVlZyu/mjwyhUAiFhYWW0Jq/N2rUCI0bN0aTJk2sfwsLC5nmQlYoFAqFQhYlsAqFQqGQhlKKffv2Yfv27di+fTu2bduGbdu2Wf83f3ilKiMjAwUFBcjPz0dBQQEKCgow/X8LQXQNJBYC9FD8dz0E6Fr8d0OLS6lBQBKtETQWC/Jre1OD0UuSkZHyNwoKaAZoSAdCBqimg4YMIKSDVv59wE2nYv/+/di/fz/27Nlj/ZSWlnJtPxQKpUit+dOsWTM0b94cRUVFKp1ZoVAoFNIogVUoFAqFL5RS7N27F5s2bcLmzZsTfrZs2YJt27ahoqKCqazc3Fw0bNgQjRo1wpKfVoHEQnEZjYWt30ksDBINgVDxqF6NyqoTtZx+6yS1rFBSKb5hHTSkg4Zjlf/qOOuq47Fz507s3LkTO3bswJ49e8DSlCCEoEmTJmjatCmaN29uia35b/PmzZGdnS1cZ4VCoVAcHCiBVSgUCgUAQNd1bNmyBevXr8f69esTZHXLli1M0dOGDRuiqKgIRUVFmPW/xSDRcOqPhJTaobYBk0ApaLRSWDUCEgoFsg0uDMNR5AghQG3UBwBs9SEZSdFPEtBxAI0LbiQW/zccwyX3nImdO3di27Zt2Lp1K7Zu3cr0gqNRo0Zo3bo1WrVqZf1r/p6bmxtIfRUKhUJRt1ECq1AoFAcRlFLs2bMH69ats0TVLqzRaNR1XTOC1qJFCyz5aQ1IeRhaRQSkIgxSEYlHTqtDTp2/SJWwOlGdEusiqrxUu9j61DFFaB0XCk5yEdJhZERBI/Gf8286CVu2bLEEt7i42LOMBg0aWDLbunVrtGvXDu3bt0erVq1UarJCoVAcRCiBVSgUinoIpRQ7d+7EqlWrsHr1aqxevRpr1qzBunXrPEUhIyPDEoTp/10CEo1Ai0ZAzB+dAH5yyVI/3jL8hNWNIEQ2IGH1IzChFawrk9CmrBSA4IbiZVBNh5FRARqpwOUPno2NGzdi48aN2LBhA3bv3u2+eiiEVq1aoX379mjXrp0ltm3btkVWVpZ8/RQKhUKRViiBVSgUijrOnj17sHr1aktW16xZg1WrVrmKKiEEzZs3R5s2bfDL1ytAKjKgVWSAlGfG+57Coe+mQbnFlVtSUwoQlNZkeCS2hmSVBxLmmPEuoLoLyWxKIZxyG3Jfnmo6aKQCRkYUVz18LtatW4e1a9dizZo1rqnt5nneoUMHdOrUCZ06dULnzp3RqlUrhGorpVuhUCgU0iiBVSgUijoCpRSbNm3CihUrsGLFCixfvhwrVqzArl27HJc3I1MbF+8GKc+EVvlDohH2VF8fcZWW1JQCA5LWZLwkNg2l1Q1Pma2m7xCIzKYU6nH+eYhsMlb/24xyGJnlOOe647BmzRqsXbsWe/fudVwnKysLHTp0QOfOndGxY0d07twZnTp1Ql5eHu+3UCgUCkUtoARWoVAo0pBYLIa1a9dakrpixQr88ccfKCkpcVy+ZcuW2Pr7vkRRrcgQ75NqE9fAJTWZ6pJWO3aBrUPC6keC0NZEmnN1yGzKRirPWQ6RdYKGYjAqxfbs63rhjz/+wKpVq1znF27evDm6du2KQw45BIcccgi6deuG/Px8qTooFAqFIniUwCoUCkUtQynF5s2b8dtvv+G3337D0qVLsWLFCsdRWyORCDp27Ig/Zm6Ni2pZFrSyrGAGT6qU1hoRVl2Pb48agQ0UxIRWu1PbVCc1OfKyJc41sT8jGfHzJAAoKGhGBYzMMgy69zSsXLkSf/zxB7Zt2+a4fKtWrRKEtmvXrsjJyQmkLgqFQqEQQwmsQqFQ1DD79u3DsmXLEoTVKd0xJycHnTt3xm8/rq8S1fJM5z6qPJjimPS3akkHTi7TadsmNSWy9VhiTWpFZu1Uxz6OOMxrG5TYajqMrDJc88S5WLZsGX7//Xds2rQpZTlCCNq1a4dDDz0UPXr0QI8ePdCuXTtoWg2+hFEoFIqDHCWwCoVCUY1QSrFu3TosWrQICxcuxJIlS7Bhw4aU5cLhMDp37ow/ZmyDVpYD7UB2fHoa2Tu0lzBWfh7IYEt+ZfjVw6QmJPYgEFg7NSWzTINNBbHvnUTWThBSGwqBajEYWQdw+b/74ffff8eyZcuwffv2lEXz8vJw2GGHWUJ76KGHqiitQqFQVCNKYBUKhSJAYrEYli9fjkWLFuHXX3/Fr7/+6hhdbdWqFbYsLYZ2IAdaWTa08qQ0YGrw92lklUTb8kLT2fCsw1snQElsNVITMss1ajIgdiz8JDYZEal12Fc0FIWedQCD7jkZixcvxtKlS1FWVpawjKZp6NSpkyW1Rx55JJo2bcq/fYVCoVA4ogRWoVAoJCgvL8fixYuxcOFCLFq0CEuWLElp0GZkZODQQw/Fku83IXSgMrpquDTyWcVVRAxt6zJJKK+sJm1DKhJW3RJ7kAqsneqWWW6RtcN6fHhF1g7r+emxnygoaGYZbnjuPCxZsgSLFy/Gli1bUpZr1aoVevbsiSOPPBI9e/ZEUVGRaK0VCoXioEcJrEKhUHAQi8Xw+++/Y968efjll1+wePHilMGW8vLyULqFxGW1NDc1uuqGm7zKyqCtHFchlZHVpG0E1S9RSWzNkNYia8freMmIrB23c5djHxmhKIzsUgwYejx+/fVXLF++HIaRWK4SWoVCoRBHCaxCoVB4YBgGVq9ebQnrggULUFpamrBM48aNsWd1DNqBHIRKc0EqBAZasstrkBJoYpfXoGQ1qfzA66wEtsapTpkNTGTt2I9hUBJrx35OC+6b+ABRJfjLXb2xYMECV6Ht1asXevXqhZ49e6o5aRUKhcIDJbAKhUKRxM6dOzF79mzMmjULv/zyC/bs2ZPweX5+Pko3EWiluQiV5sXnW5UZGZgaQKx65kGlugHqMB1PYFSHuNpRElsr1DmRNdFI9YisvXxJ/IQ2FAqhe/fu6NWrF4499lh069YNoRocVVqhUCjSHSWwCoXioCcWi2HJkiWYNWsWZs2ahRUrViR8npWVhYodYYRMYS3Pkp/KxmwI63rw8mrEb+tU10GrqWxQIyGKG7TwUKPq0RS4TFWTtBLiXm7Qj1r7tqrzMR7ovrdHHTWt+kRWI4C97IBfgpBw1T6hhvzLG6rp0LNL8OdbjsacOXOwfv36hM/z8vJwzDHHWBHa5s2bS29ToVAo6jJKYBUKxUHJ9u3brSjr3LlzUVxcnPB5t27dsGrGboRK80FKMkEg2Qh2kqag5NVIvI0HJq6Gw+MhSVztBCE71GmbQZRdC9LqRhCPXbftVtcjXXr/u4leTYqsSQBCa5dYO7JCSwiBkaXj5hfOwZw5czBv3ryUe1OHDh1wwgkn4IQTTkD37t1VdFahUBx0KIFVKBQHBZRSrFixAlOnTsW0adNSoqwFBQUo2aghVJqP8IF8ED1S2VdUsEHqJUwy4uoieCZS8upVtoe42hEVHTdxlS03ncQ1GdHHL8u200pkWaSuukTWTWKTEZRaN5E1ERFaQqrqTEFhZJbi0gdOxJw5c/Dbb79Bt12HhYWFOP7443HCCSfg2GOPRW5uLvf2FAqFoq6hBFahUNRbYrEYFi5ciKlTp2Lq1KnYunWr9RkhBN26dcPK6fEoq1aek5gWzCuvrKLEK68+YmciJK6MZbPKqwmP5PiJq2i51SGuQUirGzyPYp561LrI8ghcbURj3eAQWj+JtcMqtHaJTVhfi+GuEf0xY8YMzJw5MyE6Gw6HccQRR+CEE07AiSeeiJYtWzLXS6FQKOoSSmAVCkW9orS0FLNnz8bUqVMxffr0hAZeZmYmYrsyESopRLikwGMuVkZ55ZUkVnnlkDqAUV45y4wXzCeuJixywyOuPOXWNXFNhuWRXFtpy074HhORlNrajsYmwyCzPBJr4iezbhJrrQ8KI7MY/W8/CtOnT0/pO9ulSxf07dsXffv2Rbt27bjrp1AoFOmKEliFQlHnKSkpwbRp0/DDDz9gzpw5CfOyFhYWomS9hlBJIUIH8hnnY3URWBk58pJXEbmsxFNeRcsVFFc7bmIjIq4s5QYtrjUprW64PZ5l6lajIis7wFF1iKyoxNpxEVoRibWTLLR+ApuMES7DNU+ciunTp+PXX39NSDVu3749TjnlFPTt2xcdO3ZMi/NboVAoRFECq1Ao6iSlpaWYMWMGvv/+e8yaNStBWlu1aoWtSyoQLimAVpbLN2JwsrwGIUbJ8iopcSYp8hpEuQHIq4ldamTF1alMAPVSXJOxP6aDql+1i2wAo/MCSF+JtWMTWlmJNTFllldirfW1GG555WxMmTIF8+bNQ8x2n2jdurUVme3WrVtanvMKhULhhRJYhUJRZzhw4ABmzpyJ77//HjNmzEiQ1jZt2mDLwgqESwpBKgSnuTHlNUgpMuU1IIEDbOIaYJlBimsC1TCPKwmFDgpxTYZSGng9q01kg96fdUFkAYBogUmsBaVS9aRaDHe8cT6mTJmC2bNnp7zs69evH/r166fSjBUKRZ1BCaxCoUhrYrEY5syZg2+++QbTpk1DWVmZ9VmrVq2wbXEU4eIG4tIKAJoGEAIajQZUa4BoGmhMB8rLAysTGgHVDdCygMqkRuU/FDAq5TVo8QhQYIlGgICnDKmOiGFKHYM6ryrPUwDxFyNBoWmBv7yoDoEFUD19YzMz4//SgM4BACQrK/5LUPtV04BIGIjJlUeJjn+8MwA//fQTZsyYkXA/7dq1K/r164fTTz8dRUVFsjVWKBSKakMJrEKhSDsopVi+fDkmTZqEyZMnY/fu3dZnLVu2xPZlBkJ786FVZMtJq2aTK0qlBZbYygtMXm2RRml5TWqgJ4irSXVEIiUllmikqoyAIq8pqcgB9Nf0lWtZkbULrImsIGmJxyYIka2WaHZSPQMXWVNiTQKQWUtiTWT2rSmwdgKQ2bveugDfffcdZs+ebfWZJYTgyCOPxBlnnIG+ffsiPz9fajsKhUIRNEpgFQpF2rB161Z8++23+Oabb7BmzRrr7w0aNEDx+kyESxtBq8gBqRCc5zRZWk0k5JU4lCclry6CJiyvLg1xR3k1SROJrRFxtSM4Yi53VFjkXHOSVzuicuR0PUBcZGtCXq1tVbfE2hEU2hSJNRHZv04SayIjs5EwqBbFjc+ciu+++w6//vpr1UeRCHr37o3zzjsPvXr1Qri6pjlSKBQKDpTAKhSKWqWsrAw//PADJk2ahPnz51t98jIyMqDvyUO4tDFCZQUgqGzEUgpUcAiAm7SaCMirk7RaxYnIq4eccYsrQ0PbU15NajGVOGhxJYR4nwMmnHOWSqcz85x3fgJrwiNGDPuEV2SrK3XYdXvVmVLsBqfMukqsCe8xc5NYE16ZTSrPCJXj8gePw7fffovVq1dbf2/cuDHOOussnHvuuWjbti3fNhQKhSJAlMAqFIpaYfny5fjyyy/x7bffoqSkxPq7Vp6PcEljhA80BKFJDTVWefWTVlt5rPLqJa1WcTzyyiBmzPLK2KBmElc7NSyxtSauJn4CG4S0uuF3HrIKrAmLFHHsGxaRrWl5Tdh2TUZj7TBee74Sa8J63Pwk1oRVZl3KM8KlOP/W7pg0aRL27t1r/f3www/Hueeei1NPPRU5OTls21AoFIqAUAKrUChqjJKSEnz33Xf48ssv8fvvv1t/b9GiBXYs0xAubQxN90rj8xBYVmm1leUnryzSahXHIq8cUuYprwLpjNzyahKklHgIrCWvQaUK88or4C6w1Smuybidk7wCC/jLEOf+8ZPYQAWW99ihFiXWxOe6ZJZYE6/9zSOxJl4y61MWhYH73umPCRMmYNasWTAqr5Xs7Gyccsop+POf/4wePXrUidG8FQpF3UcJrEKhqFYopVi6dCk+//xz/PDDDzhw4AAAIBwOg+7LR6SkKbTyfP/BmJzklVdak8pzElgeabWK8pJXASFzlFeJQWWE5RWo9ihsrUdd7SQLbE2KazLJ56aIwJo4iZDoPoKzyNZm9DWhHrUtsSYu1yu3xJok73MRgbXjJLOM5RlaBa546DhMmDAB69evt/7eqVMnDBgwAGeccYaKyioUimpFCaxCoagWysrK8O233+K///0vVq5caf29bdu22PIrRbi0MYgRYS/QLrAy4lpZll1eRaQ1obhkgZUQsQR5DWAkVCl5NakmiQ0y6iolrnYMo3bFNZloVE5e7dglSPact5WVLvJqkjYSa2K7joUF1o6572UlFkgUWc6yKCieGX8VvvrqK0yePBnllffAnJwcnHXWWRgwYAA6dOggVz+FQqFwQAmsQqEIlM2bN2P8+PH48ssvsX//fgDxAZmM3fkIlxRBq8jjn/qG0nhDKwhBqZRXWWm1ijPlNQAJo7oBWhmhli4rCHG1E6CkkFAosKhrYOJqJ13k1UTXg32JoAd0LSEusrWdOuxGoCIrK7Em1AhGYq3yqLzEmsR04bIoieGax0/A+PHjsWHDBuvvRx55JPr374+TTz4ZkQjHC0uFQqHwQAmsQqGQhlKKX375BZ999hmmT59u9Y9q0aIFdi4NI1zSJHVAJhY0DVQjIOWS82eahCojWTJzqZpoGmAEJ5wwKIzS0mDKAkBjglMNuRGEpBCtahqboPq6hsPxRrx0QQQkFEJQj0QS0gCiBXYcSEgDjQZ0TDVNfv7YZGTn0TUJ8mUEISCRMGAE1MwJSmI1AhKgzNGsDBDJOWETysvMAOEZ6d2+LigeG/tXjB8/HtOmTbPmlm3UqBH69++PAQMGoGHDhoHVVaFQHJwogVUoFMIcOHAA33zzDT777LOEeVu1ikJE9jVFqKyQP9oKxMU1XCk6hiEnsCENtDKqQGK6nLxqGmDWqyIqL6+mzEVj8vJqRjSpEby8WtuQkE67vALykVd7dE3mMWZKDgAYVFpgScgmYLb+vrLHxF6urMiax4FSGqzIykpswPJq/WqPKsrKbBpLrImszNJMW1mCIgvE+8oOuu9IfP7559i1axeAeDbOmWeeiYsvvhjt27eXqqdCoTh4UQKrUCi42b17N/773/9i3Lhx2LdvH4D4aJTR3Q0QLmsJrSKTv+Fjl1YTUXm1SauJsLzapdVERl6T01Nl5DV5VN/qlFdrm5zimSyuJoIC65gWKvIYs4uriYTAJoir9cfUv4keH6fyRUU2+XikhchWk7xaf3JKjRWV2XSV2OzKetnOYVGZtUusVZaAzNLsTFAYuPvFfhg7diyWLVtmfXbcccfh4osvxjHHHKNGL1YoFFwogVUoFMxs2LABH3/8MSZMmICKigoAQKtWrbBteSbCFc3iacIxna+h4ySuJrwC6yCuJlwC6yStJiLy6tanUkRe3aaiqQl5BfgE1k1eTTgl1rNPI+ujzElcTQQE1lFcrQ/dP+M9Vl7b4RFZt+NR6xJbzQILuEisCa/MpqHEWgKb8Mf49+IVWSeBNeG6vxNiRYcpKJ4d/VeMHTsWP//8s3WtdezYEYMGDcLpp5+OjAz37SoUCoWJEliFQuHL0qVLMXr0aPz0009W/1YtlofwgTYIRRsnpgmzCqyXuALs8uohrSbM8uolrgCfvPoNBMQjrx4iBKDm5NWERWL95BVgFlimwXhYHmVe8gpwCaynuFoL+S/Detz8tscqsX7HJFCRZZXYGpBX62OWQYpYZbauSCzAH5UlBDTDu06sIutUJ0M7gPOubYcJEyZYU6s1atQIgwYNQv/+/dU0PAqFwhMlsAqFwhFKKWbPno2PPvoI8+fPt/6uVTRCpKwVtJhD/9aYDhKNucuEn7Ta8RNYBnEFGOTVT1rtsAgsywi2LPLKID81Lq4mXpLAIq52fCSWeSRZr0eZn7jaYZBYJnkF2I4h/CWWeXvwF1mWY1Pj0digBJYjO4DnfPAkCImtrlRi1wXYorJeUdhkPGXWFoVN2QaJ4ar7j8Snn36K7du3AwDy8/MxcOBAXHjhhSgoKGCug0KhOHhQAqtQKBKglGL69OkYNWqU1V8pFAoBpY0RKWsNTc91X9kt+sojroC7vDJKqx1XgeURV8BbXnmEzUteGYUHQO3Jq4mTLPDKK+AqsNxToLg9ynjkFfAUWB6RjK/At7zb8eTdrpfE8hyfGonG1oK8WqvwThnjJrNpJrG+Amst6BOVZYjCpqziIrJ+daIwMPTpk/Dhhx9i/fr1AOLjKvTv3x8XX3wxmjRpwlUPhUJRv1ECq1AoAACGYWDatGkYOXIkVqxYAQDIyspCbHdjhMtaQaMMjaJkgeUV16rKJAqsgLgCDvLKK60mTvIqMleok7xySg6A2pdXIFUYROTVJElihefvtD/OeMXVxEFgucXVWlFsveRjK7r9ZJEVOT7VLrG1KLCAgMSaJMtsXZVYawXnqCxPFNZOssiy1oeC4t6Xz8AHH3xgPYcyMjJw7rnn4vLLL0dRUZFQfRQKRf1CCaxCcZBjGAZ++uknjBo1CitXrgRQOaLwrsaIlLUCoYwNGHv6sKi4xitUJa+C4gokyauouAKp8ioqacnyKig3aSGvJoTIiatJpcAKi6sJpeLiamITWGFxNRE9xpWYx1m2HqbIyhynahHZWpZXa3XJ88WirksskCqyAlFYO5bIeqQRO1YDFA+NOB/vv/8+Fi9eDCAusueffz4uu+wyNG7cWLhOCoWi7qMEVqE4SKGUYsaMGRgxYoQlrjk5OajYaYorZ6MlpoPEdHFxNTGMeDkyjUoARDeCaXDHdNCyMrkyTHmVFJq0klcA0ELy8grEG+2y8lqJlIwAlsBKyysgf7wRl9gg6kKjMeljFbjEBiGwAU2/In3eAHGZlZXY2hZYa+UqkRWNwtohFVGh+lBQPPn+RXj77bfx66+/AgAyMzMxYMAAXHrppWjYsKF03RQKRd1DCaxCcRAyf/58vPnmm1iyZAkAIDc3F+U7GiNS1pJfXAFQTQM0gJSJT3qPcAhU00DKK8TLAOKNYo2AlEpKZ2XDmO4vli+HUhj7JMrRSFysopL7JkgIiQuRrKRpZjm1GEVLKEgDqMA8psllmGnRonON2tFIMOJINOlyAh/gKQiCkFhNi79EkT32mZnyx1wjIBkZYvMbJ0FzsuTKqcxqQEYEEJxT1sTIyYQmMq834iL7+KiBeOutt6znVlZWFv7v//4Pl156qRrsSaE4yFACq1AcRCxduhQjRozA3LlzAcTfZOv7myFSwi+uVNNAM+MRHRLVQco9Rh/2IhwCzaiUj5ghLrCaBpoZrqqPiMASYkV+STQmLq+EVKUax2IwikvEGrUaASEEVDfqn7ya4morU7g6QcorIC4xdnEFqr4TpXJSY5YpI472YxWAgKadyMpKbGU02MoEkBFZexRW9LibEmsi2FSjOVnSZQDxvrDEXF9CZI2cqn0jIrMUFI+83R9vv/22NchgXl4eBg8ejAsvvBCZQU1tpFAo0holsArFQcD69evxxhtv4KeffgIAhMNh0LLmiJS3hVbOl1ZoF1cTEtX5o692cQXE5dUmrlZdeOXVJq7xMgTl1S6ugJi8VkqrSdrKq/V/AYlNltfKcoWqE4S8mt+hMtItJC/J8gokficZiU0uV0Qck4+TktgqklKZU9LZRc6HZJESfYGVkZS+K9BkS5BYwTKAqgGdZETWLrAmIiKr50Tw8AtnJnSBKSoqwrXXXouzzjorPnK+QqGotyiBVSjqMXv37sXIkSMxfvx46LoOQghIrBnCsY7QaDZIzACpYO9T6SSvAKfAJourCY/AJklrQj145DVJXKvK4RDYZGk14ZXXJHE1SRuBTRbXhM84JNZJXm3bYK5OkFFXuyCax4tVWpzE1frM4e+8IutWNq84uh2j+pZSzCuxDv1wXftj84qsWzSQ556QLLBWXfiabikSK1BOcl9YEZF1EliAX2KNnHhdKCj+/mhvvPXWW9i6dSsAoEOHDrjhhhvQu3dvx3uqQqGo+yiBVSjqIRUVFfjvf/+L9957D8XFcRHT9MYIxzpDo3nWcqwC6yauAEf6sJu4Auzy6iKuCXXxE1gXaa0qg1Fe3cQVYJdXF2k1qRPyCrALrJe8Vm6HqTpBR12TYYnCeomrtYzH56wi67cNVnn0OkYHq8R6DCLlO6gYq8x6pbQyHn9XibXq4l+Oq8BylAE4T6vDK7JuEguwi6wpsFa9oOPaO7vj/fffx/79+wEAPXv2xK233orOnTszlalQKOoOSmAVinoEpRRTpkzB8OHDsWnTJgAAMfIQjnVByGiUsryfwHqJq1WGX/TVS1xN/ATWR1ytenjJq4+4xsvwkVcvabUTi3kP2uQjrkAdkldrOQ9B8hNX27Y8P66uqGsyfgLLIq+Av0ixSCzLdvzkkfUFQ30SWRaJ9RkFmWlkbD+RZe2T6XUesEgs4CuhvhLLUobHiMSsIuslsCZ+IpsssCYUUQy8pjU+/fRTVFRUQNM0/PnPf8bf/vY3NGjQwHe7CoWibqAEVqGoJ6xatQovvPACFixYAABo3Lgx9m5pipDeAgSpjTkveWURV6scN4FlEVcTN4FlENeEejgJLIO4VpXhIrCs4gq4R18ZpNWkzskr4C5JrPJq26bjn6s76mrHTWBZxdVannFZL5Hl2Z6bPPKkeB8sEss4hQ/X9E5uMsszsJDTecAqsFY9nM8lJoH1K4NhSh0/kWURWBMvkXWTWAB4/4sbMXz4cEyePBlAfKCnq666Cn/5y18QCWiaIoVCUXsogVUo6jjFxcV45513MG7cOOi6jszMTMRKWiIcawsCj1RZB4HlEVfAJX2YR1wBZ3nlEFerHsnyyiGu8TIc5JVHXAFneeUQV6COyqu1TpIU8Mpr5XZT/hSUvLLKoJPA8sorwNcf001iebfpJI+8A23Vd4nlnH+We45iJ5HlHR3X6QUYj8QCjhLKJbFuZTDOC+slsjwSCziLrJfAmjwzYgBeeuklrFixAgDQpk0b3HrrrTj++OO5tq9QKNILJbAKRR3FMAx88803GD58OHbt2gUA0PQiRKJdQJDtu75dYHnF1SrDHn3lFVcTu8ByimtCPUyB5RTX+PpJ8sorrkCqvHKKK1DH5RVIFCURea3cdsJ/ZeWVNepqxy6wIuJqbVtgvWSRFd22XSBFRoquzxLLKbCAgMQCqSIrMsVL8sswXokFEiSUW2CdymAUWBMnkeUVWBO7yLIILBAf6Gnog8dgxIgR2L17NwDg5JNPxm233YamTZsK1UOhUNQuSmAVijrIypUr8dxzz2Hx4sUAAGLkIBzripDRmLkMEjOAmCEkrlYZUR0kZoiJK1Alr4LiatWhtExIXKvKiIEWl/BLq51KgRUd9bLOy6u1viYur/Y61HTU1Y4psDLyCohP62KXWJntmwIpM1+vhISmpcQKyKtVhIjEmlBDTGCT6yAisFYd4ueUsMTay+CUWCBRZEUF1kQrjzILrAlFDAOubI5PP/0Uuq4jOzsb11xzDQYOHIiwzLFVKBQ1jhJYhaIOUV5ejpEjR2LMmDHWAzi6ryVCelsQCDTMZC5/w9YgEYVSuToAIDoFKvjnEbTWj+mgpQek6oBYDLSkVKqItBDYAORVPmJay/IaJEFM4SF7jYnOPWunvkRjCak9gTXJkO9/KSWxGhGSz2SoxPcglIISAhqRnKs1JHZ9vT76MgwbNgyLFi0CAHTu3Bl33nknevToIVcfhUJRYyiBVSjqCPPmzcOzzz6LjRs3AjDThbuCgO9tOg1roIRA45j/NaWMUFwOtDKxMmhYi4uKwAT2FpoGUApSWi62PiFAOBSX3/0lgkWQuHhWTtvAjabFo766DuPAAXlZkUSqga7kNakOAW5f5rwgBNA55y91QjYSK1lGYMi8oEEwEksyMyDT9CJZldFL0ZcTGgHNypS+39CcTCAmfm4ZeRkg5XLnhJ6XgdAB/ueImVY8fPhw7Nu3DwBw/vnnY8iQIcjLy/NZW6FQ1DZKYBWKNGfv3r14/fXXMWHChMq/ZCJMD0W4nD1dGIhLoxGORx+IToUEloY0GBnxBqAWM7gFloZt60cNMYHVtLgAw0wf5hRYU1wBYXkllX1kaUVUTF5NcQXi8lpW+R2oUWsSWy/kNakPbq0QpLjaET0v7PUREVlzPxriUdSEZoaS2HgZlVFQ0SaYJbEAv8iaAmsiWAdqTwMWEFkjryoSLCqyuq0MEZGN5gJnnZVpPV+Liorw97//Hb179xaqj0KhqBmUwCoUacyPP/6IYcOGYc+ePZV9K9tA07oiFAtBK2eXR7u8AvwCaxdXgF9e7eJqlcErsDZxBSEgFTE+ebWLK8Atr8RhYCdugbWLK5Aor0CtCWy9k1egdgS2uuTVDu/5kVwnXom170cBiXVsYtS2xEoKLCAvscQhjZe3OZYgsQCfyCZLbLwCXNunTv1YOUXWLrEAv8jqSevzSmyscv1hw87BU089ZWU4nXXWWbj11ltRUFDAVZ5CoagZlMAqFGnIvn378MILL+C7776r/EseQqEeIKQhtKgBrUJnamwki6sJq8Ami6sJj8BKy2uSuJowC2yyuJowCqyTuAKc8posrkCqvFoF16zE1qq8BpkynExNCmxNiKsdnvPDqW48Epu8Hw2+dGDXJoaSWEeJBdhFNkVgTVhE1klgqyrAtH0QAprt8B04JDZZYK2iGUU2WWBNeETWlFhKdVx4YUN88sknMAwDjRo1wh133IG+ffsyl6VQKGoGJbAKRZoxffp0PP3009i1axc0TQOlHaBpnUBIVeqtX/TVTVxNWATWTV4BNoF1EldrfRaBdRFXgFFe3cQVYJJXN3EFOOTVSVxN3AQWqDGJrbfyalITElvT8mrCcn541Y1VYt32IWM01rOJUcclNshUYidYmmeuEgv4i6yXxMYr4Lt9xyisCYPIugkswCaxbgJrwiKysaQyXn75Ajz55JNYu3YtAOD000/HnXfeifz8fN+yFApFzaAEVqFIE4qLi/HKK6/Y+rrmIhT6EwhpkLCcn8DKyquXuAL+8uolrlYZXgLrIa4mngLrJa4mHgLrJa4mngLrJa0mXvIK1IjA1nl5ZZkaproFtrbk1Y7XecJSPy+R9dt/PhLL1Lw4yCXWS2BNvPajp8CauImsn8BWVcD9I5bpcHxE1ktiAX+RlZXYZIEF4tHYSy9tho8++gi6rqOoqAj3338/jj76aM+yFApFzaAEVqFIAxYtWoRHHnkEW7durezr2g6a1tWKutpxE1g/cTVxE1g/cbW27yKwLOIKeMgrg7gCHvLKIq6Aq7yyiCvgIa8s4gr4y6u1oWqUWC0EIip3dUVegeoT2HQQVztu5wlrPd0klmX/eUgsc/NCSSzTcm77k0liAWeRZZXYeAUcNu6SRuyEi8j6Cay1KReR9RNYEzeRdRJYk1de6Y/HHnsMGzZsAABcfPHFuO6665AZwJy+CoVCHCWwCkUtous63n//fYwcORKGYQDIroy6NnJdx0lgWeUVcBZYVnkFnAWWVV4BF4E15ZWhwZ0isKziapIksKziapIisKziCrDLq7WxapDYg0VegeoR2HSTVxMXuWDGSWJZ95+LxHI1Lw5iiWUVWJPk/cossCZ2keUR2PjGU//EEoU1cZBYVoEFnCWWVWABZ4n1ElgAoDSG887Lxueffw4A6NChAx588EF06tSJebsKhSJYlMAqFLXE1q1b8dhjj2HhwoUAAEJaQtO6gxDvCeLtAssjriZ2geURV2v7NoHlEVfAQV4Zo64mQcorr7gCSfLKI64mtS2wB5O8AsELbLrKq0nyucJbX7vE8u67JIkValrUpsTWkSisHfs+rlGJjW+86neeKKyJTWR5BNbapE1keQTWxC6yfgJr8uijJ+Opp57Cnj17EIlEcPPNN+Mvf/lLZdaUQqGoSZTAKhS1wJQpU/D0009j//79yM7ORnl5F2haK6Z1TYEVkVegSmBl5JVXXK31TYHlFFcTS2B5xdWkUmCl5FVEXAF+ebU2HJzECjey66K8mgQhsXWpgWqeK6J1NiVWZL/ZJFa4aaEklgtzP3MLrIlBxQS2qgLxf3iisHYqRVZGYkUEFqiSWFaBBYDPPrsRTz31FKZPnw4AOOWUU3D33XcjLy9PqA4KhUIMJbAKRQ0SjUbx2muv4bPPPqv8SyFCoSNASC5zGYRSQBe7bIlOQXRDSD6BuMCSmPj6xKAg5pt3zgY2qYiBlEWBkKDIVERBikuFG6k0FgMtPSC2bVF5BYITWNHoa12WV0BeYOuSvAaFbojvt0qJlWpaHIwSqxGQiHf2jReUUnGJNcuQWJ87AmsnZggJrAkp14UlFgBoiO9cp5RiyJDOeP3116HrOlq2bImHH34Y3bp1E66DQqHgQ6JVoFAoeNi+fTuGDh1qySshHRAKHc8vr3zzxFvQsAY9OywsnzSsQc8SX58YFESncSEQkAIa1sTl1aQ25BUADMGDBsTlTUaiCJFKHSYy+7y25VX2fKkteSWa3PeWXV92v9XkHLxBI3OtAuLybVDQKPvcpckQQtjmf60myIEK8ZUFs4lMaGYIsRzxFw+E84UwIQTDh6/Eq6++iubNm2PTpk246aabMG7cOLkXNwqFghkVgVUoaoBffvkFDz/8MHbv3g0gDE37EzStGfP6NERgRLTK9GH+BhKNaDAiGkiMQqvgWz+eqkyg6VRs2xoBDVfWnXPbVhkhAhLVoXFMTp9YAAWiMZADAlFQwwCN6aBlZWLb1nXAMGBUiNa9skEteqvW4g07EYG1okmaQOMyCHk1XziINsxNERPZd1qoat+LYAqkSBl2+eRdX2ZdexmikX+DWtulrHPNJiMTgTUFVOScBapeWgiub/WHFHlZppGq61XkJYIZwRXKtCCgAinMdozKNGIicN5QQqDnxuuvMcwfm7xutDADoBThUrFzJ1oQv1eFSzifjzSK3r3LMHXqVABAv379cPfddyMrK0uoHgqFgg0VgVUoqhFKKT766CPceeedcXnV8hEKncAsrzREoGeFquS1gvPBHtag54Sl5VUEqhEYGSGrrysVKIaGCHd6V2IBNP4T04XlVQrZVEgZgdJCVmNYhIRUSN79EKS8Cq8vk3ZcuW3RKKZ9Pd4ykpeXjcTKrCsZgRaSsKDShw1D7vqt5WtfSP7NCK5BazUaSwkB5e0iYpNe7oEJKUVkbwVACGK5YaFobKQ4BkoIYrkhxHLZ1yckghkz8nDLLbcgFArhu+++w80334wtW7Zw10GhULCjBFahqCbKysrw0EMPYfjw4fEpcsKtESK9mVKG7eKa+AFbo8QS1wyxSzyeLhySklcqkRIGJPZLEoq+2veVUCRJogGr63INWGrIy6sEUoPRVIe88kaUksXpYOnH6iSsMgLNK7G26KtVhGw6siyyEluL9wHhCLYJj8RSClIukQbsVKTEdWfIpBWLiKyZ6FIp3zwiSwjB8DdWYtiwYSgsLMSKFStw3XXXYf78+QKVVygULKgUYoWiGti+fTseeOABLFu2DOFwGLHQoQjFWvkOt2+mCidjRV99LlczVTgZ1uirW8SVNX3YTVxJzECIMf3YKeLKJbBO+4gnfdihwcqVQuzUYOVJIXYTV9ZbtYu8sqYQu8orS0pldUZeWRvjbsIks/94Xia4CSNLGV6yWRPru5XBmk7sILBWEawyJhuBdRNO1pRgt3s04/qu93iWjAJbCnFKuawvAtwGgmK5/gNMI04pmuH8sacRJ8OSVmylEif8Mb5dptRiDajIT9y+WW+m1GICjP7oGtx///1YsWIFQqEQbr75ZgwcOFBNtaNQBIwSWIUiYJYtW4b77rsPO3fuBEgENLcXNDRCqMz9AegmriZ+fV/dxNWERWC90oVZBNYr6soqsG7pwswC63Y7YxVYl8Yvs8C6Nb5ZBdZLMlhu1R6RVxaB9Y28ejXiayJt2E9i/Rr5fvvQK3ItK5B+ZbBESqtzfb8y/CTWQ16tIvwkNoj0Ya+IKeNLGJn1PUXF7/z2EFiAUWK9RjL2uwdUo8ACbBLrNaWNn8Q6Cqz1IZvIVhQ67z9WkY3mhwGq46xjY/jmm28AAOeffz7uuOMOhCWnWVIoFFWoFGKFIkAmT56MW265BTt37gTV8kDzT5KWVz/85NV3/QDShe19XYXKCKqvqyi1nCoIgEEufPaPT9ow9ZG/tEsb5l5fduRcye2zCKRMn9TaXr+2+sTy4HcN+33u9/2C6BcrmVIslVZcB/vG2pFNKwYhwqMV21OLvYgUxwASwqTZGbj55puhaRq++OIL3HPPPSgpKRHatkKhSEUJrEIRAJRSfPDBB3j44YdRUVEBGm4KFPQBQu79XV37uSbhNngTjVQN0OSFW/Q1HcQV4J+DL7UAyQZZTQzWomnQMlwiI7L9XYH61+fVDbcIEqsYSU1HVI2Py5oUU7dlWQU83SXWD9nr3eNlF3OaaG0M8GSnFiUWqD6RtQZz8qJSYt1ENmO/d6aMb/9Yc9cSglc+WofHHnsMWVlZmDNnDm6++WZs3brVu34KhYIJJbAKhSS6ruOFF17Am2++CQCgmR2BvGMB4iwsrOKauFJVg4NVXF2L4hRXp/ThoAZpqtWoK8DcmCUhDcRpWoTaHGUYkB5pGOCU1+T9VR8irwD7PpSRP7dlZUcpFiHoSCxD+nBCEU7HLKjRh1mQzbgwy5Ah+fv6pA8nE4jEpoHIJhMqYR+sTzgia4vGpogsw27lGejpvmdm4OWXX0ajRo2watUq3Hjjjfj999/566xQKBJQAqtQSFBeXo6HHnoI48aNAyEENPswIOcwq4GnRamVPiwkrjZkxRWQmxYHSJN0YSAYceVpgDpFC9JBXrk3mbjf6kzk1Y7IHJd2ko9lTaQOB7GO2/q1IbTpGIkVEcp0k1hOpFOKgbSQWLvIiswhG0RasUhqsZvIRopjCcv97e7P8cYbb6BDhw7YuXMnbrvtNsyZM0eszgqFAoAaxEmhEGb//v24//77sXDhQgAaaG5PIKNlwjJalEKLGsLSaaYP07B4P1kSoyAGFRZXMwIrE3U1B3ESFVdrECfR25V9ECfBRqc1kJNoo9M+kJOMvFIqN7+rRuTEVdNqP/JqNrplJEhmP9qPn6hAUqN605JZ6wDIfQddLgXeErDqGn2YBU1SyCsHd5IaaTYSlruuzWvBaxAnP0JatQ7i5Icpr14DOfmWoVP3gZz8oDQ+yJPDaMRM27YN9BTNd7g/0ih6dd6BuXPnIhwO48EHH8Qpp5wiVleF4iBHCaxCIcCuXbtw5513YtWqVQAJg+b2AiJNEpYxIgTEoAiVSVxilILIrK4RUBIXYVEIjTcKhNePGUxTIHiWEdWhlUrMURiNgZQckKoDjUZBSyXKMAwY5YxT+XghIT3S8goAmgbi1p+XFdm0YUA6Aljr8lhfoAYQi/kv51UE6xRTXshGQwM4J4lMGRoBInLyCAAkS1wgAYDmOHSV4ERGYqEBerbc/SVaGAERfR9S2SSWyXQilKK8IISMYodzkuo4recB/PDDD9A0DX//+9/x5z//WXhbCsXBinqCKxScbN++HbfddhtWrVoFSjJB8050lVetXEz8aAjQswioZLqvlLxq8VRfWpvT1xkURKdSAm1F6yQiC9SQbKQb8VQ/qQZuEBANUu8sNU1egOuLvMqmMgdVRm1iTq0juz9lzwlZeQUC6YNLZcowqPSLAJIRqfWRkgGxNOAEQiT+I0hkXwxU9JSqTCuO5mqI5gp29yEEGfsNVOQ5rE9C+H5+Ls4//3wYhoGnn34ao0ePFqysQnHwogRWoeBgy5YtuPXWW7Fu3TpQLRvIPxEIF1ifGxGCWHZVP1OR6CkNxcsRhWoERoSIP8CBuLzWdtvakIs+m2VITVthGKAVFYHIa2AIpmta8iza562+yGsQmOIpI6BBlJEOmOeToMRa10YtvtyhlMZ/YrEA+qVKinAsJi2y6SD0hNJgRFaEyu3SEOSeg4CwxAIACFCRp6WKLCH4/GeKSy+9FADw+uuv46233pJ7uahQHGQogVUoGNmwYQNuueUWbNq0CVTLAfJOsKbJSRZXEcyoqymvJBbvQ8tVhhaAuNZ21BWQl1eDAlG5xqh01BUIXl4FSY78cjeU6pO8ykYLk4VTRECDKKO2MaOvdmojEhuErNmgVO6lFxCAxALBSGwtDzIF1H40FhCT2Ix9Vd9dJhoLAmeRJQQfTtyPG2+8EQDw3nvv4e2331YSq1AwogRWoWBg/fr1uPXWW7Ft2zZQLRfIPwEI5VSLuJrwPPjrVdRVD0BeZRugTvIaCrH3/TQM0GgsLeUVAF8U1kleeaO49UVe3eAR0Looq244nQcc+9jx+qjtNHsEJ7FcIuv0vWUlFkiblOJai8ZWwhuNdXoGVYfIvj52I2655RYAcYl95513lMQqFAwogVUofNi8eTNuv/127Ny5E1TLj6cNa9kwIsRVXLWof/9XN3HlITBxrcaoK2Wdq+9gSBkmWjD9YBnTiKW3pSKviVSnfNYlsXWKvtqp7T6xHLjJQhASCxx8KcU0232sgXSJxgaRVswishn7HPa7TWRNXv5wrSWxo0aNwrvvvitXQYXiIEAJrELhwfbt23HHHXdg+/btoFoekN8bRmaWb9SV+IweLNvPFQggXRioX1FXlTKcgJ+8er7l1zSQjAxveWWJwh5M8soioEGUUduY8up3/H32ue91Egr5nz8Bpw8nkzYSC6RPSnE9iMYC8hILBNs/9uUP1+Lmm28GAIwcOVJJrELhgxJYhcKF3bt344477rD6vBoNeyOWm10t6cJcZdSBqCszjFFXGtZAM13SdxmjrjQcch2JmFlevdKI00ReSSjEFnl1E5Agoq7AwSWvLMsFUUa6wJpCHsS+r+WU4hqRWNbv6HGP4une4Arr3M71qG9sTUVjHUlKK37lo3W46aabAADvvvsuPv30U7nKKRT1GCWwCoUD+/fvx5133mmNNhxrciKMzBzh8pS4JsEbdXUSmYCiroGkDPP0d63GNGLeclOisLzy6iYyB6O8ei0fRBnpgF/qsBMOx4D7RY9jP275l0WsfQ0tia3pfrFOBJVS7LD/KM95l07R2Hokss9/sRHXXnstAOCll17CN998I1cxhaKeogRWoUiioqIC999/P1auXAmqZSLW5AQgLCevKl3YRhr0dQUOvpRhR+wCqiKvqdSmSKarxIpMw1RPIrH1KqUYSIvpdoAAorFAvUkrBgFem7QdAwcOBAA88cQTmDlzpnzFFIp6hhJYhcKGYRh4/PHHsXDhQlASRqxxbyCcJ1SWiro6oOQ1TsBRWJmyKKVy8moXmnSR19rGLp/pKqK8iERf7VRKrNQLH2su45qLvjqupyQ2kXSS2LoejQUAjeCjWVGcccYZ0HUd//rXv7Bo0SK5SikU9QwlsAqFjeHDh+P7778HQKA3OhaIFAqVY4TkxBUAjHAAUVeC9BBXQHqgJkpIXG5kUobDISAjItfwC4VAwuH0iLwGJML1KvIKpEf0VSPBlJEOsA7c5Ec9iMQCAUus7PeJxdj7v7phGEBI8tgElVKsq2gsAEAj+HJZFo4//niUl5fjvvvuw4YNG+QrpVDUE5TAKhSVfPbZZxgzZgwAINagJ2hmEXcZegSoyCXQM8QfoEaIQM/QQCUewlSrnOIniEzMIKakCxEYGRItAsMAkW0c6QZIWQVQXiFeiK6DVkRBZSMf1ACVlQEARCPMU+o4opG4jMtEPzQSjJjUJ3kFQAL4PoQEIMFBEsR+kRUlIBCJlT0+lFK5iLRJEH1rYzH5exLi90gpMjOAmPyLPRKT36+UkPhLTwmMSPxHhoo8goo8wXoQDVM2NMahhx6Kffv24d5778X+/fvlKqRQ1BOUwCoUAGbOnImXXnoJAKDnHwqa04Zr/RRxFXxeGaG4eMpETalGQIPwCRr/oSEiLNOBDNJhGCBRHZBoFxHdACqicg1OXY9HXQ0DIASEdcROO9SoSvuVFD/5OV6JfOTV/A7pIllpJq/1QmJlU4eTIZq8xGparUssISR+L9B14f2TcA0HEdGVfrFGpSTWEsaYISyyem58pHgSo4GJrMy6lBA5ibUGaBIUWS2M//znPygqKsK6devw73//G7EgUscVijqOEljFQc/69evxyCOPgFKKWH47GHlduNbXI5CKuAJVUVepKXoqo65Byat8GQGIa3k0OHk1CYVAIpwtEru8iiITKU0iRV55y06WV8Pgj8IGKa/1aNCmZCkSlST7erUmsU7yGsjxrh8Sa2EEJPkiEpv0EioQiY3p8tFYoN5EY02JDUpkeTnv9lF48sknkZ2djblz5+KFF16Qy5pRKOoBSmAVBzUlJSW4//77UVxcDD27ESqKjmBuTAeZLlxdUVcjTEA5pNiMusoSaNTV1gaimhbvw8pSBzNl2C6vIlSjvHJHYYPo85pukdd6JK9B4SRVtR6JtVMPJZZHZB2XrS2JdTgW3CnFTtkkktFYi4AklkdkK/KdnxFBRWNlRVYkGnvxsC/wr3/9C4QQfP755xg3bpxEJRSKuo8SWMVBi2EYePTRR7F27VoY4SwcaHMsc0M4qKhrEOKablFXN3mlYcZ+sOmUMlwRdZdX1jTigCKvJBSKC6/MdrzklTUKq+TVFTcJkpYj+2c1JbF+qcP1TGKBAKKxHBLr+SIqgH6xQA2nFGdmuH8mkVJsJ12isUGmFfNw64ezceONNwIAXnnlFfz2228SlVAo6jZKYBUHLaNGjcL06dNBiYYDbY8DjWRBzwRiWe4PlaCjrjIE3ddVvpw0TRl2wi+N2B51rea0YZYobCBT7rBEXv0ktj7Ka0D4yQ+LHAWSzhoErP1eD0KJ9T1GQUViAX+JZcikqKmUYiYprIVorBuyAzzVZDTW/vnTUzahb9++iMViePDBB7Fnzx6JCigUdZf0eforFDXIL7/8gpEjRwIAyloeCSO7YfwDl2lnghBXgC/qaoQJ9MzUS7Q2oq5eAzkFPlCTTxvHLY24VlKGvaKwAUZemXHbpkobdqcGRxyuF4M6JXMQSqwvPhLLdU17SSzjvvdMKWYdjC7IlGIXkdVz2G2wuqOxZQ38j1GNDfJk/zMhuPfee9GmTRts27YNjz76KPQg5hRWKOoYSmAVBx179uzBY489BkopKhq0RaxBW8/la2uQJifJDSrqCtRO1NUxjTiolOFojC/y4RSFDaq/K6e8ukVhA+nvmhHhk1enKKySV1d4ZSewNOPqkliRUYfTTWKraXAnrmNtSmx19YsVeCFVbSnFXunDbjhJLO+1FIDEAs7RWMpxTtf0IE99/v4GHnnkEWRmZmLOnDkYNWqUxIYVirqJEljFQYVhGHj88cexY8cO6Bl5KG/xJ9dlayPq6oWovCYP5FQvU4Z55dUJUXm1R2Grc6RhVsw6yERd7RKr5NWVIEYYFi2nWiRWZsqcdJLYdBmh2OyCYNunwtd1ssQK7u/qSCkWTsethpTiaJ7YPS+IlGLpaCzAnFZ84bP/wz/+8Q8AwHvvvYdFixZJblihqFsogVUcVHzyySeYOXMmKNFQ1qYXoDk/7GSjrrFMgoo8LbC+rukwUJOZRlzTKcOOdalMI5aW11AICIe9B2tirpRcY8wehU2LkYYry1HyWr1Iz0WaRt8lbSQWCFxipWQ2yBGKdV0o+mrHkliRuaytQoJNKeZJH3bClNggBmiSwR6NLS8ULIsxGnvPuMU466yzYBgGHnvsMZSUlIhtT6GogyiBVRw0rFq1Cm+88QYAoLz54TCyClOW0TMIonnyUVcaQiBRVz2DeA4qxV6hYKKuCKAMShCXGZmoq1HZ31U28mpUDvgkO1gTEIhccU+r41ZOkIMB1Td5DQjZfcw7dYtnPeqbxCLAc1hLs+spCIyARiiWFVBKg+t3bMg/XEiMgujy5ZQ1lPtOpgjHciTPm0qJLW/oXs7QoUPRvHlzbN68GS+//LLc9hSKOkR6tQgUimoiFovhySefRCwWQyyvGaIN26cso2cQ6FlIHDCBExoCjIz4v1KQeBlUg3TjnxhVUVwpZBsYOoVWrkOTTBsjRjzqSjUiF0EwDNCo5IBPtrICa7hLlmNFXmXEXgsoCgakp7xKnsvpJjSBSSzRgjle6SCx9hdSshJrpiUHIMNMU1WxIJkKTCKR+D0igCgq0XWQAAYSko3oRivnf5WVWNkorAUBYtkEsWyJ8ioHlnST2JP+8SYeeOABEEIwYcIETJkyRXxbCkUdQgms4qBgzJgxWLZsGagWQVnLIxMaaXoGQUVBMPIqLa6I1yGwgZrM9oDM89igVoOfaoAhIjY6lRZXoEpe4/+Ra9xa8hrSQDIEBiEBrJQ+q1Fay1HChLRh0YhysrzKNEzTUV4lIYTEv5eSWG9E65KUii8lsXZZFJXP5PVEyzG/R2X/cmGRtUc8ZfuzAsFIbOUzQlRiDVv6MNENYZG1ZzwFEYkNhMp0YCmJRZXEOonsVcMn49JLLwUAPPvss2pqHcVBQXq1DBSKamDNmjV49913AQBlLQ4HjWRbnyVEXSufC7FscKX+uEVd/eaUTcEedZWEGDZ5lSGAtC4neaVhDTSLL3qaIK9mOSHnKXVcMQzQ8vLUyKuIxFaKa0JDtBZTOR37vHKPJusSeRVpmKa7vAqc2yRZXJXEesNbF1Nek44Nt8S6vbwJIIIqVE7y8pVdFrglNhRK3aexGLfIpoy+LiixNHn0YVGJdThPguhfS/RgUopFKGuU9J0Eo7F2YaUe0djhv+xHx44dsXfvXrz22mtCdVYo6hJKYBX1GsMw8OSTTyIajSKW1wyxwjYAfKKuxOFvLvhGXVmfVR5RVyPMN6CUm7hypxGnUcowKa9Ikdf4hzzfJ8CUYXvUNaVONX9bdR2wiWfwGL+0YZ6GabrLqwnHOZ4ir1UfBFgheeqsxLrIq1Ud1rqY8up23vPIp9eyPOW41Z1XYr32ZQCjCyOmBxKNrY2UYjN92Lkc9n1c3iColxxOFQF3NNZxOj2naKym4e677wYhBF9//TXmzZvHXWWFoi6hBFZRr5kwYQJ+++03UC1spQ47RV1FCCRlmDXqytB48426sn5XW8qwE0xpxAwpwzSsgWZ670CnqGtKOSxRWBZ5ZY3CeskrUONRWN/RhllSiet7n1cvGCTWVV6rFgiwQvLUWYn1ORbMEusnhTUZifVbhlViWQZLYpDYlOhrMozR2JToqx2OlGLDZ/Rh1pRivwETWaOxgfV/9axMMCnFydHYwS9/jQEDBgAAnnvuOZSXl0ttQ6FIZ5TAKuot+/btqxp1uOkhiOXmMPd19UojDnSgpqD7uspSTSnDrng0Fljk1a8MADUXeU2oU83cWpmnyvEUbg559WuQ1jV5NfE4733ltWrBACskT52SWI4pqDwllqfft59Yskqu33Is+45FYlmPZbr0iwXYJJbxewUyZQ/Sq2+sX0qx1+jDJsnR2Ouvvx5NmjTBhg0b8P777wdWXYUi3VACq6i3vPXWW9i7dy/0zAKUNe/EF3V1WY436uraD5ZTXr3SiHnk1TONmENeXaOwnIM1ufWFZZZXsxy3KCyvvHpFYVnlFaiaP7Ua4Zrn1S2VWCTy6tYgravyauJw/jPLa9UKAVZInjohsT6pw47VcaqLX+qwY31czjfZPq4mPFPMeEks71Q1LhLrG3214yGxntHXZDwk1i/6moybxHqlDzuX47yfg0ofTun/6loReEZjWafhs0dj+/z9DQwdOhRAfPDKzZs3sxWiUNQxlMAq6iXLly/H559/DgAo7vQn6NmadLqwcNSVJP4uPFBTUqNNaKAmp33gkzLMRE30d/VcMemLuQ3WJELySMOsVFMqMQmH+eTVJGlaERIJB5M2nIYj8gZGff1etYnmINWCA2qliKzIyL4BTY+TUo5ImW4jFIvcSwQGd0rBqV+syDXh1i9W4Hs5pRSLzLfulFIcWPow76EXHOApGVNih3w9D0cffTQqKirw5ptvSpWpUKQrSmAV9Q5KKV599VUYhoHyxq0Ra1AkJK9mGrFsX1c9ozIKK5kybI/CyqQMJ0RhJcTVisJKTpFjRmF5o64p5ZhRWNmUYXsU1mmkYR4CjigKiasdSoPp72o2RIMUvHSYLsd2PQhP35Jm0pt2UVgTjXClDrtBCBGfMiqhPlriv7LliO6r5BGKeaOvyVRKLFf0NRlbNJbyjPpuJ6lfLG/0NRlTYnmjr6nlxPdzjUdfUyqChGgsS/qwE5TEn/E333wzCCGYPHkyFi9eLFYnhSKNSYMWg0IRLHPmzMH8+fNBiYbS9ocJlxN0X9e06e9qPhcD6O9KjGDmd4VOpeQ1XhkSbH9XQFxcTYKMwso2ZCuRmlezukgHebXBnTqcWkBwlQmAtJVYogXT717TxKKvyQR0jQVWjlO0WoR07BcbwPciuiEUfU0th9Ze9DWZSoktbyR3Pp//7hc455xzAACvvvqq/LNMoUgz0qvVoFBIQinFiBEjAABlzTvAyMwRK6dSOIN4OAYGBYwwgZ4pXykaIjAy5C5/QiujuRG5xhrRKQilfPO5OpZjALohF2kAAN0ADaLBBwTTOAeCETxNC76BrhpF7qSRxAbWeKUc0zKxoJH0k8Y0Om4AxOZgTiYcDkZiI2H5+mgENDMCUi7/vfTsMEIVBkIVcmJdURCCFqPQYvLnttkfVYrKMioaytXnb3/7G7Kzs7FkyRJMmTJFslIKRXqhBFZRr5gyZQp+//13GKEw9nfpJlSGPVqqZ7qPRsyDkQHEZMQzjTyB0MoosFknwbsI0Sm0shhINN6QkXkDTnQDqKiMvIZC4hJrl1dNk0vZNeVVVj7N9Q2JVGabvFIq2ec5KFGwE0AqaSBotn6VQYhaGshQwjkjE/UKWl5NJCU24fvJnJv2Y1Xb0ffkNH8Zaay8h1FKA5FYYlBrXACpcigFKdelRJYSEn8OUchJLKl8rlFISWxZE2KlAstIbGnzeB1kJfa4ke9h0KBBAICRI0fCCCLVXqFIE5TAKuoNuq7jrbfeAgAUd+4EIzOTa/14n86kVN8g3qbKUk3yKhKFJTS1PkZI447CEp1a4moRZpjPNaUcA6SsokpeZajOyKuoxCavJyKxDpFXYYl1EoT6EoXVAhoUKJlalFjHc6WG5ylmQlBiHb+fiMQ6HSOR41adxzqASKwlsSL3Odu9mRi0SmR5qIy+WuVQaoksL3p20stFWYm16iQusU5tB5H2g70cU2JFRJYS4KKLLkJOTg5WrVqFqVOn8ldGoUhTlMAq6g0///wz1q1bByMSwf5OnbnWtaKuDg+bWovCOsgiAOiRYNKIeXGSVwuOO4mjvFZCIyFmibWiri6NWOYorG6Allc4y6umgfA2iKs7bZhHYj3Shrkl1ms/BCF6tRmFdZJXkzousY7wSmx1RV/tcEqs5zXAc816HZvaOG5eg6zxRj4dMkisQel4JNblniwksU7lCEisY8aOgMRWFKSeK6bE8ohsWROnlyDgfgluRl/tmCIsIrFHvDkCAwcOBACMGjVK9YVV1BuUwCrqBZRSfPTRRwCA4g4dQCMR6NkUMYYusL4DLNVGFNbnGROUxLJGYT3lFexRWC95terE0GhMSBmWgSXqGgqxS6yXEPJEYdO1z6sXdVViveQ1SGpYhnwbqqwSWxPyalKX+8RWR+qwG0FGYyVhltik6GtKORwSmxJ9tVMpsSwiW1EQcp2hgDelOKg2hFc5PBJrX+7iiy9GdnY2VqxYoaKwinqDElhFvWDhwoVYtmwZqKahuGMnAP7pO44pw9UMUxQ2jV6QpvR39cCIeEssi7wC8E0lZpZXvygsT8qwX+OUdS5dFjFlWcYvCssor0xRWB4RqGsSyyqvQQlcDUkse4Te715Ug/JqwiCxzN/P79wNSk5rI1LrJ40M/feZJJYhI8ZXYn3k1SqHsV+s70tO1n6xDIeNRWIdo68O2wpigCfWlGL7dnq+9Tb+7//+DwAwevRouQooFGmCElhFvcCMvpa0bZfQ99UtCuuVMuxEUGnEnvhEOZOp7iisX9TVEYc7CtErGyUs8mrWySWVmDvy6iaxvP1dvQZ0CiplGOCLvLpJLGfk1VNiq2PAJhZqQmJ5I691RGL5+0i7pU7XgryaeEgs9/dzO4d5j0N1S6rI/Mxu0sgx+JynxHKMSRDo4E4e0VjP6GsyHhLrlDrsXifvlGLml+A+KcVO6cOO2/NJKXb6+8CBAxEOh7F48WIsW7aMscIKRfqiBFZR51mzZg1mzpwJCmB/p04Jnzm98RSakzXANGLHKGwaRV0BQXlFaiqxGXUlAg3h5LfsNZo27IRTf1gReXWT1FpMG3aUWFF5rQt9rETThtP8u4mPUp1mfXQBR4kV/n7VmU5ck6nDTqRZOnFKNJYx+ppSlovEco9W7yaxvO8vXFKKyxqLDPbl3J7gbZdQAlQ0cO4zm8yxo97DaaedBgD49NNP+TakUKQhSmAVdZ4vvvgCAFDWvDn0vLyUz80orGzKcLVFYSXaxIFGYSPxHSMqrxaV+5c5ZdiNylRi6ZGG7VFY2ZGG7f1hZSKvdlklmri82qOwkn1eEyRWtsGfzqnEsn1e03RQJ+nBWewSW5vRVzs2iZX+fvZzWnaaHHP92pZXE7swCk79lTJCscS83NU1uBNX9NVOUr9Ynuhrap0SJZaKFpUksazR12SoFpdYU2S9UosvvPBCAMD333+PnTt3Cm1PoUgXlMAq6jTl5eX4+uuvAQAl7ds7LkMJYIQoV8qwIwSIZQU3IrGeQdIq8kpDBDQkXycjpIGGNDl5tSpF3Uca5iEUAkKh6psmRwQZcXWqS7oNfpNuEquR4AZsSlOJlcaU2HSQV5OgB3YKar8HVU5Qc3PqurC8mgiNUOyCKbEi0deEciolloY0qbnCE/rFSh46U2KFoq8JBcXbJ8VtDamxOMyssooG1DNT7NyvJuCwww5DLBbDpEmTxDeoUKQBSmAVdZoff/wR+/fvRyw7G2VNmzkuY2QaqCjSUVEo3yijWgCpxBQgejwabETkCiO0UtAlywGtbHAEADEoQGm8H6sMMQOIxoCIXKMMug5aVgbouns/VlYMI/6TTimXGolHXyUbwoRUikKQfXplIZolnlIEfbzSRYKDxjz2QXy/gAVdOkoJBCeLAUKCuuZCoUD6oAIAIpFgysmIxO/jkhAaFzOtQr5O0fwQQhVy+5sSoKyxBmIAmmyvFgLQMIWRKb+fQh2KEWpb4rnMeeedBwCYMGGCmlJHUadRAquo00ycOBEAUNKuXUqDycg0oOfroJkGoFHpt66muOoyUVhzVF9Aul+tNUIwIXIybJPXeCqxWDnEoAiVxaxGhpToxwyQypRhGg6JS6yug0YD6DcLxBu/lY06QgKQqiDQSFVKM6XCDXRLXk0CiTDLRie0xH0sur+T1pNutKWhvAbSELUfc6Klj8RaUi2Zapuu8moie83Z97WEfJKMjKr6yEosIfEIalSXElk9N8P6XUZiowWheBSXQl5ibaeijMSWtK7cLwTSEhsKGQiHdYTbuYvs0MVLkJWVhXXr1mHx4sVS21MoahMlsIo6y44dOzB//nwAQGnrNgmfGZlGirjGCsSisMkDQQkPhW+XV7OeYX7xJBTQ9KSyCJGoU+I+EZFYYtCUhgUNaWJRWFNebY1yIYl1kteQx2jCXtjkNW2wy6sEKfJqItXHN2B5NeGVWJflhYXvYJBXExmJta8ns8+S6yUrsemO6DXndP0K3K8sebXXR/C+R7MSyyKUCkmsnpuR8mwTldiEFORKieUVWTP6moyoxNKw/cVRvO0iIrJ2YTVF1kliaSSCU089FQCs7lcKRV2kHj8JFPWd77//HpRSlDdqBD031/q7Ja/J7SaBKKybFHJHYR3kFQB3FJa4lYPKQap4xDOgtGEneY1/ABhhTol1kNeq8ji+m1fklVdiXeS1VqOwbvLKGYV1lVcToVGWq0leTVj3uc9y3OJ3MMmriYjEBjVSr1u9RCQ23aOvdnivOa9+vUG8dBOQWJqV4VgnEYl1ez7ySmw03+l+CaForFt/VV6JtaKvdgiEorHhcOr+cJPYM888EwDw008/IRbUuBAKRQ2jBFZRZ5k8eTIAoLRVa+tvrvJaSaxAR0UB+1xrXp/Fshkl1kM6AfYorJe8xhfgSCX2kVfWKKyrvFoLMEpszAApLXeXV8QjukxRWJa0YRaJNQwgGvVsvNW4xGoEJBL2jrwySixz3Vkb1PbRWUXxk1cTv2UYjwmzAB6M8mrCI7Fey/GcH3714pHYuiSvJobDtFZOsAxKxSifKdHX5Pow9q91k1drOxwSa08ddoJVYqP5IVCvewKjxLpFXxPqxCixJa2NxOhrMhwS69Xv1UliL/r+BxQWFmLv3r1YsGAB0zYUinRDCayiTrJ9+3YsXboUFMCBli0T+7t6Pc81ilgD/1Rilqiobypx5WBNntIJAATQI97i6Suv1oI+qcQU8eltGBpHfhLrK6/Wgj77yR519WmU+6YSB9XnlSNluMYklidl2EdirToHMQpyvMAAymCU14DxFcE0HC24xgdfYZHYICSXBxaJrYvyasdX5Bn3pc+9zFNe7XVhicYy1IlFYp1Sh53QKnTf55CnvFoLeUusKa8sowVrUX+R9ZRXEwaJDbUtcYy+2jEl1hJZTcPJJ58MAPjhhx/866FQpCFKYBV1kpkzZwIAKho2RKwwg2+gJo16PoR4UnpdU4lZhdPEQ/KY5dXctFsqccAjDfOkcLn2h/VKGXYry01ieeXVLQor0N+12iVWpL+ri8QKyatnmmktyavb8gLHwVUIg5KtAIUzMHnlvRd4SWwQacYmPPXykti6Lq8mbvuDtyyXexqTvCbXx6Ws5H6vXvhJLO+YDm7PI8fUYdeN+kgsZ4vZTWIdU4fd8JFYP3m1L2ePxp5yyikAgKlTp8JIw2tFofBDCayiTjJt2jQAwIFWzfyjrg7o+alRWJHBmRxTiXnltZLkVGLHwZpYcEolFpRXpygsr7zGV3JIJRaQ16rykg6UaOQ1WWLr22BNSRIrFXl1HOinliOvyetJvERIEUMlr6k4SWwQAz2ZCPW5dpDY+tYgT94vovPZBnVvc5BYv9RhJ9wk1i912I3k55Jv6rATDoM7saQOu9Yp6bHkmzrshMvgTn5T5jhhSuygH6cgOzsbu3fvxh9//MFdjkJR2yiBVdQ5ysvLMW/ePABAafum3PIKIJ5KXFglsTJTviSIr6C8AkhIJeaNuqaWRZLqJN7wNSWWGBShcv90Lfc62SRWRl6R1B9WNm3YlFhJea2WKGxAIw0DAaUNJ0y1kiZpw+b6Aex7SxCVvLpjl1jpPs+29aVGvU7/0Ymlr2Nz/4jKq4ntHscdfU2uT2VZIvJq1cGU2EqRZU0ddsP+fOKWV2tFWCLLkzrsWifb44lbXk2SBndiSR12IxzWEWp/AD179gQAzJ49W6xOCkUtkt53fIXCgaVLl6K8vByx7ExEG+aLF1SZSiw1X2kleiYQyyZy0glYMi5dDipTicMkuLRhhj6q/oUAMOTk1YSGQ0BIC6bPKw0m8hq0xJKgBg8yjPTr8woEt6/SYU7eaqTG+7z6EdQ8sUAwg38BVRIbVPQ1wH0e1EsoGDSYfaXrcvJqr4+uS9eJUApCKWhYC+R5rFXofKnDblAgXO7d5YgVEuNMHXYtKC6xovJqEg7rOPbYYwEogVXUTZTAKuoc5qh55c0aSz849XwdUcZRid0gRvzHyIhLrGxZlMTTiWUhlV+LhiTrpFNo0YAkOGaAxAwgLNe4IDEd5EA5ENPF5nW1QysHJwmqkRkUQUqZpslH3kyMAF5kAHEJCqpOAWG9MAji+wUkQGknryZEC+aFiFmObASVGvHzSQuwWRPEvte04I5hKBRInUg4DMRi8R9JaCQMRAOaioUQhMrlXyTqOWFonFPjuFFeoCFcIl/WgeYUJEaglcmfn627bUPzwv3S5fTq1QsAsGTJEpSXl0uXp1DUJEpgFXUOU2CNDhLRVyCeJkTiqcSiEmvKK1AZyZVwDmIApPLZbYSJsMQSg0KL0YSyRCXWLq9UI6AR8VsGiRnQymNA5Zt2pilxHMvRgQAiuADiZVQ2vkgoJC2xVkM1oLRYyjmvqyOV34lShhFEWZGVWLv4pInEBhLtrgsEHa2WkVj7ujISa8orzCwIWRmmzr/zYquHtMSGQlXHTjoTxnYOSEgszYzEy7LdR0UxsiPW7zISq+eEQbV4N5xQmYFQmfj9s7wwnjpMKKQlloYqB2SkkJLY1l23ISdSgYimS0vs31Y+g4YNGyIajWL58uVSZSkUNY0SWEWdIhaLYcmSJQCAoh4E2Y0O8BdS2b/FgoilCNnl1UTPEovC2uUVMKOw/BJLjEpxDSJAlhR5pYQIS6xdXq3yBCTWklc7oZBYFNah0SUjsSkN1IAGJpKS2KTvEqjEiuIkPLUssY7yKiMJ6R59TSeJTS6HV2Jt8moVIyOxTvtc5Dg4bF/4eNrlVaZOgPO9UkBiLXm110dQYo3spLIgLrH2fq+mMIpIrCmv9rJEJba0RdL5KSGxOZEK63dTYkVEtl2j3cgMGejRowcAYPHixUL1UShqCyWwijrFunXr4qkumRoym0bQvvEuPol1ef7wphI7ySsQF089m09ik+XVXhaPxFry6gBvFNYtbVhEYp3ktepDjjo5yasJr8R6NLZ4JZZS6t4wDWhqGCGJdfkOgUmsSBTWS3RqSWI9I68ikpDu8mpS2xLrtjyPxDrIq1WMiMR67fMAjyvXsXWSV8E6kXDY/Z7LK7FuL304JdZJXk14JVbPcX4G8Epssrzay+GV2NIWFNThViwisa27bkv5W0TTuaOx7RrtRoYW37dKYBV1FSWwijqFmeYSapENohFkaDpCIcYHk9dzhyOV2E1erc0wSiwx4qMTukmnWRbLoBZe8mrCKrF+fV5ZJZbEDIRKKtzlFZX9cxmisEQ33OXVhFViGRpZrBIbqGT4CAWXxPrUvVYklkVwalhimdKGeY5xXZFXk9qSWL/lWCTWQ16tYngklmWfsx4Xhm0yHWMveeWsk6e8mjBKLM2MeHxI4/dqBpH1klcTVok1U4fd4JFYr4wsU2JZRNZNXu1lsUqsmTrsBo/EmvIKAIceeigAYMWKFUzrKhTpghJYRZ3CFNhwy2zrb20a7PGPwrI84xkk1k9erc359Id1i7o6lhXyjsKyyKuJn8SyDthEfRodCVFXnwaWXyoxielAufuDOwE/ieWJEPg0Qpklg0USGEWCSWJrejAqFonlic7VkMRy9XkNUm58i6nhSHRNSyyP5AYwNQ6TxAb5koIj6ut7rFmPjU85TPJq4iOxKanDXnXyu9cy1slPYv3k1docg8SWF/ofPzM12U9iveTVXpafxPrJqwmLxLZrtDvh///cNhwAsGXLFpSU8M8rq1DUFkpgFXWKlStXAgBCLbKsv2VouncqMU970ENiWeXVxK0/LI+8At6pxDzyauImsbyjDbtFYT1Tht3KcpFYz7RhN9wkljO9jRDinYbLg1fjilMgPCWWM/W5RgZ1EukfmSYDOyVQQ+mltUJNSaxImrGTxDJEXxOK8ZLYQLMo+M9112PO+yLKpRwueTVxkVhmebXXyeWeax+0iQW3+cdZ5dXES2LdUoe9ygqXOu/35H6vfuW4SWzLLtuZ5NXES2LtqcMmWnYYRUVFAIBVq1Yxb0ehqG2UwCrqFBs2bAAAaE0yE/7uKrEibROHQZ145RVwTiXmlVd7WckSKyKvVnnJ309gqhynVGIRebXKS5JYIXk1SZZYwQFGnFKJhSXDqZElKA6OEisQea12iZUZ3KcaJVZ4xOGgBvhxLLqWpb26JVb0XEiWWE55tYpxkljRfe60nsTIxynHniV12LmghP8KyatJksRyy6u9Tkn3XpbU4WQIdZZYHnm1l5UssbzyapVlpEqsX+qwW52cJDYvg396GyeJdZJXk44dOwJQAquoWyiBVdQZysrKsH37dgCpAgsgtT+sRHtQz9cRzafxfqoxfnm1qmCTWFF5tZdlSqyMvAKV0dPKKKzMPK+WxIY0KXm1yquUWCl5TSlUTF5N7BIrLRn2xlaQwiCRNlxtEhvEyLTVILHS0+UENcVKQpFpEnGuLomVPRdMiRWUV6uYIKbYMbEfswDKtM4BUXmtKqjqd9lzvVJiheXVXqfKe7CIvJokS6zboE2sZZkSKyqvVlk2iRWRV3udtDLNEtmWXbYL1ylZYt3kFQDatGkDANi0aZPw9hSKmkYJrKLOsHHjRgAAyQ5Bc3lwWf1hZduDhELPNaBn+S/qByUADbP1h2EpC1ROhO3IyGtVnSpFWHZuUDuyc58C8YZgKCQ9PyGA4Bq9QLxxGoAoWFHYoPq80gD2eZoT2FyvDH272YtKE3k1qe3Rib3KCeBctyQ2qHmkgySgewMoFZtazAmNyIswAFAaf2kqWZYlsSEiFH1NLitUZkjJq1WWAcSy5Z/zZv/a/Db7hKKvdkyJTe73mkzz5s0BxPvBKhR1BSWwijrD1q1bAQBawwzXZbJCUXQu2oGcJqVS2yIxDSRKEMuhiOVIFRUfaTgG6BkEhnvV2crS41Fh2YekFqMgMQoQAhqWawRoUQNaVI+XFZGrGIkZIAfkHtoWuh7/kWz0WhFKTQtGgAwaSGTRaogHIfsmshJrb+ymmRAHJq8BknbyGjRBCRkQP5+CPIZBlGWWEcA1SMw06SCyIbRQoOcWCeAlIM2MP/xIhXxZRmYYlBDhuWLtxHI1RATnd7VT1oSAakDGHvnzKrvrHmRGYthTlu2/sA+PdByPB9p96blMixYtAACbN2+W3p5CUVMogVXUGXbu3AkAIPnOb5Y1YkAjFBlaDJ2a7BSWWBLTQMoJCAWgUSmJ1WKVAksBME6J41qWTqFVZtUaISIssaa8kspnNtXEJdaSV4PGv5umCUtsgrzKpvrpOqjZhyskHrlJSa+VldiAUmITUiFF5ohNKcv2nUTF0ylSkyYSe1DIa0AvRgJL2w4yXd5+HjFMu+VZlLnfNS1YIZa5BpMHqpKRWK3yXmdQUFmxzqgcaIlSKYmlmRlVrU1KpSRWzwpXDUJI+eeKtRPN1UBJPHtIVmIN8xFD5SQ2q8teZEUq060pkZLY+9t/haLQARSFDuAfbSa6LvfEppEAgG3bUueZVSjSFSWwijrDrl27AABafuLohRoxENZ0aKTqASQqsQnyam1ATGK1GKBVIKEsIyIWhbXLq1WWgMQmy6uJiMTa5dUqR/C5nRJ5JSQuniISa5dXEwGJde0bKiqxyWIgKAqug9EINFZT5NUqj7MsrzRDWYmVFKqDRl6dfpcpR4YAByxLOX8I29zRjkUl73cZiXVaT+QadJsqSERitaR7nIzEZiSNEiwjsclfUVBiE+TVKktMYqO5if1eZSS2rHFqnUQkNqvLXmRnJD7oRSX2/vZfoXmoalocU2KdRFbLjV9Pe/furf9ZIYp6gxJYRZ3BisDmVTVezKirE7wS6yiv1oYoqMZ+Y3eS1/hG+FOJNZ1Cc3nW80ism7ya8Eisk7xWfcgXhXVNGxaRWCd5NeGQWN+BjXgl1k0MOIXBdzoQjsaqq7xa5TGWxdJHrpYk9qCTV6+/iZQjQoBTRrmeNwIS67rfRSTWa3mea9BvnlseiU2WV6s+AhKbLK8mAhJrpg47lsUhsY7yapXFJ7HJ8moiIrFljV3maReQ2GR5NeGV2GR5NXGLxpKc+Lmj6zqKi4s5aqxQ1B5KYBV1BnOSbZIdv9l6yasJq8R6ymslehaYorBa1EVerY2xS6wlrx71YpFYP3k1YZFYT3kFuFKJffu88kisl7yaMEgs86i8rBLrJwaM4sA0giqjxPrKq1WeT1lBDfDCgojspxk1Iq8sn8ksKwurxPqdexwS67vfeSSW6ZpnuAb95NWE6V7kc6/lkVg3eTXhkNiE1GG3shgk1lNerbLYJNZNXk14JNZVXm11YpXYrC57PT9nlVg3ebWTLLEkogGReD337dvHUFuFovZRAquoMxw4EJ/jlWRoTPJqkqHFEA65P7xZ5BUAUyqxFrX1efWCQWJZ5NXES2JZ5ZUFP3k1YZFYEjNAyhgmaGeRWBZ5NfGQ2ECnlAHYxcBnOa7pP3wklllerfJcyuKV1yD6w/LIfppRo/Ia9DKssJ5XfsuxnisMEsu831kklivrIsD+357ZIIzZLiwS6yevJgwS6yuv9rJ8JNZXXq0FvSXWT15NWCTWV15tdfKTWKfUYSdYJNZPXk2KQgdwZ5tJ1v9JdvzLqAisoq6gBFZRZygrKwMAaJmEWV5N2jXc7RiFZZZXEw+JZZZXa+PuEssjryZOEisir25RWFZ5tcrxkFhLXlkbl14SyyOvJg4SKySvXlFYXjFwWV5o7koXieWWV6u8pLJEI681ILFKXjmWrQ159Vue9xzxkFju/e4lsUL93p2/C3P01Y5jf3zOQRC8JJZVXk08JJZZXu1luUisnsXZ39lFYlnl1cRLYpnl1VYnN4lllVcTL4m9v/1XHJWKy64psaTymV9RwfBSWaFIA5TAKuoMlsBm8DcknFKJueXVxEFiueXVqkSqxIrIq4ldYmUir8kSyyuvVjkOEsstr9aKDhIrIq8mNomVirw6SayoGCStJySvJkkSKyyvVnmVZcmmDVejxCp55VinNuXVbT3Rc8NBYoX3u5PESo08nvidhOTVJGFEdMFh6J0klldeTRwkllte7WUlSSxT6rBjWYkSyyuvJk4Syy2vtjolSyyvvJo4SSxL6rATlsRW7ueY6PNUoahhlMAq6gxWg0SwLWGXWGF5NbFJbMJUOSLYJFZGXk3Myd1l04ZNiRWVV6scm8QKy6uJXWJl5NUkpMUb0bJpw3aJlRWDyvWl5NWkUmKl5dVOEJJYDRKr5JVj3XSQ1+T1Zc8Jm8RK73e7xAYy93P8u0nJq4mui8urVR+bxIrKq4lNYoXl1V5WpcQKy6tVVlxiReXVxC6xwvJqq5MpsaLyamKXWFF5NWkeKoGxPT4WxdSpU4XLUShqEiWwijqD1UCVaJtkaDEU5JSBZhjyfUI1CiNCQTUJeTUhtiloJMsyywmizyvRKYhuSDd4KQFgAIjp4vJqVSr+BQOTAxLQbVBWNqsLSuvv1Ag1OfhQbRLkHK/pJK9BE+SLGk18/ug6gUGDu2dRWrnvgymLhoicvFplQUpeTYhBQUOQk1cTCsTydCl5NTEowXWtf5aS12SiUfl6KRQ1QZq2uBSKVDTzYSvR/tpWmo+9JdmI5JdDz5eLumkVBKFyAj0TiGVJFQUtGp/n1QhJvuGFGcWl3HPEJkNiBrQKAyAEVDJyQHQDWnkUCGmgYdnogQHEYvEXGrINTDN1OIiGalCRTs0m6EEMBGN+tyDERSPyLyCAAF8aVO3rdJP0wOqTrpIeoLwSgXmaHdENgGjBRDpNgpA8s4wgjmUoBBjyA80R8z6sy99jaGUUl5TLp58aWfGyNIG5XZOJZYcQPiC/z8sL4scvc7d8WQda6oAGbN9cKF3WnZ2/Q1F4H7br/PPEJlNQ2R7q1auXdFkKRU2gBFZRZzAF9vCcDULrbyvNx479uTAMAk2jiBSIS6xWQRAqIyAG4inAWeISq0Vp1bQ7BDDC4hKr6RRaNP6QpYR9jthkSMxAqNyIvw0nADRxiSW6Ae1AtEp8wiFxiTUMoKKqLCmJpRSoTH2TluGg+pomrSctsbbvFC9LogFm3z8yclYN8mqSLhKr5JUdM7NG+hq0i1g6Saxt3UCvQQmJJeFQVb0olZJYmhGpSrOmVEpijayIdW4RSqUkNpYdAki8HBmJLS/QrJaypstJ7IGWOmikcv2YJiWxd3b+Di0juwEAOjQpie0QzkJhXrxe+fn5wuUoFDWJElhFnSEnJz5q0tFkG/o1Xsq1rl1eTUQlNkFeTQQlNkFebWWJSKwpr1a9iJjE2uXVRFRiU+TVRERik+TV2oZIw9cmr1LlmPVKQkhiXZYXlliH7yLcgHbaLyKSVo3yalLbEqvklZ3kfsvC16CTgKWDxDqsE+g1KCCxCfJaVSkhiU2QV1tZIhJrl1cTUYk15TVeH3GJtcuriajEJsirVVExibXLq4moxHYIZyFCQigti+8ws52lUKQ7SmAVdQbzxqqXZeKygpVcEqtTkiCvJppGEcmvgJ7H9pDUog7yasIpsY7yaiuLR2JT5NVWDq/EEgpHOeGVWFd5NeGRWBd5tbbF0/B1kFehcnzgklif5bgl1uM7cDegvfYHj6zVgLya1JbEKnllx23QLe5r0Eu8alNiPZblPk+89geHxDrKa1WluCTWUV5tZfFIrJO8mhDOfZUgr1Z9+CXWSV5NeCXWUV5NOCXWSV5NdM4mvSmvAFB6QAmsom6hBFZRZ8jLywMAlJQS5GlZzBK7rTQfu4vdb8payECkoMI3EqtVEIQOuMirCaPEesqrrSwWiXWVV1s5rBJr9Xt1gVViSdRHXk1YJNZHXq1tsjR8PeSVqxx73fzK8mv0M0oBs8Qy1J1ZYln2Q03KIodA1bTEKnllx2/EaOZrkEW4akNiWZZhPc4s+4FBYj3l1YRRYj3l1VYWi8R6yasJaxTWUV6t+rBLrJe8WnVilFhPeTVhlFgveTVhjcLa5dUwgLJyJbCKuoUSWEWdweybsXd//LRlkVin1GEntJARj8R6SSyFt7ya+Egsk7zayvKSWF95tZXjJ7FOqcNO+EksiVYO2MTaoPeSWEZ5tbbt1fBlkFemcux1Yy3LrYHGKQW+EssRufKVWJ4omN/xCSL6KiBQNSWxtZ22XO3UoLwmLOd1DvKkvNakxDJGaZleIvFcgx4SyySvVRXz3LdM8mory0tiaaa/vAJsqcSe8mpt0F9iWeTVxE9imeTVJOa9URZ5BdhSie3yCgB79mmglIAQgoKCArb6KhS1jBJYRZ2hSZMmAIAdu6puvKbEvtBufIrIssqriZfEmiMOM+MisVzyaivLSWKZ5dVWjpvEssqriW8klrdB7ySxnPJq4tjw5ZBXz3LsdeMtK7mhJigFrhIrkPrs2ogWSaN2O061JK8m1S2XgZafjtHXWpDXhOWdzkWRQYdqQmI5+8l6SqxQf/zUZxeXvFZVzHEfc8mrvSynP2dGuKbK8ZJYJnm1NuwusTzyauImsVzyWsn2Lc5RWFZ5NXGT2A7hrBR5BYCdu+NfumHDhgiHg5grSKGofpTAKuoMRUVFAIDtuxJP2zwtC63DeQnRWF55NbEk1tYn1nHQJhacJJYKzs+aJLHc8morJ1lieeXVxElirelyRLBLrKC8WvWwN3wF5NWxHBPBUYEDmWKnkhSJlei3m9KIlukDnHy8alleTapLYpW8ssMrrwnr2c9JmWlfgpZYO4IjFTtKrNSI6FXPLiF5rapYwr4WklezHklRWF55tcpxkFguebUqkCqxIvJqoiV5tYi8AgCiWorE8sqrSbLEmuKaLK8AsGN3/G+NGzfm3o5CUVsogVXUGSyB3en8cDejsV3ztgnJq4nVJzZPF5dXE5vEmnO9ClMpsSAQk1dbOabEisqriV1ifQdtYsGUWINK960khMQFSlBeE8oJ2cRatiwtGJG1JDaAQacsEQtiACuzrKAGbQqIoCVWySs7ovKasH5Ag6sFKrGmHErOFZsgsYFcg4acvFZVLP6PhLya5ZgSKyqvJnaJFZJXq05VEisjryaZe+L7SlheTWwSKyqvJqbEOkVd7eyI/gdAVZabQlEXSK8WhkLhQYsWLQAAu/ZUDfmezMKKDERpCE0LiqW2pYUMIBx/CAmLoglB/EoTjb4mlUU1iD+07XUy4t9NpjEBxCWWUAoS1YMZ0EeysWsSbxTqgTbEg0C2MZ9QjqZJS3VVgfX7cRDUfg+cdJTXAAn0fA/qHK0OiZUk0BcioVBwg6sREsw92ZRhyecNANAMLf4MC6BaehYJpCWsVb4nlZJXk6iGjJAuJa8m3SIHEKXe/YfXr18PAGjVqpX09hSKmqJ+t1gU9YqCggI0aNAAALB+k/PbxBIjEwYl6N5wC5o32C+8rfKSDJDiMIwMiooCCj1L/KGkVQChA5UpwBHhYuJlRSlCFRRGiH9+VztEpwhVjjZMNQIaFr8VaDEDWlnl23XZ6IFugERjQEgDguiLY9B4o1e2D6UpiQE0VgNPZxWdJ9YGCWkANYKRqSBFMaCXD9Uhr4GUqevx/R4EQZUTIEHud0pp/HwI4r6QrvvKoPFzQgYtfg8O5D5T2aWDSGaxAJVRXMB6VohiZIZAK+8LoTKZdHIglq2BagSRYvl9Vd4wXqesTXLnZ6NWe9Co1R5ohGLY+rOkyuoeKUEWCcGA937asGEDAKBt27ZS21MoahIlsIo6Rbt27QAA6zamPiSmlRmYVtIVAJCtVchJrBFPG6YaQMNxgRWRWK0CCJdWRnEJoEfEJVaLUoTLKVBZDSmJpbDKAcQl1pJXSuPioklIrCmvZsMrHBJurFJKgZitoSQosZa82huDEhIblLxa0deqgsX75tojUbISaxcWWUlIY3kNpGy7qMjuK3P9IMVM8mVG4PJqIiuxtn1Ubf1hOUnYVzISq4USrxsZGQ6Hqq5nSqUklmZEqlqbhiEssXZ5BcA9R2zVilXyCsT7sMpIbHlDAqPysadFxSW2Uas9yM2IIjcj3tdoV5n4lDamvJqUGhWuy65btw4A0KZNG+HtKRQ1TXrcvRUKRsw3hGs3JFrgzDId3+w/HMWxTOtvohJrRl/tUA3cEpsgryaCEpssr1X14pdYe/Q1pSwOiU2QV6twQYlNllcTAYm15DW5Ac4psY7yaiIgsdUmr1Ub4B8d2akBLyqxTsIiKlRplvbthZCoOYmF6L5KXi8NJLba5NVEVGId9k1tS6zjvhKR2GR5ReW+E5FYu7xWFSYksQnyaiIgscnyasIdhU2SVxNRibXLq1WWgMSa8pqMSBQ2WV4BwIDhKLFl5cDmzZsBVAUIFIq6gBJYRZ2iS5cuAIDfV1U9HGaW6Zi4/08J8mrCK7HlJRkg+yKO/V55JZYYLv1nOSXWTV6BeP9THoklOq0ctMn5c+5IrFPjkldi3eTVhENiXeXVqhtnJNZLOjkkttrltWpDfPPTupbDKbF+ZfGQRoMHVct2vIQiDVNbeSW22uXVhPc88di3tSWxge0rB3k14ZZYJ3mtKoxLYh3l1YTjZZubvALxKCyzxLrIqwmvxDrJq1UWx4CNbvIKxKOwPBLrJK8mThK7cm0Euq6jUaNGahAnRZ1CCayiTnHIIYcAAH5fmWG5xT4jy1FeTVgl1kteTVglVqsAQmUeC1RKbCwbviJLktJ9U+rEKLF+8mqVxyCx9n6vzhurlNhIyFtk/eTVhEFifeXVqpu/xLrOtZoMg8TWmLz+f3tvHiZHVbfvP6equ2fJTBaSSCYkIYQlIRBMWBJ2WQOyCLIoiLIIoixuuKB5BVHkBQUUAeUL/gRfwQCiAgpCEGQnCSSENQsJIZBlsmcmmczS3VXn90d31VRXV1XX1tPdk+e+rrky6e46dbq6prvufj7nnN4d+ux7iYtnvxLr5yLcr5jVoLwG2p8fkQgisW6PjVuEfUpsn8mrgd8U1sfx6GuJLXms/KawHvJq4FtiveS1t7GSEitTSW95zeMnhfWSVwNfEltCXs0++ThMPUOEp7wa+ElhveTVwK/EesmrgX087AcbrgfQe21FSK1AgSU1xe67745kMomtHQpa16uY062Z4169KCWxfuTVoJTEOpYOO5EXT6801pi0qWSfSkisX3k12/OQWMfSYcedCn9prF/B85BY3/Jq9s1dYj1Lh51QlNhmInXDt7walJBY3xfrpSQ2iLCUkogalldf+w2SgvkR0FKP6WOJ7XN5BfyVEgc4Dn0hsUII/8eqlMT6kFeDkhLrR157G3O/yxBXP4eyRCmxH3k18JRYn/Jq4JXCGuJaSl6B0qXEfuTVoJTE+pFXA2sKu3jxYgDA+PHjfW1LSLVAgSU1RTKZxB577AEAePS9hGvpsBOGxB4yZkWxyOrB1np1k1jf8mrFpaTYq3TYsU9eElsixXVsz0FifcurFTeJNdLXIDhIbGB5NftVLLGB5dWKg2DGkb4GltfenTtKbOCL9LhmJzbacqIfyKvn/sOMQ/QSL79S1kcSWxF5NfCS2BDPv5wSG+o4uUlsAHk1cJXYIPKax+m920/qWoSLxAaRV7NPjkNagskr4F5K7Cd1LWrLRWKDyKuB06ROE5PbA8krUFhK/M477+TamTgxUF8IqTQUWFJzTJ48GQDw8jsjfMurQYOSxk7J7QVprNOkTX5wkljXca+lsElsUHk1+5SXWD3ZK7Jukzb5as8isaHk1cAusX5Lh51wSmLDCpZFYiPJq4FFNCsqr72dKJDY0BfnThIbVlrsUtGP5NWgoB9RZoJ1ErCgUlZmia2ovBo4SWyE510OiY10nOwSG0JeDYqOcQh5zTdUILGh5NXAJrFh5NVA7cm/7gLINiqB5dXALrFh5NVsy+apYeTVwJrCGuIaRF4NdOj4aJ2G1tZWqKqKSZMmheoPIZWCAktqjv333x8AsHlJ+AtDI41NpbK+S4edMCQ2PVBCihLjXkuRl1gAoeTV7JPoFVlIBCoddmzPkFhdRpO7vMQCCC+vBgkVqEsBqlq4XE6ofuUlNqq8GihK/Gu9RiEvsZEvyq0SG1VaDLnoh/JaQNQ1Pe3ENVNxVPLnQVXIq4FVYqtsMqxYjpMhsRHk1UTT8l8EhpRXg7zERpJXg/wXbVHkFQCEnhsuY4hrlLYMiY0irwb1rQlzjdew8gr0lhIHTV2d+GDN7wDkxr82NoZfsoeQSkCBJTXHfvvtB1VVkd6soWdjeHlpUNJoru+BTEa72JEKoGRz37LKaGuYAyI3tibKh67ZlCahZHNiHbktKSHiKCM1EsU4L+him8kzvrfDOC5YY5MD45jHVQZchVSlvOoy9+VIVKTe+1MN7QDxL3MU5+sXU3oaVwob30zDIveFXRzHXlUBTY/luEtVie9KUpexfPbpSQVqdzzvd1oqurwCgJ6S2LJ8p0jyatCtJSLLKwC8+eabAIApU6ZEbouQvoYCS2qOhoYG7LPPPgCA9kU9odt5r20k1m0eCDRo0OuiXdQJPTdbsJYC9FT4dtR0rnRYVwGpRvsgFzoAKSFVARnhL13RdCg9OVGUSTXYMjt2NAlksvmLnijt6EAmk0ttVDX6Rashd0HXr3VDUSJduJZDyHIl0lES9IBLEPkhBqmuRnmVmuX9JKrEyoiVD45tRni/y58DsX7BAkBE/QKpDF/QRJXY2OUViJzqCzOllkA2Wlsyn+CKnmhVMDKVgEzl+qV2RWtLq1MhFcTyhWu2PvfZ2bAxWlvZJgmpAomu6OdDYzKNhKLje2uOjtTO7zdPxJw5cwAABx10UOR+EdLXUGBJTXLYYYcBANrfDVez+17bSHy4bhj0tJq7fqrXoQ/MhhJZtVsgsT3/wSTCS6yalkh0yZx45pPY3FjWEON3shJKpvdDN6zEmvKqy96yZEUJJbEiq0OkM+bFeFSJLSg5jCKx+QtC82KzwhJbtE2A9RIdGiselxvmws4ur1GFyip1ES40q15eDcJKrPU4V4PElklezf+GfT+wnkNC8b+8jg/CSmxZ5BXInQchJVbEeFyktfxY10NLrEwlzBnrhQSgy9ASa8irQaIz3Htntl4gW9+bvIosUL8p3N+fIa8Gq5Z8KlQ7jcm0Ka8AsLpzcGiJvadtIpYvaUB7ezuam5s5/pXUJBRYUpMcfvjhAIBtS9PQu4J/mHdlk9DTvZ8qQpEQqsyJbACJVbsFkttsMxiHlVj7BFAiV54cNI1VshJqT3FqE0pidRQJhhQILLEiqwMO415DSWw+fS0ijMTaLgQrLbGujw0jsS4TQAWWWLfkNaxQOclcCImtGXk1CCqxTse3khJbZnk1bw76fuB07lRYYssmrwYhJNZRXkOmsNJp7GwIiTXl1YIhsUGxyyuQS2GDSqwhrvayYftETL7asskrACQ6lcASa4irIa8GqzsHB+7TPW0T0ZoehCnrc5NBHXzwwUjE+LdCSF9BgSU1yejRozF27FhIHWh/vweKkFCEvw+999pGYs2mQY73CSWYxArNZdbhvMRmB/gTWaN02HknwSTWKB12QqoCMuFPZBVNh5JxvrgJI7HufQogsdbSYSeCSKzLxXulJdaVIBJbYvbiyOXEvQ0Fe7yXxPXjMbqB8TqulZggrI/kNTCeaxTHK7F+Kbu8GgQ4DzyT14AS6yivBgHeo5zk1UBI/6XEWp3qKK9mWwHeV6ypqxN+U9hsk3SUV4NEp//PTWvq6oTfFPaetommvEop8dJLLwEADj30UN99IaSaoMCSmuXII48EAGya31tGXEpiraXDbviVWLVbINHpcbGST1BLpbEFpcMebfmRWHvpsBNSlE5jraXDXu34ktj8uFfPPqlK7sLIS2RLyauBX4n1eG4FEhuHyPqQWF8Xvrpe+iLR59I7viTWz7hXvxfSfhJInxebNZe+Gvg5Bn6OZ5wSWyqFrYC8+kph/ZwrMUqsnxQ2lmNkiKuf9x0fKayvsmEfEisTqre8GvvzkcJ6yauJj1JiQ1xLfSHrJ4UtJa9Afk3XEhJriKubvBr4SWFLySuQS2F/2HqU52MMcW1N57643/5xBqtXr0Z9fT0OOeSQkv0gpBqhwJKaZfr06QCA9sU9yGzt/fD1klh76bAbpSTWsXTYtbESEut37dgSEutWOuyGp8Q6lA47tlFKYjVZMO7VEyFKprG+l9ooJbF+LvyEiDeN9ZDYwBe+bhIbcN1YT4kNMmlTqYmGgpTPljjvalZeDbyORRAx7QuJjVNe8+McfT/c6zwOWgLfBxIbq7wG+bvzeC+La8yrKa4+v2Tzklhf8orSpcReqWtRWyVKif3Iq4FXKbFX6mqnVCmxH3k1+GT7ENf7DHm1MvHjXGp7xBFHcPkcUrNQYEnNMmbMGEyYMAHQgc0LCidzcpJYr9JhJ0yJbS6e3Mm1dNi1MWeJ9SwddmnHbXInr9JhN5wk1qt02LENN4kNIq8FfXKQWLdxr164SWzQsWNlltjQF75RJney4CixYWccdnqtw0xg5HLhWvPyauB0TMIIaTklNm55DbOZk8RWuNTcSWJjk9cwfysuEhtYXl1SWD+paxEuEutXXq0o3cV9CiKvBk6lxPbJmvzilMIGkVcDp1Ji+2RNfnFKYZ3kVWoS//3vfwEAxx9/fKB9EFJNUGBJTXPCCbmJCDbO7SpK5+zjYv2mr1aEIiEShWlsydJh18YcJNZv+mprxz65k5/SYTesEuundNixDUNiLcvsiAjLfxRIrN/SYSfsEhty+ZBySWzkC1+rxAZMX60USGzU5XKsr1OUJWRs52C/kVcD67GJIqLlkNgqkFdzc+s5HVZeyzipU6zyGvbvznYOhE5ebRIbSl4NLO9N5jI5AdsSEhCaXiCxYeTVwJrCuk3W5Ad7ChtGXg2sKazbZE1+sKaw1vGudtre68GWLVswZMgQHHjggeE6TUgVQIElNc1xxx2HVCqFzlVZbF/hnNApQuL99pZA6asda0lx4PS1oKH85E75qp1A6atDW7qan/AiQOmwE6bE+iwddmzDsswOgJLjXkv3yWgnpLwaqGru4lVV4lmyJZYL1pgmdgJ6LxQjrqNpSmwca73GJVX516vfyWtBQxWYTMuzrdzzqgZ5NZtRov3t5huJfVKn+MYFx7DGsqZBJBLRy4bzEhtJXvOInmzBMjmh2shLLBBNXoHeUuIwqaud+k2y5GRNfjBS2DCpq50fth5VNN7VzuC39wAAnHTSSZx9mNQ0FFhS0wwaNAjHHHMMAGD9K52uj+vOJqFnIi5Kr0gITUDJRvzwE4CSzZUPy6gXLfk0NsqHutmUni+zitonXc9N3BR2XdaCToW/8ClCRn9uwkg5Y5LYWDD6E1NJcaVLNJ2I9AVGGagqeY27rSipeUE7MX7pEOdximl28VhnG47jSyNVDb0+bAFC5N6743h+qgKRjvhFpgBkUoXIylg+5/RkdHkFcpM01W0SkeQVALSUxMoVwyLLKwDMWz/aVVwBoHtDFvPmzYMQAqeeemrk/RFSSSiwpOY5/fTTAeTGwWa2FX8IvNs2Eqs3Ds79R8j87BAh6Egg2aYAMvfhFelDUM/96AlAT4S/UFCygJLJibBMFI+L9d+OhJLWAJmX6igXVHq+fFhRgET4gyS0/NqxipJLFsIKny4BPV8WHTHpKBCpuCQ2isjaZTqCxObkPN9W5LQr5Hg+O5bXqlokNjZ51WOQDTtRj5Hxmuky2vEuh7xGlTyp97YV1xJZUYnr7y2fpMkQ68OaCJF7v87LqwixPmwByQSkouQ+60JiyKvxRW+iM3yftDoFWp0CCCDVEe1vWKvPVS2p6UjNQEtJQAGULhXvLx0Vup3125uwfnsTMlkVs9fv5vq4iR8cCwCYOnUqRo4cGXp/hFQDFFhS80ycOBETJkyAzDqnsJ2ZFDR7+hpGYvPpa2778BKr9gCJrtz+pYgosVJC5D/TpRA5kQ0jsbJwkouwEis0HcI6AVQUibWPoVWUaBJrdjKcxJoX9PZxp3EQVxoLhJJYU16t0hl6vGFM8upApSU2vuQ1pnYc244wTtRKlNc/LizPpeALlsDt6NHl3kD3sfyUH6zPRerh27SVgYb6G7GmrsbrF+V4GfJqNN8TcAI+FMsrAAgtXJ8McUW+KSWCmxvyalC/Ptw5acirgbI93OekIa6ZbG777T3Oyx1kO3X885//BACcccYZofZFSDVBgSX9gi9+8YsAgHUvbofW03tx+G7bSLS6jX0NIrEdCSS32j6owkqsDlM6gV6JzdaJQCJrlCHbCSqxZvrq0E7gC0YjfS3YgQIkE4FE1kxfizobUGKN9LVoB8Ek1lFezbYqJLFepcwBJNZRXs12Al4wximvLq9PpSQ2NnkF4i2JjaN9l9cs8LEuc9lwKIl1k9cwKWxc5fVOzyGMxLqNYQySwnqUDAdOYZOJInkFEDiFdZJXg6AprCmvNoKmsFp9sbwCCJXC2uXVIGgKa8irHacU9sAPT0NXVxd22203HHzwwYH2Q0g1QoEl/YKjjjoKu+yyC7ROiQ2vdpm3O6avVvyWFFvT14Lt8xKb9Cey1vTVijRmFg6SxlrS16K7gkisLX0tbsef7BWlrwV3Ct9prNB0wGv5Hb8Say0ddtxRwCTWSwrjGqvrV2L9jMP1IbGe8mq2UwFhLPG69LXExiqv5SgddsLvMSrx2vs+1n005jWQxJZKXoNIbFypq1ffgyTzHhPw+C4lLjXeVUr/EpsX1yJ5NXblI4WVAtBTqqu8AsFSWDd5BYKlsIa4un2m+k1htZR0lVfAfwprLRl2wp7C6mmJv/3tbwCA8847ryonxSMkKBRY0i9QVRXnnXceAGDt89uhZ6R3+mon7LhYoHciJT9prC19teO3pNgtfS1oy8e4WLf0tQBROo0Vmg7RoxWnr0U79CGxfpbfCSKxXviQ2ECyVE2TOwH+klg/iamfi/cyjHv1oq8kNtb99JW8GpTqu8/XvuQx6OMJm3xdgMddNhwVv9LtZ18+Zo/19Zr5mazJzzF0Sl3t6N4Sa01dS01uWCqFtY539SK1vfRzc0pd7fhJYU1xjfgWaS8ZdsOawn5mzXnYsmULRowYYU56SUitQ4El/Ybp06dj2LBhyLTr2Ph6V+n01Y6bxDqVDztu7y2xbumrnVIlxUoWUHt0TxHubavEuFiP9LXooV4S61Q67IaHxLqWDru04yqxbqXDjjtVckmMw3PzLB12ba/MEht0FmSXvgcux/Q6T/pYXg36RGLjSqD7Wl5LEeT18pLYSs02XCrJ9NtWqRS2L+UV8C4lTiSCLQXklsIGnGnYM4X1I68GLm+jXiXDjv3xSGHt4129ULLSVWLdSobd8EphvVJXO15lxF6pqx0jhdUzEn/5y18A5IZacekc0l+gwJJ+QyqVwrnnngsAWPN0B+BWzuqFU0mxW/mw4/YeJcUl0lcrniXFHqXDru05SKyv9NWhHfvFmGfpsBsOEluydNilHdcZigOP33RJY8PM7FsuiQ27hI/tOfgqHXZsx+GYlnHSJj+UU2KresZhvzgdnzCvl9trHxcBX0fXL2DCJK9uEtvX8mrgVEocQjyK/jZsMw0HaMhZYoPIq9EFWwobVF4NnFJYP6mrHSVb/BqXKhl2wimFLVUy7NgfhzLiUiXDXhzy0dlYt24dhg8fjlNOOSXw9oRUKxRY0q847bTTMGLECGTadWx7vi18Q4bE+k1fC7YtLin2m77aiTxLsbUtu8QGSF+L27HIXpD01Yp9cic/pcMebZkSGyR9tWOR2MhiFLfERl1/Ni+xoeXVbMe2lFCZJ23yQzkktl/Iq0HB8k/hX6/Yl5HqbTjUZkUSG6Vs2C6xlZJXp/1HSc2MFNZppuEgWI+r22RNfsj/WfkZ7+qFPYUNI69OBEld7VhT2Cglw9YU1m/JsBOzPxmN+++/HwBw0UUXoa6uLnhnCKlSKLCkX5FKpXDJJZcAAJrf/AhKd4SF2oQMlr4Wbd+bxkrhP321Yy0pBkqPffVsKz8uVkgETl8LyI+LFRLB09eCdkSvpPktHXZDUXIXtF4TN/nqk1XOI0pMtY6JjSqdcU/sFHWNT8QnsVLK/iWvBlLG8rpLKatCXg3M8bC1OubVDSOFjVjyaU7oFDR1dUBktZKTNflqJ531Pd7Vi0SnBj0lIstrarsMXDLshJoOl7raMVLYsKmrwVfX74329naMGTMGJ554YvgOEVKFUGBJv+O4447DnnvuCSWTxcAFH1a2M5Y0Vob/HDJLimUM141SiFw7MVyESoF43kUUJXeBFZW4ZgOuYEmsI3FKbJxU2XGKKrGxJrlxrfUa17qjQCx9EkKUfxmgoCgx9Uko1SGvRl/i+qJAVWN6XxSRxNUgJ8AxfP6oeQGO43MxYMmwE3oSsUzUJLLR5VV09OCvf/0rAOBrX/sax76Sfkd1XX0QEgOKouDrX/86AKB54cdItHWEa6gjieS26J+MufLh6BKrpoFEj8yX8IZvR2gSSkbmP7AjfIuuS4iMDihKtA9+XYfIZH0vs+PVjtT1/KRMEd/aNC1fnhiTVFcLxvOJKjKKJfWKShwX+xbCSmjvhF0xCExcaaC1L7H0S0Z7zQrKdWPqT+Qm8m0oEd47rIRZH9ZKlPJ8eztA5NfdHFoRdE3Xov7kpFOkSy+H44VMqoACqN3RKm70lAIpgERntPcgPSEgFaCuLWI7+Uqr+nXRXnuRBYQusPGjnSK1c8bSJnR3d2OfffbBkUceGaktQqoRCizplxx00EE45JBDIHSJnV5cBNkd4lTP5suHI15fC713vI5ZUhziGklYJm/KlQKHbad37KtUBWRSCSeyuuwd+6ookImQIqtbxr7ax8WGaQvoldiIIiuEgFDV6CIbl8RGGScMS7mlni8rjCqgMj/eOGw7MctrZGJLOqssoYyJWNePjCEtL/iyIuq5FPW1Nya4iyqvqlqYmIb82xLGvADml1bh5xeANTENOaxCJlVTXqO0o6cUU14BQGRDtpPIzfIvBQCZm90/VDvJXnkFcl9Yh0Fke+UVANTOcOdRW+tAdC1I49lnn4UQAt/5zne47ivpl1BgSb9ECIFvf/vbSKVSqF+/EQOWtkL2RIktEUpk1R4g0VncVtA0Vk0Die7CC5DeJXL8tyM0CSVd+IEvhQicxgpd5mYNLrhRBE9jjfTVoZ1AEmukrwXtKOHSWIelJ2JJY+MqbwbCXYy6zdQc9ALZcebXiMlezARNYau2dNjPbUEJ+1q5ve6h9l+mUu8wKaxTiXbQFNYQV6u8hhFZQ1zt7xMBX3dTXO1/80FT2Ly42st9g6awprjauhM0hTXE1T6UJmgKa4irvZ2gKawhrvZ2gqawhrga8hqWttaBULYDBy9rBZCb1HL8+PGR2iSkWqHAkn7LyJEjcf755wMAhrz1PpStGrAt6U9k3cqHg05IbElf7QSRWGv6WtROAIm1pq/F/Qkgsbp0X4sviMTqHhezgSXWbZ3KeMbXVl1JcdDlhtz2G0RiPdfeDChGZU5f/Upp1ZcOB7nPLyFeK9fzJ8jzjbNk2AlFBJNYr2PpV2K9UtcgEus1TjXAayWcxNVsJ9h7hus41QDpaUHqGqEda+pqJ0gKa6audgKmsNbU1Y7fFNaeutppXznIVzttrQNz8tql4MaW0VixYgUGDRpkTmhJSH+EAkv6Neeccw5Gjx4NtbsHg99ZDJEREN1KaYnNesw+HDKNdSJKSXFBOxFKigv7U7qk2DF9teNHYp3SV4d2SkqsU/pqx6/EOqSvBc3UqMSWLCELk8S69cdPO31UOlxKYmtOXoM8phQBXquS54+f511ueTXwe27FNVlTHONd/Uyy5KO/nvJq4CeF9THJkp8U1lNe85RKYe0lw2EpKBmO0k7SW1794id19VNGbIir0qVA7diO++67DwBw2WWXYeDAgdE6SUgVQ4El/ZpUKoWrrroKANC8/CPUrd8AoeUk1nca60Zc1+AlSoqdyoedKFVS7FQ+7NqOVxrrlb5aKTUu1it9tbVTclysn4vRHTWJ9dvXUhLrVwxKiVEfj3t1k56aldcwj3XDx2sVy/i5vpJXg1IprN9j55XC+pXXUo/xO0NwiS8bfMkr4P1a2Me7euHxpWHReNeQ7biVDDvhVUbsVjLsRKrd/fi4lQwHxSt19Ys1dQUASImT1m1EV1cXJk+ezGVzSL+HAkv6PQcccABOO+00AMBO8xdAZDI5iXVLY4PMPuzxMMfxrx64pbFe5cOO7biksV7lw879iTZLcW6nLuNi/aSvDu0USayf9LWgHY/JnUqkr4XdqRGJ9SoddsJNYoNKZ5WPia15eY2yjV+CyqvbMehreQW8S4lrLXm14tD3osma/OCUwrqMd/XCKYV1G+8alKCpq1MZceDUVQJqpvgYh0ldncbBlioZdqJ9VXEZsTV1NWj6cDneeustNDQ04Ec/+hGUal16jZCY4BlOdgguu+wytLS0INHZhcHvvG/e7pjGepUPO+FSUuw1/tWrrajL7QDhJnhybMdWUuyrfNgJu8T6TV8d2imW2KDH2GFypwDyajZTjTMUFzUddlZoy2scNjF1ktgKzjpcJEG1Lq9x4fI6hTp37MeiEvJq4HSuhTnO9hQ2jLzaH2+fadgvUi94Dq6TNZVsx3Ycwq7Lavvy0HfqasNaRqwnFejJeEqG40hLw6au9nGwYSdqUrf3HtCi1DVPYlsHRixeCiB3rTNy5MhgnSWkBqHAkh2CxsZG/PjHP4YQAk0rPkb92nXmfZ5pbBDiXGEizrGxqv/yYcc2rCXFfsuHnYiy1I6tHSTU4OmrnWoqKS6HxEbpUznGxFbBkjlFS69EbzB6G1HlNe5S4lotG3bCmsJGOU6qGu8yOVFmJM+/ToFTVztGChtWXq1dClIy7ET+fVxPKpAKIEO2Y5QRV91Y15hKhu2pKwBA13H8mnXo6enBAQccgM997nOR9kNIrUCBJTsMkydPxllnnQUA2GneAihd3QX3G2lsolNAhF2rPcYJniBysyKq6WjNSEXE0iepCshETKIWRTyBvMQmol9oCyUWsYrlgt+4qI2jraClw0705zVR40pfq6EfcbaDGM7lGJbJiQ2jlDiONV7ty+QEReTes+L4+44sr0Dv8I6I739C1+MpGc7LaySkjEVek9tkrGNdo8hrcptwTF0NZjQNxnvvvYfGxkZcffXVLB0mOww808kOxaWXXordd98dak8Phr4xv+hCS2gCIguoGYSXWOTHv24HIPM/YZEApMyVFUf5a82LdZSLFZHVIbJ6Po2N8MmuAxARx9dKmZNgISAitZOXECNhiUKcFw4xXOTGkjTaShZDIUQ87cRJ1Nc6rtLhOIlyfEVMYzr7I8a5EvWciaHawyw9jpxM5/sS9YvEGPpipLdKOvgwjoJ21NyXf1Gk0/icVbLRnpPQcj8N66O95sltuesRN3mtW7ceDzzwAADghz/8IUaMGBFpf4TUEvzEIjsUdXV1+NnPfoaGhgbUb9iIgYuWOD9Q5iRW7Q4nskLLfQgKmZs8KZLEIj8GJ2RplZKVUIyJKfISG0ZkzUmg8ilhHKXAMqGGE1lDYIHoEmtc+EdIY01ZrLTE2raJJLHGsYgin9b+RGlHl/ELcOixvf1g3KsVm7zGWmIdkVgqGxSRSz7DbhsHcclrHFjfo8LMZ2D0JYYv/WRSNT+PgkwwWNCG8YVq/lxJbg85VEaNaYZhDebnvtpd+vFOJLcJU17dULq6Mf79xZBS4nOf+xyOOeaYcDsjpEahwJIdjjFjxuB73/seAGDgoiWoW7/B+YEy92EUNY0FLBIbVWRDSKywj1uNIY3NtRNCYnUdwjphkjlLcfRyuMAS6yQicZQUx1HeZ/YnRF9s+w417tN+DOJKUMO0Y318pSW22uU18IRmDsmrHvM44YjEIrFhcDo3gp4vbjOeB8Umr1LKUBPPxfK+ZB0PbDRbYi1XJwx5jYIprpZzJEx6ashrFIzUVUT80zHE1UteISVOXbsBW7Zswbhx4/DNb34z2k4JqUEosGSHZPr06TjllFMgAAx9fT7Uzi73B0dMYw2CprFKGkh2FT9YKoheUgwEkliR1SEyDhdM5gRPPj/9dTh/6x9EYqV0XgZCCIiEGkxknS74A0qs68V+X0tsicdFlpKg8unWn6gyXEmJrWZ5Ddq+V9lwtaTDcRE0hY0jeY1DXIF4klePL9WE03upV18cZ3f2n3oaJcNOnz1qT4B2VBHuC76CNtzltW6L/78Ba+oaFj+pq8EP6wbgzTffRH19PX72s5+hrq4u/I4JqVEosGSH5dvf/jb22GMPqD09GDZ7LkQ2C7VLINHp8GlmSWPjEFk/aazXMjxRSooLd+KvpNhzDdm+Lim2lg+79KekxJZK0mKa3KnPJbbE/nxJrNfz9iufpfrrtx23x1RCsKpp0qao+/Ex5nWHTWFL/d37eV/oA3n1ncKWeg/yU0ZchpJhJ/ws0WYvGQ7dlxIlw2q69PkfR+pqFVc3eU1t6X0NGz9ZiQcffBAAcPXVV2PXXXcNv3NCahgKLNlhqaurww033IBBgwYh1daOneYvgMhKKJ6lO/GUFcc2NjaONDbmkmJXkbWXD7u00WclxSUv8pWSF23+hLAPJDbAxZxnn/2cA31VTlxqH3HKYKnnHUfpcLWkmn4nbOpvpcR+UthqSV4NYYxKmUqGHXflUUbslboGwalkOHgbMZYMx5C6liwXBqDkrzWSW7ag5e33AABf/vKXceyxx4bfOSE1DgWW7NC0tLTgF7/4BVRVReOqNWha/oG/DWMsK446NtYrjS2YwKlkZ8JP8NTbhkca61Y+7ISbxLqVD7v0RahKtAmegPjGxcaB18VbgH2UtZw4yMVlNZUTu73G1TjjsB8cy+MDzjZcLdJdbnwIWtHjnaiWyZoCjsN3LSMOkrq6VMWUSl39EDR1dZvIKY6JmuJOXf2idHdj0ruLkE6nccghh+Diiy8O3wFC+gEUWLLD8+lPfxpXXXUVAKB52SKkNq32t2E50tgoIuuQxhZN4FSyM6jcBE92nEqKS5UPO/TDMY0NKiTVJLFA4YVcyDSiSGLDTGhUriQ2SLvllNhqn7QpyH5DLpXT71PYGp5p2LGMOMz7jP2LxZhLhiO1ESJ1tU/kFEfqahXXvkhdC9CyOP6jldiwYQPGjBmDa665Bmpcs1ITUqNQYAkBcOqpp+LMM88EADQtm4fE1k3+N67QJE+OXSnD2FihSecJnEq2EXCCJ5c2Yi8pDiteNokNdWFfrhmKQ7YZexIbx1jFMK9NuSS2luXVuv8o67xWWSlxrESRK2PbMs00HIo+LBn2IkrJsDGRU1+NdfVDX0/SVIDUcRo2YeHChWhubsaNN96Ipqam8B0hpJ9AgSUkzxVXXIFDDz0UQtfRvGQ21M6t/je2TfLkOY62BIbERvmw7E1jo3xq53/gMYFTyTZ6L0BKjn/1Ik6JjXKh6GNcrC/iEtkYhFFKGe35GBIbpS9xpLlxi2ItTdpUirDyalAtzwMxprD9abxrXO8nEd/blO5s5JJhoelVM9a1ryZpckVKNC17G6+99hpSqRRuuukmjB49OnxnCOlHUGAJyZNIJHDddddhn332gZLNoHnRa1B6PJbXcSIvsiKbm0U4LLFM8GSksVGv0xRAJpToZcVAtAs+44ImyHIYTm1E7YfZVJXMUhxHG1EFJY5S27gk1viJ0kY1TNok9d6fqOgRvjwyuuN3/LpXGzEkuVWTBsfx9y+UeL4cyEb4xhQAEmruS8pI41RVSBF9DgWpxJC6ihhSVz166qp2y3Dimqdx5RI0rF0BIQSuvfZaTJo0KXxnCOlnUGAJsVBfX4+bbroJY8aMgZruwsBFr0Fk04HbETGJbGQEACVfyhvyw1wKASlyJWVxTPAUWR5VJZrEAvkkNWI/FFF5iY1BXs3nEOVC2rgQj0NiK4khr0C0i2hTgiM+H0PGo7Rj/M3GIbERXl9j2zjaiIRxnkd5feOS16hNGP2IclwS0UuXparmriYjDheJ+mVrVGkF8uIa8c9W7ZY5eY3wJzdgxQoM+HgRgNySf0ceeWS0ThHSz6DAEmJj0KBBuOWWWzB06FCoXVsxcOFrENkQg1tl/sNQq6zEmh/qSrQLhFgkFqgOiVVE/5HYOIkjAa0Wia1k2av1OYR5PpUWeTdCHtOqSV4LxmuH/JurNnmNQpzyGoWY5DUqsaWu+dLjsAz4eCUGrHoLAHDeeefhjDPOCN8YIf2UKrlqIqS6GDFiBG655RYMHDgQie1bMHDhbM917jypkjRWxpTGQhHRS4oNiY0ikKoCpJLhRdaQ2EQiWj+U/HI9kcfmBRzHFmf6aiWopNgvxmtVYp2SzjCvaRylw/Z2wqawTrMqRySoSDo9Po42AuO2rJBfIo7JzLWhRJZXIWL40iyhRpZXqarR5dVYdi3SF6vxpa6RxLVHQu2JlrqmtgGNK1ejefUCSClx+umn49JLLw3fICH9GAosIS7svvvuuPXWW9HU1ITE9k1o/mA2Eh1Zc1HxQFjT2AqKbEEaG1JkK1JSLKXzWoXG9j4lVtqX4DFm2wySxrpJQH9KY3e0JNZLEIO8pm7t+H0uTvJaqm03nP42pYxeShzg3KiK5NVrTLRfmSx36urzmHq+v/gdB+slrhl/bZjiGlFeo8hn3OIaVl5NcY0w1jW1LfeT3NyKgSvnQ9M0nHTSSfjOd74Tz2cKIf2QKrhSIqR6GT9+PG655RY0NDQgsX0jBiyfC7Uri0QnootsjZcV93ka63UhG1cauwOVFJfsp5/JkEpdlNeSxHrh5zUtJZilnouXvAYlrrVNXfAjlaUe4+f+WOQ1KrVSMlzqWJVKXaUsOdt8NaWuUYmlXDgmcVUyEskt6zCoNSevxx13HH7wgx9AqYYvMwmpUvjXQUgJJk6ciJtvvhn19fVIbF+PxhVzoaQzUHukq8RqKUCr92i0n5QV+0pjNQlkSzzJOCZ4CpjGFhFnSXG5JbYvL2wiz+hb5RLrN9ksKRA+2nB7jF959dNXP/Iaw+RSXnIZVTzLVjLshNfrWgXyGlvJcER8pa5SQunysLkqS13DYk1dvUgPcu+sIa5KRkLd1opBa95AJpPBkUceiRkzZkCNY11gQvoxFFhCfLDffvvhpptuMiW24ePZEJmcxDqlsbk16Epd8FZhWXEZ0lghJYS9dNeNuMbGRpFYrzTW74V/nONiqwHH8YM++1bNEhu0LNft9Ywj6fPbhlef/SavZRTEIPIZx/hYR4K8Hm7ncV+Pd3XoczVM1BQ0dXV8r6+C1LUS5cJaXfFt1tQVABLtq9C8ep4prz/96U+RiDrLPiE7AFVydURI9bP//vvj1ltvxYABA5Do3ITGj1+FSKehZKWryPrCRWT1FKDV9d34l5ocG+tGfyopLoPEhupTf09io7QXpG/2x8b1vIL+zZVhQqeaSl69iENeI3chYh9UJRZ57TdjXQOIqxRAjyU9jWOca7Ij92OkrgCQaPsEA9a8CU3TcPzxx+O6665DMpkMtwNCdjAosIQEYNKkSbjtttswaNAgqF1taFzxCkS2G0JHvCKrA1IB9ETfTuBQlWNjo27fH0qKrTMUVzKVNdfQDNGHapJYIPzMvtbXMmwbxjZhx73a9xvm70xGXF/W6IfZXLQldioqr8ZrGtdMw1E2j6tkOGIb/WGsa5RyYT2V23lc4qqmJdR0b0eSmz9Cw+o3oes6TjnlFMyYMYPJKyEBoMASEpDx48fjjjvuyK0T27MVjR+9DJHeDgAFIitFiXGwbljHx0adMDQhoCeD/5lb01hETWMjLm4PVYl2MaYqgKoWz0DshzCzFLu0Uy2TO1V0Vsu4JDYO8YrShnEMo7QRddKmqM8BiKWUOI7JliqevIqI7zHWdqJsHrUPuh65aiSuiZoqmbpmmtVYy4XDkB4kHMUVUiK1fhHqW98GAJx11ln4wQ9+wDGvhASEAktICMaOHYs777wTI0aMgJLejsblL0Lp2mLeb4iskgbUTIhP0Hwaq2gSSoTxsVLkxuOG+RCPo3RLCgGZVKHXJcNfIBqpSESJFUqEMamGxEa5QM1LbM0vixBVnGKR2Ih9kHq0PkgJaDEsRxPHckVhqxz0/HPwu/yKG1G3j+s4RCHOZL9SGAIU4X1Wqkq0kmFFgd6QjGWW4LAICeghP/OA/BfQmWipa6I7N8FjgbgCgNRRv2YB6jYsAQBccMEF+OY3v1n7nwmEVAAKLCEh2WWXXXDXXXdhr732gqKl0bjiFajb1pr35yQWUNO5D7QwIqslBfSkgJKV0SZ50iWEJiPNvBgWKQSg5hPZKB/UQuQSyNASmts20sWCInIXimFFNp/ohu1DVQlwrUqsVV7D9MGQ14jSFDW5NLf3uXZnAcaXEJG/jMhLfFiZN/Yftg9xyG9/kdew7695cY003AMAFAVSCOiJylxWmmmrDP85Z3zOZhrDPYdEt8zJq+Ygr1oWDZ/MRbLtEyiKgu9973u4+OKLq+f9nJAagwJLSASGDh2K22+/HdOmTYPQNTR+MhfJzR+Z9+up3JI6SlaGElmp5L5NBvKJbsg01vxw1ysjsQAAJZ/IRpFQIFoaa0hs2DTW2LeRyIYlYklxxS96DGmohMRatwm6vVPyGqYPxvOPUv5r7j54G9ZtIkmsQZgUVbdIa9hjGPX8iUqty6uq9sprGER+wr2o76l5ea0UhriG/VIs99na+yWxFnAeJau4KhqQabTNxJ/txoFyKRId61BXV4cbbrgBp512Wqi+EkJyUGAJiUhjYyNuvPFGnHTSSQAk6lvfRmrt+4CUeQE1xsvJ0CJrIHQZWWSDprG6KiBTMb1V5MvTIotslDTWmBApSJppv9iuUYmNVXwrKbFW4pAQv31wKh0OMQFT1OTVz21e+y84ZmFEUndIXIOksE77DHIc40hdq1BeA72OcaWuMYhrnPKqNfqfyMiauobBKq5hPk/t4mqgWwRY6W7H7m0LsGTJEgwaNAi//e1vcdhhh4XqLyGkFyFjmT2BECKlxJ/+9Cfcd999AIBs087oGnUg1EwSyU7ntfF0NTdGVUu6XwAIHUh2Sag9xW1IRUAquaTWa/tEtw61u3B7c5ySjxmH1bQOpTv8mD8lo0GkHVIeHRB+vjnXdAi3lMnP9lICWYf+67lEruTboNtFvpSxJUl+3ordBNTv23hZkluj9DCizPu6kHZ7nsLHlwmlxr2W2r9X6XCA8kupOZ8rfl8bt9daCAEkS1z8W0uHrVhn3C6Fk7wa+Nre4+/Fz0Q21V4yHHUiJz+TMHmlrqXOAWvq6oBsSJXev0fiqg2ItgxMprn09uaXrw5/C5kmFbrH5ymQE1fAWVrTTUrJBDbRndtecflTMJbgSWxdg502vouuri7ssssu+NWvfoXRo0d7N04I8QUTWEJiQgiBiy66CNdeey1SqRQSHevQ+NFLkOhwXs/Vksh6pbHWMuKifeqy5PhYt+V4CsqKKzQ+tirS2KglxX00Ltbr/orPLAxUNomNY0kYP/t3kye/UuXxOD9fQng9xveXME598PsljJe8+qHSZcNVmLoGIkrJcMypayUoSFxdznc/8uqVuPqRV3viaiXTKHIzDW9YgoaVr6OrqwsHHngg7r77bsorITFCgSUkZo477jjceeedGD58ONSebWhc8SLQs8F9AxmtrBio8fGxlrLiioyNDVNS7LTfKi8pLqvk9oXE+knZ3fbvd9Zht8f4mXW4lFyVoXS4CLcqBS95teI1FtaPvHodIz/y6tU/ymu0kuEYxrrGXS4chLjHuQbFWi7sha5qqF81D3XrFwEAzjzzTPzqV7/CwIEDw+2YEOIIS4gJKRMbN27ENddcg/fffx+AQGbIRKBunPcFhEtZsVcZsR2nsmK3MuKibV3KioUmoWZ0iHS4T38hJURGg8iU+vTvfXzBhYpXCbET9u3dSoiL9q+bjy94a/SbHMVUUuz0thxLiWm5KWc5sd+PKqdy4qDL5lj3H3TWYady4gDy6vQ6BfmYFilbhORXXoFc35MOJaRBklenMuIgfxNOZcS1JK9xlxAHXR7HWkJsiGuA7YtKiPNrT/sRV70+EWndb60x0TtnRB6vcmE7TuXDXuXCdpzKh0uVC1vJJrZjv8QKLFu2DKqq4jvf+Q4nayKkTFBgCSkjPT09uPXWW/H0008DALTGFujNkwGlRJ2Sg8gmuqXzWFoX7CKrpiWSHf4uRJ1EtmzjYJ2wj42VMiexfiTUwL59kG3tY2ODXICH2aZo/8XjYoMIaBQBjkw5JDbox5RVYsOs+Wrfd5AvTxwE1m3cq/vuC9sIJLDWsbBB5BVwHgsbtGxYiEIJDfp3YBfYWpJXIF6BDVMubLz2Jca6OpJKFgpowHLhOMe/BhFXg54hvedtEHE16BrSe+yDiCsA6PpaDNv6Pjo6OjB48GD87Gc/w5QpU/zvnBASCAosIWVGSonHH38cd9xxBzKZDKTaiOyQg4DkoNIbW0RWV4XvFLZg/3mRBfylsAXbCpgS26cCCxSnsUFTWAPL9mbC6mv/FokNI6Mxp7FBBdT+1t6n42TjltgwH1OGxIYRWGP7sGu+WiU2ROmw9bUK8xEtUsng8mpgTWHDjnlN2AQ6CELpPX5R5LVSJcNxCWwYeU2oOekMmLoamOlrgNTVSlwCG2ZmYSN9DSOuQG/6GlRcIXWo7YugdiwDAOy777742c9+huHDhwfrACEkEBRYQvqIRYsW4dprr8W6desAoSA7cD/IxjH+Ns6LrJqRUEKOk9UTuQ93vymsgZHACgko2fBlxEpWh+jJBN/QSGOzWjiBBfIyqQdLYQFTeKWuB1smpGC/8UhsWAENK8CRiUtio2BIaBTCnnOKiDTuVQgRaVuoarhz1khhoxz7RCLaea+qtSmvQHSBNUrAw/y9ppKRJmmSDalIkzRFEVitMdEr3iHO+54hiUhjXDMNuX37FlcA0LqR2DQPSnoTAODss8/GZZddhoSf2bgJIZGgwBLSh7S3t+OGG27AnDlzAAB6wyhoA/cDFH8feEICQsvNPhwGJSuhdulAiOsTKfITYfSES2V8j4N1QgeEpgGZbOjnDl0PLyO6XnGJrUnikFhrO32J7mPiphJE+njVdTMJC4NQldDnjZSyeCytX4x9+lkOxo0o54uuRZsMTsqIk8lFeM0Sqr+lhFyQ9alIs7nLxrrQ8hp1/Gu2KRn6yyYhgfRANbS86gnhuRSd4z671uFT+hJs2bIFDQ0N+NGPfoSjjz46XAcIIYGhwBLSx+i6jpkzZ+L/+//+P+i6Dqk2Qht8AGRqiK/t1YyEkpaAcF4exwuhAUpG701xA15vCC28wAIRUlggJ7GZrCkVoURW04KnsJZtpdcsrV7syBILRJuhWerhE0HrMQ8qBro0X++o6Xdg8uXroWTG+PsImQJJY/v6uuAbW8uWwwqwccyUEM/dKHkOK3HG32mF5FvU+ViD1Y1UEjJCv2VDCjLE+SakhBQidPpqjHXNNAU/X41ttTql5PI5Thifo5kBAY6b1KC2L4TasRwAMG7cOPz85z/HmDE+q6kIIbHAZXQI6WMURcGXv/xl3H777dh5550htE4kNr0CZdsHvr+BFnpeRrPBLpClmhsTK6TMjy0N1nepCMhExLeN0Ms4oODCMje2N6iBR1hGwj45TdBtY1hmp2aJOqFVmLGc1u3CpqlGCbl9Vupyoeu98hoGTTPbkCGer9S08PsO+zoVdED2vl5RCPMcpGW/YY9B1PQ1AlHkNbdGbLD9m58h+d8D71JaBLQ+jDj3/h5WXkV+DXTfZLZhYsNiU17PPPNM3H333ZRXQioAE1hCKsi2bdvw61//Gs899xwAQE8NhTZ4CqA2um6jZiTU7t4/W6kgUBqrpCUSlsmYzJIxn9cAUVJYs4w427tcTSBsKazZbpALXk3LTegU5q0vSikx0DspUBR2pCTWKkRBx2Y6SasS4EsIXUKm05Ztc/2OOhu0+/4czskgUmHIq4GiBEphC+RViNz2flNUJ3lV1WBJprSJqyKCpbD2CaeCflFlnyk6qBBWsHQ4UvoqBGQqCZn0t38nWdUakr7Lh53WGg+Svjpv7//YKWljkqfehtIDS2wvJZTtH2NA12L09PRg8ODB+PGPf4xDDjnE934JIfFCgSWkwkgpMWvWLPzmN79BV1cXpEhAG7gvZMNox4swu8Ca7aj+JNYusOb2QviS2FjKiO2zEQdZJiSrA2nnMmRfImufzCnoWyBLiaMRRGKdBNSvxLqlrn4l1i6wQGCJ9f3x6pa6+pUau7wCgQTWMXkVwl8ZsVfy6leA7fJq4FfA3WZL9iuxTvsPOhlSpUqHAciGEOXe5s4F9AH1/h7qcj5nm/z130k+Af8C6769v78TI3W14ymw2S4ktrwFpWc9AOCggw7Cj3/8YwwbNszXPgkh5YECS0iVsHr1avziF7/A+++/DwDQ63aGNujTgFp4ceEmsIC/NNZNYAF/aWxUgS1KYc2d+73Yd05hC/ZRSvKMFDbU/mNIYSmx/i743QTUj8R6lQ37kVgngQUKJlYqJbIlP171EpUIfgTWSV4B3wLrWjbsR2BLlQ37EVg3eQX8CWyppX5KSajX/v1KbD9PX71KhP2kr27iaVBKYEtv791/Y84Ht3JhR4GVEkrnSgzOLEVHRwdSqRQuvfRSnHXWWVAiTK5GCIkHCiwhVUQ2m8XDDz+Me++9N7dmrEjm09hR5oWUl8AaeKWxQsuv6ZpxFyhPkZW5iaCKBDQAjims2X7ptySvFLbgcW4Xpl5L6vh5S4ySwhr7oMR6X/h7iZF1dmM3kS017tXYzk0e3ATW3L50Guv58epnrKuX2BjPzW1t4xICa46RdeuDEBCqCiRd2vAz5rVUGbGXPAKly4j9rFPrJaCl9g+ULiWOumxOFaevfsa2eqWvpcQTyI1/df2s8rN9iQmclEzpca5FAqt151LX7nUAgIkTJ+LHP/4xdt1119IdIoT0CRRYQqqQjz76CDfeeCMWL14MoDCN9SOwgHca65XCFrThUlZcljLiop17XfyXTmGtOIqsUwrre/8RU1ij/R15PCzgLbF+jo1bGhtkQiG3NLaUwAIlJdb149XvRE1uAuuWujpsLxza8D1Zk1sKG+T4uqWwfuQRcE9h/cirgdPr43f/XilsVHmt0vQ1yKRMTgLrRzwN3NJXv224pa+lUlcrpsBKCaVzFYZkl2Lbtm1IJpO46KKLcM4553BtV0KqDAosIVVKNpvFQw89hHvvvRfZbBZSJKA3T4Ss3xVq2v8MxE4i61dgAec0tmxlxI4dcH6eflPYgm2sF6xeKayP/VdFKTHQPyQWKJYBv8fVSWKDzjrsJLF+BBbwLCku+ngtVTJsx0lu/Mprvm/2FDbQTMN2gbWer37POyeB9SuPgHMKG0RegWIBDbJ/ow9OElvJ0mHEn74GnU3YqXw4iLwCxQIbfPvCYxhEXAEg25BPcLMdSGx5G0rPRgDAXnvthRkzZmDcuHHBOkQI6RMosIRUOcuXL8dNN93Um8YmhwAD9oOabQ7UjrWsOIjAmttbRbbcZcSOHbDLQLAU1oopsqVSWK/957eveCkxUPsSCxSnsUEF1CqxYZbNsZcU+xVYc/viNLbg4zXM8jhWwSlVMuzSJ6vABl4mxyqwYZfJsZcRB5VHoDCFDSqvBlYB9fs3b8WedFa4dDjO9DXMMjhAYfoaVDyBwvLhMNsDhQLrp1zYTrpZQNm2DI3dHyKdTiOVSuHCCy9k6kpIlUOBJaQG0DQNjz32GO655x50dXUBEEBydyC1J4Tw/y2+kcZCR2CBNdvIXwgKvQ/KiB070PuWFSaFtSIM0Ql6QWvpg8yGk+iCtnb08bAGhoiGESV7khv2NTH6oGnB11K1pbFSyuCpq5X8cjaBUldbf0QiUXq8q8f+hZpPCqOs8WqksGHkFehNYcPKK9ArsFH6IFyqBYJ2pZKlw4CZvoYVV4NsUyq0eAK59DXK9rk21MCpq0l2C/TMu1AyWwEABxxwAL73ve9h1KhR0TpFCCk7FFhCaoj169fjt7/9LV5++eXcDaIRqNsXIvGpwG0pGT3Y+qk2hC4h0uGlK1AZsRNS5lJYTQMy4VNQoenht8+/fUaWWCC/Ni0lFoqI9lysKWyENmSEc8oU2TCpqxNh5NVAVaP1QQiIZCLa8VTV+F7XqER6Hkrl5RXRS4dlKgkkoj0PvT4RTaIBZAdESzh1VUAmRHBx1dNAzxKI7CeQUmLQoEG44oorcMIJJwRa55kQUjkosITUIC+//DJuu+02bNiwIXeDujNQNxFCGeC7DZHVc+Now35ey1wbgS8eLIROYS2IrA70BCj1tG9vpLBZzd+SGU7kJ2SKXE5c4UmdjI+DKBdxUsqKXwTG8jyM1zLKc4nw8WqkplFfCwCOEzn5RtchUuHLXc0+RCnHNL7YCfs84vhyp9SMyD6IQ16jlg4DgGwML8BGBY7e6HONXxe0OhXSx7rlbigZHdmGgMdSSiDzCQamPsbWrbnU9YQTTsAVV1yBwYMHh+4LIaTvocASUqN0dnbi3nvvxd///ndomgZAAZLjgNQeEKL0xaKS0aGkdUBxn224FCIroWS03vGxQbePmsICQL6NyCmsvRQ56HPSNMhM+HLmXBsRU1gg0sW69eMgjDhF3T62NowvAhQl/PMwXktFifbFRpjNNC33OioiwjHIn0tCySWoQcmnvlJKCFUNJaBmCbXPNWmdG7H8PYSRv7gqE+JIX6OOe0XI9NU6Ljtk+mp9j5d1asXSVyWj57481SQyzQHayG4Gut8D9Jy4jhs3Dt/5zncwefLkUP0ghFQWCiwhNc6KFStw++23Y968ebkbRD2Q2htIjPS8+DUF1rwhuMgaAmsQRmSrLoUtutPnc4ojhQUqJrFOHwVB5Cnq9m7thGrDmmT7WK/VsQ/WLyOMkuCgfQn48Wr223j9QgisNMZzG+dQGIHV9aIvEoKmsAXjf4HesbSBGnH4OwjSRqXl1foaVCJ9dTh3gqavTu/podNX45wSIrDAGuuWC8vs+74EVu8GehYDmVUAgKamJlx88cU47bTTOEkTITUMBZaQfoCUEq+88gruuOMOrF27NnejMiRXVqwOcdymSGDNOwKIrDEbsW0SpCAiG0sKq8noY2G9JBbwJy81LLFuHwV+BSrq9l7tBJc4h9cwQBpbJLCWNgJJbICPVzN1LdhfMIGVTudNUIG1ySsQXGDt8gogeArrdv77lcBKyqu175WQV7d1iQOkr27v4aHSV+v5JAT0lAI96a8NJ3E18BRYmQXSy9GgrERXVxeEEDj55JNx6aWXslyYkH4ABZaQfkRPTw8eeughPPDAA+jp6cndmGgBUhOKxscKXeaXwnF5C/ApsvYU1opfka2GFBZwKSUuelCJ51SDElvqY6CUREXd3k87wUTO5UsIn2msq8Ba2vD9hUaph9hT14J9+RPYotTVShCBdZBXsxmfZcSO8mppw5fIlTrvS7VRKXl1+vIgDnmFz9LhUue1j/S11Ht2oPTV6Vzymb56iSsAaA1qwdrmBfvMrMTQAauxadMmAMA+++yDb37zm5g4caL/vhNCqhoKLCH9kPXr1+OPf/wjnn766fwFqQCSY/PL7vQmKa4prJUSIuslsAalLoriENg+SWGLNnB5XnGMhwX6TGL9fAx4iZTfj5GoIuy7jVKz9pZIYz0F1tKGry8zvO52Sl0L9lFaYB1TVyv59XE9J3KyjHd1baZECmtu63Xs/aSwfs53z+fSx/Ja4tjHMe61ZPrq50uOEumr3y8bfQms13lfQmBLiauBY/qa3QB0LwT0bQCAkSNH4utf/zqOOuqoik8sRwiJFwosIf2YZcuW4a677sIbb7yRvyUJpPYAkmMhhOpPYA3cRNaljNgJt4ukWMqIEVMKG1RigeILyLhSWKDsEhvkI8DpIjDoR0i5Rdj32q0eaawvgbW04SoQLs/HM3UtaN9dYD1TVzteKaxH6lrQhIfA+vrSwGjHK4UNcp47tdGX8lqqr+UuHQ5aVu+SvgYZ7lGyfLjUeeRRPuxXXA0KBFZrA7qXAFpuVv7m5mZccMEFOP3005GKMIM2IaR6ocASsgPw+uuv4/e//z2WL1+eu0HUAak9ochRUAMGhVItllg/KWxBGw4XTdWSwgI+S4ldN84/t7gkNo7ldQDHi/uwb/9WqQrTRhwi7NpO0GPlkMbKbDbY2qtuImt7Tr7FtaDtYoktmbracRJYH6lrUTMOZcRB5BWAcwob9gsaqxzGJa9ey+X47Wc5S4fDTGpmS1/Dzhrvmr76PYdc0lfPoSwuZJoTgLYN6FkCZHPzPiQSCZxxxhk4//zzMXDgwEDtEUJqCwosITsImqZh1qxZuO+++7Bu3brcjaIBirIHFK0FIshYL1saG1RgDawXUnGlsBUpJXZsRFTXeFig6CI/ytu/ECLy9nH0pVjuQrxmljTWd/rq1o61P5bnVLJc2LXNXoENlLpasQusz9S1qBlbChtYXo12rClslPPaaCMueQWc09egXxbEJK8F6WvY5ZQs8hpWXAGX9DXoOWQT2KCpq0G2rgdS+wAiu8Zcd3r69Om46KKLMHLkyGB9IoTUJBRYQnYw0uk0nnjiCfz5z3/G5s2b87cOgIo9IDAi2Fghy/WMyEpfZcROGBdWsaSwqGApsRtVKLHV8tZvylkMMhxWqEyMJDXK+GVrGitluNS1oL2cwAZOXa1Yx8GGlFegV2B9jXf1wkhh4zifI67NWoBVXsP0LW55TcSQ4DbWRRJXg4L0Ncz5ky8fLrgpoLhK2QUdyyHUNfm1z4EjjzwSF198MXbbbbfgfSKE1CwUWEJ2ULq7u/Hoo49i5syZaG9vz9/aBBW7BxdZ5IRPZLRcCV5Y9JwER05h82lu1FJiABCZbHSJ1fXqmdQJAHRZNQIbK1Hk1YLMZqNP+qIo4VNXx05Ff24ikYj8ugtVDZ0GFrUT5b3CbCgmgTXkNcpxjnPSpjjktT4JGVGmhZTQ6xO59DXKl0xZHdqAZGBpBQApO6FhOdTEWmTzXwROnToVl1xyCSZMmBC6T4SQ2oUCS8gOzvbt2/G3v/0NDz/8MDo6OvK3NuZF1n9psdB0KGkNEAJSIPTFqbCmsBEulEXWNo41bOoUZTysBZnNxjOWtT9KrCGeSgQZ0fXcaxxVriypaVSJlSErEnobiEfITeJIBoFg67l6tRNkfVrPhiJKrCLikfJkMvwxto4r97Nkjo/2dB/L5rhubrw3SAltQHgpN76MFLqE1hBgCR4AUnZAw3Io6jozcZ0yZQouuugiTJ48OXSfCCG1DwWWEAIA2LZtG/7xj3/gkUcewdatW/O3NkDFOAjsUlpkpYSS1nLCJ0R4kdUlREbPjWM1CHNxaaSw9vQ0zNi/TDYvjtHeLqtRYoEqKCe2J6dhRFa3vT5hhURKyEy24LwNK7KhBTZucTWoMoGFokB4zWrrhjXVNl6nsBJbaXm17zuZiJa+GuX0dYlQ6atVXAFAr0tAeiy/49qORVwBQE+VmMHYgpTboOFDQKwz35umTp2K888/H/vtt1/gvhBC+h8UWEJIAZ2dnXjsscfw8MMPY8uWLflb66FgVygYDSHcL16FpkPpsZTthhRZ4TYWNuiFppvEWu733SdDYgNuV7TLapNYoLJprFvZbxCJ1T1elxDnjLSWnkcQ2cACWy5xNciPhY3cTExlxECIFNapJFsR4QS2UvLqts8o8mpNcEPIq11cDYKmr3ZxNdvxkb7qsg06PoLEOvO2ww47DF/5ylcwceLEQP0ghPRvKLCEEEe6u7vxr3/9Cw8++CA2btyYvzUBBaOhYFcIUV+0TZHAmncEFFmnFNapTR8UlRI74Xf9UavEBty2YBNKrGW/JfrvR2Tt6audIJJiF1izH8FF1rfAlltcrdRyCus2njhMCtvX8lpqX2Hk1aVNv6XDwvo34/D3EyR9dRNXAzeBlVJCYj10rIBE7gtTIQQ+85nP4Ctf+Qr23HNPX/snhOxYUGAJIZ709PTgP//5Dx566CF88skn+VsFBFqgYiyEsKy3Zy0jdkL0XjSWklnXFNapTS9KpbAOj3fdlaZ7TwwV4O00NomVMndhX4vjYv1OulRKYksJrIEfYdE0b/HMn7N+JNaXwPalvALxCWxfp7ClJsPyK7Hm4/pIXv1+2RFk3KtHm37SV7e01U6p9NU62Z6buALO5cNSatCxGjpWAOgEkFvH9dhjj8V5552HsWPHeu6bELJjQ4ElhPhC13XMmTMHDz74IN5++23zdoGhULAbBIbmltlwS2HtlEpl/aSwTm06EVRi89s47sIphfW5bdHD4pJYoDYndwo6a7CbyPoVWMBbKNzS16J++EtjPQW2r8XVICaBBfowhfU7k3MpiY0pdQVKyGvQffhJX/18YeIhr6XSVjte6WuptNWONX2Vsgc6PoGOTwDkKmOamppw2mmn4YwzzsDw4cN9tUkI2bGhwBJCArNw4UI8/PDDePHFF6GbEtIEBWOgoAVqWvhfE9ZDZH2nsE5t2m/yU0rshu1t0pfEumxbdHeVSixQ5smdIqwh6thO0L46CYFfgTX74i2yjgJbKXE1iGkcLNAHKWyYJYjcxsOWW17Dtl1KXgO061Q67DdtteOUvgYVV6A3fZVyKzR8gmRqPdLp3BrdI0aMwBe+8AWcdNJJaGxsDNQ/QsiODQWWEBKaNWvW4JFHHsGTTz6J7u7u/K0JKHIkEj0jocgAFyVO5cVhUlindoFwKawT+bfMQBJr27bo5mqUWKC8aWzUNVsNkQ2SvjphFYSgAmv2xVlkCwS20uJqpRZS2LDr5zqlsOWS16htuslriHat6WvQtNWONX31Wybs2CfoyNZvgo5PINFm3j5hwgSce+65OOKII5CI6/whhOxQUGAJIZHZtm0bnnrqKTz66KNYvXq1ebui7QQ1OwqKPhQCAS7KLKms0GW4FNat6TgkFsgLcQiJtWxf8N8dTWKjCqyVOPonRHiBNbCJrIzzdYiTahRYoFdiw8qr2Y5FYuOW17ier11eI/RRJhOAtdw34t+DNiAVKm01d49uZBOroamrAZGrelFVFZ/5zGdwxhlnYNKkSZHXWCaE7NhQYAkhsaHrOubNm4d//OMfmD17tik+Qq+Hqu0CNdsCgQDLMuQvckRGAzQJhFzqsaBJTYYvJbYjJUQ2vlTXnEAoDumRMj4hBuIX2bgENuaPMKlp8QlUnMc/Tqq1jDhGsYYicqIeR9+EApFQ45fXmI6bbEjF83egScikCplUQqStErqyBZq6CiK1GVr+3B82bBg+97nPnd94nAAAOWFJREFU4ZRTTsGwYcOi95EQQkCBJYSUiTVr1uCxxx7Dk08+iW3btuVulAKKPgxqdiQUfSf/qawOCE3LyScAKUR4mc23FUsKC8Qnsfm2imbBjSKzFjGOhFGOqWnxp7FRRbYcAgtEl1igOtNXIBaBLUjQYhDP2OTVEFcgmiBaSpBFKhlsXWI3FJFLS+MU9YTqe6kbRzTLeZ5QArcl0QNNbYWmroFUuszbp0yZgs9//vM4/PDDWSZMCIkdCiwhpKx0d3fjueeew+OPP47Fixf33qHXQdVakNBaIGRDyXaEZiklNsfKhhRZ3RjDqsWznIYWYYIoO04Sa94XoVw5rMTaJ8SpNomNORUuem5RRDYOgRVKfCJsHxcathn734yiRPo7il1ew/bFfq4rIlciHVVeLcda1gdYLqcUUeRVM6pj8ueWENBd1mq1I6FDVzZBU9dApLaYaWtDQwNOOOEEfP7zn8duu+0Wrl+EEOIDCiwhpM/48MMP8cQTT+CZZ57pTWVhjJUdCUUfBuFmpEYKa5lUxHqhGlRmhSaBnrTtxpAXvnGmsPn2Sq5HGlRqwkqs04yuUi/P2NigIluu9NWJMCIbRTztxz3OtgwCSqznuMUwEqso8Y2FDCuvHscmkrw6HNu401dZ7084TSxpq9AL30dlsrQM66ITmroGmtoKiN73zn333Rcnn3wyjj76aM4mTAjpEyiwhJA+p6enBy+//DKeeOIJvPnmm713yCRUbWeo2Z0h5MCiEuOCFNZOUJm1prAl2vNFJSS24PE+HhdUYt0u7g0qncb2pcAaBBHZMNLpdszjbMsggMD6Es0Aclax8a6ljkm+vVDy6nE8K1Y67CatVjzSV4kMNHUDNLUVUmkzbx8yZAhOOOEEnHTSSRg7dmyAjhNCSHQosISQirJmzRo8+eSTeOqpp7Bx40bzdqE3QNVGQNF27l2OxymFdcKvzJaSWIf2PKm0xJrbeSW3PsfF+rnQN/ZVqTS2EgJrpZTMBpHOUsc7qMD6FLWSzQT5IsdPCluO1BXw3q/fcznfZiB59XEM+1xe/Uir+YDi9LW3RLgVurIJELk2FEXBtGnTcPLJJ+PQQw/l2FZCSMWgwBJCqoJsNov58+fjmWeewcsvv2xZVxYQ2kCo2gio2qegaMlgy+qUklm/EuvQniPlkNj8WqeBRdZsw2k8rUcaG+SC36AcaSzgLrJl2FdggTVwE9lS0hnkOPsV2KCvnYuAhZZMD1Hrs9Q1zPmrCAhFyYlrKXkNkFz3mbwGkVYr+fRVQkKKNmjqWmjqekD0vseOHTsW06dPxwknnIDhw4dH6T0hhMQCBZYQUnV0dnbi5ZdfxjPPPIP58+dDNy7IpICiDYWaHoZE9xAIBEwA3GQ2qMQ6tFdA3BKbbzNUGlvUjnWGYweJDXPxb227r9aNLUPiG7nfdpF1k84wxzhOGbZik7HI6ahTChtn6go4y2uU89ZP6hpi0quyy2tYac0jIaHX9yCbWg9NXQeI3i8Nhw0bhuOOOw7HH3889thjD67bSgipKiiwhJCqZuPGjXjuuefwzDPPYOnSpb13SAE1sxPU9DCo6Z0iy6yQDpM6hWwv12gVS6zZnl5cUhxFBKztllNkqyl9dcIQWbt0Rj22ThIbx+uliJgFMy+x5RJXAFDim7nYUV4jLjMUu7wiP2lTDNIq1e3IpjZCS22EVHuXvhkwYAA+85nP4Pjjj8fkyZOhxtx/QgiJCwosIaRm+Oijj/Dss8/ihRdewMqVK3vvkAJqZgjU9PDwMitlTjajrktqtAf0SqwWo3TFLbFAr8jGsfaplXKWFVdjAmsnzi8FDAyJjavNuOU1j0il4m3QkNe4xDXfZoG8RpRWg1jlVcrcT0KFVNWI0rohL629SWsqlcLUqVNx/PHH49BDD0VdXYzL/BBCSJmgwBJCag4pJZYvX47nn38eL7zwAj755BPLnYbMDoOa2QlCBlhqQsqcbMYhsRZMibXuJyqaFm1crBPlENlypLF6zMfS1m5sfY3zOBpyFVeb+fZil9dk7u9NqEo8fY0zdbUIqjAmIErEnJLGIa+GtBooCqAG+8JCQkJXO6CZSWuhtE6bNg1HH300DjnkEAwYMCBafwkhpI+hwBJCahpvmQWU7EComaFQ00Oh6A1+GuwbibXvMyyaBmn0NS650bX409gdUWTjErg42+wLcbUSpb9RU1eHRFWIfJtximv+WMqEGl5e7dIqpVmG7VdeJTToyXZoyU3QUpshld4hEXV1dTjkkENw1FFH4eCDD+Z6rYSQmoYCSwjpNxgy+8ILL+CVV17Bhx9+WHC/0BqgpodCzQyFkm0uWmfW0hCQCTDTsU88Jda+/yBYJdZKFHkoV1lxDYpsrtkQ7UaVtzjb7WtxtRK0v1FSV4/jFpu8OhzDwPJqF1bjNvt+kt7DIaRIQ0tuhpbaDC25xVzyBgAaGhpw8MEH4+ijj8a0adPQ0ODjCzxCCKkBKLCEkH5La2srXnvtNbz66qtYsGABNOtEPXoyPwnUTlCzgyGk5UKxTCksEEBirX3xg5vEGoSVKYpsQduB+htG3OJut5LiauC3v0HFNcCY1UjyWuLY+ZZXp5TVa58O6WtuPGtnXlo3QVe3wfo93Kc+9SkcdthhOOywwzB58mSk4h6LTAghVQAFlhCyQ9DR0YG5c+fi1VdfxZw5c9DR0dF7p1lqPARKZggUrQlConok1orXW3Ze0D1F1koQESpHWTFQsyKba7pE20HELVAffLRbDeJqpVSf/ZQLh5hkyRRXIJi8+jxunvLqJ2V127dFXqXIQEtugZZsg57cUlAaDAATJkzAYYcdhkMPPZRL3hBCdggosISQHY5sNou3334br776Kl5//fXCcbMAoCfyE0ENgdo9EEILOKuxD4QxM3EckzDZ38ZLpbFulJKMcqWxRtu1JLKW9l377HWcosx466PdqhFXK0799kpdI84KHCh1DXi8pNGmVV7DCqutH1IR0Os6oCW3QE+2FaWsdXV1mDJliimtw4cPD7YPQgipcSiwhJAdntbWVrz++ut4/fXXMX/+fHR2dhbcLzIDoPYMhJoeCCUzEELGNwFMpDTWjfxSO0CANNYJN1GqZZEF+i6VdRO2WPZpnaXWMrtuNYqrFaPfdnGN67jAR+oa8RiZqWscwgqjLLgbWt1W6HVboSXbAKVwXeLddtsN06ZNw9SpUzFp0iQud0MI2aGhwBJCiIVsNov33nsPr7/+OubOnYulS5cWPkAKKJkBUNKDckKbboZAtIv7skgs0LtmbJxl0FZxqjWRBfpWZo3XNEY5c6IsJaNxi6sVYwmbuNZKtSCEyLVv7Xecx0dRIK1thxbWHuiprdBS7dBTWyHVTMFjmpubceCBB2LatGk46KCDmLISQogFCiwhhHiwadMmzJ8/H2+++SbefPNNrF27tvABUkBJN+dldiCUTFNgoRW6zIlPGSUWiJjGuqHLsk/0BMS4Nqsd45iUoX2paaUfFBBhlb5yvJ41Jq4F8l6mtV1NFAUy5JcRupIX1jpDWAvHsSaTSeyzzz6YMmUKpk2bhvHjx0Mtg+ATQkh/gAJLCCEBWLNmDRYsWIAFCxbgzTffxMaNGwsfIAWUTFNOajPNuYRW+htDK6yTRsUug2VIY630kcgCZZLZMoyXjUtgC6TVKmxxCXJeWgFAJKyzccd0rsQkro5Js3Fb3Gu72gkgrxISMtEJLbkNeqoDenIbZKKn4DGqqmLixImYMmUKpkyZgn333ZdlwYQQ4hMKLCGEhERKiVWrVpnp7FtvvYUtW7YUPU5kGqBkmqGmm6FkmiG0Otc1aEVWcxaoOKTQGLOn67UpskDfprK5nYRuJorAukprwQ5ktBTWSFsTLl+wRBXYCOLqKatWwswwHJQS8iqFBj2ZE1UttQ16sqNoDKuqqhg/frwprJMmTeK6rIQQEhIKLCGExIQhtO+++675UzTDMQBoSaiZplxSm2mCkhlQkNIKo5S4lJyEXtu1f4ksUJ0yG1RgfUmrnaCS7Ja2uhFGYgOKq29ZtdJH4gqgQF6NCZf05PactKa2QU9sh/37qIaGBuyzzz7Yd999MWnSJOyzzz5obGwsX18JIWQHggJLCCFlpK2trUBolyxZgmw2W/ggCQitIT85VF5qs41Qsg6znJYiiCyWu6zY6E85RRaoWpn1I7ChpLVgJz5S2KDSWrQPn+eHD3ENJat2yl0uDJipq66k8+lqhymt9nQVAIYPH45JkyaZP+PGjUMizLEmhBBSEgosIYT0IT09PVi8eDEWLlyIxYsXY9GiRcUTQwH5sbSNUNIDoKQboKQboWQaws147CWOfZHGGn0ot8gClZHZ3I6Ku+IgsMIud3HMkOskylGl1Y6XxDqIq+vMyFGebxlTVwkJqWSgpzqhp7qgp3Kyap8dGABSqRT23HNPTJgwAfvssw8mTZqEnXfeOfY+EUIIcYYCSwghFWbLli2mzC5atAiLFy9Ge3t78QOlMZ62AWq6MSe4mUYIPYSgOEmkrpdfZIFe4eovMgs4Cq3UtPIIqx0jhY1bWov2Y3mORvtCcZ6xOM7nGbO45iZZ6oae7ISe6oSW7ISe7ATUbNFjVVXF2LFjsffee2PChAmYMGEC01VCCKkwFFhCCKkypJRobW01ZXbZsmVYtmyZs9QCENkUlLzYKpmGvOTWh09rDRkzlt8p58eEIbPlWELIiiGziijP+rJ29HzaXA5htVAgyH2x7Epe3ExpLefziyiuuVQ1C5nsgp7syglrshN6sgsQxa+/oigYM2YM9thjD0yYMAF777039txzT9TX10d5FoQQQmKGAksIITWAlBIbNmzAsmXLsHTpUvPfNWvWuGwAiGxdr9hm6/Ny61NsddlbXuwxljO2jxDrPsots0BhmlguoS1Dkl0grIoARBnWa7VjSRtFuceeWvfncy1ao/zXFNVEd15YuxzHqwK5SZb22GMP7LHHHthzzz2xxx57YLfdduNSNoQQUgNQYAkhpIbp6OjAhx9+iGXLlmH58uVYsWIFPvroI3R0dDhvYIhtth4iWw8lUw8lWweRrYfQksXL+/gUWcddhf146WuZBXqFNk6ZjUlgTWntK2EF+l5agVziKoSruEqhQSZ6coKa6MmVASe6oCe7XUVVCIGRI0di7Nix2H333U1hbWlpgaL00bEkhBASKxRYQgjpZ0gpsWnTJlNmV6xYUVpsAUBXTJk1/83U5datzSRyVZchRNatj76opMwahJXaEAJbNGa2v0srUCCuErpFUrvN32WiGzJRPKFSbxMqdtllF+y6664YO3Ysxo4di9122w2jR49mqkoIIf0MCiwhhOwgWMV21apVWLlypflva2srNC8xlQIim8qNt83WQWSSUNKJ3G2ZFISWKE5vI/a1CHv/+kpogXAlxz4EtiIlwQa2iYj6Qlql0CETaejJNGQq2/t7Ig2p9kA6TKRkZeDAgRg1apT5M3r0aIwdOxajR49GKpUqe/8JIYRUHgosIYQQZLNZtLa2Foit8bNhwwZvuQUA3RDcJJRsEiKbyJUkZy0/MUqudEqCKyW0BnaxtQhsUbIK9DthzZX4ZiATGehqBjKRhVQz+dvS0JMZx5l+7TQ1NRVIqvVn4MCBsfaZEEJI7UGBJYQQ4kk2m8WGDRuwdu1arF27Fq2trWhtbTV/37hxI3Q/5bISeZG1CK6mWn5P5P6vJQBdDSS7FRdasyOFSS2AvhdVY59KoaCGEVYJHVLNFvzA+D2RzYtq7geKv+M9YMAAtLS0YMSIEUU/LS0taGpqcl9HlhBCyA4PBZYQQkgkMpkMNmzYYMrshg0biv7dvHmzP8k1kMIitwlAz8utnvuB8Xv+X+R/h1RM8ZV2gZV6ZaS23DjIKhQBYZmkSEICigaparmlZRQNUDVIRbP9bpfVYMersbERw4YNw/DhwzFs2DDz51Of+pQpqc3NzXE8a0IIITsoFFhCCCFlJ5vNYsuWLabUbty4EW1tbdi8eTO2bNmCtrY281/PiaZKIQWgKxC6kpNaqZj/F7oCaPn/W26HDkDLbSukAHSRE2Ep8u2J3vukkQwKQFr/RcnEWMLycStsv4vcv1Lo+f9LSCEBRfb+X82vYyskpKIDim7+CzW/raLlbhO65TGa73TUCVVVMXjwYAwZMgSDBw82fx8yZIgpqsa/jY2NofdDCCGE+IECSwghpKpIp9MFQrt582Zs27at4Gfr1q3o6Ogo+H/Jcbp9gYRFcvMI03ArTmNjI5qbm82fpqamgn8NQbVKKkt6CSGEVBMUWEIIITWPlBJdXV3Ytm0bOjs70dXVZf5r/LjdnslkkMlkkE6nzR/j/9bbyy3IiqIgmUwimUwilUqZv9v/n0ql0NjYiIaGhoKf+vp683fj/vr6elNOBwwYgIRtIidCCCGk1qDAEkIIIT7QdT3QjxACQggoimL+GP+33i6EgKqqlEtCCCHEBxRYQgghhBBCCCE1QR/P608IIYQQQgghhISDAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJogUekOEEJIpZBSoru7u9LdIISQQNTX10MIUeluEEJIRaDAEkJ2WLq7u3HCCSdUuhuEEBKIWbNmoaGhodLdIISQisASYkIIIYQQQgghNQETWEIIAZB6/VOAJiAUAQjF/BeKAPKlekJRcr+L/L+KgBD57wGNx+VvN7Ypus1o03ofeu+XxnaK5X7jduMrR/ttQkAa1YQi/38l95/e2wUgYG4j8/8HkHuM0YYwnktve/b7rW1K4zGKw33WxxfcZ73N3g+XbVzuB2D2wW1fBY936UfRNnDYvmgbWdAPe3vm/bDfL3sfg97H9j5Had4nih4vzW1E/vbef432JISQBaeX0X7upey9X0Hud5i3A0r+/tx9uSbN2yz/5trr/b/1B8i1nfs/eu9D774UoZu35R6rAwBU0ft/RRTepwhpuV9ChW7uTxW6ZTsdan5fxu+5f3VzO6M9BTK/rQ614L7c41UhIaBDzf/feG65/yO3HXr3J/JtqGYf8/1D7liokFCA/O8i3x6gCgEFAiry/wrjPgUCApm0ijO/NgKEELKjQ4ElhBAgJ6967kIRovdfqxkIGOLaa2vCsMoCE8rfn9+q0GyUYrsSlm2d7MnzdrjcD1NaC363/2tuLizN2oXYfr+9TeRF2uU+t+469sPPNj4OVdg2LYevtPTGLLD2+2332QW293Z7e7LoPkNSne+Xltutt0mHNmXBNobA2n9c7zOl0iK2FtE170Pv/Yb4GfflBFY3BdC4LyeA+X+FgApjm9zvuX9FgTjm2gJUAfPf3u1yvzveZ/7fEGBpEebc76UE1qk9BchLce7/ufuMx1teQ0II2YFhCTEhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCbgOLCGEAIAqIaHnFn8UsP1rLshoW0fVvs6q8SN7tym43eU+y0Kk0mVxU6fbe28zVtdE4f+l9fbcYyUEIFHQnrRuk9+uGJfbpOWugrVIhbX7HuuvCpfbbdu43V/qPq82vW43/vHcxmk9V4f7i/rosg4sircTRY/vfZywrvFqOU1hrrtqPb1c1oFFtHVgZX57afsx7pP5tXDN+/L914UEhN67H+T/j/zzQeH9Mn+fzO/baBvo3Z/1dsWyL+N3+7+5fuT+rK3/6vmnrOR/1/OnqPM6sAIKcuvLGveJ/O0qeteSBVDwf8X8XVja621LgYAqjPsEBAQyaae/QUII2fGgwBJCCID01PWV7kJ5kLZ/Q2DzOkJMDP3USz2wajEMnwVphBBSK/AdmxBCCCGEEEJITSCklBG+lyeEkNpFSonu7u5KdyM2uru7cdpppwEAHn/8cdTX11e4R9UNj1dweMyCU45jVl9fDyFYE0EI2TFhCTEhZIdFCIGGhoZKd6Ms1NfX99vnVg54vILDYxYcHjNCCIkOS4gJIYQQQgghhNQEFFhCCCGEEEIIITUBBZYQQgghhBBCSE1AgSWEEEIIIYQQUhNwFmJCCCGEEEIIITUBE1hCCCGEEEIIITUBBZYQQgghhBBCSE1AgSWEEEIIIYQQUhNQYAkhhBBCCCGE1AQUWEIIIYQQQgghNQEFlhBCCCGEEEJITUCBJYQQQgghhBBSE1BgCSGEEEIIIYTUBIlKd4AQQkgv3d3deOutt7BkyRJ88MEH+OCDD7Bu3ToAwIUXXoivfvWrodu+99578ac//ank42bOnIlRo0aF3k9f0t7ejldffRXz5883j5WmaRg8eDDGjx+PE088EUceeWSkfXR2duKhhx7Ciy++iLVr10JRFIwePRrHHHMMzjzzTCSTyZieTd9QzmP21FNP4cYbbyz5uF//+tc48MADQ+2jEixZsgSvvfYalixZglWrVqGtrQ3bt2/HgAEDMGbMGBx88ME4/fTTMXDgwND72Lx5M2bOnInZs2dj3bp1qKurw2677YYTTzwRJ598MoQQMT4jQgipXSiwhBBSRSxatAg//OEPy7qPRCLheaGtqmpZ9x8np59+OjRNM/+fSqWQSCSwYcMGbNiwAa+88gqmTZuG66+/HvX19YHbX7t2Lb71rW9h7dq1AID6+npkMhksXrwYixcvxn/+8x/cdtttaG5uju05lZtyHzMAUBQFgwcPdr2/1qT/3//+Nx599FHz/6lUCnV1ddi6dSvee+89vPfee3jkkUdw4403Yt999w3c/pIlS/D9738f7e3tAICGhgZ0dnbinXfewTvvvIMXXngBN954Y80dN0IIKQcUWEIIqTKam5ux1157mT933HEHNm/eHFv7++67L26//fbY2qskmqZh7733xmc/+1lMnToVI0eOBAC0trbiz3/+M5588knMnTsXt9xyC37yk58EajubzeJHP/oR1q5di6FDh+J//ud/cOCBB0LXdTz//PO4+eabsXTpUlx//fX41a9+VY6nVxbKecwMPvWpT+Gvf/1rnN2uKHvvvTdGjBiB/fbbD2PGjDG/sOjs7MRLL72E3//+92hra8P//M//4C9/+Quampp8t93R0YGrr74a7e3tGDNmDH7yk59gwoQJyGQy+Ne//oU777wTr7/+Ou644w5cddVV5XqKhBBSM1BgCSGkithvv/3w5JNPFtx29913V6g31c9tt92G/fffv+j2lpYWXH311VBVFf/85z/xzDPP4Gtf+xp23nln320//fTTWL58OQDg+uuvN5M1RVFw7LHHQkqJn//855gzZw7mz5+PAw44IJ4nVWbKecz6KyeeeKLj7Y2NjTjxxBOx00474fvf/z62bNmC1157DdOnT/fd9kMPPYTNmzejrq4Ov/rVr8wvFJLJJM444wx0dnbinnvuwb/+9S+cffbZGD16dCzPiRBCahVO4kQIIVVELZXvVgNOImbl5JNPNn9fsmRJoLaffvppAMCUKVMcy0KPPfZYtLS0FDy2FijnMdtR2WeffczfN2zYEGjbWbNmAcidT4a8WjnjjDPQ0NAATdPwn//8J1pHCSGkH0CBJYQQ0m9JpVLm77qu+96uu7sb7733HgDg4IMPdnyMEALTpk0DALzxxhsRelldhD1mOzLvvPOO+fsuu+zie7tPPvnEnKTNOJfsNDY2Yr/99gPQv84zQggJC0uICSFkB+Ojjz7CBRdcgDVr1kBRFAwbNgyf/vSncfrpp2OvvfaqdPdi5a233jJ/HzdunO/tPv74Y1PedtttN9fHGfdt3rwZW7dujTQLbbUQ9phZaWtrwyWXXIKVK1dC0zQMHToU++67L0455RRMmTIlpp5WlnQ6jU2bNuG1117DvffeCyAnr4ceeqjvNowSdcD7PBs3bhzmzp2LFStWhO4vIYT0FyiwhBCyg9He3o5t27ahqakJ27dvx8qVK7Fy5Uo8+eST+PKXv4yvfe1rle5iLGzbtg0PPPAAAJiT7/hl48aN5u/Dhw93fdywYcMKtql1gY1yzKx0d3fjgw8+QHNzM7LZLFpbW9Ha2or//Oc/OOmkk/D9738fiURtXoIcd9xxSKfTRbdPmjQJ1157bUGCXYpNmzaZv/s5z7Zv347Ozk40NjYG6DEhhPQvavPTgxBCSGBGjRqFyy67DIcffjhaWlqQSCSQyWSwYMEC/OEPf8CSJUtw//33o7m5Geecc06luxsJXddxww03YNOmTUilUvjud78baPvOzk7z97q6OtfHWZeZsW5Ti0Q9ZgAwdOhQXHjhhfjMZz6D0aNHI5VKQdM0LFy4EPfddx/mzZuHf//736ivr8d3vvOd+J9EH7DTTjshnU6jq6sLXV1dAHLjpC+77LLAE16FPc8osISQHRmOgSWEkB2E6dOn49xzz8Xo0aPN9CuZTGLq1Km48847MWHCBADAfffdh46Ojkp2NTK33347XnvtNQDAd7/7Xey+++4V7lH1E8cxmzp1Kr761a9i9913N5NIVVUxadIk3HLLLTj88MMBAI899hhWrlwZX+f7kL/+9a947LHHMGvWLDz++OO4/PLLsWzZMnz961/HH//4x0p3jxBC+j0UWEIIIairq8Oll14KAOjq6sL8+fMr3KPw/O53v8M//vEPAMCVV15ZMKuuX6wJV09Pj+vjuru7HbepNeI4ZqVQFAWXX345gFzaa8hyLTNkyBCcc845uPnmmyGEwP/93/8Fel472nlGCCFxQIElhBACoHApkDVr1lSwJ+G566678PDDDwMALr/8cnzhC18I1Y51bKvXsijWsbLWbWqJuI6ZH0aNGoVBgwYBqN1zzImJEydi0qRJAIB//vOfvrcbOnSo+buf82zAgAEUWELIDg8FlhBCSL/g97//PR588EEAwGWXXRZpHO+uu+4KRcl9RH700UeujzPu22mnnWpyAqc4j9mOjjEJ0+rVq31vY53l2es8M2YrHjt2bLjOEUJIP4ICSwghBACwcOFC8/eWlpYK9iQ4v/vd7/DQQw8ByInYueeeG6m9+vp67LvvvgCAuXPnOj5GSonXX38dAHDQQQdF2l8liPuY+WH16tVob28HUHvnWCmMRDlIQjp69Ghz4ie386yrq8tcZ7YWzzNCCIkbCiwhhOwASCk970+n0/jDH/4AAGhoaMABBxzQF92Khd/97ncFJbBxidiJJ54IAFiwYEGB3Bs8//zzprQYj60VynHMSp1jUkr8/ve/B5AbDxtkvdRKomlayec2f/58LFq0CAAwefJk320LIXDCCScAAP773/+itbW16DGPPvoourq6oKoqjj/+eP8dJ4SQfgoFlhBCqoxt27ahra3N/NF1HUBukhfr7fZlW+69914ceeSROPLII4suhN9++21897vfxaxZs7B+/Xrz9mw2i/nz5+PKK680Je2CCy5Ac3NzmZ9lPFjHb1555ZWBSmCfeuop83gtWLCg6P4TTzwR48aNg5QS11xzjTmxla7reP7553HzzTcDAKZNm1ZTwl+uY7Z27VpceumlePzxx7FmzRpT+nRdx/vvv48f/OAHePnllwEAn/vc50KvMdvXrF+/HhdffHHR8wKAdevW4YEHHsCMGTMgpcTAgQOLxhB7/V0CwDnnnIOddtoJ3d3duPrqq7FkyRIAQCaTwWOPPWbObHzqqadi9OjRZXymhBBSG3AdWEIIqTIuvvhirF27tuj2Bx980ByvCOQEa8aMGb7alFJi/vz5poTV1dWhvr4e27dvRzabBZBLxc477zx86UtfiuFZlJ9169aZx0NRFMycORMzZ850ffwXv/jFQEljIpHAjTfeiG9/+9tYu3Ytvvvd76K+vh66riOdTgMA9txzT1x77bXRnkgfUu5jtnjxYixevBgAkEql0NDQgK6uLvN4AcBJJ52Eb33rWyGfQWVYtmwZbr31VgC5pacaGxvNtWANWlpacP311xdMzOSHpqYm/PKXv8T3v/99rFixAl/72tfM9o2/zYMOOghXXnllfE+IEEJqGAosIYTsAIwbNw6XX3453n//fSxfvhzt7e3o6OhAfX09xo4di/322w+nnnpqTa2XaiTTxu+bN2/2fLxVNvzS0tKCP/3pT3jooYfw4osvYu3atUgkEthtt91w7LHH4swzz0QymQzcbqUo5zHbaaed8O1vfxvvv/8+li1bhra2Nmzbtg2pVApjxozBvvvui5NPPtmcrbdWGDZsGH7+859jwYIFWLRoETZu3Ij29nYoioKdd94Zu+++Ow4//HAcf/zxqKurC7WP8ePH4//+7/8wc+ZMvPbaa1i/fj3q6+sxbtw4nHjiiTjppJPMScUIIWRHR8hSAzsIIYQQQgghhJAqgF/nEUIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmiBR6Q4QQgghhPihu7sbb731FpYsWYIPPvgAH3zwAdatWwcAuPDCC/HVr361wj30T2trK774xS+WfNxXvvIVfO1rX+uDHhFCSG1AgSWEEEJITbBo0SL88Ic/rHQ3YmfQoEFQVdXxvsbGxj7uDSGEVDcUWEIIITXBb3/7W/z973/Hpz/9adxxxx2V7g6pEM3Nzdh9993x/vvvI5PJoKmpCR0dHZXuViTuuecetLS0VLobhBBSE1BgCSGkn7N9+3YsXboUixcvxpIlS7BkyRKsXr0aUkoAwMMPP1y2i2cpJc466yxs2LAB5513Hr7+9a+Hamfp0qV47LHHAACXXnppjD2sLMuXL8frr7+Od999F8uXL8emTZugaZopaYcccghOPPFENDU1VbqrVcF+++2HJ598EgBw//334w9/+AM6Ozsr3CtCCCF9CQWWEEL6Od/61rewdOnSiux78eLF2LBhAwDgiCOOCN3OXXfdBU3TMG3aNEyaNCmu7lWUb33rW3jrrbcc79u8eTM2b96MN954Aw888ABmzJiBqVOn9m0HqxBrme1ZZ52FRx55BG1tbYHaWL58Of7+97/jzTffxMaNG6EoClpaWnDYYYfh7LPPxuDBg+PtNCGEkFihwBJCSD/HSFoBoKmpCXvuuSc+/vhjbN68uez7fvnllwEAw4cPx9577x2qjXfeeQfz5s0DAJx33nmx9a3SGGLf3NyMI444ApMnT8bIkSNRV1eH1tZWPPXUU5g9ezY2b96MGTNm4NZbb8WnP/3pCve6emhoaMCZZ56JP/7xjwCATCZTcpuZM2finnvuga7rAID6+npks1ksX74cy5cvx7///W/88pe/xF577VXWvhNCCAkPBZYQQvo5J510EgYPHozx48dj1KhREELgW9/6Vp8K7GGHHQYhRKg2HnzwQQBAS0tLvxK4UaNG4fzzz8exxx6LVCpVcN/48eNx1FFH4S9/+QvuvvtupNNp3Hrrrfjzn/9cod5WJ9OnTzcFtlSVwRNPPIH/9//+HxoaGvDlL38ZJ510EoYOHQpN07Bs2TLcddddePPNN/HjH/8Y999/f59OnnTddddh1apV6OrqwsCBA7HXXnvh2GOPxbHHHotEgpdqhBBihevAEkJIP+ess87Ccccdh9GjR4eWyDCsXLkSH3/8MYDw5cMbNmzA7NmzAQAnnHBCn/a/3Nx888347Gc/WySvVs477zzsueeeAIAVK1bgww8/7Kvu1QQtLS1IJpMAgCVLlrg+rrOzE7///e8BANdffz2+8pWvYOjQoQByZcnjx4/HLbfcgvHjx2PDhg144oknyt95C4sWLYKmaUgkEti8eTPmzJmDG264AVdccQU2btzYp30hhJBqh1/rEUIIKQsvvfQSgFzZ8pQpU0K18eyzz5rlnsccc4yvbbLZLP773//ilVdeweLFi9HW1gZN0zB48GCMGzcOBx54II477jhTYAyOPPJIAMCJJ56IGTNm4JNPPsHf/vY3vPHGG9i4cSMGDBiAvfbaC1/60pcwefJkc7uenh489dRTmDVrFlatWoXu7m6MHDkSxx9/PM4++2zU1dWFeu4G+++/v5kurly5ErvvvnvotlasWIHHH38cb7/9NlpbW9Hd3Y2mpiY0NzejpaUFBxxwAA4//HCMGTMmVPvZbBbPPPMMnn/+eSxfvhzt7e0QQmDgwIEYPHgw9t57bxx44IE47LDDTPE0sB//FStW4NFHH8W8efOwceNGdHV14YYbbij6MqShoQGZTAbt7e1YvHgxJkyYUNSvF198ER0dHdhzzz1dxxInEgkce+yxWLJkCd544w184QtfCHUM/JJKpXD66afjmGOOwV577WUmvitXrsQjjzyCxx9/HIsWLcLVV1+Nu+++m0ksIYTk4bshIYSQsmCUDx9yyCGhL75fe+01ALlxorvuumvJxy9btgzXXnstVq1aVXTfhg0bsGHDBsydOxcffvghZsyY4drOCy+8gP/93/9Fd3e3eVtPTw/mzJmDuXPn4vvf/z5OPfVUbNy4ETNmzMDixYsLtv/oo49wzz33YM6cObj11lsjSWw2mzV/V5TwhVOPP/44brvtNmiaVnB7e3s72tvbsWrVKrzxxhv48MMPcc011wRuv62tDd/73vccS3mNY7906VL885//xMyZMzFq1CjXtp566inceuutSKfTJfdrFeHXXnvNUWDfffddAMDHH3+M008/3bWtnp4eAMDatWsLbm9tbcUXv/jFkn1x40tf+hK+8Y1vFNw2dOhQXHXVVUWPHT16NK666irssssu+N3vfoelS5di1qxZOPnkk0PvnxBC+hMUWEIIIbGzceNGLFq0CED48uF0Oo33338fALD33nuXLB9eunQprrzySnR1dQEApkyZgunTp2PXXXdFMpnEpk2bsHDhQjMZduPDDz/Ef//7XwwZMgSXXnqpue/58+fj/vvvR3d3N37zm99g8uTJ+MUvfoFly5bh9NNPx+GHH47Bgwdj9erV+POf/4wPP/wQ77zzDmbOnImLLroo1DEAgDfffNP8fbfddgvVxvLly015HThwIE499VRMnjwZgwcPhqZp2LRpE5YsWYI5c+aELtO+7bbbTHk94IADMH36dLS0tGDAgAHYvn07Pv74Y7z99ttmSbgbS5YswbPPPouBAwfi7LPPxqRJk5BMJrFixQqMGDGi6PHWL0fefPNNfPWrXy16jFGGm06nfY39NkS2kpx99tn429/+hnXr1uHll1+mwBJCSB4KLCGEkNh55ZVXIKVEKpXCtGnTQrXx4Ycfmunj+PHjPR+bzWZx7bXXmvL67W9/G2eeeWbR4w499FBccsklWLdunWtbS5cuxZ577onbbrsNzc3N5u0TJ07EqFGj8NOf/hTZbBZXXnkltm7diptvvhkHHnig+bi99toLBx10EM4//3xs3LgRjz32GM4///yCJWD88tJLL+Gjjz4CkJP40aNHB24DAJ5//nkzef3Nb35jjqu1csQRR+CSSy5Be3t74PZ7enrMLwaOOOII/OIXvygS4cmTJ+O0005DV1eXZ5L80UcfYdSoUbjzzjux0047mbe7zWJt3c8HH3wAXdeL2reWoV933XWBnhsA7LzzzvjnP/8ZeDuD+vr6wNsoioK9994b69atQ2tra+h9E0JIf4MCSwghJHaM8uEDDzwQDQ0NodqwlgFbRcaJZ599FqtXrwaQm3XZSV6t7Lzzzp73/+hHPyqQV4OjjjoKw4cPx4YNG7BlyxacffbZBfJq0NTUhM9+9rO4//77sWXLFqxYsSLw2NWNGzfi17/+NYCcpF122WWBtrdipI7GMkpeDBo0KHD727ZtM79smDx5smeK6+d8uOqqq0q+5k50d3dj48aN+NSnPlVwu9GW1xcXXiiKwvVhCSGkSuAsxIQQQmKlo6MDCxYsABC+fBgANm3aZP4+cOBAz8cawgwA5557buh9ArkyXTfJE0IU3Dd9+nTXdqyPW7NmTaA+dHd3Y8aMGaZ42ieOCsrw4cMB5F6b559/PnQ7bgwaNMicTfm5555DZ2dn6LaGDx/u+KWAX6znjcGkSZMA5MqTa2VWX13XzTL8lpaWCveGEEKqBwosIYSQWJk9ezay2SxUVcVhhx0Wuh3rOESnNNTKBx98ACCXtPmZ7MmLUttb++I1W6/1cUGELpPJ4Cc/+Yk5MdThhx+OSy65xPf2TkyfPt2cSOqnP/0prrjiCvzlL3/BO++8Y5ZdRyGZTOLEE08EACxcuBBf+MIXcPPNN+O5554LLO9RZlkGUDDxlsFRRx2FpqYmZLNZ/O53v4OU0nV7Xdexbdu2SH3wg1cfAJjjX4HcOUAIISQHS4gJIYTEipGG7rvvvpHKLq1jRkvNRtvW1gagN2mMQqnxitbyWK9yWOs4TGMMZimy2SyuueYavP766wCAqVOn4rrrrgs1ftbKyJEjcdNNN+F///d/sWHDBrz77rvmzLyqqmLChAk48sgjccopp5T8ssCNb37zm0in05g1axa2bt2Kf/3rX/jXv/4FIPfFwtSpU3HSSSeVTJJLpe3btm0rmEnZfmy7u7vR1taGVCplLk3T3NyMb37zm7jxxhvx3HPPoaOjAxdddBEmTJgARVGg6zo++eQTzJkzB0888QTOP/98z3Q9Dr75zW/ioIMOwqGHHorddtvNnIxq9erV+Nvf/oZ//OMfAHJCb3w5QAghhAJLCCEkRtLpNObOnQsgWvkwkBuvabB169ZIbdUC2WwWP/3pT82lgw488EDccMMNZmluVA444AA8+OCDePXVVzF37ly88847WLVqFTRNw/vvv4/3338ff/nLX3Dttde6rpXqRV1dHWbMmIGvfOUr+O9//4sFCxZg0aJF6OrqwubNm/H000/j6aefxpFHHolrrrnGdWmhUksFXXzxxUXL3Fi5+uqrAfSuJ2vw2c9+Ful0Grfffjvmzp2LuXPnIpVKoaGhAdu3by9YrqgvWL9+Pf74xz/ij3/8I1RVxYABA5DJZAoS8YkTJ+IXv/gF14AlhBALfEckhBASG/PmzTMvwKMKrHXJlFICO3jwYKxbt65mxjfaMeTVSK/3339/3HjjjZHWj3UilUrh6KOPxtFHHw0gl1zPnz8fs2bNwpw5c7B161Zcc801mDlzJoYOHRpqH6NHj8YFF1yACy64AJqmYenSpXjttdfw+OOPY8uWLXjppZfwhz/8AVdeeWWcT80Xp512GqZOnYpHH30U8+bNQ2trKzo6OtDY2IhddtkF++yzDw477DDsv//+Ze/L5Zdfjvnz52Px4sXYtGmTeY7vvPPO2GuvvXDMMcfgqKOOipy+E0JIf4MCSwghJDYMAdtzzz0jTzxjXfP0k08+8Xzs+PHjsW7dOmzatAmffPKJ59jUasMur1OmTMFNN90Uu7w6MXjwYBx77LE49thj8etf/xqPPfYYurq68Morr+C0006L3L5RnjxhwgR89rOfxQUXXIDu7m48++yzoQX2r3/9a9Ft5557LlavXo2WlhY8/PDDntu3tLTg8ssvD7XvODnqqKNw1FFHVbobhBBSc3ASJ0IIIbGg6zpeffVVAPFMOrPzzjtj2LBhAGDOxurGkUceaf4+c+bMyPvuK7LZLK677jpTXidPnoxf/vKXodYNjYq1bNgYUxwnLS0t5jq2YdaadaOtrc1cQmmfffaJrV1CCCHVCQWWEEJILLz77rum+FiFMgqGVH388cfYvn276+OOOeYYU47+/e9/4+9//7tnu2HXA42TbDaLn//853jppZcAlFdeX3zxxZJSaoxdBoBddtklUPtr1qzBvHnzPB/T2tqKjz/+GEBuUqm4WLhwofn7wQcfHFu7hBBCqhOWEBNCSD9n1apV5oyzBsb6ogDwwgsvFMwW3NDQEKq00UgRR44cGXkpFIOjjz4a//73v6HrOubNm4fPfOYzjo9LJBL42c9+hiuuuAJdXV347W9/i5deegknnHACdt11VySTSWzatAmLFy/GCy+8gPHjxxdM8FMJrr/+erzwwgsAcsL4jW98A62trZ7bDBkyBEOGDAm8r7///e+4/vrrccABB+CAAw7A2LFjMWjQIGQyGaxbtw7PPvusmZ6PGDEi8PJH69atw1VXXYWRI0fisMMOw957742dd94ZdXV1aG9vx8KFC/HYY4+Zs0mfeeaZgZ+DG2+88QaA3PjeQw45JLZ2CSGEVCcUWEII6ee8++67uPHGG13vv+uuuwr+P2LEiEgCG+ealQceeCCGDx+ODRs2YNasWa4CCwB77LEH7rjjDlx77bVYs2YNFixYgAULFjg+dvz48bH1MSzPP/+8+fvq1avxjW98o+Q2F154Ib761a+G2l86ncbs2bMxe/Zs18fssssuuPHGGz2XB/JizZo1eOSRR1zvVxQF5557Lj7/+c+Hat9ONpvFc889ByCX+oddAogQQkjtQIElhBASmWXLlpnpYdTZh62oqoozzjgDd999N+bMmYO2tjbPtWX32msvPPDAA5g1axZefvllLF261BxvOWTIEOy+++446KCDcNxxx8XWx1rgpz/9KV5//XW8/fbbWL58OTZv3myWFA8aNAh77LEHjjjiCEyfPj3Usj377bcf7rzzTsybNw8LFy7EunXrsGXLFmzfvh319fUYOXIk9ttvP5xyyimxpfMAzHMCAM4666zY2iWEEFK9CCmlrHQnCCGE1Db33Xcf7rvvPgwZMgSPPvpoybU8g9DR0YFzzjkHW7duxde//nWcd955sbVNapurr74as2fPxgEHHIDf/OY3le4OIYSQPoCTOBFCCImMUT586KGHxiqvANDU1GRK60MPPYTOzs5Y2ye1ycKFCzF79mwIIXDppZdWujuEEEL6CAosIYSQSGQyGRxxxBG48MILccYZZ5RlH2eeeSZGjRqF9vZ2x3VAyY7HH/7wBwDACSecgL333rvCvSGEENJXsISYEEJITbBo0SLMnj0bTU1N+MIXvlDp7pAK0tHRgUceeQRSSpxxxhme46IJIYT0LyiwhBBCCCGEEEJqApYQE0IIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCa4P8Hjbg3nhs8ZMgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5wURfqHv9U9YXOCJUcJIsGAYjhRFLMYMIGcCIbTk1MxnRmzdz/jeeYzIRLMnjmCoiKSBD0QRDIiSE6bZ6a7fn/Mdm/PTIeq6t4E9Xw+q8tO99s1PTM99fT7VhWhlFJIJBKJRCKRSCQSiUTSxFEauwESiUQikUgkEolEIpGwIAVWIpFIJBKJRCKRSCTNAimwEolEIpFIJBKJRCJpFkiBlUgkEolEIpFIJBJJs0AKrEQikUgkEolEIpFImgVSYCUSiUQikUgkEolE0iyQAiuRSCQSiUQikUgkkmaBFFiJRCKRSCQSiUQikTQLpMBKJBKJRCKRSCQSiaRZIAVWIpFIJBKJRCKRSCTNAimwEolEIpFIJBKJRCJpFkiBlUgkEolEIpFIJBJJs0AKrEQikUgkEolEIpFImgVSYCUSiUQikUgkEolE0iwIRGDXrFkDQggIIbjooouCCLlXcswxx5jnUSKRSJy46KKLzGvFmjVrGrs5JhMmTDDbNWHChMZujiRgdF3HwQcfDEIIrr766sZujqQZYVwXjjnmmMZuikTSZGiq3+VBMHnyZBBCUFRUhM2bNwcev8EysBMmTMDdd9+Nu+++u6EO2ei899575nPeuXNnYzdHUsvdd99tXjBYflgvKj///DOuvvpq9OrVC3l5eSgsLES/fv1wyy23YO3atfX7pCQSyV7FjBkzcNFFF6FHjx7Iy8tDXl4eevbsicsvvxxz5sypl2M+//zzWLBgAbKysnDrrbcy7bNy5UrcfffdOOyww9CmTRtEo1G0bdsW/fv3x5gxY/DWW29B0zTbfdesWYPJkyfjmmuuwdFHH40ePXqguLgY4XAYLVq0wKGHHorrr78eCxcu5Hoea9euxS233IJ+/fqhsLAQeXl56NWrF66++mosXryYOY6maZgyZQqGDh2KDh06IBqNoqSkBAceeCDGjRuH3377jatdblhvDrH8fP31146xeOKIfBc2RR599FHzeVx44YVCMXr06GHGEPmMVVZWYtasWXjyySdx0UUXoW/fvgiFQkyvmRPxeBwvvPACjjvuOLRt2xbRaBQdOnTA6aefjjfeeAOUUuZYlFK88cYbOO2008z3c9u2bXHcccfhxRdfRCKR4GrbZ599huHDh6Nz587IyspCq1atcOSRR+Kxxx5DRUUFV6xZs2bhkksuQbdu3ZCTk4OSkhIcfPDBuP/++7F161auWCwEfS6aKps2bUI4HAYhBLm5uSgrK+OOcf/995vv4TFjxph/HzFiBHr27Ildu3Yxf19wQQNg9erVFAAFQEePHm27zaBBg8xt9hZGjx5tPufVq1d7br83nqPG4K677jLPM8sPy2v38MMP03A47BgjPz+fvvbaa/X/5CR7BbzXlobi5ZdfNtv18ssvN3Zz9kjKy8vp+eef73rNIoTQa665hmqaFthxKyoqaJs2bSgAOnbsWM/tE4kEHTduHI1EIp7X2B07dtjGGD58ONM1mhBCx4wZQ+PxuGe7Jk+eTPPy8hxjRSIR+q9//cszzooVK+gBBxzg2q68vDw6ceJEz1gsWD9bLD/Tp093jMUTx/pcKioqhNtvxBk0aJBwDD9s3LiRhkIhCoDm5OTQ3bt3c+3/7bffms+hd+/eQm0oKSkRfs3sWL16NT3ooINcYx5//PGOny8r27dvp4MHD3aN1b9/f7p27VrPWNXV1Z7XqG7dutH//e9/nrF0XafXXXcdJYQ4xmrdujX98ssvWU4ZE0GeCy+awnf56aefbrbhxRdf5N6/W7du5v5z585NeWzixIkUAFUUhS5ZsiSoJlNKKQ0hALp06cJ1l0dij8jdN4k/7rvvPvTt29d1m1atWrk+/p///Ac33ngjACAcDuPCCy/EoEGDEI/H8fnnn+Ptt99GWVkZLrzwQhQVFeHkk08OrP2SvZMJEybIEt29EE3TcM455+Dzzz8HAOTm5uLiiy/GYYcdBkVR8OOPP+Kll17Cjh078Pjjj4NSiscffzyQYz/zzDPYuHEjVFXFTTfd5LptIpHAyJEj8cYbbwAASktLcc4556B///4oLi5GeXk5li9fjmnTpmHevHmusXJycnDIIYfg4IMPRo8ePVBSUgJCCNavX49p06bh008/BaUUzz77LMrLyzFx4kTHWB9//DFGjx4NTdNACMG5556Lk046CeFwGN988w0mTZqEWCyG66+/Hvn5+fjLX/5iG+ePP/7AMcccg99//x0A0KlTJ1xyySXo1asXKisrMX36dLz22msoLy/HRRddhJycHJxzzjmuz5OHq6++GoMHD3bdxu177d1332U6znPPPYfPPvsMADBs2DDk5OSwN7KJ0bp1a5x66qn44IMPUFlZiTfffBOXXnop8/7W6+3FF18s1Ib0SoNOnTohFoth48aN3LF27tyJU045BUuXLgUA7LfffrjkkkvQoUMHrFixAs8//zzWrVuHadOm4eyzz8YXX3yBUMi+yx+LxXDmmWdixowZAICOHTvi8ssvR/fu3fH7779j/Pjx+OWXX7BgwQKccsopmDVrFgoKChzbNnr0aPOz36JFC1x++eXo168ftm7dismTJ2Pu3LlYuXIlTj75ZMyZMwcdO3Z0jHXrrbfiscceA5C83l166aU49NBDUV5ejnfeeQdTp07Fpk2bzPYfeOCB3OeyPs9Fc+Diiy/Ghx9+CCD5Puf5XMyYMQMrV64EAPTp0wcDBgxIefzPf/4z7rjjDqxduxb33HMPXn/99eAaHqgOu7A3Zhebwp0VSSbWDCzvHc90NmzYQHNycigAGgqF6NSpUzO2sd4579ixI62qqvJ1TImkqSIzsPXLM888Y57fDh060OXLl2dss2HDBtqrVy9zu2+++cb3cePxOO3YsSMFQE888UTP7W+//Xbz+BdffDEtKytz3HbDhg2OmdNly5bR6upq12N9+eWXNBqNmsebPXu27XYVFRW0Xbt25nYTJkzI2OaLL74ws3R5eXl048aNtrGGDRtmxjnuuONoeXl5xjbfffed+d3QokULpiyYGw392UokEinn67vvvvMVz4jTWBlYSil99913zXYcddRRzPtVVFTQ/Px883ve6X3hxahRo+g//vEP+tlnn9EtW7ZQSlP7iTz9kWuvvdbc7+STT87oV2zbti0lO/vUU085xvr3v/+dklncvn17yuNVVVX0pJNOMrf5+9//7hjrvffeM7fr1KlTRpZS0zR68cUXm9uce+65jrEWLFhgZl4LCwttM7bW/tyAAQOoruuO8VgI8lyw0BQ8IRaL0ZYtW5rtWLFiBfO+l1xyibnfI488YrvNbbfdRgFQVVUDyVobSIGtR5rCG1OSSZACa/0SufHGGx23O++885i+SCSS5owU2PrFKqYffvih43Zz5swxtxs4cKDv41o7/l4lsYsWLTIlcOjQob6PzcLYsWPN9t1xxx2221g7puedd55jrBtvvNG1c7phwwazU52dnU03bdrkGOuhhx4yY40bN47/iVlo6M/Wxx9/bB6vZ8+evuM1BYGNxWK0tLSUAsmy85UrVzLtZ5RBAqCnn356oG0SEdhNmzaZpfm5ubmO78FFixaZ79U2bdrQRCKRsU08Hk85Jz///LPjMXNzcykAGo1G6datW223O/DAA83n8/HHH9tuU1lZSTt16mRut2jRItvthg4dam7z9NNP226j6zo99NBDze0++ugj2+1YCPpcsNBUPMHal3W6hqbDemNn8eLFZuzbb789sDbX+yzExsy633zzjfk3u8kBnCZ30nUdb775JoYPH46uXbsiJycH+fn56NWrF8aMGYNFixa5ts06YY9Rovvll19ixIgR6Nq1K7KysjImJ0gkEvj8889xww03YODAgWjVqhUikQjy8/PRs2dPXHTRRfj2228dj2nMKvbKK6+Yf+vatWvGc3Y6VyyzEM+ZMweXX3459t13X+Tn5yM3NxfdunXD6NGj8dVXX3nunz4jYEVFBR555BEccsghKC4uRm5uLvr06YNbb70VO3bs8Iy3N0IpxVtvvQUAnrNyjh071vzdKK1pKGbNmoUxY8agd+/eKCoqQlZWFjp16oThw4fj448/dt3366+/zviM/vbbb7jhhhvQq1cv5ObmoqioCH/605/wzDPPME9sUF5ejn//+9844YQT0K5dO3PykwEDBuDOO+/Eli1bXPdP/6xomoYJEybghBNOQPv27REKhdClS5eM/TZt2oSbbroJvXv3Rm5uLkpKSnDooYfi0UcfRWVlJYDkkAhCSMb+n332mXlM6+vpxtixY819Pv30U6Z9WPCaubC+XrePPvoIp59+Otq0aYOsrCx06dIFF1xwAWbNmsX9HGKxGF566SWcccYZ6NixI7KyslBUVIT9998fN9xwg+OEMb/++ityc3NBCEFhYSFWr17teIwdO3agU6dOIIRAVVXX63ZT548//jDLBUtKSjBkyBDHbQ899FD06tULADBz5kzfkwlNmjQJAJCdnY2zzjrLddvHHnsMiUQChBCz9K++6d27t/m7Uzmm9bp7zTXXOMa6+uqrzevKm2++mfH4119/bQ6ZOumkk1yHmIwaNcr8/bXXXnPcriny8ssvm7+LlszyUllZiSFDhpjXruHDhyMWi2Vst3jxYlx//fU48MADUVJSgmg0ivbt2+OMM87AlClToOu6bfxwOIyRI0cCSH5/sw7DCKJ8OEjee+8987yMGDHC8T3Yt29fs9R848aNKf1wg6+++sr8vj3uuOPQp08f21itWrXC+eefDwCoqanB+++/n7HN8uXL8dNPPwFITnh16qmn2sbKzs7GZZddZv7b7nNWVlZmfmcWFBQ4rnCS3vfy078K8lwEzYsvvmhO+NWhQwfbyeb89Kus7+uJEycyDQt95513zEmfTj31VLRu3dp2u969e5ul3ZMnTw5uyGkQFuw2iZM18+r2c9ddd2XEXbFiRcrdHLsfRVFc7xZYs21fffUVvfLKK23jWO98HHPMMUxtHj16NK2pqck4pvWOitf+TufKiXg8Ti+77DLP2MOGDaOVlZWOcYztBg0aRFeuXEl79+7tGKtz5857VAY5qAzsokWLzDh9+/Z13VbTNFpQUGC+Z3knkBChvLycaRKUIUOGOLZn+vTpKZ/RTz/9lBYVFTnGOuGEEzxL/j755BPaqlUr1zbl5+fT999/3zGG9bOybds2OnDgQNv3rZWvvvqKFhcXOx6zX79+9LfffqOdO3e23V/TNNq1a1cKgBYXF3uWgldVVZnH69SpU6AT6njdtQ36dUskEq7XNUVR6IMPPsicJZo3b555Lp1+IpEI/c9//mO7//PPP29ud8QRR9hmFiil9NxzzzW3C/LOb2Mwd+5c87kcdthhntufccYZ5vZO55GF6upqsxT26KOPdt22srLS3JanRNMv1qypXX9g165dKaWIXp/FPn36mPEWL16c8pg1q3rzzTd7ts247gOgS5cu5XtiFhoyA7t161Yzw6eqKt2wYYPvmNY+hx3btm2jhx9+uLndlVdemfE6xeNxOnbsWKooiuu147DDDqN//PGH7XEWLlxobtelSxfPktO1a9ea752WLVvSWCwm9PydEMnAnnPOOeY+b7/9tuu2Dz/8sLmtXZXYDTfcYD7uVAJq8NZbb5nb2lUxPPnkk+bjV111lWusefPmmdsOGDAg4/EPP/zQfPy0005zjbV582Zz29LSUtdt3QjyXLDCkoH9xz/+YW6z77772pbhBtGv6t+/v7ntV1995dl260RX7777ruu21113nbntjz/+6BmbhUAmcXLDmOJ63Lhx5h0DuwkEjLvFBitXrsThhx9uTo89cOBAnHbaaejcuTM0TcP8+fMxYcIE7NixA/fddx8URfFcoufhhx/Gp59+ijZt2phTmCcSCcydOxfRaNTcrqqqCnl5eTjuuONw8MEHo0uXLsjKysIff/yBxYsXY8qUKaioqMArr7yCoqIi/Pvf/045ztixYzF06FA88cQTmD59OoDkZAjpd8k6derEdA6tXHjhheYg6KysLIwePRp/+tOfoKoqfvjhB7z00ksoKyvDm2++iV27duHTTz91zeju3r0bQ4YMwa+//oozzzwTJ598MkpKSrBq1So8++yz+O2337B27VqMGjWqWWcvnLjzzjuxfv16rF+/HpFIBK1bt8bhhx+OYcOG4bTTTnM9dz///LP5+8EHH+x6HEVRcNBBB+Gbb76Bruv45ZdfcOihhwb2PNKpqanB8ccfj9mzZwMAunXrhuHDh2O//fZDOBzGihUrMHHiRCxbtgwff/wxhg4diqlTp0JRnIsyfvrpJzz88MOglOKvf/0rjjjiCESjUfzwww/4z3/+g4qKCkydOhX/+Mc/cO+999rGeOeddzB8+HBomoZwOIwzzjgDxxxzDFq3bo3du3dj+vTpePPNN1FWVoazzjoLU6dO9ZysZOTIkfjuu+9wwAEHYMSIEejSpQt2796dsrTGkiVLcNppp5lZ1oMOOggjR45Ehw4dsGnTJrzxxhuYOXMmhg8f7piNVBQFl112GW677Tbs2LED77zzDi644ALHdr399ttm9cKll17qem7rkyBet7Fjx5oVJZFIBKNHj8bAgQOhKArmzp2Ll156CTfffDOGDh3q2Z5Zs2bh+OOPR2VlJQghOOmkk3DiiSeiffv2qKqqwqxZszBp0iRUVlbiiiuuQDQazbj7ftlll+Hzzz/HO++8g1mzZuGee+7JaPtLL72Et99+GwBw+OGHN/sl3KiPu9ZelUpuzJw50/zceF2z5s+fn7HtV199hWeeeQazZs3C1q1bUVxcjAMOOADnnXceRo8ejXA4LNw2APjhhx/w7LPPAkhmY+wyxEuWLDHP34EHHuj5WTzkkEPM/srPP/+ckuH1+zrsu+++wvsbPPPMM3jggQewbt06AMlJsgYMGIChQ4di+PDhjpP1sDJlyhQzw3fyySejbdu2vtvsxrp163DSSSfhl19+AQDcddddGZ9XSimGDRtm9h/btm2L888/HwcccABycnKwdu1avP7665g/fz7mzJmD4447DvPmzcuYeKpfv344+OCDMX/+fKxZswZff/01jj32WMe2vfLKK+ZrPnLkSN/v1yDg6Xsccsghtvs1dqwDDzwQqqpC0zTz82ntb/HEKi0tRefOnbF27Vps2bIFmzdv9px8044gz0UQUEpx7bXX4oknngAADBgwAJ988glatmyZsl1Q/aqLL74YCxYsAJCsOnD7XKxdu9b0m9LSUteKICD5HWzw+eef+55sCwCa5DI6mqaZdwKi0Sh98803bbfbuHGjmaFVFMW2Xj19yZSBAwfSXbt2uR5/2rRprtnLrVu3mhkfRVHoqlWrbLcLehmd119/3Xy8devWGXeGKaV0zZo1KZkNp/GW1nMSiURsx1Nt3bo1JdacOXM8n4MTFRUV9N133w3kZ/78+cLtoJR9GZ3DDjuMrlmzxjHOPffcY25rV0GQzqhRo8ztJ02a5Os5eJE+NtdukpRYLJbSpmeffTZjG2smD0hmEpctW5ax3Zw5c8xxb8XFxbbZvN9++83MRnTq1IkuXLjQtu1z5syhhYWFFEhOVGN3xzu9suPaa691zapYM7R/+9vfbLdNf1+kZ2ApTV5zjOWSvMZyHX300WYGY926da7b8sKTgfX7ulmXjygqKqI//PBDxjZLly41l1gxfuyyRLt37zYnAyoqKqJff/217fNbvny5OUYqNzfXnPDEyvbt22mHDh3MczxjxgzzsV9//dUco1RQUMA81s2JX375JbDrl91zYWHt2rXmuS0pKfHMHFnHyx5//PFCx6SU0n/+859mnLfeest128cee8zc9rHHHqNXXXWV6zW2T58+jt+f6SxevNg8h2+99RZ98skn6XnnnWe+fwHQu+++23bfV155xbOPYuXOO+80t7/vvvscY5111lmucTZu3JjyfO+//36m52oH6zI6++67L9PyJG5YK9/eeecdX7EMjHjp180lS5aY1wRFUegzzzxju791DPPIkSNtl/TRdd2cMAZwzpA/9dRT5jajRo1ybLOu6ylLhPg9r3bwZmA1TTPf86qqei4dtWrVKjN+t27dMh639vG8+qnxeJyqqkqB5JjH9GvQsccey/VcrONg078jrRM9sVQcGN+3AFK+C3gI8lyw4vRdHovF6IgRI8zHTjjhBNvJ8ILsV23bts2cEC83N9d18j1r//e6667zfJ5r1qxhvm6y0iQF9p133jG3feKJJ1y3/fXXX8030WWXXZbxuLVTmpubS9evX8/0nLxYuXKl4xecQdACa51R7pNPPnGMM2fOHLPkpXPnzrblddYvvHvvvdcx1gsvvMC0nRfW94jfH5YOiBt33XUXzcrKoqeccgq999576aRJk+gbb7xBH3/8cXr22Web7ycAtF27dvT333+3jWMtiXjyySc9j8u7vSgbNmwwy7/OPvts121jsRjdZ599KADao0ePjMfTRejbb791jHXBBRe4bnf11VebX7peJSQvvfSSGWvKlCkZj1s/KwcffLCrvFpLlfr27etYbpoe105gKU2dkMtOCilNXpeMbYYMGeL6XEXgFVg/r9uZZ55pPm43c6vBRx99lHJMu07Ho48+aj7+wQcfuD7HL7/80tz2H//4h+02X3/9tVlO2LlzZ7pjxw4ai8XowQcfbO4bxM0i3rWj3X78DFswhB1wn6zE+p4HQA855BDhY/75z3824zh1jgxuvvlmc9uePXuan/eRI0fS8ePH01dffZXeeuutKTNedu7cOWOmT6/Y6T8HHHAAfeONNxz3ffzxx81tb7jhBs9juW2/YsUK87GcnBy6efNmxzjW8k3A34ylL7/8Mg2FQnTQoEH0jjvuoK+88gp966236DPPPENHjhxJs7KyzOPk5+cLy9aCBQvMOKWlpYGVzBoxrQI7a9Ysc23USCTimKyoqqoyyyMHDBjgWQJ+1FFHUSB588puqMf27duZOurffPON2e7+/fuzP1kOeAV2165d5vYtWrTwvb11WI2bsLBsb+2jOk3MxLr9WWedZT7mNmGd6PZ2BHkuWLH7Li8vL6cnnnii+ffhw4fbDlekNNh+FaWp/Zvx48fbbpN+Y8fre8EgOzubAvY3UkRonJo2D4wJIwoKClIGetvRs2dPs1Tpiy++cN32nHPOQbt27QJp4z777IM2bdoASE6oVN+sWbMGP/74I4BkCcwpp5ziuO2hhx5qlgesXbsW8+fPd9xWVVVcddVVjo9bywyWLFnC2+wmybnnnov169fjk08+wR133IGRI0di2LBhGDt2LN555x3873//Q/fu3QEAGzZscJw8oLy83Pw9KyvL87jZ2dnm78bA9/rgzTffNMu//v73v7tuGw6HMXz4cADJCRicJs4BkmW3Rx11lOPjbu8VSimmTJkCIDk5glf5iLUMzutzfeWVV7qWBFonWLjyyiuhqqrjtm6TuxhcccUV5u8vvvii7TbWv19++eWeMesTP69bTU2NOZFG69atzQlQ7BgyZAj2228/17YY1/aePXvi9NNPd9128ODB5vXa6T0waNAg3HLLLQCS17orrrgC48aNM695F1xwgWubmxvW78MxY8Zg1apVGdts2rQJo0ePTvnb7t27hY+5du1a8/eSkhLXbXfu3Gn+vmzZMmRlZWHatGmYNGkSLr74YowYMQL//Oc/sWTJEvTr18+Mf9tttwm3Lz8/HyeeeCIOOOAAx22CvFZ369bNLK2rrKzEBRdcYJZNW5k9e3ZGGayf12HgwIFYu3Ytvv76a9x7770YNWoUzj33XIwZMwaTJk3CsmXLzDUYy8rKzJJCXsaPH2/+Xp8ls5999hmOO+44bN++HXl5efj4449x3nnn2W77+eefY/PmzQCA6667zrME3PjM79692xxGY6W4uBhnnnkmgOQElsZQg3Sa2uRNQPD9jiDjNdVYrDSFPt3WrVsxePBg8zvvyiuvxKuvvopIJJKxbX30q6zvc+tEtFasa78efPDB5rXci+LiYgDJIQM0gImc6n0MrAjGAsJt27Y1F9F2w+iQrl27FlVVVSlvKitunbh0du/ejSlTpuCTTz7BokWLsHXrVlRUVNhuayxmXp/MnTvX/P3EE0/03P7EE0/El19+CSAp2E5jl3r27Gm+qexo3769+buf2Yi7dOkS3MxjPnFb4B1ILsb82WefoW/fvqiursa0adMwZ84cHHbYYQ3UQn8Ynx8g+d587733XLe3vq6//PKL7ey9QOoYBjvc3iuLFy/G9u3bASQ7nF5tAoC8vDzs3LnTHBflhNfn+ocffjB/dxvTAcCclduNY489Fj179sSyZcvwyiuv4P7770/p5MXjcfPC365dO8+xIfWNn9ftf//7n3kzZNCgQa7yDyS/RJ1er127dpnjklu3bs38HgDg+h6455578OWXX2LOnDkpM1B27doVzzzzjOcxWLj77rubxBja66+/Hm+++SYWL16MdevW4cADD8TFF1+MQw89FIqi4KeffsKLL76I7du3Y5999jEF18/4a+NzC3gLbPrsr+PGjbP9TJWWlmLKlCk44IADQCnFyy+/jAcffBAFBQWOsR944AE88MADAJI3Vn777Td8/vnnePDBB/Hwww/jiSeewHPPPZch7/XBE088gcMPP9wcP96nTx9ccskl2HfffVFZWYmvv/4ar776KuLxeGCvg3FT1YmOHTvi008/Rd++fbFx40YsXboUb7/9tnmDkoWamhq8+uqr5r8vueQS4fa6MXnyZFxyySWIx+MoLS3FJ598kjKmMB3rd9qOHTs8rx3r1683f//ll19s34OXXHKJOfvthAkTMm5UV1ZWmmIbjUbx5z//2eNZSST++O2333D55Zfj119/BWA/FtxKffSrjPko1q9fj2+//RarV69G165dU7YRvbHTokULbNiwAbFYDBUVFeb3uyhNTmDLy8uxbds2AMnlErym7E9nx44djgJr7ai5MX36dPz5z392nI4/HT93VVn5448/zN979uzpub11G+u+6aQPBk/HOrlVdXW153H3FIwliZ577jkAwMcff5whsNYPH8u5qaqqMn/Pz88PqKWZWLOow4YN49rX7SaFn/eKtU3vvPMO3nnnnUDaBHh/rjds2GD+vs8++7huW1xcjKKiopRMUjqEEFx++eX4+9//jk2bNuHDDz/E2WefbT7+wQcfmNmCiy++2FP66hs/r5v13Hl1oL22WbdunSk4M2bMSOmUeuH2HgiFQnj11Vdx4IEHmnfBjb+5CVFzJC8vD5999hnOOuss/PDDDygrKzMn+LBy8skn46KLLjKXenC7SelFTU0NgOSNYqfvVoP065pbBVW/fv1w+OGHY9asWaipqcHMmTNdK4usRKNR9OjRAz169MAFF1yAQYMGYdGiRbjoootQWlqasXxH0Nfqvn374tNPP8W5556LzZs3Y82aNbjzzjtTtiGE4M4770RZWZm5nJCf14GFFi1a4JprrsGtt94KIPm9xSOw77//vtkhHjBggOfNXhEWLFiAUaNGgVKKTp06YerUqZ59Guv3x5VXXsl1PKdrxwknnIAOHTrg999/t+2ov/322+b15Mwzz8y4ebNgwQLX5akGDhzoee0VIej3cl5ennmOqqurPaXCLV6QbWuM/lWQ50KEM844A7t27QIhBE8//TTGjBnjun199KtUVcWoUaPwf//3f6CU4pVXXkmRaD83dqzfx8ZkuX5ociXEu3bt8rW/3ZphBl5fvkCyjHLIkCGmvO6777649tpr8fTTT+O1117Du+++a/6UlpYCgFCZDi/W8oTc3FzP7a1vDLfShsaaGbU5YL1ra6y/aKWoqMj83Zgt2w3jxkz6vkHj5zPk9vnx816przYB3p9ro3IiFAoxlcOxfL4uuugiU/xeeOGFlMeMfxNCcOmll3rGqm/8vG7Wkqr02TztcDt3ft4D8Xjc9fGWLVumdDD32Wcfz1kkmysdOnTA7NmzMXnyZJx22mlo06YNIpEIWrRogcGDB2Py5Mn45JNPUspajeEuIhjvc03TbEtlrVivax07dvScCdT6GhklabwUFxenZNrvuece13YFda0+6qijsGzZMjz44IMYOHAgSkpKEA6H0a5dOwwfPhwzZszAPffckxLLz+vAitf3lhvWtV/rK/uqaZpZjVVdXc20BnV9fH8oimKu00spxcSJE1Me98oyPfHEEzjrrLMcf+prZtq8vDyzDHTnzp2e58/rvczz2UgkEmbCJhwOZ1zvg/ycNUb/KshzIYLxWlJKHSs+rdRXv8pajZC+Jqz1xs7QoUO5bspZ28viY140uQysVbyOPvpo24WX65P/+7//M++q3H777bjvvvscl1LxGp8bJNa7OyxvbGvHsz6zfaxUVlZ6jmVkpVOnTujfv38gsdxo0aKF+btdRs5619ht7KiBdSwZSxZdFOMzRAhBIpFoEjcprJ/rO++807aTWV8YXyyJRALxeNxTYlk+Xy1atMC5556LKVOm4IsvvsBvv/2GTp06Ye3atZg6dSoA4Pjjj88ovWluWF83L3kB3M+dNdaoUaMcx9eI8Le//S3l87Vs2TKMGzcODz74YCDxly5dyi0DTgSRmVFVFRdccIHrMk7W8czG2EgRrDcGtm/f7nojw7pETGFhoWds6zZ+OmNHHnkk8vPzUVZWhnnz5qGioiKlQ1lf1+rCwkLcdNNNuOmmmxy3Cep1YMXre8uJ9evXm9/R2dnZGDFiRNBNA5A8B6eddhpuvPFGbN68GcceeyymT5+eslRROtZrx6pVqwK7rl500UX45z//CSDZUb/zzjtBCDGX1wGSFT4nnHBCIMcLAkVR0K1bN/z666/QNA2///6747AfwPu93LNnT6xevRpA8rPhFuv33383Ezbdu3fP6Bv37NnTXFrF63OWSCTMUu/c3NyMSqrG6F8FeS5EePPNN3HxxRdj8+bNuPHGGwG4z2NSX/2qnj174sgjj8TMmTOxevVqfPvttxg0aBAAf+PCjeqOSCQSiPA3OYEtLCxEXl4eysvLG2RsaTrTpk0DALRq1Qr33nuv45uyrKwsZWxQfWNdh2358uWe21u3CWriKj9s3ryZuxzcidGjR6d8iOoLrzt61vIqt4mygOTYMGMSLkVRPCe78UP79u3x008/gVKK9evXo2PHjvV2LJ42GTT057pdu3bm2MtVq1a5rsO4Y8cO5k7fFVdcgSlTpkDXdYwfPx533303xo8fb5bJNvbkTUFgvXasWLHCc3u3berrPTBlyhRzIouDDz4YW7duxdq1a/HII4/gpJNO8lxHmIXXX389sM7B9OnTmcZa+8V685dn/od0unTpgpkzZwJIdkA6dOjguO3+++9v/s4ipNZtWITXCUIIcnNzUVZWBkopdu/endJB6t27NxRFga7r+Omnn6DruuuNPeu4eT9ltDt27DCvPbm5uTjooIOEY7Eimol65ZVXzGvX2Wef7ev18OLvf/87CCH4+9//bkrsV199hT59+thun37tCEpge/TogYEDB+K7777DqlWrzI66de3XUaNG2Q4DmTBhQoP0Q+zo27evOU5y/vz5rqLl9V7u27cvPv/8czOW27WJJZbB/PnzHSfABJLrkxsC2Lt374y+Nk//asuWLabAlpaWCq0BaxwzqHMhQu/evTF9+nQMHjwYmzZt8pTY+uxXXXzxxeZ1f8KECRg0aFDKjZ0OHTpw39gxnKlTp06BCH+DpWasXxZek/kcffTRAJKdTZZOU5Bs2rQJQHICELcvuGnTpmVMWJEOz3P2wjoJk5HhccOa7fRafF5ij7UDaHdHr0+fPmZnbvHixa4XkO+//94sNzGyBfWFcacM8J7Bt6E46KCDzPEPX375pednJ0isk4MYd4edMC7OLAwcONDscI0fPx7xeNycwbNVq1bmLJfNmQMOOMCc/fCbb77xHC5hTBxnR8uWLc0sy+zZswOZO2D16tX429/+BiApCK+99homT54MVVWh6zpGjRqV0qHfW1i8eDHmzZsHIJkVHThwoHAsa+fM6DQ70atXL1Mu1q1bZ44Fd8LaMfVTlbJr1y5s2bIFQFJmrVlIIDn2ypjMbNeuXbYz0xqsW7fOzJp26tTJNTPoxauvvmqW6l1wwQVMM5v6xet7ywmrjNVX+bCVG264AY8++iiA5A3uwYMHY/Hixbbb1ud3Wvqsq+nlxG4S1licdNJJ5u+GcDlhnQj15JNPbjaxjjnmGHP4wrfffpsy3jQd67HsYrESZPtFMSS2devWAIAbb7wRDz/8sO229dmvGjZsmFlt8/bbb6OioiLjxg5Pdd+aNWvMsczWG52+CGItHpZ1YE8//XTm9ZLeeOMNc9sRI0b4apt1/T6WNbaKiorM9c+cFiZOJBL0kEMOSVnHzg5jfSYwronltQ5s//79zce/+OILxzjz5s1LWRvRbR3Y9EXF7eDZdk9hxYoV5ppVAOjMmTNtt7Ou7XrTTTc5xrOurfXUU0/VV7MppcmFrY11YHv06EHLy8uFY1nXE73rrrt8bTtmzBjz8eeee064TZTyrSsd9DqwVp544glz+7/97W/m7zfeeCPP0+GGZx1Yv6/b0KFDzccnTpzoGOeTTz4xtwPs14F98MEHzcdvvfVWj2fpTiKRoEcccYQZ76WXXjIfu+OOO8y/Dx061NdxmhuJRIIOHjzYfP4vvPCCr3hfffWVGYtlDdVbb73V3P7+++933G7hwoXmeuV5eXm0oqJCuI3/+te/zGM6rXlrXdt12LBhjrFuvPFGczs/67Zu2rSJlpaWUgA0HA7TJUuWCMdiZdu2bbRt27aeaz2m8+2335r7dO3a1bHv4wenfoT1tWvVqhX9+eefM/YtLy831w4uKSmhGzZsCKxdZWVlNDc3lwLJ9XOt17EjjzwysOM4wbsOLKWUbt682fyOz8vLo5s2bbLdbtGiReZnrE2bNrbfffF43HyfEkJszz+lyfezcZ6ysrLo1q1bbbezru36ySef2G5TVVVFO3Xq5Nk/tq7t+swzz9huo+s6Peyww8zt3NbH9iLoc8GC03f5kiVLaJs2bczHHnroIdv9g+xXpTNq1Cgz9oQJE+g+++xj/nvZsmVcsV5//XVz3wcffDCQ9jWYwI4dO9bc5ptvvnGNp2kaHTBggLn9Nddc47iIL6WUVlZW0pdffpm+9tprGY/xCuwJJ5xgbv+vf/0r4/FYLEYvvvjilI6aU0fXemF+5ZVXPI/t1Sm3in3btm3pL7/8krHN2rVrUxYYdpKlvVVgP/jgA/rWW2+5SszPP/9Mu3fvbj7vY445xnHb9evX05ycHAqAhkIhOm3atIxtXn75ZTNWx44dbRdWD5obbrjBPOaxxx5L//jjD8dtNU2jU6dOpffdd1/GY0GK0Lp168wbRNFo1PMzsWnTJnrvvffS//3vfxmP8QgspZQOHDgwRTQ1TcvYxnqtYBXYnTt3mq+/9Yf34s5LQwrsjBkzzMeLi4ttF0tftmxZSsfZSWDLy8tp586dzQ7CQw89ZPtaGOzcuZM+/vjjdOrUqRmPWSX13HPPTXksHo+nyG3QX+yNyYwZMxyvX7t27aLnn39+ymffr4xUV1ebnbWjjjrKc/utW7ean/OsrCzb793NmzfTfv36me20u/k3c+ZM+vzzz3teL6dMmUKj0ajr+45SSisqKmi7du1SOmTpTJ06lYZCIVMMNm7caBursrKSzpkzx7FNK1asoPvvv795rLvvvtv1OVg/N3af5++//56+8MILtLq62jHGunXr6KGHHmrG6dGjB43H467HNbjooovM/e655x6mfXhx60c89thj5uOlpaW24vDkk0+a2+y///6e19jZs2cz30i0Xk+t17EXX3yRaX8/iAgspZRee+215n6nnHJKxudk+/btKTLpduP83//+t7ld//796fbt21Mer6qqoieffLK5jduNnffeey/lO3Tt2rUpj2uaRi+55BLHa7eVBQsWmAJeWFho2xe4++67zVgDBgxwjGXth7n1ZYM8Fyy4fZf/8ssvKRJrJ35B9qvSsfYNrJ+LgQMHcj1HSlOTPT/99BP3/nY0mMC+//775jbdu3enTz/9NP3oo4/op59+Sj/99FO6fPnylO1/++032r59+5STN3bsWPrSSy/Rt99+m06YMIHee++99IwzzjC/XO064LwC+8EHH6R8mZxxxhn06aefpq+//jq97777aI8ePcyOQYcOHVw7uv/73//MOK1bt6aPPPII/fDDD83nvHDhwpTtWTrl1s5JdnY2HTNmDJ04cSKdMmUKve6662hBQYH5+IknnujYeeGRUp5tmzrGF2VpaSm98MIL6aOPPkqnTJlC33zzTfrkk0/Sc845x+zAAKDt2rXLuACn8+yzz5rbh8Nheumll9KJEyfS8ePH0/POO8+8AIdCIfrpp5+6xvLqyLASi8Xocccdl/JeGTlyJH366afpm2++SSdPnkwfeeQReuGFF5oXyOOOOy4jTpAiRCmln332mXnnGAA94IAD6B133EEnTpxI33rrLfriiy/Sm266iR599NFUVVUKgM6YMSMjDq/ALl68OEU0DzroIProo4/SN954gz7xxBP0yCOPpADoEUccYV53unbtyhQ7/YaW2w2PoGhIgaWUpmSXo9Eovfzyy+nEiRPp5MmT6dixY81rsDVb6yQSP/74Y8p1qlu3bvSmm26iEyZMoG+//TYdP348HTduHD3xxBPN98qkSZNSYsyYMcN8f3To0CGjk0EppatWrTKPk5OTQ5cuXep6HpoLffr0oW3btqV/+ctf6DPPPEPfeust+tJLL9Grr76atmrVyjyvffv2dczM8HLOOeeY1xGvCipKKX3ttdfM656qqvTCCy80bzLfdtttZpbDuAZUVlZmxHj33XcpkMyKnXPOOfQf//gHfeWVV8zv/9tuu40ecMABKZ+9c88911XYP/roI/N9Qwih5513Hh0/fjydOHEivfTSS2k4HDZjuWWut2zZQgHQPn360BtuuIGOHz+evvXWW/TZZ5+lI0aMoFlZWWacESNGuN4wpdT7um+ci4KCAnreeefRBx54gE6aNIm+9dZb9D//+Q+98MILUyqG8vPz6YIFC1yPaWDNQCqK4vl9J4pXP8IqDqWlpbZZOWtGKBQK0bPPPpv++9//pm+88QZ99dVX6eOPP07/8pe/0K5du5rXFha+/vrrlNfAuGbs3r3bz1PO4Msvv6S33357yo/1RsfIkSMzHt+xY4dtrB07dtBevXqZ++6333700Ucfpa+//jq9//77aceOHVO+k2KxmGO7ampq6FFHHWVu37FjR3r//ffT119/nT7yyCN0v/32Mx/r3bs33blzp+vzHD58uLl9ixYt6G233UZfe+01+tRTT6XcZGnbti397bffXGPdfPPN5va5ubn0mmuuoVOmTKHPPfccPfHEE83H8vLybG+uGrAKbNDnwguv7/KlS5emyKOdxAbVr0pH13Xzs2T9sVY7sXLggQdSALRLly7c+zrRYAKbSCRSsiDpP3Ydpw0bNqR0wt1+VFW1/cLhFVhKU0ug7H6OPPJIunnzZjOT4JapGTFihGOc9HPF0imPx+P0L3/5i+f5OPfcc207BQYsH2SRbZs61ju9Xj9HHXUUXbNmDVPchx9+OKXzk/6Tn59vWyGQjldHhoeamhp61VVXmRcsr59Ro0ZlxAhahCildNasWSmlKG4/eXl5GTd6KOUXWEqTpZDGnUq7n759+6bcONt///2Z4s6ZMyclDmvZnh8aWmATiQS98MILHc+doij0oYceSukkOAkspckvZWt2wO0nGo2m3PjZsWOHee1VFMX1uj558mQzzkEHHeRaydNc6NOnj+c5O+ecc+iWLVsCO6Y1q+JWRm7l5ZdfNsXI6WfQoEGO7TSkjeUnEonQ22+/nSnjOHnyZJqXl+cay676yoohsF5tGjdunGuFgYHXdZ/nXPTt25cpu2Lw0ksvmfuecMIJzPvxYn3NnbCWedtJrK7r9L777kvJuHu9v1jQdT3jO8nu+9Av6VU+LD9u/YDVq1d7XkePP/54Rwm2sn379pShB3Y//fv3Z7rBUV1dnZJssfvp1q0b0/tU13V67bXXmjfE7H5atWpFv/zyS9c4rAIb9Lnwwuu7nNJMiX3ggQcytgmiX2XHPffck7Jvbm4u001MK0uWLDH3HzduHNe+bjSYwFKaTL0/8MAD9IgjjqDFxcUpHWu3TtbXX39N//rXv9I+ffrQoqIiqqoqLSgooL1796bDhw+nzz77rOOYCBGBpZTSTz/9lA4ZMoS2bNmShsNh2rZtWzp48GD6wgsvmF+SLAKbSCTos88+S4855hjasmXLlOyeiMAazJo1i1566aW0e/fuNDc3l2ZnZ9OuXbvSkSNHen6QKd17BXbr1q30zTffpNdddx096qijaLdu3WhhYSENhUK0pKSEHnDAAfSvf/0r13vFYNGiRfTKK6+kPXv2pLm5uTQ/P5/27duX3nzzzUwiXFFRkdL52bZtm8AzzGT58uX0lltuoYcddhgtLS2loVCI5uTk0K5du9JTTz2V/vOf/3S8mNWHwFKavBEzefJkOmzYMNq1a1eal5dnvgaHHHIIveyyy+gbb7zhOH5XRGAppXTjxo3073//O913331pdnY2LSoqoocccgh95JFHaEVFBdV13cxksGZSdV2nhYWFFEiOz3Ir8wuKhhZYgw8//JAOGTKElpaW0mg0Sjt16kRHjBhBv//+e0opZRZYSpPn7f3336ejR4+mPXv2pAUFBVRVVVpUVEQPOOAAOmrUKDphwoSM7Kr17v4tt9ziegxKKb3gggvM7VnGcDZ1vvnmG3rzzTfTI488knbs2JFGo1FaWFhI99tvPzpmzBj63XffBX7MRCJhjlnjkZw1a9bQW2+9le6///60qKiIRiIR2r59e3r22WfT//73v67Z0kQiQb/77jt6zz330CFDhtDu3bvTvLw8qigKzcvLo507d6ZDhgyhDz/8MF2/fj3X81mzZg296aabaJ8+fWh+fj7Nzc2lPXv2pFdeeaXjuLf0tr3xxhv0r3/9Kz3wwANp69ataTgcpqWlpfSQQw6hd9xxB12xYgVze7yEpaysjL7//vv0lltuoYMHD6Y9e/akJSUlNBQK0aKiIrrffvvR0aNH0w8++IBJmK1YEwssN1lFYe1HWOcVcMrEbtiwgd5777100KBBtE2bNjQSidCsrCzaoUMHevzxx9M77riDzpo1i6t99957b8rrINIH8CJogaU0WW31/PPP08GDB9PWrVvTSCRC27VrR4cMGUJff/11riEEuq7T119/nQ4ZMoS2a9eORiIR2rp1azp48GD6/PPPM5ekG3z66af0vPPOM69TLVu2pEcccQT917/+xT03x/fff08vuugius8++9CsrCxaVFRE+/fvT++9916mm3U8Aktp8OfCCRaBpZTSX3/9NWUIhJ3E+u1X2bFmzRpzTh0vx3Pitttuo0Ay0RhkhQeh1Of0uBKJJBA+//xzcza7sWPH4vHHH2/kFu19LFq0yJwhj/U1mDZtmjmd/DXXXIN///vf9dlEiaRReOyxx3D99ddDVVWsWbPGdTkdiUQikUg0TUP37t2xZs0aDB8+HK+//npgsRtsGR2JROKOsQZxfn4+xo0b18it2Tt56qmnzN+PPfZYpn2effZZ8/c9Ye1XicSOK664Am3atIGmaXjooYcauzkSiUQiaeK89tprWLNmDRRFwV133RVobCmwEkkTwRDY66+/HqWlpY3cmj2PGTNmuK6T9vTTT+P5558HkFwg/LTTTvOM+dNPP+G9994DABx//PG+1oyUSJoy2dnZuPvuuwEAzz//PDZs2NC4DZJIJBJJk0XTNNx///0Akusp77fffoHGlyXEEkkTYOvWrWjVqhVatmyJlStXIj8/v7GbtMfRvXt3VFdX45RTTsFBBx2E0tJSxONxrFy5Eu+++y5+/PFHc9sPP/zQUWA/++wz6LqOZcuW4aGHHsIff/wBAPjuu+9w5JFHNshzkUgaA13XMWDAACxYsABXXXUVnnzyycZukkQikUiaIJMnT8aFF16IwsJCLFu2DK1atQo0vhRYiUSyV9C9e3esXLnSdZvs7Gy88MILuOCCCxy3IYRk/I11vOwXX3yByspK78ba0LJlSwwcOFBoX4lEIpFIJJI9BSmwEolkr2D27Nl45513MHv2bKxfvx7btm1DZWUliouL0bNnTxx//PEYM2YMWrdu7RrHENi8vDz07NkTY8aMwSWXXAJF8R6R0aVLF6xdu1ao/YMGDcLXX38ttK9EIpFIJBLJnkKosRsgkUgkDcHhhx+Oww8/3Hccec9PIpFIJBKJpPGQGViJRCKRSCQSiUQikTQL5CzEEolEIpFIJBKJRCJpFkiBlUgkEolEIpFIJBJJs0AKrEQikUgkEolEIpFImgVyEieJRCKR7FFQSlFdXY3Kykrzp6qqKuPfsVgMNTU1iMVi5k/6v42fRCIBXdehaZr5o+u6+TfrYwaKooAQ4vqjKArC4TBCoRDC4bD5EwqFEIlEzL8b/45Go8jKykJ2dnbK/+1+z83NRV5eHiKRSCO+GhKJRCKRBIsUWIlEIpE0SaqqqrB7927s2rULZWVl2L17N3bv3u34e3l5uSmquq43dvObDJFIBHl5ecjLy0N+fr75u/UnPz8fRUVFKT95eXlMy0NJJBKJRNKQyFmIJRKJRNJgVFRUYPv27di+fTt27NiR8X/r79XV1b6Pl5OTk/KTnZ1t/n/6h4tAoAA6QGI6QBUQqgCU1P6e/D8oSf6O2h+K2v8n1wQ2HzP+bqDrtf9M+5olyX+b/yV1P5RQgOjJ39MfUyhoVgggGk4ZdjCqq6tRXV2NqqqqjN8NkfeDqqooKChIkdrCwkIUFxejZcuWaNmyJVq0aIGWLVuiqKhIyq5EIpFIGgQpsBKJRCLxDaUU5eXl2Lx5MzZv3owtW7aYP9Z/80pVOBxGQUEBCgoKkJ+fj4KCAsyaugyEhkBoCNBDIDQMoocAqoJQNfX/aUJJKv1LMTMNlQVWFNCC3Iw/JwVYAyUJgCRASQKUaICSqP2bhqGjD0N5eTl27dqFXbt2YefOndi5cycqKiq4mqCqKkpKSlKktkWLFigtLUXr1q3RunVrtGrVSpYzSyQSicQ3UmAlEolE4gmlFLt378Yff/xh+7NlyxbmjGl2djZKSkpQXFyMX+ZvANEjgB4G0cMgeqT2/8nfASVVQllpaFl1aEOj4SC1rFDooEocIHFQJQFK4qBKHJTEccrwA7Ft2zZs3boVW7duxY4dO8DalWjRogXatGmDVq1aoU2bNmjdurX5/7Zt2yInJ0e4zRKJRCLZO5ACK5FIJBIAgKZp2Lx5M9atW4d169Zhw4YNKZLKkj0tLCxEq1atUFpairlfrkoKqRatFdPa36H6b6yug8TilsbroBW17VMVkGjU/zEE2qSXV6T8GwCgKFDyxGVSGEpBa2K1bSAg+Xl1jxECmhVMNpSCgioxUBJL/l+J4c9XDsTWrVuxZcsWbNy4EZs2bUJNTY1nrOLiYrRv3x7t27dHhw4d0KFDB/Pf+fn5gbRXIpFIJM0bKbASiUSyl7Fz505TUq0/69evRywWc923RYsWaNu2LX6ZvwkkEYWiZyWlVIuC6NHkmFK/pMupHVZhtaM+JTZdVF22c6U+xdYqr7bHThNapzDZwZzDZDlzArpSDarWgCo1OGNUf2zatAmbNm3Cxo0bUVZW5hqjsLAwRW47d+6MLl26oEOHDrI0WSKRSPYipMBKJBLJHgilFNu3b8eaNWuwatUq8//r1q3D7t27HfcLh8Nm5mvWF6tA9KxaSc1KCipVAN3n1waLoKbjJaxOBCGyrMJqsx8XQQitl7g6HptNaDMOF4Tg1k7+RJEAVaugK9UYfd1ArF+/Hr///jvWr1+Pbdu2Oe6uqiratWuHzp07m1LbuXNndOrUSZYkSyQSyR6IFFiJRCJp5uzevTtFUtesWYPVq1dj165djvu0bt0aHTt2xE/frQfRsqHoOSBadm0W1WbMKaV84ioiqemISms6PBIrKqsOsXzDI7Wi8ppxTDGZzWgOr9y6zGJModXKbRUuvuForFu3DmvXrsXatWtRXl7uuF/r1q3RpUsXdO/eHd27d0e3bt3QoUMHhEJyFUGJRCJprkiBlUgkkmYCpRQbN27E8uXLU362bNliu72iKGjXrh3+WFUFouVA0XKhaDnJbCrrOFQ3cQ1CUtMJSlrTcZPYIKU1LW6guMlsUPKaccxgZDYdV7nlWI6HgibH3qqV0NVKDPlzP6xduxZr1qzBjh07bPeJRCLo2rUrunXrhm7duplyK8fYSiQSSfNACqxEIpE0QTRNw7p167Bs2TIsW7YMy5cvx4oVKxzHCbZp0wabf4tB0XJqf3KTGVXRCZMMca0PSU2nvqTVilVg60tY06nvWYitQltfAptyvPqR2XRMufW5riwlcehKJXS1Aqf+uQ9WrFiBVatWoaqqynb7Vq1aoWfPnth3332x3377Yd9990VhYaGvNkgkEokkeKTASiQSSSNDKcWmTZuwZMkS/PLLL/jll1/w66+/2s7aGgqF0LVrV6z6eTeURC4ULQ9KIhcEAZREUgoktIYR1poYoGug1TUgDTEBD9VBq2uAcLj+jwWAxmKApjXMbMiUgsYTDTPTMdVBNR1KQW22Mlz/pbg0O+pbZs1YoKBKNXS1HH++6jCsWLECK1aswMaNG223b9u2LXr16oV9990XvXr1Qs+ePZGXV/8SL5FIJBJnpMBKJBJJA1NeXo6lS5diyZIlWLJkCZYuXYrt27dnbJednY1u3bph6Q/boCTyoGh5IFqO/5l+7cqC66scOD0rqGv22VZVDV5kDWlNpz4kNp567iilgKZlbBa40FKalOWUg9TD7MZUB40nMv+uKHUya6UexNa27DgwsU1AD5XjsluPxtKlS7F06VL8/vvvttt26tQJvXr1Qt++fdG3b1907doVqhrA0lASiUQiYUIKrEQikdQjlFKsX78eCxcuxMKFC/Hzzz/jt99+y9hOVVV069YNK38uh6IVQNHzk5MrJXxeor0mXwpqsiWv8lUncbUShMQ6SauVIAQ27n7OnAQ2Hd9CayewKQcIYmZjB3m14iSy6QQgtp6TQwUgtZQQUJKArpbh4huOwNKlS/Hrr7/aZmpzcnLQu3dvU2h79+4ts7QSiURSj0iBlUgkkgDRNA0rVqzAokWLTGm1y662adMGW9ZpULQCEL0gmV21jlelFCTBOYayIWYKZpHVlGMwiKsVEYllkdZ0RCTWQ1qtsAqsFW6Z9ZLXjAMIyCyLvFphFVkrAlIb5AzHjscgmbNxUxKDrpbhz1cdgp9//hlLlixBZWXq+5sQgq5du5pCe+CBB6JNmzbcx5dIJBKJPVJgJRKJxAexWAxLlizB//73PyxcuBCLFy/O6NCGQiH06tULS+fvgqIVQtELQKiDpLGKK6+sWmEVV15ZTTkGp7haYZFYEWm1wiqwHNJqRURgrTDJLK/AphyAQWZ55dWKiMhaYZRaX+vQMkqtnciaj4GCKhW48u5B+Pnnn/Hzzz9jw4YNGdu1adMGBx10EA488EAcdNBBUmglEonEB1JgJRKJhANN07B8+XLMnz8fCxYswMKFCzMmW8rNzUXVrmhSVrVCKFo+22zATvLqR1atuImrH1lNOYYPcbXiJLF+xdWKk8QKSqsVvwJrxVZm/chrSnAHkfUjr1b8iqwVF6n1JbJWHKTWTWIzt41BD+3G2Zf2w8KFC/Hrr79CS3svSKGVSCQScaTASiQSiQuUUqxdu9YU1h9//BHl5eUp2xQXF2P35pAprETPAwF7h7f2QHXyGpSwWrHKa1CymhI/IHE1sApskNJqxSqwAUirlSAF1oops0EJbEpw67I8AQmsQZAia8UitYFJrBWL0PJIrBUKDXpoF8776/746aefsHTpUluhPeSQQzBgwAAcfPDBKCgo8NVsiUQi2ZORAiuRSCRp7Ny5E3PnzsXcuXPxww8/ZIxhzc3NRdXOLKhaMRStCETP5RdWKxoFCVIWLJB4ArSsHtc8DVpc9xDqS2Abinpb/qe+RNaAEND8nHoLTwOYbTg54/FuR6FVFAW9evXCgAEDMGDAAPTu3RuhUP0vVySRSCTNBSmwEolkr0fTNCxduhRz5szB7Nmz8euvv8J6aYxEIkhU5kLRiqAmimszrOIznVJFAUK1+yd0KJUBZhct7SYJLXh5pbVZYk2HXlZWeyAFRA1mORMDvTZbTBQCEmDnnaZlt4NsN03PilpfiyCfg07rXgcAJOAlXGjt+SEKqZdlf5LBCZR8y0y9QT4HQlKzsaGAz0/E8lpq/rtQSaHdhTMv3g/z5s3DmjVrUh7Pzc1F//79TaFt376972NKJBJJc0YKrEQi2SvZvn075s6dizlz5mDevHnYvXt3yuPdu3fH6qVxKHoJ1Jo8tjGsDqQIq5Ug5NXmEh6YuFKb8bhWcU05aDASq9uM0fUrsenSmhLbZ5szpDX1Qftj+pTZdIFNie1TBKnNeQpMZO3OR7rIWvErtekiaxCA0KZIrBW/QqsAeiiO6+49GvPmzcMPP/yAXbt2pWzSsWNH/OlPf8KRRx6Jvn37yuysRCLZ65ACK5FI9goopVi9ejW+++47fPfdd1i6dGnK43l5eajclQNFbwFVbwmCaHJcapy/DNRRWA1ExZXhcu1LXh2kCICzuKYcXExiKaWu4y1FBdZNXFPii7bZawyqx+sl9Jxc5DUltqD82QmsGdOPyHq9d91E1kDkOTlJbDqCUusosgYiQqvUlSonZzkuw+ixB2HevHlYtGhRSrlxXl4eDj/8cBxxxBE4/PDDkZ9fj+XZEolE0kSQAiuRSPZYNE3Dzz//jBkzZmDmzJlYv359yuM9evTAql/iSWGlBallwRzy6imsVnjklePyLCSuDCIEgE1ezYawS6yXuKaGZZdYVnE1Y/O0l2fiJJ7Xj/W5MQqsGZdD+tzkNSUmr8iyngcWibXCI7SsImvAIbSeEmuFVWgtEptyLCRw2yPH4fvvv8fs2bNTsrOqqqJfv3444ogjMHDgQHTs2JG9XRKJRNKMkAIrkUj2KKqrqzFv3jzMnDkTM2fOTOngRSIRJKryoeit6rKsdjDIK5e0GrDIq8AlmUleOaTHhEdczcZ4CyyPuNaF9RZYXnE1Y7O0V2TGX5HX0us5cgqsGZdB9lgF1ozJKrK854FXZK24PU9eiTVgkFkuiTXwklkHiTWPCQqq7MJ5f9kP33//PVavXp3yeNeuXTFo0CAMGjQI++yzD4jgLMoSiUTS1JACK5FImj1VVVWYPXs2vvrqK8yePTtlXdb8/HxU7MyFqpdC0VuAgKGjaSOwQsJqxUlefV6CXeVVRFoBMXFNaZS9xIqIa2pYe4kVFVczrlNb/S5T4/e1tXuuggJrxnQQIl55TYnpJrJ+zoEfkQXsZVZUYq04CK2QxFqxEVoaZs8E66QKY249FDNnzsRPP/2ERKLus9ahQwccc8wxGDRoEHr27CllViKRNGukwEokkmZJdXU1Zs+ejenTp2PWrFmorq42H2vTpg22/B6GopdCoUV8MwZb5NW3tBpY5TXAS26GvPoQGxO/8mpgkVi/4loXMlVg/YprSmxrW4NaXzWg19p4zn7lNSVmmtz5EVgzZrrIBvH8/UqsFeM5ByGxVixC61tiDQyZ9cjCOkERxw3/OArffPMN5s2bh5jlPd2mTRszM9u7d28oSgDXOIlEImlApMBKJJJmQ01NDebOnYvp06dj5syZqKqqMh9r164dNv0Wgaq3AqH5YuuyUprsOAYhrQYJHUpFtfd2HJjiGpDMAAhOXNMIQoysEIUkRSTguFBIcOJqEPTXq6IG+5ojKbL18RqRSCTQmIGKrEEoFKzIAkBIDU5iDSj1tf4sRQK3PHQsvvnmG8yePTvlZl/r1q1x3HHH4YQTTkC3bt2CaK1EIpHUO1JgJRJJk0bTNCxYsABffPEFZsyYgcrKSvOxZKY1ClVvLS6tAPSwAj2iIlSRuYSLULyQAj1LhVKtIbStPJCYUBXoWREoNXFg87ZgYgIAUYBEAtqu3bX/DKa00MwWkmCzO0QhwcasFUKq8c827YjRPkM2g/yaVdTU2AEQtMQaNxkCXZ9WVUEIAcnNSf47qHNKCGhBXjJegDH1/Kzkr4ngXictLwql0t81ikLDuH8dj2+++Qbff/99yvW0a9euOOGEE3D88cejTZs2fpsrkUgk9YYUWIlE0iRZuXIlvvjiC0ydOhVbt241/96qVSts3ZKDUE1p7czB4tKayAub/1biOkLl4p1DQ1rNeEHIa620mjGDkFer/FnEte5hfwJrW+YagHBmtMtvzLQ2BiKw6W1KPw9BfN0qaVLoU2SDLiU2M+QuxxDCEiNFZA18jrWlBZbsbhAya5FY808+ZVbLS80W+5ZZRcPtDx+HqVOnYvbs2YjH6+L169cPJ5xwAo455hgUFRX5Oo5EIpEEjRRYiUTSZNi2bRumTZuGL774AsuXLzf/np+fj7LKYhC1PdREAUJVYrKRLq0GovKaLq1mPFF5TRPWlJh+5NVO9mzktW5zfon1HJ8pKJyObREVWJc2CkusU1ucjiX6tZsuryzH8iDISZ3s5JXlWJ7Y7GcrsQYi5zddYtPRBc6vjcSaDwnKbLrEGgjLrAIk8qOgNI4bbuiPqVOn4qeffoLRNVRVFYcddhhOPfVUHHHEEQiHM6+fEolE0tBIgZVIJI1KTU0NZsyYgc8//xzz5s2DXttRDIVCSOgtQNT2gFIKQpKdWDWuQ61knxDISVoNeOXVSVrNeLzy6iKtgKC4esmdi7zWhWCXWKbJhTiFk+n4PDEZBI9bYL2O73VM3q9fN4FlPaaFoJfW8RJY1mOm4CbEbhJrhec8e4kswCezLhJrbsIps04Sa8Als7UCa4XSavz1r/th2rRpWLZsmfn3oqIinHjiiTj11FOxzz77cLVZIpFIgkQKrEQiaRRWr16NDz/8EF988QV277bIFClKSqvaFoSkih2rvOoRFYlc74lUlJjONO7VS1rNeKzy6iGtZjweeWWROQZxTQ3pLpHcs+IytJEr+8vynDnaxySwAUtz3bYMX8UsAstxbB6Z9BJZFnnlPjZjPGaRBdjOM4vEGrDILIPEmpsyyqyXxBowyayNxBpQWo7hwzvis88+w/bt282/9+rVC6eeeiqOO+445OfnM7VFIpFIgkIKrEQiaTCqqqowffp0fPjhh1i8eLH591atWmHztgIQtT2Ikuu4v5vAskqrgZe8skqrGc9LXkMq9Ch7+Z2nvPKW0HLKa91h7IVSaEkXjzZzly77zYCmb+4msCIlyyJlvW5fyTwCy3B83myom8TyCqzn8Xlj8UisFafzzSOxBm4yyyGx5i4eMssqsQaOMusisAaU6vjHP47Fxx9/jO+//x5a7WclEong6KOPxpAhQ9C/f3+5vqxEImkQpMBKJJJ6Z9myZfjoo48wdepUVFQk1y1VVRUabQmidqwtEXbv+NjJK6+0WrETWF5pNWM5ySuntJrxnORVdNynoLwmD5n6uvhei9TmOfiaOMrunAi2z1Zg/UwW5ec82X018wqsSzv8TKyULrIi8urZFoF4whJrkH7ORSTWwE5mBSTW3NVGZnkF1kqGzDJIrAGlNRgzpjc+/vhjrF692vx7p06dMHToUJx00kkyKyuRSOoVKbASiaReiMVi+Oqrr/Df//4XS5cuNf/erl07/LE5D1A7gBD2zpxVYP2IK5Aqr6LSmhLPKrCC0mrGSpdXv7Pt+pDXuiYkBdO3vNYFzIgdRKwg2mZKbBBL9QRxroyvaFF5TYlV1x6/MwMbEutXXm3b40eG/UqsgXHe/UisgSGzPgTWilVm/UgsYBFZDoE1oJTimWfOwscff4ypU6ea63JnZWXh+OOPx9ChQ9GzZ09f7ZNIJBI7pMBKJJJA2bJlC95//3188MEH2LlzJwAgHA4jrhnZ1hbcZWZqXAdJUF/SaqDEdCg1mm9pNeNVawjtqvIlrWasmjiwZUcArUIg4ppBUGuPEiWw9WZBlEDXRKWaFtw6s0G1i9JgBNaMpwe+RmsQEFUNLlZQIluLb4k1A9FAJNaAJHTfEmugVMe5JdaA0gSuuaYf3n333ZSsbJ8+fTB06FAcc8wxiEaDaadEIpFIgZVIJL6hlGLRokV455138O2335rjo0pLS7F1RzGgdgQh/J0XLUuFFiWIlAWwRicALaogkUWQvdXf+onJWCr0EEH2+grfsWg4KUzq6o2+YxFVAQiBtnV7MGubAoEKYqDiBCSFJ6A1XImqQI/5f29Ys5I0FvMdL9k2NbDXk6hqYJl0EgkDlAbSNkIISCSCILolhBAgEgaJRsWWwElHUUDzghNivSA7mHYRgnhhFGp1QJ91APH8sHA8Sin+/e8heO+99/DNN98gkUhWzRQWFuL000/H2WefjZYtWwbWVolEsnciBVYikQhTU1ODadOm4b///W/Kuq003AIKOgFKaxCBbJaWpSKWXyt1MepLYLWoguqipEyEqnVf8qpFVdQUJmOFK3Rf8krDChL5yZmIQxVxqCv/EI5FVAWI1s5qHItD216bxdUDEIumKq/WWH6eY624GvgR2PRyWqPSgFLqT2SJAhKurT4I4DVNeR18jmcmkdrKA58Sa8ir2SwfXRNDXs1/WzN/fqSxPiTW/Ief1yEpsQZ+ZTaeX3fu/MSiqMElF3fD+++/j82bNwNILo923HHHYdiwYejRo4evdkokkr0XKbASiYSbsrIyvPfee3jnnXfMpRWi0SgqQ22g5XWFSgsQ3s2+ViuQKq0AAAKoNWLyapVWI1aoSkxerdJqICqvVmk1CJXFhDKvKdJqYJVXAz/CE5C81nu5qsjzSxNXAxGBdRoHml4qLyyyVoE18PG62r4eIq+1VWDNOPztSpfXulD83ZN0eTX/ble+KiKN9Smx5h9FXotUiTUQFVCrxArHIkBNUTJD/3/XHoY333wTCxcuNB8+6KCDMHz4cBx++OFQlIDK9iUSyV6BFFiJRMLMpk2b8Oabb+Kjjz4yJ+xo3bo11le3gJbbGVAjCNVQLnlNEde0YZG8ApsirmmxeATWTloNeOXVTlrNNnHKq620GtjJKyAmOs0h65oO63N0EFcDHoH1msDIaaw3t8jaCawB5+vr+npwrumbIa9mHM42OQhsXTj2boqTwAIOEmvAI40NIbHmg4ztchBYA175tBNYoViGxNby4v1D8NZbb2H69OnmUJOOHTti2LBhOOmkk5CVFdz4YIlEsuciBVYikXiycuVKvPbaa/jyyy/NToceLoCW3wN6TruUSW9YBdZNXAF2ebXLtqbDKq9u4gqwy6ubtJptYpRXV2k1cJJXAx7JaYryyhKH5fl5yCvAJrCsM+96TVbGLLJuAgtwvb5MrwnLe8BNYAFmifWS17pw3l0VN3k1t2GZSIhFGhtSYgG2NnlIrAGrgLpJLHOcNIE10aow8qSW+PDDD1FenpzBvbCwEOeeey7OPvtsuQyPRCJxRQqsRCKxhVKKH3/8Ea+++irmzp1r/l2PtkSioAdotBRI66B7yatdmbATXgLrlm1NaZOHvHpJqxUvgWURV8BbXpmkFfAWVysskhPUxD5BzTAMsM9K6/bcGMTVipvE8iwbwzLbtqfEesmrFYbXmPmmgtt7wUteU+K4t4lVYJOhnLsrLPKasj3rjLhu4higxHoKbMrGbq8Nm8QC3gLqJbDMsZwkFgD0BK67oDveeust/PFHch6AnJwcnHXWWTjvvPNQUlLC3AaJRLL3IAVWIpGkQCnFDz/8gFdeecUcr6QoCuJZbaHldweNFDnu6ySwXtnWdJzklSXbmtEmB4HlEVfAWV5pWEEiL8LeHgd5ZZZWAx55NXATnKYmr7zZW6fnxSmvgL3Aiqx3yrNclKPI8ggs4Cmx3Flxu/cFj8ACjhLLI691oTK7LLzyau7Hu6yLnTg2lsQ6tYdDYK04CSiPxDrGcRNYA6rjnr/1x6RJk8xleCKRCE477TSMGDECrVu35mqHRCLZs5ECK5FIACQ7hnPnzsWECROwePFiAMkORFWkHRL53YFQrmeMdIHlFVeDdIFlzbZmtCdNXnml1SBdXnml1WxPmrxyS6uBiLwCznLT3OXVwPrcBMTVwCqwIuJq7su53jFgI7K8Amtg81oLl3Rb3x+88mrGsGmPgMAmQ6V2W0QFFhCQWAOrPDamxNq1R1BigUwB5RVY2zgsAmtAKR664U+YNGkSlixZkoylqjjppJMwatQotGvXTqg9Eolkz0IKrESyl0MpxaxZszBhwgQsXboUQFJcKyMdoBV0B1S2DpVVXkXFFUiV10S2gpoCfnEFUuVVVFyBVHk1xVXA06zyKiyugLi8GljFZk8RVwNN8yWuBnos7ktcDUQE1sAUWVGBNbC83r7HJFNdXGDNGMn2iMpraijqS14NhCUWqBPHpiCx1vb4kFggVUBFJTYlDo/EAgCleOL2wZg8eTLmz5+fjKWqOPXUUzFq1CiZkZVI9nKkwEokeymUUsyfPx/PP/+8Ka7RaBQVkQ7Q8rsDKt9skKEaCiVGhcXVQK2hUBJUWFwNiEah8K3kY9+eGEVkV8JXW0JlMYR+2ywurQZ+5dVAp6AJ8fVOTZqSvAKATn3LKwDQRCKQ9vgRWKBWYuMJfwILmBIb1KRavgQWACgFdN23wEIhQMjnuanFl8RaCEJifQms0Q4CpvH4XqjVmi+BNePUaHwCa+G5e07Gyy+/jHnz5gEAwuEwTjvtNIwcORKlpaW+2yaRSJofUmAlkr2QxYsX4/nnn8ePP/4IAMjOzkZZqH2tuPJ35BJZBHoEiOymwpIXzyFIZBNEd9ZekgTjJLKT7cnd6C+7qEUJdBUo+E1g3U4LelgB0Smyf90kHqRWPPSNm8XXdDUbFJC8AsEJbBCZTlUVWw/WiqIAqiq2Vmt6e8K1nfV4AOc6HPbdJgAgkQhodY14AIWABCWMQc1QHQ5lTCYnAgmHk5nchL/3EC3IBXSf3SqFQCvMBtH8xaEEiJVkQYn7r7SIFYQQqvIXp7pERahK/Dk9e9eJGD9+PBYsWAAgWSl0xhlnYOTIkXKyJ4lkL0MKrESyF7Fy5Uq8+OKLmDlzJoDkneyKvI6g2T24M66JLIJYQbLjGKqmiJSJXUriOQQ1Jck4ajXqBJaTRDZQXRsnVAkhgdWiBDVFyRjhcoqCtWLSoIcVxPOSmcBwmYacXzcns068qCpoVgSkOgZ905bk3zjX2ExtWBOT16CynNY4oudGUUBCIf41WtPbEg6n/hu1YzZ9iCyJRHy1CwCU2gwjpVRcYpuawFoz0z4kllheM7McWVRkCQHNt2RhRWW2VmLNsAIyawisGdKHyMYK6s61qMhSAtQU173uojL71Ljj8NJLL5mTDGZnZ+P888/H8OHDkZMT3NJGEomk6SIFViLZC9i4cSNeeOEFTJs2DZRSKIqC6qKOiJfsi1ANX7maVVwNRATWKq6UAKEqMXm1iisIEKrgl1eruFICRMrE5NUqrpQA0V0aspdxymuttBqkyKuBiMQGLK91v4rWiteDvAL8Alsrrgaiopgur+bfLHFFJdZaaivaPsVSIisssQEJbKDZ15TA/O9FErYpa00vkRaQWVqQNumdiMimSSzAL7LpEguIiSwlQDw/9XyLiGx1SeZrLyKyVcUEz18xKGUITHFxMS666CKcfvrpCAV0o0UikTRNpMBKJHsw5eXlmDx5Mt5++23Eaju9saL2qGmzH/SsfKjVFOEK9kuAnbwCfAKbLq5mDA6BTZFWwCw35pXXdHE14BFYq7Ra40R2c2Ze08TVwFZgAT6JDXDMa+afBAQ2qJJhO3gENk1eDXgk0U5cUx6zic0jsnbjREUkVrEZ48klsk05+5oSnP39aCuvgPOkUDwim56JtcIhs1qxfQwekbWTWAMembVmYa3wiKydwCZj8HVFq0pqr0WU4tEL+uP555/H+vXrAQAdOnTA5ZdfjkGDBvkehy6RSJomUmAlkj2QRCKBDz/8EOPHj8euXbuSf8triap2/aDnFJnbsQqsk7gC7PLqJK4Au7ymZ1sz2sIgsFZptWsLq7ymZ1tTYrDKq4O0GjjKK8AusPUor3UP8ayRVI/yCrAJrIO4GrAIopu4pmzjcgwWkXWb6IhHZO0E1ozBIrFNKfvqNakVo7Q4CizgPbMxi8y6SSzAJrI2WdiMw3jIrJvAmodhEFm7LKwVFpFNLyPOjMHWJTUF1gys444h3TBhwgTs2JGc6K5Pnz64+uqr0bt3b6aYEomk+SAFViLZg6CUYvbs2XjmmWewdu1aAIAWzUN1u75IFLTJ6Nh5CaybuBp4CaybuJoxPATWS1yBWnndpAMOYRJZBLFC93Z4yatTtjWd6C7NfdImD3EFPOTVbICHxDaAvCYfZhCG+hZXK27nxENeAW8xZJFXczuP43hJrNdMvSwS6ySvGXHcRLY5CSzgKbGu8mrAMtuyh8hmlBI74SazDBILuIssi8QC3iLrlIW14iWyTlnY1BjuXdMMgTXQ47jqyFK88cYbqKqqAgCcdNJJ+Otf/4qWLVt6HlcikTQPpMBKJHsI69atwxNPPIE5c+YAAAoLC7ExrwtiLbvYCoibvLKIq4GTwLKIqxnDQWDjOUBNsbu4mjEcsq8s4moQ2U1tZx12y7ZmxnDIvjJIqwGTvBo4SWwDyWvdZi4npiHlFbAXWAZxNXCSQlZxTdme8XhOIsu61IybyLIIrBnDTmKbm7yaB7Q//0zyasCzZJCdzHplYdNxEFmnUmI77ESWVWANnESWRWANnESWRWDrYjh3UR0lFsAX/zcKL774Ij755BMAyYmeRo4ciWHDhiEa0JJJEomk8ZACK5E0c6qqqjBp0iS88cYbiMfjCIVCqCjpiupWPYGQc+fXTmAT2QSxfPZyUDt55RFXwF5eecQVsM++8ogrYJ995RFXwEFeOcQV4JRXwF5gG1hek5s6nKCGllcgU2A55BWwl0FeeTX34TimncTyrJXqJLGsAmvGSJfY5iqwgK3EcgkswCexQKbI8koskCmyjFnYlMOmiSyvxAKZIutVRmxHush6lRHbx8jsqroJrMGU60/BE088gcWLFwMA2rRpg7/97W9yfKxE0syRAiuRNFMopfj666/x1FNPYcuWpPDE81ujun0/6Fn5nvtbBZZXXA2sAssrrmYMi8DyiqsZw5J95RVXIFNeecUVsJlxmFNcAQF5NbBKbCPIa90uaSerMeQVqBNYTnE1sIqgiLgaiHSQ00WWR2CtMawiyyOw5v5WiQ1AYBtFXs2D170O3PJqwCuxQKrIikgskCqyAhIL1ImsiMCah7aILE8W1opVZHmysKkx6s4Hi8ACACjFg8P3x3/+8x/zu/Kwww7Dtddei/bt2wu1QyKRNC5SYCWSZshvv/2Gxx57DPPnzwcA6JEcVLXvh0RBW+YJTNRqCqJDSFwNQtUURIOQuAJ18ioqrkBd9jUR5RdXg8huityNCSRyvce3OhHdpSF7xVZuaTUQllegTmAbUV6Tu1lOmg9hERZXA00TllegTgD9yCsgJrDG8Q2JFRFYI4YhsbwCmx6j2WZfUxqQfC2EBRYQk1iDhMY+HtYJnXKVEqdDNOpLYoGkyIpkYa2EqnRhga2LQdkF1kBP4Mo/tcCrr76KeDyOSCSCCy+8ECNGjEBE8HMmkUgaBymwEkkzIh6P49VXX8XEiRPNL+DdxfugpnVPQOHrEFACUDFPSe6vAjRUF0sIYtlXMIaSANRq8XaEqimytusgVPx5hMt15Py2m2+91zR8CSwAaBr0GoG1PTMaIv6mIIpP8UQA8gok5dVneWAQX417Soki95rDNvgWWD/yarTBr6T4EVggmYXN9jn+khBoBeICSglBvNC/rCWyfXx5AABJVsv4IZ4ttv/7d56Hxx57DD/88AMAoFOnTrj++uvRv39/X+2RSCQNhxRYiaSZ8PPPP+Phhx/G6tWrASTLhas6HAAa5burH88F9DAQLhNvSyIXSORShHeLdSASuRSJHIrodvFOUCKbgoaB7D/E2qBHgFgBRWQ3QcEasQ46VQmUOEXB0p1C8krDKrTcCNTKOMi6jexrcmYEqsu2CcsGUUAUAsqxRmXq7nVlpqJfK4QQkEjEnzApCoiqcK21mbp/UqBpTDyTnczc1gpXPCEcBwoBwhFA9MaEcUPBTxtq41AfMYhxLkRfEyD5PETWHDaofW8SxYd4WYYFENHzQQj0vBwQ4c8pQaI2C0s09vVXrQQhsZQAsQIVakzwNSVAVQuFax1yuzZUlygIVQrEoBQPnX8AnnrqKWzfvh0AcOKJJ+Kqq65CUVGRcJskEknDIAVWImniVFRU4Pnnn8d7770HSim0cAQV++wPmtWBuVwYSIprvCD5cVeriJDAxvOAWEmy06RWE26BTeRS1LRMdtzUSkVIYBPZFPHiZBtC5Qq3wBriCkBYXqlKEM8miO7WheTVEFcASXldX5t51TV+iU0b7ygkf7XyasbgFA2SNkZS5GuFEAKSVZud0hnXuLViiKuBiCylZZB5JTZFXK2fTUr5JVIhQLTufAhJrEJMcRNqgxGjFlGJJdbsqcjrYs3eikqs5f0pJLGKYr6m1mECQiJbK7EAxETWIrHJGHwiG1QWtqaw7nXhFtlagTUQEVlDYA1ERLamOI6/tI2Y369FRUW47rrrcOyxx3LHkkgkDYcUWImkCTN79mw8/PDD5sQTle06oaxHXyh6FBEOATXk1SiRDVXyCaxVXClJymtkF3tH0iquRqmwWsEnsFZxBQHUMgU5HPJqFVeAX14NabUS3a2j4Jcd7DEs4gpCoFbE6uQVCERgAU6JTZNXgE9g0+W1rlkcMazyCvALbLq81sZg39++bJlHYFPkNfmHtGCcAmkVWANekbUKrEgbjBgWeCWW2JX+8kps+mvDK7Fp708hgU1rQ/pYdy6RJQR6Qa2AWtyTS2bTJDa5P7vIBiGxVoE14BLZNIkF+EQ2XWABfomtLk2+l94eeRIefPBBs8Jp0KBBuPbaa9GiRQuueBKJpGGQAiuRNEEqKirw9NNP46OPPgIAJLJzsXu/AxFr0QpqNZjl1Zp1tY7vZBXYdHE1969iz76a8mqd34dDXtPF1WxDGVv2NV1cDVgF1k5cAXBlX9PFFUCmvJoN5pBYh2VTmOXPRl7NGAyS4SSvyaYx7J8urgY8Amsnr7Ux2PZ3HnPLIrAZ4lr3gP0OrBJpJ7AAn8SmCyzP8a0xbGAVWVuBBdhfH6exszwSa/Me5ZJYS/bVit2Ebcwia5VYA+Myx/LetxFY8yEGkQ2yjDgdZom1EVgDFpG1E1gDZpElQHXL2tdW1/D3niWYNGkSNE1DQUEBxo4dixNOOGGPGc8ukewpSIGVSJoY8+fPxwMPPIBNmzYBACo6dUNZ996AmuyEsQisk7gasAisIa+2+zMIrF3W1YBFYJ3EFWCTVz0KxPLtL28s8uokrgC7vNqJq4GjwAJsEktpUiKofWfVUwBd5BXwFlg3eU02z2N/J3kF2AXWSV4tcdz3d58wyktgHeU1+aDzjiwS6SSwAJvE2skrz/GtcRxgkVhHgQXYJNZt8icWiXV5jzJJrIO8AvYCa8ZmOb92Eguwi6yLxCb3dxfZ+srCGniKrIvAAt4S6yawBiwia2RhDd6/+DQ88MADWL58OQDgT3/6E26++WYUFxd7xpJIJA2DFFiJpIlQVVWF5557Dv/9738BAInsHOzqfTDiJS1TtvMS2PRy4XRCxvhXh0++U9Y1ZX8XeXUTVwM3gXUTV7MNLgLrJq4GbgLrJq4GWbt05C+1Lx1OkVbAtvPrKq+At8B6yCvgIbAe8mrGcBAML3mta6bD/m7yauAmsV7iaolhvz/bTMduAusqr8kNPIJ7SKSbwBq4iaybwPK0wQM3iXWVVwM3iWWZudirjR7nwFNiPdrAsmyWo8w6CayBl8h6CKy5mYPI1rfAGriKrIfEAu4iG4TEpgssAEDXcWufVpgwYQLi8TiKiopw880348gjj3SNJZFIGgYpsBJJE+DXX3/Fvffei3Xr1gEAKtt3QVnPvqChzGUbnATWK+tq4JR99RJXc38HgWURV8BZXlnEFXCWVxZxBZzllUVcAefsq1u21YqnvBo4SSyDvJqb2nV8GeUVsBdYVnkF7AWWSV4BZ4FlldfaGJn7sy/TYyewnuJatyHTMRwlkkVgAWeJZRFYt+MbMRhwklgmgQWcJZZ16R2ndjK+Tx0l1iX7aoV17WdbkfWSWMBdZBklNrl/5jXDr8Q6lRHbYSuyDAJrYCeyLAJr4CSytgJby4eXnoH77rsPq1atAgCcfvrpuOqqq5Cdnc10TIlEUj/4XMhLIpH4Qdd1vP766xgzZgzWrVsHLZqF7Qf9Cbt7H2Qrr05Ys64ia5lay4VF9k8Z5yqyvyGvAvvrUaC6JWWSVzuoShDLU5jXFCQUKfJKwyoSRdlJeSUkGHkFAEXNFD0OeQWQufYmh7zaxuOQV9v9WeXVCR55td2fXV7tYJZXvqD+YrKKbn0dHxyi6oSf5XEAewHmeJ9S3ebzxCivAECqM8eh2x4nHAIVOVdK8oeqKqiP9y9VFVA/nx8bCMdlV4v4e53juf72T+Tw73/6Sx9gbpu+GDZsGADgww8/xKWXXoolS5b4aotEIvGHzMBKJI3E9u3b8c9//hNz584FAFS3aotdvfuDht3vhlszsKxZVyvWDCxr1jVlf0sGljXrarY9LfuayKGIF3lnXc1jp2VfWbOuBpHdBAVr9aQIMmZcrVizr6wZVytcAgtkZmEdJm1yw8xiCsqrkYUVlVfjK0ZIXq1ZWBF5tYqNgLxaM7Dc8so76Ut6JpRXTNMzsawZWLfjc2LNxApJrfX1EhE1a5s536sZWVje9wpjFjblmMb5YsnCWknPyHJkYc1jW7KxDZmFNTCzsRwZWCtGNpYnA2vFmo11y8BamXTO0fjnP/+JLVu2QFVV/OUvf8GIESOg+FlbWCKRCCE/dRJJIzB37lxcfPHFmDt3LiKRCHb1OhA79z/MU16tNEbW1ZDXRC5FReeEcNY1kUNR1U5LymtDZ119yisNKcwZVyvc8gqkZmGN7CsnGVlYAZpt5tUQGh+ZV0IISCQcfOY180CAn+NYhZdXXo3jN/dMrIHIjRZrFlZASFizsCnHNDKylELZXcm+oyUjK0qQ2VieLKyBFiHJjCwFsrfxrWMLNE429sJ3vsWECRMwePBgaJqG5557DjfffDN27tzpqy0SiYQfmYGVSBoQTdMwfvx4TJo0CQAQzyvArn4DkMgrYI5BFWreeuIV11AVAXT+rKt1f6IhY1kcZihA9NodeY9dpiCygyCeJ3bJiuwmyFuvIxEV6/hEKihyf69K/oMzuyYkrwa6BlpVzVU6nA7Vqb/SYR/yCkBcXnUKSqm/smE/Ah9PiEudn2U3KAU0zV9pMM+aounHjid8ySSNJ/zJLPFZJu7nZoui+HrPiGRizX1zBF5vIxur69xZ2NQ4VDgLK5KBtaLGqVAW1iBUSYWysAaJXM4dKMWDf+qBxx9/HLFYDKWlpbj77rvRr18/4TZIJBI+pMBKJA3Ezp07ce+99+KHH34AAFR26IrdPftxdZaoQkEF+wlaDoWepUOtUIQytnqODpKTAC0PicuryIEB0JAOUILIFsEnT4BQBUHORkH5raDIXV8tdui4BnVnJbBjt9D+RhkxZV37M2hUVXwNREVJym9QmTUeiAKoCtM6vfb712ZtE/xZb3N/UYgCEgmDih4byZsOwu8ZQ6CFD64I32wx9/dDhH3+gIxDh0L+XrtIGFT0/U4IaLa4AOtZYdCwuEjG88XPm1+JrS4hUMTf7qhsRRARvMSCAAkB9//gktNx1113Yd26dVBVFZdddhnOP/98WVIskTQAUmAlkgZgyZIluPPOO7F582ZQVcWu/Q5CdduOzPtr2RSJAg1KtQK1kr9zpOVQ0KI4aI0CpYKvk6Hn6IgUVyMRU6GXC3RwsjTkFFSjuioCuou/c0ZDOki2BloZEhPY2hLlUDm/wBI9mR0IVVNkb+KXARLXoFTGQWJxMYHVNSCeANU0MRmxioCIUNTeXBES2CDkVVWT4yJF2k6UukycziljJFkyTSkVE1jr/iIiSBSQaCRZNi5wfBIOJ/cVFVjjfRPnL4tN2V9UYv0IrKok9xd835nVBqISWyvPwhIbjYASIjTAS8+qPbagxPoV2Jri2uuFyL0PAlQXJ88Zr8hSAlS1SpYjC0ksAapaJb8bwuV8rxtJxDE8rxrTpk0DABx55JEYN24ccnN507oSiYQHeZtIIqlHKKV49913cdVVV2Hz5s2I5+Zh26HHMMurlk1R0zqBRIEGUsMvr1oORaJdzLe8EpFBTlkaclpVIKegmmeoqAkN6UB+HCRbEzs+QfIKZ2RfN4nJa7IxAoevlVdhauVVCGLpxIt2pC2VAdz3OYOSV1Gs8sq9b914X0LExpKm7M/7PAx5TYvFDSEgoiXIxuvGMSbfvg0CXQy/2Vdjf526rzHrhc97+8THsQmlZmkwD0p18npD4hpI3EcG3SdUBX+lEE1OJkUJgc77kaNA9mYKECBWkPzhPXbWFgIQIJ5HuYap0FAYr1fl4cYbb0QkEsHMmTNxxRVXmEviSSSS+kEKrERST8TjcTz00EN47LHHkEgkUNm2LbYfegzTeNdETp24glDuWTKs4iqyv56jI9S+EtGSKnF5FRRXoC7rSggFIRR6RRiRrRw9ovSJoSi4JDRFXjkhcQ1qWbW4vOpacjZZP/LqR1wBf/IYtLwqhE9q7ORV8T+RVXOBhC1ZNBGJNc61qMSmv1Z+hdQvfiXWh8gSnQqLrKjEpsTglNhwmY8bbjaIDncxJJZXZAGY135ekTW/5mr35xJZQnDT7BV44oknUFpairVr1+Kvf/0rZs2axdl4iUTCiiwhlkjqgZ07d2LcuHFYuHAhFEXB9l77obpdD0+bS+RQaPnG0gh1H01SrSJU4S0EWg6FXhhPHsayP61WmbKvRsYVQIq4xmtCbOXDteKa3L/uz9VVEeg7vTvChrimH1+vCLOVDzvMaMxaPuwkrqEqiuzN3uWYTllX5hJih6wrcwmxU+kkTxmug7wylRHXV+aVtf1umVeWMmKHjCdzKbHb/iylxNbsa2oA5lLiFIG17s9aTpx+/g0BYy0ndhJW1vefX+F1ev0Z35OOGW/WO3EO42+ZS4ptXn+ekmKjjDgjBmNZcVBlxOkwlRUToCptMiZS20VlKSs2S4lT/pj8H0tpMVWA6lZp1//af7KUFlMCfHf9KNx5551YtGgRCCG49NJLceGFF4rPIyCRSGyRGViJJGBWrVqFyy+/HAsXLoQeDmHjwAEo7+Eur0bGVcsXz7jG2yYzrkSx2Z9h8iRruXBTyLpyI7AcT8ruPrKuQCOXDAO+xv2ZuGRePe911mfZMEsW1qts2CsL61Kuy1RK7LW/V1bbSV49YqdsZievxv4smVi7c8yTiXV7jVjEtD6ztX4ysUCzLClOidGIJcUAYzbW5hSJlhWbcGRkbb92ODKyhAIHv/EyPu7VGWeeeSYopXjxxRdx7733oqaxJuGTSPZQpMBKJAEya9Ys/O1vf8PGjRsRz83BxuOPQqy4LUIuY1fNrKuAuAJ1EzTZiisDRrlwUGNdeQlyrKsIRAdCNbTxSoYBT3klquouIF7yyiKATalsmBc/Y14Bf2NNGfcXGg/LeQzP/b0k1un1a8wxsTx4LbfkIZGe5zcAifVTUkw0fyLbLMfGGvv6KSsGUkTWz/5eEpu9XgVUBU9mU9x4441QVRVffvklbrjhBrlerEQSIFJgJZKAePfdd3HLLbegsrIS1aUtsOnEo5EozHfcPiPr6oBT+bA16+q2P61WoVRmftT1XC1FXLnl0eckTcAelHX16FTSSBgosnkv+B3vCtR75tWThpJXJwnnkVcfY2GFJnRiDu6SfWUN4ZR9TdnIRWK95LI5SCxL7CAysU4iy7j2rczGiomsNRtrJ7KEAtlbPM6tWzaWAlmbPa5jHtlY69fY1et+xSOPPIK8vDwsXLgQY8aMkZM7SSQBIQVWIvEJpRQvvPACHnvsMVBKUb5PJ2w+5gjoDh3Sei8Xzmhg6heyKa5FNUziGK8JQa9I6xwHUC7cmFlXgE9eE9kEVa1SO/7cJcPpJyqIkuEGlteMMuLmnnkFuDKbthLLu3/68+WRV79ZWCOGncSyvIZuEss70Zaf/f3id4ZiwF5iOS6GthLL+D4ISmKbgsimk73d+4m5iizLy+pSVsz0dcRRVnzOnOl45pln0KZNG6xfvx5/+9vfsHDhQoaDSCQSN6TASiQ+SCQSeOCBBzBp0iQAwM6++2L7gAPMUjalSjHLh/2KayKXU1xt0HN0ZnFNwdg04HLhxsq6CpUMW47ZZMa78oijXQazOWReU47JOSOxbQzLMRugdDhzl+BLiZmyr64xOc5pU83EepUP29HMx8X6LSkGmmA2ludrqQHHx7rtny6y2etTP9/HfPI2/vOf/6BXr17YtWsXrrvuOnz77beCjZZIJADkLMQSiShVVVW48847MWfOHFBCsP2Q/VHRrXPKNkpVslNlN7MwC0b5cCKXAoXupcJO0KoQQCgiRclJJHil0ZyB2JJ15aW6KgKtPCSccTWX0RF0JWMWYj8lw6FqipzfK5NrLQp0Gs2ZiH3IK9U00FhcXBqN2Xx9CBQhpHEzr8Zz8Jt9pbqwvJqzEgsKsDkrsZ/S4dqZiYXl1TozschrYZ2d2I+MGrMT19fswywo/m9kAHCcgZgFqhDmDGzGvpZZip1mIWaKE1brbRZiFoyZiqta8L8XjNmKiWYzEzErNDlbse1sxIz7A8kZiys7ZN4YIIkE/rypDDNmzICiKLjppptw6qmnirVVItnLkQIrkQhQVlaGG2+8EUuWLAFVVWz508Gobt8mZRuao4GEdNDKkJB4AgBUCqg0Y1kc5t3DOiLROBIJVSzbiWTfTFF083deEgkF8ZoQKCXCbdArwohsE+8YhcsI8n/zl6qIlOnIWc2wFoMDpCYGbNrqqw2UUtAY43Im9QQhBCQSabyyYQOfa7sSkYxd0NTXmFpWKPV/QwRgW2KovvF5LokP+UwGIL4EFgBoNueaven7EwI9x0cbFIJYkd82+JNYAKgu8vfZrGkBrkxuCrX7aTl+1g8G4h1rgDKb10LXcUW5jk8++QQAcNVVV2HYsGHix5JI9lKawDe4RNK82LlzJ6699losWbIEWiSMTcceYSuvSlgDrVKFxJNkacgqqUYoJyFcLqyGdUSz4tA0RUgcI5EEWhRUIC+7Rnisq6LoCIUM+RXIHlMCqininREAJEGS6wO2FL/cKXGKcJl4J51oGkh1DCQnWzgGpRSI+ylbrs36saxH6gAhBAiHG19e/WbbImGxN3RQbQCSx29siSYEJOTz9dA1/+Ow/aIq7OvMOsC6zq4txgXSz7AAANDFn4Nvea1FiesgCfF2EJocpuGvEfDVO41uh/gwE6MsOF9HPF/wiRAgtD4K5NtcrxUF/8lXcf755wMAnnrqKbzwwgvey5RJJJIUpMBKJBxs27YNY8eOxfLly6FFI9g8+EjEWpaYj9McDZFWlYjmia/5RrI0RHPiwmNE1bCOvMIqZOeItyESSSA/q0a4D6AoOqLhOKIhcVmilAC6v44xSRCo1bXxRAQ8TpG1XUOkzEeHTtNAyquEx8uZWddaeSUi4mWU3frAlFcAVBOMparBiaNfaVIU8baEawVYVGKt2brGlFhKk+XgSgBtaGyJBcTf47Vtp4mEP5EF/EmsTpMS60Nkg4BQ+JJYICmxgYisCMal1ud8CQCEJZbQ2mPnxzNFlhA8RCtw+eWXAwAmTZqExx9/XEqsRMKBFFiJhJHNmzdj7NixWLNmDRLZWdh03JGIFyVnfrCKq2i20si6GvKaiKtIxPiyI2pYR3ZOjfD3tpF19S2vIc1Xf9avvJIEQai8Tl5FUOI0Ka5uy2Z4tSMAefWVdQXs5ZUzC2uVV2Gs8ioqjunCyPsm8zvWEUg9DyISa1dq2hgSa31PikisTpPZVyuNIbHp587njRrAZzYWCEBi6R4hsUDjZ2OTjeDfJWtL3XdvPF/3nG3Y9dh2IksIxu3eiBtuuAGEEPz3v/+VEiuRcCAFViJhYNOmTbj66quxbt06JHKysXnwkUgU5NeLuPrNuop2Ia1ZV5EYQWVdqab4llc/4gqkyWstWlRBogVbCTDRNCi7ypumvHLiJK9cWdggM6+i2MmrnyysAY/EBjBOst6QmdjUEEFILIfI0vQ1ZJuIxPotKQYaORtrNgJ8X2zpl21C60Vkr1m/HDfddJMpsU888YSUWImEASmwEokH27Ztw3XXXYc//vgD8bwcbDruSCTyc0FzNEdxjdWEoFe6d2rrQ1ybYtY1Go4jK8d74qGgS4ZFSCkZtulEUAbZScm6pscIhZjGwXrJK1MZcT3KKxdO8sojjm6CyLh+qWPmlUdi63PSpYbMwjp1kFkl1i77mhKnGUmsS1uZJNbrzuVeVlJcU+hcNdRksrF+3p4cIhtabzMhllVka7ly7S+46aabAADvvPOOlFiJhAEpsBKJCzt37sT111+P33//PZl5PfZIJEqjCJdWmfJqi8d3j99xroD/cmGgYbKuikf/Lqis655QMgw0YObVpYzYnGnYQ149s7BemVcWcayPzKsIoZBze1mysCzZ18ae1AnwllgveTXjNIDEep2vppCJBfaYkmKmbKzHy94ksrGA77GxINRTYl2fZ1o2Nl1in3rqKSmxEokLTeDbUiJpmpSVleGGG27A6tWrk2NeTz0cShcgmlcDRaGBlAuLEFS5cHMa60qyNcSK7TvNrFlXLdt5JmK7kmHbGC5lxE1CXo2Zhn103APJugINWzbs9CZklVevLKybvBq4SSxP6XB9SyzL+3NPKyduzBmKDVwkNqN82A4XiQ1kBmKFIJHrHWOPGxvbQNlY1+PXiuxVvy01Jfatt97CxIkTfTROItmzkQIrkdhQVVWFm266KTnbcFYE28/uD7WdGpi4ishrKKIFXi7crMa6pm3Km3WlJHMmYq+SYfs4qUG4x7valBGnzzTMQkYZsUjJcFoWVkRebbOwPPLqtB1v1jRdlngzr04SyyKvBnYSKzLutb4klufmip3EsmZfU+LUk8TyniO7zwZH22xnKOad+IBzXGwGTaikuEmNjW0KIpvnnZH1PH5+HFftWIRrrrkGAPDSSy/hvffe89EwiWTPRQqsRJJGIpHA3XffjcWLF0OLhLHj7INAW+YIJ5OCKBcORTRkZccatVwYaBozDAP1MFFTECXDPDEsb6amPlkTN011wibRdvh9LqI0h3Ji5jhNIBMLyJLigGky2Vig8cuKCWUqK/Y8PgFuqFyGiy66CADw2GOP4auvvvLRMIlkz6QJfENKJE0HSikee+wxzJo1CzSkYOeZB0IrzReKFUS5sJF1NeRVhCDKhYE6efVDk5RX0XbEE+Ilw6oKkpPtW14JIf7lVdN8y6uZhRWVV+s+fsQz6LVhRZ+L8Rya0qzDou91Q2JFsq8pcQKUWD9yb3xWfLSHJhL82dd0/EgsICXWDgUBjG31GcNvNra2DfeGNmLo0KGglOL+++/H3LlzfTRKItnzkAIrkViYNGkSPvzwQ1AC7Dq5LxLtCoXiRLISvrOukWjCd9Y1Go77zrqGVC2AkmH4nqgJCgUl8CWvWjZQU0B8yasWVaAVREEqqxt9siZK/WdeQRTfmVdCiP/MKyGAwrfusS1+s6+KknwufmIYNwT8ymtQWVi/k8EoCkgomNemSRBEJtZv1QQAxBNs41+dqJVY3+NfASR8xGhSJcUETScbm+/jySgET5RWY/DgwUgkErjjjjuwcuVKH42SSPYspMBKJLV89tlnePHFFwEAZYP2RU23Vtwx8rJr0LnFdhTlVQqLazScQMv8CuT5yJhGwwmU5FYiPyqeubXip9+p6QQhVUeEYSkdJ2hMgVLhrwMdqgayN1FEd4mXDKsxHdFt1VB31/iTAk0DamrE90etvOrBzFJJY+KvDYCk8PltCwnm6yiQ0uEgyoZDalKG/aAoyTh+IMR/O4xQfm50GDcofGbYSVbUXzuQfB6BlEY3EYhOQfx8/owLvI8QlACxwhCUhP9rEgkghl8oAaDW/vggFEkgFBHMthOCCV3DOOigg1BVVYVbbrkF27dv99cgiWQPYc+5gkskPli4cCEeeughAEDFwZ1RdUBHrv0NcS3NLUdIEb/rGg0nUJhdDUVQfo0YuZGYrxhWVEIRUvmzr5pOEEuo0HR/lxkaU6CUq/DzdELVQGQnNW6MC6HGdITKYgCloFEVtDCPP4imgVZVJYVRVZNL1QgQmLwGII0pwui1rA4LPp5Xk5JXA7+iRIi4xBKSlBPFp8QaparCEwHUZuiNtgTwOvmVWAC+JFb0s2uFZtusEyoUKHlTzpfEmrF87Fv79lASVFhkawpIbVkybRIiC8CXxBqV5sIiqyq477770KFDB2zatAm33347anze/JRI9gSkwEr2ejZt2oQ77rgDiUQC8X1bovzI7lz752XXmOIqKo1ZkTha5legMFu8PtbIugYlrwqh5g8vmk4CEVeyPRyovAJAIkpQU8TXgbbKq9k+3s68pmVmOgVS2xnyKiqh1v10KpSFDUQY09tS255GaUv6ayqSZbeTTRFRsu4jIrGGvJrxBCU2bZxlEOIoJLEKyZBGkbak79OomVi/N0sUAj3Hck6ClNgAwghJbO0pMW42NimJDUhkedn/g6fx4IMPIj8/H4sXL8YDDzwg14iV7PVIgZXs1dTU1GDcuHHYsWMH0DoH1af2ZO5UWLOufsW1IKsmsKyrNY6q6EIZYT9tCUpeDXG1NkWPUsTz2doWqgZyNtIUeQXAPUmHnbxyYyevAFcWllKanCypKWZerfBmYeuzLVxBHN4UjdFRtJMqHolNl1czbgDlxITwi6Pda9zEMrE8IhtE9rXeqJVYHpHVsh1eh8aSWAsi2diaIl+HdCcAkRXJxo5c9jjuu+8+qKqKL7/8EpMmTRJvhESyByAFVrLXQinFww8/jF9//RXIDgHn9wAibN9MQWVdgxDX+si6iuBVMhyJJJjGwTalkuHotmpHeWUuI3aSVwOGLKxnyTCPBDpty5GFrbfMa1p7GqwtXjetWCXWTTBZBcltOz/lxGZ8Dol1muWWR2KdZNpoC8vrZ5N9TTkEY1u8tmvIbGxg5cO2wTlKihXiXk3CEMIY/+p4CB8lxYBANrYh5gprhGzsdTtexfXXXw8AGD9+PH744QfxRkgkzRwpsJK9lrfffhtffPFF8lNwXneQoijyozHkZDmPLwk66+oHp6yrKPWddSVw94T6Khm2w6uMOCXr6iIvnmXEXvIKeGZhg5ysyVN0GSSWSRhZsrAs0u3xvAMTaRa8JJZFLL0EKQiBchNG8zgMEuu1RAuLxBLi/Tp7SayHvJqHCui94CWxgWVfgy4ftqMhS4oZnk5jZGPrlQbKxnZovcP8/ZGcbzBkyBDouo577rkHmzdvFm+ARNKMkQIr2StZunQpnn322eQ/TugE0rUAABxnDk6fpKkhsq5ZoQSyI5lLNTRG1tVpIqf6mKjJ6ynpUYqEzRp7jiXDdriUEfOUDLtmYVnk1cBBOLjk1UsUGrpU101im0rZMBD8pE1e1OekTizyarajnsuJDXllaU8Q5cTEffkknlLj+s7E1mv2NeNg7iXFjuXDtrH8N8ctG1tT4P1eaYixsZQANa04Ji6s50me1LRhQNdeey169OiBXbt24a677kI8iCWdJJJmhhRYyV5HRUUF7rnnHiQSCWC/YuCw1q7bBzlJU3PNutptJzLWNRzOLCMWKRmmaf0ckZJhuyysyHjXjCysdaZhVmyysIHONMwjjA5Z2AYpG3ZoT/21hVNe7d4XIiW9doLEI012Essjr+YxHSTWK/uadlxHOeRpj53EMmZf09sSxPvDTmKbVfbVilNJsVf5sG2stH96lA87YSuxHE2p9wmeeF+iBpzk6cTvbsd9992HvLw8LF68uO5mvESyFyEFVrJXQSnFo48+ivXr1wOFEeD0riAOX+BBlAsDwYx1BcSXx3GayKkxJmqylhHTGgVkR8OUDDs3pu6fopM1pWRhebKu6Vg6+8Lymi6HopnONIkVFoL0LKyP9vhuSzqiEmF9f/gZj2oVJJGMXxDjYYFMieWRV0tbUiSWpXTYqS3G68srr+ntsbxPRCd6qo9MbINmXzMOXk8lxYIfpfooKa7XCZxYCGDZZpay4hG//Au33347gORwqNmzZ/s7sETSzJACK9mr+OSTTzBt2rTkO/+cbiAO5VN+s67FWVVoW7Q7sKxrU5ioSSUUqqIHUzJco0CpUEF0sUmWjNmIheW1lkSUIJGruk7WxAIlxJ+8AmYWtimt8QoEIIyGxO5JZcNBzkzsR5IMiRXJvqa0IcByYp7SYae2BDQxV5CZ2CaTfQX4sq/pGBKrEL7yYdtY/nYH6kqKWcqH7cgoKW6ICZy8qM3GhkrFlsVjzcbeVv0uzjnnHADAAw88gJ07dwodTyJpjkiBlew1bNiwAU888UTyH8d0AOmYn7FN65wy9Gm50XfWNS9cg+JopW/hLIxWo2VORZOYqCmhK6iJ++8Q6joBdOIr66rUEGRvIb7kFQDUGEVkV8JzsibvBiGYTjfgX155S4adwhDiWJ3AH8xne5RgZCTZlgCeU1DZTzWAGEFmYv3GIQQkK8ufTNe2hWRl+YthtCc723+YgDKxQWVfiebzGkEpSEIPJBubyAvgvQdA4V8eNYW6bKy/OJQAsRKBKoSMOBSK6i+OIbFtc3Y7bnPFFVegS5cu2L59Ox5++GG5Pqxkr0EKrGSvQNd1PPjgg6iqqgI65QMD22Zs0zqnDJ1ztiNMxMe65oRiaJ+zE8WRSl/tzQrFUZJVgfxIdSDiKroerEFMU1ETD0FPH3zKQXVNGLu35SJW7i+TodQQRHYT6GEgni/eHrWGIrpT851FIHENSrnYnXYTnQLxZM+LRHyua6mQuh8fMUgk4l9EAP9iv6fKqzVeEAQxORQhgN/3n8g6sU7t8Sv4kbD/jK6iAFnR5GsegOAHhS+JJQRadvI1UnjXbbZBSVAQjjmPHOP4mIuIEiBWlDy/viVWoYCG5I9PCKGOk0Oy7Z+88ewksSd+dzvGjRuHUCiEGTNm4NNPPxU+lkTSnJACK9kr+PDDD/Hjjz8CIQU4M3Xca+ucMhzS4jd0ztkOFeJf5jmhGIojlclSWz9jZkNx5IX9j5kNgpimoqw6amZeRdtUXRNOimtt9lUUQ15Bkx0WUZ9WayiiuzQQCugRBYkC/swIiWtQd1Qk5ZVSIKSKZXt0Cmh1PSWiquISG4RwKgRKNFrXNuqjgyvl1T2W3e9+EJXY9LaIvv8M4fQpsSn7BpGlFpVYRck8F4Kvf1DZV5pddwPQl8Rah2AHILGEiktsTX5dY5S4uMhavw/8SqxJABILOK9wwIohsXYie9m653HppZcCAB5//HFs2rTJ17EkkuaAFFjJHs8ff/yBZ555JvmP4zqAlNSVptVlXTVTXltGy1GaVc4c35p1tYpri2gFWmazxzGyrnlhf2Nmg8LIuvolRV4NQhRaNl+nySqvBnoUiHGMnVJrKHI2J5Lyajm8FlW5JNbMuqaXHvOKSJq8+sJOXgVmpTXl1UBUYqW8usdi+ZsIQa0lyyuxqpohwiISa7uPiMSmtz+osbWA2PsggNfXKq9mWI3yiawl+2pFRGLj+annQVhi7S5dAawMQxIBiSxnNpYSikiLzKockWzsAe3Xm78bQ4nsJPa5VgvQt29fVFVV4fHHH+c6hkTSHJECK9mjoZTi4Ycfrisdrl0yxy3rqkKHwlhXmheuccy68mRh3bKuWWoc2SH/3+Yqx4RUQchrSsmwXdaVdbnKGoLoViVDXgG+LKyZddWRIq91sdgCpchrOjxZWBd55c7Cuokqx7qgGfJqwCuxUl7dY4k8xgPvkjxOf+d5DzpIOdf6q27b8kisU7t5JNYu+2qF4/3QEDMPc0msw9tD0XQ+kbV7yWsltiFLiq3lw3awSqzn+FeO5+QmqjwSG1EyD2qXjSUKwY033ohQKITvvvsO3377LXtjJZJmiBRYyR7NN998gx9++AFQCXBGsnTYLusqQl64BoXhKt/lwk0t62otGbaDRYKZSoYZsrBG1pXocByrypKFtcqrEyylxK7yam7EICH1nXnlhKiKs7zyIuXVPVYQ27DAIrFex2KVWDe5DGpMrNdxWGmMTGw9ZV8zDuMlsQ7Z13RYJDY9+5pyGEqZs7HW8mHbtjCWFHvdyGTNxlLF4xwGODbWD3bZ2ItWPY0RI0YASJYSV1RU+DqGRNKUkQIr2WOpqqrCU089lfzHwLZo0zHOPNbVrYw4L1yD9jk7A5HXpjLWFajnkmEn3BKHNiXDdnhlYVnktS6Wy118FnkFvLOwjPLKlIXlyK46H0dhWyKEJQsr5dU9Vn1s64abxLIew0ti00uHHWJ4SSyz5HpJLItwe0msV/bVisf7o6HXffWUWMZen6fEslzeWSSW9RIWQEkx0LTGxnqVFFvLh51Iz8aOGjUK7du3x5YtW/DCCy/4b6RE0kSRAivZY5k8eTI2b94MFEXQ+oR8rqyrUxmxNevKIq8tohUoycq8C2rIKyv1XUbMK69O0s0lr4BjFpZVXg2csrA88go4Z2GZ5dUgHLKXWM7Mq6vECoxvzYzPKK8GbhIr5dU9VkPsY4edxPLGdpJYFnm1xHCSVO4MrZPE8pbd273feOTVwOF9QrOjDZZ9tWIrsYzZVytOEuuWfc04rIvExvL4uqB2EutVPmzbJhuJFVo+x+Z5OY1/dW2Pw/epXfmwHdZs7Inf3Y6///3vAID33nsPq1ev5mqLRNJckAIr2SNZt24dXn/9dQBA93Nz0KVwp+9y4bbZu7mzrmra+q1NsWS4vCZS/+Nd3bBs7jbe1Y30LKzTZE1sseoCZcw0zIO142oskxNE2bDfJXJQWzKcncUnr06EQsGVZEqaLkFMPFUrsYGUFKuq/5JipVbMg3j/2i2zE+CyObzYTu4k0OOzHRfL+7I7jIulIu2xKSkWmY3erqTYs3zYDpuSYpHyYL/L7QB12diHY89h0KBB0HW9bgJLiWQPQwqsZI/kP//5D+LxOAr3i6B0/5CQvBplxEbWNaxoQiXDxmzEfkuGg87CGllXKrgWjfE8fC+RU5uFZRnv6oaRhfWarMkzTm0W1nGmYVaMUmKf411TsrB+x7sqhD/rmo41CxuUuMrsa/D7WrFmYf3EtGYmReWxdr1ZQ2J9y6zRDj/r1xrZWJHsazq175v6WDZHBKJRoexrOobE8mRfU9qRNi6WN/ua0Z54bda00OfNvIRg9jUdTSz7mtGe2u9VlvJhO4xs7BVXXIFQKIQ5c+Zgzpw5vtokkTRFpMBK9jiWLFmCGTNmAAToelZuypqvPJSEKtApe7vvsa4qocgJxZpM1hUA4roSyHjXmlhILOuahlLDn3VNhxJAifGVDLtBNEFxtaIqAa3NqoCoAV2ug5gIB0g+tyCQ8lr/MYCknPmNZZQS85QOu8Qi2Vne27GQFYAsKgQ0V2Ad53QIAc3LbpTSYUc0Gkhvj+iUO/uaEaNWYkWyr+mosWDiKHHB7GsaJEF8Z1GBpMQWRyp9xbhx3d04++yzAQDPPPMMEomgBv9KJE0DKbCSPY7nn38eAFB6aBQ5bcU6xoWhKhSqlVDANtbVCQUUESWBcABGpVOCiJJAVBX/ItJ0BTWJ5DkJh/yVs8Y1FbqmQIn4i0NiCtRqAs1nX1atBsIVQDzX32VNrdEQ2hnAzQZdB62u8d2RpTS4GYtJ0LO4iqwPa0dQMzIHgUL837ggBFRVQIO4eVEbL5AYQcRRFCAcUMltkDcLAlr/lgbx3AgJ5AYPJYR5eS+3GHpOOCmxPknkqIFMghTPIYFMypSsuAFUn5frWBGFEiNQYgHcdKBEuKrJwHjJc0P+ntjo0aNRUFCA1atX47PPPvMVSyJpakiBlexR/PDDD1iwYAGUEHDAGWIxTHklFK3Du1AaKROKo4AiVDsJQ364GoVh8dIi3ecXIpCU17jOusKtM3FNRUVVBLGYv44niSkIbwshVKYAVGwck4FaDWRtT5aoaRGCmMfSDI5xauWV6DpoSBEvAzTkVacAEe/wp8iroghXEwAWeaUUVFQYg1yCxIiHACU9iIy5EUc0FiEp4upXYqlSGy+IUmS/EmvdN8gstZ9Y1s+WD4ml0YjZHmGJJQQ0ai2z9tEeS/ZVVGINeTWvrX4lltRmUBmXpPGKw7pEjnuc5I8fiaUKzIkU/EhsqLTuO15UYgkBDu+4xvy3H4l964+TMWrUKADAxIkTZRZWskchBVayx0ApNbOvvQclkNeSb//CUBU6RbeZ8grUjifhVD4j6xpinEHQiyDl1UpY1bizsHFNTYqrZdYkNaRDyeL7YiQxJSmuOmAMT9bDFBpnBZ9aDeT+QU15TQaHUCfdKq91DRU491Z5NVBUbom1lTpBic3IvIpIrJO8imZhg8pOpiMqnumyISKxafJqhhJ8rhkiHMRsxkFlYgFx8bSb7Egklt1nSkBiaTSSek5EJNaQ1/RzKyix6dIqLrFpf9CokMjGc+vOhzmeVcCHYpYKGSOOiMSmzzrvV2JNfEgsSStDFs3GRpTUE5sbqhES2SwSxxlnnIHi4mJs3LgRX3zxBXcMiaSpIgVWssewYMECLF26FKEIRf8hfN+s1qxr+iRLPFlYa9Y1Hd4srE6JrbxGFI2rjNhOXkVIkVcfpMhrGlqEXWLNrKtukVcjThjMWVi1RkN0U2WmvAL8WVg7eTXg6IC6ZiQ5JdaxbJhHYr0yr7wSayd5AZZKc+MkGTwS6yCvZihOiXUU4cYqJ3banlc8nbbnlVg3weSQ2Ax5tbRHRGJt4ZRYp7GvPCXFZumwExwSG88N2Y59FZJYhzjcEmsbh19iY0U256FWYnlE1pp9zQjH+J2Znn1NR0Ri/7vuaJx//vkAgEmTJsksrGSPQQqsZI/h1VdfBQD0GqghpxAoDZWhZbjccz+rvNrBmoV1k1de3LKuCtGZJNYY7+omr6xZWC95Zc3CusmrAct3fagKqVnXjAOBqYNuzbqmy6vZnrDKJrFu8gowlxI36TGvbrBKrJvkNUYpcRCTUXnIqwGrxHqKMMfaq66PBREHYBdPr+0aY0ysxzliktj00mE7GN9nNDviKansEuuxAavEup0iDomNucxPwCOxdmt+18UB87jYWBF1ngSKs6Q4PfuaEY5RYtOzr+mwSuzxJUvM34cOHYrCwkKsX78eU6dOZdpfImnqSIGV7BEsX74c8+bNA1GA/U9MdoBV6FBcJk+yKxkWgadkmCULy1Iy7Pa8gHoa7+rRLi+JZZFXwLuUWK0Gojtd5LUWryysbcmwE24dRl0Hraxyl1cDj1JiZoFjyMIyyatXFpZ3zKuXxLJIXkNKLItUeGVhGeXVDBdA6TSTxLJIDovEskqul3iyiimLxLJmRj0k1hz36tEeV4l1Kh22Q1U833M8GVa3x1yzr1Y8JNZaOuwEi8TGchXPGYyZx8V6xmHLxjLNYMwgsW7Z15RQAUzwBLCVFGeRupP47u+DzCzs66+/nrzGSiTNHCmwkj2C1157DQDQbYCGgtK6i7NTFtatZNgOpzLioLOuPONdnbKwvCXDTllYu/GuntiVdcUUhIzJmhiTdE6lxGo1kLUjWTbM0hanCZ245BUupcTWrCtLmwDHji63uLlILFfm1Uli62nCJrYmNYDE8mRenSSWU17NcAGUGrtKLE95sJvE8pYZN8TETrxlvQ4S61g67NAeL4nlwuG9x7tsjp3EZkzcxIKDxDqVDtvhNrkTJYQvjks21i37mhnLWWJtS4ed8Cgp9sq+ZoSzeXG8yoftcJJYa/bV4Mwzz0R2djZWr16N+fPncx1HImmKSIGVNHs2b96M6dOnAwAOPCn129MuC+tVMmyHXRmxqLzaZWFFJmqyy8I29nhXVU3NwhpZV2KZrImV9ENzyavZAGR0Lnnl1WxPeimxV8mwY5syS4kbvWw4XWL9yKtdFra+JmxiwU48RcqG/cxMzHoIkXGydpM08VLfEzuJiK2dxIrODmwnsQJjgDMklqV02Im09yBL6bAd9hIr0B47ieU9RQ6TO8Vz+BvkKLHcbbKXWO71Yx1KilmzrxnhbOe34B+faiex1uyrwQd/DMYpp5wCAHj77be5jyORNDWkwEqaPR9//DE0TUPbnjpads78EjaysH5Lhq1Z2IYa7+qFkYVlGe/qhjUL63uyptrdWEuGnTBKiUNVtTMN88prLdZSYlF5NTAlVlReDWpLiSmloImEuLymZWF9jXk1JDaIzKtVYkVn4A1yUierePoZ82qVWMHsqxkqbV9fMxVbl8kRJV1i/cSyiqefrKxVYv2uz2qRWKbSYYf20HAoKbI8pcNO1L4XReXVwNiXq3TYDssMxSylw05YJZYn+2oXxyqxPNnX1Dip42K5sq/ppEksb/Y1JVTtd6xI9tWKtaTYLvtqcM455wAAZs2ahd9//134eBJJU0AKrKRZk0gk8NFHHwFILp1jhwodJaFyrpJhOxRC0TW6BV2zt/iW1/xwNfLDNb6XyFGIDp2SQMa7JjQFVTVh3zMNq2pSXvzIq4FSUzveVReTVwBmKbEeJr7k1UTzKa9muwLKeCkKiKoGNGGT0mhlw3YEPjNxEBM21UpsYGNZIS6v1jg0iPJdQpLvgSDemyE1mJJiQvzLq4Gi8JUOO7WHEOh5WcGcJ1XxJa8GQqXDTmhUWDoNDIkVyb6mx1HiQCJLXISTcepEljv7mk6txIpmX1NCUYJ9W20Wyr6mkxuqsc2+GsyoPgeHHXYYKKX45JNPfB9PImlMpMBKmjVz5szBli1bkJVHsc/B9mLSMbwNg3NWoVf0D1/HyiIx5CvVCBN/HeqErqIiEYUCiiyO5XDsqNbCqNFCUH1MQgUA1fEQqmoiyTvCPntAiZgKUq1AD/trU6iKIFIGaILJEgO1hiJnSwKhSs1fdgIANAoST4BEfDaK6kAiIbSma71BCIiqAJpPwQ8QElRpKyHByGttrEBk0YgVVLuAQGJRJZg20ZAa2HkKJBYhoFmRYN8HYf/PT88OB9ITM65tPr8KAACJ3JDvm48AEM+tHT4SBARQYv7DxAuSw1H8orWIQ0soSMT8vwciagK74pyLoNtwRsmPKFHdV14YMmQIAOCzzz6TS+pImjVSYCXNmk8//RQA0PNPGtQ0N+kY3oY/Za/DPqFKZBHiOXOvG1kkhtzab8924R3oFN0uFCehq6jRQ2bm1c/sx4a8AoCq6MISWx0PobI6CkoBQqhwSVQipiKxLQvYHYbfdHCoiiC6A4CezJ4mssQkRq2hiO5IgCQoQH26uUZBqmtr0MIhkCyO9WGt1MorgGSGMojMqV8IATGyXFT3L7Gk9qvFR5Y6RV79ZM2bsLza/u4zlh/5tGaCfUmstT0+z5d1f+FY6WNV/Wa8s+pKh/1IrJ5tbZOvJqXgR2ITucnyaELhX2JJbeZTS/6IQAlBPK/u334kNlYIUIUmM7E+JZao1JxV2I/E7tdmE4DkUCK/EptF4lCJjhK13FFk17W+CYWFhdi6dSvmzZvn63gSSWMiBVbSbCkvL8fs2bMBJAXWSsfwNlNc1dqOxj6hcvSMbOQ6RhaJoUitMOUVAFRQIRlOl1cAiCoJ7ixstRbGrlg2arSQ7xJkq7waiEhsoiaUFFcdprzqIUCP8PekrPJqICKxprxa4ugRFVoev3iShA5SXZNaxizSCbbKqxFbVRpXYq3yauBHYon/rxXbzKuIxDYHeXX7m2AsEfm0K2MWldj0/UTPm91+gb0GomOOLfIahMSmtklsN7vKEhGJNeQ1JYbgZSCWV3dOjPJdXok15DX9vcm6XmxGPMv3miGxIiKrtUy1aD8SG7F8/xsSKyKyZ5T8aP6uEt0U2XTUEHDiiScCSGZhJZLmihRYSbNlxowZiMViKG6no0WHui8mQ17VtI5dhDMLa2RdVZt0Im8W1k5eDXiysEbW1W7JHd4srJ28ipCoCQFlocysK6HQw3wSayevdfHY22QnrwZalE9iSUIHamKZY3BVlS8LayOv5jEaS2Lt5NWAV2KJYi+vnFlY17JhHoltTvLK8hjn9jzy6bqsD+c5dDpPvGXAbttyvRZuMwXzzvqcZTNpk6DE6o5t4grjOiyCW2Jt3k8iEhvLU22v10ISa/caUf5MbKzQoT0C2ViiZp5YEYk1sq9WjO92Xom1G/vqJLGGwM6aNQtVVVVcx5FImgpSYCXNlmnTpgEAuh+qmd+7TvJqwJqFtZYM26GCokNkG5PEuskrwJ6FtcqrY7sYJdZLXlmzsImaEFBuI69mIDaJDVUR5PzhIq8AtDBbFtZNXs1YLBKrUZCKant5NWAtJXaRV4MGl1g3eTVglVivrCujxDKNeWWR2OYorzzbMG7HIp8sE0ixSizLeWrIbZiWuVEIk8jayqvlOAC7xOpRj3GvCph6Z3q29+RWrBKbcJl12JRYho+ek7xaY7FIbHrpsB2smVijdNitTawSm559tcIjsfu12ZSSfU2HR2KHFP/P8TE7if2BXIi2bduiuroac+bMYTqGRNLUkAIraZaUl5djwYIFAIBuh+op412d5BVIZmG7h3e7SqyXvBp4lRIbkzW5yatBthp3lVgWeWWhOh7CjvIcpsyrl8Sa8urVqSHuM1oaWVeiwTOWVykxi7wauJ7K2vGuTLMfe0ksg7waNNikTizyyhyL8WvE4zxyTdjkdyZpVoKUV87j+nq8HvCS2KCyqzy4xuFdo9VLYhlfEy+J9ZTXlDZ5PM74PvCS2PTSYacYTNlYlns0HhLrVDqcuWEyE+slsm7yam2Tl8RqLWO22deUY9VKrJfIusmrAYvEDin+H3IVm4VuLaSPiyUEOOaYYwAA06dP92yHRNIUkQIraZbMmzcPmqahqK2Ofh22Zox3dcOtlJhVXg2cSomtWVdW6XQqJeaVV6csrJF11XUSTNkwi7zW4jQe1rVk2AEnieWRV8B5PKzteFcvnCSWQ14BNMykTrzy6paF5R3v6nBOA5ttOBksmOxr0PIaVHkwZxw38eRdvscplsh5cis19h2HV14NHM4HzWKM5SGxXPJqtsn+zyzZVytOEssirxlxHC4H1nGvLHFcJZbnvUmdJdaudNitTW4S6yWvZnM8JneyKx12wktiveTVIH1crCGws2fPRjwuOKhYImlEpMBKmiXff/89AKDfQRWeWVc70kuJ7SZrYsGulNirZNiJ9FJiP5M1pUus6HhXuywsr7wmA2WWEovIa1281H/yyqtBeimx43hXFtI7XLzyarShPkuJRTOvdhIrOllT2rkVlle7LOyeIq9O+wnGsRNP0bVng5qgyW7fQCZ7EpVXg7Tz4lo6bIebxIq+NdP207P5pNPAVmJF46R9/LxKh53ipEssS+mwLTYS61U67NQmu8md3EqHHZtkI7FepcN2OE3u5FY67IQhsQuU0SgpKUFVVRUWLVrEHUciaWykwEqaHbqum7MPH3vwTm55BVJLid0ma2LBWkosKq8GRimx22RNvPidrMmQ2ERNCIntWfzyagaqk1hf8orU8bCi8mrGqpVYX/IKpE7qJCivBvUisX7Lhq0S63em4dpz7DvzapXYPU1e0/f3GccqnqLymh4riPNkxAhyuR3f1J4fbnk1sJFYx0mbmNtUG0dQXg2sEus27pUpTu3HT0RerXGMZXaYS4edSJNYXnlNaZMlG8tSOuzYpDSJ5ZVXg/TJnVhKh51QiY4W4XIMGDAAADB37lyhOBJJYyIFVtLsWL16NXbt2oWsLB29eopdwIGkxOYr1dxZVzvahXegVbjMl7waxHQ1kPGuqqIjrqnBzDQcV0ErVYBhnKorhEKt8SevBlqEgBLiS15NdOpPXg3CIZBoxJe8GhASYDlxUGNeqQ7fbyYrQZQNGxIbkLxCCXJBzoDKogNqE1UV3/JqjRUIhIBmC66pnAYNqf6yrwaEQM+J+nv9LBIrVDpsh4LA3lO8pcN2mBLr9x5NrTBqUf83VwyJ5SkddmuXWs1eOuzYpFqJ3bfNZt9tMiRWVF4NVKJLgZU0a6TASpodP/6YXO9s355VCPnok2uUokSJoU1op6/27NRysDbWEgBQEPI3JX2FFkFZLMtXDIPqRAg18RAUxZ/dxWMh6OVhEJ9CDQBqlYJQOYEW8RmnhiJni4ZwpQ496u8ypsR1qFVxIBJAx1evzbz6eWMC3EvPsEBF13W1QpRk23TOtTCcCEKGFSUYwauV16AED4oSjGwElIEFEOy5ioQBvzdFCAHCIVBF8f/5IwQ0JwoaCWhyMpWAqv6z53p2GDQawI0oQqDlREBDPrPnJBh5NdCyFSiJgK5XBFDi/mPF8/iX2XGMVaKDVvp/T5UUV2B7VQ42lPs368ElS7ElUeA7jiGwK1aswO7du33Hk0gaEimwkmbHTz/9BADYv7f4HUiNUsQBqARop1YKS+xOLQdbE/mI68kvOJ41XdOp0CLYUZ0DHQQKocKxqhMh7KzMRmVNBBSAqupQVTF5MeQVtLYcy0c/TK1SENlJQHQkS4kFky5qDUXWLh2KlrxDTn10xJS4DrU82dOhYRU0y4dZ6zpQXQNKaTJzKiqxtfJKDbnzm4U1zo+u+5NYa9mwX4k1SjQp9SexViHzI/31Ia/W2EHhJ5bRJr9Z5lrphFH+LSqxhrwamUpDigVj0exIXdbTj8TWSqcZ14fE6lnJ50cJ4V4nNr1NWnZdFtevxAaWxc1RkrO5U/iW2Fhesk2E+pPYeD7MNqnVBGq1+HONlejJ7z0K3xIbUjVolECjxJfEHt/iF+QqNdCg+JfYqn7o2LEjAGDx4sX+YkkkDYwUWEmzglJqTjhwUO8Yopxj8TRKUV0rrwYqgdD4V0NeNVrXhsJQFYrCldyxrPJqICKx1YkQKmsi0ChJeUYi/RWrvBqISqxVXg20CL/EGvJqjaNHCLRs/kuZIa/EEKjaTqaQxFrl1WysgMSmy6s1lgjpL7yoxPod82olfZIcUYm1yyaKSGx9yqv1GCLY7ScSK71NohJrldf0vwmQfvNJSGLT5NWXxBrymvb8RCTWkFcDYYlNk1cznoDEmtnXADDl1QwuLrGxPJJShuxHYtPbZIgsd5tKdFBr6bAPiW1RkroOqx+JtZYOGxIrIrKHRMuRRULo168fAODnn38Wao9E0lhIgZU0K7Zs2YIdO3ZAUSh6dI0hi4SYJVZLE1crrdUqriysnbwCgAKK4nAll8TayasZj0NiDXm121pR+LKwdvJqwCuxdvJqxuLoV9jJq4EWVbgkNkNeDXglVteByqpMeTXjcVxineTVgFdinUSHV2KdnoNIFtZpmRJeiXUrheWR2IaQV+uxeHDbnieWU5t4JdZOXtMf441lA5fEpsurNT44JdZOXq3H4ZRYu8oQQ2KZRdZBXs14HBIbdOmw7bVbQGLT5dVARGLj+Q4PcEpshrxa4vBKbIuScoTUzOukiMQe3+KXzDhQuLOxhrwCQN++fQFIgZU0P6TASpoVy5YtAwB07hBHhCNR5iavAF8psZO8GrBKbIUWwfrKQkd55cFNXg1YS4nd5NWAEm+JVasUZG9UHeUVSJYSawxDft3k1YBVYh3l1YBVYi1ZV0fpVAhbFtZLXg1YJdark8oqsV4CziOxHpLILLEs4zhZJLYh5dV6TBZYtmPZxqtNrBLrJq/p2zDGciv9Z5JYJ3m1HgeMEusmr9bjMUqsnuV8TOaSYg95NeMxSGzQ8prIcWlUrcSyiKyTvBrwSKxZOuzSLlaJtZVXSxxaGWISWSd5NeCRWKN02DEWh8Qa8goA++23HwBg+fLl3t8/EkkTQgqspFlhCGz3rnUzNHhlYb3k1YBFYr3k1UCBe+a0LBHFjuocaFTxlFevLCyLvBp4SSyLvALwnHXSzLpq8Jwh2EtiWeTVwEtiPeXVwGt5F7uSYSe8SolZ5dUaz42gxlyyZo9ZJJZREj0llmcSIjeJbQx5tR7bz+Os27K2yUtiWeQ1fVuPx1nGrbNKLMvjrhLLIq+Wbb0kNr102AkmiWV8Cd0ktj7k1bNyprZ011NiWU45g8R6yqulXV4SGyth+KKpfX5eEusmrwYsEuslr2YsBok9JJpazlwaOQ6qqqK8vBybN/ufJVkiaSikwEqaFStXrgQAdOuSqqROEssqrwZuEssqrwZO42HLElHsqsnmyro6SSyPvBo4SSyzvNbilIV1Kxl2wmlSJx55NXCSWGZ5rYWGFPssLI+8GjhJLK+8WuPZwdNJdcvC8o55dZNYTkl0lFiRGXRdJLZR5NXAI2vY4DhJLI+8pu/j8HeeSdccJdbIvrK2Bw4SyyOv1mM7SCyrvBo4SqyRfeXATmIbRV5TGuAsscakTSy4SSyzvFra5CSxjqXDLrGcJDZ93KsbbhLLKq9mLBeJtZYOG4RDQKdOnQAAq1atYj6ORNLYSIGVNCt+//13AECHdplami6xvPJqoBIgTFI747zyCtiXEovIqxkvTWJF5NUgvT/DK6/JIJkSKyKvBumTOonIqxkrTWJ55RWAfSmxiLwapEusqLxa41kR6aTaSazohE12EisoiRkSG9TyL4D/WXit+J3N1+3fonEAcalOnz2ZV17T9037t8iM4RkS61U67NQepEmsiLxa25AmsbzyapAhsYylw7axLBLb6PJqNiRTYr1Kh+1wkljRNqVLLLe8WmKlS6xX6bAdThIrst6rncTayatBt27dAEiBlTQvpMBKmg26rmP9+vUAgPZtEq7bisqrQalSgzahndip5WBVrJRbXg2sEluhRYTl1YxXK7F+5BVIndRJSF4NLBLrR14NDIn1I68GRmdSSF4NrBLrR14NDIn1K6827RTGKrF+Zxu2SqzPDKcpsX7l1ZqFDbJ0OKj1VK3/9xsH8C/Vxvq1ovJqjWXEEJRXA1NiReTV2h5kSqwwFokVlVcDU2J9yKsZy/rebmx5NbBIrIi8GqRLrOOkTYxtMiRWWF4tsQyJFZFXA0NiDZG1m7SJOVaaxDrJKwB06NABALBhwwbh40kkDY0UWEmzYcuWLYjFYlBVital9gKbRUJQAF/yCtQtrROnKuJ6SEheDZTaOJWJiO/JmgCgxqe8GiQSKmp2R8Xl1YAA/9/emcfLUZV5/3eqerlrFpJAEggEIQmLyBJgRgLIDoq+OCI6joLiOI4bOq8z6sg74ILLOA4ur8w44OssLriiIi4wgqCyg6wDJIQlIevNnpu79FJV5/2j6lRXV9dylrpLJ8/388nn3tzueup0377d/e3fc85hdYbyiJm8hnhAeZwb1/LKDF6Z6curQMyHzVqsSame/1gqpJZtF/Mm1SviFydqcYAXWK+Q2xfc10XJa5GtvtMtWWYMvKopiUm1eitGcifgjMGb0Wsu1fAl1lNs0U2r5/aWC7t9br+ZvAIALD+JdfuK2S7H7WFm8irggFvRl1eBkFi3RzN9jY3JrjEzeY3UKlcdbXkViL1iD+nboZW+ttUKJDY+7zXOggULAACbN282Oh9BTCYksETXMDQ0BADYf66TOgWwBBuzrV7MtAw2jQew2a3iJWc/DNo1zCyp7+saZUtzEJtrM1BiLqp2dnKcx1izjN3jPfAMX7nr9TIao0FrrOJes3GscQuVYf8Tes/wPZNdA6q7uJlQi3E1OUo1F7xq9liA4wH1BmBZYCpLXyfhcaDZACwGVoQguK7eHqpJFCWeQhBdszdyjDH1fXTTsApsG85b4Eu1VvSrSR3bMk69Qyxo7X0aR6SKKKKWbrtvHMbg9lXg6ewTG8Or2L6QFfEZS9UOVyg2xa3axUgnfLEu4oPJZpDiWqafLgNoDvhSbZm9nPq1ZnDYI4avEQDKs2uwLI7do73Gtf5k/7UoMxfP1uYb13pV7zrYOQ/Q+fP982zatMn4fAQxWZDAEl3D9u3bAQD7zU5+Y1yCDZtZsJmFmQYSu9mtYl1zDjxuwYaHWfaYtsRuaQ5i4/hMOJ75n9pYs4zh8R5wzsJ/OoTyKt6U2Byw9CRIyKuoxW19iRXyyjy/jlsxaLVucFT2NAEP8EpW5rYWmTgeWK0O5nH/zXPJ1pdYIa9F4bqt5NRQYpn4RMhUYq2Y3GlKbIe8mty+qLxy7v8udZkIeU37v0qdqLiatm5H5q6aSGx8XqeJxPLeMjjzEzfpPVRTcHvLoXR6hrXaMLjbeaX99cFEYtvk1fB5we1pjcNEYpt9FsImJm4msY1B1l7LQGKbMzk482+bqcTatpgWwowk9k/2X4s+y3+daHq2kcSe1bsWfZYNFxxNnv5cPMt6IwBgy5YttJUO0TWQwBJdw44dOwAA+81sfyUtwUaVlWHH5u/pSKyQ1yZvHacrsUnyWrEcrRQ2Kq8CHYntkFeBhsTG5dWEqLwCQbtgSU9io/IKwF+sRUdio/Iq0JXYJHk1SWGj8moosSzezqArsXF5FShKbGryqnP7kpJXXYmdSHnN+3lWnSRh1V08q1zqeFegI7FpK+vqSKyQ1/D/BhIbyms4Jn2J9SpJt1G9Dq9YicKqI7GJyavm84LfOtxeTFdiO2bgaEpsm7xGa2lIrJBXgYnElmfX2oekKbFReQ3HqSmxQl4FQmKTRHbWDP8X22g0MD4+rnwugpgKSGCJrkEI7KxZrSdgkbqmMdPqxaDkwjRJ8iqw4cFWMLWs5FVVYpPkVaAisanyKlCQWGvcQnlPsryqprBxeQ3raEis1eAojzid41KV2CR5jdRSktis5FVHYqPyGp5DT2I75DWspyixafIqkJTY3LZhlduX1TasI7ETLa86dbJEVXX7ogR5DS9TEM9MuVSU2Li8hj/XkNgOeQ3HpC6xifIaqSdLmryGlys8VjLbhhWfF5LkVaAqsc2+tAeVmsQmymu0loLExuVVoCOx5Vn1MH1tG5KGxMblVdD0bDxXO0C6TlxeBS54YhpbrXKUy/5t2L17t8KICWLqIIEluoaREX8hgsEB/xU0T14Fs+2+3CQ2S14FsvNhZdqGZSU2S14FMhKbK68CCYkV8soynERWYtPkNayjILFCXpmbMn5Zic2S10gtKYmVaRtWkdgkeQ3PpSaxqfIa1pOU2Dx5lUR6zqvM7ZOZ86oisZMpr7LXkRFUSYnNktfwOgXMYwUgLbFp8hperiCxqfIajkleYjPlNVIvjzx5Da8ncR2pOa+SzwtZ8iqQldi21uHEMclJbKa8RmtJSGyavApUJLY8qw67lH5nqEjsSfNeyry87pWkJDZNXqPEJZYxYMaA///h4WGJ0RLE1EMCS3QNorWlp+pJy6sMMvIKyLUSq8x5zZNYGXkVZEmstLwKskIdCXkNx5QjsXnyGtaRkNhceRXkSayMvEZqZQqCypxXGYnNktfwnHISmyuvYb0ciVWR14wUVnnBpqzbp7Jgk4zEFtU6rLFvaeplKulqznVl5DW8bo54SqeiORKbJ6/h9SQkNldewzHlS6yUvEbqZaGSrmZdV2nBppznBRl5FeQ9b+fKazimfImV3gQgR2Lz5FXAPMAezT5pnryGQ5KQ2JPmvYQBO3/FYRmJzZNXQVxiB/r92yKCAoKY7pDAEl1DrebPM+nvYcrymjYfVlZeBVkSq7NgU5rEqsirIElileUV8BPYhBRWRV7DMaVIrKy8hnUyJFZaXgVpEqsir+HJU1Ym1lmwKUtiZeQ1PHe2xErLa1gvRWJ1ktcEidVebTjp9umsNpwlsVMhr1nHqMqrIOUYFXkNj0kRT+V5qSkSKyuv4fUzJFZaXsMxpUuskrxG6iURX7RJhiSx1FptOOV5QUVeBWnP39LyGo4pXWIbg4o3MEViZeVVwFyWKrGy8hoOKUNiZeVVkCWxZ/Wula4DtEtspRLs09socKFBgphASGCJrkEIbF9V7/i4xKrKqyBJYk1WG45LrI68CqISqyWvglgrsY68hmOKSayqvIZ1EiRWWV4FcYnVkdegTkcrsclqw0kSqyKv4RiSJVZZXsN6MYk1aRt2o61rmvIqiN4+k61ykiR2KuU16VhdeRXEjtWR1/BYO15L83EVk1hVeQ2PS5BYZXkNx9QpsVryGqkXRbZ1OInocUZb5cSeF3TkVRB/HleW13BMnRIr1TqcVisisaryKkiSWFV5DYeUILGq8ipIkliZ1uEkhMSKp2HHKWBvIoKYBEhgia5BLO9u8n5QLOqkK6+CqMQWsVWOkFgTeRVwzlCrGcirIJBYE3kNxxRIrK68hnUiEqstr4JAYnnJ0pPXSJ1QYovYKicqsTryKohJrLa8hvUCiS1izqvrFrfPK+fF7PMaldjpIK/RGqbyKghqmMirQEis6bY2/t+PpS2v4XgiEqstr+GYWhJrJK+ReoCZvAo4Y8Xs8xo8L5jIq0A8n2vLazimlsRqy2u0lqMvr4KoxOrKazgkzjA81gNAX14FUYnVlVeBC45nnvWTgVtvvVW7DkFMJiSwRNcg3tSbblM2yj3scAe05VVgw8OYV8GORl8h+7yOO2WM1KpG8irgXjHb2zDHQmmcGcmrwHKA8qi+vAo4Y8EbHU9fXgWBHBjtDSrqWExt5d48TORVYHp8EtNxNd6iakVrTieKkNeAIuRV4FUK+AAC/t90AU974AxwBqtm8iqwGJxBzT2f4zAGr2obi6JfC4XcV/4HeObyKnCrhsIp4P4HlEXVKuK+Yh4Dyp6RvAo8z8LMas1IXgV1r4QDSzuN5DUOtRAT3QIJLNE1WEHCYiKwm5wRrHd60cOa6LPMXkA2Nmdj7fhcVC0XPRp7u0bZ0+zBrvEeWIzDssxeJBsNG07dNn4Tx+o2SnuC+7xkJnh2Hajs5kGyYTYuu8lRHvXAbQa3avYUxhwPrN4ErxoOynWBegOwbfNU0ePgrhtIseFTtGWFMlbYBvWu+Zs4Ju4jxT1iOwtFksmCbh/zeDHiX5QEi8S7gHrcNIWP17LMVyfmjMHrKxeSdLp9ZfASM68lUk7LF0/TWl7F8p+PTX+FDPDKBbxtC+QVDLAc878bp8f/AKKIWs1+f1wF+B2cvgLqMMCZ5QAMqI2Yf6Bx0H67YDGOlXvkt8VJ4/TBVSgzB881zf92DlzgR99nnnmmcS2CmAxIYImuQQis4+q9C9jkjGCt04sGbFjMwwyrpi2xG5uz8cL4PNSDyZ39pYa2xO5p9mDHWC+8IMW1DSS20bDRHC+3PnbWfMMUyqsXtObZ+hIr5JVFaulKrN3kKI94YDyQ4YqlLbHM8WCP+Z82c9vWl9hAXkNBNJFYIa/hIA0kNiKvfm3PTGItBojF0wwklpVK7ePSlVghr9FaJrcvUsdYYouW1wLqtsmraRdEIK+t/+vP6fT6yuDB7TQRT7cv0jbMDFp/A3kN235NJFbIa9vP9EoJeTVOFCPyKjART6enPS01qdXsZ+HjinEz+XT6AFh+eqpdR8ir2OfVY0YSe9B+u1C2/Oe7mls2ktjTB1dh0PJ3ZqjxkpHE9rEKBvv92zg4OKhdhyAmExJYomvo6+sDAIyOqx8blVeBrsTG5VWgI7FxeRXoSGyqvCq+4YnKq0BXYqPyGq+lKrFt8hoOVk9iQ3kVtSxNiY3LazhYDYmNy2s4WA2JjctreA5NiY3Kq0BDYjvkNaylKLFJ8irQuX0JdbQldqLk1aB+YvKqOw89Jq+tn6uNq01eBZoS2yavYS0NiY3JazhWHYlNktfI2NRqTZy8CnTEMy6vJrWi8irQlVghr2EdHYmNy6tAU2Kj8irQldiovIa1NCW2j1VggWFs3H9Q9Pf3K9cgiKmABJboGloCy+AqzjVsAm3yKlCV2DR5FahIbJq8ClQktkNeBToSy5H45lZVYpPkNV5LVmIT5VWgKLEd8irQlNhUIVSR2DR5FahIbJq8hudSlNgkeRUoSGyqvIa1JCU2S14FKrcvo46yxE60vGqcJ7NtWHUl8BR5bV0uN65EeRUoSmyivIa1FCQ2RV4FShKbJa+qTIK8ClTEM01ew1oK6xMkyauAKbpwXF7DOioSmyavAkWJTZJXgarEJslrWIurfWgq5BUAxmv+V/E+iyCmOySwRNcwMDAAABgd8x+2shK7yRnBRid9I3FZiV3X3C9TXgUyEpsnrwIZiU2VV4GCxLK6jdJI+phkJTZLXuO18iQ2U17DgctJbKq8ClQkVsx7zUJGYvPkVSAjsXnyGp5TUmKz5FUgK7Ey48q7H2TkVSBz+yTqSEvsZMmrwvmk5rzK7sWcI6+yZMqrQFJiM+U1rCUhsTnyKpCSWFl5lXm4TKK8CmQkNk9eAQSrAOfXypJXgax4psmrQEpi8+RVICmxWfIqkJXYLHkVyKawUXkFgLFx/44jgSW6BRJYomsQczOG97QetnkSm9Q6nISMxDa9Uq68CrIkVlZeBVkSmyuvAgmJTWodTiJPYmXkNV4rTWKl5FWQI7G58iqQkdi01uEksiRWVl4FWRIrK6/huXMkVkZeBTkSy1TaqdPuDxV5FWR+6FGQcE5lrYzrKi3YlPc3ryCvWSmslLwKciTW6y3Jd5ZkSaykvAoyJVY1ec065xTIqyBLPKXkNVorI4mVkVdArpU4T17DWlkSKyuvghyJXTh7d668Cmpu9oemMvIKyLUSx+W10WgFA7Nnz5YYLUFMPSSwRNcwd+5cAMC2HbEN67mXKLKy8irIkth1zf2wsT5LabxJEqsqr4IkiZWWV0GGxMrKqyBLYhmH0lY5aRKrJK/hyZMlVlpeBVkSqyKvgiSJVZVXQZLEqsprOIYUiVWRV0GKxOa2DifWit0vOvIqSGw7V6uTmcIWKa862+UknF9rteGUm6eTvCZJrJK8ClIk1ustqdUBkiVWUV4FiRKr2zacdO4plFdBksSqyisAf0pKArLyKsiSWFl5DWslSayqvApSJHbh7N2oKq6JkZbCysqrIE1i+1ilQ14BYPsu/7qVSiXsdCOI6Q4JLNE1zJs3D0CnwAqiEqsqr4IkiRXb5cimr1HiEut4lrK8CqISqyyvggSJVZVXQZLE2nWgPKy+gEdcYrXkVRCTWGV5FSRJrI68CorYYkcQlVhdeRXEJVZHXgUxidWS17BWILEm8ipoW/hLr06ixBYtr7r1IscZbZUTu3kmbcNRidWSVwFj4OXWbdKS17BWRGI15VXQufiUwdsp1v79VMtrWCKyP7aWvAbEU1hVeQ3HkyCxqvIa1opKrK68Crz2O1lHXoHkVmJVeQ1rxSRWiGtcXgFge/Ceas6cOWDTbQ9sgkiBBJboGloCa6W6iMs9bXkVRCU2b9EmGYTE7mn2YLhW1a4D+BLrOJaevAoiEqsrr4KoxKq0DmfV8soAOPTkVRBILC8xPXkVRCXWRF4FQmJ109coQmKLeMMhxMxEXgWBxBrJa1grIrGmcG5cp01ip4u8ChgrZp/X4OYVMeeV28xMXkUdK5BYixnVARBKrIm8CryqbS6vkXEVJq+AsbwCrU4aE3kF4M+HDSRWV17DMUUkVldew1qBxBrJa0B91E9hdeVVEJVYXXkNawUSm5S6RtnhXQeg1eVGEN0ACSzRNey///6wbRv1hoXtO5Mfutu9cWx0K3ANX7kt5mGHO4CX6vsZyatgzKlg17h663ASnDN9eRUwAA0L1lgB42GA1WAoj6i1DqfVYp6fwJpiNTzYo01zMRB3keOayWuEQuqIGkWOyVReo0yzT/J5yTaXn4mgCHkFAMbMPvQJxwP/g5EiHgqMwe03k1cBLzE0Z+jvwRnF6bfh9hTw3GcxOL0FfGgAP6XmFitEXnmpyDnZMJNXAQe8Egp5XDl9wQedhdTixvIKANxlsCzPSF4FYj6sibwKbHC86NQyr7N+/XoAwIEHHmh8PoKYLEhgia6hXC5jwYIFAICXNiQveNDgHE1uwwaHrRsrAljTmItnx+fDhof+Uh1VS/9FaXu9D0Nj/rwS1b1d49QaZT99NaVhwR61wHjgwgbPBKVxhspuANz8jY7VBErjHNwCvLJhWsb9xIzbCXNGVeo0XbCxmi8IBnUA+Ilio+m3aZnWilKQxCrvx5qExQDOwZ0CaomWa8Pbx0t+UgZmluBxK/J7K0QWWTG1IgJsJLFCXgHtrozWQBjcngJSeACwAKfHhmczuIZpp9Nnh7JoCrcZuM3glc3GxJmflnIGMIXtZxJrBfJaxIcZXtkX6lLdvJZb9cdlG9Zq9rdeZ6ycReBzaw144BbARsw/pK4O+rHwht0zjeosnbEFS2dsAQD8buRIo1r9rAmLcdR49ocs69atAwAcfPDBRucjiMmEBJboKg455BAAwEsbO19wtnvjGHJbn9CbSGyNV8Lk1YaHqtXUktjt9T5sGp0Bx/VfQPz3v5pjapRRH62AewW8IfT89ikA4RsnnWeD0jhDZRfAAlfhlsE8qSZQHuO+dDK/BU5XYq26h9Ke4N0NY9oSG8qrmNtp2/oSG8hrWNtEYpPenJq+YRVzYU0kNioFnmsmsdH5wh7Xvn2hvAo05aVNXsMfmshibAy6tRIEUUteovIqauhK7ATIq/idcUtfYoW8CmT3jk7Cb48Ovg9af7XqRORVoCuxHcmrwcNTPPeKRflMJNatRpJlT19io/IKwOj2CXkF/NcvE4mtDtZh2/4fi+Na2hK7dMYW9FkN9AVmPuLqTzkS8ip43klPc1966SUAwKJFi7TPRxCTDQks0VWITwjXrm9/sdnujWOdU0Yz9kmjjsSuaczFmlrnXBBViY3Lq0BHYguV14YFO946rCGxcXkV6EhsVF7DOpoSa9U9lIcbbbV0JLZDXgU6EhuT19awNCQ2S06mUmKTpFBXYpPmcupKbAESlSiv4YU6spgypqKSdFVi8irQktgJlFeBjsTG5TWsoyGxUXkNf6YhsUnyKlCV2KS2Yca5luQlPudyPYltk9fwBOoS2yGvATopbFReBboSG5VXgY7ECnmNo5PCxuUVAGrcTpRY1wPWrl0LoBUQEEQ3QAJLdBVLliwBAKx+oZW0psmrQEVi1zTmYuX4wtR5ryoS63C7Q14FKhJbuLyOWK30NYqqxHqd8ipQkdgkeQ3rKEpsorwKVCXW4+n7m6pIbIq8toalMCYZwZkKic1KNFUl1rbT5UdRYnkpfb9O2RQ2U17DKync53nnVdo2Kr2WdAqbIq9tdWQldhLkNXouWZLkVaAqsUnyGl6mILFZ8qpK1pxXVYlNe65lHMoSmyiv4Ynkx5Qmr4A/JhWJTZJXgarEJsmrwFVY7yJNXgE/hVWR2CR5FSRJ7PqNJYyPj6O3t5cSWKKrIIEluoojjjgCAPDc2jKagUeKea9ZyEhsnrwKZCR2e70PW8f6M69jMaBke7ki63ls4uVVICmxpXGGynD2dbjF/BWKM2plyWtYR1JiM+VVICmxrOmC1dJ2uw+QkdgceW0Nq2BJmkyJlRFBWYnNktewlpzEdrQOx5GQWCl5Da8scZ/Lti7L1JIQuFyJzZHXtjp5wjGZ8gr/eUEmhc2S17CWpMRmyWt0XHkSKyuvMimszIJNshKb9xwrK7FulWXLa4BMCpsprwJJic2SV4HMQoTVwXqmvAL+n7BMCpslrwJZic2SV0F8PuzzO/4vAD8csItYxZwgJgkSWKKrOPDAAzE4OIhmk+HFl8od816zyJJYWXkVZElsWutwGllpbKGLNuXJqyBHYtNah5MIV9ZM+8SbI1s4wzrZEislr+FJsyU2tXU4CdsGK5XMF3dCjsTqCOlkSKzKXNI8iZWR17BWtsTmyqsgQ2KV5DU8KOM+V513m1VLQRJTJVZSXtvqpP1JTLK8CvJaiWXkta1WhsTKyGt43dSENni8KSSvWRKrstpwnsTKdrkIiU1DiKvU7ctpJZaSV0GOxMrIq6iTlcIKcc2SV0FeK7GMvAryJFZGXgXRFHblypUAgGXLlkkdSxDTBRJYoqtgjIUp7EOrWGbrcBI2OCpwO0Q2umiTLEkSqyqvgiSJnbBFm2RIkVgVeY2SJLFixWHpGikSqySvghSJVZLXSK3ENFYyfW0vlSBNJiI6HRZ2aquXIrEq8hrWSpZYaXkVJEislryGByfc57or3ibV0pDEDolVlNe2OvE/jSmSV0GaxKrIa1utBIlVkVdBPIWNpq6qtZIkVmernDSJVV1ngKWksDKpa+fJkyVWSV4FKU930vIakNZKnJe6JpEmsSryKkha1KmfNZXkFWhvJX7iiScAAEcddZTSWAhiqiGBJbqO4447DgDw0P/0KclrlGgam7ZokwxxiW14JWV5FUQldsIXbZIhJrG68iqISqxM63BijQSJlU1xO4hJrJa8RolKrIa8toYVkaci94vVJU1idaUsLrE68hrWapdYZXkVFLStSmsgkfu8yLoGkhhKrKa8ttURfyJTLK+CuMQ6very2lYrIrE68gq0txIXMd81KrEm+7zGP8zQXek9vjKxlryGg2iXWC15DYg6YXPAU5ZXQVxideRVEJ8PqyOvgmgKK8RVRV4FNW7jiV11PPfccwCAY489Vms8BDFVkMASXccJJ5wAAHjumV54BnsV2uBY15yj1DqcRNVqor9Ux+5mD7aP9+kPCP573XqzNDmLNskQldiMRZtk4RYDc/XkNawRSKzTY/nzsfYYbAYoJNaDmbwKbNsXUE15bQ3LIAFMomiJNZUyIbEm8hrW8iVWW14FYbt7gfd9EfIqfndFSCJQyG0TEjQd5FXgi6fty6vh/R5u2aMpr2EdIbGG8ipgLjeS19bAfHE13ms7kFgjeRUET70m8gogbCUW4mpSi7kAG7WN5BXw/4Q3Dc8I93jVlVeg1UqsmromMbbte+Cc4+CDD8bcuXof4hPEVEECS3Qdy5YtQ19fH8ZHLWx6yWx+aJPb2ilulB2NPmyvZS/apEIhu2k0LFhjlvk7JwawJlBK30ZOuR4Mh8QZYDkcpXEX3DZ8GmMM0NwntnNg3Be9sv4HIm0UJS1AcRLLDSU/HI9X0AMdgGVpfyDSRtEfHBQxJsD8g5UAxjngmNfijMGrFievzYGSeQLOgOaABaevmN9fc8AuRDo9W3/f2o5amnvNRuHMX1yviL8XzgC3XIC8RuoZyWuA28NhNYr4xADgFW4kr4D/Z1IuuXhq1wIjeRU0uW0srwDwyCOPAGiFAgTRTZDAEl1HqVQK24ifeGxAu86a5lysrc/VbsGJ4ng2XM9C2fJQsvVjyvFGGfXxsv++0PQFigcrKjJu9AbDqgOVPX4LnNsDeAafGVgOh10HPNtPN3SxGxyVYQfM4+AlC15Z/0MI5nhgtaaf4JmIJ+fgTtBOXioZ1eKcI2wvmC4SK8TOK2BOLGNg5eCBZNJGAQBiqxzOwUxFr6j7OlrHVBTcQPR19tNNwFRiOWPwRPJq+gGEBTQGy/BKzCxZZECz34JnF9AKzgCv4ndmuL1mb5HEgk1g5vIpklydfV3D8QTyKj5ANJFYfxVof1qIzv6wUdweBrfHH1RpzKgU3F4ObsmtJpwJA7xeD7A4xnb36pdhQF+1AdvyMNY0X5CxajmwmYffjZotuvR8Yy7uvfdeAMBJJ51kPC6CmGxIYImu5NRTTwUAPP1ID4a9HuXjX3L2w6raAtS9Emx4sBhHyfK0RHZrYwBba75IW4xrS+xYvYzx0Qq4G8zJZACzuJ7INixY45E/b02JDeXVa306zkt6Ems3OUrjrTdNJhLLvMibLwvaEsscD2y8EUqUscRG0ZTYNnkVTLXERlJJf3wGEpskr7oSG9/n1URiJ0JeBbqiEL0t00BiQ3kNJNFfkVbztgXyykvwky5Lc24nA5w+q9X2yxDKkE4tr9xaRZdb+hIbymukti6hvIbFNcYTk1cTovIqxqMrsW4Pa2v1ZZ6+xAp5Fdg1vceT1+eF8goAcJiWxEblVfDQjkPUxwRfXIW8AsBut1dbYl9ozsWmdRVs2rQJlUoFJ554olYdgphKSGCJruSUU04BYwxb19hYv61fWWJrXrlt3qsNLxRZFYnd2hjAprGZaEYWbtKVWM5ZKK9RlNPYoHW44xNoDYllHutYdZQzdYm1mxx2rfMTfx2JtRsc5ZHYFkYaEhuXV4GWxEbT1yiKEpsor4KpktiEllptiY3Kq0BXYuPy2hqcusROpLwKVCU26TZMocTG5bVVB+oSG5XXsJCGxAby6sWeQzybqUtsRF4FuhLbIa9iXBopbIe8hidRGE+GvOospNcmr5HxqEqskNfOMSmV8WvF5FXUUZLYSOoayqvAUXs8JcmrxxnGmmVliRXiasfumN2uulS/0JyLmlfGzPUfAAAsX74cvb36CTNBTBUksERXst9+++Hoo48GALzwaAm7vD5scGZLieya5ly8WN8/8TJViXU8u01eBUJie8tNKZEdq/utw2koSSzPeAMQSKyMyFp1oDyacgpVic1YKVhFYqOtw50DVpTYDFlUktg0eRUYthO3MdVJbNvhihKbJK8CVYmdJiv7ThhZAl6gxMqSJq8CFYnlNuuU17CQwhzIFHkVKElsgryG42VQaktOk9fWeeTfdqXKqwIyyausxKbKa3gF+XGlyatANoV1e3mivAqkZTgqrynIpLCMAf09jQ55FQiJlSWauiYhm8K+0JwbyisA/P73vwfghwEE0Y2QwBJdy+mnnw4AWP2ADY9baHIbu7y+TIld05wbtg6nISux0dbhJESNvDR2vFFGbaySmL5GkZLYeOtwYiGem8ZGW4fTkJVYMe81C88O3kBmiGymvIYnk5NYMe81C16ywXsq2fIpu0eqhMRmpq9RGCtOuvKkI2dBI2mJzZJXgYrE5i20JJvCFimvMrVkREFm3AVJrEwKmyevrVrIfTxxm/kLNuV8npObwubIqyBXYllrNd68D/VkUthMeW07Z3Ytr2zJyWvOw0mlbTjreZUzwKmybHkNkElh8+TVH0++xApxzatl1/MfT3nyCiC3lTiauibJaxSZFDZPXgG5VmIhrkJed21mWLVqFWzbxqte9arccRDEdIQEluhazjnnHFiWhaHnLOze4r9AedzKlNgaL0ttmZMnsUmtw2nkSaznJbcOJ5EpsWmtw6nF0iU2qXU4iTyJ9VcKlvuEn7PsNLZt3msWORKb1jqcfGWWnsYG8splk8wMiZWW19jYCiFt/JKr8YYS23SSRVZGXgV5Emux9NbhzoFlS+xky6sg6zGs0vo8CRIrK6+tWkh8PHGboTmjJCWvua3EkvIqSJVYkbpKLNQu00osJa9t506uFYqrbK2Uh1NRc16jqatUOp7TSiwjr4Ks17Ks1LWjjpshsbLyKkhpJU5qGU5DppVYRl4FWa3E0dQ1rP3suwEAJ598MmbNmiV1DoKYbpDAEl3L3Llzw+XfV9/feiinSaxYdViWrMWd0lqH00iTWLHqsAqpiztltQ6nFuuUWKuutohGmsSqyGuUJIlNnPeaRYrEKslrhDSJlZZXQYLEasmrYKIkVnErGS62D4qnsSryKkiTWJ39WdMkdqrkVZD0N6Gz+NQESqyqvLZqoe3xJFJXr8zy5TUskiKxivIajiF+G5i/l7TKmgBZEqskr5ExxNFuGY6/FGjKa/y5OrdlOGM8SRKrIq+CpNciFXkVdOxhzhIWa5JkbLj9vYWKvArSWonjizXJkpTCJskr58Dtt98OADj33HOVzkEQ0wkSWKKrOf/88wEAz95rt21PKSQ2Oi9WNn2NkrS4U17rcBpJEquSvsZpS2NlWodTC7Uk1qoD5RHW+WKfg5DY6DY70olpAlGJlWodTiJJYg1ksU1iZVuHk4hIrJG8CoqWWIN9UI1XKBbEJVZHXluDapfYqZZXQfTxbLL9zwRIrK68tmoFQ5NsGU4uEpNYTXkF0L4ysZBXjYdTksRqyWtANIUtYr4rYJ68iudZbXkNB9L6VmyTo1Mr3kqsI6+CMIWNpq6K8goAaLYGoCOvUaIpbNpiTTJEU9j4fNcoG1dZ2LBhA3p7e7FixQqtMRPEdIAEluhqTj/9dAwMDGB4q4V1T7U/nKPzYp+oL1JKX+NEJVY1fY0SXdyp4djK6WscxgA0mVrrcGIhX2KZpy6vgug2OwBy573m1rMAy4WevAoCiXWDfSvz5r3mjqlk+y2sKq3DSRS5sBMwrRYiCiXW42Alg9so5JVzI6kWGO8R21GwgPvc42byKjDdjzWABR+omMhrFG15DQfkPw94FaYtrwLPZnB6mba8CqKLOpnIK4CwlbgoefVKBW2Vww3lNcBudG6To4N4bTORV6DVSqyTusYZG+7JXKxJhmgKq5O6xvnd6LKO+a5xRh72P/Q/77zzaPVhoqshgSW6mt7eXlxwwQUAgKfuTJZKj1vY7fZixK0ancuGh6H6IDaNzYCns6lqgMU4RuoVjI5Vwb1CPnLX2iq2Y1xNwK7B+FnBagJ2nRcy98rgbo4MyE8VWMMpZvVaywJsvQ8w2ihaOouoV5AIAQAsBl6EnNmW+bjE8UXdviKSc8CvUeSYTEswBl62jWWfM8DpL/lCbAoD3KqZvAq8MoNbLebvzu0pRjphoTB5VZo7m1nLTDijdeyG+WPArfoSW9SYTOUVAJjNsWtPr7a8CnpKDv5neKGxvALADqc/VVwBYGx3a/Xhiy66yPh8BDGVkMASXc/rX/96AMDaJ2wMb+t89d7szMSWxgw0uY0xr4Im15OP9bVZWDcyGw3XhsuZkcQ6ngXuijcc+i+mvGHBqlm+6Bm8ebEazG8d5sGbBJNnhmAurs4er1HsBkd51INnM3glS2kriyis6cEebQBukOTJLgKUhGgdtizDdJEDjgPGgtbYAhJGAOYSy5ixmDHG/HSZMYB74LrtrdH7hXMzQYveL6biGR2HSa3osaaiZ0fuJ004Y+BV2+9U8DhYU+/3xhngDJT95xEOWE2z2+ZWLL+W6QdiwZ89t3yR1YGJdQa4n756FdO/N/9+N71tXtm8BuBLsC/CDJbCkgNJhAmu4Z+bW4X/ISQHSqMGCXzF/wfGYY2ZfQDJelwwi8N1zOr0lZuwGMe4U8bDO/NXJU7D5RbcwO7XNtI7zcpPvR+u6+Loo4/G4Ycfrn0+gpgOkMASXc/BBx+ME088EeDAk7d3vqA0uY26V4IXSGeT21oS2/BKaERah3UldrhWxdiYnwYzxs0kNrJacJhYarzG+/NVW//XlVi7AZTGW7fFRGIZ9xddAsQKxUxPYjl8eUXwZlFXYjkHazqtuYu6EutxoNkI6zDGWiJbBLoSW4DktcmrwEhio3U0JTYylrAVXVc8JzIt1a1tW7H7W71OVF4FOk9JbfIa/lBfYkN5DQelVQbxp3utuZgciYslaUuskFeYSWyR8sqt1nOsSVdPvP24VNP8/QfyKrA0n0a8CsAtDh4kr8xAzoW8Crbv7teqI+RVMOpUtOq4sQdzWgLrNICbbroJAPCGN7xB61wEMZ0ggSX2Cv78z/8cAPDM72yM72n9XKSvUXQkdn1tFobGBjt+riOxYfoaEEps0srCGYj0tePnihJrNRhKY50HaEks71ztUWaP1zj+qsMJm8ArSixrerDHGu1D1JHYuLwKdCSWe4mr0E6pxCZdv8iVkVUlNi2VVpXYhLFoS2zaeXXup7RaqvIZl1eNOknyKmqopLCJ8mpAh7wKFB/aaU/zKilskryG9XU+MGKdx+lIbNHyGkc1hXUrKXvFavyJxOVVoJrCCnmNo5rCsh63Q14BKKewFuMd8ipQTWHj8ipISmEHn/04du3ahfnz5+PMM89UOg9BTEdIYIm9gpNOOglLly6F02D4nztaQiHS1zhCYmVbiuPpaxSXMzieJSWy0fQ1CmNcPY3N2KtVRWLj6WtbHSt4AyjxTBFPX+PjkU1j7QZHZY8Xpq9xZCW2rXW4YzxqEsuCRYkSsSywcllOZIPW4dTzTIXEZl1PQc7C9DUNWYkV8pr2O5aV2IzbpSyxeedTkdi868rKZ5q8KtRJldcA2VbiXHlVTGFT5TUcmFydrKd22VbiLHkVSKewwfNymvSqyPBEyyvg33ZZic3bK1Y2hXWr6fIKqKWwafIKqKWwQlzj8iqQSWGFuPaUnNT95WVT2GjLcBLxFNZzge9///sAgDe/+c0omUx/IYhpAgkssVfAGMPb3vY2AMCTd9hojCenr1FMW4qj+F2q+WlsPH2NIyuxaelr23Uk5sWmpa/tg8pPY+0GUBrjuSsYy0hstHU4vY6ExEZahxMvlpVYmS1zglqZEhtrHU4vNQ3aiaNIyFli63ASeRKbJ69hnRyJlbjdxu3EcWTqFHWuPHkVZNxHefIqyJNY6eRVUmJz5VUSmaf0vPPIyCsg2UociGuupEr8WidDXsPhSNx+qRWLvXyJDcU1p1ZeCivmu6bJq0AmhU1KXePkpbAW46G4psmrLFniGiWaws5f/zls2rQJM2fOxIUXXmh0foKYLpDAEnsNp512GhYtWoTGGMNTd9qp6WucPIndVJ+Z2D6cRJbEpqWvcfJainnD8l94Jd4L582LzUpfO2plvbFIaB1OI0ti01qHk+tkJAcJrcNJhBJbKSeLbFrrcBpZEpvSOpzEpEmsrOBmiJe0vArSJFZWXsM6hgs7QVJiVc6RVUdFXrPOKSuvWeUl5VWQJrFitWFp4cyRWCV5zQqfFT6PTEthZeU1PGfm35l8uprVSuyV2aTKqyArhVXabifjTyArde0YT8ZrTXy+axbMSZfYtJbhNNJS2Ki8yvDIrkWpl8nKK9BKYT0P+Na3vgUAeOMb34ienh7pGgQxnSGBJfYabNsOU9jHfl1Cc1T+3UdWS/G4W05tH04iraU4L32NktlSnNE6nEaSxEqlr/E6CRKb1TqcRpLE5rUOJ9dJWaE4J31tu6pIRRLS2MzW4TSSJDandTiJCZdYVQlKEDBleRWkSqxqnQSJVRxLpsTqCHJSnaLmyerIa6yOqrwK4k9DobyqLtKWIrFayWvS9F/FZpqkVmJVeRUkyrCCvIZjSrh+KK6G8ipWGlZaSyCllVhnr9ikFFZFXsM6CSmsTOoaJ6mVOK9lOIl4CivTMpzEnmanYOa1DGex3/OfxJo1azBjxgxcfPHFWjUIYjpCAkvsVZx33nk49NBDUR9jeOJXag/vpJZilfQ1SrylWDZ9jWO8SnF0TLE3Pyrpa1ud+LxYhfQ1SnxxJ+bltw4njoe1p7Gy6WtnnZjEyrQOpxGVWMnW4SQmTGJ1E7wkEdOtFZVYk62EohKrOZZEiTVJd6N1TNqGo2MwSV6DOrryKmqIFFZbXlMwahuODEF3JkhUYnXl1a/D2iVWQ16jxwomaqVhpeFE7pPUxZqkBhGpkzPfNYt4Cqsjr0mopK5xRApr2jIcTWF1xRUAXhidg3//938HALz1rW/FwMCAdi2CmG6QwBJ7FbZt4z3veQ8AYOh3o2jsVF8vPyqxqulrHJHGNl1bOn2NE20p5s38ua9ZCIm1murpa/ug/Dd9lqOevsbH49n+m5HyqNn8QM/2k+m0hZvkxtOSWK30NYqQWIXW4SSm65zY3EWbZOAeuOeptQ4n1im4nbiI7XI8r5g5r5wX0jYMQF9eA5jHwVzPXF55K/mazDmvmcdbhXxO2JJDE3lF69ipaBlOw3LyF2uSoVTj0vNdM+uMMun5rllYY7Zyy3ASrmNrpa5xRAprIq8AcPjKt2PLli2YN28ebZ1D7HWQwBJ7HX/6p3+KY489FtwBhn49rFVDSKzjmf+JFPCeqNVS7OmlnW3jYcGgChlYATUQmatrioVC5gcCKG7BnaKYThILALaZDAmYZRUjjEXdroLqMNcDcwt6DBVUR2VbnOQCDF7ZhuUUkHRxDresmeJF4Axweor5nTlVVsjzolu1jORV4FUKklfdPbRjmIprOJ4SCnn3yW35+a55qLYMJ2HbXiELNVngxvLaHPPwne98BwDwzne+E9WqegcYQUxnSGCJvQ7GGN773vcCAHY+NIaxl9TbSQFgc20GtowNKu/zGmekVsX4uN4m5VG8WslfcCJ5bSdprAZDaZwFCYFBnSZg13irpVgTu8lRHvfAbQavrP+UZDkc1rjjJ0Ml/TrM88DqzaCoWSrIHQdglnlSKTCVWJNW3UgNZgc1TFPPctkfD+dmkmaZj4dbrFB5TfpeG84BlX10U2AuB2uod6X4BzO4PX7yylwOu25wuxjg9AZz1w0eQpy1EkFXYV/XtFrcAtyq4WOAJc+rVR5PSXLV4hw823+uZybdJPA7ZcCAUt2wTtm/Xfa4URm4Ff9+NuokgrifAW+4nH/lDGzbA7M4Nu1O3/lABiv4g3hyeKFRnbn3nInh4WEsXrwY559/vlEtgpiOkMASeyVHHXUUzj33XIADa384jJGGukA2XBvNIIH1MlYXzsPjTLt9uA2XtdJXHswZ1XgvwaJzVoM3W1o3LRhD6w2bnsj6c1+DkjaDV7G0RJZxHsoCtxl42dYTWc5b6StjfvumjsjySAuyZfsrHRchsgVJqFENFhzrBeKpI44sNoYiUtgi63Tr+ZOISpDJlNxI27CWEDHA6bPg9Fq+WOmOg/lpaXQepm5gFe/+8HQ/jAumZ4S1dKcrl1ryaoJns1Bezeq05BXQWzcB8F8fvHKrxVq3k8ittOQVAJijdwNb93NQp6n3ALJtL5RXAGg29R5AFngorwCwp6G3WvDzY3PxzLMDuPnmmwEAf/M3f0P7vhJ7JSSwxF7L+973PgwMDKC5voZt945h1DFvoVGV2ELT1/GEP1fFNDZ15WHFNNZPX9uPD2VY4fXbbnKUx9rfEXGLKaexIn1t/yGU09i29LXtAqYmsSJ9bath+SKrKLE8TYhUBTTp+ho1wvQ1iqc+B5UlbVukk1YW0FpdaPqaIHbTKoXlGilskL62jwdqKWyQuoZiFaslSzR1jUuragqb9pynnMKyThHmTD2FTUtdVWU2FNfYYaofOoTiGqujmsIKcY23MaumsEJc47935dX0S8nTVlRTWCGu8dZj1RTWKmQ+jy+vo40y9vvNIDjnOOecc3DCCScUUpsgphsksMRey5w5c/Cud70LALDn1i0Y3m1hW31ASmS31AexbTx5xT6VNHZC0tc4ChLblr52XKggsRywkhZKUpTYaPracQoFiY2mr0l1pCU2mr52nERSYjkHbzbTF25SkNhUeQ1ryW6cmHE9hRrMtlrpaxwFiQ1bh+OothKnjV1BpieqdVjlMml0JDbhtim1Ekdah5PqSElsRF5TkfiVReU18XKFVuKs5zrPVpDYjOdNlVbiIlJXAIWkrn4dpNZRSWGjqWtHHYWHcjR17aijkMJGU9eOOgopbDR1jSObwsZT1ziybcTPj83F82NzMeZU8Je7X4unn34afX19eN/73id1PEF0IySwxF7NRRddhKVLl4LXPAzfsgUNz8aoW8mV2Gj7cBqmc2MLxaCluA2JluKO9DWtRs5reFL6GkdGYhPT14Q6eRKbmr62XUlCYqOtw2loJLHptQp4GpetkSavAgmJTZVXgazE5o1ZQmInS15VrpOLisRm3DYpic2Q12idTImVkVcJ8uQ1vJ7EQ1nmqVuqlVjmQz+Zz7wk5FVGbmXkVSaFzZJXgUwKmyWvgrwUNt4yrEu8ZViXeMuwLjKpq0wbsRDXMacCb7iJr3/96wD8hZvmzp1rNEaCmM6QwBJ7NbZt42//9m9hWRbqj+1G/alhOJ6FUbcincZmMRkSm9o+nERGGpvaPpxE1huztPQ1frwVvGFIeSOYlb62nS5nXmxW+hqvkymxWelr2wkzJDapdTiNHInNTV/bahWTsGZdltg6nESWxMbnvaaRJ7GytynjPpxsedW5bioyEitx2zIlVkJew6umSZGqvKaUkZVXQVYKq/KUnZnCSnas5LUST6fkNT7fNYusFDY+3zWzTsbDOK1lOIms17a0luEkstqI01qGVSmiZTiaugL+68URv5uLPXv2YOnSpbRtDrHXQwJL7PUceeSReMtb3gIAGPnZRnijDhzPSk1js9qHk0hrKS5q/mtm+3ASKWlsZvtwEorzYhOPt5LTWJn0NUravFiZ9LWtTsriTlLpa9sBKRIrk75GmegktqB5spmtw0mkSGzivNc0TFcmjtaJ/2iK5NXkmA6yJFbltiUNRUFe/bEkzIfVTV5jvy5VeQXSW4lVn89SU1jV58a0z7sU5TXpujqLNSV94JA23zWLpBQ2bb6rKqqpa1IbsU7qmtRGrJO6Js2DzWsZTiKpjTiaugrqj+7Gvffei1KphCuvvJIWbiL2ekhgiX2Cyy+/HIceeij4iIuRn20K062kNFamfTiJuMQWNv9VF8PtdgB0tBTntg9n1Yi8GZRNX+Nwm4FH5FM2fW0jtrgT8zywWkN939f4CsUq6WvbeDolVil9batVcDuxjrwKYhKb2zqcRJLE6tzGCVoZ2EREC9sjtqOw2nNOx6JOqvIqDou2Epu2DQe/Lh15DUvEjtH9MK4jhdX4YC+ewpqsNBw9Jm2xJlVkU9c48RRWNnWNE20jLqxl2JZPXTPHppm6xufB6qau0TbieOoqcHc3gV/vBuC3Dr/sZS/TOhdBdBMksMQ+QaVSwZVXXgnbttH4n2E0Hh8OL8tKY1Ux2W5nQggkVql9OAnxRkCmfTjt+JyWYlm8ki+xqulrnFBiZVuH0xBprGr6GkVss2Pb+vIa1rLav5rUAPTkVSAkVrZ1OImoxJrcpuB+LSx9nQ7b5cRTWM3bFbYSa8prWMfjkz7nNQuRwpo8JYcLOgWiqF1LfM5V8P6uuogUVlde28ai0DKcOJbgIazSMpyEeI3jtrkAFznXtaiW4XjqCgDc41h652yMjIzgiCOOwJ//+Z8bn4sgugESWGKfYdmyZbjssssAACM3b4S7o9F2uUhj9zR74LhmluVxBl6AyHp1G1bN9KPo4JNy08DH9JP+QGKZC9gNsxd0r8TglTLmokrCbQZuGxp1OCjDO5hZgK0w1zSLgpJYVlCbrenvyejDgVgdrf1LJ6hOYa3ETcdcyr0gsTIUT6+UsE2OZh3jFM4CnB7zsbhlZpzmcQa4PebiChQz35WzYuTVcqemZTgRzgqRV2+kPG3mug43qompq+BN61+FBx54IPyQnlqHiX0FElhin+LSSy/F0UcfDV7zsOfGdeBO+xtIx7PQdG00HNtIYkdqVYyPVsBdC9wzeGF3mS+eBbSJIWd14dzDm0Grl+FrMuN+DW7wOms5HHbTA7ctf06r7lhcDuZ54JUyeAFzUY3lM0grC5HYIrAYwE3FnPny6RruYWqalEfqGImjkNciEljTsURrNBTmcCeVie/zqgoDnD7/b9Fumt03psmrGE8RHR88kEVTEeZJ+98qwjj3/5k+ZMSUEMM/Sc9mxq8HXsX/Zzfyr5uJBYBxs8eNxQGLK23LkwQPnh427J5pVGe4UYXj2qny2nxpDDfccAMA4IMf/CAWL15sdD6C6CamybskgpgcSqUSPvnJT2LGjBlwNtQw+uuhxOtxAA3HRq1R1hJZ17XgOZb/QuYxM4lFZC6PRhnLYbDr4h1L+5xWFZjni6M/IPXj24sFi49UmJ7Icg4WjMVIYsU7DdtvcdWSWNHialkAY/ryKUTRYtNCYpkQT0BfYiPzZ7nr6UusSK1cb2olNi6vJhIrHnsmEhtNgg3G4vWWwwTNqmv8jgJ59Up+DeZybYl1K610UVvUWGsOJKCwp2sMbreSV5NkWtQBAE/zcwIWnU9u8Ltue+7XrKOzcFRinUjLsNICg1EstD6c5QylUc1BGaatAs4RvmA3GnqvS8ONaiivaXjjLnp+MgbXdXHWWWfhda97neaICaI7IYEl9jkOOOAAXHnllQCA2r07UH9qOPF6HIDLmXEaCwQSa5rGQlNivdgbQQbjNNYfjPohVhMojfNwHNzy3wyZpLGAnsQyl4M1I++aLGYmsUBLYku2uoBG30xOscS2tQ7rSmxwG6JoSWy85XKqJDYtedWRAB6TYB2JjbUxM49rpbBeT6mt/ZO5nprExuS1bTyKtMmreJpQuVuEuEae3zjTS2Gj0ilQTWH9KQrtdXRabZOEVUf4ilieIb5wFONAqab+u/aKaBm20NHabeksi1CAvIZ/0oZ3shDXrPccnHMcfec8DA0N4cADD8RHPvKR4qZ7EESXQAJL7JOccsop4WIHIz/eAHdrPfW6pmlsWEcxjfXqNlit83yhxE5iS3HYPtwxGCiJLPMSFoFiahJrORylWue7N25b8ColeZHlCTKiKrFpq+SqprFJcjhNklgAehKb8obKKIkVTKHEKv087bpJEqxYI0kQVVuJvZ4SeMLjS/o+SZFXf4xqrcRReQ3Lq3hFVF4T/mRUUtgkeVVNYaPpbRyVFDYtbVVJYbPm76oIX1rqqiLTomW443fEgZLKCvdFfAgbtAx3wIHGLvkFHaOpqy4yqavg4jWn4g9/+EPYUdbf3699XoLoVqbBOyOCmBre/e5345hjjgGveRj+9kvwxl3sbvRiuNb5whVNY41FVjaNzdj/1aSluA3JluK29uHEARmOQ6WlONI+3IHFpNLYjvQ1VkNZYhPrKEhsao3Jl9jUT/JVJDZn6x1pic1KFQqUWJnr5CaKknWyricrjlljkZXYNHkV5KawWfIajkWulThJXtvq5N0tLPt5TCWFTZLXKDIpbF4N2RQ2T1JlxDHXqSQetxPRMpyElAhHW4ZNyEldk/aDjVNE6hoV17T3FZtHW3vK1p/Zg2984xsAgA996ENYtmyZ9rkJopshgSX2WUqlEj796U9j3rx5cLc2sOf769FsWnAy9oAtqq24yLmxRawOXFhLccZ7grb24ZRxTFpLcV7iJSQ2a3GnpPS1o46ExOYJ4SRKbG4bmozEJrQOJ5ErsTItcQVJbKY4qizalHWdvMecbCux6TiQL69ATiuxhLyGV80R/1x5zWslZtlS1HaunBQ2VzwlUti8GoKsFFYs1pRH3nUmomU4eRzZbcSpqasqCS3D6jVSUldFikpd89qFAaDu+A8WZ0sd7o+3gXOO17/+9bjooou0z00Q3Q4JLLFPM2fOHHzuc59DtVpF89kR4PaXpI4rrK24gLmxWWls2wJOeRgs8NQ+oOQfJ7YPJ14xXWKZm9w+nDgM1ZbiOBbLX9xJRibyJFaqRiCxpdLUtxTnSazCXKxp006cJo4FrzgsdZ0siZXcvidrPqyMvIZ1ksahIK8AMluJ8+Q1PGXaTVaQ16wUNmmuahZpKaxKjbQU1mSBprC2olelJZ8qqWtqDcO9XQGopa5ZCzlNk7muKu3CAm/cxcCPahgbG8Oxxx6LK664Qvv8BLE3QAJL7PMsW7YMH//4x/3/3L8ZlSc3SR1XeBpbgMh2fFIeX8ApjyLTWBNSWoqZl9E+nERCS3Fm+3BKDe3FncIaKRKrMqfUYhOaxiotApImsZLpa5REiVVdkGQiJFZXXpOurzFHtkMeFfeeTWolVpFXgdWI/G5U5VUcljBuWXltrxP9j54YxVPYrLmqSaSlsCrymoaOvMbFUW+F+fbzFt0ybIRG6toxr7eA1LVNXCchdW3D9XDoL/uxfv16HHDAAbjmmmtQLpe1x0AQewMksAQB4KyzzsLb3/52AED/b55F+cXt0sdO1SJPiTUmYG5s6gJOuYOBmchOVEux6oI5QKfEyrQPd9RIWKFYJ22ZLos7JUms5kqYPHo/6K6mOUESq1un7XsdCY7V0FnVNyqxOvIKAMzx2iRWVV4BdKSwWvIavfma8hpPYU2kU6SwqultlGgbsW7yGj1uslqGc2votgxHF3KapLmuMkz2Ik3xk7/+sT788Y9/RG9vLz73uc9h1qxZ2uMgiL0FEliCCLj88stx7rnngnkcAz9/Gvbm5O11kogv8uS6+n9aIo01ebEscm4seM4CTrmDAaxGzvzXnHEUJbHGLcXBvFjYtqZ8tlYohsZ2Gm1jKVBitbdgiEpVzsJNuXVMW4mBQiVWRxjjdbTkNQJzPW15jaIrr+E4HC9MX7VrBAs66chrWx1u3pLqVvWlE2ilsKrpbQeMSc93zR1PkfKqgZgHa9oyzFxMm7muk7VIUxblu9bgN7/5DWzbxjXXXIMlS5Zoj4Ug9iZIYAkiwLIs/P3f/z1OPPFEsKaLwZuehLVzTKmGEFnumb36FjLlrogkFvDfTNhmbxgZ99vU9N/otb71KiYDAcC5mcQK2SsZ7A1sWWBCZLVrBBJruP8fM5Vpj6u1QqfAOS9mVWHXAxwDGeaBTJsKteOaj6PRBKur7+0alrAYULJ9AS0ArfQ1erwN4+ck4/mUKEb4jJ7PwoFwXxpNSjCmNk0kqYbF/BcvA6F3y8H9avC7ie/hq12niNc9D8YPlOZ4WVtcAaD08AZUHlgPAPjoRz+Kk08+WXssBLG3QQJLEBHK5TI+85nPYOnSpbDGmxj48ZNgow29YgW0HRWB6RD8NyUs+GcwkEC0TO8Or2zpS6zoerVtfYkVny5Ylr7Eeh645/lJrkn6yT3AYtoS23acrsRazL8dgL7IRm/DZC2YlHYc5+3Jsg6O26ql2moeH4/nAU2FzTrjMAbWdGHV9Wt41ZLf3jmuf1u8sv/hj6WwN2wU0f7LLcV5/RFYZFqD7LY6iXW8ImpwfzxGz81+Yqq0X268hmVWg7OgFTpo+dUeh/hww+T+sDi4xc0+JBGPERNxrZXQrJUAV79G/ZHd6LnjRQDAX/3VX+HVr361di2C2BshgSWIGH19ffjCF76ABQsWoLR7HAM/fAJsXDMFMX0xLCpFNRhCSCiyJjXMJZYzQ4kFglTZQGKBoA3YQGIFJhIrMJDYNnHVldjouXUlVtTwvGIkVjf9FPLqaSbChm3DIdHxa9TjFgMiC4/pprBetRQuWmQ1NWuUWbjqro58RuVVl1BehcDqPtS91rxT7TZZIa8GCHk1qmGZ1WiTV5NxFJLMc/PXywI+dA7F1UBea0/swbw7ngLnHBdddBHe9ra3adciiL0VEliCSGDOnDm49tprMWfOHJS3j6D/B0/A2WM2D9TohbFAiTUSWSGxJm8mIxJrMgfNK1twe2x9kRUSazIvVkhsuSQvsiJ9jWLbgKUgskltu4oSm3pdFYmNpq9RFFdX7hhLERLLuZrEJomnjsQmrB6snMKKBDdaQyGFDeW17YMFrpzCRuXVr6GewkblFfBFUiWFTZNXFRGOy2tYW+HPnnnt8qpXgxvLK2fMWF5FR41py7CpvHLbXF73ptR190gPak+NYP5vnoLrujjnnHPwN3/zN8bTRAhib4QEliBSOOigg/DlL38Zs2fPRmXbHsz66WOo7bLRbGquJhR9kdTa6wDTQ2SLaClmDCppLHMBqx5748j8OXnSaSznsOLb51gAL1nyaWyS0AiJNU1jhQwazotlTEFk02RVRWLTzqUisUk1JlNis1qHVSQ2Lp7R+rISm1ZDspU4UV4DVFqJO+Q1QCWFjctrOA7JEqbJqz/3HonyKupL1QnENWmxJdmxCXFNklfZebChuCZcXfo+tdJryCzWN11ahtvEVfcp0/Q1GTFx1ZTX3SM92D3Sg9LaXVhw21NoNpt41atehSuvvBJ20geEBEGQwBJEFosXL8aXvvQlzJgxA5UtuzHnlj/CGQXGx6rFiKwO06WteBLTWJaxEqt0GsuRLkSyLcVZK8JOl5biYL/YLImVElyx72zW5XlvrvIkNi81nkyJzZr3KiOxaeIZHUeexMrUyCBLXgUyrcRp8uqfRC6FTZNXID+FFZKU99ySJW1tqavBQygpdVWvkZO6Svw55qWueamuTOqadX9Ot9R1b2gXFuLqNm3Y64ZxyO3/g0ajgVNOOQVXX301SiXDpfcJYi+GBJYgcjjssMNw7bXXYmBgANWhXZj7i4fBxxw0G6VUiS1XHNg9OW+a94a2Yok01nIAu57x7koxjU1COY1NosiW4jSJTWofTiJLYmVX/c2TQ9mUNet6MiKcNlYxvrwaEy2xsnNWsyS2iHmvefIqzpOSwnLZBD+nlThTXgOshpcpsVnyKkiTpWjqapK8yoprVguwrLxm15geLcNGaadC6pq1XVqhqasuBbQLO3W5duG+2ekbqAtxdZs2qhu2Y/F/P4Hx8XGceOKJ+NSnPoVyuaw9PoLYFyCBJQgJli1bhn/+53/2JXbzLuz/i4fARhtoNkqJaaxte7AsCcmYZm3F2mSkscwDLJmpiAXOjTWS2LSWYtlWUp15sUlM9eJOsTod/1dpbUuTWOk5vxMksUWtOizbHpyVwsrevoRW4jB5ldzrNS2FlZFXQVorsYy8Askp7EQs1pRH2nONSvKaNF7V+a5JbcRZLcOyTPZcVyvhs5FpkboW0C4sxJU7cqlrX7Vz8cdo6goAPS9txUH//TjGx8dx0kkn4XOf+xyq1arW+AhiX4IEliAkOeqoo/CVr3wFM2fORGXbMPa/5UGwPTV4LksVWWmSXlzLHnhF8t1PQSLbbXNjkyh0gaeoxGa1D8cpal7sBEhsIasV+4XUjo9KrI5YT5TEqshr0ocYMslpfAxxiVVdMTlyPunkNXZ8PIVVkVe/Rmcrsay8CqIprK68RmuoymtWTZO24az5rukHtf93OizUNO3mumoPAuovbrNa2+c59RKcury4JhEVVyGvvS9sxoLfPI5Go4EVK1bg85//PHp6erTqE8S+BgksQSiwdOlSfO1rX8PcuXNR3jmC/X/+IOw94+AeihdZi4Pbim+ipnkaK19jH2kpliG6QrFs+3CcuDCa7Pmqmr5GiY5dR6SLkljxVadWVGJV5TU6BtegRryVWDJ5jRJd0ElZXgOiKayqvAKtFHYqktco4rxpKw0rjWNvaxnWHcN0S10VKVX8D5WEuHKnOHEFgL5nN+KA3z4Jx3Fw1lln4ZprrkGlUtE6B0Hsi5DAEoQiixcvxnXXXYcFCxagPDyG/W9+AKUdewCgTWTBeP482DQKWuTJK3F4Vb13U9MijYWZTIs0lpdY5wrEMkRaiqN7aioRSWOl5r8mjiOQRg1RidYobDsGwzpG4yhCYoU06rYOC4k1GYdIg3VreB7guvofJgCAy7XlFUCYwurIq4B5BchrxkrDMnALmSsNS9Wwi5FXE2FjnlnLMFDcQk1Tmbo6fbyQduEwddWgb/Z4oriCcww+/iLm3PkEXNfFq1/9alx11VW0YBNBKEICSxAaLFy4ENdddx0OPvhglEZrOODmB1DduD283BdZG27NBhqaf2YcYA6DVWdgOi+izH9jxhnAND06OhatN4cMcCtAs4/pvY8IWoq5gfBwIdOloKVXh1BkdVeVYYBtgZVKYLpjAABmmQmLSXoaHYORuGlKfBTX9f/p4nnqbbtROAfqDcBR21e1rUSzCd7snCOnhOOafagBwB43HIPHteU1HEPWIm95cMBqwqht2G6Ypa52w5/7aSKvdt2sTZZ5HJZrVoMzGLUMcwtoDpgJNAAj+bUcBl7i2uJq1xnsOjNKXdm4jWZcXAGAc8y6dyVm3b8KAHDxxRfjYx/7GG2VQxAakMAShCbz5s3Dv/7rv+KYY46B1XAw75d/RO9zm8LLuQegacGqWWCjeiLLKx68KvffHGlKLBAspNQsSGRVD7GZ/4m+SaILtM2PVR4D8xMiz0RiAT9FLdl6IiuSWNs2k1jLLkZCma7MB78D3Tf8zAIvYtVezvUklvNWeqmTiHPuy6frgcsu3pQ0Btf15U9XggOJZ6PpK51mwpifODYMJDxIbsujZk8sUou8dZzcf04zFseGL3+6Amw3AOZyMFevgF3nsOsK8+sTCMevm0CL52ajdl/R8aJfw+RDCMthsBwGeDCSV+YBzoDe45mN2/4/h3XKq+Nizu2PY/B/1gIA3vve9+KDH/wgLJPXAoLYh6G/HIIwYMaMGfjSl76EV73qVWCeh7l3PI7Bx14M35yzHhe8wmE1mJ7I2hy8xH0BdaCdxooFRZg3dWmseIMk3uhoY9J+ygCvZPlzWnXfOAQiapbGTpHEMqt9f1ddiRVot79yfYk1bduNtv7qSmxUNjQENJRW7um1MUfFvd7Ql1gA8IDSSCP/ejG43eqqyNrTNbOGwdxGy2nNWRX/VyWUV02EvGofH4ir7hjCY43alvWPBRBud2Rax1Re4cH/p4FIXcMFwSpqhaLiyhwGb7D9wcjqTbz24S3oe2EzSqUSrrrqKrzlLW8pbkoHQeyDkMAShCHVahWf+tSncMkllwAAZj2wCrPvfhpwPTDbCxdiYi70RRYIt6MxFlnFNNYrAW5vwgWaEluIyBqksWJ+rkoay1wOFp9DOx0ktlRSE9loq6eOxCZdV0Uoo8ebSGz03KopbPx8KhIbpK9tP3I9JYnlzWbHmJVS2KTb21BsA46uSq2RwkblFQDgceUUtu14nr1/aPuBLXmNopLC2o3pI69RVD4IKCx11SQqrkbyGr0NDHCSXmtSaEtdNYiKa9q+xFnExTUcV7X1t1DaNYpX3vEsHn/8cfT39+OLX/wizj33XL0BEwQRQgJLEAVgWRauuOIKfOADHwBjDANPr8O8Xz0Ma7wz2VAVWV7x4PS23qWoiqxXbn9TEE1jZUSW28GiHokXwlxkpziNlZLYtP07ZSVWJH9t5w8k1mReLLPMWopVJTZtruNkJbFJ15OV2KTfQTgOmT2bA3lNkB7pVuKksQYprHYrcVBXOoVN+ptRSGE75DVARb4Sj5fx3xR5VUGIq5a88oj8FiyvgLxQT4vU1fS5G0i8DV45/4a1iWvssdAczD8+S1ybM/IfiGniGqe6bhuW/PJRrFu3Dvvvvz+uu+46LF++PLc+QRD5kMASRIG86U1vwmc/+1n09vaiZ+MOHPDT+1AZ2wWvN+HNSkRkMyW2xMETXtSjIpv1IspLPPFNgarIZjKVbcWGaaxxS7HsvNikN6cq82Kz3tzKSGyapHZzO3H03LISm/ZzGYnN+h1ICGiqpMq2EmfdRpkUNuXvRDaFTZNXFYpoG866PIvc1DXrV8ABu5kz3zXnV2g639W0ZbjI1NUIzdeLLHEVeDl7p+cmrjntw3ni6g06AOcYeHIN5t/6CEZGRnD00UfjhhtuwGGHHZZZmyAIeUhgCaJgTj31VPzbv/0bFi5ciNKecRxwy73o2bQx9frMhdFCT9NufqzqIVOdxmq0FCeeezq0FGdJbNZKsTISKyO4WRKadbyMxOYJbpbEyghqVitxQutwx1VyWomTWoc7rpMlwXmCnpfC5v195KSwufIq0UaceXxWG7Fk8prVRmzUMhyRV12KmO9q2jJsQuHtwooUPs9VkWjqmoVVamL275/C7HtXwvM8XHDBBfjqV7+K/fbbT+/EBEEkQgJLEBPAoYceiuuvvx4nnHACrKaL/e96GAPPrUx9E57XVhxvI+44PtZWbDXbX2TjbcSJNTLS2NR5sEkkvEnx8WFRqgAAWMBJREFUyoDTk/3Cv9eksdNZYjOPzZFY2a1SpmsSK1M3SWIzWoc7TpEisTLymtlKLDvPNy2FlfibyEphZZPXrDZiqeOTbmaBbcNaFCivOnRT6ur2ZlxJYvxJr1Eq81yT2odV5rkmtQ/LtgsDALP24IL7NmBg5XowxvC+970PH//4x1GpVPIHTxCEEoxz070MCIJIw3EcXHfddfjJT34CABifPw87j18Or1rNPI7bALeD1uGgpYmN2SgPy8lN+IbDas0psscZKsNy72TEmxVu+WMBALsOlPdIHd4icjq7zlEelZzjFUiwSFSYx2E1udp+kZGnNqvJYdcU5hhywHK8UGaY44HVFBbKCUSMibmRnMvvOyokzvPAozKl8gbYS9gnVVZsxXni+7WqinFUmlTaky3mr84ZPV71ZSr4MCA8NrrysMyxpcikb87B62qr9LJq5A0r5+D1usLBFlgltheJykJVPVXwvp5IPXl74YyB95TgDLTGr9o27FUtNPvbHyvSxzOgMRD9vSvKKwPc2F2nLK/i9IG4AoryGnvOA9TO71Zbfys64ur0to5XElcGOFUGHn3oK36Y2JyRcGXZ8TOgMSPynC1kUeF3X9+vdWW77h+v8sFHc27rOZ6N+49h2a6myp7NWPrASuzevRsDAwO46qqr8MpXvlL+5ARBKEECSxCTwK233oprr70W9XodTm8Pdpx0EhoSLUVtImtxWKM2SuMKb0hF21fwfrI0xlBS2HGDs5bEagmsgKkJLBBpBwxE1mpylMb19u1kLoflcFgNBRGISKyywAo8z5dYFYENz++niaHEqiY43GtPJFUENC6xYvsdVYQ8qc6vjUuszsuUkFidlYrtIIVXSF/bTm1boQRLpa9tB/v3NRMSrTp2xsBnzwi/V4XbDM39+sLvldM7i6E+q2VBqseH3Ro6yWtEYO3gMwfl5JPBLHUNbq9u6ioEVkde3QrTn6fMgGa/fyAP/lxV63QIrMr4IwKrs7Jwc5DDq3AtcQWC9LXiKYsrOMeMlc9i1jOrwDnHkiVLcM0112DhwoVqAyAIQgkSWIKYJJ5//nlcffXVWLduHThj2P3yozHyspdJvckUIms1WPgCrYKQUOZAOoUNj21LFAC7pnx6/9iGmsAKRBprNzQFFgA4V09hgUCe/S10rBGFFC2K54E5rrrAAu0Sq9sC6bn+saoCGpVY3bZkIGjr1miLDsarvVeiWCBLJX2NYtu+DCqmryHi/lYVUKCVwuocC7RSWB2BDVLY5syqnghFBFZXpBr9TLttmFvBfH6TLXJMWoaZWcuwVxYf2qgf6/RaBtMvfIE1mcIRCqzO2PvQSq9Vf+9B+moyx9XpF9028jfeajSw34N/RO/QFgDAhRdeiL/5m79BNafDiiAIc0hgCWISGR0dxT/90z/hzjvvBACMLViAnccfBy47R4YzWK7eYkvc8tuqSqOtRFbpeOanGqVRDq6RxjGPo1SDWhuwOFYksGOe0n6PUaymB3vMaWvxkz6/x2HVHLCEbZGkcF2wukaCCwTprSO/VUtiDU2JE2/CddJXgWUgv8G5jSTW4CXO6D4HOtuwFWGltP2r8g5k4PvNNDp3bcGA9rFe2UJjhv7v3enRExHG/WkGbkXv8cI4UB7z4Nn6j3e7oS+v3GJh+qlDs0//YMaB+kz9VabdXpa+3VoOlgM0ZkJ7gSbmAs2ZXFtevRJXfk2sbt2Go595Flu3bkWlUsGHP/xhvOY1r9EbAEEQypDAEsQkwznHT37yE/zLv/wLHMeB09ODnctPQH3ePKnjrSZDacx/s8BLiq2Nrj8X1m60z2+Vxa4D5REOz4aWxNp1jkqQwqq+UWIeUKp7sMS8MtVnLs5h1z1Y9cD+Fc9vNVxYezTjZwCs6QBNjb0+xZxY150aiTXFVGCDBFhXYrnj+Imm4uJanHN/USSL6d8GXYENfs9tc2llThf8fpll6Qus4wK2hdrCQa3DmQeAAeNzy7nX7TiWA3bDF0hVGWOco1Tjvsz06a3GXh71YDV52zxSFXTlVXwg6VZ1Phj0n8vdqgVP42EqnkebfQyuxlpDYuGt+iy9v0/LAeAFAqtzLACnl4OrP9xg13xhb85Q+Dv1PMx8eiVmPvscOOc46KCD8KlPfQpLlixRHwBBENrQKsQEMckwxnDxxRfj61//OhYtWoRSrYa599yLGU89LbUXJfP8VmCrodbuBAStyCX/DZPlqCe5Yn6av+KxZtIgFmbiahLKLcArtW6v8uqazJ8fxjgH4+rzy3jJAu8pa0sgL5eAskZEIc5n28oSBiAQMM02XkCrDbVwXBc6n7Vyxwk+APD05d/jQRu26R5TEnAeyqv6oa37h3te9pY6aTiu0YcczPNFUuvYQF6Z44ugVo3gV1RS7PII5bXBw+kKqujIKxPdNJy3PbdJHx9d4011jTXx/BsMWVVeLTeQ10gNpeOdlrw6fXrHi3Pryqt4HZQ+ZmQU5696HjNWrQbnHBdeeCH+3//7fySvBDEFUAJLEFPI+Pg4vva1r+EXv/gFAKAxaxZ2nLgczkB6+55dZyiNRBbbsKCUxto11lqMSSzSpJDGihRWEC70JJHIWi6HXQNKNWGxrctkZDSewoY/l30WC1JYMReWh4sMyR3OPA5rvNlqJVaVO88Dqym0Ice3lfE8cNW5tOL34nG9FNZ0ISVdcRZEU0yFJJYHrdfxsch+CBAmsFFU01iVBDZBXGUT2KSXceUUNiqvjMEbqKIxuyf7mOj5YvLq9NpoDMrdV1F5FbhV+RQ2mr4KVFJYxoHqzsjBDMopbKkm/7sOxxncX17ZUuqGiYqrTvrKYtLZ7JdPX8OtjmLHe7LHi99x5DaopK/h8dHzz5R/brKCNSSi4hpdvTgRztG3bj0WPbUSY2NjGBgYwN/93d/hrLPOkj4vQRDFQgJLENOAu+66C1/84hexZ88eeLaN3UcfjdFDFycKUlRgBdwCvIqcxLYJrIAFEizxJigusALZtmK7zlGJHy8cSeI9p93kKI0mv+GQEVmr6aE02i4mKiJrNVxYw7F0S0FklVqJkxJ5lVbi+O9DVWLjt0v15aKI9uE4khLbIbCAksQmCiygJrGyApvy+5QR2LSXcCWBTUpeS7Z0G3FS8sotJtVGnCSv/gVAbVb+/Zwkr4D/XOZItOS2pa/R40tMei6tbPoaF1eB2yMp6gkPE27Jz32Nruze+iFQk2z/DRPXGPXZkscHiWscWYENU9cYsgJr1Vli4polsFatjtmPPo6+jZsAAK94xSvwD//wD5g/f77UOQmCmBiohZggpgFnnHEG/uM//gPHH388LNfF7CeewNx77oU9OiZ1PPP8lmK7lr/ZeiI8aOlq6i0QBUC6rZiXgm0yYucH5NqKPZvBS3ljKtNW7JUY3J72Vt62tuKc8/OSBd4bE4t4Upp1vGwrcVo7uWwrcdKHCaKV2GRRpKlGs50YgHk7MVBsS7FBy7B/eAGfP+uu0hxQVNuw3vH+ok1Jz1nMzW8FFos2xeUVAJjDpVqJZeQ12iocv6+9spm8RveNTT022i4cG6pMUt3WLhxDbL2TebyTLq8yhMdrPkytOkuV1yx612/AUXffh76Nm2DbNv7yL/8SX/nKV0heCWIaQAksQUwjPM/DT3/6U1x//fWo1WrwSiXsPvoojC5eHMpDUgIbJS+NFQs5pe4Hm9NWzFygNJ69mnBeW3FiChs5f7RO4vEZKWxbqZRTJKWwUfIS2cQUtu3EEslPVhIrI8R5SWxWGi6bxKbdDpmXjaLbhzvqW5krFCcmsAljS/swIDWBjZKXxmaNX0Jc0xJYmZft3ARWfECSNg7G4A32oDErfUuQPHnNaiOWkdesNmIhr3lSkiZoobxmzZfNaSXOktc2qc64j/LS16yVdfPS18TEte0K2elrUrtwnKz0NaldOI7T56+tkHl8xvmdvuwFnGTENZ7AWvU6Zj/2JPrWbwAAHHbYYfg//+f/4PDDD88uRBDEpEECSxDTkA0bNuDzn/88nnjiCQBAbd5c7Dz+eLh9fbkCC+TPjU1sI46T0Vac1kbcMY4Ukc0U2Mj5o3XaLkqZC5taKn612FzYNNJEtmMubObJU35XWfNhJRbzApAusTIrROdJbJ6E5710TET7cBIpLcXhAk5ZZLQUSwkskC2xabdBMnVNEliVl2zW2wPe39t5gefJjSGjjVgmeU1rI5ZOXlPaiGXlFfCfw+KtwFLyGpDVSpw07zWtTThxbBlzX/O2hMma+5orrgFpc19lxFWQJLAy4ipIax+WTVzT2oeT5rqmEQos5+jduAlLVj2HnTt3wrZtvO1tb8Nll12GclljpSiCICYMEliCmKZ4noef/OQnuP7661Gv1+HZNoaPPAKjhxwGu2HDltjRJU1kpQQWSE1jZQU2vC2x+bEdiznljEEQFVnZFLatVOR0eSlslCSRVZJYIFEIE1NYWXkVJEms7BZHWRIr0y6c9fIxWQILdEhsZvoaJ0VipQUWaN3f8dscvw2ct/bWlRlaTGBVX64TU1hZeQUSBVaIlUzbcJLAqrYNuz0MzUgKqiKvgmgKqyKvgiSJjaevKuIKpMur7F6mSemrrLj6V+5MX1XEFUhevEm1VTgusDKpa9sYYgKrIq4A0Ozn8Koc9tg4Zj/2BHo3bQYALF68GFdeeSWOOOIIuUIEQUwqJLAEMc1Zt24d/umf/gmPP/44AKAxcyaGjz4O3N5Puka8rVhaYAUxkZVpI+4YQyyNlUphY2OI1lJNYdtKcUinsFF4VOqYRCtx4sljaVBUYhXm0obEVyZW3Z83SWJV5rqmye9Etg8nEZFYJYEFEluKlQRWEE9jo7dBY66rEFjdl+kOgVWRV6BDYHXmu0bbiLXmvEZSWB15BdpTWOYB1V2K85djrcRReVUVV0G8dVhWXIHO9FVJXAOi6auquAqi6atK6iqItg+riqsgKrA681zrs10MPP8CFj77PMbHx1EqlfAXf/EXuPTSS1GtprfPEwQxtZDAEkQX4HkefvWrX+HrX/869uzZAw6G8YUvw9ghR4KX5FqbhHxy23+zoCSwgojIWo5aChuOI6hhNaEmsJExCCxHPYVtK+WpS6yAMwbmerDqjnwK23bySCokJFY1fRVEU1hVgQU6JVZ1sab4y4hp+gqoCywQzosFoCaw4fGsVcNxlNLSkGgaK+5TnToAYFuArX9fhgKbN981tUBrHqzuYk0ihTVZsMntYXB6mJa8Cpp9TCt9FYgUVsirrrgCrfRVRVrDcUTkVUdcAYTpq664CuqzmZa4Choz9cVV0JzJlVNXQWlkN/qfewTVnbsAAC9/+cvxkY98BIceeqjeYAiCmDRIYAmii9ixYweuu+463H777QAAt9KLkcOOQWPOQmnp4Jb/xsdqqL/ghzCRwho8fXC/FVlmpc/UMXj+m2KdN6QCuyHfSpyIx/UlFvB/b5z7Equa+EUREqsjsEBLYnWJyu9kp69xmKW/SrD4OzJZqRjwfw+64hqloj/3jjEGPnuG2W0p2ajPH9ReaRgAnB4bXpVprzYM5q9crv18BfHBHTd6roCln7iG4ygxqe3GUo+3Immw5k1xeoLWX4O7wq0GNQweWk6/2RhEZ5Hq44I5TfS/+AwGN62B67ro7+/He97zHrzuda+DZdHmHATRDZDAEkQX8uCDD+JLX/oSNm7cCABozJqHkZe9Am7/DOkaluMLJNd9veZ+G7DVhPaGXFYDqIx64BaT2gM2CbvJUR5xg2RXvQjzOEo1F9a4YyR/Vq0JVjMRYQ9svK5/fFCD66a4YQ1DkTWVV8BcYE3SaDGE4MMEVpLY8qhouNeS394eo1KsUgHvNWiFtC005svtB9sB99vsucXQmJW/p20SjHNYTQ7OAKdPL41mnKM05oG5HG5F//Eps9drGpbD4fZYRvLKPA6n14Jn69UQiW19hsEYXAAMaAzq17DcoH3YoFGjNA40VR+WnKNnaB0WD72IHTt2AABe9apX4UMf+hDmzp2rPxiCICYdEliC6FJqtRq+853v4Pvf/z4ajQY4C9qKD5ZrK7aa/puAaFuwKlYjSGHF/quKNZjrL+Rk14MaGiLLPI7SOIddc4HgeNU3iXbDQ3m40X5uxRqs6cLaI7GyVhoihU3bWid3ACxoV51iiZ3q9BVotQ9HW4pV8Dh4ve7fp5Y1uRIr9qn1PP/cfQmrCMsgZMtiwExNAQX8NuK+KpyM7XQSCeSVOR64baE+R12iGeew6h4sl4MzhsZM9d+DkFer4T+unF5dCYZy6mo5wfW5P47mgMb4o9LMkbotUWaNsNXYF+CklYdza7itWs0+lrr1TRZhy7KXvvpwHmL7N6sJ1OWXgUBpzy4MPvs4ysO+uC5atAgf+tCHcPLJJ+sNhCCIKYUEliC6nI0bN+K6667D3XffDQDwylWMLD4a9QMOzmwrtppAaSz4D4OWyIYCK9AQWbsOlCPzWLkFgKmJrN3gqAz70uKfX01kmcdRGnPb5sKG51dY0dc4hTWRWPG7nmqJnU4CC7TGoyKyQmCBUGKBCU5jg9SVB78/AHoCG08JTQUWUE9hI/IqxuD2lJQELiqvArdqZ+7LmlQjKq8AwG2mnMKqyqvl8FBaBU6PDV6SfwyG4iqGHiwk5anUiIiroD5T8bZHxLVVQ+1Doai4ClQFNiqu4TgkBJY16uh/8Rn0b1oDzjl6e3vx9re/HZdccgltjUMQXQwJLEHsJTzwwAP42te+hpdeegkA0ByYhdFDX47mrHmJ128TWIGiyDIvaCOOT/9UENm2FDaCisiKFLY03pr3qCqySRIb1gGk91adEomNf1AxVRI7HdqHgeQFnFTS2KjAhsdPYBobTV2jqApsUovrZAtsXF7FjxVS2CR5BaCUwibJq0AlhVWR1yRxBdTktUNcAWV5TRJXAErpa5K4Amrpa5K4Au2rD+eRJK6CTIF1XfStfx4HDK3B6OgoAOCcc87Be9/7Xsybl/yaSBBE90ACSxB7Ec1mEz/+8Y/xX//1Xxgb8+20vt98jB56NNy+9vmxjAN2DZ3yCSiJbEcKG6sjI7LxFDaKrMhGU9i24xVEVrQSJ45DVmSnQmKTkvapkNjpkL4C6SsQy6axSQILFJ/GJqWuUWQFNmtuZhECK9tGnCKvYhwyKWyavApkUtgseQXkU1gZeY23CceRlddEcQ0vlGsdThNXgUz6miaurRr5tyVNXAUy6WuWuAJAcwAde9ACADhHdct6LNuxHps3+3u6LlmyBFdccQWOO+64/BMTBNEVkMASxF7Ijh078J//+Z+45ZZb4LouOGOoHbAYo4ccAV5pLQqTmMJGkRDZTIGN1MkS2SyBFeSJbFIK23a8hMimpbAddQRpdUznwwLyEpu1+vRkSux0SV9dT26sWRKbJrDh8QWksWmpaxQZgZVYWIj1VM0WcgKyU1gOWE1/y6BEeRVXy0lh8+QVyE9h8+S1NZZsic2T17S0NU6WsLfNb00bLvP3jHXL6Y/XPHEF8tPXPHEVZAlsnrgKsgQ2T1zDcSSkr+Vd2zDw3P+gvGcnAGDevHl497vfjXPPPZdWFyaIvQwSWILYi1m7di2uv/76cH4st0sYO2gJxhceBl4q5wusIENkU9uIU+okiWxaG3ESWSKblsK2HR+IrPg+LrMyEttWC+iUoSJSWCBfYmW2TposiZ0uAiu7/2tWGpsnsIB+GpuXukbJEliVFXEnso04K3VNGIfbW0Kzv/P+kpFXQVoKKyuvgrRW4jR5zUtbO+qnpK+ZaWvbFdPltU00JcaSlr7KiisAOL2AW+kci6y4Auntw7LiKogKrD2yGwMvPo3qNj9x7e3txdve9jZccskl6OkxW8WbIIjpCQksQewDPPbYY/jXf/1XrFy5EgDglSoYW7QU9XkvQ6mmsKol8/dTjEusVAobrxMTWZkUNko4hojM5qWwHTVSUtmsVuLUOgJRpyiJzdpeR3Lv30IlFugUzekir4C8wAoS0ljeaAKu5D6yIo1lDLAz/pZUxFUgUt74XrCq27kU1UY8UIUzI5KgqsirOCSWwoptcuBxKXkVxCVWVV79sSSnsPHtcoS4qmyjE5dXqbS1YyCdrcMyaWvHWGLpK4s8tGXEVRBPX1XEVZCUvpbG5cU1HMt+gD02gv41z6B3ywZwzmHbNl772tfi8ssvx377KSxRTBBE10ECSxD7CJ7n4c4778Q3v/lNrF+/HgDgVnpQm38EnBmHhGlSLglprLLARmoJkVVJYeNEU1lViQU6RVYlhU2sBb/ehM6HlZXXSJ1CJBboTGO7WWCB9jRWJn1NrMHAbDtZYmXahdOIprC6+5AWIbBAewqrIa9iLCKFVUld40RbiXXkNawTk1iRvoZpK9TEFWiXV+m0NU4sfdURV6BdXlXS1s46rfRVR1wFUYFVTV0FXmkMPRtXYWDLOrjBB01nnnkm3vnOd+KQQw5RHxRBEF0HCSxB7GM4joNbb70V//Vf/4WhoSEAgFfpQ23/I9Ccnb31ThuByAqspmQbcUotzgC7qZbCxhEiazXzW4kTj4+0F8PjsOuelsSGteC/WWT1giVWVV4jdQqX2CLkFZi8+a9ZBLdFS2CBzjRWJ3WNIwRWV17F0IqaB3vAoNR81yy4baGxX0VbXgVu1Ybbw7TltTUeX2KZmMsLdWkVOD12+xQJnWEF8tq26rDmW7X6TMtIXFt1mJG4AoDb257+qoora9ZQ3fIsBofXodHwX2z+9E//FO9617uwdOlSvUERBNGVkMASxD5Ko9HALbfcgm9/+9vYscPf3N2t9KO+/zI0Zy9SExPmC2ypBngKHckdZXiQwja40j6wSXXsmge7bvCmlok6LqyGfJqbiOPBGi1oUSfHcCxFS2wRTGX6mgBvGLZ9R+bHaourwLLAiprHN3tG/nWyYAy8twKvYvBHDgAWg1eywMvmH354ZctIXgXcjiWmygUA5nI0Z5S0Bc8fAOBWLXhlpi2tArfK4JaZkbhaDve3zqkwo9tVqnE0ZjBlaQUA1hhDdctqDO5ZH4rrsccei3e/+9045phj9AdFEETXQgJLEPs4tVoNP/3pT3HjjTdi9+7dAACv3If6/kvRmH0wYMm9WbUbHOUxHrQWM22RFXUAtFqMNeuURqOTvfTqWI4HezTyrksn/eQcrOaAmYpRURILAK5rJLEsuB/8dNHwZaQIgRXjKKCWscAC+il5FLFIlKnAiqTcVGA5BxiDO6vPqAxzPcBD/rY8mWMBrLr/d+BVDYUa0Ht+4GhLob2qLbU9T+Lpxd8QY2gM6os9E8NhQGNAv05r3i9Qm6VfR0wtsZtcahufKKw+iuqWZ9E/vB5O8OHU0UcfjcsvvxwnnXRS+BxEEMS+BwksQRAAgLGxMdx88834wQ9+ECayXrkH9XlL0dhvca7IWi6HXfPFsTVHVl1kLddf1dhuRJ6aNESWeUBp3IMdvMnl4s2O6nseDtg1B1bdaZcSjTmo00ZiWZDuGKSx0TeP4cuIdnpVoMAWUG/KBTY2H11bYMX9wLn/96srsOL3yzlgWdoCy9ygPTdoG/Z6SnB7FbciCsSVcQ7WDAS2UjKTWI3nBCGuQjzd3pKWvIrjRUrq9GVvmZNah/vjEjg9zE9xFQnFNXh6afazxJWH8yjV/G2G7KZfz+mVr2PV96A69Cx6hzeEc1yPO+44vP3tb8cJJ5xA4koQBAksQRDt1Ot13HLLLfje976HrVu3AgC8UhWNuYehsd+h4KX0zQTtBkd5NCaeGiLblsJGURTZuMQCEZEN6kkRlVigU04UVgOecomNj5Vz5TQ27Q2kVhpbVPuwm1BHs/aUCWzKQmrKAhsV18h4WE8PeJ9qLd5Rh1cr8PoS9kLJgLleKK5hacbUUtjg71CIa3RMzkDGJqeZA5M/dzRtjbYaq8pr9Nhoe6+qvLYWdmr/uY68xsXV/496+hoXV4FM+mqN70Z1y7PoGd4IL3g+Oumkk3DZZZfh2GOPVRoHQRB7NySwBEEk0mg08Otf/xrf/e53sXmzv78et2w0Zi9Gfd5h4JX+jmM6BFagKLKJKWxSTYn3aHaDozySPDdSKZWNS2w4DkWZnWqJTRqfosRmJSDKElt0+lrAOSZdYHNWAFcSWO6lz51USWGjqWtHHbUUNkleBdIpbJq8ijo6KWzeryhDWgWy8pomrQIVeY2nrXFkW5DbVlpOuFubfQxuVW5MpVrQKpzynJ0qsJyjtGcLKltXozyyNfzxKaecgssuuwxHHXWU1PkJgti3IIElCCITx3Hw29/+Ft/73vfw/PPPA/DfOzVnHojGvCVw+2aH121rI06CtbbeyZPZ1BQ2qWbGe6ykFDaObCprOR7skYyllmVbjIuUWLE9i4zI5oxJRmJl2vekW4qLSl9lpFnyXNz15PeAzUJWYCW2r2KlElDKkbyk1LXjXJICG09dOwYkl8LGW4YTTyWTwubIq0BJYtN+PRLSKpCR13iLcOIpGdCYkT3utLQ1jkz6mpi2dpwwP30V0gpkPOcjpX3Yc1HetR7Vrc/Brg37NWwbr3rVq/DWt74VS5YsyTw3QRD7NiSwBEFIwTnHww8/jO9///t46KGHwp87/XNQn7cEzuB8gLH0FDZOTiorlcIm1Ux47yYjsYLMVDYthe04oUQqW5TEilp5aayMUElIrMr8s9w0djIFVvKchaSvQP79LbvvsiiXlcJmpa5t58wR2KzUtaNWdgqblbrGyUxhJeU1rJUnsSl/17LSKsiS17y0NY6/V2vy4yUvbW2rkyGveWlrnKz0NS9tjRNNX5nTQGX7i6hsex6W429X1dvbi9e+9rV44xvfiAULFkjVJAhi34YEliAIZZ577jn84Ac/wO233x4usuFWBtCY+zI4MxbBbpblxTNDZKVT2KSasfdeWa3ESaSmsrISGx6bIbOTJbEq7awZizvpLJ6SKrFFySuQPP81i4xzT7jAKoprWC5JYGVS19iYUufB5qWuCbXSUlgVeQVSUtiExZpkx5U6Hzb2d6wqrYIkeVWVVkGSvMqmrXGSWoel0tY4KemrqrgCrfTVqg2jsu1FzBzdiFrN31Js3rx5uPjii/G6170Og4ODCgMkCGJfhwSWIAhttmzZgptuugk///nPMTo6CsCfJ+vMOBi8ZzF4WWHV04T2Yq0UNqkuU0th43TIrKrEhscmyOxkSKzm1j/xNFZ39c/EluKpSF87ju0cw4QJrKa4huWiAqsqrm3jiKWwKqlrR632FFamZTiNthRWMXXtqJWUwgZ/t7rSKojKq660CqLyqiutYa1I+qqatsaJpq+ybcKJcA8uhlDd/gJKI9vCHx9++OF485vfjLPOOgvlstpiYARBEAAJLEEQBTA2Nob//u//xk9+8hOsWbMm/LlXnQt34FB4vfMBpvAGPpLKMlczhU0qyznsGteSWIGQWcY5rLqrLrHhYGJJbN2dGIk12XIiIrFFbF3RlsZOB4ENa7TGUrjAGoprWK6nx0xcBUJgTcQ1rNUSWNXUNQmvpwS3p+T/XTU0/65ErYjEmkqrwO0twSu1/g50pFXg9Frt7b4GtdwqCz/8A/SktXWwn77qpK0hTg32yFqU9qwBc/201bIsrFixAm94wxtoKxyCIIwhgSUIojA453jsscfwk5/8BHfffXfYXsztHrj9i+EOHALYCiuqBu9x7DqH5XBwy/xNj9UMWomLeP8UtDlaTddMBEQSW3d9+TR9WuYczHHN9oqN1ALn/hgdM6nwywW3rYiFkgD19uEsuFfcIk4AYBvsTRqBMQZUyuaPC78YWH8feFlx/9WUWqiU4fWUjOUVAMA53L6KsbyKsbk9/m00kVaBV7XhViwjafULcbi9tp9wFvHr9Py9Wo2kNcBucjhVP31VT1s5WH0HSnteRLU+BCd4rpg1axZe97rX4X/9r/+FAw44wHyQBEEQIIElCGKCGBoaws9//nPccsst2LVrV/BTBrfnAHgDh8Dr2V86lWWenwSI1jiRzurAPA675sGuR8THQGaZx8Eani+xAt2nVQ9gzUBiTWsBvsRybi6y4r52vUIkFihQZIsUWKBYiS1AYBlj/v1fhAxbQSJZssH7e83G5Ym/RQY+YFYLgL+StgfAZuAls9Sa2xZgMbMPvMSfHfPl1SsbjCm6Z2yPLb01TRpW8GEBZwxeCW2psCrR/Vo9m8FT7eh167BH1sEeeQlWc0/446OPPhp/9md/hjPOOAOViuYevQRBECmQwBIEMaE0Gg3cdddduPnmm/Hkk0+GP+dWFW7/wXD7DwbKA7l17CZHaTzS6mkxbZFNlNjwQuVyYE0Pdi1F7FSfYpMkVrdWgNZ+sQKLtdphOS9UYv2S3EwWixZYwG/V9bj52Ayks6PF0rZbHySoEoirOJ5ZlpHAxhNNXi2DVw3mMgp5FRhILC/b+uKa8Ofl9WjKa8L8WM6Axky95NuKJtzis58K05ZXIa7R5LbZL1mLc1jjW2CPrEW1sTVMW6vVKs455xz82Z/9GZYuXao1LoIgCBlIYAmCmDTWrl2LX/7yl7j11lsjqWwwV7b/YHi9C1tvtmOIFNZutAuLeLOqKrN2w0NpNEdOJMslprBJyD7dZkmsaq0AbYm1Y2/ehcQCU5/GFjH/NbO+ochqCGzq3ECdFDYmrm3nKKtLZ1YrrpbEigXC4p9BWL6IqqIlrxkPH69qw8vZ57X9gOxFnZxetfQ1SVqjNPvUxDqatsZbjt1KfvrKmqOwR16CPfJSOLcVAI444ghceOGFOPvsszEwkP9hJEEQhCkksARBTDrNZhP33HMPfvnLX+LBBx8MBYazMry+hXD7F4FX9utYgCiewsZRkdnMFDbxgJyLZSVWkPfUKyOxKvWgIbHR9DXpfFOdxk5E+pqErsgqCGfuojaqAmtlJ7aqKWzePFLlVuJ46hqnZIHbCnsOy8qr7GdIssmr5ErEsvKaJ60C2fQ1S1qjpKavngNrbJMvrrXWSsIzZszAueeei9e+9rU47LDDcsdBEARRJCSwBEFMKUNDQ/j1r3+NX/3qV9i8eXP4c273we0/CF7fQeBlf4/AtBQ2CRmZVZbY8MCUH6tKrCDtaVhVYvPqQWFebJa8Rs8zlWnsZAmsIBBZQFK2c4RTaSVWWYFNSV07zi0psCoLIEmlsGmpaxISEis131W1iz9PXhW3z8mTV1lpFeTJq6y0ttWL/tq4B2t8K+zRdbDGNoPxVpETTzwRF154IU499VRUq9XOYgRBEJMACSxBENMCz/Pw6KOP4je/+Q3uuusujI2NtS4rz4TXvwhu34GwvWpmCptElsxqS2xYIPZfXYkVxJ+SPYC5biCzmpKY8DSfmcbKyGu8/kSksUC6JE50+3AeMqlsinBqbSGSJ7CS4to2how2Yp2Ve3NT2LzUNYkMiU1NXXXXUAu23UlsG9bc8zVNXlWlVZAmr6rSGqXZL1ZB3wl7dD3s0Q1gXiO8/KCDDsK5556LCy64AAsWLFArThAEMQGQwBIEMe2o1Wq455578Jvf/AYPPPBAazseALy6P1BZCIvtDzD11S2TZNZYYgXB+0pjiY0inqJ109i0ekiRWFV5jdYtOI31y6aI7GSnr2lkiWxMOI33vkxayElRXNvGk5DCmm45k5jCqqSuSSRIbIe8Gr6T6ZjvGrsfdLbPicurrrQK4vJqIq1hTTYCq74B1uh6WM5o+PPZs2fjrLPOwnnnnYcjjjiC9m0lCGJaQQJLEMS0ZteuXbjjjjvwm9/8Bk8//XTkEgaU5gHlBUD5AGOZtRyev6iTAowXKLEClxcjsQKxX2y0pTi+aJNGzQkX2alOX5NIEtlAYAt78x9NYQ3EVRBNYYvYK1UQSqypuAoiizqFLcMFClUor5opaxJCXk2lNUqzzypEWuHsAatv9P+5ra1venp6cPrpp+Pcc8/F8uXLUSoVsFcwQRDEBEACSxBE17Bu3TrcfvvtuOuuu/Diiy9GLmFAaS5QXgiUDgAsvX0Hrbrnv+Es6FlxQiXWdYuTOCGyrquXvqbULLqt2C8byGvBdWFbxaS6kXmyhWIxoFRq7Z1sssdpAGNBzYrBFjgJcIuB91XNxTVKyYJXsX2BLQoG8LIFN5jvaiqtgL9Vjlex4FXE1lPmNZkL8GC/Vy1p5Rxwo9I6El5UKpWwfPlynHvuuTj11FPR19dnPmCCIIgJhgSWIIiuZM2aNbjrrrtw5513psjsgkBmFRYa4X4SazW9tp+ZMCESyzmY4/kyG21bNREnzgHP85M4r0DzcL0g4S1IOAPB5iIxLqpupdxKTqeTyApxBYz2lY0SiivgiztjgFWMGPKS7dcr2cWkpBbAK/5YPY2tddqIdhyXLXDGlFY6ziOU13IBHy5Eny4Y1Pd75RxwhwNp3dQmreVyGSeddBLOOOMMrFixAoODg8bjJQiCmExIYAmC6HrWrl0byuwLL7zQfqE9CyjN99uMrQGJlXV9iWWO/9TIuHkL4IRILOCLbNP1ZTbpqVxHoEQaayqx8fs5bFU2EM6E310hImtb7XJYhMiaCuxkiGvrAmOBDcU1VtdIYgN51RbXpFMzBq+stkVPFjxSxlReo9IqWrq5Lbddjn9lF2huB6tvBmsMgXnj4UWVSgUnn3wyzjjjDJxyyim0XytBEF0NCSxBEHsVQmbvvvturFq1qv1Cq68ls/bsVjtmDOYCVsJWPSz+dKnw7DkpEhv7eRsqMsVbKSxT2TdWkCUtJiKbUddIZNNaaKPptqrM6ghsVFqBiRfX9itpSWyiuMbqKkusSeqadaoC5JWnHKojr/F24KR5yG4153fiNXxZrW8GmlvatrypVqs4+eSTceaZZ+KVr3wl+vv7lcZHEAQxXSGBJQhir2XLli247777cPfdd+ORRx5Bs9lsXcjKQGn/4N+89nmzsRQ2DdV0dtIlNnJ5InmCpdtWLCMsqiIrKUFaIiszB1Q1lVUR2AlIWwFJcW1dWUlgc8U1el3ZuqriquKLmvKaJqxRVOQ1KWVNPXdS+so54I740trYDNbc0XbxnDlzcMopp2DFihVYvnw57dVKEMReCQksQRD7BGNjY3jwwQdxzz334L777sPw8HD7FexZvsiW9ve/B5OSWIFsOjuhEhu0EqeKbOz6HaS9oVZpK1ZN22RFVrGuksiqLGIkm8rmCewEpa2Aori2H5grsSriGq2bm8LKtAvrBKeMgZeY0nxXGWkV5MmrTMqaOIaovHpNoLkVrLEVrLGlrTUYAA4//HCsWLECK1aswNKlS2EVNJ+ZIAhiukICSxDEPofjOHjqqadwzz334IEHHogtAoUgnZ0L2PuDYS4sTz3FyBJaxgMx9vjkp7EZx3UQfbMtk8aazHfMElmDurkiG5//qkJWKpsmsBOUtgIG4toqkCqwWuIaq50osWKLHMY65dV0mqpk6qoirAKxZ2xcXnWFtW08FuBhty+rjS1gzi5En0AqlQqOPfZYrFixAqeccgrmz5+vfA6CIIhuhgSWIIh9ni1btuChhx7Cgw8+iIceeggjIyPtV2CDYGwOmDUHYPuBMfVtR5KEdtqksSk1EnG9ZJEtavudJJEtoDaPzuWN1i5iC5mkVDYqsJOVtgLm+/jGJNZYXGO1Q4mNi2txiwFnpq46shonmroWIazgHOBjgLMd3N0GOFvBeLPtKgcffDBOPvlknHzyyTjuuOPQ09OjO3yCIIiuhwSWIAgiguM4eOaZZ/Dggw/iwQcfxMqVK9HxNMlmRoR2NhgrJRfLIBRaDlgNF1ajYIkF9NPYjHohQmA5Byti25k4RW+TE6FNZgvYT7UNN+X3OJ2lNY5lgZeD+qViU2JuWeA9pTAdLZxY6lqEsEbhJattXqqWsAKANw442wB3O+BsB3h7W3B/fz+WL18eSiulrARBEC1IYAmCIDLYtWsX/vjHP+KRRx7BI488gg0bNsSuwQA2KyK0s8CY2pt+xrm/6rHX2rqnSOkMa7mRrYGKeurnPNzrVWvF4jREUhdIMhrN7OurYln+v+C+4BMgykUTiqtIRIt++WYMXCTS5VKx9RmDJ8S1UqAUR9J5IcTKe6ZmlRefMzFfXrmuc3s1wN3my6qz3U9cI9i2jaOOOgrHH388Tj75ZBx11FEoldQ/GCMIgtgXIIElCIJQYGhoCI8++igeffRRPPLIIxgaGopdgwUJ7Wwwa3aQ0MrNoWUeB3N5kGq2npoLE1qXgwkhjJUzltqiRZYxcJEsRmsWJbOW5UuaqBm2/k4vmW1LWxlrT0RN9+oNavJIG3X0e1ZQ/cLENWkf4OBHvGzBK2BvV5byJ+CV5BeB8v++RgB3B+Du9L96ncK6bNkyHH/88Tj++ONxzDHHoLe313D0BEEQ+wYksARBEJpwzrFp06YwnX300Uexffv2hGv2t2TWmu3/P2Vep+V6HXIZF1rAQGpFChuXk6KktgiRZQzcYslzX0VdE5EV6WtS6+00kNlMaY1i8qFDRFx5yjxgow81TMU1Q1bbfiZSVw15TZPVOLnyyl3A3dWSVWcngPbHpmVZWLJkSSisr3jFK2hfVoIgCE1IYAmCIApCCO2TTz6JJ554Av/zP//TucIxAKDitxpbs8DYzKDtOJp8BZLpZjw9m0ptmsjGzqEttboimyWvsfraqWw0fc05x2TJrLS0xlHcnzctbU09RFVidcRVUlbbLlcUV1lZjSJakdvkVSy45O4C3N1Byrob8X2zqtUqjjrqKLz85S/HMcccg6OPPhqDg4PqgyAIgiA6IIElCIKYQIaHh/HUU0/hiSeewJNPPomVK1ei0WgkXLMPzJoVyOxMgM2A7bHONDYLHakVbcUK51CSWhWRlZXXhHNIy2xW+ppzjqJlVlta4+PKehnXkNaOEjISKyuuGrLacf2cdmEdWY0Tpq5eLRDVXf4/bxfAOx9fc+bMwTHHHBMK65IlS2gOK0EQxARBAksQBDGJNBoNrFq1Cs888wxWrlyJZ555JmFhKMCfSzsICzPB+AwAg2AYVF4gSkpqZdLYnHMkiXab+OSJrK68JowlU2Zl09ecc7Tt/SoptB2rB+tKa5z4760AaY2TKrFp4pryezRZFTgpdS1CVsP6vA7wYXgYBnggrbzWcb1yuYzDDjsMRx55JI466igcc8wxWLBgQeq0AIIgCKJYSGAJgiCmmN27d2PlypWh0D799NPYtWtXyrX7wTAj+Dfof2UVtRMmSC0AWI4H1nSLXaE4Ka0Vc1iDLXi42MqmaAGIy6zj6qWvEudJEtoJE9ak8wOFS2uc6F7GXk8rOfaqnR8IFLl9DS/5vy/pRZTy6nEO8FFwPgzwYXBvGOB7ANQ7rssYw+LFi3HEEUfgyCOPxBFHHIGXvexlqFQU/+YIgiCIwiCBJQiCmGZwzjE0NBSmtM899xxWr16dIbXVQGgHAqntBzCgndYy1/OTrSClLWQ12th54AVCJGoXuQVPyjmZx/2VjYve8ifhXHC9iRNWAWPg1UBUPd7au3UC4YG4Cmktep9VoJWqim1xTMTVT1VHwPkewNsTSOseJLUMMMawaNEiHH744Vi2bBmOPPJILF26FH19fdrnJwiCIIqHBJYgCKIL4Jxj+/bteO6550KhXb16NTZs2ID0p/G+QGr7A7EdgL8CsoRUCZnlHKyeLnuFyG20pVkkpRNBdNuc6DkmSmiLTpSjwhrAKxFpzVr0SxcLbed0q8UIeVbrLw8WT/JKckm5//hvAHwPOB8BvBH/Kx/xf55AT08PDjvsMBx++OE4/PDDsWTJEhx66KG0lQ1BEEQXQAJLEATRxYyNjeH555/H6tWrsWbNGrz44otYs2YNdu/enXFUXyC1fUDw1U9tezrn8UVFNi5InGdKk5bcTpTMZrUOR89TpMwWIbAxaW0T1jgpc5GVsSLnYUxbWjPnpya89QjnuKaIK+euvwIwHwXnowAfi4hq8sJdjDEsWLAAhxxySCisS5YswcKFC2HbE5iOEwRBEBMGCSxBEMReBuccO3fubBNa8XV4eDjjSAtRufWltg8MvQCqsFwki2zyIMzltiiZVZn3mnQeXalVFdiEhBXIkdaOK2tKrKa0qkpqZwHWlrj6kjoekdRR8EBagc4FlVplGBYuXIjFixfj0EMPxeLFi3HIIYfg4IMPplSVIAhiL4MEliAIYh8hKrbr1q3DunXrsH79eqxfvx4bN26Ek7mSLgPQC4YeMK8XjPfA8nrAeC8Y7wVQAYOksOXILZAguPGVk2WE1gqk1XTRJt2W4zyBzWsJ1kW8rGeJrBU7V4q05q7yq/gWgsMFUAPHODy7BmAcnNXA+bgvrgkLKUUZGBjAQQcdFP5btGgRDj30UCxatAjValVpLARBEER3QgJLEARBwHEcDA0NYf369aHYrlu3Dhs2bMDQ0BBcN0fYOPNlFlWAV8HEP/SE3/uSKyGTMoLLOVgjItxxyZyI1YbTzhX5eZvYstbqyknJKlCQsKYRTWMThDVzv9ZoDdnTwQFQBw/+ATVwFvke4wBLnpMapa+vDwcddBAOPPDADlmdOXMmbVdDEASxj0MCSxAEQWTiOA62b9+OTZs2YfPmzeFX8f3WrVvzBRcAOABE5bYC8AoYr4DB/4rwayk70Y1Jrr89T2Brgbe2JbaTQVxsIysQT6ioJsEYeNlurfKctN2NxMs/hwegAY5G+1fWhC+rNQhpBcvfCxcAent7sWDBAsyfPz/8esABB4Tfz5gxgySVIAiCSIUEliAIgjDCcRxs3boVmzdvxtatW7Ft2zZs3bq17fsdO3bISa6AMwDlUG7By2AoA7yU+JXxMoASANsXX879PW3bavJJlVpenqRFgoSsxhDb0ABCRB0AzSApbX0FmuBM/KyJqKjKSqmgt7cXc+fOxdy5czFv3jzMmTMH8+bNw7x580JhHRwcJEElCIIgtCGBJQiCICYc13Wxc+fOUGi3bduGnTt3YteuXdi5c2fbv5GREf0TcYZQZLntf0UJEN+7FhhsgLcuB2dgLvO/wgK4BcAC41ZQz/+ZnwgH/8INUMXP0JEYx6WSg4ffdX7lAPMC0fS/BzxwFvzf3zgXvCRk1AWYG8wpdcBt/2e+lLrB9/5lgAMw/ZWVbdvGzJkzMXv2bMyaNavtqxBV8bWvr4/klCAIgphQSGAJgiCIaUWz2QzFdteuXdixYweGh4cxMjKCPXv2YM+ePRgeHg6/HxkZwfDwcM4iVJMEB6JS2yap08Drent7MTg42PZvYGAg/H7GjBkdojo4OAjLmqD5xARBEAShCAksQRAE0fVwzlGr1bBnzx6MjY1hbGwM4+Pj4dfo99GfjY+Po9lsotlsotFooNFohN/HfzbRgswYQ7lcRqVSQaVSQblcDv9F/1+pVNDb2yv1r6enJxTUgYEBlEqTPBeXIAiCIAqGBJYgCIIgJPA8T+kfYwyMMViWBcYYbNtu+79lWW2XicsJgiAIgkiHBJYgCIIgCIIgCILoCmhSC0EQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVlKZ6AARBEFMF5xy1Wm2qh0EQBKFET08PGGNTPQyCIIgpgQSWIIh9llqthvPPP3+qh0EQBKHEbbfdht7e3qkeBkEQxJRALcQEQRAEQRAEQRBEV0AJLEEQBIDKg/sDLgOzGMCs8CusoE2PMTDLAljwc8bCy5i4HmOtn7PWcW0/i9X0r9e6nIvjrMjlKT/njLX+D4AHpcAYuAUAzP9ZeC6Ex/Dg/63jWOt4q3WZf0z75dGaXFzHQmq9sG5kjK2v8XHEL2/9jpIuBxCOIe1cbT9PGUf77WqdM+my1jG87Xwd5xGXI345bztGXLc1Lh5exqLXZ+GtDS7jsa+iJgdjvO3hJWr6v5rW5VZQr+1nwfetyyI/i3z167X+H/0H+LX9/6N1WeR8FvPCn/nX9QAANmv9P3qM+H/rcg4bXnAZh828yHEe7MhxdvBzG17HcRbEsR7stsv869uMg8GDLcYHLzzGBvzjIC7z7w8b4pw8HIf//+ArEHzPgvsKsBmDBQYbwVcmLrPAwNBs2Lj4r+aDIAhiX4cEliAIAvDl1fPfKIK1voamwRgYhLgGPw/shPlGiJbtRI7rMCgrZkptlhE5DrGfpf0c6V8jchh+H/8almORsqxjiO2Xx2siEOm0ep13R0fdxMuyjpO4q3TrBV/T5HbCBJZ1Cmz0srjAtn7OY+PnHZcxUTPp8sRjeMK5Yv+AUGDj/1IvC6UyIrYR0Q0vQ+vylogiIrBeuwAyIYDBV8ZgQ9Tzv/e/srbj/FqAzRB+bR3nfx+9DEAgreK6QoCjkuqPOU9g284VPQ/az2eF14/8DgmCIPZhqIWYIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApoH1iCIAgAsDk4PH/zR4b2r4C/X6mF2D6q4rLI/xkL9smMHJd3WWQjUp6yuWnSz1s/87/yyOUcADhr+5l/HQZwtNXj0WOC4zpJ+RmPXNS2tymLDj9j/1Wmv9dr1mV59fIuE18yj4vvv5pyeccYU/aBRef3rOM80ct47KuoKfZdjT68UvaBDevp7QPL4X/PY//EZTzYCze8LKjpMQ4wL3Ke4P8Ibg/ilwOceX7toA5vu6z951bkXOL7+Fd/HP6fdfSrF9xNVvC9FzxEk/eBZbDAWvvKwr/PbYi9Z1t7vUb/b4Xf+8eF+9cGtSww2ExcxsDA0Gwk/Q0SBEHse5DAEgRBAGicvGWqhzAx8NhXDeJ+ShACoZBe3hWnLcLwqSGNIAiiW6BnbIIgCIIgCIIgCKIrYJxzg8/lCYIguhfOOWq12lQPo6up1Wq46KKLAAA333wzenp6pnhEhA70e+wuenp6wBj1RBAEsW9CLcQEQeyzMMbQ29s71cPYa+jp6aH7cy+Afo8EQRDEdIZaiAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApoFWKCIAiCIAiCIAiiK6AEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIroAEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIroAEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIroAEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIrqA01QMgCIIgpo5arYbHHnsMq1atwrPPPotnn30WQ0NDAIB3vOMdeOc736lde+vWrbj77rvx6KOPYvXq1di6dSsAYL/99sPRRx+N1772tVi+fHkht2NfZyJ/j2n88z//M37+858DAObPn48f/vCHhZ+DIAiCIOKQwBIEQezDPPPMM/joRz9aeN2hoSG86U1vAuc8/FlPTw8459i8eTM2b96MO+64A695zWvwkY98BLZtFz6GfYmJ+j2m8cgjj+CWW26ZtPMRBEEQhIAEliAIYh9ncHAQS5cuDf997Wtfw44dO4xqep4HzjmWL1+O888/HyeeeCLmzp0Lz/Pw0ksv4YYbbsDdd9+NX/3qV5g7dy7e9a53FXRr9l0m4veYRK1Wwxe/+EXYto3DDz8cK1euLPwcBEEQBJEGCSxBEMQ+zCte8Qr88pe/bPvZ9ddfb1x3cHAQ3/jGN7Bs2bK2n1uWhcWLF+Ozn/0sPvrRj+KBBx7Aj370I1x66aWoVqvG591XmajfYxLf+MY3sGHDBlx66aXYunUrCSxBEAQxqdAiTgRBEPswE9W6OzAw0CGvURhjeM1rXgMAGB8fx9q1aydkHPsKk9WC/dRTT+Gmm27CokWLcNlll03KOQmCIAgiCgksQRAEMSVUKpXwe8/zpnAkhAyNRgP/+I//CM45PvKRj1BiThAEQUwJJLAEQRDElPDoo48CAMrlMhYtWjTFoyHy+K//+i+sXbsWF154IY477ripHg5BEASxj0ICSxAEQUw6GzduDLdgOeuss9Df3z/FIyKyePbZZ3HjjTdiv/32w3vf+96pHg5BEASxD0MCSxAEQUwq9Xodn/jEJ1Cr1TBz5kz89V//9VQPicjAcRx84QtfgOu6+OAHP4jBwcGpHhJBEASxD0MCSxAEQUwajuPg05/+NFatWoVSqYSrrroKc+fOnephERl897vfxerVq3HKKafgrLPOmurhEARBEPs4JLAEQRDEpOC6Lq655hr84Q9/gG3buPrqq3HyySdP9bCIDNasWYNvfetb6O3txf/+3/97qodDEARBELQPLEEQBDHxuK6Lz3zmM7jzzjth2zb+4R/+AWecccZUD4vI4ctf/jKazSYuv/xyDA4OYmxsrO1y13UBAJzz8LJKpYJSid5eEARBEBMDvcIQBEEQE4pIXn/729+G8nr22WdP9bAICTZt2gQAuOGGG3DDDTekXm9oaAgXXHABAOADH/gA3vSmN03K+AiCIIh9DxJYgiAIYsJwXRef/vSn25JXkleCIAiCIHQhgSUIgiAmBJG8krx2Lz/84Q8zL//c5z6HW2+9FfPnz8+9LkEQBEEUAQksQRDEPs6ePXvCuYwA4HkeAH+7m127doU/r1Qq6OvrC///7//+7/jP//xPAMAPfvADLFiwILxMzHkVbcNXX301zjzzzIm9Ifs4E/F7JAiCIIjpBgksQRDEPs5f/uVfYvPmzR0//973vofvfe974f8vuOACXHnllVI1n3zySdxxxx0AAMYYvvrVr+KrX/1q6vWvuOIKSmcNmYjfI0EQBEFMN0hgCYIgiMLhnIffO46DHTt2ZF6/0WhM9JAIgiAIgtgLYDz6LoMgCIIgCIIgCIIgpinWVA+AIAiCIAiCIAiCIGQggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisoTfUACIIgCIIgZKjVanjsscewatUqPPvss3j22WcxNDQEAHjHO96Bd77znVM8Qnk2bdqEN7/5zbnXu/TSS/FXf/VXkzAigiCI7oAEliAIgiCIruCZZ57BRz/60akeRuHMnDkTtm0nXtbX1zfJoyEIgpjekMASBEEQXcFXv/pV3HTTTTj22GPxta99baqHQ0wRg4ODOOyww/DUU0+h2WxiYGAAIyMjUz0sI2644QYsWLBgqodBEATRFZDAEgRB7OWMjo5i9erVWLlyJVatWoVVq1Zhw4YN4JwDAH7wgx9M2Jtnzjne+MY3YuvWrXjrW9+Kv/7rv9aqs3r1avzsZz8DALz73e8ucIRTywsvvIAHH3wQTz75JF544QVs374druuGkvbKV74SF1xwAQYGBqZ6qNOCV7ziFfjlL38JAPj2t7+Nb3zjGxgbG5viUREEQRCTCQksQRDEXs4HP/hBrF69ekrOvXLlSmzduhUAcNppp2nX+frXvw7XdfEnf/InOOaYY4oa3pTywQ9+EI899ljiZTt27MCOHTvw0EMP4Tvf+Q6uvPJKnHzyyZM7wGlItM32jW98I370ox9h165dSjVeeOEF3HTTTXjkkUewbds2WJaFBQsWYMWKFbjkkkswa9asYgdNEARBFAoJLEEQxF6OSFoBYGBgAEuWLMHatWuxY8eOCT/3H/7wBwDAvHnzcOSRR2rVeOKJJ/Dwww8DAN761rcWNrapRoj94OAgTjvtNBx33HFYuHAhqtUqNm3ahF//+te47777sGPHDlx55ZW49tprceyxx07xqKcPvb29uPjii/HNb34TANBsNnOPufHGG3HDDTfA8zwAQE9PDxzHwQsvvIAXXngBv/rVr/CFL3wBS5cundCxEwRBEPqQwBIEQezlvOY1r8GsWbOwbNkyHHTQQWCM4YMf/OCkCuyKFSvAGNOq8b3vfQ8AsGDBgr1K4A466CBcdtllOPvss1GpVNouW7ZsGc444wx897vfxfXXX49Go4Frr70W3/rWt6ZotNOT8847LxTYvC6DX/ziF/i3f/s39Pb24m1vexte85rXYM6cOXBdF8899xy+/vWv45FHHsHHP/5xfPvb357UxZM++clPYv369RgfH8eMGTOwdOlSnH322Tj77LNRKtFbNYIgiCi0DyxBEMRezhvf+Eacc845WLRokbZE6rBu3TqsXbsWgH778NatW3HfffcBAM4///xJHf9E88UvfhGvfvWrO+Q1ylvf+lYsWbIEALBmzRo8//zzkzW8rmDBggUol8sAgFWrVqVeb2xsDP/6r/8KALjmmmtw6aWXYs6cOQD8tuRly5bhn//5n7Fs2TJs3boVv/jFLyZ+8BGeeeYZuK6LUqmEHTt24P7778dnP/tZvP/978e2bdsmdSwEQRDTHfpYjyAIgpgQfv/73wPw25aPP/54rRq333572O551llnSR3jOA5++9vf4u6778bKlSuxa9cuuK6LWbNm4WUvexlOPPFEnHPOOaHACE4//XQAwAUXXIArr7wSL730En784x/joYcewrZt29Df34+lS5fiL/7iL3DccceFx9Xrdfz617/GbbfdhvXr16NWq2HhwoU499xzcckll6BarWrddsEJJ5wQpovr1q3DYYcdpl1rzZo1uPnmm/H4449j06ZNqNVqGBgYwODgIBYsWIDly5fj1FNPxcEHH6xV33Ec/Pd//zfuvPNOvPDCC9i9ezcYY5gxYwZmzZqFI488EieeeCJWrFgRiqcgfv+vWbMGP/3pT/Hwww9j27ZtGB8fx2c/+9mOD0N6e3vRbDaxe/durFy5EkcccUTHuH73u99hZGQES5YsSZ1LXCqVcPbZZ2PVqlV46KGH8KY3vUnrPpClUqng9a9/Pc466ywsXbo0THzXrVuHH/3oR7j55pvxzDPP4GMf+xiuv/56SmIJgiAC6NmQIAiCmBBE+/ArX/lK7Tff9957LwB/nughhxySe/3nnnsOV199NdavX99x2datW7F161Y88MADeP7553HllVem1rnrrrvwuc99DrVaLfxZvV7H/fffjwceeAB/93d/h9e97nXYtm0brrzySqxcubLt+BdffBE33HAD7r//flx77bVGEus4Tvi9Zek3Tt188834yle+Atd1236+e/du7N69G+vXr8dDDz2E559/HldddZVy/V27duFv//ZvE1t5xX2/evVq/PznP8eNN96Igw46KLXWr3/9a1x77bVoNBq5542K8L333psosE8++SQAYO3atXj961+fWqterwMANm/e3PbzTZs24c1vfnPuWNL4i7/4C7znPe9p+9mcOXPw4Q9/uOO6ixYtwoc//GEceOCB+Jd/+ResXr0at912Gy688ELt8xMEQexNkMASBEEQhbNt2zY888wzAPTbhxuNBp566ikAwJFHHpnbPrx69Wp84AMfwPj4OADg+OOPx3nnnYdDDjkE5XIZ27dvx9NPPx0mw2k8//zz+O1vf4vZs2fj3e9+d3juP/7xj/j2t7+NWq2GL3/5yzjuuOPwmc98Bs899xxe//rX49RTT8WsWbOwYcMGfOtb38Lzzz+PJ554AjfeeCMuv/xyrfsAAB555JHw+0MPPVSrxgsvvBDK64wZM/C6170Oxx13HGbNmgXXdbF9+3asWrUK999/v3ab9le+8pVQXpcvX47zzjsPCxYsQH9/P0ZHR7F27Vo8/vjjYUt4GqtWrcLtt9+OGTNm4JJLLsExxxyDcrmMNWvWYP78+R3Xj3448sgjj+Cd73xnx3VEG26j0ZCa+y1Ediq55JJL8OMf/xhDQ0P4wx/+QAJLEAQRQAJLEARBFM7dd98NzjkqlQr+5E/+RKvG888/H6aPy5Yty7yu4zi4+uqrQ3n90Ic+hIsvvrjjeqeccgre9a53YWhoKLXW6tWrsWTJEnzlK1/B4OBg+POjjjoKBx10ED7xiU/AcRx84AMfwPDwML74xS/ixBNPDK+3dOlSnHTSSbjsssuwbds2/OxnP8Nll13WtgWMLL///e/x4osvAvAlftGiRco1AODOO+8Mk9cvf/nL4bzaKKeddhre9a53Yffu3cr16/V6+MHAaaedhs985jMdInzcccfhoosuwvj4eGaS/OKLL+Kggw7Cddddh/322y/8edoq1tHzPPvss/A8r6N+tA39k5/8pNJtA4ADDjgAP//5z5WPE/T09CgfY1kWjjzySAwNDWHTpk3a5yYIgtjbIIElCIIgCke0D5944ono7e3VqhFtA46KTBK33347NmzYAMBfdTlJXqMccMABmZf//d//fZu8Cs444wzMmzcPW7duxc6dO3HJJZe0yatgYGAAr371q/Htb38bO3fuxJo1a5Tnrm7btg1f+tKXAPiS9t73vlfp+CgidRTbKGUxc+ZM5fp79uwJP2w47rjjMlNcmcfDhz/84dzfeRK1Wg3btm3D/vvv3/ZzUSvrg4ssLMui/WEJgiCmCbQKMUEQBFEoIyMjePTRRwHotw8DwPbt28PvZ8yYkXldIcwA8Ja3vEX7nIDfppsmeYyxtsvOO++81DrR623cuFFpDLVaDVdeeWUonvGFo1SZN28eAP93c+edd2rXSWPmzJnhasp33HEHxsbGtGvNmzcv8UMBWaKPG8ExxxwDwG9P7pZVfT3PC9vwFyxYMMWjIQiCmD6QwBIEQRCFct9998FxHNi2jRUrVmjXic5DTEpDozz77LMA/KRNZrGnLPKOj44la7Xe6PVUhK7ZbOIf/uEfwoWhTj31VLzrXe+SPj6J8847L1xI6hOf+ATe//7347vf/S6eeOKJsO3ahHK5jAsuuAAA8PTTT+NNb3oTvvjFL+KOO+5QlneTVZYBtC28JTjjjDMwMDAAx3HwL//yL+Ccpx7veR727NljNAYZssYAIJz/CviPAYIgCMKHWogJgiCIQhFp6Mtf/nKjtsvonNG81Wh37doFoJU0mpA3XzHaHpvVDhudhynmYObhOA6uuuoqPPjggwCAk08+GZ/85Ce15s9GWbhwIf7xH/8Rn/vc57B161Y8+eST4cq8tm3jiCOOwOmnn47Xvva1uR8WpHHFFVeg0Wjgtttuw/DwMG655RbccsstAPwPFk4++WS85jWvyU2S89L2PXv2tK2kHL9va7Uadu3ahUqlEm5NMzg4iCuuuAKf//zncccdd2BkZASXX345jjjiCFiWBc/z8NJLL+H+++/HL37xC1x22WWZ6XoRXHHFFTjppJNwyimn4NBDDw0Xo9qwYQN+/OMf4yc/+QkAX+jFhwMEQRAECSxBEARRII1GAw888AAAs/ZhwJ+vKRgeHjaq1Q04joNPfOIT4dZBJ554Ij772c+GrbmmLF++HN/73vdwzz334IEHHsATTzyB9evXw3VdPPXUU3jqqafw3e9+F1dffXXqXqlZVKtVXHnllbj00kvx29/+Fo8++iieeeYZjI+PY8eOHbj11ltx66234vTTT8dVV12VurVQ3lZBf/mXf9mxzU2Uj33sYwBa+8kKXv3qV6PRaOD//t//iwceeAAPPPAAKpUKent7MTo62rZd0WSwZcsWfPOb38Q3v/lN2LaN/v5+NJvNtkT8qKOOwmc+8xnaA5YgCCICPSMSBEEQhfHwww+Hb8BNBTa6ZUqewM6aNQtDQ0NdM78xjpBXkV6fcMIJ+PznP2+0f2wSlUoFZ555Js4880wAfnL9xz/+Ebfddhvuv/9+DA8P46qrrsKNN96IOXPmaJ1j0aJFePvb3463v/3tcF0Xq1evxr333oubb74ZO3fuxO9//3t84xvfwAc+8IEib5oUF110EU4++WT89Kc/xcMPP4xNmzZhZGQEfX19OPDAA3H00UdjxYoVOOGEEyZ8LO973/vwxz/+EStXrsT27dvDx/gBBxyApUuX4qyzzsIZZ5xhnL4TBEHsbZDAEgRBEIUhBGzJkiXGC89E9zx96aWXMq+7bNkyDA0NYfv27XjppZcy56ZON+Lyevzxx+Mf//EfC5fXJGbNmoWzzz4bZ599Nr70pS/hZz/7GcbHx3H33XfjoosuMq4v2pOPOOIIvPrVr8bb3/521Go13H777doC+8Mf/rDjZ295y1uwYcMGLFiwAD/4wQ8yj1+wYAHe9773aZ27SM444wycccYZUz0MgiCIroMWcSIIgiAKwfM83HPPPQCKWXTmgAMOwNy5cwEgXI01jdNPPz38/sYbbzQ+92ThOA4++clPhvJ63HHH4Qtf+ILWvqGmRNuGxZziIlmwYEG4j63OXrNp7Nq1K9xC6eijjy6sLkEQBDE9IYElCIIgCuHJJ58MxScqlCYIqVq7di1GR0dTr3fWWWeFcvSrX/0KN910U2Zd3f1Ai8RxHHz605/G73//ewATK6+/+93vcqVUzF0GgAMPPFCp/saNG/Hwww9nXmfTpk1Yu3YtAH9RqaJ4+umnw+//9E//tLC6BEEQxPSEWogJgiD2ctavXx+uOCsQ+4sCwF133dW2WnBvb69Wa6NIERcuXGi8FYrgzDPPxK9+9St4noeHH34Yr3rVqxKvVyqV8KlPfQrvf//7MT4+jq9+9av4/e9/j/PPPx+HHHIIyuUytm/fjpUrV+Kuu+7CsmXL2hb4mQquueYa3HXXXQB8YXzPe96DTZs2ZR4ze/ZszJ49W/lcN910E6655hosX74cy5cvx+LFizFz5kw0m00MDQ3h9ttvD9Pz+fPnK29/NDQ0hA9/+MNYuHAhVqxYgSOPPBIHHHAAqtUqdu/ejaeffho/+9nPwtWkL774YuXbkMZDDz0EwJ/f+8pXvrKwugRBEMT0hASWIAhiL+fJJ5/E5z//+dTLv/71r7f9f/78+UYCW+SelSeeeCLmzZuHrVu34rbbbksVWAA4/PDD8bWvfQ1XX301Nm7ciEcffRSPPvpo4nWXLVtW2Bh1ufPOO8PvN2zYgPe85z25x7zjHe/AO9/5Tq3zNRoN3HfffbjvvvtSr3PggQfi85//fOb2QFls3LgRP/rRj1IvtywLb3nLW/Bnf/ZnWvXjOI6DO+64A4Cf+utuAUQQBEF0DySwBEEQhDHPPfdcmB6arj4cxbZtvOENb8D111+P+++/H7t27crcW3bp0qX4zne+g9tuuw1/+MMfsHr16nC+5ezZs3HYYYfhpJNOwjnnnFPYGLuBT3ziE3jwwQfx+OOP44UXXsCOHTvCluKZM2fi8MMPx2mnnYbzzjtPa9ueV7ziFbjuuuvw8MMP4+mnn8bQ0BB27tyJ0dFR9PT0YOHChXjFK16B1772tYWl8wDCxwQAvPGNbyysLkEQBDF9YZxzPtWDIAiCILqb//iP/8B//Md/YPbs2fjpT3+au5enCiMjI/jzP/9zDA8P46//+q/x1re+tbDaRHfzsY99DPfddx+WL1+OL3/5y1M9HIIgCGISoEWcCIIgCGNE+/App5xSqLwCwMDAQCit3//+9zE2NlZofaI7efrpp3HfffeBMYZ3v/vdUz0cgiAIYpIggSUIgiCMaDabOO200/COd7wDb3jDGybkHBdffDEOOugg7N69O3EfUGLf4xvf+AYA4Pzzz8eRRx45xaMhCIIgJgtqISYIgiC6gmeeeQb33XcfBgYG8KY3vWmqh0NMISMjI/jRj34Ezjne8IY3ZM6LJgiCIPYuSGAJgiAIgiAIgiCIroBaiAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiu4P8DxBLX6aAglzgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 49\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "a2a944e3-335b-4400-b9b5-cbee3d29d249", + "metadata": {}, + "source": [ + "## Integrated flux over the sky\n", + "\n", + "Define the Crab spectral model" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "b491129a-09dc-403b-8513-aedd289dc1be", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG5CAYAAACTEQDKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgURx/HvxclIQESgru7W3EowYq2tEhxKU5fSouWUlpaChWKS4GipUBxKMXd3SG4EyTucjfvH9PdnT3d3dtLQjqf58mTk72dvbu9ne/81EAIIeBwOBwOh8Ph2MUtvQ+Aw+FwOBwO522AiyYOh8PhcDgcBXDRxOFwOBwOh6MALpo4HA6Hw+FwFMBFE4fD4XA4HI4CuGjicDgcDofDUQAXTRwOh8PhcDgK4KJJRxITExESEoLExMT0PhQOh8PhcDg6w0WTjjx69AiffPIJHj16lN6HwuFwOBwOR2e4aOJwOBwOh8NRABdNHA6Hw+FwOArwSO8DyAzs27cP+/btQ2xsbHofCofD4XA4HBfBRZMOBAcHIzg4GCEhIfjkk0/S+3A4HA6Hw+G4AO6e43A4HA6Hw1EAF00cDofD4XA4CuCiicPhcDgcDkcBXDRxOBwOh8PhKICLJg6Hw+FwOBwFcNHE4XA4HA6HowAumjgcDofD4XAUwEUTh8PhcDgcjgK4aOJwOBwOh8NRABdNHA6Hw+FwOArgoonDMePhw4dYtmwZIiIi0vtQOBwOh5OB4L3ndIA37M08mEwmtGjRAnfu3MGuXbuwbt269D4kDofD4WQQDIQQkt4HkVkQGvYuXrwYZcqUSe/D4Wjg7NmzqF27NgAgW7ZsiIiIgJsbN8hyOBwOh7vnOJmI169fIywszKl9/P333+Lt6Oho3Llzx9nD4nA4HE4mgYsmTqbg8uXLKFmyJIoWLYrr169r3s/OnTtl98+ePevsoXE4HA4nk8BFEydTMHnyZERHRyM2Nhbz58/XtI+XL19aiCRXi6aoqCi8++67aNiwIQ88z0D8+uuv+PDDD/HgwYP0PhQOh5OB4KKJk67s3bsX9erVw4IFCzTvIyQkBFu3bhXvb968GSaTSfV+du3aZfGYq0XTokWLcPDgQRw7dgy//fabS8fiKOPatWsYNWoUNm7ciG+//Ta9D4fD4WQguGjipBuPHj1Cp06dcPLkSQwbNgw3btzQtJ9ffvkFbD7DixcvcPLkSdX7YeOZPD09AQAXL15ESkqKpuNSwqZNm8TbBw4ccNk4Ai9evMCUKVNw7tw5l4/1tsIK8OPHj6fJmEajETwnh8PJ+HDRxNHEvXv3cODAAc0XepPJhH79+iEmJgYAQAjBpEmTVO8nNDQUK1assHh848aNqvaTkpKC3bt3AwACAwPRsWNHAEBiYqJmMeeIp0+f4vTp0+L9o0ePIjk52SVjCfTp0weTJk1C69atkZSU5NKx3la2bdsm3r5z5w7Cw8NdOt758+eRO3du1K1bF4mJiS4di8PhOAcXTRzVXLp0CZUrV0azZs0wcuRITftYsGCBhWVl48aNOH/+vKr9zJ49WxQaAwcOhIcHLT22adMmVYLuxIkTiI6OBgC0bNkSderUEZ9zlYuOtTIBQEJCgkxE6c3du3exZ88eAMCbN29w+PBhl40FUOtJ//79UbFiRVy5csWlY+nF8+fPcebMGdljrnbRTps2DeHh4Th9+rRFIoIruHjxIsaNG4eQkBCXj8XhZDa4aOKoIjo6Gp07d0Z8fDwAKloWLVqkah937tzBmDFjxPtdu3YVb0+cOFHxfmJiYsSgb09PT3z99dd49913AVDXnxoBxrrm2rRpg1q1aon300o0AcD+/ftdMhYA/P7777L727dvd9lYALBlyxb8/vvvuH79uuz7dhVhYWHo27cvpk+frtkCumPHDovHXClkExIS8M8//4j3Dx065LKxAGpRbdeuHaZPn46ePXu6dCyBlStXYvbs2TAajWkyHofjUghHN27dukUaNmxIbt26ld6H4hJMJhPp0qULASD78/DwIPv371e0j9TUVFKvXj3xtUOHDiVJSUmkaNGi4mOHDx9WtK8ZM2aIr+nXrx8hhJBFixaJj40bN07xeytfvjwBQAwGA3nz5g2JiYkhbm5uBACpVq2a4v0o5eXLl+L+8+TJIx5zw4YNdR+LEEJSUlJIvnz5ZN9b0aJFiclkcsl4hBBSv3592TkSFhbmsrEIIbJzc8+ePZr20aZNG4vzu02bNjofqcTWrVtlY1WqVMllYxFCyI4dO2TjPXv2LM3GW7x4sUvHIoSQ27dvk48++oisXr3a5WMRQq9nKSkpaTIWJ2PARZOOZHbRNH/+fPECmC1bNtKrVy/xfkBAALl9+7bDffz444/ia0qUKEFiYmIIIYQsX75cfLxBgwYOJ/Pk5GRSsGBB8TU3btwghMjFSMmSJRWJggcPHoj7qVu3rvh4hQoVxAk/ISHB4X7UwIq78ePHk5IlSxIAxNPTk8TGxuo6FiGEbNu2zUIMACBXr17VfSxCCDlz5ozFWEuXLnXJWIQQcvPmTWIwGMSxevTooXofsbGxxNvbmwAg+fPnJzlz5iQASFBQkMvEZZ8+fSw+p9evX7tkLEKIxaJn2bJlLhuLEEJatWoljtWiRQuXjmUymUj16tUJAOLu7u5yQZiUlESaNm1KDAYD2bRpk0vHIoQKtLlz55LNmze7fCx2TI4cLpp0JDOLpgsXLhAvLy/xArhhwwaSmpoqW5mXKVOGRERE2NzHtWvXxH0YDAZy9OhR8bnU1FRStmxZcV///POP3eNZuXKluG27du1kzzVp0kR87vLlyw7f27x588Ttv/vuO/FxdkI7efKkw/2ooWXLluK+z549SwYNGiTe37Vrl65jEUJIhw4dZJOXcPuHH37QfSxCCOnWrZuFGGjZsqVLxiKEkJ49e8rG8vX1FQW5UjZv3iy+fvDgwaR169bi/Xv37ul+zMnJySQwMNDic9q4caPuYxFCSGRkJMmSJYtsrK5du7pkLELoYoQVsp6eniQqKspl4x05ckT23ubOneuysQghZNmyZeJYFSpUcOlYhBAyceJEcbzjx4+7fLwvvviCACBfffWVy8cymUxkxowZZPz48SQxMdHl4zkDF006kllFU2RkJClRooT4g/3000/F56KiokSLjDAhWzNXJycni6tAAOSLL76w2Oavv/4Sn69WrRoxGo1Wj8dkMpFKlSqJ27LiixBC5syZIz43adIkh+/vvffeE7e/cOGC+DgrpubMmeNwP0oJDw8nHh4eBAApXLgwMZlMZN26deJYY8aM0W0sQgh5/vw5cXd3Fy0ot2/fFseqV6+ermMRQsiTJ0/E9xcUFEQKFSokWuzevHmj+3h3794V3x/7t2LFClX76du3r/janTt3kq+//lq8/+eff+p+3Pv27RP3nzdvXvH2iBEjdB+LEEKWLl1q8RkFBga6zJowYcIEi/H++usvl4xFCCGdOnWSjdWkSROXjWU0Gkm5cuVk4125csVl471584b4+fmJYwnhCK7i7Nmz4lgeHh7k5cuXLh1vyZIlqq7Z6QkXTTqSGUWTyWQiH330kXhC16pVy2IlcO/ePdGVYS6qBCZPniw+X65cOavuLqPRSKpVq+bwAvvPP/+I29StW9fCdfL06VPFK8D4+Hhx9Z0/f37Zvk6fPi3up1evXnb3owbWSjZy5EhCCHUrCo/VrFlTt7EIIWTatGnividMmEAIkcdw6e0OGjt2rDjexIkTxRUrALJkyRJdxyKEkP79+4v7b9u2rXi7WbNmiveRmppKcuXKRQCQrFmzkoSEBLJz506L70lPhg0bJu7/t99+E93KroprYi2wgjsYADl9+rTuYyUnJ8uEoPDXs2dP3ccihFq1hM9P+HNzc3PZZL9lyxaL9zZ+/HiXjEUIIV9++aVsLH9/fxIXF+ey8Zo3by4b7+eff3bZWDExMbJ4y7x585Lk5GSXjecsXDTpwN69e8nYsWPJsGHDMp1omjt3rngyZ8+endy/f9/qdocPHyaenp7itosWLRKfO3funGh5cHd3J2fPnrU5HjtRlS1b1uoquGnTpuI2tmIJ6tatK25j7/v4+++/xe0GDBggey4xMVF8T+XKlbO5D7WwrjLWSiZYz9zc3Eh4eLguY5lMJlKqVClxvLt37xJC5MJGrUXGHrGxsSQgIIAA1B3z/PlzmfjU20X38OFD8dzKnj07iYiIEK2iBoOBPHnyRNF+jh8/Lh7jBx98QAihq3tXWeSMRiPJnz8/AUC8vLxIdHQ0qVmzpjie3kL24cOH4r5Lly4ti6n79ttvdR2LEEI2btwoE7L+/v4EAMmZM6dLAqdZYZ47d26r1yG9MJlM5J133rEQTcWKFXNJ7FtYWJj4+bF/f/zxh+5jEULIgQMHLMYqW7asy+L62AW18Ld+/XqXjKUHXDTpyNtgaTp37pw4cSrZlo1jchTsyJpYPTw8yIEDB0hCQoLMfefI9GoymUiDBg3E7ZcvXy57njUbly5d2qZr4eeffxa3+/77722ON3ToULvvr0aNGuIEHB0dbffYlRATEyNatvLmzStzQY4cOVI8Fr2CPQ8fPizus2nTpuLjR48eFR//8MMPdRmLELlLs3fv3oQQ+p0WKVJEPC/0dNENGTJEHE+IvWAvwtOmTVO0H1ZEsuecIMCyZMmi6+r35MmTMlFBiHzi1zuu6fvvvxf3PWXKFJmIql+/vq5jEUJkcXO7d+8mH374oXj/yJEjuo4VExNDsmfPTgAQb29vmSXaFcHn7G+qUqVKMquM3rGPhMhjmVhh7Yr3ZjKZSJ06dWQLZeH2sWPHdB/v2bNnxNfX10I0sdeqjAYXTTqS0UXT4sWLxZOyevXq5McffySPHj2yum1kZCQpXry4uL1S98Rnn30mviYwMFAWoFutWjWSlJTkcB/sRalo0aKy13Tu3Fl87rfffrO5j/v378veqzVMJpNY6sDT09OqKBo8eLC4n4MHDzr+ABywfv16cX+DBw+WPcdmuOkV18JmOLIr09TUVDEI2d/fX9H34gij0Sizal26dEl8zhUuuqdPn4qi3s/PTyxpcO/ePXGs8uXLK1ohC/Epbm5u5NWrV+LjH3/8sbiv8+fP63LchBAyZswYcb9CViGbnq9nXJPJZJIlWTx48IAQQsTH3N3d7SZwqIX9/IsXL06MRqPMJW0tntEZWKHer18/2e/aFaUu2ASB1atXywLCrYUmOANrZfL09CQPHjwgxYoVE8/Vp0+f6joe63asWLGi7L316dNH17EIkbvWR4wYQUqXLi3ev3nzpu7j6QEXTTqS0UVT+/btLRS9sNKcM2cOCQ0NJYTQiywbVFm7dm3Fk2pqaqossFr48/LyUhUoyWaXzZs3jxBCA37Z2kaOygAIViLAevbT9evXxeeDg4Ot7oMNnv3xxx8VH78t2JTvvXv3yp6LjIwU358e2TiRkZHEx8eHACA5cuQg8fHxsud79Ohh81i0sH37dpsrRVe46P73v/+J+xw7dqzsObZGlCOxwwbGN2jQQPbczJkzxefmz5+vy3GbTCYxpsjNzU10xUVFRbkkrom1zrJ1wNjPb8OGDbqNN378eHG/QnbmmzdvxPdWpkwZ3cYyGo2yiVbIlv3888/Fx/Qsq3Dp0iVxv0WKFCEpKSkkMjJSLFWRJ08eXd2PX331lTjewIEDCSFElqAwffp03cZKTU2VeQW2bt1K4uLiRGuTr6+vrtmPly9fFrMrs2fPTl6/fi2rvfe///1Pt7H0hIsmHcnooonNgLP25+bmRoKDg8knn3wiPpYjRw5xZaqUqKgoMdBY+FPqJhE4d+6c+Nq8efOSuLg4mSvNnstNYOrUqeL2P/30k8XzbM2oGTNmWN3HlStXxG06d+6s6j2Yk5CQIGbABAQEWHX3sKbxFy9eODXeggULxH0NHz7c4nk2Y0+PC9S7774r7m/btm2y51gXnbu7u9MuuhcvXohuTh8fH4uAXzZmx9F7++WXX2wKY9aNJrgbneXq1aviPs0zvGrVqiU+p1dc06effiruk7XOsvGDn3zyiS5jJScni8VaPTw8xIUYIYQ0bNhQHE+vayT7HlihfuLECfFxPYuTsqU02Iza999/X9cFCCE0yzZbtmziZylch+/evSuOpdSSqgTWGvjOO++I+2Vd4HrGiLEuXOF3FxYWJv6uc+TI4dJgd61w0aQjGVk0xcXFiaq+Zs2a5Pbt22TKlCkW4sb8b8uWLZrGYzPq6tWrpymt+YMPPhCPY/To0aLVJGvWrIoCpUNCQmQXAXPYbKKQkBCr+0hJSRHHLVasmOr3wMK632yZutlV+po1a5waj7W0Xbx40eL5yMhIMYi6ePHiTl182RV4qVKlrJaL0NNFx+7rs88+s3g+PDxcXP3nzp3bbjxS48aNbU7mCQkJuicDfPPNN+J4s2fPlj03evRo8Tk94pqSk5PFrEBvb2+ZGy4uLk78jITSF87Clg0xj5X76aef7C5itMBOvOy1ymg0kgIFChCAWrkjIyOdHuvevXuitSwoKEg2obNud73KAUyaNMmmqGXjPs+dO+f0WElJSaLbDwA5cOCA+Nz58+fFx2vVquX0WIQQsmvXLnGfRYsWlXkN2Pp4riyIqxUumnQkI4sm1nJjvmK+cuUKmTBhgiyGCQAZNWqUU2M+fPiQLFmyRHMA9fXr12XF8YQ/NenfFStWFF/HZlKxgqFkyZJ298G6epxZ/ffu3Vvcz/bt261us3fvXnEb82w+NVy8eFHcT40aNWxux1qHhKrqWmAvdLaKCrJVwp1x0b1+/ZpkzZpVFALPnz+3uh0bfLxjxw6r27x580as8VS6dGmr2wjBtwaDQZfJt0qVKuJxPX78WPYcm82pR1wTGyf10UcfWTzPBjE78/0LBAcH27S4sIuYRo0aOT0W614vXry4xcJsxIgR4vN6tFVhLd3mGYfx8fGiFTl79uxOF2iMiIgQ3WKslUngt99+E49FjzgqNku6efPmFs+zpWCUFAy2R2pqquy6bF4DjXXl611+RQ+4aNKRjCyaVqxY4XCVZzKZyOnTp8n48ePJ9OnTM0StDPNKz+7u7jaD163B+v/ZVT27MnR00WGz2hxVKrdFcnKymIrv5+dnMx4rLi5ODG52xrI1fPhw8ZjtxeKwMQRa4yNevHghHnOOHDlsVuJmA3SdcdGxRROHDRtmczvWsmfLtbpq1SpxG1sBymw9pX379mk6ZgE2SNraqp2Na6pYsaJTYxEij6Ezd5kSIs8y/fXXX50a686dO+K+SpQoYdXaKMQfubm5Oe2iZavoWzt2NqGkY8eOTo318uVL0W2UNWtWq8HlbIygVgu9AHvdsrZ4ioiIEK2EQUFBTiVyxMbGyvpfWisJw4oqZ0Uam5BUu3ZtCwsn2w7H1vGkJ1w06UhGFk1sts7OnTvT+3AUc+/ePdEiBKjvKcbGJDVu3Fh8nLWM7N692+4+/vjjD5srTKXs2bNH3Iej1hWs29BWXSx7JCQkiALNx8fHbmYUO9FpbRbMBqs6qmbOup+0uOjCw8Nl2UTmlhqW5ORkEhQUJFqkrH0ObOFWW6nw7IJDSSydPViRYquFDRvXxGbyqYUNUA4KCrK6CGLjq1q1aqV5LELkZRtsCXDWrbpq1SrNY4WFhYluc39/f6sByqmpqaIYyJIli+q2OixscUlbFnjWStilSxfNY5lbmWxdA1hBvHXrVs3jsbGfnTp1srpNeHi4KBoDAgI09+KMiYmRFT017+YgwAorV1c/VwsXTTqSkUUTm9GmxlKTERCsJu7u7qpNwyaTSba6DQ0NJUajUSyA5+vr6/ACwGZXmfe5UwpbusBRK4lvv/1W3FaLT3/NmjXi65VUYC5Tpozm1X98fLwoTNzd3e2KGELkLjotdWbYGkxCNpE9WBfN4sWLZc8lJiYqKrp469YtcR8dOnRQfcws9erVE/dlK46OFZbOZLWxddOsJQIQQn8fQuyPj4+PRYalUpKSksTflKenp81K3Gx/OGvuQqWwVe7tWT7Y3926des0jRUVFUVy5MghvjdbBVOTk5PFOE4fHx/NIo09x+0JBlakCQVZ1RIeHi6+Nzc3N7suWtaSpjXeko3TsnfMsbGxonB0tPBLa7ho0pGMLJqEzCV/f3+XVXZ1FcnJyWTu3Llk//79ml7PBlcvXLhQNnG3b9/e4etNJpN4YcmXL5/q8dWueI8dOyYeX/fu3VWPx8YpHT582OH27OpfbewHuyJU0vzVGRcdO3m5u7srssKx37V5HM3u3bvF5+y1yTEajeIFPG/evJp/P8+fPxdj9MqXL29zO3YytCV2lMAGuNtrldKvXz/FVldbsJmY9rJMU1JSnK4PlpycTAoWLEgAGmd2584dm9uy/f20Zr+yAex9+/a1uy0r0rRU7I6IiJCd4/YaRaekpIjXFU9PT031qMaNG6f4vR06dEjcVk2LIoGnT5+K1kEPDw9y+/Ztu9uzC55Zs2apHs9VcNGkIxlVNEVHR4snn7UssswOGwTfvHlz2UpOaQotG+CqtqAcu7pWEluRnJwsBjqrnaTZmJlSpUopei17MVTjVjCZTLK6Lkp7mGl10bFuBKWF9swLO7JCi41VcmTRYQOmtVpq2RIQEydOtLmdHnFNbMXvMmXK2D0PWMGjNfmDFeqOFjdsnOKePXtUj8UeryPLb0pKimj9yZo1q2pLWmJiotjuxmAwOAyWZ+OotJQ6YDMrHYkYQggZNWqUuL1Qz04pz58/F0WMl5eXw/OarS8GWK99Zw+2IbaSEifXrl0Tty9XrlyGWexz0aQjGVU0nTp1Sjz5+vfvn96Hk+aYWzfYSdSRO0mAXZGpbXHCBpKvXLlS0WvYqsNqsprY2AultbFSUlLE1W327NkVJwCwlho1rTi0uOhiYmLEyc/Nzc3hKpWFFVtCTJrJZCKFChUSJwxHGZ5sKwtH7lVbsOnxjgpuOhvXxLZN+e677+xuGxYW5lRRVdZ9rUSos2UJtFjSWBenEuszW3Va7W+XdXEqWfAYjUbRCqa2ZVBkZKTMyqSk3dXly5fF46tTp47isQiRZwMqrdP2ww8/iK/58ssvFY916dIl0cqaI0cOxZ9Lo0aNxPH06MigB1w06UhGFU1sVWtbRRwzO+yKTPirXLmy4tezDUgnTJig+HUmk4kULlxYNKEr9c2zLgFbKfzmpKSkiPEp7u7uqopjskX72Bot9mjVqpViSw2LWhedyWSSZcx9/PHHiscihJBHjx5ZTOpsSYbWrVs73AebiaelDUh4eLiY0FCkSBGHwsKZuCZbbVPswTagVdrk2NqxKqm/FBUVJda+UlsfihXclSpVUvRathedGnd3amqqrNq40r5ybDVyNcUgp0yZIr5OTcsStoSF0rmHTbDJmjWrzRg0c54/fy6W6ChQoICi6ucmk0lmqf/5558VjUUIIX/++af4OmeLC+sFF006klFFEysYtJjDMwNsF3vhb/z48Ypf//jxY/F11uqY2IJtYaEmO+nChQvi695//31Fr2Fr8qgNWGaDx60VizSHrSdVtGhR1cVL2YnWPECbJSkpSVah3mAwkOvXr6saixBCmjZtKpv8WBftggULHL4+NDRU3F5LjSG22rKSz9eZuCZ7cVy2YFPc1bhMExMTxUQALy8vxXXMWKubmuSO7t27qz7OpKQkMSYtW7ZsimsosQsl88rt9mDDAZS+LioqSsx4dXd3txunZQ5bNkTJgs5kMskWSUKja6Ww7bhs1T8TMBqN5LvvvpNdK9TUsGITDDw8PJzukqAHXDTpSEYVTewF6tmzZ+l9OOmC0WgUYxOEP1vprtYwmUxi0GVAQIDi1THr1rPXYNja8QoX0YCAAIeixGQykbZt24pj2SqeaYvw8HBxBVmqVCm7265fv16sywRoq+/DiklbLrpXr17JWm8A2ks+/P777+I+hg4dKqsDo9SyIiRT+Pr6qu4vxrbZsFXagMWZuCZ7GYO2YNuOqMlqYy0BShIBBNi6P1OmTFH0mmfPnonWkaCgIFXxSWzjakcTPSH098S6SNXUZzOZTGLjaoPB4DAGMiUlRbYwUNuuJzQ0VPztFipUyGp9LIHo6GjStWtXcazAwEDVBVtZq6s9l+WzZ89Is2bNZL/ftWvXqhqLEHkijyNXc1rARZOOZFTRJLhscuTIkWGC6dIDtuBjQECA6omPFSVK4g3Yi6ebm5tiE7gA20bGUQwMG3OTL18+TU1D7bUTEZg3b56sSnvbtm01ZUCZu+jMLRSXLl0SRQpA6yw5U9cnKipKVtdH2K+9aunmdO7cWZN1JDY2Vhw7d+7ciq1yWuKa7LVNsUdKSooqkS7A1hRTE3PCBqorbc3BxuupiachhJCtW7eKr3Xk+jIajTIXW5UqVVRfN9nUenshEW/evJG5rtzd3VXF6wm0adNG3IetOK+rV6+K5UXUimqWlJQUki9fPvF4rVl/tm/fLlogBfE4adIkTfPPgwcPxGtO4cKFNbXk0hNNounZs2dk+/btZOrUqeSzzz4j/fr1I0OGDCHjx48nixcvJmfPns0Q1aTTmowomiIiIsQT17yD+38NNkusW7duql/PZraYl/63Bls4kC2sqRR2NW4vVoSNhQC0Fw1k46jM4w5MJpOsiCVAs3uc6ejOFlxlL94bN24kvr6+MhGoNDPPHh9//LHs+AGQb775RvHr2ca+aqyGrJtHSW0pAS1xTdu3bxdfozYGhC30qSR+h61f5ShDzxpsLI6tVjgCK1euFK0pHh4eqi3mSpplE0IFbseOHWXnyKZNm1SNRQghN2/edCgKL1++LOv35uHhobknI5tRaK18xvLly0XhDlA3pTM1wFjrD1vINCEhQWbpBEDy58+vOE7SFqwotFbZPi1RLJpMJhPZu3cvGT58OGncuDFp3LgxadSokdW/xo0bk7Zt25K5c+f+p9xBGVE0sTV/Bg0alN6Hk66YTCYycuRI0qBBA5uFBe3BxpkoSc1ms3bMG7Mqgb3w2oqHYoUOoDxo3BrsJMiKvNTUVDJw4EDZOOPHj3faamnuojMajTJhKkw4el1D2IBg4c9aI2NbHD16VHydmixUtiigGjePlrgm1hqm1kXLZop9/fXXdrd9/fq1TPT88ssvqsYiRG4dtSdC2ZgdQHsbD9YtZa0e1fPnz2VNrt3d3e22IHJE1apVxX2Zxyj99ddfsoVBrly5FNVUs0VCQoIYt5U1a1axFlx8fDwZMGCA7POrUqWKqpgpa7CdBITkihs3bpDKlSvLxmrfvr1T/ToF2MWAksQNV6JINJ06dYr07t2bNGrUiLRr1478+OOP5O+//yZ3794l4eHhJCUlhcTFxZEXL16Q06dPk+XLl5Nhw4aRxo0bk2bNmpE5c+Zobtr6NrB3714yduxYMmzYsAwnmhYtWuTUxM2RePXqlfhZOmo5wk5A9prK2sNkMolm8KxZs1q4wWbPni27QGmZuMzHE+qwuLu7k/DwcJKQkCCLxwFAZs6c6dQ47HjCStvd3V0WYArQljlaK1RbIyUlRdbCoVChQqqEX1xcnGjtqFSpkqLXmAchq3Flqo1runTpktg2JVeuXKqt/U+ePBE/G3v13F69ekUqVaokblugQAESHh6uaixC5AHrbdu2tXjeZDLJYgIBGo+m1T2zYcMGmxa/y5cviyUoAOrC3bVrl6ZxBH788Udxf0LcVmpqqsxKA1AXsdLSJ/ZgFzYrVqwgd+7ckQk3gPax0+s3xSZXjBgxQmbJ8vb2JvPmzdMtHCQ1NVV01xsMBk3tpfRCkWhq1KgRGTZsGDl+/Lgqc/yLFy/Ib7/9Rlq3bk2WLVum9RjfGjKipenTTz8VT2RnTaQcKRg4a9asNi/ep0+flgVKO3Pus9lCx44dEx9nxTDgfE80gc8++0zc54IFC2R1Ujw9PTW3T7AF66IT/gwGA5k+fbpL4u/YTFJ7zX5tIUxCbm5uitpk7Nq1SxxPbakEQpTHNd27d0/WdFVLWQRCiFis1M3NzaoQevnypaxDff78+TVZbQmhsUPCoiBLliwkLi5OfC4lJUVWqRwAmTx5slPnRFxcnGjdyZUrl/j73blzp+i6A2jczNWrVzWPI8CWuihXrhyJiIiQ1V8DaJsjvUQM61UoXbo0yZYtm3jfx8eHrFixQpdxBNienOxfhQoVyJUrV3QdixB57bGxY8fqvn+lKBJN586dc2qQ6OhozT+st4mMKJrY7AW1gcgcSz788EPx87R2YQ0NDRUD77VOzCxs1pcQf7N8+XJZMLbalGF77N+/3+qFMGvWrC4pV8G66IQVvpLsJq3cu3ePZM+enWTJkkV1H0NCCBk0aJB4rIcOHXK4PZvarSWGRElc04sXL0jx4sXF7erWrUtiY2NVj0WIXFSuX79e9lxoaCgpX768+HzBggWddvOwWWNC09n4+HjSoUMHmYh2xk3G0qlTJ3G/Bw8eJHPnzhWteQBI7dq1dU1rb9CggezzEm67u7uTmTNn6rowMJlMpESJEha/3TJlyugiAs2Jj48Xi3EKf0OGDNHVOswSGhoq1vfSYknVC549pyMZUTQJq8+goKD0PpRMwfTp021akJKTk2Up8g0aNNCUWcbCZhk1btyY/Pnnn7KL/OjRo3W98CYnJ8tWqMK5c/bsWd3GYDGZTGL6f8mSJVVVP9dKTEyM5gagbKFYNgDWGqzg9fPz0yRkdu7cKe7DWlxTZGSkLLaofPnymnqQCbBV3tlmsc+fP5cVzCxUqJCiDFJHsLEq/fv3J5GRkRbWTXPx5gxsiQTWHQeAdOrUSWbt0oN58+ZZiJicOXOSffv26TqOgHlMYNeuXV0aGiNkCQYEBKiutq6FgQMHkuHDh5Nr1665fCxbcNGkIxlNNL1580b88agpzsaxzYEDB8TPdOjQobLn2KyRAgUKkNDQUF3GFKwIHh4eYkwNQANiXeHCYoOJixYt6nIr8atXr8iWLVs0d4VPS9h+WJ06dbK53dmzZ8X4IgBk6dKlmsaLiooSv3PzuKb4+HiZwChcuLDqat7mJCQkiLEpBQoUICaTiTx79kyWql64cGHVfcdsER8fLyvHwApAPz8/snfvXl3GEYiOjpZ9L8LfuHHj7NY30sqrV69kv9kqVaq4NB7nxYsXJH/+/MTX11fXmCJbpKamklOnTmlehLyNuEw0RUVF6TZpvC1kNNHENo901k3EoURGRoqfKZtKvHz5cvFxLy8vcurUKd3GNM9+AWgmpKsuiJcuXSKFChUi7777rqYA9sxMamqqWOepYMGCVrd5+fKlzIoxZMgQp8asXbu2uC8hriklJUXmwgoKCtLtusO2x9m9e7dYawygLWCUtGVRg3kCgKutm+x4zqT5K2X06NHE3d2d9OzZU7PbVA3JyclpMs5/FZeJpqlTp/7nrBsZTTSxpmG9YgI4RFx1e3l5kaSkJHLu3DnZ6lXvizDrUgBocT5XrIo5ymCzhszLIaSkpMgKPtarV89pFy0bLL9hwwZiMplkQdJ+fn66Coxff/1VJipYq+PDhw91G0eAzTQVhJkrrZsHDx4kbm5uLnWTmePsOcDJOLjBhRBCXLl7jgOuX78u3q5YsWI6HknmolatWgCA5ORk7N+/H++//z6SkpIAAIMHD0b//v11Ha9FixbImTMnAKBr165YsmQJ3Nxc+tPl2KFOnTri7TNnzsieGzNmDA4dOgQAyJcvHzZs2AAvLy+nxmvSpIl4+9ChQxg/fjx+//13AICXlxc2b96MmjVrOjUGS8uWLcXbqampAIDixYvj8OHDKFKkiG7jCLRr1w5Zs2YFAFSoUAHHjx9H6dKldR9HoEmTJnj58iUeP36MZs2auWwcFmfPAU7GwSO9D4DjOljRVKFChXQ8ksxFrVq1sHr1agBAly5dEBMTAwCoV68eZs2apft4gYGBOHfuHO7fv48mTZpwwZTO1K5dW7x9+vRpdOzYEQDwxx9/4NdffwUAeHp6YsOGDciXL5/T49WvXx/u7u4wGo1YunQpEhISAAAGgwGrV69GcHCw02OwlC1bFoULF8bjx48BACVKlMDBgwdRqFAhXccRyJ07N/bu3Ytz586hV69eyJ49u0vGYQkKCnL5GJzMiWLR1KVLF1U7joqKUn0wHP0ghODatWsAgLx58yIwMDCdjyjzIFiaAIiCSS+rgi2KFi2KokWLumTfHHVYszRdunQJn3zyifj47NmzUa9ePV3Gy5YtG2rUqIEzZ86IggkA5s+fj48++kiXMVgMBgOGDh2KcePGoVy5ctizZw8KFiyo+zgsdevWRd26dV06BoejB4pFU2hoKNzc3ODu7q5oe6PRqPmgOM7z6tUrhIWFAeCuOb2pWrWquPIH9LUqcDI++fPnR8GCBfH06VOcPXsWr1+/xvvvvy8Kmv79+2PQoEG6jtmkSROZK/Dbb7/F4MGDdR2DZcyYMejcuTMKFSoEDw/ukOBwBBT/GoKCgpAtWzYsW7ZM0fZTp07Fnj17NB8Yxzm4a851+Pj4oEqVKrhw4QIAYM6cObpZFThvB7Vr18bTp08RExODZs2a4eHDh+Ljc+fOhcFg0HW8jh074scffwQADB8+HBMnTtR1/+YYDAYUK1bMpWNwOG8jioMjSpcujUePHiE5OVnR9npfNDjqEFxzABdNrmD69OmoVq0afvjhBwwcODC9D4eTxrAuuqtXrwKgsTkbN25ElixZdB+vbt262LVrFzZs2IBZs2bx6yuHk04otjSVKlUKJ06cwN27d1G+fHmH2xNazsCpg+Noh2fOuZbg4GDR0sT578EGgwOAh4cH/vrrL5fG/rBZbRwOJ31QLJpatWqFfPnyISAgQNH2w4YNQ79+/TQfGMc5WNGkRORyOBzl1KxZE25ubjCZTACAX375BY0aNUrno+JwOK5GsXsuf/78aN26teJg1+zZsyNv3ryaD4yjHUKIKJoKFiyYJim8HM5/CT8/P7Ee1/DhwzFixIh0PiIOh5MW8IIvmZDnz58jMjISAHfNcTiu4rfffkNkZCTmzJnDY4w4nP8IuoimS5cuYfny5XrsiqMDPHOOw0kbuBWXw/lvoYtounjxIhdNGQgumjgcDofD0R/unsuEsOUGuHuOw+FwOBx94KIpE8JamsqVK5eOR8LhcDgcTuaBi6ZMBps5V7RoUfj5+aXzEXE4HA6HkznQRTSVLFmSF17LIDx+/BixsbEAuGuOw+FwOBw90aUTY8OGDdGwYUM9dsVxEh4EzuFwOByOa9C1ffWLFy9w7tw5eHl5oWHDhvD19dVz9xmWffv2Yd++faKFJz3hoonD4XA4HNegSTStWrUK27dvx9KlS+Hv7w+Alh0YN24ckpKSAAArVqzAwoULkS1bNv2ONoMSHByM4OBghISE4JNPPknXY+GNejkcDofDcQ2aYpqOHj2KfPnyiYIJABYuXAiTyYS+ffuiQ4cOePbsGf766y/dDpSjDMHSZDAYeOYch8PhcDg6okk0hYaGokiRIuL9N2/e4NatW3j//ffRu3dvfPbZZ6hRowaOHDmi24FyHGMymXDz5k0AQIkSJeDj45POR8ThcDgcTuZBk2iKj4+XWZkuX74Mg8GAevXqiY+VKlUKr169cv4IOYp5+PAh4uPjAXDXnLMkJ6f3EXA4HA4no6FJNAUEBCA0NFS8f/bsWXh6eqJ8+fLiY8nJybyJZRrDK4Hrw7BhgL8/MH9+eh8Jh8PhcDISmkRT2bJlcezYMZw4cQLnzp3DwYMHUa1aNXh5eYnbvHjxAjlz5tTtQDmO4ZlzzhMXByxYQC1NXDRxOBwOh0VT9lyPHj1w8uRJTJgwAQANOu7Zs6f4fHJyMq5cucJrN6UxjkRTbCyweDFQsSLQvHlaHtnbw/XrACH09qNH9DY3mHI4HA4H0CiaypQpg4ULF2L37t0AgKZNm8pcc3fu3EG1atUQHBysz1FyFCG459zd3VGmTBmL53/9FZg0CXB3By5fBjKTMSo+HujZEzAagT/+ALJm1bafq1el27GxQFQUkCOHLofI4XA4nLcczcUtS5YsiZIlS1p9rkKFCvj+++81HxRHPUajEbdu3QJAg/C9vb0ttrl4UdiWCqglS9LyCF3L0qXApk309urVwKBB2vbDhIUBAJ48ca1oiosDOnUCUlLo8WfP7rqxOBwOh+McvGFvJuHevXtiYVFb8UxPn0q3V68GXr7UPt7t28CePZIrSyvnzlHRIAgerezaJd2+cEH7flhLEwA8fqx9X0r4809g927gwAFgzRrXjsVRztKlwIABwLNn6X0kHA4nI8FFUyZBSeYcK5qSkmjAsxbu3gVq1gRatgRmzNC2DwAwmYAePahg6tmTWl20kJQEHDok3b90SfsxWbM0uZLLl6XbISGuHQugIvfOHSA11fVjva08fgwMHEiF0/Tp6X00HA4nI8FFUybBURB4SgrAVIkAQLPDEhLUjzVpEhATQ2///LP2mkb790tCIT6e3tfCsWP09QJXr1IXpFpev7a0vrna0sRatu7ede1YADB5MlC6NE0EcNZKmFm5cIEKegC4ccP140VEAEOGUJc5h8PJ2HDRlElwJJpevLCcJF+/pm46NVy+TF1KAqGhwIYN6vYhMG+e/P6OHdr2828+gkhCArWmqMXcygS41tJEiFw03bvnurEEVq6k/w8dAt68cf141sR6Rof5Kcmss65i9mxg4UJg1Ci55dFVpKTQcQRhyOFwlMNFUybhypUrAABPT0+UKlXK4nn24l+3rnT711/VXTwnTrR8bM4c5a8XePwY2L5d/tjff2uzfpiLJkDb5GMezwS41tIUGgqEh0v379/XZiFTyps3wMOH0v1/8wZcRmIiULkykD8/8Da1oWTF85MnrrfInT1rfWxX8eGHQNWqwODBrh8LoJ8fF2iczAIXTZmAmJgYMXOucuXK8PT0tNiGFU0dOwJCCa2bN62LDmscPy5ZgwoWlEoWnDpFA7rVsHChdCF1d6f/nz9XH4/04gXwr16EB5MLqpdocqWlyXy85GTXBh6bf0euFk1Hj9IxCKFlIFxNUhK12vzzj3P7YS1N8fHUfeZKWBfg/fuuHSs2VlqsbNni2rEAWrKjYkWgSBG5YOdw3la4aMoEXLhwAeTf5XCtWrWsbsNOxgULUleAgJJgbkKAf2uZAgC+/hr49FPp/ty5yo83KUkqd+DhAYwfLz2n1kW3Z490++OPpdtagsHZVX7x4vT/06euWyVbsyq40kWX1qLp+HHpdlpYUGbOBP73P6BtW+3xYamplgH5rhTOcXHAgwfSffa2K7h6VbKcvX5NRY0rWb+eisKnT4FVq1w7FkCvH/nyya9NrsaV1mFOxoOLpkzAOWY2rFmzptVtWEtTgQJAu3ZAiRL0/r59krXGFnv2AEeO0NulSwN9+gDdu0s1jNaupRdhJfz1l7Rtp040tVvg77+V7YM9LoEBA4CAAHpbraXJZJIm9qJFJStaSopzpRnsYc2y5cpgcNYNBLheNJ04Id2+f197dqRSBAuKyUSTA7Rw965lYoMrRZP5d+Bq0WS+mHB18gEr1F19vgHAd99Rt/ecOa6PpTOZgA4d6DVn507XjiUQGiol4XDSB1WiKTIyEjNnzkSfPn3Qv39/LFq0CNHR0Va3XbZsGZo2barLQXLsc5aZDW1ZmljRVLAgdYmNHCk9Zi9zx9zKNGUKtRBlzQr0708fS0qiLVqUwAaADxtGTfeVKtH7Z84oFykmkySa/P2Bd94BqlSh958/Vy7iABq7FBtLb1eqBBQqJH/OFWRmS5PRSN22AoRQV7CriIuj546A1oBq1jUn4ErRZD5eZhNNrFB3dUmNxER5jTZXZz5evAhs20ZFjJa4TrUcOkTjA4sVS5skjtBQYMUKddfR/wKKRVNsbCyGDBmCLVu24MGDB7h79y7WrFmD3r1745INXwjhOc1pgmBpypIli6ydDYu5pQmg1iLBUvTHHzQ+yBobN0oXo6pVaSCpwNChUm+2BQsc1/+5cEGaTCtXBho0oLfbtKH/CVEek3LxonTxaNYM8PSkxyegZuJkrT4VKwKFC0v3XTFpGo3ShOnrKz3uqkns+XP6x/LgAZ1oXMHVq5YrYle66E6coFZBAa21utI6g9J8Yn/yRP4+9CYtRVNiovx3FRLi2qD6Cxfkn52rRdPRo9Jta1ZjvVm6lH5+YWHK41CdoVMnOkd06+b6sQihpWwGDsz4ljTFomn16tV4/vw52rdvj02bNmHbtm0YNGgQ4uPjMXr0aJxil5WcNCM8PBz3/jVPVKtWDR5sNDSDIJqCgoAsWehtPz+p3UhKCq3bZE5qqjxjbupUwI05a4oXlwTP06fA1q32j9fcyiQIrrZtpceVuujYC0fLlvS/YGkC1E2c7GSZFpam+/elGlnNmknB8K6yNFkL1CfEdZMm65oTcKVoYoubAvS71zJBp7elyWRy3XipqZZueC2lOZRy+bJ8ERUbaync9eTkSfn9tBRNz565NmGAEODgQem+q0tTPH0q/YYPHXLd4krg77+pB2PxYu1Fl9MKxaLp2LFjKF26NEaNGoWcOXMie/bs+PjjjzF37lz4+/tj4sSJOGHtSslxKefPnxdv23LNGY3SxapgQflzw4dLWWcLFsiLRAI0eFMwqzdsCLRqZbn/ESOk2/bM1OHhUquQ7NlpTJTAO+8AgYH09u7dygpmWhNNb4uliRUQ1apRFyVARZMrVuOsm4T9jFzlomODwAXSUjRFRmoTu4KIYdceaWlpAlznort923LyS8sYOsC1Lrq0FE2EWMbNudLadO+ePJnH1aKJLTRsNLreksYulK1dOzISikVTaGgoqrJX238pVaoU5s6di4CAAEyaNAnHtEZgcjShJAj81StpxWcumgoWBLp0obfDwuQZLklJtIK0wNSpkmWIJTgYKFOG3j582HZQ+bJl0kW7Tx8aEyXg7g60bk1vx8TIV3HWiI6WVkIlS1I/PwCUKydNeGosTcJFwcODvhdXW5rYi1ClSvQ9APS9uyKGgLU09ewp3Xa1aPLxkVzArhJN5vFMAmonluRkKiwAeh4JzZNdVeAyPt66QHKVaLL2e0hr0eSq842QtBVNd+7Q6yqLK4UFa2UCnGsVpYR9++T3nenn6QhC5L1D1ZavSWsUiyYfHx+bMUr58+fHrFmzEBAQgMmTJ+OooxmPoxtagsDNYcsPsMUuFy6UBMN770nxR+a4uVGLlYC18gMmk9zsOnSo5Tasi85R6YGDByUhKFiZAMDbGxDCum7dosLPEcnJ0sW8TBnAy4sGXApuSFeIJlZAVKwoZTIC+rvoCJEmsKAgoEUL6TlXTGLPngGPHtHbtWvT2DXhcVe4ME6ckM6FPHmkx9VOLGxPvgoVJOH89KlrrH9CDSsAyJtXejwtRJOwsHj5ki5AXEFaWpqePLF0/b1+7bogZmtTnCtFk7kl9dUr12UHEpK2oun2bXkNL2vxlxkJxaIpb968uGPHAW4unM5a+8VwdEewNPn7+6N06dJWtzGv0WRO9epAkyb0dkgIDcSOjQW+/17ahr1tjV69aIwUQFuzmE+Ou3dLYqB5c1q2wJyWLaXYHkdxTWypAVY0AVJcU2qqstXm7dvSZClk8Xl60novgGvcM8IF1tubWpkESxOg/+r/0SNqRQSAWrXoWIIgdIVoYr309epRUShgLWbIWdhVOCvG1YomVsiyoikpyTWTL/tZCHGBQNqIpuBg6bYr4uhiYqRzi3V1u0o0sSG1wjUEcJ21yZpocpUl1TyeScBV1qYbNywFmStFE2tlEsjI1ibFoqlKlSq4evUqwtm+D2YIwikwMFDWC43jGl6+fIkn/87oNWrUgJub9a/TWuacOebFLmfOlCaKLl3kcTDWyJaNutwAGuD8++/y580DwK0RECBZs+7ckVwl1hDimTw9AfPKFuyxKrmwmAeBCwgX+5cvlVmslJKYKAXgCu5EV1qa2PVLzZo0EUBwZ7LWDr1gYxLq15eLJldMLOwqvH9/ye2rdlJhL1kVK8pdtK4QzuyELrimAdeIJkJotikA5M4ttxq7wkV34YJ0XrVuLbk6XeWeY11z770n3Xa1aPLykqyE1665xiJ5+7aU2cw2e3BVXNPevZaPXbniuqxOa6IpI9tcFIumxo0bI1u2bNjtINdREE55WDs5xyUoiWcCHLvnALrSFVrWHThA45cAumqbMkXZ8bAuunnzpEq5Dx5Ixd8KF5a74awdh4AtF929e5KwqF9fsnAJsBl0Si4s5kHgAuykqWdcy61b0mcjiDTW0qS3aGJXbYIHt2xZ+j8uTv/WLaylqW5d14qm2FjpAlu2LF0UCO7ABw/UVbxmRRNraQJcL5qqV6cuYcA1oun5c6k8R9Wq0m8dcE0GHTvp1aolxTw+fixljeoJK5r69ZNuu0I0PX8utbupXZt+dwA911xxnrCLAiH+FHCdpYl1zQnXp+Rk13yWCQnS+/P3lx7PFKKpUqVK2LJlC7opKNqQP39+rF+/HofMHbEcXWFdoM6KJjc34LPPpPvCha1fP/kF1h5lykjxMqxQWrBAWoENHiw3n5ujpPSAtaw5FrVlBxxZmgB945qsiTShbQug/8rf3NIESKIJ0Hf1Hx8vWTTKlaMZkUJ1dUB/0cTGMwkuZvb7d1TpnkUQTVmy0O/D1aKJrdNVpIhk/Xv5Uv/q6ezvwFw0ucLSZC6ahPONEP1FGlvUskwZuRXNFRM9m+vUsKH8muGKuCbWNTd4MLVuAa6xNKWkSCImTx4adiHgChfdkSNSctBHHwG5ctHb5865vlG2VngblbcY1tJkKwgcUOaeA+gPREj7B2i8zaRJ6o6JLT8wdy4VX0uX0vteXvKWKdYoW1YSEEeOWLcUOBJNQUHS+7x82fGPT7jQZc0qpf4Drps0rYk0Hx/J0qCnpclkAoSqFAUKSHFarhJNZ85IIqZ+ffo/MFB6b3q7MNgJRRBNat2zAL1wC+KhbFkq7F0pmhISJGtFuXJ00SKIJkD/5rbs51Ctmtwd7ArRJFyafHxoYoZgaQL0d9GxRS3r1qW/f2HydYVoYuOZXC2aCJFbYurUkRZaISH6W+1On5YEe3AwUKOG9BxT3UY3WNdc69bSoi4sLOM2eNZFNB09ehTTpk3TY1cchRBCRNEUGBiIYuwV1wxBNGXPLjeBmpM1K13JCAwbZtsyZYvWrSXRs2cP8O23tD4TAHTuLF3MbGEwSC661FR5wDdAzcQHDtDbuXPLrQoswuOO6vXExEjukIoV5YU708LSxF5wBRfd69f6ZTTduSPtizVGuko0sa45QTQB0oU+LEzfXn6sMbtxY/pfi2gKCZFcpoJljD339RZNbCyZMB77E9bbRWduacqWjf5+AP0tP2FhkiCsXl0q4yGgdzA465qrW5f+FzJoQ0Ol649eCKLJYKDjsb9hvS2pt25Jv5eGDelnKVzb2H6ZesHGMwUHU4Et4ApLk7AAdnen47Fr/4zqotNFNN29exe7rEVzcVzG06dP8fLfX1PNmjVhsFZACfTCLIgmJQJo3Dgqbjp3Br7+Wv1xubvLM5hYLW0rANwcey66kyelHnEtWshFDovSIpfsSpSNvQFcb2nKnl1u+XNFMLi1eCbAdaKJDQKvV0+67Yq4JjaeqVw5KSC3UiXpvFDqwjAPAgdcK5rY806Y4NNCNPn4SK454X9oqPSb0gP2nHO1OxiwL5oAfXseRkZKLt/KlWkNsjJlpJADvS1N1iypamM21cDGMzVrRt+fsAi+dElaWOjBo0fSd1OnDh2LXdhl1Aw67p57S1EaBB4eLmV+KRFN/v7AunX0L1s2bcfWr5+8nxpAV5x16ih7fePGUgbUzp3yHyrrmmPrDZmjNK7JltUHcI2lKTJSmoArVZIXC3VF2QFr8UwAdWHkzElv6zWJmUySpSlXLnncjCtE0/Hj0rkhTCgAPfeEsa9dU5b1Yx4ELuxH+Iz0LnBpbTxXiaboaOl8qlxZmuBdlXxgHs8kjCUIWT0tTWxRS39/SSyxcXR6uuhOnpQshA0b0v/e3pIl7eZNfbPMWEuqkCWsxZKqhOho6p4D5AV+hUD3hAR9vzv2Wi50mvjPWJo4aY+SopaAsiBwvQkIAHr0kD/G9plzhLe3JIhev5b/eFh3nT3RpNTSZF5kkoXt06eXpcHeeK62NJlra2H1/+yZPk0yb92iohCgVib2+3aFaLK2ChcQvv+kJGUXemsiBpAmjmfP9F1lp6WliQ2GZ38XrGjS00Vnzbrp7Q0ULUpv69m49+lTqRBi7dqSIGQtTXpWvzGPZxIQFlwpKfZLpaiBjWfKlk367oTsUEBfS9Phw9I53ry59LggmgB9XXSsc0oQTXnzSvPU+fNSoeWMBBdNbylayg3YCwLXG7b8QEAA0LWrutdbKz3w+rX0o61aVV792ZwSJSRrl1ZLk8EgTZp6WZpsZeoB+q/8U1Olz6t4cclqIsC6TPRYQZrXZ2JhJzG9RBO7CrclmgB1GZS+vtLkDkjff2qqvrFYwkTu4yONV7CgVKlbT9FkHgQu4KoMOmGRky2b/JwWzjc9G/dac80B8vNNT0sTK5rYLD1XBIPfuCHVymvUSDo3AgKkhJXLl/UTFubxTAKuEE0pKZIrMChIHnAuTGcxMfoJUD3RRTRVq1YNvXv31mNXbyX79u3DuHHjMMdet1odYYPA8+bNiwJ21FB6WJoAehH54guaOTVrlqW7zhFsgTohrmnvXmmFai1rjsXdXVqR3b9vO7BamCxz55YCY1kEF11MjLqaP7awJ9L0zmi6eVPKrrGmq/WOM7EVzwRQd6tgSbl+3fkLfUyMZNEoX97yu1MjmuLjpcDl8uXlcXKuiGuzljkH0HNWON8ePNDPGmMeBC7gCncw2wKjZk35Z+mKYHBboil3bikTWC/RlJgo9TgsXlzKCAVcI5rsWVKF8IOYGP2yzAQR4+YmH88VweAnT0rWbfPY1IzuotNFNFWtWhV9+/bVY1dvJcHBwZg2bRpGsPn2LuT+/fuI+LdPib0gcCD9RBMA/PQTzaRhG8QqJV8+aaK/dIm+D0elBsxh45qsXchevZKabpq7ygT0btxrzz2XI4d0odfD0mQttoRFb0uTEM/k5SVfOQoI7zc21vnP0lY8k4CaYFlrmWwCrhBNISGSaDQfTwi6jY7Wr0+fIJrc3KxnawL6uedsJR4ArhdN77wj3TYYJGvTs2f6LHjOnqXZu4DcNQe4JoPOWjyTgN5xTc+eSUHZtWtLFdwBKkCFuePiRX0sW9ZccwIZPRicu+feQpS65oD0FU3OYu6iE+KZsma1dP9Yw9GFxZ7VR4ANBnd20iREGrNAAWpmN0eYyJ4+lYq+acVePBOgb+2cV6+kiVdo1WKOnnFN9lbhAI2NEKxPly7Zt9rYimcCXCOarMUzCegd15SSIp1zpUvLLb7Zs0slQFyReGBPNOlh2TQvasnWmAP0z6AzL2rJUqSIlLyih6XJZJJEU44clqVV9M6g279fus3GMwkILrroaMlK6gysaDKPTWWvVRnR0uSh9YXPnz/Hhg0bcO/ePbx58wapQkU7BoPBgLVr1zp1gBxLlAaBA2+3aGrbFvjmG3r7l1+kJpJNm0pVce3h6MJiz+ojoKel6flzyXpga7wSJagLgBA6aZYrp3084TQxGORxCQLFitFeVikpzk9i7Irf3DUnYC6a7LXTcYS1+kwsBgMVzXv20PYhz5/bjulLa9Fkbzxz0WTNYqeGW7ck64i1/pElS9K4mefPaVFDYeLXiq1sTUB/y6Z5UUtzzOOaWEuUFmwFgQPUilexIs0+e/CAup7s1cRzxLVrUpPtRo0suyio7XrgCFvxTALVqwPbttHbFy7IrZRqCQ2VugZUr24ZmxoYSK+D9+7R7VJS5D330htNlqbTp0+jV69e2LhxI65du4bExEQQQiz+TBkx9D0ToMXS5OtLVyxvE9WrS7V32JWwEtccIE/pzwiWJntB4AJ6xZkkJUlCsUwZ6+UjPDykYODbt53LDrMXBC6gl6UpOlqqTlyhgvVYNEC5C4M9FnMR44paTUotTXqs6G3FMwmwweDOuoQJkURTrlzy3w5AJ0fhPNRDNNmKZxLQs+yA0Sid47lzW28txf6mnc3Ys+eaA+h5IogyZy1NhEjxTFmzWheXegaDsxnQ5q45AWFaS0x0XdNlrWiyNC1cuBBubm6YPHkyGjduDDdbFQY5umM0GnH+3xmjcOHCyG1rxvgXoRlrwYLKU/4zCm5u1EUntGERUCqa/PyoCLlzhwqk1FQpAwWQT5bmk5eAnpYmW42BWfQqO3D1qrQKt2eMLFuWXpSSk2lAKTu+GuwFgQsIRQCNRudEk6N4JgHzshOsu5dFmOD8/CwnetY6pbdoYjPnBPR2z9nKnBMwF+lsOrtaHj6Uqm/XqmV5vTEY6Dlw9iwtbJiQQD8DrTgSTXpm0F29KiWTNGhg/VpqHgzujGXLkfvZzY1+V8eP088yIsK6u18JN25IVvzGja1b8fUUTdbqM5lTqxatFQjQ88VW54f0QJPaefLkCYKDg9G0aVMumNKY27dvI/bf8r2OrEzR0VKGwtvmmhMwn+iKFlVnGhZ+bImJ8mBXtgUBu2ozR0/RpNbS5IxochTPJKBHBl1SkjReyZK2LT/e3jSuBqAxJlY8+oqwV2qARYkLIzZWyj6qUMFyMvT2ltwHehS4tNbjjsWVosnaxKNnBp2jxANA38a9p07R/2xRS5Z8+aSAZmctP/ZccwJ6ZdCZTLRmEkCFkC0hyy4K1DSmNoetAm7NNQfQTEHhd33hgvbMTqNREk3ZstkWluz5k9GCwTUpnsDAQHgpCSrh6I7SJr1A+tVo0pPgYPnKp2VLdRYzW0UuHz2SGlPasvoA1PogrOCctTQIF1I3N9uxSnqVHVAygQH6iKbz56W4GUcB+sJnnZys/f2xq3Br8UwCpUtLAem2RBMbIGzumhMQhPOLF9qFnsDt21L2kbWJPlcuKVjbWdFEiBQ7ki+f9bpmrJvJWRFjL55JQK8MuidPJCs6W9SShc2ge/zYuQKu9oLABfRyP1+5IsU+Nm5su1WUXsHgjuKZAHlcZFiY9mvhhQtSrFZwsO1YpWrVpOt8RgsG1ySamjdvjtOnTyNJ6M/BSTPYIPDMnDkn4O8vtyYodc0J2LI2KIlnEhBcNk+fak+3NRolF0HJkrbdEnnySMG4elia3N3tm7b1EE1K4pkEnJ1Y2HimihXtN4D28JC+27t3rfdXsxeULSCIJpPJ+aKMjsYzGCRr08OHzqV3P3kiTb7W4pkAfWuDKRHqemXQOXLNCbDCVOt4hEiWJj8/27+nXLkkYXr1qnZrjKN4JgE9yg6kpEjj5cljfwGph4uOzZqzdy3395cWlleuOJ9JrCeaRFPfvn1RuHBhfPHFF7h69Sri4+P1Pi6ODVhLUw0HqTWZQTQBwMiRdAIsV069aLJlaVIjmoRJMyVFe1Xoe/ekH7698QwGaSJ78ECbZSM+XpqcK1a0X1hUj0lMqM8E2I5nEnBWNB07JgkJe645AeH7Z8s9sKjNoHTW2mgvCFxAEE3JydS6pRVHQeAAtaIKleKdsTSZTJKYLVTIdrV+vTLotIgmrXFN9+9L30PduvK4SHOE3/abN9qvFawl1Z5oqlhRfWNqc06flizuwcH2rfjsdONq0QRI1srUVOfcj3qjSTR5eHigU6dOuH//PkaMGIH33nsPTZo0sfhrau8b56gmJSUFF/+1t5csWRIBDiL/Motoat2aXoSuXlVfWbxAAal+CzuJKJksBfRo3KskCFxAEE2pqdomabYbuQNjJLJlkyobaxFNhEiWphw5HJdIYN+7ljgTpfFMAo7imtRYmgDnRZOS8fSKa3IUBC4guOiePaOCWwshIZIlz547uGRJaWLWSzTZC7jWQzQpiWcScDauyWiU4ply5rR9jgDUWi3ECCptTG2OkngmAWctTRERUhxauXJSKxhbZNTK4JpE0/79+zF27FjExsYiX758qFixIqpUqWLxV9mZVAyOBTdu3EDiv+YKR645IPOIJoAGdFqLW3CEUK8HoBkiQgVw4YLm6SldeGyhx6SpJAhcwNngXKXxTALC6v/NG/qnhrt3pf5Y9erZjr8QKFGCBlcD2ixNSuOZBBy5MAQRkz27vC0GiyssTVmyyMURiytEky1LEyA/37SWOVASzwTQ9y1kDLKV2NXgqKgly9smmi5flqqXN2ni+PckfK/JydpEKBvP1KyZ/W2LFJHiO7WIpn37JCuxraw5lowaDK6p5MCKFSuQNWtW/PTTTyjnTPU9jirUFLUEpEBJ4O0XTc5QpQpw4AC9ffkynWyFC0yZMo4LZeptaXIkmszLDlir0GsPLaJJ+HxCQmgDTaWocc0BVPiWL08DlO/coROgterh1oiKki7WlSopO0523WYumqKjJRFkLXNOQK9aTUlJ9jPnBPQWTVmz2i8lYd5OxZEl1BpqzrmyZen7io2lbi9bYtUWjopashQqROOQYmO1iyYhCNzTE6hTx/62zrZTcVRqwJwqVQChfvSlS+q+u+ho6p4D6HWQXRxYQwgG37+ffm8vXtAEA6XYa51ijSpVqCs0NTUTWJpevHiBd999lwumNEZNUUtAsjR5eambCDMb5taGkBApVsiRgAH0KXApXECzZHFcC8nZsgPCaeLlpewi6kwwuJogcAHhmIxGdatjtfFMAA0oFT7Pq1flBTzZSdSeG0QvSxNbQNRWPBOgj2iKjJReW6WKfYsFm0GnNRhcaYkLwPkMOqXxTIA8g+7BA/Xux5cv6fcG0PflqK5U+fKS+NZiaVIaBC5gK2ZTCYcPS+ej0oUZ66ITMjOVQIgkmnx8aJVzR2TJIl2fb960nsiRHmgSTblz5+bVvtMBQTQZDAZUt9YXwwxBNBUo4NjMm5kxT81VE88EOF+rKSFBCrItX96xm9GZjKaoKGkiqlpVWbsZZ4LBBdHk7k5Tv5WgNRhcbTyTgPD9s9+D+dj2zoP8+aXfjzO1mpTEMwH6iCZ2ArXnmgOcdwenpEhWrVKlHHcecDb5QIiLARyLJkASTYSoH48tNdCggePtfX2l3+/16+qq7KemAkeO0Nu5ctkX1gLOtFNRE88koDWu6fp1KfO0SRPl1mVBgJtM6kSaK9E0lbZt2xYnTpxAtFAileNykpKScOXfFIJy5crBz8/P7vbx8VJ13re1RpNelCsn1QO5dEmdqwyQT5paLA03b0oWEqUiTThetZYm9kKmwBgJQHtGU0SEZK2pVk15kL5W0aQ2nknAVlyTUhHj4SG5IZyxNCnJnANocL6Q0aZVNCkNAgcs3XNquXZNygxVcs45m0EnWJpsFbU0x5m4JjXxTALCNSUhQV2M2MWLUtXxJk2U1aNjG1NfvqwuRkyIZ3JzU74I0Sqa1LrmBDJiMLgm0dSkSROUK1cOQ4cOxZ49e3D//n28fPnS6h9HH65cuYKUfx35SlxzPJ5JwstLunDeuiX/8SkRTZ6e0qSpxdKkJggcoFYbwdpw7566C6HaeCaAnh+C4FGzEmfdJEpdc4A20RQZKa00K1eWRIUSnBVNgGRtfPmSxiZpQc14wvf/5IlUOFQNSoPAARpILQRTa7E0sa45JeecM+45JUUtzdFLNCk9x7UGg6t1zQFUWAnWptevpXYojnj2TCrsWru2VDndESVL0hgxQCoxoYTMJJo0BYJ37doVBoMBhBBMnTrV5nYGgwEH2eUhRzNqg8AzU+acHlSpQldiRqNksbDWa8wWhQvTC40waQoZYEpQU25AoEQJGksRH08vhEoDLtXElgi4udGJ7OJFujJW+v60xDMBVID4+9MKzUpFk5Z4JgFbcR+CiAkMtF1XSKBQIckt9OwZULy4umMApAnb29vx64sVo98lIVSoq+0qL4gmd3fHAg2g+z9zhooStT3h1Ar1vHml71+tu0xNPJOAVtEUEyN9jhUr2s/SYzEXTR98oOx1aoPABapUkaxGly4pu1bs3y/dVpNo4uZGLZdHj9Lz8s0bx/GysbGS+CxWzHqzY1tUqEBdeYmJGSeDTpNoatmyJQxvW/fXtxytQeAAF00AnThXrqS3hTgDtjicIwoVki7YT5+qa2yr1tIEWMaZKBVNwgTm6+u4ZhJL2bJUNBmN1LqlxO2hNnNOwGCgn/3Jk7TqdUyM7d5/AlpW4QIFClDLVFiYNAlGREgxFhUrOnaFmAeDqxVNSUmS68te5pyAeVyTGtGUnCwJwrJllQmgUqWoaAKocFYitASEc06YUB1hMNDj0tK4V4toKlKE/h7i49WJppMnJaGu1DUHaLOkpqZKwiJPHrkL0xHmi4LWrR2/Rks8k0D16tKxXrzoWHQdOCBZS1u1UtcGy9OTvr9Tp+h10JnGxHqhSTRNmDBB7+PgOECwNHl4eKCKgpbP3D0nx9pHpiY91zyDTo1oEixNAQHK06vNyw4ouWi/eSM1n61eXV1dK/MMOkeiKSVFSlcuUkR93JwgmgA6kdlL5Q4PB5Yvp7cNBnUTmPAaoexEaCj9Y91QSgSCsxl0d+4oy5wTcCYY/MYNKSXfkWtOwFykKxVNCQnS+V2+vNQCyBFlylDRRAgdT+liQmlRSxah1+P581JlfiWByKxrTkkQuEDJktSamJSk3D13/ryUHaY0nklAbTC4ySSJpqxZlX+OAuZxTfZEU1ISwMoFNa45gZo1JSvv+fPqRZ7e/Idzqt4e4uLicOPfJVLFihXho2BZxi1NcqyJJqUXakB7Bl1EhCRglVg0BLSUHVAbW8KituzAxYt0wgTUueYE1KzGJ0yQmnx27aounknAfDWuJr4IcL5Wk9LyBgLOiCY1QeACWjPoBJc3oO6c05JBp6aopTmCUDWZpBICjtASBA7QxAFhvDt3pN+JPZyxpJYpI7nTlZQdWLJEagvTuLGyDFsWNcHgkydLv7WqVZVZwczJaHFNmkTTw4cPsWHDBkRGRlp9PiIiAhs2bMBDYdnLcYpLly6JJR6UxDMBrhVNJmLC7xd/x4T9E/Aq7pW+O3cROXNafg5aLU1qRJMW1xygreyAlngmAbWiafZs6baaVbiAUtF09izw22/0tp8f8PPP6scCnBdNzlqa2PFcbWlSEwQuwMaZqMmg05J4AGjLoFNT1NIctXFNSUlyS6qjwo/mCL91k0kKuLZFcrJkSQXUx+x5ekrnsBAHaYvnz4HRo6X7o0apGwug351gqbMnmk6dAn78UTrGlSulrGA1ZArR9Mcff2DNmjXIli2b1eezZcuGP//8E3/++adTB8ehsEHgSuKZAEk0ubvTwEu9CIsPQ9s1bdF/W3/8cOwH1FtaD/fCNVRgTAfMJxCtliY1k6aWIHCATpqCVUqppUnrBAbQSVMYz5FounAB+OMPejtnTuDjj9WNBSgTTUYjMHSolD34zTfqq0cLmGfQpbVoUmtpKlJE+j6cEU0KPPkAtFuatJ5zWjLo1NZnYmFFk5Keh8ePS2UU1LqDAXUZdDNnSr+5d95x3NbJGsL5bTLZX4QMHy6VNejTx3HrFGt4eEjn1d27UtsXloQEun8hJmzyZHXXW5bSpaWMvYwQDK5JNF2+fBk1atSAm40oWnd3d9SoUQOXtbZe5shgg8DVWpry5tXWs80aJ5+cRLVF1fDP3X/Ex+5F3EO93+vh4osMUnnMDuwEkjs3LSCnlLS2NHl7SxO1kkksNVWaVLJnVxdzBdBAXCU9wQiRr1QnTVKerszCfv62LvJLlkgXyYoVgREj1I8jULas5Ia4dEkaU+l5kCeP1N1eS4FLYaL28lIWRO7tLQlENaKJEEk0FSyovBNAYKBUlFKLaPL0VHd+s417lbrntASBC6ixNBECfPWVdF9tGyNAuSX1yRPg22/pbTc3YN48dfFMAkrimjZtAjZvprdz59ZutQXkLjpr4335pSSGa9cGxozRPpa7O1CjBr395AnNYE5PNImm8PBw5BYqatkgV65cCBMCEThOIViavL29UUHBMjU5WTqx9HDNEULw68lf0Wh5IzyJpsvsXL65UDaI2thfxb1C4+WNceDBAdX73XJrC3pt7oWdd3Y6f6AOYK0N9i7wL2Je4K/rfyEmKUZ8LChIMkmnhaUJkIRPRIRUqNQWa9ZIzYgbN9ZWAV5wmcTESDEP5uzaJfWpK1ECGDxY/TgCwucRGmrZKPjNG2D8eOn+vHnaTPsCrAvj1i3ps1Ia8OzuLgW7q7U0JSfLM+c8FKbfCC6616+Vt5B4+FBa+St1zQF0ohZcdI8fS1YWe0RHSxNjlSrqynCwIj0kxHEtsrg4KSVfaVFLlmLFpONzJJrWr5cyQ8uWBbp1UzcWoNzSNGoUfW8AMGSIXIyowbzrgTmRkdTKJDB7trbYQAF7cU1Hj1LrGUA/8+XLlZ/ztshIzXs1iSYfHx9ERETY3SYiIgJeaiPMOBZERUXh9r+Ri1WqVFH0mQqp1IDzoikyMRKd1nfCqD2jkGqiDdsaFm6IS4Mv4Xi/46hfiEYBxyTHoPUfrbH++npF+7315hZa/dEK7697H6uurEKHtR1w9aWGZk0qqFtXsjbYqihtNBnx7sp30XlDZwz+W1IEBoNk+VFqaSJEWmUWLOi4vYQ5SoPBjUaALZfGWoLU4CiuyWiUrxh/+EF9ECkLKyLNXSbjx1OxCAA9eijrVeUIQUSwE7Sa1Hrh+w8LU9fD7M4dqdehmsmejWtSGh6qJZ5JQDjfCFFm3bpwQfos1bqDAclFFxPjuCjj7NlSMsB776m3nru7S+f3nTu2C4YmJgJjx0r3f/5Zm1jPn19KjbclmvbsATZsoLdz5QKmTFE/joAj0TR2rLQQatsW6NxZ+1iAbdEUG0vdcsJ5MXWqutIntmCjUtI7rkmTaCpVqhSOHj2KmJgYq8/HxMTg6NGjKK3FOcuRERsbix49eqBMmTKorbC5l15B4Oefn0f1RdWx+dZm8bFx9cfhQO8DyO+fH4E+gdjTcw/alW4HAEg2JqPrhq6Ye2auzX1GJ0Xjiz1foNKCSthzb4/4eKopFQO2D4DRpKJZE8PL2Jd474/30GZNG0QlWnGyg1oK/vkHmDXLdgDknnt7cOsNVQxbb21FijFFfE6YNGNirPvxzXn2jK7wAG3+fPOyA7bYuFFa8TdurC0wG3Cc0bRypSQCa9cGPvxQ2zgCrGBhXRinTlHXHEBbivz0k3PjCFgTEVpEE6DORac2nklASzC4lsw5AbVxTWxfNmdEE2DfRRceDkyfTm+7udH4GC0IgtVotB3s/uuvtHYUQN1y772nbSyDQfrNP39uaSlOSpJbfn76ybn6Qzly0Dg4gIomtjXs4cPyZIr587W5AFkqVJDEJCuaxo6VWsc0aAD873/OjSOQkYLBNYmm999/H9HR0Rg5ciQumTk0L126hP/973+IiYnBB0pLoXJsUqBAAaxatQq3bt3CrFmzFL3G2RpNhBAsOLsA9X6vhweR9GodkCUAO7rtwA/BP8DDTbK1+nr6YlOXTehXtR99LQhG/DMCXx34CoRZ0hNCsOryKpSZWwa/nPxFtFoVzl4YxQNokMeZZ2cw+zSTlqUQEzGhx+Ye+OfuP9h5Zyd+PmHbWf/uu8Cnn9quJ7P04lLxdlxKHM6/kHoFqI1rcsY1ByizNJlMwHffSfcnTlQ/joA9S1N8vDzO46efnL/wWov7EIK/Bb79Vr9EBmdrdWkNBlebOSfAxj4p7WHmjKVJTQZdYiKdfAW0BEsrzaD78UdpkdKnj7rCjyysYLXmogsNlSy2bm7AjBnOneP2XHQ//yx9xvXrAz17ah9HQPi+Y2MlkZ2YCHzyibTNtGnqMwGt4e0t/XZu3aIuxv37pXPC15e65fSKpy1WTCoxIVTKTy80iaaGDRvio48+wt27dzFy5Eg0b94cXbp0QfPmzTFy5Ejcu3cPXbp0QUMtvySOTWwF3pvjjKXJaDKi5+aeGLpzKJKN1IZdu0BtXBx0EW1Kt7H6Gg83DyxpvwQTGkhVzL47+h0Gbh+IVFMqLry4gAbLGqDXll4IjaV2eG93b3zV6CvcHHYTKzuuhAH06jTx4EQ8iFCXLjT92HTsuy+VuF1ycYl47Gp4Hfca20K2yR47/PCweFvtpKm2MbA5SsoObN8ujVOnjrZsGAF7omnWLEmMt2+vj7vMmqVp0SJ5j7lhw5wfR8CaaFJj+dFaqyk9LE3ZskkxQ0pRY2n6/XfJ3fP+++rbvADKMuhevJDKW3h5AV9/rX4cAUfB4F99JcWOffKJtoUOiy3R9PAh8P339La7OxUaWmIQzbEWDD5liiTO6talcVN6IbjoTCZqdezXT3ruxx/VJ6PYw2CQXHSvXjnXONtZNH9Vw4cPxw8//IBatWohS5YseP36NXx8fFCnTh1Mnz4dQ/T8djiqcEY0Lbu0DH9c/UO8P7LOSBztexRFchSx+zqDwYDvm32PWa1miQJoycUlqLaoGmr+VhMnnkg9NzqW7Ygbw27g26bfwtfTF/UL18fQWtS8EJ8Sj0E7BsmsVPY4/vg4vjr4leyx0NhQbLm1RdHrWVZfWY0UU4rsscOPJNGk1tK0jdFfSlO/WRy55wiRW5m++sq5lXHu3FLcFTuJvX5N45cAenGfNk37GCw5ckjn57Vr9GL45ZfS8/PmOR9Aaj4eKyTy5VPnEnHW0uTlpW4iUSuaQkOl87JKFfUTsVLRlJwsucsA7dZNJe65KVOk4pBDhyrvFWkNe6Lp8mVg6b9G5mzZpIw2Z7CVQTdypPSeRoygiwM9MK9FdvmyvE7SkiX6iDMBNq6pd2/p3Hv3XX3FmUBGcdE5dUmqV68e6qlpOsVJE5wRTauvrJZuv78a3St3V/X6T+t8itxZc6PX5l5IMaXg2ivpalEmZxnMbj0bLUq0sHjd1GZTsTVkK55GP8Xe+3ux8vJK9K7a2+5Y4Qnh6LaxG4yExkG1KtkKu+7SdtoLzi1A5wrKox0JITLXnJ+XH2KTY3H08VGkmlLh4eZh0UrFHteuSQ1tK1SwbWkihGDGyRlINaVidP3RcDNIVzV/fypkXr2yPont2SNlklStqj3+QkDoCXbqFL0AxsVRN+Z339E4LgAYMECfwE6BihXp+RoZCfTqJcWA9e6tPTbLHlWrSkHVaqw+gDbRlJIiVaAuU0adCMyfn052KSnKRJMQtwJo++yCgmj5iKgo++65VaukCfK997RnfOXLJzXutWZpuncPWLyY3vbzk7fj0EKJEtLnybpMCaExjsI6beJE+rtzFlY0CZamv/8Gtm6lt/Pm1R6fZQ12YXb+PI3fFBIQJkxQn3HoCPZ7F7K1/f2pFVJPcSbABoOfOwd06qT/GErgbVQyIaxoUlMM8Gn0Uxx5dAQAFTgfV9JQtRBA14pdsbP7Tvh50Ypkfl5++Kn5T7gy5IpVwQQA2byzYWGbheL9z3Z/hpextgtyEELQf1t/sQRCw8INsb3bdpTJSZevhx4ewo3Xyrtznnl2Btdf0ytp/UL10aYUdUXGJseKNajUtFJZtEi6PXiwbQvQkgtL8MXeLzBu/zgsvbDU4nnBMvHihZSaDNALPJttM3Gi8zFGgNxFd/s2FWtsnIKeF3lAPrHs3k3/Z88ut2ToCbsaTwvRpDVzDqCuGyG498ED+3EcSUnS9+TmBgwapG4sgJ4/grXp8WO6T3NSU+WZml99ZbmNmvEEa9PDh5ZlDiZNkj67zz9XV1fNGh4e0ni3b0vVxbdvl8poFC9OYx71IHt2yTJ27Rq1LrG1xn75RVuNM1sULUqtZACwc6e0oCpXTl6+Qy8qV7YURzNmSOes3mQUSxMXTZkQQTTlzq0uJXzdtXUgoFfmbhW7weDELBxcPBiXB1/G4naLcXv4bXxR7wt4uds/mDal26BbRVoUJSIxAp/usn31mntmruiCy+mTE2s6rYGHmweG1JTswgvPLbTxakt+v/i7eLt/tf5oUrSJeF9w0SmdNOPi6GocoPVoevSwvh0hBLNOS8H9q66sstiGdZmwwcCHD0uWrPLlaVyJHpjHNX35pTRxffEFtQ7oibW4ke+/p8UkXQHb18tWXJaJmDDs72Govqi6rGhrrlxSrR+l2XOsG0jLSl9w0cXGSin31vjzT2m136mT9olLCAY3mayXOVi7VjoPg4PVN3s1RxAxhMitW1eu0PcE0HpCWtp9WEP4DlJSqCUrOZme1wI//qiu3pQjBAtzdDSNzxMshk2aaKv/ZA83N0tXn8FA3XJ6vicBX1+51bl1a6B/f/3HEcifnwrDOnVo9m56wUVTJsNolAI01brm/rwmtb3pVsn5X3TxgOIYUH0A8vkrn2lntZqFnD606tr66+stArMB4MKLC/hir3SlW95xOQpmo2+2d9Xe8PGgDY1XXF6B2GTHVQHjkuPE9+7n5YePKnyExkWkQk6HHh6iz/lJMTD2LE3r1knZPl272q7PdPDhQdG6BQBHHx/F4yj5jm3FNbGxTF9+qc4c/iTqic1AeVY0rVxJC/0BVICzk4temIumatWcK5jpiEaN6MS/dKltobn77m7MPzcfF0Mv4pvD34iPGwzSb0qppUlrELiAkrgmQmiqvMBnn6kfR4AV6eYuOqNRCmAGnMvUFLCVQffll5JlbcIEyYLiLOZxTfPnS++zUSNA74Rv1i2/bBn97+EBzJ2rj2XYHPPYyaFDAVdG0HTsSP8HBVFXqivek4DBQK+Bp07JrZ1pDRdNmYyXL6Wu42pE0+2w22J6fY18NVA6Z/rU2MqVNRd+bSnNAEP+HiKruxSTFIMuG7qIk/5n73yGtqXbis/nyJJDdCtGJ0Xjz6uO+x9uuLEBMck0aKdLhS7w8/JD2aCyyJ2VBjYcfXxUrB8lmNufPpXXQmExd83ZYs6ZORaPrbu2TnbfWtmBkydpeq/wvJpCdRMPTEThmYXx3h/vwUQs3wA7ie3aJd2ePJnGK+hNuXLyC+28efqlKduiSxea6WPrAv/rKen8O/DggNVaXVFRUpyXPdgAYFuWJkIIdt/djSsvr1g8p0Q0HTxILTMAXYWrbTHCYi8YfONGKWC7YUPbBWLVYC0Y/PhxYMcOertgQXkJCmdhv4OjR2k/Q4CeC86WGLCGNUvqyJHaBLQSWPdzwYKuFxdffUXjtK5elSrmuxJXxEqpPob0PgCOvmgNAmfFheAiSy96VO6BliVaAgCexzzHuH3jANDJZcjfQ3A3nF7Na+aviWnBlqlcrItu/rn5DjPxfr8kd80BNBtQsDZFJ0XjUuglANKkmZJivQfSxYvAmTP0dtWqtov+PYp8JFrRArJIKVystQ+wXnaAXe2PH688uPjii4uYepReRfc/2I/dd3dbbFO8uOX+SpemAeCuwNdXMul/+aVzE74eXHt1DXvv7xXvxyTH4NRTqVOsmrim+HhJePr52U7Ln3d2Hlr90Qr1ltYTz20BJaJJaFkB0AnZGWzVajKvB+ZMLBOLedkBQuTxN19/LbUv0gNWrMyeLU88EPqb6Yl5AkiBAjRWy1W0b0/dmVmzUmuqXhY6W3h702QAPZvCZ3S4aMpkaBFNhBBxsjbAgC4Vu7jgyJRjMBiwqO0iZPWkFSgXnl+II4+OYPml5WI5BH8vf6zttNZqnFSN/DVQuwB1el8KvYTTz07bHOtO2B0x+L1sUFm8U1AK0mBddEJck6OyA0oDwOefnS9aej575zPUzE9TQy6GXkTIG8lPYW5punCBruyEY7EVL2UOIQSf7vpUjFkDgJmnZ1ps5+lpOblPm6atlUSyMRldNnRBqTmlcPqp7e9g8WI6ebGTcnox89RMi8d235PEpZpaTRs3Staozp2tf4YpxhRMO0aFf1xKHFZeXil73pFounNHbpVRklF0P+I+fjr+E57HPLd4zpalia0HVrs2jWfSg1KlpN9ISAgVmUeP0vulS9NilnpSsqS0KBAsxVmzyhciemLea3DGDNdYbAVy56bn5cOHQAvrOTccJ+GiKZOhRTRdCr2EkDA6UTcs0lCMD0pPiuQogqnNJNtyny19MPwfqe/A4naLUSLQdtEbmbXp7Hyb25kHgLPB742LWoome5aGmBjgj39LXPn5AR/bSD5MSEnAkou0T4iXuxcG1hiIjytKG7PWppw5pdXi3bvyi/u4ccoD/ddeW4tjj4/JHttzbw+uv7pusS3roqtfX4pbUMuE/ROw/vp63A2/i/7b+tttkaNHFpGJmLA9ZDsuh1ppvqWAV3GvxJIbQuYnAFm7HzWWpt+lU0tW+I9l081NeBYjlfD/89qfMsuoI9E0a5YU+zNihGNxG5sci4bLGmLMvjHosLaDhRU2Vy5pUhdEk7P1wF7FvbIq0ACaKCEErQuJBwLffadvnS6A/l5YaxpAW3+oyTJWO57gPv/wQ+Cjj1wzDouPD40x4rgGLpoyGVpE05qra8Tb7OSd3gyrNQx1CtQBADyIfID4FNol9ZPqnzi0hnWp0EV0e62/vh5v4t9YbJNqSsWKyysA0Krmvar0kj1fPld5BPnSq8+RR0dgNBntWprWrJEqCnfvbntFuebqGoQn0GZUnSt0Rh6/POhSsYtYFHTN1TXiZMamgT98CGzaRG/nywf07Wv3IxCJTY7F6L1SF9/2ZdqLt61ZVgQXmcGgvV3K7ru78cvJX8T7119ft3A96gkhBMP+Hob2a9uj9pLasqw3pSw8txBJRppnP6jGIFTOQ1ORzj0/J54/SkXTvXvAoUP0dunStoNxza19d8Pvylr3BAVJLX/MRVNEhBRc7Osrb5dhixknZ4gC5tzzczj+5LjseYNBEhUPH9Lsst275fXA2lhvDGCViy8uovSc0ig2q5isuj4L27hXqAZfvbq2OjyEEJx7fg6RiZE2t2HjmgoWpOUMXMmyZTS2bd061wZKc9IGzaLp3LlzGD16NNq1a4emTZuiSZMmFn9N2fxeTprAiiYlgXkmYsLa62sBUOHwYXknu7DqiLubO5a2XwpPN2n5XCFXBcxsNdPha308fdC3KlUVScYkLLu4zGKbXXd34UUsTTVsV7qdGPgt4GZwQ6MiNC89MjESV19dtTlpEgIsZCoc2KqTQwiRBYCPqE0Lt+T3zy9atu6E38GFF1IXTCGuiTUKjB6tPNbjh6M/iNaMtqXbYvX7q5HNm5qvVl1Zhddxr2XbjxhB4z127tQWY/Qy9iV6bell8fjXh77W1N5GCbNOz8LC8/QLSDYmY9jOYVYD3W2RlJokWiTdDG4YXnu4GFdHQMQ2PUpF0/Ll0u2+fa1Plqefnhbjpdh+jmuvrRVvGwyStenhQynJA6Buzfh4aQxH1c1fxr7Ej8d/lD1mzQoriHSTiQo1rfXAUowp6Lu1L6KSopBsTMb4/eOtxheycU0CU6dqC/odvGMwai2uhbpL6yIhJcHqNmyRxGnTqODUyoEHB/D9ke8RnRRtcxsvLxpLlRGCmDnOo+lrPHToEEaPHo0zZ87Ax8cHFSpUQJUqVSz+KutVH56jGLWi6fjj43gaTV/UokQL5PTN6aIj00aF3BXwTROa4uLv5Y91H66Dr6eyq9zgmlLq2sLzCy0mUbYCeL9q1v0nsrimh4dtWprOnpX6PdWqZbvD/LHHx3D5JXUf1S5QW4y9AuQB+KxVxrz1RlAQMHCg9f2bcy/8Hn4+SRsYe7l74deWv8Lf2x8DqtHI7iRjkkU9Kx8fKpxatVI2BouJmNBnax+8insFAHiv1HsILk4DYO5H3LdawNNZdtzegVG75YV8Tj49aREfZI+119biZRyN7P+g3AcomqOorBCr4KJjRZOtWk1GI7CCGjDh5kYrnVuDrdE19d2p4uJg3fV1snNVaNybkgI8fy7dnvOv9jYYlHWT//bwt4hLiZM9tuHGBosismxc05IlwIl/OyCprQf204mfxHMdoN+JED/IYt6At3FjbfE4qy6vwm8XaFn0W29uYe6ZuVa3GzKEBszPmGHbha6EXXd3ofmq5ph4cCK6b1LXOUELJ5+cRPFZxdFwWUO7ljS9uBd+D9OOTcOjyEcuHwsAElMTFZWISW80iaYVK1bAy8sLM2bMwPr16zF37lzMmjXL6h8nbREu5AEBklnfHrLaTOmcNWeL8Q3H43i/47g29Boq5Faeq1sqZyk0L94cAJ2w2diUl7EvseM2jaDN55cPrUpaVwhskctDjw4hf35ppc1aGlgrk9IyA4KVSaBTuU6ixYGdOM0Dsz//XNl3CwCj9owSrTuj3hmFkoF0ZyPqjBBbtsw/Nx9JqVbKP2tg5qmZYiubPFnzYFmHZZj6rhSbNuXIFNHNqgdXXl5Bt43dxAB31vU4Zu8YRZMLIURWZuCzd2ihowaFG4g1v3bf2w1CCAICJMuELUvT/v3Sc61bW4+XeRb9DH/d+AsAEOQbRC1bJall62n0U1n8mbW4po0bpd9627aWcTrmhLwJwaLzNEvBz8tPtMKmmFKw5MIS2bbsvtj6T2rqgd16c0tW40rg+6OWEdfmlqYfflDvxgp5E4Ihf8sbnv1w7Aer33/27PR9ffaZdndZyJsQdN3QVfyN7ri9A//c+UfbzhRw8/VNtFnTBg8iH+DY42NiRrGruPryKmovqY3x+8ej8fLGiElSUF/DCc4/P4/is4ojz895sP/+fpeO5SyaRNOTJ0/QrFkz1HBFjiZHM4RIneiVxDOlGFOw/jqtXujj4YMOZTq48Oico16heiicXX23TjYgfMG5BeLtVVdWIdVES133qdpH5h5hqZi7IgJ9AgHQuCZ3D5M4CQqWpshIWjARoEHbXWyEWz2NfopNN2lQUu6sufFReXlUaE7fnKJ4YydO1tKUI4fyujW77u4Syxrk98+PLxtJUbZFcxTFB+VoJb/Q2FCsu77O6j7UcP75ednFfNX7q5A7a27UKlAL75elJooXsS8w78w8p8cC6HG3XdNWXJ12qdAFW7psQadyNBjmdfxrTDroOL/70MNDMutf3YLUJ5nFI4voMn0e8xw3Xt+AwSBZm548sd7aREkA+IJzC8Tzb1CNQfDx9EHXCl3F59kSIOaiSUsxywkHJog9GkfXG41JjSeJMXQLzy8UjwWQi3TBHViqlO3z2hwTMWHAtgGyWmrFA6i5bO/9vTj7TN4Do3JlKaGhQwf1LuHE1ER02dBFtKIJrueIxAgLd6QeRCZGosPaDohKipI9PnL3SJe4n5/HPEerP1ohIjFCfGzR+UU4/vi4nVdpJ+RNCIJXBYtxl4+iHsliIvXm9NPTaLayGV7EvkB8Sjx6bO5hETKQkdAkmrJlywZvV9Rl5zjFmzc0cBNQJpr23d+HsATam6FdmXbw93ZhLmw60a5MOxTwp37KHbd34HHUY4vmvLZccwCNb2lYuCEA2iD4+qvr4qT58iXtz7VqldS1vFcv21aghecWihPXoBqD4O1h+RtirX1CgH6NGlK8itLqyMnGZIzcNVK8/2Pwj7KMMAAYWUd6/tdTvzqsZ2WP2ORYdNvYDSkmWghydL3RaF6iufj8lKZTxEl62vFpsoKlWkhISUCHtR3E3oO1C9TGsg7LYDAYMKPlDNGFO+/sPIfZdOZWJjaDUohrAqTSA8L3Hxcn1fkRCA8HNm+mt4OCqBXI2rELLlEPNw8MrUVVcIeyHUTL1l83/hKLapqLppMnpVpgVarQlhz2OPnkpCjW8/rlxai6o1A0R1G0KU0jup9GPxWtroD1elLjxysvOrrg7AIxwLxEQAl89+53GFt/rPj8D8d+kG0fFEQtZ+PGSYHtavhizxei6C0XVA4n+58US5HMPDUTL2JeqN+pDYwmI7pt7CZmG1fMXVEsU3I77DbmnLYsWOsMUYlRaP1Ha7FTgLCAA4CBOwbqLtIeRDxAs5XNRPe6wKLzi2SWer04/vg4mq9qLhOgobGh6L+tv1PXI1eiSTQ1btwY58+fR2pqquONOWmG2sy5t8E15ywebh4YWIMGAJmICb+d/w0nn57ErTe0/HCjIo1El5UtZC66h4dkcU1Pn8prM9kKAE9MTcRv538Tj4mNt2JpX6a9OHFuuLEBKcYU+PvTis+HDilvZTLn9Bzxwl6vUD2rzZfrFaqHWvlp9c1LoZfEsgpaGPHPCNwJp9UQa+avie/elRddqpC7AnpUpkWlwhPCMePkDM1jmYgJvbf0xplnVDkUzl4YW7tuhY+nj3j/y4ZfitsO/2e4zQvwnbA7omAomK2gaKUSsCeaAEsX3Zo10sKlZ0/rJSHWXF0jLlY6V+iM/P7UdOnn5Yd2ZdoBAMISwsTgc3PRZG5lsudiIoTIrATfNPlGFM/Dag0TH2cDwvPkoSUzBIoWVV4P7FHkI4zbL1kbF7dbDF9PX/Su0hv5/Gg7pc23Nls0027blrrlHAWzm7Pp5ibMO0stl1k8smDdh+tQPld50cKckJqAKUem2NuFKsbvHy+6n3P65MS2rtswt/VccUHw7ZFv7TYaV0OyMRkfrP9ArBRfNEdRXBl8RazpduP1Dfx0/CddxgKoeH535bti0kjVvFVlrvUB2wY4vdhhOfzwMFqubil2Y2hcpDFy+dKuzNtvb1fVOzQt0SSaBg4cCD8/P0yePBkvrZVF5qQLakRTfEo8Nt+iS+Ls3tnRumRrFx5Z+jKg+gDR/bbkwhLZj1GoAG4P8yKXrGj680/g+r+ljurXt942AaBlD17HU5Nzp3KdxInSHD8vPzEuJywhTKxOXbAgDZBVEoMRGhsqxpMYYMCc1nOsNl82GAxi/A4gt7io4c+rf2L5peXi8f/Z6U+rRUcnN5ksfg8zTs3QbIL/+uDXYjyQn5cftnfbjrx+8pLEn9f9HKUCaXDOscfHxPpL5sw6PUuMhxpRewQ83eWFjsoGlRXrlh15dAQJKQl2C1yylhJrrjnzJs3/qyOP4LaWDMCKpuPHpbITefLQ3ob22BqyVbT6lA0qK7OqtijRAiUCqO937/29uB12G4C8zAVALUBKipsSQjD478Giu3Rg9YFoWoxmUHt7eOOLepLiFwp6OsPDyIfov036/c5sOROV8tAS3F82/FIUh4svLLaotK6FVZdX4acTVKS4G9zx10d/oVhAMdTIX0P8XKOTojFh/wSnxzIRE/pu7YsDDw4AoAJtV/ddKJCtAH5r+5sYjzjlyBTcCbtjb1eKeBn7Es1WNsPDyIcAaLmVPT32YGyDsWhWrBkA4En0E3y+R5/6DPvv70frP1qLLtUWJVrgn+7/4PcOkm971J5RFuI6I6BINHXp0kX216dPH7x8+RLHjh1Dly5d0LZtW4ttunTpgq6OftEcXVEjmv6+/bd4cetUrpNVV1FmIb9/fnQs2xEA8DLuJVZdWQWAxj4oKbFQOU9lZPem1RcPPzqMggUlq8XPP0vb2SszMPv0bPG+eQC4Obay6JQyfv94cfX2SfVPUD1fdZvbflj+Q9F9uT1ku+rJ5X7EfQz+W7KazX9vvk3LXfGA4vikOi0mFJscq2niXH1lNb47Sq1YbgY3rO20VqynxOLt4Y3ZraXPfPTe0Rar5IiECCy7RFWOr6eveGwsBoNBtDYlpibi6OOjNi1Nly7Riu0ATWu3JqAPPjyIq69oae26BevKsicBoHXJ1uK5tvnWZiSkJMDPTypWeO+eVMl62DD73etTTamyGLNpzabJYvfcDG7ymL+zUsyfUIupXDnlVbn/uPqHaIXJ758fPzaXxxMNrDFQdC+tuboGDyJs9IVRQIoxBd02dhMDvT8q/5FoUQZoD8sv6lKRlmpKxVcHnev7cubZGXyyXTo/ZreeLQpCAJjabKoYS7Xs0jKce37OqfHG7Rsnuud9PHyw4+MdKBNEI+ar5asmutaTjEkY8vcQp1xZYfFhCF4VLIrmkoElsa/nPuTKmgtuBjcsbb9UFKBLLy51OuB9191daPtnWySk0piGNqXaiJbitqXbYmhN6q5OTE3Exxs/1i1JRS8UiSZCiMWfu7s7cufOjdy5c8PX19fqNiZbHU05LkFNuQGZa65S5nTNsQg/RJZuFbspKl/g7uYu1mt6E/8GhjzS6ifq33k4IIBW/LXGqaenxIKF1fJWQ71C9tuOtyrZCjmy5AAAbL65WVW22emnp0WrT44sOSzcZOZ4untieG1aaZ1ALu4ckWJMwccbPxZr1HSv1B09q/S0+5qJjSYiiwctMDXv7Dyx3IUSjj8+LrMszGgxQ4zLsUarkq1kYnnyocmy5xdfWCx+tn2q9EGAj3XfkHnpAVuiyZGVCYBdKxNAxZ4QoB+bHIudd3YCkFubACqW7GVpAsDSC0tFF22Dwg1kmYUCfav1Fb+PZZeWIS6ZrvynTAFOn6blBpSEr76Ke4X/7ZLez8I2C5E9i7zMu5+XnzjZG4lRtNpoYdLBSWKNq2I5imFxu8UW1tRRdUeJxWnXXlurqeApQAOxO67tKBY+HVh9oExsAjSxY3LjyQDo7+jTfz7VLGRmnZolfjZuBjes/XCtrL0TAHzT9BsxMWb/g/02LamOiEyMRIvVLXDtFe0sXTh7YezvtR/5/POJ2xTJUQQzWkju9AHbByAiIcJiX0rYcXsHOqztgMTURABAx7IdsanLJvEcBICfW/yM8rloBdLLLy/rYrnTFcLRjVu3bpGGDRuSW7dupcv4vXoRQnNrCLl2zfZ2EQkRxHuKN8FkkDw/5SGpxtS0O8h0wmQykbJzyxJMhvh3+ulpxa//+fjP4uvGbpgnfs7C32ef2X5ttw3dxNcuu7hM0Xj9t/YXX7Pu2jpFrzGajKTWb7XE180+NVvR68Liw4jv974Ek0Gyfp+VRCREKHrdhH0TxLGKzypOohKjFL1u9J7R4usGbhuo6DU3Xt0gQT8Gia8bvH0wMZlMDl/3IOIByfJdFoLJIO7fuJMroVcIIYQkpyaTgjMKivsLeRNicx9h8WHEMNlAMBmk4vyK5No16Xvv2ZNuk5hISGAgfSxLFkIiIiz3czfsrrifAr8UIMmpyVbH23N3j3hcndZ1IoQQ0rmz/HwbMMD++45JiiF5fsoj7ufkk5M2t+27pa+43eLzi+3v2AZd/uoi7qPrhq42twuPDyd+U/0IJoN4T/Emz6Ofqx5r993d4lge33rY/R3PPDlT3LbV6laqx0pISSC1F9cW99Hw94YkKTXJ6rbJqcmya8yqy6tUj7f+2nrxHMFkkEXnFtncdkfIDnG7oB+DyOu416rGikmKIXWX1BX3ke/nfORO2B2r25pMJtJyVUtx296be6saixBCNt3YRDy/9RT38dH6j2z+Bi6HXiZeU7zEbXff3a16PFfBa5RmIoRyA4B999zmm5vFVVOXCl3g7qYwLeYtxmAwyFaHFXNXFIOglcD2obuZcMjieVvFJl/EvJDV4+laUZnLWouLbsWlFTj7nKZzV8hVAUNqDXHwCkqgTyB6V+kNgDaNNa/bY05cchxG7R4lZkF5uHngz05/iu4JR4ytPxb+XjRTc+nFpXZdghEJERi1exSqLKwitjJpXrw5ZreebTVOy5yiOYpiQgO6UjUSoxgUvunmJtHK1bZ0W5TOWdrmPgJ9AlGrAD1Xrr26BvcA6YcmWHe3baOZcwDwwQe0NIQ5c87MEeOnhtcebhE/JdC0WFOxOv2O2zsQnRRtYWlyVMxyxskZYrHOTuU6WVgqWITsPYBa/4hKC8m2kG1iyYqcPjkxq5Xt+nwBPgGi1TfJmKQ6ji40NhQ9N0vWzGnNplm4OFkG1xyMItlpc7tdd3fh0MNDiscihGDg9oGyhIMNnTdYjdcDqNV2ZsuZ4v2x+8aqKtZ4+OFh9NjcQzxHJjWaJHM5mtOmdBuxbMmb+DeqygIkpCSg/Z/tcfLpSQD02rSv1z6brnWDwYAl7ZeIruMVl1dge8h2xeOtv74eH/31kZhd261iN6zptMbmb6BynsqYHjxdvN97S+8MU4bAadEUFRWF8+fP48iRIzh//jyiovSLrueoQ7iA+/nZT0v/r7nmBHpX6Y2yQWVhgAHfNPlG0aQrUDVvVVEUnAo9DO8s0sTSpIllVWOBRecXiTVwPqn+icwMbY8mRZuIwc077+x0WKRx+aXlGLpTmvxmt55ts/aUNVhX0Zwzc2R1e1j23d+HSgsq0RIF/17cpzSdYnfiMienb04xKNhIjPj60NcW2yQbkzHz1EyUmF0Cv576VbzYVshVAes/Wm/zYmuN0fVHiwHPRx4dwZ/X/rRazNIebBbdqVd7xd+X4J5z5JqLTooWm0P7ePhYjZ8S8HDzECfDJGMSttzaIhNNzZvbTjgA5O1SPNw8ZI2vrVEzf01ZFqXg9lJCVGKUrKjkzFYzLdoRmfNZ3c/g7U59fgvOLRDrATnCaDKix6Yesmrzn9W1/915e3jj26bfivfH7RunWBTOODlDjH/09fTF1q5bHb63liVbol1pmgH5POY5fjj6g93tBQ49PIQOazuIJQT6Ve2HyU0mO3zdrFazRCGz/NJyHHxw0OFrTj09hearmuPgQ7ptjiw5sLfnXtElZouC2QrKWlgN3DHQ4Xd35eUV9NjUA902dhPLrfSs3BOr3l/l8Pr0aZ1Pxd9daGwoBmwfkCHKEGgWTS9evMD48ePRsWNHfP7555g0aRI+//xzdOzYERMmTMCLF/rVxkgrkpOTMW3aNHz44Ydo1aoVBg8ejGvXrqX3YSmCEEk0FSxoO8vqZexL7H9AK64Wy1FMbIj7XyB7luw4+8lZvPj8hRg3ohQPNw80KNwAAI3fyFshRHzOVgB4sjFZrMLsbnC3iIOwh7ubOzqX7yzuZ/PNzTbHGPr3UPTd2leME+hWsRveLfau4rEAoExQGbQpReODHkc9Fuv6CEQkRKDf1n5ovqo5HkTSAN4sHlkwPXi6rAaPUj575zMx3uTPq3+KadWEEGy+uRkV5lfAZ7s/Ewv6+Xj4YGLDiTjZ/6QY76WULB5ZZNaPIX8PwelnpwHQFW3Too57ZJqXHhDimp4+pX+7aTUCFCkCWGu5ueziMjE4v2flng7bFZlbGlu2pO1tPD2Bry01poxvDn8jZiUNqjHIrhVNQFZ+4JxlPzpbjNk7RmwA3Lpka3Sv5LidSF6/vGLWamxyrKLaRinGFIzeO1q8duX3z48VHVeIWWT26F6pOyrkop0ETj87ja0hW+1u/yz6GXpu7okv9krZfis6rkDVvFUdjgUAM1rOEK1Rv5z8Bfcj7tvc9srLK2i7pi2armgq1ip6r9R7WNh2oaJFXT7/fJgWLCVUDP57sHgdMOfkk5Noubol6i6tK2ZU+nn5YVf3XYrfW+8qvcXrRGhsKD7951OLbQghOProKNqsaYMqC6vgj6t/iJXT+1frj2UdlinybrgZ3LCswzLxOrEtZJt4PU1PNImmZ8+eYciQIThx4gTy58+PVq1aoVu3bmjVqhUKFCiA48ePY8iQIXguNEp6SzAajcibNy/mzZuHnTt34qOPPsL48eMRH688EDe9iIqixfYA+665v278JZ7AXSt2VWVtyQz4efkhj18eTa9lSw/kfecQAKBwYdv9uJZdXIbQ2FAANOCxUPZC1je0AVtbac21NRbPP4t+hsbLG8sqnQ+uMRjLOmioEAhg5DsjxdszT80Ub2+8sRHl55cXM80A+llcGXwFY+qP0XQO+Xv7Y3yD8QBo4OxXB7/Cuefn0GRFE3yw/gOZy65XlV64PeI2prw7RXMB1jal24gWALa5qnkxS1vULlBbtDTuvbcXBQvR31BiIvDLL1JGW58+lq1GjCajrH3Op3UsJxpz6haqKwb67r23F1lzvcbDh7Rpb/36tl8X8iZErAfm5+WHSY0dV0QHaL0oIbNt/fX1FsUNzSGEYPH5xWKvNz8vP8UTPUCtf+4GOnHOOj3LbpuOM8/OoObimqJ10M3ghjUfrBEnU0e4u7nLrG0T9k+A0WS02C4hJQHfH/kepeeWlgVWf9XoK1WNzEsGlhStl0nGJKtp+g8iHqDn5p6ourAq/r7zt/h4/UL1sf5DdZbUgTUGilXsb4fdtrBunXhyAi1WtUC93+vJClQWyV4Eu7rvQp2CyhfOBoMBv7X7TVy4/HH1D3FBZyImbAvZhgbLGqDR8kZiEgNA3bbTg6fjt3a/qQoHyeefT3Y9G7V7FG6+vqn49a5Ak2hauHAhIiMj8fnnn2P16tUYN24cBg0ahHHjxmHVqlUYNWoUIiMjsXBhxixOZQsfHx/06dMHefLkgZubG5o1awYPDw88sdfOPIOgtNyAkMYKwGrBQ45t2CKXBRscxvLltOCkteyif+78g+H/DBfvOyozYI3aBWqL7ScOPDggCjCAxj9U/6266ErxdvfG7+1/x4K2CzSXj2hWrBkq5aZ1bk4+PYktt7ag0/pO+PCvD8Wxs3lnw8I2C3Gg9wGUyumg4ZkDhtQcIpY72BayDbUW15I1dG1cpDHOfXIOKzquEGslOcPMVjNFtxBAM56UFnX1dPcU69WEJYQhS7EL4nPsZc5aev7OOztxL+IeACC4eLCi/oluBjexrYqRGLHhxgbkzm29j50AIQRj940V3SBj6o1x6E4S8PH0Ea0/ycZk0ZVojYiECHTZ0AUDd0jxNtODp6tqc1Q0R1F0r0ytUhGJEaLQY4lNjsXIXSNRd2ld0RLpZnDDjBYzZDGGSmhXup2YtXrzzU3R7QbQz01YGEw8OFHMqAz0CcT89+aLDcPV8GXDL8VinltubRELlb6Ke4VP//kUZeaWweorq0UXd6FshbCswzIc7nMYWb0UNpb8FzeDG35r95vo7vrh2A+4+fqmWG27/u/1xXpvAP3sF7dbjNsjbqN+YTsK3Ab5/fNjTmtpETD478H47fxvqLSgEjqs7YATT06IzxXOXhizW83Go5GPMKb+GEWWQXPYMgQJqQnotrFbupYh0CSazp8/j/r166N9+/YWKwuDwYAOHTqgbt26OHdOW62K+Ph4/P777/jiiy/Qpk0bNGrUCP/8Y702RHJyMhYsWID3338fwcHBGDRoEM6ePWt1W7U8efIEMTExKOAofz8DoKTcwMPIh2LgX8XcFVExt53ACI4F1fNVF+uVHH92CL16EYsAXQA4+ugoOq3vJMYFDaw+UPVFHqC/JWHiNBET/rr+F20ue/JXWauDItmL4Hi/4+hbra/GdyaNx1qb3l/3vsxN175Me9wYegODag7SdPEzx8fTB183tvQ1lQoshS1dtuBg74OokV+//pbFA4pjXAOpbtHQmkNVCUy29EBMnt3i7cR/vSHNmtHq2ebMPD1TvM22rnEEG2+49vpau9smpiai5+aeoutJaJeihsE1B0v96M4ttGqNOfroKKosrCImNwBU/NqqcG+PcfXHieP9cvIXmVtp552dqDC/AmadniVaxqvmrYrTA07jf+84iIK3gsFgwLRmkhtr0sFJSExNxJWXV/Duynfx4V8fioUd3Q3uGFF7BO6MuIMhtYZotqSybrP/7fofvj74NYrPKo45Z+aIMXqBPoH4pcUvuD3iNvpU7aM5Kadi7ooYXY8GgqeYUlDv93posKyBKNYAGo6xpN0S3B5+GwOqD7AZ0K6E7pW6i71KX8W9wqAdg2SFKCvmrohV76/C3RF3MaLOCNVC0JyfW/yMckHlANAyBF8e+NLBK1yHpiufyWRCUWtXB4bixYtrrtMUFRWF5cuX49GjRyhprRESww8//ID169ejefPm+PTTT+Hm5oYxY8bgypUrmsYWSEpKwnfffYfu3bvDj+0pkEFRYmkSmvMCmbdtiivxcPNA/UJ0ZRYaGyq2DWG5+OKirHBb5wqdMb+N8hgRc9iJc+WVlfh408cYtWeUaE0ILh6McwPP6SYuPq70sdjKQCCXby6s+3AdtnTZggLZ9F1A9KnaB1XyVAFAJ5BZrWbh2tBr6FC2g0tcxxMaTsC4+uPwvzr/kwkoJbBxTU+9LftwWQsAv/ryqljVuVRgKbQupbzyfpU8VVA2iGYYHH101GZNq1dxr9BsZTP8cfUPALQK/MyWM1VPVMUDiovH9yjqkcy9kmpKxaSDk9BkRROx319AlgBs+GgD5reZr0lEl8tVTowtfBH7AisurcCruFf4eOPHaLOmjdhvTYidOzPgjNhCRAsNizTEe6XeA0CrWzdd0RTVFlWTZdQFFw/G5cGXMbv1bFmfNy30qNxDjBm98foGvj3yrRhr5uvpi4kNJ+L+p/cxqu4oxQki9viq0VdiwgObOFI8oDh+b/87QoaHoH/1/qpcf7YwGAxY2HahxWfUoHAD7Oi2A1cGX0GPyj10GQugCyy208Caq2t0bemiBk2iqXTp0nj48KHdbR48eIAyZcpo2T1y5syJzZs346+//sKQIbaDZ2/cuIH9+/dj4MCBGDp0KNq3b4+ZM2cib968WLBggWzbYcOGoVGjRlb/Fi9eLNs2NTUVkyZNQoECBdBHaTncdEZJuQEhdRaA2HWeow7WRXf4obxXW8ibELRc3VKMmWlVshVWvb/KqZIOrEXw3PNzWHtNsjiMbzAeu7rvUhzboYQsHllk2WS9qvTCzWE30blCZ5eIGE93TxzpewS7uu/CvU/v4dM6nzq1AnaEl7sXfgj+gbrqVLoxiwUUE1Oy7yWfALyl2Kjs2S1j21JNqbI+bJ/W+VSVuDAYDOLihoBg3bV1Fttce3UNdZbUEV0ivp6+2NRlE7pU7KJ4HBa2CKwQEP4g4gEaLWuEKUemiFafxkUa4/Lgy+hUvpPV/ShFiGsDgMmHJ6PcvHKy7N5mxZrh2pBrGFN/jC4TMNtL7dTTU+L7KR5QHFu6bMGeHnsUuU+V4GZwk1WlB/5t0FxzKO59eg9T3p1iUQDUGXw8fbCo7SIxVqxEQAks67AMt4bdQt9qfXUTMAJ5/fJi/YfrUT5XeXQo0wFH+x7F0b5H0aZ0G5dcK6rkrYJpzaahXel2uDz4sq6fnSq0FHe6cuUKadasGdm+fbvV57du3UqaNWtGrly5omX3Mm7evEkaNmxIdu7cafHc/PnzSZMmTUhsbKzs8VWrVpGGDRuS0NBQ1eMZjUby9ddfk7Fjx5KUlBRVr03P4pYDBkiF7y5etL5N5QWVxYJwKUZ1741DOfH4hFhw7eONH4uPP4p8RArNKCQ+V39pfRKXHKfLmFOPTJUV5fSf6k823diky76tkWpMJX9e/ZOceHzCZWO8rQz7e5j0XZTZKv7mhgyRb2c0GUnPTT3FbQOmBZDoxGjV44W8CRH3UWNRDdlz/9z5h/hP9RefL/BLAXLh+QVn3h5JNaaSYjOLifucfmw6yfZDNvG++zfu5Psj3+taEJctmij8BU4PJMsuLlNUwFQtH2/8WBzHb6ofmXZ0GklMSdR9HIFpR6eR3D/lJt02dLNZPFJPzj8/T3bf3Z0pr/Emk8kl54QalBdyYTh//jyqVauGn3/+GWvXrkWlSpUQGBiI8PBwXL16FU+fPkWtWrVw/vx5nD9/XnydwWBA7969dRN8d+7cQcGCBZE1q9wMXa4c9X3evXsXefKoy5T6+eefERYWhp9//hkeHvY/njdv3iAsLEy8/+jRI1Vj6Ykj9xwhRMxIKpajmKoaPhyJmvlrwtfTF/Ep8Tj88DAIIXgd/xrNVzUX3RZV81bFjo93KGrRooSPK32Mbw5/gyRjEsoGlcXmLptFt40rcHdzV1yE879GyxItMe/sPHqnxG4ghLYmYV1zhBCM2DlCDDb2cvfCug/Xacr8K52zNKrnq44LLy7g/IvzuBN2B6VylsKc03MwcvdI0VJSI18NbOu2zWYjaKW4u7ljcM3BGLuPlpEQ/gPUGrPmgzWqsq2UMKHhBOy+J8WIdavYTVG9J63MbT0Xvh6+yOadDV/U+0LWMsQVjG0wFmMbqC/LoRV7vSbfdjJCtremmXMZU8ntyZMnVrPLzpw5gzNnzsge01s0hYWFIWdOy3onwmNv3rxRtb/Q0FDs2LEDXl5eaN9e6tP0448/okqVKhbbb9u2DcuXL1d30C5CqO7g5QVY+UjwPOa5mBXibNbTfxlPd0/UL0SzUZ7FPMOFFxcwYPsAsdllqcBS2NV9l+paQvYokqMI9vfaj6uvrqJ7pe6a0+45ztOkaBN4uHkg1ZQKz3K7kbITqFYNqMGElH154EvRteVucMfaTmvRvERzzWN2q9gNF17QbL1VV1YhLD5MVkupU7lOWPn+St1Eer9q/TDp4CSxawBAa0vNfW+u4qrvamhYuCGmNJ2CI4+OYOQ7I8W4I1cR4BOAxe0XO96Qw7GCJtE0a5btMvlpSVJSEjw9Lf20Xl5e4vNqyJs3L44cOeJ4w39p37496jNFUx49eoTvvrPfINVVCAavnDmtF7Zkg5ZLBXLR5AyNizQWU3iDVwWLQZcFsxXEvl77NNeBskf9wvU1pQdz9MXf2x/1C9XH4UeHkeJ/D4PH38Pn/UqIv7kfjv4gtpcBgOUdl+P9cs7FD3ap0EVskTHlyBTZcxMaTMCUd6foks0oEOQbhAHVB2De2Xnw9/LHgjYLxPIArsBgMGBio4ku2z+HoyeaRFPVqlV1PgxteHt7IyUlxeLx5ORk8XlXEhQUhKAg/YJwnUEQTbYO504YF016wZYPEARTkG8Q9vbcq6pWDeftpEWJFjj8iCYBVH5/D0qWpMkq887Mw4QDUkf2+e/NR4/KPZwer1D2QmhYuCGOPj4qPubp5okl7ZegV5VeTu/fGjNazkC70u1QNW9VlywCOJy3lbe6YW/OnDllMUUCwmMZRdC4mvh4qVaMNdccYGZp4u45p6iVvxZ8PHzE+9m8s2F3j90ujTPiZBzY0gN77tPSAysvr5QVM50ePF1xw2QlsIVoc/rkxP5e+10mmAAah9WyZEsumDgcMxSJpuvXrzs1SEJCAh48eODUPqxRsmRJPH36FHFC/5B/uXHjhvj8fwFWNyoSTdzS5BTeHt5oWZJOnFk8smB7t+2ZOviSI6davmpimYf99/dj/fX16LtVKiw6ocEEjKk/Rtcx+1bti+6VuqNd6XY4PeA0GhZpqOv+ORyOMhSJpqFDh2LMmDG4dOmSqp2Hh4dj9erV6NKlCw4fPuz4BSpp0qQJjEYjtm3bJj6WnJyMnTt3onz58qoz595W2Hh3W6JJyJzzcvfiLiQdWNBmAX4M/hFnBpxBoyKN0vtwOGmIm8ENzYvTwO6Y5Bh02dBFzGIbXms4vntX/7hGbw9vrP5gNbZ124YSgSV03z+Hw1GGopim7777DgsXLsTIkSORO3duNG7cGOXLl0eZMmUQEBAAHx8fGI1GxMTE4PHjx7hx4wbOnTuHCxdoxkfbtm3RsWNHVQe2ceNGxMbGiq6248eP49Ur2jaiU6dO8PPzQ/ny5dG0aVP89ttviIyMRIECBbBr1y6EhoZi7Ni0S/FMbxxZmkzEJIqm4gHFnSq2yKHk9cuL0fVHp/dhcNKJliVayoowArQD/KzWszJEWjSHw3ENikRTw4YNUbduXezevRtbt27F+vXrZRcGNzc3WcsUQgh8fX3Rtm1bfPTRRyhUSF13dwBYt24dQkOlBqVHjhwRM9tatGghtjaZMGEC8uTJg927dyM2NhbFixfH9OnTM0ywelrgSDQ9i34m9nXirjkOx3nMSwh0KtcJS9ov0TWLjcPhZDwUZ895eHigTZs2aNOmDR48eIDz58/j6tWreP36NaKjo+Ht7Y3s2bOjePHiqFq1KmrUqAEfHx/HO7bB+vXrHW8EmiE3dOhQDB061PHGmRRHoonHM3E4+pLfPz86lOmArSFb0bZ0W/zxwR+8YCyH8x9A06+8WLFiKFasGD788EO9j+etZN++fdi3bx9iY2PTZXyHoimMZ86p4sED4J9/gK5dgUDnmnZyMi8bOm/AvfB7KJ2zNHfJcTj/EfjSSAeCg4MRHByMkJAQfPLJJ2k+Prc06citW0C9ekBEBPDnn8CRI9arhXL+83i4eaBMkLam5BwO5+2EO+AzAapEU2a1ND17BvToQf9evtS2j5cvgdatqWACgGPHgI0b9TtGDofD4bzVcNGUCVDqnsvikQUFs1np5vu2c/o0ULMm8Mcf9K9JE6kZn1Li44H27YGHD+WPjx8P/FthnsPhcDj/bbhoygQIoslgAAIC5M8ZTUbci7gHACgRUCLzZfesXAk0bgwwmZa4dYs+ZqWRtFWMRqB7d0BoMF2wIFDn307ud+8Cixbpe8wcDofDeSvJZDPofxNBNAUEAO5mJZieRD9BspFaSkoGZqIK6UYj8MUXQO/egNCYuWFDoFgxevvuXaBRIxrU7YgvvgC2bKG3/f2Bv/8G5s6Vnv/mGyAqStfD53A4HM7bBxdNmQChIrjDzLnMEgQeGQm0bQv88ov02KBBwL59wOHDQKl/3+fDh1Q43bljbS+U2bOBmTPpbQ8PGsNUuTJ193XrRh8PCwOmT3fBG+FwOBzO2wQXTW85qamSEeQ/EQQeEkJdZ7t20fvu7sD8+cDChYCXF1CoEBVO5crR558+pcLp5k3LfW3dCowcKd1fuBBozhQt/P57uk8A+PVX5e4+DofD4WRKNImm5wqDbE+ePKll9xwVhIdLt99KS1NsLLBqFbB5M3DxIn1DhFjfdvduKphu36b3c+YE9u4Fhph1k8+XDzh0CKhUid4PDaUxTleuSNucOUMtScJYX34J9O8v30+xYsDwfzvXJyYCX33l1Fu1SkwMdQUuWEAVMIfD4XAyLJrqNPXv3x+fffYZWrRoYfX5lJQUzJ8/H5s3b8ahQ4ecOT6OA97qcgNxccC77wJnz8of9/cHihQBihal/4sUAaKjgalTAaFdT8WK1FJUvLj1fefODRw8CLRoAVy4ALx+DTRtSkVWQADQrh2QkEC3/fhjYMoU6/v58kvg99+pS3DlSuCzz4AqVZx/74mJ1LL1/feSf/XECWDFCsCNG4A5HA4nI6JJNPn6+mLq1Kk4c+YMRo0aBV9fX/G5hw8f4ttvv8W9e/dQRY/J5S0gPSuCKxVNPh4+yO+fP42OSgFGI7X0mAsmgFpfrl2jf9bo0IFap/z97Y+RMyewfz/QqhUtSxAeTkVarlzAv82f0agRFUW2ClgGBgITJ9JgcUKAMWOoxUsrqalUfE2ebOnuW70a8PGh2Xq8oCaHw+FkODQtaZctW4Z69eph79696N+/P27cuAEA2Lp1KwYNGoSHDx+if//+mDVrlq4Hm1EJDg7GtGnTMGLEiDQf255oSjWl4n7EfQA0cy7DlBsgBPj0U2D7dno/WzZg0iTqHgsOBkqWlGKJzJk4Edi0ybFgEsiRg1qXGjak96OiaGYdAJQpQ92C3t729zFsGLV2AcCePfRPLYTQIPNKlej7ZAVTmzY0CB0AFi+m1ixbLkpnuXYNmDFD7qrkcDgcjiI0WZqyZcuGqVOnYvPmzViwYAGGDx+OMmXK4ObNm8ibNy8mTZqE8uXL632sHCvYE02PIh8h1UTjZDKUa+6XX2jwNkDFwqZNQLNm8m1MJhqL9OgRzYJ78QKoX1+qn6QGf3/aS659e+DAAfpY7tz0MSW95bJkoa7B7t3p/dGj6fGa13ewBiE0q2/CBODcOflzbdpQ91yVKsC6ddRNaDIBs2YBWbPS5/QgJgZYuxZYupRa3AAqShcvBnr10meMzER8PBW2588Dy5fTtjocDocDAMRJNmzYQBo1akQaNWpE2rVrR8LCwpzd5VvLrVu3SMOGDcmtW7fSbMwffySEzsyErF8vf+6fO/8QTAbBZJCxe8em2THZZf166YABQpYvT7ux4+MJGTGCkHffJeTCBXWvNRoJqVFDOu5lyxxv/88/hDRtKn+/ACENGhBy9Kjla5Ytk2/33XfqjpHFZCLk+HFC+vUjJGtWy2MQ/saNo8fqKpKSCImIcN3+9SYuTv6dFSlCSGxseh8Vh8PJIGj21xiNRixatAhz586Fj48PKlWqhKioKIwcORL37t3TU9dx7GDP0pThMueOHQN69pTuf/MNLU6ZVvj40LpM+/cD1aqpe62bG/DTT9L9iROlQHKW2Fhg3jygfHnax+7gQem5KlVo4cwjR4AGDSxf26cPfS07xq+/qjvO16+pJa9CBWqZ+/13GnAvULUq0KmTdH/aNOCDD+hx60VUFG123KULPSlz5gRGjaLB7xmZ+HiaIMB+Z48eAV9/nX7HxOFwMhZalNazZ8/IoEGDSKNGjcjAgQPJs2fPCCGE/Pnnn6RZs2akWbNmZN26dbqqu7eB9LA0DRggLYovXZI/N2LnCNHSdPjh4TQ7JqvcukVIYKB0sH37UmvI20abNtJ7mDpVevzePUI++4yQbNksrTklShCyZo1yi87PP8tfv2CB/e1fvyZk6VJC2rYlxNPTcvxs2QgZMoSQ8+fp9iYTIXPmEOLmJm1TpQohjx5p+kgIIYQ8fUrI/PmEtGhh/RgAQipVIuTKFe1jOCI2llrX/r0eqSIujpBmzeSfmbc3ve3urt4yyeFwMiWaRFPLli1JkyZNyKJFi0hKSorsuZCQENK9e3fSuHFj8sUXX+hykG8L6SGaOnaUrvNPn8qfa7W6lSiankc/T7NjsuDlS0KKFZMOtHlzQpKT0+94nOH6dUls+PsTsmkTIe3bE2IwWIqEJk0I2byZkNRU9eN8+618XytWyJ9//JiQ2bOpK4kVP+xfw4b0dXFx1sfYvZuQ7Nml7XPnJuTECWXHZzIRcvUqFY61a9t2/wUGSuIDIMTLi5AZM/RxCZpMdKUwfToVPF5eksj5/HNCoqOV7Sc+npDgYOkY/f0JOXmSukeFx2rW1PY9cjicTIUm0fTBBx+QC3ZWXgkJCWTatGmkcePGWo/rrSQ9RFPDhtJ1PSFB/lyJWSUIJoP4TfUjpvSy6sTFySfVypUJiYpKn2PRi08+sS0SsmQhpH9/S7OfWkwmQsaOlfbr5kYtOdOm2Rcp+fMTMmYMtewp4eZNagkTXu/tTcjq1da3ffyYxl11705I3ry2j6FIEUL+9z9CDh4kJCWFWpcqVZJv06wZIU+eqP9cQkMJWbWKkB49CMmTx/YxAIQUKEDIhg32LZq2BBMhNB6rQgXpuVmz1B+vI0wmQv76i36nXbq8XfFfHM5/EE2iKUrhpHfo0CEtu39rSQ/RVL48vZ77+sofT05NJu7fuBNMBqm6sGqaHY+M1FRCOnSQT2JaJsqMxvPn9AM3n6CnTqWuMr0wmWjguj1hABBSsiQVSidParPgvHlDrWLsPidMoI9v3Ehde6VL2z+GKlUI+fprQi5etC5SEhKo9Yd9TUCAZfaCOU+eELJ2Lf0cqlSxfwxFihDy0UdyyxZASKtWhNy9a7nv+Hhq9WQFk7ml7dgx6Xk/Pyoc9SIkhLozzT/H0FD9xjDnyRPqRq5Zk5Dffks7F/nb6IrncKygSTRxrJMeoklYbBcqJH885E2I6Jr7aP1HaXY8IiYTIcOGySeky5fT/jhcxYoVdNKvX5+Qdetc5240GqnlyppI+eYbasXRY0JKTiZk4EDHAk34y5qVkPfeI+TXX2k8l1L27aMCk91Xr17U+piaSs+RefMI+fhjKoIcHUPbttRNGRIifQ5371KhxG7r7U0/L8Ecm5AgFyx+fjQeyhqDBknbdezozKdMiYsj5MsvJXei+V+pUoQ8fOj8OCy3btFMSvN4sz59qHh0BY8eETJxIr045cvnWCDrQVgYFfrOxOdxOHbgoklH0lo0mUyEeHjQa19VM2PSjpAdomiasG9CmhyP7MDGjJEuzB4ehOzZk7bHkJlITaWTbKtWNEhcjUhRg8lEXVDWYqQ8PKhA/PprWi4hKUn7OGFh1CLE7j9PHutB9OyfwUBI9eqEjB9PXX/2jsFkopNnwYKWVrnt2wlp2VIumI4ds72v8HC5K3DzZm3v22QiZMsWSzFYqBAN9i9USHqsYEHqOnWWc+cI+fBD6zF3wl+NGvqJtJQUQrZupYLa2pg9exISGanPWALx8VSQdeggicIsWQj5/nvnzlN7REZSN/YHHxBSqxYtneLK0h2EUAv32rWEHDqUNpY7k8l1n99bjCbR1KhRI9K4cWOHf02aNNH7eDMke/fuJWPHjiXDhg1LU9EUFSVdi5o1kz/368lfRdG07OKyNDkeka+/ll8ozYOYORmbXbuoO65SJerK2bFDeVC1UkwmQlaupBZIW5O5jw8hjRtTV+HOndrifWJiCBk9WlpdWLNWWauZZc7atdJrChRQH5d39y4VEuzYnp5UAAp1oB49krtBg4Ko6FGLyUTIgQNy16Pwlz07FeBLl8pdzEFBhOzfr34sgSdP6O/eXKQKYpe9X7gwIYedzOZNTaXH26+ffbFdsaJtC6JawsJoTF+bNtathLVq6TcWIfR7vHiRWkhr1pSPVa8eIUeO6DeWQGQkjQMcMED6LuvVo0kjrhBqRiPN6p0+nS4K27Shix1XC1An0CSaRowYQT799FOLv379+pEWLVqQRo0akX79+pFPP/1U7+PN0KS1pen+fek31Lmz/LmhO4aKounYIzuraL2ZOlX+4164MO3G5rx9PHhASKNGkrXpgw8I+eUXQk6f1neVe/UqLSqqRTARQieM1q2l144Yoex1MTFUTJjHWTVrZt2S9PIlNRsL2/n7KxcYcXFU3NWpYzmh58lDJyZW7F25Qkjx4tI2bm7Ukql0ckxMpFa7du2sWycLFyZkyhRaAmLlSrm4MRiomE1MVDYWIVK25BdfWLp4hb98+eg5ZH48gwdrE90vXxKyaBF15doS3uZ/H3+sPfYtMZEWxR0yRG55tPX33nvOhT0YjbScxvff06wid3fbY9Wtq494un+fxtN17kxIzpzWxypThgr7DGjp0iSa7JGQkEBmzpxJunXrRiL+Y5kgaS2azp6VzrEhQ+TPNV/ZXBRNL2NfpsnxkBkz5Cf+zJlpMy7n7cZkokHnrnY5mEzUjVKgAM0yVLtSf/BAss4YDIScOWN728ePqYs6Rw75byJ/fhoDZ++9RkbKBV6WLNTaZ43kZPpc9+7UzWg++RQrRl1/5qm1AuHhcjEIENK1q+0q6C9fEvL774S8/771SvNublRE/f23ZYmGhw+p5ZDdvkoVKmht8fo1/bwGDLAd4+bvT2Oz9u6Vxjx/Xl7BH6AZn44++9hYGkrw5ZfUHW2rnEeBAlQ4Hz5Mt69YUf68jw8hkyfbLvchkJxMz6Nff7X9mQp/VatSoVmunPxxg4F+/0rc9kYjITduUItZ7972M1C9vanwNX/8nXeoNVrJ79Vkose1di2NmWRFupK/AgXoIkpvS7cT6C6aBD755BMylS3+9x8grUXTrl3SuTVxovy5YjOLEUwGyfZDtrQpNzBvnvxknz7d9WNyOFowmWjsjRZ++kk+iZnv59QpWjrAfMXu4UEtJEov/nFxcjHj4UELpBJChcHBg3QSYgvGsn+VKhHyxx/K3mdqKr2AmL/+7l36WV2+TGtW1aljOzaqQAFqUXNkYUlNpZ8h697y8qITo9FIxd2+fbTcRvXqtsfz8KDibN0624HsKSlUjJgLkffeowKYEGp5+/tvOt4779i3JhUtSjNAT5ywdB+lpNBroLnlpFAhQv78UxIYYWHUOjd+PBWQPj62x/Pyoi6refPkge2pqVS4mluiPD0JGT5cnn354gWNo5swgVo3HcUNli5Ny4X88w89B41G+hkLadrsX506dDvhvZlMVBhv2EDbMzVvTpNl7I2XPTtNrpg3jyYr7NplmckL0P189RUhr145Pp9djMtE05w5c0i7du1ctfsMSVqLpj/+kM6pX3+VHk9KTSJu37gRTAapsaiG6w9k6VL5Cf7NN64fk8NJD5KT5aUPfvqJTpjr11P3hbWJr08furpXS1ISFWCsRaFbN2qtsjYB5chBMy337dNmtdu8WR5jlj27dUuD8JcrF31v27apF6GXL1taZ0qXti8ivL3pxD9/vrrSHo8f0wK07L58fakos2VJEv7KlKEC59w5ZZ9peDgVHeaiuXp1QsqWtT8W+5lu2kRdu/ZISKBi01w4Z81KBaW978582/nz7VuqjEZ6jrN1y4S/2rVpYkVQkOPxPD2pKPruO7rAsHXenDwpr9ws/Pn4UAuf3tmlKnCZaJoyZQoJDg521e4zJGktmmbNks6llSulx2++vim65rpu6Orag1i9Wr4aHD+e12ThZG5On5bOeV9f65NTrlyETJpEV/rOkJoqL3lg/ufrS91pW7eqiw+yxc2bVCjYGq9iRfobP3HC+QrpCQmEjBplf5IVXFK7dzt2ddlDyKa0JTiFv7Jl6ee9Zo22djwCN25Ylr2w9le0KHWtzZtH47W0fKaRkdRSaF47ztpf/vzUDThtGrVWqj1njEZajNVc8Nr6y5OHBnd//TW1Sqltfn39OhWR5hbAwEB9zncN6C6ajEYj2bVrF2natCkZPHiw3rvP0KS1aJo0STqHdu6UHt92a5somr468JXrDmD9evlKbeRILpg4/w1sFR2tWJGQJUtsxxBpwWSi7g52td6uHZ3Y1U5CSoiKohOrMFbz5rQWluDS0pv9+yVXU8GCtC/lmjU0fkpvIiOpC0sQvRUr0npy69e7pqjo339LItTDg1plRo6kwsMZUWaNFy/oexEERtas1AU4Zgx1melZWNhopPtkK/0HBVGX8sSJ1CX49Kl+88GjR9SCJwjDMWP02a8GDIQQorbJb5cuXaw+bjQaERkZidTUVHh4eODnn39G1apVne0p/NYQEhKCTz75BIsXL0aZMmVcPt7w4cC8efT26dNA7dr09oyTM/D5ns8BACs7rkTPKj31H3zbNqBTJyA1ld4fMoQejMGg/1gcTkYjOhqoVAl4/Jjef+894LPPgGbNXPcb2LULCAsDWrcGAgNdM4YAIcCdO0DevEC2bK4dCwCSkoBXr4CCBdPmGhIfDyQmuv5zBACjkZ4nefIAvr6uHy88nH6WJUsCHh6uHctkAm7eBPz9gUKFXP/dvXkDzJ0LDBoE5Mvn2rFsoOkTtaWzPDw8UKxYMZQtWxYffPABihUr5tTBcewTFibdzplTun0n7I54u2RgSf0HfvAA6NJFEkx9+9ITmQsmzn+FbNmAEyeAv/8GGjUCypZ1/ZitWrl+DAGDAShdOu3G8/amk25a4eubNgIGANzdgbScCwMD00YMAoCbG1ChQtqMBQBBQcDkyWk3nhU0iab169frfRwcDdgUTeGSaCqVs5T+A0+eTFdpANC1K7B4Mf3xcDj/JQoUAAYOTO+j4HA4aQif6d5iBNHk7g5kzy49LoimHFlyIKdPTiuvdIKbN4HVq+ntgABg4UJ6ABwOh8PhZHK4aHqLEURTYKDkGUtMTcSTqCcAgFKBpWDQ22U2aRL1YwPAmDFytcbhcDgcTiZGkXtu2rRpmgcYN26c5tdy7COIJtY1dy/8HghozJnurrmLF4ENG+jtPHmAESP03T+Hw+FwOBkYRaLpn3/+0bRzg8HwnxBN+/btw759+xAbG5tmYyYnA8JwNuOZAnUWTRMnSre//BLImlXf/XM4HA6Hk4FRJJrWrVvn6uN4qwkODkZwcLBYciAtUJI5p6toOnEC2LmT3i5cmAfAcjgcDuc/hyLRdPfuXRQpUgSF0jIllGOXN2+k2y7PnCOEWpYEJk2iKcIcDofD4fyHUBQIPnHiROzfv1+836VLF2wQYls46YKicgN6WZr27wcOHfp3p6WA3r312S+Hw+FwOG8RikSTh4cHUoVChgBCQ0PTNH6HYwkrmoKCpNuCey6nT04E+AQ4P5C5lembb1xfZZbD4XA4nAyIItGUO3duXL16FUajUXxM91R2jiqsWZriU+LxLOYZAB1dc9u3A2fO0NuVKtFK4BwOh8Ph/AdRZDIIDg7GihUr0LZtW2T7tw/R+vXrsVMIDLaBwWDA2rVrnT9KjgXWRNPd8LviY7q45kwm4KuvpPtTpvDK3xwOh8P5z6JINPXq1QteXl44deoU3rx5A4PBAEKIzR50Ahp6AXMUYk006Z45t349cOUKvV27NtC+vfP75HA4HA7nLUWRaPLw8ECPHj3Qo0cPAEDjxo3RuXNn9OnTx5XHxrGDVdGkZ+Zcairw9dfS/e++4w15ORwOh/OfRpOvpU+fPqhatarOh8JRg8stTStXArdv09uNGwPBwc7tj8PhcDictxxNaVB9+/bV+zg4KmFFU2Ag/a+bpSkpiWbJCXz/PbcycTgcDuc/D4/qfUsRRJO/P+DlRW8Loil31tzI5p1N+84XLwYeP6a3W7cG6td34kg5HA6Hw8kccNH0liJUBBdcczFJMQiNDQXgpGsuPp5algS++077vjgcDofDyURw0fQWYjIBERH0ttVyA8645hYuBEKp+EKnTkD16tr3xeFwOBxOJoKLpreQyEgqnAAbmXNaLU1JScDPP0v32bgmDofD4XD+43DR9BZirYWKLplzy5cDL17Q2++/D1SooG0/HA6Hw+FkQngTMR3Yt28f9u3bl2b9+FxSoyk1FZg+Xbo/YYLGo+NwOBwOJ3PCRZMOBAcHIzg4GCEhIfjkk09cPp6jFiolA0uq3+natcCDB/R2ixZAzZpOHCGHw+FwOJkPRaKpcePGmhr0GgwGHDx4UPXrOPaxJpoeR9ESAUG+QfDz8lO3Q5MJ+OEH6f6XXzp5hBwOh8PhZD4UiaYqVapYiKaYmBjcu3cPbm5uyJ07NwIDAxEeHo5Xr17BZDKhRIkS8Pf3d8lB/9cxF01GkxHPY54DAAplK6R+h1u3Ajdu0Nv16wMNG+pwlBwOh8PhZC4UiabZs2fL7r969QrDhg1DcHAwBg4ciDx58ojPvXz5EosWLcK1a9cwbdo0fY+WA8BSNIXGhsJIjACAgtkKqtsZIfK6TF9+yat/czgcDodjBU3Zc/Pnz0fOnDnx1VdfyQQTAOTJkweTJk1CYGAgFixYoMtBcuSYi6an0U/F+6otTXv3AufP09vVqgGtWulwhBwOh8PhZD40iabz58+jRo0adrepXr06zp07p+mgOPYRqoEDVDQ9iX4i3v9/e/ceF1WdP378dWa4DMP9JoioSCgKykWx1mtZRGa77Vaapa1FKWZltN0st59a2261tetlt5uatuW2+d2tbS3L1LLU1FKTJC94AbwDgsAwA8MwM+f3x8AIchW5iLyfj8c85sy5vuegM+/5XC+6pKl2KdPcuVLKJIQQQjSiVUmTxWKhqHZxRwMKCwuxWCytCko0rcmSJt+LKGnauhU2b3YsDxwIt9/eRhEKIYQQV55WJU0DBgzgq6++4ueff25we2ZmJl9//TUDBw68pOBEw2qSJldX8PKqmzRdVEnTn/50fvmZZ0AjY50KUWa18lx2NhN//pmMsrLODkcIcRlp1ThNM2bM4He/+x2zZ89m5MiRDBkyBH9/f4qLi9m7dy/bt29Hq9Uyffr0to5XcD5pCgx01Ka1qnpuzx744gvHct++MGVKG0cpRNeztqiIWYcOcaKyEoDPz51j5cCBTO7Ro5MjE0JcDlqVNMXFxfHnP/+ZV199la1bt7J161YURUFVVQB69uzJU089xZAhQ9o0WOFQkzTVTKHSqpKm2qVMTz/tKLYSopvKt1hIP3yY1WfP1llfYbdz1/79/GQ08mK/fmikzZ8Q3VqrRwQfNmwY//rXv9i7dy9HjhzBZDLh6elJVFQUcXFxrRoMUzSvvBzMZsdyzcCWNUlTkD4InYuu+ZMcOAAffeRYDgmB++9vh0iFuPypqsrKvDyePHqUYqvVuT7Z35+ebm68n58PwEvHj5NpMrFq0CB8XWQiBSG6q0v6368oCvHx8cTHx7dVPKIZDQ1secpwCriI4QZeecUxPhPAE0+ArgWJlhAXQVVVTlZWstdkotRqZbCnJzF6PS6X0G7OpqoUWCycsVg4XVnJ6Qae8ywWglxd+YWPj/MxUK9vsITocHk5aYcO8U1JiXNdoIsLf42K4rfVQ6kM8/bmiSNHsAGfFRXxix9/5H+DBzNAr2/1+xBCdF2X/JMpNzeXY8eOYTabuemmm9oiJtGEC5OmfFP+xQ1smZsLq1Y5lv394cEH2z5I0a0YrVZ+NpnYazKx12hkr8lEpslESa2SGwCdRkO8pyfDvL2djxi9HtcLEqlzVVVklZdzsLzc+XywvJyjZjPWmmS/CWcsFjJNJpadOQOAj1bL1bWSqKFeXqzMy+OF3Fwqa51vao8eLIyKItjNzbkuPTycWL2eO/fvp9hq5WB5OVfv3s2HMTGMrynqbYTJZmOHwcCusjKsqoqLouCqKLhUPy5cTvDyYqCnZ7PvTwjReVqdNB04cIBXX32V7Oxs57qapCkjI4OnnnqK+fPnM3r06EuPUjhdmDSdKL3IRuCvvgo2R5LFo4+CTHXTbZyprGR9cTHfGwz0cHUlzsuLIZ6eRHp4oG1Bdbqqqpy2WNhTVsYeo5EMo5GfjEaO1tQXN8Nst/N9WRnf1+qR5q4oxHl5McDDg+OVlRwsL+dsVVWr3p8W6OHmRoHFgq3WeoPNxsbiYjYWFzd4XIROx1sDBnBTQECD25MDAtg5bBi/zsxkX3k5pTYbt2Rm8kpkJE/07u1silBcVcXW0lK2lJayuaSE3UZji5K82m4JCODZvn0Z5et7UccJITpGq5KmnJwcHnvsMTQaDZMmTeL48eN8//33zu3x8fH4+vryzTffSNLUxi5pNPAzZ+CddxzLnp6OpElcsSrtdraWlvLluXN8ee4ce02mBvfz0GgY7OnJEE9PZyI12NOTYqvVmSDVJEktTWjC3d2Jqz6nn4sLGUYju41GjlRU1I1RVdlZVsbOZrr26zQa+nt40FenI8zNjTB393rPQa6uaBUFk83G7rIydhgMzseZBsaM0wC/Cw/n+X798NRqm7z+VR4ebB86lGkHD/JJYSF24KnsbH4oK6OHqytbSkvJNJm4uBSpvrXnzrH23DnG+PrybJ8+jA8IuKT2oaqqYrbbMdpslNlszme7qjLM2xt9M+9bCFFXq5KmFStWALBs2TLCw8NZuXJlnaRJURRiY2M5ePBg20QpnJpKmpotaXrzTajuSs2sWdDIL2vRNamqyuGKCmeStKmkhHK7vdnjKuz2FiUuDdFXJ1xxXl7E1Uq6AhrpjVlSVcUeo5HdZWXsrn4+XCuR6unmRrRez8DqR7SHBwP1evrodC3uueap1TLWz4+xfn7A+fZVNQnUzrIyglxd+X3fvgy7iJJWbxcXPoqN5fncXF44dgyAf1/Q2662QXo9Y3x9Ge3ri7+LC1ZVpUpVG3w+V1XFsjNnnEMdbCktZUtmJgleXjzTpw8Tg4MbLQ08XVnJrrIyxz0tK+Oo2exIjqxWjDZbnVK3OvdJo+G24GCm9OhBsr9/vWrSS2W12zHYbBisVrxdXAiUHrriCtCqpCkjI4Nrr72W8PDGv6RDQkL44YcfWh2YaNiFU6jsu5gxmtauPb/82GNtG5i4aGabjbXnzvGfs2cx2WwM8/bmam9vhnt7E1SrXU1jVFXlYHk5m6urgzaXlnKyJim+gIKjUfNN/v6M8/enuKqKzOq2R3uNRrLN5mZLSYJcXUn08jr/8PYmqoVVezX8XF0ZVx1DDYPVynGzmd46Xbv0TFMUhd46Hb11OiZd4nhLGkXh+X79iPPy4t4DBzBVJ6UaIMHLy5GsVSdKwS34G9Y2p08fPsjP55UTJzhYXg5AhtHIXfv309/Dg6d79yYlIICfqpPNXdWJZ14rZ14w2e2sys9nVX4+wa6u3BkczJSQEEb4+DRZunW2us1YpsnEPpOJAovFmRzVfq64IGG/2tubXwYG8qvAQOK9vC65h7VdVSm/oATNWH3daA8PIjw8Lun8QjSkVZ9QFRUV+Nf60GtIZWUl9hb8yhUXp15J05kWTqFSWOgY0BIgPh569WqnCEVTbKrKtyUl/DM/n4/OnqXUdr4c4NNaf9xInY6rfXy42tubq318SPTywl2jIdNoZHNpKd+WlLCltLTJ6rJQNzdu8vfnpoAAbvT3r5eITay1bLRa2VdeTmZ1Q+4D5eV4a7V1EqQwN7d2GUrEx8WFwV5ebX7e9nRHcDBDPD35tKiIWL2ekb6++Fxiwuem0XBfz55MCw3lk8JCXjp+nF3VpX+HKyqYcehQi86j12jwc3HBS6vFW6t1PFe/rllXbLXySWGhs7H+2aoqXj99mtdPnyZCp+PuHj2Y3KMHVXa7M0HKNJnINBrJb2Wbsx/KyvihrIx5ubmEu7s7E6hxfn54XFBNqKoqZ6uqOFCrI8DB8nKyKyowVJeimZr5frlKp+PGgACS/f253s8P/4so6VJVlXyLhYKqKkw2G+V2OyabrcFlLXCNjw+j2uDfgLj8teovHBwcXKcBeEMOHTpEWFhYq4LqajZu3MjGjRsxGo3tfq16DcGzzpc09fJuIhH6+uvzwwzceGM7RXdlsKsqhVVVBLu6tkmSoKoqGUYj/8zP518FBZxuQclAttlMttnMhwUFgKORs16rpczWWGWL48typK8vN1YnSnGeni2O38vFhWt8fLjGx6dF+wsYoNfzRDsMPaBRFG4PDua2oCC+Ki7mpePH+brWsAi1+bm4MMzLi2He3iRV90jsp9O16O/+lt3OF0VFfFBQwKdFRZirk5Bcs5mXjh/npePHLy5uwNfFBR+tFp9az95aLQfLy+u0qTtZWclbp0/z1unT6DUakv39SfL2JsdsdiZIxRf0vrxYR81mjlZfQ4OjpDXZ358b/f0Z6euLm6JQUFXF4fJyjlRUcLjW40hFBcYm/q819v4Tq0sbr/XzY7Svb5NVknZV5XRlpeP/ekUFuWYzZdUlZeU1z3Y7FdXJWUX1coibGyN8fBjh68sIHx96XGSJ5oVsqkqFzYa55hq1rmUDBur1UrVaS6uSppEjR/LRRx+xa9cukpKS6m3/+uuv2b9/P/fee+8lB9gVJCcnk5ycTFZWFjNmzGjXazXWpilIH4SHaxPF0Rs3nl9OTm6n6Lo+i93OrZmZfFlcTKxeT1pYGL8NCbmoX6k1DpeX839nz/LP/HwOVFe31Oal1XJ7UBBTQ0KI1OnYVf1L/AeDgd1Go/NLDMAG9RImX62WMdXVQWP9/Bjq5dXm7VJE51EUheSAAJIDAvjeYOD1U6cosFiI9/K66ASpIe4aDb8JDuY3wcEYqkue/pmfz8biYhorwwl0cWFIdfu1IZ6eDPHyore7O74uLug1miZjOWY2s7aoiE+Livi6uBhL9Y+4crudNUVFrGlmEnhw/J8JqE7EvBopRdMA2w0GthsMVFVfww7OdnsvHT+Oh0aDi6I0+SPkYtnB0U7PaGThScfn8mBPT6719SXJ25siq5WcigpnkpRjNjvvwcXIqqhgc2kpnHD8YI7y8GCEjw8jqxOpwZ6eaBUFu6qSZ7GQazaTazZzrPq5ZjnPYqHcbnfeo6ZcpdMx3MeH4dVNCBK9vZvtPFFpt3OyspLjZjPHKysptVqdiZm5OimrnaiZ7Xb0Gg0JXl4M9fYm0cvroqu4O4Kiqhf/VyspKeGBBx6guLiY8ePHc+7cOXbs2EF6ejr79u3jq6++okePHrzzzjt4dbFi90tRkzQtW7aM6OjodrnGNdfADz845pyrMNvwekWH1W4lITSBPTP3NH5gZCTk5ICbGxQXgwzO16BZhw7x1unTddbpNBruDA5mZlhYs+09DppM/OfsWf599myDvdVcFIWbAwKYGhLCrwIDG+29VGW3s89k4ofqD/rvDQZKrVau9vFxJkk1H45CtKV8i4X/KyhgY3Ex/tVJ0pDqJCm0japojVYrX5WU8GlhIZ8VFdWr8uvt7s5AvZ5BtToFDNLrCbmI6xutVraUlrKheriJzEZ6j15Ii2MYiv56Pb3c3PDSavGsfug1GudyzesSq9VZZd7Sa7SGm6LgrtE0m+h5abWEuLpyorKyVUlZS2hwJITDq5N3i6o6k6Oa59a2tautt7s7idVJ1NDq5/ZqJtBSrUqaAE6fPs2LL77Ivn376m2LiYlh3rx59OzZ85ID7Eo6ImmKioKjRx3jUv587DS9/uqokvvlgF/y6d2fNnzQ0aOOAwHGjXNU1Yl6lp4+zczqdiMaaPDX9mBPT9J69uSeWqVP+2oSpYIC9jVQogQw2teXqT16MKlHDynqFqIWu6qyu6yMXLOZSA8Poj088GqHtkF5lZV8XVLChuJiNldXd/b38CDKw4P+er1zOUKnw62VJbbnqqqc43R9W1LCHqOxwc8RvUZDpIcHkTodkR4e9NPp6KfTEeDqiodGg16jwaM6KfOoXq75gZRXWcl2g4FtBgPbSkvZXVZWZ5DWlvDUaOjl7o6nVouHRoOu1nU8qpd1Gg02VWWP0ciPF5R8d6ZgV1fGBwTw3qBBnXL9Vv/LDAsL44033uDw4cPs378fg8GAXq8nJiaGQZ30ZrqDmhLsixqjqXbVnLRnatC20lIeOXzY+XrlwIEM8/Zm2enT/CM/39lg9meTiUePHOHp7Gx+GRjIvupG0w25xtubicHBTAwOlp48QjRCoyiOqp92bk8X6u7OlJAQplRPkdMeAlxd+XVQEL+unk3dYLWyrbSUfeXlhLq5OZOkHpfQXjLU3Z3bgoO5LTgYcFSD7SkrY1t1leT20lIMNht9dToiaj36urs7lwMv8voXlnz/YDCwz2RqcDgLBcfQIX10Ovq4u9NHp6N39ThquloJmfO5VuJ2tqqKH8vK+NFo5MfqMeIuLFk7W1XFuVZ2RmgLl5zO9+/fn/79+7dFLKIZVivUtAe9qDGaNmw4vyztmeo5XVnJHfv2Oev203v1YlpoKACL+vfnpchI/n32LEtPn+Y7gwFwjG79nwbG6Bnp48PE4GDuCA6mj8zpJ0S35uPiwvjAwGan3LkU7hoNv/D15RftOIq8q0ZDgrc3Cd7epFWvK7fZ2FM9K4C3VutMknq5u7e6pK6Hmxuxnp78tvq1XVXJrqiok0TtLitjaCfOZNGqpGny5MlMmjSJiRMnNrrPxx9/zOrVq1m9enWrgxN11Z4F4sIpVBotabLZzlfH+fvD0KHtGGHXU2m3c8e+fc769+v8/Hj1qqvq7OOh1TItNJRpoaH8bDSy7MwZ3qsufVJwVL3VJEq93N074V0IIUTH0mu1jPL1bdcpfzSKQpReT5Rez53VY6yp1YPCdpZWJU15eXnNdq83Go3k5+e3KijRsFaNBv7jj+ezreuvB5k2wUlVVR4+dIgd1aVHfdzd+b+YmCZ7oA328mJxdenTXqORvjodPSVREkKIDqEoCm6d2BC83UbiMplMuEqD1zZ14WjgJ1oyGrgMNdCot06f5p28PMDRQ+6/gwe3uIurXqtt1+JwIYQQl58WJ00ZGRl1Xufl5dVbB2C32ykoKGDDhg307t3MBLLiolxY0rSzJSVNtdszSSNwpy0lJTx65Ijz9fLo6E6tJxdCCHH5a3HSlJ6e7mxtrygK69atY926dQ3uq6oqiqIwc+bMtolSAI1XzwV6BDY8sGV5OXz3nWM5IsIxVpPgpNnMxH37sFbXiz8eHs7UduxRI4QQ4srQ4qTp3nvvRVEUVFXlH//4BwkJCSQkJNTbT6PR4OPjQ2JiIhEREW0YqqidNPkH2Dh16BTQRCnTli1QM8DYjTc6RsTs5sw2G7ft20dBdZfVG/z8eEWSSSGEEC3Q4qTp/vvvdy7/9NNP3HzzzYwfP75dghINq500aXwKsNodYwc1OlGvtGfCareTW2s+qy/OnXNOghqh07E6NhYXmXpECCFEC7SqIfjixYvbOg7RArWTpiqPWu2ZvJtpz6Qojp5zV7gTZjPflpTUmRX9cEVFg1MJeGg0fDJ4sIzOLYQQosXarfecaHu1k6Zyl1pjNDVU0lRQAD/95FhOTITqEWqvVP89e5a79u9v0VxLvlotKwcOJL4bzYsohBDi0rU6acrPz+e9995j9+7dFBYWYq2eZqI2RVHYtGnTJQUozqudNBlopufcV1+dX77Ce81tLinh7gYSJjdFob+Hh2OyT09P58SfA/X6ZmfoFkIIIS7UqqTp9OnTzJw5E6PRSEREBFVVVYSEhODm5saZM2ewWq1ERUXhJb/k21RN0uThAXnlzYzR1E3aM2UajdyamemcsPL2oCBSQ0MZqNcTodNJeyUhhBBtplVJ08qVKzGZTCxcuJCEhASuvfZaJkyYwH333UdhYSF//etfyc3N5a9//Wtbx9ut1Zmst6yJyXpV9Xx7Jp0ORo/uoAg71nGzmZv37qW0ekLH8QEBfNjMiN5CCCFEa7Xq22X37t384he/qDPkgFr9Sz8oKIgFCxYAsHTp0ksOUDio6vkRwS+cQqWXT6+6Ox8+DCeqS6JGj3YkTleYoqoqbtq7l1PVQyoM9/bm35IwCSGEaEet+oYpLS2lT58+ztdarRaz2ex87ebmRlJSEtu3b7/0CAUAZWVQ02ys9mS9AR4B6F31dXe+wkcBL7fZ+FVmJgfLywHo7+HB2iFD8HKRfg1CCCHaT6uSJl9f3zpJkq+vL3nVc3jV0Gq1zU7qK1qudiPwgEA7p8ocA1vWq5qDK7o9k9VuZ/L+/WyvnmQ31M2NL+PiWjxnnBBCCNFarUqawsPDOXXqlPP1oEGD2LlzJ6dPnwagpKSEb7/9lrCwsLaJUtRJmvTB5we2rNcI3GqFmh6LgYHQwKjtXZWqqsw8dIjPqm+Gt1bLF0OG0M+jgSlkhBBCiDbWqvqMa665hpUrV1JWVoa3tzeTJk1i27ZtpKam0rdvX06ePEl5eTmpqaltHW+3VTtp0gbUGqPpwpKmXbugtNSxfMMNcAW18ZmXm8uK6hJNN0Xhk8GDSZBJdoUQF8Fms1FVPY2S6H5cXV3RXsKQM61Kmn7zm9+QmJjovHBiYiLz589n5cqVZGdnExoayvTp0/nVr37V6sBEXbWTJtX7JFQ4luuVNNWumruC2jO9ceoULx47BoACvD9oENf7+3duUEKILsVoNHLy5ElnxyXR/SiKQnh4eKuHRGpV0uTp6UlMTEyddePGjWPcuHGtCqKr27hxIxs3bmzXNlx1p1A50XjSVLsR+BXQnulMZSUvHz/O32pVBy+OiuLOHj06MSohRFdjs9k4efIker2e4OBgFJnAvNtRVZWzZ89y8uRJ+vfv36oSp1YlTenp6QwZMoTp06e35vArTnJyMsnJyWRlZTFjxox2uUbtpMnsVmuMptpTqBiNUNNjMSoKIiLaJZaOkFdZySsnTvDW6dOY7Xbn+mf79GF2eCNz7QkhRCOqqqpQVZXg4GA8pB1ktxUcHExubi5VVVUdlzQdOHCA2NjY1hwqWql20lSmNDKFyubNUFNX30VLmQosFv58/DhvnD5NRa1kyUOjYU6fPszr27cToxNCdHVSwtS9Xerfv1VJU58+feoNMSDaV+2k6Zy1kSlUunB7prMWC6+eOMHrp05RXitZ0mk0PBQWxtN9+hAiwwoIIYToRK3qWnXHHXfw3XffkZub28bhiMbUjAYOUFDpKGmqN7BlTXsmjQa6SPsyg9XKM0eP0m/HDl49ccKZMOk0Gh4LDyfnmmv4S1SUJExCiCvOggUL6ox52JhFixa1uKDivvvuY9GiRZcYmWhMq0qaevbsSUJCAg8++CC33norAwcOJCAgoMF9E66gcYI6U01Jk6Kxc8boaBRdp5QpLw9+/tmxnJQEXaBnWanVyg0ZGeyu1YDeXVGYGRbGM3360NPdvROjE0KI9vX888/z2GOPoWtmqqtFixZx3XXXERoa2kGRica0uiG4oiioqsrq1aubrCP85ptvWhubqKUmafIPL+Cc3dFuqc4YTV1sFPCaqVBqEiY3RWFGz54827cvvSRZEkK0s6SkpHZtZhIaGsquXbsa3f7ggw8CMGbMGLRaLevXr+fBBx/k8OHDqKrK7NmzmTlzJi+88AKnT59m8uTJeHh48O6771JUVMRzzz2H2WzGYrHw+OOP88ADD7TbexHntSppuvfee6UxXQerSZq8e53kXPW6rtqeyWK3M3HfPrZUD8IZ6OLCt4mJxHp6dnJkQojuIi8vr87MFh3trbfe4u2332bLli34+fkxefJkoqOj+fjjjykoKGDYsGHEx8czb948VqxYwerVq501N8XFxWzduhWtVsu5c+dITEzkpptuIlx6Fre7ViVN999/f1vHIZpgsThGEwDQhTTSCHzr1uoddDBiRAdGd3Fsqsq0Awf44pwj9fPWavkyPl4SJiFEh2rvqq6LPf/GjRvZvXs3AD169OD2229n48aN/OIXv6i3b1FREQ888ACHDh3CxcWFoqIifv75Z0maOoBMC98F1O455xpQa4ymmuq5khI4etSxnJAAl2n1lqqqzDp0iNVnzwKOxt6fDRnCMJkKRQjRwZqqOrscNFWb8+CDDzJhwgQ++ugjFEVh6NChLWpQLi7dlTMx2RWsdtKEbwNjNO3Zc377sGEdE9RFUlWVp7OzWXbmDAAuisJHsbGM9fPr3MCEEKKTeHt7U1rdTCE5OZlly5YBcPbsWT7++GNurG5q4ePj49wPHNVzffv2RVEUNm/ezE8//dTxwXdTrSppuvbaa5tt06QoCnq9nj59+jBmzBjuuOMO3C/TEpDLXe2kyaqvNVlvzWjg1UW6AAwd2kFRXZyXjh/ntROO2BVg1aBBTAgM7NyghBCiEz3xxBPceOON6PV6vvzyS2bNmsWQIUNQVZXf//73XHPNNQA8+uijzJgxA71ez7vvvsvLL7/MQw89xB/+8AcSEhKc+4n216qkKT4+HpPJxJEjR9BoNISEhODv709xcTH5+fnY7XauuuoqbDYbR48e5cCBA2zYsIG///3veErblYtWbwqV6rkme3n3ciz8+OP5HS7DkqbXT53i9zk5ztdvDRjAZJk7TgjRzc2fP5/58+c7X3/88ccN7jd9+vR605YdPny4wX3ffffdNotP1NeqpOm5557jkUce4aabbmL69On0qPUFePbsWZYvX86ePXt4/fXX8fT05I033uDTTz/l/fffd3azFC1XZwoVzQmwgb/OH0+36gS0pqTJ3R0umEi5s63Ky+ORWv+5/xwZSVpYWCdGJIQQQrROq9o0vfHGGwQGBjJ37tw6CRM4JsN79tlnCQoK4o033kCv1/P4448TERHBli1b2iTo7sY5Grhip9Tu6CLrrJozGODQIcdyXBy4unZ8gI3479mz3HfwoPP13D59eKpPn06MSAghhGi9ViVNu3fvZmgzbWcSEhKcvRM0Gg1xcXHk5+e35nLdnrOkSX8Wq+oY2NLZCDwj4/yOl0l7Jqvdzu+zs7lj3z5s1eseCgvjxX79OjUuIYQQ4lK0qnrOYrFQVKdLV31FRUVYLBbna71ej1arbc3luj3nrfat1Qi8ZriBy6w900mzmbsPHGBrrZ4e94SE8Lf+/WVAVCGEEF1aq0qa+vfvz1dffcXPNXOdXWD//v18/fXXDBgwwLnu9OnTjc5PJ5rmTJp8GhhuoHbPuU5OmtYWFZGwa5czYXJRFP4cGck/Bg5EIwmTEEKILq5VJU3Tp0/n8ccfZ/bs2YwcOZIhQ4Y4e89lZmaybds2NBqNcy6c8vJyfvjhB8aNG9emwXcXTSZNNSVNrq4QG9uxgVWrstuZm5PjHFIAoI+7Ox/GxDDC17dTYhJCCCHaWquSpoSEBF5++WVee+01tm7dytatW50T+AKEhITwxBNPOOfJ0Wg0vP766wQFBbVZ4N1JTdLkGnSCqup1vX16g8kENQ2thwzplJHAcysquGv/fr4vK3Ou+3VgICsGDiTgMmqULoQQouUURaG4uBi/dhyAOCgoiF27dhEREdEm53vxxRdZuXIlAHfddRd//OMf2+S8tbV6GpWrr76aDz/8kL1793L06FFMJhOenp5cddVVxMXFodGcr/nT6XRERUW1ScDdkTNpCjzpTJrCfcLhp5/Abnes6IRG4J+cPUtqVhYlVqsjPkXh1auu4tFevaT9khBCdDKr1YqLS/eYLW3z5s3861//Yu/evbi4uDBq1ChGjhzJLbfc0qbXuaRpVDQaDQkJCdxxxx1MmzaNO+64g4SEhDoJk7g0djtUz22Lxu+CyXo7qT2TTVV5/MgRbtu3z5kw9dPp+C4xkfTwcEmYhBCiBXbu3Mn1119PUlISiYmJ/Pvf/wYgNzcXPz8/5s+fz7Bhw4iKiuLzzz9v8XFz5sxh6NCh/P3vf+fgwYOMGDGC2NhYbr/9dlJSUnj33Xc5ffo0ISEhlJeXO887ZcoU3nzzTefr1157jcTERAYMGMA///lP5/qpU6eSlJREXFwct9xyC3l5eS2Ke82aNQwaNIi4uDiefvrpNr2Xq1ev5re//S2enp64u7tz//33869//atNrwFtMGFvbm4ux44dw2w2c9NNN7VFTKKW0tLzhUk2T0ebJufAlrV7znVQSVOV3c60gwf5sKDAuW5icDDLo6Px7Sa/aIQQXV9SElR/17eL0FBoak7gkpIS0tLS+Pzzz+nZsyeFhYUMHTqUkSNHAlBaWkpcXBzPP/8869atIz09nQkTJrTouNjYWF555RUAhg8fzkMPPURqaioHDhwgMTGRKVOmEBYWRnJyMqtWrSItLY38/Hw2btzI0qVLnTEqisKePXvIzs4mKSmJUaNGERERwaJFiwgODgbg5ZdfZsGCBbz11ltNxl1QUEBqaipbtmwhJiaGpUuXNtoLPysri8mTJze4LTEx0VkFV9vx48cZPXq083VERAQffvhh43+AVmr1t9yBAwd49dVXyc7Odq6rSZoyMjJ46qmnmD9/fp03IS6enx+UlUHBWTuDVp0CewM957Rax8CW7azCZmPSvn2srS76clEUFkdFMSssTEqXhBBdSl4enDrVedfftm0b2dnZ3HzzzXXWZ2VlERkZiU6n4/bbbwdgxIgRHD16tEXHubq6cs899wBgMBjIyMhg2rRpAAwaNKjOd/Kjjz5KWloaM+6fwdK3lnLXnXfh4eKBrcIxwl7q3anYKmxE9I5g7NixbN68mYiICD744APef/99zGYzZrO5TntlnU7Hbb++DZvZxvDY4Rw9epTKvEq2rNvC4OjBXOVzFeaTZqamTGW222wqT1ViVsyOgxVQXBT6+fdj59c7UVwVFJdaj8vge6ZVSVNOTg6PPfYYGo2GSZMmcfz4cb7//nvn9vj4eHx9ffnmm28kabpEigJeXmDiLBa7Y9yr3r69oaIC9u937BQbCzpdu8ZhsFq5NTOTb6uHE9BpNPwnNpZbZNJdIUQXFBrauedXVZXY2Fi2bdvmeG1THQ+7Sm52Lu7u7lhLrWADm8GGzWaj8nQlliILMQNi2LxuM4qLAlpQtAqKVuHYyWPo9XoURcFusWMzOpIfS74FxaagWlTs5XbMJ8yU7S4jRhuDu+rO58s/Z+mbS/nf6/+j/Ofz1XUVRyuc1XfWEivmY2bW/2M9i/+ymK9Xf01ISAhrN63lhb+8QHlWOaZcE+4u7pgyTI7rlluw2WxYTlqwFllRLSqWPMf3mN1uBxWqiqqocq+qfWs4nHuY++beV/+mKRA3KI7li5ej61v3O69Pnz4cO3bM+To3N5c+7TADRauSphUrVgCwbNkywsPDWblyZZ2kSVEUYmNjOVhrCg1xaU4aag034B0Oe/eCrXq87XZuz1RUVcXNe/eys7qHnJdWy6eDB3Odv3+7XlcIIdpLU1VnDVFVFeygWquTG6vjgR3QOBIXtKBoHAkMGlDtClQXjqg21ZG0VNpRLSpD+wwl+0g2n73zGdcOuxassDdrLwMjB1JxtgJsYD7iKIGpLK8EwHLawtBeQ8nJyeGLD79g3DWOYXxqjjOdNYENjD8aQQUXXBjSfwj/WPoPpv5yKodzD7P9x+3ceeOdzonfZ901i5nzZxIdGU3/vv3rvOdVn65ibtpcjp0+xraMbbz8+MvsP7IfL50Xfho/yvPLWbZyGVjBVmZDrVQbvX9Xx13NrD/M4lDuIQZEDOD9Ne9jqbI0uG//iP5898F3jZ7LXmWvt27SpEk8/PDDzJ49GxcXF1asWMGCBQsaPUdrtSppysjI4NprryU8PLzRfUJCQvjhhx9aHZioq07S5BPeYe2ZzlRWcuNPP7Gv+tdGgIsL6+LiGO7j027XFEKIjqSq5xMae6UdtbI6ualS6yRJNJ4TNE6pflzwPe+FF//+6795bvFzPFv6LFXWKsJDwvnXa003Xvb38effixzH/X7x7xs+rlacby94m4f+8BBL3l9CZO9IhsYMxdfPF42HBjRwx6138PgrjzPrvlm4+Ls4Yq3py6WD0feOpry8nNfmvkZEvwjCeoax+ovVDJ04lADfAMZdPY4zBWcc+2sc71XrrUVxVXD1dgw7o4vU0Vvbm+VvLuee39+Dq5srNyXfRGBAIB5RHuj76kEB1X4+GVWt6vn7f8E6xaV+Nd11113H5MmTGTJkCACTJ0/ml7/8ZYv/TC3VqqSpoqIC/2ZKGSorKx3Fb6JNnDDUmkLFtzfs3np+YzuVNOVUVJD8009kmx2/dnq6ubE+Lo7BXl7tcj0hhGiKqqpYz1mx5FkafxRYULQKWk8tGr0Grd7xrPRSqPp1FRYPC4qbgmqtmyS1KiFqUdA0eu6EgQl89uZnKG4KGjeNs7rNO9ybvAN5zlIrd407liILisYxHuIvIn7Bhhs3nK/Ss6pgA88gT07tOOVoG+TqOGekXyTfbfoOjbuGY6eOMeq6UYyeOBrP3p4A7Nq1i+CQYG6fcXudnu814y6+xEv14v7P+v/Uue7L2pfRuGoYrB1MiaHEuZ8HHs7zANx+9+3cfvftztevLny1dbdUbfiGzps3j3nz5rXqnC3VqqQpODi4TgPwhhw6dIiwsLBWBSXqq1fSVNMIXKOB+Pg2v95+k4kbf/qJ09XzB0bodGyMj+cqD482v5YQQtRQVZWqwirKs8qpyKqgPKvc+TBnm1GrWpfdaPpq8L7em6rCKhQuokGxhvMNkbVKvWVHNZwjeXA+V7dNcq6zO5IYxd2RyGjcNM5lxa19GzhvXr+Zp556CgCbzcbChQvp3dsxd+n06dNZv349y5cvv6ihghSl+r13UofpzmwQ3qq3PHLkSD766CN27dpFUlJSve1ff/01+/fv5957773kAIVD7ZKmPu4hUDPv36BBoNe36bV2l5Vx008/UVQ9BtMgvZ4N8fH06oQRx4UQlze71Y4lz0LlyUoqT1ZiOXV+ufJkJZWnKrGV25wlPlq9Fo2Hpu5rvQZ7pZ2KQxWUHyzHWmxtdTyKm+Jse9QiGtC4Vycx7hrnw5nUaDq/x9alSElJISUlpcFty5cv7+Bour5WJU2//e1v+eabb3j66acZP34856q7oP/3v/9l3759fPXVV4SGhnLnnXe2abDdWZ2SpuPFUJ3QtGXVXIHFwqKTJ1ly8iSm6qrVYV5erIuLI8jNrc2uI4ToemwmG6YDJsr3lWP62eR47DdRebKyXnudhlRR1fxOTdDoNHhEeeAe7o5bqFujD62P1tF7rMqOvdyOrdyGvdxOuamcPHse7uHuuLu4o2gdSZLienl0ZRddQ6uSJj8/P/72t7/x4osvsnbtWuf6RYsWARATE8O8efPwkrYvbaYmafLT+aHPrNUrsQ0agR83m3ntxAmWnTmDuVY7tDG+vnw6ZIgMWilEF6KqKtZSK5bTFipPOUp6LlyuKqpCq9ei9dXi4uOCi69L3WUfLVq9lorsCkdytM+EOdvcqnY/Lv4uaL212CvOJzBNncc93B2PaA/00XrHY6Dj2b23+0WV+mhcNWh8Nbj4Oj6/FLOCJkeDi5cLrjqZF1O0Tqu/DcPCwnjjjTc4fPgw+/fvx2AwoNfriYmJYdCgQW0ZY7dnV+3OpKm3T+82mz7lUHk5rxw/znv5+VhrNaxzVRSm9+zJa1ddhV6rbfX5hRANU1UVe4Uda4kVa6njofXUouurw8Wn5R/LNpMN414jxh+NlO0pw/ijkfKsckdi0gFc/FycpT81D7debo7lXo6HVl/3M0RVqxtgV9QtCUIBj6s80HrKZ464fF1yEUL//v3p379/8zuKVissL8RiczTIrjPcgKJAQsJFny+jrIyXjh/n32fP1vnBp9domBkWxuPh4YS382CZQlzOitYWYdhpwCvBC98RvriFXFz1tL3KjnGPkdItpRh2GqgqrMJaYsVWanMmSo01aNb6OpInXV8d7n3cHct9dLj3dcdeYXckSD+WYdzjSJBaUjVWhwIuAS7Yyx2JS0toPDV4xnjiObjuw62n20VXbSmKglanRavTggz1JrqYViVNkydPZtKkSUycOLHRfT7++GNWr17N6tWrWx1cV7Fx40Y2btyI0Whsl/PXbs/U16Mn7P3K8SI62jFceAudqqxkZlaWcxqUGn4uLszu1YtHe/WStkuiW7Nb7Bx98iin/lZ3fg1dPx0+I3zwGeGD7whfPOM80bie721kLbNi2G6gdGsppVtLMewwtDghuZCt1IZprwnTXtPFH6zBUfLTu7qkJ6y65KfWsluoGxoXR+z2Kjs2g81Z2lVn2WjDPdwdz8Ge6PrqunyDaCHaQquSpry8vGYTBKPRSH5+fquC6mqSk5NJTk4mKyuLGTNmtPn5T5Se7zmXeM4dqocBuJj2TGctFm7IyCCrosK5LsTVlcd79+bBsDB8pN2S6OYqT1Wyb9I+DNsN9baZc8yYc8wUfOCYqFrjocE7yRuPAR4Y9xgxZhibL/HROKqzXHxdHM+1lrU+WqylViqPVWI+bqbyRGWzXesVVwXPIZ54JXrhPdQbr0QvvOK8Lqp6S+OqQROowTVQ2viIuhRFobi4GD8/v3a7RlBQELt27SIiIuKSz7Vz507S09PJyMggJSWFTz755JLP2ZB2+6Y0mUy4usp/xLZQu6Qp5sT5pKel7ZnKrFYmZGY6E6YwNzfm9u3L/aGheEibJSEo/qaY/ZP3U1Xg6OGluCn0/X99sZXZMGw3ULazDLv5fFZkr7BTuqWU0i2lDZ7PvY87vmN88R3ti+8oX3T9dGg9tS2uylJtKpZ8C+ZjZszHzFQer8R8zIyiVfBK8MJrqBeeMZ5o3Fo+to7ofqxWKy7d5Adxz549WbRoEXv27OGLL75ot+u0+G5mZGTUeZ2Xl1dvHTgm4SsoKGDDhg3OAbTEpak9RlPf7KLzG1pQ0lRpt3Pbzz+zq3reuDA3N75LTCRCBqkUAlVVOfGXE2Q/kw3VUzm693En9qNYfJLOTxVkr7Jj/MmIYbvB+TDnnp+Z3XOwZ90kqc+ltQlUtAruYY4qNd8Rvpd0LtGwpKVJ5Bnz2u38oV6h7EpreoK7nTt3MmfOHAwGAzabjblz5zJp0iRyc3NJSEggPT2dzz77jNLSUpYsWcKECRNadNzMmTPZsGED06ZNY/z48aSmpmIwGIiOjsZoNDJlyhRSUlJITEwkJycHffVYf1OmTGHMmDHMmjULgNdee421a9diMpmYP38+U6dOBWDq1KlkZWVhsVjo3bs377zzDqGhoc3GvWbNGubMmYOrqyvjx49v0/sdHh5OeHg4+2smsm8nLU6a0tPTnb+SFEVh3bp1rFu3rsF9VVVFURRmzpzZNlF2c7VLmoIOnJ/FmcTEJo+zqSpT9+/nq5ISAPxdXFgfHy8JkxA42iEdTD1I4UeFznX+Kf4M+ucg3ILqtu3TuGrwSfJxJFKzHesq8yoxZ5vRD9Lj6i+l6l1NnjGPU2Wnmt+xnZSUlJCWlsbnn39Oz549KSwsZOjQoYwcORKA0tJS4uLieP7551m3bh3p6elMmDChRcfFxsbyyiuvADB8+HAeeughUlNTOXDgAImJiUyZMoWwsDCSk5NZtWoVaWlp5Ofns3HjRpYuXeqMUVEU9uzZQ3Z2NklJSYwaNYqIiAgWLVpEcHAwAC+//DILFizgrbfeajLugoICUlNT2bJlCzExMSxdupSioiIakpWVxeTJkxvclpiYyMqVK9vmj9AKLU6a7r33XhTFMe/NP/7xDxISEkhooOeWRqPBx8eHxMTENqmnFOeTJq0NdPsOOVZGRYFv479AVVXloUOH+KjQ8YWg12hYO2QIsZ6e7R6vEJc7034TP9/+MxVZ56u7+z7Xl4gFEY4Z6lvAPdQd91AZJb+rCvUK7dTzb9u2jezsbG6++eY667OysoiMjESn03H77Y552kaMGMHRo0dbdJyrqyv33HMPAAaDgYyMDKZNmwbAoEGDGD16tPOY9PR0ZsyYQVpaGsuWLePuu++uM77i9OnTAYiMjGTs2LFs3ryZiIgIPvjgA95//33MZjNms5mgoCDnMY3FvWPHDuLi4oiJiQHggQceYPbs2Q3em+jo6AZrsi4HLU6a7r//fufyTz/9xM0339zmxWuiYTXVc9eUeaOYHdVszbVnei4nh6VnHDNPuygKH8XGMqKJJEuIK52twkbF0QpKt5Zy9Mmj2E2ONkpaXy2D3h9E0K+CmjmDuJI0V3XW3lRVJTY2lm3bttXblpubi7u7u7N2R6vVYrPZWnScXq9vch652u3qrr76avR6PZs2bWLp0qVs3LixyZgVRWHr1q0sWbKE7du306NHD9asWVNnktzG4m4qjgtdESVNtS1evLit4xCNUFXVWdJ03TkfoDppaqI908ITJ/jT8eMAKMB7AwcyPjCwnSMVovPZrXbMuWbHHGaHyqk4XOFcrjxRWW8kas84T2I/ikUf1bbzNwrRnJEjR5KTk8PGjRtJTk4GHG2Ha0pi2uI4Hx8f4uPjWbVqFffeey9ZWVls3brV2TYJHKVN06ZNIyYmhgEDBtQ5fuXKlSxYsIDc3Fy2bNnCokWLyMzMxNvbm8DAQCwWC2+//XaL3u+IESNITU3l4MGDDBw4kBUrVmCp6Ql+gSuipKkxFRUVGI1G7PaG+9uGhIRc6iW6tbPlZ50DW16dV6unWyMlTe/l5fF4dXEowN/69+du+RuIK5SqqpQfKOfc+nMUry+m5JuSFo+PFPLbEAa8NaDeiNVCdAR/f3/Wrl3Lk08+yRNPPEFVVRV9+vRptqv8xR733nvvcf/99/Pqq68SFRXF8OHD6wwjMHHiRGbNmsUjjzxS71ibzUZiYiImk4klS5YQERFBr169WLVqFdHR0QQGBpKcnMypU823DQsODmbFihXcdtttuLm5MX78eALb8Md8VlYWN9xwA+Xl5VRUVBAeHs7cuXN56KGH2uwaAIqqqq2YTQg+++wzVq9ezYkTJxrdR1EUNm3a1OrgupqacZqWLVtGdHR0m5zTZreRU5LDScNJht6Zjs/OvY4N586Bf93hdD8tLOS2n3+u6QTEgogI5ku7MnGFqSqqovirYs596UiUKk9WNnuMi58LHgM80A/Q49HfA5+RPvjf4C8TtXYjZrOZnJwc+vXrh64bzXhgNBrx9PREURRycnIYMWIEO3fudPZu37VrF1OmTOHgwYNNVutdKS7130GrSpo++eQTFi5ciFarJT4+nuDgYLQy3k+70Gq0RAVEEeXbD/Ydcazs169ewvRdaSl37t/vTJge6dWLeX37dmywQrQx1aY6Jo3NNFH2YxnFG4op21nW6ISvbmFu+IzwcSRHNUnSAA9cA10lQRLd0rZt23jqqacAR8nRwoULnQnT9OnTWb9+PcuXL+8WCVNbaFXS9O9//xtfX19ef/11GYupoxw6BOXljuULquYsdjv3HjiAubqK9O4ePVgcFSVfEqJLsRRYMGWaMGYaMWWaHI99piYnn9XoNPiO9SXgpgD8U/zxjPWUf/dC1JKSkkJKSkqD25YvX97B0XR9rUqa8vPzueWWWyRh6ki7d59fvqAR+DtnznDU7Bhob5SPD+8OHIhGvjjEZUa1qVSerKQip8I5LYk5x0xFTgUVhyuco3E3x3OIJ/4p/gSkBOA7xheth5RyCyE6RquSpoCAgEYbfot2UjtpqlXSVG6z8cKx8wNe/jUqCjcpZhWdzGa2YfjOwLn15yjbXYY5xzEViGq9iCaUCugidXjFeeE5xBPPIZ74jvTFPUzGRhJCdI5WJU3jx49n3bp1VFRU4CGjS3eMH388v1yrpGnJyZPkVXfbvD0oiKt9fC48Uoh2p6oqpp9NFG8o5tz6c5RuLm1xLzYA1x6ueMY6EiNnkhTreVGTzwohRHtrVdI0bdo0cnNzefzxx5k5cyYDBgxwzl0j2oHdDnv2OJb79IHq0VeLq6p4pbr3ogZ4sV+/TgpQdDeqqmI5baHkmxJHd/8NxVjONDzmCoDWR4uunw6Pfh7o+umcD49+Hrj3dcfFq3tMKiqE6Npa9UlVM6CWqqo89thjje7X3YYcaDdHjkBZ/UEt/3ziBCVWKwD3hoYySKZIEe1AVVXMOWbKfizDuMeI8UcjZT+WNdkGyT3cHf8Uf/xv9Md/nD+uPaT3mhBdiaIoFBcX1xnTqa0FBQWxa9euNply7cMPP+Tll1/GWv2dmJqayhNPPHHJ571Qq5KmuLg4+QDsSA20ZzpTWcnik46Rwt0UhQUyHpNoJdWuYi22UlVURVVhleP5bBWmfSZHgrSnDFtpw1Mh1NDoNfiN8yPgRkcvNv1AvXxGCNHJrFYrLi7doxS3d+/erFu3jtDQUEpLSxk2bBjDhg3juuuua9PrtOpuLlmypE2DEM1ooD3TH44do6K6Mf5DvXrRpxsN1iYunr3KTtnuMkq/LcXwvQFLnsWRHBVVYT1nbXTco8a4BLrgneiN99Xe+N/oj+8IXzTu0gFBiIuxc+dO5syZg8FgwGazMXfuXCZNmkRubi4JCQmkp6fz2WefUVpaypIlS5gwYUKLjps5cyYbNmxg2rRpjB8/ntTUVAwGA9HR0RiNRqZMmUJKSgqJiYnk5OQ4m9dMmTKFMWPGMGvWLABee+011q5di8lkYv78+c7pV6ZOnUpWVhYWi4XevXvzzjvvEBoa2mzca9asYc6cObi6urb53LWjRo1yLvv6+jJw4EByc3Pb9BrQBtOoiA5wQUnT0YoKllVPxuul1TK3T59OCkxcruwWO2U7yyj5toSSb0so/a7UOUHtxXLr5Yb3UG+8Er2cz+693aUkSXRtSUmQl9d+5w8NhV2NTwpcUlJCWloan3/+OT179qSwsJChQ4cycuRIAEpLS4mLi+P5559n3bp1pKenM2HChBYdFxsbyyuvvALA8OHDeeihh0hNTeXAgQMkJiYyZcoUwsLCSE5OZtWqVaSlpZGfn8/GjRtZunSpM0ZFUdizZw/Z2dkkJSUxatQoIiIiWLRoEcHBwQC8/PLLLFiwgLfeeqvJuAsKCkhNTWXLli3ExMSwdOlSioqKGrw3lzph7/79+9m+fbszprYkSdPlTlXPlzSFhUFICPP278daPfvNE+HhBLu5dWKA4nJgNVgp21lG6XellHxbgmG7odnea1ofLa5BrrgGVj+CXHEJdHG+1kXq8B7qjVsP+fclrkB5edCCOdPay7Zt28jOzubmm2+usz4rK4vIyEh0Oh2333474Jjs9mj1nKLNHefq6so999wDgMFgICMjg2nTpgEwaNAgRo8e7TwmPT2dGTNmkJaWxrJly7j77rvx8vJybp8+fToAkZGRjB07ls2bNxMREcEHH3zA+++/j9lsxmw2E1TdOQloNO4dO3YQFxfnnFj4gQceYPbs2Q3em0uZsPfkyZP8+te/5q233iI8PLxV52hKi5Kml19+GYC0tDQCAgKcr1vimWeeaV1kwiE7G0pLHcvDhpFRVsYHBQUABLm68rgMMNrtqDYV0z4Thu8NGHYYMHxvoHx/eZNVbG693PC71g+/a/3wHeuLx1UeaFylOk10Y6GhnXp+VVWJjY1l27Zt9bbl5ubi7n6+NFer1WKz2Vp0nF6vb3JKlNolxFdffTV6vZ5NmzaxdOlSNm7c2GTMiqKwdetWlixZwvbt2+nRowdr1qxh3rx5zn0ai7upOC7U2pKm06dPk5yczHPPPcekSZOafC+t1aKk6YsvvkBRFKZOnUpAQABffPFFi06uKIokTZeqTx9HEe/u3RAWxu9zcpybft+nDz7dpJHflcRWYcO0z4Rpr2OqEONeIzaDDY1eg9ZT63zW6rVoPDVo9Vq0nlqqiqso+76Msl1l2IxNN8x27+vuTJL8rvVDF6mT6jQhamui6qwjjBw5kpycHDZu3OjskZ6RkeEsiWmL43x8fIiPj2fVqlXce++9ZGVlsXXrVmfbJHCUNk2bNo2YmBgGDBhQ5/iVK1eyYMECcnNz2bJlC4sWLSIzMxNvb28CAwOxWCy8/fbbLXq/I0aMIDU1lYMHDzJw4EBWrFiBxdLwMCWtKWk6c+YMN9xwA3PmzOHee++9qGMvRou+cVevXg3gLIKreS06gKuro8fcsGFsKSnh8+p/SL3d3XkwLKxzYxPNMh83O7rp7zU6E6SKwxXQhgPqKy4KnvGe+PzCB59rfPAd44tHhAw6K8TlzN/fn7Vr1/Lkk0/yxBNPUFVVRZ8+ffjkk0/a9Lj33nuP+++/n1dffZWoqCiGDx9eZxiBiRMnMmvWLB555JF6x9psNhITEzGZTCxZsoSIiAh69erFqlWriI6OJjAwkOTkZE61oJozODiYFStWcNttt+Hm5sb48eMJDAxs9riWmjdvHsePH2fx4sUsXrwYcCSEqampbXYNAEVV1YvsNyMak5WVxYwZM1i2bBnR0dFtem5VVRmzZw/fGQwArIiOJrVnzza9hnAo3V7K2Y/Ooh+gx3u4N56DPVtclVVVUkXJ1yWOkbE3nMN81Nyyiyq0uAebe293Z4Lk8wsfvIZ6yfxrQjTDbDaTk5NDv3790HWj3sZGoxFPT8dE1jk5OYwYMYKdO3c6547dtWsXU6ZM4eDBg01W610pLvXfgdTtdBGfnzvnTJgG6vX8NiSkkyO6MhX+r5B9d+5DtZzPYDQ6jaPn2HBvfK72wXu4Nx5RHigaBXuVHcMOA8XrHUlS2c6yJkuRNDoN+li9Y6qQuPNThrgGuWKvtGMvt2Mz2ZzPtZcVFwXvYd6495K514QQLbNt2zaeeuopwFFytHDhQmfCNH36dNavX8/y5cu7RcLUFiRp6gLsqsrc7Gzn6z/264eL/ANvcwX/LuDAlAP1JpW1m+0YthswbDdwCkcxtNZXi+cgT0w/mxptX6S4KviM9MF3tC9e8V54xXk5ki1tw22LtDotWp0W1wDXtn1jQohuKyUlhZSUlAa3LV++vIOj6fokaeoCPiwoYK/JBMBwb29uq9W9U7SNvFV5HLz3oLOUqMddPfAe7k3ZzjIMOw31qtlspTYMOwz1zqOP0ROQEuAY8HGsr8ypJoQQVxD5RL/MWex2/l+tHnMvRUZKL6g2dmbFGbKmZznbFIU+EEr029F1SoSqiqoo2+VIoMp+KKNsZxmWPAuuPVzxv9HfMX1Isr9UnQkhxBVMkqbL3LclJeSYHaUcyf7+3ODv38kRXVlOvXmKww8ddr4OeyiM/n/rj6Kpm5i6BroScFMAATcFAI6G+TaDDa23tt6+QgghrkzSMOYyd2NAAHuSkrglIIA/9evX2eFcUU4sPFEnYQr/XTj9/14/YWqIoii4+LpIwiSEEN2IlDR1AQMNrnwaO6TRBsTi4h17+Rg5z56v9uzzbB/6/bGfVH0KIYRolJQ0dQGZt2byXdB3/Hzbz5z8+0lMB03I8Fqto6oqOQty6iRMES9ESMIkhBC1KIpCSUlJu14jKCiI3NzcNjnXf//7X+Li4khISCAmJobf//737fI9KSVNl7mqc1UYfzSCCoWfFFL4SSEAbmFu+Cf743+D4yENkB1UVcVaaqXqbBVVhdWPWsvlWeUUrTk/s3bkK5H0ebpPJ0YshBDtw2q14tJNptpKTk7m17/+NRqNBovFwujRo0lKSuK2225r0+t0j7vZhVlLrQRPDKb462KsRVbnestpC/nv5ZP/Xj4A+oF6/G7wI2xmGF5DvBo73RWrbE8Zh2YdwrjbWG+cpcZELY4i/NG2nwVbCHH5S9q1i7xG5j5rC6FubuxKSmpyn507dzJnzhwMBgM2m425c+cyadIkcnNzSUhIID09nc8++4zS0lKWLFnChAkTWnTczJkz2bBhA9OmTWP8+PGkpqZiMBiIjo7GaDQyZcoUUlJSSExMJCcnB71eD8CUKVMYM2YMs2bNAuC1115j7dq1mEwm5s+f75yzburUqWRlZWGxWOjduzfvvPMOoaGhzca9Zs0a5syZg6urK+PHj2/T++3t7e1cNpvNVFZWtkvtgSRNlzmPfh7E/l8sql3F+JOR4q+KKd5YTOmWUuzl54eeLj9YTvnBcs4sPUPknyMJTw/vFtVNqqpy6vVTHH3iaJ1RvJui0WuIWhhFWJrM3SdEd5VnsXCqHZOm5pSUlJCWlsbnn39Oz549KSwsZOjQoYwcORKA0tJS4uLieP7551m3bh3p6elMmDChRcfFxsbyyiuvADB8+HAeeughUlNTOXDgAImJiUyZMoWwsDCSk5NZtWoVaWlp5Ofns3HjRpYuXeqMUVEU9uzZQ3Z2NklJSYwaNYqIiAgWLVpEcHAwAC+//DILFizgrbfeajLugoICUlNT2bJlCzExMSxdupSioiIakpWVxeTJkxvclpiYyMqVKxvctm3bNmbOnMnhw4eZNWsWv/71r1vxl2maJE1dhKJR8E70xjvRmz5P9sFeacfwvYHijcUUf1WM4XsD2ECtUjn6u6OUfFVC9Mpo3ILcOjv0dlNVXEXWA1kU/rfQuU4XocOjvweuwa64BlU/ai27Bbvh3scdF2/5py9Edxbq1r6fjc2df9u2bWRnZ3PzzTfXWZ+VlUVkZCQ6nY7bb78dgBEjRnD06NEWHefq6so999wDgMFgICMjg2nTpgEwaNAgRo8e7TwmPT2dGTNmkJaWxrJly7j77rvx8jpfUzF9+nQAIiMjGTt2LJs3byYiIoIPPviA999/H7PZjNlsJqjWgMuNxb1jxw7i4uKIiYkB4IEHHmD27NkN3pvo6GgyqienvxgjR44kMzOTs2fPcscdd7BlyxbGjh170edpinxzdFEadw1+Y/3wG+tHvxf6YTVYOfaHY5x47QQARZ8VsSt+FzEfxOB3rV/nBtsOSneUsv+u/VQeq3SuC388nMiXItG4Sf8GIUTTmqs6a2+qqhIbG8u2bdvqbcvNzcXd3d1ZW6DVarHZbC06Tq/XNzmPXO0aiKuvvhq9Xs+mTZtYunQpGzdubDJmRVHYunUrS5YsYfv27fTo0YM1a9Ywb9485z6Nxd1UHBdqbUlTjeDgYCZMmMC///3vNk+a5NvlCuHi48JVr17FkM+H4BrsmLvMctpCxvUZ5CzIQbVdGb3tVLvK8deOkzEmw5kwuQS4MHjNYKL+EiUJkxCiSxg5ciQ5OTl1EpWMjAwszVQZXsxxPj4+xMfHs2rVKsCRjGzdurXOPunp6UybNo1BgwYxYMCAOttqkpPc3Fy2bNnCmDFjKC4uxtvbm8DAQCwWC2+//XaL3u+IESPYu3cvBw8eBGDFihWNvteakqaGHo0lTAcPHsRudzRZKSsrY+3atcTFxbUotosh3zBXmMCbA0nKSMLvej/HCjsce/4YGddnYD5pbvLYy52l0ELmrzLJfirb2djbZ5QPSRlJBP1K5uMTQnQd/v7+rF27lj/96U/Ex8cTExPDM8884/zib6vj3nvvPd58800GDx7MnDlzGD58OH5+fs7tEydOxGg08sgjj9Q71mazkZiYSEpKCkuWLCEiIoLx48cTHR1NdHQ0Y8aMISEhoUXvNzg4mBUrVnDbbbcRHx/P4cOHCQwMbNGxLbF69WoGDx5MfHw8I0aM4IYbbnBWL7YlRZUBf9pMVlYWM2bMYNmyZURHR3dqLKpN5fjLx8mZl+OchNYl0IWB7w4k6JddL8Eo+baE/VP2Yzld/ctEcQxIGfF8BBoXyf2FEE0zm83k5OTQr18/dDpdZ4fTYYxGI56eniiKQk5ODiNGjGDnzp307t0bgF27djFlyhQOHjzYZLXeleJS/x1Im6YrlKJV6Pv7vvhe68uBKQeoPFGJtcjKz7/6mfDfhRP5SiQa18vvP4jNbKP8QDmmvSaMmUZMe02YMk1Y8s4X47oGuzJo1SACUgI6MVIhhLj8bdu2jaeeegpwlBwtXLjQmTBNnz6d9evXs3z58m6RMLUFSZqucH6j/UjKSHL0MqseGPPkwpOU7Soj5v9icA/t3EExzSfM5K/Kx5hhxJRpovxQOTTcbhAAv3F+DPrnINx7ymCeQgjRnJSUFFJSUhrctnz58g6OpuuTpKkbcA1wJfbj2DrjGZVuKWX3sN3E/icW3xG+HR5T5ZlKjr90nNNvn252fCWXQBe8hngR9Jsgej3SS+bgE0II0SkkaeomFEUh/JFwvJO82TdxH5ZTFkfvumsz6P+3/vRM69khg2Fazlo48ecTnHr9FPaKug0XFTcFzxhPPId44hnnidcQLzyHeOLW061bDNQphBDi8iZJUzfj+wtfknYnse/OfZRuLkWtUjn04CEMPxjo/3p/tDptu1y3qriKE6+d4OTik9hN55MljV5D+KPhhNwTgscAj8uynZUQQggBkjR1S24hbsRvjCf76WxOLjoJQN6KPEx7TcR+FIuuT9v1LLEarJxcdJITfz2BrfR8YyWNTkPYQ2H0mdMHtx5X7qjlQgghrhySNHVTGlfH/Gvew73Jmp6FvcJO2a4ydg/bTcz/xeA/zr9F51FVFes5K5VnKrGctmA5Y6HydKXzuWRTCdZz5ycaVlwVeqb1pO/cvriHSWNuIYQQXYckTd1cyJQQPGM9+fm2nzHnmKkqrOKn5J/o9VAvtF5abCYbtnIb9nI7NlP1c/XrquIqLGcsLZsoVws9U3vS97m+6Pp2nzFShBCiK1IUheLi4joDYba1oKAgdu3aRURERJuds6KigmHDhuHm5taq+euaI0mTwCvei2G7hnFg6gHOrTsHdjj191Ntcm7FVaHHXT3oO68v+ih9m5xTCCFE86xWKy4u3etrfs6cOYwaNYqdO3e2y/m7190UjXINcGXIZ0PIXZDLsRePNbu/4qbg4uOCW0833MLccO/pjluYG2493XAPcz//HOqGxl0adwshLi+7knbVGTS3rbmFupG0q+lJgXfu3MmcOXMwGAzYbDbmzp3LpEmTyM3NJSEhgfT0dD777DNKS0tZsmQJEyZMaNFxM2fOZMOGDUybNo3x48eTmpqKwWAgOjoao9HIlClTSElJITExkZycHPR6xw/aKVOmMGbMGGbNmgXAa6+9xtq1azGZTMyfP5+pU6cCMHXqVLKysrBYLPTu3Zt33nmH0NDQZuNes2YNc+bMwdXVlfHjx7f5Pd+4cSOnTp1i9uzZkjR1lFdffZXvvvsOs9lMSEgIaWlpjBo1qrPD6hCKVqHfH/oRmhpK+YFyNJ4atHotWk8tGr1jWaPXoPHQyNQlQoguzZJnwXKq/ZKm5pSUlJCWlsbnn39Oz549KSwsZOjQoYwcORKA0tJS4uLieP7551m3bh3p6elMmDChRcfFxsbyyiuvADB8+HAeeughUlNTOXDgAImJiUyZMoWwsDCSk5NZtWoVaWlp5Ofns3HjRpYuXeqMUVEU9uzZQ3Z2NklJSYwaNYqIiAgWLVpEcHAwAC+//DILFizgrbfeajLugoICUlNT2bJlCzExMSxdupSioqIG701WVhaTJ09ucFtiYmKDk/aWlJTw9NNPs27dOvbv39/Kv0rzJGm6wJ133kl6ejpubm4cOHCAxx9/nA8//BBf344fALKzeER64BHp0dlhCCFEu3ELbd9eu82df9u2bWRnZ3PzzTfXWZ+VlUVkZCQ6nY7bb78dgBEjRnD06NEWHefq6so999wDgMFgICMjg2nTpgEwaNAgRo8e7TwmPT2dGTNmkJaWxrJly7j77rvx8vJybq+Z8DYyMpKxY8eyefNmIiIiHb6hsAAAFiNJREFU+OCDD3j//fcxm82YzWaCgs7PZ9pY3Dt27CAuLo6YmBgAHnjgAWbPnt3gvYmOjr7o9kiPPPIIc+fOpUePHpI0daS+ffs6lxVFoaqqisLCwm6VNAkhxJWuuaqz9qaqKrGxsWzbtq3ettzcXNzd3Z2D+mq1Wmw2W4uO0+v1Tc4jV3ug4Kuvvhq9Xs+mTZtYunQpGzdubDJmRVHYunUrS5YsYfv27fTo0YM1a9Ywb9485z6Nxd1UHBdqTUnT1q1b2bp1K08++SRms5lz584RHR1NVlZWk+/pYl2WdSzl5eWsWLGCJ598kltuuYWxY8fyxRdfNLivxWLhzTff5LbbbiM5OZmZM2decl3mX//6V5KTk0lLS2Po0KFERkZe0vmEEEKI2kaOHElOTk6dRCUjIwOLpekqw4s5zsfHh/j4eFatWgU4kpGtW7fW2Sc9PZ1p06YxaNAgBgwYUGdbTXKSm5vLli1bGDNmDMXFxXh7exMYGIjFYuHtt99u0fsdMWIEe/fu5eDBgwCsWLGi0fdaU9LU0KOhhKkmxprHhx9+SExMTJsnTHCZJk2lpaW8++67HDt2jKioqCb3femll/i///s/brzxRh599FE0Gg1PP/00e/fubfX1H3/8cb788ksWLlzI8OHDZQoPIYQQbcrf35+1a9fypz/9ifj4eGJiYnjmmWew2+1tetx7773Hm2++yeDBg5kzZw7Dhw+vM4zAxIkTMRqNPPLII/WOtdlsJCYmkpKSwpIlS4iIiGD8+PFER0cTHR3NmDFjSEhIaNH7DQ4OZsWKFdx2223Ex8dz+PBhAgMDW3Ts5URRVbUFg+x0LIvFQllZGYGBgRw8eJC0tDSeffbZenW4+/fv58EHH2TWrFncfffdAFRWVnLffffh5+fHm2++6dz34YcfJjMzs8Hr/fa3v2XGjBkNbnvmmWf49a9/zYgRI5qNOysrixkzZrBs2TKio6Nb+naFEEK0M7PZTE5ODv369UOn6z5jxRmNRjw9PVEUhZycHEaMGMHOnTvp3bs3ALt27WLKlCkcPHiwyWq9K8Wl/ju4LNs0ubm5tSgD/fbbb9Fqtdx6663Ode7u7txyyy0sXbqU/Px8QkJCAHj99ddbFYvNZuPUqbYZs0gIIYToSNu2beOpp54CHN9nCxcudCZM06dPZ/369SxfvrxbJExt4bJMmlrq8OHDhIeH4+npWWf9oEGDADhy5IgzaWoJo9HI9u3bGTVqFG5ubmzZsoU9e/aQlpbW4P6FhYV1ukweO9b8+EZCCCFER0lJSSElJaXBbcuXL+/gaLq+Lp00FRUVNVgiVbOusLDwos6nKAqfffYZCxcuRFVVevXqxf/7f/+P/v37N7j/mjVrePfddy86biGEEJ3jMmyRIjrQpf79u3TSVFlZiaura731bm5uzu0Xw9PTk8WLF7d4/1tvvbXOwJfHjh3jxRdfvKhrCiGEaH+urq4oisLZs2cJDg6WDj7dkKqqnD17FkVRGswdWqJLJ03u7u5UVVXVW1/TjdHd3b1drx8UFFRnUC8hhBCXJ61WS3h4OCdPniQ3N7ezwxGdRFEUwsPD0Wq1rTq+SydNgYGBnD17tt76mnZGktAIIYSo4eXlRf/+/Rv8sS26B1dX11YnTNDFk6aoqCj27NmDyWSq0xi8Zgj15sZ4EkII0b1otdpL+tIU3VuX7mN43XXXYbPZWLNmjXOdxWLh888/JyYm5qJ6zgkhhBBCNOWyLWn66KOPMBqNzqq27777joKCAgDuuOMOvLy8iImJYdy4cSxdupSSkhJ69erFunXryMvLY86cOZ0ZvhBCCCGuMJdt0rR69Wry8vKcrzdv3szmzZsBx7gTNTMxz507l5CQEL788kuMRiORkZG88sorLR7avS3V9NaT8ZqEEEKIrqdv375NjhR+WU6j0lWtX79ehhwQQgghuqjmpkGTpKkNlZSU8MMPP9CzZ0/nWFHNqRnb6bnnnqNv377tHKGQ+92x5H53LLnfHUvud8fqiPvdXEnTZVs91xX5+fk1Olx9c/r27SuT/HYgud8dS+53x5L73bHkfneszrzfXbr3nBBCCCFER5GkSQghhBCiBSRp6mSBgYHcd999DU48LNqe3O+OJfe7Y8n97lhyvzvW5XC/pSG4EEIIIUQLSEmTEEIIIUQLSNIkhBBCCNECkjQJIYQQQrSAJE1CCCGEEC0gg1t2EovFwjvvvMP69espKyvjqquuYvr06QwfPryzQ+vyysvL+fDDD9m/fz8HDhygrKyMZ599lptvvrnevrm5ufz9738nMzMTFxcXRowYwSOPPIKfn1/HB94FHThwgHXr1rFnzx7y8vLw8fEhNjaW6dOn07t37zr7yr2+dDk5OaxcuZKsrCzOnTuHTqejb9++3H333YwaNarOvnK/28d7773H8uXL6devH//4xz/qbMvMzOStt97i0KFDeHp6Mm7cOGbMmIFer++kaLuWPXv2kJ6e3uC2N998k9jYWOfrzrrXkjR1kpdeeolvvvmGSZMmER4ezhdffMHTTz/N4sWLiYuL6+zwurTS0lLeffddQkJCiIqKYs+ePQ3uV1BQwOzZs/Hy8mLGjBlUVFTw4Ycfkp2dzdtvv42rq2sHR971fPDBB2RmZjJu3DiuuuoqioqK+O9//8v06dN58803iYyMBORet5W8vDzKy8sZP348QUFBmM1mvv32W5599lmefPJJbr31VkDud3spKChg1apVeHh41Nt2+PBhfve739G3b18eeeQRCgoKWL16NSdPnuTVV1/thGi7rjvuuINBgwbVWderVy/ncqfea1V0uH379qljxoxRP/jgA+c6s9ms3nXXXeqDDz7YiZFdGSorK9XCwkJVVVX1wIED6pgxY9TPP/+83n5/+ctf1OTkZDUvL8+5bufOneqYMWPU//3vfx0Wb1e2d+9e1WKx1Fl3/Phx9YYbblBfeOEF5zq51+3HarWqqamp6tSpU53r5H63j/nz56vp6enq7Nmz1WnTptXZ9uSTT6q/+c1vVKPR6Fz36aefqmPGjFG///77jg61S/rxxx/VMWPGqJs2bWpyv86819KmqRN8++23aLVa569CAHd3d2655Rb27dtHfn5+J0bX9bm5ubVo8LNvv/2WkSNHEhIS4lyXlJRE79692bRpU3uGeMUYMmRIvVKL3r17ExERwbFjx5zr5F63H61WS48ePTAajc51cr/bXkZGBt9++y2zZ8+ut81kMrFr1y5SUlLw9PR0rr/pppvw8PCQe94K5eXlWK3Weus7+15L9VwnOHz4MOHh4XX+4ICzOPLIkSN1PuxE2zt79izFxcUNTvo4aNAgduzY0QlRXRlUVaW4uJiIiAhA7nV7qKiooLKyEpPJxHfffcf333/PuHHjALnf7cFms7F48WJuueUWrrrqqnrbs7Ozsdls9e65q6sr/fv35/Dhwx0V6hXhpZdeoqKiAq1WS1xcHLNmzWLgwIFA599rSZo6QVFRUYMlITXrCgsLOzqkbqeoqAig0b+DwWDAYrHg5ubW0aF1eRs2bODs2bPcf//9gNzr9vD666+zZs0aADQaDWPHjuV3v/sdIPe7Pfzvf/8jPz+fhQsXNri9uXv+008/tWt8VwoXFxeuvfZafvGLX+Dr60tubi6rV6/mkUce4Y033mDAgAGdfq8laeoElZWVDTbErPkQq6ys7OiQup2ae9zc30G+WC7OsWPHWLhwIbGxsYwfPx6Qe90eJk2axHXXXUdhYSGbNm3CZrNRVVUFyP1ua6WlpaxYsYJp06Y12vOwuXtusVjaM8QrxpAhQxgyZIjz9ejRo7nuuutITU1l6dKlvPbaa51+r6VNUydwd3d3fsDVVvPHdnd37+iQup2aeyx/h7ZTVFTEnDlz8PT05A9/+ANarRaQe90e+vbtS1JSEuPHj+eVV16hoqKCZ555BlVV5X63seXLl+Pt7c0dd9zR6D7N3XNJUFsvPDyc0aNHs2fPHmw2W6ffa0maOkFgYKCziLG2mnVBQUEdHVK3U1O029jfwcfHRz7oLoLRaOTpp5/GaDTy2muv1fk3LPe6/V133XUcPHiQEydOyP1uQydOnODTTz9l4sSJFBYWcubMGc6cOYPFYsFqtXLmzBkMBkOz91w+0y9Njx49qKqqwmw2d/q9lqSpE0RFRXHy5ElMJlOd9fv373duF+0rODgYPz8/srKy6m07cOCA/A0uQmVlJc888wwnTpzg5ZdfdjYAryH3uv3VVFkYjUa5322osLAQu93O4sWLmTx5svOxf/9+Tpw4weTJk3n33Xfp168fWq223j2vqqri8OHDcs8v0enTp3Fzc8PDw6PT77UkTZ3guuuuw2azORtygqNY8fPPPycmJkZ6znWQa6+9lm3bttUZ4mH37t2cOHHC2RNJNM1ms7FgwQL27dvH888/z+DBgxvcT+512yguLq63zmq18uWXX+Lu7u5MWOV+t41+/frxxz/+sd6jX79+hISE8Mc//pFbbrkFLy8vkpKSWL9+PeXl5c7jv/zySyoqKuSet1BJSUm9dUeOHOG7775j+PDhaDSaTr/XiqqqarteQTRo/vz5bN68mTvvvJNevXqxbt06Dhw4wMKFC0lISOjs8Lq8jz76CKPRSFFREZ988gljx46lf//+gGO0WS8vL/Lz85k+fTpeXl5MnDiRiooK/vWvfxEcHMzSpUulCqMFlixZwn/+8x9GjhzJ9ddfX297SkoKgNzrNvL73/8ek8lEfHw8wcHBFBUVsWHDBo4fP87DDz/M5MmTAbnf7e3RRx+ltLS0zjQqWVlZPPzww/Tt25dbb73VOUp1fHw8f/nLXzox2q4jPT0dd3d3Bg8ejL+/P7m5uXz66ae4uLjwxhtvOH8UdOa9lqSpk1RWVjrnnjMajURGRjJ9+nSuvvrqzg7tinDnnXeSl5fX4LbVq1fTs2dPwDGX14Xzcz388MMEBAR0ZLhd1qOPPkpGRkaj2zdv3uxclnt96b766ivWrl1LdnY2paWl6PV6oqOjuf322xk9enSdfeV+t5+GkiaAvXv3OudD0+v1jBs3jpkzZ8rccy30n//8hw0bNnDq1ClMJhN+fn4MGzaM++67j/Dw8Dr7dta9lqRJCCGEEKIFpE2TEEIIIUQLSNIkhBBCCNECkjQJIYQQQrSAJE1CCCGEEC0gSZMQQgghRAtI0iSEEEII0QKSNAkhhBBCtIAkTUIIIYQQLSBJkxBCCCFEC0jSJIS4bJw5c4axY8fypz/9qbNDaRNffPEFY8eO5YsvvujsUIQQbUCSJiHEZe3RRx9l7NixnR1Gg660JE8I0TSXzg5ACCFqBAcH8/777+Pp6dnZobSJMWPGEBMTQ2BgYGeHIoRoA5I0CSEuGy4uLvTt27ezw2gzXl5eeHl5dXYYQog2oqiqqnZ2EEIIAY7qrsmTJzN+/Hjmzp3baLVczfYaR48e5f333ycjIwODwUBgYCCjRo0iNTUVX1/fBs8/ZcoUli1bxk8//YTBYGD16tX07NmTzZs3s2nTJg4ePEhhYSEuLi5cddVVTJw4keuuu855ri+++IKXXnqpwfgWL15MYmKic59nn32Wm2++uc4+mZmZvP/+++zbt4/KykpCQ0O5/vrrmTJlCjqdrs6+Y8eOJSEhgQULFvDmm2+yY8cOKioqiIqKYubMmSQmJl7srRZCtIKUNAkhLlv33Xcf69atIy8vj/vuu8+5vn///s7lrVu3smDBAhRFYfTo0fTo0YPc3Fw+/vhjfvjhB95++228vb3rnPfUqVPMmjWLyMhIxo8fj8FgwNXVFYClS5fi4uLCkCFDCAwMpKSkhO+++4558+aRnp7OHXfcAUBUVBQTJ07kP//5D1FRUYwePdp5/tDQ0Cbf16ZNm3jhhRdwdXXl+uuvx8/Pj507d/Luu+/yww8/sHjxYtzd3escYzQaefjhh/Hy8iIlJYXi4mI2bdrEk08+ybJly4iMjGzVPRZCtJwkTUKIy9b9999PRkYGeXl53H///fW2l5aW8sc//hFfX19ef/31OsnKV199xfPPP88777zDY489Vue4zMxM7rvvvgbP+ec//5mwsLA668rLy3nooYd45513uOWWW9DpdPTv3x8vLy9n0tTQuRpiMpl49dVX0Wq1vPnmm1x11VUApKWl8cILL/D111/z4Ycfcu+999Y57siRI/zmN7/hscceQ6Nx9OEZOnQof/7zn/n444958sknW3R9IUTrSe85IUSX9eWXX2IymUhLS6tXunPDDTcwYMAAvvrqq3rHBQQE8Nvf/rbBc16YMAHo9XpuvvlmjEYjBw8evKSYt27ditFoZMKECc6ECUCj0TBr1iy0Wm2DQxR4eHjw4IMPOhMmcFRTarXaS45JCNEyUtIkhOiy9u3bB8D+/fs5depUve0Wi4XS0lJKSkrw8/Nzro+KinJWx12ouLiYf/7zn+zYsYP8/HwqKyvrbC8sLLykmA8fPgxAQkJCvW0hISGEhYVx4sQJysvL0ev1zm3h4eF1XoOj4XxAQABGo/GSYhJCtIwkTUKILqusrAyA//73v03uZzab67z29/dvcD+DwUBaWhr5+fkMGTKEpKQkvLy80Gg0HDlyhK1bt1JVVXVJMZtMJsBR2tWQwMBATpw4gclkqpMkNTYMg1arxW63X1JMQoiWkaRJCNFl1SQV77777kU1hFYUpcH1a9euJT8/nwceeKBem6JVq1axdevW1gdbrSb5OXfuXIPba9ZfKWNVCXElkTZNQojLWk0bHpvNVm9bTEwMcL6a7lLVVPHV7glXY+/evY3GdjElPTU9/zIyMupty8/P59SpU4SFhdWrihNCdD5JmoQQlzUfHx8ACgoK6m2bMGECer2eZcuWkZOTU2+72Wy+qISqpjF5ZmZmnfUbNmxgx44d9fb39vZGUZQGY2vM6NGj8fLy4vPPP68Ts6qqvP3229hstnpjOgkhLg9SPSeEuKwNHTqUb775hv/3//4f11xzDW5ubkRFRTFq1Cj8/PyYP38+8+bN4/777+fqq6+mT58+VFVVkZeXR0ZGBoMHD+a1115r0bVSUlL44IMPWLx4MXv27CEkJIQjR47w448/MnbsWDZv3lxnf71ez8CBA/npp5948cUXCQ8PR1EUbrrppkbHavL09OSpp57ihRde4MEHH2TcuHH4+fmxe/dusrKyGDRoEHfdddcl3zchRNuTpEkIcVn75S9/yZkzZ/j666/54IMPsNlsjB8/nlGjRgEwYsQI3nnnHf71r3+xe/dudu3ahU6nIzg4mJtvvpmUlJQWX6tHjx4sWbKEN998k127dmGz2RgwYAB/+ctfKCgoqJc0ATz33HP87W9/Y9u2bZhMJlRVJS4urskBLseNG0dAQACrVq1i8+bNzhHB7733XqZMmVJvYEshxOVBplERQgghhGgBadMkhBBCCNECkjQJIYQQQrSAJE1CCCGEEC0gSZMQQgghRAtI0iSEEEII0QKSNAkhhBBCtIAkTUIIIYQQLSBJkxBCCCFEC0jSJIQQQgjRApI0CSGEEEK0gCRNQgghhBAtIEmTEEIIIUQL/H/XJZf0r10NGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = []\n", + "integrated_flux = []\n", + "integrated_flux_each_band = [[],[],[],[],[]]\n", + "\n", + "for _ in all_results:\n", + " iteration.append(_['iteration'])\n", + " image = _['model_map']\n", + " pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr\n", + "\n", + " integrated_flux.append(np.sum(image) * pixelarea)\n", + "\n", + " for energy_band in range(5):\n", + " integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)\n", + " \n", + "plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"integrated flux (ph cm-2 s-1)\")\n", + "plt.yscale(\"log\")\n", + "\n", + "colors = ['b', 'g', 'r', 'c', 'm']\n", + "for energy_band in range(5):\n", + " plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = \"energyband = {}\".format(energy_band))\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "8f62377a-c250-4dd5-832a-6316f39e21d0", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at the 50th iteration. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixels at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "af9db65d-4a85-4ba6-973f-8e3e2d5ddc6a", + "metadata": {}, + "outputs": [], + "source": [ + "energy_truth = []\n", + "flux_truth = []\n", + "\n", + "with open(\"crab_spec.dat\", \"r\") as f:\n", + " for line in f:\n", + " data = line.split('\\t')\n", + " if data[0] == 'DP':\n", + " energy_truth.append(float(data[1]))# * u.keV)\n", + " flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "16411a3e-a899-4692-9120-6c52110ecec0", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "0584d5fe-0ea1-4d22-b4dd-af3c7f753b63", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLA0lEQVR4nOzdd1RURxsG8Gd36V1QQUWpimBUNGo0Khawklhi19i7xt5TNTGfLXYTjSZKNIklaqJRrKhoLLEEI0qxUKx0KUtb2L3fH4SNBKQsF5by/M7JiTt3duZd4OrLzNwZiSAIAoiIiIioxKTaDoCIiIiosmIiRURERKQhJlJEREREGmIiRURERKQhJlJEREREGmIiRURERKQhJlJEREREGmIiRURERKQhJlJEREREGmIiRURUDUgkEnTu3FnbYRBVOUykiMqAUqnEjh070KlTJ1haWkJXVxe1a9dGs2bNMGHCBBw9elTbIRbqwoULkEgkWLp0qbZDKVedO3eGRCLBhQsX8pTb29vD3t5eKzEVV2WIsTzlfi9f919GRkaB7wsKCsLgwYNRu3ZtGBgYwMXFBZ999hnS09PL+RNQZaGj7QCIqhqlUol33nkHJ0+ehIWFBby9vWFrawuFQoF79+7h559/RkhICPr06aPtUKkaCQ4OhpGRkbbDKHefffZZgeU6Ovn/+fvzzz/RtWtXZGVlYeDAgahfvz7OnTuHzz//HH5+fvDz84O+vn5Zh0yVDBMpIpHt3bsXJ0+eRPPmzeHv7w9zc/M819PS0vDnn39qKTqqrho3bqztELSiuKOqSqUSY8eORVpaGo4cOaL+RUelUmHw4ME4dOgQ1q9fj8WLF5dhtFQZcWqPSGRXrlwBAIwZMyZfEgUARkZG6NKlS54yHx8fSCQS+Pj44Pjx43j77bdhbGyMGjVqYODAgXjw4EGBfaWlpWHFihVwd3eHsbExTExM0K5dO+zdu/e18Z0+fRrvvvsuateuDX19fdSvXx99+/bF2bNn1XHnxrds2bI80yG5U16vxnvy5El07twZ5ubmkEgkAICIiAhIJBKMGTOmwBhyp11e9ep04s2bN9GzZ0+Ym5ujRo0aGDBgAJ48eQIACAsLw9ChQ1GrVi0YGhqiS5cu+Pvvv1/7eUsjN6bIyEhERkbm+Vr897OFhIRgzJgxqF+/PvT09GBtbY3hw4cjNDQ0X7tjxoyBRCJBWFgYNm/ejGbNmsHQ0FC9hkmhUGDLli3o3bs37OzsoK+vD0tLS3h5eeHEiRMaxfi6NVJJSUlYsmQJXFxcYGBggBo1aqBHjx7qn4eC+lq6dClu374Nb29vWFhYwMjICJ06dVL/7FdG/v7+CA4OhoeHR57RYqlUitWrVwMAtm3bBkEQtBUiVVAckSISmZWVFQDg/v37JX7v4cOHceLECfTv3x+dO3fG7du3cejQIZw/fx5XrlyBi4uLum5iYiK6du2KgIAAtGzZEuPGjYNKpcKpU6cwfPhw3Lt3D8uXL8/T/meffYbPP/8cJiYm6NevH+rXr4/nz5/jypUr+PHHH+Hl5YV+/foBAH744Qd06tQpzz++/12Dc/DgQZw8eRK9evXClClTEBkZWeLP/F83btzAqlWr0KlTJ0ycOBGBgYE4fPgw7t69iyNHjqBDhw5o3LgxRo0ahcjISBw+fBjdunVDWFgYTExMSt3/q+zt7fHZZ59hw4YNAIDZs2err7m7u6v/fPLkSbz33nvIysrCu+++C2dnZzx9+hSHDx/G8ePHcf78ebRs2TJf+7NmzcKlS5fg7e2N3r17QyaTAQASEhIwa9YsvP322+jWrRtq1aqFFy9e4Pfff0fv3r2xY8cOTJgwoUQxFiQxMRHt27dHUFAQWrdujdmzZyMuLg4HDhxA9+7dsXXrVkyePDnf+27evInVq1ejXbt2mDBhAh4/foxDhw7B09MTt2/fzvNzqm379+9HeHg49PT04Orqiq5duxY4PXfu3DkAQM+ePfNdc3R0RKNGjXD//n2EhYXBycmpzOOmSkQgIlH99ddfgq6uriCRSIT3339fOHTokBAREVHoe3bt2iUAEAAIv//+e55rGzZsEAAIXbt2zVM+evRoAYCwatWqPOXp6elCjx49BIlEIgQEBKjLT506JQAQHBwchKdPn+aL4cmTJ+o/nz9/XgAgfPbZZ4XGK5FIhBMnTuS7Hh4eLgAQRo8eXeD7O3XqJPz3r5/cPgEIP/74Y55r48aNEwAINWrUEJYvX57n2ueffy4AEDZs2FBgXyWRG9f58+fzlNvZ2Ql2dnYFvichIUGwsLAQrKyshHv37uW5FhgYKBgbGwstWrTIU577vatbt64QFhaWr82MjIw8349ciYmJQpMmTYQaNWoIaWlpxY5REAQBgNCpU6c8ZZMmTRIACJMmTRJUKpW6/P79+4KZmZmgp6cnhIeHq8tf/R7t2rUrT1vbtm0TAAhTp059bQz/tX79euGzzz4r9n+//vprsdvO/V7+97/atWsLv/zyS776AwcOFAAIBw8eLLA9b29vAYDg6+tb7BioemAiRVQG9u/fL9jY2OT5C9zS0lLo16+fcPTo0Xz1cxOT/yZLgiAI2dnZgpOTkwBAnZDFxcUJMplMaNWqVYH93759WwAgLFiwQF32zjvvCACEw4cPFxl/cROpfv36FXi9NIlUhw4d8tX39/cXAAj29vZCdnZ2nmsRERECAGHMmDFFfq6iaJJI5Sa6W7ZsKfD67NmzBQB5kqzcREqT5G/t2rUCAMHf37/YMQpC/kQqMzNTMDIyEkxMTIT4+Ph89T/++GMBgLBs2TJ1We73qH379vnqKxQKQUdHR3jzzTeL/Vns7OwKTHZe99/rfp4Ksm7dOuH3338Xnj59KqSnpwshISHCkiVLBD09PUEqleb7BaBbt24CAOHMmTMFtjd8+HABgPDzzz8XOwaqHji1R1QGBg8ejP79++P8+fP4448/EBAQgD/++AO//fYbfvvtN4waNUq9zuhVnTp1yteWTCZDhw4d8OjRIwQEBMDOzg43btyAUql87RYFWVlZAHKe1Mp17do1SCSSAqcuNNWmTRvR2srVqlWrfGV169YFkDNVlTv9latevXoAgKdPn4oeS3FcvXoVAPD3338X+L3IneINDg6Gm5tbnmuFff3u3buHNWvW4OLFi3jx4kW+x/WfPXtWqrhDQ0ORlpaG9u3bw9LSMt/1rl27Yvny5QgICMh3raDvka6uLqytrfHy5ctixxAREVGimEtizpw5eV67uLjgf//7H+rWrYsZM2ZgyZIlot4LVH0xkSIqI7q6uujevTu6d+8OIOepoEOHDmHcuHHYvXs3+vfvr16PlMva2rrAtmxsbADkLAwGgPj4eAA564lu3Ljx2hjkcrn6z4mJiahRowYMDQ01/kyvi0tMBS3Qz31UvbBrucljecv9XuzYsaPQeq9+L3K97ut37do1dO3aFdnZ2fD09ESfPn1gZmYGqVSK27dv48iRI8jMzCxV3Lk/S3Xq1Cnwem55YmJivmsWFhYFvkdHRwdKpbJUcZW1CRMmYM6cObh9+zZSUlJgamoK4N+frdyvy3/llr/us1P1xUSKqJzIZDIMHjwYgYGBWL58Oc6dO5cvkYqOji7wvVFRUQD+/cs+9/9z5szBunXritW/hYUF4uPjkZ6eLloy9d8RtVxSac4DwdnZ2QVeL+gf58oq93vx999/o1mzZiV67+u+fsuXL0d6ejrOnz+f70m7FStW4MiRIxrF+qrcuHN/tv7rxYsXeeqVhQ0bNpToZ8Hd3T3fPVNSBgYGMDU1xcuXL5GamqpOpHIXyL/uIZHcJ2cbNWpUqv6p6mEiRVTOcv/iFgp4jNrf3z9fmVKpxB9//AEAaNGiBYCcKSGpVIpLly4Vu9+2bdvi2LFjOHnyJPr3719o3dzpM01HF2rUqAEA6i0LXpWcnKzRE43aJJPJoFAoCrzWtm1bHDp0CJcuXSpxIvU6Dx8+hKWlZYHbFRT0M1JUjAVxcXGBkZER/v77byQmJuYbaTl//jwAFPi0oVg2bNhQoic9R48eXepEKjQ0FC9fvoSpqSlq1qypLu/atSu+/PJLnDx5EkuWLMnznrCwMNy/fx92dnZwdHQsVf9U9XAfKSKR7d27F2fOnIFKpcp3LSoqSj0F5OHhke/6uXPncOzYsTxlW7ZswaNHj9ClSxfY2dkBAGrXro0RI0bg5s2b+OKLLwpMeB49eoTw8HD16xkzZgAA5s2bV+D6mlfLcrdwePz4cZGftyCmpqZo3LgxLl++jKCgIHW5UqnE3Llzy+W4jdy9rMQ4NsXKygqxsbEFxj127FhYWFhg2bJluH79er7rKpUq35EzRbG3t0dCQgLu3LmTp/z777/HqVOnShxjQfT09DBixAikpKTgk08+yXPt0aNH2LRpE3R1dTFy5MgSxV4SEREREHIeeirWfz4+PsVqNzw8HAkJCfnKY2NjMXbsWADA0KFD8+xu3qlTJ7i6uuLixYt5jnBSqVRYtGgRAGDKlCmvHUWk6osjUkQi+/PPP7Fx40bY2NigQ4cOcHBwAJDzl/vx48eRnp6Ovn37YuDAgfne++6776J///7o378/nJ2dcfv2bZw4cQKWlpb45ptv8tTdsmULHjx4gE8//RR79uxBhw4dYG1tjefPnyM4OBg3btzA3r171f13794dH3/8MZYvXw5XV1f1PlLR0dH4448/0LZtW/U/VC4uLqhXrx727dsHXV1d2NnZQSKRYOTIkepkrigLFizA+PHj0b59ewwaNAgGBgY4f/48srKy0Lx58zLbRDNXbiJb0FEgJeXp6YkbN26gZ8+e8PDwgL6+Ppo3b453330XVlZWOHjwIPr374+2bdvC09MTTZo0gUQiwZMnT3D16lXEx8e/9my3gsyePRunTp1Chw4dMHjwYJibm+PmzZv4448/MHDgQBw8eLBEMb7OypUrcenSJWzZsgU3btxAly5d1PtIpaSkYMuWLeqfn8rE398fU6ZMQYcOHeDo6AhLS0s8fvwYvr6+SEpKQqtWrdSbbOaSyWTYtWsXunbtioEDB2LgwIFo0KAB/Pz8cPPmTbRv3z7fAnYiANxHikhsjx8/FrZs2SL069dPaNSokWBqairo6uoKNjY2Qq9evYQ9e/YISqUyz3tytxPYtWuX8Pvvvwtt27YVjIyMBHNzc+G9994TQkNDC+wrMzNT2Lx5s9CuXTv1vj/169cXunbtKqxfv16Ii4vL957jx48LPXr0EGrUqCHo6ekJtra2Qr9+/QQ/P7889a5fvy507dpVMDMzEyQSSZ5tAV6NtzDfffed4ObmJujp6QnW1tbCpEmThLi4uEK3Pyhoy4WitlNAAXsk/fbbbwIA4aOPPio0xle9bvsDuVwuTJkyRahXr54gk8kKjCU8PFyYPn264OzsLOjr6wumpqaCi4uL8P777+fb/yh3+4NX92j6r99//1146623BBMTE8Hc3Fzo1q2b4O/v/9qvfVExFvQ1EgRBePnypbBw4ULB2dlZ0NPTE8zNzQUvLy/h1KlT+eoWtS1GUVswlJc7d+4Io0ePFt544w3B0tJS0NHREWrUqCF06NBB2LRpk5CZmfna9967d08YOHCgYGVlJejp6QkNGzYUPv3003z7dhHlkggC97sn0jYfHx+MHTsWu3bteu2xKlQyc+fOxbfffovIyMg8a2GIiMTEqb1iWLNmDS5fvoyMjAxYW1tj0qRJaN++vbbDIqJC+Pv7Y+LEiUyiiKhMMZEqhsGDB2PWrFnQ09NDcHAw5s6di3379pXpY8FEVDq3bt3SdghEVA3wqb1isLOzg56eHoCcfV+ysrIQFxen5aiIiIhI2yrNGqm0tDTs27cPQUFBCA4ORkpKCpYsWYJevXrlq6tQKPD999/j9OnTSElJgZOTEyZMmIDWrVtr3P+6devg6+sLhUKBtm3bYtWqVXwMloiIqJqrNCNSSUlJ8PHxQWRkJJydnQutu2LFChw4cADdunXDzJkzIZVKsXDhwnx7spTE3LlzcerUKaxfvx6tW7dmEkVERESVZ42UlZUVfv31V1hZWSEkJASTJk0qsF5QUBD8/PwwdepUDBs2DADQo0cPjBkzBlu3bsXWrVvVdadPn47AwMAC2xk5ciQmTpyYp0wmk+HNN9/EL7/8AltbW7Rr106kT0dERESVUaVJpPT09NS7LRfG398fMpkMffr0UZfp6+vD29sb27dvR3R0tPpg2K+//lqjWJRKZbFPXs/IyEBkZCTs7OxgYGCgUX9ERERUMVWaqb3ievDgAWxtbWFsbJyn3NXVFUDOGVYlIZfLcebMGaSlpSE7Oxvnz59HQEAAmjdvXqz3R0ZGYuLEiSU6T6q4Hj16JHqbRFQyvA+JtEvb92ClGZEqrvj4+AJHrnLLSvq0nUQiwbFjx7B+/XoIgoB69erhk08+QcOGDQusHxcXh/j4ePXrskigcmVmZpZZ20RUPLwPibRL2/dglUukMjMzoaurm688d/uCkn7BjY2NsXHjxmLXP3r0aIEHa4aHhxd4sGxpyOXyPAfCElH5431IpF1leQ+6ubkVWafKJVL6+vrIysrKV65QKNTXy1KfPn3y7HoeGRmJ5cuXw8HBAS4uLqL2FRQUVKxvMhGVHd6HRNql7XuwyiVSVlZWiI2NzVeeO91W1sdF1KxZk0dSEBERVRNVLpFydnZGQEAAUlNT8yw4zx32K2oPKrGcPXsWZ8+ehVwuL5f+iIio/CiVygJnP6j8qVQqZGRkaPx+XV1dyGQyjd9f5RKpzp07Y9++fTh69Kh6HymFQgFfX1+4ubmptz4oa15eXvDy8kJoaGi+/aiIiKjyksvlePr0KSrJwSBVnkqlQnh4uMbvl0gksLW1hYmJiUbvr1SJ1KFDhyCXy9XTdJcvX0ZMTAwAYMCAATAxMYGbmxu6dOmC7du3IzExEfXq1cPJkycRFRWFRYsWaTN8IiKq5JRKJZ4+fQojIyPUqlWLp1xUABkZGRrv0ygIAmJjY/H06VM0bNhQo5GpSpVI7d+/H1FRUerXFy9exMWLFwEA3bt3V2eTH374IaytrXHq1CnI5XI4Ojpi1apVcHd310bYRERURWRlZUEQBNSqVQuGhobaDoeQkwyVZsPrWrVqISIiAllZWVU/kTpw4ECx6unr62PatGmYNm1aGUf0elwjRURUdXEkquoo7feyyu1sXlF4eXlh5cqVmDFjhrZDISKiKm7p0qUaL7jesGFDntmepUuXYvbs2SJFVvUxkSIiIqrkli1bVmAilZ2dXeR7/5tIUclUqqk9IiIiymvKlCkAgI4dO0Imk6Fu3bqwsbHBw4cPERMTg5CQEEgkErx8+RIWFhYAcvY8vHnzJnbv3o3nz59jyJAhMDQ0VJ/M8eLFC7z77rt49OgRbGxscPDgQVhaWmrpE1ZsTKTKCNdIERFVfcOC1yEuK6XM2q+pa4q9rnMLrbNt2zZ8++23uHTpEiwsLDBmzBjcunULf/zxB0xNTQt976effoqdO3di//796geyfvvtN/z555+4desWrKysMHToUHz77bdYsmSJWB+rSmEiVUbKYx8ppaAqk3aJiKh44rJSEJOVpO0w8hk0aFCRSVRhevbsCSsrKwBAu3btEBgYKFZoVQ4TqUrqj6Rg/C/zMNamWcDVyFbb4RARVUs1dTVPVsqy/f9uLimTyaBUKtWvi1qY/up2AjKZrFhrraorJlKVUEKWHJ9G7EO8kIL3QzZiet2eGG3dBTIJnx0gIipPRU27lRdTU1MkJSWp10D9l7OzM/7880/07t0bhw8fRmpqqvqamZkZkpIq3qhaZcF/eSuhNFUmauuZAwCyBSU2PjuOSfe34oXipZYjIyIibZg3bx66desGd3d39Ykfr1q/fj1mzZqFli1bIiAgQD1tBwAzZ87ExIkT4e7ujtu3b5dj1FWDROBhQWXi1cXmd+7cwY4dO+Di4iJa+1mqbHwe+BN+z74DATnfQlOZAT5qMAi9LFuI1g8RFS4oKAhubm7aDoPKSUZGBsLDw+Hg4FCq3bRJPOnp6aXaZb6031OOSJWRst6QU1eqg2G6rfFdo6moo1cDAJCizMDi8D1YEv4jUpTpZdIvERER/YuJVCXXytQZB1zno7dlS3WZb8JfGBT0FW6lPNJiZERERFUfE6kqwEzHECsc3scKhxEwleUMS75QvMT4+99g07PjyFLxaQsiIqKywESqCult+SYOuM7HmyaOAAABAr6P8sOo0E2IyMi/+JCIiIhKh4lUFVNX3xI7Gk3DrHre0JHIAABBaU8xJHgdDsVeBZ8tICIiEg/3kSoj2jwiRiaRYpyNJ9qZuWBJ+I8Iz4hBhkqBzx//gkvJwfjMbjBq6JgU3RAREREViiNSZaSsn9orDlcjW+x1nYtBNd9Wl51PvItBQV/hWvJ9rcVFRFTdqFQCngfF49GV53geFA+VirMDVQUTqSrOUKqHj+0GYoPTOFjIjAEAsVnJmPxgG9Y+PQoFF6ITEZWp8OtR2D/zAnyXX8f5LX/Dd/l17J95AeHXo7QdWplZunRpkcfQaMLHxwchISEavXfLli0YM2aMuAGBiVS10cXiDRxssgDtzP7dFHR39AW8H7IRYenRWoyMiKjqCr8eBb8NAUhNyJtUpCZkwG9DgOjJVEU5E2/ZsmWvTaRKE2NpEqmywkSqGqmla4ZvnCdigW1f6P6zED00/RmGBq/FgdjLXIhORCQilUrAtd3Bhda5tie41NN8EokEn332GVq3bo0lS5YgJSUFEydORJs2bdCsWTNMmjQJCoUCAPDs2TMMHDgQTZs2RbNmzfDJJ58AAGJiYvDee++hadOmeOONN/Dtt9+q27e3t8enn36Kdu3awcHBAcuXL1dfW758OVxdXeHu7g53d3dERkZiypQpAICOHTuqj6wZM2YMxo0bBw8PD7zxxhvquBMTE9Vt1axZExEREQCA4OBg9OjRA82aNUOzZs2wbds2fPfdd7h58ybmzJkDd3d3+Pr6AgA2bNiANm3aoGXLlujZsyciIyMBACkpKRgyZAhcXFzQoUMHBAYGlurr/DpcbF7NSCVSvG/dCa1NnbE4/EeEZUQjU8jGl48P4XJSCJbaD+FCdCIiEVz1uZdvJOq/UuMz8NNUP7j3cUJTbweN+5LJZLhx4wYAYNKkSejYsSN27NgBQRAwceJEbNy4EQsWLMD777+P7t274+DBgwCA2NhYAMCMGTPg4uKCw4cPIyYmBm+++SaaN2+Otm3bAgASExNx9epVxMXFwcnJCWPHjoWRkRG++uorvHjxAoaGhkhLS4NUKsW2bdvw7bff4tKlS3kOUb516xb++OMPmJqaFvpZsrOz0bdvXyxbtgzDhg0DAMTFxaFmzZr48ccfMXv2bPTr1w8A8PPPP+P+/fu4evUqZDIZ9uzZg2nTpuH48eP4/PPPoa+vj5CQECQnJ6Nt27Z46623NP4avw4TqWrKxage9rrOwfqnx7Av9g8AwIWkexgU9BWW2w9HW7NGWo6QiKhyS0tSFKteZkoWFOmlm5IbN26c+s+//fYbrl69inXr1gHIOYtOJpNBLpfjjz/+wKlTp9R1a9WqBSDnSfNbt24BAGrXro333nsPZ8+eVSdSw4cPB5AzauTo6Ijw8HC0a9cODRs2VCdn3t7esLW1fW2MgwYNKjKJAoDQ0FBkZGSok6jcfgvy22+/4fr163jzzTcBAEqlUn3Nz88P69evh0Qigbm5OYYPH45Hj8Q/8YOJVBnR5vYHxWUg1cOSBu/hbTMXfBa5Dy+zU9UL0cdYd8EHdXtBV8ofESIiTRiZ6xWrnr6pLvQMS/d3rYnJvzMJgiDg0KFDaNQo7y/EJfn3SCKR5Hn96mG+MpkM2dnZkMlkuHbtGq5cuYILFy6gbdu22Lt3Lzp27FhkjLntvJr4aLI4XRAEzJ8/Hx988EGRdf/7mcTCNVJlpCJsf1BcnSya4Be3vAvRfaLPc0d0IqJSaDemCYwtDQqtY2xlgBFbPUs1rfdf/fr1w6pVq9SLul++fImHDx/CxMQEHh4eWLt2rbpu7tSel5cXduzYoS47fPgwunXrVmg/KSkpiI6ORseOHfHJJ5+gQ4cOCAgIAACYmpoiKSmp0Pc7Ozvjzz//BAAcPnwYqampAAAXFxcYGRlh79696rpxcXEAADMzszzt9uvXD9999x0SEhIAAFlZWeoYvLy8sGvXLgiCgOTk5DztiYmJFAH4dyH6PNs++XZE/zXuTy5EJyIqIalUgrajXAut03akK6RScUdK1q9fD0NDQ7i7u6NZs2bw9PRUL+Les2cPbt68iSZNmsDd3R1btmwBAGzatAnBwcFo2rQpunTpgo8++qjI9URJSUnqBerNmjVDVlYWRo8eDQCYN28eunXrpl5s/ro4Z82ahZYtWyIgIABWVlYAAB0dHRw5cgS7du1C06ZN0bx5cxw6dAhAzvqv//3vf+rF5iNGjMDIkSPRpUsXNG/eHO7u7jh37hwA4JNPPkF6ejoaN26M3r17o0OHDqX+2hZEIvBfyDIVGhqKiRMnYseOHXBxcSn6DSUQFBQENzc3UdsEgOC0p1gc9iMiMv/94e9ewx2fNBgIMx0j0fsjqszK6j6kiikjIwPh4eFwcHDIM91VmPDrUbi2OzjPwnNjKwO0HekKhzY2ZRVqtZGeng5DQ0ON36/J9/RVXABD+eTsiD4HXz09gkNx1wAAp1/exh15BFY4vI+Wpo5ajpCIqPJwaGMDu1bWiApJQHpiJgwt9GHT2FL0kSjSDk7tUYGMZPr41G4w1jqOhpksJ9OPykrE+PtfY9vzU8gWlEW0QEREuaRSCeq6WcHp7bqo62bFJKoKYSJFhfKq0Ry/uM1HKxMnAIAKAra+OIWJ97ciSvFSy9ERERFpFxMpKpKNXg1sbzQV0+v2guyfH5m/5GEYFPQVzr68o+XoiIjKH5cXVx2l/V5yjRQVi0wixaQ63dDa1BlLwn/EC8VLJCvTMS/MBwNrtsP8+n1hKC3enilERJWVrq4uJBIJYmNjUatWrTLbm4iKLzMzU+PvgyAIiI2NhUQiga6urkZtMJEqI5VhQ05NtDBxwAHX+fji8QGcfvk3AOBg3FUEyMOxynEkGhrW0XKERERlRyaTwdbWFk+fPlVvKUDalZWVpXESBORs1GlrawuZTKbZ+7n9QdmqjNsfFIcgCPg1/k+sevwrMoQsAIC+RAfzbPticK23+VsaVRvc/qB6UiqVyMrK0nYYBODhw4dwdnbW+P26uroaJ1EAR6ToP1QqoViP6EokErxXsy3cjR2wKHw37qe/QKaQjf89OYSrKaFYZjcE5jrGWvgERERlTyaTleofXxKPVCrVaP8nsYiSSP3111+4desW7t69i5iYGCQlJcHAwAAWFhZwdHSEu7s72rVrp961lCqmAjeNszRA21Gv3zTO0dAaPzaejfVPf8fefw4/Pp94F8GpT7HScSRamIh37AEREVFFo3EilZ6ejkOHDuH3339HdHS0etW7np4ezMzMkJmZifDwcDx69AhnzpyBjo4O3n77bQwePBhNmzYV7QOQOMKvR8FvQ0C+8tSEDPhtCIDn7BavTab0pbpY3OA9tDVzwacRe5GkTMvZcyr0a0yt2wPjbDwhk/ABUSIiqno0SqRyz8B5+fIlnJycMH78eDRp0gSNGzeGkdG/R4gIgoCnT58iKCgIN27cwB9//IFLly6hffv2mD59OurWrSvaByHNqVQCru0OLrTOtT3BsGtlXegmcp0tmuAXt/lYEv4jbsnDoIQKW56fwPWUh/ifwwjU0jUTO3QiIiKt0iiR2rBhA7y8vDBs2DA4Or7+uBCJRIL69eujfv366NGjBzIzM3HmzBn8+OOPOH36NMaMGaNp3ATg+bVk3P7mXKnbUWapkJlS+KLJ1PgM/DTVDzLdokeWukpcYdBchivNH0CQAtdTHqDPn/9D70vucHpWG017OYh60jkREZG2aJRI7d69G/Xr1y/x+/T19fHOO++gV69eiI6O1qRrekV2pgppCZnl1l9RydarWp6zR+37Zjjd+y5STTORZqjAwe7X0eKGHZzSORJJRERVg0aJlCZJ1KtkMhmn9USgoy+FkaV+qdspzogUAOib6hZrRCpXo7Q6sP3dCr4db+NR/RgAQEDrSKxU/IbNmRNhq8+HD4iIqHLj9geVWN22ZvAa17bU7ahUAvbPvJDnab3/MrYywJCNnTU6aHO80AM/xVzE+mfHkC0oEaYXgyFBa7HUfgi61WheisiJiIi0i49SEaRSCdqOci20TtuRrhqfVi6RSPC+dSfscZmJ+v+MQslVGZgf9gO+fHwQmSpuakdERJWTqIlUSkoKTp48KWaTVE4c2tjAc3YLGFvm3dTM2Mqg0K0PSsLNuD72uc5Drxot1GUHYq9gZMhGRGTElLp9IiKi8ibq1F50dDRWrlyJnj17itkslROHNjawa2VdrJ3NNWUiM8AKh/fRxqwhVj4+jEwhG6HpzzE0eB0+aTAI3lZvitYXERFRWStRIlXUk3ZxcXGlCqYqqayHFkulEtR1K9tF4LnHyzQ1boAFYbsRnhGDdJUCH0b8hBspD7GoQX8YSvXKNAYiIiIxlCiRGjx4cKGH0QqCwMNq/+Hl5QUvLy/1ocWUX0PDuvi58RyseHIYR+NvAAB+jf8Td1IjscZxFJwMSz+dSEREVJZKlEiZmppi/PjxcHd3L/B6ZGQkli5dKkJYVF0YyfTxhf0wtDF1xvLHh5ChUuBRRhSGB6/HkgYD0NeqNZNzIiKqsEqUSDVq1AgpKSlwcCh4V2qlUqk+c4+oJN61ao03/pnqe5D+AhlCFj6L3IcbKQ/xUYMBMJKVfr8sIiIisZXoqb1+/frBxub10y3W1tZYvHhxqYOi6snBwBo/Np6FATX/3RvrWMJNDA9ZjwfpL7QYGRERUcFKlEh5eHige/fur71uamqKXr16lTooqr4MpHr41G4wVjq8DyNpzihUeEYM3g/egMNx1zjiSUREFQo35KQKqZdlS+x1nQMXw5yjhDKELCyLPICPIn5GmrL8zhckIiIqTKkTqc6dO+PJkydixEKUh71BbexpPAuDa72tLjuecAvDgtfjQfpzLUZGRESUo9SJFKdaqCzpS3XxUYOBWO0wCsb/TPVFZMZgBKf6iIioAuDUHlUKPSzdsc91Lhob1gMAZArZWBZ5AB9G/IRU5esPWyYiIipLTKSo0mhgUAu7G8/EkFrt1WW+CX9hWPB6hKY902JkRERUXTGRokpFX6qLDxsMwBrHUTCR5hywHJkZi/dDNuJg7FVO9RERUbliIkWVUvca7tjrOgeuRrYAAIWQjS8e/4LF4T9Czqk+IiIqJ0ykiunu3bvo1KkTfvjhB22HQv9oYFALu11mYqhVB9R7UgMNg20QeCcCw+6tQ3DaU22HR0RE1UCJjoiprlQqFbZs2YLGjRtrOxT6j2c342C/uwZqJbRSl6WYZOCzrj9joGd7DKr5Ns/qIyKiMlPqRGr48OEwMzMTI5YK6/fff4erqytSU1O1HQq9Ivx6FPw2BOQrN5Hro9vRN7APl3CjzSN8ZjcYJjIDLURIRERVXamn9iZPngxzc3MxYnmttLQ07Ny5E/Pnz4e3tzc8PDxw4sSJAusqFAps3boV/fv3h5eXFyZPnowbN25o3HdSUhJ++eUXjBs3TuM2SHwqlYBru4MLvCZBzghUx/ONcCb+NoYGr+VUHxERlQmNR6QUCgX09PTEjOW1kpKS4OPjA2trazg7OyMgIP8oRK4VK1bgwoULGDRoEGxtbXHixAksXLgQGzduRLNmzUrc944dOzBo0CCYmpqW5iPQKwKPhyPwRHip2lBmqZCZkvXa6xJIYJpiiLrPauBJ/XiMuLsBXa+7oUWInTrRKommvRzQ1NuhNCETEVEVpHEilTvi07t3b7i4uIgZUz5WVlb49ddfYWVlhZCQEEyaNKnAekFBQfDz88PUqVMxbNgwAECPHj0wZswYbN26FVu3blXXnT59OgIDAwtsZ+TIkZg4cSLu37+PkJAQzJkzR/wPVY0p0rORllA+5+XVeWqBZ/VfQilT4Uy7uwi3jEHX027QV+iWqB1FenYZRUhERJVZqUakfvvtNxw5cgROTk7w9vZGt27dymTkRk9PD1ZWVkXW8/f3h0wmQ58+fdRl+vr68Pb2xvbt2xEdHQ1ra2sAwNdff11ke7dv38aTJ08wYMAAAIBcLodMJsPz58+xZMkSDT8N6RnqwMhSv1RtFDUilcvjrgtgBtxskjMC9tAlBnF15Oh7oSVs4i2K3Z+eIZ/LICKi/DT+1+HIkSM4c+YMfH19ERISgk2bNmHr1q3o2LEjvL298eabb4oZZ7E8ePAAtra2MDY2zlPu6uoKAHj48KE6kSqOPn36wNPTU/1606ZNqFOnDkaMGCFOwNVUU+/ST5OpVAL2z7yA1ITX7xllbGWAIRs7Y7S0O84lBuLTiH1IUaYj0SwNP/e9inm2fTC0Vgc+1UdERBrTOJEyMjJC37590bdvX0REROD48eM4c+YM/Pz8cO7cOdSuXRve3t7o2bNniZKX0oiPjy9w5Cq3LC4urkTtGRgYwMDg36e99PX1YWhoWOioW1xcHOLj49WvIyMjS9QnFY9UKkHbUa4FPrWXq+1IV0ilOUlSV4umcHGth4Vhu3E37TGyBCVWPvkVN1IeYqndUJjpGJZX6EREVIWIMl9hb2+P6dOnY8qUKbhy5QqOHz+O69evY+fOnfDx8UGrVq3g7e2NDh06QEen7KZIMjMzoaubf+1L7qL4zMzSrcv58MMPi6xz9OhR+Pj45CsPDw+HUqksVf//JZfLERQUJGqblYoJ4DKwFsJPJUCR8u/XVs9MBofulkg3SUBQUEKetywSPLFX5wZ8s+8CAPwSAxGYFIGZel3hJK1VruFT1VDt70MiLSvLe9DNza3IOqJmNTKZDB07dkTHjh2RkJCAU6dOwdfXF9evX8eNGzdgZmaGo0ePitllHvr6+sjKyr9uRqFQqK+XtT59+qB9+38P1Y2MjMTy5cvh4OAg+qL8oKCgYn2TqzQ3oH0/AVEhCUhPzIShhT5sGluqR6IK0gxN0SPxLj6J2ItkZTpihBQsVRzDXNt3MbxWR071UYnwPiTSLm3fg2U2PGRpaYlhw4ahTZs2WL9+PQIDA5GcnFxW3QHImcKLjY3NV5471VazZs0y7T+3j/Loh/4llUpQ163ohxFe1dniDex3nYdF4XtwJzUS2YISq5/8hpspj7CMU31ERFRMZZJIpaWl4cyZMzh+/Dju378PQRBgYGCALl26lEV3arl7TKWmpuZZcJ475Ofs7Fym/b/q7NmzOHv2LORyebn1SSVTV98SO10+wOZnx/FD9AUAwLnEQISkPcNqx5Foamyn3QCJiKjCEzWR+uuvv+Dr64tLly4hMzMTgiDAzc0N3t7e6Nq1K4yMjMTsLp/OnTtj3759OHr0qHofKYVCAV9fX7i5uZXboncA8PLygpeXF0JDQzFx4sRy65dKRlciw1zbPnjTxAmfROxFkjINzxUJGBO6BXPqvYMRtT041UdERK9V6kQqJiYGJ06cwIkTJxAVFQVBEGBhYYE+ffrA29sb9vb2IoQJHDp0CHK5XD1Nd/nyZcTExAAABgwYABMTE7i5uaFLly7Yvn07EhMTUa9ePZw8eRJRUVFYtGiRKHFQ1dTJogn2u83DorA9+Ds1AtmCEmueHsHNlEf43H4ozHTK9pcAIiKqnDROpPz8/ODr64u//voLKpUKUqkUrVu3LrOn8/bv34+oqCj164sXL+LixYsAgO7du8PExARAzpN11tbWOHXqFORyORwdHbFq1Sq4u7uLGg9VPXX0auB7l+nY8swXPtHnAQDnk+5iSPBarHIchWac6iMiov+QCIIgaPLGTp06AQDq1KmDXr16oVevXqhdu7aowVVmr66RunPnDnbs2MGn9iqRi0lB+Dj8ZyQp0wAAOpBilu07GFm7E6f6KA/eh0Tape17UONhI09PT63tYF4ZcI1U5eZh7oYD/0z13U6NQDZUWPv0KG79M9VnrmNcdCNERFTlSTV946effsokiqo0G70a+M5lOsZad1WXXUi6hyHB63BHHqG9wIiIqMLQOJH6r+zsbBw4cACTJk1Cz54982x18ODBA6xbtw5PnjwRqzuicqErkWG27TvY4jwBFrKcUagXipcYG7oFP0RfgIYz40REVEWIsiI8MzMT8+bNw927d2Fubg5jY2NkZPx7mGydOnXg6+sLU1PTajPNxX2kqpaO/0z1LQzbg9up4ciGCuueHsXNlIf4wn4YLDjVR0RULYkyIrVnzx4EBgZi0qRJ+O233+Dt7Z3nuomJCdzd3XHjxg0xuqsUvLy8sHLlSsyYMUPboZBIrPUs8L3LNIy38VSXXUwKwpCgtbgtD9diZEREpC2iJFLnzp1DixYtMHz4cEgkkgKfaqpbty6io6PF6I5Ia3QkMsys541vnCeixj+jUFFZiRgX+jV8os5BJai0HCEREZUnURKpmJiYIh/tNzQ0RGpqqhjdEWlde3NX7Hedh5YmjgAAJVRY/+wYZj78Hi+zOZ1LRFRdiJJIGRoaIjExsdA6z58/h7m5uRjdEVUI1noW2NFoKibYeKnLLiUHY0jQOgRwqo+IqFoQZbF5kyZNcOXKFaSkpMDU1DTf9ejoaFy7dg0dO3YUo7tKgYvNqwcdiQwz6vVGSxNHfBTxM15myxGdlYjxoV/jg3q9MMa6C6QS0R6OJSKiCkaUv+GHDh2KlJQUzJkzB4GBgVAqlQCAjIwM3Lp1C/Pnz4dSqcSQIUPE6K5S4GLz6qW9eWMccJ2HViZOAHKm+jY+O44ZD7/jVB8RURUmyoiUu7s7Zs+ejU2bNuVJHHr27AkAkEqlmDt3ruhHpBBVJLX1zPFtoynY9vw0vos6CwEC/kgOweCgtVjlMBItTR21HSIREYlMtJOF+/XrB3d3dxw5cgTBwcFITk6GsbExXF1d0b9/fzg4OIjVFVGFpSOR4YN6vfCmqSOWhP+El9lyxGQlYcL9bzC9bk+MtenKqT4ioipEtEQKAOzt7TFr1qzXXlcqlZDJZGJ2SVQhtTNzwS9u87E4bA9uyh9BCRU2PffFTfkjfGk/AhYyY0SFJCA9MROGFvqwaWwJqZSHIRMRVTaiJFKHDx/Ge++9V2gdpVKJZcuW4fPPPxejywqPi82plq4Ztjeaiu0vTuPbF2cgQMCV5FDM/e17dLnghqyX2eq6xpYGaDvKFQ5tbLQYMRERlZQocwybNm3ChQsXXntdpVJh2bJluHjxohjdVQpcbE4AIJNIMbVuT3zbcDKsdEzh9KA22v/aEIqXWXnqpSZkwG9DAMKvR2kpUiIi0oQoiVTTpk2xfPly/PXXX/mu5SZR/v7+6N+/vxjdEVU6b5k1wv7Gc+F5oQkAQIKCp/Gu7QmGSsWDkImIKgtRpvZWrlyJDz74AB9//DE2btyIhg0bAshJor744gtcuHAB/fr1K3T9FFFFFng8HIEnSrfJpjJLBf2Uwm+51PgM/DTVDzLd0v+O07SXA5p68yEPIqKyJEoiZWxsjK+++gpTp07FggUL8M0336BOnTr4/PPPcf78efTt2xdz5swRoysirVCkZyMtIbNc+spMySq6UjEo0rOLrkRERKUi2lN7VlZWWLt2LaZPn4558+ahYcOG8Pf3xzvvvIO5c+eK1Q2RVugZ6sDIUr9UbSizVMVKkgQrwFgoXV9ATsxERFS2RP2btn79+li9ejVmz56Nixcv4p133sGCBQvE7IJIK5p6l36aTKUSsH/mBaQmZBR4XYAAuWkGjo/7G186vY+3zBqWqj8iIip7GiVSPj4+hV53dXXFw4cPYWVllaeuRCLB6NGjNemSqNKTSiVoO8oVfhsCXlvnUpf7iFWlYPKDbZhSpzsm1ukGGTfwJCKqsDRKpHbt2lWsej/88EOe19UpkeI+UlQQhzY28JzdAtd2B+cZmTK2MkCT4fa4afUYj1JiIEDA1hencEsehhUOI1BT10yLURMR0etolEht3LhR7DiqHC8vL3h5eSE0NBQTJ07UdjhUgTi0sYFdK+sCdzbfKkzC91F++Ob5Sagg4HrKAwwOWosVDiPwllkjbYdORET/oVEi5e7uLnIYRNWLVCpBXTer/OUSKSbW6YYWJg5YHP4jYrOSEZ+dgskPvsWkOt0wuU53TvUREVUg/BuZqAJqZeqMA67z8baZC4CchejfvjiNyQ+2ITYrWcvRERFRLiZSRBWUpa4JvnaeiJl1e0P6z07oN1IeYnDQV7iWfF/L0REREcBEiqhCk0qkGF/HC983mo7auuYAgIRsOaY8+BZbnp1AtqDUcoRERNUbEymiSqClqSMOuM1DB7PGAHKm+nZEncHk+9sQo0jScnRERNUXEymiSqKGjgk2O0/ArHrekP1z696UP8Lg4LW4khyq5eiIiKonJlJElYhUIsU4G0987zId1roWAICX2XJMe7AdW575cqqPiKic8TCuMsINOakstTBxwAG3efg4/GdcSg7+Z6rvLG7Jw7DS4X1Y61loO0QiomqhxCNSKpUKYWFhiIuLy3ctOzsbt2/fFiOuSs/LywsrV67EjBkztB0KVVEWOsbY5Dwec+q9o57q+0sehiHBa3E5KUTL0RERVQ8lSqSioqIwZswYjB07FgMHDsTixYuRlPTvQtfk5GTMnj1b7BiJ6DWkEinG2HTFTpfpsFFP9aVi2sPt2MypPiKiMleiRGrr1q2oWbMm9u3bhx07diAzMxPTp0/PMzolCILoQRJR4dxNHLDfbR46mrupy76LOouJ97ciWpGovcCIiKq4EiVSf//9N6ZNm4Y6deqgYcOGWLt2LZo1a4YPPvgA0dHRAHIOJiai8mehY4xNTuMwt9670Mk31Res5eiIiKqmEiVSGRkZ0NXV/ffNUikWLlyI1q1bY8aMGXj27JnoARJR8UklUoy26YKdLh/8Z6pvBzY+O8apPiIikZUokWrQoAFCQ/PvVzNv3jy0bdsWixcvFi0wItJccxN7HHCbh07mTdRlO6POYXzoN4hSvNRiZEREVUuJEikPDw+cOXOmwGtz586Fp6cn10gRVRDmOsbY6DQO82z7qKf6bqeGY0jQOlxKCtJydEREVUOJEqn3338fa9asee31uXPnwt/fv9RBEZE4JBIJRll3xi6XD1BXrwYAIFGZig8efof1T39HFqf6iIhKhTubE1UDzUzssd91HrqYv6Eu84k+j/GhX+MFp/qIiDTGRIqomjDTMcJ6p7FYYNsXOhIZAODv1AgMCVoL/8R7Wo6OiKhyKnUi1blzZzx58kSMWIiojEkkErxv3Qk+Lh+grp4lACBJmYaZj77H2qdHOdVHRFRCpT5rj4vLC8az9qgia2psh/2uc/Fp5D6cT7wLANgdfQG35eFY5TASdfUttRwhEVHlwKm9MsKz9qiiM9MxwnrHsVho20891XcnNRJDgtfiwj/JFRERFY6JFFE1JpFIMMLaAz+4zFBP9SUr0zHr0U589eQIslTZ6roqlYDnQfF4dOU5ngfFQ6XiaDQRUamn9oio8nvDuAH2u87D0sh98EsMBADsifFHgDwcqx1HQfG3Atd2ByM1IUP9HmNLA7Qd5QqHNjbaCpuISOs4IkVEAAAzHUOsdRyDxfX7Q/efqb67aY+x4IgP/DYE5EmiACA1IQN+GwIQfj1KG+ESEVUITKSISE0ikWBY7Y7Y7TITtnpWkKiA1mcdIOD103jX9gRzmo+Iqi1O7RFVUYHHwxF4Ilzj9w/UbYVrjR7BVG5QaL3U+Az8NNUPMt3S/17WtJcDmno7lLodIqLyUupEavjw4TAzMxMjFiISkSI9G2kJmaVqo1W0fbHqZaZklaqfXIr07KIrERFVIKVOpCZPnixGHEQkMj1DHRhZ6peqDWWWqlhJkr6prigjUnqGHCQnosqFf2sRVVFNvUs/TaZSCdg/80K+hea5BAgwtNTH8E1dIZVKStUXEVFlJGoipVQqERsbi7i4OGRnFzxE7+7uLmaXRFSGpFIJ2o5yhd+GgHzXcheg+3a8DZukmvCq0by8wyMi0jpREimVSoU9e/bg4MGDSElJKbTuhQsXxOiSiMqJQxsbeM5ukW8fqXSzLFzoHIxHzjGYF/YDhtbqgHm2faAn5UA3EVUfovyN9+2332Lfvn2oUaMGevXqBSsrK8hkMjGaJqIKwKGNDexaWSMqJAHpiZkwtNCHSUMjPHuSjEcvYwAA+2L/wN+pEVjjOAr19WtqOWIiovIhSiJ16tQp1K9fH9u3b4eRkZEYTRJRBSOVSlDXzSpP2UqH99Ha1BmrnvwKhZCN4LSnGBq0Dp/ZD0b3Gu7aCZSIqByJkkilp6ejW7duVTaJmjlzJoKCgtSjbM2aNcOaNWu0HBWR9kkkEgys1Q5NjRtgQdhuRGbGQq7KwIKw3bhZ6xHm2faBvlRX22ESEZUZURIpR0dHxMfHi9FUhbVw4UJ0795d22EQVUguRvWw13UOvoj8BSde5ixM3x97GX/Lc6b6GhjU0nKERERlQ5QjYkaNGoVLly4hNDRUjOaIqBIylhlghcP7+LTBIOhLcn5HC0l/hqHB63AyIf9Tf0REVYEoI1Lt2rXDkiVLsHDhQrRv3x5OTk4wNjYusG7Pnj016iMtLQ379u1DUFAQgoODkZKSgiVLlqBXr1756ioUCnz//fc4ffo0UlJS4OTkhAkTJqB169Ya9Q0AmzdvxubNm9GwYUNMnz4dTk5OGrdFVFVJJBIMqNUOTY3tMD/sB0RmxiJVlYlF4XtwS/4I8237cqqPiKoUURIphUKBK1euICkpCcePHweQ8xfqqwRBgEQi0TiRSkpKgo+PD6ytreHs7IyAgNf/hrtixQpcuHABgwYNgq2tLU6cOIGFCxdi48aNaNasWYn7njJlCuzt7SGTyXDo0CEsWLAAP/74Y5VdE0ZUWo2M6mKv6xwsf3wQvgl/AQAOxF7B3/JIrHEcBTtO9RFRFSFKIrVlyxacOXMGTk5O6NSpU5lsf2BlZYVff/0VVlZWCAkJwaRJkwqsFxQUBD8/P0ydOhXDhg0DAPTo0QNjxozB1q1bsXXrVnXd6dOnIzAwsMB2Ro4ciYkTJwIA3Nzc1OXDhw+Hr68v7t27V6oRLqKqzlhmgP/Zj0BrU2esfHwYmUI2Qv+Z6vvUbjB6WbbQdohERKUmSiJ14cIFuLi44JtvvoGOTtlsxqenpwcrK6si6/n7+0Mmk6FPnz7qMn19fXh7e2P79u2Ijo6GtbU1AODrr7/WKBaJRAJBEDR6L1F1IpFI8F7Ntuqn+sIzYpCmysTi8D24mfIQC+r3hYFUT9thEhFpTJTF5gqFAi1atCizJKokHjx4AFtb23xrtFxdXQEADx8+LFF7KSkpuHHjBhQKBbKysnDgwAGkpKTkGaV6VVxcHEJDQ9X/RUZGavZBiKqQhoZ18XPjOXjHspW67GDcVYwK2YSIjBgtRkZEVDqiZD4uLi54+vSpGE2VWnx8fIEjV7llcXFxJWpPqVRi+/btePz4MXR0dODs7IxVq1bBxMSkwPpHjx6Fj49PvvLw8HAolcoS9V0UuVyOoKAgUdskKkvDheaop2uEXVmXoYASoenPMeTeWkzQ7YD2OpXzAQ7eh0TaVZb34OsGTV4lSiI1ceJEzJkzB1euXMHbb78tRpMay8zMhK5u/qeC9PT01NdLwsLCAjt27Ch2/T59+qB9+/bq15GRkVi+fDkcHBzg4uJSor6LEhQUVKxvMlFF0gRN0D29LRaE/YCwjGhkIAtbss7jhXk6FtbvV+mm+ngfEmmXtu9BURKpmzdvwt3dHR9++CFatmz52u0PJBIJRo8eLUaXr6Wvr4+srKx85QqFQn29LNWsWRM1a/KcMaLCOBva4KfGs7HiyWEcjb8BADgUdw2BqZFY4zga9ga1tRwhEVHxiJJI7dq1S/3nW7du4datWwXWK49EysrKCrGxsfnKc3deZ5JDVDEYyfTxhf0wtDJxwv8eH0KGkIX76S8wNHgdPmkwCN5Wb2o7RCKiIomSSG3cuFGMZkSRu8dUampqnlGx3PlTZ2fnconj7NmzOHv2LORyebn0R1RZ9a3ZBk2MG6in+tJVCnwY8RNupDzEogb9YVjJpvqIqHoRJZFyd3cXoxlRdO7cGfv27cPRo0fV+0gpFAr4+vrCzc1NvfVBWfPy8oKXlxdCQ0PV+1ERUcFyp/pWPvkVR+KvAwB+jf8TgamR+MppNBwMyue+JSIqKe3vV1AChw4dglwuV0/TXb58GTExOY9ODxgwACYmJnBzc0OXLl2wfft2JCYmol69ejh58iSioqKwaNEibYZPRIUwkunjc/uhaG3qhOWPDyFDpcDDjCgMC16PjxoMxLtWrYpuhIionImSSAUGBsLf3x/Dhg0rcOuBuLg47Nu3D126dEGTJk007mf//v2IiopSv7548SIuXrwIAOjevbt6S4IPP/wQ1tbWOHXqFORyORwdHbFq1apyHTnj1B6RZt61ao0mRjlTfQ8zopCuUuDjiJ9xI+UhljR4j1N9RFShSAQRtuj++OOP8ejRI+zdu/e1dYYPH46GDRti2bJlpe2uUsmd2tuxYwe3PyAqgXSVAqse/4pf4/9UlzkZ2GCN4yg4GdpoMbK8eB8SaZe270FRdjYPCQkp8jDg5s2bc9M6Iio2Q6keltoPwZf2w9WjUI8yojA8ZIN6ywQiIm0TJZFKTEwsclsBS0tLvHz5UozuiKgaeceqFfa6zoGzQc4oVIZKgU8i9uKTiL1IU5Zsg10iIrGJkkiZmJioF32/TnR0NAwNDcXojoiqGQcDa/zoOhvv1XxLXXY0/gZGhGzAg/QXr32fSiXgeVA8Hl15judB8VCpeNg4EYlLlMXmbm5uuHjxIiZMmFDg9gLR0dG4dOkSWrZsKUZ3lQIXmxOJy1Cqh8/shqCViTO+ePwL0lUKhGVE4/3gDVjSYAD6WrWGRCJR1w+/HoVru4ORmpChLjO2NEDbUa5waFNx1lgRUeUmyojU4MGDkZmZienTp+PkyZPqg4Hj4uJw4sQJTJs2DQqFAkOGDBGju0rBy8sLK1euxIwZM7QdClGV4m31Jva5zkVDwzoAgAwhC59F7sPHr0z1hV+Pgt+GgDxJFACkJmTAb0MAwq9H5WuXiEgTom3IOX36dHzzzTdYuXIlgJzjYHIfCJRIJJgxY0aF2riTiCove4Pa+LHxLKx5cgQH464CAI4l3MS9tMdYbT8Kt3aHFvr+a3uCYdfKGlKppNB6RERFEW1DzkGDBqFly5Y4cuQIQkJCIJfLYWJiAldXV/Tt2xeOjo5idUVEVVTg8XAEnggvdn0nWOFdhxY41f4OFLpKhGfEYN7JneibUPg5fanxGfhpqh9kuqUflK/d0gjc/YCo+hJ1Z3MnJyfMnTtXzCYrLa6RIio5RXo20hJK9iSefUJNDA57CyffuYO42nLopxdvw87MlCxNQswnO9NAlHaIqHKqVEfEVCY8a4+o5PQMdWBkqV/i9xlBH6NPdoRfmyDEmiQX6z36prqijEjp6Iuy1JSIKikmUkRUYTT1dkBTbweN3z8K3XAyLgAhvpEwlutBgoLXQBlbGWDIxs6irJHiRsNE1Rt/lSKiKqVnzRZoPzpn0ZKAgveNajvSlQvNiUgUTKSIqMpp3b4ROs9qDpV53kQqzUwB16l23EeKiETDqT0iqpIavlUPTq3r4tiN6zjw6DISjFLxvN5L7JFdxqLY/hhQs22eDTyJiDTBRKqM8Kk9Iu2TSiXo89ZbcG/uiIXhe/As7SUUQja+ePwLbqQ8xCd2g2Ai41N3RKQ5Tu2VEe5sTlRxNDCohd0uMzG0Vgd12cmXARgWvB4hac+0GBkRVXaiJlIpKSk4efKkmE0SEYlCT6qDJQ3ew1eOo2EizRmFepwZi5EhG3Eg9rL6JAYiopIQNZGKjo5WHxFDRFQRdavRHPvc5sLNyBYAoBCy8eXjQ1gYvgdyZUYR7yYiyqtEa6Sio6MLvZ57WDERUUVWX78mfnCZiXVPj2Jv7B8AgNMvbyM47QnWOI6G6z9JFhFRUUqUSA0ePLjQp1wEQeBTMERUKehJdbC4wXtoZeqMpZH7kKLMwJPMeIwM2YgFtv0wuNbb/PuMiIpUokTK1NQU48ePh7u7e4HXIyMjsXTpUhHCIiIqH141mqGxUT0sDNuNe2lPkCUo8b8nh3Aj5SE+sx8MU5mhtkMkogqsRIlUo0aNkJKSAgeHgo9wUCqVXLD5D25/QFR52Opb4QeXGdjw7Bh+jLkIADiT+DeCg55ijeMouBnX13KERFRRlWixeb9+/WBj8/odga2trbF48eJSB1UVcPsDospFV6qDBfX7Yb3TWPUo1FNFPEaFbsLemEv8JZGIClSiRMrDwwPdu3d/7XVTU1P06tWr1EEREWlLV4um2O86D28YNQAAZAlKrHzyK+aH/YAUZbqWoyOiioYbchIR/Uc9fUv4uHyA92t3UpedTbyDIUFrcS/1iRYjI6KKhokUEVEBcqb6+mKj0ziY/TPV90yRgFGhm/BTzEVO9RERABESqc6dO+PJE/6GRkRVU2eLN7DfdR6aGdsBALIFJVY/+Q1zw3yQnM2pPqLqrtSJFH8rI6Kqrq6+JXY2mo5R1p3VZecSAzEkeC0eqmK0FxgRaR2n9oiIikFXqoN5tn2w0Wk8zGVGAIDnigQszTyGn6I51UdUXTGRIiIqgc4WTbDfbR6aG9sDAJRQYfXT3zAnbBeSs9O0GxwRlbsSbchJxccNOYmqrjp6NfC9y3RseeYLn+jzAIDziXcxJG0tVjuOQtN/1lMRUdXHEakywg05iao2XYkMc2zfxQK97q9M9b3EmJDN2BPtz6k+omqCiRQRUSm0lDXAAbd5cP9nqi8bKnz19AhmP9qJpOxU7QZHRGWOiRQRUSnZ6NXAdy7TMda6q7rsQtI9DAlehzvyCO0FRkRlrtSJ1PDhw2FmZiZGLERElZauRIbZtu9gi/MEWMiMAQAvFC8xNnQLfoi+wKk+oiqq1InU5MmTYW5uLkYsRESVXkdzt3+m+hwA5Ez1rXt6FDMffY9ETvURVTllOrUnCAKePHmC6OjosuyGiKhCsdazwPcu0zDexlNddjEpCEOC1uK2PFyLkRGR2ERJpPz9/fHll18iJSVFXfbixQuMGTMGI0eOxJAhQ7B06VIolUoxuiMiqvB0JDLMrOeNb5wnooZOzlRfVFYixoV+DZ+oc1AJKi1HSERiECWROnLkCB48eABTU1N12ZYtWxAREYEWLVrAyckJFy5cgK+vrxjdERFVGu3NXbHfdR5amjgCyNnAc/2zY5j58Hu8zOY+c0SVnSiJVEREBFxdXdWv09LScPXqVXTt2hXr16/Ht99+Czs7OyZSRFQtWetZYEejqZho4wUJJACAS8nBGBK0DgGc6iOq1ERJpJKTk2Fpaal+fefOHSiVSnh65qwP0NHRQatWrfDs2TMxuiMiqnR0JDJ8UK83vmk4CTV0TAAA0VmJGB/6Nb6P8uNUH1ElJUoiZWxsjOTkZPXrgIAASKVSNG/eXF2mo6ODjIwMMbojIqq03jZzwQHXeWhl4gQgZ6pv07Pj+ODhd0jI4lQfUWUjSiLVoEEDXLlyBUlJSUhJScHZs2fRqFGjPGumoqKiUKNGDTG6IyKq1GrrmePbRlMw0aabeqrvcnIIhgSvxV8pYVqOjohKQpRDiwcMGIDPPvsMAwYMUI88TZgwIU+doKAgNGrUSIzuKgUeWkxEhcmZ6uuFVqZOWBL+IxKy5YjJSsLEkG8wNaM7OkmbwLiGAWwaW0IqlWg7XCJ6DVESqc6dO2POnDk4fvw4AKBr167o1auX+vrt27eRmpqKNm3aiNFdpeDl5QUvLy+EhoZi4sSJ2g6HiCqotmaNcMBtPhaH7cHLgBR0POcCyJXwxx0AgLGlAdqOcoVDGxstR0pEBRElkQKAfv36oV+/fgVec3d35xN7RESvUUvXDB8mvYdzR28DyHuUTGpCBvw2BMBzdgsmU0QVEA8tJiLSMpVKwPXdIZAA6jVTrxIAXNsdDJWK5/URVTSijUgREVVHz68l4/Y350rVhjJLhcyUrNdelyBnZOr7WSdhLOiXqi8AaNrLAU29HUrdDhFpmEjNnz8f48ePz7MJZ3Glp6fj0KFDMDIywnvvvadJ90REFUZ2pgppCZnl0pe/exCcQ21g+9Sy6MqFUKRnixQREWmUSCUmJmLq1Klo3rw5evToAQ8PD5iYmBT6nnv37uH06dM4d+4cMjMz8eGHH2oUMBFRRaKjL4WRZelGiYoakcqVYJWG3wbdQvvbjdDuTkNIBc2e5tMz5GQEkVg0upu+++47nDhxAj4+Pli1ahXWrFmD+vXrw8XFBTVq1ICJiQkUCgWSk5Px5MkThIaGIi0tDVKpFJ6enpgwYQKsra3F/ixEROWublszeI1rW6o2VCoB+2deQGrC6zctzjTLxvN6LyFIgT9a3kd2J+B/DiNgpWv62vcQUdnT+NeSXr16oWfPnrh27Rp8fX1x+/ZtnD59Ol89qVQKR0dHeHh4wNvbGzVr1ixVwEREVY1UKkHbUa7w2xDw2jo9x7WCjq0+tj0/BRUEXEu5j8FBX2GF4/toY9qwHKMloleVanxXIpGgXbt2aNeuHYCcw4tjY2ORnJwMPT09WFhYwMHBochpPyKi6s6hjQ08Z7fAtd3BeUamjK0M0HZkzj5STqiDliaOWBy2B3HZKYjLTsHk+9swuU53TKzTDTIJH8QmKm+iTpTb29vD3t5ezCaJiKoNhzY2sGtljaiQBKQnZsLQQj/fzuatTZ1xwG0+Pgz/CddS7kMFAVtfnMIteRhWOIxATV0zLX4CouqHv74QEVUgUqkEdd2s4PR2XdR1syrweBgrXVNsbTgJ0+v2gvSffaeupzzA4KC1+DP5QXmHTFStMZEiIqqEpBIpJtXphh2NpqLWP6NQ8dkpmPxgG755fhJKQaXlCImqByZSxfTzzz9jwIAB6NGjB8aPH4+0tDRth0REhFamztjvOg/tzFwAAAIEfPviNCY/2IbYrGQtR0dU9TGRKobDhw/jzz//xDfffIOTJ0/iww8/hI4O92EhoorBStcU3zhPxIy6vdVTfTdSHmJw0Fe4lnxfy9ERVW1MpIqgVCqxZ88eLFy4ENbW1pBIJHBycoKenp62QyMiUpNKpJhQxwvfN5qO2rrmAICEbDmmPPgWXz8/wak+ojJSaRKptLQ07Ny5E/Pnz4e3tzc8PDxw4sSJAusqFAps3boV/fv3h5eXFyZPnowbN25o1G9sbCwyMzNx4cIF9O3bFyNGjMDvv/9emo9CRFRmWpo6Yr/rPLQ3awwgZ6pv+4szmHR/K2IUSVqOjqjqESWROn/+fJF1lEoltm7dqnEfSUlJ8PHxQWRkJJydnQutu2LFChw4cADdunXDzJkzIZVKsXDhQty5c6fE/cbGxkIul+PJkyc4cOAAPv/8c2zfvh1///23ph+FiKhMWeqaYIvzBMyq5w3ZP3/N35Q/wuDgtbiSHKrl6IiqFlESqaVLl2LVqlXIyCj4eIOnT59i6tSp2L9/v8Z9WFlZ4ddff8Uvv/yCqVOnvrZeUFAQ/Pz8MGnSJEybNg19+vTBhg0bYGNjky+Rmz59Ojw8PAr8b8eOHQAAff2cM7TGjBkDfX19ODk5wdPTE9euXdP4sxARlTWpRIpxNp743mU6rHUtAAAvs+WY9mA7tjzzRbag1G6ARFWEKCum27RpA19fXwQGBuKzzz5Dw4b/Hldw4sQJbNy4EZmZmXj//fc17kNPTw9WVlZF1vP394dMJkOfPn3UZfr6+vD29sb27dsRHR2tPufv66+/LrK9+vXrQ1dXFxLJv3u5vPpnIqKKrIWJA/a7zcUn4XtxKTkYAgTsiDqLv+RhWOkwErX1zLUdIlGlJsqI1Jo1azB9+nRERUVh6tSp2LdvH1JSUrBs2TKsWrUKpqam2LBhAyZMmCBGd4V68OABbG1tYWxsnKfc1dUVAPDw4cMStWdoaIhOnTph9+7dUCgUiIiIwLlz59C2bekOKSUiKi81dEywyXk85tR7Rz3Vd0sehsHBa3E5KUTL0RFVbqI9wz948GC0aNECn3/+ObZt24adO3dCoVDAw8MDCxYsgKlp+ZxQHh8fX+DIVW5ZXFxciducM2cOVq1ahXfffRfm5uYYP348mjdvXmDduLg4xMfHq19HRkaWuD8iIrFJJVKMsekKdxMHLArbg6isxJypvofbMcHGC1Pr9oCORKbtMIkqHVE3Q3J2dsbbb7+Nffv2ITMzE+bm5hg3bly5JVEAkJmZCV1d3XzludsVZGZmlrhNU1NTLF++vFh1jx49Ch8fn3zl4eHhUCrFXZMgl8sRFBQkaptEVDKV7T7UA/C57B1sVfojQPUEAPBd1Fn8EXMXH+h1gZXEuPAGiCqYsrwH3dzciqwjWiIVHR2NL774Anfv3oWzszPatm2LvXv3YtKkSZg+fTr69u0rVleF0tfXR1ZWVr5yhUKhvl6W+vTpg/bt26tfR0ZGYvny5XBwcICLi4uofQUFBRXrm0xEZaey3oetBXfsifbHpmfHkQ0VQlRR+DjrKL50GI4O5q7aDo+o2LR9D4qSSJ0/fx5fffUVUlNTMXDgQEyePBm6urpo3749Pv/8c6xfvx7Xr1/HokWLYGZWtieTW1lZITY2Nl957nRbzZo1y7T/mjVrlnkfRESlJZVIMdqmC9xNHLAwbDeishKRqEzF9Ic7MM6mK6bX7cWpPqJiEG37A11dXaxevRoffPCBemrNzc0NO3fuhJeXF/744w+MHTtWjO4K5ezsjKdPnyI1NTVPee6wX1F7UInl7NmzWLx4MTZv3lwu/RERaaK5iT0OuM1DJ/Mm6rKdUecwPvQbRCleajEyospBlETqrbfewq5du9CmTZt814yMjPDxxx/jo48+Qnp6uhjdFapz585QKpU4evSoukyhUMDX1xdubm7qrQ/KmpeXF1auXIkZM2aUS39ERJoy1zHGRqdxmG/bFzr//LNwOzUcg4PW4mJS5Vn/RaQNokztrV69usg63bt3R9OmTUvVz6FDhyCXy9XTdJcvX0ZMTAwAYMCAATAxMYGbmxu6dOmC7du3IzExEfXq1cPJkycRFRWFRYsWlap/IqKqSiKRYKR1JzQ3sceisN14rniJJGUaZjz8DmOsu+CDer2hy6k+onxEfWqvKHXq1CnV+/fv34+oqCj164sXL+LixYsAchI1ExMTAMCHH34Ia2trnDp1CnK5HI6Ojli1ahXc3d1L1T8RUVXXzNgO+13n4dOIfTifdBcA4BN9HgHycKxyHIk6ejW0HCFRxSIRBEHQdhBV0dmzZ3H27FnI5XLcuXMHO3bs4FN7RFVQVb0PBUHAzzGXsO7Z7+rjZMxlRvjcfhg6WzQp4t1E5Ufb96AoI1IF7ZtUEIlEgtGjR4vRZYXn5eUFLy8vhIaGYuLEidoOh4ioRCQSCUZYe6C5iT0WhO3Gc0UCkpRpmPXoe4yy7oyZ9bw51UcEkRKpXbt2FXpdIpFAEIRqlUgREVUFbxg3wH7Xefgsch/OJQYCAHZHX8BteThWOYxEXX1LLUdIpF2iJFIbN24ssFwul+P+/fs4dOgQWrVqhf79+4vRHRERlSMzHUOscxyDvbF/YO3To8gWlLiTGokhwWvxhf0wdLZ4Q9shEmmNKIlUYYu4O3TogG7dumHChAnw8PAQo7tK4dU1UkRElZ1EIsHw2h3RzNgOC8N245kiAcnKdMx6tBMja3fCrHre0JWW6/NLRBWCKPtIFaV+/frw8PDAzz//XB7dVQjcR4qIqqI3jBtgn+s8eFr8u53Nnhh/jL2/Bc8zE7QYGZF2lEsiBQAWFhZ4/PhxeXVHRERlxEzHEGsdx2Bx/f7qBeeBqY8xOHgtzife1XJ0ROWrXBIphUKB69evq/d5IiKiyk0ikWBY7Y7Y7TITtnpWAIAUZTpmP9qJNU9+Q5YqW8sREpUPUSa0T548WWC5UqlEXFwc/Pz88PjxYwwYMECM7oiIqIJwM66PfW5zsSziAM4k/g0A+DHmIm7LI7DKcSRs9a20HCFR2RIlkVqxYgUkEkm+8ty9PiUSCTw9PTF58mQxuqsUuNiciKoLU5kh1jiOwv7Yy/jq6RFkCUrcTXuMocFrscxuKDxrNNN2iERlRpREavHixQWWS6VSmJqaolGjRqhZs6YYXVUa3JCTiKoTiUSCobU7/LOB5w94khmPFGUG5ob5YETtjphT710+1UdVkig/1b169RKjGSIiqqRUKgFRIQnQS5Rio9lYbDM/g9NJOVN9P8Vcwm15BFY7juJUH1U5/PWAiIhKJfx6FK7tDkZqQoa6rKVlfbj3s8MGS18ohGzcS3uCIUFrscx+CLxqNNditETi0iiRWrlypcYdvm4akIiIKp/w61Hw2xCQrzw1IRPYCayfOhqrahzB48w4yFUZmBf2A4bW6oB5tn2gx6k+qgI0+ik+ceKERp1JJBImUkREVYRKJeDa7uBC6zw5EIOf1s3B8ie/4NTL2wCAfbF/4O/UCKxxHIX6+tVr/SxVPRolUvv37xc7jiqHT+0RUUUVeDwcgSfCS92OMkuFzJSsQuukxmfgyAeX0Vy3HuCixNk296DUUSE47Sne+2s1el1uhsYRdYvsq2kvBzT1dih1zERi0yiRsrGxETuOKodP7RFRRaVIz0ZaQma59ZebbDW6aoMaD41x8p07SLRMg0IvG0e6/IWw2zHocKERdJSy17ahSOcGn1QxaTxBnZqaCj09Pejq6ooZDxERlTE9Qx0YWeqXup3ijEgBgL6pLmS6OQdp2Cn1Mea4B069fQfBTs8BAIHuTxFTPxl9z7+JGinGr42ZqCLS+CfT29sbY8eOxejRo9VlQUFBCAoKwsCBA0UJjoiIxNfUW5xpMpVKwP6ZF/I8rfdfxlYGGLKxM6TSvJs2jxG64XDcNax68isyhWxEWyXjp8FX8KndYPS0bFHq2IjKi8Zn7QmCoN65PNeff/6JLVu2lDooIiKq+KRSCdqOci20TtuRrvmSKCDn4aMBtdrhx8azYadfCwCQqsrEovA9+PLxQWSqih7pIqoIyuXQYiIiqpoc2tjAc3YLGFsa5Ck3tjKA5+wWcGhT+JraRkZ1sdd1DnpbtlSXHYi9gpEhmxCZEVsmMROJiZPORERUKg5tbGDXyhpRIQlIT8yEoYU+bBpbFjgSVRBjmQH+Zz8CrU2dsfLxYWQK2QhNf4ahwevwqd1g9OJUH1VgTKTKCLc/IKLqRCqVoK6b5se/SCQSvFezLZoaN8CCsN0Iz4hBmioTi8P34GbKQyyo3xcGUj0RIyYSB6f2yoiXlxdWrlyJGTNmaDsUIqJKo6FhXfzceA7esWylLjsYdxUjQzYiIiNGi5ERFaxUI1KnT5/GvXv31K+fPXsGAFiwYEGB9SUSCVavXl2aLomIqIozkuljuf0wtDZ1xorHh5AhZOF++gsMC16PT+wGorflm9oOkUitVInUs2fP1MnTq65fv15gfYmkePPlRERUvUkkEvSr2QZvGDfAgrAfEJYRjTRVJpaE/4QbKQ+xqH5/TvVRhaBxIsVjYoiIqKw5G9rgp8azseLJYRyNvwEAOBz3JwJTH2ON4yg4GFhrOUKq7jROpHhMDBERlQcjmT6+sB+GViZO+N+Tw8hQKfDgn6m+jxsMxDtWrYpuhKiMcLE5ERFVCn1rtsHPjWfD8Z9RqHSVAh9F/IzPIvYhXaXQcnRUXTGRIiKiSsPpn6m+vlZt1GW/xV/H+8EbEJYercXIqLpiIkVERJWKkUwfn9sPxXL7YeoF5w8zojAsZD1+/2cdFVF54YacZYQbchIRla13rVqjiVEDzA/7AY8yopChUuDjiL24kfIISxq8B0M+1UflgCNSZYQbchIRlT1HQ2v85Dob/a3eUpcdib+OEcEb8Cg9SouRUXXBRIqIiCo1Q6keltoPwZf2w9WjUI8yojA8ZIN6ywSissJEioiIqoR3rFphr+scNDSsAwDIUCnwScRefBKxF2nKTC1HR1UVEykiIqoyHAys8WPjWRhQs6267Gj8DYwI2YCHnOqjMiDaYvOsrCxcunQJISEhkMvlUKlUBdZbvHixWF0SERHlYyDVw6d2g9HK1AlfRB5EmioTYRnRGBG8Hh82GIC+NdsU3QhRMYmSSEVFRWHu3Ll4/vw5BEF4bT2JRMJEioiIykVvyzfhZlQfC8J+wP30F8gQsvBp5D7cSHmIDxsMgJFMX9shUhUgSiK1efNmPHv2DN27d4e3tzdq1aoFmUwmRtNEREQaszeojT2NZ2HNkyM4GHcVAPB7wk3cS3uC1Y6j1OupiDQlSiIVEBCAN998Ex999JEYzREREYnGQKqHT+wGoZWpEz6P/EU91fd+8AYsatAf/a3egkQi0XaYVEmJsthcpVKhYcOGYjRFRERUJnpZtsRe1zlwMawLAMgQsrAs8gA+iviZT/WRxkRJpNzc3BAZGSlGU0RERGUmd6pvUM231WXHE25hWPB6PEh/rsXIqLISJZGaPHky/vrrL1y4cEGM5oiIiMqMvlQXH9sNxCqHkTCW5iw4j8iMwYjgDTgcd63Qh6aI/kuUNVJXr15FixYtsHTpUjRv3hyNGjWCsbFxvnoSiQSjR48Wo0siIqJS6W7hDuvHZvB5dA4P9KLwvN5LLIs8gBspD/Fxg4EwlhloO0SqBERJpHbt2qX+8+3bt3H79u0C61WnRIqHFhMRVVzh16NwbXcwUhMy0BS2aApbpJhk4FLXUPg2/Av3Up9gjeMouBjV03aoVMGJkkht3LhRjGaqFC8vL3h5eSE0NBQTJ07UdjhERPSP8OtR8NsQkK/cVG6AXkeb4USfO3jUMAbvh2zEovr9MaBmWz7VR68lSiLl7u4uRjNERERlSqUScG138GuvSyBB1wtuCHOKgUKajS8e/4IbKQ/xid0gmHCqjwog2hExREREZSXweDgCT4SXuh1llgqZKVmF1jFI1kWny6640DEn4Tr5MgB/Roai7/k3YZ1gXuy+mvZyQFNvh1LFSxWfqIlUYGAgTpw4gYcPHyI1NRXGxsZo2LAhevTogWbNmonZFRERVSOK9GykJZTfXk9Nr9vC8KUu/HoEQaGfjZdmadjjfRkdLzTCG3/bQoKip/oU6dnlEClpm2iJ1ObNm3Ho0CH1Y6MSiQSCICA0NBTHjx/HwIED8cEHH4jVHRERVSN6hjowsiz92XjFGZECAH1TXTSLb4D6v1vhaOe/EFUzCUodFS54hSDKKQk9LzeDfpZukTFT1SfKd/nEiRM4ePAg6tevjzFjxqBFixawtLTEy5cvERAQgF27duHgwYNwdnZGz549xeiSiIiqkabe4kyTqVQC9s+8gNSEjNfWMbYywJCNnSGV5ow6TVT1wrqnR7E39g8AQIjDC6Q2VmCN42i4GtmWOiaq3ETZkPPIkSOoVasWtm3bBi8vL1hZWUEikcDS0hKenp7Ytm0batasid9++02M7oiIiDQilUrQdpRroXXajnRVJ1EAoCfVweIG72Gt4xiY/rPg/ElmPEaGbMT+mMvcwLOaEyWRCg8PR6dOnWBiYlLgdRMTE3Tq1Anh4aVfKEhERFQaDm1s4Dm7BYwt8z6FZ2xlAM/ZLeDQxqbA93nVaIZ9rvPQxKg+ACBLUOJ/Tw5hQdhupCjTyzxuqpjKbQKXe3AQEVFF4dDGBnatrBEVkoD0xEwYWujDprFlnpGogtjqW+EHlxnY8OwYfoy5CAA4k/g3goOeYo3jKLgZ1y+P8KkCEWVEysHBAf7+/khLSyvwelpaGvz9/eHgwMdAiYioYpBKJajrZgWnt+uirptVkUlULl2pDhbU74f1TmNhKjMEADxVxGNU6CbsjbnEqb5qRpREqk+fPoiNjcXUqVNx4cIFJCYmAgASExNx4cIFTJ06FbGxsejbt68Y3REREWldV4um2O86D28YNQCQM9W38smvmBfmg+RsTvVVF6JM7fXu3RsPHjzA4cOHsXTpUgD/bn8AAIIg4L333kOvXr3E6I6IiKhCqKdvCR+XD7Dx2XHsifEHAPglBiIk7RnWOI5GE071VXmirZGaNWsWOnfuXOCGnD179kTz5s3F6qrc9ejRI8/rjIwMTJ06FUOHDtVSREREVFHoSnUwv35ftDJ1wicRe5GsTMczRQJGhW7CXNt3MbxWR64TrsJESaSio6NhYmKC5s2bvzZhSktLQ0pKCqytrcXoslydOnVK/ee4uDgMGjQIHh4eWoyIiIgqms4Wb2C/6zwsCt+DO6mRyBaUWP3kN9xMeYRldkNgpmOk7RCpDIiyRmrIkCH45ZdfCq1z8OBBDBkyRIzutOrMmTNo0qQJ6tatq+1QiIiogqmrb4mdLh9gtHVnddm5xEAMCV6HwNRI7QVGZUaURKo4TyiU9imGtLQ07Ny5E/Pnz4e3tzc8PDxw4sSJAusqFAps3boV/fv3h5eXFyZPnowbN26Uqv9cp0+fzjfVR0RElEtXIsNc2z7Y5DQe5rKcUajnigSMCd2CH6P9+VRfFSNKIlUcsbGxMDLSfFgzKSkJPj4+iIyMhLOzc6F1V6xYgQMHDqBbt26YOXMmpFIpFi5ciDt37mjcPwA8evQIT548QefOnUvVDhERVX2dLJpgv9s8NDe2BwBkC0qseXoEcx7tQnJ2wdsFUeWj8RopHx+fPK8DAgIKrKdSqRATEwM/Pz+4ublp2h2srKzw66+/wsrKCiEhIZg0aVKB9YKCguDn54epU6di2LBhAHIWi48ZMwZbt27F1q1b1XWnT5+OwMDAAtsZOXIkJk6cmKfs1KlTaN++PUxNTTX+HEREVH3U0auB712mY8szX/hEnwcAnE+6iyHBa7HKYSSamdhrN0AqNY0TqV27dqn/LJFIcPv2bdy+ffu19WvWrIkpU6Zo2h309PRgZWVVZD1/f3/IZDL06dNHXaavrw9vb29s374d0dHR6gXvX3/9dbH7V6lUOHv2LObNm1fy4ImIqNrSlcgwx/ZdvGnqhI/Df0aSMg3PFS8xNnQLZtm+g5G1O/GpvkpM40Rq48aNAHLWPs2ePRu9evVCz54989WTSqUwMzNDgwYNIJWW/UzigwcPYGtrC2Nj4zzlrq45h1Q+fPhQoycHb926hezsbLz11luixElERNWLh7kbDrjNw6KwH3E7NRzZUGHt06O4mfIIX9gPhbmOcdGNUIWjcSLl7u6u/vOYMWPQokWLPGXaEh8fX+DIVW5ZXFycRu2ePn0anp6e0NEp/EsWFxeH+Ph49evISD6lQUREOWz0auA7l2n4+tkJ7Io+BwDwT7qHIcHrsMphJJpzqq/SEWUfqbFjx4rRjCgyMzOhq6ubr1xPT099XRMfffRRseodPXo03/oxAAgPD4dSqdSo79eRy+UICgoStU0iKhneh6SJ7nBELT1dfKO4ADky8ULxEmNDN2OoTmv01mkKKaf6iq0s78HirO0WbWdzAAgMDCxwZ/MePXqgWbNmYnb1Wvr6+sjKyspXrlAo1NfLUp8+fdC+fXv168jISCxfvhwODg5wcXERta+goKBSLeAnotLjfUiacoMbvBRvYVH4HgTIw6GEgJ+yr+OJsRxf2A+DBaf6ikXb96BoidTmzZtx6NAh9f4YuWfthYaG4vjx4xg4cCA++OADsbp7LSsrK8TGxuYrz51uq1mzZpn2X7NmzTLvg4iIqgZrPQt812gavnl+Et9H+QEALiYFYUjQWqx2HMWpvkpAlETqxIkTOHjwIOrXr69eL2VpaYmXL18iICAAu3btwsGDB+Hs7FzggnQxOTs7IyAgQD0ilit32K+oPajEcvbsWZw9exZyubxc+iMiospJRyLDzHreeNPEER9F/IyX2amIykrE2NAtmFmvN0ZZd4ZUUm7bPlIJifKdOXLkCGrVqoVt27bBy8sLVlZWkEgksLS0hKenJ7Zt24aaNWvit99+E6O7QnXu3BlKpRJHjx5VlykUCvj6+sLNza3czvrz8vLCypUrMWPGjHLpj4iIKrf25q7Y7zoPLU0cAQBKqLD+2THMfLQTL7NzfilXqQQ8D4rHoyvP8TwoHioVd0nXNlFGpMLDw/HOO+/AxMSkwOsmJibo1KkTjh07Vqp+Dh06BLlcrp6mu3z5MmJiYgAAAwYMgImJCdzc3NClSxds374diYmJqFevHk6ePImoqCgsWrSoVP0TERGVJWs9C+xoNBXbnp/Cd1F+ECDgUlIQhgStw+LEfog+EI/UhAx1fWNLA7Qd5QqHNjZajLp6E3WxeWHE2Gxs//79iIqKUr++ePEiLl68CADo3r27OpH78MMPYW1tjVOnTkEul8PR0RGrVq2qENszEBERFUZHIsMH9XqjpakTPgz/CS+z5TAJ0sOjo08hQd5/S1MTMuC3IQCes1swmdISURIpBwcH+Pv7Y/z48QWep5eWlgZ/f384ODiUqp8DBw4Uq56+vj6mTZuGadOmlaq/0uAaKSIiKo23zVxwwHUeljz6EW+cq1to3Wt7gmHXyhpSKbdNKG+iJFJ9+vTBqlWrMHXqVIwdOxbu7u6wsLBAYmIibt++jV27diE2Nhbjxo0To7tKwcvLC15eXggNDc13Zh8REVV9gcfDEXgivNTteGQ3RJa88H0IU+Mz8NNUP8h0S7f0uWkvBzT1Lt2gR3UjSiLVu3dvPHjwAIcPH8bSpUsB/Lv9AZBzjMx7772HXr16idEdERFRhadIz0ZagmabQGsiMyX/HoolpUjPFiGS6kW0NVKzZs1C586dC9yQs2fPnmjevLlYXREREVV4eoY6MLIs/SbQyixVsZIkfVPdUo9I6RmW29LpKkPUr1jz5s2ZMP2Da6SIiKq3pt7iTJOpVAL2z7yQ52m9VwkQkGaqgPvqhmhlXj57JdK/uMNXGeE+UkREJAapVIK2o1wLvCYgZwmNf5cQTHy4FTtenIFKUJVneNUeEykiIqIKzqGNDTxnt4CxpUGeciNLfTwYHItHDWOggoAtz09g2sMdiM9K0VKk1Y9oU3tZWVm4dOkSQkJCIJfLoVIVnBEvXrxYrC6JiIiqDYc2NrBrZY2okASkJ2bC0EIfNo0tMVQiwPGFDba9OA0BAq4mh2JI8FqscHgfrU051VfWREmkoqKiMHfuXDx//lz9pF5BJBIJEykiIiINSaUS1HWz+k+pBFPq9kALE0csCf8R8dkpiM1KxqT7WzGlbg9MsPGCjGf1lRlREqnNmzfj2bNn6N69O7y9vVGrVi3IZDIxmq60uNiciIjK01tmDXHAbR4+DP8Jf6Y8gAoCvnl+En+lhOF/DiNgpWuq7RCrJFESqYCAALz55pv46KOPxGiuSuCGnEREVN5q6ppha8PJ+C7qLLY9PwUVBFxLuY/BQV9hheP7aGPaUNshVjmijPWpVCo0bMhvDhERkbbJJFJMrtMd2xtNRU2dnFGouOwUTL6/Dduen4KST/WJSpREys3NDZGRkWI0RURERCJobeqMA27z0da0EQBABQFbX5zClAffIi4rWcvRVR2iJFKTJ0/GX3/9hQsXLojRHBEREYnAStcUWxtOwgd1e0GKnAONr6c8wOCgtfgz+b6Wo6saNFoj5ePjk6+sRYsWWLp0KZo3b45GjRrB2Ng4Xx2JRILRo0dr0iURERFpQCqRYmKdbmhh4oDF4T8iNisZ8dkpmPzgW0yq0w2T63TnU32loFEitWvXrtdeu337Nm7fvl3gteqUSPGpPSIiqkhamTpjv+s8fBTxM64mh0KAgG9fnMZf8jCscHgftXTNtB1ipaRRIrVx40ax46hy+NQeERFVNFa6pvjGeSJ2RZ3DlucnoIKAGykPc57qc3gfbc0aid6nSiXk20RUKpWI3o+2aJRIubu7ixwGERERlQepRIrxdbzQwsQRi8L3ICYrCQnZckx58C0m1vHClDo9RJvqC78ehWu7g/McuGxsaYC2o1zh0MZGlD60rVRfqbt372LWrFno0aMHevbsiblz5yIoKEis2IiIiKiMtDR1xH7XeWhv1hhAzgHI21+cwaT7WxGjSCp1++HXo+C3ISBPEgUAqQkZ8NsQgPDrUaXuoyLQOJF69OgRZs+ejdu3byMjIwPp6em4desWZs+ejfDwcDFjJCIiojJgqWuCLc4TMKueN2T/pAQ35Y8wOHgtriSHatyuSiXg2u7gQutc2xMMler1x8pVFhrvbP7TTz8hKysLI0eOxIABAwAAv/76K3744Qf8/PPP3OWciIioEpBKpBhn44kWJo6YG7QLCTI5XmbLMfX+t2h3xxkdAhpBKpRs3EWZpUJmSlahdVLjM/DTVD/IdEs3jVi7pRHc3ErVRKlonEjduXMHTZs2xYQJE9Rl48aNQ0BAwGuf2iMiIqKKqYWJAz57OhDrlMcQ6RgHSICrzR8i0ioOPY43hYncQPQ+i0q2iiM7U/y4SkLjROrly5fw9PTMV+7m5obg4MKH86oDbn9ARESVjZW+KYaceAvX48Pg/2YIBKmA57aJ2Df6T7zj7w7H57WL1U5xRqQAQN9Ut9QjUjr62t0DS+NEKjs7G4aGhvnKDQwMkJ2dXaqgqgJuf0BERJVNU28HNPV2wAh44rY8HIvC9iAqKxHpBgr80uM6xtt4YlrdntCRyAptR6USsH/mhXwLzV9lbGWAIRs7l3orBG0/5MatTImIiCgfdxMH7Hebh47m/y5A+j7KDxPuf4NoRWKh75VKJWg7yrXQOm1HulaJ/aQ0HpECgNOnT+PevXt5yp49ewYAWLBgQb76EokEq1evLk2XREREVE4sdIyxyWkc9kT7Y9Oz48iGCgHycAwOWosvHYajg/nrkyWHNjbwnN0i/z5SVgZoO7Lq7CNVqkTq2bNn6sTpv65fv56vTCKp/JknERFRdSKVSDHapgvcTRywMGw3orISkahMxfSHOzDOpium1+312qk+hzY2sGtlzZ3NC7J//34x4yAiIqIKrLmJPQ64zcMnEfvgn5QzG7Uz6hz+SgnHKsf3YaNXo8D3SaUS1HWzKs9Qy5XGiZSNTdUYkiMiIqLiMdcxxkancdgT44+NT48hGyrcTg3HkKB1WO4wLM96quqCi82JiIio2CQSCUZZd8Yulw9Q959RqERlKj54+B3WP/0dWYJSyxGWLyZSREREVGLNTOyx33Ueupi/oS7ziT6P8aFf44XipRYjK1+lWmxOr8cNOYmIqKoz0zHCeqex+CnmItY/O4ZsQYm/UyMwJGgtvrAfhk4WTbQdYpnjiFQZ8fLywsqVKzFjxgxth0JERFRmJBIJ3rfuBB+XD1BXzxIAkKRMw8xH32Pd06NVfqqPiRQRERGVWlNjO+x3nYuuFk3VZT9EX8C40C14npmgxcjKFhMpIiIiEoWZjhHWOY7Bwvr91HtL3UmNxJDgtbiQeK+Id1dOTKSIiIhINBKJBCNqe+AHlxmo989UX7IyHbMefY+vnhxBlqpqncfLRIqIiIhE94ZxA+xznQfPV6b69sT4Y+z9qjXVx0SKiIiIyoSZjiHWOo7B4vr9ofvPVF9g6mMMDl6L84l3tRydOJhIERERUZmRSCQYVrsjdrvMhK1ezlExKcp0zH60E2ue/Fbpp/qYSBEREVGZczOuj31uc9HNorm67MeYixgduhlPM+O1GFnpMJEiIiKicmEqM8Qax1FYUv899VTfvbQnGBq8Fn4v72g5Os0wkSIiIqJyI5FIMLR2B+xpPAv19XOn+jIwN8wHq578CkUlm+pjIkVERETlztXIFvtc56F7DXd12c8xlzA6dFOlmupjIkVERERaYSIzwGqHkfiowUDoSXKO/w1Ke4ohQWtx9uXfWo6ueHhocRnhocVERERFk0gkGFzrbTQ1boCFYbvxODMOclUG5oX9gKG1OmCebR/oSStuusIRqTLCQ4uJiIiKz9XIFntd56LHK1N9+2L/wKjQTXiSGae9wIrARIqIiIgqBBOZAVY5jMTHr0z1Bac9xdCgdTj98rZ2g3sNJlJERERUYUgkEgyq9TZ+bDwLDfRrAQDkqgwsCNuN/z0+hExVlpYjzIuJFBEREVU4Lkb1sM91DnrVaKEu2x97GaNCNuFxRqwWI8uLiRQRERFVSMYyA6xweB+fNhgE/X+m+kLSn2Fo8DqcTAjQcnQ5mEgRERFRhSWRSDCgVjv82Hg27P6Z6ktVZWJR+B58+fggFIJ2N/BkIkVEREQVXiOjutjrOge9LVuqyw7EXsGnmb8jUotTfUykiIiIqFIwlhngf/Yj8JndYPVUX6QQj6HB6/AsM0ErMTGRIiIiokpDIpHgvZpt8ZPrbDgY1AYAeNVohnr6llqJh4kUERERVToNDevi58Zz0FenOZbUf09rcTCRIiIiokrJSKaPobqtYSTT11oMTKSIiIiINFRxTwGsQB48eID169cjLCwM5ubmGDlyJN555x1th0VERERaxhGpYli+fDnatGkDX19ffP7559i8eTMiIiK0HRYRERFpGROpYoiKioKnpyekUilcXFxgZ2eHx48fazssIiIi0rJKk0ilpaVh586dmD9/Pry9veHh4YETJ04UWFehUGDr1q3o378/vLy8MHnyZNy4cUPjvgcMGIAzZ84gOzsbQUFBiImJgZubm8btERERUdVQaRKppKQk+Pj4IDIyEs7OzoXWXbFiBQ4cOIBu3bph5syZkEqlWLhwIe7cuaNR32+99RZOnjyJbt26Yfr06Zg8eTJq1qypUVtERERUdVSaxeZWVlb49ddfYWVlhZCQEEyaNKnAekFBQfDz88PUqVMxbNgwAECPHj0wZswYbN26FVu3blXXnT59OgIDAwtsZ+TIkZg4cSKSk5OxaNEiLF68GB07dkRERATmz58PR0dHuLi4iP9BiYiIqNKoNImUnp4erKysiqzn7+8PmUyGPn36qMv09fXh7e2N7du3Izo6GtbW1gCAr7/+usj2nj17BgMDA3Tu3BkA4OTkhDfeeAN///03EykiIqJqrtJM7RXXgwcPYGtrC2Nj4zzlrq6uAICHDx+WqL369esjMzMTly5dgiAIiIiIwJ07d+Do6Fhg/bi4OISGhqr/i4yM1OyDEBERUYVXaUakiis+Pr7Akavcsri4uBK1Z2JigmXLlmHbtm1Yvnw5zMzMMHjwYLRq1arA+kePHoWPj0++8vDwcCiVyhL1XRS5XI6goCBR2ySikuF9SKRdZXkPFufBsiqXSGVmZkJXVzdfuZ6envp6SbVp0wZt2rQpVt0+ffqgffv26teRkZFYvnw5HBwcRJ8KDAoK4tODRFrG+5BIu7R9D1a5REpfXx9ZWVn5yhUKhfp6WapZsyaf6CMiIqomqtwaKSsrK8THx+crzy1jkkNERERiqXIjUs7OzggICEBqamqeBee586dF7UEllrNnz+Ls2bNITk4GgDJZdP748WPIZDLR2yWi4uN9SKRdZX0P2tnZwcDA4LXXq1wi1blzZ+zbtw9Hjx5V7yOlUCjg6+sLNzc39dYHZc3LywteXl44ffo07t69i+XLl5dLv0RERCSeHTt2FLrGuVIlUocOHYJcLldP012+fBkxMTEAco5xMTExgZubG7p06YLt27cjMTER9erVw8mTJxEVFYVFixaVe8xt2rTBxx9/jN9++w2zZs0q1ns2b96MGTNmFFondxH7xx9/DDs7OzFCrfSK83XTpvKOr6z6E6vd0rSjyXtL+h7eh5rhfVg+/YnRbnnfgyV9X0W5B4tqt1IlUvv370dUVJT69cWLF3Hx4kUAQPfu3WFiYgIA+PDDD2FtbY1Tp05BLpfD0dERq1atgru7e7nHbGFhge7du+PcuXPFfmrPxMSk2HXt7Oy4Meg/SvJ104byjq+s+hOr3dK0o8l7S/oe3oea4X1YPv2J0W5534MlfV9luQcrVSJ14MCBYtXT19fHtGnTMG3atDKOqPi8vLzKpC79q6J/3co7vrLqT6x2S9OOJu8t6Xsq+s9TRVXRv268D8VpQ9P3VsV/CyWCIAjaDoJKLjQ0FBMnTixy7paIyg7vQyLtqgj3YJXb/qC6sLKywpgxY4p1/iARlQ3eh0TaVRHuQY5IEREREWmII1JEREREGmIiRURERKQhJlJVmEKhwMqVKzFw4ED07NkTU6ZMwd27d7UdFlG1smbNGvTr1w89e/bE6NGjcfnyZW2HRFQt3b17F506dcIPP/wgartcI1WFpaenY//+/ejVqxdq1aqF8+fPY8OGDdi/fz+MjIy0HR5RtRAZGYk6depAT08PwcHBmDt3Lvbt2wdzc3Nth0ZUbahUKkybNg2CIODtt9/G6NGjRWubI1JVmKGhIcaMGQNra2tIpVJ4enpCR0cHT5480XZoRNWGnZ0d9PT0AAASiQRZWVmIi4vTclRE1cvvv/8OV1fXMtn9vFJtyFnVpaWlYd++fQgKCkJwcDBSUlKwZMkS9OrVK19dhUKB77//HqdPn0ZKSgqcnJwwYcIEtG7d+rXtP3nyBCkpKahXr15ZfgyiSqus7sF169bB19cXCoUCbdu2haOjY3l8HKJKpyzuwaSkJPzyyy/YunUrNm/eLHrMHJGqQJKSkuDj44PIyEg4OzsXWnfFihU4cOAAunXrhpkzZ0IqlWLhwoW4c+dOgfUzMzOxfPlyjBgxQn2UDhHlVVb34Ny5c3Hq1CmsX78erVu3hkQiKauPQFSplcU9uGPHDgwaNAimpqZlE7RAFUZmZqYQFxcnCIIgBAcHCx07dhR8fX3z1bt3757QsWNH4eeff1aXZWRkCEOHDhWmTJmSr35WVpawcOFCYdmyZYJKpSq7D0BUyZXVPfiqRYsWCVeuXBE3cKIqQux7MDQ0VBg/fryQnZ0tCIIgfPnll4KPj4+oMXNEqgLR09Mr1u6s/v7+kMlk6NOnj7pMX18f3t7euHfvHqKjo9XlKpUKy5cvh0QiwYcffsjfhIkKURb34H8plUo8e/ZMlHiJqhqx78Hbt2/jyZMnGDBgAPr164dz587h559/xooVK0SLmWukKqEHDx7A1tYWxsbGecpdXV0BAA8fPoS1tTUA4KuvvkJ8fDy++uor6Ojw200khuLeg3K5HFevXkX79u2hp6eHS5cuISAgAJMmTdJG2ERVRnHvwT59+sDT01N9fdOmTahTpw5GjBghWiz8l7USio+PLzBjzy3LfSIoKioKx44dg56eXp6sffXq1WjevHn5BEtUBRX3HpRIJDh27BjWr18PQRBQr149fPLJJ2jYsGG5xktU1RT3HjQwMICBgYH6ur6+PgwNDUVdL8VEqhLKzMyErq5uvvLcR6wzMzMBADY2Nrh48WK5xkZUHRT3HjQ2NsbGjRvLNTai6qC49+B/ffjhh6LHwjVSlZC+vj6ysrLylSsUCvV1Iio7vAeJtKsi3YNMpCohKysrxMfH5yvPLatZs2Z5h0RUrfAeJNKuinQPMpGqhJydnfH06VOkpqbmKQ8KClJfJ6Kyw3uQSLsq0j3IRKoS6ty5M5RKJY4ePaouUygU8PX1hZubm/qJPSIqG7wHibSrIt2DXGxewRw6dAhyuVw9PHn58mXExMQAAAYMGAATExO4ubmhS5cu2L59OxITE1GvXj2cPHkSUVFRWLRokTbDJ6r0eA8SaVdluwclgiAI5dojFWrw4MGIiooq8Nr+/ftRp04dADlPJOSeMSSXy+Ho6IgJEyagTZs25RkuUZXDe5BIuyrbPchEioiIiEhDXCNFREREpCEmUkREREQaYiJFREREpCEmUkREREQaYiJFREREpCEmUkREREQaYiJFREREpCEmUkREREQaYiJFREREpCEmUkREWnLgwAF07doVL168UJedOHECHh4eOHHihBYj+9exY8fQuXNnPHr0SNuhEFVITKSISBQvXryAh4dHof8NHjxY22FWGCkpKdi9ezd69+6tPjusrFy/fh0eHh6YN29ekXU///xzeHh44MyZMwCAnj17wtraGlu3bi3TGIkqKx1tB0BEVUu9evXQrVu3Aq+ZmJiUczQV14EDB5CcnIxhw4aVeV+tWrWCtbU1bt26hejoaFhbWxdYTy6X49KlSzAxMYGHhwcAQEdHB4MHD8bGjRsRGBiIpk2blnm8RJUJEykiElW9evUwbtw4bYdRoWVnZ+PYsWNo2rQp6tWrV+b9SaVS9OrVCz4+Pjh58iRGjx5dYL2zZ88iMzMTvXv3hr6+vrrc09MTW7ZswZEjR5hIEf0Hp/aISGs8PDwwc+ZMJCQk4Msvv8S7774LLy8vTJkyBQEBAQW+Jy0tDTt37sSoUaPg5eWF3r17Y968ebhz506+ujNnzoSHhwcyMzOxY8cODB06FF26dMHOnTvVdfz9/TFx4kR4eXmhb9++WL16NVJSUjB48OA8U5FffPEFPDw8EBQUVGBc33//PTw8PHD27NkiP/f169cRHx+Pzp07F1k3V0xMDEaPHg0vLy9cuHBBXf7y5Uts3rwZw4YNg6enJ9599118/PHHCAsLy/P+3r17QyKR4MSJExAEocA+fH19AQDe3t55yi0sLNCiRQtcuHABaWlpxY6ZqDpgIkVEWiWXyzF9+nRERESge/fu8PDwQGhoKObPn58vGUhOTsbUqVPh4+MDU1NT9O3bFx4eHrh//z5mzZqFS5cuFdjHJ598gpMnT6JFixYYOHCgek3S8ePH8cknn+Dp06fo0aMHevbsiXv37mHu3LnIzs7O00afPn3U7/kvpVIJX19fmJubq6fECnPr1i0AQJMmTYr+AgGIiIjAtGnTEBMTgzVr1qgTsGfPnmHChAn45ZdfULduXbz33nto27Ytrl+/jqlTp+ZJ+mxsbPDmm2/i+fPnBSapYWFhCAkJQcOGDdGoUaN815s0aQKFQoG7d+8WK2ai6oJTe0QkqmfPnuUZ8XlVkyZN8NZbb+Upe/jwIfr164fZs2dDKs353a5ly5ZYvXo1Dh8+jPnz56vrbtiwAeHh4Vi4cCHeeecddfnLly8xceJErFmzBm3atMkzLQUA8fHx2LVrF8zMzNRlKSkp2LRpEwwNDbF9+3bUr18fADBx4kTMnz8foaGhsLGxUddv3rw57O3t4efnhw8++ACGhobqa9evX0dsbCwGDRoEPT29Ir9GgYGBkEqlcHZ2LrLuvXv3sGjRIujo6GDz5s153vPll18iISEBX331Fdq0aaMuHzVqFCZOnIjVq1fDx8dHXe7t7Y2bN2/C19cXLVu2zNPP60ajcrm4uAAA7t69m6cvouqOI1JEJKpnz57Bx8enwP/+/PPPfPUNDQ0xZcoUdRIF5DwpJpPJEBISoi5LTEzE+fPn0bJlyzxJFADUqFEDw4YNQ2Jionq051Vjx47Nk0QBwB9//IH09HT07t1bnUQBOYurJ0yYUOBn69OnD9LS0uDn55en/NixYwCAd99993VfljxiY2NhYmJSZNJ19epVzJkzB6ampvjmm2/yJFH379/H3bt30aNHj3yJTf369fHOO+8gLCwsz6hex44dYW5uDn9/f6SmpqrLs7Ozcfr0aejp6b32QQFLS0sAOVOMRPQvjkgRkajatGmDr776qtj1bW1tYWRklKdMR0cHlpaWkMvl6rKQkBAolUpkZWUVOOL19OlTAEBkZCTefvvtPNdcXV3z1c/dF6lZs2b5rrm5uUEmk+Ur79GjB7799lscO3ZMncwlJCTgypUreOONN2Bvb1/Ep82RnJyMWrVqFVrn/PnzuHHjBpycnLBmzRrUqFEjz/XcabuXL18W+PV4/Pix+v+Ojo4AoE6UDh48iLNnz6Jv374AgMuXLyMxMRFeXl4wNTUtMJ7c8qSkpGJ9RqLqgokUEWmVsbFxgeUymQwqlUr9Ojk5GUDOtFhgYOBr28vIyMhXljua8qrcEZn/JihAzlNu5ubm+cpNTU3RpUsXnDx5EmFhYXB0dMSJEyegVCqLPRoFAPr6+lAoFIXWuXfvHpRKJZo1a1ZgjLlfj6tXr+Lq1auvbSc9PT3Pa29vbxw8eBC+vr7qRKqoaT0A6ngNDAwKjZuoumEiRUSVQm7CNWTIEEyf/v/27i+kqT+M4/h7hqs4rSIj0AihFYleFIWI/4gNkyAsIhRJyG4KoXLVdSiiQdFlf292UxdiDQ1q5rQkyAuVDIPVuvNiC3QLdHVVpPtdyOQnO1t66kf12+d1ufM953zPrh6e5znPObeqc202W9rrzc7OphxbWFggHo+bZo2OHTvGwMAAT548wePx4Pf7MQwDl8u14v1s2rSJWCyWcc3Zs2cZGRnB5/OxZs2alGdO7t/j8XDixIkV39vpdFJUVEQoFGJqagqHw8H4+Dj5+fkpfVP/lgzcNm/evOJ7iWQD9UiJyF+hqKgIm83Gu3fvfsn1nE4ngGl2KxQKMT8/b3peSUkJTqeToaEhxsfHiUQiHDp0aFWZmp07d/Lt2zdmZmbSrrHb7Vy9epXy8nJ6enq4devWsuPJcqWV/yOZefL7/QQCAebn55fGI6STLBUmy4QiskiBlIj8FfLy8nC5XASDQbq7u01nIb1//960tGemqqqK9evX4/f7+fjx49Lv379/x+v1Zjz36NGjfP78mWvXrgGkNL//yL59+5b2m4ndbqerq4uKigoePnzIzZs3l44VFxdTXFzMixcvUprfYTGrNjk5aXrdmpoa1q1bx+DgIP39/eTk5HD48OGMewmFQsv2LiKLVNoTkV8q0/gDgKamppTxBCt1+fJlwuEwd+/eJRAIUFJSwoYNG4jFYnz48IFIJEJfX9+KskMOh4Pz589z48YNzpw5g9vtxjAMRkdHsdvtbN26NW2Gpra2lnv37vHp0yf27NljOncpk6qqKm7fvs3r169/WBLMzc2ls7OTtrY2Hj16RCKRoLW1FYC2tjYuXrxIR0cHPp+P3bt3s3btWqLRKMFgkHg8bjog1DAMDh48SCAQYG5ujrKysrSfjQFIJBJMTExQWFi47A1HEVEgJSK/WHL8QTr19fWWA6mNGzdy584dent7GR4e5vnz5ywsLLBlyxZ27dpFc3OzaZN4OnV1dTgcDh48eMDAwACGYVBZWUlLSwv19fVpP99iGAbV1dUMDg6uOhsFkJ+fT2lpKS9fvsTj8fxwDEIymGpvb8fn85FIJPB4PBQUFOD1eunp6eHVq1c8e/aMnJwc8vLy2Lt3b8bJ6UeOHCEQCACLU88zefv2LTMzM1y4cGHVzyryf2dLpPtWgIhIlopEIpw8eRKXy0VHR4fpmubmZqanp+nt7U375mEmExMTXLp0iStXrlBbW/uzW/5PdXZ2MjY2Rnd3d9rxCCLZSj1SIpK1vnz5kjKG4OvXr0uN3dXV1abnjY6OMjU1RU1NjaUgCuDAgQOUlZVx//79ZWMe/jThcJjh4WFOnTqlIErEhEp7IpK1JicnuX79OqWlpWzbto14PM6bN2+Ynp5m//79uN3uZesfP35MNBrl6dOn2O12mpqafur+ra2tDA0NEYvFMvYo/U7RaJTTp09z/Pjx370VkT+SSnsikrXC4TBer5dgMMjc3BwA27dvx+1209jYmNLL1dDQQCwWY8eOHbS0tKRMUBeR7KNASkRERMQi9UiJiIiIWKRASkRERMQiBVIiIiIiFimQEhEREbFIgZSIiIiIRQqkRERERCxSICUiIiJikQIpEREREYsUSImIiIhY9A+2R070H3rPGwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 49\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "11cfade8-5e53-4aa5-b329-f7bf68049a43", + "metadata": {}, + "source": [ + "## Plot All" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "8fb8fde3-9997-48cd-ae09-300abc3a9eca", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAATBCAYAAADddYOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVfrw8e8zfSbJpPdKekIVkN5BUcSCK2tX7A2xd117111dfd1VWRF7F0SqSJHepBN6Cum9T2YmM+f948kMDAmQZFH3t3s+15Xr2nnqmWfGnZv7nHMfRQghkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ+o1o/ugGSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0300OUpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6TclBylJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSbkoOUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TclBSpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/abkICVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkn5TcpCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEm/KTlISZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk35QcpCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0m9KDlKSJOm/2lNPPYWiKKxYseKPbookSZIkSZLUDR9++CGKovDhhx/+0U2RJEmSJEn6r5eXl4eiKEybNu2PbookSZIkSdJ/PUVRGDNmzB/dDEn6XclBStJ/jW+++YY777yTkSNHYrVaURSFq6666pTnrV27lkmTJhESEoLZbKZPnz688cYbuFyuE57z448/MmbMGAIDA/H392fw4MHMnj27y212Op28+eabXHfddfTr1w+DwYCiKMycOfOE53g6aU70989//rPD83bu3MmVV15JamoqZrOZ2NhYxo4dy5dffonb7e5y2z3279+Pn5/fSZ+3y+Xi008/ZeTIkURFRWGxWEhPT+e6665j9+7dHZ5TVlbGnXfeSY8ePTAajYSHhzNlyhR+/fXXbrf1dBo+fDiKorBgwYJTHpuRkYGiKGzduvV3aJkkSZIkHdXV+MjTIXGiv8suu6zD88rLy3nwwQfp1asXAQEBhIaGMmDAAF599VUaGhq63X673U6vXr1QFIW4uLgTHrd69WouvPBCkpKSMJlMJCQkMGnSJBYtWtTh8Q6Hg1deeYW+fftisViwWq2MGDGCr776qsttPHDgAC+//DLjxo0jPj4eg8FAZGQkF154IcuXL+/wnO7Ecxs3buSRRx7h3HPPJSoq6pTP5GS6e6358+dz9tlnExcXh9lsJjk5malTp7Ju3boOj29oaOCxxx4jMzMTk8lEcHAwEydO5Oeff+5Wu0+3K6+8EkVReOedd0557Nlnn42iKHz//fe/Q8skSZKk/4uqqqqYOXMmU6ZM8eZeAgMDGTFiBP/61786zL10J/YqLCzk+eefZ+rUqaSmpqLRaFAUhYMHD3a5zd29VldzTEII3n//fQYPHoy/vz9+fn4MHDiQf/7zn13OSdXX13P33XczcuRIYmJiMJlMREREMGjQIN544w2ampo6PK87eabTlUvrbuxVWFjI9ddfT0xMDEajkaSkJO6++25qamraHeuZpHeyv5SUlE63+bfw/vvvoygKf/7zn0957AsvvICiKNx1112/Q8skSZKk/4seeughxo8fT3x8PGazmZCQEM444wyefvppqqqqOjynO3mK3Nxcbr31VjIzM7FYLERGRjJ06FDee+89HA5Hp9ubk5PDk08+yYUXXkhCQoL397m1tfWk51VXV3P33XeTlJSE0WgkJiaG66+/nsLCwnbHnirfpCgKWq22020+1s8//8yUKVOIiorytmPixInt+siOHDnC7bffzuDBg32OHTlyJLNmzcLpdJ7wHrNnz2bQoEH4+/sTGBjImDFj+PHHH7vc1q7GfdOmTTvpM9u7d6/P8b/lcz5dfvrpJxRFYdCgQac89rPPPkNRFC688MLfoWWSpNL90Q2QpNPlueeeY/v27fj7+xMXF9fuR6Mjc+fO5U9/+hMmk4lLL72UkJAQ5s2bxz333MOaNWv4+uuv253z9ttvc+eddxIaGspVV12FwWDgm2++Ydq0aezcuZPXXnut021uamri7rvvBiAyMpKoqCiOHDnSqXMvvPBC+vXr1277wIED222bN28eF198MRqNhgsuuIBLLrmEyspKvv/+ey677DKWLl3K+++/3+l2e7S2tnL11Vej0Zx8vOMVV1zBV199RVxcHBdffDEBAQHs3LmT2bNn89lnn7Fw4ULGjRvnPT4vL49hw4ZRUlLCoEGDuPjii6moqOC7775j/vz5zJs3j4kTJ3a5vafTTTfdxNq1a5k5cyaTJk064XErV65k//79DBw4kDPOOON3bKEkSZIkdS8+Aujbty8XXXRRu+29evVqty0vL4/BgwdTXl7OmDFjOPfcc2lpaWHJkiU8+OCDfPLJJ6xfvx6z2dzl9j/66KPk5+ef9Jh//OMf3H777fj5+TFlyhTi4uIoLCzku+++Y+HChTz33HM89thj3uMdDgcTJ05kxYoVJCUlcd111+F2u1mwYAGXXnopu3bt4plnnul0G5944gm+/PJLsrOzvQPf9+3bxw8//MAPP/zAm2++yYwZMzo8tyvx3Geffcabb76JXq8nOzubsrKyTrfxdFzroYce4pVXXiE0NJSLLrqIsLAwDh48yNy5c/n222/56KOPfAbA1dTUMGLECPbs2UPPnj259dZbaWxsZO7cuUyYMIGZM2dyww03dPs9nA433XQTn332GTNnzuT2228/4XF5eXksXbqU6Ohozj///N+xhZIkSdL/JV9//TW33XYb0dHRjB07loSEBMrKyvjuu++48cYbWbhwIV9//TWKorQ7tyux1+bNm3n88cdRFIUePXoQGBhIbW1tt9rcnWt1J8d01VVX8dlnnxEREcHll1+OxWLhp59+4rbbbmPt2rV89NFHnW5zdXU17733HoMGDeK8884jPDycuro6li1bxj333MP777/PunXrsFqt3nO6k2c6nbm07sRehw4dYtiwYZSXl3PhhReSmZnJxo0befPNN1m0aBFr1qwhNDTUe/zJZt/PmzePX3/9lXPPPbdT7f2tXH755dx7773MnTuXyspKwsLCOjxOCMG//vUvAG6++ebfs4mSJEnS/yF/+9vf6N+/P2eddRYRERE0NTWxfv16nnrqKd577z3Wr19PfHy89/ju5Ck2bdrE2LFjsdlsnHPOOVx44YXU19czb948brnlFr799lsWLVrUYXx3vMWLF/PMM8+g1WpJS0vDZDLR0tJy0nOqqqoYNmwY+/fvZ9y4cVx22WXs3buXWbNmMX/+fNatW0dycrL3+H79+vHkk092eK1Vq1axbNmybsUDDz74IK+++ipxcXFccMEFhIWFUVFRwZYtW1ixYoVPH9mhQ4f49NNPGTx4MBdddBEhISFUVVWxcOFCrr/+ej7++GOWLFmCTuc7ROH+++/n9ddfJy4ujptuugmHw8EXX3zB+eefz1tvvcX06dM71dZ/p3/xrrvuIigoqN3242OW3+o5n04TJkygR48ebNq0iZ07d9K7d+8THuuJaWXcJf2uhCT9l1i2bJnYv3+/cLvdYvny5QIQV1555QmPr6urE+Hh4cJgMIhNmzZ5t9tsNjF06FABiM8//9znnNzcXGE0GkVISIjIzc31bq+urhYpKSkCEGvXru10m+12u1iwYIEoLi4WQgjx5JNPCkC8//77Jzxn1qxZAhCzZs3q9H2ys7MFIFasWOGzvaSkRERERAhA5Ofnd/p6Hk8//bQwGAzizTffPOHz3rhxowBEz549RVNTk8++Dz74QABi7NixPtsvuOACAYgZM2YIt9vt3b5v3z4REBAgoqOjRWNjY6fa6Hmmy5cv7/L7O5nm5mYRGBgo9Hq9KC0tPeFxV111lQDEe++9d1rvL0mSJEmd0dX4KDc3VwDi2muv7fQ9br/9dgGIp556ymd7a2urGDdunADE7Nmzu9z25cuXC0VRxD/+8Q8BiNjY2HbHOBwOERgYKEwmk9i7d6/Pvj179gij0SjMZrNoaWnxbv/rX/8qADF06FCfeKKhoUEMGDBAKIriExueyqxZs8Svv/7abvuKFSuEXq8XBoPBG+sde05X47mtW7eKX3/9VdjtdiGEOOEz+S2uVVJSIjQajYiMjBRlZWU++5YtWyYA0aNHD5/tM2bMEIC4+OKLhdPp9G4vKysT8fHxwmw2iyNHjnSqvd15Xp2Vnp4uALFly5YTHvP4448LQDz66KOn/f6SJEnSf4+ff/5Z/PDDD8LlcvlsLykpEfHx8QIQ33zzjc++7sReR44cEb/88ouoq6sTQggxevRoAYgDBw50uc3duVZXc0zfffedN1aoqKjwbrfb7WLy5MkCEN9++22n29za2iocDkeH+6688koBiJdfftlne3fyTKczl9adOO7ss88WgPj73//us/2ee+4RgLjllls6de/W1lYRFxcnALF9+/ZOndOd72Vn3XTTTQIQr7/++gmPWbp0qQDEsGHDTvv9JUmSpP8eNputw+2PPvqoAMRtt93ms707eYpJkyYJQHz44Yc+2xsbG72xwsqVKzvV3r1794r169eL5uZmIYQQiYmJAvBpy/FuvvlmAYh7773XZ7unT27ixImdurcQQgwZMkQAYu7cuZ0+Rwgh3nvvPW9c4IlljnV8XGa329vFw57jxowZIwDx5Zdf+uxbs2aNAERKSoqorq72bs/NzRUhISHCaDT69MmeTHfivmuvvVYAnb7HyXTnOQNi9OjR//a9j/f8888LQNx5550nPObAgQNCURQRHx/f4ecmSb8Vudyb9F9j7NixpKWldWrEMqjLn1RUVHDZZZf5zFY3mUw899xzgDoz/1gffPABdrud6dOnk5SU5N0eHBzMo48+CnDC5dY6YjAYOPfcc4mOju70Od1x+PBhrFYro0eP9tkeFRXF4MGDAaioqOjSNTdv3syzzz7LE088QZ8+fU56b4Dx48djsVh89nlKBx5775aWFhYuXIhGo+G5557z+TzT09O5/vrrKSkp4dtvv+1Se49XUFBAz549MRgMfPzxx97tzc3NvPjii/Tr1w8/Pz/8/f0ZOnQon3/+uc/5ZrOZq666CqfTyYcfftjhPWpra/nmm2/w9/fn8ssv/7faK0mSJEnd0dX4qDs8v/UXXHCBz3atVst5550HdD3OqK+vZ9q0aYwfP55bb731hMdVV1dTV1dHeno6GRkZPvuysrJIT0/HZrPR2Njo3e5Zruuxxx7Dz8/Pu93f35/HH38cIUSnlv/ymDZtWofVEkePHs2YMWNwOBysXbu209c7kX79+nHGGWdgMBh+92vl5+fjdrsZPHgwERERPvvGjh1LQEBAu8/Y85yfeeYZn9lxERER3HvvvdhsNj744IN/633U1NQwatQoNBoNL774ond7a2sr77zzDkOGDMFqtWKxWDjjjDN4++232y3NctNNNwGcsBKCy+Vi1qxZKIrCjTfe+G+1V5IkSfrvNm7cOM4///x21aajoqK88cyKFSv+7fvExcV5l/L9I67V1RyTJya47777fGahGwwGnn32WUCtWt5ZWq0WvV7f4b6pU6cC6nK8Ht3NM53OXFpXY69Dhw6xZMkSkpKSuOOOO3z2Pf300/j5+fHxxx+fcGm7Yy1YsIDCwkKGDBly0vxdZ7jdbu666y4UReHiiy/GZrN59y1evJhJkyYRFhaG0WgkJSWFBx54oF1lLs8M/ZkzZ57wPnI2vyRJktQZJpOpw+2eZUWPjQege3mKE+W8/Pz8GD9+PND5eCAjI4PBgwd3utJ4Y2MjH3/8MX5+fjz11FM++6ZPn05iYiKLFy/2tvFkdu7cyfr164mNjfXm6jrDbrfz2GOPkZCQwHvvvddhLHN8XGYwGDpcfUWv13srhx7/2Xj6VR977DGCg4O92z2xkN1uZ9asWads7+/Vv3gi3X3OJ/Lqq6+i0WgYPnw41dXV3u0bNmzgkksuISoqCoPBQHx8PLfccgvFxcU+519//fXodDo++eSTE1btmjlzJkIIbrjhhlOumiNJp5P8tkn/s5YtWwbAOeec027fqFGjsFgsrF27Frvd3qlzPKX7PMf81rZt28Ybb7zBSy+9xMcff9zh+rMePXv2pL6+ntWrV/tsLy8vZ+PGjURHR5Odnd3pe9tsNq6++mr69evHww8/fNJje/bsCajP5djkBeBdS3bChAnebdXV1TidTsLCwggICGh3PU/pypOtEXwq27dvZ+jQoRw5coQFCxZw9dVXA+qgohEjRvDoo4+i1Wq5/vrrufbaa6moqOCKK67g8ccf97mOp1PLU4L6eJ4f/ssvvxx/f/9ut1eSJEmSfm/FxcW8++67vPDCC7z77rvs2LHjhMd6fuvnz5/vs93tdnsTA8cu69oZM2bMoKam5oS/sR4RERGEh4ezf//+dgkOz7Z+/fr5LIVRWloK4FMO2+N0xBnH8iRqji9h7dGVeO6PlJaWhsFgYOPGjVRWVvrs++WXX2hoaPCJ5+C3f84FBQUMHz6c9evX89FHH/HII48A4HQ6mTx5MnfccQe1tbVcccUV3Hzzzbjdbu68806uvfZan+tce+21GAwGPv/8c5qbm9vdZ+HChRQVFXnLZEuSJElSd5wqJuhK7PVH62qOqTMxwapVq3A4HP922+bNmwfgMxinu3mm051L64rly5cDcPbZZ7frLAoICGD48OE0Nzezfv36U17rvffeA/79AT8tLS1MnTqVv//979xxxx1888033k7Wp59+mnPOOYcNGzZw3nnnMWPGDFJTU3nttdcYPnw49fX13usMHDiQfv36kZOTw5o1a9rdp6qqijlz5hAYGOjtZJYkSZKkrugoHoDu5SlOlPNqbm5m2bJlWCwWhg4denoafpz169djs9kYPnx4uxhGo9F4lyzzxA0n44kHbrjhBrRabafb8NNPP1FRUeFdAnf+/Pm8/PLLvPnmm6xbt64L70adBLZgwQKg/Wdzuvpe/93+xYULF/Lyyy/z2muvMWfOHJ8YpjO6+5yP53a7mTFjBg8++CBTpkzh559/JiQkBFCLaQwfPpyFCxcyduxY7r77bgYOHMjMmTMZOHAgBQUF3utERUUxefJkampqOhyY1drayuzZs739oZL0u/qjSzlJ0m+hM8uZDBw4UABi8+bNHe7v2bOnAMSePXu828LCwgQgKisrOzzHz89PAO2WNeusriz3dvyfVqsVt9xyS4clLn/55RdhtVqF0WgUf/7zn8XDDz8sbrzxRhEWFiZSU1PFxo0bu9TOGTNmCKPRKHbv3i2EOPXz9pSiTkhIELfffrt46KGHxOTJk4VOpxOXXXaZT2nF5uZmodVqhUajEQ0NDe2udddddwlADB48uFNtPX65t59++klYrVYRHR0ttm3b5nOsp6Tj8WXBbTabmDhxolAURWzdutVn36BBg064nFzfvn0F0KUlYyRJkiTpt9KV5d46+hszZkyHS1qUlZWJjIwMAYhx48aJ+++/X8yYMUNkZmaKoKAg8cEHH3SpnZ4lQWbOnOndxkmWxPjqq6+EwWAQAQEB4pprrhEPP/ywuPrqq4W/v78YMGBAu+VKPMv6zp8/v921vv/+e+/79ZTf7q68vDxhNBqFxWLxKVUtRPfiueOd7Jl0VWeu9be//U0oiiLCw8PFTTfdJB5++GExdepUYTQaxVlnndVuGbjo6GgBeOPF468FiMjIyE617/jl3rZt2yaio6OF1WoVP/30k8+xnthv+vTporW11bu9tbVVXH/99QIQc+bM8Tnnz3/+8wmXk/OUCf/666871VZJkiRJOp7T6RS9evUSgFi0aJHPvu7EXsf7d5Z76861uppjuvzyywUg/t//+3/trrV161bv+83JyelSW51Op3jyySfFk08+Ke68807Rr18/AYixY8f6xFLdzTOd7lzasU4Ve91///0CEK+99lqH+++44w4BiHfeeeek9zly5IjQarUiMDCwS7nK45d7q6qqEsOHDxeKooiXXnrJ51jP0r9Dhw4VNTU1Pvs8Mdzdd9/ts/2dd9454XJynqWZ77jjjk63V5IkSfrf9uqrr4onn3xS3H333WLEiBECEH369BHl5eU+x3UnT5GTkyOio6OFVqsV559/vnjooYfEbbfdJuLj40V0dLRYsGBBt9t9quXe3n77bW9+oyOvvvqqAMSDDz540vs0NzeLoKAgodVqRUFBQZfa+Je//EUA4uGHH/bGs8f+jRo1qt1z9qioqBBPPvmk+Mtf/iJuu+02kZqaKgBxxRVX+BzX2NgoAOHv73/C6wAiIiLilO3tbtzn6Rs8/i8gIEC8/fbbp7yv597dfc4cs9ybzWYTF198sfezP3YJtn379gm9Xi9SUlJEYWGhzzWWLl0qNBqNuOiii3y2L1iw4ITLyXlysOedd16X2itJp4McpCT9V+pMJ1xaWtpJEy/Dhg0TgFi7dq13m16vP2nQEBMTIwBRXFzcrXZ3ZpDSihUrxFtvvSX27dsnmpqaRHFxsfjqq69ESkqKAMTll1/e4Xm7d+/2Drw69gf2+eef71RHmMfSpUuFoig+A3k687z/+c9/CrPZ7HP/AQMGiIULF7Y7dsKECQIQ99xzj8/2AwcOiICAAAGI9PT0TrX32EFKH3/8sdDr9SIrK6tdoq+yslJotVoxcODADq+zbds2AYgHHnjAZ/vMmTM7fO8bN24UgDjjjDM61U5JkiRJ+q115ve6rKxMPPHEE2LLli2ipqZG1NTUiJUrV4qxY8cKQKSmprZbt10IIWpqasSUKVN8fucVRRE333xzl/5hXlpaKsLCwsS5557rs/1UHTmrV68W8fHxPvePjIwUb7/9drv11J977jkBiGHDhvkMRGpsbBRnnnmm9/zuxnNCCNHS0iKGDx8uAPHKK6+029/deO5Yv/cgJSHUQVzBwcE+zzk1NVV8+umn7Y698cYbBSAuueQSn8FC5eXlIiEhQQDCYDB0qn3HDlJasmSJCAgIEDExMe0GnLtcLhESEiKioqI6jNdramqEoihi6tSpPtuXLl0qADF8+HCf7cXFxUKn04mIiAjhcDg61VZJkiRJOt59990nADFp0qR2+7obex3r9x6kJETXckyffPKJAERKSoqoqqrybnc4HN7BwMfn3zrDZrO160i6+uqrO+yQ6m6e6XTl0o53qtjrpptuOml+8NFHHxWAeOGFF056n6eeeqpbA36OHaSUl5cnMjMzhV6vF5988km7Yy+66CIBiF27dnV4rX79+onw8HCfbXV1dcLPz09YLBZRV1fnsy87O1sAYvv27V1qsyRJkvS/KzIy0ue3+pxzzhGlpaXtjutunqKwsFCMHDnS5x56vV488MAD7SaldcWpBik9//zzAhCPPfZYh/vfe+89AYibb775pPf58MMPuz0Q5dZbbxWgTqrr3bu3WLVqlWhoaBA7duwQZ5999gkHvwihDvA6Pk94//33t8uvFBUVnTQ2cjgcXcohdSfu+9e//iW+/PJLkZ+fL2w2mzh06JB47bXXvMe/++67p7zvv/OcPc/x2IHhxxdTEEKIu+++WwDixx9/7PA6F110kdBqtaK+vt67zeVyeb9r+/fv9zl+0qRJAhBz587tcpsl6d/VcY1hSZJOixUrVrBixQqfbUlJSUybNq3b1xw9ejSjR4/2vrZYLEydOpUhQ4bQt29fPv/8cx566CH69u3rPeann37isssuY+DAgXz00UdkZmZSWlrK22+/zWOPPcb8+fNZuXLlCcuOe9TW1jJt2jQGDx7Mfffd16n2CiG46667eOedd3juuee46qqrCAoKYtu2bdxzzz2ce+65vP3229xxxx3ec9544w2GDx/O3/72N9atW8fw4cOpqKjg22+/JS0tjW3btnV5bdQ333yTuXPnMnz4cH744QefdW0BNm3ahMvlQlGUduv7grp0CEBOTo7P9ssuu4x77rmHb7/9lrfeest73ffffx84uiScJEmSJP1fEBERwTPPPOOzbdSoUSxZsoQRI0awYcMGZs6cyV133eXdn5eXxwUXXIDNZmPBggXe5Sfmzp3Lfffdx9y5c1m3bl2nlsq66aabaG1tZebMmZ1u8yeffMJNN93ExRdfzBNPPEFiYiL5+fk8++yzTJ8+nZUrV/LVV195j7/rrrv4+uuvWbt2LT179mTSpEkIIZg/fz6KohAYGEhdXZ031uhqPOdyubj66qtZs2YNl156Kffff3+7Y7oTz/3RXnnlFR599FFmzJjB9OnTiYqKYu/evTzyyCNceeWVbNu2jVdeecV7/DPPPMPixYv55ptv6NevH+PHj6epqYm5c+cSGxtLQUFBl+O5b775hiVLlpCWlsbChQtJSEjw2b9//36qq6tJS0vjueee6/AaZrO5XTw3btw4UlJSWLNmDTk5OWRlZQEwa9YsWltbmTZtmneZHkmSJEnqir///e+8/vrrZGZm8vHHH7fb353Y64/W1RzTZZddxscff8zixYvJzs7mwgsvxGQysXTpUkpKSkhISPCJC7Zt28acOXN87hkUFMTdd9/ts81kMiHUCbgUFxezdOlSHnnkEQYOHMiiRYtISkryHtudPNPpyqX9Udxut3fp5FtuuaVb19i3bx9Dhw6lqamJhQsXMn78+HbHrFu3Dr1ez9dff83XX3/dbr/D4aCiooKqqirvEsxWq5VLL72UDz74gE8//ZTbbrsNgLVr17Jnzx4GDRrUbhkYSZIkSToRzzJuZWVlrF27locffpgzzjiDH3/8kf79+3uP606eYuvWrVx00UVERESwatUq+vXrR21tLZ988gmPP/44c+bMYdOmTQQGBv6u77krPEuQdRQP5OXl8eGHH7bb7ukjc7vdgLpk8Q8//OCNr3r37s33339PRkYGK1euZN26de2WvcvMzEQIgcvloqioiO+//56//OUvrF69mvnz53uXLzvduhP3Hb/UWXJyMvfddx8ZGRmcf/75PPbYY6dcwu1kz7kzysrKGD58OIcPH+aTTz7hiiuuaHeMZ4m9lStXsmnTpnb7y8vLcblc7N+/nwEDBgDq0oA33HADf/nLX5g5cyYvv/wyAIWFhSxatIiYmBjOO++8brVZkv4tf+gQKUn6jfynLPfmqeJz7N+JRhUfe/zJKimdzJVXXikA8fe//927raqqSgQHB4vY2NgOSzt7Zjx1tLzF8a677jphNpvF3r17fbaf7Hl7Zr4fP2pZCCFKSkqE2WwW/v7+7Wa6HTx4UFxzzTUiOjpa6PV6kZiYKB5//HGxatUqQVsZyc7wPNOQkBABiCeffLLD4zwz+071N2bMmHbn3nLLLT7PvbGxUQQEBAg/P792M8IkSZIk6Y/SmfjoZN5//30BiIsvvthnu2fGfUeznd944w3vLOxTmT17tgDE7Nmz2+3jBDOqPGWOBwwY0K5iksvlEgMGDPBWVDxWQ0ODeOSRR0RaWpowGAwiNDRUXH311aKwsFD4+/sLnU7nndnVlXiutbVVXHbZZQIQf/7zn084G+5kOornOnKiZ9Idp7qW57szZcqUdvuamppEbGys0Gg04tChQz77SktLxR133CESExOFXq8X0dHRYvr06eLAgQMC1KWAO8MTT3riueuuu0643e52x61evbpT8VxSUlK7c1988UUBiHvvvVcIIYTb7RbJyclCUZTTUplCkiRJ+t/z1ltvCUBkZ2eLkpKSLp9/otjreL9nJaXu5pgcDod46aWXRK9evYTRaBSBgYHiwgsvFDk5Od782+HDh4UQHS+Lm5iY2Kn2r1u37oQz2LuSZzqdubSOnCr2Oh3Lvf34448CEEOGDOly+zyVlDyxV79+/U5YKUKn03Uq/srLy/M5z/NZ9e/f37vtuuuuE+C77LMkSZIkdVVeXp4wGAyiZ8+e7fZ1JU/hdDpFamqqMJvNHcZynqo2J+pzOpXfY7m3Xbt2CUDExcX5VI/y8OR7jv/zePDBB08aT9xwww0CEG+88cbJ3qrX559/LsC3yuPpXO7N43T1LwohRGxsrADEjh07TnjMqZ7zqQAiKChIaDQakZCQcMIlnz1L5p3qb8WKFT7nFRYWCq1WKyIjI735zqeffloA4vHHH+9yeyXpdOja1FVJ+i+SkZEBqDOuj9fa2kpubi46nY7k5OROnVNSUkJTUxNxcXFYLBZAHW0s2mZ1ef6On4l/OoWHhwPQ1NTk3bZ27VpqamoYPHiwt13HGjt2LABbtmw55fV//fVXbDYbmZmZKIri/fNc49NPP0VRFPr16+c958cff/S5z7GioqLIzMyksbGRffv2+exLSUlh9uzZFBcX43A4yMvL49lnn/U++zPPPPOU7T3Wv/71LwYPHszTTz/NX/7yl3b7PSPd77nnnnaf2bF/y5cvb3fuzTffDOCt+vDFF1/Q0NDApZdeitVq7VI7JUmSJOk/VUdxRkNDAytXriQkJKTD2c5djTMArr32Wp84Q1EUAIqKiryva2trAViyZAlOp5PRo0e3mwWl0WgYNWpUh/f39/fnhRdeYP/+/djtdiorK/noo4+w2+00NjbSt29fb+WczsZzTqeTyy+/nC+++IIrrriCzz77rFsz6zt6zn+0k8VzFouFQYMG4Xa72bp1q8++yMhI3n77bfLy8nA4HBQXF/PWW29RUFAAdD2ee+GFF7jggguYNWsW119/vXdGn4cnnpsyZcpJ47nc3Nx2177uuuvQ6/V89NFHOBwOli1bxuHDhxk7diypqaldaqckSZIkvfHGG9x555306tWL5cuXExUV1eVr/CfGBN3NMen1eh566CF27txJS0sLtbW1zJkzh6SkJA4cOEBYWJi36ua0adPa/Xbn5eV1qn1DhgwhKCiow1itK3mm05lL646T5R8BDhw4AEB6evoJr/HvzuYHOP/883nhhRfYtm0b48ePp6qqqt0xgYGBBAcHnzT2EkKQmJjoc96QIUPo06cPv/76K7/++isNDQ189dVXWK1WLrvssm63WZIkSZISExPJzs5m9+7dVFZW+uzrSp5i7969HDx4kKysrA5juf9L8cCJqgCNGTOmw9/t49sQFBTU4fU9K4vYbLZTvBvVueeeC+ATq/n5+REbG0tjYyMlJSXtzunM+zze6exf7ExMfqrn3Bl9+/Zl9uzZFBUVMWrUKA4fPtzuGE/eq66u7qRx17HV2wFiY2OZNGkSZWVlzJs3D7fbzQcffIBGo+HGG2/sVnsl6d/1n1mPVpJ+B+PGjePTTz9l0aJFXH755T77fvnlF5qbmxk1ahRGo9HnnDVr1rBo0aJ2pQsXLlzoPeaPsmHDBgCfgVV2ux2AioqKDs/xbDcYDKe8/sUXX8zAgQPbbS8pKWHBggWkpKQwZswYn6U3Tuf9AW959I5KHZ5MUFAQP/30E+eddx7PPvssLS0tPkuSDBo0CI1Gw6pVq7p0XYD+/fszYMAAtmzZwsaNG72DlTyDlyRJkiTpv8H69esB3zjD4XAAUF9fj8PhaPd73pXf+aFDh9LY2Njhvn/9619YLBZvzOaJz053nPHRRx8BXY8zHA4Hf/7zn5k7dy7XXHMNs2bN6vJSZh4dxXN/tP+U52w0Gvnmm2+48sor+fDDD7Hb7Xz00UfewWCZmZkEBQWxfv16nE5nl5Zoi4yM5IILLuDbb79lzpw5fP/994CM5yRJkqSue/nll3n44Yfp168fP/30E2FhYd26Tkex1x/tdMcEX3zxBQ6Ho11errsaGhqor68nICCg0+d0lGc63e+zqzydnkuWLMHtdvvElQ0NDaxZswaLxcKQIUM6PL+4uJj58+cTGBjIpZde+m+15ZFHHsFsNnPPPfcwZswYli5dSmRkpHf/kCFDmD9/Prt376Znz55duvZNN93EnXfeycyZM+nbty9NTU3ceuut+Pn5/VttliRJkqTi4mKATg8Y6ShP4YkHjh/o5PFbxwNDhgzBbDazZs0aGhoafOIbt9vNkiVLgI4nlAG0tLTw8ccfo9VqueGGG7rVhvHjx6MoCnv27GkXkwDs2rULwDvY/FSKiooA2k3qGzduHB9//DGLFi3iuuuu89l3Ovteu9q/WFdXx969e1EU5YTv8XQ8Z4+rrroKk8nEFVdcwahRo1i2bJnP4KwhQ4awZcsWVq1a1eUl2m6++WbmzZvHzJkz8fPzIz8/n3POOafdQHJJ+t38FuWZJOmP1pnlTOrq6kRYWJgwGAxi06ZN3u02m00MHTpUAOLzzz/3Oefw4cPCaDSKkJAQkZub691eXV0tUlJSBCDWrl3b7XZ3Zrm3Y9vq4XK5xAsvvCAAERYW5rPEWFFRkdDpdEKj0YjFixf7nFdQUCDCw8MFIObPn++z7+DBgyInJ8db+u9kTva8X375ZQGInj17itraWp99//jHPwQgoqKifEogtrS0iJaWFp9j3W63eO655wQgLr300lO2ycPzTD3LvDQ1NYnx48cLQMyYMcPn2KuvvloA4plnnumwJOPBgwe95ceP989//lMAYuTIkQIQffr06XQbJUmSJOn30Jn4aMuWLe2WTRNCiKVLlwqj0SgAsWbNGp99WVlZHZYHttlsYsyYMQIQDzzwgM++4uJikZOT0y42OBFOsCTGhg0bBCDMZnO75ea2bt0qTCaTUBRF7Nq1y2dfR8uxLlmyRJhMJpGSkiIaGxs71S4h1Lhl0qRJAhA33HBDh8/veF2N5zpyomdyrM7Gc6e61pdffikAERkZKQoLC332LViwQCiKIkwmk8+SyC6Xq91yvkII8dFHHwlFUcSwYcM69ayEOLrsi2dJldbWVnHVVVd5l8A59v098cQTAhC33nqraG5ubnet4uJisXv37g7vs2jRIgGIQYMGCaPRKMLCwoTdbu9UGyVJkiRJCCGeeeYZAYgBAwaIqqqqUx7fndjreJ1Z7q2zsdeprtXdHFNHcc3WrVtFWFiYCA4OFkVFRSdt17F27NghbDZbu+12u11cc801AhBXXHGFz76u5pl+61xaZ+K4s88+u8MlgO+55x4BiFtuueWE53q+hydaHuZUPMu9Hbtk8z/+8Q+hKIrIyMjw+byWLl0qADF06NAOP8fGxkaxbt26Du9TU1MjzGazCAwMFH369BGA2LJlS7faLEmSJP1v2bdvX4dxjcvlEo8++qgAxLBhw9rt60qeoqWlRQQFBXXYZ1dTUyMyMzMFIP7f//t/Pvvy8/NFTk5Oh0vGHutUy70JIcTNN9/sszS9x5tvvikAMXHixBOe+9FHHwlATJ48+aTtOJULLrhAAOKvf/2rz/bFixcLRVFEUFCQz2exZcuWDvvXGhoaxIQJEwQgHn30UZ99a9asEYBISUnxWWI2NzdXhISECKPR6NMnK4S6DFxOTo6oqKjw2d7VuK+kpEQcOXKkw/Z6lvg966yzOngyqtPxnAExevRo7+u5c+cKo9EooqKifHKaOTk5Qq/Xi7S0NLFv375217Hb7eKXX37p8B6tra0iLi5OaDQaMWzYMAGIb7/9ttttlqR/lyLEMXXbJOn/sDlz5jBnzhwASktLWbx4McnJyYwcORKAsLAwXnvttXbnXHLJJZhMJi677DJCQkL44Ycf2LdvH5dccglfffWVd4kRj7feeosZM2YQGhrKpZdeisFg4JtvvqGwsJD77ruv3T1O5aWXXmLv3r0AbNu2je3btzNs2DDS0tIAGDFihE+5PUVR6NWrF3379iU2Npa6ujrWrFnDrl27sFgsfP/995x99tk+93jmmWd48skn0Wg0TJ48mczMTEpLS/nuu+9obGxkypQpfPfddz7nJCUlkZ+fT25uLklJSSd9DytWrGDs2LFceeWVfPLJJz77GhsbGT58ODt27CAiIoILLriAoKAgfv31V5YtW4ZWq+Wrr77i4osv9p6za9cuRo4cyVlnnUVSUhJOp5Off/6ZnTt3MmLECObPn9/pZdSeeuopnn76aZYvX86YMWMAdWTzn/70JxYsWMDNN9/MP//5TxRFob6+nokTJ7J+/XrS0tIYMWIEkZGRFBcXk5OTw6ZNm/j88887LDvd0NBATEyMtwLEW2+9xfTp0zvVRkmSJEn6rXQ1PhozZgwHDhxg2LBhxMXFAbBjxw6WLVsGwLPPPsvjjz/uc4+lS5dy3nnn4XA4GDx4MMOGDcNms7Fw4ULy8/NJTU1l/fr1hIaGes+ZNm0as2fPZtasWUybNu2U70NRFGJjYyksLGy37/rrr2fWrFkYDAamTJlCYmIieXl5zJkzB4fDwd13383f/vY3n3NiYmLo06cPmZmZmEwmfv31V5YuXUpUVBQ//fRTl2aBX3fddXz44YeEhYVx++23t4sdQX2unjjE8366Gs/t3buXl156yft69uzZWCwWpk6d6t322muv+VRrOFE819Vrud1uJk6cyNKlSwkICGDKlClERUWRk5PDjz/+iBCCN954g7vuust7fmNjI5GRkZx11lmkpKSg0WhYs2YN69atIysri6VLlxITE9OpZ/zhhx9y3XXX+Xxf3G43t9xyCzNnzmTy5Ml88803GI1GnE4nl1xyCT/88AOxsbGMGzeO2NhYysvLOXDgAGvWrOH555/n4YcfbncfIQTJycneJWW6E9tLkiRJ/7tmz57NtGnT0Gq13Hnnnd7lGI6VlJTkE/t0J/YCfK6xaNEiysrKuPjii70z7G+88UZGjBjhc/yJYq+uXqs7OabBgwdjNpvp1asXAQEB5OTkMH/+fMxmM/PmzWu3JMXJ3H333cyaNYvhw4eTmJhIUFAQxcXFLFmyhNLSUjIyMli+fDnR0dHec7qTZzqdubTuxHGHDh1i2LBhlJeXc+GFF5KVlcWGDRtYvnw56enprF271ie+9nC73SQnJ5Ofn8+OHTvo3bt3p5+tR15eHj169ODaa6/lww8/9G7/8MMPueGGG+jRowfLli3zVlJ/+eWXvRWXJk2aRI8ePWhsbCQ/P5+VK1cyYsQIFi1a1OG9rr32Wm/1igEDBrB58+Yut1eSJEn63/PGG2/wyCOPMGLECHr06EFoaChlZWWsXLmSw4cPExUVxc8//0x2drb3nO7kKWbPns11112HEILx48dzxhlnUFNTww8//EBFRQVDhgxhxYoVPiuyjBkzhpUrV/r0SYFaken+++/3vv7mm29oamrimmuu8eaSHn74YTIzM73HVFVVMWzYMPbv38+4ceMYNGgQOTk5zJ07l4iICNauXUtKSkqHz2jkyJGsXr2aH374gfPPP7/bz7qwsJBhw4Zx5MgR7zPIzc1lzpw5KIrCF198wZ/+9Cfv8RdddBFr1qxh2LBhJCQkYLFYOHLkCAsXLqS2tpZhw4axePFi/P39fe5z33338de//pW4uDguueQSHA4HX375JVVVVR32t3n6/p588kmeeuop7/auxn0rVqxgwoQJDB06lPT0dCIiIigqKuKnn36itLSU5ORkli9f7rOCzOl+zoqiMHr0aJ9l8BYvXsyUKVPw8/Nj6dKl9O3bF4BPPvmE66+/HiEE55xzDunp6TidTgoKCli1ahXh4eHePufjPfnkkzzzzDMAREVFceTIkXZVrSTpd/NHjpCSpNPJUzHnRH+JiYkdnrd69Wpx7rnniqCgIGEymUSvXr3EX//61w5H+nr88MMPYtSoUcLf319YLBYxcOBA8eGHH3ar3Z5Zaif6O3bWkhBC3H///WLUqFEiOjpaGI1GYTabRUZGhrjjjjvEoUOHTnifOXPmiHPOOUeEhYUJrVYrAgICxNChQ8U777zT4Xv1jOI+fnRyR05VmaGhoUE8/fTTom/fvsJisQidTieio6PF1KlTxYYNG9odX15eLq644grRo0cPYTKZREBAgBg8eLB4++23TzqqvCPHV1LysNvtYsqUKd5n7Bkhb7fbxVtvvSWGDh0qrFarMBgMIj4+XowbN0787W9/86kQcLwbb7zRW82hpqamS+2UJEmSpN9CV+OjmTNnivPOO08kJiYKPz8/7+/gn//85xPOxBFCiO3bt4urrrpKxMfHC71eL0wmk8jOzhaPPPJIh7+J1157rU9lnFPhJLPN3W63mDVrlhg9erQICgoSWq1WBAcHi3HjxrWriulx//33i169eomAgABhMplERkaGeOihhzpV8eB4p4rlAPHkk0+2u39X4zlPvHWyv+PjthPFc925lsPhEH/729/E4MGDRUBAgNBqtSI8PFycd9557SoMeI6//vrrRXp6urBYLMJisYi+ffuK559//pSzCY93fCUlD7fbLaZPny4AcfbZZ3srJ7ndbvHRRx+JcePGieDgYKHX60VMTIwYPny4eP7550VBQcEJ7+WZWQeIvXv3dqmdkiRJ0v+2U8VdHDdDWojux16nus/xv5kni726ei0hup5jeuWVV0T//v1FYGCgMBgMokePHuL222/vcNb6qaxevVrccMMNIjs72yf2Gz58uHj11Vc7jDO6m2c6Xbm07sReQqhVm6ZNmyaioqKEXq8XCQkJ4q677vKpMHC8BQsWCEAMGTLkxA/xFDqqpOTx2WefCZ1OJxITE33i1lWrVompU6eK6OhoodfrRVhYmOjbt6+45557Oqwi6rF69WrvM3j33Xe73WZJkiTpf8vOnTvFHXfcIfr27StCQ0OFVqsVVqtVDBw4UDz55JMd5ne6m6dYuXKlmDJlioiKihI6nU74+fmJ/v37ixdffLHD6o6ePNHxfVKe39eT/R1/jhBCVFVViRkzZoiEhASh1+tFVFSUuO66604aR+3Zs0cAIi4u7qR9nZ1VXl4upk+f7m1DaGiouOiiizrs3/vxxx/FlVdeKdLS0oTVahU6nU6Eh4eL8ePHi3ffffeksdesWbPEwIEDhcViEf7+/mLUqFFi3rx5HR7rib2Pz7l1Ne4rKCgQN998szjjjDNEWFiY0Ol0wmq1ijPPPFM899xzor6+/oTtPV3PuaN/JwihxpD+/v4iODhYbNy40bt9x44d4tprrxUJCQnCYDCI4OBg0bNnT3HzzTeLn3/++YT3KSgoEBqNRgDikUce6XZ7Jel0kJWUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TWn+6AZIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvTfTQ5SkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpNyUHKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9JuSg5QkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfpNyUFKkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9puQgJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSflO6P7oBkiT952hububJJ59k48aNREVFkZ6ezrPPPvtHN0uSJEmSJOm/0pNPPsnBgwcpLS2lf//+PPPMM5jN5j+6WZIkSZIkSf91WlpaePbZZ9m6dSsREREkJiby9NNP/9HNkiRJkiRJ+q/07rvvsn37dkpKSsjOzuYvf/kLRqPxj26WJEn/IRQhhPijGyFJkq/m5mb++c9/8uOPP3Lw4EFqa2sxGAwEBASQn5+PEILU1FQcDgcFBQUYDAbi4+OprKykrq6OsLAwjEYjRUVFAISHh+Nyuaiurkar1WI2m3G5XNhsNvR6PW63G5fLdcL2aDQatFotTqcTAH9/fxRFoaGhAX9/f8xmM83NzTQ1NREZGYler6ewsBCA1NRUXC4Xubm5BAUFkZqaSkFBAeXl5WRkZBAUFMSOHTvw9/cnNTWVpKQk7r//fvr37//bP2hJkiRJkiRg06ZNzJo1iy1btlBUVER9fT0hISE0NjZSXV2N1WolJiaG3NxcWlpaiIuLQ6vVkp+fD0BsbCwOh4OKigr8/f0xmUw0NTVhs9kICAjA7XbT1NQEgF6vx+Vy4Xa7T9genU6Hoig4nU4sFgtarZaGhgYAQkND0Wg0VFRUoCiK997l5eVEREQQHBzMwYMHcblc9OzZE71ez7Zt29BoNAwePJiKigqqq6uJiIggJSWF8ePHc+utt8rBUZIkSZIk/S5aWlr47rvvmDdvHjk5OZSVlSGEwN/fn/z8fFwuF8nJybhcLvLy8tBoNCQnJ1NVVUVNTQ2hoaGYTCaKi4sRQhAWFobb7aa6uhqAgIAAWltbvTkvIQStra0nbM/xOS8/Pz80Gg0NDQ34+flhNptxOBzU19e3y3mlpKQghODw4cMEBASQkZFBcXExpaWlpKamEhwczIEDBwgMDCQhIYH09HRuv/12+vXr95s/Z0mSJEmSJIBDhw7xxRdfsGHDBvLy8qiursZgMGCz2aiqqsJsNhMbG0tBQQFNTU3Exsai0+l8cl5Op5Py8nIsFgsWiwWbzUZTUxMBAQEIIWhsbAQ6l/PSarVoNBqcTidmsxmdTkdzczMul4uQkBC0Wi0VFRXee7e2tlJWVkZYWBihoaEUFBRgs9nIysrCZDKxY8cOdDod/fr1o66uDrvd7h2QPnHiRK688ko5OEqS/gPJQUqS9DtYuHAhr7/+Ojt37qS1tZW6ujpcLhd+fn4YDAZqamoAsFgsOByOkyZPPCwWC3q9nrq6OvR6PXFxcQghyMvLIyMjA5PJxK6du3C5XZx55ploNBo2bNgAwKhRo3C5XKxZs4Zhw4YREBDAzp07KS4uZtKk8ygrKyUwMJB9e/dRVFzExIkTEUKwZMkSNIqGUaNH4XA4WLt2Lf369cNoNFJcVMyRwiP07dsXIQQ7duwA1EFKLS0tFBYWegc3eQKOk1EUBT8/P1qdrbTYWwgLCyMwMJBDhw4B0KdPHwBaW1sZP34806ZNkwObJEmSJEnCZrPx4osvMm/ePIqKinA4HNTV1QHqAJ+mpiZaWlrQ6/To9DpsNtspr6nT6TCbzd4Or7i4OEwmEwcPHgSOxiU7duwguUcy4RHhNDU1sWvXLoYNG4Zer2flypUAnHXWWSiKwpIlS8jIyCAmJobGxkbCw8NZsGABPbN7Ep8QT11dHevWrWPkyJFoNBrv+UOGDMHlcrFp0yZCgkNISEzAZrOxb98+kpOTATh8+DAAgYGBOJ1OmpubT/kejUYjRqOR+vp6AHr06IHNZqO0tJTQ0FDS0tIoKSmhf//+XHbZZUyYMIGQkJCufDSSJEmSJP0X2rhxI2+99RYbN26krq6O2tpaHA4HZrMZk8nkHTxkMVtwtjq9g4FO5ticF6hxCUBubi5paWlYLBby8/Opra3tMOcl3IJVq1cxZMgQAgMDKSosYtfuXZx77iQqKsqxWq0UFxezd+9en5wXwJgxY3A6naxZs4bevXtjsVioqqri4MGDHea87HY7R44c8Q5ustlsp8zreXNera20tLQQEhJCcHAwhw4dQlEUevXq5Y0/x40bx5VXXklmZmb3PiBJkiRJkv5r2O12PvjgA+bNm8e+fftoaGigurraO8DHZrNhs9nQ6XTo9fpO5by0Wi0Wi8U7wS42Nhaz2eyT81IUhe3btxMXF0dsbCw2m40dO3YwdOhQDAYDq35ZhVu4mTBhAhqNhp+W/ERUVBRZ2Vnegd4L5i+gR3IP0tPTaWxoZPWa1YwYMQKtVuuT83K73WzcuBGdVkev3r1oaWlh79699OjRA0VRKCwsxOFwEBQUhMPh6FTOy2AwYDKZvDmvxMREnE4npaWlBAcHk5qaSnNzM0OGDOH8889n9OjRWK3Wf+OTkiTpVORyb5LUTc3Nzbz88svMnj2bkpISHA4HoP7Y6fV672x5rVZ7wgE5Go2GgIAA7yClnj17YjKZWLVqFaGhoUycOBGn08mCrxdz9a1XEBgYyJ6Fh7DthKH3ZaEoCmuf3QMGGHZ1Nm63m/XP7+XMKWnoDXpGDxrHnplHGHqOemzAxngAho5WX5vXRmM5oKHfbZn06tGb7e/m4VgI5z1xHo4GJ5rlIYwZHEjKoFhstS24f7KSNS2e4PgAGiubsKyLYcjkTDQaDVv/sYcMZTDDLswGIGJnOoTBsCuOtmvQjHT0ej2VJZVsfS+X0Y/0xeFw8P7rH2KnmUuvmUptbS0//PADffr0wWq1cvjwYYqKivDz8/MJNjwJIYA9e/bwzjvvoCgKra2tBAcHExgYSF5eHgAZGRkoikJiYiJvvPGGTOxIkiRJ0v9BBw8e5N5772XNmjXU19d7O3/8/f2x2+04nU40Gg1CCE40D0Ov1xMaGkpRURFRUVEkJiVSUVbBvgP7uOCCCwgMDOSbj7/DTADX3XclOp2O1S/vYvDtGQQEB+BwONj00gGGTFPjn7XP7gFg2EXZCCGI2JmO2c/MGRN74Gp1EbU7k74DeuAXbCYjtDeHvy+lX1YKpgADwSUxVO1q5Mzz0tH761j77B4mKJfQd3QSfmEW1r6uvh42Vr22/pdw9V5nq68DNyfS9yr12nabnS2vHWLIFce16y712HXP5RAzNYDoHhFUV1fzxfvfMPnyc1AUhS8+/wK3cDNkyBBsNhsbN25EURTcbrc39qqqqqKqqgqA/Px8vv/+ewwGgzf+TUhIoKWlhfLycgIDA+nRowctLS3ceuut3HXXXb/dl0KSJEmSpN/M+++/zz//+U8OHjxIU1MTbrcbnU6H0Wj0zpY/Vc7L39+fmpoahBD07HU056VVtFx6+aW4XC4Wf7mMqTddREhICIX7Symb0+Sb88I359V/cgqmACN15U3sfjefoROzUDTH5bxQMK6JhO0w6L5sGuKaiNqTiXMRTHpiEvY6J1uWH6B31mAy+sfTUu/A/ZOVHudFEN0/jMZKG+a10QyenIFWr+XXLw+TpPRj6AVquyJ2pqvtOibndeaMNAwGA/VV9Wx6+wAjHu6F0+nko9e/pJl6/nTNRdTX1zNnzhwyMzMJCwujoKCA/Px8AgICvJ2IQgh27tzpfY5r167lhRde8FZ7CgoKIjg4mNzcXBRFISUlBYvFQnZ2Ni+++CJJSUm/1VdCkiRJkqTfSGFhIS+88AJLly6lpKQEm83mLXTgdDpxOBwoigJwwpyXQW/AYrFQWFhIWFgYqampVFdXk7Mnh/MmTyY4OIi5H8/Hgj9X3jcVvV7Pmpd2k31pAlFpYTidTja+uJ8h17Xlll7ZA3Y15wUQviMNYwMMmJiNy+kiYmc6mamxhPQIJDOkN4fmlJIdl4A1ykJgYQw1OY30Pb8HflFm1j63h/HKn8gYHEdwcgBb385hgnIJQ8dkg3JczsstsG5KIO3P0YSnBWO3OYjbd5AhVx6T81Jg2IyjOS+/LMg8P4Xa2lq+efcHJlw6Cq1Wy9KfllJRUcGQIUOw2+3eQe2g9vG63W6fnNfOnTt5//33fXJe8fHx3urpVquVpKQkzGYzN9xwA1dddZWs0iRJ3SQHKUnSCRQUFDB9+nRWrVpFfX09iqJ4Ey86nQ6Xy9VhMKDX6wkJCfEOUhoyZAgWi4WlP/1MWFAYV067Ar1ez9bXchk8IwOdTsfBlQWUrWzwDiYyro6EanVGltvtpkYRBPoFYTIZSR4Sz+6dR3xv2qwGJp4gJffnYtLPTcTsb1J3V7XgF2YmclAgZRvraCprwRCoIzDNQt2BZrb9Yy/9bstk0P0ZbHxtn/eygWkWUibG4mhwsvVtdUa+waLF5XCz4x9qqUcF9Z62SsCinucp5ZhxdiwALXV29VhFQQjBvvfLsCjqrDi9Xs8gZSzmOEhKSsLlctE8z8Cg89LR6XSkBWdTUFzF0GuOJqiaRTPDH+hJWVkZn370KQMGDiAoJIhdu3ZRXFxMQEAAdrvd+z727VPf0969e8nKysLf3x+n04ndbicyMpLQ0FAOHz5McnIy1157LQ8++GA3vjGSJEmSJP07Pv74Y15//XUOHDjg00mj0WjQaDQnnJHu5+dHgH8AJaUlREdHk53dk9KSEnJ27eXq664iNDSUda/lYFbMDLv5aAIjY0IsoQmBOB1ONr18gD591GTHcOVc73UBzIqZHTMLGHZ/NhpFA4CjqRVTgIH48aEc+bkK4RIo2raYaLcNpoDiVl9vfzuXQQ9mYAlWkxZb3zrEmfekkzElga2Vh33ey6D7M9CZtax9bQ/YICTLgqPJSXO5mhiJGxUGQF1h29JxRvWfc3u+UZf49cRax/K8Do9Ul0YJMAQyWBlPamoqiqIwjovV5M5o9dlYNyWQ8udIojKPJqj6P5BMS0sL7/79fZzYOfucs2lsbGT16tVoNBoURfF+ZnV1dWzbtg2Au+++m/vvvx8/Pz9vJYSsrCwaGxtxOp0MHz6cl156idTU1M5+TSRJkiRJOg1qa2t58MEHWbJkCaWlpbhcLm+sdbKcl06nIzg4mKamJoQQDBo0iIAAKz8v+RkDJm6+6waMRiO/vnqYQXemozfoKd5dQe635b45L9SclxCCKsWFn9aKyWQiIjKMMpoQ7qOxFfjmvPZ8W0T/ackYzXoAqnMbCE2xEjM0hOJ11dQcaMQv2khQmpnaAzbWvb6HYQ9kc+Y96Wz6237vNU0RJrKmJmKvc7LtHTUms4SacDa3suMfuepBLkALLftbADXWcrvU5xI3Vq0o2VKrxmkaoQ6W3/mvI5gUEwaDAYPBQF9lCKDmvNxuN41zdZw5OQ29WU/FoVoOFBT75LxaRAtDH8iisrKST2d9Rna/LCIjI9mbs5f8AnVAU0tLi/e5eKoc7Nixgy+++AI/Pz/cbjc2m42wsDAiIyMpLCwkOzubq6++mttuu+3f+epIkiRJktQNixcv5s0332Tr1q1UV1fT2tqK2+1GURS0Wu1Jc15arZaSkhLCw8Pp27cvVVVV7Pl1L3++5hIiIyNZ/+pejIqRYbcczXlFZQaRPCoGp72VmJxs+vbJQKvTMjJiHPaKozkvo2Lk0OdlRD4RiuJSY62GkmYCY/1JHBtJ/qIyXHY3WqMGjGCvB3erUGMkYO8nRQyYYcHgp8Zle2YX0PfGHmT9KYEdHx7yeS9n3J6COcTIlr/vxV4P/nFGWmpaaK5UY6nQnlYQUJvbAIAl0AzA4XnqMruK6CDn1baqXHy/GEwmE366AM5QhpOWloZGo6H8c4ea8xqjPpuAjfGEDPQja1ISrc5WNry4jzPu74HT6eTLD76msr6S8eeMpampiVWrVgHqoHybzYbb7aa2ttab81q3bh233nqrT84rIyMDu92O0Whk5MiRPPzww6SkpHT9CyNJ/wPkICXpf9ratWu55ZZb2Ldv3ynLTXvWUgV1zXmr1cqmTZuwaC3cNP0mzGYzm18+yKC71GpBuauOULy8nqHj1ESDWBoIdWC1Wr2DeFoaHPgH6wjPCKZsZUOH9/UkYfYtL6bP5CTvwCNbrR1LsAlrtoX6Pc24nG60erXjrHJzEylnuTBY1P/Et/8jl6GPZZE8IYayjXXseD+XYU9kk/3nRNY9n0NzpZuaw41U7q7xuXfdgWYaS2wcXFACQNrFsfiH+XmDhJQLo1E0CmU71FHGaeeog5KKN5YD4B9lQQjBtg9yve/l+CDC3ao+i8QxcQA0V6uJFo1GfS8F86ranRvWNwyLxUJ8XDxjlSkMPjsDnV5HSH00lSVNDL3Wd0DTiAd7UVBQwJdffElWZhbWICu7d+/GbrfT0NBAeXk5Qgj27NnDQw89xOOPP47T6cSgN6gVFioq0Gg0TJ06leeee46wsLCTflckSZIkSWrPZrPx+OOP8+mnn1JRUeGzPv3xMYKiKOj1ehwOBxazhazsLCrKKyjIP8LlV15GTEwMW19T44tjkzCJg8KI6xOJw+YgcncGsTGxaLQazBYz2I5eG2DfV0UMuz8QrUartq/ejl+QmYSJ4RQsrsDtEmg8nWM2386xnC8K6XdjD0IzrRz5uYrS7VVEnxFGwoQICpaWU7anmsieIcSNDadweQXN5Xas8X7e/bu+OkLy+AhspS0+zyh/RRnWRD9vWzMvTgIFNn9yAID4EeG4HW72fFgAqIOUXHYXtryj13G2qImtyKFBgJpcAjWWFUJwYG7BCT8j0dbp5h9p8TnXaDRiMpkYqZwHwKBB6jM3rYkidWokkZlhOGwONr16gAEPpmCz2fjH39/FiZ3BgwdTW1tLXV0diqJw6NAh72y0b7/9lu+//977XYiMjMTf35/i4mL69OnD448/zuTJk0/YXkmSJEmSTmzbtm3cd999bN68mYaGhhPOugd18JFHcnIyQUFBbNq4CQNmbplxIxaLhc0vH2Tg9DSMFgMlOys4/H05Qyeo+Rf3TwGAutSscKv3aShuJiQpEGu4Gle4WwVavdL+5sDBuUfof1MmerMBgLojTQQnBRA+wErFlnocTa3eHFfLkRZaW1wYTOrrfZ8VMviBDBJGR1C8rpq9Xx5h2GPZZF2SxLoXc6AFyrbXUJvX6HPPlvIWag42kLu8AoC40WEEJQVQc0jNecWMCEVr0lKyXc1LxY8NAwHFm9XjQzMCEUKw99M8ABSNor73Y8I7l1ONceLGqXmk5mo1yFN0as7rwHfF6mvl6HMxmU2YzWZio2MZpZzPwLPUZx6tT6LwSBVDp/lWmTrj/h6Ulpby2cdfkJqWTEhYCHtz9mKz2WhubmbPnj1qrLxuHevWrWPGjBm0trai0+lISkqipqYGPz8/LrnkEh544AGioqJO+D2RJEmSJOnE3n77bd555x3y8vJ8llnrqF/MU6nHZDLRq1cvqqqqOHK4kIsvnUJCQsLRgUe3Hs15BUWb6DksBYfNQcjWZGKj4jCY9Vh7WLHn2X3yVqUra0keFeN9XVfQSEhyINGDI8j7sRxnSyt609H4z+0SoFGP3f1pAUMfyCIo0UI+kLeyhOTxMSQMD6dgWQVFG8qJHxZJ3OgwCldWUpfbSOQZISSMU/fvnVNM0thwGgvtPu/58JISQjOs2OvV+Kjn5UloDVq2tg0WTzknGpfdRc5n6qAkY4AeZ5OLmn1HgytHo9qP699DnQhYX9TYdqxRzXktVfsyEQocF/p6BpqHpwUB0FimfkYGvRGz2UzPhqGgHM15GVdHEj7Qj/RJSThanGx6RZ3EZ7fbmf32R9S76jnzzDNpaGjwDlLKy8vzFlDYt28fH3zwgbfie0R4BAFWdWWdwYMHc9999zF+/PiTfKMk6b+bHKQk/dcrKCjgqquuYtOmTd6ZRtA+MNBoNJjNZm8FpNGjR+NwOPh13Tam3XQNkdGR5G0oo3hJFUP/rCYEAjcngltNwngHHtXY0YXrCE4JoXh5vU9gcOy9AQ6tLqPP5CRMfuoPqr3OgSnISGCmibq9LWpHkZq3oHFrM0zGO5OsaHUFaefHE9kzmPo9zTQV2whM8sc/2ULj4WZam1wY/DXee9rrHBwbB+WvKKO58miglPNpxx1WO2bmev/3ge+KQAsHvlZn69fnNxKeHcShn8oAMAboQEDBmmoAtBqNWmmpbZU2jaLB5VCfU8QQdaR2Y4n6mVhC1Gdw6Af1Wp4KTcfydJwl9AlFCEFjVduFFbXjsHJD09Fj295sQt8QTCYTyUnJjFf+xKCL1QpN4VVx2BrVZfNcLhf/74X3aaSaiZMmkpeXx549ezAajZSUlHjLmL/77rvMmjXL27GWmppKa2srDoeDp556iptuuqnDZyhJkiRJ/0v+9a9/8dxzz1FYWOgzE+z42MtkMuF2u3E4HKSlppHUI4llS5YTSBi3PHIdWq1Wnf01IIjkMTE4ba1sem0/SYlJaHVaCAGqfctc58+pJLZ3hHewc3NtC/6hFpLGRZI3v6zdwCO1YW3nLi4l+9IeBCX5UUAFzWUt+MeYMaeYsR2y4XYePddW2oIiFHQa9Z9TucvKiT4jDHOw2rFWvKKcsLQgGtuSJbs+zCPlomgKlqoDuW1FNnZ/lN/u2ZVtrqVsc6339b65BWgMR+O5lloHLrvb55yWWjVBE5JlQVEUag6q9wyK9wcg72e1I03RqgkaW5Hb+3l44rKo4cEANFaocZneoEMIQd4Phe3a6OGJyyyhfgghvIkhvV6P0WhktHI+AMPGq8md6D1ZpFweTWRqMAX5BXw5+2uGjh0MCixbtgwAp9NJXl4eLpeLDRs2cMEFF3gHqwUFBREXF0d+fj4jRozgk08+ISQk5ITtkyRJkqT/BbW1tdx2220sWbKE2tpan0Hgx1IUBT8/P2/Oa9SoUbjdbrau3sHUqy4mITmB0r2VHP66nKGXqjkv66YEAIKCgrzXrc1rICIrBL8wdWa72yXQ6o7L37S9zP2hkOA7rehM6sz6htJmguL9CR8URMXGWlptLnQmdbB4S6kb3KBpy5flL68g+LoAghL8qdhST83BBqL6hnirI9kq7fhFmry3bCqzozUdjZn2zTuC23H0WRz6oaTD55Lz+dFK5YUrK9H7a8mdr+almkqaaG1xUfKLGkuZAg0IAQW/VAKgVbTgVmipbbuPwBun+aeaQEBjsRpwBiepObD8Jeq1NUpbx1kHA5oSRqsDmpraBjR5ljMunF/lPdYb/waB2WwmPjaBscqFDLwwHYNFR7KSTdm6Oobel4Xb7eb95z+ilgomTBpHQUEBu3btwmQyUVpaSmNjI1VVVfz1r3/l7bff9ua8UlJSvBMHHn/8ca644ooOn6EkSZIk/S+ZP38+zz33HLt27fIuFwYd57yEENjtdpKTk0lJSeGXJasJIoLrHrkcnU7HuudyMIbCgHOzcTS3svn1/STFqdUiw1MCqT/c4nPN2h0tiAuFt8p3XVEjYSlBxPYK4nBeGa12l8/AI+E+2heZu6SSkFsCCYhQY7jag02E9wwktKeJqt0tOBta0bcNCMcOwnn0PmXb6ugxNgajVY3pyjdXEdkvlIYitX/u4LwSHC2tFCxTYyZ7pZ19X7fPJ9UdbKbuYLP3dc5XeRiDjo3nbPh0pQq1vxXAHG0EFOoOqbFsSKpadamwLU5TDBqEC2z7jw6McjarOUlrknqPxrK2iXgBBrUa5crj4rJjuNqKKwSlqIPSGwrVcw06AyaTiYHu8WqFprPUnFfU7kzCR1hJGxtHcUEx33w4h76je6LT6fj5558BaHW1enNeCxcuZNGiRd6cl9VqJS4ujtraWs466yxeffVVwsPD2z1DSfpvIgcpSf81mpubufLKK1m9ejWNjY0+A5I8FEVBp9PhdDoJDgqmT98+FB8ppvpQIzc/PA2dTsfuL/KoO9DsXfLCb0cspla10yciK5DiJVXegUfBWRZqcpqPDkSywMEFR+h3bSaWtk4qe70Dc5CJmAlWipfW424VKFowhx0deKQ1qkmZ8l11JIyIIHF0FDv25uFodGIMNBA+0I+KzU24nQK9Wf3PtmJbAynnCsLSrRygiN0fFzDwvjSy/xTPxlf3se/HYqIHWOk/PYVf3z5EyeZq3G43fW7swYE5uej9ddjzIW1qLOEZgVTur2H/V0eTNhr90eTOoIcy0Gg0rH8xh6INNSSdG4lfmJHC9ZXk/lxM9BnB4FLPKd5SRWCshYA4C1qjhtJdVWCBrCkJoEB1Xj0AicPUqktlOWoQYQxQn1dzbVsJbY3i7fwK7K3OumtpUBMlllD1WG8A0kH1BU/Vq/C+oQA0VarBiSewsh08eqxWq+VMZTQREwJIOzOBPr36EpOTzeAZagnMH17/iT1NWxlz9ihqqmvYtHmTev/CQu/37Oabb+bee++lpaWF1tZWUlNTiYqK4umnn2bcuHGn/P5KkiRJ0v81CxYs4K677qKqqora2lpvPHTsb7Jer6e1tRUhBL179SYkNITtG3YyIGEgwy8bgtPRysaX9nHmxekYTHqiW+MpWl7nnc1vjjVTuqqW5DEx3oqRTRV2rNEWMs6LZd/HRQiXQKPT4Jdopinfpt5fDa3IW1RGryt7EJziTx5l2Krs+EWYCB1ooWpzs3quVgNmqN2vdgRZQtSEzaGlpfS9pgfZk2PZ8uZBjqwvJWlUDClTojn0fQl5q4pJHBFNeH8rFb/WU/BLOWG9Awjt5U9zcSMlW6rR+StkTI2jYlc1tio1jhnycBatjlZyl5RQtevojH5zCNiqIW5CGAlDIijaWEn+knKih4YQOcSfsPRQts46RMLwCMwhGjIv7cHBxYUYrWqyJfW8eJqrW6g7rF4zNM2Ky+HCbRdgBr1Z5+38CusTgKIoOO1tA5ySrQDUHFBnfnkGedmqj37ennPDzwwCoLlGjYGM/m1VDL5X48gOl5zzVGgKM6EoCqbmAIYr5zJ0hNoJqlmuDjYaNj0bp9PJzBdnE5qpJmh2bN9BeUU5TqeTPXv24Ha7WbhwIREREfj5+VFfX49er+fMM88kKiqKTz75BLPZ3IlvsCRJkiT939HS0sK9997L3Llzqa2tpbm5ud0xngElTqeTQGsg/c7oR0VZBdV7G7nu4SvR6/Xs/uwwdYdavEtemLZEYajzUyfixfgD5bgcbnRGrXdAkCfGMwXBwR9LicgKwRik5mWaipuxJviTeE4Y+YsqabW1ojVpMQVp1ME7AnV5EKB0YzVB8f5E9VYHKdmq7Vjj/IgeaqVkXT0OmxODvx5M0FzYgrO5lbDsIA58X8zheaUExltIuyCeTa/v58DCUiL7BdD3ph5sfz+Xsh1qZfCsy+PJXViEOdhI9aFG4seGETc0goq9NRz87tic19EesAH3pqHTa9nw8l5KNtURNzoMc6iBip01HJxfRGBqIOZGBwarnvyVZQTGmtD56TEE6ijZWgkm6DEmEo1eQ+U+tR0p42NAgcp9amxlCVXjNXvV0erhntn8pij1+bTUq7GiNV4d0FS8Rh3crmhpn/PyVCUf2jagqW0SoqZtwFjZujrvsVqtlj7KYExJJgacmUKfnn2J2p3JwNvUCk0rPl7L5sMbGHbWYOrq6ti4caN6/+JibxWIK6+8kptvvhmHw4HT6SQlJYW4uDieeOIJWQFAkiRJ+q+0bds27rjjDg4cOEB1dTUul6tdvkOnUyftu4Wbntk9CQsPY8/6fSSQyqQHx9Jqd7HxlX2ccW4yllAzMdoeFC6qQqfRoSgK5mgjtqK2fqu22KT+cCPhvYOJHRFG/eFCWm1u9BYt/nFGGgvt6pK4OgWMkL+kirDbgrAmqLFDfV4zoZlWwoZYqVxfT6utFZ1Zpy7TVqHexxKu5ksKfi4hvFcgCWNiqdp9iNzlRWRelETyBVEc/qGUA/PzSD0vifC+gVRsr+PwT+rxoT2tVB2sp3hdJW7FRer50ZTvqMZRpw4IGnhPOu5WN4cWFqsDkhRAAaNVg73eTegZVtLOiaV4QyUFyyoItRoJ6eNHeEYwuz8pIGZoCMYwI2nnRrJ/SQmWtpxT1sXxNFXYqDrYVvGyfyjOllbsjW0T6IKMtNrVNvjHGdFoFex2tY8wrGcQAHW56gAnrVEDAuyH1GciAJdDPdY/US2mYGuL2fyC1Rgu95ej1S/brRbjVF+HJKu5Nl2zhYHKGIYMz0Sj06AsUycGDpueTWtrK5+88DWa+FbSMlPZtWsXJSUltLa2snfvXtxuN7Nnz+aTTz7x5rx0Oh1nnnkmqampvP/++xiNxi59lyXpP5UcpCT9n/TSSy/xwgsv0NDQ8RJpno6VsLAwMjMzqamu4cieEu589DZ0Oh17v88jJDOI8MxAANY+uwdNW8mijAvj2fjaPu91YgeEkru2in7xAVjaOoEcjU5MViPpFyawIUf94dDpdPQYG0nu/DKEEN4Ry6W/1tBjXDSJg2LVQUpuN3q9jvjxsez/sgghhLfTrXB5JQkjIvBrCxTK9laROCSGhJExVGw+0Pbjpw6GollNPnh+EIOzLBj9DN6R25nnx2JoG9nsn2yhx1nRagCjUeh5dRrGAAPBPfxpqXOCAuGZIey3lHirHnlms4G6lIjnuunnRuEXaVYHcEWZ0Ro0KBoFd6tAo1PwjzYTnhWIrdqBolGI7hNGY4ENW7WdoB5+hGcEcYBiDi8vImNyIj1GxlGxYR/CrXYSxg0Ow9mkdph5qkaljI4GwOSvJsGM/gYURSEsI5i6vSUoiuIdER7aWw3IPIOR/KLUAWatLWqQoWg6Li0OEJWpdpC5W4XPsWHNsYxSYhkyRE3iBW5JpMdF4cT0iaCoqIgPZ37EwCH9cbvcbNykJnMOHjzIwYMHvcma2NhYnE4n1dXV9OrVi88//5zMzMwTtkWSJEmS/lNUV1czefJktmzZ4p1ZfTxP7NW7V2+CQ4JZt3IDV1x1GQnJCbhdgvUv5DD0oiw0Gg19Ewew+6N8hBDo9Gq8UV/cTGgPKwnDYihaXte2HIiG9HOj2T5TLfus1WvBDMVrS7H+KZnQpECgiKbKFqzRfqSfH8PWt9X17nU6HeZYM/WH1Y4Vc6D6D/jSLdWknBtD2lkJVG3ei6NZjelih4RStLxKjUfaOnea8j2dPep7C4j0V5MNFrXNCcOiULQKIanqIKWE0REApJwTS2VOPdEDQnA5Q9HoFAKT/NCZtBSvUge7G/z0pJ4XR9WuvSgGNY6JHRPDwe+Kie4bAgro2xIxPSZEeTsHE4aHED8snMAeFsxhRlLOiUWj0VC4vAKdUYvOrCVtchyVO3JwtrRi8NOTcm4Uu77Iw+V0qc8QCE6zqh2TbdU8/aPVwUNhmcEUraxBZ9KqsZUZ/CLMagdXW8IsNEN9Dp5YV9GpSRprtPq8j60gGjkkyOd7YvZX79dQrCaGjq82CqDVaumrDOPMC9MwmAxkxmSz9+Niht6bhRCCt5/7J/VUM2LECI4cOUJ9fT2tra2sXbsWAIvFgp+fH2FhYRQUFBASEsK9997Lo48+2uF3V5IkSZL+03z22Wc88MADlJaWdlgZyRN3hYSEkJWVRX1dPUW7yrnt0RvR6XQcXFCM1k8haZS6bNfaZ/cgnIAe0i9IYNPf9oNQrxM/NIzi1WVEnRGKuS3n1VJtxz/aQvqUBDa+sg+3y41OryN6+NGcl6GtOlLRhiqsCf5E9w9XBynZXegtepLOj2Hvx4UIBDqDGn9U72mEP4F/dFvn2LpSek1NIWZQBCXr6tt1+OjNOkTbtHZTkAZLmNl7TPrkaAJiLAghCEozk3puDCgKihYsV6dgCjYQmmmlobgZRQORvUIo3lhDc2Fb1UjL0ZS40U/vvW7S2HBCM9Q4KSjRH41eg1avwdncit5fR2CiH/Y6J/VHmtDoNcSeGY6jthVbrVNdxqNnMAe/L+HwsmJ6X5ZMwrAIyjbU4nYLdIpC5JkR1B6uBw1o2nJOyRPi1PfYNnnPEqLGZUHJQVTtsqHRarwxkynK8x1QXwenqJ1hngFP2mMmHHp43lt820Bz1PQY2rZqnfrcQIYqZzN0aDYA1k0JmNJNDLgshYryCj74x2z6DOqJoihs2qRO2jt06BCHDh1i5cqVAMTExOByuaivr2fIkCF88MEHJCUltWuLJEmSJP2nsdvtXHPNNSxevJiGhoaTxl49e/YkLCyMTSt+5cJLzic1OwWXw82Gl/cy5KJMtDotfeP6s7tt1RK9SR0gVJ1bjznERPyACAoXVeG0t2L0M5B6TjQ7Z+Wpxxp0GMONHFhWQnjvYIIT1Mlk9UcaCc0IJPX8WLb947AaU+i1BMZbvFWJPIOhSzZXEpppJWVMDJXr62mpt2P115M4LoL8heW0Olzo2gomeJZc8xQr8AvzQ9EoGPzUGClpQjxag4agZH8qtteRek4MaMAcYkTvp6XHWdE4bU50Rh3WRD9MQQZKN9aAAFOQgfQL49n0+j40BjWOSRgXxYE5xcSfGYZGp6Azq+1ImxyLolHzQ+H9rfQ4K5rAtHqsCf5kxljQGDQUr6tG76fFFGwg44I41ufspaXWgV+kmdSJkez+ugB7oxOT1YDRCiFZVoT7aGGE4GR1WeLgHgEULq/CHGhE0Sj4xxlx1tvRaBU0WrU94b2C1M/DrMa6hkB1QJklwIKdRm+fJYC1bUCTZzWcgDC12IK9rfrTscd6aDVa0pW+nHFBCpYwE9kJvdn9QQFD71NzXjOfm00V5QwfMZTCokLq6+txuVzeZXs//vhjLBYLERERFBYWEh8fz/3338/tt99+0u+5JP0nkoOUpP94Dz/8MH//+9991nA9ltFoxGAw0NDQQFhIGFP+NIVAv0C2vZnH4Bsz0Ro07JuTT7TShFarxe12U3WoiapDTYRlWGltGyFrq7HjF26mfJ9aPlm41aXWirZUeQfueGaBl+2oJWF4BE016o6WWieWEA2lG44uVeZJApSsUQcpeXIth1cUknZWAoqhbWT0kUZMEQbvwCOX0427bUZU4eoaEgZHY2irnnR4cRGpk+MYelcW617MoXhzFW7RSs+rE9j9bQHlObWUbFFnbeUuKyYkLYjaw/U0Hm6mcG0FbrdAtAqKtlSRdl4s5dtqqDvQTGCahYh+wd73CXifC0B5Ti2Vu9TrHvyplOgBwdgq7RQuryR2ZChas5aCJeUEZ1kIywqm+kAtVTubsCRYiB0cjN3ZSnCgnrzlpRitBpInRxF1RghNlS0Ur6sgeXIUGp2Gljo7VTsrCe8bjhCC8rYZaE2VNrQmLQW/lHnb5LA5KVlTRni/tkoALeoo6Yje6kCjirbZarjB7XZzZHnl0ffWtvRMRH810LM3qx2uep2amCpYcfQ+xyfJPBWazMFquU6Tw48xygUMnZCFolGwblbLofe6K479+/ezYMECzGaz+r2rrMLldrFt2zb69OmD06kOxkpLSyM8PJy5c+cSFhaGJEmSJP1RioqKmDx5Mjt37vT+5h1LURQCAgJobGjELdxMnHgO2dlZHPyiAltpC8OmZON2CfS/hBNAEAD1peqAFLfTjWJQyFtZ7r2eJ/lTtrGKsORA7E3qb3JLgx1LsImStvjD5XSpg4VsUL2nBTFFeGdI1exrJCDKgq2tso+jwYnRaqBtJTZamhwY2zrSyjbXkjA6goZytdpQwZpKUs+OPiYebFFnt40MpXhVFU3lNvwizMSNCqPgl0o1oWPWYo41k7u0FFOIgfwl6vsp2aLOrCtYXIE5RIOih+JfygjuGYyzyekdhL7h5b0kTYzEVtU2Y8shEAZB0Vq1bFHuTyUExPmRu6BU/Uw2VNLS4oBmKNtdi97fSPGmWizBagIlqIeabFn7/B7ixobjanGRfVUiuz7fT8ygaEq31jL0niyEgLKd6vMMy1BjoLy22Mptd+NUWsn9qQRziIbmKhtuN2CD+CFhCLegaIdawTIw1h8hBIcWqMv/6jQ63C439SU2MKuxU0ud+t5CM9VOvsLNnthKjZHLttYf/Q60xdexY9uqX5a3xfwuBbfbTf78o7PVAAYqYzCHaDhjdCbOFiebXj1A79sSaXDUMefbOVTWVBIUGOSt7lVVVcVjjz3Gs88+S0tLC2azmZ49ezJ+/Hheeumldt9xSZIkSfo9vfPOOzz99NNUVFS0yz8AGAwGTEYT9Q31WP2s/PnyP+NvDGDXO0cYMC0Vo7+BfT/mE6k0oVHUZcHKdtVACySOjPTGOPWFzYSlB3qrW7fa1aXWKrZW0lKLWgXApcZlR9aWkXlxkje2qj/STFCSPyU71DyLcEHbvDBq9ja1bVPbvn9RLr2nZiDawsjKPXVY4y2YgqClVs3l0Nb3V5fbgnALbyfQoR+LyJyaxJC7M1n/0l7yfi5FGCDz0nj2fnmE4i2VVO5S25D7UwlhvQKpPdRI7QEbucvL0CjgtLmo2FtHj/GRVO+to+5QC6Vba4nsG+gdoAR4c0gAJZuqqDmkPpe8lRXYGx3Y6p2UrqomvH8gxgA9hSsrCUozE9TDSl1BIzV7mziypproMwNpqGgmqncIB38sxhSsJ2ZoCEkToqgvbqJkUzVRQ0LQW3Q0V7dQtqmSgOQA3K2C8j1qXGarbsEUauDIyqPVwu2NDorW12CJUwcsOdom80X3iwSgIqdWbbzQ4Ha5yV2knosbXG2jkAIS26o3tVUlNwWor/PXtN1HKGru8xieKgIxGerSJjqbgRHKuQwal4HOoCVgYzwo0PvueA4dOsQPP/yAwaB2AFZVVdHa2sry5ctJT0/35rySk5OJj4/niy++ICoqCkmSJEn6o9TX13PFFVewYsUK7xK4x7NarTQ3NeNyuRg/YQK9evXk0FcV2ErsDLs4G5fThW5lGKZ6Na/SWK52qjmbXGisGvLblhBTcx1usEPpxgZiB0Rgb6ua2Fxux5Ckp7KtmrWj0YnerPNWO3I53bS2xSrlO+sIzQj05pCayluwxlgQWjWgaqpsxhyo/sbX57bQUuPwtil/WRnZl1qwVav3rT/STEhqALEjQilaXUXN4XqCe1iJHRFK+a9VKHrQmTT4xxk5vLgES6iRotVqf2n+yjK1v/SXKoxWOBKoo2xrPYGJZhwNTgJi1AE6m9/YT8zwEOz1avvdDrfa57ZGvU7uslICE/y8S8Pl/VyKy+0GJ1TsrcccWk7FrnqK/aoQThdB6epz3vDKPqIGBuEWkHp+NDmf5xE5OJTqnHrOnJ6BRqtwZF059nqI7KP2EeYtVatoOpqcaAwK+T+XgBHqixvVZXkr7CSMCsfldFOyXW2Pp9L4oQVtuSih4G51U9NWtdzd6sZWoz7PsN5BCCHUypoAQs15lW9U36uCgqtt+eGgTLW4QkPp0U5Yt9vNwXmF3nM1ikIvZTAYYdjobJy2Vja9tp+0K6JptbSw8MdFFJYcIShIzXm1traSm5vLHXfcwX333UdLSwsmk4m+ffsyefJkHn/88Q6/45L0n0IOUpL+ozz55JO88sorHS7V5hEUFERWVhZb120ni0FMfnAkAOueywE7REdHe//x7mhyYDGa1ZKGqAkXjVbjMxjHM4G7al8DfuFmzAHmtnNbMQboMVvA1gytjlaUtixM0fIqEkdEQqt6cnOFHf8wM3FjYznwdRF1RxoJTPD3DjyqP9KMy6X+KFduaCL9LAW9tm3Ztp11pJ4Xx4AbUtny1kE2/H0vg6dnkjA+nIKfK8j5Jo+aHLXBFdsaiB/h9C63kbewjEEPZKAzabEEmTjwtdpZNOSRLBpLbexqG4UNagKmZE2N9/WBr4sITLMQOzKUolVV1B3wLRXutrt9jrWEaehxnjpr7sBh32ML2jrnanKacdqh9+WJ5PmVUrK+hgMFzQx5JAuNTmHfD4XQDOH9AojoHcz22YehWX1fdfkNVO1UA8PoAaEUbaxSr2uB0LQgXA43ZRvrsISpI69tlQ6aK90EJKsdaft/VIM/a5wfwiU4+I0aRBgseoRb0Fzcon4eAuzV6mcRnBmgdrK1BSuexFjlVrVCl0aj8VZVChugdgA2lqrfTXOwOkp677dFbd8j31HRVquVvtn9cCy00PuqJAKiLRRvqWDe/B/JGpNCQ30DW37doj7fAwc4cOAA4eHhaDVaEpMSqa2tJSoqipUrV8qBS5IkSdJvorq6mvHjx7Njx44OZ4p5ZGVlYTFZKNtaw+SLzyOiZzCVB+rY/0UR/fumozfpsJUe8R7v+UUsXFtMcLIVfVt1xqbqFgIiLbhRB6EIl/DORqvdry4lotWpx5ZuqaTHuFgsoepvs73WiTnEeMw9FPRtA48Kf6kkfkQ4ARHqP/gPLSwifnQkpgAtTYCr3g0mwAzY1MpIIUlBQDEVm2qxBBtIGBJB2Zpatr2TS0iWheq22Gv/17n0uSmTxtImbKUtFP9Sxhl3ZBIY6+etvBkzMpTEkRFs+yAXW1ucYKt201hiw1btxrZKTU5UUE/SxEjKNpWRt/jogGgPz7mVOxqo3NFA3KgwavKbvIOgQH0PjYU2bEU2bGoIQszgcAbdn8HG1/ZRuLwCa7KZHhOi6Dk1jc1vHgCgucoOAg7NUWOedS/kEJRupna/jaSJkSgahY0vq+9n4J1pGIL07Po0FwCdRYuCQsE8NelSX9gILoXa/TbMUSbQQOXeerBB1mXxaDQaqnLU5I1Go0ERCoU/eWJQgbPZBTZ1KT+Allo10RYY5w9A8Tr1eWl0CgjfJefcbTFwaN9QFEXxLudrtBgICIuhX+0YUGDoDeoMtAXPreWQbisDR/dn9+7dlJaW0tLSwubNm9m8eTMvv/wyISEhBAUFUVFRwbPPPstdd93V7rORJEmSpNPh/fff5+GHH6ampqbDAUmg5hJ69uzJ3k37SWk9g3MeGIKiKKx7Pgea1Yo19sa2Dq4qO6YAI0Y/E9BEq8OF3qgDT0rNDUpbiFexvZaw9ED0BjV+stU5CDCZwWQCWnA0tXqXGanZY4OLFFwOtY2NRTZCkq0kDgpl35EiKnJqiewV7F3SrWpPnTfD3HjADUJB2xbjlW6pJrxnENmXp/LrPw6y+bUDDJiRRsK4cAqWVbD7c3X5OYDaAzaaSmzeYLJ4XTX970jFFGIgINFE7nw1fjrznnSaq+zs/ijf+9xcLS5Kt9V5X+fOL8MSZyJmaAjF66rJLfTNM7rtR59/7qIyTEF425Q73/fYwpWV3va11An6XZ9E3opyStdXkzu/hTPvSUfvr+PI8lIqtrkJTDHR2uLi4Lf56gAwoKXKRu0BNQbuNSqCovUV3sl00QPCaLW5qNhWByY1T9lS6aSlvIXgTD/qCpsobBtYHpJuxe10e5euMwcZwQ0tbXGkcAtsbR2cwen+CLegcI16rinQgBCCio1qoxSNxptfNMerA83ri9UY2L+to/HICjW3plHUuMwjICCArJSeNCsG0s6PJrxnMKXbqln8wxISR0Vhs9m8VZcOHz7M4cOHiY6ORlEUkpKSaGxsJDU1lQULFhAUFIQkSZIknW6eAUnLli07YQEEgIz0DPwD/Knc0siQwUPJmJhA5b469n9VRL/0FCxWI7YSdSCJcAkUoQYqBb9UEDck3Fuxuv5II+HZwWj8DICd1haXNx9mr7SDGzRtOa+CtWVY4/0wBahxWVOJHWuCFoyAHXALDBZ1X01OI63NLvwj1d/mQwtK6DEhAm3bzDxbuROz1YTRCvZ6dXWQsPQg9huLqT/cQt7PpcQPDqd8Qy17Pz+CtYeJ+lw1bsj5ppCBd6TTWGrDXu+m4JcKhj2QTUhKIJvf2E8NjYT2tJJ6XjQ7Ps7DVqLGGPZ6sJU7sFfaKW/Ly9TubyJmeAhVO2spXnNMIkeof54BWHUHm6k72EzEgCCay2xq9aVjNJXasZXY8XxikQMMDLw7nc1v7Kd0cy3GMCOp58ZgTfDj1/93EICGomZ0Bg0FP6kDjTa9vg9ropH6fDtRA4Mw+OnZ9PZ+sEPvaxMJiPVj9+d5YG9btQWFgoVqLqo2vwFNoVatUmVUP7OKnBqwQ8JZ6uddc6it/9CkRbigYJEa0ykasDc4sdeDUR3rhK2tqlJIWzWnss216rl6DcIN9oqj+VjPajChqVYURaG5Qn0KfgFmLBHBZNYMJlMZzNBpWaDA4uc3cEjZTr9xvdi7dy9FRUU47A42bNjAhg0beOKJJwgOCiYkNITm5maeffZZbrjhho7+M5CkP0T7GrCS9DspKCggJSXFu1SXoig888wz3gFKnpk4iqJw1VVXcf9dDzJBuYRpU2/grLPO4uIRlxGqhHkHkQBHlyozti21tq0SIQShGeqybrZqu+867ijo9OqxhW3JAc+I3+LNlbhaXfinqj8euBSfssnCLbBGq51hB74uor60CU1b+b7aw00IlyAwVr2W0aojOMnqXYpsx2d5mEPU91f+az11eY1s+Zf6g2qxaNAaNYRlqb9iNTnNDHogg0EPZADw69sH2f7uYW87Nv6/fRSurVAH4QBYQKNVMAb4jkHsMS6aIY9k+WxLmxRL4phILGGn/r+CvjdnEN0/1GdbwvhwEsdE0vv6JO82vVENhAIS/bzb1r+ZQ8Hqcu/nU7GtgfUvqgm26OHBDHsi2xvMWRIsaI0aQtt+tGmGkl+rOLxY7YnrcW4cNYcbvAOwks+KwRJqprlAvXirrdU7OhmL2vF1aIV6bq+piSgahfLtauDjF6IuX1K3Qz3X5XRha5v5b4lRR583t609G5mtrhtbtVtNemkURZ0p6BmvpRytPhU7Uu0484xQ17eVyMxbUEFvZTAjR45k0nmTmKBcwgS/S5g+fTqDzxystsnfj8rKSqqrq9mzZw9RUVFERESoJSUtFu65555TflaSJEmS1JGXXnqJgIAAb9wVGhrKtm3bvMvWattKGw88YyB33nmn+julXMIll1zCpEmTyFT6U7SirUMkUI1jHDWtKIpCSJYa87Q6XN7lUhty3Qi38P7G1x5sVpc1GxADQFNli9oJpY5VoaXeTqtT/S0t3VavViiMUuOJyn0NKFqF1IvVcw8tL6S52u59b612F44mdRBy7X4bAVEW0s5Tl87YPvMwtYcbyZisvs77uZSC1RXec0NSA9BbdJjViVbo/QwMezybsD4B2KrVyke1+9XEgK3aTcHKcu8AJQBrjEV9z8eUce57czIpZ8cQ3la10SNmUCh9bjr1cq9+iWYSx0SSdm60z/ah92SRcm6Mzzajv867XAdA/WEbBasrvAOUALa/e5jt76nx46AHMhh4V5r3PQWn+qtLy7V9DptnHqB6f8PRpfKCDGz9UB2wFDkwiOBkK4ZANVlmCdMhXIKafWr1AbdbUJ1XT8HScu+z8VRKAtBoNbjb4rTgVCMup4sjv6jH+keaQEDVLnWAk1avPdoZ1lahqb5txllQDz+1QtNa9XPUGdrPvXG1uAlRQpgy/lKGDx/OxaMvZYJyCfdMv5err776aJs0GvLz82loaODuu+8mMDCQoKAgtFot/fr14+DBgx19RJIkSZJ0UrW1tQwfPhy9Xu+NvW6++Waqq6vV5dLacl6gcNlll3HP7fcyQbmEKyZcy1lnncX5o/5EkBJEq+24ypYCbx6rZIOa8wpMUuOw+qJmNedlajvULdC25cdq9jYh3OoSrwCFv5TjsrsISlYHgbtaji4LC+oscc8A4iPLK6k8UIe7repOzf4G3K1uTOHquYZAPaHpgYT3U3NvW2cd9k7sashvoXJ3Hb/Oavs9NYHRqic4Tc351B1qof8dqZx5bzoAO2flsfODPG87fv1/B8lbXkZD/tGBQ1qjBmNbp55H2uRYhjzsG2OlnhNNj7OiscSZTvg5efS5MYO44eE+28L7BZJ2Xiy9r0vybtMY1HjGGmP2btv0t/3kLS2lpdbtfU8bX91HSy2EZPsz9LFs9H7q520K0mDw1xOSdjRGzFteRu5StYJm2jkx1BxoYNdH6jNIvyCewDg/70AuR4PT24EF0FRh4+BSdbJA8vlRaPQaKvepHWfWaHWJ3vK22MrV6sJW3fYcTWpHWlOF+jq6X5SaH8tVYy2tVp2015DfthSMVkOrXb1vUJqaS3PUqBNETSHq8y1eVUqa0odRI0ZxzsRzvP+WmDFjBsOGDgPAz8+P6upqKioqWLduHWFhYd6cV0hICI888sgpPytJkiRJ6sinn35KbGwsWq26fH1gYCDz58/HZrOh1WrRtRUN6Nu7L9OnT2eCyZPzmso5Z59LmtKbqu1qhR1PnNFc3qLmz3qrv9uOJufRJbzsag5Mo1NfV+9rAgUi0tX4SV1yVsFoVfM19SVN3t/SxkN2NIrirbhdvrsWrUFD6tlqDmjfgkIaStRBMgBOWyuOtipMthI7QQkBpE+OBWD/t0WU76olfrR67qFFxeQtL1UHOwGhaQEYrXqMbXGbRq9lyCNZ6nuyw+a/7vcuG4cdDi4sZvM/9nufq3+cCY1Og97g3UTG1DjSLoglamCQz2eQNCaKPjemnvKzMlo1pE6KIXmib35r4L3pZFwY57PNFKRXl6hrexb2SjuHFxXz68yjuZq9XxxhV9vg9f53pNL/jlTq89UHEJZlVd9/2/k7v8hXV5hpe89+4Ua1mAJg7WEisk8IpmD18/cPN+JyuKhrK9qg0Wqo2FvjHQwVlhqIaD06yEhr0OJuUV/7J/nhtLVyZH1bVfIEtbhCxXa1f1Fv0sIx+TLhFtQXqUUcglL9EG5B2Ta1H1Pnp1MrkbZ9pkIBh60Vq2JlXJ9zGT58OBcO/5Mad91wN9dccw06RX0PWp2W/Px8SkpKuPHGG7FarYSEhGA0Ghk5ciTbt28/5eclSb8VOUhJ+t08++yzmEwmb3ImMTGRw4fV//NXFIWw0DBMBhN+WHnkwUd4+OGHmaBcwnj+RHJyMiY/9VekaLNaAju0h5r8aG1WO8dQczK4W4V3sFDJ6nqES3jXN7XVOFEUhR7nqeWRGyuPztACaLW5aK5RO2Tq9tah1WlJGKQee2hxIcItiBurVrWpL2ii/sjRkpABERZCU9VgpWhVFS3VDlLbOpFyPjtM1YF6b6WgpJHh6P103mvt/raAwdMzCe3tR3Olm7Wv7+HXtw+d8FmG9vZj2BPZJE+OgmYo+PloRxvNsPa5PWz5u2+HSsXuOoo3Vvps2/P1EaoO1NNceeLqCR4Fq8rVgUbHbvu5AluFnZ1f5Hm31eQ0s/bZPez/stCnTZ5BYEMfy6L/9KOBiilIjW4aK9WOxeaCZta+voet/1Tf/6D7M1AUhYptbUmWBD/vGrIAe77Kp6Jt4FBobz/0/nr2zVUTNL2mJmIKMmIyqd+d8p01OJtaKVmv/rgbAvQ0lR8d3KU369C1jWb3jzXgsrup2FELgF+kWQ0MNrYFERa9z3dHuAVNxZ7OPrVCU8lO9Xl5Rr17jxXCm1SKPiOYkJAQhvQexgTlEm67/nbuvvtuUpVsFDRkpGd4z7PZbLzxxhuYzWpCyGq1MmzYMAoKCpAkSZKkY1VXV9OvXz+1kk1b7PXII4/Q2Kh2UhiNRiIiItCipbdlII8++ih333wfE5RLGDlwNMHBwUcHHtldCEX9h7Onqo1nXfeKvWrnWHgvdYRPY2mLd6kQUAeEm/zVYwuXVyBcAmvbgPDKnHqcza2EtC1FodVqMVnbsh42tYS1KfTouc7GVqrblrawBFmwhBpJ+5OalDkw7wimYIO3Ok/Zzhq2f3J0dn1wagDBqUdnLRn9dQy8Kw2Are8cYu1re7zvzV6v/qvfFHS0clP/6anewd6Fv/jGU3u/PMLa5/ZgKzo6M2//N4dpLLZR8Wu9z7EFqyvI+7m0g0/MV1O+jcqcOvZ9leezvWhjFcVtZaM9Nr95gHUv5PhsK1yuxoYp50cz7PFsrMlHO9JQ8A4kA9j6/9T3jw3C+1sZdEcGe39QY6nEsyPQ++uIG6J+vmWba6naV8/2j9QYvsfYaBpKbFTuUOO00HQrwfFH47S6gibvDLPEsyMQbsGB+erg8dj+EWj1WqoOqd/J5poWHHVqZ5dnwFRdW4Im9dwYdRZZ26w9jV7B5XRTv0995hqt4k32mWPbOs4a1djSGm1BCMGRX9Tn5me10COph7fj7Pbbb+e+GffjTxCREZFERUXR1NSE2+1m+/btZGdne/8bysjI4KmnnjrBpyZJkiT9L/vwww8JDQ31/mYEBwezdu1aWlvVnFVoSCh+Zj8CCeWBGQ96c14TlD+RnpqOxarGR4Vr1CpL1mj1taPeiaJRMEWp8ZKzpVVdAheo3WfD5XChNaqvbaV2FI1C8lnqklo1BY1q2qJtjI692uEd5F2T14TWqCV2QAQABxcUIVxu4tvyVNUH6qk93OB9fyFJAYRlB6n79jRSX9hM8gQ1Dtv5WR4Vu2rVSkBA7KBgjEF677X2LyjizNvSCe0TAC2w9rU9PpPvFI3ik18JSDQx9LFsepyj5uOKV/vGPutf2uudOe9RtKGSwnW+Mdr+b/Ip31Hjs8zbieQuLSVvuW+ly4ptddTnN3Pg+zzvtubCFtY+v4f93xX5HFu8Tg0kBz+USb9bU7zbTZ6B/Q3qc2+pdavvv23weP87UjFYdN5nF5JhJSQz0Hv+9o/yKPlVff+WOBPmMCMH5qlxWsoF0fhHmrEEqYFT9d467LVO7/MyRxhoKGr2VtYyBRm9VUuD4kw4GpxU7lFjVWusH26n8J5rCjT6VAx3udzUF6oddOE9g9WKTHvajm3ryPVUjUIBZ7MahwWlmQkKCuLMrCFMUC7hpstv5a677qKfeQh69GSkZ6Bpq1pfU1PDSy+95JPzGj16NHl5R5+/JEmSJAHY7XYmT57s09941VVXUVxcjNvtxmg0EhkRiQETWcoAHnv0MWZcfzcTlEsYlj6KkJAQQtuWEXPUOVE8Y0XstA1SaiswsLsS4RaEtOWT6g43+ea8hPqbCVC1ux5Xiwv/aPV3uXJnPfY6J6a2gc16gw5LiNE72Kb6UAOm0LZzd9bTXN5CZdsEMJNJjzXOj7S2/sUDPxRiDDVi7dE22HxdhVoJqE1E72BC24oe1O5vQlEUzmiLR3Z/WsDa1/Z4KxnZG9TfaKP16GSvXtckMvhBtR+qfEutdzAMQP7icta9kOMd9AOw74dCag40UtpWFcjj4KJi8n5uXzn8ePZ6N8Wbqtg3t9hne+Ev5d7JaB47P8hj/cs5Pm0q3ay2MXZEKEMeyfI+F8AnpgTY9XHb+69XByENuDmNg0vUCZgRA4Kw/H/23ju8sfJO+/8c9WZ1ufduT/X0mdBDJwRCJyEEAgQIkAAhtCS7v2STLAkpmwALG9IgDdIJJaGHNo0ZT3fv3ZaLLNsqtiX9/nikI8mSBrLvvu9usrqvi2uwjs45Tzt6vuf73M995+oo3irEGby9AUb2TdHxW7HeVnFmAfPDfplYlL/ejr0yHqdNtc0y1eaVrxUJhemOii0Ubc5FrVfh6xPx08KUn0BU1AAAhYSnX+TDCj9gR6FKED0wKFkOhJg8JI6r1Iq4VbEWFApJzp/Zyo2EQxHGDkbjP4uOstJyTuECkfO66dPccfOdOCnAYXNQWFDI/Pw8i4uLvP3222zevFl+hurr63nwwQczdVsWWfyXI2v3lsX/Ndx1111873vfY3l5Oe3xgoIC8l35LByO0LRmHXUXljE94KXtiSGWfWHUOjA4FfgmwywGllFGF1NmDvqQzpcwOsXEM9YyRdn2AspPzqPvz+P4p4NoElSEJKWEKVcEAh1PD2G5q1Y+1z+xiNGuw1Cok5WIzIXCps03Gabr1SHMuYL5PNW9IBSCogtrE0dmqDm/hNrLi+l4eoj2Z/qZ6o6TlrQ2DdH3bHyTYUKBMFs+X8feB9s5+kQ/pkoD81EGrqPKiFKroGhbLlNHesEHuRvM5G9wcPiHvex9ML5bHyC4EIEIsmIAgN4JTTc1MnHUQ9cfkyd3gM4VCRQA30iA9qeGUj5Ph+G3ptJ+HiMTpcAA229vYGEiwOEf9sY/DyPLSYOQ4I5JdltqDFScls/BWLLKACq9EketmR7Egt6ur7ViKBV9UHNpEbYyk6xmkLfOITPXAY4+0U/uBjMT0QXC6vOKCc7GAwGFUkIVVR5w1eYwvHccd4xIdkoBSq1CJjQtB5aRlHGyUXg5wmSbSEI1fKwUhVLB4oJYHAstLxNejjC1T/SvpBBsdxBjWqFQsBQUf+cU6QiHw/S+Kto3Rmgqp5FyqZEdlzQSWgzz+jeamSzrxlXslNnNc3Nz7Nq1i7KyMnFOeTkul4sXXnghaxGXRRZZZPG/DNPT02zfvp2Ojo60xzVqDfV19cwMz1I6s5pT7mhCoZQEuSXKrdGaxRw0uGeC+g+XYa4QtmeRQASFTiHbpS35llFqxALHyNteSj4QJhyOzoF+sQu/8rwCep4fZaJtCnuVVS5HOBQhFN1VNLJvivJT8qg6p5Tptg6OPj2Ic5VBtiFTaRQoVQkqlssR6i8qZ+fXWuh9YYy5oQWZHKPUKFFqFBRttdH1ez/dL46y+dO1uI/O0vfiOId+1stCf5xEZK8R6kmxOuGHdTdW0vHcKJ4OPzu/2pLUfuFloQqViHU3VqK3atj9jbaU9vZPw+Ef9aZ8HiMPvR+0/yY1RospFKVD9UWF5DZY2fmdFrlPl/whiMCSL172vd+Mx5Vrrqtg8K0xWVWpcJMTlV6JMVfPQr+f/pcmmGyfk9tuy+frGD80I19fnaNCoY/30c5vt2AtEXF348dKsZQaOfpL0Q7GXD2SQsI7Kk6e7ppjdmReWL/ZwVxoZNEjkizmAkEOnx8W8bnWpGZxfkm2vjO5EkhXiB1kMWuTwg1WiMDwAdHWRrtIWsbs9MKhMMs+MV5j5K1Fb4ht0uk0nFuCrTSHA4/30D56jPyTcpiYmKCtTfRxR0cHX/7yl/nyl7+MTqejsbGRM844gwceeCBjv2SRRRZZZPGPie9///t84QtfkAngK5GXm0dRQRH+Qwqq8uvZcEMlU91e2n85RNCzjN4qyDhz/QEC3iDKqB1IILpj3+gUc9TIwUlq80spWG+h9y8B5of9GPPjCzEKlZKcqPLkwGtuHKssaE3R3f+jAWylJnLydLISkbXMhM4qCCVtzw5giZ47Nx5AUiowRvNnY83TrLmqkrqLi2j/3TCtv+3DMxiPpYx5urjaeAACnkU231HLu9/toPtPo4w2x8lBBqcOtUlF4UYHU4fnIACWKh3FH8jj2JP97H8orv4IsOQHwhERx8Sgg+13NDJ+dJqeZ1MJ3/0vp8ZIAU+YzjT5sXRwJ1jFJSKmaJQOWz9fh28yyJGfxL8TCUUILcbLPbJrWiYw6fJ11JyTH/++TmzcczaY6XtJ5MX2fKNNJqSVnuYid62VfY+J9slvsqLSKVFEFa+6/zTKTNcc0y1iDDZcWkFwJp7zUqoUqKLjylKlo/+tMabaRJ6q6pwSNDlqxg6KsoX8IcKmBLuRpWUm2zwAlJ+Zh0qjJBTdbBeKhFgOhBh7NxqHaxUszi/JdVIoFYQC4m9LhYlwKMzQbtE/eqsWIuAMFHOyVMy2CxsILYd468HDjOS3UlhdwJHDRwgEAszNzfHmm29SUVEBQFlZGUVFRfzud78jPz8/Y79kkUUWWWTxjwev18sFF1zA22+/nXa9UaVSUV9bj98dpNBdz44bV6M2qtj9gNjQFQ5H0EY3xQ28NY2jxoKxSMvUEVheWEZv16I1Kwh6w/hmAnIs5WkLsji/TDgk5sDFhWVUWhWV5+bT88IYI/umyFtrl8uxHAyzHF0Hmjrmpe4jxVR9sIDmti5afjuEo86ApcTAbJcPtVYhr00BhJbD1F9cyu5/bWVsn4eAdwlPR3y9UWNQ4Vplw9s7ysBrbppurmKqy8vAy24O/KhHJiEBuBot6GKEqKD4r/HKUgbeGmd+KChcThKwvBhOdqwB6i4rxlJqZO9D7UkEIRDXa30qdeP8xH5Pmt5Lj76/pJKZVpKeElFyiouibU4O/Hsrweh+wCV/CMKwFIiXvfnhOJG97tJixg5My6pJBZudaC1qzIXC8m5iv4e5Eb9sY7fxthomjngIekVMZHBoCSWoHe3+bivmqANL2Vm5OBsttPxabJA05euQVAq80XXmme55BvZMiGtpwVlnxT8l7qN1agkvhfFNiL+NLh2+mSD9L4p4yVpqSlJrD8wvEZgSMV7hBjuRcISxoyKGM+caUSgkvJ3iWuFwhIAnmkszK0CCxdll1ksfoPKkPPLXOjj6s246+3qwnaRmamqKY8eOAdDe3s7dd9/N3XffjUajYdWqVVx44YX80z/9U8Z+ySKL/xNkSUpZ/Jfhhhtu4Kc//WlGUpLD5uD0M09n6rkF8OnYdm0DkUiEPUfahMLQheIHFWDk8CTlJ+ZjqjHim5xDgSQvhoFQPIolcIZ3zlC6NV8mBIUCITR5eopPdTL0+iQDOyewJFiPqfUqpFzxA9/5+2Gc95up+3ARBx7rZmT/lGBFR9UNK04oRKlV0PXSiFAo+pcWqi8U7GX3wTmqz40QDooJa6p7gR13NhLwBGl+uDtloreUGFDplDLxar7HR9NNVbT/tpepIwvs7G6JW4cBFWcWioSPgfjnBjA4Bblp5eKZqThHTDi+5PZfd2MlxlwdBx5twZ+wqaxgm43y0/LpemFIVil6L2y6XSgO7Pu35ATSps/WoMlRJ5fJB0jIO/pi2JXQLo41RlldCqDughJUeiWGUoOwb/OJxa5Y/dfeUEHPq+MyuctaYpRVsgBafh4PjPROaLq5kdm+eUFSMghyVIyNnLfFIohl0ftXnl2EUq2g/y1Rh+Hdk7gao6xog9hxNtkpop+iEwUZSpKivr/TQTzqiEwEs5UlW7uElyIsz4tANn9bLkRg4F0RhFlLzSgUCtmuLrQckhfODKUG0acLSxgkA6d/4Cyc1VZcY1XML/iouM5Gd083r732GiAsFPv6+nC5XKhUKmpqalhaWuLVV1+ltLSULLLIIoss/nHQ1dXF6aefTn9/f8bvbN26lbUNa+l9YgZnYw61Hy5hpHmSvhcmWJxfQm/XorcLQk3Auxi3re3yo1AosFda6WOSoYNuKk8qpHCTg5G3plhaCMVtuAClWoGr3kYno7T/egjl1Qo5HlGpNKi0Spxrc5g8PMds34K8Aw0/LIwHGDsUlTDy+ynZWsHSmmXe/XYH+x/qwrk2B8dqE1NH5/HPLqJIiCvyNzio/XAJO7/dwtTReXYeTY6N1AYVtmoTfS+Os9Dvx1qrp2hbLsee7Ofd73TECUqAtVaPMVdHw0eKkhIa9gZB1Dr4WA8roVBKIEkpn+/4YiP+qSAHHk0mcm++o5blYIgD/55ZLTMReZusVJxeQMcz/Uy3xoNEY5medR+vwNO3QEuCWlSM/GUu0MtWbQOvTMSt1yr1giAUrbPeDjmFemo/XCoTvg/9oEduF2OZnorT8mSLXWOZHpVOiaUkHlcnKjhtuLUanUXDzq+Jflj0C9J2rCzB2UV2flWUV5+vI2+9DXt1DpP75/D7YX7ELwhQQNVZhURCEbnsxlydkPeOYnZ0gekOEb9WnJuP1qjG0ysW6MKhCJFwhMm94rhCo2Bxbkk+V6lRxtuqXEdoOcTIPnGfnFxBhPePBSiVqti6vY5IGPa2t6PKA9upat568y2GhocIhUI0NzfT3NzMN77xDfLz87HZbJxzzjl8+9vffu8OziKLLLLI4u8KX/nKV/jGN76Bz+dLe9xqsXLGmWcw90aEZTdsvqoWSSmx93A7gShR1pwv5pmRA25yCvTkFGuY6w8goUCti6doAzOLMrlkcv881WeEZfvUxYVl7Dkays7Ipf/lCXpeG8VeZZLP1eVoUEVJ3oOvT1K4yUHlmQUceryXwV1u8tbaCESVdSpOLEBrVTPaPEtgIsCur7XI6kVz/QFCS2GWooQbT6ef7fc14J9Z5OBj3bz77WRivKXEhNqowlCswzcUwDcUYNXVZXS/NC7Uhx5skRV9AGo/XIrapJIJU6LwyISqXStyajl5OpDi8U4M9ZeXYKvO4cCPeuR2BqHgU/eRMnpeGs1IQFqJdZ+qRKVVppCm1t1QgSFXz66vJceaSBIKdXLOK9ES2Fqjx9MZJ3bVX1iEwaXFUqUT9m2BaM4rWuyGK0sY2euWrd1sNTloTPHNcj3PjsUJWjrY8blGPH3zMklp2b+M3yMWqOyNJjr+NCQfqzlfkJKmDoo6DLwzQf46m3xvU5GBqbZZ+Vy1XiXbCi76lpnqnKXzD4LwlddohwRVzmV/3HY5f72dSAhGDogEpK3SjEKpYLZX3Ci0GGLJH7WJswp1TP/MMjpJx6lNZ1K40UXhTDXTLfNUXGOjd7CXV155BYDBwUH6+/spKChAqVRSW1uLUqnk2Wefpby8nCyyyCKLLP5x4Ha7Oe+882hubiYUCqX9zsaNG1nX0MTALzyYCrSs+Uglo/sn6XvRTWAmiNYqLM6C7iALE3451gq6gyjUChzlZgZwM/Cum4YCA861NobfnmJxZhmlMp5/UOmUuBptdP9pjIHX3GisagJRUrCEhMakwrXOgvvQLFMdXvLX22VykKd7HneLmF+Dc0HKT60iOLfE/u91cuSJfswVOmwNJmZa5/G7g2jMavlcV6OFhktKaX64lfmhYMp6oM6mwV6RwwBugu4g+gItpSe6aP/1EAd/0BMnKAFalxZrlQmtRZ0kOmCuEGSdtqcGU9pXpVGINdcVBKVt9zTgmwykbMxbf30lESIc+mHqhr10sFQbqLughO6/jDJ1LK5CrjVD0y0NeHrnk8q15FsGCXS5BoJeEY9P7PfIxCitSyuU0WPl1YKjzoypSM/+6Hpm+6+H5HbRmhVUnVdMy68GovdVoMlRYyk1ELvrngTxiNVXl2EqNLD7u1HiWzBCaDEsE6CWFkLsjuXItFBygovg7BL7j3ZCEKY6vMxElcSrzhDx9sBrYnNdTpEBTYKV8XTvHJ5esW6Zv8mK0aFjIaberhAbKd2HRJspjUr80/FO0prUBGbEe4O5QsdyIMTIYZF3tUaVz739QfKkIjZurEFCoqClAbRB8i+x8Pbbb9PX10ckEuHAgQMcOHCAf/7nfyY3N5fc3FwuvfTSLGkpi/8yZElKWfyn8dRTT3HttdcSCAQyfueyyy6jqqiad/+tg9KNLopqnHStHcK9e47wUjiJYOKfCRCOKuzMdQdRnqKkeGMeE7vm6HtriIpTSrA1GJiJLdLE8hI+IAL5a+30Pj9O9/P91F9SxdQR8ULsrDZjzNNT8AEbo+/MsPNfWlj18QTChgREizH0+iRFW51suLWa5oe76PrzIMZcg0yS2fiZarQWDbN9c7gPzrHr663onfFyhEMRFufjQVPDx0rJKdCz91vt7H8oWYo6d4MZvUtLw0crhTVbAhEJH+z5fhuOKmMScWn77Q1ISomd/7IiMYIgTbkPpn6+7BMLRP5k1WtyyoxISgm/N32Qlw4qffqfjODcEsqEvoxh19da03xbYONt1WitGjqVgzJJau+32sndYJYJO4Bcf4NTgSlfT+PFJbKy1Lvf6ZBt/opPdVK0xcmeh9rABxqbgUg4wnRUnlxvgD0PxJUOKs8oRFJI7Dwi2uzwD9soPqkIfOJeZSfnMbJfqBu5asXkvegViRSNWUXns/FyF250JMlIjh2cFj6xQPk5eSi1CqaiBKfY5+6o8kMkHGFuLF5flU4lTGUBY77EUnCZoXfEwpmtRJCfYiQtp9WFa2MuitftGAp1VF3m4s/P/5m2jjY0ag0dHR2EQiHKysqw2Wy4XC6cTifvvPNOxn7JIossssjifyb8fj9nn302b731FpFIJO13Kioqufiiizj4aB/4YctJdYQWQ/Qyw+ThOWovAFedlb4XJhja5abs1DzUeXr8035UamU8LvPD3KhPTuDMHvPAyYWyFdvswAIFG+3kbbLK9l/+hF3b1jITlmIjQ6+7aXt6ENcGMzqHDpiTrR/MlYJI4x3yUXV6IeOHPfinhU1b94uj8rVqLyghvBRh6mgrx6L+8jFilXfIhylfj96uxz/sR2+HtTfU0/fqGOP7PLKFmXytC0sF0SVBPSkGT4efjmcGZWUmgLytVqrOLGRhNMChH6aSlNKSjfTJpOhEKLVKJFUqqSkTQoshFGoJS4U5iaS00O8nvBwhFEyO4XpfGKP3hQxWcnpY/bEKQoth9kSVn/zT0P6HAaaOzsvfSWyXhguL0ZjVsrLVQr8/qU0331nLdM8c3X8U/bW4sJwU2w//dYSu30cXs7ZayVtvw1So59B/9OAfCzC0a1K2kdlwXTUqnZLx2K45iSQC2Pyon5ZfiMRR2Zm5WItMRIIw+tY0Y7snMBcb6PqzuFf+epu8kBtDbEega4OZ5UCIzteESlXeKgdKlZLpTtG+Ae8iEW9Ebg+lViknH521VioqC6BDj3vEy/qbKhicGODpp58GxM7OsbExWltb+e53v0tlZSWLi4s89thjnHvuuen7JYssssgii/+xePXVV7nsssuYnp7O+J2LLrqE8vxyDj/ah6M8h5rqInqHRhl3z7LkD2FwaYXVWgC8wwvEEgeeLj9KrZLcNS5G3vHS+cogdeeU4libw9ThOSIr57FQhIKNdvpfnqD7pVEMDi3j70ZJIKUm7JVmik92MvTGJLu+3kL9ZcXxk6U4qdp9cJbyU/NYf00VBx/rpuNPg1jKTQQmRF5vzSfLySkyMD8RwN08y55vtqGzxi+1vBiKK+YAFefl4ag2s+97nUJxKFpXEMo9ljIjjRcXC2u2WOow+p13v9uBrd4YJygBW26tQ6VTpizCgSBN7fp66uehYIjwUjiJoARgKc9BqVEkqRq9FzQmlWyll4jA9CJaiyapfgB7vpmqphnDmk+Uk1NqoPP5YdzNYnHy4GPd2BtNMglJXDz6r07YE5uK9Lz7LUEAO/QfPfI9XestVJyez+EfthPwgM6qE9a3UQs2nVW0aQw1HypGqVWws0W02b7HOqn4YJ5obx1Un1XIyD6R88op00WVN6MK4C4d7c8MCtUroPQEV1K7DO50o7WIhTTXegsas1pegNWZ1SDBbJTwJEkwO7gg11Nr0bAUteRVu3QE5xYZ2iUW6Jy1ViQFMrHKarCzea0LXrWCDtbfXM4Lf3mBlpYWNJp4zquiogKr1UpeXh5lZWU888wz6HQJti9ZZJFFFln8XeCaa67hV7/6FYuLqfkUgLLCMi669CI6fjlBcDJI07YqIpEIA3iYHxKWt45aK30vuhnaPYnWosHglAi6QaVWorNq5GtNdc6ij9q0zXaLuVRlFPmM6e45KqtM5G+xMbZ3htEDUywvxOMJZ50FaiyM7Jpm4DU3swMLGPPEvBOz4IqpJXn65qk6uxBv7xxBb5ihnW7G98UVtld/tJLQYog9re10PStyK1ozBIPg6V0QKuDmKPlGCxtvrGHwHTcT+z3s+nayBVrDxSXorBpZESrxWNAdpOXX/UnKTJZqA6uuKGducIEjT6RugDz281SlJBDWwwFPah+pcv42usHiQgiVTompWJdEUgp6RXy3vJAsxjC2d4axvTMZr7fhhkpCwTB7vx0lFgXh6C96ZGWjRFUpgNpLSskpNGCtNeLpWCDoDSfFmk03VTE7uEDP8yLPFpxbRhcMyedPNLsZ/KvoS0u1gZITXVgrjRz5cR8EoecvI/imojH2J8rQ2DSCJAVIyuQ9j96BBbn/XessuOqtKBVKJt71MNPhYabGzMBrIudVtM1FJBSvB2HktXJzmZbg/BL9bwoxhbx1LlQ6Jb5hMS79M0EC8/G+05rU+CfFhSxVNsqKSsClo7rfw/prKhlZGOJXv3yKCGEWFhY4evQoR48e5Z//+Z+prKxEkiQeeeQRzjrrrIz9kkUWx0OWpJTF+8bAwABbt25lbCzD4gdw5qlnsu3EbTKJpqaqVt657D7kpniHi9Itebh3zzGyfwrXWgt6J/gnQZujla26fCMBprs8qDTipTc4FUGpVpDf5GCm1cfg2xOUfzAfS42B2U4fi/NL8mKEfxJ0Dg3rP9XArq+3cvBnPZSfnMfoO2ICW/PJcszFRsrPEfZwu77WSt6WuI+oQiGhjMosTh1ZwHG5jaZbqjjwSDctv+yi5IPFMjmlYJuNijMKmO2b59jPBlLUk3IK9EmLNYBc5olmL5JqmPG98R1d1RcWkrvGytCeSQZemkhSGQIY3jOJudSY9BkG2H5HA6PN0/T9OVUi8djP0gcTHU8Pkd4QJjNW1i+GIz/uy3ySAbbeVs/8iC+pLK3PjNBwYWGKilPMmm37FxogHFde8k2Gk4hBsgpTdM0ud5UFpUaBwaDA5wsz2+lLIkk13dzIsj8k72o78qt+8tZY5GtVnVXM3n8Xx+xr7CCBPxpEKDSKpCRZwQYHbHDIpLCDj7WJcxCkpPwmu5zsWZoXJLGBaNLFWmLEPxOUy602qpCiyhWONUZ8kwE6XhIBR8VJxai0ShaGxDjwji2g0avldlUbVLJ9nSlfg8loYnPuiRR3rmbLrXX4l3x8/9++TwgRRHd0dNDR0YEkSZSXl7O0tMR1113Hl7/85cz9l0UWWWSRxX8bvvKVr/C1r30tY4JGhYY7PvdZpEUlzQ93UVqdi16nx1oiSCXhpbBYUIliYTSAf068fPqmltAY1FSdVsiB1m7anh2g4pQCjGXC5ktv16KKWkn4p8E/FcRebaIHGNs9Qe4aK+GweAte8oUo3u4kOLfI+B4PA29MMHU0zo6uObcYIsLqrPvZUbqfHcW5VhCAl+bFTqi8VYLwNPLmOJtvqqXl94Ms9PsZPzjDyLvxJMSWu+KLV4kqQQDo9Sg1CnLX2QTZJUqmiakh7X2oHXu5IYmctP3+BiJh2P1AaxJBCWB8j4fCTQ46ft+X9Pnqa8oxOLVJO+Vl+JFJQCsRkxl/v5g8PMfk4dTFuPe6VsW5+eSttSV/xy9IXe4WT9J3YwSlinPzKdhoZ2jXpNym+77XiWuDWVjB6ZEt4ADQizjEmqCqdDTB6mT1teWYiw20/baP6VYf43s8WEtNtD8nEjJNN1cxO+CTVZaUaoUcDwEMvj0h90fV+QXYqnKou6yY9l8PyZZvsX/X3yTUjmL9GvAsytZ8zrU5SJJE/1/F+4ur0YZKp2TRHX1v8CwxO7Qgn2vK1bMctTLR5+nwTfkZjSbBije4kJQS7misKoUVVJVWc7p0CeiFmsGbr77FX3e+jtFgZGRkBL/fz3nnnUdOTg6FhYWEQiH27NmD3R6Xg88iiyyyyOJ/BjweDyeddBJHjx7NQAiXOGnrKZxyxomy+k1dea2sIDN1eI66CxQUbXQxvnuW4d2TFGy1obMqCIyF0du0wmoWIABjB6bQmESctjglcgOuBitTh+foe32M2g+XYKs3MtO2QGA6iKSMW6sZXDrW31TL7gfaaHt6kJJTBUEJoPaiIhz1FirOXqL3L+Ps+WYb9sa40pKkiue85voDOOosrLuhgkOP93Lkl33UnF0ok2qsNXoar6jA0ztPy88HUtSTbKVRpZ8YeSeAUFKaDDDbHUgiugAUn+yk9KRcht5xM/Cam5m25JxX72tjcUXrBGy9u57RfVPybvNECDu3VEu3/pcn0lrAHQ/vfid9lqz9d8PHPW/zHbUsTARkQjVA5zMD1F1eLrdlDDECzta765EUsDu2mS4ALU/1ypZ6sgpTdF0td62wekMnGjswFkgiSW24pZEl37JMVDr00z4KNoi2NBTraLiohGNPCoK9q94CCilOFjKq2PWv8ZizZIcLFBK7DifkvBpE7JK3yUbpSbmM7JmSv78cCMmkOXtNDr4Jv0w+01k1qAxKuRxzwz563xRxWeVphWhzNPinRd54dnge/axWvq7eoSUQJf5binTotDq25J5EYWsj66+pAl2Yh777MEH8SJJER0cH7e3t6PV6ysrKALj55pu55557jtd9WWSRRRZZ/Dfhpz/9Kbfffjuzs+kVD3UYuPHWT6EJaTnwWDcOpxmDzoDeriI4GWQ5ECKn0CCTT6a75liO2o0GJgLobBrKTy5iprWblmeGqDw1T1YOMrr0ceWaIMwNLWCvyqGfCcYOzVB8gotQ1EFlybtM+QfziYQijOyapuelUWY746SahkvFnDPyzrRs82prELFX0LsMSrDUmJnY72HgHTdN11bR/eIw3t4Ag++4mWyPX6vp5ip0Ni27vt6C+9As7kPxttFqFWhz1OQ2imvFSCqxOjU/3IWl2iBblYHYXKZQSez5ZnsSQQlgtsvH3IiPjueT13trLizEXGpk/390ptq8Afu/15n6IbDvu3/baqN/NCgrca9EppgMoHC7nZITXOz5frIN3VS7F29/ch29USXH/C02Ks8sYPDtOLHoyI/7sDWY5HYxFWuZH0pQJLJpsCQQiTr/EI8Hay4sxLXaSvsfhpg65mW2y8fw3knGdonYc9VVpcy7A7J9nVKrRKmME75H9k8z0zov1yevyY5Co6Djd8O4D82iNigZaRYbJdbdUIekQLa480/4kaLkcVOxFpVOQddrYl3YudqG1qQmOCPGQNC7xMiBKYJRIpKtMkdWvte6wDuywER0jJVuy0WpUTLTIcq8FFimJLeMD0oXAbDt9gZ2v7GX195+Bb1Rx9jYGD6fj7PPPhuTyURhYSEGg4GXXnoJl8uVsf+yyCIRqdtDssgiAXfddRcKhQJJkigrK0shKOkxcf999/P5W+7hdOkSqlwNREIRDFFfzvBiGL1dvGD6J4XNg/vYbPRvP3qzlvrLqwDoeXGYgXcmZGUcW4VFJuTMdvpo/W0fy1GlpcWFRSSFhGuVFYD250ZQG1SYKsXJwdkl2d8TH+SusrLtvgZATD6jzVMyoaf0zFyqzipi9SdEMLHr661Jk6C9MiepDh1PD8n1G909QygYZrI9HiyUnpnLhltFnfZ+qz1Z9cgAq64oZ+vd9QBJBCWAscMewssRJpuTZY8qzssDAwy86k5aAALIW21BSiBWJaLppirKz8lL+TxWlv800pxrcCrY+JlqYVGWCJ9YeIq1ofzxgE8oSAFVFxSkXG/Ru4RvOjkKSiSH1V1YRtNNVfKx5oe72fntFnyTYRxrjGy+vTblejE1I0OhjvkeH93PCHZy6Yn5qPRKTFHp9aHXJ9n5Ly1y/1SdVSSPH4CDP+qh/6/jctnX31yPfzJqZTKzSHg5Qt8b4nh+k02oOUVJSUqtQk5MmioNTHV6ZWWospPzMTh1KCKiL3tfGWG0eQrfpBj3trIcdAmLzUHPIuNHPOLck/KRFJJMxlsOLGPQGjlV+ginS5dw2223ceEZHwEkTEYTU1NTDA8P85WvfAWj0Uh1dTWlpaUZpeuzyCKLLLL4v4/p6WnKy8uRJAlJkvjnf/7nJIKShIJLz7ucf/riP3G6dAmnSB9GrdKw7BekCnfzBJJSovw0YU07cWwWnzsgFHIQJG5nrVisWOj3M7J3ioHofKVWKzHm6qg8PR+Avd9sZ6rTi94u5iR1jkpWVPRPh/H0zlO8Vbx0ju4aJbQYJhQtR3B+kaZPN1J8kpCb7HtjnAOPxhdRtt/fQO2HSwAYenOSnV9tkRV09Hk61CYVFaeK+KX72VH8YwH0+SL2mu6ZS5IxBmE7a64Uako7v9XCkQTJ6aZPV1F/STmO1Sbwk6RIJOoSlHcNydBD+Vni/gce6cY/nWwrordpkqzHYrA3GGj6dBX6dPwTfZrP3i8ynFt+Vh5rrqtI+VylV6JQS9gbkmOyoz/pY3yPB/RQenpu0rGxQ7OEFsO4j3qTPo8RcrZ+pp51V1fEy+KHnV9tkZVCmz5dRcH2eMXdLR6WFpbl9tbn62j/zVDcas6hxdkYt8d997sdMrlrzXUV1F5QQt4mKyDGwMi+KXnH2bZ7G3DVxRcwfVNBeUzYG4S9cvsfxWKlrcaMQi3hmxFjc9G3xKEne/FH1Ras5UYc0WdCb4f+N8foek4Ie9efV4TBocc7Kq49cWw2aazoHVqW/FFlsAI94eUIVTkNnC5dws2fuIU7PnsHBkQdtVotnZ2ddHV14XA4KCkpoaSkhAceeIAsssgiiyz++/D9738fnU6HJEnYbDaOHDmSRFDKwcp9d9/P5z71eU6XLqbaVE9oKSysxxA2WLGd8wALY34mjnoAmBsLYso1UHdBOQCdfxqk59VRWZnI2WCVLXADEwGOPNnDoi+6y9kTQqlRYK8V80jHs2Oo9UqsNWIi9rkDLEzE1Xhc9VY5z9Tx+2GGdrnp/YuI8VzrLdRfXMqqq0XOa++D7ez/fnxxybXagjE3OsEHBOlHlyvq5On0s+hdklVyQJBU1t0g4o/mR7vE4lKCGtD6ayrZcmsdQBJBCWCydZ7lQIiJluTPi092gg7czbO0rNi1b60RJHS1KXWf7aqryyg9LcMiyP+JkE6ac3VWYQdnqUo9qNIpU3JeAU9YKCGBKOOK03zjyX0IyKQkW72Rxisq5HYGOPZkPzu/1UJgLEBOmY4Nt1QnnbvgDjDVJeI2Xa6OwERAHgPlJ+eitajRuUQZ3Qdn2fW1FkZ2icWv+o+Usu3eevlaBx5tp/dVkf8t3G6n6ZZGggtibC75llj2hxjbK65duNnOTNccAY+Il9VGlbzoq7MqmGyblcltFaflkVNkQK0ScfTAG+MMvj2Bb0i0Q26jDX20jOhgfsTHWNQKuPy0AhRqBZOHRL405A+hVqo5UTqP06VLuPWW27j47MtQoMKgNzAzM0N/fz/33nsvBoOBmpoa6urq8Hg8Kf2XRRZZZJHF/xsEg0G2b9+OUqlEkiSuvfbaJIKSChUfPvEjfPH+L3G6dAknSOeiU+hZis5BU0e8KNVKyk4S+YzxQx7mBuOkFKNLR+5qkZcIesP0vT5Gzyti/UetAFuFidITxLnND3cxdmAafYGYd7RWDZqoAwZBcB/zkL/RBsBI8zSL88uCcAQEpgM03VIn4heg+4URDjweV9/edGctDRcJJ5epY152f71VtiTT27XonVpKdohyDP7VjX80iNYZnaNbZlkYT9hZh7BRM1foCHrD7PxWC0cThABWfayU1R+rxLFKxIwx67EY5kb8+MZTnXBiZT/y4z6ZwBKDwRkl1q9IlWldWtZ8shytOQ2tQJv60ftGhnMLt9tpuKI05XOlVolSo8RWaUr6vON3w4IUpIXCDyQn5mbaZln0LScRwgCZKLTxthrWXlOVVJbd/9rKgUcFwXv1x0vJ32KTj022ewnOLskKUFqnlv4XJ2QiUU6JEVejVf7+wR/0yApPNRcW0nBJ/Hoju6bpe22MjigpftOdteSts8ntPzfsZyHah/oCLRqLhq6/iHFtqzaj1ChZmhdfXl4McfRn3TLZytloIbc+Wg4tdL04TNdz4j7VZ5ViLjISmBbXdh/2MDfik+tgKTPJeV6tU0s4GKbUUMlp0ke4/iM38plPfxY7eYCETquju7ubgwcPkpubS1FRERUVFXznO99Z2X1ZZJGErJJSFknw+XysWrWKvr4+dDqdbOWmUqkoKChgZHCEay+/loLaApZ9Id79TgdKpRKVQ0XNRUUMvz6Kq97C+usq2fkvLcwO+7BXm9hyVx17v9WOUqukeIcLY56O1l8OsnzOMnqbVia9lH4gl+LtTnZ/rY2W3/Sz6vJyVn28lGM/G6D+4jIkSWK4cIqpIwssnbGMo95MFyNojRIqnZLGS4rZ+80OPH3z5K+3k7fDyvhODwqtlCSfl7fOhmuNhT3/Gt8BP9ktXnw33laNxqImML3IgX/vRpKQFz4KPmCj4jRBqJk44iGnSI9CJclklm33NUSl+iRyN5ipPreYob1CFWndjZUYnFr87iDDe91svbeekD/Evu91Un9lIfYqK2MHp9n9r62s+WQ5pgI9u74m7OQKNjjIb7Kz66utGAp1rP9kJe72WTp/MyzkJSPIhJstn6+DiCBI6V1a8Z9dS+svBmj4aAm2yhx2fqeFHZ9rJBwOE16MyCSZHV9sxBsN7JRaJTu+2MjBJ/vwDfgE61qtQKlREJxdRJOjZmE8wOEf9lJxXh4FTcLyrPrMPNQGJWqjWlZeioQjMvO89IMuire76H5JqEhtvKMGrUmNtczI/u93sf2+BoJzi+x/qIuCbTZ2fLERvyfAgYd7aPp0FTqrhl1fb6VwiwOtTcPGz1Sz//tdONYYqbugjJH9UzhqclDnqNj+hQZZTUmpV2KvyKGbUdZfVyn3YdcfR1jyhdDZIsz3+DA4Fay7qY7wUoQ932iT7fyCUeWJjZ+tRmvWyOSz2C6/mOpVxRkFeHrnwQe1lxejtWhQRhcyt9wlrhtr7zUfFWPa1mDAUWdFZ9XS//Y48z0+Nt1egyZHTWgxTO/z42z/QgPLgWWGd09Rfk4ehZsc0ftOsvEz1agMSnmRevv9whbQNxGg6EQHZSfnEYlEyDeVcPdtd6O1aoiE4KGvP0Z+nZ35uXn6+/tZXl7GYrFQXCyk4e+//35uuOGGv+UnJIssssgii78RP/rRj/j0pz9NOBwmEokQConfcpvNhl6rZ3Esws1fuB5JKdH+hwHsegsRKcLWe+rZ8402Fr1LmAr1rPtUJYd+0MNyMITBqSVvqxV36xzF251s/1wDu77ayvCuSUpOcNF0cxUHHu0mf4ONwi0OBuwTDL05ie/kAMboopRrgxlHnRlbtYndX2+j448DNF5aQfm5efS9MI69JgdJIYIr/zREQhEqzi5g8vAc89OLIIFztZmhNyexlhopPzmPgXfcDL3uFgpM4WhgFlWgiRBh17dbca22QxiOPt0HiJ3pKqMSKSKx82st5DZY8fRFPdwvLCBvlQ0UUHF6AWq9EoVaISscbb+/gbkJP0wFySkyUndBKS2/6cXT4WfrvfUQiasebbuvAd9EgMM/6mXzrbWodSrC4TADL7tpurkKjVktf1epVcqSzXlbrVSdXkjva2PkrrGid2hZf5NQ8wTYek89i3NLKNUKNGY1hBGKma9MsOa6Ckx5Onn+3nJ3HSF/iP0PdWEs07PuqgpCyyGUGiWevgUsJQb5ulvuqkOpExsJ9HYFTTfXM9Hqoev3IyhVCgjHCVmb76yFSNwCZMddjQAMvDNBzblFuOotHHi0hT3faGPzHbVIaomx5hkGXplg+/0NzA746Ht1jJKTXOy4s5FDP+9lod/PpttqUOgU7H24Hb1DS/kH83DUmzn6kz60ORrUehX2BgOORhuuRgvh5YgcG4aXIwSjMuib7qxBY1TT/ecRxvd5UGokIpGITFzb/sUG2XLNtUGQjmJvses+XYnBqpXbpe6iMjEulYKk5aq3MLxnEv+wn9XXlGMuMeCoMbPnG21s+Xwdi94lWv84hL5IT9MnxULg0V/00nhVGTqLhtn+BfzDfjZ/rha1QcWidwm9XSh0hpbCeHoXqLusGEedGcLQ/9YEm++oRWlQEFmGHdKZ7PhCIxEpQs+hQd4++DpKlZKZ6RlmPDPcd999fOMb3yA3NxeNRsPevXvR6/9PGG1ZZJFFFlkcD4FAgNNOO43du3ej1WrlnJdSqaSwsJCxwXEuPftKqjaXsji7zP6HOpGQMObpqbmwkM6/jFC8w8Waj1ey81steHrm0Ts1bLq9hn3/1olSo6T0pFyMTi3tvxsm4FnEYNeiy9URWoxQ+cECIqfks+vrrRz9VT9rryqn4coSWn81yKqPlqNQKcQCQX8A32QQR63IYSg0oDGrqb2ghL3f6mCqc46yk/IoOtHB8FtTqC1KWZkcIH+DnfyNNvY80C62p0ZgqscDCHVxU6Ee33iAQ4/3IiklFtyiHWz1RpF7U8D4oRmhgqNXympAm++qRaUVC4s5NTpWX1LByL4p+l+eoOHKEixlRmYHFpg47GHzHbWEFsM0P9JF6RlOija7GDs0zd4H26m7uAh7rVkoZ+ug9KRcSk50seur4u/tdzQw2TZL5x9GcDRYiYQidL8kcl4bb6tBUsK+f+vEUmrEUmbE4NLR9vQgFWcLZesDP+llww2VhENhQoGwvBFx2731eAdFfKTQSmy/r4HW3/bh6fSz7sZKtDlqVHolgelF1EYVvvEAR57oI3+bnYpT85BUEqUn5SOdKqGzaeTcTng5zFKUYOZab6H6nEJ6Xx9nbPc0a2+swJSrx9lgofmRLrbcVUdwbolD/9GDtUbP9vsaWJgOcvg/emi8qhRzsYHdD7SxMB5AY1az4eZqmh/twlCsY93HKxjdP01OkR6dXcO2+xrk2EpjVGErzwHGaLq+Ekkp+rD7T6Ms+0NEliOCBKWD7Xc1sBwM8e6D8Q2agahK9+rryjHnG2h+RMS9RSc4kRQw1SGIZbUXluDpmSfggfIz8zDm62Xl1qZPVxEOxdu76ZY6JIXEdPccepsWc5GB/rfGmGlbYN2nKjFG4+DB1yfZenc9wflFRndPk7fJRtXZBSBBx/NjrL2uHL1TR3B2iYBH5D1VOiXzIz4ca3OoPa+YSCSCQ5PLZz5xOznFesJLYX70zZ9hqdUzvzBPX18fy8vLuFwuioqKUCqVfOlLX+Kaa675P/5dySKLLLLIIjOef/55Pv7xj+P1CuZDLOdltVoxGAyERzR88u6PodQo6fjTEAaVFkmBvJ7ocwex1ZhY84kyjjzRT2BuCYNLR/4WGzNtM1SfWyhyXl9vZeDNCSrPzmftdRUc/lEvhZudaHJU9L8+zvDbU8wOzGEqEAuR5jIthZsd5K23seeBNo49NUjTdRWUneOi/89u8tfbUGqim9OCEF4KU3FWHlPHvHhHAihUEo66HIbemCSnSE/1eYUM7Jpg+PUpIMLSYtyqbNu9DaCAAw+342owE14K0/WiIPuu/1Ql+lwtkZAgxRRtdeDpFetMhR+wU3pCLgq1grJT8uFU0Jo17Ps3Mc9uuauOuTE/cyM+1HoF2+6pp/1PQ8y0zrPpjhqQJPZF5+TNd9bidwc4+rMB1n+6CoNDi1KnoP/FCVZ9rBRjvl4m0ahz1DJRylJtoOHiUgbenCCn2EBOkYH1N9XKao4bP1vD8sIy4XCEnEID4aUww3umGPyrm5qLirBXm2RVxI231RBeCnPgsW60ZgVNN9eyvBRCY1AzfnAG1yoLu6N5tw23VKO1qpGiVsnb7qnHfWyW7udGUeoUhJfD+IZFbrDppioUagX7HxIk/O2fb0CSJKaOTJO7wUXRVgeHnuxl33c6WH99JUqTkrF90wy/PcXWz9fh6V+g+8URyk/PY9vt9bT8ug9vb0AQsiwa9n23g5wSEzllRuxVObT8agC1QYXaoMSxyozBpaXkRBehxbCcN1wOhgjMiPXEtTdUYMrT0/XnESb2e1CbVIRDEdm6btv9DfgmAwy/PYW5QofGqCIYEmupDR8vwVxoiG/qu7oclUaJWicRdmkp2upgaJcbb3+Qmo8U4VptoWC9nT0PtrPh1moCM4t0PjuE1gwbbmtEUkDL0/1UnpdPTpGBqQ4v3t6A2HCZoGC57Z56loMhpnvnKDsrl8JNTiLhCON7plj/qUq0dg2RpQgbpBPZencdkkrBYPMofz30CkqtAs+sh5GRET73uc/x5S9/mcLCQmw2G6+//jpa7f8Joy2LfzRklZSyYOfOnej1eiRJwmg00tfXB4BarcZisVAklXPfffdx7bXXcqr0Ecxmm9jhH12YmndHmb1KYcmVuOtsaNc0kiSJxQRgbiz63ShjSFJKROcZJpq9YoEu0S5eAmOBWCybH/dBguK2Uq9AqY7bshGBwIxICiiNCpCg7ESxCz7kT72uUqXEUmNAoZQgAmFf/BgQl+GWBOlI7wSFQgERCC2FGXl7DEmKlt8gFHUkSSj2HExQC1AoJZpuqULvFC/tBx7rFlZvkiTbWtirrSAhe7xLSqGgAEK9KRKKk3wSr7vxtmrU1mSuoVwmYOejLRABhUI+KP41CBWeSAj5PvELS0ntIF9XIfo8OLuIuy25/LFr9L89xuEf9spjI7G9UcKm22vQ2kVwp4gVKhQhEonIqkqx9gZxDhIY7HpWf0IkymLl2v/9LiSEFdv2+xtQW6JtpxDHfDMiyWZwKig/J09cM3pL35RfrpPeKc6J3dO5wZnaJhEIROWnZRnQ2KEQct9YaqJBbon4VxkdW0eeEgGeQiuh1Cpk4pOERHB+kZlWn2gzCQrW2+WyRcIRRg9My+2i0qmYbp0S7YAIdvyTyHWTlSUkiEQiBOeWkFTR8RCGrpdG5LpJCtgsncxll1zGJ6/7JJecdik2s43iomKmp6fp6+vjU5/6FCaTicbGRs444wyyyCKLLLL4r8FFF10kqyVdf/31LC4uEgqFcDldqFDz8bM/ya233sqV51/FeukD8rwqKSSGXhc7XmILUYtzy0QiEfk7ywFhn6ZQKPAP+wUhKBo/TXUvICklNBYRO3gGxAs90flcZ9XI13U3ewmHIiwvRHfN2FSgANcqQc6dG/PLnucASp0CtVYlFI8CQBjmo2o1RGOToi2CYBtZFmqbiZAkScyBiVOwHjGnhWGmO2HHvUKi/Kw8OQ5pf36EQz/oEW2gAH2RXhB2JQlCCNJ59LsKpcSa6ypS7MUkCfnv0WaRKJBVOaNxgmO1iaZbqpJilVg8I6kkDv2gJ0UFMhYzu1tnCc4tRvsxVg0p7XcBlNFcmH9mEZ87iCIhNoyVadkXSlLslMsU7cPik5ysv6lSbhcZYUSyxC9sjldCpVVSvM2ZUCYY3+dhpkeMl8ZLSlh9bTmSKlpePxx4vAcpIqFQSFSeVyDH/pJSwdDuaRHjRy3Y9PZo7BUtk5z4S6hHJJrPi9m1acyqeHuHYWy/6CODXSv6LcrrEeSnRfzDflCLdsprskXLIol46HmhyKTUCuJYOBhBoQIisORbFhZ00fEQex+QFBLhcBhPbJemQrTz2O4xuQ3Dy2GhFBUdL7N98R2dkiRhN9o4d8uFXHXVVdx0/c24KKS8rBy9Xk93dzdHjx7FYDBQVlZGXV0dR44cSembLLLIIoss/na0tbXhcDhEXkevZ9euXUQiEVRKFXarnXxKue+e+7j2mms5WfowNpM1mu8Q53v65kV8IgEB5PkMYPzdCSRJQqkXX47FVjELBqVGId7JEdZq4VCYUFQhPLwICrWCnGKRP5ju9hIJI+YkQOdQCxVLHfiGAoSXwvinRCyhUIvyFUXn68DMEuHFeLkUKgmlWom90YRCoSAShkggljMR5dGYRG4jlkPSWaPHIsLeYXjvTDxW0QlCioRE0LNE8w96YBGIxrONV5ViKTMiSRLHnuzHfXBWzIfR2Kp4Sy6SUkKhjMVNinh+KgChxRBLvvhiHpKIKdZeV44xVxv/LrEYQvy986stItcXO6xE/u78qJ/QYjgpP5WUx4Kk6yqiOZmF8QDuFo+IU6JjQCGJ7w68PcaRn/Ql5exiX5CUCrE5sUCUV77tcoRIKELzj7piVYvnZZQKUEiYcnU0XlUaz5OBiG0lCUkryFU6u0a0twKO/KQPz9A8EhI6a1SpKTZGgenu2WguUAJdtJrRe+attsnvITFEIhCIji1Trj4pbgwHI6JvAkKhSaGUsJYb5b6IhKD1mX4AtFY1aoNKVuKKhCIEPEGmDs+JflNJFKx3RM+ViIQijO4XtnEKtYTWpGG614ekkohEx2FgLCDykUoIepbkfoyEIyzOLUfbUfw9/OYokgo5v7pa2sLFF17CJz/5SS4/5SrsJgfFRcV4PB56enq49tprMRgMNDQ0cPHFF5NFFllkkcV/DW6//XY0Gg2SJPGhD32ImZkZwuEwTqcTLTou3X4lt912G5edcSWrpU1iXkXMW4O73GIOi677Bb2LIucVzTEEvYtIKgmFUiLoFbmlWGzm7Z1FqVGKORNwt3qIhOPxiCHXIG8m9/YHWfIvsxidW1QGsc6U2yjyB9Pd84SX4rGV1qJGY1RjKhYEi/BShPmRWM5L3KOwScxx4WCEcCBhIVMSdbPVW0Q9orGX1hzNNSyFme6I2spHY5XC7XZURhEvdb4wzJGf9KFUKEABWrOCLXfVidgKoYaEQpLn+poLhZ1qovNKbG0PYPAtN5Ew+CfjOSpJIazD1l1fkfTdaKFAAe2/GcIzOE/iIm3su+6jsyxM+uVYBYjmsRKCCgXJuSlJwjcZZG5wQeSxkuI9iaB3iZ3fapG/GzusiNbVXG9mzSfKxDUTihtZBt9kkKAXJDVJ10UBGpOKspPzEvpGgadjAffhWZAkqs4tYtVVpSgU8Xs2P9xGOBhGoRIqVApt/LoTzVOEl8JEQqJdtGaR74u1odqoEvdJWHaNRN8HTMVaFEopSZEzvBSRc17mQiNKjUJWrwoHI/jdQdnGTqFRyIpfSOLcjqhSktqoQu+MXzcSihD0LuHpWEChkFBoFLJ6WCwui20KlVQKFBoF4we9cswYWQ4T9IbFuFNJco5QkiQUkoQpx8RpdefwsY9+jBs+cSMVUi3lZeWYTCY6OzvZtWsXOp2OkpISVq1axcGDB8kiCymS3mg9i39wPP7443z6059meXk55ZiEgrM2XsTaHdU0Pyxeond8qZHg7KJMJFl/YyXTXXMMvOpmw63V6Gwadn67BXxCbaigyU7zw0IKb8cXG/EO+Tj60z4A1t1YyUzvPAMvTbD2+goMLp288ydvi4XibS75Plvvrsfd4qHnuTH5vv7ZRdqfGqL0zFzsFSYORuWTXetzqDyriD0PtYEPGj5WSv+LQ7JVVmxXVGx3va3BwEx0h7nBqWD9TfXM9s9zLEEuMYaGj5Zgq8qh/6/jDL81lXJ86731KNUKDjzagn8y5TBb761HoZRkVZ+VKDrRweywn/meZDnG2suL6Xh6KO05GITywLI/JNdp5XH+k85dO77UyOLcEvv+Lb2/7Hsizb1tDQYaLinHPx3kwCPdaU8r/aCL2YEFZjuTT665qIjO3w+nPSfWN53PDsp2cInYek89So2Cg4+2yWMhEdu/IGzc0vaNAXbc2Yinbz5JctyxxsjUkQUKPmCj7KR8Dv+iH9+AKHPdFcUM7pzGN+Cj6ZYqlnwh2aKv+FQnuass8rOx5a46ul8cEiQ7A2y5pY6pDi/dz4xSc2kRuhy1CDKB1Z8oI6fQIHYaAhs/U83Am+O4D86hd0LTTY14h30c/UkflR/Kx5irk8/d+JlqtJa4+tPGz1QztNvN+N5ZTJUG1n6snLlhH0d+3EfVBQUYXTp+8PgPmGcWm82Gx+ORyYfV1dW4XC527tyZtj+yyCKLLLJIj02bNrF///60x2y4uOb6a5jtX2DglQl5Z/GBR9rwT4fJ22qloMnBwcfisdWCOyBbSKy+thxP3wJDr7tZe10FxjydrCzj2mCmeKtLlijedl8DM91zsnXW6mvLWRgP0PvCGNUXFWIrM/HuYx3gB8dqE5VnFMoKPE03VzHSPCUsw6LnKhQSh3/Ui7VWj6POSvezYpe7uVJP42XldD43yNTReRyrTUwdnZfr3HhVGdYyY0b/+R1faCQcjivvJMJYpmfd1RUsLSyn9anP22Sl6pxCxg/OyOVZiarzC1KO2RsMaK06RqPWFyvRdEsVeruWAz/uFSSYROiRrcz+Vmy+oxa1SZVsEfy3IMO9t9xVh0qvFEmdDGWrurCA7j+mtoPaqJGVjFZi+/3R3fffTm37mCJRpr4pPV2opmbqm9XXlpNToGfXd1vlMtsbDEmqUL7JIMeeFIth+nwdpSc6af/NEHo7rLmujo5nBvB0iJPX3VjJxGEPo7umqb+8BJVeKb+TVJ1fgL02R67Hxtuq6Xt9TIxTvbC48/Yv0PrUIOVn5WEq0Mvnrr6mHHORQR6/TTdXMbTHjbvZK5SWPt3I3KifIz/qpezMXHKKDHI8uOm2GjQWNTu/Gj3301UceL2d11qeRa1RoVKrWFgQBCeTyURVVRV33HEHn/jEJ9L2RxZZZJFFFqn485//zKWXXir/niZCiZpT685j3Sm1HPqBiKW2f6GR4PQizY+KXFTjVaV4B30MvTHJ6qvLySkxcOCRFgIecKzNoXirk0OPC3vZ7fc1MDuwQMsvRM6g8WOlzI34GHx9kvrLijGXGdn7ULts41V+ar4cl22+o5bJ1lnZlqvxY6Us+0N0/H6YvE02ctda5Pd6S5WO2gtKOfLjDgIesQA1uHOaQNQyrOHKEoy5OvZ9T+RxrDV6oZwDoINttwsVoVg5E1Fxdh4Fmx0MvDnB0BupSa1Nn61BY1bT/HgPgRgJPQGb76hFqVWw+4G2lGMg1IWWFhbj5Ynd97w8ep8fT3sOOqH+uLSwLMeiK4+TWpT3BZHjXEqyvfubkObeunwdG26oZGEiHqOvRN4mG8HZQGo7nJ0nj4GVqDg7j4JNDjqfGxbkrxWI9c3Bn/TItmmJ2HZvPZIkybmkldh+XwMzPfO0PT0ofxYbO/ZGEzUfKqbl6T7m+gNyeSZbZ5nrD7D66nLC4bCcL3NtsFC40S4/Gxs/U0PPSyPMtC2ADjZ+qoaZ3jl6nh2j7IxcjHk6+dyajxRirzHLygzrbqhgaM+ksAyMjt+5ET/Hnuyn8AQH1nKjfK5QozewKxqXrb2+gtHmadzNs+isCjbcWs/coI8jT/RRfLITS5mRXzzxSyYZxWazMTs7KzZ2AJWVlRQXF/Piiy+i0/2feAZmkUUWWfzvwkc+8hH+9Kc/yb+niXBSwOWXXc7CRIChNyapvbgIZ72FAz/uxj8axNZgoniLgyNPiPf8bfc1sDDm50j0Hbr24iLmx/yMvDNNzUVFOGpyOPBoG0GvUPopPSlXjpc2f64OT/ccnVEL+NqLiwh4Fxl42U3JKS5cqyw0/7ALgmCu0FF1ThEH/j1u6TXR4pWt2WouKkJjUHLs5wNoXVoKNlrpi87XWpeWNR8vo/flMaaOeDFX6GTiCEDVhwpwrbay+7utKbZpAFs/XwcS7Plm6rqe1qxg42fqRazyUGqsYqk2sOrycsYOTNPzwlja/ig9zcXAa+6kz0zFWkz5emGJlgarrirFUm7i6M+68fav9HojbT3eD9ZdX4ExXy/nQP5mZLh306dFjm7ngy0Zy1Z2Vi79L04kfWYq1qJ36HAfSo2rQPTN8lKY/WnWRrVm2PiZRoLe9HGka52FmvOLGGtO3zfV5xfgbLRw4NEOgl7xrJjLtHJ7N91Uhd+zSNtTg9H7KSg6MZee58dACxtvrKHrhWHZ1q/hilJmeuYY2ztD+dl56K1aWp8S8VHRCcKdJzaG1l5XweBOt2xxt+mOWuaGfLT/Zoj8LTaslSb5vjUfKcJRZ2b3AyJ+XP3xUkYPepg64gUtbLuzgfmhBY7+bID8TVZs1Wb5vms+WY4pXy/npVdfXUbb3n5ea32OsHIZnV7H/Lwog8FgoLa2lnvvvZfLL788bX9k8Y+NrN3b/yLce++9fPOb3yQdL02Lnot3XE7EL+E+OMf6k4TVlN4plHx2/ksLpWfmyt835OrQ5KgZeNVN88NdGJwKDE4DvgEfxVtdUZZm9NyvtmAojL/YGXN1aHPUDLw0weEf9kYvCPigaIsTrUWDpcbAbKdPfjlNvK8uyiodeGmCAeITjKnIgFKjoPK0fHqeG6N1ReJFZ9HIu7oBmaAEcQWoGEN7JfpfGsZ8XS0z3akJLoAjP+yg4AN5KQSlvC0WxvfOsidNosbgVLDmulr2PNSWlvhU8AEbzlozxluq0pN6fAjijS818HOsMVJ3YRme3mRyTQwNHy1BoZTSErLeCyuJZCux40uNhILhlL6bafVx+Bd9KUQsGQYo3uGicIszZUEyRlBa88lyJIUUHzdA6y/jiRS9EzQ2QxLJ6fCP2ig+qSgtQQlgYSKQpNCVCFO+2NG4OJ9M5otZuznrLILl7YsHoO1PxUllepsWnSVBWez1SYZeF4Ok/Jw8VHol9nqruJ4PWSocwFFtTpJrP/qbfpn45VhjRGvRULwtF/fBOSSNLinIc62yJjHlB9+eYKJZsPFNlQa0Fg1FW5yM751Fb1Zy7Kk+uc2cDRaUagXbJKGcVHtWMS8+/SLdtKJSqejr66OrqwtJkrBYLNTX1/PrX/+a0tJUf+Asssgii//N8Pv9NDQ00N/fn/b4amkDJ1x0Al2/F4mTnEI9OouagVcmOPSDHqy1erROLf5pP0WbnehsGvR2Bf7pMDu/2oJzbY58LXOxAb1Nw9Drbg7/SMyRse8Wb3Ohd2jRF+nxD/vFHJvgJmUuNmBwaul9YUwuSwy5q22oTSrytloZ3+ORF9RiyCmIX8jT4ZeJIQBLQbEjOne1jamj80kEJYAlv5hb9fk6/GkWuxbGAywFQimfAyz0+xk/MkP3i8kkF2utHs+gn/F9nrQEm3XXV7I4v0TrU4NpCTK1F5ShUEsZSUoHHunGWKZPJSghCC1KtSJj0qXplioG3hhPaYf3g8aPlxGcW0whE8WOWcuNaYlTR37cjt9PRoJSjHTl6ZpLKpcgBPlk0s+RH7XjT2iSWKIBBAnOHY0xAPzDfsYPzjDyTnpymLt1jvwmG92vpD8uKzsllHk6IWZX61UYHPFj/rEA7b8RsVfhSQWodEr0Dj2e6AUSFwmtFaak2Kr72VG6EeVwrDahtWoo2OyU2yImpw2Qu8aKSh9XfOr+y5g8bvVFevROLcVbXbibvShy9Bz49xa5zfLW2pLOHTvqYeh1d/xch5b1J9dBqwrXGjPL4SWePfA7AviIRCIcOnSIa665hmuuuYb6+no+9KEP8eCDD6ZtvyyyyCKL/814/PHHufXWW1lcXEw5ZiCHc9dcgFKhZurwHGtPEqRuXb6OwFiAXV9rofCE+ARjrTBhdOkYemOSo0/2obOCwqQDT4Diba7kc/+1VVaOAbBWmjDm6hh8fZK2KCmc6OHCLU70Ti22eiMzbQsp5BtLuYlwdGf1+L4ZxvfNyMd0Nj1qo4qCDwhiT2zxTa6jU4faGFd+TiLCREOtmJLRSvT+dRxno4XJ9vRxytEnOinYlpdCUHKszWHq8FxaEpHOCms+WcuRH3ekJdfYG00UbHBgLjamJ/UEYOe3WkjHE4kRgqY75+TFlERUnJeHNkeT9th7wVZvpPTkvIxEo+1faCQUTN0sGBgLZCQKxVB1TkHafFmMoFR3cREak5ojT/QlHZMJTDqwFOmY7Y7fY99/dFLxwbyM9/X0LqDWKdMei43bWFwunxMdO64GC0qNgqWEhb9EMpWpMLlz3M2zsjVg3iYbWosaV6NVkJQCJC3m5a6xxhXsgc4/j8AfxJjW5esw5usp3uZi6vAcOl0yAa5wo13YKEcxvHuS6RYxdnVWBaYCPYWbHbibZ9E6NBz7VY/cZvlNNjQ5atZLHwCg8sR8dj+7myPsR6FQMDAwQE9PD3q9npycHNasWcPvfvc78vPz07ZhFllkkcX/VgSDQU477bS0G5kllNRL69lx1laZIOKoNWMq1DP0xiQdvxtmpHgSjVGJHyjaZCenxIi+QIt/NMjuf23FWmuUr+dssJBTZGDknWk6fz9MJ6B1CuZK8VYnOYUGmejx7rfbBaklCkedmaVAiIGX3Qz+VfwXg7U6B71dS+F2OyO7pjm6Yq3MlpBDCLqDMkFJfLCERq/CUZvD1BFvEkEJoutJEdDbRZ1WwtOffp0RIOgNM7TTzfi+VJLRkjfIbJcv7Ya/ukuLiYQjdPxuOIWgBFB/aRkao4qxI560pJ5jPx+Q+2AlNn6qBnWOit1fb009EbFuN7RrUibA/C2oPr+A5aVwcvtGUfWhAvLW29ISpw78qBvtcchTq64qxVJhYn4kIMg1UcwPBZkfCsqkn6M/7ZYJQwB7EtbobA2mpDoFvTDw1gTuA+nzht7hAEHvEsNvT6Q9rtAohANKwv0S66W1qGUVVnG/sCAoAUWbHWjNaowunUxSihGDQDwn6oTc0/DbUwy/LdadTcVaTAV6ijbZRX20sC8hfi/c7EBn08h/D7w1SecfxJqs1gzmMhMqrYqpI160Zi0HHmmX61CwyZGk2OQ+OiuTBrVmMJcaaVRXsNz2ISyVBhS6CC8f+TMeJpEkiYMHD3LFFVdwxRVXUFtby+WXX85XvvKVtO2XxT8eskpK/+B45JFHuO2229ISk0xY2WY8XRAfoqo8sZdlvRP8Yn0CiO/EjqnRxEhEMSQSU2JWVjHCTtNNVehdWpmgknLuFxsJh6I75Q1gMChkQknpB10U73AxtGeSgZcmMBTq8I3EJ/yNt1WjtcYVYlYq+Gy/v4HlQCjtTm5bg4GGi8vFItczqQslpWfmUrzVmVGhp+FjpdgqTRmPx+rd+9ooo+/MZDx/4O0JmbiyEnVXFCeRXmJwrc/B7w1lJPxYagzUXVhC+x8HU1SJQKgHSQop44794ykprb2hAlO+nvY/9stknURs/Ew1vslgEnloJcrPyaPvz6lBR/WFhQy/PZJWjSpWbsigesR712vbfQ1Iisznb7uvgfBSOL0yVfT6/smgrN6VCEuNgVVXlDPaPJW8EzA6JmO+rolqW4njeccXG1kOhpKISoZSQfyLPQfjh+Nj1VCow+cJgE+Mc0mZXO/YcxYjrPndQQ5EFTgMToUgt/lEnRWq5HNNlQbme3yy+pWsomYAn2WavWNvshxeRqVSJamxbdy4kX379qVtuyyyyCKL/w3w+/1s2LCBtrZUcrKEgjVsJddQBP74rucDj/fgHwtgLNOz0B9fTNrxpUaWA2Je0Nuj14++A8fmlENP9rLQ78dcqRcWVbFzv9hIaCnqha4HvV4QlgBqLi7C1Wih8/kh3M3elPtuuasOlVYpJzxiZCcQhKKm6yuZHVgQSjYrFHwqzysgv8nGgR/2pCUerb+pEr1dm0RyScSWu8ROssS5MBE7vhCdKzPM0zu+1Eh4Ob36Uuz8TOpMsfrlb7DSm2a3U+npuQy8kj7JANBwRQlaq0ZWu0pE3lYrVWcWMtM5R2uaxbL3UlLa8cVovR5ILbdzbQ4VHyzg6K8H05KnQJC3FEopiewDgB6qzylMIafFUHZmLkVbM6sexVSRZvsXZGWjRMQUrSaOedLeI2+TlaqzC+l9dSwtMaz6okJyG6wc+nlv0hiNYfOdtSjUiiQyUeKY3PHFRqFm8IN43BYjxVWdLxJd3X8ekQltiYS57fdHY86EsRp7zhyrTdR9pBRP3wItP4sqOtkV+P3C7i2m4pnYn7FzYypgicqiejsymSzlXD105jTTP96DQlIQjoSFxUkkgtVq5e677+a+++5LaZssssgii/8teOaZZ7j88ssJBlNXJ6y42KQ/WSbo7PhSghK1DnQ6CHjEsXU3VmLM1ckkk5wynawcA9H39UDiuQoCHhEfNVxZgq06h9bf9DPTtpBy7rZ76wFkkoUuVyerH7nWW6j5UBEje6foe2k86RjAmmvLMRXGFWJWKvhsuauO8FJYVk9KhKFYx7qPVzJ+dJqeZ1Njm7xNNirPKqDr+fQKPZXn55O/zp5RwSdW777Xxxl5O3XjXcV5eRRscDD49gSDGXJelefn0/PyWIoqkbVGTyQcSSLjJEKXr2PVZSX0vjIqk1MSsfXuKHk8k2LncZSU6i4uwtFoofP5YZlwk4h1N1QQmF6k/Xfp1b5B2ICkU6QqOyOX8UPepD5OKvc99SgUmVWPtt5zfFL85jtqUemUGc/ffGctREivTIUYqwsTAXlhKRG6XB1NN1Qy+q4Yq/EDQECogFnKTRx4vEeun84af0623xfNzybc21CswzcUEM/B+UWMHYyPVZ1VQSAQhkDq+wkgP2eGYh3rr61kYTwe8+ms4jsBD2z+XC1qQ3KcHbuvLlfHhhsrCUwv0vxIF+ggaPWyd/wNguFgSs5r8+bN/OlPf8oSlrLIIov/1TjrrLN46aWXUj5XoWI123Hq8iAoSCs5RQaOPinIJSvJLzu+2Miib5l93+kALWi1Cpn00HhlKdZqE0d/3oO3N4CpWCtIJVFsu6+B8GKYvVFCkjZHS3BSHC8+2Unpibn0/GWEsX2elPtuuKUaTY5azq9onfFztWZouqWBuYEFjv1iIEXBp/ADdkpPzuPokz1J5Ymh4YpSzKX6tOpIIBSYlTplEjkkEVs/X0doOZLx+Lb7GoiEwhmvv/XuOiC9OlOsfrkbXElErRjyt9gY25u6hhlD5bn5GPN1aWMEc4WO1VdVMtXmlTeRJeK9lJS23ddAZDmcRA6Sr12mpfpDJXQ8M5i2zQH0BVo0RqVM3ElE+dl5aclPALkbrVSfUygUqZ5PjZUda8zUXVCMp3uell+lij3IilYH059vqTbQcGkZfa+OpW3b4pOdFG930fKrnlTlKmD9pypRm1TJa9sJY3LbfQ0sjPhkBTKIj+fC7XbKP5gvPwcgVJmCwTAERUyoVCvYnZBPiz1n+gItTddVMdM1L5OgtGbxnaAXNt5WgzZBHTzx3JgKmH8yvhYpnu8V58bUr7QwaGmhfbxFznXFYLPZ+Kd/+iduv/32lLbJ4h8HWSWlf0D84Q9/4LLLLktr5eakkPXSDgA23FqFzqaVbdomjngYflssIPgnRaCw5BNWDd0vDuFcZZPJQ446M6suL2fnd8S586N+3Ec98rlrb6hAqVRw4LFu+t4YpfqsYkJeMUnMdvpYf2MlHc+O4BsJEPAsxpVqfODzhWUSy8AuN0VbnYT8Yid9jNBhcAoiU8CziNqkjpOTVsxD4XCE8HJ6BZ2ZfvHlxJ3NiZgbnIctTlTG9I/J5LEZrGVGFobSs57bfttN45XVaQlKAK2/GJDrsRKlZ+Yy8NJEWoISQPV5xccl48x2+jIu8IEg6RhW7Hh6vzj8i6iKUQZBpEwKSzHEFmVn++aS1KwAuqI7AR1rjCwHIikEq4P/0ZqRwAQw2jyN1qLOeDwwHUSVYQcZCF/WTOMlRr5bzqDqYMjVQgQ8PSsIa9EqLC0so7Vo4gQlpyKJcLccCOGfFhGGY42R8HJEbh//VIDQYpjul8UC4epryxnd58YXXe+b6p5DF91FZqo0sOqSUtr+MBA9toB/Kkj7C+LczXfWIikkeYG3/Y/95Ef9kg2lBtZ/opypTi/tPT5mWn2MNk8xfkAk5mIqEYZ/sYMEU9pJpgt66R8UgdD+/fvR6/UEAgE2bNiQ0dYoiyyyyOIfDTt27GDXrl0pnytQsoWTMUmCZbTjS9HY6tsdtP5xCFulSSZFlG53Yrs6hwOPCAWWqXYvo/vEgo9/WiTYQ8EwzQ930fvKCKUn5rMwIdgYCpVI3h/5cSf+6TALYwHmRqNMDT8Ya4xUnGun5ef9DL0+iq3SxNL8EiBUiRyrTSz5Qnh7/ARmFtEk7Gr2T4dlopJ/LEB4ORKfC1fwRuZGF8hfb8OYq05LUloOholEyGhPFglFknzkV2LJt4xvKrO+9HTHHN6RzF63O7/WkqQiFYO9wcByMIK3x5+WoOTaYKZ4uxN7tYmDj6XfVZ+OfBTD+B4P3k6PIKL8J5CJ9AUweXiOycOpZPlENF5eQWgxzJ7WFeQ5PzJ5qPhUl6zuE0P/SxNM7JuUSWorMfDKBI7aHI79Jr1amHc0SHgpwuTR9LGw2qCCCHhH0jeMWiNitnQEJYDIUoSIYsVGjOhX9XYIL4WZjz4jiWMYIDi7RHgxLBOUVpLQ5kb9KKNqE+ZKPaUn5clWb77JZRa9S/S+LBJd62+qZHEhJBOWBt6cwFadI9+36eZ6Bna68fb4Wej3M9XuZWiPeLY33xldTIySoQ4/3kH+NqFeq88Xi4FrRio4ElVIm1s7RPOx/SyFlvB4PHzpS1/i/vvvR6PR8Ktf/YqLLroobVtlkUUWWfwj4e233+bss89Oa+WWRwlrpK0ArL66HHOZgeb/EKSJ4d2TjL8bfSEPwPrb61n2h9j3vU56/jJC/ga7rEZjKTex+qMVHHi0nYAnzHTXHDNd8/K55RcWoTEqOfyjPnpfd4td8tMiPprrD9D4sVL63pjANxRgYTRAKBSfSwMTAZnE4j44S+UZ+SzOLcnHIE7uWJgMYHBq0VmjhKoV4UAkFCG8mH7vqahLRJ5PV2JuzA8RknZcJ2KqxYOrwcrcSPrYq/UPg6y7ujItQQmg9/lxRt9xyySVRBSe4GDk7am05CmA2gtLUemUGXNegbHAca3a9nyzLUnd6m9B+/PD6F4dlglsKxGzMsuEtdcJYpl/JiisyhLQ/7KINXLKdCg1Uort257vtR3Xwq7/jQnMhWmC2SgWJgLo7dqMxyOhCJH0YR3oIBKB0GL6LxicKgiDd2UONFreJd8y4aVwWoISQNCzxOKCyP3mlOlQ6ZVCYQlYnAuytLDMyFuifeovL2HiyAyBKAFt4rBHVnDVWRWsubaajj+JnJdvMoC338fgO2Isrb+pCpVOIW+6bPvtAPkb7NFzYcOtjUy1ztI+NExgIkDf6+N4+kQ5Nt1Ug8akRvtVM0iwsOxhvKyHnn4R/7/77ruUl5ezuLjIiSeeyBtvvJGxrbPIIoss/pFw5ZVX8utf/zrFyk2NliZOxiwJBsO2+xtYWlhm//c66fjTKI46o0y+KGiykf9JO/v/o5vgZJCx5mkmj0VzBUFo/GQFkVCEgz/oofuVcaoV4E0SK6jh6FMDBN1BZrrnCMwuyudqCyVKTyqi8/fDDO2eJG+dDb9HHPePBjGXaUEh4e0NMD/mxxiKx07BSUGsCHrDBL2wHAzJ89VKhZ75oQUIg9amTUuYWQ4I9SStWRAyViK8FEahSq9qCRCYWWRxPv3aE8DYgWkWZ5cyHt/zzXaZTJIIU7EWhVrUPx1ByVympfLMAlyrLWlJSEBGWzkAb2+And/8T1q5AQce75GJYinX7g8KIvFx0PTJqowbGmMEpXQkrIn9HmY7vUmqRomYOuJlbsMCLb9P70YTmBAK8FPtaTobUOlFzss3nj5PqdIrIRLBO5a+7qHlMMrQijg/9lWtWE/0TYlxLo/haDsu+UIs+UNCNQtktbAYPL0LaE3iHUDr1FJ5ep5MSAovBPGNBRh8O2pHfWUpoVCY9qhCbN9r4zgbzXI5tt1ez+A7buaHggS9YUb2TTHdLtYT13+qEp1NI5Ohjj7RiavJKZ7bqHWet7+Ukp81AuCvn2B/z7sEFv3MzMzwuc99jjvuuAOz2czTTz/N2Wefnbatsvj7RVZJ6R8EAwMD1NfX40+z+mHBxWbpZECwK5fml9j/UBdFJzoo3Ozg6JMd+CehYJuN0pPyZNnhrXfXE5hdlCWOHWuMWMpy6HluTFZ26X15lNHd4sc9URXmeIo3uRvMVJ9XnLSDOBGb76xFbVRltAbb/oUGJElKy7zVO6HppkZx7X9Pvbah1MC6q8roe2MsPXnIAFtuqePoL/qTCCSJ2PiZalp/2ZPRPqzplirGDk5nJCetvaECvU2bIu8cQ0zBaX7Mz+EMyQ9bg4Hcdfa0JCZTpYHGi0po+f1gZmu198DxlJTeD1ZfU45ClWzLFoOh1ED5Sc60NnSJ948sRzLu/qq+sBDXKktGRSQQ4+jYk12Z++nTVQztnEirggWin6c659IqPoF4lryDC2nrYXAqWH9zPbN982kt9WIqWkM73Qy8mhoYplNGil88WfVsJRqvKsVaYZKVrmJqTDFsvbseFAgLQgM0XlQq18G1Pofqc4vp/sswE81e1t1YSSQckcdhw0dL0Nu1ND/cJT9rMSWyScMYihofh48cZjkkAnmr1YrH4+H666/n8ccfT9uOWWSRRRZ/r7jxxhv5wQ9+kPK5hIImTsEu2WUlmJ3faQG/iBG8wz7Ztmvd9ZUsL4Y49mQ/BdvtlJ2cR9vv+2TbtIYrSmTyy9Z76gkvhZN20MQs3N5LsSadskv8IrDjrkZBYvlG6rxSflYehVscjDXP0PN8qprOqqvLsJQaBek9DZek8aoyTAW6jOTpyvMKMJfoM5J/8jZZyV1nk0kaKcUv0rPqomL2PZQhZtHD9jsaGNk3Rf9L6ZWQjjvvJtSj94X+JNuzGNZeV8Hi/DJtT//tliLw3kpK7wVzpZ66C0o4+kRXWkJR3aXFjO6fSlLbSkRMPSJRVWgltt5Tz9ywn5afpyckFZ/kxF6TI9sNroS+SE/9hwtTLANjMJbpaby4JK36aez6xTtcHPpBe9o6Nt1Shd6qlZ+1lTieGlVMGSnTu0nMFq/l6d4kS0P52l9oJLScqFwWVz0rPNFB+cl5dL4glMsqzytgutMjX2fdpyrRxHbG6cV7SM9LI0wenkOfr2P1laX0vjrK5OE5Ntxajdqokp9T7/phRtyDDA2J9wG1Wo3JZCISidDd3Y3dbk/blllkkUUWf4/weDzU19czPp76fu4gnybpBECQthfnlzn4WDf2RhMVHyzg2NODBCYC2BtNVJ1VyLuPdkBAbKAKepc48pM+ACxVOmxVFvpeGsexNofa80vofXWMsd3iR11nhUAACIid7gqVIm3OwlKlY9VHK4WaXxoV5ti82/JUbwpJBcQ7u0KlYNfX08QFOhHX+KaDaa+tsypY96laBt+aSFqISMSmz9bQ8rvBjPZg626ooP3Z0RRrtxhWX13OdKc34/XrLy/BXGLIqHwZU82ZG/ZlXAjLKdOR32RPsbQDUcdVV1fR8cxgkmLV34LjKSm9H9ReVITapEqrJKmzQvlZJceNC0VcEk6yMEtEyalOirY62f1vmUlLG26upuUPQxn7adXVZYwdnE4hSsWw9voKZvsXZOLUSmy+s5a5YX/6euhg++ca8fTM0fqrNHZ7Z+dRsNnB0DvutHYzMbX+nQ+2pK1fkurZClSen0/+ejvtzwwKK7io7WIMmz5bg0KjkN896i4uklWvLFU66i8up++1ccb3zdBwZQkqjVK216s4Ly9uP6iD7Xc2Mn5EqDt5dB5CdVMcO3aMxSWxIGi1WpmdneXWW2/l+9//ftp2zCKLLLL4e8U3v/lN7r//fkKhZNKMCjUbOBGzZJeVYA78eytBL6y+ugzfZFAmtNRdJjbatz01iLXWSO2Hi4XzR1TxpupDBWJTdhA23l4DIdifkNvRurQE3UGh1POxSqHy/FxqXipFnWUFEsUYViJ/k5XKswsZa55OS8SpPr8A1xorzQ+3piUeVX2oAFt1Dvv+LX0uo3C7HUe9WY43V8JSbaBoszOtUg8I8knDFeUc/EH6nBmIuHTk3em0BCSIrrcaVBmVjGL1GNo9nZYsVHdpMeHliGz/9bfivZSU3gv6Ai31FxTT9sxQWiu68rPzmG71pFUjAjEOHXVmel4czagWtfG2GubH/TIRZyUca8zkr7NyLMOaptappfbDBRljW61Ty6rLS2j+YVfaMepYY6bqzAIOPdlH0J36hVVXlZJTbGT3d1vTnr/tnnoikUhaFa2YMpJvIpB2HK26Sqhhtvy6H09H6iaQrZ+PKnRFY6sYIQrAscpMzYeL6Ht5lLF9HopOcDA3vCDbH9ZfUYLRpZOf64231dD32jhTx7xozdBwRSXDe6ZwH5plzSfK0Dq0Ql0NmFs1wph3mP4BEW+rVCrMZjM6nY6DBw/icrlSGyKLvztklZT+ztHQ0JDWUsSIme3SmRhKDTRcWCir20gS8g714bemGH5rCluDAf+kD1OJAaVWQfGpToZen0whQNRdUAYS9Dw3xsCryeQK1/ocas4vkYk1u77bmqS003hVKdZyEzu/2sJEsxelJk5uAqj8UD7GXCEX2PrHIUq2OZIINqZKA+Fl8A34mB/1i532aeCfhHAowpIvA+N4OYyklHBUm9OSiAqabKh0SirPzJd3Sycib4sFrUVD3eUVaRcxMAif2dIP5GUkKeksGhTqzDIBAy9NYC01piX4xDDT6ktRIYqh/EQXKr0SrVEinQNs0YkOyk7Jo/+v4wy/lX7H23th6731REKRjAuOOUV6JCl9HX0DvuMSlABmuucYeTdz2TQmFZJCSrEOjKHgAzbURhXVHylLS/TSO0Hv0FJxRiHug2nqYACtRUPeGltakpLeCQqVhM6aXrVJYdYRCUfk3VgrMdY8SU6hXn6GCj5gSxovR57qp2iLWFgyFOpovLSEfY93ymphh3/RRzhK6N/4mWrURrVsXdPy84Ek28P1nyhPSu4kPtfrPl6JKU8vP/Pug3O4D8aTrAZn8g68iSPTssWftdoGEgSmRXLmxI9sYWlhGfuhSoboQdkQZHRcvDT88Ic/5LnnnkOr1fLjH/+Y0047LW27ZJFFFln8T8err77K2WefnaJWKSGxhm3kSkVUXViApJDo+v0IS1GlSEeViamj8xx4pBt7g0E+z5inIxyNaUZ3TSdZXlWcm4+91kzjx0pp+cVACoFITu7/Swvj+zyMH/MkkTO23dtAwBPk4GM9HH2qn3AwIXbSw6brazj2i06h2tTmZWBn8rybt9XK+B4PfS+O41plYTyqmLkScyN+zMUG9HZ9WrsxnVWNSqPMqJ7kWm1Bqc68k6zstDxU2szn151fgMaqxrk2J62ikKPKhKSQUJsyv/a0/6Efe4M143EgIzkHwJSvl/sxHbbcJV7oMy3WvRdKT8+leJuTjj8Npq2jMU+P2qSi+NQCOtNYj6ST207EoSd7aLykLCNBCUCpUmSMewCKtjtRajL3Y/2FhejtWqy1+rREn8rT81EbVRn70VppQqGSgPTk8yVfCLUxlHaMAMwOLBCOKgMYy/SEl5HH69TReaZXzdH/smi71deW4x30ycpKBx7pJm+TVZRbDzvubGSiNU4ITFToWv+JSgwunWzFOPLWFCMJ8XZ+k4389TbZriTRiq7sxFxUeiWGXD0wh96mSLJEUSiTY+uTd5xE2++HqZcCdLjeRWfV0tXVRTgcJj8/n9LSUpxOJ7t3707fKFlkkUUWfwc444wzeOWVV1I+z8HOVuk0dLk66i4sjP+eSvHfy+mWeaZbOrHW6AlMiLhLbVJRst3J4OuTKRZpjZdVICkk+l4aZ+rwHLsOJ1tLrbm6UibW7HmoPYlcUXl+Pnlr7Oz6Tguz3QE6n022SCs+2Ym5xEDLzwdof7qP0tMKkghKunwdCpVQP/J0z6HINKcGYHkpJMeYqQijVCuwVprSkojsjSY0ZjUVp+WlJdhYqnQY8/XUXVCYlgQFYC41YMjVZiQp6WwalOrMCtbug7M46s20/TEziWeuP8Bcf3o72qKT8tBa1Ogc2rQkJXujIB8Pvj2R1nLt/WDzHbVAZls0W00OCmX6Pgp4eE/i+vjhGaZaPRmPq00qFEoFtnKjrDaUCHujCZ1TQ825+ekXw3RgKTViyNVmJCkZ8/TorJr0JCUdqHQqtBliP51VRyQUZi6DGub40VkcdWaZoOTaYEmyzjv8835KttkhIEhdjVdW0/yTLvmZav6PHhQa8f9rrytH79DJuayeZ8eSLAI3XF/J0sKy3FeJz3X9ZcU46i34ZxYZeM3NbHcgKSdmLjEm9eNMh5fe50UO0FZuBJCftY1nNhAOhXEcqmKSMRYbp5mYmCASifDQQw/x61//GqPRyA9+8AM++MEPpm2XLLLIIov/6Th48CCnnHIKs7PJdqcKlKxhGy6pgJJTXKiNSnqeHyPoWQIJTCVmgse8HH2yH3NFXMnQWm6EaKrE07GQlBPJ32Qlf4MdtUlF21OD7F+xWb7p02Kz0M6vtgilnhUEpE131BKcXeTIj/s4+tQAChVJKjNrr6qg/ZkRgpNBRvZNMX7Ik3R9xxozU0e8jO3zULjVGVd1WoHZAR+OejMKoxa8qewQvU0t1uIyqCcVbHKgyVGnWMfFUHV2ITqrJuP5FecWYcjVyeVdCVOxFkmtQHOcnFfrr/vJXWvLeBxIS/6KwVZp4nhaJxtuqUZSSyl9+H6Ru9FK5ZkFdL8wgvtQqtWuxqhE79RStMlO17Op5cxk5xZD+6+HqLu0+Lh2diq9AsNx1CjLT8lDa87cj9Vn55FTaMDWYGKmNXVVtvREJzqbBkdt+n60V5lQapXy87ISiwshlhdDae8NQo1fir4DaV1aFCpkQpd/VCiXjR4Q9a+9uIiF8QDDUTXUYz8fwLHKLBOUtt3TwMTRGdnCbs+DwlYRooSvWjPHnupjtsvH1DEvU8fi9Sk5MRciyBsE2xJU53M3WtFa1BgLtUwdE4pkSaQppZS0prxjyw46nhulRtpMr/0wKqdEV1cX09PTFBYWUlZWRklJCa+//nr6Rsni7wJZJaW/Q9x22208/PDDKZ+r0LCF0zFIBlnVKKaqMrRnkoE0u8d3fFHIqMks1gRyg63BQMPF5bhbZun8/TBFJzqY6ffLqiyWGgPV58QJUJvvrKX/r2NMNMd/lGIqLtUXFpK72sqxp/vSkkq2f6HhuPZlO74U3f2cZpdazKLK0zufkfyy+fZaOp4fSntvEMSdGGEnUREqHRxrjDJRIx1MlYb/tILRStWbdNde+7Fy3G2zdP4mM3NZ7ySjLVrpmbkUb3HS+ru+jESn91JS2vL5OiKhSMbd7se7fwzbv9BAKBg+7oKdwanA5wtntJY7HjIRmGJ4r35MtOIr/aArreJRDBs/U83g2xNJYz9+IaF8lGmXYEyVLJNy1vobKzHk6uh6fijt9TfdXoNKr5KfjZVjaMOtVUx3z9P353FqLipCpVfS+ov4c1J1QQHdz4jgbscXG5P9YqPlxycW7MzFhozktpW/JbHnqC1yAJ91BhQwPS2SmFarlYqKCt5++20MBkPKtbLIIoss/ifB7/dTXl7OxERqHFVBI1VSo6xoBOL3MBKOyPZNiSg7M5eirc64T/sK4s36m6rQ2zXyuRXn5ifZjzV+rBT/zCK9L4xRcW4+5mJDEskhsRzb7m0g6F1MqyxZsN1Oxen5ePoWZIuqRMR2+Hc+L9RfVmLtdRWY8vUy0WIl8jZZKdzsyKiaA0JhZuStqRTlmXTIRGyJwVypz6gSdFzE3DKOc+qWu+pQahRp+zPpUvbMdXivha73UlJybTBTfXYRfa+PJxHZ3u/9Ib5z7MAjbRnt2yB5DP2teK9z7Q0GpjPEniDszfxjAdBD3lpBkksHx2oTpSfnpd8wgFD0NBcZOPBo+rpuu7cBhfo47x3vpbp0Qal4t3plIqXOeZuslGx3ycpeTbdU0fHciGxZZ67Uo7drGd/nof7yEuzVORz4aW/8Ggm/Ccf7Lak8r4D8DTaxk/TZUbkc/oifvbxCbpGT8fFxmVDZ0NDA6aefnt3ln0UWWfxd4Pvf/z533HFHiqWIBj1b+CA6SSerp1Scl0fBBgcje6boeyl1gWLbvfVISgW7YjGLDpncoMvX0XRtJZNtHjr/MIJrvYXATFAmvhiKddScFyfrbLi5msFd7iTyUawcxSc7KflALq2/yayOpFQrMsZOO74YVbVMo5assypo+nQ9nt70qjUgYsj+v46lJbRAlCTSMitIIbk62ZIrHaw1+rR1kMuzQrnmb8F7navL1bHhU5W4j4k+yfg9Kxnt2PI22ag4PY/OF4YzEnTeS0lp42dqADIeP979Y9h2bz3LgdDxFcpj67j/iebMKdMdV0nKUqVjtvs4bW2NK4Plb7PLimHpsO6GCkbenU4a+4nYfn8jc0M+jj7Zl3LMsTaHugtKMubE6q8owV6TQ/efRxnfl7p4uO5TleisGvnZWDmG1lxbjnfIR//LE5SdkYvOrJaVkwDKzsiViVjb7q3HNxlM3hQa/U2oubAQ1xorg29PMPh6akJz5W9JrBx9kXYmzYMo1UqmpkSuzGKxUFNTw1tvvYVO95+zHcwiiyyy+H+FYDDI5s2bOXLkyIojElWsokKqR+vUygo72+5pAIm078uudUItMbaeuJLQ0XhlKeZSg2z9FLO/jaHyvHyW/SEGXnNTuN2OvdrE0QSXipiyEsCmO2tZ8i5xKM1Gf2utkcbLypjpmpctrBIRy490vTDCxH5PyvHai4uw15rZ/Z30qjXWWiMlJ7gyquaAIGGNRTeCJSrPpIO5Qicrz6SDqTi9vdx7QgtabXryUwxNN1ehyVGlVeBJulQGEhUISy+FWpHRlu29lJTMZVoar6ig7/XxjESi490foPQMF8VbXBz4cXdatSX5Oglj6G+FvkB73Gu/Vz/Kz5EWXPWWtIQsEP1dfXYRB3+YfsNA9fkFOFdbOfDDnrR12XRnLZrjKGdtu6+ByHJYVkZaee/VV1UyvHuSwb+6U9rLWmuk/JQ8mVy05tpyel8elcen1qXFXKjDfWiW0jNcFG50cvTnPfHxm/CbsO2+BghH5N+DRORvsVF5VgHjB4R6WqwcwUiQZt7EWmhiwj3B0pKwP6ytreXDH/4wDz74YNo6Z/E/F1klpb8TTE5OUlZWhs+Xmthfzwk4pXz570SyQMvPB5LIGLYGA/UfKWN4zyQDr7qZ6vKm+NfXXl5Mx9NDMoFFpRO7SlYSEyrPLEBr0cjXX0lYSbTO6PrjCF0rZJq3fL4O32SQoz/p49DP+vFNJtet+FQnQ3smwQfeQR/jB9Mr6/gGfETCETLR7WwNBtQ5KqrPLmR/Z+pEaSjUUXZKHkXbnOx9sD0tQWn7FxogDLv+tTUtsaX8nDwKNzo4+GR6izoQSalQMJSyWy8GS42BVVeUE5gJ0vxw+kUXg1VFJBxh8mhm1i8cnyA08NJEWsLa34JMCkrv5/4xhBbDx9n9J4hO62+uzyjxDEKBqOLUgrTkt9jfGz9TjUqvSlGgiPVjzUVFuFZZGHh7gqGERESMoORan0PxDheuVRaZkJcIQ6EOrUVD2Sn5aUlEBqtQVfJHFYdWYuBVN456M4d/IQLq8nPyktSbDv5HT5xwZYDttzcwuMstlzUx4bX2+gpMBXq6XxxmfK8IchLHkrPeLDOqY4gRlDBAJBxhKShUyAo+YCO8FJav0/fGBHXnFcq/A9vua2Bh3C8H4zu/2oItqg7S8NESbFU5DO10w6tNEI233uEv+JknEAhw4MABjEaxM+3qq6/miSeeSNs+WWSRRRb/Xbjnnnv45je/mfJ5Dja2SvHdsSvt0Fp+nWwJtfa6CnQODXu/2U7/SxPYq3MYeCs63/iFYlF4KYy72UtoKUwkIW/Ru0Jq2lppImcxTO8LYynHCk90UH5KHjOdc7Q+NZiSMCo9PZfCTQ52P9DK6K5pFsb9KcSe4lNdDL3upuM3PdReVJmWoAQQ9C5hyNVlJMaUnpSL2qjKeDxGypkf9uHt8bPSrbj09FyKtzsZ3jNJ/0sTaQlKW++pJzi7yMHHetISlGJkks4/pydaAWy+WVgM7/xWeoswgMX5JdT6935lOh5BKBM56f3C3ezNWIf3c3+A6S4vtqoc9Hk6/NPpY9WYrdmBx3sEWSgNNn22BkkppSWq+4f9mCv1rL6ygt7XxlIIVTGC0vb7GwiHIimxWeyeW26rQ6VVMn7Yk7Zfyk/NR2vVZCRFhZfChMORjGSs7peGcdZaANDbFZhrzEmEqJ3fbkFvEQtKa66rQGdWy304dXSenUfjiZ6maysILcWtEsf3eWRFqrytVvR2LRWn5XE0Ku3u7Yk/dwqVRCQSketQc3FRkhLWRIuHSFi84FScm0/eWhuHftaHf9hPz/OjzPbPMXV0Xi5HjNB0MufDCLgioxxiJ1qdlra2NlpbW3nooYcoKipiz549FBUVpW2fLLLIIov/DgQCASorKxkdTd4dLSGxjg8k5by23VuPpBB2aL3Pj+PpnpfJOYZiHWs+Ws7YgWn6X55g/MgMkiLhHTgAVR8uoPtPws4sEgnLio4rCRjlp+RizNXhWm/BfXCW5keT8wFbPl+HSqNk59daGHpjMkW1Z+NtNQRmFzn2ZD+HftpHwJs8t7o2WJjrmSPgCTPVOou7Nf1CRcATJhwKZ1QU1+XrMLi0lJ+az0xbmlySDmrOK6L81Dze/XZHWoLSls/XoVBK7H6gLS1BKW+TjcozCzj6i56MxJhNn60hvBzJuECly9Wx4YbMNngAOotEaCnMdHd6clEMxyMIje+bSUt2+VvwXjZw70VQAqHyuLSwlPkLOmG5vDi3lDFP6FibQ+2HSmj7fX8KAS3WD2uvK0dn06bkzWIEpZJTnZSckMvAm8nKUrE65JTpqDwjn6LNjiSLHbmYVjDm6yk7OTctSUlnhXAojN+TftFu6vAcc00+Op/pA6DwBAcjb8fzu21PDSYRrrbeXc/wnvjzlLgho+7iIhyNFnpejtswJtrn5K23CQVW4vFUolJUJCxykSDaVqFSyApPgzunMeTqZILS5s/V4ncvysSr3Q+0YakS8WH5mXkUbhV2drwG5XNCNXU/bzCDm8XFRfbt24deL1Tmb775Zh555JG07ZNFFllk8d+FRx99lNtuuy3Fzs1KLpukk+S/V9qhtTzVk2SrVXdpMTnFBvZ9twP3oVny11sZ2hWdb4JgazChUCmYOuJlKRgSKtRRosLK2ClvnY1QMMzAa25Gdk0nqTbaGkw0XFzKVLvY9LdvRU4id6OV8lPy2PtwO56OBQ7/tDuF2FO43c7Irmnanxli1SWlaQlKAP6pRSLLYbQ5WoLBNPZip+RhyNUlkbcSseaT5eQUGvB7Fpnt8qUQlHI3Wqk+p5ChncIWNR2xZeNnalicX+LIj/vSEpTMZVoar6yk8/nhtMo8AE3XVqF3atn//ZaMBJ+gZyk5Vs6A4xGEjmdF937g7Q+mJaq83/sDeDq8FKy3o81RZSQSrf54KeYyU9qxEcPa6ypQG1RpYyL/aBCtS0vTJysYeDPVWjnWj5vvrEWhlFJIQLGxsuGGanRWDd7hQNrxU/HBfAz5Osxl2rQWduFwhMhyOCPZqvNPQ+SuiSpnaSF3tTVprO/+Titas5BGqrmoiJwCvRy/zw8Fk/LJTddXEl6KC014OhY42CH621yhI6fIQNkpebINXtAdxB0tl0qthEhEbuuys3LpfzEel43smZTVY/M3WSk9JY+23/Th7Q8ytncGn9svt2nTJytE2b/RxnbOgFEoikzTzJsotUo6Ozv51re+xbe+9S0qKip48803KS4uTts+WfzPQpak9D8c1157LT/96U9TPi+gjFXSZiBKPLqwjJ5XRxjfO4t3yEd4OT7xTR1ZkJWCZvp9SEoJc7EgE7Q/lWz/sPlTtahzVIxE1YBWsi23fL4OhUrB7n9t5cAj3SlqNaVn5hKYDDDR7MXTv4BSlXmCU2mVGBzix3ClepCp0kDpCbkUbnSw91vtKdZrhlID6z5exvihGXqeG2PX11KZ2+Xn5DH+7jgzrT4O/yIzecg3EsA76KPnpVTP2RgWvUvHtfHQWtTCRm85MyNaUkoojmNnMjvsY2lumd5XM0srTjR706v1RFF3RTGOGjO9Lyfb6SXC1mBgpt/3n1InSoRrfQ7ug5kTR9vvF6z6dH0D74/oFJxdZGR/Ztu35YVlkISMdSbVJKVGedxAa+LIDM56M9NH0q/uuQ/OUbDJT+cf09vv+UYCSeOr+sLCJEKebySQ1Abbv9Agdpg9EVeuiCkBmCoNFG5ykLvKmpRgitWtaKMDSSmhNqSXTh/eM0HlGUUysajxqtIkdbFdX2+ViUSlZ+ZSvNUZV2jykbRTv/zkfCSlJF9rvsfH/oeiyUaDkNBXG8QUYqkxsBREJjZOHJnGlB+3s9t6dz0L7gD85GzRJgEfna59uN0iKPn5z3/Ob3/7W5RKJWNjY1l1pSyyyOK/DdPT01RVVeHxeJI+V6JkG2ejl4T0zupry9HbNLz7nQ76XhzHWW9mMmrZ4OkQRI1QCBb6/aj0SvFiFsVKZaOqMwsJLQqS0pEfJc81eVutVJ1RSPfLI4zv8dDydG8KYaf+8hLanh5k5K0pijY5GN6bnimsNilRqCVcG8y4m70pxJ7NnxMe9VOHpvBPhzm0YsfOqqvLyCk0sPuB1oz2YZXnFdDz/CjvfqdDEEgyEGeOPtFFxXklGdWP3K1zFG5yMHEsc5whKaQU4m0icoqMIImESyaM7pvGtcpyXCWlg48dP9my4wuNhJbDKYQbGXqwlx9fQej9QG8HrTOzolTxSU5KT85lZO8UfS+mKkm8H6LT0C43xdtdGQlKgIhlM4ezhEKAJOyPMyHgWUzZJJGIY08PULrdmbFf9j/UhbFMEJT0+ToctSaG3oyP+5YExcjqiwpx1Vs4+Fi7TFpKbIs1n6xBpVfi7Q/E6+0Hv1/8v86qRq3L/Mo8O7BAcF6MsbytVpQapWzvNr7HQ3AmKPfZtnvqCS2GZcJTYjkdq024Gi2YcnWyAlnMTg7AmKtDoZJkQlPBdnsSCczTO094WbRp8UlOirY7OfqUHmd/AQTBt3acnYfeAmB4eJi6ujoWFha48847+fa3v52xfllkkUUW/7fxla98hf/v//v/UiwkiqmiXmoCBPFo9ZVlDL0tFqymO+aiFqACM20L5G2yMb5vBt9QAIVagTFXkAli1k0xrPtUJcY8HdMdXmbaFtj9QPL8vfG2GlQ6BXsebKfl5wMpajT52+yEAiHcB2eZbJtFa8pshSps6sX/ryQG6XJ11JxXxNK8sKlqX2HXqrMqWH9TLeNHZuh9fjxtnFG43c50t4/AWICDP+nBN5Rh/g7AVMssg3sy51b8E0EU2swTvN6uASk6z2eApJY43hpXYCLAwkSAwbcyb5rzdPozx1QIVZyibU76XhnLaDdnqdIRnAq8LyLR8WCt0eMZ9GdUOdpyVx1KtZJd/5p+l/p7DmvPdAABAABJREFUEZ0IwMK4n/Ej6clpAMsLURudAn1GlSxJpThuTOxunadws5PJ9lTrERBkp+nOOfr+kl6tPeCB5sd7ZPWi8jPzklTLAh6S+mzr3fV4BxeSVL+OPNEHiHFdfmoehZvsSRvuYgQlx9oclBoFalP6nNfIvimM+XqZoFR7UREdv4+Xe++D7TKRyLXBQvU5RXT9eVgmIiUqlVWdVYhKp5SPBSYCSYQolUaJKpp7MxSLa8Z+C6baZ7HX5Mh2dps+W4NvKgg/P1lcyx+gO7eZ0YkRIpEIjz32GE888QR6vZ7Ozk6sVmva+mWRRRZZ/N9GMBiksbGRnp7kPIcGLVs5E60UJy6Yiwzsf6iTsX0e8jfY5ZyXt18QNdRaQWhQ65WCIBolHh1JWPMAaLiolOVAiKkjXqGulABbg4m6C0voe3WMsb0zHPtFTwopo+pDBXQ/N8pM6zy+iQCj+9LnvFQ6BSqdUlaoWUlCabpJEHZm+hbwjwY59otkhaWaCwux1+Sw58F2Bv/qZvCvqa4aJae4GPyrm4M/6EFfkJ6gBNDx2z7Kzypmtit9Hmi208vSKXlMd2TO0ShUEipNZvtcQ54BJFj2ZxYBGHjHTeFm+3EJPi2/Su9ME8PWu+sIh+Ddb2dey7NUGzLW9X1DC+b89KQcAMcqM3UfKWZk31RaezdvfzCtMlAiBt4cp/IMFfPHUVJSqhVI6uMEtBFAIaGxZH4H8I0Hkt5VVuLYU4OUnujMOH6OPNEvqzZpzeBYZU+Ke3ueH5Ot2IpOcFC8w8nBn/TJpKXZLp/cHzGi2tyIP07eCiJ/15SrE3aEGTDVOktoSeTSrLVGdFaNrHbl7Q0kEb423VFLeDEsE556XhijJ7rBVl+gpWizE1uJSVaIisVRADnFBpQaBd4xcS3XumSlKfexWXlt3bHKTOVZ+bT/rh9z/4WwCMF6N2+1vgFAb28vdXV1BAIBvvCFL/CVr3wlY/2y+O9H1u7tfyB8Ph8ulytFNUmJkq2chUGKkgyiFlQGp4L1N9cz2zfPsZ+lTiqb7xS7xA8+0ZfWSmzjZ6oB2P/9LgyFOvI3WOl5Lk7YMRTqiCwG8E+Ka0lKKSPB5D1t2a6O28elQ8EHbIy+I37kVn28lJ4/D6RX5YlaaHkHFpLIHvLhaJuEgunlskEkFIDj2o01fLSE1l8e30v+/xUaPlaKWq9MliVegeJTnRRtcR43qbPjS40QIaPcX+w7x7N7a/hoCfZqM4O73RlVmZpuqgIlGa04APK2WCg9IS+jbdz/a+RuMKM2qtPamUFcuSmTVZ5rfQ4155cQnF1Mr7rkVLD+pnq8Q74U4l0MDR8rpf/1CXwjgaTnIR22f6GBuWF/2msVn+qk9IRc/O4V9m1RxCwYd36nBXxR8lpCnQxOBfnbcul5bkxWYOt4diCtkti2+xpQqI5v1xgbT5YaAwpVnNA0Xd3PHB46O8VY0+v1FBQUcOmll/LAAw9krHsWWWSRxX8lMqkmlVBNnbQeECQC30wI/7BfKAEZVOktO/RiV/RyIJQ2XnJtMFN1VhGHnhSKKBXn5jO2eyyJ0BOzN9PboenmRobfFYpCK9H06Sr0Di0dzwwymcbOYvU15eQU6o9rVZa3VdhqGcv0FG6yJym5JGLNdRXk5OvFvJGGPLLpszVozGqO/qL3uMpGHc+mLysIcsX82MJxrd3+X2LzHbX0vDwiq9WkQ9PNVSwFQrJSzkpUnV9AfpOd0f3T9Dyfnoj+XnZvIMhQQEabGPRCgaj/jfGMNmkg+tE/E0wiwPx3ou7S4oykNxDxeigYihOlV2DrPfUoNYqMalgx67dM41ZvV1B2RhFtT4t4P2+TVVZCSinrZcXYq3OSCE+JeC8buS131bHkX+bAI93o7QognPTcV55XQM9ro+AXz9NyMJSWJGet1dN4eQX+6WDaOHvV1WVYyoxymxSf5JRJXP6IH/+6Ubp6u/B6RaayqKgIlUpFa2srer0+5XpZZJFFFv/VCAQCVFRUMDaWvFFMjYatnIlOEoSA2G73mOLMTHd6u7OYTe2xX/aktbdae105Kp1KJMx1UH5SMslCZwVQEPCEWXdjJRqDKqMK4nvZsq2/qZapdm9Gq7KYKhMIgsXAa6MEPGk2u+lg+52NzPbPJ5FaE4/v+HzjcZWnm26uQqVTHlfRsebCQjr/+D8jJqg8Px+9TcuxJ1NzfDG4NliEItQjHRnJQ9vvawBJYtfXj5/zOp7dW/mZQm19ePdkWhtBEJvC1Holhx7PnKOz1RupPKMw7W78/w5Ya/QYnPqMBC97o4m6C0vTKjeBUF1ac3UlgenFtIpZOis03dzA7OBC0oa5RFR9uIDRZkEodG2wyCShdNh2bz3eQd//z957xsd1nGff/y3AFiy2dywWwDYUdoAFoEhJFItYVW1Ltpqr5CYXSS6y7OfJ73GK7bgkdmzFjp3ELZFjJ65ykSyrs4udBEkQlei9bkHZfT/M7gJL7NmFEsXJm+D6RAI35sy5zpyZOTPXXHfWd8Bco6PqTi9TvZGsz6B0mxVPvY2TTzYSHV2c/k5tBMcGkQpO7VSz5oFyrvwme4rA1GGOg395IWu7a3i8hunJGV77WhNqpxqNUZHmb7Ksh1HVEBcvJdPVqdW43W7uueee5U2zZSxjGX80fOc73+Ghhx5a5JpUThUB2UpAOPPE54TwaM27K9DY1Fn3+EDMh6bDs4vcjEC4q1TdUcbFnwhHlJItFgbPjGS4CaUdYlRQ/5Equo4MZRUF1bzVizGgo+kXXVlTYwVvL8Ec1OVMVWZZpWfo7Dgqq4qSTaa0uCNbWZZKPSe/cSlraraUO9L5p9qyCnLSzka/7GLofHZVkG2NgZnILKOXswuP/9hY+6CP9pf7GWmUXvNaca+XxJy0mMm50YR/t5ue40NpQcq1yJfuDcShLuQyyTYHUPfhIFdfGZB0wAKxxjQzNStZlz82fHudOeuy7n1+SJB1/w7EAQqVoYDXvnoxa7sM3ubGUm2QTE2o0kPpDS6u/FKsR6beh2zw3mTDvcHCyb9v/Xelkav9QIB4LM6pb7eg0gNkpjks2WJh8OIkscEYq99VQSKRyJoyUWVTUfeQn3B/NKtLV+CAC/tqE699TXCyMLViLBFjcm0Xra0tjI6Jn7ndboqKijh79iwqlfSBymX81yDHOdhl/LHxd3/3d+h0OoqKitICJZ1WR6hoJTtkb+K20D1U7SgDxMkUz2YbtvpiwoNxDn7pAhN9UbRW8Ug3PBZi/WMih3rLs12EhyPorPOngMv229G6xcJPoa4grZYMd0eZ6o/g2ChSIKCFte/yseqdQtBz/ied9J6eF004NhvY+LFKdD4hnJroiXDuF2JBQetW491lT8fqrEqQgUovruXdbsMQFH+ntcqpelsJFTe5qPtQANvaYoZbJtICJe92G6ZqLRsfq6TkJhPeLXYOfukC577bjmVVESVbLenreLZZ0bg0DDWNc+afLuLdZUdjFb8zVWvxbBP/kcmFs5FlVVH6Xr277GkOax/2Y/IX491uA4RAxba2OCO24fFqGj5VLZyfFtyrq96EvVYvntUnq6h7JJDmW+vNjHVsNNDwRDUbHgmJe91lR+vVLoo1eIvQuTS46k3pv/Xusqe517rVyAvkaYGSbW0xrusWxCb5Hrg4xmDzmCg3aVhzLYdA+iSWxsqi2NhkjInuMIPnxinZalnEocYqBta2P/Sk+c7GYelWkQ7GVK3FENSmuU7F2mv1eLZZ2fyZGmre7k1zeC3f/tucNDxRneY8G4fVbytl82dq8N3mmm/f13AY2Ouh7EZH+nf2Wn0G39ZqI8iEkl1rlWfwYltbjLJIyUjLJK99+8qi9u3dZSccjnPwTy/Q89oAJVstbHysEsdGA55t1rTDUdvvOrCu1GMIyqm4ycXGT1RmcJjiW+tWI5PJKChWpNv3Qg47nx9kvGeKzsNiU7v2gwHBYbJ9D5wfpfOoSKdoWVVE9ZvKqftoYP5ea630nhgVz2KTcHCKTSVP6G83ZnA42j7OeI+YXFvXFdPwRHWaN8dGA63P9qQFb9VvKqP6TeWgFW12rW8DZVfWsJm9mPQmbDYbra2tfP7zn0en03HDDTewjGUsYxn/WQgGg6hUqrRASSFXYDPZuY597JC9ie037UTv06AxQ+XtXlbd6wWNSN916ecdODYZAZFqreFT1RhXaSAi3FWGW0Yhud9vrtbi3SnG2fh0HLlSRtmNZgBan+/FssaGRvyXug8HqLmrQjjFDEPrH3qZuJpcMNBA9QNe1rzXB0Dz892Mdk2mRT+OTUYsK3Xp2AK9OHWlMUNRmQbPtvlx1rHeyKZPVuHf5QYNmHw6Ol8VIt1UrGOTkfUfDmKr1dN7ckgIZCIiLZymRNycpkTEHv9WE0MXxynUKXGsN6av49lmo6hMIyx8ZWBbOz+uWlbq0hwCeG+wizECIR7xbLOlObSs1BF8i5vNn6nBf8CFe6sFY0iTvr9UrGOTkYZPVVOxf8GcosGMOTnOooGat3vZ/OkabLV6jCEN7gVzIFeDWbja1Oop0CnxbrMnBSWg92nwXD8/Jjs2Gel4uS8tUPJss6FxqjM47D0zytjVKaKTEayrizN4SXF47ReZrVaPLTmnScUOt43Te2oEjVOd8Rytq4sF3xE4+oVLFGgLKCpL8bKYw2K3BnNA1MNzvRW9b3HshkdCNHyqGleDOX2da/mu+2ggLfjPxqG5WkvDp6rZ+PFKca/JooyheQ4r9jqxVhtY81BF+tmI2Hm+5QVy5Erxf8d64yIOm37ZRt/ZEYrsi9u3rVbPuX9s4+CfXcBTb6Nir526hwPpNgsQGY4z1DSGY71o6/49bvy3O+Y5XMB3gVaJTCZD78t8NikOz//oEqNXJ0Ej7nP9R4MZ7bv76BCtz4qN4FXvDrLuAzUZfURkOJYWUhUUKVHpC5O/BM+ueQ5FvaNc/pUoa/0jQeo+EkhzOHY1zMmvX4QI2OqK8d5gZ8NHxXdGeb2LYHw1Gyd2USGrpKKigvHxcdrb29FqtQSDQb74xS+yjGUsYxn/Gfj5z3+OXq9Hq9WmBUpFmiIqNWvYIXsT+8vfgm+rSEVZ93CQ8h1OXPXFEBWHrMauhlEnHZLWfcCf7vuanu5mojeMsmj+FLB7mwV1uYhVm1QUJtehiMJEbxjb2vnv2dqHa1j9LrF+dumn3XQdmz+0ZK7Rsf4jwbQ7y3DrOI2/bBPlGuW4t1hA/AqNU4NMIU87Djvrzem/UxuhYr+d4IESaj8QwBjUMNYRTguUnPVmjEEN697nx7nVjHu9hZPfuMCFHwo3J2f9/CDgWG/CWKqh58QQZ37UjnuLBbVRjJXFZWrcyfFbXiBHXijHVJVcr1GLVFspDle83Yt9tQnvTWKcs601YK7RzXO4xcKGR0PUf7IKtVMt7jUJy+piLMkxecNHQ9R+yI86OQdS2zNjzTU66j9ZTd2HgulyU8406Vg1WCr1GLxF2Grnn427wUxxWYpDwW1KoGQManCsn59XpvjueW2Y/sbhjGdjDGoyOASQpcwJUrwYxX8NfjUzMzOMtEzQf2EMW61hMYdGORd+0EHLMz1pvrNxWLbNjspYgGV1MVpPJi+2tQYsq4uxrTWw+Ykaqu71zHN4Dd+eGy3UP16d5iYbhxW7HWz+dA3l++0Z7du9xZLmsOrOcsp3ONO8mKoy+batNiCTgbxQjtrIIg61Ng0DZ0c58Z0ri9p3qr6H/qKRrkP9OOvN1H4ggK3WINpsUEx6mp/pwVhehNopJ7ivhI2PVWZymOQ79TwKDcrM9p28zvCFSYabxrl6VGxqr3pnOZX3eNLte6hpkvaX+4mOCiekFW/zUfshf/o65pUW+pKbdJ7NJhSFcuaSbhTu6/QZHA42jTLSPgFRUJeqqX+8Ot32zDU6rvyuKy1EW3Wfl+o3l6E2ijYbKl2Jp2MlW9iPpdiG3W6ntbWVz372s2g0Gm688UaWsYxlLOM/CzfccAMqlYp3v/vdzM3NJde8HGzlADtkb2LLhi3oy1SggpX3+am+uwxUcPrbrVx4qhXbGtEXWlbo2fSJqvQeUP/5EQYvjSWFCEKg494q+sWZaAKlRoFzk/ju7zo2hKnKgEov+vJV7y5n5f1+9BVqiEHTr7sZ70yKdlQQuN3JyneIPdDWF/oYbh5PC5QsK/QYQ0Xp+1MZlcjkclRWFSqbCufG+XmBqVrH+kdCVN7qQaWXY/Jp6Uo6wKRiTdU61r3XjzFUxPDlCQ5/rlGIHjaa0LiEmEFlFbFnf9hG70kh8rWsml8TcK43ovOoQC4DOVhXFAtXKYTDUIpDgMB+N1V3ekW5eiHwScXqK9SU3Wxn8xM1+PY6sa0xCI6SvDg3mlDphZvNpk9U4d05v/5hW2PAENBmcNjwqWrsdaJuzgVrdJZVgkN9mQqtXU3ZjXZUVlEJjSuTQ8sKPV1Hh9ICJedGEyqbKoPDkZYwg41jhAcjmKrn50ALOUSJyEKThDFUhGWFPiO2/8Io3ccHUenlGbwYAto036/9dRNyGYJvWBSrr1BjDhVjrhLx9jqjaN/X8L32QR+bPlGFvW6el2v5XvNQBXUfEXNXfdliDg0BsVe9/pFQ8tmI9q3zzHPoXG/EWWdm9bvLM+51Id/KIkWGQ9C1HF78VQfdx4dAVbCofVtW6Gn6WTeH/6IR5xoTrutMrH3Ql26zINLkDV4ax7JCL+ZKt3oo2+3IyqHKUAhyGTrnvJDHuX6ew7Pfv8zQ5TFQibqv/YAP2/r59t15eJCWZ8XB1xX3Baj7UBWqZDPVl6mYicyl3aPU5sJ5B3YVuLbOc1iggvGuKVqS62drHqqg9oOBdOxkXzQtUNKUqfDtcVP3cPI7Y6UNf2QV68d3UMk6KsormJqaoqmpCbVajd/vX17z+m+GZZHSfwOsW7cOmUzGgw8+yNTUFAa9AQUK7tn6Dh792KPsvGUHADV3leHZLN7qtheE8jFwk8ir6FhpoLTehm+/GOSUagWFGrEIM3R2Cq1Zg3+PWOyxNxjx1NpY9YAY7KcnZ5Ar5puCf1cJ/ptL0v+XyWTMzQiVdeUBF6X1trQown9TCUq1gsBOJwDFLg1VO8TfBvaJ2M2fqaFkqyV9/ZTri2ezjcpbSzEEtVTs8WAJGIlOTHPhn64Q2OOh4iZXug6ezTaC+0tRahR4Njoorbfh3SJEKsH93rSwpOFT1Xi32AnsK+XSU5241joprbfhuV5cO3TAm/67I1+4iFwpI5jkrKTOQmm9jbKbBadKlVhYSqWsqrjJRWCv+J0tVExpvY04caYnZ6i+xYNn0/ymVcVOV/p+FUo5ap2KylvE/6tvdVNaPz+J8O8qQSaXMRsVHJfW26i+1S343is41LqFcj0RT1CxcwEvm6xUJcsN3CJiXVvEIBzYu5jDyltLafpxFwq5gtJ6GyV1lkUcpqDUiBUbz/UllNbbqNjmSD7XUpxrrJz5divh7ihlNzoI7CsFoPwG8Ww820SdKm+b5zvN4R7BoWu1CVVRIWNXJxlpDFN5a2m6fadi/XtKGDo7SCKewOQtJrBX3E/VgZIMvh2rzMjkMoxBPVqrnNJ6G5X7k7G3CL77Lw+TmEvgXGnCv2u+fYtYwXdkPIZMJkuLlvx7SjL4LnZpmJmaZejsFP7bvJTW27BXZfLd+MMOCAu+V9xdjneXnbJdgkNvgy2Db6VGQclG0ZZDB0Q7dF8nnqO1xsF4xxRymQzvFnta8FR2o4Pgfi/h7iidhwbQmtR4d3hoeKKa6rd4MzjUu4pEm9WC2lSIyVuc7iNCB+bbbModqVAr+oyat5dSWm8jeEDwotGrkMlkIqWdFryb3fN9hBYsASOFyVQo5Tucoj8pFIut/l0lVOyY51CulIl0lGGhei6tt1F5twutTMsHP/RB3v72t+NMiDrG43Feeukl5HI5BQUFnDhxgmUsYxnL+I/i7NmzFBQUIJPJuHLlCjKZDKVCSSkBPvX4p3jfB9+LRqah/GYH3i02Qrd4iAzDTHiGApUSW7Xo94P7S/HvdKfLlSlkhPaK/mt6chbHCnF6F6DyzjI89Q7QkHbl0bvFh2f59Q7KttoJ3S0WzRUqMf5OtQu1QsUOJ8FbkmPEegvmsmKKbOLDuXJ3KcaS+Q9Y/043odtKqf9kNdZgMVqjmrGrYSLDUH2bB+8WUR+9T4N/txu5XMbQpXE0Zg1lW+0E94n+OrTPTdlWOyUbrBTqCwju8RBMjt9ooGyrncoDbspvdrDunRWUbbWj0ci59ONOgvs9+HfP8+LdYqPqthKRYq4zjLm8OC0YCh7I5BBgdlrMh8p2llC21Y5jtRGAwD4Ptkoj8ZkEvWdGKb/RQfCAmH+4r3dRttWO9zo7xjIdMoUM17oFc4odTgLJ2LKtdkzeYhKJBAON4wQPlFK+YA5UscNJYJ+HgRPjtL7UjdakoWxncl5zayneGxaIpHe5Cd0qyjVXaynbase3S5RVdUsJ3i02ptojnPuHNsq3ugnuFxxqnGrxzJN8K9RyZDJZWrCSwXeyzhqDipanewjuE/eaEjgt5FtTosG7xUb17eJvK/aVUrbVjsWvS8aWQkKImUCIwiqT9fduF8/cvd7CbGQO5IKLFMpvdBBKtkNXgwt1sQpFMi1M6FbvIg6Dt3iZmZhlNjYr2tKN7nQdUhy2/rqXRCKBxpRMy1Gtp2yrnYrkvYcOeJArZWkHCP/ueQ71PtFm3ZucNP+sh9B+N94tNjZ9okrE3uxOc6gxCw4d68yojIVUHkhyaJ7n23+zm/Pfb2a8M4xjpYXQfrd4T/Y4KdtqR+/TcO4f20gkEvh3uynbZWfzp2tEH3FAXKd0sweTtxhbtZ6K7W4KdQUZ7dt7g108AyAyEkUmk4k+QgOVt5dl8C1TyNKpjza+u5Kyejvubcn38xYvGrM63UcUFhVQmEw35F5vEe/CdnHd8uvF3zT/VrhV+XeJPgJg0+rN3H///dx74B0oUFBUVERzczOf/OQnkclkbNu2jWUsYxnLeCNw6623IpPJuO2225iYmEBfrEdJAbcG7+Wxjz/GzltvAmDFveWUJ9cdmn/bCQkou1GMwVqPmoqbnPh3i9+rTYWo9WJhO9wZRWfTEton+mO1U07FVidr31oOQGQ4hqJAnhY6hPZ5CO4vSYsvgLSzgG+nnYqbnGnxRegWD4XFBZQl+2CzT09wR3JOsd1FxU1ONj9ag+cGK6EDHmSy+XSevp1OggdKhbBiqxN3rY3ISIwLP2whdKsX/+7572TfTifBW0rRWFSUbrJScZMTV70jWQcvvuSa28aPVeLf4yJ0m5fWp/swODRU3OSkdJv4fejWUiFCQaQbUyjl6bmKqbyIipucVCQPNqk0hSQSiXSqhcC+EkK3JDm0C75lchnTY7NUHhD3mkJoXymh5DqQQiVHY1RTeUDcT3CPk4qbnGmxSOgWD/ICWTodSfk2B1XJsbNiu42Km5yYyos49sXLzM3ECe6ZX68p3+FM19+7U5Rbep1YxwrdtpjD0C1e2p7pIx5JiNgGseYRvKU0zWEKBUViDcOT5Nu9Vfw+uL+Usi1OLvygg3BnlODekvRYb6syUHGTk7LtyfWmt3jTfF/LocGvpsimZbRtkqEzE4T2l6Tbdzp2n4eBi2PE5xJYfAaCe5PPcZ+411QbLW2wI1fKMJaJjdmKm5wE94mx3r/bQcVNTsb6YsxNx3GutBDYt4DDbY70/GmidwqZTIYlVJx8NqUZfFuCBqYnZxg6M0Fpsn2714kJU6rNNv2sG6KC7xVv8+G9yYZjg3hvHBvsyXJFm1WbCynZaMW/20Xo1uT3zDqzeDb1TgbOjRKPxynf4UwLqYJ7SgjdUkp0FC7/opMiq4bym0vY9PEqVtxTnsGhya8nlJzvFbu1WP2GdB8R3OdOt9lwZxQSoNIJAXjFAcFZKLluqDGKNa/oQEy4rd3kIXhgnhfXGisqrfjbqv0uFAVyNPaC5L16CCzgsECtZG5mjugolO0UHFbd5kEtU/Pe9z3I2x94OxWJagDkcjkvvvgiCoUCtVrNqVOnWMYylrGM/yg6OzsxGo3IZDJeeuklZDIZqkIV5VTx8Uc+yXvf/xAqmQp3gxnfHrdYK4nB1FCUQm0BzjVC3BC61SvmS4g1ekWhHP9u8f/IwDQldVbstWJOseIeH+U3ukCFSCmVAH2JGLPsK434d7upulvsRSqTewjjrcKaLnSgJL0uYSjV4lhlQe8pAhVU7ivBvOCQUPCWEqrf7GXTxypR2VQYSnWMtU0RG4wR2u9Kr43oPCoqby1FWahg4NwosVgc/243oeQ4G9jlwL/bTUm9BY1VReVtpQRvme/LfbtchPa5cW40Ufc+P/7dbvRuNS1P94rYBWOEb7eb4C0exlujDJwZxVplxBJKrhve4skYk2UyGTPJ+ZBjkw3/bjfu9WKcDd5aSskGK7PROQYbRwnuLyGY5MVda8a/241jkw1DRRGKQjmeTfNrXoF9JQST8w9LSI9jlYUEMNY0SnC/B9+CNbrggRIqb/Uw3h6j8V9bKLJpKE8ezArtc+O7eX5uFbrNQ9Wdog4qvRz/bjeB5JpXcI8T/243sYkYl37cSfk2V/o5gli/CSTnaSp9oWiHSYFT5W2eRXzrXVo6nh3Au0M8x9Scp/LWUkJJvlVWIUgJJtc0SrbY8e8W2UJEfb3IkKUdvgJ73On1VHut4Ltkg4WZqVnkBTICexbwsr+E0G0i1rnGhM6hTR88COwvzeAwdKCE0K2lRIZjzEzN4N/txpuccwT2luDbJe679/goiThoTOK+dR4V/t1uypMHBAJ7XBRqC9JC59AtJVQmn6NKLzis2OKg7bd9BG4WbTZ1WLDylsy5iu9mF2VbHGjtaipuFrykhEiVtwq+L/+kjeErE5SstxDYW4LOo8J7k3iOloCepp92MTcdJ3TAg73OSP2nqvHtdhNIrmM5a+1Yq4w415iouNGB1qwmuEBHENjjJpic7411hZHJZdhXiHutvrsig29loYL4nFjzWvcuP75tbry7knPxWzzoS4rSfUSRXYPKKOZdhlKt4Du531iZXK9t+b3QS1Te7qH6LaIOAXsN9z9wP2+9+X7UaNFqtbS2tqbXvG699VaW8V8PZf6QZfxnIBwOY7fbmZrKtPbbsHIDVcVr6Tk8wvjFCcarJ7matOcnAXOzYuO/7+gYWpua6Oi0+J0KEokEcpWQpF75VSfG4PwA3n18CJM/qXQ+PYrvRif9F4RyuO35Hiw18yrMid4IereWlW8v59w/tjFwaYyBM0Il3PJMD56tVta8p5rDf91I56EBCo1yrvyrsD8evDzOULLcluf68Gw2Yy4XJ9E7XuqnQDff5AbOjxEnwYq7ywmPRBm4NMblX3ZCGNpe6kVtFB+A5XscDLWMMdI4wWTHJBQW4tlqZeCEcIhpf74XrUN8zM5G50AJnS+JRZbew/0oi5R0vSQ6qbm5ORTIsdfq6T8xTu/JYSIjQr053DhEkVtDkU1F9dtKaftDD4by+dPaPSeGmB4Xk4jJwQkGLo3RfWyYyZYwllVFmKuMGXynREcH//QCobs89J1Icvj7bmyr508JdR4SdU2JoTL4fq4HR+187NWDA2llLcDAxTGGL46SbiBAPC7aQMfL/RTqM/meic6w8bFKrh7pZ242Ttdr4oRg+0u96cEyhVT9uw4PISuQ0XckWc8X+tA61Kx5yMfcdJy+MyOE+8SA0Xesj0J9AV1JJ4aF4jcgg++eMyMUlxXReWgYjRVaf9+N0ZfZZmcmZ4kMwqGvNBI64KH7mOCl9Q/dGW2288gg8Zk4nc8PpjlM8d36nOB76PgUh4434t1uQ6aZl24PXBqbb7O/EXzHx6Ns+ngVV48NoFTM5/4duDjGaJM4aaVzaEgkEvRfHM/K91jnJHp3EYPnxhkE5uYSDJwWHLY/34vGqqL3cD/hwTj+W11onaK997zah0KtoOfVPsKDcRwbDeg8WlbcXc5sdE5wmFQcD5weQG1V0fnyIKaKYmYis4x3zOcy6TkxJPqIMJz8hwuUbvHQeXCYuocDzEzPMnp1vv9Z2GaNpcXE43Ha/iBOt17bR8xOzzHZm9w83+ZgtHOC7kOC+6afdeGoNdPzUtKCVUY6by1k9hGTPZPo7BqmBmYAGGoaZ3pilhWyDaxgA85teo5efoXLVy4zOzvLli1bMJvNPPTQQ3zmM59hGctYxjJeD/7f//t//N//+38zfqYuVPPmm95Gz4vjEIH2l/spdovxMCUQGEz2++ee6qRkk4mBRvH/BAmQifGk++Uh1PpCxpOOR52vDlFYrECRHG9GWiYoLtGmXVJ6Xhtmsle4ZvYdG8C1wUyRRVy39fc9FLvmT4Z1Hx3CVKljzYM+Lv+khSKnis7UePhcD4ayeZFS19FBrCsNKBRyBpsmMJ4boee1kXSsMVDMxo9XolQp6DwyyGxkju5kitO+cyP0nxKx0YkYE70RrvxbNxqzHMsaCyQ/HomI2MFzI8RnwVVnZuTqeDr9VfvL/WnnmxQKk84Grc/34aozMdwm7r39hT5UZiUbH6vk6Ncv0XdqhNFW4QrV/sogszNz9J0ZBaDjcC8qtYq234k5Z++JESaSLn7dh0eQyWUMnOgnMixcdLT2+Z3HnteGCfeLuUr/8UEKdEq6Dg5DBNqe713Ed2QiBhroOTpKkUVL15HkPOHZbowV83PDhRhuC9O3kO/fd2OqNLDyHeUk5hJ0vDogRLpApDeawfdcLI5cI0+3j46XM1P79Z0bITo+zYaPhmh7tY/wSIxIVyTNtzIpbLOEdMhkMiKj4l7bX+pnemqGoWbRLttf7KOwWMxVNE41fadGGGufTF5zkLm5OCPnh+h+eQjHJiMa4/zccCHfPYf6kKtkdL0g5gmtz/Wgc2ozORyK0Xd8FI0ZSm5005ec27b+vgd96YI2e2SQ6Ng0Nfd4kavk9J0bSfOdarMg3JmQQWxKzBnGeyIZfLf/oYfAgVJmpsRcvePgQLrNRobn22xsMIbKqsK1yYJphYXIy0OCb4WMyHCcc//QRuAON3qPlpX3VND6fC/RsWnGezL5VhTKIQF950cYbRJttvWFAaYjsww0jjNwYpzy3RYScQUas5zV7wkx1DTK0AURe+WXfZRsnmHo9ACr31aBTCFjrHN+Xrawj+g9M4RzjYXu50Xbj03GGGyct97uPjpEZFT831ZtIJFIMNoxlubQUKZjOJlmd24mjlwu+qXBpgmcVyfoPjjCNtntWHw6hp3dvPTSi8zNzfHCCy/gcrmYnp6ms7NzORXcMpaxjNeFaDSK3++nuzszldjaUB0rDLX0HR9hqjPKSOs4bS8m03vMydJiodGmCB0v9zMbE2NnQXHmmlfjj9owV82f3G1/qQ9b8kR2tDfOdGSGgfOjALQ914tttTHtWjTcPI6l0sDKt5Rz7ntt9J4aZvii6DfbXuxndnaOytvLOPPtJlp/34fWUUDr02Js7jk2xGhbclx9dYiZmTkcK4QLS8tzvagN825O3UeGmJ2dZdX9Pib7IvScHKL75V6io9D6+160yY0aZ72ZgfMjjLaEmWgT44R7q52ew4KXlud6KE6Os9MTs8Tn4rS/IOrTd26EIpeK7mPiXudm54ACHOtN9B0f4erBfqYnBKcjbVP0nBxCa1NR9RYPLb/vwhSaX4Npf7GP+GxyvjcdpefkEANnRploj2Lwq7HUGOdjX5hPW3H4cxfxHXAydCHJ9wtJvpNzr7YX+lGq5HS+KNYMek4MMXJZzKfbXx4gNjlDZGou+az6KCyeX4PpOTbEWIcYH1Nu38ka0vpcL5rkumGK75lwjLqHg1w91E3PSRkDSceDtuf60nynMBsR1xw8PUihXkl3Ml1uy7M96D1FVL+1FJlCxtVX+4mOifnHwMUxiks1ab4VSsV8hYCrr/Qzk7yXsS7BYe/JUVBD28vdmH0L2uyLfWKuEoXDn2vEd8DJQHLe2/5Cr+A7muK7DxQyul8R8/aek0PpNtvxYh+RkRjDjaMcOTmKs96Msnh+Lt5zYojR5Fyw+bf9uDdMM9QxwYaPhmg/2EdBQXa+zQExpxhuTM3hetGY5/keOD+CpdLISPMEM2PTKNRy+o6JZ9zyXA86h4a+Y4NER+N4b7Kh84h5xHDjMGprId1HRon2RzHX6DCUFbHqPh8z0dmMNjvcMinem2OjrHqbhtmpufT7l+I71Ucc/JsL+G900n9ylFXvKCcRj9Nzct4Vre2FvvTc0LXGIt6j53uS7SOzj4hNTDM5IMj33GBlpHWCniPi3i7/sgfnOiNtfxDvoFwpTx+ySHGYquNE7xSWSgNTQ6Ks3nMjxKNxfLIafNTg2FTE8e7DXLp0iVgsRn19PTabjQ9+8IN84hOfYBnLWMYyXg9++MMf8sADD2SkdFMpNNxRfxcDRyZBJvb2jBViTjE7HYcEwhkFuPjjLpx1BkYuprKoJNLuNyONk3S81M9UcmwfPDOC1qECheg3e04OYq00pq/b/mJfeuwcaxplbsZJkU2MA63P9KD3aDNiLZV6Vj1Qxtmn2uk8OsBQ0xjEoPWFXgwV8+s1HS/0YVttpECrJDYQo/PIAEPnRf3b/9CDqcpA7QcDqI2FtPyhG6ZJp4HqPDLASHLsnI7M0HlkgPbf9aPSyzEE9cgV8/tFnUcGGL0yQWwywVwszkjrBOPd4t5bn+2lQDc/dgLpLDWdR4aZnZljKDnPaX22F7WlgLqHg5z7bhNXXxlgsk+sLfSdHEcmlzF0VtSv/eU+1LrC9Hyp45V+IoNi73fo/DAFeiV9J8eJDcYY7wijc8x/n3e8NM/30OVxOo8M0HtijNi4EG8YvAs4fL6PmfAcKj2MtETpPDJA/5n59YPUGgwA8QSpRhAbj2fw3fFiL6Y+A6H9JcgL5LQ91yvcpBZwmOZ7YgalSpFOIdb6XB/KQnlG7PTkDOve66fjyADTUzOMtov5SOvv5/nWOYSoODYmeOk6OsLcXJyxptF0bGourrKqMvjuPzGEXCVj8MwIXa8MYarWUbRg3bD9xT6iI4LDkYsjdJoK6H1N1L/l2R6K3ZltNjY+K9KmqaDsRjuDyfeo9Q+Zbbb9D73MTsfx7RXi7YV8tz/fm56LG0NFyJQyYsPTSb4zObz6ch9qi4q5SGrOnMl319FBRi6PExuaRl5UwMzUDPryIiY7Y7Q800uBVkFsHC4+dRXvThuGUi2r3+6n5blupo/MMnRFtNmWZ3pQ6ZXi+cwl6DoxyFhLcm0qycfIxRF6j47gus6EXCYHFax/X4i+cyMMXxLfMp1/6GU2Mkv/iSGCt5egVCkYaZ1PM7ewj+g8PkD5VicdL4p5W3R8mqGL87Ftf+hlZlLct32tiUQiwURyvSzVR6RSFsYmp9NCyNhAjMFLY/QeGmaLbC96u4qwf5SXDj5POBLmF7/4BQ6Hg8LCQq5cubKcCu6/CLJEagdmGX8UnDhxgg0bNhCPZ+aPXE0DdllJxs/8t7pwrDYx0jxB4z9dXVSW1qulcq8rna9y42OVtP2hh/4Ti3NKrnx7OQZvEb2nh2n+ec+i39vWFlOxw53OZV++x0Hbb7LnXS/f48C93kLvyWFafrU4n6ZnmxXvFjuXftaedmjJhfUfCXLh37oIdyzO5YoWNj9aQ3w2IZmP1La2GPcmG6e/uTg/ZbbyVt5Vnk7LkQ2bP11DIp7g0J9nv57GCuveV8PM1CzHsuTdTWHDIyHCA1HOfz97vlYQz9hcUcyxb12GLLefrtNnapiNzKWfjxRM1VpGGqULCt3lwRrS0/5CH10vD0nGbf5MDdMTM+kUXVljPl1DIpHg0J9J54k1BLWMNeW4MUSqscrbypjqj+Z8hv5bXZj9xTk5NwS1VL+pjDM/bM/enhAp3AL7PEz2RDjz7cV56wECt7mxrzLSf3aUKz/rzhpjr9Wj9+okf78Qpmot5Te4JHPLpt6ZyEBMMmbd+/30nh6m59WRrL9fiPrHq5mLzHHsr7JztfnTNcTnpN8pU7UWuVLG0Nkpau71olQrJLna/JkaSCCdi/aDAUbbJmn5VS++/U4UhQqa/q1LsqzEXPZ3r8lzHJkC2traADAajWzcuJHf/e53WctaxjKWsYwUdu/evaiv0FLMZtnNi2IbPlWNTC6T7NMCd7iJjszQ+fwA/ttc6OwaTmfJjw2iryWBSJGWBavfVUF4JMaVf+vGurqYyNhs2hklW70AybnJho+GkClkeecJINJTmXw6zn4ne7++7v1+NBYVTU93MpBlTgmw5iEfV37bI1nfhQjc4Wa4cTQtkrgWwTtLsNUY6Dw0SMfv+7PGrHnQR5FDzbkftjLekv2axpBGbCj+oD0t4MmGDR8N0Xd2VPJaAGvf60drU3Hy71tzlgUirVsuHvI9u1SdCnRKDn42e1sBKL/ZgXujhe6jQ2mhVjbofRpJjlLY+FglSo0i5/XQwPoHg/SeGaXz+QHJsJr7ytAYC3jta1ckYzY8EqJAq+Tgly6khVjXouFT1chkMsn3BUgfoFgK1jzoo/2FHkYvZ79g/ePVyJUySQ70Pg2BvSWc+Bvp+0rBVqsnuNdD82+76UsugC6E/zYXjlUmmp/ppu/I4t8DeHfY021yw0dDND19NWvdg3eWYF9hpP/8KE3/ung+5VhvxLvVnnafEuLGtrSIcCFq7ivDWF5Ex4v9dKYOxSTRn+hipmqUjqsd6UM1K1eu5Ktf/eqyw9IylrGMnGhra6OmpoZIJLMPW81m7LJM90R3g5nyHU6GL09w8UeL17zURjnB272cTa7f1D0cpOPlfgZOjS2K9d/iwrnWTO+pYZp/sXjNy+BXE9hXymtfFWscnhus6U2ga+FYb8K/x0XPiSFan1485trWGgjsK+HyL68ylEy5mwtr3+un+TddTLRHs/5+86drmJuOc+QLF7P+3uBX493i5Ox32/JeC6DmHm/azSkbGh6vJpFIcPhz2a+HGjY/llwT+mvpNaF17/MTGZnm4lOLn10K7i0WnGtMnPjOlbTgJhs2fzq5xvYV6fUeEOm+pHgE8N5kw3Odjc5XB9IOUVmv95kaYmMz6faQDfWfFO6MkjwhHL7CnTluDJG6rfY9Pia7w5z5TptknOcGK47VpvRpeqmyVt9bxqWftjPWnP26Br9IbTbRGU6/O9mu5b3eTt/pkazvC4j0buYqAy2/XLzuey20HjX+XU7O/n3261lWF1N5aylTfVHJb6cV95cx0jKZFmLlwoaPhojPJSSfX75np/WoUeuVDF+YxHfAidak5tz3ste94VM1IINDEnPUVe8oZ7I/QuvTfSIVoKlAkrOGJ2pIzMWz1uuS9TjKIhmtbeIbTa/Xs3XrVn71q19lLWsZy1jGMlJ4//vfz5NPPpnxs2JMbJJtXxS76WOVyAsUHPrz7H2a9yYbc9Nxul4ZwnODFWNZEee+1541tv6T1SBDcn+h8s0eZsKztDzdK9JoxROMt8eyxq5/JISyQM7hz2fvt9e+24dSp+S4xF7HQtjWGLCvNHBeYi5U81YvxoCOK7/upv+1UcmYzoN9kvVdCO9NNsY7w4xezr4PWnqjjdItNq6+MsDVF7LPTSrf7MFSqefCv7RLlqNxqVhxdxkXf9zOZKd0vdY+6GPw0rjkPBeg6u5SzIFizv2wJe1WIwWdR5Xzeps+VolMLufw56XXvNa8u4Iip0ZyrRVEarbAHjddxwZp/530ep2+TJX3uax7n1jXzHU9VLD2Ph+DTbm5ChxwoXNpOCUxfwHBudam5rWvXSCWfRmVjY9WIi+Qc/hz0jyF7izh8q+6IH+zo+ruUnqODzF2Jfta6/pHQhRqlRz8ywtZy1PZVFTd6ua0xJ7fQugr1NTcXUHLMz1Z35mSLRbKbnTQ8kwPvUez7126G8x0HxLC93Xv9dPy+56sdffcYKXsBgf9Z0dp+uniNS9jqIiK7U5OPin2UGve6qX5931pAdxC+PY6cdaZ6Xipf9EzHk8MM1HVQ2dXJxMT4nuupqaGJ598kuuvvz43Ict4Q7HspPRHwpe//GUeffTRjJ/JkNPAbrSyeRXmQiFG8897MJRqaXsm+wd/9W1uVIZCLKuKGDo7tWhjyrffiSWk59iXL3PuH9sI3ObOKlACcG2wotQo0g5D1wqUyvc4cK0zc+jPG2n7TR9tL/ZJimqmkirGIruWIRYPqilRyljbJOe/3yEthNECYeg7M0LPq9KbMb5dJcJe2goRifFk48cq6T0xTMdzAzkFSgAHv5xj8EJcYzYyR9+50ZxxBUVKihS5Txyb/cXCYjq3jofoSIyR1sncQZBToARw+Ued5J/KLQ05B/kk8gmUQKQam9k5S//p3OKbNFfJdpENqmIlcqWMsi0WGv8pe1D/iXEqdsTpPSG98HHlZ910v9JLeHDxhs7CclKCwE0fr6L1991ZBYIAwX0iVaHWrSbcvXji1/n8IEUONZeeEqk4st3jyW80p3+3+dEaYqPTOTcEc+Hgn14Q10BMCgp0yoz+Y2E7MniL0icWs+HMD9swJFPOLOxzUli4uedYbUKmkEmKlAbOjxGfS6aJu9WFqULH8W81QRiCnesBCDNLP51MTU3x7LPPIpPJcLlci07oLmMZy1hGaWkpnZ2dGT/z4KNKVjv/g2uEGP1nR9N2s9lgX2FkbjpO5/MDNP/smjmVBja8N0TPa8N0vjRI24t9jDRJi7V1Lg0aq4ordDOYZYNrw0dDhIdinP9eO4e+0igp7lgK6h4OoDIUcvBPL9D5/EB20YkGiIjxJnCHW1KgVFSmociupvo2j+TGlWOTEe8WO8e+dJkr/5a7f2761y46n+/JKqJIoff0MN7r7DnFN+6NdhSFcgpU0lRpzHIKdEosweKcIqW+0yO415vzCpSAvEKtXOKk14O23/XlFCelkE+gBDDYOE5xSX5XnEJ9AbYafU6Rks6lRlmgkPw9wODFcSz+4pxt+NBX8vOUEiiV7bJjX2GU3MjUONUUOdQE95Vy7HL2mNP/0Ip9ddI9Itn2F2K8JZKew6x8ezl6j5bT32/N+ry1VnH6brwn+0pS8896aP5dT/oa9Z+spvPgQIYwKNUeXQ1mCnRKXLVWRi8v/gZs+tcu5qJxWp4W/c+1oru+46NpoZRjvZEih5rQHeWc/vbiBbXWp69S+ZbydD0WlmWXlcClEswJH4f4LYWqAs6dO8euXbuYnZ3le9/7Hvfdd1/W+13GMpbxvxM/+clPuOuuuzIO5ClQ0sBu1LL5U8oLhRjdh4ax1uhp+13278Pg7V6KPVpsaw0MnBpbJN7w3GDFscbEa19tovkXPcxF47Q9k32sdK61oDLMOwxdu1DtbjBTutXOkS9cpO/4CH3nRiRFNRO9or/XWlQMsXgOp/WoWfuAj5GWCRr/+SqnJA4ioQai0HlwgP5z0mKnwL5SVIYC1HZ12p3oWtQ9HKT/3AhXnx/MKVCCJYy5UYgOTadPVEtBbVKh1OSeA9hWGFAvcN+RwkRXmIklzLtyCZQAOv6QW5z0epBLnJRCPoESQLQ3SmQwRt/pxeK6hbBU6lEZC1Ab5WlHn2tRoAKlRoGrzspYc2fWmLHmKNPjM/SelF5j63xxkMHTw5LXAeFmNtoknsn6jwRpf6mfgRPZ76HqVg9qc6GkaGvozAS9ZcPz4p1k21+I8ws2wRueqCEyFJN+d/Lg8OcuplPlVb+1VGwcLhA0hTuj6SU3a6Uh7UqaDSe/3YLRJxbQ3A1mXOstvPZ3Ten6LxSCeRqsKFUKSZFS99HBtFPHtQK+ysH1MAhxVLRzkWgkytNPP41MJsPv93Plyr9v/W8Zy1jG/1w0NDRw+PDhjJ+VESIoWz3/AxWsua+CoaYJOl8cpOvoUIZj0LXwNNiYjc3R9coQnS8O0knmfGntgz4GLozR9coQzb/pZlJiXgJgChQzNx2n5enerEKYde/1Ex2dofGpDo5//fKShBlSWPVAGUUlWg5/qZGB02MMZBtzVUAMLvxzB+W7HZICJZVVhdGvQ2UqmN+PuQbGUBH+m9289rWmvPOOqy8M0H9iiNi49Jjbd3oEnVMjKVACcK0zUVikRKHOMfdSgdamxhonp/Bm4OwYan1BXoESkFOgBHDkL/MfllwK+l8blXwmC7EU4VjfmRHMPl3uoBhoHWqs8txc6b1FFOoLJH8P0HtqBFetWVKgBHD0b/LzdDl5EM253oh7k5UTX88+9qv0YA4UU2RTS4rbz377CrZ1ZvFeJdv+QsQGYmmBUuCAC/tqE+f+KbtoTWsRk6pwX/a5etcrQ3QdG0pfY8OjlXQdHEiLkoD0v42hIjRWFc5ac1aRUueLg8hksrSgb2GfAzB6eYqTl8V7qa9QY/TrCKnlWYX5Xa/0orXMu5MtFPDpZWb0l8xYEwGO8iyoEly4cIHt27eTSCT47ne/yz333JP1fpfxxmLZSek/GY899hhf+tKXMn6mQsNW2b6s8Rs+EqKgOHnSOIvGovaDfpTqeUGBbW0xA6eyL2bkK6v6baUUl2g5mhxIpAQUqViTv5imX17Nej3HRgO+nW5O/0OrZBkL0fCpanpODku6NTU8UQ2JPBs7C4QcKaFW1jC3mrXv8jE9Ln0KTOvVsvb+cjoPDaTTrmVDLiHUvxs5RDdLLsKrZe0D5QxcHKPpx9kX+F4PluKktFQ0PFHNbGQupwPSkrBUnl4Pn0uIrX+8mtjYtOSkNCW6C/dHOZXDCSr9rua5ZsrFqfv4UPb3Qwv1H65msHFsSS5OGx+rZDY6J+kEsOnjVcgLZDkdsVJ9g/9WF9ZKA0f+5mLWe9jwSIiCIuk+B0gLIUu2WvButXP2qXYmWxYH53N5mHIN0Dh1mtGxUVGu3Y5KpaKjI/eC7DKWsYz/2YhEIpSUlDAykrkov5JNOGWli/9AI06KR0ems/aTxpCG6jeV0/SrTgbPTGBdXZxVULSwrMhwjJNfXzxmaMyw6t2VdB8bpvP5ATRONZFe6TnT5idqmAlLnyhf9wE/crlsSYLVyjd7MJQXped816JirxNXnTmnm5G4CSBCbh6YdyI6/b3sog4Qjk0FOiVHv5DjQz2lo1mqQCuL2OTfFbMEbPhoCIVKkfMU1OspK5+T0lJR+RYPlpA+p2vRkvEGcZVRpFmkX5NC2S47JRusnHzyoqRwLc3XF6Xv0bJSx9C5pMA/z300fKqaRBzJZ1mx14l9lZEjEqc6F6KoTMPqe8q5/Iur89dfAMd6I/49bnpPjKSFRtdiYd+w8bFKhq6MLxZFJuPWvcdHZDCWPkV2LRa+qxseDREbneFMFhe1pZTVv6KJM+dOA6BUKiktLeXBBx/kk5/8ZNb4ZSxjGf878I1vfIMPfvCDLFxa1KDjOtnurPEpd8QT32zJKrhZeX85anNBei3CXKNj+EL2A1trHvRRZFdz4lvZy6rY58AaMqTnUrlEPhW7HbjWW2j6VVdWpyZTVRGVt5Vy5gdtSxKmbPxYJX2nRmh/Nvu8atPHq5DJ8whhFgg5TFVFjFyU2LhKOh/FxmYkNyrURjnr3ldF5+F+rj4vvailNkJ0VLpK/y5kEaS87iKMUPuBGgYujNL00//4AaWlOCktFZs+XsVsdO4NKWtJXL0ePlP6wBzxGx4NMT0xK+lwpPWoWft2H5O90m7ksOBdzVO/0m1WSrfY6To8KPl+bHgkxPCVCUmXp4VY9z4/8XhC0pm97kNBCosKOPQX0vPsVN/g3mKhZJOFs9+5nPU9WPOQ6HMO/uUFyXtM8WCu0RG6xUPjj9uyul6lvpekyppU93NJfTb9XWuz2dDpdFy4cAG1Wr34D5axjGX8r0EoFKKpKXPMWUUDjmuytKSw+YkawgPRrE4wGpeKVW8rp/X3vQycHsMYKpIWyqjEfEOqLFRQ92CQvjNCDK6yqogN5nDg+Xgls5G45Nxl5f1lFGiVklknFqL0RhuOtSaOP5ld7ORuMFO+3ZnTzSh1D8TAENBKOtQAVN/txRTQ5XQiWnGPF41DzfF8e2JZBCT/4djXU6YE1j7oQ2UoeENESEtxUloqvDttlGywcuLvWrK657wuvAE8LSpST06xknO9kfIdLk5+R7r+q99Vgc6p4bVvNku+Q/oK9Xzby3MfGx+tRKaAIxLrr+4GMyUN1iXt36qsKta+o5zLv+pKp1hbCENAy4q7ykUWpl9nF20v7BtqPxhgtGUya6xKD3UP1xDui3Iqy8G71PVS7+q69/uZHp/h/A+y7A+m+q8cZQ3VtHLy/GsAKBQKSktLefjhh3nkkUeyxi/jjcGyk9J/Eu677z5+8IMfZPzMgot1susWxTY8UU18JsGRL1zMm/ZLqVGiWJCv81rB0IZHQsjkIt3Hsb+6nFMQUWRTo1Qr0jHXiosq9jmwrzJx5HMXs6aby6iXSolMLsO6Uk+HhEhp0yeqGDg/SsuvevOeKo+OTjM3La0u9u134lxnTgs5cqWVC3dHc4omAIqdBSCDeFxas5cSo0z2Rjjzd9If5ivu8xIZmc6aCm8hKvY5hHV4LpFMUpDS/lJvzjRfOquSRDzBZHduxc2mT1Qhk8skbThfD1LCtVPfackpTIvPJJiNzUn+PoX1Hw4SHZ+RdrpK3pq9Vk9sYlbapSksxGQr7g3mFlklHYnypdGTyUGulD5hMHR2ioPNudsXzL+rmx/JnWpt4Pwo1mqDcCvLhnCmjWr949V0Hh6gU2KhUVEoRyaXrv9CS/mae73onJpFfKSer7GsCIVKjhSOfXm+z3FsNODfVULTrzKFjSm3KZO/GJlCxtx4duKOfvFS2u3JsdGA/+YS+s6MpN3ginpsrGcHYcIMhq7Q29tLf38/MpmMQCDAc889h9frlazrMpaxjP9ZiEQiWK1WwuH5PkWGjM3sRSPLdIwJ3OHGvsLIhR+1Mno5klPoEBtPIFPIsFQZGDwzsUiY41hvxH+zm4v/1sZwY5iTX78gKcCIRECpUmAJFdP5/EBWgdKGR0IMt0zQ/LOenGmvAAp1uU/yeHfYcdWZOfL5i1z6cfaT1in0Hu7HvsrIQKO08Kj+k9XI5EJAnkugBIhTz3mEIYoCOXKZ9PgEsPEDlSjVirwLGXUPB3jt21dyXs9cLQYVqbRzKax8RzkFGoWkODmF2egc5K4+5motVXeWi1Qav8y/yZIP9Z+sZm46t/B7aiCGyZ/AWKqRTHUG4N5qwdNgzS0SS/552S477c/kEK8B/gMulBoFl/5Fuq2lNnZype1LxAEZaN1aIsPZN6WPfeVy3vaVEgj59rlw1pqypjRLITwYy+mg1vrrXlqTCyb+21xYAnrJuaN9hQGZQiY591rodARibt51aDCjbqm+QWOWo1QrKHZmd72K9EYz+q9swvSF76pSpQB99nu8tqxNn6hCJpNlCLfs54PskAU5mXgVg1dDa2srjz/+OH/yJ3/CXXfdxXe/+93shS9jGcv4H4n/83/+D5/97GczfmbDwxpZ/aLYTR+vIhFPcPSLl4QQIoeIQWUoEOtUSVwrUFr7Xj8FGgXHvnI5b1nFLi0FWmXameZagZK7wYznOhtHv3iJ1t/20fpbacdCeaEcuVKOrVpPu4RIacNHQwxeHqP16T5JYXgKk72RnE4GqVR43UeGaHumT1qgBBBF9OE5hCEapwbkyXFWAsVlalbd72OiKyyZtgsgeLub2chcTr5AiFGuPj+YV1Cz4bEQV18ZpPewtIpZZVEzNxtnKs9m1PoPB1GoFJKp814PKnY7cNVZuPAvrWlHoWyYm55jNjKbt7w1D/qYCc9yIdvGSQpRkWYNkL5mFFDDunf4JYXFKWx+NPehBwC5Qo6iQHqdJ9wZzdu+YP5drf9IFYk4ks9goHESV52FvmPSYrmFc92Nj1XSfWxI0uWgQKeEHMevF4rHKvY5sAT0iw6wpvoGS6iYAo2SqMS9nv5mC2oj6edU/aZyrvymO0PYmOLBUqlHrpQTk/hsOvW3zen+K5Wir/fUvNuULmqnLrqdKFH6Q5fp7++ntbUVjUaD3+/nlVdewel0St/4MpaxjP9RiMVi+P1+urrmD6fLUVDPdrSyzI88zw1WvFvtNP5rByONk6IPlxg+41MxFCoFRp+OgdNjiwRKhoCW6ju9XPpFZ96yAAqLlZh8OjpfHMwqrlj3Xj9jV6doebpXUjCRgspQmLEPei2c6414tto5/pXLXH0ht/io+8Qw7norIzlcItd/NISyUKScyyVQAmh8qiOvMESukqPIMdcDwYfGosrL65p3V3DxX1pzil90HhVKrVI8wxxlBe8oQWMqzHp4aSFmwrMocjgNghCb1D7op++UtCDl9WD9IyESs9LpXAGmemPEZ+JoTMqcIiXLKj0V252SwjUg/XP3dWa6X81xmg6R0kxjKuRKjrW91KHBXOK1eAKx5mUtkKz/me+05m1fqfJTArz2F/rSbkPXYuzqFMoc71L3oeG001HJFgvOWrPkM7AEi1AUKpArs5c3diWcsZ5d9+EgPceHMvhN9w0qKCwuQOfKvuYVGyfj3Vj3fj+J2USGSHLhu1pYpJTeB40h6qVK1utDQZRqeUY/ZLlQwQ5ZBZcTpykoj9Pa2sqjjz7K448/zgMPPMC3vvWt7GUv4z+EZZHSG4xbbrmFX/7ylxk/c1HBClldxs8826x0HhmEsEgdNhtOijiuHf+uEVLkW+iQK+WwsH+4pry6hwMoVAqOfvFSztzyAAZPEYoCOTqfNqvTidYqZ+U7ghz9+iW6Xh6i62Xp9FkaqxBLmHLY7LmuM+Gus/DaV69kdSBYiN4To9hXmejPYZe87gN+NGYVp568mDNtF0Df0TH6jua2Xh5qnmI2Okf7C7kXYgzlOgxl5BQp2dYW46q1YPYX89pXpR0QvFvsyJUy1Mbc9tgLU4/lwlx0DnmOxYfXg8jINMa5BAVFuctb6uJQob4g78QHLQT2eZiLxXOWW76rlMLiAnz7ndLPIQwzE7MMXMr93HM5DC0sC8SCWKG+IKcoLjY+TWxCegFrrCmcFiEtfCeywbKqCLlShrFMt8h+NV3/BYLAde/1MzkUlXTb0jk1Oe3aF9bDdZ2J8hudXPiX9kzBWPKf+jIdyGCqfyZrWamULQCGoJYVd5cz3jHFue8uyHO9oNjEXIKeY0Ko591lpyO5WaqVafE2rcaaCHCQ3yCXy7hy5QrV1dVMT08zNjaGVjufUnMZy1jG/ywMDw/jcrmYnp5O/0yOnAb2LBInea630vnSID2vjWANGVAUJvu7a9b/V75DpHY6+XctYuM+h7vN5EAMZGCo0DPcGF4kULKs1BG6pTTtqpLPKadAq8RUJj1Xqnyzh4IiJef+sS2vq4uhrAhFoZyiMo2km9H6h4O0vdjL4JmJvOWFB6LIC6QXWDRmWPf+GsKDUU79bUteB55881CAgQtjOeeOIERnKmMhvptcks40AMFbvCgK5XmfQZFdjULiY3sh8m0KAcgUcuKzCcI5Tg++HohNsNzCb8l0ftdAa1OhVClwbDLSd2RUMi41txm8NJEztZ1jjSnnBhFA56v9+Ha5Ge+RLqfj9/253bxSiICmRMO6d1Yw3hmWFLn3nRvFttLA0DnpjbCFzgEL34lsMJXqxOa5hEhqoaBJY4aVbw9x7MnLWWPN1VoUhXL03iLIMo+LDMczBHobH6skNjGT6RSwoFyZQpZzk3HhnHDDoyEKNMpMAeCCsmJjM2mRvsYM+uB8O1knuw5aIZqI000bs7Oz/PCHP+T73/8+991337JYaRnL+B+OD33oQ3zta1/L+JkHP1WydRk/c6w3MXZlhOgoxMZniM8uWJO5Zs2+4YkaZqaEk7PUafoUFIVyZAsPEV1T1qp3lqM2FHLsK5dzur4A6MuKUKoVGIOarIIQtRFWPhDk3HebGDozwcEzOeYQalBqlRi9OiD7mpG5Rkf5DU5OPHklI7VVNgw3juLZYqP/gvR6Rc29XozlOk58u4VoDndOgJGLUxzKI4Cf6BNpwjoP5p5HWKsMIJPlFClpPWpKt9ix1RglU1UA2GoNFGiUaCy5xfdjzdElORrOhPOLhZaK8OA0czNxZIrc88KlOpBrLSrm8qQLAai5uyLvYbry6x1orCp8B5ySqcUAwkMxRppzHy5Y0ppdsnmtfncFOoeGE1+/IOm4FR6IEs++DCSK6o2m782yupiy6xyceDJ7G9F6xOFaQ1mR5JrXwnXymnu8zEzN0iThOm4qL6Ygx0GPheK8lBPSxX9tz+gfUvdtKC9GJpcxJTHPb/ppd9r1S21XU/uQj9GWycx0jEle5QUK5mJxek+Kwt0N5vRmoVqmxtu0GnsiyiF+R1w2S3NzM36/n0QiQXd3N0ajUfKelrGMZfz/G7FYDI/Hw+DgfB+opIAGdqOSqTJineuN9B4fZeD8BO71lgWFZJYZvM2NbaWRk99pJtIT49CfS88PoqNzoJBR7NEI15RrytKXqah+SzlXftvD0NnxvMYEKlMhhhzDqnenDZ1Vw4V/7sg7Jyz2FlGoVWY6ylyDVe8sp/vYMENnxzmeQ7ALMN4xhcqQY5xWQf0j1Uz1RcR4kWeZJ5fgO4W+0yPYVxhzllWyxUKRU0PJFmdOIVDl7V5UhgLh0JejPH2JVgh88yCrG801KFDDXGyO6Mh03tilYC48x+x07jWvobPjDJ3Nvw+q0isp1ClxrjHRe1Ta/GHVO8op9miZ6ovmFKeVXmcDmSynSKnr4ABFdjXjOQwdlprWjhio9HJqP1jJeMeU5PMYaprC3TDL4MXsh/yAjMOEq99VQdfRIUkOzcFiCnVKSUeohYImVFD77gDnv9+SNZ2hxqVCpStAX1pEN1lEYLFMM4Z17/czOzXL2YX7gwvasrxQDjm2jxe6fq17rx+VqZDDX27MfB+S/44MxCgsVqbvw77SmH4uIdkaaAESGpo5x9zcHN/5znf4zne+w0MPPcQ3vvEN6Uos43VjOd3bG4RszknlVBOQrVgUa1tbTPBAKbGx6Zzig5Q70MbHKpnoidAokVd+86drmJ5cWmqujR+rRFEgl5wwlGy14N5gmT+1ksOJKZWWKleKsYp9DsID0bwCIJhP75RLVBS4zc1Y24RkirtrY63VhpyuQavfI6zzTn23jXBHDoX060zJZghqpZ1+kqh+WyntLwwsKT1ePvj2O+k9MfqGlAVvbLo3AO92G2MdU3k5WQqWyluuFID/Hqz/SJBCXUFON4fQXR5MZbolC7NWvbM854Q19U6cfPLCktIM5itv82dqSMwllpRGsXyPA0tQWkRXc68XY4Uur5MWgM6nZfU95QxeHufyjxY7LOh8WlbeVcaln7Uz0hjOmcZSY4V176uRFKqFE2HCa7s5ffo0iUQCjUZDZWUlr7766rJYaRnL+B+ESCSCxWIhEplfMFagpJ6bF4mTQLiCKArlOV2TzNVahhvDWFcX49vt5uz32rO6HVXdVYo5WMzJb7fkTNcGIvXTmvsq6L8wypV/y75Yvv7hIN2nhul+eWhJaalkMllOl6Wa+8q48P3cG18wL/CYHp3heI7Fn6WWB4Ln/rOjaZHG4osK8X1kSDqlVCru9aQZSz27XNCUaPDUm2n61/94WlxjSIPWoRXP7A3AG5nuDUTqLvtqfV73o6WgqEyDq84k2X5T0Ps0ku5IWZHnGet9Gla+rYLR1ms2c67Bpk9U0fPa8JKETbZaPUU2DW2/y76pmnonYqPTS0qj6GowoyiQSzo0Vb7Fg6VSnzuN4gIeNnw0RNuLvQxIHDxo+FQyhXKexdVUWUqNQnLOV3OPF61VlRYLGkPSzlspoZpU+sZwsJ8roxfp7xf3WFFRwdatW5fFSstYxv8wZHNO8lGDT1azKFbrUbP2HT6iw9OSAhWDX51OgVT7gQDhgSgXJdz46j9ZxUx4aem06h4OUlCkkEyjZltrwLvVPr/xlcOJyXODFe/1dgbOSacYczeYmZtJ0HdcevMjhXXv86Oxqjjxd9KiIu9NNqYGowzlca0E4VTkWm/JeZix6i0ezEE9Z3/QwkR7jnnr60zJVlymzl0e4DvgpPfk6JLS4+VD6TYrA+cnJdP1vV68keneAJz1ZiID4axpvV4v/Le46Do6kld4JiWuk0SeZ7zmPRVo7RoOfUnaNalspx3HGlNOAdVCVN1dysWnpJ35a98XQG0tzPlOvJ7yGh6vIZGILymNorPejHudWVIg5b/FhWOViVPfbcnbhtV2NbXv8THYOMblf1v8raG2q1l1v5fmX3czfGEy97NTw+aPSbu+RxNRImt7OHnmJPF4HJVKRVVVFYcPH15OA7eMZfwPQiwWo6Kigp6eeUFEISo2sWuROAnE/EdlKOC1r16QdNtJpUXSl6kI3VHG+afaifQsVrOU3WzHXWfl1D80Z/39QggnHR/9Z0Zp/lV28caqd5Yz1DguhA1LSEslL5Tn3M8L3VnC5SWs66RSRUWGc68/LbU8EDwPXh6j/XfS6w/1n6wmMhjldB6x/OtBLiFWCiqripKNpjfE0UjnUaFzauhd4AL9H8Ebme4NxL1aq3SSzkGvt6yl8KbzqJjsfB0HEPO0dZVNxbr3+Bi5MpHTkXz9R0L0nhyWdJRcCENAi95TJOkqptLLqftQVf412SRM1To05kJJlynvThueTbbcaRQX8LD2QR9dR4YYkDAe2fhoJbOxTHdwKax5dwUai4rDEocYfPucGEqL0uki84kZi91aSQes6bIBrsSa6O4R34NlZWXs3r2bv/3bv81bz2XkxxtjqfK/GA8//DAymSxDoBRgNTtkb8oQKGndatZ/JAiItE/jV8MiLUUW2Gv1VN5Wxrr3+wGR9khKoAQwNxNnJsep6vUfDlL3oYAo6y8v5RQouOssFBQp0bqTHzZZ9nsq7/YAcOVn3Zx68qKkQAnAVWvBt9Mt+Xsgfa2jX7wkxEI5XI/sq4wE9nlylmdbW5yuX760ZpHRaXHCPYdAyV6rZ/OjNVS/rTRnWVqvFsdGA8CSxDiN/3Q1t7hDO89NPjjXmVn5trK8cZ5t1nQKrTcCtrXFGIK5C9S61Xg22wjsyd0OUshXXl7ekkgJlLy77HljN3+mho0fq8wZExmKMTeT25Hr8o8608IZe61EPo0k/Le6KC7RsvIB6eeWeicig8K5LF95ek8RK+6TTnF28EsXOPRXjen4rGWm0uqtNKIyFEq2lws/6ODgZy8Q7o5iqtbS8EQ1llVFWWNVRTIS8QQjEq5Vky3CPWqkMQxaCB4oZdPHq7LGRgZh4OIYLc+IfqfmXi/BO+ZzbmtlWqynA2znTuTI0Wq0nDp1iqKiInS63G4cy1jGMv77IxKJoNfr0Wq1aYGSkgJ2yN7ENtltGQKl4J0lBO8U/UPbc730vDYsKYrY9Ikqqt5UDoj0SEe/cElSgDTSPEEinqBAm91VyLq6mIZPVaMpEQ5GB//0gqTAQ2OWU2gswF1rTt5glpgSDWXJsezU3zbmFCitfEc5xvIiPNdbJWPQCGeUSFeEk3/fmlOgtOpdFfnLQ9wzwJHPX5QWKCUxNxNnoi/3hsrGD1ay+YnFm57XwrtD8JJPoATifvMJlPS+7BbD1yKwx0P5jQ4hMMkBY0iTTjP3hkAjhDH5sOreMko25X5m6SJLct/EVHskr0AJSAuUHJuMaMy55yw193jZ/FgNxpD0tcdbIsRnE0TynMg78vmLaQFQPq6Dezy4N1gkf596J1ICJY0z9zy8fJsD7/XS88xL/9LJya/P1y9wR5a5cPJV0Ps0FOiUeDbZJMs79OeNaYHS+g8HWfc+v2Ts9NRsznTLF37YkRYorfuAn5q7KiSfx/nvNzHaMpkWKNU9HMh4xtomO6sHrifAKux2O52dnXzve99DJpPxiU98QrIOy1jGMv7/ga9+9avIZLIMgVKINeyQvSlDoKQ2ytP9UrgzyvClcS78UFqgtOJtPtY85APgxNevSAqUQKRYnZ6QtmZZ854Kaj8g1rxe+1pTToGCe4MZlbGA4rJkH59luuc7IFIodb44yImvXZQUKAGU3+SkYodD8vcgBAogXBjziTE8DTaCe0skfw/z6cCuPj+Y1209MiLcgHIJigx+NZs/VkPVW3KvtamNcmy1Ys0rn0AJoOWXvfnFHXnG2hRKt9hZdU/+dO6O9SYhQnmDYAxqMPjzFKgG304n/t25+Ush3fYk0PyLniUJdlIiF88N+ed8DZ+qYcP7QzljJnojzOWYOwC0P9ufFs6Ya3Kvr7gbzJiDxay4X3rN68STV9LvhNpIzmeXKq/mXul2cOgvLnDqb8X7X7rNmr19Jal115lRWwrFdbOg+Rci/Xa4M4raqab+k1WS91yggfhcnJGW7C4G0f4ox754OZ0KruauCjY8JvE8otB1eJDmZ0S/47/Fhf8WV/rXapka0+kKbkrcQSEainXFnD59Go1Gg8lkorf3P745vYxlLOO/Fj6fD7VanRYoqVCzQ/YmrpcdyBAoeW+y4d8v+ocrv+mi8+CApECp7uEgK+4uBxWMt8c4/pXLkgKk0eZJ4rNzFKizr3npK9Rs+lglOo+K2GCMQ3/eKClQQiXS7zpTa15ZLqnSy9Nj2dG/uSScTyQQvM2NbYUx79in0suJjcNr32rOKcYI3l6CtcaQtzxjSOx5vPa1ppwCJRCujlN9ucfx2g8EqH+8OmcMgHOjCSCvQAlECq2lCG2WgopdLnx73Kj0udd2dB4VhsAbuOalAnudMW/YirtKKbsx9/w7XaRVlU7xlQ1L4Q1IC5RM1TpUttw8+vY62fyxmnS7yXrdgRiz0TkiI7mFT8f/6nJaoJSP66rbS4Xjk9Q1x+O89s35d0JlzX0fof0llN8onVq249kBXvvqxbRAqXx3lmeSyuxmVaG1q3FvkF7TPPqlS2mB0qp3lrPqneXS9zI5m1MT0fJ0b1qgtOIeLyvv8Uk+j7M/bGPg/Fj6PVvz7ooMbgrbbdT0bmYVDVitVnp6evjmN7+JTCbjT/7kTyTrsIylYTnd278TX/7yl3n00UczfualkpBsVdZ4304HhcUF6TRFC1MdpRC6y8PlH3XSf2Kc0i3TXJIY3LVeLWsfKGeqP8rpb7bktTwu0CpzZl/QerUEdjk48+1Wjv3VZbRWuaRQyLvdhiWoZ81DPk5/syVvGrWOV/oZPiudz/NaN6acbkZA6x96GGvNsbGVFDj4dsc5kuvkTBJNP+6iidwbVuHRWeKzCdrzKHNX3e1FoZLTd24sp+vSho8kT8vnUQ6vuruc4hItV57uzJvKrfv4EOE8G35ar5ayrQ5s1QZOfiO/UnYpCB4oZTY6l3NhLNwdZfDyOJ0v51f7NjxRjUwuy+sksPYhH1q7Om/cpo9XoVDJ6XilP+czmZmaZSrPibzz389vcZlCyVYLZTc6cG2IZqbkWIDmn/cQn43T+nTu9IGpd2Lt+6pyuiA1/7yHxFwiZ5rBNAdacKw2YasxSgr5jv7lJSFiCoNjowFz0CAplrSuNEnne0UIxg6dFddJOSFFhmLZ22EYJrrCDDeJk6PeXXaGr0xmpJxcKIw0lotFoqYsp9Vukt1BeDjMKdWLhGNTTE1N4XA4kMvlGSdRlrGMZfz/Aw6HI+3UASBHQQO7szonAdiqDSTiCZrooi/L6Z+FbjhdR4fQu6UFE+veL1LIHvzSBfqOj2YtLwWZUoZMIcOxUk9bV/axueYeL70nBhluDHPy6xeJDEvPp9Y+UI5MIaP9mf5F6eSuxbl/aKP8ZoekswtAw0fn3ZgiEvVL4ex3WinbZc9Z3tr3+tHaVMBVyRRZaURYUqqOyZ4oamPudBgapxpPgxXHKmNeZ5nNn65hrGMqb2qVlW+rID6b4PDncovcz/+kE/cGY163p9BtXpQqxRvmkLTunaId9pySFtyBmC+rDPkXn1wNZip2OBm6NJ7z5BYa2PxI/hOIGqca/y43M5vtOZ9J97EBij1aYuO5DX3zPYeFSLul5eD65D+2onPkblepd2IpLkinvtuGPs8iX+rdTr0nEx3hrP3HeEskoy9Y9a4Krvy0XbJvUGqUyFXS/cbCFHZr3+tHa1Vx8hvZ+5rLv+omuMeddlIK3OHOEKZFhkm7WVXsdaIyFlJyo3OReK1cVgkDlfTYmjnffxIQ38w/+tGP+OxnP8t9990nWd9lLGMZ//3w85//nNtvv52F5uvlVBGQrcwa795qR2NVUbbTTvuz/VlFR6nUVGPNUSZ7Ilz5bfZvMrVRTu0Hqpjsi3Dm2615HZ4LDQXI5dKbKGqjHP8tpZz/Xjun/64VtVFOdDR7H2pba8C51ozOoeHMt1sl41Jo+k0XE93SmwvXujHlE59c+uVVyZTpKdTcVcFsLPc6TArtz/bT/mzuzbTYBMxG5uh5LfeazYr7/agMBUx0xnI6Gq150IfWqubQl6UdeQBCd5RgXWGg+Tc9eZ2o2p7vIzaeJ5WIGvx7XDjrTJLrMK8XNXdXMBOe5diXcsw1o9B7apjuY6N5y9v08SrkBfK8qfeq31qKyVec83ACLEjL25jbZSoyHMubiqXll705U8cthLlGR9WdXiY3RyTTKnYfGkahlnP1+dztKvVOrHt/DYm4tAtS96FhlBoFHX/InY4wlY6t9Do7JZuskuWd+PqVZF8gxGjOdRZJsaRjlR658ppUkwsw0R6dv44aNj9WI9bsv5W9HQ5fHme8W8y7srlwLXxnbTUGZAo5zb9Y3F9eL9sHw3BU/Szj0TFGR0dZtWoVxcXFtLS8Me/AMpaxjD8e1q1bx6lTp9L/L6CQem7O6pwE4N5ohQQ0/6qHsSvhRamqNC4VhlItvUdH6HipH1NAJ+nssuJeL4YyHQe/eIGxK2GOfCH3HENRqMBcrWeyM3uf7NvnZKRlkpHGSV772sWsqaBSWP3uAAVaJZ2HB/OmUGv6WTfhwVhOB50Nj1aiSLoxxQZyF9j00y6m+iOSTjEgXPzMgWKaftkl6QCzEEtxaRxrn6I4xxokACrw7XJRssmaN/Vd/aeqGWuZovGp3PtXK+/zkZiNZ6TFyobLv+jBWWfI+dwAQreVojYWvmEOSSve7MXoK2asPUJMIp0qQMuzPWgt+de8jKEiat5SJpwO8xxarP9EFdGhaU59O8f4qYLqO73CjTPHM+k6NoK5Uk9sInca4uNfzr2WuRB1Hwmi0uVO53fqH9rQuXLzknonluKCdOqbTRiCuY0YUm2k+m4vpqCO6GAsqwNXbDDGa1+d7wsq3+yh7fkByeesMhSC9HZjhrNm9d1ejD4dJ/6uOes7f+WZPkJ7ZYxeFqYWZTfbM8WGMdEXgBAGFjk1lDaYF6X2c8hKcAyVMGLu4bWhVwH40z/9U/7xH/+RP/uzP+Oee+6RrvAyJLEsUnqdOHHiBHV1dRk/c1HBClndotjqe7zoPVqOfP4i577bjqlaK5xCsmDlA2UYynTM3TpH8897JFMsgRAtzM3EmeyV3p2o+1CA2Vic099s4VAeN6GVbylFqVGg9WoJd4SzCo80VuFg0vHcABqbiktPSW9kbPp4cpPgTy/Qmedj9Moz3ZiDxTQ9ncON6ToT5Tc4OfWtRnpezWOhnRQ49J/LHVf/eDUyORz6s/ybHymXl3w4+4M2yrbZ86aFm47MIlflNzHrPTFEoU6ZV6AE0Pab3EIXgPBgmJGWCfpOvzGpSQBGWiYZzZPfHsia4isbRlsnc4pdUgiPTqM2q3IK6gBanunCUF6c95kcex0TgpVvL0dfqqXxJ22S73PXy0M415q4/K+5FwVSAqW1D/koLC7IaZk91R8lPJx7Yp0SKK16pxC4SdYxDJ1HBhlrFae4Uu/3orAktxXb3ciVMsm0hwvFflqrnDXvqeTCT9olHcXmZuIMXZJu1wtT1nk2WfFstEpOdg/+6YW0+1boLg+mch1HvnYxXU+tTMvm6T2ECTNe00FreytTU1PIZDKuu+46XnnlFcl6LGMZy/jvgfr6eo4cOZL+vww5m9mzSJykMcPq98ynGzv3T60500/VvKUCEtD98hCdz+de7B5pnqRAKz1tNldrCd3i5fBXLzJwYpyBE9If6BozGH06dC4NRxsvSYoQNGYhDrj003ZURuljxdbVxYRuLWWkaYLGp65KprJKYfjKBApVjiTewIZHQkwNxLjw/fa8KcMu/UsrlW+pyClQStVx6OI4l36cf05w4Qf508tFeqP0nx+l/1TuOZ+mREN8NpH3JBuIech0JPciAgghS3MegRdA+4t96D3SJ6deLzpe7MNaY8wrjpJKF3Yteg4N46ozM5DjQAEAEZibjRObzM1NpDfKSNMEbc9Ip+EAGL0cWZJYLYXNT9SIzdgc86SOl/ox+XKf6I90RYh0RdCY5ax5qJIrT3dKttuO33ej92hzppFLlZdKYzgzNSspzjr1t80E7yxJC5RS73dGecm+wBjSUOzWUHOPTzLt3EIBV8qJRGpDdqI3TKFOKdnXTLVHOJU8YRa8swT7CiMymSyr81jrr3sZuTKWFjRt+kQVQ03jGYIl14Afl8xPh7WR2eIILS0t3H///XzgAx/g97//PRs3bsxaj2UsYxn/PdDW1kYgEGBubv5kqgc/VbJ1i2J9B5xYKw0c/eIlWn7Zy9CFUcl0V/5bXDjXmpHJZDT/okdS2AAQHY0zE55lokf6Qz51svbs37dx7Iu5v+dr3upDbS1Mp5jLJjxSG4W4YeDUGHqvNqsgIIW6h4Uw5NCXLjBwIvdmVeeLgzjXmrj6vLT4w1yjI3jAw+lvXl5Smrfhy+OMtORObS/Sfio59Of5N42i/dElpe86/70mvDeV5E25Nj0xg0pfkDd9XP/ZYbR29ZJS5XUvJZ1HFAbOjTLYmH8DcanoOz3CeGd+x86linsGGkcp1ORfip/qi6IvLULtVOcUtl362VVsq415n0lqnF8Kgre5sa0ycvFfO9LOP9di+MIkk5sjXP5J7jl7SqBU/dZSiuzqtItjNoy0TOR1ckoJlCrvLMFSbeDiv0nXseX3vUSHxHwl9X5fi1RfENxfSoFOKRmXIfZTw6aHK7n0sw7JlG0zU7OMXJF+lxeKoSpucoIMSeHa4c9dTLtvpdLtnfn2pYx6boztJEqU0ZVttLe3Mzg4iEwm4/rrr+fFF1+UrMcylrGM/x5461vfylNPPZX+vxIlDexZLE5SQd1DQQYviXRj537QkjP91JoHfCCD3qMjDJweyymwGbo4jtqqQqWCWJYidR4V1W8p48y3rzDeGs0tolWJrB/moJ7jjZclhS4qPcTGofFf2tG5tZLCC32ZipX3+hm8KIQm+VJ89Z0ZRmvJ7Vq47r1+IqPTXHzqak6BEkDrr69ScHtZTv5SdRw4P0rTz/I7UUs6Ty1EDK6+MsB4Z+45n0ovZzY6R3gk/5rXwNlREvHch8VACEryOUYBtD/fj6H8jXNSuvpqP9HRGWITuffARi9PMUpuXlJxE91h+k7nn2vOROaITuY+KEAMek8O03Ukd3mxAeFWtlRs+nglczOJnH/T8rsebDWGnEK+2GCM2GAMlR7WvKeS5t/2MHQ++/pgx0sDWEMGrh6SXg+Pjcfpf20UEGkMpydnJFOxNT7VQfluR1qglHq/ry0PRKo7S6VeHKaTOAi5kIuqu0sp0Cg4+w9tWWMnesJoHSpJUWJsIMbZ74o5q+cGK55NNgo1yqzvau/REcJ9YcbbRVl1Hwoy0jxBy9Pzc33TsIsdsjfRr2ol7BmjubmZe++9l/e973386le/4vrrr89aj2Vkx7JIaYkIh8MYDAZmZ+cX5804qJVtlfwbrbkQRaE8LQBYJBbQwoo7vZz/fgfnvttO9T1emn+efYCy1+oJ7PMw0jxB4z9dzesSpNIXUjCXe8Ap2Wqh6+Uhjn7jEq7VJkkXI0NQy4q7y4mOxDjxN805BUoAU30RtLbcE4E1D/kYujxO5xLsqU0VxcgUMtQ2LZFB6cWByrs9XHqqM0PgIIXwYJQCTe4NupTjy0jLZM50e+kyu6NLilvqia6BUxMMnMq/QLX+w0ESiUROYZuooEjR9UZiKfcLwg2nZL2FU99qzCqGSZf3T7k3tVJYquhpqRwCoE26BAzG0laA2dB3agidS0NsLLeSPLWp5Ko3MTc9l1NspjIUIi/ILc5a2G42PBLi3PcuS3I50jpJkUMjKaIC6EhuOqec2WKj09IbYX/RiOs6E4RFfIFKOqWh6zoHMqUMg7coa0xkkIz+a/NnapiemJE8Hdv0y6uoTOKjrGSrBZlStkj8mLpOsUONolCeVUillWnRNlahT3g5yK9RKBQcOnQIg8HA/fffz9e+9rWs11/GMpbxX4cPfOADfOMb38j42XXsk3ROikRAUSDH4BUfyNkESp5tNmJjMQZOjNPx6gCTXdkXtUFs7hQUCefDtt/15RT/6L3FyAvleOptkoInc7WWSF+UyHCc5me66TsyKlle3cMBVMZCTn79YjKVmXR/PnhmAv+eOMM5FsI1Zjkr7vFz/GtNuR1zkijQKCnKkznCscnI7NQsQ+cm8258RMZmmZuO0/Na7sWkde/3ozYW5kxNvBBLSUMW6Yos2ZHnwhLmNUVlGla9tZz2F/voOZR7MavvyGjO5/x6MXRukqFz0m12IdZ/OMjcdDxvnvml5HqHpTlgATQ+tbS5HAhHMWOFjoNfupBTeDU9OUN4OPfp/55Dw+nnEbyzJGdqvyJPEXKlDGOgWFKkFBmOp0XsZbvs6JwaaSeuiLB0H+3IvUiWqlPtBwOoTYWc/LuWrGklRy9HMvoIxyZjznakMamQ5Tj/0PyzHpoR35g195VhLC/iwo9a00Kja+soV8wLlGru8S56L1J/p3GqURTI0Zqyn9TzDlbDIIwSZpheJiYm2L59OzMzM4yMjKDRLC294jKWsYw/DqLRKA6Hg/Hx+e9WK27WyjZL/o3WpEapUqC2q4n2R7MKlKre4uHiv3TS/Ise5AqZpPjH4Fez4q0+hpsmuPijq3ldEovsahJ51rxstQYGToxx4skr2GoNkgIqtV1N7YM+woMxTv1tc06BEsD41SkMZUU5RTjVby1lsjfC1ecHcwozAEyBYtGfurVER6XHef8tLpp/0ZMzNV4KEz2R/CfM1dDwaA0jTeNLKjM6CpezOBhfi8Z/XtpcYLQpwqmm/OKZNQ/6UCjknHgy/5wlV2q+fw/ytYUUHOtNlN/k4PT32nKKipYqZur4w0BexyAQDj4T7UtP71X/ySoiw9OSDj8gNt9MwWKi47nF6SmhoamqCKVWmVOwp7Wpcx74gMwT8bXvC3Dhn1skncyGmycx+HSSAiWA3sNiXqg2yqn9YJVw85aYFx/7ymVstQaioyJebVNJCpDc6y0o1Ar0pbrsMVEy+q+GJ2qYHpd2XLjwoxaKXOJQg2V1MSp94SJRXiq9osGrRalSEM3SxNQyNc7zVRgT5bzK08gVcl5++WWMRiPvfOc7+fKXv5z1+stYxjL+6/A3f/M3PPzww+n/y5Cxhf2SzknEoKBIib5ErHllEyjZ64wkZhMMnB6j5dkeYmPS39Fr3l2Bxq7m8J830nt8NKv7SQo6p4YCrRLbOnM69dSiGI+KmZgQBFz6eSdDZ6X3QlY9UEZxaRGvfbOZyc5YTrHVeHuM6fAso23S39sqPVTf7ePUt1roeDb/+FmoVyIvyG0iYAwVoShQMHR+PC1wkEJsCqbDs/Sdzr1GVPNWL3qvlsN/dTGvaxQg6XCTce3x+JIdeZYijkoJXDpe7qf3aG4xztD5cUkRzL8H461RxluXNvda9c5yZDIZZ74jffABWNJeMSzNAQvIEKvkg2+fE/tqEye/3iiZihEgPBhjOs+hwJFG4UwGIq1a22+l16hVFjVKtQJjRZH084kJV0kQ/YY5WJwxF1sUPjqd0zQFSNdp5f1l6L1FnPnH5qzvdmwgxqWfdjJ0RdTNtsaQUwSoc2pQ5jD96HxxMN0v+fY5ca41c+HH7WnnpGtjC3XK9HMMHHBx5ZmejPcxJVBS6UWfK/VNZY9VQDPEEnCVK0xMTLB3714UCgX9/f2oVEtLr/i/HcsipSXg2vQiKjRsle3LGrvxsUpkShlHPndRcsM/hbp3B1AZCrGtLWbg1EROwUf/iXF8N+c+BV55t4dEQgg4Dn75Qk73mLoPiWtPT0wzcGqCnsPSA85YU5jZ6Bw9J6UHWY0Vat4W4LWvXuFcnkEbxIKSxqzK7bSUdG1ZirCm+m2lmAN6uJu8IiqAM3+Xe/ACUNu0kICJ7tynpmxriwkeKGWoaTzvtde930//2VG6Xs69SefdZce52sS5f2zKm1JPmedDP4XgHSUYy4tel2tQPlTe7UHv1HLsr3KXWaBRIFPIMFaaiAzmntysfKAMtbEw70IeWqh9Z4DW57pzinFApHnJa4cehkQ8wdxsbr6F8Gnp6UcqdrogAf05XDWOfGHBxp+EW1EK3l12CoqU+PeXZ00bCdD5/GD63fLf6qKwSCkpAAt3iPe7+1juNplyMVtzbxkyhXRKvuaf99D8bI+4By1seDDEsW9dzn5PWpiLxRnrkr5hITJLpn673o5MvliklMJCoZ53uw3PZtuidIlamZYdvImwc5R+dRtXmq/wN3/zN/z0pz/lL/7iL5ZTkSxjGf8N8Otf/5p9+zLnWWu5DqvMtSjWscmIf6eb5t9203d8NK/FsHeLjfh0nIET43ndkya6I7ntlzWw/t1Bjn+tSYiYXurLKbSoelM5c9Nxjnz+Yl7hSt/pUVx15pxp4KrvLmWiL0rn8wN5BSSB28soNBbkFTugASLkTS0B4N/hBhkcPJc/dqp9ac458ekE8TwbjgAbP16JskCRt57W1cWUNNg4/b2WvO5D6z8cZKInklfEZfLpkBfIJNM9XFvmSMskzb9c2iLLUrDhoyEGL43T+uvcCyP50oGloCnRsPKuUjoPDeYVXXmut2IOFuddBKq+uxRTsJjT32tlql2a+KmBKIayIorsmpxxeeeEC1Bzbxkmn47ZyJwkR4NnJhg8s6DtJNu9FFy1FuEomQML59e1Hwxw4jtXJMvsPT1CyXpLVoFSCgsFSv5dbpxrzJIbioc/1yjuAZGmbjYyJ9nmJntEv5ZNoJRC6h1wbDJi9OnSab6vRaQ3mtHnbvpEFXPRuUXPq1a2BYDx9R2cPXeWWCxGcXExGzdu5ODBg5L1WMYylvHHw+rVqzl79mz6/xp0XCfbnTW29gMBlBoFR794iXPfa8td7rvK0bm1abFQLgHJWHOU2ehczsXvit0OlBoFTT/tFps7OURCq95RTrFHbOINnBjLKaCI9keJjc/Qm8udUQ1r3+7n1N82L+mEvMlXjL60KHeqKzUQFUKYfGKYsp12nGvNFGiUXPxRfhFQrk2GFLRWNYm5OFMDuU/eaz1q1r7Dx9CFMS7lSZWx8v5yhpvG6c4zp3CsN1F6nZVzP7qaNwVeYbESuSK/G3nZTjvWKkPelCivBxW7HZj8xelNHCkoCmQoCuWYA0V057mf4O1uit3avGWihlVvK6fr8GBOMQ5Aw+PVzM7M5XUVi88miMdyzw8n2qNLSiWYQtWdZZAg5zuWsfGXbPdSsNUaUFsL0ykas2Hg1BgDp8T1PDdYKbKqJNtmdDRObHyGnpO51yJT9V/9nqBI1yzxXdn9yhDdx4fS91D7vgAn/uGK5D1NT8zkdMEYa54XeAZ2l6BQySWdw858py39b9taA4F9JVz5TVcG92qZmu3cyUzhIL2lPVy6fImvfOUr/PM//zNf+MIXlte8lrGM/wY4deoUdXV1xOPz/fFatmKVORbFGkNFVN3ppe3ZHnqPj+bN9hHY7WZueo6B02NpBxQpjLRPotQoQUV2wYwK1t7n49S3W4SI6exoTmHN6gf8aQfkXAIlgO7jI5TpCnKmY/PtdTI9NUvni4N5XWm820vQ2tU4N5pyC2uS95ovnR1A1e2lyBQyDi1BhBMbXJpzztxcnLnZRF6BUt3DQQqKlHkP3OnLVHhvcHLuR+15y1z9rgoiQ7G881hdmR6FSiEOgufB2nf7GO2cyimYeb1Y+6CP4SsTecXaKmPhkspT6eXU3FtBz/HhvKIr2xoD9pUGzuc5wFi+24F7vYXzT7UtSrO4EJO9UewrE6hMKmLj0g9oqUKq1LVLNopTpVK8L3I7k3rHk/Beb6cwzx7zQlOHVe8s5/JP2iSFVz0nRygsLsgpPkyJpwwBLcEDJTjrTJI8HP+ry+IeEKnaZDKZ5L2H+6JMR2azCpRSSAmUDAEt9jUmNDZV1mvHxsnoc+s+HCQ+E+fkNzJF75WytVSylol1Vzl36Rzj4+NotVrq6+t59dVXJeuxDIH8Pc3/Ytx3333IZDL6+/uRyWTIkHOL7S3cv/+dQkiAEKh4ti04ar7AnEdjhYp9DjTW+djyAzZq7vUCMHBxjJHWcbEJrxWxWqt4JJZVRdS83cvmz9RQvseBZ5uVlt910fHcwHysW7gVmaq1lO9xYAnqsQSKKdlqwbHSkK5HxT4H2qSrgCGopWKfg8Z/amGqP4qySImr3pQRq/OJ2PUfDVL74QCA+ECdE6nXFsam0ixV3uVDZSikZKsFAMdGQ/rfAOV7HJiqRazWrWbg8giH/1q84PZafQaH3l12TNVaNj9Sw6ZPVlGxz5HBt3e7LSPWsqqIxn+6ynDLONMTM2m+LauK8O6yz8dut9HwRDX1j1cv4jvFYQqebVYKNMI9ofPIYAbfKQ5TMPiLSMwluHpweBHfOt+CWC1oLCo8m+frv5BvrXc+1hIsRqlRYKjJfI4pvrVudZqXw3/RSOtz3dJ8W+VU7HNgLCuioEiZlW/LKnFqJ9VmU1jE93YbtrXF6VhjuY6CYmVWvj3brNhrRc7S5md76DkxxNilsax8l2y14Ngo7rXIqaFQXyDJt+s6E656EzqnFrWpEP9+T3a+ES5GrutMzIRnCQ/GJPkG0WY7Xu5PnwaT4htEm139UAWbP1ODY6MhK9+p2KHmMfrPzy8wZOM71War7ilh86M1+G91LeI71WYHTwzS+JM2el4bkOR7YR9hX2nE5C+W5Btg4MIoY90xNFaRCjF417wQIMV3CmOdk4z3TOXkOyVIqn2Xn4JiJf6drqx8l9RZOPKFizT9uIvyPQ42f7qGjY9VZuXbs83KqW820nlQ3HfpLhvBN5cs4jvVZguLCyABaqc6K9/abiN1Rdexec31qApVdHd38+CDD2I0GgmH89u5L2MZy3jjEYlEUKlUGQKlcqq4p/7drNhQnf5Z2S47mhKxIz8bEafC1GbxcepYb8SxyZgRW3N/KUVlGjQlGka7Jjn8VSGWsdXqcTWYM2I3fCxEw6eq0TjVREZiHPtbschgXV2Me8E4691hp/rNpRQaC/Df4aJsQX9sWanDc/38OOvZZsNcrWW0ZZLmZztE/ZOXNVdr8WwT46wxpKH+8WostTo6Xxrk2N9eTsbK07/37pi/jilYTGlD8jqaJC9OMXbqfZqMOg1eGKPz6EBa+LCQw6IyERu4w83mx2oI3uXGsT6Tw6IyEaspmS/34r+1MdA0tohvvW8+tuYBMZct22VfxLd3hx1jKBnrVFO2y87pH7Zw5PMXF/Gd4hCEK9Tc9BzR8ensfF9vxbJSpP3y3mCnyK5G75Iv4hvAvdWCdbUYZwuLCzD6dJJ8uxrM2Gr1dD4/wMEvXqBAo5Dk27HJiGO9kUJ9AaZyXVa+07HrjRmCJym+U7EFOiXG8qLFfCc5TIlVmp/p4urL84s6GXyb5fOxkQgFRUpc6+fH+ky+SbdZ90YLOrdGku9UOxxsGmJuOo6hXJrvVD1P/b0QMknxvZCX+k9Ws+kTVZJ8g0gVODUYoTd5Cisb3wvbbP2nqtn8SE1WvlNt9vBfN3LyH1pz8p1qs94ddtSmQmrf5c/ONxAbidHzmvhuWHF/GXWPBrLyDTAzPk1sYprT32+R5FtjlkNEtFlLSI9jtSkr32W77AycG+fI5y+i92nSc9nUfV7L93hnjO6jQ1z5bY/oS+/xojFn8p2KLSrTkEgkiCcSknzrj3t5U/3bKFLpUKvVHDp0CLVazfvf/36WsYxl/Nfg//yf/4NMJuPs2bPIZDIUKNmh2c/dN92L2ihijEEN7gXjt1wlg9SwpYbSbVbURnk6tmS7haq3eADoPz/O4MWkQCgVa09+5/vVBN/kZvOnayjf5cCx3kTzM93pU7Cl26yok+NscZma0m1WnLUWrFVGbLUGbFXz37Ol26xoPSJW6xGxZ/+5jYmOMMSF6GFhbCp10ur3+qj9oB8QIoqZ8AyOhePhDVYMfhFb/eZStDZVei3FXKPDWT/Pi3uLBWNQdPRqo5zuM4Mc+ZaYc5qqijI4dDeYMQY1NHy0mo2PVSY5XMD3lvk5kLPejKmqiPZn++k/N8JUfyTNt8GvxnODNSN20yeq2PTxqkV8pzhMwbHehMZcwOHPXeTq84MZfKc4TMFapWNuOk7vqaFFfKudmbH6Mi2erfNj/0K+1fZkrBosVcUU6gswBuYPBCzkW22Up2OPfekyTb/qzMG3uI7Rr0NlLMjKt6kqmX43yUsK2fg21+jSsZYV+vR3xrV8O9absCTH2e6Tw1x9tZ/h5IbItXzbag3Y1op2aPAWoTYVSvJtW2sQQh21nOISLb7dLkm+LauLcaw3ER2dZqo3Ksk3iDbb8coAZ7/blpNvEG226l4Pmz9dg7PenJXvVJvtPT1E35n5Na9sfKfabPleO5s/VoPvgDMr36XbrEx0xjj/Ty10vtonyTfM9xEl9VYsVQZJvgH6zybT9qlh48cqCdzuXMR3CsNXxhhpn8jJd0qQtOIdXiGo2uXKyrez3sxrX22i6afduLdYqH+8mvUfDmbl291g5shXL9L2fB/uBjOOTUaCt7kX8Z1qs2qTWPMqNCiy8l0QtbIyvoEdq3dRoCygv7+f97znPZjNZqLZrJiWsYxl/FFgt9tZt25dWqDkYyV3rXwnlauD6Rj3dWY0LrEjHwnPIgMKdAUAmKp12NYYMmIDt7nQV6hRWVUMNo1y6h+FAMcYKsJeZ5yPbTCz7mE/9Z+oEinCwnO89q0miInNeueCbzznRhP+PS60TjUV+x24rzOTMgXRVwgxUDp2vRFDQEvvqWGanukSsXrR7+vLVOkxWeNSsfFjlRhXCneXE9++ImKtomCdR4X7uvnx27HWREn9fB/svs6MyqZKl7UwdvjKBO0v9aVFKAs5VNlErOcGK5s/VoP/FieWVfqMcnWezFiAcz9spe/McCbfDWb0ZclYq4rAHS42P1FD6Y22RXw7N5rQV4iOXqWX477OzKWfd3LsS5cW853kUMTC7PQs0ZFYVr7tdUaMIdHvl97gQF9WhMGrXsQ3CNGNqVqMs1q7GmNAJ8m3ZZUeywo9Q2fHOfTnF0gkEpJ8W1aIWK1Djcmny8r3wljFgow2GXxbk7HJtmWq1qG1qzH7ihfzneQwFXvlV110vDhvLJLJd7K96CEWi6Mxq3DWLW6zIph0m/VcZ8VQocPZkJ3vVOxw8yTT4VnUlgJJvgGUajkn/76V8faYJN8LeVn/SIiNj1Vm5zvZZtt+28fY1Un6To9m5fvaPmLDYyHqH6nOyneqzR7/ymVO/n1zTr5Tbda2xkCxW0vVWyuy8g0wMzmdNkQIHHBR+0F/Vr4BEjNzTA1GufyTDkm+VVYVxESbda0z41xnzsq3+zozI+0Rjn/5MhqXiqq3lrD5iRpsawxZ+Z6emqPt+V4uP9OD+zoz/v0uVHp5Bt+pWJ1HBXFIJP+fje/ik6XcueYejEUmNBoNBw8eRKPR8Mgjj7AMaSyLlLLg4MGDyGQyfvCDHwBQV1fHRx9+hO2yOyi72YO7zopnkxgg/Xs8eLfY2fhYJQDKQgUkRdAlW9y466y46sXHj+/mEtxrbRgrdGitcjybbBhKRYfr3WIX5W53i3J3ezCW6kjEE8xG5/BusePfXQKAa7UJd50V304HllVFBA+UppWbh/6skbIbHfh2inIMQS3uOiuBmx0E31zCirvLcdVaCA/GOf3NFiq2uajYIQQJGiu466wE94j/F+oK0BhUaQFFxQ4XFdvmxQvuOiuBPeI68ekEMpksferNt9NN2Y3zggT3eguVt4mNKv9eJ/ZKc1pI5d9dgnfLArHFJivB/aXMTM4Sn5nDXWdN/96/x5Mh8vFsshK6RYi+YqMzuOuslGwRdQrsKU0/J0D8nQymJ6bxbLLirrNStktwGtwnOEzBu8WOf6/4nb1KL/i+WTzH0AEPrtr5WHuNGWTCkUbrFXyH9ojYyv2iDQBCuJEQqWgA0AoOQ3vdyVgX7jorWquck19vJhFPUHHDArFIrYXgPlGnwF4Ra/EXSfId3FcKQPlu0WY7jw5w8LMX8N28mG//brGI6NlWMl9fwLe7JJPvzTZ8yXbo3ORAWahg4OJYVr69W+z4bk622XWizZYnr3Mt32U3OvDtEDxc+fVVZDIZ/t3OZGxJBt8VN7ko3+5ksiVM87OdqDQFVO4XPFXuS/KdHPNSbfbYly9z7h/acNdZqdwvrhPa4xR8JwVOKQ61Xi31j1fjqrUQ2ifq67tZxNpC4n317y5BZ9eQmEswG5nN4PvaPsJUpse+0oLOp2XFfV48m6wE9ojYa/sIg0eUP3hhLM23f48nzWeqjxhpDOPf7cGzyUrDE9Xp32frIw59pZGZZB1TvEj1Ec5NDuRKGbbQAjHiNX2EqVxPgUoI01a9rQx3nVWyj9CY1ExPzdD88x4CNztw11nTwq9sbTZBgvBQDN9OEXttHxEZhI7nBvBssuLZaMVWZaB0pztrH3HlZ90c/NMLeOqsBPeJvqfyLf5FfcSOW29k68wB6tbUodFoGBsbw+l0smXLFpaxjGX88bBq1Sq0Wi3T09NoNBruvfdedsjeREC2Ev9ON/6bxXurMYuUauveWYHep6F0swuZXEb7y+LD1H+zWzj8JOGpt2EsK6bmzlICu52YPMUU2cUCe2B3CRXb5xeoSzZZUSjlzEbmqNjhwFNvwxoU/XJgr4fyG0SfFbjDjafBis6q4cKPWlEqFHjqbXg2iM4wsM+D9wbRJzV8qhrvFhuBfaVc+GEHxU49nnobzmS/H9hXineLGGetK03IlTKCN4sxwrPBKspN9qvB/aV4GqxpoQMJSCTnnLZqUW7FDlHH0AEPJZusbH6ihrXv9VOx3UlJcnwvKtPgqbcRSI6zof1uPPU2Ri6PMzcdxxYwpvlGIzhMzQ1D+1146m2Yq9QMN4axBQz4d87zXbLJSiA5f/LvdGAqKyYxl6D/+OAivj0N1vTYWXmHKNe90Sh42VNC+YIxwrtlfjwsudGJWq9isHF8Ed8ghEmpOdzQpQlkMhm2FY5FfAOU3+jAv0fEtj7Xi7JQgTfZfoL7knwnUbHdiT85b7T4dXjqbfh2JfneJ/hOwb/TjW+Xi4OfvcD5H1/FU28jlOJwr+A7HXuzG6V6fsHGU29Lzw1DewQvKTGUb5dwZ0yd2inZZJ2fq+wSbdbi1yXLlebbu0PUwbXWTGQY5qbjqI3zNsSpNgvgvk7Uwb7eztkftDMbm1vEdyBZB+91djz1NgxlRo58/iIl6y2L+A4k+XasMOKpt1F+o43qu0upenPZIr4DyXmNMSTabII4sbEZAntLFvG9sI8osmoI7XdRc28ZwX1JvjXzfC/sIxRKOXOJOQACu5146m1pkVi6zUZE2sCSTVZW3lNB4A63ZB/R8ft+Lv20A7VJRXB/KWjAu90t2UfoXBpU2sI0385656I+QlVcCBEhDvLeYCd4QLqPQAanf9Ca5ju4XzybbH2Ezq4hPptgoHE8g++FfUTb7/rSfYTRp2PlAyH8O9xZ+4ijX7jEXCyOp97Gxo9XUv94teB7QR9RsbWEDzz4QVZNbcJX4WNubo4nn3yS6upqXn75ZZaxjGX8cXDx4kXkcjmf/exnAVizZg0f+cAjbJPdRvn1ZXi3OrDXiv47eKCU8h1ONnw0BEChVmyMg/iG8251UHJ9cpzd66FsswNzpR61U41vuxNThegnLaFivFsdlN+YXEvb7cFWbWRuJs5sbA7fzS6CyfG7uEyNd6sD3w47xWVqQrd7KN1i5/T3Wjj0lQsEdpek16LURvBudRC42UnZTjtr3+HDu9WBWg1nv9tGYI873b8BlG6x49st/lZnVaMxq9OijuDeEnw3z3/Peq+3p+cfiZhY84oMiQ2j4H4Pvh3z42z5NgehO7w0PFFD2W4XJetsuFda0rHlC8bk8h1OggdKCQ/FmJ2ew7vVgXOjIxlbSvm2+TmQb4eTyttFvz/RHcW71UHpjQvmkdfPj8m+7U7kShnRsWnMPp3g+6bkc9wrOEzBv8dF6IC4N7VT8B3YlVyD2evGu3XBIaeNduRymXB7USf53p0ce/Y4Bd9JMVR8Jo6iYH5eU7rFnp4bVmy34d3qwFiq4cIPOpibjmeseXmvtxPYm5yr3OTCu9WBLXlwL7CvZBHfqfmH6zoH3q0Ohi+Nc/CzFwjsL6F8Rybfgf2iDp5N1ox7C+zzLOI7kFx3s9UYUBUVMng+uea19xq+b3al5zXGUo1oszvtydiSDL4De0rwJzk7991mZHIZweS6YWC3uNeUYCXVZqOjcc5+rwWVrpBgcm4Y2JXk25nZZk8+2cyFH3RQusWeHvvLbxJ8m31ibhjc78G33YnaKGfjY5WC7+T8o/RGUa5zrTkday7XMzcdZ3p8mvJtDjHPAJwbHRl9hDVkwLnOgtqupuquUsq3O9N1uLaPsIbE8xxOriP6FsQu7CPGmqP4d3vwXm+n4fHqNN/Z+ogjf32R8EhM8J3iUKKPcK41o1QrcKyypEU/1/YR9pVm0c8Ba99ZgXerQ7KPMHh0RCemaf5FD+U3irZlSa4bZusjkCeIjsxQcr3gMLUumu4josKpqXyHE99OF7ZVRlxb7Fn7iKvPD3Lozy9Qdp2T4AEhKFv51rJFfcTm2+q5Ye5W1q/egE6nY2RkBKvVyg033MAylrGMPx5uvfVWZDIZAwMDqFQq3vrWt7JD/SZ8siqC+93pPR+Aiu0u1r1bbOpXbLEjL5AzeEmsf4T2l+DfO/99Vb7NiX2VieCBUrxbrdiqTGitot8PHfDgX9BnlW93UqhRMhOew7XZRsV2F85VRgCCBzz4kt943p02fLtcGEt1nPt+MzMTc1Rsd2FbJ+Zwwf2lYm0C2PBICN8eN8EDHlqe7kVVqKRiu4uS5BgY2F+angNZQsUo1Qoqk2OPsayIiu0uvFuT38l7Syjf5kyLIhIAcTHp1LhUVGx3UbE9We4eFxXbXWz6WCWr31VBcF8JpQ3JtQeV4NC/M9kX3uygYruLqV4hLLFWGQjun+e7/CZn+t7LbxS8WNfpmeyMYas2ZvK93ZmeG5Y2mHGsNDM3E6f//DjB/SXz38mI9ZvUXKVif4m41y3Je91fkr4mgG+3Oz3/sKwyo3NoGW6aWMQ3CLes1Lym//QYMpkMS0g8R//ezDlnYN9822r8cTuF2gLKbkjNxd2C7ySC+0sI7BPXUVkF3/7k+kFgl5OK7a6M2OD+Eg7+2QVOfqOZiu2u9DzSv0PwnRI4Bfa5UBvmXY/Kt82vPXivt1Kx3YWhVOwXBfeWkIgnOPXtlnm+9ybXArfaRTtMHlQI7C8hsDuT79RcxbE++RxXWyAGsYkZtBb1fOzN7vT8w7nGJN6FBisXftBKdHQa34J79d/sTrcXS0BPxXYX9io9x798Gfc6awbf/r1uQslYfZngsHybDd9eJ6vu81F+UybfweQ+pUov2qxcISMyHEtzmHoXru0jDKU6AntcBA648O8VsSmR2LV9RIFGCQnxHnm3Cr5NvsV9RKQnRvl2Jyvv9+Pf75LsIwZOj3H+qTaKbBrBtwps66ySfYTBrxPrY8nvDucq46I+osiqJjYexxgqIrDXTeUd0n2EXCnnXPIQX2CfO/09k62PsASNwlnu4hjBffN8L+wjul8dJnCj4NCx1sTKB/wE9rmy9hGvfa2JyECMiu0uah8OsOnjlYv75O1O3nP/g9RO3UTAH2Bubo6vfOUrVFZW8txzz7GMxVhO93YNtFotkci8vbSXStaXbqbnZXHatf35fmYjc3QeGUz+v5eybQ5mkjkje08OM5lMD9b9Si8yuYzRK/0E7yih7fkedB4N4b4Y4cE4PSeGCCdtlQdO9KPSFTA1NMnmT9fQe3YEGSJ1EoBSrSA2Ik6M95wZQefW0nV8hLUPlAPQf3aUsSZx3c4jg8xMzQAw1hWm/9woPadGKFCBNaRnuG3eh63z0ADx5GAfGYT+c6NMR8V1zv+sDXvQRCTpTt3xaj9y+fxJ76HWMczletY+5OPKs7241prSaZs6XurPUMj2nx2l0CDH4Cmm+aV+Slaa6DsnPkrb/tCLyjQ/UI1dnaD/1CgDpybQutWU1FsYOCE2H1uf60Zrmx9Q4rNx5Eo5Wrea3sP9KAoVdL8i7Npaf9+Nzq1Nx/acGCI6NE3P4RE0VtCYVHQdHkrH6stE55wSXMxExDPtvziOoXyUruNCid3ybBfmoBEQafOmwzP0HBXtI9wxz7eI7cZanRR8aAWHaYQF3/1nU7E92FeZCIfj8xwusFUcOD/GcNOoiP1DH661JspucFJ5m4r2Qz0o5AUZfI+1TST57WcmPJe2Nm5/PpPvvjMjTFwVp726nu+BObCtMCT/tieD796Tw0z1i/ej90gfSpWSrpd60hwWlxalY7uPD8232ZMjlN/oxFihS8cayudPQC1ss0PNU4LDS6K+rc91p/kG6Dw4wNy04Kjv8Dh69yj9l5Mc/j7Jd9IIZyHfrnoT8XictoPC0jLVZsMd17TZcBS5UsZMeJaW54RddMtz/ZSsNzFwOcnpi72o9IW0/UbYCvb5Rhhvn0zyu7iPUFsKWfEWL4oCOb2nh5nszOwjeg+LerY930ORXcNYUxidT0vvhSGmrmb2Eek2+2w35TtdKJSKxXwv6CMIQ8vvurCsNLD50RoiQzHJPmKyJcxo9wTWClOas2x9RKrNTk/NoiiUS/YR/edGGWwUsanmaQoWM9YUztpHjDSPMXR2Cq1Xy5r7tLjXW+k7Oraoj+g7I/jW2DUMnhsnIU+gMirT7eXaNotShmOFkc6DvZh8xqx9hPF0ObfsWMvPDv+Y2fhsWqz6rW99i/e85z0sYxnL+M/Bk08+meGiIUfOPu+bKBo3AmJ86Xipn3jygyoyHGe4eQxjWTFyJbQ8041thTGdVqntpT7kMhn+21x0v9RD78lh5AUJmv6tl6IyDc7VxnRaqbbn+1CoFax7n3B96z0xwmjLGMONYTQlGmJj0wwmFwVan+9BVVyI/4ALx0oTkZEo7c/3MXo5Qmx8kNnoHP8fe+8d39hVp/+/JRcVy5KsYsu23OTucff0SW+ETEIKIYUQQnpISCB0CNnf67XswlJCXRZ2qQsEEnoIIaT36TOe4u5x77Yky7Kt4iL9/riSbCe27lE22e8G/PwVZz66Ovrccz/3lOc8j6tFKoa9z4yitUh1aHF2CVKh/xmp7owfmESZtFL3e58exVpnBOD0H0ZZDCzhi1hEuFqcqAwpjB6ejsUWXZzD7k9U0fwfbQwfcBKcler+VLsXfa6b0WOeSOwIRockU7zoW2LwNS/LAYmIMT/gZ7zZzfhJKXb0qJP0/DRcLXO4Wjqwn2WJ5Ru/VEenWqXY4YPjlF9WSPHefNwdXbF8RzFxfBpXpyeSswlstUZ6nh0DP/Q+N0aKdmWsMn5smpnIKeVQGMLhMKOnIp99bnyNdPPYUTezw/NobGospXqm+72xseHqfAOMHnIxP+UHDUwemSRZlcToaxOxHOqyV8aGIwedBNwLoIGx4260FtVKvp8ZxVCwMlYZfG2KRd8iux+sYsm/zHjzqnw/O0JGycpJpcGXJ1lelMYq/vHAmnz3PTeKudwYi+1/eQL7LgvJKumdON7sjuXw9DNj2GqNMVuw/hcmVsjukXxPn5bG073PTZLTuICrZy5ynUlytmVRfXMhLT/tX5PvwZedLPmXGTsujV/7nxuPqQSszjcQy93kkUn8buh7doy0rBXVg5GDTnzOlbFKiiYplsPl5WXCq1x7hvc7CXqkPjvR6kGXrWH0mIctV9lRKpRrbHai+QbwDK302ajq0uocvr5GjDe7mZ0KUHJhNgvzi9JY4HU1IorV+Xb3evFNBt5QI2L5bpkmqyqDxbklRg5Or1sjAFwtc4zlu8ko1bH7E1V0/KF3wxpx8CsdFL47i7kRH9ZG/bo1Itpn/VNBwqEwI4cmI9/zxhqhz9etsc5TRMZlG9WI3iekOjs9MEdGgQ5jmWQFt6bPPiP1Wb9ngdEjLuzbLGSU6dCYwO9eWyP6nhnDusVIeq6WFE0Sg0dc69YIncJEVjgXR1MpJ3ub6ezs5JxzzkGv1zM9HV+CfROb2MT/DNnZ2YyPr9hhFlBBk2U3Iy9I88zxQ1MolDB5TPq799kxHBdlE5yVavLQa5P4IkQdd4sLlS6Zqc4ZivZm0fPUKPqiNILTSwTGAwy+OklwJjLP75pl9JCTOWeAXZ+rZPyUm3A39D8tvWdCy2GWA9K7c3YiwOghJxMtM9Td6EChhLHDLnzD0vtm4IXx6J4VAQ+MHnLibJ9heRmym8y4uj0EPNK/970wwaopKmOHXSwuSGs9x3/dS1apgdkJ6bp9z06QpF55z46fdGGrNlN7WxFdfxkj6F3EFVkT6H16DJVhZVwzcsBJanoylnIDIwddLHiWcLdIOex5ehSteYUM7Ozw4OqcxXVyFrVRSfZOK+OHJPXDnqdG0dlW3rMLgUVSNSlo7WrGj7vRGFMYi1g79T49in7VGszgq5MEZxdjylWjh5yMRSyxep8dIaM4ciJYDYRg0SflITC+km+A/udGMZVK45q624sIzgUZjdpjBFbyDdJ6nqXSQGBSIjD1PTtBUspKwscOu5jukdYgB16ZIjC9gGdIek/1PjNGyipridGDLmYG5yK/xcWib4nMGiOle3MZfHUcQiv3ZuSAk9nI+uPYa1OwDFPNzti9SVs1Nhx+bYr5yFjFecJJiiaJ7G3mWGx67srYcPCVlT471TaDLlO9ku9nRjHkr5zWHnhpIpZDz5CfpYXlNWtesXwDA8+Ps7woddqAJyTlsEe6bt8zY1gqDTF1nr4XVuwrZgeke+MeiLTh+XGyqg0xi7zVfdZUpSO0HGb4oPR89784RdCzgLtXymnvs2Oo0lMIBELSGrN3gd6npXHA0D43S4FlxiNjw75nx1FnpMTsCodtU7FDqevViDSLmpob8knRJTN8ZJL5kbU1IprDnr9JfdbT7UedqWb0mJP5MSk2WiNiffbpERwX58bI/AMvTaxbIwhA31MjmKukNa/5Sf+GNWJ2IMC8y4el2EDAI6korVcj3N1SG3yuAKr0lA1rxOhBF56+yBp7pBzo87W4Ts6uWyO8Q/NMd8yjzlRjqTJgrdIz+qrrDTUi2mdV+lTcLdOS0p1OauTra8TQa5MokhTkbDUzfHiS+bHAujVCfyKPy85u4M/Nv2UxtMDLL7+8uea1iU38L+Cpp57i4osvjv2dTDIXGC5DM2mEoPTu7312fG0danZijewnDbw0iW8ygD9SK3ufHidJpSTvHCuTx1wMvTpFklpJ/98mUFlVBGcWmI7U/Z6nx1Dpkqm6Ph+tTc3gK5PMjviYOe1DZVERWggx3eWRYv82isaUSs4uE3m7Mpmf9NP//ATegSDB6UWUSQqmmqV3RM9To6RFyMkBzwLLS8sMPCf9lukuD0P6FCZOemOx0TWv4ZechAgRdEfenQPzDL06yUTEGq73mVFK9trZ9Ykqjv1XD/3PjrMcsSj1jwUZenWSqchhtYHnxjAW68msy2Bxfpn+E2Oxuk8Qhl6dxN0lxY4emcQ/E2S6M8CRzi6sdYY1Y5Xh16bwRMYqg4emMFfoKTg7C2ezl9N/GyNl1f7F0KtTMQvPoQNuFuaXGHxtCoLQ+9Q4Kv3KuGbwlUnmxiJz83CYcCiMu1PKYe9TY2hWrcEMvDiBzxVEpZcOo011zDBxxBXLoS57pe73vzhO0LMEKsmpR2NOjeW795kx9PaVsWHfs+Ms+pdBBTNDvjX57ntuDGPRyppX/zNjLC+G2fX5ShZ9y2tyOPDiOMZV45reZ9faFA+9OhnLYd+LE8xN+GNWfr1PjZN3thW1Xvq9w/um8PRF1qZekdaIZoakMV3P0xvne+TgNEv+5ZhgQv9L45RdYqf6xnxafjHIwIsTzE9K7+to7pwRpcfep8ek92zE9qz/xXH8bmltarpjmiFdMhMnvQS9IXqfHkOXu5LvgRfGCXqlPus67V2Tw6WFJYKzK32p/7lIvgHv+EqfLbnIBgoYObyidt7/zEqfDXpX+uzcsKS6ZBrxxyzaXl8jhl6dZH7KR/nlBQS8Cwy9OvmGGhGLfWUqthboHZpbt0ZEMXhgktwmCwtzS0y2eNetEQAzp30MvDiBqUzH7k9W0fqbXoZeXb9GHP1WNznnmAhOLZFRqVu3RkTH4v7pJZYXQgxH5kXr1QhDQfoaGzllRJl+oxoRtQ2cOOUmq9aEoUTLzGnf6/r3BLOjfvyuBbx9M+iLDFiq9aj0SoLe0Noa8eoUflcQXY4GQqkMvDy5bp9VKVSUz+6gpK6cY4OH6e7u5qKLLiIzM5Oxsfg23/9oUITD0V2If2zceOONMeUkADVpnKF497qxWouS+g9XEJxZ4Oh3ZDzEkeyTlMkK9j3UFiNPbASdQ0vtDYVMtc7Q/YeNvd61FiU+Zwj7uRaC00HJMm4DbP9kOS2/GYqRMd6qtkbjRw85JRu6DWCuScN1amMPyNUofV8u1goD0z2ztP9qSOgz9nMtDEcmzvHaGVoKJeSrLoJdD1QSDiHrB5x/vhX7biuTpzyclvF9bbinGI1JxfEf9+IbjS/Bm39RJlnVRg5/Q97zdtcDlSwviOVg94NVLMwucuRb3XHjor9r+KCTwacn48ZW3pCP2phC8/d64sbBqn74xfU94Ne09QtVhJbDsvcg90wzBedkMd7spvcv43FjE0Hhu6XTT51/Gojbz7UWJemOdCYOzWwYsxq7H6wiHAqz/1/j/64orPXpcesAiD2vUWz/ZDnJmiROPtzPXK98MWi6r4SJU564z2Ll+/Niz3W0hm2EXQ9UsjC7KFRjt3+qnGR1Esf/u1+2zmlz1NTf6mBuzB+z9nsDcr28OPY8S8tLJCcnU1NTw7Fjx2TbsYlNbEIcfr8fo9HIwsJC7P81ch4mhWnd+LrbHKRlq2n+Xht+d/xrG8s0VF1bxIJ3kSPfjv8eA9j60VKSNfG93jUmJX63VLPKr7HT+ZvhDWPzL8jEVJLO8R/Iv+9MlVoqri4kML3AsX+Xr3eF78ois9Yo+y43V+twtczJXg9g9wNVoIB9/yL/zgVJzWXipCdG+lg3ZquR4otz6H9pgtFXXBsHJojiy6STLZ1/HJT9fbs+L5263v8l+fdolHh06OvyY6T6u4qZm/Rz+g/xx3OOvdnYGjLo+dsoE0c8cWO33V9Gii5ZaNyz/dPlKBUKDnylQzZ22/1ljBxxyd6D6DPjHfLR8rP+uLGl783FWmWg+4lhpo5tYEAfwc7PSvcg3rP1ZrD9k+WghENfjX+/7GdZGH45/hwhiqoPFGAsSmPkoJMBmTFtFKZKLe72jccdBRdlklWXITT21pig4R7xfqh3aCi/PI/D39x4DpC11QhJMHHQs6aGrYfS9+ZirTTQ/B8dcePeTFu3frSU1PQUaX65Qd3oyj7M4OgAADk5OZx33nn84he/kL32JjaxCXH88z//M//f//f/xf7WoGOP4uL1g9Ww6xNVBN0LHPu+/Pgk+h479t22GDloI6gz1TTc7mDy1DQ9f954gVZtVBLwhCQbphBMHd94Ht10byldfx5idkDewiiRtoKkEDDe7I6RNdaDsVSDpzvOwGgV8s+zYt9jxd01S8ejYmteObtMjO6PPwDe9skyWCbue+HNYMenKwA4+NX44w5zbTrll+cxcSL+fQWouiEfo0NH6696JXWmOLDtNJG7zczR78qP6Xd8uoLQcojDD8nnYPeDVQRnFjn6nfjXtdYbKN2by8ghJwPPxB8fOC6zocvSbLzOsArb7i8jJS1ZaPy987PSPTjwb/HvgalKR8V78xk77KLvbxNxYxOBbacJx/k2Oh8fwnUyzpqTWlKfmjomtua164EqCIXZL7OWF0VGRRrTHfHXlrd9vIyJ49OxDal4qL+rGK1VRdsjfULPb+1tRbi7Z2OWlOuh9Mocuv8ozRGiNWwj7Ph0BYuzS0I1tvGeEtSmVE79vFe2zqmN0PiRKmaHfDFrv9djUe3hwPIrBBeCJCUlUVtby1//+ldsNtu68ZvYxCbeHCwWCy7Xylx8K2djVFjXjS1/nx1zmZ6j/9lD0BlcNyYKlVVF053F0jrS9+RrSM3NhWitKg7GmT9HN+MBHHtt9D6x8d5JZpORrDojp37SL/vdmmwVDbcW43cGaRZYI7Ntz8C+28qRb8V/l0eJBiLY8alylClKobUhkOybfCO+WD7Wg75IzZbrixh4YUJ2jJYIcs+Q9q86HxvGdSr+esu2j5eRlJoktN6y6/OVLPiWOCqz1wew5QP5+N0L9P41/v6ZbXsGRRdk0/f0KOMya151txWRZtMIjXsaP1JCiiaJgwLrKPV3OBg/Ph2z+dsIKouKpruKmembo/XhwbixeedYyTvDyuknR5k86okbu/X+MpKSFUJtTQSN95SgVCk5IrPnm9lklG1jFI5LbNgaTQwfnGLwGflxEkj93Nu38bjDttWI/YxM2ecVABXs/lQVC/NLHBGYr6isKqreZ48pya8HQ4kWlSGVyaOeNTVsPeSfZyVnp4UTP+2NEbreqrbW3FxIWraG5n9vJ7jBYzuQ3Ur3qPSs2mw2LrnkEn784x/LXvsfAf/wdm9Op3ONtRvAbi7ZkKAE4HOGWA6GmJuMPzHIPVM6mdP+uwEGXpzYmPSjlSYnOoeWuV4f+77YFpegtPNzldR/WJqkDr/gjEtMyN6ZQbImiZKLsjaMWY3ep0bwDs7HJSgZSrU4LpUmLge+3B6f8KCF8isK2BGZVMuh+7cjBD0LsgSlwndnUXy5JBknR1ACSXFpObgsG1d5Qz5Fe8VyBbD/X9tlyTEAfleA5WCI00/H39ACcHXPsji/JEtQAhh8elKIoASwHAyx5JfPQSKYn/QRXg6zLHDd9ocHhQhKADOD8/jdMi+LCAKe4AorPQ5GXnGx74ttwgQljUUi3sjB2Tkr+cDrU+PG+ZwhiaCkhYa7imWv6+mbY/BlsU2y3DPNlF6WR92djrhxsedVC+XX2ePGtvxmiPnJgBBBCS2oDKlrLPzWQ/S5rr/TQf2HK8hs1G8Yu/9f22MEpW0fK4v7XB76WieTpzwSQUkL2XsyNowFCC2FmTgZZwIxouec0BXoMWHKMNHc3IxCoVhz8mUTm9jEm8fFF18cs3YDMJPNBYqrNyQoAUx1zkRU9DYeumZHfMA9XX4mjk/HJSgVX5ZNwz1SLT7y7e64k/rsXSYa7qmg6sYCgLgEJQBbYwZaqypuTBTudh/zYwHaf9UbN678Gqlm9z81IUt4qL+rmPIr87HUpseNi2Jw3xRT7fKbCXV3OEAjER7iEZQA6VR8GKa75UnqDXcXr1jYyaDn8TH2fbFNiIA1O+rHNyk2lvBNBXH3xif6RnH8Bz2yBCWABd8SoaUwc1NibRDF4vwSSwGx8dzhb3YJkcQ8XX4W55Zw98jnYPg1F0v+ZRbnFmVjD/xbe0IEpaJLbJRclSMbF1oMEV6UP2cTJSgVX5FNzpnxxyhtvx/A7wwKE5R2fKaCiqsL48YMPD0Ze14de7PR5G7c0f1u8PTP0/Xn+AtmURRdkE2KLhlztW7DmIkjHul5BRrurmD7p8o3jO3+/Qj7/qUNvzuEqVIbszLfqK2Dr05x6pcSqShaezfC3HhAUpqIUzfKxraxh73k2HJwuVw8/PDDKJVK3O63bsF3E5v4R4XH4yElJWUNQekMLt2YoAQQgMW5ReYm4r/ws7ZK865Tvx6k/4WJjUk/aomUYSzVEJgMsP9f2+ISWbZ9vIzGe6Q1pKljM3EJShkVaaiMKWvsE+Kh68+DuLtn4xKU1DY1hZE1tMPf6IpLUAKourYobo1djcHnp5gf99PxWPw1L9tOU2wOLLL5FVoIxxSn48FxmWSLJ4qDX+2QJSgBLM0vSkqDB+TV8Nw9cwQ9i7IEJYDxA24hghJIY6SFiMr9W4V5Z5DlxVDsVHw89D4+LkRQAukkflSZSLYNYwG8Q/LrMu62OfZ9sU2coKSOjO9l4On1EQ6FUaWlxA8MEFPxqrm5UPa6zlZPzLJbDqYqHZXvK6D2tqK4cYe/0RUjKJVeGX9M2fFIH7ODPmGCoc6mIXtr/DFPlKBUcV0ejfdWSCTLDXDwqx0xglLdnQ6KLt54zevY904zdtgVIyhFa+/6ULIUWGaydeO6mRIwcubiZdjIx2Kx0NzcTHZ2Npdffnmc625iE5sQxb333otCoYgRlLKwc4Hi6g0JShBxN/HFf4eZa/SgguBUkKFXp+ISlHLPMFN/m1TjT/20Py5ByViWRtN9FVRcJ1ksxSMogWQln56tjVlRxYN/LIj79Cxtv4+/jlZ4cRaoYPzQtCzhofK6fLZcV4i1buMauxp9z08wGVEJjoeq6/NBBdPtc3HJDgApulTCy2Gm++XXvGpuLkS18RbIGoy86mLfv7TJEpQAPH3zzI2ICUN4B+eZ7hZb82r95aAsQQkie43BZXwu+fFcIljwLgqP547/V68sQQkg6AzimwzgEsjB5LEpgjOLBGcWZGOPfLMrIYJSzh4Tjkvk5yyL/iVCAuP6KEHJfraFHJl1md6/jjM7NC9MUGr6aCnVNzjiPufjRzyx5zX3DDM6e5zgIEy1eDj9xMa8h9UoPNeKxqTCvGXjh2fmtC+Wg4Z7ytn68bINYwefn+LAl9rxjwXRZKtourd0498WhO7HR+j4rbTmJVdrZsf8LM4ubUhQAigY28KZXEZ2VjYej4ef/vSnpKSkMDUldj/+nvEPraRUUVFBZ+dKEcmjlHJF3bqx2nwt9TcVMjviE2IJJ6JIlLXdQPG7cvEO+2j5qfy1y6+zozWp4rMIS7WS9ZpPans8dRFDqZaq9xVw4r864yqbRLHr85UoksRUbgBqby9i4oQ7roKMxgLWxkxZNZ5YGx6oRKEUb4Modn+hChBTEyi9Kjcumex/A40fKWbkkFNYnUcUokpKiaL2tiI8g/PC9/ntgKFUS7pdK0tuq76pAH1+GqNHXDFbt7cCjR8pRp2hou+ZMcYEFvDQQtG5WfQ9Eb8NTfeV0Par0zHrtXjY9nHp1F777/qZjqMAsPraoYVw3BMP2hx1jFgnp55mrU+n6IIcodP3aGH3J6pYCiwLKREkpAAVufb8ZIAT/7k+QcAX9nFI+TRLoSUUCgXl5eU8/PDDNDY2yrd9E5vYxBqMjIxgt68QJBUoOV9x1YbxdXc6SLOq46pvRJGoItH2T5WTrEoSVg/a9vEyuv8yhKdr44asVlWRUy1p+HAx4XCY4z+IT04CsDbqKd1rx+8Kxh37RaGxqam4Mpfm78ePLXxXFv1Pib3f7GdZyD87U3isKoqoMtJkq0eW+GM/y4KrZx7/iNhGwtuBgosyScvS0PaLgbf0uokoKSWCrK1GbI0mTvyXfD97O1F8RTY9f5KXM979hYiKpOAJR1HsfrCK0GJYmDBVcFGmtGkWp6tl7zKRUZIu1hc0sPuTVSwvhDgooIClydVQd2MhJ37RH7e/a3I10r9rIC1Ts8bm7fVo+HAxnoF5+gQWG2tvLUKXo6Hjd/1xlaJglaqS4Dit7jYHaTZ1XMWmXs1Jen3SQpfBYKCuro6XXnpJ9tqb2MQm3ogLL7yQZ599NvZ3ARWUKqrXjVUblTTcU8Hc8MbqG6sRnVPu+1pbzKZqIxhLNVRdV8TMwDytP5evmwUXZmIsTOPEDzcmfGjtasluNCCRiqL2V+tBbVNT98FCTvy8P25cFNE5pchvA4mQMH16jokjceb3asjbZZElPEWx4zMVJKUohceqotj1uUpQKtj/r/LXLdorvw7xdqPm5kLGm6fjEtXeDESVlBJFxXV5zE/4he/z2wGtXY0xTytLbnNcZsNWb2L0oCtmu/hWYMsHCzAUpNH/7LiwukT+eVZZ9aO624vofGxMshaUQd2dDtIy1XQ+JqP+FEHtrYUolIq4NWe1MpKcepqhWE3ppXlCqr4gqUot+ZaElNASUoCKqOLNjcXfy3hF8TjBUBCFQkFpaSmPPvoo9fX1Qm3fxCY2sQKv14vZbGZpSSJYJJHMbt6NSrH+TnjFdXlkOHTsf6g9Zuu0ERJVJGq8pwSVIZX9D7XJXhukw2O9T4/FVSdaraqisqjiKj5VXZ9PkkYptI+qL1BRfWMxvskAxwXWLlR6KLu6UPbaOXtMjB5xC/1+8xY95Vfa8Q7M0fILsYNDIsjZZaLwAhuTx6c5/Xj8NZHMJiO+Cf8aK6v/bdi2Z2AoSKPzt/FJZYkiESWlRJBRqSN3q+ktvWdvBiLjGHj71MZ3fV5yEYpHRlwN2/YMxk9Mx302zFv0WLboZQ/qRrH7gci60EPybVDpldTdXkrbo/1x+7vKqpJsA1Wgs6rixm75QD7zziD9AmT90qskhfj23w8y3S5zCDZBVaWy9+ZiKtfT/MPemOXh6zGs6qEj0AxAeno627dvXzNn/0fDP6SS0rFjx1AoFDGCUhLJXKC4ekOCEoBv0Ed4KUxwPj6LU5sjeS32PTeKs8sbl6BUfp0dtDBxaIbm77fF3fQpvjybnZ+TiljnI8PxN6m0sOW6QnZ+tDLW9niwVBlQJCkw1cRnW0Zx4md9DB+Un3DX3FIIwMkf9smSaGpvqcC+w4LWItYl93+zndNPyBfIbR8rY9vHNmZQvh77vtFG52Pyi2bVNxWQWW2MqTnFQ9HeLLZ+rBS0sqFkNuppuq9EKA86hxZ1hoqcRov8hZFs8UTakCis9elkVIpdWJetwVYXX+UmivLr7NTeHv+UVBSl78tl60dLhWK3XFdI/h75k4Mt/z3A6SeGhQlK+edb2fVAJRqZ23Hs33vECUrAjvsqyG40y967o9+RCErZOzNk++Xhb3QxecojRFACSE1PQZUhoxQVISjln2+l/IoCquOcnJs6PhsjKFW+Py8mIb/+hWHfQ22xja/K9+fFzUXLz7qZHfHFCErRmrwetFol4eUwM4NxbPoUWs4JX4GDavLz8uno6KCpqYm6uo3fF5vYxCbeiIaGhjUEpQqa4hKUAOZG/SwvhtDEUdnR2KRn3N3uwzvko/1XGxOUNCZiKi2HvtYpkZ/iYPunyym+TKqnh7/RFZegVHebg4qrC8naYQSQtUtSGVNRG+LX1SimjnmZOD4tS1Aqviwbc7UO/3hAlqCksanJ2W5m2yfExkjDLzvpeXpUlqCksanZ9flKWWWVKHoeH6PrsSEhZaL8szJp+JDYuGDrvaUUCZxOAomQUXyF/HgOIKs+A2NhmlCsqVKLSXB8lAg0JmRVgaLI2W4mLUuNRuB2aHI1NNxTjLFMXtZKY5IsvOxnyY9BS9+bi63WROl7c2VjO37fnxBBadv9ZTFFtHjofmJYeBEorUBD7g4L2+6K/2yM7XfHCErVHyqMf1E/jBx0cvKHYuqnmVvSUaYosFbGV0OLEph2frSSuhvjPxvN3++JEZR2fKYC+7kbn+I9+eM+mr/Xhrvdh8akjPt8+N3g6vRy+i+SIki0Jm+EgHeB5cVQ3Brp8NdygeJq8nPzCYVCvPzyyygUCk6fliegbmITm5AwPj6OUqmMLXamkMoFiqs3JCgBBDyS+nTAG//UsDpTes67Hx9iqsUTl8RTtDcLtVGJp9vPse+2xSUo2c+2xNSIBp6ZjEsWAKi/ycGO+6R5pBzxyFKuI0mlxFq5sfrcapz8UbekaizDhai6IR+AjkeG4hOUgKbbS8k7IxOtPX6djOLgVzro/LO8HVzdnQ7pJLAg9n+5nfbfyKv9FL8nm5wmC8XvkR8j5ewySXZURvnvNxSrqbvTgVrmfQGSbVW6XUvONrFxpW2nSagNicJYqsFYKib7aSpNx9Yk1t6ivVlUf7BQKLbgwkwaPyyv9A1Q90EHBQLKYr2Pj9Px+0FhglLW1gx2frYiVgM2QuvPB+h+fESYoLT1Y6XY91hlr3vih30EJgNkVKTFVR0COPGfvYwddgkRlAA0JhVqU3xJkChBydpooOq6orj3bqYnECMoFV2cJTvn2v9QW4yg5LjMFrcfdzzSg6d3LkZQipc3tRqWF5aZG41PZjozfBnV7KQgv4Curi4aGhrYsWNH3M9sYhObWIurr74ag8EQIyhVsZVzFVdsSFAC8A7NsxQMoVJtvA+kskif948FcbbP0ParOO9wVUSRCEmBTY6g1HRvaUzVpfk/euISlMrem0v1DQ5sW40AspZ02mw1WrOYwrh3QFKGkiMo2c+2YN6iJ+hFnvykgsJzbTR9WGyM5Gr10vnHYVmyi0oPOz5dHsuDHEb3u2l7dECWoATguDCb6hvlFQ5BWsfKP2/jOf1qlF9jj/ULOeRsN2MuF5N90heoMJS8DZuNKomwJYLsehP6Qh2abPm+ptIrqbmlEGOZwJqeSiJW5eyRH9PZz7aQd0YmpVfIq4K3PdrHgW+Kr3nV3+aIKaLFQ/vvBjn4bTGCkkqvxHFRNo23xx9Xulq9MYJSmcB6Xu8zY5wQOOgCkFGmJ1mThLE4/ppXlOSz9e4yam8qjqvq1PrLwRhBaev9ZeSesfG6afcfRjj6nTaJoLSqbq7fCBg57KTnb9K6dbQmbxg+t8hyYHlDghKAPVjMBYqrycvMR6lU8txzz5GUlERPj5gL0d8b/uFISoWFhTQ1NcX+rmUX5yquWDdW59Cy+wtVlF4lPYT7v9xO16MbE2N2fLqC+lsdMeJRvFhDqRZzqZ7td0uLMHLqJ+k2DcpkBdp8gcLvg/nJAAMvxz8pG71Wz2OSdUZcZRmtpA5lrU/HNxqQVcJpuKuY9FxtzPJODid/0sF0z6ysklPR3iyyd2aADyaPycseJmmSSNIkCbXBXJMGPuIqwETR8t8DuHtm6XlMfoBhKTWQmp4iq6gFkLvdisqQCqnyG5dzvT6Of7+Djt/JFy9rfToFZ2ZRc12hfCMSROlleZRdni8U2/pIv9ApawCTIx2dTWwhKKNAR6peRno6grFjLtp/3y8UG+1j1noxyxyFUoGpUr7PRwlKUSJfPLT+ZpCp1hmh/gOS/UdWrTwR7PSfpBfr9k+WUyIziFptayhXgwafm2JhdpGWR/uF2quzaUhSKeOTsCK/XefQklGcHqub64Y6Q7GJytaPlVJ/q2PDNvucIfZ/qT1GRNv9haoN5cMdigpKh7ahTpL65MmTJ6msrOTVV1+N/wM3sYl/cJw6dQqFQsHx48cBSEHFBYqrsSvWf9bqbnOw6/MSybrn8TEOfqUD/wbr28YyDQ23O6iPWGi2/Kx/w1iAmlvKydxiRGOKDH/jrdVqIDk1Cb3IuAvo+kM/fncwZq20EdIKpBpy4MvtHJBRVCl97woBt0dgQSOrPoOy9+QJtdc/HmCy1UOLjBc7SKehAdnfBmCt1qNIUhBalFfmjNrROQU3Dzp+38/gPgEZXA2kGlMwl4q9u3XZGizlYjLhh77aScvDYjYepe/Jl7UDezMou9pB0bk2WTIISJsYzd9ri/tcRKFKkzZocnbIE7n9fkjVp2Ctls9b9+9HcHbM0P17efXRqGpPPAuz1UhKVZKiSZaNm4qM53LONMcl5wDMD/hxdXo5/AMxQlH+BZno87Sx52QjDDw9id8dImurkR2fiW+DPfD0JPu+2Mbgs9J8S+5eD++biku4Xg29Q0NSqhK9PX5ti/aZ6g+VkFWTEbcNnb8ZjhCaoOF2B9vu33gjrvM3wzE1qfJr7Ox+oGrDa5eNbqdoeYVQ0djYyBlnnBG33ZvYxCZgz549ZGdnExVNr2U3Zyves26sOlPNrs9XxWyRDn29M2ZXtB6a7iul8Q4HaiN4uv1xY9WZarIbzVTfJI3T4tmrAaTnaEhWJZFeIEbime6dZUjGKiq6eT/8kpN9X2yTVbfZ/slyzLXpBDwhhl+KH1t5fR5Ghw772WKHxo7+sJupFg++4fjMp5wzzNh2ShsiIgSLVG0yyWqxpd2MCmlTRsTequfPY0yemo5ryxeFtcaI2pRKQEB1Kme7lbRMNSqB/aGAB459t43O38qPvdSZaoovyqb0ykL5CyeIqmuLKLtCbM3r1M97Ofx1sTGEtdKIPk9srmEu06O2pILA4zHw8oQQEQ0kiziQ7NTkEFoKoUxWYhLY3IsqX1VeLz83afnVEOPH3UIKSQDlV+SRvVV+3S1qe9d4T4ks2e7g1zpj4xM5At3UsRl8U0FOC1r06gvSSFYnx793kZ+uNiqx1ZuouXnjsVTAA22ROVztbUU03unAULz+xQMe6XBONBe7PldJzU2F68baFHZKBreSniSN7w8dOkR5eTkvvvhinIZvYhObmJqaIjk5md///vcAqNFygeJqchSF68aXv8/Ozs9Ia16jr7k5/FDnhtZiKquKpruKqYusVXf9fiSuDVnDLcXkbDWjskY20ePxiFSQokuWnRdG0fWXEebH/Ywf8cSNi5JFjnxD3gYr7xwrDXdL48ShF+XXeux7rJReKk8EASAozZPbHpWv1VEChqtVfq9RX2RAmZxESMCbKErg8XSJzdXbft3L4MtixGGdTYO5QoxMlFGcTuYWo1DssX8/zcmfiRElSq+QbPfeapS/x07p3lz0RfKDnp4nBjn67Q78YwLqU6kppOdoJTEAOQQhzaYhs9IoGzr8kpOxoy66/yR/+NLbF4AgQr8NIDk9mWSd/JqXp2segpIlpByxKugNMX7MTevPxQ6BWesMWKoMkh1iHIwfmiboDGIo0bL1/jJZm7h9/9IWm2/FatYG6Ht2HFe3V0gVTWVVkaJJQm+PP16NWrM13CzVzXhWdQNPTcYITU13Fsc9IDLw1CSHvyHNBfIvtLLzs5UbkujKp7ZTHpS4KqFQiLq6Os4555y47f57xD+M3VtHRweVlZWxv5NJ5ZwNFmpi0MLuj1cx3TtL+6/kTzAVvjsLc0k6R78b5wHXEttwL7kiJ0YU2Ail78ul+7dilmKV789DZ9PEHgI57H6wiuXFEAf/Td52IGpJN9M/R6ugfJ6INLT9XAsLMwtChCOI2LEpeMvtMJruLUFlTKXzTwNCJKWEseq+y4ZalEK2e4l+f+WV+YwecjLTLd+QROzeyq+z4x2aZ+w1MWUgUSSUhwTymygStTcURe3tRehsGoYPOoXt7ypvyKddZkPZXJNGaCksppIUsTtbnF8Sqhv551ux77biHZyn5b/lFcey92SQf2aWUI0ByD3TjM/pj9t2x6U2ep8fB59kExmP4Jm9MwP7TiuHZbysQbpW/Z2VePrmZOv9aLifubxJBociC0O1tZw4cUL2OzaxiX80NDQ0xMhJAPXswaKIv0Bc9YECDPla9n+zXdbiDSQ1l/4XxuMSXTQmacNdY4pYyz67cc01V+tQpipjpAY57PhMBT1PjggRbapvLkRv19Lz9KgQ4Wfbx8tI0SYLyyGbq3Us+pbx9sZPXMW1eXQ8Kj+uBXDszSa7yYS7y0v7I2KfEcXuB8Xtr94UNAj1IZC353szyN5lQpulErI5S8TuzVSpxVpjovPxYeHfJ4qE8pBAfhNB1lYjxe/OYW7Uz8kfi22wiWL3F6ogDPsELG6AmDKa3PNacFEmA4JjuagFSucfB3G1yMhKAzs/U4EyAbufbfeX4T49K0RsBAErPg0UnWtbsYmTue8N9xQzfmyaMQH1hMrrpA1+EfWsUxmv4l/y4fVKtXl4eJjcXPnTfJvYxD8SxsfHycnJiZGTVGg4U7FX9nM7P1vBdPcsnQJk0qytGdiaMja0ygakjfjIhnvBhRH7TBm1JVFLsaKLszCV6YUtunY9UEVoYVl2kwwkAk/l1QVM98zS/muxMU/eufL2bdZGA4QQtivb9blKFEqF8LtKFNUfLERfoKX78ZG33DoNWHPfZUNX2Wa9ld9f+u4cJk+6memRb0gidm9Fe7PwTSzIqmUlioTykEB+E0WiNtiiKH9vLpYtRob3TzHwjNg4qeyqXLr+EL8WpReoSdYkMd0htna764EqFucWhazXrI0GSvfm4umbo+2X8mvf5tp0ii/KiSmFi8SHFkJx224/24LzhJOAR1ITi0fwNFXpKDzXxrHvCWw0qmHnxyrw9M3LzgU9YSdT+X0MDg0SDofZvn07Bw8elP+OTWziHwxXX311jJwEUM+ZWBTxFWsce21Ytxg4/oPO2CZ5PNTf5mBovzMugUalj2y4qyB3m5mRV10bxuoLVKiMaqZOiI0Fmj5WSv9zE7hOyTe29IocrNVGev82KktmAknkQG1KFbK7A6ntKBUxy7mN4Nhro/cJeZtzkGyvHO/KxtXpFba1EsWuz1exvLAs/I5IGCqE8gaSek48gtubgblGT3quRsheKxG7N51dRWZdBr3Pjgv/PlEklIcE8psI9EVqqm9wMDs0zymB/bVEsPNzlRAWt5MzlqWRmp7C5FFP3LicPSZGXxNTyCy5LJvMugwxKzWkGpOqTWH/l8TGofV3OPAO++j9q9gznn+hlcFn4pMg886xrhAlZe57zU0FuLpmhRRDHZfYyKwxcuBbHbJ9qSVtP4HkeTweDwCnT5+muFheOf7vAf8QJKXt27dz+PDh2N/1nINFscFpJ61krzRy0BlfWSiC6g9JG05Ck7kIIWA5GOLgV+U3ZLbcmI+xKJ3JFg/dMpM0iEws1UnCZIqGe4pxdc8KEyREiCClV+WiSk8WIjBA4qQjbY4aQ75G1iqraG8WxgKdrDVK7Lr5Wsovy6b5e/LxOz5dgTJZIWZH8TaSZ7Z/shxFskKYAJIIEiEpJYLy6+yYS/WSxc7bkRfBfG+5MR9DoU6oHcWXZ6NMVQqTBbP3ZJDTZObod+QXCQrfnSVsJ1d/pwNtpprhfVMMPid/ukCbr2XLVXZ5gk6CfXT7J8tp+Vm3EIGs4a5iNFYVrY/0C5PjCCNUT7P3ZFB0XrYwcbL+Tgcai0oiPgj83h2frWDy1HTcBfPXlH/FvyxdrKqqiieffJL8fLETlpvYxN8z/H4/aWlpsU2yVNScpbh0w3jH3mwslXqxibsGdt1fycyQL2a1FA9RQkDXY0NCRKLdX6gCxOqQqVJLxdWFzAzMx7UviTU9V0P1NXkxKX8hCBBBtn60lNZf9AiRS4ousZGz1cx07xxtvxQbq4kSMJruLWHwtUlhglf5++z4pxfiksZAUpFpuN3BVJuYGs/bRZ7R5GpouLmI8eZpep8QI4CIIhGSUqLY8ZkKlgPLQhszbwqC+d71+UqW/MtC/b/+LgedfxrFL2PfsxJfzGSrh9FXNl6MBYl05O32ChOxdj9YRXg5LGxBV/2hQubG/PQ/JTO2S6CPFr4ri3S7llMihC3NKvK5QJ7Lr7FjqTAwftItRKbb8ZkKkkQJUxrpsI+rW2yxt+CiTLJqMzj0vc4Nc+PUjHHc9xoAOp2OM844gyeffFK+LZvYxD8Arr/+eh555JHY3/WcgUWxgd2TGrZ9uIzx425Zgg1A6ZU5WCqM7P9mmxBJYtcDVSwFl4TUZByX2chuMDN5ajquKlMUTfeWkqpPkexLBNqy5YMFzA77GHxeQIkRhIgg+edZ0WVrYkomctj52QqUyeJkU7VRSbojnalj8TcPc3aZsGwxcPJHYoRedaaasstsnPxxv2xs032lpGiTOCCy1vQ2kmca7ykhWZP0tmzuJUJSSgSFF2WRvc1M8497ZW0I3xQE8138Hklh+9h/9coqFNnPtqDJSBVSAACJaJO/J1PWXhrEiHxRVFybh7lcL0xqUmeqqXqfXZ6gk2Afbbq3lNZHh4SUnSqvzyOjOJ22R/uEFMp2PSDNNfcLkBBNVToq3pvP9Gkx4mTFdXkYC9OkjTCB37vt/jKmWmfi2v0dTnqOmSVp/b2iooInn3ySwsJC+YtvYhN/5wgGg+j1ehYWJItcDTr2KC7eMD5nj4nsrWaOiszJVbDjvnK8Q37aH5Efa0QJAZ2PDQsRiXZ+thKUcEBgjquzq6i9qRhP7xxtv5Zvi0qvpOqGIqH3w8qHkN28r7/NQftjI3Htk6KwbTXieHcO091zQvkDaUwlQjiouaWQ0cNuoTyDRI4ILYRl1TlRwa5PVDJ50kPPXwTWmt4m8gwq2PnxSsab3ULEo0SQCEkpUTR9tJTQQiixfpcIBPO97RPlLAeXOfbv8nuCWz6Qz+mnJoT6NMCWG/KZ7p+TJQqZt+iZmwjK2jFGkSipqfSKHILeRfm5VQJ91LY9A3NpOq2ic6vPVbIwuyiU5/zzrOSdkclEs1vIcrHp3lJS05OFiZM7P1OBq2uW7j/Kr1VnNhnJO9PK0e93b3htr8rLocDTAGi1Ws4991z+8pe/yDfkHY6/a7s3n8+HUqmMEZSSSOECxdUbE5QArVZJUooSa6WY7cNyxM5CaxFIpQ8WZhdxdYm9yFp/MYi7Z1aWoBS1Mjr0tU6JdBEv1qKk9nZJIrL5ez2yBKWtHy2VNuwEiQyWCj36fAHd5ghO/qqfwVflJ5/ZezIwlGrxjQZkCUoAmVsy0JhV8S2kVsE36BMiKAEsBZZYXhDb3Nhxb4VEvBBA9s4Mdj9YheNSee/4GASJv8WXZ7P9kxtbZP1PUHlDfsyORg7LgRCEwZArdmN2PVDJjk/Ht8SIoum+EnZ/okrons8M+wgvh8kokA/ueWxMmKAEYN8hWfaJ1IQoQUnObg3g+H/2MtU6I0RQAii/JJuU9GSytsvUsshzXXeng90PVqGRUas/9PVOfM4QmY16Kt8fX7q7+Qc97HuojZlun1A+Bl6coOdpsVyPNU+zvBCiT26gH4EiSSH9h0Ad0zm0JKUoMcjIQu4JXUIFjeTm5NLW1kZhYSE333yzUHs2sYm/V9x0001otdpVFiO74hKUAAz5WpLVSSs2bPEQWftVJiuE2jP06iRL/mWc3WKWYn3PjdP9V5kNdY2kyuRu97Hv622yBKXK6/IwVWrxj/hliQMam5rdX6ii6gMR6yiZte6cM82k6lMo2itm89b313HGT7qFCEqOvZLqlQhBKa1Ag8qYin1nfCut1ej87bAsQQlAa0kmvBzG0yd/DzUm2P3JKurukPdsB4l0sfOzlfKBQJo5GcKwFFwWit96bymlAr7tCUMjbSrkXyBvywYQDocJi2iRI6nq7H6wCmOZmN3u7ger2HbXxnYUq7EUXGbRvyQUe/wHvcIEJTSgtarIFbD9mDjowe8OSWpUjfLS6IOvTnH8v/vF2gHo7Vqy6uUtd/EjkXi+UBWzq9wI/U9NxAhKtbcWSQSnONfd91BbrM5ocuPfx87fDOPq9AoRlABc3V78brGVJo1J+u4lv9jzYipJJ1kd36Lb4s/mAsXVGDRGwuEwTz/9NMnJyfj9bwMrcRObeIcgEAigUqliBKXUiK3uhgQlQK2GlLRkTKViFhFLC9JzrDaK2RL4nAFcnWJrXr2PjzPV4pElKEXtl45+t1ueoKSWVIMAWn8+ILuIXntbkUQcECQy2JpMGAvFbEkBjv+sn/4X5Td6zLXpGIrVBDwhWYISQPY2M7psjZD9F0BgMiBEUAJYnF9kKSA43rmzNEbyl4OhWBrnFu2NrzIRRTgUJozYGMZ+tkWyXhDMRyIofk82jR8uEYpdCi5DKIzWJG/NAdIhSNG1upqbC9n9qSrURvlYT/8coaUQGlP8dytINiWiBCUA+04rGosKrV0+2VGCUuFF8ve849EhRo86hVWXis63ojalxuwRN0Tkua64No/dD1TFbCA3wtHvdhOYDGAs1VAuM5Zv//UQ+77ehqfbL90XmZR0PT5E71Ni4y537xyLc0sMi9hds2p+LFDH1EYlKdpkDDJrotuWz6eeM8jNzaWjo4Pi4mLuuOMOofZsYhN/r/jSl76EWq2OEZRq2BWXoARgzNeh0qVsaPmzBpHpllK+fAMwdMBN0Cu+39j9+Ajdj8uvvav0SuaGg+z7epssQclxiQ1jWRpBrzxRRKWHnZ+vpOK6yBqWzPQyo1KH1qam+AKxscP4EQ/Dr00JEZTyzpHWr0QISiq9kvQcLXk7xGx+AQafmZInKAF6m4rlhRCzYwLzWhXs/lQVNTcXCrWh6d5SdnxKbJyhs6ogFJb27wRQe2sRjr0J7GMmgIa7ioUtlQlBeFlsvJh7hpndD1Rh3iI2D9r1+Uqa7hDb91zyL7E4L7bm1frLQWGCEiowFOqwNciMd5AsC4POIDq7Sug39j49xon/jqOQ+zqYKw3YGuXbQRCJ9PbZSmkdKw7GD03HCErl19hRyTT7wDfaYwQlOZu4weenGDvqEiIoAUye8uCbDIjZyumlPYzlBbE5k7VSjyotBZVq470PfVDPBYqryUgyoVQqefLJJ1GpVASDbwcr8f8O/m6VlD772c/yla98JfZ3CbUUKjZeRJeYsFNCVl/aHDVbrssXtlWrva2IFE1SfBu4CDQWaLiripkBMXWQkityyKwxMtUxI0Sk2PpR6eSZqK1Z9YcKSctSJ2TFoXNomeuNzwQovjybseYZfINiEi5vxuZNm68Vuv7uL1ThdwZp/sFbz7Ytu9aOzqoWYnZm78mg8Gwbbb8dEFKdSQRN95WgMqQK5y8RJaUdn64gSaV8W07/b/t4GcsLyxz7d/l7k3++lcwaI62/7I5rAfZmYCjVsuW6QpxdXroeldm81kpkR1Gruqja0OCrk0LqbQBVH8gXkp42lGqF+5LjUhtZNRns/7aY0lCiNniJqBFE66Co1WZGpZbyKwo48cN2oXtfdq2d5BSlUA4BGu4upuM3PXGvfUj7NN55aUK4af+2iX9UaDQaAgFpVVRJEucprtw41qam7NIcTvxIbDJUdWMBfldwxXIoXjtMSmpvL6PlkQHmB+Qn+ZXXSSdg932jTVgRRqEQtOHQSKQZUVszjQnq7qhk+KCT4RfEFqT1Do2sxRtIkz1R+erCd2WRu8PCdN+ckGIVSPdUhFgSzXfzjxMgoghCY1Ky5cZihl6bYkJEXvzuYpRJCqExeqLY/WAVi3NiijaJKintfrCK+clAfLudNwFLbTrF784VtjBsuKcY76BP2FosEdTfVYzGlCo2bsjV4B8RJ6okqpCkd2jIKEmXJeylFWiEak4UOz5TgadvTui5jNrg+aaCHBeYs5RfY4+oETiFyIDVHyokPUcjbLXZ+JESAtMLwkoikuJbN34BhXBLbTqZNRlxrz1jH+PwkKSqZDAY+PCHP8yXv/xlobZsYhN/L/jZz3625oBEGXXkKzZeRK+4xs5kiwd3m7zsvtoIVTeUiFkIRa6tNqmE6lPUcsg75BOqIfazLeSflSlEZgJp/U2XrRG2NSu9MoeM4vSE1Hq0djW+4fhjmLxzLXh655gdEBvrJKq4BBJ5S0StZ+dnK/A5g8KqS4mg6OIs9AVpQmMSU5WOkr25nH5iRKgfJoKaWwpJz9UmNJYSVVJquq8UlT7lbTn93/DhYkLLYU78l3z+rI0G8nZZaXu49y23y1Nnqmm4zYG7c0bI+lGdqRZSGgJJ4cdcpmfwlQlhVaXSK3OEnvf0ArXwM5Zzhpm83VZO/FdHXAu1KLZ/spxkTRL7viaoIvf5KsKhkLAC2a77K3F3eYXyrbWrqb6+gJM/7Ba69wUXZqIxq+gQtOuuuamQ7ifH497TY7rncc9KA7nNNa9N/KMiJyeHsTFp7ptMCucoLt8wVqVXUnKZXVgdpPjSbJYWlxl4Sn7uptJDza1ldP1hAO+A/Oa14xIbmbUZNP9Hu5DF3PZPlKNMVXLgy2Lz5d0PVLEUWObQQwJjKRVs+0g5owedcW3pVkNnVzE3LP87iy/NFlMiQlI1KbkkMcUllV5JMBiSJTAUvCuT7EYzLb/oFWp3IlDpoeKaIiaOTwtZ6lXfmE+yJpnjAuOMRLHr85UszC5x9LvyY6lElZR2f6GK2VEfp37S/z9s5Vro7Coqry2k929jcS0Uo6i5qQDvuF/ouUwUVdfno8/XckBgrVhlVYmTmkhcIUllVWGtSpcl1WmyVfjHxNvR9NFSvAPzQmT4qA3e3JifkwJK4vkXWrHvsDL06tSKVVsclF6Rg7lcT/P3O4TqYM1NBSz4lun8rdg6ev0dDtr/MCKkYqUvUmNrNNMVZww4b5lh/9QzgKQkfu+99/KlL31JqC3vNIgd7XiHwWKx4HKtvOQuUFwdN15rUZKeq6XYbMd1Sv5lWrI3m5S0ZLL3ZDD2mryqT1qmGsQO/OP3SSeeFUqxD5x+ehRTaTrdT4ipjxz5dje5Z5plCUpRgk/Lz/qFrrv1Y6VM983R89iYLEEJIKs2g8xqI/v/VaxQdj42gKEgXSi29Kpcuv8wIkRQ0lik01miJ7sbP1LM0KuTTB0XU2SQJbSswthr00L9CQCtpEYkSkARsR57sxCxLlwDLehs8kQ2QJgICDD4nJgN2mrU3elgskU+7zPdPghDUpLAc+kDny+EzqHFWKCVJR41/6CHLTfmCxOUii/PJsORTvWHCmWfz5lun2Rh+ZEKWn83GDfnvX8Zp/cv0ua/CMHv+H+1o7OLPZMA85MBfIKn7xWp0vGzpUWxhbecrRaUyQqMJRn4nfLPkLkkXbjGZjbq0ZhVVF1fEncTe7vvIlo5zIJpjpMnT5KcnMyhQ4dobGwU+p5NbOKdjMOHD7N9+/bY33mUUK6oj/uZLe/LI9WYIkywMRakoc/VCpGUMrZkkJSqJGerie4B+fFRKKIyo9GAiCCHu3uWJBnFjxj80P3EMFPt8jOgKNFCZBJpLNNQ9p58Dn2vUyh/tbcWocvRYD/LwvDL8u+b/qcm0GSk0i6wsG0/y4KrZ16YJKJIUhAOh4UISjlnmsko0gnZ6QH43aGEbM1EbYEhQgYb8wvbdL0d5O03e21jmQZPl3zDnSdncZ4UH9eJqpBGYW3Uk7PVIrQRtxRcJhxCyBot2veKr8gWUgUaPzaNs90j3+AIqq8vAqW8qliUoFR8RTb6XK1sflYTF+WIVhNHPChTlIwJnPIEGHx2FL1dK0RQWgPB/q02pJKSJraUYD/XKim+vTtfiJDguDiHZFVS3HtvGJZUlQ5o/obP5+Ob3/wmv/71r+nv7xf7AZvYxDsctbW1nDp1CgAFCs5XvDf+B9RgKteTnqfF3SY/xy68yI7alErOGWZGBTaQ9PlpJKUIjo0S5CcPv+TEVp/B0AtiSi8nf9SHbadJlqAUJfiIECFAWjvwDs/T98SELEEJIG9PJvadVvYLbvC1/rofc7mYonvR3iz6npgQsxNTQziEsDJSzc2FjB514RIgKwP0JWAH4m6b41CbOBnMUKxmpkesw7zVm1irkbAlnBrSs8TIM4lYk0wdmxFS2VqNyuvzmO6bZ/xA/PFDYDJAOBRaUaCWQWAygNqmxlSklVWg6HhkiIpr7MIEpZxdJqzVRlTpqbT8vD9u7OxAIGZh2fXnwbj9ZfRVV6yeiRD8Dv17J+aydOGaNd07y7Lgc6aOKC6FBJUfshszSFYnYawwyt5LAFuDiaQUMfOM9AI16flaqt5r59j3N17zapw7j17a8JonOXnyJCqVildeeWXNOsAmNvH3iuHhYfLyVtSrCyinVFET9zNlV+aRnpeGsSwNT5e8UIC1xkh4KSREhtDl6UlNSyaz1oR3QH7+u7S4DGEgVcyDafykG61ZXJqw7bcD+Mflf2OUaHFYgMykyVZRdXU+R/+rW4joU3plLpk1RoKzi0LqRZNHPehzNEIKK5lNRmZH/cLkjKQkJYTCQu021+ixbjEIk0qDXjiRAOm8RUAEIwpNtkpSThbkoIge+nozSJQYLkpkmxsW639RnPpvsbXIKAwlWuw7LbQKHIxf9C8RWgqj0iNLmokSlPLPswrZWA+9MsnsiPwzGUX9hwpJSk2SfXaiz4D9bAvm0nTZvrja4lKOaOXtC0iHTE6IjXUHX57CUmZgaL/4fnA4HEZUlEibpUa9JDZOs9YZ0GaqKTzPKnQIsWSvHbUxlQH9GEHv+vufaU4DFyiuZn/K31hcXOShhx7ij3/8I+3tb99z9/8Kf1dKSj6fj7S0FXseI5lsVZy1YbzOoSXkDeBzhsjemSFrI5bZqGfymFQxRBRKRK4ZhTZfS0aBhpFXxBjEZdfa8U0GhIkNOz5TweyIT0w5RAu7PxFhQH9NoGgnGg9kbTcQWgjJkn20OWrCCwFhZZyaWwrR29MYPeqk74m31jtVa1FS/+EKFryLQhtg1R8qRJmi4OQPxQYOlTfkM/CKU4hc5bjURnajmcl2T0JWZKJIREnpzVw7HAoLE9SKL89mbszHxCEByfM9GeTtyhQ7BRnpt4uzSxz+ljgZShRRm79ENhIzKrVMt8vf/ygRTwRZ2w0UvysX75AY6TB7ZwZFF2YzN+4X6rtai5K6O8vpeXIkVh/l0PiRYiF1rCgcl9piBKqNG4KkAKUFc3FafCKmFrQWiYhlrpGJZW0tz9puiNsXfWEfbYZ9eGY8KBQKLrroIv72t7/Fb/smNvEOxiWXXMKTTz4Z+3sPe9EoNrYYsjbqmYrUitX/vS40YMyTyBUiCiXmah2unrmYlZLcZnvRJTYh0lMU9Xc5OP4DsdNHWTuMFJ2XzYFviamS1N/lQGtV0/nHQVwt8ifLq28uRG/X0vG7ftwC7w2A4suyhRRvRAktUez+QhWEEVOWShCJKgxtu7+M/pfG4/erCLK2GtGYVfQ/JTZe3P1ARNXzbThFn+jvTAQV1+ZhLtfT+8yYEMElrUCDfbtZ+LRQ3W0OgrOLdDwqv6gW+51fF1MtSwQlV+WQVZ2Bs2NGWDEsajHpd8cnRVsb9Sz7l4Sfte2fLic5NUm4r2z/dDnJqiThvFTdWEBaporDD4mNX/MvyCRZlUTvE2KnSu1nWXC1uGXzEkXWVqOsctlqQqqlNl1WqSv6foha1sUjcHnrRzjUvF+6tsXC8ePHyc19G6wWN7GJ/wMIBAKkpaURCknPp4lMGuOseUVt0gLjAcy16bLEE1OVLqZwI6JQYq03CKkVgWQvJLrBDpI91FJwWWijCaSDc3PjAbFNHrWkdLnoWxI+GLXrgSqWAkvCtTejIg1lqlI252qj9C4SVcYpvTKHzJqMt2XNC7VkIRL0LAqdii+7KhdVegqnBK1RS6/IYeSIW4jkZdtpoviibKZaPHQJrn0kgkSUlBLFrgeqCC8LKuogbTj53QtCz5K5Np3Cc2zC7X5bf+fnpbHx/gTmAKLEs6KLs4QJcMZSDVXXFeHpmxNa886oSKPyfQXMjogpNKiNUHdnBb3PjAmTxGpvLRS2VwRJ+UjW5i5qSamGjMI0pjtkDh9HFN8MxWpmRgJxyVar3w9y74pAOECH+QBOl1SbL7nkEp544on4bd/EJt7B+PjHP843v/nN2N9nchkqxcYWQxmVOqbbpbGUeYteVq1FX6TG2xcQUkrRF6nxjgZiVkpyZJLcM8zCakUgqe6IklqMZWmUX27n+H92b7jJvhoV1+VhKkmn84/DQgo2pVfmYt1ioP33g7F8ykGUwKEvUAkpUEWx83OVAMLKUomg/g4H2ky1pNon0KSGDxcz+OoUrlPyOcyo1JGWqRYeS+/4VDnKFOXbQj5KVEkpEeRfaCVvVyb9z48L9XeVVUXu9gx6nxBbDy6/xk5oMUz3H+XHo7W3SoquR7/TIfRcJIKcPSaKzs9mssUjvC+o0gOpKll1H0OJFmWKUvhZa7ynBJUhhf0PtQv128Z7SlAbU6U1L4H44kuzMTp0wuPXzCYjGkuqsOKVtc6AdzQgrE4lUstXE+VEyKnRa6r0SpRpKXFJkLNbRjnYsg8Ak8nEiRMnsNvtQm1/J0CMVv8OwBe/+MU1BKUGzolLUAKovaGQujskT045MlHhu7Mo2Wun+kOFALIEpa0fLaXowmwyKuP7O0dRd2MBBeeIeasCWMr05O22igVrISlVidYi4HsL4IPgzAKjRwQHMT7Y91CbEEHJfq4FtDBxaEZIjaj2piIaPizmbw/S6Sl3z6zQYo39XAv1dzqEr+1zhjj+415aHxYrjuk5GnRZG2/UroY2X0uGQ0flFTlC8ZNtXuYn/Iy8ILbZsOOzFbEB1VuN8uvs7H6wCkOpWF/39M0x2eIRvn5WbQYFZ4v525pLDSRrkshsFPCV9UHnnwYSIijlnmmm4e5iodjRIy7af9cvfO2m+0qovLpQKI/RgUjRXvmaMXFohubvtwmroo0dmGbJv0zvc2ILQppsDQqlAnOF2KnP8uvsqDNUlF0r9iJtuq8EW4NJ/p5GSvKuj1VSfkWBbGyUDFh+RYHssxF9PxTtzaL4Xbmx98B60Cq0bPVeQBIppKam8sILL6DT6eK3ZxObeIdCq9XGCEqpqLlAcXVcglLtrUWU7rWTc6YZQJZIsuv+SqqukbyrZS2UNFB+ZT477quQ/pYJz9phJLvJRJ3gOKDyujy0VjVFlwi+j0r0KJMV6LPFxgH9z4+x4F0UIigBtPy0n+bvtQmRJvIvyAQQIiiZq3VUXVtE3R3i46POPw0y+IrYRLD+LgdZW43C1z78zS46BN+lOWeaSdElYywSU/krODeLnO1m4baMH5/G1SlGxrXUprP7wSoce7OFr58Idn62ku2fLBeKHTrgxDviw9MnRrCpvMKOuUIvEf0EkGZTYyhMkw8EWn49SPP3OhIiKNXdKdZnTv9hFFenV5igBNBwTwU1t21sjRTF1DEv7nYfGhNk7zLJxh/6bif7HhJffBs/Ns38ZEA4L2kWFSlqcUFk+w4LtoYM4fj8szNjc2Q5WBv1FL87h/q74o+PowSlmluLKLs8TzaP0fdD/U2FNNxcFDdWfzyXRs4jNSUVp9NJXV0d3//+94Xav4lNvJPwq1/9Co1GEyMobeWcuAQlgMZbHdRH5i5yZJmsrRlUvDefLR+U5lJyBKXa24oovSwXc63Ye7fujjIcF4qNowCyt5nJ25MpHJ+iSSHNKnjqPwCzoz7GjooRpgD2P9TG4e/Jrx1kbc1AbYTpjnkhNaKaW0to/EiFcDu6/zjKVItHaM3LWm+g5pZC4WsTgGPf7aD1F2IHiozFOnR2sXUg1JJKRMXlYusAnl4fnv45BveJrUtuu7+MHZ8Wz2MiKLwoi91fqMJUJTavd7Z6GD8mqJIO2PdYKTxPbD3YWKhDZUjBtlN+PALQ9khfQgQla72B2lsLhWIHXp6g4/fiCgM1Nxey5f0OMirkx41RgpL9bItsrKfbz7HvtokdykV6NgPuBQZfEtucTDGoSUpRYi4RnGNcmIkuR0v5e8UI0zW3FJK704K1UWZNLVKSt3+knMr3FUikpTiIkgG3XOdg58fiPxvRWmXbaaL88rzYe2A9qBVq6t3noEGHWq3mmWeewWQS64+b2MQ7Dbm5uTGCkoY0LlBcHZegVHplLpXvzSdnj/RMyG1qb/14GdXvl9ZeRDbLq9/vYNtHIvM0mXBjWRoF52QJjwMK3pWJvlBH4cVi7yNTSTpJqUmozKlC8QMvTeJ3BoUISgDdfxzh6HfahEgT0XyLEJR0dhXVNxYnND5q+1Uvgy+K7ZNsuSEfa53YHgnA8f/qpeXhXiHihrEsDY1ZhalYbDxSdJ6N/DPFx9Ijh1xMnBAbv+jsKnZ9vkq4vySKrR8vo+mj8ms1ABMHXbi7ZnH3iK2nll2Wja3RhEpwrzzDkU6GQyznnb8d4OgPehIiKFVel09mk1E2bvQ1N2NHXcIEJYDGj1RRE+edHsXMaZ/0rKkQasux750WJigBDB9wMjs8Lxyvs6lJ0SZLZEwBFJ2fRU6T+Ppu6aW5sTmyHPQFKsqvtFN7a/x1qShBqfTKXKquKSBHZs0rWgvrbi+l4Zb462nprTls5yJSklNwu91/d2tefxckpYqKCv7pn/4JgBRlChcorsassKBzrEyWNRbW/K3N1zIzMk//89KkROfQSkoc68XmqJk8PEVwZoGW3/SviUX7xlitRUnbb4fwTwVZDBI/NkeaVZx+Yhhnt2fjWIsyFgvQ9/I4Jx7p2zg2f+VvnU1L8/fbJFUcmdiCi81oLJI92PALzjfkcHWsNl/Ljs9WkHumGXwyOczXorUoyT8jk10fqxTKIcDoISc+d0Aoh9F/a//joHwskNNkRpuplq4tk+9oe32jAfw+mXw7tGgskuThvh+0yeZQY5EIEwMvTjB02Bk3NpqXuV4fp58Zx+cLxc13FMvBZZYXlmXzHfutsX+Mn0OdQ4t/doHwchjUYjls++UgPc+MycZqImsRo0ddtP11aG3sOvkGaPlZPycf7o8p+myU7yiC8ytCcnI51Dm02HdZ0ZhV69aI18f2vzQhqSIJxKKF3mdGCXoWWF6lDr1evqPPguM9NnKaLFTfXLhhDqOx0T67/VPlFO3NiptDtND2hyHmen3oHFrMNWmyOdz3xTbafzUkm2+dQ0vnn4fpe36MoeeGZfONFo7+6DQzQ3P4PCuWjBvlEKD3lVFmJ3xrYzfIC1qYnfAxfGBKKHaqfZbA9AItP+uPm2+0cFnx9TQW7yAlJYX5+XmSk5MZHBSXWN3EJv4vw+12o1Ao8Pv9KBQKiqnmLMWlaExKNLaV5yKtQLNCdNBAz6vj+KYCjL7ikmJzNWtiNaaV2LQCDSOHXLi6vG+I1eSuio1+jx88/fP0PT8sH6uBiYMePANznP7b2OtilW+IBWh/bIiRI5Mx5SWNTb1hLBoYeHWKfV9sw9vrl2I3yEtauQZLQzqeLj9Hvt0dNxYNlF2Xy7b7yyL/I36+0wo01N5ahH2XhbwLzbL5BnC1zBGYDjJ0cGVxZ90cxv4NfNPLMQu5eDnU5ILWqo4tksSLXd0md7tPNt9pBRpGX3Gx7+ttDL/mks0LwKkfdzJyZEooFmBs/wSDrzjXxK6XQ4AkbZjQYliSyn597OtzaGLNjCxuvk3S38vBZRbnl+LnOxI7P+DnVMTPXSTfXY8PM/jaGBqNfCxA8y97OblKQSFeLAsLkJoqFKsxKTFt0ZKWqSZ3pyVuvqM1IqrmpCmOn8PoszA36mfipGvdGrE6h1HU31VJ0QW2dWPXtMkPGoOa/IstMTJZvN861eKl6zHJbihrqzF+XmxqWn49GFMuk8uhxqbmxC/7OPGLPvnYSF7Gj03T++J4nHyv5HDqmBefO0Dnkysb2hvFAvS/Oo5/OhhT9YqXb02uhuHDk7i6vLK/NTc7h3fpr6Cutg6Xy8Xdd9+9abm7ib8rvOtd7+KGG24AIFWZygWKqzEqLGjt6thGtdooKWdEoc5U4+yeoe9ZaVNldSzqN8bOnJ5hfiJAz58HZGPVmWq6ftfH7IgPv3tx41ijEnWm9Hfbo/1Mtk7Hj131Tu786ygtv+8VilXb1DR/vy2m/rM2ljWxuWdLJKJTP+ln+CVn/Bza1Gz7eJm0yBwArUUmL0YlxRdnU39XhVAOAQZfmsI74ROKjf5b119HZPMNYD/DQnquVlJrksmh1q5GbZQUnQKBUNwcqm1S7KGvdbL/oTaBWCUEoPvxEQYPOuPmO6YsNRmg7/kJAp5A3HxHsRBYXrG0i5dD1v6bXA61djX++QWWF0KEk8OysWojdP9plP6XJ4TyDdD/wgQdTwyuil0/3wA9fx7j+K96Y4pk8XIIsOAPx60Rq2O1djX5Z0kEGwRiR4+4JDWf9WJfn281dD85zvxkgODcyqLXejmMtte220T+WZlUf7BQNoeBgPR3072lFF2ctW6NiMYCdDw2zExPAHWmmvRyddzY5WXY9/U2On4zLJtvrV3NwCuTdD8xQucTI7I5RB05bNvtZX4yuDZ2g7x0PzPMzNBcjLQULxY1uPu9DO93yuYbNXiHfcyN+mj9zUDcfKOGC/OuYHvOdjRqDdPT0yQlJdHR0cEmNvH3gGAwSFJSEqOjo7E1rz2Kd6PSK1FZV3bNNdkqSakEQAXDx5x4B+cZfc39hliVdVVs5LODL00y1epBpUc2FhVMtXrofW5E+ntNrPINsZ6ueSZbpzn93Mqal8qyfizAwIuT9L80Tn+EJKqyqNaQOFbHooKx5mn2/WubpAIVJ1ZlV2Gs0eMfC9L8gx4pL3GuW/iuTBrvKYn8j/j51mSrKL0ql6Lzs7GfZ5bPIRKRYHZkntFVRPWNcij9GywuELM2jReLCgxFOvLPypTNd7T9gGwOo7Gernn2/Usbg8+Py8YCHPvRaQZfeWPs63MYxVSzm5FD0+vHsjZWoZH2GwPuhVV5WT9WpQeSV+xk4+ZbL/29NLfEwuyiUA6D3hDtjwwSWkQo36efHKP/dcIPG8UCNP+4kxOr1rzixUrJWXvdjfKt0itR2VVklOjI3WaWzaHKqoqpP6ns69eI1TkEcJ/2Mn7MLZQXgB33lVNycY5QrCpdRc4ZGTTdVyobOzPgpyvSdvMWffzr6pV0/GmUA/8mkaDkYlVWFcd/0k/rw70y+V6pswMvTdDz7JhsvgG8A0FmhufpX1VLN8o3wOBhJ3PjvljNiNt+i4r+l8eYPDktG2u1Wrko4xrq6+txu93cfffdnHHGGfw9QPwI5v9RpKSksLQkbV7fcMMNFOYXcfDfOih8dxa52ywxO6yam8tJViexOLuEUq0kKUVJaClM608GyN6TgeP8HDx9s7T+YpCaD5WTrEli3xfb2PHZCpJSlDF7qoxKLVXvK2J21MfJH/Wx9fZSUvUpkj2DFupvdcRiO3/XR8PdlficAZr/o4fGW0rQmFS89vVW8EH9LQ5QwPH/7mfq+Cxl78kn/TYtR79zmvobHaRlaTjxyz7men3U3VmOQqkgHApz6tcDFJ1lY3FekqauvqYQQ34a3X8ZYvKYl7o7ylEkKRg75iK7UWIQLvmXOfT1TiqvyMNUomfglQmGX3BSe3s5ymQF+77YRskVOWTWGMlpymT/v7ZTckUOWbUZjJ9w0/PYGLW3VJCkUsasKOpvKgQgoySdpFQleXsycXbN0PnIcCzfq2PDy2FGj7hI0SVT94EiZgbmaPnvAbbdVUZK2orFxeoczgzOk7cnk7obHZz4z16abitBbVTx2j+3SrG3SGzzff/Sxu5PVEmbpu4Ax/69h4abi9Ga1Rz7j1b8zrWxAMmaJIJzi+CD2tuLSM/W0vLrPma6V/IdbVPtDdJvHW92o8lIxViUTu/To4wdmKbu9nIUyWtjo9Z3ZefbsZYbGDowxeDTk9TdXhnLdzQvywshDn6lA5UhhcJGG/osLaf/NLpuvkNLYQ58uZ3G+0vQpKtw98zS/vDaPrs63/u/1I61Ph1VeiozQ5LE3LY7ykhJXz/f2nwtdR8oIuoCGS/fAHUfKCIwHWT/l9ppuKsYbaaa5h/14BsNrJvDhdlFBl+ewHFxDknJSXT8sR/XqflYn12Tw0if1ZpU1G210G8aZ+QV15o+G41dDoY4+NUOSq/KJbPaGJM+r71Nen7X5HsxtKZGhEIhwssQWgq9oc9G8x2rEcNztD4ywPa7X5fvVTlcXSOGXpug8mqp76ybb4uSug8UxWpE+Hwpp2tqxOvz7Qly9Dun0WdLjJj+lyT1ivXy/foaEQ6HMZfosdWZNsz36hqRf0Ym4XAYheJ1fTaS79fXiPq7Kt8QG81h/vnWNTVi+6ciNTnSxtV9Nmu7gZKL7bEaoTWpqb2hkODMAou+ZXTZmlgODaVaqq8vYm7Cz4n/7MXeYEVtlF7g0e8gHMmhVsrh62vE6T/0x+r36nsV/c6j3zlN7Q0rNQKg7q5yFAoFrY/0M9PtW5PDLe/Nj9QIFYp5HYO5JxkeGWbXrl3cfffdPPDAA2xiE+9UfPvb3+ZjH/sYIEmM3nPPPRz/aT/+ET/1d0XqULRmfbCIhblFUrUp+GYCpJk0dPxBOm1bd0eklq+KXZxbYuyom7wzrSiTlPS9ME7nb4bZ8ZkKklJXannDLUWx563+nhLSzCpGDjpp+8VA7LlfHRt9z9rPtVJwZiaL/iUOfa2TNIuaug8WrYkNLYQ48JUOsrYaKbkkl+XFZYKeRZLVSaTokhl4UlrgbbgtUsu/1I7eoaHmAw5mhubRZWlQJLOmFjZEa8u/tqExQf1NjljNqrumCIVCgbOjFfxrY0GK9bkCNH+vh5r3F6HP1RIOhUHD+vmOWNJWXZVPRnE6XX8ZwrqQQW5TJnk7XpfvSP0tvSSXzC1GBl6cYPhlJylpKVS8J499J1blOzKuKbrERs5WM2NH3aRna0jLlhau18t3zplmis614WyfofO3w1RfI5GrWv77tBR7c5H0jvi3diy16ZRfkc907xxtvxxg6x3S+Dr6Xlid77QCDfU3OZgd8XHyx31SLbeopbGKHxo+viqHGimH85MBjv+gh7obHehsGo79ezt+d4icBgu5TdY1eQlML3Ds309Tfa307mx9pJfQEmx5fyEK3thnD3+zi4r3SJZqp58aYeKgh8Kz7ShTFDEiRt0HiyRLmYe6KL4iG1utiaF9Uww+O0nNbZLVVxQNtxSxFFzm0Fc7KbgoE/tOK+PNbnoeH6PmlrXjj90PVsXynbXDSMm7cnF1eul4dIjqm1Ys5LZ8sABDQVrsnWyq1FL5viI8/XO0/nyApttKUBlTY8S66vcXkbfTxv4vtaOxqaU+O+rnxI96afhQMVqrmte+Fsn3Dev02ci4pvb9RaTnajn2496VGpEkrdh0PTZE2eV5LHgWOfLdbqquLiCjSEfHHwZwtczFakTLw314e/3sfrAqlu/yy+xYKgz0vTDO6Csuam8vi9WIqKVctEY49maT3WRi5KCT/qcmqLl1pUac/HEfux+swlZnWVMjJlqmOf2HUao/tHaOokhSEFqWxsjRGjHdM0vbw4PSfGaVZV/DbQ7CSGOorN0mSi7IZmZonpaf9tNwSzEak+oNNWJmaB5DQRoKhSJWI+pvcpCWqVnJ96oaEW1vcG6BI9/ojtWIU7/sxdv7xpoctSLu+F0/tkZLrEZMReaP0Zrc+8SYlO8zrCQlKXH3zWKtWKkRtbevrclak5qaa8oZeGGCoguzSUpRMnbUTe8Tb+yzNddINQKg/u4i0izalRpx0+tyuE6NWAoucfArnbEasSbfoTD+L4XIMbjwLntoaWmhurqalpYWNrGJdzIMBgNer0TWu+aaaygtLOXg1zqx1hsoe48dZ6uHzt+PsOXGUlTGFOYnAqgMKSSlJhFeDtH1mxEMxWqqbyiO1az6DxWjtapW6mZaMqElyZ5KbVTScEsx3qF5Tv20n9oPFJGeo+W1r7ZCABrvdBAOSRZPp37Sz55/2hKrWVuuKcBYqKP5Jz34hgPU31WGMkXJqZ/3MjsQoOaDGeiz0zj2vdNUXC69O9t/N4C7bY66O8pia29tv+mj4tIcyaaqs5vSi3PIrM2g75kxRve7qb2tlGR1Er3PjuO4wAYKYu+Iggszse+yMrx/ioFnJqm5eaW25JxhpuCsLPJ22zjw5XZydpkoujCb8eNuev48RvVNa2tL460OUIK5TE9wfpGKK/Jj79nGW0tQm1JX6tDtDsLLIfqfGyfVkETDLcWx92zdTQ50WZrYukrDbQ4Ih9n/5XYmWqYpuSSH2hske6ia9xeit6dx9DutBDzQcGsRKBTs/5K05oUSfFNBjv+gh6qr88lwpNPycA8zPVK+FUnKmP2WJkNF0LtIwBOi/L25WLYY6frzMFPHZ6i7vZQk1Yo1af3N0vtl7JgLhVJBdoOZvufHGX3VRe1tkXdnJLbxdkdsXJO/20reGZmMHnLS97eJNfkGaLzNIY1rvtaJMllJySU5ZORp6f7jKFs+WIrKsDbfy4vSWkPNbYXoc9JwdXnpeGSIxptLUFvemO8D/9aB2qZGZ1XjHZDWvOpuLEKXrV3Jd+Tduf/L0fFqcWzNq+baQvQFaRz9QQ+ByTfmsP5mB35nkINf7aDy+jxMpXpaf92Lp9tP3Z1lJCUrV8ZANzsIzizS8+Qw5VcVkKxK4vRfR5k4Mk3t7aWSteuqfEf7rEqXTNF5xQy+MsHQC05qbi0jRbs2h4uBJQ5/vQv72RYKzs6KrXlVf6iU1PSUNbHLweU1NSK0HCK0GGbJv4zKmLJuDqM1wtM/S+vPu6m/bqVGvCHfq2pE95PjNN7uQKFQxGrE6j4bzXe0Riz5l2m4pXhNjXh9vgPuBY597zTGPGlMNHpEmn9Fa8Tr8330Oys1IhwKYyrVY602vrHPrlMjcrZbQLF2zavxNoc09/l65xtqRMNH1q55re6z5tr0tTXiHqlGRNu4Oodau3pNjVAZUmm4pZjZkXnCIdBla2M1AjWxfzv5437sTVb09jTURqS6r08hHCaW7/qbHW+oEWMHJHJgw0fK18xn6m92xOwdy/eu1AgCUPdRaXzd9kgfnm4/9Tc7YnNNx4W2SI1II9SrZyDvBENDQ5x77rncf//9fPrTn5Z7tW1iE/9n8cQTT3DppZcCYNAb+Mi9H6HjN0PMnPZF3p0rdlgNtxYTmFkgNS2F2XEfxnwd3U9IROKaW0tI1SbHalbTncUEZxbpf3GC0r05JKUm0f/8ON1/GqXpPulZjj6bTXcUszC/xJFvdVHxfjvmEgPDB6fo/tOoVFsyUlfVt2KWgsscfqiTjEodVe8rYGF+kcMPdaGzami4sTgW23C7g/BSiINf60RnV1F3SwmLgSWC7gVCoTDpuVpGX5bWMKJjlQNf6UClh8bbS/D0zqKxqknRJKFMVnLkW60EvSt1/8C/RfJyW3HMUrPhgw6SkpWcmD7N3HCQ+jtLUSQrY9ZpDbcW45sMcPy/eil9d6SWL4dBReTd+bp8T0vviMJzs8jdbqHnb6MoFGCrM5O/K2ttvr1S/c09w0zheTYGX55k6MUpUnWplF9mj615Nd1RzIJviSPf7CKzyUjp3lzGjrhIUidh3WJY2VdAep8sB0MceqgTY1kaW64rjNlv1d8kjTdafj24ku/lEAe/2onKqqLx9hLcXbO0PzIojffy0lgKLHHwq51r8o1KyvdM/xwtPx9gy9X5GIvTOfKtdoLeEPV3laJIWpXD24qZH/Nz4kd9lL/HjqXSwKlf9ODtC5CzzYp9TxYHVuXQ75QIY8UXSopCHX8cYm4sSOOdDukd8a9tK/n2SOtjUUu16Fi8bG8+yeokxiOkpqY7iwnOLXL0W90xW7Kh/ZMMPjPFlg9KfZaIVkDj7cUsBpY48o0uzDV6Kq7MY/yYm56/jFH1/mI0FlUs3zs/X0loIcShr3eiL1JTc2MxU60eun4/Qt2NKxZypVfmYq0ysLy4LOXbIuXb0zNL68ODVF9bgKFQx2tfacU/FqTug0Xkn7HSZxtvL4nNfSqvzMdUls6R758mOBWk/ubX5fvWYnzjAY7/qJfSvdJeZMuv+lZqhFqJQqHg9JOjlLw7B787SPN/9OA430b2VjPdT4wwedQTqxEnf9bD3HCQ3V+IWPR+t5u8c6zkn7ViYVf9oZUaUXdbEWnZGhZmpRph255B8cU5DB+cYuCpSbbcuFIjOn8zzK7PV5HdZF5TIyZPTtP9p1Hqb4rYDUbyrUxRsrwsrddEa4SzY4bO3wxTc0Mh6bnaNWswiiQFCgWYqrVUXlWEp3eW1l8OUn1NPoai9DfUiKkWD1kRle9ojSi/XFrfO/GTN9YIa52B0vfkEpxd4Oi3TsdqRNtvB5hun1tTI4JO2P2FKsKEaf/NIEaHLlYjxg9NU3NrWawmj7zqkvI9t4hSqWCyxY19Z1asRlTfFJmjRPJiyE1Dc2U+p58YoexyOymaZMaOuOj96zhVH4is70VrxAelGgGSzaW5TL+mRqzO93o1IloTojXi9fPH4FeC5CimmUuf5sCBA38Xa17vWJKS0+nEal2xO6ugEWuKjclTUmGcbJ3FkJ/G2FHp7/ET0+hztWgyUlEoFMz0z+GflpieM50zzFVnxCY+o0ddmIrTJZu0FCWhpRDOdmlRaHrAx9yEn7FI7MgRJ5nV0oOVWSFR7xb9EmnK5wwxN+FnvFmSJx45NIWtwRyzJfJ7gmgyVGRuSad/ULruZERSb/Swk+xtFubGpWBnuxd9vgZVeipaYzJz435cHVKbxo5OkaRSMjvojfx2D6r0FHxTAcKhMPNTfjw985HrukhNT8HdKcnfTZx0ozVFWKR/GsVcmb6Ss5Me0rLUjDVLntsTp6bX2Jd5B+eZnw7Q9+cJtDlqMkrSGY+wkMePuTEUrEj4esfn8U8u0P/khKS2YlIxdswZa5O5YoW2ON0zS1qmit0PVtH55ABzE35GIyf6R4+6YvkGcJ32SpsFWlicXyKshJFD0es6sTWY8UcOvU91zqCMbIxoLUrmJwNMtki/deywE8UOKzMjUr6nWmdISVt5PPwzAdQ6FWMHxlFbtSRrk/GcjvS1NinfUcyO+NBla9j9hSpaH+1HY0zF2eKN5TvNsnISxTsk3fftnypneSnSX056pDYdd6PPXVGaWd1n1WmphEIhxo+t9NmMohXZQU/fHMHZRQDmhmfxewNMtq/k8PX5XgpIhdPnlNqTFjlZM3rIRWbdSr6d3WslOaN9Nmu7gckOJ5awGV/kpJuz3UuyeoWlG823Pl+HMklJYD6IK9Ivp9rW5ntuzI+7R5IbXvAtEAqFWFySThVNnppGk7FyCt877MMbuW9jx6fJKEsju9HM+MEJJk6s02edUvuiNSJZk8SSf5npvrkN8x2rEfunwAcT7S4M2StSz9O9cyzOS8/96hox3e4jtBRmMbgYi3V1e2MbXOvViKILs9l1fyX7/7V9w3zD2hqRUal9Q77XqxFdf+3FPwTFl2e/oc/ODLyxRuhztShSgBURozX5fn2NWF4MoVilBrE638722TfUiNxdFpIiG7Or+6y3d4a5CfMbaoQuS0NKWnhNn50Z8a1fI7SQrE4itBjCFelL+FiT79U1ImonF5xdiLU/Xo0IzCygMapYnJfasbrPjh5xxmqEVqFl77YrOZV/lAMHD/CFL3yBP/zhDxw9epRNbOKdhu3bt3P48GEAlCi5KO9y5sYC+N1+ACZPeSRiYATeYR9zE3PkNGbinwqw7A/jG42OP6bX1KGZgXmm++Yw5GpRKBXMTfmYbpWev4nja+u+p38e77D0LKZolITDYSZOS/VuvHkanW2l7nt655ifkuqQq32WvD0WklKkQjV2xL3GpsrdNbuqDnnwjmSQlqkmJS2Z4YNOaWwYgavLy+K8dArYO+bHO+Jj7LCTovOzIQmCMyuFc6pjhlBkkud3g3fEF6tDk+3TZBSmx2yeJlqnUSatFFLviC9Wh0YPTsEOK6f+2Ad+mDjhIUW7Nt/Ruj9+zEmKPom5fi9Tx7wUXWJ7Q75n+qW6P9HsRm1MJf/MTLKbTIw3u9fYpXj65pkblxo4fmIGXbaGiRYPy4vLqMwpzI0GYrHT3bP4IupB093zmMt8jB2VfutYqxuDLQ2/W8qFu3sl3/PDs1Jejkq1fOSQi/yzrARnpH93dXpjp+PnJ1fyDdJYJWtrBrsfrGK6e5bJdk+sPfgjOYy+O49IdV/v0FN/Vzbe0TkWZldkmGdH/St1/4gTRZICz5Cf4ndlo1Ao8E35V/I95IvV/fFmJym6ZLyR97az24PWvHLiZXWfHW/2oDWrmWqXPjtxfJrsJhPKZOUb8j3ZOos+Ly02Nhw96kZv16KxqdHb1Ux3z8bGKt5uL97qDMabo3MUV6zPGvIkovJk5DrufuldPn5MujfDh5xrxtfLi8ugkMbM/pnA2nwfjowNI6mYbPeQucXI9k+Vc+hrnWvzfdhJNpY1NSLFmIw+WyLbremzR6ZISlW+oUZEbcK8I/O4uyP/dlwaq6xXI6YH5rCU62MnIydaPKTZ1Ey0rF8j5iZ86LK0OPZmM3Z0mgyHjsnj0T6wcY3w+4ORHL4x37BSI3qfl05bZVYaVnJ4ZO18Jlojep4ao/4mB8uL4VVjQ6nPrlcjpnvnyNtjwXU6Mv6I1AjvmBT8+hrhdwfQmNSk5+kYP+YkSS3ViNX5jmJmYB5FigJ9jpZQcAnviA9X11wkh+vXCGu1EWWyVL8nItbO0T4bxeoakaJKIRwOr9SIo6/L9+tqRCgUYim4HMnL2vnM6hpRtbiTrMtUPP/y87S2tqJQKHC5XJtWJJt4xyEQCKDRrNSrChqxhrJjFmWz/bN4+ucYPx6pF4ddmIp1pOiSUQDONk9srDIzEsDTPxd73kYOOcmsNgKQrElmaWGZqVaP9L2eUOS67lisrV5SEjIUS8/+6jmTp38u9n4ZOyJd3xeZA86O+zDk6TCXG5gdCODpm8PVEXl3HnOSpFqp++PNbozFaaSZNaSmq5g+PRsbq4w3u0nVp+Duicz7j7pIs6oJeoKElkLMjM4z0xtZy2n3SmOVU5G58DF3rO6PvurCvtPCWKTGunt8ZJTOrby3DrnW1CFn+wxB/yIDT06iNkq/NVb3D7owV6zUfXevl4XpRenUrBrSMrWMHlr17ozkG2CyZZo0m4rdX6ii889Da/I9esRFaClMQEop4yfdsbofcC+gVClia15jRyRC0cxIIJLTaVLSpLqvNirx9M7FrC/Gj7tITktmtj+S/+Nr6/7s6Dxai5qxwzOkaCSCk7trfk2+Y7+1axZDoZZdn6+i+Se9pNu1TLRIawIjh11r6r6rfQb/9AJN95YSDocj/SXat1xrLEuc7TOxup9mURMOhRk/6oxdd3W+na2eWN0PeALMTflwdkbn+W4ya1fGdxMta239PP1zsfXKkcNOQuEwAa+Uw4nj02vmM56+OabaZjBV6Zju96JMUeIZirxnm1fyDcTyrc3SkpSqJDATZOa0lJfxo+418xl392xsbLjgX5SIRKHlyH11rxmruLu8sfmMs32O7CYT2Y1mJk7MMHrEvW6+YaVGpKQlsRwIMdXuXZvvdWrE6CEXAQ+MtzgxO4yx2MlT07H5zOoaERgPsOhfku5FIJrvtVYxr68R6Tka6m4skkh66+R7vRphKFYz3uxe02fXqxE9L0wQGAqQd67lDX02uo61ukakpiWjVClQrJI1XZ3v19eIhdlFkldZ7q7us/ODs2+oEUUX2WK/b3Wf9Tmj+V5bI9JzNIRDUo2I5psA69eIAKTqU1haWsbVvrJ2ODMwz2TLSr6jNcKQq0ahUBCYWVW/49SIuQk/BnuapMb1unxPnfTEaoRaoeaC0r305Lfx2oHX+MxnPsNjjz3Ga6+9xiY28U7DBz7wAR5++GEAkknmfMtlzPT6CExK9WP0iGtNHXK2zzDn9JO/O4vg9AKugJeZyJrA2GHXmro/1TbD7LCP9FwNyiQlM8NzOCP7c2OHXaStqvtTrZ5YHVLrUwmHwri6pPfJ6EEn+lV7bpMnp2N1yDcyx9LiMkkpUt0ZOejCVJa+JjZa9+emgri6vOjtGlJ0KfQ9N47Vt6J0N37cHatDQa80v504MY19l4XlhST8rgWCkdIzesy1Zh3L3T3LVGtkXHBgCmtNBnMRO7vRw+41705Xlxd3Z2Rt5ISbJHUSfc8NQVCqYa/Pd5SQ7GzxkGZTMd3rY/zQNDl7TGvq/lTrDPORdRVn5xzpdi85281YtxgYObCHXssAAQAASURBVOgkfdW7c/Lk9Moe0IAfV5eXyZPSuoGxKC1W+6RYz8qawPi8lJfIuHL8pAtDfjpBZ2QP68R0rO4HvVK+x49FavkhNypjKkGP9L3RsakULOVl6tTK2GqZME33VeBsn2Gs2b1hvseb3dLBsFTY8elyPP1zsXsO0rx5ulfqd1On3KTokpkbmMNcY5TWYidW1ryifRYk9WetWY3r9HwkD27Sc1f64ep8u7rm0ed5mYqswYwecpF/VmbsfTh1aiXfcwNzkd/qjv3WDIcOlV6JLk/H5ImVPusdDcT6IcDwQZdEIgNMJTrCwFizdJ3g7Np8jx2dZmkhFLMbW1pYRrlK3Wl1vseOuQgTJuiVgseOuMndZWXr/WUc+WbX2j7b7JLGfKtrhCmFjIJ0Fn1La/rs5MlpUvUpb6gRUZswV/cMM30RLkCnlzSbet0a4T49h8qYymhkvDHd68PV5cXVun6NcPfOYCo24LjExsir45EcRvL9uhoxsSrfpLC2zx52r1sjBl+ekvps9cq9GTniZmkx/IYa0f+3CTQZKSwthlf67DF3ZB/gjTXCOxIgvByOrRtGa4RvJJKX19WImaE59HYd6TlanC0e1MZUpiNzxNFDzjfUCGUqmEsNoFTg6vLi7PRG8rJ+jbBWGUhOTWJmeC6mfjR2yPW6mrxSI1TpyYRDYSZaXSv5Ll9Vk19XI5YWl1n0L0fa6479N6ytEVVsw3ZBGi8eei625jU5ObmGL/NOgiIcPT7yDsIjjzzC9ddfH/t7N5egVWzsg66xQPGlhbT8rF/o+hoL6B0GJg7NiDVICxotEhlGS4yEFC8+FiMS/2aQ4HXzz7cy+Jy8b2sUOz5dQdfjg5KdlQB2P1gVUz4RQckVOVirDDGm9FuN3Q9WxRR13g7U3lZEijaJo985LRS/63OVLC+FOPS1zrelPbsfrIqpIIjGL8wuShaBMtBYoPHuLTGlh7caWdsNFL8rl9EjLvqfnJCNzz3TTO5OCy2PDuEbfOsfLvu5FvLPyGS6Z5b2Xw3JfyBBNNxdTIo2mUNfF7tXZdfasZTpmTg5Tc9jY/IfAJruK2Fm0MfpP42KNUoLuU1mRl5xycdGP2JR4nOK+++KtiOh2rkqRpuvTag/2M+1MPyCUz4QMNekYdmSQecjw3Hj9oWfwscsSUlJNDQ0xMgem9jEOwGrT/EbMLFNcV7c+PJr7IwdccUIBnLIOdPMaAI1RpOrwT8SubaG2Ab+xh8QiPkfQGNSxsg3Isg508zoEZdwm8rfZ0dtSuXEf/YKxZe+VzpFNHbUHbOok8O2T5Thdy0Ij5cTQdWNBRgL0+h+YpipY175DyQIvUNDxVX59D49ivPkrGy8Y282toYMWn7VJ9xHE0HjRyInlyInjOQQVf8RjX+9Ythbje2flBSPDn5FbJzc+JESAjOLtP1i4G1pz47PRJQx/+Xt+b07P1fJ2FEXA09PCsXvfkBSJIqeMJSDuVqH4105HH6oS7hN9nOtDL8gPjfTmCQS5FuORGtnJF5jUuL3h4Q/m7XVyESrRzh+ywcLaP3tQNx4f9jPazwBgM1m45//+Z+5/fbbxb5gE5v4f4xXX32VM888M/b3GVyKWqHe+ANqqLwyj/ZfC85P1WCtMDB1XHDNSw1qtZKAJyRZAwVkP7HmswnFi17WSIzII4KcM8yMvio+1tz6sVJ6/jYq2VkJYNfnq1aUTwSQd66FnO0W4Xdtotj1QBXLC+JrQImi4ro81MZUjv9AbA1o+yfLCS+HOfxN8XdhIlituCgaH1W4EY2fnwwIj8UTQXqBmpoPOBg97KL/afk1L1OVjuJ35dDxh0FmB976h8tcm0755Xm4u2ZjVrpvJao+kI/WohJabwQouDCT3J0WJk5M0/NnsTWvmlsKCbgX6BZd81KDrd4Us9ET+ogxUhPfLojUzlUxapuawLh4f7DtFP+96QVqbI0muv8YP5/Hwq/gZgKlUkljY+Pmmtcm3lGoqKigs1N6ZxrJZKvirLjxhRdn4e6cwdsn9txlNhmZPOoRbo/KqiIY2bRHRYxcsfEHBGL+B1DplQS94jXPWmdgqmNGuE3551kxFKRx6qf9QvH2sy3kn5nJyGEnA0+JzeMb7i4mOL1I268H5YMThOMSG7ZGE6efHE3oPotCZVWx5do8Bl6axHVKfk0tZ5eJ/HOz6PzjENPtc295e6pvXKuUI4e621ZUj0TwesWwtxqN95SQpFJy+Bti48aamwtZmFui87fx937eLJo+WkpqWkpMFfGtxvZPlDN21M3Qi2JrTDs+Vb5G8UwO+gIVpe/Jj1lvi8C21cj4EY9w/NtW41ZfN4Faq9JDMCjepoxKHb6ROaHnBaD0ylwGnxuJGx8MB3mFxwHIzMzky1/+MrfccovYF/wfwjtOSen666/nkUceifyl4ALFe2U/E7XC0jm0zPXKb1LX31GJIkkhTFLa/fHIQvW/tAkRg3bdXwlhJAKOQPzOz1WiUCJM8Nnx6bU2YXLY+lFJ0np+0ofrlPwCjP1cC0kqJdlNFqbbxV7q0z2zhELifLjTfxoVJlCUX2fHmK/j4L93CBOz/FNB5lxig8jsnRlkbzVz7Cenha9/8kd9YoERiC5kvVlM987h6ZfftHsz8DthZnCesaPiGymJYOLQjDhhEBh5xZUQmQYkUlxallpowWn4BSc5TWacbR7h61d9IJ/0HC0Hvyq/ANn8H4kRvboeHcbwsTJGXxNbrAFQGVIxlyVzGrFnbNf9lSiUCuG8Nt0r2cacfLhfqOZW3pBPhkNHz1Mj8e915FKl78vFWmFgeN9UfHJlJH7LjfkYCnUMH3QyKLABGa2JfqdfqCaWXpovse9liFO7Fe+iK3wKv8nN0aNHUSqVhEJv46LWJjbxFiEpKSnWV0uooVBRHv8DGjCX6zEUpnHoq/IbI1lbjRSek0XmFgPHfyBfh4susZHdZGKqbYbu34/IbmoXXJRJ7g4Lo4dc9D8lv/CfvctE0QU2Jk5N0/Mn+dpqqtRScXUh82MBTvxIbOOi8Jws8nZbhTemDEVpJKcmyQdGMPzCGIYcrTBBCUiIQLH9U+VM985J+RfAVOs0aRaVMEGp7g4HMwPzQvcLwNvrFyb3AvQ+MUbvE+LvzUQx+PIEmTUZ8oFvEsMHnDHVy7cDieQS4Ni/i5Hyo9CYlFRcV8TgyxO4WuQXzDy9c6ToxKetGhPU3FrOVOuM0DMguvAShfv0LIvBJfnACGyNZlK0yVgb9ULPQNZWI/lnWLGUpwvVRDTQcE+Cm7MPVLG0uCxfoyP1ddfnKwmHiMmhy8U33F0Rs2iUhQaK351D4fk2oZportZhKEij8daSuH1Po9BwAVczXNpCd083d999Ny0tLXz729+Wb9MmNvH/EP/0T//EF7/4RQAUKDhfYM0rat+WUZEmRKrZfq9Edp3qmBEiEO38WMWKJZNA/I5PV6BQwoF/6xCK3/bJMpJTkoTXRWK2KF8Xa0/trYXocrQszi0JEbPMtemkpqeQVW8SJimNn3CRohJ/Vw294GRI8FBM4UVZWKsNnPpJlzAxa2ZgjsU5sXdVRkUa+Wdl0fmbfmHSRccjiZFXEh1bJIqJE9PMT759u7PuTm9MneatxuxAQJj4DOBum8PdlhjZK/88K4a8NE79d79srOvkLMGzF5larU4qg+L3ZGMqSRfa7Gv7ZWKbwwPPTGIu0TPysti8ACS7NLUpVT4wgmhNFCXt1NxUSHq+ltZf9TLTI1+EivZmkd1opufJMSaOTMvGR4lZQ69Oxq8Tka8ufk82WXUZjBxwMvCM/JpXtCYuB5aFamLF1fmkaJPpfnI0bs1tVJzJcLiXaesIR48eJTk5maUl8THzJjbx/wo6nY75eel9X0Y9+YqS+B9QQc5WM5YqA0cE6p6+SE3Ju3Ow1Wdw8sfye0a27Rk4Lspm8sQ0px8fk90Et2014ojYPQ0+I78/k1Gpo/KqfMaPu+l9Qn6+rMlW0XBrMbND85z6b7GDSaWX5lJ0oU34/W/dYiQ1XXwcNdXsxFKqFyYoQWJ7Lk33luLpm6PnL2LrRq4uL4b8NGGCUsV1ecyPB4RJI8GpYELrLqP73ZK659uEwVcnyZpbFiZcJIqBlycx5G8sSvI/xbHvJbaGJUqei0EF1dcWMHZ0GlerfJKm2jzoLBrZuNXXb7qjFGfXjNAzcOihxMbhE6c8KJUK+cAIrDUmVIYUYTKmvkiN4+IcMuvEaiLArk9UsjC7JEyE2vGpcpaXw/I1OlJft3+iHIUSDsod8IjEN3y4AkCyaBRA5VX5koiIwL3QZKuwbjGgy1LTHOdAiEqh4gKuZqjkFD19Pdx11120tLTwjW98Q6hN/1fwjiIpFRcX09srLdSmoOJsxWVCnzv09U7yz7cKbZYD9D47itGRLh8Ygad/LmYjJoKAZ4HwkjhhJ+AOkqRSygdG4OycwbhKYkwOR37YTfW1hUKb8SCRNNyn3AmppCSiOLPzc5WMHnUJkQkAdJlqKT8JiObEe7hfj5ztZlSGVEktS+A7olZaohNvjYWYJZ0Ics80U3BOljDhAqD94beeIb4aiaou7Pp8JaGlsBBpJwptjhrfqODphEY9udutwvfZUmlYI/Eoh0QX2DSmVKmPiiqcaWH73eXMDM/LqvMAHP5WYgtUx7/fkdDzO/jyJKl68dfF8MEpCs6yCdfcyZMujPlpzPaKEenGjk5jLtHjPCFGmup7cpjqD5UKPy+tD3dTemWRcE088O12shsyhO5tmaIGp8/JVPhFAPR6PS0tLeTn5wt91yY28b8Jt9uN2WyO/b2T89ApBOxy/ND/4oSkFCSAiSMeMusyOPUrsYlJ3wvjWMr1DL8gRpCZPOnF1mBi4oQY4dXT5yO0EGK82SMU7273sTi/xNBr4oSg8WPTzI6J1RiAQ1/tRGMSHwv63SGOCE7cKq/LQ5etESY3aExKklVJa+zM5DB1zJuQglJalhqVPkWYpFR3h4PhfZNChBcAjU2NP4GTxts/XY5CIa4s5Dw5K6To9GaRiOoYRIh9jSY6/zQonCM0oNGIq/NU3ZDP3ESAwWcF3rUaFRqzCvvOTKH2JHpaze+WLF8TWdQquCiTrPoMIWJloqoCrT8fSEhtbeKIB0uVQVIKEoEfFjyLTLaLk/qD3gUCM4vygdGvcAdZCoqPHb3DPgLeBflAAL9kwzJ5Uqxfu1rmGDRNMvyy2ATK3l3NpHYS97yb73znOxw+fJh9+/aJtW0Tm/hfxvnnn8/zzz8PgAotZyouEfrc8R/0kLNLnFDT9adBMmtMwgpHk60e1HrxDf/ZUR/JCaxhzY8FUOlT5AMjmDgxTWaVUbj9Jx/up/LKPGHlKNfJWY4NdiSkktL3hDiBYtsnyxg/6hYmKenzNKRokxNSjkqECGLfZSUtSw3qVESSGrXS6viN2PtZbYRAQOjSgESaqnxvASOHxAgXgLDCzpuF6G+NYvsnywmHwwkdAlBnqglMiiUpoyIN+y6r8KZZVl0GKWniazqJnIQH0FpUpGiSE1IXarq3lLlRH50Chx6OfT+xzcTm7yX2/PY8NUq6TXzcOLRvghKjXYigBDBxYobMLRnMDIpJRk6c8JJVn8FUq9i4feTlMYyFOgZeEXteTj7cz5ZrCoRr4uHvdcVsP+VgVzjImDAxqXiO5eVldDodLS0tFBYWCn3XJjbxv4lgMIhWq40dytvORegVeplPAUHofnxEInsLwNsn2VT1/03sXTJ+aJrsrSaGXhIbW0x3eVk4K5OJ42JrLr4RH4v+JZwt8qRJAP9YEL87yPAh8XWI/hfHWZxblg+M4Oh3u1HpxceOQS8cFz0keHEWGQ4dzT/uEVM9UUGKLhltpvia18xpH82nxfcbMxzp6LI1wiSlquvzGT3qwtMlNtZXWVQx2zkRNN1bijJVyWFBMou3L4C3T2xN9s3AdcorpBgVhW17BkUX2Dj9xChTgmu/EFHDEfya4kuzCc4uMvyS/PhdpQJ9fhoKBUIkJRFy4RoEITU9GX2u+NjFtj0D+x4rRwTWfvv/Jj6vAej5yxjDL08Iq615+wLSweMnxPvQ3Lif6R5xVTCfM8iSX3wsODviR5kAW8bV6SWUAMdj9KiLmQGx59c/FqT3b6PCSlN5p2uYTvMyOTfGN7/5TQ4fPswrr7wi3Lb/13jH2L3p9XpmZ6XFfhNZNCrOjBufvTODoguzhS2QtDlqam8q4uQPO4U372tvL+LkD8UVcxKxDwIwlGqZ6RZn3ogqRUWRsK0dkk1U+++GhckiOz5TgTJZIawCldmop2Sv/W2z0kILOz9aycDL44y9JjYQg8SsonZ9rhJFskLcsuOTktKXaHzumWbyz8zk9F+HmTouvwGmc2ipuiqPvmdHheIhMbs3gIZ7ilmcXxYmK23/ZDnLC8vCdniJ2po03VeCypAqTMZJhAAVxbaPlRGcX0yoBiSC3Q9WsTi/JCw7WX1zIXq7NiECUs0thbi7ZxNSnnq761ii8db6dOaH54V/c9HeLBa8S8K/ufEjJSzMLQn37d1fqGLRJ3/ffGEfzeoX8Af82Gw2XnjhBSoqKoS+YxOb+N/A4cOH2b59e+zvPexFo4h/qmPbx8tIVicJW7XW3FqEUqEQVh+yn2uF5bDwxrQmV4MqDTxd4l5FaQUa5gfE4/UOTUJ2YYna2uVfkEmaRUW74Gn1tAINdR8sSsieYdv9ZaSkJb9tMsp1dzhQpigStoQVJXXoHRqqbyhKSMlq94NVLHgXOfJtsXFO070lKJQK4fjqDxWiTFIInwhK1O4ta6uR/DMzafn1oBDZKmuHkaLzsjn9xLAweWr3g1UEPQsc/a7YWG33g1UsL4SEiVxrLBsFkHOmOSH1sUQRtSRse7RPuGbsfqCKRb/4WE2Tq6HiPTk0f1/8WcjaYWTipCchy7X/a3Ws+uZCWgQ3UTU2NbU3FXLyhx1CBLmSq3LI3GKk84/yBLzm8Gv4tTMsLS2RlZXF4ODbe4hjE5tIFCUlJfT0SPXBQjb1ij1x4zMq0qi8uoDxE256H5cnSquNUHtbOSd/PiBMhKj6QH5CZJdE7INAshBKxK5Ka1fjG05g3q4Ga5WBqWPia151txfR+fiYsG3S1o+WkqJNYf+Xxd7hhmI1W6534O5+e6y0QFo/GXxlKjHrqgSsohJdw2r8cAlqi7gNrqlKR+lldnqfGRO6d+pMNVuuy2Pw5Ulh0kWidm81NxWytLAsbKnYdG8poaWQ8Du/8Z4S1CbxHNXcXEi6Xcupn/cKPUNvxpqs7k4HoYVQ4uoBgtj1gLTuKHoPyq7KxbLFwPGf9grXgYpr7MxNBIQ2FKP4v1bHDMVqgvMIP585u0yQpBC2t6y5qZBQOEzrz8XI8Ts/W8Gib1novr2a8heCi0GsVitPPfUU9fX1Qt+xiU38b2B4eJi8vLzY32dyGSpFfFJK/R0O1BmpwsoZpVfmokpPpkXw+bLWGUjRJTH6mlgNUllUqI1JzJxOYP/QrmJuWJy8kmh8orZ2mU1GjIVpdAmqdKssKpruLJYIDn8U+0z9HQ40FpXwWmWiKL/GjkafKkyaikKUSKTSK2m6r4LZEZ/wO3n3F6oITC8IKwbV3FJIsjpJWG2q9MpcUtOSaBWcJyRq92Yo0eK4IJuOx4bxj8nnyFCipfyKPPqeGRcmKe3+QhV+V1B4rJbo+s8ay0YBmGv0FF1o48j3ut4WW7OoJWHbbwaEyW47Pl3OUiAkPFZTWVSUXZad0NgxURs0kJSGRPpFFG93HSu/xk6n4IEGlV5Jza0lnPrFgNDzbz/bQt6eTLoeG5YlvHWHT+JMG2FhYYG8vLzY2sL/dbwjlJRSUlJi8qAOqnEo5DdyZ07PED7fxtyY2Es6Z7sJZbKCrB1WoRNQlTfko7NpKH1fLt2/lX8hOi61YWswYSzQCW12Z1Rqqby6kODMgjCRo/aGQsLLgrL6QO0tki2ct3dGSMkne2cGKkMqZZflcFzQhz3gWSA1gdM6k8e8TB4T3yQruSKH00+PCqsoFZ6dhTJZQYo6sa4vSlACybrNXCOuZDXZ6iGjSCccn6idmbUynWRNEvoCnTBJKVFoTCpUenG+Y6JKRFNtHgx28Zy2/6oXUlOFiSuJEpRAYtQrU8UZ/gCF785i8sSM0PeJLk5FMdU6jc6mAa0aoQdCC+m5WrQWtXB/ilpJiiqplVyRQ2aNkamOGaE6qc3XsuW6woTIWaWX5SVU97IbzRBG+Derjamo0sVP9S4vhPBPyysHaBVa9gT3MlbZTmt7K5WVlfz617/muuuuE/6uTWzi7cKjjz66pi9eoLha6HOBmUUSMaDSZSVmV5W/2woKhElK9TcVolAqhCfB2z4ukXWav9cmtDlecW0eprJ0hvc7hdRjNLkaCs/JInerWVi1KLvJRFIC75qkJAgthIQVSQDhtoBEfsgoSBO+BwDqjNSEFEejEFWd8fb6af5JH/jFSRbzY9JJRlGIEnWi0GVrEpJGThTGIh0pumT0BWKKUBMHPUwc9CT0Hb6pAM428Rx1/K4fd7v4eDkRghKAKj2FpFQl2btMjInKlmug6FybkOVb2y8EVYtWYdG3hM8lvtBR8Z4cNBYVpkqtUK40uRqKL8ohf0+m8Lho1+crE6p7UYvb5p/0Cd2TmluLSM/RoFQohOpAxbV56O1aii/Lpudx+YNDOdsySEpVYm3MFKqr82MBwhVhfKPyJ+oaFHvw5zlpHjrE0NAQWq0Wny8BKd5NbOJthMlkYnpaOkQlZK0L+MfnCS2FmBdcoLXUWUjWJJHdaKDvbwL2RBdnYSzSUXZVLl1/kJ/L5ewyUXiBDXNZutBmt9qmpuaDDgJu8Q2UupschJdDko2cALbeKdW42dGg0Aa/sVRDmk1D+WXZnBA8jDQ/GUBrEQoFYKYnkBAxvODCTEkdRXDJImtrBsnqJFQJWKaAOAECpPUcY6m4JcX4cTeWKgFligjcbXMcbBMnJRvyNagMKRgL04RJSolCl6NNyKo9USWi8WNuzGXiOer+Yz+oxYlliRKUADQZqQmdEAepDniGfEIknP0JWNwBTJ5yk1GsI0ncARtTmR59fpowSanpvlJUhhQ8/T6h3NrPtpB/VibO1hmhOqk2Qv3NjoQOS2y5zkEogbpXcJ4NwgiTlNKyE5uTL/mXCXjE1DLPWLyUyS1dnGw5SUNDAw8//DDvf//7E/q+TWzi7cDqQ3kKlJyvuEroc/POIEkq8SJkLEojKUV8Paf44myJZChIUqq7SSKWiFqG1t/hQJup5uh/9giRJwrelUnuNgtDr04JKf6o9EpK3p1D3m6r8Hswb7cVlSGFLtWIGDFDAQv+JZyCKlYAx/9LnDyksqgwl6YlZJWmy5IULxOFqNJR0Bvi6A96YEFcCXn69BwzQ+KqM6d+0i8cC2AoSiM5gWchUejtaWgsKjIK04TIKDOnfQnvN870zeHqFt8rbflVL94+8fFyIgQlgBSVklRtMjmNJvH+p4K8XVah57P3r+P0CqyNrUbQs0jAK97vHBdkkZ6rxbxFL6QgpdJD5XvzpYMDgjVj+yfKUaqUHBA9IH1LIek5Wlp+0YN3QP6elF6Zi7XaQIomiRGBsVT+hVbM5Xoce21C9pnmGiOpaclYt6Qz/JJ8e/zOBUKLy8wJPM+lilpyDAWcmtlPb28vRqMRj8cj+7n/1/g/r6SkVCqJNrGeM7AobHHj88+34ncFxMkYq+2XRK2Yot91UaawfRBAw13FCdmMNd1XwuknR4VVRapvKiA4u0S3wMQIJEJA0dkWWn8hfjLOXJMmbIGUKByX2pgdnhe+dxoLNHy4SvJylPOKfJPY9rEyUtLFT7b/b8Ban47fu5yQalaiSFRJKWFowb4jMUWetxtv9702lEoEnETzWv2hwoTt9ESR6PNsrkkjs8aUkMrZ9k+Wc+pnncKWhk33ldD/wphwuyrfn4ezzSNcNzIb9cw5l8SJh/+Dd0TlDflCVovPhf9AmBAZGRlce+21fP/73xf/kk1s4i3GP/3TP/HFL34RACVJnKe4UvYziZwYAEBDQqogUaQVaFBpFcJEiKytRnR2DT1/ErN/sEasQo8LjtU0JiVbbiwWXmAGyVptcL8zIZUTUULDm0HVBwpo+6U4OSOq+NP8w96E7NISwe4HI6eZBE9w/W8ge5eJsePuN9VvRfD/s/fm8ZFVdd7/uyqV1JqqSi3ZU1WppJKqytZJ74FmB5FNaKBpaJpFQEAEFVmUZZ7n9Ty/mXmGcRxHh9HRQcd1UAfQURxFHdzofd/S3emks2+VpbLVkvX3x62qJE1355w4zaDm84eSzjm5937vOd9z7jmf8/nIKiktBWavHo1WvP9ccOih/qkg0X7xk2uyWPNMORptGts+e0z43TnrzBgcOlolvvFkINufg3e7Of3LXuH+Vn57IagQzsn2ShOuDTni70AP1XcVC6uEgaKC1/G2hHz5EseInFVWSGNRQl7fbCeH2A5AZWUlhw8flr/YMpbx3witVsvEhLLhW0092ar885Z31llghqWRMXQIk10A8i+2C290A1Te4+HIN1uEy9d8xEvr292EG8U6ve+WfJiFxh92CZXXZevwXO6UUiyy+vTC9yOLossdRAbiDIhawuqg/umEUq+EbZgMah4qxpijV8bKCzO1k0aW38hUdFpKnUYWskpK0tBBTmUWvXvEFdwvNGo+4sWYrbtg6qm6bB11D3uJh8U3mkAhNF8oVTHZ/mwo1FG4xi5EOEqi7rFSjn2nWZgIVv1gMR3bQgweE9s89t6Yy2h7VDjnW316JqKzcqpzSUiOEb5b8ml8Y/F8/JvZ/2CSCSwWC1u2bOHll1+Wv7dlLOO/Cd/5zne4++67AdCQwWWqmxatU3JDHk0/kbAV1TJHuJn/34tVc2rRZ2mEVU4spQbsZWZh4oG5WIf7slxhlROtGQKbvVIkH+91ufQfHRIiA8y/Lxnyhwx8txQIKy7BnOLPoX9tklJekcH654JE+2LSyksXEtkrrfQdCV8QBR+QV1JaCvR5WjKMcspiFxoX+l3XPVaKLiuDvV84JqxEZCk1YMrVCxFwlgLZ/lx6Yx7tOwaFSV2uq51ojenC34OmQi3F1+RJEfGCd7o49m8SasJrsujZJTHnX+IYYSk1oLdmLGoDNzI7wi7eAiAYDHL06FHxe/sfgJwMyHsMlUqVIijVc92iBCWAwnonvhuKFi2XRP2TQdZ9JqD8IJC/ah8poe5jJQBCBCV7lZHyzYUAwgSlwsuVY1h7v3BKiKBk8Snek0e+0SpGUDLM2ZeJEpTK7igEA8LEgcLLHax/LoDBJeGLWWvDd6P4u4v2Q8fOfpoE/XwN+TpMXvH7ARjrizIVFffPrXnYS/0LQYXMIHRTCjkmu078xFTp9YVUb/EIl38/onpLMe4NOVKKUyse9irtUBArnyhl/fMB4fLD3RHlXcs1EXLWWMT+fmOEgcYR9nxFgqB0vweLy4jngznCdWofKWHNU4ufvIW5/lx6cz4Gx+LDwcDh8RRBKSsgFqhdn1UISsk8tRj2fuEUA4fHMeTrcK7IXLR8w3fbCR0YxZCvo/Je96Ll+/aNEGmL4FyRqeT+xW4rkYJLPpRH/aeCwu8icFcRtpLMVP4/H65UbWRV3SrGx8f5yle+wqOPPip0jWUs478bjz32WIqglIFOiKAU3OLC4bfgvT5P6Bre6/OofyqoWLcJQG9TrGOtZYp9kcjmfnCrG70NeveEhQhKzjozehuE9o0IE5TMXj3RwRlhgpK1TDlt3vBquxBByejW474mG0CY0LDmqXIq7/cIlQUouTGPLK+J8k3iY+vuL5+k72hYmDDhlJjfAKCHyfEpwi3iBNr654OseMQrXL789kIq7/MIl89bb8N7dR6BD4nPUd+PqLyrmLKbFx8nk8hZZWXV4z7h8nqbmvoXggTvFrxGVHnXo71yG8Fmrx69TewTtvlnXbT8uleK8OK7rpCC1eKSGGavnnWfDgi39cGGCOih5GaxnHns261Ee2KYvWKKFSd+0JEiKInUGTgyliIo5W+wL36BKCmCkv+OIozuxa+RJCjVPlZCxT0C7SPxvtZ9OsD658Tn8iUfyKfk6vOTOwCyVQWs4wrcbjdHjhxBrX5fL4ks408cGo0mRVBaxVWLEpQASj9YQOl1BcLXWPdpP2ufSaiRCwzfgTuLqHlYGVdFCEqGQh1lG5X7ESUo5a6zAXDwK81CBIJMt6L00fhGl/CCdKZbR6wvJkx+KL4+B3QIExqcKyysfcafujcRFK7LpkxizYsYNP+ih6b/FCRlWdVS9wMw2hNlYnRSmJjgv6OI9c8H0VnFc2fdo6U4V4itmwCUfaiIqrvF53bvR5RfX0DpdfnkrMoSrhPc4sJ38+I5IInqBzys/4z4OBk+Paa8a7kmgr168XUZgFhfjJ4Dg+z9qvial++WfOzlZoqvFV/zCt7tYvUny4TKJvtz0eUODIWLP3ikI5YiKFlKxAK17+VTxMIzwn3v0L+cZvDYGDqrWGybf9xD6MAwOiv4Ny+eP8KNUSIdMSwlOtY8XY7OKnRb5F9sp/7pIJ5rxN6F55ocsquy8At8S16quonVdauJx+L88z//M0888YTYTS1jGf/N+NKXvpQiKBkwCRGUPNfmkFtnw3vd4vuSAPkX2ah/OkjhpYlvysU2n7Ww6skyLKUG4qG4EEHJd3M+WrOa4VMRIYKSpdSA1qFl5HRMmKBkKtQSHxFXITK7Fau85p/2CBGUtGY1RZcp64KihIa6x0oJ3ukSKguKul92lRXfRvF588FvnaZrz4AwQSkrIO6OAoAWYkNxhiRUjtY+U07Vhz3C5d0fyCawWTxOllIDvusLKL9JfG3w/Yia+7z4N4rPs61lRlY86FVIIiLQKmsUImNxErGhOCNdcqQpfZ4WrUPspk79tIPmt7qlrNICt7sp2pAtXF7r1LL6U+Vkr7QKlR85HQOt0g5FcOrH3cRDcfR5WqF30faLUOp70FS4eIWxjniKoCT6DEmCkufanFRuOx+SBKXKrS6xHJVIL6s+Wca6TyzuGpZE4FYXxdcsvpZoVpnZwI14i70cO3aMNBkZ0v8BvG9X5FSqOYuEeq7DoBLb4G79dS8Nr7UIXyc+MkEkJM7s09ky0FoyhMv7bnBh95mFiQ9VH/bgujgb1zVindjgUFOx2SNMSgBY81g5K+71oBdcfzfk63CUmVnzUfFrZBWbUKWpiPSLJ+ED32ih9deLW+3NR9tbfcLEqYpNLqq3iD83KAQIGanA6fgMszOzwmorBSvtpGdqsPvFF2w6dw/QdzgsXL76wWLqXwwKl18K1jxVLkUIav11L0PNoww0iW9CGrJ12LxiiyOQfBfCxTn5vQ7lXUvMG9Z9JkDJB8Qnuide7ZD6+0e+3kL3vgFa/lO8X6RnakjTiqd2k9dAdpWVintKheusebqcwG3ifcm5IpOKzZ4UwVMEKz7slSItVm5xY3YZMeSLLQzZ/BbUGhV5tWKLht27h5iZmqVP0Ne44bvt9DWElXcuAOt+D+oJDTMzM3z5y1/mttvE7LWWsYz/LjzwwAP80z/9EwAmrFyiukGo3rHvtNFzaJDmN8VOlfUeCTM9McPAQTFVDXuNk7QMNTafVai82avH6jFSsVWcXOG7rpAVj4iPYXUfK6VyS7EwaUCfqyN4RzGrPi5+T8FbiyhY6xAmYwBotGnozOL2lE0/7qZrz4CcClYUTr0utlEG4Lu+UGqOShR2f+6kkD1XEjNTM0yMixPKs0oyMReKM5LDJ8IMnhyh5Xfi6o/1zwdZ+bj4uCoLfa6O+heCBCQWR3qPDNH2e3F1IHvAQoY1HXul2KJbdFCZA89Mik++dn/upFR70hfoqdxSjH9zsVD5/kOjdElYJAO0/KaX/V8St5iZDMdRp6twlInP5dc8Vk5OVRZ6m1h5fa6Oyi1yOWTNU+VUbilWVIkE4L0+D89lOcKkRb1Nja0sk4rbxRc/9VYtpjxxe6Bof5yIoAQ+wMkft9P4U7F8ZlLZKGytBGB2dpasLPFN5GUs478LaWlpTE8r49fF3IBVZRWqd/LH7Rx/XVwFcbwvRqRXfM0rs8CAwSa6Wg8Vt7twVFiESStlGwvwXp0rvBGODqru8QqTEkDZxKq6x4suW+zbUGdVbMFXPyp+DVuJibQMNZPDYrZHAPu/dJzTv5KzWejZMSisuFK+yaM8d644C6X5xz1SqqAzkzPMTs8Iq8Zk+Y3oHBnY/eLE9fbf9tF9QHz8Lr+1QJo4JYvaR0ukCEGt7wzQfzTM8ClxxTOLx4RNwvJtMjLNzJT4vKv1F33Ku5YQq1j9yTLKJYj6zT/ukfr7jW900bE9xOmfia956SwZaHTimy06q5qii7MJ3ir+HCsf91Fxl3gOyXQr9pUrHhFf86p9NCBFWgxuKcXmyxQmQ2WVWNDo0rBVCpDQgcEjQ0zFpuk7JtZmW97qpWtvP8cFvyUt+93o45lMT0/zxS9+kU2bNgnVW8Yy/rvw0ksv8dGPfhSATLKoV10rVK/lZ720b+8TVisaODHORGSK0FEx1USn30KGQUNWqdieh9ahxVlppWKrOJk3cLub2gfFy1dudVF9XwmWUrF1E60ZKreWUPeY+BpIYLOHooudCjFBEOnGNHQ28X3Zru2DtPxXj7DrDABx5Z2LInCri1USc1TisP9LTbT+XHxtZnpylsmI+JqXM2jF6hUnTw23R+jZN0jndnH147VPl1MrMeYtBeueC1B2q/i+W+f2flp/LR5Xmy8TQ64Op+i+bFyZB0/Hxede+7/UJGWxpjVD7QMlBG4We+6R0zE5BR+g6add7P+quLJTfCSORpuG1SMuNlH7QAkFqx3CZKvkc9c9KJ5Daj9aQvV9JWjNYvP/3DVZlF6XL96mtJC/yo7vFvE1L2OuHmO++JrXaEeE8T7xifOxV09z8sdi+Uyr0lJwugKAmZkZrFYrIyMSbLb3EO9LuzdZglLeRVl4Ls3lwFcahC2Fiq/P4fSbcoSYFGQsf2RtrQxQe4+cLVztYyX07B2ke4dYQsquM1Ow3sn+l8Wv4flgDn0Hh4l0vT/0n8s3F2L3mWn49xaGBBUGnCsyyVvt4NBXxewJXNdkYy4wcESQYb5kSFpIySJwVxFWj4ntgj6dIG/3VvtYCRnGdHa+JL6pIwu9A+H+vVTkXZRFdmUWB/9ZbKD2fDAHfVaGnP3Z0+WkZajZ/pfi7+NCw7exQGrCnndRFjmVWRwQjBPI21eW3pxPbHhCKncWrLTTKbMZucS+lxUwoNaohAmSKx72kpGZLkR43Db7c6a1E2RkZHD11Vfz2muvyd/gMpYhic2bN/O9730PADNZrFFduWid1U+WMR6Kc+xbYptkjupMosNTUjZnKUha/xRe4qDjt+IDhuuqbFRqhO2dbAED7svzpOzIah720rk9RL+ovYceSq7Ko+nHEpLiFxjrnwswOT4ltZHlv6OIka6IMFGk+oFieg8O0buIdO0fCr0NooIW70vBmmfKiQ5McFjQEkva7k0P6z8ZoO9w+MK1kSVabsmi4h43g42jdG8XeyHVDxTTsa1XWGHMWWfGd10h3fsGpchvFxJmrx5zoVEqT614pIS233QLP3f+BjuOMrOULVvNg14OSsiQy+baP6RNua/JFs7RepuamofLOfVmx6I5Nzob5aDxN4yNj1FcXExz8/tHcn8Zf9pQq9Up1fCLuQGd6vybzragCd+NhRz855PC5JCiyx20L9VeXdYWbr2NLsE8DlB1r4fD32gRLl95j4f+kyP07BC7htWnx3VpLof+RTwH5q+3MdoVuaAWYzJwX51NwRoHx99oEyYpWX16CtZnc/SbYvPznFVZ2HwmGv7twlhtLYBkm5JB8fU55FRlsePzx4WvIWv3VnmPB70z44LZ7oFClouFL9ifBxQFsJzqLCnVM3O+Xsr+bOXjPtKNaez4fxdufVAWxdfmcPrXvcLtwxY0UbDOIWUNImtfWXS5g9kZ6PiNeJ7OXWcTzoPAkvudoVCHzqwRzj2BO4swZuuEvhP3zf6OcW2Y9PR0rrnmmuU1r2W8J/g//+f/8L/+1/8CwIqTVapLF61T+0gJsfAkDa+KuZCYi3UwMytlc5aChN0PgLPGQuj4sHCd3FVW0k3ptP9ajISyFHukwGYXfUfDDBwW3wR3XeGk7b8kbMEvMNY+Xc5kZJp9L58SruO9LpfY0ITwPNi/uYjQ0WGpOC0FWjNS6jqyWPm4j9hQnKPfFusfS7F7W/NUOf3HhqVIPtKQ7HtLgW9jAaMdEWEyUfmmQnr2DQrb1pndWiq2eOneNyhFsLuQ0Dq02H1Gqe/DirtddO4aELa7tFeYya21CrdBkLdxy15ppW9vWLj8H9Ke8i+y0fWOWLy0Zqh5qJymn3UzcHTxjr5N/1MikQhut5sTJ06g1YqTQ98LvO+UlOYTlK5S3SakoGTzZqJKU2HIE2PzVd7rJn+lg1JBGV1Dvo76F4Nztj0C+aHqwx5FDSmC8CZ7wQY7RMRt4ZIqJvtfbhImKGFQ7I5ECUpJe7SW/+wVJijVPOwVVjMBxRqu/sUgJR8Ssz0AmJmeZXZmVpigBBA6MCpMUALIW2GTOmmPASlbrhQkSRJrni7HdaWYTQ4oii4yBKWlYP/LTdIEpdWfKBOywkpiKQQli89A3kXiJ6OL1mdjFDwpBUq/kCEoAUxFp5mekJB4AupfmGdLKYjg3S5hG8EkQUnUkq37naE5gpJgF0naV4qqL536YZeSOw2IvcMICkEpYaEodF8RwKDEd8XDEidQbvNQ/iFxyxytJUNY3ape9QGqg9VEIhFef/11tm7dKnydZSxjKbj33ntTBCUrDiGCEkC6XoNR8EQEQNlNRdTcLaZ+AonTys8FxDe19aSsqUQ3zfPWKzImbb/sk9j8VuyahAlKiQMUB/+5WZigZPbqIYow+SRnrZXy2+Vkmdd9Rs5GCWB6YoZJCcUigOPfaxdXstGDKV9P0XrxOU7eepuQ3dSZkCEo+e8oovYxuRNiu146IUxQWhKisP2vGqQISu5rsln9pMQJvz+ATCKq3gNgcRspXCcuc3roldPCRB1QbBxnZ+TO5JRuzKf+xSAOQXsTSKg8CdoIjjRHU3lKtP0e+HJTyipOBF2/G0gRlEQVm5IEJSHbN+ZyrecDOQS3CJwuS7SpwOYi6l8ICt9X+e2FFK5zUrpR7NvdWGhErVGR5Vt8HqxX6akZv5SiwiJOnz69YC1iGcu4UJAlKAFklWaSlq7GkC/28eW9MRfXhhxh6yidFdY/H0zZtolsavvvKMJ1hTJmiy5AJ23eRAlKSZuiI99sEd+YT1i2iRKUkhZQXdsHhQlKwS0uKbUie3Um9S8G8d4oZhWTxMz0jDBJAJTnFiUoARTWO4SVGwDQKcSKJUGCKLHq4z6p65x+s1chxFxAftmRb7ZIE5RqHvbO9SkBLIWgZCjUSVnKFa13YnYbhC3fenYMShGUACZGJqVUBuAMW0pB+G7Ox1knpn5w+mcKQUlUhWjw2Njc5rxgrJL2laL2au1v96cISqLvMJkH6x4tFbuvGKBT4lv9oPi3eM09XsollAMMTh3pBo1Q2TrVBlb4VhCLxXj99de57777hK+zjGUsBS+99FKKoGQjR4igBJBh1mBwiq95Be8oJniXxNryZhfrnvWLb2prYcVHFGuq0EExgpKzxgJa6NkTFiYoac0L7ZFE7gug4dU2YeJN0qJJlKBkLTNScoP4viEoFnrrnpUbVyYj04otqgSaf9ojRcSwlWbiulh8zcteZRaytDoTMgQlz7U5iu2ZBPZ+sVGKHLIU7PrsCSmCUu4qq5SaF7AkQkn+epu4RRzgDFooWCs+rz3x/Q5hghLASGucmckZZiT2GwsvdVD/QlDJEYLQOrTCVnfx/niqX4iqpR39dptCUBKM7cDRkVQb1AoKkSYJSqLPnSQo5a7JElNgSrQnz7U5rPtMQFhJqugyJ8VX5lF6o1ie09p1aHRpZHnF+DD10evwuD20trai00n6Pr8HEJtBvkc4k6C0KBIqGEe/JZcQj3yjlaoPezgl6GWfblTDLERD4lkrs8CAKVdPm+Cm15qnytHo0xjujDLWvHgSMjjUrHjUL6V2U/OwF2O2jqOvtgirmVRv8TA7PStMcrH4DBizdQRuK2TvF8RYxxPDE8xMzdL0C/GNlsYfdNKI+IdyzcNetOZ0dv2tuHXbzpeOY68Sl7EL3OLCVpKJSo2wSte6zwSYnZ4VJvhYfAY0ujQsbiMgyH73GkhLQ/idLwkGyPab6dsnPgNKz9Rg0YjH13tDLrm1Nk692SF8nYrNHphVSDUiOPLdVmYn5Fa2yu4oxObNZMdfi/WRff8ozsZPIj4yISXraXCosRabMOXphWPlu70Ap99C76Ehmn4k1hfXPF2ORpcmrPyQFTAQuM1DdCAuvMG/7uMB1BqV8DssuTqP9EwNgVtcNHxHYGyIwOzMLNMS9jTd+waIDYjL+i/o3wLqTZYDbvSzjYwR5rXXXiMtLY1//dd/Fb7eMpYhik996lN885vfBCCLbFaqLlm8UoI0tO0vxU+/AJz+VQ9p6eLc+OmJGWamZ4WJEsHb3GRY0ym83EnH2wLjox6Kr8qlaIOTXS+JzQ1qHytBb9Oy/2uniXaK3Vj9p4JMjk+x++/FNjV8txbgDFro3NkvTJxyX5KjWB5IqJREQ3FUkl8BMva3AOue9dN3ZFjYCpAo7H9ZjvBcfGUuzIq3x/wNdjyX5tD22z5hMpu5yCBlKQGKclh/4+gFVSIye/VMxhFui1aPiXSjRkpFas0zilWfaB8p3ZhPTmUWaelpwu/9+L+3SJGOQPluGuuNCSu5yZL1O7cNYveZmZkUn3tVbioi3aRBn6sj2iM2l1z/XACVSiXcfu2VJspvcRE+Pc6xb4s9e0ql67PHhNqjLWDAc1kOOdVW4UMteSttqNTi5J7o0ATWmVnQiyWtEz/oQHNPmrA1YP+hUfoPzYvpIpfRq/SUd66lHeXgQSAQoKHh/aN4uow/LWg0GjmCUkIFo+k/umn6D/H1kuYf96A1pdMouOaFTsfs9AzRIfE1r6zSTKzFRuENphWPlGBwaokNRMWURnRQ97GE2s0Xxda8/HcUYSvLpOEHrQwdFzuFW3OPl9mZGWHVF122DqvXRNCaIXzSfjo6xVR0mq6dYaHyoFhztf5C3LLCv7mIzDy98JwTYO8XGrH6xJnFnktyKFjnIN2kUWy9BLD6KYUgvfuzYvels0KGOR2ry0Q7YnM1Xa6OdC0XVgVLBzavSYo0ZnToyBAkboCy6eW5IpfmX/UIk/Jq7lE2FXv3iK2XHPu3xGEziVB5rskhp8bKTsH1VBmVtCQioRgzMvvCOnBWWbEWmwjtE7MnK7rcQdHF2fQeHBLOpysf96E1pwvP1XS5Ouoe8jLeFxNWaF/9qTLSDRp6jwwJvZf8i+3oHBn4by7i+KsChyZjykHfmQlx0n7rb3uZjomvkS1QJBNQb8o8WoR9tote2vne975HWloar7zyivD1lrEMUbzyyis8++yzANjJo1Z10eKVEqShnYLfwEk0/rgTrVU8509PTjM9NStMkvBelYshW0fhOoewApvvxgLcV+aw53NiY3DFFheWYhNHvtUkrAi17skAE6OTwvsdhZc6cG3IpmNbSHgO6b06D11WBh2/7RYm34y2R8gwyS16ySgogUKECh0NS1m37f3CMcgQZ7j4rssHtUp438laZiRwm4u23/bR+XuxA4NZxSb0ElbPyeuEW8cvqAqRqVDL9DREu8UuYnYb0WVlYCrUMtYhVmfl4z5U6SrhPpJ/kY3iK5X2KEqgOvKdZkZOy81R6x4rZTwU44SgparoHC2Jjh395NbamIxOCdcpuymPzHyDVHzXPl2OSqMWbr+mQi3V95Yw2DQqNsdhTqVr7xeOEx9ZfO6iz9Piu7GAwvUOYbEY14bshACBGB8h1h+HmVnSdWJdpP3XIfT2DE4JHkQdOR1bODcVILuWtq2ihRYAysrKOHnywqnDyuJ9Q1I60+JtURiUjZ/p+IwwwcN7Qy4ao4aT3+uQkiscboxISdEB7P/SMVQSQlVH/rWRkptcQgQlgEj/DFPRabr3ijN1h9vG0VkypMgq4dNjTEt4nA83RhQSyXFxskrfvhEpcotvYwGkKUQlUWgz09Fo5TaYAGE7J4CWn7ehutYlZSM4MznDjAQ5YrgxIm4FkkDlHW7UGpV0PRmsfLAUnVVL376jwnVk72e8L8rszCxpGeLvsWf/INF+8dnSUuwMdZnpqDUqDPk64foWnwHvNXnCmz+ihL8kIv0znP6vbmFiDyj9yfqkke7d4nXGuqMYJJRUhhoiTEWn6dknnrda3+7BVCSuaNb0o276jw1L5TnZzctkH9c7IHhnKXu/KPZ+XFc6Kax3MtA4wolXzz/JXKe6ik7vMZo7mvj+979PdXU1Tz75pNR9LmMZ58NnP/tZPve5zwGQSZYQQSmwuYgsXyZNb3XRK7jJUvvREvZ/vUnYyikJGYsigGPfasXs1TPSLMrSgYHjI/Q3hIWv0bNviMJ1DmFSCMDE6CThdvG5RMeOQSyFBmGCEsCuvz1BzlqrFCFGxtIJYMUjXhr/s1vYrs9apkedoUabKfepER2UO3Xd9IsutJkZUnVmZ2YZ6xF/J7LkLH2ujvKbXRT0RDn4lQtnHVW5pZip+LQwgWgp9zIjeQr+1H92kZampnu7+Ea6LEEJQKNNw2CTe+++WwuYik4LWb5Fe2Ls/Bs5wtyRb5xCnyNOUAIYahqTUnkaODLG1HXTjLSJt9/ew2GcAbNwfhhsiDDSHqHpP1qEr3Hga6eJDos/d8vPe2n5uZwMeVIZxH9HEWPdUWGS4dpn/aRp1EKbixdxPZ2eoxw/fhytVks8foF135fxZwetVsv0tEJ+FFVQWv9kkOmJaeGxKH+9DVOeYs0kY+EV64lJWzNt/7tj6MziJzGPv9qE93qXsBUSMYgOxAkdEyMgAIy0jZNZqBcmKAH0HwtLES1jfTGOvXqaWEh84hVujErNJ9xXZ6PRp0kR0wx2LRq9/BKv8PsAenb1km5Io/kX4qfap6Nyc4lYWH6tqGqLi3SDhG3uElB1pwdzkZG9X24i1ic25ske6hjvizAzLRev9nf6iEuoPojaRc6HNlNDmjYNS4mO4SaxZzcU6ij9QC6HXmkRKi9aLoUYNL7ZKUxQAkW5yBm00ilotwIQbh3DUiR+uDLWEyMenqRnr/g1Tr3ZicNvESaOdf1+gNH2cSlSnsyB3eQ1ANApRDjR7whnnQXf9QUMHBvmxGvnX7OvUq3FXmjhdH8T3/3udwkEAjz11FNS97mMZZwPb7zxBg8++CCgqIaLEJQ81+aQv8pO88+66BG0oK+6183JN1qFLHfm4+QifeRMNL/ZQ9/BIWFyAEDHzhDjXeLlew6EybCkS1nWRUMxxiS+gUNHR3GUm6Vs3va9fAp7lVlKHejED8TIHUlU3O2i9de9wvHVOrSk69LQmeXWJZRnEI9v40+60GWlC5dPS09jZnKGyID4NfZ/SVApfh4qNnsYaR/n8NdbpOuKovreEiaiU8IEopOvdXJSQtQCYCo6hXpKfA+/651B9FlaOn8vPheWJSgBZJg0zM7IEcdcVzthWlChLA57Pi9HUjn8nRasbqNUDuo9HCZNIx7fsY448ZFJRlrFv+W6dg9SsNYuRFAChfTW3zBMq4RgysGvNgLic+iePWHhMSSJ5Jjg/kA2k2NTwtZvKx/3kW7SsONzDYumlqtUt3G6eD+NjY0YDAYikQsoaiIB1WzyGNf/INLS0piZUV5yPdcJWbwBrPqEj9Ge6KKbvUmsfz6ASi1O1gje7cJabJJSbln5RCltv+0ldEDM0gMDZLkNUrZl71cYHGoi/XIfvNUPFqPRqdn3j+KDoex7XApqP1qC3q69oNd4r+C6JhujQytlS1b/YlBKpStnjQVnMIsj/9qyxLt8/2DlE6VozRnSxEQZ1D5Sgt6ppfHH7cK5ovByBwWrHdK2ejLkqfc7suvk1LpWfdxH01udwvl17acTG1mC7z75HoUJYQZY+4Sf46+1CZOojjq20R1STkC/8sorfPjDHxaqt4xlnA9vvPEGGzduBECPiYtU1wrVswUMlN5YxK4vnhDa8C683InrYifDrePC1hP1zweZjE0J2yk4qjMp2pAtTPpM1hG1Xnu/Q0a1JYk1T5fT+tteYaJZ3nobxVflEm4ZF1auWQrqXwgS6Y9zQPAky/sWekXZq3f/AANHxE7bp9RuJOadsmSN9yv0Nqj9aJCRjsgFnUfWvxhkZnKWHf9PnJhc+9ES4iNTwqpFSehtamnC3fsRtoBBikSWs8pK/mq78CJnzlorJdfk03c0LKySJPseA5uL0NkyhBU8o7NRdqb9nKnpKTIyMpaJSsv4b0NmZiZjY8qYIEpQAqj5iJfYQHzRzd4k1j7jJy1D/HvGe2MuuStsUpv9NQ8V07V7kNABcXKA1aeXIsO8X6GzqqVJHv47itBa0qXIwrLvcSkIbnFh8ZjY//KxJdmMvZ+Qv96GMVdH4xuCymEo40l8eHKhAsx5kOU3krPCxvEftl9QW7n3AtUPFmPM0bNdkkQlA//mImy+TJr+s1tY5clZZ8FzWQ67BTcjk9Bl64SJY+932IJyal01D3tp+02vMDFz1Sd8pBvS2f5XYu8+cGcRWaWZtLzdO0dcOh90sPpjZTT+qF04559w7KE91ALA1772Ne6//36hestYxvlw4MABamtrATBhZZ3qKqF6pkIt5be52PulRiEeib3KTPmHCgk3jaVshBbDumf9TMan2Su452J2a/FclS91kM9aZlRsk/4EoHVoiUscQAdl0759Wyhl1bQYLKUGKjZ7GDo1RsOrF87CbN2nA4z3RaXEM96v8N1SQP/xYYYaxMaspNqNzNzWe10ukf44PRLk4vcr1n0mwGjbOEdFXD/+gGvMTs1IqSpVbnUxGZuRJvVpzWphUtD7GWa3lpGeuDBv0FpmpOhip3AftpYZCd7uVlQ8fyJGilr3XOI9Ch5I9Vybg6XQwEFBq/P4bJztaf/J1PQUer3+fUFUEqexXSBkZmamCEof8t+J3akQlPQOcK6Y80Y3eQ1YfMrv8i7Kwrkik2PfbuLEqx3nLQvK7wwONdv/voGGn7QsKGtwGcgKzJW1Vxkx5CsLRkPto8xOz6ZUgc5XFgPkX2pBa8nAc0UehnzdAquwrIABg2vhPWGANY+VE7jNQ+7FmYuWBYUIVP9ikJVPKP6aFp8Bk3dhWX3C4jIZF+eKTOpfDFL8oexFyyZR80gx9S8EMTjUC2KYfNYz450VMFD9UDn1LwbPW/bMGBqzdeis2oVlk896RgztVUYMLgPb/7KBE2+2nrfs/BhafAacqxfGcP49ZQXeHcPJ6BQzU7PvKnu+eK/7TIDKB+Y8u8/WDufHO/fiTPLWZZ2z7NliWPexEupfDJ63HZ4Z79H2sRRB6axlzxFDVZpqrh0uUnZidJLm/5pTfTizzZ4thqs+4VO8T+fFZbF4F16RRd4lllQMF+33LjVrP+2n/K5CoRwBMBmbViyG5sVw0Xgb5tqnSNn932yi6RcdC07JLdbvbX4TaVo12XXmRcvOtZdSVjzgxVFrXFD2XP3e4jOw8uOlrH8+sGjZ+TFc+4yfNc+UL5ojkii+KZf6F4OKKtoiOSIZw7XP+Cm9vhDnusVzBEDWCgMZ5nS8V+eftezZYhgdihMfmRDKERhg/5ebaPlNJ1Pjc9KY583JBmj+WSfDjRFMXgPZ663nzRHOFZlU9NeTRjoqlYoXX3yRffv2sYxl/CE4depUiqBk0Vq4Mbgx9TtrmR59wZzlg73SBHrl321BJZftekkhKJ2rLCgb9PZKEx1vhzj5o3baf9+H0b2wrN62sGwSE9FJIuH4OcqyoKzRrcdzZS56mxZ9gT5RNpGH9O8ua/bq0efqKPtQEaufKjtnWX2BHmvZ3P1WfthF/QtB5d/0ZzxrgR7bvJxlCxjQ5+pY/akyVn+ybGHZXN2CsmfGsP75IDUf8Z41LmeLtzmgp/YhL9UPFS8oa/bqzxnv/CtsaHRpmPL0C+Jyvnh3bx/k+L+30PrbvrOUPXsMcy+yLojh+com4z09OcPE6GQqhgvKniWG/juKWPNM+VxczlM2GcPCK7JSf/tsbfZsMax/IcjKT5Ses82+K94lJk6/2crAkbGzttlzxhCJsnoIHR1KEZTObLNnjaFNeZbqR4oXLzsvhsU35KSe/bz9PhHv8k2FrHmmXChHgGI9Nzszy8y8U0nnyxGpeOuV/14sRyRjeOKNNhp/0r5ojlh4D1pM+bpFc8T8GNa/GKT6Qd+iOSJ5D/mXWKl/Pkj57YWL5ohkDAsvcVD/QpCCS22Llk3GcPWnyqh/PrgwhmeNd+LnAj3+2zysetK3aI5IwnV5NnqHNvX7xfp9fDzO9MQMwy1jQjkCFHvAkz9qFcoRAN37+jn+I2XTOuci66I5wlZoY+30B9CkaZiammLNmjUsYxl/KDweT4qgdKP3NqxZSrvTWRXiQxKGQh2ZbqVtO+ssZPmNnPh+i0JQ0i0sq8vVYSmZIzpZfXp02Tp2vnScYz88rZTVnb8swHDnONMTM4SaFcKRLlu3wP7LUqJDlztX115rxJirx31pNjqresE9nVk2eQ91j5US3FxM7npL6neZbh2GwoVldVZScVn/fJC6x0qFymb5jRgKdax/PojnWmcqhnNlE7nljBiWby5g/XPB1D2fr2wyhlX3lypzwnkxTJVN/nhGDM0uAwanWNlkDHe+dJyGf29dWPaMeM+PS6ZbR1a1WNnks05NTKVUvc/VDs+My+pPlVFxj0uoLDqlvTjrLAtimMRZYwhU3OOm/vkglsAiZefFMNIfTRGUFrTDReKtSuOsbfZsMZyKTtP2+1CKoLSwHZ493jUf8bL++eBZ2+y5Ypi7NpPcdWahssl4r/5kGWW3FwjlCFDW72ampoVyxPwYJv/9fDkiWfb4q+2c/EkLE2MTi5ZNxtARyCTdqCFnVZZQvweovMdD3cNebLXWRcsmY1j9kWLWfyawIIYLnvUsMVz5hI/VnyoTKguQe3EW9c8H8d2cv2g7tPr06HJ1rHzCh/9WF7lrMxfNEclrGrN1FF+Zl4rhYv1+rC9GfHhCqKzOCg3/1k7jT9uI9s+RwM7X73U6OPWTTsKNUXTZOpxrrIvm5PL+VegxoVaree655zhw4ADLWMYfgpGRkRRByZxh4RrvDanfmd1atM45dRJLqQG0iv2PxacjTZemkIfiCmFJn7ewrFZJz2jNys8Dh0c49v1W2n7Xu2jZJKLhOLHB2BllE/1Cu7CsPk9L8bX5mPL0mN3a85bVOrWY3VrQQnCTm5Wf9KFNuh9o554VFOKPuXiub/o25lP/fBBrmXHRsskY1j5SwsrHfQvLmtUL7snsXhjDtc/6qbzPfdayZ4u3ya1l5SMlVN7vfldcTIVnj7e92ojWko45X3+esgtjOHwqwqF/baL5971KDOeXPTOGCThqzQvKmot1i8Z7MjbFxOjUwnZ4nnh7rs1h1SfL0Ba+u82eK4a59Vmpv72wHZ473us+HaD2sZJzttmzxbDtV90MNYwJlU3FW3WONnuOGA6cHKHn4JBQ2WRc1j0XoPJ+91nb7Flj6NBSeJk9dY/nLZuIofsD2az6ZJlQjkhiZnKGqYSi7mJlUzHUKu9psRyRjEvDD1o5/kb74jliXgxNBUYyiwyL9/t58V7/XICaj5QumiOScNQYWPesH98tBYvmiOQ92KvMrPtMgLx6a+p3i8V7xaMlrEvM786XI5Lx1prVVG4toe7h0kVzRBKeq3LJzJ/LC+fLEVqnlpn4FBPRKcKt40I5AuDYd5ppeKNFKEcADDaEU2te9irzojnCmm9m/fQHSUtLIxaLsXr1av6n8T9KUiopKUkt1qxTXcaKO8oIbC4BwH9HCWU3uVIbttV3eai4w0Ngi4viK/Lw3VhE4C5lI8d3SzFlN7lSm71Vd7qp2OxJXcd3YxFVD5RBBAqqnZTd5EqRQ2q2uAncNle2/GY3lVvcYIDMXCNqjRrXxdnKPZylbNVW5WfvFbkUX1rIQPMwuz93kqq7PZTf7E6VDdzmoXqL8nPh5Q7KbnIRuMVF40/amZmZwXt50YKyNXcrZZ0rMim7yUXlHcp1KrYqCzXRQeVDr2Kzh6o7lbIGl4Gym1yU36rEJXhXKWU3uTAVJMhdVQ6q70rcvwHKbnIRvFP5e/7blHgnCRUGhw5UpJSRfDcWEbxbeTdVmz2U3eRKbfhXbVbiMnBihGgoju/GIirv8yn3sNGlxPuirLPGUJWmYnoicY1rCyi7yUXx5TnK371nYQzLb3ZTdZeyIJKZY6LsJhe+6wsAqNziPme8g5vclH3QRXCjUrfyPh++GxfGOxnDrIASQ3Wa4pUZ3FKyoOyCeDvUlN3kwr+pBL0D1BoVloI5AkWyzSZRdpOL4F1KvMtv9VJyhQvvNfnkrLGctc1W3KOUrdykxDu7zkx8eJLZ2dl3t9m7lHsK3FxE2U0uCi93LIh3xVbXXAzvVuqWXpNP2U0uSq5WPmirti6Md7pBk4qha73Sb8pvKjxnvGvucZMVMJCzxqK02duV31fcU3rWGMZHJpmemqHsJhdliTYbuMtL2U1zi14Vd3gWtFn3xfkUX6q883PliPkxDNzsJS1djdVtXDRHJNvsTHyGtHT14jkCKLuxkLKbXKx61Ef5ze5Fc0TZTS5Kr8mHCHguyRfKEaC0WZPDwLb/e4y+fSPnzxF3z8W7c5ci7+i7Tvk758oR8+OtNWfALOA4f45YEEOVYr2yWI5IIq/GxuzsLFPxqUVzRLLNtv22l8nIFGXXiOUIS14mKpWKkW7l9Nb5ckTeRVmU3eRianyavV84JZQjqu8qBiC/NhvfjUWsebqcrIDhnDkCILA5EW8DVG/xUHpV/nlzRNlNLkxeA5erPsSVV1xJd3c3K1eufF8wnJfxx4loNIrPp+Q6NWoee+Jj+Of1t+AdxVQnckv+Bjv+jW7KbygkeHsx/lu9C8tuKqYmkd8c1Zn4N7oJ3prI+/eXUJ7IX/2HRqm8q5jqLUpZo1uPf6Mb3y1KH/LfWYx/ozu1aZyhT8eSm1gw1aPcQ6IPld3mxb/RndrIrt7iIcOYzsFvnibaGaX8Fldqblh5hwf/RndqY7t6i4fKu4qJ9sQY6YiQrtdQea/S3wIfKsK/0a1YpgHVd7sJ3lGcelZzgYlZZgmfjFLygTz8G924LlLmhlVbXAvi4r/NQ9U9blQqFWqtGv9GNyVXJcbZu93njHfeZTZUaSrSE/ZolfeWpmKYivc9Sl1bwIB/o5uiddlMhCdJN2oWlJ0fb32uDv9GN2UblbjklGehUqlo+qFygqPm7mIq75x7Vv9GN/7EXNx3i/Ju9AV6BhsiqRgmUX6Li4otStngbW78G93YK00468yUXFmwIIblt7hS8S6/sRD/Rjd5620L4r3zb45z7DttSgwTcfFeocTbc0ki72+di6HekYFGm5aKYeE6J/6Nbko/mJ+Ig+td8XZdlMeKDxeTs8qKf6ObwIeKzhrv+TGcnpxBZ9ZS8iHlZ/+dxQvL3llMzd3Ks+ptSgxrHvVjdOsp3+Rd0L7PGu8zfk4SQs4a762JeG904d/opvYx5b3WbPUQ3DTv79zmoTIxHvquK8C/0U1hpYPpyRmMNt2CdzM/3sWX5+Lf6MZ7hdJmq+/zkF/nwHVlYSqGZ8sRShyUeOttGWgy0s6fI7aWLIihSq3Ckq/0+3PmiDPiXf9UkOAmz6I5IhnDgSNjQjlifrwnx6fY9dKJRXOE/zYPlVuU55mMTaHRaRbNEQDuDdkUX1bALLOo01TnzxHrbUp7uamISCgCKnBfkjtX9iw5oiIxFw9u8ZJu0DAVVxbFzpcj/HeU4N/oJtoZZbw3RoY+XShHAGjS02BWIZ4lY3i2HAGJNnuz0u9D+0aEcgQodnT+2zxU3+eh7mOl580R82Pov6OIkivyF80RNXe70av0XLH6BnJzc9m7d+8yUWkZfxCuvvpqWlsVNbY6NlB7d5DyxPzfe4OL4CZPamO7+m4PlXd78VyTg+/6AgK3u1N5v/z6AoKbPDhXKISPmq1uKu70pq4T3FxM1b1KHrIVWwhu8pC/yp74u2cpe7cLdGC06tBo0yhel+hDW1wEN8/1+Yo7vVRvVXJJzqos/Dd6GDg1zJ5/aKTinhICt8/l54rN3lQeyvIblRx9cxHHf9TBzOQM3qsKUmUr7/ZSnViX0OXqCG7y4EuMs+WbvKjTVEQHFdJ65V1earbOu/9NHspvV+7R9yEPwU0e7H4lt+SucFB591zZwO1uAokcFriliOAmT2rD3+Y1o0pT7JmSZSvuSYwn1ynxzlmV+EZNxLv34BBj3RElhom8X3xZDsFNHorWKwsTVVsXxlCjTWMqrhxqKVzrILjJQ/GVOYlnK3pXvGsS8dYYNMqzJta8KrYujPf8GAY3ewje7CF4q3JP/s3F5yyrs6oJbvKgNWWw86XjlN1WTHCTJ0WKqNlaTOWWM+KdaLPpBg1WT2aKzJBss/PjHUzU9X+oCP+NHspuKCT/Yjs193io2LywHVZsVuZhvmvzCW7ykLvORiw8waxqlopbz2iziXi7N2QT3OTBvWFunA1uLsZ/R1Eqhqm5Sq2N4CYPJdco85rKOxfGO8OUnmqz9upMpc0m1ryCW7zvimHNfcUpUlxwk4eSm5Tfl9+htMNU2S1earYWEw9PKGsemzyU3ar83rdRKZsk0ZwZb+81RXivVu7hXDlifrwrtpagMWiwekyL5ojKO5UYTUSm0Gg1i+cIwFXvJLjJQ91DpUps73GfN0cEN3nwJcZZ94YCoRwBELzTS5bXzLa/PUbvnqFFc0Qy3u3vKHYr5YlrwtlzRJJ0VX23B1O2npmZWdCdP0fU3OshmGizKpXS/hfLEan3eHkes6pZJiPTi+aI4B1KvJvf6iI6FKfkAy6hHJGZr0WlUjHeo6x5nS9HWEqUGKpVKva9fEooR/huUX7Oq1XawMonfNiCpvPmiJKb3AQ3eTAU6qh9yIvvA/nnzRHBTR5sQUXZ+aqrrqK3t5e6ujpisT8NZaxl/M/AYlHyoAYNDz/0yIL2WrFlLg9Zy4xU3lWM7/oCau4ppmKzd8FeQeVWL9WJ71mtU0vlXcV4E+vr/juLU9+O4ZPjyhhxT6KvapXvLV9iDbr0RheVdxWjdSbIfJYMMgvmDmRU3OnBvykxntxUSOVdxakN6Oq7PejtOva/0sRIa5yKzR6CieuWXJ1H5V3F2KuUnfeqrW7l2ysOoWPDaI3pqXHWdYmTyruKya9Tvq8q73ZReddcXJxBK7OqWcInx8lfZaPyrmJclziVsne6zohhCVVb3aAGdYaKyruKU3tLwbuKF8QwuMVLVeK701yuzDm1FsUezb/Jfe54O5R4uy/JYaw7SlqGWol3YuO95p7iBbml8q7i1DibHbSjUqto36F8lFZv9VA5bx5ZsdlDIDGG+K4voPKuYiylBsY64tTc4aFiy8KywU2JMfmqXCrvKiZ7pRWzW0vZDYVUJsYEUMb+yjuV9lG0Xol3wWp74v6UGO79fCMnftBB5d0lVCX2JHJrspRnvUyZ11TcUZSKt8mpJcOkoTqRY+0VZqVtJca8wGbPu2LovTKP2g8XYypUYui5Vrn/sttcVNw5r+y8NjsZmcJg11Ga2CPyfSjRZs3njnfto2WKyte1SptNkjyq7z5LvOff413FZAWU9l99z8J4V27xUpGYz3kuz6HyrmJq7lfusepuN5V3nxHvxJpXwWo7lXcVU7TeyVR0GkO2bkGbrby7JLXmlb3SqvTlK3MTv3PhviQXV2Ld9lw5Yn68DVk6ZU35PDmi7NaF60tqjZosd+JA/LlyRIIYk2yz654MUHGnZ9EckRxXh09FxHLEvBhOjE2y53MnF80RlVu8VCbmhrHhCdIN6YvnCJJqc8WQpgLVIjmiWKf05RsKiPTHUWtUFF85N787W44ovTER71vcGJ06JsenQHv+HOG9zpXIJ+kMnRojXacRyhEAGXoNszOzKXW3c+UImGuzez53koHDI0I5AmCkNU7lphJq7vWw4iPe8+aIZLyr7/HgutpJ+c2Fi+aI6rs9aFVaLndfR1FREfv27ePiiy/mfxLyhuX/Tbjllltoblbkjr1UYsLBcPs4fQeVAaRze4jsGhvRhINB7+Eh1GlqGl/vpPaxEiajM4SOJMru6CNvlZPhTmXjtvfgEBqj8mgpZY8E2reFQK0ifEphYXYfGERrmfP1HG4Zw1RgoP5TQQ691kKGQUP/EUVJqWvvAEbnHEstfHqMscQGeFapidHeCO2/U/5u5+5+zAVzLLWhplHGE4138PAgVo+J7mP9hBsitP82RJZ3bnLSf3KEyTHFUzx0cpSc9nE6dygqNR3bQ9j9Fo59W5GGCx0fZjqqLDhH+iMMt4/Tu1+RYO3YEcJZkcXpN3s5/WYvpTfPdWoiLIh3x44+cmrtKVuovsNh1BlzsRvpiDDQMJy4hz4K1mUz0KTIRvYcHCTdlE7j64oEeeW9bgZOKTHr3NmPOl1N+IQSl54Dg+izlMlIzhoLwy1jDHco761zzxBaSzq9+5XrdO8ewJg7d2JkqHmMLK+JNU+Xc+Q7rZhy9XQnfL679gxgKZyL90DjCPFhJYZ9DUPYvWY6dyqNqX17H/ZS81njPdQaYbQ3wtTkZOr+7YG5E3+ho8Mp9ZtI/0wq3tF+OPVmB9k1NkjwB/qOhFGpVam6w+3jhI4q99u+rZeC+mxmpmbp3TWMMVtPmj5tLt7tEQaODyfuoQ9U2fQdH6Fv3wjF1+eQkTnXZkfaxhlqVsh+7TsGSNOmMXhYea9dewcoXOvAnPBQD58eYyTRT7r2hdFlZdCdjPeegZSyAsDM1Axde5W/039wALPLSOeuZJ/rx+qZO3UTDcfRW7XYy610/r6L4fasFEGmY2cIu29eDBNttvknPWBQNom69yTKJtpsquyxYWZnEqpGEYiNThAZVPrcuXJEKi4dEUJHh+jdNYy9ynjOHJGKd+Nw4t2E0GSq0eUo7fRsOSLcorT9rt2DZBg0DJwcJKfSwVDnGAbL2XNEz74wBqeOrn1h5Zq9EbJcJrw35NL8k56z5oiuXf2JNtCfyhEmr4HBlhHig+fIETuUHAHQu2sYs9u0aI5Iou+Icm+nfqiwb8+bI47M5Yidf3Ocyvs9i+aIVLzbxhk4NUL3O0NYfIZz5ohkvIc7InTvGGK4K473ymxGWs6dI5ILNH0Hh1M5ovaREsIdY6Rr5vrY/BwRPjHEcJkllSNmUdpc0sLyzBwx3D6earOdO/vJWWXFkKXHc2neOXMEQMe2PiVHRFX0nxxBZ04jOjCnwnRmjshb5WSsR2mzXoOfvZa9DIWHsNlsy4s2y1gSDIa5cfIK1UY6dvZjzp83dh4fSeWhoaNDWD0mOnYNMN4fx1psYCY+pzIXahhmYlTpF+MdowydHqNrl5KHknnb6NYz3hql98gQ01GlX4z3RRk6PUZPMu9vD5FTa6P+qSDjfTF6Dw0xmxRUicLQ6bG5PLRNyUPRwRny1tuYiEwSbhpnvFXp9+GW8VQe6trZx8y0k3C78ruuPQNobUreP/L1FoJbXHNzlV39qNLVjDSGAejeuzDvDzWOpsaPnv1htJkZhJJzwx0DGOedCB44McJ4T4yO3/YrKjRX56Ty/tniHR1SSOfhQ2GGijLpeEeJYdu2hXOVvmNhJseUfDHYElHivbOP8MkoOausC+YqvUeGmJlQ3kG0J8bQ6TF69w+gL9ATahjEPDb3d3sOLJRNHjo9lspDnTtDFF+tLHCc/FE73XsHSdPPjbPh0+OpuUrXTuW+B5rG0OvVxEbjjM2zXQg3j6XmKt17lLlK+EQ4Ef8BHEFzylpq8OQoI11KvLsPhNHZMug9mLzOXLz3v9xE+aZCxkNKmx1oGMVcaEjNDTu292N1z81VQseG0VrTGWmNMNIcZui0hc7EONu2rW/BXKXvWJipcWXs3PmF4wRvcy9os/PHzt5DQykFxuggxMcmyDCmY8rV0rEtlMj7c/FWzfs0Scbbc2lu6uckufas8U7MVbp2h7AUG9FblVh07Rl4V5sNJzzcu/YMkm7QMHBkkI7f9lN4uRNj8vQOMHhydG6ucnAYvV1L9wHl3bRvD5G/0kbbNmUcO1eOAOjYocxVjiXkq323FpwzR7S/MzdXAaXNGnP06G3qs+aIM+M9OwM6azpjvTFMefqz5ohkvNVpc3Px2ZlZdFZljnG2HJFumpsbhpvHUjlibCCK6rRYjjj2/Xbcl2QvmiMA+g6NYMzRc/q/+oh2RsnfYD93jjgRZqg0k67d/Yw0R2l6q0soRygxVL5nknaN58oRyrtJzFWAg19pxnt9HvNdqc7MEUq8F7ZZa5kezxX558wRAN375uKdVF5KHp86W444s82aPQblO+Y/O8+ZI1LxDsXpeDtEzaNeJsemz5sjknNDbaOGNavr+WHXv7N79242bdrE97//fZaxDBk899xz/PKXvwSghEpsqhwGG0cJHQsD0LUzxMzULMOdSk7o2jWAxphGy1u9ZBbqmRybYuCUYk/btWcAVbqa0cR3UOeueXk/2eQT07Se/WEyjOkMJmw+Onb0Y5x3mjV0JIyl2Ej9U0EOfacZQ7aO7oR1W/v2/tTJ82TZZN7PqbMSbh+la1vy26afLO9cH+o5NJjKQ0Mt4wycHCHU0E+kI0bTz7qxl8+ffwyk5oaxcIyBkyP0Hkh+d4ZwBq0cf1VRg+7eu9BiaODkCH2HEv14Z4ic+DTtv++n/Zf9uK/ORp0xl/cHG0cZSCijd+0KMTtLKu93bA8tyPuDJ0ZS8e7eO4A6Q83wqeHUu9FnZdD2XyHaCFG2sYCRrkTuOzCM1ppB6KiS3zq39afykL06k9DRcCrv9zeMYcrTp3JWx44BLPNU8HoPDZFdlcXqT5Zx+OsnGThppmuP8vxt7/RhL82cV3Yu3p17+8mpzKIrsQbTuaMfu39evPcOpOYqsfAMQ80jqZ87toXIrs5KKQR17x1cMFcZODmSarPHXj1N7koHkf65Njt/rjJ4cpSBE0q8u/eEUOtUzEzM0LVngLR01YJ1rIFjw4Rbk2uBg6Tp0ggfD9OzY4bo4MSCvN9/dDgV797DI+jtWnoPj6Se1XNlLtZipS3Ob7ODDWHMbiPd+xLf2O/0Y3XPjbPTk9N07lTiO942ysDJEbr3JtcNQ9h9czEcbh/F6s7E4bfQ+LMu5XR/omzHdqXNpuK9b4DZGWh5qxdQrM+SbbZzRz+T1dMpi72uPQML5iqR/hjRIeX+z5UjUvFOtNnQvmEy3ToK1jvPniPOiHfP/jAGpxatVWn/Z8sRqbnKkVEM2Tp6DocpWmVnsG0EY9bZc8TwqWEGTpro2af05aGWUXJrbJTclEfTf3SfNUd07w7NxbvcDDGFlBQ6McTEoFL2XDkCYLgpRtfOxXNEbER5nu69g6gzVJx+U3k358sRXbv6Uzlizz804t9UuGiOSCLZZnt2DKLL1Z0zRwCpHDF0fJzoYCeeK5wMt4wknvXdOSI5VxltHk7liOAWF+GOUdJ7NfPKzsV7uDO2oM2qNEr/1+XqiPXE3pUjFsR7W4i8tTYshSYK653nzRGd2/uYnpgh0h+je/cAhlwt0YE5leQzcwQqiHQpcSmY8mLPstM/2I/FYlm23F3GkpCensx7Ki5T3UzHO/2p8QGge99g6hs13DpO35EwvXv7CTeNYQtkLljz6trTn5qrxEfiStnEN9PsDMzOzmIu1jFyOkbXrv65day4smYeSqyxd+zsZ2pqmpUf8TPaHaFz58K8Hzo6zOCJRG7Z08/M9CwjXTGyAiYmxicZbBoj2q30h9CRMIOJ76neA4OoM9SMtSZy2PZ+dNlKHmp8vZPZyZm5sfPACNrMDAYalblh5+9DGHLm8lDP/kEivUqeHDgxjjEnTO8B5e+2bwstmBv2HhgkNjRB1/ZBtGZwXVWQyhdt74SwlcztcXbvHUjloZGWWCreAB3bB7CVz81ruvb0p75R4/1KvPsODTF8KoK1zIiz0pqyZOo8I+/3HQnT3zCM1qFlsGmEqYlp4iNK4Y5t/QvmKqGjwwyeVOLdu7cfQ7aWis0eGn/cSceO0IK5SuhImPBpJWZ9B4dI06Yx3DgCzDAeii7Ib70HhhhNrKv0HR1BZ8ug/3gy74dwVFtSqk09BwaJJNaxho4P01dooO9QYi7++xCWhPPDkW+14bk2h4lE3h9rH6HvSJjuxNywfXs/tnlzw+59A+jtGYy2RRkLLWyzHdv7ccxbN+za1Z/K+3u/0IhvY8G8NjtAfHya+MhcvOfn/fFQFINDhynfSPfufmamZhlLPE/H9rPE+9QohWvtqXcV6ZyLS8a8uUrfwSGG25J7d2Fy62zos5R22vFOCMO8uUrvgaHUHlD/8TEM2WH6jo7Q/usQ2SutZM7b4+zZP0gkOVdpHKHviJHu/co8oe3tPooucdKxvT8Rw7PnCFDmkbayTBrfUPbAXVc7z5kjOnb040i8t2S8Mwv1aJ1a4ol3Mz9HTESnU/ZpyRyRbtAQC09gyNadNUeA0j/nf89MxafRJuYjZ80R8+YqfQeHUjkiPjJB35GwUI449r0OXJc4Fs0RAGOtiTa7q5+xjjj2KvO5c0TXXI6Idsc58XqHUI4ApS84R6dS/IRz5Yjk30nmiIZX2yi42I4m89w5AmC4PZJ4r0qO0OdpKb027zw5ItFm5yknMQskpvFnyxHz9zh7DgySVZaJwakj0jVM35Gz5whQ+v3E8CRd2wfJzNMzMTZ93hyRXOumS8uaS9bT3v593nnnHbZu3cq3vvUt/iegmp2dnV282H8v3njjjZTViIN8VqjqF61j8RmwlZk5/dPeuX8UvPXkRrMofBsLyPKa2PXZE0Ll7VVGym92Ew9PsPeLp4TqrHyiFK0lgwOvNKc2/RfDmqfKmZ5QlD5EsfKJUnoPh+l4u1+4zqqP+2j7XS99+0aE66x/LkDo2HCK3LAY9A6ofTTI5OgUuz9/Uvg6a54qJzIQ58jXW4TryGLFw16MOXoaf9IuFYP3AnkXZTHaHWes+cIqqdS/GGRidJI9gv7IS4JBOUk4eHhQqn++F6h/IQgq2PZ/xX1ypWGAdR8P0LEjJNw/DQ41Kx71y70bA6x9ws9YZ4Sj32oTvr3ax0oYOD5C269CwtdZ/ZEymn/VycBhMd/rvIuy8FyWy8F/PiHcBtY8XY5Glyb8bpIxm4pOC+d015VOcuts7JLw8JUaZ1RzH6MYoOyGAk5+T8z7d3fmLxgeGaaqqopDhw4J398ylqHT6VILfVepbhOqU357ISd+0pEiWMhAb1OniAKLF1bsb1t/3UvvnrBQlTVPlaPRp7Hts8fE7k8P9U8FmRybYvffi807jG491Vs8nPpZJyHB+UDOKiv5a+3s/1qTcNzc12RjKTJy6BUx/2hQrDCMOTqpPLX6k2WkmzTiMQNcV2WTt9LGzr85LnydpaD+xSCz07Ns/6uGC3odWehzdViLDXRvH7yg10m9mws570Cx+dI7tfTuDF/Q68ii8BIH7styGGoe49i3Wy/YdaoeKEZr0LDni+Lz26X0m9KN+TjKLOz4f+LtOZU7Xm4SrlN4uROn38z+L4nXWfl4KSq1ij3/IBYDs1dP5ZZixntjHPxKs1CdVY/7yLAqKndJEuliWP3JMvqOhml9q2/xwgnobXOqTTLwXp9H94Ew0c7F7+3A7DuMZAyQmZnJV77yldQaxjKWsRgOHDiQshpxUkiNat2idXS5OnKqzLT+QrwfpOpaSZEeROC6womz0sreL4jlAkOhjhX3e4n2x4VzTtWHPWQWGDj8zWZGW8XWvOoeK2V2ZlYqr9V8xEvo2DBdvx9YvHCyzsNeunYOEEqQs0Sw9hk/oYYwzT/uEaugg/qng8SHJ4XjDFD3aCnx8UmOfvPCjYf+zUXYy8w0vdVNz44LO8eRhbPOQmwgLtxmlor6F+XfzVKQsyqL4bYosb4L+zyyWPdpP2qNmm3/34Wde655qpyu3QN0/EZwTTrZb8KT7JWZrz1Zxlh3lIZ/axeuU3mPh+H2MdpF18t1UHOvXO6wV2fiu66AQ99uIdIh1gZWPu5Da0lX5p4iVRIxk/nOda6w4Lk8h91fOil2DRSFpVh4CWu3OkUtrVFwv2CX6S1GRkeorKzk8OHD8tdbxp8t8vPz6e5WFKNF17w81+bQ8nZvivwiA61ZnSIViKDusVK6dvbTI7jmVfvREvQ2LXu/cFz4OuufCxIfmWDfP4rtHWodWlZ82MOp/+xm4LDYmpe5WIf3ynwOfKtZOG65q6zY/WaOflt8X6L0xjwsJSb2fqlR+Do1DxZjzNWz9wvHUgSbxZC90orr0mz2vHxySe1AFOs+E4CZWXZc4LU1WWjNaiw+s3Jw/QI+f/LdXOh5hz5Pi8GhFW7P7xWsZUYqNnsYPDlKw6vi/UAWZbcWYHTq2P9l8W+pFQ96MeTqpPpN0WVO8lbZhPfaQImBa0O21Np39korOTVWDn+tRbhO1f0eNLo04e9JrUOxlRztighfp+peN5lFRo58p5mR02ITqdpHShg4OULbfwnutSI/ziSRf5GNkdZxxjoW79SnZo/Qo2tBp9Pxyiuv/I+seb3ndm+RSCT1oOlohQhKAIHb3OTV2VJWWiJY95kAzhWZ4hvHib/d+HqnVAcbODzOiR+2ChOUAHoPh5kcnxImKAGkpavR6MTFr/QO0FoyyKu1LV44gayAgQxzOgXrnMJ17FVGVGmKrYkoov0w2hmhbVvv4oXnYddnT0gRlGo/WsLKx0ulrnHgW830NYTlSFrPBxRiiwRWPlFK5X0eqTrFV+RRdYd78YJ/BHCtd+LekIP7A4XCdbICBtY8XY5zRebihROovM9D/YtBTF7x5NH2Th+NPxZf3ABwXZOd8j0VQgR2/HWDFIEw0j9DpC9G668FF0YT10lLVy9gSi8KA+htWnIlcocp10B6pgb3pbmLF05gZnIGlVqFo84hXGewcTTFxhZBpH+GEz9slcrpbb8KzW38Czab5Diz+hNllG8Wb9NrPlqGo8yMwSV2oYqRi7Hb7Rw+fJiKigrh6yzjzxtVVVUpgtJFXC9Ux1qmx+43s+ojPuHrBLe4qH1MkY6VISgRVcZ3UYISKOWP/3uLOIEqCtHBOL2Hxa+RXWFRbGmjU4sXTiB/rR29TYteLz4nyqnOwjTv1IkI9BbFUksGLb/pYaQjIkU6a/tlnxxBSQ9rn/WnbJpEcfJH7TT/qlu4vLPOTP2LQcpvF8+3OausrH6yDKNbPNbea3LwXp2Ho1p83vF+RsVmDyVX5y9ecB4q7/Ow4pGSxQvOQ/0LQdY96xcu3/HbfnoODXLsNbkN2bqPlVJ5v0e4/OFXTksRlEA5ARc+PS7VbzL0GtQalVRbS+WOAvE6ebVZ6B3alJ2gCDQGDWk68dwx0hxlcmwqpYoggj1fbOTY98QJSgC7//6kFEEJFIKSs87MmmfKhevobZBbl0XVna7FCwMrVBdRW1PL4OAgt956K9HoEli7y/izQywWSxGUtBiECEoAVXe5KFjnSNlAiWD1U2XYqzOlCEoAbf8VkiJnRDpiHP1usxR5qGffEPHwpBTZRKNPI90oIfiuA2O2jvyV4vMOXa5OqbPGLlzHUKhDna4mQy9xbzFFNaRjm/j3PsC+L52SIihV3OOWHqeP/7Cdrr39UgSltc/4Wf+c3JpXzUPFBLeI5dskSj9YsMCO5I8ZtqCJ0uvy8Vwhvr5qKNSx6uO+lG2bCHw351P/YhBb0LR44QSa3urm+Otym2Q5q7JY81T5nHqbAHZ99oQ4QQkgBsOt47T8RmLNC9BoNeit2sULzoPZbSB3hUTu0KmV3LFWPHdMR6dQa9Q4A+bFCyfQe2iI8VBMmDxETFE5EyUoAYQODCvlYwi/zyRBqeZhL+W3FixSeg51D5TirLKmbAsXQ/XoJWRnZ3PkyBFWrFghfJ1l/HnjtttuSxGUNnCjUB2tU0v+Kju1D4iPoZ5rc1jxoGKzI7xxnEhN+14+JUxQAtj/T00c+U6z1Ab1aMc4oSPiBGy7z4hak8bMlPg1XBdnY8jVoTWL59y8VXYsHlMqFiLQO7Sk6zVSxJmWX/cydGpMmGgB0Lc3zJ7PyRGUVn2yjNw1WYsXnIeGH7TS9DPxNS99npb6F4L4bhHPt5ZSA3WPlWJ2iwe6YEM2vusLyK2yCtd5P6PyLg9lN4qvEwL4bimg6sMeqTrrnvWz9mnxdYjwyXHat/fR8Ibc3KvqXjcVEnPpk691ShGUAFrf6aO/YViq36Tp1KRlqFO2cyIoWG3HlKeXap/5K21k5htS1oMiyDClo9GLr3nF++NE+mL0HgwL1zn8jVYpghLA/i83zRGUBEMQH5nBUmpg1SfKhK+DFjyX5+K/XYxDUKqqpDq4guHhYW699db/ESXL99zuzWick1i8VH3T4mpICcWJg/9ynNw1OSkrrcVQeLkDtUZFVrmF0IFRoTprn/CTJnmSpPI+D00/aRFWDkmi4+1+KXICwPa/ljtdHu2H/V86RlRCdGeoISKl7gQKSWvbYXkWrAwDEhRll569g3TvGFq8cAJaS8YCOUIhRKDxB51SVca6o6Sly11Ia8lAY5Drgr2HhlISeKKofyFIJBTjwD+LnX5eKupfDDLaKc44bdsewpSnp/V34v0gIzMdjS5Nql+Hjg1hcGiZkQibbN8EMDq0qDUqctZY6N0l+EFggJqtXvqODNH9jli7Xsp7lFZmiMCh77RIKXaNNcvnjt5dw+KxSkBUrW0+kvk5cFcRXbsHGG4Ue67qB4sx5emlYpGeqcGSbly8YAK7/ukk3ityibRHlfFukTHRoDZgGchngAEaGhp45JFH+PKXvyx8vWX8+eEv/uIvOHLkCAB+VqJXie1mh09G6d47yOm3xReITQV6KeKMLWDAf5uHocZRGl4VI4baK01YSzNp+mE3gw1yqoIyCiUAp3/aw+mfyi2Q73+5CX2uTpykhbJ4L0NmAKSJFgChfSPCilAA+Rvs2Eozpcjh+avspGVIEmOB/kNiY3oS8fAkk2NTKetnEdhKM0k3akiT4Ha1/KaPovgM/Y3i91f9QDGmXD3b/vLCnhBb8YgXg10ndZ327f2kpasWLzgPxhwdaRq5Oe54KCY9X236ofiCXRI6SwYagxxZL2+9jewKKwf/RWw+1b19UFpJK2l5J4P9X2tCr5dQoAPl9DtIEaiWoooms+mVRPhkFL1NTfEHC6XiUf9CkMnoFLv/TuyajjILGm0aOausQkTX6CDSY1vmniJmZ3cCUFRURH+//HfCMv68MH/Na4PqOuF6u//pJO4N2cKEI+cKC+l6DQ6fmQHBcXTVJ3ykG9PZLjF2+DcV0vJWF8NNckowoQPDUkpFgNTBEgBiKGojMlV6Yuz74nFiMfF8G+mIScUsiePfkzv4VHWvh76jw/TuEV/zMji10sR1YqTsrkQx3DK2wE5CBAaHnumpaak6ndtDTE3InRhe/5kA431RDr3SIlVPFuufCzLaEeHIN8WuM9g8RuhIOGWNK4K0NMgwp2MrMQn3n9DRIcxFRibHxedeoX1yfRNAb8tAo08jd4VNiuAWvNvF4Kkx4TpLURHb/tfy/fPA15uF1Y1AIens++dmKVWscGNUWjWi4zf9csSuxHUAiq/PIdw0xtBxsT2K8lsLsActHP1us3CONzh0ZEiQSfe9cgr3hmzhv69T6cjtK6WPPg4dOsTDDz/MP//zPwtfbxl/fvjOd77Da6+9BkCQVWhVYru/8VCc1l/30rlbPEfbSjLJMKcvXjABfZ6W2gdK6G8Y5uRrYntNpkIt2dVZNP+0R2oDHOCIZP7s2j5Il+S37pFvtaF1aIn3i29k7/9yE/o8rRQR6PASXFSGT0UYPiX+7WmvMuOssHD8jXbhe8sKmMgwauZsnCTuTQYzUxDtj9N/XHy8zirNRJeVQZohHdEH6tw1hEqlokfiQGfZrQXYyszskNyrlkVgswuLxyilUN3+m140MgceUEjL6TIHEYDh1gjTk3Jz3LZfiCvoJGHI0TE9JWeEZa8wk1trFVYuG2oYY6hhTOoaLT/rpeVnct8SR78jnzsOfCOxbieRO2SUOFPXEVQNn4+R0zHF8vLKgpQFoAjWPetnMjbNXkF1c2uJiQyThuyVVvr2hhevEIfWX/fSf0h8bDPvL0Q9u4dppsjLy2Nw8L1V2n1P7d5MJhPj48pE+Sr17co/nu/yKhW+2/IZaR2nd/dZEvJit25AmNQEUHm/B505XVj+PitgIHCbR8qyrPj6HPLq7DT9vFN4c75ggx1H0MJBCXKCxWdgehopkoHBZWA2EiEq8S1k8hqwFRvFLaES9xbc5KblVz3ChKOkPdzEyKTw+1kK9A5Y8XCAngOD0os271esfy7AaFeUI//aIlxnKXZv658PMNw6zjEJ6c73M9Y+62dieFKafSwFA9R/St72cPWTZcxMzUhZP+odkLs2R7pdO1dkChPCkii83CFF9MpZYyG/ziEV67XP+FGlqYQnxIZ8HSse8DIVmxa2R8quM+P9QAGHvipuRyc07qjOvkFc+4iX/V9uXnRcBNgx8wvi6ePYbDaam5sxGCRkBpfxZ4PBwUHsduWkZxbZrFRdIlSv+oFiKfnVBUgoIwkVLdBTfbebhh+0MtIsVkna5g1FWXM6Ni210V7zsJeOd/oYOCL+oZa/wU7X78Q/AkAhXclcA8DzgRxaftsrRUxIqkrKqH6+VxZkKx4pId2YJkxKeL8juNWNudAgtWCzlFhX3u/BlKOXWrB5P8N7fR45NdYLbvm3FPu2/A123BuyOfDlE1IkosLLnQw0jBLtEV9c1tvUkJEhVcdapmcyjpRyUc1HvHTuCAkTBPPW2yi+KpfTv+wRJm0lY73/q83Cz7Pq4z7Ge2PCxFVAatyZj7z1NvQ2Lc1vihHkDmf/jr6+PioqKpbtR5ZxTng8HlpblQ0iYauRa3KIDk5IEVNS0CGutoGyIW3M1bPvZbH5gC5XR91DXilbrJxVWZRcm0fTz7qFn8kWNFGw2sHhb7QIlQdFcSZdixR5Spetg4kJKcsiXbYOW5lRyk5Ol61jxYc9tPy6T5zMsUSbq6Vg3af99OwbouWtP401r7XP+BntjMiRYpdg97b2WT/DLePS5LP3K1Z9wsfE2BSH/mWJ332CWEqsax9VlE1k1Nt0Vsiuc0rZaABk+Y3CpJ4kctfJEbWy/EYK651Sh3VXPuFDo0tj50uCBPMl2L5ZSnSU3+Lm0LdbiYnOPSXHnfmovMcjTPI7PLuTsLaPzMxMDh8+TG6uuGr7Mv58EI/H0ekUJQ87edSqLhKqF9jsWrrlkhbhDXOtWU3Vh0tp/EmHMEml7rFSdFkZ7P1yk/Bm/qony5idnJWaP1RscdG1b1CKnCC8ST4PllKDNEEn/yIbA4cHpZRdqj7sIU2jliIbJG2utv3tsQtqdRa804Xeqb3gFrPvFUpuyMMRMLNTcH8Flmb35rulgKwSk/whhvcp8i+yUXSRk53/cOKCtrfqB5RD9zL2bfYKM6XX5XH031qELMKSyF1lZbgzSrRbvI7WDGi1xEPidUyFCilQ5t78m4sIHR0Wtv7LCpjw31JE69u9wuTNZA459K9NwvdW/UAx0aEJGl+XEEmRGHfmIytgIrNQL0yQO5L9e3p6e6iqquLQoUPyF1wi3jO7t61bt6YISvXzrUbOtlmrUqX+3em3UHKNuC2B3gFrP+1XrHPkxj+OfL1FigAz1BCh7fd97P6K+KaKSqVidmaWXgnpxYJ1DozZOvTijkgEbnNTvcUjXgGoutNF7aNy8s2BmwsprHdiyBeXdnMELajUKmLD4j0rqQp19DsSg/kS9uytpVmo1CrUEifG7VVGqh8qlno/S4HBoWbN0+UUbBCXFgbY/lcNUgSlpWL7XzZIE5RWfdxHxVY5+e+lwHtDLgFJmXG1RiV9Oh+Qa3cROPpqixRBCUCjS5OyfgRY8ZEAeXVybWf1k2X4biySeqY1T5Ur0q8SOcF9aS56p1bqOlOxKWYmJU6/dsXo2NkvTFAC6Ns3wo6/bhAnKEFq3FnxsJfqB4uFq5VvLkDv0OK7LX/BGLgA8/5tnfpqfD4fvb29C05rL2MZ85EkKKlJEyYoBTYXYcrXU3yd+CJgzYPeOftSiY3iaGeUnX9zXJigBMoJ+7bf9EldZzo+zWRU/ISL3qZI+XslbLHMXj2ey3KkLGb1uTrKb5mzyBNF/ho7a58Qt9ICxeJJVr1x99+f5Mh3JDct5AShAEjXp5EmqQAQ2FyE+5ps+YtJIrjVTe1H5d7PsW+1XvATZaB8t8gSlAovcbD6UxIywUuE3qam6oFizF7xBpGmU6NSq7AFljCBl2h3R75xSoqgBDAdnUaVpsIpYU9rLdPjutiJX8IOAz3UPuan8i6JOasegncUU3G7eB19rg5jjg7P5eJ5PnxikNnpWSmruCPfOEnTW11ShKs9/9AoR1ACiCo5eM0z5VJtofiKXHJrxWX6i3sr0Ov1HDlyhI9//ONy97iMPwv8zd/8TYqgtIqrhOvlrbbjvSZP/EI6WP2pMjLdOumN4hOvdQoTlEBRHWp8s5Oj3xRfh0nTqZmZmmH4lDjpynN5Lpkug0IiEkTF7S4q7vJKWU9V3llE3eN+qTrlt+TjuTxH2KoIwBEwodaomY5JnLCOwba/PcbRb0kckpJ4jiSsPj2qNDVqrbiyYqZbR8U9bnTWC7yErFOIM/mStsE7Xzq+JBVDWez8m+PSBKWaj3jx31F0ge5oDkWXO6QsuEBZV0qX/D4ApNvd4W82S2/Mphs1ctaPQPWD5RReJG6tB8rBlMDtbqncU/toCd6rc5UcLAjv1flkFhik+tBkZIrpuFwOafllj9TBnOGmGLs+e0KcoJS4DihW71X3eoSrua/Oxuw2ULZRrJ1WqdZSXlZOf38/eXkSY+Qy/qyQXA/VkC5MUHJd7STLZ8JzbY7wdcpvLySwOfG9JbFRHB+ZYc/nT0qRdPa9fIrmt7ql1EamI9NMjE+K35gWLMUmiq8Q/x7UOrSUfjCfWhmLWa1iOb/iI17xOijzwuqHxK20QLF4Ss8UV7kCOPAvzRz61ya5zX85ASUAMjI1aHRycyjv9bkUXCy3j7MUlN6YR/UD4vsXAE0/6ZYiKC0VjW90ShOUnDUW6j5WKmUPthRozVC+qVDK7kytUaPSqMnyitvzzl1QvOiJH5yWIigBTEYmSMtIw1qSKX5LTi3ea/Mpv1Fu/rnyiSCVm+X2aavvKxG2LwPl/dhKM3FfIr5uPNQ8xszUDKo08W+kA99q5tR/dkmRpw69clqOoAQQV+K98uM+qbZdflMhBavF1zF9vasxmUwcPnyYJ598Uu4e/wC8J3ZvbW1tfPvb3wYgBxcG9XkWn8/YmD3wzVb0ZvGGUXRlIWnpamwlBiJtYhOANU+Vk5ahljq5W7DBTufvBqRtoZp/0kPzT+SsQ3b97QnsVUYphaMTP2wlb6Uca6ZjWwi7Xy6D7/7yScpvKpSyeGr6UTdNP5K3dJB5foC1j/tJy1BLnUrv3jEkZScH4NqQi8GhI81sgH6xNld2RyGOMjOn3uygT9B6JdObiUaXhtllpBPxU3wWn4Hhzog0aU8WhnzlVKIMoSPDnE6aVm5jct1nAqhUSPXXnBqFfCaD7X8pv8G48olStJYMqTYnaj02H0tRGWj5jVzeAejYGcIZtEq1naafd5BdbZfKCYe/fgJVhk7qOjIqUkm0vdUHzOVvUVTe68bsMir2mYJ5yODUMTsjLlR44tVOXFfGafvVvAssYv+Wf7yCYyhtrbKyMmXptYxlwBxBCeAK1S3C9RpebafwEgcdvxUfdA3Zcl/p+lwdtQ96GTgxwokfdAjXy1lrpXdnWOreAHZ/To4IGh2cYf/XThMdFGcxjDRHGWocpXOX+L1Fh2OMd8fo3CV32rfl171MyixAsTSLJ0CKQIYe6p8KMt4b46DE6bWlWEll+TKxTBhpTeR1Eax/LsD01Ay7XhJf5DDl6aQtVJaihLMk6MGcp5d6RxaPkXSDBrNXvF7+Bjuey3Lo2jVAy8/FFBeMhUbMBQaKLs7maLOY5Hzja500IvmhjnI6f3J8SrifyyghJdG7JyxkJTYf4ZNRBo6PcOIn4jmOKIx1Rek9IvEtEoVw8xgd28XzSLQnxvF/b5GyzIwOys8/o4MQ3RkG5vK3KNY/F2BidFJY/S2rNBONNo3iy3OFbTpP/rid8T7xXGpS2ciM2IkQ4Stf+QqPP/44paXixNRl/GkjHA7z6U9/GoAcirCqrMJ193+1GYNDfGnOvSGbdIMGq9fEaKvYWFP3aCkZFg07/p/4fMBZZyG0b1jaFqrr9wNSqkOgbMhZfXopG6Xjr7dRsNYhRdRq/V0fOZVZUnUOfqMZ37X5UopNS7FrAiCGlA3dqod9ZGSmS51KDzdGpa3rii7OxuoxYcg3EAuLKS64rnBSWO+k+Zc9woozmTk6MjLTMbuNUvYzmW4do72xJau7iGIpSlwGp44Ms9zS++pPlZGWrpbqr/mr7Im1NfG5lMzfT6Lqfg+ZhQZFdUIw3qJ5aj6WoprQ9FYX6Qa5Der23/VRsNpBbET8Hk/9tJP8VXap59r71UZ0Vp1U21mKwlWy3yTztyh8N+fjrLCy76vidnbmIrmDBa2/6GNybEqqb2cfKQOUk/zBYJBjxy6swu8y/rhQU1PD9LRC5LtM9SHhem2/CDExNEmPxPedxWVErRHfV9Caoe5jAfqPDdP4wy7hes4aC6GDw/TsktubknaBiMPeLzfBhPjGerw/Ts/+QfqPhaWuM3ByhP4GCbYEcOJHEt/QCSxVpUiGXACKYt1oZ0TKjm4pVlI5NVnMTM7QKTGnXvOpcmZmZtkjscZm8ZhIz5Sbp2jNashIlyLSLQlaMDm1Uu8os1CPzpqBocBEfERszmotMxK83U3nnn5afy62xqg2anH4LWjS1Rw9LUaUX+r3wfrnAkyMTQm3cRlyUhIjp2Nsk/w+iIfidO0ZoOVtOWXWwVOjDEjmhN4DQ4QOi88f4iNw5DvNcpaZcdgpsV6crJNUl0vmb1GsfbqcibEpYdVQi0uPNjOd3PXZwu302PdbiI+J709qVVqyxzyMcYSXX36ZBx98kGBQTtRmKXhPSEput8JyU6OmSr327IXOICeVby6gc9cQY80RKW7Fye91cFLS5m0qNg0y/AUDuC/LoejibKmT0muf9dO9fzC1US6C7DozfftGGDgsJz071BBhqEHuJFHn7wakNu4BiMCJV8UnDgaHGn2eXvp56l8MEh2Is/+fxCdd4dYxjA65Iz4Gh1pONQXY/09N2KuMUtZ6saEJZqZmGWsTl9Ts3TUsbBGYhL3KiP8WD6NdkQsu4bziAS/TEzNSG6FLsZCR3ZgFOPxvrYz1LIGllfzmFqwaOj5CdsAiZTWZtDKM9MU4IGHpiAFyKi3CbaL7HXn7gO53hqTrDRwel+7fCvEnphDdNGphgikGWPPRcgYaR4SJj3kXZeG+LIfsKqtwPgm3jZNZaCAjy0BUkIi47XPHpImBSYJS5f0ejiQ/dpJj4znISrVcTkvWAU6fPs0nP/lJ/v7v/17uosv4k8Szzz6b8g++aL565fmgh+Ctbo59u1WaBLT9rxqk1Cv0WWpmZ2YJnxYfA2sfK0Fv0zI1PiVsj1a6MZ8st0mKBGN065kZjRPtlPcOWor6x8F/kV+skLWUc9aZCQkSopNY8UgJBoeWbX8nrjij16uZCE/SJ+Fln2o3kuHe9tlj6G1ysk2To1NMTsh5xssQmpKofqhMmiS/FNTc48WUo2ffPzYIE2+OflOMMDQfw20RpidmiI+Iz7/6D40yM3laigSThN6mliISRQfjjIjOGxKofbQEvV0rtakLCXvGpjHh9ipDwkxiKVabS1GPSL4bR3WmsOUbKHaT2VVWqc3Ddc/6UWeopUhK05MzTMXF20HrW320/k5OZS/53NYyPfaglaYfLj6XrFKtRVeoprW9lWuuuYbmZvkcvow/TdhsivJLGhqqVOdY8zoDxdfnMHh8mOGmGDHxJSJaf5Fo7xJrrpOxKdL0cie4fdcX4L0yV+qk9OpPltF7cEjKbskWNDF4bIxwo9xkYLQ1xvFWuTy7FNIVMaQ2GNFBlkfePmr980EifVEOflV8HBg4MYLZJaeqq7OqpYgSoIwzVp9e6h3FR6aYik8z0iE+Ro+2xqTnTzqrmup7SxhpH5faMFwK6j7iZSoubh8PSBPCQFkvTNfKLdcf/rdWIv1LYGkll0wFq/YdHiZdp0GnU4sT6nSw/lNBxnuj0uuS9upMBgTnKaLl5mPw2BiDx+Sst0dbY5xolSTWxxRlOp1VjdqUQaRD3Fpt5UM+hlpGaf6xGAk7y2/Ed30B+avtHBRcYwy3jGP3m9FZVMLj0Y7PH5cmBiYJSv47ijj+o3ah+hdzAw327TQ3Ny+veS0jhe9///spK5o1XCNcz7exgMbXO6UISgC7/u6ElJJJulnLzOQMw+3iY2DFFhcWr4mZmVlhe6LCSx04Kyzsf0VcDUjr1MIsSyKYNL8pfwD6xPflv4lFnz+JrICJoeYxKUWkwGYXVq+Rff/YIE7q0MJYd5TQUYm5ZLLdSIZ7+981oLfJHQiNDsVhWpyQACzJYrjyvhK0ZjmS/FJQflMhjoCFw984xUirWACb3+yRbqfRnigT0SniQ+JrXtHuOIe/1SRHgklAa1YTHxGfi492RBiTOMgBSj4xu43SB83MxTriAxPC99fyM3nr6OOya+co6l2ySL4ba5mR8Enx77LcNVkUrHNIER9XfaKMDJOG0PFh4b4+GZ1mcnxK+Bp9e8P0HQlL5ZJkDPR5WnJqrELvy6vyM5k3Skd3G9dffz2nT19YTgG8B3Zv8yU5r1Df+u4CKvW7bW0MYC81U7lpEdmv+fUMiiKSDDkgiX3/eErqI5MIhI4P0/q2eMKzVxlJy1BjLhA/aZBdZ6b0+kI5GUWDQuipvFdc/gwUdZqqD3uk6qx5upy1z8rZjfg3F1N+sxuLTzwOegcKoSckl4xPvNrBvn+UU1tZ8aiftZ+WeyZAmpTR9lafvI3UEhDpHmesN0rnTolVzyVipD1C7yF5Iows9n7hlLSKzlizvJJU3ros6j8VpOJWcfnBtrf6FMtIiWtF+5X2HR+VI1+t/2SAkg/IySmW3VFI/YtBKWtCi8/A+ucDuGRsdQxQ/0JQLnehEN2q7pSQe4yARp9GlkdcJrP7nSHGeqLs/1dxwmPH2/1s/8sGOdWrRNHAFtdCq0H1+RU5XFc7MRfoWfHwGVKrKhWqtHfXtasdVHgriEajfP7znxe/v2X8ySIajfLSSy8Bykl+vUqMyFF7XwnWYiM5q6zC1wpucVG6MWGJJrGvNNgQYftfNUgpkxz/tyZG2iPCBCWALLdJ2iagcrOb2sfk5gG1j5ZQ/7zcyQLv9Xms+3QAfYE40UZfoKf+haCUFR+A7/pC1knO1+LhCaYmpuXs+wZn2PPFRrolTsdWbvZQ/1QQa5mkT1wUaSLZni82Ci/U/yHoPTDEUKP8JoksOreHGG4fJxq9sHPJ8VbFllHmvQJLIiite9ZP7Ufl2ur+l5to+rHcgkVkIK60b4lm56wz49/opnKzR+paa5/1s/qTchZ71Q8UK9ZlEqi8z0P9C3J5qPajJZR9qEiq/1mKjGj0aVK5q21biO69cu1n19+ekFJkAyCqkNxk4x24zUNOlbjtm69jNdnObE6fPk15udx7WsafJtauXcts4kDB5aqbhevl1doJ3O6RutbKx33orEhvDB/+eou0smTXzgFafydONtLl6kg3ajAXipNmLCU6/Le6qHlIzmZi/fNBgpJ27qufKqPyHo9UnZWP+5R1RglUbHIT3OTBXi1ul4BOsTOPhOR2sE7/rFc6V9Y95mfN0/K5S5ZE1rtniF1/e0KcjLFExGIzDDWP0rlzCcpVkhhoGKZ7j+TBziXg8Nda2PcluTWvSIe8kpSlREf900GCt4n3pd49Q+z70ik5olsMpuJTxIcmpO5v7dPllN8kZ5Xnvjqb9c8H0eWKH1jV5epY+4wfzzXi1k8A6z8TkM5ddR/zU7lZYr0+BlpzOlaX+JrX0PFxws1jnPieeG4IHRhmx/87LtfPE+3Ne2Mu/k2FwtWcKyzYyjKpvlssdjqVjkB+JRMTE3z+858nFrvAkmnL+KPAHXfcAUAuLsyqs7iCnLnXiEJKcVZYyJVY8/Jen4v3+sT6i8QQPdYRZ+ffnkgpbIjg6L+3MXBiRIqgYyvNRGfVSt1b5Z0uVkqu1wfvdLHu2YAUUSt3TRZrny7HVCheSWtW9ijdH5DYgwD8txSx9gm5uU18ZILJ6LSc6kxcOVQko3Tl+2A+9U8HsVdI+o/FFSKMDA5/rYXD35A/mCaL7t0DckStJaJn/yADJ0eID11Yxab4yAx7PndSWsFsKQSllZ/wsfJxuTWvI99slSYDjfZFmYxMS1mDmd1aKu/24vuQ+JgOsPIJH3WPySlMl91awCrJdRvfzfms+4xcHgre6SK4yY21TPz7NLPQgNacLmXld/oXPXTsDEnl4n3/eIojsgdJ44AWZc91fhzOMubNR+WdbvJX2c8eu7PULe9eTW5uLi0tLVRWVsrd4xJwQZWU3njjDXp6FCJPLZe/u4BKPff/s/M+cCLQ+JN2ohKMwsDNRWj0aRRfnsPpN8U6bdkdhdi8mez4hwZpAkPjD+ROTQwcHmdbk5yyRt++EQrWxznxH+LXshQYmJ2ZJTIg0SMMoE5TyXuRzyJlZwTQ9PNu3JflSG32R/uRUqwCcF3pxF5uVogIEjEf74tJLwytfy5AfGSCff8oTnoo2GBncnxS2OoNlOSjd2qlTpZF+3lPNuQAjvxri3SdNU+Vo9GlSTGv9Q7IvyiPpl90C7/brICBwK0eeg8PCSvudO8YomCtg9DRsPC9gXIi1lpkkpJalW3fAL0Hh1Br5Himkb4Y+MxkusxE+8Xa3nBnBJVahTlPYicvouSGKUnFirHuKD375Bb9tv2dvGLRIYnTqfNRsdWFqcDATglZ9Cyv6d158swxbx7afhFa8P+pKgmCkiotjdnphXHV7c9LbYwUFRXR3i7PSF/Gnw7M5rkvENGT/AD7v9RE4eVOKeKQNUEQPIX46fK1z/qVRVNJhZHooPw4s/vvT0qREABaftWDPWCRqjM9McP0lBxRRG/PQK1RSRFtzIXKibfRDjlidO+BISajcvlYWhUKqHnYy8DJUTreFt/QDB0Ok25II3xSPA6+Wwtw+i3sf6VZ3FJND55Lcmj5ba8U8ar++SCx4Qkp0ruoJdofiv5Do1IKOAB6G9R+NMhw27iUqpKzzow6XU4Jp/axEjJM6VIKm/2NI2hNcjYd6BVVqb5DYWEi1VJOc4b2jZBbG6HpLbn3Ozs9y4xkfkjTqdGky9kMRsNxTHl69Lk64X7R9LMuiq/Ik+p/74X6WxJ6m5rqh8roPTAk3K/yL8kh3aSh5MY8YfJaw7+3SN9bYchPH300NTXx+uuvs3HjRum/sYw/DRw4cIBdu3YBUMcGqbpH/02uPxVfm4PWmk7eReJrXq4rnOSutHHoq43S6jktkvku1hOTPlE93BRjtC1Cy6/FDwDqsnXMTM0QDcut22jS06TVpGanZpnVSK55vdVLyTWSqi4x2P13ciSynFVZZFdbOPzdFilyylDzKPExuQNSa54uJz48KUWIctZZmJmakYpD4M4isryZ7Hv5GLGwYKUYHPu2vKLgUnDiNXlb2tpHS9Bladn+V+J9Q2eF7DonbdtCwu9Wl62j9oFi+o6GafoPsfFvuCnGeF+M0BG5jcb8i+3YyzI5/LUW4Tq7Pytv79y5a4B0vdx8aKw3CjOQma8lJjgfivXEUKer0dszpK41PTXDdFwuPwyeGmXguJxCyLa/E7fWS2IpKpugbABmlWZKKWbmVGYhY08ROjBMukkjZQuqO+JENatilllKS0vp6JCfyy/jTwdJ9UoVKipVa95dILnhqlItUKVveLWN3DVZUipKzgoLqjS1lDLLyo/7GG4e45TkQRri8t+ph145LbVhD8o3YE6N+AENgKmJaWXNS2LqlZmvR52uZkxin02fa4SZWaL9cqTWjm390t/czT/toVnQJjyJ4J0uwm1jdL0jfgAndGwYvV3LwFHx3F94qYPCdQ6OvXpaWEEILRSucxDa3y9FvFr3rJ/48KTUPpaMbecfguFTEYZPyR9+W/9cgHDzOA2vio+F1jIj6XqNlF1X5VYX+mw9u/9OfMwMHQpjyJZz/kELFbe5GDgxIpy/2n4Retfe0mIYaY0zcGKEzm1y9WanZ5mVVPDKMGrQZKQp+UuwiUf649imZqQsAJt+0UtpGlJKSo2vd9L4ZqdUvhs4OsLAUfHyKWhh1aNlhBrCwhZu+ats6B1avFfmLsxhZ4x583Hk31rJMKa9+5nOMV4CFHdX0U03DQ0NfOMb3+Dee+8VfSppXFCSUnKxTo8Ju3qedIfq3AsDrqudhPaHCB0QPCmfCGDDd9sxeQ1SlluZ2TrFT1Yi16191k9aulpq8cV1pZPoQIzQAflT1ftflvOUHW6MsP0vJQkPEZYkz7cUj/DhxgiHGuUIAsG7XfQeHJBSK8qpyVLUEyTHsSURelSp/xGG+1LlhE7fPvG4x0Ym0GbJfTTbq4x4Ls/jxE+6pPrGUlB5v4fZqRmOfkt8AhAfnZQNHd4PurAWZxIbnBC2JxxqjYAK0nRyCxx7/kFe8jK7Ios0rbxIXeCuIvoODwq38+afyEusdrzdT8fbkicMI0uz5ZOVkwSWZkmYVCy6q4iG74pvqlc/WIwpT8+BLx0XVjTTWTNIS1dLKfYd+EbLnH3dfBWl5Dh4FrJSchJZ8qFcmn707vecJCzNJyvVcz2nsncTCoXYtGkT3//+98VucBl/UtiyZQtTU4pU6FWq24TreT6QQ8vPe6XIJQDb/vKYnBKQTU1auhqtWZyEYHTrqbmnmHDzmNRia/mmQmWBR9JGrHdPWIqoBUuzZ1qK7VbvzrAUSSQJWZUZR3UmWT4zjZIbMcZsHRkGjVQ7Wkq80zRqUCFOUEIhKBWsdZCmVwtZOiUxNTFNbFhuIy94t5vZqZklEb1kYC3TU3x1Pid/0sV4q1hDjw4q6o2xEblFP991hczOzEq3P9Uip3nOxKnXJex05sGYrSO3NktK7cleacIRtEotBB9eQl9fyveS7PcfQNMPu6XaNsBIc5SDS7Qrc9aZ0Wg1UjGvfyHIZGRKWM0lGp0hLV2NpUj81FvTD7vp2R8W7hNAiqSlt6mxV9qELE9tqmxcTjcd/e186lOfWiYp/RmjtrYWUNa8bCoxFY789TYGG8IMN8ntOp/+WS+9R4allGksbiOajDRxWyZg1cd9pBvTpUgVOauymJqYWpLd0uFvtEiVj/XFpAiwSWxfwsEgWTUbUAgPsvM83y359DcMS1nE5dZlYcyR3OQAGv5Nfn6iUqmk121KrslDlaZm+yG5Na/pyRlxghJgKNThuz6fll92SfcpWfg3FYJKxfHviccwFp5AI0m0yd+QS16tndnZWdoF129ifTFQq5R5sgSWsgaav9JGhsT3XBIlN+UxdGpU2F6t4zfy6lgDh0al2lwSS7Hlk3JkSGApFidJgpLvlnwa3xCfK/s3FWIrN3Pg683C44bOkkGaNk3KFnL/108LE8KSSBKUXFc4he1Br1Bt5GjuO/T19XHrrbfy2muvSV1zGX8aeOmllxgaUtROLuaGhb88z7dn4aUOOn7TL62UsvOlE4o9mii0kG7QoLeJ799ozWpWPuFn4MSI1GE+7/W5CnlKUmQmfHJcasMe4OQSSLqNP+ySs8tFubcdS5jjtf9abi3TXKzDEbBKk5SsJSb0Dq0USUmJt9w6gkafBmoVIz3iL9fpt+C+NAedOV2KIDcxPkU0LLc+VHpjHqp0NY2vy7cLGejztJR+MI/Wt3ukVIsmY9PEJde8/BsVVUkZkhIqFWrJLUAZS+wU4mApVpwCZEiW5mIdzoosKau0pRzo2/ey/PeStIIQ0Pn7ATolCM6g2FoeXcphhjhYSg3orRlSMV/3rJ/JyLS4jWJc6e/mXPG9la53BhlqHp9TWps/9iX/+wzCUbQ7ThRFrS7Ln3X2sfCMugaVGY+phPZIC3/xF3/xx0lSys6ek+W7SP3BuV+ch6AEULjWQcEqO9v/WnxACt7t4ti326RJGHu/KN+BogNx6RO+heudoILQAfGPnlUf96ExaKQUVgo22LGXm6U3+ktvzueU5KTBd3sBfQeGpBSRyjcXYvWY2PmF41LkIWuxCVOunoHD4h+Auz93EkO+3IKNb2MBpmydFHMYkCeFAaff7ibdKNeOZAgYSTgqstBZtdiKjRecpGQuNEgray1lQeT0r/ooWDdN516JQWmJRBvXNdk4y81SueLw105K2/gZHGqySjIxOnUMHBYnRlV92IPBoWPnS3IT+MAWFy0/byMqseaTFTCgs2jp3iH+QZd3URbZlVlS77liqwuL2yRFnKx9rAS9TUveuizh+wsdCWNw6sCgQzQhLWXMSBKUPB/MYbwnSujgGR+C51BVKr4uh9xqGwa77pwnFOerKhnUBsrz/bzT/3t+8IMfSN/nMv408N3vfhcAD+LSsTUPejHm6YiPTApvNjvrzGhNGXT8tl9KCSg6OLMkUvT0xAw9+8QTVuHlThx+C+n3acTVl/RQ/6kgoYZhKXJOzYNeuvb1E5JQRsxZayUaijPSLB47fYGewnU2aeLQmmfKGeuMShG8iq/MI92kofGnnVIkr23/9xh6m9TtUftYCb2HwlJKKzIbQ0n07u4lTa+m67dyqhBL2XywusUJFX8IbD4rBrsOp98sRcjY8f/k560dO/qJSy5cLYVoA4oi13DLuLgiVRT2f1VCVSuBkmsLpDcNk8o+oSPDNL8pvtBjLdNjL7dKEwa91+dJXQcUq7ju/QNSOWndpwPEwhMckPgG8l1fyOz0rBRJaXJ8inEZxdro0g7SjLdGQQ/lNxZKLbKteKQcVZpKiKQEUBZazXT+FC0tLXi9XpqXSPhaxh8vVq5cmfrvi1TXCtfzXJmL69Jsdkios/puyafxP7ukrbMOf71FqjzAWE8Mo5zLBsVX5aDWqNkmQQ6ofrAYvU0r9S1rr84kb4WdI99skbo/zzU50spQxdfmMNg4LEV88VyTQ3a1lUP/Iqdc5ay0YvWY2H1cXG3m4Fea0WXrpBRWXFc4sXiMUgo4gPR6A0DTz7rRWuTWvE6/2SusEpaEM2DGlKMnq8RywUlKWSWZi9opnImlkMK6ftfH7Mwsof1yJJ2lEG1y19nIqbFKrdkc+UajFJEMAJ1ymNTqNjF4THzNy7+pkMwig7TSWMlNeXTuGpIiz2S6dejsWkL7xDco7dWZ5NfapciWvpvzcVRY2S6hkBTc4iKrJJPxUFxYgahn/wBml9x3iSxpFEjFOH+9jfj4pDBZNWdVFoUXObEUGYWvW24K0Nf3G15//XVisRg6nTxRcxl/3Hj22WcBZc1Lq5pHHjpPbi67tQBnhZWZqRlhcoml1IDRqaNr+yBxme+X+BLcErTpTIxN0X9M/PvNXmEmb6UdfVaG1Ab8uk8H6D8aliKx+DcXETo6LGVDZ68wMzkWF1cBQtk8L9iQK6VaBYo172hXRIpI5bkiD1O+ns7f9xGXcPLZ9v8dQ2uWY6VU3esm1DAiRZBr+VmvtL1X6PgwensGvYfk1PpkVMOTsAfMqNRqGrmwJCVLkQFzoRFbuUWKpLRH0uIaoOW/eqQV6JdCtAFFkWu0OypFrtv75Sbi/XKMxJJrC9DbtVIkJbSw8lEfA8dHpNqgqVCLLWCWVm8quswpTTIsv72QwZOjUoSyVU+WEQ9PSH0DBTe5mZ2elSIpxQYmiA7LrZ0uxWEnSVAquSGPprPlzHOoKtU8pLganTcfzatbOlbLTNEkbW1t+P1+jh+X/yYUwQUhKe3bt49QSGlc9Vw/94tFCEoAHdtDTI5PCV8rb50Va7GJuo+VSNltrXyilL3/ckreJmgJSh8HvtmCwy/uHw2krHtkULDWoSy2S6h8lHwoj5zqLDJMGimJZKffgr3ULNWJDHatokIiGfMTP2xlKiYfj0iX3AKFzZdJWobcREPvgGgE6WfqfkeOuQ+QXWdmenJaSlHqxKsdnOC9kcFdCglI7wB7lUNK3SfSFVsyU9vgMsyp2gggO2ghI1NuYU2WoJSs07EtRNuv5AZlnTVDus0WbLBjK8kk41av1EJU4DYPszOzUiQl10U50qpSEzFlQiijjLf/602UXJ0ndW/dO4akys+Hb2MBpEnYfhogf5WdmalZQgfPMlE+i6rS6Z/2YnRoOfLN8+fl+UQl7aEcZmaUv5Gbm5uyW13GnweSC3QqVJSqxP2CD/5LM8EtLqmN5pJrClCni2/kgmLRNTk2JW2FNd4alT4t3/F2CK1JI0UIsHkMMAsToxKqOXow5unwXJorRQgouSofVHKb7+U35mNwahk8MczAEUG1UUCTkYbWKjeO7f77k+RvsEurUIGi1CMKvQ30Ni3ZFVYpkpK+QC9Fjkvel6zKDHold3ftGZAjay1hg2gpaH6zW5rAAoqCECDVjtp+KSY7fCb0NohGkYqfMVtHhlEjlStkCUoAJ/9D/jRVdHCGtAw1xly5DRH/rR7UGpVUTqq834OlyMjE6KRwrtXb1Jjy9bgM2VI5CaT3XOnY3k9IgjwKCQvOJUBvA//mEvb/k/i3ft0DpeiyMrAFDAw2iM0nW3/Xx+yU3DdnTmc5nXTS2trK4cOHqaqqkqq/jD9ehMNh9u3bB8AqrpKq2/Qzudxt9elxVloxZOukvt9qPuLlxPebpckESyEDH/jySRw1ckxl2bwD4LooG71DK6Xykb/eRsE6BwanVoq0nbfKTnZNltQ81JirQ6NLk7bWO/rdpZEcY31y4192lVVaAUdnTVwrLFWN0AE5CzGALL9CqJBRlGr9RR+tv1jaPEUWS1HjQge5K2z0HBgUJqTEwjPSZK3U5XJ1UsSc7EoLxmwdOqv4O5YmKAHEoOWXPdIWMdqsDDQ6ua0LW9BE7gobxmyd1Bp+1d1ehRwmQVLyXJarkPF0iL/f4QmYAWuRnnCj2CT52HfaKL42R8oiLdwYXZKiJyiExnSTRtg6EMBzVS7TsWkGDolds3fPEFleI8clCOWaU7bUfonb7aa3972x2V7G+wOFhYXAWda8FplQnHytk9npWSn1G98NhWSYNHTtGxRWKnJd7YRpeaWUeCjOns/LfScNHB2h1dFLxw7x7zF9nhZmZ5mIie+7AthKk4eqxb8vS6/LIy0jTWptpPi6IuxlZkY7olLkg3SjBoNdzvPu0CunyV1llSIoJSFbJ7PIiEqjliIpaZ1aOXIcQHxpKj3ZK60MN4alLOJ2vrS0sUUWPbuGpNXPQFEQUqWppazilnIdALSg1SIVP6tXUeSSIefIEpQAGn/cgTpd8oMrDhkGDUaHXJ/yb3KTYdBIkZRKb8wjp1YZ14XVM7VgLzdjcGjlVK/kqQWc/mUPQ5KiHwf+ZYkH17RQdZdH6oBR5VYXZo+JcMs4A0fPQhA/i6pS08+6SRexP59HVHK31dBGGydPnuS3v/0tl1xyifA9ikI1uxQ2zGJ/NBGAdLRcqr5JiJxkyEsn0iXf2QBKbsql6UfiE+fyzYXYfWb6DoeFFYQMLgM1W9yc+s+OJdm2vVewVxmlSCwwp0Qlex11mvp9GQvnikx8NxbRs39Q2hJL70BKXWblE6VoLRmKR7hgztI7oPpBP5075ay36l8IAks7USyL+heDTIxOsufz8nZnMqi8z4PFZaTxJ+30SWymrH6yjOjQBEckEve6zwRQa1RyZCoJwt98rH8uwPTEzJIXBC40iq/PkV70Kr05n9DRsJR6msFlYDYSkepT7zVWPlHKzPSslOJD/YtBZmdmpVTUvDfk0vzrkFh7OkNZyeAyEO1cfHycnZ4mMhPhuG078Xic//2//zdPPfWU8D0u448Xr7zyCg8++CAAF3E9epWYTOhSyB6gbBhnr8qm9S3xDYH65xNjmMQiRe1HS5idmeXAl9+/6hR6G5ChkyJJ2AIGzK5MacKW+xq5mL+XWPOUokCyFPsV9EiRWOpfDDIVnZYaYyvv96A1aaQU8QovceC+LIe+o2FpBStZrP5kGekmzZII37KofyExhknYsrquyia3LotdEotR+lwdtQ95Ge+LSW2q621yZDeAkpvzyKnKYv/XTi8pp11oOKozmRibklJPQw/lNxRKSf4DUqSc/wk468yUXJ3Pwa8eF37P5bcXYveb6d47yGlRSX69YvMom2dT1XPF8/oR6zv0DHXj9/tpaFjCBvYy/iiRlpbGzMwMGei4RHXD4hUAXbZOmlSShOsKJ23bQsKb4O6rsylY5yB0OCxstaGzKqcrT/28a0m2be8VrD7xjf0kfDfn0/izLinVoUy3jnSjRtia6r2ELldH3YNeuvcPSH/Xy5BRAKof8GDKN7Dvi8elyFernyqje/eglGXXuk/7FYu494DwXf9ikPjwJHu/cGHXvHw355NdncXpX3RLEXRqHy0hPjoptVa7pPmkBLlmPtY8Xc7s1OySCcgXGkWXO4St8pJwXeFkuHVUSpFLl62DidjSiFvvEaof8KBKU3PwK+Lz8fXPBWEWtv+1eFsqutxBaH//kmIhS67bb3ubSCTCCy+8wHPPPSd/wWX80eH3v/89GzZsAGADNyoqSgJsZ60jQ57sAaCFgtV2KWuhtc+Uo0pTSx3or9zqQqVRL0n58r2C1gxo5UgzpkItWaVmaYWUgovlYv5eovajJaTrNez6uyXs9WiRsuWrfz7IRGSKPRJjrG9jAUaHlgMSuT4rYCJ4u5u+w2Ea37iwa141DxZjzNW/J/ua6z4dgNlZKevA7JVWijY4OfK1RnHCkRbqnw4y2hWRUujRmuVITaD0Ddcl2Rz7fqsU+eq9gqXUwOz0jJTiFcyzrZSAuVgnfZ33EpZSA2U3FXLoW63CebPoMidFG5x07R6QUrAqvNRBx28Fc+YZNCCtQ0t8QED1aXaWBusuusLt+Hw+Tpz479/vlnRNXBy33HJL6r9FCUoANfcVU/98QOpaBpcBgKb/kGvIJ17t4NSbHVIWZwVrs1Bp5JiHzhWZ1L8YpOyOQql61Q8VY/IapOokIUtQAqQJSsnrSBGUDAo5RxbrPhNg1cd9UnU0Og2zM7OMdcknbFkyRe/hMNGBuBSRJdNlJi1dTWaeuNckQNfeAeX0lQSCd7sUctPSmpMUVj9ZxrrPyPXhlt/2Mdg0St9xuZE53ajBIMnoDR0LM9op2SaWOOZPT84wHZeTiMy7KIv6F4LkXZQlfb1kLhTFUk7lnfphlxRBCRSrs6USlCq2ushZY5GqU/9CkLXPiNtcAWRkpqM1i3uFg6LuJmvz2PxThaAk+64q7/ew4h43uWsXj4UqLQ2D2kDAFyASifD0009LXWsZf7xIEpSyyBYmKBVe4qD2w8WUb5Kbo+gL9EQHkSbLbPvLYxx/vUWqjtacgc4i1z/XPutn/XNyY1HOWivlt8vFIYnooLyKy2BDZEkb57IxN7rl5hmgWOXVPx/EUZ0pVW8qNs3MhPwpNEBasWmkI0LPAblTTga7VjrXDxwZZODECB075OZe6z4doPaxEqk6S4G+QE/980FKN+ZL1evZP0T77+UWC025ejTaNKk2Fe2JEQnFpOeusgQlgEhvnJmpWQxZcvZtqz7uY83T5dLX09tQyHWC6D80KkdQAogiTVAClkxQMnv1VN7nkarjv6OI+heDUu1Cna5GnaEmZ3WOcJ0TP+jg5I/axQlKAFFSeVZfIJcL618IUnN/sXD5yvBF5Obkcvz4cR5++GGpay3jjxN/8Rd/kVIvFSUoAdTc72F9grQtCl1Cua3tv8QJSqCoyxx/rU2YoASQXeckTZeGWiO+TGgo1ClrXhsLxG8Oxboo0700mx5ZghKgxEFyLXu0NSZHUNLNqQ7JYPWTZdQ9VipVx2DTMD05Q6RXzk4A5FVwuvcPMdYVkSIoGQp1pOs1mHLl8m/bb/ro2iW3gOC9MZf1zwVTfeVCouZhr/R6Q/uOQUJHwgw2hKXq6bK0GJ1yz9RzYJDwaUlS3RL3eKbjM0xEJNU4gibWfyZA/sV26evJvl9ZghIoeVbWMjDWt3SCku/mfJx1cmte6z7tZ81TcnNXvV2Hzir3HdTwg9NSBCVQYh4Ly78r3y351D3kJX+9uBpfwBUgFovx/PPPS11rGX+8uPTSSwGwkSNMULJXZLLy4RJFDV8CWqcW4kiTZXa+dIJjr8o5sOicOun9jZWP+xQShgSyAiZKb8yTqpNEfARpotdYR1yaoATyMdc65WIHYK8ys+7ZAPYqs1S9qfEppmJyez0pSPLk+o8P07NPbmEkM0+PTlJRKtI5RvfeASlFLlCss1Z8xCtVZ0nQKutrJTfItd323/fR8rbcmqspR4fWlI4+V8ImNQ7Dp8foPRiWupYsQQlgvC/GzOQMGq2cumT1A8Ws+mSZ9PUUcqJ4+eFTkSURh2QJSsCSCUr6PK30Hoj7A9nUvxDEXCw3t0k3aMhZIZ5j2n8d4tj3WqVtHpMEJdlcuO7TAVZ8WHDNS6UiEF5DXl4eJ0+e5KMf/ajUtUTw305S+uEPf4harebm624HlZosv4G1T/vIWaW8lMBdhax5cu4DfNUTJVQ/4GLg1BjjA1HWPlNOwQZlYlq2qYA1T811opWPl1DzsBI8g0PFinvcrH9O+UD0bSxY8LG48vFSaj+a2CAwwNpn/BRfn4O9yoj3hlyKr5pb0K99rIS6j83d09pn/JTerPzedU02a5/x0/F2J9v+7zEK1jpZ+cRc2TVPl6dISIWXO1j7jD+1CV24wanIlSVOy6x5qpzAXUUA5K3LYu0zfiw+pWzl/R5WP1mGIV+HKVdP5Z0uKra6AIXstPYZP84VyoZRxVbXgo+S1U+Wsf6FAOufC2DxGVj7jJ+8dVmJeBctWHxf9XEf1Q8pMSy/q4D6F4P4bs1V4n1H4YKyK58oZcXDyoCjdyhxcV2TzfrnA6x5pnxBvOs+VrpgQ2btM368Nyh/t/j6HNY/GaD20SAGl4Haj5aw8vGF8U5OGF1XOpUYOpSmqUoDjWluw2HN0+WUb1biXbDBztpn/ClCV/WDxaz6hI/uHUNs/8sGPFfkEdiixDBnjYW1z/ixVykDTeV9SrxTf/epcupfDFJ6cz72KiNrn/GTXae02eDdZ8T7E2VUfdgDQLg1QoYpPUUsKd/87hjWJGJoyNex9hk/uiwt2/7vMaYmZxa22SdKqX3k3W0WErZ8VVkpZai6j5VQ97GF8S75kDJgez6Yo/xdQ4IgqYKVD54R79uVeKfabL6SaKsfKn5X+0612YsWttmqD3tY/Ym5GKbp1SlOYnadeUGbrbzX/a42W3mfh7HmCD37+ln7MX+KkBLYsjDeqz7ho/pBpc2avEr7bv11L7v+9sRZ22wq3g51qs0CqNPUGBxzA8q5cgQoqjfJd7P++QDrnvcvmiOSJLwVD3uZjk+n1BrOlyOqHypOkfBGu+OggryVyoLNuXJE6t08VU7FVhfrPxNgxb2eRXNE5f0eACw+A+s+7af+xSAlH8o7b44wuJR4F16uPNzaT/tZ/8Lch9C5cgQoyktrn/ET2OKi/sUgKz9x/hyRbLOg5GSLx4T7ktxU2XPliJqHvak2OxmZQpXOojlifgzDLePs+OsGoRxRea97wf17blDay/lyRLLN5tVbKb7OyYqtRaz7/9n7z/g4jitrHD7TEzpMzgEDYDDAIJEgMkBAWaJytGRJlJWsHKlkisrP73nXz6432Guvw9peh7XX9q6zvc6WLAdZgRQp5hxAAASR4wCYAEz4f6iZAYYkgL4tCZb94nwRRVZPd9++davq1qlzn5l7hsZHg6i9n/2u5NOi9ekQii5yAioOoQ/7oHfwmI0k0L9nAg0Pl6Au0xYS0PKxMgQucwIASq9yoeVjZYyotL0QFosFAHDRRRdhBX/bWLeOlRjxeX04284kN2vvDc7FNzD/Lb2OjRG+c+xo2ViByOAUZqcS0Bo1efGt+anyHGHH3WRBy8YKmIJi7t/q7y5hpcDATutWrWdjhGONES0bK3KlpKpvLUJzZiFkq5LQ9HgInibmr5ZyES0bK+BusgAAKm7y59oCLD6v/mgAm//xAHZ9uwstGyvgzSQty673ofljc23rHynFmntYzBJtAKdWITHLEgfBK715fbPuwdLcGAGR2SVwqRvF57hhrzSxWJjZS6l9IIj6h06xYSap47/AidZnMnH0ai/W3FOSF9+aP1aeI45422xo2ViR2yTPjim5tk+W5xZJzgYTWjZWwFLO2lbfVoymx0MI3VCA9heq0fxUOaoz8xr7agNaNlbkyERV6wvzbNi0IYTaO0rQsol9v5aNFXC3Zux9oz8vvjU8WpYbI0S3DuAA3sUS2aXX5duw/uFS1N6bb8OidS5s//xRDB8Kn2LvIOoenEtctGysQMkVLK4XX+JC24tVueRa7b2L2PtcB7NhJuGt4lSwV8yRqJqfKkfoBjZGuFuZz2ZJE6vuKEbThhDe/uQhvPn3+9H8ZDkqby7Ms7etio0R830WAFbdXgpOyyF6MgpblYSWjRVwZuaGlTcXnuazq+7IxGcVK8eatXfohoI8e9c/UoqanM9yTIVKx5KspVefYu+HSlF7f769izPjrLfFDHBAOsVOw9Q+EETdg/k2DF7JbFi0zsVsaGNl4uzlpiVjRNbeq+8KQLBo8ebH92O6K7pojKi+vTjvcIFW1MBWwr7VYjECYPOP6tuLmb+/WI2Wp5eOEQAjoBSe5UTXHwcwsndqyRjRsrEC/gtYLFKL6ryytAvFCAAIXOpmz99gQP0j1Wh9rGLRGMHszX57zT0laH2+Iufvi8WI1R8N5NZJjjXswEvdQ+z5F4oRWTQ/yWJE2/NVWPtc1ZIxIuuzpqCIVR8JwFQoMQWnxWKER0DLxgr4zrFjcPcIUsk0Vt1cNGfvBWIEAJRc4UHxOW68+fH96PztwJIxomXjXEwuaHGi/qHSXH9dLEbUzIvJa5+rQv3dJUvGiPk2TMQSGNo7vmSMaHo8hOrbmA19mgA4jsPXv/51rOBvHx//+MehUqlw1brrAbAN2eYny+FuYjmB4NWevDVH7QNBrL4jgMFdYwifnEbzk+W5TfqSy9x5flV7XwlqMv0NAtBwXzBHvi660MnaZpa0NXcHcutkgPlv4BI3LCERvrPtKL3UlyPNrL4jMBffwNbYwatZf3M3WdH8ZDkG90/izY/vh7PKnDeeND4WQuhDLGY568xofrIc5lL2EMFLXEin0xjcw3JejRtCqMj0N2ulHs1PlsNWzeJ+xQ0FaNwQAgRW5mDVbQFUZuaRxmJmQ2cdywmErvPlxbe6B0vZHOrZypy9PWvZ3LDkSne+ve9n9gYA/0V2lue5PpMruSTf3mvuLcmt27I2LLqQrTebngrl2/uuAGrvy7d3yWVsjPC12bD2ySo0bKiGJSRi1R3F+fZ+PITSa7x59pb87IfVgho689yGw3x729cY0fxkOSwhFrMqby5EwyNlGN0/hS3/dBD+NgcqM/NIS0jMs3f59QVofGzOLg2PlrG56zVeSP6MvTMEidJrvHn2rn0gmBsjJnvi4E26HIGg5MpTfPb+IGruzNhQYHaxhwx48+P7ER2N59v7ngDW3JNv7+KL2RjhP8+BgrUOdP2ZkfJr7gzMzYGy9s7kazxrbWh+shyCS0A6lYaKAyo/NLcJ3fR4CKFMvsbZwHw2S4qruqUQDQ/NrX0aH5vzWVu1Ac1PlufKzlXe5Gc+m4Fo14HLHF41lzIb2jPjbOhDvjx71z9UiupbixDrj6H7zRHU3FW2ZIwAAMHCofnJcnS9NoCtnz68ZIzI+izAqhroncKSMQIAfGfbmQ0tLLex9rnKJWNElnxSfWsRkjOpnFLmYjGicn1hjoQX6Z2CSqOCq9YCYJEYkUHDI2WoXF+Ilo0VaLg3uGSMqL6NzUcEj4Dmj5Wj7QXm74vFCMHC7OI/j+W8mp4K5eW8FooRAFMOan6yHCVXudH+UjVqHwouGiOYvdnccNWdxXDWWFB8LvP/xWJE9a1FuTlnbHwWnFa1ZIzIonFDCBOdU9jyzweXjhEPlaHqFhaTZ6Jp1j+z+aZFYoTgYn3B12aDZ60NDfcF0frc3Hr3TDGiMJNjLL7YBUuJAfHxWYweGF0yRmRjsrDTA7uVjaMXXnghVvC3jaeeegqpVAoulwtt7osBlQoVN/mxZl7fbHi4FMHLWX+zrzKicUMZ4pEZRIZi4LTII1TUP1iaI+xYyvVo3BCCuSyTN76/BI0PlsJ3Fhvz6u4P5vLRpmIejRtCsK9iOYHglZ7cmtpUImDNPSXwNjHf5p2srbOWxaziS115ebeauwOoWl+Ebf96GDu/fAiNG0LwtLAxovB8Z14sXH1HMVZl4ht4QCOpkciUbCs4287aZvanV91ahJp5uevGDSEUXehE4Dw3XHVWND4WAm9icahqfVFefGt4tAzFl7L+5qw1o+mJENpfrEbwSg8qbvSjdt54Uv9wKYJXsjHCWmVA44YQTMXsIVqfrcTaZ+diQP2Dpbkx2VwmoXFDCJZyNs6WXe1F/UOl8J/nYJvmDwdRnhmTDf6MvTNkouAVnrz4tuaeEjQ+UIrmp8rBO1hbV6MFACu9N9+GNXcFUH1LZoxwaMHpVNBncl7+8xz59r69CKtvn1vfNm4IwX+eA3u+2YX+naN59q6+pWhuTM7a+2IWNz1NFrQ9X4XWzJ5L5frCfHs/UoZAZoyw15jQuCHESvJl4AjNERzqHyrNEXWyPpslTYSu86H+wVJs/8JRbP7EAeazmTmRqURA44YQrFUs7gev9OTlMCpvKoFW0iDaF4fozffZwGXuPHvX3D03b0+n0xAcPDyZfE3RhafY+85irLp1zmcbN4Sg0bP93ZzPZrDqtiKsviPfZwvPZzb0NdhYuTI1y3lVrc+3d8OjZTl7uxotaNwQAu/kcfL1EZgD+lweKGvvYCbXYF/F7G3wM3uHri+AyS/hzf+3H+OHpxeNEWVXe+f2b8GEFMzFzJ8XixEA89mKG/0outCJtuer0PjE0jECYISh0kt96PrTIEb2hZeMEY0bQijIrDV1Bg20evWSMQIAPC1W5ltBAY2PVaPp0fJFY0TW3gDLIbVuqsz5+2IxIvShglxMNhXz7JBY5v8XihFZ1N3LYkTr04ybsFSMyObbeQePuruCsFeYwDv4RWNE1oa+Nhv6t08gMZtE+bWFc/ZeIEYAgO8sG8ouL8Cb/7If3a8MLRkjGjeEwGeIqp4GG2ruDuT69mIxovyGAtRl8m5NT4bQ+EAQpZl9VuazZTAFMjHiWi/qHwgycq9Khbr7g5iZnkX/rlGYAgIaN5TBWmnI2bD+obnxsvaeACo+XACoVCiMV0CtVuMrX/kK3mu8pyQln48NOKuqVqF6NVtE6T0C1DoOxgLWkQ0uHhpxjnSiM2gg2ngc/kEv+t8Zh1rHwZBJ0hrdrJ57FrxJB9HKPoTWwtrMRtmgbPQJeUlmnUmbOykgSoCa52D0Sai4rhjuOitrm9kQF8w6VkM6A9aW/b7JJ0HNczAELaytjYfOONdWI6hhdAuZZ2Bt9Tb2zDq9DiqoEOlmJ1o1ohoGF/tdQ/Z3MyeLJAcPrV6DSG8MB37YCY7joHezf9N7M7/rZQ+sd4t5NtTqNUin04iNz8DgEdnv+rL2FvNsqDNqIWZYtXzmPTSC7oz21hm1EGysrUpiz2AqkIA0oNIgz968WTundpC1d+abG30SVCoV4uEZRLojEMw66Eyn2pvZ0ORn99Fa2f+nkwA3T41LI6hhcLF/MxSwd9U72G+JNh46gxZFFzkh+QRm79y30UPNcxAdGXs7mb1zvyuqkU6nER2JQ+/V59vQc4q9DZoc2aXiOh97fr8+Y0PxNJ8VrLqMjTj2u14x1zbPZ41a8Jm2koX5syHjA6aMD2TJLrxJl6cIoOY5mDL+YfSy35UsAg58pxupRDrPZ9U8B1PG70wF7Hd5M3sO8RSlAY2gzp3eMvqZXbJ1fiWHAK1xzoYcxyEZZ6frsv4turL2Fk7zWcnJQ3QA5dcWZXyA2dDgFk6JEVqIGT/UO7TMLovFiExbrVXI2CXTtoD9f5Z8tlCMYG2lXIxIzaahUqmWjBEqiV2bjRE5P1wkRoj2uXgylalxqua4PBueGiNy30ZUQ+8WMXw0jPjkzJIxInsyw+ARwWm53G8sFiP0NnWeXVTquXKe2bZnjBEAjD7mh71vDyM5k4JOv3iMUPMcxGxMNumQTqVzpXwWixGibc5nt/7rYXAct2SMmG/DbIwoaHMuGSOkTF/IxghfvR1VtxYtGiOMLj73rsd/NYRUKpV3Opk3aSFY+Nyf1brTY8S2f+sAIoDOqMnZUDJrWFtP1rdEqHVzv3vL+lsgCAKOHHl/5etX8JfHq6++Co7jcPP6mwGR+Y5g1+WdltSI6rwxQiOqARWHrZ8+DMnO56kVafWanF8Z/KytmGXkZ9y8988jc20z/qrP9AO9JxOHXKxExqo7ilH54QB0Ri30md8R7WIuhgHM17WGuf7Gm3QwZGKs3q5hz+/PPL9HhFaaayuYdRAz8Y0zilCpVZjuY8eUjP78vina5uaRWbsYfCLe/uQhREdjebFQtPK58Xt+WwAwZfpbMp5C7xsDEB08RMvc72olTU4t0eSX2LvaM8+sYuPlfHtn2xq9ehZr3FkbsjFCnYkZWkkDfSa+ic6svTPzSq+YF7N0Zi3SyTSG94UhOtncO/utDB4hr61g1kHKfJuRXUyhyGhnz2DySnk2FCw6CPbM2Glm47WpWILvHDtMvlPaWvlcfIPIbJh718zcMJkhlAl23Wn2Ns4bTzSiGrxJBXerBQavkG/veT5rLGDPINm1GRsKeXPOPP/2ZNo68302Z0OjFqbi7JjA2ho82blhflvepMt9m2O/PQkVp4IpMzc8ta1o4XNjMu9g34bjVJnnF0+xoQ5ixi6iyDG7ZOenNjFzP1byWrTyEG2n2nDOPzSiGhBFVNzkh+Thl4wRopXLvLv8GJH12VxbgwbmILPDQjFivr31Th7xiVmkU2k2B10kRmR9NhsjzGV6+M91LBkjNKI6N1eJjc3kzWsWihEAYMj44ciBKURH41Bx3KIxQiOqwRkzMc/BQ61W5+SVF4sRknNuXjN8hKnW6jL/v1CMmP9t9C4BsbEZzEzPLBkj5uIJD5VKhZFjE0B08RghWpkfmnysrFx8bAYafvEYkY0982OEKShCtC0eIzSiGqLI/FCws9+tvCGQs/eZYgTA5szZGDHewRQlKDEiNZvGsZ/3yYoRehe7z5qyOtTX1yOZTOLss8/GCv52cdZZZwEAQmUh1KxhGzCSTQOtQQODb27NN3/NIdl4SC4ex38zgO4/DEBr0MA0L7bMj2+inc+tOYQM0SCX8/JLeW0lR/7pe61BA2OBiKqbSlB8ngtagwacgf2I5OJz4wnA1tjGTNw3+dkzWMuya0kht6YG2BrFOH/8M2ggWDNzTiMPpFU5dSOdSQtDwdyaVGvQQJ9Zbxl8EutvMWDPf3VAhbm1jGDnmQ2z44tXzItvopVHOgVEhuMQLWr2rt7M+vAUe4s2HSR3JmZl3kMjMrsZC8RTbMjPHWQSMjb0s9Neag3H3lWYayvaT7c3wOIQp1EhOhrH+JEo9C4B0jwb6ozauXmYj9lQtLFnTkaTUM1LzfJG7dxYn7GhYJ+bw/EWRhgSPCx+6XP5AjFjw7m4z8+zIW/WsZzX6Az0Dv6U55fy7J31WQAov8bDfjc3X833Q9Gmg5hpKwhc3jOc1tYuQJx3cIz1hblYrjVoUHEt21gTXfnzGq1+rq0p01Ywq3D8lwOYjSUgzpvX6IzaeeNf1mfn8iH8vN/ljdq83J/WoMk9o94j5o0RKhWH2WnWH0Une7ds3zD6pDx7C1aejbMCsPqWIlkxAgC0Zh0pRrDfzdi7kD1TlsizUIwAWC4wGyOS8SRUnGrJGCFa2BiejRGetcwPF4sRBjfzWYCpeKVTgFrNZX5ngRiR/TYWHQweAYO7xzE9HF0yRmR/R7SooZU0UKkAtYZbNEZAEPL8W6NT580NF4wRme+oNWgwvH8Cs5EEBJNu0RihNWigzcyp9U4B6SSw7TMsX7NYjNC7hJz/7vzSMXAct2SMyH3HeTHCf45r8Rhh1eX+LRsjCpqdqLqlcNEYwRuRs2H/5lGkkqnc+jVr70VjhF6Ddz53BLFxeTFCMLF//8j6WyFJ0vtSdmQFHyx8+tOfhkqlwvqb10PI7F8YPELeQWTerMvl6fUuFpd4A4+d/3Eceme+wgxv0+XWEZKTB2/W5vY+1FoW53rfYORrwc7n1ie8RWBtM/HD5JUgWHiUXuXF6luDkFxCrh8LZjV4s3Yu5vqkvDW15OBzuQZOz2faZmJugZi3B6F3C7l1MXtGDlMZNW+Dj7XlM68neURIrvl20cLoE7HjS8cw3j0N3qSFNhNn9V4hT7FPMOty62S9V4DOoMVMJIHBXWMweMS8vilY5toa3OwZhEw+nVOr8vPeVl3OLqItY2/X3NpMsOpya0TBzOfiG2/OtPVkxm+vmJfDkBw8kokUBvaMgTeyfZvstzL7JPDzxhPJyUPKzBuH90wBaeTWoSaflGdvyS1Ccs3ZmzdrYSyS4GmysDmEWQs+s58neYXcOjnbNptX0XtYfjIxm8r8/yn2nm9DH/MtycbDUq6HrdwEYd74LVhP8W+zFpI9O3aKuf1EIOOzmbaCTciztylj7yxEpwBbyAjeBAgWLWvrndtnmG9vvVPIxe5DP+gGx6nm1vmn+KzkEiBlxmSeZ3ZR69g3Nvoz9s68nt4t5sbvnA0LsnviIpAGet5keUq9L9/eglkHs29u/sH2p9UovtQFW5lx4RjhZr7FZ8ZWo09+jDD6pTx7i04etnJGWF8oRuTs4mQxIjoyg1QiDd6weIzIfotsjDCXMD9cKkbwZm1urjLZF4UKqiVjRNYOvFmL1Ewakycj4LLk93n2nh8jeLMWolWTsT/bb8xWFFssRsy3d7iLiTZkD2wsFCNyz+BkMWKqL4rYeHzJGJGdI/NGFVScCiOHJxAfji8aI3gjewaDT0R8KI6p7mj+vP1MMcI7t5bIxgjRy8NQKC4aI3izFnxGvEvvEWAskLD6I8HTbTgvRjAbSrkYMXxgAkjjtDEw6/8Gn3RajEAK6Hp5CIKdB2+a57MF+TYUHXPjWpE7gKamJiQSiVz51fcKqnT6lGJ0ChGJRKDXM4u24iIY1fJqe626zQ9zkR67/vsEIifiSCdmlT+EjFepurUIM1OzOPa/fbJ/tv0lVouZUjOz6iOFEG08tn/+qOxrVpAPc0jCzBi9XFT7S9VIzqaw5R8Pvj8Pduq94ils+Wf592rcUAbeoqPVic/cKxFN5ogbspCtLEWs/ND+UjVmJmdzC2a5EB20knmSg0PdQ5WY6o9i91fkS6K2bKyARlSTbGgOSVh9SwkmeyPY/VWa/CoVrgYTQlcVKrqXq8GEwe0KdB9XAIApW3nWWEn9ZNXtRbCUGNG/a5Q0NjQ+VoYDP+xBpHcJmUmOVn4m71KBTRLq7y2AzqjB5n+S3yd7ynbhwIEDcLlcGBgYUPwMK/jgwu12Y3CQnTZep/qw7Ovanq9CdHQGO7907P16tBzEAhGV1/qw49/l36viRj8cVWb07x7FsZ/K75PNT5ajZ/Mw+t5SUC9qBQCYcsvwbkI5X7CTtAa3iJ3f7MB0V/R9erK5e+ldAnZ8YT+pLFj7i9WIT8zkVA4p96LO10Qbh+gorfRd85Pl0Bo05HvlSo4RzN6ysQIaQU1a10AE2jdWY6o3it1fkz+vaX2mEmodR38vBVj7TCU4BfcSbRw4I/++++7fMuofLkW4N0KK1+0vZtbXfy//e5Ve5wWn5nDkRyeVPCYJpqCI1R8pwcDeMdnvNSqO4iA2Y3Z2FjMz9BJMK/jrQHbzugnnw6KSl/MqudINT50de7/dgckuZfL0FJRe40UqmSKV+G57vhpQAW8R+mTJlW6YCvTY9R8dSh5zBWBl0VJTM6RSagCLocl4Elv+5f3fnG9/sRqJGC0PtfqOAExFEt785H5SObH2F6oxM03MQ2X3Tohdq/2lasQnZvHOZ2k5L8HC0b/XS9WYPBnBnq93yr6m/qFSiDaeNE4KFqBhQzUmeyLY85/y76UEkl9A/d2lCJ+YJt/LVm2glVJcQR7cTVb42x0k3w1e7YG33o7B3WOkMqC19wdx6Ge9iBHLmyvBmntLIDl4bCbk8vurD2Lvvr1wu93o7+9/H59uBX8ptLW1YfPmzVBBhYs4+Tmv1o3liIzEsec/u9hfvDfbn2cE7+BRfo2XFOP95zlQfJ4bAztGcfTn8tdQ9Q+Wom/7KPrfHlPwpCsAmMrI+OFp0jXZHOW+73aSr6Uie69dXz+KqZ647OvWPleF+NgMdhDyvBU3+WEvN+Gdz+4nlSDjTfSSZbX3lkDvEWl5KGCu5Jh8U6D+wVKIdtocCmDz0PCJaez9ry7Z1zRuCIE3a+nvpQBNT5RDZ9CQ78WbAK2JJ/nTCvKx+o5iRIbj6PiV/LnG2merABWw+RMHZF/jP88BnUEjrwyejLKnC1/LgXfyqL+rGMP7J2SPQ/FUHDsMv0c8Hsfk5CR4nl/6IhmgFTFcBA5HNkGjkk1QyiKdTiNyQn4nqVhfAFvQiF3fOI5IL61zHfhON6k9ABz6aRf0LmnphvNgyqjOUFB0iQv+Vgd63hxC96vy67bWP1yKie7pXCkwOTAEJRi9PPreoE1qii5yYmjXEImIYg5JqLi2EEd+eQJjB+SzZao+XAxOoyJvNvTvGEV0jOYXzjojpkeTOdUruXjz4/vniEAyMTUUy53kI9+LiJZHMhtRy7A5pIQ4FBlOKXq2yHCcXLN54kgEb3xyH5mwBQkoaLTj5J/l10Ue3B6Go3oSna/RGHbNT5RDa9Rg8OB+0nOuua8E6WSatCAClPVn0QE4G1zofnlQ9jWST0DVh/04+uteTByR/2Jtz1chnaYN5o5yEzv17hOWJg9lsO9b3ahY7ycRlADgnc8qI6E2PFwCnVGLzf90WPY1qWQKaVouFPZDFQAO5EgsK/jbQ/bbnoUr5V8kAulkmlxLfe2zVYgMxUgEBQCInoySCEoAcOgHPcCNIG14m4LsZKWj2kwiKa19rgrpVBpb/kl+MtS+2oCi89w4+D/HSWSUonUudL8xSCKUiB4B1pA+p14lFzX3lCA5k8L+b8lfXIs2DuXXFqLwrDh2fFH+Nzv6mz74W+1kkoe3zUYmlO36cgcj5hD5JLPRBKYHaXPDbAkLKuofqcRMeBbb/u39V7Jr31iN2akEtn5a/nhCIrtnEQUS8SSmB2kbFFs+e5D8rQBAXyyCl1QYJawbut8cylP0kYv6RyrJhwDsqw0IXuzD3m8eJcUA0cbBuspK7s/eNhvGu6OInpRvzOCVXhg8AilmBy51w9dix7Ff92Jg27js60Q7D42gxjHIj9k9m4cx3kEjRFLGhPkwBUWsWh9A/84xHJeZVAp3RJmil1a+T9miNkTTUaSRht1ux8gI7Tuv4IOPQCAAAFBBJZugBAAarRrpZIpEUCq+2AVvow27v92JSA8t9h77Gb2v7P9eB4x+A+kae5kpT1lDDpx1ZoSuLkDPG0Po/r38nNfqOwKY6o+i82X5xCvBI8DsFzGwjZbz8qy1YfzgOImIIrgErFpfiI6XezF2UP7m1aobixSRlLv/PIhEnLY4tFbqEZ9Kkv3pzf+3f44IJBPTg1GILh2ZOETdTAKAxvtC4DNlad9vNDxSBsFGP3Co5NmmB2LknHJsHHjzX2jEsCzcTVZSX4n0xDC4Zwwnt9Lm8rX3sU3K7b0HSX2scn0h1DoO+wgbh0CmP3dEEKPMYQWw3Pyf5CfKBAuHipsD6P7TACkGtGysgEqtIq1FHdUmdmq/WJA9rnT8vB9qNUciKAFQTEJdfUcAeo9AOtCbiCWRTqZZvJH5uSz7AgD2YmBgALFYDIJADFYr+MBj8+bNAIA2XEa6LplIIzVDIyY1PVmO2HAMe79F2zuMD8fJ+fiePw1DI6rR+Rv58xrewUN08HBUmkgkpaanysGpVHj7U/LXuwY/j5JLvDj8sz7Eh+XnUTwtVowdHCMTXqzlFvQT1p8AK3ekUqtw6Ps9hJsB1TcVY7o/il2EQ+WdfxxCIpokE5SctWYMHZwgEWwO/aAHh/ge0jUAEJ+YwdQAbQJAst08ND5WjehonJzrVYL2p6sRG58hCYFQiFrzEQ/PYoqY83rnP46QvxXASkIKZjUmjsrPeR1/tR+Cmbb2AoDGDdWYiSSwjZA3NBXzKL3cj4P/24Non/wXVNqf7TUmRIbjpHsVnG2HpViPfQS+h6fJguBlPnS83EeKo0wBTAdAPv+i83d9iIzQ/Iky95wP3sGj7qPFGNg7js7fyNsHjA/FkU7R1pM8x2NmahazmEVRUdF7JorwnpCUIpEIolGWND2bwGoGgP3/k59AUWm0S6op6SQtVCrV6QQllWpBZnTRRU7425w48osTGNpJS4iO7JnGCGiD0JZ/Pkgmr6RmU0gn0uh+S36yBsiUjDJoSSSlqmv80Bo1mDg0gciwfGf0tzvha3GQSAOeRhs0ohqCmQeFedH79nBOpowCih2yCF1VCKiUJQ+opJdD31U2AVCCof3juXIj7zcG943DUrQ899r7jU5lF1IJSgDWfKQERp+EmckZUuzY/206IbL7zQE4q63k6wxuEVRRPP8FDhSe5YKpSI+9hJNvdfdVQaVRkUhKol0N3qxD0Tku7Dki/14zU7NkYs72rx9V9J2V9svmp8rBabiFky9nUFFScSqoZOQbsypKALDrP+mbDZJkhiamQSKRQGtrK7Zs2UL+jRV8cGGz2QAAKnAQVYSxMgpsJiRBAQAioOIAlYbG0m/ZVIFEJKlIVfLQD2h9MtwRVTSGx8MzSNP4WvCvdbHyISIPCgPD3+aAt9FGSkKXX+VjErNjcYzslX/i2OihjwvRaArjndMY2EHbWJ/uiuJQF+17+c6xo+QCD8xFehz83gnStUpIL1s/JX8x/m4xPRDD0IGJ5blXXwwjx2jrGqV4+5+VkZuUoPb2EqRTabx1QP56g0r8yWL8+DTGiDbUe1h5D89al2zSCwDUPcg2oijPagqKKFnnQXSYRh50rjbnlYGVg4GtQ/DU0eehb35yP/lbd/9OGYHa3WRB6aU+HPutfCJVuCN6WhkbOXjrH+T7XxbtuAJbta8AAEZHR3Nj9Qr+NtDVxTbHSeRwAEd+2osjoG0Mi1YdVGqORChx1plRdkUBDv/iBEaIqogTx2KYOEZLom77tyNk8goAJGNJDG6nxWxTkQTJxZNIShXX+KB3C4gMRUkEseA6D1Lnu0hqHu5aRhoQHQLGCLnD7j8PwVpKI4cByhLYFdcVglNziohAVNLL8d8M4Dhh4/XdoG/HKOylxmW5V//2UdgrTctyr8M/VqgaqICgVHFDARyrLFBpVOjfLJ90dOQntLgGMIKdu86GWIyW6LEE9Hll2OTAWqlH6SVeTHROY+9/dcq+ruVRdgCT1M8EVvrZ3+okkZRi4zNQqWnvRSVqZUElKGVR92AptHo1aT2l0kBWzms+lORQBZUAXiUgnorhnHPOwdatW8m/sYIPLurr6wEAHNSQ1CZQEsSnKfItsmeYhVqjgkpLc9zGDSEk40nsVEDooxCUAEaGevP/7Z9TlpGJ2HCcnMvztTpYGVM9ECeEwuAlXsye7cTWf5UfL4rWFcC12oLkbBpDu+TnUaxBA1QcXUlkaN8Ehg/S8jXxoTiO/YKWl7eU61F+rR+2ciM5v6mE9LIchKEsxo9NYbxzeRQRR49OInzi/VWvyuKdzyk4aKhQnKj+3iCQSpPy8yN7lFVeGdw9hqk+WsJGa2CkSHetBZ198mNVzb3l0IkaEkmJN3GouNaPSH8MO78qP5Z66m15JdvkoH/POArPdSGVpOXL3/rUAfK3phK1sjCXSai6oQidr/Yv/BunzInjw3Go1Bx0ehn2mDdB2/JJ+n5NKy7HFt2vEI/HMTQ0BKfTSf6N0x7pvSj3JkkSolFW3/Biwx0AgFR08ZWRSq1G46MB9L4zir638jvY+1HyrWK9H/aQCW9+Sr5CSbYU1ciRMGkDm6Lg8V5BcnAkspFUJKH4bDsO/DdtYyhwuRuzUwmSqgy7IRQRB6iovq0IBq+It4my14HL3dDwahwlLNpC1xfAucqMQz/twsge+YNl0UVOxMbipJJe9ho9Kq4rxtDBCRz5wftf4kBpuTclaHuhCsl4inSCXXQAvrO86H2jj6QC1PJ05pQSIeFoDknwr3Wg49fdpHtV3VoEo4/ui4qgsH+tvrMYHb88QYodBefYoRbVJJISsPxxUcn92l+sxswUze9bNlZApVnEp96DUm85SED9R/wYOhjGid8v7oyqjNxiJBLBbsNvkU6nEQ6vlBH8W0E0GoUkMSb0WbhSNkmp+BIXrEEDdn5pecpytD5TiWQsSVKUaX6yHBpRTd4cVlJi691A9AiIEmXvi9a5EB+foSmUeAQEznfiwHeJRB5AkeKQErRsrMBoxySO/lj+HEq0cSi53I/jfxwiqcO0PlOJ1EyKpBwk2ji4m53ofG2AZI/mp8qhEei+qASKy70pQOXNhbCVG7HjKx0kH3Y2mKDVa0kEG3eTBaWX+dCzeZhESim9zov46Cx6iIqULRsrMHZ8alnKgSmB/1wHoFah5w+0AykVN/nR/dow6Xstd0wE6HEx64sUkpNo41D/cCUGdo3hGKE0glL4zrHDvcaCHV+Qn/QdqjmCXbt3wefz4eTJD6YvroCOoqIinDhxAhw4XKi6XvZ1tQ8EMbBrnLTxrxQll7nhabRjxxcICiUCU+Ub3j9BIkUILoGmTPIegFpmS3AJKDzLRiZS+M62A8k0ej+g5YNLr/HCVmokzYUAwNdmA2/TksoA+s9zoPBsFw7/nEZ886y1YTYyS7pGcAlouD+IoX3jisgvVCgt96YEa59lqo0klU0BKGp3YnD7CMnvGzeEoOY5Un5N8AgInOtA58u9pHsFr/bAXmYi+6IiENR15qPihgJ0/XmEFK+cdWbwZi2ZDLjccVFJ6cG1z1ZidjpJ2ohteKQMGkm9PLlNAGvuCWCsYwon/iDP/rF0DPusb2BmZgbDw8Mrakp/Q8gSE8/BteDVme+6BFHJ02SBs9qMPd/rOn1D+X0o+db4RAipmRSJIFJ7bwlEO08+PMg7eJKq0buFkvt5WqxIxlMkshFv4lB0oUcZkZKHYpIIBQ2PlmH8+JS8EkwZ8Cag8Dwv+neMkspsNT4eQjqRxvYvyCcP8CbAWe/A0I5hkopV/YOl0Jk02KLkQBoRisu9KUDRxU4UNDuw7zsdCHfJt72lXA/BpCWRS0wlAqrXl+DkW8M48Uf5eZ7C852YjSTIpRsbHinDRNc0mTSnCAr6l6vRAo2OI6+jgld4cHLrGOJDFNUmDvHw8ua8qHExcJkb3gY7tn+eUFKRB9Y+VYX+HaMLk1nfZam3+bDXGOFvtmHX17uWJgNnrh1efRg7d+2A3+/HiRMK9itOwXuipJRVUTpLpoqSSq2GoUSCzqCBZ43lNJLSYlh9RxEGdo9iaCeNralEJUPv1yOdSpPZmnX3BJFOpkmbGq4GE7zNDuz6VocisgGFZAAAke4IDvw3/Uadv1Z4Gop4K3eLGcXnebD/Rycw1SH/Yr1DgEagkwKUvFc6lQbSQKSP5h/+difSqTSJpJRKpJFOphEfnSHdK3R9AQSLliw7qgQF59jhrrWSFTNSs2nMTiVo9zrbB/cadtKbUqIrTWTJAqxM3MQR+okevYNX5Itr7iuBWsvRGPAKCYB7v0k/gUUmKGaglKBUdIkLJp9EUs8qvdYL9xor+neMkpTVkokUElGapIqisjkZrLmnCEd/3YdIr3xiLm/WwF1jRs/rYaRnlo4HkiQhHJ4EkIbH40F/P11pbgUfPJSUlACgqyi5VlmgNdCmfqagCH+7C/u/TY8XFMWgLGYiCfJp0tANBXBWm9H9p0ESqWHVHcUYOz6lSIGFSlAClCmHRPtjyghKAJmgVPdgKWamE6QScRABjaiGwUVLBkdHU9ivoARzOplGcpY25y26yAdHlRmJaJLkH7MRosRWBnUPlqJv2wiJjKYUq+8KYHogRlLziY3PIDWbBqj97HI/AJpiUXQ0DqTpJ6mVlvXSiGoY3DRftJSLCF1ViGO/7iGVl1MCKukqCyUy7IoJSiJTEe3+cz/GD8sPIm3PV0GlUpEUOiIjcVhmDTB5RYQ75N0rOppSnNh0rDHCUWUhqbd5aq0QrDoS6cuw2w9gF3p73/9N9hUsH7LJt3ZcIfsawcJB7xLgrrWQSErl1xdg+OAERvfTcl5K1GuMbgHJmRQiI7QMdP29QaRTKZLakLlUQOFZHuz9fqcisgF1Mz42GFNEdul9fXlKNVpCIsqu8OPIL06QVKwMHhFaPT2Vq4R0peIApNKIjtIOkpZc6AHSaby1m0D05oDkTArxCdq9ii92Qe8WFKmwUOGsM8PbZMNuQokYAEhEk5iZor2Xr8mOwrNd4E1a0sZtKpECR1TMiPXHcFDBXMPgzvgikUBUub4QOoOGZkeF3J9DCojrQzuVKaIqJSh51tpgLdHjwP/In5/42mwIrPMw0jahxGcynsLMNM0XKRvlp6Ly5kJ0vzFEUgU0+CRo9VrZJCVBJSA8NokkEigpKUFf3zJs3K7gfcdZZ50FgKko5QhKMuCpt0Ii5iZ4B4/i8xw4rCBevKPgcPfMVBIaPS3X4D/PgaJzXOj+8yCJQBn6UAEmT0bIRAgAighRiu4TTilWeqMSKFbdWoTEbIq8vuZNWuiJeYZ4GDiq4FBNOpFGipjzctY7UHyeGyqVikSUiU/MgiOqhwHA6juKMbBrnERGU4ryGwoQG5shlYmeGZtFklgWGQAqrvVDpeFIJKX4SAxI0fcbKd9pPnizFkYPrfKQ6OVRdX0hjv++H2MHCOtLBQTAwXfG6RcB6CDkNLNQTFDigcoPFaJ/+yiphGPzxyqg1nGkClOTJ6Nw1yTB2wXEwzLnQnGQ7jEf5jIRzioLKfZ4ay3QewSIHh7R/rgs1ULjrmIAO9DT895UjHrXJCWfz5f5kyp3qh8AOFE4TU1JpZ7bsJ86HsGOrx5F7Ay54MVKvpmK9NB7RQztXGBj+AzyjcGrmER+32baQDm0cxJDO+kOMXkygkSMNtkoPNsF3qyDJHGIROR3sPaXqjE7nSDJKAYud8NbZ8P+H3Zh4oj8ZHzzE+VIpVJ457O0BUr7S9WYHoxh15flKzc4KszQCGqoiRyPrZ+hn+CRiiSsvrkQXX/qx8Db8gfXoz/tJSkvZdH9+iDSCdrgNXYgQip5kYWjwkSW9FQKT70VgoWoOQqQapRncfL1Xqg4FXrfoE32KP1kPho3lCE+lSCVRSOdkpsHPXExlQU7CThD6p/+CxwobHNi138cIhEdGzeUQc2rSQSdrBrYROcU9hHqe/sa7eQk27FX+mAPmTB2jKYcRFHYyoMErL4pcDqRahEVJXeTCQaPiIprCrDjS52n/ftpKkoAEAF2f7sTkczeg0rHypacSlbKqihlcTZ3LV5P/TRHKF7BXz+yNX/bcTnpuq2fPgzRQ4sxpZf5INp5WMpF0oZ19e3F2P/DLjJRhjJXyGL00ATMfolMADAX66H3CCTSxeq7AjD5Jez4+nGSAlDzU+WYmU6Q3s8UFFF9UwDH/9CHgS3jsq9r2hCCzqwlb+RLdp5e3zyqrFTu6rsCUOs48vdWQgztfrUXiVgSPVtp/rFTQR17sUCE3iXAU2dbFpKSyS9BcvIkklLnbwfQ+Vs6Ob/ztQHy/DXcEVVUVsbdakHR2S7s/c/DiBL2VJX4Im/iodVrYKuykEhKtQ8EoXcJ5Hs2bihDKpUmKfPYqiSUX1tMjgXNT5ZDq9eQYoHeJcLgE1F8gRfjh+X3z/GOKag0tARn9+8GFZd987bZoNVraApdlxeQS+Bt/1pmXk0Yy0SVCGS6SltbG9566y3SPVfwwcO5556b+ZMKgkr+PCo2nsKb/0KPS45VZlhKDXh7v/wxz3+eA7PTSQxso+W8JrtiitbjY8cmkU4QScPneWAskCA5BNKGddsLTOWZonjjbrIicKEbh37ShfEj8jtw7QNBcJyKVF4TYIq8k70R0uEwW6UZOpMWOiMPCgNjl4KSMoIFWP3RELpeG8TQdvk5rxN/GJZNFJiPjpf7yHmoWL8yX3TVWqAV35Pzt0vCU2uF0SeRFXOU5IZ6t42AN2jQt5m2iUX13Sxq7g4gOZMikb2oZK0szEV6cESyPMBiQXx0Btu/KD/n5WwwI7jOiz3/3UmKOzV3B8AbtaRvJ3gENNwbxHjnFMmOhWc5oJVoPtz71ig8DTaMHqblvBSrXglA5XWFOEg4PGMuFWArN4I3a0lxa/uXO8iErzZchtfxC0xPL09JoBW8/3jzzTcBAGtxSf4/qLhFN1B3fuU4eAd/5s31BUq+lV3qhjlowOCecdKGdej6Ahz55UnyRv6B79JJteHOSUSrzOjZTBuTndVmmEv0JPJQ6DofnKst2PudDoSPy++L9Q+WIhFNYA/hQDRv4lB7XwidfxwgkRtq7grA4BXJqteGgrl1GgVK1LVD1xdAMGpI9gCUEUOHdgyDU6swuJ02Z9j/P8oI3uaAASq1allISo5KM2aiCRJJqX/buKJSWx0v95Pnr/EwyKpoAGCtMqDkQg/2ff8EST1IiS9qdYBg1cFWaiSRlCrXF8JWZiTnlmvuDkDNcaTSbQY/j6qbinHi9SFSvKq7PwjRwZPswvMcbGVGaCU1KeaPHJwgC1KM7AkrLtNnrzFBMGtx8tQDNIuoKJVdWQDeoF2YpHSGE6R7f3ACPI85padsm1PH2nnX8moemqQOCcygpaUFb7/99lKvsyje9Uouy1Bfy8k/USY52H8jCg6T7v7vLqiXyi2eMunw1NkAFUgkJUNQQvBCN3b/93GySokS1Zp3PnsU9ho9WREpEU1imjh5N7gEqDQqTJykvZhGVCMNWkeUHBySMylM9dN2KSkkhncLd40RGkENvUsEIH9wlYokpCMRUgkwAOhRkOQRHYApaCaRqADgrU8cgOgg304R3vmqstM1hqAEXq8ilcyLDgNHCHL082GtkjBGPCnPm3XQGogbtwrx1t8rY8om4ylERmhKW1pJDZVaBWuVFRHCJr1G1JCJQyN7ppG6Ko3IKG31tvd7XZjqJwbhiHKFI/8FDhi9IqkUZt3tQejdIrxnWdH3RmacWaLM28C2MDSiGif/TNtIyBKULCEJ4zJJppJkRpW/CgcPHcTFF1+MV155hXTPFXywcMEFF+T+TFFRypKMqApAO/79GLxtNhJBqWidC9YSA6pvKCYpMFXeXIixzknSJjwAjOydwsheevL/zU/uz4z98jE9EIPk5EkEJQBsIUNMhljLjOC0KnAcbVM9MhqHSkdP/CshkyiFwS0q2pwwBeUrrmQRHU0pKgtlX21AZCxJ+tbRk1G88S/7lqXMHgDs+MJ+EoknC2eDCVOdYdK1ShTHAEC0ARBFkh2NBRK0kgaWChui73O5nYFt44oIZdNDMfBGLbmsolavBbXaenQsBU6rgqXIQIqP00Nx6El3Aqa7ojj4w06yqpRixTcRWL0+gGO/7ieNTyXrPEgn0ySS0qGfdCEeJgbizLcVPQKiEzHZ37oBF+KgtHml3NvfCP785z8DAJpwnvyLBEAwKSv9s/3LHeCNtGv8bQ5wGo5EUhJcAoKXuLD/h91klRKKIlkWe77eCUtIJBEFAGAmPEvOeZn8ItQ6DjFC0h8AeKMWKo44PxGA2ekEpgZog3/Hz/vR8fPlUbk1l1mhM2phLBBJJCXBIwCxGGLjtPtRyXIAI1Lpi4ykEnEAsPWThyFYyLdThD3f7FRUdkzyC+ANaowdJBAoYiAro2VhLBYw2UXME7tFpBQojyuBEjIaAMxOz2J6kNbPOI6DWsfBHjKQYo/OoIVGpOW/Y/0xzEYTmB6g2X7f97oRGVYwVihUOHI2mGENGEglPiuvLYS93AT/eQ7ZKi4Tx2I49us+cjzIjpvmUkG2ypygErCqehX27duHdevW4Xe/+x3pniv4YOGpp57K/VlSm2RfZyrmEe6KkxWA9n2nG85aM2mz2l5jgmu1BRqdmkQ6Cl7hwdRAjKw2Eu6KY4eCQ1RvfnI/RBvtQPn0UAzmqQSJoAQAWr2GrMpjDpmgEdTQCLTrpgdj0CnYp1mOsmZZmIv10PD0ChtZP6YgHgaJxJO7V4mA2Vga0T7a/d74p33keynFO58jlMmaB2uVAZGTU6RrlZKueBMAnieRjSQ7D8Gqg71cj17ieoWKcFdckRr1VF8UepcA3gSSHXmzjlyNbGooDq2oISujT/ZGFRDLUmQSJgBSucc88EDFNX50vz5E6muhqwqAFPJJSksY9tAPT2CWtj0MxIF4POPHkP+t23AFdhpffU9yXqo0NUs6DzfeeCN++MMfAgAuMdx5xjapaCxPQQkAmh4rgVZSMyWlRea2C6kpycK815IcHKxVVlKZooZHyyBYdTjww04SoaH5iXJM9EVw+HvvjdTVCmhof6ka0SFlEzcq2l6ogopTkU9Qtz5TieGDE6QyZWvuK4HRK2H/D46TCTZK0P4SO624TYFsKRVK7djydAUmTkyTSjnWPcDIJLu+fZxURlAplKgbreC9gVQkYfVNhTjx+iCJoKrIHyXA3+rIJyAuQVJaDGdUUZqH5seKodaqsPlTnXl/n56ZOU1FKYsJUye29P6JtXsf6rCvYPmgykxI16ANLlWB7OuUKC++G/gvcKJn8xBp8779pWqkZtPY/I/yyZq+c+woaLJj7zePKi9vtALFUKLUohTuJgvKrijAWMcUmfxm9Inkk8PtL1YjlaD5o1I0P1kOrUGjSAmICnerBWWXFmDkUJi0yVx6nRf2MhOZBKykXytF/UOlEB38sthxBaej4iY/9C6BVPo526/DJyPY8zX5igy+c+wY2zeiiKRHhegRUH9fENGROKkc8zbT7zA+MY7HHnsM//Zv//Y+PuEK3k988pOfxNNPPw0AWKf6sOzrau8PQu8WFClCKIFgASyVNlJZuVV3FMMSMODgT7tJxJC6B0sxPRBVVEptBe8e7S9VY7o/il1fUaZiQ0HrpkqotRyZyN78ZDmGD0/g+C/lk2wqbiiAY5UFh3/RQyJSKQXL1dAUupRCqR0bHwthsidCI5PcXAh7hYncr5Wi/YVqxMZn3lVJsBUog2DhsOr2UpzcOkKK/a2bKqHWcbT1m8BKEC5XOcymx0PQmbSkOf24MIx3Yn9COp1eyXn9lSOb81qFtfCqi8/c6AxqSu0vVCEensU7n1siHr1H/uFqtGBw7zhJSant+SqkZlPY8i+EygSrTCg6z4n9P+ghkSBW8N6g5u4AjF5pWQ71Gfw8au8uw8jhMEm5LnCZG7YyI2kdDgBrn6tCOplaFvJW7b0l0HvEZckdmkoE1NxeiuEDEzj0A/n7hv7zHHDXWslzw7XPVSGdoPVrpai+pQiWUsOy2HEFp6P4UheshQaSSpSpmMfqO0oR7pzCXoIwi7PWjPDxyfyydlT213ycQUUpC94END5agchADDu/dkq+PZ1a8NrtplcwOjaKhx56CP/+7/+u+NHoRSfnIUtQCnBrzvjvKoP+NIISAPRsGUF0dGZRghLAyr5l4W42o/3FKgSv8pCfMzKcIhGUAGD754/i+Ct9ZEKI1qiBpZB2ZnX1XQG0v1QNyUdjCq66vQj+C+gyOZJDwWeXlm5yJgQud8N7lpV8XftL1WjZWEG6RnQAiVgS4ycItTXfBYb2TWCsg3gvCVDrOHLt0BOvD2CiexpjXTR/bNlYgdZNlaRrlCJ0fQHaX6yGVERzloFdYxjcM06+n0ZQw0AsjXZyyxCmBqJIht9/ghLAlM4miaeonHVGtL9UjaqPFJKuk3wCqm4tIl0zd7HCy4ixRHQwwh011rVsrEDbC1WkaxCJQSOq4VxtIV128MddePNTxIle5BSFNMKEoe25crRuKs/9P6df+mMM7Q9jqu90v1LpdFAV+c5wBWAOB3J/fvXVV2U/3wo+WHj99ddzf16QoLSA/4VPRNC3jbab2/pMJdY+R+x7GfT8gUZQApgqzMEfd5KucVaZoTVoEI3SCErtL1Sj6fEQ6RpTUMTqjwaYcgoBok3hdJt4n+w1FTf5yfesvq0Y7S9VQ19Mu2n4ZASz0wnSNUoR7ggjfDKC3rdp5aEMHgFaPV08dmDvGHq30dYPtioJ7S9Uo/gSF/l+StCyqQKNG8pI14SPjGOsYwq9xPJ3Jq9EPlEOAGNHJtG/YxmYJADCPcr8sfmpcrS/UE2+zneOHf5zFUqWKujfSmKJ/1wHKm7yk66xlItof7GafJ25SA/BoiNdM7BtHEd/dZJEUAKYspcSglLpdV60v1QNS7n8DxDtjyEyFGfE2zNApTlzfLFMsLzFZz/7WfqDruADg2eeeQYAUIzyJVrmo2fzEKb6oiSCkrlUQPtL1Si50k26FwDExkHapAaAff/VhcM/6yETGSQ7D3MxLecV+pAP7S9Uw1xKWweGPuSDr81GugZgm/f0i+iXAICvzQbPWvoztj1Pn4sCTFlqgpgXUoq+bSMYOUgnDGn1Ghi9tCRD77YRjBwKY2g/7X4ND5Wh+WO0/qkUhRc40PZcFdmPT24ZRt9OOrmDN2ph8NImDH3bhjDeOYXp7uUpexUPz2Kyl+aPkl9A+4vVqLyZlvMSLBxCH/Ip66sK+zc1lggWoPrWIhiLaTdseKQMbcR1dyyWAm/RwlklX2kGAA7+qBPbP0/MecWgmKDU+kwlWp6m5fd73x7B+EL59gUOBFpijhw56Sc/+Qnpfiv44KCnZ45QsBBBaSHFw6EDYfS9I2MuNC9n1vhECK2baP6ZxeA74+RSb9s/fwAHvt9JusZRbWJqSHGamEPrpgrUP1RKuoZ38Ki4yZ9T1JB9nUlhzosm8pRD8EoPK+tHueYKD5uLltHmJ+GTEUTHloccNhuOY+RwGH3EPJTRJ0Iw09bhAHDyrWH0vEnLC/FOHmufqUTRhU7y/ZSgcUMI9Q/S/DjcG8PgnnH0vU1TlzJ6JfAmLdkvB3ePoXfr8uS8Jk5MIzY2Q+6j9Q+WKsrvO2vNitZiABT1byWxxNVoQdnVXtp9HDzWPl+F0PXyD38DgK3ECImo9hTuiuPAD7tJBCWAKXvlEZRkwn+eHe0vVMFaaZj7y0UISgBTT5romsaJt84Qe1TcgoIKBWPMp7785S+Tn3M+FJd7Gx6eC2DlUv1p/64ysKQFZ7MgNTqe92/9W8Lo30LXaUsl0ujfLkMRYx4juu2FKiSmk9j6GbpyAEV9IwslJ3dnowmkk2lEemlkBnPAAKNfTyof5l1rRcnFXowfp9XIbro/BJ2RdooBAHyNdgCYK4EkE4lYEpER2gQgOgy8rYCx2rKxAhpBTWagHv2pgpODEWU+MnYggrEDnfT7Ae+SikhAZp3IEaNKxy+USeUpsePQzkkM7aSfJqt7IAjJJZDvqaTk2NDhSZQm0oiO0bT5gpd6YC7U55cck4HWTZVQ8xz53dpfyihMfEK+MoKlwgqjV0LwUg/2/men7OtmIwlARXOsyHBKcV9TAu9ZVpRc6EXPlmF0vzK0KMt4PhKRJGZjp2yoqtVAMrngNZ2/O/P3VRWziZWqyId09+nxyW3zYWC0F08//TS2b9++5LOt4IOHbKk3AyxnbpBNtpxS9hYA9n6jk3y/2PgMubRj6dVeuGutOPTTbozspRF5o6NAdJTGbNr1H/JPL8xHIp5ELExL8gQu8MBYIMEWkEilkGrvrwCnUZHnGe0bqzE7lSApABWf44Kj0gykQToxFB2Nw1ggYrqLZv9D31egHCqydxvvnMb+b8lXRIqOpshEBgDY9m/KTsgf+ym9RJwqU5Na9W5Ot1Dup1KRy9JER0FSospixxeVqZQqLQPW/kI1ZqZmSd/v2M/7cAz07xYdmyGXYwSAwHlupFNp9Lwmfy0m2oD6R6oRGYpjJ0H5ddUdxTAX67H/e8dJ5Tf9ZznJcXz8cBSpZBqJ6MJzkTNBaaldJeX2AKbUoRbUpLnoyP5xOCrMUOtohLuFvlWWoKTSaJBO5M/nylSrMWUfRjwex8mTJ1FQQEuAreAvj1gshlSKJQZDqjMfzFsII7snyeQfTqtGIprEKJEU0vpMJRLRpCJFmKGddAKKkpPkiWgSyURKdumeLJyrLLCVp9BLKP1pLhWw6iNBjB2dxIH/kT8GrbmtBAaviO2f208qb1Z0ngsqNUcmic1Mzira9FIyr2l4pAy8WYe3/oH27ZSUDgGg6HT3ZFcMB7sUzBm45Z13QaUCp6WNIXLLY50KJX1t4lgME8fo87zK9YWwlRnx5if3k8rZvfM5uj9GemJIxJOIjtL8v/B8D1w1VkRHZ0g2bXwsBN5Mz2e3vVDNFE8I5ekEpwhrqRGcmsPe/+qUfV1sYgZqHTF5G1OWF6XG4SyslXpU3lCM/ndGSKUIY+MzSM3SNtl63xo9c9zPEpQ4NZA6fZ5aYC7GyYku/N//+3/xoQ99iHTPFXwwUF/P9hgNOPOB9+zaV6VWI31K3vQIQXUui0h/HLyBlm/2tdlQfIEbh//3JEb20fY342EgHqbFPkpeZz5mp5OIj9NyXkXnOuCoNGP4QBjxPfLfreaeMmhFDXme0b6xOqN+JX8ssdeY4G20Q61T48hP5H/z2MQMZqIJTByl5f27fjuILtAOygEsnzF6bJKkiBQPg9Q+iz1f7yRfAwAn/kif53EasJyz8gISxBuCvrcZB8k3sqCUbpwPpWXA1j5TifjkLEmt+eTrI/nlv2RiajAGlZo+Xy693AekQVqLAUyZfqovit2EHG7pVV6466049OMeUmwtOs8FnajB0Z/LzwXGh+NIxlNsz5EApdWbxg4oE1Wpuz8I3qKdUztLp5cURxjaNwVPA51Ytu87Zx5rsgQlTuCRiuWPX261HwM2F6amp3Ds2DGUltIIhVkoJimVlJQAANRn+IksQelMaHwkgHQqje1flLdoUmm0SCdmMbB1AgNbZSRQTtmUSyXTmI3SnG31XQGY/BJ2fq2DTBxSAkq5qvnY+cWD0FqJdRoH44hPzKCbyJIdORKGvYxI0QRw4EedkBz0o8JKyEbes6zQO0UyeWhmchZQkNNofKwMI0cm0flrZXXiKSi7zgdLsZ6ckFK6WaAER35wEkdAnwCEbiyAySsuW0m0xsfKMHQwjO6X5U8wp0fjEGw8UxwizGXtNXq4amw48N+ECWYEpM2WLDp+3g1Hg4NMCBw9Pgmjm95HpwfZqXIK+t4YQ2o2hYG3aclwymTtvUDLxgqoeQ5v/b3879C3YwyB8z3QSvNm6TKISlv/be7d8lSUsiqEC5CV/OeaUdBowZYvd53RJ89EVKqduRibTT/BwYPyk2wr+GAhkdkAXatad/o/LjBJFT0Caj9aguN/6MPAlnHS/XZ9WQEBSA2kU2kyQan9hWrEwzNLS3O/R1AyPu7+2nE4G0wkghIADB+egGCin2qKjsQx3kk7Bd318iDSKWBoOy2JcvxX/Tj+K/rCuuImPwZ2jpBIE6LIITmTQoRY/iZwqRvWoEExWYaKhkfLMH58Gh2/lL/QHdk7hTf3Lp/s8pZ/UhbPmx4PYejABLoIcyGlUPrdEvEkYhP00t+l13kx1RMlEV8oxOn56PzTAKZO0uJBdBSYGZ/F8CFaQrtv6xB0Bg3iYRqb6uCPOhEfJsraQdlcVCks5SKqbyrByKEwKQk/G02QE23jh6OK+03jhjKkEukFfflMRKUCTwF27d2F5uZm9PaulMb6a0NtbS0AQA3tEi1Pue6+EnAajhz3xg5O4+2D9PlJaiaF2WlavAxd54NjlQX7v9uheMOaguO/GSBtamex/fP7wdtpOa/4JDA9EEPfNlrOa/hgGBqtmkRQAoB9/9MJPVE1CFBG7nDWmWEoEEhl1ABGEiATIMB8eezYlGKyEgWFFzjgrLaQy4YtZ5mx7t8PKbJF4BI3LEEDiZz8blB7XwlGj07iBOFAa3QkjoRfgiBwiMXkE0rMpQJca2zk8o9Kcr4n/tiL6BiNoAQAIwfDMAdo6m8AMNE5hViYdnhw/EhUUak9yiHi9wL1D5VCsOjwFmG+N3ZwGulkirwxrSinAMDZYEZwnRe7/uMwYuNn8MkzEJWqws2Ytkzg8OHlKXG/gvceWVGEtepLTvu3BQ/n8EDLI+Xofm0Q/XLXgJmDfUpICZyOQyqRwshR2nqudVMFZsIJxZvcVCgZH4/8+CSGD0yQN9QHd41BIla7AIDwiWmE+2jr6ZE9YRwTezFGJPX3vjGK3jfoajfBKzwYPjCO8HHCfJkHZiIJREZoc2xPixXO1WbFpCMqau4OYOLENDtsLRPRvjg2/+Py5QreUXjocM09bA6rhIhFha/NBnuVifzdZqYSiI3Sc16F5zsRGYljhEAkVELiBIBjv+5FfJy+Vpzqi2KY2EcHdo5CcvGIEEnsB7/fhVki+RMAtn5q+fbNeQeP+vuCGDkYJhHo4uEE1NIpE68liErx4Ti2fXpev5EhopBFzZ1FUKlV2P31M3N3zkRUKvAWYMfuHTj//PNx4oSyQ6qKSUpTU2ywauPymemLEZQAQCupyaVfnXUG+Ntd2PGNjsUJAmf44S3/SE9CJuNJRcpG7S9VIxFLkhZbkk+A/xwHDv+8h0R+AJhSCIZpF011RBSRQY7/cgDHQU8qjR2IYIz4YtYqCZagkZx4KTrbDbWOI5OUdipcMPFmHRzlJhJJKXR9AZyrzDj++z4SmcQaNCgqVfLXAGvAAI1Ap1+3PV+FdJq+icKbdXBVmUkkJaUErNJL/YpKo9hr9DAVGUh9IDKcIr1TFkd+oGySojTRQCUoZeFda4Vg15FsklWOGzs2SSKKzUYSUHG0zQhEgLf+4QzjjQyiUvBKFySngP0/kJ9s4zi2QPc3mdHz2plteiaiUjjMJrAbNmzA5z73Odn3W8FfHg888MDC/7jI5NRdawanVZFPL67+aADhngi6f0eLK8d+2qdIgSYxm0R8ikYqr769GJaAHgd/2EkiDgUudWN6KIqh7XRVTyXXHP2xso1ppQRN6jcDmE3Gj4dJZCMAsFeYoHcJ2H5Y/twyOppSRBJwVrPSflSsfa4K6VSafE/BqoNNrYKy0e6DDZ1JC1vISCIp+S9wouhsJ7pfH2LlHGVC6XdTSrR311hhCxrJ6jyBS90YOhgmqYn1EsuJZ7FNwcb06IEIRg/QYwK1T+cgAqErCtDzh5Oksmotmyqg0dEUascPR5FOpZGYpSk37fySst4p2oCKm4LoeLkP4Q759tHqtbkyIgvhVKKSYa8fwC709dHHxRX85ZHd5GzDpaTreLOOrHJnLBZQss6Dwz/qJJNkKIqLWSRmk0gn6cpGbS9UIxFLYOun5N9TsAAF53px7OU+kkILwMrYxYiJ8dhgTJHSZu/rI4rKGU12xTDZRXtGyS/AUW4kE16Kz3NBZ9KSc2X7v6OMAKH3iNAIGtJz+s62I3C+G51/HCDZ01ZugmCjk/r/GmALGRW9W8vGCqjUKvIcNvvdKCSlrlcG0fUKfQ1RcnEBJCdPJimZSwWYi2l9IDauTJWq82VlB0uV9hsqQSkL+xoj9A6BZBNLSET1+hKMHiGqdUzOQqOn5yo3K9hjAQD/eQ6Y/BLNpilArePgarAvbJMzEJXGxycApHHPPffga1/7mqLnXcFfBt/4xjcyfzp9DrXYvMpTY2H7CsS5V+j6AkQGY2RVkp4/DSuKRYloih2UJyB4pQeeehsO/YSmLOI7y4b4eIKs9AQoU/xQSmbe+1905T8A6H+bXv3Gd5YNU70RGtkIgKfBBnORnkYuiwPbFMzPXTUWcplXAGh6qhwqlYpMujB6JWhFDYmk9NcCg1cEp1aRSEr2GhMqrvHjxBtDpOsc1WZF300p0b7wbCfi4VkSSQnI9IGeaYS75BN6hnYp28ejKChlMdUTV0TQm+pRWI6RB4rPd6H/nQnEh+X/RsOjZeBNWrz1D/L3pOPDcaRmUkjGaTmvBYm0Sykq8cCqG4vQs3kIE8fkvxtv1S6pUHsqUcmwuxjAjrxyrVQoYj3MLxMjSXMnhhYiKHE2CwAgNTqOzf9CT64WnuWGYNVBckiIdJ9hE2qBZGHoxgIM7hzDxBEaSYakejIP8YkZREaUlWia7JkmkVaanghBI2rIBI36R0oxeTJKJvI0PFqGnjcHMUjYnPOeZUXgPA+O/qqHVGIreLEPvFmH438YIBG39vxPN2yl9BNsRZe4MLw3TCalKZHVjY7FkUqkMdlHC55b/1XZKZD2l6qRTqVJijBKUX6zH84KM05uHSYRt5ScoAKAmalZRaU5lHw3ACg4x46Jk1FMdch3ykP/ewKSnV6ANXRVETiNipx8bH6iHOl0mqy4VXN3AFMDUdL9JJ+Aqg/7ceJ1WlxYdXsRzMUGsgR8yTovoALpGfs2j6HoXDfCJ2hjgCJiQGYAr1hfgBOvDSPSO6+PpzPkkAXISu4ay8JKAAsoKnX/cQLdf2QTxWyZtzM+1ilEJa8qiL50B37xi1+skJT+yvCVr3wFAFCM8vx/WGjymPn7zt8OoPO39MSsqVCC3i2QCC/6YhGeeosiktLb/0wfC8Jd09C7eLKyka/ZjnQqTSMciUD7x6oxdGACR34kn9zpbrXA12THwf85RtroL7nCA9HGk8tyNT0eQjKRwo4v0OKYr8UOV62F/B2OvdyLqX7anMYUFKF3i+gjygUr2YQFgHh4BmnaOhCAsvlC6XVeeNbY0LN5aFlUitpfqAZALwei5N0i/dNIztgRnyDOYRV+N7FAhL1UTyqlBgCdfxzA2BGaAplYIKKg1QFzsZ60se1usqBknRdHfnGCpB7nbDDB1+wgE75Lr/PC4BCx66u069Y+W4V4eIY0vyk+xwXXKgs4TkVSN5o6GQVvIhK9AVKCZz5sVRKsZWYcI0h7i24JklNA0Xlu7O3olH3d/BOj2TJvZ8J8opKoEsHreCSTSezZswc1NTWy77eCvyzGx8dzfxZUtJPhSkiWhee4YPBJ4O0CiZRTcpkbY8fCGD9CIyQe/+UAea0JAJHBKOJElbvCC3xw1VgxMzlLIk3U3h+EYNGRSi0BQM2dAUwN09a2ALDmngBObh0hEQyslXqUX1OIjpf7SKXzSi/xwOQ34LswAAEAAElEQVTXY3DvJGIEZcm9/3MCliA95+Vrs2H0eASx/vc/5zU7lUAilkRkgDY/V3oIqu05Nhd66xPvv5Jl4QUOFJ3jRu/bwyRlMKWbULHxGUWlOZTmvNxNVkSGoiTS3eFfnITeRc95lX+oiG2MEje2ax8IQq3hyDatvLkQ0dE4iYglWICKm4Po3TqCoe3y+3dWqe6tT9FK54WuKIBKzZFsMn4kipnJWYS7aHPfd6PcVHKlGwO7JhDpkf9yvmY7+XDq0M6JubjKLXLtKUSlCtTiEHbid7/7Hel+K/jL46GHHgIAFKIs7+8XIiipMvnS/m3j8hWU5sFRaUKyxEAiKfEOHt4mCzoVqEMqUVCc7InCGpwlk42KznUDKZCvW/tsFYb3jZPKJlmrDPC3OXD4Z32kjX7fWTYYPCIOE/JrAFPI4VQq7CSuiQPnezATTWAbcY/t0E96yDkQ0cvD4BLIBA8lxA4AiI/EASXzBQVlZX1tNpRc7EXPliF0/fb9z3m1bqqASs2R98CVlB6ODMcxE0kgNkbb31f63XgHD2tQIpPujv66FxPdxMNoPBC40IPJkxESEchcJqH8WrbWoZCiLOV6+Nc6yETEwvOdMPlF7CPOU5qeKsdseBa7vir/WzgrzfC3OqHTa0lKU+PHp6B305Xj3lao3GTw87BVmU4nE2Y5MWfYF+JNPMzFjKszcUx+Pm/bZ+ZVfBEWnt/PJyrxah68mkcimcBrr72Gc889V/b9slBEUjr77LMBADowhuBS6klZ2FdJGNlHlAsCsOPL3TCV0ghKAHM0e5mJFMSkIgkFTVZFEmhKFIr2fq8TpRd7ySWalJAzAEC08dDptTgK+SQlZ50Roo2Hp8FOIiMY3BJUahVSSZp6w4Gf9qKgyUpXluqOnNlHloC/1QHPGuuylEbr+cMwegiJuXeLcE+ErJ6hFEO7R2F0Cxg+pOzUEBXLVR4OACABgQs8iI3HSfedOBIhkyQBoOsP/VArUGBScg0AGAskSC6abDwncODNOnJcSMymkE6nIfkEEjGw608DmOqnqwFQk9pZuBpM0HtFkk3czWY4QmaIZh12fvkMk6IFVJX2/LgHkaWGnAXISpaQhIkl5s6qIh+7fXcvavTnIClNYXqalsRawV8eWfWGkGoN+4slmO0AABEweUSSUkQWb358P8QC2kmQ8it8EB08hnaPk+5ZcoUHE8fDZLJRz2vDZAIDAOz//nHwVloy3eQVgTSQJJQ/AABPnQ2ijUeU+AlcNRZFZTk0ghpcmn5d958GEZ+iLcQBkEsIAkD51X7oTFoySUkpqIStd4OxQxMwFUjLNhca75pedC30XmL0QARbDixfudCaW4qgEdXkPq5E3Sh6Mor+HaPo3Upcj6kBTquCwSeRSEq+Zgf0LgGiR0CUsGHsqDArigtIp8lrx66XB6FSqcgkV6WqAxCBsst9OPnHfkRH5cfZ8muLwWlVJJLS6IEI9n7nuKKxEWDl6SY6FidpZElM6UQCNatqsG37Ntxyyy3Yu3evonuuYPlRV1cHANCBNl8wlwqKyqft/3Y3jMUCWZHH22SHa42VtOYRLBx857jQ8Uo/Wdlo11foSfgjP+lFfIJGUMpiKfWyM8FYKEFw0hR4BY8Ag0+Cr5GmgmLwiiwuE0PzkV/0w9tgJhGUAKYS1U+8BgAC6zzwTc5i22eUlcygII9YsAwYOxaWty56DzByZAq2chNGjyzP++0mbLS8Fyi93IvY6AyJABTpiZHIKll0vNwHXk8nNeuMGnAKvrctZEQiLpHVovQuAZ46K4mkNBtJAqk0jG5aTD/2ch9miBvhABT3a0tIhDlgJNnEXCrA22CHySeRxoPd3+4ikySzMBYLmByaXXy8ypKYUkkUqsoQdg/kKoCs4K8HsRj7yBXqBgCLqyfNh6mYJymDZPHWJw6Cd9LmecF1btjKjZjomiYpDhWcbcf0YAzjh2m52KFdE4qUTPZ+qwMisVwu7+CRTqWQIO4juWosMBZIZxLAWhTeJjt4oxaHiZUrdEYted4FAEd/00vO5wF0ohcAlF3uhcmvx9DBCUChyAsFe76pTJFKCcY6p2HvmSaX21OKkQNhqLQKPrgCRPviihSwlKL6w36IDp5MUhp8Z5x+szjQ88YQBojqS+lkChpeDb2TByXT5q61whwwwFQikNTLXDUW8Gb6/BBpemp0aNcEeIsWPZtpa9SOX/bTbjQPRRc6MbAnjPiQ/MBQeWMxdPpFFM/OoKoUH4pj9zc7MXVSWQAyBXhMLfGaWRJTKhZH7apavL3jbTzyyCPYs2cP+X6qtIJVf1by6WzuRuhdTtnXtd7vQDqZVqSmBADpxCnJwCUe3VlnhIpTkTbQ6x8sheQScPhn3ST1n6qPFCKZTOPw95TLWi0bJJAJQJKDQySSIl+3nGjdVInIcIwsCxe6sQATxyZJflJ0iQv+VgeOv9KHvs3yBxJzSIK5SI/uV2mnhVo2VkCt4xSfMqai/aVqzCxTEmv1ncUwFenx5qf2k/zLWiXB6KPbsvXZSqSTabKCU9VHCtG/YwRjhE10qUjCmluLMbB7VNFJ1eWCISiRFKJyUBBLlhvWKgklF/mw/fM0Ulv7i9WASuYpxHkTgdJrPTj2v0uM4qcQlTg94TTsPJJSySVWuGvMGOmZxdHN8i5Pd/fitcT3EIvF8Hd/93d46aWX5N97BX8x/J//83/w8Y9/HACwTvVh2Yn4qvWFsJYZWLkFhWWJqAhc6iZvare/VI10Mk0b40Sg7k56uZ6/CEQACh5RXyySSk8tN4JXeuFcbcburxwkqUTZVxtgqzCTFKkAoOXpCiBNV6jwX+BEuGuK5CeiR0D9vUGMHAqTVGSUovnJcmgNGsUn36loe74Ks5MJctkx/wVOjHVMkfzSf64DRee6cOyVXhKpzdlggqlATyKfAEDNPSUQLFpSKaLlhmhj/6X0G3YhFMWS5UbFjX4kkylSqUvfOXaUXODB2PEp7P+W/CSrs8GEZDRBJrkqRdvzVVBxKrz1j/L9KzI7iTfwSwDKCBcr+Msgl/PCVSQlpbYXqpFOphSXxKHCEhKhFjUkYk3l+kLYy004+qteDGyTn8sIXu2BWs3hCFGV+y8CAWQClmBh/6WW21tOND0RQnR0BvuIp5JLLnMj3Bsh+YmzwYyyywvQ9ft+9BKI5cZiAcZCPbl0XsNDZdCZNcvWd9pfqkZ8YhbvfPb9z3lllXV2fKWDRExTasvmJ8sBFV2RvfQaL0YPhzF2UP4mumAB1txXgcFd44rLqi0HJL+giEylJJYsN7LlQnd/p5P0rGufrQSn4chqE0UXOhWXdqLCs9aG4MUejBwM49CPZK4JUkm8yf8akdg0nnzySfzrv/7r+/uQK3hP8Mtf/hJXXXUVAGCd+mbZBKXiixzwtdjQ9cdBctm2HIjzc/95DnK5t7XPVyGdSGELUbl69R3F6P5TvyIS1rKChyIyjujlESVWG1lO+M6ywdfqwJ5vdZFIBaZiHo5VVnT8ikZmaHi0DCq1Cu8QK2R4miyIDEVpfsIDa5+qwsiBiWWZ29feWwK9R1SkcKQELR+rwOx0glamD8yWU/1RUgkxe40JoasK0PlqP4lwZCnXw1Qskcvtld9QAKNPUqTOtmzgAZ7nEA8TiYEKY8lyo/hSF9RqjtTHzWUSVn+kBGNHJrH/f+Qf7rOU65FOpTFxdImc16l7RQtUdFkKLU+VQa3jsOUz8teb0ekwXlf9L9LptKKcl6InValUsNlsOYJS3UesqPmwBQAgOYCmu+zwt7JN19KLDGi6yw4AGOuOI5lMoe7+QvZDEtDyVCkCl7J/L73SiZanSnP3qX+gCC1PlaDt2TI410ho3VSJsuu8AIDAZS60bqqE6Mi0fbAUjY/NyUG2bqqEJWTC4PYw/Bc40LqpEpKPJZfW3FeCpsdDubYtT1eg6iPsmfr3jiKVSGFmmm0Er74rgOan5kqrtGyswKrbiwAwpY3WTZVw1hlhDRrhKDehZWNFrm3zU+VYfVcAANsob91UCe9aKwCg6tYitGysQNsLVaj6SCGanghhzb0lzCxFrG3BOcwu5Tf72cZMBo2PlaF+QxAAIDrYuxZd4gIAlF3nQ+umylzbhkfLUP9Iac7erZsqEbzQAwAIXuVhbTP74/WPlKLh0Xwbll3HFDgcDQ60PloJycFcpu6BYJ69W56uQPnNfgCsLFbrpkpIReyH19xbgqYn5tl7YwWqbmU29K61onVTJaxVrO3qjwaw9oVK1NwdyLVdfWcxAEY6a91UCVeDCQArGzXf3mqeg97DvrE5dIq9P1KYZ8Omx0NYcx+z98k3RlCyzgf/BcyZQjcW5Nmw8bEy1D9YmmdvU5GEdCoNa6XhFHuXouHROR9u3VSJ0muZz5Zc6Ub1zcXwt7N+U/9wKRo35Ns7dD0r21R0kZPZMGNvlQ55vbXl6QpUrGf29p7FbGjIyH7X3B1A8xPlORu1PluJ6tuYvd0tZrRuqoS9Rp+z93wbtmyswOqPMtur1Cq0bqqEu8UMAKi+Ld/ezU+U576TISih9ZlKNDxZBmuVhIr1p/ts7QPMZyUHx3z2ImYHnUWbF7waN5Sh/uF8ny250g0AKL3Wm7N3+dVF8Lc7F/TZwOXuM8aIdJKdJm/dVInQjczecmIEAIwdiOR81hzK+OwiMcIS0IDTqGAsYmokq+8slhUjzCEJbS9UofXZOd+ixoi6B+THiNDl3jx7B6+SGSMenbN30SWuPJ9dNEass6P1WXqMaHuuCs1Ph06z92IxouJDRRBtPPwXOND8xJy9l4oRs/EEoplSC5JPQOumyoVjxIZS1D/I7N37Rj9aN1UgcFnW3l60bpr73YZHgmh4ODBnw03lCF5qQfMjfrQ+7kfzI/6cvWvv8KD+Lm+ubfMjfpRd5QDUavjPNcNRZUJ8Oom+Y0DNxSrUXTEXJBqvVSPUzv7sqQCartNA72SqSi0NrQCAv/u7v8MK/jrwiU98AgBwbssFgEoFd6sFLRvLYSphsWXVHcVomjeeND8RQuXNfpzcMoz45Az8ax2wrzYAAKpvLWKJ6wyaHg+h+jbWhyzlIpubPF+F5qfKUXGTP69t44ay3BihL2ZtvW1st73seh+anyrPEZTqHylFzT0sZok2Di0bK+C/gMX90qu9ebEwHp5BPJJR8RFZvy7OxKzApe68trUPBFH3YClKLvBA7xJRfXMxgleyfuK/wImWjRU5AsCae0rm5kAAmj9WjqYnQ2h9phK+c+ysbUYtavVdgbz41vxkOSpuZDHL3WRBy6YKmKpY2+rbi/PGiOYny1G1ns0j7asNaNlYkbN31fpCND94ir1vZ/Y2BZkN3U0WAGxjf358q7i6IBezxALW1peJ+2XX+9D8sbm29Y+UYk3O3sizd/DKfHvXPViaG5MBRt5d+1wVxAIRxZe4WNuMiFbt/UHUPzRnw5aNFSi9mtnbHJQyqi4s9tScau+nyhG6gY2z3jYbWjZWQF8sYmTvFHijNm8O1Pwk8zeAkQ5aNlbAlpkbVt/G7J1OpJFOptH8ZDmqM2OErUpCy8YKONYYAbBSDnn+vSGEorOdqLi2MOez7lZm79ANBXn2zvNZpxZppKExsVO5pdfl27D+4VLU3pux4Tyfta82oPGpUN54UvdgEHUPztm7ZWMFSq5g42zROle+f98bnJsDZe2dWfvkfDYz1119VwBNT4dydmt+ap7PtlrQsrECpuD8GDHns+CYIiIAONYY83x2sRhRdLYTa24PwJkZZ+XECNGjQzqVhqvGvLC9zxAjSi705ghK9Q+Vovb+0+0NnB4j9B4eWmlOLLhlY4WsGFFzTwnWvlCJsut9+faWGyPm2XupGFFzdwUk37wYcaq9F4oRV+XHiIZHy2THiMbHy3JrH7kxomp9IdY+W4WWjRUIXMrm4nJihL3SxKSzz3Vk7L10jEgn0kjOJtH1NjvNv/qjAVkxYmh7GJ5G52n2XipGuFstaH+pGs2byrHqDmZvOTEiEU9iaH8YoluD5idLUXAOm0eWXu1G8xNz71Z3fwBr7mbPIJmMsFlt4LjlOQG6gvcGKpUKVos1R1Cqva8ENZn+BoH5WWFmbVB8sSvXjwd2j2I2nsyt2wDWNnAJ60P+8xxofrI8R4ipuTOAxo+Vof3FajgbzGh+sjy39vWstbG2LvYM1bcVoe7BOT9rejwE5yorRnZPwlnHrjUWs7aV6wvR8MhcH2rcEEJFpr8NHhhDIp7ATEZBsfImPxrnjRENj5ShMhOzzKUCmp8sh7PODNcqC5yrLWh8bK5t/UOluf4meFhbdxPrF8GrPWh6IoTWTZWouKEAtQ8EsfoOZkPBwuziO5vFrMAl7rxYuObeEtQ+FMyzd9GFLGYVXehkbTPcsZq7A6i9L9/eJeczG/rOtmfszfrf6jsCeXOgpidCCF7NxmRzmRU1d5VDyIyz1bcW5cW3xsdCCH2IjRH2NUY0P1kOc2nG3jefbu/KTMyyVurR/GQ5bNUs7lfcUIC1L1TmYk/DQ2WouoXZ21icsXcDy8GErvPlxTedUQujjwVgwcXaetayQa3kynwb1t4fRM2dzN7H/ziA4EVe+M873WcBVupuzT2BPBvaK41IJ1MwFov59r7zDPa+LGPvNhtW31aCwAXs/1fdUZxv78dDKL2GjclZf5f87Ic1BjVUmrnkeuNjIZRn8mNZe1tC7N3n+2zoQz40P12OypuZDS0h9rz2TNwvv77gNJ/N2lvFIc/epdd48+xd+0Aw950EC4fmp8pR/3AQlpCIkstOsfciMYK3awFVOpfTq7k7ICtGlF9biMAF7rk5UNbeS8SIVCKNVCKNpsdDCGXyNXJihEbLYezgNGzVBjQ/WQ5rpf40ewP5MYK3C9AIaphLpNz3kBMjBI+Atc9VofnpeTYkxohsPlJOjMjlvHCKzy4VIx6cixHuJitrKydGNBnR/DF6jGh5ugKNT5bn23uJGFF1czGMBXoUn+NC3YOlufzvUjEiHk1gejiWZ0M5MaL790NofrIcxRezuXjhBQ5ZMaLp8RDWPl+V57NLxYjCdgemh2Po3TqGqvUFaHhw7ncbHw2i/HrW1r7agOYnSmEpEwBOjbObzwMAfP7zn8cK/jrw0Y9+FADQUtsGFaeCJSSi4eESmIPMV8qudqPuvuJc+9p7ixG6xo3BfZOYGojCU2+FtZKNs8ErPHl9s/aeACo+zMYT3smjcUMZWjdVoHFDGYovyd9XqLk7gKr1rA/xJg6NG0LwtLB5TdGFTjRuCOUISjV3FmNVpr+BZ/26IBOzCs62s36cEWqaHowiPjknvtC4IYTC81nM8rRY0bghBJ4tsVG1vgg1dwfgabLAHDCg8uYAii9l/c1Za2ZtMwpQFTf6UTtvPKl/uBR1j5Si+aly2FeZ0LghBFMxaxu6vgB188aT+gdLUZbN7ZRJaHwiBMtqfcbe3txeGADU3R/M7VkZ/DwaN4RgX2XK2bvh3jkbrrmnJLduY/YOwdVoYTa8ON/eZZd559mb2cWXyTEWnu/Mi4Wr75hnb+Tb23eWLc/eq24tQs2dc/7S/FQ5WjZVwODn4WmyZOzN4n7l+sK58QRsjAtkxghrqRE6vQbazLcpv6Eg394PlSJ4JRsjrFUGZu8SAeGuONS8+jR7Z8dkU4mAxg0hWMqZvUuv8qL+oVKW80qkUXdvEOWZebvozdi7hj1E4DJ33nhSc3cAwct9CF1TBN7B2nqa5uw934Y1dwVQfcucz6rUgM7Mcif+8xz59r69CKtvz7e3/zwHTMU8ah8MsrE+Y+/qW4rm5kCZtkUXM/92NTJ7Z+s5Vdzkz+Uus/YOZvJj9hrmswY/n7N34xNlOT+tf2jOZy3lejRuCMFclpl/XOfL81k1z0EjsXyeqZjZxVqViRFXevLybrX3luRyO8HLfKi5IwhnLRtniy91LRkjjEUi0skUrOWGfHsvESNKL/Wh+zVGUFp1WxFW3zHns4vFCEupIU9tqOHRMlkxovyGAqx9vjLns+QYMc9nl4wR94dgKJyLyfN9dtEYce4pMfmugOwYUXNfAKvuoMWI4BUetD5dwXw2M4+UEyN8TQ641lhz9ha9cz67UIzgtBxmo7Po2c5yXqEPnW7vM8WI8cPTcFSa88a1M8aI1WztE7jMhYZHSmEuFdD2bAWaHgui8ubMGOjQovHRIDxNzL+LLnKg8ZG5Z6i5swiz8SQG9kwCPFB/nx++FuZ4Be1m1N/nz7WtvsmD6pvYu4l6Exx2B1QqFYaG6ER2cqaspaUF6XQaq1atyv0dr1dDyCTxdUZArVXB4GKRx+DUQq1lC83Dv5mEWsNBMOkAAJIEqHUqGL1soWnwClDrVLkNWt6kBaflkE6mMbQ7wtr6RCCdhsEjQs1zUEmsMW/VMbm/DNQ8B3s5+zCmAglqnoNoZ88o2vm8thpBDX1mgmzwshJlUqamtt4pQKufS3RrRDX0bva8ei97Br1Xwpv/bz8SsSQ088otafUaSI7M73ikDIkm865uARpRDRWnglrLQWfQQrSztgaHBmqeg6mQvZvRLeTVbubNOkhWEYHL3VCb2O+afJm2BeyZ5tpqIZiZvevvKoWa52DI2Tu/rWDW5QU4Nc/BmEl4FzTboeY5cCZmJ8HGg898x6wNjZlajKZC9kx1dwbQ9nwVs7dhnr1FNQyZtvrMd9R72PNLTh4cx0G08bm2kjPT1puxYeb59W4xz94AkE6w/0ounr1rxoZ6V74NdUZmb2edETW3B5gNC1hbkyffLjqjFryVvatKYs+AJPDW3x8AL+ny7W3SzdlFytgw882NXgkqlQojHRM5e+tMp9g7k3Ay+tgz8Jl3V6U5qObpZmoENQyurL31zC4O9luSQ4DWwHzWHDBAreXy/FvNc9C75uw934bM3sz2Ko0q4y/zbDjfvw0aSI7Mt3FoodZxEI08vI0OGE6xN2/S5b4p7xTy3hXJzEnVDBlUZ5rzWUniWNvMMxiz30YCOv/Yh3Q6fbrPZn53oRjx9r8cwtufPMS+eebbyIkR5hI9ah8IwpDxbzkxgjey/4Y7oxl7C7JiBKdBLjZkISdGlF3nQ/tL1eDNOggZe8uKEVYd2l+qzvksJUa4aizMhj5JdowobnNDreVgcGjm7C0jRqjUKqh16tPsvViM4NQcdnzjOHr+MAytUQN9pu1SMULLa6DT6zLPp144RqhULEZYWFv/eW6odRxMGQKW0SfmlWbJxYh0itlbq4LByWN2Ool0Og21VoWMy0Iwa6Azzj2TWqvK2cXoEaDWqNC5K4XpIUAwqMFL8/qyloM+k2gz2gG1RgU9m3/gnPPPhclkQkFBAVbw14FEIgFBELC2lRHMjD4RGkEN0c78Tu/k88YTrV4Do1dE+HgUIwenWFtnpl+48mOWzqiFPhPPJLcEjahGKpXGTDgBo1fMa8ubdLmYJdm1rK9mYq65SIJWr8ltkIsWPtdWa2FjjSk7xhXkj986vRY6IdPfRNavjZn+ZvSzZ8puiItWHqJNh+O/6sfOb3aA07C5CsBiOWvL/l908LnxBAC0kgZqkYNaw8HoZc8gWdlzSM5T2ho0ufHb4BWh4dVYfUNJxob5Y4RWr8nFTb2HPUN2XmMNGXNj8qn2zs5jstcaPczeokdA+4vVECy63JgsWdXMLvPbziNiCGYd9G4B7S9Vw3OWi9nbPxf359tbtOkgZsvdiYBay4HTqIBoHMaMDcWcvXUQrPNiuajO2Ts+Opv7vgAgOXiIljm5dK1eA0MmiW/wZext16L2/iCMBWLeGJH1WQAwevXQiGoIjqzPMntv/fRhbP30YWj1mty8RvLoMzaci7l5/m3SIpVI4firfTBk5jw53zrFv0ULn+tTqXgCKpUKyalUxt5Sng0Fiw5Cpq1oZmO7wSPC2+SAYNDljSeChYcwr7wg6wtzz6sR1TlpdMGug2DJt7cp824mH3sG3sQaS04eOkELe7kpZ8NsXfTcd8zMBfQuAbp547cKKqQTjCBu8GbayogRUwMRqFQqGL36M9rwTDECSRXe+ocD0PCa0+y9VIxo/lg5TEERgnVuHrlUjEBSxQjp82woJ0aIVh04bv68XV6MaHu+CqWX+fLXiDJiRPk1hWjaEILhFBsuGiMybbPEJMEsL0aUXueFYOZzcyCIoqwYoRbV4DQq9ru5tkvHiMhYHG/9wwGYCllbuTGC03CQ9NpcW7kxwlQsnjYGLhUjBnaPIzWbhlY311ZOjFCpORz9WT94k5atx05Z22chWLS5OCuaNKirq0MqlcLll1+OFXzw8fDDDyOdTqOico68J9rnYpYgcCwGZGO5V2JjvQB0/LwfGq061xbIxIuCuTkFa8v8TnTx0PJaJGdSGNo/Aa1eMzdGeNm6XjCzuK93C3PjN9gYZ69mY4ChINM2u170CLn1SbatIfO7epsAtW5ezPLk9yHeosutOQQre169S8DmfzyI2MQM+HltBSufG3skmwZagwYm/1z+Q2dgOT21qIZo1eXW0JyBPa8pF8vFvPmS3iXA4BRzRAKtQZObcxp8+W0lh5BbJ6+6ozivrSnTljNk8gsuHpJtng0NWhh9EhoeKkPJxR6W47BpcvaeP37zRu3cN/ewb169Poi1z1ae0d7Z3J+Yyc9k7WTwSeA4DlLmmXmbLhdLBDvPnt+bzd+IeeNJOpFGMsHmJoJZxWyYe1cpP2bZdBBdPIzFApoeDmV+d17beTYUHcJcWRiB2VujYapGarWa+VaG3Cy6+Jy9s98mN0b4RKg4FUYy5dD0LiHf3kbt3JhWwL6NaNPm3g2puZwXP6+twS1m8k+n+6yz2gKtMDeeSA7W1uCe63O8Md9ns/ZWqTM2zDz/qfaWbHxujODtukz+hs33ss+fs+EiMQKzKqhUKsSyh6AcgqwYcfx3fUgl0hBt+ePhUjHinc8dwTufPZJnbzkxwlpuRM1dAejdWZ+VFyMAYOI4S+gZPZK8GBGbAadRQSvMs6GMGOE72472l6qZbznmVO6WihGSU0DbC9UQXAItRhi18NSxzTBT5hnkxIiKSwuhlTQQndKC9j5TjFBrOGhFLs+GS8UIjU6NHV8/hq5XBiFadbnDu0vFCF7U5PqGYBJkxwhPuw1agyZHTDNm2i4VI+Ljs0in0tAaNODZds3SMUKvQc8bI5jsjsHgzrchb9TOzSMz62gps56pb6iFzWaD2+3GCv46MDw8DK1Wi/aWswCw/Dlv0ub8zuAVc3szACBYdTD4RET74xjYPgHeNOcPpgIRgmWuD4kOIedXolUD3qRFKplCfHwGpgIpb42ndwrQZ/oXp9eCN8+Rg01FEniLNrdBLrkESNn8P8/y69nYYvRLeflz0cyDn5f35s1amAqyvs7acvrMGtDLxoj+bePY9sWj0GjVeTl9ttenztlFnBcLBQsPXq/NzPN48GYteEsmR+AVc2MAwPZJsuO33imAN2pRdU3R3DPNG3sEO5+zA29lv6t3s9/yNNggzGsrzbO3YFYzu2RFBXwZe/PA2ueqoPcI0GcOjIPP/G42DmXeNfdt3Kw0b/uL1Si8yMm+jX8uDvFmLfhMrl5yC5Bc88YISQMNP2cz3qyFNhNnDR5xbp0MluvJvuv0YAxIA1qdNnefPHtbdblxSu8SwJu1kOwCKtcXwlZhPM3eWf+Q7Kxtdo5h9LGcx44vHcP2LxyF4OBz44lk4zO+Na+tJd9nE7EkOn7XB16f8cOsDb35fig5eUgZ/+bB9hpnp5hQh/HUti4x599Axmd9Epw1NhhcIniTFrwxs873Crm8BMD29M2+uTU1b9bm1NEMPjFvDiRYdPNyJRmfNfNz39Wog2uNNWfv7FpdcrK22TzRqTEinQaS8cyc2cGeITs3NBVIeTYUHUJunB0+NAEVp8rFATkxQqtVY8s/HwIH1Sk2XDpGNNxXBnOZBL1bzM2XcvZeIEakZtNIzsxV2hDMOlkxQu8WwKm5XI5Rboxo+VgFqm8sZv6d+c5yYkTplYzIZPSJ4M2EGGHV5chdkpOXFSN8bTaYvPrcehcZey8VI9Q6DioNl2dvOTFieiiKzf94AHov68vZMWepGKHhNZCM8/qyzBjhXG2GOL/fLBQj0mn2Hc06TByLIRlPQiPOrUN5ic0xs/NIk088LUZotGp0vjrKfNaoycV6g4cHb5w3v3bqIDnnvmt9QwPS6TRuu+02UEEu95aVvQ7p2xE01sm+bs3NVqRTaez5wTgAIDU6TrktACA9r8wNUsmFG0J5Sae2F6owtG8CRz/AEtbmkISSCz3Y+a0OUqmlNfeWQHIK2PyJA6T7NT9VDk7HYQtRdrn+wVIkZpLk8mvLidD1BXCuMqP79UH0/EG+VKfoAFTgEBmm17JVAqlIAhIpRHppOsNSkQREYuTnVFruzRCUMNUfoZUAkwBrsUQqo/auIAGSQ0Kkm3a/9herkU4RyxEtM6xVEkJXFuLYb3swske+RHf5zX44Qibs/K9Okl1q7g5A7xbJMaX8Zj+SsSSO/W8f6brlxtrnqhAZjmH3V44v3nCenKL/AjuKznKh608DOPnnhWXxOX5uYgEtvdZuooGxygutU/BXabDt5QSp3+2d+C8MDg5iZmaGfO8VLC+i0SikDHNtHXej7OtED4+a24px/NV+DO3IlDN9H8vMFK1zwb/WgcM/O4FhQimJ2nuD4K1a8nxtuVF6tRdQA8d+Sotba5+twkTnFA5894Tsa2xVEiqvD6B32wipdJ5jjRElF3mx9/snED0ZJT3ncqLt+SoAII+nYoG4fO8lApZCEeOHifcTAb2LXqZPabk30cYBOh2i/bT5YVYdaLnsKdo4RKMpUqmywKVu+Frs6HlrGN2/G3z/Hu5dIksY2vufnaTrWp+pxMzULHZ8gSY/vvbZKoRPTGP/d+TLQ4s2DmUfKsbR3/R/oGND6IYCOCpM5NjQsqkCSNFLQVLBZcbimts9LK/xn/LjerR0AK8f/ANsNhtGRpan/OoKlEOn02F2dhYBVKJMtVr2davvCEClwbLlP5SWdFr7bCUG942j4+e0EhTLCcEjoPQSN4797ARi4/JzGZU3+WEOGLDln2m5q9oHguCNWnIcySqW7P+2/Ji83PCfx8qu9rwxRCvRJDCyDcX+7waCRwBSIJVDA5haDGZmyM+ptNyb5BcQGY6RS4CZSwVMnKRfpxSCR0CMOD9cm1HyXq6Se0ogeASsurEQx1/tw+j+KdnXFV3oREGrAwd+2InxI/LnQhU3FMBSaiTHlJIr3UASOP4b+Wu5vwSanypHbGQGe77ZKfsaW7UBFR8qwonXB8klryhQZXJmtgoBwXVu7PnvbsQGZ5e4ag4HvW+gr68PU1NTEARh6QtW8BdFdr/xYu16+RfxQMM9QXS9NoiRvSwe5O0dKsEiOTNnrRmlV/hw7Fe9GNo1IfsnK27yw+iTsO0zH9xy5ACbL6gFDl2/pa29m54qR7hrGod/dFL2NbyTR/3dJejbOUq6n6lEQOmlBTj2654PdAm85o9VQK1RYfM/0cYO3skjHo4vW7krUzGPcD/xfjwg2uhl+pSWe+NNHMBrSeX2AIB38IAK5OuUgqnupBAPy7/G1WhB2eU+nHh9CCf+uDxlVJWg/IYCqLVqHPgubb3T+HgIyWgSO/+jg3Rd01PlmDwRwaEf9Mi/iAeqPlSEE68PkEr1LTcKz3fC12zDFuIeSOOGEKAG3llqr55TL/7vS0BtZQoH5ZebwKlVOPAD+fPYuG0Yr/X8GhaLBaOj8kuFA++CpHT2Nf8M/dudsq9ruZedrH/7qywpJ5ekVHmTB52/70d04JRJxhIkJSWw1+hRcV0xhg+Hcfh78jvB6juLYSrUY8eX9iNKmZ9LoJE5VrAgSq/1wr3Gyjb0fv3+LwJbNlZAI6rJm0k1dwegM2jwzmePkq5rf7EaAJatbqtSkpISVN9WBGvQiM4/9OPkn+Un7UuudMO1ykpOFrRuqoSa58jfTin+GshNf1VQEDebnghBK2nI36D9xWrEwzPy+uupdV+XQB5JCQC0WvjPNiIZT6Fv69IEsyxJKVQxC7c7hZMHZ9GzV969p8useP1nzwJI4eqrr8bPfvYz0rOvYHlx2WWX4be//S1U4HCJ9S4kJ+SteAKXuuFrtqH7tUH0vJaJrTKmfFklpF5CPH43aHo8BK2e3j/bnq9CbHwGO/6dtsEPESSixAoWhlKykVK0v1SN2akEtn6akNwTgZZHKtD7zih6/iB/0R+41I2CVgf63hlFxy/ff0KtUpKSUiidmzRuKEN0dIZEkAHYt4uOxsmEHCUovdoLd50VnX8cWLY49jcPYtwUC0TUf7QEI4fDpMRS1fpCWMuM2PGfx5eFTCXaOBRd5JP9jFmSUusTxUingC2flL9O4gx6/HbsawAAYvplBX8BZHNel+jvQCoif+HRuqkSKo6+wR+6zocTf+xfFjKI4BFQf08QowcncIiwmRS6zgdHtQU7vt5BIz4IWDZSxt86fG02BNZ50Ld1ZFmID3UPlkJy8uS5SeVNfoh2Hju+SBvz256rAjgV3vr75ct5KSEpKUHJZW74Whw48fogiSjmO9uOgmY7tn7xMKkfNT0egs6kXbZ55V8DuemvCgriZu39QYg2HfkbrH22EjOTCWz/Ai1HrRSetTakE2kMbBtbsm2WpORtMSFwvhM9b46gW+bhYk7g8fvp7yKBGaxbtw6vvPLKu3ruFby/+Id/+Ae88MIL4KDBxZ77kRqRt7npbjQjeLEbJ94YRk/mkKgckpK9xgQtz6F/2/jp//g+zNNr7g5A7xTIhJWWj1UgPjGDXV9d4uDsqeCxbCSXv3W0fKwCnAKykVK0v5iZm3yONjdp3BBC3/YR9L4hnxjgarQgdGUB+t4ZQccv3/+DC0pJSkqx9plKQKXC5n+k5bxq7g4gPjFLIt0B7NtFh+PY8aX3P+fla7MhcJEH3X9+f8nC/38FYtzkTUD9w1UYOTiBIwSxm8Blbnjqbdj/3eMIH38fFsmnkJR4E1Bwlgsdv5ZHBs2SlJrucQNIY+vn5ed+VUYDftv/7wDoOS/N0k3eG2TJSVlwNsuSRCVvmwm2UiPUvBp7v3GKQTj1gkQl0QFEIyBvZI/smcabe+iBMp1KI51O0whKANY+XgVOoyIvHOsfKcVMeBb7vkXbIPCutWL86Bj5OQ1BCVMdRGNKQM36ALr/PIiJI/KvLTjHjuLz3RjcM05Ss5o8MQ17uQljR+WrN7wb9L4zkiuvQYHkYvK9VAwdks/Qn4+1z1UhPqFgE1cBDEEJNbcUo3/nKI7/Un7S7OSWYWhENcYOLL1InQ+zn5W5Ex0g+fTAnrFcuYjlQGw8jkScnnBuf7EayUSKrGBWfrMfsbEZdL9MVB2QWHk9quqWs86I6cFZkspXVvHpyC9PkBS0Gh4thWDl8ean9pPiO4vR8ttnQZo4p9N5RCWpaGG1rtMISgAwOwt/kwXpRHpJklKWoAQARw4BRw5xAAzQQv5JQqunGmP9e7F9+3bZ16zgL4NXX30VAFCorSRd1/nbgdNVeFSqJZMuRWe7wGlU5M19pSo32/5N2cZAKplGKknr2GKBiPq7SxDuiZBUTxxrjAhc4MGBn/aQFHLEAhGSVZ071Sf7OgWqMwBQfIkLGklNVntqfaYSnFpFJqxEBpc38xXuiWD8GM2WJm9+WSu5GNgbhsEnom/nOOm60qu9cNVYsPNLhxAdff83m+sfKoVWryErPwzuH0d6lj4w8mYdOB19HjvdF8PgvnHydUowfnwStpARsWFaB6q40Q97pQmHftJN6rOWchEFa13Y919d1EeFvpiuuiXaAEPAhKHthCN6AKpvK4ZWUGPXV2mn2NpfqkYinsTb/yzfx7JjQSpF8zGK4txpEFkVvyjhwFb59QEYfCKGqkYxusR8NEtQAoAtn2HfWqXTIU1QpOR5HqnU8iiSrOAvA+rhGQCwhES41lghmHUkJQvBAsRiIG9kx/pjikggqVQaSKfJyizNj5ZDK2jIGxI1dwYwG0vi4PdoccG+xojp7knExkmXMXWcHnqiuOqWQvS+PYSJY4S1cKUeVTcWY2jPOCmpHRmOYiY8i/FO2lxIKfq2jcJZbSZfZyyQoJHoqeb+HaNQaWkHfwBG9J6ZmsWupdSP3wMIFg51D5ZjYOcYiSjWt3MCooPH4H5avtLklzJl7mj+2fv2CCylBtK93g2m+2KK8i1rn61ESkEFhJIr3UhEkjhBUMMHoFgdzFqpR3Q8SYp/kl9A5bV+dP6hn6T4tOqOYpiL9dj+5Q6SqlgqkSKvjYF3RyxTEjeD6zxIzqSWJCmp5uXM+t4Oo+9t2rwXAILqWhxObsWBAysHRj/o+NSnPgUA8PIh0nUD70xg4J38/RKVWr0kUalknRs6SXNmktIiOTPeyStSZVGqsKkk5wUeaH+6GuGuKewl7BuainmUXu4nKxTxDh6CRY2Jo7R9Q97EIR5PkclUnhYreKuWrPbU+EQIWl6Dzf9EiwcTJ6ah5en5D6UYPjCBqV5afoA3sbJW5kIDeiF/MTxxJIzhgwYM7qLtxxWcbYe/zYHd3+4kqykpwarbiiA6BLISWe92ZQfW9K780r9yMXp0EqNHlmdfOnxiGrGxGUz10Xyl8HwnCs924sjPT5LU4Ax+Hr5WBw7/4iS5z4peuuoWbwIMhSaM7KON/WVXe8GbtdhHVLhte74Ks7EkthHUieNhIJ1KIU2M0Z2/GUCn0sMmPCsbuKBa1xlUlIrXeeGsNmOiJ4qRPYv7Z5agBADbvsaeUSUKSEflz/V0Op2inBdp5Xj77bdn/sQWjtMtAQAgKSrNx1JEpb5dYej0Ggy+Q5M7W3VbCDqjlryRrVTZiEoWymLs+GReTUu5EG08eBP9upKLvUic4yItAEUHUHtbCaKjcWz/vPyTFQWNdpj8evjXOjBxRL59ZiZnkIynMNFJC+qD28MYJCbrAaDxsTLwZh2ZKNbzh2FSebgsqISTLI78gMbezULFAWrt8kym1GpAxanICamJIxHsPkJPKO38Mm2TJQulSltKfWX755URxGYmZzETSZCvc5SbkEqkySSl9o9VIxFNkjY6JQeH8muKEB2Nkd5T75GgEdVwrLaSSEoDu8bhqbdClDJEVJmgKpflgTIuZIhKa5+tZATU/0db/PRsGUW4f3H56vkEJYa5ifOsywDt4MIJsOkya+7Pq1ruwI5X/38rstd/BUgkWByoMrQBANRmRpCVq6h0GpYgKu3/XicMBTRCBwDU311CjiEAFCsbbVFykikaR3Q0joFdNNlRZ7UFOpMWglEN+YU0gaoPFUCw6vDmXqrqYkiRWqO30Q5OrSKTlGIjM+B09E0hKtkhi/YXqzE9FMMu4jhOLacFAOGOqKJT5NGTUUX304hqqDi6LZVCI6jBKSC/H/2xsrLWSk+9vRtfiQzHsPNL8q8f2TuFkb10Kf3x7imYi/WYjdDUev1nuWEu1MNWJS1JdJmPhkfLWHygqrLeWwENr8bQdtp15iIppw5DwfRADFOD9CD95rtRwqAqN9k41D9SichQHDsJJxcP/6IX9iojiaB0KpYiKnEGfe7PFRUV2L17Nx566CF88YtflP2cK1hefOUrX8n8ifWX7PenKCpRMH4kiuO/78foYcoMAyj/cAkMXhHbP3eQtuGuUNno2M/6cOxndGXB4QMTMLjoB4QMBRJSSXqCs+LaQsxOJ8gl8OruCpJjiCUkwhYyQcWpMHFMfs4rEU1idiqB8W7aNx8/ElVE7l9zTwAGj0SOywPbxmSpnZwKkuLlPChVh+K0HNS6d1fagAKVmoNGpN0v1h9TVBLwoELybu9bo+h9i7beAZh6gNFL9xUKwXI+oqMzSCk40OetsyOZSJFJSu1PK1BlFYCqG4sxPUhbu/AGNQSbDo5KM4mk1L9zlPkXgQQNvMsyowrGBaUqsB2/68d03+LjqepMh/qy/6bVID27cJ6UE+auDQhV6FcfglZL32xewfIiWxYmJLUDADi7DQBkKyqdiqWISge/3w2DgsPLjfeXYmY6QS/bplDZSEl5OJ4HJk9GMLCbdtjdWmmG6ODBWwSAQFIKXe6GucSIbZ85gHhYfjyvvq0Eoo0n5xf8ZzuhEzVkktJUbxS8AuLJoe8Tyk3Nw9rnqjA9ECXHZqp6D8AIC0ryNPFwStH7qUUOKg0H9TJNvTSCGmoFJPbuV5SVT6MqL2WhdM6mxFemeuKKFBAneyOIT8xiZlp+6VQA8NTb4FxlwcjhSYzskb8XsfqOYpgDBmz7zD5SGbxVt2dyZftofm0JGaHh6Y453jGN6Dg9SG8hHOQ7DdRxIUNAneqLYvfX5O+jd/2uD1O9MYwclk9QOhVLEZVUxrmDEdXV1di5cyfuvPNOfPOb35T9nCQ2wfe//30AgNFWSrkMdbdYwRvV2PIftAVEejKJzt8uElAWUFPqe2cUrhoLmXDU/pSyklrOOiOGdtKZkoe+q2ygUyrZO9YxhXEi+ScaAaYHoujbQWOfnvzzCGanZzHZTdtEHdo5iaGd9I1Hd4sZpmIDmcwTDycUnfKq+kghNIL63S0ECah9IIiZqQQOEMtrvPX3y3diZOJIRJFvmkMSQlcU4NjLJ0mEFaXwnmWFr9FOJq4o9RV3ixnmEiOphCSgXF3k6C97MNVNP105PRgjK5FFhlOYODGNvm20iZ9Skt/JP4+QSgLOhyEoIRmOkFS3Vt9ZDFORHkd+fkJ+jE+nMXRgHJL9zOSfM6ooZdDz2jj7AzGJsrZtFhot8PprtOsSiQSOHXv/VdZW8JdB+4tVmJmYxbbP0WJduCOKcAd9QzrcE0H4BC2G+86xI3C+G0P7J3CEsBgXbRwg8mTlpuhoSlG5KaXqHl1/7Ie7zk6+rn/nGFn5BwB2ffkQJJ+C6xQSSEI3FGDsSBjDu2ljR3I2hdgYLfEu2oDKW0rR89YQWUFGCRxrjCg6140DP+xBlHBqWmkSSymUbgRWrS8Ep+MUqf8oweq7AohNzJDJUcnZFKKjNF8BlPnmwJZxDGwZJ9/r2P92Q/LRCEoAcHLrMNyrrUs3PAU9bw1D76ITjJWWZdz1H8riAwAycQtQVoowOppCZCiGvm20jYxofww9RFUYAOCtQP3dAUwPxrHnW/JJGxMnGSHhO9/5zgpJ6QOMl156CQBggo10Xc1dARj9ErZ/bj9Zxaf3dfr6pm/bKLyNVrIiyNonKqFSc2Q1JUtIxPgR+vyQorA8H2/9g7Kc18CuMUxTlR4FINwVwcBeGiFn/EgU+7/fiWg/zS6TXTFF47et2gBrmZFMFouNzUKw0gi4ABC82gPBrFNErlGC6luLkIwlSWUIAWUKZkoRG08pUiITPAIqrytA92sDJMKKUtjXGOFvc+LQ9zpI8Sg2NgPRtnC+YiEo9U2lc4wDP+oi9zsAGO+YQriHmHOMAaOHJ8mHXMYOTivKj47snsQIcW2VheARgNgMaVwovcYLd60VHa/0o3+z/Hfs3zkKo4KDTZR7zEf9fUUQLFq89S+0tfzMzAw6OzsV3XMFyw9+kXzpmdC6KYT4+Cx2/kcn6bqpk3FMnVxkrrDAwb7hgxOIDNPmGOYyCatuCZDVE3kTwOnpCiTxMLBHwWGrrt8Okok/AND9+iDc00kSQQkA+t4egaXMSL7fnq8eheihE8yU5mmKL3Uh3B3B2AHa2D0bSSA2RiOCgAdqbg2gd+soiQiiFKYSAYELvej4bS+meuT7WfcrQ4oJQEpALneYQfBKD3RGrWLyEBXlNxQgEU2i41e00nmKfAVA0cVOTPZESb45fnga7xym7zee+FMfhg+FMU48VHNy6wiSM2nEiUuzrtcGYS6izzEoSkjzceC7ytc65jKJrCS39pkqpNMpGskpDkwcn8Lg3gUIqGdQUQLYmNC7mX7oBABaH/JgcmAG+38sf+4WH2TCOj/72c9I9yLtuM9kmPyhhtvy/n66JbComtLU8CzU/JkZj5zNAgB5ikpZtnPzE6VIJdJ45/OLLFzOQFRSupEdPjENKDj9HLq6EMFLUuTFccOjpTj59jAG3lZWyosKKsEFABBRrlijRNnIWWeEqdiAY/9LW9wWn+uBRlTjCGgJjb3f6CS1z8JSYlB0Ur7t+SqkUmmyopLeJUCyv/d1kT8IsJUboTNpyao6was88NTb0PXHAVJ/99TYIFj4RctxnQlKfSVwvhdqngN1mFTaF5T0OwBkRYsslChNvBusubcE4ZMRkiKWOSRh9S0lmB6IkuLZwK5R8GYtpkdpSd2ciskpigWLEZQAwH+2GQUtNuz9cR+mO2N5ZKXTFZTmMDUNZA/5z7oYe/lURaX5KkpZxKmzxBUsO6LRhZOvarNpUTWl2akEJheSfs365imJF/tqA0JXFeL47/owcCbp60WgJBZMnYwgNjaDgR20ZGXlzSWQnAK2f34fqbRP4FI3JJeA/d9aHmIGU3Shb0R0/46eHALYRn10lH6/4JVejHdMkMkEzmozLEV6MklJiQqW3m+EZBfgXGUlkZSK1rngb3Og848DpBKGzmoLBKsOpmKBRFL6a4ElqGwe2/oMKztJ/YYmvwSDS8BR0EhKihTTwHzT7JPIvqmkLyjtd0pJUdRSnO8W7iYLPA028kZi6zOVUOs48gZduCeCRJS+mU5R25qPxg1lSKdxRsXghRSU4mNAIpbCVD+bR6l0LBFzqqLSfBUlACierkMXjmFycnlk4FegDENDLOleqT4r7+85SVpUTWnyZBSCRUcmKNU9WAqVCtjxRdrG69DOCQztpOeRRg9PklVgAKB6vTLFzJq7AujfMaboWZVAidoTYsDe/+pUdL+xg7RkPcAIX5YSEzpfphG4Aud5IDh05Hc8/GNlqtzOSjPUCk4jt2ysAFQgl/AyBwxIK1DP+muA0cdDcvJwVtFUdTxrbQiu86D7z4Po+ZP801bOagsMbhGSz4DYuPz7HfmJMqXNkou84C1asm8q7QtK+h0A7FeSEwfIZSffLSrXFyIyGEP37+VvAgsWpvIy1RchlT4c3DUGo09aUt3oVJBL7WXgrDMjeIkXh3924rTvuJiC0mRvLLd2UWnZVtapikrzVZSyiMXYOm58fBwWi0XRM6/gLwfObltUTSk+NoPJvjOv1VUZmZdTFZVEL4+aW4rR+acBDL6zyNzkDEQlJSo3sYkkJk9GMLh3nHRd6ZVFsIaM2P6VoySikq/NBoNPVPSsShA+HkP4OP1e/dvGz1xubwnEwynEw/QxwH+eA5MnI2QyQUGzA/bQDMYO0A5/vqPg4Dlv4mHy65GIpEgkJWetGWVXMiL0ScLBB0uZEQafCFOhnkRS+muBo9IMTkGpvsbHQ1BrOLz9Kdo81lZuQjqRIpOUlPgKAPhbnYiWxckEOiV9IR6Gon43dmCK/HwAMLInvCxEvSysVQYUNNlIJTIBoHFDCLxZSxa8GTkSBlL0ff59C81jFyAoZVHz0SKoNRx2frXztH9bTEEpFk5gKjP+qER2UPJURaX5KkoA4I7W4ADeRjhM+350WRAA0hkSdosRlY6+ouykiIZXIyWnqtkpRKXGx8owcmSSXNZp7zeVbVqFT0Qw3kV7R3NIgmgT4K23k0hKRRc54W93oufNIXS/Kn/B4l1rReHZLuz9/gkSMcN7lhW+Bjve+dpRkjJV1a1FsBTryad2S9b5oBHVZGLG3u+fgK2UzrC01+jBqTmyEpZShaJELInULD3xolQ9q/2laiRiSXKCSAnMIQmr1geY7ByB5Xz8lwOKTlhGh+NIJdKYJUoU7iBIuM+H5OBgq7GRFYAO/7wbgpl+Gi14SQHUPEfuC/UPl0Jn0JJJk+U3+yEYtaRvBzDSEKdWkcmMbc9VIZVMk5/T4BUh2nhSfJ84EsHUQBR9W2nfjim7KdhIkoDGe8swtG8C3b9n91yKoAQAnE4FlVoFa5HASEoysXf36QpK80u/nYmgBABFRUXo7u7Grbfeiu985zuy77eC5cODDz4IAFDhzAurxYhKWz9DX+gYC/TgFMjoFq1zwR4ykjfYwh1RUinZLHq3jsC52kIiKAGAu84KtY6+SFVKzKh9IIjZ6ST2f5s2v6y5pwSRwRiO/ZwW/1s2VSAyFCcTxjwNVtjLjRg9QKPTHnu5F9EhejLDd44dY/tGSN9vePckhnfvI98rPjmD5EwK8THacypVz6q9Pwi9W8COL+wn+6cStGxipb+o80Slqjqz0/QytIDyeaxjjRGJWALjh2mn5bv/NIiRw/T1p6fBCkuJHqOUJKQIrH28CkMHx0mlFkUbh8qbS9CzhaYOZgqKqLi2EB2v9JJIkIFL3fA123HkVz2k+/ma7ZCcAkQbSD598q1hGH30U66KDwVc6oalxEAq1QRAkUoqAGz7wukJovml304lKAGAKFqgV+thMpkU3XMFy4NUiq3VLYLltH9bjKjU+fIAeaMdAHQGTbayHAlr7i3BeMcUaRMbUE5YGdk/gcleWiwWLICpUA+VWkUiKdnXGFFxdSF63hoivZ+t2oCSi9jm92SX/LWUfY0R/lYHDv2gi6RAUnKlG65VVmz57EFSqaTART5ITp7sL/t/1KMo52UuFaDmNWQFny0Kc0gzU8rmCkoUigCmwDcbTWDrp5SdnqZAsAANG6ox2RMhKVUMbZ/A0HY6US8+HkcinkR8kpbzUqoaIFgAS6WNrHZz+GcnINjpOa/Sy/3gzVpyX6i+rQh6j4Ctn6R985LL2IEVqpJo5c2F0OrpSvotGysAgEzutJUZYfJLpPgXGwfGjk1iaB/Nzya7YuS5Uxa195Vg5PAkiUAHAGodB6NPIpHNjv7y9EM880u/nYmgBADFhQF0nejEHXfcQT7Vv4LlwTe+8Q0AALfAFuViRKWdX6Hv45kLRKh5NTi1jLzQPKKSp8kCZ40Fe/67k1SiJz4UV1SFo/edEaTSabKSkrfJDt6sxWHiIf7GDSFwWhW5XG7V+iKkkikc+gFNqajiRj9i4RmyelPjhhBio/GFN+sXQNE5LsQnZvHO52h50kM/6cHsFD3n5Wq0YOJImKQwFR+K442/o+e8ZqMJzMboajxKFZEqbvTDXmHC7m8cWxZyU8OjZRDMOnIpWirJKIuZ8RlFJP3Nn1CWYzOXSUj/f+y9d3RkV5X2/aucg0o55yx1zg7ggI0j7dyO5DTkZGxjzzvvDDOEGWBehuCB8QBDHJghG2wTDMbu5M65lVpSK8dSSaqgSt8ft0o51L6NhfmWnrW83JLOqXtr33P32Wef5zw7GsN3QXY4suXXPYx1ylUli67IIjAU4miLbO7f9pFqhs6N0fa0gIRlgsY9xfQcGRWRjkyZJuruKKDzT4MMn069X84WN6XX5XLhuV4RCTJnvQdXqQN7gUk0pi/uHcRVtDDvsxKaVa7H83Z6SK9xzl2DrEBQAjA6DWhVHFI9/t2F8d3s0m/zCUqgKCI6HI5F+UPLQV1WTojqG50Mnh9npHVphpjW4yY24p3DcN73GcHEOIuoZHIZyah2ijaxrRlaqu8ppe25XsaaZaxaNcnUsWY/R79yFr9fRliJTsWIR+MEhmWOK73aid6iw+LSiKrg5W70YE6TLzaNdj0anXzwn//ZRTxVcrlHf6dfRL5KourWIjRaDYPH1CVEpJAGe5eK0NgU4/2rowAwNeonPBlh+PzqMF1794/Sq1KuTg2q7yzFmmVmpFU21hR1KPnYbHuuG8sSJcOWg96sU0UySC93qHpnbdlmNBp5v2g4RnRKflL+xHfbmWiT21OtUlTdA0WE/VFZAOFX5qHMehedvxtEa07tOXb+3kvn770zvwiHwWBYVkUp0ZCaOhgZgoGBGcLSbKLSYsjNzaWzs5ODBw+mdH9rWH385Cc/AcChkZUMy9zoxFlkW5nkOO90WPuz/bQ/K99gy6p3YXTK67tX3J6HTqcVJzT6D3nFSk+gkIxsxfJN86hf7qsAbBlmYmny0xGOPAvWDJOYpKQ36DBY5YvpzhcH8ffJT8WoUYHJWOeg9Koc3CX2VVG0UqtWoxbD53wYLLpVISgBjF2YxKJiU0gt1JAKLwVVbygkNhVjv5Ag2PWCutPdPQeHGTwnjGMDoNVrMDlSOVkzA4PbhDXTTPZ6j4g0ZMk0YbDr8VS7RCSlgFch98cjMp907r+V5JV0TKt9Bp5aK0WvyeHYt9pAkHPLrHNhsMtTG0uRT5dSUUrCU2PBU2Gl5ZdzT6vOJiotBpfTxcTkK1/qZw2rj/Jbcxlp8okVPqSb10nYcy0YrHoZSckM6+4vofOFfnHpNmkJLlA2zQ9/Ub7ZEo/EVZX7TKtwYHIbMKebRCSlnA0e7LlWtHYjeFPvZ3IY0Rm0IoISQNMvu8lQkfMKDgTpGZDndmpuL0Zn0rH3zOrkvNQSHtRioi9AQFh+Ry2CXgiOTDEsjRVUYvTcJAfPvfIHDpMoeX0h6VVOQt6QyJeNdwRF71wSrb/uwpotJ94ZbHr0BvmaJ7PBjd4s7+cqtqHVyw+6RAJR4ipOyh/7Zhv+Lrk91SpFVe7OIxqN0fYLmfqDLceCzqgTkZSWUgFcTkUpidLrMvB1+xk+PZMPnE1UWgx5Gfl0XGzn7Fl1m8dreOXx2c9+FgCHXpbzcpWZcZfa6fjd8uNPo9PN2WsUK/gkcmaZ69w48qwighJA0dWZGKx6Wn8py+14mybFpZUADv9bM5ZceX5gajKM3qjGP1pV+TlPpYNIKCYmKektWgw2+Zqv7ZkeAl55GXkJQSIJU6aJypvyGWlyXlIZqVThbZpUXeZKDUaaxrGkGZlQcWBRDYabfTjz5LGCWpxUKWKiFrV3FROPxMSHAwYOe1Vdr/35Pnwdct+iNWoxOuR5f2exnXgsLiMp2TVYMkx4Ku2idzDgnSIaihENy3zS2Z90YjJpxWUrBw57VT0He4GJ4tdm0/LzLtE1s+rdWHNm7TGmQFACOPzFxddmy6koATgLDKSVm+n441wBh9lEpcXgcrnwer0p3dv0Z8bjixRZXapxYiP68ls/u+jfp+xa0n6/cCN4+zsyCPtjHPnO0tnN+LiSrIsFVTq4eOKBJr+OFREvoOi6LAp3ZDLUNMb5H6S+WZa1yUnxlTmc/nGXKpLMXwWEtvxLYNN7y9EZdWISUNE1mRgdBloEdYFBUVWIR+PipGLWJieh8YiYCLfzsVqmJsIc/uLqbA7teqKOqfEwh1QocUiRVGAaPD0mI4JYIXdjGt7zowQE+yBF12RSsDOT1ue6RSpmabVWcjZlcPYnnaL3oezmHLIa0zj+9bOi+1x1/BW855eChjeXoNVpxEpRu56oIx6Ny1UnkvZMBAxaozyQA6CiBIBI+nLEijCXXwlTU3Bw/9zrWP6+l7F/KVq0V3/nUZqPfR+NRjN9anwNry7odDpisRhbzTfjsWQv3kijJTov+Nv6wUoMdj17P7nCuE09BFwZFkQbyqDMbRqtRiyN2vjWUiKTEdVqN38VUGHP1YQl38K6B4rpPjhM1/OCDVILVN9SQO+hYXxtqX/BvCvSKbkym9Zne0QENYsHnJVuMVEpeTrs6FfOERh55f3j1g9VKe+sSsUhKba8rxK9VScm/7irLOjNenEZta0fqQIQqxyU35JLwDslLnG29UNVTI1HOP4f6gjKq4ZX+Xt+KXCWWai6qYC233aLyufVPVBMWpmdpl9eFJG3/py21BiMif8vnQDf/C5FVWH/59oX/K3pk+uo/vvF599nR58CQJCCWcMqI5nzus720JJtFlNT2vVEnXJC+4uv/Pp5GmZEBJnMDS6qbi1g+LxPVL7IXWmh7Np8mn/VpYqI8FcBoS3/Emh8YwlGp0GsApCzw4PFbeDCM7KDCFs+WAkgzgl56uxEQxHGWmUG3f6xasITUY58dfVyXqv1zprdWja+p4ah016ahbnHzE0uxtvGRKUkMze5qHh9Phd+3ydSRXIUm8nZ5KH51z2i9yHv8nQKdmZw4tsdBF/NZZL/Ct7zS0H1HfnobXqxUtTOT9QRj8bY/2lhmeU/lz0TObPl4i6AnQ+XExqLcOTf536/C49vouxTxxftEwyO80L0J2i1WqJRdQeP1vDKwuFwMDExQaPzWvKsVYu20Wg0RIfmrgfXv6UIa7aZfZ9afn05TaCJq1zTz47ZTYhJSts+Uo3OpBXnlKvvKiAWidP8k9Up2/YXgQp7riZMTmh8WxW9B4dFZdQwQdm1OQydGsXXkfoXTKu1U/2GQtp/K1OBMTnBXuxkuMknsmfR1Znkbc/g1LfbVkURaf3bSrHlWMT5X7VofEsJFo9JvHdrLzCht+rFJMGN7y5Hq9eK4/TC12YSngiLyx9ueEcZkUBEXKJs1fEqf88vBaZME7VvyKf9hX7ReCm7MYfcLem0PtND30GBAMdsWyYFIzRyEj2ANlG+TbOEEiVA4z3pWNMNHPjKQhL7+SeqqP7U4vnWZ/u+AshyXil/i9///vfL/n3KrnzU6NVlC/7WsX+c5hdSWxglJTrzr0hj1yeqqbwjd+VOiwUaws32zucGOPofrZz/uew0f1ZjGgaHHptHxjaue6CInZ+oVTayBbAWWcncID91dUlYReLCxr8pZ8sHKsX9DDYDeosK9YDfDYoJSgCozCtX3FRA3Z3F8svFUcVMr3ugiPwrZKcRLgUNbyoRj89oFIhDLCpbMBTtzKTsmjyKri0Q9Ysl7KjVypz46Fk/Z78rIygBWNKMaPUaNEKZu9KbstnxqNxHqMYqE5SsGVqyty3P2F0Mm99fodhFCEeeBXuOXEHl2Lfa1ZXFmWfP2FRqsqs7PlbGtg+VKj8kCEorw0DXRTh1Yu5vLX+vnNRxfXTxgDW7aCOAKiWsNawOkuSx5QhKADq3e86vT/1XC50vyE4kAex4pJZdn6gT9wNUbQ7v+6ezHFVBInDkWnCVLpQVXQnbP17DhnctjFNXQuYmJxaPusBfNVaJuGDJMbP94zUUXJkh6mdN06EzajGnCQmYATj/wy4RQQlAm/BTUkJl6Y3FVFyfT8Y6aWwSS8R6sutlrHNQ94A8zlOLvCvSqb5LFgcBRGMxVaFs7Z0lVN1aKO8YR1Xs3PqLXjFBCUBv0WF0yk9YbvlAJQ1vLhH3U41VJiilN9ix5MtiIUuOmV2fqKPi9jxRP3u+FaPbgKfWLep35n87OPKlszKCEqi2Zc09hex6og5PrRJwJwlKK6HluSFaFylP0/TJdQCc/9vlY9U1FctXJ4LB1HZbF1PaOv+zi7Q8LSNPp9XY2PVEHVW354v6TUO4OTx4bIzDXzzLuZ/J7jO91o05w4g1U+Y/ym7JYeejtZizZOrA5hwzaTVy6fxLwioSF+ofKmbTe1ZSyl0IU5oBg02e8+rbPyImKAGq5+7q24qovatEfrm4Ep9IUbk7j5wdHnE/tai5pxBPnXQdEoNYXIkvBUhf56Dq5gJKrhPmvCIxiMeRVnYY7wjS/BMZQQnA4jGiN+mwuGXjM2+nh20frRb7CNVYZYKS2a0lXbgGAVj31hK2faxa3C+t0oGzUO47j369TU5QAtX23PlYHdsfVsqpp6oCAND+h0HO/PdCghJA26PrF+1jNiv2XyOHv3oRCChB/HIEJQBdxty9jXP/00mbpFRkIne25YOV7HikJrU+88eNio32g587z5Gvy3NeaWV2PJXynNeWD1XR+JYS+fVq7Zicq5zzWi3iggm2fLCKvMtksYLWZsJo0WNJkykmE4K2p/tEBCVI7FPF40i3/3J3ZVNzWyE5jW5Rv1g0nohNZNdzVVipvE3l2kUFMte7KL85BX7APMQj8ek9QAlq7ymh9s7FD3svf0F5F4CLfxgUE5QATC4DJhXVj9a9tZS6e1V8P7VYZYKSq8KKKVNoFxNsf7iasptyRN3MLh3WHDOZdbL9zbbf9XHoKy0yghIsbssUCLhF12Sw67FqMtc7gRmC0kpo/cMIzb9ZeI/nn1Dm6/OPLr6/okGJ7X784x+ndB0QlHv7u7/7O+Ui2oVdkgSlJEavLpujqNR3YunRmFRQmg2t2YR/MEQkEGXk3ApKJ/MeRNU9BWRUOVWVBPL3yCPsUyol4LR6LRqtRkwMaLi7EL1FJy5PtvXDVegtOvb9o2yzfcsHK9Fb9OK6mmrVEUwuoyoC4FJS/Sth03vLmZqIikv2HfisuusNnh4jNCaXl1Rb19Rdaseea6FbxQaPFNY8M64iGwarjsFjqZ+wn2jzq2JRDx0fxp5r4eJeWf2JrueH6HpeLmmU3mij/PoCWp/tYvhk6uzY0yoZzbYMM1q9BnuOVeTL1r+zDFuWmWNfPYd/KPUkWMMbi3EW2sTPYsM7y7BmmcXqD41vqUJn0orUrAA0Wg1qKDVS35eEWoW8bR+rRqvXsn9W2dLYVHhFRaWgN8zURGQBQUk/rCzcl1JUar+wUEFpNlwf7VxUUcntduOeR3BZw18J5k2WOrd7WlEpMBKn64Vl/P4SSTpftx+DCsLvjo/XEJ2K8fIX5BLDARWnbdWevNFoNUrsJUTlTQWEJyLi77fr8Tq8HZOysmYW2PXhOoabfKIyeO4qC3X3lOJtmxBJ/duyDOiMWizCRdzwqQn2npI/h8xNTkpek8OZH19ksiN1VkHXC0Oqykd17R0gFo4x1CxT/mn5cQ8tyEnshVdkYVVRqlUtCnZmoDfJ39mjX1ZXiqX74DA6ozxQV1vuuOFNJej0WrEikipyMWC0G9Aa5N9v1+N1RMMx8XpkxyO1hMamOPpV2fPY9Yk6At6Q+DlW31ZEyDvF4X9LXaUiMBYEDeiEZU56/jSsimBGAAIB+SZ1eoOd6t1F9B4Z4cKvUi9XMtw8hiPPQsgfX0BQSpYPWexk/9giRMskQSmJ839bu0BRacOGDRw7doxPfepT0yVd1/DqwT/90z8BoGVlv6q1WucoKg0LFeYAQhNRQt4wwy0yUl7x67LI25bBuf/tEJeXC3rl71frz3tp/bmsTAkk/IZWQ9Ani/XqbivAnGEUry/Xv7MMq8fMvk8J+72jDLPbKM7xbPtoNTqTjn3/KLueNd2kquSUWpXrxjeWEI3ExKWgDv0/ddfrOThEdEo+ztSWPsxsdOMui4gUgy4F6dVOTC4DI2dSL90Z9MI+FTm94aZxBk956T0sm0+HT4yz74T8etYCM7W3F9L+hz6RT1PrI2zZZvRmHRaPjqDgfE3N3QV4qp2c/l6bSLGrcnceGXVu9n3+jIhgU7OnEE+5g73Cd73+oXJMLgN7T8j6aXRaVWtWVUQjlFKSarD5fZXozFoOCkvUTPT6CQeiCwhKy8VdAL0H586VSYJSEm2Prl9UUSk9PR2bbZWJr2tIGcspXM0/UKnLSJ9WVAr5oP/w0vnkRQ96a7SMXZjA5EzhoNW8nNmWD1URm4px5Mtytb+QirJYUsXjJDQa0KrwH7V3FCnqgkIVmB2P1eJtm+CcUOV8xyO1DJ8bE6kLmpxaNr+/RsmV/TD1XJnFY8Jo02PLlOVpAr0hsd8HcJaaKX99Pq3PdOO7kLp/HT7tU1VervewF51ey2iTV9Sv649DonKdSRRsz8Bd7qDzd73i8lhqUHh5JuY0o7hk4imhqmASF//YjzEVHzEPR1WWO668LR+TXSdWRJKWh0vCkm4k4pA/tx2P1BINx3j5c7LrbvlwFVNjYU48Jatssv3hakLeMMe+JssF1u8pITAckuXYQkrspRPmAsda1O1pE4JQSD4v2AtMNDxYRu+RYTqem1XRIB5bVlHJ2zpOeqWD0GhoAUEpnqhqtpiikr8/jr9/7n0mCUrTPz9atkBRaePGDRw5epinnnqK22+/PaXvljJJ6UyifrnR5Jzz+/kEpSSSRKWiXVZyai2c+uUwfgHBeaw9ysHPrzDxL8IUi4fjxGNxYsJESONbSrDnWlRvZEshJcUkcfHFAdIq5CcxwpMRVUl3Neo9AOM9AVWnvNSScdTC7DZhcqj4jipLY4nKmc2CJQMCfvk1W57uYmJo6frcf074e4K0PNOFr01GOoHE9xPGRf6hGGe+o1LSUMXzcxU70Ft0uIodIpKSWqglQI62jGNyGPD7ZQGH2nd9ajKCJSrv27VvEGehXCZqNUoQzsbG95RjdhrFScV4JE5sEQWOlYhKx75+UaCgNIOt28JotEq5t/kEpSQWIypFIhEGBwWlmtbw6sASwWeSqLT1g5VM+SMc/5psESAi08xCLBYnMiWXT9/xaC2TA0FOChcraqE2xhhpGme0Xbj5aIFYJM7UZGoqatPdLMqzlZ74CQ2FCE9ExBudQyfGGRImzi8FrhI7BrseZ55FRFICVJVz8rUF8LWpKwto8UBAuN917vsXsJfITzyqxcnvdmJNk8fbWMBikX+/zt/KFdpmX1P6/Bx5llVV+1OThAQIDIcIjMgPIRCPq6q6GY3ECE/Kfa63bYLBs15Zp4B6Yqha7EwkuyUlPcP+qJIDiMji38EjPgaP+FJWUErCVWah+qYsul4eoWf/+AKCUhLziUoTXmUNkcytrOHVhWeffRYAA6kRd5NEpZwdHoquyOT8jztEG+b+rqB4MwgUlZR4NEZoQuYHqu/IJ63SoXojW4rmn/QoqixCdLzUT2aNXHE3PBEh6pD7xngsrqoEsrdtAku68HQ9qCL1XwrseRZ1KiIqSzl1/EZdrGB2QzAov+bZH3UQ8K5eGadzP+1kslOeDzK7EZVsAyAITSpziGqen7PAisllwFVsU0W8lKL5pz3i8ncAwy3j2LIthIZlsVcs8a6bzVqCwdTjhanJMNGwfEOv88UB0lSsC44LN+QuFfUPFWPPtYjJ9pGpKFq9PE4/+Y12kYJSEg0P5GO06jnytY4FBKUkFiMqhcNhhobkG/Fr+MtiqTVgkqi0/q3FREMxTn1HttZv/nn/ysoTi8yZsXCMWEjuB7Z+uAr/QJDTavcvhFB7OKjvyAjj3XJp2mgoRnhCxb5TPE4sIsx5hWIEhkKMtaVOEgb1ZCO1cOTbsKSbsOdZRSQlQFVprNBgSEzgmb6cUyH8SdDyi06s+fZVISgBnP7hRcwuFTkvE5hM8u+nRtVo9jWlz89dakNnVPH9VOLAZ9WRm8a7JplSkYMirk7NMBKMEfLJfUv/sVG8F+Rx+mpzErY/XM1o6wRN/5t6nB/2hYlH48QX22ZYhqjkaw9x9MkLKSsoJWFKh/pbs+g5Ok7fscACglIS84lKgVHlBltaUif1auIpjhKr1UogEMCZXsm6y94OLE1Qmo2dliFc+UZO/mxoDklpMQWl2chab8VTYePMd5dgxqZSS1bwAqx/Zxm2TLM4CbvpvRWY3cZVT96uYS52PV5HLBpfNYey64k6YhH59Ta/vwL/UIiz35MF0bueqCMaiqlWcJJi1xN1TI2HV4UQYi2ysvFNpUz2Bzj276kvxq15ZhruK+bivgF6X0pdHi//inRKrsphpHVcKd/2CqPs5hxyNnroOjBE53OXsLm3hkvCxveUY0kziX315vdVYHQaZATWFBIuSxGV8nY6sZV5aD6wfP/5iko7Lwuj1cKR162cfJlNVHrx5w8Da/LXr1YkEzPXp7111i9Xjr22vTuHSCjKy5+f58NXeM7VdxXg7Zyg/4BXequqsPOxWvxDIXEidtfjdYz3BlaN3LSGhSi7KZecTWm0/6FfnVqKEPUPFeMusXP2RxcYOZs6y7jgygxyN3t4+ckmEUFmw7vKsWWZeemfT69KSa6tH6rCYNeLVSPUYvvHa9AZteLr1e4pxOQ2ckx4SmzHo7VodXKFVbXY8UgtGq16RaU1/Hmw6xN1TPYHxUpYuz5Rh7dTqEJ3Cai5p5Chcz6Gzyz/ss8+2Z9WZaH6lmwGz4zz68tWlrtPEpX2j/2SsVg/aWlpjIysjurHGlJHcXExnZ2duMhku+2G1Ptd5SB3Yzpn/vsC3ubUJ420GhuZdW71JAQhavYUklbmYN8/CRVw31iCPd8q7reGPy92PFJDPKZe1VuKXZ+oIxqRqwSuf3spwZEpzguS7qDE95FgVLWikhS7nqhTVCO+uAqHoMxw2cP1jPf4OfEfgvWLGTa/vZLul4dFSlHuSgv195Yx0uzj7PfVkfUlyNnhoex1OfQcGKZdUn5pDX9W1D+kqKNL1d0a31yCLdu8agTWzE0u3MV2mn+2vPLlfEWlze8uRm/W8QObe8VrzCYqPTf5X8BazuvViumcV87fLPjdcth0fxrRSIwjX567zljpAG7x6zLx9wcZPL7EAes/8zjZ/rFq/ANBTgoPIu/4eC3j3ZOrRm5aw0LkbEuj7LpcOv7QT/eLr3zOq/zmXHI2eWj6WdfS43MRpDc6KboskzPfuyAiDtXuKcJT5eDQV1tUqX1Jsf5tpdhyLKuWE9r8vkpFzVB4vbIbc7DlmDn5n+2ifls+XIXRol81QtyWD1eh02tUk47W8OfBjo/XMNEbECt37fh4Dd6OSZkKXSoHOJfYMyq/OZvR9iDe1uXf9dmKSqZ02HBXDgPnJ3nm8pVLLiaJSufH9tEeOEpmZiYDA6nthacsrRMOKwwoR3oxkBpBCWBfIIMDX5MRlAAKdqbjLrGhXURqajmCkjVDgzUj8cAEJ2+P/3ubKicZDceUGp5C7Hi0ll1P1In71T9YxMb3lIv7uSqtuCrlqiWo6AIKMaP0pmxxv52fqGXHo7XifiHfFMGR1StyOdEbYPi8XILR5DLiLJDLzE4OBBk4LaxTiTLOGt5YLO6nFjsfq6XqngJRH/+QH/9wkN6jsoDPkq5Db9GRXuFcufEsjLZOEhgJMXDilQ8wQWEaR0MxAgOyXc6K3XnseqKO3MvSRP3sZVbqHyzCkiHqBqCqD1bI2iR7BgBF12Wx7aPV4n6b31fBZX9bL+4XDcVUqUUd/rcWdQQlK9hLl3agsalFaM8VJRTsTCc9b+X5NVn+LYl9LxlSIiiBoqiUhMPhwGxevdJEa7hEpFgP9eBX+8QEJYD0GifFV8jnbmfZ4mUIV8K+fzqr6qRoPBYnGpSd4LB4tFz2t/Wsf9viNZOX7qgQSHJ3yurXA2SscyjqMVKo6GPxaKndU4glX9a56Nosdj1RR8FVmaJ+k/0BIoEoE93qSmJK0X9shMmBIIF+2fXSKh0Y7HosLpmf6z06zER/QExQqr67gB0fr5F1ugTUP1TMtoflc+nASS++i/Jn5yy2Yc2Q170fbvLh7XjlVSiTCIyECKhYF+x4pJbtKp5f6Y05FF+XJe4HqHrfnWUWbMXyjhveVU713bI4HZSN3G0fk4+zWDROOCQ/bbf3H8+oIihZPFosHplysMZpJL3aScGulYPgZBkSgNGmAPs/154SQQkURSUAj0uZS9Zir1cnxscV5RCrVqbi0/H8OHs/eUZEUAIouiKLzAa3ongigNmtxeyWq2Sf+8FFVUSjcCgqVikD2PqRKnY9Ls95Vd6Wx7q3lYr7WQvMOIpVvFsqX8fCqzIouloWP4GyYbn9Yflc4x8M4h9UV5ZJDUZaxxk84xX3s2ZZcJXK1WO8FyboPy7PeW39aBW19xaK+6nF9o9VU3lbnqxTEHxdk/QekZFTzU4zJrcBT4XMnsHBAOM9flX2VIPJXj/hiQjjfbLYsuA1Gco65DWyRJQ5x0z1Hfmq/KCq990Mnjr5mM7eksbm91WKr9n4xhIu+9t68feLBqPEo3JfffIb7aoJSmKfq9VR8ppsMhtWnmdnx10Ah7/akRJBCRRFpSScTidGo1z1bg1/GaSqonvku6NighJA/hYPxa/NWjy3tkzOzF5gIkWhzTk48M/nxQQlUFQzIyqUmy7723oaVewDbXxXOTnbZPsPAO4qmyq7mOTbCJicUHFLLpZc2QXTG53seryOwtfKYrbASIjQWJiJvlU4tQYMnh5lrH0CX7cs1vOU27FkmDAJ1T37jo/gbRsn5JPlTYqvz2LbR+S5AbWo3J3Hlg8truCyHHqPDDPSIleFTCt3YM+Rb4gPnBxluEm+V6wWkz1B/CrIZVs+XKVqPy7vMg/5l6eL+wGqfIS9wKT4XSHqHyii4paVCTXzsfOxOrZ8WD7OIuEYERVlrvd/5pwqgpLJqcHkXGaeXIQ3o7WYyV7vpjCFfY1k+TeA0DAceLIvJYISKIpKAGkmZZ1kMKReNjHlcm/JGrHZWetSJihdCs79z0VcZYssAlZQUGp8cxU6k5a9n0xsKms0f3YW9GwcFyi/zMZI2zhWtzxIdhTYVMmp1t1djEarEZ+Y3vVhJakkJXDlbFAG/YWnZadopsbD6ogEX5TXBAaFFBUNxcSntUSnn2ZB7Ql5teNMq9dgdKT8ml8yNDoNJpvwen44+mV53dbhk5PsPSm3p78nyJEvycdL7mVplF6dS++RYdG4Hjw2zuAx+YJ/cjBANOwUk++KdmXgLnXgqU2nW6Bu0fCmElxFNlqe6aL/YOqM/XX3l+LItRIav8BYc+pJqfQKpXyetNTf4JkxMuvl8v9q31kRZikobXtXBXqLjr3/uLRvWaz027kDcYymV/6EV7L0W1ZW1lq5t78WpEhQuhQ0/ewigTG5nGrD/aVMecMcUlGyRA3UqKMEAjH8w0EGTntF/Zy5Fgx2PZ5KB737Ut9YyN7ipuLGfDKbfKKSRQVXZVJ8RRYDp700C06gZ2/NxFPlZGoyQqtApts/ECASihIYlCVe+g956Vchg1y+O5fshjTO/W+7SBFJKUsnTzCoVdvqP+BVpShmdhpVlVdWC6NDj94gl4a+8KvlTy4vBamaQhKSsTwb2z5ajVanYb/wumrLZIR8UymJ9c5H7iYP8VicDqFi5q7H64jH4mKf1nBfqaLo+mlZP2umCaNTvi6Y7A8y0StPzkrv71Kx8T01hCcislJKAbjwfD/eVUgonv/bWoqeHOLC6FnS01Um+NbwiiIQUMa5S7M6z+f8jzpwVbjEJZnqHyzH5DasmvqeKIE6C0Onx7DnygmV7jI7BrPcVzXeV4LOoBWfYN7xwRo0Oq1YfSR/ewYanZbO38vWUoHRKTRaeU7vxFPt4j6gkGpikbi4zJza5y61YxJnVKpc6416jM7Uk+CXCq1Rh9kpz+VKT+QDBAeCqt7zoFdd/sNdaaHu7lJ6Dw9z4ZnUc17jHUFVZQz9g0HCgYiYfJe7wUVGvRv/SIiLz6eeTCq/NZecDR4u/KaXHsG6rubWAtJrXJz7aaeoDF56tQOT24Aj28x4R+rfceD0GFphSTqAcz9cohLFK4RN767AnGEUj9HT/9OtrnSPEMnSbzk5OXR1ra5t1qAOq1Hm+/QPO4gGF8m5rrB3uO5N5QSGQxz9qnz/Qg0Ofk6dOoqva5LB06nn9EEh/1gyTKRXOug7mDq51V5gon5PCUPnxjgv8D9ptXbq7ipm4MSoqOSns9RF9kYPsVictqdTz2eEfSFCE2ExoWOsxa+qLHPeZR6KX5NN08+6GT6d+hrTdyHIqQtyQpva0qmjZycYPSsrnQdgshvQmVYv52Vy6NGb5XNGz0sj9CBXLlbzzAE6f6Nub2Xj35RjsOrFe9Nnf6Aubg4OBtGoyFkWXZ4FGo1YVWzHI7UQj4tzeg0PlhGPxDjwzzK7OAptWLKigKwEordtAv+o/DDIIZUlNkWYNTdufl8NQe8UR5bbS1+k9FvzrweYUFHSU4rzj5ZR8nchNBoNbrc75X4pl3uzWCwEg0E++PDfiW7MZgCdDnxB0PnUGyJVWU6DTYvOqCU4Om+TbYX+tmwzGo1Gzo7VgkarIS6so7raMDr0aHQaQt7FihYuDXOastgPjsr66czKy7No4PcKwGDXEY/Fifhlizhrlol4PE5gUFbL3OwxEIvEmVJRG1MNzOkGolMxwuMqan+qgD3HQiwaU8XIFUMLFo+RqckI0cArX89WowNzmpGpibBofOrMGswuE6HJMJEJwXPQgslpUAh4q/H4tKA3a4kEYiB4/XRmDUa7geCoUt9U0s9g1RP0hmF1yhGrg1Yh0cXDMp9kzTSh1WlXnhvmLab1Ni36xeaiRbtqYInyb6lAkx/DHNCiRYvfIvNJT336q/h8PiKR1fFla5BBp9PhcDh4y93vFvVz5BqJRWNMDkSIR1/5Z2vNNBIORAhPyJyAq9BGZCrCZL9srtEYE3HXq9znWD1GAuNh4qHU/Y7GqMHqNuIfmxL1QwMGq5ZwILYqdtHoNJiceoJjMt9vdOowOYxMDAaJT6X+/fQWDSaHkcmh0Kp8P4NNi9FmYHJgdVQ67blmtDotvq7VUaYyufToDFr8Q7L4Vy3MaQY0Og0B4fVs2SY0Wg0TvbJkgcGuBY1m1eJmnUUDcfm6x5JuhDgERmR2saQZiUajTPlW5/uphUavUQ6fCN9ZZ4GVWCzGRI/suVszjYSD0ZSfuxqSQBLBAhuZQAQYFXyM3zvGt77wBVwuF16vV/X11/DKwOl0Mj4+zn1veIhMd+rKkvYcIzqTjrGOAPHYK/9eGp16DFY9k32yd8RZZEOr0+C9INyQULmOWm2YXHp0eh3+Ydncbc0wgQZx7kNn0QCaVclhgPLciceZEs5tzgIr8Vic8R5ZrtOaZSIejRMYXp1YwZZtJjoVFece1cJdaicWjq1a7GXPtRAanyIsySWphRbs2RaCYyFRjlRj0uDMsRL0hghJDq5oldgkOBZendy4FgxWHeHJqCjnpTFrsKWZmRwJytZnZg1Wl4nJweCrfv2pMWhka0jAkWdBb9Yz2iY7EGJ06DDaDEykOhddAgElWOYkgzh6oA/Z5/z4S//GyMjI9OH7Nby6oNPpsNlsvOn2v1m58SykFZmIRmL4esLEQpc4T6Ww52jPsxD2R8T7aunVTiLBKGNCVWGtWUNs6tWf87JlmwmNTcnmGoMGe7aFwEhQto+nAaNdz5Q/AqvwOmv0YEkz4R8Jia5nchuwZpgZ75kUfT+9VYvFY2aiz098FVL0BrsOs9vEeI9/VcaZq9iG3qxTVZlGDcxpBgwWg/L9VuN66Ub0Rp34cJezwIbWIF+fGR16tDqNsh+3CtBbFdKLdO/dlq0oLk72S3M7JmLROEFhrmy1oTVqlCpbQp+UXu0kGonhbV3huc+Lney5ZiL+CMEU43SNVj0pfKLWSVE0Rgjo18mIbd984m9FOa+USUo5OTn09/fzf/7P34luaC5e3UmNNaxhDWtYwxr+6nAJh42+/73vc/HiRfz+1Qna1yCD2WympKSEPXv2/KVvZQ1rWMMa1rCGNSShcqNtamqKT/3TP1FSUsKFC6ug8rkGEfLz8+np6eEjH/kIdru8tM8a1rCGNaxhDWt4BXAJBKcf/fCHtLS0EAqtzuGTNchgtVrJy8vjgQce+EvfyhrWsIY1rGENa0jiEmKvv/+//5fCwkI6OlJTh0tZQzlZDua2q3/PY9++VnRT1qZ5bPzRlRmT5delY7LpOfOTfuJTsxhzK2jw521zY/GYaX1mtuzfK0eOyt3ixuAw0Pm8TNItWX7t9A/aRf2qbytEp9dy5kcy+b/ia7LQ6bW0PSsr71BweTpavZbOP8i+X+WtBQA0/1wmqVq/p4R4LM6ZH8q+X0a9g8hUDG+zjJluzbUQi0QJCpWUNHYUVrNQBa72jmJCEyHxc8AsvxYo9gz7IzSpeA7ifiaov62EoDdE6zMyST0138/s0VN2bT7edh89AjlSAINLQ3hM7hecpTZ8PZMgWNtq7JBd7ab/vJe4gBSdt82Dp9zFSKtX9P0yGxxk1nro3DvIRHfqxBNnqY3MGidtf+oV3WdGvQNPuYum57pEz7Doqkwc2TbO/LJddL3yG/OwuEyc/sUFUT9PnR13oV3+7kmgmWEnZ29yYM+20vrr5WXSNZZZUvEZmVRsAqNZy5m9KzPT+26fO4XnpQvq5gGP5Zzgqf/wr4qk8hrUIRQK0dLSwl2v+x3/5z31or7xifmnN1b2eQ33lRLwhmj9lUwquPymfMY7xxk4uTonYkqvz2GkZZyx1tTnfFuehbKrc5kY9HNB4AcsORbKr85htN1H997UZW1NaXqKr8yh/9So6D5NaXoKdmTSd9zLpODEu7PURsG2THqPDjHalLpzLLg8g7QSJ/3Hh0TPz+DU4Klw0X/aK5oTMYEjx8a48CRh8pphn2zuztuZTlqxg9M/aZfdJyh104V9Km7Ox+wycuq7MvJB9e2FGCz6Ves3XRNe+P3Kb8jFYDNw7n+E0tIm5SRiXPjYzVnKqavggCxITKuygxZGz8lOozXcWwoaOPU9mT2rdhcQi8Rp+aWsrF3R1VlEAlF69skks8tvyGVqMsLFF2Trs/o9JYSDEZp+KlsXNNxfSjQc46xwfVZ8TTbB4SD9x2QlB9Si/IZcJvoD9B/xpt5JZ6ThnnwCoyFan1s5jhq7tnTOz/4CmU96S9qLwOqUs1iDHKOjypqrMu9ZnvvaLlHfeEged5W9PhdbhoWT35GVqMza4MaeY6FNuuZWicx1LizpZjqfT738E0DtPcXojTpOflv2/Sp3F2C0GDj9fZkvLrg8E6NdL7ZL7vZ09BYdF/8gK9lZflM+WoOGZqlPfaAM4nDquzK7uKvsEANvi2xuM2Uqc2lIWFJLY03kvIQHmGvuLGJqIiwfn8llsfB6jQ+WMTUZ5vyPZeXpGh8qY2pCXb/J4RBtTwtL2RoRfzeMUH9HCSNt4/QekMUKBoeG8Lg852UvtDLR75fdqxGy6tyMto6JrplR5yRvayZDTV5RLOSusJO3JYOL+wZFawpbnoXsdW669g0yJVCKcpbayF6XRscf+kT98nakk17hovk3PQQFCgIlr8vGmWen5blu/AI1UWepDU+Fg/bfvII5r1nIqHPiLHXI3gWNjrIbsrF5zJz87spx5fh1VXN+9ufK7vE/r3+ab31zLef1akYgEKC9vZ0Hb3qWh9++WdQ3Nj4v9kpBIb7hgWIl7n+6b94e4/K+q/T1ufgu+hkWllJTi+Jrshltn8S3ksrGLGgssO7eCnw9k1wQzMEGu4aa20sZafHRvTf1vLLGAuWvy2fojA9vS+pKbBoLlFyRw8DpMSYF5YcsWSZKr86l5/Aw3ubUr5e10U3uxgx6jw4xcNQrus/0CjfDLV7iEnEcA9iyLKLvNt3VriE8IZu7sza6yax10/SLLsLjQgkmAyAU4im9LgdHno0T320V9a24JR9rhpkT35CVTKy4NR+rx8yJb6ootaji+xVfm40lzcw54d47hkTOS/jYDW4jWoOGkFDR1VFsRWfQid49gPr7StHqNZz8L9k6pPyWfABafyGLf/N3ZRCLxOg9KCu9V3xtNtFQjK4/CTkXe0qIhKI0/UQe38fCMU5/v13UL/+yDKbGIwye8Ir6yTATw5S8Lhv/UGhlX6ab2aPUGEw03J3D5EiIC79deY95cPfcnFcoU6ae9bUtv+DvAa02dfWllElKScGlCW8Lv/iHHnZ+5F0p9cuy+smp0NH8pxnNq3gKmy5Hn5xZ6MeC817SZYhK1bsL0Jt1jLX4kzee0n0WXJWBu8TOqW+0p9Q+ibFmdeoTx7+hJFz8Qhn7aDAKJvl1bXdZ0Og04n7195SABsaaZY5Zb1ReBOn1eg4NE56IiPupfQ71e0qIR+Ls+9RZVf2l2P/p1blOEpFAFG/npCr7xKNxcb/IDVFG2yZUPw8JxoD+A6uzIQ6KjyjakcVIi4+z35NNdN6jcnuER4NErorT/Xwv/qHUJ4OsxjQ0Og1h35ToORRdkYXFbcYQ1zEoCPaLX5uNwaonOgkTbalfL7ghgj0zjve8HwTmOfL1Flz5VpU+QpZ4Bii6JhNnoY1T32xPrUNCRrH61jz0lllz0SLQ2W3MjpbjUTjya0hVZ7UnbWYKb+yL4BmxcLE+tWj455XPzNyyIGhYw+ojGo1SW97HD5/p48b6q1LqU3SFHf9AjP4D3plfphAP7f3kGVX3aHEb0eGk5Weyzav6h4oZaR6nd59ssXL8q3L1CV9bgMmeAL7eAAgWjWF/nPhr4wRHIvjaUu+Ysc6B0W7AkWXl4m9ST/TkXZGONd2CM2+K3hdTt4s934pWr4GYRnSfF/yDhHZE6PlTPwFhufbhY/K5re7BYtJK7Zwb7GD4lLDcjAr42mQbh5cKb+sk6VVa0TMApqWBpf18HX4cORb59VTi6JdliYxLRf2eEjRajdg3qbVH+wv9aPXy56c36onpY+J+zvtsxKJxzn1XNk4taWaMdvn1ouEYEX9U3O/o15XnHhCWljrZ1i5qn0TDm0oYPu8Tzw0Wjxm9UU/z/6SelNcYouz7TEvK7YewJP4VYLM9ylm09Fosy/ZJonXPk3zu3xWGoMGgvszvGl45JDcxA5M9/OgPv+eGitSISvYCM1kb3LT+fNbGcApx1/F/V6emVXWrA5PbwHiH7J3M3pJGerWDM9+VEU2l10nixDeVHJKUaBqZiKDTacXXddxtRWfUifvV3+tAo9NypkNmF4NVh1Yrv8+OP/YTi8TF/dQ+h4YHyohHY+z/9DlV/aV4+XNNq3KdJILDU4z3+lXZJx6V2zU0FsbbPK76eUixWs8NlINdZVfnMtzk49wPZDmv8WY5MSY8FgStht6Xx0R+wl1mR2fQEvXHRM8hZ5MHe7YVvdHAcEfq65D87RmYXUbiEdl4CVaFiUVjjLcHRd/v5Hc6cGSbVfmI7j/IyGygzA2eSjtnvy975pU3FmBON8ruU6vj+L+nvr8wGjJP/7vQEsRFjON6a0p9z7/1q4Cyn7WW83p1IxqNUlo4xI+eeZabNl2fUp/c9SZCxgiDJ2fe5Xh4ZYLG/s/MmqPm7y8uE7s5cqzoDTo6npXllStvy2f84iR9h7yifqe/JTwUlMDx/2xhYjAkPkgWC8cIjE4x0ZV6R0uuCavHjC1riq4/pJ7zclVYcRbYCY1F5uYsV4Deqkdn1KHVaET3GfYNEgnG6D8wTMgn22wfb5blOAHKbswhd0s6zU93M3DYK+4vxURXP22/kN+nWgyfH8dgMTBxQUaqiYfjEEf07ABGmsfRlMue+aXg9DfVvXtqsfXuYvRmPfv+SZbzUmuPtmd7MVh14v4Gsx408uumlTuJR2M0/1h2eMGRayMWjjHRJcuVRYJRwv6I+D6PfE3JeYWGZP3O/7fw0EIClbfnM9YxmbqPSOQpnPk2jDYDbb9c+p3X6HTAzHyoMcGB/5d67DUyfaoVNuj8tKBhwGRapscMWu9+kq6uEPF4HL0+ZepR6uXeDAYDkUiED7/Tzj//XQ5ASkSlq3JHMdv17P+fuScx4j0rO88F5KTZWEFRSWmTOvN028eq0Zt17P0HmUOo2J2HI8/C0a+oYHP+NSAZ+7/KKwFt+UAl0VCMo0/KnkPtfYUERqdoX0HtZD52PFpLeCLM4X9LPakN4Kq0Ep6MiclpOx+rJeidWrVxtuuJOqbGwxz61+ZX/FrWDC0b3lXDULOPpv+WTTzpjTaGWydF4zOt1krN7cX0HRvhwtOpP3drhpayW4po/+OAiIyTtclJ6XV5XHiuh4Ejq0eqUgNrhlZEiPprQulN2aSVOjjyJdk7q2puSNZ7tbLk2FQISosjXpS34iVaHjPP+fm+8xG0wOGrV14YziYo6XIVe6QYCqxhlZHcLIv2Vkz/LhWi0vb35hKdinHgs+fn/uGVes4WRMSfJHY9UceUL8yh/yebaza+p5zBk2N0vSBTD/trgcWDmDC02sje7qb4Ndk0/bQTb1PqD99dZSFvexYXnu4Qfceym3LJXu/m2H9ekBElLOApsTJyVhbIVt9dQHqlk72fP6NqbEux9UNVGOx68TpELTa+uxyj08CBz8g2viz5FrR6mOyQGWXTeyvQW3Qc/OfzKzeehZLrs9HbdLT8WKbutuFdZWi0mlf/+myG7/L/S2x4VxneC5O0PytbZ6mdGy4FGoNxxTYDb5s53e0hwJWZEUam4BdZK5cFa93zJABv/XAv3/z+JBaLZa3U7qsQ6enpjIyMcN/tNr79ZUWuIRWiUt1dWbiKbRz+ehvB2XPUqyy+3vSeCsweo3iuKbo6E3epjRNPtb8yN/aXRnJZtTqcE9VY/w6FbCR9DmW35BCZjNL5e9lJ5K0friLsj3JMmGNzFJsJh5j7LqSAbR+rJuSd4vjXV6cU5q4n6giNhTn8xVWYa8yw80O1DJ0bo/knspjGXWnBezEgGp/mLDMb3lJC35FR2p9LfQ42u6Hk9YX0vjzIWGvqF3SVm6naXUT78/0MHlkdlRG1MLsh6P1L38Urg7ydHjLXuTn+77JDBZvfV4nJbVC3DlGp+j+dM1sGow9um/PzdQXjGLTwPaNjxb5JghKs5bxe7Vgs55UKUWnrW9OJBKIc+nL7nN+nQlRadk9xqXGiQmUZYNfjdQRHpzjyZVkuuuGhYkZax+l56VWeGFIJk1MrJgytNtxVNspvyKPl6e5lDyDPhyXXRMHODDp/2yv6jnmXeSi8LJOz/92Or0Mw2EzgzDPjuyBzxsXXZ5G7wcPRrzatyrNY/7ZSbDkW1Ydjpai/vwhbjoWDn5PloEwZJgxmORmn8Y3FmNJMHPpXGVk/b6cHc5qRtl/JyN519xaht+o48dSrvIS8ShX3vxbU31+ErzvARWEVKlVzQwqqkBrd0vGVJgWiUde718+0J8Sd1hADEQ2/zlp6HzOJ1ruVnNePfu5jzzsHcDgc+Hyp7YWnTCU3GpXE3f7DM0yjfZ97ctk+aS/307x/iq7TC6ViNXnZaPKyl+zb8EAOuz5RjSVjiQaaFW5dGHye+kYzJ77bLuoD4Kl0YElPjUk2G+veXsrOR2vF/SwZCtFl1eBnVQlKG99Vzqb3lov7Gex6TGkrJ5fn4+z3LooJSqD4BI1OLhdbv6eEdW8sXbnhgguuPOQXQ+Vd+WRvc8k7qkTtfYWk1QrHZ8K3SNV3c3ekUXNbCQ13FYv66U06NFqNWO7XPxTj1DfaRQQlAFuuBZ1BiznDvHLjWci/Ip1tH6vGmifrdylYTYKSJQPsZXJfptZ3Zta5MavwESe/cV5clpNYQhJDBUFp23vz2XHb0i97y2PmBQQlgH0ZcNwFZ7tzlr212QSlNfx14lenn1/271Gvl/Y/9nP+p4uc/tBolnW2ux6vY9vD1fKbUrnBfua/L3Doa/KNAYvHRM7GNHG/HY/WUveAbM4AcJZZsHjE3VRjNQlKzjILWz9SReYmp6ifLcOC3qTDkp6agkgS3qYAZ74tIygBaE0aNFoNWpNs7m68r5Tau0pxlsnuU6tVVxLAU2ul+q4CVX3VIHuLm/JbhHUPALTqyk2tf7CE9Q/K41idQYtGhU3bn+0XE5QAzC4jZrd8zt/4N+U0vLlE3E81AqwqQUmtL9vxiDrfac00k1Ej8y0Ap757gdPfXh2CkrvKwq4n6qi5Z+n3aOBtm+cQlABGgHMTOk6N6XE1Lz+2kwQlgBOnlKSI1bqK6/k1pIy0NCW2ON8yk7z6dcveZfvEAgFanuvnwu/7F5IyVoi7au4uYNcTdbjKV2e9d+a7LWJpf4CMWhf2PPmYrbmnkO0P14j7md0K0WXVEGRVCUp1DxSx/h1l4n4WjxGLR557bPtFn5igBEq+S2eQJ6EaHyhj/UMl8utpNKAiVih9fTaZG1Yv51W5Ow93pSyuBECjEceXjmIz9feWUXdnkaif1gganRaNULQv6IVzP7goIigBmNMsGKx6bMKcV/o6B1s+WLmq7/tqEpTU+jK1vjNnkwdblvx6h7/ezOnvqVRLVeE7t36kip2PLp1zGH1w2wKCEsDhIQOnhw24VtjPm01QWsNfJ54+8uyyf4+Oeml9tp+mXy5U5tAY9GgMS6s37PhYFVs+VLn0hy8Vt6ncYD/xzVZOf1tGUAJwFtnIXi/PeW39cJWqfIQl14RJvmxTjdUkKJkyTWx6bwWZ62WxgtltxOQwYMuU+dVAb4jmH3eLv6NGo0nM3SuTOGej8oY8Gh8sJ6125YMz86+HRgNGWbDgLDZRduPyew9/TqTV2il6Xaa4n0arbi+18cFi1r1RvjetNWjRqtgr7tk3IiYoAVizzVjS5TmvhgeLqLtXFldeEkKsKkHJXqDOl6n1na5SOxl18gsefaqV08KS6CvxXZYiKJmcsPORKipvWfo96nr3+jkEJVCKoB7xGzk2ZcTatfzLlCQoAfz2BSXJabOtTGxKImXNJafTid/vp71rLiN53+eeXFRRKe1lhfgxOaD8J4W3YxKzawUnqdEuYD9X3Z1PRqWTY0+eE224+4diMCRn40hPBCehN2lVkVzWvaUGnUkrPuGw+f0VGB0G9v2jrNzY5vdXYLAZ2C8sh7bj0Vq0Onl5BrPHOLvMYsqQfq8k1r2tlFgknnopp+T1/knd9UbbJgiMyD2z2u+XWeMircRO/8FX/jSTNUOLp8KJ2W1k9Gzqp+38PUFVLGpvyyi+OhfdB2UJt8Fj4wwek18vc4ODktfmcvbnXSKi0oWn+0WKTUm4im3ozTos6Tr8gv25hjeX4CywcuK7MkJV/YNFOIts4rG24Z1lWDPN4mfY+KZq9Ba5ep3epFPlO9X66sAQBFTMDds+XIFGr+XAZ+cy6JcjKAH4h6fQm3UIOMQAXEifmc7PdudQmz8rwPX7+cHub2E9nc2MPJ6CrKwskfziGl4d+NXp5xdVVIp6vQD0/EkdyyUwGiI0JqxhDmz/eA1Rf5RD/ybbVJYo8MyGWrUZrVaD3iRfpTbcX0pgJMTRL8tOku96vI6xzklO/1fqsqoWD2x4Vy1D5300/2/qsrEZ6xxUvaGQ4fM+zv8wdVVCS6YJg1WPs8jGoEDtr+3pXtqelsn1gkLiKbs2n6anu0Qlp1p+3KOKrNJzYJDYpnSlzJ8AZ4UlLpIovjoXa7qZ86xOmbniq7PRm3S0/kL2LKRjOYneI8OYXfJEyMtfUFf6pf6hYuJxOPNtWdnp/UKFqCQsaSaMDnnCdNcn6oiEoxycr163AnZ8vIaAd0p84n3XJ+rwDwc59qSsX8P9pYQnI7z8ednz0OrV+U61vlpNuT5nmYWGe0vpPTrCBUGSLzQJ4ckI3tbUSx0rsHBu1m26mjWMVSaSRoEAh//+H9n8t5+g9c3fmtPLaNsIHKSsTE5QWMMrj4KCAlpbW+kdmOsHft2yd1FFpVhAGQTBviA9QtUYgNG2Sey5FkKTsn7Fr8sib2sGp77bJis95IWgV36f0tP/SehNOrQqSC4Nb6zE6JSreqx7awm2LAv7hLmrxreUYE03cUC4Xtz6kSr0Jnl5BnuuBZ1ebhe1Zb9q9hSi0SAu5aR2/Tx42ktwbGrlhvNw4LPqvl/u1nTCkxEGj62Ogk/WujSs2Wa8zYI5OIh4nACM9wcZafbRe0imHuvvCrLvH+XXcxSbqbyxgLbfduNtTn0u7j80Sv+hUfH1nIVWjA4D5nSTyJdV3pZHZoObc//byciZ1Mu2ld+aS2adi2NPnhORlWrvLcRd5hDbtGZPOdZMk6qcl1aFj1DrqwkiJqaBos6nt+g4+C8yXzHeFcDklpe9HQ6aSRazc7XAWMWsPwaDvPiFT5F5ys2MPJ6C3NxcYrFXt2LLGhbi6SOLl36LjnoB5pR5k2CyL8CUf4Wcl0azYDN48wcqiamo4KG2JJNatRmdQYvBIiO5AGx8azmBoZD4++14pJax9knO/kBWImv7w9UMn/XRIshjWHJNbHxrOYNnxmj+ceq5MpNdg9ltxFloZfB46rFC38FR+g7K5zZLronqm/Jp+12PSN2o+8Vhul+Ul+zsPzqMRqfB3y17J9qf6af9Gfl+VeEV2bjLHHS/OLAqZLPSq3Mwpxnp/I1s/+/Ut9WVbevZP6TsTwtx/D/UKRpV3paPVq/h/I9kOUSpYlMStlwL8ai8346P1xAJxzgkzCVt+VAVoZEQJ78ly+ltf7ga/1CIk//ZLuq37k3lilKqcH9CZ9BhMKvIean01YFe+dxgcmrZ+DfV9B4dpuO5ue/DcgpKAMHRKcYuSHNeJmbPCNYuLf6CWe98KMQfPvUvFB61w6wSce29tcBBiopSJ8OlvDO5Y8cOfvrTnzI0vND5zCcqJQlKALYsqHutmd7zQbqOL/zcpJrS7PJvsWCIzt+E6PxNCguxeUSleCwRRFjNSCSASm7IJneThzM/7GCs+ZWXDjryJZWbA8dGcObKT+3EpuIpVcibD41GI1a4AfAPBTGY5UGRWvKPWthzLKsq+Xr2u6tb17TzxQHGu1ZHCss/FOPiSwMMnZU6PHUIDCGeqC4FnhoXBoceT6lNrKakBme+o26s+Lr92DLNTPTJ7lGj16pSVYhMxWb8rgDdB4bwVK4s0zwf0nJtl4ptH1VOeEkTL/FYHM0837ISQQng1PeVIEPD3LJvi6knzcbdTRF8enimTJnWZxOV/ueWb2IOx4jV9UB7xZx+Xq8Xh0P+HNbwl8d8olKSoATQ+NYSzA4DLy9VsjP5rs8bo2qJCwAxFXPp1g9VEY/ExeQmtdirIlkP4OvyM3jSK+4Xj8WJhmTBV2AENFqNePNqsmuSSCCK76LM9/cf8NJ/wCvqcylwl7kwug14Kp2qiAhSDJ+aYPiUugSmGpz7aQ/p5amfFrlUNP20U6xmdSnoeE7FyZNLgKvQtqpxulofEfCGCPnkBE+NTq6qABCLxokE5Qs7b/sk3nb5+7BakuygEC4rby6g408D9Pwp9SStPqGyFo/KxkugOzCHtDW77Nt89aTZaLBOUmyJ8adhPb5E3b4kUenE//l7HOEwrZ98At48N+66cEFJXq5fv37BZ67hL4/777+fP/7xjwyPLszczicqJQlKAOYsE+seLKb38AgX/7BIDmuJuEvtxn48God4HJ1R5j9ydngoeW0WTT/vEm3sq8Wp/2pX1a/rwDDuEvlcGgnGiAl9AIBWp1F1CGa8O4BppYOVi0At+Uct0kplJ+svFc0/lZPKLwWtv+4lOLp6soQXftPLyIVVkpsPyslll4K0cgfmDCOuEoeIpKQWag/0jfcGcZdE8PfInoNOr0Wj04rVlKKhGPGoPO7q3j9EZoNc5Uut71SLTe+uQGPQiEsfqvG3AOf+e9aYnlX2bTH1pNm4Om8cf0TD/gHFp80mKr38z/+AOxQktmESzs1VwBgdHV1TsPwrxXyiUpKgBFD5hmzsmSaO/sfiufOkmtKc8m/xGCdTPUA2n6gUR1Xue+O7lPEoJf+ohdrDOkNnxxhtkceGsUiMyJSc8aDRatEIieyBkRChsbB4n8t3Qd3heLVw5Vuw5phJq3KKS7Cpga8jhK8jddLWpaLlmX7SSnyrpobV9LOLWLNXL+fVs291Syx6Ku1otCokn1TigPBgXRKTfQGmAvJ3XavVoFFBvI6G40QD8jE2eMrLeI88ht3/mdXjJNgLTNTfV8LFPw3KxpvJAPH4grloJYJSyAdH/719pv2ssm/z1ZNmo5wgNeYpXgyaGEuQkGYTlfb//afInpggtnUMTswcwmtN5LxKS1NX4dfEU8z8dnZ2UlysyLzPrhM7Gzs/8q45BCVQSEoN11gY6wtz7vmlk7dJklIsOMMiq7orj+EzXoZPpzD5JBk4KhPZZTfnkLPRQ+uz3SLVmWS/8z/tYPik8AjcGv5s2P5IDVqdRrXikBS7nqgjHouLr7fxXeUEfVOc/Z4s0bDriTqi4RgHVJ6ek2LXE3VMjYc5tNQG958RmRscVN1ahK9rUkQ6shZZqbs9n44/9DF4LHViVOVd+WTWuOg5NKyq1J8UDW8qwVlo5dhTbfh7VlFHfg1zsP3hGuLxuDgpvP2RGoipP9mZTLqkQlACqHqDh+GmIMNnlXkvSVRaiaT0wPkIIQ38qGou97g2v49fXPklhfQExGfN336/H0e5kkRezU3gNaSOJHFwqbgL4Mb6q+YQlAC2frgSg1nP3pWIv/Oee8Y6B+4KhyrFGjXY/vEa4tG4mAS47WPVxKNxsRrIGv588NRaqbmzhOFzPvGJHzUo351LdmMaXfuG6Pxt6kSZzE1Oii7L4sx32wiMpL7AXf+2Mux5Fo58rZWACnUMKbZ+qAqDXa9aeUaK7R+vQWeUK7PW7ilEZ9Fx6hvton67PlEHqCcBSbHrE3WEgxFe/tyaj/hLIXuLm/Lr8+j80wBdL6SuAJF3RTolr8mm/Y/9IpKSWiw27yWJSsuRlHY5x8k0wnNDegLMTZoe/cpHFo27APR5LcTjSgxmsaxesnUNqSEYDGKxWNBoINKzeOx1Q8WuOQQlAMyw6yO1jLROcG45Jb5F4u2yW3Lwtk6sCmkoZ4eH0mtyuPC7Pvr2p54Qzbs8neIrs2n5VfeqqdWsYSG2fLASg0UvVopSi2SJden16h8qJjIZ4bxAERQUBdJIKLpqJK5dT9QpJ62FxAw1MGeZ2fyucnwdk5z8Vnvq/dxaau8tpfOlAYZPpJ7zKnhNBkVXZtH78jAXVKgkSFF5Wx6Z9W7O/PeFVSE3rWFxbPlAJRqdRrxG3vqhKjQ6jXhNrhblt+Yy2jI+M+8lcmYrkZRuKBpnKgK/65l7yG6sApoeXzr20uW2oNFo1tSUXqUwGAxEIhH87YWYZm2czsZNm66fQ1AC2PCWIkxuPQc+v7yq3TRJKbFv6KqwkF7ppC3V/YBLzJVufn8laODw/5PNNZveW4FGoxGrgazhzwdTponN70goN/3klScB5e30UHJtDl37B0WqQa4KKyWvzebcz3oIDaauzlJ1Rz6Z9W5Ofe8CYy2vPPl6/dtKseVYVo0wtvmDlZjsBvH1ym7Kwew0cub7cnUwjU4rrkakFtsfriYSiol9yxr+fHCWmqnbU8rFPw2IVNDSau1U7y4U95uDxH7RSgQlAFeZGXepnY7fzeTlkkSl5UhKm/WTlBii/CZgwsfc+dlfEKPtAx9dNPayFrcQmoLTp09TV1eX0tdJWUkpFXmmYNpCVtzkABz4/sqLFE1eNvGuWRJ/VsiocuDINjN8OgUZXY0WYtHpvharorSSKtp+2UfbL+X1HyNTMYgrkmASVN1TQEaVk669g3T+LvWJJ2uTk6Irsznzw4tiwkNarZXRs6tz4ie90UZ6XRpN/y3buNr64SoMVr14ApnyhdEb5cpNajHRGyAakrNHLZkmTGlyycDAcIgJFZtk2z5WjX8wJC5npwaWDFj/9lr6T4yITkNNdk0S9IYYOCU7RZpRacPoMOCpcYlISiPnvLjyrQydXx3FJ/9QEHuuBb9QWn/je8qxeOTS0Lk70rBkmFT5MzWwFlnBHxSV1wRFVj8ejXNKKPe46/E64nE5QVDNiRdANTHQWmTF3+mHWBSdM/XatGklVmXeS/jqmNVA2wdX9m3fqZ6Zzq1D4xx/32cWb5g7o0T1xFsUlag1JaVXL3Q6HdFolJ/8aozbblz8FKbGZoV5JKWXP5/iImXe6bDS1+VisOpVkZQs+RYC3bKk9AGVp7yUCFjeTS1Rov6hYuLROGeEaogWjxaMxlUhuQCU3ZTLeO+kqGwbKJs0vi6/iHgSGI0RnYoxObQ6xcWHz3hxFdjwtsnm7sy6NExuI7YCG4GR1Pv2nRwhz5ROYEz27MpuyiWzwaV+bAvR8KYSLGlGcTm14WYflrTFk8DLwVVqR6tCbcLbuboHOcL+CAGvvNTMrsfrCIzKSztW3pHP4MkR1SUspXCWWcRKZLZiCzW35nPhtz2MCNaDZTflkrMpje4DQzIlrUToEg7JFKZ6/jSsipxk8UAgAAgfQclVORidhrkkJZ2W/jdvXLbfXt9M7GQJeHnxG/+weMXyZNylAU7l4/GkMzY2tkZQepXCbFYOBSy3H6WxmBODbRaCsDeVtcki5UNyNnhwF9kZOSNUizWD2YxIEaRv/4iInJRE2B9R7lt4CLbwqgwKL8+ie/8QHb9J3X+4Ky2UXpvH+V904++SzcOOYrOobNSlwFVuJqM+jdafy0qurn9nGdYMs7h0lH8ohNm1egdLRi+oI845C23EInIywFjnJIFReVy5+f2VBIZD4jhdLbZ9tJqBE17an0s95xX0BZnoD9B3UpbzsuZZsWSYyKx1i0hKY+0T+GtdjDSvDqlwcjBEWjBKcEw2PusfKsZVZBPnf9PXOXDkWEXP4FJgzjLD1BRBr2xc19xdgEanEathqSUIxmPK1ogUassym3PMBFWsc7PXp5FWZmfkjJKz0Oh0jNy3NDE8iV93zsRe5uAYf/jBP6AlzoIALG8m9vrVvyubZms5r1cv7HY7Xq+XL359ko+9d/H1adxph3kkpWP/mZrP1xj0c9SUyq7NxZJuSp2kNCt2M2WaRCQQQDURNh6LE1eR9Nr+sQRR4tMy/1F5Wz4aLTQJCcYmpxZMBrFd1CL/8nSCo2GGT8tyXjsfq8XXOclpQdWKkC/E1GQE/+DqxJWj7ZNk9gbwtshyXmkVDmy5FtKKLfQJnsPgmTFMLgPBAdn3y7vMQ962DE4+1URI9hhUofK2fBz5FnFljcETXhwqqhF5qp2qqgONNI2rKnOtFqGRMFOTcjXvHY/UEhwJcexrgrLFQPH1WYw2+VZFHQzAWWzC1yHzK6YMEzW78+h4YQBvU+o5yJwtbspen0fXARlBUGvQQSxOdEoWH46enWD/WTmZzeSEUAgIAfE4Gn1q1J6iyzOx51voeHFI6QtojEYuvrV22X6HIzYOzxpippCP/f/29+iIo9HMm5/yE++nFpxpmQwPD6dMUAIBSSlV9F6XS+5zskU6ME1Q0hoNxKbC4Ieug8MMHk2RaRSPTQcOuz5SR3gysion7DufG6BTRemDwRMjuHKtjAmT9mlVToWYUW0XkZTWvb0UR66Vcz9pFyk+bXpvORaPmZf+5bSkeh5l1+RjcOiRPoGgd0pV7e2jX1Enm7nto9VoDXKW6wmVdUbVnpBX+/30Zh0Wt5wUpQYaqxWtXoMtY3nFl/nwD8U4/EV5Ca/O38kIfkkMn5xk+KR8kVD3QBHuUjvHvnpORMhRS4AMesOYnPJnV/TabHQGrfiaOx+rRaPTiMfo+geL0Wjl/Rx5VlXqPRP9AWJheb/VOhWWxIY3lhAam+Lwly4QnZhMWUmp408jTI6GAYjWKOqFZf8aXZ6o5I+AdWY6v/nlk2hgms08G7N/v/eUQp6qrq5O6d7WsPrIyMigv7+fxz81uiRJCUCfn0ekW4X60bx3sPkXFzHY5WUrtnygEqPTsGoqMGrfZ1+3X5UsvdqSUxv/poZYJC5OEO16oo7oVExMdMnZlEa63yEmKUWnYgTHZISOQF9QFRHHWWah4b5S+k+N0vrT1NcL3qYAR5rkscKZ78iIsEmoLYNnzTShM2rBgpgsoQaWNCMGq3w5p1YtTe2psDPfVvccdjxSS2QyIi4JqXazJRKKEvKGZZ0skFXvxp5l5mhT6vG6rdjChjeWMXZxUkQQzN7upuL6fEaafJxdTrFlHrLqXZjcRpxFDhFJaaxjHE+FXUzuX+1Skg1vqsJgk6uRnf52K+kNnumftQmSSvY3jq5AVApAQkHp6tazaFkh7opD/JkAZrMFXQqn3dbw6obOk0Z0RF6mbTH2U/tv+xg56xV/1K6P1THlC3NIzelZMyDILw8eGWPwiJzsMNw8QWadG99FWc7LVeJIEDOcdAhIStV35JNR76bpl12i+61/qBh3iZ2j/9kqIkWVXJOHPcdC63O9InuGRqcw2uRzt9py8JveXYHBoRcrAy+rCrYMpOSrJE6nWoJnHowq1i6qYVZybNZMIdE7CMf/XbYZBDByZoK9Z+T2HO8IckxFaaHSm7LJ2ZDOqe+0ich+PS8O06PiJHhgNIQtW5Y/BCi7JheDXS8mKW37aDV6s05Milr/5hJ0eq34oIu7TF0Jl9ELE6oOBay24sqmt5cRHJniyJdla7TzP7tIZFKJt5PqlZ7vHV6BqBREmbwU7OpqVjbJWDi1auIzsdcXvpUGQHn53BJwa3j1oL6+npdeeolv/cjHx97rWbKdtriAWIdcwXmaoKTRQjxG8y+6MUn2SRIDrPEtJTjyrauW81K7DzTSMoHWIPcf6VUOlDdHRlLa+J5q4tGYuITUzsdqiYRivPw5Wb/i12YTmpCTlML+KIFR4SGmEBz6V3leweTUsvE91Qye9NL6y9RzXoHeEMdV7De2P9NPuwrVxNGzE4yelRPSbZlmjFY9mExMMx5eQdjSTRgd8liv8/fyPUOAQyr5BGrLHW/5cBVRf1RcEvLYf8jjSoDwZAT/sPy55W/NIK3QLruuCS77eD1jF8Y59e3U1zHOUjOND5YzdHZMpNyfVmLBlmvBXWYXkZT8gwH8fUG8TTK/4m2aVF1iUw1q95RhzTIrcaxGQzwaTUlJqemnF0mrdk+/rtoEcbvwqbMrEJVCMEtBaXv7BQzx2OKxVywRe8WUg19paWmSr/bnIylt/OTfTP97PlFp291mNDpNSopKs9H5GwFBKQmNBv9AkCHhoILEplAoJi/rYwWr2ywiDY2e9fPyWbnTO/8DdSU1uvcPkL8jC3+vLEE0cHqM7EZ5cNP0dBeuotQ25WdDUu5rNuxlVjKqHeLyXdGpKBqt/PuVvyEXnVknVopSi9r7iwhPRmgRTnirFTwD+Dv9qq5nzTNTdUseLb/pY6LtlVf6Sm+0kb89ixPfuyAi3kUjMeKxOH6/jB2b3mjDkmGh63mBtBtwVuVJwKafdWLLkddbH24dx6qC0DZ4egyDVb7Zolbe88TX1REEXZVWxppl48teZmXd/SVM9AZkxEQr+AeC9J+eSY6nSlTqOyJ/B17fBxnhCL/Pgp40PT+8YRcfavsdmS8q0UfSw01LMALxq028/PzLANx2223ia65hdfDBD36QRx99lJb2xU9H3LTtpul/zyYqZW50UnlTPsPnx0UBvaICImdW9BwZIaMqdcWwJNa/owxbtpm9/3JGfFk1SiJqVQXVlqgaaR4nqELNZbI/yESv/Dl0/nEAX5dcsUat6k/BlRlM9E2K1GPCfqV+dlzKA/FoKb+1iK69/auiVuOuslB0RQ7NP7lAQCA6sRrKlbOhloxTfksuerNuVUr1AVTfVUDIF6b9WVmcHovFiITlagzF12UxcHpcrO6mqsRMADr+0M9oh+zdi40H8A8HGTzpFfXzdQTxdfvpPiiLKy/8qo8Lv5KT5odPTTB8Sr7pZckxK0pkwtdVbSnC/hNeXMXytWdgJCYqR5fEGzIihOPj/GrYwdMNO3lN5zle134KWCLuuskC93no/kgLRuPqHCBZw58fNzZePf3v+USlrR+uRG/Ws2+lUrvz0LNPrmwEMNYxyWibfGNh1+OJcpj/Ipw/zGB2mkWnrf1dQfHmNUDHbwZEyktJ9BwaRm/TM94lS7wPnPCit+iITchOBjf/qgd3oVVEUAI490N1c685x0xmrZ2LwrxCNBJFF5MTJYquzsTkNKjedJGicncekWBUXJ5s3z+tXs6LoLo8htkNFbeWcPGlPsZaX/kT6K5yM/k7smh7ulOkthYPQzwaIyycu13lZmxZVrE/a/tFH22/kMcm537ciSNPnvMaPOXFrkJVofflYcwqcmX7VapyqyUIqlKSMyuk1/EuPyeF5Zx9HX5Vey8SVbAkNqZHybONc2zAQHfQzO8rtjCU+WMyfrJMzusuG/t+oeS8rrjiCvE117A6+PSnP80VV1xB2xI5rxtfe8f0v2cTlZyFJur3FDB0foLmn6c+b0x0h5joTjFOmLUL2/PyCFn+mLJfKwgzqu8qIL3GydH/aCXQK4tP7AUmJoQxjdqyZGo32geOjxL2yyuNeNsm8Y/K58OWX/cQHJLng9SQjQCyNrsJjgRF6jGhUIx4NEYkLLSLCapvLaD30NCqqNXYC0wUXp5N22/7CQkU0pt/2rNqsSGoJ+MUvjYTg01H29OrU2mk+PososEYXX+UxenxcJzIlPwdytvpYbR9UuxX1BKa257pYaJP/u75Lk4ycEYWK4SGgwydG6P3kMyWfYe89B3yivoA+DpCqsaZKcNEaDwk5uptfl8lJqdBvNfQc3iE9ErndKk3ICWiUsgHfS97ZTcJ7LaEiMRD/DKo7Pe8UL2eyQfM2L6j+KdFY683Obj4zYsYDDJioSqS0rlzfmpqZhYEswlKSfRelwtA7nO9+Mei6IyLE0HmlHhLQGtUvkTDg7lY0s0c+OwyE0l8YeL62NfUbWIHR0OMC0uoAez6SB3RcExcFqj2/iKC3pCoNJZaKOoxcrt0PT8kJlcAjDX7xYQAUEqGZa7PFCvk1N1eiN6iE5OU1Cj4AGQ1uNFoNWKlqO0P14BGviGYVmYnHo2LSUp/Dcje6MKWbSF3cxrNApJS+RtyyV6XxvmfdojUwQp3ZWPLtmDPsYpIUWoJghU3FKIzacXvUdYmJ/FYXFTKDhQCpJqyjmoJd6s6Jq2w4cEyLvy+T+RfsjY5qby5EF/XpIgIGQvGmPKF6T8h3DwI6jj29YUnQVciKtXckY4jx8z+3+mYr1ld9q9KwLqYotKgGVxh6DHBUzu+CcCZHYVYD/nZetfC5xN/Ng/WWYknSpA89thjqX6zNawyHnnkER599FEii+RrZhOUktDn5wEweK6H0qtzGO9b4j1ZShXIAtvfX8NIyzjNAplnteV5Bk56yTGkYbEsrJyyHNa/rQx7noUjT7WJSAieWiuFl+VwXOUiV4pz/60uwXxcKLubhJqNdoD0BjugkBEkKHpNFuGJCC83pR4NBfqC4g1cAHuJHVeRjVgkC29T6ifts7e4KX99Hp0vDdL1fOqxZe6mDBz5VpyVbgKrqAazWshqdKsi6W//eA2xqZiYHJVe4yQWjotJSgeFJzKTyN+eQUa1k8P/JojzLZC3JZ2eQ8NiYo2ady8wgrisHCjv0Mmn1K111aD0xhz0Fp1oTgBY/8YStCrIRsPNPrEqK0Dnb+WEBlDG9Hh3gHP/s3BsZn/jKMCiikoTUfBHlXfoyYe/CA/DieNZrHvDwvuI/y4f6iy8dEAZWOGwkKW5hlWFXq8nEonw82fGuPX1MyqWswlKSeg8ygnB6Mgo410BTO4lknHLqDHW3FOIs9AqVolUqzoz3u1nckhFzuujdURCUTGZs/zWXCKBqCrSkRTjHUFVdhk8NsbgMblSlL8rKC5HBwphxV3joe/YiIjgVHdbAeYMo5ikdFzlIZ/cLenojFrxRtSWD1SiNWjFYzqj3k08GhOTlP4a4Chz4SqxMTWRzlhr6vNp3uXpFL8mm5anu0VjNHdLJmnlDmxFDoLe1PNJ7c/1qyqhVnFTISaXQUxSSqtRciOj52RE7/GOoKqyjmrHllo1BrVofGMJF/f2421OPSA155hZ98ZyfB2TnPxWe+r9zDA5EGTgpNwHnvqv1K+TROXuPNIqHbz85IUF/s/zvcMAiyoqjQZ1pJtjdAfhP/7vFwDoJpPBtwepvXGhT4z/sQCqzAR/pKwFPvOZz4jvdQ2rg8svvxyA0CJnu2YTlJLQFhcA4OvoIjQWYbxn8fdkdom3aSTqIW75QDne1glafrGMys282G34pI/hk3JS3sApLyangZgw/K+6I5/MejenvneBsZbU89/OYhP5O7M5+5PO1RC5oU3FIRiAsz9QdzB74LBXVT9XhRWNViNSVwGouCGP0FhYRuwIIVaWArB4TGTUutDoNPgupJ5LdJaaqdtTStfeQRFBxlPrxFPlYKxjgh4BSemvBblbPOiMWjFJafP7KyEuJ/PkbkonHpGTlNSShkquySF7OMTRr8pySjlb3Iw2ecWl+tSQfwghJkCDQqo5r/JQhxrkXebB7DaKx0rDA0WY7AbxAYbB016c+XLS/MCRMQYWUQteiai06T1lTPQGaPnNwpx/4VNKfn4xRaXRqIapuJLzev4D/wyAnzT8bwmRefXCmD/+UiG+DOCb48RissOmIpKS3W5nYmKC3W/t59xLpSn3O/WsukScwaZHp18mgb4IQQmg6JoMsurdHPpiy7IJofk48iV1Uoq+Lj+TA3ImYVqZnXjEJiYp7fxELeGJiFjae/P7K/B2TNL6M0E5Piusf7CMgeOj9O5PXdI8vdFG5c1FdLzQR+9Lqfer3F2KI8/K5IBfRDxp/30vziJ7yu2nYUVMVgE4+f0OYvKyn8Rj8nIxAMe+1Q5+FcnEJ+qIBKKrUuoqrdZK7Z0ljLVPcFog4Xfh6X4Gz44zsdRm+hKIRxU1htCkzKbHvt1GerlN/MytGcpiRlLqDaDtuW5cJfL65+U35KPRahg8Jpvotn20mtB4WCwnvv6dZQydGaNbSDTY+uEqeo+OiEhY1iIrG95YwlCTT0SOKtiegS3bQv72DMaaUx9jE50TTPYH6NonS477e4LyEgpaHdX35GFNM3L0yfYFf16OqGSyG9DqFxKUVsLhPD2HF/n9hrf0LvgkDRC/qxfOl5ORkbG2Ufb/VwTg4OdUnBQKgM6gVVUmdP07y5joCdC6XKJnHnr3jdCrQkGga/8AedszZcwmIG97FvY8C+kNdhEhp+aeQjyVDvZ+Tqb4VHBVJtkNLhlRAkWhyF1mF6vyrH9HGQaLTuy3qncXEYvEGT4lIw/1HxtltEWe0LZ4lPk0MJL6fDp4xEc0cIGRdtncHQlGlNhLWObv7M8uYsuyMNkhG2MNbyrBWWjl6JfPib6fWmz7aDV6k058AufYk+fBIixVQiL2ishj2aP/qW6DVI1iGkDfkVG8bbKxmbvBQ+lVOTjzrCKCYcFVmeRvS+fUDzpE4yXvinQ8FQ5RqTeA8t25OHIsHHtSFudt+UAleoteXH4yZ0MaGq2GZqH0f9+xUawZ8jGmthThlvdV0n1oWDyn6AxajHb5ua3fjS6M7WvePLh43HV3L5wq42Ofyga610qOvMpRVlZGU1MTH/m7kTkkpZWgVh3HaNehM8lVabO3pJG/NZ0jX5XFGGoSxQAjTT78KjYwshvTiEVjYpLS9odrCE9GxEpM695awnh3QExGqHugiOFz4/QfSj13ZS0w07CnmK6XBkXkjKKr88lscBOdiorK0rX9tht3qVy5FNQprBxXQUAAiE3FFc1/IY4+1QZBuQLpzsfqiAQiqtUlJTC7tWx6Xw3etgnOCJSvB4+MMTkQwi8lCEbjihpDUJZ8PPezi7gLLSKSCyjfDyDolT2/1l93kVYuH5tVbyhUVUZt03sqCPsjYn9Wd38R3rYJMZlq47vL6T/plZW0M8POj9QxfHaMph+nHkN56uw4i23kTmXgbRYceAkG8bZP0CNU2gx61ZUiLH19NvY8i7gagtllRGfUiRXo2ifNtE8uJLGXv3Vk8djr3l44XEpWdjZ+vx+zWU6AX8OrH0e+po6wrTfrMC9FLIcl9xLr7i1iciRIx7OpxzRqS2r1HRpCZ9CJFCwBMhs9eKocZDW4RYSe4uuzyN2UztGvt4lUdbI2u8nb7OGY8KBd1mY3nkqHWDmuZk8hljSjmJhRe1exqrJ0F18cVKVWbnIq82nIl/p8GugNcfLbrfiEAhqxsBIrxCKyubvzhUEGT/nESjwVt+SStT6NE99sFSt9qcHGd5djchvZ/ylZHuP415rBJC8TF4vEQEUq7+h/tKFVIQdjyTURGJGr8Vx8cZDxHll+1FlqpvzGfAaLbTQJDqGlNzopvTaHpp92ilS+0hudZNa7OPeTi6LvV/CaDNLK7OI4b91bS7F4jBwQHqrJ356BwaIXk5R6Xx7Gli0nG6kiv2s0rHtLCQMnFleLWo6oZLDoMLlNgGwu+uPU4vvZaW/1Lh57PdTLAxXrgYvinJfo1fn0pz/Ne9/7XlraFEWHxRSU5iNZ+q3mKj3e3gh9swRkFlNRmo2jT6o7gZ5Z68LoNIAV8GtSJiplbXJSsCtTTFaSJpeTOP/TDoZb5RNdPKaUnpLC5DKSXqmjFQFJyQ+2LDN529JFJCWtTotWr8GeZwVS79fxx37ytqaL7TJwxMfAETmjfes7qjA49OJTvmrLkqklC/k71V0vEojiH3zlJSIBQmMxoqHYkqcYloMae7b9so+2X6pg7PsREeCSaHxbFTqD/ET44LFxsRoSQPf+IfQWecJab9ZJOS6A8p4bbXoRScmaZ8Zg05NZ7RKRlEw2hbA35ZMRZLqeH2K8y89Yt2y8+IdiHFOReKm6pwCdXpt66T2t8rzSSuxolyPYLoEjB1bezCv71+gCNaXXt0U474LHb/rOnN8bxpW5Lw6MbjCQdiyMBtD44kz6/Xi9XgoLC8X3uYa/DAKBABaLZVEFpfnQ5+fhTh8na72HM9+el7hZISZSW4rRlmXG5DCISEoAtXsKCY1HaHs69X5K+SF5oqf15+1oHXLiydSEQnSxeCwi5abMWicmtxEsiMhNuVs8GGzy1a3JaUBnlJfz6Ds6StAn3xSSPuskNr6nhrA/wstCIt2ICpXA4VMT7BOSrwAIIB4nAOM9fqwZJgKBV56gBMrJZ4tLTipUCFTy76c2jpWWXQPAAo0PlOEfDIqTkBJ/koT3/AhDBVY698rI2vYsMzqjVnx4IX9LOgYV5Jj0Cqeq+DA6FUNrkI/LfV84i6dEXlJFqpqVxIZ3ldP5x17R+27Jt2B0G8isc4lJSvv/ZeX4MPsbR+eoKVWYA3gMUQ6O63jy4a9P/944Mivu2mkgbV8i7hqOEQe6uvrRaDR89KMfFd3jGlYX3/72t9m+fTsXOpWc12IKSvORLP1WuTsPX5ef/tmJwxXirhNPtau6z6x6F+YMI+YcM8G+1Nf77koLRa/JkZWyRj0J68wPL+C9KJ8DYpEYURWlD+x5VkxOo5ik5C61Y3YZRSSlWERZe0vLR3XuHSYeizMuJNN6mwNi0gkoJHZ7joWX/v60qJ9kXM2GlDh3qdcLjU0pmzurgGAwRngiIt4UAlSpbvXsG1FXEjKIqrHS8KZyjA6DOOeldmx2/HEAs1O+gWh06FWtedxldqwZJplNzWDJMJFZ5xKRlMxuM/FojKkJWYA4cmaCo//ZKi4/GfSqU9gruS4bk0PPeaFiZkatS9V69dT3Viaje753eIGa0tbMCbrG9fzDo1+d83tjrxLbxgHvNUbcv5tSYq+eqPI7r5fs7Gzxfa5hdaHVaonFYgwOhsjMNC2qoLSgT3EBdgbJ3uCm+Wdz5/xFVZRmYf9n1JFaXaV2rNlmEUkJoOymHCJTUTp/k/rGtK8jhK9DrjbU+pte+o+NiMkjYV+EeCSGyQYhAdcxs8aJNcuslD0SkJvyNnuwZsnJg9Z0k6oDJhf/NEA0KI8rL/5BnZLe5vfXEJoIc/hfZQcI1ZR5m+gKqVJuIoSYoAQw0RvAVWInvDrbjUz0BhQnL4RCEJN/v6NfUSdiEhpUF4tufGs5/r6guNyYmrHp6wnSe2iYgROpr3cA7HlmjFY9Gp0s9srb6sGRbxU/hsw6F5Z0+YG3aChKNCwfLC9/uQlnntwf9bykrmx7w4NFdB0YTl3ZTaMBE9hzLcQjcbGq1cv/vvL+eeFTZ+eoKRUSIksf4XBEz/Mf+OKctvoLM7FX4A1GLD9LxF6tEU5FlPnx/vvvF92jJh4XSA0BmkTNu2hvRUokJQV+dqdHiExFOPy/yqhciaA0G6Z0CPTO28xeQkUJSJCT5v0uha+57u2l2HMs4vJRuTvSKLw8a1XUav4ScFVaVZVuW01kbXJSem0eLb++KHp2+Vekk1HnEp8caXhzCY5ci7xkiRWsbjN+ISt620ericfivPz5V/50GCgKTFPjYQ4Jgyk1KLomk/wdGTT9vFNGHrKC1aoVKxutf2cZFo9JzMAuvSkbW6ZFrGyx+f0VhANRTqiUWV8tWDJAg9yefw1ofEsJgPiU185P1KLRalJL0mnnbRguNg/Nwnw1pWhNMRZrnIA/NXJTkqhk9Ue482IMg2WSXXf/bE6bnetbMYzHeeFUHlit4PdzZUMPODRsLtJx7FQEs9lMQKhGs4bVhdVqJRAIcN1rTfz6+4UpkZQANtzjwGjVsvdzZ2e4CCmGfBaPUopIBCERJ4ldj9cRi8TF6h6Nby0lGoyKTjH/tUBRGorJn8EqY/3bytDoNRx7UraIr3+omLGLflH5NYAdH6/B1xNYSLxbAZYcM4GxoGh8Zm9xU3ZdLm2/66V/Fcq9bf1QFQa7nDR/KdeLx+Ji1S01tgTY8Wgt3rYJcQnExreWMnB8dO6G/wrI3OSk9Opcmn7eibfp1T2/qVWKerXD4oGGN1Zx4Xe9DJ1Inaifvd1NxfX5jDT5OCs8VatcGNHYtOSZCQn8bJKodGP6OCZdjCvv+RaWWdyEjZs7MXjjHDyVRbKO6baGAcJuDYZT5egSZXaF6Zc1/AUwO+eVCkkpie1/k6OUQU2uoQXP2uxWNplT74BYiQKg5u4C0mtcNP2yS6Ti46mzU3pNLqe/3Sy7z78SqFEaWm24ys1U3VpE2+96GRb41swNLrLWucUEhqrb80mrdHDgM+dWbjwbZjA7zWL1h03vqUCj03D4i698DgqUnFdoLLwq18vc5KL8ulxan+mVlRZUacvaewtxFljFJ8nzLk/HVWjl7Pdlc/C6t5USD8dFZcb+EjC7AbRipai/BtTcXYDOrBO/59sfrlEOYwrVrADxPKQxGEVz3QxRKcgtJSEsdh/X3fU/c9rU7uxBPxjj5KkMpXZdMEhjwxCaTB1ve42Fb3x/AqvVyuSk/KDqGlYPpaWltLe3c9VlJn77P4UpkZQA6q/VY0/XceTJ1unSRSsRlJIwOZWSQgv2F5eL3UyoKqG249FaVSo+VXfkE49Ds0CN7a8FitJQTFxyarVRfXcBRpterOhSeVs+k30BMdF4y4eqmOgNiBWmTE4toVBMND5dFVZqbiuk4/l+daW8hFj/tlJsORbVB2Ol2PCOMjRaDUeF+UpThonQuFzZaOtHqvG2TdD8E9n7WrOnkOGzPgaPpx4fOkvNVN5cSMuvu0XlIP8SsBeYVkVxa9Vhgo1vLqfzT4MMn07dkTlLzTQ8UMbweV9qJe008/YJV5iH5qspmXMcTAlCoCRR6XqTD5c+xlse/DqmeXyxtNf0o+uNMXTSAyYThEJkNI5Arh5dqzIHS3NeKkTIFKROUAKwcmrcT8uUnlzhG77jY2XEInEOfuECsakUVTcWezc1KysqnfjuBVWkh7QKB3qLjtwdaSK1ocq78smsdrH382eW3cxeDLmXpYnKqF0KVpugtO2j1Yy0jNPy09Tl/s0ZZnQmLa5ih4jo0v2nYXF5K1Bk0jQ6uVLKjg/UotWnSHqYBY1egyYmv17RdVmEvCH6D8rLsYhhhYrr8ug5OCIiYektOjRaDTqD7FT45rdVYHabxCcC9SYtWhXPTlqWMQmT04jBJt+M2PaxaoabfLLyjJeAwBCo0rNUgfRGG4HhqJist/XDVWj1Wg58VpYotedapjcbJNj3j2exl6WgHjCfoAQinx6tKSa7ME55HXiH45w5lPq9/tvV36GvNQ+9aaEKyr7j86QVrVZeaKsAoH3jEODlscceS/1G1/AXwbvf/W4+//nP8/sXoykTlADO/24cdKD35BHpTn0+rX+oGFexjVPfvSDbPFe5z37qe8LrJODItRBTUXZq28PVhCcjHP2ybKFqybdgsrEqpIfVKBM2G+W35OKpcIjLZFgyTGjkh5hVnfIF0Oq1GG2yWMHi0bLpHeVM9AdEhHStQYtGq8Fgki2VLPkWcje4aft9r+p3QoLsLW4MVj1dL8hKO2iNWuLCEngAG99eRiQY5aBw00ur06C3ytV/Tj4lJ3i7SuzoLTpMThOSh1Bxex7uQpu8zOslYDUJStnb3WLCnSXHzMa3ltF7dIQLv0pdvTR9fSYGux5XsV1EUuo/4MXXEVSIcGogMKfWbGb9Q6Vo9ZqU1JRm43X3fYOe5po5BCWAo4eL5v7CYuFga7Hy71B4+pT4Gv56ICEoAbQ+72XorHz87vxEHbFwTLbGUfmanPt5F+Y/DIlJD65SGya3AU9DukhNpPh1WeRtSefoUxfkJUs2uUREqkvBahOUNr+vktH2cdp+kbpvNTpMGOx6nIVWEUlp8NiYjBiTgN6qQ6uXB3pb/6YKg01OvNYZtapybHk7PYQDUVXfUQwzlFyZTd+JMZHyk8GkQ6PTiu3ZeF8JzgIbh794WkQONFh1aIX5NYCeF4fpQZ4ftWaYlj1HvBQ2v7+SkSafWPlMLRQbrs487Co3E5qUK4Stf2cZRrterDjrKrGjNcjf1wOfPYejWGUpNCFByV5opvH+AkYvTHLuv1PPc/7H//0qfd2ZaLULVVDO7sub+wuzmZMtBQA8vXUKmOCNb3xj6je6hr8IvvSlL3HzzTfz0svxlAlKAC0HI+gMEcJpBeBLXfGx/OZsste7Ofu/XYyem1xeCGE2VO6zn/p2m6pNek+Fk7gK57r5fZVEQ1FxCTZThgmTQ6NKzUcKSRm0PwcKXpNBVoNbXEbYkW9Fr0K5T0pUSUJv1GJQkTfZ8sFafF2TosPZGq0GjV6Lziy7ninDRFaDk4v7BlW/ExKk1doxOQz0HZTtg+tMOpCbks3vLGfKH+GQMD+qM2oxqnh2UkIagCPfhsllwOIxMSbYgCp8bSYZtU6xUvmlYDUJSumNToZPCpmPJtjxwRp6jgyL1O7SK5xYMky4S20ikpLvQpDDX21ViHArYbG9TIE5tQ4H9XdnYzBrOfhV2f7yh97877RdKF9AUAIY/eM8hUqTiaGmXAB0xQNEo3LVOrGX1WoTNaoP/Hj6d7n4yZh+IfyU6PxYEz9bEz+3TFkBK1znwmGaWTxmbbBiSlf+bc1Qfk7CWW4lODbF6AWFdJKzzYU1A4jHsGQo6jlJuCqspNXO9N3xSA07H6lJfHCibeLB2svmts3c4MCaZwY/+P0xpW3iz9YiK+mNtrlti6xzPvfMjzvZ+w9nGOsJkblhplZfeqNtQdvpz80zY7InSgMVK9eYvRk+v+3s77r5gxWUXZOHNUM73daSkbShdk7btForrkrlgza+q5xdT9RNt11gw8q5dsna5MSaoWXz+yvY8WjtnLbzbZi1yanYcNZ33fV4HTsercVetogN57WdbW+9RYcrYbfF7D27bdLenc8NcP6nHfSd8C1p79nPJq3Wir1Msc3m91dQfH3mTNtlbJj8rud+2MrefzizoK2rcmHb5HOyZMB4zwS+i/5l7b3Yszn9w06aftE5t+18G856Nkl7F2zPoOzavGXtPfvZzBmzmuVtOH/MVt6cT/a6NEquzlowZpP2nn3/yXHYt3+Alqe7psv1LWbvxcZ3z+FhAqPBZe292Pg+/MUW9n7yzJy2i9lwvo9Y/+4yqvcUrGjD+WO25Vdd7P9/Z6fbpuQjrIp0vLts7rNZyUcUXJXBrifqqHtjwZL2Xmx8N76tmJ2fqJ22Wao+YstHKtn1eN2ibZfzEVW3FLHhrWVz2qbiIzRaDRqdZkWfPN9H7PvHs+z9/JkVffJiPiJZinBO29k21OpIq7HiqlD+WH5rNrs+UU3+Va5EW8jaNPO5rgqlbXRiklgoRPo1RVitcSb9MBWCyXFI6pi6MuKkZc1sImflx7FalZ/rvxbhb20v4vdDTnkP0bCOnqaC6bYdJysY6lIepH/ISsfJCvyJabr/QjYulwu3280TTzzBGl7d+NznPgcoLHSLJ/FLC6RXzLSxZIC7eOZnTykQg0C/0jb7NXlgVsaOJd9CeoN9pm2tFUu+ZfpzJ4YCBL1ThEPKBvX8trbimV3ZjHUORbkCKL4hk11P1FFwpTLu3FWWBW2T92/xaJW+KJv07ioLzrKV24KiPOIss7D3c2fY/+mzibYJv+9hTltbsQV31dzP1Wo06PRasCxs65nls9Ib7FhyzNN22fiWUqpvK5624YK2s2w42y67PlHHpvfPEAbn23t226S9LfkWdj5WS91DhUva25JjnnP/7ioLdQ8VsuuJOjLWOVKyYRJplfbpslPzbegsW2jDpL2Pf+0szb+cSQYuZu/ZNkx+bvXdBax7Z8my9p7zXRP23vuPZzj2ZNuy9p4/Zi3ZZiaGAvQdHknJhkl79+4boennFxk+NbSoDZcas+XXZZO72UPRlZlL2nu5MbucvRcb32XX5VJ0Zday9p5twyRanu7i5Hc6lrT3Uj5irHOSse6JJe29lI/Y+8kztP66b0l7z7ah8l21FN+Yxcb3lGPJt4h8xMCxUU5998K0+lKqPsJdaMPoNCxpw6V8xI5Hatn5WO2iY3ZO23ljdvvHa9jwrvIVffL8Mbvr8Toa3lSyrL2TbZP376m1UnF9PuveVZqSDZNj1p5nBA0YXTrRmB0+PszefzhDz0u9K/rk+fYO9ClKXSv55NnfdcejtWx7uHpZe8+xy8Y0AEYvTOIfDWLJmyk1k9FgmWmblfg5gaoXzvF/9/wAiwXyKs/RfqackRHl7yMDLtrPzPj67tZCetuVRE0gAP/w3mJisRgNDQ2s4dUPm01Za7QZ907/zlmgw5Y3kyhMqzBjTCxJzG7l5yRBydngwVE0k9Hz1Nkxu7XTbT11M++8o9jMZL+fkSbfgraY57a1Fphxlc9sJm/7aDXbP14zt23iz+YcM+7KWXN9jQ1zjhmCEPQFF7RNq5lZX7krLUrbWZ974Xf97P2HM4w0TS5oay2Yuac5n5tlxujWg1aDLceAq9y8oK2ibAJmt3bOd133jhKqbi6Y/g5z2y60YdIudfcXsesTdUvae74NPXV2zFlm1r2tlG0fq17QdoENs+baZccjNWx/uGZpe89qO9veJrcBd5F9SXvPtmHS3oPHxjj9vTb6Z520ntN2ng1d5WYcxWbMOWbWv7OMwtdlLGlvR7F5DlHBU2en7Zdd7PvHM8vae9qGs+ztvTjBaMv4svae810TOP2jTpp+NpPzWszei43vkqtzKH99bko2TNp7uTE734az2xbsSid/RwZl12Qtae+5dlH+PXLWy/mfdE6XE1zM3ouN2b4jo0z0+zGlL952KR9x4ql29v3TmZRtmLR33ZuKqLwtb9G2y/mIpp93ceCL58T2NrkMuKuWtvdiPsJTZ2fXE3XU3FewpL0XG7PV9+Sz4xHlXV3OJ88fsxvfV87Ox+qWtPdSPqL69mI2vb1sZZ88+3PNoNNr0Wo1K/rk+eP7wGfPse9zZxa14Uo+IknSXM4nzx6zeTs97Hq8joJr0pe092wbpq9zYXZDJBwnMDLFxOAMAcKab8ZVOut+ay2YM5Vn4/nxYR6//6cEg5CTP0gspqOrdSbn1dlSzHCfcsNer5n2plKCPuWzBno92O12HA4HX/nKV1jDqxs33aQcxotEIpiSaWU9uPKYllcwOcGZM9PHqSyB8Q8rbdJ2FhDXKgoOpgzDnDHoLDFhyZmJy/xDISb7ggS9EUwZBtzVifEbj+MsNmHJnWnrrrJN31PWVic7H6ul4DVKzstZbMJesHhbk1OLu0p5jye6QtgLFmurnf5uybYAllwTzmIT+//1LAc+e15pm5Hoa1qk7ax3yFVhVQ666zUzbZNdMxe2NWXOfO7md5ZTc0fxdNtknhsU9Y/ZbWd/7o6P17D+3WVz2s634fQ9JOxicsL2h6upvjt/SXvPtiEoiizlt+Sw6/E6sja7l7WhvUCxYRLpNQ7MaUYwLW3vOfeQsPehrzRx7icX57adb8P5z8YEJa/PpvaBwmXtPccuGYq993/mHCf/s315G2aY5ty/s9iEt3OCnpdHVrTh7DHrbZrk3P92MnRieEl7LzZmC3d6KLoyi6LEe7CYvVMZ38vaMAFTponKm/Ipe13uyjacN2abf3mRU0nl/SXsPW2XWfYePDPG6IWJZe292Jjd/6mztPyia0l7z26btHfujjQa31IybetUfcRI6wSnvt06TdxK1Ue4y2xY0k2LjtmkDRcbs1s+VMWOR2qXtfdiPmLLh6pofEvJsvZO3v9sH7Hz0Vrq7i1a1t7JtsnvasowUXNbIY1vL0nJhskx68wxgUaDyWlMecy6q2xM9IeUPOdvelf0yfPtnVTqWtYnmzVz7LL1Q1Vs/XDljA1LFrdhPBrF6NGTtk55P4eb/UwMhTDPpKhxlZqm8xgmp/JzEnW/bua/7vwWJhOUlbbS3FLMWCK2Ghx20txSTChBlLrYncXFbmUyDoXg//x9GdFolPr6eqQQk5Te8Y53AODRz8gnbk+PcJlH+Tkf2JgWYZtL+fnKtAgb3BFKdH52p/vYnh6hdrfCtrJmQPl1udTsVoLMqtsKKb8ud3ojuO62HMxOI80/VWrZlV+XS+2eMtBoqb6jlMqbCqY3nOvuLqL2jpkdOq1eQ1yrbMg13FNC5U0FZG1UkqSNe4qpvbNkum3lLYU03Kf03fHBGipvLqRgu/Ig191fTPXu4jltG/coL0nFdXlU3lxI2dVKlNR4bxGVtxROt63eXcy6+5W+RZdnUXlzIdW3Kt+14f5inAV29n7yDKNn/VTvLqZxj9I2e5uLypsLabhL+bl+TxEVN80E4iaHkVgsht8fw1VppfLmQipvU5LOtfeVzWlbe0cJ9fco33UqGEaj0VC7R0mg1u4pp/LmwmlCQv09JdTeMWOXipsKqL2vLEEMgMqbC6cJIY33zrVhxU0F1Cfs0nBXMZU3FzIVCOMfDNK4Z6ENGxJ2qb61gMqbCym6PGva3gCHv9gyY++EUyq7OofKmwupuC4v8RyXtnfB9gwqby6kdrfy94b7iue0rb2zhMY9xbhK7ZhcRgq2Z9GQsFP9AxVzbXhnCXV3K59rLVLsXX1H2bS9K2+e+dz6e2bsjVWxWc0epW3N3eW4i520Paeclqu7e6EN6x5Qnk3FrSVU3lw4TcaYP2YrbiqYHrN1txdReXMhuZcpCfeGe2bs3XVgCI1OM23vypvyqby5kNKrlHew8b6iOc+mencxjfcp9tYatcrYuilf+dz7ixfYu+EepW/uZWlk1bgJjoVo//0ADfcVL7BhcnynN9qUz92tjNm6B8qXtneGcg81dyt2qdmTsLcVel8axewyzdgbxd619yn2rr5DaTvjIxYZsw9VJGym2DtJPFnMR9gyzHjKHNTuLnzlfYQfIsEoJrtx7rNZwUeERkNEQzHcRU4a71X+loqPcOTappWGKm8uTNlHGK0G4glCTeVtpSn7iNDEFBqNhuxtrml7p+IjkiU1F9g7FR/hl/uIdfeXkFZrJWuTU7H3Yj4iFqX2jkLq7lJ+1hrjaDQaMqvcCRuWUXlj/vTn1t9dSP3dhWgMesVHNELNZpgY1hCNQEEpWBOBQt0mqN043ZWKBqjbpvy7fBO0H9nOyz+6l70/fAPn/nQVzfuunG7bfmQb5154DQDnDu6g/ch2es8qybVjv72K3t5edDoVRwrW8BeDVqul4molsVm500rFlW6yG5VnWH+Dk6qrXdNtK17rovb1Ttbf5WDr3U4qrnRTcmXC799fRPVtM2oPNXeWsO6BxHuxI5OCLZn4uv0EugM03Lew7bQf2uKmencRtW9Q3pusmrQ591t3dynr7i8BFDJC9e4iyt+g/Fx7XxlViX6Zm5zU3VNKw32Kj7J4oHp3EVV3JXz53SVU7y6a3jRuuLeUhntLpxUzqncXUXOv0rfitlKqdxdNb9qvu7+EurtnNuWr3lBIJBjl0P9rpu6OYqp3F5GZ9Pv3llAzy79V31ZEQ2I+rLwxH41Gg69LIc2ve6CYmjvntk36odKrcqjeXUTpVYrfj2vimF0zAf8ce2/NoHp3EdU3J2LDhL0D3QE0Wg3uYgeN9yrXyVjnoHp3EXWJWLf+nsJpGybt7SqwEwlE0Tn0VO8uoiLh92vuVeySxLQNASxgshvxJ+qnV91VRvXuomlCQv2ehTZMzrPltyrPJkk6WMzeDQm71L6hkOrdRWRvceOpcGDPsi6wYcP9ibnzhjyqdxdRdJkSGzbeX7TQ3om2xVdkKWPrWiVp0fhA8YIxa3YY6T/kJXenR7H3LQl731u0wIaN9ynXSW+wU727iLKbE7HW/WUL2tbvUdpacszKmL29jNbn+gkFpijcnrW4vUmM2XuUn6tuV+ydXJEtZu/6+5U5ufQmZcwmCS2N95ag0WrofGFggb2rbymgencRuTsVFsqiYzYxDsuvzaV6d1FKPmKs009GhZuKG5R5VuIjFrP3cj4if3MGFo8Je7aBurtnbJiyj5ht7xR8RFJBqf4e5R5T9RH+wSDRSIzq3UUUbM1Y2t7zfIRWr0GjVWLDJX3yIj4CDYQnlXV2zR0lKfmIQL+feDyOzaMkF2zFlpR8xOARH3s/d4aMSjfVCTu90j5i60erFHvvWWjDpXyERgd6k25O2+V8RNXNyr+bfzaA1WOmMRHD5Wx1UHljHlWvV96FujuKqbghd/pza2/L5djvr+fZbz7E+UObOX/wCs6/pMRax/9wLecPXj7d9tSfruLkC9co9h/1MJzwsddeey1rePXjS1/6EgCu3JmkYc3NmdTdrIw5sxuqr0+j4nrFx5a/Lp3q69NwlujY9q4cGt6QTcP9M5s1tXcWU313CaCs82vvLJ7eRK6/twRbtpXmhIp0zR1F1CX61ryhkNo7i6c3fxvvK6F+z8zn6i06NInNu8rX51F7ZzE5G2b8ft09M+9b7V3F035o63urqL2zmOIrEvPsfUXU3jWzvqq7p3TaD+Vt9FB7Z7GSpwMa7i2c23b23LnOQe2dxdQkcl51dxWQWeNm3z+eYfjEOHV7ylj3gNLWUWxWPvfWxJrvHsUuSdgyrcRjcYKDATArNqxK+ODK25W2yc30hvtKqbtHsUt4MgJaqE7M0WU3F1F7Z/H05vq6B0qom2XDmjuKqL+nUFF2NmqpvbOYzA2uaXvPt2HDvYpfLXtdDrV3FhMORpjsCy5u70QcWbQrk9o7i2fm2cRzSJ7mr7unlHUPKt89Z4Ni78rEPFu/Z6696/eUTds7rcam2Duxnq27t4yaO2Z8ed2eMurvLcGRY8KWZaZoZzYVtyp9q++ea++G+8toSPjupL2rE9etvC1h76yZMTvfhrWJebb0hkKyatPoPaSQvBvvX9zeAFU35iv23qTYu+HeRWyY8OWl12RTe2cxhTszEp9bRN0epW37H/vRGrQ0PqC0LdieQe2dxZReo9i74b7CBeO7IZEr0Ro0ythKrNfr7ylcYMPkmHVXWii+PAf/aJC23w1Qs6d0UXuDQvCovbOYytuUn6vuLFbsnXApDfeVpuQjBo+NYUkzLbBhqj6i9q5i6vco9k7FR7gL7aRXOym5MntVfERwZArLrHVSKj4iGooQnoiQVuqcXj+m4iPSK11odFqCfUFq7iiiOpHbWclHWNwmSOwt1NxakLKP8A8G0Wg05G1JX9Lei/mII19uIRaJL7R3Kj4iKPMR9XvKaHyojPR1Dsw5ir1T8hF65QBhepVih5V8RPUb8qm5q4hgX4jgWJii7Rm4K5S2DffkU3tXwZy2dXckfMQNORx/6Wqe/cFD/PZ/bufw89dz+IXrptse/dM1HHj+9QC0ntjE8ZeupvmckvP63Q9vore3F71edQGRNfwFoNFoKN+h5Kbza6H2SjN5iT3Z2tcYqb1yxl/UvtZE3WuN1F2jZ8sbjNReaaYkcVCo/u4C6u+ZPXeW0JDwhel1dsquzWFyIEigL0Td7fnU3VmYvAHq7pvxQ/YCE/V7Sih5vTJGs9d50Og0xKYUFaC6e8touF95r01O5ToVtyZySG8oUPIFJmWTfd2by2l8qGzOPVXdmZjjbiykfk/JNEFh3QMl1N1XNq2YUXd3MbW3K/NU5Q151O8pIa1W8fsN95VQP2vtW7+nhNhUjKNfaaXkqmzq95SQ0+gGlHXQ9Hs8bZfE3LkjA41Og69HyXk17Cmaznco1ymbzh9kNbip31NC2TVKzkuj12DLmImZ6++d8fvuKhv1e0qm8+K1e5Q9n5APNFotnkrXtL0tuYq9y25U7qnqznn38EAZmfVphMbChAJTyucm/FvFLUrbJMmg/r6EDROwZVmY6A1ACEquV55NknQwbW9m7F13p/LMK67LpX5PCemNzsR3K6b+3rk2TM6zRVdmUr+nhLxNHrLq3aSVOhbaO+H387Z4qN9TQtFlyphtuHehvesTsUrmehf1e0ooTxB16u4smN43AyVXZcswM3zSh7PUTP2eEopfp9i75u7iuW3vK6M+8WxMGYq9y29K2Pu2wrn3cH8ZDQ/MG7N3FHFx3wiTwwEKd2RPEyrm27vu7mJqE3FN0bX51O8pQWtSnk3jfSXU3z/3c5N7KmXX5lC/p4TM9Yl59sFi9CYdbb/pnbFhYswW7lTsnb81fUkbNib2gHLWpyl2ea0S19TfM/e71t9bNh0bjjSNk7MujYrrlrD3Mj6i6s4i6mb5npV8RNl1eTjyrdjzrDTcX7rQ3iv5iNn2TsFHJJW2krF4qj5ivMtPOBCmfk8JhTsTYzYFH6EzKcTrursL5tl7eR+h0WuYmggvsPdyPiI0HiIWjWNLTyQGTaTkI3wdIfZ/+iyZda7ptc8r7SO2vEeZ2BruL1raR2xOo/6eYop2KfbWm7UYrDMxTcN9pdP7rJnrXdTfU0z563JAo6XujnxqblTi/c4Xx7FnmGjYrfhrZ4GR2pvTKb5CeeaVN2RQc5Nn+nNr3pDJ08/cxNe+8WZOnqnht3+4nj++eBUAf3rxNfz2D9dPt33mNzfyzHMzFT9On1Vse9lllyGFOFr76le/ypNPPsmxY8eo3nQXcY2GnpCGUKIU1SgwNAUtPuWjz4/rKbBGGIgCxAj6Qoz1xNC4nATC4Ov2T58E6nl5mMx613SZnIFTY2j0Gja8vZCR1nHGLk4ycNILwMWXBsndnI5/SGncf8KLbpa0qa9zkuHEabTu/QOwLZOBc8rPvUdHMDpnTkyOtU8w0qac9IkEY2gsGkZOKuzTnsPDWDwzRIHRtgnGe5Rr9hzxYnYb6TviZdvHqtEaNIy2Tcy0bR1nsl85ITB0ZAhnnpXugyOJexrCVazsRLsqrQw1+ZjyKS+fr22Msc40Lu5VJMa69g6SXj2jUDJ4boyIPwJ+GOv2M9Y5Se/hRNv9g2TWzWwUDpzyTtcAPP3NThreVEL/MYUhe/HFAbI3pCfKPEH/ydE5JZF8F/0Mnhml/+AY6Y02cjdnMtatfPe+YyPoZ70Yvs5Jhs8r9r24dxA0Glp/2U5gCEpuyJ5jb++FCcY6lKCn++AIBrOeoSPKTfQcHMKWPRPYzLZ33xEv1gwzPUe8St+Xh3DkzS3FlJTQHzk5grvYzsX9ie+6bwBP2cxJ3qS9O58boPPFARruLqH7wMC0DefY+/QY0SlFpsw/pNhba4yz64k6Bk57CflmCHuz7Y1fOXE+cGIk8RwHKLgyk9o7Czj8xRb6j4+iM84k1JP2BujaN0D+9iyGWxOl6+apu80es90HhtDqtXjPK31nj9nO5wawZ5ln7H1gFJPNQP9R5Z3rfXl4rr0TY7ZgVyaxcIyx/km6DyifO3vMAgw3+wiMKCWmvOdHGat0cfGlAfw9wQX2nh6zwHDrJGOdk9P2TpJcrBlKqcW59o4x1jk5PWa79g6Qtc4DfqVc4lQwgrdl5p2bbe+Le/vJ3Zw54yMS9t71eB3xeHzOmO3ePwDxrBV9RO/RUew5VnRGXUo+wtsxTlajG0uW8vfug3PHbKo+AkjJRwweG2fw2Dkq78qftneqPiJZVm62vVP1EUkbpuojWn/dS+FlWfjaxha192I+wts2hDVDK/YReVs87HqijmNPtc0Zsyv5iND4FCaHkdGzfkV1ad3k0j7izBjRxCK1+VcDmGwmeg8lPnfvIFmJYA9g4PRYUigJ/ODrnqR/xMbm18QZH4PwFPgTr31/N8zmEflGoXccQplmOnoCxHM1OGw6TNoYmSUthEMzJ/PsGQO4c5TNjrzqc3RHdaQXt/PBf343o898lampKYLBmRNsa3h1w263MzExwf/87/9SbbiVrtN+tAbwXVR8Zc/pABbXzPs22hHGNxgiu9JCLAJjHRPTsVbXviEcuTNjZficb9oPDR8fxplvhXiMjX9TTte+IVxFM35o4LSXqcSc52vzMtrmovug4iA6/zRAerVzuuxU/6lRIn7l/rwXA4y2TdCX8EMX9w5M+6HBsz4qb2T6RGVgRHmv5/uhJCmp9+gIGo1GUQ66u5TQ+BRd+5TP7d7bT3RzJpMDSuOeQ8NzNq69bRMMn/dhyTHTdVh5nyfafdNtjc4ZG440jTPWOZn42wgGi572XyuSzd375vqh4fM+xnuVa/Yd8WLxmOhL2LvjjwNz7D14ZmzaDw2fGsFZZKPr4PD0s3En/P7eT56h4va8aXsPNY+T1TZB117lvi++NNcP9R8fJToVo/3ZfkVpq9Q5Y+8/JebOBPqOjc7EKgHF3tOxyksJv58oOdd7eATdLHlr74XJab+vNSkKX96hWfaeJW882jzOyIVErHJwCI1ei6/Ny74veCnYkTln7pxt797DoxitBgZPJZ7NfiVW2fUJZf4ePudjvE+55sAJH7Ysy7Tfv/jS4JwxO3hmDEeBmbKbcund18touYOuA4q9O/cO4Cmd8fuzx2xUEyUej6OzKHNe50sDc+bOpL0BAn3B6TEb6A7Q/mzfHHsnx+y0XWbZ++JLfeRszsSWSO4sZu/hc4l10oEBiMNw68S0vQ123fQ7N9veXQeG0Rl1eM97E/afG6uAkkwEZT1jchlT8hFZDU4mBv30Hh6dbruSj4hMhdn1RB2+ixNMDsxcPxUfcSah9uTMHyWWKE+3ko+IRmOKWtose0/HKin6CGD6XVvJR/TuG8FWbKH4iiyGTyViuBR8xIXnBwh0B8i7Il3sI87/SFEwGzjjTclHBEag/9jMmJ0cmGfvJXyEs8yCry0g9hHuEhtbPlBJy6+7iEWy8F5MzUe4y+xEgsqY6Jo3ZpfzERdfGJxr7xR8RPE1HlyFFobOjRMcU+w92jpOWpmNrkNj0/fgLrWhSdR1G2yaxJZlwOoykl92hqDPQ2GNohxRUneC/o6S6XvILmlFp1fi9n974GqOdX8JjUbDF77wBdbw6seb3vQm3vzmN3Py1Emu8mwnHg7Tf2aC6JTih4JeGLngZyChnNRzdJLMqgi+9ijEYWIwgK99Rnp/+LyPgZNJv9lPJJSBfyjR9+AwOqOWdW8twXthkpHzPoablPei95Dyjo4kckzdB4bm+KHhM2OMXEj87dAIOpMO7zmvcp39Q3PeocFTXsZ7lWuG/VF0Bh39x5P5myEcswhZg6e8035/5KwXZ5GN3iOjbH5fJQa7gaHTM0o+fSdGpv3QZOc4w+d9dB9Q5qWLLw2SXqXMs45iM33Hhqf9/nh/kP+PvfeOb+wq8//fkmyrWpYlS+6yLXfZnl4d0nshmfRJJiSUEMKG3tN+3/1uY/e7yxbKAssCy8KygQAhCwmQkBAgmd6rZzzj8bjbcpGbZNmW9PvjSrI9bve5kCGw83m98nplZs7Rvfe5z33OOc/5nOczcHKEnkQeqGNHAHetI/W73XsGiMfjKYmrgZMj9B5K5lUC5K6Mpv6ta+9Aapxt/nEXBqOBwAnlH7t2BYhNxRlNPE/nrv45cShp78DBYTJLTBRucjPaOrygvfuPDTPcllh3HgiSYUmn9RedTARjFGx2zolDs+3dd3QUi9tEz2Hld9t3zLV37+GhmbxKU5CBEiudidPwba/34SybqVCCjpT0y1Crsr5O+kn7jhl7A/TsGyA6GVPk3pqGqbmtOGXv9tf78DTMzGu69w7MzA0nFHujV3JevUeGmApFU3J9SZ9N2fDU6Iy9dwdIsxkouSqfYHMLXbvn2nu2z3bvG0Cfrmc0kRM4X0J4tr279w1jtGUQOJbw9+0z42zX6wNYc4wzeZUTY9jyzHTvS9j79f5UpfbZ9i69MpfYVFyx4b7E3PCNufae7bPB9nDK3hM9E8pcZZbPJu0NMBGMzfHZuC5OPB4nq9DE8JmJOT4Li8eI0utymQpNM3hqRt5PTYzY9JkadDq9phjRc3AQk8OEKTtDXYw4G6Q0noc5R8nntL8x195qY8T59l4sRgyfmWDPP52i9LrceT67XIxofUmRlZvjsypjRPLf0OlUxYiWX/bivSTG4NHEe30jsHyMODWMyWMSx4jiS9w0Punn2DMtc+y9XIwY6wth81hSzzfb3kvFiK7fDmIvsM7y2QC5y8SI/lOjrHx3MaO9IQabxwh2JNom1tlJDJwaI3gujC4jne5D4+jT9GQWmrDZY5TVHGF8fGb9m1fcgsOjzHuLK5uIhCwUeFt4fNNtnLO8SDgcvkhS+iNCZWUlzc3N/OBHz1Lrvp/+c5OYbJMMJFSzOo9NYnXO+FXP6UnCI3Fc3jTikzECJ0foOzaKTq+jY8cAmYUz66uufYNMjSrfxVjHGH1Hg0yOT9HwTi9tr/fjrJhZz3btHUjl08cCEfqOBGftSfSTU5NF146ZvH3yu4iMQN+RYOq7aN/RT2QsChEYORchPh1PrU9AadufWucHiEZijCUONbRvD5BmMWDMMbLmER8Tw5O0v6F8m917B0CnI9SZHA8DpM+KQ70HhxhpD2G06+lvDpJuTmMosT/a8ds+LJ6Z2NJzYJCxhCRl4NgoZqeRttf7U/dgy5tp27VvgIlEHBpuHqHviJXuA8qznvqfTrJLrXPaTiXiUPCcspfbm4wtb/TjrFTG2Z1/ewLvVe6ZvMrgXHu3vx7AXTeV+t2kvTt+3Z+yYeBYUHm2Xf1MhqIpGbmO7f1z4lDg6HDK3t27A8Sm44z0zLV36t0cGmKoVVl3Gix64vE4kRGlbcfrAUyzxs6kvZX/H8Foy2CgeZyu/YPkNTjm2nv/IKFEnBw4OY7VE6Q3IU3V9ps+7MUWNn6qGp1ON8feI2eH6Ttio/dgIu6/EZhr7z39OMsz8V7rpu03gTn2bnsjQE7NzIHWrl39KXszOaXkvKyKndp39OOetcfZsTMwZ66StHekP0LLi13krnLN2GWevYMMNis+2ruvH+JgyclItJ3rs7Pt3b1f2bsbSea1EvZOVgya7bN9x0YwZWfQ36Rcp/2NuT4LYMhI8BWahukrtNCXnIu/HsBePDNX6drXn/LZgk1OhjvG6DmQsPdvAymfBeja25+aqyRjRHhogsan/ARbRwkcnVknqYkRSWnANLNhnr0XixHT01EyZu0pz7a32hgB0HtIXYzo2xfEmGPEe2kOfcdm9v+XixEdO/sJd0dwNdjFMeL0T7oTz96vLkZElLlWam4YURcjbEVGxjoi4hjhqstizWMVnHq+HV2anrFzCRsuEyPy17iYSowxna8Hlo8RiZzX6Re7sRfPGtf2DzAxmNgnPjtM3xErvQnp67btA2SXWshdZcbpM9NzZJSpkPLcI4FJAifH6TuqfHMde0dxlZvQWZTf7jkaxparx5ZjpKToLIMDBZT7TgHQUHcYW+JbBaj3HyGe4AQ9fOfD7D35D+h0Or761a8ihS6eenOCTsmKG3d9GIvHS3whfbwFkP/D0/P+Lj48smy/TZ/0MRWKsuef5vdfSje28FInujQdHb8aAPljirD60XLSbWmpSh9qsfnJWnR6nVivffWflROLxjn01RZRv6xKC2kmHQNHxpdvPBvJuK1e5hKL10LZ5Tkc+3bb8o1nYcMnqzFk6Nnx1yfE/UL9EY5+s1XUTws8a+yUXJHHiR93pOSg1GDthyowZmWI33fdO7xkWNM58BWZZujaD1UQm4yL+zU+7WdydIq9/9ysuo9njZ2yawpoeamTwMHR5Tsk4L3aTe7KbPb84ynRPW56vBZ9mvzbWfFwGejg8NfOivppgc1nof7eErr2DdD2Ut/yHRJY8XAZtnwzB758PEUQUoOym3OJTsVF1wJF6izUJSeseK/ziK/larBSfkMRZ37eIYpDq97nw+IxceIHrQpxSCUq7y4kp8LOjs/K4okYemWy4t9WxPHnOhaNlbr0+UkS82WVrNoE4XE48PrS42nEbZr3d3/xha+pusWP/P37ARh+8Qu0tbXx8ssvc9VVV6nqexF/WLz44oupEtg3+D6u/OXU9BI9ZjDdIddCX/1YOWankQNfOk54UH0/sxO81xRx8vsdyzf+PWDTZ2rpPTzE2Rd7VPfJXeeg4qZChs6Mcvy/1M9P3GvslF6Zx9Fn2gl3hpfvMAtFl+WkiCQSmPNMivSRAN5rlJNBbb9UH5vtPjP128oYPDVK0/fU66GXXp9L7qpsDn/tVIqw8GZixXvKmI7EUsQVtWh82s/0RJTdfy+Yo5th3SOVtO8M0LsrqLpb7joHJVfmcur5NoKn1PvJ+o9WkW5LE89pVj3qA3QcFM7zVj3qIzwwmSK7qIE5z8SaR8oZ6wpz6N/Vrz8cVWYqbiyi5aVOBgXjt1bUv6sUsyODPf8km1c2PulnKjQt62dWKgC1vhaQfavJ3IIslOCqtzExGmX8nKzjyod9xONxDn9dNvdtfNpPbCrOzr8Vrsk+UU1o4MKsyYouy2EqMi36TgHWf7yadIuBnX+/vC8nSUqz8ef7X1J1nf971V2Ede283vpDMjMzGRoaEt3nRfzhoNcrmxJrst+Ox+QlPjW1fCcgOiCYOM1C49N+JkemUlXd1MK9Jot0oyG1YfZmwv+AF6vbJI6vGz9VgyFdz/a/lo1x9Q+WotPBkW+1ivpllphIMxsYahLmvJLLLEE4N3lMlFzq4uQLnaJ+az9YSYYtnR2fldlk7YcqCQ9GOP4dWY5NCxyVZnzXFXLm5x0Mn1H/cA3vKsVebGXfV86kSAtqULmlALMrg8NfbxXd54qHy4jH4qnT4WrR+LSfyPAU+z6v/pvLKjdRdZuX1ld7CRwcXr5DAu41WRRvdrP/66dFfrL+41WkW+Tzw5p7i0kzGjj6n62iflpgcuhZ8XAlPfsHaXs1oLpf9Z2FuGqzOPLtlpTcmBokZZaSm9Sq79NjEvljEgWbneL4asozUb+1mLOv9jBwWH1utObeYlzVdk79T4fIv0qvU9Zku/5fk+g+taLy9gLaf9WVIoGpgdmdwepHKwj1RTj0jaXXm7qM9Hl/93fHXlF1ncc33QbAacsvONNyhu9///vcdddd6m/0Iv5gOHPmDBUVitrBdaueBkAXnlTVN9YyPz8Qjy29D1i3rYisEiv7vtZKpG+BtdVi+4hGKL82nzM/7VZ1b78r1n+sit4jQ7S9rD6+2kuM1D9YzmDzKE3PqM/v2MtMVNxUxOmftjNyLiK6z7x1DnoScusSGHOMRPqF19qQjT5dR9cb6mOz0a5nzQdqGGweEeVA8jZkU9To5tj3zhHult2nFlTfUwRxRPcISi5jMjzNXuHe2qpHfPTsHxS9u6wKCxU3FnLmF10ET6mfa698uAxrnpntfyWb0/jv82Iw68XzvLptXiIjUymyi1o0Pu1ntCPEEUEuw5xvpPrthbS+1iuyiVZU3VmILc+cqsqqFhs/Vc3UeFTcr+Lt+bTvHCQSEHwDycJ3ws/GXmYiNhVnrEPWsWZrMQaDjmOCPD8o+8vx6Ri7JPliFG5GZGiK4//9Jq/JdDo8a7OIT0Pg0BJzw/NPe6DwVczONHZ9aflvIElSmo1v7XxW1S2+45aHiURG2HHmy1gsFk05L02U8uLiYtrb22l+7kusfN/foUsM3GrISiWXWgicCBFKrCd0WQoLfimy0uFvtjDWtUhSSKdflKhUcnku8WhcISkJkFVpweIy0r1TvUGlJJAk+k+NkDaL+agWpuyMmWocAtRtLSU2HWfgiPpkc3athdq7ShnvmxCRonxXecjyWsnflC2y5eTIFBmZ8xcly0G0+TQLm5+sZXJ0KiUxpwZ9+0fo2788we58SK4xG1KiVxIZmelL8fh+r7AVWDAY9ZhdJkD9QrztlQBtr6ifbCex87MnZshzAhz+dzk5yVJgYtV7fASahml+Vv2G/1hLSLlPISZGp7C4TSKCEkD+aqXEpZQ4tOo9PqKRmCipkbshi+JNbhxeq8imOXXZpJkM6A0ytdGuPf0UNbpFBCWA5mc7aUZO0ii9MZfWn/WK+pTd5Ca7zIb/9iKO/9f8BcVCBCWA8G+a2T5cueC/JbEQOam6OEy7inVLkpyURCAQID8//yJB6Y8IN9100/y/TPrTMmQls1OPZ10O5wRx4cA3zog3z0GR9snyWhnZHKJbmMwtuc4jukdAvHEOKLJf61ypU6JqYbRlkG5JI3+VgxYBSWnl+3zYcs0MnRsXEQs2froGQ4ZevClRtCmHeCwuIimNtISJTcWJjKrbgE2i9Re9SuUmIWruLcZZmcn2zx0X+ZmUYJHE9n+QXQeAMOKNYgBrrpk0kwFLrkVEUtIKk8O40Fp0WRz8iuyQAygVo974i2PifsFTYfaektty7QcrSLemi79zrcSYqYlpwkPqEuFJeC/x4KyyMz0Vo/mH6ucaqx4qx+I2cuBLTSKCX+UtxejT5QR9i8eo6bzOUPMokVF1hNjZkB7aAcjd6GCkIyImgRa/zY1OrxOTlPZ87iTWgvlzq9k4n5xkzgWnz0rnjuUTj//3qpkNsbNTO4lGo9TV1Ynu8SL+sLj66qv55S9/ycGhn3Fd/vvQpSv5CTVkpYK3uRg8Pc6EgLy4/wtNTATlC/fKGwuJRWPiTXRLkQmrx0hgv/qNcK3EmN6DQxgz5alHa74Jlech56DhHT6ikSi7mtTHIpNDz5oP1jDWFRKRZIobneTUORjtnaDrdfV5x/BgBJ0G5W0JoWY2Nn6qhsnRKQ58WX3eMtgcZn+zPH8l2dSZjaTkoRSWHOMFy3mZ3RbSrWlYPSYCqP92AvuHRd9aEns+d2qGPCeA5NBBCibY/HE/AyeGOfUj9XOaiWBM07gfGZ0mOhkTEZQAijbnoDPoxSSlNY/4lEMLgnu1FJkouzYfV61dtDmatyKLjMx00i2yvHbP/n4yMtNEBCWA1pd6U1WiJCi+Mof2X8nsmLsuG09DNumWNNGBn3Bgkh1/e3pJf16InFR0iZ3+Y8vn3pPkpCT6An3k5uZeJCj9EaG8vDz1/5FIBKPRSNysVKNYjqxktENOfTad22f2nnR6ZQKxGFnp2A8SydSJRQYQnW5BolLFdfnkrnYSHoqISDKgjfQoPdANSuWmkdYxevbLrqVPN2DKzsBZ62DknPqYUn1PETk1WUyMTIkIGms/WIkxK11MWim9Kg/icZH9IyMxpiammRiRrfd7dg+lqvhIUHK9h/w1Lg58rUVEwtJ64HP7PxwXk0EADv6bPC9kdhoxZqVj9ZguCCHHkm/CkCZfEEjJKklIcy0A4e6IJls2vKsUS45RTJA5Jcg9zcbk2HSq+o5auOrs5K52okvTp6o+qUHN7Ure9+h/nhGRHqtu85JhSxPHBXuRRVNutO/wENMJRR8JDvyrnAviqrMTGY6ICVilV+SSZjQsTlJa5MEPfOUMlmL7gv+W6noeOcloB2epke7Dy9/jO255OPX/reM/YXJyknXr1i3bbyFoIik1NTVhtVohOjdpqYvHFyQqJSsouaoM5PutOAqNHHpmboBfiqy0KEEp1TnxIs5bmXbs6lcms8KsbN3WUuKxuIhYA5B/STbp1nQRQUBCeJgNaZWhJAaaRxhplQ0gQydCRIYn6TkgI3u1/LSN7FoZQQngoLA6VBI2n4Wc6kwxsSAeIyUhIUH9QyVK6Vzh82lB/iXZOH2ZYrKSVj/Rgpaf9tDyU/XVLJIoujKHzAILJ7RMHjQcyK9/Vyl9hwZFJLN0q554LJ7SnVYLV4MVc46ZDuHC/9T3tE1Kj32vFYvLuHzD8zDWE05JpqlF79FhXFVZtG2XPdvJZ7Q9myZioAVqb/dy4rk2ka9U3lGIp95Bhj1d/buIRTn7okK2O/vaXNLdYuSkOW0ONRNfWTXv7xciJykIU+CGXBf8fx98L7BwRaXzCUonnvl7JsfHiUTe/BMgF/H7RVpaGtPT0+zq/B4bC++d+Yf0tAWJSskKSmsTZBcRAUgjt+LM/7ThXpMjJij5t3nJLs8kOhWn41cC0qoZam4tFifipVVnADp+06+pGtK5X3WTu8qVkpdSi8DRYcyujOUbnoczL3cx1iP/vrUQvkCpYjLWMy4i5ExPRYnH4pizTITD6jcmctc5cFXbRQlxQLM/124tZvDsqIj80PJCNy0vXJhTlaD9vfkfKCFwfIiABsK9FPmbnWR5reLvNBaNo6HgLyXXeeg7Niomu+z5nDwB3PbLPqYjUYaOydZI3XsHyF/nElcgO/urbjIL5Qz9HX+jzU9OCE7eJlFynYeJwUl6hSdpy68pAB3iZNTBb7XiKrcu33ABjHdNoDfNn2ctVDkJoPp6D0a7gaG2cf58zXXAwhWVZhOUANralJj18ssva7rPi/jD4OWXX0an0xHjvJxXevqCRKVkBSVLkYnSK3Px1EdE8w0tBCWA1ld7GDwrXxSvfMgHsbiYOOFelYUpO120sa1l8xxg199pqwrSc2iQUeEYMBGMMdYdTsmZqkX7a12M9kzQs1M29xXPZRIw5Zlw19rExIJ4LK4p51V1RyHDbSF69775OS/XikzctQ7xfGHn316Y6jEAPTsHxe8alEpKzjIbJ7VsKmlQaK+5pyglY6gWJruJeDTG9JRsoyar3ITVYxFvvGsl1hz+TitWjzznNXRmlJCwWkeof4K+I0MpyVu10PpsweYwwWb5oYyqOwo59aKsmlvB21x4L83F4jSK/LJ37xDpVgP9h+Tr4vjUJDrmr28XIiclUbQxm/xVWXy67mpg4YpK5xOUDg6+zEhkhIkJDR/PRfxBkZOTQ39/P4favseGygdTfx83ZyxIVEpWUKr7gA+jLW0OSSmJRclKEZZUZ1E6J/Y4Z61JT7/UTWhQTlAqud5D0UY3aWaDqOocRvBdk0fLL3tEJJSjGg67B0+Ni9dioMhhTYeiBM/J9hu79w9oWts2/6STyLA85yWtMpSEZ62DicEJRs6qjynRiRjxaIx0k4w75Kiy4q530CwgCwOaCEoA5bfkM9odpm9fUHUfrcQtrdD63irenq/Inh5583Nerjo7zkqbmHAfm4oR1TA/L9jsZKh1XFzdSwuxZuDYCKfSOlISfGrRe2iIdLNBXJXt7Ms9ZBYvnI9ZCloI8wAtL8j3svM2ZDMVjop9q+LmfPRpell+Lh7n0LfOke1bIFaqYGWF2kcwZM0nKi1UOQmg7BIrWQUZjA9GeGjT3cDCFZVmE5QAzrUpfI5XX3112XtaCJpIShbLjFFGO1vILPSl/rwYUQlg4FQUl2+CU7+ROTVA45PVTI1Ns+dflviYzquq1PZyQJPMW+DYMMOt8nssuyof4vIqJms+UMHk6BRHvyWTr9ACrQQBLRWAQv0xQr+VJe2T8F7nob9pjFCb+oSb/85i0kwGMUlJS6UbALvXillYcSv/kmzKrsyn7Y0+EXGleLOHNLOGo3Z/BChcn4PBKKe6bnq8lmgkKj5VYC+yYMxMExFehptDmghf5TcUkWYyiElK3us8DJ4eE0kJgnKfw83yJLUm6buQ9tO0Ylhgw2PVnPt1D7271SfaarcU4yzPVErxPq9+07j5550YM9M49RNhvJxFVEpiOYKSyQWr31POeF+EQwckFzNztivM5BIFDs4nKAEYp8aZBL7//e9LLnYRbwF84xvf4MEHH2QosoBfLkJUAmh9pQc0DB8r3+fD6jGJqtCEB2OiCj5JnP1ZG7Fri+nYKauqV31LEa5qO76b80XEkNyNDrxv82giJUgRPBUmeEo+99JKdJFWE0nC7jNjL7HJSGKA93KPIk8jqJRz+kddnEZ+Wt57qYd0m3zpsv6jVegMOvGiNbsyE1u+WbNN38pwlFkxZ6eLSEol13koXJ/DqZ+00y+QrijanEO6Vf7etCRQAAo35uCuzRJVwrKWmMn2yf0foEvDWqd3b1BM4gHl++5F3k8L6h4sIc1k4JDwRGDhhhyII36+5p91kJkvJxuFO8N0CMkI6z9aRbpVfjrv4LN9lF+eRWiJnPH5BKVhZtbQ5kXITxfx1oVOpyMej9MdPkO+eeaE/2JEJYBQxwS9h4Y485J8HN/8pD9R4Vl9/NIq89a9Z4DRHvm6seKmQgAxSabhXaVMT0Q58d8aKrwI0fITebIZtFVcngiiibQCCkkg2DpOqEP9plfd3cUYHTKSGGhP3OfUZWEvtohISk6/jeotXjp29Inu03uJB3OOnHzyxwDv2zwYs9JBSFJa/7EqYtNxcQUtZ7Udi9skIilN9E1oInxV3KT4pDQWFbzNxWj7uLiSUqhjQvTNJKEp9kxA83PaKnxpwbqPVHLuN30i8mjpdbm46x3EY3HR5mjX3gFsHhNtr8qJc9IqVpig8ZN+RjtDHP22zJ5nXg4seWjhfIISwIS5DyLwxS9+UXafF/EHx8svv8zq1asJji8g37YIUQng7C97SDfJ15vV9xThqsxk3xdOEFlqWTy7qlIEMUEJ4NxrfWSY02h7Q7beLN7sJn+tC+LQ8qL6+U12rY2yq/PY/7XTmgksahHujmiSv1PsKLflgIrqagvBnG8kq9giJthU3FjAxNCkSCKr49f98liJUiU4s9AiJimtesRHmiWNvf8sy3HmrsrGUWYTkZT+WOBZmU1moUVEJPGsdeC7Np/mFzpF/YovycHiMYlJSsc07quVXp1HntAnjW4j2WVy/4dlZMYWwdCJMYZOjIn7DRwb0fyNS1G5pQCjPZ2j/ynjZJRemQt6nZikdPLHHdiL5MTMSGCCnvOJ9ssQlFa9pwSz28SOv5WtAZteHce7OsrIEtsY5xOURiKBVN7EaNS2ltNQBEtBdXU1AC3/8+V5/6ZbYgJ56uejS1a00GXZU1WVAGKTSvJnOhxlpEdFAvK8F7TxMzWs/9j86hRLoflHnZqkvNpe7+OgBs1vU3YGtgK5gzY+7WfthypEfVwNVjZ+ugb3qkxRP+91HtZ9ZGk5ooWw/mNV4n7ZtRaKN7mpvDFP1O/cr3voOaAtQZRVKbf/mV90cvQ/ZYN/bEoh0en1sjKFR797jpM/lpPYNj1ey+YnasX9tKB6axGNT/txNcg2GI584xTNP5EnDOLxOGg4cHryx+c48QPZhrElR485R36tMz/vIHBMPpAXbcyh7m6vqE/+JdlsfqIWz5qly/idj+qtRax+tHz5hudh/UeqaHh3qbhf49N+8fVKL88lzWTA6pFt7pz4bjs9hwZFBCUAQiikUUHePqvSQuPTfrzXzjiKmgpKeksG0UicgVOj6A7NxJOI27REFSUFrT1muvoXtslCBKVQKEAsFqO4uJjbb7992Xu7iLcW3vGOd6T+PxxeYD60iL/17g1qIlkMnRljKjSN2SybKpbdlEfjU37MTvX9woMJWQJhxZuTP+2gY2dATOixF1lJt6SRu9Eh6rf6/eU0Pu0X9QFoeE8Zqx+Tx9lVj/oo35Iv6pO70cHmJ2px1dtE/WrvLsH7NreoD0DvkSFO/0xOwjI79SIfATj6/XaaftAqvpZWnHq+naPfkpH0czc6aHzaT9lNsjmsVmx+opYNn6oW9zv5XBvHn5W9N13iEMr0hEz+6+h/nOLU8/J5nt2njdDRvW+Qs6/IYkLljQWUXOoR++T6j1ax5gOytRjAug9Xkr/ZKeqTu9HBhk9Ui+2y7sOVND4lj1uZ+Wasy8xDFsKhb5/l7KtygkBg/4g4lq//aBUbPiH3/9GuMFPjih/HZp2y15nNi1ZRAiAMZ36++Lz+fIISwJhVIXlddtll4vu8iD887rzzTgAOBX8x79+S8m8L4cz/dGuqfjI5MsVoh5w4tP6jVaz9kCzn0vpSLwMCwmkSLS91c+g/5ZWvbfkWTUnZxqf8rHlMFmczS0ys/2gV7jVZon55m5ziawGserSctR+U2d/k0FN2VR4V18vmCy0vd9G5U77pBYpdpGj6YRtHvyUjyEQj0xCfmTeoxYkfdnLiWXnOa/3Hq9j0mRpxPy0ovS6Xxqf8Yt869p9naPqhho2oeOI/IY4/c5bjP5TN80wOPSaHfIvg9IvtdO+RE7ZLr8il9u4SUZ/sGiubPlMjtn/ZzbmseE+pqA8oh3bqHpTdIyg5r5XvLRP1yV2XTUZmujhOtr7US9tve2n+uZBMNQGnftTJRFB9F5NDz+Yn/Xivkq0ZTSY9k6NTDJ0ZIz41QzLRZaQvWUUJIHAkRP/RhZMECxKUJiaIx+MUFBTw3ve+V3SfF/GHx6pVq1L/H1mANZSUfzsfQ00h+g4uvY+n0+tSVZWUH4sxeHKUyPAUqNlUnTWm5W3IZtPjtdiKBJuxkYSsqZAw1P5agHO/7hURlACsHhMmRwYFa2RrTv99Xk1rx6o7C1n1sG/5hgtcr/SGXFEfR5WVDZ+oxtUg2//w3+3Fd50svwbQsT3A6RflOS+jHYx22bh66n+6OfodDQozMYhrmDAce6aVo9+SHQ6zl5lofNIvfm9aseHj1az7qGxvH+Dof7VwXLj/p9cB8TixadmG44lnWjihYZ4niiGzcO61XlpeluVOyq72UH5DAfYS2TVXPlzGqkfk3/bKh8vIW+cQ9cmqsLD2Q5XYy2RrloZ3l9L4pDxuZZXZsGmo5nbgG2dp0XAgKXhqXFZJD4WAuPZ8boWKCkrBjhATQWXOFZ2lXKazmBetogRABNp2Lp7IOJ+gBBAx7iIej/9OOS9NlZRAkXzT6XSLlkZMVlRKSr3NxoaHXUTGYvMk3+b0z7LPkX7b/Y+CTYJkRaV4XLwwTt3jJ6qJTcVEp3Cl1VKS0KJ1CTA9EWW0V5b90hv0GDL0ZFdnETioPimVU2UnIzMdcw6EBY9pMBrEUg1DJ0IMnh7h3Ouyha5SYUVOCNn4qRoMRr34PUgquszuo6VfqGuCkIYDPFNjU6DtExAjPDhJbDpOeFj2vkP9MUL98gTpLo1lvQeOyPVy699ZSZrZIPaRgSPjmq7XvX+AiQGZTrIt14LOoGMqLNs8zC7LRK9B2zfdloY+QzbZtuTomZ6IEmyXMalbf9YrrpCWhJSg5GqwUnWrl9ZXekRV0rK8CjlvvEt5NjUEJYBQ+yS7/2XuAmQ5clIaYS5dA71DcPzszMTi//vge/mLL3xtQYISQPO3PwfRKUpLS1Xd20W89ZCdnc3Q0BBv9HyDa8oem98gUVEpKfWWRPU9Rbiq7KKqEW2/7NNUFSk0oMxL7JV2wgJyVMGlLkou9XDwW63qZZrCyGTsEmj+YSfNGuQWhttCSlVDMyJClSXHiN4gj7MWt4kMWzpnEMSxqJKAsxVYGDiqPta2vtaDMVODvNyPtVV8Wv1YjXIa7Yvq5/fhzjBhDSoZe/5JW8UsSbWgJCJDEaKTMSaGZGO4VkyNTzM1IddPl/hGEq2/6KX1F/KxODwI4UG5Leu3lSlVdIXv76wwgQvQ/LMuCtY5xfJr+gw9OuEcylpiJsOeTo4/SySNmV2aSZrZwJQwsT3aHcYuPBwBsFOjzNL4uTDj52SM03UfroQY7P2CbCNcKxaSElqSnASsetBDukXPnq/M9a8/X3Mdf77/pQUJSgDHjh3DYrHw61//WvsNX8QfDM8++2win7Tw+jZZUSkp9TYbGz9ZzcTIFIcEUvb7LtA3kMSa91eAHtEpXK2yXzv+RlvOKzIyJZYln4ooa9XsUpuoIklOlR2TMwNLkUlUqSXdYkAnnOdNBGP0HByke7/MnkNN4ww1yfML6z5cSYY9XZzPGDwuny8Mn5lgx2fl73uib4IJ+bSeiaFJ0o2aU9sihAcnmZ6IMimUmZkIxpgIym2pdQ4bbJZrHdfeV4Y5xyj2keEzEwyfkbMy237bR2R04Yp0i8GWb0Zv0IsPK+ZUZWmq6mnOziCWKdz0NSmE0+FzsrjVu3dIc3yVVlazFJlY8UApra/1iSrBZfqUw87hQdk6ZyIYY+8/zx3fliMnYYKNj5YwcHKM0z+b2Rv4dN3V/N2xVxYkKAHsCH6fSHyU/Hw5EeEi3hpYtWoVBw8eZPupr3Flw8fn/XuyolJS6i0J71Uu8tc62fX55iWJQDq9LiX9Fjg0LKsQkqioFAooMdaWZ2asQ/144KqzU3FTPid+cE4kHaalIo/WSj7BtjFMzgyMdpauLnUeMgstpFvkcTarzIol10Trz9XnGWKRaQwZBqxuI5Kdw9ZXejE65PcoJRUksfZDfsL9EQ4I5J8j/REiGraXD/67BmITMHxafjgiMhZnMjTNhHAs0IrwUAQ0SKJJvrEkevYG6dFQ8ToyApER+TxvxTvLiQxPideAncI9c4Czr/QxOTIlll9Ls6bNJXiqgNEO1jwzOf6YyJ6OchtGezo6g2y/caQzRLpZ/m3v1TjPjgQi9AVkdlz5cBn6NL0oHiShI1HNT6dTRVACaP1FgFbOU3tZipwE1Nxkw5ptYN9/zR0XH9p0N9/a+eyCBCWAg4cOYjabf6ecly4uZZDMgl6vJx6PYymsoPK2hTdF859rmUdS2fAeF5HxpUlKALGBwTmasf5tRejT9Rz9DxXMxCR5SuPjbXq8lng0zq7/J0vQbvxMDdGJ6LwJ+B89LIiqivxBYIGNH6hh8PSoqCyi9zoP9kILR7/ZKrrcuo9Uok/Ty0tnJwmaAnuW35aPp87BoX87SahfQ/kgIRqfVkrNXwg/XvuhCgwZBrEdpYQ5gNIbc8lf7eT4s+dEsmhFV+bgrMgUy6Jt/FQNQ+fGOPU9bTKLFwx/DN+3EFmVFuruLaVjd79IgrNiSwGeBgfHnmnVJJ2XPF2jy1h+s99SnIH/tgKOP99FqH0y1S982dInQfOdYWpK4WyXUk0pCXPHGL2NjkX7HfpXZYE/Pj4+R7b1Iv54EA6HU+/uBt/8hE0S061tc+Y/pdfnUrDOxfFnzxI8pT5pbS0xU7uliGPfbiasrVCharjX2Km8uYiOHf0iclTy2Q58uUlMMHjLQ0iG+kOg+p4i7EUWsfRqw3vK6Ds6JKry5aq3Ufn2Ytpe7xNLbJmdiH14/ceqmApFOahhESnF+o9WkW5L03xwQQJriZmG+0rp2NUvkzfT6I/rP1bF9ERULN9W/85SBs+Mit515Z2FZJfZNMvaXMTvBq3Sihs/XUM8Hmf3/3vz31v9O0uJjE7NI6oasrOX7LfyHW7SLQb2fnUuSSk2No6haOGNsJ0dzxCc7MRgMDA9LTtEcBFvHZjNZiYmJnCkFbDJvXAl0ume+RsrGz5RTWRURlICKL81H2NmOsf/682X1V7/iSp0yL/Z9R9NSFBdYFLVmw4TmipgXWis/2gVg2dGlYpdKlGw2YnDZxP71cpHfKSbDaLDmykI7Vl0eQ6FG3M48t1WTXJeUjQ+7Vc2hoRSalqw4uEyMqxpYjuaHIgq3YBSEazkcg+nnm8XEdrca7Lw1Ds4JpS8WPeRSobPjV9QWTRN+CP5viUweUysfthH586AaBO96PIcvJd6OPk/7Zoq6klgcoB/WwVNz3fM+a711qUr8NtLTNTelkvX/iDtr89slsUjEQw5rkX7/bz7SwAMDQ3hcDh+p3u/iD8MIpEIJpNycPO6VU8v2i5+/MycwgmeVXbKrsnl5PMdyxI149GZQz5Gt5Ha2wo48XwXETWbztq3UbEVGWl4sJyO7QHaX1P/zeZtyKb0qjyOfqdFRIr6o4CRN12O7ndFyfUecqqyxPPe6nuKGDozJpJSsxUZ8W8tpeONgFhGVUosA1j9aDnTk1GOfKNV1lEDVj5chjXPLJZc1wKjXc/KRyrp2jMgI+sliwwJfXL1o+XEpmMcEkpHV95RyGhHSCTB5r3KjbvOwb5/W5qQ+ZbAH8H3LcXKh8tIs6axTzinX/vBSnTpOvYKc+cpJAvxqCApVd6eT2wqxpmfzuQodHodhlzPkv1qbrJhcRjY/925JKXYyCj4fyMduAABAABJREFUihbsc7LjJc717yI9PZ3JSe3ERc1ybwBf/epXAQh1LnzyKv85JSGj0+nmVDTa/fUBVQQlmFuOMctrwV4gLP2v02HxWii/Tcai3/nZE2KCknI5Hfo0uVkbn/az4ZPCcvUWpZyZVLpNE35XAoNwP7z+oRK5PUJgMOqx5ctKwrW91CcmKIFSJUqfruFdf9zP+kdkZQozrGnoDDr0dtmzuRqs5G9aOun++4LFa8F7tVwqJs2UhkGDHVe/36+cvBbAmJWOzqAjKiw60PGrfjFBCRL+6JaVUay9v5iNn9JQrvx34ZxcIILSiofLxP5o8ykyavUPycpsZ3mtoINwn2xH9fSPu9j+l8dFBKXUGCOs3Ff6NhfpFgM2Vzq6jIwUscn8m6XHnu5BM7/ab04RlMwdY5g7FMZ+7vbggn0Mh55Hp9PhdDovEpT+iGGeVenhaO/LC7aZbk1sPuh0KZ9s/UUv2//6uIigBMq8K8OeTuEVBeJ7LX97vkg6KbB/hO1/eVxcvSkcjIBOqdwkQf27Sml82o9ZVv2a/M1O/O+Ql/3XhN+FoCRVyjIrG6rlb5fNl60ek6YTc0e+flaTDKHeoMNkl1V8Wv/RKlY/Ji/9m2YykG4xiPsVXZaDOU8uqaIFuRsdOKpkL9uclYY+TYfRJntv6x+t0iR3aMgwkGaS2/Hof7SKyWi2PJNS7UyIDZ+opvqehRfdi0KbGt0FRe46hxKvhPe64VPVmsr8o0NTBdddf9ckJij5bs7X9J3Ziyy4quaPF9GhpXMTh74dmENQio2NExtTNn+jHQsTBbLy00hLS+PZZ58V3+dFvHWQPBEYnF54A34hghLA7n84KSYoAeTUZpFVKpNsBWWzuvQ6mezCnn84pY3UqfFb3/ykn/UfF8o1mKBmazGuFRcg5/W7EhiEIany9gLWa5CvSLemYcuXBfauHYOaiG/pZgMGo3xcbXzaz9pHZLmadLMBQ7oeo012vaxyk1j+SytMHhMFQrlWUPJ5Bg1zoTUf9MulBO3pGDTkpAP7h8UEJYAMazrWXJk/lt2cq/i+dBj/XabXF4igVLO1mNx1spyXyaGn8Wk//ge8on6ZRUYl5xWUbQp1/Lqf7X91XERQMjn0lGmQ9im4NA+TM4PMvLk+EhtfmkA3cm6CXZ8/lyIoxSMR4hFlpzPav/D6YDjnJHq9HqfTeZGg9EcMo9FIekJS92jbiwu2iR9PHH7R6VMbtn0HR9j1D80ighKAOTsNS66J4k3y2F50eQ5GQc5/rCPCjr85LiIoAYQHlZyXLU8Wayu3FND4lB9zvmxfwlVnp/pu4dpYK34XAoMGpay1H6zEd5NMajcz14zRvkz1twVw8vsdIoISQDQKhgw9GVmy6618uIy1H9aQ87IYyLDKny1vnUPk+78LXHV2sfyX3pqu2FFYRXHVO3w0flJDzstsIE1DXrT5R50ighJAZkHCH4XfzprHKqjcIszt/66v+AIQlLIqLFTdWSi+1zWPVbD5iVrx9fRpenFlKVAqJksJSqkxRrjf6KrIJKdGyXnN5tZEe5feb2l6cWwOQSk2MqoQlABaFi7Aoc/sQ6/X881vflN0j+fjd6qJ+973vpdHHnkEgN6DvyF3lXrdOUcZ5NXbafqJeornof/qINSmYuP4PAm6le8oQafXiWV/sEDRxhyRjNvOz56QXSOBydEpxoVlwiwOE5mFFjJsaSLptoZ3l5JZaOHgt1rV2TOBjZ+uQW/QseNv1D+jq8FK9ZYSxrrDHBawSc0uo6YNDS0n0C05emrv99G1e0Ak77RLowxCeDDCQJOM2nziu/NlCdSg6u1edAad6Lm0oubWfMxOE4FDAVGFIy1kQFDsGDguk847+Yy2ikZrPlDBSEeI0z+WnQ7T5o9GDEZt5LdoJCayZ+39xWSXZ3Lyx+dEsnSbn6hFp9eJ2e+2fDMmR4bIHw0GRdqy95DsBEHbKwHaXpEt/CxeC7acNPr2y75P/x2FZGSm0398JFUqNT45uWw1peP/3Y2lOINQ+/JtkyjICeO0w9EWkOw6thw7jMFg4KGHHlLd5yLemvjsZz/L448/Tsf4Yeq5VtS3+p4i+o8HVUs9df12gKGWkHr5tQRyVmSSuypbmWsIq9DkrnMw0jKiuipS766gJrJL4HgQc3YGmGXlYYovcWsiQTQ+5Sc6FRPNHXLXOSi/sYCe/UO0vKB+DrvhU9WkGYUSpWFIMxvILJQlviRybbNRviUfW65ZtIE7cHSM7Ufl42r3wSFclfLNTcl8NwlHlZmSK3JxlNs0EeClKL+ugOikzK/6D4/Sf1hux94jQbI1bJzv/Fu5HQsudZG7wsGBb5wRkfUOfElb1as0kwFLjiyrsfJBH1aPiQNfayHco37na/MTtUxPREXVx5y1FmruKmXw1OiCUmWLofgSNxkaEqpjnWGMDnk/aUU1UEh9HXv6xaTMvDXZuOuzxOux7X91HLMwztXclk3H/mHG2tVX6zszsIv20XbKysq4/faFq+9cxB8HNmzYgE6nIx6Pc2ZkP+X2Nar7ZpaYKNzkFn23h77VyoQgpiSx4qES0kwGWl8SynKaoGC1U3RaW8u3DhDqn2CiX56tdlZmYsk2ijbUq+4oJKcui+PPnBVJX637sCLzvlMgLW/ymFjzPh+jnSHRSXSLRqK3phPoJlj5kI/eQ0GRvJOmCkrAaFuIoVaZ7MXZn/dyViD3kkT17YrvS6T9tMJ3nYdsXyajXSFGz6n/TjXbsSPEQLOs0k3rS73yOICSJx7rDXP2BVnf7X8t98fMPLMivyYMdY2f8DM1Mc2ef1Afg0qvy6Vgg4vmn3YSOKjeRzZ8shpDhoEdwudzVmaSmW+WSbeZMpgcmRLnNwP7h8V+b3LoySzNFNkCoOquEmz5ZobbxkUykC0/6aFrT1A0rjkqTORUWufIvKnByc796HQ67rvvPlG/i3jr4bnnnuOWW26ha3Af9d6bRH1LrnUz0j7OUJO6/a7gqXH2/VuLuIqSrciI9zKPorrwddmhZkeVlfDQtLprokhyadlvDBwfJrNQfkjVe7kbs1POTtj06Vpi0zF2f049Ad5eZqLuPh+9BwdpEci2r/1gJcasdPGcKCMzHavwoMtRDQRegOIr3GR5LaL+4e6IpjxU94Eh3BPCE/lom9Mb7VB+UyHBllGOfefNr/xadVsh0YjMr7TasefgIK4a2QFY0CYb5mqwU7DeyakftBEZUZ9n0GrzDHs61ojM96tvLcJVbefof7WI5PM2frKa6UhMVK3U6Day9n3l9J8Y5tQPBQpJl3rILLJw7uVuIhH1dgy2jpEpPPQBaJJr86x10Hc0KCZted/moWC9i92fm+Vf8diy1ZR2/v0pMYmw7DIzgZNhxgTLgMDIWdrb2/F6vWzbtk10vfPxOwt333TTTbz44ov0bH9+DkkpWUVpNpLVlOLxOBVXuDCk6xaUGUpWUZrTV68j3KEkFyxey+Lkmvh8Z2x9tYfpCXmJ9c0frkWXphORlJL3l1NjE0kMaZHVCnVNcPqFDvGGet/RIU2TjanxaQwZMvLEwJFxpq6dJnA0KOqnNfGlCRkZGLMy8KzMviBkHq0bKFrQviMgZg1rxdlXuslb7RJLsGnFhbSjKTtD06a0Fuz7vLYN3/BghFEhkWByfJp4NC4iKAGMdodJ13Ci8uDXW0B4qm+4OcTuv5ed8LUUmPCszKL1Z7IEW90dRaRnpjHW00KoS5J0PE3l7QXztJyXIipZ8nSEeuKEexeWhjP/pmlB2bfyQkgzKIN3esfCyaHc7cE5sm99R7YTDAYB+Md//Ed1D3URb1l85jOf4fHHHwegZ+w0ebaK1L+lqijNRmLuZc7W4aq2Yy+0MHBU/RibJCiZ80yqN+L7D4+S5RvizI9l5HBHlZnyGwsID7jE0lCl1+fSu6dXtaSXVnLTsWfbiI3KN9hC/RNEglOiPr3HgpRdk890RJZsGDw9itUpP2p8IaTGknBV2UnTMI5oQcevAjJZs98BwfYw/SeG6d4n14jXgu59g0wMaS+pK0HbL/toQ1bpTCs8dQ5lrXKB5A61bPj2HQ5SsM4pIigBTIejTI7L1qXTkThTY9P0HJBNsvf+SzM5KzLFdtRSbcN7jYfA0RGxPbyXeyjcnCMmGzW/ID94YC40E+4ML0q8jQ4NzZN9y8iErGITFlcG+7/Rm6qeNK9vR/cc2bfm4dcBuPzyy8X3eRFvPTz11FP85V/+Jc3jO+aQlBaropRE1W3FGLPSRZJNyY1cU55JtKl75hfapJY2fKCaNLNBLClh8pjIqbWJJBS0VJZiApp+2CbaFAfoOzJIZpGF6KRMliUyMiVWcpnomyDcH6HvsGzTX5M9fgdYPSY89VkikpJWHPlW65t+jSTOvdaHKVtOrNWC9t/2MTU2zWjvhSnLc+QCEN6TyCywYHJkiElKWnD4662a+o22hxjrl01qpiNRopMxAk2y73O4ZUwTYXv/F5rQ22RVXyd6JjRJAXrWuEUybwDV95RizTUxORph+Ix6Pz7872cpuzlXFItNHhMTfROLjmWx8fEFZd/KrnBhtKfRsWOAcO/C6+5o/8Ac2bfgRA+DQ0ps++IXv6j6Hi/irYmbb7459f/dg0fJd9an/pyqojQbyQ3bjBgFa7NxVdgYappPHDq/ilISSbKQMcdIZDEy9XmTg7GOCB1vyKQWk9fw31NCqGeCg/8umwcUbHYy0Dy++D2eh+Cpcfafku8xHH+2AzSo2o12jDMZluWuRs5OEI3I18d9R4LYi+QEgx1/c+FyXu66LEzZsvFAK/r2BcVVm7QiMgLdewfoP/bm76ECtP2mjymhX2lFz94gPXuDF+RanjqHJhKhVmghOvY3jWDOzhARlAAiw1NMayDNhfvlBSmOfLMVR5VVRPQCaHlBPSkyibwN2QydDakmmCZRcWMBJZd7xHyHY99vJc24wL7+EkQlo9tIJBBhcmBywYpP0d6++bJvRnCXG7HnpXPo+yMz1ZPOR0vHHNm3gy3fJU7s95Lz0sXjv4OYavJHEhtgvtseI7PQByxMUpoNS0EcvQFGF8iBLkRSSmLFw16sbhPHvtc+b0MYWJCkNL+Nukf2Xu3GYNKLF2mbn0xUGRFu9tS/q5TJ0DSnvqet2stFwPqPVJGemXZBNtrq31mKvdjCsWdaRdJQ1VuLSDcaOPot9Uzq/EuyKbsqn6Ezo5qrKknQ+LSfydEpTeQ5LdeSVgHwrLFT1Oim6ZmzhPrVD0Kbn6xFp5NXANKC9R+rIt16YXzxTxYWWPdIJWd+0cnQCfXf2JoPlGN2mjj1P22iKnMWrwXflW7136aKcouLkZQ2fdyHzqBj5z8v/j0vRFKCMCV50Ld36cnebJLS0E//hba2Nq6++mp++ctfLnvPF/HWx5VXXslrr72GTqfj+rKPpf5+QZLSLORvyqZbuAkF2qoAaYX/gRLOvtiuupISKBJsvmvzGW4fF1WvcdXbKL0yj31f0EYOvQgFjU/7CQ9GLgh5uPEpP7HpuKg6jznPRPWWAlpf7RZJHm78dA2GdP2FmTN8tIp024WZM/gfKMFRZqXpB60MCsZW/ztKiIxOisiHyWpgA00jnHz2zV/fND7tJzwQEZMcL2IG1XcXYcjQi4lKjU8nvk1h8qvspjwmhiY1jU0S5KzIpOq2YoJnxzn+ncXneeeTlACyfRlMDE8yfm5pUn+SpDROKzvanicajRKLyZJlF/HWRTLntTr7JnJNZcDyJCWTx4QpSyeq5ANQc28xzqpMTeQcKXLXZWPKTufcyzISqtYxsuaeIqKTMZqFFYovYgYrH1Eq+V2I+UnllgLcDQ6afyKrQlN2cy7GzAyanlGfu3JUmvFvLRNXDdSKxqf9RIanRKe8tWLzk36ikahIXtFRacZ7WS6nftLDRJ/g9PqnatCn68UVgLRg5ft8WN0Xxhf/lLH6/eW0/qqHoSb1hwf9D3jJ9mVy+sUuUdUmk8dE6ZWyCn9aseGT1aRlGJastrUQSQnAs9pK7zKEytkkpZOmFzl79ixXXXUVr7zyirYbvoi3FD72sY/xT//0T+j1eq5Z8WTq7xckKc2Ce4WVwKGF88CLkZQANn2mhthkjN2LbSL/7tunKVRuKaDt9QHVZCNQJI3q7y9j+OwoR7+tfp1mLzNRdnU+hwTqJhcxH5uf8BPun+Dgv735BPNNn64hHouzS3Bg22jXU3lbER27BgieUj+WrP1wJenWNHZqqDokxcqHy7DmmS/InMF3Ux55a5ycfL6DgSPqi3tUbilgaiJKq6Cyp73ESP07ygkcG6b5OfUVgLSi8Uk/oV45yfEiZlByvYcMazrNP5K9r81PKNXidv0/WTGFgkucxCIx9QQ4NfJuC5CU7F4j9Q+UMnhmjJPPLr7WnkdSAixuiMYgfHaZfdQESWk8MsKeM19mamrq95LzkmsKLYDq6moAWp7/ErA8QQkg1KVjrD1RSUlAGmx9rZ/J0WmmR2SJnsq7Cmh8qhabz6Jax6/tlYCmUyTt2wOc+YU8KNmLLLjKZXIUNp+Fxqf91L1Dpl2dvymbtR+qWL7hefBe7aboyhxRH88aO+s/UiW+VuPTfjZ8slrUZ6QnxPQFYtcONA0zNT7NlLCggrM8E7t34YXYYhg+G2Y6HCXYIktS1m7zsu4jMg17rai8o5ANn5C9L4DI8CRjXeo3yQDy1rowO02kZ8sqRYx2hRkPXJhTb2O9E2JftHiV77n+naWifvUPlVD/UImoDyiJDbPsc6Z6a5H4/kD5ntd8oFzUp/zafDIy03FWZYn67f/GGfpPDYsISgChtpCYoLTpMzVs/LTM73UZGQy2hhhb5FTYYrDowpg7ossSlECppgTQf3IPvb29lJSUXCQo/QnhV7/6FaBUpgyMtwLLE5QApVqgTofZKbveWHeYwFG5hMLGT9eIx/Hj3zknIigBdO8YpP/EMEefaRX1y6l1YHRkUHSZLBCufqycxiflOuX17yyl/O35yzecBbNTT829xeJr+d9RQvU9Rcs3nIWG95TR+LRfoiQJKJU2R7svTMmb8Z4JhoXyIfYiE1aPmfw1svc82hkm1C+fM6z/WBWl1+eK+2nBug9XUnlnoahP8NwYU2PTDLbK5l6OEivuGoeoT3gwwuTIFP0ngqJ+mmBWfHGkXfZcGz5ZTeNTwu/ZDOs+WImzVnbyreiyHAoudS3f8Dys+UCFUhFJgPp3ltL4lB+zU7bcd1Zm4tAg63fmZ12ce02+bj77Yo+IoOSsVebK0m9svG+KyZEpzv5ScI+JWDhweGhZghIo1ZQA2mP7iEajXHHFFaJ7vIi3Nm699VYADgy9CCxPUAKlwk6KoCRYtrb+KsDE4CShftmpcu9Vbhqf8uOoVD+Q9+4dEhOUAFpf6aX5p/KcV3aFXSyjYHLo2fykH/82Wc7L6bex6lHZ+hMgb5OTgs2yybKj0sya91eI3jMo5JX1H5PlykbaxpkcnRJfSwv6m4aZGJxkYki2bvXUZeMU5jaD7WEiw1MEVcTb2Si/NZ81j8lzm1rgvcrNug/L82vjPSHx/CRvtYvMQivWPFk1n+HWMcY6ZNfSitGukOKLEpiU3FDdg7L8VdUdhdRsla+Jqu4oxOSQzYXKbsgVxxtQNrFXvs8n6lOw2Yk5x0hOjSzndfwHbfQdHpLJyqGMS1KC0vqPVYnX9AB9h4JivzdmQTwSWZagBEo1JVCqKPX09FBUVHSRoPQnhGQV+FgsRm9Q2RBejqAEEDg8Djo9RqFi01DLGL1H5ZVh1n6kknUflY3jzT/uEhGUQJF86947wNHvyw6S2L02rHlmii6X5ULq3+Fl0+O1oj6g7A2V3iBbpxntUH6LLE8GCqGkckuBrM8dhTQ+5RdLIU0MRRjpvDBja/DcOINnZDmvdHs6WWWZ5K6af+BmKQy3jDGuIZe3+v3leK9yi/tpwcqHy/DdnCfqM3wuRHgwwli37Dtz1WaR2+AQ9YmEINQ3Qb+wYqNWhIciBDtkc+U1j1Ww+Qn597zqYR+OKtketmetg7x1DvG1Gt5diqtOFrgr3p7PpsdrMefLvufc+mxc1XJZv6bn2jn7ijzn1fXGoIigZM43svnxWrzXyL6xyZFJxnsm6NguqOxvVP4bOzO6PEEJlGpKQGf4eSYnJ39vlcN/LzpQTU1NqZNlwbZT5Kv8WYsL6u/IITIW5eB3lYnAUlWUAEZOh9j3xUVIUEtUURpsGianyo7FkcYYKBvMKljQvlvyyFvt5ODX1cv/SOXhkjj4rdbFZewWwVhLiHgszvSUbEMvb5UTY1YGWZUWURWgokY38Vhc9Iw5fgfpmWnkX5JN9xvqJ3xTo9OM9ckGypPPaDulvf5jVaSZDez4a/XM4e6dQ5rk4Q5+9YRYEi3UNSE6dZVEZoGZNNOFkVPJKrZokkTTIm92+GtnseToRVWUAFGFjSTq31WKvcjCgS8fF723ExqkMkCRARkQTmzsxbIJA0D5bflk+zKJX1csqs7l9GWiM6gjeqZggdh0nMiwLIF15vluug8Mi+MiIXks2PDJaoij7jubRXSNRqJLlsFdTPKt+SfLJ11mS75ZLGE21sBEFRwU5F06X3kGAK9XnmS7iLc2LrnkEt544w329f6QG3wfV91vzWPlmLIz2P4Px1VLAB3+urZTV7HJGNOTcuLwhk9UE4/G2SPQ9dZSpeXksx0iGbskJkenybDJy//biy1Yc02c+Yn6SjS+W4pxlNoouiyHjt+oH4QcJVbiMdlpv4FTI5js6ZjNesJh9eOrFolec6GZ1e8qY+DUCCe/r/7dHdJwWqh3b5CRlqBqKcAklqq2shTSrWk4yuTjshZk2NPJKpIRZbp+O0DXb+VydNv/6riY4DjSEhbLV4ByQikyMsX+LwrmiGFtvjjaHsLkkpVh917iIcORTnZFlqgalfdSD+gQ2d+9xo4pOwPPSif9h9WTr6fDUWLTcTHpc8ffnMBcKC+d3yssi273mam/v4y2N2RyjOn2DOLROIEmmdx5WKWUymzJtzX35pJu07PjX06rHi97xk7T2teK0Wjk1VdfFd3jRby18fzzz6dyXt3hM7hRSeYzQeMnEhVbvqAuHk70TbD/S/I1cv+pUQo2uEjPzECi81jwNhcll+dy9DstjJ5TNyeSbownceAbLSIZO4CJYIzYVEx8AMizIhuL24jTbxNVpCq7Og9icZEEXnaVHVNOBkUbc0QSeKH+CSaEG5Vnf97LWcEJ7yRWPVqOyZHOzr9VXxl1qGmcoSa5Lx76tybVEocpTKCpqlFWsfWCyak4fDYy7PI1gBZ5s6bvd2BydIjt2CSYVydReXsBOX4HB74u+z5bftJDCzK5DJPdRGR4ioFTsgNlzqpMdAYZ2ahgsxN3vQN9hl5U1ctd79CUR41ORpkckeW8unYMMng2JI6LTCCuSLf2Q5XoDTrRGhtgcnyatAy5PVpfWj5OzZF8M8Hq95QQ7p/k4NdaVV9n59CPgDilpaXie7yItzbe//738+Uvf5lDrc9y3aqnVPer21aAvcjC/n89RSSxZFiqihKwdE5iif3D6FhUUwmINY9VgA7RerflRbk8Ucev+wkcHxXLE00EpzDlRJUNbEFXV7Wd2GRMVImm8FKl6k1kdEo0h3JVZwFxmlEfCwdPjmLLk7O8D3xZXqnZaIfVj9UycHJEVLFFMl4lMdYRYe8/nxBLXp0W5CZnw+wy4iiz0YZM7lALLB4zBqNsDBo4NsLAMVm+ABRJNCnBMRKIaKqwtfGT1USGp8R9tVQND54dw14gyxu6V2ZhyTPhqrKLqnOVXZWLPt0gks2zFRnJLLDgaYiJ3tv0lLJGDAvJaLs/d1JMVAQYOiEjDxpzjKx+r4/23/bR+bqKHGAi12DKSic2HSV4eom58gKSb5EROPwfy+9Hz5Z8819rw+ZO48A3R1Pj5XIYiQRobW0lPT09dYj+d8XvRe4NoK6ujuPHlXJtN+Q/prrf6geyCZyaoH2XkuBdjqSUxIaPVzA1Ps2Br7TObMKokXo7H8s8vmeNnYqbizj3Wi+dgoRy3Tu8ZJXa3rpSTxYwWxCTZbxXu+k/NCAmh2ABLgzhmIotBUyGpml7Sf2JwDUfKCfdmi6WsvE/4GWsO0zbK2/+oFy9tYiR9nER0UsrLqTcW/1DJXTuDojkvLRi5ft8dGzvZeCI+sG1dpsXR6lVRGADhdzU8kqfnGCjEVpIW2U353L2V73ib9PitVyw55Ji/ceqMBgNYrmRjZ+qIR6Ps3u5cqoqK/HN6ZIgKekyMrB4YMV9xXQdGKbtN8uP/kmSknlwjLWXQudp6FE5Hx3OOMyu3c8DSsWdi/jTQ3KzrJ6N5OnVEdGKLnORu8LBvq+fgZB6vyi9PpeCdS62/6N6cpNWaCEpAWx6vJbIyOQFkR3TAnOhmXCnzHhmJ7hWukWb+Eo/vZicoBXWEjMll3k4/m0ZqWfzE7UEmoY5/SP1SaWcFZnkrXVpIh1L4aq34anP5oSGJJEUF1LuLX+zE0uuUSTbphXeazyYszPEJMKNn64h3B8RESS913jQG3S0/kK+casJZsSx0JxnIrvSKiaJmZ0QDsuvd0FghsaP+xk4KZP0K7rSjfcSN8e/f1Ykw6gFaz5QgSFDr5rEliQpFa4z4q7NZP+X1ce2PeYXCQ4Hueyyy/j1r3+t6X4v4q2Lu+++mx/84AcAXKO7S3W/1e8vJ3B8WLTxAkq1vOlIjINfeXPnNVnlJvxbfZz7dS9dahKoCVRuKSCnzsGOzx2HC1OsWAYTmEyISR55m5wEW0Iiia3k9S6UHbxXuYlF4yKfanioFLPbKD78VrmlgPDQpNh/taDs5lxCvZOaSXASXEi5t+o7C+k7FhTJeWmF/wEv3XsHRNfyvT0PT51DRGADqNlaTNvrAUIdF8bxTQ49E0HZ+qbgbS4Gjw6I44ApzyQnDl0grHq0HGOWPH+tlaQkhgk2f7SWzl39tL26/Bo2SVKK6yKserCU3sNBuncGVV1qwjPE610vEY/HL+a8/kSRzHn52URhhrpKZU6/leLNLg59pw0mlJixHEkJIG9DNqVXeDjwlVNERmb505vgW2seq0Cn16kmsCex/mNVTI1NXxDZMS0wuo1iQhRGKFjnpOsN2akyo10vJuVohdFtxHtpjlgeauMnqwkcH6blBfUEM3uZiYKNbk1kJSnsJUZyV7suiAzzhZR7czXYySw0i8hyWpG3zoE1z8yZn8rya2s/VElkKCKSb8zbkE26JY321978fWhATFIE5bvMrrKLSEpKP4hE5Ne7UNj0eC39R4MiYp97ZRblNxXQ9MO25YleGvYbkyQlnV5H/QPFZNjT2P+v6nKoSZJSTlmUvIZMDn9H/bey1/A8g0ODXHHFFb83ktLvRe4N4NixY6n/H848gSVZ2c8C7hpDStLNkgOuypnLtu4YYrAjjE6nQ6fT4Vltm2mbn6b8OYHsGgu2MuUf9QYd6ZY0TDnKi7B6dHjWzFAds2stZFXMMAQ9a+yYcxRCRN07i2fa6nRkVVrJqpzb1pKj3ONo2winX+hIEZRsPgvZtee1LTClnjX5uxMjU8RjcYqumSmn6F6VOb9t8lm9FlwNVjZ+pobGp/1KW69l0bbuVTOlk10NVmofLCL/kuz5bQtM89rafBYIKQSl89ueb0Obb+6zBg4FCPXHsOTo57TNqrQsakNzDnhq5radZ8PZbRO/a86BVY/5KLjKNbftAvZOvhtXgxVPg4PCdS5V9k6i/fU+jvx328JtF7Bh8t04ymwUbMgR2dD/oJfGp/zzbJhdO9+GSSkuS44eV6Wd4kaPOnuvkds7aUM1/r2QDZez90I2tBSYyCqx4bu+YHmfnXVP6z9WxabHa1XZO2lDz2YbtlwzhRs9quyd/N0T/9XG8e+fU21vm89C1d35ZBVbKb0sR5XPJrHyz8oou8W9qA3n2XtWjLB5bcva+/zfPftCLxbH8vY+37+TBKWl7D3bhvXvKiW30SHy2dUf8NH4tB+bzyLy2bhuVnJiGXvP9tldX2yi9ZXuxe29OhNLiXXmdzfa2fDxKmw+C5YCI+5VM2OVq36WvYHctQ50DoWo5FmZCTqIjCjyDY4KE9aSmRMBngYLRkfShlCiH8PcMQYhOHMIQrNI1B4vGJP3a1H+nITdA4ODxzEYDFx11VVcxJ8mrr/+egCO6/bMkQKyl5lxVM1UwshZkYnZqUx4O/YMcO43fcpmt06HtdQyp62r3oY5ebLIrPTFDJOhadBB2dW5c9smK27MagsKIcdVb8PuM7P+o1U4ay2Lt80z4aqf+YZOv9DO8R/NLMjPbzv7WR1VZqwlyj/GY3H06TNydmanfl5bu2+uXTzrbTQ+7cf/oHeuDX0L2TARh5xQdKUT/wOKTIG1ZIG259sQCHeGsZaY50hELWbvpA3NuZYUQUmNvZMw55pU23u2DYuudLPivSUzbVXYsOzqXLLLbBRcmjXPhue3nW3D5p92pAhKy9k7+btFjW6yiq3krLXMbbuAvYGUvTd+uobVj5Uva+/Z76b06jycVXZVNnTWWlI2TN6TGp9NtUW9vRfz7+XsnWxbfKmb3IbsRe29kA1z1lpofNJP+ZZ8kQ0L1rtmZH2W8dnZMWLX55vo2tMvsnfhBhcF612q7J20Ye4mG6v+rCx1naXtPdcu9nx1Ppu0oaPKTLhngq7fDqjy2SRc9TbIMCkxexl7J2NEwaUufLfmq7Z38ncbn/Kz/uNVS8aI5LMmf9ddb4U4jPdOqLDhjM92/CrA0e+eJTZLzWopG9p9ZhreW0ptQupFjb2TSLMYMKQv7t/n29BoDRMbG6d91yBtrwdm2dCIs2bmd501ZsyFxtTvTtcGCIVDFBYWXiQo/Yni2WefTf1/IPcclqKZk9hOvy0lv2XymJQ/J9DyUucc2Qan34bJkWjr0M9pm1VuIrNE+SF9hp50m2HRtpklM21nfldP9Z2F1N5fPKetpchEVvl5bT3Kn4c7Jzj5XFuKoGQpMs2RjMuusabaYpp51vH+CMTi5G/Mnts2b35bUDb9s2usrPtIJY1PKrJ0i7b1KG2TcFSaqbgjn7xNzvn2XsCGliITTCgEpaXsvZANg01BJvomMDmY13aeDRMyUiYHOH3q7J161sT/17+7hIIrZkoVLmbvpA0dlWaKNrsp2pyztL3Ps2H79l6OPjNDulzKZ1M2RKkqU7gpR5XPJn+3fEsum5/w4yhV57NJG+avceG93K3O3kv494I2ZK4N57RdxmeTkPps0oY5dQ5Kr81TZe/ks656v48Nn6xWZe/ku3FUmMj2ZVLUOGPDpeyd/N2Wn/Rw+Dut6nwWxd7F1+TgqrJTcqlblc8mUfcuLyU3uDXZ21JgUWXv5P1jIhHXFokRC9gwae8kQUmtDWvuLSZnnUPks/6HvDQ+7Se7xrqsvefIeBqYOay9jL1n+/e+f2vmzC+6RDZc+8FKMktMqnw2acP8dQ50eh2ToWiq7WI+a3LoyfYZiEciMAGnf97D6CwVC2etZVZb5szZbF4TfbZWAK6++mou4k8Tn/rUpwA4zk4clTN+ZM4zYi+dqYSR5TNidCnf2+CZcSXnBYr0m8eMvXSmb1aFeaaKhhFFzsgIkZEpdAYdeY0ze3n2UtOCbUGpkpFVYcGcb2T1o+XYq01zZIfObztbNun0T9s5/oO2OW2TFVyMdv2ctrYiI7Yi5Ydi0TjxNKWN0pZ5be0lc+8hq9JE41N+au4rmtPWnD+/rTFn5llz12dReUfhTNuy2Ta0zGmbsmEggtG9QNvFbOg2klVsSRGU7GWmORVOFrJ3Esbs9Hn2XsyG9pIZG3rWOvC/w6vK3snfLX6bE0+9g7xLHMvae/a7Ofl8R4qgtJy9k7+bv14ZXz0bZ2RAF7N3yoYVFtZ9pIpVD/vm2nARn02i5Jo8PCuyU7+9lM/aS4ya7J36Xb16ey/m3wva0J784Zm2JZd7KFjnUuWzSRvay0xs+kwtvpvzlvfZWTYsuswzI7O3jL3tZTMxYt/nm+nYNSCyd/GlHoovcYts6KgxUv+uktS7Ws5n59jbqc5nYSZGREZi9OwNqrJ3ElkVFjAaFYLSMvZO+rerwY73WvfS9l7Ahpser2XthytV+WzSZtnVJuKxOBOJaplqfTZwaJij324hFplevG21LUVQMucbqbm3MCVjuZy9s3wmdHqlb7o9jbRkxTGjMqebY0PfjL3tpUbSjaPERkbpawrRtj0409bBnLHV7jVi8szsW0ZKegmFQ+Tl5f3eCErweyQpAWzZsgWA3qlW/Dcpi+yiFWZ8l2VTcUli4n5zNuVXzCQxKq9yUXejkw3vdZG3IkrFjYX4b1cGwLp7Syi/YUZbtOb2IurvUf7t5P90kmYyUHWbsitbe28ZFTcVptrW3llC3b3K5pE5BypvLqLmHh/2Ygv2QiuVNxelNqPr7i2h7t7SmXu6pZja+xV2dtWdPipvKaZmWyFlN+fScF8JtXfNtK24uYi6rco91N9TSuUtxeRuyOLM890QB+9mz8zvvr2Y+m3KPVXfWkTlLcV4NyuLsxXbSqjeUsJ4zwSR4CSVby+mIfG75dfmU3lLMeXXKvqsDVu9VL59Rou7eksJ2SV2vG/LxbvZrdz/FuXf67eVzGvbsFW5h1UfVJ6t4T7leeq2eqm4uWjGhneV0nCf0tbms1B5SzFVd/rY9HgtDY9UUnnLzO/W3Vs6Y0OLYsOarYoNa+4tp/KWYhqf9gPgv2e+Df3byhUbbSmj8pZismstWPKtWF1mSi/JndO2/n7lnuru9FJ5SzH5mxR/arhXseHZV7s5+G8n5ti76u2KvUsvV36r4X4v1VtmNNAr317MivtLsBSYKLsyl8pbiqm8QfGnhgdK59lwReJ3AyeDGNL11N6e8IH7S+bbMGFv96pMKm8pxppYePofLJ/X1n+P0tZSYFJseJdil9r7fOh0Oo4mtMPn2JuEz96XsPddir0tXgsr3ltG3dbS+T77QAUA5W9XfDZJUmnYOv/dJO1de7ti78JLFdJY0mdn23Dlu8uU/7+hkMpbivFdlZey90I2DHVNMNg6gslupOrtii0W9NnEt5y/KZvKW4oxmPSL2zvhs9m1is9W3q7ck3dDPvF4nOYfn021TdrQnJPw2XsVe9dsVfwQC+Rfkr2wvc+LEUmyTsN9JeTUZNPyShdnf962aIxI2nu2Da0uM3mrlMXQYjFitr0btnpZ/7EqGj/uXzZGJH02GSMaP+6n/Lb8JWOEZ42dyluKqb9HefaV7y5TFSMAau/3pXzLXmSh/OqCZWNEkojkv6cEc7aJaCTGWEto0RiRtPdsn82wpBOfVhI2i8WI2Tas31bC6j8rp+rWZWLELcU03KfYqeyKXCqvKyLNbMBZbqVhW+mceFi9xcuK+5V3Xnipk/Jrcqi5XnmvOeXKDKf3oEL0qrnFTf1tynvL8VsovyaHyhuUcaPm9nx8q3SsuxHW3Qg1G3TUbkyY0A7lq/XUJP5cvVn5c8oOOWc4feY0ubm5vPKKQB/uIv6o8POf/xyAWDxG5npDahO5bmsJ/rtLU+2qbi2i7gHlG/Lf4aX6tmI2frKadR+uoGFrCf57ylJtq2/3Un+f4r/VtxRRvcVLwToXXb8dIDoVI3+1a07bhkRb31X5VG/xUnblTNyvvt1LTq2DdFsaNXeVsiJB6ilan0P1Fi+ViXlbfaJtEjV3ltJwXykrH/bhXmOneosX/x3Kv9fdW0zVbTPfm/+eMlZsU571xLPnMNmNVCTifs19ZVRvmfld/91l1N+XeFaz8q0WrPUwHY5idmVQvcWb2kyvv68M/90zdqm6rZiaRN/y20opuTQfR5kVa4mZFdtK59iw6rbilA39d3ip3uIlN6HJvfLBMmpmxazq273UJ+JFxY0FVG/xUrQpEfcfKKHmrlLKt+TT+KRfsXeibelluVRv8eK7KhH37zvPhneVsvrdZax+rJyCdS6qt3ipTo6z57X131OWmgsWbcohM9+G/67EXGtb+Tx7121V2poLzVRv8aI36Dj9Yie5DTlz7F1/33x719yr/LnqLp/yrFcp8blu63wb+rcpY4TvlhKqt3hx1lo4+f1WYtMxqm4sndM2ae+aW4sVe29U7F2/tWSevRsSflh+veKzJZcqMbdhm3dOW6M9IyVX6L3EQ/UWL+XXK/au3zbf3vWJsbPxKb/yrLcWp+y9mM86ay1Ub/FiMCvxu/Z+3+L2duqp3uKl6i7FLtX3KP7tf0fJfHuTsPfWxLzsdqWttcTMkf9qIx6Nz7N33TsSMeJOxd5JIkfDfaUz9o4uHiNgxmeT0KfpmI4oNlwsRsy24YoHSjAXmqm8qUBVjABSMWK4Y5wzP+9aMkbYfYrPJmNE6VWFWHMsmLMSc/MFYkT1PYn53t2+VIxofNpP/balY0T1Fm+KrLNiWyn+e8vY8KnqVNvFYkTDfaUpG1pLzFTf7mXlu5Q/LxYjUu88ESOKG93krcxeNkYkY3IyRkSnoox2hJeMEa56m+J3iRhRsqkA9KTkKBeKEcm5eM1WxQ/Lbsqj5DqPqhiRJHPVbS0lM89CdnlmyoYLxQiAhvvnxpM0o4HopHLKVk2MqL+/hM2fqqDh/kKqbinE26gMDPX3FFK9ZSbfUL2lMJWbKN7opG2shenpaS699FIu4k8XTz/9NAADhu7UOsi9Kovau0qovjmZxyqm5s5Z39BWHyveUcbmJ/y419qpvasE3y2JOHpv6dy29/qov1/x38NfO0mGJZ3KO0oBqLrTS+1dJakN5vr7y6jfNlNVoPauEqrvLcVZZcdRZqP2rpLUxvCKB0rxb51pW3OnF//dyryg5tYiau8qoeqeAkqu9cz7hmrvLqE+sQ4qvy6f2rtKKFjtpOt1ZW5Ydmn+nLbJuWHJpR5q7yqh9LLE+uo+L7V3lzDSFmK8fwL/vWWpOJS3ykntXSVUJvJ/dVuLqb17Zi3mv6cMT1023kvdOP3Ks9UkYr1/m2++vR9QbFbzgPJsFYl5cfW9pYoNE6jfNmNvTIoNq+4qYf0nqlj1/hpq7ypJkQzq7ptvw+Q467tZeTeNT/kXtXfdvcr9Vt9cSO1dJbjXZGFymLAXWim9NG+uve9PrDuvzqX2rhKKNipryYYHvPjvLaP5hU4OfuWUYu9tyrMXb86h9q4Syq5I2Hubd64N7y2jYVsppjwTueuylWdNjLN1W+f7bENi7Gx9vYc0o4GyG5V7qr2vbF7busQYYfKYqL2rBEdpJsSh5Kayufa+3zffZxO5hsrbStHpdDT/vHtRe/sTOa/SG4qpvauE7BorNfcWs+pdPupmta29u4S6BKm18sYCau8qIXedMudc8Y4S/PfO9e+kz5ZdodjbmyD5NNx/ng23lrHmvcp1Cta5lG/5WuXd1d9XPN/eiRjRtb8fS7Zp6RiR8NmscsWGxkxFVm6pGGFyKDZMxgjv5cq9NL/YlrD3wjECoPzWklSMcK/JUhUjXMm54f2lFG/0cOp/Ojj7s85FYwQoc5XZ9s4qslGwTvHnxWLEbBuueKCEle/z0fhx/7IxouF+5dmSMaLxE37Kbs5dMkZYihR7V9yq/Hn1Y9WqYgRA5e1KPMn2m3FWZVJ5Q/6yMSJJYlrxQCmOIhtTY9MMNY0vGiMUu8y1ocVpJDalzGsWixGpd56IEQ0PlVJ8xfIxoj7hs8kYYXSk46rOWjJGOCrNyu8mYkRegwv00LNzMNX2/BhReZvy5+q7S6i5vZg17y9j3Qd91G/1Ur911nz19mKq7lDuqeLtxdTcXpwiXdkb4zQ3N+PxePjlL3/JRfxp4u/+7u/Q65Vx2LYhniIq1d9TiP/uWWu+u4upvTOZs83Bf1cxa99byupHSqi/N3/mO0bZU6lPjBHFm3Oou7eEok0uhprGmBybpnDtDEmp/v6yVP4gr8FB3dZSSq/MTfxOMXVbS8kqtmDOMVJ3l4/6RBzKrrVRt7WUyhuVmFV7R2FqzwfAf78Sh+q2ebEVGanbWkrZTco9Vd3lTa2nAOof8FG/Tbn/fV9pxpZjpvI2JT5X3Kq0TW6m128rS42VAP57S/BemkdkeApjZjp1W0tTpIMVD5Tiv39W23tK8N+V+N3r8qm4sQh3XRZZFRbq7yuhbtbv1m0tTcWskis81G0tJW9lQjL7fT7qH5jbNrn2LVzvom5rKd5LlHG2fqty/0WX57DpM7XU3++jIZHfcK/Mom5rKb5r8hLvuGiOXeq2+Vj9cDmrHvGRVWFRfvcaZZytvad0nr3rEu/Ge6mH7LJMym9W7qnqzoXsPff+zY4Mmp5rx+m1K/ZOEAfq7p9vw5rEdUuuLVSeLVF8oWFbaWr9mrJ3Ypwtvzafuq2luFdm0frzDqbGp6i4ZmbdOduG3kvc1G0tpWBdYo16/6z71yfnWkrbgjVOxS6XuRO/UzznWW15VqbC00T6I7galGeruE6Z1/vvKlrQZ0GpfF23tZTS65X7r767BP+9C9vbaNdTt7UUU7Zis8otiXtI8CDqt5XN85equxJ55puUZ/M/qPjaQj5bm3ieypsUezuqrBz7XjvRSIy6WfkxJeeo3K/v6jzqtpbiqXco7+aBEurv9ylV0+IJe29Nzq8VexdtUuJC0meTyDCnMRVWSCiLxYjUPdxXRv39iv8UXelSFSOAVIwY7Q5x8n86lowRGJX7T8aIyptLyCq2pYjFC8WIpL1LbyhKxYjNT9Sy6l2+JWNE3dZSXHWJAgX3lVD/gI91H6tK2XuxGNGwLWFvEv5xXymrEnvKi8WI1LMmYkTplbkUbXQvGyOSc8NkjIhOxhhpCy0ZI4xuxd7JGFHUmEea0ZCqKrtQjKi6PTEPvlm53+JrXBRf4V4+RtxbkiLRNtxfgrPSjqvanngeL/67lThQfm0edfeW4F6ZlbimN8V9ATDZ05meSOSvN7vw3+2lYG0i335PIf57ZuZWdfeW4L8tnw0fKKb6Bhe1t+XiTZAia2/Pw3/bDJ/Fv8VD/e2KfV21JnonW4hEIlx55ZX8PpH2+/yx5557Dp1OR8vZFn70/R9TNLqGwWbI9KTTdUw5OdZ9JIQ9b0YvfLA1gsEYIyvfTBwY6QjRsWsYdHrad/Tjqpw56dh/coSpBBN/qC3ESOc4xqx0sED7jgBuvyPVNnBsmFhMmbSH+2G4bZzeQwOM901h9aSTu9KlSBzF4/QeGUqVjwSlbeC4Ul64Y3sv+WvdOH1ZxKNxeg4OkmacMdtI2zgDJxXJnvY3+gAPIy3DyrMeGMTtzyJ3Qxa9u4cJnh1j+JxS2qtz9yDppjT6Dymn1bp292PNNXHiuwoJpXabl9EuZRO7e88Q5mwj3QeU3+3c00/mLB3JgeYR0swGjn3zHJYcPfZiK+07ld/t3NmPo3SGZdd/aiSlkd17bIjSzUb6m0cTzxpIfQRJG0YTmzNjPSGG28bp3heg6u1epiMxxrtmypT1HQ3OVC8JKTbsO6wsSDre6KP06jwMGWlggd5DQxhm6VmPtIdS9m5/o5fCjR6GzoUgBEOrhpmamCmrOdw6xmBL4n539qMz6AmeVvp27hvA7MxIyaHNtnfXnkEyzGn0HUq8mz0DWHNnGIRD50ZxltqpuaOIph91YHWb6UyUmO7YESCrZMaGA80jhAcnlX97tQujJYP2HUqQat/Rh9M347OBpmGmQ8pAFTg1Sm7bOJ27+hg6ESJ3QxZu/wxhb7a9Q10Tis8eHEjYpQ/PCmeqgs1CPpu0d9sbPeSvdRPqDxEZncLqMdF/YkZWaqQ9xEBTwpd29kHcQyChB999YJB0Wxrumqx59m7f0Y8hXc/QCcUuXQl7JxGdjKaYn517hzDa0+nZH1T+vGuuzw6dGU2duD73YieGWwx07RlM3FP/HHvP9tng6SGGa7Jof6OP4eYQ+Zuy5/rsLHsPnZvx2eS7cfuzUxKHgWPDxKLnxYikvV/vI3eVEiPKrsonNh2bY8OFYsRYj/JukjEi6YfLxYgMe3rqd4NtY4SHFMmLxWJEyoYtY4x2hXCWZ6LP0DPeM7FkjEj6bP+hAZy1mViyTUyNTS8ZI/qaRvCsGE/cN0yGpkifFf8WixFJG3pWOAkcHCXN1I2t2ExscvEYkbvKlZKrS8aIZBnVRWNE0t4W5Z5Wvc/HaO84/Qn92sViRMreZ8fQG3XYC6xMTU0r97RYjDgzymi38m56Dwaxuk30HB6g/8AY0Yno3BhxeoTwgGLvwRODZPsyad8fpP4+DyO9IQx6w6y240yFFRv2t4bI7QzTuScIU1N07hwgp9aOJUFs7O+ME02Qr0MjMDIQo7dV+XNnM7i9MTitJCR/eOKHAPz5n/85F/GnjX/+53/mIx/5CN/5zne4RHczxKF7/9BM1Qgg2DLGwCnlu+jao3yjtgITOp2Orr0DZNhnvuuh5lEGzybG2d0DGIwGho4lvqHdA7iqbPgfKOH4d84xcHIk9V10Hwxiys5Ixf2Onf1k5ptpeaGb7n1DeC/NScX9gaOD2L1WuvYmYsCOfrK8M99Q3/Eg9mIz1nwTRlc6Qy1jdOxIxJY35s5Veo8OMZ2YG450hxnpHsOQoU/8bmDOONtzcGhmrhJW4mjvwQEGjo7hqreRu8pFOFFhuvvA4JxxNnh2Ju537ewjHnfTe3SQ8XNhuvYOkGaZ+a6DLWOpuN+xIwA6HSMtil2mItMwNfP+Bk+NMtymzFW69w2RYUlnIBH3O3cocT8ZO0c6xxlsVubTvYeGsbhNdB9M2HuXYu8kAseHcVZmEhmeZujYEI4Sm3JKB2jb3oezbGau0nc8yGSiutvxH7dSvMFD1y4l7rfvOM/eh4ZSm/3hwTBDLWP07AsweCJEdDKKZ8VMJYCF7J2K+9v7qLq1GO8l+XS8OkT3vsHUezvf3p07+4jHYLA1BGHm2Xu2z3bt6UefrmekWbFL524l7jf/UBlPau4tTtm7a08Qoy2DvsOJb2Pn3Lg/0DSS8tnA0RFseWa69iTsvX2uzwaOD6fG2elIFOJxpRLQAvae7bODrSGGWsaw5hnRm/W0b++b47Nz7R1L+SxA18E+yq8pYiJx3fN9dq69e8lb62a8Lwxh5tt7ls927VbefXJ9kIwRyapXGda0JWPE7HFWTYw4397+OwoxOjIYOju2ZIxI+uxY64gSI7YHGGlRrrVUjEj6LEDLz7vJX+8knDgtv1iMgJm5CuiJTsYIByOMzZI3OT9GxKbcjCSevWvvALmrs1PvZ6kYMTsmGy064tE4gcS8fbEYcb69u347gPc6FzaPbckYkfTZZIw499s+xs+Fyd3oWDRGDJwZY6hljK7dfeRvdjI1NUWoZaYm92IxAmbmhnmrstHpdfQcWDpG5K5ypd5N0me79iTXeYvECKB7nxIjzE49NfeWqYoRSQyeGiVuiOPy2QkcGyEaihM4mnw3g1hnnewdODXKeCBCfGqSX+57gbaBsxgMBv77v/+bi/jTxV/8xV/wV3/1V3R0dvCD7/2QYuoZbR1m4KSdrr2Jcfa3fbiqZr6hnoMDGEx63DVKif6BkyP07FfGiI4dAdy1jlTb7r0Dqe9iIqh812ZPBiaHnvY3AuSujKYkxbr2DsyJ+wMnRwicCDLeM4UpS0femhxGE+NY567+OWPn4MkRBhI5gM5d/aDTkVPpIBaN0bGjf87csP/YMMOJPET3/iHSzWkMnggq9/9GgLx1TnLXZdO7d4jA0SCj3co1ew+NYHYa6TmsxLD2Hf1k5ptofk4ZT8pvzU/FoWBTkIESK52JuN/2eh/OspmqHT2HB0m3GDj5vU4wKc/avXfW3HC2vfcNpOJQ7+EhHMWZDJxK3MNv+/A0zIyzs+3NhPK7fUeGqLipkOlwlGDLeEpeqmv3wJyxc/DUKIGEHTp39mHKTifNlIbJoZ9n74HjwwyeHZt5b2l6RluGmQhC39Eh4tFU07n23jeM0ZZB/wmlb+cbStwPHFSeJ3AkODNXOTaG1WOmO/Fvbb8NkDWrum/vkSFyV2RTs6WQpmfOMHDSRve+gYXtfXAgNXZ27RzEnmtN2bvtjb45Pjvb3hN9EwycHKH30CBDTeM4/bY59u7a2z/PZ/uOJNb523vJm8gheGZ0YXvP8tnuPQGIw1DrOFleG7HpOIETMxJxs+3duWcQQ4aB4dOKXTp29GN2ZpCb2CiZ7bPdB4cxZmXQdzSRA9uu+GwSkdGp1D0NHh3CXmih50BQaftG/xx79xwaTI2d3a/3YrRmLBkjkvYe7pxIxYhgcxjXisxlY0TvocHEPSgxYqIn4bOLxAiAzh19RCMxRnsnaHjQx3QkSuDIwIL2TsaI8baZP2fY01J+uFyMmD1X6W8KMjmayEkvEiOS6D08RHhwEnuhhQxbGqMd4SVjRNLegy1jBNvHsBdYiYZjS8aIUP/EnJg8HpjAnD0z1i8WI0CJ37mhKEPHwzTRRpbPAtMz9j4/RsSm4wx3zo3JZ19Q5DUWixFJuyTnKnUPljDUOspgIiYsFiOSCBwJos/Q4arOIqaLK7FzsRiRsDfA8OkhBk7aCJwYYuDwGOP9E4vGiGB7OBWTa7YWM9oTSv3O+faeHSNA8VlPQzbWPBPodXTvG0xVBVBsOELfseS3GyAvnE24fwym4XvP/ph4PM4TTzzBRfxp48UXX+SGG27gu9/9LpcatkAUOnYOkpE5M872HRsh2Kqs83sOjZJmNJBZZEan19GxvR+Tcyb33nNgiLHecKLfKCZHBoHEvmX79gBuv52qOws59cNOeg4MEkrIvw6dGqGv2ErvoaDS9vUA9mILPbuHGGoJkbc2i6lEHAp1jtF3JEj33uS+Tj/OyplvqGtvP3avlSyfjaz2cfqOBGfWnTv6yamZSRp17uyfiUMRGDw9TJpJefaOnf1MjkeJJLYsOnbOHWcDR4fpbxpm6MQY9jITuatcjPREUs86e64SOBpM5Zt6DgyiN+oZOjvK8OkQnTv6SZ81N+w9OMRIuxL3+w4Pk2FJZyixZo2MTMEshbyeA4OMJdZ0/U1jWNxBeo+MpO7Blmdiejyxl9MyylCi+ujI2VHFhvuVmNv2eoDsWfsXXfsG8DQ4CA9NMtweUmy4P7k/d569d/Wn4tCx585RvD6Hnn3JdxPAXbeIvYG+I0ECx4IET40zHZ5maiJKpF+xYcf2/jlzlcAxxd4APXv7cfhseBtz6Xh1gI4dc+3dd2iIoYTP9h4cVNaoZ4eJjCjx2TRrjTrb3r1HRjBmZTBwMrHH/EYAi8dEy4tKxSbfTXkpnx1oHseaF6T3YMLev1V8NonufQOpfNLYuRH6jgTpOZDcXzzP3nv7U3F/anya6UiU7t2B1HvMqZmp/DTb3pGRGH1HgtgKTJizjXTs7CcyOp2S9TrfZ5P2Bujc1UdWmZVQILEPu+M8e8/y2eS7D54bh4iSe5jts7Pt3X1gCIPRwHBzIifzhmLvlDycjpTP9h0bwZSdQeBYcm6o+GwSamJEyi77BpgamabypjyySm0ETiwdI5L2HgtEUjFi5OwEsenYkjGi70gwNVc59XwHhZtzGDo+saC9kzECoHtPP7GpOCNDEaZCUcJDE4x2hRe0d8+BQXRpesbaFRt27uinYLMLXUKCbKkY0fF6X2qvK92eTnQylsrtLBYjZttwYnCSnt1D5F/iwOaxLhkjkjF5dowYORfBVWdfNEZERmbsnV1rIzqt+PCC9uY8n93Tz9RElPxVOaQZDZz7de+SMSIeg5GuMKCjY4cyN0x+r32HgzMx4sAQ+jQlRgB0vJEY14zQcG8xvUeGGe1IxIhjYxjtaQycTMzbdw5gcWekqnD2HBwCA3jqsxluGyMaidN7IvG7u4exz7J39+ERIsFpYuMh9p7cTXOwibS0NL773e/y+4Qu/nsW7f3Wt77FO9/5TgDepr8bi8WCPtO2dCcgOrCA5ng8tmSf4iudFG3KYaQ9xNFvnVuy7fnwXp1D2yv9qnVl8zdl071zgXtcApYcPaveX8N0OCrSfc/dkEXpFfns+mKTQqS6CBFyN2Thu7aA1td6UkQRNah/Z2mKQKQWde/wYvda2fHXJ2Q3mRyfBO937YcUveK9/yzTK9aCxqf9TI5OvenX8l7tpnBDDsd/cI7hZvXGsBSYCM0qAawGaz5QTkZmBjs/K3tX1VuLGGkfF/nSxs/UMDU2zf4vnhZd6yIUrP6zcqKTMQ7/+1nVfWw+Cyu2lTI5MsXef5H5bf4l2erfr05H0ZUuZbNfGJ8bn6olHo2z6wsdSzecmpr/d9Vl8//ufCQISoPVx9i7by8ul4v+/n7ZTV7EHyX0ej3xeJw0MrhCd6vyl2r0jDVMATc9XoveoJPriJshf5WT7h2DqrvkrnPQK9SxXv/RKtJtaRz4UhPhwaXnkbOx4j1lxIEjX1cfdy5iBqsfKyfdnCaa7+ZvdmLNN6XIL2qx8dM1hPsjHBa+K3OeKUV4UIOcFZlU3FjI2Vd6xH4oRdJvt/+l8LvSgHUfriQ6GePAl8+o75TktoSXbDUPm5+oZbB5lJPPLjPuzYKr3kbuSifH/6tt+cYJeK/xULjBxcnnzjEomMdfhAKzExreU82Zn3UycHRs+Q4JbPhENWlmA9v/4bjMN8zgrrUT2D+yfNsECi5VKvpJ0PCeMjILzJz5WZemb1iXnrFsm/jUJOF4mNO5ewkGg7zwwgsXJUf+F2D37t1s3KiUM30bt2DSmZbpoR3uVVlUvr2Q4XPjHPtPWc4rb5MzVclCDVwrMhVSgmSZbYLGT/qZGptmzz+dUt0tu8ZKxU2FHPnGKSaCgutdBKBULqm5s4SOHf2pU71qUHNPEb2HhxhqGl++cQKVWwpw1djZ+bdNsptMfhYCf1r53jIMGQb2f+nNz6M0Pu0nMjzFvs+/uTkv95osfFfn0fxCJ4PH1Y+xJo+JiT5Zzqv+wVIsuUZ2/736+TiA7+15jHdH6N2rPue1/qNVTIamOfTVFtG1LkJB3YMl6NBx9D9bVfcxOfSs+WANkeAU+74g81v3qqwUqUwNctdl03t0SDYeAI1P+olOx9j1d8J4AejSlj9HH59WNhtHVrexe/9ucnJyCAQC4mtdxB8frFYroVCIDIxcZtgCgM5gWLoTEJ9eIL+6DNZ9tJIMcxrb/1q4NjeCp95B376g6i6uBjsDR9SviUDJXdnyzez76hkigcjyHRKovruItAw9xwTr7IuYQf2DJRizM9gn2HNwNdjJLDTPkF9UYt1Hqgj3T3DsO7J3ZcwxpghUamAvMVJ9Zwntv+mj503Oea18uAxrnlmeS9Z4rVgszpFvtKrvlOQnqzcfABs/Wc1A0winf9Ktuk+SMNj8XKfqPu6VWfiuz+PUTzoZOqF+PnkRCRhh7SOVtPyyW2S/1Y+WY84xsu/zx1NkULXIrrWpv5ZOR946h/g7rNxSgLs+i5aXeundt/Q8LyUVPAt6q2WBlnMRG1dyrMdzf0t/fz/PPPMMt99+u+g+l8PvVe4N4KGHHiItMbF8PfYDAGKjY8RGl38h3qudrP/wrI1YnV75bxG0/2qQ0y90yglK17opbvTQ8O5S1X2SBCVLgfoEVKg/xplfdIo2bAAsbhMGoz4lO6QWGz9dw+Yna2XXKjCx9kMVKZkltbD5LORfkr18w1lwNVipvb94+YazUHl3IY1P+0X3N94/hU6vw+o2L994Fo7+R6uIoASgT9crpzyW/57noPHjftY+XCHqk25NJ80sLH5mISV19WbD1WAlq1JmCFOOEV2aDr3wsVa9x8f6RPlAtdCn6ZcKJ4vi5DMdIoISgF6vm8OSVYONn6ph46drRH3yN2Wn9KEl8N2St3yj87Di4TLKbpbFpOqtRTQ+7cezxr5841kwZWekZBHVYqwlxIkftHLsv9QvFpLxXPp+vZd42Pwh2bsCOPAf7Rz50RIbtVNTcwhKlbe5WfN+7+LtkzjdliIo9Yba2H9gP1lZWbz++uvie7yIP060tytVGKeZZDCe2IyKx1WRkNZ9uJLS69V/20e+28r2z8kXlZs/WkvZNbLYk9xUNuepjwdHv3WaQ/95VkRQArDmmsRxJ3ejg8an/SL7AZTdlJeS6JL2k6J8S35KtkstNn66hvUflY2xaRkGdAYVxLhZ6N4xKCYoAegNOgxG2Ri7/mNVrH6vb/mGs2DIMKDP0KdO+KiFo8qMo0o2B9UEs0LkQ3ipNHMa6VbZxGv9o1U0fsIv6mPOU/TR9UK/GDg6JiIoARiz0tHpdYR71c/j7T4zjU/Jv9/qe4rE7zd/sxNzoayPtcTMqkfLMTtlvr75iVrxHDl/cz5pJgMZmcuTcmZj9z+cpPmFDhFByZxngjAigtLKR3yUXpGbksRTiyNfP8vJ59pEBKX1H6ui4FLXsu3iU5PEp5QTnW/wAr29vdTU1FwkKP0vwYYNG3A6lcqBr/NTUd+8TU7WfbhSdfvAwWFOPHtOTFByr8rCd20eDQm5SDUYOKwQlEyScW8CTj7fLiIoAWTYMki3ppG3QRaD1324kk2fka3DTA49Kx4uS8kcqO6XkEWTIKvcROXtBaI+3qvcbH7SL7q/iUAYnUGvVJYXoOn7HSKCEijzLp1BL/MLFPLamvfIcl4ZmeniOQomxd9587iCKWSVm1JyXWphcRkxGA1zqsmrwZr3+USxAsBg0ovnXQAtP+kREZQAdGk60oyyZ1r7oUo2fKJa1Mfpt4nzUAAl13qWb3QearYWi/t5r3LT+JQ/Jc2mFrZ8MzbB/gLARDDGwW+2cOzb6g8aJL9bCUEJoPyGfDZ9RJ7z2v654xz5r1bV7b1XuVnz2PJxIj49nSIoBeNB9h7cS2ZmJr/97W/F93gRf5wYHFTyXJNEGIwqlX/j0SjxaHSpbgCseHcp3mvcqq915Dtt7Pui8DA6sP4D1VTcKJsDJAlKSfkwNTj57FmOfltGUALIKrFiE65JHVVWGp/0U3K9LDYWXOKkOiFlJkHh25Zfh50P71VusmuXL5AxG2s/VMnaD8rG2DSTYU7FejUYODIiJigBGNJ1qWpZarHqER9rHy0XXyvNlIbRJcsD2IqM2MsuwMQLFDkx9Z8HoFTnMWbJnqlhWymNn5LlvDCCLk2PXrgHOHJ2QkRQAmWvTJemJ9SvnnhptOvZ9Hgt3mvVxz9QqnFJ36+rwY45X/aijHY9De8qFcU/UIhhaz8k+34L1jgxZqXPqaKtBge+coYTP2wTEZSSzyMhQ1XfVYjvhnzyNsjWns0/7uL499qWJCjFY/E5BKXVj5aRt8Gx7G/HxkMpgtJr0R/R1dVFdXX1752gBL9nubckpqamEmXD4pwOHaLCshJQyEpLVVXKqcokzWzAkq8n1D1rcynJLFigslLgsLLALrspl7Mvqgv6bS8HcHitHHmmVVX7JPwPeHGU2Tj3Wi+dKk9y9u5WHMSSo09JGS2Hsy/0cvZXveIqHVPj02JiRFaZGWNWBmU3FnHs2+o3BFZsKyUei4s29ytuLBZvKkUGJ4nH4ti8NkL96qLBWEtI00n08tvycVXZRaeORIzcWZgYiqRK1qqFtAIQQN2dXhwJuQZpJTApqm9TNlwljOhT3+tAls5UEA5ECJyU2U9LVaj6d5ZiykoXV+bZ8TfydxWPxUGYT/JelovBqE/JoqlB9dYicqqyMJgNND+rvp8t34zFbUqVo1aDqbFp4tE4fYKNKECpTCbhu1lQ5CGFJMNV7/YRj8fFldC69w+m9IbVwLPGTmRkmtEeILhAg4UqJwFZXitppmVi5um5cftQ7FcA5OfnU1MjTypdxB8nCgsLqampoampif28yjXcNfOP8fjiVZXMkGFPJ6fGTusv1H3b4+eU3WhnrfKRqq1akpRFlaLxSb/ynaqMq+HBGAyGxZVfdvzTCXGVmN7DQcquzGd6UkaIyl2RjT5NFvBrtxbjrLITj8ZVvyvMkNuQjbMsk/7Do6qvFY/GiU/LqmxJNyeTWPfhSsZ6Jmj6XrvqPlrG2N7DQRyzZDlV9dkb1FR9xX9PGfGYep/VipJLPRRtcmMrMnPmx+pPbe38W/l9de8bxFUjIxyHeyY0nZLb8Ilqeg8Pce6lPtV9mn/YSTOyJI/ZbYQ4jAckDBtFSs5eaGHPKfU+X3ZVHuhkc+SyK3OxuI2Yc02EB9XPb6bDUSZH1c9RAFpe6Kbl1W4Z2cipJzwYE5GNSq7zULgxh94jQyKfPfTtFurvLRV9jyXXeTj3Up+oMpTdZybdmkZOlX3Jqk1JchLA6fjR1P8fPHhQ9bUu4o8fAwMzMkqn40ep0NWr6ueutpNhTyezxMToOXUlKpKkkuIrc2j/lbr5VODgMO66LI7/UEb6LLs5l/w1Ltpf71N9rYHEHMPk0Kek0ZZD794hTVU6IsEpcSFQc54ZW76Z0ss9IhLs6vf4II6IvFFxczHGrHSaf9al+tnG+ycgFsfqMRLqUNdpIgg7pBUeUHwob5VTNG87+cNOEI6xAKMdIQaaZHmAPf8on0/6rs0jf7ULY1a6qKqUFtTeXYrOoBfZ/tzLfZx7Wf2cJonRthBDrbKT8of+TV7VqOqOQmz5ZnH1Kmm1JoD4VJy4QfYBl12dj9GRztlXelV/U96r3BRtdmOypyf8Vx2yyzPJ8lpF72t6MpaQKZHlJ3f9XZOMWJdoqzZGJLHq3aXo9Hp2/I0sXrS+JttUd1Qqi+9gc1h0jzm1WZiyM5TnW2T6miQnJbFP9wrxWJzi4uKLOa//RTAajWzZsoUf//jH7OdXXMO9qX+LR6NLVlWy5ppIMxlo+6W6qltJ8o+tyIjBZGD4tLq12LnXepfP4S6AjZ+qRqfTs/Pv1K3TIyOKHBGgkDdUcpV2f+GkuEpM8NQ40xNRpseXJ4PNRsHGHDKEB+1LrvdQtNFNmtXAuV+oj8NFjW6lMuIJ9Xs38WiceFQ2Hh3UMMaCUvkqPDgpIqXs0jDG9uwfxFkpy9mMnIuIxweA+geUObJan9UKV4OdmtuL6T0wKKpUtFfDfLL3UJCYMLdLRNt+7doPVtJ7eEg0b21/LUD7a7LKgeY8M/FojMkhWUW5vDVOssszRVUbK27MR5+mF+VBiy/PJbPIgi1fVgEsMjzF9IQsJnXtGKRr/6AoBhrteiIjMRHZyLPWQcWNBfQcGKTlhR7V/U7+pJNqoGe3+nVnQaOTru2DDLcsPO9aqHKSMUcharlr7PTsDi7620lyEkBPtI1pFB/as2eP6vuT4Pcu95bEzTffzIsvvgjAdbaH5vzbQkSllNxbYrN5USxAVFrzZ6UYszI4/WKnbDM8Hl/+erNgzoGGd1Zz9D+aVROOYFYp/M8dFxGPLAUmzC4DA0dkJ52kyKq0iKS2QCH0jJwbI3BQ/aaXq0HZHHqznycJ6XOt/rNyzC4jB758nLA0tyHwowsJm89C6aVuzrxwTvRMWuTefLfkoTPoOPO8+knDBYWGd7TxUzUYjHoR6c3itRDqD10Yf7CA920e2gQbeVgU8pqElJjsZ8mxEGp7cx+s8FKXahJoEhs+WU2aSR5j/Q940afpOfofreo6JH1IjYzWLGx+ogadXsfOf15gE34RgtK8ay4k93YeQWm0/hS7du/CYrEwOqo+Nl/Enw6Sm2U2HGzSXXP+P87vEI8rZB4hOQeUcSI2FddEeJBcs/6dpURGp2gWJJjNTj2rH6vRJv+4WSZJpwXWEnOK7KUaZqi5tVhE5gEoutJNx68uUAl8M5idZsKd6p+t8Sk/U+MyiZjktbT47YWA7+Z8olNREclGi9ybOc9E2dUezr4WENn8gkHDO7KWmFn5YJlY1sjuMzPScmFs4Kq3MRWKiq6XsyITW75FPcEwgQvxXK56G6GuMcKCsJeMsRNDkyJpY3Oeifr7vOz5yin1vqHBj/I3Oym7Jo/x7gkO/bswmTzregvJvc0mKAE0F++ho7ODhx56iK9//euya13EHz2eeOIJPvvZzwJwje6uZVrPggkxOafhXaVkFlk487NuccUT0fVMSin8Y8+0i6SmVj1ajsVtZP8Xjovk20wOPeY8s7i6jxQSUlgS3qvcjPWERRJdmSUm0syGN/15Zl9P8lz+bV4cPhsHv9kiJjto8dsLAVOeidLLcmh9rV/ks1rk3oqvzMGQbqD1JXlVhAsCDe9o7YcqMWami2SNTHkmJoITF8wfCt7mout1WY6o6o5CTr3YKb5HS5FJ/m0IkbsuWxzH1zxWgcmZwf4vNKkmgwKU35qPMTNdPUFT43e+8VM1GDL02mR8EtdcSO7tfIJSaF03u/bvxGw2X8x5/S+FwWAgFouRiZONhmvn/NtCRKX49JSIyDMbjU/UEp2Ksuv/yQkjkmtW3l5IbCrGmZ8K9lOM0PgJP+GhCAf+VSDjjiIbFTgkI1ZKYXQbFSKV0O4Vb8/n9Evdon55G7LpOTSk6R2LYQSj3SiqYrXp8VqmxqbFMp1a/fZCoOjyHOLROJ2CsVmL3JvRDt6rCujYNUC4+y1oDA3vyGiHtR/yM3x2TCS9aCsyMtZxYWxgLzNBLM7IOfXXy6qwkFloER8YuBDPZS8zERmNi4hQGJWqsOH+CAe+oj7GGu16/PeXcfy7Z9RXX0r6kWC/0VFlxX+3l9HOEEe/PV+1ZSGC0rzrsbDc22yCEkBLyR5aW1t56KGH+MY3vqH6HiV400hKMLNZpkPHtbYH5/37bLJSiqQEuFdYKNjg4tC/L7ERkyArxaNRzDngu1G+6b76fT7MbiMHv95CqOvNW4R4r3bjrsti3+dlJ1Man/YrJ7EFVT6yay1U3lwslpgD3rJEGyzguyqPlp+qZx+u/VAFxqwMMWlBCxqf9jM9ERWdJKq8oxCzM4PD/35WdZ/UM2moEiWFFpKSFqTIJYJnKrzURe5KB/u/cUb1u7UUmFj1Hh/hgGxg0YJNj9eiT9OJnil3QxaTo1PiSkAXDBpiQ/27SolOxjghmHCV35ZP3kong2dGRf1Kb8zFVZkpjrFSpEhrfyUjZWTXWsipcdD8XBd6W2LcW4KclLvGimeFgyP/MYuUMZukdHq+bfpDPRzWv4LJZOLzn/8873rXu0T3eBF/Gnjuuee44447AFjDVTh1zvmNZk96Z00BVz7io/23PaorI1XcUUD3viEx2UYzKUWI1Y+VEzgyTMdv1C+Q6h4swVGqVMyU9PNv8xKPxjnxjIxA9FYm2rjqbej0OlEFpsan/UxHouzWksQTYPX7FU3w7f9wXLX9zE6ovqec7r0DomosjU/7mRp78/1VC0lJKxqf9jPeOyE6bb/iPWWMdoc5+6L6ubiWOZ4WmAvNrH53mZiQUnp9rpg0dMGgMTas/2gVJ59vFxGbGp/0i6s8YYbV7y6na5fse5JCK2kNwP9ACcd/eE61HVe+z8e5X3UTPDXTYTZJ6XxyEsAr8R8SJ47f7+fYsWOi+7uIPx0YjUYmJyfRo+cq3R2q+2WVm/Benqe+MrMJam4toun7S0hHL4Da+4rJrsjURkoRwL0qi4KNLg59q0W0wb35ST/E4uwQnELOLDFRdWuxfLMH3rJEG1BIUW2vqieWNzxUSqbXwv6vtTDR8+Y+VONTfqZC06JKRyXXerDlm0Xxu+HdpWQWWi7YfEhKUtKCtR+sxJiVLhpn3auyyF/n5NQPzqon/ZmUzZTxnjCHvqY+z6gF6z9RRbpZNm91+m3EpqIEm9+iix8NsaH6zkIAUbWmgs1Oyq7NZ7B5hBP/rX7tWLDZiXuFg0Nf1VbJQy3WfbiSdFu6uFKbpchE3moHLT9Rt1ZwVJopflsuR77Zmvq72SSl88lJAOPxIHvSXiMjI4PPfe5zPProo6J7vIg/DRw/fpy6ujoANnANdsN8ebDZZKX49EzutWZrEb0Hgww1qSAfx+N4r3ITPDMi2qiH34GUIkTDu0oZaBqhS3DIzndzHvlrXZz7da+ITOC7OQ9DhkEsUfVWJtrYy0wYTGmiKimNT/qZDE9rqtQjgf8+L44KG/v+pYnIiEpiqhHq7/HSe3hYRELb/EQtkZEp0eEjLdBCUtKKxqf8jHaG5owxy6H6niLC/RHRXHzNYxWYsjPe9Gcy2mHth/2MdsieqfBtLjr3DLw1v0GNsWH1o+Wc+VmHKC5v/GQ1+nSDuGpYw7tKCRwJ0vMm5ryMOUbWPlpO8MwYx4V7CrNJnclxbylykv++Ijp39zN8ZmbCO5ukdD45CeA30R8zSYTq6mqamppE9yeBvAahAOPjyumhOHGOh3bN+/fYqDIIzCYogVLO1ZJjxJSzxI/rZm493E+KoGTzqdcI6jk4SDQSg8n5ScelsPaDFWx+slZ1+7ZXApo2z4daxmh5uUvUx7PSSZrZgPc6mVZs49N+Njwm0wZf+6EKNn5GVlp1xXvLaHxKpu+59uEK8lY7sQj0ujt2BhgXnKL6XRAejNB/QsZAd1XbseXLdICH20JMh2Wl7CxeC+s/VkXuBpk+uhas+UAFtdu8oj5j3WEmR4UlB1dnY8o2ykgzk5NEgpP0HHxzq2MA9B0ZYqRDxujxXVNA7V2loj5rPySLQ6CQ4zY/WSuKkzafhcaP+6l/p+z+7IUWHKUyaZ0zz3cz3hsWEZQAWn/WK4qx9Q+V0PiUXxRTAMa6Q0yOCPzVolTgGzoRovm5WbF8mepJxZe4sbqNGGevtU8mEo0LEJQA9sd+wfT0NNnZ2RcJSv+Lcfvtt1NUpOi+7+fVhRsliUmzCErmQjPWXBO+6wpVX+v0j7oYPxfGnGeakVZTgcnRKXGMtJaYaXzST+Wd6u/vwJfOiIhGAMeePcdIZ0jcz1Fqw+FbXM54ITS8p4zGT/gxO9VPxZ21Fhqf9OO9RjbH2/xELSvf5xP1qb7dS/mN6u0NMHxunJ79b660LEDPwSHCkhMwAOixekzkrVmAuLcEJkfk/urf5mXlIzJ7a0HuRgfrPlwp8iHMihRrUCgfYisw466TzSX7j48w3n0B5uLhMOPdE3TsVF+5ylFlpnBjjvi7aHzKj/8dJaI+Gz9dw6pHy0V9NnygWrxe8t2cT7otTVzi/cwvu+g7HhT1IazEWAlBafMTteLvIhaJMx2J0r1HfaLQWqIMSMe/o56gZM4zYfWYqLy5eM7fJ4lJCxGUmuL7iaOMo3v37lV9fxfxp4fhYSUPECPGifh+1f0qbioms9CCyaNyPTJBiqBkKVK/hune289UaJqYLOVFw7tK2STI9QQODiub58Kw33dkiNM/k+W8ssszMTrSKb0uV9Rv85N+1r+/StRnxcNlbPikLE9Ws7VYIV9JrvOeUorf5iGrXJDz2hVgtC0EE2/+WDvaHiJwVJbz8jQ4yBJK7QbPjhEZnhLJYJkcetY8VoF7zZuf82p4dyk19xSJ+oy0jzMxJPsA81Znk1lgQZqyH+8J03MgKOqjBd17Bhk6LatiU3FTIf6tC1SHXgIN75bFIVCqO2x+vDYlP6YGJoeexk/6qXtQNsfLrszEWS3zu64dgwRbxzjxnGwjqmvHoIigVH5rPpuf8IvGC1DWc5GgwF9Niv1CHROqCUoAvusKySyyYMqbub8kMWkhghLADn7J9PQ0OTk5FwlK/4vh9/u57LLLANjNLxdsE48qeyezCUpGOzjLMym7Sv3coe3VACPnIhjtKBvqKhEOTDAsXG8bc4xs+nQNlVsKVPc58s1WEUEJoOWFHgZPjYqrnXjqHbiqMkV9Km8vpPGTfsz56o1nzjey8VPVeK9yi6618ZPVNLyrVNSn/n4flTfJcl6BE8N075ZV9tOC3sNBRtvGAYH8WATspTby1mSLrhXqm2C4VVYB1HdzHvXCMVMLsmttrHrEh9Et+ABR9mqDZ2XP5Kq041kps13voSHxt64FkQgMNo/SsVP9d2vMMVJyZS4N20pF19r0mVqqhXPdtR+ppOHdsuusebiCzU/I9jULNjsx5xhx1jpE/U79tJNeDXvCR77ZKiIobfxkNQ0PCb+LySkiw1P0HlZ/nWRMPf2TuVXnliIoGe3gKLNSccPcMSZJTFqIoNQePcNk4gK7d+9WfX9aIBMHFcJisXDXXXfxgx/8gI5YE6WhBiyWuZvjsdGxedqxu796BluuhYllvrvkpCOJDR+vIs1s4OA3Wgh1Lb950b1ziO6d8s2U6GQMNNSfUpjUU+z7grrNdOlGPcDJZzoUuSmhJNPk6BSjPbITLXq9Hr1Q9ig6ESUej2POQbX8WMvLXeTUZouqXfXuHqZ3t7x05eYnayGOSD/zwJfklXl2/ssJcWWa0z+WJe8AsgqMpFvTcFZmabKHBKbsDNJtspBy/DtyH9/3+dOYlyIwLoBQf0z1d5eE75Y88lY76dgeoO0V9ZsjkopfSZx+sQOHT7apFIvGF1K/XBLGzDR0eh1jLTLnm56I0r1PJhe0/a+OY/GqJ0MlcVCQeLHk6Fn1aA3dBwY4+4KgGoJeRzweF1fQS1XrUxn3Nj5WrVRe+seZ7z02NobeuPTkeu8XWsmptxCZte6JTU6hX4SgNOxvgt1gMploa5N/Uxfxp4X29vZUJcvfxH/KZbpb5jc6r4hmuDPMyefaGDgqW1yZnXpWv9cnqjQjlV8DUtWaDGmyRL3v5nzyVmWz/R9VVtwJw5Gvy08eH/iPs2K5rZ4DA5iy8iAjA7U7eoOtIdCBOXu+BNFSiMcgNi2buPYeGWLopGzeIK10AlB2Ux75a520vtZLl0qpz+4dg2JJvvBgjP1fPCaStAJt/movsqBPf1PPgQCQU51Fhj2ddIeR8KBK/wujqSrU9r88LiIjArS8IJf/3fxELfEYIhnJ8CBiSa/gqTC9R4fo3qd+HWguNBOPxZkcl5HrdXoduvnKA0tipC2EOUf2nbe80E33waA4FvXuCtJLUHX7NR+oIM1sEFWQxazEoSnhYYtwz4SoMluy8pJUhi7cM8Hx752dU0UpiYUISuF4mGh+mLRAGo888ghms/DjuIg/KZhMJv7v//2//J//83/opIWyuB+TbvlN4X1faCar3CSSp4IZWTW1lZGCzWH2fE4e96fCUWWtKawusv5jVUyFohxUWb34zP/Ix4q2VwP0HR8VVw8K9U8QFshzAOgMOnR6Wc5rcnyKeDSmSGKpvMfTv+ghb7VjzsnW5TDUNK5JVm7jp2rQ6WHn36o/DXvkW63i6+z511Ni0lr7r/pp/5Vs4zQ9KwOTMwNXlZ3A/jc352XLtxCdlI1lzRryeEe+2YrJgUg6kQnEFZTyNjnxXZtH585+zr2snuwt3dwGOPV8G9lVwpzXtDznZc7OAL2OYLtgPpSRweTIlPhQ486/bZpDslEL0ZrJBJs/5qd774BIZtCQpod4XFxBT+qvax9RKoVJZej2f+k02TXWeTFyMYLS+PpOdHt0mEwmzp2Trzkv4k8Lv/71r1Oyb69Hf8rbDPNzXufvGUZG4Nj3Whk+rSI2zM6XGRVppsjwlOrKSIcEqhmp++uPEI/HQTjnKLjEiffSXA7860nVFXdOPCPPGx/4xlmRxBlA78EBMgtl66RwdwSdQY/Rni7qF43GiU3JBoyOHQGG22TzqOYfCStJocjR+a7L59xrvarl0QaOjTBwTK1W1Az2/ctx9RJTCWjx1+zKTDIsbyqtQLmOz4bFY8LmkUnsSSUQAUX2VsaFovP1AZHkHcD6j1ej18MuST4lAk3CKjuR/ggdbwQInlHvEEY7xKMxpkOyua5er8Ogl+VAB8+MklUk2zfs2jHIwOlxcSwaOjEmqpjW8FAJRqeRvcLcaSwG0xFZ7j0yEpsZW1TsNxpzjP8/e98Z3sZ1Zn1QZwaN6I0gKgESYBE7KVpucrfsWJZjW467LfcuF0Uu34/Npuwm2U0vm806cZqT2HFP4tiOExf1XkhJFIso9l5RSAL4flwAJCVKuJe7cpyE53nyPJF5BzPzzp333nnvueeg/A4vIoMx7P5Bqg6aTJL5k/jUhcfYGLDvp22YOHHDbzKxIEEpFo8h7OiFpFuC++67DxoN2xyeFWfU7i0NmUyGmdRE82LVrSf9PRGZnZTOJSspbGL4LrFj/08WlrSey4gGAEt1Dhy1Ruz8DmUiSt16+f0+8Do5k63aYrD86SCmJ2eYFjx8V9lgKdWh8aU2NisoBaCyKpjJCP9ICFzvgMYmMFmWVT6cj8RUkskSzFyhQd4K8xm3mhKMgPviPBzfMnjGn+snZffmX5OLid4wuj8+s8oLwRudEIvBZAlpq9PBeZ4F+19ooyaz5K+2Q+dVYfsPjnw6rRM/IRhKlBjczzbRr9sYRDKexNZ/py+W2s7SwbPShua3O88oCa/4Njc0DgX2/OAQwgMJapJS7tl6mEu02P29+YunpyIpWavVyHEqcPjl2eJTYmp2nBMLJxfAGsJb0S1qgkajweuvv44VK1ZQXdsS/rGxf/9+lJaWAgA8CMEnot/NHVybh969g9S2b+X3+dCxtR/9u+g/fIRcAeW3eTB4ZAyHf8tmW8ICxzlGOM8x48jrx5lsy2o3FCKZTDLblumDCuq4/UNCAKru9qPv4Cja36Vb6NB4BRR+1omWP3YxPaPQTS5Mhadx9HfsCz8ssC3XQ9BziyLcsOCTsnvTeAXYKg04/GbHmbUaTNmBtf+1l4n8WHYvUdrZ8wN60lHVI34Mt0yg+Y0z+4w+zdB4BYx1R5ieqalCA/8qBzo2D1C/rwCJt4SXYOu/nTmpZ4BI6Y/3RJiJo+UP+HDsz93UubjkTg+OvnIMkSH6ovaf8TskkgmUlpZi7969TNe3hH9caLXajKrShaLPUh/Ha8XwfSaPetFa6xfgWmljtvwpusUFTa6CyVZtMah5sgAz4Th2fZe+NuI41wjn2WYc+l07hhoYCPM8oLbwGD/2KfVv+wTgudQCnU/NFO/SO90AgH0/bqM+RleohPNcC7OdHzN4wH+pHT27h874c/2k7N7cF1sQGZpC744zW/PyXmmFXCHDoV/TL2LpQyr4LrPj0Evt1PHOO98IU0iLXT8++qm1TvwkoPULzNZ1NU8QVbZtX6P/xtSHVCi42onW93rQs+XMKcP7V9thDGmx+3/Y7CMNpWo4ao3UBDmtX4ClVM9kkXc8eRRHJfuhVCrxy1/+EqtWraI+dgn/uOjv74fZTBSmvSiCV1J8cqNTsBy9l1kw3Dp5atu3E5ZKi292onvPCAb3syz2i1F+XwCDR8bZLdIYYCjSwP+ZXDS92cl0fZUP+SGSiZhtyzQeHmOt/8TJnwPKbvVi4PAYNWGXM3IovsmJtnd6mYhH+VfakIgn0fJ79s3wLDCUaKA0cUw2Z4vBJ2X3Jtg42Mp16Pyoh5mwxYqSO9w4/lE/Ro7Qr4GFbnBCwouZbNuWrfNg5Pgkjr1NX7f5R4Ng4xAZijFZxGlcHIpu9OH4x31MBPvSOz3gtXJs+zrbmgArap8qwERnBAd/wSaKUHKLCx3bBjHceEIN/RQkpYJr7Wh7vx+xgTlcmrnjo+hkgtl78d8giSSKi4uxf/9+quv63+DMb/MFMD3H2uYvE785bdu5TOei61xQWXko8uhojL3bRzMEpaxKK3MmHBllJEbRj/L7fSh/gF6+f/OXGpl3ZA80jCKZSILPYaNy1j8eQslaNnkx/7W5mY8maiiAgrVsEnBQAEU3s9mCBa53MFtbafOUkKvZmNc7v3WUiaAEEIs9LkcOUxm97KXtLB3qnwvBeQG9fKU2Xwd9vgbuc9hsXj7NMBXlwHWOlemY5RuDqH6UTaZd61Yix81mxdO9ZRhbv3KISW1H61ZCppQyEZQqH8pnlpD3rLIwW/g5zjfCXMHGevWvSeUEhtzoWWVBwWoXgp/Ly954DhLTCcRjbEzt7o+HsekLDdQEJYVTgbqNQeT42ZK9SAyivDSQGsCzcXsV5H+dHw6dRFA6HZwrjNB5lZl4zyUoLYRwOIyOxCHE43GsWLFiiaC0hAxKSkpw2WWXAQBa0YBIkq6AKujJjpj8VfTv7+7vNxOCEsMGqbTSh0TONg3VBgTUbiiktrfq+GAAm/61gYn8AhDVx0SEbRdW6CYXCj/rhv1sQ/bGaQiEnOK+hM2uxFKlhW05m22ZpVYLx/lsktk1Txaw2TNFALlGBoOffj401hLBtn8/zPyMtG4ljAG2cbD6sQBqN7BZRrjOtTDLZX+a4T7fCmMwBxoGy2HP5VbUPxOCoZh+HmWvMkDQczAyyjDv+UELE0EJIH1OxzjHW/50EN5VNqZjQjc6mdWkCq5l/EYCUSFhvbaitW7UP85mLSRTypCMJ9F/gK1yt+ObTUwEpfL7fShmlN4X9GTeNT2x8G76Ux0DEIVbWoKSNiBAbRcQupE+z32QfBOJVEFniaC0hLkYGRnJ/P8Pk29RHxe8wYMcl5La5mukKZIhKPFa+uubmZxBMplkOgYAQjexWZhu++phJsIMAAw0TiAxk4Bcw6Ygt/zxEIpucDMd477YgqpH/EzHAGCyXwEA8GC2BXNfbGG2ttJ51OAZFTb3/biNiaAEAMZgDrHNLaOff+oKlVj+dAiui+jrV2oLD3OpDq5z2WpEn2bYawxwM9gLAYTMUvkQWz81hbTQ5bNZ8Qw1TGD7148wEcL0+WrwejkTQankdjeq17PV8OwrDMwWfpYqHUxlbMc4V5pQ+bCfyWLQWqdHaK0Hhdez1bxmJuOYYVSVHGqYwOYvNlATlHitGDVPFDBZRwLkuzyZSLAp1PHA4L5xJgUv/xV5MIRyqMeiaDKKw9iDeDyOs88+e4mgtIQMTCYTnnrqKQBACw4iFqdcueYAa4Uevkvpv7cO/KydEIA4UCutxMYSSCaTC639nhYqB4eqxwLU9laDB8ew5cuNTAQlAJgOzyDOqJbivdyK4pu8sJ/FUIvigPJ7fcz2bdqAEuZKLdMxuqCK7dpAVIKZbMtigMLMM9W8YgMx7PxGE7MykrFYC1Mx25hWts6LKsbx1nOhFY7lbM/n0wzHciNsVQYoculrRNYqLeo2BmEool830waUUOcqYCrWMl1fw6/amQhKAKC0CNB72eZ4tU8WwHUJ2xpy/pU2ZjUp96UW5mPK7/PBeRFbnyv5nBvLH2fjBshUHBIzcQweYas37/txKxNBqegmJ4puZOM6gAOScWBmas7aQ5b1Ri7VPfe/cOxkgtKpjjFxMPjVCF0zx9oyi0zp1vi7SKZsxD4JghJwhu3e5uK9997DBRdcgClEcDS8F/mKZQDmqyilkSYqbf9mK6y1GoSPs0l4VT7kA5cjp7Z927cIWTsA4LVsxQAAgAKoub8ATW8dp1JGGm0KL0rhaawjjLFOtt38ObkKSAUJWSCnPLTijnzwOkLQ6d9D93KU3uiB2qaA43wjOiilnCVSMURiEXL8Cow20V0cy+6UuQh+Lg8jLRPUVoAHft1G/g9DuKNDMSAJiBkWaLu3DEOmlKJ/Lxuzuf65EMY7w9j/P21Mx7Gi/rkQIv0xJpJX89udmInQL0AAhE+YSLAtHm/+YiMUdraP9OLb3eje0c+kCLQY5SkJJ4GE0RbGVm4ARGBSD8qrN0EkFqFvFz1jXetWkpzA0Ld7tvZC71Oj8VU2GUrW97XqET/6GkfR/id6FrlrhQFiqQhyJZvvCuu7k7F5+1e23L3tP1thrVYjMbIwOSkRic5TUxoI7AcOARzH4fXXX2c61xL+8fH73/8ePM8jFovhY7yFC5F9V39kCGj+Uxd6t46wnUwA6p8IMdm+bfoi++4ZTsdBIhfDfpaFSTXFdbEZer+a2p51MRZfDS8fQ/kdPnTtYJD6jQAylRS6fBXa3qaX7/ddZkdiOslkeea7yI5kIomO9+nnEBKZGDKBLV8uRgnIUKyCpcyAhp/TS/fv/u8WRBhtXpKJJJJxNgHZpjePM9u8lN3rg8LALaqPs2DZOi+UVp5pJ1rTK60wLDNhrIV+53faPjLcRT8Z6PpwEMMHBxFh2GBuW66Hyi6giWFnNcDe5wzFKmLBxjD1cl9ClCqCV+WhkVJm27ZcD2MwB/I7ZdRqQIJeDJlSCk0eo+z1jkEo9GyVoa4PB6ktFgGivOQ624Id/9XEpNjEa+WQq9neu8gQm/V22uZtsjeKvf9FT3IbORJhGvMihUOQHhNDnODxwQcfUJ9nCf88aGxsRDAYRAwRHE0eQL5ogV39J2D395thqshhsvkCyKK/2qGgtn1jUa2YC5VNgFjCNg6CByruzEfb+z1UykjRviiT9Vgaw01jmOxni1uOSwG5WgZeK6a2Jiq6xQWtW4WR9klqO7HCzzhgKMyBc2WMeme6SAyIJGLoCpXUNm67vr84NW/fZ2yY6IpSq/s0/aELTX/oYiKmRHoiQHJ2HkGD8WNRtP65B0MH2Kwzlj8TwvjxMA680MZ0HCuWbwxhsj/CVEM+9Lt2JBNs42AynkSS0ap5678dAm9mq3kVXp+H3r1DTLaBrJZyACBTSJk3p7jONkMkFjFZ+LkvsEAiE6N/D/0xOr+a2Aox9O2ePUOwLNPi0GtsNS/W93XZPV4MHRljskC0nWWCVJBArubAclOHfsOmblz5sB+cRoZNX2tgit32/zwCU0UOtZXhUKgFaABUKhXefPNNpmtcwj8+/u3f/g0///nP0dXVhY/Fr2Mlrp3946kWYWPA4Vc7MHiQbdEaAJY/HsTU+Ay17dtWRmVuAJDwEsiVUuRW65gUdKw1OphLtNhH+d1J224uWt7rgdLKY3A/g6pbDBAMHPT5aialnuBnXUjMxNG3c4T6mILVeUAS6PqY/vqkvIS5RrQYJSCNh4el3MBkF7f7Ry2InWjNlAXxRAJSRpvUI6+2Q8KzUQRCNzihcSux5QwrtAauyYU+oGE6T/u7nRhvn2Sy9xJzYiCRRGyUPt4jRyax6d8Za1FFGuS4FMzqWKy1RZWDg0gqJtavlDBXamEp10MiSHCYck6Qk69Abo0RKjOPA7RWthzA6zjoXCq0gz4ntH/YBzWjPRyrbaLGxcF3mQO7n29mUmxSWhl3MwJADExEKM7IofIeL1njZyC5xfpjOPxqJwYbJk49LiYTGTWlKecQkv0xcNMc3n33Xerz/G/xidi9pVFXV4etW7cCAFaIV0OhyFmQpDQXIgkhzZTf4sTuH8y3ajrR7i0NW50WeWeZse3rp1koW+C2S+5wQ2Hi6XeHMpB50sjxK1C01s1M5gh+Lg9KE7+ohbMzCYVRDGudGS1vMiRXBeA+14K2P9AvyH2SqH8uhJlIfNEkp08blj8TxEjbJBp/0Z69cQqLsXtb/nQQ451hHPjp378/uMIoRtl9hYiNTp1xG7/FQGHnoS9QUZP80sdYynPQ+hbje7eIPMeC3LMNyK01Yv9PDiNCeTuCESi/L4TpyRlsZ5SmZbkf31U2mENa7P3R4VkVpTROU2z1XWWFzqXCjlP0nRPt3vxXmTA1MYNj7w1nVU9Kk5TemfgZkkjA6/WiuZnda3kJ/zxILwxIIMX5otXUx3kuJzuYWyk/nqoeYbP5AgDBymPZbR50bB2gJ88IYLapql4fgEwpJUVUymMFvRjFt+ej9Z1uZpUfJiziftyXWNC7vZ/JnshxjhGDB4aYjvmkUPWIH/J0kftMWpB9Qii+zQ2lheF7Aouzewvd5ILGocCWr5zZwtAnhZonCiAVJGfc8m6xcF9iYSITAoB3lQ0tf+7+1PXrqkf8GD42geZX6cme5ff5IBg57P4RO0GQJc/VbijEeEcYDQzfLQDJ881/6KBWUSq714c9DN/iE8khbBW9D4lEgosuugi///3vma5vCf88uPPOO/E///M/AIAqXAitSEt3IA8su9lDTQDQFSrhu8TOXB8qvM4BjVNJX+vgwWzpxJt5VNzjxWRPhInQ4Fllgc7NZl32iYAH3OdY0PYntjHAudJ0xq0zFov659g2F3zaUftUIUaPTTJZnS3G7q3myQKMd4TR+Cs2csqnEjxQ/2QI0YGpRZPdziR4rRj6oBZdDJsyeK0Y5goD+3u3iDzHAkOpGp6VVhz4STM1ORI82QQ0NT7Nvg7AcD/2FQbk1Zuw9ydtiPbRB8FxrhHmYi11vk4rqh17h75W8EHyTUwhCpfLhba2NurjlvDPh3TNSwYO50pWk/+YRSkCAOzLdZAqpWh/94SccYql0tI7PRg6Os5kG8RpxChdl4/unUP0x3FgWiAHiFqRYOCw89sN1BZXnAYI3eRDx8cD6N9LT+5kxiLux36WHoOHJ5lIOuZKLUaPRZiJPZ8E0psLdn7zEGJjn76aHCv8q+3Q+dRMJIvF2L35rrDBGNRg61f/MdZoKx4gYh9n2vJusbAv16Nr1xDT+5q7woCBfcOfun5deqcHE90RJkJY6AYntD4Vdv+4GZFuxjzCkOcqH/FjvCOMIwttIjrNemP5fT60/7Xv1MSrE+zeim/Ow4HfHCfXlW1MFIkRi8fwkeg1iMViXHrppZ8oOfwTsXtLY8uWLeB5ssD6UeJVqmOS8TiKrskFr5XDdRGdhUb3lpEMQUlhpN+1I1dJiaIJLSkvVQMN3eRE4Ho6KefRpjD2fP8Qs6WYOlcBuYbNusx9mQX1z4WYrY1sdToojHRdIzyQYCMoAUAYiyYo5bLYqACo2xhE/bNs9getf+5mJijVPlXIbCECBZifTc2TBSi/l95iECAqQiwEpcVi85camQhKKq8CyzcGmSzvoCCWXSzwXmFF/XMhJnu08EACh189hsaX6HcTldzhZn7fzBWa7NaUC11fV5SJoJQ+hoWglHkuDASl2s8XMltGWpbpiFoTAyIDwKavN2D7D+iLqtXrA8yEK41NAZFUhHCYbqKVHm+aX+s5JUFpIRj8atjKdVkJSmkc4j5EEuSa3n//ferzLOGfE01NpKgZxwx2Jv9KfZytQg9rGb3N1Y5vNmUISgKtwvJUFGKpCFqXkvo8iBACEYtVx/bvH2EnwMjlkCmksFezJenqxwNseTB1TY5z6M/T9nYvM9mo44OBRRGUBD2YbL5MFRrUPxdisj9ofLUDDb9uZXo+9rMNqH82xGavB6K4wmLZ5brYjLrPB+n7NIADP2ljIigtFg0/P8ZMUCq714vqx9jkvzVe9l1BtRsKmW09tn33MJr/1MV0TP2zIeZ5B6tVYhqsBCUAaHmLnqAk5AowlrJJeBtL1ezvgUAs8vQetnPt/n4zdn/3EDVBqeA6B/LXpOyRqMmhKQU3Ff1OzrT95/b/OEJNUPJdaYPCxKGAwYpph/QDJJNJKBSKJYLSEk6LH//4x7BaCdF7B+h3H/ovs0NpFeC+mM4WavjQZGbhmtfSl/VkKikknITe9i31ynuvtMJ/NZ3lWbQvil3fPsSsuKL3aohaOaPt0vJnQtCH2Gw/9SEVeCvliaJgJigBWDRByVLFZjNb/VgAy59hq3k1vdWJ7d9nIyhVPeJnHnMBQO1iU/epfMiP0jvdTMds/fdDTASlxWLbVw8zEZR4rRi1TxUi73yG7wkeUDjYYpZ+D6x1DHOcKHDwly049AZ9zSuwJhf1z4VgYJiv6AqVzDaTABAdSTARlNLHsLx39vSckIGgVP1YgNky0lZmgFwtA+QMbgxRYNPXGrDjh/QEpYoH8sl4wHA/WpeSrINM0R2UfpYdfx1gIpTaKvWw19C/B8dNjZhK3cgf//hH6uOW8M+J0VFCsJlGDLvi9GqnznMssFfSf0ft+3FrhmjEaejmXrFYAhJOAo2dYS0jRghEZQx2u7ufb8amr9ETlNIQ9Bwsy7RMx5Tf60Plowx5MLVwb62iP0/Xx0PMZKO+nSOLIihxGmLdRQuVg0P9syEE5tonZcGRN7tx4OctTEQOXVCFuo1BZgs7zsQx2W9Zq7SoXh+AYKM/qOnVLiaC0mLR/GY3M0EpdIMTFQ/kMx2jcrDFDCCKgqzWvLu+exSHX2NTLqz7fBBVj7LV1kzL2GwC0+jazEZQAoDOjwap+zWnETNZ6gHk2dRtDM7O2SihMPPQetm+Dxt+1Y6d3zpETVByXWKG74qUdSht3DhAJkjB5dDzPDiNCEgmsft7R6mVoex1OmicCvgvt1GRdgFgi/QtJJNJaLXaT1y98hOze0sjEolkGM5/mvgpLpRcn/WYAz9ph602Bz076GXaAKDoZidyXEq0f9yHjvfnyAWfghG9WMUUrUfFJN+bVuQovcuDfZSFm23fPcysZjJ8dBz2SgPUDnqLtBy/Ap6LbJiqM1Kr6KRVTSKDMez+Hh35ylSmhv/KPPQfHKWWOiy9i9jEJaYT1FZsk70RyJVs3bz7Y7rfngtW+WYAqF8fAkRsNhVSjo3MAcySesLtZ1AOB4ChRMlkjaY2cxBJReRjnRIla93QOJRoevM4+nYxzLyTwHgLmxIGy70AwHh3BAojT/2uAUD+5Q7mPlD/bAixMQaFJwVQ/3gIEz0R6nyjMIrhqDfBWqHHNpbJYJL9Xdj1naNM5KHA9Q4MHx6ltpcEAP+1uZAppfBfmssmrXo6MmkyeRK7ueyeQiSTSWz+Etvi9O7/OgzeSPfB2i87hJHpAfA8j6effhpOJ6Pn7RL+6ZCfn4/nnnsOX/jCFzCMfnQkW+EQebIed+jlNgy1sY8b9c+EUu9BdvJEZGhxUsnOC+2Qa2RwXWzGMRrLx9QCualCA02uksoqLtITXZyyTwJIitjyYM2TBZDyEnRsH6A+37K7vVCa2ay+qh7yQ6aWMtkold8fQjKRxOYDdMf07xqD54I4xhiswSaPscvMhHvDSCaSEDPIFzvOMcJ1ngUDh0ap5YvlahnEMhEEiwKRIcp7EgC9W0FNmFgshFwBiCeZVG3kKhmz3Ubx5zykDzD0m8RMAslpxrlxBMxWk9GRKUSHp6jbO843wXW2GVqXktq2reA6BwwBDQ78spXaJq/8fh8EPYdNX6fPIcXX5UGmkmKy4xA1oVBhFoAkMNzEMGeNpOadDNyz4tvdOPB8GxPRUZ+vhkgkwlHQE89YxwTXxWbk1hrRd3AER39Hf57mN7ox0R1B744RqvZdwQbMNMxArVZnFkGWsITTobu7GxKJBIlEAu8mX8KFouyWu02vdGGkdZLJpggg5CFrmR7HP+qjsgRarAW8pVSPZDyBJsp3Oq0WErrJiYaf022Y2vmjJmY1k5GWMLASUJh4DIGuXshrxSi8xonYyDS1ZQt4YPnjIYT76W0l1S4exTd5MdAwgqZX6OJWeB2xiZPwYnR9RGd5Nt4ZBqdjID8ATBZaaSSmkgDYCO91ny+ESCLGZgabCplSArGUzWIwTTiLsir9MULrFzByPELdT3kTsapmqXkFLs+FqViL1ne6qUk6YqkIyXgCkX62uSerzeRYVwQ5biUGGVRmC1bnQSwRM1mV1H2+ELHRaez+Pv3m3vpnQhjvYrDA4AH3hVbkLjcyqXMnE8lTLSmcEgdeaGNSN/KssmDseJgpznnnG8Hr5cg730qdbwAwK1eW3VsIkViMzV9i+4bf8o1D0ObRTT77kl3om+4Cx3F46qmnUFjIuCF4Cf900Gg0+PWvf43rr78eQ+hGZ7wZueLsNa+GF1sRG2YntdQ+RQi7VHZuMSzKEstSZYLCzMN5kQnt71CQL1O3kZOvgNanwrG3s9fJYmPApq82MJMSkokk63QgoyAzfGSEmkhVcJ0D+nwNU74pud0NpZnHFoZNY+UPBIFEkvqYiY4YYqPTmOiir2PF+mOIMXLXw51hIJFkss3VBpQoWutG/8GRhVVaFoBMJYOUl0Kh55jUYzQeHmOtZ3bexZkIcyjWT39dvF4OOcOmJwAovtnL1AcAIDGdABbhTzW4n41JONkdRmxihrq9oUiDwFUO6AvU1HVP50oT7LVGNP72GEaP0s0li250Qu1UYvd3G6nf6cLrXFBaBeweolcqUlhIzWvsONs67ZYvNzIRzwquc+DwbzqYiITWUh1EUjGa36RXKEcMp99sesJ6o7kiB/mX2dG7Z5jpPF1bhhEbm6K2Nu0tbMD0wWloNBoMDLAJY/xf4BMnKQHA5OQklErCUH0//jucL1mT9ZjureQjumZ9Pto/7kcvBWGp9Q/HUXybHx1b2fzM/WtyYSig97s8+GIbEzEhfQ61TYHgjU46lZvUzzsvMEHCi6kUUUabwsyLf6NNYYwdD6P5zTbqYyIDQGImidgYnQoIAPTvGUf+KrZMfvStbvgutaJ7Hz2JaDFFONtZOnjOt6H1/W5qwtJirOH6D49CJGYrvixmMbfsVjcSM8kz6hPrON8I19kWDJWOU6s2dW8ZpiabpdG1vR9SXsJEUGp5s4dZ7atuYxAz4RkmWeW2P/QyK4R1bO4Hp2crKCbiSUwxTE4URgUSM0mMMywYhwcSGDgyhuHDbMVLVuWIZfd4sfeHLUwETGNAA0O+Gv176Ptz02870ecfps7TRTc7obIpsPXf2e5ntH0SYhn94m/Vgy60/aUXfbumERnIfm2D8QHsHt4KsViM+vp6PPfcc0zXt4R/XvzLv/wLXn/9dezduxeHsBPaZA5UotPvQkgTLCy1WuTVmajz4URPhGk+AAAQgJqHCjDcPIEmig/pw7/pgMYrUBMG0vBfRoihNCQlABlyQcmdHuz/MR3JczG2Ga3vdUNtUzIRoib6IuB1cgh6MTVxYDoSh1hgI6gMHh7DWAfbHJeJ3JpC1SN+iGVi6vnUyJEIE2kGADq2D8AQ0KB3D/13QdPLnVR9ci6KrnVB61bh0O+OYfAA2wYLFpTd6oZILGKaGy5mvjp4eAzT4TjTMdtPZ7m9ABznm+CsN+HIG8eZ7BV3fYdtg0nHln5o3Uo0vkavgpCIJ5FMJJnyTWxshqgBMbzTB356FJ7LHExEoPZ3+5gsNj2XWxEdnkL35iHqayu6hdgKOi80M51r85caiXIZJeo+H0TvvmFqi1EA6NsxAHOJFkf/QLcYZ1uuR26VATu+3URNUPpL8jXMNEzDZrNh+/bt1Ne2hCVMTk5CEMg78Nfk6zhX9Jmsx6QJShX35aNz+yB6d2T/Vm55pwd6nxr9u9mKia6LzLCW6ah3J+/9aQvCHWwLEY5zjdB6VChcm4dDNMTQ1M9bqnTgdTIqW6BoX5R5sTw6ksDQ4TG0saj3RYGZ6Axio/Rz3PFjUSTjCSTi9HWvQ693ICQXo2sH/VzlEOUCxFzoQyoUXJWHYx/2UZOhFmMJ1rNrGDIF20a7LV9hV6OsuNOL+EzijCpZ6gqVCF3nxlDTGLWa0khThLmG17t3EJxahq7d9CpCXR8NUj/HNKofCyA+lWBSw+nZMoSeLWzqRq3v9kJlZ1OGis8kMMMw9+S1YszE4pjoY5h4RYGurYMY72H7zmG1Xiu6xYWDLxxjImBaywywluqxeR/9t87x9wcw0jKB8WN0J/J9xga9X43t3z3CdG2Dh8bAaehrmBUP5OP45n707xrFSFP25xNNRrEPmyAaEWHFihX4l3/5F/qLW8I/Na677jr85je/wcsvv4xG7IA6YYBGfHrFjrFjZJFcV6iC+1wzdv+QjoQ83DyBxBS7SnXlQ36Mtk3gKEU9qv3P/Rg6MoaJDjYGUeHVeRDLJFQkJQAZghL1XA3AHkqy9lw0v90FrU/FpPQ03hmG2qEAZ+KoSSqxsWlwWrZ1lu5dg4gN0m98AkBPcp+D0js9kKtl2PENulpJbCzBRJoBgJEjkxhpHkfPLvo5wfG/9OP4X9gYVL4rbLBW6HHktY4zahVYcrMLckHKRHRejG10965B5k33LERqADCUaOC/PBdNv+9kIirtZ3CtAYDBo2PoPziCYwy2lACQjCeoCUoAEB2dhhCNM73Th37TCucFuUxkuL6dI+jbOULd3n6WHolYAj07RqgJmN5VVhgLcxBZGWNS5Nz61cNEhYsSVesD6NszTH+OZBJ9B0bgWG5Exwd0a866QiXc55iw+4ct1ASlzYk/YfLgKMxmMw4cOEB3bf/H+ETt3tKYK5MexzQ2x/8IKIDaJwPwriI+xd5VZtQ+GchYr5Xf50blw15IBQlyqw2oWe/NyE07LzKh9qmCjNVO2T0eVD7kQ3ggiW1fO4LaBwpQfAexncg9W4/aDYVQeckPl67zoHqOZFrNkwXQ+ZQQS0VwXWpA7YZC6IKkbfHt7nnyxjVPFKD4VhdGm8IwlalRtzGI0K3kPEU3O+e1rV4fQMkdbgBErUjvV2P4GCF0BD+Xh5onZ9tWPeLHsnuIpKPCzqN2Q2HGeslRb4KtYlaKsvLhfJTfn7L/UhB7BfdlRCI8f7UdtRsK4VllQdUjflQ8mI+KB2etwmo3FMJ3FZEk86yyELsyBbGpKLzOh8qHZ6Xxap8qhP9aImPovMCE2g2FUKQ+NMvu8WImPJPZIVfzZAGCnyNxsJ2lOzneKfuHzV9shM6rQugmogRiqclB7YZCGEoIga34tvnxLv6ci6iThYlqT+2GwoyFV+imE+L9aACl6whrPrDWjuXPBDNWcQVrHSfFuywdb6MYzrMtgAgQdBz81+ai9qnZXRuVD+ej/IH58fasIvEO3epA7edn21Y86EPFg3NiuKEQ+atJn3VfZoHeq8bx90hBqfzek+OdthB0nG8k8U4pIi27x4uqObKaNU8WIHijc16805ZjJXe4kZhJoGcPKSTUPFGAoptJW3OFBrUbCmEqI1LNxbe65sVQqpSg+HY3AEAXVKB2QyFsdUR6PHijc14MreU6TMem0bVtAAonaetISVoHrnecHMOUZZ1gnN9n/Wty59nmVT40P975l+dhtJ0wZ71XWDN9FgDKH/Ch8qET+uyaXDjON8J5iZnEMGVjWHaP96R4F6wl8c492wCRBICE5JOFckQm3nUk3t7PWFB+vw/F6xbOEQBRD6vdUAhzBflIKrrZCWu5Hk2/JYufJ+aI2g2FsJ2VivecHLHly43g1LJT5ogT4x1cbUdsdIoQG0+RI9KYmyOO/LoD3ktyF8wRAFEJSMfQfZkFy58NnjZHzJXErnmyAFXr86GyCCi923XKHJGO4dwcEZ9OoGMnmWidmCNqnihA8W0khukcUbmeXGNurfGUOULlJfFO5wi1QwEJNzs8npgjajcUwnkxGav8n7WjLhXDgz9rh1wpQfn9KUleBdlh47mcxNt3lRW1TxUgMTUNtVMGqSCBZ46lQ+2TAeRfRewh3JeYUPtkIGMHWHRHLjrN+wEAHMfhww8/xBKWwII9e/ZAoSDv2Rb8GZFkBKEbnfOsn6oe8aPoFpKzNF4BNU8WwLnCDLlGhsKb8ua9m5UP5aPkTvIOCbmkrf1sA/b9uBXxeAI1TxRAn5o/lT/gw7J15L0Q9CQHOC9Mz/dsqHmwAFK5BCorj7J7fSi7d1bWuubJAnguJ++F62IzyYUCMNYSwbJ7vKjdOD8H+FaTnOU434SaJwsyVkCld3oQm5zC7ucJ2aj68QD8KXlm23I9ap4syCyoF9/mRlVKtje4Ng+aXAUqUuOLqUKDmidn7y10k2teDKsfCyB0swtVD/nhvcqKmicLYErl/cLr806Kd/FtbvTvGsNA4whqniyApVYLACi41oHqx2fbVjw4J95WHga/Bp2biYWbb7VtXn4rv9+HZWlpcIHE0HWxGXv/uwX9B0bnjd9l93pRNsdGtubJAnhXkRg6LzQjx61Ed2oOsexu7+yYnIp32s7JcY6RxNvKQ9ADtRsKUPXYbN6vXh9AwbVknLXUalHzZEHGRqzoFhekKknmq6T6sQCCa8k80liqRs2TBRnLuXl9NnVvoZtJn9UGSD+0pGTEC6+f32er1vkRn0lg5EgEShdpm7b+8l+TOz+GD/hQmo63XoyaJwvgOJ+Ms74rT4j3fb7MmAwBUFkFRMdiCHdNwH2JJdNnATKHK79v4Xin/522llu27tTxtp9tQDKZxPAx8tFZfLt73hyoen0gY2VlqSLx1gbIRYRuds0bk6sfCyCUmtcYilWoebIgYzsWutEJjUNBbMuwcI5Ix7vgOgeq1weg8QrQBxWnzBEAkL/GPi+GtmodIAYmO8YXzhHz+izJESV3euC80HzKHJGJ9/1zYvhAASLDMSCycI6YG+90jmh6uRNt7/eeMkekY5i2ODRVaKCy8Tj6BinyLpgjbiIx1AcVmRwRGUogMZNcMEfMi3cqR9R+vhA1G2bjcmKOqHmyIGMjmc4RtnI9PBdYT5kjAEJkmhtvmUKCqcnpDEHpxBwxL953e1H9VCDzrhRd61wwRwCE/Jn+TtIGBIhlIhgKSL9bKEec2GeL17kQGUqg9Z1u1Dx4ihyB2ZwMALn1Bsi1MtjPJTE8KUc8NBtvpUuA8jNxzIAQEn7zm98gN5de0n8JS+B5Hrt37wYATGMKW5LvACB90nMpmf/bVxhQvT6QsWsrvsWNsvu84A1y5NYaUPWoH77PkPfNUqVD9fpAxgYqdKMTFfflA1FgxzeaUHyrH8FbUnmoLAfV6wPI8ZG2hWvz5tkRVD7khyGUAwkngf0cParXBzJ2aQXX5KLy4dm2FQ/kI3hDHsIdUahdPGqeKkDoZnIe/2r7vHez7F5fZozgzTxslXoMNo/i0IvH4VllmfduLrvHi5JUrQE8GbfSlli+S23IrZu1BSpd55ln/1W9PgDXRSRn5Z1vRPX6AOwrDai4Lx8lt7tn81s63ql6jX05uVfezOPQbzrg+0zevDlQ1aN++FP1GlMFiWHaqix4Qx7i0UTGUqzyYT8Ca0hOMJSqUb0+AK2f5KzC62fjveUrh6B1qTJjhNYvoHp9IGOXFVhzQrxvzye7sqPE8qt6fSBj/+b7jG1eHWjZPV4U30Li4rzISKwQVpBx9qR43+3N1BrAA75L7RCJReBypHBdZJ6XC0vvdGPZXbMKFNXrAxkbwvyrrKh+PJCxfCq51T07B0rF23slGZOtdXqYinNwPEVqKbrFNW8OVPWIP1PTTffZufGea9VR+bAfhal5ja5Qier1AegKSd2w8DoHZmbi6N5OFuQqHshHYWoemeMjMTSVkbqh/+r5fVamkmRqDbyVtE1bpnmvtM6LofN8C6YjM+ja1g9eS+LiOJf0U/fFlnkxXHbXnD6b6t/OlWRsdK40kbYp3k7JHfPjHfiMExO9RK1poRwxN97pHGGp0sGy/BQ5Yk68033WVJYDqVICkZzUvBbKESfGO+8iI0rvdKPg+oVzBEDUw6rXB2CqSMV7tR15ZxnR/DqZR56YI6rXBzL2HXP77PavHYGYF58yR5wY78BnXYgOxzKbeRfKEZl4z8kRbX/qhfcC24I5AiB9Np0jLFU61D1TCP+aU+eIE/ts2f0+aN0qlNzhPGWOyMR7To6Yic6gcxepeZ2UI+7Lz8zb0zkiXcMzL9OdMkfwWjGJdypH6PwqyBTSDEHpxBwxN96ui8yZeXvTq10Qy3DKHOE415jqs+QZ83o5fJfMfuucmCOq1wcySmiBG3LRYt8FAFCpVPjgA3rbriUsAQBeeukluN1uAMA2vI1YIgbvZRZUzPnGW3anG4Wp+j9n4lD5UD7cK80QjBzyV1tROWcdp+QON0I3kPeN05D32r5cjyMvdyI2PoPKh/3QeEj/Lb7FheKbZ5XuKx/2Z8YI+1l6VD7sh0wphcomoOhG52x+A8kBzovIGGGt0aHyYT84jRgTHTEE1zpR++T8ur07NY80LctB5cP+jE1XwbUOTIVnsOd5Qp4ov9+XsSLSBVXzrtd/dW5mbcZ5kQmGgAZl95HcqPHwqHzYD12QzA19V9jmfVOX3e1FwbUOlN7pgetiMyof9sNQQmpe3sut89bCSu/0ILjWidGjYfRsHkDlw/6M7ZvzItO8XFhyuxtFqfwGDrBVGtC1dQCx/hgc5xrn5cLim50oTo0n6XjnnWfCkZc70bVlIBVD8reiG52z+S0Vb9clZIwwV2phLMjBcBshURauzcOydbP5reKBfHhTtQZDiQaVD/sz1mBVjwUydUKA1IXyryTx1gaUqHzYj5x8Ujf0r7ZDYeYyNa+yu73wp8ZkjYsjMUzZYHlXWWfHEw6oeDg/U9sRbKRt2s7LfallfgzvcCMRB8Zao+A0YhLvGjKPdK48Id63ulB002y8Kx/2Izc1RuSuMJB4p/gXRTc5UXLrbLy1+SpM9kcw1hmd02fJ30I3nBzvdJ+FiJwnrZBUcJ3j5HivSsW7SAORGBhsIiQo/5rceRaI5ff6MvP2nHwFKh/2Z2z78q+0zZtzlt3tzdjzqRzcSX3WkK/JKJYtW+fJzCM5E2lrrtQCIPZelQ+Rdy4nX3HKHAEAeeeZ5vVZ13kmiGUiTPQQ5sxCOSIT71SOKLjWQZ7FKXIEAATXOjO1SwCouCsfU5MziA3EFswR82KYyhHtf+7HkTc6T5kjMvG+OtVnPcRKrfmPZMPHqXIEMNtnDSUaxMaAeCy+YI4gMRTPyxFVj/lR/cTsfO/EHFH5sD9jh5jOEc4VZngutp0yRwBkvje3zwpaOSLD0Qx56MQcUfmwH5yRxLBwbR4qH83PnDdwVd7COQJA4JrZPsuZOMiVUhiLybu7UI7IxDuZRNldHoRuygNiwNE3jqP4Nt/COQJA2TovyRHJBJxnGyCYOOSeQ95796Xm+ePa7a5MvZ3TiKBbA4RFhGn28ssvw2Qy4W+BvwlJCQAuu+wybNiwAQAwiVEcDu+ERC6CykYm7SqbAIlcBCG1IM5r5JArpdjzfAt2fqcFErkYKht5aTQ2ARK5GGINOZbXcfPkdCWcGBq7CpUP+aBxKCCRi6HQEhEpQc+Rna4pSHkJktNEBl/GE2lepZVchMLIQSrM7gKSChIoTOQaBLMAsVQErZMUG5QWYV5bmUIKhZG0VZjJ76Z3JavzFJDys23lahn4lFyzYJCk7pXc21R4/s4tuVoGLoe0VWh50tZK2qqtJC6moBZyjQycRja740EBSORiqFNtVRbSVqEgXYLXy8nvKmZjqLakftdO2nI5pC2nk0OulsF5sRmVD+dDykugSL24aoeSxNAom423Yk68BQnUDnISpZn8rtJ8mnhbOCx/JghLhSEVl/Sx/Px4q6QQ9OQaDN4ciMQiKO2pezXzJ8c71Vam4yGRiTHaNoGWN3ugtvDzyApytQx8KoYKhZjE0KaAYAS0Tg3x8k7FjNPIwWnm9MO58U49m+JbA9AFFZkYZtpyYqhTH8ZqO+mzQo4I1Y8GoDTzkKtm20p5CZSpwV2Vaqswk38LBg5iqTij8CMVJFCmnqMy9d4oUzFUmObHUCwWZ56jwphqm75+0wkxVMggghijTWGojNJUXFL9ZYEYcjo5ap4oQPl9IfIcLem48PNsSOQaGficWQa8RC6GMUQSsip1/fNyhGZ+DFU2Hs4VZtgr9akcQWLK60/OEapUvDV5CohEIrT/hezkXihHqFLvvTL1HA0FORAMHBS60+cIEm9yrxqXMmuOUKU8q5WpeFc8mA/BePocoTbPxtuzykLe/Sw5Ig1OIwOnlaP+2VDWHMHlzPZZUzAHIpEoa46YG8PkDHD84z5ER+NZc4TSzCP3bAM0bgUkMjFEqTS4cE4mfVZpJu8Cp5TDvyb3tDlCaST2N+kcMT05X6nqpBwhF0NtSb2fVh5imQg1KTLB/BwhmvcupN97KIDRo2Ek40mI5wzDErkI6tS4lh4DRSlSyTsf/xF9fX0wm80Ih8+shdAS/nExOTkJsZj0uY/xFpRmHrI5lqhytSzzDgkmDlJegqEj49j9oxYoddy8tpxGDsGQ6us6CaS8ZE7eJ3Ogws+6AQHgc+TgU20hCCSPptvmkn9v+tcG7P5uM3idHLw29WUmYH5bO5kvCSk1IIWRg0QqgS9VCJAKkkzOUltI3pSlfkswcuCUckQ6IxByBcgUUqhSBVGVnVyDwiDL/G56PGl88TiSySTEKeVDlZVcg8KUnn/Mj4tMKYXSxEGulUHvV6fG6Nkxbl68VbLMOCvoSbxd55GPd4V5fi7kc2bjzWlEJN4OAeUP+KDzqublN14rnx0jBDGJoXV+vGfbcuDn7DSb+xxVNtJ22W1e1DxRQJ7NnDFZKkgyeT/dVtCJAUGARC6ZN1eRKaVQWvj5bdM52MxDDDG2peTS08U7gIyzUl4CIRXDuX225oGCeXMghYU8G+WcOcXcGMo1MqjsAkrv9EDIkZK42GfbzothjhxC6tmUP1AIKS+BJt3WPn+Oz+vkELTpeJM5RWx0BpEhQnqdG29Bx2WeTSbeucK8f4vVqe8ZwwLxnjN+i6Vi9O0mKhsKIzdvV7NMIT352RgE1D8XgsYpzBuTZUoplOb0vCYVQ2t6rsiT8TJ1jQvliMy3m4U8m4Kr8lD4WTdVjsjcm1SC+FQCkSGcMkfMjTev5aC2C7CW606bIwStPNO/nRea5313LJQjhHTuScVQn6+C+xLLaXNEOobpfOK50EaVIwBAYSLX61/lQPFtbqococ5VQNCLIZGJIZWf0GdPzBH2dH9RQCpIsPv7DWj6fcfpc4RtNt7uSyzgtRyk8vnz4BNzhJDDZ56NjJPCeRYpbJwyRwAQ5vTvkSOkKJxIWQQulCPm5ROVFBqbkhCJTpMjTox31zayUM6rTp0j0vE+Or0P7733DjQaDb7xjW9gxYoVWMISWFFWVobnn38eADCBURxIboNMJc2MPRq7AJlSCln6W83Mgc+RY9d/tWDXd49CrpLN5lg76du8hvRZpZmfZ/ElV8mgc6lRcV9+5j0QUnlIZeHn5Sy5RgZRMqXSnBClclj6PIp5YwSXI8/8jddxkHISaF2pmpd1/ngi6OSZMYLPIb+bTC2A6wPqee+moJsdZ3kNP+8aJgfny3oIeg6CYVaJRaaUQp2qYaisJIaWoBa8UQ6FkYMwR6l4XlsbacuRy4c6V0Gul5+NoSL9jZdL2vI6LnMeLkcOa50eZff6wKlnn43SSK5fYUnl/RPizWlkyPGQRRPeQH5XNSc3cnPjrZNDaeVR+1Qhcuv0pK19dv40Nxcq9Fym7mMtNUAsFc35RhXm1TAEvRwKQyrePInLSNsEWt/qzcQlHQfBwGe+fTMxTM0DzKV6kjf5VI3DxEHQnRDvzHhC4lK01gF9SAWFaf6cU66Wzfa71PjHGzgsu8sDXb56nhKCXC2brWNZhNS8cvbfEqkks7DAaeVQWdLjkjBvjFZbFfNiKJaIM3MgQStJXX+qrU0xv8/myIFkyiKNn99n0/0l09ZA+mzFffmofyJEfjc1/1Cl3vtUCKEwcBAMc+KtksJYRBYwFsoRwgnvvcomwHeZDZ7zLFlzRKbPmnmIRCJ0bibEroVyRHouKKT6tzmkhcqugMpy+hxB5vHk5oxFOfN+d6EckZnDpeK97C4PeK34tDlCbZuNt325HkoLnzVH8KlaoGAk783yZ0Intz0hR8yNt7VSR2qkWXJEJi5qGcQiEVrf6cZoW+S0OUKukUFl5WGqyIHGrYRMIYUoIcpc00k5It1n9bLMNQTW5J42R8hy5OReU9c/NTJ/bWGhHKG2z/ZZqSDJkMhOlyPS8QbPI9oXxUw0Ps8OZ6EcIWjJvPPDfX9GV1cXbDYbxsbY7HCWsIQ0WltboVIRcs2HeJ28Q3O+kwUDl3mHOKUInEaG0bYwdv6wBYKGm7eOozByUFjTkwTyN6VtNg9xOTIU3+gFZ+SgMPPEihsAODL2Z+ZwVgGcRobd3zuMPf/VAsHCZ745AIDLkUGTqb3zpDavI9ehdgqQ8OIMcYPPkWe+8RRWck28VjZ7HrUcke4YOCOpO2TaGkhbhSE9p5gdI9rf6UdiJpGxFVMY+FTb1NqeXZg3fvN6DiqrAJVNgKFQQ+7Vnq4n8PNqGCSG5Hc4nQxcjgzOVM1Lk4rL3LZCKkdxnJj8rlVA8S0uGEPkPGkSh8IsZNZbABLvzDeqgzwbqFLf0SfGWzMn3lZyr/7PWFD5iD81nsx9NvI5tSku9Ww4cBwgV0kz9X9yf3Koc9NrbKRt+nuW/IYIO1L2oryBy1wvp03FOzU+amwKcv0Ayu/wgc+RZ+aNnFpK7jV3Tj88IYYaNyHCiZVkLThTE7ALmd8lMeShSL0L9U+EwOXIZutj9hN+1yJk2gIAp5JheowQYdSptmJlqsZhPTne6XtN/1vQkTFcZRHmjd9cjgwa22wMZbwUQ4cnMvfKz302utn5h6DnMjGsfzYEY3HOvHkkb+Ayz5HTpd7lVL/UuBXg9fIMsUQwcJnaJacSpfphas0w1Wf9l9tRdIM7e46YE0MpJ8VMJE5UwU6RI7jUel66zxoCGtiqDafNEco58TYtywGvkyPHk4rhAjli7vjNa+XQBVTIO8902hyRiXdqfpe/KpcqR5BzkH5YcJUDoRuc2XNEOi4cmbvKBOm8tgvlCBJvBTiNDFu+fwhHXus8bY5Qpp+NnEPuCgMECz/vPAvlCE5N8qPSwoNTy+E8l+SxU+UIEsPZeMf6Y0SlfYpMihbKEXPjrTDz0HrU0Hj40+YIAOCNXCZHHPtLP5AEOCX5LfVJeZaHMtVnj4la8Paf3oZSqcTXv/71v2nNS5RMsrop/9/iwgsvxHvvvQcA8KIEXkmI6riK+z2QKaWzcr5Z/DkrH/Kh8bVuhNvDoDWQTtt+7XmhjRyXBaYyNfqPjDNZFxXd7ITWo0Zf40hGUYUGpjI1pibjdPZFKRIHy3V5VllgKdVj309bEe6i036teaIAUkGCTV9voD5X/bPkedNKICuMYpTdV4jh5nE0/pJOhlLhVFA9vxPhvMCE9vfoJd6Kb3Whc1s/hhvpzmWr08FzkY3pXvzX5kLnUjHZdYRuckKmlBJbLUrUPxfC1Pg0dnyDTr4y92wDbBV67PhRE/WzD34uDyqrwOT/Xv9ciNm6rmCtAyMt4+jdRic/aanJwVjLKCKM9psqrwITLfT9rP7ZVIwp5aKLbnYix61C+0d96Hif7uIy7+QX6GUxS9d5wOvkzHY9CqMY4QE6uVv3ZRZma7z650JAkj5XpGE7S0dt21jzRAHiU3Hs/BalNGhq3Cm/34uOTX3o33MaW5/UuONZZYG1TI+9P21FuIvCLiCZwLuJ3wIA7HY7OjvZbIeWsISFMNfT/ELRZ6mOEXIFlN/mQdsHvej6MLt0sKVKC8syHfZR2qSlkd7dTJsbLbVa9G4dYToH69wjDRa7IxYbtjRqnijARE8UDT+nlPMVSDFhamQaOyjlpj2XW2Gr1KPv4AiO/o7O5qT6sQCkgoTJXk3pEjB5LELdHiAxUzqU1HZfllot1LkK6vsAiKWUWMpmkVb9WABDreNofrWbqr1g5RH8rAPHN/Whn9KetvqxAGQqKdN4vWydF+HhGJMdXfVjAQwcHqO21Ard5ILWo8SBX7RS250ZilUwF+vQSCkXDxBlKJq8Mg8CIOTwiPTQfaeEbnRC61GR7xTKrln/bGruQSkvLujFKH+gEJGhGHZ/l07+W8gVUHqTC+0f9BEbNlqk63wU96IPKpCIJzNkIBoE1+ZBH9CgZ98Qdd8HiFqeYFFkLENPB21AQOhaD7PNn8YrwHuxHXt+QBfj2g2FCA/EqG07W5OH0IwDEIvFuPLKK/Hqq69SX9sSlrAQ7r//fnz/+98HAPhQDI+oMMsRBEW3uKA089Tf/qXrPGh9p5va7geYtf1q+E0rIV9kgdYvINofQXSE+hTwrLLAXmlE/4ERHPkd/ZiV4+MhEouoLILSBBsmS6U6PZxnm7DvZ8cQpRxLlt3jhdLMY9e3DyE6QjfPW74xCIhF2ExrVcED9Y+HMNQ0Rm3lxpt5RMeiTPcPkBiw2HcVXJOLvoMjGD40SdVe7eJRcosXQ0fGMypU2eC6yAxjMAc7v0VvpeL7jA0KHYf9P22jPqb+uRBio9PU5zGUqpFXb8ahF1upn71nlQV6r4bJFmb5MyEkphNM1vPeK60Y74ygfxddzUsfUiHcFaa+jzQUDp7J9rHu84WYnoxT37/3SiusZXp0fNxPbYVRcV8+eKMcm77aQN3/C6/Pg9ouMNt081oxdcwc5xrRwWi1kiZOUeeKFEwVOdTPPr3zntUOp/gWN7r3DGKQYr5mrdPDc74Fu59vpc6t7yZfBpCExWJBTw/dd8oSlnA6SKVSxONxACJcKLom67ohAHBGDmW3u3H8wz50UXyX5eQr4Kgz4mDKWYQWJXe4IeUl2P09um8ZQ4mGyR4KAOo2BCGSgKmGAxDiJ829A0T1JDbGNo5UPJCPyb4oDv+W3qq2/tkQIoMxansta5UW3svs6NszTGWtBxD1HMHAMdmrCTaOybYKIGo7ilwVhhtPs34wB7qgCjkuJdr+SL+GUvVYADLG+l3Z3V6MdYTRQmu9zgGlN3nQvWOI2u5t2ToPlFaBqRZXuDYP0xMzaH6Tvh5Rfq8Pg81jGWWkbPBeboW1Qo/Dr3Rg8CDde6ZxcbCUG9D0Kn0t0lqlJRZkjOCMHGIDdP3Me7kVljI9dn3nEPW7WbchCIiALV+h7C8cUP9kCJGBGHZT1mM4I4eSm13o2jaAro8Zal5pPhXF7ascHCS8hMmyznmRCXnLzejdPUSdK9LXlZOnoDoXZ+JQfocHTb/vYsrjnIlD4Aob9j/fRtW+8mE/YsNTOEA5HvUk2nEAWyESiXD11Vfj5Zdfpr62M4G/OUkJAFwuF9rbSQALUQmHJD/LEUD1oz6yYPLFOS8QxYRDF1RArpJSERZsZ+ngWWljIgUAhHyi96tx8Gd0naL4VhcOMPpLLoasYa7QQGVXoOXNMzThXwQZylCixOB+ugLHJ4niW13Icalw/OM+JqLSpxHLnw5CJBExLXyxkpTK7vFCYeax5/uHqIkqn1YsdvH6k4CpTI3+PfSLOACxg6MlGi4Gxbe5ceAnbdTtnReY4Kg3YbIvykScs9XpIBEkVLlYYedRsDqX+oMvjbqNQSTjSeqCoG+1Dc2vUeTTOcNs6CaySLrn+ZbsJKVkAr1Fh7B/P7F5m5yczNh1LWEJ/xtEIpFMXxJBhAtE12Q9RukSsOxmD/oa6MktaXgut1KTImo3FCKZTGZUdWhRdq8Xh3/TQpRYssBxvgnRwSjTonjZvT4oTBya3uqgJp4AxFqr4WdsczwWCFZ6kkYahmIVBg/QFUU+SbASQj6t0AcVKPysGyNtk9TPfjEkpfpnQ4hPJ2Y3bPydwrvKBlulHr0HhplzyxmHAGjzBCZyDwt5aDHwrrJhpGWUigSURt3GFDmPoX8BhNjV8Au679nQzS707R1iyqvOC81w1Blx5HU6kpKlVouJnhgzAXL500FER6eoiGPjeYNoGN6B8fFxFBcXZ+ZgS1jC/xbnnXce/vrXvwIAClEBh8ib5QhCiBF0cmz5ClueVzh4KM0c1aK1PqRC4dVOUvNiWFDXh1Qwl+pwiJKQWnidg5pwk8ZixjmtX4DWo0Hbn9g2xFBjEWSoHB+P0U52AtGZhu8zNkII2dyPY+/QkfA/rah5klhHs8whWUlKhWvzoPer0fBiKx1x7lMMZuLcJwhdoZKaBJcGbyaqPWcKhWvzqHMdQOz0/FfmYqI7gn3/Tb9hRx9Sgddz6PooO3Gf1wKBa9zY9+M26t8HiJ0xRMRSjwaui8zM+cF7pRWWUj32/rSFitTWX9qEvXv3AiB1Cj4tM7aEJfwvEIvFMn1JBDEuEK3Jum7IGTmUr/Ogf/8IEykCYCMmVj7kh0g2q6pDi6IbnTj6di8VYcFcqUU8mqAmXQCz41zLH7qYyBT+q3PR9MqZ21DLQtJIIyefjkDwSaPu80EADISQTyk4I4fK+3wYbppA44t09YLFkJTqNgaRmEpg29fZ6sOfNlirtPBdnou+fcNMxKZPChoPj7FWhnkUA3loMchdYcBkXxQjR+jng1XrA5ArpMzruf7Vdupn4l9tx1DTBFNeNVdq4bvEhiNvdFKRlHRBFeLhaYwdYwtu7ZMFiI1OY8+Pss87Y8Yx7IttwejoKKqqqrB9+3amc50JfCpISgBgNBoxOEgm4mVYAaPYBoiyuNEliF2aYMR81ZPTTDrqnyWDAWuRlgWLIYUAgPNiM9r/RDf5D34uD8e3DDIrt0DEdu8VD+ZDJAJ2fpt+l0WOX4HpyQQTMeKkZ5gFhhIlJDIJ+mh3qK8PQKakX/xRGMXwXuFE85tt1NflON8IR50JW77ZyETUYoICCF7tRM+uAWrFpsWAlaS0GLAqHC0GxOM0iV3foSerOC82QyZI0Pwa3QdJ5UP54LRyJgWx/NV2HGWYlLC+HwCbghBAlKBKrnfhyJvt1MTB0rs8UNsUOL6lnzp3AUDx7W4coGQC555tQOfOQaZ3qvLhfHA5cjS9cZyZ1EWL0nUeqO0KdO8eOjXxc87wOu8ZiiULt88cR4h+7yZ+C5FIBIfDgV27dsFoNP4fXPkSlkAwNDQEg4H4jWeKNgwQ9KAiBOWvscNSrMPg4THqHdSssFRp4bvMjsneKPb+Fz35UdADGj+lEpMAhK5x0ascYZZ8MXRkjFpVxliqRv7lDuz9SSsT+WgxilK0zzANFrKZYOVRfpcXE10RajUt35U2REammBR1yu/3ITGTZHrurFiMYhMrFkNSYoU+qICpWM+0a5EVQq6AkhudOPbnXvRSFjYFvRjeK/Jw8LfHmBSOIsP0akWWKi1iYzEmshHr+6F0pWyKGAg05Q/4kJhm67+LIfNpAwKMxTrqPuw434SO99k2adQ/F0J86syS5tiVrdieYV+yE03CHkxPT6O0tBQ7d+5c5JUuYQkLo7S0NEN8K0U9zCI79bG8FtTqRcufDkEkOrOk35onCyDlJMyFYPsKA9UCPEAWugcbRqgUntJYvjEIkVjEdO8lt7shlouZNtAoHGThk0VVhuUZAoTcJFdz6N9DuUP9Hi+URp7+3nkgeHUeWv/QSa0OYyrLgftCC/b/vJ1aIYUZPOC/1I7+g8NnlAzESlJaDFgVjhaDktvdEMvETHMJa50eglaGVkplhuJb3NA4Fdj1HXoFMVZyC+v7AbApCAGEzLTsNjeOvH6cmghVeJ0DhsIcdG4ZYCI/Fl6fh0OvHaciJ5oqcjDeMsp0/yW3u6F2KND0Rid1jmBFYE0uTMVadO8eRMsb2b8BF/MM30++hoRoBna7HTt27IDVal3UtS5hCQthLlFJAinOF60mf8gmcpCq5XIaIEax7JS7wgD3SisGGkfP2Ld2Tr4CRWvdGO8MUytrAAA4wFSYQ6d2wwH+VbloYlC9tNbo4LvUjoFDozhMSUbXeHgUXO3EgV8dY1IiWoyiFO0zTCPvPBOO/4XyO5gDlj8exHhHGAdeoKsT5p1nwnR4Bj3b6Ndrim92AiIR9TkWA0ORBuo8gUmxiRWLISmxQuPiYCzWoeXdnjNGoAEHVN0XQPuHfejbOUJ3iAZwXpCL9ve66RWONgYRHYxhD+X8ThtQIjEdZyIbsb4fnJGDjAcmOuiDW3KrC8kkmPpv3cYgkGQj8wk2DrZyHbUamLVGx/QeAuQbOz4VZ3I4YkXdxhSRkVKYZt4zpBjbxpJjOCB8hNhUDOXl5Z8KghIASLM3+WQwMDAAtVqNiYkJ7MFHKEucD6M4tSB7GrKS82IzHLVGDDaN4fCLqcEwvTC8wINp/7gP8Uic6drSFmMTPRHso2Cj7WVYwErDs8oCW4UBmlwF1eJ92h5M5VUgPhamIjC0vt+N0eOsMoSyef7R2SAYgaK1bsxE49R2UcW3u6FxKND4Uhs18aZgtQvJeJKapBTuj0IpEbI3TLcfSDCpwwCAoOMgloqQW2lAJ+UCW80TBZBw4vmKYKeByqqA3qcGp5JiuPHMLch9EjD4NdA6VdQkpdK7PFBZBSYy0FzPTVqwkG0AIDwYg1SQUl+T82IzLKU6KIwc9a6qsnuCEIno7Wl0QQU8K22wVxqorctya/QQSbOr0c3Fvh+1wnuFlTpmaSUoWoISALjOs8B5tplJpnTnt47CVqejIigp7DzK7vRitG2CWv0OAPb9uA1FNzsXJigtwP0tvy+1E/h0O6GTsxPV9xJEZlEkEuHVV19dIigt4f8cer0eTU1N8Pv9SCKBPydfwUrR1VTH1m4ohEQmpspJR3/XBZlcwkxQKrrFhRynEru/15B1kTlNhqAlRaRRdi8hlVOReyLIEJRolYha3upGYiaBtrfpP/RFUhHEMhFslTq0vEVHlq16xA+5RoaxjhginXSLOazqBMvu9kJlFRDui1LFOdITxUwsjslB+g/kZhZ53RR4rRyJOP1EVbDyKF/nxUjrBLVCjPs8KyRy8adP5YcRrvNsUJh4HBY66MlAz4QQHZ3Cru/QzSXMRWpIOQlkavr5V2QogYMsBTcBmI7MYIJhcdR7sY1pA0ma+Dh4eIy62Fp0vZMs2H+N3k6Oz2HrvwBw4Jet4LR08RX0YkAux8iRCDVBa9k6L5Q2HomZBBNh8MAvWjE9QvedmVlI/w/6WAFA63s9SEzTFfVCNzqh9arQ/Kcuqhw/lOzDPmwGIsRed4mgtIQzgX379sHtduPYsWPYh02oSJ4NvciS9ThTRQ78q3IxdJjO/uvoHzshFmfZ8HcieGD5+hAmesLY/z9tWZvv+1ETZDlyplNY6/Rwn2+B3qvGgReynyO9KM6beWBqioocceStDkSGKCy150AwkDoONXig7HYvpidnqK3r/VfbYSrW4vBrx6nskgCg6AYvEjMJagLCRHcEMkFC1J5ohsgo0Pgrtvm5TCWFTJDCWKBCB+U4XHavD4KOw+Yv0y9KmUt1UJg4jDSx2UZ/2mAt08NYEKcm0hRenwddvhq7f9RCrQwkGDmIJWx1HBaLPwCYHIxAMMmZyGyO5SZoHArqxfTSuwogkUuo1Z14Kw//qlzkLTdRW5dZy3Ig4cQQy+nz46HfdMC5MkZtP5dWgmL59vVfnovEjI1JNW//820wleVQ5QdeC5Q/EMJIyzjTO3/kd50QiUBFUALIOeJT9GsBf02+jjimIYIIP//5z5cISkv4PwfHcejr64PZbEYcM/hL8jWcJ7rqtOuGaVQ+4odMIaVaKO78aBCCTs5mFwQg/0objMVa7P5RS1aloNGjYSY7qjRqHiyAlJfQkZRiyBCUaJWIerYNQyIXo5OSgJ6GTCGFZZkWbd10tbKSO9xQ2xU4MNZMrTBSt6EQiXiSmlBQcK0DxmAOPYkoBkyNzyDMoPJETYCaA4WZfj0TAMABdY8HMXx0nLqW4V5pAZcjO6MkpU8CjnoLdH41uncNUxPgap8qQGxkmpoMZCrMgVwlBcdQ84qNgVltbGpsGhPd9MUS/5UOyAT6DSQaD4/iG73obxilJiYWXZ8HXifHzm81UJObeAMHEYX71Vzs/u8WqKxc9oYgJB1wxHqxpZtuvuJfkwtTUQ7EMhGT/dyuH9GLYBSuzYPWo8Lu7x5mssVser0TEp5unpq2Kmz5U/fpc1ZqzBtLjmEb/gREALfb/akhKAGfIpISAIyPj4PnecRiMezB+yhLpBSVkolTEpXaP+qDrVyP45sW6FDJ5EkTjo73yaApGIHiWwJURYXwQALJeBLTYTpyU7idDOIqrwLB1Q6qc7S+1UsGWxY2tAIovdGdfeE7hbSqisKpgIwDRpuyTzZYvWsjA8B4ZxjtH9ITPdr+2ofQmjzERulf2P6Do+jeQ892ZCEfpOG+zAJbuZ46Bk2/62RimwPA1Pg0ODF9cW+iJYzjH/ehfy/9pGbZPV4oTfwZZSpXPpwPuVpGTbYCgKNvdWA6MkPdfjocR3ImyaSow9p/Kx/Kh0gswo5v0u+mSxMGadH+pz4oTTwaX6Hvk2Ptk5Ap6NP1cGMYE90RHGXY6ZUheVIi92xCxqO1j8w92wDXeRbYqunInmn07B5CZJhuYulfkwsuR4YDz7ehewtlfpiaQjKRxHgvXREweKMT8ZkEjvymc+G8cgpxwtjoFMZON7mcQ1DqLzoC0UFAIpbir3/9KyoqKqiubQlLYEV+fj4+/PBDnH322UggTk1UGmmdgKCnH7vSKkKF1+dhOjaD5lezF2/CAzFoHPT2hmniTMmdHowdn8QxCvLk8Y/6Acaiftm9XihMPI6I6eyJ0gQl23I9ujdn//jp3zWG/l1s4/XRP3TAXmOmJigBwGRfFNGRKer2R15qg+N8GxMRjNWyDyCEq+lonFrNgHme2hNFYiaJ2CT9AmbT6+0QSdgWe+ufCWFygM3WlBX1z4YwcozeUu7Qr5thKDYykUJmpuOYmqCfqx37Ux/Vu5eBANQ9EkTHpn50fEApGRkBtn+dTRr/4IttMAa11O0n+mOYnpxB+7v0xLQjr7bDXmtmii9L/9UHFYgMJzDWEgHtSZbdFYBYLmZS6Nr73y0ovs1NTVCqesSPgy91pK6LDtOTccS1CepYVT3ix47/aqLKoWl0bO6HyiZQEZT6kp3otbRA1CeCSqVCZ+eZsytYwhLa2tpgsVjQ19eHXfgQpcnsikr9u0bhPteCzq10eTJDiOCBijvz6Rbwo0B8Oo7pSbqaV3QkgehIFLyVR+gaB9U5erYMQe9TUZOE06i424uZGN3Cd5oAxJt58DkiKiUe5t2wUWCoaRzd2+lrMsff70GOU8lEoOraNojBw/QKKc2vs5O97cv1yDvbjK3fOkRFbOr6aJBaCSuNqfFpyJRZlITnIgq0vtONoUb6nF+4Ng86n/qM2peV3OGGyiJgM+XOZgBo/O0xJOP0dc7YxBQS0wkm6zJaQkgaJXe4IROk1MQegNSrW9+iry317xmFxqlA5wf0xwwfHQevpf++jPZEMXRkHN076N/Dtj/1MqkhWap06N0xTE1Q0odUKLzGiYmuMJMNW9tfegFK0nre+UZo8pQ4+MIxJgWlZDxBvZDuWWWBjJPiyO86cfhl+jnRZE8YkSG678u+kiNIHIxDKpLi/fffx4oVK6jPs4QlsMBkMuHo0aPIz8/HDKbxl+SrOC+tqLTAumEa/Q0jyMlTUp8nTVByXWKGRCKmUvMID8TIGDFFNzdIE5T8a3IRG5miyk3Nf+oGn8O2gbvgOgcMAQ1RaqMgN6UJSqZldIpNY61R5jWqI290w32eickCafRYGNMMdZ/Dr3cwqxzt/Da7GmPpnR4kZxLY/1O6Og6z1VkMiEfjmGao4zS93g4xx0YTqH2yAOGBGJuyFyPqPh/ESNsEteVq81vt0AW0TApdM5EEYmP0serfO0pH+puD6scL0LmpH10M9QyWeRoAHPhlG0xBDXX72HgSkaEYOjbTW7ccee047LVGJvUl2g0dAFHCioWBWH8MsX66Z1h8hx+cSoZNX22gVs9q+l0nxFJ6glLZ3V4cfqOTqV9NjU8jMZWgJiiV3e1F44stTETUzu3D0OWr0bOXjqDUYT8AUbcIOp0Ora2fro0gjNurzjyi0WhGinEPPkJPIlXASCbmLeICIJY5YWDrvx1CuD0MQ4kS3itOYN4nk7P/mwPfKhdkSincl2XfuQaQInJjqpiiMNKFzX+pDTKlFOYKugSRXrh3X2YBaNblwmSRqe3PbMWIslvdCF3nYjqm+DY39X3s/582KgJUGhMtYWz72mEme7im33UyWd0BRMWl8qF86vYyQQqRRARLTQ7TeViw54ct2PrvbLYI7e/1M1l/xacSONOujomZ5EmvZzb07Rpjsqxr/EU7U0FoMZCpZJAp6Sdl/mtzEbzRyXyexl+0M5GtDv6sHXsYFzr3/XdrhjCZDeX3+qCw0/u+56+2w3WeBaGb6O+988NBxEan0PQK3SCYzuUtb/ZQ29YZCzVMpAaFUYzwQAKbv9hIrQal86hg9J+QC08xzkCBTIx2fusomn7bebLV2wlj27uJ32Lv/r0wm8342c9+hvr6eur7WcISFoMVK1bgww8/BAAkEMd7yd9lPebwbzqw5wckJwXX5lGfS+9XwxzSUrVt/X0PNn+pEZGhlBoIJdR2AdZyPVXbjg8GMpZG7kvo5oOHX+1CZCBGRVBKo+gWFzwXWuG80Ex9jNIloPROD1XbkSMRJhs6ANj7Xy3Uu6oAonbTxFCkTiN0oxPeVTbq9jIl246kxWDLVxqpiHJpDDWGqZSz5iIRTyIxc2bnXslEEokp+slXZAj0RKAUtv37YWZlURbYqwwQy0RMO9rL7/dBG2DbTTjWEqFWJgOIZdv2/ziCyBB9fEeORKgJY5ZaLQqvp8+dAFC4xo3ydV6mY1r/0oPRY3R2JoJeDMc5RLWR9pnblush18jgu4guf6ZzecPPj1GruHlX2SDXyOC/PJe6vcYrYKwlQkU86Ekexz5sRn9/PyorKzE2xrY7eQlLWAx6e3thsZD3Zh82oSuZnbSz/T+PYPxYFGoXD/fFdO+c/1I7eL2cuv22rx7OqH/wWsodnBeYwevlsFTpqNqnCUr25Xrqcww3j6P1PbqNMWmU3+VF8LNupmMCa3JhqqCr/Rx68TiTDV10JIEd32xisodr+1Mvxo+xWarl+Hgsu5t+rBDLxZDIxbCW0c2dF4OGX7Qzk4u7Ng8x2UYlphJMZKDFIDGTZFY/HD40yWRZ1/pWL3N9kBV8jhxyNX3Ny32xBYXXOZjP0/x6N7XyEgA0vdLFvNB56Nf072HxLe6MTSMNHOca4bvMhuAN9PO1oYYJTPZEcIRSeci50gQgRf6jXLi0VRqQ46QnTvBaMaIjwJavHKK237OU6GAI0tfBC64hc7R9P25D0yvZCf7vJ1/Dvn37oNfr8cILLywRlJZwxuHz+XD0KFnwn8EM3k++OvvHhWq5IhHa3+nPKEv6rrABdKIesJUbYC7RUrXt2jyErf9OVDY4Df33sKFQAwtlzWtw/1iGRJS7wkB1TNsfOzDeFWYiYviusMH/mVzknWeiPoYzcgjdQLeuEOuPMVvpNb7YzqZuFQNa3mKbbwKAd5UVzovo75vXysHpKTvUIrH9P45Q214BwNixGEaO0NUN0ojH2epRi0EynkCc4RyxMaCHUWF/57eb0Pgiu7gFLXRBFWS8BFKBnrBfcqsLOfn061sAEOmmV30EgNhADLu/18xEvJnoiOEIZV1YG1DCfzVdDSeN4HVuVNzlYzqm5e1uDB4ZoyMoceQbFAB1PVwbUEJh5uFdSfc9nc7lLW/1UBMM7cv1UJh5OFfSWcHnrjBA4+ER648R2+oYTibczhnbRpL92IY/obu7GxUVFRgcZNtw8klAlDzT7IVFQqFQIBIhH3OFqIRDfMKHdlpZKTG702v5Myn/+VPtFp37sJJJ5PgVTGQaAKj9fMrihHJHqsqrYCLTKJwKlN3qxkyE0d9QASgUZME9G4Kfy8PgoVFqq7S03R2LhVvgegeMAQ2ThVvNEwWYnpjB7h/QSadVPpQPuYZevaf8Xh8EE4fDrx7D4H62gZcWVY/6IVfLmHYs287SIToUo45T1aN+iCDC9m+wFXpYUP9cCFPj09jxDXZGOA0c5xuRt9yEI2+0Uz8LzyoLerf2U/VxAKh5kkiasjwLVmTNOSeg9C4PVBYBu3/QQEU0E4xA2d1BtH/YR20huPzpIJJJeu9SU5ka/ivzEBudoraGA8j7RPuusubaHD/x2maR0E9D4VRQkbMqHswHr5Oz5wMFoNDyCM+dxJ1iGK18OB9cjhxH3+qYzbdpktICrL7OggNobCTPbefOnUsKSkv4RLF9+3bU1NQAAEQQ4QLRNVmPsS3Xw3OhFZPdUez97+xESiFXQGQowqQ0YqrQwL/KgfGuCPb/ODvJUekSMHmM4QQAqtcHIFNKsft/WpnUiNIL4VkhAMtu9FLFKI20hdveF1qp76fu80Ekk0nqxX/H+SY4ao3Y8s1GqmciWHmU3+nFSBu9VVr9cyEkphLYQnlNi0H9cyFMjU1TqyAKejFMFUa0v0tpVVqhge/iXLS+281sKUiL6scCkKmkZ3TOUv1YADOxOHZ/j27s1gcVkCnlTPdc/1wIkYEYdn+fXgaZBZZaLXwX2zHSRq8gVf9MCJP9UeyllO8uu9cHKSem7k/pHNW9cwitlIXAmqcKmK3hLFVaqJ0KKttBwcojMhplyrU1TxRAKkiw+7vZLTbngjrnCkD9EyH2b1ww5Fqkcs50Elu+kn0ePJXfj23HtyIajUKv138qizVL+MdGXl4eOjpIgbQQFXCIspNLap8qhEROZ7kLAGoXz0x0qX6MzIs2fa2BSl1H4eCZyDe8Fqh4KITpiRls/0+Gbz0e4DU8lcqM90orxo9H6JVGeKD+yRCmwzPUhBrXRWbk1hpx+HV6C7eKB/IxE4tT276X3O6Gykqv3lO4Ng96v5qoHzCorLBg2V0eKK0C05zFVJaD6ckpasLOsru9kHKSRSkU0KL+uRBio9OkuH8GYCrLgfdiG47+sZO6fzjONWJg7xA1uafigXzwevkZnT/WPlkACUdvH1J4nQM6nwa7f0xpWccDtQ8X4vimfmqVrponCiASi6gJXQoHj7LbvYgOTGHX9+lrXiW3urH/p21UbVlzLW/lUXGXd1F9kDbnFt3iQo5LyWQzSS4O4LU8ohSWjiW3u6F2KND8h2707si+ubA71IiDBw8CALZu3ZqpPyxhCZ8EOjo6kJdHiIciSHDBQiri6bXDVJ1XG1AidJ0L451hKiIlZ+QQG49RK3oAs7ZLY+2TOEBhg86ZOGqVkTTK7vZCYeax7yfNmOigP1bl4Kjbh25wouFX9GSPktvdUOcqcPDFNiprOQCoeiwAkViE7ZSL/6ZlOfBcZMXe/zpMpf7CaYDy+wox3DpBTWKo2xhEciaBrYzKhiyofyaEyHCMupbDacQwlGiplWI0Hh4Fa1w49pde9O0c+V9c6amxbF1q/ngGnV7K1nmRRBJ7KefZGhcHmYbD4H76jUr1z4Yw2ROhPgcr0vlg+OgENXmq9qkChHuj1OpcoRuc4LQy6rqdxsWh+CYfOrb1o/0dOiJUxYP54LVy7PzWIWo1IW1ACX2+mopgx2nEiMUSTLm24gGyFrjzh81MOVSwcdRkruVPBzEVnsFOxjV1lly7/OkQEtPx+TnnhLErjZhpAjsnPkA4HIbNZkNXF71a/CeJT52SUhrhcBhqtRoAcAg7cSixe36DtPrEHFWK/b86hmN/OY1061y1C5Eos2hetzGImicKqK5roHEU0WF6e4yJljCgIOew1WXfXRZuD2O4ZQLbvsc2sNU/HsKyu+nuofGXx8mCuYJOFSo8kEDz251MMsJd24eQjCch5ehZohJODBnDjp7paBxIgk51CsDuF5qx56dtzASlHD89c3W4dQLT4zPU1wQAnpU2+FfR786RClJIGNi3ACHLnUkonAqme1ZaeIgkIsQmKTmSCsBWYUDoRno27Uj7JKbG6GU9FxOjzV9sRONLbdTtk/EkkokktRKWpdoCkUSERIKeNT41Mc0kZ9q/ZxxH3+qgJiil3wdagpL3CiuK1roR/Bx9Hx9tCmO4eRwHXqArENduKET+asI2plWPOv5RL2Yicap8YKvTof65EMnhYRCC0qnUk+Zg57eOom//yHyC0kKqgAC2Kd9GY2MjTCYTGhsblwhKS/jEUV1djX379gEAkkji3eRLWY/p3jyEnl3D1OSbSCchKNnPNqD+2RCMpeqsx/TvGsP05AyOf0i3+J9eLM9fY0f14wGqYw785Cj6Do4wEZRCN7lQfKMnozxyWkSQiZHGS6cAs+ObTTj8SjsT4Wp6cppp3BNLRBDLRLBR7p6P9ESZlRkbft26KIKS0kWvlDM1No3hFnqlo+Jb8+FYTvHcUkjOJCGWiaC0MKj3CIQocsYgENIfCySchMk61ne5A77L6HbypK9pamwag030iyC070MavVtHsPeFVjS8RFd8EfRE1Wp6kl6+W66WQsoQJ4CoK/TsGqFuv+3fD6PprQ5qciAEYmlJQ1ACgLI7PKh/PER9PQCw/3+a0N8wSkVQsp9tQO2GQkAAfY6KAJGhGHoo7bqrHw9kvs9ZrOTa/9qHvT/JXjA8lNyD3T27MDMzA5vNtkRQWsLfBMePH4fHQ1QTD2EXDif3ZD1m70/a0MagKpReNK9+LICqR/1Ux3TvGsJkf5SKoASALJbzhDhgrcs+p4iOAP37R7D/eTYbg+WPh1B2h5uqbcsbPYSkwxPrt+wXBRx+7TiT4k/v3jHEp9l2kMvVUnAaesXI6ckZJOJJ8Fq69odePY49z7cwE5TULvo5y+CRcUSHpgCGaY7/ylzkX06vxiNXSpl2nAOE9MFyTazgzWy/rzTzkMjFSDIoazrPMaPoZvqa13DzOKID9PVpFiWhNLZ+9TAO/opN1TuZpLessxTrIJGLIWaw4I6NTmFqnP6bJ9wRReNvj1ETlNLvAy1Byb5cj5JbvEyKU9GeKHr3DuPgC3R1tapH/fBeSdTGaUmhHR/3krk5BUFJH1Jh+TMhksOjoCIoAcD+59vQtXWQiqC0ifs9GhoaYDQasXv37iWC0hI+cTgcDvT1kY1KScTxbvLlkxvNWTcEgJEjkzj+UT+10ltsgBCUDEUa1G0MwlCU3ZVkrDWKyGAMxzfRLf6nF9fzzjOh8mG6uV3jiy3o2TXERFDyXm5F6W0+agWmNEFJ5aBTCdr/fBsafnOMmqAEALGRKUSH6e8hkSBrk7pCOsXP2BipHyQZlBMbftmyKIKSYKNXU5roiWComb7OUnCtC+6VVmoFsOkoiZPCxKDwxBHC3JkES4wAQKqRQqain2f7LnOg4CoGtUgOCPdEmWpetO9DGmOtUez8YTMaX6Ek/HFEw2UqQmfZDQC8gU1VUySTYCYaR/8BejLXru8cRePL7VQEJU4jBjiSb2kVwJbd5cfyx4PU1wMAu/77KHp2D1ERlAxFGlStDwAcmNSmxjvC6N1NV/Mqv9eHqsfIugVLbj76Vif2/bxt9j+IRAuuUR5PNmNvdBNisRg8Hs+nlqAEfIqVlNKw2Wzo6SGdUwcLKsXnnNxoAYud5Y8FMdQ8jsMvZme91m4oRCKWYFamCX4uD42/zO6JmVYFGe8MZ6QiaWA7SweZUkZlQ1R6lwdjHWG0/YHeX7v+uRASM0lqxRUA8F1lQ/M73UxWVX/PKL7VBY1Tiea3O9G77czsRAt+Lg9d2weZVb1Yfl+fr8GxD3vR8T4dO4ZVSan+WbIQcibZ0Pmr7RhtG0f/HoYdQAz4JO7h0wbW99l9mQX2KgNGWifQ8HPKyZICqLm/gBAvKc5TfJubyVomrfQWG5nCzm9nLzrlr7aja9sQk72krU4Hz4U2NL15PHv/S40/A0fGiL3bXCzgdR5OhLEJbwEA1Go1tm3bhsLCQuprW8IS/q/R2dkJh2P2I+0srIIgyk4kKLjOAX2+Gpv/M7sqj6VKC98ldhx+rZ3JRkvpEmAq1KDt7exznaqH/JDnyLDp6/RKJQAQutlFp9AiAFV3+6nVVoDZ3ayt7/agm9aLXADc51io7vkfBfXPhpBMJLH5S2fG4tVYqobaoaRWvVkM6p8NAUlg0xfp5hSsSkqey62wVxnQtWPwjN2HNiDAWKyjJsawwnG+Cc4VJvQ3jC7KSvDvEYIeMFeZcYzSYhYgO7FEYhHT/NRzuRWCgaPKZa6LzZjsiTBZWC5b54XSxlOrzxVc62CW569+LACIQKWoGVybB61XRZ0zdiY/wDDIM6iqqsL27duZrm0JS/i/RmVlJXbt2gUAMMCKchGd9U3d5wsxdGQcR36XPYdWPeJHMglmxQ7/ajuaXs0+DvBWHhXrvBg/HqZe2AfIwrjSwuM4RZ2icG0eIoMxassiAFj+TAjJeAJbvkJPmM4734j+3QNMdmN/z/B9xgbLMh3a3u2htpxihfdKKwYbRpgs8ljgvtiC3DojOjb3U/cPViWl5RuDgEiEzV86c/Ui10VmjHeGMdTAZjNMi7rPF0IkEWMz5fz0HwHOlSa0b+qnJl1aqnTwXWbD8NFxNP4qe70/jYoH8rHrx0epzlO4Ng+HXqT/bfCEpBkdolMrda40YeDIOJPCna5QicI1Lhz9PYUKGw/UPVqIwcNjVPZuADIboFQqFT788EOUlZVRX9sSlvB/jbGxMeTkzFoano0rwYmyEwmcF5lgK9dj6zcPZ1XvyMlXIPhZF5re6MTgQfqFfc7IwVyswfG/ZCcsldzqgipXgV3fOUytVAIA/qtz0fQKxfc3B5Tf7sPu55up1Up8V9hgKdOh7T2GOQUHOOqM6PgrmzX93zPqPh8Ekskzpjiek6+AxqGk6keLRd2GQkAkolIwBtiVlKxVWvguz0X3jkEm6zoWqBwcjMVatP3xzNRbDUUaFKxxoH//CNX31D8EFvE+V60PQMZLmGrA9uV6qPMUVIpn1hodpiNxJsWsgmsdMAQ02PdTOvU57+VW5n5ats4LiUJC9S3ivtQCS6mWavwBgMPJPTgOsk5aU1ODrVu3Ml3bJ41PrZJSGt3d3ZnJ6zB68XHiD1mPUSjEEIlEkFGq+Gz9t0MZglLu2XTsYMf5Ruh8apTfm32Xy2hTGJu+0MBEUAKIwo6jlm6n974ftWYISqay7MoEABDui6JrJ/2uUVOZGpZSHSrX5VMfU3SzE7WfZ1twX3ZPdpnzDBRA+QM+arWjtCJKwVo6lmzL+/2IDk9hnIVpfoUVxbe7qds3/vL4GSMoAUDX9kFM9kYw1HzmzjF4dAwDTfSJfjE4+moXNUHJUpODsnu8TOpOA01jGGmjLwbVPxeiVmADgLJ7vLDU0Pu6Bz+XR/0uA0DBWgd51yjvWTACllIdah+kfz/b/krUhxp+R0dQMldogDCIrQcNQel2NzR5CnhW0fm8AkTpbdMXGqgISlAA5hItSm/1UP22oUQJhVGM7i3D2PSvDVT9T6EQQyQWQc5nH3/CiTC6PbOT856eniWC0hL+5sjNzUU4PPvCfoy3EElmX4SWKaQQLUDEWwi9O0aw6YsNGDwwASFXoFZTKbnBDXsN3Txtx7ebyMcvA0HJt9oGnUeFAppdsBFkCEo0ilAA0PLmMUyNTdMTlEDsD+w1BoBScEbQE/K953Ir9TlMFRrkr6FXzLHUapnmOTVPFGSIwDQYaZ1A3/4R6vaCntiCGIpVVO0H9o2fUYISAAweHkPvQbrdM4tB38FRTHRF0LP3zBDoAWDkSISJoFR8mxvOC83U7QePTCAyGEPH+3QEpdBNLtQ/F4I+SDfRMZaqUXon3XgPABDA1K8B8q75r8mlbl98awC5tUYmpbDunUMY66Cbw6ffgdbf91Db4eXWGBG4kl7tEiDKcJu+0EBFUCq/3wdDoQamiuy7iAFiIwoA2//zCLXlr4SXQCQSQaAQhRspb0OEH4NYLMZ55523RFBawqcCO3fuxJo1awAAg+jBpuTbWY/htYBIJKZWm9nxzaZMAdRSRbeb3FCqhqlEi2V3Zc+l0Z4oNv1rAxNBCQAKrnLCUU83dhx68XiGgKIrVFIdM9o2ga5t9DUvhYNH3gozim6mUyYACMmHpS4AAKGbnEyqPMW3uKnvWesXUP9cCIXX0+X2zg+6MdkbxVArfb3Ica4RoRud1O1b3ug5YwQlAOjZN4qxY5PobzxzNaneA8MYaBg5Y78PAMfe6aMmKOkKlSi53U2tsgUAvXuGMcxQt1v+TIiQhikRuskJUwV9zct7pRUGyu8ogJC4ap4ooL9nHnCcZULNg/TvZ++OYUSHptD6BzoSkT5E5l67vktHUPJfbYchoGGqeSEKbP5iA7Uti6PehJLPuana5vh48FYew4cmsflLDdQqbCKxmEqhNZqMos27J/Pv/v7+JYLSEv7m0Gg0SCaTEIvJsuiHeAOxZPZ1H04pg0giBsdlX04dPRrGlq80YvDgGDiNGBoP3aBfcosLeStMVAo4+396DJu/1MhEULKfpYe5RAv/Gopv2FjKRSFGbJho0PxON1lv3EVf86q82w/n2WZwdJ+LAAdUPuKH+1L6PJqTr4CXoUamC6oQXEs/zym/34flT9OruvQfGEH3HgZiOAcE1zqhC9LVvEaPhs8oQQkAuvcMoYflHhgxfCyCoSPj6Nt35upqEx0xJoKSf00utbIYAEz0xjB2bBLtH9N9i3gvt6L+2RCVAhtAbNiKbnJSK2YBhCjNgspH/fBdYaNuX3KjG86zzcjJp1+U7fioHyMtdM5H6d/t2jxEbcnovsAK/xX0dTsAOPzbDmz6YgMVQSl0gxPWSj3MlVqq3zYtI3PlPf/dQr1ZQsZLIBLTjT/jpR0YVHRBLBbjsssu+9QTlACATcv+b4Tdu3fj2muvxUsvvYQIJvDnxMtYKb7mlO3DA4l5rEzvFVa0vJl9McK/JhemohxonEo0/uL0i/Ad7w9AMHInK2VkQc2TBZDIxFTMwOa3OzE5QC9hC6R220pE6N+TnZW654ezkr0KO59VWaR/zziMRRNZYzMXXI4cEpmYECcoah6+q2xQWQSEbnJSKbXk5Cog6Dn4LrFhV1P2D7buLcNwnmvBZC9dgSTcHsau77DJkJtLdBBL6aWKnReYYK8xYss3G6lilO6nHZv60f5e9gnHaFMYe5rY5JlZQaNYNhesKgmVDxNiHK0lmaPWBE4rh6AAIpS1tiO/ZruH6fEZTPRRrn4rAIWZh+tcK7Uil86nhtajQv8euhipzDx51yjvNzIA9OwewuBhuiKVyqvAREuYEI4oUPlwPrgcOeLTx6gtFg883wbvFVa0vpV9gui/NhemwhwcfpX+9xEGunYMoo9yUbdgtYv00y9mfwY5fgV4nQy920aplDA6Ei04hJ1AK1BUVIQDBw5QXdMSlvBJQBCETNEmmUziY7yF4mQtrKJTf8zMVUCz1Gox1hGjW8C+zQOI6FTs9v+qDToXXXEkDVOFBv7LHejaPphVjaj51W7EIwkm1SJLlRa+y+zIrYti73+dfqyNDM0Sm5Qugcomqen1diisSmqyVWQIkMjE0OTRfxD6L3MAIlATUlznWCClIGKmMdEdAaell1xuYJhnAgAEAUoLj9xaE7UyV8WD+YhPJ7D3h3Tzo3TBiXbewqoaw4rJYxFqm0UA8K6ywVqhQ8fmAbS/m11hQMgVUHqTC21/6UHv1hGqc2jyFFCYOarfB4j94+7v0S22AMBYZxgqK4+hRrqJjvMcC3idHIKVR4TCsqL4ejc0DgUc5xjR8UH2XV+Clcy7eK2c6noAYPsPjqDgCgfVuy/kCoh0RujzkQAUXO1EfFUCWxl2ZB56uQ0iCd2+peVPBzETiWP7f9KrD+/+XjN8q23o35V9vhm62QWtWwm5WkqlNuW+hKjM0Spw/jn5ChK74tBoNFi9ejV+9atfUR23hCV8Enj55Zfx9NNP48tf/jLCGMf7yddwvuiqU7aPjgCbvzw7d3KuNKH9z9lrA3nnG5G3wgxdviqrksfgvnF05w1SfZvNReVDfsiUEir1okOvHEMyzmaZVvNEAaS8BJu+1pCVFDB3TsFb+awWRuGOKNnt/Ed6kq6g5SDhJODNPJXFlX25HlqPCqFrnFRzHt7MQ+NSQKqwYvhQ9nFzpCmC6YkZjHXSjZfREWSdw54IW5UeMoG+nGyqyIFnpRX7fn6MykbKca4RznPM6NwyQKWMFO2JMhPkWNHyBhvBffnGIJLJJLWKV+mdbohlEuz5Ad3cKLfGBLVDAfA8aGWCWhmVAiKDMUSH6Ddsaj0qKE08+nfR1VuspXpYinXYvI9ufq3JU0DKSehVzqJA2/u9CPfSvQsKB49wR5QQjihQcrsbaocCTXIK9aEUml7pQmx0mipfO1ea4FhuwuE3jlNZtqXR9l4PRo7T3XNorRdIJLGZwmGBt/JQ2zn07xqlUhQbSPZgDz4CmoFgMIiGhn8eBa8l/H0gHo9DEAREo1F8iDey1ryaXu3KqKHogipMj09TLWCX3eOHWCahem/2v3AMBr+SWrkIADQeHkU3eNC5fQDt75w+t3R9PASRSITOj+gJ3BoPj9B1Lox3UTjExIA9qTmFYOOobJIOv9KOHLcKMVoObYxsklTb6Df+FF6dB4lcQq104llpBa+TE/IHxbMYPTaJ5BS9WVHzm93UbQGA4wBdvgpSToThRrqaV8ntbiCRxP6f0m1eqnm8AGKZmFoZ6djb9Mqmi0GsP4bGF+lrg9YqLbyX2sl6KcUYy2mAknUBdHzQh54dI1TnMBbmYNqtpH5/YgMxHHiBLv4AMNEbRWxsmlp9zXmuFRqnEioTR5WL8q+0wRDQwHEupdIRB8gEKQQ9fc1r//+0wbvKSmXjyBk5xAZi6Nk2jJ5tdGS0ouvdmInGse3r9BaLB37WApmariZd83gBZqJx6rkgQKwunReZ0LdzJGtb7yorrBV6CAY5VT/NXWFA50eDZPxB9u/Tj5K/R3RvGCqVCjfccAN+/vOf09zC3xx/FyQlAPjtb3+LL3zhC/h//+//IYEE3k38FheKryV/TPvuLYCye7xQmHnMROJZCR1Nv+uEyspTk3DSBKXg5/KgtiuoFu9nGPwh02QGlVeBws/kUllvde8egqCjTxwAm81VOja2Oh26t2RPHqwEn+bXujE9MUNFvgEIAYeJpAAwFe4BoiDlu8yBxpeOUSkeHfj1MUy00O9C43LkEEtFsJXr0P1x9pj27R+GzqvCZB/9OSofykd/wyh1XFlR+XA++g+NUVkTAkBkIIaZKfp3Qa6UAfS8L+z89lHoggpEKJUFq9cHEBmewgFKj2kAbPaQYWDP9w8Bcvp3c89P2yDk0N80LYELIFaS3R8PU5E3AbIjTutRoWvHILWlZONLHShck0v1bnqvsEJp5rH/f9qoryk2NIVkIonB5uy/nyECfrmRyRJzsGkMY210uaXoejcgwqlJaHMUZkaLO9B6+AAQA+Ry+RJBaQmfWiQSCfA8j1gshgPYisFkD4pE1VmP811sRzJOR0Rt/7APXA7dx8LksUhmcb92QyEVgWKibQLJRBKREboqT5oQUHKnB8NN41nJCr07RmCrMuDIS21Uvw/MEkZ69w+j+dXTFyeGGsMZUoalSoteio9nVtvSI28cx2QfPSl+/y/bgQi9RBUz6QhE0UaulFLNIyOdETT8uhUjR+ividPIkIjTF5HGuxkkuUAstHReFfb84MyQxMnvq6kXssaOT8AQUFN7yBsCKkjkYsgU9OSyTV9rgKCnKxQaS9XwXmrHoZfaMdZCF9uO9/vR8T79PHbXd45CH1RQEZQAQrSkJSgBQCSlGkKL9PtLS2Arv93DZnsYAUZaJjDcQle0rHrIj4O/PU5N+gKA+FQCsTG6XFHzRAEGD4+h+Y3urHkujYafHcOyu73UBKXcWiMUJh4NP89e+OsIHEDiMPn2+MpXvoL77ruP6pqWsIRPEl/60pdQUVGBa6+9FnFM493kS7hQ9NmsxxWuzYMhQHbcZit2Hn9/AFp3doJSGmmCkudSC4zBHCqSYmx0mnrT1vAh8q3FW3mErnZg1/ezj/vH/tIHnVdJbd8EsNlcpRcgTWU5VMSDAy+00V8IkLE/obVBifZF0fBiK0aa6OciLGRSgKipBFY70fyHLioln/2/aEd0hP4ByBRSSHkJ9PlKdFGMywOHJ2BZpsM4JdEKAErXeTDcPE5lHbgYsP7+6HH6GiUA8DqOabPjgRfakOPLTrxLo+xeH6Ympqk2g6ZBO89MY9e3G1KkKcr2P2qBwki/LMHiTpB+f7soFxI9qyywVRjQtXUQbX+iqxk1vdKOwGddVHnCvsIAnVeFgy8co1qUAoDIyBQS8QQm27P3pTQRcNvXDjPZNvbsHERkhG5uV3abG2KJmIqENl7QjcPHdgERQKFQLBGUlvCpRSQSgd1uR3d3Nw5gK0aS/SgUVWQ9rmB1HpAEFaHj6B+7obLT5cbYQAxdA6R2VfVoAB0fZSdQjHVFkZhJYGqY7l1OEywC1+RisjealXAx1hrF2LEJNDHU0+3L9XBfYEXvnuGshJyJjliGYGEo0VBZMm2hIFbOxaFXjiM6Sr8OdfDXx4GpaWqyWMtb7ErdgWtyoTBwGVLX6RAbAw78rBljx+jZa4KeQ/IU6+ULYaRtAlI5/WZEa40OpqCGmgTFCtbfDw9GERmIYegI5WZ8lwZyQQqZir7mtfnrDRD0dLJFKgeHws+60PRmBxVhBwD6do5QEV3SOPDCMWg8PBVBCQCOvtGNie4INSkLMbZ3zVCkweDBMer3oTylfM5ie9izZwjRoSmqtsvWeXDkra5UfOhiNBONY2qcLpeW3+/DaNskWn7fk5UgmkbLWz0QtHQEJWuVFq7zLdA4lFSEvc7Cg4im6nvf+MY3cOedd1Jd06cBn3q7t7l47rnnsHPnzsy/3038FuFE6iU/hcXInh+2YOx4mJqckd7R61+TSy3ZrLYriMw2xab1Xd85im1fJWQmWx2dzHbgcjvkahkMJdnVA9r+0IvGX5KCk+8qOim2sY4wBo/SS/6aKzTwXGRD5UP0tm++q2zUFgrpZ6WjtHNIkyBoLd8AkkSKbqaTbUzEExBLRbBWUngIAEwEJYCQ4zZ9oYGKoAQQYta2rx1mImZxWjnMJVqm62IBlyOHOUgv67z7B81MBYbNX25k8iUFgGGGRReZQgqlibKYoiCKaNRWbApAYRQjPJDIqlYGEBs2hVGMcHuY6hkr7DyqHvUz2bx5VtpQ+xSDzduf+zATiVMRfExlapjK1Ah3RbHrO3RFLXOJDupcuhswV2gABckTm79Ipz5m8Gsgloqg8mY/h/MCUyY2h1/soCJjAkD7x31o/+gUi2pzxqcPEm9g76GdkEgk8Hq9iMUYtscsYQl/A0SjUXg85MOhG8eoLEg6Ng/g6B/plCY7PhhA8xukaFHzVAEstdqsx2gDAiRyMYwF2cedyFACm7/USMhMAuisogRAbRdgr6OT8d3zg2ZEhhIwVWiorOta3iKE7K4P6HdP1W4ohO8yO7XtGwRCQqCxPxrYN45ITxRCrkD1+5HOCCJDREmG9npMFRpUr6e3i1CaefA59MReFoISQBSRWEjrB55vYyIym4u0UNDOKxYB8vv0ms4D+8ax/T+PUBN2Ot7vx6YvNDCRghABlXoaAJhCWkg5CaYph8DQzS6UMFi3pd9DWgKONkDa0xKUim9zw3UxvbVd1UN++C6zU1tbAsDw0XEMHaXbNZ+2d2z4RTuVnaSlSgu5Vgb/KrpvRUuVFgCx793349bsBwiAlJdA66ZTvqteH8jEk1bNo+3tXgy3TGQlKEWSEXwgfR2HDh+Cw+FAU1PTEkFpCZ9qfPazn0V39+z84N3kS4gmT5+7D714HIOHx6gXvvenxjPnShOqHqGzNdN51JAqpFQWZQdeaMuQZExldDWC/Iut4I1yqva9O4ZxKCXv77qILhcPHh7DYCO9RaraxcN/ZS4q7qOveeWdT2+BliYR5Pjo5gppgpLaRT+3KLrFRW3pEJskNRETZU0n2hNlIol1fTSITf/aQE0YifZEsfNbTdTWZwCgsgkwF9PVWBcD1t9v+Hk7EyFo29cOU6supcFioSfo5FBZ6echVY/46a3YeKL4FR0BHWmKTymb9UWpnjGvBXkXabs/D/ivpK/pA0D3x/2IjU5TEZTULh6GUjWiIwns+2+KeRGA3DoDcpxKqnvQFZJ2/btGseUrhxAdya42ZyzQQMpLqHKKqSIH1Y+T77LWP/aiZwsdqan5j92nrnnNwdbkn7GndQeSySSCwSAmJ9kIe0tYwieNrq4urFy5EgDQgRZsSb6b9ZiWP3Wj+Q90qouD+8cyqjOVD/lhTX1bnQ6CjYNcKYXeT2H7FAO2/vthQjzg6K3ZDAUa2Groal4HftaO2EAMOfkKKhunrs1DiAzE0EGZXwASm4KrHEy2b8vWecAZs9dFRo+GEeuPgdOIqX4/NhBDbCwBTiOmttLKyVeg4sF86vZquwI8JeEFABNBCQC2ff0wtX06ABx5uRMNv6Kft5hLtFDnsSnds8BSyvb7Y61R7P5BMzVhZ3D/GDZ9sYHNFi8GKnUwADAWayFXSZGcpiPH+VfbUcRgpaxykL4z1ko3F9S4SHtagpJ/TS4c5xqpr6fkVhcKrnYw2bz17B2mdnhJX0vLWz1UZGyNh4fSKsB3EZ3NY9pib9d3j9KpX3FkPTyH0u2h/D4fnCtNAICDlBt5e3aMoP/AaFaCUiwZw18lr6GxsRF2ux0HDx78uyIoAYAoyUKp/JQgHA5DqZztAF6UwCsuPKWaUhrl9/vAa+VUZIeaJwogFSTY9PUGavskgM42DZjdpTHWEaZa9NAFFUyki/IHfBD0HFr/3E1NfmE5T9k9Xhx+uYVaqWb5M0GIxCIqGyRgNv67v99AdY7apwoh4cTUv1//XAiJmSQz85oWtU8VQiwVMRNraJG/2o5kMonm1ygXOCnt9tKofy6EqfFpKvUuVijsPHyXWtH8xx6qd4UVgesdMAY0aHrjOPr30Esi0yJ/tR3mEi06tg5QKUdVrw9AppRiz/cPITyQvbiQ6cuUuWfZPV4ozTya3+6ktpIrvtWF3r1DVPFhzT31z4aIdRPlu5hG2k4u6+8/F0Jyhk6OmjYfz0XFgz7wOg57ftqGcPvpryd0kxNatwqb/iPLs0qRlPZo38fAEEloV111FV599VWma1vCEv6WWLt2LX79618DAEQQ4QLRqW130xD0QPl9IfQ1jmS1EtMGBISu92C8K4L9NIvgc89DaeeUtsSlyU8ar0Ct8JJG/XMhagWpNLQBgYpgY6nSQutRUauw2M82wH2eBSOtk1QqI4JejPIHCjE9MUO1+17IFVB+hweRwRiVZZfvShssZTq0f8SmhkMLS60Wvovt6Nw6QKXCwgohV4DvIguaX29DhL7ORo3qxwKQqaRsY6cAahtA35U2JOJJtFLKm7Ni+dNBzETjTEUwFtRtDEIsFmEThQIGBKD+iRB9X7byKL/Li6mRaez4Nt28t/7Z1HcEpRS6YOWRv8pGldv0QQWTupHzQjMcy40YOx6mtj0D6HPPsnVeKG08Wt/toSJA0ebj2QOA+sdDiI1OYee3syioCMDyx4IY74pQ3WskMICPD/8FAKDRaNDa2gq9nm7TyRKW8GmARCJBIkG+H30ohkeUfZNJ6EYnNHkKbPnGoawkkvL7SM1o09ez26bNBa2tmaVKB99lNowdC1OpDeX4eCbSRehGJ7ReFdo/6KOzLEhB6xeoVImKbnGh+Y+9VPcKpL7jZWK6sQqEdMEb5dj1wxaqc1Q+7AeXI8Omr9I9r+Ubg0gkksxK4rSoesQPqUBn67cYuC4yQywR0VuU0bueASDz9tjoNHZ+6/++5sVrAe8qJ1re66NWOmKBc6UJjnoTmn7fSW2txgL7CgPc51uoVYXSNaldP2qhut90X971bToCTuH1edAH1Gh5p4eaUOO/2o6R1kkqlSPW3FP3+UKIpWJm9Vq1i8f4seznIfPMBNW7RZuP56LoFhdynEoc/FVL1vv2XmmFpUSP3d9roLLZ22f4AH0D5Fts9erVeOWVV5iubQlL+Fvi//2//4cvfOELAAAxJFgpujr7QRxQ92gh+g+OZlUM4kwcKu/2Yax9Agd+xqY2nbZFyobq9QHIBCnVXITWjm0ulj8dRDKeZFI+0bg4KoJNTr4C5mJtRtEyG3RBFYLXODF0dJxOIZQD6p9Mjf0U3/2cRozKhwsR7otSqR2l1aPaP2Sbl9IiJ1+B0HUudO0cPCNWa5yRg+tcI479dYCqr7Fi2ToPlFaBbeyktNsDgLzzCAGEiXTEgJrHCxCfSlD1ncWgan0AUk5CvVZd/yxLXwYqHw6R+u336QQF6jYGkZxJYOtX6WzVOA3gvdxJpfhDmxPSMJRoULDagdHWCRxk2ABAex7/mlyYQjloe4+OAEWbj2cPAOoeDyI2NIXdFCqlNY8XYKIrQkUaHLcOY1vPn5FMJqFWq9Hc3AyTyUR/bZ8S/F0pKaWhUCiQTCYhT1kntWA/NiX+iJonC1C6juyyNZWpUbcxmFErKr7VBX6Of2LNEwVYdo8XAFHgqdsYhON8wsgL3ugki1gpkkD1EwGUP+Aj57bzqNsYhPsyCwBCiKjbGCR/cypQdqcXdc+kikcK8kKnFY3yV9szbVvf6kU8HgennpW2rdsYhP/aXACExFS3MQghRVj0XGBD1aN+LH86iOCNTtR+vhDBz5FdUc4LTKjbGITCSZiK5ff6IOUkGGufRPfHw6h9qjCjGmQ7S4e6jcGMSlHpXZ7M7pLaDYUIftaN4nVuAIClJgd1G4NEuQTEeqPmSdJ2zw9bUHJbAcoeJPE2lChJvM8i8S662TlPqSUeSyA8EM3EqW5jEM4LyAsT/Fweaj8/27b60QDiiTgm+6IQQYy6jUF4VpF4+6/NzcQQIDZjlQ/lo+/gMCZ6I6jbGET+ajsAot5UtzGYUZipfCgflQ+TnXCbvt6QeX4A4L6MxFthJK9E+QM+VD86u+O/dkMhQrc4IRgBx/lG1G0MZlRZyu7xztuhU/tUISBJIj6VgK2OxDutglW6zjOvbc2TBSi+3Y3aDYWofy6Euo1BWGrI7rXi22bjDZA+W3oXibe5RAtLqQ65ZxPGe+im+fGuXh9A+b2+2Xg/EoQztUO5YK1jXryrHvWj4kHSVjBiXnz9axaI98OzuwnrNgbhX0P6rPcK67x4VzyYP29nZu3nC1Gw1oG8c4zQOJRYdpsHipTcafn9vnkKC7VPFSKYYg9XPe5H/XMhaMvJDy87Id41Txag+FYXANJnDT41kokk+veMo+SOE2K4QI7wXEHiUnyra14MT5Ujjr7aheG2CdjKZxc5qh8NoPz+hXNEbHIKyWQyQ1CqesRPmPXAgjlCLBUh0h8DwqeI9wk54sjLLTj4Yhtya4xEUWlOvE/MEY6V5JplghTulbO750+VI2qeKEDwsyfHMK2KtlCOmJmOo2f3UCaG6XiflCNudWL5s7P3HlqTh7JUvE+XI0ZaJzAzE5/NycaFc4ShRImyO72ofbpgVvUtFe+FcoStTofKh/IJmfLrDQi3h1G3MXjaHKF2kD6pUIhJ/kz12RNzhP9WC9q8uzEwNAC5XI6f/OQnSwSlJfzd4cUXX8QLL7wAAEgiiXeTL8G+UovaDYUZtZ6ye73zVBZL1xUAYiARS8Jxvom0zSU7eJet884bIwKfcWKoeRz7f9wK23I96jYGM+omxbe7Uf3Y7BhR/XgAoZtI3q9a70f5XV7Yz9ECIIorc8eT6scCKL7NDQDoaxxGMp7MqIIE1+bNG0+qHwugNKXWEo+Tsb/kLg+WPx1EwfWOebmw6iF/ZowQ9CQHjPeE0fhSG/LX2FG7YXY8KX/Ah/L7SM6CQH7Xc7kVGi8hZi1/NphRJCq/z5fJb0BKQWm1Db07RhAdnULthkJY6lQkhvd4UfXQbAxrnipAwbUkZ4lFIsSnEjj2ISlelN7pmRfDmicKEEztrrfUalF6VwCRkRha3+tG8W0nxHt9AKGbSbyNpWrUbiiEyiJDZDCGeDx+crxTY4Q2IKB2QyFsy/VofqMbwy3jsM9Rpax6xI9l61IxzCVtHeeQiW/BtQ7UPFWQUZ6pfCgfZfem403iklZe8V1pg/s8K5LxJJKJVLzvnx9Db0oxxnO5FbUbCqEsEFD/XAi1ny+YHZNTbfPXkDHCeaGZ9FkrD3u1FjlOJUrWzR8PC64j8bafbUDthsLM9ZYsEO+0uoKlirw3hmLyHItvc0OimP0kq14fQNEtJN6GYhVqNxTClBpnQzc6Z/tshMQ7rTCk8c7GGwAKrnNk2lpKdbBV6rHs7lQMrTyJ9/lknPVfk4uap2bvrf650Oz3TKrPui+xZOI9r3/f70NSlMTU5Ewmhr4rSbzdl1hOzhGP5Gf+XfNUAfzXkHnN6XLEli83YmYqjsLrSZ+1LdejdkPhwjkiQlRQZ6bI9ZgqNPPifWKOKL7BifhUHK3vd0MfVJB3LEuO2PT1Bhx9u2N+n71u4RyhDQjA1BQURg7OC0mfPVWOEPRiFH7WjeXPBjPqSN5VqXifIkfYKvWIjU/hwE/a4Lo41Wf1pD+dmCOWPx3E8mfIvF5lVZJ3wUV++FQ5Yu8vWhAdj8F5jjmjRHeqHFH9WADld3nn99mbFsjJt7sh6AHbuXrUPlyI1o96sPPbR0+K90k54uFCQASIJKJMjkjjxBwhuTiMfV07IZVKoVKpMDo6ukRQWsLfHeLxeKbfNuMAtiTfQeVDfhTf4gYAKBw8ap4ogLWOtPFfbYfGmdrMFyUkmJI7SFveTNqmd6F6r7RCppRmCErlD/kytQbwJAekVYrcF1sy7yavFaPiHi/qnp7/3Zz+Fss734iaJwrAa4niUTwWh0w1ax1R/XgA/tS3mH25nrS1kpqAc4UVFQ/ko/apQhRen4fqxwIoSI0Rpooc1DxRkFEJCd3khGDgMHR4DB1/HUDVI/6MapA+pELNEwXQh0jeL1yblxlPqh7xI7TWg6JbyZis9QuoeaIApgpSgym4JjeT3w6+cAyhax0ouTsVQyuJoT01zvpX2zNqJAAwNTmN8Z5wKk4kLnmpGqNnlWVeflt2jxdJSRLjnWFEx6KoeaIA7otJDF0XmUnblCDKsrs8WHaPF93bBzF2LIyaBwvgvZKMEY5z0/Emeb/kDndG/WnzfzYiMZ2A/2oSb2sdibfCQX64+BY3KueMEdWPBVC41gFeK4apjMRb6ydjROhGJyofnm1b9YgfYrkYM5E4dIVK1DxRkFHdKbw+b15dovIhP0I3OVH1iB/1z4ZQ80QBLFWkJhBYkztvPKl4IB8lt5J426uNsFUbYF9Bal6+z9hQ/cRs2/L7fCi90z0b7wcLMjuUPZeeHO/0HAjAvL85V5rmxbt0nQdl986Os9VPBOD7DJnX2FcYSLzNpHHJ7W5UPDA7j6x+LIDAmlxYqs3Q+dRYdps7o35VdItrXryrHvVn5jXL7vGg/rkQbPUkLsEb8uZ9J1U+7M/MI7V+AbZqAxLxJPobRlF4nWNeDBfKEe5LU/O9q+3zxuRT5YiujwbRs3cI5lLtvBimazsn5ojoWAzJRDJDUFp2tzfznZSO99wcIeHFGO8KIzqSQOmd7tnvJCycI9r+2o/9L7TAVKA5Kd4n5gj7uamal1IK5zmzSmunyhFl9/pQ9DkvqtafEO+bTp0j4tMJdG0jqmAVD+Rn4n1SjlhjJ3O61L3nX547G2/tqXNE775hTEdnsOyEnHxijlD4eJKPNxaeFO+FcoSpLAcld7jBKWXY9LUGjDZHUb0+cNocYShMSY7wPMkRqW+fE3OE/3objgf2o2+gD3K5HM8///wSQWkJf3f4l3/5F3z44YcAgATieDf5EtTlHKoeC4BLqRiHbnCibM54UnmPHyKpGPGZBEzLclD1WCCjWFJwnWNefiu6Pg/9h0dx4Gft0AVJHkqrHvnX5M7Lb+X3+zK1ndK7Pai8zwfH+WQ8zL/SNm88Kb/Xh+BakrM6tvYjHo9n1Jq8l1vnjd9l67woSuW3xOQ0qh4LkJr7UwVwXWpG1Zy1sJI73ChJrbeAA6oeC2D0+AQaX25H3nkmVD0WyKgGldzqyuQ3gFjVOS8ygTNyKL7Zh+XPBIkqEYCim5woWzcnho/44b3citGjYYx3hFH1WADmanL9wbXOzPoWQMa4/FStQSwVYyo8g66thJRScK1jXh2o4oH8zJqVNqBE1f0BTPRG0PJuN/xX586rA5Xf58vUdjQu8sw1HjXGj08iFp6ZF++yu70I3UBiyJlIW2uNDl2bh9CzZwiW8lnVxWXrPChOrbdwGhJD+1lkjHCuJDFMK+KU3OFGyRwXmqrHAhniTe4KA/xXOpCYTiAeTaD4FlemdpmOt+sSMubZl+tR9VgASieH+mdDqH6iYH6ffdgP7yoyRpgrtZlrMPiVMBVpUZp+5ql4p8dkQ5EGVY8FMko5gWvm99mKB/IRSI3JOfkKVD0WyKjT+FfboTDPKv2V3+vLjMkqB4mhuVILAPCumtNnYyTeaYUhzjgbbwBwXWJGZWrOmVtrQN4KE4pvmd9nc1PzyEyfTaH+2RDqnp5d86x6LJCZR+auMJD3PjUEFt/shFgmwtQEsQGrfNQP96VkTLbW6E7OEfd6M/298iE/fFeQPnu6HLHjP45ganwa/qtJDHVBFaoeC5wyR8Sn4piJkZqXxsPPi/eJOSL0OR+mJmfQ/lE/BFsqhllyxJb/aETjy8fm9VnXJQvnCI2HRywGKG185lvzlDmCA8kJzwbhvIjE236WPhXvhXOEe6UF4cEYDv68HdYq0mcFG/nhE3NEzYYC8lw5QKZJv8uk750qRzS91YnJ/gjsdUboguT78VQ5omydF5X3+lC1PgDTMjI39F1hWzhHcIC5MgdV9wfQ9kEPdv+gmcR7znfSQjlCJBNBLJ3NEfPiPSdH8JfHcGhyB8RiMXQ6HcbGxv4uCUrA3ylJKY1YLIaysjIAQBjj+PMH74HXEiISl/LzFlKSf7xODpFoVtlGKkjA61Jt1VKIpaJMslQY5JDIxRllDJkgzbSVKcWkrYH8rtIw6xsebg8Tr88E+bdCQdqmvSoVplTbFIlDlBRDrpLBfZkF5ff6IJaKoEy1VRp5iKUiiBSksUwlg0wphUgsAqeSQiITQ0iRrpQW0lbIIeeVa2SQChIcSHl2SjgxeEOqrUmAWCrC/2fvP8Mjqc6tb/zXsapzVlYrx9HMaKSJImcDxsZggk0yBgMGg0nGxOd9r8vH4Tm2jyMH+zgdHMEGHMgwGNvA5BwkzWgUR2GUs7pbofv/obpb0oxUteU/nPfY1vpia9gq7bpr17133XvttWRXPC5uM0ZZKRq1b1EmdYtTaWvxKdeV/UpcLJ7ZtqDI+Fs9FtbdX4zZaVb6H1A+UCxeCYOkn9dWcphJP81D3rk+pb/x5G3xShhMc9raDBjNRvb/sAmsSh9s8T7YvPN92s12Eya7ieaXuznwy2bl2cSfuTX+bCzxeJvsJswJn9EJFPuneEHM5lfa6p3Kz2aHCaNt9l4NZj3uHDvlnyzEmqL0yeo2zsZ7TlwMkp6ZUJQd3ziCNf5sZLd8SryTMfRJjHZMMBWeVvrri8fbe2rbxPjuPqiQQBJWIhaveX68LQbMTuVeJZtyrxlrvcl7nRtvk82I2aFcV2eW58U3OWbnxNtsm/Vq1Rt1OHIs1DxejivfqsQlvtFmdihjNhkXkx6rT+LIM+2M9oyjM+iQXPrkdY2W+TG0xsfsdFiRRZRM8fs5Kd5G2YDFk3jHZHQGHccTY9krzW8rGU7JEelr/Ky7vxjZYz51zCZiGM8RzhyLYt/mieeIRFubAbPDFI/n/BxhMBjQzbH7UuKttF0oR+gMOvb+vDHeds6Yjcd7oRwx3DCRzBFz431yjgielsa6e4uTOWJuvBM5bm6OaHy9nWg0ilE6Od6n5ohVt+YpY9ZsoOmlE8m2iXifkiN8MjqdDkP8+RhlA1Lc2sfmNczLEdaU2TFb+8s2jObZeC+WI/oPjjMdmkGv08/zF14oRxR9OIO8C9Ixu+LxnpgTb08i3vEckSJTfXchZocJvUHHln+rZaIvisGsxxqP99wccSS2n6ef/SnHjh2juLiYhoYGbrrpJpaxjH9E3HDDDUxMzCp8PPvuLxgaHQSz8v5JLvPsuwkYJAMTvWGaXu7CFpAwmPVI8b0zyT0/Z83NLZkblHVCarXyMWnxmDFZZ9uaLMbkHDHaofRHj/LfbX5pflurMXndiROT6AzKem/dfcVYU+fPESarEcmt9N/iMmIw6zHblbWXNeWktg4jkktpq3co9zY9OsPQ0RC2VHneHCE5zMk52WJR1hRWv8RIU4iZqZl5c4TZaUJyzJLqDWY9dr+SN20B5boFFwSxpMlILhOmOWR3o2TAEp97LPF4yw4DK2/JQz4phkbZkFwjW33KdTt39NN3YPTUeFuNyfwmx9tavDJ7/7MRs2xaNN6SU0reK8yugRKkCJNtTrydOgxmPbbU+LrGZ8YoGai4Tim8mB2m5ByBRbH7S9i02lKUPm39Sh1tm63MeSwAAQAASURBVHuUeCfGYSLeKfG4+JQ+RXsjTI1Po9Pp549Zsz45n1jjbU1WHY2vdzEdnsFgnDP3S4bkvVni3w5muxILi9+MyW5Mkl2MsiE5Jyf6IMXnF4vHjF4/Z11mMSbXEJInEcN4n+LrmvUPlrDugWJMViNyfBxKbpPSNjX+XP2zY3bvU/XEZmLJMSsl4h2Y03bOXB+LxdDFdPFw6+MxjD8bv9KnBGlGcphgRqes22FeW2t8zJ6cI9bcVa5YgkmGZB8WyxH++KanUTJg8ZuT/TWY9UjO2RjOHYd6vR6DUbkfi3d2zMLCOSI6GaP/0BiSWz7lXue99zajcuglBMwo9yon+uQ7NUdYAxLl1+RhzZLjYyt+r96Fc0RoIKoc0tDNWavE45JAIkfYciyUX5+j5J6xaDyG8eta4uPnpByhM+jQ6ePPdU6OAE7NERYD9kwLhGDw6LjyLiS+ERfJEe3b+pgMTc2Lt9V3aluLx0zlHWXknZGmxNsRzxE+8ynxltwmci9KJfdsLwaznoGjCpk1kSOScZmTI14ffpE333yN6elpzj77bEZH339l1WUs438K/f39XHHFFQCMMczmd95A9iq5XHYalXpCYDY36vW6pPqG5DElrUFNltnaAyjfkkbZkFSesbil5Bwsy/F5yzf7LWaUDSBDeChKLDpb8wKlrc03u1ZR2irXikZjSE4TaRu9rLolF5PFmFx/2FKVtrJDuZbsNWN2GNEbdJjtBoxWI7J/fn/NrtnvOLPdlLR9MztMyblejs+VCQsNq09Kfg82vdkFMZL1MJMjvjaJz7OyX1Js7eKQnCYcqVbWfr4Ii9ugxCVRx/JLmCxz2jpMyB4zvlUOss9PV66bWKv4LPPym+wyY7IYOfjTlmQMrYH583c8hEguM7LLTOfWAQ79vGVef23xtnp7fJ3mMWN2xfsUVtYU9jj51xpQ7lV2GuNxMiXXLQBGq2IrU35dfrIWJbkS6zJpXl3CZDcxE46y6zsNWDzSvLFl9UqY5tSMzHYTVp/EYPMYkdFJpW187rQE5s/JZocxebi05R3lWc1dq5jkOfF2mZDjaynMMkaLgYwNysaINUWeH2+nKbleSsQ7gURbWVbmWtltTq6XAEyyEWfQwqZHy/GXOuK1TZJtzY6T5riAROubPfQfHcZg1GOOX8viMc+Lt8lmwhofo5EJZdMrsfay+uV5NQyz3ZSsGck+CwaTns7tfRBWns3cMWu2G0/JERnrAlTfU6TEcM6YNbvm1LrjOcKeLSO7weaTTxmzidrOyTkiWfNKjlnTPNvmU3KE2UDDy0rNSPKcFO+Tc4RFyRGjreFkjkhed4EckXumstlmXWDMJsbo3BzR+GoH0ZkoJsvC8Z6bI0qvzcaSKmGUjUmFKclpwhL/Lj05R1gDSs3LJBln45I4PC3L83NEhiVZo2v8UxdGsxHJPT+GJ+eIaH+Y8MAk0ZnYqfE+KUeknean6LJMbKkWJUeEZ+M9u+aczRGrP5OH7DVhNBrY+pVawifCGK3G2W/NOTnieOwYP3/xpxw5coT8/HyOHDnCpz71KZaxjH9EnH766YTDYQwG5X186eBvGR4fRIrvLVn8UrKGAUrOHeuaoOW1biw+Jc+b7InvWxnJOftumh2mZE0/c5Mfo8VAWpy0a0+RkzUjAMlpTr6bg43xb5nEfmOKjMk+fz5M5IeJ7ggGgwHJZ6bytnzsWZZ5uVDymJJ5U28zYbYaMTuN6Ax67BkWzHNqdBaPhBR/5wHMViPTE1GGj01gi9vRJa/rk5J7MwBmmxG730KkL8Lk+DQ6dCDF5ya/hOSZE0ObKTnXy34Js91I4UUZWNIlrAFp/hxhN85+q3vNmC1GJKdEydVZStu58Xaakt/fstuM2Wqk79Awg3Vj2ALSvDqQ5DIn87HJLmG2GrH4zBx8uhWjWT9v7pHcpuQ8Jdl1mK1z8qjHjNlqShKPZI8ZOb7Ph1m57mwdy4LZbmTVpwpAAtkjIcXnZCQl3om1rTVFxmw1su+HDbT/tQ/ZJyXn72S8A3PWbFYjuiiE+iNA7JQxa4vHUPYqY8DkMNG5Z4DwyOS8mpfJPntvskdpm/jmtmdZkL3mJNnF7DAl701yKfGW48/Z6lf2u2bjPTsnmxzKdRNrF1uKjNlupOquQkV50W1CTrSV43GJjxd7QEaKrzn3PlXPzORMsq0k6eMxjNclUpS4JEgz0WgM5og5mq1GbCmJNbMSb8yJtZdMbCaWtMw2W03Y58zJZqtxXo6w+CSq7ylFcipjZ7YeqcTl5ByRICIpMYy3jY/ZxNrr5Byh0+vRG5RnJTnjYzZRm1ogR8SmY/QfHMFsMyj9TXIF5q+XZL8Za5oMEZgKxZQYJvYivfIpOcKeZaXiunwsadL8dyEQj3eiD4kcEYGBY6Po0CVr3VZv4tnMzxGSX6L4ykzMNhMz8UORcjze5vi+/ck5wmgyoE/UvLxKDBN1w5NzhOwx4wxaIALde4eUGLrnxGWBHNH6Xg/h4UnMFmNy/WdNkRbMEevvLqHwQ5lKXBJ98Ck5Ym4fZJ9M2noPmeekYrYaGagf4dAv2pQcMSeGc3PEO7zEq6+9QmQywgUXXMDAwAcg+f8/iH9Iu7eT8eSTT/K5z30u+fMGzsahU/dMrHmiHGIIScyVfTKb0a4Q7W+LS/VZ/Xoqbi5ih4Ak2sZHytAbxa3Qkn8jaNW0I3IVWVlxbS7ToRl2fENMng0g8wwfHe9o+8WvuauAhle7hGyaYOlWUAkVHxGpO4sfKm8vY6wrlCz2qKH67kIkt5nDz7Qw3KDd/6rPFdKxo1fYUit9owdrqixuyfYBYsNDpcSiMeExsBS7t+CFKWSt99Pw0gdjr7YUWDNkcs5Joe73bWL2dlZYfUM+PYcGhWwRl2IVhBVq7i9nsHmMOgGv0dyLU8lY66P1L91C796qW/Owp1uEbedAeV+b3ujSHO++lTZC/TPCVmlLzTNLtWGrvqcQyWWm7rkWTeu5hCLU4SVK51Z9rpA939ewGYlf35Vrp/vAoOa73b+qkSMNR5iYmMBqtTI+Pr6kPi1jGf+b4XA4GBsbA0DCwhm6S1XbF12pyKf2HNa2fsMClTcVsE9ABnUuVtyYw+T4NA3Pd6i2869yUPzRbMa7wuz/sbZsc7JbmRZCHSHNdgmbz70/ahK2PbLlWDAY0LSY85ZZyapJ5YCgJV7+pemkV3vpPzJC/bPaEtgJ6yhRa6fy6+K2l4LWJjVPlDMzGRWyHsk604873y5uYWWB0o9k0/rm8Q/Ekm0pSN3gpuD8DBo3d9K9fUiz/VLt3tbdXwwxhOzMPmjkX5rOaNc4vXvEvORT17pJq/YmSU1qSLyrY50hoTG/+tZ8LH6Jbd+pE7LC2/hIGdGpqPj6+PH496PgeHcXW8g5M10oz2Sc4aNTYP2XQIKkJpJnRHPX7C8olnlC6zoLrPtsMTufOipsPwhKrjHZDTT+Qfs7STTuA7EBRgraONaorOeeeeYZrrnmGvFOLWMZ/4vx6quvcskllyR/Xsv5uHVu1d/Z9Eg56GGrQM7KuzSVqbGZpdlTyLD29iJ2/bBB02Zr3X3K2mjLN5ZoLZcma9pHySmKmsjkyBS7viNuwZC20StkHbXyplza3j0hbAe16ZEyRZ1XcK5Yd38xepNezJZNhg33lDLRHebg0y2azStuzMWZY6X++TYGasc026/8dC4n9gwKWWQB+FY5cKRZhSzBPmhU31OETofwGFiK3VugykXhRRkce73zA7FXWwpkNwTPzeToKx3C71L5dUGGmsaELCzWf6EEo2QQtmPZ9EgZg42jScKgGlLXeij4ULqwFU7JlZn4V7jp2NYnPMYqbsylfWu3pqWjI0dmZgYm2sWCuNQ8I5K75mLlTbk4gmLvasFH0jHbjNT9RsDeaA5W3ZrHgV82a46b/MvSSKv00r1/kMY/adS8VjbT0HSEsbExXC4XQ0NDS+rTMpbxvxl5eXm0tLQAYMVBje4i1fZZZ/kJnpFCz/5Bjr2o/Y1TcWMOh37euqQ+FV2eQXQ6pmkt58xRFIxGj49z8GnxvyFqY7TmjgIsfokD/93IWLuY7ZHkl5AcOkaa1ZOQPUsi5+xUYVuntPUe8i9Kp79+hCO/056LUqrdFH4og5Y/i1k75V+aRkqFh23frhOyHtv0aDkzkRl2fFO7xuBb6SSwwkX974+L2ZpJkH9+Gh3bBz8QS7alwF1so/Rj2bS83c2JHdp7aku1e1tzRwE6o05or+aDRtZZfkJ9k/QfFqt5ecrsZK7zCb3f9iyJVZ8qYKRtXKh9yVVZuHNt7PvhESIC3Vkbrx3uEqwdbnykDGKw7Wvae/Gg2Ebmnyf2vgZWu+jdL76OXkqekQISkd6l21dOhWaEYlN1VyGHf9FEZETbpjiBlGo39lSZpldOaLbd+MUy0GtzICKxCN1FRzjaoPT52Wef5eqrrxbu0/9WGLWb/O/HXXfdxTXXXJOUs9rOX/DGUqnSnbHo7+z7SRP6+EkZ30ob/QcX3zyu+3V84W+FTfeV0Xt4mGMa/qh5F2dhlA0EL0zRJBBs+2pd0qoNK0LkirWfL8LsNHHgVy2qBKHhhglh0kMCCfKD2Wmk+WX1D8G9TyobiPZ8K9FwVJN4cOyVdsbatIsjCUyNTyVP/GohFP/GnasSpNqX1zrJPTdNiKAELHlSzDs/HXQIk5TKrgsyPTlDw+/UN1dBse/K3Oin/oVWTdIGwPZ/F/cKXira3ugRJsmAUvSITcXY+W3tCcDih7JrCzj6ihgRruiyDOypFlIrXGJksgmENskSOL61F3dCQl8DnhzlnY4MTwq1j04qp1I7dou9qwd+3EzwvABtb2l77aauV+KReF+1UHK5Io0pulk63DBB85+7hIheGx4qxSDpk3aaqojnw93fPYY93yo0Blw5dqE+Y4VN95Yx0DTKkWfaNd/vxDxx+BdtpG/00LVt8XudiE2whVdgP7jdbjZu3Mhbb70l1q9lLOMfBKOjo5x//vm89dZbRAixOfYcp3EpFp1lwfYNz3cw0jpO964hQCHbDCw2f4VIEpTKrwvizLYJkQ5c2TZisRgNqM+jfQdGCQ03M94av6AFzWtbvLDm03lMjU1rEkN2/sdRUte6hQlKAKtvyBPbhK+bYKBOIWsEqpyaxJCml7uYHJ2i/W9im469e3rIXO8T6zQwGVJOs9hyLLPxVMFQyzj9R8U+Stv/1ifcb4CsjQF8JU70phxqf6n9ce8utpB7boYwGS5hpSFCDOrePiRETvp7sfM/xMlJqWvd5F+YTtNbXUJ9Kroyk1gspk0mjCOtykPqjFuYpNS9ayiZB7TQ1zBKZneYhpfF1tI6I6BDmCwzE55hKj6GRbD3Z81YPQbNdpZMC8zEGDoaYuio9jqz4PJ0Uld6cGZYhciEADu/eZTUDdp5xltmpfTjuUz0htn3A4E1bzwf7v1psxCxKe8cxTKq8OIMzTFTdGUm/hJnUvVMC+5iC0NHQ9T+tplIn3pf9sbeo58udE06SkpK2Lt3LxbLwvPRMpbxj4iLL76YUCiE1WolFouxi834Y+lU6k5b9Hf2PlWLFD+97SqQVUk2c+s+Gx8upbd2WHNzOv+CNMxOEzlnpND6pvo7vfNbRxVbtzCK2orAEilRl6p9plmVcBDuCdPwcseSyCPFV2TiX+HC4jbR/Jp6zStBBpJTZNCjSTyo/30boaEZ4b5ERqbmqduoIoxieynY/NhrJyi6NI2BJrEanMhhv7kouiQTvUEvTCDJvywNnU6nObZAIQYVXJhO42tdQqQpEbLR34vePcNLGl8Jy4fd3xPr06pb82h9u0uICJd7UTa+EidjPWE63xWrHdUKHJpLoPmtE/iKnEJtFVswXfJ7QATR6Sh9+8XW90ee72C0MyS0iexb5aD/wCiHft4idO2KT+YtiUwY7gnT8GKH0Fhc+/kizA4Te75fS3hIo3E8Hx58ugVrlixEmgqUu9DpBerecVLjUOMoR57v4MCP1Qn/7iILQw0hml48wejxkOq9hmNh3uUlOABOp5MLLriAN954Q7tPy1jGPxCam5u5++67+f73v88Eo2yOPccZXIakkxZs3/7XvnlEBmeerErISRAScj+USkqFmx3fO6JJVPGVKPlZi6Q00hph708aCXXFLyihTYKRoPr2AiIjU5rz194fNOJb6RQmKAGs+Yxi36S1CT/WHkkSHjxldgbr1NcwJ3YMQjTGCcEaQ8+hIfLOTSU6JUY2iAxPgQ6caRIjrdr321c7xPBxsb3G/oMj9B8Uq6MA+AqdpFf7MDtM1D+jXTewpEsUnJ9Kwx/bhAgtlbfmo5f07HlSew906Og420QI9n8n9i7h0KozT6bsqhxa/9wtNA6CFwQUJ5CXtckjAFk1AYjGhElKg3VjmuM2gbH2CAPHRml/V2xv1WDUgw6h5wkwNTKlqEYJYu+TR7CkaddRJL8EOgh1RYQIShmneck9Nw1PoZ2jGgeLk30RzDOWdIk1txQw2jkh9i0Tz4d7ftQkRGxKW+9B9pjJOjNVM/dmnx0gY72X7d85Qs/uIbSeqjNHySv7f95EdEq97dHYftpogAYoLi5m586dOJ1ia/b/7finICkB+P1+YrEYHo+HoaEhBujmrdjznKe7csH2STKNVdmQn7k0yvavqSdWV6YVnV6HQdb+GDj8i7Z5SkdaG+wTbRNYM2Qqb8knPDipuWHe9k43OWenCW3aJwhKJddm4cq2aao7HfhxM5W352sSlOZi1XW5xKZjbNVYaPTENzA8ZVbc+Q7Nv7H7u0sjBm39shjLExRixf4GcYIKkPSFFzk507y5i+FO8cWaJ99OLKq9uQowMxlFp9dhS7MKkZRg6eo1wojz64SUi1A8g6OILQSzzszE4pVJKXcKjfX9P2wi79JUIYKSb6WN4suCHHulXVgBqv3tPtoRK6gM1k0Is8MB2t7qFSIcgUJoq/tVm1D7hEJToNwjrEbRvqV3nh2c2rXTKr1s+2qdEEEJoGvfAIESp+Z4SagzjZ0IceBHzZrP31Wk2N7t/UEtIcGxqNPrsMyRxV4MWef4CZ6ewtiGEAd+3KxKUBrL76Rp9BiJVcjLL79MTU2NWIeWsYx/MGzevJl3332XM85QSOHv8TKFsZXk6koWbJ8gJqy+LR9bqkzDy+2axIaE7YcI6WDvU7WE4u2c+RZVVaIEoWb17fnYUmTNDfnQAIQGIpzYI5bruncNgUUpDLf9rUdTlah7/yBjPeIyJCtvycORYcEoaSseJYg+pddkaxIgQgMkrZFFcOyFTo4hRmYBqP3F0k4Kpq51k3dBOgd/3aJJgmp/uxeDSUerIHE6sNKLLUUmeH6KEGFCZ9ApBBhRJL7rl6AuI3zpNFmYBCd7zej0OmZCYhumgVLFV130ue7/eTNWn0m7Ico6emYyyt6nBAtOIdj/X+JrdSESzhyIKlHlXZJGz+FhxltDhATqKZU35SobX4LrwMY/dGHzyUIEpfUPltB/ZITGF8VIZwN1E0yNTdPyZ+0N4arPFSK7zez9z1pNglIixza/coIT+4eFCE0m2aCsvQSUnTZ8sRSDWc+WL9UydFS9bd/qYwwd7IEZyMjIoL7+gyuWLmMZ/19ClmWi0SglJSUcPXqUPrr4c+wFztVdsWD78BCEh5S5YsUn8pmOzGjWguQ0GZ1Bj1Hg4FfTiyfo3DmUJO04cmRGWxefm8InwshuqLqrnIn+iCZJuPXtLgovydZURAGSBJK8D6XiL3Np5vejL3RgtmsTlOai6jP5RGeiSTu9xTBYrxyAtGbJBMqcmgQuLeLAyRBSXIoj3BNOWlOIYvVn8jCYDUIbVA2vdBAa0Kioz0HqSi/EYkIkpZnwDDqDPmkVIgI5RSbc8wHUvOJOLaLKRXqTDgT3g7LO8uPIsOJf4WG4UTsu9c8eJ/scvxBByZols/K6XJpeFyN6wdIIWRPtYbZ+Vbzm1b1rkO5dYt9SxVdkcvSFDiGCUupaDwUXpzNcOc5hQVWSY693Yk+RNdulrvWQc3YKO75/RDiGx9/rI63ao0lQktNkqm7NT26qaRGUEjl227frk3aQqgiD3qCfZ/OzGHyrHJR8NJvR9gkO/qxF9V6HM3ppjx6F+HB9+eWXOf300wU6tIxl/OPhe9/7Hvfeey+FhYUAvMOLFMVWkaMrXrB9gsRQclUWvhInx17tpGf3kOrfsLgl9EaxA/fbvl2PFOdI2bMk1c37BEGp5OosfEVODjytoUYSgdH2cXrrxNgPCXLN2nuLad/Sq6mmc/ydHmbC4iTuoo9lEljhouUtbcWjBDEl/9I0beJJBLYLON8k0PFuPx2CpGCABg1hi5PhLrZRfFkW9S+0aqpM9R8eodndRed7YtLhvmIHrjwHqWsDtP1Zew9JL+nRm8XGIpC0ThNSgVoiRFW9AGSv8v0yMyW2+Eqv9KIz6oVJSnt/3IQ9ZWFy4slYdUsegLD6PSBEOEug9jdLcw7ZL/idkXGal7H2cUZaI0RGtJ1AVt2Yg8liFCZ7d743gCtbjKBU9blCBo6N0vJatxCJL9QVYaInzPF3tcd4xY05OLJs7PmvRk2CkiVdItQV4cSOQQabJ4QITQZZr9hnBtTzM0D1vUVINhNbvlE7SyhdBAOrmug83AzTJK11/5mwhKzzj4HBwcGk9VuMGJtjz9EXU0k4EzDWFaL9Pe1BPNwwwZYv1XLkGUU6cM2dBartEwSlDQ+Vsuq63Fkyx2LtO8PMTEUZaNQmTPTsGUmeol5xQ5BApUPzd5wZVsVTXKMfAPvi6jJl1wVxFWn/wkj7BC1viyV2gLIrc0mvEj+pv+GhUqrvLhRqa8+3sv4LJUL3CYq0W9XnxK5ttBrn+b2roWvboKYd31wcfqZFmGTV8U4/W75UK2xBuOGhUipvyRfuy1Kw/s4Sah4oF26/7at1QjaIAA0vdLD/l800vSQ+tkTJdf4VHnQGHaER7QWyxa/IgRddkSl07TV3FFBybZZQW2vQSs3j5WSdo25Rmbz2XQV48u2kn+YRat/yajeR4UkO/bZFs+2qW/PAqhCmRGLuybejN+qwZmhXSNbcWaBc+40edn9Pu+A53DBBdDpGf732YmT9gyWsuDYXa4asKKqpvHaFl2cosZ5Q7D73CShptb/dx+TIFA1/UF/YvR37PTuatzE0NERxcTGxWGyZoLSMf3qcfvrpxGIxzGaF8HeMg/w19ifV3zn6p05CAxEh5ZV9P2hKfvTkXJhCzoUpi7YNDQAhZfO84ro8obm9/+go05EZoQ32vU82KoQgi2IrpQVbigWDWY+vVPtkQ5JwYIHyG3I02x/8dTOhvoiQJRso1kq+EicVn8oVbl/zWDkWr1BzSq7OouJmsWuXXJWl2DcJiJxMh6fRG3WkVriFri1KUAJlY23PT5qECEoAO75xRHj9Aopd1tpbi4TbLwVrPpOfVHbSQusbPWz5t1r6DogRsrd8uZZDvxEvqIy3hoRVlIwWIyaH2Dq66nOFbPhiqVBbi1exy7GkiezYKJbP6+4Xix9AerVX+ZYTRMvb3Qw1a5+c85ZZKbwiAxArYlm8YJQNOIPaHzmBKiclVylr0Z3fOqpJ9AEYah5nOjyjaZdo8eqpuC4vOQa18mciX9b+qo0t/6ZNgALo2j3AkIbyR0+sg82x59i3bx8pKSk8/PDDtLdrS/wvYxn/6Dhy5AhPPvkkAFGibI49R09MfUNk4OgInTu0N1jCJ8Js/XItR+IF5JU35Wq2B8Vqa+WN+chu9RJjeAimJqY132+A4cZw8iR/0eUZ+FYJ1LxybBitRmS3ZtOk4kr+ZWm4i7QXJQMNIzRvXsJBvutzydwg9o0PCpF3zWfVa4wJyCkyaz9fJHSfoKhZV94hdm2zy4TJJjZX9x8YFbbLAjj0qybNg40JDNSOsfXLtRwXrHlV311E1e0fTM2r6pZCar4gXvPa+R9HhYnQ7X/tY+9PG2l8Q0w1EhCOSUq5C4NJz9S4gLq3DJseK6fo8gyha5dfH6ToY2JtZbeeTY+UkXWW2PtQfn2QQIVbuH33rkHGT4Q4/FttglLZJ7JBVshYIiRFX6kDo2zA6tdeY668KRdkpT8iiu3hE2GmwtP0H9Veo1feUcDKG/Nx5CiKdGoEqOxz/MnYbf1qLQd+0qJ5/f4Do4z3hGnQ2LB9J/YKu7veobe3N1nzWiYoLeOfHQUFBcRisaSDSwMHeCf2survtLzeyVhXSJOgBFD3TJtirRSBtLVuss8OLN44oiioSH7FImqNwNw+cGSUyYlpIdWjg0+3KmQjCVZcF9RsL/klTFYjvmLtNVrHu/0KmUgi+Z2qhoZXOhjtmBAiq4JinZZW5WXF9dr9BsWKaeMXS5ECYuST3A+lUv4JsWsHzw2w8ZEyJAGRk8joNEbZgKdYTBFFlKAEyhpjz4+OCRGUAPY8eUzYFgyg5gvlrLlFbH25VFTfUSC8X9uze4htX60TthLb/vUjHPqF+AG3SG9EWEXJ7DRhdokR7CtuzGH9Awsf8j0FkmI5ZkkXG68rb85NKnuKIOesVMqvzRNu3/T6CXrrtONtz5LIvzQNUHKdJiQwO0xCTjauQiuFl6UDsO+/mhg6qk2uGmgYZXJ8SpsAJ8GaTxckY6hFUErky5bXutn21TqhfHv8nV76j46okvxGYiNsjj3Hnv178Pl8/D//z/9DY6O4ytg/Cv7pSEqgsJx7e2eT7z7e5d3YK4u2P/DjZkVtyKoQEdbcpZ1ci67KxOKTKPtktmbbtve6CQ1EhJRmtn+tnpZXlQ+l6nsEErEVXLl2Ci7Wntx3/sdRxb5pAiECj8WvkBBKr9CegA/9rIWubYNY/IoVmRaaN3dx5A/ip+n1Rh0GSVvZBcBfonxEFl0qRigRPeEECsFGS5ZyLtbdW8ymR8uE2orazs2F1S/2CvccHmTsxAdwlB84cWCQCdHTalaEyWMJiCgogVLIqHm8fNY6UQNHnmlny5dqha7vzHdBDMa6xfpiCUh487QX6AD+UjvoYFLQFm7vk430Hh4WUi7KvTgViCuSaXQ9faMHe7qFqk+L5Z1EX7Z8qVZToSvrHD8Wn8TqG7SLhsXXZFEYL4xt+2qdkFVl8+ZOIsOTQkphKSvdZNdo5yhPmZWaJ8opiy8ydn2nIWkpeTKmrH0cy9nFDDNEo1E2btz4T8doXsYytBCJRDjvvPMAmGKSzbHnGIgt/PEcOhFO2k+W35BDzePlij2SBjLX+clcr12sHmkKERqI0PSG9gmN9rd72fHvyvtaeEUGeZekaf5O5U0F2NJlAlXqRYTx1hBbvlTLocQJdgFSTvWthbhzbXjLNOayEEk1GjXiVgJtm3s4sXdAWFFvanxakbQucgu19xY6cGaIzb+hwUmIgTdXu33/oTG2fKmWJkG7L3exhZrHyym4PF2gI9rkilOwBPeo8e4wnfvEC0hLwVhniK7dYte2eJf+uaemQjYXmx4tE/puSmDb1+qS75sWYjHxBXrOBdmYbEacOWIkJb1Zj17QHhrg6B+P0/CSNvkl65wAWKBr64CQtUrRR4KkrHCLjSuLQsTc8m+1Qva9BRdmChEkgeQzbHq5ix3f0H4+oYEoob4IzW9pv5fl1+dgS5eF8tSaOwuoeUzZBG7b3KMaw7GqdurNuwEwGAzs3LmTr371q5p/YxnL+GfBnXfeSSgUQh+3/DnAFt6LvbZo+/rfttP+V+VjZtNj5ay+Tfu7LHhuAEfQSuk12jWv5s1djJ8IER7SVkze+a2jSXuw1YKkkkCFm8IPadd39v+wia1fjlssiUwJMqRVeim+XLvmVf/bdkUFRoaM07UP3B39Uzv1L4ifdtab9BgksbnJFbRgdprIPkeMJEJMfF7d+Y2jbP93cbWm1bfns/FhMVKxmtLWYtAiviXQtXeAkdal19RE0Ll7gNH2JVxbbDmSxER7WEilKe/SVDY9Vo6rQOwPtLzRzZZ/qxVSI3NnWyAK44KqBa5se9J2SLNtoQudXsfUuJiCRu0v2+jc0ZfMWWrIjh/22/+jZs0YuosseAodrLlZYO0qz/Zly7/VapLxfKscOIJWVl2vvcGXc0EK+Zcp35w7v3FUSBWr+c0OxnvCQu9QVk2KUM1LTpPZ9Fg5pdcqOX7/D5sWVSIbl4dozt9LhAmi0ShnnXXWcs1rGf9y6OnpSQojRAixOfYcI4vUvCIj0eQhlPxL09j0aBnOHG1yQc65qWTVaNe8In0RRjsmaNqs/T3Wu384STzJPjtA8ALt/FD6sWxceXZSqt2a/dj6ldpZuycB/kTFNTn4Spx4yuzqDSMk1SAzNmmfnus/OEL7e71C1lMAk6NT6Aw6PDliRZ7ACjfOXG3iBMB4bwRiYM3UuEcUFZgtX66l9XWxw3NSQGLjw2VJ4ofI9ZcECaHnCDB4bIwugUMQfw/6j45wQrDmJUIGOxmiVoXrHyihUuCQagK7vnWUXf8hRvTS6cTX58EzA8geM65ssbqrUTIsSRXr8G+aaXhJWwUsba0byamoejW8oF1zL7kiSNoar9gzituwbftqHfsEFNWLLssiZbVHaLyu/HQuAJ1bB9gt4JBEBEbaxmj5szahPf+SNFz5dqHcuuL6IBsfKQNJIdcd+d3idcbRNR3sl/4KgNFoZNeuXfy//+//q933f0DoYkupAP8DIjc3l9bWWTJMDZdg1S3yMlth4+fL6D8i9pJlneNPKtkEKh1CllFr7y0iOh3TtHMrvz6IO89O94FBGv+ovuBIXe+i+9CwsN2Wp8xK2cdzmegJa6qIzL1HEWx6tAydQaeQoQRg9evJOD2NY0uUQtS87gdlbRZH/ofThJRmqu8uxGQ3iRGbrFBzfzlj3Yq9lRY2PVaGTiduJbEU1DxRzuToFLu+LZC0l4CKm3NxZlk59nJ70vpPqx9jXSEhCfTy64O4cmxCalSp612EB6f+LmKYKKx+PRN9YrZ2IrD4Ffs7kdwEiqKAyWbk8DMtwvcZvDCFNg0VioQtZWR4ckl2jJln+IQIRzVPlEMMzXGdUuWk4OJM9v/wiHacrYpd53DDBKnrXYw0DS9KOJqLTY+W0XN4SDUHb4m9zpQpzPT0NGlpaWzbto1gUOxkxTKW8c+IY8eOUVQ0e1rDiYf1uvMWbV9weTqBUrdyckwDFq8ea4aV/kNjuIstDB0PaVpp2XIsrLoulyO/b2VAwx41sTkuIlebvskrrGIEyul4s9PE3idrNVVKss70Jy3atOCrsFPysSChgYgQcQEUMtaxVzvfVxsyi1dPaOD9m/NOhrfMis6gp/+QtvJCzWPl9NQNcewF7bXl6lsV60GRZ55xho/cs1Pprx9R/ZD8e7DuvmJMdqPw+nkpqHm8nOh0TOgdW317Pja/WDxAseQKD04KWbLlXpRKy+viChRLxVIs8ERRcHk6nX/r0nxnlQ4o6lkzk1FxKx6LIjWulUsq7yjAGpA0bSnnXdoL1gy75jtTdGUmgXIX3QcHafyD+jdn1ecKic3EhOz6fBWzfzvjDB+dAmvAkquzcOfZ2f7d+kXzUygW4j1eRqfT4XQ6yc7O5uDBg5rXXsYy/plx5pln8s477yR/Pp0PI+sWITHIsP5zJQw2jtLwe4FC9EYvJ7YpOcpTaktamalh9Wfy0Bn0mnZueZemkl7lo3v/oKb9l7fczkTnmKZ9UgLWLJnKT+Ur1uEatYTUtR66Dw0KW3mtf7AEo8XAlq/XCv2O7Ib001KFFZ9F8YFZm8URPFfMGmTlzblY/JKw2uSmR8oZ61bsrbSw4Yul6I16tgquS5aCmifKiQxPsfu772/Nq+jyDAIr3TS9eSL57qhh06PljLZPJJW91FDwkXRSVriF1Kg8pTZiM1EhgtLfC9mtFyImil8Q8i9Io+lFMSX1hG133e9ahXITKBvdWqocshuqPldOeHBSyPYwgdS1HiE7u02PKt+cW7+iPq7dRRZKr8xh33+3JFXrFoUMrkyZ4cYwnlIbIUHS6IaHSuk5PKian/bE3mHE2M/MzAxpaWn8+c9/prRUjJi4jGX8M6K3t5e0tDSiUeUdc5PCWt2Zi7bPOstPxjqf0GEQyQmWNBtDR8cVO7feiKaVluSXqLw5lyN/bNdUEtn4xVLQ64T2qQKrXcLKNKCQABzpVnb/sFFTpSRtvUfTHi4Be5aiGjXRExYiLoCyhune1UtETPxGCJJTT2Tkg6t52bMkTA4Tg3XaNa8ND5XQVztC40vaJLWSq7LwFDqEnrm72Eb5NTn0Hhqm4fdi+0+iWH1rHrY0yweyj7nx4TJi0SjbBQ7ElV6bjTvXzrZv1QnZ1K29t5jIYISDT2uLbWSe7luSNeBSsRQLPFFknx2gZ0+/8NiuebycqdAMO78pTlROqXZrqsqVXRvEU2Dn0C8bGWkVvEdJEVjRemeyzvITPCOFE3sHNC3+Km7MQW/SCymduwqtDB9T9hlE7hEgeEGAlJUedj15dNHxF4lFeIeX0Ot12Gw2ysrK2L59u+a1/5HxT6mkNBctLS288sqsitIWXmFH7O2FG08oTL0ECWDTo2Wqlk0J8s7KT+dSdFm2kIKQyWrE7NCWfKv9ZRvHXm5Pbo6rKeZ071AISlnn+Kl5olyzH4N1E8xMRuner70YSNxj7sWpioWaBo690s6JveKbdqs+U0LKSrewus66e4uTzEc1THSGwUpSBUUL9nwraz8vJoG39vNFpK3x4tFSOQB2f++YuPLSBMSiMaKTYpPCcOs4I8fFPsRdRVaq7ykUsu5bKlbdmkfxNWLWZr2HB5kcmRIiKFn8EJuJMTUxLXTt2l+2Cdvl5V+QwYprc4Xall0XpOgqMVWu9NM8Sds2EeLMpkfKSNFQ4khg5adKCKxwCStF7fzBUYaaxzQJSvkfTmP9g8q7rUVQAuXdmg7P0HtY+0Nl06NlybyhRVBK5LgDv2ph7w+0F6zWVAs6vQ7/au1TrDX3lyefd/eOxQlKVr+eTY+WJRWotn6lblGC0kRsgqa8PUwwytTUFIWFhXR2di4TlJbxL4/CwkJisRhZWcq8MMIgb/E8odjCBfLGP3QlyRMFl6Wz8Yuli1qMhQaiyU3v8qvz2HSftlKhv8SBzqBDcmufON77VD17/1v5ENFSn0mQCtY/VCJkSdVXP8LU2LQQ2SFBUFr3QDFZZ6qfous/NMZgwyh7fypGUHIXW0hZ4Ra2IUtd61buT+NwWYKglHVOAL+AHQsoxZKiK8Xm19KP51J4qdhaY8uXa4UISgBToWmiMzEhJZvOXf2EBiL01Q0JXbvkqizKr9e27lsqvGVW1ny2QEh9DGCodZz+BrHq3HRoRomHILb/33ohglKgyknGeh+Vd4idQKv6XKHw/SUUPkQISqtuyRNWfrJ4IXWlh5W3CMpvh6B73yB1v9MuXq1/sISMM3wQQojs2HN4iOmQti1l7kWp1DxRTupaN6EBVAlKiRzX8HwHR/94XJOgBGC2mzA7tb9j8y5Jo+RjweSzUSMolV6TncyhR37brhC8FrnNoco2dkmbAeUk2U9/+tNlgtIylgH87W9/Y+/evcmf3+Uldsf+unDjsGJfmiAorf9CCcUqluYJkkXxFZmUXZVDzgXaqmiSy4wkkCuaX+6m/vm2JEFJTTFnoFYhKAUqXdQ8Xk7wXPWa10R7mKnxaXoOaX+zdu9SCEppG71CVqp1v2ula2e/MKlp5aeLSa/yCVuzrb49n4obczXbhXvCIKP6/OZCTpOFLd9W3ZJL1mkBIYu9gz9rWZIdbnQmynRITFGnr26YwUYxu1o5TWb1Z/KErPuWitJrs4Vt0PrqhxnvCXNCRE1Thuh0lOmwWM2r8U9dwnZ5RZdlCdt2FHwkXfj+vOX2pJKYJglGVnJMoNIldO2qmwtJq/QKK0Xtf7qJ/tphTYJSxiYva+9Vvn1EbIPCQxAZmaK3dkiz7fovlLDuASVvaBGUEjlu70+b2Puf2oR2ySWjN+oJaKmNABvvLaX8WmWdPVg/vuizkd2w4Qsl5F6o1Ly2/3v9ogSlcCxMa+F+BuhmenqakpISOjs7lwlKy/iXRyAQYGZmhpqaGgCG6OFt/e+JxBbecW7/a1+SoJRxmpf1D5QgORde80RGSBKNKm7IZ+O92u+bJ9eCwWzA6tOWE9n7VD37/1v5fl+sDwkkCEpVnytM7huotj8wRHh4UohEkSAorbmzgIzT1FWSxtojdO8bZN/TYgQlKSCRVROg/HqxNY+72KZYwWuEL0HiSKl241shtpeTc1GKsOLRqpsKKP6w2Jpu+78fESIogaKSHp2MCinZDB0dZ6wzRF+9GDkt56IUigVrekuBPUtSSPCC1mb99cP01YrVvGbCM0Sno0IEJYBd3z4qRFBy5kjknJ3KqlvE1l6rbskTvr/8S9NAQujdKr4yU1z5SYLs0wOsvFXMVg+g9S/dHP3jcc12VXcVJhXQRMg7PQeHiIxOaRKU0ta62fRouaLyFkGVoJTIce1/7aP2t62aBCUA2Schu82a7dLWullxbW5y/KvdY+6HUlkXt/Vre7NXUdpa5DZHV3Syy7IZiKHT6Xj66af/6QlKAGJG4//guPjii4nFYlitVkKhECP0szn2nKqqkjVoRWfQYbJoh+jgMy1U31pI21vap4y2fmX2g7L8+iBdu/sYXORkf4LIkVBE2fdUvSrxIdQXIhaNMdymTVxJnPC1+CF4fhZHnlE/Ee4vdsZ9uNXVYXr3jSYVpdbcUcBejdNzh55txZtnE1aBMtmNwlJ1624rxuQw4iqyahI1cs8IYHaaCJ4X0HyOtb/vIGuTd9HndjKsGTLZZ/o1Ywzzx4cWagXlKwFceXZkt0Rqlfd9Vw+yp1uwpYgVEbp3DCukOgGE+sTjkb7Rg8lpEiLZANT+tpWUlR6htp48pSDQgDaDPPesNHQGnZD6WO5ZqeiMOqypFkB7IbXjP49Q9KFMJtrUn1/RFZlM9IbpeKdfaIz4ip0YLQYsflTVhaxBK5lrPTS80CFchJyZijId0i64JU6j7n1K236v8vZ89v2wiZZXu5PWmFroaxghGtEm/01MRNEZdDgz1YlgW2KvMyNNEmmK4PV6efLJJ7n22muF+rKMZfyr4Pjx4zz77LNce+21xGIx3uNlXDEv63TnLvo79nQLepOekMCB357aIWbC2u916xs9tCbmBgtUXJs7a792EhSiTQhLmsyaz+QTGZpk9/fUT89OjU9jMGqvS1pe706qyBRekUHHX06oKg9Z0mRMViOBlS5NVaW6Z5QPxKxzAhjNelW1mqGjIbr3DdL4olhBw5ZqwWDWk7FWQAnFAsHTA8xMRuk7oF1495U4iUVjQvNrz+EhunaLnbQDxQJv/ESIvgPqG1sillxJhBBWqwLwFjnQ6XXi1xdEWpUfa0DGnmoSUtWp/YW4vfLhn4u3Lbkqi7a3OoUUtHr3jOAtHKFtszZ5LPeiVGSPmcwNHo69oH5//lUOvMUO1txZwN7/1H42Fr+E3iD2TEID0L61j95D2mu01bfms//HTULvlS3HgtFiIGWFS/OdKrk6iyMvttP5Tr+QEtFoxzixGa9y4lajD6tvzEsqsKm9J74KO94SFw3PdwipcQE0v3ICd56N+j9pF68khwmDSY/Fy6IkzoR6kn6/HlmW8Xg8DAx8MFaKy1jGPyoqKyuJxWJkZmbS2dnJIL1sjj2nqqoku8FgNiAJHKI7+koHloBE65va39tzlQKKLs+gr35xEsFArVJYTiii7PtZk6qtUngwQnQ6ymindk1jZ9zaBBmKLs7QVI5KWeHEZDNizZJV+zDaOmu5tPLm3KQVyWI4+Ms2/GV2YRUoi8dM1CFGGF59o6II2Vc/nIzlYshc78EakIQUko4+30b2OWn0a6yjEpDderLPTqNBQCF9KVZyWgpbc2FLMWFPt5K6ystQw/t7+t9T4CA2E6UB7fsbrB9nsF5sI5WweDy85XZsqTLHBZXuD/2mlbQ1bqG2gXIXOoNe6PkVXpqJUTbQuUubqJdW6cUoG7ClyPSiXQfc89Qx8j6UynCj+oWD5waYnozS+W4/R57XftaBVW7MdpOm+pjs1pNxRgpNL54QVtianphhZlp7LbzmswVY/BJ7ftikqYpUfn2Q2ufa6N41KKTMBNC1ewCDrP1NGg6D3mzAoXEYYG/sXcbMg0QaIvh8Pn7wgx/w8Y9/XKgvy1jGvwree+893n33Xc444wxmZmZ4hxfxxFKoVlFVcmRa0Ut6IgI16o6tfei0l2ic2DXEiV1DyZ/Lrg1S98zCdY7ICDASQXJC9d2lhPojmnt3k8OTxKLaHZnbj+AFAbr3jRBR+S6VnCC7JVJWuOl8T/3bLkHISal2I7tMquuYSG+E9i29tL2nvU8LYPVJmKxGMqq0lfYACj+UwXR4hv7D2nWC9DU+iMWEyBHtW3sZOCou/ZS23sPUuHY/ml45QdMrYgqFgJCCTAIpFR6Mkh4EanpLgW+FC2e2DVemRciuTmT98ve0zf1QKl27hoTIQSOtETp29nFij/Z6J22tG3u6hawNPs3+OHMk0tZ4caZb2fdj7fWlI8OKySZI+YhA02udDAvUFcs/EaT2N21CSlGSU4/sNuMvd2m+U7kfSqVrSzf9h0eE3qmJ3hDR6RnCA+prKcmpp/ruUiZ6FQU2NZU5Z45EYKWXxpe6ktaYWjixa4jAKjdHX9Ie+2abEYNZjxSQFs2JkViEd3kJfZ0es9lMamoqJ06Iv7f/6Pint3s7GU8++WTSPxbAjouNugs0f2/9gyV07u7XJB+UXRfEk2+n4cXj6vZvVqh5IG6/oHESJuscP+lrvOwU9LMERRkoWOPXJCms/0IJRtnAvqdbNMkPWBEmEyXs6noODolZuVmh4prFNw7/LlgVIogokcFTZhUmHi0FiRhv+WatUPxyL06l5/Co5vOw+vWUXptPx45eMeLPEp7fku3eBK+95s4ChlrHhKTOCz6aTtd73UKWaRsfKUNvFLcZXCpEiG6gkP4CVdqWaUtBQhlNhAQJ4nZp8yDw/JIx1hjH1qCV/HMCHBJgmScQPC9A6koPO7+tnuOCF6aQtcEvZAG44aFS9CadtrqWFdbfVULrX09ovkej1j66/S20tLYAUFpaSl2dOLFwGcv4V4XX62VwcLbAehqXYtGpF0bTN3nJ2uif3WBSQc1j5UxNTGu2TWyANb7aSfecIs5CWHdfMW1beujert5uLspvyKH55eOa5KM1n8lnOjSjLfdtYUmWbDWPx/O/oCVGzoUphIcnl3SPWgien0Lbez1C/XbmWxhp+gAsKOK2W0IxRnkmqatdQlZkeZek4Ui3iBVulvD8lmz3Jnjt1A1u0td4lVOHGu2d+RacOXba39ZebyTG8eTIFLtE/NyXCHexhaGjYsHLvSiVlr91v6/2hStuzBEmbJVclYWv1Clkl5aEwPNzF1sovyaPqTHt3FZ+fQ7Nm7uXZHe37r5i2t7p0cyFolbeqWvdFFycIRSH4PkppK50C+X30ep29uzfzdTUFLIs83/+z//hkUce0fy9ZSzjXxl//OMfufzyy5M/O/GyXoUknkD13UV0Hxik/a/qNa+8S1NJX+Oj4aUOevepfz/VPF7OzJS2DWag0kXwjBR2f098TpFTZHLPCVD/rDohsvruIiS3icO/btIkPyAjrJCUsKvrPTgkvOFR9ols6n6jTeAUhgzBGjFbNgBXgawdg78DVXcVInvNCgFDwIIu43Qfo8fHk2SvRSHDquty6do7SK/Aps9Snt+S7d4Er11xYy6jXRNChL7guQF6Do0KxSy5VhS0GVwqHDmy9vMAkCFrg18zTywFgSoXssskTMDa9Gg56FiaDaDA80vEWGscy249uR/KpP4Z8Xc5UOUieJp2jgtUuii6LJPRDm1LxOp7ijDbTGz9qnYcqu8pon1LnybpKRwL01VQR2OjQlooKSmhvl6cWLiMZfyroqysbN67UsOFWHXq0jWeMjt556YJ2UpueKiE6VBUM4eUXJ2Fr8RJ0+tdmnZqlbfmc2LfwDyCkxaKLs+g7b1+VfIREtR8oZzJ8WntDX8JYUUbgI1fLAM9wq4laWvdAEu6R81rrvcwWD8oZCVnz5IYa39/7bkSqHm8nMmxaXZp7KWAQtgIrPEKzd0Zp3nx5No5LHKgbwnPb8l2b4LX9pTZyVzno+EPxzUty6SAhK/QJkRGS4zjpVq/isKZIwnbmmVs8tK5Z2BJ74oWiq7ITLpJaSF4boCs0wJ07x0UVvASeX5SQKL69gKhGBdelk7HrgEh0loClbfl07G9X9O2cu39xZit8TW2yuVdhVbKr86le7+2bVxKtZvMDT6hw5QTa7rYfWgXkckIZrOZL33pSzz00EOav/fPhH96u7eTcddddxGLxbDbFXWUMYbZHHuO/tjiSdoatGK0GEhd6da8fmggQmwmpk5QApiAYy+3c+BHyuaJmuVT+9t9SYLSmjsKqL5HW4JtxccVkpBF3SWEHU8eoWtPvzZBKd5na9BKzRPlVN6uLhtX+8s22t7tESMoAVWfLsCZZSV9o5i6TeXt+dq2bxMkCUoillqDdRNgVSy7tGDxK4uB1RpxAGh46TjNb3YJkXg8ZVYy1/kp/YiA1LLZjOwxk1Gl8ZATeP/5V0u+tsUnESh3C7VNXeVh5ae15dYBtn2njq49Yp6vNU+UC1kGYiU5HjUJSlbl2YX6tC3TLH7Y8HAp1gwx9anMjX6yarStJBM48KsWDj/botom8R4nx6/A89v/ozrat/Rqtl15bRBn0KZqUQmQut7FpkfKwKoQsNQISoFKRWa+7Y0e2t7t0SQoAUSGJ5kROJlidcsYZQOZ69Vj/NfYi+yf2UZrWysOh4Pf/OY3ywSlZSxDEAMDAzzzzDPJn9/jZd6Lvar6O2lVHkx246LWb3MxFZpmXOBky/4fNtHyl+7kpryvYnHp/J3fOqqQdyyKv7laWwBLpgV3ro2Km9TXaKETYdq39rHjSQFFujiJofKOfGoeL9e0oKt/voW9PxE8uQ1kbvCTd266UFtbjoX1D5Vo2qK1bVYISlrxApIEpfRNAg8ZRQ655vFy7YYh6NguGGNg1U25ZKzXtg4FCKxwYc8QtBH5APhXS712RpUPa0BsvVF0aSbB0wNY0rTbh06Ead58gro/aKuEVt6RT81j5UKWeomxIEJQStgKtryuTVBadUseFZ/K1e4AkHWmH1eOjYqbxdof+V07LX/p1iTmVN5RMPseCzy/oaMhOnf0axJ5LJkW3Hk2Kj6hbTe79u4iVtyoWBDu/NZRVYJS4h3e93QL9c+1aF67+/AQ0akYof5JzbYpZS7N/D4QG2Bz7Dl27tmByWTC5/MRCoWWCUrLWIYAPvrRjxKLxcjOViwXR1DepyGVmpfsBsllIkXgWz3UP8XMZJReASuI2meb2f90CwCeUtui7Xr3DSc33so+kU3VZwVqXtdm4y12IGvMW7u/10D7e71i5JywQkDY9Fg5q25Vt2tofrmbpjdPCBOUyq8P4il0JK0PNNtfF9S2fQuTJCh5y7XXXokYpK4VqLvJsOmRclbdotEHoP6P7TS+2iVEtlHIZakUXCxmD2LPsJJRLRazD4K8s9RrO4NWUgRqxwBZpwVYdaOYNfDOp45y/N0eoX5seqw8Od9rITEWRAhKnlIbhNHe5JQV22prltgaNP+CdLJP07aSTGDvj5uo+616TUh266l5bE7tTyBuO586StvfejTH8YobC/AWaeceT6mNDQ+Vggy9e4ZVyQWJ/Ni7b5imN09oEpQAxnvCTE1MabaT3SA5TaRVq7/322Ob2SVvprGxEafTye9+97tlgtIyliGIuro63nnnneTPW3iDbbHNqr+Tuc6H7DEj+bUtnyZHppnQUMsFxT772CudSYKSq3Bxp4B9P25SyDuS4uLi0bCWlJx6AhVuKq7V+O6MQNMbXRz8iYDYQvyWSq/NZtOj5UgB9Vgc+lVT0q5OBHkXppNzbqpQW8kvUf35Ik1btBM7FIKSM0fStIhLEJR8K52abUGx6tr4SJlQf1vePsGup8QELSpuKiB4htg8m1bpxZWnvaYE3lfSzN977fRKL84cG5i11b6KLk4j74J07FkCDyMCR37fzrGXtAnJpddms/HhMiFLvcRYECEouYuVtUHnVm2CUvGVmZRpvZuJPqxwEih3UXGDWPu2P/dy7JVOTYJS+SeCbHq0THmPBZ5fpDdCy9snNAlKkhNSVnso/7h2f1d+OpfyeG1s3381qRKUEvE9+ONj1P62VbPPw8cmmI7MEB7QrnmlrnJj8UqqOW0iNsLm2HNs378NvUFPZmYmkUjkX46gBP8idm8LYXR0lKeffppPfepTAOzlLxhiJs7RffSUthNtE+x9qjZphbT280X01A0vSEaYa0GUOGF2+NmWBUkOCTs3a4ZM4aVZ5J6rfeJb8pjRCVDLtv97PVnn+JU+q6mkTJBUtdn4SBnToWlV9ZyJtgmi0zGG27Ut5RKqU2vvLWKkK8TRZxffyNjz/UbyLk2la5uYlK01IBOLiomAbXi4FINJT0+9tpLRpnuV08Jd76n3I9QHsWhMiAShqDOJsXgG6yboOzpM22btTZ+JzrCmBeBcbHq0jMmxKXZ/9/1j/1qDVipvyqX38LAQ+3bLl2o1iXMJtG/pJTwouCKZM47VYA1aic3EmOjXvu7azxRhdpoID0c0FbbW36nYle37SRMTneoFjaxzMjGY9PgrnLRptAXY/7NmXHkaO3tW2HBPKfXPtwkpPiXe48FmdUn41PUuCi7KpPnNLrq2DaqrOcXzzPbv15NZ7dMcl+58BzqjjvRVHtX33rfSRtFl2QTPnGT3d4+pqtlV31OIyWZi21fr2PdDlY8Wq/LMal84zljT/Px+MkaD3bSEjzLVHWEqDBUVFRw8eFD13paxjGWcimuuuYZrrrmGlJQUent7CTHO5thzlLOODN2pRfS9TzYm7X+8ZVYKPpS16Gb9XKXJDV8sJTI8xb5FJKsTlklrP6/k+P2jzYy3Ls4YyFjrQ2/S4Qza6T+0eM4MdYRo+Uv3rCWTilJK22Zl/Zhxho/cs1I58oc21WsPt00gucyatloD8bnKW2al8LJsdvy7+pqy5S/dDB4WI/imrHBhlAzknpmqqTjkzLdQ8rEgk+dMsUvrtHCVk7zz00hZ5Wa/Wt4GQkOTWAMyFq9eMxatS1A0bHnrBAaLQajtwZ8cWdSS6mSUXKWcYtzyzdr3lbBUfXchRqtRU5UCYO9TjcKkmNpfNZF5dpqwGk+XyOkzYDocVWwwBPqQd34awTNTNO/N4oXij2aTf6GYWpYtVWyTDKD9b30YLQbNcV56TTYWr5m9TzUKWbGNHJ9Acpk0x+66+4rRmXTs+PcjQupep+QeFZidJvSS9odkwoZ3S2MtoY4QoUWW+N4yK6VX5NLyN+Xvq9nB5VyYgrfQwd7/bFTygkqOHFjTxP79+2EGLBYL3/zmN7n99ts1+72MZSxjPtra2njrrbc4//zzAdjFXzDFzJyl+8gpbcNDsOUbswotq2/LZ6BhZEFlkxPbBjixTZkD0jZ6yTs3jbrfNTPUcOpLnfw3GcquyhFSh7OnWTDK2vPy7u82kLbRq2mdBLNEnnUPFBOdjKmSBcJDUWYiM4wIHORLxGH1bfmE+iIcVamJ1P6yjeC5AbHT24AzW92CfC6SCjCdtZq2cgmlb00bqTDMTM8wLWCvPNEeVrXIm3fZnjAn9g3Q+Y7AWi0Me75XT3hIrOa1/gslTI1Ns/cpcXteTciw6YFy+g6LKWZt+bdaZLfYpZvePMFMeEascRghpSHZrSc6FSU8pL2BsuqWXOwZVqYnpzWt/ao+W4jsN3Pw502ahKZgTUCxrS5z0iowLvb/sB53qTYRbd0DxTT86ThDDSHCGsMnPBRlOjLDyHH199hTaqP0yhya3zrBiW0D6gSsuBqTaO5xBe0YJD1pld5krlgI1iyZsqtyCA8oSgJqbVfdmofsMbPj60c0lZyq7ymi8dV2hhpC7Pn+4rkhnDpEs76O0c4hCMOKFSs4dOiQ6rWXsYxlnIrTTz+dWCzG6tWrOXDgAGMMsTn2HCtYR/oCNa9DP29FcioWbJZ0idKPZbH3J40LbpTPtWRbe28xkZHJRcmMPbuHAMWS1pFp5dCvmhhpXjxf+QqdmKxGXDk2BusWr0tFRqI0vNgxS1JXUUpJkKR8K5wUfSSTI384rnrtoaYx7BkWdYUmZkk/9iyJko8H2f1Ugyqx4OiLHYwJKq948q1IDhOpGwK0vamuUCn5JSpuKFDs0zWUUpw5EiUfzWK0U1shL9Q/SXQqqmoLlYCWRd5cNL7eiewU8A4EDv/imJBKFCgKOxkb/Oz9cZNmf5eClTfnYvFK7Pimdq2n9jdtSE69pooSQMMfWkmvSRVWtxKxHwOYiUSZmYoKxa3kI1lMRwTqWBKUX51DZGyK3QJON+5cO3qjTqi//YdHaHGf0BxDORel4M62sf/Hzcm8ooahtjGsabLmWFh9ax4mh4ld3zqqPY4lJUcee7VTqA9Wv8TMlDZnYM2dBVi8Eru/W09kJEpkZGGugz1LouK6fNr+1k3n1gF2qozJtPUeUla6OfCTZg7+rCWZ3xfCyJo29hzYA9NgNpv5xje+wZ133qnZ739W/MuSlABuuukmbrrpJoLBIMePH2eGKTbHniNICcW6lfPaJjewrUqBN22VR1MxRXaZQQeTg+ofRROdYSZ6whzf0p38G4txWrZ9tU757yiybMMto0my08lIbOZvuq8MYrD1KwKqHwK8n7mSikVXZdLwO3VyitlhwmPWLjIlSCZrP19EwysdqmSLLf8hZp0G0PZON958h1D7jl39GExiCV0onnEUfDSd1FUeDvyqhbEm9Y4ceUaboJSAKEEJgBjEltBcBJJNue7MpGBhBRYlg5wMUXuzjY+UEZuJsf3ftTfrJtomhJ9b7a8aKbw8R8gCsPaF4xRckKZJUAJo+F0HDdYOzfFYfU8hbX/rpnffqDbxaYMfg0lPWrVX9b2x51vxlzhoebVbSBo1Nh1PCBqvb9FVmQRKXbS920P72310qGyUrfpMHgd+1KyMczUCZfy/9R8cJ3zWJPUvaL8Xer2YOGCg2IHRYqDggjT2/7BpwTE5EZtgC69g6jQRi8WwWq288847VFVVCf2NZSxjGQujp6eHnTt3sn79egBq2UldbDfn6a44pW2CDBI8Kw2T3ShkD6bT6dAJTON1f2in8EPpswSlRTbMO9/pp3NXf/K/Vdy8uDVtgiSQc2EKmRv8dO7oVyUZ6OMd1ZpDm185QXPcQz73olS69w+rEknSqvwYJQOpa92qSimJ/gaqnGSu97PvB4uThJpfOUHz2yeEiCYjTSHGOkM0vKbtn927Z4TU1RMceqZFs23D8x00LMHrfv1DJRCDHV9X//jXsruaC1GCEsD01AzEwOK1EBLweBdFVJCkn4AWKWZuu2MvaG+++SrslFwepH1bX5Jwp4ZD/90i9PcBTuwZJDyivakWGoChlnG694qR7LZ+pU5TyclbZiXnnHT2/mejEDnIlWvDYNRedxRekcGxFzppermLppcFpbEFHvGmR8uIRWHb1+pUCUqpa91YU2SaXzmhfD+pDcV4Hmz+cxepq7ya73uoOww6sLjNmv1NXeXBOJcMuMC1j8T20a5rJLYnhsvlIj09fVm1chnL+P8T5513HrFYjA0bNrBjxw6mmGRz7DlyKKVIVzG/8ZylhS1FxmwzapIiLD4T6CCstTERVjagug/GiTEq1ks7v3VU+e9AzgUpTPRGFrWVS2zmb3ioFJ0etn1NoyYgOIXO3TjIvyyNphfV1zTWgIwksPmTIEutvi2f1re7FiR2JbDt2/XC6j3HXu0gtdKrSVACaHunV3ijSmsNNRdZZ/kJnp5C3fOtDNarH2rUiudciBKUAIgtfZ2kBdktQzSmrOsEIfIcAFUyylysu78Y9LDzG9qKCeGhqFBtDODo8y3kfzioSVACqP19O4UXpgkpLrX9uZe2Lb2a43fVLbl07Oyn/8CoZiwClS5MViNpa3wMNSxeG5JTZFIqHLT9uVeIyB6NP1e9xvdjwurk+Ls9HH+7T7W/5dcHqf1lGy1vdCuWxIvFIZ4HJ9rDjHZM0PiG9nuh0+vQCXzsOnJkJJeJ7DNSGWpoWXRM/jn2Bwz9OmZmZrDb7bz11lvJ7/RlLGMZfx/2799Pe3s7ubm5zMzMcJid1Mf2UsPFSLr5qhqJDeycs1KweCVc2VaGj2lsGOjBIFD/PvpiF0WXpM0SlBYhFfUfHmHLsVmbo5Krszjy24XzbEKVJKXaTeHFGbRv71Un9MS7GZtRn5tP7BhMEpsyNnkZbBlXtXXyV7iR7CZSKtyqxIX+g0qAXYVWgmekcHCRWl6yD/sHxRRg+iIMHBul9a/a9ZCR1gj9R0ZoeV271nL8L70c/4vYfhgolsY6o07TVm/oqLbYRAKiBCWAmckoRGNI1vdXVCk2EyMaE1/PiRCUlHbQ8pp2rceeJbHyxnyOv9crZJHX8HvxOmXLX04QFSDREIGe/YMMNok9ux3fPKKp1mXPksi/KIMDP2kWIrn5ixUFbC0EL1CIfZ3vDQhdV/TRrnugBL0etn/9iOp77i624cyy0vbnXrZ/54j6YIznwcZXO8jckKI5dqZGIqAH2aNd80pf68XikZJ/Y6F3qSPWTB27YQ84nU4KCwvZvXu35rX/2aGLxZbwxv8To62tjZyc+azmGi7Bqjv19JLFP0u0WHNXAaMdIU1bs9T1LvLPz+DgM62qJBWrX0/lZ0sVJu6T6kzcmifKiUVjbP2yevF2zV0FMDOfda2FxEeVGtbdX4zJZqTuuRZ1IocaEeEkeMqslH08l8jwpJDiT9kns7EFZHZ9R8xH3hq0ilnbgVC/00/zkFHt0+yrb6WN4o8EafnLCU2VpkClg8JLs2j7W48q2QMUwoc9zcKWLy3Bi10ANU+UMzk6paqqtVSsu7cYo82gOV5BUcKYHJ0S8u1c/2AJsemYql0YQOHlGdhTZXWFnQSWMGatGbIQOSl1vYvcs9PZ/v16zWtbM2Qqb8lnOiSmEKD8EtpKYY8qSmFa46Xoikw6tvUL3Rco79Wq63I48HSz6u8UX5OFv9jJYOModb9e/NSXPd/KqutymegJaz6vqs8VYJSNmnGy+vVU3FzEwZ8dIdSn/LwYyW9ibSeHjxxmeET5+DrvvPPYvFldpncZy1jG0nHOOefwl7/8JfmzCx/rdOcs2DahnmNJk6n4RJBDTx/VJIysu7+YyPAUB36ibgdQeUcB1oDE3ifrVQkd5dfn4M6zaZKPbDkWVl6bw/4fHRUmiNhyLKSscCXJSAvCAjUPljMzGdVW0VFRKTkZifXc3idrNWNq8cLKW0s4+oc2IUsuS+YSCDqCfV59Wz5DLWOaaknr7ismFo0JrRHXfLYAk017LgGoeayc0KD2ibmlIKGA8L6v5x4vZ6hlnNpftqq2C56fQsY6H/XPt2g+14wzfOSemcre/27WfLbVdxfS9l4PvYscqEhiCeN1KWNq7eeLGGwd07RiA8UKzew2sfen2vc12xlU+x2oclJ0aRahfo3xYoGSyxYvBi+ENZ8tYHoyykGN/FbzWDnoFGUH1evdVYDFI2kqf7mLLZR9PJcjv29NqrcthsIrMrB6JCUHJ0hiC1w7FAsxXNGaPLXv9XrZvn07hYXadk/LWMYyxDE0NITf72dmZpZscTofRtYtoDaX+KcwVNyYy8RgWJNY4i6yUHplDnW/a1G3VpOV9cx4b1hTRXHTY+XxA3fqOWzFjTkYzHohW/AEij6WQcOrnapEitW35WNLlTnyx+PqRA4V0tUpTdNkqj6TT7hvkj1Pade88i5NxZPr0LRCmHt9EXUppTGa/fatchA8LUVTnUhOk1lzcx7Nb3drEk5cBTKlH8+lY1uf5uZP6TXZeAodbP3y+1/zigxPsfu771/Na/Xt+Vi9ElsFDoStu6+YybEp9v9Ie8xW3VWITq9TVQADyD7HjzvXrroJm8QSx6zImHIXWSj6SDYHf3JUk6glu6Hq7nImR6aE67kifU4ohW35eq1q25wLUuitGxFWAJPdelZ/poj9v2hVjUXOBSlkbvQzcHSU+mcXr3nJKTJVt+UzdiKkmbcqbsxF9pg04yS7YcWNRRx+5jjhnjCyW78oyW98TRf1zbUMDir16YsuuojXXntN9frLWMYylo4777yTp556KvmzlzSqdKcv2DahBiM5YcUNhRz+RZPmBvqaOwqYGp/i0C/U9/DKrg3iKbCz96eNquSf/EvSSKv20rGjj9bXF6+3SH6JlTfmcPAXrcIKOpJfInWVM0nYXgw1j5UzHZ7RVtFRUXI6GWvuKMDil9j9g0YifRq/JEH1bUU0vt4pRO6R/JL2NedcW6TPZdcGGTsR0iQsVd6aj86kE1KQXHFdENknCa17NnyhhMjgFPt+LG6tp4XVt+ZhS7No1iWWio2PlDHYOKpZSwmsdpF/YRr1vz+uSQT0rXRSeHE6db9rVVUhA1h1Sx4dO/qThLhFsYTxKqKkNffvj3WFaFKrJceRVFf7RaOQ3ZzSGVT77cxRVMUmToQ1x0v+pWk0vSx+UKH8E0F0BjiswVHY8FAJeqNeU5hixfVBXDl2dn+vXjW3WtIlVl6XS8PLHaoKcADZZwdwZlmSfVxMPSkSizC8qpWDBw8Si8XweDzs3LmTgoIC1ev/q0BMduJfAMFgkFgsxsc//vHkv23hFd6O/ZG19xZRdIXil55S5WTlp0qw5yvkJYtXIlDhSv5O9T2FFF+TBSjElPUPluAps+IrdqEz6Cj5SMZs27sLKftkNgCuIivrHyzBlmdjZipKdHqGtZ8vSrat+lwBK+I+kdYMmfUPlnBifz/1L7RS8NF01j1QnGy75o4CKj6Vq/TPDyaLkZ7DQ4Bifbbh4dJk29W35896dKMQPkqvy8KdZ2fdF4pZ/2BJ8r+tujWP1bfnJ3/W6XWEBhUrrMwzfKx/sCRp5VXxqVzW3BF/ySYUgkr1vYXUPFFOweVprH+wBGuGUvlacUOQqs8pbQfrJpgcn2akPZSM9/oHS3AVKfEuuy5I9d2zBWt3vh1z/BSYp0yJoW+l4idZfE0W1ffMtt30eBmVN+WCVSFBrH+whJQqxSy06IpM1t47G++aJ8oVBSoUMsP6B0tIP03x7y74aLpykgnIqPYhucys+kye8otWJYZZ5yiByL04lfUPltB/cJytX64jUO5m1a158+IdvFDxhA2eF2D9gyWMj06h0+vI2OCjck68191fTP6H0wCFHLX+wRKmJ2eIzcSouCWXNXfOJrW19xZReLky1lLXu5R4B61YM2TKr5+NNyhjtugqZXwHKh3znnnZJ7PnxbD6nlPHbGCjY8F4V32ugPLr42M2aMVg0yeVnAovz5gX7zV3FlBxU04y3nqTDpNNYermfzgtGW+AyrljNs4hTJzIDF6YcsqYTTwbX4kTa4pM7sWKF3HWOX6lbfwaFTfnUnl7PqnrXdQ8UM6Gh0tPibfVr6TMiptyWHNXAWvvLaLylnzW3j8/R6x/cDZHlF0XpOpzhWRU+TFIeqpvL1owRwCUXKvEcKIzzOFnWpiJzJwa70ol3kVXZbLp8TI2PaaM06pPn5oj0jfOGbP3FnPwmVY6d/WfkiPWP1hC5hk+APIuTyWwwsXKG5T/vlCOCJ4XwOJXSE/rv1DCRNsE275aR+El6fNyxPoHS8i7NJVApYPMM3y4s2107uuj7tfH5+cIlBxR8NF0ABwpErFYjNFe5WNgbo4AZdMxEW+z3YxB1i+aI6rvKaTk2iy8K70YZQOrbyvFt9LGRF/0lDGbcpWZrdZX2bprK1PTUxiNRsbHx5cJSstYxgeEt99+m4mJCcxm5UTCMP1sjj2Haf38NdDKW/LI/7CSC/MvSsVkN5J9vpIDss4JsO6+2Tmi4lO5VNycC4BRNmBNkwier8yzGWf4lLbxzfLyG3JYfWs+w23jTIdmWHFDAXmXKHk/da2bdfcVY0lT1ipl12Zjshloe7eXlte7qfpcIeU3KH3yr3Kw7r5ibDnKhbM2+IiMTBEaiOJf5WDT42UUXqHMyd4yK+vuK8Ybz/tFV2ay5q4CKq7NIb3ay5rPFlBytTJH2HIsrLuvGP8qJe8XnJ/OVHiaA0+3AEp+LrtW6YMlTWbdfcWkrnUDkHdOGms/X0TNY+Wsu7+Y1bfmU359nIxvUTZGMuJ5v+fQEFPj00mCUsXNuck5ApS2WecElHs7Kw2jZCBzkxLTFTfmsPKW2XXN2s8XkRNf1+RflsKaT+dRGV+flF+fw+rbZueItXcXkX+pkvdXfzaPmgfLSd2k9L/0mmwq75htu+auAgouV9raUmXS13lx5ivxLrkqizWfnZ0j1txZQNGVmez81lGOvdo+L96FV2Qo5P04Ku8ooPSabIyyAYNZz7r7ignE14b5l6bPm09W35ZP+XVBZqYVKed19xWTukHpb+5FqfPG7Kpb8ii/IUcZa9758Q6enzJ/zN6ci8Ey+0m27r5i1TG76rb58c69SFnXpG6Ij1mvcq0VN+UQI0ZkWFEmqr67MBnvQJVTaZupXDhlpQu9UcfQ8VAy3iePWXex0taWIhMajCSJPGs+W0DJVcqYdeYrY9ZXYcddbEFym8m/KH1OvPMpvSY+ZjMtyXhvuKeUmsfLWXv3bAxX3zY7Zi2JGJ7jZc2n81j/xZJTcsSKG+eP76wz/ZgdJnwlzkVzxNx47/peA937+qi4OvuUHJGM9wPF1DxRTuEVGUqOuGN+jpi7Bqr6XCHOTBs9h4c4/m7PvBxRcvX8Mbvx/lJ8JU68ZdZFc0Ti/298rJSSq7PY+1QjTZtPzM8Rl6VT9bnC5HNbfXs+o93j7P9F86k54pK0eTHUm3WKlXaIU3JEzoXzx6zOoCP/4sx5MUzmiDP9yTHrL3Zhz7AoOSIEhObniPRNXgbXNLNV/yqHDh0iEAhw55130t/fv0xQWsYyPgC43W6mp6d55JFHkv/2Li/xt9iLrL49n/zLlDWQu8hC9WeKcGUq+c0ZtJK6ypP8ndWfyaPoY8oc4ciRqb67CG+5HV+ZG71JT/7FWcm2q27JpeRKJV/IKUrbQKmLqfFppiMzVH129l1feVNuco6Q3crp8I4d3dS/0Er2OX6q59QPVtyYQ/l1weTPsstMX71SEV77YJGiphhH2SeyZ+cIlOsWfiyNQIWbtZ8tovruoqQ9V+k12ay8KTfZ1mDQM9Ydov/AKIFKl9I2RYlLyZWZrLol3jasrClW3ZFPzePl5FwcoPruIhw5StuiyzNYHa9LhE+EmeiPMNyhfOu6CpS4uIuUOSL/srR580nqak/y9K41azbeAHkfSp0/nzxaStVn8pHdCqmi+u4iAlVKvTJ4boCqu2bjXfN4ORvvL4sHUIlL2kbFcivrLD/V8Tk5Y60Pi19i5a3zY5hxujJHZGzyUn13EeGhMFu/Wocnz0bFjbMxrLqrkOC5yhwRqFJiGBmfxGDUk7Lazco5c/KazxaQe6GyrvGtclB9dxEzM9NEp6OUfGJOvFHWwXmXKm09pbZkvOUUWYn3nDXn6tvyKbp8/phNIO/S1HnxXnVLLsXxWoOcprT1rVXm2dwL58d75c25lMbX7bJbj8VrTio5nRzvihtzKftEdjLeRpsBs1upZWac7pvXp/LrgslaGii11+4DSs0rbaMS7wSRsPTa7GS8U1d5cGRZybkgZV68ZbeyNiy9OouVn87FXWSh5gvlrH+ohLwPKTH0ltupvrsIa1Z8zH4sQ6mn3ZpH1WfyqbyzYH6OuLsIV4HStuAj6ay+LZ/0tX5MViOlnyxYMEck4l15RwHhIdj3syYmx6ZOzRGVypjNuSCFjY+VsukRZZyuvObUHJG6VslN2ecoY/bA0620v9fLiqvn54h5Y/ZMH5kb/VR8QhnTC+WI7HP8ICvKrNX3FQFRtn/9CLlnBebliKrPFpJzQQqeUhuBShf+UhftO3qof/b4/ByBkiMSY9bqNxIjRmhA2fycmyNAGbMFH1HW0LLfhMlhXDRHrLpVycm2oAPJZWL1p3PxltsJD0VPyRFpH7Oyw/4G2/ZuIRwOY7VaCYVCywSlZSzjA8J//ud/JjekAQY4webYc8TKJ+bVxEuuyiLvkniN68x0ZK+ZnIuUnBtY7VLaxlVSij6WSfknlPxmshtxBG1knaXsQ/lWOFlzRwGSX2lceFk6K64PMtw6RmRsiqJLMpJzsrvYppB30pW2+ZemYQtINL3eRevrPaz8dC7FVyt9cuZIrLmjAGeekvfTql1EhiaJ9EZw5khserSM/I8o/bWkK23dxcr+XPDcAKtuyaPiuiBZNQFW3Bik8DIlv0l+pa1vhVKDyTrLT2RskoO/bgEUkkKi/o+k7HmmVLsByKjysuaOAjY8VEL154souTorWZcApW3aeiXuXbv6CQ1GiIwqbIviKzMpjdfSACpvyyfjNGUNlLnRi+Q2kb7Ol4z3ijnzSeWt+WSfrcQwbb2L6s8WsDpeuyr4cDoVN8y2XfnpXIIXKG1Lrsmi5qFy0jYpfcq/JI2VN83OPStvziU3Pid7CuxkneZPxjvnopR5ezMVN+ZQ8OF09v24idrn2llzRwGeMmWezT47wOo5e48rrgtSdHkGJosRo6xX4r1SiXfm6T4q56yXyq5V4j09GWVqcnp+vDd554/Zq7OU2qU0+2wyNikxTKl2zx+zV2QieWeVaCpvyyczPif7VsbHrFNZqxRdnsGKOXFZfWtecsx6yuxK24By4YKPpqPTwdTYdDLeORcpayBnnqyM2Rwp/qw8GGQD4R5l3l15Uw758fqvPUsZh65CpQZjS5OY6IskCUoVN8wZs4HZMSv5JewZFgovnd3vX3FdkKKPKWNWcipxCax2UX1bEZseLZsX79Jrsym+cv74Ttvopvq2AtY9WHxKjpg7ZtfcUUDGaV6sKTK+cueiOSIR76yz/Bz8WQstf+mm4OKsU3JEsu2dyrdMwYfTlRxx8/wcMW/MfjoXb5mbjp19NL3ZMS9HnDxmNzxUQlqVF0+ZfdEckfj/G79YSuFl6dT+po1jr3WfkiMSMXTmyZR/Isho5ziHf9V0ao44acwarAZmolEikWgyhokckbZ2dsxGp5X9hLwL59Qy5+SIRE6WnJC6xoMrx57MEZGR+TnCU2ZnbG077+lf5sCBA/h8Pu677z4GBgaWCUpzsExSOgm/+93viMViuN1uAGaY4uln/pvOaYWN6Sl2YrQYcMWL+jNT0aTU6po7CpBcZtxB5QVz5ytt3fkOan/ZxkwkiuQwY8+3sunRMiS3GWe20tYVtCltc51s/1o9kkPC7DRR80Q5qz6Th+yRcGQpbR1ZEkaLAdkpMVg3gTfPgclqZGP8w80SkHBkKP0ze6wYLQa8RQ6wgsGkx2Cafey2gIw9XWlr8YPRYsDikOg5OMT0+Izyc5x4ZEuVsQVmT9kZLYakVUn2mQGMFgNmj5LMHRkWLP5ZjTmTw4jepCc2E0N2mzFaDDiypPj92JA9s23NNiOefGXSyb8oQ4l3PKbOLCvSHEsBnU7HTDyxuPMd8XgrScsdtCG55reNxWIwAe4cJS6eYqWtJ9+O2XGS5HVcQdeWpTwbX2G8ba49SaDZ/eNjECMZF6s/Hu9CpYjhLXDMszawp1mwxTczsCox9BXF2xbG2w5PsuVLtRglA9Y58TbF4wLgK3ZhtBjo2tHH1q/U4Ui1YPHNiaHDlGzrLVLarr4+h8pb8nFmz4+35DLjybHHY+ic119n1vwYSi4zzvg49MT7W3RB9oLxlj3S7PjOltDr9Qy3ji0Yb4tPwpGhjB0pIKPT6ZiIs9A9+bPxBkVKPTFm19xcMC/e/riNV4J4ZEuVscWLiAnVCW/B/Hhb/fExm27BGpAJD04RnY5hMOmTbX2FSlxs8Xu3Z1ixeCWOb+lhcnQKs2023ifnCGe2FdljZu8PGtnyzVoku2nBHAHgyXMgucxY/XqGGyYWzhFF8XGYY0en0zEdmknG++Qc4Sl0kLreReoqDyaHkbGmCVpe7V48RwDeoPK/27+nxGuhHOErcuIIOtEZdBhl9RzhL3dRdFk2mZt8GC0GBuuVMbBQjkhd5aHsk9l4ixzodDrG4qfaTskRThO+MqWfA82j6HS6BXNE+kZPPCfbaX+7j+76AfQG/Sk5YiI2QXfFEZ7/4/NMTExgMBj42te+xtTUFFbrqWp6y1jGMt4/WCwWIpEIL7zwQvLfXt/5R/66/S+EYgoJwpFmwZmlvItNLyonUi1OCSyQfZpfkZ+NkwocGRac8flk61fq0Ov1eAsdVH2ukOwapa0tJZ6fM63YUhUbpB3fOILZaSJllZuax8rxljvjbZW5ypljwxaQaX9bOckke8y4cx2krnXjLnRgshtxBZW/68q1JefktCofOp0OT4EyRziDSltnPNe6c21YvBIHflRP+9Y+LD4JV24i71sx2Y24C2fnLZNsJHQijK/Cji1FxpWnXNeWYsJkN85Zfygk7qmJaSb6IthS5WQMbSkWpW3B7FrFZDNiSZPZ9GgZzgxrco7AohS+EmsVq2/+c3BmWXGkzfpomZ2mZB8sHuXfe+uGk20TczKA2W3CW6j0fyqszGWSTZ+ModU/29bilfDmKdftOzaMXq/HGV+7uHJs8+YTi0/CE49LYKUiT+zOVzY7PLl2LN7Ztla/Eu+d3zpKy9vd8bg44/G2z1tz2lKUGG7/v/W0v9sdj0v8uoWzpHlQ1nuubCunfWEFldcWKG2LZ687VzLZkW5BN8djQnmOifWeMg4tLiUWrmwr9lRLkpBtdprwJNoWKfdqSVXaOtIs6NDR+KKiIiS5zcnreguU6zrja3GD2aBY4CTcD70SntzE2tCVHLNZZ/rxlTjnrTktfglXTnwOzrEnx+zQ0RBT49MYjLPrSqtfTo5vZ7oUv1cnox0horFocrNubrwBTG5lzHqyHYT6I0SnovPiPTdHWCz6ZLy3fLOWyNDUojkiEe/0+AaXxWddMEckYLYaicViDB4dUd7HBXIEKKQd2WPGW+jg2AudqjkCFLvamakZBuomFs0RAJ48O3q9XjVHyB4zGx8uo/TjudgCMlafhfHW0KI5ouaxcmV8WM3JwwQn5wh/WXwcpsmK0lYUTHJ8DJ+UIzJrfEpbi579/1VHbCa2YI4YqWjjL8dfZfee3cRiMQoKCujp6eHJJ59kGctYxgeLr3zlK8RisSQZcJIIv3jhv+mOKergrlwHktuEMxifo8enkzWv8uuD2NIsuOPzrCPDiuQ24S6w0/inLiLDU1g8ZuQUmQ0PlWJPs86uVdJMSG7lu3nnt44iWUzIfjObHi1n5c252LOsyfnE5JKR3CZsfiuD9eN4Cx1IDhMbHlIO3DkzrTizlZwqu0Fym5J5yGwxYZQMSeKRK8eGM3M27yvXtdCxrY/xE2EktwlTYp7NsWHPmm0r+80YDco8ln9RuvK7aUred+XZsaXNtrUGJMwWAzNTUUxWA5LblKxxuPPt2FJnc6HVK+EtcFB+XZDiK4JIbhOu3Hh+znfM+6bW6/RMhZXNF0eaRYlhIpcXOeetgfQ6PbFojPAQWOJtfYm2xU7kORtEkCx5IbuVeCfXCUXKGAA4+NMWolNRbP54/+V4vItn+yC5TchOpc/uPDuO7Dkx9JrxxJ+Nr1hpK9nMbPlyLSbJgH3OnGzxS7N1iQKlD0NNE2z/v/W4MufH2xaQk2s2d64dyW2i7Jocqm7Px51nn7fmtKXIs2M225a8N+XvOOfF25ZmxZ2fGN8SkttE6SVBkJW4zI23PWN2zEo+M3qjnuFWhXzmKXLMi7cjc7atLOvR6XSEuifjcYnHO94NZ7YVV7wOtOLGHOXZJOuGyr3K7tkx64iP2YTSjidZx1Kua4nPw84cG/Z0K+HRGFOhaYySAW+ivhRvm5iz3QV27KkWjr/bQ3hgUhmz8brVyTnCW+DAliJT95vjbPl6LVavtGCOSIwBa0BCTpGZaA9jWyRHKP13otfrmRxXxv9COcJbZMdTaiP79BQkt4lwT5i2P/eq5ghfPD4HnzmSjOHJOcJb6MCVKWOUDEh29RwRWOGi7Koccs5LRXKbGI+rlCyUI9KrfJRek427QKnnJdqenCNsqTIpK90AdO8dVGpeC+QIb7kde7oFd4Gd/gOjtL1zAoNJf0qOCMfC9Kw8ynOv/JbRMUUV7utf/zrj4+PI8gJqestYxjLeVwwMDLBjxw70cZu2t+te46+732Y6LlHizrPhjue3xpe6IAaSVZmr8i9JxxKQZr8J8+044213fOMIOp0OX5GDlTflkHdRGha/hMWrfKu5ixw4sm10bh1g93casKdbSK3ysPGRMnzlypyWqP14Ch3YM61J2zVHhhV/iYu0tW4c2Xalbabyd31FThzpSn5LXeNDZ9Al5+REvd+VF29b7MSebmH3Dxpo/Us3jkwb7ng+tniNWPwSnvzEdR1IDjOhrgj2LAl3oX22vuSV4m1n1yoWv0RkaIqJ7giePDvu+N9EUtYUc9cqFo+EM6Bn/QMleAodyXgDCtEjXq+x+S0Qg453FfV0d74dR3BO2zQ5eV1rQIndYJNClPcUObBnz7Z1ZFjxxefZyQllzjc7lGfjKXBgz1y4bfu2HiXv58zuSyXiDeDIsibzvK/EiiUwWwPzFTuwzfn+dgRtuPPt7PtxE3W/a1XWWsm1oQPrnPWSK9eGt8DO7u80cOyV7vnrskL7vDWQO9eGO9dGzUPlrL4hL37d+c9GcirtvQV2jOY5daEUGW/xbA3D4peQfOZkvF1BG2vvVQ5J2dIsyWfjyVP64MyYXXMCSRUhR7o1uX/rylGua4/vlZllE0RnreHsmbbkesmeNjtmA6tdpFV6kmt4AHuWLVlzsaco49CdZyPSF2GiO4zBOLvXnog3gMkZH7OFdoaax4jNxObF251jS45nKT5mvXlOhlvHmJ6YVuIdD/ncHAHx8V3oYNtX6xhpnYi/96fmCABrqkzmemXzzuoxL5gjkm29MjFiDDSO4sqzLZgjQCGPOTKteAsdtL7eo5ojAPRGPdORaQbrxhbNEYn/rzfrVXOENUVm7X3FVHwyX1nbptoYaY0snCMCUpIzYfVIMBNTlKFOyhH+VS4sAQlXUCbSG2EmMoNZnj9mE+Mw59xULAEJySNx8CdHmQrPLJgjxoq62DH+Ntt2biMWi1FSUkJvby//8R//wTLmY9nuTQVtbW3k5uYyN0TFVBLULXyyc9OjZaBD086q6KpMAqUujr3cTo+K/YHVr2f17SX0HR2h4Xfq3pYVN+Uw0j5B21u96rZPc/5b+fVBal9oU7WIKroik8AKF81vdtG1bXGbso2PlBGbiQl7n6ef5iE8EFG1idvwxVL0Rp2QPVjwwhQy1/nY+q06IZsuNaunvwfWoBWTBMMN6rZ3NQ/EJSu/rm0n4ltpY6JrPGktuBjs+VZsfhPdO4ZV2xV8NB2rT+LgT1s0/7ao3VvWOX4CZS5tyxMrZG3w0/62to9r+kaP6lhLIGENGB6MsOf76n8/8wyfpnXekiFoCbfmrgJMFjELmfLrg7jz7Bz5Qyv9BxeXFC26KlMzJyQQPC9AVk1A6B3W6dCURiz7ZDatb3Qo749grqm+p5DaXx/THMubHitjoHGUI8+oS3RuerSMWAy2acioJ3Jt61+6F33+f469QBQlF2RkZFBZWcnLL7+s3tFlLGMZHxguueQSXn311eTPRsycrfvIgm2zzgkQPD1Ax/Y+TeuvjQ+XEYvFNG3Syq7Nxp1v18yFFq+e0mvzZuc/Ndun+H+zZFrI3ODh2AvqFsGbHi1jZjKqOm9knekneGYKjW920r19SPV6CRRcnq5qe+Vf5aD4o9n0HB7S7CPAugeKCfVPcui/WzTbWrxoWsktFembvHRtVb9o1ecKFaKwoIVXoMqpbU2GEv/2v2mvaSrvyKdr74DmM1qK3VvFzbmMHJ+gbbP6mA9UORnrntK8b4tXj+SXhOz71j9UglEyaPbTW2YlNBglJGo3I4CE5aN2Q9h0Xxktb3drjg9Q5OSnQtPs/I/FbYN9FXb0Zr3Q2ADlGyY2E1N9hzPO8JF7dqpm/rJ4IXheFkd+F18bCeSanAtTkN1mTcnz0muycefZ2fadOlWLt9QNbgouzKBr94C6JSVKPGemF7ekbI010MB+AGRZxu/3s3//frxer+p1l7GMZXwwGBoaIiUlhampqeS/lVBJ9iI1r/UPlmAw6TXtrHIuSCFzg5+GVzro3aNSp5Bhwz2lDB4b5egL6t+3RR/LIDw0yfG3+9Rtn+b8t6KPZXD87U5V66nsc/xkn5ZC0+YTqjZl6+4rRmfQCdux+1Y5iE5GGaxf/Lt+7eeLMFmNQvZgqWs95J2fyrZv1wvZdKlZPf09kFNkZJeOoQb19ULNE/F59RuLz6sJuApkIv2Tmv2U02RsKSZ1yz2UZ+nItFKrYQuR6KeI3VugykX6Gg8HftKiec2MTV46BdYevlUOzXuBWWvAid4I+36gXvNKXeuhe5d2HW0pkN1o2raBUsey+iXN+iEoKkBpq73Uv9DGQO3iFhp5l6bS/PLi9tpzEahyUXRxJk1vab/DBknPtq+pfw/mX5ZG584hxdZNMNesvi2fI79t0RzLGx8uZbBhlCPPq+e79Q+WoNPrNGvswXMDZJ0WoOXtbjrfXbjm9U7sZSLxhV5aWho1NTU8//zzqtddxjKW8cHh3nvv5Tvf+U7yZwmZM3QfXrBtYLWLossyad/eS9ub6tZfa+8vRq/Tadqk5X4oldRVbrb/u3o7yQnFH8+d3UdSs32K/zfJqSfz9BRN66n1D5QQnYmx69sq3+ArnRRflknzG12c2DWker0EghcEVOPkzJOp+GQ+3fsHFTKYBtbcUcDk6BSHf6W9rljM5un/HwRWu+jdr77fV3FjDs6gTdjCy7fCSf9h7Y6mVLvpOTSkaVG24rogvfUj9OweUm23FLu34iszGe8O07HIvJaAp8xOeGhK1cIQlGcj+WRN6zaI1xDdZsU2VuWy9iyJqQjCtmwiSFg+ajeEDfeU0PrXniSpUA0bvlDCdCSquuZ15kiYnJK2bV0c1XcXoTPq2PUtlXd4hZOSy7No39qrbvMoQcEF6bPvpECuSVvrxpFlpeEP6rXrnItSSFvlYd8PG1Rj6y62UX5VDu07tHPthodKiE7HFq0h9sa62M97SnclidTUVHbt2kUgEFC97r8ylklKAvjSl77E//k//2fev23gbBw6/6mN4xvzKz+diy3VohR9VYgMFj9U3l5Gx85+2jQ22DY9VsZ4d1jTr7rmiXKmQzOqxRNXkZUV1+Zqtks/zUPu2WnC5B9QyDCNf1Sf6GueKIcY75sPacm1WfiKnDS8eJzefeof+2vvLcLsMLHvqXpVopI1aKXyxlwGm0ap+/XiXuKg3E9sJqa5qZm63qVJJgLFMqzow9mMdYfY/0N1P8/3O5aJa4qQlERRcm0W/mIXJ/YPCI2Nmako2zUKB6AQlQZbJ1THZu7FqWSs9THSPsGhn7Wo/+3Hy5V2GhuuSZ/7b9ZqvhcbHipFb9Ig2wkSnkAhCXkLnfQeGebos4tvPuVdmkrz293C162+uxCdXqfqc2/Pt7LqOu28kXmGj5yzUxlsVH93XEVWVlyTS+fuflpeVS9AbXiolPDwpOb7UHFTDo5M6+y7uEhs9zn+itFq4MQJ5cPJ6XQyPKz9bi5jGcv4n4HX62VwcPZjy46bjbrzT204Z8N+06NlDBzT9iJffXs+ZruRnd9U3zzJvzSd1NVu9j3dokr0KL8+B3eejaN/PE6fyobD+gdLMFoM7H2yXpVsse6+YibHp9n/X2L+7xYv+FYHkipPC/bxuiCeAgdduwdoelm7GCOCmsfKmZqYZqfKR6nSPz1r7iplcmRKdY4BhYDjSLdorqdW35qPLV2m8Q11kpbFq8fklhhp0ibgbPhiKQazXpOAU3RlJikr3HRs76PldbHNEy0shaQkioRCzpYvq1+z8o4CrAGJ/T9vZrz1/SFybXq0DJ1Bp3k/5Tfk4Mq2su8HR1TfCVuOhdU35hHqi7D3Ka1NOjcFF4sRakRR81g56LTX2rkXpQqPCYtXT+UdJTS81K6aN9Y9UIzJamTvj5pUSV/rH4yvTTX6uOqWPKwBmW1f0yAYXJhCxtr4ARCVYWHxwurbyhhsiufeRUhUA7EBhgtaOX78OJOTyinSr33ta3zxi19U7ccylrGM/xn8+te/5rrrrpv3b2s5H7fOfWrj+MZ88RWZeAod7P+venUigwwb7y2lY3ufQjBSwYaHShk/EebQz1tU2216rJxpjTWInCJTdXu+5vrDW26n+CNZ7PvBUWFST/DcgHqxPd5HYrD1K+/P3J4kfr3UQe8+9e/W1Z9RNoL2/ayJifbF5w7ZrafyjmKGmsepf1aj5vV4OdHpqCbBQ5SAY82Sqbw5n7GukGaNc9Ojyprm/YoliJOURJFzQQpZmwKc2DdA4580al6PlzMdETu86MiRmRpWJ3IFqlwUXZrJSOuE5ruz8eFSRtonNIlcVXcpRP8936/VJCpV31OE2SZGthNB7oWpZG70018/TL3Kd13G6T4GDvULEalAsdIx203s/t7iz1x266m6u5SpMfX84lvloOSj2QwcHVV9d+Q0mcpP5XJizyAtb6ivEdfeW0RkZErzYGnRxzLwlThn38VFiFQHjO9hDOjo7FQ28Px+P7296nlrGctYxv8cSktLOXJkdh5w42et7uxTG87ZsF//QAmDjaOaG/Ol12ZjC8iq+Q4Ucm3wzBQO/aqZsfbFyRb5l6SRVuWl4cUOVdLMms8WYPFJ7P1JoypxZNUtecSmoxx8ulW1f0lIkLHWS+d7ixNRcz+USuZ6P127+jVJUnOvq0ZE2fCFEqbDUc04IkHNg+WEhybZ8+Qx1aZFH8vEV+xgm8YByoRwRNPrXepEFAmcaZIQQan680VIDpNmzSDrLD85Z6XSsaOPltfen5rXUkhKotj4xVLQ6zQPsZddG8Rb7ODwMy0MHV388EACnjI7g3WLE6kB1j1Qgkk2aNbb8i9NI6XCzd6fNqsSmiS/RPUdBYyfCLFfY13sKrRSfnUunbv7aH1dnU8gio1fLEVn0GnWYrPO8tP+V+0Dm0CSTHXstS5V8tOaOwqw+CUO/Hejah5ac2cBktvMNo0+llyVhTvXxnaNdXbaeg85Z6ew/TtH1Ml4Eqy9q5jhlnEaXuhYNG9MxEbozm+ko7ODcFhZmH3rW9/i3nvvVe3HMsCo3WQZTzzxBE888QTnn38+b731FgDb+QvEdNRwMVbdHDug+Ga42WZEb9BpEgS8ZT7F4mFGnStm9euTEttamBqfZui4esIdbpiga0+/QmIAApWOBck9Xe8N0vWeMhGmn+Yhe1OKKjnBt9JG6ioPnjy7KsGlfUsvoX6x09V5l6aSXuVT+rvISRot5ZW56NjZR9aGgKaS0kSb8vAMkkG1HcBwyxg9B7WZqyIEJYCePSOkrwvR+Kb2oqrn4BChfu2FiD3fSsmHM2h6s1NVwWopWPWZPEJDk5qqPsc3d2KSDDS+qb0x2t8wwni32NgQuY+WV7vx5Ng59GyLajtr3IIjMj6l2g6g59AQ/mKnEAFIRF2s5v74qXMBYlbdr49Tfn1QlaBkzZBJr/IRKHerFr7yLk3FV+hk13ca2P29xRfRnjIrg3UTjDVNcGLvAE0vqY/Ljnf6yTotQF/tkGq74Y4J0IF1juXJYjCY9Zht2lOW3qRHp9fNqqWd9Iz6ChrZd2wvjIBlykJFRQXbt29ftnVbxjL+l2FgYICBgQFSU1OZnp5mjCE2x54jnRxW6NbNNkzYU2UqllkiayWz1YhRYG6XvWbFikFDiaa/fhh7hqxKNABFijvnwhSFjGFRLJUWIoXMLYiv/XwRJ/YOqqr2rLxVUbfp39+7qFpR7a/aKL0mW5igtOGLpeg1PlC1PsYTCA1EmRyZonOP9sny6QnF9k1LNefoC00UfixPU6EoNBAlNKBNvAHo2j2Aya49Ltrf7sBo0tO9U7tYU3RlJmabkcM/Fyy+acBXYSd4Zir1L3RoqhS1vdMzz8J3MTS90UnwrFQhghIgpCZ07LUOvHGZbTXojcr7qqWQNN4aYmpsmuPvaRdguncN0a1x0rLgsnRSKz20/bVHSBGr8fVO9CZ1l/QE0ay3fkQ1luvuL6bpjU76D42pvl++Cjv9h8bY+Z9HydoY0Hzew23jWAPa6ymdQYdOj7oiE4oct06vI1CmTkoLDYDeoENOWCOedM1QLMRh53sMjQxBIwSDQaqqqvj973+v2ddlLGMZ/3P45Cc/ySc/+Uluu+02fvSjHwGwi83oY3pquARZN8cOKJ6OJJcJvVGvSRDwFTvQGwTqWTLo9KDTnrqY6Asz0aOeF8M9YUVdZJdyCttTaltQ1WigdoxttXFr+HI7+Rekq5KarFkyWacFCKxwq25aNb3eRXRajPSUsclL7vlpdO3sp3mRzaDWN3tofVNsI+L4e73knZ+uSlACksQXvUl7/dx7eIiBRm3ykQhBCWCiPcxQ8xjH39G+p45tvUmbezXIKTIll2fQ9rduVQWrpaDsE9lMjk9rEo+6d/YgO010/E17rd21t5+pMe37ARht1a6N9e4ZJqXCzeHfqq83Zbeylkmst9XQuXuAjGqvEAFIhOi18eFSojMxIWJWyxvdmO1GVXU12Q2556SSucGnevAkY5OXtCove548xkGVQ4uOHJnR7jDhoSjH3+3RJFT2Hxhl6oJp+o+or4vDQ2F0ev0pVosLwSgbkta7atDrdegMeuQ0WVF7OmmIDOV3sqtxC0yB1C+xYsUK3n33Xdxut/bFl7GMZfyPob6+nkgkQkpKCiMjIwzRx+bYc2RTSImucrZhfMtHcurRm/Sa36UAstOE0aLdzuKTQK9jTEMNpv/oCJ5ih6aqz96nGsk83ZckKDlzFibPHPjJLAlj9a159NYNqxKQqj6jqNv0Hxkn0rdwX1te68Zg1AsTlKo/X4RJNqiShbRIDklEYOxEiL5a7X2/yQll30kKSKqklYaXOzBJBm2lnAhCBCWAjvd6kf3aNYP2bX1YPGa6tmgTW4MXBLB4JM3DoqJw5kjknJvOsde6NBWSGl/rQvZoz68tf+0mRkyIoARoEpQAjv7xOP5Sl2a7xL6yluJSpC/CRE+Y9u3aTjDDxyY0ifsZp3nJPSeNlrdPqL5bCdQ934bFrR7LBNFspG1MVZVqzR0FtL3TS//hEdV3yFVoZfjYBHt/1khGlVeVoATKnrE3z6F+I3Ho9DptdbNoDL3RQKBUQ7EsAkaTHjlu1XgyQSkSi1Dr3kr/UB80QVZWFqeddhrPPPOMUF+Xsayk9HchGAxy/PjsSQk9es7VXbFoe1HLNIgruRwf55AGk3jjI2VMjU+x+7vq7Nyax+On3FUsDFKqnBRemqVpm1V9TyGSy8y+nzQx0bl4Iiq7Lkjd79Vt5BKwZsisvjmPpjc7FyXwWP16Vt9Wwv5ftiaJQ4shofQy2DRGnYAUozVo1bzm+40ND5VikLRP6r/fyDzDR+45aQw0jmrGRlRJqeaJcqLTMU3G8vuNNXcUYAlIHPhVC2NN/3PPT9gmMG7tN3YixIEfqbOfQTkxFR6eUlV62vBQKeO9YU01qATKPplNyxvHVS3WRBShLH5Y81ltm8KEelL79j5VVbj0jR7yLkjXtrvMkKn8dL6QktnGR8rQ6dWtNg/HdjPhGmBsbIxYLEY0GuW9996jpqZG9drLWMYy/r/Hu+++yxlnnDHv33IppVBXsejviFimgaKC5Apa2feDOlU7svRNXvLOTePoi+pqSfmXppNW5aHh5XbVjf2kbdY3ahclCli8sOauck0FAItXT+bZaUIWbQArb8lDdppUTwevuiUPg6TXtnNFUaay+WW2/Mfi9zLbWbBY3n/rNzX4KuyUfCzIUMs4tb94f8hCotj4SBl6g07ztJioklL5DTl48uzU/a6ZgfeJcC6KmsfLmRrXVs56v2HJtAhZ9ZXfkIM7x8beH6srDgG4iy2UXpHL/v9a/L1P3eAm79x09v9QPTck+3myLdsCcOZbqLguj4neMPt+sLhS2pq7CrB4JWqfbVa14Vt3XzFGi0HztNvau4vQW/Ts0JD0r/hULo4MbSWzhFVd+9a+RW0HQ7EQW3kNh8ueVKosLS2lru5/9pthGctYxt+HdevWsWvXruTPBkxs4qL5ZKU5yDrLT/AMbcs0UMgKw63j1P1G/Rtv/YMlTI/PsOcp9ZrXxodLmZqYUSVKuApkVnwyn/GesKoy76pbcrFnWDn48yZVckjR5Rkc/4u6jVwCshtW315K05tdi1rfyW5YfVsp9c+3MNyoPofJKTJrPpPPYOMo9c+oxxCYJTL8D2Lt54sw203ChPb3C+4iCys+kU//0RHN2IgqKW16TFGQ0rKMfr9Rem023iIHtc80a1rsvZ+Q3RAOo20pKMOm+8sZOzGhqfwDih3aTDiqqvRUfU8R4aFJYXJ//mVpdL7To6oyVX13EZLLpK4IJUPNF+K1cxXCk2+Vg5KPZCtWvSqEQW+5nZLLgzS90aVqwSe7ofKOUiElMxGruuZYPX2u44yPjxONRonFYvztb3/j9NNPV732MpaxjP/vUVtby+rVq5menk7+Wz7l5OvKF/2dDV8oYXoqym6NvZv8S9JIWelm70+aFyX4gKIeU3J5Ng1/6lC1A8vY5CXnnDSOvtiuqo6SsM3a/d3axYkCEmx6oJzIsLoCkeSEzNPThAlIRVdk4sy0qpLJi67IxOo1a6rWAJRcnYWnwMG2/6jTtD9T+ito2/U+wZIuseaWAgaPjVH3jPZ+6PuJtfcXY5KNmqQZUSWl/EvTSK/2Uf/748LWY+8XNj5SxtTYtLZy1vsMLcJaAgUfTiew0s3+/27SJHBZ0iUqPpnLgR8tbnPmKbNT/OFM9v2sRTU3zHYU8s9Po+nlxd9DKSBRfXsBo53q68OKG4I4c+zU/rZVlTxWeVs+ssesqTy28tO5SG4zu1Q4EKB8w/lKnJrXS1jVHX+vl+N/WZys907sZaweOekEsXbtWnbu3Kl67WWcCm1K7TJOQVtbG+Pj41gsFgCiRNkce463Y39YsH1kbIrYTCxJUEqpWvhkcULJZSoSP9WiIuwhpqkEM5NRIiPqyjA9e0aIDE9Snzilssjf3f3dY4pFWmcYT5mV3ItTF2xX9yuFoJR1jp+aJ8rJPMO36N925SnKB/b0xW92oi/K1q/UMdE2gafMStY5C9jsxTF2YoJYNCZ0yqriU7lU3pSr2j9QiCmbHikjeJ66b2TifoMXpqi2G+uaIDI8qdk/q1/PxkfKKLoiU6OhQmApviZLtVnHO/28943DQuQtUWz5Uq1iaaiBDQ+Xat8HymKg7JPZmu2Gjo8xHZ7RJCjVPF7O+gdLhP6uVvwAVt9eQs3ji38gzEUsGiM0pP6cE39z17cbNMlHBrNeU3Fo4yNlbHioFFAUlxYkKFln/+6Orx9h71OLEJTir2SoD0L9ERpfU2fEd+zuJxaNaarCDXcqix5bumXhBvG/myBCGswLH6W1Bq1YM5Qi+eToJFNj0wu2myjrpTZtC100Mzw8TDAY5J577iEWiy0TlJaxjH8QnH766cRiMb761a8m/62FejbHnqMltvCm+9T4NOFBJQfbcixYvAsveRMnx5MkhMVSk18CHYy3q5+8mY7MEJuJ0Vun/jHdvLmL0c7QLKlngb8bGoC9T9YnCUpFVy48j4YGokmC0oYvlrL+C+rznuwyaSrsHPhJc5KgtNjfTSA8OElUI/cnUPNAOatvK9NsV3J1Fusf0p6/1z9YwqZH1a/Xf2iM6dAMI63ap6ZKr8kW+rtFV2Zqxhlg27fr3lc569pftPLe1w9rEpRKr8kWWv+UXBWP8yLjfi4mh6cYalOPYf6l6dQ8UU7qWrdqu7xL0tjwxVIsXvW/GTw/hTWfzqPkau012tTEtLL2UtmIDZ6fgi3HwtDRENu+pk4+cmRa0Rt12LIWP6mVdU6AmseV+w0NsChBKfeiVCyZFkaaQux9sn5xglL8ORx9qZOJ3ogqQQlgcnSa6bCAEoMedQWT+N+NTinFq8XypX+VEovOXf1Ep2JMjS+89hqsbGa78XWizBAOh1mzZg2xWGyZoLSMZfwDYefOncRiMVJTlZrPDFO8y0v8NfanBdtPjc8wMxnlxD4lsXrL7Qu2Syi5xBLrhoU5T0vCdGiGyWH1mtdwY5ixrhANL3eq/t0DP2lhz/fqGW0NI6fJBM9duAbU8AeFoBSodFHzWDkZpy9eU7Jm2DGY9DgyF59sw0OKAvNwY1hRajpr8ZpXuCdMbCbK1MTCOXguij6WQdVn8lWvBwpZYv2DJYvebwKBShc1j5eTe+HCtcAEBpvHCA9o17yQFVvTosszNJuuu6+YYo2a0lBDiPf+/bAQeUsUW79cy/bvaBOU1t1fTMFH0rXbPah9HwAj7RNMjU1rEpQ2PlzKuvuKhf5u0ce047z6tlI2PSBW84pOR5PfW4shEZP9/9WkaUVnshqwaCgirLu/OLnGbXrxxKIEpcTf3f29hsUJSok8EIbh1nGaNJTf+4+OEp2OMjOpocrfGVcM9y9yL/G/m+jTYkpmsltRSwII9U8yObrwOz+c0Ut95jYaOcTw8DBZWVk88MADRKPRZYLSMpbxD4Ly8nKmpqZ49tln0euVtVITtWyOPUdbbGHyTmhgkkjcWUPyS0iLqOomlVwSJIRFthYSew5jPepkhehUlOjUDP1H1Wteja91Mtw8NktQWujvRmDP92uTBKWci1IWbBcZIUlQqr67iLUa8549RcZkVa95NbzQkSQo5VykvpcXGowQE1TH3PjFMirvKNJsl3NRiuZ9gGJxtfGL6jWvUFeE8NAkw8e1FYDyL0kT+rvBCwJU36t9H7uePPq+2vE2vXyC9/7vYU2CUs5FKVTfXbToeE4geG6AtfcWIzm1aRDj3SGGmtVjmLHJS81j5aRUu1Xbpa33sO5+7b8bWO2i+vYCij6mvTacmpgmNh0lNLD4O5q21o0zRyLUFWHnN4+okuVsKTIGswF7+uJBDKx2senRMuV+IyxKUMrY5MWepZCtdn+3fnGCUvxPNbzazWjHhKa6VWhwkikBBVDQ4EvE/+5UvH62WL50F9sA6D88wlR4ZtHvrcE1LfzN+CcihBgfH6eqqopwOLxMUPo7sWz39nfCarUyMTHBxMQEHo+HyclJZphmc+w5jJg5W/eRZNu2N3qSyiKp610UXJRJ5voIe38w/3T6RNvEvI2MmvvLmZla+MTOXK/vDV8sBR0LWkXNtZpSUxVIKDJ5yqyUfTx30RNmCRWZkstz0Bt1tPy1e1EFlpnQDMRgWOX081w7OYDgeQHa3lqcnVh2ZS7ooH0x6d2J+WoqakpJTS+1UXFzER271WX0Jiai6Iw63Pl21b61b+8je1OAKQ27sMO/ECMJTfRF0Rt12FM0KncTYJD0OLTaxdu+79C4ptWvx2DSa1pQWP169EYdZodJ8082v9y9qPXfXEyHZwhrEIWsGTJ6ow7Zqf13h5rHMMrqi9zEmFNT9YH4iQKPmdGNnsUV1qyQWe2j451+oU1O5UNBfdG8/s4SjBYDnflWxpomFiQyJdSTpkan2fnto4sqaQTPC5BVE0iqIi12z0VXZRIodbHv6RYlzy2iFJGwdkyoMS16z1aovClXyY9fq19QAa4pVk8ThzAcUZ6XyWTi9ttv53vf+97C11zGMpbxvx4PP/wwDz/8MJ///Of57ne/C8AxDnIsdpBSqsnS5SXbzlUeqrg2B4N5YQXDuQTRvEvSSK/2LmgB1fhiF40vKoVrd7GF8qvz6NzZT8vr8+eits09SWWR9E1e8s5Lo/HNzlNsyXr3jCSVltbdV4zJZlRU7U62SorbYHnLrATKXbgyrOxSOdUTnYwSm1YnDM1V18w4w6fYoCyyVMs600+g3IXsNnPwJwufMJsr66ylejPWFWJcwO7X4jVjNBuweNVVlyJDU5hs/z/2zjw+sqpO+9/a9yWVqqSyVSqVPd3p7iTd6U6zq4CAKMvQoNAgm7KjiIKg73xmcdyZcUGdUUYEFxRERsAFUUSgd3rvJJ096ez7WkuSqnr/OFU3qa66lXaZeR3fev7qrjq5de/vnnvO7/7Oc55nbV+YtRS14tBnid9dywrL5NKLfGCNdmsqS/0pOINjmnJ0a+YrIMh3aq3qjI6Zrt/FsTi3RGQpuqbdmrXIiEqjJLDG7/a9NUruBjsnX5QnSsf7XPtPB2gnvf1wYZOTgsbstEpBhRe46H9tjI7nB9dUJ5sfmIeoi/CifNHE4ID8xmxyNtrZ94WTstZ2Gz/sw5Sj59B/drPQG+Dwt1LnXlseqECpUbL3860c+Y68GsjWh6qILEXY/1hbWiW21daOzWk2MtTdWYrBqSOy1MNki589n0uO4evRF1kiBIfAbDYTiUQYHx+XNvZkkEEG//swPDxMMBgkPz+fqakplljk1ehzaDFwruIyqd3IgSlJMcRebqDqag8LZwU4cpqqcHA6kqAEsu0jVUSWoynn6dWfbb6/HKVWmVLZd/UY1/hgJZGlSMpx72hsIUrv1lN/u4+5gdQ7fOOkh9rrPWiMakYPjskqsIQXw0QjURaG5Avsk83z7GpeyUHzz85m8E35GtSGG7wo1Ur6X5eXRF4dw3RKSadeG8TmMdG/N711VTAIap0Km9cEyNe8xg7P4Lsoj8W59DWvtazRVn4Y1Hr1GdmVaoxqTLlnUPP67xCNOgNVIY1RjWmtmpwe1Do1+qy1a0+Db06k7SdxLM4ty27Ykn7WLn7XcAaWY6MnpjBlp5+3431udb05Fdbf6MVabCQwFmJwt0xCrwf3JgfDeybTqgTFEQ6I+mw61N9Zht6pZaJlmun2gCxBafvHagjNCTUtOfUmV72NsksK6PjlAGMHZ2TP0fMOF4VNLk4808VMZ5DdMipicWvHgT1CjSndNdffU8VySCiapyJ4DUb7aGYfqmEV0WgUrVbL/fffzxe+8AXZY2aQQQZ/3dixYwc7duzg61//Ovfeey8AbRymLXqYGjaTr/BKbVdbpq2/3oPOomHXF5uTlH7afzZAPCtyN2bhuygvpQXUwJsTDMTmHZ1LR/3tPgb2j9P3m8S8YPjANMOx9317hYnqv/PQ/cqQ9FkcMx1+ZjrE++Wm23wYc/W8/bVkVaX4/w15Ogq2OHH4LBz6pryi95J/GZU2PfFj9Zqra6ONsdYZWQWk7HVWChqdWHINHJeZC/p+MybFYS3Vm8mO2TMSTzBk6VAbVOicurQqNv6xEJzBnsCDX0+vPBqHzqoVv7uG2pMp24DOpFlbFerMnOb+OJzBMa1ug1hDXKOtOdeAxqg6I2WrM1GGDM2LjWKjx6fTtrP7zKj1KkKh9L871jpD4VlO+n4rnzvH+1zf78bo+116C76Si/KJLIfZm0ZF273ZzvCBafpfH0/7vgEwPxokGo4SDqa5Dh143+lm0b/MgcfaZGNddV0RjjILx5/uZLY3JGvDW3dHKWqjiv2PtaVVKm/4SDlEhO1wunvXcF85GqOaPZ9roedXI/TIWGvXvN+DvdRMy0/7mGqZZ/+Xk2O4J/oq80zDQVHzMplNDA0NodOt/S6TgTwyJKU/E0ajkVAoxPj4OHl5eSwvL7McK9yoUHGB4sqE9iP7ZihodHLyOZFIrL/Zy0TLTEqSQmh2kcXYy6bZZyQyG0xpNRVZiqBQrq2tFFmOpi2iA0z1+gmHIvTvSk8AOfLtFvK2ucEvCA0Kkm2whvZMSdeVVW2k7JLCtLZzWx4Qi3QzfQvMtKdmvpz8r14MzjMrdDc9Uo1CpZAlRPjHI1KRy7XJwthhGfsWP2dmzeZnTXuEOMw+I+uvLabr1wNpLa/O1BLuTNtt+2Q1kaW17W/OBHlnZVHyjjz63hyVJ40h4nwm53em7RofrGRuKHBGilBncp3+weCavxvvH2vZjtXdVYohW7emlRmI5LHyusK0FpBN91ejUCsEkU6GDOa9JJesEjOHvtGZ9npt5UZm2v3s+8ZJSi/MS6tCFRgXO1LH29N7KY+3L1DY5EJjkimyGQE/zHTO4aq0YXaq8ae4bTn1VkYPztL92gi5GxwEx1NUAY3QcGsZbz/RAX7h9TycgmB4MnoEXVmU3u5uiA13733ve3n++efTXksGGWTwvwdf+cpX+MpXvsJNN93EU089BUArb9MafZtS1lOiqEpo3/PbYZw1wivc4FBSuaMkJQHAPxokvBiRCErODZaU1m46qw6iMNker6aQkuSh0qsgCrPt6eeDibY5HGXmtESRyRY/wwen6PqdeHG1+oQqy+lYbcW16Y5SxptnkghXEgzgPT+XwianrA1U/x/GMbh0tP80PfkDhD1W6UX5zJ7yc/zJnpRtVhfSstebmTieepdSOius1UhH0jgdNdd7MOXo09qVyRFD/tR2xRfliLz/hT7Za/1jEN85vlZ+8/bXzqxAla74F0dek4Ois10ce7p3TRu1/j+My/e3VUhntRNHvH+ke3cAqLulhPDimdmw9L05xmyv/H3IXm/Gc7YLV42VQ4/Lx2bLRys4/pNTTLcFZK1sDG49gZkggUkYenuS7tfSS9MPvz1J8fm5BCbTM7ei4SgR1i6wRZbkd/ob3HpQKQgMBAiMh1BqUhd588/Jxu4x0fyDPtp+MUjZxXlJKl6BaICx0namZqdYihVr8/Ly2L9/PwUFa+8GzCCDDP76odfrmZycJBgM4nQ6WVhYYJEAr0afQ4OGrafZwE23B5jr99P5GzHuVe0oZKprIaXtUWAixHKseK936yEilIJOx3IockbFy8hShMgaZO3gdJCl+WVB0k6D/Y+3UXxOjiA46EFv1Sed22TzPLubRQ3IWKin+sqitBYRcUJqYDzIVGtqYtOJH/VgKTKlPbc4Gh+M2bfLbO4JTq+QuLKqTLK/SZAztmZbi5gShz5HT+0NHvr+MJbW8kqOzHE6zvT84qpCfwl72qwqE1VXF9O/a5RTaWpeBDkz5czgmV1vw73lLIwEaP1JejVrIK09jvSz02v/brx/rLUZsOZ6D3afmfaXB2TtC+M4/lQPpe/NkycoAVvuqUBjUAsVNpk0M7/JgbPGKpTO0tg/Wor1zPUGOfjdDrzn5qZXoQpCcHqRyXZ5G2+Aua45iAgSWkroiSkxzVGw1YnWoiPVhThqzEw2zzO4e5LCs1xi0TkFNtxWQttz3QSnYapzjvEU6rx90Xai5X66u7thGSKRCDt27OCZZ55Jey0ZZJDB/x7cc8893HPPPfzjP/4jf//3fw9AMwdojh6gnA0UKxKVcDp/OUjuxixB2NBB7XXFHHumN4nAEZxeZHFhmcEDYly2V5hSKpkYstREw1Fme2PvfjpSkkE0BjXRMEz1pn+HHW2ZJledJW/7hlAD6ntjlP49Yr41F+qY70/+0dU1pXXXe5jqmpefZ3RQfnkB3nfmytYVJk7MMlg0IUtcWA17hYmaHcXMdM9zQmZdqm1V7cxWZmSmI/X6y5mqPqYjaZwO32VubMUm2c3mwBnbwZ1pu5wGO76L8mh/aeAvYs9Wd2cpKp2KA/+WPo879r0zs4Zt/tHa12GvMFF2aQEnfty7po3axLHZM7rOM7m/8f6R7n4B1N3mIxwKr1kbA+j89SDBSfm6nblQh+/d+bjrHRz+D/m63KYP+ej69QCzvSFZazShEhUhNAu9vx9h/Gj6d6vBvWOYXHpmh9PHeHkxLFujWo1IMCJcXWTOTWnSEBgKMTfgR2dLvXaZvc6Ko9JC+/MDdL7cT/n7CplqSa4Z9niPMOefZX5kGoCCggL27NlDYeHaqu8ZrI2M3dtfCE6nk6WlJXp7eyVZxjBhXo0+x2+jz+OPrkxIB7/eKRF6rIVGii9wpzzm21/tkFiAtdcVs+nOqpTt9j/WJi1WND5YyfZP16S0bNv7hVZJMWnrQ1Wp7TH8ot3EsQWMTiXbP13DhttKkpoFxqHrJVF02vShatlzi8P3rnw0JjVZ1fK2bsefamP2lF+WoAQwcWxBEGKMgoRUcpm8zPRY8wwLKQpcpyOn3kr55UXU31OWvmHMVi3dbwKUvi+PpkfTyzBGgkIlKWfjGj4XCIWh7NozK1KthWg4uqbCwplCpRWLr4tnYF13Jsg7K+uM2qkNKsyu9DvUGu4rO2Obt7Vs/AxOKL+86IxsXbp+M8RyIJyWoNS0ysLv5DPpE822l/oYb5tNq1bl3uTAsIYNXP09pay7zotrkwX80Plfyezs+PO+6cM+QCyApipQVV/vYfunayTFqF3/3MzAG8lJSMN9ZWz/mBiLRg/Osuufm1PGpeG+MsouKxRjgx/2fLYlZTvP2Tno7FrW7/ACcPTb3QntFtYN8Ft+yina6erqoqioiCuuuILl5eUMQSmDDP5G8b3vfY9oNMrf/d3fSZ91cpxXo8/RGj0sfTZyYFraHVt2ZTFGly6lHdXIgWmJ6OCqt1LxviI2xsbE09vt+kwzs10BDA4l2x+sSdmu/7Uxdn2mmcBkBHuFge2frqH0imQbiK6Xh6QFpLo7S4WtaAo+dtfLQxCA3M121l9fQu2tyfmZBAMYXTryG9NY2gZgonWW1ufSv7THCUqV1xQK9U4ZjOydZml+mc7frF3cafxEJZVXeta0GSu+KOeM5t/GByvZ+KHke7Aaphw9GtOZ7c/I3Wo/o3ZrYXFOWJCp9X+ZfSHRcFT2JfyPhaPauKbdGoCzxoZaryIwkyanNoi83POu9DLppZfnseWBtaXFG+4to/JKD1bf2hsTFkaDDB+SX/zyXZbHtodFXt7/2lhKcl8cE8fnme5Z4NB/yheJnBssaMxqKi5Jb+lSd7uPrfeJ56X7F8MpSYgbb/NJz/vIgWnxPpeiXdMj1VLcDnylPWVxyuCA7Z+uoe7uUkC8H8rtpqy73ceGG4oBUeSVI90Vn5ODvURYNi30BjiyqogViAY47nqTt3iZts42lpaW8Hg8TExMMDg4mCEoZZDB3yD0ej3z8/NMTU1hNIq6zlLMBu530RcIRlfmiWPf7cHfL/7vKLdS8q7UNZQj3+6WcrQNNxRTnyKfAkEOjudKm+4QuZLentzuwFfaJdLG5vvL2fZwirwlKAgsE0fnhJrKozXU3uRN2a73N0Ids/GeSurXyDNK3+lGZ9fIWt0BHPleF5Ptc/JkIWCuNygp6Gz9RFVaa7WhtyeYG1hbLttSrKf6mmI23VG6ZtvN95dT8u70Na/C85witunKMotBNCY1zhrrmr+ptwsFrr8EopHoGdsQrwW1Xk00HGFx7sxsJtaCq952Ru20Vg0md/p41N7sPTObtwcqKLogvd0feqi+pviMcrSu344SmllKS1BqfLBSsltbS1Wr9dk+xo5Np1WrKmhyYs4zpu1v624spvZGH65NNghCzysp3kf00PRoDRtvF+9QBx/vSNmu5LJctn+qBkuxnuB0hN2fbU6palV7i5ftD9agtyuFetJnWxg7nByX2lu8VF3tITtmm7vvSydTtnNtsmHOM1D6XpGjtfzoVEI7f+Uov+WntHGEjo4OCgoKuO6664hEIhmCUgYZ/I3i//yf/0M0GuUTn/iE9Fk7R3k1+hzt0WPSZ9NtCxKZpfzSAiweE+5ae9LxptsWOPCvbRACa4memh3F1N7iTdluz+dbBYFJB9sfrKH25uR2Y0dm2PP5FkJjIXQuHU2P1OC7LHmdc/CtSUndqOb9HrZ9sjqlDVb/6+MQEuSNDR8sZf1OT9r4WItN5G9LM8eFYGD/OCd/lr7mFScoed7hSjsXTrctEBgP0fv62jWv+rvLWHedF90aaZB7s53NHzkz27dU92A1rAVGdPa1VRMBsmvXzs/OBItzSxCJrqludaaIhqMrttB/Jqwl+jOyeXOtt6M1q4mkFwpl68cr17RQzj/LcUY2dOtvLGbddV7JXiwdprvnGT4oT/jPP8tB48cqQQejb08z2y2fVM33hxg7MUPLM/IEJWuxDmOOnuLzU3MW4qi/p5INt4t67cCbEylJiJXXFNL0iHjeZ7uDYjNHCo5S48cqabhP2Ase+8+e1Js+dKI2Vhd7nzn0rU5ZolXDvVXUfsALCOKgnNKS72I3rmqRn4dmIxxf5YAUioY4mbePV6PP0dHdTiAQoKSkhNHRUfr7+zMEpb8gMkpKf2F4PB7C4TDj4+Pk5+eztLRElAi7+AVEYTuXYlSsEHUOf7MVpVW8adXdXYreqk2wcouj5/VhssvFA2PM11N1VUFKi6PpUwvYi0wSqSG30cbIvuSXn+XAsiCZpINWSzQcZbIz/c6SgQMTZMUK2HHllNPx9tc6MMfspQxOyK51JqnvBMaRdt5veaAClU7FnhSxADC7jShUCkwu+Rf3jhdWLBo23FYiyXufjtGDsxSdtUhrmsE5DpVOiaPUQjfyyYhCoUChVEjqMKlwJuo9cWy6s4poOMruY/IqTb73uHHXORg+NCmRx1LhTHe9nQn6XxtPq6AUx/ZP1xBZjsreSwDPRTkUbXPh8FnWtMM7k7ipdCpUazBus6qNKNUKbMXpJc0D40JdY2BvGhvCDxQxuH9CKBWlUTcwOpUo1rDwk6zRnuhi4tgCE8dSFzA9F+XQ98ooe77SgtEoc62x57HtF0NUvbdAXi0MoWQVWY4SWkO6faJlGrvXhM6U4lE3gqtCqE6Ntc7i3piaeOZ5pwtroZHj3+vl5EuDlF+Ux1RL8sCx/oNeLAUGdn+mhb5XRgmOB5OeqX3R1wjp5lluWUahUBCNRrnlllv49re/nfY6Msggg78dPPvsswDcfffdfOMb3wCgnw76ox1kk0ed4iyp7bEnuhMUkrY/WsNE+2yCZRkIO7b8LUHa/kvkEjU7i5lom0mybYMIy4Gw2P2LvPqSSqsiGo4y0Xz63yciOLWIxqJOq6o0cmCaorNcdLwcK/qnUnIKwKFvd0nKN5535Ug2dKsRL2SZig1s3FnC0MFJQahIAaNTJ+bWNBZn8V3rjmojjmq7rF1W7+9GcK23r2kzZvcIieS1bORUWiXaNQhIZ7qjfv3NXmxFJgiT1rZs2yerUSoVaXf2D+2eZCjN7vE/FmdyDeVXF+CqsdHz+xEGU5CI46i8shiFUrHmzn85m7/VyN1gR6FSrLkomOU1i53oa9jkNT8/QOXl+fKEIgOsu6aYE0/1rqnKZMzRoVQrhLKRjBLUtoerCc0tcujxTpqfTr0jr/BcJ/37xxk/OkdgRliypTqv+HUtjAQZa0mvMDDdN48+W4vBoCQQkFdHWg6GWVxIbeXiqrcydnCWwCQsLSwz05N6sbruzlJaf9xJYBJmehcYPZ6iyGWAbfdXMz8S4Ph3ezjxTA9L04nXGYgG2MUvMJlNzI+KHWYGg4HBwcGMrVsGGfx/ArvdzsLCAsFgELfbzczMDBGWeZOXUEQVbOOdmBR2qf3Bx5vR2MT7b80NHiz5RvZ+tTWJlND5yiA568Tf6e1QeU1Jkl0cwHTXPCqtUrJwyt5gEYSj07DWey2AXq9keTHMdF96tcO+N8dwVa5azImpp6zGse/1YCzUC3KWHvLrHMk7+4MrO6s3ftiH3qaVrdHoc/QoNUqMOfKrHKdeG+cUoiZT/f4iWn52KiXZY643yPxQgLaX1rBh04PWrCGrJH3NKxKOolQrcdXYZMkqwekzV/yuv7uGSDiS1vrKvc2B70I3w4cn6XpRvuaVzuL0j8XY4ZmUZJLT0fSIOP90qo6uTTYq3lOIq9qW1l4VzkxtSWvWoNKlr3np3Xo0RjV2j1nqJykRFM/V2An5a/Vd7maydYbp9gBvfzVNjPWiHpfO+q74whzyG50c+V4Xc71B5npTvy8Unuek//Vx9j/Whj5Hn5rIFHsWO381Qs01henvVxCWg8sEJ9NvtJxsnSG3Ngu1IXXNPK6KNHp0Br1NCykULl31NrIrrLQ+c4r2l4Ypf4875ThVcVUB2ZVWieAUXgwz2Zw4Hh2L7mVKO0KkIyLVvO655x7J/jyDDDL428fnP/95Pv/5z/PYY4/xsY99DIBeTtIbPYmbItYrtkpt2382wNiJaUkhaesnKplsn6f9Z4nq2LPdQaY75+n+vZjvy6/IZ67fn2TbBkKBKT5HyKkD6YwQWQqvqVAXnFnEGNSntd+a6fCzMByg89VYLiKj5HTw6yclO638phR5F9D7a1EH0zl11N3uY/BAsoVdHOZcAypdeiu0ONnKXKgjZ0MWXTL1s85fD5K/2ZlWPQoE0UprUmMt1jHbK68wozGo13TSSaeMsxpll+eRW+eg0zDI8D558svmBypQp1mfhRVC218KZ3INBWdnU3x+Lr2/H5EsClOh8qpiNHrVmmqc7c8P0P58evV4e4UJpUaJQpH+HmRXWoUN3Rpof+EUFVcWpVQyi6PymkJOPtu/piqTKceASqfE4NDJKkFt/mgFywvLHP6PrqSxII6cBjsz7dPM9oY49ESnvKpU7Hmc6ppnuiv9O9RU1zxWjwm0GtJ58y0tLLMcSr0pIKvaLNSNQhCcXGSyO/UYs36nh/ZfjhAaDzHWPMNkR+p2Wx6owD8S5MQP+jj+o14iC4nvjKFoiN38CoNFz9ygOEZWVhY9PT1YrX8Zcl8GiVBEo9G/DDUxg5Tw+/04nU4CgcQC73oacSsS2cAN95WhNWskyzA5glHd3aUYHGtbStXdUYrBpaP7N0NpLaXiNmu7vtycVrFl+6drCE0vprWQ2PqJKlQ6ZdpixNaHq1BplBz6ZjMBmffkzR8pR6VXsfcMPMlBqPAMvZX6GgvOERNXYCyU4EmbCq5NFgzZevp+K0NIkSFh/akwOKHw3IK0E2HNDR6muudkry9+Xo13V9Lz26E1bcayqo0pCSGrsf3TNSzOLXHg3+SLD0aPEf+4f8141N1VyuLcUlrykcEJlVf7OPx0l+zxsqqNWIrM9L2SvMj6J2ON+1l9vWdtWzmj8LJPR8QyOMFcmMZScBW8l+SS35DNiR/3yKqKxZ+zw0904R9MveAWt547+oMeWWu37FoTlVcUM9WZ3squ4b4ydDbtmmNE06PVYsFzjWJk2nZGyC41MXFsgXU7PdiKzRz+z+TrHK1tY3R0lOFh8TLg8Xi45JJL+Na3vpX2tzPIIIO/ffyf//N/+Kd/+qeEz3QYOEdxWcJnVp+B9e8vYeTEFJ0vDAl7qc75lOSJ7Z+uIbIUZc/n0tu6ngkx1+BQUnd3FQujwbQEi5qdxdiLTRx5WoYQAdgrDNRcW5LWYs1UbGDjjSUszS/Lklwc1UaqrvLS/bvhMyLVODdYGG+fkyWabHu4GqVm7fkAoHJHYRJJLAFrEFr+WHgvzmXk+Kws6cng1lN6iZvjz/Sk/d2ancWotMq1STwGMNjkCTIgrEk0ZvWa8bJXGJhuSx+M3M12POfmrCkFnX9ONha3Ia18eOkVeXT+eugvGv9099Pzrhxm++bWvMZ4jtP2X6dSkgJBqGElkwpTY+tDVSzOLcnKbBvceupu97HkX2b/l2XiahD54NKC/HMGUH9PGXq7Ni05zOCAurtqCEyF0trOFV7gwnO2i+meBVlyFQjLvpJ3uWXHiTjRCcTONP9EKGlsGoz2Qs0CbW1tLC8vo9FoqK2t5ec//3lGNSmDDP4/RzAYxOv1MjKSSGqpoZH802petbd4MeXoJTKKHMGo5gYP9pK1LaWqrivCUW6h57WRlEoncWz8sA+TU8/Bx5slclMqND1aQ2AilNbWteG+crQWDbu/3Cyr/rL5I6LNwX/vSmlfB7DxQz50Ng37vri2RT0I0oNcLBw1Zqqu9rAwEkxQvUsFW6keS6FZqBWkQgoC1p8FPZS8MzetjVj5FfnMDQcZ3pM+B918fzm9r4+uSRyyleqZ6Ux/Eds/XUNoZikt4Uafoyc4G1wzHutuLCa8GEm/iKSHmr/z0PXKqGyf0Lv15NRY6Pud/Aa5Pxpr3M/yK/Np/1lqktBqbP9UjbDXldv4qAeHz5xEsEkF9zYHJe9w0/Jst6wlW8N95ehsGg5/t0tSZTsdceu5Ez/skr3fxkI9m27yMdkxR+uP5e9P7S1eLPlGDn49/Rix9SFRz16L5L/1E1WotDLt9GAvMjDdHsB3uZvcWgfHfyAIW6sxtq6TsckRBgfF/SksLOR973sfX//619P+dgYZZPC3jyeffJJbb72VSGSFSGPCSpPiooR2OqeOultLGDsxQ+dLQ1hL9MwOBlNyBZoeqSayFGHvGnnJtkeqiS5H2PuFNO1i6ktzg36OfbdHtpnvMje5Gx2c+FGXrPqLIU9H3a2lTHfOy1p36Zw6Gu4oFfO6jO2uuVDH+ht89L0+ktaGNA5bmZHgqF+WZLT5oxVoTWp2fbE5HfcCENfZ9XIa+3cZEtafCndjFv4RvzzpSQfVV3ro+kVfWhJV+RX5aE1qWWu71cfTWXWEZKxMATbeVoLJbVhz/lyLrAWCMOS7MI+D3+lIG7fsWiv2YhOdaUj6nne4GDkwtiaZ7I9Cmvvp3mwnML0oawMYR837PdjLzLT/fICxI6nz3uxa6xlb7DV8pJzl+WWOyIh46KzQcF8Nofkl3k6zHrztk9UszS+ntbeuvakYU74xbV0cHWz7WDXB8VBaYlr2OiuVVxamff5hbStGieiEUPwMTISSxqbJ6BiL6yY42XaSpaUl1Go1GzZs4Fe/+hUuV3onngz+PGSUlP6bYTQa8fvFoJOTk8PYmHjZPM4+jkf3kUcJ6xQNAJIVGwhyRJbPjDnPmGTNdOjxzhWVHiM0fbSa8ZbZJKLLyee6qby2RCIobfpwahLI/HAAS75R+jy71pSs3mKEyHKU2eH0iwaz/QuY1rDiOvadNoovKhAEJSMYjUrJ/i6O1eSY9TcVM9U1n9JSCmLF/iwthElJxhp4YwKVQXVG5Jby9xSBAnmSUixGWz5SQWBmkeNpEq3CC5zkN2SnVdbZcJt4wW3/1YAs+aP5+2fgAevnjIpb9feUYXDoOPiNE7IEsTPFxhuKUajWXoBcy1cVhFrR4TV2wldc7kGlUzJ2cFT23MuuyMfmMSY8S6fD4IRNt1fT9lKfrEoRiOfFmKPH806XfH8A8Avf1YG35Yuimz4sSDljh+Vj1XBfGW9/tYOeX47Q88vUBby4xdqxZ/oobHLIEpQABg+M4z0/j/nh9PaJ0cujhGZT7zKNE9omO+fIWZdaFani2kIWBgMMvDHBeMsskXCKnQbG2M78YbEzv/knvczIyNJv/1gNRGHXseYkYps/6ue46U1mF2bhKJjNZsxmM1//+te56aabZK8zgwwy+P8L//iP/8g//uM/8vTTT3PjjTcCECLAq9HnUKKkiUswKAzMdgUSdtRUXuER40+KXTaHHm9GaREqIRtuLcHg1KXcLT1yeIrwohgHC891orVohE3baVgOhhlrFi+ajmojkynIw6HpRcL5BlmCEkBoPMByMMzgXvkcZ6E3wETrLH2/FQXuVKpEky3+les2QN3NpWnn74r3FVGWhrR15D9OYvWtvcOk5FI3ziobqhtUNH9fhmQREKSo0ksKhPJCmlS04d4yxlpmU6pGgbj2/MZsXDU2WSJJYDiYNr+LIx0pZDW2Pxhb1Pkzd5dZfQbWXedjbsDP0TTEqJED02kVoOJIp7IEgiiTW5uFo9QiT8xBEKz63hhN+5u1t5ag1isF4SbN/Svc5oStzjV3uh36RieFF7hkCUqF5zrxnJdDzvosWRJZ4QUuTC4dJ3/SL3tv4upLgeEgEydn6Xs1DZkuIKTOp3rTL875x0JiZ34Kslb2ejMTx+eFKpJ/mdkUuZLBAWVXlnDsiW76XxvDWWmh++Xkvlh+dQHOSiu7/6WFod2TLC0spYxXXHnLkjdF18tD0maZOCZKejnUtR8ARYuCnJwcDAYD3d1rK2xlkEEG/39Ar9dLG0fWrVtHc7MYw5vZR3N0HwX4qFbUAyRI7XsvyiV/azYj3qkkS6jm7/dJaiUA2x6uYqx5Jqldz69OoTV5JYLSuhuL6fx5bxLJYLZ/AY1eJX2eVWVKtlzTC8VxvwyBJI7JzlmyvJa0xI/jT7ZTdEG+REbR5+iTiCmryUQVVxUwPxSQXTRbd2MxtmITGp0qZZvJ5nl6HOmJWnHU7ChBoVTIk5Rip7nxwz6WA2HJji8VXJtseM7NSUv02XKnIGIPvTUiS/5of2FtkgycmUrS+hu92Lwmjn6vM4n08cdiw43FqPWqNRfU0sVIQnDt2t66a4rQ2TWMNs8RlCG3F57nxFVj49A309TZ9NB4byUdLw+kJQ1VXVtEdqWVxfllydpQDu0vDTDXI7/pbut9MVJOs3ysNn7Ix5GnuhjeMylLSNO79QSHg5x4qpOi892yBCWAwX1jmHL1hCbk2/j7g4QXw4RmUqsn2csFWWiseRa9jEWO96JcFueWGNw9ydD+CVlLm8YHK1kYDXLiqV6O/bCHyHzq82p6oAaA3f/STNeLwwnKYMFokBO2XUzNTMJxMJlM2Gw2vvGNb/CBD3xA9jozyCCD/7/wwQ9+kA9+8IO89tprXHzxxSwtLbHALK9Gn0ONhibejU6hIzQeSlC5qdnhBaUiJXlg95dbMLuEemP5VQXYvCYOPN6WRLbof2tMUpNxbbRhyNGmVCYKzS4x0SYIFHLEk9DMEuFQOK09VWAyRGhmiaHD8sSi0HiIgf3jDMfI3DpXMmFmvj+UUL+qvcUrawEFULOjmEgaMtaBb7SRXWFdk1zk3mzHXe9Aa9HIk5lj9nuVV3o4+p22tISZ2lu8THctcOr3qdeqdFbwXZSXlrBFCFqeWXu98Uzzs6aP1RAOhdn35TMj3stBZ4Xam8qY6ZnneJrcarptgYNt8mt/cUwcm01P4tFB4XYXrg32tMScujtKGdg/wejb07Jtyq8qwOTQcfg7XWn7hPfCPIiy5gbY5h/14W7MkicorbNS+b5CZjfNJ1iUrYZrow17iYn2FwZlr09nVRIKRQjNwvDBSQbeTJ8PBsaCzA2m5wfMDPrRZelSkrWsJXrxvIcgNLXIbH+K9cEYia7lmT4mTswyUzdP58vJtTjPO1zkbXaw9wsnmW5boPknvSmVqYrOd1F0jovhtyfp+sVw0lr9fPEIe3reEP85ITgc2dnZ0jttBv/9yJCU/gcxOioe8rPOOotdu3YBMEQ3Q9HupB3+Pb/uw3BdmURQanywkqneedqfFUSkuFpOTpUVhVIhEQNWq+T4xyPS7tuCc7Ix5ujZtNOXRAZZraAiqS+ZTlNf8pOQwMjtoll9rC0fqUBjSVZo8o9HpHZb74kpL6VRaLF6TFgKjLIkpYP/2cGmnb60alFxgtL6D3qx5BuSCvBxdL4yQGRRXm4yDo1ZjXINr9XcWjtqg0oilqRCx8un0Nv1a6sR3VGKLkubloHq2mSh+Dx32sLNwL4xcjc6CPwF1KBGjk5hyErvc7tup4dIhLRqRNXXe7AXmzj8Hy1piVN7v95K2UX5ads4yi2o9eltDHO35KJQK7B6zGlJSof/vYvyawpkCUo1N3iwFZvY/ZkW2b4Zx8Ce8bRSj6Xvy0Nn07Jup0dWcSr+PB3+Xg/+Pj9tKfpUXGVt15ebGdk3k1KJzXtJLvmbsxk8MEHPL0dkn4XVakfdL4+k3vloBGeFFYfPwsAbE0lESYnw6AelSoHOLKac1QpRxnw9tTd46X51kNGDs0x1zbMwlvhy0hftoI3DmM1m5udFkU2tVvP6669TX1+f8vwzyCCDDHbu3MnOnTvp6OigpqaGpaUlIkR4i5chCjVsIV9RLLUf2DeOJjZO5TU5KGxycvzJDgKTEQKTwKR4EdMYVShVKxK/q0lGnS+uLJ4Vbneh1CiSSEqByUgCsbjq77wpVZo6XxySjue7LA93fRbdryYqHQUmV0jKBgfU3V3DbL8/iWQTV8ux+gysv76EwERIloS0/lovhmydsLf6Q+pJd6x5htle+TlUxGwaDIJMP9Y6k9L6rfsXwyi1CjpfSG8/Yis2o9IqydvkkFd6MoDOriW31i5LUgoMBBg5PEXnq+l/z1BgYNNNXkaPTSfc09NRfV0RkUg0rRLUdPcCC6N/vhTR0nSA2QE/A7vklQgwQP2tZXS9MpBWjWjbQ1XMjwRl1bdA9K2+10eZ7Ze/z/YKAxqzGneDIy1JyejUJTwzcuj81SDLwdS2ZvG+NNkxx8mf9NP/mjyBvP8P42RXWDn2Q3kiTVGTM61cusGBUE+KKZClvMcx9aTARIhD3+yUzcG3PlSFSq1k12eaZXfxx4lV03VCFUlOCavq2lIMTp1EaDr8rcT3utVqWwqlQvr/aoJS5TWFWPINHPhKO+0/HcDk0tP1u8R+/kb0ZXRWDfM9K4ub73rXu3jllVdSnlcGGWSQAcCJEycAkYN9//vfB2CALgaiXRgwc5bi3VLbnj+MYPUYJeJR/d1lzA34pQWROLnCVqpHoVqpvaxWyQlOw9EnegChJmQrNqW0iet+eUSyL5PUl14dTiT8BEkYe5s+WU14KZJUyF59rI0f8mF06ZNUlYLTSOo0cUWYg1+TV2jJrrbhqLDIkpRO/KSX2mu9aXf+xwlK5Vfmk11pZc+/JVvqAbT+rG/NWhaAIUtLxJJeeN9dn4XOpsFSrJclBLU+34cl35hWnQaEKo4l35BWwcFWqqfkwgIOP9kpSxLr3z1ClByWZv58Oaihtycw5aS3Mi2/Mh+lUsHJn8qro5dclktubRaHn+yRJR8BvP3tdkrOz03bJneDiHk6haTc9Vmo9SpsHlNaklLrj09RclmuLEHJd7mbnHV29vxb65rqVV2vDmEpkI9VfpMDU66emqs9snZ3Gz/kw5Sr59hTQlUo1eLouhuLsXlMHPx6M9PtgZT5UtwacHDvBD2vjMj2qdVqR+mIU/mN2YQXIwzunkxSuYqTnACUaoVkP72aXKW3K1l/Uymn3hpn5MAUI8cmWZpPzHdHo4McZRcWi4W5GZGz6XQ63nzzTTZt2pTyvDLIIIMMLrjgAhYXFxkbG6OiooLp6WmWWeINXoSoIubkUiS173ltBGOMiGSvMFF6cT7Hf9RHaDwEIUHkAdDbNKg1SolgIBELIIHkXPyOXLQmNX1/GEskI4RIIMjUfMAn1JdOG48H3pyQ7Lrymxx43+mm57en5Werj6WDpo9VM9u3wInTiL+SrZtLR8OHS/EPBwVhJAXKLs/Dkm+UbEVToX/XeHrr4JAgwaCDrfdVMtY8k1ItafjANNosjazFXBzmfCMao5rsdalt66R2btFOjqQUmoVTb45xanf639NZlWy8vZzx1tTnHYfvMjdKpYKONHWxsWNTBKbSW6meCUIhGG+dYeRwGjcZxMbR3tdH0qoRbf5oBf7hYFr1HULQ/uIAoVl5VpHOpcPg1JG70Z6WpGQtMKIxrU21aHm2F6VGPg9v/FglU13CnjGdFd/EiVmmaudp+Zn89ZW8y41Kp5Inm+mg4d4qQrOC0JbSulAH2x6oJjgW4vB3umSVmBruLUdjUrPncy30/WYsZX+PqyJNdczT8kyfLOG++koPWeVmXBttjB2ZSXrW46THSDiKQqXEXmFium0hgaDkudBFdqmVQ9/q5NTvx7B5jAy8mXh9+6OvEbUssXBqQbLTvfrqq3nuuedSxyuD/zas/WaawV8cb731FtFolIceekj6LL7Dv6vkIMVX2wmMC+/SxgcrydlqRW1Q4Si1sOUjFRid4rbV31NKTm0Wu/6pmaH9UzQ+WEn133lperSasivy2fJAhXT8nFo7gdkQh/+9C4MTmj5VTcMD5YB4YW58sBKAk78YIhwO46q1A0LFqPHBSjwX5QDguSiHxgcrWVxYYmEsyIbbSth0l0/6ncYHK/G9xw3A8vIykUgEg1F8t/5mL3V3l0pttzxQQXA6SHBqkbwNWTQ+WInRIxqv2+mh/p4yAA5/r4el4DIV1xZScE42rk0WGh+sxFYu2lZf6ZG82OvuKKXpU9VUf0AkYFnVRhofrMS1yQKAMUeHQqUQNl+IHfc1NwgJcrPPSPG5bpRaJUankqZHqtny0ZUY1t9TyvoPesU5fauVaCRK3llCXab0fXlSDOPnsTi/zKFvNuMf94sYvlPIwnkvWYn3xLEFnDU2Nn7YJ51T44OVeC/JFfF+p4vGBytRahUolLDhthLq7liJYeODlZS+Lw+A/O1OtFYNxZc6Rbw/6KX+nsR4WwvNHP12N7nrbUnxbri3jNVQxcg+8XhnVcfi/YEiGu4ro+ulYU483UfDfWVUXy9iaCtPjLfNaybLZ14VwzLW7RRtjR7R1pCjRaFSUHB2Yp+tu7uU9TeLeBtKoPEuIcUH4HuPOyHemz7sY8NtJez74kkOf69VNt4A1kIj/tGgRLppfLCSkstEvAsvcLLt0SpqbhTnqLdoqLsrMYbxeOuyNSiUCqyVQjls/U3FCfHe+nAVTZ+qBiMEp0I4yiyYfSKGNTd4aLivTDpHe7GJueEFTjzdR3aticYHK8muNQFQ+f5CGu4ro/cPwyzOLlF9Rb7UZ+PxzqkXahVRokSjUemZq7+nlPU3iQV4Z524j6HQIpHlKOY8XWK87yql/v5S8rZlYXBCJBxlYUwUW1aPETn1Vpo+VU3dPT7wQ/fvhogsRZLGiMr3F1J5RTENHytn04d97PrnZt7+Woc0Rhg9RgrOyWb9B4pR6ZS4G7JZf7MXvV0jkQo17/bTW3qENg4DoFQq2bx5M9FolKWlpQxBKYMMMjgjlJWVsbi4iN/vx+FwSJ83s583NC+iujCAwQG9r4yiNWnY+CEfORvsaExq1t1Yiu+yPAwFBnI329ny0Qqan+1n97+0UHO9h8aPV1L1d15KLnXTcG8ZpVeIOcK5wUI4FGZgv3gxq72tmKZPVeOIzaV1d5dSeU0hANN9c0SiERzVRvLPyWbDh7xSDgRifDYX6ggvRpgdDLDloxUUXRDLPy7PY/O95bGWSqLRKGqDIF4Y3Hq2fLSC3K12QKgWVVxeyOL0Et2vDrLxQz7WxeYIDEIRJ/+cbI4/2cNkxwx5DSJW+edkU3triTQnA9g9JnR2LQaHIK43PlQplGEQ+cfG20RuaDAoUagUWArEdec1Odjy0QoMDpG31dxQjDlX/GHNzmK2fbKK0stFDF31VtG2wEDni0NMtc/h3rSi6tdwbxllV+UDQoFmyx0VnHyxh/3/2kbljsKEnLPu7lIqd4h4T5ycZssdFbi2iPyk7Kr8xHjfWYr3HEFgMeTq2PLRClyxebb08jw2318utc0qt+CoEDmPwaFky0cryGsScfNenCv6y/d76X1llI23+aQ8Mh7vwnNFzqbQJpJl1t/spfbWEun/Wz5aQc7mHI490Y3RZRT5aSze624sZuOHRLy95+aiz9LiuUDEMHerPSnem+7woVQrUemUbL63PCnepmIDGMTuetc6G7NdIheov6eM8quFrZej2ijlyIcebyU4uZgY77tW4m31GYgsRmh/SZB8Sq/IS8g5N91ZStMj1RgcMNsfxHdhPrmb7YAg562Ot0KlwFZsjMV7pc+CyPeaPlXNuhtFn45Go6y/9rR4v9NF7lY7hRe4WA6EOfTdVineG+LxNqzEOzAZYmZoIRZD8XXNzpV4ExC5l0Ij7l98jDC49WCAmhs9bLqjFP94iMB0KGmM2PLRCtbfJs7X5NYTDofpflmQmFaPEfX3lLLt0Soc1UYOfbOTueEFis93J8S76toitj9aQ801JWz5aAXT3XPs+udmsivtYowwiJhtusNHVpkZrUUjjRFDhyYgAK7zTSxsHWCv6deECDA7O0tZWRkf+chHiEajGYJSBhlkcMZ4+umniUajPP7449Ju+wDzvBp9jvbC/eS9RygRtf18iIZ7y3HV29DbtWRVWKi/uwy9HdBD7c1e8htd7P5MMwN/EG1rrvPR9Mlqii5w0nDvyhyRv9nJwlhAIihte7SK+o+IuSn/7GzRVg89vxogHArjKBdze9WOQhruLcfzDvFunrs5i4Z7ywlMhVgYDVJ1XRG1t3kFKQRBpvJeJOoHkeUwKKJi4xlQeXUBG25bmb/r7iwlOCuOY3CbaLi3HEu5aFt+Zb6oAxGbS2cXKb8in9zNWdiq9TTcW05WlagJ+C50ozKI+kz1+4toerSaymvEnKx3i7bZG0Q+Yi0yJix+bLjVS9W1oj6mtyvxXZiPUq1Ebxck2tUxrL3JS/X7Rds9/9ZKOBQhP5bXFJ6XGO91NxYTWY5y8GutzPUGabi3nMLzRF6T3+SQ4j3XG8TmNVF700oMG+4tp/hCUT9w1dtouLcclUGFUq2k6roiNtzqlX6n/s4ySt4t4p231YnRpcN3sVuK98bbV+K96Y5SHFU2TjzVK8XbVhqL9xUr8Y5DbRQxtRSfFu/L3dTdWcqp18Zp/fEpNtxWQuXVifF2bbIB4Ky2kV1jW4nhLV6qrovHW1yrrciIQqUkp8aSEMP1N3qpidXS9G5ouL2cUIy8IvXZGGpu8LD+Ri9vf62dg19vpeH2coouEPF2bxPx1ttF26wyM3P9frp/JWpe9XeXJcR768OVUs1LZ9IkxztWHzM6dSg1ShylIumsuKpgJQcCNn+snO2fqgE9LM0tkuW1YC8XbUvfm8fGD/twbxP9x1VrZ+bUPM0/6MNYKGLoqBG5eMlludTfWUbPbwcJji9S8i43VbE8Up+jl8YIgEg0QpQo8eWM2ptX+qylTC/FbDkYRu/QJMV7010r5xSJRpgbCSTGWy+IR02PVrPxDtG32l8aYDkQThojvJfmUHNdCQ33lVF7i5c9n2vl0Dc7pTFC79bj2mRj3c5StFYNObU2Kq8uwJxr4NRrYlFc/+5FesuOcBSxkTkajdLQ0EAgECAYDGYIShlkkMEZweVyMTU1RTQapbq6OvZplOPs5XXVf8H5s+hcOob3TaHSKFl/YzG5mwTpteqqfDwXutC5dNgrTNTdUUr3b4bY8/lWfJe5qb+/lPU3+Ci+OIfaW7z4LhVzsLVYRzgQpm/XCISg/Ko8mj5Vjb1CzKW1NxVT+h7x7jt2YopwOEJWtZnsdVaqbyhi020r88n6nYKUsOhfZqJjmro7Ssk7yw6I/GNTbO7R6SAaBVVs/kYn1uDcsfpBfpODmqsLmR8K0POHEaquK6Ly2kLpd+ruKCW/yUHHi0MMHpzAVW0DnVA7qrymkJr3r9gUO6usaAwqQUJ6uIotH6tAZxVzT/mVBayLrc3odKDSqbDG1tiyqs1CbCBGBiu7PA9bvviu9D1i/bD4YjEn28qM1N1RirVYx+BbkwwfmiS7ekWRvPYWL77LRLzNhTrq7iil/eUeDn69g+KLc9i4KuesvamYslhtZ/TELHU3l5K9Scyznne4pBgCrLvBg+ddeSi1SnRZWuruKMW1UcyzBWdnJ6w9ujc5cG3Iko133R2ldLw4xMCbE1TuKJRyICneZ4k5V2VQgUIcA6Di6gLWXb8S700f8lG4zcnJn/Sj0qlEDJ0xZa8r8lkfW0/MabBjzjdQfEFuQrwNeTopxrU3e1FpFKgMSmpv8eKN5ZHWEr0Ub3Tgu9SNuyFLIuDV3pwcb0OWmre/2szMqYWEeK+/sZjyK0Q9UufUEVmK0P6iIKwXnZ8c760PVaGzKgmO+vGel0tOQyyGZzlW4q0T67G2ElNivBtF/N2NWWLdOxa3SDhC9ZUrMay7o5SCs7NxbbSR02Bnyb/MsR8JIlD5VcnxLmpyMXtqgcnu2YQ+W35FPutjdTVC4rZF1WLjQnyMMBfG4n2liPfsgJ/AeDBpjKi7o1Rap7cUGQgvRuh6VeSnq8eIdR8spunRarKqzbQ808f4yVkKtmSvxHunh/IrC9j6iUpqrvdRd0cpgclF9ny2BXOeYWWMsCpZd70H9yYHeocOrCIu480zhGbB1qDD3zTIfstvmGGC2blZSkpKePjhh4lGoxmC0v8jZJSU/h/ic5/7HJ/73Oc4ePAgW7duZXl5ma6uLnp7ewlHw2xRNbHO4MXutbLrn5ppfLASjUVN7a0Vkrys1iKUbMxuLWqDisWFJWYHAtiLTWhMamEh9Z0ODA4d0YgYTFRWIwqFQky0QFaJRdgOAP4+P0qFElPM5spWbCYajZLts9DHKI4SM2qDikPfPElgfEVtZfuna9j1T82oDSqJlLK0EMGQpUSbZaTq7/IwuHSwaiOWxqQmGoly4N/aqb7eg9qgYtNNXnZ9uRlLoQmlWiGdk9akwV6kxFlhJRqOikUKj4mZdj/WAqNEUlJqFSgUCqyFYjC3ecW1WYvNjB2eg7hIkh/ytmWhs2tRx1iuljwdaoMKu8+CrcSCQqWQFBUA9Fk6tLGdZIY8A2qDiqKzXXjOyWXZvyzFEMDgFPEOjEP++Vmx45rp++0YWT5zQlujU4dCqWDrPVXs/UKrFMMeRsgqE+d//Ie9+AeDND1SnbDrW21QYS8W1xr2RyEb5k+Jl2xznkGKYTzedq+JurtLUWoUqA0qbEU6/H1+zAVGVKexeBWxU4zH0Oa1MNXix1poQqVTsuWBCvp3jaGzaVHrRZxssf5h91kZOzzHciCccK36LK2kKGRxa1AbVMx1BTj4rx1CKWgV49iQpUNvjZJTb6XsMpFQZpUJxZ6kGLr0sUKFuLdqgwpHmUXEO3ZOvve5yV2fbFmmNqjIKrHQzQiOUgtKpRJbkYip2W1IiLfGpCa7wkonQyxOLmGw6tCbtMwSxJxvTIh3PJ5Gux57uTV2r4zMd/mxFBhRaZUUbneRXWVFZ9Oi0onrsRXH+qzHjPcCobAEQj1t9OAs2z9dg9oQ67OFRtQGFWWXFTJ6sBmtQYNCoZDUpkSf1bLxwz5MOaI45yiwsOezLWy+vzwx3g4dKMB7gZtjoyFUGiWRRRHThDFiehmFQoHeLpKRoUNTlLwjj2yfBfV7lLg22FCpVPT9ph+zqwytRYPCsKIipTaoyNlox13nYG7Ij9qg4sTPepg57qfpk9VEFBHaPfvp7e2FX4rdY7m5uTQ0NPDyyy8n3b8MMsgggzOFwWBgYkLs0rr00kv55S9/yeLSIr9+5WUUCgWKqJItuQ+h0amF3ZRBWHVllZlw12exHAqj1qkw52sJDAexFIq5MzAZovsXw+R9ugaXVc3SfBiNWYXGrBZzM2DKEblXYEokIgaHTlL+WxgKYfdYsHos5DU4BJl69Xk7dCwvhtn7+VbymhxozGqKzs7DUmDFmK1FaxVjbGAyggIFOosYn+tu84ECssusjOydxl5iQmvVSDatNdfoQSnsPNpeGkJjVuMotTD4xgR6mw6NWS0p9EXDqxI4g1CUzPKZmWifAwWotSoMBiWBQETkH7G5MzAZS7xiOWhuvQ2NWY3OqSMwGcBSYEClFvOl3WMCJWR5RR7pKLWiMaux5ukIDASwFptQaQSJ/NSbY+jsWrJif2srtqAxqzFkmQA/jjJLwvxtcOjQxOZOq0e0LX+3h9BEN1nF5oR8z5CtE0qg/9xM7mY7pZfk4yi1MnZwliyfWYo3AFGILIlr0zlFzLJKLQztniSrTBw3r8lBQWM2WrOGSCwOBptetC230P+H8ZX8IWYBZslL3ImuMavJ3ZiF3WMmHI6Ia3UI2z5LvlFSKer59Qj5jdmoYsfLLhMxNOYbCUzOi3hrlJJtyfZP10h5u80rzteab2D9dcXiXWPVbddnaaX3D1uJOK6r1kb7T4exesRuvoR4G9VsfaiKxYVFNGY1Np+Z8aNzOEosCfE2xgpP7m1u5of9UgxHDkyT5RN91lUv4k8ElCrx3GjsQsUpq8TM4BsTZHnNKBQKKV8xuw1Eo7F4x/psUZMThULBwlBQnENA9E9LngGFQoHBoaTu7qpY/7Nw6PFO1t1YLBRULQaYDGAtFPlezc5imp/ujY0d4lqySsW1mfO11N3mEwQmFAnxdqiVdDKEzSfirTGrcdVbsXlMqJQq6ZlZPUZozBqUSiVWj4XJFj96i07kcAZouK0MnU2Lxqxmon0WjVmFtcCEzWtO6LPbH6xhaWEZjVFNeCnCrs82k71enEMod4Y/qH/O8utig4nL5SK0GOLEiROUlSVuYsgggwwy+GNw1113cddddzE8PExZWRkLCwv0nurlh4NPEY6G2aBuoN7uw1FiZtdnmtl0RylGl471N5WjtWqIhiGyLMZFpVmPzq4hNLPI7Ck/WaUWdHYNdXeWcui7nZjz9Ss/rBcbXLRGMWc7ykRbvV5JcDqCQqnAUmAge4MFR6VYDMoqs9D3uzGyyszo7BqOPXWKud4gWz9eiUqvouljNez+TDN6hxZHqYUeRghOLWEpUGDK0VBygYusMgvRVcLchmwdylklb3+1nZJ356Kza6i9zsfBr7Vi95qluTM4HcHo0KPRqXHV2oksR1CqlViLhC1dVokFXSz/UBtUYrNUrA5kydehs2uwe81MHJ0jGo79eBCyN1gwuY3oF8WHepdom11uxZitQ6VVJlhXmfMNRGI5n94q4l2w3UnhWS4CkyF09pUcyJJvkM7dUizaZpWa6X99HHupiKHeqicYDGItitWQ7qlg/5faxPn6zPQySna5FZ1dQ+ev+pluD9D48UpU2lU1JKeWLKWo1yzNi+uYi9W8rCUm1LrEnEKlVVJ7kx6lQYnOrsFSaGamM4i9xJy0wz2eP1mKTFIMp1oXyPJa0Nk01N9dxsDeCUy5BskKzJSjEW1LTIwdniE0tYTeuaIwbnYbiSyJ89TYRFwm24Mc/lYzGz/kS4xhgchVbKV61n1ALK44fBYG35wgO9a/44pJ1iITititCk5HYvG2cOq1cRyxeLu3uXBvyiYaBeUq9TG9Q0tWqYXe34iarkqjwlYo8j+rxyTVouLxdhptdL88gn88hLXQhNYiElSb1yTl04D0fBmdeqxF4hysRWam2wNklQhCtO9CN7kb7ZicepYCgoBlLTSKGJaaKdjmlDYzzHQGOfjNDpoerUGfFY4dW43OrqH80gLGDs6gM2lRKBQEp8WDZs4zElmOUHVtkbRxwFFqZt8XT7LhtpKEeJvz9Sg1Srzn5zB8eBKNXk1weVGKuzRGzERRKBWYskUfHzs8Q/nlBWSVWYiEoxRszUalUzFxYhZbkRm9TYPWvNIH9A4t7oYs8rdmM942g86u4eTLp5g4OEfjg5UoNNBVfJCuni74JWi1WnJzcznnnHN49tlnySCDDDL4cxC3KPrIRz7CV77yFZbDy7z62isolUqUUTUb8u/DaDMItw6dqHkpVUoKt7pYXFhCa9JgdhuY7w+R5bOgNamZG/DT++tRmh6pwZirJzS7JDZJO3XQIuZSu8+CQqEgNCfGelOBEW1s7pztDZC7wYGt2ISrxibm41W1BnOhieVQmAOPtWErM2Jw6ih5Rz62IgsaowpjbE0jNAtEQB9bD932QDVKtQKbz8zwgWkcZWYMTp30/l15RSEqnUpYu/2gB4NTR1apmcHdk+itWgxOHeveX4yt0ER4MYJiVSnO4NThqLAwfnIepUqJSqNEl6UhNBvCVmJCHZs7JWu2WP6V1+DA4NRhzhGWc7ZSszR3OqutqPRCiKKXUayFJtE238RsbyzeFg1bP15J/+5xzG4DWpMGGMacL+ISr3m5N2Yl5EumfKOw2GIIc44Og0tH5eUeTsz34PBZpBgCWApNhBfD7PlsC9ZiHet3lmL3mRk7MoOjwiLuawyR5YiUG+p0SgxOHfYyC8MHpsnyiXhnb7JS1OhMmHOlGPrMDL41KdU2dFYRF7vXnECqN+bocRtV2IqMLM4vY3Dq0NtVhMZj642xvx99e5qyS/JRxm6W1WOMxVtPYCiEvVTke3tiziHbH61BY1DTwwiWgli8C02Uv9cjzndV3m7OM6A1x+LtNmBw6XCus9LRtkB2qRVD9kpczAVG9NlhGj5SzuLckohLiYmJE7M4ysyJ8faYUKoUuJucjB6dEW29Jkbfnia7TMQ7e52ViROzRJcjqGL5qU4Xi2GpheF9UzhKxTOm0cdqqF5TYt3TqcNzbg4KpYLxthlxvjExMHuJWaxVxtTIFCoF0UiUI9/ppvQ9eRicOoxOjeizJWa0ZjXV1wnLNYVSgTJGDrcWx+LtNrB+p0+sH0fgWEzNv+mRGun9xlxowuDSiXu72Y6j1IJKoxTKbSSOEXqbFoVSga3YxFTLPEa7VsRQB7XXezG7DeiDYYaPTKGzanBW2nCUmpk4NktWqYj39kdrCM0uoTGqiSxH2P0vzZISVrBgmjePvsTiwUUikQhOpxOLxcKhQ4coLV0h5WXw/waKaLx6m8FfBbxer1icXwUFSpp4N0aFeHEruSwXu9csrNyMsO3+arp/O5hk7bTlAUH6kKzUjKS0FWv8eKXwWf+nZJ9F33vcdL0kpNAaH6xkbiiQZN1Vfk0BBruWo9/uxpivx1ltSbLIKr+qAEeFhb2fEzuWDU6SbLsqri3EXmRKktNejeoPFDF6bJKJYwsYnUr84/LWbBXXFhKcWpRUWRJgFPYMkeWorIXaWscH2Hx/OVqLJq1HfeODlagNKg4/0YV/MLUec8N9ZcwOBSQ7PzlUX+9Ja512Jtj+6ZhV3ypP4lRtFueWOCDjV5q3LYuSC/OY7p6n+ft/+vmUvi+PkWMzzHfJyzPG7cCOPdMna5u39aGYTHMa28DaW7xYCowc+mZzWsu4uKJVquN4LsqhcKuThdEgR06zTYyj/p4yDn5d3hd3db/acHsJR3/QLXvO3kuELPjer7cmtYk/Q9UxWfR9p0tYG6Hkgly6Xx7B6DGyfkcR+75xMuE4Zp+R9dcWc/KFXqZa/HguyqHvzdGk39p8vygSy8Y3NrZIY0mKdg33lbE4v8yx/+wh76ws8huyefs7HVK7w9FdjDOIXi8KmQAKhYLvf//7fOADH5CNZwYZZJDBn4Nf/OIXXH755UQiifN9HsWsU2wR/zFA3S2lnHpjlPGjc2y4tQSlRpFksxS3W1ucXRK2TzHCyekwuPXU3e7DPxbi8Lc6k46RvV7YrDk3WPC9O59jT/USWG37YIAtd1Rw/HvCis57cS49fxhJ/C0DNN5dycTJWTpfHMLgEPZdiT8GjfdUcurNsbQWauuv9Uq2YAaHcoV4lAKb7ihNuqbV3xldOjp/OZjaGkwmXglN3HrqbvMx1TFHyzOpbbPiRJOlhWVZyyyrz0DllUUc/25H2uuxVxiweS30psolzxDrb/ZiLTRy/AfdkirR6djy0Qo0ZnXKXDyOrQ9VJRCM/lRU7ihMa08Hwg7M6NTJyi/HbQND04u8/TWZnMcA2x+owT8RTHpWkpqm6VdNj4gCilxsvBfnolAp6E4lTX3a8V31VqweU1p7wcYHKxlvmU2yaVz9DG19qIqRw1P0/DrRes/zrhzGDo4SmISNt/mYHfQnnVfN9R6MDh0HYpL1nnflJNsTxgiScau55AsCAitjTmAyJFl8x5G71U7xebns+4LIDzfdUcr4yVnJJi8QDbCbX4FSqHAqFAoikQg1NTWSXVMGGWSQwX8HzjrrLHbt2pXwmQoNTVyMXiEK+vlnZ+OssnI0ZinQ+GAl3b8bZuxgYs0rvhlHslKTscBquFdYru36UnPS90UXOCVVk/o7y/BPBGk9bZ4svjAHa76RY9/rQW8H58ZkexDPO1y46x1SPUtvJ8nizHtRLs4aq2ydBYSKz0zvAhNH59DblRIZIxW8F+USWY4kWVDFsf1TNYSX5Gs/ax0fhJq3KcfA7seSYxdH/Z1l6J1ayaYrFTZ+yId/NLWF12qUX5kvWeX9qdj+aA3LoXDa2uL2T9cQmlni7a+mvhdx4tB017ysPdmZwPMOF1Odc7JxgZgd2AdLOfmzU7Lt4jWZg19rlb1nlVcXkF1l4+C3uwiOrmF3J/OsuDbZKL+8gPmhgPT8nY4Nt5XIfhe/nvg51lzvofmnfbJ9x73NQdF2J/u/0ZbUJv4MlVyWi7PCxv5vntZGD57tLvp+N4bermTdzlLe/nZ7Qht9jp7anR46fznIZPM8+U0OJlsmk57NDbeVYM4zcPDfZWIXi1f93WXoHVp2fTH5edhwq5fwUpQTT/XiqDFTdE4OR77XJbU7GT3MKToSal5qtZof/OAH7NixQzaeGWSQQQZ/Dvbv3895551HIJBYiyiijErFJvEfHdR+wMvggUkmjs1ScXUBOpuGY//Zk3iwGKkpOL3Iwcc7hCpOCqcsnRUa7qthbtCf8hjujVkM75vCWqyj4spiTvy4l8BQKKFN3c2lNP+0n9BYiPyzHAwemEz6rfq7y5jumafr5WF01lWEoVXHafhQOUMHJuQt1HRQ+b6VGonOqiQ0K58brb+xmONP9ab8rvo6oQjV9euh1FZdcY6LvLsYOivU3V3NZNssbXJWsjrY/vFYHvO11HmMzqVj/XWeFTs/GRjydGRXWGRt784EZZfnkbMxi5af9jHVktpmduNtJZjchrT1rIb7ytFZNGLT6J+B0vfk0fmSfM0HhB2YrciU3D9j0Dl1NNxRSmAiJFsXA9j2UBX+8RBHn5DPiyB9v9r8QAVao1rkFilulbsxC61NndYyMH58a4keZ7U9tXVbDPV3lzHRMStZJK4cY+UZavhIOWNHp5PeMdyb7Uz1BAiNh6jcUUhgKpR0Xr7L3NiKTByK1YYLzs6WbB1Xo+mRGkKzi6nXUeNjS6yv+0eDHP6PxLpiVrWZ0ovzOfDNNggJxaqp7nkG3xLPeigaYh+/YUmxCAqhVhmNRtm6dSt79uyRjU8G//PIkJT+SvHwww/z+c9/PunzHArZoNgm/d/3HjfuOgd9b47S/9o4uY22BLJSnBBhKzey7jovcwPJyUHp+/KwF5t4+6sdYITNt5fT/IPOJILO9k/XsBxI/6IfJymkI+RUX+8hy2em9/cjDLyRPECBkGEzuHQc/mZrSqKQwQl1d9akXYDa/ukaiCI7+VVeV8hk64xQWEqDbZ8UMplyZKYzQVa1kakWeSLOmaD8mgJyqu1Mds7JEpXWf9CLtciYlqxzJliLpHQm2PpQFUq1gt2fkY/b9k/XEI1E07Y5U2TXmpg4trB2wxQofV8euRuy6P7NEEN70vvebvywT5agtG6nB5vXzMjRKTr/KzkZiqtCpSM5NdwndsSnW6iMK2qlS+y2fVLsJkjXF+LjwmzfAse/l5hgV14n1KtOPtNPwTnZ5DU4OPAf7UnHShgXTiNC5p2VxdBbIp7bP1VDeDkiERUB/FE/+5W/wZnrZGhIxEuv11NdXc2bb76J0WgkgwwyyOB/AoFAAK/Xy+ho4kuaEhVNvBuDYkXZZutDVShVCnbHdubkbravkG7izQIxkrJelTxWG2Dzh8rpfWOEsYOzVF1bxJJ/mc7TPN7jc/qhb3clkpROO9b2B9fOz7Y/GhuD5QjKBkHe9o/LE0o23eHD6NLLkm3Kry7AVWNj9MQ0Hc+nWFwywPrrvByP7bCRQ/452XjPz6V/93gyeeMMkb3ezMTx1MWRPwbbH60BhXwuCWJOXg6GZfPRM8GZkJTWQpz8NnFyVpaEtO7GYuxeM6d2jf3JsY3DUW1k8s/Ibbc9XE0kEpFINHJw1VuxFpiSno84tn8qlu/LFLKkTRtfak5NGiwwUHdzCTN9C5yQKTZ63pVDYZOTkcNTsucRJ25JJEUZyI0LBree6r8rlAo09feUMdE2m0SQ23ibD1OeXhoXEgheBnCWWxg/OkfJpW7yGhz0vT5K/x9WCo7HontRF0SYmprC7xf3z+v1cs011/CFL3xB9rwzyCCDDP7S+MY3vsG9996bgijuZZ1is/T//CYH3ne56X9rjL7fjeGoMTPZNS8t/McJEfocPfUf9jHX5+fY93oSjll0gZPsSptEpN50Rymtzw8kkRGaHq1h2S9DEI0hTlJIR8gpeXcueVuy6fvDqOyiT/X7i8jyWTj4RBfBVHmeXuR4i3Py80rTJ2tACbtl5sCSd+cyO+hn4mj6mteWj1WgVCnZ+wX5jWxrwV5uYLp9Dbb5Gig8z0nxeblMtM3SKkNGL78yH9c6Owf/4wyIOGmwFknpTLD5/nLUBhV7Picft6ZHayACuz/75y24AWRVCWWtPwWF5znxnJND16vDDO+RWaiNoeYGD83PpSYW+S53497kYPjwJF0vJi+AWYr11N7oY37Qz9EnelIef8NtJZhyDez+sjzxrfHjlag0Knb/i3zcpPw5BWEojvi4kIpsVvLuXDRGNW3PD5C9wULxObkcfKIj6VjbH61hKT4uxIURYm1cm2yMHRY1+G0PVxEJRxM2EAajQXbza3LzXQwOivcjnU5HbW0tL774Im63mwwyyCCD/yls3LiRo0ePJnymRksj52NUrNiMNXykHI1ezZ7PiZpXdq2ViWOrGEAxAkHdXaXo7brksVoHG3eWMLh/krEjM5LdVs+vEjf5lF+Rj2u9naNPdjLfL0OkiZEUFheWOZAmP9v2UGwMTlMX2/bJahZGArLElKrrinCUWWj+SS/TbcnzbeF5Tjzn5jB6eIoOmbpA1XVFsjlMHNm1VirfWyjWc/9EcpC1RC/ZlP052PqJSpTq9PPt1o9XshyK/Fk505mQlNZEjCQ31jxD+89SE7h8l7nJa8jm1O7RtKSeM4G1WMdsbxpG2RrY/NEKUMCBNWqFtjIjWWWWpOcjjm0PVYNSfm267o5SDNk63v5aczJRD0Fgqru7ktmeBZp/lHpN2bVRkNSHD07KEpzixK3gVIykKIO6O0vR2bVJ56uzKqm8ppij3++GkBCUmOqcT3oGKq8pJLvSyqEnOgkMhZIIXlnVZqZa5nFvtuN7d77gGKwiQXVEj7OUP8f0zDQLC+I59ng87Ny5k3/+53+WPe8M/t8hY/f2V4q4FZzf76egoIDp6WkARunn1ehzgII6zoOXkJSOAEovLsB3Yb5E+ogTfJYWIiwHw/TvFoXuDbeVsBwM0/z9vgQyReV7C9FaNeRuddH9cuLAuHrhpPHjlah1yQX2fY+fpPqKIkFQMoqd/iee6kggGo2fmMJaYJQISq5NliSiUHB2EV2WVlbJKDAOS3PLjByTJ5QcfqILjUlI0eXUWxk9mDhKn3xGLOAY8/VsusVH/77xlKpLy/5l1uLyeS/JJX9zNv27xpJUpACmWvwYnUqq3++T3XGeXWui8n3FDL49Qc8vkyel9mcH4Cpof15ebWn21ALmPAO2AiMz7X8eKerPxdLCUoLsZCqcfKEXrVUr+33To9UEpxY59I3UjOWyK/JRaBS0PzsgS1BqerSayFI0bcFttneenPV2ZgZTJx5Nn6xmYSzI0e90pyQXxcmBJ57uI29blizRafTgLN53hhncK58k+ScWURvVSYQfo1MJWi3+wSALMsW46us9EI3S8sNTdP16AL1Tn0QqihMAd325mZl2vyyJKbvcKllEDrwxIT2v2bUmSi8ulJL+xbklZuIKV6uOU35VATnr7VgKTbT9uD9hrJje0MfU3ASdXZ0Qgfn5ecrLy7nlllt4+OGHZWOTQQYZZPDfBYPBwMiImHs/97nP8cgjjxCNRokQ5i1ehihkkUOD4twEok/N9R7sPjM6u1aQPlatzUx1z2N2xyrZMfWjk/91itmuQMJik6NMWBOcTn44/mTPKsUUoQ4003sakSIAA3vHmekReVT1dUUsL0VoP23H1cJIULJYMBUbiMwFkpSVwksR5gbkF5cG9o3jPc8tqwbU/tMBZnsXJMKWZNG16lzjBKWNH/Khz9KmJE3ND/iJhqPM9qVfUNv6UBUKhUIqnK1GnKBUuaOQ4PSirBJS3Z2l6GzalMcA6P7dMAsj6RfclgNhQrNLadv8T8CQpSS8GGG6S56cdeKpXkovz5MlKPkuy8O9KYvjP5JXfaq7q5TWZzplCUrei3PJb8ym5/cjDMpsRgBYDiyzHEqd53svFnn1oW82M3ZwNrEfARggu1QQ0Vp/2kNgRD7nHTsxQ1aZWValKzAQILwUITi7mPRdnOzW9+oo7k1ZTJycTjwNt5511xZx4CvtzHYFBEHsxWSC2PZPxTZW/Gsb+x4/mfJc8rdloc/SUnKpm+5fDCfsJqu5oRiA5u/3MnhQPIcsivNdrUC1/QFBqhs/2kz3L4YlFafJ6CTUT9Pa2orf70cxqMDj8aBQKGhubsZgSLQXzCCDDDL4n0DcCi4YDLJ+/Xo6O8U7/xA9DEV7UKKknnfAbhJ2v1de6YFIlN2xwrekKrO4SGhmiYH9otBddV0RRKH1x6c49dq4pJbkvSgXo0tH3hYb3S8nvlevJvs03CuUa04nAB18ooPyd+dLBKX6u8tofrY/gTAz2T6Ds9omFd1TkUuCs4ssL4ZTE5QAgrAwFmSyLcVqQwyHvtmM3mVY+Y2ehQSCRXdssUNvh7o7qxnYO55SdSk0syTZlsjBvc2B711uUfNKcYzp9gB6O1Tu8HHkP1IT3i3FetZ/wMfQ2xP0vJJc8+p/fRyNQSWddypMdy+QVWZBb1MQ/PP41n82glNL6NbY9nv8+10YXfLz7NZPVBGcCnHk26l34Bdd4ERv19L+s0FZgtLWh6qIrrEwO9c/T2TZycJQ6pyp8cFKAhMhjn23J6VaevYGCxNH5+h6cZi5UwGJmJP0O73B2HMonwPODfkl+7zV0NuFraO/P8hsnx+NPrlPlr43D7VGycmfDtD+0ikshaYkUlH8/ezg11oJjgZlSUzu+uyY3dAAE0fnJDKfpVhPxfuKePs/hCrTwniQ+aFY8rbqOPHF6uwKC60/6U8gq03X9DGzOEV7u3jnm5mZoaysjHvvvZf77rtPNjYZZJBBBv+dOHLkCAA/+clPuOGGG1haWmKZRXbxCkQhhwI2KJp4e9Wm9eKLcyjc6uKUa3Rl/o8tn0y0zkr28SDqK52/GmC2O8iRVYp7uRvsKFTKJBJG+wuDtP9ycEUx5cEaQSpdTaQIQdcrQwSnxfuv71I3KKDr5UQixdSqOojOpYPQUqJyjQ6W/MssjMgTe4YOTGDM1qUkKIHIUwLji0ycELlZnCyxGnGCUuU1hViLjCk3s80PhwgvhpkbSL9213BvOWqDkr0pNnbFCUrFF+cQCUU59fvUa03rrvdgzjew93QHjhg6fjnE0mx6Ik5oZokl/3LaNv8TMLt0LPqXmTslT9juenmY5UBYVmU0v8mB57xcmn/cLUvyqr2pmLafnZIlKLk32/FdnE/P74blFbqA0MwiitUegquP0ZiF94JcDj3RzUyHn5mO5L5grzAx3bbA8R90sZSGjzZ0YAL3JkdKghJAaFbwAoIzyTUvW5mRmQ4/Y0dm8Jybw8Rp7x06q5Lq67wc/l4XofGQIDH9NpnEtO3hahbnljj4eIes8lR2rR1zvgHvBbn0/GokgSxY+p481AYVJ5/tZ2jfGKYcPZGllfOPY+vHK1FqlOxuaWH4wDTDsfqzPzpLqGGCkydPMj8/D4OCmOTxeDh06BA6nY4M/nqRISn9lcNoNDI1JQgPf//3f88//uM/xr6JcojfQxS06DlX8R4Ahg+tDIwV1xbiLLdy9Ic9zHf5E3ZzmN2GBOKN2WdkvsvPyWf6E1R/5BR1/OMhDFmxl0ojrLvaw4mn+8APLT+MTcbvLURjUpOzxZVAuhk7PMfYYfHy5nmni8LtLnLr/Ak76+PHALGLx15ipuPl/gSi0f5/W5nkxS6oRaEGFT/HVUpOZZcVUnrxSiFrNUw5GlCASpN60li9kFh5XaFEblqN0RNz5NU7mBuUnyQrd5Sgs2tlSSwTnQugAK1Vk+KvBdIRlAD6fpuaJLUaktrSn7Fbv/HBSlRapaQikQoHvy4vhRiHIBbJxCwmohP3vU0F1zobCqWCduTjshwIs+wPp/zO9x43wwenY30yjZqTEjSG1EW7kstyyavPxlWTxfEne5LurWuThfLLi5jqnKPlh6eSbdmArQ9XoVILCxc5laxNd1ZJ9oRy0tpZPrNELBLPyqx0DpZCE10vDTPRPkuePRujXY/fH5SIRXGVp9Fj03S8MMiJZ3oSiG62ckF8yyq1oTaoJCvI1WPD5o+Uozao2fPZFtqfH8Ds1tMWW6wbzxuge66ZmbkZOCJkrbVaLQ6Hg87OzoxqUgYZZPBXg4cffpiHH36YQCBAeXk5AwNijpliNEYUhwrq8ChK6f5lHxVX+STSx7aHqwnNCnLtaqJQ2SX5aMxqrIUmZrsCWH0GiQSy6zPNWH1i8aJyh9gx0vzjbqbbAitkBoOO8GKE0eNijim51M1UxwzTbYEEAk5WqSA8nT4vHvnOymJR7Qe8QmlvdR4QIIEwlMomYzVZpOaGYuwlpiRVpThBqfbWEiz5BtS64ZRWcmqdEqUqdd412xWQ8gtTsYHscktKUk1oZkn4n6dBdqWVyFJUlqS0Fgld1gZvFdKpLcTR9Eg1SwvLaRV20sHggLq7aphok1dJmmzxs7dlbQUEOSUgAI1JBFSOoFR4rhNDtg7fe4plVYfmh/xElh1MnUhN2C67Kp+O5wfTxkKlVYICdE4Dgcnkc2n6aExR8nhzSrLU5vvL0ZqFTHjPr0eSbNlyt9opvShfUkZKRZaLKxZ16oU9YaqFv/wtWWitGolYtPre1FzvkXbsLy0sryxurbqcLR+tQGNUs+szzXS+MMRE87R47iFhjLAXm6S+uvo5dFQbqbrKy+CBCXp+PcLI0SmWAiLnDUQDTFX10Nwas247CBaLBYVCwb/+679y//33Jwc+gwwyyOD/AfR6PR0doo7z5JNPcuuttxKJRIgQ4QCvQhQMmGngfPQKPafeHJXezT3vcFGwzUXLs91MtwcSdnjbvaaEhQFLsZ653iA9r4ww1TnDTKeoFzV9sobF+WS7jPlBP2bFyjtq1Y5CYQMXRLIsK74wB71DS169je5frdSfZjqDUn4Qt886XeGp++URaWNgvKbQ/vJAgqXd6g1STY+ImtfqncvBaQhOi7mi+upiIuFISlUfXbYelAqUamXKe7C6vuC73J1SIWe6dZrweTnMD8uTt32XeTDl6slvcqRctJnrDYJiJd9IhXQEJYCxwzOyBJk4yq/Mx1VjFxuy/kSRgfq7y9Ba1GlVko4/1bPmceZ6g2mt3gCphpMK+VucqLTKtBZ4welFojJ1s8LznEx2zjPTGUx7LUq1AnUKUhBA7uYsSi/JY2aT2CxxevwtxXpqd/qYbJul9Sf9KZUWtny0ArVBze5/aU7o+6tRf8+KPWHrj1OrUOSss8f+NcB0e0BS77KV6rH7rPT+ZpSxEzOY8wyg1wJBqQ/YSvWse7+PsePTtL8wyPEfJKqhxccIS5EJnU2D70LxLKx+Djd+yIfermXvF1rpf32cLK+ZnldE/jefM0Zr4AjTs9NwAlQqFXq9nry8PJqbm9Hr9WSQQQYZ/DVgx44dks3kli1bOHDgAACjDPBq9DkUKKimgXyFl97fj2J26iXSx+YHKlicWeLoE930/W6FuFxwdjaGbB1Wj5nZ7iDmQp2kjrT3CycxFwqSgOcdLgqbXDQ/G1MrivFAdBYdofklxmMkiYKzs5kfDjDT4U+wTnOtt6FQKZNISiefXXkXr91ZjNagTlRbDsHbq2oQ2x6qYikUTiBkzXT4ORjLSX2XCveaEz/uSSCQxAlK5VcW4Fpno+e1YcleajW0RhVKdeqaV2gsJJGGdE4dzipzSjuswHgIrSX98n1+QzaRpYgsSSkczw9krPkSFLJkcLrNVio0fqySJf9yWmu0tdD0SDXjLbOyKknz/aG0alpxyBGUADRWNShgVsYBKHudFUuRibLLCzkhs0bnHwsQXgwz0ZF6TdP77mQSzulQahSgVKC3qwilENPa8kAFmlgfTqUyVnuLF1OugT2fTSTrxGGvMFGzo5jhQ5N0vTycMm4VVxfgrLbR9atBhg9Mp7QOzF5nx5ijl4hFq1WWyi7PkxTFQtOLzKcQVdh4WwkGl549n21h8K1J5vsXJPKXIU8n2Tw6q60oVOI9ZbY3JL3vGPJ0bLyxhKHDk/T+epSBfRMJOe9YZSdHWg+J/7wNZrMZtVrNt771LW699dbkwGbwV4kMSel/Ef7hH/6Bf/iHf8Dv91NdXU1fnxgoFwlKi2a5LxZRq9gKgFojHuz5LjGR1t9TysiRaQbemGDXPzcLZRZgw+0lmN0GOn89wMi+mQRbsnAoQnBa0BY973RhLTRy/Hu9CYSiDdeXYMkz4rkoJ0GJ6OQz/RL5CcQuYv9YkMOrXvD6fjuGq8bG8R+L462/qZieN8akvwGYHwpgLTJJBCVjvj7RSs4Y2/2fhgk91TXPQryYcppCjSCorCQtdXeUSp6Zq1F4gZPscmvK7/19fkm9yuwzElkWn63GoW90plR0WjkIZ0QcanqkmmhUXuLP6DFSfolb1k4sNLtENByVrAD/FIRDYUidZwFC4Si8FE5ZeADwXJRD4VanrPIUAH7WtIHb/ZkWsmtNKb+LW43J2q8YwV3nIKc2K2UsPe90obVo6HhhMPV5xPpR98sjOHwWjv+kJ+XPjB2eo+zSaEq2cvweBCZCKUlQG24rof2FbgLjMDfgZ7w5sRiUVW2k+u+8jJ2Yof35AY7+oCfh2Ymj/PIiQKiurSay5dRbyd/i5PC/dzF6cJbSd0cJL4nFrdUEpaZHY4uB/9RMxwuDDL45LPqOEepvKaV/1xijB2eTimtvPX6M3fyKKBGUw0pJyl+pVPKlL30ps0CWQQYZ/FXDYDDQ3y8KHU8//TQ333wz4bAYI9s4RFv0EMoJFZPfTrSDi8am1tytdtwbHRx5uouO5wcZ+P2wpHqy/gMlgngaU/CJkxGWFsJElqISUWHjh3ycemNYEFBWESny6h3k1TmSLK52faYZU/EqwlO5lUNPdhNYpZDU+/sRicxkcOspuTCX5qcTCSeLs0v4p8S8lWAnFUNgMoSlwCBLZun4WTeVO0pXSD4xRag4VqtKll2Vz9yAn5G900nHqX2/F6VGkZKkdHhVLpa71Z7y70/+rC+t7Zuctd1qxJWBOn85uGLrdxpKLnUTDUeTyDBxhJciEnnkT4HSYiCyHJV2D6ZC7a0ldLw8JGsN2PRINZFwVN7yD2QJUHH0/2Gc4HSI8RS2MVafgSV/lPGjc4wflZGhvrMUg1PHTM98sjoSor8f+Y8uOl8cSk2mivWjwQMTqI3yC5wLI0GUmuSFWINbT2A4yMjeabznu5kfTey/9goD7jonrT8+RdvzPVTuKEm655vu8GFw6Nj9Ly10vjjE8NFpFnoTj+O7LI+sUgtV1xbR+uNTCUS2dTcWM9k+x9DuSYKzSwn5dPy5LzzXiee8HCbb5mj98SkOfbNVegYLz3WSXWXlyH90MdkjcjWNWbzSd744xPHoPobpQ6fTEWoNoVAoiEajrFu3juPHj8vGLIMMMsjgrwEf/OAH+eAHPwgkLpoFmOdNXoIo5P++hBpFA7Ay/k2fEuNn7c1eJlpnGdw9yZ7PtaK3i7mg8uoCsmtsdP1GWF3FCUoAS/4lAlOiQJ67OQtHuZmWH53i5CqyeeXVBWRX2fBetJSgANT7m1HGWmbx94vjbXu4Cv9YMMHmauzwDHmbHbT/l6jfVVxVwMiRiYRzmB8KshwMSwQlfY4+ycpsObC8UtNKgaHDEyubs/QkkHNmOoMJilC1N3s5lsJ+N3uDBfcmBxa3IUnZJzi9Yhusz9GjMZBEvmn+QZ+w42uWz73S2YnE0fjxShRKhWzOos/RU/ruXFnCdGhmifBSBKNTL92bPxZLgWVBmpaB5x0uFCoFvb9JTYSPk9PiNoVyWMtib+8XWsmqSl3zctXbGDs4I1v7A/Cck0PBVmfK33HV27AUGOh6cTg1gSnWj0YOTJG7yU7nz1PHe643SDgUJjCVnKfG7RjnBgMYHcm72KuuK6Lnd2MER4NMts8x1ZnYd/RuPXW3+Bhvmab9Z4Mcebo75T2t2VGCQinux2oim73cQNHZuRz7bg8znUHCixGWYs/J6v679RNVqDRKdn2mmcE3J5g8PiVU2vTifWT4yBRjB2eSal77n2xlL79miSVU4yrpXVGj0fDYY49xzz33pIxZBhlkkMFfC/bv3w/Aa6+9xuWXX87CwgJRojRzgOboATRBLf7vr7KDi65s9rJXmCjcms3xn/Qx8OYE40enJNWT9Tt9RJcjEhknTrRYDoVZDoUltaLq6zwMHZxgum0hgURUdE4OkLz+tfcLJzHkrRCe8rc6Of50VwKRo/vXw2RXiZqXzgreiwsTSEwg1CoX55djbRLtpACCM4ssB8MpFW4A2n8xgN6qXiEonUYCOva9lTmz6HwXS/NLSUQSiBGqTGqhQHgaF2W1olSS5V4MJ34krwgErGk9B0LVx3dRnkRWSYX8sxyoNCpZMtRyKMzyn6G2pLMqCYcihFKsn8VRdV0R3b8dJTSWWuFoywMVKBQK9n1ZXlmy99ej9P5aXopz4sQszUup7f50Lh1KtSDRyClT1bzfg73MzMJQkLEjyaT6mvd7aP5RH4NvTaYkt8X70ak/jGLMkSc3zw740Vo0Sf1O59QRGg8x3bbA4sIy/tPWyw15Ogq3ZtP+wiBtLw2gM6uT7nnN+z1YPUb2fL6Vwd2TTPUsSGSiONyNWeTWOVDphfrR6rXy8ivymev3M3xgGv/kImrDCgUlTlDKqjZTfbVHqJE/28/hf2+XnkHXRhu5G2wcf7ov9rsK1BpR/+t/fZyO6HF6aEWr1bLYuijVvLZu3crrr7+eUU36X4gMSel/IYxGI729YqI7ePAgTU1NLMYk/0c4xUhUTD4dT1dTplgX+yPQZ+nI35LNwBsTGD1G8ItBamDPKN4L8hjZF/PR/mQ188MBjn+3J+FFNq8hG5Uu+SX96Le7KX1fnkRQanq0Gv94iCP/3iURJgxOsTtoOShe2LJrTfiHFgiMr1qoMoLVY2LdDgN7V70gryZVxG3VxttmaftxLLnwk9B++6dqWA4m7v5frU6z/WM1LAfCKXdEb7itBINLl0S4Auh/bRxTrj6lklLCMa73QpSUHqtxglLjg5Ucf7I9JUkoq9pI1ZXFHPl+bxLRCWBxfimtulDpu3Iw5xokks7paH9+IK3y0JlAzrIujpz1dlAgS1JaWhBEqb7dqRObxgcr8U+EEshwq1F/TxnjLTP0/XYspc1bXH3L5DLQ8YLMjjM/jBydYuit1OdY2OQCBSn/vuCcbIrPz5XUkU6PR+EFTjxn59C/V1gIplKc2v7pGqLLQt3raApp79xGG+Y8A1XXlnLo8c4E9nX83k61+CEKan0iIdFWbmTdtV5GjwtVpN7fjzDVm1zQ9L5DSCkanMJCMX6eZp+R2uuKGTo0Sc8vR5junodVu1BNhSb843MY7Xr0WTqKzsph9OAsb3+1A3/Uz15+gy3Lgj/gJxoUfTw3N5eGhgZefPHFlPHOIIMMMvhrxs6dO9m5cycAV111FT/72c8AEuzgtOgJfDYgEZaKGl1o7SvqiKZCE4FJQe6Y6phjMShe4H2X5ZFTa+fIk910vTxE18uCnGFw6zHl6il5Vz6TLYnzzJGnuzG7xIuXREZ6oovAcFAiTCiV4kUtTlCKE3mGdk9K5KGqqwswOHTYKwwSQQLgwKodNJvuqEShUCQQolZbSfkuy8Ndn5VA4glMrpCI4pYL7S/3pySm5NTYcVXZUpKMjjzdQ846S6pbIqHymkKyq6xYCox0PJ84Z8cJSsUX5WD3mmXtR2pvLUFnVCdcdxwj+8dw1zkIL8qTjPLqHUQj8iSlVCqKfwwWegOylnQgrs9aYMRzrlOWaBScXpQIdKfDXmGg6spimp/tTUk8MxUbqLmqiP3/2paSoASCeEeUJOLcahz6ZiflVxek7Ae+y/Iw5eolYs/paHywErVeWE2nUsba8rEK1DoVu/+lhZYUhbjq64rIKrfQ/apQ90q18Fl5ZbG0IBmYjEh92OBQonPqmG4LsByKiDjGCFPx523jhwV5ac9nW+h6eYhoNCo9IxIMYCs2YXTqGNo9ybEnVvK/9Td7Mbp07PvCSfr/ME7OBjuDMcsitFoMbggMB8nb7EBjir3CB0S840Uap9PJ+Lj4m6WlJRoaGvjiF7/IBRdckHStGWSQQQZ/7YgvmvX09FBfXy8pjA/SzWBUjJ/d/7Wekp9XSX9jKTSis2oY3D2JXirsBxk8MIHBpWd4j8h/tjxYwcJwkObv9yUo+xWd5RTK1qeRfE7+dIDg7JJESNn2cBULo0GO/WfPCmFCL4jqcStTW6me0MQiwelIglKRc50Ne6k5ITcYOzgjEZTiqjUTzTMJRKnVhNdtD1exHAwnqBqvrr00fayGZf9ySrXHiqsKsBQa8V6Um2S5NnF0jhHvFJ0/l1ddBKi7zQcKkqzwAImg1HBvOS0/O5WSUGIp1lOzo5jW53sTyFpxhKYXE+oPp8NzdjZ2r5nC85ySpd5qrFZ2+FORbvc7QH5jNgqVUpakFF4MEw5FGD2Y2vas/s4yQgtLskSr2pu9TPfMc+q18ZQ2b77L3bg3ObB7TJKyVyqcemuUsZbUpLGyi/NBqUipnJW9wULl+4qYPCnUkU5X83ZtslH+ngIG9o7T+5vRlIt1TY/UEI0Ida9UuZ293ICj3ILOpuHIv3cltIkTsILDQaKRCEql6A/x/qTP0VN3awnjLTO0vzBIxy8HWRhPXrQseVc+BqdOIv7Fa9z6HD0bP+hl5PAUPa+MMHpiCq1+ZYnEmG8kOC3iZik0otGrGTs4w9HvdBOMBjnAaxjsWkKLIZb8YmOvy+Vi+/bt/PSnP00Z7wwyyCCDv2ZccMEFwiYJeOihh/jSl75EJBJhaZUdnBEzocdC6BSiFlXU5BTqcxYdoVAIg9tAaFbMWaNHp6T1q/wmB4XbXRz7YU8COUNnhawyM3q7hkNtiYIAh77ThTVf5HKed7jI35LN8R90M98fkggTar0KIlGJoBQn8kycmF1RPHqfB2uxOcmabfU8v+G2MlQ6VQIhavV5uhuz8F2YR8evBhl9e1o0CK0QkXyXunHXO2h/cSAlMaWgyQlRUhKAjj3RgavOkVLlKI6i810UneNipHiKzpcSc7Q4Qcm92Y6zxsZxmbyi/KoCzDn6lMIMw0em8JyTw1JIXszAc24uRJAlKa22q/9TEJqNpCUXZddaya6wElmK0PbT1Oua/tEgShmCuc6lY8ONXk4+15PSxk3n1FFzTSGHvtkpa/dXd0sJKBWywhEgiGXed+em7AfuxizsZWYqr0kmzUFMxdOqkdSRkn7/jlJ0Ng17Pt+akmxVfHEOBVuc9PxW2NClUk+q2eFBZ9FINovxPqyzCuXV2e4gS4FlIuEoOiuEZpGet6rrirB5jOz9wkmG902hNqhS5uGu9XasRSaGD0wnuAKVX1WArdjEgX9tY6plnrlBP0MHVv5e59IRGgtR2OTE4NRJBKw9n29hMNpDCwdxurJFzSsKi4uLNDQ08Nhjj3HuueemviEZ/K9AhqT0vxz19fWEQmKgSLSDgx5a6ImKQbNqoZ5dXwZDTK269joPKp2SXf/UzMSxBSaOrRCFlCoFmtju5IJzsrEWGWn54Sn2fqEV1yaxUBRXcJnqmqflB310/teQ9PcAkaUYMaHRRnQ5yujB2QSiRsV7PZIyiwQ/nHyhl8CMSGDq7i5FpVGth0M/AAEAAElEQVQmFF5Gj8yQs94uWUh5L8lNsJIDwdyVdpqfppoEwnJhRsbz9eh3uik4RxC5QNhkjR1eWYyJE5Qqri3EWWFNqVwzdmKG0PxSyuODIJioDSpK3+tJWfjQGNQoVAoKmxy0pSAprba0S4Vjz/SQU5VGsQlBYtFZ1GnbyMIIniZXWlu5XY81k1Nllf1+6K2plASqONR6FUanDOvVCPosLXkN2bLn0Pz9PurvKU1JMNrykQrURrGIJfXbVciuNTFxbIGWn/YQmkmdnA28MUHR2TmMN08nnRt+6N87TtF2F+HTVBMKzslmsmWCwDgEJkLMjyUW5LyX5JK3ycHuz7Ywsm8GjUlD/2uJk33d3aUYHDrCgTCjB2cTyHDlVxXQ/vyApIKkje0sjfdnEOSo5WCYfV88yfEn20GrJTAurjtvs4vj3+1hftiPQqXA7BYL7avtFxs/LhYJx9qa8Q8GOfqDHkY7x9nPbyn05jMwOEB4cYnJqUl8Ph9qtZpDhw5l7NwyyCCDvxk8//zzAEl2cIsEJcKSAROBrwZweh0QEHZdFe8rwnvBEge+0p5AojC59SjVCkkBZ92NxQzsGWW6LcCRp7qJzAkSROMnKlFrVOz6TDMLvQGJHKHSipwt/velV+TR+cJQwm/kNTkoeZcbV7Wd40/2SJ8feryT/HOyBUHJANvur6bvrVEGV80b4ydn0duFxa/BrcdaqE9Ql1n0LxNZjjJyIvbZaapJEydnMRcYUhJTQBCu4sheb05QPgoMBOiNkayaHqkmOC2s9Fbj5LP9bLrDl0RQWg13nQNVCmWdOAzZWlQyFiiByUhaghBA+y/6GWtJn1MVXuCi/7U/bcHMVW/FP7GUpNgTR+8ro/jHg2nP4fS4rYa7zolSq0Qp82ZYdmEeGrMa5waLLElpcH/qRTh7hYGaHSUMHZyk+xfDCTaIsHLPu14eIjAZkrXYm+v3o8/WJn8R62+Lc8uQIm2Lx73nlVOY8yqYPjmd8P2Wj1YQnF3i2BPdtDybuqBXd3cVkSWhfLaaQJ+72U54MSxichqHLU5QqtlZjN1r4tB/CkWz1epe1dcVMd42w9jBWTRGlbQ7DFYV+QxQd7uPpXmx2Hz8yQ4CgQh90U7m8oaJRqMMD4vfCoVCVFVVceutt/Lggw+mvJYMMsggg/9t8Hq9TE6KueHb3/42d911F8vLgujdyXE6o8chZkuy64ugj23gWXddETqbhl1fbGauN5igwKjWqCXCZ/YGC85yKyd/OsCBr7QL1ZqgUHCpv93HZPscrc+cSiCjRKNI476jxoxKq2Ls8EzCJr+qq72otMqkzWvHnlohTK+7sRi9TZtgrzDTMUNoxknvb8V8mX92NoOnWYAsLYRZnI3VnE4jVAH4x4MEZHaZtz0/wEyfn5EDoh6TVWVKIMHECUrFF+aQ3+ik+ZmuJCLRwJ70+YyjxozOrqH0ne4Ei7s4lGpQ6VXkbHAw05mcv52u4pR0Db8YYKJjlgmZnATAWKjH4NCkbZMOqeK+Gnv+rZXsCnki/WTzPHub5VWStDY1KqN8bmrJN2LI1nHqtRQeIEDXi8OYc/QpCUobP+TD4NCy53OtKf8+fs9X5+CnY+LoHEsXLTPRdlr8Yv1trHUG38V5SUqhrk025gZDBEeDzPYvJKmAurc5KD43h71fbWW6PSCpm61GfNOhUqlk5MBUgspTyWW5dL88IimNqXQid1ptQdf0SA3LwWX2P9ZGy486QS8ISrZSPfmNLlp+dIrgqFDdNLnFAvhqkl/DveXo7BoODjYTnIbD3+1i8tQ0h3kDV4mDwcFBQqEQwekFSkpKMJlM7N+/P2PnlkEGGfzN4POf/zyf//znCYVCnH322ZKypZ953uBFiIIZO6Enz8GebyU0HgId1OwoJjglrGlX27GZ8gyodEoCkyI3Kb+qgJFDE8x2B3n7W52wKHKa1SSN0FiIsVguozGqQaGQyEied7jo+90YXb8Yluyn7BUmKq8oZGbjPCe+vyJWcPzpPnIa7BJBacsDFQzsHk+wpR05NoXZKdZAdFawltgSSCbhUITwYpjR49Pig9PUaybaZnFUWFMSUwAOfbsLXUwU0VqiT1A+Cs1GJKJH48cqWZxZ4vB3EjfXnfr9GLYiQxJBaTUKtrvQpVDWicOSb0Br1iR/gWifjiAEcPKFU0x1yStlgiBKDR+bTku4koO9wsSyfzmltRkIW7oToR6me1MTiICE+550bvU2NAYVSp2aVCdYfJ4TQ7ZOVrEKoOe1EWmtbTUMeTo2ftDH4IFx+n4zRs9p1sW2MqNkWxgORWT7yUTHLFnF5uQvYvfUPxFCoUom8cdtlnt/P0p2mZWJ9sQYbbythOVgmBPf7+P4D/vQGZNDUH9PNZHlCHu/cDIht7RXmFCoFEy1zIv1/ujK+cT7bel78sjdlMXxpzuZ7Q1x4pkVi0TfpW7mBgKMHZlBa1Sh1qmkv1+9Lt5wXxWhGWG/3fzDTkIhGAsOMZLbiVKlZHBQnFMgEKCiooL777+fO++8M2UcM/jfhwxJ6W8IcTs4gCuvvJIXXnhB+q6Vg7QuHIQFqKKevD9k4VpvF18ahbrQ/HCAo9/uTiiiFDa5EtSTFkZF0hBZFtYVg/vEYFR/TxnRaJRDj3cmWGP53pWPQqVg9GBiYabn98PYY4Nudq2J8vd4aHmuN0EVR2vRoFw98BrBPxiUdpyZfUbyN2eTs86eoIq0ekda00eqARIIUqvtv1KpLsUJHQ33laGzaYmEe5PUeqJLUYjC/HAyiUhiiBqh8a5K9n3jZAJRauitKWZOhVKqJIFQWzo9XqfDVm6k+u+KaXmuN8GWCwA/a5KP1l3nJRqO/kkkJd873OTVZ6N36lbUrE5HmnNofLCShZEAJ56WTxxSqVCtPvbhJ7oSLf9i2PhhH/PDATr/a4iDX0+9GBdejqCKprYIaXqkGoVKwa5jzQm2h5CsjnQ6a7r6eg9ZPjPtL55i7PBckkWc0WOk+PxcCrY62felk4mLhTFyk9aqQaFWkNtoY2TfjERQqrujFKVWwdtf7eDkzwYovzw/Kb5bHqhAY1IzdHiK+S6/FMOCc7IpOjuHPV9pAb8g6S3ECjp+fwRDrKJZ+u5CsQMhdi4SgTA2PoSmF3n7ax0M7Bkny2fGv+BntLQDpRLaEM/Uqf5T5OXlMT09TVdXF06nM2WcM8gggwz+FrDaDm5gYID169czPT0NQIAFQVjqASMW6ibOZbpngbETYkFo873laG0adv1zc4KaisEhlFYMWYUcaGsnMhciEKudzA8G0ceUmQwO2HB7FV2/GaT5+yvEiuz1ZnJrs7DmGxPmmaHdkwn2ug33lhGaW+b4kz0SISlvkwOlRrFiPxojf6wmldTeUIzaoGK2a1o6r/7XxiTyTe5WO6UX5TNyeEqy6xo5MC2RmkoudZPX4EhQXZKINwaovNJD+LJISpWbaDhKWGZnV9y2reyqfLQmTZJ93d6vtmIwpPpLgX1fWFvpqGZnMUa7NqXakhwBS/rb6z1klVoIB8OyJJx0KL+kEBTp8yO5c3BusFB6SQHHn+mVJTml2t2+Gke+04WhwJBgGwhCYWj9TWXs/9c2WRWp0HgIohBZTr53uZvtlF6Sz8L2IEf+oyspNmupI622sEulkrXlYxVojGomjkwQmIysKEqsItJpjGqp0BNXkXJUGyl/r0eK2WTbHBPtyYWk0kvyCS9GGD/aypFVhcS6O0uJLEU58p0uRo9MYs5dWbTyjy/HYgdZ5RbMeYLAd+jxled144d9mHL0IhcLwGy/n+G3J+iLdqLPD9N3qo9p/zQMQXZ2Njk5OVxxxRX8+7//e4o7kEEGGWTwt4Pbb7+d22+/HYAHHniAr3zlKzFL8SgtHKAlcABFQEEVDTheNeOud0gEnu2fqmFuwM+x7/aw+7Mr86n3fDc6mwZeHoAgBCYF6UKphqX5ZUaPityt9mYvSrWCI9/uTshTyi4tQG1QJZAkADp+NUB2mdi4ZSzUs/66Ytr+q4/p9pW51JitE+/gceiFrdrbXxW5ht6uxHtBLvkNjgTFp9WkpsZ7K1GqFAlEjtX2X6lUl+IEpdqbvVgKjWLn/2nnH1mOQCRKaCLZdmO1SlHDfeWceKpTWGPFMNk8z8HJLoIyFrQzncHEDYspEI9Z+0v9yUpCQdYkH228yUc0HGHiaHo7tVRwb3NQ8g43llx9gprVmZ5D/Z1l+KdCaS1WUtqrrcLBx5sJpghf9fuLCM0v0fXicIKt4GqEgxGiMurrkjLll5qTVK5OV0fa/6XEHfgll+WSV59N+8sDjB2cScrX9XYov7xAIlYnqETFyE1aowqVVknu+ixGDkxJBKWaG8TO/kPf7KT5uT7W7/BK/TSOjR/yYcrVM905z1TrArtjNbnsDRZKL8rn6HdOEpyG4FSIwKTot8Fp0NvFv8suLUJn16C3i89XK4E1PVpDcDLEoW920vfGKNlVVqangox62lEYoE3RRjQaJXhqgby8PAKBAPv378fr9aaMcwYZZJDB3wJ0Op2kbDk7O0tdXR1dXSLHmGdaEJYGwUIWm4JnM3Z8muluMWfX3lSMucDI7i+3JLp66MBVY8OSZ+Dg4x2wGCKmv8BM7wKWfIPUbvNdFfT+boTOl4Ykgo4hT0fhdhcOnyWBzDPdtsBk+xzdvxC/U3uLl3AgQvOP+iT1o6xqMxqDGrVZJf0GIej7zUpeU/MBYVE/OxiUbMXGjsxIxBJbmZF113kZPjQpEbFmOvwc+DcxZ6ZSXQqNhwjFOMPrP+BjKRhmfwpSUCQcZVlGwft4bB2t6HwXJrc+Kcd4+6vt6KxKWYLQmSgdlV2eh6XAmFJtaUpGlTGO4otzKNzqQqVXMZCG5C2HyvcVotQoU7qRxCGncGQu1FF1TTGtz/bKkpzWsnlr++kAva7xZCs5HdTdWsqhJzoZ3pdacCGyEIJINGnjGghS2rrrvMwN+jn2nz1JBKUkdSQSz7HxwUqIChJZKvWlujtEf41bsh18vEM673hf0GdpWY4JioTGQoRYiVnbC33MdgcZOTzFzKnkteqaHcXCkajlZIKC1bobhADJ8ad6GTk8ib3UTCR2/cHpsHQO7noHWaVLjB2ZSSCRxR0Bdn2pGUJic+t48yxj0SEihbMMDA0wGZyEEXA4HLjdbt7//vfz2GOPpbwHGfzvRoak9DeKuA0JwFlnncWuXbuk/7dykNbdB2E3FFFOnbOJ8FJEYqJu+rAPnU3L3i+0svcLreRtywLAmK9n060+AhMhDn2jM8FiTWddxcQ1CiJL10vDHHmym7wt4u/j6kvDhybpemlYUtLJq3eiVCtYig2cWdVGplr8Ccdff7MXa6FRIoCAsLaa6pqn9w0xy9fe4iU4t0T7sysDZnByEUWslxucEPCTQBhaDoUJynidtrwwSNV781PaibU/PyCRkQrOycbuNSWRbkovFFZale8tTLKIixOUtjxQwXIonLAwIYXRqaT21gqO/agvJaFJqVZQsNXJTHsy2Uci1OwaS6k2NHZiBv9Y6oLRWhjeM4ohS8up36YmKDU9Wk04FElppwegNqgw5aZeKdx8fzkzp/wJUoBxmH1Gat8vJMFPJxDFYcrRY3TokhSSjB4jle/J49A3OtMmZUOHJjFmp1ZwmjiWWh3J7DMy3+Xn1O5xbB4TgdmV740eI+t3FLHvSyfx9/mZ7Vug8+XEhdNtn6xGqVKw65+baftxP22r/tY/7gc/6LK0KGJcQf9gUCo6Nj1STXhRxPrEc/24N1iZ7/Jj9BhxlBrpf20crVWNUq2Q1K8kkp4x0fqw+aex5NYP1R8owu41i8TQL3YM+CcX8Uf9HJ/tpufnPUwwAZ2g0WgwmUyEw2Heeust6uvrZeObQQYZZPC3ioKCAsmGZP/+/Zx//vn4/WKu8jPHW7zMW0+9jAYdjbwL/2QIhXaFiL3tk9WMtUzT+cIQx3/QzZJfLCysv7kMjVHNrn9qTiAj5W7JRaVVotaJJKfwAhcTLXNMHJ9npGSKwZiVaeODlShUCvZ+vpWjq8hQOqsWVYyMZHAAWn2CDRzE5ohQOIH8few/2ym+sEAQlAyw5Y4Kjn+vg8Bk7IV3KkR4MSL9vqnYkECMWZpfJhpepbq0GgGY7llgqiP1gs+eVQshm+7wcfInPdLvxuGqsqFQprAHCUAgIEhcFe8t4vB/dkvKU6tRfnUB5lx9StUhc65e7PqRwZaPVaDSqlJKP3f/dpTIcpTpk388QQmg5w8j6K0pVIRYIX7J2ultdKDSKomEkherrD4DVVd52Pf4yQT1qzjq7i4FhOLW6QQlAO9FBWjM6pQqUTU7ixk7McXYwVlZC7iRA9PkN2bT9lxPyu9TqSMZHOJeEoDgzCJL/sS8rPzqAjR6Fc0/6KP9xVM412cl9JM4kW7i5Cwnf9KfcG6rbQ9VWiWFjdmc7O2XSFylV+SRuz6LQ98VqkjDB6cY2i36uu+yPMmqUZ+llaTtx4/OMX5UPEN1d5ViyNZx6PFmApPQ+cqgZHPY+IlKFoaDnHiql9lTfnRWDQaHkmFbH6/ua+X48ePiJI+B1SoWvS+//HJ+/vOfp4xdBhlkkMHfOh577DGpUL1z505+8IMfEI1GicYJSycOwAnwUsX6rA0s+ZeZ7Re5WfX7izDnG9j/5Tbe/mo7rnqbUE+yQ/2HfSyMCPLsars0g1OXsIkubpd29DvtuBtdQEx96VYfQ4cn6H55RCKxFGx2oDaoiEbE3GAr1TPTGUw4fvmV+bjW2yUCCAjC0vDhSSZiCs5V1xaxFFhOsGObHwoIhQEAPej1goARx9JCmEUZpe/2n/VRucObRFACOPXauKTCk73BgqvGnrQgln92NjqbhuJ35iWReeIEpY0f9kGU1Ja7ethyZwWtz/cx15uYl0WWRe0od5Mjpd1Z9gYLle8tkgg1p2No/wTBWXmF83SYbp1kLN9An8wiWyri12rosrSo9KlVkjZ+KLaxLoWlnj5Hz6ZbvEKtIMU1A9h9FqLhSJJFm96upOJqD0ef6OH4Uz2y19b7+1GyysxJ6lsg1JFK353H0vxywufGQj3+/iBDb43hqrGzOLOygKe3K1m3s5S3v91OcBrGT8zQ97vEa9vyQAVqg5rdn2lOsOLT5+hhMUhwGky5etQxdViCSNfQ+PFKostR9v9rGyd/0kPeNhdTrQvoc/Q4KkwMvjmBWqtGbVCRUy+UNQ59cyWP3/6pGhbnlzjwb+2c+PEpNAbxfJRclkvO+iyJaLW0sERgIkQwGqSdHl59tZcxxqAP1Go1JpMJpVLJ66+/zqZNm2Tjm0EGGWTwtwqr1Upnpxhf+/v72bp1q6RuMscUb/Aib/wMDJjZzAUsjIfQWrUSUaLxY5WMt8zQ9YthDj3RSSQ21cRJQbu+2JygFOSutaM1qdHECEXuzXamegMEhkL0vTHKWLPIseruKkVjULPvyycT8hRjto5wnLCrA51Vx1TLfML7/7YHqsV8viofa/5hJ0Xn5Ulklbo7Smn+ab/0/3AwzOLCMgMxwoohTyfZYcGK6tJM+3TKOI4cmSIwkZpIEyc6Aay73kPHr0fEpq9VcNdnSSqCpyM0G8FarKN6h5ej3+9JOK84PO9wYS8xJ9QH47AUGdHZUtedQGzG0lrU7E2xyW949yia/8veewZGUp7p2lfnnINaqZXjZE0eZsDknE3GacHGmHUOaxs4e85iwAanNQZ7jQOYbEwyGZOZnKNyzlK3Ouf4/SippB4NYb9vz357zvb1S93qrq56q6R6+nnv976VMryHPzw55aPof2MSzYmcsxHOfc1ZZfS9viBubwElK60odSeWOagcKpZe7ebow30kQ4sXzi253o1CK+fg7/oXC5SA6lNL0FhVlK+1LRJf1V9YSnA4hudQsKBfuZDQQILQcJSeVxdH6wJCb/h4dyQVqFRC1FpsKi7+rczhPtOB2qik+5kx2p8ZpXydpeBczwnpPO1Bep4dK4jkNVapCA0lyWZBqZNTssJKaGBcdCQr32zDfXIJxx4TXJGGP5jGcyws/m5szwwkKZjbjYwm2Te7mGLJdW5MNXr2/baPpDdJ13OjYvTi6q82EPMk6XhymPBIDH2ZBpVRxbRsiA/auzly7Ah58nBM+H8jlUq55pprePTRR084dkX+76EoUvpvwLZt28SfN2zYwK5du8THI/QwMtTD3+4GO2WslGxCoZMjVcz/c6zc4kSmkTFzxEsymBKtnYUvmjJ23NlRoHJdfl0NhlItqWiG0Xe8omBEbVWRz+WZ6RL+MS39QjXR6ThHH14g2tBCy6erReHEHP7eMFq7ShQotf1jHX2vT9Dx2LxAx1CuRZ/LzyuzoUD5u/wfmsWIuzkKXJcWrMYGQUg0J2hZ9eU6NA7VCePdKjc7kcoXT4j1vTDBxIHgvMDoBNFzco0M6YfEj5jqTciUUmpOsS8SQAV7Yh+58mxOUMMJLACBE4qAPikxb+4jXZCyqdyipsZCPmq/lUYF1voTW2Y7WgxIpBJ0Lu1ikdLs2H6Yw1LrZeUoDQpMDdpFzlPrvtOEXCNj+x3ti6ID6y8pw7nM/KHuSGu/0YjCIOfgH/qJ9McWTUyWtZmRa2TUX1JG7/Pj4rW+/MYaPB0BJrb5haairrC4NDUIxUTCn2L/r3vF7WrtUlqurWXf73sF8VBaKHxBuF77Z6+1lZ+tBgmMvuNl4OUp0bp6+Y016Es1wjmIQTKQwjP799h8YTnB8Rg9/THkahkSmQRtmZpgYJTXXn+VfQf3CTt3UFhJAaBWq3n66ae54IILTnTKihQpUuS/JWvXriUaFSYWtm7dytlnny0KltIkBcHSoy8jQ8ZaTqGiqRypTCI25ktX29A6VBx4oI/pIwEstbN2vxpBOBQYiND+2HCBc437JAeVG+1ClOmL842dTCIrxpxprNB8TR2dT/QVNGZar6tHZVZy4MH+AuFOzJsU7bgrTrZjdOtof3RIFGw0nCcIVBxtdobfFCaHAt1xsY4y1mpYel2NKG4HGH3fy+j7woTXnFhkdIdXfL/ogDR7rKlgepFzkX25Aa1DTdOVNQXRLQA7ftGBRiMVt3G88Ebn0iKRSbA16hk9gUjJWm/40Fi4DxNfz5GOZk8YNwZCFN/HuRV9FAvj944nn82Tz+Y/1EnpeFephVRudiLXyLDVFcbszaHUKzhhJTk7th1PjpzQYQkNmKt16EvVi/bL2qKl+dPVBAajtD8ytEgQtv6fmgFO7I6kgVW3tJKOChEeJxL5O5pN4s+B7jiB7jjWFi2VW1wc+l0/U7sCVG0pIXCcVfnCetDXMV9n15znQmNR0v7YMIHeMM5WM/oSBfGxuChKqj67hNLVVlQGOR1PjhR8L9p0ayvxQJID9/cxvm+GsjYb8bggLCxdaRFFSnKFTFz00TF5kL/t7mFqZgpmT71KpSKZTHL66afz5ptvnuisFClSpMh/Wx555BEeeeQRAK644gqeeeYZ8nlhYmqQTgb9nbz0MyihkmWS9ahMSuTK+Xaoe7MThVbO+N4ZopNxxvcJouIVN9WitarYcXdHQe+o+coKbM0mcpkcw297GHxjVpztVJDL5gj0RcTXxf0pep4fL4hOWHLtfIznHIGBKOZqvShQWvaFaka2ThWIUeZqwoUCl/YFq5LX3NSA0ihE3M2JUApcl77TBMzXNIlATrzXtlxTiaXOQPtTAwVuTwC1Z5YKQqjjouXGt87g643OOyadIHpObVKK4qzjsVTrBLHzJgcdQ4V1UmLyo92WZg6HyZ334Y5Bc+fk/w2JgBCL92GkY1nSsQ/vee2468P3W+tQozIq6GOxSMlap0Uql6Ir0SwWKc2O7YH7O0kkFhecTVdUoXNpsLbq8bUX1jhtN9ejsirZ8bN2pvb6CxyKKk6x497ipOclwU3reIenOfeiI3/uJzyUKPg7ALCvsArRfmeV0ve3CXHcmq+qJDQcZXyHj8BABM1xiwHVTjVtN9US8yQ5+Ns+9vxM+FtQm6Hpqlq6nuonEZib7BWONxHIMTAbobLyH6qF+I+tMwXH1HxlBdYGI9t/JvwNRCZiYjxN0yVlxKYThIfGkStlSOVSDFVqJqcmefP9v7Nv/z5hcuwAKJXCRKnRaOSJJ57gvPPOWzTmRYoUKfLflYqKCsbGhP/37e3tnHnmmfNxTLORcB+8BEpUrOQUHA4HUqUU2ax7pGOpEbNbEMpM7PfhaDGKYqYNP2jB3xum6+lRJmfdtwGqzyylOg87f9whxkwBZOLZ+YVqKlh2XTXdfx0uEGYsvaoKo1vH4Yf6Cpx2wiNRUlFhXsW2zIit0UD3M2P0zvbUKj/lQGNX4VxiZORdYT40MpoURU0qu4pVN9QRm0yIrk6LXJeuqmZ467S4zwuFWBt+0EIykCoQ14IgJDHV6Gm+RMah3xeKifb8vBuVXSUe7/HOSWq7BplShqVWd0KRkmOJGYXhxJKAEy3WW0gykD5h3BgIgpreFxfXNp+UD4tAA0AqIZdeELd3HAudto6ncoMVlUmBvlJP8tjinpnaqkKuOkEPcHZsB1+bYmJf4IQCJudyC+YGw6J915SqWPUPdfj7InQ8OczRPxf25FZ/vQGpXMqen3XR9ZfFJhCbvtNKMiREnx09wRxs6UorErkUGCPpSdL/8iT6ChXVp5Zw9JFhgr0xEoGU+H1kjlU3C4vmtt/bTnwiKTq1l51kRVeioefZMYKDEXKb7CiMwgDMXbfO1WaqT3OhL9PQ9ZfRgnjA9d9tIhlMc/B3/YztmUGqkkIqiXO1mYoNdlGkJNdIURmFa68v2MWbT/UwPj37/WhC6Hml02kuvvhinn322cXnpMj/tRRFSv/N2Llzp/jzFVdcwV//+lfxsZdx3sz/lTd/BnKUrOMMqlaVIFfLMFfpGX3Hi78/gq3ZxPT+EJlkFql8/p/4hh+0ML5vhsMPDtB6vVuMqtp0eyvZZI5d93SK7kkAxgothlKNIKDQgt4lONJEpxN424V/7stvrEFtUbL73i4xhs3SokVtUVF/Thn7euZdcbbf0Y7WrRXfp3dpOPDbduKzdcvEvhlszcLKY7TQcqm7QOSUSWTnoyiOExQFRiIozYpFAiWAnXd34FgpCGtMDVpS/pj4mXMCJXHi42ftBdstEL0c95kTO/0Eev3itk6Exg71F1UXZHgCxL0sEtQsxLHSQO1Z5fS/MSYKvz4pa77eQCqa4fDvFyuugUVNizncpzuQqaUFWe/Hs/1nH97MWSi2WchcLN+JBEpzsWl7f9mDs824OBoPCE/EMZQe5+w0ey4mDwdwLCl0ZbC0aLHUGel/aZLRnR7K1toKPnfVLXWozUp23NlB7/PjTB4OFF43WtCXalCblUxs83P0oUEAGq+qwFprYOfdHQR7YiQDKUa2Tomf6e+I4VzrQGVSiu5cc2PtPt1BxSYHU4f9s+K4GSJjs9fed5uIeZIcfWiQuC8luE2VqdHYZGRTOYbfECaGlUYFFoXQ9Ny7exedk514PB4kEgn5g3lkMhnZbJbKykqef/75omNSkSJFinwCNm/eLAqWxsbGWL58OT6fMPGVJctO3oYu4A6opJ4myUpMVTox+mPojWnMN+oxN2rIZQT75+isE+LSL1SjMSvZ84tuel4ZRWUSGhVNV1RgazbS9+p4gXtgzbluNFYVxgYz8V0BrC1afB0xhrdNU77OIQqUNny/hekjgQIBUNk6G3KNrED40/PMGON7faJT0qZbWwlPxsX4ulB/nLgvydA7QrOg9vxSvB0BMVILmBXXzBY6C0VFcUjHMvhHFgtnvIfDSOTzrkGONuO8ECYO8XgOXZWGFZ+tIeZJiFFwAMNvTouCqBOJmHb9qvOEjkILqT2/lKg3LopL5jheMHU8y26oQa6Sfmzj53hK1pip+lQJnc8OF4zdHIOvT31o1NrSz1cLEX8fckzH/jwkOBMdb/A0OzYnit3TWKWsuqVZjIFdKFDSuNRIVRKiQ3G6XxjBe4IYFF9HjGwqJ7pZHE8mliF33GRmy9WVQtxbHOLeJJMH579PaFxqVt1Qi683TOdTIxx4aGCRaKr2jHKUZgUal5r4ZEKcnF33nSYiE3HaHxtm8qAfY4XwPcJYqxHH2rXSItaBM0cj7Dgq1Nfr/6kZmVzK9jvbGXx9Co1FSceTI1SfXULJyvmV+dlMjuzsZKKl2oCnMwRxsNbqUejl6Ko0eAd9vPryq+w5IFjpsw8kEuEzJRIJV111FU888cQJx6tIkSJFihTy9NNPiz9/73vf4+c//znZrDABNcUIU/kR3vwNqNCyltOwVppRmRRYaw2Mb53B0xHCMisWysZzZNLzjn3rvtvE5D4fnX8ZpenyvOgIs/GHrWRTwkK7hfFilgYj5mxOdPoxVKkJDyUI9EdEJ/PmKyswlGvZ84tu0dFI7VRjqNBSc0YZB3rm64Ydd3egdgkRoo2XlWNrMnLgDwMkZuPcR7Z5ca0yi0KhpsvLCxyOUpEMkhPPLREciWEo1y4SKAHs+Vk31lbBfUdboSaXQvzMOYHS3MTH/l93FkS/7bpnQS1xnIjJ3xll/33tBc5Pi1BDy6WVdDyxWOz9UZFphio1zZe5GXxn6oROUR/FiptqycSzhXFlC5iL4zseR5sJnV39kQKpHXe2C+NwPGoY3+Fj/ASxwMtvqEZfquXgQ/2LItpsyw3MHA5z6MEBbMsNiwRKAP7hMDalsVBANnsuvB0RKjbaYcH8nKFKja3JxOAbUwy/P4X7lJICp6sln63CWK5lx93CRLGvL1K4X2qwNhowlGkY3+Gj5zlhAqr6rBJKVpjZdW8XiekEkYk4Y7uF7wHmBg2BnjiGWhM6p5rqsyro/MuoONaOlSYaLizHcyRAz/PjDG/1kAwJrvirv9pA3Jek/bFhop4Epho9hhI1UjnkM4iOYDqHWnRaONR+kP5t3UxOTQo9r33zPa+amhqeffbZomNSkSJFinwCWltbRcGSx+Nhy5YtdHUJ37dTJNnNG+CBV+6SUEUT9ZKl2OqNaKxC/2pytx9LrQFjjZpkOE8ulROdhhouLcdQJsTCdTw9hG42Rr3yUw4qNzvof22cI38aFPel+tQSDOVabEvMjO/wia4xI9s9uCWIAqU132rEcyxQED/l3uJAY1XRrRoThT8j73rwdoVEsc/67zURGY+L70t6k4RHoozPCmXLN9sIj0QIDQmvl0glZFNZZrpn+yLHiYqS/hTBkcXOiaGhJO1/GRLjzSwt+oK4taQ3icquYvVNdYQnYgXzgtP7Aid0G5pj3+9OXMMspHyzjXQ8u2g77U98uGkBCL1IlVFxQpemj8JUr6X+3HJ6Xx0j2Lu4TzS52/+hUWuNl5cz9Pcxkides0fvixOMvDex+Pez5+KENZ0KNn57Ngb2t30FAiWVUYrCqCAymuTYU4Mn3N/4RJJkJE3w+H7m7GemQulFiyNrz3fR/+YkJCE0HMHbMb/DKiOsurkZX2+Y7mfGOPjQ4CLRVM3pLgyVOvQVKiKjSbEX3HZLPdHpBF1PjzK2ewZrgwGSsw5gviQkoWKDA5lKSg9jREaTolPW6q82oNDL2Xl3B9P7AhjLNPS+OIFrnYWKzQ72zqa1ZBI5UbxvrTfg6w6TDIGpSofaosRUr2W6x88bf3+DPftne17H5nteCoWC66+/nj/+8Y+Lz0WR/xZI8nPLi4r8t+b73/8+99xzDwsvB7lcjkKuIJ6I87nrP0dVbRX5TB6JXAJ5yOfyhEaieLsD1J1VAQgxYsYKDSqTkshEnMO/H2DT7a3k83l2/KiDhivLcDSZifkTHPxjP6turENjUhHzJtDa1eRzeSQSiajk3HR7KyAIkOZcYA4/NohMBq1XVCGRSshl80gAiVxCKpRm77/2sO57jchVcnpfHmV6f4iNt7YgkUrElVhz2x16dwpdmQZ7o1FQNb/jFSYdlFLIw/YftbPp9lYyCSHupPYCF65VVgA6/jpIwwWVQp77HYv3dy5yzdsdIhPN4FxhRiqVFrw2l8mz8+4OVtxUjc6pJeqPc+jXA6z5+uwKuAWvzefy7LizA32tluXXVROZiKPSK0T1s/ja22bH+84OlnzejalSL7oYrLypFq1TzdDWcao2l5HP55FQON7JYAqVSUkum0Mqk9Lx10H8HTE2/rBFUEvnhQkXmUJKOpxhzy+7abnOjaVWTzKaouv5cZZeVYVUXjje+bxwbj3HgjiWmBjd5WX4jWnWf09wuBp4e4KJbf4CUVv1uSWUrbGJ18+67zYtGu9cJk8uk2Nk+zQ1p5Xi7wvT8fgIG37YjFQmFSPvFo73uu81IVfJCI3EOPrQoCh02n5HOytuqkXnVIvjPRdzGJ0WYtYWnmMQ4u0Ael8exXMwPH+9/7yDFZ8RthUYiWCu1IvXd89LI+JrU/EMe3/aLV6zg+9PMP6eX4iBk0uE98xOjqWjGfr/PoZzmRVLnUE8nvXfb0amkDLw9wmQQc1ppeI1O7e/43tnkCmlOFrNSOUS8TwDJGMpXn/tNbp6u1AoFYRChZXbunXrePrpp3G73f/efy1FihQpUuQExONxWltbGRwcLHher9cTiUTQS4x849avkU3kUGjlpOMZFBo53u4gSX+akpUWIXosB9vvFGqVXC5H36vjOFdaMJXrhPiLN6bZeFuLUFvd0S642FxeTSaZRa6WkcvmkcokTB3x0/f8BGu/04hCI8fXLQg+Nt3WSjaTY9ePO6m+wEnZKjvBsQimcj3pZAaFSoiimxOuzN07y0+1UbW5hOBQlGN/HhImruwq8tk8O+7qYNOts/fKuzoE16TvCPeqwEAUhVqGrlQtRmLN1R+pgOCqtOn2VrGuaftaPWqTkuBYhGN/HGbD92cjVO9sFwXic2Ka5qsqsTYaxFi04+/nm25vFV0Nln2xGoNLy/B704y+7xW2pZaJdSEgun5WneWkfL2diX0+/L1Bmq+oKqz3bmslk8oikUiQyiVIpBLBdvmZMdZ+sxGFXk46kkGhlws1VjrHrp90Yluqp+lSN6lIGqVeQSKYQj1bq4AgCsuTx9cTZnjbDKv+oYbQaIyjfxpk5Zdr0TqEBl7Mk0RjFe73C8c7l8ux885Olt1Qg6FMIzppzY333DWx6fZW4j7BCaj1+irMNTrS8QwT+/xUrLMhVUgL6si5mk0Uy70xTjaepfHiyg8d77kxnXPVWuhqVHWWk4oNDnKZHDvu6qDiVAfuzQ4i03EO/9uAOIZzzkybbmslm84hlUnI5fLIFFJ8fSFGts3QcknF4vp6dn/NjRpar6oh5k+gtajJpLLIlTKOPjZAqD8ujLckz8g2LzOHZlh1SzPZdJZdP+5i/febkClkbP9pO80XCddZPpvn4MODVG22Y200EPMk0TpUYl337nPv0THRTi6XIxQOkU6nhUmyfB6Xy8X111/Pvffe+x/8n6dIkSJF/vvywAMP8K1vfYtkcr6pL5PJUCqVJOIJrr70ahqWNYg1Vz6TJ5/P4+sOM3F4hmXX1ALgORpAbVZiqNCK/YSNt7WIfZWyzTaqTy0hNpPk4AN9LLmhClOZjuBIBFOlnlxauA/Mue0srEcaLyvHvsRE5zPDJEIZll5ThUwpIxPLIFNJkSqkJAPCyuq5Gqj/75NM7vQJPQ6FTHTL3HR7KxKJhOEPppBIJFSc5GB0mxC1NddvyucE0cymW1tJJzLs+Vk3JWss1J1bCnnofHaYmtNLUZkVJ+x5WVv1NF/uZqY9SHgqgftkB1LZfA208Yet5DJCb6fh02U4WszEvHEO/mag0OV5dru5bJ6dd3WAGjZ9t5XwaAypXILOJSwq23+fIIDa8P1mJBIJO+7uEGPy5iL6mq+uxNpgoPfNcerPKBOcliQSQRw0+zkJbwq1XUk2LfS1el4UXITWfacJmUpGPpsjl80jV8mEley/6qHmnBJK19pIBJP0vTxG40VuFDr5fA10m1CXSSQSht+fxn2yk/FdMwy+McXqrzWgMikYfHOS8R0+Nt7aSiaZYc9Pu3G0mWg4v1zsP7bdUo/aqlzQbxLGMJfK0fPSCK1X14h1+rrvCDFqc+d14w9ayedz7PxxJ23/WI/aohRr8WX/UI2hXMv2O9rFmjiXzrPzxx3iuETGYxz+w6DYP93/YD+JyQTr/0norXU9P4yvPSLWTwd+3UX1WWVYm4z4ekNY64xkU1mkChmdzwzh74wKPa9omr0/72HVP9ajsSgZ3e1h+HUPa78j9MBy6ZzQgwVS4TS9r4xiqjZQvsEu1MU/7hTrvf6/T5KOpWm6uFKsIzfe2opEChP7Z8jEsrjarCi0csJjgvAun4NULMVbb7/JkfYjqDVqgsFC4dr69et5/vnncblc/zH/cIoUKVLkvznJZJLTTjuNnTt3ksvNi5d1Oh3RaBSzxMYt37+ZdCSD2qwkGU6hMiiZbg+QmEnhXGYWYtRn5z42/lCYf+l+cQyjW0Npm42x3V6GXp8umPcz1qhpvbqGTELoeeVnewJTB/30vTQhzvt424N0PzPGhh+0kM/k2XVvJ861ZurPLsM3GMZaZSAVFXox23/UDirY9L35WsXUqmXJZdUEByIce2yY1mvcmOv14r11/XebkEglYgzYpttaQQK+njC5dA57i0l0dlr77SYUWhlxb5IDv+lj022tojvTks9VYXLrCI1GOfqnIdZ8sxG5WsbOuzuEmsGiFPpjv+nDfaaDivWCeGtyb6CgFwhCD2nOoafhsjIcS8wMvy+4PLXdUo/arBT6i7e2ghSS4TT7ftmDbZmRposrGN87g/dogCXX1SBb0Afa8IMWMsks+VwehUaOVCbBc1QQFS/7h2oMZVqik3F0Lg25dJ5cNsfun3ahcghCq7g/icaiIjIdR+/UiNtd/70mkEqYORak98UJNt3WSnAwwrFHh4V6bzaNJToZR21RIpFK2fmTDnG8cxmhJmq4tBzHEhNHH+snNJAQ5xcn9/vof3lSGO/pBAd/10/teS5cbVaS4TST+3yUrrEh18qE+pTZOni2ZpsTyw2+NUlkPMrSz9aJvwOhDk6FhfHe+IMWJHKJWLOturkOjVXF9jvbcaww0XBRuXht2ZYYabq0QjjnDw2x8ku1aEvUzHSF6PrLKBt+0EI2mQWJBPJ5FFo5no4gE7u81JxZiqFCe8Kel8ooZfXXmgmNRTGW68TvPIcf6yMynmT915uRKiWMbvUy8q5ndo42y657ulj9jQZUBgUHft+Ho8VIxUkOcpk8Bx7sp3KjFecKC5GJOHqXhlxO6DNvf/kAR0f3ks6kCEfCpFKpgp7XF7/4Rf7lX/7lf+v/oSL/Z1B0UioCwI9//GN+/OMfA9DZ2cm6deuQSqWiWOHhRx9GrVaTSCRwmJxc+emrUCtVmGsMqEwKMvEsgdEIkakY2VSWkpUW9LPuNLHpBEqLHK1bi0onTJL4OsIQA4VGTi6TY+jdSWpOLyOTFCwaN93WSiKQIhPP4ukIAJCbFbnUnOrkyB8GCU/EUWhkSGUSpDIpSCE4EWHNNxoY3++hbKWTyGSKmvNLkMqkZNLzdsypcJpcNsfYBzM424zYGgxoHULEQmg0hrFSQy4hCLaSwRSpuJBlHxwK41hqRiqT4O+IEVwRRe+cXwaVTmREu+nAVIyyeJZAT4jp/SFkGhmmci0rbqolFU6T8CdJhYV9mj7qo/pUjWhb6B+MYK0TbrRau3T2+IWCLhuKkYln8fWFGd3lZenVbrTWeSegqCch2mmbKvXk83lmegXFtq83jNKgYGxXgLF3Aiy/sQbpApvGTDyLvz+Ca5VVKBpSWRIeQREcHhdiyeaiNdZ+qxH/oKAIDvSFMZRrUOmU1J5eQng0WpBhmwqlCU3GiY7HSYVTWGr1BAeE90Z9MYylepxLLUxs85MMpojN5u0GB8O42iyiGjcwHMXo0qC1S1n6hQaSgRRxf4r2R4fRurXCuAwK1+xMVxhbs4Hht4TVjXFfUohimT3/UoWEmR6hMeHvj2BrEeJBpg/5qT7DRdQjrCCMpRJCMT0rcA6ORNDZF4z3dAK9S0P9eRV4DnaQiWeZPhag8cIKZCoJmXgWb3cAU5mOeDCBJCstcK9SzLpljGzzULnRSSaVFhs52VCOyHQCqUyCsVyLTC1FppDh6w1hqtGJ4qVMMksum2Nip5+VNwnN04gnhsYOwdEwOpuW4GCYlk9Xk8/lSQZT7Ny2g87hTmKxGIlkQpwckyvkVFdXs379ep588kmKFClSpMh/PBqNhoGB+dVFN910E4888ojYvInkQ9x9993IZXLIS1hZvYrTLjwVS7UBWaMUX3cYjVVJaCIGGkhGUqj0ShytFiZ2eNBdqEYzW9cAooOAyqwml88RmoiRT+XJS3KYyvTobEo23dbKTH8QvU0jRpPlyYsrfKb2hnA0mInPpDA484SGIxhKdCz5bBUJf4roVIJ0XPgc90YnIDRgAHx9YZw6GYNvC5El6WRGnIwgDulIBplaxuQ+D1qXDqVZTnx2IX94PI6hXEM8KKyWTkcy+Gbrmok9PqpOc9L/vLCiKzQeE++ru3/axZqvNxAYjbL2242M7J7GUKYhMi5sJ5vKsnClRjKQIjC7im0uhjWZmK3/hqNoZy21B9+domS5mdj0fK3iXGImOBCi+rRSpFKpuLIbID6TJO5L0fnUCLoqDa2XVRIYmK/LLNV6YQEAQg03F5kbG4+RjmQY2e5haleAmvNc2BrmI3GjUwm0JSpsTUa6XhwtGBdfbwSFRs7Y3hnGP5hh2Q0181ErccjlckilUtCAvyeM2qggHhRWwIcmYhjLtYzvCYjj7e+N0HqdG5VJRjqS4ejDvcR9OYzlWmGsZp2XsukcMW989pyHMFZoCY0mifviNOTzpOMLavFoWnSRSMczSOVSQsPC/qcSGWRq4foYemMa50ozoQGhHg0NRchttKF3aijdaMU/FMFYpmXg71Os+WoDsZkkSX8KfamGVDKDUiVnpjMkOH7JhNVapRutTOzwEZ1OkI5mBRdMk5J0JMPUvgCuVRYinhjWOhN155Zx4P4+oWHm0qBzqPA7VML3iO2Cy6tMIRMWesSFa1Blk5NLQsul5agtwnZHO8cZ3N/DwUMHhWsrmSSfzyOXyzEajdTV1fGHP/yBZcuWUaRIkSJF/uP5yle+wle+8hUAJicnWb9+PcFgkFAoRJ48Tzz3BOpXhZ6X0+LiknMvQ6NSY19iQluiJhlIExiNEJ1IEvUk0ZdrRAe+4GAUvUuNtkKNziHUCzNds65IBgWZVJaRXdPIFTKS4QwKjYwN328m7k+R8KWY6RZ6GNmcIGou22Dn6B8HCQ1FURrk5HNCBGsukyY4FqHt5nomdk9RttZFaDRGyRpBvD4XBQ9CnwJJnpF3vJgbNOTzdlRWoTb0D0SwNRrIJvOzr42TyQjvDU/GScczQt+hP4LJHcJcoxe3mwgkmbNjioUzJANpfAMRPPuDKDQybI1GWq6pJJ/NExmLkU4K2x3Z68PebGJq1jXd3xdGoZltSc+21MRaJSFEisz0hBnfOkPTleXoS7RizFloJCb0ABFiS/L5PP7ZGsjfG0HnUBPqCLB9R4DmqyrFug4g4Uvh6wtTZreRS+fIRLOEJ2druoEIKotSdA1f+eU6QmNCrRIYjGBtMaI2qaj6lIvAQATtgl5g1JMgNpUgPJkg7omRDFgIDgs9r9BkFIfJjL3VyPgOH9GpOAmfUCuGx5Nk0/Pxcf6+MJacAbUZln6+gchkjHQkS+dTI6jNgkhtZkC4Xib3+ynbYBMdvSLjMTKz10A8kERlVuCfrcX9fRFUJsXs+7yY6/SEJ2Pi+OdyOfKz/SVvRxBjlY5EYLY2HI5iqTfQeFEFO9s7xWu2dIMDlUVBMpDGc2QGU6WeqDeBBElBXJ1CLZzn4fenqD7FRWQ6zcZbW0mGUqSCcYJDMRQ6GTqXGqVRgcqkJjgYpnSdVVxln0pkyJFjcqeP5qsF4XvMnwC18LdmKNUSHIjSfLmbbCZH3Jtkz54DDLzSSSgcKuh5KZQKqqurOfnkk3n44YcpUqRIkSL/8ahUKrZt2yY+vuuuu/jxj38s9rwC+Rnu/sldKBVK8pk8S8vbOO38kzFX6VG2ChG8hjINwcEoKiNEvQn0JRqcS8wMvjeFtcEoxqXns3lxPk6qkEE+T3gsSjKUQaIAc7keuUbKhh+04OkIIMlD96zTpEQK0tneQ7ArQHy1jdhUAmOJlpm+MOZyHQ2XlpOKpfH1hMXPaTq3EiQws6DnpbIqGN4h3JNT0QxKg0J0z4nPJFHoZXiOBJHKJejLNaRDQv0RmK3LEn6h/xSbTohzeZN7/ehLNfS8LvTSAv1h1LNzbvvv72XFjTX4hyK0/WM9I1sniHuTRCaFnkwqkkG2IAUnPBEjOuuAqZo1PUjN9rxmekMYy4W6tuelMVwrzcRmhFol5k0S9yYJDkWp2OxEppQS8y+Ozet5bgyVUUrrtTX4ZqPG/H2Rgn0IDUfFWiUZErY7tmeG6X0ByjZaka2Yf21wOIapRodzhYXeF4Vj889uN9AbRmNWMrzbw8yxEI0XlCNXztd72WwOmVyKyigl0B9BX6ImOXs8/oEI9gYj3qOCO1NsMoGvP0zteS50pWri3iTtz4yS9CTRWJSoLcp5F6RImujsvGVoNErcayQyHiU0lCSXyZOOpcV9iPnihEeFcxEPJlHq5ASHhfooGcugnl1M6DkUpPJkB6FB4XeR6SSZVBaTW0/ZSVbRiWvwtXFW3FhDeCJGKphBZ1ORzWbJxLIEeiNERpNIFBLhu8RJVsa3+fD3RMhlcyz9bBX6Ug1xbxLvkSBkITQdo2SJhfrTyzn4+34CgxFsjUbUFiUqh4psMsvINuF6Vurk5PN54j7he1BwOEo+lafhPBemaj1RX4KpDh87jnaw/8B+pFIJiUSCfF5wqjQajaxatYo//vGPtLa2UqTIQopOSkU+lk996lO89957J/ydVqPFJLeyJLJBdH6ZU2o2XFFKz8sTlK6yUHt6GeHxGId/P0D5FhsAYx/MCC5FsyvRnW1GXG02Dj8+wIavtxDzJjj84AD1l5RhazRy+I+dVJ5eQfdTQlbnxltbICdYXs+x9AvVGCu0ooOStkxNbDzB0i9Uc3TW/nHdd5vIxLOi7Z1tmY6mS6oIDUc5+vDQoti1uVVmx54cXBQXNuf0M+fCtJCNt7ZAfnbV+gI23TbrinTc83O4T3eQTeXEeDthoAv36URUnGpftA+OlYZ/d5wbCCrbVDjN3l9+vAXkQiwtWvxDsYJ91djBXG9hYueJbRmBEx7fwnN2PA2XCQro6SMBep8fF59vuroCW4ORoXenCscP2PiDFvII8XzHM+caMHftHr9Pcw5T+34lXDOlGyxUn+6i/S9DBHtiNF1dwfQhH0lPgphXKLY33tpS4Aq2cP+6nh9i5kiU2gtcTO4PUHuWC61dJcaPbLqtFU9XkLg3idmt4+jDQ2jdWlZ+rprwWIy+vw1TeUYZXU+Oivs3t7Kg/FQbEU+c4NHYvPPUz9qJmQMkS/zs279v0fHL5XJWrlzJP//zP3PBBReccMyLFClSpMh/Dnv27OGMM85Y5Go3h9NWQtlMPZWlNaz6Yq3oImldqUWhUjK1KyA4Cinm72tNV1Qw/NYojZfVFrgUtX6mCn9vGGOFFmuDQaxN1n6rkfBYnKGtXpxLDAy9MU3JejN1Z5Uxsc/HwCuT4v4IK5TmV2JrrKAp0WJpMtH3/AS2pXoaL6qk56VRMf5rzdcbUBoU8/fI46LXNt3eSjaVO2Hc2IYftJDP5Rf9bs5hZ3K/n/6X5/PoGy4vx9FqEp2lTsSSz1YtjvQ4QRzcQko3Wpk46Ct8jQaMpZoTxrJ9FHOrwwvqkE+IbamemaOFNtIVJ9sZff8j8oJh0fFVnOogHUsvirGbY+MPZ+uaO9sXPZ/PIZ7/OeYcpgbenGTiuOgS+3IDjRdXLorjm9sn0d3pj/PRbatuqUOulLHnF92ggdbLq2h/dEiMcCvbYqP6UyXi6rKC/cvmhRWMGqg7o5TxPX6WXV/F5EE/w29Os+JLtagtSnb9qpNl19Yw8sEkge54gYNWxcl20rEMU3sD4urLzr8OEp+KUbqlhP4XhGiXhd9tkuum6B3sZWJqAqlUWrCCtLy8nJUrV/LSSy999HkqUqRIkSL/2/n85z9fIBZfiFatxSpz0Bxbu+h+XX2ek8nt06gdGlqvriE8JkRuONpMyJQyJnfOuubEBMcXU52aipNKOPaXIdb9YxPxmSRH/jRIxSl2StusHHlsmNI2EwPvTkECYRW+TFIQazbnttT36gRTe/2onWoS0wmar6qk84URSMDqrzWQSWY59G/CPVZboWbl52sJDguuOsfHri2/oRp9mZbOZ4YXxYWVrLFQd04pI9umxdisOdZ/rxmJdHHs2sYftJDP5z80js3RZkKhlTO+dUHP5rh9OhFlG62L4tAszboCQcwnRejxpD80uu3DMFSpCU8lFkWnlSy1MLX3I3peJzi+lmtOHGMHUHmqncrNTqYO+en723xdW31WCWXrbQy+M1U4fggxthKZ5IT180KXyhPt08ZbW0kGUuy/X+h5WVv1NF5UQdfzI/g7o9ScX4K/O0TCExfj+db/UzNSuVR0qVq4f3PuVJWn2vF0RHBvsmGs1LL3X4Xx3vD9ZmY6Q4RG41jq9XQ+OYLaDG1fbSU8HKPnhUEqP1VGz2y/b9Nts98N7unE0WYinUoROBoXnaf239dJMDFJYkmcPXv3LDp+mUzGqlWruO2227j44otPOOZFihQpUuQ/h76+Ps4444xFzuJzlNhKKJ1pxK4uYdN3Z52dH+hDX6NCY1Pj2RtkzTcbUS5wNKw+p4SJ7R6qzizF3mJi32/7SHqTNFxaTnA4itqqoKzNJjobrbq5jshkguEPvNib9YxtncFYo2bpdbWM751h8LX56NYN328hn8uJMVgqoxSVRYGl2cTQ69PoK1Qsubaa3pcnmDkm9PGW/UM1epdmfv7vuKg3wcUyy56fdS06/jXfakQC7JmN05rDsUKIPj1+/+YcfUa3e0Th8vE0XFZOz7NjhU8et0/HY1tiJDISKoxKU4HRpRIj7T4pK26sQefSFMyTfVJM9dpFsWrO1eaPjLUDFh2fY4UJmULC5N4Tv2/dd5qQyqWLelvrvt2ERAq77i08V641ZmrPLmPw7clF9am+QsXyz9cJSUML4+9m96nhUqFPefRxwd0JYOlnq1AaFeKc9dw5U9lVJL1JzI06Wq+sEpzZF5zLtd9qRCqTiPvnPtPB1C4PSz/XwNRhP6PveWm6sgJDhZa993fTdFEFU4f8BLqjrPpKHWqzih13CY5OIIimmq6swN5sovOZEWZ6Q7hPsTP8hvA9YNNtraQiGfb+spt42zQDE72Mj4+fsOd10kkn8dRTT330eSry356ik1KRj+Xdd98Vf96/fz+nnnqqOHEWi8eIEWOCv/L23VIsZgvyvJZ1jvU4mi1YqoyCfZ9FiWRWCOve4kQikzD2wQzb72in4Ypy0IJ7SwlKowKtVsrOuztovKoCU4MWY4UGmUpK3AvdT42y6st1TB70kQymYXYNvGOlgfrzK+h7dYzB96aJ9As3rpU31IrRYXPMRbkBaN1alEZlwRf1Td8qFBG1Pz1C44VlokBp9dfq6Xi8n5g3RzKUIp/NM7pL+Cc9J4oCiHuT4qqfhWz/+fxn1ZxfwuSuKeILej0VmxwAhSKb2fvw6q/VI1fLC44HEOO+Rnd5C8Q+cwIljZ2Cz5jblsqk/HdNiB0ftyYyK+jxdyxWUi37gvCeYG9QFPCAIMaq2Ojg8OOD4vmaY876u/rcEgZfnS+65m7OPc+OMbZzRhzrOUbe92KpMeAfis/vF8K+paJpFlomtFznJhlM0f/SJBMHfPOr+IDGqyqwNxoZ+PsEEzv9wvFqwX2Wk+E3pkkEk0ikEuytJoI9MbqeHKV0g4WWT1eLlu+HHhkiNhxj7TcaAdjzy27Gdvuw1BiQqqWsvKmW8T1eYuMJtHYVco2g9m66uoKDf+wnNp4QhX8AlioNPa+N4NkTZs03hMldrVuLVA7h8ShH/jCExg5Vm0tIRzO8emQ773wwRk9PD96oF0lMQn5sfgCqq6tZuXIlzz333Ief8CJFihQp8p/O2rVrCyIIPve5z/HYY4+JbkjTM1NMM8XBiW28da8WpURFbX4Va09rRKGTM3U4wM4fd7D0C2405Ro0Rgn2FhMam4qDv+3Dsc6IscFMfFcAc7UOfama3fd0oavSUH9ZGb3PjqPQytE71cTH4iRKVSz9QjVTx3xkUzkmdwpCn7XfbCSTyrL9R+1oygWHweU31KAv09D+1AB9zwsTKpZGIxKZhOiMsELcfYaTvb/rEQUyFSfbcZ/iLBA/edqDggMAUHdhKRKFhN5nhUmKVDhNLiPUExorxGd7AaGhCNl1NiZ2zE/kAPQ8M8bothnisyvGas8vLRAx1V1YirlaL0zuPbVgoiiOEAF2RQ19b44XiHd0VRpqznBRvs4mTrbMvSfUH/9QgdOm21tFUdknZdPtrWLk7ELmjv14gZLGKsV9ipPStVb2/KywqbXue02kQmlBGHTc/rlPckCeguPUWKXYVtgYfcfDwd92iGO9kLgvRSYx79wwJxqa3uultM1GJimcd025huaLyjjwmz68h8OUr0vQ/eyg+L45+/Ydd3VwZLaJU3GynZl4krgvJ9qGCx8K7Y8OiRHN2+9oZ/yDGYLDMfQuFRt/2MLhxwaJDsVJBFLkMnlKN1qxt5qEbWtArpFhrtIRatQQmYhz6Hf9GGs1GMo0VJ9WysGRfma6Q+LEoPsUJ9lUjqm9AcKTUWb6Qvg6Yqz9diMKrZz+F6YIN4zwwgs9HD58WHBW2jU/TjKZjNWrV/Ozn/2MLVu2nPhkFylSpEiR/1946KGHeOihhwAYHBzklFNOYWRkhHw+TywRI8YQowzx1i8k2Kw2VHkjLZI2ylbbsTea2PvLHgbfm0ShFb7T15zmQq4RREo77myn5rwSUEPVp1zoy7Ro7Wp2/7SLmvNLMNWpMVfpUejkJEIJBl5LsOSzVXjbQ8S8SaSzjpaGKjVLrqmm740JRnfPEBsV6pq2L9UKUe8/nZ84kauk4j1TbZZirNAWTApt+EYzMC8u6n5mmIaL3aJAacUXa+h6cYLEZIJMKkM2lcNzQGgozYmiAMJjMbGPsZAdd3egNgs/V5xix3vIRyIw3wuqP7sMiVRSKLKZbe0sv6EalUXJnp8W1jBzAjFfR6BgW3MCJbUZUTwzx8KIs0/K6q8K0WyLJtFmTZPCQ4uVVKu/2IDKrCA8GRfPCwhirPqzy2j/ywDBvsL3NV5WjrXBSM05JQwsmGisPquEwTemGHnHi+dYRBzrOSZ3T+FcbiY8Mi/Mmjv2RCCFdIFbQe2FLvLpPAOvTTG81YPOqRJ/V3Wmk/INdjGCbsed7aAWztfoe15iPsHl0tJgwN8ZZeDlKUx1atq+2ipGyB16eJDEZIIVN9UiV8rYd18Pk7s9OFeYyUlztF7vxnM0SGJScL9Q6BXifh1+dJDYaEKsowAMtSa6Xh5hZn+Y5TfWYCjT4jnmJxHO4x8M0/HoCKih4fxyUqE0bx7Zw3t73mFwcJApvxBrmN+bF6NE3G43mzZt4oknnvj4E1+kSJEiRf7TqKurK3AW/5d/+Rd+8pOfEIsJ80NTM1NMIQi2t96rQa8wUptfwcozV6J1qgl1B9n7i24aPl2OplRFLgNla22YKrQc+v0AU61+jOVqPN4kjlYTphode3/ezdSBENXnlDD42hQqs+Bik/QmiU7LabnazfhhL6lohqlDAQBW3iikVez8cQeqWafMueiwjmeGGXpd6I2Z6wxI5TLSEUERU7bRypHHBkWBzFx819ger/ie0d0eMhGhj1K+2YbKpKD/ZaEflpxJwlzvY+7WnYTQeIJUNMPEcSKbkXc9TB8NkZx1+HGf5igQK5VttOJYYkIqk9D19PyCLpKgKVWx4rM1DL41WSDeURmlNF1aQcI/L2AW92NOoHQCkdPGH7aQDKYL3/MxbLqtlfC4IPRfiMoIyRCLBEqooP7cMiq3ONh3nMHC6q82kIqmhW0dt29155UBHHecYFsmuA7tvm+xYAwgMh5noc3LnGho8kgA9yklJGfd0FVGKY2fdnPkj4NERpP4eyP0vzlf4637dhMSGey6p4ue58boeW4MxwoTKkeepCeJQi9HsaCu7nl2TKhLjQq239lOoDvKgT/0oTLIWf/dJjqfGyHYGyPuSYBEgm2JEecyMx1PDs/ujwKzW0ugQkUimKLrL6OojFJsTUaUBjmBoSgzPSGG/y5cKw0XlJNJZPEcChKejhGeiDJzLMSqL9ehsasYfs9LoHScl17s5+Chg0LqzwIvBKlUytq1a7nnnns4+eSTTziWRYqciKJIqci/i7a2toKJszvuuIN/+Zd/IZPJkMvnmPHPADO86BnhjR+rkEqkaPJG1jXfiFwjY+DNKQ49NEDTZeU4VhpIRbM4mk0YSzXs/dceai52YWmxEPtgBnujEWutgZ13d6AtUwuClfem0DhUVG52svunXThWGmi4rFyIb5BKiHgzxIZjLL+xhqgnQdyTJDxrcbj0c1UYKrQc/LcOUbCz9MpK5BoZwYF4gbgoN3vncbYZqdzsZN/vhRtr9bklqExKas6t4Ngjw0xs8zOxTVgt5VhpoOHCSkEh+/sBDi6YTNrwgxYkUthxZ8e8iEgLpW02SpZbC9x9Ov46iFy1uNEDIFPKkMgWC58G3hjHVGc4odvSCVdMAYGhKLYG2SdyaZojMhFHZ1cven7tlxpRGORs/1n7om0dfWyI2jNLCgRKAGq7CiSQy7CIw78foPYCV4FAqXyLDccSE3qnmgO/7RPPV+v1bsw1etHpShxLLWz6dqvQsLu3S3RBmsNSqyeXydP/0iSDr05Rd3EpK2+q5eC/9TP61jiWaj2J4Hw1s+HrgmBo+I1p/B0xtt/RTts/1rHxhy3suKuDiZ1+KjY5CI6GWPONBo49KhRJstniwtKixblCONdauxTtOZVUbnYS8WaYPOxn+I1pStaZsDea0JpVdP11gOBIiI5ZZXTVp0rIJnN4jnUSD6fwDwaJDcdEIdN0foyMI0jH4wfp6+sjTx52CAUCCNFCq1at4vHHH8ftdn/cqS5SpEiRIv9FePjhh8Uogng8zpo1a2hvF+7pc2Lx/bzNgZ+/g16nJx5LspwNGCtaWXaNht0/7WLqmBeFVmjC1J5ahkwpZWpXgAP3t1N5VjkaKzSeV4bGrmL6oJ/tP2rHfYYTjUtN5UkOlEYFR58cxLM7RNMVFUzsm0GmlM7XJNk8q26pw9PhQ6GVEegWaq+NP2whOpWYr0E0ULHRjqvNwu7ZVWgxT4xMMsvAO0JDZsWXavH3RxifFWs7l5mRSOdFSnOrigCW3diEXCk43YT64+LKcdtSPU2Xupk+FqD32XFRoLTqK3VobCpCIxHR1anvxQmyqRyDr8/XHAVIQGsrrH2iQ3ECg1EGXh5a9HKNVcqqW5qJe5Mc+E1fwe/SkQzB0U9YdCEIkdKRjGhpPf8LWHWLsOJ9332F9U3cl2OmM8TUocLV9QBSmVSM7zuenldGic2kC55b8aUmpAoJo+94CgRKm25tJZMUJkQP/rZvwetr0ZWoOfTnAaJD8YIVaHVnlaCxqyhZb2ZqV4DuZ/tpubae3lfGCPXHiXmTZFPztaKxVoP7FCfO5Wb2/7qX3T/tQlOuYeMPW/B2heh5ZgxvVxCNRUXdhaWozEraHxlCpZUgkUlwNBtxrTIz8OY4ge54wSRY9cklHLi/k7gvJ7qO9b04gb5cy+geD8OveUQn1fGtU+gqdES9CbqfGkTjUuNabiMZSPHW+6/j/XsvAwMDBPNBKJxPpb6+nssvv1yM1C5SpEiRIv/1qa6uZmho/v7+0EMP8dWvfpVIJEI+n8c74wW8jOX7ef9uJXKZAn3eyqol16Kxq5jaH+bw73tovMKNtVVPbDxG6WoblhoD++/vpfJMO8YKLbHRBKVtNpytZnbd24XaLMW9SZhUMlXp0FiU7P3XHkx1amrOLyGXyiOVS0mHU8RGEzRfXSlE1Q5GiM9GbtRdVIqj1cTBhwTxCEDz1TVoHSqiEzFRYBMaiYmxu4YqNXXnltP5pHA/d7SZ0Lk01J7upP2xYWYOh5k53Cm+dtlnawmPxjjyp0HaHxsWx2ntNxuRq2Wi0/mcYMi9RXBWXLjQ7tAjA2is87HEC5EpZWKU20K6/zaMc5m1QKA0x6qbhcmT7fe2F7gV+fsiKPWKEwqYPozAUARzlX7R8ys+K9Q4++/rXLQPxx7pofrsygKBEiD0zqSSE/a8up8dIxFIFUwiWlv1lK23YarWceh3/aJAqfZCF66VVjqeHsLfGS0QpAlODBn2/KxbjKmbw7XcSi6bY+C1KSZ3+qg81c6yL1Rz5E+DDH0wjXO5WYzpBVh7i1Arje7ykphMsP1H7Sz7XDUbvt/Mzh93EuxLkPCm8A8EWXFTLV3PCbW5UicIyQ1ValyrrOy+twvU0HR+JWqTkvB4kun2AKPveTHVqXGttGJwaeh6egBff4ix2e8ADeeXk4lnmdnfRSKSInIgRqAnLgrUAnkvsappnnziMD29PULPa9d8z0ulUrFu3TqeeuopXC7Xx57rIkWKFCnyX4P/8T/+B//jf/wPQIhFv+iii3jrrbfIZrMkEnESiThe3mDP7/6OXqcnHcmylLU4mlsxVerY+4tuhrdOobWrBAHL6eWoTAo8h4Js/2k7dWe5UBml1J1ZgqXBQHAoys67O3Cts6ByqKg8yYGhXEv/K6Ps/UU31eeU4FMGkOvlMDcNl0yy4sYaJg/5hAj4DqFHs+7bTcSm4+y4a4Gr4Okuyjba2TvrhJSOJEmG0kzuECYkW652E56Iie47petsKDVyUaR05OH5OrTti/WoTUq2/7SdpCfJ3l8I29RXqFj+uTrBcfGlCVGg1HqNG3O9nqgnycwRwWRifIdPMIzYurhHlMsAUgkqm7Lg+WQoh+dogOETvAcVbPpOK7GpBAd/X7iYLj49Pxf7iVBREOO2kNVfbSU+k+TAbwv7aiRhdJeH0NDi3ppUISmIfVtIx9ND5NPZgueW3SA4co3v9RWImtZ/t4lsOs/eX3bT/sR8vdt0RQW2JiNHHxMckHYvcMKqPKUEQ5lWdP7seG6YZddVM7LVQ6A7SmgshnSBoYXKrqLhwnKhd/jbPg480IfKKGX995rwdYfpeX6c6SMBDKUaKk6xo3Oq6Xp6lFxGqJdNNTpMbh0jO7wEe2OimAgVlLVZ2fdvgpvYmm80otTLGXp9GmONgaGtk4y96xPF/L6OEDK1jOBYlN5nR0AF1ZtdxL1JPtj9HjM7+xgYGCCQCMBsqTlnzFFfX8/111/PP//zP59wzIsU+SQURUpF/j9x++23c/vtt4uPr7jiCp599llyuRzJlPCfPU6cu+69E6VSSSqVQhs1sNz0dWrPLmfXTzrxDQTR2bVoy9Q4m83IlFLGPpih58URSjfYsLRoqTm9DI1VRXg0wsHfdOLaYkdbpqbmjDJBgPOzdnqeHhOETN4Y+lINWodaFIS0Xu9GqpAikUhEgdLabzQy3eVHa5p3P9p0eyuxBavVK09yojIp0ZrVxGIJpvd4iE7ERIeijT9sIRVJs+9XvURGw2TiWXrfECa5ai9wMbFzkrgXkv4UcvXsDXKBu8/kAR/+PqFgsC3TMXMkKroRaeyw6mZhf+YETwubEQtdm6b3h5jeL2yndENhtNpMTwhzlW7Ruet7YYI+JhY9/1G0Pzp8wudnekPY6o2LYt60pcIxHV1QXGntUmLeHN1PjRbM5ehrtSy/bt6JqP8loTCbG5exD2aw1OrFbc25Q3mO+jG5daRnCwnRvjIGyWAKX19YHJeaM0sZeHuCiW1+IXKtLyqKtBytZtG1KObNceQP3ay8uVl0LxjZOo1MJ2X11+rxHAsy/NZ8M6l0gwVtiZo9P++m4lQ7SoOC6rMqCU/EOfzwwCJXpNKTSuh6eYiZ/VEhFk4qiJ/MtQZ8/QE6Hh0TXauIjdF4VQWpWJr2h/twNBowl+vp9I6y1/gWI88cYWBggBQpaAeFQsFciufSpUv5zW9+w+bNm/9d57lIkSJFivzXRKPRcOzYMfHxkSNHOPfccxkbGyOfzxOOCPe8/bzPwR9tRSaTkc3ncEmvoba6Fk25hsMPD7Lk6krqLiyl780J7A0mTKU69vyim5Zry3GutBDqj1Ox0U7ZGhs7f9yBvU1L1RYnQ29MY2s2YqrSsfMnnWjKNZSsN2NrMKGxqkh4M+y7r5e6C0sJTghNhrkFR1VnObHWGxjd5SXpE7LgV365Fq1dLYicZ/sYuhI1KqOC4TenQSM461hbhOKp4lQH7pMcdD0/zMzRCJ6jQUzu2RpHAzWnuhh4ZZJ0LEsunWf6oFAPzbkOHXigj5arK0WBkrVFi68jJgqUlt1Qg6FUw4Hf9xOfTBDojhespNdYpcR9wsRU+yNCPWJfbsDbExb3P+7LkY5kmOlZHLe75xfdi577KOK+D39PMpDC01EYCViyxszU3kDh6jjm3Y2Oj7xdOP6e/fPbmhuX3ldGUc8JtBa4Q6VjGeJ+4RxqrFIcbXaG35xm6N0JGs6vJDotvHD1V+uRa+Xs+kknR/80iLVFS3xKKBYVZg1qi5Ka00o51N/Pod/1s/LLtWy6rVUUnfl7wsRCSVbdUseB+/uIj8WRSCQotHJar3PT/uwwxGej6KQS0IDWpWP7He1oXGpWfbEWc6WO9ugYnk4/Uzs8lKw3U77ejqFCy9j2KaKeKCMfeEAD1Z8S3Cg9R4SJ6OmjPuK+HMu/WI5EDm/PvE5pvYO9D77FxIRQQ48cArVaGCOTycS5555bXLFfpEiRIv8X8fnPf57Pf/7z4uPvfe97/PrXvyYej5NKp0ilU8SIcu8DPxF7XkasrHR8hfrzy9l9bxcT+72YawyoXWpKWi0ojQomD/o49ng/FVucmBs0lG90Yq7WEw+k2H9fOyVrHahdamrPKkdjV7H/3/oZ+vs0ZZttBEbiWOoM5LM5wQ1JDc1XVoBUgkQiFQVKK79cx0xfkLhHJQqUNt7aSnQyxuE/DAJQ/SkXWocKhUlNIpAg3B+m/ckBAj3CvXzdd5tIRzIc+E0f4akEyUCa4feFXk3lqXY8BwSXpOh0Ao113qlnLkps+INpYh7hs80NGgI9gttQbDQBatj47cL9WSjwXujaFOxLEOwTRDGOlSY8B+cXT3ragzhaTYvO3eh7Xkbf+5j42+NYGK22kJmuEHKVrFCgpAZrrR5fe6TAjVNtlpII5Bh8Y4rBN+ZF8GqnUJuERgQnojmB0ty4+NojzLQE6XpmbHY7grjKcziAo8VMJi5MrFWd6WTog2lIQGQqTnBIcFWyNOtovryKofeEKLj2v8yex9lz4VppRaGbnQZIwJ77uwvGf/CtKVQWBSs+W4uvJ8TIO15xAad1hR5TqY79v+nFttyAzqmm+lQHMz0hjjw+TGIyIYqJep4fp3Kjna4XBpg5HGf99wTny9H3vNhazXg7g3Q/PesOYFbQ9+okNeeUkAikaH9qFLVLjb3BRF97P3v0bzLy8hEGBwdJkoROkMvl5POCY9Ly5cv55S9/yac+9al/13kuUqRIkSL/NVGpVLz++uvi49HRUS688EKOHDlCNpsVe157eY/9d34we0+QcLH6Uqpampjc6+Pow320XFtN1dlOhl6fpmSFFZNbz/77e6m90IWpSoe/I0LNGaVUZbLsuqcLY5Maxyoro+95KVtjw95iYu8vulHZVThWmDCUa9CVasgfkHDwd/1UnGIn7k3Ni5gQ4r8cy830vz1ONircP5uvrsRco+fA/V0kQ0INYa7VoStVCzWKCvbe342xTOgp2JYZabignJ6/jTFzLMTkAR+2JqMooJlzSUonIZ3I4u0U6qE516H2J4apv7BUFCgZa9SEBhKiQKnh0nJsLUYO/amf+ESSpCdZ0CdSGaXifs5Frhpr1CRnEvOxb0mIeRJ4OudrsTmOFy19LEkWi5BmCU/EFomXbEuMzBybd/8R93vW3ej4iLyWq92YanQcuL+jwJFpbly6nx/GUK4TxneBa1XSnyYVnXNIAvtyG2NbZxje6kFrV5GcEerTZV+oRm1VsednXfS+OIGnI0hiWvgclUGFoUxL5UY7ge4onU+O0HK1WzQ8SHqTTB30EwsmWHljLQd/308ylEMikSBVSKm7oJTR96cYCeVY+y1hMQAqsNXr2H5nOyojrP5aK7YmI+3BUTydfjz7AxjL1NScWYq1IcLwe5NEJmNM7BUEcQ0XlpMMpvEejYJUwuQBH5HRJKu/3oBCJ2Nn8APMtVo6/riDsbHZSLkD8z0vm83GxRdfzB/+8Id/33kuUuQjKIqUivyH8vTTTxc8/uIXv8hDDz1EJpMhlRImM2KE+dGPfoRUIiWXzzG8vZHzLjwPhU7KkUcGWXp9Fau+XMeB3/bRcGElDedXsvuBLpZdV0X5eieHHx/AtdROSauNHXd2UH1xCU0XVdD1t1HK1tgoWWZh+x3t2FcbKD3JgnOpBX2Jhv43xjn8+wFKT7IQHAmiMMixVRvZd18vpRss6CrU5DJ5IlPCTWbJZ9xIpBIOPjwoiIG0sPLmZpLBlChSIg/52R6FtlTH+L4ZYsPCjci1yopzmYWdd3cU3GzXfaVJFFbNCXHQQtMlVWTPy4kuAPEY5LP5E6qPa84vobTNhr8vTMfj882QOdek4PC8M1TfCx8uRHKf5cRQoubYIycWHy3EsdJA6Ro7hx8fWOSW1P/SJP1MFjy3/EYhgm57X6G70sqbm8ll8osmyiL9MfLZvLgKEAT3pKpPlRDdJAiF5gRKc3Fn23/WjudgGM/BDvH1zqVm0W1p3+97aTinHIBArx/OKEXn0AB+4jNZNn173oXg8MMDuNrMrPtuE7vv7SLmzZHL5MmmM7Rc56bjsWHQQsVaB44lQgNs/6+F87rptlaQwMQ2oQF1+LFBFCpovaIG5xITY7u9BIdDTO73U3uBC9cKK0q9AkOJnkQoyfiuGbRlamwNRlKhNKUnWZDKpYzun21a1Whp7+jgb57nKFOU8befBolGhUZUPBFDpVKRSqWoqqri2Wefpa2t7WPPZ5EiRYoU+T+fZcuWMTo6L0gZGxtj8+bNDA4OksvlxDzwR//yqFh3ASiHP01jUyN9L04wcdCLs9WKfbkBfYkOhV5O76vj9L0xTtkaKxUn2zFV6zBX60nHs3Q9N4x9iRH7cgPuk0tQW5QceLAfqUqCpUqHxhqmZIUF5zKzEJ2rgbItNhwtJpRGBcMPCPfO5qsqSSeyZNM5Ufyy7jtNjO7y4tkrTCitubEBpVnB9p8KQiG1RQF5mJltVEiVEg4+LGxv1RcEl6TwaBTv4bDo4nO8s1HHk0LdtPLLtWgdarpfGBFFS3F/Ep1dJTovLWTD9wWx8fGipcaLK6mJZQqi1T5MWKSxQt3F1YxumxLdpj6K1uurCAzNu0qJxFnkoGSs1VB3bhmVGx3sva+nYBvmGh2D704t2k5kOoHKVLhibmGEmjAuYTTWQuemhce34qYmwWnyzWkC3XEmyv0YSzWE+gstsQFqzypHaVSw/Q5BhHTgjwMsuayChsvL6XlmjKgnidKooPbiUkIDETqeHGHNV4VrQFMOxgoz2+8UXL4qNzlovcxNYDhK1/ND+Npj4r6P7vTgPtnO6C4vw29Ms+lWoU4bfNtDXauZwHCYY08Ns+4WoW4OdA+z8su1pOJpjj0+gr5MSVKS4PV9LzNjmOHoQ1uZmpoiT57e3iAmk1AHKpVKbrjhBh544IGPPZdFihQpUuT/Du655x7uuece8fHCiJK5nlcIHz+6c77nVXOkhgtrL0TnVHD0iRGWXlvJ8uuqOfyHQZZcq0d7gZo9v+mm5fJKHK0mPO1Bytc5KFtjZ8fdHVScaqfyJCs9r45TfWoJFRvs7LizHXOThpI1Fix1emxNRobem6LzyREcbSbC40G0DhVSiZn9v+nF2qrHWKMjk8wQ9cw7Lym0cvY/2C8Km9q+2kzCl2J/z2ydkYdcTrihG0rUTBzwidFllSc5KVtnZ9dPOgtclVbdLNRk+3/dXiASar2qZlE0XTaVJTK9uO5ybbBSe6YLX1eIzr/M17ptN9ejtitJ+JOi8OqjxEiuDVbMVbrCSN8PwVSnpnyjk/6Xhhc5L53oM9beLIhy9o8XuiutuqWZXDpX4B4FkJhOkEtlC3pe1lY9zZe7iYwLQqE5gdKcO+X++zoJDyXEbVlb9ZRvsGOu0XPod/0cfnSAmtNLAPAPRiE/Wy8DgZE4m25vJeFNsf83vRz5Uy/2VVbWfrNRqOUSkE1mSSUyNF5WTvesi7d7sxOZQko6nuPYX4YgARu+34xUJmVi5xQqnYKDf+onl4K2m2qJeZIMvz+FfzDETEcY1wYr7i0l+HpCqHRR4qEkE7t9oBaEUslAGttyAzKVlLE9HkiArdVI33AvL009TVlZGe/+/HkiEaHejw/EUKvVpFIpWlpaeOyxx1i5cuXHns8iRYoUKfJ/PhUVFRw4cEB87PF4uOSSS9i1axfZbFasvf76ypM8+6pQd0mQoJi4lOYlTQy9Pk3/O+NUbnBiW2ZE79SgL9Mwsd1D53PDlG+w4VpnQedU42qzks/mOfpIH7alZiwtesrX2jBV6znycC8TB/wYyjSojFCxyQG5PDtn5/HmBEqGMq0Y9VZ7votsOksmkRWFP2231DP8/jTeTuEet+xawc1m36+E7WhtKshDZERQBMlVMmF7CC5JlgYD8ZkUnkNB9sy5+KgE16HoVJxDvx+g90VhLrD56kqs9QZ6XhzDc0gQFMV9SXLJHPGJ47LQgDXfbESukbHzrgVzdipYel0tyUi6IFrt4O8+RIykgqaLKpg84Fsc03YC6i8sJTKVYHK3f9HvFsW/2VU0XVpB/JQkBx6Yn2utPc+Fq83K4DuTjG/zFbwnPBFDX64hueBwV39tNkLt3nZCAwlCAwlQCcL5hE9wNVootlp2YyNKrZyxrTPEJ5KM7Z5BZVOTDCXIZ/MsbHy5T3ZiKNOy/d52kt4k+/6tj6aLyqi7oJS+lyaITMbRlapxn2UnOpai76UJln2hGq1LjcohRe/Ss/MnndiWGWm+tBKFXo7nWJCulycIdYXFWOLx/T5KN5Uw9MEkY+/5WP/dJmRKGaM7fFSvsePtDtL13CirbqhDY1XR+eQorde4SQRTHHtiBIUa8ro077b/nXHtGMee3Mbk1CR58sz0I/a8jEYjX/rSl7j33ns/9lwWKfL/lqJIqcj/Vh588EEefPBB8fEdd9zBXXfdRSKRECfKuvu66f7l/GRH34tLqHRXEc7HGHhnlJpPVVB7mgulRiFOpAy8PUHFRgdLP18N+TymKj3xzSkm9s9gKFVTe4ELS60elUnJ4ccGcbQYUBgVaO1Sak4rJZ9zCdEjdig9yYJ7c4k4IQPgPt2BvlSLTCUVRUfLrqsmFUkzdSQAwMqbaslmcmLsSP15lcLEyC4vxGDo3SnSUSE2Y+kXqtHaVOz+aRfezmCB65D7LCfDb0wTmYgz0yUUIJYWLf6OmDC5N8v67zXT/eIw/o4YA+9M4Wg1M/TGWMF4d70wQtUpJaJASUQrxJVFxmMFrkbla2wnjI87Ee6Thag7rVZKLDbfgNl4awvTRwOLxFC9L49QusaxSNAU9yUJLYg6Wf21eoLDMXqfHxePd+74xz6YwbXKQs8zg2jsYG6yMLHNz/SRACUrLBCD+kvKsLeY2Hl3B2MfzGCs1IrCrfX/2IxMJaXntTHBdakriKPFRO/z48TGE6TDGTLpLOVbbIx9MIPpUh1ytYyyU0yERtLsvLtDdDTSVILBYeTAb9qpOLmcypOcqO0qUqE0A1snCHbHWXFTExKphMDQIFUnuwgMhBl4dZSVNzdDHqYPB3C0mgmNR+h4bliMkJvaHWTDD1pIJzLs/dcelGenmdwzyAfvf4BUI+W9n75AOi1cS4FAAKvVSiwWY9myZbz44ovF+LYiRYoUKQJAeXk5AwPzUQ8+n4+zzjqLAwcOiIIlgGee+av4s+4tHRujGwnHY3h/EWbtdxtZ99Umdt/TRd1ZZZRtULD7vi6WXlNF+VobXc+PYGswY6s3c+AP/VSd4qD+/FJ6X5vEfYqT8o12DvxpAEuNgopTHRjLNFjqDAx9MM3MIQ+ONiORqRDWRgPpSIZdP+nEWKtBX6FFrpFhLNMy7MtRcbKdZDwtrOCe1fPYG01MHPBBXBAIlSyzYK0xsOcX3Rx4oI+Gy8tFwdH6f2pm6qCfwfenSEcyjO8RBDqlG61MHPTR9eIEzReXia83N2rofXacXoTVYg2Xl6NzqDj4W6E54e0WosUWEvflCI3EGH5/cVRc3SWlOFvNBbWcwqzBVKlDdnIpge6PX2FmrtFhKNcUiIuWfqEarV0lRGksINQfJzwep/e1QtH4wJtTLL3WLW7DtlRP7dll7PlZd8HxGmsFYdHEPh/6EmGVlPsMJ8NvThP3CbFzc85Na7/VSHgsTudTIwy8PQGzjtkaqxT3ZgfpVRb2/Lyb/b/uZd13mmj9TBXtjwwxfSyIvcVA62eraP/zEPGxOEqzArNcR8XJdnqeGQONYB1uqzOg0CnY+/seiCMKjUJDCXKpHKM7PUTGYzRfVkVkPI6pOkZkOkZ4JEHdGaXYm01MHwuw9PPVpOJpRt73oLFqhIgdT4K6s0uRq2S0Pz+AT+OjbzJLZ3snHRMdGCIGwvvmnbC0Wi0Wi4V0Os33vvc9brvtto89d0WKFClS5L8HCyNKQOiB/eAHP8Dn84k9r4GhAX71q1+Jr+l7pYWqmloC+STH/tpP66W11JxegkItQ1+mRW1W0/PyGO6THbRe5yYZTuNcZiETzzL8/jRGt5aqM50YK7QYK3W0/2WQ6HScXCqH2qmm/txyyJUJ/S01lKyxUHmSXRAKz0ailW20Yq7WozIq5qPhrq0k6kkwM3u/b766knw2LzqNN11SidKowHfUTyKQo+el+X5U42XlGCu17P3XHjztQZxLzaLQp+IUO6PvefF1h8RFgYYqNeGhREE9s+YbDfS9No6/M8rkTh8V620MvlsoDGp/bpS6s0pEgdJC1n6rkeh0osAB3L3ZgVxz4tiP43Gf7MJYqRNdpebY8P1mpo74GXi5sN7rfHaYys3ORfFv4ZEYMf/8+5ffUE3Uk6TvbxPsmj1eU52aYF8CX3uE6JYE3S9PCudqqYWpvX7G987g3uwkkcjhPs2Bq83K7p924WuPMFXvFx2fVn9JmKya2OYhEcgxvseLa5WV/hcnIQExT5J0Ii1GjxjLtCj0clybLETH4uz+aZfoaDS8fQyd08D++9qxr7BTd1YppnIN4akEg++OExhMsfyLQn9s/4P91J1TgvdYkOGtM6y6oQakEqb2B6g720ZgMEzHcyNihJxnf5C1324kFU2z774epJsT7D00xrZt28ipc7x/3/xEs9/vx2azkUgkWLduHY899hjV1dWf6BwWKVKkSJH/u3E4HGzbtk18nEwmufLKK3njjTdIJIR7b548zz//rPga9R41m5SbSKWzzPwhRNs/1rHshnr2/qKblsvcqC0q9t7fjUwjwbXKSngsSskyKyXLrRy4v4vKU0oo31jC4HtT1J9TRva0Eg482I++UkXZRisKo5yK9Q5Gtk7T/ddBzFU64v4orlVWEoEUe3/RjaZUhaFUgdqixFylY2zrDI4VJjKpLLHJhChicrVZGN/nFVyLVIIYyrHEzL77emh/Ypja81yi4GjNNxqZOuhn5F0PMU+CqVkncdsyI5GhEAOvjKH4tFt8vbFKVSC6rvyUA3OtThQDTR3wY6zQFA54UnCsnNq3WAxecYqd8nU2sbYBwT3I1mxEqZdzpHfwY8+nc7kFSyJbIFJquKQMU7Wevb/pLohgS3qTzHSFGNtR6KI0tnUac61eiGybPc6Gi9zsu6+n4HiNVSpCQ0mG35vG2miAJLjWWYTPTkJ8et4datXNdUSmEvQ8O0bfq+PzEXIqqD+3jGRQqGeO/nmItlvqab66ks4nR5g6FEAqk9B4cTndfxkj6UmidaqRa2S41pgZedfDyLseNt3WSjKUBikceWYQQrD+e01I5VL2D0VQaGQMvDWBvz/KqhvrCI/G8DmUhKfiTOyfoazNSvk6O9OH/TRcWk4qlmH4tQlUKrA1GQmPxyhfa0NlVNL94jCxfIiR+ADdb3VzzHMMg8FA+JfzPS+dXofVakWpVHLbbbfxla985WPPXZEi/1EURUpF/lM5Ph7O6/Vyyimn0NHRIUZUHWs/xrF2Icpk99b3cPW6iIQjJF5MccvXbmbTt1vZfkc7NaeVIi+TseOuDlo/X0n5WhvD70+jX6VD79Jx8I/9VJ/mpPWySka2TlNzZinla2yM7vIiN0hY8hk3OcBaY2Di4AyZRA5nm5GwJ0TFJgeZeJbtd7SjLVNjaVRhLNURnYoz+o4Xx0oDSqMCuWq+2ZGOZQiMxiEmRJFVfaoEf3+E6f0htDaVGPfW/9IkwWXCTWDlTbVonWpy6VxBfnzLp6vJZ/PixFb5FhsylZTS1Xb8HcMQQ2zmlG6w4Fpt5cD9fQR7YhzuEbbTcEU5PU/PNo1iIJVJUJkUBeej/ekhgmMfr2oG2PerXpxtRmLe+QaMs82IRCoRc0hBEF15OyPMHIkycyQqvq5ik5P9v+7lwP0LLBy1oDIpsTXKxUmy+kvKcC4zM9MTouvJUfb9ShCBzbsV+Rne4SE4LGxba1chlUvQ12qJ9Mew1BpY/bV69v2ql95XR6g8pYSaU0sYeHkKtUGBRC6h7tIS+p6bYs8vu9l0eyuazWpS4RQH7u8TY/bSUWFCs+elEeQqGas+3wp5GN42TS6bIzQaJRVLU77WTnAoQulSG3F/El9vhOotDnQlGoY+mGLpFxrIJLO0/3UEx1IjMpWUZDjL6hvqQZrn93c8jK5exeTfOunv7yeWj8Fr80OkUCiora0lGAxy2223ccstt3yi81WkSJEiRYpYrVb27t1b8Ny//uu/cvvttxMOC7VINBrlzbfeFH+/434dFouFsfw4Pfce4nPfvYYVn6klGUyjKJejK9Nw9PEBmi93s/QaN572ILYmI+XrLYzu8GKp09F4fim5bB5juZb+d8aQyCQotXLMTVZqTndBHrpfGCEezFC60UrFRjsKnVxwTIoLQpqKTQ6kCokoIK+/tBSpQoJSL3x9Kd1YQtSbYOB1YZJmzdcbUOjk9DCGtUWLTClFbVZCXBBxh/oFpVPNGS6qTy1hx10d4uqr1uvcmGv1DG/1MPqO0PCw1OkLsux7nx0Xf171lToG3hwn0B3n6EODgCDy0ZdrRTGQXCFDIpVgbtSIrkmh/jhdzw+LwqiP48D97SjMhU0itV5RsF8gCKL6np/gyB/ma8lVN9cx/MEUM0cjBZbXrjYbCq0cR5tRjHibi0vb/qN2IWYPqD67hPL1dvQuDe2PDtH32ii+2UhihVaO3jVr99xgwlytY+pYgLgvh78/hMow784kV8nQ2pRYW7QMvzmNrcGAuUpHyXoDoZ4o2+9oZ+23G3Gf4mSmz4vWIpwHtUVB7ZmlaEtVqDQKJo74SPrTrPyHGiRSCQNvTVJ7Zhm+7hCD73pYdWMt5CE4GMe5zMx0h5+eZ8bZ8MMWpBIJU3sDbLq9Fa/XyyMPPkbdkhp8+3yMjAjC9v3Pza9+02q1lJWVYTabeeWVV7BarZ/ofBUpUqRIkSJf/OIX+eIXvyg+TiQSnH/++bz//vtkMkJsREdXBx1dQq9nX4eEbb4SIT4umOWGL3+Bthtr2f6jdurPLUOukdP+k06Q5SlZaWF4qwdThQ6TW8+BB/up2mKj9swyRnd4qTu7FPcpOQbemkRlkdN8ZQXJWJqyNjsTB2ZI+NNYqnXEA1Gqz3CRCqfZ/qN21GYphlot1joD0ck4o+95MTdo0DpUyDXzbeNUJE1oPCaIctTQcH45vp4QnoNB9KUaFHqh3zT6npfIuNCvab6qEluTEalMUuCItPT62vm4OsC23IDSoMC1yoq/U3jv3n8VVuxbmnW4tzg59OAAickEx/4sLLyrOb+kQDgkV8lQGwodIjueHiIdXCxoOhFH/jSItVVfIIAy1amRyqTIFfO1l2uDlehEjPBQgvahYfF11aeXceh3/Rz982DBdnUuLSqLkj6EmrXiFDvuk52iS9ScCGzD95uRyqVM7fXj2R8kMZOEBGgsSuRqmRgL52g1YarUsf/+XrpfGKHmTBeudQ4G35hCqZcjU0qpvaCE/pemOPjbPjbd1oreoSHuTwqOV2rY9N1WksE0o9u9dDw3gtooZ9U/tALQ/8YEcpUMX08I/1iEhrMqCAxGcLRISPiT+HoilK+zYK7WM7J1miVXVZJOZuh6ZgRthRqlUUFoJMaya6pRaOU8eu9fkFZnmHytk4GBAaL5KHwwPz5yuZza2lqSySS33nprwd9PkSJFihQp8lGoVCpeeOGFgueee+45vvGNbzA6OkoulyORTPD222+Lv9/+By1Wi5XJ/BR9dx7huh9ewbKrqwhNxrE3KTC4tRx6uJ+WT1ey5DO1jO700nC+lUwiQ//fJ7A0GWg4z0UylMa53ELf2+N4jgXIZfOYGszUnuECqYRjTw6ST2dxrDBRvt6G1qlm36/aSYbAVK+l6tQSlHq56NZdeZoduVom9lPK1lgJjkYZeU+odZb9QzU6h5r+VybRlKpQaOVoHcJCut5XxojMOmU2XFAOuXJ2/qRDFCBVn1NC2RobI1sFkQyAc5kZpUEuxJwlEZ8HWPrZKka2ewj2xuiZdVpUOVRYqjRM7g0AiLFk5kYdgW6hdkt6k7Q/NSQ+/ji2/7QdvaNwMaDaKtQ9CwVK7jMdDP/dQ9fT87XkkuvdTB4IMHMsJJpIADiWWVGZFDhWmESB1rpvNyFTSdlxVweeQ0E8h4I4V5upPbsUS62BjieH6X9rXHBVQpivnIvys9TqKVlhITQQJBmCyYMzaG1q8fOUejl5iXBOp/cFsDUYcTSbCawOERxKsfPuDlZ9uY7ac8rwDwXQWHT0vzGBTC2l+dJKJvbPIJVIGN/nJR3OseKLDcjVMrqeH6X5kgqmDvgZ3ekTel6AvytM7dkupo746X1+nHXfaUKqkDJzJMSGH7Tg9wR46A+PULeiivceDzA0PAQSyC/oeanVasrLy3G73Tz99NMYjcZPdL6KFPnfQVGkVOT/V+x2O8eOHSt47uc//zn/83/+T8LhMPl8nomJeYeeX/7qlyiVSlL5FG/+C1x44UVUfNZK3JPCXCmhdJ2Vg3/uZPl1Taz4Qg2Db01irtHjbDMxut2DfamR0pVWop4EpkodY3unCKtlqI1K8vo8FevsAHi7Q/i7gjRdXYGpQodcI6P/7XEm9vtxthmpO6cciWzhxFkJarOSVEhwu3FtcpHP5QkMCpNQMU8CpMKdbU6E42kOcvCRfpZdXc3oO4Kid913mpg84MPfHyE9m3tass5EIpDg4G86RYHQ6q/W0/5EL3EvVG5xCk4/dojPipobLivH2WJGcb1MXEW2MJ5kjmDPJxMozTG9P7To8fT+wu1WrLdTvlaI4puj+rRS5BoZWruUmDdH6/VuQmMxRt/xisdVf0kZvc+P0/v8OOZqHcNbR1n7rUY8HUEGX51i8qBPtMXe9O1W8rk8O+7sYOqwD7XZRaRfOJZsJgdyYaxnjkRpukSN2qBi6kCQI38cZM03GihZaiMyHifUF2Lo3SkqNjlouLASuU641oKDEWRaGdWnuphq92Eq0+HpDJL0pXCf5AQgMBjBtdRKYCDM0H4vyy+rJpvMYXbr0Jdq6H51GHujBZlKSjaZIzIZw7Apz2OPvMrE5AQmswmPx0Mmn4EeoahOznpPNjY24nK5ePXVV9Fqtf+uc1SkSJEiRYp8FF//+tf5+te/Lj6Ox+Occ8457Nixg3Q6TTQaFSNFh+I93HnnnUiQkMlmaGxsZMOGDUxt9dGMG7lWhlwnY+DtEapPrcDfE0ZtViFTSDn63ABlS+24N7nw9YZxrbKQz+UZ3uZBqZdTucVJ1BvD0WTFPxgiNwalK63k0jnqzi0jHc0w9J4XjVWKqcWEc6mFmCdJ119G0bjUOJeZkcolovgoL82TTQl1kq8jJjj/HBNWYy29pgaA7Xe2M/julCgyrz2/FHONjo7n+mmx1IoCpboLS9l9TxcaqxSAqrOcKA0Kep4ZQ1elQWNTUX92BXu75+2ul15TAxJEkdLC5slCPqlACSDug7ivMBZuYZQbwNLPV2Ny60hHsqLASONSo7GrqD2zjJmj3WisUpqurObgb/s59uchNFYpugodtqV6Zo5GxNVi7jOclCwzs+cX3Qy+PoW+VBAoNV9VibXRIIq4QmMxMjHBPikyGcfk1lK50c7I217kagVah5qK0+2MvuVl+53tbLq9lYaL3PQpxuh8agBjo466sypJrEsRHo8z+M4kxnIdq74g1HeB/gi5fJ7gSJR8NoelzkC2I4hjo4l4IMHUgSAlbWYUejlTh2ZYdUMtmWSWI88Os+SSCiRSCdHJJO4vGDlw8AAvv/wSLpeLvb96k0AgAMChw4dQqVTk83l0Oh0tLS1ceeWVfPe73/3E56dIkSJFihT5ONRqNW+99VbBc48//jj/9E//xNjYGPl8nsnJeRfEX//2vvme111w3nnnU3ldCdG+FCWtUsrWWDnwxADLPu1m1Y21dDw9gK3VREmbib7XJyhpM1O52U6gN4Kt2cTYXg/+/jAyhRRDiRr3ZgcSmZSJPTOExmPUXVSKsUKLxqai+5VhIn0xrK166s8rR66RiT2v8i029GVasmmhRixbZyOXzYnOSJGJOImg4IRTttlG9amCy07nUyO0Xudm+G2hxlr91QamDvuZOjwfx2Fp1pHP5Nl/33xs2vIbqul+ZphEIEftmWWozArUTjWJ2Wi4ilPslK22ozGrxKi5HXcviCeZ5USOSx+Frz1S8DjYl2D7nYU9r9rThX7fws+rO6sCtV2JtkJNbDRB3UWlggjoPS8H7heOq+acEgZem2L0PS/2FhOD74+z8st1BPojDL4xxegOL5mkcPwbf9gKeeEzpo8F0JdpCfQINWE2mQNZXjw+fYkWjVXN5MEgPc+No7GpcK2yEZ5OEu4O0ffaBJUn2Wm5ooqeF8eQyqV4jwWRqiXUn1fG1OEZdCVaJg7MkApnqD1TmFydPuKneosLz9EAE8dmWPZpod7S2dPYWk30vTqMrlSP0ignE8/iGQpQd4qNJ598kqHBIWw2Gx6vR3AFHxBicufckurr66mtreWpp57CbDb/u85RkSJFihQp8lFceumlXHrppeLjZDLJDTfcwIsvvkgoFCIWixGLCfNIA/ku7rr7LqRSKZlMhrqeOjZu3EhwZwjyoDQp0LvUHP3rAEsuq0aqkKI1q1AZFRx4tI98Nk/FWgf+nrAQAZeHwTcnUFoUVJ1Sgn8wjPukEmZ6g0Qm4uirjOiBposrSIbS9Lw4hsoI2godlZucRCfj9Dw7hsquomy9HaVGzrFZ4YxUKSGdFPow8YkkCV+S6aMBAJZcU41ELmXn3R30vDSGetaooGyjFecyMx3P9WOq0IpCpMpPOdh3Xw8qoxSS4FxtxlCqoe+lCVRGKUa3jlqdnAO982YDK79QjUwhE0VKc65Ax/NJBUrCyYHIaGH03PExb/UXllKyygpZxHpSZQRTtR6VWcnMsRAqIzRcUsXRPw/R99IEo+9PobIpsbTo8XdEmNjnQ6ET3IxK19k48EAf0/sCmKt1dL80hvtMBxUbHIx8IBzTTHcIZuOOg8MxHEtM2FdZGXvPh0whx+jWUXGqndF3vOz8SSebbm2l8aIKel4ao+O5YWwtRpouqCQ+k8Q/EKH/zQnMdXpW3dACwPRhPxKpBG9nkEQwSc2pZUwfDeBs1RIPJPEcClDSZkZjUzH8vodVN9QIPa9He2n+dBVSuZTYdIKqz5g40nmUl178G06nk32/eQu/X+iDHjzkR6PRkM/n0ev1tLa2csMNN/ClL33pk5+fIkX+EyiKlIr8l+Nb3/oW3/rWtwqee/jhh/nmN7+J3+8Xv9QCvPji38Sf1W+qcVe6iWaixHYHWL58KZVbnKRjGXQ2LYqVSqQyCTKVFIVOxtheL2WrnWSzWWRSYbIqk86Sjmew1RrQORRorVqiAaHZUtpmxX2SE5lSRi6dI5fN0fyZCuLeBM6lNnK5HGO7PWjdWlzLLUgkEia2CTcFQ6VWdBsKjAaxLzES6AlBDPQuDRtubabjL8PINTJK11kJj8TpfWMcrVtL7VllSCSCIKr+kjKsjQbkKhkNl9QgU0qJeZKMbBMmpdZ9p4np9hl6nh3D6Nagc86reufi6TQWFV2vj9B0diWTB3y42qzIlIKQZvdP5+0Z5br5lWIbfiCs6Or46yA6l5ay1Tay6SyT+/1Y6g0oVDIO/FYoWjKpLJFJoRhpvLocc4Weo48PodBJqT1fyFLVWFUYK3W4VlgIDscwVmhQmZRYGwy0vzLC3l/20HK9G4VOjr3JSNKfomSlhfBElIltfmKhBGqtEkuLFlujCblGxtrvNrLn3m7SkQxqi5Llt1Rz+P5BhndM4d5YwrLPVjO6zUM8kECukVF3VgWJcAqFRkYqkiI1nhGiAPN5cuk8cV+SZCSFvdGEVCYlOxgUHLbSGfz9Yax1RqRyCcHJGMsvqyaTyiKRStA4lRw92s5QaoDeLilDbwwxPT2NVCol98i8C5XRZMRkMhEMBjn55JP505/+VIxtK1KkSJEi/+loNBree++9gufi8TiXX345b731VkHd1d3dTXe34Mqz7Z6XcblcqNVqzGYz6Z44tTW1xDwJdCVqll5Ww4E/drKqsRlrk56pYz6MFVrcmx0ERiNorCryUsims8gUMnQ2JZYGPRKJhMBAFP9QmKpTnZRvtqFUK4j7kyi0Mko3WqncIrgsRWeEyZrqC5yoDSriQaG5seSLVSj0cswNBmaORkil0kglguAoG89SdYoTXYkCvVOHQi9n6ZX1HH24FzSw4nM16Bwa9KUaDv2un9VfrUdpVAhxrgNhqk9x0ff2BFPb/DRfVYmuVMW+X/bS9/o4FSc7qL+sjN5nx7G2aKk7p4LAUAi9S0dkKoHepWbkg2kaL6okncoQGozR9ZdRmC255kRDdZeU4lxqJh0WYmBXfrmWbCaLSqfk2FMjLL3GzfAH00ztDRDzJNG51Ay/OY2uSkP9eaWkw1nanxog6Y2z9puN5PI5VAYlzddUYHBp2fOLblbdUkk+nye8Js7RpwYB2PCtZqRSKRqXmiXXVYouoJ1/G2H9N5uw1OkZfceDsVxLnjxVZzkZemOaio12KjY5CI5EOPL4AOu/3oR7k5NcLoP/UIhMKotMJqXx4koiUzHUJhWRqThShQTnEjOmWi0yqYzp9gCWWj2WBgP5bJ50MoOxQsvUMS96hw65SoZErqRikx2FVk7cl6Tp0ipCkRDbPtiG1Cal/9X99PT0kM1myb6fFa/dYDCI3W4nGAzicrn4X//rfxVX6hcpUqRIkf9fuPbaa7n22msLnnv11Ve55ZZbGBoaKqi9XnnlZfFn5T4lbrebeDJOYl8Ly1Yso+GCShLeFPoSLYqTFOTzORQaORqXmoEPJqk+qYRcNgd5kMikpOIpMvEcjmVmdOVKTOVGor4YoaEYZavsqE5VotDIySSzpGMZGq4oIzIRo+pTwnbGD3pRO9VUbXYikUnECA1bqxHJ7JLz0GSUXC7HzKCwyE1foWHDD5s5+PtBVGYF5RtsBAdjdL4wgtoMzZ92iz0v92kOnCvMKPUKGi5zk89AzJug95UREqEEq7/WgLc7wNBrHqxNBjTW+dX3rde5kcgkqAwKBt6aoPbMMqaP+nEutaAwyEmHM+x7sAdmdUuKBT2vtd9tRKGS0/nsMDK1DPdJTrKZLNNHghjLNCj0cnHSLBVNE/UKG6k+14mt3kTHcyMoVFC+1or2XBW6Eg3ZVA5bs5HIRBytTYWhQoutxUjPayMc/G0fdReVonUI4v7gcITKLQ7CY0LUXWg6gs6mwdqqx+TWoTIrWPOdBvb+tIfYTBJztZ7lN1dx+DdD9L4+Qv25lSz/fBVDb08Tm0mgtilpOLuM+DobCo2cRDhFpDtBwwXl5MmTSWSJTieI+xJYG43IVXL8QyGqTy0hk8wIE2XNFuRqGbFIgmVX1pJOZCAP5gY9PZ09dGW6kE/IGd41zOTkJFKplK0Pz/e8srksZrOZaDTKGWecwb/927/hcrn+P/71FClSpEiRIv8+VCoVjz76aMFzyWSSb37zmzz55JP4/X5yOeH+1dfXR1+fMMf1/n0v4nQ60Wl1GPQGFF0pauvqCI9EUehlrPpMHdt/1c6mFRbsy4xM7veiL9VSe24Znh4/+jINeXmedDxDPgdGtw77MjNSmYTpg34iUwlqz3aRTthRm1SExqMoNHIca01Urneg1MkJjwtiKud6EzqHhkRA6HnVfboEjUOFtcmAvyNCKpFGNuv6mI6kaLy4HF2ZBo1RgdappvXyOjpfGAUVNF9WgbXeKEa9LfuHarQONTK5FM8xP3Vnl9P92ijevSGqzynBXKvn4AN9dD0/Ss2ZLmrPd9H/8iT6ChUNF1TgGwhhLNcRHIlidusZfHOc1mtrScfSBPuj9L44IagQJGBbYmTmWIiKU+xUbnGQ9KfZf38vS65zkyOH2qCi/fE+Wq+tY3SHF8+hIDFfknQ8zfDbHlR2FXXnl5CN5Tj8UB8RT5JVX64jm8uhd2pouKwMvVPDgT/1sfraWnL5PIEVETqfG4EkrP+nJmQKGfoKFfUXlqOxqlD9fYzhv3soXW3F6BaczG0NRiQKiPtTjL7npfHCctxbSgiPJ+l5bgxTtQ73ZieZeBZ/b4xULI1UIaX1yipmekPoSzUEh8OAhPJ1dmxLDEjzUsb3ebG3GilZZSWfyREPJrE1lTK2z4vOokJpVKDQypCttaK1qQmPRqk7r5RoIsq2D3Ygqcnz+vvt9PT0kE6nyW2dr7uCoSAOh4NwOExdXR233norn/nMZ/53/mkVKfIfQlGkVOT/CD73uc/xuc99ruC5V199lZtvvpnh4WHy+TyJRILuHmHibGxsjDfffAOFXIHFakGlUlFdVQ0SaGtrw2QxIWuQks/nkclkpKMZUvEMOrsg6pHIJcj1cvL5PAqlHIVRTp48EomE0ESUQF8U92YnZrceW42JdCKDXCWj+vRSVAZlQfxZ/RWCyCg/q76t3FiCTCbDfUoJnoNhkIJUIiXYE6Pr5SGazq/CWKlj4zdakMiE7SRCQpPK0qBHrpIxunOS4b/72HR7K2prHq1NhVQOco2MstVOBl/xQg4UBjlLP1+NQi1DYxdWi0ukEmq3CM5G1noD2UQWqVKCXCMDLTBrriSVSsVjkMqFsfJ3xKjcXIJcI0OukVG+3o5MKUUilbD+n5rZ9ZNO5EoZWrOGVV+uQzNr16hzKqg6xYVCJ0cik9D78ijOFVaMFVostXp2P9DF6i/VozIoWX5ZNR25QUyVOgD2/rIHfa0g8tI7BVchrVE4T5Y6I+2PDrPp9lYUajnaMjXdr4yz/Lpq9FYty2+swT8Wnj0GidBYy+WQSqXEvIJYSSaXoTZJ0ZjUhDwRjA49MqUEtUmJTC1FIpEwtn+a8jbBQUkml2FvNJNKpRgZHcErn2HHk+8wNT2FWq3G4/GQzQqTYgqFQvy5vLwci8VCW1sb999/f9EhqUiRIkWK/JdFo9HwyiuvFDwXj8f5xje+wRNPPCFGxS1c+X/w4EGkUilKpRKn04lWq6WktoSOjjwNDQ04Ws2kooLjpLlCz9D741SdXAaA2iRMiCGBfC6PuVqH0ixFKpMiy+cJT8RRmxUoNHJqznCRz+bJ5/NozWqWfKEKU4VOEBmncuiqNBhLhHvs+O4AAEr1fNytsUqHRCJBa9Ow5xfdrP12Awq9gpKNDsrabGK9dugRIXpDZVaSy+TofmEEa5MJhV5O5Xo7U9v8mGp0yBRSlny2imN/HqLu3DIs1XrWfa8JX18IhV6OtdGMTCFFoZUj18jwHg7TcEEehUqOqUqodebqPXO9IKqy1hiQSCSk40INobWrxTrUvkQQVlWdVoK5Ro/BpUGmEGq2FZ8VHKNypjyBIS1155Sj0MsJDkWZPOTHfZJTrFGnDvopWW7BWKll/deaOfxoJ1KplOhMgvhkArlaJtSCGmi9vAq5XI7BJTS9otOCEM2+1MjQG9OkommUOgXNl1Xh6wmLNWTNlnLK25zIlTLS8QxRbwJzpR4AvUpD1Jsgl82J50eiyKLUKsims2QTORQ64auqpcaEQiNncnISv9/P1OQUBw8dxGAwEA6HCYXmnT41Gg2pVAqZTMayZcsAeOCBB9i8efMnvfyLFClSpEiR/3TOPfdc+vv7C57bvXs3t9xyC0eOHCGZTJJKpejtFeIsxsbHePPtN1HIFZgtZtQqNVVVVUiRsnL1SswOMzKphDx5pHIpyWCa6EwEW52JlDyNXClDY1OTzwu/N1SoQCrUGjN9IcLDcapPLcHeYMLZYiERTqLSK6ncWILKKBdrF4DK0+0FPa+KDXZkMhlVW1zM7BdcnCQSCYnpBAcf72fltbWYqnSs+2oTMqUMiQTRhcnabESpVzD4zgTjW/1s/EELyMDXEyE5k0JlUlC+1sHQax7y6TyqEgUNny5DY1ahtauQSCRI5BLcW5yozAosdQZSkTQKgxyVWYHWLjgdgdDnmkOhFvp/vvYIzVdWoDIrAAXla+VI5BJkShlrv93Invu7URoU5LPQck0llnoDAMYKLSXLzajMCuQKGR1/HcK5xIyt1YRCLWPvv/UIQninhiWfrqXrhRGsTcJ7993Xg9osjJHOJdSwJpceJGCu09P/4iSla20oNQrULjV9r03RdpMOvV1Hy/WVBHoDAMgUUurOKRV6XjIpweEocr0MuVqGTqlGZ5Pg7fFhb7QK/TOLCoVBjkQiYfDtUapOqZjdjgzXcivpdJrRwRG8Mi87//IeExMTaDQavF6vGF0olwvjBuByuXA6nWzZsoV77rkHtXp+0WSRIkWKFCnyXwmVSsUDDzzAAw88ID6XTCb5yU9+woMPPsjExATZbJbp6Wnx94ePHhZ7XiXOEtRqNaUrSjl29BhNLU24VtuJeISJNUe9hYG3x6k5tQwkoJ0VoEgkkEvnsC8xo7bFkKlkIAH/QASlQY7GoqLhrHKy2Rz5bB6dQ0PTFRXYmoQ4rmwqh8quwl5vAcB7VHDFVptUYq/HVCX0k3QOFQfu72PlzbVoHWpsLQbcm+rIZnLk/x/27ju+qer9A/jnZjfp3ou2UKAsGYJMkSkqKktRQFGmCDJE+ao4fi7EreBWUBBxsBRk7yF7g8oeZZXuNk3b7JzfH2lCQ1poSwtFPu/Xq0LOPffek6Qhj+c+9zkO4O+fkwEAfjFa2M12HJp3Bv5xvvAJVSO+XTgyd+chrEEAlDoFGvSPw6Ffz0LzsAqyRBmaj/VD+r858AlVI1wXBKWPwrnSS7AaeWfMEDYHVL4qBNaWAbgImdwZcwXW1CHr3zyE1Cma88p3zhH61dA5r5HKJATUDXCOoVMEAmvqoAlSQaF2zg01G14LMoUEu8mOzEN5SLwvGj6hauSezMfJAxdQs3M0ZHIJajVwdnM6YlqFIriOH1qOTsLOL45CrpIjP92I/PPOuFaSSZDp1EhoGwiFSgH/ouuROWfyEFInAOHNAnF+YyYKMk3wjfBBvd4xSD+ohyQDIIDEbtEwtTJD5auE2WBFbrIBoXUDAckZWxakFsJmtUPtowIEIFPJoPFXw25xwJxjgU+I89ppaG1/qPyVSE9PR3Z2NlIvpuLvv/+Gj9YHBQUF0Ov17t9DHx8fmM1myGQyNG7cGL6+vpgyZQruuOOOyvp4EF1XTFKim9Z9992H5ORkr/ZPPvkEkydPRnZ2Nqw2qzuYOHfuHADgr7/+gkwmg06ng8FgQExMDGrVqgWVUoVaCbUQXSMaVqMVSrXzgolcJYPDLiBTSDCkFsA/SgddqDOr1lpog1ALFGQYERDjC58gNYRDoCDThOOLUtDyf0lQaORwOBw4+NNZhDX1g8bfmSy0Z6pzcsl1txkAJNwZBQA4+ONp1Lo7AppQFf798ThUQVq0ebk+TAYzlBoFMo86J1VOrj6PxLtjEdMqFLunHsfZzenwi3KO7fAvp1BY6HAmO8kk93Jv2mgNClOuXvLaYrC6/+4q8Q0AB6eddh6naOk2AGjweBwCa/oiql0QDv6c7Fx6TQs0G5yIfV+ehDbauS692WDBnu9OAIVArXtiAAHYLXY0H1Ybe6acQNKjUQio4Q9zAVAszwu1OkdAkiSk7HG+l1azDUq1Agpf5z9hBelG6MJ9cNugeBRcNCPtQCaC6gTAL1rrTM6yCZjyLZAkZ9BmLrRCG6pBQYYJSh8FHHYHZAoZfIOcE0IFGUZndrrJhMOHj8BkNmPnH1uQciEFGh8NsrOzYTR6Lr8COBORIiMjkZGRgTZt2mDWrFmsjkRERP8JPj4++Pbbb/Htt996tGdnZ2PAgAHYtGkTjEYjTCYTzp51Lrtx5MgRj/0BZxJSUlISwsLCcHbdKbS5qzWUOoX7u9xhd0CSyaDWqeCwCZhzrfCL8oE533nxyqS3wGayQxuigRAOBNbwRWGuERn/5CAwPgC3PRbvrMZ0pgDGC0YkPea84OLa326zQpIkFKQ570BTapWwme3IPpyHsKQAZB7PxenF6Wg+pjYcNgEIwGEVyPonH4Up+QiooYXKTwmfYGDHe0fQ9Ola+HfeGQDAgVmnERSvQ1yHcEAULQvsA/j4OJduc9k22XM5EmERgAo4udC57OyuT495bHfFcD6RGhhTTTi3NgttX2mAwFq+ODjt0mucfcyAnJMGpO3OxR3j60Lpq8C/C09D/7cRgXV9nM87oxCtX6qPAzNPI2VLGhoMSkTBBRPUOuf7g6LiQzJJBmEXgBE4tOAM2k5wLsXmX8sHZzZcRP2+CVDrVLjjubrY9fUxNB5UE7pgDcIbBAICyDqhR2CcLxx254UrmVyGwBq+MKQWwC9CB4fVAZ8g56SQsAvYrXaEJ4Xi9KnTyMnNQU52Dk6dOgUhBKw2K7Kzs913N7rYbDZERUUhPz8f0dHReO655zB+/PhSf4eJiIhuJi1btsSuXbu82ufPn4+JEyciOTkZVpsVGRnOpS/OnXfOeW3asgkymQy+vr7Iy8tDdFQ0aiU657xqOGogoU4CzAVWKFUK581tameCsFwlR975fITU8kdAjA4QgCnfAqVagbzzBQito4Iu1JnYlJdSiH9+TkaLcXWg8ldCOAQO/XYaAYkaBNTwhRACe6c6l6gVdqCooCUSOzgr6Ryak4yo5iHwjdXg0KzTgEqFVi/UQ2GWc66q4KJzvuXfhafR6OFaiG0TirTdOTi++AKCajkTno//kQyTCWg52pnstG2yM14qvizclZj1Jc95HZnrXLJXEwiYTABMQK0HIxHZNBjRzYKxf8YpZ6KTBmj8WAIOfp8MTSBQ6+5ImHItOPjdUZhygdr3xUA4nPOGTQclYv83JxF/bxjC6gXCordCEpcmveI6R0GSJKTtcy4bbNKbnUsoa5x9sk8aEJzoh6aDEpB3vhDJG1IQflswgmv5wy9aC7vFgYJ0IxRaObRBGpjyLAiI08FwsRB2iwPC7oBMKUNAnPMiZ97FQvhHaWGz2vD33//CrDXiwJI9OHfuHHx8fJCTk+NeCqc4nU6HyMhI6PV6dOzYEZ999hkSEhKu+loTERFVd2q1Gv/3f/+H//u///NoN5vNGDNmDBYuXIisrCyYTCacOeucAzp6rGhVkj+cS/y6lo1LSkpCRHgELq5Lxu1tmsMnRI2c0wYE1fKDzWyHTC6DJkgNu9mBvJRCBNX0Q0G2CRBAXmohYHfAJ1gDSEBo/QDkpxYi61gefII1aDI4AXKlDNkn8qA/UYj4+5w3o7kSvm3mojmvVGcspA3WwFpgQ8bfBoTVC0DO6XwkL0/DbYMTAAlwWBywWwVyjxUg90wBgmv7wjdKC3WoGrs+OYaGj8fh0O/OOb79M05BG6pGUs9YqHyU7rkqtb8M5rxL8zU7Pry0WgsAOMzOqp4nlzjnvA5MP+2xfft7zjkydaga5kwz0nfr0frFeghK9MPOL45CrXYGkukHnBWo0vfkovHQmtBF+ODwgjPIOVwAdZgasrsl5F0oQJPhSTg0JxkZ+zLR4PFE5KcYofZzJgQJq3OOSlJIztVULpqRfDEN0S1C4LAJ+NfU4OzGTAQm+EHjp8Ltz9TGv3POoda94fCP1iGqeQiEXSD9cA4C43xhNdugdqggQUJo3UBkHc9zvs8mO3xCnL8TDpuAOd+CmOahOH8yBak5qcjLy8WpU6dgt9ths9lKnPMymU2Ijo6GxWJBrVq1MG7cOFYEp/8cSbhueSD6j5s2bRomTZqECxcuuKvblEQul8Pf3x/5+fkICQ5BfHy8s3pOaCgSExOh0+kAh/OuK7vNDoVSAbvNGVzYTHbIFDLIFJKzapEkwag3QaFyJtMoNHJIkgRDaiFOrkxH/V7RUAeoYLfaseO9o6jbLwZhdQORc8rgrhDksAlknzIgtK4/0v/JwomVabitXwIKc82IaBgEa6ENuz52Xsxq9UI9AMCOD46gzcvOSkxb3z4En1DAmAlEtQvCxX05QCHQYlwdZJ804NSSVGjjtEh6MAr7vnSWs2z7WgNYDFbsnnIcdfrEQDgETixMcZ/jyB9noT9eiLhu4Ti7ypk4pA2Voe5DCdCGa3B88TkEJPgh/LZA7P/+FApTTAht7oe63WvAbLBCEsDun49DCxmajEiCcABn1qeiVrdoFKQZsf/bU2j7WgMIIbBt0mFoozVoOrQWHA4HDv95Fr5hasS1jXRniOedK4RPiApKrfMuLplMhsJsI3yCNLAUWKHUKpzJYEUVGiSZBLvVDiEJnD9/HmlpaSjML0RmViayc7KhUChKTESSy+UIDw+HXq9HYWEhatasiYYNG2LOnDmsjERERFRMdnY2RowYgTVr1kCv1+NK/8uh1WqhVCphMBhQr149BAcHQy6TI6FmAmJiYiBszruQHDZnUrGwC0DmTFjyCVCjMNsEXWhRgpMkOZfhSDMhqJaf87tfCJxYeQ4OO1DnvljIZDJs/egQYATavFLfucTIpENoNjIRPqFqHJmfjLo94wEJOPDtUcAHqNerJuRKGVR+Svw99zQMR43wr+WDRgNq4sLOTJiyLUi8Lxq5yQU4vfQcjNnOyYXYu0JxflOmc/m37rHumK12n2jYCuxIXpnmTihyXSBr+nQtHF2YAmOqCYm9ouAXqcX+b07CJxjwrxWItN258AmWwZjtQNtXG8BudWDH+0fQ8oUkCJvArk+OAT7AHSPrQqlTIO3vHKh1Shz6/SzqPhiD0KQAXNyTjcimQe5YsdGgBATE6XB2ZzrOrchAq5fqQa6UoSDdhGNLLqLOg5HwDXOuZ2/Jt0KSOSd0NIHOO8IgAIdDwGa0QeXnvNipUClgNdqg0Mhhs9ghk0vIM+Th3LlzzotfBYU4c/YM1Go1CgoKkJub6xWj+/v7Q6fT4eLFi1CpVGjevDn69++PMWPGVM0vLhER0U1q0aJFeOONN3D06FGYTKZSYy+5XA4/Pz8YC43wD/BHzYSaUCgUCA4JQWKtWvDz94Pd6oBS7fweV2mVsJptUCjlMOktUGoVzjviJWfyUWGWCXKlDA6HgCbAWVlcf74AJ5enoU73SPjFaGGz2LHz/aOI6RKChHaRyD6eh8O/nnPOeVkduLgnGzGtQ5H2dzZOrkhFvZ41YM63IOr2EFjyrNj9rXOZthbj6kBSStj10TG0nJAEhVqOre8cgiZQBlOuA2FNA2BI1sOUCzQZXhN5KYU4vTQNmnAN6j4YiYPfJwNwznmZ9Vbs+ew44u8Oh1wjw6nFzgqhLZ6tgxNLzyP3uBHRbYKRss2Zaa4JlKHmfTEIqu2H44svQBOkRGzbcPwz+xQMZ0zwq63Bbf1rwZRjgd3qwNFFyYAJaPJ0XcABHP3jDBr0q4mCVCMOTDuNtq8WzXm9cxiaQOD2MQ3gcDhwdPE5yOVAne5xzmRuB5B9RA9djA/UfiqgqPpVXmoh/MJ8UKg3wSdQDWEHZHIJdpsDcqUMVqMNkhJIuZCCtPQ0GAwGZGdnIzMzE0qlssREJJlMhoiICOTn56OgoAAJCQlo1qwZpk+fjsDAwKr5xSUiIroJmc1mTJw4EX/88QdSUlI8luu9nI+PD9RqNfR6Peol1UNwSDBkMhni4+MRVyMODquAykcJm9UOuULunPtSSijMNEEbrIEhpQABcX7OeRVJglFvQcFFE0Lq+UMml+BwCJxYeQGmbDMa9a8JmVyGPV+fhDnTjFYvOud2tk46hAb94xBUxw9HFpxDzW6RkCklHPjmOMxwoHHfmhAyAb8ILf6Zdw55Rw1Qh6rRbHgtXNiWibzzBWjYLwE5J/Jxatl5d1JSZMsgpO7MgW+sGkm947Dnc2eSeo2OYZBkwNl1GWgyrCZ0kT7upKaGj8fhxMo0mDPMiLkzBMF1/ZzL6qqBkLr+yPo7D2p/wJwHtJ5YHw6LAzs/PormY+oAgPscTZ+uBW2oBme3p0MboMaxJRdQo10oarQNx4VdmQhrGAiVVoGtkw4h8YEoRN4ejAu70pG8PAMtnq0DlZ8ShgsFOLY4FfGdQxFaNwDCIWDKtUAIwGa2wT/aeZMdJAl2sx02sx2aQDVsZmeMbMm3QqlTwGp0LrmXX5iPs2fPITcnBwUFBThz5gxUahUKCwuRk5PjNefl5+cHX19fpKWlQafT4fbbb8cTTzyBIUOGVPavLFG1xEpKdMsYPnx4qZmmL730En744QdkZmbCbrcjLy8PdrsdqWmpSE1L9eirUCigUCigVCoREREBHx8f6HQ6BAeHIiIiDIGBgfDz84PD4YBcLofKVwm5XA67zfkFZDXb4BehRdMnEwA4L5zlpxW6qy4JIZC8Lh0ht+mKSm9LODbnPHTPJCLitlDY7RL8YrTwjfaBucCCjEM5aDYqEZJcgkwlwW5yBgiZJ3MRlOAsHy1BhqT+0Qip7Y+EDpHYNuUwVP5KhNYPwKklqUjqHgWfYDXCb/dH+t48j+cbWt8fkkzCiYUpiGodBLlahhptwxBQ04jYVqEISfKF4ZwJJxamIC8lH5pgFTL2GyDJJITfFoimQ2oh45AeMpUEc54FUAAqrQp1u8S6Sztue+cQWjxXB0IIGI3OygauZKLWL9eDWW+FzWyDQq1Aw14JsNvtkCQJNosdcqUM/jW07gk4IZxLwCj9FMjMzERGRgYMhnzk5emRm5OLrOws2O12GI1GFBQUeP0u+Pj4ICAgACaTM9u8YcOGCA0NxTfffIN69epV5FePiIjolhMcHIx58+aVuO3EiRMYOnQodu/ejcLCQncFJofDgUOHLt3JvnHTRgDOO9LsdjtCQkIQFBQEpVKJ8LBwBIcEI8wehoCAAOf3f9GSaEqdAkGJfs4qPEYbVBolErvGupf1MBssaPpkLWiKKvk4bM7YyWKxQitpUKNTJLa/dxhtX2uApiOTkHsyHz7BahTmmWDLcCC6SQgsiTZE3R4MSIA+2YDcc0YkdI2E/qwexmwHEh+Mgn+CDj6BKljNNoQ1CIRSq0BII19k/ZOP8IaBcFgFklemebw20e1DoA3ToFa3CPw76wxC6vpDoXIus9b0aWcCemAtXxxdfB7wAexWOy4ecF48E3YBpU6BxiNrQiYkXDyYg7AG/ghvGAhJklCnRzTCkgKhP1uA08tSEdU8GEIIBNb1wbk9afCvURM17ghDRL1A5F3MR2ANP+jCNWg2pCYgAHOhBSofJRRaOeRyuft1szvskMvlMBjykJeXh/Rj6TCZTMjJyUFeXh5ycnKcVRfy8tzLgxQXGhoKh8MBu92OoKAgJCUloWPHjnj33Xev5VeQiIjoltKzZ0/07NmzxG2fffYZPv/8c5w9exYWiwUGgwF2ux0ZGRnuSkwurjkvhVyByMhIaHw00Ol0CAkJQ0REGPwlfwQEBMBus0Muk0Pl71zizGZ1znmZ8i3wj9bh9uG1ADjndnLP5OP2sbWhCVBBCIEzOzMQkFi03JxShjOr06EL1yCycQiEEM5l1IRAYZYJ6Yf1aPxYAhwAVP5Kd9XvC/syEXN7KKABTCYH6vSORljDQDhsUdj+3hFow32g8lPi9NI01OwSBt9oLSJbByN1e7bH841sFgy5ypmkFFRPB5WfEtGtwqD00yOhayTCmgYh73Q+Tq9Ig/6sHn5xWmQc0SMgRgOpXThue7wWLuzMhMpXgfxUIyS1gC5ci7i2UQgpmk/b+vYhNB5R01npwOSq7ulMJmr1Uj0YM0ww5pnh469G/Z7xcFgdkCDBbLBA5atESP2AojgXcBQte+wTrERWTpZzzuuEc84rOzsbOTk5sNlspc55aTQaBAYGwmg0QpIkNGjQADExMfj2229ZFYmIiKiM1Go1PvnkE3zyySde286fP4+XXnoJa9euRWZmJkwmE8xmM4QQOHzkUmXtv/76C8ClOa/g4GAEBwdDqXDOeQWFBCEUoQgMD3QuqysBklyCT7AKPkFqQHKuHqL2UaJW5ygoNM65I2OeGbXvjYAuSgO5Sga71Tl340xi90Vs+xDs/vQY2rxSH81GJ+Hiniz4RvugMNsEQ0ohgmtqERijQXSrUEgyCYaUQuhPFMJSaIX+YgHMeQ7U6BgGvwQfBNZwVrj0i/aBOkCJkIb+yPo3DzFtQyFsDpxd5xlnBtbVISDBF4ldgUO/nkVEkyCoA1SAGrhjdBKUPnKk1MjCxc0ZABywGe1I+8dZadJhc0ATokKjwfEQFoHUA9mIuC0IsS1CAZmE2Gwj4u6MQO4pA86sTEdMy1AI4ayOdH57NiKaBSG6RRiCEv2Rey4foXUD4BetQ/OnE+GwCJj0Zqj9VVDqFFCo5bCZna+nXTigVCpgNJqRU5iDtNNpMJstyM7KQp7h0pyXwWCA1WrF5UJCQpzHKXqPGzRogO7du2PixInX8itI9J/ASkpEV3HkyBE8//zz2Lp1K/Ly8qBQKGC322G32yGTydxJMcXJZDL4+PjA19fXvbRcQEAAdDod1GoN/Pz8ERwcCK1WC39/f0iSBEm6VH3JHXQUtVkNNii0csgUMlhNNuz68hjaPu+86yrvfAEC4/yciTtCQkG6CZJcgjbMuRbtiaXnEd8xEkqdAlmncpF7vABpO/Wo1TMC+lP5yPq7AEH1tVCo5cjYbwDgWUkJAKI7BCDnXz2MmUCDJ+JwaJazxGOjwQnwi/ZxT7q0ecW5tFxhthEqrQqF6Sb41dA6Kx4JwGaxQ6lRQJ9mwD/fnnVXS7KabDCZzPAP8nW/hg67cJcEd70+JqMJ+QX5SEtLg8PhQF5eHgoLC5Gd7ZxkKigocN/xZbPZPEokSpIEmUwGu92OqKgoKJVKnDt3DlqtFs2bN0f79u0xadKkKvs9IiIiorL5+uuv8dVXX+HUqVOwWCxQKBTu5GG5XF5iRUylUglfX1+o1Woolcqii2nOiYDw8HBnYlN4OHx8fKDVaj3iN4ddQF6UwAQA+jQDfHw1zkqMkjPGuW1kAvzDdDAZzFDrVBBw7pt5JA+BcTpYjFZnNSebwPYph9F2grMaZt65Qhya7SwFXv/xGjg8+xx8gmXwq6tD+nZn3HV5JaXQxn6wmWzIPWZEaGM/aKPVOLsiE1FtguEX74PQOgEwZpmRui8Hte6OgsPhQGG6GdZCOwLitBCSgFwuR+bxXITUDgAAbP3oEFqOTYJCJYfdaofFYIMmsGi5NSEAh3Oyyx2LFr02er0e+fn50Ov1MJlMKCgocMdfdrvdvd1qtXpNxsjlzuR7lUqF6OhopKc7k5eSkpKQmJiIr776CjExMZXzS0NEREQVkpqaildeeQVr1qxBWloahBAec14AvJafkCSpxDkvX50vVCoVAgIDEBAQAD8/P/j5+V2a83I44wy73QGZvKjNLlCYZYY6UAGFSgGL0YrdXxxH2wkNAAlIP5yDiAbBzvjPLiH3dD6UGjl8Y30gk8twYlkKIpsHQReuQfrhHBiSTUjbnYPYLiEovGhG9qF8BCRqIFcrkH0oH4BnJSUACGvuC8PJQphyHUh6NAZH51wAANTrVwMB8TrIVTJs/fAQWo2rB7lKBkNqIdRaJfTnChDaIAASJAgBmPLN0AZokHsxH/9OO+Oe8zIbrDAZTAiM8Xe/hjazHXKVzP16SpLkTt53vQ+5ubkwGo0ec14Gg+Gqc14RERHQaDRISUmBr68vbr/9dnTr1g0vvPBCFf0WERERUVn98ccf+Oabb7B//37o9fqiJOYrz3kpFAr4+fl5zHkFBwdDkiSEhYW557y0Gi20vloIh3DPW9nMdijVCqBopdncc3qodRrnjXtFc15JA2IQWjsQxlwTVD4qSAoJEAKZh/Twi9HClG9BYJwv7GY7dnxw1FnV2+JA9gkDjv/ujJsSe0Xh5MKLUPsDfjW1yDzgrNh4eSWlgNpaCKsdeWfM8K+pgX+8Fuc3ZCOovi8Ca+sQ1TQEhWkmJG9IQ4NH4yHsAjmn8iHsAgEJOsgUEuRKOdL+zkZYw0BIkLD1w0O4fXgiNEFqWE1WmLNt8AlXQ65wXr912ISzEiichRFc1x4vxVq5sFhMyM/Pd8darmIW+fn5sFgspc55KZVKREdHIzs7GzabDbVr10bDhg3x/vvvIzY2tip+hYj+M5ikRHSNCgsL8dZbb2HBggW4cOECbDab+wtLp9O5KwNIkuQ1sQM4JxJUKpV73VqtjxYaHw20Wi3kcjnUajUCAgKgUCig0WhgtdoQFBQItVoNjUYDi8WCwEDnY9fH2bUMmtlogdpHBZvNBoVCAeEQuLg3G9EtnBftIICL+7MQ1SwEOcn5OLzgLOr3jkNQLV9YC23IOpqHU0tSnRMrNgFDqhEBNZwVnox6E2wmAf/IoipGwnnHnMZPdem1yTdB66uBw+FwX8ACgPz8fPfFLbvdAavVAn2uHgIChYWFMJvNMBicF+6MRiOMRiMsFkuJd9+7JnNcFyZdS8okJSUhPT0dQgjcdtttePnll9GlS5fKe+OJiIjohvj777/xyiuvYPfu3cjJyYHFYoHD4YBarYZMJoPRaCw1kRxwTiRoNBqoVCoolUqoVCr4+/sDAvAP8IdcJkdgUCDkcjkUCgXkcjm0Wi18fX1ht9uhVqvh5+fnXF5WXwhtwKUlX80GC1RaJaSiC285pw3QBCmhCXAmj2ce1iO4jp8zwXvSIdS6PwohSX5Q6hTIPmbAkTnn0PDJeATE6ZC8IQ0JHSLcE0kXdmQiukUIJLnkjO3kCljMVqg0SgDwSHK3Wq3IzsyBSqOE2Wx2VzZSqVQwm82wWCzI0+fBIRwwmUweiUau2Ovyi18uMpkMcrkcgYGBMJvNyMvLQ0xMDAIDA3H27FnUqlUL3bp1w5tvvgkfH5+q+SUgIiKi68JkMuG7777Db7/9hmPHjqGgoMBdDUCn08FsNrurXZc256VUKuHj4+O+oU+jcVZncj328/OHUlnKnJfJgsDgYnNeRYnVgHPOS6VWwe5wznk5rAIXdmSgxp3hAADhAE6vTUWtuyORc9KAw7+cQ90+MQhtGACLwYrMQ3lIXpWGNq80gLA7kHU0D+G3BUEIgcIcE4yZFufSH0UXt8z5FvgEqt3PrTCnENogLRwOBwryC2C2mCGTyWAwGNxzXg6HA1ar1TnnJQQKjUVzXnkGCAiYTCYYjUaYzeYrznnpdDpoNBro9XrY7XbUr1/fHds1bdoUL774Ilq1alVFvwVERER0vZw/fx6TJ0/G5s2bcf78eRQUFMBisUClUkEul5dpzkutVrvnvDRqDXz9fCFBcs55yeUICAiATCaDSqWGXC5zz3k5HA6oVCr3nFd+VgF8Q3TuYxekG+ETpIFMIUGSScg8mgulrxz+0b6QJAnp/+QiMEEHhUaObZMPI+bOEIQ1DoA2WIPUfdk4tSYVte6JRGTjYCRvSkVcuwjIFM4CB8lrU1HjzjDINXLYbDbIIIc53wyfQA2AS0UNJEmCxWxFTm421Go1TCZT0ZxXLtRqFUwmEywWC/R6vfOapdnkkWjkir2sVmupc14ymQxBQUHu47jmvHJyclCvXj106tQJ//vf/6BWq732J6KyY5IS0XW0d+9efPjhh9i+fTtyc3Nht9thMBig0TiTkgoLCyGEcCYUCeG+6FbSl+Xl5HI5lEolFAqF++KRK6hwPbbb7VCpVFAoFO675OVyOVQqlXt5OrlcjjNnziAkJARarRZWq9VdPcpqtcJms7mPZbPZ3HfX2Ww22Gw2d3BUfLvVai0xYCrONXGl0TiTmmw2G4KDg6FQKKDX62G1WpGYmIi8vDwUFBSgbt266NSpE15++WVotdorHpuIiIhuPUajETNnzsTcuXNx5MgRZ2JOXh6EEPD1dVZvLCgocC9rYrFY3JUDrsYVtxRPZHJdRHI9dsVZrj52u919LlecplAokJ+fj9zcXMTFxbljKUmS3InvrpjNbrfDbDa793Vtd901Xzz2Kuki1+VcFwZdcZ1cLkdwcLD7Lv3w8HAEBgYiJSUF4eHhuO222/DMM8+gffv21/zeEBER0X/PkSNH8N133+Gvv/7ChQsXYDKZoNfroVKpoNVqYTQa3fFPRea8isdRV5rzksvl7ot3rjkvV3ylUChw9uxZBAYGwtfXF1ar1X2skua8bDabO9a6ljkvAO4bFF3L3AYGBkKlUiE3Nxdmsxl169ZFfn4+HA4H6tSpg65du2Ls2LHQaDSV8fYQERHRf4jZbMayZcuwYMECHDhwANnZ2dDr9bBYLNBqnaub5Ofne815ORyOMl+rK2nOy9V2pTkvhUIBm80GpVKJgoIC5OTkIC4uzqNa59XmvOx2OywWC2QymfuxKzYr65yXRqNxj00mkyEkJARGoxF5eXkICQlBSEgIcnJykJCQgPr162PEiBFo1qxZZb1FRHQVTFIiugkcOXIECxcuxI4dO3Dy5En3F6nD4XBXXCooKIBcLodOp3N/ubu2ux67AgUAsFgs7opLrseAs4x3RkYGdDoddDqdR0AihIDVanW3uwIJPz8/OBwOmM1mAHDfTWcwGODn5wedTofc3Fzk5eUhNjYWMpkMeXl5iIiIQM2aNdGpUyf069ePyUZERER0wxmNRqxfvx5r167Fv//+677IlpOT4y6rbTQaIYRwVsEsuujmmrhxLY1isVigVCrdxzWZTFAqlc678YuSjIQQKCgoQEFBAcLCwiCXO9e8V6mclSldF8J8fHycy4WYze7y3q6qR76+vu7y4IWFhYiIiIDNZkNubi7kcjmioqKQm5uLwMBAxMTEoHbt2hg2bBhq1659/V9cIiIiosskJydj9erV2LdvH44ePYrMzEz3UrNqtRoKhQJ5eXlQKpXQarXuC1OuGMlms7nnqFyxl6uStyteM5vN7nmxjIwMd8UAV+KS62Kb1WqFVqv1uHhWfM7LlexusVhgMBjcx9Hr9TAajYiIiIBarYbVakVMTAwiIyPRpUsX9OzZk8lGREREdMOZzWYcPHgQf/31F/755x+cPHkSer0eOTk57irlrgqPrmV9XXNeruIHgOeclyRJMBqNV53zcs2XuSoQuea8tFpnZUrXMV2xVGFhIXQ6nbuCVEFBASIiImC321FQUACZTIbw8HBYrVZERkYiPDwcSUlJGDBgAJdaI7oJMEmJiIiIiIiIiIiIiIiIiIiIiIiqlOxGD4CIiIiIiIiIiIiIiIiIiIiIiP7bmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpRQ3egBUvaWlpSE3N/dGD4OIrpPAwEBERETc6GEQEd2yGHsR3VoYexER3TiMu4huLYy7iIhuLMZeRLcWxl50JUxSolKlpaWhb5++gPxGj4SIrheNRoOffvqJgQMR0Q3A2Ivo1sPYi4joxmDcRXTrYdxFRHTjMPYiuvUw9qIrYZISlSo3NxeQA4pjgZCZFABkkGQSIF36kWQyQAIgyZxtl20v/adoH5kEwPVYKvZYci5GKMH9WLjaivoXfyykS8cQrkUMXcd09fX407VfUb9i+wjXcSRnk5AAISu2n3Tp2MJjH3js43F+XNrP3feyfd0/uHJ/j31Kabvq391twqNNeBxTeDx2nl947Q+vYxb1k13aLknC2Sy5HrvexmLbi/50brrUTyaJov1FscfOPs5fAQFIwt0uk4RzGy5rkwRkcP5Ikij6VS1qk4r1L/rT/QMBCQ7Iis4lkxxF2wAZHJAkAXnR+eSSo+hPAUlyONvd24s/driPLZMc7jEoYC9hmwMyADLX8YrO43ouMgiP8zj7Fo216O9ySJAAyCVAglT0+NKfMkiQSTKcu6DEO58HIjc3l0EDEdENcMNiL0lWreIu9+NqHHsJWbF9q0PcdVmf6hh7yWXVK+6So2h/xl5ERLckznk5m0qMvWSoVnHX5W3VNfaqTnFXdZzzujz2Ukh2xl1ERLeQahN7SbLqFXcVi6uqbewlu2wcuPFxF1A8xnK9ldUn9nLFTdUl7uKcF1VHTFKiq5IKFZAZVYDkChpk7uDAGTRIgOxS0CAV2+6xzf3Y9XeZd5BR9FhIRd9UxbYJqehbSXJ9rVzqI4p9g4qiPq4v/EsBSfHHl/1dJnkFBB5fhkVJSq5AprRgwvtPySswKK3v1QKEkvpddTuu1reEwOHybSi+7fJAQXhtk1x/vzxJyeNPZx/JFQBcHjQU2ybcfxce+8ngOrdrIujSj4RL+1weBMhKbXN4PZYX//J2fSm7/i4J5xd6sUDA9WUulxyQSZK7v/NPFPVzfok793d+kcuKgg2l5IAcDvex5UWPXcd0BgWOS38vOvelv4ti57p0fDmkor87AwR5UaDgfCwr+rvzTyIiuvGud+wlZLLqFXd59EW1jL3cSUrVJe5yj6H6xl4KmaNaxV2X+jP2IiK6lXHO6/K+rjin+sRdpW5HNYq9ZJcnKXHO62qxl1KyM+4iIroF3fDYSyarVnHXpVijGsdelycp3ei4qxrOeV3eppDZq1XcxTkvqo5kV+9CRERERERERERERERERERERERUcUxSIiIiIiIiIiIiIiIiIiIiIiKiKsUkJSIiIiIiIiIiIiIiIiIiIiIiqlJMUiIiIiIiIiIiIiIiIiIiIiIioirFJCUiIiIiIiIiIiIiIiIiIiIiIqpSTFIiIiIiIiIiIiIiIiIiIiIiIqIqpbjRA6DqT2htcMgAQAZJJgHSpR9JJgMkAJLM2XbZ9tJ/ivaRSQBcj6VijyVnCp0E92PhaivqL1zHgQTh/EvR3wHnf+A6gHO749I+wrVf0enc/V2P3ccueiyTim1zbnb+Bx7tHvtIgOQ6X7E21zldbaKE/a/U32OfUtqu+nd3m/BoEx7HFB6PnecXXvuX/PxF0Xslil4H5wssSa7HRa9P8e1Ff0oo3g7IJFG0vyj2uOhddx9DFBubgIAoem4CDvdzcbYLCDgkUfSrKiCDcB7zsj/dPxCQ4IBMQlFfR9E2QAYHJElADud+cslR9KeAJDmc7e7tno9lRb/Ozj8lyCRAARnkQNF5JcgkyfknAJnreEXnkUG4fzyO6z7mpb/LIUECIJcACVLR40t/Os8lw7kL/EogIqoOrnvsJcmqV9zlHu+ln+oWewlZsX2rQ9x1WZ/qGHsJWfWKu+RFURBjLyKiWxvnvIo9dg1PhmoVd13eVl1jr+oUd1XHOa/LYy+FJGfcRUR0C7rhsZckq1Zx16XYoRrHXkXlTqpT3AUUj7FQ7WIvR1HcVF3iLs55UXXE3xAqlcPhgEKhgK1u7o0eSsUIFAsgyk667E+6+bjeeseNHsgVuSKr6lXQTqFQwOGo3q8cEdF/1U0dezHuuqVV/9iresZdAGMvIqIb5aaOuwDGXrew6h93AdU19mLcRUR049zUsRfjrlta9Y+9qmfcBTD2oitjkhKVSiaTwWaz4dVXX0V8fPyNHg4RVbEzZ85g0qRJkMmqXzBDRHQrYOxFdGth7EVEdOMw7iK6tTDuIiK6sRh7Ed1aGHvR1TBJia4qPj4eSUlJN3oYRERERLcExl5ERERE1wfjLiIiIqLrh7EXEREB1bH2F9F/0KZNmzBhwgR06tQJAQEBkCQJgwYNutHDKtHs2bMxYsQItGjRAmq1GpIkYebMmTd6WNfMarViwYIFePLJJ1G/fn34+vrCz88PrVq1wtdffw273X6jh0hERESVgHHXjce4i4iI6NbB2OvGY+xFRER0a2DcdeMx7iKqHKykRHQd/PDDD/jxxx+h1WoRFxeHvLy8Gz2kUr366qs4c+YMQkNDERUVhTNnztzoIVWKkydP4uGHH4avry+6dOmCHj16QK/XY/HixRg1ahSWLVuGP//8E5LEFYKJiIhuZoy7bjzGXURERLcOxl43HmMvIiKiWwPjrhuPcRdR5WAlJSpVSEgIBg0ahJCQkBs9lJve6NGj8c8//yAvLw8zZsy40cO5ounTpyM5ORkZGRl4+umnb/RwKo2fnx++/PJLpKamYuHChXj//ffxzTff4NixY2jRogWWLFmC+fPn3+hh3lD8zBMR3Vj8d7hyMO668Rh3lQ0/80RENw7/Da48jL1uPMZeV8fPPBHRjcV/hysH464bj3FX2fAzT1fDJCUqVWhoKIYMGYLQ0NAbPZQbasGCBejQoQPCw8Oh0WgQHR2Nrl27YsGCBWU+RosWLdCwYUPI5fJrGovD4cD06dPRsmVLBAcHw8fHB7GxsXjwwQexYcMGd78NGzZAkiS88cYb2Lp1K7p164bAwMAyZe527doV8fHx1zROF4vFgk8//RR33HEH/Pz84OvriwYNGuC5555DTk6Ou19CQgISEhKg1+sxcuRIREVFQafT4a677sLevXsBACkpKXj88ccRHh4OHx8fdOvWDcePHy/zWGJiYjBq1CjodDqPdp1Oh+eeew4AsHHjxkp41jcvfuaJiG4s/jvMuOtaMO66+fAzT0R04/DfYCfGXhXH2Ovmws88EdGNxX+HGXddC8ZdNx9+5ulquNwb0RV8/fXXGDVqFKKiotC7d2+EhIQgNTUVO3fuxB9//IGHHnrouo5n4sSJ+OCDD5CYmIgBAwbAz88PFy5cwObNm7FmzRp07NjRo//WrVsxefJkdOrUCU899RTOnj173cZqNBpx9913Y8uWLahTpw4GDx4MtVqN48eP49tvv8UTTzyBoKAgd3+LxYK7774bJpMJjz76KNLS0jB37lx07doVW7duxT333IOoqCg8/vjjOHHiBBYvXoz7778fhw8fvuaATKlUAgAUCv6TSEREdKMw7qo4xl1ERERUXoy9Ko6xFxEREZUH466KY9xF9N/ETwnRFUyfPh0qlQr79+9HeHi4x7asrKwbMp7o6GgcPHgQWq3WY1t2drZX/9WrV+OHH37A4MGDr9cQ3V577TVs2bIFAwcOxIwZMzy+3PV6vdeX/cWLF3HnnXfil19+cX+BN2vWDC+++CLatGmDwYMH4+OPP3ZnaI8aNQpff/01Fi1ahD59+lzTWH/44QcAQLdu3a7pOERERFRxjLsqjnEXERERlRdjr4pj7EVERETlwbir4hh3Ef03cbk3oqtQKpXu7NfibtQ6miqVqsRs3uDgYK+222+//YYEDTabDd999x0CAgIwdepUr/EGBATA19fXa7+PPvrII8O4f//+7uNNmjTJo4Ska9uBAweuaazfffcdli9fjs6dO6N79+7XdCwiIiK6Noy7yo9xFxEREVUUY6/yY+xFREREFcG4q/wYdxH9d7GSEtEV9OvXDy+88AIaNWqEAQMGoFOnTrjzzjvh7+/v0W/KlCnIzc31aBs0aBASEhIqfTxfffUVGjVqhH79+qFTp05o06YNfHx8Sux/xx13eDzOzc3FlClTvPq98cYblTrOI0eOwGAwoGvXrh5lFq8kKCgIcXFxHm1RUVEAgDp16nhlc7u2paSkuNtmzpyJ5ORkj369evVC06ZNSzznkiVLMHr0aMTHx2P27NllGicRERFVDcZdFcO4i4iIiCqCsVfFMPYiIiKi8mLcVTGMu4j+u5ikRHQFEyZMQEhICL7++mt8/PHH7uzb+++/H59++ilq1qwJwBk4nDlzxmPfjh07VnrgMHXqVNSsWRMzZszApEmTMGnSJGg0GjzyyCP4+OOPERoa6tE/IiLC43Fubi7efPNNr+NWduCg1+sBADExMWXe5/JgDLi0buuVtlmtVnfbzJkzsXHjRo9+CQkJJQYOy5Ytw8MPP4yIiAisW7fOHYgQERHRjcG4q2IYdxEREVFFMPaqGMZeREREVF6MuyqGcRfRfxeTlP4jCgsL8dtvv+HQoUM4fPgwDAYDJk6ciPvuu6/Sz5WRkYEvvvgCu3btgsPhQLNmzTBmzBhER0d79LvrrrtK3P+pp57C448/XunjqgqSJGHIkCEYMmQIsrKy8Ndff+HXX3/F3Llzcfz4cRw8eBByudwro7aqKBQKTJgwARMmTEBKSgo2btyIGTNmYNasWUhNTcXKlSu9xl9cQkIChBBVPs7AwEAAwIULF6r8XMVt2LChTP2WLl2Khx56CKGhoVi/fj1q1apVtQMrhcViwffff49Vq1bBYDAgMTERw4YN88pKv9zZs2exaNEiHDp0CMePH4fFYsGcOXO8gh+9Xo9ly5Zhy5YtOHPmDOx2O+Li4tC3b1906dLFo+/kyZOxYsWKUs+5YMEChIWFuR///fff+Oabb3Ds2DHodDp06tQJw4cP98hCP336NGbMmIGjR48iOzsbGo0G8fHx6N+/P9q1a+fu53A4sHLlSmzcuBHHjx+HwWBAVFQUOnfujH79+kGtVpfp9SQiup4Ye1U+xl0Vw7irbKo67gKc/y5Mnz4dGzduRG5uLqKiovDwww+jV69eHv2WL1+Od999t8Tz/fHHH6WWer9w4QKefPJJWCwWfPfdd6hXr57H9qNHj+KHH37A0aNHYTQaERUVhQceeAC9e/cusYR7WY5JRFQdMO6qGoy9KoaxV9lUpzkvADh37hy+//57/P3338jLy0NERAS6du2Kfv36QaPRuPs5HA4sXrwYixYtwoULF6DRaFC3bl088cQTuO2229z9yjrn5bJu3TrMnTsXZ8+ehUwmQ82aNTFgwAC0adOmvC8tEVGVY+xV+Rh3VQzjLm8VjbGAyv+8bdq0CYsWLcKpU6eQl5eHwMBANGjQAIMHD/Z6LcxmM+bNm4eVK1ciNTUVfn5+aNSoEQYPHuxO0nMxGAz45ptvsGnTJpjNZtSvXx+jRo1CUlKSR79HHnkEqampXuPs0aMHJkyY4NG2a9cuzJw5E8eOHYNSqUTz5s0xatQoJpXdQExS+o/Q6/WYOXMmIiIiULt2bezbt69KzlNYWIhx48ahoKAAjz/+OBQKBebOnYsxY8bghx9+QEBAgEf/Fi1a4N577/Voq1OnTpWMraqFhISgV69e6NWrFzIzM7Fu3TqcOHHC6x/F6yU6Ohr9+/fHo48+iqSkJKxZswZGo7HUcozXU1JSEvz9/bFr1y7k5OSUuQzj9eAKGoKDg7F+/XrUrl37ho3l3XffxYYNG9C3b1/ExsZi+fLleOGFFzB16lQ0bty41P3+/fdfLFiwAPHx8YiPj8fx48dL7Tdt2jS0bt0aTzzxBORyOTZu3Ig333wTZ86cwZAhQ9x9e/TogRYtWnjsL4TAxx9/jMjISI8EpePHj2P8+PGIj4/H6NGjkZ6ejjlz5uD8+fP48MMP3f1SU1NRWFiIe++9F6GhoTCZTNi4cSMmTpyICRMmoEePHgAAk8mEd999Fw0bNkTPnj0RFBSEf//9FzNmzMDevXsxZcoUryCYiOhGY+xVtRh3lR3jrrKp6rjLbrdjwoQJOHr0KHr37o3Y2Fjs3LkTn3zyCQwGAwYOHOi1z9ChQ70mQ3x9fUsdy+eff15qstHRo0cxatQoxMbGYsCAAVCr1dixYwc+++wzXLhwAePGjSv3MYmIqgvGXVWPsVfZMfYqm+o055WWloYRI0bA19cXvXv3hr+/P/799193cnfx5PGvvvoKc+fORbdu3dCrVy/k5+fjzz//xNixY/Hll1+iQYMGAMo+5wU4b/ybOnUq2rRpgxEjRsBsNmPFihV48cUX8fbbb6NDhw7X+nITEVUqxl5Vi3FX2THu8lbRGKsqPm+nTp2Cn58fHn74YQQEBCA7OxvLli3DiBEj8PXXX3u8Jm+//Ta2bNmCBx98EHXr1kVmZib++OMPjBw5EjNnzkRkZCQAZ8L4iy++iJMnT6Jfv34ICAjAwoULMW7cOEybNg01atTwGtOjjz7q0RYbG+vxeOvWrXj55ZdRt25djBgxAgUFBZg/fz5Gjx6N77//3p0MR9eZoP8Es9ksMjMzhRBCHD58WLRv314sW7as0s/z888/i/bt24tDhw6525KTk0XHjh3Ft99+69G3ffv24pNPPqn0MVxP69evFw6Hw6PNYrGIpk2bCgAiOTm53Mfctm2bACCefPLJcu1nMpnEli1bvNrz8vJEZGSkUKvVwmQyuccNQLz++uvlHl9x7777rgAgZsyYUe59//e//wkAYuDAgcJms3lsy83NFQaDwf04Pj5exMfHl3gcAKJDhw5e7adPny7367hs2TKhVqtFZGSkOHLkSJn3qwr//vuvaN++vfjll1/cbSaTSfTr1088/fTTV9xXr9eLgoICIYQQv/zyi2jfvr1ISUnx6nfhwgVx8eJFjzaHwyHGjRsnunTpIgoLC694ngMHDoj27duLWbNmebRPmDBB9OrVS+Tn57vbFi9eLNq3by927NhxxWPabDYxePBg8dhjj7nbLBaLOHjwoFffGTNmiPbt24tdu3Zd8ZhERDcCY6/Kx7iLcVdVuR5x17p160T79u3FkiVLPNpfffVV0aVLF5Gdne1uW7ZsmWjfvr04fPhwmZ/Djh07ROfOncW0adNK3PeDDz4QnTt3Fnq93qN99OjR4t57763QMYmIqgvGXVWDsRdjr6pS3ea8Zs2aJdq3by9OnTrl0X/SpEmiffv2Ii8vTwghhNVqFV27dhWvvfaa17nat28vpkyZcsWxlzTnJYQQ/fv3F8OHD/f4vOXn54tu3bqJl1566YrHJCK6ERh7VT7GXYy7KsO1xFjX6/OWlZUlOnbsKD788EN3W3p6umjfvr348ssvPfru2bNHtG/fXsyZM8fdtnbtWtG+fXuxfv16d1tOTo647777xJtvvumxf9++fcULL7xw1TENHDhQ9OvXT1gsFnfb8ePHRYcOHcTnn39e3qdIlYSVlP4jVCpVqcsCXG779u2YPXs2jh07BkmS0KRJE4wcOdKrnFpJNmzYgHr16qF+/frutvj4eNx+++1Yv349nnrqKa99zGYzANyUSzb16tUL/v7+aN26NeLj42G1WrF69WocOnQIDz/8MOLj48t0nM2bN2P69OkAnOX0XG2DBg0CAISGhuKjjz664jGMRiPatWuHunXronnz5oiLi0N+fj6WLFmC1NRUTJgwoVJe4+nTp2Pz5s0AnEt6udpc5Q3vvPNODBs27KrHeeutt7B9+3b89NNP2L59O+677z6o1WqcOnUKK1aswObNm0tcv7WqHDlyBL1794bZbEbHjh3x66+/evVJSEhwvydVbePGjZDL5R53VqnVatx///347rvvkJaW5rXOr0tJ6+aW5PISjYCzLGf79u2xd+9epKSkIDExsdT916xZA0mS0LVrV3dbQUEBdu/ejUceeQQ6nc7dfs899+Dzzz/H+vXr0bJly1KPKZfLER4ejiNHjrjblEqlR8lsl/bt2+OHH37AmTNnvKo8ERHdaIy9Kh/jLsZdVeV6xF0HDx4EAK/lRbp06YKNGzdi8+bNePDBB732KywshFqtvmI1I5vNhs8++wwPP/wwYmJiSuxTUFAAlUrlVYkpJCQE586dq9AxiYiqC8ZdVYOxF2OvqlLd5rwKCgoAwKv6QkhICGQyGRQK5yUSu90Os9ns1S8oKAgymeyqv4MlzXkBznivRo0aHlXCdTodfHx8bsp/O4jov4+xV+Vj3MW4qzJcS4x1vT5vQUFB0Gg0yM/Pd7cVFha6txXn+nem+PE3btyI4OBgjyXnAgMD0alTJ6xevRoWiwUqlcrjOFarFTabrcTqX3l5eUhOTkb//v2hVCrd7bVr10Z8fDzWrVuH0aNHl/n5UeVhktItZuXKlZg8eTJatmzpLi+7cOFCPPPMM/j++++vuPaiw+HAqVOn0L17d69t9evXx65du1BYWAitVutuX7FiBRYuXAghBOLj4/HEE0/g7rvvrpLnVhXeffddrFixAjt37sTixYuh0+mQmJiIr7/+GkOHDi3zcU6cOIEff/zRo+3kyZM4efIkAOcXwdUCB51Oh/fffx9r167FX3/9hfT0dAQFBSEpKQnvvvsu+vXrV/4nWILNmzd7jXXLli3YsmWL+3FZAgeNRoPVq1fjiy++wOzZszFt2jTI5XLExcXh6aefRkJCQqWMt6xSU1PdX6i//fZbiX06dOhw3SZsjh8/jtjYWI9EHwDuAOHEiROlBhPXKjs7GwC8yjcWZ7PZsH79ejRq1Mjj34VTp07Bbrd7lR5VKpWoU6dOiWW4jUYjzGYzCgoKsGXLFuzYsQOdOnWqlHESEVV3jL3KjnGXE+Ouync94i6LxQK5XO6+yOXimmg5evSoV5LSuHHjYDQaoVQqcccdd+CZZ57xKlsNAPPmzYPBYMATTzyBTZs2lXj+Zs2aYd26dfjoo4/wyCOPQKPRYMeOHdi0aRNGjhxZoWMSEd1sGHeVD2MvJ8Zela+6zXk1a9YMv/zyC95//30MGTIE/v7++Oeff7Bo0SI89NBD7gtaarUaDRo0wIoVK9CwYUM0adIE+fn5+PHHH+Hn5+dxQdClLHNeTZs2xcaNG7FgwQK0bdsWFosFCxYsQEFBAR5++OEqeR2IiK4Hxl5lx7jLiXHXtalojFXVnzeDwQC73Y6srCzMmzcPBQUFaN68uXt7TEwMwsLCMGfOHMTFxaFOnTrIzMzEN998g6ioKHTu3Nnd99ixY6hTpw5kMpnXOBcvXoxz5855FF/Yu3cvunXrBrvdjsjISPTt2xd9+/Z1b7dYLABKTrRSq9U4ffo0srKyypyYSZWHSUq3kMLCQkydOhUPPPAA/ve//7nb7733Xjz++OOYPXu2R/vl8vLyYLFYSvygutoyMzMRFxcHAGjUqBE6deqEqKgoZGVl4ffff8fbb7+NgoIC9OrVq3KfXBUZOXJkiZP65TVo0KBr/kJSKpV44YUX8MILL1y1b8eOHSGEqNB5Zs6ciZkzZ1Zo38up1Wo8//zzeP7556/YLzk5udRtpT2PhISEcj3Ha3lNqkJpX3rFP0tVIS8vD0uWLEHjxo0RGhpaar+dO3dCr9d7BR1ZWVke4ywuJCQEBw4c8Gr/8ssv8eeffwIAZDIZ7rrrLowfP/6qY/3111+h0+nQqlWrq/YlIqqOGHuVD+Oua8O4q3TXI+6Ki4uD3W7HoUOH0LhxY3e7q8JS8XOo1Wrcd999aNasGXQ6HY4ePYq5c+di1KhRmD59useEUlZWFn788UeMGjXKaxKquAceeACnT5/Gn3/+iSVLlgBw3s3/7LPPomfPnh59y3pMIqKbCeOu8mPsdW0Ye5Wuus15tWrVCkOHDsXs2bM9LowOHDgQw4cP9zjGq6++ijfeeAOTJk1yt0VHR+PLL78ssXpTWea8xo0bB71ej6lTp2Lq1KkAnElUn376KRo1anTtT5yI6AZg7FU+jLuuDeMup4rGWFX9eRs5ciTOnj0LAPDx8cETTzyB+++/371doVDg7bffxttvv42JEye625OSkvDVV1/Bz8/P3ZadnY0mTZqUOs6srCx3klKtWrXQuHFj1KhRA3l5eVi+fDk+//xzZGZmuj9vwcHB8PX1dVfzctHr9Thz5oz7uTNJ6fpjktItZPfu3cjPz0eXLl2Qm5vrbpfJZKhfvz727t17xf1dmaHFy6G5uEqrufoAwFdffeXRp3v37hg2bBi+++47dzk+oluV2Wwu82epsjgcDrz99tvIz8/Hs88+e8W+a9asgUKh8Lr762r/Driykovr27cvOnbsiMzMTKxfvx52ux1Wq/WK5//pp5+we/duPPfccx4BChHRzYSxF1H1cD3irq5du+LHH3/Ee++9h/HjxyM2Nha7du3CwoULvc7RuXNnj7vE2rdvj5YtW2LMmDH46aefMGHCBPe2b775BtHR0XjggQeueH65XI7o6Gi0bNkSHTt2hEqlwtq1azFlyhQEBwejffv25T4mEdHNhHEXUfVRHee8oqKi0KRJE3To0AH+/v7Ytm0bZs+ejeDgYDz00EPuflqtFjVr1kTDhg3RvHlzZGdn4+eff8bLL7+ML774AoGBgR7HLcucl1qtRo0aNRAWFoa2bduisLAQc+fOxauvvoovvvgCsbGxlf56EBFVNcZeRNdfRWOsqv68vfTSSygsLERKSgqWLVsGs9kMh8PhUQ3Jz88PtWvXRseOHdGgQQNcuHABP//8M15//XV8/PHH7mOazWav5dxKG+d7773nNc7//e9/mDt3Lh566CGEh4dDJpOhR48e+OWXX/Dtt9+ie/fuKCwsxNdff+2O2aoiNqWrY5LSLeT8+fMAUGpygusuWrPZ7LFWJODMUHT9A1FScsGVyqW5KJVK9OnTBx9//DGOHj3qcYcx0a1GrVZX+LNUUVOmTMGOHTvwyiuvoHbt2qX2KywsxObNm9GyZUuvpdau9u9AScFDfHy8e03le++9F8899xxeeuklfPvtt5Akyav/2rVrMX36dNx///03xV0QRESlYexFVD1cj7grJCQEkydPxjvvvOO+s0+n02HcuHGYPHmyexmR0jRu3BgNGjTAnj173G3//vsvVq1ahU8//dSrzPXlZs+ejfnz5+OXX35xl+fu3Lkzxo0bh08//RRt2rSBQqEo1zGJiG4mjLuIqo/qNue1du1afPjhh/j5558RHh4OwLkMixAC3377Lbp27YqAgADYbDaMHz8ezZo18/i3pHnz5njyySfx66+/elXBKMuc1+uvvw65XO5xIe3OO+/EgAEDMG3aNLz55puV/noQEVU1xl5E119FY6yq/rwVrwzZpUsXDBw4EADwzDPPAADy8/MxZswY9OvXz2M5wXr16mHs2LFYvny5+1qgWq0usRhCWcYpSRIeeeQR7Ny5E/v370e3bt0AAEOHDoVer8evv/6Kn3/+GQBwxx134P7778eiRYuuOmdHVYNJSrcQh8MBwFm2Njg42Gu7XC4HAKxbtw7vvvuux7ZNmzbB398fKpXKvdxTca62Ky0fBcD9P4J5eXnlfwJE/yEhISHIyMjwai/rZ6m8ZsyYgYULF2LEiBG45557rth38+bNMJlMJa4vW7yk4uWysrLKNO6OHTvio48+wrlz59zlI1127dqFyZMno02bNlct3UlEVN0x9iKqHq5X3NW0aVP89ttvOHXqFEwmExITE93nqFGjxlX3Dw8Pd5fHBoCvv/4ajRs3RlRUFC5evAgA7jtUs7KykJaW5l4abuHChbj99tvdCUou7dq1wxdffIHU1FTExsaW65hERDcTxl1E1Ud1m/P6448/UKdOHfdn1KVdu3ZYvnw5jh8/jhYtWuDAgQM4ffo0Ro8e7dGvRo0aiI+Pxz///HPVsVw+55WSkoIdO3Z4LXnk7++P2267rUzHJCKqjhh7EV1/FY2xrufnzc/PD7fffjtWr17tTlLauHEjsrOz0a5dO4++TZs2hU6nw99//+1OUgoODr7iOK+2LFtJ41QqlXjxxRcxfPhwnDt3DsHBwahRowbeeustyGQyxMTEXPGYVDWYpHQLcX3IAgMD0aJFi1L73XHHHfjkk0+82mUyGWrVqoUjR454bTt06BCio6O9JsUvl5KS4h4D0a2sdu3a2LdvHwoKCtx3FQDOz5Jre2X5/fffMWPGDPTt2xePPfbYVfuvXr0aPj4+XgEDANSsWRNyuRxHjx71WKbEarXi+PHjXsvDlcRVOvHyOygOHTqEV199FUlJSXjzzTehUPAriohuboy9iKqH6xl3yeVy1KlTx/145cqVAJx34F9NSkqKx2c1PT0dqampePTRR736Tpw4Eb6+vli2bBkAICcnxz1JXJzNZgMA2O32ch+TiOhmwriLqPqobnNeOTk58PPz82q/PE7KyckBgFJjKle/K7l8zis7O/uaj0lEVB0x9iK6/ioaY13vz5vZbEZBQYH7cWkxlhACDofDIx6qU6cODh486LVc3OHDh6HRaK56E+CVxhkcHOxOqrTb7di3bx/q169/1edOVYP13W8hLVu2hE6nw+zZs93/E1ac6w7a0NBQtGjRwuPHpUOHDjhy5IjHP2Rnz57Fvn370LFjR69jFVdYWIj58+cjICAASUlJlfa8iG5GHTt2hN1ux59//ulus1gsWLZsGRo0aOC+gz0tLQ1nzpyp8HnWrl2Lzz77DHfffbfXnWAlyc3Nxe7du3HXXXdBo9F4bff19UWLFi2watUqFBYWuttXrlwJo9HokaTkCjyKs9lsWLlyJdRqNRISEtztycnJePHFFxEZGYn333+fa0gT0X8CYy+i6uF6xV2Xy83NxS+//ILExESPz3VJn9dt27bh6NGjaNmypbttwoQJeOeddzx+HnroIQDAqFGj8Nprr7n7xsbGYvfu3dDr9e42u92O9evXQ6vVuieQy3NMIqKbCeMuouqjus151ahRA8ePH8e5c+e89pfJZEhMTHT3c7UXd/ToUZw7d84jEb2sc16xsbGQyWRYt24dhBDuvunp6Th48KDHMYmIbiaMvYiuv2uJsari81ZSPHTx4kXs2bPHo19sbCwA7xhr8+bNMBqNHvFQhw4dkJ2djU2bNnmMaf369Wjbti1UKhUAZ6Wky5O9bTYbfv75ZyiVSjRr1sxrbMX99ttvyMrKKvEmPro+WKbiP2TBggXIz893lzzbsmUL0tPTAQAPPfQQfH198dxzz+Gdd97B0KFD0aVLFwQGBiItLQ3bt29Ho0aNMH78+Cueo3fv3liyZAlefPFF9OvXD3K5HHPnzkVQUJDHOpK///47Nm/ejLZt2yIiIgJZWVlYtmwZ0tLS8Morr0CpVFbdC0F0E2jQoAE6deqE7777Drm5uYiJicGKFSuQmpqKF1980d3vnXfewf79+z2+kPPz87FgwQIAcJeF/v333+Hr6wtfX1/3haZDhw5h8uTJ8Pf3R/PmzbF69WqPMTRq1AjR0dEebWvXroXdbi9xqTeXYcOG4ZlnnsGYMWPQo0cPpKenY86cObjjjjvQqlUrd7+PPvoIBQUFaNKkCcLCwpCVlYXVq1fj7NmzeOaZZ9zZyYWFhZgwYQIMBgP69euHbdu2eZwvOjraY01bIqLqgrEX0c3hesRdADBmzBg0bNgQsbGxyMrKwuLFi2E0GvHee+953P01cuRI1K1bF0lJSdDpdDh27BiWLVuG8PBwDBw40N2veMJS8fEAzpLY9erVc7c/9thjmDRpEp5++mk8+OCDUKvVWLNmDY4ePYphw4a5K1SW55hERNUJ4y6im0d1m/Pq168fduzYgdGjR6NPnz7w9/fH1q1bsWPHDjzwwAPu5U2SkpLQokULrFixAgUFBWjZsiWysrKwYMECqNVq9O3b1338ss55BQYGonv37liyZAmeffZZ3HXXXTAajfjjjz9gsVjKVPGciOhGYOxFVP1cS4xVFZ+3QYMGoXnz5qhduzb8/Pxw/vx5LF26FDabDSNGjHD3a9euHWrWrIkff/wRaWlpaNCgAS5cuIDff/8dISEhuP/++919O3bsiPnz5+Pdd99FcnIyAgICsHDhQjgcDgwZMsTdb8uWLZg1axY6dOiAqKgoGAwGrF69GqdPn8ZTTz3lsSzcqlWrsHHjRjRp0gQ+Pj7YvXs31q9fjwceeMAjQYuuL0kUT+Gnm9ojjzyC1NTUErfNmTMHUVFRAIB9+/bh559/xqFDh2CxWBAWFobGjRujT58+Zco4Tk9PxxdffIFdu3bB4XCgWbNmGD16tDsTEgB27dqFX3/9FadOnUJeXh40Gg3q16+PAQMGlGmpA6Jbgdlsxvfff49Vq1YhPz8ftWrVwrBhwzwuHo0dO9YrmLh48WKp2b2RkZGYO3cuAGD58uVe6z0XN3HiRNx3330ebSNHjkRKSgp+//1397rRJTl48CC++eYbHDt2DFqtFp06dcKIESM8yiKuXbsWS5cuxalTp6DX66HVapGUlIQ+ffrgzjvvLNPzAYB7770XL7/8cqnbiYhuFMZeRDePqo67AOCLL77A5s2bkZmZCa1WixYtWmDYsGFeSeHTpk3D9u3bcfHiRZhMJoSEhKBNmzYYNGiQu+x0aVzx3XfffeeVULRz507Mnj0bp0+fRmFhIWrUqIHevXujZ8+eFT4mEVF1wbiL6OZS3ea8Dh06hBkzZuD48ePIy8tDVFQU7r33XvTv39+dzO0a92+//Ya1a9fi4sWLUCqVaNy4MYYOHepxl39Z57wA5139ixYtwrJly3D+/HkAQL169fDkk0/i9ttvL8vLSUR03TH2IqqeKhpjAZX/efvhhx+wfft2XLhwAYWFhQgKCkKTJk3w+OOPuytVuhgMBvz444/Ytm0b0tLS4OPjgxYtWmD48OFe82YGgwFfffUVNm/eDLPZjHr16mHUqFEec1ZHjx51x3a5ublQKBSoU6cOHnroIY8VXwBnHPj111/j1KlTMJvNiIuLQ8+ePdGjRw9IklSxN4KuGZOUiIiIiIiIiIiIiIiIiIiIiIioSsmu3oWIiIiIiIiIiIiIiIiIiIiIiKjimKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERLekmTNnQpIkzJw580YPhYiIiOg/b9CgQZAkCcnJyTd6KERERER0BZwzIyIiIro+kpOTIUkSBg0adKOHQnRdMUmJbkpr165F7969ERkZCbVajejoaNxzzz1YtmyZR79z585h1KhRaNWqlUff9u3bY8aMGbBaraWe48cff0TLli3h6+uLgIAAdOzYEUuWLCn3WNPS0jBmzBjUrFkTarUaYWFh6N27N/bu3Vtif9cFnNJ+jhw54tHfNXFwpR+5XF6uMc+fPx9jxoxB+/bt4e/vD0mS8Pjjj191v61bt6J79+4IDg6Gj48PGjdujClTpsBut5e6z5IlS9CxY0cEBATA19cXrVq1wo8//njF81TWe1MVHnvsMUiShK+++uqqfbt16wZJkvDHH39ch5ERERGV360SE+Tm5uLDDz/EY489hgYNGkChUECSJKxZs6bUfd54440rxl8rVqwocb/NmzejZ8+eSEhIgEajQVxcHLp3715q/8tNmjTJfY4rja8kZrMZX375JVq2bInQ0FD4+vqifv36GDt2LM6cOVPiPidOnMDgwYMRGxsLlUqFqKgoDBw4ECdPnizXuauCw+FAXFwcJEnCoUOHrti3sLAQgYGBUKlUSE9Pv04jJCKiW015YyfXRYnSfvr161fifunp6XjhhRfQqFEj+Pn5ISQkBM2bN8eHH34Ig8Fw1XEeO3YMOp2uzLHd5cobz1gsFnzwwQdo0qQJtFot/P39ceedd2Lu3LnlPvfx48fx/vvvo3PnzqhRowZUKhUiIiLQs2dPrF+/vsR9rjZ39s0333jts3PnTkycOBH33XcfIiMjIUkSYmNjrzi2isbOpVm6dCm6deuG2NhY+Pj4oFatWujbty+2bdtWYn+DwYBXXnkF9erVg0ajQVBQEO655x6sXbu2wmOoTJwzIyKiypKVlYXp06ejd+/eqF27Nnx8fBAQEIA777wT33//PRwOh9c+FYm7zp8/j3feeQd9+/ZF7dq1IZPJIEkSTpw4UerYKhJDXMnff/+Nxx57zP08Y2Ji0KlTJ8yZM6fE5ymEwLRp09CqVSv4+vpCp9OhRYsW+Oabb0rsfyV5eXl49tln0b59e0RHR0Oj0SA8PBwtW7bElClTUFBQUOJ+5b0uWpHnWdlx1/nz5zFkyBBER0dDrVYjISEBzz77LHJycrz6Xm1OUJIkJCYmVngslWHatGmQJAmPPPLIVftOnjwZkiRh3Lhx12FkRE6KGz0AovJ64YUX8OGHHyI2NhY9evRAaGgoMjIysGfPHmzYsAHdu3d39z158iR+/vlntGrVCr169UJwcDCysrKwfPlyDBkyBD/99BNWrVoFhcLzozBhwgR8/PHHiI2NxfDhw2GxWPDbb7/hwQcfxOeff47Ro0eXaazJyclo27YtLl68iJYtW6JPnz7IyMjA77//jqVLl2Lx4sW45557Stx33LhxCAwM9GoPDQ31eNy0aVO8/vrrJR7jr7/+wrp163DfffeVabwukyZNwoEDB+Dr64vY2FivxKiSLFq0CA899BA0Gg0effRRBAcHY/HixRg/fjy2bNmCefPmee3zxRdfYMyYMQgJCcHjjz8OlUqF+fPnY9CgQfj777/x0Ucfee1TWe9NVRk+fDh++eUXTJ8+HaNGjSq1X3JyMtasWYOoqCg8+OCD13GEREREZXerxATJycl44YUXAACxsbEIDQ1FWlpamfZ98sknkZCQ4NVeu3Ztr7avv/4ao0aNgk6nQ+/evREbG4vz58/j999/x/LlyzFp0iS88sorpZ5r7969eOutt+Dr64v8/PyyPbkiNpsNXbp0wZYtW1CvXj30798farUau3btwueff45Zs2Zh69ataNCggXuf3bt3o3PnzjAYDOjSpQv69++PM2fO4LfffsOff/6JDRs2oFmzZuUaR2WSyWQYMmQI3nzzTUyfPh2ffPJJqX3nzZsHvV6Phx9+GOHh4ddxlEREdCupSOwEAE2aNEGvXr282hs1auTVlpycjFatWiE9PR0dO3bEfffdB5PJhFWrVuGFF17A7NmzsX37dvj4+JR4LpvNhoEDB0Imq9i9q+WNZywWC+655x5s2LABCQkJGDx4MBwOB5YtW4ZHH30U//zzD956660yn/+1117DnDlz0KBBA3dS/NGjR/Hnn3/izz//xNSpUzF27NgS9+3ZsyeaNm3q1d6iRQuvtl9++QVTp06FUqlEgwYNyhQbVvT9L8mLL76IDz74ACEhIejVqxdCQ0Nx4sQJLFq0CAsWLMCsWbM8LsTl5OTgzjvvxKFDh9CwYUM8/fTTyM/Px6JFi9C1a1dMnz4dQ4cOrfB4KgPnzIiIqLLMmzcPI0eORFRUFDp16oS4uDikpaXh999/x7Bhw7B8+XLMmzcPkiR57VueuGv37t149dVXIUkSatasiYCAAOTm5l5xbBWJIUqzePFi9OnTBzKZDD169MDDDz+MzMxM/PHHH+jXrx/WrFmDadOmeezz+OOP45dffkF4eDj69+8PrVaL1atXY+TIkdi6dStmzZpV5vNnZ2fju+++Q8uWLXH//fcjLCwMer0e69atw/jx4zFt2jRs27YN/v7+7n0qcl20Is+zMuOukydPom3btkhPT0fPnj1Rr1497Ny5E1OnTsWKFSuwZcsWhISEuPt37Nix1GMtXrwYe/fuLfd12crWv39/PPfcc1i0aBEyMzO9ri27CCHw/fffAwCeeuqp6zlEutUJopvId999JwCIJ598UpjNZq/tFovF47HZbBZ2u73Efh07dhQAxJw5czy2bdmyRQAQiYmJIjs7291++vRpERwcLNRqtTh9+nSZxtujRw8BQIwdO1Y4HA53+9GjR4Wfn5+IiooS+fn5Hvs8+eSTAkCZz3ElrVu3FgDEokWLyrXfunXrxLFjx4TD4RDr168XAMRjjz1Wan+9Xi/CwsKESqUSu3btcrcbjUbRpk0bAUD8+uuvHvucPn1aqNVqERwc7PFcs7OzRWJiogAgtm7d6rFPZb43M2bMEADEjBkzytS/POrWrSsAiD179pTa59VXXxUAxMsvv1zp5yciIqost0JM4DrXmjVrRFZWlhDiUjy2evXqUvd5/fXXBQCxfv36Mp3DYrGIgIAAodFoxJEjRzy2HTp0SKjVauHj4yNMJlOJ+xuNRtGgQQPRtm1bMXDgwKuO73Jz584VAESXLl284uP/+7//EwDE4MGDPdobN24sAIhPPvnEo/2vv/4ScrlcNGnSxCPGvZLKjHGLO3v2rJDL5SI0NLTE/z9wufPOOwUAsWrVqko9PxERUXHljZ1Onz7tnucqq1GjRgkA4o033vBot9lsonPnzgKA+PHHH0vd/8033xQqlUpMnTr1quO7XEXimU8++UQAEG3atPGYAzMYDKJ58+ZCkiSPuPFqZsyYIfbu3evVvmHDBqFUKoVKpRIpKSle+5R3Dmjfvn1i79697vgCgIiJibniPuV9/0tz8eJFIZPJREREhEhLS/M6BwBRs2ZNj/axY8cKAKJPnz7CarW629PS0kSNGjWEj4+POHfuXJnOzzkzIiKq7tauXSv+/PNPr/mNixcviho1aggAYv78+R7bKhJ3nTt3TmzatEno9XohhBAdOnQQAMTx48dL3aciMURpGjRoIACIDRs2eLRfvHhRhIeHCwDizJkz7vbff//dHSdkZGS4281ms3jggQcEALFgwYIyn99ms3ldd3V57LHHBADx/vvve7RX5LpoeZ+nEJUXdwkhRLdu3QQA8dlnn3m0jx8/XgAQI0aMKNNxbDabiI2NFQDEgQMHyrRPRX4vy2r48OECgPj4449L7bNmzRoBQLRt27bSz090JVzujW4aZrMZr7zyCuLi4vDdd99BpVJ59VEqlR6PVSpViXeGKZVKd6b08ePHPba5Sjy/8sorCAoKcrcnJCTgmWeegdlsxowZM646XpPJhOXLl0Mmk7mX5XCpW7cuhgwZgosXL2LBggVXPVZF/P3339i+fTtiYmJw//33l2vfTp06oU6dOiVmmZdk/vz5yMjIQL9+/TzuPtNoNJg0aRIA5512xf3www8wm80YPXq0R/WBoKAgvPzyywDgVW67st6bK8nJycFdd90FmUyGd999191us9nw1VdfoXXr1vD394dWq0WzZs3wxRdfeJWaHD58OAB4ZXa72O12zJgxA5IkYdiwYdc0XiIioqp0q8QEQUFB6NKlC4KDg8u8T3llZ2dDr9ejbt26SEpK8thWv3591K1bF0ajsdQKSRMnTsTp06cxc+bMClU+OHXqFADg/vvv99q/Z8+eAICMjAyP/gcPHkR4eLhXuec777wTDzzwAA4cOIC//vqr3GMp7sCBA4iJiYG/vz9Wr17tbs/OzsbEiRNRv359d9n2Ll26YNWqVR7716hRA/fee6/7DruSHDlyBJs3b0atWrXQtWvXaxovERHRlZQ3dqoI13d6jx49PNrlcrl7/qf4d3pxu3fvxttvv43XXnsNjRs3Lve5KxLPuL6fX3nlFeh0One7r68vXn31VQghyrT8l8ugQYNKrOTYoUMHdOzYERaLBVu3bi3vU/PStGlTNGvWrMT5x9JU1vt/5swZOBwOtGrVyqsCZKdOneDn5+f1Hrte57feesujYnx4eDiee+45GI1G/PDDD9c0Ls6ZERFRddG5c2c8+OCDXvMbkZGRePrppwEAGzZsuObzxMbGupcTK6uKxBClOXXqFPz9/dGhQweP9sjISLRq1QqAZ9znigeef/55j8o5KpUKb7/9NgBnNfOyksvlXtddXfr27QvA8xprRa+Llvd5ApUXd508eRKrVq1yzykW9+abb0Kn0+Gnn34qdWm74pYtW4bz58+jdevWFYq1i3M4HBg3bhwkSUKfPn1gNBrd21auXInu3bsjNDQUarUaiYmJ+N///udV5ctVGWn69OmlnscVk7GKEl1vTFKim8bq1auRkZHhLvm3dOlSvP/++5g6dWqpa7GXxm63Y9myZQDg9UWxbt06AMC9997rtZ+rPJ+rz5VkZ2fDarUiNDQUfn5+Xttr1aoFAKWuC798+XK8//77+Oijj7Bw4ULk5eVd9ZzFfffddwCAoUOHQi6Xl2vf8rrSa3bXXXdBq9Vi69atMJvNZdqntNe5st6b0pw9exbt2rXD9u3bMWvWLEycOBEAYLVa8cADD+CZZ55Bbm4uBgwYgKeeegoOhwNjxozBk08+6XGcJ598EiqVCr/++isKCwu9zrN8+XJcuHABXbt2Rc2aNSs8XiIiourmvxITlMfmzZvx0Ucf4f3338ecOXOQmZlZYr/w8HCEhYXh2LFjXknyrramTZt6lI92WbduHaZOnYp3330XderUqdA4GzZsCMAZh1x+sWjJkiUA4JHAk5qaCsCZ+FVSUtTVYtmyWLt2Le666y4IIbBp0ybcfffdAJwX5po3b4733nsPYWFhePrpp/Hoo4/i8OHDuPfee70uarkudpU26eJqHzp0aJVeNCYiIqqolJQUfPvtt5g8eTK+/fZbHDx4sNS+ru/0pUuXerQ7HA73RaHOnTt77Wc0GjFw4EA0bdoUL730UoXGWZF4xhVTuGKH4iojnijOdRGteJJOcfv378eUKVPw3nvv4aeffsL58+cr5byVrU6dOlCpVNi5c6dXbLlp0yYYDAavxOuqfp05Z0ZERDeLq8UD5Ym7brSGDRsiLy8Pmzdv9mhPT0/Hzp07ERUVhQYNGrjbyxIP/PXXX7BYLNc8tsWLFwPwvMZa0eui5X2elWn9+vUAgG7dunnNf/n5+aFdu3YoLCzE9u3br3os13XZa034MZlM6Nu3Lz777DM888wzmD9/vnsp5zfffBP33nsvduzYgfvvvx9jx45F7dq18dFHH6Fdu3Ye15JbtGiBpk2b4vDhw9iyZYvXebKysrBw4UIEBATgkUceuaYxE5XbjS7lRFRWrmUoXnrpJdGoUSMBwOPnrrvuEunp6SXum5GRIV5//XXxf//3f2LkyJGidu3aAoAYMGCAR7/8/HwBQPj6+pZ6HAAiPDz8quMtLCwUcrlcyGQyYTAYvLaPGzdOABCtWrXyaHcthXH5j5+fn/jiiy+uel7XuQMDA4VcLhdnz54t0z6lKUuZxBYtWggAYvfu3SVub9iwoQAgDh065G4LDQ0VAERmZmaJ++h0OgFAFBQUCCEq970Rwrt09f79+0VUVJTw9/f3WjrFtZzL6NGjhc1mc7fbbDYxZMgQAUAsXLjQY59HHnmk1NLYrnKX8+bNK9NYiYiIqoP/akxQkvIs93b5j1qtFq+++mqJy6DNnTtXqFQq4efnJ5544gnx0ksviYEDBwpfX1/RvHnzEsuF5+bmiho1aoi77rrLfcyyjO9yDodD9OnTRwAQDRo0EGPHjhUTJkwQnTp1EkqlUowZM8ZjaZCjR48KACIiIqLE59KzZ08BQDz66KNlOv/ly7399NNPQqlUivr164vk5GSPvh06dBCSJHktDZiTkyOaNGkiNBqNSE1NdbfbbDYRHR0tJEkSp06d8tjHbDaLsLAwoVAoxMWLF8s0ViIiospQnuXeSvrp2LGj17IWQjiX70pKShIAROfOncWECRPE2LFjRb169URgYKD44YcfSjzX2LFjhVqtFv/++2+Zx1eS8sYzriV/ly5d6nWsP/74w/18CwsLyzWOyyUnJwu1Wi20Wq3HcsBCXJoDuvxHLpeLESNGCKPReNXjo5xLtVzrsiOffvqpkCRJhIWFieHDh4uXXnpJ9O3bV6jVanH33Xd7LQMXFRUlALjf38uP5YrryoJzZkREdLOyWq3u64crVqzw2FaRuOtyZVnu7XLljSGK27Rpk/D39xdqtVo88sgj4qWXXhLDhg0ToaGhonbt2mLnzp0e/fv37y8AiC+//NLrWPv27XM/38OHD5drHFarVbz++uvi9ddfF2PGjBFNmzYVAESnTp084qiKXhct7/O83LXEXRMmTBAAxEcffVTi9meeeUYAEF999dUVj3Pu3Dkhl8tFQECAew6zLC5f7i0rK0u0a9dOSJIk3nvvPY++rmV/27RpI3Jycjy2ueK3Z5991qP9q6++KnU5OdeyzM8880yZx0tUWZikRDeNp59+2j2BcNttt4m//vpLGAwGcfDgQfd6oR06dChx38OHD3sEHJIkiQkTJnitpXrhwoUrBgwWi0UAECqVqkxj7tq1qwAgxo8f79F+/Phx4efnJwCIunXremz7/vvvxZw5c8SZM2eE0WgUJ0+eFB999JG7/7fffnvV886cOVMAEPfff3+ZxnklZflyr1OnzhUDs7Zt2woAYuvWre42pVIpAHhcDCsuOjpaABApKSlCiMp/b4pPuKxatUr4+fmJ6OhosX//fo9+drtdBAcHi8jIyBLHmpOTIyRJEn379vVod63j2q5dO4/2lJQUoVAoRHh4eKlr+RIREVVH/9WYoCRlSQL6/fffxQ8//CBOnToljEajOHPmjJg2bZqIiIgQAMTEiRNL3G/z5s2iRo0aHrFpRESE+OKLL4TdbvfqP3DgQKHT6cTJkyfLNb6SOBwO8frrrwu5XO5x/i5duoht27Z59Xe9n1OmTPFo37Jli/sY3bp1K9O5iycpvfvuu0KSJHHnnXd6XUTcv3+/ACAefvjhEo+zcOHCEifcXn31VQFAvPLKKx7tc+fOFQBE7969yzROIiKiylKW2CktLU289tprYs+ePSInJ0fk5OSIjRs3ik6dOgkAonbt2iI/P99rv5ycHNG7d2+vua6nnnqqxJvV1qxZIyRJEu+//365xlea8sQzkyZNEgBE27ZtPRKR8vPzxR133OHe3xXrVYTJZBLt2rUTAMQHH3zgtX3Dhg3i888/F0ePHhUFBQUiJSVFzJ07VyQmJgoAon///lc9x/VOUhLCmcQVFBTk8TrXrl1b/Pzzz159hw0b5o6hiicLI7lHcgABAABJREFUpaeni7i4OM6ZERHRLeH5558XAET37t29tlU07irueicpCSHEv//+677pz/Xj5+cn3nnnHa9E69mzZwsAIjExUWRlZbnbLRaLOxH48nm5sjAajV6JXQMHDiwxEaki10XL+zwvdy1x1/DhwwUAMW3atBK3v/zyywKAmDx58hWP88Ybb1Qo4ad4klJycrKoV6+eUCqVYvbs2V59e/XqJQCIf/75p8RjNW3aVISFhXm06fV6odPphFarFXq93mNbgwYNBABx4MCBco2ZqDKUXOuOqBpyLUuhUCjw559/IiEhAQBw22234Y8//kBSUhI2btyIbdu2oU2bNh771qtXD0II2O12XLhwAX/88Qf+7//+D5s3b8bSpUsRHBxcJWOeMmUK2rVrh08//RTbtm1Du3btkJGRgQULFqBOnTrYv3+/V/nAIUOGeDyuVasWnn/+eSQlJeHBBx/EK6+8ctUl3FwlBUeMGOG1LTk5GTNnzvRqf+ONN8r/BP8D5s+fj1WrVqFOnTpYvnw54uLiPLYfO3YM2dnZqFOnDiZNmlTiMXx8fHD48GGPts6dOyMxMRFbtmzB4cOHUb9+fQDAjBkzYLPZMGjQoFLX8iUiIqLKtXDhQuzfv9+jrWnTpujVq1eFj9m7d2+Px3FxcRg2bBhuv/12tG7dGh999BGee+45hIaGuvvMnj0bw4cPR58+ffDaa68hPj4eZ86cwdtvv43Ro0dj48aNmDt3rrv/ggUL8NNPP+HLL78ssVR3eZhMJjzxxBNYvnw5vvzyS/Ts2RNarRZbtmzB2LFjcdddd2HevHno2bOne59vvvkG9913H5599lksWbIETZs2xblz5/D777/jtttuKzGWvZrx48dj4cKFeOihhzB79mxoNBqP7a5lnPV6fYnxaUZGBgB4xV7Dhg3D5MmTMWPGDLz55pvuWNm1NJxrSTgiIqLqJDw8HG+99ZZH21133YVVq1bhzjvvxI4dOzB9+nSMGzfOvT05ORk9evSA0WjEsmXL3EtQLFq0CM8//zwWLVqEbdu2uZfKys3NxaBBg9CqVSs8//zz1zzm8sYz48aNw7x587B161Y0bNgQ3bt3hxACS5cuhSRJCAgIgF6vd8cUGzZswIYNGzzOmZCQgEGDBpU4HrvdjoEDB2LLli149NFHMWHCBK8+HTp0QIcOHdyPtVot+vbti9atW6NJkyb49ddf8eKLL6JJkybX/PpUlg8++AAvv/wyxo4di9GjRyMyMhJHjhzBxIkT8dhjj2H//v344IMP3P3feustrFy5EvPnz0fTpk3RpUsXFBQUYNGiRYiJicHZs2fLHbdxzoyIiG4mn332GT7++GPUq1cPP/30k9f2isRdN9rq1avRr18/tGjRArNmzUK9evWQmpqKL774Aq+88gqWLl2KjRs3upe269evH3766SesXLkSDRo0QM+ePaHRaLBmzRpcvHgRcXFxHjHB/v37sXDhQo9zBgYG4tlnn/Vo02g0EM7CJ0hJScGaNWswceJEtGjRAitWrHBfrwUqdl20vM+zunE4HPj+++8BlHxdtiyOHj2KNm3aoKCgAMuXL0eXLl28+mzbtg1KpRLz5s3DvHnzvLZbLBZkZGQgKyvLvfyyv78/Hn30Ufzwww/4+eefMXLkSADA1q1bcejQIbRs2dJjyT6i6+bG5kgRld0LL7wgAIjWrVuXuH3o0KEl3uldml9//dUrq7Uqlg85ceKEeOKJJ0RUVJRQKpUiPj5evPrqq+Kvv/4SgHOZurKKiYkRAMTBgwdL7fPPP/8IACI2NtbjzikXV0bx5T+l+a8u7eK6Kyw4OFgAEIMHDy5xKZPNmzeX+Hpd/pOQkOC177vvvisAiOeee04I4axeUKtWLSFJUrky7YmIiKqDmzkmKGk53ZLKHF/ev7yVilxcd/L/+eef7rajR48KpVIpmjdv7lVhwG63i+bNmwsAYv369UIIZ3nn0NBQ0aVLF68YpSLjcy3FMXXqVK9trupF8fHxXtv27t0r+vTpI0JDQ4VSqRRJSUnik08+EXPmzBEAxBNPPFGm87vG7Iq9SlreQ4hL1Rau9jNo0CCvfe+55x6P1/306dNCkiQRHx9fYpUqIiKiqnStlXSmTZsmAIg+ffp4tLvu4C/pjucpU6Z4xTmDBw8WPj4+4siRI9c8vvLGMy4Gg0FMnDhR1KlTR6hUKhESEiIGDhwozp8/L3x9fYVCoXBXzilpSd3SKqfbbDbRr18/AUA88sgjpVbmvJLHHntMABCfffbZFfvhOlZScu1bUiXIgoICERMTI2QymUelTSGESE1NFc8884yIj48XSqVSREVFidGjR4vjx48LACIuLq5M5+ecGRER3Ww+//xzATiXt6/IUu+lxV2Xu56VlLKyskRQUJCIiYkpcfkwV1Wdy+dXLBaLeO+990SjRo2EWq0WAQEBomfPnuLw4cPueblTp04JIUpeErekuaGSbNu2TQAlr+hSnuuiFX2exd3o5d6WLFlyxevXV+KqpOSKu5o2bepVddxFoVCUKfZKTk722M/1Xt1+++3utsGDBwsAYvr06eUeM1FlKN/tE0Q3UFJSEgBnFm9JgoKCAABGo7FMx7vvvvsAwOPuLJ1Oh5iYGOTn5+PixYte+xw/fhwAULdu3bIOG4mJifjxxx+RkpICi8WC5ORkvP322zh27BgA4I477ijzscLCwgAABQUFpfZxVVEqrdpSx44d3RnPxX+uheu9cT2n4mw2G06fPg2FQuFRAeBK+1y8eBEFBQWIjY2FVqsFUDXvDQBMnjwZPXr0wIwZMzBkyBB3xS6XgIAAAM5qCSW9bq6f06dPex178ODBUCqVmDVrFiwWC9atW4dTp06hU6dOqF27drnGSUREdDOorjHBzJkzvb67S6osWVlKitlWrVoFq9WKDh06eN0xJpPJcNdddwEA9uzZAwA4e/YsMjMzsXbtWshkMkiS5P758ccfAQB33303JEnClClTrjqmJUuWAAA6derkta1JkyYICgrCmTNnkJWV5bGtWbNmWLBgATIyMmCxWHDkyBGMHz8e//zzD4DyxbKAs6pV7dq1MXToUHeVo+JcsdfUqVOvGHvNmDHDa9+nnnoKwKXqSd9//z2EEBg6dGi5KwcQERHdaCXFEwaDARs3bkRwcHCJdzy7vudd8QQA7N27F0ajEfXq1fOIJ1x9f/75Z0iShKZNm151TOWNZ1x8fX0xefJkHDt2DGazGZmZmZg1axbMZjPy8/PRpEkTd+WcN954w+t7//LKSgBgtVrRv39//PbbbxgwYAB++eWXCt1dX5a5tuvtSnGbVqtFy5Yt4XA4sG/fPo9tERER+OKLL5CcnAyLxYKUlBR8/vnnOHv2LIDyx22cMyMiopvBlClTMGbMGDRq1Ajr169HZGRkuY9RHeOBrVu3IicnB61atXLPiRVXUtwHAEqlEi+++CL+/vtvmEwm5ObmYuHChUhISMDx48cRGhrqrrg5aNAgr+/t5OTkMo2vdevWCAwMLDFOK8910Yo+z8pypXlJoGzXHq+0uk1ZPfjgg5g8eTL279+PLl26eM3PAc7YKygo6IpxlxAC8fHxHvu1bt0ajRs3xt69e7F3714YDAbMnTsX/v7+6NevX4XHTHQtOFNLN40uXbpAkiQcOnTI63+KAbgvlLi+XK/mwoULAOA1gdG5c2cAwIoVK7z2Wb58uUefa+EqNzlgwIAy9dfr9Thy5AgkSSr1OZpMJvz000+Qy+UYOnToNY+xrK70mm3atAmFhYVo27Yt1Gp1mfYp7XWuivdGrVZj/vz56Nu3L2bOnInHH38cNpvNvb1evXoIDAzE9u3bYbVay3XsiIgI9OjRA5mZmVi4cCGmT58O4NIFNCIiov+amzkmqCxWqxV79+4FAI9kLLPZDODScmWXc7WrVCoAQEhICIYOHVriT506dQA4k+6HDh2KRo0aXXVcVzq/2WyGwWDwOP/VnuOvv/4KpVKJhx9++Kr9i6tRowY2bdqEpKQkjBgxAl9++aXH9tatWwMA/vrrr3IdFwB69OiByMhILFu2DOfOncOMGTMgl8u9llMmIiK6GWzfvh2AZzxhsVgAAHl5ee6/F3d5PAEAffr0KTGe6N69OwDnRaShQ4eiT58+Vx1TeeOZq5k1axaAss+NuVgsFvTt2xfz5s3DE0884Z4Lq4gdO3YAwDUvrVuZqsvrzDkzIiKq7t5//32MHz8eTZs2xfr16xEeHl6h45QUd91olR0P/Pbbb7BYLOjfv3+ljM9gMCAvL69cSeIlXRet7OdZXq4kqFWrVnldezYYDNiyZQu0Wq17vupyKSkpWLp0KQICAvDoo49e01gmTpyITz/9FPv27UPHjh2Rlpbmsb1169bIycnBv//+W+5jDx8+HAAwffp0/PLLLygoKMCAAQOg0+muacxEFVYF1ZmIqkyPHj0EAPHJJ594tK9cuVJIkiQCAwNFbm6uu33Pnj0lLnlmMBhE165dBQDx8ssve2zbsmWLACASExM9SuqdPn1aBAcHC7VaLU6fPu2xT0ZGhjh8+LDIyMjwaDeZTMJkMnm0ORwO9zIWjz76qMe2ixcvinPnzpU4XldJw7vvvruEV8Zp1qxZAoB44IEHSu1TXmUpk6jX60VoaKhQqVRi165d7naj0SjatGkjAIhff/3VY59Tp04JtVotgoODPV7P7OxskZiYKACIrVu3euxTkfemNK4ylq4SkTabTTz++OPukp6uMuNCCPHaa68JAOLpp58WhYWFXsdKSUkR//77b4nnWbFihQAgWrZsKdRqtQgNDRVms7lMYyQiIqpO/qsxQUmutpxaXl6e15IpQghhNpvFqFGjBABRr149j2VQduzYIQAIHx8fr+VZ9u3bJzQajZAkSfzzzz/XNL7c3Fxx+PBhkZKS4tE+cuRIAUB06dLFKz596aWXBABxxx13eLTn5+d7xdJWq1U8/fTTAoB48cUXrzrWy8fsel/S09NF48aNSyyp3b59eyGTycT3339f4rEOHjwo0tLSStzmei7t27cXAMSDDz5Y5jESERFVprLETnv27ClxSdI1a9YItVotAIgtW7Z4bKtfv74AIF599VWPdqPRKDp27CgAiP/973/XPL7Dhw+Lw4cPe7RVNJ7R6/Vex1+1apXQaDQiMTFR5OfnX3W8LiaTSXTv3l0AEEOHDi3Tkq7F41IXu90uJk+eLACI0NDQEsdYHKpguTeLxSIOHz4sTpw44dHuWlY3IiJCnD9/3mPbsmXLhCRJQqPReCyXbLfbhcFg8DrHrFmzhCRJom3btmVe/pZzZkREdDN46623BADRvHlzkZWVddX+FYm7LldVy72dOHFCHD582OM79sKFC0KhUAiZTCZWrlzp0f/s2bMiLCxMABBLly712FZSTLNv3z4RGhoqgoKCxIULF8o89oMHDwqj0ejVbjabxRNPPCEAiAEDBnhsK+910Yo+z+KuJe4SQohu3bqVuPzv+PHjBQAxYsSIUo/r+j0cPXp0qX2uxLXcW/Hlmr/++mshSZJISkryeL/WrFkjAIg2bdqU+D7m5+eLbdu2lXienJwc4ePjIwICAtzzcXv27KnQmIkqQ/lr4BLdQF9++SX27duH5557DkuXLkWzZs1w+vRpLFy4EHK5HNOnT3eXGgaAt956C1u2bEHbtm0RFxcHrVaLc+fOYfny5cjNzUXbtv/P3nvHyXHX9//P2ZnZ3nevd+l06pLVLbnLGINtisHYCaaXBAiBJOSLkwckkAT4UUM3JYDBOJQYsLFxl6tk9XqS7k7S9bp3t7e9zu7M/P6YvT2dJUwJBEjm+XiAvTvtM59ZP+Z97/fr83rv4B//8R8XXWPHjh383d/9Hf/+7//OunXruOWWW1AUhR//+MfEYjG+/OUv097evuiYr3zlK/zLv/wLH/nIR/joRz9a/f7cuXNcccUVXHfddbS3t1MqlXjyySc5efIkl19+edUCcJ6+vj5e8pKXsH37drq6uqitrWViYoInnniCSCTCkiVLqiuLLsb8+f67q47uv/9+7r//fgAikQgA+/bt4y1veQsA4XCYz372s9X9vV4v//Ef/8Ett9zC1VdfzZ/92Z8RDAZ54IEHOHPmDLfccssFCuKOjg4+85nP8L73vY/Nmzdz2223YbVa+clPfsL4+Dgf+MAH2L59+6Jjfptn8+siiiLf+973sNvtfOtb3+I1r3kNP/nJT7DZbPzTP/0TJ06c4Otf/zoPPvggO3fupKmpiZmZGc6dO8fzzz/Pxz/+cVatWnXBeV/60pfS3t7OwYMHAXjve9/7e1N8m5iYmJiY/K75vxQT/P3f/z3RaBSAPXv2APCZz3yGe+65B4BXv/rVvPrVrwZgbm6OlStXsnnzZlauXElDQwOzs7M8/fTTDA0NEQ6H+eEPf7ioDcrWrVt561vfyl133cWWLVu4+eabaWtrY3h4mPvvvx9FUfibv/kbVq9e/RuN+4Xcd999vPWtb+XNb37zopZ2H/rQh3jwwQd58sknWbFiBS972ctwOBw8//zzHDx4EIfDwRe/+MVF53r66ad5xzvewUte8hKam5vJZDI8+uijDAwMcMstt/Bv//Zvv/U4a2pqePrpp7n++uv5+7//ewqFAh/60IcA+MEPfsDOnTt5+9vfzpe+9CW2bduG3+9nfHyc7u5uTp06xb59+y66QvKd73wnn/rUp6pOTOZqfBMTExOT/0l+09jp7/7u7zh37hw7duygubkZgO7ubp566ikA/u3f/o0dO3YsusaXvvQlbrzxRj72sY/xxBNPsGPHDvL5PI888ggjIyN0dnZyxx13/LfvZeXKlQDoul797reNZ1asWMG6detYsWIFdrudo0ePsmvXLurr6/n5z3/+G63gfte73sXDDz9MOBymqamJf/3Xf71gn6uvvpqrr766+nnLli2sWbOG9evX09TURDKZ5Pnnn+fUqVM4nU7+8z//E6/Xu+gcfX19fPKTn1z0XTwerz5LgM9+9rOEw+Hq59/0+U9MTLBy5crqHM5zyy238JKXvIRdu3axcuVKbr75Zurr6+nt7eUXv/gFuq7zyU9+klAoVD0ml8tRV1fHddddx9KlS7FYLDz//PPs27ePlStXcu+99/7W7W/NnJmJiYmJyR8b3/ve9/jnf/5nRFHkiiuu4Etf+tIF+7S3ty96b/82cRew6Bx9fX0A3HHHHXg8HgDe8Y53cPnlly/a5zeNIa699lpGRkYYGhqq5rMaGxv5p3/6Jz7ykY/w8pe/nJtuuokVK1YQiUT42c9+RiaT4eabb666Y85z3XXX4XA4WLNmDR6Ph97eXh566CEcDgcPPvggjY2Nv2xaL+Db3/42d911F5dddhltbW34/X4mJyd5/PHHiUQiLF++fFFsA795XfS3vc/fVdwFcOedd7Jjxw7e97738eSTT7Jy5UoOHDjA008/TVdXFx//+McvOj+apvHtb38b+N3mn971rndht9t5+9vfzpVXXslTTz1Fa2sr1157LZ/85Cf5x3/8R5YtW8YNN9xAR0cHmUyGkZERnn32WS6//PKLOs/7/X5e97rXcffdd9Pd3c2mTZvYuHHj72zMJia/MX9olZSJyW/KzMyM/t73vldvbW3VZVnWQ6GQ/upXv1o/cODABfv+4he/0G+//XZ92bJlutfr1SVJ0mtqavRrr71W/8Y3vqGXSqVfep277rpL37x5s+50OnW3261feeWV+oMPPnjRfT/ykY/ogP6Rj3zkgrG+/vWv1zs6OnS73a57PB5927Zt+le+8pWLXnt0dFT/i7/4C33Dhg16OBzWJUnSvV6vvmXLFv1jH/uYnkqlful4e3p6dEBvbm6+qHvUb8L8/fyy/7W1tV30uD179ugvf/nLdb/fr9vtdn3NmjX6v//7v7/oeB544AH9yiuv1N1ut+50OvXNmzfr3/3ud190fL/Js3mxc3DeqrB5NE3T3/ve9+qA/tKXvrS6CkzTNP3uu+/Wd+7cqQcCAV2WZb2xsVG/7LLL9I9//OP66OjoL73WvEIcuKjrgomJiYmJyR8r/xdignna2tpe9F7Pj/OSyaT+13/91/q2bdv0uro6XZZl3eVy6evWrdPvuOOOX+ryo2maftddd+lXXXWV7vf7dVEU9UAgoO/cufMCh6kX48WclOZjnPNXYM0zMzOjf+ADH9BXrFih22w2XZZlvbW1VX/LW95ygVOCruv6mTNn9Ne85jV6c3OzbrVadb/fr1999dX6Pffco2ua9muP9/wxv9DhKplM6jt27LjAESKVSukf//jH9Y0bN+oul0u32+16e3u7fsMNN+jf+MY3XtRxYd4x9XcRF5uYmJiYmPwm/Kax07e+9S39xhtv1Nva2nSXy6VbrVa9paVFv/XWW/Xnnnvul17nxIkT+hve8Aa9paVFl2VZt9vt+qpVq/R//Md/1OPx+K811l+14nx+zC/kt4ln/v7v/15fs2aN7vF4dLvdri9fvly/4447fi3Xgxcy72Dw68Zt89e/8sor9YaGBt1ms+kOh0Nfvny5/ld/9Vf6wMDARa8zPz8v9r8XxjW/6fOfXzl/sZhaURT985//vL5t2zbd4/HooijqNTU1+o033niBy8D8/m9729v0rq4u3el06k6nU1+/fr3+8Y9/XM9ms7/JFJs5MxMTExOTP3p+1TsX0K+66qpFx/y2cdevus4L35e/TQwxn5O6mCv4/fffr7/sZS/Tw+GwLoqi7vF49O3bt+t33nnnRXMen/70p/WNGzfqPp9Pt1qtekdHh/6e97znol1cfhV79uzR3/72t+urVq1aFPdddtll+mc+85mLxhi/aV30t73P32XcpetGffYtb3mLXl9fX82Xvf/971/k4P5CHn74YR3QL7300l+6z6/iYk5K8/zgBz/QJUnS29raFsWsu3fv1l/3utfpDQ0NuizLejgc1tevX6//7d/+7UUdROfZs2dPdX6+8Y1v/NZjNjH5XSDo+nnLYUxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTH7H/HYeryYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJr8mpkjJxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExOT3iilSMjExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTH5vWKKlExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMfq+YIiUTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTk98rpkjJxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExOT3ivSHHoCJicnvhkgkwu7duxkfH2d8fJy5uTlEUSSbzZJMJtF1nXQ6TSqVYvny5UxNTTE5OUlbWxvBYJBnnnkGXdfZvn07Y2NjBINBIpEI0WiUSy+9FFmWOXbsGLIsc8kll5DL5Zibm0OSJJqamojH4zQ0NJDP53G73SxfvpxQKERXVxfbt2/HarX+oafIxMTExMTExOR3QqlU4syZM5w+fZpYLMbAwADFYhGLxUIkEqFUKpFOp7FYLAiCgMPhYGRkBEVR6OzsJJ/P09vbSyAQwOfzkUgkaGlp4cSJE1itVjZs2MDc3BzxeJxwOEw4HGZychKv14ssywiCQH19PbquUyqVCIfDLF++nJqaGtavX09ra+sfeopMTExMTExMTH5nJBIJent7mZqaYmpqikgkgiiKaJrGuXPnKJfLuFwuEokEkiSRTCZRVRVN0wgGg5w5cwZBEGhtbWViYgKfz0c2m6VUKtHU1ITdbicWi2G1WvH5fBSLxeo+NpsNl8tFe3s70WgUq9XKpk2b8Pv9tLS0sHz5ciTJTLGbmJiYmJiY/O9AVVUikQhjY2Ok02kmJibIZrNYrVYmJycZGRnBbrfj8XgYGhpC0zTcbjeKopDNZimXy5TLZRKJRDXGamtrI5/Po6oqoVCIXC5HOBwmHo/jcrlwu93U19czPj6OKIps2bIFh8PB4OAgHR0ddHR04PF46OjoIBgM/qGnyMTE5HeAoOu6/ocehInJ/2UikQgPPvgg+/fvp6+vj9nZWWKxGIqiEAwGmZ2dJZfLEQgEcDqdTExMAOD3+ymVSmSz2T/wHfxqBEFA13VkWcbj8VAoFMjlctTX1+NyuRgYGEAQBFatWkW5XGZqagq/309bWxtut5vNmzezY8cOdu7caYqdTExMTExMTH5rSqUSR44cYe/evRw/fpyhoSFmZmZIJpOIogjA9PQ0mqbR2NhINputJlXsdjvpdBpVVauxzR87Ho8Hq9XK3NwcAEuWLCGXyzEzM0M4HKapqYmxsTGcTicNDQ34/X7Wr1/Pxo0b2b59uyl2MjExMTExMflvkUgk2L9/PydPnqSnp4exsTGi0SiJRAJRFInH42SzWVwuFy6Xi4mJCXRd/5PMeUmShNfrpVgsks1mqa2txePxMDIygiRJLFmyBIByuUwgECAUCtHW1sbWrVtZvXo1GzZsMMVOJiYmJiYmJr81qqoyOjrK6dOnOXv2LP39/czMzDA7O0s8HqdQKBCPx1EUBY/HQz6fJ5lMIssydrudTCZDuVz+k8t5xeNxLBYLLS0tVaGUx+OhtrYWTdOoq6vD6XQSCoXYsWMHK1asoKuryxQ7mZj8gTH/8jEx+T3Q39/P3XffzfPPP8/w8DDxeJx0Og2A1+sllUpRLpcRRRFVVX/peeYDAgC73Y7T6axu6+rqQpIk9u3dh9fj46prrqRcLrPr4ad4+auux+128/xTe4lOxXntm1+FxWLhgbsewYLILe9+JcVikae/s4+Nr15N25JWJvsj9D8QoX5LkEteuoJULMPBr52iQIFr/nYL5XKZh7/8FM6wlav+7DLS6TQPfe8Jrr3tCjweD8ePdtN7tI9Xvf4mAH76g/vQ0bjx5hvIZrM88fgTrF69GofDwcT4BKO5UTweT/X+dV1ndHSUfD5PuVwmlUoxOjoKwCOPPAKAJEmUy2UAmpubAZicnMTlcrFy5UoURWH9+vXs3LmTm266yQwyTExMTExM/g9QKpXYtWsXjz76KMeOHWNqaoqZmRkKhQJ2u73qJglgsVjQNO2i55EkCbvdXo1NbDYbdrudRCJBfX09DQ0NJJNJzvSc4drrrsXpdPLY/buwYOGVf34juq7zyI92sfHKtSxZtoR4PM6+nx3lpW++CpfLxa5v70UoClz33suQJInnv9CNjMTWv1yDK+jg6M/PMteTZPlrG6htD9Pf00/PI0Ps/IvtSLLEfV99BI0yN73jpZTLZe7/7kMsWd/CqrWrSCaTPPngM+y86SosFgsPPfAIOhrr1q1DURTm5uawylZEUUQQBDRNI5/P09fXRz6fB6jGXY899lh1TmRZplQq4Xa7qaurY3JysupC4Pf7aW5u5rLLLuPaa69l7dq1v8enbGJiYmJiYvLHQjQa5eGHH2b//v309vYyMTFBLBYjn8/jcDhIpVKUSqVfmfNyOBxYLBYURSEQCOBwOIy8T6nMss5lWG1WDj5/GIsgcv0rXoKmaex5+CBX3LgNr9fL6RNnmOqb4/rXX4EkSTz5/QOIgsT1b99BqVRi/z19LLmsjs71bUydTTD6dAJ/u511N3SQjRU58aNRSihsfWc7qqry7H+cRLepXPmGdeRyOZ655zCbX7UCn99H/9lBevcOcO2tlwHw8I+eREPj2lddTi6X4+nHn6VrRScej4eZ6RkGBwfx+Xyoqlp1ExgbG6vmvM7na1/7GsCi+WpqaqqKuOZdA3w+H5deeilbtmzh8ssvx+12/56esImJiYmJickfC6qq0tvby4EDB+ju7ubcuXNMTk4Si8UoFAqUSiVSqRSapr1ozksURRwOB5lMBhAIhUI4HA6S8TThcJiWlhay2SwDPWPsuGYzLpeLvY92Y0Hkmps3A7D35z3UL/ewZuNy0sk03Y9PsfmmDnwBD4cfGKacFdn2Z63IksSRH0SxijY6r/Hjb7Rz+tk5MpMKdasstKz3MdQ3xfCBNBtfVY/NYeWpe06j6WUuf91yVFXlmZ+cwBEU2XTlCrLZLHsfPcXmnV2Iosj+PUfIJDOsW7eGUqnE0UPH0VQNSZIoFoskEgnK5TLRaLSa85rnP/7jP6r/Lssy5XIZp9NJXV1dVdwUDoepqalhy5YtbNiwgXXr1pmL+ExMfg+YIiUTk9+Q+++/n7vuuotjx44RjUZRFAWr1UqhUEDX9RcNBCwWCy6XC6vVSiQSYd26dTQ0NPDkI08h6jK3vfUWnE4nu796lKCnhiv/9hJUVeXAJ86w9c1dyDaZc0+OMfN8iu3Xr0QQBJz7GiEDl1yyCrWsoTzipMndRE2nn4Aepu+HEzTUNGJ1ymywXQ4KhAIh0GGpsJrkz6H8BmioaUTY4GD2cBLL9RYsWRG3zc+ON3SgxlQiB9N0CCtZdmUTwYCP+JEilwg7WNrWiWQXGf52gu1CK52dnei6zhXCjbjarKxd20mpUEZ7wsvW67uQ7TI9D/TTNV5k+58Z97D333oA2PG3q9A0jV0f28+at7Uj22SOHz3BsQPH2HnDNShFhV1P7gKMwmEymUTTNDKZDAcPHgTg+PHjfO9731uU3Kmvr0cQBKLRKH6/nxUrVrB582Y+/OEPm0ImExMTExOTP2Ki0Sh33XUXjzzyCGfPniUWi6HrOpqmoSgKwIuu8HK73fh8PtLpNAICO6/ZiSiJPP/YfrZdvYWulctIJ7MM/mCGnf+wGYvFwt6PnwFgxxuWo+s6+z5xlqbOAO2X1ZFLFGjsW83G9cuwOiSKu2RKOehc2mmM16LCHmi6uomQq4aURYRBO+Grw1x+2XZGn4ky80yOmtVeLv2z9fTeN46WAyFkodQHS9a34Hd6yQ+XyT5mpc2ynLA/jK7DKssmZJ9MY2Mjubkimy1Xs3J9M8EOL2MHZ9hheRmXrFuORbKQ+4XNuIdrV6LrOr6jS2i/PkTTphoKWYUjnx/k0vcvw2Kx8Oy/niJJlMv+ai35fJ6ffOfnWL0iWy/fzNTUFMeOHSMQCFAqlarxbl9fX3WOf/KTnwALYnKHw0FtbS2zs7PYbDY6OjpYunQp7373u7nmmmt+b78VExMTExMTk/8+hw4d4ic/+Qn79+9neHi4GnsVCoVf6SYpCEbBy2a1EZmaZvXq1TQ3N3P0+ROUMxZe8abrcDjsHP7eCB5CXPaBdtSyxuGvTrL+1locQRvDe+eIHMyx9WVNCBYB96nlAFxySTPlokppdy2hkpO2pSF8Wh0DYwnC9jCuWjtrwlDOgc8eAIdAk02jeBgyLvC7AmhddhKDBQTBgpoFu93NqquDFEY15s4VabAtoX6Dm6DfT7JboMu5hdaaOpwhmbF7NS5xtbOkowl02OaxI9lh7dpmiuky7G9i9dU1eEJ2+p+doXOuyNY/a0IQBA58cRyAbe9vRtM0dn/+LC03OfEEHZztO8fRZ09x6fUbKJfLPPXE02io2O12UqkU6XSadDrN5OQkAA8//DCwWHhfW1uLLMvk83nq6upYunQpV111Fe94xzvw+/2/51+MiYmJiYmJyW9LPp/nySef5JlnnuHkyZMMDQ1VxUf5fB5N01409goEAgQCAdLJHDaLzOXXXIokyXQ/N0Tn6ibWbFlONlFi/Bm49E31SDYLB7+TAGDrG/xoms7h7yVxhGHddQFSswqN0TTLO9z46qyop5spZaGt2Y8oCcT9IZiGupoAHkuZlLuWwhmRlms9dC2zM9tXZOpZkcASmRWXNTB+NI+asWBBQJ22Eq534PPJxM/o5LrD1DrC+OweBAHaPOsQRaiv9ZOeLrHC76VxjUxzh4vRYzk2hFpY1eXB4RZRjraDE7bs9KOrOsGp7bibYfVL/WTjJU7dl+WS29xYnSL77o6RzydYf4ufQj7P4z8+hKJn2HzNSqanpzlx9BSBQIByucxcdI7p6Wn6+/sBePDBB6tz/cKcV6lUoq6urtr6901vehNr1qz5Pf9iTEz+d2GKlExMzkNRFL70pS9x7733MjAwsGj1l8VioVQqXXCMIAgEAgGUokJ0LsrKlStpa2vj2Ud3I2s2bv+r2/D5fBz8/86CDDveugq1rHLg/zvDpms6sXtshNKNTO1J0NzcjCAI1ApNkKlcQDOclOIDaWpWBvDWuZghRbmgITtEsAIK6JqOUIlVhh+YIvx+H6JstC0ZfnyajusbaNoeYuLZOXrvHaNtZy1Lbmxg8KEp+u8fZ9P7llOzWmP2eLJ6b1arBVe9g8RAmnhfBnutFV+rk/F9M0zvjwNQzqsUE5V5sYKuQTZSAKB+SwhBEJjtThjbVcMxKX68WJ07XTMG7V5urAArZUq4BT81wVpkp0Qg0szlQiObN68yzvGUH4Adt69CUzX2f6KP9e9vR5Bg7+79nDjQzRUvM1bNPfnkkwA4nU5isRilUonZ2VlmZ2fZvXs3n//857HZbHi9XmZnZ7FYLHR1dWGz2Vi3bh3/8A//wKpVq37r35OJiYmJiYnJi3PmzBm+8IUvcODAAUZHR6tuk/MOPhdLxHg8HgKBAKOjowgIXHPNNVgsFg7tOsHWKzdwybb1FGJler87yaXvXoZFPE94dJkhPFJ3+QkkndTW1uKy5ImIRUppFZvPAk4gB7qqgyCArjHx1Bxt22vRKwvfY71p6jcEqb00yMRTMdKTeVy19uoY0xN5LKIRw008HwMBatf4mTqWJNaTpna1F1+764J7q13txdPo4sAXjPEueXk96ck8o89Fje1rPRRTJfofnDIO0AW0ksboU8Z2XQVNNwpWcsWAs5hQQNewumR0XSdyeK66LxaQRZkwDYRCITRVZ6v4ElqvCNOyOUx6Jkuou4tL37AMi7wwj1s+uIRkMsm9dz6AEFDZsmMjo6OjnDx5imAwiKZp5HI5crkc8Xico0ePcu+99wJGEm1eZB4MBmltbSUQCPDnf/7nvPGNb0SW5d/mp2RiYmJiYmLyKyiXyzzwwAM88MADdHd3Mz4+Tjqdrrp4XyznBdDY2IjL5SI6M0dX1zI6liyhe38PQsbGK96xk4A/wJE7IwBse2szpbzK0W9OsWJLCH+zk5ryUiIHsjTWNyLKFgKSkTNCB61sxHqR7hTtV4WxeYw4IDtTwlVnRbJDuQDlvMZ8WDh1KEfTukA1Xzb0dIKlLw0R7HQy052j78EojZs8NG3zMnEgxcjzCTa+pQFUgcRgYdG9+TvsxAfypEaLSE4IdToZei7GbHfOmLOCRmJ4YQW+WtTIThtC+cAqJ7oG0d5KSzrFyHFFjxk5L10V0Co5L6liepSPq9glNzW+Grw1dqL7VLZ6Wtm0sQmLKGA52GLM4+3NqCWNw3dOsuxmH44aie79pzi2r4cN165AVVWe3vUMGiput5tEIkEsFiMWi9Hb28svfvEL/t//+3/VnFcsFsPhcNDe3k4oFOLKK6/kbW97G+3t7b/x78jExMTExMTk12N2dpb777+fffv2Vd0n4/E45XIZRVEuanbgdrsJhUJMjkWQLVa2X7kZq2ylb+8US5a3sHnnKnJRgcFdRdbf6sHmFqvCoy3b/Gi6jnC6CzEPNWE/cklhRsyRmioRbLNh9YGShGJWRZQsoGnkZ6Bc0tCUyrh787iDMoE2KzM9CrHBIv5mG4iACnNni4h2Iw7LTKkM7UkTXuIkNlIkH1fxl3SCXXamTix2MfI1SPibrPQ8lAIg3GklM1NmuteIzzyNIpnZEuNHjM+CbEHJaMz2GAPTFChmKnMmglaGbFQFXcfhltFUnZleIw4rF3RkO4iqiNsaIuj3obo0VgevwdMMqzb5iU8UCU9fxpqb3Tj9IgfvToIKG97gJJ3K8Oj3D5PXY2y4ahnj4+Oc7j5TzWlFIhEmJyc5duwYAJ/5zGcA8Pv9WCwWAGpqamhsbGTdunXceOON7Ny5E1EU/7s/KxOT/zWYIiWT/5N8//vf584776Svr+9FrRDnW625XW5aWlvo6+kDTeA1t95MOBzm1J3jWLGy4x2rUBWVA586wyVXL8EZshPMNxB5JkkwEESwGOeh8pKncpm5M0kaN9XgbnABCUrZMlb3QmFG13QqQ+Dco1PUrAzgqjEKYLGzSerWBalZ62P2SJLsTAFXrQOrG5SMRiGl4G0yil/RkymWvryR5m01TDw7R7I/i/1VViwtxstSyWjs+2zvBfOkZDSOfKkHpSKYctfZkV0S5ZyRZFl6UwOOgI2Bx4wVXatuNSwPBx6fAMBb60Qtaww/NgOARbZQLhruRtZKgqYQNyalfqUXgJmTCWNDZc6U0YVnoqnGdX0VQdP8sbLFitUp4eypZ7tQz5YthkOT8FQAgB1vWEW5pHLwk2foeGsQ3aKx69FdjI6Psnz5cvL5PLOzs2iaVnUGOHHiBN///vdxu92USiUURaGxsZHGxkY2btzIRz/6Uerr6y+YMxMTExMTE5PFRKNRPvOZz/Dwww8zOjpKJpNB1/Vq27GL0dTUhCzLDJ4domPJEq6+9krUNIzem2LrezqRbOKC8Ojy5Ybo+ekQjhEZx9UOVKuRCCkmSjhCNmQflJKglfRqXBbvzqHfpGOxiKBrzPYlaN5aQ+Mlfiafj5GLFXGGFoRH5YJqCMSBwYcj1K7xE2jyMEGM4WdnWHtbG52vaKD/wSmiPUk6rq2n6bIQE8/PoZV0rB4ZZ1AmmSzRd++EISJ6QS2w56fji77zNDmQbBYy48b9NG4No6t69bOvyUl2tgAlkH0ygigQHzYKZaF1AXQNIicSANh9VtBg4jlDaC4A5aJmKMwr4Wc+biRz7POCpiPGvpoGlvP0YrIsE/AFWS9eRttlQZo21rAkuIK6nlVsfWMnktV4PiVVYdW764lGozxw7y+wuWXa2toYHR1FVVVisRizs7MA7Nq1i7/8y7/E5XKRSqWQZZnVq1dTW1vLX//1X3PjjTf+yt+aiYmJiYmJCTz33HN897vf5cCBA4yPj5PNGrHBC1uvza/Md7vdtLe1Mzw4il6w8PLXXEdtXQ1nvpdAkuxse0czSr7MsW9GWLoxQHiZizp1CVMHcgTcISTJsnDSSmgBMHMqi6/Jgd1ppJ9zMwruRju6qEMZSrkFZ6bp4wXaLtNxeI19Z3oztIcD+JY4mOvJExvOE+xwILmhnIFMpIiv2QHEyc0YIquGDT5munPkZ8s4/DKyvZL2LsPRb01dmAUvQ/f3JylXdEt2r4TNJ1ZF6bVrXXjqbAw9GwOg5TIfFtHC6CFjcV+g0YGqaIzvM9oKy04LSub8OdbJzRqxVbDDCRpEe4wEm8ViCJhSQ5WLaQLlsjFxNp/xVX7OyHlJkozDYcc+1cAGVwObNxmCJvGQkYPb9oZmlJzKsf+YovGlIpIf9jy9j6GBIbqWL6VYLDI7O0smk+H06dPous6zzz7Lv/3bv+FyuVBVFV3XaWxspK2tjRtuuIF3vvOdpguTiYmJiYnJr0E+n+e+++7jscce48SJE4yPj1drjhdveyvQ1taGw25ncnCOuroGrnrZVkpJiel9Vla9wo07LHHwrgQAmy71Gx1cepOQAKfdSdFixAipqRLhpSJ2PxQSUMiWka0iaBpqHMoKCLoAmkb0nIKvyYqvVmQ2XiI5YYiW5oVHuZiKZDPyZbEBleaNGq6gDChETubxN9toXGtn8niB2HCRzmu8hJeViJ5T0EoCDr8Fm1smV1SZOqUw06ugqhaqBU5g8nSRydNFqEyLu1bE5hEpJI2EU8MaB4JFIDdn7BBotpKeLaMqIIogWQXiY8a9u2tEdFVnbtD47ApIqIrOzEAJdCPOLaYNARMYea101Div02tFU3ViQ0YCTi8bgqf5cYmCjMvmo9O3FU8rrNzgo8W7mvq5q1j9KheuoMTBu5KoqkrnqzRic3Ps+vk+FD1De3sr4+PjRKNRkskkZ86c4emnn+aLX/wioijidrtRFIVwOEx7eztr167lbW97G5s2bfpv/Q5NTP4UMUVKJv9ricVi/N3f/R2PPvooc3Nz1ZVhv8wasampiXA4zOljPbjx89YPvAG7aOfAZ86w5tY2fE1uRusjjD05R1dnFxbJglWYqR4/f9ZoX5q2yx346lxESBrCI88LhEcVJe3wrlkaN9XgChotOeIDaerWBQmvdRE9mSU/V8TmtxoHZqCQVLBUlLYDj0bwtrpwho1jR56eoe3KWnBZIaMwsTeKM2SrXvfsA+OUsgtVr4OfMwp7WMEVtJKNKFyMeYGSp91B9GSK6MlUddvAL6YoZkpEDhoFrJFdEVqvqiNbCRTm+pO4Ao7qdQrpEqlhYzVaaE0AtagxttsoTDlCNrSyzthTxup+i0VAVbTqsVBxAgBqVniMue5JVvalOkcAAoarAEB4sxtBEMjPJ4b8QWxuK52zm+kUNrPjVYZT0t6P9YAVtn6gi4FzAzx478O0r2rB6XDS3d2NrutMTU0xMTHBoUOH+MY3voHH48FisZBKpQgEAqxevZp3vOMdvOlNb7roXJqYmJiYmPxv5pFHHuFzn/scx44dI5lMvmhLEFmSWblqJalkmvhImhtveyntS9s5+KkBALbfbjge7f/kWeSMTGNDIxkpzygpcnMKvkYntiaZ4kQJVdEQKq5FuXEjGSFWgoNYf4amoI3atUEm9sTIJ5SF+EjXKBdULJUwbfSZKI0bwngajdhlYn+Ujp0NBFc6ifXmmDmVxNPsqN5DrD9FdtoQC2WG8sydSTFScTyaOhC/4J/z/+5qspGdKFLKXWQSK6Gas04mFytx4ltDizb3/WR80eepo3FSY0bhUbZDeizH2NOGk4HNLZKdzjO5xyisCYJAZnphFZuuQWrSGETtWh9oMHc6BbpmxJ8azByZL6RRjctkJ6BDPlasXMeGgFAVmgsa1cBYFq3UhGvwuwNcIb6SjqtradwUZPp0jP77Ztjyt0soqAX+8/M/JU2MSzavZWZ2hmQySalUqq5Ie+yxxxBFkUAgwNzcHHa7nWXLlrFlyxY+97nP4fP5LjKZJiYmJiYm/3vJZDJ85Stf4b777qO/v59UKlUVm1yMpqYm6mrr6D8xgl+s5bXvfRmybuPEXTO0XeOlfp2P8YNxJvZlWNpaj9UlIVUcjzRVB9WItaJnsoQ7Xdgrea7crIKn2WZkmMugFDQsFUF4rK+Adq2OzS+h6zrRc1lctTaCS2zEzhZJTRSqsZWu66Qmi9V82Wx3jtBSJ1an8XnqYBpRtCCKUAYmjqTw1Fur99f/WHTR/Z76USVfJ4HdLVFIlI0DX0BVoBSSyETKhpipwszJLJqqE+0x4qWpE0ksEuSnjBPFh3KLREm5eJnMpBEf+VolSlmViWNGLOWus1IqakS6jbjNIltQsucVLgWdfNTIeXnbDIem2DkjbhMtFnQNCrOVfTWdciUus9VKoAtkI5Xr+gJ4GxwsKWyl1buVLTc2giBw6KvGYsJNf1XP8LlhnrhvD+GlLlweF6dPn6ZQKDAyMsLQ0BDPPPMMH/zgB/F4PIiiSLFYpK6ujjVr1vDud7+bG2644cKJNDExMTEx+V9Ob28vd911F88++ywjIyNVR6SLLb6TJSurVq2imC2Tn5a4dOd6Ote0cuyHWcOp51YPCHDsBykQoaHOT0JVmCZHarqMKyjhqoHsLBQyKlZHpQCmQLlU6aiiacSGFULtNtw1IoVYifR0mWCrWBUeFRIlRNmIyxIjJZSsit0vASVmeos4AhKeWpH0lMpsXwFPg1w9dvZM0Whpi1EjnOkrEOs3Aqd0RGXo+QyJ0RJYLKSmNE7eb4i2rR5Q0nBRfVblO6sDFAWG9y52WhrYnal2hwGYPFlAySzUCOeGSsyeNcZgdQkkJhRm+434SbBAYrJUNYrQdUhOGuN3hgW0sk58SAFdx+azoJYgOmhsF0QBJbfwHHVNNxyaAIdPQtcgPlJJ2OmG+AtAFEWCgQAuOcCW2noCHSLLrnQz2ZNn/HCJVTc6wVHkoW8fIF6cYsklNcxF5zjX38/Y2BhjY2Ps3r2bO++8s5rzKhQK1NbW0tnZyVVXXcX73vc+3G73RSbTxORPH1OkZPInj6Io/PM//zM/+tGPmJycxGq1oijKRW2q21rbcLqcDJ0ZZu36dVy583IoWjj+lUG23b4C0WphY2g7I0/O4HK50HUdV72VaG8cb6OLukuCjD05RzFTwuG30fGyOoYenUYr60hWEXeLjfE9s7ReVoO/3QtMkhzNUrPaz8rXt9D7gzGKaQWb14qv00WyP4taUrEFjcTK2J4YtWuDNO2oJXpyiPRUDmeNnfodQSJ7Y0iyBclX+c9WAbvXStOWMCOPzZCP5HHV29n4tqXs//96kVwi4XU+atYHOP61szRsCqIpGp7XOZk8NkftSj9Th2P4W10EV3gpJBWOftnotYoFnHULAqftH1qJrsP+T/RSt8lP47YQotXC1NEY7rCdVW9oRS/puBsdlPIqzVeHcQXthFZ6KaQUrEErnS+rxxmwLYiHunyINgvuZjvRkylkh4gggrvJSmZCAXQqrtiEV3rQdZ1ixnimrkYHuq6THDESRaJNXEjEWQGBqqV2uMsoWmVnjH0lm1idP6jsW3FoatwRRJIkmsIt7BCuZ+tNy5HsIv6j7SDAtn9cTiQS4Qff/iGqpNLZ2cno6Ci6rhOLxdi9eze7d+/mzW9+MzU1NQQCAWZmZti6dSt//dd/zU033fRb/spNTExMTEz+eDh+/Dgf+9jH2LNnD4lEAkmSyOVyFxTFXC4XbW1tzEVj5GaK3Pq219DQ0MDZB6aIDWfY8erlhhPlZ/oJOeqRJImuWxs4+19TlBUV2S4SXushejKNrus4KsLtRH8GX6OTFTc2cuKbIyhpwy2pbqOP6aNJ1LKG3W8FGUaejdK4JUjdJT4m9sSYPRmn7Zo6Wq8PMvpolHxcwVVrR/bJlJIlQMfbbPRJSw4XkJ0iLZfVEesdopQt4WkIsvy1jZz56SQIAm1X1yM5ZEZ2zSC7JDa8s4Po6RQzJ5PUrPbhCFnxtriInUvjbrDT859jrPnzdrAITB2JMfrkDBZZxCIJ+DqcJIdyLHlFPfXrAkwcmGNk1wwrb2tGcojITonTPx5l+auaiByL0XZVHalIDm9zmPiZLGvesASAhk1hBh6eomFjGCwQXOUhdi6NI2RDV404zNVkwyJZkK1GosseNua2mDUSNFZnxWFU0qBsQRAF1KKxzd9lJNOUjPHZFbaho5MaMIpwgmypxmGyExCoOmm6622VIqWxr2gV8Yge1onbAdjx0uWUiyoHP9vPslvqcLfa2P3kHo4dPU7Xqk4URSEajZLP5+nu7qa7u5tvf/vbiKJIe3s7+Xye2tpabr75Zt7//veb4iUTExMTkz95yuUy99xzD/fccw/d3d0UCgWKxSKKsrDQbF4U3traisftYXJwhqUdy7j6xh1oaQunfxRl7c21OANWhr1xpo9ncTk8gI49JDHbl6N+rZea5S4m9mXIzhaxuSUat7qZPJihVFCRHRLOWonkgIKu6fjbnECS+EgeT4udpS8JMPBonNxsAV+zE0+jTGpCQcmVcVXijLm+HC2XBqhd6yF2tkhyvEBwqYuadS5mu7OIsoCrbkHw5AzLeBpsTB3OUsiU8bXY8N7awNH/mEJ2WAgtdxJe6abnvgjh5S4EC7ivtjHTkyG01MlsbxabV6Rpm4/MTJFzD0YpF0CUwFW7sJhw0182AgJHvjGBp9lK0yYvFpvAXF8OySGy5CVBitkygXY7xZRK7VoXkk2gcbOP3JyC3S8RXu3C12xDqCi1/R1urB4JZ0giOQCSU0SULNh9EoW5MoIF5pNezjoJXYdizoiXvA1WQCc9YwiPrF7RcA2tYJEslCtxWWipFQQopIx8mdUtgq5TTs/vvNByztliQZIkwr4mNrpewuqddbhrZEJj68AKm9/TwEx0hp9952GyeoLOzk7Gx8dJJBIMDw8zPDzML37xCwDC4TDBYBCAnTt38sY3vpEdO3b8Ln7yJiYmJiYmf1AmJia4++67eeKJJ+jr6yObzZJOpy/IeTmdLjo7O8nEC5STdl7y6m00tTTQ/2SB9LTK5lf4UPIq3T/J4BGsSKJE21YrI3uLFDMazoCEt0kkNaGilnWcIQlR0EiNFalfYadxnYNzT2QpzJVxdNjwt4okhkuUciquGgnRCsmRMmpZp6bLTvRMidhAkWCrjbrVVqa7FbKzZfztVkMUlAddE/DWG/XFYlzF6ROpX+0gPZWhmCvT3uGmXNQYO5BH0zQ6LvcgOXLM9BSR7ALLXuZjbtBo/xZosyK7LfgbrcyNKHhqJEb25+m8yoNohcjpIrNnFCwSSDYLzpBIbk4ltEyi41I3o4fzzPQWadpgR7IL2FwWBp7L0rTeytyQQuM6B+nZEr4GicxMnuU7PQgylAs2IqeKNK5xINoFPDUK6YiKp1424iURrFbjmpLVEGjZvRZ0dNRKbdLmFNDKGqJFR1UFJBuU8sY2R8iCRRRQ8pU8lt+Yr3kXJslmqebWEMEiCJQLlVxbSEQXIBstg64j2izY7C46fJvpADZf66WU0zjx0wzh5SIN6y0c2t3NqeNnaFjmoayW6e3tI5MZZHBwkMcff5wPfehD1ZyX1Wplw4YN3HTTTbz61a/G4VhYSGli8qeIKVIy+ZOiu7ub9773vRw5coRc7mLLz42erR6Ph+nINJdfcTkbN26kOKHS/9MIO960CgTo/k4/Tslh2BpbjRfIfIHL1WC09dBUHYsoYPVaiRxOseRaqlbRyaEsjg02fEvcwDRaWcUiSTgCNjJjRXRdR5SNos/IM1FqVvtx1RvnzccU7D4brhYbyf4sFsGCIFVam8UUBAu4ao2XS/S04azUtCVEZG+M7EwBb7OL8Fov0ZMp1JKOWjQSEbJbAkGgEK/0b61zINkkyvkyiqLhqrWja5pRkLKJ2P1WXLV2Jg7P4Wy0Y/PIhsCnkueyWM/vjSpQqLT/cNU5sPutaGUdd9iBs96OaLWQHMqhqTqOgBVvvYPR3dN42pzYPDJWl0DPD0bZ8oEu7B4jOZWazOFqtOMKObDXWrF6ZdAFZI+Vtmv9SDYJtWS8+MPLfAiCgFRRUQuigCAIOEM20sN5dEE3bCuB8CqjbVxZqSid/XZ0XaeQMj5bLtLzVZ9vI9ditMcrVtrIiVbLov1EUaSxsZHLhBtofUmIlm31ZKN5jt85yNr3t5JIxrn7rntQKeFwOJiYmCCbzfL444/zxBNPIMsyiqLg9/tZunQpN910Ex/96Ecv+js2MTExMTH5Q1MqlfjqV7/KN7/5TQYHBykWixfsI8uyIQTRBdS8xm1veh31dfUc+dwwXa9soKbLR2Y2z4lvjFAbqsciWnCGbMR6MobjUeXdHutLE2h1420wYqDCXBG5yYmr1k6UtBGXSRaQYbo7TeuVNdi9RnEpNpChKWTD3+Fk+mgSpSIml50V4ZGO0aZN10iczdC+s55gm5dRoqiKhihbqF3vY+K5KEqujN1nRXYKlJIl1MKCS5Na1NHLOpGjCQCsLglN04kcMxySnDV2BNFCWdGwB2ScYRvlsoZkF3HX26vx3cSBKI3bQngqMaelsqrNHrCSHMphc0homsbsyYrzUp1xnGAxinXOsA3ZJaGrOlaXjDNgCMtjZ1MElrlwNRif+x+fpPP6Rty1NiwWiA+mCbQbq6/ar64DdMRKvFe70g8WcIVszAJWl1xti+eoFxEQqhbd7kpMW87OOysZ8bHFLkOuhEU0VqgB+Fca7pdqJWFjdRn7luILq9XmE32yoQ2rxmV2nw2n00mnay1usZXtr+xCEIVKG7kS69/XzJkzZ9n12BP4fX6y2SzT09NMTk5WhXSlUgmLxcKyZcvo7Ozki1/8IkuXLv3lP3oTExMTE5M/IOPj43z84x/nscceY2JiYpEQaR6/308oFGIuEmfL1k1s2raJ3JDA2HNpNt/eiChZOP1fEbSyUTwrW4xcSD5Wxhm04q6zMU0WtagiO0WsLpHUaBFdM4Q0APHhIsEOF75WO5MHM5RzKjaXhN0nkZspo6o6cmVFf6Q7S+tlAVw1RlyWnS7jbwVXg0RqQkFAQLYb5y0XDAchb70R26RGjPurW+1mtjtLKlLE5pXwNtpIjRYp5TSKWqUgJGGIcWJGDswRtGL1SChpFcqGU5EgCYhWC5JswVlrxTFbItqTxdfuwBGwLmTBLQKSfXFuKDdrjMURkHHWWlEVDZtXwhGSsbpFCmcUdBVctVbKeY3xg0kCS5zY/TKSE8afT+JrtRm5NaAQL6GkVZwBK5Id3LVWNE3D5pFwBiXsXplSviIAb3UgSkI1j2iRLICA1SkD5UXxkqNGQhCoFtkcPhugo1RyXqJsWbB6pyJgq+wbqLiFKmljX1vFpYqKm5RFEqmrrWez+3o87RKrX9lAKpKn50dRlv+5l2wpzb3fv4+sksLpdDI5OUkmk+Hs2bN8/etfx2q1Ui6XCYVCLF++nDe84Q28/e1vR5LM8oOJiYmJyR8nTzzxBHfddRf79u0jEolQKBQWbZckidraWgRdQlSc3PC6ndTXNnDq3gJ1qyXatrhJRoqceTRP2ONCkiXsHgvpaRVN1ZHtFhAhPlakaZ0Dd1gCiqQjJVwhY9+UVqKU17C5DQekVKRS1wpUcl6jRYJLbHjrJRLDJXLxMn6PDdEKqgJauXIdIDurIloFfA02prsVlIKOzSXhX2Jl5rRCPlnG32xDdICah0JKRa/U1VAFSgWN2JARE8lOEa2skxgtgsWCp1ZGlAS0ko5oF3HXymiqjmQXcPhE3DXG+37qZJ7G9XZcIZFZjFyWIBrOR7k5sDpEyopOYrxSbwyLWESwiBZkN7hrZZIzZTRVx+qw4K6RgTyzA0XCnVZcISOG69+doWunB7tXRC3BbH+BcIeRr6pdZQdNR6zk82o6HUhWC1anBKg4fBIWqwAiiOhG7FTJeTkDAho65UoK1O4V0THazalUaoaVvJUjIFYW5lX29YigQyFpnEu2CoZwStdBEhAsoJYq4vGAiMPpoNW3BnvdSi55mQfZLnDobsMddeVrBAYGh3j28b3ILp1cLsfQ0BC9vb384Ac/QJKM3KHX66Wzs5NLL72UD33oQ9TX1/+3/pswMfmfxPwrweSPln379vE3f/M31ZViv4zly5fj8/iYPBxnw9ItbLi9k/hQht57Rlm7vAOPz8He7/QAxipuiyiQmVDITCh0Xt9UbdMRH0njCNqYOWm0xCjEi9h9VuJnjZXeWklHqbRLmz4Ro/6SIPmKnfLMqQR16wIkx41xZkbzWCp/7CsxBb2sU6okAYYenybwTg/+OheTxDhx9wBdr2jB2+EkNZRj5KlpMjHjPMn+LPmYUhXNnP7+KNs+uIIlL2skejLFwc/00Xx1mE3vW8aRL51j38eN+7TXWum7d3E7kEOfP7vo8/CjC63qjn6pf/GkapAZWxCBzZ8XYPDhKQYfnuLFsNdaKcwoHK5cs/26Orpe5eHQ54zPS25ooGFTkMFdU0ztixHocqOVdHp+NEhmrEh8PIPskuh/YBIAq09mfP8Mo09EwWokYTITeaaPJPB2OBGwMH3UeG6uGjtKpsSpbxn3pAPFVInJZ402cuiQjRrzW7POCzpEDhvHWiQLWlnnzI+N62olHb1i12l1G8fmZo1jHT476DD4pNFSxS45aG50cY3wKgB2vHkVpVyJhz73DMrSBPUtdZw4cQJFUchkMhw5coQjR47wL//yL4TDYRwOB6qqctttt/HhD3+4uiLNxMTExMTkf4JSqcSnP/1pvvvd7zI6OnrRohiA2+Vmzdo1TJ+bIzjXwkveuw3ZIbH/U2fBAi3NrRSTxrHRvjThpV4SA0Zbi2JCQbLaGd9tvJOVXLnaG376eIqOa+pIVWKp5Gged72DWMVxJzdXwBmwQwlKyRL5mIJScf2ZPJgk1OUlWYldEoM5bOusyJJGSddITxjnAshFS4w8M42v4pbUc88o7dfVMrHPaBFy7oEplt/chC1op5TLM7Z3lvZr6mjcHmRyX4zI8TiXvG0J08fjnLp7pDovtpB8Qax1fovc8xnfPVedA4ByroxW1pmuiJ96/2txDHf4S+cWfd7/aaNl70SljRuA7JPpf3AhPtvw7qVMHphj/6f6ANjyt13oml49VitpZCIFTt41bNz3gxPY/DIzR5P4O12kJ/IMPjwKJWi/og5N0zn+jX7Qddz1Dsp5lf4HjRgoH1MoJsoUYyWc9TLlvMrYfqMfSaDFja7q9P7EGJtWhlJWJTth/EY0RSM9ZTzz4CovuqozfqDSrkXV0VSdyN5k5VidcuWZe+tk/D4/nb6VqKKPlTc0Eehwc+irp+iL9dJ2dR2JRILjx4+jaRpnz57lzJkzPPTQQ8iyTGNjI/l8ns2bN/PRj36ULVu2XPRZmZiYmJiY/L7o7+/nYx/7GE8//TRTU1MXdQMHgWWdnQQDYZLdGktDy9n41jbmzuUYeCxOe6Mfr8fN8Akjdigmy8gOkUzEeF9qJY10JW+VGMnhb7MTHzbistREAW+zndSosV3JqJQq7ccSAznUywLkZo3zRLrTNG8Ryc0Zn+d6c5VWIRgt3jIqhYTRam7qaJK6tW4cfjuQo+enU7RdGcLTZCU9odD/WLTqxlhIlkmM5Ksr10efTRJoc9JxTYDj353i5H9OE+xysPrWWk7/1wxHvmHkamS3hYkDKSYOLMRaPT+Z5XymKm3WAHpfsE1VdJKjC3nG+fOC0eJt5mT2os9s8nCmev1SRuP0fxl5tfAqJ607Apy+dwbKULPGSetlAYaeixE9ncNRI1Eu6vQ/MEtupgwSjO1LMHnIsDuyB2QGn4kx223Esp5GO4mhPLGzeWw+CbSF+3GGJTIzCmd+YVxblCxkIgqRY5Ucni6QnDDuzVkroZV0IseM60gumXJeY2hXwnh0Ra0qdgLQy0bLPQB32Iaq6IwfqByr26kPu9nueDU4YPPrGylmyjx/Vy9x3xANXSFOnTrFbHSWeDzOnj172LNnD+9617sIhUJ4PB5qamq4/fbbefvb3262LTExMTEx+R9FVVUeeugh7r77bg4ePMj09PQFeS8BAY/Lx+o1q0hNCgSVJWy8oQVXSOTYj433YWPYQyFpvDuTU2VKBZ3EmBHXZGMqNq9IbMiI6XKxMhYLoKjkp6GYVklOlEDTyE6rlDo0sjPGselICaFeQK0MKTFWRC0a+bLUaJnkRIlUJb5LjJZxhawIogXQmBtSCLbZQDRES/1PpXDXGUYBU8cLlPM6sxXh0diBLLJNxGoXyedVRg9l6bzKS6jTyly/wol7Uyy50knCXWL8cJHxw0XAguiA3kcWYiuAk/ctznlNHDXij/hImfjIwr6qAqWcRmLUGP9Ud5Gp7oVFkGefWBx3zZ83dm4+Ns4jOmC2T2G2z7iPpVc7mRtQ6P6Jse+Kl7uxWITqsVpJJxUpM7jbiI9GDmWxOi2kJlRsXkhNlZg8lkfNQ8NaG7oGfY+lQQdXUKaY0Jg8ZowxH1dJTpZR0iDaoZhUmeox7tVbK1LK6YweNK6jq5CLq+RjRkxdzGqGqxLgDgiU8zqTJyv3rgmU8hozfca+5bxGIWU8c9Eh4nZ4aLSt5PKGpTSsk2lc7eD4Q3Empgbxry6QyiQ4caybRCLBkSNHOHz4MF/5yleQJInm5mZ8Ph/XX389f/EXf2Eu1jP5o8UUKZn8URCJRHjzm9/Mnj17LuqQZLPZEBBQigob129k5/U7OfW1YZSMxrabVyAIsP9IH/lBw3Zadhg/7fhAGne9g5rlPmaPJCnny9i8C23MyoqK1W3sO7kvQf2aIJ4mJ9ETGQpRBWfQXhXc5BOGaAkgO6aQjRbQReOlEevLUL8+RKDDyXRMoVwoE2j14ml3kB7OM/DUJI0bwwAUZhQSA2nG9hsFmHIeHEEbtev8pIZyzJ1Ls+HtS4mtTHPmZ+Mc+2o/Vje46q1kIwoDj0ySmV5Ipth9ViS7iNVtMfqzWmHD25eSjysc//pAdb9Vr28lMZRlct9CUaxhe5DatX56fzCIsjjGuIAlNzTgrrfT/Z2h6nfWoJWVr22m96fjKDEjQAiv9bLslc3MnIgz8AujIOWssSE5pKpT0+DDUxQzClP7jOKaWtI4+Jm+yklh+1+vJDGQrn521tjRFA2IggJzPSnmzhgFq/AqH8mRDIOPGIWy2rV+RKulej+iJFCuWDNag1aKGYXJw8YchFcYxbCpA0Zyx+6xVoulAJqmka3MtWep0XIudsYIdGweK7qukxqq/F4FvXodrKCjk4sq1ApNdG3aSni5j9pIM7FEgY1/vZTpuQg/vPuHKChYrVYikQilUonPf/7z3HnnnYBRMF62bBlve9vb+OAHP/jiD8jExMTExOQ34Mc//jH/+q//Sn9//4WJGUHA5XKRy+aw4+K2N72OoCtM9zdHCS/3sOwljYy7o4w9PUc+qiC3LPxJUc6qWERDqJ3uzyxq0xYfyuIM23C1W8kOK2SnCzjDxionSqBrVPedPp2kcVOQ0AoP6dE8keMJGjcGkZ1QyhnOPPMOi6VkCdkh0rAhSORAnKFHItg8IqFVPnLPRZk8HMPbtGCB7GtzVd2JAKweiW3vX86BL54hPZrj8BfP4W42tk/ui6GVdSKH4tX9ZYeIq8Ze/bz0hgZq1vk4/YNR0qNGXOAMy7RfX8+5+8Yp5RZii9W3t5IczS4SKV0M2Sez4uZGJg7GiPWkq983bAvgrrVz7jxB0vp3dGDzyRysiMFln4xkF7H5FtqYnP7BELLL+Oysk+m9bxwq+Z6umxvxL/Fw7GvG8eGVXtz19uq4x/fHKOfV6mdBgIHHJ0DX8He68NQ7SE8Y8+NpNPq7Jc8a86DpOqnxXKWVnuG6lJkxFgi4mqxYJAu5SisTR9hGuagSPZ6s7ju/QAAM16X54qlvqR+trDN31pgb2W6s8CslZZaK69h26TJURSN8cjnOBpllt9bz7K7nON59DL/fTzqdJhaL8fDDD/PII4/gdrvJZDIEAgGuuOIKvva1r9HQ0PCiz8jExMTExOTXJZPJ8JGPfISf/vSnTExMUC6XF2232Ww47A60ooVVXWvYecMVnLs/RTFWZv3L6xBtFo6enaKcNVZfzzsTJUcKhLqcuBrsFJMFlJyK1b3w/i+mylgrjkeJ/gLlLVplVX6R3FwZf5sFe8hoP5aeKeKtN/Jl5RwkxgvoFUue9FgZYYuAIySRnyuh5FVqVrpxN8qkJxQGnp6jcX3F1boAMz0Z5s4YBSe1CJ4GO/n2MukJhdRonnW3NxLrzzH8bIIzD0RBArtfopAoM/hklHLOiEcBbC4RySEiuaFcyfOsubWOfLxM330L4qPWy33kogrRvnz1O1+7nbq1LgafnKN8cTP2KnXrXHia7PQ/shCjSXZovybI2N4UxaTxzJy1EitvrmX6ZJbxipDaHpCrLlQAs6dy6GV90Vi6vx+pnBQ2vKmB+ODCNm+TDUGgKlKKHE+TnTHic3+HjdhgvirIql/rxeYSq3NhkS1Vx0rJDoWEwsxpY6O/3YGm6sz2G+d1+GTD7bLy89M0yM1UnKkaJDRVJzlijMvhN1r05qaMOE2wGMXVKrpAbraEVwrRtaKVlu1+alNdJEolVtwSJFWO8dPvP0hWS2Cz2ZiYmGB4eJhDhw5xxx13YLFYEEWRdevW8c53vpO3vOUtL/6ATExMTExMfgOOHDnCF77wBZ599tlq3WUeI+flRijLeK21XPeKKwm56jn3ZAFHAFZe7WX8WJ6Z3hLZORVn0HA4QoVCUq26YReSoGk6VocIlEhOlvA3yVj9kJ9RSU2V8NYvxGWqAjZPpVPLpIKqOPA0yGSjKrP9RURZqDoclfI6ks2I4VQVZIeF2i47ieESc/0KNo8FT61EMakwN6CgpDXD5gdwBmXjupUxi1aBNTf6OPVAEiUDfQ+nsPkqebtJlcE9GZITKlgM1yer04LNu9BhpGaZlcb1ds4+nSU/V3FutELTBgcTx/JVYRVA82YHuViZ2GCp6kyEUPm/+c+AaNFp3uIgNqKQnlqIL7xNIq6QtEjE1L7DgbtG4tQv0pX7McYozztCCgKDz2arsZjVAdOni6iV09autFHbZaX3MSN/5G2w4qmXUVUj5pkbNq5V+YgowfCBHOg6Vg/4mmQiPRXHTa/hnDQvPAKNxIRSrUXaPCLZ2cocOUC2WcgnKiYIPgtKViU5WXF8t1sopDWouJhbJAulSrzp9guoJZ10xVXL6hAplzTUlEi9axlr1rrQdaiNXoFoheU3Wjm45yjd3SexeTXS6TTDw8OcOHGCT3/603g8Rm2zq6uLK6+8kn/6p38yTRJM/igwRUomfxC+/OUv86lPfYqpqSk0Tbtgu8/no6GhgUhflBVs5rr/t5VctMCJbwzSWleDw+4gtNbP1L4YhUQRR3ChUFQuakiVNl2JgTRtV9QRXuph9kiS+FCWurUy1qAVJaZQiCmItgXHI0G04O/wAjMM7p7B0+IkvMrL+EyU5EAWrWVhrFanhN1baV02lCM/V6RuQ4DpIwkGHp6kKVEiPWm82dxhJ46AFXeL0Q4uPV1g9Z+1cfSbgygxhX2f7am2WSvMKOTjComxBdXQJe9eAcDBz/RVV+WHVnmY60nT//NJ+llY9YUC8f40c2cWK5m9rS6sXnmRSMnX7MQZtv1KgRKAt8VptGQ7D7tPwllrp3lbsCoSip5M0bglz9jehev0/GB04ZqdLpKjWSaeM7YvubGB+ksCDDw6yfSRBAD5uMJsb6p6P/s/2bswF+9aikUSOHufsVLQ1+asFt0A+h4cw9tguCN4O5yINonBx41926+qxe61UqjYeGejBaw+a/X+LZJAfDBdHafVIZPKGskcV50DVdGZPmwU4USbhVK2VH1ukk0iP2cENDVr/OiqTuxcZVWcz7C+jJ0xBE+yVaaproUrhVeCG7a/bRWzZ2M8+l9P4FopY7XJnOg+gaZpnDlzhjvuuIM77rgDgNWrV9PU1MQPf/hDM5AwMTExMfm1iEajvO997+PRRx8lkUhU20XMIwgCHe0dlPMa9kiA6267msASt+GOBNTXNEAlBIqeSNP5Ug1X2IiBEkNZPI0OfEvsJAcLlPKq0U4DQ0xUzJQQK8WxmRMp6tb68dY7yQ4rqDkNq0vEGZbJRUvEBtK4K+Kh4nSJ7HSBQqKyuj9RxhG00rAtzOjTUcb3RVny0nrj2Nkio8/NkJxcWH3laXIh2SXGnosS60nTdmUNrjo7p+8Zpee/xqoCHYDYuUy1NQdA3UY/S15az+juWSaenyNyKI7sBGvARnaiyKEvLHY2Gj8QxeYVqwIlgNpNQbwtLmSnRCm3cDFnrb0y/y8uUirlSrhqHXhbnItESrVr/Vg9MrAgUpo8FMPduBALl5KlRa5O/k4Xif4s8ze9+vUdaIrGka8arpPJkRxWj1wVIfU/OEX/o1NQMsRWK1/XzMjThqDb0+rEGbZj99iBLImRLOP7oozumQUdatf4yETy5KLGtYJLPZSyC4XYTCRPYihb3VbMlJk4aBQY/W1uREmkVJlGtaRRqjg2OOuNotrcOSM+9LU4ESxUXRAE2VJ1ZZgnW3G/DHR4cDmddNkvwS92sPbmNpxBK09/8jBn6Wbp1hYmJyerwqWf//znPPDAA+i6TigUYtmyZbzrXe/izW9+84s+MxMTExMTk3keffRRPvGJT3D8+HEymcwFsZfX66O5sYlkv0qnbT073rOM3EyJvvujBP12HHYnnoYCxViZ9IyCv2XhPV9MqVgqOa/0dAEBAV+jg1hfgfhAHkdQrgp+MjOlapGpXDDaaPiaHUyQYaYnTXCpA1+LjcJcmeRIAeG8YVodFjw1TkaeSVBIlEhNFqlZ7iJ2Ns/E4RS6opGeNhIidpeEq9aKq1YiO1MmM63QdVMtp+6dppRWOfKdiaowplyAzEyR1NRC8WntrXWIVpET35siM2ns6GmUSU+WmDqWWeSKBDDTmyU3s1hkH1jqxFljXSQMctXKuOttlC9uELoId4MNV6110XeSXcLXaic3V2LyoBGP5WbKxIcKTHcvxGfjzycZf94QLDlqJErpcnUctWtdtF7mZ/CpGLGzxnfZWYX48MLiw+N3TVUz9MtuCGF1iVWXJV+zHUdwYVwDz8RwV+Jwu1/C6hYZftbIU9WsdBs5vnQCACVbIhMpUqoUx0RZIFZxOLX5JOxeiXTFxdQVkFGyKnPnjDGKdoFiqkS5MkyryxCoAbgbJbSyRnKsIjT3y6iKTmLA2G51WKmx1LPd8woANr2xkblzOfY9fJRyyxx2t8zJUyfJ5/Ps3buXvXv38ta3vhVJklixYgWXXHIJX/7yl/H7/b/6wZmYmJiY/J8nn89z55138uMf/5i+vj7S6fSi7RZBZEn7UiTVjavQztoty2hc6eD4/SlQoMbnqrYFy8eptF4z4qdUpEywXcYZgtwMlHI6nvqKMFmF3FwZ0WYcm55QKK60YXcJ5IFyQcfhk7D7RApJlehAAW+D8Q5XFUhNliikjbinlNXw1MkE22zM9hWZ6S3Stt2FzWehmNQYP5olf55Y2NtgpZhUiZ5TyM+pNKxx4AxKDD+fZeJonomjC/FQaqqE3bsgpnbXiXRe7WH8WIFov2IIlESwuwUKSZ2+RxfHXbERBZtPrAqUAPytMoEWmenexSIlT41oxBtDi/MzL0TVBLwNMoWUtkikFGyz4govFinNnlXIJxdEWKoCvQ9XxigIOIIi+ZiKkldBEFhytQt0qveRj5fJzFpQKzHN7BmF2X6lKnhadrWHiRPGfFkr7ebS0yoZVJQcjB7Okxw3hEXBNpnMjEqxUroMtdspFxdqxumZMtmKE6mnRiSfLBMdrgjPG2REeWEcmqaRndFA1RCdFtSyTiJSAouAu1bGYrGQS8y384VC6rw6ukUgEzHiLmdQxCbZaXGux92whtZtNgJNMod+NsdYqptgl0okMsXI6AhHjx7l6NGjfPGLX8RisdDU1MSaNWv4wAc+wM6dO1/0mZmY/D4wRUomv3cUReGtb30r999//0VdkgBcDhdXXXMV0qST3AlYe0sbrloH+z9puOvoqlbpFwqRI7M0bg7jqjOSNKmhHDavFdxABlD1SvEGMmNF8skigmQEColzGWpW+fHU25iLKWhFDXedoypamj4+h81jBApKxBAtGT3gITmSpXFriCU3NjD40BS9Px7GUe+ougMJolB9USoZjdBKL+E1Pg79+1kGH5pi8KEpY18gNZajfkMAm1dEiYGv1cWq17UyeWiOkV0zixyQACYPRSnnFl7WNZf4WHZjEzPLEvT/fEGgNO/c9MJWb1AR+izOt1x0v1/G8W8MXPBdaijHkS/2GQ5O5zHvtuSqt5KNKVUhD1ZYdWsrxXSJo182CmODT0xh98lVgRIKi+7/0jtWkJ0qcPLuYQDK2TIWeUHJfezOgep9NV8dpmVHLWfvH6tc344gUF2BlhzNMHVsjvSwEXQ0bashX2mlh9Uo0pZzxr3YAzKJ0SxDFYFTzQovoiRU71XXoFgJIu21VspFldnT8eq+FtFCasgIhASExU4AloWWc41rQ1gsAvnpEp3CWlZf2oa73kHoxFIUFFpe7+HMmTMcPnIYQRDo6enh9OnThEIh7HY7LS0tAHzrW9/iyiuvvPjDMzExMTH5P8X+/ft5z3vew6lTp35J6xBYvWo1q1esYfpnJWSLzNbXdZIYznL2p1PkpouEOj0EV7iI9WXJzSlVURJU3n/zbkkTBUTZQniFj+RggeiZJPWXBKqOR6W0WhU4FWMlJJtIzSofU/sTDD0TRbQL2MNWctESWlHHYllYWSVIFlovryVyMEmiP0f3D4exuYxxFGYLCBYBZ52V3GyRUrbMutcvof/hSaInUxz6yuLWa6WcuiCWKcGq21tw1To49PmzRE+mFrVmmz6awNfuZOLggpBozZuWYnVLHPjsmep3shOQZYpzJXp+tDimGn5smondM4tclODC9ru/lBLs/3TfBV/3/GCoKuKZZ/ZEktkTRmHM1WQIqeZZ9ooGwqt99Px4lGTF/XHsuVk0fSF2mz6aqLaaa3tJLfUbApy8e5DcdAnRKaMVNdITRkErPZVj/+f7qiKvze9ZRilbZvTpipOBpbJITteQXRbOPTpJsRKHLb2hDm+Lk+Fd04Ah+LYIAiVj6ORmC0R7jA/OsIwzZCM6X/wM2tDLGvEzC8mybFSpOjQ5fFYKqcq/18uUi2r1fh1hK6qiMXPEOLfNIaEpOk7RxyVcwdarOkkOZTgzGcG1DSx1Ck/ueopUOkkqlWL//v3s37+ft7zlLdTX1+PxeLjxxhv59Kc/jSwvFvCbmJiYmPzfo1wu86lPfYrvfOc7jI6OXuCSBOCyu7niqiuxTgcoDtlo3+kj0OHk2LcN0bFa0JFdRvEo1leg7TIVe8B4x6TGirhrrNj8UEwYLdzsfmNbOWMIfnRhvh2IQv16sPlECoky5bxKcIkDm0+imCwzfjhRFZOXMyBYBCySBV3XSU8WabvcT9OlXsb3JRl4LIY1ICLZDWGRIBj7GweDr91BeLWb7u9HmDmVZaZvQSyemymhFjWsDoFSGuxuidW31DJ1PM3k4TRnH5xDEISqW9LkkTQLESC46yWWv7KW6ZMZxiriH6Dq+jSx78KWuie+N4VkX/zd5MF0VVz0qxh4LHbBd4VEmRPfm6wKdeYZfNzYV3Ibc3H+9hWvqEFJq0brNwxBlSMoVwVKlOHsgwsx5vo3NZCZLlavr2RVzp+Ms48u7BtYamfJtUH6K9e3+SUEQaCYNPKFuViJUz+bpjBt/AZbtgXIxxZ+j4IF1JJxcrtfZK4/x8Shikt5lxvZIVKaz+9phiAODIemUl5lrn/eocmFKIvkKgsABUmgGD/vOiJVEZm31YZFsJCfLdFgW0L7mg0E2h3UDF5CuVym7iYYHDrLwYOHKJfLnD59mlOnTnHPPfdgs9loaWmhpaWFz372s2zcuPGCZ2RiYmJi8n+PoaEhPvGJT/DYY48xNTV1QewlW2x0LVvByuVrSB4LIYoiq290kpwsM364QDGmIQDeGpHUhEp2royvYeFv+1xcrb6KiwkVUbLgq7eRmykyN1rE6llwPCqmNCySAKqKqoJksxBstxMfyjB3pojstCA7Kq5Lio5goepwJFgEWja6SAwnUdI6PQ8lsVbcgZSsikUEq0ugmAQlp7PiJT5GDmRIjpXpeyxVrUUClAoaWmkh/9S0yYGvyUrPA0lyUZXhaNZwSrJAZlZn+kyR6NCCumjpZU6cIYmTD5x3XhGsVlDyMH54QfQEMNdfIjFaMuKK8+KW3kcv3jL3Ypy8vxKjneewNHywAOXFebRsVCUbrTgKeUCZD+0EgZrlVprW2Tn3dLa6z8TxAhZx4bzpaY10xBh/sF2m6RI7557OUEjqiDZj7gqVWErJL25j17XThVbGcIbCiKUEQTe6sUgCI4fzVcfvcKdMsM1K9Jwxr6JsQRAE1EoOL5fQSFZMLUQr+OqtzJ4z8ndWu+GclKvcg2ARSM2WUHICWMAZkChmK65Lkk65qJGeMfa1+yyUSxqpitjL5hIpFXWs2Fjq3cKqTS5S02XGxRJyOIfUNMPzuw8QnYswNTXF6OgoDz/8MAANDQ00NTXxtre9jb/4i79AFBfEbSYmvw9MkZLJ75xMJsPtt9/O448/TqGw+C95QRDQdR0Jmdfddgst9W0c/VI/aLBh3Qpm5QSDJyIU4yqeRgvuJiuZCYXsTB6737CdVmJQzpeNFzqQmSnQaJdYcmUDgw9PMXkkSs1qf/WaFkHAWmnTFj+bQRCg+bIa5nrSDD8ToWb9wr6uWgfuRmdVeDR1eI7Qcm/12PREjtnTCeO8VollL2+iZpmXnh+NcfzrA3g7nNX2cKnRvPEyrLD6DW14W5zs+1wvyf4sh/59oUiV7M9STJeqrcUAVtzSjKfFyaHPn2X8meiieZw9niTU6aH/kQWBUmCFm5WvbSXak6q6DIHR4szuk4y2ZL/G6rFfSWVu5pkX7dSs8zLbnVq037q3VdrOfa0iOlIgcjhG9Ox5+ykLTkvt19VRu87P8W+cq7auy8cV5s4tJJVOfX+k+u9r39KOq97O/n83injZScNxYa7iOKApGgfmC3xWWPKyRvKxYnU8c31pUpWiW9uVtRRTJQYeN5KEDZtCOIILLksTB6PY3JXVarVWHEEbU4eMZFFgqRtJtpAaM4IMJVcmPZElGzEmylljR6kURq1BC2pRIz1ScWiqt1MuqkzsN87lDNiqxVyrYKWtuZ2gUIv/aDtNl4UIbXFx34/uZ3hqCKfTyejoKMVikauuugq/34/b7UaSJL785S9z0003/crHaWJiYmLyp88TTzzB3/7t33L27NkLREkWiwU0gSWNnbzqtlcwtitOrCfD8nWNuOvtxMRBY0ddwBkyKjuRE3PUbfTjbnAQ68uSGc0ZltQyUDLiOW+j4VqYHs2TGM1QKhh/DGenikjbRDztbmI9GVLjeRo2LoiWJg7MVd2RSskSvjY3gmgh1pdl4Ilp1v55K/Wb/UQOJ5g5Ecd+3srxzusacQSs7D/dRy6qcejzZwmv8QAQPZOmcVuBQrzSVkwW2PieLuKDac7+bJJTdy/EDwCJwcWJE9kns/4t7UzsjzJ1IM7Zn00u2j742BTuBsei71bd3oHdb+XAZ84s+j64ykOsJ32BQGl+/v47zAuUfB1OctP5RdfoelUjoZVeur8/VBUqnXt0Ck2lKtgBiBxZaF236a86metPM/yYIRzKRvLkY05y08ZA06M5Dn/FEJbLToGNf9VF7EyKcw8Y8VJyKINSEdI762QGHpkkV4l/Om9sxL/EzYlvG+L16e4kslOsthXxNDkZ32vEuLJPJrjMA7qRRCqVYOJwjOmjRuGsaWsQXV9oSWL3WxcSYTLk5gpEjicAaNgQwOaSSU9UXJYEKJ7vsiRAJmLMh6/diShbyFcKa3WhWoJLPKRzVhBhw7vaGZ0a5v6fPECRPIqicO7cOb7whS/wpS99icbGRorFIq961au48847TdGSiYmJyf8ByuUyH/nIR7jnnnuYmJhAVRcqRIIgYEHEIXh4+Suup7WxndM/NIS865bXMyfkGB9KoaRURNmCu14iEymTnirgqrVVz1NMlo0CCJCbVbC5ZcLLvUwcSBHpTlOz0mVkdMvGNR2VFq+FhPE+q1/vJjlSZOpYmlJeRVUrzoR+K6EuJ+P745RzMHEoSc0KN5NAIVYm1p8n1r8QIy1/eQ1z/TkGn4hx7pE57EGp6tKUHC0gn9firG2Hn/ByJye+P0khUab7PyPVbYVEmWy0RK7ixCMIAo1bPQSXOjj1w5kFAU+FTKRMpDvD+MHFAqU1r6tjtjfDyLML30tOsHuNeXyhmOi3ojKv88yf09dmIzlSXLTrutsayMfL9P5soe3c+MFkdaGccQIYeTYBQHiVk8aNXnp+Fqm2n8vOFkmOLwx8fl+A9qv9BJY4OPmDKcplKKTKZGeURfufuHvBXbPzpSFyc6XqeKZPZqpt6sIrHChZtTqnNatc+FrsDD1hxIWRU2lsbuN5SnajBd3UMSN356qzGe1KKq1NNEVlbihHbsb47GuyVwt02KFUUElPGXPgCskouTJzldjbGbQyH8RJkkRjuBZPOYzvzCp87Xaar3bw6P27ODd6BpfTydjYGP39/WzatAmv14vf76etrY1PfOITXH755S98eiYmJiYm/wvp7e3lk5/8JLt27SISiSzqzCKJMk4pQGtdJy991RVETlhITag0LJPw1VvJiMYLV9fA4au0y42oFDJq5b2nkp1VcfjEqvAIXcDbaAWKKHmYGypSLhpxWSGpIdtFnH6RdF4lM1OieaOzeuzksTylovFOVFUIttmQrRbSkSyzAwqOoESgWSY+UmJuuEAuvlCib1rnxNMo0/2zBKoCPQ+mcNcZY87PqaQjJZTMQg5o9at8JMcVxo/kGTuweDVbOlJCsgkLLd/sFjqvcTN7pkhsuLTIqQhg7FgOd428SPjUcakDd628WLgEuMIi2ahaFT5XqVzrv4UKCAI2j05Zoeo6BEbbtoY1Ns7uypKPGxea7VewiFQFSsa9L/z7sp1OUpEy0z0K6DqFtEZ2TqWQNOZRScPZJ7LV8a+5yUN8tMTEMePCyYkymmbsKzog0pOvuig1rLJSt8JOz6PGF6npEraBhfZunlqJSG+heu7aZVZiwyWgDBYYPZYjEzFiqZpOKxYB8nMaiBbsbktVzA+QnSsTqzhYhlplHF6JYkYBi4Bg0Skk1aqjlSBAuiJYt7qM1nhKJXfo83uoaQiRD7SDFzqvtBLLTPHYQ8+SUqYpFoscPnyYw4cP81d/9Vc0NTURCoV405vexHvf+16s1he4YJiY/DcxRUom/20UReG2227jkUceoVgsXrBdEiVk1corrruZlds76f7+IOnhPDW2xoWXlgIWUcBTZxS8Jg7P4F/qwrfUQ2ZijkK8vKill2ARCHZ6gUlmjycJdnnIxSoBR0nAGbRTt8nP9JEEY3tnab28tnpsPlokM2UkQDJjRda+MYSvyc3xbwxw5ifDKIDVbTgreersxgq1ijAncjxO542NHPvqAKmhHJEjMQafrCRerLD69e1VEUxVKFQ5NtqbRLQvOAC56q2svr2D0d0zRA7GOVopAM2jqvqi4wHqNvlxhmwMPT5N308Wr9iP92VIDGUYfmLx9yte04S7zsHhL/YsauvWfHWY1stqOfvA+CL3gBdjy991ASwSWAFsfG8nNq+V2e6ehS8ViPammD4eX7Tv0ONGEcwatNL5svpFreAsFccrRdGq5zjxzcFF14+dTTPwCyMJEzuXNlbyVeYnPpwhfqdxk75OF0tf3kiw00Pvj8dAgaEnpsjNGr/Rzlc2IrtEIgeN8XkbnUYhtHKuc/ePoVaG4W6xseTaRuYqLegkGQrJItG+BACBJW4yU/mqQ1NwqQddW3h+ieE00dPGsa2X1yO7JBIjRvCjlTTUorpI+JUaz1avK1lFSpnK6jW3hM1iZ2lsI0uFjWx923I0Qedbn/keMaZwu91EIhHK5TKveMUrCAaDFAoFwuEwX/3qV03RkomJicn/Enbv3s1f/uVfcvbs2UWFMTDiLlSBOtp449+9Dk2Bo18bRE6DpMnVlfdq3nCplH0ypWSJxFgGV0WkVEqCVtTRK7FIZrpA0/YQzZeGGN89x+hzswSWuarXdAbs2L02Rp+KkujPkZ7ME1rqIdaTITGUxdvixGKXIVfCEbDSvD1EYmSIUrLEsW8NzZsyQQkcYRveFieRwwkiR5KsvLWJlitDjD03x/CuSNVlAGDF65oILPWQmx0gN12i+9vDhhAIw4I7E8kTH1gotC15eT2+dhfHvjbA5L4Yk/sWVsyXcoZ1s0VciNUAul7TyNCjUySHcouEPgDDu6YJdLoXPxwZul7ZRHZrnpPfXSyM2vzuZagljWPz4u1fQc16H50vb+DcQ5OLYjVbSGbVba0khjL0/ngh7ht6ZhZd1xc5KVGCgYeNuKntJbUkh7OV1m9U5kpHO2+VWvRUmugpQ+xdvyVA87YQJ74/QilZolTSyc0UmO1JVY+fFysBLHtlM46AreoA1XvfOC3bw0bsJVhYer3RQg8MUZIjaMV5XkH2yJfPMq+xW/naJhxBmdFdhogpNZbHGSxXryvKFoafNmLK+nU+XDX2qutodjrP9AlDQAeGmLx0niOpqmhkKyv/3U0OSlmVqW6jYOeucyCe9xvQVfBrdVwhvpJAl4uVr23m+BN9PHXgMVw1dvK5PHOxOb71rW/xve99D7/fT7FY5LWvfS2f//zn8fl8v/T5mpiYmJj8aVAul/nXf/1Xvv3tb19QGAOwSTacWoArNu9k3c5O+n4+TXqyRFD3op33d75FFHBX2onNnMkQWuHCWWMjEylTiJdx+BeS/oJFINTpYmx3itxMmcnuJPmY8ZIsF3Q8DXZCSxzMnc0zeThFy6W+qrgmM6VQSCjouo6SVmm4xIO3yU7f/bMM7Y4zti9ezQY7glacYRnJCeUcRPuytF0RoPdnsxSSZUb3JZg+tZBIWn1LHfk5hZ6fzjJ5uLKYrHLd2EAOu09i3sxAcsOqV9UzeTRFtDfHmZ8b7/RqwUXTQWeRKMjTKONptDF5OMP43gUhEkBhrsxsb6bq/DNP62VBgksdnLhnasEFCPAvsdP50hADT8wRH/j11Eurb63FYhU4ec/0ou+7XhHC02jjyLcnFwmYIt2Z6mK1eWZPGfGiZIfmS/0MP5OobhMsoKMvaj/X/8hCPLr61loSY4WqU1RyzBCCzQul8vEyffcb82j3Syx7WYi5czmGnjTyWv1PxFALFaHaBjd2v1xtG+eut+GqsVbHP7Y3xYhqjE1yQ+dLQsz2VtzAJQuZGYVURQzla7GTmiySnqy08+10Gm7yFeYGclUBV12XC2fAyviccQ+arqMWNcrVriwCiZF89bo2t0w8bxwruy1YFCsdhU20eDex+pZaRAf89OuPMlk6h9frra74v+KKKwgEAgCsXLmST37yk1xxxRWYmJiYmPzpMzQ0xIc//GGefPJJZmdnF8VeVsmGXfTR6F7Fy163A60MZ5/KGwKZgh3JZrxkywWwuS1Y3aBkID6q4K6pBEAqlPI6VHJe+UQZV9BJsEVm9myJyOki3gaxKrqx+0ScQYHZMwpKGhJjJdwhC+lxhcysRma6hCgapU7JKdC6zUPPQwmUDPQ8nKCaxVKNVmJqSSc+UiI9qeKts1LTZWX2rMLkqTzWgUK1Zlq/1k79ajt9j6QpJFWG9mSpnkyF5JRCKrKwEq6my4q/zca5J9KkJsqkpjTAcE9SVcP8h8UpLxrW2ZjpK6KkIZZevKpu8mQeb6O6UMOtxHBLr3SRiZYZ3L04Buq6xqjtnt118W46L8QZEll2jYvhfVmj5VwFUYQV1/uIjyiMHqoEQbrO3NkiokxVoDQ/D9M9xjMPLpEppjWys5XtlbnSzht/LqYxuMcYt6depHG9g6HnMiiVW0lNlUlOlKrHT/cs5NdaNzrw1Mt032+ItqZOFylmNJSUDoJA8zoH02eV6rGukEgxI5FARRSh+xdpxMpYWi5x4GmQONlvxGmZ6IIYClVDskGkt5K3qhHxNshEh8uASimnM3k6T7bSfi/UbkMt6YbLEqCWoZA2/ptx+EUKKZXEqAJYcAUkJNlSfaaaKmAv17Gl4TXYPLDqpW7OHJhm/9HdaO4EhUKBEydO8IEPfIA77riDUChETU0Nb33rW3n3u9+Nw7F4MaeJyW+KKVIy+a345Cc/yac+9SkSicQF22w2O2JRYgWbufFDV1BMlTj6lX5yvTq55QVsfok0xvvQ5rcuiHjOpXAFjeJYdkwBQUCyGm+SeH+a8Eof9VsDRA7GmToaW3ghA/52N742N5H9SSb3zZFPFapt2iySBckuEuhyEz+bYepojPZr6gxxUUU8FO01khxKBi79h5UoWaMdWc+Pxhbdm6fBgd1nxd1iIzNWZPCRiNH+7YkpUGDyQJSpowtzsv6dS7AHrBz4dB/TRxILLc2AUkXpavMuXnHddm0tI0/OcO6+iQvmtuXyGiSHWBX6zDPfru58wc88fT+boGlzYJFACQzXocx0nuiZX0+gBBAfyBhJpBcwtCtywX0AC/cwn2s7LxHT+dI6fB3uaos6gMFHIgw+Yoi+Qqs8lPKq4QAFWCvq4fO6kzDx/BwTzxsORCte10yg08Oxbw9QmFFI9meJHIkxvts4X/t1dUweiaPEFopS1vOEb/Pt5ADCa710vbKZyYNzDD8xTWa6SPxciqFnDLvutmsaUJJlMhX1ss0nY5EWIrzZkwkm9hrPaMlLGgh2+ohVbLEj3VFku4VkpUAYXuWjkFhscTW/As3X4aaQUhjdY9xDYIkbySZW5zGfVMhHi1wibCfQ5WbVbW2MHZ7hoYcfwtpiPKhYLMbo6CivfOUr8fv9pNNptm7dyg9/+ENaW1sveGYmJiYmJn98RKNRbr/9dp577rkLXCotFgt2yUlYaeK6G15C08YQx789SG6mxNy5DPbKyvpSDmSHRKDDxeTeOCP753A12vG3OZjtLqHlF7/gywWVuvV+xp6bI9aXZa43TazfiBlkt0TNSh/Z6SKT++Kc+M4ADVtC1WPtPiuiZFRAkoM5ypvLtF0R5uzPpxjfF0Ur64YoCKjf4Kdxc4BTPxwjPZrn4L+fWzQOd4Md0WphTJ8lOZTDGZZp2hFiYu8cA4/PULeuUHX9cdZbWfemDiLH4gw/McPpexbHRTo6FguLHI18HU40teIY9KXF1/YtcRLq8lLOa9X4xJgA4x8XEy5RgqHHI+SiF9pXzp1LoSoXCaR+CYlzKZJrvFV3qHmKcyXD8em8dnRgOFPNi4bmxWfnj7l+QwB/u4tE/1B1rEe+uiCYmp/XeaxuCSxC9VlRgpPfG6meb+v7ushM5un5oREv9/1snHDFgVR2CjRsDTFacQP1tdtxBGXsfqk61vOf9Zo/b0ayixz6giHaH9szi6/NWTkXhLo8DD5RiYc6XMhOsRoTqiWd0/cOkxo05rz1yrqKWNyI2yYOx1ArsVXj9gA2r0y8EoeJ1opzU8XZQddhpuKaKvtkHH4r2Skj3pMckJnOU+oRuFR8GRtu6cDqknj80/vo4yj17WGmJqfIZDPcdddd/OhHP8JiseD3+/nQhz7Eu9/9bkxMTExM/jT4+c9/zoc//GH6+vouaCHitLlwlP0st2/hyr9YXW3tpY5AeiqPVGnToesCrhprVQA005PGXWfkvMppQAexslArMVqgfoOX8Gon0dM5IsfTWBwLIpBQhwuhUyB2borUaJGe+6exuYx3qqYZreI8dVZS40VmetK0XR5g+mSacgGmjmfIVN5llGHNGxoo5VRO/9cM4/uSjO9bEP3YfCLOsLXq8DR9PEP9BjfR3gzlAoztTRAfWYhFO68P4mmyc+zuSdITCmcmFlzAywXAAlaHuGgleM0aJ7OnckwezjB5eHGiqvlSP46AdMH383N4voPSPKO7Y+Si7kUCJTDaEydG8lVnxV+H+GAO4QWCdYDxA0lD6P+CTn7zAqBqdv287fUbfYRXuIiezZCZNDbMnspVRUzOWgmLheoKeiRDxMR5txEfKFQFVo1bPdSv99Dz0xkKsTKFRJmxvQnmKjFNzRonqTGl6pzkabThCC3kvIafSVQFU85aiVWvqWPycJLJw8azjZzMED1tnKtxk4dSTquOzR6QsJ7nmhU9kyNaETSFVzupW+UhN2vEUomJIvaeDKlR4zdXu8ZttH+eRzCEdgCeOjvZWYXIaeO5BlodWF0LoqxCskRhXGWZYyNrm7ay9rZ6Jo7G2fPMfoo1syBqjI6Osnfv3qq7uK7r3HDDDXzuc5+jvr7+gmdpYmJiYvLHRz6f5xOf+AQ//OEPGR4eXrQYT7JYCbhrqLOu4JL1l9C2yUXfrjT5BMSGFezeyvtJBZvLgrdGJjaoEpso46lXcbgFlKRK+QXeCuW8TniZjdn+EoUkRHqLJCuCH4sI9SvtKDmduYESg8/k8LUulNJtHgFNMa6rpHWKGY2aZQ4mjuWZGypiEYWq6MXXYKV1i5OzT6bJRVV6Hlgcy3jqZYopC7NnFYpJjbICwSVWYoMKsz0FlNxCKzLRAate7mPmTIHp00XGDy4WCWkaCKKAaLdUXXVsXrDIIvk5lbOPL46vrB6o7bKBDlMnz5ugypQW0wKzZ0qL2rEBDO3LVZ2lzic+euG+L0YuoRIfUVCyi8+lqjB2JEdy4nxHbAFVg6mTRt1YtFK9x3kaVtsopjX6n6nk6VQ499RCzi7QJhEfKVfPJ9stCMJ551Fh9Lw5XfVyD9lomZH9xnejh/L4GsuGwEeEcIeVaL9xsNWt46qRsE2WyM4a5zr9i4X5br/Ugd0ncvpB47vpM0Wy8QUxVahdZrLyDBx+Cza3hfmklyDA2Wcy5CteEI3rbAgCTPca9zLVW6yKjjz1Iq6gyFRPESyCkfMSBKNtHDoCMFNpMYcI7hqJYtqYf8kGiakSxTkX62pfxpLL7LiCIgd/GmEweQBHfYGp6SlOnTrFBz7wAT70oQ/hdDpZu3YtH/zgB7nhhht+2aM2MfmlmCIlk1+Lffv28frXv56RkRF0ffFLwyJY8Eg+lpU2cPmbNuBtdXH4i30oGY3Z0wksVuMP/MKsgt1vo3FjmOjxNINPTdH5siYC7YZ4yO6SjWJIhfxsgeByDyO7ZoieSdF6lUKp0qqhnFNZcl0DpVSZ6UMJBh+fIj258ALpurEFXYfpQwmm9sWYOhLD17qw4l+yi4SXe4meTDHyxAQrbu0gO55DyWhEe5OkJxdeXuvfuQSrW+LQ588uEtEABLrc1G8IYHWK9N07zsiumUVzE+tP42t2Lvpu2c1NzJxMkOzPcvAzfYu2dby0jsZtYUo5lcl9iwtPAIe/eA5302JLPW+Hk9Wvb2f2ZIL+ByYvOEaJKReImsBoXxc/m7ng+xej/+cXnh8MF6dfihW2f2AlubniIleknh+NLRIovZDOVzSha1TnSMloHPzcQjuVVW9opf/+8Wq7ubkzKWwBo9XePNVnZYWGLSECXW6OVYpxx89zMWi7tpaGLSFO/ecgmbEiqaEMqdEsw88a87by1c3EhjJVgZPNLy/qtTv4eKQqOlpyQwMNm4LkEwqRg3EGH55CyZWYPpQAYPWtSyjlFwKsXKRANmoEBo3bQwgWgchhI7HnDjuwuiSUmHGPalZl8pzhQGANWvHUOVDnnQFkSE1miRxIslbYyqbXdGJ1yTz7iROc4TihlW4mJiYol8vs3buXZcuWIcsyuq7zxje+ka9//eu//BmamJiYmPyPc8cdd/DNb37zooJwl81NqNhEB6u54oOryc0V6f7OCJFDSZxBOxaXCJSwu2X8ra6qKGfiYBTHvFtStITNLeOsMZxsIscT+DtcBFdV2rRN5BfFZa4GO6tuaeXwlweYOmD8ZTz/z/DaAM07wpQVjcl9cY5+bRBf+0L8Yw9aKReMd1lupkRqMs/S6+oYeHiayX2z2AMyhWhlJVOrg1Wva2boqRlmjsY59IXFwqGu17Zg98lM7J2jlCwxvnshXspFFLKzRUNUXUH2yXTsrOHsfZMMPTLNEC9YGf/qZtD1C64DhsDq/NZp86x7Uzt2v5WDnzt7wTEA0+cJ1s9n6JEL47EXo5TT6fnPsYtuG31BK+Dz6bypgfBqH93fHagKuCjBye8PVVuxvZCmy0K0XVWLpmrV5zr69CyjTxtxR2C5C2+LayHWLUFmcrHYvThXqoqcOl7eQGiZl2hfilxEITmUY/+nK3GcYGHze5eSixbp+ZHhBDVxIIaj0trPFpRp2OCn52eG2N3X4UF2ieiV8ElTdA58buF5te+sRdd0Dn/JiO1O/2DEWAgB1G/207I9zNmfG+cqxBVyc8oil6XUxEIsavNKFFNGQc9dZyU5mmX4WUP4VbcuiDNsr7bcS0/mKOXK+MQw14RvZP2tHUR70hy+7zTx1mGQdQYGB8hms7znPe/hH/7hH8jlcqxdu5ZvfOMbbNmy5Zc+QxMTExOT/1mGh4f5y7/8S/bs2UMut1iALAkSQUcDy4QtrLqmjdo1bk5833DtiZxIVVuelQvgqrURXg7x/iKTx5JIDhFH0Eo6pyA7JWzehdgqPVnEv8TB1LEMuZkyudkSSkXMUSpoLLsmjF7UifblGXomtkiE03ldGEGAWL8hWjr67Unc9ca5dVXD5hH5/9l78/BIrvrc/9Nb9b4v2vdlJM1o9hnPjPdlbGy8YHtsg8EbYDAQAiSBJD9yn9zk3tysBAMJewg7GAPGxgvYxtgGe8Yez6qRZqTRPtpaLfW+d1X3749qVatHrTGX3Jvkkn6fR88j6VSdOnXqW3W+dc5b72upMxCeSDN3LErH1S5SEZFcTGLxVJx0tDQn0XmdC5NHYOC7fgKDSQKDpfM3uLQ07XFgdOiY+GWIxVPldrnBieIYumoNqX6nlfi8rLpzviKRp89E66UuVCoViwPldQGc/nEAg6t8qtrg0LLxTh/+wQQzr6wlKYlpWDi2dk4qFRDLVIp+E5xPjlpBclFUrM0qYes9daSDOc48XsrPZl6NsDScIL1ceb/O6+RreOKbxXkrEU59vzSn2HK5g9kjYUWBKDaTxlorkA6W6vOfLPVh014H6Z4cQz+Uc7ezT5VyZFe3kZZLHAw/GSC5KJKNiiyPJFksqmQ17raTXMwodoFGhw6NUCJrzR2OKIQlz0YTTXsciJk8S0NJlgaTUIClITluuq93k1+1cBmbzZBd+RCvRY9aULE0Irfb6NLJ6lthedtcSmLmjeIfWnC2mQiOyTGm0kNwIkFgMEW7sZ+eazyYvQJHvjLHeGoAoTPJ3Pwc4XCY7373uzz66KMYDAbsdjsPPfQQn/zkJytehyqqqKKKKv5j8Mgjj/CpT32KgYGBso/xVGhwWWqpFTbSYN7IlltspCJ5xn6VIjKbJ+DMKiQarV6Ds1lg9mQWKQszJ9KYih9GSSkw2lTorbIcUmQmi6tFh61BQ3RWIr4kksuUciuzS42zycLpZ+LE/BITBxOEzxWt7b0aWnaZoJAgOJZl7IU4BnuJvGuwa1hZMpVSkAjkqO0zsDCQJjiVxejQkInKdQkW6LrazuyxJOHpHGeeKRcQaNlpxlKjIziVRZIgOFaaw5FSEFsQiftLuYBGgJo+A3MnsyyPiyyPl+cybfssqDUqhp6KrbkG2Ric/nmU7HlFLbtkxaBTT8Yq2rettlNbjcBIruL/lYU0lQpWry1LlJSSzkNwYv28y9uto67fyPBzUcV6DeDsC3Gya9NLAGwNGlovMqFSJ5W6g1MiwSkRUGFwyISxwJlSf0dmcyRW5XFSlqJdG9T26qnt05NYkkiFJbIxGHgsqpxn99UmMvECU6/JeczicBaDQ44ZjQDuDoH5oqWcyaEpxqmMQiHPqafiSt83bDai1qoY+pmca539VRJD8f3D6tPQssPI+EH5OGImT3xJIlm0nHM06Igvlq6X3qZGLKqpGy0QnBYJnJXP2dmkx+bTImXlOdD4co6YP4dRsLK54Rr632omMJZj9I1l/OpjSIYoY2OjvPTSS7z00kvYbDb0ej379+/nL//yL+no6Fj3GlZRxQqqJKUq1sVHP/pRvvzlL5NKrSWRmHRmmsROmuhi7yf7SAbSnPjyOFO/WqR2mwMsWohnsdSaMHr0IMxCFkafPoehuDgmRkTMtUa8mx2ERuIM/3CartuasLTriY8XF4NWmLdZmczReImX5aEYC8dD1Gx1kgzL2+Wzeba9p4Px5+fxHw4z+uQsseXSgtKu3+tGI6g59DdnCByPEBiKKGo05noLljojDfu8TDzrZ/QZmYgjWNRk43kykWw5MUuAnlsaOfPoDKHJOGPPzeF/LayU9b+zFaNLz+ufGubcKwHOrV4LsoCn14a5xsDx6THl3Fb2nXjWTy5bJCitsnnb8mA7CwNB/IfCxGezZWXR2SSJxRTTv15S6lmpd9fHukkspRn61iolgeK+G25rZHE4TOhsvKwNq9WOyv4u1tt5fT2hszGWR2Nl29p7zfTc1MT4s/Ny/66cWxYi5xIETkXW1BubTIEFtt3bwejTc/LfxeOMPD6DmJYqtsnZasHRYqHt+nqGH5+BLARORgmckROBtmtr8G1zcuLb46Rns5CFwR9Nki5+UdZytY/oQpLQoJy05ZISYrqkjIRZy6lHppTj2tutGDx6hWh09MujSlnPnY24umyc+u4k0Ykk48/PkwplFBu53R/vIb2cYebFJdn6bSJOtqhsULPXgeDQcvZncszpbBpQq5RrrDaomFhlJ2hpMBYlOZfQuzXMvLbIwqEgCNByWQ1Gl14mUgkQOB2hIIKgEtjVcAnbb+8kdDbG0UdO428cQ2WA0dFRCoUCX/rSl/jOd75DIpGgr6+Pb3/722zdupUqqqiiiir+/TA2NsY73vEOjh49usbCTY0ar76ersw2tt7VibPDwhtfHCEXgXOvLpMviKCDTCyHo9mEWuNhcGKG0Z8v4ttqweTTkZzNYW82Y/IaFNLS5C8XsTXJ0rxxfxqVGgS7/HqweDzEhtsacfSYCJ9JsjwSU4jnAO5uC/W7nBz5p3HmXwsh5iQCRUsyZ7eZntsamD8aZvLZRY59cUJRHwKo2+VEMGsZe9pPLgnDj8+hM8mNik0lyCVF8rkSCdfRYcZoF5h/LcTIE+egUGIKm5oENt3ZyrlfB5g/GmLg25OKShI6aLvKi2uDDXPDMonFTFkZwMhPZmRZ5PPUlZqv8DHwr5MyQWml7cXy+WMhHM2rSOjFfWu2O2i+zMvgj6ZIriSAxX1dHRZsTSYmX1wstWFVednvq9roaDHj6rLKxGtdeVnv7Y0YHALHvjheVjZ3eAnBriVZtIVZqXeFoFS7x4mrzaIoIKGT1SkL+QLzR0NrjkMOmi/1YXAKTL26CMW1y6EflghUOz/SRXQ2wcgP5Zxm5EdzuDbHlGN23lTH6M/mQSx+vBDNkiySv3UmWDwVUY5Zt8uJvdWMya0juZBjaSTG0khMKe850EA2JnLsS7Ii1PFvT2EqKnrW7nXQss/L4CNy2xLBDPG5FMEz8kxVw0Xu0scIOuS8qpjmW9uNRM+lmPi5fA6ePhu2JrNMStJBaDLJzIp6lQm8vXYi5+S6JD3MHwuyeCSC3eDikv3bMHv1HPr7EeYZg+4UC4uyJe+xY8fYu3cvRqMRvV7Phz70If7iL/6CKqqooooq/n3xla98hb/6q79ienq6bM5HhQqb3kWLsJk6dRs7Hqwnvphl+PEl/CcTSFkJDEBcJiU5WoxMH45CGkaeCWD0CqBWIWbB2WpEzOSJzeWYeTVM414HpnotyTlxjUp1bD5D7RYL0emM/DOTJhktWrxl8vTe7uXcK2ECp5OMPb9EOllKKDbe6UNv03L0q3PEF0SOfL30gZnBocXVbiIdEpl9PcrccXklSmsAKaMiFRMVQopKpaKgKdC8x870ryOkgyIjzy4RWbFL00LbZU6sDXpOfmuB4HiK4EhpzlBlVFG31UqyyciZJ2WyjEJg0haJLCpkYssqm7eOt7gITaUInk7JJJxVZem4SHg6raj8rFYt2niHj1REZPzZVWSk4r4Ne21EZ1OyRZlYXnb+tqvrrd9mJe7PEp3LlG1r8Grpvt7DzKEIwfFyclZoIkl0Nam9WO8KQWnDzW5mXy8SfYrHOfuzJTSaym0y2LV4esyghqlfhUGE2FyO4aflPMTTZ6LxIjtnngyQDsg7D/1kkUIxffb0mcjEc8Sm5RjJiwWyCalEtNLBxMsh5bieDSYydQLBs/J1PvPUklJWf5GV+u02hn8aIDaTZWk4iZTOKwpP/XfXkI6I8rXVytZv5IpKSc06zB6BhWPy9dEVFdJTIbkfNAY1U78KKeftbDOiW9DgP5bE4NAyfTBEcFiut2GbHUezgbHnZbvCpbGEQmDq9vaz9aYGls8mOf3cAn7LKfLWFGNjY8RiMf7sz/6Mv/mbv0GSJC677DL+6Z/+ic7OTqqooooqqvj3QzAY5JOf/CSPPfYYfv9qErMKg8ZKg2MDLZbdtPRbqdkgMPB0HCkFM8fTqIQCaGSSiKtZh1avYvJgGv9wlmRYQmOUy8xuLY5GLbODGUUVx1wjD7zZhKxYqNXL80mh2RytFxmx1GqIL0iEZkS0xtJcnKVGJ1ut/SxBbDbL6EsSMb9crrer6bneyvxACv9ghrEX42WuL55OAyaPloUB2bpt9kRKHvORnVwy8Tz5otUcGtmSy2BRE5rKMXU0gVZbsuPSWGDDVXYWTqUITmWZfC1RIg5pwN1lxLtBT2haIhWTysoAxl+Jo9FqymziBCs0bDUy8WpKJiitlOXlvlmeypFLF8rrksDs1dCyy8j4oTjpYPlxjHYNFq+GwGhWqWd1eel3VVm9RosKa62WxTNZ5TgrZfWb9JjdGlkNaVVZcFrE6MyRSapk/pMGKBQUgpK1QYOzXlciQGkgOlskns1Ja46DBLV9Rqw1WgITOSiSrWdPlghUG661kAiKzLwh/2/hVIb4skgqLFdUs1GP/0xGOfd0PE+maLmmESC2VIofe6MOd6vA8miWVDhPMiyVEcI6LrWQS+UZ+UWRlPRyAsGoASmPtVFHy04DY7+WyzIZifBMjljR4s7bJcjEKqnU34XiS4dgg/iixMKZDKjUWOu1uJq1zA9mQStbzoXOZZR963oMROZEAsh9NnsqTWRewmi0cvn2/djrtZx8PEEoN0fCMszi8hyLAT/f/e53eeSRRzCbzbS3t/Oxj32Me++9lyqqqIQqSakKBQsLC7zlLW9hYGCgzOcVoL6+nssuu4y57yfZ8UA31iYTubjI4U+PEBqN4O520HlzPdMvLODd5MS7ycmr/2OI0SfPsfGd7ez+8AZe/9QwTRfLRAqzU8+ZR2cIj0Xx9toZEWZQm7TYW8xsamzn0P86zcDXJ7n4v21k4/0tDH59CmurGcGkxeCT1XIEm45Nd7Zy8K9OszwaQ6VVUb/Ljf9wGHuHhZ4DzcwdWWLiKb/slb5KsXnfJ/oAePV/DmFpMKJSq4gvyC+329/XicEpkA5nOfq5UZydVlLFRZS6vS7ar6mjUCjQcrUPZ5cVo0tQSEp7/7AXScqTjYl4N9vovqWJmVcDTP1ikS3va8fkNTDwzTHi5zLs+ZMexJTEG585y7YPdmByG5g/EmT86Xn672/F2mDi1b8aQrCAudZAu7cO/6EwBp/Ajvd3sXgqzNnHZum7oxlrrUlR+dn9kR7IF3j9U8NIYh5nq5Xeu5o4/cg5eu5oxN1j5/A/n8bda8PZY6Egwmt/d0bpl8ikPJobPAIX//FGTnztLPHZLLs+1I1ap0ajU2N0Cmy4tYn4fIqTX5tQFKDEjITOqGXHQ53oTDoO/c1pAOzNFnQmLYHjERqv8NByaQ2jT8/iPxJm+7s7MdgFarY4iU2m2PtHvaTDWY59foyaXQ4239OOmBE59c0Jum5pwujWc/B/DTHwnQk2vaOV7e/v5NR3prHW6um5vZmZgwGyCRG1RsW2+zs5+FdDAPS9rRkxI/HGw2ep2+WiUfCy0BZk7Ml5XJ0WxfrNu9VO100NSFmJ1/52GMEloNGpSRZJb7v+sBvBrOOVvxwEwNZiIZ8vKLZ0F//JRuL+FPMHg2y4rRGdUUOoSKbb/ZENaHRqDv4vuV86rq4HIB3O0v7WOuq2uzj1A1ltaucHuhBsOnQmLf7DYfZ+vI9kMM3AdydpucZH4z4vhXyBhUNLbH9/J3qLjtGfymoEe/+oD5UG4rMp8tk8rVfVEp1JcO7VRfZ9cAtG924KYoGDf32a3g/Vc2LgOGdOnyGRSDA4OMju3bsVP9lPfvKTfOITn/itnilVVFFFFVVcGF/72tf40z/9UxYXF9eUXXH5FTS72ph7IsneP+lGrVEz9Og5Zg4FsTYZ2f7eLl771FlcHWasTUY8XXYGvjHN4kCYmi1OvJtthKdStFzio3mfj4N/Pcyp75/joo92seW+Vk58dZKGi5yYPAaSAdm2LRXM0Ha5j4WDYXLxHEa3QNd19Rw+M0poNEH/u1rQCCrGnvAj2HVlVq/tV9XQsb+WQ387QiaYRaVWK28a3bfV4+214T8RZvTJBXRGDYXi4gU62PfxDQAMfv8c3j4rBodAZEwmPO18fyeCXUcuKTH/Wogt93ewPBJl5EdztF5XQ/0OF5loDjGdZ/uDHWj0Gg5/egSdXcfOD3QQmYwz8K0J3F1WttzXzuD3psilRLY80I6ULSgqjXv+uIf4XIpT35qi+QovtkYTNbsd+F8Ps/lemYD+2t/L23ZcU0siII/t3i12ut5az9jP5lHrVOhMWja/o51Dxdzqoo9sIB3OImXyWBuN1O9yM/XSIrOvLLPxnc1Ym0xEz8m51+7f7yaXkDj2xTHMDXq23NdOOppDb9Git2pxtFs4+Ddyvbs+1IVaUJFazqKz69j1oU4WjoUYf2aBxn1eHC0WhdSz84NdkC/wxudGQQcd19QhSXnQQed1dfg2Ozj8z6PMHQyy40Od6CwaIpMJTj8yw94/7CE0FuPEVyfouqWOfR/tZfB7Y0Qmsmx7bwdao4bDnxshlxBxd9vou1vD0HfP0Xipm+ZLfQzGp7C3mPFtceDutfPa38vqU5ZaI6ri13Rb39eBYNEx/PgsSwMxbPVGCnlILuTk+PjEBrKxHG98dhzPRisanZpokWi07QOtGBx6Dv6DfG1aLvGhUkN8Jo293cTGtzezcFyePeu7uxFroxEpLU/e7PpwJ4V8nhOPzWGq1dH/9hYKhQITP4cNB+pxdVo4+KkRyMGuj3Sgs2iJzaRInJtm10c2EByPMvHcEl031+Hrt5MX80y+sMTOhzpQaWHuiHzc2//0BnlBdihKOp4l5Qpx4sQJhoeHicfj/OVf/iWf+cxnSCaTXHHFFXzjG9+grq7ut3iiVFFFFVVUcSHE43He//7388QTTxCPl39lXldTx+WXX0HgGYGOq93U9ltILuUY+K6f+RNRGnY6aLrYzrnXIjTstNO428FrX5hh6ldhTF6BzXfUcvI7fuq22nG1GzHZdUy+FGHhVIz6rTbmj0QpiAVq+i14Nph444tzTL4YZucHGui8wcXo00HsbQasNXpMvgjJRRG9TUPfzT7e+OIcqYCIzqzBt8lC4HQSo1vHpgO1zB6NcO7XUdQ6FWptaUFo1/saUaHi9S+fw+TSoVKrSIXlxGDDDR6cbUZiCxmGfhCgts8ik0YAa6NAzy0+oICYlDDX6LE3G3hjTFYk3HZvPYVCnkxEwlSnZdOtdcwcCjF/LEHHdS6cbUZO/cBPOiiy5d46pKzEqe8v0nm9C1eHidnDUWZfi9J6hQNvr4XDX5gBLbi7TDhbDQRPp0ALux5sxH8qxvSvIjReZMfVZmLqRXlc3XSHD7VWzclvLSDl8ni6jRREJxMvhKjfZaVhp52B7y1Qt8VKTb8FKVPgxDdkVcSd720gVFR/0ju07HqwkdOPLxCfE+l7mxe9TYtapyJ6LkPXW9zE5jKMPLmMp8dI25VucikRtVZFz40eTB4dR78q1+vuNGO06widTeNoN9B1nYfxXyyzPJJiw9vcOFqMJJZF4gsRtt1bRzoicvpHAaz1Ona9r5FsUmL4iQCNF9mwNxs58qVZBn/op+cmLxavwPCTi2gNWtnu7HCYVEhErVOx6fYa3viifG26r/eQz+U59b1FGnfb0du1zB6OMvNqBHuTHlNRsdJSr2XjgVpySUlpv86gIVRUmdx4lxdLjZ4jX5tBjIOr3UghXyA2U5xz/EAD0dkMobE09TstmNw6ogvygt2mu2rQWzQc+ZJMkuu50YdKBWJaxNdvpvUyJyNP+0GE3tu92Br0hCe1BM+m2fFAPYnlLGefXcbdbaTzOjd5qUBwLMmG6zyYfQJnn5HJU9vfU4fWpCE8kSITFem+wUtoIsnCyRj9N9VzaXs7+XSBI/8yT+cBM4MjJzl95jR+v5+f//zn9PX1YTKZ8Hq9/Pmf/znvete7/o88Y6qooooqqijHK6+8wic/+Ulef/31MiEEjUpg3769NLk3EjxlZMvbTOgMKoZfSLI8mcXeoKFvv5mBJxJYarTU9Qos14mMv5JibiBF0zYT4cYcsXmJjkuMUIAj348zczKDvUFD56VGRn+RwNNlwNtpIBvPExzPEV+SaN5lIjgeRcqCs0nAYNMw+ESc+HyOTbfa0QkweyyL3qrG4iktnzfvNqMzaDj+/RCZeL4s96rZqKd5t5nZ40nmjqXRWdRI2RIbfdvbHajVKs78PIrJqcXq0zL9qpx7dV1lxVarJR3NE5qKsOmtDpYnMswcTuFqF2i5yEwyJCJm8nRcZpHb+3gEjUHNxptsRGZznP5ZFJNDS891dkZeiJOLS/TeZCOfKzDwWAyQ6L/VRnwxx8QrKWp65H4Jz2QJTUi0XmTCVqvl5GMykb31IpOSGxpdGnquMTP1WhJRLKAzq+i+0srJH8nb9r3FIlvSRfN42gUatxg5dyzF0miOhm16vB2CTFwCeq81I2UKjLyQRKOHzTfbSARzmJxaNAYVtd16jv1AngvsucaMYFYTL5Kxt91uY+F0hvmBDO42AXeLwOzxNJIE3VeY0OhUnP5ZAgoFuq8wI4kwezSNq01H43Yjg09HCZ+T6LrShNGlITSV49wbaba8zcryVI7Jgyl8PVq2vc3G2V8miAfk2DI6NJx6PEY2IeHt1KPVqZg8mMLWoKHjEgujL8XR6lU0bTdS26fnxA/lfrHX6Uho5bZ3XmHGXqdj+PkYkVkJq09LIV8gVVQ72vkOO8mgyNDTCYxONXqrmtCcnLd3XG7E0aTjyPfkfmnZoUenV5GKFhBMsOl6K/OnUiBBw2Y9vi6BxeFif19jQqWG8VczaATYdIMVCgUWhjPU9mip26jn2E8TsqDF1UasPjXBSZHx5Qzb3mZmaTqDfzCHb4OW5m0GxGyB4FSCrkuNCGYV84PyvOgVd3ah1XWzMJwlGcmhrglwYuA4wyNnOH78OPfddx8f/vCHMZvN3HHHHfz5n/85Lpfr3/h0qeJ3BVWS0n9xHDx4kNtuu42FhYU1ZQ21jbTRjSHkYu8DfeTSOZZUZ1k4GkRn1bI4EAZAsAoUCgUCQxGy8TzhiTiFIiEomwKNoCYdlh+MI4+fo/nKGvwn5H3NtSb5i7UspBezzB1ZVhZUzLUCBQroDDLdduQnM9Rvdyp1kc+jUmkUpZ3gmSjLRcuJwECY2i1OTG7ZwmT2tSX0VgHBIrOVE4tpDE4Bg08gNBLB4tUj5QsgwMKRELU7ncy/IU+ALJ2OEptN0nFjHbOvLxNsihCaTrBwKEQmlsPaYKJurwtfv4PAYKS40LeM4BIIDkdYPhNm18dkJafg6aii1rM4ECETW/mCXEsuLRIYkvtl4WiQXEIexLLx4t9FW690OEtwOMLiQJjdH+8hFUwTHC6pFC0eDylfAR793Ci9dzaycFKu138ijEoF2WCeNz4zRN0lPtSrmM2hkSiB01HsLWZyCZHEbIp4QG7j/LEggknH4oll4rNZeg40ympKwNJIFINDx9jTc2TjeVRqMDhLtnTLp6OkYxku+kQPi6dCBIcjhIqknvnDQcw1BsVKLjAYIbEoT3BEppLE5hKYfUbsbVbmjy5ja5Rt+2KTKRYHwph8enZ8oJPxZ+fk/h6OED+XQUxLOFos1O52UrPVyeJAhGzxS8OB74zTfGUtgcEIdXtdROeTsmoTEBmNkYuLLJ6S+8xYo5P7+7j8dzaWQ6MrMd4WTwUprI7ZfEG5Vounwqi1cPZJ+dwKUh6VflXMDhdjNgvB8Qi12520Xl7HieFxFk6EEEw6Zl6WJ42kjITZbUAQYHk4gsklEJmLk42D/3iIlstrqNvpJnAyytLpCFqjmtmDy0gpkdxeD5Y6I3F/hoVjIdy9NsSivHtuVl4I31yznTM/myG1cZ7l8DJnz55FkiT++I//mL/9278lFotx//338+Uvf5kqqqiiiip+e3zsYx/jy1/+8horEZ1GoL9zC9bhJjbe3oy718bZoo1raDyOWlAT92chl0Or1yj50PTLSzRd6sZ/Qs4FTDUGCkB0JkUukmP+SKh0DJMOtbY0hg0/PkvDTg/hoj2aYNXJKpY6yCVh5uAy2eJ4ISVTQAFTcXyffGERV5tFqSsVzmJy69HZdSQjOQIDEUIjcp4QOBXB2WZGVVTIXDgappCXrd1i0ykCQ2GMbj3J+TiBQh4VYKo1oTNpmD8aQnBomXlRJnItnYqwNBKl/4FWgqNRAgNhzv5sHnKgNajRGTW4+qx039xAYjHNwsmIYtemt+pI+lN4+h0UChAaK2laL54ME52Rr8nY03M07PUQHJbJQ/5jYYxugYaL3dTvdhM4EyE2I0+wRWeSBAbCxKYTJJdkspSl3qDUu3A8RDqYxX80jL3diG+jQzmu/0SIdCiH3qkt9kuIbNHaOBvKEBgIszQSIX4uibXZQi5V+qrPfzyEmMkzdzAIOjn3XS4qSi4ORCiIBbpvq8dWb2LhaHDFyh5ysHgiRGA0Cjk571KpIFfMkRaOhajd5cLkkXPowGCE5RG53vkjYchD99taySVF+Z3ApIUcnPjqBJ031hEcj9P/QCvLZ+Vrk1zOERkPoDGoyRfzpdb9XhYHwkSLfbhwPIR7g43YbBqdCYJjMcWCzeTUIWXzBEflGE0spwmcijL/mpynS7mCLBderHvhaIhM8d7IRpNAQVZ1RbY0zEZERp+S33ukTB69TYfOriMXlWN2aSRELgmLgxHc3Vb6725m4BvTLBwLozGoWDweIZeDTDyHs83KWHqexVMR1HpILWYhB/NHwzRf5lEWAwNDUXQWDf6TEfJigQ1va6OtsYPXh8+i3pphSTXNuZlzRCIRnnvuOVpbW7FYLPh8Ph599FE2bdpEFVVUUUUVvx0mJye55557OHToEKJYkqtRoaLB10yHYRuGmJvt99QhJiVC2kWWRxIYnVqWx+W8QG/VgapAaCIBIvgHYrLyUF5FIV9Ab9GQWCrmZa9EENMiy2flfW31elSqAjkxD2mYfDmISiXnYloTqDWgNcp/jz8XxNdrVnKvgggqjQqtQbY0m30jSnxOzmli57JIYkGxj5s9HMVg1ynbhiaSWOv1GCxaYvNZFk5GySUltAYIDCXQ6FQEhuQ8Z+FknHREpH6nhcWhOP4TMeKLGZaHUzjaRFJREUebgZp+C/6T8iLN0ukkWoPcF6HpDH0HvOjtWvwDccWOzD8QQ8zKCYjBoSUbF5V5oOWRBPmi1QQiTL0cKuUqxT4Ojifov7uGVCQr11X8mN0/EFcWBc/8ZInmS+yEJuW8ITyVQqtXk46LHP/6LK5uExpNKfddGIgTm0njaDUiJiX852Kl9p6Mo7dpCI6mSYdFGvbaSPjl6xpfyOEfiDF3PIIYh3wuj8FZIusvnIyRS+XYcm8dgaEo/oEY8aLlrv9kgvhijtlXo8W/Y4rlSyqcIzgax95swlIrEDidJB0pzv0ti/hPxDD5tGy5p56x55fl/p5KkwqISLll7E0G7C16ajbL12alT0/9cJ7mvQ7C4wnsrQZSIbkPAdJBkbg/y/JZ+fqbfFq53mK8pyIieotW6e+FwTgatUqJ2YIEYkq+WKGpNFpDjLk35PeQfCaP2qFV4nD+eJzYXAYxDVF/BihQu9VOeGKJxYE4kamUYjmXSYhYa/VoDRD355g/FiOxnEGMQ2Aojq3BjW+ThchUhoWTcXRmNctnEqTjIqlIBnuLgckXgwROJ8hLeXJJuS+Skyou3nsp3c7tTL2yTKJ5mqXEAqOjZ4lEItxzzz38/u//PiqVio9+9KP8t//236iiiiqqqOK3x7e//W3+6q/+ipGRkVVCCCrMgoO+zu04Epup36infpPA6K8ygERgLItOD8mIhJQFvUlDujhWBkYyaDQQOieP12aXFpW6QDIsIUkw/UZaFihAFo4RTGoyxVxq5kiaVKhAPCCPyXqzCrUGNBqQJBh/JUlelNuYlaBQkPM6gLkTGRL+nLwhkAiIOJrUCEZ5zXPueIrovFxvdE4kGZIUlczAablNBruGdERifiCNyakhHZaQMjB/KoXaqMHqhMBwmvCsiuCEnHMsDKaIB0Ra9pmILWSZP5UiMJxGygKkEcxajF4dXVeYiS3mCE5mZTWkvMj8YJp0TMLs1kAelidKKo8LQ2mlT+dOpcmlIeHPg0rF8kSWRFDC1qChcYuRwGhaIdBk4xLzg7JqUDYOYy8lMblK8kj+MxmkbIHwjMTS2QyOZoHYotwv4XMiYqaAVlAp264oSEkizA+liftzpEIFBLuagohiCbc4nIECRTs2mB/MEJmXf48t5JjXyKpBjgYt/jMZJQZQqZg5niG+LMdHdDHH/KAaqciRC4xmqOnTK+cwP5ghsSz3S3hGRK3J0LjTgJQp4B/OoC/m6ROvpPD2SKTDEi17jET9WeYH03LMpmDq9aJUF+Dt1LFwOqP0t384jSQWZNUlDUTns4oCk8YI6Vie0ExRPTWdZ+5khuC0fO3EXEGeSytOB86fyiBl8yBBVoRCvoDRrgFEQrM5JDHPwlCpLmuNVo7ZLMydTBNfyiFlIDKXpW6TQPt2PeOHMgTOZglNQ3i+GO/LEu5mgbmTItEFifmhDOlkHikLgdEsrRcZ0Nvk4y6czqK3QHhWIpeBtvYm3nJVC43Z/ahtYQL5Ic7NTTA/P89nP/tZvvCFL+B0Otm3bx+f+cxnaG5upor/ulAVynysqvivgEcffZT3ve99hMPhNWU2XGzlEjbe1oaz08rrfy9/rb35vW0sn44y+4psQ7b7wxsIno0x+sQcdXtdOFvMDH1ftlXourUBZ7tF+TK9964mZl9flpVmivuGxxOMPDaDu8+K3i7I9mZAx411ePrsirJP3V4X8wdLss27/qCbTDjHya9NIFjkh342Lg+YDZe5ab7Ex6nvTpZsw1bZhG3/vU50Jq1S92oILoEdH+gk4U9x8qsTa8rbb6ijboeLsZ/PKTZeq7HxXS1YG40c/aczZCtY2Lfur0GjVzP25Px5By5v4/nY/uFOJp5bIHSmQqUCbH9/J6HhGBPP+tcUd9/ayORzMxXb82bY98k+otMJTn1r6n9737q9LvLZPP4j4TVlu/6gm7nXluU4qoDN720jOBqTrdF+Qwgugd7bGznxlfGK5ZvuacHSsP61uegTPRQKKLG+GpYmPZvv7SA8FWfo29Nryjtvrse7ycGp707IMXcedn2sGymX5+g/jZbVGT+XweAT2PaeDqZfWWT2Zbk/nD0WUsEs6cUs/fe3YnAKHP60rDhg8AnU73DJdi/Fdi8eDynXvuvWBpn0NBSj964mLPVGZd/a3U5c3VblHC76RA+BUxHGn55HsKjpfUcrc68tETgZpe/tTZjr5H0nC8NourMsLS+xvCy30WazYTKZ2LZtGz/5yU8QhBIZrYoqqqiiirXI5XLcc889PPbYY2Sz5YO+gIFOtlCvaWXHB9uJTCUZfWoB72Yb3k02zv5khlwSWq/14emx8sZnZavYngP1LJ2OsTQYAx3seLCd4HiciZ8t4uqzYGswMvmcbLHRcrUX3yYbhz8j79t8pYf5oxFyRevRHR9sJzafZuSxOUw+HRqDlljxS+qGi900XOTi2BfPkkuCqVa231rBtve3USjA8S+vzZ3s7SZ6DzQyc3CZmV+tHff77mrA1mrmyBfGlLasxq6PdVPIF3jjM2fXlOnsOrY/2E7obIyRx+fWlIM8/g8/MVex7vXQdJkHa4OxZIN2Hhr2uanZ6uDo58fWlHm32CnkCywVLe/+d9D3ziZsTWYO/c3aXOTNoDOpaLzcx8Qza3PB1v0+7C1mTnxjotxirgjnBjPNl/o4USH3LR2ANfu2X19LcinDwuG1OfHKtQmORDn7RDHvVZUWB+v3Omm9wsfki4vMHVy7f//9zZi9Bg49PFKxzbv/oJNUMMfA11flqMU22ttN9N7eyNjPFwicjCrtIZcjl4RN9zShM2tl+8EivJtt8rY6ZDWqoyHOFfOy2p0OEosZYtMpum6uw9Zo5Mjn5XzT3mrCu8nG6JNyXrbz9zsIDEaZ+kUAdNB9Yz1Lw1GCQ3E631qLvcWk7Fu/14mjxczQ92UFzF0f6cA/EGHsuTnGbMcw1ugYHx9HkiTUajW1tbWo1Wq++c1vcuWVV65/raqooooqqgDg8OHDvPe972VwcLDMQleDFo+umU2GvTTv9uDpNXPyO/L42bHfRWQuLduQ5QtseoeP8HSGmVci2Fv0ONuMTP46DHkV9TsteDaU9m262Mby2aRipbXpLh/R2QzTv45g8mgwuXQsnZFzq5qtZmq32DjxnXkQwdlhUGyzQLZtyyYkzj61jNYAqEFMyotmzg4D7Ve7GX5ykfhcbo1NWM8tXowuHcf+tUJupIUd724gvpBh5Kdr8zLvJhOtl7qYeCko23YVsTJl3HKZA3eXiZOPzCEW51VWyOcg24vp7VpmD56XB51vZXYeem71Mns4oqj0nL9vz01eojNp5g7H1hQ3XGTDfyKqkGn+d7Dj/Q1EplOMPhN8843Pg6PdgEpF2XVbwaa7fCycistxVAEd17mI+zP4jyd+4+NpTdB2pZuzT1WeR2u53I6rw8TA9+cRKxx287tqUWlUiprUaugsaja/s5bQRLrcMq+Imq1mGnfbGX5iUbaqOw99B7yoVCoGHy2pwhpcWtJBEa0J+t9ex+zhKIsDJUJUPgvpsEjrFQ4sdQKnvifvq7WAt8vC/DE5wDbfU8vS6Thzb8h/1+8q2vBNZ2jYa8PZauDUo4sggr3VgKvDyMQvQso5L40kmHsjjtYArZe7WD6bJDSepnGfDUeTgVOPLLKYmSLVMMtyeIlAQH53slqt2O12brrpJj772c+i1Va/766iiiqquBAkSeLhhx/mn/7pn5iamlJyBxUa7IZaOh378Jia6brCQHxRYn4oh9mtwt2mY/ZkFikL7lY1vk6B08/KA1n9ZoHYokRsQc7juq40EvOLLAzlMDpVWLxaAiPyhIGrTUtNt8Dpn8v7ulo0ROZzCiml6yoTyZDE7LEMglG2Gk2F5PVEe4OGph1GTj8nW8utCBwUT4z2yy1odCrOPr82DxGsKnquszM/kCIwnFlTXr/NgLfLwOmnwxXXpHpusKHWwNBP184haTTQc6Od8Lkss0dXrTmpS3MrzRcZmT2RQvrfyIMczVpstats0M6DvUFDTY9esRlbDYtPg0oDsflSbs2qXPBCaNiqx9spcPyHa/txXRTjSKMBd5cg28Gdd1xXmxZnk46xV1Il+7ZVMDpV1G/SM/by2nU7Baut34rwduuQsgWCk6tyn1Xt6bnBSngmx+yxdFl7AKy1GjovMzN9JMXy2NpJreZdBhxNOgafjBWJZ+Xovd5CJi4x/qtVbS62UW+D7qusTB9OEpmVQKNGU1yak7LQuF2PyaFm5IXSvtZajXIf9b3FxOLZLEtj8nnZ6jTk0nlSERW+bi3ORh3DL8l9qbeCs0mnEJ42XG0kOJ0jcFaEQoG6jTriS3lifglvpxZXi47hF1OQV2Gr02Cv03DuqHyCPdcYWZ7KsXAmw1T6ECpbiLGJMURRRKVSUVdXR1dXFw8//DBbt25d/1pV8TsJ9ZtvUsXvAr7yla9gsVhQqVTceeedCkFJhYpamrlGf4A/euiPuWP/2xFUAmJCpCDmEYofyPtPhPD02eU/sjJDcwXzB4NI2QL1e90ASGmJQr6g7DvxSz8Nu1zKvnkxT16SE4HloRiZSJaaXQ4AUstZ8rk8QvHL4/mDQRqv8CjHyiUkMkWJ6mw8Tzaex7tVblfgVEz5+nzlWIJLwNIg1xUaiREeLc8I7J2yKk82mGV5KMrYk7Nl5c4e+STGn55n9GezawhKDRfL5zz47SkO/U05CUawqOm/txWAyef8awhKdXtd7P2jXtx9VirB2W1Bb9VhqTNWLCcrKyVVIih5t9rxbrLTeFllq4jN725j24d+O//1lqt9XPSJHplgVQGtV9TQeLG3YtnhfxxZl6AEYHTpcbZa1i3f+ZEudvx+ebuzwaxCUKrf66b9+tqy8lPfKl0bW5sJW5uprPzE18c580OZvGNrM5WdV/xchuBwlNGn5QWolXhZwfKZKMlAWiEorcTLChKLaVJFVSjBJWDvNCtKWoJZi5iWiBTVFOr2ukjMJEkvyoO3mBTJpUsZUuMej0JQMtcK5MU86Zh8LzRc5ia5mGZ5SK6rIBWUewzA22dn5pUlpR15MU8mni32mZdcSlQW8/JSAan4BUGragO3vOVWbthwO9u5DLfNjd1ux+/388wzz2CxWOjs7OTSSy9ds/BeRRVVVPFfGblcjuuvvx6tVosgCDzyyCPKc9KIlV3s510XvZ8Pv+8j1GtageLzt/jsDpyMks/m8W5xAiCmJPK5ArriEDb/RhjvSv6Qg3y+oHx9HhyKk42L+LbJ+VE2LiJlCzJZA5j+5RINux1KW8VMHikjjzfJxRzpiIinX647ei6JmJLQFW3dkgs57O0mpR0Jf5rEfPnkhr1dLoyMJ4nPpwhPlC/CWJvlvGbylwv4T4TKSEQ6E5hq5YF45CcznPj65Jq6TbUCuUiO1/5heA1BqeUaH55NcttPfWtqDUFp+wc72PLeNtaDrdmEucawbvnsq8sVCUoATRd7aL+2tmKZzqRi10e7qN3hXLfuC2HL+9rovbOxYlnj5T7qtrmwNpvWlE0+tygTkNbhaVnrjBicAuYGfcVyzyYrez62Add5uer4MwsKQan3rkYlHgDl2qwQlGp3lZ/z3MEQI0/OKQSllXhZwdjP5lk4EVbabGksvx6h0YSinGqq1cnHLm6bFwukoznCo3K5q89CLiITlAAyEZFsMXdCJ5OQVvIfk1OHlMmTWJLzNN82O6mlrELYy4t5xFwpt/JttjNVJN/p7DryuQK5pPweUrfdSS4lEhySXwzy+bzytSCAq9OiqJzq7PLkVy4hodMIXLvzBt568S1cyQEa6KS5uZl4PM7MzAxXXXUVNTU1dHV18ZOf/IQqqqiiiipKePnll+nq6kKtVrN7925OnjyJJEloVQLt+i1c53wPH7j7D3jLJTei1RrIZvLkcwW0xemWpZEErpbS3Euh+GUyahWRc1ly6TyeLnnMyqbK950/GsXTXZoryOcKsqJNvkByUSQdzuHqksezdEhEykjozTLxITSWxtNjVHTus3FJ+fpfTEMuUcDWLI/Tsdk06VCOwioFIq1BJoUALI8mCI6VLyqZvHKZSlKxcCLG9CuRsnJLvVweOJXk7M+XyghKAJ5e+ZynXg5z9F/mkBIqVCr5R2uA9v3yXN/SUHINQcneomf7/fXYWyvnVga3FpNbi9m7zuSSCGceC1QkKFlqtdRvt1GzxVZx1/ZrXPTeXnle6s3g6TGy5d5amSRWAW1XOGnYWfm4px5ZXJegBGCuEbDVr59r9t7mZdNdvrL/iUkUgpK91UD9zvJ5p6mXIhz7mkxQMri0WGrLSTVDP15g7OcyAcfg0padVy6eZ+F4nNnXivmQr3zf6GyG2FxGISitxMsK4gtZ4sU5LK1Bvi4rylRag5ZcQiLul3MrR7uBbFwkHS7Gd7aAmC7lR75eq0JQ0pogn82TTcq5l6vLQDYhES2qChSkAgUJhQDn7jQRGIwp7cjn8khpeV9Hhwkplyc0Lr+zFMSCcg/59C1cd/HNXNtxFxdbb6fG2oDT6WR2dpYvfOELGI1GOjo6ePvb316mxFZFFVVU8V8dkiTxF3/xF9TV1aHVavmjP/ojJicnUaHBa2znssb3cmDfH/LOO+7DY5JVUvK5AvnimmJiuYCYKWCvk9VsxEwBSSygKU5NLE9ksdeVxpy8hDLnlQoVyCTy2BvkfXOpAlKugCDkQZJt3VxNJbVDMVNQyCDZFGQTeazF46YiEplEHm1x82wcDBbQCMU5sqBIYql8QsXolPfNxgqEZ7LEF8vHB4NdLvefSbMwmConKGlAb19R5okz/Hx57qS3q9Hb1UgSDD4ekQlKarXy42rXYSue9/RrawlKHZeb6LyyfP1KgUqFpUaHxbs++TYyK1UkKAHU9Opp2W2SCTkrP6vOq/d6M85mTcV93wztFxtp3HnevFTxGI5WHQ2bDZg9a+sOTogyAakCQQlAb1VjcmkxOtUVCVVGl4b+m6xKPKwgMJJTCEoN2/QyEajYHimvYvCnMYWgtHI9VhBbkBh9KaEQlIzOcgrGwqk0C0MZJSYN9vI2LU9kCZ+T9xXMyMcunl+hAMmQRDwg/8PsUiGl8qX4TubJJkq5laOhRFDS6CGXLpAtKk1afUWCUqgA+TwFMY8kFpRjORu1BCbkdmg08nyblJP3tdVpkSSILeaVfs1LpXY6GjSEZ0RlXylXQMoW0Gg07Oy9jCu33841bR9hk+daWls6SCSSvPTSS2zbtg2fz8fu3bs5dOjQmutVxe8mqp8D/A7jJz/5Cffffz+RSPkkhAo1LXSxqWYHjXs8jD4xB1kwOHSYa+W31Yln/QQGQxi8JrLxJM5WCyavHsGiJhvPc/jTIxh8pYkE1wYrRq+euYPLjD+zoJApAFou8eHssmFrMxGdSK75Ir7rpgbyYgH/4TBzB5cVVSWAml0OWi6tQTDrGH9qnuNfKl8Y2vqBDowuvWw1F8xy5LPldW9/XwdSRuLwp0fWkHlsbSY23tVCeCzG0PfPMfLYTFl5y9U+GvZ6mHrZz+zLy/gPh8vKew404uqxkQ5lFXJI2f7767A0mXD2WCoqIcXnU+QSIrHpygzi0Eicg//rdMWy9utr0dt0nH6k8pf+geMRxLREaLyyjFIhX6CwarHkfwdiWiIv5jE4BIVQsxpnHjtXWfmpCE+/jYa9Hk58ea3yUSWVq9VIBjLkVy0QnY+GPW7UOnVZ/K1Gz+3NqDTw2t+WjpNezJIuyln13dmMlMtz+B9HSufzQzkuBAv03dlCajmjxGFoJE5oRD7Xur0u2q6uZe61ZSafk2Nt6Dsl9aW+O5owevQc+cwQ2ThEJ5KK0hHI5K6G3W7l/jj9g1I8tlzto2aLk9RyhtlXlkksZMvaWL/TjVqrVghgK20GmVhlbTDh6bXLamZQtq+j3YLeXkrcw1MJzjwq729pENBbdBisOlwqH7093Wi0GkbOTXGcl3F67Jw7d46xsTH0ej3t7e10d3fz+OOPVxWWqqiiiv9yyOVy3Hffffzwhz8klyufxLDioJ9Lab+onmxSJi8YXAJ6e9FqKpLj2Jcm8G4uLXjYms2oBTVzB0PM/EpWI5KJRjncvRbs7RZMPh3JxVyZMgxA414PuYTI4rEI86+FmH+tRLJuvNRN/U4XqeUs/qMRTvzLZNm+m9/ZhMagYWkgRmw6xdEvlMZrnV1H3x2NRM4lGfruDCM/KSdgt1ztpX6Xk+GfzBI8k+DUt8rzlM3vbsHkFjj06WGS/vwa9Z8tD3ahUsHhh88SmVg7MdJzWxNiSuTIP1cmCtVscZDtsLB0qnJuFV9Ikc+tn/8MVlBNXEH//S1MvxwgMl55wuboV8awN64lCgEIToGCWEDM/HaLG4VVBLbzMfG8n6XBGLHp9RfEum+rJ7GQYfbVcqL49ItLTF9AvTJyLk0mmiO9XPkrO1efFUebhbqLvEz/MrCm3LPZTvv+WvR2QVYYKmKpaDfSeKmbpovdjD/rx39Ufl9JLuSYXJC/qO+9ox57u4WT/zpBsigXrqgzAX23N6MSVBz+tKxYGZtOcfxL8r2gM0H3TfXEtiUZ/M7Mmn079tdQs8VBOpwlPJokuZgri/XmSz2oVCoOf0aue+zpUqw6u814+qxk4jmmX1giFynf17vRhsEhMPEz+TxmXwsx/oz8u8mjw1JrxNaQlp8Ddi1nHj1Hsjjxaa4xYHTJk3O9mh20bfQxczDEMCfwG8cp5AuMjo5y6623YjKZ6O7u5u/+7u/Yv39/xWtURRVVVPG7jJMnT/LOd76TwcFBVovECyojHfqttHv7qOmzMvu6PO6YPFqkrAAkWBpMEpvJIli1iCkRs1eHtU5Ab9eSiYgM/iiAzlJazPD1mUkFcywNp1gaTJYRUXy9FnwbzYQmU8Rmsgz9sKQqA9B+rUe2qzi7QGQqQ2SqVG6t19F2pRuDK8bMqxHOPi2P1Svn0/VWN/YmA8e/PouYpkyxBmDTO+qRMhID3/UTGEwCpXYZHFo2HqglOJpi/Pkgc6+X50eubiPtV7k492oY/8kE4fHy8b5+p4WGXQ7ZwmN8bS7g7bXg6jCyPKInMrVWQSATkchERBKLlfOI9LLI0a+uVfcBWdnJ7BGYfDFcsTy+IDL4owWSwcq5VV7KU5B+u+9yxaxMMtOatYjptfWffTpAfGn9nM5Sr6V+h72iYtXJb1aeq1pB3J9Fo1tflaBxlw2dRaOoC52Pzmtd6Ewajn2t1K9iEuJFInX3jXIsnvxWqR0rBCW00HOLj2Qgy5mfyPlhKiAy8mRRVbtZT/cNHubeiCjHn/51ab659UoXjhYjx785i5iUbeVOPVKK17YrnORSkqKcNPNqaV9Xt5GGnXakTB7/yQRikrJ967baEKwahUQ393pMiWeDQ4uzw0gmIRJfiIK2fF9Hox5rXWnhM7mUU54JWiMYnVoEqwaL1sHlLbegM6iZCYU4lXwRwZNndnaW8fFxHnnkEVpbW7nkkkv413/916rCUhVVVPFfEg8//DCf+tSnmJkprT1oVQJecwe97ivxNFgo5AvEFvPo9GC0axBMkE3C2CsZrDUlQoejXktCLxKcyBGZhchsSiEpWX1a3K06lsYzpCOsUcJp3KxHzBSIzKaILUjEZksfx9kbNDRuNSJmCoSmRCZeKd+37WITRruGgZ/EyMbh7AopR5LQaKD7WgfR2RyTryZYGCjPYVztAs27TYy9HCM2JzF9qHwepnWfGVuDjsEfh5FS4B8sz4+6r7Gi1asZeiJCJrJ2jqfjcitSLs/wM7Ey1aQV1PYayGXyRGcrKzImlqXVQtYyVpFzZt5YX3apZY+RwNksyeXKjJ+xV1IYbZVzFI0AUraA9FvyefN5YJ0lv+UpkWQwTipczPUrkI1qNwlkk3mC4+UNCE9LhKdX5Uwr+xbz7GxEIhWWyMQrn7PRqcbToSebLBAYXqvkZHRpaL/YzPxgGv9QqTzml+uzN2ho22dm6vUkoaJtXTaFogpV16/Ht0HPmWejZIrp2GrFqJaLTAgWNYNPyOeQjcl2ewBooONSE7EFkYlXU8V9c6x8xefp0NK0zcjZl5LEA7LN4NkXS/dCfb8ejR6GnpbrC4yKBEZFUKvRW6F2g0A+D4vDIpIEZ18qxY6rSYvFp2FxWD6n4JxEYEwClQqNAPZaLZl4nthiHq0Jpg6nyRabbbCrMbnUIEGjrR9v5zaCsyLzhnEm4gdRqfIcPnyYvXv3Yjab2bZtG5/73OeqCku/w6javf2O4eDBg9xyyy2KTO0K1KhpZyOt+g0IFoFsMEvfO5txtFo4+pXRimSTvf9fL9l4jiOfHV1T1v7WOmq3Ojn13UmiE0kEl1znCnb8ficqlUohXKxYXK383ndnKxO/WCBwPIK7z0psOqawir1b7dTvcivqOC1X+5j6RekF091nxeARmH15GVubCWu9sUydx94pTx5lg1la99cQmogTGS0N3KvbuuG2RiaenVMs485Hzx2NCmGjElqu8TH1/OK65ZYGgfjseX0rgCCo1z0mwNaHOhh9akbps/Ox7UMdCGbdm5J6flv8W+ze3gydt9Tj3ehg4Buja/umiL67m4nOJS9o+2bwVSBJCSjxXQmWJj1Gt4HA8UjF8trd8tf+lSz9QI77xZNB4ucya2IeyuPFu9VedhzBJdCw0ymT5QTYcGMjwz8uxZazW/4aLjQSp+UaH+YaQxnJqWaHQ7HQ2/mRLqLTqTJi3co9VrPLQfv+Os7+dFaxnFkhF4JsuafSqMvt7Yq2g97NNrpvacJ/MsRoBfucnR/tQmfUcvCvZfKcpUEgMBPkGL9C0osUCgVFKcTpdHLVVVfxwx/+sGJfVlFFFVX8ruD3fu/3+OpXv0omUz5m23Czjcuw15kVgsWej3eTCmU58dXJNfV03VSHZ6OVU989J6u3nGezteujnYhpSSEk6UwoCjGejVY6b6jjzGMzhEeTmBsEEqvG2M4bazHXGpTjejZaZau4InoO1BOeTLLwRhhHpwkxnSc+U3oB7XxrLaNPyYsZzZe7mT+8rBwbZMWa4FAcdNB5bWnbFawQseytBmxNJs69XHl8r9nuIJeWCFYgf4NMdE7OpxRCx/nQ2XXkkrk1ykF6t47M8vq2b42XujE4BEZ/WnmhzNpsYuPbm5k9tLRu2/8t+LfYvf0m2P2H3aSWMgx8o3JeZ2k00na1b91yKF3D82Gq0ZH0X6BvL/NWtPtbQeeNtYplWqVjNu1zKgSf89tgbzdhqTUw+2oQvUuH1qgqi/v6vU7CZ+Mkl3I07HMRn0sTmUyWla8oOvXf28zMoWVCI/I7g84EJp+JyGQS3zY7TXvdnPr+OTLBIplo1T22/QPtiJk8J782uaa/HJ2y7eH0ryrbHW//QDs6s4bX/mGtraG5QWDzPa0EBqKMPrWA3qUjE8txLn2WUQaw2ExEoqVcc9u2bTz88MNcdtll6/Z3FVVUUcX/6xgdHeXuu+/m6NGjZVZugspIj+Ei6iwd6AwqcvECjfts1PZbOPXDRdLLa1dNtj9QRyYurSH+ANT0m2ja62D4yQCxuRxaI4ir1rh6bvGg1as59QN5X4NbKx8jX0BnUbPhJg9zb0QJnk1jqZfVZVZsyayNAnXbrAqJxbvJROBUaXyy1GoxuHQEBpMYHFqsDUKRgCTD4NEiZQrkYhK+TWaSwaxs/1aE1gRSSl48adhrwz8QVSzazkfTxXbOvVJ5fgTA129WrLoqweDQKso4q6E1UdF6bAXdN7k5dyhCKlB5Nav7Jjcmt8Dxr5fnZoVCocxm7rdBoVBg50ONv7Xd25thxSLt9E8WFQvA89F0sZ1sTMR/cv2+1VnU5M6fN9TKSkHrXU+9XYvRra1IKgNZ3UqjVxMcqWx7UrPVTGJBVk6qdA0bL7Yz81pEtlhrKSenaQ3g6bWwUFRDarzYzsyq2DJ6tWh1KmJzOTx9Jqx1esWeDWSVqMik3O7e273EF7Jlsblyj1nrdXS91cvYc0Fle60B5f7aeKcPrUHDiW+uih1BBaKsFNV3qw//qTjnXllrr9N7qxejU8vRIsnL4NASX4pzMvUrIio/KjXKO5/X6+XAgQN8/vOfr9iXVVRRRRW/K/j617/O//gf/4OJiQmFRK1RCdSau9ngvhKLVVAICJtuMJGO5xl9uQK5uVNL42Y9wy8lSC4DWhVkS7lcz7Um8mJBsaqSiS9ymcmtpmOfkYlDaeIB6Txbtjy+HgFbrZbRF+WGWHwa4ouluus360lHJIJTIkaHzOJJhVcpJfcILJ6RFXlc7QKRmWyZFZfZpyFRrK9mo34N+WilrYJFha1Wx9Jo5bUpa61M0lpRtzkfZp+GXFIim6xMtNYIIK1SrFH+b0SxtytDMWdyNGkwOrXMn6y81iiYYcO1VhYG04qN3vl1/FvQsNWAt1PH8R/HIf9vpCOoVWvq6L3eTCaaZ/yVyvmNYIH6TUYmD60qP48WsV7fCmbIXsCl19WiJTi1Pjurpk8oIzCdf0x3e8nKbnXMg6yyZHJqCU6KaATQGSG9Km23NWhIRyWyMZkQlc3ISmMrcDZrCE3LJ9SyS8/ShEhiqaispAHBpiIVKmD2aGjcomfitaR8X6nVZfdY56UGCvkCY6+U4melrXor9F5tYuZkhqXxUucVNGpUUp6OS/SYnBoGfrr2xUBjhP7rTPjP5pgfzCnXYDl+juHlF1EZM4oAi16vZ9++ffzjP/5jlbD0O4aq3dvvAOLxOH19fahUKvbt26cQlFSoaKGba1QHuEp1G62qDez9w142vkOWWBx9fIaT3xxTiB4tV/vY+6e9itXauVcDDH5/lRLM3c2KfdnMwWWi0wnSATnhyAazdN/aqKgrpZayJP2lZCR+LoO1VdbCjvszqDQqTB6ZGr08FCuTPXR3WjF59UpdqwlKAB1vbaBxjyzbHJ1Ilk34Cxbou6uFvruaANlmbTVByd5pZscHOum6tQGA4R/PlJGFnN0W9v5pr2Ljdj5ByVwrcNEnepTyNQQlAXb/UQ99b5ePX4mEs/19nWz/ve41/1+Bd7MNo1uPo6OyDRzAsX8e47WHKy9k1exwsOdPetZYj61uo6Wpsq3HbwxB7ov1sO1DnWz/vcp2cqOPz3HwH4bWJSgB2JpMeHrs65b3vb2JbQ92KlZ+CrJyLFpbjez549J1WkH8XEYmDgmw+w830H1ruXXKwushhaC0++M99N/fWlY+/tS8TFCywI73d7D5PeWWMSvxYmsz0fXWBiUOQG7XippX51vqcffZyhQzVqsyOTutWBvK1RhWCEoIoNKoUBc/PDD4BAQLCqFNSufJxnMsFa1QOm+pR3CWlJIWjoVYGowo7dz5kS4sNXI8BE5GmT20xOgzMkFp+4c7y+z13nj4LGd+JKti2DvNbH6gk403drFPdT2XZm9iu+oq9Mj3eTQa5Uc/+hEqlQqj0cinPvUpqqiiiip+V/Cd73wHu92OSqXin//5n5XJagt29nET12juYrfmGjbc2MiWd7dh8snP4dOPzpQRlLZ/oJ3ND7QAMPmLeaZfXlLspax1RrY91IbJI+8bGIwwf7i0kKJ3GWjdL+dDkYkY6WhOkb9OzGbRmVAs3tRaFRpdKe1fTVACWbXJvUHOG8KjyTKCknezDW+/jabL5DF1+qVyglLvHfVsuKlePsccawhK/fc1s/29raDNE5lIriH5bHxXMzs/LI81/qPhNQSlrpvq2FG0qF0aiK4hKDXsc7PrD7oxeYoElvPmUyyNRrY92EHHDZUtcAFc3VacHevbzcamkxz69Jl1CUpb399O//0t6+5vqtHJpLN/A9azZANZ0Wj3H27Afp6l7Qpe/+zIBQlIrk4z5lrjuvujg+0PttP/QOuaohWCUs8dDcp1Wo2ZlwNQyNOwz8Wuj3QoMbmCFYJSwz4XF/1hF+ZVuV0uklMISl031bHj/aV7CWRLwdlX5Xui57YG+u9uLevnuYMhJV4a9rjovKHcjm+FoGSq1WGukQl0yrGTKIQmg02LWqeuSFACSATSJIsqEaZaHa3X+hQyVSKQIzwWZ/GY/L7S9/ZGum4qxeKZH51j6peLyr57Pt5N7Q45B07MZhn49jSjz8p91HtHI7s/3EmTposrNbexK/EWem3bUKNBrVZz7NgxrrzyStRqNZdccglLS//nCXVVVFFFFf8REEWRAwcOIAgCXV1dHD58GEmS0KkM9Br3cp3zPVzpuJs6Qwdb31lL17UeAGZejzL44xJByd1tZPu76zA4ZQWUqVfCjD1Xyq2aL7HTUbQvWz6bJDiaIhWSn+diCup3WZR9E0tZEoHSWJBeFjEU7T9y8TxqnRrBIm8bnysRlACstQKWWr1i07aaoASyIk1j0Zo3HRbLCEpoYeNtNXReK7dz8VSC+FxOsWAzOnVsvaeB5kvksWT2YDlByejVsu3ddXg3yWPe+QQlrQU231OrlFciKG16h4+2q51K+87Hhls89L+9DrQyIWj1D8gkLGudHtsFcpuRny5z/NsyUeT8/c01Gra9uw57y/r7r/Ttaqyu402hlQkq66H7Jjd9ByrbyfmPJzjytbl1CUoArg4TzvZ18i6gcZ+dze+sxXi+JYsoE5QMDi1b76/Ds7G8jkxEVAhKm97hU+JgBZGpjEJQ6n9nDZ3Xl8+Z+Y8nZGs3LfS/vY7um8rLZ16RCUoGh5au6z1KHIBMElohKNVsNVO72YKzo+QtlwqIxIpkOkeLEXtzue3dCuEIQK1RodbKi6JaC2hNKtIhCdQqCipIh3JEiu8r9bus6Kylflo4HiNwWm6H3q5l450+TA753kwuikz9Osz8EXm+rOdmNxvvKNnrnX4swMhTRWs8h5ZNd/poudjLdut+rrS8iz32O/HoG1ChIhgM8oUvfAGVSkVdXR3f+MY3qKKKKqr4XcHrr7/O9u3b0Wg0PPDAA4yPj6NCS425hyvbf4/9bR+m33cd9V1G+q4zYSgucYy9kiwjKHVcoqfj4uK6w6TE1NEMyaBsmyUIEp2XGxGKUzFLY1kWR0q5lUYAb5f8gp8M50mG8+QLBVCpyCZUaLQqNII8CaZSg1oLFNdLVhOUAByNOmz1cl2pcL6MoGT2aKjv1+PtlNsZHC8nKNVtNtB1pVWxaTufoNR0kYm+G+1oNAWysTxLZ8vLG3cY6blB7qDYgrSGoOTr1bPhLVbQQGKpsIagZGvQ0HejFcFaJLBUINFsvMFGXX8xL6pgx+ZoFHA2rT8plU3AwBOxEkHpvDraLzHSfrFx3f0FI0rfl0Gtkn/e7H/I67oV6wCMThUbbzRjqdGW11Gs5/SziXUJSgAmlwZbnbbcMu68c+y51kL7vrXnuEJQquvXs+Fa85o2rhCU7A0aeq+3yH2xCisEJVuDhk23WBWSHMjXc4Wg5N0gsPFGK/pVjsLpCIrtXPNOI91XW8uOH52VCUoA9ZuNtOwoz61WCEoaI9hqtZg9q44tlQhNejNodLLKE4Bgypet1yeCEslQXqnL161V7hExA4HxHKEZ+VgNm3XUbdShkvIUNGomj+WYPpGjoFGjEaD/RhPOJvkkpBQMPZ9k8awcdy3b9Wx6iwm3sYl9jfew1/1edjXfhlnwkMvl+OUvf8mOHTuwWq3cf//9xOPru/lU8f8Oqtqk/w/j/vvv51vf+hb5fGlQVaGijhb6VDsBqN/rpulSL8c+P0I2nicwFCEyJT9Zs/E8vp1Wara4GHtynuWRCJ6NdvQ2DdkgzLy4hLXVSLqosmJwCYpcYDaYLVPZsTTp8fTZ0Ohkm6qh75bbZfTd3YyjzcLJr8vqOecrAG15sB2NQc3Rz43KVlXFY65gw22NROeTzB8McvrRKTJL5YOOs8dCaDxONg4Lh5eZfaOyEk5kNEFiIcX862stKQBCk3FyKZHkcmVWcS4uUpBK/rlrkAUxI5Ku8KX5CmYPLuFoWX8hLHAySmR8qNyvdhVqdztlIs36HB+kTH5dq7eGPW5aL69l/Pl55g/+dl+NXfTRHvJiuS3aaoixN9F2zMokJ41Rq1iQrcbRfz6z7vkDTP/KT6tOvS7RKbOUQcrlycbWvw6FfKGidLfSxFiO2Gzl5CYbh8h0gsBAuGJ5dCLJwvEQ48/Jk2qefpuiagQw+sQcodGYYhO4+T1tjPx0ViEMHv/imHwPIFsetl5Zy+lHp+W+ypbbtW16Rwtao5ZDfyOrGy0NREvHEsC70YG5xqDY651bZcfibLegM2kVr1p7p1mxqgNIL2cVKqvgEthwYz3DP5bv7dRCivBojJmiPeOWB9sBsHxFju2sI8Ok8QTTM9Ok02k+8YlP8Bd/8RdYrVZeeuklOjsrk9iqqKKKKv6zYmxsjOuuu46xsXKrMSMWtnAJFo28CNB/fwtSVmLouzMsHA6h0WrIxeXxKBnK0XtnA6NPzpJLQmopjZiWn8G5JMy+GsTabCQ2nUJKiwgWLbYWE8mlCJPPlecu7dfWYHLrmXwuQC6JYnO1gu0f7CIdynHiXybX2LLZW01031rP6FPzhEYSvP65s2XkHpNPR+tVNQx9f4bAySi5pEh4tHy8dnSaCI8mGX1qjrpdbkUt6nwsHAvjaDGuIQ+tIL6wvtw0QC6bJ7+O1RlAJpYjn5FIrpN7xWdSRCbiTL+yPmHj5L9MoltnncjabCKbyF1QiSkbyyGmK38JB9B3VyuoWGN5/JuiYZ+blit8jDwxU9HKLjabRkqLaPTrfH9SbLp3i53AibVqCdMvLjH/+lIZ+ez8/YPDUZZG1n5xvoJ0VESwrZ9XSVmJgoisdFUByaUM2YRIooK6K8Dc0WV0Zs26cXbmx7N4em3yuepkkt8K4Q/g2BdH0dnkSbm6i5zo7Tomn5XJQcmFHIceHlH6adtDbWRCWYYemQVkYt70S3K+Y2k00P/OZgKnogohb/iHJfXJpku8uDoszL8RIhPMkYvkOP1oqdzgFNAY5H5aibmFI/I10QhaMtEcy8V7rfVaH+nljEIanHl1CbNPnnTSu3RsvqcFzwtWGgbkjx9Sm+d5bfAgYj7HK6+8QktLC6Io8gd/8Af89V//dcV+q6KKKqr4z4yHH36Y//7f/7vyBS2ABh2thn46TTsAcLQJNO+TVWty8QKLg/GSBZgIJqcOZ6uBucNxonNpMhERdXGNZnkkhcGhVVRYjA4tWoM8loppGH+hNK+ks6io32ZDb9Ey8cvwGhWWxr2yatPgj/ykAuIaW6/2a10Y7VoGH11k7o04c8fjsGrYrN9tJRuXCAwmOPuzZcRk+ZhqqdXKFmMizBwKE5xIV1QUSodFwlNpFk9X/uQ7FRLJxqSK5KKV8y5IBQri+mQeMVUgc4E5n7kjUZytRgoVLHYLhQLxBZET35wrI26thqPdIBNtRCqSitSCrDKQCFSet7O3Gui+3sPEy0GWBpO/OTFpFTa/o5ZCvsDAd/wVy7MxCSl7gXpFWQlJZ1JXJCsN/mB+3fMHWDgZQTBr1lWaSsdFxLSEmFo/Ry6IIGbXL0+HRJLr9CGiTNSLzlYuT4dFZl6LsFQkA1nrdQoBCWSyU3Ixq/yv4zoXs69FlbgbfWZZWZGwNgp0XONm9GcBmSAFDP6g9EFo534vJreWo1+T76n4vMjQj5cAFVCgdqsVW72eM4/Luf7yKpUoS40OvVVDPgvkC5hqdWWkv2RQRFtc4NYaoPliJ9Ovyve9mBZZHEqwdEaur+NaF1q9CsOTN4AZRGOUKc1xRqeHWVhY4IEHHuD3f//36ezs5PHHH6exsfyjyCqqqKKK/+yIRCK85z3v4amnniKdlgcpFWo8pnb6vNdgFOQ5r9btWijA1BtZQjMSOkOOXHFMy6ZkksLCmRxSFlKRvPwxnUoFEgSnJAw2SIckpBwYrGrMLg3ZuMTSWPmYV9enx16vIzCeg7yKsV+XD5w91xnJRPOMvpjEP5QtU6vR26DjEgvnjqSI+SWGfh4vI/dojFC/0cC5N9Ik/FmGn5NInWdzZvJoSC5JzA+myaXyFe3ZAIJjGaRMvtzqrEimAkiGJLTrzdWwYjOLbO9WYVpJyoCYySOtM1+TTcDyRJbl8cy6qkeTB1No1iEA6W1QyJUIKpXqyCTWzycAWvea0BpUDD1dzD8rkJDWYGWbfAFrrYbOS82MvZogOru2E1LRAtnkOnmXWgWSXGat1VRUqQpPS8RmY0jrTdupVARGsySD68/rZRJ5xHS+4jUC2bIuLxXWPUYuWSATlUjFKvdlZCaLwapWbN/Ox/TRFPZarXx8DRhtalKhUl0jz8bRmAAJrA06jA510f5NJgMNPJ1Q2t5xiZFcOs/0G3KeF5ySCE7JASaYoHe/hcWzWeaH5KCeHyzleN42HbXdOsJzItm4TLSaPVkqN9jUFIrHUZFHrVUTLl5TtVFNMponEZL/9nZoyKVRyv2jWUxLcqBqBOi+3MjsQCcug7yOmDaf5eiZl4nFl/nGN77Bo48+itPp5M///M958MEHK3dcFf/pUbV7+38MTz75JHfddRfJZPmoZMXBNi5DUAnU7XUhmLVMPb+Is9tC1y2NnH18RlFpKbN++lg3Ku151k9FWJr0bL63g/BYjKHvn1tT3rq/hpptToVwZO80l6kWefptWOuMTDzrx1wr0HSpb611WpGMtPFdLWhNGoVIcT72/mkvqXCW418YW1Nm8Alsf7CT+HyKk1+bWFNurhXYdF87C0eC61qz9d/fysyhJUJnKjNjnN0WpFy+IqFmBdZWI7HJ9Rm75lqBxMIFmEVAz4FGxl9YXNeurGaXg863NDB/NMj4U5UtSd4MBp9A08Vepp6bXZcI9GZ2by1X+8jEcuvaov0m2PunveSS4gUX7NrfWsfycLQsrs7HaivBihDA7Lpw3zde4bmgtdzm97Yx/vO5yscRZNJWeDReZt+2gpX4jM0mGfj65Jpy72YbnTc1snB4WVFaWo36vW4a93l4/XPDkKVczhT5PrM1mxl/ah7BJdB+dfl9ZvAJ5EWZWNh/fys6q5ajn1tr4YgAez/eR3IxrVgtrkbnzfX4+h2c/OZYRbu7FZLSia+MI1jUdLy1gbGnzpGNQ7hmjoQzxJkzZygUCmi1Wurr6+nr6+OZZ55Z25Yqqqiiiv9EOHDgAI899lgZKVyDjh52UKdpQWeCtv11jDw9Dznov78ZKZ1n6PulZ7Fid9Zuou+ORmYOLnPu5bXWT5vf3YLJrefQ31cmAW97qI2EP8PIY3OKIs1q+6uum+uYfH6eXBJa93sJnU2U2VutWMTpTLDlPR1MvRQgcHLtG3Drfi+1250Mfu9cGdFjBZvuacJSb+TI50YqElu6bq7D3mpad4y3NBppvtTD0PfW5pcrqLvIyfxr6+cZb2YzBmCqFUheYPx3dJqx1BkuaEe240OdaAwaXv/U8AWPdSHUbHeg1qnWPZ83s3vT2XU07HExeyhY0XLtN0H79bXUbnMy9INpwuvkVXq3jsaLPIw9fYEcUwd624Xt88wNehLrLGoB2NssSGK5peBquHrMePrsjPx4rfUsQPNVHmo2Ozj+r1MV++PN4nPLe1vR27S8/o8V8iFkomEmlGXk8fk1totQvM9eWiIXydF8pYfIVJLIeOlAK0RDdLDrg53Mvr6sqDatRs+BepwdFt744kTF89j10U5yKUkmIK589FjczNltpvP6WgYfmSa5kKPpMjepUJalgRg5KUds0zTTC5OKmpLb7cZqtfK9732PPXv2VDzvKqqooor/DDh58iS33XZbGSlchQqPtpnNpqvQarU42vTorRr8J5MYHGq6b3Az8VKI2Iw85msNIIqACBtv96I1azhxHmkIZIWWrXfXszyaZOKF8Jpyz0YTDdutnPieX7GKWk04sdRpsdYamD8SQ2uC+h12pn91HhlYK7ej5XI7BoeO4cfXUWW8v45MNMfQj9Z+UKc1wNb7GojOZjj71NqcRWuBjbfXsXgyxvyxypM8rVc6CI6liE5XHp+NXi0aDQpJpBIUS7t1oLOoyaXzFclJK2i82M7iyfhaG7MirPU6em6pYe5YlJmD69vQXcjyTWsBX68V/6noupZzb2b35umTLWfWs0X7TbDt3XXkUhKnvld5HhJkxaHVZJ5KMLhku8ALYT3bvRV4+kwsDa0/n9lxnYu5o9F1SVGb76klPJlaG9/I8bnlvnqiM5Xj0+TT0nurj/mjMeYOryXbOzsMNO6xc/pHfsR0uXUbyAQ9W5ORucMxtCYV9TvtTP+61A5tUb1BjBZovcKB2SeUkZxWY/uD9SQXs5z56dp21mw207THzpnHF4n7xTUWjx37ZZLS8FMh0ELLHhuzb0QR0xDVzxJxTHFm+DT5fB6NRkNDQwPXXXcdn//859Fqq9+IV1FFFf958Xd/93f8/d//fZkSr1nw0Ou9GrepGY0GfF1aFsdFpCy0bisqUr5RrnokFdcteq8xMTeYJTC6lq3RslOHvU7LyZ/GK5I9Oi41ko7lmT2eQaOXx/rVqkY1PTqWxnNISQlPp45EME9qFbFEoyladmmg+yozC0PpiqQXV5uWpu1GRl+IKfZXq9G404i7Xc+pn4Yr2qj5+vS42/WcfjpS8TwEC9RsNHHu9fXzCEezjvB0TiYnVYBghGwF5aTzj5ONsy45yWAHs0fH8tj6eUbnlSaMdg0Dj//2qjTWWg0aQUV4pnJjGzbrS3ZvFaDRgKtDR3AqW9m2bgUXID95OrQ0bTNy9sXEGiUt5TgCeDoE/KcvsEZbKMh9f4F2CFYUBaNK0NtArVaXKXathtGpxtWqY/ZY5bzc1aKldpOB0RfiFdvRuNOAu0XHqadjFfurbZ8Rk0fD4FOVc7+W3XrENMyezMjKTOd1V02vjtBkjmwKXG060nFJtmgswmCDdBTQQO9VRvwjWYJTa/u8rk+Hb4OOoefSFc+j9yo9Uq7A2RflxE+5fwGjHVp2GZk6nCKZ0OBq1CDmJKJ+kCSJqOkYU/4h/IvyO57L5aKtrY2vf/3rbNq0qeJ5V/GfE9Us+f8BZLNZrrzySl599dWy/2vRsZVLcahcZcpDTfu8qDQqpp5fJDQSLyMg2dpMbLy7lcUTIcaenOfENybLiAZ1e13U7XBx9J9GiZ/LsHw6ysSLq17uBLA3y2SkdCRLQSoo5JvziSRt19SiEdRMPOsnsZBdQ1Da8yc9pEM5jn9pjMFvn0eGEWDzvW3MvrrE8lCMI18aW0PcsTQIxGezpBezLA6EmX5h7aQTQGIhSz6bJ5eoPDgJLgFLvZHGPZ51SUrdb2ukUKAimQug545GXN02Bh+ZWpdQs+nedvK5PIc/XXnh0dKkx7XBhlpQr1GiWoH/cBiz18j4OotHgkugbruDqZcX11VaSi9mOfvYbOXC3xDnW/BVgrPbgtGtZ+5g5YW/6VcWCY+sP5oLFqjZ6sRab+TEaGXyWuMVHpov9jH1Kz+zFRZ7AXZ9qBuNoObQ31a+du1vraNuuwsxKVUkXVlbjZh9Rhov8nLm3FoSEoCUkYgvVc5c0otZFo6HFMWhlbhdQeBklMjMqBLfWx5sZ/bQkqKGNHdwWenDlfvXfzTI+DNyvK9WTmq/2oer24atzaQQ6tKrFAkkMY92lQqYs8dSivmsrEIWnpbjt/PmekwevUL8G31ijulfLynt3PFQB8lARiE0rSY2NV1Rg7PLirneQnYkjiNUj8NfTwMbOcavsTUamZmdYXp6GrVazaZNm/jEJz7Bu971rop9WEUVVVTx741f/vKXHDhwgGBw9cKFijra2KjZJf9ZJC9YWy24e600LGWZfWWZga+Xj+H997dgcgu89qmzRMaTawgJG9/ZSGwmxfRLy8y8uoTRVW5dYW83KQSIvFigUPxC6HxSg6PThKfPSi4lMvlcYI3yUuu1Pmq3Ojj59QmSizne+Fw58dvVZ6F2q4Oh784w+VyA2dfDa45h8ulILuYYf2YBz0bbuso7yaU0phqhIsEDoH6XE1uTGb27Mtmlfq+L1itrUGvUzL5aeXzvv6eddDTLiS+vJagDNF7qpuliL6PPzFdUDwJoutSL2Wtg5tDyukpPp380ja3BXLkQqN3hJBHIEJtef+HHfzS8btlvglwkx+TPK3/Jr0AHTXs9LLxRWRFp/PkFcglxXYISQPs1NdjbLEy/srQuGWrnQ52oNCoOP1yZgObcYKbn1ibmjwSZfK5yvtj9tnoK+QJvfHbtxwcAdTucWGqN68ZPLiEhpqV12zj8xAJ1O+xKP5g8ujKbwBNfnVRIfp6NVnz99jJS4cDXS+8lm++RCU2HHy4Rms4+UcrD67Y7cXdbObZKyWyF2Gf2CRTyBVLLcu5kbTYSm08p5zT9YoBsQlTOY8uDrcweWmZpQM6PDz88qrSz89paPJtsnPyXCZJLOUIjCQ6PlPqvdocTKZ1naSCGTqPDNdqBK9dBhCAzvkHyKonJyUn27t2Ly+Vi3759/PSnP63Yf1VUUUUV/xH44Ac/yL/8y7+QzZbeX81qB1st+7FoHQrZB6BxlxWNXo3/RJx0KM/JVWo3erts0eQfjDPzapThpwNlRANHu4G6LVZOPxZAjMP8iRiLg6vmgbRgcslkpExEJC+BwS6Tc85XxGnZ50Swapg/EkNMsobAseXeOjJRkTM/CTD10tpcpOM6F0tnEoQn0ww8Oldmy6ZSqRTiiZSB+aNRFteZrxLjICYlcpl1vnLXgrPNiNagWZek1PUWDyq1ihPfqDzXVL/LSv0OG8NPBhQy2GoUCgV6b/VRkAqc/E7luTmdVUNtvwW9Scv482vJQYVCgehslqlXQ/hPVT5XrQHcPRYWBxNlSlSr68jFYPb19dUffxNciNCzApNPi9GhK1PuWY3pX4dJLF2AXK6Fhl12EovZdclrzg4DHfvdTL8Srmi9B9B7uxeDXcuxr1W+dt5NJlovdYEKlgbXnpfersXebEBM55l6KVyxnbnkhdW3Zl+PEirazJ1PmEouipz4Tim+V+I+MiXHYmgsTWistO/GO33MHysRmuILIvEF+XffJgu+PjOh8aRC7FLub7WqqGIg/06+gKVeS3yu1JaZQxHFwrF2qxlLjZ7Rn8ux6D+ZYHk8obSz/+21JJdyDBcJTautIWt6LXj7TITPpYlMZbFJDdj8DTQ59nE2eZhCbYTZuVm+8pWv8JWvfIUtW7bwl3/5l9x8880V+7CKKqqo4t8bY2Nj3HvvvRw6dEj5IE/QmGh17KLNtVveqEheECxQ261FzBRYGs2VkZMAWnYK2Gq1DDyVIpuAU8+kyohFjVt1ZOJ5AqMSi8NpYn5NGSnC6IBUGFCpZDXHvKxCJJ2XbuitUNcrQD6Pf0hiabR8jHW162jcamD4+RiZKIw8Vz5umtwaPB0C06+nCI5miMxm1hA8Vkg/84Mp0hFpXcJMJiaRS66vLuRsMeBs1uMfSpONryVvW+s1tF1sYdqQZHm0cq7QebWVXCrP2V9UHv/tjVra9pmZPJQgfK7yumdNjxF7g5bwZK6ywo9KxfRrKYyudWSWAFu9hlwyTyq8vpJRbPHCSktvBkmiaDWnkl09KrnYaMDVrCEyL62JDYClMZFCIUV8Ka/kAefDt0GPr1sgdC67rnhD19VmdCuqUBX0XQx22LDfxsJQuky9azXa9plRq1UMPV35IO42AWezjoXBTMVzEcUCuVR+XaLU/Mk0mWgpPgVzyZYOYOLVFBoDIIHRo8HbITB9LKPcd1Ovl94HWncaMLvVDD5dyhH9p0sxWdurI5fWKUQiKBKUAEGQ864VJTWDDdIJlOMsjuaQpIL8cYJGTfsegaWJHFG/3K+nX8igEaCgUeNt11C/UcfwL5JkYpCKwJnn5RNUIVHTLZCXNET9WTQaDU5xJ07HTlKmOFPpX5JVhTly5Aj9/f14vV5uvvlmvvSlL6FZT0Ksiv80qCop/SfGo48+yn333UcqVXoaqVDRQjedqn7lf85uCz13NDP/+jKTz/nXkCC8m23U7XQrZIP++1uZ/nWgjEyzMgB33FiHr9/BsX8ZKyM3rGD3H25ApVGtsWtbwdb3dxCdTjD+zIJMXgpmy8gyq9vW985mIpMJZl9Zu/gkuAR2PNRBZDJRkbBjaRDov7+TyER8XULPlgfbWTgaxH8kXLFcsACCrAZzvirM+XD2WMiLhXUJSIJLoPP6Woa+U7ktIKsPiWmp4vmuYDW55LdB962NeDfZOfW9yXXb2n1rI2JGWpfoBG+upGRrM9F6ZQ1nfjK7br+9Waz8JjhfnasSNt3TwqlHptYlZdXudqK36dZV0QL52lyIeLU6Pt5MuWnbBzsYf3ahYrvluO4ksVBZ9cvgE9j23g7CozFO/2AtIUpwCfTd0cTQo+fIBrMV27I6hnZ+pIuplxYJHF87Idp9ayOejTZO/3C6Ijlvy4Pt6B2CQsw7X8Gp985GghNx/IfDNF3pxeLVl7V5tbLYnj/pJbWcKSMypQpxDvMiOrOGRKLUV5dddhkvvfTSmvZUUUUVVfzfRi6X421vexvPPPNMmS2EGRvbuByDpuQH1n9/CwanjsOflokL5gaBxKrcq/ttdUSmk/iPRqjdYcdSa1SsoaCkaASw6yOdJPzpMpLECjwbrXTdVMfsa0Gmf7l28cLTb6Vxn0exerM0Gtao06y0zeTR0X59LcM/OleRxLLhQD2OVjNHP3+2Yvmme5qw1BrLbLFWw9FpoukSj0zSKlSeoFitbLSiLrUeGi52XzBnar7SS9yfJji0DuFZBz1va+DMoxcmZlsajcRnfvuv5Hf/4QbElMjRz1cm3JhqdLReVcvkCwvrKj+9mZISQOt+H6hV65KVXD0Wem5rYubgEtO/XKvC8BtBByb3hdWn6ve6yIsFFg6vr3LVfXs9E8/MrUtic3SaEdN5ud9Vlb8aXIkPvUtHJpZbl0RWs92Ou8fK0HcrE8l772zA3mrmyJcqqxX13lGPrWX9uK/f68TiMyiqSiZ7OeFJZwK1QUcmmKN1vxezT8/gdyq3ZfcfdCGmJI5+YS353twgsOkdLcy8uszsq8GyZwTIZMX6HQ7FOq7v7kbmXg+WbBhXta11v5fabU5OfnOC5EKprePSEBOcQm/QK/L9TqeTL33pS9xxxx0V21xFFVVU8X8Thw8f5o477mBqqjTvoEFHt3EXzcaNyv8MTi0bb/MwfzzG3JEEepuaTDIPOTnfsNbrqOm3KmSD9qucLJ6OEZ8vkRNW1Fl8m0w07rYz9HigoirQpjt96Exqjn29MtGm6y0uEktZ5t6Io7OoKGTzZaoveruWTEJU1JMSS7mKxBCtATa/s47QVJrx58oJOyqVCq0FttxdT2hibfkKOq5zEZpIra/2owWdQU0unkdrYl1VIZCVlLQ61bqKPloDNO51MPnLcMXyQqGAp9eESk2Zndb5MLi0pKMiKqn8S/jfdGq6fruFxj1Ohp8KrCFcrdTRsNtGoQBzh9cnKr2ZkpLBpaVhl42ZQ1EykcrknE13+dCZNeuSg34TnK/OVQltVzuZeClUkZQFYG/RY3Lp1lXRAvD1m9clOQFl8fFmyk0bbnYz90a0YqxoDbD5nnri8xlGnqyg+lWM++B4qmIsaQ3QdrWb6V9HyETEim0x1ugUxae+273MHYvJ9oDnoW6bhYbdNs4+s0xk8rxytYqO/S4stTpOfMuvHHv1vdy4z0ZyKUtwJI2724ilTiiRDVXqMmWxrff6SC2LDD9ViidRTHMk8RxZfZRUKkWhUECn03Hbbbfx7W9/u6quVEUVVfyH4H/+z//Jpz71KcLhMFC0czO3s6nmLQgao7Jdy3YdVq+GUz+XH4wr6wIqSc69anu1pGMFwrN5rD41ZpeahTOl5/VqRZSeqw0kwxLTR3Kcz5QxOlVsuMrM7ECGwNm1Y4/Zo6Zuo57Rl+RcR2+FTKi8jpW2aQRo2m7k3NFUReJH7UY93i6BoacrqyM17jbiatYz+ES44v4Gu4a6fgMTv65MXlndFiipS1VUOVKrcbZoCU2tP966WnXk0vmK9mUAaFU0bNavq8ZTajekK323dwFVytXou8GMlCsw/FyF/E6tQqOHuk16AiMZMutMz72ZkhKAu12LRqdicbiYX5xHMjLYofc6G7MD6dI2b4YKRKXz17jOh61Bg0YDoWlp3etcv1mP/0xlgtFKW1Xqcju287ESHxoDsPbWUGDxaXC1yuS6SqjbLMf1mZ/FyohKq8s97QJDP09UbK+tQYPFpWFuQC4UTJBdfak1IBjUsqpSqwabV8vk4cox13edESkHwy+sbavGrKb3CgMLwzkCE1LZMwJkgpOnVcvMSfmeaOrXEjqXI7EsX4OCVqMoXLmaNDRt1jLy6wypVbEdiI1xOvA86LKkUilUKhX9/f18+tOf5qqrrqrY5ir+41HNiP8T4rrrruPZZ58t+58BE7u5BkElALLikbfXzsmvTRAaiZMMpIlMyU8hhaBUVFfy9Nox1xoVosX5llO7/qAbgMP/OMLYk/OMPVn+gt15Sz3h8ThLA1FmXl0il1p/8NTbdZhrDABr7LXMtTKxKDqVYPDbUxUJPZvf3cb4z2eJz2Y5+A+n1yWexGezRCbijD9feeJIsKgxefR4eu3rkpS2fqAHkNWRKhFtLE16NtzaxMDXRi9oAydmJWKTqXUJSgafQHoxe0ESjLvPyvJo7IIEpc3vaUOwanljnS/XAUYemyEyHb8gscfRaaEg5i9IUnozmGsNWOqMODtM+NchKZ396SyJpQvb27XfUIev376uytHKeXg32yra0QAKkWqln8/HanWkhsvcFRWXVq5Nz4HGikpWK/HRfkMdtducjD07h/9weE091lYjBoeAt89e8Rpkg1nCo1FmXq+86JpeLI/7je9qYeFokOXiAmw2mOX4l+RFUMEl0H9vB/HzbORWYsjZbUFn0qI1VmYLTz43AzQqsd33zmamfrGg3LerCUUNl7lpvrSG0Z/OKNdhNSHJvcGGwaErVS5QZn0YnU4QmZH7o+FiN852C6e+NcVl3AhJCLVMcWTqMAAvv/wyNpsNgBdeeIGdO3dWbH8VVVRRxf8pHD58mOuvv57l5dKzWY2advpp1ci5AjrovbWBwOkoSwMxgmfjmNyCsn1iNlum+uLstKAza/AfjbBwJAKU3pp82+y0X1vD6NPzLA3EOPyZcsspk09H414PI4/PszQYw95iYvrXlb+uFixa9BatQkQ6n6C0Qiw68s8jJJdynPpWub2aq8eMp9fOyGNzDP9wbl3lGoBzv1rG02ddt9yzwYbJo0fv0pBZXvsiXrvDSdv+GqZfDjD76nJFwkjPHQ2kwzkmn1tcl6BUu8vJwuHQBYk4KwpNFyIouXosBM/E1yco6WD373cze2j5gmSpE18fRzDr1i23NVuwt5jRO4Q3tae7EDwb5AW39UhKwTNxRn46q6grrocdH+ogsZiu3Dc5ZIKSDuxNpjILsxXMHSwtvqynhDXyI5lIY202kZekNdZvK2pOOpOKjfe0MvLj2TLiD5SUwjbf20I+m+fI5yurarq7rVhqDevG7tSLizTs8axLiDv9aCnuzQ0CzRd7Of2DUt+stmnru6MRW6OpjPCUSwJJ+XezT79GCW01Jp4vXTvPRiumGj3TL8j3dmI2y2v/UMrxt7y3Aymb59gXZQJiZLxkKWfy6bA1mkgFszJJqdj+lT6MTCUx+/QKQanv7kYWByIw0Ec7faTTSYZtrxOI+gmFQrzjHe/gvvvu48CBA3zzm99ct/1VVFFFFf+n8PGPf5zPfvazZapJDk0NW8zXYtDK80mONj2eLiOjz4ZJh0Sisxlifnn7TDQvE6KL6kq2RgP2JoOi4DL+QjmRduPtXtR6NQPf9bN4KsniqfLxrX67hUQwR2Qyw+wbFx5HDS6tsl6Ri5bnO1qTTFwJT6UZ+3mwonpS+7Uu5o5ESS+LHPn6HIiVrcvEOCwNJ/CfWGduRwvWennMWY+ktOkOHxqdhhPfnK9IUNLbtXTsdzLyZGBdmy+DW4taI6vhnE8qWSEF6awacjGJpdPrz2dZ6nXEF3MlwomqvA6A9v0uzB4dA99bXz1y7micVFhUCEqVyE2uTnmR9UIkpTeDYNHgbDMSmUqtS1Ia/2XwgioKIJOD6nfaOP6t+YokoxWCkq1Zv67K1cQv5HjWWdQVbfIiUxlFlcjTY2TpzNp4WCEo1e+yordplTpXsBIf3k0mWi5xMvFCsKJClM6ixuwTsLeZiM2tjW8xDYuDCcLjleNWTMPRb5T6ovUKB8Hxkg2hmEaxjNMaYOPtPtnm8OlSLp7y50CtwuDWordp0BorE97nB+Jo9Goi0xlQq2i51I5/IEE6mIN8oUwZydFuoONqF+O/CCqKUDOvluLH1W7EUqcv3dOafBnJMTieIh2WV9qc7XqcrQbGX4aLtDcBEKmd5o2JX5LLZXnkkUd46qmncLvdPPXUU2zcWCJkVlFFFVX838Ds7CzveMc7eOWVVxTVJIPGygbvldRaNyjbNfRriQfyRBbyRBYkcunSGJuNg4riGKRS4W6VrdbCs1lii/kyJR2zGzouNjJ1JEtkVuLML4rzVEVGgmBS4enUMTeQIxWGuaEswfHKY61aq8JgUWG0y8oq5xOUGncYcLXoGHw6hpSGyUPlY5fRpcHVrGX2eIaFwQwLg8l17dMWT6cRU4V1iSfWWi0Wnw7BoiIbq6COVKuh/XIbM0cSLI9mS/UUCgohqG6LAUlUsXg6sy5Byd6gITIrEZysMIdRrEdjBCnFBQlKZo+GxJK0lqC0Ku/se6sZ/+kMy+v0P8DwLxIIxlW56nmWaya7BneLjsisSCZ2AW+6N4GrWYdau4qktPo4+QLpCIy+nCS2jpXbCrouN5KK55k5kinVkS+PZTRgtKtJBdfmVavtATUmVYnQtirnnDsp97tgBY1mra2b3Od5NBpovcTEuSPJNcSolfjoulxWbj/z83UUs+q1RTs9Ksbm4lm5LZUISgDzJzPMD2YANYIJfL16uW9Wne/KOTds1uPu0HHmZ6ts5iTIJvKgVmOyqzHYK+ddAFNH0mi0crnJDWanlsCoHFtSIs/Az0pz1h0Xy3PqIy/LJ5WOohCUNAK4mrSIuQLxsISKPCpRIpuS1zlTUYnwnEohKDVt0RJZEIEOvNYOJCnLWPyXTPlPcfLkSa699lrsdjsf+9jH+LM/+7N121/FfwzWj6gq/l0xOjqKx+PBYDAoBCWdVuCOW+7kjg33c4nqBrr2N7Llfe0AuDqsWOqNdN5aD8DpH87QclUNnn55cX/Pn/ay94965bJHzhGZitN2hQ+Q2aK7/2gDDVd6AMhEc6hWPfR772qi545G+Q8L+DY7aLmqBgBJlGjY45EJUMDG+5rZ+8k+6va6lLqCZ2VChXerna0PdVCzS25Tw14fYkpk8nmZHLPlfe00XekFZJLOtt/rwFxnpHGfj86b6+l/e6vSps3vbaPtxhr2/HEPffc0s/WhDqZfWiC9mKX9hjr675e3tbYa2fz+Nhov9XHwU6eZ/vUiWx/qwNYmqx+07q9h83vaAJg7vISYEem4sQ6QSVRbH+rA2WMBoG1/HXq7gLle/nvju1rourVB7kOXvO2GWxvpu7OFhsvcbH1/h9Levrub6Tkg9+G293Sw9//rpWaHA5AJZlsfKm3be2cjG25rYucHugDY+lCH0p81uxzytgLk4iIaQUPf3c3Kvlsf6qDhMrfc35ttbH2og1CRpNJ1awMb39WibLvlwXZarvbx+t+fYfSZObY+1IG5Vr6QHTfW0X9vqb9Rg94ll9naTGx9qANLkzwB1n5DHd5eO6/+1RD+w2H672+l/Qa5Dy1NerY+1IG900xoJE79Dieb39umVNt/byudN8sxa/AJuDZYkKQCBp9A05VeJb4B+t7VTPetjdTsctB1cyO7/2gD3q12OZYudpf14Zb3tbH9/Z20X18LAsW4k/u7dreTrQ910HVrAy2X1bD5va303tVU1of1e+U+tLWasLeZZZUtYMNtjfS9s9TftiYT6UgW/+Ewnn65v4ViP3XeUk/LpT4O/sNpRp+YY8uD7fQW93V2W+Q+bBA4/YMZvBsd9D/Qyp4/6aXr1gY2v7uNtmvle8xab2TrQx24+ozYmk20XVfH5nev6sP7W2l/ax3ZYJbIVAydRYOz24Kzx0LLNT62PCj3YWgkTmwmidknT/Lu/ngPF32iR3lG+HZ6MPn0yjV2tFvouUuOF8Ei98tKfwtWHYV8XiEo7fhIF713F/uw+CyY+rU8kdhxSy37/rhPicueOxohX1DIYU2XerE2y8mXd6udrR/soCbYxjWqA7z7lvdzxeVXIIoisViMPXv20NPTw0MPPUQVVVRRxf9p/Nmf/Rlms5k9e/YoBKXuth7ee9sHuUpzB62aHjbd10TdRU7Igb3VTPv+GnR2HbOvLJNLifQckMe0hn0u9n18A+1vlZ/lw0/MotapMflk8krHW31s/5D8fF48FSEvFrA1ywso5gaB/vubsTTKz+uutzXg2WjD5JH3FSxaWi6T8yWTR8fuP+hk50fkulQqFfGFlKLitOFAPa3X+bC3mtDZdWhNGkJTcXJJqLvISf+9pTGt+211tF9Xi7PDjM4O/fc34+m2ArI6Tf/9zXTeWMvuP+ik620yqXjsaflZ339/M75t8hjRfoOP/vubGf35HK89PEzTXg/dt9Qrx+m/v0UmFh0JEfOncG2wojPJeWfb9TV0317a1tlpxd0j1+voNNP/QCt6t9wPrft9bH5vK+37a2m+wsPGdzbTeKk81libTfQ/0IqpVqD1uhq2v7+T/ne3KvX2vaOJ5mLOaaoV2PnRLjbc2oij00zjpW42rhrre+9spOUaHyaXDimTx9tvx9Epj1v1ewqyNEQAAQAASURBVF1suqeUW2040ED9bhex6SQ6k4r+B1pxFfPI2l1O+u9vYeFwiIN/cwZvn53OYs6JDvofaFXGZMEqT8asoOumOrpuriv14QOtnHt1iSP/PIpnk5X+B1rRFYW9Om6oo7v4PrA0EKX/Prm/QbZe63+gVbEMa72uBo1Bi5iSJ1A23dNCwz65D+1txT706Njxvk767mym967GUh++s4mmy+R3B0ujkT1/3MPWB+T8pPkKD313l3Krvrc30ny1j947Guk90Ez/A61Ym+UGN1zsZuO75P62NJkwuvW0vaUGCnl0dh399zfj6JS3rbvIiZiTOFe0ve2+rZ726+X3GZ1JjsOFk2Fe/9wotZvtbHmwRblvum+po/PGWpKLOc4+M0///c1sureZXR/txLfDRv/9zTK5B+i8rpbuW+po2O3B3mpm83uaqd0hx6Grz0L//c3oTDD5gp90JEvb1d5ijJrYdE/xGQHMHQ6RieXQ2XXU73Wy5xPd9N5d6kNfvw3BKh+08WI3jXvcyjOi+SoPfXc1KNsW8igfhvi2Wtj+4XblGeHusRGdTTLxM5lkf9HHurno4/J7hMmjo3Gfm5lX5IW3pitdOFrNOFvluOy5o56e61vZkriC613v4u0H7qazo5NUKsW3vvUtvF4v27ZtY37+t/+YoYoqqqiiEsLhMLt27cJoNPIP//APZLNZ9BoDt173dg5s/iAX2W+mcZOTDTfKcyG2BgFnu4GmS+Xn18SLIeq3WLG3yi+gW++rYee75fFv9vUYgZEE3o0l1ctN7/RRs1Uev5ORHCoNymeaTRfbaLnUrmzbuMdO8x7577xUwNdnpsiVovVyKzvfV4enWHcmLBGeSUO+gLVex4ab3Tg75Tb5NlrJxiVmX5Pfmzuvd1OzWW6Dyadlw21unG1GajZZqNtmpuNqt0JQ6rjORe1OC1vuq6Ntv4MNN7tZHEqQDovUbDbTeb3cL3q7lu6bXNRvtXD8W/PMHIqy4WY3lnr55LybTHS9VR7b596Ikk2KNFwk5xtak6yCY2uW5wHqdpix1OoxeuT2t1zuoPHiYr9o5W17bvLQ/VYvri4DG252K33WfImd5mIfbjpQw86HGnB1y7mto83Ahps9q/rbTu/baui/Q86TN9zswdNjpFAo8P+z995hch3Xmfev++bbt3OenpxngEEOBECCAcyZlEjJEiWRVKDEtdYKDuv1fo+9+wVr7d21LVmy5aRgrawsi6IyKZIKTAAIEDkMBjOYnHPo/P1xe7p7Zvr2QDYl2+t5nwcSe/p0Vd1TdavOrXrveV3VCi33BhB1U1JMUOzUHfLl62m+209os+lDo0Ki5d4AizlySHSnQf2tBdumO/yEtxic/OIwl340Tsu9AVSf2YjIdoPG2wq2gmTLv2il+kRa7vWjh0zbUIeD0CaDI3/Zz9i5Repv9lGx24yRJcNOy71+nBUSCyMp3DUqzXcX/FJ7o4fYvpy/VQi26WRSGVRDxN+srfBhzfVuqg64cVZINN8VYMs7I3jqzYHnbVjp7/pbvGx/NErFHmfOh/68v921pm10t0HdjX4a7/JRe4On4MN7/ATazfHrrVcJNDsQc3teFXuc1B3y5m091RoL4wnGLyxiREy/qB7TLxW7DKr2eXjts4P0/Xyahtt81N1s1qP6c7Z+kb4Xp3FEFBpu97HtsShVB9zU3+KjYpdZqWqYtkaliK9Bo/paN013Fq617pCXij1OUkswenYWUbfjrJQxIiKBTTrN9/jNw8rxFJNdi6hOs30dvxZi+6MR3LXm+PbVqzhycaHiFgl3GDTe5jUPLO02Wu724835W3LYyGayTA6Yh2dtbwpQe6gwR9gEG1demQIgvFVnzxMxwltN/8f2GtgFW578WHOtC1+DBilwVoi03OsjkKrmkPddPHLTk9x0/U1ks1l6enrYunUrra2t/MEf/AEb2MAGNvBG45vf/CaVlZVUV1fz05/+lGwGWmt38I57fovr699PxNlCzS4JX5V58O+vEqnaLiFrMDWQIbmYpXKLOce6I3Z2vslBRe5z50vmfKmYyxLBBoGWm8z5d34c0oksWm4alTWo3SOjeW1gs1GxVSG6Scmfv0iyDV+dWa4gQ/sdGu23m+uWXYC50bRJRkiliW5RCLXKaF47ggCKw8ZkX4L0kpkRpnZ/IRtUZLNCzW4VX62MIEPtNSrOsHmtzohA7QEHwU0Km+5zE+5Q8NcrDJ00r6t2vwN3VS62apGpPeBgomuJk/84iTsmEdtelHVqnwNPjcTsUJqp3gTOiMxyUqpgi0Jsp2YSXOx2Qi0q/noz7lLdNmr3a3k/+Bsl6g5q1B1wEGyVqdyl4W9c3heE2v0aqtuUtdtyn4v6g4U2xLYrBJtNW0GD1tscNB1y4AwLeKoFavbmbG02KrYoBFskBA2Sixl8dRKOgOkXd0yg9ppCudEOMwvP4lQWBKjdp+EMFflwr8rsSJrXvzGHw2cn0l54mbN2r4orKuTbLyo2lpW3Qq0SFR0rbUcvJjj/zAK6307tXhUh93WwSSK2zVyvZ0fSVO9S8FabBWke87fysr8bRRTDTmrRJBRV7VLw1Qpgt6G4zPbLBjRep9F8k4PKXYWXzCp3KASW/e2ALQ8YtN9mdo6vRqR6z1p/N15nULtPo3a/hu432+SpEqjJ+VB22nFFRSq2mO0XBLMfHUHT1hUTyGSyDJ1Zyvs7vOzDnO3MUIrT35lD9wk0HNSQc/dVuF0m2qGQXjSJSLX7Nar3qrTfZeTvhWUfhppkKjZJeGskfFUSdfsVPLGcD702098KjF6MszCRIthk+kX326nepeCrESCTYexykqXZDLIOrojA1vs0ancXXtr0Vkn5Z6hIs0zVDgXFQ86HAtXbV77gmYqb/eTwQdtNMlrO1hUSmBpKM3jOJE9tvkOn4x7Tp4IMkSaJ0W7zecATsxGqF3EGcvHqZoGKVo1m923c3vZR3nL/Y7Q0tzIxMcH/9X/9X/j9fm688UYmJkpnU93Arx4bJKV/YfyP//E/kCSJpqYmxsfHURSF9rZ2DnA7D7a8ndbNLehBc1KIXRPIZyk6/ZUeUksZjIh5cyouAT2g4IiZ36eW0itYsY6wiqPC/E6JGoiaQHSr+YCemEoiyIWhYFTqeFucGDEZEpBNw8wV82HLGdXRfHJ+8VTdMtiy2HKvQWk+GWeFlrPV0PwKDbdVUn9XNF//cqYW3a/grNBoe0sVjpiK6pK5+FQP577ah1GhoeWuFUAPKBgBjcR8ikwqg+aTUX3m986Yhp4jYmx6Sw1GSMOo0CABqkdG88l5H7rqdYyo2b6+58cQFRFnzAx6ZFfONkfcyCSyZJJZJi/M5X1oRM16ZM281vGLM3R9fwBXzi95f0dU9JzteOcM2Gz5ep2RVbZRjeRSmu4fDxd8GDHbZIS1nL9lzn65l+RiKj8GADSvjCtq2vo3udGDCr7m3G8r1BW2ekDBkWuTHlLMcl1yzof6Cn8DCIq5UOlB01bzq/lytUBhAddDKs6YeW2qR1nh7/BOb36MAmhh1ewbQHaISJrI0NEJlkYSOCs0dH+hXCOs4ahQGT48xfiFaQTZjpHrZ1dMW+FD2SGRTWfpe2UCWc75MOcXZ8z098Xv9NP/8hiyQ8r7Ydnfrlz7x87MQhZTUBVwrPKh5pNZGjOZxpGdXjNjhEvI+SU3DnOMZj2o4mtwEjvoz/tQci77W0MPqiTmk0xdmkULKDgrzfbq/pytpnD04+dJTCfRAgpND8QwqhTT3zkfDr82heIy/d36QBUVu/1oRZk99HDuXpAhk0wjyHaTtCSDq6IwDmcuL5BcSJNNm4HBpnc2oAcUnBVmmxRNzG+eyj4ZxSXhyR12LfvFCJq2Ui5z0+gp80DRXe/AUVEYAza7jclOc9PW1+JC9ytU32JuVvqrvOzbtZ8DS3cRpYampia6urr49Kc/jc1mY9u2bRsBxAY2sIF/FpLJJDt37sRms/H//r//L4uLi9TW1tLi3MrNwlu455b78MfMJ77aW4K4KnU8OaJz78tj2AU7ijP38F6r46o1D01Gjptzk5I77FAMCUdQRXaZn/2tuYxzuYwn2XTWjKEAxS1jRDUa74yYbZxJkVxK57OiGFEVZ4WZKUZySQiynWzuxR5zrS/Msc6oRnSbh5YHY0gaqC6ZuVwWG2dERQ8pGJUqtbcEcVZoJOfTvPapi4DZXj1srsNGRMURVJm+skB8JoURUTFycRwSOIIqjrBC5XV+Itt8OMIqkmQzs9FUqBixQpuMCp3AJnPnavrSPI6ggpQ7THBWaPk4BiCTzDI7YL7+o/llHEEln6XIGdOQHRI9L4xw5fkxHJHCeqh6JRxBBdUjM3hkgnQ8heoqPPw6IlrB1iMjyname+aZ6pzHWaHhiBTWekdUw1WpsTCc5MJTA6guKb+2ro6tfE0uQps9plucIo6gkicHOyMqerBga0S1fCwsSTbTNleWINnzvgUwYhpGRcEvjqCSj6f0sIYjqIAk5WwLfvC2OHBW6XibcgeiAdX0d+6tN1dMI5NI05nLmqqHCv2qBRTT1iXR88Iwi5NxHEUxnCOsFeI9rwQ2mL4yl29v8Th0RDScUZWuHwxy5eejOIIKeu4A1BXT8tc9eX6e5HwKe+5NK8Wwr/RhVEVWRUaOTef8beCsym1WquaYNYIKJHP+DalsentNrq+0fMxp+lAFMsRnkuh+Nfe52N8aF745wNFPX0b3qRjVGo13RzCCCo6gil2VWBhKkk2ZfdtwZ5i2N1ea43A5vg6YtopTIJsxH8Ucy7GtZD5LuHJZLwaPTJJJZpFdEkalSmy3D0e00F67aCOTNOOy6B4/qktCj+buhQot7yMTWdIJk3imV2kYETV/4Kz7VVJLGS5+2+xzb4OTip3mYaSkQWNjA9dEDrGfe2ioa0QURY4fP05FRQVut5s//uM/ZgMb2MAG/jl4+umn8fv9eL1ejhw5giiKbGrr4HrXO7i9/jFaOxpR3WZcUHudC3fu5agrP5tlcTKFsTyPiuCqlDHCImQzxOfTK3Y0nSEZZ8S0FQ1w+CRC7eZ6GJ9KIcp2RMkONjvOmEJokwMtaNabimeY6jUPB1S3iCMsI+jmd6pHwSbY8m9gO8IyRo5ArXgljKhCwy1BKve7MSIyNruNpSlz09yIyDjCClUH3DgCIg6/Qtezo/S8MGXGd5HCs7sRVjCCMvHpJOl4BkdYQXWZbXBEFIzctbXcF8BTq2NEFUiZc7lpm1sjojLeWnONmLi4hKjYcUbNekRZxBFW0HKkk0zS3Duc7Uvkf7vcJlE2yx3vnOfyc5NoAfNawMxeZERlnFHz8/DJWbCRzzKq+yWMiIKYuzxnRCYxn6L35enctcroQfNLzbNsK9L782mWplJr/OLI2bqqVLx1Gq5amWw2izOq5Ps876fctSouESOioCzHnBHF9FkONjtIuQw8km43fZgbh0ZEwShuQ0TOfxY101bxmv6O7XLiqVFX2DpzfhIUEcUtMXxyjqWpFHqw4MPlNjmjMrMDSQaPzyAqdvTc2NKX/Z0jeqlukVQiy+gZM052hJW8D3Wv2a+jZ+fo+dkkoizk/QBghGQcQbPckdPzpFMZRCXnl6iy0jYis5jLduVv1nFVqoi5kNQRzvkll2zBXa0QancS3uJAcZptWPa3ETbHbHw6xdxQPH8vgEmWc4QVFF3ixP8eZH44iRGRqdjtRAuKK8bWyNlFNK+E6hFpujNI9T43RijX3kwWI6Lkx0tyKY2o2tG9EojLPjS/i0+nWBhPkMm1velOH67KXHxqsyPl9j/F3P84owr++kIsboRls1xAUGyQhdkBM0ODv1HDVVk8tuyMXTT30I2ojKdaoWKH+SzkrXCyc/M1XKu8jTZtH83NzVy+fJn/+l//K3a7nRtuuCEvwbSBDWxgA/8UpNNpnnzySVRV5cEHH6S/v5+a6hp21N3FrU0f5Yb9t+PPzbH+GoFwg4grbO4XdL+ewG6zIeamNCNox1clgt3OzHCaTBrk3NopSuAMCfkMO8FGCVdYyJMi0ilQdDtZuw27ZsNbKVC13VwvkwtZ4nOZfGYZIyhgBAQQTAKCotnJpDMggO4RMEIipMxNMGdQoGKzQuP1DvN7v5jPhqM6BZxhEdkwiUVGUCAVz3Lme3OkE2mcEQktt9arLgFnRGJpIsXSTBojIGGECntIzoiI5hFxV4lU7zHwVknmtaXBGZIwIkXEjFoZb73ptOm+BM6IlF9XHAHJXKdy5yrJpSyzuYzHkmbHGZaQ1JytT0Rzilx5dZHRcwmcIQFHjmwtaaJZriYwPZAkPptBcxXUM5whEYc/Zyubsc14d5zZ4TS6R8QZFvNtMEICzoBIehF6XllEdQooztzZrkfIE7kAQs0S4TbZlHWTbDjDAqrLlvOh3bTNmRsBEWewqE1hIZ91R5DtuRcGbHlbo8jWCApoXvOzapj1LI8lIyBghAQQ7GgeG6FmGVeOnC87zPYKuTGr+wTSySxDZxL58aLnfCjrph8kzZQ2mx1O4goVhKacIRGHz2yDoNix2WG63+wrzZfzi2DPtVfEERDpeXWRvmPzOMMiipHzoTfnb2BxKsP8WAq7kDunlzFtnWY5mltAMQSmetM5f8u4okVtCouobgHSptygt0am8TrDPGsOCit86AyJYIelmbQZ/4fFQt8ETR8On4pz+rtzOHwiul8g0i6jOs1+FGVTSi21ZPZdsFGk+QYdV4WA5s35ULPhDAkIau56bLb8cwWCSS5a9uHwxSTJpSyybGZwqtym4ArZzXFosyGItnxcFmwwx47mymVh8thWjCWyWVJJ8/9lzY43JqA6ciQrp53EYpb+nNxkqF6kqkPKt6m6ppId1fdyY8OHaKnbhqZpPP/88/j9fmpra/mHf/gHNvAvC1v2aoW/N/CG4s1vfjNf//rXV/wtQJRttgP5z7JPpvWBGOe+fJnEnJmRZLpvgcGX1h7Su+p0Nr+tlokLM5z7at+a7/3tTupujXDkUxchAd5Ww1LCzJRla6D3p6WlNmIH/FRfH+bcN65YluGq0/OyUy0PVnL+6b6S0m3uRgeb3lJj2W4wMwBNdM7SW0bWYxnh3R4WxxKWsmlND8QItLk5/Q/dlja7P9JMKp7m2CcvWdZTc3OIwZfHSJRItZxHTm7vjUDjfRWMnJgqKwcX3eej+roQx/6mq6R8HZiZaxpuj9L5nYGyciD7f6+dmSvzeSm1UtjxwUYyqSzH/8LaT8tZfYqlw9ZAhqa7Ygy+OlqQKvzn4Cr8Xn9HhK5nhyztInu81B2K0Pm9AUaPlxLtNa9f0kRe+aPSUnVgZp26Klk9GXY80cil7w2WluqTYd9vtrM4Eef4X5b2d+ygn6WxBONnZjGqFOZ6rdN97v5IM+lkhtc+0Wn5fXwqyYm/u1zye2etRnxskcScmYUhk8xw5ku9aw3Xabfsk2m9P8a5r/SQmMvQ+uZKZgcXV8w7E9kRjvMzsEMmk0FVVVRV5fDhwzQ2Nlpe4wY2sIENFOPSpUvs37+fkZGC9KqIzA5uwC35yOYOnir2eVHcEpe/P4Lik2i4JcTFb/ebkk6rsPU9tWhemZf/+ELJOlveXEE2leXCPw4iuSUkBRZGSktObX5HFZJDzEs7rcb295sZa6y+RzIPhBaGkvjaDURFyBM7SrVb9Ui88mcXS8pjuet1am8K8frfdJeuaxWqb/CXlV7b89FmliYTnPi70uUFt7qpvzXCxW/3M2ERV0o6RHYF6P1Jadm7giGWcnS/CIxKjUCbk+4fWUv1gpnhKB1Pc+aLJdbAHLa+p45sNsuJv+22tGl/exWuKgcvf8w6pghudVN3c4Tz3+hl2iIe1MMS7W+tpfvZIcZOzVqW5a7T8TQY9DxT/vquGuv4XXJLhDa56H/RWjZv2xP12Gw2jv3lJfPkcBXc9Tptb65k4PAEV54rPQ7ctTqCbmfiTOlxVIyqg36cFRpnvlT6+aP5gQr8zQavf+5yXjZt5UVB/c0hur5n+tCoVNfILS7D127QfFcFnd83JR5XI7bfR+waP8f+tttSls5db8rvSW6JjrdVcel7Q0x3rx0HLQ9W4GsyOPG5bhZGkvm5bRmRXR70oEzX90aQ3BJNd4W5+J3hfL02u40TyRcZ5gp2u9kP2WyWJ598kj//8z8v2bYNbGADGyiF//v//r/5f/6f/ycv6WbDRqXSRrvz2jzhR9Sg5loPPT+bIrUIlXsNlqZSjJ1fO5+qHpHNDwUYu7BA9/NTa743wiI1B32cf3qE1CIYUZG5wWVpsaJ1JZtB1KDjLRH6Ds8wenrtXOqpV6m/0culZybyMlp55NquBcW8RFpsn4v+wzMl5bxUn8jmh8OMnZsv2W4wsyjNDccZPm6h01AEd41COp5mbqi0LEd0u0HFbhfnnx5hbqC0zaaHQmSzWc58zTp+C27WmexeILVqSV2xhZyT23sjULHbxUzvguV1gZmhqeY6L+efGs0TwVbDiIg03xni8vMF2a5S2PX+SqavLNL5PeuXoFrvD4INzn3T2k+Nd/gQJBvnn7KOccCUWZvsXrSU1fuFcBV+D29zMH5unpSFC9w1Cg23+Lj83CSTl0obtd4XQPVJHP+M9Z5WdLvB4LH14y6AtjcF6X1psvS4FGHHo1EWxlOW/vY1qaQTWaZ74qg+kaWZlOmHVbIzAJveHIQsnP566bI2vSlIYiHDxe+Nr5kfwJxvUvEUqUUz45XdbuPyKrlDAASBHY+GWJxIcfapiRVyMmBm06o+4Kb3lWmScxDbbRCfTzN2JqehYrcxl5ritZnvE2cuv+dVWVnJc889R2Vl5do6N7CBDWygBKanp3nwwQd57rnnyGaz2Gw2nHKYLbF7cci+vNSaO2JHddkYvpBGkKGiXWLgTHKtjJTdTt0uEVdI4PUfxLHF10psRdtF7KKN/hNJBMHM4LNMPMoWzc22VJrK7Qq6x86F50pL1DZcqyLINi78OPd9sRRu0lw3ZMMsX/MJyBpM969tE5jZZ5xhkZPfnjOl3VIr1x3VLRDboXHpJ3OW0m/F8DdIjHdaHza13eMmMZfh0nOl92AcYZH6aw26X5xjdsTiKF4AX43ERJe1xNuy3dW02fL3OcgOcFdKjHYmy5ZXs0cFG/Qctj5nqrtGxS7ZuPTT0n0LpoxYsFHi+DeLYt1VtASHX6B2r0L3q3Hmx0o0ymZDkKH5Bp2+15eYHbJuuOIEV0Ri9GJyxe/zSJeX610DAcha/16QwR0VmbCQ8AOov1ZDVG1ceKb0fp7igpZDTgbPxBk9X3q8KS6QNWGFvOJqPy7DUy3gishcebVEvwh2wm0SkTaF88/OrZUEBBAg1CQxcs70oeKE+PIQF1YSiDQPNF6n03Mkzszg2n5xRQWqtilcfH6BxCJkxZW/BzMr1uKUWXT9Ppn+UwkWptY2K9IqE2kROPt8gvgckFnZF66wKUE4dCGNIJgylv1nUoU5ThToGT9C5+hPyeQOhx0OB//tv/03PvShD5VwxAZ+2RDXN9nAG4VEIsGOHTs4ffp0/m82bLSxiwpbzRp7Z8R8azq6N0TPsyNrSDw1N4cIb/Xy6v88z8zlBc5+3Zo0ZBNsSJpIsN3N6PHpNXb1d0YJbfHw2p+fZX4owcsfO7umDNmwk5jLMPr6JOEdXpKzpSfL2EE/NdeFufLzEfqeH+P8N9Zu/kf3+Rh8aYLpznlOfdGaMIQMqlfGW2dYkpSaH6jEXadz+H9dYPjwlGU5JODiN/vp+dFgWXLRwkic5Lz1IicbULE3gLfRaUkYAdj7oVbi00mOf9rapv2tVThrHLzyJ+esiTUyBDd70IMKJ/7G4nASGHxpoiSBrRjZdJbUYpqlCevNmqtFaj5NKlE+KipLTspB9cgE291Iir000SWH9keqccZ0XvnvZQ7wtrlpvDNGz3PDDLxUepPIVacT2eFD9cqc+eKVkjYTnfNU7ksxO2AdXL32ic58RjErYtQyQan+riiBVhfHP31+jf4sgLfeQHFKuKr00iSlBJz8XCdzo2Yl0X0+Bo9OrKhzWU4NYPPb60jHMxz+k9IH5/MDi/l0issBfjEO/6/C77a+rx7ZIa4oa7a74BfFKy3v45Rs97G/6cyzotvfXo3ikTn2SZMclZhIrCBCeRoM9Ii6gqTks4W4iQdJZBIs7hzk6LGjLC0t0d7eTkNDA3/4h3/I/fffb9GADWxgA//e8Z3vfIeHHnqIxcXCvOUmwHauR8ploik+xA9v9SAqApe/P0J8IsmZL/evKG/re2uZH1yi8+khLv5jP8kyxAzdr5DOZUJJTifXcDh2/YcGFsbjnPlSH6f+3mL9y5E/5vqX1pANVpT1RAM2wcbhP+ssTdCQINDqZOzkLGe+2I2kS5akElelhuqRLEkXkg5b39PA4NEp+n82ak1QyrX92F9cJLlg3fb5oQUSs0lmr1gfzDXeU4mnzmD8/DQLw6UbHtvvp+raIGe/doXpLmtS956PNjN5cZaLT1kfuFTt9+OpN+j/+WjZtp/8TLfld8tIzCR5I94JWRxPkJwvfyK1MJzkyJ9dXLes6htCOIJqWZKS5JbY/p46xs7M0PW9IUu7Le+uRTaksvW2P1SJ5lPoPzxuOe7mBxfzWRvNNEQriUrTXQsc/fMLBcJgCWJUnrQjwa73NzB6ZoaeZ0uPT3eNjuqVS34HcOGbAxiVqklQkiDY5srL3oJZ9zJBqfp6P7F9fi5+pzQJKT6dYHEywdg58ztJZwXxsf/FCfpfNGN4yS2x4z219L08sSIeWh7TnhoNyWGmBC+F898YwNPoMAmRkjk3DLwyweDhKbKZLENHpvK20R1u3FU6ilPIk5SymSxbpP3AfpK1M1yYO87A4ACf/OQn+frXv05zczPPPPNMfv7cwAY2sIFipFIp3v72t/O1r32NTG7DWLTJbHEcIqjmZEGL5i/JEPHWqiyM6QweW6DvlZUxTKBVI7rd4ORXTVLKuafHmBsovXGSyYLiFHBGVSa7lpgbWrmWhDbrxHY5OfnVQVJzcOyza9c2UTXfHp66ssTiRIr43Kr9jlzbPfUqjbf66X15iuHj8/S/tPYFMG+DymTPEksTKU5/fbgsOcURkrGLNkuSUsUuA3+Lg5NfHl5Lmso3HkjB4LE5Rs/OWZJTAOZG4vmsnFZlVe3z4G9y5AkjpWKZrW+LEp9Jce4frUk8lQfcBFscnPzSACnr8IzodifOqMz5p6wJ6VOXl5i6vP5LYPG5FPHZfz4ZKD6bKsQmFihHclqGqELFTheKS+Tys5OWdtXXufE16mVJQUaFSPNdIa68OMVYCYIdmASbqms8OIIKXT8q3b754Tjx6XReOq8Uzn1rLC/ZYUWMWiYohTocRLY6OfO1oZJjTwuKaF4RR0gpTVJKwemvjpKO56Q76lWmriytqHPiYqHglruDZNIZTv7vYfO+XEVUmh6IY1/+W4m2F5OXGm7xoPslTn5pND9nLE1nzCzrmNm+imWZVyCd5sTXRlj+tuqAEyMkc/ZbJmEptQRdzxZO/vzNGumlbIGklMliiB4O+t5KKpViru4cR0+8SmdnJ3V1dTQ1NfHnf/7n3HTTTaXr38AGNvDvHqdOneKhhx7i3DnzvMSGnZi7g7bQbQjLRIJ0YdEP1ImohklSSieg93jRQ7XdTv0ekfhclv4zaa6cSGGzp0oSlAA0tx1bbq5NpyG1YFuR5bL5WpnEYpaeV9L0HSsdvwiC+dvZ0RSCaF9LqMkRlJoO6ciandNPz7E4kWbNiY1oZl6ZHUrT/eoSskpJghKA6raje0U0l8Di5NprEwRovNXJ2MU44xfj1gSlHGHowvemSVstpzYbS7NpFqczLEynIQPY176UFd2kEG5VmB9LEp8p/LYYrphA7R6dSz9bYH7UOpBrv8tgqi/FwAlrYpG/XiHcIjNxJUm61PFXrl97jliXsYz4QsZ6nSyH/P5Pbt90MU18Plt2/yydgLM/XCj5+2KEWxQ8lRKjXRYkLMEOArTfojN5JcngSevrrL1GQ/PaOfuDhZW/hzxZqWqXhisiMt03W3y7rcDcWBpJtfZTfAZOf2e2QKYpQUiLz0B8xvxj880OpvqTeRJRHjl/GCEpn6FsjQ/SGYbPJpnqS+aJR86IsJL4lSZftqdSoHaPxuVXFk1yYDpdICrZbKSTsDCRYX7c/L0gs4L4ODOY5vTgQv671psVhi6kGOsuqEEtTgOYhCfVaQcLVw2dSzA9IpgEJaDlBoXRrhQTfVnIZJgZhpnhHCkzKuCrEhjrTrGw3J5Umhr/Lmr8u0jLw1yceIGeK5f48Ic/zMc+9jFuvPFGvvCFLxTmzw380rFBUvoVYGJigubmZsbHCxvNAiK7uRnDZqywbX+kGmeFzit/dI7xM7McGepckxVnmSyUWkyD3YYRk5nrT6whHhWTOsZOzpTOnJMjV0x3z+FrNrDrMsytXXibH6jE3+bixN91Mj+UKJmBRfbJJCYS9P9kHHelg74XS28uOGs16m6K4GtwcvoLPSUJSt5mA0GxM3Zyhlf+tAyBB0gn0zmJLkrayYadHb/ewsyVec588YolQWk5+8zpL1hnDwKT0HHxqT5mLltnIgKYG1hkfrg8GWh+LI7skctn/knA0b8onfGmGMEtqw5PSsByHPwTYJVlZzVkn4zssFlm9lkaSZQnquUw279oSr6UyZQ0emaaygNB5oasyUUzlxe49MMBa0IbJnlm+bBNDcksTSVK1pmYM8dNxyP1jJ6epvOpgdIFZswAqxRBCWDy3Bwv/Y+z+Trqbg1z+YfDK2yWs0zJhp3amyKEt3gtCXC9L47mJUKW78tiFJPBNj9WPiNUfDKx8mB8lf+PfrwwNtvfVo2zSl9BulsaKRgLgn3FmePyXLaMl//7OWTDNGh/axXOakf+/pdtMvJrNdxEDcf5OUrIzvnz53nggQcQBIEnnniCT37ykyWvYQMb2MC/P3zsYx/jv/yX/0K66OkwRiPt0q4VdpIO297XyPi5WS59d5hTn7+8JmtSMaHALtiw56S5luXY8nZuie3vrsmXdezTJdbJImJFfDbJ0rR1ALDnI40sTiQ5+dmevFTTmuJybet7eZxM2vpBfss7atEDMmPnZkkuQHJhLVOk6qCf3p+Mm/9esiaTJJNAOrvmbZViNN4dxd/q4vhnuoiPly5I0m0giSwMJzn2l+VJzWe/3Edgs9OSoAQwN7jIwvhSWYKSpMPiRIKZPus4AeDsV/owKrWyBCVHTCExl7HMfFNc1huBub5FM8vQVcDXalhmpQK48FQ/mcXyh3fJ6SRLUwkWJ8pvSk11L+TlaKxw5qt9pnxJGVcVk8b0iMxCTh66OHBYvg/bHo7hrNR49ROdlmVm0wUJtFI49fe9eXk9X7tBYia1hpS3/Ln9oUrcVTozfYvEJ9ZWeOXFcVSvnCcoSW5pxbiY70/kM5M5YjIdj9QyeGSyJIFKUiC5kGa6J3dQvYqMNXpiphDvS7Dng41Mds6v8N9U5zw2uw1HUMZms5GYX37z1Jb3YTaT5cpzYwy+Np1v656PmGV1Pm0e3EvdLjZxkDqmuRQ6zsLCPD/5yU+QZZnm5maef/55otGopY83sIEN/PvB0tIS1113HUeOHMn/TbO72Om6E4foWmFbfa0TX73G8c+PsDia4vgXhkitWpaXyULJpTQ2uyl1tTSeWkNQqr7Wja9B4/j/HmJhJMVrn8k9Qxc/dOYICrNDSyTmdERRJFWCbVGxyyC6zcXpb46wNJ7i7OpsLpksog6pBZjqWmL07DzDp0qTiiTDTsMtfiYvL3LpBxMlCUpaUETWBaZ74pz4h6GymXHSqWxemr0kRNj2jigzvXG6npmwJCipPpGliRQ9L5TOtplHCi58Z4SlqVTZg6LpnkUSZV7wA1iaTLI4kSxLUAJ4/fP96+5Qu6oVZq6Uj0vmhlKc/sobkymyHKGoGKIOomaO0VJILbEuUQ1gbjiB5pPy47+kzUCKhdEES+PWzxBLUyk6fzjOVJlMUqklOP3VkXz7yZSuM7VkjufND4cZPb9A389Lj51sNks2ky11FgzA4miK1z47mB/n4W2ONaS8+HTuSxEabvYxP5K0JMD1vjSZl04x/bWSqNT3YmHfs+UOP5pP4vjnSpPul6aTCMWHq8ukptw8cu6piXyGpcprXARadE59pTBvpaYLB3WCZC9Iuththb7M7amd+N+jeeJX5V7DLOtro6SWQBRFPL2bOeTdTOf8EeL+Ec6dO8ehQ4dQVZX/9J/+E7//+79f8ho2sIEN/PvDD37wA971rncxPGzGPoJNpiFwgDr/3pWGArTfqDDZn2bwbIruo4mVWZPsdgQJ0rlnTpvdhs1uzlnphJkFKV+UAC03q0z2phg8k6LrpYSZMamYKFpEiIjPZYiXSRTQdptOYj7DpZ/HGbmQZg2TIpnKkx2GzsTXcnuKSDy1uzVcFSKnnzZJHol51hCUfPUyE10Jpq4kmeqfsswglE5DNlWeLBNsVQi3a1z44VTp8x6bLS9fl16EzmetM10DDJ6IMzeSMglKFgTp+GyaudFUWYISgkkWWbDIOJmv72SciZ74WoJSUV/Khjku0uvwlAZO/DOVUXLXm1jI0vlC+b26ZTj8dubHMyt+X0xW6j8Rp/9EvNDHpXyahoXJdNkxCjAznCS5ZBGk5shKva8songES4ISwMi5gp9KJQ2AArGnYouCt0bi3A/m1mY5AxDMPZ1sssQYzV1r39E4CKYPdL9ANp1lcaroWtMZ4rNm+5czXZ354VzJdk0Nphm+kMhnLzPvy0L8k1iASy/GARuyDq03awydSzByocQ4FCAxl2FhPGF+KCZR2WzMTcDJ78fzZPFNtyhMDaTpP10oa3HCrFvWTM5fKucHQbHn5zIyGSb60kyPpPM+bL9ZZnogTX8uF4OQCNNqPEx9yyKXZr7HzOIwX/rSl/jyl7/M9ddfz9e//nV8Pl+JDtjAG4kNubdfIq5cucLmzZuZnS0sQhoOdnMI2Vak+R2TkZwyk+fmqLoxiL/FxfG/u1SSFLHzPzYhqkJZiSk1JLM0kqDyhgCBFjfHP1O6rC2P16GH1JJZk/LIERKMmEzDnZW8/rmukmVV3hCg6kCIyz8aZOjV0g/yxZNvzc2hsm9v7/3tVrJZePWPra+z9pYw3T8atvy+GNve38Dg4XGGj06V/D6800PD7RUMvTZR9m3xhrujXPrh4Bsm4/ZGwdtq0P5QDUPHJrj0tPVbV646nUwita6s2tXIvSFDsHV9YtS+/9xGfCbJa3++PtHqV43KGwJMXZotK42273fbiM8lLaXRALb/h0a6nx2yzGRWjOA2N4vjS5Z11t8ZJbrTR9czg5aZsWIH/IyenSUxkbAMapax97dbySStsypV3RjECCpXdYja/kg17ioHRz9xviTZr+ZQCG9TIcOYIyIzP1R6rDXeW0Gww8NpC4Jazc2hFdnKYgf8a+QnL2fPconTeTkSSZJ497vfvUFW2sAG/h3jd37nd/jjP/7j/GaCDRst7KJKalhhF9npZuioucne8Wg1o6dnGHxlbfziadRpfVMl/S+Z5J1S0ANSnrC05fEaRk5Mr8hWsgzFJ7H93XWMnZ3JkwDWoIiQ0Hx/lOkrCwy/VvowYNd/aAAbHPlza+LKMolJD0gYVbqlBFzFPi+1N4Tofn6EgZdKx3HOag1RtTN5vvzmCpgkmcr9AUuJN4DtH2hA0gVe/Z+l1yezTh09IDP82tS6df6qYbZf5NX/eb6snbfFwWTXfFmCztXIvYEp52YT7cz3W8ctDXdGCW/zcPzvLhWIPv9aIEH1wRBXnrV+Bqi9LUx0u5ezX+tlajm75KqsSuEdboKbXNYZyFah8jo/fT+1lmHZ/aFGspksRz5ucS9JENvtK2Q7WpUJqRiRXR5qD4Xo+uFwyftN0qHlTVWcf2rIJAeVk8qTYO9vNDHdPc+5r60lwks6tL2lhsGjk4yemFkxF9lKSJ/s/lADS9MpTn7GjO+LSejLZQ2/PsXI8Rk8jTrxqSSLRWTMZDLJEZ5hDvO6dF3H4/Hw+uuvEwgELC5iAxvYwP/JmJqa4sCBA5w5cyb/N68YZYdxB6JY2MxXXDZkQ2B2IIWvUSHUrNNpQaZpvdeP6hE4/vkSa0WOKKC4ReLTKbz1KuFNDjp/NE4qvvat9Lob3XhrVF77wjAkLQ4gcoQE0YD6g366fjxesl2+BoW6m/z0vDDB2LnSByjF5JLgZp3RcwuW5KMt74hgs9t4/XPW+zfhLQ6GT6wvAQfQdJef8QvzK7LNFMNZIdFyb4iB12YYeNU6lqvYZTBwfA5SpbMn/UtB9YlseWuUgddnLIkyAGpAhBSWcnDLuBq5N0RwRmRm+8rHU9sfj5KYTedJP/+a4GvWWJpKsjBi7Y9tj0VJzqfLkrta7wvQf3RmXV8AOCtl0omMZZ2BTTp1B31c/smEZTYoX5PK/EiK+HSqLGkLoOPtYcjCyS+Vbr+/WcOIygVynpVcns1O9QEngRadk18ZJrl6ny2bIdCiEWjROZeT91ueiyjxtn24Q6dyt5ML3x9ndiC1Rgou0KoRaNI4953JXDtVxi+svNChpcucmnsehAyZTAZd1/nd3/1dfu/3fs/aIRvYwAb+j8ZXv/pVnnjiCSYnzblDEQw2Re4k6KxfYeeOwHRu26luh53poQwTvasYFHY7igGt1ysMnEkxenktw8KWSiNrkMiFPrV7zEP+yb70Ckk3MIkL7TepTPSm6D+dWkFwWluwjUibyNJMlikL2bam62RE2c7Z78+t+W2+zlwmJkEGR1BgZrmsVQQlZ4VA4/Uuel6dZ+JS6bVMdtqQNDvzw+tnY9R8AtEOja4XShzK5NrXcKOB5hY49Y8l4pbcWYZsgO4VmepNrfjtPxn/nN+v6s+GazV0r52T3y4fizr8AvNT6bKycSXl3kpA1rLYhCJZsWLkri3YKFK5VeXcs3MsTq2ysYpdr8Yv5STgSuyvlPy9AMG6nIyeBXz1ElU7NC79ZJ65kdJOM0ICgQaZ7peujrTlq5OY6LYet6236djtNs58t8R4zRGtfDUCEz05EpKAJeHKGRGo36fR8+oiU6W2tgWo3iYxdDZJYgGwZy3HRlYR2HxIYXo4Te/rJdpvz1K7XWJqMMNUf3plTFgi9mq/USKxmKXz5VxZxS/XClC7TWJqKM3UsA3NbZLCEkUuTqfTnB3+PgNTp8hixl3btm3j29/+9gZZ6ZeItU/xG/hn48SJE+i6Tk1NTZ6g5CHAzbY3c8B2xwqCEsDmdzTQeGcFAL3PjZqH8kVrZXCLC1edDsD42RnGz1mTQvZ8tIUt7zKDkr7nx8xMK6vWXdln1j92dob5MnJWbW+pYt9H25ANO3P9CVO6y+J5tO/FMRZGlpg4Y0FQ8sns/GAbm99hytqVIygBXPjHPs580fqt+ppDIWLXBKi8ocyGuGzKYgEc/8tLlgQlgOGjU8xcmafrWWuCkrfZILzVS9v95TXBt32gga3vrS9rAyZxKrjFVdbGqFLY95/bqboxWNZuvm+OwSPj9L5ofQAD0PJAJZvevn7brgaNd1TQfF8VRpVS1m7glXEu/9Dar8vY81utbHt/Q3kj2STXxQ74y5pF9njZ+9ut+bFuVVbV/hBN95Tvz9HT0/Q8W54Md+yTnUyem0M2zLrLoeH2KO0P11p+3/XdQS4/M1RWuq//5+MkJhIYMZmd/7Gdlgetr2H01DSjp6w38XqfG80TlLa+t569v9NqaTt+dob5kaU8QWm1f3ueHcmTiurvjLL13Y2WY3zk5BTzg4t5glLNzaGVZT1TKKvyhgC1N0WoObTSps7Wxs22N3NT1U3U1NQQj8f51Kc+RUVFBffdd5/ldWxgAxv4Pw/vfe97sdvt/NEf/RHZbBY7Ars4xM3SW9YQlKqv91N3c5hgh5NsJsuJv+tZQ1BaXmemOheY7Vtg/ELp2Cu4xcXWd9dRsc+c+0/8Xc8agpLkNtO1xCeSzA4sMNFpcTAkwZ4PNtH+lhgAF/5x0JKgBDBydpqh16csv2++L8rO/9CM4jOJC1YEJYCBlybp+uGQJUEJoOX+ChrvLJ81JbzDAxJMnJsrS1AC6HlhhKHj1u0HqL89TN3N4bI2elhi94eb8bU7y9rF9vtpe7j8mg+mfNmuX29c167rB4P0/qx8POtpdND2pmoqrykft1wtNj9SR/O95a+h75Uxen82mnsryRpVBwNc89ut+fFphUCHi453rZWlXo2Ox2rzcb4VWu6LEdvtQ49Yx2f9Px1monO2QFAC81C6SFt2+LXpPEEpvMOdz4hUClUH/VRfGyC03W1pc+arVzj3jX7L70mSJyi1v62S7e9vsqxz/MwUs30LlvdbcsHM4pScTqL4JK75UDMNd1qM8STMDiwycsacf1b3VXIBTnymJ//CwKZHatjxATPOLyUPOXZulrFcTOiu1/E0OnJvytryZQ2/Nk02k6Xh9gib3l694veSJLFPuoNbpLdyzY59ZDIZBgYGiEQibN26lVOnTpW+jg1sYAP/x6Gvr4/6+nq8Xm+eoBSRG7kt8D72eO5ZQVACaL0nQN1BD2SyTFxY4tzTKwlKRlTECJu/GetcYPR8CeJCbh3Y/HCI1vvMfaDJywnOPT25hqAk5hKWT1xeZLo/bkkUqrzGxY53RZEMG6k5uPDd0gQlMlkmLi4x07vEVLfFHpoIHW+L0niHuQc1esqaoARw8ftjnH/aWibN16RSfcBLeJvDuhDRJKEAXPzOuCVBCWB2IMn4hQVGTlgTlFSfSMUuN3UHvWUJSs33+Gm9r/weFUDLPQG89WpZG9GAne+LEd5mlLVbmknR8+IkwyfKvxjWcMhH2wOhsjZXi/BmB633hHBWlI+Vel+epufn68u+dbwtTOv96/ut/mYfwc16WRt3jcLWd0VRPeXTT9Ve76XmuvJ7VCMnZ+l9uXx2rXPfGjMJSkVjzgr1N/lpvM16r3bs9AKXnh23JCiBKe0Wn04hGXa2vKOCmuut47iRk3OMnZ1fQwJaxviFxTxBqf5mL9sfiVhm7ZrqWWJ2IJEnKInFw9JmZ+xCnHPfNp+Xgpt0Ot4SMsd4iZO86b4E031xk6AEhDp085Azd9A5dm6Rc982ZeG89Qr113uIblvZ7xG1jpsDj3Ew+iYa6huZn5/nv/yX/0IkEuHxxx+39MkGNrCB//Pw13/917hcLh5++GEmJyfRJS/7ax/nhqZfX0NQ8sagfreCJwqk01w+nCwQlOx2sNvxVZsTYXwOJvrSzJTIzmNLpXH4oe1WDX+dSQi4fCTJxEBmBUFJyD3epxMwPZxm2orkY7PRfrtOzW7zLGnobMqSoEQyxXhXgpGL8fxv8/9yCLfJtN9jIDvMuq0ISgCzA2ku/WTWkqAEULvfoPaa8vGIMyogiGYmlzUEpVXtGzixyPBZi9gsR56IbdWo3q2b2WQsiDSCCu13GjgjZeSnbDZclSKVOxWzrDKovUaj9dai9WZ1Nqzl9p9apO/18ioxsgHNN+oE694YwaaGgw5q9uhlSUUTV1L0vLZIworIlPutp1Jgy30GcvmQCoffTu1eJScBV4IukfNNzW6FumvKxLWCnUibQmy7huaxpl1M9CQZuxS3JCgBzI2k8wQlZ1Qo26eeKoGa3Rqeamujrp8tcPmlhTVjFMiTs5YJSrEtCm13OPL39WosjKaZ7E0yNZQuzWRKw5WjJkFJkKHjDp1Iu2SZzWpqMM30cCFD0wpkbHQfTTE1YLaxab9Cy/W5s+gSdY92p5noM/+uGGbfLs95pKH7aJKp/gyk0lRtFmnetzLGFwSBzRV3cWv773Bg1x3YsPHiiy8SCoXYvXs3Fy5Yv2S7gX86NuTe3kCcOHGCPXv2EI8X3m4OEGWb7cAKO9mAtrfVc/lHQ8xcXqD7x0NMdVuwSGVovLuS+KwpsVYqc5CzViOzlGZ+KMHIiSlSSesJbveHm7FLdl75o3MMvDTOwEvWpJah1yeR3RIJC6mEyB4vdYcinPtmL5Pn5kwSkwUSEwnmh5cYOm59+NX2lipcNaa80+SF8hsPPc+OkE5n6HveWq9+66P16EGV8ZNTlhJvyBBsdzN6fLp81iBg8sIcF7/Tz+jx8g/v2fVScWP2meaTcVY6ymYisgl24jMJJs6WrzMxR9kMUMvofmYI0fHG3PaDr4yRnE8xN1w+52NPmbfli7E4usTC2Dr5IxPgCKtkM9k1WXWKMT+yRDYLjsBaqbPisjqf7ls3E1Rewq1orFhh0zsbUD2KOc4tqr34VD/x6fLXuXxftj1ciavW4NinzpXMljTXn2BhbIn+w9abm13fLbyZufvDzSQX03nyz2qMX5zBW20djA8fncqT/RrvqyC42cO5r18pmUGq7+VxHAEl79/wTs8KouDM5QVOXDalkPztTir3BdE8Mue+tjajU9/zY4iSkB9LWx6vY+TUVCFr2xUPDezESw0XHUeZmpriqaeewmaz8cADD/CNb3zD8po2sIEN/NvGo48+yuc+97n8ZxGJHRzCLXlW2EV2uvHUOTj3tQGuvDBOOpll9GTpQ5rm+6P4W51M98wz17fE6f+9dl4KbHIydnqW0RMzBFqdjL5eOr7xtRu03FNBXy4TU6my8kjC3NAi4xetY6Ct767FJto4/unLXPmxdQwEMHhsCskQSspTgUl42PZYDWPnZrj8/ZF8ZikrnP3aFUTZ+qFXckvU3RohuNnNqc9bx1SBzU7Gzs8yccb8Vw6vf+Yy3voyh3OA4pHJZrIsjZTfPPHUOXBEyh+UgUkKka8iVpruWigrLQcwPzBPzwsjjJx6Y6R2rzw/SryELHMx4uNJen9SfmwATHbN420ykFRIlul6V6WOI6yi+CVL6T4w499Mqnya7PNf68fXapTN8JRcMO0gN1ZOWY8RxSdRf0sYf7OTM18qfW/1/mScVDxTlqQ3n8swuiz/OHHBlGwshZHXp8mmstZyiAvk73Nfu0HTHVEufmeAiXNrn/Xis0nmR5YYPmHdtjNfLFzX9nfXEJ9N8fpfd5e0HTg8STa32alHJGzYWBgpNPTy9wsxed3NYWRD4NX/ZWYKtdltK4hNZ7/Six427xdPo07FHh9nvtqXv27nyRquo4YTvEjGt8iJEyfo6OjA4/Hw05/+lM2bN1te0wY2sIF/uxgaGmLPnj309hYy2VUp7bQ7r11pKELjTR6GTswxN5Si5+fTLE1Z71M13+EnPp3m9NfHGDuzlgRkEjEyLE2mGDo9Z2bStZXe/G9/wI/sNDMxTXcnmO5OrCC6FmP80gK6XyK5VHr/xlUl03DIx6VnJpi5Eufid8u8FJaC6d444xetY4PK/W78TTqnvzy4rvTXxMUl7NIEY2esy2s45MNbpzE7MEiyjFSFu1ZlunuJyz8uL1+2NJHiwnfHmO4pH1NlElmQyq/5klPAiCjMjSaYLCM7Jooi8yMJZvvL10kKho+vn7m69+fTSI435n3c8c55smlYtIill1Guj4oxN5wgMVdeHg/AVaVgl2wm0c0CS1NpspkskmFnacq6rIvfG2N2ncyaA0eWGTngrjTHihWab/fjjCnMXFm0zG506YejpMq7jIkL5n0e2+si0Org9FcHS0oCJucyzPbHGT1rnXmhONtY+4MBMmmTVFUKU1cWsdlspQmE2QwzfUlm+sz7JLxFp2qvi4s/nGC6Z5UPbXYmu5ZwRhbz49tdI6+wW5pM0fnDKQC0gEj1PheaV6TnZ7PmgWdR3DXZFadHm2bktOmX+pvcTPfF85mV5CUPDUs3EvHs5ET8B8zOzvKZz3yGz33uc7z//e/fyCa+gQ38H4xPf/rTfOQjH2FhwZwkHXKAHZVvRpc9K+ycQfBEBXpPpJnsB5stwdTqZI257D3hJoGKVpGluTgLU5TMYGIEYH4I5sdh7HKKycHMmsxJAJoHmq9VGTiTZLQrzZVjucy+xVmUisgJM0Mp5sasY4javQqSnOXij1NmZphSpIocJnsTqC67Ke22jCKCkiBA8x0uJnsSDJ1cYqa/fOzV/bMZBKUMG0SAumtdzA4lufxT65jEERKYH0+zmPtXDpd/vogjkICMNSlH1uxk0lniVhK7Of+4wiLuCsmU+SqD+bEUqUQuViqTIWhxChbLxO9gZqHpObxQlnDzi6Dv9TiZUhJmRUgnYKJE1q8VsNlYGE8zN5ZeN02L6rbhDInIRtw8fxPsJbMqmX8q37ahs0lmh1MrZdXWFAT9x8w+cgQF5iess1AJMtTt15nuT9HzcukXJaZ601xmnqnetOW9Yt4jWRCg7VYHk71Jhk4WjZN0Jk/QmupPYZMoLTOHyQ26csT8reaBhmtVeo4mmB0p4bM0zAynmB5clSlsWf0glabvZMG+5TqZZBwu/qxE5TYbgxdSedlHWQPklQozo5cLbajcJGJ47bz+o4TpX7t9RWalriMptFxuBcWAaJM5fy5zn4yFbVxbu42e8SNMZE9w5MgRWlpa2Lx5M0899RR1dXWlHbSBXxgbcm9vADo7O9m6dWs+WAAIU02HbU9Je9kns/P9jUycm+H8N0pvqLc/Uk3nd4dITCQI7/Yw/PqUJelh339uIzGX5OjHreWoZMNOYi5DzaEQgmy3JLS0vaUKd62Dl//k3LqSZrJPZuu7ajn/j30l5ZrAzMyyMBbn4jfLvJ2cQ+UNAUKbPWVlwbY90cD8yNJVlScbEN4dpPc5awLH1vfWo4dUjv5FpzWZBai7NczlH16dtNy/BLY90cBk5+xVE4LWw1XJvV0lZMNO+yN1DL02YSkF+IsVyBsutxfc4iKxkGa603rjY8evN6K4ZF76H2cs65d9MoEWZ1ny3zLUkEzHI7Wc+0YvsxZvY1bdGCS4yX1VUnmyT2bro+XL2/J4HYmZZEki0Gq0P1KNs0LnlT8tPRcYMZm6Wyo4+dnufP1W91Bwm5umu2OMnJyi81tr5UoAKvb5835rfaiS4denSpIVZQN2frCNmd4FTn+h9Pick6d4Nf5jMpiBR0VFBXfddRd/9Vd/td5lb2ADG/g3gt/4jd/gE5/4RP4tbwmZPdyGLpUmtLS9tRIjonL4k535Q/biA3lPo46/2WkSEyQIbXZbkhoa744Q3OzizJf6mO4uHf9IbsmUcgLa31rJpR8OlyQLSTpse6KRyYtz1hJwRWi+L4pdspWUfgJw1+o03BHh5Oe6LOWoirHtfXUMHZ2wJCi5a3Ua74xw4gs9+esph8huL+Onp0gulH68kHTY+cFW5keWOPmZbsty3PU6NrttZTadNwLlpLV+AUR2egludnHyiz1vSHlXK/d2tag6GMBVrXP6C1fekPJ+GVhPgk0PS2x9rIGpy3Oc/fKquKXoYDq230f/4Ymr6ofGuyPILnEF8WcFJNj2WB0DhyfKkpqW0XRPFEm3c+bLpZ9L3LU69beHOfX5y+vej5IO29/fyNjZGbq+Vzqer70lyNJkkqEjU2Ul5wB2fKDelFP8k9IxpKSDq9Zg/Mwcekgiti/AxW8VdrGzmWxeMq7p3ii+JoPX/uKiZZ0XOEJP0qxL13VCoRAvvvgi0Wj57Gsb2MAG/m1gamqK3bt309m5PKfYqFO30WzsLmkvKrDl10KMdy6aB/KwJstJzUEXwycWWJpK4a41ZcKtSA/bHw2TnE9z6qvWJNzl9P+BFhXZKRaIF7CCpBTb6yTY6uDUl4fKSkgtl9lyd5Cen0wwN1T6YKv+Vh+phTRXfrb+uuFrUolsdXLmH0ctsyw13uEjPpOmt4ykWaGBEGzVy5JZ6m/x4WvQOPWl4bISaOEtDoZeX58E9C+Fprv8zPTG182kdLW4Krm3q4VoEu3Gzy8wfuHqZDnWK69cFq5/CpwVElmyzA1YF9xyrx8jovD65wcs7w1RBU+tZil5uMJWh9Z7Q3Q/b33/+Js1Qh0GZ79uvW9bXHfr/eXLqzvkJZPK0vPT9e+fqgMufA06p79SNBcUxZiSAdXXeLj0zJRZvwYpi8s2wiKt9wUYPj1P70ulx6ivXmHiipnZrXKvwXTvUj7LEpls4aBYhO2/FmJmMM6lZ0pfx5K4xKsj/8hixnwRIhqN8sQTT/D7v//76173BjawgX8b+MIXvsAHPvAB5ubMOcWlRNgWezOaXPrl4tgmAV+FwJkfJwoJRtLpPDFJc4E7IjB0wfzSFYEZiy2oYL1AZbvAhZ8vMW/xyC7IBRJD5RaRkYupFbJJtmWShwBthzSmB1IMnFr/oT3cKiIpWBJtFBfU7NK59LOFtSSKEhmU6q83mLgcZ+pK6bplp43afQaXfjJD+iqWcFdMZH4itdK2mBgiQMcDHuZHU6Wl4HJQ3QKCBPP/nKOyUoQUgbKyaytQhqDkjAj4ayR6jy1ZklV+EVyt3JslstkV1+utEnBHRbpfXSfhwTL14Z8qg5fOXJ3UWwn4qu1MXLaOuwQVNt/lZPJKkiuHrR9KPNWCmXHsKvo12CLj8Il0WxCaAOqv0xjvSjC9OotZNrsmk1SwWUJz2fOkpNVQnFC9U6PrlcT640SA9ptVJnpSDJ0r+CVbVKe/RiCTyjLZn1kxx5RC4z4J3WPnxA8s5hUBnF6YHTPnq0ijQP+ZomvOZEA0SYnhRjuRBoFTzyUt6+ybPcG5/h+RziTQNI22tjZ+9KMfbcjAvQHYkHv7Z2BoaAi3201TU1OeoBSmmpttb15DUIod8OflpxITCV76H2csCUrOWg1PjUH9TWaK4uHDU2tIAtF9PmTD7L6+l8Y4/SXrQ4g9H21h6/tM2YqeZ0fKZtyZujJPYt568pR9Mjv/YyNGzLyOw39ywZKgBCA7RTR/GcktoPXNpmxF3/Nj65IxJIeA5l2/PG+rQWKOsgQlgLP/0MXgq+NlCUrhnR4q9gZouLv8Jnt0n4+OR2tNEk0ZOGs1jNg6RphSb+1vrcIi9lwB1SvjCK+fHWDbEw0Et1mnSf5F0fFo7bpSdIm5DJpPxhUrnwkBTKLKen5evhfCOz3rlhfd52PL4+uzWhvvjtF0V0VZmwvf6qXnueGyBKnERCJPtOl4Z23+Hi0FzScjyAJ60Four/e50fw9ETvox9tqPRhcMRVREdD91uWd+LvLeYLSlvfUrZFYK8bCcJz4TNLyeuf6E3mCUtWNQXZ+oNGyT0aPTzN0bDJPUIod9K+5T/LELhm8TU6qry/dtsQcvPSHZ/MEpW3vb1gjE2gkPNxke5BruJlN7ZsYGRnhr//6r5FlmXe/+92W17yBDWzgXz/+4A/+ALvdzsc//nGy2SwiMge4lxukB9cQlLY8XkP728wY4+zX+zj8p52WRIbq64IE2nOvUCRZS1CQILLLA8ClHw3T/8qEJUEpvMPNzvfX5eWlznypzzKbUXIB4tNJ5ketH6yrr/cXJOC+NWhJUAJQfRKSLqCHrPMZ+1od+bYd/6vLZTMoaX4JQRVQnNaZhSS3ROtDZvuGDk9aEpTAvN6e54e58FR5snnjHVFa1pHXBdj09moCHeWlc4GCzTp7YrW3hQluXT9OcsZU9JC6bnmV1/nzvnkjENzqXldSDcCIqlcVF0q6jeYHKlD85WVMABwxBT28jp1kEq7Wk95rvDtK1bVBPI3WseHCcJK+F8c4W+p5qeiwuf9Fk6DkbXZQd3t5eRfNJ6O6y8TgSfOeWL7/LWXYclD9EqrPOu6a7l7g2F+aBCWjUmXre2qRyqQaj8+kmOqxfq7q/tFoXk5y63sa8tJupXDu671c+Zl5mC+5JfztK2PI5AKMnzE3TWP7AviaDbRAoX9tRRtxF58a5JWPmwQlLSCx6zcaCHas7ONmdnGL9FZ2Nu/F4/HQ3d1NRUUFzc3NDA6ufoV3AxvYwL8VzM3N0dHRgdfrzROU6tSt3BZ47xqCkrdeYevbg0gGpOLw2hdGCgSlVQcDistOoFknvMWcFKe71xKUPHWKKbVkt9H78gydP5qybOfmhwK0PWDuS4ydXzIJSnbbGrlQgLmhBPEZ611+UYW2B4JofoHUQpbTXxmxJEQA6F4R1VsUJ5U4yKjcb8YWExeXOPM1a4ISgOIU0XzlMzrG9rpwVsqQYgVBqdQ7qF3PTdD78lRZgpKzQqJqv4eqA+VjIHeNStMd/nVz8qseETWwflZKySlQe70Hcf2QBSOk4Aivv4/WfLcfb8NVFEh2vZfhAZP0Et6yzl5WCoyQfFXt8zaoVOwpHyctjw/POlJ5yzaNd6wvK9x4e4Dag+UPUbp+PEnPTybLkvdSS+QJSnWHvCvl0FZBcohIuoDiso4fxy8s5glKvmbNHNcWUD1meXKZ55LLz07S88IUZLI03OIjUkYucXEiSXwqufJ6i+aM5Bx5gpKvQWXr2yP4mkv3ydxwiv7DM/QeNmOrQLO65j6Z6CpIT4ZadWLbi8aBvShTSAqO/f0Il54349HGWz203rOy79SUykHfW7ne8046NnUwNjbGH/zBH6CqKr/7u79rec0b2MAG/vXjm9/8Jh6Ph3e84x3Mzc3hVELc2PDr7Kt7dA1BqW6nSO0Oc7LpP53m5I+KCEqCPU9QAgg1iITqC7JRawhKAngi5n+O9mTpO5m0JCgZAdh8q4onZhbWdyJHUBIEbOlMgaAEkIbF6QxLs9aZZXzVAtU7ZUilGT4VL5sJSFIFZMOO4izKeGS3rSAoaV4Bd5Xpl64X5iwJSmDGXZJuR9asMygJMsR2mlKnM/1lCEoAaeh5aY6+o+VJ1ZU7deqvXyceACp3qabc12qsqtcICfn6yyHYKOGKiesSbzS3HWdIWJd44q0WqNxmvSeSx1XyfBwBO7V7SpS36no1jx1HYB1dO0AQbUQ3y1d1virrrLVbLf8mQOV2pbz0HhBsFKnZ4yj0Swmkl6D36CL9r5UIvIqud+qKSVDSvHbC7eVjTdVpR14nbO366WKeoBRuKyqvhKSi5rKjuqzPN+OzcPH5RdKLaWQlTcMBxVImDmBpOsP8qixT+TnDZmO8J81kv/l9wzUyLddbF9Z9LMmVE0kQ7AgSuFZvB6ZNghJAoEYgWCus7F+7naxg9s9wZ4bXnzEJSoIM7TeKuCMri6t0buHm1o+yb9P9+P1+XnvtNfx+P/v27WNi4g146eHfMTbk3v4JSCQS1NTUMDRUWM1LybqBObEl5mBueIlsBjSfZBJiVk3wrjqdxrsreO3Tncx2L3Lis53M9ZdeBWSfTN1NEYLtbk787WVrIk4u48zExVlSi9YrVN2tYQKb3Bz+kwsMvjTB4EvWN5XqFpENCX+bh7n+0m/5yj4Zb53O8NEpDv+v8jqNlTcE8LW6qDkUKpsFaJnctV55ywQHNaiUlKBahrfZIJPJMt05X1JCrxjDR6cQZGHd7DiBFhdGVFs3y0/TPTEUp8xL/9+ZsnYVu4J4GpzYdRnWkfZ4+WNny1cKOCIyml/BXe1YV7LuamFENWx227pksJf+v/XbB1Cx14cgC1x6uvxhxpbH6zCiGpPnZ6yl/IBAk8s8pFsn+1LXDwaZPD9Vts653jhzvWaQXHVj+Qxd/nYnziqd6kMRy8xBk+fmVvTbcrYzK1TtD5JOZDh8rvQ9MHZyhrGTOTkZGWLX+On/icWYlUHzKVAm82T3j4Yhd2803luBu1bn6F92lvTj6OlpfI3OgpxbCX93fcfsUzUkU3NdGH+jixN/d3ltYQk4+peXSOTGfPvbqkktZrjwzdKkzkwis5JuW1S3YfNgnPWgZcMc5TkAPvvZz/L5z3+eT33qU7z3ve+1dsAGNrCBf1X43Oc+x+OPP04ml5pVQGIPN2NIqw5TijLlZJIZc46AkmSSpnuiZLNZOp8e4uyXy2cO3PzWKowKjYlz0yTmslx5rsSb/Lm6h09OE9zkYtJKCkyC7e+uY+zMDL0/GefE35Wv213jQPGUJ4dE93oZfGWS4demGX6t/Bpff0sEm2ArmylmOUvL0JFJho6Uf7Wr5mAAT4MTo1Jjrs/6bZ2KfT4GXppg8JX1XxU78ZkunLXldxEkt4RRoZGcSxXWvxLQAxJNd1Xgb3HmZcSsENrsIV6dYPT18j68+NQgsD7xwlNnlCUj/6JwV+kYUW3dLDprMg9ZQPbK+FtdLM2kuFIuG6cEHY/UrZsBC8BZoZNaTJeV8ut8epCZgYV1M2Uty9a563VS8TTz/UWbldnMirfdqw8GUVzSCkmz1Tj5+cJLHcXZzkqh+sYAoS1uZvoWLaWBT362UF5wi4upzhnLfvE1GageCcmQSC6srTe5AK//TXf+884n6xk6PmWSsEpg5GTRGC2RIWxhJMnCiHmvtdwbwRFRmekunQnp4rcG0UMSi2NJJB3a31bLxaf7WRgqKjT3n7JLIpvOMj9sbqStHou+y3X4qCPNi4zYerl48SINDQ3U1tby+uuvI0nrE+I2sIEN/MsjlUpx6NAhfvKTn+T/Vq120GbsW2MrKiYpaXEiRTadRTFEknMp8zC+aJNb9YrUXe/m4vfHic9kOP21MUvijKhCwyEvs4MJLnxnwjprSy7jzHjnqslt1cFLcJNOeLPBqS+PMN0TZ7rH4lneZkfURDSviKdSZXG09J6SqJqE5clLS5z68kjJOpfhbVCJbDFIL6YZPGa9RyXqkFqA019ZPzt2aJMDV0zhbF/hOpYJStlsFpvNhhYUESSYG0gxfLz8ejvTn+DSs+N5CS4r+Oo1XJXrxzW113sxIjJH/ra/LCEr2KITbDcYOj1Haql86qBjn7Em6S9DVM2XtxYnU0xeWidNVg7L/rKCu1pF0uwrJMVK4bW/vTpCbmSbE8UlMvBqecnjupu8+Jt1Xv/COlJ+VQqumJwfP1boenaC+eHy2QaSc5n8vRbYpDN22rpALSjia9RJLWUss34tjqY49ncFvyxnO7NC1T4PmVSGk/+79B7t3NDK8gLtelmpPUdIQpBtDFmM/7Gzi4ydNa83vMVBoFnntEWWs5mBJWb64kwsSxeWyHY1eMxsi6jbqLnWja9e5cL3p0rWfeJLI/kD2+r95jPPlZfmV8qgLCdZSmbICEVjtKhuVVSpGN6Hz7mNlye/TiaT5L//9//Oxz/+cf7+7/+eBx980Mo9G9jABv6V4dVXX+Wee+5hZMSMA3QlwM7aX0O3rWIcFGXKSaeyrOEnF5EqQo0CogQDZ9P0nUjRVybLTtUmEX+1wKkfJ0nNpRgtsWW/XPfcGEwNpJkrljIThBV2DfsUZoZSjHam6X6lzPpjs6EHBBx+oWwWIHdMYLo/zdxImlNP5eIpi9irareOpNmZ7rXe1xFUO+kEzPYnOP3N8uduvnqFQKPKRHdipXzbqvjBUy0xdSW5rqwcwOWfLaD51yHZCOCpEMmms8wOWtcryNBwnc54d6K81JvdRrBZJrmYZWawfMw3cj7JyPn1M185giKeiEjf8fJ9fLXQPXZcURFZi6/IzLUaAyeTDJy8inTaMoSbZdKpLCPny/dLy80O5sfTdP18VbBisxUyMqXBExMhC7ND1ufto50p4vMLzI2XZ8RPdJttUt1gs9lNmbhlfxXXC0TaFBxBkeHzCcv7pPdIoe2CYitLMvNWC0Q3KSzNpAtZlZZl33JtKM6gZAQFFmfSpC262ggK6B47omKRASkNXS8Xvmi6XmG8O8VEz6qxnbvmsctphOXtoxJzQ2oJpvozQIbYDhlfzG4SNUvUPXwxzWRfOkemhIbdIn2nUizFyROVbDmGp6RAJgXxXPgoCBTIn4Ar28YmVxtGxWtcHPoxL7/8MpWVldxyyy184xvfQBDWJ89tYCU25N5+QezZs4fDhw/nP3sIsMt2Q0nbLY/X4QirvPQ/z65LXAnv9FB/WwWd3+23JJDEDhZIB7GDfvpfHrcsd89vtpKKp3jtE+vLRNXfESGw2cPxv+2yzChUe0uYgZeGV2g8WmH3h5sRVYGX/vDqiCmBDlfZw6XG+yoIbvJw5is9ZeW4lqGGZJZGyjt8z0dbsEu2dWU1/O1OxsscsqzBVUiROSIyvjb3usQeuLpr+WXgjZR7+0VQTjKsGEaVgrvOsCbh/BNhVCkk5rNl29D2cCXeZhfnv9FbdmwYMdmSaLgaO/9jE6Iq8MofWY9HZ61GfCZ9Vf7Z/I4aXNUOTnz+Up5YVQ51t4a5/Lx1lqj2t1bhqNDWJwliSrs13hmj57lhS2JfdJ+P8ZMTJOZyMm9Hreey3R9uJp3KXNVc1vFoLUZU4+gnzpacqxZ8s3SJrzM0bBJMm5ub+bM/+zNuv/32dcvewAY28C+Dw4cPc/DgQZaWzActOwK7OIRbWvsmsOQW2fGeOiY651bIFpVCNpNlxwfqyaSzHP+rUrsv5uG7r9XNyPEZJLeEu1pl7OTsCpm4ZVTs81J9XZBz3+hjavVBWQns+mADk5fmTHk5i7pD2/30/3z9dc5dq9P+1krGzszmyDPlofgkBNEkMVhhz0caiU8nef1vSvtmNfSwxMKwdXmBzU6a761k4OgE3T+wJodLbglJgoWxq9RQu0r5top9PqYuzl5VueuRV34ZeKPl3n4RKH6J+Pj61xs74Gfs3Mz6tr+gpJ6n0bEuWWnvb7WQWkhx9JOX1n65TFSSQNKvru+8zQ5aHogx8PI4V16wvse8zQ4mL1xFOnIJrvlQM4tTCV7/6+71zd0SoU1OSwKS4pPY8o5q+l+dYOCl9Ul9299fh91u4+inukp+b1NsRLa4zaxpEoQ73JZkxtA2F3WHwpz/Vv+6c5mkw44PNDF1eZ7z3yh9eDzVfpmjJw+TyWTQNI3rr7+e733ve+te0wY2sIF/Obzvfe/jb/7mb/Kkl4jSzFb3IfPLzMrd4bobXHhrVU78wwip4sfONW+VZ3BWiDTd7qf7hWkmLAgkvmaNie4lSIG/WWW8awkSpbcsN78lQDYFp7+eI46XOqjK7SgHNulUbHNy9lsjJOdKlGezE9ykMdm1aMo5pa0PHQDa3xxE9Uq89rnBtYSGEnGis1Jmts/6OT663aBij4sL3xkra7cM0ciRPXJ1l9rW7fi1MJIurCB1lIJRITF7lfsWZuWsK0UmOQV8deq6xJ5l2+Ts1eqSvHHY9f4Y0z1LXPxeIQ4oR1Z6o7AemWgZilvEWSmXJQoVCuWq5eEUt0g6nSJVZm+3Yo+T2E43F743xnS3NatI9YhlM3QVo/WBIKpb5Phnrcej6hFJpzJlSVnLqLneTbDN4Nw/DpfNdLY8L4Q260x0LliSpCqvceGtVzn5xRxJ0GadNcBZIdJ8R4Cel6YZO1PiBNVuw1MrM5eTsPTVK8z0x1fOkUVov9+HTbBx+uvja+fOVfd27UEXvnqVE18aWXktdvNALCVOcp6f0zfQC0BTUxN/9Vd/xQ033GB5PRvYwAb+ZdHf38+hQ4c4f/48AKrkYUftr2GoZpY8W7IwxwkCtB+SmRxI03dq1dq5OuNLKk3jPgm7ABd+Zi2H5ArZmRkxy3b4YGYUSK6dV10RO3U7ZS69vMTc8tJZ4jDeljDrar5RZWY4zdCZ0nULog13pVAgKJSocxmyAe23OxntTNB/okTMklhZhyCbBI3E7Kr4qCizVNudBon5DJd+fHXnfsuJKPJYndnHL9Byi5Oh00sMnbReOwUZBE24qjPWNShHqo4JLE6nrcstipMFBUuiyRuKovbGtsgEG/4Zcm//DAgaVyXl56kUWBhPlyVHmZJoXL2kHqB5bSyOlf/BprsNUoks539UIu4rigWu9lpUNzQfcjJ4Os7oBes9Mt1vXvMarJ5PgM136cTnMlx8fp0GCAKCwMr7e7WJDE3XqYx0JvM2WbEEuSd37Q3XSEiqjXPPWzyzSCKeCEzlcsp4IssEprUw/FC/W6brcIK5cchKK/P42IqfA23QcbPE1GCG3lVzblYy2zsrHOXIyWdJJhOoqsrDDz/M5z73udLt3EBJbJCUrhKPPvroisGl4eCA7Y61hjI4KzRmuxcJ7/YQbHVbEj2i+3zE9vg58mcX163f3ehg01trmOqc5cyXete1b39rFYsTCS7/sPRBkBGTqb8tVjqTySo4IjJb393I3ODiVdkbMRnNr1q+dQyw+yPNzI8sceYL1jJ1xfU33B3jRJmDMtmw0/F4Pee+coX5ofU3WNSQjDNSvo3eZoO2h6qZvDjD2a+UfyO95uYQPc+s/8bbLwO7P9IMWTj8J+sTSK4WbzRJqfaWMBV7/FdNmnmj4W02wE7Z7FrIsO8321mcjHP8L0ocghWhmDC4HtofqSYxm7LMqARmZibVI3Pxm+UzPIBJVtr01hq6fzzM0KvWB1eVNwToe75Epo9VUEMyO9579fd37KAf3a9atlUNybQ9VMWxv760LmEPGfb9VjtLk3GOfaq8zwGaH6hE9UuWc0F4t4fQJk9ehs7bbDB5YW2fX8l2Mu7rZWJyApvNhmEYXL58eUNDdgMb+FeEsbEx2traGBtbnsdsdHANEWmt1JWrVmcmJ73W9pYYQ8enmDxf+sF30yOVzA4s0fPM+kThbe+rQ3VLvPLxiytIF6VISpIObW+t4ezXByxJEo13RZjuXSgbeyyj453VOKIqRz9xoWzGnGVU7POWJTNEdrqpOhjk9N/3XBVRp/HuMLP9iwy/NlXGJorNBhe/fZVvju/2MnS4POFi63vr0LwyL//R+bJ23hYHyflM2cxNvyy463XaH67m8rPD617P1eKXQVLa9cFG0sksx/5y/fX1l4HYgfVJds1vqsDf5OL1z1xal+Q23btU+t5adYikRySa763k9Bcul713Nr+jivNPDV0Vqan9LTFUn8Jrf1GaBAQQ6HAy279kKe24um6jQuPoX16+uvrfVsml7w9bll1zKIikCnR+p7Skd7F0W+ubK/DUOzjx2e6yRMVlbHtfHb0/G81Lw62ABG0PxBg6NsnkxQWMSoW5vrVxfjKZ5AjPYHdlmZmZwWaz8Tu/8zv84R/+4br1b2ADG/jV4U//9E/5zd/8TdK5jVmvGGWH625EsWjjNkdS0gIii2MpnDGRYIuDrp9Mr8mcBOCukajc6eT0V6/iudQnsvnNAcY7F7n8fFGsVCLuAqja7yQdzzBwrPRkL2kZag546fxBmfT7uTVE1GDr2yPM9MW5+P3JdUlKkmHHEVGY6lp1CFXU1k0Ph1icStH1w/XT/4sG1F3v5+J3rNdNUYXmu4N0/XiSpYmVB3mltnUlhw1HSC1LMlG8Ah1viTB2bp7Lz5WPacJbHFdFOvplYNPDIQTZzokvlF7n/ikoRVKCfzpRKdCqUXuDj3NPDTM3cJWMoTcQWlBEVOzrktx2vLeCxYlkXmLNCoFWzTqD2SpUX+smk4U+i4xKYBIQHUHZMutSMVSPSOv9QXpfnGK8THav9bI9AWC3mff3IxXM9se58N319/G89SqOiEzfSxaZ1DRovNlH548mSpOeigmTIux4JMTiZIqz31p/LqjY4cAISVz4wSo/5e5xV6VEsEXn0rPm90ZYZG44lScpLWNsqY/L4otMTZn3dXV1NceOHcPj8azbhg1sYAO/GiwuLnLHHXfwwgsvACAJGlurH8JnVK+wsyVTaC5YzIVGlZsFpofSeRmj1WSC6g47S/MZRi6sz6Ko3yPhDNh5/ZnkStJFCcKQIEDNLokrrydJJUtnCgnVZInPZZkZLFN3bp2t3C7hrxY59cNFk3RRhqQEJoFkaqAE6SBHUHJGBKr3Glz88UxZclK+rS0iifkMUz3Wz8TBVgVJszNwrMRaVCJecFeJTPeWv4666wycYZETT82WJbpoXjtkMTPrWNR31VhH2m01ZAPabjHofW3RkmSyLla195dBUmq+0ZTgu/Dcr3hfMLcm+2qsSTjLiLRLRFoVzj07x9KENQnbERRYmkuTXirRV6vifFmDqj0a3S8tls2UVL1HY+jkIolSZa5CxRYFIyhw4dmiuGrV3OLw20kupEmst0ctCFRuk/DXiJz94WJ50lcOldskRi4kiSdKzy3+ajuyBoPnLPxdRDSKNtuINAic/WmKpen1ie+NBySGL2dNgmYRlslKsXaBmRFzzpUdmNefLZCUlnG69zvMpbuYnp5GURT+7M/+jCeeeGLd+jewUiRnAyXw1a9+FbvdnicoCYgc5N7SBCVgzwdbaH/YPEAbPjxVluQh6yKiJmJUWadLjuzxAjDdOU/vz0fLEpR2fLCRre+tB+DMl3otCUoAlftDOCIazlrN0oac5OP8UIJLPxwoS2Co2Odn72+3oobM7DHrHcClExmS8+Un8fBuD2pIZn4oUZagBODv8CAbEnqkzPVgZm1azk60XhsnL8wxemaaS98tT1CK7PFSuS9I/Z3RsnZgEopaH6pc167xvgr2/W4bsm99TfvJS3NMd69/gtn+1ir2/k7runa/CDa/o4a9v71+meMXZ5gbWiSbXJ8TufV99ez5rfXLNGIye36rlYp9/nVtW99UReMdFeWNEjB8fJJzX1+fBJjPaHZg/bqNsIazUi9r0/vcaJ70U3NotYDqSiQX0mSSWeIz5Q+WlglKW95dx45fb7S0WxpJcOn7Rff3OkMuvNWLr9laM3lpJMGxT5oEJXejg2t+p5XgFldp4wR0fX+As18zfR7c5i5bvxaQUVzWMiHDh6fyBKWmB2K0PVSNv31tW6ttjWyfvJH2aAeZTIaZmRlqa2vZv3+/deUb2MAGfmXYt28fwWAwT1Cqo51bpLeUJCgFOpy0Pxyj6qA5H5/9cr8lQQlA9cg4AtZxl2zY8LUZ2Ow2Lj7dz4WnBywJSoEOJ3s+0ogekUguwIm/6ylLOPC1OInu9Fp+D5hZaICT/3CFC9/qL0uy2PZEHW0PmWvbetlWEvMpsoksyXU4CbH9Jlmz89uDZQlKAEZMw1lVfn0DiOSu+WoIPRef6jMzha6D+pujtL+lel272H4/u36jCcW/vsTU7g810f62qnXtkgspZvoWmOxa/9W33R9upvm+deKPXxB7PtpMw1XEnFOX55noXP+tQD0is/e3Wqg6GFjXtvmBCnY82bCuXf0dEWquD+FtcZS1u/zMKINHJ8oSlADGTs2SnE6iByTc9avGXDZj/svBiOqobmlducBTf99rlhmS8LWXt03Mp0mWkc4GGDs5S3wiiR6R2P2hRgKbrGOlU3/fS+fTg1dFUHLX67iqdKI7PZY2Pc+O5glKHY/W0PHoyrmyeN4697UBep4bzROUgh3W7XRWq8gOAVG1SFedhLNf6WfyYo4k+uZKtj9Rt8ZMkiT2SXewY+YQLoebbDbLxz72MRobG/nWt75lWf8GNrCBXw1ee+01DMPgwx/+MOl0Gs3u4nrfY+zx3V+SoLT5zX5abjfX9tn+FF0/noa0reThiagIyA4BPSSu+Q4Auw1vowp2G0tTabp/Ol2WoNR6t4+Wu8xYpfflOUuCEuk0wVYH7moVI7qqbpu98C+H1CJ0PjNRlqDkrlXZ+mgU1S+RXMiWJSgBpOLr73m5axRUj0hqjrIEJQBHWEH1Suj+wvVks9k1BCVnTEZ1iyTns5YEpeXfLU2k6D8yQ+86UryuSoWaa31U7nOXtQPY/JYwtdd71rULbzPY+Z4KVJ/F2CjCZNcik5fXP+GoPOBm++P/vLhrtU9rrnez9V3rx12zg0mmryyVlTNbRsNtPra8M7KunWTY2fJIhODm9ePt1nuC1FznWdeu//A0l59dPyZfJij5m8vvsQK4YgquaPmNpIkLi3mC0nrXk0qkzD3jpfIHS8sEpfqbfbS/OVjaKJM17+8fjnPhh7l7bJ0hF97kINisr4gvV7RvEc592yQoqV6Rbe8M4akrer4sngtS0PnMJJd/Ys5rrkoJsYxiouYVUTwlGmgz59iZvmSeoBTdptN6jx9Prbwmy11ArWS3+DDbYzeQyWTp7u6msrKSm2++ufzFb2ADG/iV4CMf+QgOh4MXXngBu02kPXY3N7Z/tCRBSfdAy0GZUIMZt/SdyhGUBHvJbCeq04ZmlDnyle0YIfO3V06luXTEmqDk8MOmWxRUlxkedR3JWBKUbIkkwXqJYL31HIbNZmahAfqOJbn04lJZglL9tRpVe8w4sRxBCSCVNGOvdCo3B9vthX9F8NaY7Rs5Ey9LUAJwhiWM8Kq9JNvamNcVM8ssS1ASBBAE+o8t0n9iad1MPJXbVRqudxTqtICrQqD1Nh251NaL3baCoNR6i07NnvVle0nDRG9ypZyfBdpu04ltKSqzhH9+UbTfrhPdtP4e3tRAksne9fdUBNnMAhRsXD/mDLdKNN+0TuxjsxFoEKnZreOMlJf2Gj2fpP9UnKVpLO9ZgPlRk6AkaGZ2o9X1FftUMgR0n4juK1/3lVdNgpCggTNc3jYZz5CKrzq3Ta+85+bHMyQWbci6jfbbHbiiFmWm0/QdT9L10lKBoFSmetkAX5WIt1rElio95savZBg8b7anZrtIwzWrxkfRHDJ4IcvlYymW5gDBjjNs7XdZB9VhQywxNLKCQFYQ6D9TIIU27hZpOWAa25Ir27qp6i52VT1JxN9IPB7n/e9/P01NTXki6gassUFSssDExASGYfDwww8D4Ha52cNNPNj2CHv/QxuOiPkA1nhvBVueqMuTfdLpDLND5oOSq05n+5MN+e/q74yy+8NN7PigSRhw1zgYPTXFXG8cIyaz/ckGM+MLZuaZHf+xkfpbozTeW0HHo7WoHrNONWTaBjrMg/+qG4Nse38D6XiG9FKaTY/U0PKgSYSRDTvbn2wgnNvYbnukiu1PNnDuq30c/ctOqvYHaXs4R5qRYfuTDXli1DUfbWXff24D2Tz8b3u4kva3FYKl7U825EkaWlBCUOxIujlhtr65kk2PFDbIt72/gaobg/jbnQQ6XGQzWXpeMOmJTQ/E6Hi0Nm+79b311N4Spv7mKB3vrGP7kw0YMfPaG+6OsuXxwub3lvfUUX9nlMGXJjj11W4q9wdw1ZkPvPV3RNjyniLbx+toujfGlnfWF/zdavq75uYQW99Xn7fteLSWpgdiJnFENm2XiRaVNwTY9v7CAY2v2cncyBJd3x1ENky/hHeb/o4d8LN9+TBHBkG244gWFrrtTzYQ3WduskX2eE1bGRZG4mQzWRrvKGxcbPtAA7HcIWxwm5vtTzYg+2Q6vzWAzWYShvK2TzTkyS7+difbn2wgvpgkMZuk8b6KNf6uuzUMmKSS7U825LXR6+9a5e9311F/l7lBY1Qp6GGV5JK5CNTdGs6T5JZ92Jg7mMsspREUO6rPDFpqDoXY9kTBh5vfUUPzA+Y4XJyMYxdyhBXMzD3bPlCwbX97Na0PVZpSatkssQP+/Jit2Ffkb6DtLVW0v7WKrmcGef2vO9n+ZEOe1BTe7TF9mDuXan2oEtUnmfJ6sjlmK28wD+yCW1x5f4OZ0WfXh5qovSlC7ICfre+rp+Zm09/eVoPtTzbk54iJzlnSRQdbW99bT32uX1fPER2P1VJ5IJj/fsvjdTTcnfN3bsxqHplX/+d53FUOtr6vHnejI+/vpgdiwMo5IpvMIir2FWN29RxRsddPeKeH4DY3+3+7nd0fbSr4+23VK+aIbDrLwKvmvVt3T8Scz3L7UavniMa7K8AGs0NLhHcu+9tcdpbniOGjUyyNJNj2/gaa7oqx6wNNBDpW+nt5jnj9r7s4/L8usPW99Wx5Ty07fr0R7yaj5BzR86N+Ji7MENsfoP7OKJE9Xpy1GtufbMjPEQe2HeQj7/0tqoK1SJLESy+9hK7r/N7v/R4b2MAGfvX4b//tv2Gz2Xj55ZfRVI0AFdwivZU7H7qNxrtz66EEHe+qpv5OcyPaLthIxTP05uQlG++J0HRf4SCh49Fqdn6wnsguN/52w8xs97RJCm28K0Lzg+Y6ZbPb6Hi0mm3va6DpzijeJp2G26LM5bIz1t4aovVNhXI3v6MKZ6VKJpnFVauz5bEa9JD5kFRzKEj7W8150xGT6Xismurr/Rz72266fjTMlsdqMCpVAKpvDLDp7aZt7ICf/b/VQtODUUjC0kSCLY/V4K4156zK6/xsfkeBRCM7RRS/OfdJboktj9XgbTbXhIp9XjoerTZ/K0Gg3c1U9zzJ6SSSDlseq8mTKCI73Wx5rIa620NUHwyw+Z1VNN1buNYtj9cS2mGuycGtbrY8XgsSHP90F7N9C3kfLttGdptrsq/dyc7faKT+tgiR3V4a7ozS8uZYUd/UENtvrsneFgdbHq8lnYLen4xRe1uYtrcUSN2b31FD5XWmrbtOJ7mUou8Vcy2qPhRaQS5qf3sV1Tea40PxicgOEdlh9k3VwQCbHimsU+1vraT2FnP9XpyKoweVPAkmdsBPx7sKsVXrQzHq74iwMJTgwrcHabkvhi8XR0b3eul4rDZv2/ymChrviRKfSbAwE2fL47X5uD28w2P6cNn2vgocwUJsuOXxWsI7PIBJrl/2N0DjPVGwwdKUOS47Hqslujfn71aDLY/XIrlN40w6i+YtPLh3vKsmH7e763W2PF6LHpBYGEqQSWXwtRTIKpseqc6TlpzVpq0jppBJZhEUgfa3F/n7bVVU52JOPSKz5fFaxs/NcOn7gxhhbUV82vaWSmpvM2NOxS/R9qYYU5dNUmHsoH8Fuab1oViejCXpNrY8XsvmR+tovjdGZPcqfz9YQdPdZrkjp6ZZGIsjiGa8Edpuju9lNN0bpfn+wvje9u56mnKxVmCTky2P1SDlzs6W54jOp4c4+dkeOh6tpuGuXLzX7DBtc/6uuz1kkgYzJikott9XGLP1a+eIUId5T217Xx37fqeZ6utNW6NSXTFHuGt0ZgcX6f6ROd63vq+WmkPm+NZD0po5QvNJpBNm3Nn2UAV1t5vtFZ0iHe+qxtukM3h4iuheL7v+YwMNd0TwNOo03x+l4c5wzt/mPCsbIq/+SSc2m/l523vriO710nRflMZ7Cs8oHe+qJrTNxZWfjDHdO0fHu6px1qtoAYnGuyN5f0uSwnt+7Qnu2fFW6mrr6O7u5k1vehPRaJSFhatIGbeBDWzgDcXS0hItLS3s3LmThYUFPG4f+30Pc1vLu9h2bzhPHolu0Wi63YUeND+nkxlmc/GR6hVovduLkSMhhTdrbHqzj033m3sc7kqZkXMLLIykEA2TZOSslMBuI9Cus+kBLw03eajaZ1B3gws1dzgvqtB6pxd3rRnn+JtVWu/2kUxkSCUy1Bx0Ub0/9yAvQutdXnz15l5D9QGD1nv8DByf4/V/GMDX4KDmeneemNR6tw9/sznHbntnkJ3viSCqMN2doPIag7qbCoTy5nv8BDocYLeheOzIuoCYW7Jje5zUH8rZZrI03eUnvMWBs1LGiIjYgNHT5hpXscug4bZC1t7GO3xEtxvU3eSj+Z4ArfcF0HL+jWw3aLqz8DJUw20+KnY7me6Jc/obI4TaDYwKkWw2S3iLg+Z7Crb1t/hovjtIy/1B09/3BXBVm34JtOu03OvPE3DqDnmpOuBm4PAMZKD1/iDeetMv/haN1vsLpA9fg8Z0/yJ9L5nkiNb7g/hy5BVvg2ra5jb3ZUPAiBUOq1rvCxJoM9cpd41pK+qQmE2RzmSp2FF4oanlngChzWYs64zJtN5vSoQNHJklk8yu8GHTXX7C28wx4AiZmXcy6QxLU0kqdjlpuqPgl6Y7/FTsMuMc1WfaLmdMCm8zaLprpb9je1xks1kUl4CrSiW1aO55BTfrK/xdd8hLbJ/Z/nQyhSDZUJzmKUygVaPlvgIBvPYGD1UHzLV/YTyBKNvwNpj+9jWptBbZVl/npuZ6N8m5DNlMlsh2Z54s5Kk3bUXzp1QecFN7o4euH09y7lsjtNzrJ9Bu+ttVrZi2uVslts+FI6CYEm0iNN/tJ9Rh+tuoEGm9L4DiNjuyYreTtoeC1B8ybZru9BPZbhakBU1bNUeYG7+4QKKIkNdwm4+KXaat6jFtjYhpW3ODm7obfVTsMfuj/hYfsb2mD5fHrOaTOfnFYWSnQPM9/vxv627yUpnzoaiatu5alXQyg6DYV/iw5noP1dfmSHX2LNEtBr5ak7S48/EoHW8L5cds9bWmv4sxcNQc66EtGm0P+gr+3mdQd0PBtvYGFza7jaXJNM5Kida7faa/M1liuw3qb3Iz05dkaTJF020emm/z0XqPHyMs0nqXF9VjjpeKHToNN7u59OMZTn55nMab3TTc7KT9Pi96SKT1Lg9aQASbjchWB023ehg8tcDImXn8DRoVOx146yQUJ7Te6c77rL1xKx98x2/TGNqOpmk8++yz6LrOn/7pn7KBDWzgV4+nn34ah8PBn/zJn6AoCjWBa7h5839i995txJoLdvXbbVTk3je2C5BYzDLVax7Qh1sEYpsKJ/51OwTaDgr4YqB7TDnYvnOmbahRoHJzzlawU7tLYtNBkfqdEpoLqjcL+awowVobVe0FIkT1dgmHVyCdtqG6BOr3Kii59cRfY6N6q1murEHdLoFgg8D55xbpPRan7hoFzQPYbPhqRWp2mc/B7pjAjgd0KreZv12czlK3R8qTMjzVArX7tDy5RvPY0Tzmc70gQN0+FSNo2rqCWequdaC6BRDAUykxPZgiHTeJSXUHNJw5EoUzIlB3QMPXKFF7jYOaa1Qqthf2YOquNXBXm210hATqrjMQZOh6YY6p3gSxnTlbm43a/Q68Naat5hdovs2g4aATX71MsEWhcmeh3JprdHz1MggCmsdO3bUaCDB+KUmgUaJyl5q3rdql4m8wy5WdkEpkGTi1aPqwTqR6d8G2codCsMm0lXRQ3SKCbPadr0ak9hotT06KbVEItZi2C1NpdK8dx7K/YwJ11xTKreiQCbdJJBah91icWIeKM5Tzd1Sgbl/BNrpZJrpZZnEqQ3w+Td0+FVfuxQBnSKDuGiVPTAm3SjhDBRpC3V4FT8z80uG3U3eNgpA7Wwq1iNgFiM+bY7h2j4Kv2rTVPFB3jYKcc3E2DUoRIa96l4Kv1rRVXTlbA9IJSKcyuItINZU7FAI5Qp1smLaaGzKpLKIMNbsLsWzlNjlPcBI003ZhOkPXy4uIMtTuLfgltkUh1Gr6W5Cheo/KQi6Dkrs658McYaZii0JkU64eAeoOaLTe7KB2r5ofs8uIbJaJbjHrmR9NMzeSwpa7HCNk2i6rL4bbZSqKiGOb73JSf60ZG+r+nG3u62CLRGy7wuj5JF0/W6Rmr0qkIze+PTbTh7n9sWCjSOV2hTSQTmcJNEj4G8zYRHGa96eS21b0VdvwVpo+q79GZts9GsH63JyhQ91e2ZwjAMMvMDOSYvicGW837BUINQp5H9bvFtFzj1yeSjvOoJDPIBVrFwg35WwzKep3CBh+U/bNHYb26wUad4sYfqhoF4i2FsZA/S4R1YCTz2VIJs15t3G3DV8Moo0QazHtsoJA3S5TTq73VIqpwRT1OwU0tzn/heugMmcrCAL33flr3H/jh2mob6a7u5ubbrqJPXv2sLj4q1cC+LeCDZJSCezYsQO/38/8vLmh8K53vot33fduXDYful9B9cjILnPmdIRVjJBG6wPmZr0oCwg5hq4WkFE9cp5cZERURF1E0kRkw47qV3BEzMlFcZvlqn4ZIyZjRFRkTWTo6ASdTw2g+RUcYdNWdoioHhktoNDyYCXhbV5Uj8zrf9XFqb/vQQ8p6FFzprHrpq0jpNJwdxRfnQvVY36XmEighxS0cGEiVT0yRi4bUWopvYKlqYVV9JCywjaw2WMSF5ImeSG5kC1pq3llojt9tDxQhatGQ/XIKC4h70PNX2TrM6//wrf6GDs5adq6ze+NqIZaZKuHVMLbPMgGqA7T15qv0Dear6i9foWl6QRdPxhAcpq2eq4sR0TN/w4ZnFU6/txhjeywmbYh00/OsIbmLdg6giqClPOTbJa7fNjkCGn5/icBqeK3sOWV/naEVHNsyXYGXhonsZDCESr0jeaRcYZztkHT1tuk03B3FD2qoAWLrtUr58eWFjLH1tjpWY596hJGREMLFPW5r9AGzVcYr2COWa0o44TmVzCWy/UqCLKdgVzGA6NCQ/UWfqsF1PyYFQ0J1atQcY0v7+8VtkEFR27M9v90FJvdhiNY5O+iNjlCKnquDcf/8iKiLOT95IiYflkmzehhFT2sMnx4isRcZqW/g7m+keW8rSOo4qzV2Peb7Wh+Je9vfblvHGY/6xEFu2Cn/+Ux+n8+juYr+HvNHBFSUf0KDXdH2fHBRrNvcn5ZPUfYbDbSyQxd3zPfhreaI5b7xhFWaX+oOt83peaIk5/vZq5/EdUjmyQ3Gcs5YvrKIulkBlEu0IdLzRGK0/xtZIt3xXhZfd/LushU5xxLIwmcVRqaX0FdvvYSc8T82BIXnupHCyjrzhGKR0HURDSXUnKOSMzBua/2ofkUPI0OGm6roPLaYMk5omVsF5snrmXr1q0kEgk+9rGP0dDQwJEjR9jABjbwy8fhw4dRFIXf//3fB6C6spYPffDDbJcOAua9ujwXShI4QgqhDi++NgM9qOTJCHnbojlL9yuIqrlOOIIKekAhK5hznCOi4oyo2Ow2tICE7leYH1ni4ncH0QKmrZR7JjQiCo6whuKT2PreWvSgguyQOPKJS5DEtDWkvO3y/Nb+cDXOqIYR1UhOJ1HdEnpAQc0RG4ywip5b78bOzpDNguww5z7JyNn6cpslYQU9qBDZaW6MZ5YypHNvGMuGDT3XZgAjpKL7FdoeqmTrO2txRsz1cNmJeqDQRkdYRQ8oXP7+CN0/HkbSxAKhWjKvbbmNjpCCEdXyBBY9oubXVVgZJzgCCpIiMHBknKHDkziiCka42FbFETbbULkvgFGh5X/rjKg4im2DCs5cmxSf2VeLo/GCbVG85AiqGFHz81TnPJlUJn/gYkQL/gbQw2bfAPS+MIaoCPn1xhFRVsRARljDEVGpPhTC1+LI+aXI36ttwyon/rab4Vcmcv5WV/g7396oiqAU4m09UFjP9Vy5Ui7OdIRVUgtp+l8cz9sauXL13PiWcpdnRFXctQZGZS7GCyg4Ikq+n/SAgqCbY2txPIGkF639RT5U3CJ6QEFxSnQ+Pcj88GI+RgMzznHmYxVzbCleieHXpsw4sig+dYS1vK2kmeVqfplNj1RTfSCE5i8uV8vHhvac7WTXHGe+egUjssrfEQ09qkI2g5Qbs0alwo4P1ONvc5q2Ob6WI1KYT8Akc830zOf8nbuHJClv6yyy1QMK4a1emu+L5u+3whxhjtmFkSRHPn4JxSnhCJv3q+aVLOeIiYuzZMnmx2HJOSL3PBPZ6cYIqfhbzWeUUnMEwJkvmllg3XUO/Lnsl8tzxPKYNsIqdsFG30sTTHUuYERUjIqVc4Qj13fLfhF1O5JqXznP5ucIheHXpknHzc/Nd1Sw+ZFq099Fc7Lml4lVhWns38u1m24kEAgwNDREVVUVt956KxvYwAZ+NXj88cfRNI0LFy4ANn7t4Xfwa3e8B6foRzZAD0gouTey9YCEr1qh4UYPAJIuYLebb/RKuh09ICHniBl6QEJ1Coi6HdEAR0DCkZujREVED0koLgnVI+AIiMhOid5XZul9aQ5HUMII5p6LRZOIqXlEKnYZRLcZ6EGJS89Mc+nZaYywjCNYeA7VgxKqVyS8WSPSYeDIZXVJzYEjKGMUPXfqQQktR66Iz6axCWZ9AEZQxpEjlGK34QjK+Bs0ECGTtpFOZEjlVC0dQRlHWMpnTXGEZIIdBi13BzEqNfSgnH+JTw8qOEJFexpBGT0k0/m9UYZen0EPyihOMWcroxddmysmU7HThaiay5MelJGNnK1fzs/VAEZIZmE8Qffzk4iyiB40syqZthJ6oFBuqN0gtCnXyXazTVqOJKb5ivwrgiMsI8r2wuegjJbrV80r4QjK+TeQl6ZWZmRwBCX0XEZL1S2atpLI5KUlliZSBX8v+zRXr5KzdUREKna7cISlNT5ctpWdpu3cQIKz3xjN+zff56EiW10w/9u+tpzlfjTC5mdBAUkVGD5lxgmOwGpbCWeuHkEScYRlwh3mSY7ml3EEpJXl5l5kGz01B9jQvAV/60E5T5oxwoUxe/KLw0iKgJrzoeY2+3W5/UauvdPdS6QWQA/IK/ytB+X8/o4RMse34hbZ8VgFrkoFPddGxZDMMasV2iupAld+PsnIyfkV41J2mOUqRu6+z/kwvM3BpodCOEIyjlz7Jd1mjtlcRmy7YCcVTzPw6mzeh8tjQFRy5ebGrCMg4anRaL7HJBQ5QsVzhB09KKN5RXpemGKyewk9KJlkLtH0oSNcPEfIqB6RpckUqaUMklY4pHIE5Xy5y7aS02xTbKcTV1QpmiOUFWNWc4lMdC6yNJVC94u4qpU82dIRkHAEi8e3xMxQnO6fTiM7RfSgVJgjArJpmyMRmveNjKQLSIrNnJNzB7F6wPwtKbjyojl3uqtlGm50E9lumLbLc7JPRA9INHANWzMPsH3rTpLJJB/96EdpaGjgxIkTbGADG/jlY2hoiIaGBu655x4WFhaoibXwH973m7REzexmhseG7insCbjDNmKtAq4wKIYNUbCZS6tgx+Gx4/AV7YF5bCi6DcVhQ3GA4bch2NP57xx+AQRTKsnhtTE7kaXraBJJBcNvz5NDdLc9/7lhn4wzYEdxCpx7IUkqAYbPjqSstAVouEbCXyWge03igCCDERDy+wuay46RI8XMjabJZsxMmwCCZNoux5yaR8QICrhzBJbkkpkNDzDn9oCA4rRBIonqFjBCEo03GTRe78zFnMuELDBCEqprmbBi2k5fTnL5Z7OIsh1HoLD/4QiJeVvFEPDVywRacs/NftG0zZ2ROkJinmCqOOwoDpH+1+eZ6Erg8Is4QsXlSmg50r+/USLQIKN7c/OzV8BZ1AYjKKLlvpNUASMg5jOr614hT84C0w/LWXTmR9Ok4xlk3ewP1S3gCBavcULeL0On44iyPU82U912HIEiW7+Awy/iqxNxBYWCvwHVZccostV9Zrndrywx1pXGCIioblvOhzaMgJgnzTj8ApKjaMwGBFS3PefDnG3OFQ6PQGIxy0R3Ov/bZVvZYfolP2a9At4qEc1d5BfPSh9Kqvnb2dEskl5ov7PIh+Y4FBE1gdHOFNOD6TyRa7m9y59F0bSVNTvT/WlUl7DShwE7RvE4DAgoBlRuV6jboxV8KNhz5dqXTTECApO9Cbp+Pl/w97IPfTnb3Dg0guY4bLxRx1stYgTFwp6Xb+V4SScyTF6J5/xt1iPkbcUV/WoEBWIdKrHtCpJutkEQc+f9HnNMpBfh/DOLqIaA5hZxx8zs26a/C+N7+b6fGkyTzWbRc/NWfo7IxWKay44j129G0Ia/WsJflbMVzblHycVLmtOOzQbdx1Jgs+GvEQjUFvnbb0PNzSeqYUOUbVw5lWJuHBweO0Ygl1VJyJVr2LElU6gOMHw2ZM2GJOfmzqI52fDaUN0Cs2OQjJtzZ3WHSOteOw63DYd3pa3X76DB+TDX7fg1IuEIhw8fpqKigscee4wNrIUtW0q8/N8p/uIv/oInn3wy/9mJl722QyVtg9vczA4ssjSSIHbAz9SlWeaHSotA1t4Sxl3n4PW/6lq3DcFtbpruijF0bJKu7w6ua7/rQ2bGkyN/enFdWzCz3ZSTgQt0uAi0ujj31fISZwCOiMzWdzcy27+Ql1gqB9mA6psq6HxqoKxdx6O1nPxiN5SXUgeg5cFKPI0Gr/zRubJ27kYH01fmr6pMgI531jJ6bpqhV8unQd7z0RZSiTSvfaJz3TIb76ug83sD67bBVacTaHPT9czgurab31GDq9rBi398Zl1bb6tBcjZhZiBaB/t/r52ZK/Nl5QoBkCHY6mK6a4bEOqonO369EcUp8dIfnl23/kCHC2dUKztWlxHc5kaQ7ev2Veygn+rrwpz76hUmL5Rv7Nb31XPlJyNMnltfymW5vWMny8sHtj5UiavG4NWPn7uqcVh/Z5TFyTiDL1nr1rvqdNy1DnqfG7W0WYbsk9n1gUbmBhfLSjcuw1mrUX1tiNNfsB4D7kYHsi6sK50IZvasir1+zn2td13/A+z73TaWZpIc++T691Z4t4eKPQGO/XWnpW/r74zm59TYQX9esm81RrL9LDaOcbHTnFNra2u5fHl9f21gAxv4p6G9vZ2zZ811wYaNndyEVyqdrj+yy83QEfOt1qqDfnot7mNJh7a31tD709G8DFExspkstqKUx1vfW4vsEDj8p5fKtjWbyeJtdtByX4zuHw8zlHvDthwCm5wsTsWZL7P2tj0co+fHIyyMrZ+muOOd1TiiKkc/caGsFNwyKq/zM3FxhoUh67Kje73YRTv9P1t/LZF0G1vf28jYuRm6f1B+jfa2OMpK7622rdjt5/QXrpS187U7ab4nxqXvDzL6enn/h3d4SMwnr6oN1TcGme6ZZ7prfade89utzI8scvKz5WMkSbdhVOlMds2vkAwshfa3V+GqcvDyx8rHswB6WELSJaYvl2+rpNvY9RstjJ2e5uJT6zxTSFBzfYjRU1MsWDzPFMqF2HXhdfsfyEvDvfap8vdWZLcXV7XGha+Xf0b4/9n78/DIrureG/9U1Tmn5nlUVakklWZ1Sz13u7s9tN22sY2xsbGNg5kDBEKAkPHmd3PzhHtv8t43uUlIQkggzPNsMGADxgYMHnueW93qQWqpNc+lqcb3j1NVKqmr6mwR8ws4+j6Pn8e21jm1z9r7rL3PXt/9XaVtMHrMJPornETS6UGGHe9tYvTUdFGFSOueza+JcPqrA1XtGu4IcOmpEc0+BVVxzRY2c+jfLgmVdmu5t4bhY9NVyzhXi32rse1346STWY594jLAiri3Gg13BAh2Ojn99QFmBMpIb3xzjPHuWQYrlAiyhGRsITMjR2ewBGQUh8xUT/n7jjSf41J/DzMzM+h0Oj73uc/xxje+UfsB17GOdawZTz/9NHfeeSfJpBrr/UoDW113lLW1hyVS82kWp8ATl5kfT7M4VV6C39dmwttgovuJqWv/mMmuKDVhC0m0vdrL4PE5Bg5U+S7Mk3/a7/NiUHSc/LpY7AtuMDF8ovJJVVtQwttsofcXq75hC2XeStoqmWHTG8PM9C9x/okKv19a2kmCyDYHAy9W/z6O3+6h75kJodJg4R12/O1Wjn1pCNJcU96tAItfIjmbvuaeBcWg1dc13OxmdmiJsTPVY/7Gh4OQg5Nf1Z73IzsdDB+f0Xwuk0fCEzdz9egsVKmMAlB/kwt/h40jn+7XvK8tJJFeRFUK0sD2d0eY7l2s3K8FSOAIGVkYT2r+fus9XmxBI4f+XXs9YwtL2IMmBo9o743YoypZZeJc9RPY7kYT8f0ezv9gnJl8MqoSmu/yMnR8ltl+sU1Se1TRtA3vtONrtXL660NCYzvQaSWbyTF2uvIYNHkknFEjw8e11/OSCTa9Jczs1SXOfbdMv65aBxmdEpFtdi4+XXkv0eSVMDokpi9r+8nbYqLueifnfzTBbH/qmt9bjc1v9JOcy3D60VV7fmXK5NjDEtFtds4/OVnet7kcNZstDB5X+93XYmTsXPkxMJseZ8x7lPM958nlcuzcuZOf/exnmEymsvbrWMc6/mN461vfymc/+1kAFMnK9vo3YjOX3/NyhVQFEAB/OMNYb658mSIDxLcYGL28XIZoBdKZFdfFtxuwuvSc+LHGN2kqjdkJzXvNXDmZZLL6pzEAVjdkF1IszlaOeZFOmdFLqWtzR4USTSXxsna7EU+tzMnHE2QqTWWFMm96Pe46ifnJNEtVll6OiAHZrGe8W2ByMkDr7Q6mriQZPpm3r1C+zOIzMD9WpSSaYZn8YXbrCbQa6X2h+lxudulpvsVG70vzTA9UL7dmDxnIZlSiElB13vHUG1iczTE/Xr2UKkDna6zMTWS5+Gz1thoMqqrq3FRWs3xdpEvB3yhz9FHt+VyxqESWhSkNQwNsvsfK6IUUA8c15mkDeOsMJEYzLM1q39ffIDHao72ebLzehEHRce6p6utpe8iAIyQxcHTVoC6UVFs9xgxgsqGWiSuHXA4M0H6bjfHLSUbOCqznDBDdbKL/cPU1or9FZuJCamUF7Arl0qJbjHjrJM78cG65tFuhfbDiHQAItUnMjKSZr5zuxFNnYFwg9gA071XZVud/kX9+uXJJP18Moh0S519MM1e69MtkyZW5rr4LZsZhokJbjEoGsxOmxg1ICpiskKiwpJzgBXp6DzI1NYXVauVb3/rW+iG9EqwrKQGJRAK73V4kKOkxcCP3VCQoKTZoenWEttep6kkDz45XJCgB2GvMK9RdqmH06DQzfXP0P1N5A8Beby6WoTr40fNVCUqOBgvX/bf2YpkwLdJH9Ho/7ia7UFvnhpL0/nxYJRRVQev9UZxNVpIJNAlKkRu92CMWont8Ve0K6P5WvyZBCaD9gVp2/F6Lpl0BJz53WZP0AjDTN8dMn/ZGfu3NfoJdbsLbvJq2sev9hLa4CwI/VXHy872c+OIlMULXvVHaH6rXNlwDQpvdtNxbi3+T9nOd/lofh/5Zm6AEENsXILTNo20IxF9VQ+yGgKbd6OFJFieXSC1oJ4mOffyiMEGpbn+AlnujxXesEs5+vZ+X/q8YQQnA3+kksqv6PWcuzRcJShveWFcsXVcOyQn1fT3+BTHCTd0NARwxK6ZA5YE43TOnEpQU2PUnbXSUlNBZjd6nRnj+/55RCUoKxbKBlTByYor+Z7WTigCeBlvx5GklFAhKjgYLdTcG6XikfFsDugh1FzYRRP375cuXiUQi/NVf/ZVQW9axjnWI4W//9m/R6XRFglIdbdwqv74iQan9oQj1Nwcw50/7aiXpTU4ZV+O1QTGXvTaxM3hggsFDU1XvV7ffBzJMnpvjhQ+fq0pQ6nh9hO3vU8kZY6dmqxKULCEZZ72V6F6xdc+JL/dx+cfDVQlKslMulmDr//l4VYISQHibm/B2d1WbAlLzOQ7+43lNgkrtjT7a7q8tli3TwmT3nCZBCSA5k2Z+bJHR09oEsdob/DTdGda0Awjv8BK7SXstAXDoI2c5+6h28im4zUP762K46qxC9xVFx4N1tNwb0bRLzec4/rlL2gQlQLbIhHd4iOzUXs8FtngJb/MUSwBWw0zffLGcWzUMHZgUJigBbHpnM+0PRKsbpeDAh3uECEoAoe1enPVWfJ32qnaXfqASlFxNFupvrz5mTn7livq+ChCUZItaQjq6t/r6txD7ojd42fkHTcUScuVw6KMXiwSlyB6PWiakAvqfn2DywpwQQUm2gMktYwtWTmbND6UYOaruFDfdHab13kjxZN9qBM63sHVmPxIyuVyOd7zjHbS1tZFKCTDB1rGOdQghnU6zYcMG9u/fTzKZxKizsN/ztooEJSRouc1FQ75c0kTPYkWCEoDVK2FyS0jGVX/IXJsISQylGb+wwPCJyt/bJocB/0YL6HWc+c5EVYKSyS2x+Y1+ghtVCZhqBCWAmnzpLKk0hGUyxdIipUgvwOWfTXL+yeoEpfBOO/awqmyiRVByN5rwxM1428TWB1cPzHLsc0OaZJ7mu/xseOjab+xcLleW2HTpJ5OaBCWAqd5Fpvu1k3qeFjOR7U68LdrPFeq0EdnhXNkHFXD5Z1OcECS9NL7Kv6JU3ssBR8hI2z0BPM3WigSxAi48Pc6xz4utZyI7XIS3O7QNgYabPUR3aa+7JnsXmRtJklrQyBQC5x8fFyYoeVrMtL7GT7Cret9efWmW458X6yuA0BY7oU1VNrGAxYl0kaBUf7MLyVLZNr0Il38yyTkRQiEQ6rLijpsxuSuvjxbH00WCUudv+Ynvr9wP4+cWOfy5YZWgJEF4a3V/DR6bY+hYmXVymXHmiOQVmioNQZ2OwaPq+2y0Q/31duK3lF/T2iUvDdP7abXsAeCll14iHo/zj//4j1Xbu451rGNtePLJJ7FYLHz2s59Fh4728J3sa/9gRYJSpBUaNukx5cNiRYJSHma7Dpu7DCklfe0cMHIpw5AG4cIfzYFiYCFh4PiPqxOUIh0G2m+WwQBzk1QlKBnM4K2T8MdXfQym0mXXXleOLHH5pYWqBCWDSU9kmzohTPZWJygBBFtNBNsEiZgZ6H5iZpmgVAHOWomWW+3F0m/XYBU5Y2Eyq0lQArWM1uxImsSo9lxes9FI3Q6x54p0mgi1r16ol8fpx+foPazRVp0OW41Eyz4Ldp+huu0aUbfDTMPuKhN+ARk4/eScNkEJVZCodpMJX4N2wtURNBDdZMIV1X6umeE001fTFYlsBcwOZa4lKIH6jpe5tuVmC/HrNdbUGTjzg4QYQQm1vJ+3QSkqlVXC6DmVoGR26Yql68p90wH0H1/i8oHFlQQlUJ9Jp2MF08kAvgaZYHP1PpjoVa9xhXVsvF0pKn+Vw/lnU5x/IQU6Ha6IHsVYOc5NDsBoX3YlQanQ3NS111mceixVlupLSQPTeVJprF1H0zb96te+CA/XsS36HlyWKHNzc9x9993s3LmzeHDovzr+yyspPfDAA3zzm98s/ncLm4jpmsva+rscjJ6dgSSEd3u5emgcUrqyHxDBHS68LQ5Of1E74eJusdH2ulr6XxgTUkTZ8cEWJJNBSJEGBXa8t4VLPx6qqvSi2PQkE/mSIR6F5ETlF6Th9iCOOivH/l1bGQoFdv9hOwtTSY7+a/VT1AWYAgqLI9Vf0I43xlDssvA9g9tcoIfhA1NV7Ta9Mw4g9mxrhL/LIaQ4A3nlpx4x9QFRBHe4yC5lhdogqqSk2KBmV4DBI1NVx8xaYQ0ppBJJTXUmUN+fycsJYfKPKEI73dTtC3Lko+eK70YltN4fpftb2upjAJG9XiLX+Xjpn7urtlnrPSyFt8NO6321jJ6e5vyj2lRjf5eD2psCmgpghXdRsaHZF1ve28hE9yy9Px7R/P2OR2K46m2c/NJlZjSUIFBg1++3MT+yKKTY5myyUndjoLxalE6N15EbvQy8MA5J9b2oFBeSuSQTGy9y5swZMpkMZrOZs2fPEotVJmOtYx3rqI6xsTEaGhpIJNSgYsTCbu5Elst/2Ps67YydmAUZgp1Ohg9XIQf9VpTLPxnWJOUAbHgkismtcOgj2vO9q8lC2/0RRk/O0PO9IU372M0+nDELJz5bZQ1YeNyUWr5saaJKm2XY/LYGLv14WEjpp/k1NXg77Jz8Yh8JgaQSuSyyU65KpJAtOja9o4nLPxnWVA4sIH5nqFi+tBKMXpmuN9Vz4UdDTJzWOs60NsgWMPkszAqQyWWLDr1ZYmn85SNFyE6ZwEYHAy+Nv6xKSr6NdrJZXnZ/2WNivoK1qWStBZ1vqyezlOH0l65UtRNWydKpm7qbfrue+ZElzn+3OmFL810swaZ31GNyyrz4d2Jqtp1viTF+bparz1c+BFH6+7KFqmRE3wY7tTf4OPLJS0KqTtf9cQuLMymO/ftlTdvaG73UbHdz6it9zF3VXou2vi7MyMnpiv0hW8Dd4mDk6AyyBWwRS1mVO4DZyDB9yW6uXlWTvO9617v42Mc+ptmGdaxjHZXxV3/1V/yP//E/8gQLHRvttxAxlz/AZQ9LLEyoajyeuMJMf5J0etUGcx6OqIS30cKln1VYF+j0kFWvM3kkOl7jYeBwguETGnONTkfHa92YnBKHP6P9bYkEG+7x0n9ghuneyjFLMlEkT8g2SJV+3+ZWfu/7Nljw1Js5930NlZ086WHL22tYnEpz5ltixFjZpielsccQu96Jxa9w9lH1nlpbt46oWpZTS22n6Q5Vmar7sXLSC/8xOKJGZvqrn84uwBqQmBvRPqG+Fjjr1ETddK/2+nctSkrBDivjF+dIl4wZnUYySgtGp0Rm6Vrlq3KwhSQWp8Rs1wJnnZH6m9yc+tbQimcrh+geJ/3PaR8SAHDFTdTucXLmG8NV2yzZ0PzdAsx+iY77g4yeStD3C+122MISsT1uTn97dCXBb1UyXLbpSCVyxVJ7FcmAOj0td3mYHVxk8IjAQdU9doIbrHT/YILZAe2FWtdv+VgYT3P+R1P5dhquiUsFmNwS0W1Wen5cxg8GA2RzeBoVJnqTkAZXvczU5fJtSKfTjIYPcKb7FKlUCr/fz+HDh4lGNQ4DrGMd66iIhYUF9u7dy5EjRwBwW+rYWv8GDBWy13YvzOanoqKSkkGHLnXt2qt2g57R3iyLFWJnTtIXr4tuMODw6zj9s3RlgmMeRoee9r0GRi9mGDijTY7xRHW4QgYuHs6gW6oc4wwGdQlpMEMmvzzJ5ePwalJA4/Vmhs4kmRuv8PuFeTeVxt+mEO40ce7HcyxMarQ3T5QwmCEzX8UReQWlweMLzBTitsZcH+gwMnK6HPFkua8NCrTst9F/ZIHZIYG2rgUGlay2ILBFZzCobbmGTLJWlLTRoKiEnpmrmXKfCiuwFiUlq1eP3qBjdkR7LK4FJgcsim1nYvXqmRNQnboGGuv12HYjOh30Hlg1blYRqe1BA9lsiUqWxu817DGzlMhy9Xj1dXjxXRQYaw17zNj8Bk58L6EqZVUhTYL6bImxdLFUXxH65esMCmSS1/57OZj9BiIdskpCEhgKG29XSM7nOPdiTrMfXCGIbZQ4/1K6+P7kZANkyl8XaYWZseVYXYqc0YAum8HhgZlRwABWO8xNlf/tJfq5MP4U/f1X0Ov1/PVf/zV/+qd/qv2Ar2D8l1VS6unpQZblIkHJgp1bdQ9UJCgpHoXm10TpelMDAFefzxOUKqBmmxdHrVVIkWjycoLkXIrEQPVZQsnXnz722cuc+EL1pFrj3TW422yQhAP/cK5qQim6z8e2D7SpRB7QJEbYYxaMLoEHA0jC8U9f0CQT+Tc7iwQhLYISgKQY0EvawVTxqO0cPjSlSVAqQmA9oHgUtv5eE7ZaMQYyIExQAoQJSjv/uI26W8VO/g8fmFpTG0SQTKgKOaJkmh0fbKH5Pu3T/3NDYgQlQFXmWQNBqf31tbQ9qP3BvTSlLkitYW3mdoGgVBhv1ZBJZdEZdNjD5qp2BZ+GdrrpentDVdvx07Mc/9wFIYISgLPehmKVq6okwfK7uPl3WtnxwepKZEf+5UKRoNTxxljV2Hf6i32c/25/kaBUTQGKJCxOJVUimgAi13mxhkyV+0KnU0u9JVUSVuPtYTrfWl/WVNEphE610ZrZBqgfmps3b+b+++8Xass61rGOlXjrW9+K3+8vEpQ2cxM3yvdUJChteCRK4x0hZKcEKaoSlMw+GXvETM1WMRW+6b4FFsa1y1qBqp7U/e2BqgQl2QIt96mqPX0/GatOUAK2v6uRre9Q1z1apAiLV8Zol3DWVp83Cjj/3UGOf/aSJkFpwyNRPB1qANZSejH5zOgMOrIp7Y902an2pxZBCcDiU2P14oR2Qqvl3jBNd1dX4StFah5h0k1qPidEUGp+TQ1b3t0ods/pFAPPahOU1oqxk7PCBKXYzX62v69JyFbUV8CaCEr2mIVN72wovk8vB4YPTxXbUBhv1aCXdUgm7QV+4V3sfHMMZ7x6g4999jJHP31Zu7EAMphcCs5o9Xe48PvBrU62va+FwJbKp/XHTs1y5N9UgpKnw0bspurKESe/3Mepz18il81p9kVicIHF6bQQQQkZnHUWarZWVmNLzVNUVWp9XS0tr41UbIN9IMiG0Rux40Kn0/GJT3yCuro6Bge1FcHWsY51rMTU1BR+v58///M/J5fL4ZYjvCrw7ooEJckELbe7iO9Tj4xOXMwTlCog0GbFXWdcTu6XQrdyq3FxIs3CVJp5jX0DyaweKjn3xARnvlelDgAQ6rLgrFXVi059a7wqQcnTaGLTG0N4GlUSSzWCEqjqOWaPVP7ZCihJJpz82jBnHqtOULKFJVpe483/vvZ6SjIZMAjseRWUZWb6lzQJSgWIEGwkE3S8zo81UF2xuBSiBCVAmKDU9cYQ4a3V1XYKmO5dFCIorQlpGD4+J0ym2fBggNj12qpHS9PipKPE0NoIStG9TupuEmjDbIYcYBbY3y0QlCSBrsimc+j1ehRH9bFT8Kmz3qSpgLUwmubU14eFCEoAtqAJo0PCtLoNq5KAqYT63xvvD9D5QJW91VyWc49PFAlK9Tc5qiqBXXlulnNPjDN7JQk6naZq2PxYmpnBVTFMVz5lE2gz4YwaMVY63a/XMXFBJShJJmjc56T59vLGkiRRM7KbbbZ70WNgdHSUzs5O3vve91Zv8DrWsY6y+NjHPobNZuPIkSMY9EZ2tr6THY1vqkhQim2Apm16pHwYLhCUysGggDusxxst//ectDJmJCYyzE/nqhKUDAZAr2dpKsP555LVCUoGVUEJYOIqmgSl5huNNN2oBj8tgpLBDCanHks5ZShYQVACGD2b5MwTM5oEpegOM/aQYUUbKkGx6NFLOnJZ7TWaIf9Zr0VQKtwX0FY51OkIdiiENgrmXAEyCBGUQCWLiRCUAq0yzTeL7T1mkjB5RZugtFbMjWeFCUqemIG228TaK0pQKrRBFIoN4ntNGBQ0yT8VpvZrSNSzw5kiQckgMCT0EugV7fV94T2I7TBh9VdXVLr03ALdP0osE4QqqCkVYHHrsZVT7y55pwqkJJtfx4ZXmXFVUXVaGM1w/lmVoGRxgb+henvP/SLJhZdSkEprfkMtzcPcdO7a96dC/PWE9fgqxF6AnN6gEpSAujZo2a6v2G9GonR430LUv4NcLsef/dmf0dLSwsRE9W/fVzLEvzZfQbj11lt56qmniv99Hbdi07vLMuzcLTYmzyVITiQZPDDOpZ8OVww2tohCoMvDxSeGOPpvF9TEe6V9EgW2/k4TV342wujxGQ79U3VFk443xnDGrBz6twskJ5Ikq41ZBQKdLpz1VibPVr8vwMjBCXxtToZPTFU3VFBJR5/QLhflbLLSck+EY5+5XLUUXgGBjS4sPuMKRadqKKuSUgab36aSO176u24he1EFpUCXA6NDQafBIAVoeyCKM27jyEfPahJvovt8RHb6OPXFiySqlIeBPCEmmyNbgeG5wtYGHY800v/cqLACgig631xPYmhBs5RgAXpBVvimd8YxmPSaaj+FNpiDJl76W20FAlvYTCatPcYmzyWESgkWEL8zRGirh+5HrzBeJXk49NKkUCnBAvwdTiwBY/H9q4TEFXVh3PFwLZJFqvqO9Dx2dbn0osZ9ASZ6ZskISIaDSjh01dmI31bDxe9XTigVCHOb3hXH7DHywt+fqdiOYx9ffi+3/l4Tg4cmGHy+fBA8/YW+ogqVKaAQ3uG9th35Mbg4kmTgxTEGX1BPkbrbbGXL/IX1dYSpY3ZrH0dPHOXRRx9FlmUOHjzIpk2bKj7jOtaxDhWDg4PE43EWF9XddS81bJVvqmjvqLcwc3mec98bxtdmIzVdOYlRt9/P1YOTLIylOPzR81WVR0Lbnfg3OjnxmT76f1791LRsgS3vbmJ2YIHTX+5n4mx1UkZsXxBviw1n3CKkdjR2boZsWkDMVFbLJomotWx8Uy0L40kuPK6tJiU7ZWwhM77WNBOntNcFs33zHPiHc5p2vo12mu+O0PuzEa5WiNOlmOye40C3mBKNLWIWWvOASoqe7k1w7lvaJTe2vLuRpaklTn9FQBFxDQfbYjf7MXnkNZUxE4Fvo52abR5OfLa62iVALqNuSmqp8oBKJmp7XZTLTw8zeqx6Akh2ymx5RwPDx6Y0FRT1EpjdRtxtTkaqEA0BToiSfvLY8fvNZJJZDn+0wmGIfOL5yL+JfTeA+myWgJHARmf1dzmlkoqMHpmND9dy5ltXKr93KTjwjyXrWZmq5LWJs9MEupyMnBRLxNXd6Ee2SPT9rHJcK5AWLQGZrrc0MN49W5F4OXl+nsnzlwHwd9oJbfdw4gu95ducgiP/1lMcX7GbfQwfm65Ivuz+5hUCmz1Fe3vMxGzftZnX6+Q7SDkX6Hedoqenh3A4zEMPPcRXv/rVis+4jnWsYxl/+qd/yt/8zd8AoEdij/8hbJKbXJnNZYtfYn5UJUFcOZBg4sLiNRvlBcg28DdZuHp0np4fT6vl3UqXaaU77xK03e5h+PQckxeXOPOdCuuC/LdZbLcNX6uF04+OsTiVIb1YncRSs8lGMpFh+oqGEg4wM7BIYjDJzMCqeLOaoCSpz3PxKY3v9WwOk1ei6XYP3d8dEyIdeRqt2AKKsHrMxR+r/tJSUGq7J4hB0XPsc2Jkzp4faPsLwBEzY/YqlZMpJQhvtxPstHPi61c1n83daKLuejfnnxjVJCpJJiCnmRMpovUeH0PHEi87UanhZjdL0ymuHl5+uEK/lCV8Ca4XG1/lweSQOPV1bcWw+n0unDGzUD87ahR0Fd7hUixOpDn+Oe1DBQX4Nliov8HN+R+MM325so9n+paExyOAu8GELaQgWSBdZem1OKGOl+heJ2aXxPkqSmdDRxIMHcn3V/69LiKbuybGjZ+fRydYrcZWI+FrsZBazDLwYuUBP9OvroUa9ztwRowc/+oo6SXK5h56npwq/nvb3W7GepYYO7e0HFNLYlXf8wmuHkmQXlTfkUCHhauHVzku/3zpxRy9L8wylScQ2gISiTLvncsU5PaadzNdc5KjZ17iox/9KF/4whd48cUXaWtrE3HLOtbxXxqJRIJt27Zx7py6Z1Lr30Vbbb6kbhlFJLNDJZcMnIXEVJZ0korJcX8dTA5COgmnfpa+RnmklJzk8EEgauDCgQxTgzA1WGEvP69s0r7PQGIiy+VDlC2BtKIdMT3+BgPTo1kSAkuJ8b40hnzmOVcSc68pq2RQiROnvl9mz610jk2liW43k1nKMnhiqXKOrXCNAZwhCTJZZgdK/lZhXZWczXLmu9PX/u4qmL0GWvbbuXJoXiWErniWayeShaksZ57QWBzlf8/mU0UZhgRO47e9ysLsaLZ8CbFVaLzBTGohS99BATJ5pUcv4xNPvQGz08DAsZe3vInFqyPQqHDl0JImASqbVadILVUeUPOjjXstXD25xPRA9RsbDNB6m4XxyymGz2qfPLR5Ddj9BqYGMlXHWe9LVfpAr7uGTN16m4VcDs79uMICKd8vF54Rl8gyKOAIGUgv5TSVmpILYDCqfus7NM/idLaiotLZJ0vaYGCl+lE2u0JRKTGRY2Y4w6xAWUOAmlYJi1PPaF+moqpSMu8igwIbbjYwfiXDQIESsKo/FmbgwgH1RjYPBBsN9JzIt7kQi0v2n08/ky2ORW9UVVRaTfrLyer73382w+xUtjgezXZYKJMqbq+7i8a6mxmafYzu7rP4fD7+7M/+jL/6q78S8MgrC/+lSEqnT5+ms7OTbJ6958LPdv2+iva2iEL7gzGmehOc/kIfl54c4ZpIXTLAW+6LYXTIXHxqCJLVyyMpih7FKuNuFCsBNvjSBJJi0FasyRMOTnzhYpG0UAkNtwcZPz/LzKV5jv5bdaUjZ5OVjofqGD46ycXHBT6Kay0YFAOKWUzk5tQXeoXIEhveWIder+PE5y4L3BWGj05iMGp/adpqjdTvC3Hyq71CDe7/6Rj9PxWTx16cTmGeSwspA+WyObLprCZBCVSlHVHylclvwew1YguZX3aSkrXGhN4oJsomkuAsIL2QEd7cmRtbwmAR21FYSxsAanZ7sIcsnHu0evKy/+dD2GrMzPaJqRv4uxzU3xriwEfOVR1zJz5zWejdKEBxKxhkQZE8Ba77gzbmR5aqk5q+s5xgbXswytnv9Fdsz+jRaRanksxeXij+RrW2Dx2awNfuFHo+xaOg2CRsITEVqpZ7IliDZvqfH1f/Xy63clGt09H71CjkcigehbbXxZgbXqhIxLQfjtGZtXGQp0in09x8883s2LGDH/7wh9qNX8c6/ovi4YcfLiaVdejYwx1Y5Moneze+qRZrwMSL/3Se1HSKwRcr75RYAjI1W12Y3TJnv3FVk4RhC5kxOmUhwkZqHmauzDN8dKq6YZ5scOHxYYaOTTJXbf6Woen2ED3fH+Lyk9rlQDrfHMPkUTjwYW2yLoBik8llxUg8qekUL/5jt6bKj2zR0fW2Ri78cJApAZXH6YsJpvvmuHpQm6DUdHcNU71zwuuSikSU1ZBhaTrJ/KjYaf70Uob0glj26/xj4gkXZ70Vk4DKz1phqzFjDZoxemVN9acrz4xx5Rmx9ers4Dy5VFYoQZOaTrE0kyI1p62CMH1xnhfWQPqWLdD0mig9PxjWVPgaPTXN4pS4VFXHG6Kk5zKc+07lflTfjfPCCliSWYfBZMAetjA/pE0qargjQLDTxfHPX6pIakrNw4nPqGpszrgFW8jEwHOV36kjn7yExZ0faxoEqPmRFLODCwweFjul5ayzYnJKyDKkKnGw8vFUtkDNNjeOqJmTny9fsi81T/FZ2l8fwRGzcPjjl8v2tTxtpmF6O1PMM8ZVvv71r/Piiy/yzDPPrJfeXcc6KmBsbIzm5mampqYAqDG2sslza0V7yQbtr3Yx1ZfkwtMzjJxZ4pqP8JLsQPwGF7agwsiZedJLqAn3CiwWSZfB5DJgD8lMXiwzJ69Kdox0L6LYDCxOaWxW5wkHZ747zmIib1th/ePfYGZhIkViME3396vHPZNbouN+P0PHZ7l6oMrmTf63rF4Z2WzAYNQu3QbQ9/Np+p6frlxOKo+6m5zIFgM9T4jF6aFjsyg27a1d2W6gdreTvmcmhFR5Js4tMHFOTKk5tZBhaSYlRL7SGXRk0znmJrTXEOlFOP5FMRKNbDdgrzEye3XpZScpOWImlqakFSSlAnK53AqikgjhqID0Yoa0SWzvZmEihckpXUu4KYPT3xArO1iAK27CVmOk/9nq65ix7nmcURNzQ2L+tYdl6m50c/bbI1XH3OWfTHH551Oaz1WA2SlhtAkyioBNj9SwMJ7k3PcqZ9UHjyz3bXSPg/6XZq5tTy4LOj2JwTQnvzXG4njeQKNPRrvnyWXy8RKWY1+ZBKZkApNLwuJZtS4qjbO5bNGfsesceOImJi4usjiVzddVKvGNXsfYuSRk1Xa23ulidjjJuR+U//5yDm5kl62eny98iZmZGa677jruu+8+Pv3pT1d+wHWs4784PvzhD/OHf/iHZLNZFMnKzrZ3YlYq73nVdYI7pOfE02rSe2JIpyb0S1Ao2WZQINwmYXZk6TuxnPRerZpUgNmUxWQ3VCZs6FdeNzmUZXpEYw9J1kEGRntzTI+lSOa3hcqqKBkg2CwxfDbNeF9+bVSFNBvdZsQZNHDqh/PLxINyBKE8sclo05Etl4Mqd00GTn1v+lpCw2oCiQFa9tsZODKvXVoLSE5lGL+8xPRlbYJSoE1hYTrDbCWy2Kq2CxNN9DoWZ3IszogRPNJLWU0CTwEjZ1OMrCblVCBt2f0SVt/LT1Iy2fQ4QhIG8xIZjbXlVH+GqX4xvyUTkEmJ7ZlmMrA4nSUlsFeYTMDxx1btl1YhKmGAyAYjoz1LRWJNEauISmMXkmIHXPOIbDFCjqrktUwSTn4/r5AkICZhkEC26DE5DSxOZ9TTA1WEO7xxA+GNJs7/dK6yelUGLr+kjhujHaweAxO9145nXTpDTjJw4cU0ioU8iYiq5d8ySTW2TZSeF62y9rK41LKJUipNWl/yHpcQRzMlhKVoq57EVI4Lh/IHFpYy5Er4B2m9gfER0JEh0gKBmJ5Tz2bLKpkpmInZX08m8iw9A0/x13/913zta1/j5z//OaFQqPJDvsKgy2kdy3mF4N577+Wxxx4D1CTZLu7Apl+lU1twRUlSvfX+KJd+dJXkXAU35XI4m6xM98yh2MDoMy8n58sgstfLdF9Ck0AEaimijtfHOPnpHiGCy+Z3N2J0yMLqL7v/rJ2lREpIqQYFtryzkfPfviJEoBFF++tr0Uk6Tn+xelmUAra8txGdTsfhj4gl7ITb8VAUV7ODI//eo1luztlkZWEiJVzi7FcFU0BhcSq5plJnotjz3zuY6Zvj5Oe1T+mvFbaI8rKOoV8W/s1ORo9qJ5O2vq8JxSLxwv8rnmATQXCbi4bbauj+9pWy6j2r4W6z0fiqGg7+6/mXtc+73t7A6JnpispEpQhuc9F4R5jhY5Nc+J52orbtgSjuFjvHP3VBSFGt4+FakvOZZZUnDcRfXV2tCcDbYVeVrRSw+RUSVytk2HI5mu4JM/jSmNrWUnJVmQXbVOdlTp07ycLCArIs09PTs54wW8c6SjA2NkYsFmNhQV0TBYiySb6+8gX5xLo1rOBttldVBLGGFeZGk5ACV5OFqZ7qjKPYTd6q9ytF/E5V5v/iE2qCoRrpxxpR6HxDPUNHJ4VIR02vDuHf6OD01/uF1JZC2124Gyyc+frLp8QjW2Djmxvo+f6gUHkvT5uNpldHOPedfiGS0lqw649aWZhY4vinLmu3o8MuXOLsVwlLUGZ++GWu3wZ0PFKLo9bKC//n5V1rACCDbJE1CT+/ashOGcWmZ26g+jeQJaSw6a1xho5NcukJMZVOIej0bHl3A+n5DCc+J/bd0f5gmKVEuhgPXg5YIwrx22o48RmxNfbW98SRzAZe+nsBxTEZdr6vicTQIqe/VJ1cr9PrkJ0S7Q9EOfON/qqKdQXYYyaMTpmxE5XfRXvMxOzgIqQqqyQVm+uUiexyc/lHI8X2VyJYzcvTjER6OH9e9cPb3vY2PvWpT2m2eR3r+K+ED33oQ/zlX/4lAAZkbvC/AdOq2kxFJaWSpHpkh4XhM/Ok5ytsUmcyRbUlJLC48/9ewCqSkrtBZnEmx0I1snD++0oyQfPtbs7/aFJNumtsTzbd5sIWlDn6ldFrlVHKYMtbAiTnspz6RhnCbpkyb62v8dL73PQy+aAcBAnhBUR2OzBapaIykhZaXuNFNhk49fURTRWlNbXjOgfhzQ5OfG2oqEhTCSafRHoxLVzi7FcFyaYSlUTJK2vB9ndHmO5d5PwTYt8IIiiQlUwuicWpX0Gj1whnnZHpXu2957Z7fZi9Mkc+9fKWVrWHZZru8HHhxxPM9Gm3wxKQaLjJQ/d3q5Oa1or4rR5m+hcYO7tqr75M4txWI9H2mgBDxxP0v1Ams7Yq3oW32wh1WTn9nfHqcSOfzIvuVGNy/0v5l6vaO643UNNlZvD46qP6K2OXPSwxe1WNzyaHxOJ0hXtmc9R0mZnsT6kxoGQeKFclYNJ/gpMXDjE3N4fL5eLMmTP/pRJm61iHFpLJJJs2beLsWfUbvj54Pc2R/dfYFQhHhcS6YgZnAEZ7qaieZJQyJJOqvcUJ86vSF6tJSv5aGL1S8lvlkCco+etBkmGw8HmZrnyNYoa2mxSGL2YY7lkZe8qRlPxxA5EuhfPPLpZVW1qtomQPGXBGJPoP5eeISoSJ1epLK2666hoDNN1gYeDwfOVycCWx1+wxEL/RzuXnZpkbyQiRNq5BhXJ+Ha+2sTSbqUw+Kvktq98gRJKqRvp6OaBYlhVpfilfVECkS8HfKHP00Zd3XxEAQ15JSVxM6FcCgwKyaVVZuTLzvMEMG++wMdy9xNDpChsga/zeKPxW441mchm4+KyYM8JdRrJZGDq1xmRjFZKSYoHoJiMXX1q6lkykv/a6xj1GzC49Jx8v3+actPL96tivMD+V5fIhjbW2LGEwQP1WPb3H8op1UHXtJTsMmGwUS7cVUUJSUqyQWVSJbGYbLCRYQVIqhaTL4IvAcEEPoYRgVVBeKiCZXmBo4bt0d59Bp9PxP//n/+TP//zPqz/jKwSCchu/uUgkEhiNxiJByU2Q/foHriUo5WENKez+o3baH4oC0P3oQGWCEmqCv+P1dWp5oQRVCUooELspQMtra4Xa7m60YbTLuFtdQvajp6eYGxSPxqe+0svhj1Un+ygeBV+nA5Jw5F8uaJJLut7RwPYPNAu3wew3YvEbhe2P/MsFIYJSx8O17PyjNpVoIIAzX+vn0L9qE5RAVWfZ+q640H2DO1xE9/nEGqGoqj2i6Hyknl2//5slu9t6f5RNb2/GFBDrGFutEXebQNF7VPJT071hIdv2h6I03x3B0WDRtD35xb41EZTaHoiy60+0+2X40BQv/J8zQgQlUEulyBYJd1zMH3W3Btj1p21qWcAqOP6pS0WCUminW7PNZ77ZJ0RQAhg+PsXCeFKIoARgDZtx1mv3Cagks9AWt2afF0rvbXlnE51vaawcE3Q6er47yNxQEsWjzgMdD1eO1a4T9Wxa2AtAKpVi+/btvPvd7xZq+zrW8UrHn//5n+P3+1lYWECHjr28pipBqfV1YXa+rwnZAnNXk1UJRbIFNv5WHRvz76cWQanp7hDhXR4cgrHFGbPiqLUK2c4NJJkbXWTsjBh5puf7Q0IEJX+XA4Chg1OaBCWLT2bnHzQR2u4SaoM9ZkWxSRgdYqePJ84meOnvurUJSrJaYq3+VUGh+wK8+I/dnPmKNlHD1WSl7bVR4Xs33BnE4hNTMHI1WbEExWztMQubf7uJ2P6AkP2vC3a+v5UNVeaz1QhudQnbRvZ48Qiu07a+K07LPVFNu/mhJAf/9YIwQUm2wPYPNBO/UyNpksty5N8uCROUACx+E9ZgdfXGUmz73TjtD1Zfl8wNJIsEJU+HDVkjNJ347EVOfVXw0EAKElcXGT0ppk7mabRidsk4IiYh+6Y7a4jfWv09nO1TCUqWgEzH62tpvb+yP1LTqSJBqfX+/DzgLK8GYkk5qb+8jQDqGPrsZz9LW1sbqUryTutYx38hpNNpYrFYkaAUMXVwW827riEoFSCZYOtveam/Qf37wKGFygQloOEmB+13ezC59JBGJSjp9Mv/rEL99Q7iN1aYG3S6lQmZoIzZLeGIiO0JTVxYYHYwKURQAjjzvQm6v1ddUVAyqWQOgO7vahANsjnit3nY+LD4WsAWULD4xUXsz313XIigFN3rZNOba9SSaAIYeGGGI1/o1yQoATTu97DpYbG9FUfMSGCj2NoZwNMiPq+23hlg61vE2vHrgFwuR3i7jc7fCmEW7HOTS8IeFluLGp0SkV0OIdvwTjstd/mF7t3zwzGOrKE8W3innU1vqdG0m72a4sinBoUISgCyRcLoNGAJiMUDX5uZzW+rwVhh7VDAxR9PFAlK7sbqL0xiMM3Z746UJyjBNQShyd5F5oZT1eNGCZxRBVdtyabUqphYCltAR2S7ldh1q96vVfF39qr62y23uthwjwepUpfrdQyeXGRxIo2kqPNAw02V1/Hu0U52WB7CgMzU1BQbN27kf/yP/yH0nOtYxysdjz32GFarlbNnz6JIVm7Y+IdlCUoFRFqga58eg6KWCBrt11UkKAG0XS8R36zu2RQISjlJX/ynFIF6iLbrsTuqlHYrIQY4/XrsPo2UsF4Heh3JJR0zo1lmRrQJSjm9jpHLWc4+U56gVAp7SH222aEM/YeTVWOhwZCm4247nvqS4FawL3ON2aEqvsiWKgSbkusWJjKc+vaUEEGp/W4HwQ2r5qgKBCWA099PcPkFbYKS0QHNN1kIbdDIl+UJSv5mWVWVEYDZpZY5E4HBDBvushNok19WgtKvGh23WYjvEl9f2kOGa9TLKsEVMWAPiBm37bcQ276qHWX8mFmAk48nKhOUYCUZzQCtt1uo6dRYH+l0XHhmQZigBGD1GrB4xNUpm/aZie0wVa3FnJyHi8+rBCWLV4dBY1hfeHGJ8z+v3GbdKiLl9FCGqQGxdZfZBVanDkupuF2VeFPXCg0byvzNoCv+k5zLC1cq0LpbT2xD5d9P5wwM9av+rWmErhv1SBX8oUhmYvaHaIm+ilwux1/8xV+wadOm4uHvVzJe0eXe/uIv/oL/9b/+V/G/d7Ifh74CCSS/ATA3pJaHGDk5LRSMLzw+QGR3QLgMW8/3Bhg9W33juKDMNPj8BIOHJjRVU9oeiHL2G/0MPDPOANVXATW7PUR3+zj28R5mLmmfoN/4SAyjXWase0ZIvSU1mxaqfV6AqCJSy31R9AY4+43qp4ILSM5nSC+mhdrsbrMxeTYhrIzU/Wg/9lqxiS+6249ilYRKw0V2eKm/JYTBqBeyH3hhXEjWG9Qx4mqy/UpO6He9vQGT18hLf6t976uHx8nmcmTnxXy98ZEGMktZDpzVLtEWuzmEq85G38/HNPvywo9HiEylhN6Bwr3s9WZmry5ojqm58SWsYROKrXrJxwLcLTbqbwty5F+ql7G5+vw4V58XP+U3N7xINiVWvgbUfrTWmJm6PFeVrFcgVbU9GMUcMHHkXyq/w5PnEkyeU+0jN3qZH1mqSso68PfL/VyIg5UwenQag6Jn6KV8KSiNsnI93x8g2OXWjgk6HckJdR4YPJq/9+oycXnY9G5u5UEmN13i5OkTfOxjH+NrX/saQ0NDKIogQ3Id63gFIZVKUVtby/CwSi5wE2C7fIvmdaOnZzAoes0SbKCWCho+Mc1I4f2shLwiR8/3hpjqnWPmcvWbFxQ/jnzqkmaZJ0+bFcksMXJkuliSqRo2vbOe6d55Lv9oRJOgZAnJNN0ZwtNio/sbYgpKmcUscyNim/8TZ+d48YxAqVgZut5cz8UfDpMQkE6WLTLphQzzo9rHnmWLDtkhMz+UJCUgtTzVM0f/i+P0PaOtZmMJyoQ2uzFIenq+q51sabqzBp2kFyoFuzidYujIJGPHNMZeHjt+v5mZ/nm6vyFWKkUYsko8Gjk+yeUntX0ydGichUkxIkdsn4/oHj+pxYyQclXt9T7mx5eYECBcX/nFKNN9YqfmCqpPzgYL0xprtdR8vlzKgsAmRb5MR8u9NSwl0mrJ1yo49NGLQu0tIDmfITknJrmODC13h5kfXeL4pyuTkFLzkJpPIjtlNr0pxsWnh5k4Xdnfp7+y/K3U9Gq1vGQlDB+eZvjEdDHm2aJGEv2VY8nJz1/CGrYU269VVm7s1Ax9z4oph4yemcFg0msqOm2Sr2dBnmIg2E13dzeKovDRj36U97znPUK/s451vNLwjW98g4ceeohcLocePXv8D2OTyh88KagopRdhZjDF5OVFodPYVw7NkFrMqqWEqiGvytHz42kWxquXdzP7JBbG0kz3pjj8xVFNpZzoLhv9LyaYuLjERLnScSVw1inEdjs5871RIeJA021erEEjhz5zVUixJzmXQbaIn/fs/o5Y2dXwdhuy1UDvz6aFFJTS8xlS82khxRlbSCIxJK6MdOGpCexBse/Z8DYHVr/CyEntOd5ZZ6LpVh+9lkmGj2o35urhGRS72J5XeIeDUKeNw58T68e1oGG/B0fUyLHPaq8tx88voJP1pGbFGtF6j59sJsuJL2qTs4OdVgIbbYx3z2sqNY0cn4VsjtlKStIlKIwhk0ciLTCmFidTpOczSBZIC3y/mf0SdXvdnP1e9Xd9+vIihz8hTpZanEqRXhRcdwENt7jxtlg4OTlclayXGFT/Ft5hwxk1c+bRyuvFhdHlUpKeRhPppQwz/ZV9fupbE8VMTFGhDsqWhUkMpel5epqpy/n7aZSV63thBm+zmbRWl+t1pJM5Zq6mmLiodnYuky2rpmSSLNxW8y4mg8c43n2I//2//zdf/vKXOXv2LJL0ik4prWMdFXHHHXfwwx/+EICIbxsdsbsr2haUjSaGQDblS25VIScVMHg+zbSWWHdekWPkMizMZssTg0rISSYbLCag54DGek6vw+ICxQRTQ3D5iHacbdhtZH4qw1B3hoUpjWabIb7bzHhviv4jYvmh9GKWxdl8uzXytQuTWU5+S6MRecRvtDF4YkFVXNK4r8EAybksS7MCuRZDXpFotkLZvVW/tTQDfYcWmK5GvMiv2Q0KRDqNyGYdV49r+y+6xYxi1nHqcYEJOwn9xxeZHhRbw7TdaiYxnqX/iNh+5Fqw4U4LY5dSDK8uPVcGQ2eWlkuqasAVMdBwnZkLzy4wM6Q9tqObjSzMZJkd0bbtP75UvgRfmTk+k2+v2YXmO0MGUvM50osCYy//W8EOhVwWRs5WHyPnfzK/fJ0AUgs5kgIl8AAwQOMeC/OTGS78osriMgNLs+rYbtxjZPBsitmhyr8xcGrZx8FmA8PnK/dNYhyO/3j574U4CJTtl57DmWXSlkBZucGeLJMClalzsoHpsQxGy7Kiky6VuUZNCaAudB01no0MzD/G8ePHcTgcfO1rX+O+++7T/qHfULxiy73V1tbS369u0lqwsUd/Z0VbxQab3tnM2MlpLv1oWPOljN7kJXqdj6OfvsTisHYE3P6BZvSSnpf+TjsppHgUtr2nibnhBY5/4pKmfXSfj9j1AQaeH6P3Ke1ERf1tQYJb3Bz5xEUhUo4poODrcAiRZtaCrrc3MDeyKKzIsu39zegl3QoSw8sBxQbbPtDB/Mgix/59bYkIUWiRLZYbA7V7/Vx5dvRlL+FWtz+At90hTApbS7m3pnvDWIMmjn385fdfaKebuZHF6gpleSgeBVlBWLVnLbBFFLre2sTUpQSnvyR+Al8E0X0+avcEOPutPiFVJVtEoe2BOk5+uVdI+UsUik1PzXU+en8sVtJkwxvrsPiNQoldgOv+WxuZZFboHbbVGul6cyNTvQlOf0Hb3/W3BanZ4eXct68UlZMqQqdj0zsbkEwGDmmVuszlQIGd729j4KUxBn5emSQ2lO3jJC8CEI1G+fu//3sefPBBzbavYx2vFPzkJz9h//79xaTKVvbhlSsrm0T2eAhtdnHo3y9qkoIAtvxOA4tTSc58VZvw4Wm30XxXDX3PjDJ4YErTvv31ERwxC0c/eZmlieXGVCr1tv19jegMOg58WGBOlWHbO+PM9C9w/jGxNU/tjV6uPD8u5BdRWAIyrfdFOf31PpbGtW/s6bDTcneECz8cZPSYdmnUtaD99VFcDTYO/uuFX0kJMktQJjWbEiK92aJmTG6ZsRNiyjNrQefb6pm+PEffT7RLAa613NumdzUwfGSKoQNihClRyBbwdboZPDwpNP7sMYtQ2cBfBl1vr8fiM/HCP5x9Wd8FdHq2v7+RZCIjVGoQ1DKQRrvMma+9vISzyB4PI6dmhd4Do0em68119D8/zuCL2v0eu9lHZJeHnseHGD1efnyXHizZ+KZarAETh//1vNC7s+334qTmMxz/lPa3giUks+HhGH3PjDF8WDue1O334260cfTT1Umjz6d+QIIpZFlm27ZtPP/889oNX8c6XkF41atexY9+9CMAXHIN1/nur2wsQcddDiZ7k1w9PK9JTvLEFWK7bJx9YnIl0aeMchJA+91OZKuB41/NExOzJTu6q/bXJCNs+q0As8NJzj0xtfyHCluT7riRxltcDBycZfBomQC1ar3mazMT2W7n9LdHSFX6vC5RQ5HM4I5bGD2lEfzWWHYhfpuHpUSagefF1hht9/mRrXpOfGH4ZS3zhgTb3h5hbiTJ2W9rr0l+GVgDEnMjAgktCXwtFqYuzr+s5bwAfO0WAhusnP6G2DOupdxbeKsNe9RE92Pi+6I6wWSPK25iaTbNwqi2/yQTSKZfTSk5yQab3xhh4sICF58UIxiLwtNsomGfh54fjQuVn5Ntelru9HHhyYmX91klCG60Mny0ZH+2SiyMXe/EETFy8psjK8lBFeLgpjcFyKZznPhyhTFYQgKSbdD1YICp3kUuPL0qRpS+/3o1eeVrNVJ3nZ2ep6eYvlLGJ6UKTwYDjbfYMdkNnPrOVMXnA9S4JkHnfW5GziwycqZy/0wtjfDixDfIkSMcDvPxj3+cV7/61dXvv451vIJw6dIlNm3axOzsLHqdzI6Wt+GwVlaVc/kh3JDjzAtZNdGtQU5q3gapJFw+sbJs22rlJFBLwDVv13PlbJaJ/CfqilJvq0oqRdp1+GN6Tj+TIVmaYilVKCmJhy17JWQjnHq6fAwuKCnl8tc0X6+WXxo4WTlmF0u96XR46gxMD2bKE3hKUVrmTYtEZIaG6yz0vTArdGjc7DXQtM/OlZcSTPWlXtYyb+EuI4FWI6cfnyG5OiX4y/zOqrlKMatKLpr+Q819Gm0GZgUIOWttX90OI/OTGUZ7tOfqtZZ7i+8xMXklxeQVcTKyEAzgqjEwNZipSkApwORYVb7tP4JV6/u6HUacEZlT302QqdSWX7LsW8utFjIpuPAzsf06f5OM0W2g/+AaCWdVyr4BuKIGZsczK0vxlSn5BipJqeUmE8PnUkz0rnTI6pJvAO6IjvotCpcOLjFViSgkLxOqY5063DV6Tv60TOwp6ZsCcajtOh2ZdI7zByvcu6QEnGw30Lod+s/DpManiC6VwRsFX0TH+WP6yn0PnLn8ffrHDiJJEvv37+cHP/hB9Zv/huIVR3vv6emhpaWl+FHfznYi+oaq1yQT6gekZJWEAvHc8BKZpHiAmLyQQFLEZNOSE0nGTk+rRBUB9P90jIWRJc3EvOJRSE4kufzkMJef1D6hE391DcOHxpkbStI/ov0hvutP2lgYW+L4p7SJVQAmt4JOgDlewKF/Oi9Uus0UUOh4KMa5R/s0S9OB2veDL40z3Ss2Qe78w1bGzsxw8XHx0z1CBCWAJFwRSGSB+pzNd4W59NQgiSvak0fvUyNCJLZfBj3fEVN6KKD5vgiZxQwXn9CmmRZVcgSQnEiuidul2PRs/p1mRk9MqeTEKkgMJBk7PcPln4n7sO3BKDqdWkqwGvp/Okb/c2PCxDSDWUa2SHjb7AyMaG+oudtstN1XS9+zIww8U9k+mcgWCUqt90fp/l5/1Tad+sJyUqoQX6rh5BcvkRRUckhcWWKie4aLT4v5e+z0JO5mmzZBKY/UXHq1Snd56HRYPTI6PWTT1S8I6WOEiDHUfoYzZ8/w0EMPcc899/Cd73xHqE3rWMdvMh5++GG++tWvAmDEwo3yPZrXZDM50KsKPCIJ+tR8mqTgieSJnoSq7nJBbP69+OQI4Z3uFQSlajj2uT5kgaoMslN9NhE1FtkC0RsDXPrBCFeqxOoCojd4iezycOorV0j0a2d53M0OFLuEQRZbe02cnuWF82LkkJb7wqQXs0LzOsDFHw9Tsz0l1O/1twXwttg59PELwkSV+WFxRkuif0FIKQrUMqqAMJn3xKcvC7djrTj2cbH1NqhErNgNPs5/p5/UfPXvl9Q8QgSYAtZKUKp/VRBvk51DVVQYC+h7ZlQtCS3YndaIkaa7wpz+4uXqz5nLcvCj5yEtroJhC5mRzeIS2BvfVIvJrXDwn6qrZA48pyYBrREFb5O9aqnLpYnUCmJkIb5UQt9Pxpi5Mq9ZErOAiz8cwt/pEiIoAcz0LTA/Lrh4zUI2mWNuRCwjLRn16r6VRt/vlu9g0jZIv7GbF154AUVR6O3tpaZGuwTNOtbxm4ypqSlqa2tJJNQMzGbXnYTMGuXo0yox0SDrhNSTFqaz6p5XYcO2QlK+gIneJCZ7SZyssq+WXoLB44migocWJi8u0b04XixptAIlG/eSDdIJGDu7UCztVBb5D8HQZitTvUssTqaFCEpdbwqxMJHi/PfF1I0tXgllDYpLZx8dJWfIgcZWo2SCllf7ufizSRbHBNbGabjy3JSwqmLnG4JM9Cww8JJ4RkaIoJRvy9hpsYlGMkH9TR6uHp5ZVpupgrEz84yd+dUQp68eTsBhQRkqILzdrl53cFaTrDQl+B6AqniUXlwDaUeCjQ8EmLiwwNUD1fdK0glVuWr0tOD+JRDZ7UBS9PT+bKqq3cT5RSYuiStcGRQ9RocBR61RiKRk9ku03+Nn4MAMw8ertD9NkaAU2eVg+NgM6cVcxZjY94tlYnUhvgBFZc7V6P7uBOm02EOmEjB0co6RM2XaW2bMTA8sMTdmqqxuUWhPPr4l5zJi3316HZIph06vI6uRCHUZA7yq5ncZ9D7LqbMnufvuu3nnO9/Jxz/+ce3fWcc6fsPxz//8z7z//e8HwG2rY3vLWzWvyeXUV1NRIJnUfh+TS6xQgylHTipgfhpmx3IkSjmlFRL/AEMXcqRTqwhKxeuubduFF9MVSzTpllJFcpJBUYky539R/btQl0qDpCPQLDNy9loCQjm4QlC73UHPz+ZYmNTexLd5DJjsevQGDfmTPBbGM5z49pRqqjFXhzpN5LI5hk+VdFCVMm/D55ZIJ3NCBCVPg4SvUeHCM/PlSUdl+qdsP1ZAMgHJhAAbR6fD02DAYNAJkY4Aeg+8/ApKBVx8Tnx9pNgg0KQw2J1cSYYphwxM9YsTn9ZKUPLFJbwNMt1PlWnIKuWekfNLzI6kq5JU0OuK3zuKFaJbzfS+tFBUYioLnY5zP12AtDh/weKVMDnFv1ui24zYAxJnnpirSlQq+Foxg6NGYuxiGrLZsvEqk4QzTy73eyG+gFrybTVRaXIgx9LcEvNTYm2+2p1jMVGBHFnm3ZwazpGp9ioUuA2ZHDlUkumiwLDNyQYMUgadXle974H2+ldTH97KpfHv88Mf/hC/3093dzceT4VqYb+hEB95vwH44Ac/SHNzM7lcDh06buTeqgSlptfUENqpSmG/9PfnOP/t6mSLzjfXgaKWOzrwD+eqqpjYIgob31QHwIXvDdL9repEhbr9AToeiQFw/tEBTYWUze9uZMMb1ftrJuYV2PY7jWx6l8bGVYl9cJOb5vtqxeyBxcmkMNEH4KW/6xZSLgrtdFN/W1D9D4F98GCnC6NDEdp4K+Dyk8PFklTVoNj05HI5chpkhQI2v7uRbe9vFm7Htvc3E93nE7L1NtuxRyyYvdXrqRfgaLBgqxWr675WKDbwdzmE7T3NdjwtdmH7Le9tWh4DGmi4Pch1/61diNCWTKj9qJPFwuC5R/uFSwIC2CJmrDWC9XCTYA0pdDys/c5N98zx/P9zpirhqBSTFxMk51LMD4ktHN0tNrztDtrujYrZt9nY9p4m4ndVTwglriyRTGRxNlnZ+cdt2Our++bsN1R/OxosbH53Y/V7DyQ58lE1ERjc5qLlvuptP/2lKxz/pJrgbb4vjK+z8nicG07x4t92M/i8mrTtelt91VrOoTPteDNhQK1R3tXVxcTEy3sScR3r+HVBKpXC4/EUCUoxWqsSlGSnRPtDEUAlQhz6yMWqSXZvh43YLeq8ePLzV7jweHVCaeNdQdzNFkjBic/0VScdydD5lhiWgMzSRIpLP1hJPFmtomSPmdn+/kasEYXUdIr5seqJnoY7Amz7nQZsUbF5uuGOMKFNLiwhAfYTkBhcYHEqJURQAhh4dpwX/7abeQG1wZb7w8hOWZgcYg+bhcvgAiyNp7j8Q23CPIBOyq/nBNoiO2V2/VErNbvKl7lZjdjNfrreXi9kC+BrdeBvF1zvyOBps6klsX4FsEaMWCNi6zpb0ISzzoq9vsrkVYLIXi+b3ln9gEcptv5uIxvy3zBayGVy6kESAb9M9cxx9Xnx+VNSDJjdRrztLm3j/HiK3eLD06Htl+Of7l1T6beZ/gXmBUswAjTdGaZmh0d4vHS9vY4tv12naVcgKHU8HGXDI9eujUrj3PxIqlj+rvV1YULbnVXvff6xQQaeVdeibQ/mY0YFzI+oZM1E/xKyRb1/NVx4fJjD/6au00LbndTe6K1o607U0Da0Fz0GUqkUra2t/NEf/VHV+69jHb/J+NznPofb7SaRSCDrjNzq/52qBKVgpwlvi/pxfPLRKa4cqE7iiN9kQzLBwniaE9+cZHGaigQl2Qbxm9XvqOETC/Q+V31PxddiomGfOo9ePTy/snxcGeWg5ttdNO5XY1FZgtIqbLw/QNtrBDdsJQhvddCwT2zNADA3kiRxVTy2n/zKCGcFSr0564yEt+fnIoGckLPOjNmrsJZKSyMn55gVOMSHpHZFJTXR1Wi+08vGh8X2agA6Xucn2GUVsrXVmHDHLZg9YpOjySdh8v2KzuFK4IgZhY/5+tqseFsswrdvu9dHzRaxdZqvw8KWt9cgidy+IFohuD969aVZUgnBEh6AI2zEXiNY5j6tEn3q97k0TRcn0hz+5CAjJ8T2mBdG0yxMpZkfE9uvM3klarbYiV6n3RZQSVCbHg4T2Vl9H3NxSi2paPJKdL3BjyWwasBkVvp24MAcqQSYXHraXl29LakEnP3+NKTBHpao3VXhPcrH6ysvznPuh2pmNbzZjLO28uBNz+s4/vVJxrpV/xXmgUqoGd9Lo3knAP/+7/9OZ2dnkTS7jnW80pDJZLjhhhuKBKXW6J1VCUoGA9S1qf8+PQann8tVJShZnRDIf9b1noSB8+q/VyIoBRvAnl+6XDyW0ySrNGzRo1jVRP/w6nNC6cyK/JlihfYbJUx2yKQhWWHJWCAo+eoNbLzdhNlVvQ0A6HQEm2XC7Qrm6p+ZRSwlcsxPplmYEZuXpgcynHx0msVpbQJKTZcJxYyQkg6AzS/jCJXMd1UISgCZxTJltioQofR5ooMQQckAG15txVMvdoDKU2cgvkd8r84bU/DFBed1wOrVa7nil4ZiA6Ng+lAxG/A1yFidYo1xRQw03iC2VwvQeIOJ+l1i+2/ZbI5cjookv9JxsDCFEGGvOA50YPUacAQFnjN/W0+DhD2kbd/74gLdPxLP7c+NppkbEyd7RbqM1Gw0qiXUBFC3XabtFrOmfYGgFNlgoGF7mbVOiRpbOgkj+fOekVZwV9+WYugSjF5R/z3aqpbALAuDjlQSzh6EhVnAALUt1e89PGDgzEG1Xx0eCFRJZZqVGloDb8NmDjI2NkYsFuPv//7vq//AbxheMUpKjY2NXLyobh478LBTv1/zGl+HE0edRUitxb/ZiT1qIX5LkIs/yCdWqkgwx24KYY9ZsUUUIUUfT5sDxSreHXpZh0ER5JglYbp3jvFuQepnEk59+TIzAwKnkBTVXrRUWscbY8z0zwuXj4tc50W2yELqT7A2xaCme8J4mu0c/Vi3kAxkMiFWqqpoP5NCMolFXsWjIJsNKFaxDZiBZ8eLiQERtN1fi86g48W/ESsjshbU7qshtMXD4sxFobJsa22DYpUwe8QWSImRRbwLaWx+sfdOpARjKdpfX4stYhYaBwc/fH5N967bH8JZb8MaUoRK1ikehY7X13L6q1eqk6eScOif8l8i+fe1GibPJTjzTbHSc6CSNudHFul/QWw86vU6dDqE343gZjdmj4Kt1lheNaywuMvH48huH4qtynuUy61YEPpaHdgjZsZOaKswBbe7sNWYCe8OcPnJynGmS38dU9kWhiLdnDhxAp/Px0svvcT27ds1f2Md6/hNwdGjR9m6dWtRuXI3d2KTq+821Gxz4ayz4G6xMXl+Hi1Js9rr/cgWPX1PC6wZZPC22TH7FPXeGnBELFh8RnztDvoEVOlkix6dXodOQ0mggOGDk1i8ijCJ6Ny3ruKMW5gfEmMGTfXMM9VzWdPO6JFpuaeGs1/rIyXwvWmLmvG2OMgmc/QIluQ99C/V1WJKsf19TUxemOOCoCLlpSeGuYTYGlCx6Ukm0syPiiUQzV4FxS7OIhJR/ynAHbfSdn8tvT8bWdN6TRQdr68js5jh8Ee1fT90aJKhQ+LqSEaHrPpFRogclpxNk5wRG7e9Px4RVqIClXi26a31DB2eoL9KyVWA6UvzvLCWNWYuS81WNwsTSSZOi615ojd4sXgUzn2n+vjt+0lJzBLw4+kvXUZxK8LEwOGjU9jD4puNelmHTkOGuxT2qBnZYmDooHZpNnvMhLPeSu2eNBefqNK3+dgZud6HO27FGbcwfVEjVuv0hLZ6kMz6qgpzsiyznwc55zzA6PwgH/7wh3nmmWd46aWXNNu/jnX8JuHee+/lscceAyBobGSL5w7Na0IdZlKLOcYvZEBD4cMekvDUG1mczTB4RF2/5DKV12rBDRbcdUYs/gVV6aawgV7hSKin0YTZLb7nZZB1WgJOKzDes8CcBom8iDSc/s4o6TmxEmUk4cIPxYizdTc5WZxMV1d0KUHNFjsWn8zVg2Jz0Xj3AuPdYuVHg5ttBDttnP7mEGkRkaE0nPyy2LoLYCmRRieanJJAccjIgvueU5cWOfCv1Q97lqLpVi+S2cDRT69N6VsEwQ4rddd7OPvYCDP92uvM419YVhctfCtVU1RSHBJGl5hfFqeSJGczSGaJ9Lz2+D35lbUpqkf3OHE3mDjxRe1xcOabaysfGNrkxNdmZfhUQri8XePtXi4+PalJnlpLWxbH05x9bJhEgfxYIOVVIHMtjKaZvrLIWLeYdIVODzqDDkkRI4e560xY/AoWv3Stalguu5wMz7czvMmK1Sdx5dBceWJjNocurzaQy2YJtJtJzSlMX9FY1xkM2Gsk3HUKi9Nmrh6t/LwNti3UmJrpMT7FyZMncbvdHDp0iK6uLqFnXsc6fhMwNDREa2srMzMzGPRGdne8B7NSfc/LFQRvGMYndMxO6tAtVY9dNY1gtukY6c0ViUkryratQiCmZ96dY3ayELcqX6NYwe7V4QzAaIkQcy4/H60msBqkfPwSPPc/eTWD1a1nYUrMfvhsipmhFAtan5i5HBhgYSrLhZ9px12DArHtJvoOLGiqkkBedafNhE4PV4+K7df1PF2SM9Drr8ktlKLlVgszgxmGTontS431pBjrKbN+LTMnKUZYms2yJMgLVawGTA6NDi15jvMC/i7AaIeWfRauHFlU1XFeZjTusZBJ5zj3tHabEqMZ4TJyAJJRh9GmX6HUszq/VIqluRyZpBhZbuJyhgmt/GiJopLBAE03W5i4nKyuYKXXkUzkOPHtNZCCdTrCnWYWptLMDon1rStmwOKSuHq8+vid7Msw2Zd/4fQ5TUWySweXMFqWlomBRbXe8teM96ZJzueEiYR6SYdeEgxegCNgwGjLMXn12n7VpbPFkm/kcihmtTRbLpsrEknLXZM1q/vLfn8GfwQmRyAxVb0dWaNEoCGD2ZRjpMpnj8FgYPeGd9M3/gz9Iy/xx3/8xxw8eJAvfelLAk/764/feCWlZDKJLMtcvHgRk8nE7TvuZad+P9aQQueb67BFVZZjZI+Xjt+qBUVVOWp7IMrwyUkOf+QCike1dTaqJxFqdrvpeERVNFE8Ci33RbAFTBz/7AX6fzFM55vrcLeqtsFtLjrfXF9sT9P9YeJ31XD6S30c/1wPDfvD+DrV02L+LscK2/ira2h8rao+cuRfepgfWcS/WV3seDvsqm2emxG/M0TzfRGsedbu0mSK4RNqwsHdYqPzzfUoNrU7628L0nq/Sr8L7nDR8UiMqUtzDB+awl5vpvPN9ZgC6n3q9gdoe3CZqrfrj9uI3uJl5tI8Nr9C55vrsUVU28iN3hVKL+2PxNjzxx003xfBFFBtC+oo4d3eojIUQNsDUepvC2IPW/B3OOl8cz3OJtWHoZ3uoioUqOXA4neGADjxqR7mxhfwdtjL+/ueMPFX1xSfu/Nt9UVVH1+nY6UPX11D0z3LFElXow30quyhu63gQ/VvDbcHV6ixbHhjHR1vVp/H2WRVbfPEmbpbA7Q9sGzb8YYYkb1eTn+pj0tPD63wd+3NftofWrZtf30t0X0+khNJTnz2IlavsaK/2x6MUrdfLTWijtl6HA3q8ama3Z4V/m69P1pUH1JsepLzKUZPT6k+3OEqqnwBNN0bXlbBUVB9lo/p/s3OFf5uvLuGxruXFXM631zP4swS/c+NYvTIK/19Vw1N9y77e+Ob6gjucAGl/taX9XfHG2PU7FZPQZ75eh+S0bDS3w9e62+AhfFFliZT5PITWHSfj/bXl4zZh6LU3uwHyMeIemp2uwlucxHZ66XjDSvHbKG0S8HfOkVHNp1V/f3GZduW+6I03F7wt+oXd5s6mNofidH5tmUflvO3r9PB6S/20fuzYeK3L/ss/upr/V2IEaGtDiw+IzXbVZ8WYkQBG95Y4u8WG51vq+e6P2in4w2xFTECoOORGOHdqg/t9WaiO32YAgqNd9ew4U2xlf5+uJZI/kS7LaL65cLjqupRw11BNr5teWyV+rsQI9LJDC/+zVnMbiMdb4wVx0AhRpT629lk5fyjA1z66RB1N4WKY6s0Rqj+rivGiIHnx5gbXSj+rTRGFH2YV07yddpJDC9w+DNqkrfptTU0vabUto7gNtXf7jYbgQ4nx754gctPjtBwe5COR0pjRKyozOdstHLDW7fQtXQTNpONXC7H9ddfz2//9m+zjnW8EvCXf/mXbNmyhVwuR3O8mdssD2OTncRu8lJ/e6Bo1/o6VanMFjXiqLdg8Sic+HIfk+fniexxE79z2bbltTUENqvzt7vFRNsDYbof6+fop3sJ73bTeNfyKe3me2qKKh+WgEzbg2HMTpljn+ll/MwsTa8JFW2b7g4VlXWMHtXWGlOYuTzP5WdGMLqWSbCNdwWJ7FHnHtkp0/5gGE+bGWQwKAZm+ueLpKOGOwJFdQ/ZAu0PhnHGLTjrLYR2Oqm72c+pL6pfGPW3+YuKUMiqrbtFXQM13RNky3tU1Zrpi/PEbvFRf5u/2Kb2B8P4Nqgxy9VkYcfvN7LzD5pAhthNXhruKPH3A+HiGsgeM9P+YJjwDifWgInafQGaSuaTlvvDBLe6AFWVp/2hKEavTKJ/gYGD4yu+E1vuDRd9aAnKtD8UxRKUMXplWh+M0FIy1ze9pobIHtUvRq9qa4uqa8PgLhcGk57UUibv7xqiNxR8qKP9oSjO/LrG1+mg8231xWsb7gwS21fiw4eiuPLrSE+HnfaHoswNLHHk3y7gituI7V/2S/tDUVXVCHC3WtV1mAzd3xhg5PgU9a9aHlttD0bwbVT97YxbaH8oipw/qV57o6849wC0vC5MYKs6Dm1Rs2qbV5Ox1piYHVxg5KR6QKDlvjChbXkfhhTVhz7VNrzbg8W3fCSn+Z6aZX/78v7Or/9D29y03Bem96fDXHpqSPV3fg0kO1f6O7DVSUuJYk38zhC1N/pW+ju+7O+2B9U1xMUnhhg9NU3sev8Kfxe+fQr+LmB2cIHkwvLOQftDUTwdhTG77G9Q1atK+7LtwUjxO8nZUPC3OviiN3iJ7fWRS+fQ6XS03F/Z35E93uL8LTtlNr2jgdCOVWM27++aXW6a71FtT3z+EgujScK7l2NE+4NhrPm1eHCrk5bXLr834R0u3M22ZX8/GMYeU/3t73LQ+sCyvxvuCND123Xs+kAzFt9yjADwbbDT/uCybWSvH2+rA9kp0/GG6IoY4WmzrrCN3eLD7FXo+Z6aAO367boVMaL9wXBxzBZixMnPX+HEZ3ppfSBMeK/6rIUYITulfBu8xTh78KMXSM6mCW51IlvAGlZoeyCM0bPsw6a71Xdhtm+RycsJFvLqBbaYTNsDYSwB1Ta03an6O09KNch6Bg9PMH1xXo3Jrw8Xv9dX+zt+h4/R0zMc+2w/sgU6HoniaCqMWTut9y/7pf72APs33cEG+3VkMhkOHDhAfX0909PaRKt1rOPXHel0mpqaGh577DGMRiN3bHuQLZ47kEzQcKMVi199j91xmbq9VpDA5ILIdjMj5xc5/b1ZDLo08Zts2IKqrbNWIn6TGs8kE4S3mrEFZE5+e5zBE4s03GjFFlS/0xxRifi+5aPM4e1mwlst9L84z8lvjhHasKzSYQ9JxPc5ischQ10WInnFj3NPTDFzNYk7f0LbFlBtC4odwY1mortsGPPJlMXZDGM96rrL5JGI3+xAzu/X+DvM1O7Oz+1xI3XXO1gYTzFxbhGTSyJ+ixNTnvThazVRd/2yEmLXIwGCmy0sjqfRSTrit7gxeVVbT4uJ+puWE5DR6x1sf3uY2r1OJAvEb/UU1VHcjSYabllWYorschDaYsMZM+NpshC/1YM9rMZCZ72J+K3LKk/hHfaietLZb48xc3VJVeoBHFEj8ds8RR+Gt9sJ71DbH+yy0ninB1eD6jRbWCZ+m2fZh5ttRHcvt9/XYkEvQXoerAFJtc3PEcEuK7V7l23rb3LReLvaRpNPtZXzJfz8GyzEbli2rbvRha/DQt/Pp+n7+TTx2zyYPGqDva1m6m9yFW1j1zsJbLSqBKivX0WxGYpj1tNipuHmZR9G9zoJdi2Py/htHmyhwvhe6cPITgfhrfkBIamloUdOqesuZ51J9WHB39vtxRJsoN5Xl1cuuMbfW21Edi6Pl/itHjKZDJefmSCny1T1d8PNbjwt6rrA4s/7uzBmN1pW+LvuJhfevO2574+hN+gx5udkX8dKf8eud+LboHZcag4WJtPFsoDeFjN1Jf6O7nUS6FTfucKY9bSYcMVNeJpN1N+8bBvZ7SC42brs71s9SEa1RKuzadWY3WlfVnuSVFt7VMm3z0HjnaX+thHeUeLvWz0464z0PzvNxZ+MU7OpJEZssRHZtezvhlvcuBtVBzsaTDhjJnwd6rMHu6xE95SM2X2uor9NXon4rR62vL2G+G2eMv524mvL27okAh0OTC6J0BYb8Vtd1N3kLJKASv0t29QY0X9whqXpNIFOE013lPh7l41gp2ormSF+ixOdDo59fgSDoqfhZidSnlce2WEj1GVZ9uE+B/awxOCxeS48M0log0X1iwThrRbCm5flsuI32XBEVaddPTbH9KC67pIUVSkpvLXEdp8dR0Qd3/aQwsxwkvNPquuhms0mIjuWbRtusOGuV+OU2Q2+RoVTP5jm6tEFAu1GGm5Yto3tseJpVPvc5NbTfkuQzeZ78dkjpNNpduzYsa5muY5XDB577DEikQgzMzM0NW7ktm3/DbPixFMDofplu0gTOH1gsqr/WOxw8ohKUPK509SUiF2Gm8CV36Yw21Vljr4zcPqFHK4aPeGGZbJRTSO481sPkgLRdlAscOb5LKNXckRKCneEGsCTTwcYFIh26DDZIDkHl45nUEzLmzuBBvDmP+UNBohuMGBzAwaVpDQzmmMhr3Hgb9Dhr1u+NrrBgMUFRhs4w1DTJtF7JJW3NeCPL7OWo10Stvz2jb9JT/PNJgwGVTnG02DA37xMzI10KdjzyjAmR47W2y1svMOKQQFPnUSwY3nPLtxlxBFRbRU7RLYYcddJ2EMy3kaZUOfyvkqo04QrpsY3xQaRbWYUm5oHvHI4seLMZHCDEXedamswq7ZGp0piiWwzEd6cv69eT6DdiCcfNw2K2gazS10z24MGFJuBTL7Mlr9VwRPPb4boc6qtR7W1+g3U7zVhdunyfpLxNxVsdUQ2G7F61We1ePVENhtJLkHPMwuYHDr8zcsH7iJdRuwB1dbsgshmIwYDDJ1OMnR2iUDrsm24Sykq6xjtENmkFFV/PDEDwbZl25qNMo6wYdmHmxRVgQowuw1MDyaZzJchDXXIuAp9Y87b5pcNjrABe2CZhhBsk/HEDMs+3KQUVZPsIQPhTpn+Y0sMHFsi0CoVlaMMBtW2oN5lDxiIdC2PD3+ThLcwDvO2Fq/qX6tXT2STajt2Mc3o+SSeWOk4lLH6dPlnU68tqPgsTKVJL+VKbJVlfztX+bDOQKBNLrY53CnjKOdvnQ53zICvRSabVtWXajYqOAs+tKj9qOSnYVfEQGijseiz+PUmXAUfmtVxWOrvcJdqe+7pBImxDJ46adnfW4yYnMv+jmxeVomq6TDia5SX/b3FiNmt+sUWMBDZsmzrb5ZpuN5E511WDMbK/gbw1Uk4ghIGA9RuMxLpkrH5VcKf2aX6v8DJ9tQbMDv1DJ5Wx1bDLrk4fkx2iG40LPs7qifYbODKsTQXXkgR6TDgyaeCFZtqK+VtXSGoycfOM89lWJjJ4gqpz6mY1dhZGN+uAITzhV2SCzDan1NVkgCjWY3fpryopcMPkWbQL6jxUDLp6L+gEpQMBoi1gTnfN3Y3REvid00wzeQYnDyuAwPUt4Ml3zc210pFJn8Utm26kS2NbyKX0/HlL3+Ztra2V4Sa5W80Senpp5/GaDQWaz7/wQf+kK4dqqaiLWLGHrXgbFBHgK/DgbPeyo73NrPhkQZcjVbc+bIHVp+CPWrBHVdHlq/VgbPOppZJe1ccb7sDb5uDxEASxanaeprUyOltd2CvVaOFs8lKYIML/yZ1JKUm09hrLXib86SZtrxt/sXwb3AQ7HQXyRj2iAV/m2rraVVtTfnkmbdNbcOm327Cv9mJo86Kvy2fPG+0qbZ+U75NdlxNNpXg8Kowrnobvg71vq4G1dYWVG09bQ5cjeqz1Oz2YDDpCW3KkxVieduI6hd/u6voTwBnrZVcLsfIiSnsIRP2Wguugr835H1YsG204Wmz8+LfnOXiT4aw11rwxNW/+9vU5ynA02zH02rHv9mJbFOwByy4m/P+bl32N4CnxYG31Q4K1Oz0Yo9a8LY6iv1or7Wg5P3tbbXjaV3++FUsEomrKpnB26Layjal2K+FJASAs96Ku95OZK8Xd96HVt+yraux1NZGcJsbX6c65uy1luJpZ1/7sr8BXHEbvjanSp6rtWCvteCI5QkUbU6c8eX7uhrtePNlRrreWo+9zoK74MN25wp/u5psRVujz4jFY4KsbtnfsRJ/F3wIKDZlhX99q/ztbXUU/Quo7a2x0vvUCJ66vL8LPmy142lZtnXErPhanYR2uml7XS32mAXFLZf3d8yGv33l+LYGlt+Flf624utwFq+z11qI3Roq+tC12of5d8wWUf1dd3OIun1BfB1OnPXLfnE12Yq2Vp/ql/mhJQ79U89yjMjD3bzsb8Wp2nqa7NhqjbjjNuzRVWO2Le9vRb8iRjjDZuy1FvxbHUUfrvZ3IUYY7UbIqqfpC37xNC+PrWtiRNhCMpFk8lKiGCOKPqwrHyN8G9SxUjpmnQ02/PlSKqtjRM02L47osg+dcXvxvuVihKvBxuZ3q7NtIUYAmD3yyhjRpMaInR9oY9v7m4oxAkC2ymr8bnGATqfGiJAaZ7f+Xjv+TldxfKOoPlyOEU7sNRYUVCJXYKML34bljazSeOJttqv9mCeSB7a6cDXYcbeobXTErMUyQO64FXtUjRHXJe/k1ptvRZIkvvCFL9De3s461vGbjO3bt/OhD30IgF2de3j4tx5GtuRjeZsDX+tyvHDHrYS2Otn4hhixm7y44lZ1Qz2XxdexsvSnOx9zG+8K0vraGK64FaNNJjWdxtfuWGHrabYV42jrfVHcTTasURNLEym8bXY8JfOJp9mGL29rDRpxN9nouF/9YvE22/GUxEJPy3Ist7hlXHEbzfdE2fqOOL42O+6SucfX6ijGN9mi2robrbS8Nkz9zcEVc4+v3VGM3bKszv3ewrqmxaGqBeb3AfxtDnxty3HfFbcVn8cVtyGZDcyPJyGlzp2+kjnC3WjD15q3rbfgitsYOzPHC/9wDnvEgrvUh00OfPlndURV2+BWJ8jgqrOqMbVw3xZ70dYaUm1tEQuNtwXxtjhW3rfFgbdd/W+LT8EVt+GMqXOgt8mOTqenL6946Wm1F+dvo8ek2tblCQhtduwRM+15Erjq77ytI+/vvF98zXaVmLTPh2zR4S/xN6v87Wl04IrbkGUdyODvWOlvd+Py/OKK21Rbu4ynzUbtDX58G5ZtPU0OfPlnd9apfrHkSRzeJrVfC+UMPc3L86Gj1qrahvLr9jbHClUBT8mzWkKqXxz5edbXoc71I4enmeyew1PSNxavvNKHrQ48TerfNr2jgeAW9/KYzfuwsK73ttpxl8z1vrbl8VEc3/H8mG1S/VI6ZgNdziIRzBW34c2/V+7mvA/zMcLX7sDf6SK6x09wqwt3o734fjrrVb8obiX/rE48rXYO/UsPV54ZU/2d7ytnTPW31V+wdRTXnO0PRLCGTMX22yN5f9csr8UL3wPzQ0k8LTaCeQK4NWRU/Z1fy/ja7SvWVqBjcUrt00KMcNUvj9nVMUKyGNTSI/JyjADwtNjLxojQJgeOWguuxpIx22S/xt8FP9TscmOvMRPJE82LY9ayvL4ujRGeJhv1NwUI73YXY4SpkBBtty+vxVNqPAltd7P1d5sJbXPjiluxFPzdvjJ2umqteNvsNNwRYMPr63HFrdjy3z7eNjvuptLvPBuOmA10ejoejOCO23DkvzW8rXbcK2KyOj5S0ymMXhPOmIWWPPHc22LH1bh8X1+r+i64JgLc4X2A9vZ2ent7aWho4OjRo6xjHb+p6O7uxmQyMTQ0hB6J33vX79O+Rd3ZNDokPA1GbH51R9dda8QbN9Jxp5O2Oz144ybcUSO5dBrJAp4GI44aNT64Y0Y89eom88b7PYQ3WfE2Glma0SFJqq0zT9h0RY144sY8+UlP7TYboU71HV+a0+GJG3HF1DnNXmPA02hCzudyAh1molts+Frz+08NJtx5W1tIUW1teXJLk5lAh4XOBwN44ka8jWY8BTJOQMbTaC7GLG/cjK/JjH+DmabbPPjaLXga1Vhi8Up4Gs2YPapfPI0WvM1qe50xGbNHJrhBjTVmt4ynyYwtTwb2NFjwNpXshzRayOVyTF2aR7FJeJrMOCJqm9wNFjzNy6p23hYL3mYLxz8/RM/T43iazNjzZX9ddSY8TSW2rRY8zRZccRNI4IqZcdaqts46E94mS7Gcm7fZgq9NbVPtbhe+Fivu/OFAR8Ss2prysbzFsqLMmNktM5NXmLaF1PuaHNLyfVtK4miHFX+7jWCXFZtfwdtkWV7XNFtX2rZYCHbacNaZMHsl1dYnF+/rLbH1tuRLn0lgdqr3tQXVseeJr2yvr9mCr1X979Z7Avg7rDjCeR+u7ps2K56WZYKNI2JGn89uuPI+LNq2WvG1lrSpyVIQn8BRm/d3IdnRasXXttLWHrIwcnIOezDvb8uyvwvtVZ/VgqfBjCNmpOP+IN4WCyZHqV9W2Tar/231qePQ7F1+F3yrbAvPY3IZ8DSZi6QrT9MqH5aMAZNDHbP1N7mJ7XWpPmxe5e/mgg9V2+RshlNfH8Fdu3LM+lqsePPPKkngaTLjjJmRbBDa7MDbZC4SjzyrntXTZMZVr/ajyak+q7fZVNYvnmYL7vyhBcUkkU2rqlpFP5S039tswdOottEWUvA0mVmYTjFzZQFvk3Vl3zQv+9vil4r+DnTa8DRZl++bzan+z993dYyI7fHgbbYWyde+1uU2KHY19jjCqq273oS/w8KG1wXy7TfjbVKfWzap6nL2vK0rbMLTaGLjaz1svNeDt9mMJ2+LLqPG5Foj6HU4Y0bcMSOSAhsf8FKzxYqvaTkx72kw4s7HE0dYwhMzYjDpMXkMxHbYCLWvsq1T30d7QMJTL2PQG8BgoKbLjL/NXCRHeePL84bVr84/FpfEdttredW+uzGZTPzTP/0Tt9xyC+tYx28yPvCBD3DvvfeSzWbZvvkOXnff64pzhLcGfCUlgvxRVTmpYxeEm3T4ozoMOtAvpXGFwBctUfKP6nAFwR+D9t06AjEdRruedFaPOwC+5XPH+KJ63EH12rqNEGnWY3Gq5YrcIT2+Wn1RRckXBndY/XdZgZpmPS3XqfOh06/DV6snp9OR0+nw1hrwhNX7GhTwxfQ07JRp3S3h9OvxxZZTxd6oAXd0mRzii+mxu3PEdxpp2GbCVy8VSQXuWgPeEsKHr17CkSd1BxskXGGpSCrwxhR8DcvkBW9cxlljgFwOi9uAxalnfjpNJgnuOhlvqW2jgitPALe4DPibFBYmshz/9gw2r4SvcZlA4Wsy4sqTaY02A/4mI86YgsEA9oCyIm76mkzFWGi0qrYWl4HgBhOhDWZ8zaZlf8eVIqFJMqHa5slEjrDqk9F8+Uxfg4K3QGiSwd+oFNftjpCEL67QsEedfzwNskoa1atkBX9cxp4/MGDzG/DHZXz1hjx5S8bbsEwm8jXKReKRzSfhj8sYzIABPDEFX6ltXMFZo/aN1aPaKhYwOaDhOjPBEvKTr0HBHVFtTQ61DYot/91RI2FxS2QWCrYy7vx8odhUW5MjbxuRsLgNJfeVcdXmCWQW9Vmt+b87a1S/zA5nmBvP4qtX8MTUfjSY87Z5Yrw9qMeXJ4HV7zIS3WJcts370OYv2KptKhCP3DEZT74f0enwx2V1zOp02Pyy6sMCaSamEGha7jtffJl4ZPGq9y2Mb3dMJtgiU7fNjCdmwNeg4AirbbC48j7MLzPdUbW83vmfLjB2Ia36peBvp2przPvQFZXVZ9XrqN1qxhtXcNfmicNWA/5GBYsrbxuR8eb9kpwDb1zB36KSrmRzfszmfegMy3hXlPjTsTClkiUNSn7M5sspO0IS/sZlW0+DjGLVMzeeQZ/Lj1lffhzmx+wy8UjGU6+OU0+tRKBZLhK9bF49/oaSGFEr4cu/N/aAHn+jTKhdQpfOYHHr8dVLyMaCDw346pbHlj9uIL7DiLdOj8Whw1cvYcz72xPW463N22bAFzMQqNez8RYDnoga40z57Si3L4uvVh0b6HR4QjpcIfDXQsdeNX5b8luFLj/4a0tifQicXh052UDDRgg3gC2fbnT6wF8a62vA582RSRrQWXSE6nQ050UpnZ5VtmHV3qwEuXnzn9HZ2UV3dzd1dXWcOyde/enXEbpcrkrNsl9jfPCDH+TDH/4wAApGbtTfI3RdaKcbyayn/2dipRc63lDL6MlpRo+vKpVWwW2b39NIz2NXhEpNKTY9G97cwKnPXRAqN6bY9LQ9VMfxT13SNs4j/uoaLn5frKQGqGoniyNidbzXgvhdNcxenWf0qNhp1o5HYrjqbRz/3IXyJZ7KwNFgITmXFmp//K4aJntmmTwnzjSs2e1h8Hkxie8df9CCXtbz4v8rVnZi15+0kUlmhEuEdb29gXQyw+kv9AnbT1ycFS6zt+e/dzDTN8fJz/dqGyvQ9eYGho9MMnxoStPc3WKj8c4azn//KtM92lKM4d1e6m8JcuEHV4Xu3/ZAFG+7k+OfFys/5+t0MHMpQVJDProIBdruiXLxB/1C721wh4vhA1Ni9wZ2fLAFyWTg+f/njHB7NjxUx6kvCPTVGqF4lOql5FYhuM1FcjYt/F7V3xYkk85y5Sdi0txtD0ZZnEpdW/6xgjRk19vqGT4xWd7/Za7Z9I4GznxrQOiZFRs0vVottyeC+fg4h648y9LSEhaLheHhYWw2m/aF61jHrwlSqRRer5fZWfXowCbdjQTkaPWSbfkaHc33Bjn/+PByKaMq15h9Mg23BTn9ZbHyDsGtTlwNVrq/KVbaIXazD72s5/KPqpc+yOVP0tbe6CW9lGXwRbFyWQX1k8lz4lLDslMuklleNsjQ8pow5757VcjvANf9SSuL0ymOfkyshC+Ab6OdsZPa5TJlp0ztHi8XfzwkXNJKdspY/QpTAmsFd6uV9tfFGHhpXKicWGiHm4b9QbofG2DitHb7XU1WGm4L0f3oFeYFSrIGtjrxtTs4/UWxOaLjkVoctVZe+D9i68bIHi+OqJkzXxN7T9pfH4Ucwvbb3tuETg8H/1msxN2uP2olNZ8WKj8H4N/kZPSYuMKNq8mKPWzmyjPa61hLUEYn6ZkbEPt+cDZY6Hg4xujJaXq+J1bixt/lwOiUNUvQ/TIwemSWJsTjQewWn1hJzDw6Ho5y+pv9xfdwtcx/KWSnRNtrw5z4Up/Qe2uLGqm/WVVuKotVdZt8nSrJq+e7I0JzSWSvm/mxJSa78zWLNK7pbzjCmW51Pf2hD32Iv/iLv9B+iHWs49cIn/vc53jLW94CgFXycEPNm6qXbDMsJ0hMDj0jZ9X5KlflGp1OR+0uC7NDSaZ6V9pVKvXWcoeDK4cWWBgvc99VdTYkIzTd6qLnqSnS1SpqFPbXJGi8ycmFpwTmiELpoy1Wrh4RXHflssg2HanEGrdBs9r2wS4rybkMkxfESofU5lWDzj46TGJI9aXW9qzJJ0EaFqe0y2qEttiYG0kyK7A3WYC70STc/o2vD6LYDBz+pNgavOtNIXKZHCe+JDbXxm/zgA4u/khsDy5+m4fE4BIjJ8XGwvZ3R5juXeT8E2JzefOdXsYvzDNxTnuPyeSRaLzNQ98vpq7xf7myb846I813+rj09ATjAvcPb7cR2eHi7HeGmb2qPUHbwzILUymxkn8AEkR2OBg+MUNaYGvHWW9i+rLYuAHoeMCPySVz+BOCpfkkqL/BxeWfT5Uvb/YfgGSj+jOuWicV1KNm+5PXrGvKwddmxqDoGD6ed75G+d3IDiu5VI6rR1d1lsFQ1r7hBivT/UkmLlz7nhdKvpWi8WYb/QcSLM5UXkPpCgxJCWLbzfS9kB+T1eooSRJJ2zDPXfoOi4sLBAIBLly4sL7ntY7fOOzcuZMDBw6gQ8+WjW/H7axDv1A58OTk/HdKQ46hPshk1JihX6p8jd6ip7YRLpfZ9i9Xts3uBXcQ+s6Wjx+rr/FEVFWQoZ7l0m5lr8u/064alX8zIVJJNpXG7FQJNwnBT1BdOrOyrNZqVFr7VCk5XLgmssXEwPHF5ZJQ2ep7Xhtf62RpLsv5J7X3gAqwh2Vmh8rEv1W+NSjga1IY7k5WLlFV5hqj3cD8eKFsVpXSsDbYcIedgZOLjJzVnvttfgNNN5i5+PwCM4Pa7Tc5ILrFzMDRBe2SfPn7e+ok+o4sCZXkinQp+Btl4bJsrogBm99A/1GxdWykS0Fn0NF/RGwfqPkmM5JRx5kfzVcuU1YyNjvusJBOipWfA1WhqOy4qfA7ZhdYPBLjAqXzDGaVML40LfY9o9ig4w47I+eSXD2msV7L+8LqN2C065gQKeVXadxW8KvBjEpuq+T3Vf/fFzcwdlH1Za7M2mY1ol0GBk9llpctcuWSygYD1G3S03sse80yp1jyrQSKGaJNOS4eL3+/Qsm3AmyOLE4vDFzSVy3lmTXmlWN9GTJpmJlSf7vaXJI1SozOfJ/jJ14A4JOf/CRvf/vbK9r/OuM3kqS0e/duXnhBdb6PCJv1e6raR/Z4Ce/0cECQAFKz240zauXs16ts5Je4LbjNhc6gY+glsQSWr9NBMpFm5pLYF6K7xUY2mxMidIBK1rGHzQw8K/axba83E7+thmOfvQgCcV8t8dTI1QNiiSBQSTjZVJYD/yDI6lOgYV+QSz8S2MBQEGp3KXb//9pZmklx+CNiyZe1QrHpscesjAskvkAtSZVZzIg97y+B3X/WTmJwgROfuSxkv1aS0u4/7mD89AznHhVLfq0Fikeh9e4wl34yKERYW6vv1wp3m432B2KMHJ+i5zHBTRUQHqe+Tge5TE64/ZEbvdTdEKT358MMPCPwziuw6/fbmB9ZFB4PkRu9OMMWTn9FLNmq2CB6Yw0XHxcnSNbe7BcmK4Fa9q8Yf6oVzM7H6rYHopz9Rsn4rHKNLaIQf1WY45+6LNSWxrtrcMQsHNFIzi5kEzzLEwDU19dz6NAhPB5P1WvWsY5fB4yNjREMBslms4COfbr7kAtH5CskiTe9o56xs7MMPFtmbVTmmo43RLnwg2Hh5HzjXUEuPC4+Z0b2eBh4TizJkcvmCO92c/V5sXUd5IkCPx8TJuC03B9m6tIcI0fEiBobHoli9hg5+M9iJJDoDV5q93o5//1Bxk7k5xMNkpKnw05mMcP0RYH1qYzwswI03V2Dv9PJsU9fFCL5/DLwtNmY7UuQEmi+NWKk7gb/CrLGy4mWe8N42hy8IEhWXytJacMjMawhMy/9Xfd/pJkVEbvZD3pdUfVKC+5WK4krc0K+/2Ww5d1xFJvMi//3V/S8+3z0FYj8Agmn7e9rBB0c/Cex9zF2s4+abW4O//tlMUKiDBsfruXiE0PMj4kN0JpdbqYvJZgfEbN3xi2kl9LMDSSrEpVK7XNZmLks1smhbU6WZlJMni+xr+Lb5tcEGT8/y8SZMpnC1dfJsOXtdfQ/N8Ho8QoxNH/NieRzjBquIMsyt9xyC9///veF2r+Odfxn433vex8f+chHAIhZN9Hh2af+oQLhyB03Et5k5tTjs9ck8cuRlJxRCVetkb4XKr/TpSQle1hCsRoYP79UNYFS2N21BSTQUyTfVEUuh8kjISmC9qhqMraAzNhZsUSB0aGnbq+Tcz8aFyI5yDYdnQ+GGDw6y+CRhBBJqetNIXLZHCe+KL6ChgNYAAEAAElEQVQ+DW2xMXRkZdx7ubZot/52mKWZNKe+LjaXrxWSCSw+IzP9Ysmg8HY7ZHNcPfyrKUmw9bfDzF5dEiYdrZWktP13IoydnePyz6b+A61UcQ1RSYL4LR6uHpphsRz5bxUkE1gCRmb6xHy/Vpi8EhsfDDJ0IkH/s2somyoh9H7ZwhIG2cB0r1j7XXETTbd7ufLcFMPHxfbFO98YZHEizfnHxfrX02zCETVx+SdT1/6xXMyTINxlFydIAr4OM2OnFzSJSgUEN5oZPpmPcRVISkAxPtXusnLlxeX2lCMpFSBZstTtstPz1LX7jkWSUmlbOhQ8dQpnvldhPOSvSafT/GTw42RIUVdXx8GDB/H5fJXbvo51/JpgYWGB+vp6RkZGkCQze7b/AbJB3fOqRFJq3KJjehJGB66NEeUSy7EOGLoES6nKMaA0iR1qUO3VG2pf44msJBppEZRcNTAlvm2Prw4mL6Wr8hVLUdMusTCdZbqvyvdpyZonulktWXbmqXmV9FKJpJS/xhkx0LDXysVn55gZyDdKg6Rkyau8zI8JPIQByFWJ16v862+RiWwy0/1kgoWpCu2olr8Q+CY3u3Uk53KVCV8lUGyqYs7Q6aVr7au1QxCBNplQm8Lx7879SkhK0c0KrqjEye/9ajaZPPUGDJKO0Z60UF7J7FZViUR8/8sgvseE1aPnxHfF1xUA6HJC/vc0SEz0pVXbat8aeV8032JBNuk4/bhAe/Q6PHUGwp0mzj09R7K0yyr51gB1W40Mnk2WF4Eoc52jxsDiAiwJfkqY7OptFmaoSlQq2ttAb4D5/FKnHEmpiFwOuxfIwmxJ6mA1SakU4WiGuRmYKbM0LZCUlpGhvQsG+2FmsHx/Fa7pHzxAT+/3kSSJRx55hE9+8pOV2/1rCu3e+TVDIBBgdFRNZLeyhVp9k+Y1RreCXtYLq4LUbPWg2Kq4ZtWLXL9fLS0lSlJqvDNMLgcv/a1YIqL53ig6Hbz4N4L2rwmj2GRhklJkuxeL34TVozAnkDhKpyA5l2a8W/xj9cUPny2WrtNEnswhStjZ+Po67FELz//dGWGy0qF/6kZvERv+9bcFCW5xc+QTF4VVZZKJ7JpIMmslu3ib7Gu6v7Aqzy+DJDz/V6fXdIk1pKA3GYSUjpITSU587rJ4c9boe4DOt9ZjdMoc/EdtIuPk2QSnvtIrTBoEVcnKGjQJ9cPYiRlNm1IMPDPO9KWEsOIYSVicShZLHYog0OlGsYpPF60P1GOPWBg+PC4UU1rui+Lb4GBxfOla1boyiN9VQ802D8m5tLa6mU5H4901eNocK1WtcrmKC6XaPQGsQTO2qJGEwKar0Skhm7SZ3Ga9jVt5kKutpzh95jRer5cf/OAHvOpVr9K8dh3r+M/Ck08+ye233w6AjJF9yuuW/1iO9KLTgwySSY/ZU2ZxXuYae8yEPWymZrtbU+EIILTdiX+jg8XptNBap2aXm9gNPrKZnJAiUmCLk/p9ASSTgb6faB8Ps0YUIjs8mFwK574lNp+76i0YbZIwSSkxtFT1O3I1+n8+zsT5GeaHxAgRpBBSFCrY7/r9VqYuJej+hshxO+j53iDDx6eFCUpbf7eRxPAC5wQVsgAmzoonveYGljj9FXFitS1qJrWQZmlcjABy7jtX4TtrWNutEae+KKakWUS+jJ+IKhVA3xpIwwCT3WvbSLGEFDY8XMeVZ8cYOqD9TnZ/4wqpeXE2meyU2fY7ccbPznD+Me2d1yJBSQZS+RhVhVBz+st9zK9B/WzywtyqsnHVYQ0o2GrMBLaKxURkqLvRz/wGB8c/Jaas2fraCJnFDIc+Kqac1vyaGnKZHIc+ImYfvd5HLpXj0PkS+1y2vF9ltTyo0SUzcXb+2nli1XVmp4zBqEexS8v/v8I1ncoeEtFhTo8f5PHHH6e5uZnz58UOLq1jHf9Z2Lt3L8899xwAXZ47CVvV8thlCUr5xLVs1iMpOoymlRu35QhKOp2O0AYrFq9E38H5sqSC1SpK9XvtGGQ942XUOsohfosTnV7HsS+JHbNv2u9ENhk48nkxQk399Q6sfoWxngUhUoS31YI9bMTklIRIILlMjsXpNNMD4uowx788hFH0mzlP5lhNUKqEuhtd+FqtHPvigLAazvEvXkW6ZsO7PHztFiI7nXR/Z1RIpQkgvYgwQQng6sE17NFIYA8qzA4nhZVzRBWdflkc/JjYmrcA2W5ANumYH732AXK53EqiUlpcMQryvl8jQan+Zhe2oMLJr2i/Y4vjaU5/a5j5EXHZooZb3LjjJg5/QnvdlbiaptixAsSmqYuLnPzaMIsT4u1ZGE8xPyqeSfS1WbH4FGDq2j8WSIolCeT66534WqxM9C0JxZTwFiuRnQ4yi1kme7XXkP4OM7HrHGTSOcbOasQhvY7gBhPBDWYWJtOMnVPHRi6dqUhUCrRacUYUrAGZuVUE91w6fQ1RSbEbkEx6MBrU/lrNUkinQZKQJInban+XAcdPOHHqOIFAgGeeeYbrr79e85nXsY7/LFy4cIENGzawtLSEzRJi15b3Fv9WjqCkqiflUIygGK/5c1mCkmzX4w5BMgWDFQqklBKU7F6oadKTycKowHlhhx/quiT0+jSj/doEFKsbGrbIDFjSjFzQ3mhSzBBtlzFZoP+4WCx2RwyYHfryJKUym1vzU2m13FM1wkXJddMDGU4/PiNU5aL4GyLkpDw23uNkaiBN/8EK+ZNVeYXRcylmh1MsVtviK7mmaZ+ZxZks/Yc1DgCUYGFSfFMwmYCBo2XWChVyIYoNyEBSMF00cjYlpOj0y6L/aFJYRakAsztPSBHo5onLeSMtwpZOB7kcC+JnWAFVLajlBgvD3UtM9Go3qPfIolC7l38ANt5pZbIvzcBR7e+ViUvp4nXkFd+qbTJffH5+TYSsxHiGhZksmdW3LPzGKj8rilrabzGRZfhsuY/Ra6+r26owP5Oj53mxcRffpZBLw5mfij1IwxYDOh2cfkagI3Q6atvUfz397PJD6xdSFYhKWXxhHRYnTM9cq6qkX0qvICoZDCDJagnPwv9fPbcUronW7CAYCHKi+xt86lOfor+/nx/+8IdCz/zrgt8YJaVkMonNZiOVUgfhTvbj0FdXoAhudzF8cEr8R0qUThSbjmQlCehVLlM8CrKCUDIewNlkJZfJCSsp2WqNmFxGcfKCAr5Wx5rIDopNL17uag1wt9lIL2aEyCig+nLbu5sYPSmuUlOz24O/3bmmMnhrQd2tAQJdLg78vZgKVMcbYpi8CocFS2QEd7hw1dro/pZYsiy820vDrSEu/XiIq8+//GUmYI1KSr8Edv1pG9mkuLJWcJsLd4NtpRJOFcTvDOHrcAorDHQ8XIvRo2gq4fyyiOz14mm0c+Irl8WIdApc9wftzA2Jq18BRPf5hEv6rQm/hFqZv8shRDgqYK1KSpEbvSuVozQWle42G5NnVm2MVrmmSGpd47P7Ou3MXJrV/Ej6Rfb7LDKPxWLhne98Z7F86TrW8euEv/3bv+VP/uRPAHDgYZdyx/Ify5CNZJeExWtk+mKVOb+Cmo/slEhNi288O+MWMcWfPELbnQwdFCME5bK5NSkvAXg6bEycXsPuSOGb5VfwTV9VBaqM/zc8EsMSNAmvc5Ch43VRRk7NrJlYK4pN72ggcXWRC4KKfNvf38zgoQlhgn7za2oYOzcjTK7Z/r4mdAadsCrrWrFWJaW1IrLXS91NAc58s0/4mZvurmHiYkKYvLbl3XFmBxbo+a5gn/1eEwMHxoVLKa4VGx6JMXx8SniMNt1dg6/DwaGPdKuKUAKKSvaYGYDZPnHityhkC2tSpvK0WZm4MCccUzwdNhZHlpgfSwkrKaXmU2LER8ASkEklUtc+QwW/yk49qel8fJKB5KpYVaU/fJ02xk4kKhNngenUJC/lVDXL1tZWzp791bxr61jHfxSRSISrV9V9kOuDb8Km5Pe8KhCUXDGJqb4qZUhWXaeTdcvcABMVS7CtJilJFh2SkeqJl5KktcktIRnFlZSMDh0mp8T0FcEgJoEjIDHTL76QkkyQXvgl97yqKClZAurGsSihQzJB15vCjJyao/+5ax1abovWHTfha7UKq/6sFb4OC+EtDo5/cUjIPna9E3vYyKmviZHKnHUmHFEjVwRVeRwxI213B+j9xYSwcs5asVYlpbVi01tqyKVzVX1aSlSyRxXc9Wb6fiHmo0CnleAmGye+IHa4M7rHiT2kcOZbayOii8IVN+FpsnDx6QlhYtnmt9aQGE7Ss4Y+8G2wMHbqV6CqUMgLVWv7qvWSs97EdK/4ZpF/g5nRU+JKSr4WE2PnSoJ0NTUlwBaUSAyujIlV1ZRK5oDcKvWRcmpKxd8JGFicyZCeK5PEK7nu8Oh3GVm8iMlk4k/+5E/40Ic+VLX961jHfwaefvppbr31VnK5HEFfFxtbHyz+rRxBSW/SYbLC3IwOyAHaKko5SX3nDTJkqixbVietzU49Cxqf4qXXuEIwNVRdQal43S+hpGR1w9wayKsAGEC3tLqGkmAqerWSUsl1rlqJqSsV2lJGTSm6zYwzqnDqe9NiRBBZT2STidnh1LJKUzn8MopE+Wsa9qokpcFTYvNI634LoxeTy2QTDQTbZRKjWeZKiVlV2tu8z6wq5/zgV6NctFYlpbXCETbQuNtMz7MLwmXWAm0yC5NZZkc0vg/yY6/xehPzUxkGT4p9f7TcbGbsQpKJvjWwj9ZA1YhuNTJ9Na0+r4Dqq79ZpmaDiVNPzJJZKvNbZcaHYgODrKtOkBMk2V1T7tCo0yZClVxj8cDcnEGYzGVxQ3oJVdlJQEnJmK9Qu+LATxU1JcUImRxkllb6ppKaksFQKCmnB7LoUquuK6OmlGeV4XCpJeDKkWAL1yWTCZ479A9kskk6Ojo4ePAgZrO5Yvt/nSC2Mv5PRiKRwGQyFQlKN3KvNkFpm5PGV9XQ9Joaod+o2e1m9x+2E9zuAtAkKNkiCjv+oAVbRE1kixCUNr0rjmLTM90zJ0RQanswiuJRSFxZEtpgb7g9iLfDDkkxNRZ/l4ONb6oDECIoKTa1bFvtzX5N2wKa7gqz4eF6YXuAhYklho+LJywGn58QJig5Gizs/u8dRPeJy832/nhEPHEHoF/bGiW0xYOnzSFsP9Y9y9UXxxg7IeYjd5uN6/5bO8EdLvFGrRE7PtjCpnfFhe37fzHK5afENsAAgpvduFvFfZTL03YVm1iIO/2VK2smKO384za2/G6jkO3As+OqGpTo/kUS5kcWmbgoftqw/fW1xK4P4GiwiF2gwI4/aKHlvqhQe0CNGZ1vrhe6fYGg1PGGmJB9gaDUcl8Ua0hbda1AUGp7IEp4t1fTfvJsAnQ6ut7RQMfDter/rLLwK6im7fy9Frb+nlg/AzTfHaHzbdoKf9frX01LqB2Aj370o7z1rW8V/o11rOP/H3jPe95TJCiFdU0rCUql0OmL/2x8uJbWe8TWXQCb39XAlt9pABAiKLW+LkzbA2EAIYJSzS439bepaxYRgpI1rFC3X7UXIijJ0HKv+ryiBKWO10dwxi0qkUDgu7bl3hq2vLtB6N4A7hYr9fsCxO8MCF8zdWmOxMAaNiJScPor/cLkj03vamD772nHxVIc+8QlYYKS0at+AGbTgolHGXwbnAQ6XcLtufjUML3PiJdL6Xp7PZt/R3xdtFaEdrjZ+YetWCNljm6WwcjJGfp+PkLiing/+zY6CW1yiTdKp1vT+vfgR3rWRFCK3uDluj9tw+KrLJ9cilNf7FsTiW709DRzw4sUN5pzWc0SiR0PRWm6KyT8G9EbvOz4QOMySbEKCuSeYszQwMRZlaDkabMS2au9Lpo4nWB+LIXRIwvFi+mL88wPpZCdMhse0V47zo+oBCVb1MjW9zRgLCjrVfBpgaAU2upg1/sa8XTYhYhijXcFaLojiDNuXjEfrYZTdrNP9yANDQ10d3ev2FtYxzp+HZBOp7Hb7Vy9ehU9ErfWvHeZoFQKg6H4jy1goPFGK9EdJs3763Q6XDGZLQ978MTV91GLoCTbYOMDbsx+mfSiBkEpj+bbnUg2WJxMCxGUojttyDZYmskJEZQCG8w4ojKkESIo2Wok4vudQOXnXQHp/2Pvv8MsO8p7f/Sz9wo759C9Q+fcM92TZzSjMMoBFJCQhJAsLEsE22CwwcbH+Prc597LMT728fE5tjE+xvbBNgaTDBgRJREkUB5NzjM9qXumc4473j/WDh12713VaDA/6O/z9CP1dNWqWu+qeutdVd/1fqH7sSqqugTfqYGGG/203yO+RwZGhszx86UPaVZIgQFjPeJkGqtHZfv7YlR1O4X7M3xsVpigBGBWTKXOZVdFqN1OVZd4f2YHF7jw4zFGBDNAWoMqW5+KEmi7ehvxGx4K0/428ed86aVxLvx4vGyZxYS0YJuD8EansN5BJncYpQnuefW+OCFNUOp6tIqOt4vd83jPvJENSuL8erJvgYlL4kTv2G43DTf4ccUFs/QDGx4OU3u9p3LBXHInZ1Sl8fZVzhsy2SWHgHmCUt11bqHnNnTUuNfoVjtWf+UKeYJSbIeDYHtlPz89kAKzicabXDTsNeZbNrX6SV7eJ264z8OG+3yYyshJLUbzTU7abnMtWY9KYWvoHjZGrkNVVT7xiU/w+7//+0LXX8c6flb47Gc/yy233EI2m6W57o4lBKXFyGrmwk/TRmjpgtUISkvqqWaat5vp2GH8LkJQirZA3UYzmCsTlADcYahqNohJYwOmigQl3QZVue0lUYJStM3wDTOCr+7xbhVH/nV0uQsqsQ8fbtdovdlmnMWXQja7pJ7FDfW77VR3ie2FAEwNJpm4kqhMbjAbticNfW/MlycoLULDtTba73CIdSZ3L+d+MidMUFLyy54EgaWqzYKvbtFaU2FsXD68QO8h8SyNdTsstOy9enGXK6yw4S12bF6x8jPDaS7sm2N2VJwQVN2q468VWMBNptyP3JnvqR/MSRGUvDGF7rc5sbjFGul9Y6FIyDKbKpKFJq4kmRxIGe4LivdVBi03OqnZKv6cvXGFjjvspUODZeM3T1CKdWs4Aqv0Y9H8nx0F0mD3gr+2cswyO2YQlBQdqgW2pBemjR9FgfpNlZ9BYsG4B91uom2XCT1nJvNcaWefTpsBMy5vhi17wBU2lZeUyznFcBRaN4DLkyZjUQs/y6HrTq7f+TGam1s5duwYNTU1JBJXSZ/wTcbPvdzbmTNnaGlpAcCMmZvNb69Qw8DAvgkc1XZ6vim24o6cnCGyNcHYCbGvVmwhG4quoLnE0mxU7fBiD1mJ7Apy4bnKhxzOmI6v1U2LReHoZ8Wy2VRt9RHc4BGWuorsCOAIW9GdCKVG1H0WshmYHxFfsA5+5jz+ZsFFGoMYcOBvxckim3+9ieETE8LZY7LZLPNjCwwKZnjxNDuw+rSiRJQAjn1WToLj4N/1oPvFX7ITowlhKTyATCpLcjbJ/NjV24hfmEySnBK/vmimgzxOfOGcVPrOc98bkLIRGJlzqjZ5hLP5zFyZY25M3NHrfp3Od9TQ95MhoQxDspnBjn/1ErFrAsIZ2kgUyVyiiGwP4KiyCmdei+4O4G1wUndLWMjv6X6dQKcbq08Tvn9PkxN7tZXLL4tlPNEdqlDGgDym++aYnxbfabv4oyEmLoj54NrBjVhDdg4N7OOf/umf6Onp4fnnnxduax3ruFq46667+M53vgNAq2krdVp76YLLDoJPf/MKNp/4RsHExRmpFzzdJTd/q7q9qDYz558R8+sNt1ThCFvp+8mgUAaT2uuCBDpcBM9MM3y08rzXPBruWgfpdFY4C1Q2AxkJXz12aobzPxxcPZNSCfS9OIKogEV4q4eqLi8nvnRBOMvLxIVZdHtlScw8YnsCDB6dJCkop7UwkuT1v5TIcJSEl/78BJoY1wWQkMLLYX48gapfvW9BFiYTJKaTwut4ciJJ7wtysde+T50VfgYA+z8ln40ytMnD7PA8M32V3y1GT03ia3atvnlZArFrA/ganUKZQSd6ZjncU6LcahJlwLnnBhmTyOi2MJEkmwG7R2N2uLJt8z4jI+EzGm+pxqSZhGPtpjurcMftXHpxTOh5V29y44za8LXYGTtduU+6S0OxKNj8Ggujla8/cnaO8KYEUxdyB9Mmc1my2NlvDZKcSa/M4FeinqZpNPftZkAfZHZhBpvNRk9PD7W1YoT6dazjamF8fJxwOEwymUQ327g59t7SBZft9k4Ppuk7OEf/4fLvpHnSy0x/irnRFJMDYr7d6tbQrGZ0G4jQCFxRFXfMQrDRTv+hyv5BdULVBjsWl5mzz4rtw0U2O8kksxz+otj+T7jDgbfOimqbICVwExaHSjabZWFGPOPSyacHcccqEwjySM3DqW+Ir8mtdweYuDgvnlHIBNP9CSYuiknVWYMqNo/K2FlxabvzPxoXLgtw5rujqOK8L1LzMHBIYgMoAwuTKZISz00W85Mp0vPi1x89JZdl8dJPxjj3ozFhks/w0VnpjEKqHXyNdoaOiNWb7FsgOSt+uKZaofG2AEPHZoTGU88z4llrAfpemmRhMsVUr/g+XCadLR7GCSDU7jJ8hhNSqw3BTLZwEOip1wl12EnMpLiyX8DvWSHS7cQZWuDUd8X8XrDZRnIuzfBpMd9tcSolM7KthonLiULIZDKbV2RVWo4LL88wP7VsoCrKSgk4IK5uwxXy8dK5b/Cnf/qnnDlzhq985SvCfVvHOq4WPvGJT/Cxj30MgA2tj1Ad2lCynCHtVsT5U2C3gwhBCWB82JA1EoXFbkaVKB+sMWN1meg/K7Y+VTeCP2pm5GJaSMrJF4Nwk8L0WIZJgW+2FB18MRWTycTMyCKfVc4nZSGTpjSBqES9hUk495MZJgSz5QBMXEoxsVrmpWVwhBTCrToXX5sTlruaGkiRmBHf//HWKkwNpMsS1xYjnYCTz8mt+Ye+Nl0pAd8SzIzIxVALM5lSSaveNCTn08xPZip9N1ZAOrFIwk0QR78rJ2l29gXxWDkPV1jJ3UvlslNDaaYGUjJcNLwxBW9c4/wrlfuWmIbzL5WIT3OSdqVw8fU5ZsfE7ZqcM+azYoN0qThqmYybooCvRsOkmJgZKfMwFkklxjdqaDYToxfFHl51i0KwQWG0Ly0kZ+iuAk+VGVcgzaTAc1NUI6uSbjORmKv88GanYHoSZnLXzmrKikx6izF42bj9qYmlEzpjUVdkVlIUhbqqxxkf/XuGRy7g8/k4cuQIDQ3iHz//Z+DnWu7t+eefZ+/evQBo6Ow131exzsbHa1mYTnH6q2JSYaFuN3OjC0yLaqlrWWnZozwK8kGCcDfYxQkHuesDUm2IEpTWAlkJuY2P15HJZDn2r2IkH90JWz/QwcS5aY5/QUCgdw3Y/BtN2PwWXvpvx4TKW8M6illc+m8taLk/hqKaOPElMemzteBqy70Fu9zE94Q48H/Prnk+icDX6mTslNgA3/y+JmxBCy/92bGr0ycddn+kg5ETU5z6qtizC3a5abi1mtc+eUqqT1dLvtG4OFJ98TQ7mBD8AhLW5vcSo4m1pViVvBdRshUYvmDjI7Uc+uzFij65N9PDeetRUqkUGzduZP/+/eKdWsc63mRs3bq1MAY3mfYS1mIrC5lNha9IbUGNtrdFOfqlS0WpnnLIZqSl1NBYsyyarGSSM25hSvBQBwy5JxmpJ9n+yEDo2ove8DW7ia4nGjn7nSvCBIiWeyP4W9288j/E5FRlodlh+wfbmbg4w7HPicV2ngY7ExLrhnyfTLQ9WMulHw9JSQzK4GrLvYHx7BKzaS48K54RShb2Ko3kPGLkJg12f6Sdyd5ZjkoS/EXR/lAMV42D1/7qlLAP6Xg4TjqZ4dTyd8kyWX3+0+f1ItiDGsnZEjJrZeCMW5i5LB4QycpzFitiPAeBDEkArloLiqYwfnZ2ybqzGprfGsakmjj99UUfKqxS7/nEV0mY5gmHwzz77LNs3LhR4kbWsY43D+fPn6epqYlMJoNd8XFD9F0rC6kKJItzrvYaG5l0lt7XKsQrZjMkkzirVdLJLHMjYhvM2WzW+JxRdpqn02Ul5ErB6leZHxEP8lQrKLqJhcmskKxBvk6hT6InHaVQoj3Z+63b60XRzPQ8Wz4OLmzTqrD58SgTF+c595wcoUMUrXcH8MRtvPb3vULPXHWCqqrMj69hHRBEdLsLza5w4fnxq9bG1ZZ7c0Y1otvc9DwzUnGMlMqeVQnZbBaTyYSzWhWTVQSa7vDja7Bx4DN9UuNWBluejDByepaLL4gRcJxRlfrr/Zz4+qBUn2TnngyEr202gcmMPawKyz0C2MKasD9e0h+Z0+ZCZTBlxA/Ow+0WBk8sgEVfsu6s1q/WW1yc/dFUURpF10rWG5u/zMGpb5BMJtmzZ8/6x3nr+E/FBz7wAT75yU8CJrZ1vRuve+UHC1nNXJB7U/QszR3QcxySicrkJPNCCn81jIonKMREVljCaAlSGRQdKaKF1QkLE+KNWV0wP4URB5UgI66AoU5UgEm03nJksiuk24TudXEdBVpudtG3f5bZ4Qp9yGWTC7frVLVbOPyNqcrPZC1nEQpsut/NeF+SC6+KnUfbvDA3Lt/UEpTrqwL12ywMnk0wO3J1qAJXW+4NoKpdI5POMnRaYE1ey7PLZtFtxrBIC24Dd9/nYKo/xblXxJN+LG6vEqo7dQINGie+M1OcZhXekaLdFkxm6Dsg3qeyc0/iY+ICFmVxWoXnXBJZxYxiNeaqjN+zeBUWZsT7mb/f8pmOVkfGKpYbSLdl0DWYnjSTtqmYl8tjLkN1LI1ugYs9xX6lrSrK/Moxf/D4vzI6fopAIMBLL71EU5O4UszPGj+3cm/f//73CwQlOy4hghKALWjFGRH/iqnprgidD9cJl9/x/lZ2fLhVuHzjXdVs/a1m0MXIQ7rTbMhm6Qgf1LfeHy/Izom04Wt10nK/cegoSlDa8v4mYjdUlg7Io+X+GNs+2I6zRjyjgu7RsMpkFJqGl//kuDBBKbTZQ+djtQYxQRAH/uEsPd8RI7wBtLwlyqanmoXb0P06u36/Xcq2nlo7rhrxz9B0v46vVTy19lpgDet4JDJmuSI2bAEL7pj4fez4ndaCPKEItry/mfYHa4TLn3n6Ese+cEGKtBLdHShKh1VCAl76xHFhghKASTGhWhUCzS7hOls/0MyW3xT3UbrTzJb3NxPaLJACGyABrnob7Q8KyMRBgaDU8XBcKGNY3u/V31ZF092VZaPyPq/uljDbPyguJ9RwexW7P9KBr11sbtTdHCK+O0h8r9hc9dTa0ewqvobKKTHj5kZ2+G7C5XJx4MCBn3t28zp+cdHZ2VkgKO003bWSoJRPH7vohccVs6K7VJxhgdgrm6HmhgC11wep2lrB5+Qke3ztTnZ9qIXILp/wfWx5XwPV243rixzUN9wZJpKTRBUhrVv8Gs1vNSSeRAlKLfdEsIc1YeJAeIuHrifq0CS+Ot/y6810PbHKOllCusrT6ERzqFJfF5/+jytSBKXWt0cJbRJcXzCe17EvXOT898R39DoerqXrV8Xjg85Ha6Sk2Jw1dpy5uEUUngY7mkciVdMaINuGp8GJt148VovtCRjvPIJNaHYTm55souEWQSmUJJx+uo+jXxAnKGl2aHswhlcw5jzxpT5DslmC5Gj1W7B4xV8WPPV2tv1WK7WC8QFAdLePrifEsvfkfUbzW6txxCr3a3bYICg5Yjr1t4vJPs5cTqDZYcOvxMWk6CZSoMGm99RL+eZt72uk+6l64fJt90ZpfkuV8Us+a0GZNOaOaiuO5WvR4nqLcIN+P9s2b2dwcJCuri4OHDgg3K91rOPNwpkzZ2hsbCSTyeDVoysJSqqygqAE4AyquIKrbHzmZSpyBCWAphtcNN9cQTq9IGNgouMeD933i8/tYJuFzns9oIpLqrXeYZSfHxU72I9ud2D1q6TmDWm4SrAGVOK7jfe81DxCEp5tdwcIbhAPvCJbnGz61SjOavEE9Vavis23evlsNrs0A0oKDvzfy8IEJVdMp+EWP6r4liinvjPC6e8OC5PSanb46HpntXgbKmz+tSjhjeIxiKfOiqdO/CZUO1LPYS1QnXJtWD0a7qgVe7By/Jh/5p0Phmi6YxWpsRJovSdA273iEs+9L09y4msDUuQeX5OV+pu8wuX3/+MVYYJSHrpTwVEt/rzb7guy8Z3iEuOq1ajjbxFrIzVvzNWaawXeYbIZZgeMPan4bkO+shLmhlOQzRJssxLbUXle5J9XsFVnw33eyg3kEGyzsO3RAO64XlwXysDfqFG7y0HVBgssJEBTiz8lYPOpWFxm7IvXo0SyZB2fNcp14Xfg8/l44YUX2LVrl/B9rGMdbyaeeuopPvnJT2Iymdm99UMrCEp5Wbc8QQmMzElWh/FTClnVXPgxL6TwhaChE/yVVMFz89LmNrHpBvBHxe4hazLRss2EL2K834gc1IfqwJ/b3psXOAtUdIi0GD5jfkKMGF7VqqA7KRB7TJmsQVBaBY6gQuMeW1HKLI/M6u213eai8YZVYrVMZgWpye5TsDjM5fNeLfOPgycSHP6aOEEp0mXBHRMkMphMkDFx8tkprhwRJ4g03+CgcY+45Fas20LLjeLlLXZwR1SsghKyAFa3kS1nCfLSXG9SThSbh5Xjoww8URVPRHADK5vFE1PovKPEGFwNCnTe6SDSJt6pnhfnOfe6BEFJgWiXhiMo9iz6jyU4+s0ZKR6gzWvG4ipx/VWene6EDW91EWpbxbYl5qwnptC4p0LclWsv3/dQi4pNIPRKz2dIz2fQbRBuFpt7C9NGe/WbTEKc77xfbdpqwh+rLKWZR9tOaNlu+On8Tzk0d0BjB0AGZS5FxqIUfkrB6QanCxY7KGU+Rdqqkl5GjNrU8Rg7tt3E8PAwbW1tHD9+XOge/jPwcyn39vTTT3PPPfcA4MLHLvOtFevks2m89henpNo6+fU+ktPiO9cjp6bQbeIMOqtPR7WowsSH2J4Q9pCVQLNLSLZNd5oJdLixBXUOfrpHqI3avWHsISsXnukTk3nz61hcGo6A+OI2fHQCm09n+pK4E37jr88Il9Wd4KoVs1EeVV1eXDUOuSw5CRjYNy5c/PwPBwh1eoXbsLgVMokMiXHxMfj6/5aQNAGa76rG1+jiJ/+/o1L1ZND5jlosTo2XPiHm7NYix5ZKpElXYJMuRu8Lg1gkSG/TfQlkUyiFu73YJNoAQIdgm5vhw5XzBQ4dmGDogNwGz8iJSSwuCbJfIoPVreFvdAm31Xh7BHtQXCrSVW/D1+KmWTVz7HNih5GhLg8mk4mzT4tJdmp2BcWioDtNJKYrB8NXDozhbXIw1iPG1Lzw/SHS6Qy9PxL70nLg9XEGXh8v/F6pX5YBJ22ZbbzMs5w/f54dO3bw2muvCbW1jnW8GWhububsWUOu6VrTvdgX77CWOBDOZ/cYPDjF4EHxtfjS8yOk5tIMvCHmb6YvzTI7vMDwCbE2LH4NxWpGtYmHuP5mJ+naLFcEpV0bbwnhaXRy+ZURYcmmQIcLzaFw7N/EiKqeGjs2vzipCWD01DQzQyXirlUO5YaPTDF8RJxw5G93Mnp2Worw4W9yoVoUhg6Kr2WyWZEuPj/IbKn7XgWp+TSKhBTb2MkZXv7vchmOOh6qYXZ4gUP/eF6qnig0j8aGd9YxeGicM4LrpGz8mJhJkZ5PC0uTJWezXH5tlKEj48JtDB+Rk9FLJsHX7CKTyDAukaVRZuzul5CdBpg4P8tU7yyjZ8X74wxbsfp04SxJmkcjuMGN7lQ49gUxccbG2yI4QhbO/2BQ6L7d9U6cERuRrT6uvCImF6lZFewB8Zhz8uIcs+VSeC/Dyf+4TFYwUwrAwX8oxpiax7wyu19+Lctd03e0BXf2HBMMs3fvXj7zmc9w//33C7e3jnX8NDh69ChdXV1ks1mC1nq2hxZ9lKeW3m/KZ9M49rSc7zz13KSUXO5ozwIWl8Sel0dBtYqXDzZbcUUteGIaExcEHJQK1RsduMI6J78l5p+imx34Gmz0H5gmNVs5e5JqBVtAwy6RHWi8dx5HtUU4iw3Aya+vLlO3Ism9Cu6ohcmL4jFOoNlOoMXGuR8JV4EUjJ8TZ61cOTjFwlRKmOhidaik5tIk58T3co5/RUyqOY/IFg+RTW7e+MwlUlcps2HzrSEcIZ19nxZbh4ePzzJ8XLwz2WyW1EKG9IJ4tq/L+yaxesXfeRYmUizIbS/hb7bjqbFy/gfj4pUkxu705RRv/INYLJvHyOlZbD5xon5qHmx+DWe1hdHTYgM3tsuNt87Klf0TQmPK4jZTtcGJblPo+b6Ykas22FE0E32vicWQqkVBtZrRnJAU2MYav7BAsMkinOVptCeJWZ1m+JRYrDZ1JcX+fyve64oMVHmiUo5oq2a9bNTexg/5B1599VWuueYaXn75ZaG21rGONwOPP/44n/3sZzGZFPZs/whWvfhB8HJZNwBFMQ7Pp8ZNHHwxSyWJtzzGhqDnsPFfEczNwdQoTAoo2WZNJhQdNAuoEt9EBaJmsmQZ7RN7t6pqMBNuUBjpSwvt+ysKVDVrWJ1mLryRLEtOysMRNGP3mZeSKyrUGz67QGq+RJlVdMdmh9Mc+VoZn7yMvGkPKMyOp6UyKAUadXSHmck+8Qzr8xMAWeEMNJf2zZOUIBinUxnSFbJ+LcbCFBz6ulyGo+br7cxNZDj746uU1hBov9VJ/8kFrhwR24Q89X05qd3UXIbkQlY8G1kaLh2cZ2pQPKadHpLMIpaGYKOOiSQzEnVtPhOJySzpZOW5d/b5CnZaJK0Gxtnf2KUk0wMV4olFcrgWpxmb1yxm22wWRTURadeZ8Ji58LpYHBJpU/BGVUYuiEkn2j2GjNvkcIrRPrH5oetgzVEisiYTpgoEvIkhhGUcAc4czyfKFNujPlM4eldQlDTp9NJ38DxRKZ9ZyanfSG00wYU+gyD+1a9+lVtuuUW8gz8j/NzJvX3pS1/i4YcfBsCNn53mykZrvi9KaIOHY1+4yITABrHuNLHh8QaO/kuPcCahYJeL4cNTbxoTtBxkZeGcMZ3poYQUv8JZY5EiEF1tNN5VTc+3xb+a73ykBm+zi0P/dFbqPmTk7Vruj+Gtd0gT337e4Kq3EWx1S5GCZOXeQt1udJdG30+uTqrsnxVa74/jqbeLP3NJuTAwMkIpFoWX/0ScveprdaLaFWnC0lWDDlavzvyg+M276m1MnRcPFqUl69aSpjMHX6uTsfPTws+y5f4omWRWmEC1/YPNKBaFV/6sMhlgOjPN+er9DAwMEA6H6e+XyA+8jnWsEQ0NDZw/fx6A601vw5pP31PqhTm3abD9gw0kplIc+r9i2Qwb7giRXkhz8Qdldl4WSQBpdrD4daZ7Ez+dNIcgFpMFRA7FHTGdmT5xH2gPihE93lSUsVuwy838WJLpXnG/vOv32khMJdn/t2Kk+AIk5Pq2vb+ZkVOTnH/m6kmS/SwQ2eVjbiQhTKRZi9xb7Y1Bhk9MMnsVJYavOjTY9t4mhk5McVFQTlVW/szTYGfDO+vo3z8m9a5Re2OQiz/M+StBebKrCXu1xmy/hA/RwOLSWBitXCdPXlizjJssTGZ8LXbGTos9SM1jpv2+GIe/0Fvalyzz2b4WO633Rbj8yhiXXshlHymznl2MHKTn8ik0TePpp5/mpptukrmbdaxDGocOHWLTpk0AhK1NbA3dbfyhFDkpd7hb3aUT7bJx+gczTF1ZNk9LZcdQoW2vjbM/nFydTLLs/ckVVZm6nCK7ykFPRUh8wrtUgq1y3KU5MQ5nFt96hXjN6lOZl9hXqwgJ0mQpVG9x0r+/9GZUqW3Z+G4P0S1ujv37FSkilIwMVnS7i0CLncNfGpCX9/s5gtWv4q2zrmrfUpCVe3PHLehuheFjV09iGMSk30qNF1HJuOgOF/5mG0c+Lxhrr0H6ccNDYSxuRYp8ZAupWFwq4z1X77BTFhaPykK5uGhZbGENqMyPpCrHjbl6qgVSi7ezKz3Dtci9ASZVxeaH5CSklvjQ1X19pNuKyaJw+VCJwKuEnFv7HU4sbjMHv5T7GFMvwZ7I1ZtPzXPK9A0uX75MR0cHx44dk7mddaxjTXjooYf48pe/jMmkcN3230XXjY/ySpGTjCxKWTbuhMQCnDq4cm5m1ZX1wpE0SibLQLlvc5fEbFlsTpibNmFKVo6hSmXkEKmXx2JJJVOlmC2TLX2GVqaeaoVUEkylSBIiMWKpOKtSTFrm746wQiYJc2OrtF0ift5wr4vEbIbTz5bZxynlq5dJ3JWr03KznYnLSQZPJNcmk/XT4Kc4O1kOd1QhvZBlZiT3DErF84vaW4vcm79eYXpYjCj3U0HELj8FJ6DlRhvjfUkxGTpyczUl3p7uhM47nPQfT9AvkaHL36gy2pPr02r3t5YxIzKuS1xXd5kqPuussmjeKgaJKDFHxWyR+ffsFaSpCveX0Vd+DFCJqASQtmk4XGlmppbGbqvVVZQM9W1w9qKygngErJCBsznSdHRD3wUYuGyUX55JCYpkpYGxH3HqzPMoisILL7zAtm3bKt7DzxL/+Tuui/D973+/QFDyEhIiKAFceWWY2cF5IYISQHibH6vPgqdZTH7C1+qk9Z44HQ+JyRsBbP9QC91Pikv2eJodhfKiBKXGt0TQnWYjA4xAFd2vE78xCCBM7Gm8q5pQd4XU4Muw48Ot1N0qnnK47tYwke0BKcmzM0/30f/GmDhBKfeRr8yipihyTthZY2HzbzThqhfPOOVusKNLpFLUnbD7DzpofIt4auOp83PSWYtkMXRoUpqgtOuj7Wz4FXF5FkBYmiuPjnfUCMuSAWRlNG+gOO8kkildfH6Qs98S+/ouj7YH4jTcUilPbBG6E7b/dgv1t1WJN6JjyCGKIAHzgwl0v07sWrF5myco5f1WxSZyBKWqHV46HxXsFwah9JrfbxOXONSh/e01bHlKXPrH1+DE1yQ+FgcOjzN6RuyLZ6fZSVP/FswmMwMDA9TUiEsWrmMda0FLS4s4QWkRxs7MMHBwXLgdX6OdQGsZ6cplm7kdj9Sy4eEaYakpX5uD7R9qwl0vLtPR9kAUX5uRs1uE9GDxa8SvN3yeKEEpssuHZkecoKRB6/1R4fsGqLslxOb3NUjVabilig6J9RHg7Lcvc+GHEuShfH9EeRW58jJnoy33RmgWkAZd3IanUUJDD+h8Zw3bP9QiVefKK2NSmX7Wgos/HJYiKNXfUcWu322TakPzaDjj4nGtq9ZO95P14jJ0SeNQzayKx9yFuSrYxMS5WXpfGeHSj8QJSjU3BInvCVG11Stcp3ZvgK2/IR5LAAQ3uAo+pRLyBKXYHr/YvSdhYTSJ5tGoEXzHyhOUOt8Zx14t7lA2PBaXk3G7P0LbfRHhNnz1DuwhnXDHKmvIsvVq7PQs05cX6D9UIfbK1au9somYq5bZ2VluvvlmXnjhBaF+rWMda8GZM2fYvHkzANX21vIEpUUYPptgqj8lRlACfDEVR0jFFV1lni3bkLV6ofVWF3XXiq+RHXd7aLlVfK/I6lNpvtXYgxMl0VR12VHzWUME9vVVK4Q22CCbESYoVXXZ8dSLS7oCbHwkTPUW8fdBf6uNmmu8VG1eqRWz2nej/fsn6H11XJyglNuXlpHyMplNRmIIwSY0l0L720I4wuLZe+whFVUu9GLbu6PEdoqPrfnRlBRBaS2Y7F2QJih1P15Ns4R8G4AjopbVPFg+Xmqu9VB3g3fVcVTiAsZ/RR9hfmxI6DBcemWCs8+JZT3Lo/WuILXXesUrqIY8XnS7xB6hCvU3eoXvZWEihWqFYKfYAJ4fMYxV1W0Xkn3LE5TccY2GG8XHuzOssvkRP+6Y4I2o0H6Hh5Zbl3WqzIGev8GCr2aV9aOE/Nvg6XlGzlfwubl6VtVKZ/YeVEXj+PHjbNmypXy9dazjp8Sv/uqv5ghKKtdt//2yBKUiTAxdhuHLK/9SiqAE4A+Cv9w2/LI517gB2rYASnn/nZcMsjmh61pwiB1nAhBrBVfuVVCEJ6SoEMwd1YieoXmqc9lSZrOlCUolEO3SDWJPHhWI4P5GjZabHVJczfg2O403rOKMV/F/51+c5cqhMoHUckJDvj+SyXJk+C5VHRrVnXIqHjavXH9i3Todd8gFa5OX0+UJSuX+XRCj5+UISoFGhY1325eOrQpQdLA4K/Rz0X3oTmjYZUGXO6LEJHHOXJirgveRmIZL++cZOiO+P+iJKdRts+OrFTeWv06l9RaBcbJoPjsCCv4GsXglMWXIv3ljipgEX9ogKCk6BOvEztfzBKWaDWasEs+wrh1atxr/LyLjFq01SEQ2x1LnsFo9uwvcXvCs4t+Xy7/NzcDYsPFTDnniUpVvLy31e5mbm2Pnzp0cPHiwfMWfMX5uSEqvv/56IdWUhyDbzTdWrBPZ7cMa1pnpT3Dw788Jt9X7oxH2/eVx4awkY6emGTo+wfGvi0l0AKQWMiRnxD83ie0K4Ki2oQtKR+l+naotPjreWS/cRtu9UWqvDeOoFl/Ywpu81EuQIxzVOmbVTCYtvghdeHaQnmev0Pe8OMklMZ2h51viX+VsfrKJa36/Xbg8wIkv90plUfI2ubD55Da3Oh6qZfP7JA6+dJ2FqSQzQ+KZDxpur6LjHVeX6FC1w0v3U+KkPICFySRzY+KLZ92tYTofqqNqm1e4jjNqwxEV17Y//dU+6cxZnY/UsPt3O4WJSgP7xhk6VFnqbTHOfusyB/6PuExLYhrMqoLuFD9gim4L4G1wUnNTSLhO9+N11O4VJyQ6YzrVW3y03i8+HiPbArhrxQPl6YEFMsksikUw+EvAwP5Rjn9F3L+/+tenpGRzLv1gmNNfNd5sG26vTByzmZ1ck7kdRVG4fPkyu3fvFm5rHeuQwZYtWzhzxpBavdH0gEFQMpvKEpRi1/oAOPutQQbeEJcbeeNvzrH/H1eJ1Up8bXrm6Sv0vjIqTHAxmU1kk1nxdUUDT52dyDafWHmg6c4q4nsC4gQMDer2huiUiNVq9wQItDkJliN0LYNuV1FVc9FW2UzF7FMH/u95Tj9dYsetDIaPTDF6QmyHQLPDNR9pp0mCVE0S9n3yjHBGHQBX3I5LgkRTvdnHhkfqpMgns6MJuUwMGmx4rBa/JLFaFq0PRIntESf4zw8nmB9PSJHZNv9aPe33x4TLqzYT9qAVrwRZ8PW/PsP578qR6Xf9bhsbHhYnMF98blAq+9Kl54c5853LDLwxLpVFyayZxP0DUH9TmMhWcR/kiOnU3hCk9e6ocJ32+yPErgmgCT4Se1jDFbMR2Sp+qJqay5CeF3/v7fnuFa68MSGcGWrw4BRvfOosgwfKxM/L1q6jn+slOZHEXq0R7CozF3P1WqZ34acas9nMgw8+yL59+0RvZx3rEEZ/fz+tra1ks1mqbc1sDtxlkJPKEJS8tSpWL6Rm4fT3F5FfzeayB8xjZ+Y49G+jjPWUmGclNkfnx+HKoTn6XhF3lqkFQ55KFKE2K564BatXzK+qFohvd9F0vbifjO9yU7fHgzUgzqio3uyidrf4iZ9qB/MqB5SrYfTUHGefHWbgQPEZZrPZssSS1Dxcfl081m65I8DWp8TXB4C+Vyc5/DnxNdgZ1nCEdRRd/ECj+c4gGx6UiAdVmB1NMjcunj2wqttBw03i42QtcNdaaLlLPO4CmB9LMjcmvj76W210vq0af6P4HpY7ZsEVMfYhRYhKl1+fNrIoSWRHiu/xsO2pKKpgtyYvLjBxXi4jUs+zIxz7ikQW6RQoullKatITtxJsd1BdLi5Yhua7QtRd5xUmNqlOiO90U7fHK9xGuNOBt9ZqEBUEnuH8ZIp0Miue3CAFffvnOPdiife4VdaRo9+c4Oi/j69+TU1dQlYa7UnR+5rxzMPtZTZHc/VU1cqN4SdRFZWDBw+yd+9ekTtZxzqk8Vu/9Vv88z//cy6D0kfRdRtZzVyGoJQmWG3Mw4FeE6NDxYmWVc2rEpQATr2e5fgbq/yxxFy7dBp6zwDp0pN5+UG4WTGyoSUkFK38MTPBGnFyRKTFTLxTQxffYqFui07DNvGzRm9cIdyq4w4rBplBIFOlqpswa6YieSOTqfh125nnpjj/k2V+r0L8PDOcZno1Ka8SBKXu+1xEuiqcBS6rd/r7swydzMU4AvfuDKq4qsTXOmdIof1WV2nyySprzMJ0hrlxOaZVzTYLzpByVVWHqjs1/PXi956YhtmxjBSZrfl6G4277cL3YTKBq1rF5hFv5PQP54zMWaLIZul8i5367eLx4EhPSkyyLoeJvjRnXphh7GK6/L1ni7FJJifLJuQfcnM72q0T6RD3D7oN6nZYiHSK76vFN2jENqgoqth7qaKDL2omEDMtub9ySCaMTHGLUY6sdLkPei/A3MzKcVKqztS4mUOvwEQZSc6MRVlEVlI4d1ohkVDQ9TRu3+rzN21VSVtVqkM30Fhj8G9uvfVWDh8+vGqdnzV+LuTezpw5Q0uLQdRw4GG3+Xaherv/oJ3kTJrX/1LssLjrV+tQHSr7/+ascN/iewP0/mgReeYqmktW5s3X7mSsR1yiCCCy28+Vl0YlOiUv63S10fWuelSnIvUc624J46iycuxz5XJuFuGM6Zg0RUqeai2o2uHFZDLR/6rcV0Yy2PL+ZnSHyit/Ki4hIiv31vFwHG+Lm5f+7Ji0/JkodL9O/JoAvc8PyMmASTcEoXa3MJEotNlD9WYfJ798XpjdXXdLmKqtfl79M/Fn8rOArCSbq96GyWRi8pz4ZnZos0dOti4fx1QaV29CylJrWMcVtQn3L7YnQPzaIPs/dYrEdOW1oWq7l+Y7owwcHOPMNyqTLJP6GMdcBxkaGmLbtm28/vrrQv1axzpEcMMNNxSyRVxreht2y8ovu5ej6a4QoU4XJ792RUimR/NobHo8zvkfDTG83KeucvAf7HIycXGW5MQiP3+V5N5Wk40qJ/fmb3cwekI8Q46n3k5yNsnsoPgLqayU3BJcDVtpsP03W+j98TD9+8TiFc1uouW+OH2vjDDRI7ZG+DtdjJ6eEs+8tAZoHo3Idh8Xnx+8au1oHo1tv9FE//4xYfLNWuTedn6kjbnheQ7/k1isthZUbfWSTqQZPiJ+SLoWOOM2knMpFkbEHkrbgzEmL81y5RXx+HnTuxuYG13g1L/LkfOuptSbPagxO5GUGotVWz0MvCEeR2l2sAZtTF1cPb4zLSOmXnXZt0U2jezwcOU18fvZ9FQts8MJTn+jwtzK+fGtv16HalV49S/FPmgabT3J/iNvkMlkuHz5MpGIxMH6OtZRBuPj4wQCATKZDH5LLTujDwrV2/yAg+RchqP/kfPDFVLZ111jxe5VOP6N8aV/KPOuFGzVGT5VjDuuptxbSSmyMnts9pBKYiq1enagxTFbLgbyt1oZPSVBkFDB4qgg61SqvZ8ClbZhG27yYfWrHP/KkPA1g512XBEr554T2+/TXAqa1cTs0NXVefM2WDFrJkZPXb29tbZ7gjhCOm/8o/gaLyv3FtvpJrLVxYHP9pG6SkmbVCuEN7oYPDZFanalhJvo9n1F6TcVPDELExfEMtM7oypVXW4u/GhUOFNXoNVGbJeHQ5/v/7mSEixIsomW96qoVlZmNCvzUY+7Rmfy0qJ3ueWxZIm6K6TfoMSB+Nrl3grtWI1MTOMXV7HBMv/vbbJRu83Kse/OlH/2OSk3V0Sl9RYHA6eT9O6vHODOZ6c5Mfd1+vv7ufvuu/nGN75Rsc461iGKP/zDP+SP//iPMZnM7Nn+u1gEUhBVVaepq81w8hBMjRlzsBwxSVHSdG6GS+dg8soyH71KzOb0ZlmYhWSiOMeXy7ZVytKxWr2VHaRklp8Vcm+L4htnAKbLLY2L6poyWSwuI5QreyayrD3dCYlJwZhqeVy61ji1QgzdfqeTgePzjF1Y5h9XeRaKApFNVsYuJpkZLmXklfUcQYWZsfTSZ/ImS74pOnjjKuO9ZUgrP+0ZigLd9zgYPLlA/zGxzYzYJou03FvnnXbmJ9L0vCQuYSYLV7UCGZjKk9OW2+ZN4gLoTiADiUrbo7n2Iht15ifTBolIEA27rSRmM/Ttl7SX6D2uYdwoNkinTCv9UJlruaoVpvpXPo8lUm9LGgGbC+bGF/3b8vm+7KOgFbJvq/SrlNxbKSyXcUvbiiQrXzCdy3hUOo5bWjdD0yYTCwsmLlwo33ZeAq69K43VDvsOqqu2sRhzk8/x2r7voygKfX19hELiCSuuFv7TMylNT08XCEo27MIEJYATX+3l0GdlN+bFHUvHw3FqrwtLyQbt+mg7rfeLy2f42p10PGyUFyUoVW3zgg5jJ8QJSnkJMlGCku4044zpBVknEUR2+wtycqLY8v4mdny4VaqOSTVJO8ULzw0KE5QAGu+I0fWYXGagtWDgtXEpgpIzphPoFM+uALD/k2ekCEprwfEv9vLSf5MjKFnDupSUYGI0Qc+3rlxdghKw5T1NNN8tPoeHDkxw+DPiBCWA5KyxiDhj4kzixrdG2P2xDql0ko5qXUruLk9Q8jRXJivky0+emwUd4QxteQJQ1Q6vWKcSxo+v3SmVEcxRrbPr99qou1kiM9Sv1NN0h/hhVGohRTYLumDWhIHXx+l57ooQQQlAS/ioGdoAwL59+7jrrruE+7aOdZTDo48+WiAo7Ta9VYigBHD220P0fG9QiKAEoDuMzfT0/DK/XebQv/HWKkPmTRC1NwXZ/sEmqewlLfdFcMYt4plVNEOWCRAmKNnDGmgwcX5WmKDkyWWfkSEoNd9dXbx3AYKS5tG45qNtwlKdAM4qI4ZMzIgzKZKzWY59/pIwQQmg9d4YG98pJwMri+RE0sjUJEEK8Xe6pMZXciLJy39yQjo7kCxe/fOT0gQlX5sDe1D8XgbeGL/qBCXNDl2P11F/k3hmxpNf7pMiKIGRXtssKeW8/bea2fi4XDbS2LWBgr+ohNlhg6Bkr9aEM1zlCUoOwRgyOYtBUNLA3ykWROYJSnlfKYrme6rZ9gEJ+dw2O3U3Bmm4QzxWy2YFXwNzm73Hv3yZ4/8uLrPsP9WGPWM8v8bGRiYmJIj161jHKkilUoTDYTKZDB49IkxQAjj17CRnvi9GUFoVZSZNbJuNumscuKPimYe6H/JRu0s8Y54tqFJ3nTGvRAkOnhrNyKgzVIagtAz57EnCBCXVkKAjhRhBCfDUWwl3icXNebTeE6DrsWI2XRGiiUkxSZ8DDB+bFSYoAdTs8rDhwWrh7Dhrxfi5eSmCktWj4pZYewBOfmNYiqC0FvS9OsnrfytHUFKd4KkTN3A+e1YqFz6v9ZviSvVa7wrQfKf4u8D05RRnvytOUAIKWdZsPnHfUtXtYOt7oqgSe16a00zNteKZ0PIEJbugZOH8eMogKKkGYUkEeYKSp95iZGASeEdLLSz1lUDFQ0PVAZve4SfSLZ7ypPU2Fw17yviwZetMOpUhm6Wyn8hlVZq6kqLnxzNCBCUAq8lJu+ktADz99NM8+uijQvXWsY5K+NSnPsUf//EfAyZ2b/mQEEEJYKBf4dRhMYISGESVbLYET3vVmC1LQwc0da1+zeUEJX81bNwDusTSGGkxDu2FZMhyBCVX7kivLEFpEXQboMDClIA0XI5kafUY7QkTlICqTksxc4sAQUnRoesBL4HmRe/LFWLo/FlLOrWsX2WCsXQaet+YL01QWgVN19lpvGaZz36TCPCFfiXks+o4AmYUiexZpOHQ12aECUprxbHvzEoTlGw+0CWU66b600WCEly1BCUdtzkIt4tP4itHElIEJTJGhkXZb+xab7bTcK3gw8/ZxhtXDHKXANJzQDKLbssWJdwqvOTkCUrCZ6DpHEFJAWeemlDBV+TnR6TFhG3x8XSF519VBxtKCJ6sRiy1OdI0tUOsTCL4pXXNwvSVfFal0yfh1FEQ1Qe0uW+hOriVZDJJY2Mj09NXVzJbBP/pJCVPTmhPQ+c33v1+QpuN30ObPXQ/WV/IotF8T4TW+2OgG1/Cdj9Zj8WtkRhNEOh00f1kfWHgNr41suRgvuuJOqK7/Rz+pwucf3bQKJuTVWu4vapAEgLY+HgtseuNl7W+10ZZmEqSmDRGbd0tYTofLY6ozl+ppe4WY0PdGdPpfryBTDLDzMgcNTeF2PArxYOWzkdqqL/N2JiwhnW6n2zA0+yg5toQ3hY3XU/UF8p2PBynMSePoTvNdD/ZgC8nGRG5wU/TW6JseU8zAO0Pxmm6O3eorkP3kw0F4kfVNi/dTzZQc1OIrsca6Hp3Ay2LJBu6n2woSGeFut10P9lQsPem97XQ/WQzutNcKBvZbaT9N+zdUPhb41sitD8UJ7YzQPyaEF1P1BcOvzzNDqPsInt3PlLc7Fd1lXTKcBquehvdTzYUiBt1t4TpfGyRvR+rpe7WMIf+8RynvnKR7icbCuSr+I1BNj5etHfHO2oKskrN90fY8ZHWAvEidm1gib3bH4rT+Na8vY17HTo1Qd8rw1Tv9Bl2yaHtgTjN90ZL2nvP/6uTnb/XVijbfF90pb1zxIxgl5vNv9nIpvc2Yg3rNN29fMzWF+zta3cWbNh4R4y2B2qWjNmud9UTu2Gpva1hw4b1t1WtGLN5OS9njcWwd42laO9fKZa1V1mou9UY345qY8y6G4xVPnZDgK53FW3Y8Y4aGu8yZAF1v1E2T+6L7l5m7wcNe7e/vYbmu2N0P9lAsCs3Znd4l9i79f44zfcVU5bv/EgrXe82/m74iOKYbb43uoQg2P1kA9XX+Nj9sQ42vachN2aNv630EfVEdxs2HDk5wcJUYqmPWESO2fh4XcHe7ga78Vx3eel6ot6QpCvnI3L2vvzSCFdeH6HupiIhZjUfAcaYddfYWJhMYrbr5X3Ebn/BhnU3V+PvcNP6UOkxm/cRebTcH2PnR9vofLi2UHY1H9F8b5S2Bwwb7vrtdrqfaq7oI/LY/OuNNN0RpePheEUfseFX6ojfGKT2+jDeZhfdT5XxEY/WFOwNYFZNqA5jgY7vDbDx8WLZjofjBR9hjNl6+l4b4uRXe4ntCdD1q0V/stJH1BPodDGwb4KLzw/SeHtxjLY9EKf5nsU+uX6RvT2EOow1rvGuaja/r4GW+4t1u5+sp2q7Ye9gl7Gu+a0hutmD2+3m+eef58Mf/jDrWMdPgz/5kz/h85//PAD3bn+YrQ8X162We6qI5VLTW3waHQ9FccZ0aq730/5gNe0PRBg8aByUNb81TM31xpzXPGY63hHF02isyeFNLjoeijJzOcm+T57H3+Kg9ubcm4JulPW1GOtJsMtJxzuK82Di0iwzA8WDjI53RAnkDtZ9bQ46HokXDvPrbgnhrrWRms+QnEjS8UicUJexsettttPxSLwgcVR7U5Cmt1SheVT8zU7a3x6jepsxH931ubI5IkrN3iAt9xb98/bfaKLl3ij2ag1HTKfz0XiB6BG7NkDronncen+U2B4/nY/Usv03m+h8NF4gE0R2+Wh7cFHZ+yLU5NYTLaix4dEaNr3b8D3V2zx0PFyMIZrvrqb2JsOGmh06H40TucZDaKObtnur6HykWLbpLRHqb8v5Qs3wjXnpsdAGF1lMjJ83XkIa7qqi4a7iwVnnozUENxo29Lc76Xy0humBOV7/36dxxe1L5Ns631lDeKthQ0+jnc5Ha9DsxsvVlvc30f6Oot/veDhOdU5az1VrlLUEDBvGrw/Qel+Uc9/r59ILQ7Q9GCOaW0/s1Tqdj9Zgr8rZe0+A1rdHc2Mjzu6PdRRiTntQo/PRGpw5+bfILh/tDxXt0nJvhE3vaaDu1jCaxyjrycU1VVu9dD5S7G/zPRFqc+tJ670xtrynAW9uTQ5t8tD5aHGdaryreqW9c4Ryf6drSdn6O6oK8VLB3rkYyGQiZ0Pjb7W3hGm+e3GcEC/I1HkacvbOjdnaG5eO2Y6H41TvMOztjNsMGwY12h+ooeWB+NIx+/boSnvniMe1t4bY8TutOGJGrNh6f5R47j3JElhq7+odPjoejtP2YIxrPtpGyz0RanMfLxTs3WjcXHirp2Dv5CzMDM6Tmk8vsaGvzbB3sMu9xIYNd1VRf4fxE7s2UHLM5n1E/W3hwpg98H96MGtmQpuMMettdqy09z2LbPiOOOlklumBBTz1djofXeQjbggssXf7g1Eiuwx7x/cEaHxLdUUfAQaZsfNdNWx6ooH2+6LlfYRHo/PROK5aG5FdPrrf1UD3u4uxSikf4W3O2XuLh12/3UrrW41rN72livrbjPcBk8VExyPxgr0Dnc6CP/S3OGm9O0r97cXYquOR+Ko+2eJRMaumwu8d74gR3myMb0/jMp+8N0Cg2cmFHw1z7rtDtL89SvVWo6yr1kLHO6JY/Hkb+mi5x/BThz5zCZPZRGSn8RztVcZaZQ8ZZaO7vLTel/NpZhPxawO443Y0O2z4lWhhXQOIbPfQ9rbifGx+a5j4tT52W++mOhBhfn6erVu3so51/LQIhUIkk0nsqpfH3vFr+GqMw1xnGBqvs5JPchHp1IhvMcZn8w1WGvdYsHoUFmbNOKoUGm+woeb2kKs6NGp2FDe6G/ZYCTapXHh5nvOvztB4kxOLCzCZCLdbqN1d3K2vu9ZOqM1oZ+TMHLPjKRJzhg8Otuo0XF/cEa7b7aBqg3E6rTmh6WYXmXSW+akMgWadxr3FsrW7nUQ2Ge2oVmi6xY2zWiWy0U6ozUbz7cUd4PhOJ9EtuT5pJppu9eCOG/PYU6fTdleAzrsNXxnb4SS2o9hO060ePHVG/91xjabbvPhbdDY+GKb5Th/xa4rtNN3mx99s9N8ZUWm63V84bO98W4jud1ahOY3YpfEWH4FWw8D2cK5srtmqbgd113uIbnUR3+Wm4WYfwU6j/9aAStMd/gKBIbTRTv2N3kIfNLtCJnfoZXErNN8ZwBo0ygY77TTeWpTXrLvBS9VmJz3PjnLqO0M03xnAWW2U9bfaaLy9WLb2Og/R7cb6V7XVQfevVOHK+Tdfk3UJCSV+rYfojpxdVGi+M8BE7ywXXxrHGVlaNrbTTXyR/F3znQF8Ofmx7b8RY/MTkYL0VXS7awlBpOkOP/6cDZ1Rjbb7grTdF8DqVane4qT2+mLZxtv8BDsMG9pDKs13BtBcCpGtLtrfFqJ+b9GGDTf5CG3I2dtvlLX6c/beYF8i9Va/10tVt/HgrB6jrD2Us3eHncbbija0hzSqtxhlVTsr7N10R7FszbVFe6tWo2yeTOVrXGbv3R5iO9007A3QcqdBCMqTlTx1ubJ5G+5Yau/uR6tou9dYz10xnaY7jDGbzWaJbndRe90iG95u2Hvbu6O03Wu0kx+z4U2OJfZuuKU4ZkdOzzA7msDiMToR7nJQt8je9Td5CW3M2dtrjG9fs5WmO/wEN9hpuLlo77q9Hqq6jRhCc5ppusOPPawycWGBvlcmiGwqzsfa6zxE8va2GuPFmSNI+luseOqszI0mUVWV+B4P0e25m1GNsu5aw96eemvh2VR1u6je4qTu5qXj0FNv2NtdazHKFuztYtO7qul4W7hwXX9LzkdE1YK9ASJbnIXx3fWOKjY+Eq7oI/JovtNL610B6q8z5CebbvNi9ZjBbCLUaaP+hqJd6m9wE95gI9LtINhqp+kOT2F8B1stNOwtEpdqr3FQtbHIGFItJpTcUuBvXOqTa3bZiW4y+quq0HiDg/7jc5z50Qy+OpXGG4pkpdhWK9FNuQvpZhpvNMirU/1ZLu6bJ7qozWiXRmxzkV3feJ0Vb1wBTcVVo+GrNchZ4TaVlhstxLcsKrtHL0gQOUPQeK0Fp8/HddEn8Hq9fPWrX+UTn/gE61jHT4NnnnmG3/zN3wTgtlveT1uXt/C3WCxNKGTEPIqSpr4hhd2exh9IU1efpK4+xeSoiaxqprohSziSe0dV0tQ1p3G4jN/dXuP3RAKOvKHgcEI4/8pqNlHXlsXlNdZ+hydLXVsW4+TZxNggTC/6DqKuNYsraMgG2Twm6tqLidNCcfCGDKmhxALUtBm/A9icULuBwsG/Pw7RFkCBcK2Zpm3gzb3q6A6jbJ7s46tViLWZCwSZtusUWq/VsbmNMjXdSuEMxRuBWGfx8DvSoRKoMdOw00LnLVbiWzSsOZfmjijENxXnfFW7SqDBqKvYoPNOJy03GZ1wVSvEtxVj2XC7TqglV1eB+HYLnrhC9QYL1ZusxLcXy4baLIQWET7iO204c5Jo9pACpgyzOfmyUJuVqs5FZbdZcUWMsjafQny7jXQCTnxnGs1mpnpjrqzJRGyLBXesSLCKb7cWyDwtN9up2Vm8bmyzBW+tAiYTustEfLsF3VG0d7TbwrmXZ7lyfIFIlwV/neHndRvEt+pG3A54YgqxbuO60S6dLQ858TcYZRULxLdZsHkX2XtLsQ9V7RpN11sJtWooilHWHjCvtHc2S7hVJdRsXLfxWhsdt9hxBI2yjqCZ+FZLgfMQalYJtxWJuvGtFlwho6w9YCa+zVIYs8Emlar24hiIb7HgjijG8DcbdQtjtkGhepGsV6xbx5Ozt8VllM2PWX+tQmRjsWy0S8NXY5TV7bmyTmi90UHtDgvRrmLZyEYNf11xHMa3Wgpj1len0HmnDVtuCTck5ox7U7Qs8a1Fe7uqFeKbdao7NbrvdVDVrhVsiGJc1x4w3itcYcWwYQ4TV1KkFoqko/jWnFweBklshb1z1/Y3qIa9q/Nj1mTYW19k7w7jXnt+PAdZlo1ZSzFOaFCXyBPGNltIpzLMjKTRXcb4Lti7TiXaXSwb7c6N2WyW+DYrDXtsRR8RV4htKpaNdFmWjNmanRY67nIR3WjMp/jmIoGwql0j0Jh7NrphF5vPsPWGOx0036AXiENVLQqhXFkUqNms4ciF384gdN9upWmXFRQINSuEG00GWUlVqNloxpkr6/BBzUYzig6heoXaLjNVzUWiULzThDtotGlzscQnW+2gaMXfF/tkq8tEbYcJ1WJcKxBO4w9Cz0nouwg1jWn8ufVHtxlriG4xfveFM8QaDY7EqdMamTQEA2kgja6naahPYbPlyvrS1NUapPuMRSEcN+Nwgok0LY0LNNQtYM+V9XrT1NcVyYSxSIpwKEVr19uJ13YzPT3N5s2b+c/GfypJyWazkclkMGFir/U+HNU2/I25TeZGF45qG3puzPqanHgbHMR3B7CHrTgjNvwNxkzwNDhxVNvQnLkX8kYH7vrcKqCDK24ndq3xkueps+OotmHzGZPX1+LEXVcMzF0xO4FOF9U7fbjiNnSnhj1sLZatLW7uuOMOvE1GHxzVxnV7Xx6m7/kR/M0u3DXFsq46B76WXNmgBUfEhrvGzqF/OMf00BzOaJGx6K534m0y+mTJlfXl7tVX64QMnPlmX6GsL9cH3anjiNjw5Mr6m5w4IjYGXhti/Pw0VreGt6FoF0fEhq/RKOttcuGI2NBzNiSbJZPKFrLWLC7rqTeuq+ds6G1y4Glw8vr/Ps3RfzuPM2rD35I7JKxz4IjYcASN63pbnLhqi/ZWrWZSuawyrojdKFtt2M3X7MJdUyzrrrET6vKg+3Xs1TbDhjF77l5duOKLnk2dA2+uD74mN5pdxZt7zv4mF87oorL1Tnw5e+sew4Y2t4ULzw7ibzbskoenwVG0t2427NLkBh1S82lUi1IgcfganUV752yYH7PeBid2vxV7KDe2mpy4G4ovk86ovdCOt9awocWt0PPMZVLzKdz1i8rGbQSac5v6cVvO3sbC4G124m1ysuk9xlfNnhoH/mbDLs6CvW255+jEU7P42aj4cmVtISuOiA1XjVE20OwuHErl7VK93U+o243NrxnjMGdvX5Nzqb0bjDF74bkBLr82tKRsoGm5ve2FcYcOql3FkbOZvzE3Zhf7iMZl9q53MjMwTyaTxRFZ5CNK2NvfbPxuNilY3Dq23MGIr9W11EfE7UV71xj2DrS4DN/R4SrvIyI2XPHcOGx24a51FMbLaj4CwN/iwua38MZfn2F+MFHeRzQ5C8/02JcvkprP4I7mxvcqPiIPb4MDsnD5lZGCDVfzEd5GB57c+B48MIYJKvqIPGx+C8mZJMe/2FvRR7hr7PibXRz8px56XxrAUV3eR/hyz9FebQOTifmcdIy/2XhGhbJ1DrzNeXvrOKptqJrK2Klp/C3OFf7E17jIR1QXx2zehrv/Szv1t4Xx1NsX+QgTjmobvqacL2ow1jV0CG30YAta8C6ay47qRT6i3niOulMnbI7xtnseIJ1O8xd/8Rd87WtfYx3rWAu++c1v8gd/8AcAtCs7adxYj7e+OIc8dcU5b/NpuGusuCI2whtceGrteGoX+YtGB74cacPiUnHX2HDFcuSQnT68TXZsuUN6b4MDf5MLTGY0u4a7pujfvPV23DU2Ytf6QANHSMeZ90sauGtshT56Gxy4a2xouXdNf7MTi0PjwN8ZMj7uGhveXP/dMZtR1pnz5bk1IjmR4o2/P4+iKoU12hW14q5ZFBs2L11PFN3MwkSS2f4krmqj79awJdcHB96Gor/wNjjwNzu5+MIwExdmcNfYC5mI/M2OpfZucBR9llsjm80ydXmu0F/PorXH11Qsq7k13DV2NJvGwf/bQ2I6ZawnS8oafkeza7hri/7aHrBgMsNMn/E1kr/RWYi9Ady1jsJ64q5z4K51ELvGn+u/q9CHfNm8DT21dty1DnSfjq/Ngc2nL1k7PfUO/C05e8esuGsdWHOED3+LC0+Tk4E3xpk4N4t3UWzrjNpw1zqK8VKzE2+90d/x8zNAFn+r8bs1aMFd68AZKcZWnkU+1tvkwhGy4m0w2nbXOgrxt6/Jgbt2UdlGZyEu6H1xCLNqLtyPr96xxN7+Jmch7tU08NQ5aL03hqvWjq/eaZTVimULcU3B3rlrmUy4ax2Yc2mBAy3OQgxhlC2OS1fchrfBSVeOqOtrduFtKj5HT72j0P+8vS0BnQs/HCSbzRbmCRhrUz42tIeMso7cmPXWO9AcCp7c/XoanMXY0KfjrnXgiuXismYnnnoH4z0zTF6axdtULGtxqbhrHbhza6u3Yam9dadW+FthzOba9DUss3ejC3+Tk1Cnh9BGjzEO64vxtbvWgaYZmwL+Flchxs/bO0/0ctcYY1ZzaYX+L7aLp87J/OgC5783iDNmzHt7wUe4lvgIT72j0M6V/aOYzaaKPqJg74iNyb5Zzj4zVN5HBIx5747buPLKGInZJHZfcSOolI8o+lkHZjOc+daVXNniHNPshv/O+xtvveFnkxNJDn3mvHEPi21Ys+idsNbw35pdKzy7TCpbyFTmrrEX7scdN3yy7s3Fe02G/7jy6kTuXm0Fwr2z2vDJ+QN/f5OzQCg0no2d2E4f299fj7PKirvGii1U3Afw1i2yd70RGwY7PbiqrHhqrTirrYVn4VlctqH4PrDHfxc7tu+gp6eHYFAuU/A61rEYra2tjI+Po5ot3FDzJN6oiqsqd1gQ1PDFVJTc2a+3RsVXo+GrVfFEjP/3RI2x7fCr+OJa4ctgX42Gv7a4+R5q0YluNi5k96r4anQs7lwcVqPjrytuBvtqLHgbdPyNGha3it2jYvMaO63euI63dpFvqbPgqzXqWhwq3hqd/qNzDB6bxxPX8dYUy3rrrXjrjN9Vu4q31oozrNPzw0lGz83hiRYPuX0NFnw5EoFqxSibI8h6YjqZTJaLLxlSwb56C776Re3UWnHn7OKK6HjrrExemWf45AwWp1og1AB466y4c0RbV7UVb50V1VY8ZEknMiRzst3eeiueGqOuI2Rc1+pSc32w4m2wcfzfhzj+9SF8DVa8dTmyQkDDW2/DkvNZvgYbvsZizKzZFZKzabLZLBavirfeiiNH1PbV2Qp2APA12gh3OtBcClZnrmxuPfHW2fDV2xaVteNrMH4PtjqwB3VckRyJI27cax7+ehv+xiJZwVtvxeazMHBgGlfUgrfeWiBx+Jps+BoW2bDeijtu/L4wkUazKwUSh69x6b366m14cntGjrAFd9yKO2LFrOXL2peU9dbmxmxIx1tvxepWuLJ/irmx5NKyjbbCvdp8hl1si+wd3ugoEHsW20V3KXjrrdhza4S31rrEhrpLKZZ15O2dIxPVLLV3oMVOzW4vviYrJs24bn7MuuNWw4b5/jZY8TXZuPzaBD0vjOKtt+LKEZpcccPeeXKiv7H4bABsQR1XNFc2YpRVdKVwryttaGP80jzJ+SzeeisWu1q47pJn01Ac3yZM2P0WLB6l8IyXli3euzFmbXjiFnwNNkLt9mX3WrS3xW3GW28r2NtTb8PXbC2MF2+jDW9+HDqM6zqrcmSimBVXxMLxrwwxP57C12jF11AkPXrrbUUfEbfgzfWv98UJ5seTuMKLfZGtOO8jRlk1v2+Y62vvqxOQyvsIow+uKqtRNmdD7yIb9h+cIovxvgyr+4g83BEbs6Mpzv94AntAxVtnxZLzs746K75F89Nba8Fba6Xn+xOce2EUb8yKI0dk9NbmyuYO6AyfbNyb1aGCCRIzOR9Ws9J/e3P+W7WDr0bFYlOYupLCFdHw1y2SIqnVi2VV8NXouCLG311hBV9MZfMDDqIbNXxxDW9sUd2YiitHDnCFVHy1GqoK4RbdWMvixbLemIYnRw5w+FV8MRXNBk5rgPvuegCz2czHPvYxnnnmGdaxjrXg1KlT3HHHHQB0bXiMeE2IQKiYlsIfzODzG79rGgSDWRwOqKrKEg5DMJQtZE8KBMGfew1QFAiGwZF75Q5HjcwYlvyBfhD81aZCxh5/FThzJAin2/g9FAGULHY3uLzFPvurwZXjfjrc4I8UiUfekEFGOvm68XsgAq4cf9bmBH/MXMiw5A2b8EXMkIYjL2Qwm814cv232nNlc67HEzThjRWPhTWrwvRYhrlJg/DhjytYc6+A7rCCP1YkKfljCt6IwpWjC4xcTBKoUbG5lVxZc4GMD+CPq3gjObICWTIZmB7NyUOGVfy1i+NTFW9cLdg7UKejO8wc/+Y4C1NpAvVFEoevTi/EpwCBegvOsOFrrE4Vs2ImMZMGsxlPXMNbU/RD/nodVy6bns1nJlCv4a/P+dyohq9WK2R68dfpuKtz1/UoBOo0dJuC1QOeqIZv0XV9dTru3DplcSoE6nQszpxdIhq+Oo2p/jRzoxn8tSruaO4d2mGUteZs6KpWCwSm6eE0ZI1+Gc8JArUaNk/R5y5+H/DVarirjPcIRTfKOnzGc3YGlSVlvXENb84/X9g3j6qZcARz/jmoEKhVC3lZvMv8frBBpel6K/aAGYfPTKBWK5xveWI5G+btXavhypHFzWYI1Kpo+bggouFf/Gxq1cKzsboVqlrVQpYfd0RdVlbDnSOWW5xGfy0OhQuvzpNeYKld4hqe3DjUrUYfrK6cDcMKjoCCza8UynqjGmSzORuq2Hx5e5vx12nMDGcY7U3hi6t4cnZRFKOsw5e3oZlAbXEu6HYz7nCRhBeoVXHkCGR2v1FWMefW85iGL6YRaNQJ1Gk5G+ZIeD6FQK2Gkrv0inFYqxFsNH63eYyxpduM8eyNakvmp69WIzGTZfBEAqvbGN/a4jG72IZ1Gu5cXNB3YA5T7hkVyi6OKWrUwpjVbSb8NTrjlxIMHJ3HHVJWjI98WUU17GL3GXJvs+Np7PksltksvpiKN6oU7O2vUQr2dgYUzBr0vL4AafBFlUJZMPyfy2/Ywe41fgc48eMUmZQJ36LMUIGYGVfABNlswSfn40jNCulkMXuevxrcOfKT1WmUzY9vXwACYRgdUgCFUKS4plitxppiza0hXr9RNp9VKRDMEI+n2dRtkJQCwQzW/LzxZAkEipmigoEMnpAJjxt8fqgKgyP3uuBxZwguKusPZAj4jd87NzzMnj17OHv2LF1dZdL7/Qxgyq41f+xPiZqaGnp7ewG41fyQVF09YDWk0QRSpgJs+c1GBg9M0PeiWL7Cre9vwuLWeenPj6+UryplLt3IJDJ4YIxz3xOTdnDGdEIbfMLlwcj2ISoJ97OG7hRI7bgMXe+q5/LrI4wcE5eR2P2xDhLTSfb95Zmr1r9gl5vavWFOfvkiM/0/n/aWwab3NJKcSUnJ3e35w04mL85w5F/EZETcDXZa74tx9jtXDBnC/4ej4+E4ikURvn/ACMYkhkuo203rfTX07x/l7NNi8l/o0PlgLUNHxhk6NCne2Br697OCNawLS0qCkdUr3F3Gdy5Lr6g7TWx+bwvDJ6fo+aaYnTe9uwF72Mq+vz1b3ufmc2hmM2z7rWYu/mhQ7LmYzOh+jcSIXMrSA5mfMMxlnE4n+/fvp7m5War+On65cfHiRerqjKwbcXMrHfoO8cqaQbpLzkI2XTn2CnY5ie7wc+gfLxb11cukMLYFNTY9UcvEhTmOf6mEVEOJeK/hzjC+Bgdv/P05Yemu2r0BBg5PsjC6eoXssn5a/FrZ8v9p0Cjet2A8HOxy42twcPo/BNccoPnuCOFuL4c/e4Gpi+LSbUv6J4DOR+IsTKY5+y3xvv28wt/upO6mKk5+6aIh5yWAzsdqcNc4ePlPxOV52x6MoWhmjn3+0lq7+nMDR8xC811Rer43IDzONDviko05bP3NJjS7yiv/46RwHX+Hi9BGDye/LCcjs5b+/aygeTSSE0vHpslsWqW0kYnuyhsTK+qUKx/a4GbfX/eULrAsB7lmN57NTP8CRz7bW/baJsWoG9npwd/k5Mjnypcv1lPQPIrUu3QymeSH6S8CsHPnTl555RXhuutYB8Bb3vIWvv3tb2PCzC01H0BV1cqVclCcCql5MC2IzbvWm+2M9SYYOpPbMU2Ur9d6uwtnWOXQv42RWqZ0ll0lPX73Qz6GT81z+eAy6a587LQsHlGdEG62c/mAgDPM7bOpTsTktFZp82pC1bNSclcADTf7GDkzy+RF471PZPt161NREjNpjvybnGysahWX03OEVWqv93HuR2PMD4tJ3f1cIjdWm+8Kkk4hJXe3/ddjTFyY5/S3xfaJ8xmFLr00UXieP+8wlZHTiO/xoDsVer4nbjNUQGK42MMqG95ezZVDU/T+pLx8an5umEwmaq/3MNm3wHiP2IAu1NVMUv37qVAmbloOzWkqkCELn96XLQ/BZjtXlvvO1dYQFTbe62XsUoK+11b6W1P+C59F/qfxeju+Oo0jX5tgoZzPteRO5TIZOm63ceVYgvHeyvIzWV1D1SG9kJJ6JmfHXuX02AvY7XZeffVVNmzYIF55Hb/0mJ6exu/3k0wmaW68i9ra6yRqp8k6FNJpBW2qcuzldKeJ1sKpI5BVcgfs86sPdkXP0n0NjA3C+RNF/5HN/a8puTKeCcUhGINTr6+UkzPlY7X00rgiEIepEUiUUVk15X1ByrioajEkJysi16ZJYE9wtbrI1FWAvF0EZN7AINe4YxpXjswXpe4qSL2FWnXiW2ycem7akG4T1dtVWCmnV05iebOFdDJL/9Fl76MS68lVgay+cDaLzQvxTTYuvjHHguCxbqzbQqhZ48C/Twu3GdmooVnNXHz9/xlxVznoNohvsXLl+DxzY2UKLlqrFaWElGQpLNrHbtprw+5VOPx1gReqXFs2v4K/TqVvv5ydFQXSGcnxkx/vsuMOCnM5KzBnFL0o6VaIvZTVfYE/bkhdLvedWd2IvZbLuQWiUF0HR18qfb1M/qOYwqNJs3U3TE3C6aPlY8FU7kPKgCNJKJTh1GkzIlJuSYeKrqTJiFMtAHjxhT8mkZji9ttv57vf/a5c5TcJ/ymZlB588MECQekG7hOqU3dziM3vbQSTWXxzMRdL7/+bHmGCEsAbnz5Lz/cuCx/oW7062XSW2THxidx4Z4zqHYGCxJEINj/VyI7faRUuD7Dro+1LpMEqQjfqNC6S86hYxa+z7UOdBekn0TrOGjtV3V7xvgFHP3+Bnu/0S9UBOQKVK2LD4tZITou/ScWuDRSkrq4mNj5eV5CdEsXBT/dIEZTWgslzs7z+v05LEZQc1Tqb39dUkDS7WnBU60tk90RgDVmxBsTnJiBNABo6NMn5H/WLE5Ry8DQ4CXf7KhfMQzfIfV2P1kvV2fl77VJ2c8Z0dv1++xK5tUqI3xhk63uaC3JoImh7sJbq7YGCf1+BbHZJQJeYzq4gHVTC8X87x5lvXRZfa0xm9v3VGSniWGI0CSYzkd0Btvxmk1CdzeZraW/qYGZmhj179gi3tY51ADQ0GNKOXnOVMEGp+4kagp1OTCmT1GH78OHppQSlCpgbTnLmuwMc/5o4CSCbgUwacSKMBpEdflreWl3yz9nMSl8R3uJh63sapHxU7c1Bdvx2c0EWSgQt90bY/oGmQrYdEWx8pIZdH2kxfhEUHQ9v9BBo91QuuAhnnr5Cz3f75QhKIEVQArAFrNjDEuuuZsh+5SXjrha8zQ42vqtO6nmOnphm/6fOChOU1oqTX+6TJijV3xam9YFo5YI/Jaq3+QpSgCJIzWew+fVCViYRrIUAdPY7Vzj82XNSdaq6PEZ2MYmh1npfhG0faC1Im4mg/vYwOz4kRz5uvT/K9g+KxRB5bH9/E92P1az491I+EAwSaXS7j6acPJwIElNJsuksmkeMkJGchbPfHeDIF8QIRwBXXp0oEpQEn01yIo1JUeh6PE71VlfF8pqmcaPydqqqqti/f39BNmId6xDBn/3Zn/Htb38bgL01vy5EUPI3qLTebCOrKuJkmNxlT31/tkhQEsCp70/R88LUCoLSqs1YIZPOFmThAGNDfLHfWBaP1G53E93qxCIeRtF+V4CNDwVWL1Cize7HqqjfKxffbHq8iugiCbmyyGRR9Syb3hVdIp9VESr4m20EWiQWA+DY1wc5/7wEcSQHGQKVPaRjD+ikF8Tfk/2tNgJttsoFf0o03OQrStOVw6IDyzPfHpYiKK0F8+Mpjn5hUIqgpDqh9Z5AQYbvakFzKcSucRf8AZQnKAHYAyr2gDhxEpAmAM0Opuh5bqQiQWkxstkswXaH8LzJE5S2PhWl5Q6/EBEQABW6HquSmtOqEza9K0JkW+UYIg9fo5VNj0YKspMiaLzeR3SLa8nzXJWgBJCCbCoLlc7wTabCoWDPS7OcfX6mPEFpMcxmjn9vToigVOhWArImFXetSsdtYvff5NvJxpZdzM/Pc9NNN5ESXaTWsQ6gqamJZDJJVc0OQYJSmtbWFM4QpKw66XTlQ2CDlZJmelLh1BGlQFCqWCth4swhuHTa+D1rKhKUyiGTXkpSMGUyRYISgLL0IvE2MzWdpS9symaLBKUcnAHYeIuOt9xRUyazZM311qp03mEtZPcsfwNG3XCbSvutNpFz9kK9+CYLXW9zGXUqEI0KfavRCbWK+1uAoVMJen48zcxIRo44sdgdLvKvq8HuM2P3LjNAhT3TUKtWkN+6WrC6oX6nRayd3PiZG4fTPxInKK0VV44kpQlKwUaVWPfVjbvAkCNzV4sOaGMeO/xKIQvWqlg0lmQJSgCXD85z6gdyCSS8MZVAg17I4CaCcLvOhre5UCxLz+HKIdCo0nlnznFkxepVd2p03G5f4gNMmSymMmd9LdfptF5nWfmHdKYkUVLRoWaDSnXzUj+TJyjBSv+ZXDD8s1bJZqbcDwqnj8Np8e9SGZnROHVaozQjsjQSaYWUHRpbUwT8YnV27fldItEozz33HP/9v/938Q6+iZB8I/np8S//8i985StfAWAzN6CbxUa/u8aBReKAwNPkoPPhGi6/OsqF5waF6vjaDSm1sVPTDOwTf4maH0zw6p+Lf5ELcOgfzhHsckt9zTl8ZJxsWnwTQXdCci7F7Ih4G1avTiaZYXZYYocjkWK6b5bLb4gTwRKjCV76s2PibeQweU7uRGLbB5sxq2Ze+5+nhOuc+96AVIYrgNjuEJjgykviGyM7P9LGwlSSg3+3ylfGJeCI2FAdctPW3WBnfmhWOtOVLJw1FhJjyYJEYCXobh1bwIIrbmPizIxQnWCXm5a7Y5x7rp/+V8vRjouo2hYgvNHL8NEJxk6JGWH/J+UydQE0viVC1WYf+/72jPC87ntefM4AkIB9//uEsI3zdSYvzjJ8UtynkYD0Qpp0Qryd6b4EmUSGVFJ806L3xWH8TS4mesX9zZHPXTQCZwlS2Gv/67R4YQxS49ABw151N4e48P2hlYWWkwJyv+/63RbmxxIc/HuxQ1B31IbFpQpnyouf72bYN8TQ0BBut5vJScmMWuv4pYTf7yeTyaBhYaftDrICbzq2oIbVreKosjByXMxHb3xXHItLZd+nSmShM5tKZlOK7fHR9+IYw4flFqnz3xOL7QpIwpHPXSAxs9KvrUZknLgwy8SlWSkCYno+Q2ouLZxxBCA5nyY5n5Yi9gwdnSQxJbdpe+zzl9Ds8l+r9O8TW28B7FUa3U80cemFIakPBPZJrrvBNheRLX4SEynhdiK7fNTeEObo5y8y3Vvm08JFcEVtOCOGxKAwH86jodlMzF7lbJyaHXSfpSDdJwJPnQPNJr6RAtD9ZD2qVeGNvzkrXKfmhhCZRJrBN8Rij4WRJC//qdy7FMD232omMZPi0D+eFyo/0SPPbDr+1d7iwxckBA4cnkDR5ebawkSS1EK6ZJaj1TA/nsDq06Uylw0enyh7KJ3NZJdkVZobTnLya32MnRa3Xf/rE/S/LhF3QmEN8DbZSSfTTJU4BDYt+/LNZDJRu9dP9WYPhz9/idkBASNoYPFouGsc9L9ReVdV06y02XbyQuppPvWpT3HPPfdw1113id3UOn5p8dprr/HRj34UgB01j2JVxQ5LXGEVq9ssnK3E6oWOO1z0H1vgytFl41/XSmZTsgcVzKqJ6f4U4xfE44jUPBz593Hh8gA9P5xk6NQsCxKvK4PHZlFl/KcKiek0C5Pi76CqDVKzGRISdQDGeuYZPSsWEwOQgn3/KJeFD5DObNT+thC6U+HQZ8U/5hs6OsvQUbk1MbbNjWIxM3JSLIYC2PjOKlJzGU58rcT79CpwxSxYZ9Ncfk28b9agSmo6RSpxdb/DtfpVUvMpUoKmUxUVd9TKxKUFpvrE4kJ7SKXjvjAXXhxn+JhYQ746K7GtHmYGEoyfE9tbOfUNyb0oILTRTu0eL0e+MMjChNg4HTklPl7yOPjPfUYmOYnD4tEzs0xekTjITBkk+dSC+J5XahpSc2lSEvtkYz3zjF+YZ6pfvG9nfzBmSM5JuIKj/yERd5lMkMoyftFoINyuM3iixPi0LDuvyR0Qdt1tY2EqzakfiI01h1fB4lKwOBEiRcWUmxgNX+Fyv5EJuq+vT6iddfxy48Ybb2RwcBC7K0LrpgdB4MNzRQWrC+zzWcYFyRYNLYZ826EDWZYzbtJWtWQ2JX9VltEBmBo3fJoIOQlgqNf4kcHxFzMliQ3LyUl5zE3BaF+acYnttWwmS3IuS6LSErWI2JRJQnIhK3rODsBEb4JMMiNVp2//HP1H56TqAEz0iWdQUnTY8FYXfYfmGTmbFK53+gdy66HNC/FuK5lUlpEesQXBVa1Qt93K2Z/MMjcmdoZsdZpxV6v0n1gAwS4quvGz5rPGbFbIbopiyJXKkKFcIQWrR6HvkPh+XN0OC1a3mZPPiT+jWJeFbDbLZL9YnXQCDj8t8R5hMuTGWm+2kU7C2RfE2pkblxfNunJsgSvHFqTmzXhfAt1hrkyQXoTEbJbkfBbFBun87VQYCwtTGRKzGfGsUsDopQoF05klWZXSCTj9SorZcbHrA0yOGD/CMMHUuLFm2BxpTCaYnV65N5vPopRHRjMT8qeoj6U5dhzm5sT2c522DCmfmREBqoKi6DR0P8bgM/+T//Jf/gt79+7lmmuuEWrnzcLPVO6tv7+fSMSg5sZpol3ZXjk9c7nN4DJ1db/OxnfWcOxLl4SlhHb8TiuKbubl/16G0rbMXDt+p5Ur+0fp/eGwUBsAoc2ewgH4LyvWIg+38yNtjJ6e4sx/iG/0tN4fR7WZ5TIJrUUWSzcOsqbOiy9m3U82MD+W5NRXJSNOSez5w06m+mY5/JnzUnVk5N4Arv2jDYz1THHsX69e1ibdr7PxsVouPDcgLBOoO41DvOlLa0gNKTEWfK1O6m6u4vTXLgnLBOpOM5vf18LQ4XFpYtxa5tAvEnQnOKLOysSzXKCjO010/VoT/QfG6HtBLIrofEcN3mYnR//tIhPLN6RXWZu6n6hl4uJseXLsGte1xXWfTX8BgOuvv57nn3++fJ11/FLjhhtu4IUXXgBM3O54HKAiSanchnA5ubf49X4cIQsnv7bKIckyMpCvxU7b2yIMHp6k5ztlDi8WzYvYtQECbU4O/csF4UN5b7Od8QuzK8rLZln7uUYF37EW6an628IEWt3s+7szwra2V+s03RWl53tXxMkzktJweThiFmYGF4Tr+jtd1Fwb5OBnxCUC14LOR+J46p28JCHdtha5t42P1+GM2sq/t7wJaL4ngmZTOP5F8XhV9tkUIDkW2h6MsTCR5Pwz4ruqTW+J4G1wSBPjCnNIkKj0i4DlEnD+Diejx8WDz9geP6ENHg58ehlxu4wNd/5OE4npFAc+vfIdZDlJCQxiZNMdVZz4ci+JmdV9uqmMvErFNVFROD7/GpfSx/H7/Rw5cqSwp7GOdSzH/Pw8drudbDZLk/86msPXYVoo/26YVVcfn+Xk3lS7iebr7Zx/dZb5UttLJUhKnfd4sDjN7P/86gTk5XJvG+71MHRmgcFjuQPpcvFTLh7x1GhMXJJw6JW2JQXafNPxU8aJq8mvlduC7Xq0irFz8/S+JL5fGN3hxuJW5TIJScp25etYvaoUiarxNj+puTQXf/wm7n+WkHzZ/hs1TPbOc+obQ8LZFmTl3gB2/Eac0Z5Zzn736mVtUq3Q+tYQfa9PMXFB8GOuZc9GhtwjMxasAZW667xceGGc+VHRNGyw8aEwo2fmuPxa6T281eaEaoX0Qvl7KTefpOwgg59GmkdA7q0AFZxBlen+VPlMSovKd9zhYfT8AgNHi2OnIPdWArEtFqo7LZx6boapK8ue6XKSUg4Nu3RmxzMMHF99bcvqq7dpSpYfO/m6z5z8H2SyKW677Ta+973vla2zjl9u/NEf/REf//jHUVQLu277f6MoCloFklLKmp+LaZaTjcrJvfmqs7hcWS70lJ6Ty0lKNkeWju0wcBF6z6/uOxbLvXlDEKqBnoPFQ3lTObmzdBabGxIzJWThysVXqQoH+WXaLCv5Vkmaba11K1y3LIlhldjA36gRarZw5kczRWmoCtBtEN1iY+DYAnMTgrHi8kQoguuI7jTIHKLkDJvPRHSDlfOvzZGWPQYrt2YuG0fRLp2qNgv7vyzOHloi9ybSJhDfYiFQp3LwaxLknjUg3Kai2xV6JeTOdGdOGkySECeRFAeAyAaNdDLL4MkSfmmVd5VQi4a/XuPkM2U2gUv4Bhki0Koo90wrjfuydVeP7yvKv5WLvZbtMTn9MJ0L8xdnUlrRZq6vvjCEa+DkvqV/L8i9rUCaTTuNTEzHDlQmKQHoaprGujSnzytk51e/1+SSxCZL1zZ1tvyDTdvMDPUf5sTrn8Xr9XLkyBFiMTllop8GP9Nd1vyN2XEbBKVKMJnZ9O46Ot8pIVeWQ2I0wRufPCtMUAI4+E/nOftdceklR7WOWTOjqOJmbHsgTsvdMQKd4ulhm++NsvMjbeiC2ajBkFHqfGRlKv9yiO4O0HyfnARE1Q4vm9/XhO4Ut0HVDi/bP9RJ9U5xySrdabx8puflPOWpr/ZKEZScMZ09v9dJ412l5WBWRQIpghLAoX88d9UJSgD9b4zS+6I4iW6tuPLGKH2vyH+NJYPEaII3/uqMMEEJDCLPWghKu/+gg81PiUtojJ2a5sDfnhUmKBl9y5DNZjFpcq545++10/1Ui1SdxrdE6H6yQaqOr9VJ52O1UnVCmz3S7bQ/GGfHh+WkLDe/r43W+wXWhlzQlZjOoloVnCHxPKnHvnCJ898fWElQKoNDn7nIhe/Lzzdfi4OdH25BD4h9aX0NbyEYDPLqq6/y6U9/Wrq9dfxy4NOf/nSOoATX6W8XquMI62x9Xy3OmLyMVu9PxlYnKJXA2OlZzj83VJ6gtAw2v4ZmV6SIDK13R9n61FK/VImgtP23mqi/XVy+EqDz0Ti+VjkJ07YHozjjcumoNzwWJ379MimUCsSJ7l9rZtv75aSkMJuMjX8JW8/2Jzj8f89LZffZ9ESD9BoAGG1I9G302BQHP311CUoAfa9c/XgIoPelYfpeuvrx3ZlvXJEiKIH8swFDvm/3R9qlpPVOfrlPiqAEkE6mjXEt4eKiu/1s/2A7nka78GG45tHoeqJW2ic03hUm2CX+ngjQ+kCU8BZxuRLNo7H9t5qouaGMpBJL/WSwy0XrPRFqbwoKt6NYzag2s7DsG0DPswMc/VfxjyRmB5Ic/ufeNcn/td0Xpv2BqrIEpjw6rDvY3LWV0dFRuru75Rtbxy8N4vE42WwWn62G5nBlqZGsqtB0jU7jLvm4KzUPJ55ZhaC0Ck49M8G5F8XfpVUrqDYFVcttiAoQd6Kb7bTc7sNbL64ZUNVtp+sdQUomnVqlTX+rlfq9ElpygLfRSmyXgI9d1KYrrtN2bwBVYj/OGVXZ/ESMYKeE1JuakzNOypGuLr82KUVQUu2w4z1xYjvlbEdKPstTzzOjby5BaRVcenmcK/uvfobhvlfGGTh4ddtJzcOxrwyJE5RgTc8GYPMTETruFZdznR9JcfLrw+IEpVzfyJKTuhBH16NVdNxfVZaEtPxvVd1OWu4KrPr3UrCFVBpuFt+bBsMnNN/hl6oT2+mi69EqqTob7w/QcptEOynQHGYsLnEiVN/+Bc69WIKgVAbnXkkwcFJ+vNm80HWHBYtPLC68vukDVFVV8cMf/pDPfe5z0u2t45cD+/bt4+Mf/zhms5ntN34URSCuNzmgu20Bu20lQWl1GDJvo0PKqgSlUpibMXH2CPSeF66C1QG6VZCglEPjFjMtu5Zlna3gA1uv16hqWeX+V2mzZpOKs/wr5ApEuzRsIq+qi9qMb7cRaF4WG1cgITfc6KL9LrnYxpzb8xIlKIFBTDn/4pw4QQlo2GVjwz0SgWS+rWk50sjcWJazP14DQUkSoxcTXNovnylxBSqM0ZFzC1w6KBEPrRGDJ1NSBCXIJQ6QJPQEGhU23+sQk0rM4crRZGmCUhmkU1myaTletCuisPF+N86weCVFh/prbLiqFtURiL1CLRruiFyG90inijdWuk4p6TdFgba9BjGuLBaRJu0eaNmlUtVUOWjN+1eTGTQL6CXU5UpDoecEnDwsWh4SKYUTZ/OSpKKDzrBVXVWClvgCKXtle4equ9i28xYmJibYvXu3eAffBPzMSEotLS1kMhlMmNijLEqRXupQxWQu/LtqVdEc4oM2tNnD7j9op2q7V7iOM27BUW1I7VTMcLSI0TfTn+CVPz3BhWfFN8dPPt3LwIExKZIFGJvEMllTgm0e3PVyi194s5dQp/gGN4Cv3onNr0vJT830zzEzOE//AXH5kMQ0vPY/T0llm6na4aXmJvEXboBUEqYuzTJ0XHwjJbLbz44Pt+KoFt+E0/26QdKS0Pp0VOvs/oMO6m6ROzTt+Xa/sMzZT4Oeb14Rlm3LY+fvtUsTWtwNdoJdckFn1xP1bP51ccIRwPjZKYaOjkvVcdXbpIl+r/3PU/R8U5wcCTB+ZpqR43KbY66YDVtQeMUEILozgKfeKUVCDLW7cVRb0f3igzs5nzakLCXmw4XnBzjzDcG0zzmd21f+7CQn/13uoPVyTsIxtFnON+747Va2fkCcEJDJZDGr4Km1LlkDl2DRvzkVF6FULQsLC7z3ve9levqXOK3WOkpiYmKC9773vQB0aNdg14pvQaUOZE0mEyaTCXu1BbNmJiOx77j5PXVsfk+dVP/8HcbBff8bAr5s0dg/841+9v21uEwqwOlvX+H8j4pEqEoEJc0OmVSW1Jz4G6c9qOGO2/E1iRMSLH4NX5OTyBa5jXF72IorIkdsGjoxycgZudjz/HcHpCS+wCCa2CXiIYDho5OMnZLrW/dT9bS+XW699bc7ccTk1sGN76qTJndNnJvl4g/EiXdrxfiZGS49L0dSqr0xyK7fa0OT2BRBg9Amj5RUoDNuY/sHmvFLfJQxemKKsbNy4wCM7Goy7Zx/ZtAY1zLyigfHmOydJTmTq5TNVCQrJWeTOEJWvI1yJKXwRi9V3ZLvY40Ogh3iNkhOJMmms5iUys807y+HD09xZd84F38gPuYufn+Y1//yLMnFkjAVCJXDh6dJzoK9WsMWFCdtVG11seu3G/E2iJPRNaeCmttnMClK6bVx0b+FezaiKRrDw8Nce+21wu2s45cHDz30ECMjIygmjZ11jxX+PVsiG0VWVQoZlDSrCd0q4WOrTGx5hwt/o/ghmcVpyMOl5qko82ZadAiUmoeDXxjl8v5Z4cxCl4/Mcnn/NOPnxU98zGYT2Ux2aeahTLZsm/56K/4Gm1SGu1Cbg6qNFfbJlrXpjllxVFlKZkVaDalZmLg4z3gJmdFVs7uk4Mi/DXD5dfG10FNnpapbbp0BGDk9y/h5cXanp85K92PV2EPiY061gq/JamTqkaiz7d1RqreUeEaZzKqHpgP7p5jqXSiWu0q4/Ma0kdVGAt2PVdN6j9yJrjWo4q6Vi1kbbvHT/raQVPag4dOzDJ+S28Oz+lViu+T244782yCXX5XLojR6Zo6RnNRsNpsVIhw5IzqOqqX+tlK9UJsDf4sdTXTPy2zCE7fiiVuwSJCwU3PGnpeg+icAl16e5OwPxPfNAQ59cYyLLxefabksSnmMnjNkjtwxickKdN5hp/MO8ZeKbBoUDWweyGoqWW1le4szMFlVK3W+a0kmkzz22GOMj49L9W8dv/hIp9Ps2bMHgNatj6Jbi2tH0rlyfKWsCimrgs1qJCeT0ZZp2WCifZMc29LpzZI1ZRkfNVGJqZld9PFy/3k4+qJBThIhKAGcO5Ch72SxbCWCEkqOGJ1aVq7MWqvo4IsquEIK2RIZbkvVVXQINur46yrsES2r5worOAJyPmn03AKj51chmpS6J5OJ4bNJTj0r97VLqE1Hd8mNhbGLCUZ6EkYmGcEsSvW7rMQ3y8UC9oAZi9z3TsS3WWi/zV44O1mCUv8GzE/A8Fl5smpJlBmrc+O5NUoCvhqFjXfb0cW3BUABV5WCIrGVqduh9WYbrmpx3sLUYJqhniRpSdN5a1Rcy8lDZd6RRs+lOPX92dUJbiVsPjWYZuxikkSFjDuLkU6Aq1rFHljWtwr+p6pNJ1BXIj5ZZbxhNuOv1fBGy2QfzmSXkJXSaYyzRhHkiEqzE9B7LMXAWbF6pmyWsStZjrwIiUWuZ/UsSgamJhXSGQXdkka3idvb7UqzbVsGh1d88dK1LLqSBdKk7EpJslLaVvTn9vDtON1hLl26xGOPPbai7NWCnLdfI/7bf/tvnDljpNS/nreVL7xsg2HfX8sdjsyPL5CYTjF2Yly4TsdDtSi6IiWX0PkrtYycnGTgNfF2AEjA2aflCAky8mZ5HPg/Z6UyLwEc+NRZKWIBwIkvyWcCmr60wMFPyx0wVu/0GaQmCWZzfHcQ3aFxSeKgaH4wweF/Pi/VN92uYlbNzIyKdy6+O0Bkq5+50YQUsWdhKsnMoPjumO6Etgfr6X15mLETV5fE0PGOGqYG5qSkDxfGE8wOyzGV2x+oAbOJ4cPiJB2TYsKsygWQslkDAGquC+Gtc3LxuX4p4p6v3UliPCGchWktGbhk5xzA0S/mvmSXmHfH/u2StGSirE8E5H0vQDaL7jLR8UgDJ/+jTzjTXuc7a/A2OFmYSDJ5blZoI3xmaN4gOJjMQlkXJs7O8vKfnl76jxXqxqZaOMcJ5plly5YtnD59etWy6/jlQ3W1kRHQbQpSo5fPUrN4M3v48DTDhyXWC7OJ6StzYjrsZhNksvha7LTeXc1gXQWZt0WwV2vU31TFsS/3SmdoGTtZXGdFJN6Ss/DGp+R85uxwkpf/4pRU3xZGk+z7q1MkJe/ntb9YRaaqjM+4WE6CsgTs1TqaTWXinPiGjSWgUb3Zh6KaOfMNcb/e96J81iGzakYptTFWBk13RUkvpKWIV7NDC2RScoddsT0BbH6dM2tY22Tga3NQvdnH8S+IxwSzIwnmxxKgieuq+VtctLw1yoUfqsLPamEqhUk1oTvEXzUnzs1Kjbc8aq4NMjuywKjMByAaBNvdwrFkcjbL0c9Kyhkn4eU/OyVXB9j3d+dITsg5hTf+5rR0JqF9fyPu47KZLCaziQvPrY18V7XVgztu5/R/iM+Jje+sJTGV4sDfG7FoKam3xRg9M0V1t4fkXBqTySR0mHnkX1f2x6QoZeXfrlPu4wfpL/Paa6/xiU98gj/4gz+o2M46fjnw9NNP8+UvfxmA65reX7bscnm3Ez+UeB82m0glYH4yw+TlCjvculaQfGu60YPFbWb/58QPvOv2OJjqTzJ6RvJz7BRcfkPOKV05OMuVg3J1znxvXOrAH+D0t0fKZ0QqESf2vTJJ3ytyHwjNj6c4/S25+MbXaGXs4ryUDFtkqwtHSGfgkPieUmoWep6VkyvT7GZMqonEjHjn/M0O6m/wc/KbElmBzDA7mmR+XO70pvH2AMPHZ5i8lJckzAjLvsmg9joP8+MpBo+I23t2JMn8hNz9NN8WQLWYOfAZ8XXTpICiye159f5EPstVqMNBVbeTwaPTJCX2vJzVquG7BLMw9b1afs6VWudXk+HLZrOrkrcuvjzB5dcnpEiIvS9P0vv6pNRcHTi2wMAxOV8qJZm5GCo073XRu2+aBcGhGt9moardwslnZwwi3ipSb4sxNZI2smSZzULkwPkpOPD0UhtkNbWs/JuPVsLOVganT7Ft2zbOnpU7I1rHLza6urpIJBKEopsIVXeVLVuUd4PJGYU3joJoFqWsYmZqMosq8P1E2qqizKewObK0boL+XugTfO3SdIg1w6WT8lkVZxe584oEJYA0nH4lg0yau3QCDn1voXQij1V8QDoBh55e5ogU81LJtxJ1j39rlT3JMv5mtEfiIMJkQrcZmX/nxsRtregQ67aiWc1cPiTu08d709CblpILNasmWE4iq4DabVayaTj5nHhMvTCRllYx9cYUrB6F/mMSNl8DbF4I1OtcOZwQzii1MJthdlRu/tic0HydjYv75xjpEWsosWDEXSJ+oVBnGvoOytssvsnC3ESGqUGJ7FUKuEIKU/2ChkvDxVfls2Md/toq+3DZ7NJzgkWD7PgzM+WzfS2vC5x4Zk5aiu7USxIV0hlQzAyJJ/UuwJTN4gyYcAegT/hoLk3HZkjMw/GDxr+UknpbjJlZmJ41kUpCRjNjFlgnTveqLF/rUnalrPxb154P8PJ3/z988YtfZO/evYUP4K8mTFmRHbyfAtPT07hcBoWzla3UKiUkirKZFYe+m9/XwPTlOc58o4xsyJukPe+MW/A0OOl7QXATQcuy+yMdzA6Lk210p5ltH2xj5PiUFMGg64l6zj13RUquKtDpks7UpPuNTFIycNZYmB5YkCIj+NqdxK8JcvLLF4VJHLoTtn+ok+krcxz6x3NSfXQ32A1SgSBa7o8x2TuzNgKEBHS/Tmiji77nr64ciKveRtdjDfQfGJPK1rPnDzuZvDjDkX8R98y7/6CDubEEB/726r40BrvcpJOZq0660v06TbeGufTSkPD80/06ZhUpmcn8+J7qm+XwZ84L16u/rQqbT5MmU3maHdIZr3QnUpncwMj8lc7I2aLtgTgTvTP0vyq2ea47YesHOpi8OCMs6+iqt7HxsQaGjk5w5utiBFDdCfHrq+n5dm49kvhadwnya1aZ+s6oTsfDtZz46iWmLiwadyXWyTwuNL7BmTNn2L17Nz/5yU/W1rd1/ELh1ltv5bnnnsOMmVsdv1KyTDadXrJZ666z0nhbiGNf6ScxtvqGaDa/mSD7FptH7vCn9uYAF18YESb1NN0VItjp5tBnzjM3LFap/aEorpiN1z55luyCWLhbvc2DNWDh/PfEST32oEY6Y5COhJF/95Dce3bV2pi6WObFsURs3Hp/lOn++UJmOBFsfLwOV8zGS39+QqqP9qBGcjZFclbM3s64jeotXi48d2VNck0y8DYbmQbGJddAWWx6dwMWj8arfy5OUOl8rAZ3jYOX/0T8g4nGu6qp2uTl9U+dlSa1SEGD6m4fI8fHhZ/rWhHe6sEesEhJuDnjNqZ75TZT1jK+NY9Gy1urufj88Mr2ysUFGth9GrODcs9I82jSz9XbbGf8jPhEcsat1Oz2c/xL4h/EtNwbwd/q5NW/OiNsu43vqsXm13jtf50VjqEiOz1MnJ8t2K0SSWk15Lc6ykm6NdwawObXOPbFpfsO2XS6ZL352BVevfgCqqoyOjqKJpClYB2/2EilUui6TjabZWP1PcS8G1aUMS0kVpCTWq/TmZ3M0Hto9QNa00Juoq017sqRlKwecFbpDJ8SezfLZjJsfqefudEUJ78tSGRQYes7AwyfnuPiS+Ivj403urlyZJa54ZSxKS1AKHdFVaaWk7Qq7A+qNkittlys0qbVqzI/nZIiI9hCKtGtbi78ZJRUGTMs2YpVYce740z0znHqabk9IntIZXZIvIPRHW7mJ5KMnnoTZDrKQLWCp87GyNk5KfuVRBkChOo0s+VXY1zZP0nvi4vGagWS0vZfjzFxYZ7T3xa395Yno8yPJzn+71c3Y6YrZhBEpvrk9mhlsiiB8Ywi2zwMn5phTnAMqVZQLCoLMsQrFba/O8bExfkl5L2KWY422HEEdc7/aHzJv1ciIzvCKjODpfu3qo3yvPpyt7XMD2tOE2ZFEbNFLp6IbnewMJlm5JQgK0qFze8MM3k5Qc+PxPyqxWVIxQ2enKP3DcFgTYVoh87lwwnDDwuQlEoiN1cXZ0RaDs0ObdfqnN+XYHrR66kpmVq13kW+zvETx7nnnnv4j//4j7X1bR2/UPj4xz/OH/3RH6HpTq65/Y9KltGmU0vISTY9TXN9mpPnFRKJ1d8NtClj3hjZgmQk4Qwo8ymypiyhCIwOQjot5purIhliTVmOvZQlIfhKF2sBf8TEseczK7MirQJXEOxuGMgfaabSFYmGqtVwgYnlr8Hp1TMvgeH6ShILytSzekzMl5NSK1GvustKYirDaKUsnmZzgfwQ32Yl2Khz+N8nxckPJhOKDUgjLBGnO8FfrzN0JiklK7cW2LzGe/PsyE95Zm4ylc2GU7/LijOkcGQ5Aa0MYt2G9NaBf19lLSuxPgcbVeKbLBx7Zkb6XEoWnpjC9FD6qj8jV1jB6jExdFo8jrK4YCF/1C/4rhTfZiHYoHP4q1NLx3eZ56roEOmyMtKTkCLvoYBuK3N2aCqdQUzRK8wjk2lFPG/zwZzAsWHWbAJFQbdDuFGh94g4YSncYqa6WeXIC+Jyi3UbwBOAgy+YKmZSysMXSDMzA4l5BbKVSUpLUVyb8mSlZJmPRCP+JG5HhpOXlmZnU2fTSzIpFa6+cJ4DP/knzGYzIyMj6Poa40JBXHW5t1DIkNuy4ShJUDKZTSs3K3UjO43FU+HBLKrnaXJwze+3EeqW1FXXYbp3QZygBJA08dInjnPwnyS+stdV5sYSUvJRvlYnrpidcLe4BrUzptN2fw2dj9aK9w3Y9utNbHpPo1Sdzofr2fXb7VJ1qjZ6ccbsgLijS0zDue/30/OMfEYpGYISQLDDTWSbXCpm2exTAInRhDRByVGtS8ucTZ2f48X/dkxaTmwteOkTx6UJSmu5p+HDk2siKOlOpOTEdBv42zxUbxEfD4nRhBQpB4zxfenFIU5KZkzzt7mkJR2b74uy8Z31uBvEUzK76m1s+1AnzfdKyOro0P1UM21vi0v1z9/monqLuL9LTMPcyAITF8SD4qnzc+z738eECUr5dvIEJd0pt/G39f2NbHp3TgbLZC57SAbG3rqim/A3LcvPWqZuoLeVbDbLiy++yEsvvSTVv3X84uHll1/mueeeA2Cv/kDJMiZVXbFB64pbUa0K2XT5jUyTphZeLroej9P1uNw8z8tMXfy+OEGJbIaz3xrgjb85LUxQApi4OMfMwIIUySa8yUd4o5zUUvO9Uba8W066tPmOaq75cCsWv/hLiL/dQddjtdTcIBeneBudBNrkcj6f/I/LnP/BgDSJanY4KUVkqd7iJbTRk8vsIwiNIslLAuNnZqQJSv52J5aAXGMH//6cFEFprej5dj8v/ckJaSKL9D0loX/f2JoISlqld7lliGz1U7VJTv5QlqAEcP4Hg5z+5mXp8e2pXUVWrczB+M7faqb97TVS7XQ9UcvWd9dL1el4OEbH2+NSNq/q9uBpdGKvFq8zenaa2aEFqSl75PMXpQhKAFdenWB2MCknTQgENzjY/oF67FVGB00mEya1/CaRxaNica8sY1KUknWtfRH0lIPp6elC1sJ1/HKjo6ODbDaLxxotSVDKWrUVBCUA3WHC4ig/L7I2SyHusnpg8wMOvHG5hOiqmpNlECQogSH5duBfRzj5jHimFdUM00NJJiSIFVafiq/Bir/BIrzprjqh7a1BGm9eFK8JfMDY9UiEtrtLxFBl2my+w8/mxyMVr70YvnobPgHpySWxeArOfG+Y3lfkM9vIEJQAqrudVHXJ7SOokr4YDKnAkZNyBCXNpayUOatwcJqazvDaJy8tJSjl661V+m2Vuvv/8bI0QankPVXAVF9CmqAEGEQbGfdghqpuJ4FWccnA1DxyBCWAFJx/foxzknug/iY7vqaVg68cQal6i5MND0Zwx0vbvFRdzWlm21NR4rsqvAMu8xXdj0RouEHwvTFXt6rDQahVYkJlFKYHkkz2iwetC1Nw8PMj9O5LiOtZpTAISoBqMxmHe4Jou8lC2005e5vNZB3l/V82A6rFhCOwdP3LaioZe+nnFk3dAcA3vvENXnvtNeG+reMXE/39/fzX//pfAdh64++ULJO0m5cQlACcDtC0ynMi4dELcmZNLVlaO+R8nlnNAiaGrpiECUqmTJbBPhOHfyhOUAKYHoep0QyiqkYAgbiZcEPONoJrZbxTpeNmyxK+ViWCUqhZZeM9DimlF6vHRMedbkJtZQ5wSpCQ/fU63kqScstw5fA851+ZESMhmEwFEk16TpygBOCJakQ6rSgy67NS4LZKYW4caYKSPWBeKY1WYe04/8q8FEFJCCWkvoZ7Uhz4qjxByR4wycm9ARN9ayMoyUjEAQQbVKrb5eLChcW5SFYh/CzH4MkFzv54VpigBEAa/PUa7ojcu2bH7U7qd8vJT9dut9B5R4U6y8ZEdINK214bukAYZcoYdT1hM8FaBZvE8fPkqJmpEbn9zwtH4dDzkLUoS2TnymFsRDEISkoaTOIkKpcjzZYNKWxWo05GMzNf4WzBqmew6RmWp8JL2RUW3CudjWKpx1/VzfT0NFu3bhXu21pxVTMpPfbYY3zuc58D4FblHSsbXzShROQ3SiK3GRHsctF4W4QDnzkvnBGo6111OGM29v3VCWFn52t3kl7IMNlzdb/CzmMtGY4a3xLh8usjUmSJ9ofijF8Qz2ACULXNi9Wrc0FSQkRWCmotaL43ir/Vzat/eUK6Ld1plpLq2v2xDubHE+yXkA/pfKSGbBaOf+GScJ2Nj9fhrnPw4sePCddZK9aSSWkt2PqBZiwujZc+cVy4TrDLTc0NYY5+/qLw3HA32Nn4WD39++UySq1l/nU+Woujysprf3GVDyjXMI90v07d3hCnv9knVbfriXou/nhIKgNT41siDLwxIixhl++frL3XDJOJmpuCXPqBuDxh91MNOEIWXvqLU8L2636yjnQiw9HPGnM9v+7JrnmLCUqlZEgOpV9ikIvE43EuXRL3K+v4xYOiKGQyGWrVTtot21f8ffGBazYhOd9ymwH5MdjxoHFoc/zLYn5Vs8PW9zYycWGOE18RJwpGdnq48op4fFIKMnNONoOJvVoj0OrmksTGu6fRTmSrlxNfFreDZofaG6u4+MOB0lmHyh3Qiat7rRnb3t/MxMUZKak3kLd301sihDd5eP1vxDMI2YMazffFuPD9QSlJsWs+2s7M4ByHP3N146G1ZFJaEzTY83sdDB0Zl5Lean0gSiaZlXq2m97bgMWl8+qfnxTv3hqyB2l2E5ve08zA/jEuPS++pq8JleZRCRJO/PoAs0PzjJ4Qj6Gqt3lwVFk5+60B4Tr2ag1/i5temQ9vkLe5aa3ZXAB3g4NsJsPURbEMpZpHY+tTtYyenubMt8QOhW1BjY63Rzj73UEmzueyFORjKMltjyXrZWrl4cT3Zv4Zs9nME088wT/8wz9IXXsdvzj4q7/6Kz74wQ9iwszt7R9d8festbhhaJqR0BOCQtxlWjDiNWcI6nc5OP3DGRYE969qt2kEGi0c/toYKUE35AgbY3/6sqTM22JIZD1XrZCaWzQ/BWK2qm47E5cSzI+lhNuKX+NmbjTJyOIMQhXactdasHpUBg9L7v+pCJFzfprt2KrNBtno2Jf6paSqwCAdpSQOQbc+FWV+IsmxL4sTdGqv86BoZs79QEJi8AYvVRtdvPp3lwz7rZVktBirZFQqm0kp3+6bIBnXdm8QZ7WFfX/XJ1zHWa0Sv8bH+R+MCUvFaS6FzY9H6D84vZKwVQaqk7IZv0qh5loPnloLRz4vuRdcAmXngOA8WlLFasRR/fvKS7gt/2Cn8VY/g8cmma4kowmFw8GqbgcTlxYMP1QOi+JD1W2Ss7dZWdKmDEyqSrBVY1giW0PjdTY8cY03njakJ0UO2hp3Gye0PS8Za1XWljt8LSPjVgoZR1G/0zy7cv25MPIaJ4e/TyQSoa9PfD6t4xcP1dXVDAwM0LjhHmIN1634e9JenHP65PL90/KZkfIEPW3aGL+1dSkUFc6dFT20T7NlW4bxEbhwUnze+oNZxgbBlJTUM4LCO45Jgqmk6JCeX7TGpsq3q9vAXaUwfD6daytXt8w6bXVDsFGn98CyfcdydRUIteiM9iTKE0ZWqVtSii6P/JoumXVwcZ2Wm+1MD6W5clhOqlmxUF7eahlCzSqxTVaOfXda+Mxa0aFuu43+kwtSRKWuexzMjGToefHqZtismEkpj7U8n2XY/ICDoTNJ+g6J73lXd2qYTHDlqPjeSONuC46AwuGnxYPqitmDSlaCtptsjJ5PMnQ617+1cClE3jsqzaMS8NWpJOeyTA+uUjH/TBfFMq5qBbvPzMDxCvZeNG8VG3irFUbOVe7g4g+EFItJyuZZLefvVfn3AN1nxqTA7KwYy1BR0nRvh5Eh6BkU0zFXlDSdzSnOXVKZzrWTcBn/VVZVkSi99iVcxXu0rFgv4aXv/X9JJ2f52Mc+xsc//nGh/q0FVy2T0ujoaIGgtJWbl/zNZDatusHZ9XgNdbeExBvKBfvDh6d49X+ekjrg7j8wxnTfnBQbs/muCBveIZelqOPhOBsfr5OqYw3roLOmA/ueb12RzuZy4ku9UgQlgIF943IEpTyzVPKWtv5WM41vkft6LZPKGpI0a+A7yBCUAIaOTNC/X8529ior9ioxx5PH+R/2c+kncl9tVW3zsuuj7fja5b6UWwu2vL+Zze9rkqpz7tl+zj1XRtKxBCxuDatHwxEWpypPnptlvGea4WNyXyauZf5lkhnSKbkxpPt1tn2whdi1Etkx8l2TYGwnRhOc/qocQQng8GfOS0vE9XzrihRBCYr2dtXL0d2rtnnZ9sESUqJl0PloDTV7Qrjqxefh4OFxJi7OSNnv0D9eWEFQyv9/uYM+3a+z5TcaS2ZqMynKiqxK3cpuOjs76e3tZcOGlV9wr+OXA9u2bSOTyaCirSAomVS1ZEYIW1Bj4+MxtHJfFZjNSzbp8+Pv+JevCBOUAJKzMH5+loEj42IVshm8TVbq9gZpekuVcDtosPk9Dfja5L7kcOSkFWRJErP9SSmCEsBEz6wUQQkM+539liRBaQ2ycrE9ATa/r1E6W1EmLb/+gby9h49PMHJsUpJIZsUesKA55D5HO/dsPxd/JBd7dT9ZT9ev1UvVWQv8nS52/E5rQcZOCEm48MNB+l6UI/M4q204JOPWgX3j9B+Qi4/XIluXnM2STWWlD3rrbwvT/VS9ZGO5/642N0rMw94XRqQISgD9+yakCEpg+CFZghIYNtfsSGV1A+h4R4yGO8NydR6I0nS7eOah5ESSyd45hiRkzOeGk7zxfy6uJCjBki9gSyF+nZeWu0vvQ5RaQ6+L3ofdbueLX/wis7NXWa9yHT+XSKVSfOhDHwJgZ+1Sed2sVVtCUFqM+u0a1W1lDruWxV3ZnOzO9BAceVqcoAQwei7BxKWEMEEJoG6Xg9Zb5TIwxnbYabpZLkOy5gTVsoygJIiBQ7NSBCWA3pcnpQhKAJMXF+QISiKSUYuQJ0p0PBAiukMyK3wGsumsNEEJ5AhKAP0Hpxg4LMdkcVbpOKrkPi8fODjN+edHpQhKrriFzb8Ww7Pae70s0Wlx+WV12+4N0v42if1qoO/Vcc79UFxyGUC1qTjCOhav+Jfsyak0Q0enGTsr95xkCUqQ22+VlfBTofPBEKGNSz9/N5lMq0uw5duQ+KA/NQ+9PylPUIKV5KieZ0fFCEpQ8B0Dh2YqE5SW92/SqGv1y2UpcEcVNtzjkbJFfLuVup12nCGzMFF7uCfJ+KVkwfZZc+WsSj0vJVYSlAA01fhZBaoV2m/QsJTYrs7YLSuyKtUFdtC1sZvLly9z/fXXC93POn7x8OEPf5iBgQFszvAKglLy/8/ee0dJdlX3/p9Kt3LnnHOc7unpnp7pVs5CWQIFQAEhUEAiCMmSQf55La/l33vP4dnGfrbBgJd5GGwyJgoQQVkjaUaT80xP5xyqu3K4Vb8/bqWuqXBPSRoLfvNdy8to+py65+57zj777P09e1u0mwhKMRh0Ml0tAQy6zASl1LketClzd3JCL0BQUrA8r5R5UwNNOILJGKG5B2rFCpzQPgT2IjEbSoq6DjYRlFQg4OVsghJkJfP6NshMUMrUV4alYzkISql9Y580E28hxa4mEqGgVkfrpZbcWXBSzo/hUISwWjKYNpHxRoSgBLCxEGLheEAoZi1ZwFqqRW8SI/mMv+lj7ogYQalpp4mWCwRTFalF0n5lLoKeay3YysX8eONv+FgaE4tJ2cr0WEvF1vrSmRDzx8Sek1c5ORnCITbPvaT5lQmlLXpaL4l+J7X+stg6EhD52kQoN0EJNp29nPOyeoISQCSC7EUVQSkVsj8COuXcKYK69jDVTWK6snMrNLUpul0N0VuWdawswaqAi1aWdRw8bjyLoAQgGzXIxnTzQmlTXhSkuSq9QvIXnJ1VafSKT2K32/nCF76Ay/Xu1Vx810hKtbW1ANgppkSXOMTlun1pqTRR3CIWVNr+6TYqh8RKcwAsHdjg4NfFbkbv/78TjP1ajFRhKjdiLhNbBb0fbGD0yW6hPi03VDP8RIdQGkUkJZtNcYcYiWXg4VbabhEo/wT03N7A6DPdQqQKAINZj2QR24zGfj4nnMmm5+4Ghp/oEOoDcOrHs8y9JuZ02P33J9nzDyeF+rim/Ez9TixQFg6GCYfChHx5MPEFIftlZL/Yc9aOuYTJcTOvrPDa/zwqXPLtyH9MCpf/67itjh1PiZU0PPbdad76P6eE+gRWAxjMOkzFYotj64MtjDwhpifsTWa2f6adQpGgJtB7T6NYyTcUgubwZ8XWVM/dDfTd3SxURlFv1SFZ9ULvdOR7U4z/dgHnuHqv7vwbaxz5zzxubEkw8FATjVeUnfWnTHuiuViPqchA9bbMe1sqUansSCcAR44c4cCBA+LjPI/fa+zbt4+33noLgIul2zf9LVupm/JuG5ZSCYM5Q4A6jeOg4eIiej9Ym9c4j//XPGvHVejiaNDJccrD+G8WhQL2xU0WJLsOrU794dxSZaD/3ibabhAr3TP0aAst14kF6luvr6TjVsHSIR1WBh5qxlKW5jtlCdDtfLyTng+JlZoyFhowWPTCmZf2fmmMM8+KESuGH2+n8Sox+a2f8XBCoGQnwPIhJ7v+6jjLh9STHQAW3nIIZV4CCPll5HNhd/lkwgGZiEhud2Dm1RU8AmUTAd7659Ps/+oZoT7ze9aYFM22Cmz/VBttN4mtjz3/dEqYoCPZ9Eg2MWKOodDAyNNdtF6dZXxp1mPbDVX03i1WGrO4w8pWQRKVodDA9k+2ipHegaHHOui8VczGs5QasZaLnW/Hnlvk8H+Inb2Pfmc2QTgSQHmfja33Z5B5hmBoUbMFe212Ml7yfmpZL8QcKcTlctHQIHaJ6Tz+MNDT00MkEqHU2kyRJbGGMpGTYiio0FFUncEVlyHY032theJGMcc5gGtVw9iLYkTJE8+tM/6K2H5pLdVjLhbz2bReVkz/B8UIHxVbLPR9sBy9GfUEJT103VKGvS7pfKnCadx+fSl1F4r5Get2FDL0UI1weTSDVYeUJrCaDQsHXBz8DzG7q+HiQvrvES9TObvbqZRuE8CR7y9x6Fti4/Oth1g85BYiFkXkMHJA+b93BUljkf1hZL/Yc1zzIVZPiMnOccbHni/PsD4htv+Nv+DANS9GmqnZbmPrfWJzYub1DQ5/V9DGC4HBqkeyi+mxtmtLGLpfzEYxFerpvaMiY8m3GFKJSo2XFlF3gVj5ttqddrbcJXaWqdtpZcv7SzEVq5eFVq/BWKDDXqZez07v9nHmVXcicKgiQLkxG2Jsz9nnGDXl39ovlqhJd3cwA1FJbwBriZaS2sy6L5WoVO69Gq1Wy8svv8zhw4dzjuk8/rCwurrK3/3d36HVatl28ac2/S0dOSmGosIIBbYI+gzmWbr5XV4corU9hHBKEXRMzRhwruVeM7EAtt8Lpw/CjMAxyWyNYLZp0AqoVL0EPRfrqBUMfbVfJFHdqeieTQSlGNLYruVtemr7U/z66fomwVSooe1yK5IYT57eGwtpHBEzvIxmLUabVpgwcvpFLwtHxDp1XWOholPM7+B3wtwhsed4HXDwJ242ZsTmrHNexusQ6kLIHyH0btldEN+v5BCEAhHhahSOaVm4RNypF72celHMXnPOyyydEmVtQ8cVZmr6xObEyee9rIyJPUtv0iKZBekfOui7zU51j5ivp7xTomlEBXEtvJmE1nKROT0hKt2ZOBJBp4OOy4yUtYidO/uuMNC0TcwGtRRqMBdoQOAy7tgxOHEw8d9qiEqTYzocYbFLoQAFNpnu9gDp9qn0RCUotoUpKTi77FsyNhGV9CWU1gzhdrsZHR0VHqNaiHs5VODP/uzP8PmUw9RO3TXxf1eTHv71/31SiMRS2GrBYNGjN6p/FVutRO+Hmxn75RxLBzbUPyya2WhhNaA4N1UyEPf+k/oyYDFM/G6RgnoxEoFWr8hXRAlXbi3CWCChN4kpLMluwCxISFk95URv0glncXn9r8RLX5T1FbB8UODbAmG/uGOjfKCQss4CobJt+aLz/XVodAoJRi2WDmyIzfG3gQOCwSuA0h479RdXcOSbZ4QzWImi9sJSbJVmjv9AvfxCvhDhPFKtSiUSxgIdznH1xs2uvxSf544xF0GPmIHi35AxWPQUNVmFsiNZq80YBB1K4ZB4WbPJFxcIemShLFYzL64wI5LFRKOBAMzGyIWCpfO2faKZkEfm4P+dVNchoGQAs1WnNzjSlYBbP+3htb85nnNcGp0uXnpL0kmUy/UsMcWNN97I5KTK8Z3HHwR27NgBQL2uC4MhqbRIFoISwORLa0zuWjubkJLlRpSlwijkVAXo/WANGq2WQ/+RQwcnB5yipZXm94hlwVs76eGNv91MFtVoNVn1kWclyNLBDaZeE9AlBsUUDIfE9JytxoxeErO77LVmjHY9nuRMMyqCc44zLtYnxEg2Y8/OM/asGCHfVmfG7wwJZcIxWEAOhAl5xPbZ9puqWZ/xsPiW2LwQhbHUQMeNNUy+uCREVDryzXNTcnN9zMOePM4YHbfUEAzIwoQyYRig4/oaFg+v4xCwN0KBcF4Or5IuG6sCBPYTPxQjukE0s8+Mm/XJHM+Jrc1oxl9jkR5ToRgRXbLpMZdIFHdYWTuhTn6x9aeTxG5Pzr21huNM7mckn+X3/POY0DPQaFk6GCU9CJafLOu10nhpGQe+Oatax0h2JRBqqTDgWUzTJ0ZUSjrPH/rWrKpxafT6ePm3bVzJr/g6a2tr/Pmf/zl/+qd/qmp85/H7j5/+9KecPHkSDRq2198V//dcBCWAAz/3ne2Jy2J3mexgtGkxCPgu9WboudbK5G4/jjGBBadXMpGsTYTQ6HVEcpT/iOHEL1J8DhptTjtl+s0NCmrS6EatJiOJSGcAiBDyqN8n7FUSljIDBpNWqDSCsVAnWiUS56wfU6FOKFORRqPhwL+L2V2glKLbUFk+MwbZHxEm2dhrJUrbLIy/4hAuvSWK2pEC9AYNEy+ov8jmmgty8Js5MruqKd+WjRgVDoNWy6lfil1OBKV0W+1wEWPPrxF0vrsk9pIOM7YKicmXFRs5Y4aiJAR9YUK+sFJ2UYATpbcopCPvkvpJsf//Zv5OsbGmEocckz5kwXnnc4cwFuixVRjYmM6+RmLP02g02Gsk5ba9WoSVbJ5EyFyaLk0p4FhWMp8zx4tpE0Eix3iQt8ZTzqlZYiwxH8BqLKAZG19MvjnmRsfFEpEwnHwl4ZCKETkyBdxMhTpkIigCSUGMqJRUAs7nhD0/9efUK2GLMV7+Ta/X0156OceXfsP73vc+pqbOzbnrPN4bGB4eBqCx6zp0SSlwshGUAJZW9SytakiNhGcj31nNYazWCKD+XNXYEkIywMnj2X1l6dbQenR5Rwy67CXfomvY64IDz2/etyI6TdaSb6EAzB4N4VhI00avy1zyLerzSktQygBbqQ4pVkYoWz+tNr7/Wor1mAq06rMORfuuTfjxrqUZe5Y9f+lkgKVTWezjNDpSsoEcVJEVKWVeyf4IoYCYQVnRZcDnDAsTjkShk6B+m4mFE368a+rHOL3vbZSEVotIhIBLw4nfiZehq+wyEAEWj4ln6haCDqo6DTgXZdzL6tdHyB9BFh1aJIKlVHt2Kb/YfEujVxaOBBRSnciBRoa1qSAuAfsOwGjVYixIWXOZbI3oWLU6PbZSHbYSHa4ldXNdjvrf05hXcSSXeoth7ngIz0aYXDo9kkSsPrErSW4xolKWEnBhkx6nI/5fxPIDxXR+tj3HbpVpaQhx9LSeQEAdAUuvB4spgkUCT5r4YYyolFwC7sR07P2yP8NfoIuXf6trex9Tp1/n8OHDfPGLX+QTn/iEqvGJQBN5O0XQM/1odAJuYYQqXaMqclLtRSUEPSEWducRcBBI8QwKsaTl6ioO/fsZ1eWIKocKabm2hrFfzbGw25H07Ozia7yqgolfv/063f9/halCEi5dVzlcRNv7apl+beldl33ffU3Y6y28+j+OqO5jrZLof6CN2TeWhca3/fF2NBqNWIYoCSSbJFy27II/6WFj0s2hf1dP45dsgCT2rMarKqjZUcbh/xwXynK08+kufGsB9n9FfYBk4BOtmIskXvtfR1X3yRcjn+sm5A2x++/FsmVJJeLf6jwSKGyzope0rGQrC5JiIO14ogM5GGaP2uxXGi3bHmkm5BUgKcW7qjvcJhMpJBu0Xl/Lse/ndlzHyEqTLXs5dfoUt99+O9/+9reFxngev5944IEH+Ld/+ze06LjKejeQm5wE0Hp1Iad+tbQ5KJvNeZ+E2HxTi94P1oBGw+H/nEkfIEpjy217uBmAvf+ingRb3Gkl6A7hyuCQFiVOvmchaPuqhgEMFoNw2a2hx9rQGrW8+bdiWSzzwcjTXThnPRz+hnod3PfRJowFBqF9uaTLRsfNdZz59TwLbzlU9zMUGgh6gkIkjJ676ymot7LrL8QIy/k8a/un2gj6ZPZ/Rf26ariygpqhEvb847H05QbTDg5G/6iLlSMbwpmvRNFwZQV1O0s5/K0J1sfESHnGUgP+lXfReZXNe/J7hEw2TO0FJcy8miNomySDqqFCGi8v49gPZlkfU+dwtNYZ6b61htO/XMShsk8cOpU37JLO9OV9NjQaWDqSO1obCYXwls7zxsIL2O12lpbEst6ex+8vDAYDoVCIbbUfoMLeroqcVFYWIBKOsDqVnKpfnY7Q+AVLFlRoaBm1cOIFN750RL10far0dFxlZ/xVF6tJxKZcRKXybhNLRzOsl3T2iloXpEp7UTXeozagwaYlIEhesdUY6Lm1iuk3HMzuFst6JYqmS4so77Hx5lemVZOU9CYY+Egts3s2hMbXc3s5eqOOA/8uYDfolZviIbWX3qJrbvsjtaxP+Dj57Ir6zE2SViHzCFwMLekw03J5CSd+tpyTMJOM/nur8K+HOP5j9fUfOm4spaDWxO5/SWR/VkNUygcD91cT8skc+paYz1VvUQLl2ebSuxCmUIW3Jat0dpJaGzBdX216+8Vcqsdgho3pUMa+qX6AnpvsaDRw+Mdp1mKad46YJDoulgjLcOrVzHtPOqLFpnJv2ZBEVkIPjX16zpzI7b+IkZUm+BHHjx/j4x//OF/+8pfVPfM8fq/xta99jY9+9KNIRjs7r/5/gNzkJJBptQSZXdIiy4k1pSYzGIDB5Uek5lFjcwhJUkhKWv/ZSi7dmukYUJb7sT0pbdMRlaK60VIIEVkhKqVDWqKS2n0ujc2nmpyU7hlvp69apOubw77WmUD2Z5gHGfaCtsvMGO06Dv8kixGgcm7lQt9NVlxLMmd2qWcPN2w3Yi3VcfSX6v0hpkLouMzG1F4va5PqbVGdEQiBiFu4tt9IeZuBfT8QS3GkM2qU5wg8q+NyM+EwnHpBve+gpEFH3YCJY8+5CQi4HLbeamX5TJCZ/e9iPC8SoaRRR+OwhZMveDITejJd8jAppdLOKdTaVGltIJX2UzobJg1BSXXfDJkfS2phNbmwShqiUtiU6FtQHKatB04eBqfj7Lbp9iBtiZbu1hBjU3qcLpEsUTIBu7oLkclkpSKrjE4XYS6Su69xQybgm+fAK1/CYrGwvCxQm04l3nGvaVeXUhpJj0E1QQmgZriEpsvEUqS2XFtBcbtV2Pm7tG+d1//6uGqCEoB3NYhvzc/CAYfqPtWjJdSNltNynVjq3OEnOmi6ulKoT9WOYgqaBXNKSwiVVIrBVi9YwBEo7rLRdUedcKm3gQda2P6ZdPliM2Pt6AZzu1eY2yW2YEp7BPNJAge/Ps6rf62eoASKfeZd9eOaFdsddn/hpHAJu+5b6xh+rF1Y7vmg/2PtDD4kVkB54teLvPY/jwiXYfMu+3HOiMlv37+ezougZKqQhOf89K4lzjwndhuycriI7Y+2UXuJWImO6tES4dKLoLxXPvPCWiXYSUJYB0o2hZQnWgKo544GWq4VKxHjnPKoyh6QjL1fOpMfQUmCrjtqhORef2klxW02yvpyl+SMlX+rcrQSDof5zne+IzTG8/j9RDAY5N/+7d8AuEC6EVBHUCrfYqG0007tUJH6hxmg5VpFR6WWG8yFw9+aVQhKAnBMuFmfFFufLVdW0n27WFmlhivKFEKUWLZdGi4vE+6TtlxbDhgsChklDpUBupbrqijrKxB6Vv1oGdsfbaWwRcymHPv1HFMviAXnLVXS5vdSiV1/dYzD3xbTwc5pD+45Mbth9ZiLXX91TIigBDD4UAtbP9Is1CcfWMoMDD/WRtMVYmeG3f/nlBBBCcA158W96EXkJilBeO1/H8uLoFQkWJJ2bvcaUy8v4ZkXsycHH22l/94moT4GC7TfXI2tTkUqa9i0Xi1Veaz/QoOwnilsslDWJ3auabi8jMFPiNnxTddU0HBxGcXt6vXFytF1PIsBoUygnrkge744kRdBqbjVTO2ImB5suKiE2h1Fqtpq9HrMK1VYJCvLy8tceumlYmM8j99L3HPPPYRCIcz6QtUEJYDqXomGAbFzZWWbFns5RIxiZzDXYoQDP3Ljc6jvE/KFcC+F2JhUT9wsqNPTdIGdmiGVeiAaYOv9QCnVA2K2RlGzhK1SMBm8HvQ2hAlKphLxpPPmcj0NFxeiF8zW3/P+Svo+JLaX+1aDTLy6xuIxMYKSvVbcATD+gkOIoBSDc86Pe0mABBwOc+Q7C2IEJaB2uJDB++swFan8ZqnBTIHAaPdN5Wz9oJjvZfWEl93/MiNEUAJwzQdwzokFvE78YmUTQQnUEX70NvE5P/Wqg4mXHUJ97DUGBj5SS+WW7HZeKlmouMVE3ahY6UVQ3ktkPcZkZSwU1zPVW8VsV/TQ+4EyarZZhfRT5/sKaRxJsvFU9F2fCeKYEpxLLwWyEpTSIUZQauhDqG5HRaOW8hY9JSrchrHyb5X6KwH4yle+Qij0Lqd4O4/3BB5++GEA+i96DFBDUIICE9RWhykvEbEBZBoqg4BM0CZms02c0efMopSKtWVYV5OkL0mX13VqaN8uEAsNhymphfYRver7GzGU1mtEeFoASLFjskDmJXSgU3m8TkZ5p4S9JmWAOQgORfV6+m4uwF6Zpl0WYsXMAT8ze7OcR9PEwCVbfu918CduzrwpVvLVvSrjVJmNJgbfOhz4kUuIoATQdaWF5gvzeDFB6HTQf5ONKsFyeSd+5xUiKAF4nTIbCyHhAo/7f+LOi6BkLhZrvz4nM7HHi3c9ywjTzMG2S810XZk7prQJOqjskTAXiVNHJMFHEY6gkxDWM6YCsFeIja+kXkvHRdG5pJIQX1oHTX06CpIrlOco/7axButrEBQw/QMBHfuPGgUJShCwS1glmapCsYuXLTUB6qrV2U/+Ah2SqYri8hZWVlb4yEc+IvQsNXhHSUqrq6scP34cm83GYw98Go1WQ1mvjZGnO6jeWQTAlnvq2PlHbfE+w59tY+vHG3nzn04x8eICo5/rpP4yJQDW88E6Rv84USh1+PE2tkWdp9YqiartxXTcqhwQu+6oY/TzXUlt2xn8ZCugLI7Rz3fRdlM1HbfVsuX+JqVt9Hw+9Km2TUSY0c930RUNcLW8r5LRz3fhWw+x94tjDD7YyvBnk9t20/PBegAar6xg9Jlu7E2Kkq4cKEYOyPGSGSOf62LLvY0A1IyWMvpMN8Vdysrd+mALO5/uQiqR0Oi0VA2X0P+AEuCoHCpi9JluKqOBxP4Hmtn5dOJddzzVRcs11XTd3kBxl43RZ7qpvVCR4ZZ7Gxn5XFLbJzsZ+IQil54769n+WBttt1RH5V3P6Oe7EzJ8ooPBTyrfSiqRGH2mm5brq+m7Vxnr6DOJttsfb2fo01G5SDD6TDftt9UC0HZzDd23N1DSoTiIBz/VxvBnE9919PPdCoEJaL6mktFnuuNEiLAcRmfUbmrbc3cDAHWXlTH6THecnDXwSCs7nuoi4Aoz9uw8g4910HdfE6AQOUaf6Y4H6/o/vlmGI5/rouv2Blquq6K8v4DRZ7qp2qHsFn33N7HzjzfLe+BhRYbFHTZG/6g7TizpuaeBkc8l5LLjyU62Paq0tdUqMqzaWsy+L52mYkvhZnl/toPBT22Wd+uNyrfpuK1us7w/0755zj7TTcdt0Tl7QzWjz3QjlUjMvrVGKCgz/NhmeXffFZ2zVylz1hZ1Vm17tJUdT3YmyaWbnnsUeddeEp2zHdE5+1ALO55KyEVv0RHyKRtl5bAyZ8sHFEdC/8c2y3vn0130f1yZ32V9iryrR0sUed/XxEiyvP+oi4FHFBkWNFsYfaabtTMuxn4+R8+HG86as9seU2RorYrO2ShBpuuWzTLcJG+bIsO2mxV90nZLjdJWgm0fa6Xvvha2P75Z3nEdcV1VXN4Ag59so3qwJJ7NJ5uOGPhEQt4L+x1EIhGKOxSHQyYdsUmGDzRTPVRCeW9uHbH1QUV3FnfZGP2THgYfaqPtfTVZdYS9yczoM900XqmQhUY+383WB5P0dwYdAUp5wtFnumm5qprq7aXs+KPOrDpi9JnuuCGz5aNtSHYDkt0Ql2EmHbHtsTaGn1Dm99iv59CbdNl1xB8lze8/7kRv1nH6p3NUjxYz+vmueFCv/2PN7Hwq0XbnU530f0yZs+X9dkY/18ngo81INuj7SAM7n0rMjx1PtjPwYJMi73Yro5/rpPbCYip6CihuszGSpP+GP9PGwENKW1uNxMjTHTRdXYFGq6H7jloqthRy5HvTLB90sf1TzWx7RGkrFWsZeaqNlusVK6n9lkpGnmpDo9NhXC9m27Ztynv093Mef9iIfeNLL72UoqpSNHo9fR+uZOD+hJdv+yO1tL5P2dNqhu0MP1qLezHIkR8uUNxmZfDhBuUgr9Wy/bEGOm5W5lXlgI0dn2qksElxzgx+tI6KLXaKWhRv7/ZPNtF9u6I3y3pt7Hy8hdIexUHbfUcN2z/ZhKHQQOetVWx/tEnJpoRCQNj5RCuVg3aIhOl8fxXDj7fGxzv0yRa23FfPmV8ssrDfwc4n26kZVcbffnM1Oz6b0EODn2im76OKbWUsMaA361ifUIhNrddXsvPJxNoceKiZgYei5BEDjDzVQdM1FUgWPVKBnpHHO+JkgIGHmjcF7Eee6qDtRkWmDZeWMvLHHdSNlFI7XEL/A00MPZpou/PJdjpuVXRhzWgxI091YKtTZDbwYAujn0/olh1PtNF9hyKXysFCRp7qoKhN0Vm9d9cx/Jk2Gq+oYvsnmhn+bBs9H1L0ZkmPnZGnO+N2Tc8H6zbZVts/007VYDHV20sobLYw8nQnVcOKDDtvr92012//VBt9H20CwLPqBY0GW7U5Lu9kXTj0WCtbo/u3odDAyNOdNFxZwdpxN5YKIyNPJ9pue6SVbY+0JOT9dGd8T268qoKBj7WyLfpbWx9sZvDRxBzY+VQn7TcpMqy7uJSRpzuxVCofp/9jTWx/ODEHdjzZSccHFBlW7yxm5OlO7A2KDPs+0sj2z7Qz/twiR78zzfATHXTfpewn5VsLGXm6k5LoPttzdz3DSXv98OPt9Eb3k+JOKyNPd1IxqNg13XfVsePJzfLu+4gyD5dPrGMuNVK9U5F3x/tr2Jm092z/ZBv9H1PkbSlTZGgqUva0tps2y3vw0Va2PhiVt0XDyNOdcQJv5XAJkUiE5RNKiZ2Bh1vY9khChiNPd9Ia3ZMbLi9n5OnOOCls68ebGXpss7w7ooTn2guj8o7us30fbaLlykoOfm2CoCfCjic76LxdmYdVQ4q8Y6S2Lfc2brJPhz/ZQc+HFBuorK9AmbNblH2258P1m+bs8OPt9N7TQPN1lfTc2cDI011UDhYB0HVH7WZ5f7o9PmettUaGHm4hHIoQ9Cjl7JLlPfRYQt7G0uicvawMgIBXVkpRR7HtE60MPLx5zjZdqwSOm66uUOa3xUBZTyE9d9VvmrMjT3fSFp2zDZeVMfJ0J8bS6Jx9oIHRz3XQd7cyjmw6ou/+BrZ/SvndwhYLw59sia+TTDoiIcM2ej5cR8etNTRfXcnIUx1xu6bnrlqGH0+03f7pVrbcq3ybwiYLtTtL0Ft0YIDO22vY8UTiO27/ZCtb7lPWgqXKwM4n26m9oITx3y2yMeel/aZEwHbwkWb6H1DWgqFQz84n22m4XDknNV9bzuAjrRz8+hSe+SADDzYy8PHGuLx3PtFK87XK/tNwRSk7n2iNlwnov7+OoccaabxC+a3hTzfTep3StvaCInZ8phlLuSLvLffWKvsa0HRZCfUXFNN+o/LNq4bs7PhkA/Y6pW3vXVUMPlSnOKQ1GoY+0YB31c++r81T1mNh+NFaituUb9P1/jIGH0x61wdr6Hp/ORq9niuabsdms/HGG2+8KzfLzuO9A5/Pxze/+U3MZjMfufcTREwGLAUwdI2GcmXa0dQHg1cnnMR9l0LXCBx8AcZ2+xi8zUxVlx60Wur79QzenAiC9V4l0X25on/1emgaMtA2ovx3Tb/Etjts8eBv97UWeq5LEH223WGjbptETb9E04VGtt1hUwg6koGu6wrovTUR5B/4UDENI0rf8k6JbXcXg0bD8V86abnCzpb3J7W9u5TmS5W9sqRVYvC+MuzVyiAquy2EAmFm9ysk0a0fKqH1CsU2KWzUM/iRcoqaJIhEaL2igK13l4MetHoN1dtstF9bBChZnAbvr6C0Q1lvzZcVMHBf9MJKJEzfh8pov7qU1mvLMJXqGfxYNRVblPE3XlzI4EcTF1W23FVB1y3Kmq8ZsjL00VoaL1Xep+6Cwk3ruPfOCnpuj3qd9cq6rt1ZQM9t5QzcX8XggzVxkkP3B8rZclfiEs3gx6upv1D53coBK1vuqKRiiw200HVrGVs+lGi77YFqmi5T3rWsx8LggzVYKhQZynIYg0UbJ2Zs+2gNLVcrvpGSDjNDD9VSUKfMkfbrStn6kWpCPljY56L3A9W0X6foxYIGI0MP1VLcqgy45ZoSBj6aeNeBj1TTe3sVtSMF2Kr0DD1US1mPIsPmy4sZ/Fiibf/dVXTdqsjFVKRn6IFaKvuVOdBwcSFDH0+03fKhSno+oLTVm2DooVoqttg5/uNl7DXKmJLl3XtnQi5DD9Uq5JNwmJrtBQw9XI8+yvXovr2SLR+uTmpbR+Olim1V2W9j6OF6TCV61k678btDdNyU/G3qaL6yJC7voYfrsVUrer/jpnK23hc9J0UiDDxQS2v0EkZxq4mhh+spbFJk2HZdKQMfTYzfVKInECXZFtQp71bSodjMLVeXsO2BJBneW0Xnzco8tJQr8i7vVeTddGnRJnn3fbiSrtui8i5U2nqWA8y+uUHDRYUMPZgYw5a7KuNzNibvmmFlzdUOFijyjuqI3jsq6L2rIk6+GXywhrronK3aZmPwwRoMNi1b7qhmy52VZ83Z2Lop36LMWVOp8sOdN5dSM1yAc1oJyg18tJrmK5VvU9JhZvDBGuw1irzbry+l/15F3s7ZIEQiFNQr8i1sMjH4YE38bNl6bQlbP6J8c41Gw9b7qum4sZSKLTaqttoYeqiW0k5F3s1Xpsj7niq6bonKsEyR4eD9ddRsL6Tp0qJNc7bvQ5V0vz8qQ1tUhoPK/B54oHrTOTqTjgCo2a7IsKLXQt1IEX0frmDLHYko1uBHK6m/QLHDKvstDD5QGS+F0nVdCZYKA1pTdN3fV0HTxUrbsk4Tg/eVYSlX5N3xvgL671Tm85mX19EZtbRcprQtaZEYvKcUe5Viz7Zdaaf/Awlydv8HCjDZdczs9VNQo2fbhwopblR+t+ViC1tvt8cDdX232mm/WpGDrRQGbzPTfaWE3gRN2w1suyURkO57n4nOy41EtBpMdtj2AQuVLWAvhapWHduvT9jXWy7T0n2x8t56PQxer6OmVw8GPbVbdNRtMXD4NVidhy0XKP8Xw/aroS56BKhpVf5bW2xEkkoZHhoF4IILkjqcxx8kHnroIQKBABdccDH2qiKCFi091T6G6hMkhJ1NHlpKlYhwqTXEBS0ewmHYPWXEbgkx0OUnotUQ0WoY7PbRUqforyKbzI5eHwVWJZ7R1xqgpS5EQXQv6hsI0tym6H2rTWZwOEhRsdK2oSnEwGAQnU6msSnElv4gbR1KW6lIw8CFEUoqImjCEeqaIvRfmHinriFo7YelaViega0XQVl0y6tuhK2XJUpTtw9D+/bof+vAbNPgWFCC5OWNsPVybZx81DakoX0kGkcLh+m/SkdVuxa9pMFcAL1XGuIkopbtOjouTJCqtlxpoKZH+aHiKg1bbzTSOGSktEFH07BE5xUJ1mfvtSZq+xU9X1Clo+9GM5ZSZYy911sZujNB3Oy5zkrddsWOsZbr6LvFhr1SeU7doJGe662Utxvpu6mA7httNI4oAzQX6ei7rYDCWqVtzVYjvTcnSJqd19io326mvN2s+OY/UERJi/Kcqj4jW25NtG2/ykrLJcoe7HeG0Og0GG06iESo6JLou9UeJyi1XWam7dIkfXeLjYouA97VMAaTlr5bbMSqDbZeYqb9CkucHLLlRitVPYpcShp19N1op+dqRRbNoyY6rkzY7b03WKnpV36oqFZH301WzEXK35p2muhKattznYW66EUHe5XS1lqqyKV+u5Huay2sjIWYfstP97UWGqLytpRq6bvJGt8jageM9Fyf+N2uqy007VS+q6lQyeBUFJN3n8SWGxLfseMKMy0XKG0XT/mxlGopaVLaVnYb6Lsp0bb9MjOtFysy1OmU37WUKvOyvCPaVpckw2R532SlokuRYVGjHoiwEa2y03KBiY7LE2233GChujcq7wZFLrHYUvNOI51XJtr2XmehNirvgprN8m4cNtK43cL4635kL/S8z0Ldtqi8K5S2tvLonN1mpOd9CRl2X5mQt7lYGX9BTN79Er1JZ7XOK8007TRS0qyj60ob/bdaKa5X2lb3GthyQ6JtXN6RCLpoGW8AOaCUs9sk70sT8sagoe8WG+UdBqVknieMZNHEdUR8zsbkfaudyh5FLiUtBvputSOZoarHRMvFFjquSrTdcrON6n7lXYsadPTdascYNTmaRs0M3FVA59XKWuq9wUptVIYFNcq6t0TnbMOwie73KeOXbDB4p53O6He1lunou9ESJyDVDRjouTbxHbuuMtM4LNG0w0zDoETfDWYKa5S2NVv0bLk6cSGj81KJlmFFx0kWaBzQY7Jp0ElQ3aWj7xpD3AbquEhP61C0PJoEW6/UUt4AK9OwOivT3J/gJ7Tv0NA+GImTlbZeBlV1UZ1cE2ZgFMaPg8+rpX1LmK6tCVLT1tEwtXUymnCE0nKZbTtltCXKb3e0BBjo9VFToewjg1v8NNQq5KOSIpnhfj8Ws7L/tDcF6O9W9rzWigA9NQHaKpQ9sdgSYrTVQ4Ep2rbSz/YmD7JRg2zUMNjuxe2DN2eNFEgyFzW4KTErz2wr9TNSl7j8OVzjoafci79AR9uld1NYVMS3v/1t5ufFS5Vng/j1oCxobFScjH3dffiWFQH61gP4HAG8q8p/O+f8aKXER/Uu+wn5QxCA9Qk/PkcAz6IiYOe8F8meGKJn2U/Iowg36ArgXQ2weHg92taHqTQxCd0LPqU2NBAIgM8RwLXgo+nySuSgjM8RgCjJ0TPv25TxyecI4IxmuXEv+QjLEVquruDYt6dxz/nRmRNtvWsBnAsKs9W96MPnCOCP1utzz/uQ3Ql2o3clgDN6i9u7orxr0KkMwjXnJSJHCKwGeOOvj9H/8WZc0baeaFvvaqJtMr3Mt+LH6/CzfGSDoFORt2clKsM5L7ok57t3yY/PqXyLhf3r2GutOMaUYJ5zwYdUlCTDRR9hX3QRBZTfdS94WdgbQW/XYS1LGCeeeV+CgBiT97wyfte8F3udmcM/mIKA0lZrSJoDjgDOhWjbqAyDLmVhrJ/2KA7zWNvVAO55Rd7eRUUuAXcoLhezT6b/gWac0x68qwl5+1aU8fsc/mhbn1IaMjb+ZT8aHUy/voqxQLdZ3rPezeNd8sX/1nZTLWE5Ep+z7jkfkjXB7vUs+gi4lDkQ8CpyCclhqnYUszHvxViScEi6F32EA8qgAq5AdM4mZFi2pYCeexo48o3JuAxiSJa3e9GLz2Eh4AoQWA2wftq1ec2tJeTtico7lsbQPedHsoUoaLBG5e2PP8sTk/eG8u7u+cR4ATxLfpyTihLzLsfkHZuzm8frXfbjWvAhlUi031hLKCDjW1HaOue8aI3JOsKHd035W8AdwucIEA4rMnTOeeNEltgYEzpCaRubA353EI1OQ+2Fpcy8shLVEVF5B1Jl6MNea4YATO9aprjFSihpLSf/bmzdE4jKZdaHvlDHwCOtTL24mFtHxMYfUMbvHI/KMIOOiMtl1Y9rzhufs23X12TVEe5FZQxBZwDfmqJ35/euUNpZmFFH+DcUXRnr65x1Y0la95l0BIBrwYulysjYz+dwL3gpbbfn1BGBJJ3sWwlw8ofKLcBsOsIz54vriIU3HVQPlmbWEfM+zL6zdXJxl43akTJlzkbnmmvet4lV7V0NxHWybz1AwB3EVCRRd2EFrjkvWn3SvrDsj3+LgDOo6OTlAGvH3RQ2WbCUJda9Z9kXH1/AG94s73kvxhKJ9dPKf/udAQLRuRNwh/E5grgX/PFvYa1IfJud7ZcwMzPDxMQE8/PzVFWJZbM6j98PTE5OcuzYMXQ6HQNtOzh9Qilk71oMoJM22yruaKkPz0oAnzNE0B8kuAiuxSCSNbEuPEsB3AvK/PU5gnhWAwTdyjpfPu7GXiPhGIvuC8uKbaW0DSi/HdX77gUfGg3UDhVS3GLBueDDGZ2vAWcQz0oAb7TEkmvej96UUFruZR+2KjP2BhO+dRnPsh/vcnT/XvBtut3qmvMR8ivjD/uCeJb9rBx3xcdgKU/aZxd8m/SoZ1nZ45YObLA+6aF6KHGVxT3nQ5N0gcG95I/rANeSH8+in4WDqyzsdmIqMmyyVTzRPQ4UPeNZ9hOM7k3OOc8mm8Kz5Mc5r7ybb1UZf2AjZjP7iMgwt1e5WicV6OL7qX9d+V3fWkyGPjS6pN9d8LJ8JMDMK0sYLHpFhisJG8hgSZLhvBd/VKduTAVwz3sTbRd8mEoTMnTOewlHU8QGPcG4/dT3kUZWTqzjWU7aI+a8idvbwai8Y/vhgg/Pqp+FA2vKf8/70BoSc9az7McZsz9iMvQpBBpLmQnHVCJFtHfZh3vOv0neAXdUhrNeZL9MxWAhrlkvnkVfXIa+NWX8cVtl1gdJl2nCcoSCegsYwL8ejM7DYFyGyd/RPe/F61D+Nv3yCtZSE96VmL3kx5hkqzjnvQSjNkUwKhd0GqTodzQn7RGueS/hYFTewQieZT+eJX9chu4FH64z3ri8k2+ee5b98X3Ws+RTnhMM0vPBOsylEqunnJvaOmNtl5W2QW8kPoagTa/IcMaDZ8kfl6F3za+0jcl7zks4OTW9JoI1SniLyTtm07nmfJsSM7kXfLiX/CztU+aEvdq8aU/WJ6VPds9747ZKwBXGs+zHWm2k+8461qc8GIuT5e1Bjr5L2BtSZBjVJ8sH1tFuZdPvxs6PMbnEbAr3YvRd14Ps/uJpmi4pQ5O097uX/MocAlzRtmFvKPpt/EQisHbKnfg2mXTErI9QkfK/18c8BNwhHOPKfM+kI+JjiM7v2TdWIRKi4ZLqzToiabyeBR+eqK0SdCn2xMQLSvlP15wfgzmh01wLPvxO5V2C3ug8XPFDEFaPOtEk7gDgmvchR88HQU8Iz3IgLm9lHio6ov2mSrQ62IhlRg0qe4pnKbrul/x4VgIEg7Hf9VPaYaWs28bEb1fwrCTsJe+qsv8E/bH16UcqUObL8R8v0nxVaWJfW1P2NX9UhTgX/Mj+xHnGuxJgY1Zpq9Up2ZQTdntgUyI791IA77LSNuzTMLJzlF//5jkuv/xyDh48yHn8YWLHjh0AdHcO4HcruiYYAPd6BF90XrnXwWhO6BKXg/j+4vaY8KyF8W4ok8njCOFeS6xN12o4Ps9CwPpcmJVZZW573eBZTSx613Jokx/LsyrjWQ9Tv9Wo+ChW5Xj2G+eqjF6frN9CeFaVP/qcYcJymKpeM+Mve3AthTB6tZvbrkTPK84wnuUgwZh+WwoSlok/x70YimfP8TuVvv5oGS73knIeJwQHv71M65WFeKM6KuSL4FkK4t9I/K7emLzPBlkb97I+7iPkD+FZDOB1RNsuBzAWJNk1C35CAeVdHWM+KrpkHBNRO2E5gGfRsKltfF2HUH53NcDMmzIGuxZbmZFYkg7XfACdIVnvB+N7vW8thHPGz/gry4Q84FwIICXpUfdSAHdUX/gdwWhGOeXBqyc9mJIyS7oW/XGd5XcEcS8GCET3CPdSgEhEIcT41pTfiZ0HAy5ZaRvV1+7FzeN1LvjxrAVYOeqJ/92/Hor/rmRL1vsBAlFbpe19JUTCkbid41kO4ipO3Bh3zweQg8q7hELK74YCMiUd5qiuTrR1zQc2JSlwLwbido13TRlv4yWlnH52RTkfJPmxXAv+uAy96yHci4pPI7QKK8fdKeP341mKnWeibWN2zWIAORCmuFUJurgX/Lijbf1OpW3MLvYsBTfZVs4pH56oLRjwROUd3ZPdCwH0xqS1vBDA7wiBHrpuqSDkD+NLnrPJ55mFIMGonyLkD+FeVGRa0mHGvRTAUposQz/haPacmLxjvoegJ4jOoKWi18rifjfOeT/aqI6IRCLK/I6+q3dNWUeRUJjp19cpqDdt8u8pczYYl6FnMaD47qPjNfojdNxUysIBV/Q7Rv0fG7H5HYl+Yz/hpPOXY8KHaz4hb89iIG5juBcDm3Sae1HxoywecqI36Wm6rDje1rPkx2BOkXf0byGfIsOQP8ziMTe2CmmzvOcDhAIJReteDOBZU/qunXZT0GBO+t30OiJZhouHPQScYezVxsSa02ijOiIWGwnhWQzGbSTnYgC/U2b6tei5dTEYl7ffFdmkZ11LIULR89f6RAh3R6KtL6aTPWEIR/CshokkGYfuZRn3ahBLqYa6IROetRD+qI/avRJK+LEiEVxrYXzO6LnDD94NGWuJjooWPe61MJI5af9ZlQlE11RQ1uBZj+B1gXMFpo7KFJQmrd21cLwkUAjwrEfwKHcs8Lo1uDY0uJXQDj6vEoCN910Hb/TI4nUp/x2rRtXXcTXTs+McOXKEU6dO0daWIOOfxx8OvF4vX/3qV9HpdHQMXsWY4vJiw6MlYEjolnWvDndAmXf+oAa3D4KyjF+WWDMbCHkS+m3DqcXlibYNwLpLEz9zLKwZCIaCbLiVPcXh0+F3Red6AJwbGvzR7Bgetwa9AUpKoaIqwuoKuF3KmgqGwOnUEIjqQo8LjI7EezkdUFIJZpsSL3I6wB89FnndsLGuhUhUN65FEnpIBudKBEc0ibXPBc7VSHyNuR2RTYmEnMthvM4w6/Pg2QhR0aRDDiba6pMSLLpWw3ii683vkXHOy6xMBdmYjaDVEbetAFwrMt716JnPK+NakgkFNECE1ckAhiT/nnNJxhu1X4NeGdeyTMCr/LfHIaPVaVifDaLTg96owe9Uflf2y7gWgwSi8XLfehjXYiLzh2spxNpkgJWxAIQV32bM5vQ55E1t3Ysh5Oh/ep3gmAzEdaHPqYwp3nYlvCkLoWtZJhKJ0DRixjETwLUsx+XtWpY32VqupYRc/C5Ynw+yOhG1E1ZlDO7E77qXZbwOOSrvsPK7fiio1WGv1rExG9r0ux5H7DyujDcY9YPGzgb2Kh1+l4xzWcbniNkUyu8Go/L2roXQJbEB5GCYolo9OqMyv13LMv7oWvGuy7iWk/20YYLRc/PquIytVI6fqX0b4U0lyNwrMnLUryJH5YQ2AuiUtstyvHybe1neVCTJtSzji84BvzOCYyaEP5ptzL0qozNsbut1RL+5O4xrKYQcUMhBtiodq+OhlLbReeiR420BPGsycgjslTr8bkW+MXkHvErbxJwNpRR1isSzcsl+ZV7G5b0ub7YNl2UCnjDrMzLTei+2cn2SvMOb5qFrKUQolhxHVvoa7RrqBo1sLIQ2t12RiYQ3z1lf9Ky5NhlEZ9DEM0S5V8KbfN2uxVA8O5PfmZDhoZ9uUNokYTClzO+oXPyuzWN0r8podBHWZ+VE27WYvJV3i/nuPWty3JYNRH/HESW+BwORqI6InZXDaHWbz79+V5jFk8qZqLrbGD2zaPC6NBiWw0lt5Xg2IzkE6/NhFk4r7+fdCONaSXo3B4k5Kyt61Rct7LA6B1pd0tpdiyRcx6EwGxt6vDE95QHnujK9qxvC6PTKf8fgdIAn2jbghXWvNqFPXFrs1jBVFTKzixqcLg2e6F4ViO5VMRvI6dbij37HY3MSzaEALp+yuP0hDesebbyyrsu3OU+Rw6djQ9YCOrQEcPiUPkpbDfqkCe7w6/AGlb+F0bHjoit47qc/4Oabb+aNN97gnYIm8g4Ve37ttdfi7PWrDR9U3W/LvfXYa8zs+eokgdUAETXFLCWQbAYCqylprNSUv5BAskkEVtWnYRt+vB05FOatfzx99h8ziK//gWZMxRJv/M1x1c9BgtqRUmZeXFHf5w8YjVdVYCmROPqdaaF+O5/uwrvq58BXxUpZ5IPBT7XhmfNx7Hvqx9j/QDO2ajOv/g+xMnEDn2hlY8LD2M/nVPepHi2hsM7Cse+KyfCCP+lhY9LNoX+fUN2ncriIkhY7R789pf5BEgw90sbsm6vMvaYmv6mCbY+2YiqSeO1/qi/fJtlg4OFOpl9dZva1d3eNSSUSQ4+0sbB3NZ5JTQ0qh4qo6Cvi4NfG373B/R7BVithLjWxdGBDdZ+O2+oo6bSx6y+Onf3HDGlby/rstN9Yy9iv5ljYs562TeI3Ehu1qVzCt5R7L0lX9tRSJeFRUXI0VrZr20MNSDY9u/76VM4+Mcw3Hubgyf1YrVZcLrGaz+fx+4Hi4mIcDgfV+lb6rSpLzBhg+MFavKtBDn1rEYCIihTp5lJD3MkKxEsjqDEjjcUG/GvJfaN9MthtlYOFNF1ewZHvTuGcVJni2AA7PtnG/H4Hk7/NncUidoAr6bHhnvfjT7Up34tQWebt7aDnw/XM7Vll7bj6MntN11ZStbWYXX93DN5lMdaMllAzVMLuf1SvC0HJmOma8QrZNVXDxVRuK2L/l8XsyY7balg+7mT1iPoSLD1311NQb02/d2VB+83VrJ1xs3xQ/T7ZdHUFtmozh76uXhagZJpdOb7BiR+oL8PScUsNpjKJA/86LvSsfNB3fyOmIok3v3BSqF/HLTU4573Mvb72Lo0sCYIlyv87UL2zOK0sspVw3/6pVjamPJz4rwxnlDTvPfBgI5FwhP3/mqV0Y/SZsQCxoQCCaqe6Ieq9jO5VhkKtEsBToaM0FguWUtjy/nJWTnk4/Qv1Z5SXQ9/G7XZz7NgxOjs7c3c4j98rzM/PU12tXHO/ZuBPVfdr7oOyOg0HXtXgc4PWqcK20SsZJ0KxplF7SxNQt9HqTUl9Y3ZXFnuv+4YCNFoNR35y9lkoEg6nLSnUdLGNghqJA9/OskZitkuSvVjWaWL5uAoZ5LAXVUGwzNu5RlmPBWu5gYkXFLmrdc9uva8anyPI8R+/+5nbum4tx7cWZPwFh+o+zZcXU9Zl5c0vqvBDJZVb67ipHNdigNnXc5zJk1DcaqKgzszEC2L7+PZH61kf93Ly5+plWNhkorjZwvjvVnOWk0lGz+3lLB52s3xUfVnajhtLKag1nVW+LRf6765ibt8GS4c3Pyu1hNrbhh6GHqhhbp+T2TfU27wFDUbKu62c/qW6vfUdClnkjbzkpk0QlXLBYANLqcT6RGBzX23mch81A2Yqt1jY+62Vs8owanRa0tVzspRq6LymgInX3ayOZdgLJMV2iiRdfDFYIKhi2kaiZdg0SYQ0oxX8Ko6UwZJohtCeALYi2P2r3H1iWJNfZff+56iqqmJuTr2v/Dx+f3DppZfy4osvUt11BY3916nsJXNBi58Nn4YDi8r8Mjpyxxslg4xiZm1eQwZXbn+ZJMkEAol+mqj9ofWn72svgtY+OLkf3OnON3IETZoY6ZZLtCxNhVnI5qKIbqux/tZiCPqIX1DPimiJNk1IRXz2rOeGN/1G3v3fZdQNmXBMBXEtRt8xmlE3G0pa9NRtNXP4Z85NRMp05bXeLgqqdVT1GDn9vAc1YfIY+m624lqUObNLfZk4e5WOinaJ0696EalzVtUj4V6WcS6q71Tbb6S8zcC+H4jFJyq7DXjWwjjn5ZzfKYbSFh0F5XrOvC5WanfrbVZWzgSZ3qeeN1DZZcBaqmPsFbHyfDmRxv5p2G7EVq7jyLMqNuZwJP4bVb1GAi6Z1QmV5VEjEdWyTot8+8ZtIHG/Wdx2UdG3qAocyeFavaK7I1n6dl2gxbMeZvJwmmeb9ET0Z/dt3xJGp4Nj+zP/rmxW4n7h6CVYnS5Ggsxd9s1fqLTRRFWnTqeQ/2QVfb2lWiRkLi31MuvUc3JFfXnTYz/7f9lYd3Dq1ClaW1tzd1CBdyyT0mWXXQZAjbY9e8MUnPjZAg0XFguRhnpur6Ow0cqefzkj1M9UIeFbDAj1ATI7u7MclrxrgU23VdWg5apqqodKCHllFt50qO43/NkOPEt+Dn9DIPCyo5jKrcUc/c8xAgJ7Q9/9TbgXfELEi/L+Alqvr+X0z2eEyAYlnXaMNrGaowCv/5VYgAcUYoNGA8d/IEbmeev/iAXJAE78dIaiJsF65cC+L6YhyeVAZX8x5lL1SubtoLK/GGuVYD3aAOz5B3EZnn52Dskmpr4CLsRIg1GU9tipv7iCff92Op59LeezVgO89j/FSGgAJa02bLUWJJuWgEu9cT706TbCoQh7/1n9HLHVSrTdVM/YL+fYOKPeWdZyXRXWSpMQkaqwzUrX++sZ/808C3scqvv13t1CJIKQ3nAverHVmoRkuHzQyfJBcb0RIyhZqyTcKghHMWx7pBmjXc+uv1YfSJ16dQXJKjbnq6f7OMh+3G43r7/+Ojt37hTqfx7vbRw/fhyHw4FGo6G/7FrwqjwQBWHq9fV49jq16PtwDe6lAIe/pd75Zy4z4F0ObiYoqcDCW+ssvKU+OAFgsBjwbYTit7HVovWaKiLhCLv/Qb3+rNpeRP2FZRz+9gSeefXv1vPhOtYnvMy8op4oW9Rmof6CMo79aI6gQ/27bX2wmUg4IkQOsZQZKGiw4lkJCJGUxn+5wPgvF1S3B6VUXOctNUy9tMS6wB40+9oqswKk5hhO/HgG/7rYnJ9/c435N8WJK6WdBWj1GiGSUr4o6ynEYNMLkZTGn1vM61mnfznH2mn13wrgxI/UE5qS0X5TNUGfLDTWg18TI13FUNxuRyo0CJGUyrcW0nJ1FUe+MxXPIqoGjVeWYyo2cPx76uViKDTQeXMVs2+usnpM/brsuasWY7HE3i+pJ9lV7yym+YoKtDoNM69uXmeRcCQjUcm3HsS3nkUXRsJnBer2fUX8e8UISrG9RS0s5Qb6PlTN0jEXY79Spz88K7BwyMXsbofQGEvCzbg5xIUXXni+7NsfIEZGRgCor1dJDI9i6iQE/BF8bvX+ofoePZWtOg49549naFIDo0252RoS9JMf/Vn6fSSSJWAUcMrxTGMZOp/1T+U9ZpouLAQc2YlKKeSi3g+U410PMfZr9bq6oF6iqs/G2G9XCAlsX81XFOPfCDK7W73gLRV6Om8sZ/yFNdZOqxd+SasZa7nExAvrQmSM/V8XD8bXDBegN2mYfEnMxj72X0vCz5p6c431GTVEtM1z5MRPxJ9V2mGlqNkiTFLKB6UdFkrbbQpJKRxWHUQ58j3x95rctY7Rqn7fj+HAN8XLL9iq9NRsLxRbKyHY82VxO89ebaSoyYyxUB/P5JUJyWui67ZytFo48n31stTboPXyMmbf2sA5IxBw7LdirzFx6hcrRCIRVUQlU4mezhvLmN61zsqp6NxPY/+kovumcjR6Dfv/PcXmDcsZiUoeRwjfekgho6ZTU7J8FlHJsxJh73+KrX1IEJRie4tadF6gxVqk4a2fqw9gz5wCk01sfPaSyzEYnmd+fp433ngjnu3wPP4wsL6+zosvvojRaKTi8htgRa2fXMeJBYmALBKXk+lvD+L2ajh6JneANwaFnMQmgpIaOB2w76VMQ0lvD+h04HVGstuFaUTU0KdHo4Ujz+cgKCSRi+wVGuoHjIzt8uFT42qI7ud1AxKetVBmMmQaGAugusfI7F6vOiJVFC0XmdHoNJx+Qb2Rp5OgpFki5I8oJKWYfs9BylgdC7E6luLfyUVQ0kHTdhMLJ/x419TbeBtzMhtzYn4XgNOveOPZ+tTCOS/HM2qLoKJTYs0SFCIp5YvKDiPrc0GFpKSSPLMyJrMyJj62sVd9eLKdbdJg4ViQfG5rVnQZiMgRlk6qXyuTu1X6hGPnKI0GIhFKmw1417TqSEpR28taqqXpQgvjr3pxL6uXSUmLAUuRjum96v3XOp1CHlydDinfWaWNXdtvwFKi4+TzSWeOHH3t5dA8bGTqQJDlic3rRRMOZyQq+d0RfFmWpSYUPouodPIQbCp1owKyrOwlkl4mEAI1ZCUASScz3OJndk3HmWV1fQLoOL1qYNEttn8V77yZjV99neuuu44TJ04I9c2Ed4Sk9OKLLxKI1unZYtyp6kZ+DIG1EKd+mjhkaHS6nNmUpl9bAZmzyUYabcZbVq03VlPZX8TR702xdkK9ZV05VHh2Zg0VzoNYmSIRjP18jqA3JERQAiU1n+wTU6DFzTYs5UYhghKApcK0qbyFWsh+mfVpMU/Z3n86DVLudu8EChrNWW8Ip4NkA4NNjJwA4FsMML8o1gegrK+AjTMbQt9s37+IE5vyxYF/zS9zVUGzhXBIxjWlfvMSIdVsggS2cgmXgIPCXmvBXGaksMHK+ilxJ5EIRLOGxRDYCCGHxAzRUBDMpUZK2uxC8rTXWzAViS3M9Uk3ETmyqeygGoz9ag6PoLE888pKegKACiPWWiWhNWlxjmfRVbE9JupsGn68Da1ew+v/Oz3hKJ1emd+7hrkoNwEzlkUJYPlQfnOvvrCVqfXTfPzjHz9feuQPDDEHXL2pT7jv/J7NG4lGr89pu80f3FDKSaQEEzQaTcagSu8Hawl5w+yLZcpIvc2exm6z1RnxO8MEswW80yC4HswrW8vhb00I6zSAcDAsRFACsFWZIAwiFmJhoxVrlUmpC5bFzk1FYD0YT5+rFp7loHAmn3xhrzZiqzFjLjEKkZQslQY8q0FhH0A+hCFrrRGNRotrWmwfeu0cyTDfZxksYG+wsXpM7BCwKEgcjCGfb1bYYouXuHi38frfHxeeT+4FLwFXCK3ISVqjpbDBsqmUuRoEPUFsVWaKmq1CJKWQL4zOJ2Ybzr2+hkYLs6+lD/RmIiod+nqWbEiJzsr/TwnWlfbYWDmSZi4mPSe2x2g0Gkq6LLRfX8n0q2vM7HKkf5YhycbSavGsyKyc8jC/L7ce0Fgs8f898ZoXMALqzyg9hZfgsy3gcrl46aWXuPjii1X3PY/3Nqanp5mYmAA0tLVdC2vq94ZgSMv0WOK/w3ZTzmxKS2cUHRMrvRNDRDJkzKZU0amnfpuZky962JiVz7a79Pq02ZQK6/WsT23+97PISVrNWb83u88L+zLIIYO9snTESySMEEEJjZZQILypNKMa2GuM2KqNhARdL/ZaI0a7ToikpNUrpC3vitjedeInK6A/N9liihqN6M06MZKSHkw2fbxMmVqEXLB6IscaSUOAK2g04VnwCZHsTj27ApybbPRjv1rdTHZVGUSxlOsJR8C3rF6OvuWQUPs40nyzXCQbU5EBe60RS5mRjUmxCx+imHl9g5nX1ZPrY/BvyOIJKUOKHrDPGYVISvZqI/aaxGVPNUQl32qIcCiilLRMRg6i0vhLDgLuDOs/A1HJMR7EMX72Ok4u/R1Pv5FCVtJbwGACbypnW0rYTpooUSGWlaD3aiMGk4Z9P0m/MGNZlJQ+yvvPj4WxFqZ/rWTEsigBOAISrIJO7e3QKJqaruTUqV/ysY997LzP6w8MN9xwAwAlg9cI9130b/a5+ot0ObMpTc/r8QXPXutBmz5jNqXOnjCyrOFIdOppUmyYsFF/VjYloxkislK+ZxNSyEkRnW5TNiVZhtN7s9gLGcyk02+GkCzp/5b48ZTOei1ykHi5o6xI2s8LKvXoDBr1JKVwGGuRgYJqA1N7xfwuPmc4UbJSJeQAHPhedA9K1esi2WNUxBBNNiio1rMxH4yXvVIDyQIBP0KZjQA8qkl8Sc+yKa/sF3SXHfjhuavWcOBHKc9S8Z10OjAWafCsiNnXzoX8SFeSWZlbIpmvimr0RGTSk5TezrngrHOUhsPPuoTnk88lE3CFhYdir9BjLdFBxBd/fi7IsrJW/J6IQlICVTZ2KBBB9kc2ZYDM1de5BGfeCuCYSf9imYhKZ/anbx8xJfx7mmhsNkFW0gJh7EXgdJz9m7EsSgDaaOnssEGLxSzT1xliYkbHfAZufiyLEkBEC/6IjplVHQvO3P5Gb1JJ3rGIESwgOdV/6KLWrfiqqpmcnGTXrl3xi1xvB+9IuTej0UggEKBe20m3cRhQUTpEo2XHEy2sHHNx+uebbwyoKvmWCRmcIbZaiYZLKznyH+pLURV32Oi5s4GFgw5OxW4CqxBXy3VVOOe8LO3Lz5l/Hvmj7/4mrFVmdv2F+jJg+aLlhmqqB0s49J/jQuSVLfc2EvLKQiXiijts9NzVyNzuFaEsVvkin3Jv+WL08934nUHeEijdUthmpeXaak7+eEqI3LTjyU7Qanjjr9/9AOKWexux11l47X+9+3PxPDZDsmlpvaGWoz+cUrJfqTxkjH6+C/9GkLf+SSW5T6Ol8YoywuEIU8+nd4yKkh839dVvNiwkG2x9oInVU25O/SR71pJkB9Vb1l+wurrK8ePHaWtry3s85/HewfHjx+nq6kKj0XBN5ScSf8iRTan5qmKKGs3s/frsWUH5nHZblpv0mUzJ2guKkP1h5vdsZC+3kWS7DTzYjGTX8cbfqt8TDBZovKKKid/Oq0pHn3jse7sESEacg7JvIhh5upPVk05O/DC/rDkiGP5sB7Jf5i2BzIGFzRYar6jg1M9mVZXZjGHbIy0YrHre+Jt35mZINuRb7i0fNF9XSfW2EvZ9+RQegWw07TdXo9FrhMq9lfTY6bq1jonnF5l59d0PIO58qpO1006hMZ4T/B6UeRNFqn1T1mfHWCCpyxQXlUfbDRWU9dg58O+Tm0mfWWwnjUZD+80VTLy0RiBTlj5DFiJ4jjICySQlUMpZlTQbeevrK+DPceYwmwBYKz3MG4dfoKioiLW1c1BG8DzOCRobG5mcnKSx8XJaWq4GwJCDqBTRaxm4FFbmYCplK8lZ8i2L3ykTSUlvg9peIxOv+7PbXUk2n6kIem8uZvG4n6nXFSMqW/ak2O9W9pnxO0M4xlMNyix9c/nSVNqKeeE9bPOJumSbLy+mpNXMnq+++3tdZb+VxotKOP6zJdYn1DOHmi8vJixHmHjRkb5BmjlmKtLTf08NM7vXmdn17vtS8yn3lhE5gijbHqgh4Apx+DvqM0SaSvQ0XVLM1KtruBfVk5W2fKgSvVHLvq8p2bbe8TJvSWi8tIjSdgtvvQtz8b+7zFs6qJJlNv9PLnswW98UspJegppBK7P73IR8KQSlVCQRlbbdVYjPKXP050lBXymz3RTRaSlr1qLTa1nIkO0hmaSUCk2GjDAxJJOUFIQYHI6wuqJh6kB2vR8qTDz36NF/YGFhgaNHj54vt/sHgvX1dYqKijCZTHR+9H/E/92cg4hRUxKkxh5iz4zxrJI3akq+ZUImklJJqQxaWF3SnUVQSkYyUam1H2wFsP/lpAZZ1opGlkEH1c2weCYNESKLSNKVjNuELKXZVJV8y2Yz5ir7do7Ku6VFJn2e4d+33GRjbSrIzD7/u1LiLRnd11gIy3D8N+qdm5IN6vrNzB724hMwoVouMmMp0nLop+/upXzIv9xbRmTZk0uadTQOmjn6nEtdJrAoKrsM6CUNMwcEKjcVQPfVNqb2+lgWyCCWETnsn94brKzPhJjel8E3kUkPqbGrsrV5N8u/ZbV/cvvSziIpifTXZ84ilEpWshUrpWxXoiH9ZILSWX2jRKXKujD1LXB4D3jdid9LJiilImyI0FAbZn5JmzFLXzJJKRWaHKo1maQE0GAK0GAJ8vKqCcmZXV7+QuVb6WYOsfcnX6O1tZWTJ9VXismEt+0xnZycjGdRihGUckKjRSqRkH0RvGtitzQGH2uh47Zq0WHimgkIEZQA1k64mNu9wuRvoqmUVR6SKrYW03hphdCz6i8vZ8eTnUglYrf5ay8sxVRxjtIN5Ym6y8qQbGJTrfaSUkY/301hm1hZtI1pD56ld7gGaAYsHlhl8ZBDOLuOudyIuVKsBJt71sX0q0vM7hErcbLl3kYGP3VuSAkt11Wx46ku4X6TLy5y5tdixCvJpsdUYMBaIVZebmbXMjOviqfazgfr0x7ceczFwU+2MfRpsbKZAOUDhRQ057oa8Q4iD7WTj77qvaeRwU+KzeHCNjvF7XYaLxHTw7NvrHLiRwLZrCJhJn6zmJGglA22Oontn26lrFd9PuuAC+RAhJBPzu6ESoF2xUw4HGZ4WOUefR7vecQyM9Sbtgj1k30yIZ8slDWkrMfKwAO1mMvEy6/OvOpg/s11ocDQyZ/NMCVQDg2gemcZZT12zBViOnDg4WY6bhGzKS1lBiq2qbgWmgpx8eUNe4OF4k7xsrKDj7bS99EmsU4GcM562ZgUTxGdD6ZfXWJ6l1gwyVxixFJqRCeJZbAZ/90CE78TK41msMD2z7RTe0GpUL98se0TrXTcViPUZ+HNVSaeX8QjmK3MUmUStrtWTzqZ27vK2gnxG/P5wDXnxTkjNheLO63sfKqTsi12oX6GQgNVw8VCfc41LGUGKgfF9JWlwsD2T7bm1HOpJM+GC8uo3l6k7iFRssHUa2tMvboqlJUuEolw4kcLmQlKWdB6TTFb7hbT+X6nTMgXxmAEjOrOb8UrvQA4HI7zJd/+QOByuZicnAQ0cYJSLkT0WvR6CPrBL3gk7LrEQMOAeNLzkAsmXvMJ2V0+B0zt9jB3WAVBKQlVW8zUDaacY3IQiUpajPTdWYapKI1TNcuYSzpMGAvfkSTw7xrKuszoBY/iRS0mBj9WTUGdmG/IueBnY+7dzXYTw/qEn5m31tWVbkuCpdyAtSKD8ZthjvlcIcZfWGVFIGsgQNPlJfR+qEqoT76o6LOx9f6as2sS5Fg3Ey+vMfWqGPFKL4G1XMJULHaImN2zwfQb5+bCrGvOj3PWL1yjofOWMrbcJearASioM2KtOIe6IOVROYlTWg0lbVn0VQYd2XhRAT3vz3F2CG8mC5hK9FT0mKnoUmGbJ5EUpvZ6OPOa+gCxRg6zciqUkaCUDSYL9F6upUhoeeoJBiEQAtmm3ndotQ4RiUS45hrxjDvn8d7EXXfdBUDxwJWq+4T1GkJhCMiaswhK2WCzyPS1+zFJ4iSm1RUdawvarASlVEydhKnkO3k5yHwAJRVQ1aLFXJDyhxxmW+uwjtqeDLLIQCLSm6CwCiJZgvfKs1P6i1QMepsEJWMBWMvFShQBtF5moeWSLAZbBj2/MR/CvRp61wlKALOH/cwdE7PzjBYd1lItulzfLAVzh7xM7hWPXXVdY6Gk+dzsx60Xm6ntT2MrZ9mT1+dlxt/wEhTkXlmLdVhLxWTo24DpAz42BAjlbwcbCyE8axmelUEPmQphyy12CmrF3k0nQVF99Du/HfL428oMlV1X6KxaCquyxMjS9NdJ0HmJRFFt9vWsSelb3a6hpl1dPC6WVWl5DiZOgFdgLmqDGqbHdcJlRAHqiwL01oqtaW9Yg0/WIgEBuzodJ9duQWMwcerUKZaW3n6s/W1rk4GBAQDKNHWb/j1t6ZCkWwOB1QB7/jl9eahsJd90Bi16Y5YPlKYURs/d9egMWg5+TTwrzNgvFoQX0q6/PYpVkGxkMOlAqzm7hF0ONFxWSXlfEfu+pP5GecsN1VQOFHPom2dwjqt35A8/0QERePPv1N8ol2xaGi6qoKDWwpFvqigFEEVgI0TAHcI7L7abTPxaLJgESpairg/UM/78AnOvqScBuab8nJwSL+v35t+K38gPuGDiN+LvFo5E4BxdQIrIkbxuKKq6cZ2CpX3reWUqy+dZoMz9oEcWWmdTv1ti6nfiStq3FoA8bN72G2pxzXuFyu7VX15O/QXlHBTUBUOfbkdn1AllpLLVSjRdUUVBrVm8rJ2gPJb2reNzBJR3EmB657PGACqHCmi4qII3/35z5pdsWZRciwG0Bg2WCiMcPttJlJpFKYa3vpTYx2JEpUjKwTKVwDRgupSX+D6yLLO6ukpJSUn2FzqP9zSCwWDcAOwuTCkjYzZlzaY0+fIGvJyeLJDWbguHMRXr0Rm1eLNkXDmr5JsBtt3fwMSLy6weVbGPJ9lu7tkA7lkxW2jyd8usHN8Q7pfPzeL6y8opabOxNuYRKkk3/FgbAWeI/QIl6Yo7rHTdVsvYcwssJJfaitnTGRzdTVeUY600s+svxbLyeJf9hLyCjrkgHP6Gevsuhv6PNaGTdOz9olhZ2rnXxbOSzO9ZY36PeL+14/ncJlPK4Zyr29+RcESxvwTgWQ7iWRa3h/Z/OY+yvkE482z2zH/pUL2zmIZLKjj49TE8C+rXWT5z0bMcwLceICRYGq39ukoKm2zMv5llbqW5MT/0aAuRCLz1xbE0HdKjsMVC9x11TL20zMyr6s8q7bfWYi6WNuuPHPAsBtHowGDO7RCJEZU0Wg1HvzeNV4T4FgnjX/Ez80pKH5WO3+47qwm4Qpz+eYqtnSWLkt6kQ2/UJm7TpZYvtZztsJ7b52UuuZxVjKiUmlUpmkUphgpjC4v+Ma699lr27NmT/WXO4z2PWNCzqmrbpn8PFpvPyqaUSO+uJCw6vCv9b6Yt+RbdO/SSBp0h81pIV/KtfsiI0aLh1AsqznQpZd8Wj/hVk5NiZd/2f3cVYyw2rjLLkc6sQ6MDX2omgxw+hKaLCvGuhjj6Xyuqn1Xea6HhgiKO/3QR11wobbm6dOi9swKNDg79p9i5sOmyElZPexl7Tp2OjkQiyP4wXkcQj0MsELV8xMPyEYHUoShZinrvqGDiFYdQX996iJld4kTjjBmDss2zECweFL9dHwnn54fKB5FIhIicoXJiltISOUvfpYFrPsSer4j7G2PPEj3n9N5ZgRwIc+y/1JNrV054Wcnj3byrQYIZ/PrZbOiOG8pwzvk5/mP1YyzpMNN6RSnHf7rExrT6tdb9/nKMBfp4RqrU8Z0lX60GvRlarixh+bib8ecz2F4Zyr+pysAdIyppdbjmQxz6Lwe+1ZC6C2zRGMtyqjs6SxalZBRWRqjfauLQb/2QNPezZVHyeZT9zFigIbJ0dlals7MoKTi4LzGmGFFJ59p8zk/OogTQ0HAhc3O/Y2VlBYfDQVFRkZrXOo/3KGRZ5rnnngONloptV2z6m7dUe1Y2pXBSya95l8R8hq0kU8k3sxRB0kcIZnEnnV3yTaZ7S4TZSdhw5D43JZd9C3hh1YsqchIoZd9W52Rc62ECsS1c7dFVpyFtYChLlqPyRh1VHXoO/9pPwKs7O6NShr286woLQV+Y0y9F7VudNv1zkvobC6Dr2gImXvfgmFRP8qjsMlPcaGD/dwVsFI0G75oKwaUpJzb5pk+YoNS004Rk1XDit2L75PqMOFnOuShz8Cfi/iuvA7x5ZBiLyJxD2yuLbZCh9JvshbUp8fcaey2/xBdpS7blgL1KR+N2I6df8uCNmQwq/IhTuwUzKAFBF3jXZeSgRpFX6nMyPLeyy0hFl5GDsxuKGaGyJGL7FRY0Wjjx66QzR6a+0XUl2aDrahsz+32spGakiumMFDs7otNS32egoFLH/p9mKyW+2UaXA8p/6qTc9lOMqBTRapk4GCHgVWSVLYtSvG8oTDgES/Obn5Mti1IymmsCyBoNkzMp5UuzZFHS6yIYdBEiWhnQnZVVKTWLEsBSwMBSIPGMGFEptQRcLItSDNUj1zPz4ve57bbbePnll3k7eFskpUAgEE9hPmi6THW/sl4bJe1WTvyXuNP6zS+oKP+RQlSS7AZ0BrFMPpXbi2i4uIKj3xnHJXCQASAAboFyEgBjz87nVcbr2HcnCQXElO76GRe2apMQKQHAcUZ8swu4wpx+dhbXjJgTJV8SStPVlSwfWcMlUG88HI7gdwZxz4ttRC3XV6M1aBKlAN9FlPUVULOzlGPfmiDgUh9EOZJHsCZfnPnVAmd+Jb6m226uQW/Ucuy7gsSVPFDcZaNupIyD/zGOSJlz32qAoFvc4Ki9pBTXrE8o25YImS8ZZ347z8pxMafe2qkNilttRIJiOmTtlCs7WTQNXDMBzvx6ntk9YoHRw9/Ir+SgKEEphi33NqA369n3ZfXBQ51Bi86oobDVwvppRdfldDIF4I2/UV/OKhllPVZKOmxCe2hXRzd797/FZZddxoEDB/J67nm8N7Bjxw4AivRi2SBarilm+biLjQmx7BPTL60x/VJugkcyUamo3oLepBMup9b3kQZ8jiAnfzSXu3EKRAlKAPvyIF0c/9EsFVsKhQhKoOhN/4ZYn4A7yMa0h9XTYjbUiZ/MUlAnnllPmECKQp4wFxuFSUC+5QBaSUxHGywa2m6qZfq1VZyTYjLJBx231ODbCDIpQDgOeiLs/j/56fZ8sO9f1O9VMRhLDbS9r5rpV5dZP/Puy7HluioCriDTL6nf/z1L/ihpW2yOWKokilvtQqR0/0owLwLW+POLmErEzyqOcTdyUIwQtT7mwTntwTUrdlYZ+9VCXmUt3/x7MfIgkJXImg22OomOm6oZ+9USDgFdZ7Trzw4QZivzBkJBzc2/Cy0X2Vk+4WNjRt17bit+H3tC3+H48eMEg0EMOcZ2Hu9tvPbaawB0d9+uuo+tCEqrYCKPKp6Hnsvtf0olKpmsGgxWMZ+XrUpP44iVsZeceJYE9JJWA6EIfqfQ41g64mXpSIoPSoWOOvqTFeFjnXc5wMaUTyEoCWDtjBetoO8Q4OSzy/id6s7UMXt5Y9rPke+JX2qq7LeyPu3HtyrwblrwrAbxOcR0dWW/DYNVx/Rr70BmnhxEOFu1gerBQsZfdBB0qn+3iRfOXVnNpUNulg5l8e1kICrVDNow2PSZy9+9g7BW6KkcKGDqpTVCAmaDZyVIOCSe2aK0w4zfFcQ1q/6bTb6U33w6/esVXItic9g5F8Ax5SXgE/N5rY55MdrEfF4hL4z9ZpXV8VzlPDcTlSZeFVSmUagmKKWgYcSM2a7l+HNiPn6DSYu9GJxRtZWNoBTDvl/nly3FXhCirBzOnFYfturp2c7u3S9y/fXX8+qrr+b13PN4b+DJJ58kHA5T1D4o1K+x0M+aV8+GYPaJJYeeJUfuuZZMVDKbwShF0AoaKM09EAzAtKDLIKLTEfCIky5OvRklVib/Y44ybHOnZNzrMgFBDurqZAA5mKu07+ZnR2RYmwjiEbFpgJkDXtamBHyA0e80e0A8E6WpEIwFemHykHdDJhQQ1NE6qOs3snLGj9ch1jUfVHYbCAcjLJ0Sk79IKbq3i7GXc0zENOQXnaSUl1s67cd7DszE8jY9shxh9Yz6ORJwy3jWwsJJhiQL2Mp1rE6of5Ysw+nkiyzpiEppsHzSz8Z8aHOJSRVEJcdMhvmUpW/ABY6pIJ41sXU2czTI/AkVtmGKjX70ZXF9GtOJaghKyZCMYVq7YXocnA71OsFsiiDLqUSh7PvbmRWxDL0JyDRbQqz69azL6vbQst4LCB1/mb179yLLMjqdeOanGN5WubdYuRET6QMh8UwQGu0mA7x6qIiSDnvWckGaNC/VeGV5XuPc96Ux9ggGDMzFElq9Btei2Oa18+ku+u5rEupjqpAo7lBf8icZaydcwmSjlSNODnxV3Bl/8ocznPyh+E2ehT0OYdJW1Y5irFVi2agkG9SOlNFwcaVQv/VTbt76x1NsCAZqSjvtlHSk5tnMjdFnuum4rS53wyQUNFixVprRWgR5hRJ5leXKG3k8q6jZSkGDeFma0c9303N3g1CfkjY79loLNsFyewe/Np4Xiarx4koaLxNMYy0p81+09OPca6vCmdhcU34OfPWMEKkPYOznc5z4obg8Zl9bzRjAvAABAABJREFUESKHxSDZtJT3i601e5OZ0c910XiF2L6hlbTCgfPZ11bZ9ZfHWT8lfvOzoNlEWd/mEjOZsijFULOjhOKWxJrR6LRx51QmJ1XhIaVk3sGDB4XHeB7vLezbtw+AwcIb0zdIyeYAgAFK2yxU5yjfE5974TCEw5R2W7FUigdWHafcvPn3Y6wdF9tXdZIua+aAdGi4vIwdj7dhLBEbZ3GnFUM+FTKDsLhX3LF+6qfzTL0oRtJ0zwQ4/M3pzISoNLdwQSFdLO0XG6Ox1EBZn7hN03BpBU1XitldACd+NMux74rZlJYqM0XNNgrqxUqOdd9Vx44nO4T6ABQ2WyluzcM+P5dcBIP48ySrAXu9BVuNmBw7bqlh51OdYg8DSrsKKOsRKzm2PuZh/1fP4BE8PzReUkHDxeLnRUul+Pz3zAdYPZIlqJRhfZ7++QLjz4kHpQ9/c5r1cTGd6pz04prO7zZgUZsFQ6G6yRUJR4iEI3R/sI6hT7YIPce/4kNr0GIuFZvIe786yeFvzeSVtax2R9Tu0iayKqXLohSDQQulrSYqe5PWjNGYyKqUbt8FvKsh3G43d955p/AYz+O9gyeffBIAmy19ac1gsTIvInrtpixKFXVQUa9kXMmEsD06d5Qrwkq/1jyce+EIJ5/3cuRnYgFnU4EWnUFDwCEWmOi/o5jWKwuUQLvKzEZ6E9hrUoShkkTpXQrhiZVQyKBbU+FaCHHyFylZjVTcgJ9908m0YFkuUMqiqSENJeus4hYTpiLxe6MNFxZTMyS2Z/lWQxz9/hKuWTGCR1mnhbJOcYN56OM1NF5SlPgHFZm6rOVGChvMGMTME+Xq7bmsBpjrWWnetbDZTFGT6IvBto/W0HKNWBZkW5WR0lYLphIxoZz5zRoTL+RxUfSyYmqGxEthF7WYMNhSbsTn2NPXTvsIqiQDxhB0ypz82Qq+ZTE9t7DPxeTLmeURiSRlTk3SLaunfJsyDWX+gc3zRG+EgjqVtlBYhrCMwQYDHyqhqi+9HZIWsoxOF1GVPSAZG7MR9v3QjWtenHRkskFRBUR0GiI6RVaZsijFUF0boaIqQkyYsk2KZ1VKzaIUg93+PgB27cqQwvA8fm/w5S9/GYC6y+9I+/dYJoiwXpOURUmmvjBEXWH286M/peSs3SJjzqPMm8+tZf9uPY41wfJJBtBpIqqzKAGUVEH/xQo5gTCqsyhZi+Gs8GoOgpLSBjaS8ijEy75F/YSZsHg8xMpYiixjPuoMfQNumHzDS0DQnS77wDmn8rtFSRE6k5K9RlVZumTbvNNE0w7xPXzhaJDpvWJxZckMZc0GrKVie3hNn8SWG8Rja0W1Bgpr8nBg5c9FyO9ZuZ6XYj/odFBUp8daLCbHik49fTeJy7GsRaK0QSyO53fC2Cs+fBtsmm+5UNoi0ThsSaxtlRlFJXN0/scQIwtleW7AC67FNOssx1iXjgdYOp5BFye/a8rZbHK3H+9alt9O0iORqG4JuEhkosqFFB1kLlAIbWqgCYfRhMPUdUPvTpXPiyLoVnwCkiB/6NhxAydPGdAKXnIEmUp7EJCJaCESVcPpsiglo9kSpMacOCsG7Jp4VqXULEoxBEtb8Hg8PP7444Jj3Iy3RVJ64403ABjRZQiUGQxpnQgHvz7Nvn+bzBmsTiYq1V5UQt1IKfWX5ajTHO+sPLe0JzsZKhPGn1vk9b86JhxQ968HcS8JZuS5poruOxuESQnbHmuj54P1Qn2QoOfuBmy1Ys8q7bHTcoNY1gaAnnsa2HJvo3C/5quq6Xi/2LsFXHDkuxOM/VYsm09BsyUvktibf3dCqNwVABJ4VwM458WCDGM/m+O1/3EE36LYhBz+ZAc7H+8S6pMv2m6p4cI/7hWeW7v//iRv/M1x4ed5Vvw4Z8UIeqd/Oser/+MIrilBI7FEompHsVAfgJM/mebYt8QyAdlrzLReW0PDxWVC/SqHitj+mXZhfVfWV5DX2m65vpraC1Xq4ygK26zseLKT4i6x9db/sVbabqgV6uMc9xJwh/C7xJxRB/51nLf+UTyDACiZujCE1aXqjqL7A3U0XZ4gsmmk3B/w2PemeP0fz86eodFp0RSmd1hLkoQmuuU/88wzqsd3Hu8tfOELXwBArzFmzMqQdg4F4c2vzDD2q9xZJJJJco2XltJ9e/qgXCYYTBHsDXkw9zVa9n11gmPfE8tOGNgI4nOG8K+KBV06bqyh+4Ni9klZr52hR1uwVIkd4mtGi6m/RExfAjRdXU5hSxYHbprAoKHQwLZHWijuFDtYN1xQRsdNtapJCTEc+8EMJ34sTlot31oo/Kz1MQ+v/cUx4dKtzlmvcLZMgDe/cJL9gqT+whYLFzzVTd3F4t87H+z4dAfbPtYq1Mc56WFXHnLcmPXiETzjgGIv55PxqbDFgrVWTJdM/HaBI98Wz0jZfksdre/L45zzwTrab87QL1Pg3qBcvClsEgv6WmslOm4T08cAnbfX0He/GKnfUmGg5456GgXncTwDlgCCHtj996eZeyOPrAoGJfAbiUTSeODTo260gPqRYsq6E/LXFtiz9ICgH/Z/d4mTv0pTTsBohLL0Z4Sh4lsBeP7551WN7Tzem/jnf/5nAPr67k/795BFt4mcFMPYIdj/UpqSUCkIWxPB5aJaaNwmUdWp0vOv00E4gq1CI07S0GpZPhVi/7dXCQkmQvOuyXjXxM5Y1QM2uq4vxVQk5oLsvKGE5suSCBAqSVFNlxZiEgzw2Kr01Gy3Ccuy4eJCYSIJQMsVJbRcJe5jOPrDeWbfECvBZirTY8sjCHX4u4tnlbtSA9diAPeS2H6wcMDF7i9OJQhpKtF7RxXbPiJ2CTBfVG6zs+ORBmw1Oc7sKUGQo99fYv/X85DjvF/4wufCATe7vzQjlNkIQG+B4lYBsksUJ3+xwthvxGxKvQ3ary2jamv2/TcVBXVGeu+sQC/ovrXXStQMi1/GqBywUd6rwl5LCg6aivVsuauCwiYxG7b92hLaBPVB0AX+DZmARyx4deZFN0eedWcsT5gNlhIwaMJgVO947BrR0rAl8Sx/Ve4POHZSw+u7NKQqZNkm4azPLFuTqYRIJMKf//mfqx7feby3sGvXLrxeL8biSnQZosdBm2ZTiTcFOl6eNHF8KffcDCRlomiuDdHTqt4QCktaNOEQFmseJbL0Wk4e1gpn2QwFweuCgFfsQl/rNi0tQ2J9zIXQeYmEKUk9n1XuLQ0Ka3WUtogzV8raJCylgv100Ha5FVuFin5JWVtKGiXaLrEqZC810GhAq2HmgJ9TL4qXNrVX6VQTIGIIuGDfD1wsnxbbwz1rMs4l8Qogx3/tEX43yQbbbrNT3nZuGOLdV1nouFQFSSyJOBPwwoH/crOcWjYsB7zrEZyLIWES1tFfeTippuR2CsyFYBQzhVg8HeDYr52bsxupQN2gmaaRFDmqIEbVbjNR059m381BrCprM2AuEROkZFEId2rkr0kiXFZ362nZqfKco1FK3ukk6LpQT1WzmI70ujV48kiAeWgXLK3oCafxG2SHjNUqow2GCVrVybPcGqarMkCZNfF9XDW5+up4ednMUdfZZ4GAXYMrg0ux5qLbAPjP//xPVWPLhLxJSr/85S8B0KBBShcQiwbPNKaUSRxt6hM8sM68vMr4C4tMPS9w+NFo6bi5lqGH24SeJZVIFDTnc70e9v3LaeGybad+Ps/s6yvCWVB0Bo1wKurKviKKmm0UtYsd0GovKKNyQNyBYiqSMBaLO0NO/mSasV+Jl79bO+YSJvK03VhD1wcEyV75IgD7vnSauddWc7d9BzC/d43Ffecm/fXiAQerx9cJrOeRKicP7P/yGFMCJVjeDtqur6LlGvHg1dKBDaHyfKCQayZeWmDyN2LzX2/SoTfrKRTMSlV3YTmVW8XXdkV/IVVDYs5Y72oQjU6DpVQw6Pi7BU49K15Wcc8/nGT+jTzmvxQluAqgvL+AntsbaBWcJ2d+vciBb0xt/scczqKAC4VAm7L1xghKmYhKQzWXotVq+eEPfyg0xvN47yBGMOsvuDrt32MEpbPmgAEIKsFgERz69hxnfqNOz8ZuktZdXMGWD9YLE5WK2y15ZaCZ37POgX8dF+536tk5Jl8U20OkAj1aSYtnRSyaVzVQTNWguJ6tGiymdkT09rSEZBMvczz+4jJjz80Ll7ELrgdZPSZ27c1QaKD9hhoaLxEj4+aL6ZdWOJxnKVVReFaCLB10sHoyv7INoph/a425PefIpnxzjYNfy68Eaz7ovr2e1mvF9lTPcjCvEnbjv17geB4ZIo3FRkyCNg1AzfZiaoaLhPqUttkp7bRlJy6mgU7SCp8XPYtBpl5ZZkKgRB/AxG+WOPzN/Mo3FzSZhbPbbbu/gc6bqjZnAcyB6d0bnHl+heWjm+eJRp/daROIcahS96mKqI5OQ1QyGyy0tbXhdrv57W9/m3Ns5/Hew/j4OD6fD63WgMl0dlA1ZFHmja8y/eQN5OJ1pkxZxwyMveFj/nRur3PcMWvQ03apjZ5rxc6AehNYy/O7Bn3yV+vMviWma+f2uZh8fQOfQ+xsrDVo0Apm2bRV6ynrslKYSnTNccu4YksBNdvFM8KYi/WY88iIdOLZZSZfFj+ruuZD+NbFgi5NFxXTeaNghue3geM/Xj5Lz75bWNi/wcJ+MdJWvlif8DJ/wIlPjc9LxZ6UCyefXWHhgHi25nyyDFZvK6TtmjL0gjyljUk/IcFPHXLBmd+tMJeSnfasMq4p0Bo0GO16LEVitldVv52aIcEoIFC91U5ln1g/nzOEzqjFoDKQFMP07g1O/84h1AfgyI/XWD2dhw9Wn5JRQQUsJdBzjY2Krcok0ajMBHPmQJijr25eD+EcmZxCIT3IelLTUm00Kc/ORFQaGvoQer2eb3zjG6rGdh7vPTz44IMA1F2aPotS0KboCVdt6hySAR1yjui2JmXaHh3Tc3JSnSNKF1DmcWm9lt6BCDa7GEvAag+DTnxv2FiBU3vE+43tDTN7Qmw/kMxKZpGgYFW0shYDVZ1p1mWOzE01W01UdIgxeUw2DUa7Fm2uz5ayp6yeCXDmNTcBNa6aWN9wBDkA7hVBRogOWi80U9l1bsqbOKZlJt4QL2WXD2QvzB3xsbEgTorKBwvH/SyeULnP5WH/JMM5LzP+ul9RJ+cArRdZqNtqylk+LRmyl0QpQJVZaQFmD3k5/ZI4kcpUoMWUo8RYOtRuNVHWkmORpozfUqyjokPCJkhu0uoRrsogB2DiQIj5M2JzZmUGxvfnN0HMZhmdQaxvV2eYzg4Zf/Sij1bFsltyazk8Z2TZvVkmsjG7jALx/XPzGJ1Nyv9PR1TS6XR0dvfgcDh46aWXcg8uAzSRfE4vQEFBAU6nkwZtN13Goc1/TLndH/EllOT2TzVDBHb/o/qbyRFRamASakaKCLiCLB9UHyzovaeBwkYru794msCKegXfeFUFjnE366fE0myfa0g2rTBxAsBWbxTOQHMu0XZzDbZaM/u+KJYFpbDNiqXcKEwc2vl0F6snnUIl8KQSidJOmxJQEjhHdt9ZR0GTTcnudQ5wwZ/0sDHp5tC/v/vBqJ57GrBVW4SzUhV32dAZtCwfFHNI7Xy6i5VjG5z6sXrSi63eSEGdTSlXJoDmayop7rDz1j8KFps+h5BKJAgEhFOrSiWSMLHynEOCliurmH1rTYi8uP3TbRgsel77C7E52XpjNdO7VgkI3iyOIW0GnAzOzYZLS6jeXsTh70zjitbhTiWmRNbPXhuvaH+I2+3G7/enJxifx3sWwWAw/s2urXr0rL+nzp/Y9y9qkmi/oYLJF9dYOKjePokE1K+ZZFPSUGigesDO5O/E9OXOJ1rxrgU48G9Tqm/JWyoMlHQWML1rBQSzAIBSouhcwVBoECYAGSyAIU0/lfI5Fxh4uIWlg+vMvCrwvQ1Q1V/MxoQLz7J6mbTdWE1Rq43df39SaIwlXTZkf1iYvDL8eDuOMRcnfyx+810UPXfXU1BvZZfgvpMvdjzZwfKRDaGLFQYLlHQVsXrMIUR4bLupmqIW8e9WOViEe9GPa1rMkbL1482snXYxeY6I7KqQklnYUmXAMy+otAzKEVuUbHquEMsiWdhiwVppZPY19YF3S6WRrfc3snhog9M/X1T+UUVWypIuKzqDhuWjKUwQgcwAWtvZxI5IhtvC2+4pJRyMsP/bSWfGihQi6fLm916y7OetsVeoqalhZka8bPp5/PdicHCQvXv30tR0Jc3NV276W4ygFINpIbE4t1ygVLfY/3KGH06zjWtd6nWdJiXgU1wNsgwbMyrOINGzRf0OE5WdJg79yIFXRZmyGMo7jXjXQrjmo31EbJJ0rke1tpig7aM3RbNYxV5N5XNMJXpVZdveDvJ0wQJQM2ijsMnM0R+I7XGWcj2mYgOrJ8T21P57q3Cc8WYte5UKvQkKGsxsTHoJJavnHKSdugsKKe+2s/df8yO7imL7o/Wsj3s5+fPcmWbfFrRaGi8poqjZzP7/K2ZT2qr0aCUdG5Niftit91WzetrD9KvqfWXGQj22SgMrY1515cqiKN9iobzLypHvvXN219tZI+mgj5ZICgkmBNXbFEJVJqQlVanNqp2udKVARm600T1ID5XdZjZm/PjULlODga5rLZiLdOz9djRWkoOsHUN1j57Fef0mWcZKuKlBoPxsu0sbSK8byipCtHVEOHJQw8a6QgSNkZRisKeJUeze/Rc4nRt4vV5MJvHsYOfx3wutVgtaHf0P/eVZf4sRlGKwzShzx6yTGa7zcWLZwLw7vZ8zlZwEIK2rjzfqkuapTidTUSCzOAdqUn7E7LatI2F8Hjh+QIvGr+7ZBgkKS8OszJOIGwuUitOki6mqKflGhgxKWfZynaQE/rM+J6W/TgcYlPJt7ygESB+5+rZcbMYxE2R1XCw+XVCtw+eUheIt5e0GyloMHP2l2KHfUqolIocT5BWV6LrawsZCiNkD7358p7bfSHmbgX0/ECdfC0OjoftaC2tTQeaPCPhddGAv1+FZlTfP5Rwob9dT1ixx9Fdi381epSPokZWSb6CaZNU8YsK1FGLpZB6O8BjeATL9JqSsG8lG+rmfw3Y6S4+c1fZs+ylW+i0n0mXfVtsXiBiU/mYbmO2wsixAprJqGNwRYX5Ww9SELvp7uZ9ts8no9bCAgeT9JixwP8adhpSu86efazuKPGiA1x2JS1gxklJ8TCl3gEOzRzj8o39l+/btvPnmm+oHloS8Myk5nYohm4uglArHuAfHuBiJp/aCYnY82Y61SjygOrvLIURQAjj9q3nm96wKB+BrdpTRcm2VUJ/iLhtDn27DliVdaTqYKqS8ytgBeRGUgHNGUKoZLWXbo63C72cqNCDZxNMwrJ9y55XZSA7IhNyCac4Hi2i5qprSNrHbOH6XTNAj7ixrurqSusvOTaYCa5VE1x11wmULAxshgh7xTbX9prq8shuFg2Fkn5hh6ZryCxOUAIyFBgwW8VuVbbfU0P9As3C/fBBYFScoxfrlC9GSgKCQ2XrvESvNVFBroXp7KfUXiK2BiecXGfu1eCa3sWcX8yIobbmvnm2fEPveC4ddeJYCWR2I6TIqyW7FCLnjjvS3ks7jvYsPfehDANh15Wf9LVuZwIA3gnvRz+ppMdtr60fr6LilMme7VCdycD3I5Avie+qZ3ywy9bKYnq3ZWUrdaAlGu9je331nLe03idlroJCi8oUoQQkUMkI+/fJB7z0NNFwpfsNesumRCgX3uSDM71kTIigBBLwyIcH9G6D1fdW0XS9eJivgCuHfEBujpcxA203VGEvznysiqL2wVLj0KuT3bkXthbS+r5qSriKhfsE8v9vCWw5hghIoc9JUICZ/Q6GB/o81UdYnXgokHwgTlCCvbHhxGBAur2hvMDPwcDNWFTZbcpnbpisqqBsVLBO3GGTm9TUmX0ki+KggFKwec59NUIKcDjdLlYHBB2sp7VSRNj4JaxN+1nKdh1MyKpV7tgIwOyueEfQ8/vuxf/9+gJwEpVSsLcDqotizCmug/3ojphyJfFIJSgBrc2IEJYC5Qz6m93kSTnE1CEeo326lfkdSkDldoD0FphI9PbcWYykXsxf0NsTL2EUR8iFMUALedYISKMSG4hYTXbeWC2etkex6JLu4UDxLIWGCEoDsCxPyifkPCxvNtF1Vhr025eVyEEiDLpmAS3x/rOy3UdEnWP8rTxjsehouLsIkmDkr6AoRECxDD9ByZRnNl4mXEgz5ZGR/WIjs418PsXJCjKAEIFnzm5M12220X5/eXsiVUUkUIY84QQnyICglQXSOADReYKflChXZ3LSJPchggvphK+VdYjbNzH4/47uSdIKKck4As+P6s2SpJqNS81bovUjsuzpWweHIXjY1XUYlo1Ep//jQQw8JPe88/vvxL//yL0QiEewNXWf9LZWglIwIsOjRseoTy77R3eynpTa3b1uXQqSTZR1zaxIiBCWAsWMwMy40REoqwzT2apGSp7oKYmBdN9R1iBM+pVyqJMtenpOglK6PfO4ISnXbTZR35jjbpulrsmsxmMVD6BtzYgQlADkYJpSBPJAN9dtMNO4QrwoUcIcJCpYM1RmhstuQe668Qyiq1VHSKJ7Jx+8KE/CKvZulSEPbhWYKBTMNysFIXt/NOS9vPouptH+Mdi2SVXBO6qD5QjMFNbp3nqCUBkJzP+msJkpQikOH+LnKBm3DWswq3IAxghJAdSvUd2nQBNX7OWVZx/hpDQtJ9xU0wdzfweXSsYCJ1P0mV0Ylo05mqN5LqVXMsF/w6Zj3Z5//qRmV9DU9oNGyb98+oWdt+o18On3ta18DQJvKccpAUIqVfIv4/Jz6yYLw8/RmZZiitbgHHmzCNe/j1E/mhW5e+RYDjP0iOk6NRjWLcc+XTgkraFu1GclqEFZkPXc1YLQZeO1/HRXqN/xEB+5FH0e+IVD2QoIdn+libveKUHmtusvKaLiwghM/nhbKdmOrMmMqlIQyDQF5Z/3Z+mALKyc3mH5e7AbV7i+I3QgHmNu1TNAts3JKjDg39vP8bvFXbismHAoLv1s+KOqwU9pVyNq4iwUBAotIRqNkjP1iFtkvvqm++XcnxB8mwdb7W1g86BAitB37bn63AK0VJoyF4kSe4Sc6AHjzb8XecfizHTinPULjtdUb6f1QM9O7lph5UT2xoOfDDRQ123j1r48IrXFTkQSCvqqNMx6O/9fUZv2jwuBbOiCeLl6j02Grkei4tY6J5xdZOSJgjYUjmbeomAGWYkD6lwMc/LryvTKVd4v9LTmj0qDuSt7QPMvhw4fVj+883hP48Y9/DMC2ohs2/XsmglJsXngWNjjyXfGbrZGIhnAWh2M6p3dpj5XaHSUc/9E8/rWgUFBocX/SvqjRqrLbTv1knuWjG/hXxQIaxiIDOpPYodNQaGDgYy0sHljn1M/UkxhrLyylZnsx+742IUQ46ri1GkuFiX1fTso8qkIm2z/dTjgU5q1/FssqaSkzEhG4kRfDG38jvqdWDRdT1l3Aoa+L2W2Tv1lk8jeCUV/gxI9nNpEo1GL/V9VnfY2hsNVGRV8RjjMu/IJlAfNBdbTs6swrYgS/ff8yJvwsx8l1Tv0C1o6pz6YAMPHrRSZ+Lf7dai8spbDJwpFvTuVunIQ387DPg54gllIj1kqT0JmlYrCQ1muqOfnTGZYPZbHtY2s3Gsyvu7iUqm1F7P4HsXXafWct5lIjb31R7PuNPN6BZ9nPgX9Tv+Yi4QhGux5bpRn3jHqD7eRPZwh6BXRJVCaTL6SZw+FI1qwCGr2epiuLsZRIHPluio8hZjelcWTFSnZKxSZI826x0m+pGZXGX0qy7VIzKCWjrHhTRqXqqmoWFhf4+te/zn333Ze533m8p3DgwAHC4TB6/easD5kISrGSb6YFDzOZlnaWbVxnN0MkjC8DpzwdOQmg7WIJ73qYmQNAMIsTMuUsEfLA/MFoNla9nki2KHCSPXfguyvoTWJOcUuxDlOBnnA6P65Wk9FebLu8BEu5gbf+VcwX0ntHBd7VIGO/WROyRfvvrWJhv5OFA+qJ/UUtJtquKeX0cyusnVYfZbOUGrCWS1mD7+kw/oIDXnCIdQLarytlY8Yn9G4Ah78rvn+vT3g59etlnDNp5KHVZgyMLBxw5VXarHJAOfMsHnz3b+bbKvRUbS3AsxLA51D58cJhZndvMPuW+PjOPL+aV1ahw99JfLdIJKKa9NNxYymrpzwsH1NPaJt5fYOZ18X9J+ZSCXMWUr9Go0n77lvuqkRr0HDgG2KXynrvqMC9GFDWkErobdD7gWrm926oXzvhCHUXFVLdb2fvN2bSE50ykDvNRXp0RjH9GnTB8V84cM4m5qMmW1aAaNzGOZ9GIYfkrBmVIhYTBpMS0Js9GWY96RPEiEqZsipFwiDr04egYqXfUjMqhUJ6jh1S/ndqBqVkOOuNmzIqdXffzq5d/4uXX86UzvA83qv4y79UsifVXvT+Tf+eiaAUL/k2A8eW0s/ddBmUYgjpNUSyHHNSyUkAVotMfZ3M2LiOADp0WS7jpNpuTkdibUaMuqzZlDTRvXJxAtyOMAHByyomcxa9r9OmJRHpdNB7pZGF0yHmDqo//xXW6qjZYuT0Kx6FmJCNoJRkB1T2Gimo1HPyt2K2ScdVVtDAiedS+uXY66wlOnTZCF4Z+h/5efQ5Aj4le5WOkgY9E3vESoetjsusjouTyid3e7Lr/gwYe1WcIWYp1FHTa8K3ESYw8+7XRavolNAZNKxOCCyCSISxl73CGbU8jginX/HiXhV7r3y/W1GtjsIaPRNvJl2EUsFFOPbLPKo4yWAt1eFe0iBitVnLdLRdbmX8VTfr2b53bMxRmRc16KjqMXHsOXdiDWT7HlHfT02/hK1Mx4nfimUZ7n2fBe96mNOvZdBdabIohYNgLtBitITwbqhfP9MnQI7aPTGiUjKJKRWySbF/lhbPbqMJhrNmVPIXGagpDlBgCnNsbrMtFCMqpcuqFNtegsWatBcQYqXfUjMqTfgSjNjUDErJcDVszqhU29zGzNgJvvOd73DnnXdm7pgBeZGUPv3pTwPQqutX/iFH9qQYOm6txLMcYFqw7vrk86tMPi9+K18qMGAWJDGU9dlpuKSC49+fSpCiVBKVAqsBUV4NU79bEiL+xDCzaxlruThlVQ6ECbnFZGItkSAcIZwhBWsmOKe9uOa9bJwRO7Ce+OG5Se8cg6XMSNAjyDaWwFYu4RJw2oOSxSqfjDzWKgmNDuHnvf6Fc1M2BGDmxRWW3loRLxtmA3OVVbhMomiZt/jzSiS0eoTKfxEAS5mJwloLc4jrIlHs/4p48BDAccadV5BZcVyJ9XEt+AmHwkQEY7Azb6wQEMxABuRdMu+seRKJqDJSu++sQ2/ScVAgiB7YCCBZddiqTEIkpWQnYkakIStZKiWaryjj1IuurOsuRlaJrG9gkwqpKK44X3Lk9wzBYJBgUFlsZoOyX2XLnhSDqRDqLynjzIvLBMV4BRz8j8yk8kzOcmu5CVOhAb/gLejuu2oIOIOc/nmSPaSSqOQ4JeatiYQj7P2SOPmEYJD5fWssHHAIPi9MOBgWz4iUqqdUku1XTm4QCYnvA/kQO/JFQZ0Za6V46n1jqYGwN0TQI/Z+62P5pZ+xN1hwznmESgnOvb7G8sG1c1aSa/9XTxLMgwtlqTQghxAiUgU9sPiWoCJJep5nNSgky4I6M7Yq8duAeSEIu/7quHC39QkP61NuvGsqbcpIGDRaxVYLi5eBDHnDeWWlmntrDeecmNPMNe3j9f+dXS+kI/8JZYlKCtJZawy0XVfN2HMLOJPL2sQIBhmcwuZiCVO2LFHh8NlEpSDs+09H7uGlIStVD5gxWHVM5lKZsYxKy2s0l/YxNz/Hn/3Zn50nKf0eIfatGhsvA3JnT4qhtg2CAVhMvhOmYgtfnoHlGW3aW5GZCEoAJrtOSSGQCWkIIdZyHQ3bzZzZ5cIXdc1lJCqlkHxCPs7OrBNby+lslUiE1VM+Vk9lCYJkICrN7XdiLRfPTCj7ZEJeWYigpLcoNmJYsBSwbz2EY8KLa0HMTzO728Xsblf2b/cOwl5tVJzpIiQlPZhsevVknChCPrJnbcpAVDLY9ej04BPMTHzgP2bJwH14x7F22sdbX50Uz8qjB2upFveSoE9V0P8Xf5wJNAYdQWc0cKKSqGSrkvA7ZSGSUr44/cvcfrXYmJPPnqtjXjTiCRWU3xO8tBByRTOxp5ytcsly+WjUL5duKmfJPnfsp0kySTdWbfoXTyYoAUTkcPpgdUrspm7QiGTVMvZSmoxKGchKQR+YbBqsdjaRlGLQyJG0RKUT81bIwStLR1bSSyGamyMclvX4QpkXeiyjkn3Kj15voqqqipmZGUKhEPpzpSDO421jfHwcjd6AZFMyimXLnhSDhEx7aYAJh56AnJi32chJMRxeNMd/IxXpCEoAFjNYzUoGoExIZ7c1tIaRQzAzkZuopEnZI93pjuCxdZYmBqCRZU7nqriThqgkAzOH/DgXc5w3U/bxiKxkkgm4wuoIOdH+AnkhNmFtMnh2bSAVe9zxX2WxgdQERXKcS5NhKdJSUKUHWawqjc4MyDmyyaSBUuZN/CK/qVAhu2abz6lwLsoc+KFTqM/bwYkX8rNJJAsQiRDwCez9MmykI/GqfF7AjxApzVKixV6ZZr/NtDgEzympOPRf4rFU34bM6ngQv9rKTNG4W1hWjoaSBAEvqtdYyBchlG7+58jIOn/ET8CdQT7pyrwBIT8c/FXsYeG0pd/SkY8CaaakJiinbRsjKAFIkkxTa4TZKQ0uV9J+Fc2olImsZDZEsJgiKJPr7GdoQ+mISjpeDObONJuOrFQlBTDrIxwge+WvWEYl2yRUDF7N7JmT/NVf/VVeJCVNJI9rGTGD/BrzPaoJSgA7Hqsl4JbZ+yX1QV/JBgXNNpYPuoi8Xe2nIsDTfE0lVYPF7PnHY2cHfbOIauuDLUAe5AIJ4YxB55Eeo5/vxrPsz5vgIYK6y8povLiSUz+fYWGPQ3W/+svLKWm3s//LYmPc/pl29GYdu/7i3JCOLviTHjYm3XlnpxJB9131lHQU8MpfHhZaCy3XVWGrMXPgX8WCzTuf7iIcCgtnG8oHtlqJvvvbWNi3xtjP8suGdR4pENSZNaOl1F1Uzr5/Hdtcoi6HcbTt0RZ0eh27/yF34F6TwdhRC40kIRUq5emWj+SIbCcdBIvbzXTeUs3MPjfTb6oz2iPrGzzv/T4BvDz44IN8+ctffjtDP49zhIceeoivfOUr2HQlXFj+QVUEJYC6QYnqXhOHvrOAZ1F94Li4zYRr1kfQA5HA5gUnbDaqOEQNPtJIwCVz6BtpSMoZbDdLhYHuO+sZ/626zGWR2DgMCBEl3jMQyAh6rtB6fTXl/YXs+YfjwsShfLD9M+0QjrD7/4iRVrfc28jaaRczr6oniVvKDAw81Mbc3lXOPCueBVYUPXfXU1BvPWd23s6nOvGtBYSzRfV9tImlA+vM71F/4aRquJiWq6s48ZOZvAnmIuj7aBPmEimvLF/nBCpKI72nkEVnZgr2bbmvHtkf5ui3sxCiU+RgLDGw9SMNTL2yzNwbaTzxKc/SiAacUpxaWpuV4hYDrqlgTqJfMklp610l6Iwa3vqFgM5bXuOX8/+MRqMhfA5Sq5/HOwO9Xo8sy1x++f9UTVACGOnyEArAodeS/jHHZ9frwVoM60ugdW226bMRlNIiNZtSmjlX1mGgftDCwZ+un5XlYxNRKcWGa72yAL0Ex5/NoMuTbZVke1FP7hJSqfbi27V73qYT/1xCxLbe9kANnuUAx3/87mfKLm410X5tOad/s8zKcfUBotJOM2Wd1txjTJmb3R+oxFJqYM+Xz82lxe2P1rM+7uXkz999WdaOFlI7VMiBb87jW1dPwqrYYqWoycSJn4pddOy/VylrfeDfN7NC3ukyaqAQ/LbeW8PCQTfTr+ZHZs+FfLJJvVsQlmGqraTGDkzWmcn9M5CUChv1NI4UcOKXq/gcSY9KDralid10XGHBYNVw+CdpAvcpJKWIReyCSSpRKVBuRa8PYbOCYz27DZdMUjKZQ2wbinBiQ+LMRvZgWQz2KT/79/9fVleP85nPfIYvfOELQmM/j/8efP/73+f222/H3tBDyw0fU0VQAqjVBRjQ+tkza8IVUE9SKpBkPDKEZB3S+uZ4YyaCUiakZlNKZ7t19ocJyXD68Nk6IJmolExQ0knQuV3D9MkIG5nyGySRlDSxuKkGdSTolHFqVJZ9jCPVxhSxWd/pM9Hb2d+y9C1rM1DTb+LYL50EYqoyjyzdatFxhRmdQcPRX4rdeqvfbsS9HGJ1XP031Omg/zY7c0d8zB95952ktf1GytsM7PvBu5/5EqD3egs+V4TTL4kxyxuHjazPhXBMq5elrVxH+yVmzuzy4ngns0ul2j/R803DsImCaj2HfixSxeMc+iHSrSmRNZq6xnIQlFIRSSUb5Yrb6dhMLkvqnylDUtMWRc1OHEp5dlL7ZIKSMgyZ/sEI0+MaltJk/0slKfmLxC7rpBKV3FVQrIuwIWuQc5QnTSYpbSv0YtOF+XmBNUuPzbBNwv4vPYVk0OP3i5Ez4WzeaU5MTipXwjo6OuJG7vaHa9n6kWoALOUSOz9dT+OlRQB03lTKzk/VA/DGP82gM2jZ9kgToBCQRp5qo+X6cgDabqpk5Kk2JQgNDD7axMDDLXTcUE1Bs5HRz3XS+f4aAFquq2D0c51IJcoYBh9rYfjxtvg4R/+4g567lDrEjVeWM/q5Tmx1ikE78EgLO6JlkQBG/riT3nsU6lfAFQINWGsUptnWB5vZ8Ued8bY7n+6i/4FmACqHixh9ppvyAYXhbS6V2Pl016a2MfJSaY+d0We6qRlVam733dfEyOe6uOCpHrrvqmfHH3Ux8EgrAPYmM6PPdFN/uSKXng83MPr57vjvDj/Zycjnu7FWSZgqJEaf6ablOuUQ2nV7HaPPJNpuf7ydoU8rcrHWS4w+00PbLYoM226pUdpG5T306Ta2P96ekOEz3XTdXoepQqLluipGn+nGVKE03vZYW7y0FCgEoZ4PKzKsv7yc0We6abu1hsqhIgYeaWXHHyXkMvK5LvruawIUAsHoM92U9tij8m7hgj/tYetDLWfJu3ygkNFnuqkcLgKg/4HmTfJGCwabsuCKO2yMPtNN7YWKvHvvaWTkcwm57Hiyk4FPKPK21RsZfaabxqsqAIU0s0neT3Qw+ElFhlKJIm9LmcTCgTWK2myb5f2ZdoY+HZWhpMiw/bZaAFpvrKb+wnIspco8HPxUG8Of3SzD7juVOdt0dSWjzyjfGCCiZZOBOfK5bnqic7busjJGn+mmsE1RHAMPt7LjKUUug59sY/RPuum7X5F31Y5iZc72K5lV+j/efNac7f+4Im+9VcfoM91U7VBuAvfd38TOP0603fFUFwMPKzIsbLMy+ic9jHy+m8qhInrubjhL3tseU9paqxQZNl9TqXw2s0a5sRiNgw9/toPBT0XlbdMy+kw3rTcq+qX9ttr4nLVVm7HVmJWgZUyGz3TT+X5Fhi3XVzP6TDdSiRSXxfATHcy8sczMayvKnP2gopsar6pg9JlubNHbNwOfaGXHk4l1P/K5LnrvaQSU8iOjz3RT3BHVEQ+1xOUdl2F0zlprLNE9WPl4qXM2k44obLNywZ/2MJI0t9ToCKlEou2WGoaf6GDbY4oM1eoIW60Un7MiOqLvAUUuIjqi/8EmLvh/erA3KbdW1OqI0T/pYednu86es1l0RMNl5RABc4mBHU91xXVLcbuV0c93UXtBTEc0MJI0vw0mPaGAYqHY6oyMfr6LxiujOuLOOkY/l2i7/dOtbPuEMgapWM/I0x20XKe07bitmpGnE3IY+mQrg48pY0CCkac7aL2+jP67G2i9toKdjzchRYnO2z5ex9Aj9Yl3/UwTne+vAq2WxstL6Li5mqPPLjP9ppetdxUzdF9pvO2OB8roul5Z57VDZnZ8vIyCegOawgI+cs89aDQafvKTn3Aevx/41re+hUaj4f03345GkqjsNrD97gLs1Yrh3n2dhYE77PH2gx+003GVmem3Aoy/4aX39kpK2hXHYtf7yxh8sCbR9uM1dL1f0SVFLUaGH62l7dpSeu+oouOmMrZ/qinR9pEGtnxY0bG2Womdj7dQvUOxgdpvqmTHZ1oSbR9uoO8+Zf6aywzsfKKV+ouV8jit11ew84nWeNtImHhqe4MFdj7RSuMVZQA0XV3OzifblUA5sPXBJgYeakYqUP6h7fpqWq9X9pP6S0rZ+WQ7hmhWjf4HGhl8pDlOUNr5ZDvDj7Yx8lQHtReUMPJUB9ZaRWf13d/I9k8lxrTjiTa6blfkVDlYyOjnOmi/TdGjW+6tZ/gzibbDj7fR80FFLmW9dkae6qCsV/kefR9tYPizCft0+6db2XKvIpfCFgsjT3VQNaTIsOv2GnY8obS1VBjY/v+x99/hkR3nnS/+OX1O52400Mg5zQCTMHnIYRBJkRQpUiJF5WTJypIVbK9l0Xe9d+8+v/Vv7Xtt7a7tdVjZlta2JNuKVM6REtMMJ3ByDphBBhpodD6hz/3jdKMbjQ6nejgjau98n2ceEkBV1+k6VW+99da3vu/Hhhl7Vx+YWfzdbvY+Prpis0Ze08WtnyisU7s+Msy2Dw4y8Io2fJ1O9j4+Sl9ujRh+uJO9jxfK7vitYbZ/MPeunHDb/7HB8m3anQy8oo29j4+SE+xi2wcG2fnhwne99ROjrHvEWpNlr4TkkHD6rJ3Q1vcOsOsjhe966++PMpLz2ztvbWLv46MEeryF/i5av2/5+MiKD9S2M8Tex0dpGrX8ms1v72PP767n6tPzXH12gT2/u55Nb7f6MLwhwN7HR2ndZvXhprf0rFp7dv/Oehr6fAS6PIQGfex9fJSOPZZfM/L6rlVr/e6PrmPrewasH9wWsS1/KLL+kc5V/b3zw8Nse79l950hq7/772+jfWcjtz4+urq/PzTEjg8V5sbex0dX1uS++6z+lnKB/G3vX9vf6x+1+rv7jmb2Pj6Krz0/vgfY+wejjL17INeHo4y83urvjj1Wf4cGrRe55Z2r+xupcODTMtbA3sdHCed88U1v713ln+753fVsfru1fvvbPAw+0EHbTqu/N76ph1s+XtTfv72esXdZfkGgx2uNpYDM5IEI4Y1Bbv394jG7jq3vtZ7d15Ibs/dY837dI6vH7M4PD7PtA7n+9ll9OPAKa50deLDdKpuzEZ6Qa9X5z97HR1mX8yP77mmxnilnI7a9b5BdOf9063sGuP3/3MhIzgfqvt3qb3+35RuOvXuA3R8rjO9bPj7Chjd207otxMjruq3+Hsr19zv62VPkL+35dyNseqs1Zls2+9n7ifW0bA3iDDmtMfu79m3ErR9fhzu3/7VshNXf/m7Xim0DGHlNJ7f+vvUMvg4nex8fYdsHrP52hpzs/cQIfS+3+nv44Xb2fqLwHnd8aJDtHxxkwxu62Pt7I+z9xAiDr8z19yta2fuJEVy5g4Nt7xtgxwcHC/3ye+vwNDlBkuh5mWWTvS3OXB/2s/O3isr+7hAjr7HmQnjY8pljk9ZB+Jbf6GHXRwYKffixATa81nqPbVuD3PLRPpqGLXuy8Q3t7PpgwV/a9aFeNr7eWhea1nu55aN9tGy0ym54rIXdH+qhsd/J+nsa2Pq2JjY9YvlLwW4nu38zTPsWa10Yvs/PrneEkRQZSZHZ8fZmDBwc/J6JLwR7HpXpzrmDQ7th96OFwM/2BxyM3Zdb1/qaGFk/gsPhYGrq5qWFXwek02kMw2B4eHiFoLRrQ5odI1aQW1F07tiWoq/d2sAOdKncsS0F6Dx7ykXWKbHlNixyUhZ2vwJ6cyata9j6Wcmd927aC9vuhg27oaEZdjzmpX+Hta62DznY8Xofnlxm59F73Gx5uKCmvf0xLwO3WOM1PCCz4/U+Am3W3Fx/j5exxwq3J7e9oYGhu6x1VU+bVsyr0Wpn6C4/295QSB+99U1NrL/PWhOCnQo739lCeNhqxxd2sv1thT3H2JvCjD5k1fU0u9j5m620brS+XP+dQXa8s41d72xn8J4GtryxmQ2vtmyUMwA739VGx1bLbvbcFmTne6x5i5ll85ta2fneTjxNCiiw872ddO2xvk/X7gA739u5ogu/6XWtbH5jW+5zJXa+t5PeOyy72bEjwM73d+EMWPNxw2OtbHlr28rz73hPJ/13N6IEoGXMx873d+FttT549NFmxn6jvdDf7+5k6H7r+cMjXna+v4ve2xssMs/DzWx9Z0ehv9/ZyfCDVtlQv5ud7++iccjql6EHwtzysR42vKZlpezII1afBjoUdn2gm5aNVr8M3hdm53sKfrvslHA1WM/nCVtl27da77X/rkZ2va9Qduyt7Wx8veULKj7Y9YFuunYHc/0dYtcHulfKbn5TG5vflOsXxSob7HEz8XwUX7PVzsqYfX0rW95S6Jdd7+ui72VWf7dvDTB8fzOBDvdKf299e6Ffdr63i8GXW35Yy2Y/uz7Yi7/d+j4Op4RZFPTa/p4ehh6w+qVpnZddH+ylod96iPUPt7Dt3d0rbez5SC/rX2X1Z0Ovh10f7CU84s31dzM73tuz8rlb39nF6KNWv8huB7s+2EvLZqsPB+8Ns/P9RWV/o4sNr7P6xdOosOtDvez8QA/hER99L2tk1wcKZbe8rZNNb7T6RfHArg/20rXHmhtOrwMTk3RKhWyWzW8s6m+s/u7JjdmunQGrvwPgb3fTNOhj7K2r+3sgF29v3+pn1we68YStPtzwGqu/J59fZvL5ZXa8p4vB+6xx2DxqjdlAl1V2/auaV8hMANt+szBmG4c87Hx/F6Fciq3hB8MrMX+wSFDrH7bejbfRicMpgWQdfg3e18T2dxfKjv1GO6OPWmU9zQo7399F6xYfnkaFPR/pZteHCmN2y1vb2PCY9W6cAQc7399Fx44AkiTRe2fjyjjs2tPAlre2rcz7/JjtvsXq7649Ddb4ztmIzW9sY8ub2/HkbN6u93fTd2fBRuz6QDfOoGXrN7y2lbG3Ffp753u7WP+Q1S+tW/y2bcTgg03s+XA3wY5cf78yzNaistt+o43hV1jvMdTvYud72mkcdLPzPe1sf2sb296R+25Zk61vbWHkIWveBNosm9wyYs2xwbsCDN0dAhOcXoWxNzYx+pD13dxB2PH2MG0brbK9e9zseFMhZuD0SRiqNecUD+x4c5DOnA/UPWatKXlsvtvB5rsLDvbOh2W6c2HFrhHr5zx/fOPLHIy9rHDAuPMhhcEBjS2bDDZtMLhtTwaPx2JhjW1U2bm9cJh1664MQ6MGWZeD9g6dsT0m+6edXFx2s6stwV3dhQPZe3rjbG22DvLbvSr39cVo9mjEet08+uijOBwOvvKVr3ATvx745Cc/CcBdr3gALSDRgsYDnhjNOcbemDPFPe7C+7/bnWCbM8WE4eJZzcXW3jTNXg3JhPXhDHt7CySP3d1JNrVaewyf0+CO/gRbO9Ns68gw1JRh11hhDG4bTjOyLpca2mmwe3uG1lYrNtzdmWFX0XjdtEFlw4jlC8qywY5bdNrbredt686y/bYsyDmFjOxq7t/227J09ll/a+mG7XeZOBXr5+EdMHqrpUBimjA4JtGV2y6GO2DbPZKlEgMM7pDYeIdjhaC0+V6FjXfJbHvQSUMbbH3Aia/RKtu/TWbj3YVT7E33uejdav0cbMqy47VeerZbP/dsd7LpgQI5ccP9Hvp3W3s6byOMvdpLQ7f1c98tLjY/VPBPR1/hY/D2nEpVAMZeEyDcb31u55ibLY8GwOHA5bdStw29zPoysgfGXttA8zrrc9s2uhl7bcE/XfdyP+te7qN11IXss8q2bnCDJNG6zsnYY0Hk3PnF8F1e1t9bsGHb3xBkx1sb8IQgPKgw9lgQlxeQJIbu8DJyX6HslkcCdG217KbsMlFc4Mh128BeLxvuL3zXTQ/76N6eU3LrkBl7xI+v2bKVfbvdbHyw8LkbH/TRu9sq62+2ygY75Fx/u9n0kI/pkypTxzJseMDHwK2eQn8/4qex2yrbtdXF5lcVyAMj9/loGXLhCyu4fFbZcL9VtmOTky2vLpRd/3Ivw3fmnl8mp3pjrQNto07GHimUXXeXl3V3F77r2CN+2kadBFpltjziZ+w1/pX+HrrTy/qXF8puebWfjk25PUq/9V3lHM908DYPo0X9vflVfrq2WmVD3VZZb6P1t/5b3Gx7nZ+h3Hja9JCPnh25/m6zyvpbcn24y82mVxY+V5IlTLJgmvjCEmOP+GnI9Xf3NhebHyqUHb3fy8Ct1uc2dMgM3uahsccq27nFyZZXFcqO3Otl6Dbr3cheq1/cIbj6Qhpf2MFYcX/f7WX4zlxZ2Srbus4aTK3rFKu/c3Zh+E4P60v6u31jrg8HrbJy7s++sGNlTAJseTRA55j1/E19MmOvCaycLQ3c5mX0Aev5+/d62f2ORrp3WM/U0C0z9toGvM3WQ/Td6mXjQ4X946ZXBenZ7SXYIdO51ZqPK2N2t5dNryr4FBseCtC/13pAb6ODsceCNPTIyF7o3u5hc1G/1LQRj/it+YlFqB66LT8fYezVPpoHrWdoG1UYe7X13VxeGHvEy/p73BZRVIatD3toG7HsSeugg60PupBzccPhvQojdyh0jspsf9DF1gdcdKy3PjfcZbL1FcqKbzi0zbLJK+/mLolAk8UHbczZZG+u24Y2GmzaXSCEbdul0z+YO18MWlytVO7ux+A6g607CpcXtm1RGeq31p9AwGDvuiRNPuvvw20pbhkqkMp3DqbY0GnFJvwuq2yb16o71JzhlvUpAsCtgST3BBPs8FqNejG4ryFGt9Nau9a5M9wbjGO4JQy3xC2NSXSfwXf8HlyGwaszcYZy0lbr9QyvzhSk1+5UU7wsJysV7zbYtHkzmqZx8aJ49gphzctHH30UgPaW9hWpzuS8hpq0Hk7PWLm5k/PWw8fnNNyNBTZmYk4lmzv4VVVILakkZqwFPjGTxt/hXiErJOfSSLJEclZl+WKG1JK6IlWfmMlY0vqq9dnJ6TQOV8FhlhSJYL935XNSiypqSlppRw8UvnoqohKfsl5qctn6XHU59/xTabI5yS0kiVQkQzz3DKl5ldSiSnpJ5YW/v7Ci7LLyufMZ4jPW52ai1uemFqzvGptK4fA40JI6cyeiKG6ZVNRqM7NsWGXnC2VdwQJzLqsaOH0ySsCJNm2lGMj3S2wqhae1cLsgOZ1eOZwbfrDbShmWKxufSq163uR0etWN2PznbnlbP4pPIbWokk1aEyM5lUb2Ffo7FSk8Q2re+q7Now00DQZYvBDHGyrQEVMLRWUXrLKZaO67TqbwNLmIXUmu/D3/vOklNdcv+XeTWkWzi0+kSOb6TF22yiZz/R2fTqEU3YBMzqbJxHXa9zQydH8nalInOWu9q9hMCndTQaUiMZMmm08bqFqfG72YZObAEl23NeMNF/o7MV3EzlWtPoxP5/p7JkVwwcfhT59f6W9HEUMytaiyPJ0f3ylSiypabi7ELqVw+gvPn4pkSOTGbGo214fL2kq/eHMsfMkhkdVNYhOplfeUWlRJLeb6ZTK96mZnaj5DfDpNoN1LVs9aZXPqM7GJFJJSND7m0it/yyxrZJZVXD4FSZZITKdx+gtzLDGTRktYz6Tl+yXX30sXEjg9zlVl83NOVa1niM+kVt6jv8MDKhz5zEU2vrl3FRG3eC5YfeizDE2+v90Orv7MuinXtq1xpb+TszkbkZMFTEyX2IgFlUCPl50fXcfFH02vthGTqVWpEEttRHIhw9zx6Mq7ofh5K9iI1HQCPamjF6WrTM2ma9qIltEg7VubSCykSOXSVWaTak0b4e3wsO0969n/1yet/rZpIwCCXf6Vz20Y8NuyEd4mDyYmmWVjpR07NiJ6KY7kdCAX2ykbNuJITikiNZdeayMiubkwlUbxFtmIOctG4AI1aVpl59baCEmWSc6mMXJjoPOWRiSZlVQB8ek03pYiGzFTdAtVhXRUIzGrsjyeItDlpqHbmx+yJOYyOJSiPoxqxPPr5bxGetlYuSkXX9BweYpsRFQnPmfZhNSiQXrZIJOwfla0Rtra2q7LTcqbuD6IxWJ4PB5kNQRopJZ1UkvGinpNYs7A0ApB/eSiQWLeyP2/RmrJRTo33xLT6qrL6Yn5wpxRl7MkFzQiF5Ok5jX8LS5kV0FmPzGjkl6yxpGWNHN1rZ+zkonslujYGWT6YIzEjIqaMMAhoSc1EvMZErn5l5hO423JrbNOiM+kyeaeX9MgMZ8hOWeVTc6pJOYyK0oeiSnLDi2dS3Lgry6w5Z19JHJ2NDmfyZUtrIeyu2hez2fIxDVMrVBWjefnago9UbD7ybkMsSnrGdIRDUmSaOixNj+xycLzAiRm0wW7v2R9bjqXwinQ4cVQC/YtOZMmketvLa6RmMuQyqXcik1lULwyvg4n2989RCpa8CHUeJbEXIbkQs4OTadwNxXWzth0CneDi649zcRmklbZnM2KT6fwtRfZoclUQVlKg1RURZIkkjMaiVnr+bWi/nYUrf3J+YzlOwDzJ2O4G1xoObsfn0yv8lWSc+kV/zq1YL1HLaWz/YNDOAMK8auFwGFiJl3kR1r9ksn1YSzny07vt9R7wusDK5+biVll04vayrspvjWcmE4xH1G59MNZfC3OXH/nxuFUBpe/0IfxmRRqPOerxK1xuXwpufIMniJbHp9Okc0F9bWk9QyJmTSKR8Y0WZX+Kz65Wn0gXxYs/yMxl1l5H4mpNA5XSX/P5Psw925yrmZsKoU75MSRIzgl59IkcmN2pWws3y8pjKIbmvGJFMs5Xzu9mO/vvF+TXkWMT8ykic9an3vkH88z/HD3yryPTaVW7b8S0ylSufempXQScxliV1IsnUvQdVsYt7cwx+IzqYJvmLTK5tuJT6Zp6PNx6ydGOf3EVeJTKbJ6kY2Yy5CYzduI9CobsXQ+tspXScxlCvu8UhsxmUb2WmWj40ncja4V/zS5kM7ZCMtgxqdT6EX7seRshthkmv67WpFcktXfiUK/ZPWCoU3Mpgo2YtGaC8MPdpBe1Fg8G1u1n6lqI6YzhEeCDN7byqkvTxKfSlm+CqDGTWve533D6TTu3M0rT9iNQ5EwUvnE9NbnJvP9PZ3G11YIQiem0phZWDgfI2uAO+Qs2q+vthHxydSq/UxyPsP88WWmD0QJbwyQmMugJws22eVTVlQEkvNF/l7EWie03LyKTabR04X9WHJOJZazh+llneSCSiZmffdgh3tVHyZmMyTncj5zLFc2ah0Mx6ZVHC6FpcsaVw8lCLQrpJfy814jtaiTWjRzbeq4vEXje0Enk5XzXUhy2SSZE5RJLoI3UJg48SUrpUO+7NDwMGfOnuFd73oX3//+97mJlzZ+7/d+D4Dm1gKJYznhKFwQ1yGWkEimrfERTzqIJfJ/VIjGs7hShYBjPEphrMSsn/MqGfElSCcgsQzLC1ZKj0Q0i2RkSS1nSS7IK5L3sQUDd6owzmQXKwcWasIguWCgaTKgk5jXV/mG8TmDRM6WZJI6yXmdTC4Fd2JBW9lTS4pCYlYnFSm25RpqLMv5Hy/TttlDqKsoVjKrkc6llNJV3fo5tw4k5nXcQQ01YbB4MYWZZWV/a2pW3VROVSa1aNXNO6l6Oou/xYEr4CAdg8SsSmohVzaikyhK3R6fVVfSP/Xe0ojT4yC5oObKWnstM2eT47Mqirt4jVBJzKusf7AVX7OT+IyKnrLKxqZVPEVKkYkZdWXtUZetzw2P+Ggc9LJwOkG2SM3AsrE5OxQ3SMwWbFZiNkOw08XyRM5Pm1FJ5Z5XT1nt5PswOZfB6Ss8b+R8we7raZ3EjEoql44tMa+ukDAA4tMqupol2O1i5OEWMssaydwYSC6oJIpS1MWni5RTdesZ4lMqkTMpmoY8+FtV8iJbsWkVucg3jM+qJHN+QWpJY/lqhnM/nFv5bs6iOFx8NkNirhDTSMykUXPu4OLFFJ7Q6hhSvqwa06yyK32orpCtJcWBns6ufB81oZOYSa/4kYnZzMp+xvquGdJRnWCPh2w2myub+9w5FVeg8Lyx6TRaPtat6STn03iaXDgUqw/ze3OA+FRmZe3Xdev5Uzn/dPlqGk+DAnkfbjqDo9hXmVFX1q3kovVe0eHijyPoaQOlyNeKz6rE5/Lj2yqrq9bzx2YyuBMK8yetTg0Pe1f2VJmYVVbL7X0SM5lVNiIxmyHQ6WLTG1q5+PPFkjGrriKAW/Mx56skTZavZFg6n1r5m+Iu9g010rlYpZ6x5m56Sbf+RbQV/856Nyp67ia3qWetdnLp/1JzKokZJ/52Dz17QsSmCv7SSh+uzPvV4zs2nSHY6Wbr2zo58i9TJGbVlbGV70NTM1b611l8tiBB05APiJCJWs9vx0YEW11gStZ+PWuSmNXIFt3ST8yqK+cmmXiWxKxGJm4wfyaJ7JaQi/Yz8WmVdNRqM2+TV/b2CzpOr4Mz31/OPb+GmizY0cScRjrpALKkIgaJYNF+YN6wSEqKNWaTCwbJJatuailLciGXLtDnIRYp+LXNveB0F0KbyWVILJkr4k+xxSyyDJJhKSrF4hLJuEQkIhMMGDQ2SCv2ZDku4Sq6cB+LS8STubMbzUE0bZLMHV0tZWS0IqWWpZSDaE45J6U5iKYdZPRc3UATnZ2dqCWq0Dfx0sXhw4dxu91orR1gQBoH84ZCOjfSlrOrVSAWsg5i2dyeAoV5I4uq5/yyjIRSpLyxlJZJ58aGnrXGzkJSJqnJuJUs7tycltUssZiEZlhljSxElx2kc9t5PSvh8Zi0hg3mIjKxmIOsCYZHhrTB8hIrZdNJWF4ip86RJb68WkhteQlSufPmtC4Ri2Qxc9MzvmSpbKbicPIZk8Gt1v8DZFIQi5gr+4xElBWbBBCPmGgZA8k00dIQm8+i5+ZYcilL1nCsKptcziLpBmrKEmkJtFpSbsml7Krzlvi8QWbZasfIWH5lfn0M9zpXbDdYf1Nzz2Ro1s/p3NqTWtSJ+x3ILtj86kbiEZX4fH6PatmwfDvpZZ34bNF6Mq/jCkr0bPeSiRvEZwu2MB3PEp/VV1KQxeeNVXGs+LyOQ5HQ4pBxmVbZrPX3+IKOs2jdis8ZK77V8nQWX6O+cj6XWNDRVYfVWQ6J+Kyxsk5pKYP4nIGeyTJ0hxdvo0S0KHVYbN4gtZjbd2asslpuf55c0nEosDyVIzO0GmRysal8f2eSefts4PQU+7IGS1c1Zk9ryK5c2dx4SUWzxOcKz5CYL8SODQOWJnQSc2bZsivvpahf0stZJNly11OLxkp/J+Z1ZKe0umxOoSwTt37Or4HxBQNXoni8WPFtsPYz8TljJUteMmLgC8tISuFzk7n+VnP9reWUzPJ9m8fShL7yDHrKGh/5/k4tGWueV83t5U78KEnfVjeZRL5slrhvdR/mYxYYEJ/VSS+ZJOYNGrpk3L6iPeCCvhJ/N8iVjVl103GT9LLOlod8XN6XIRExVs+5WZ3UchYkCTWWeze5cRi5rKMU+7azxsqeKpOwvo+Rj+ku6Gg5TkRsVifQKhfGYcKac0auD5MLxipfJTark4zodGzx4PI5cj5GrmxEX/O8KzYibc3P/l1eUstZIhe1VfuvWjbCHXDTvtHNlYMZ4vMGulbU33MGmVzZdNRcGbMOJ7i8jpWzEEnNElswScdy9iSeJbaQXdnPJxZMHDJEZw0cMri80sqeVk2axOazGFrOp1gGpejIP75kEp2FyDT4GiybnLcR8SXQVHNFRWl5WSKRm49qBpajoOZ833gcTLPQL8vLEoncupD0OokmtRW/piVo4ixi8kQTDlK559MMiCYdpDUrdXxMdSDpEnFkjiY9hGSNVG69NICIppDM/RzXJSJFSp2RrExKlkGWMQyDOYdMPLd4xSQHc0VlF0oUrvo3bOTEsaM8/vjjfOlLX0IEwuneZFkmm81yj+eNuPKUPBvY+b4uzKzJoc9YtwfNtLjsU/GpmllDvnnwAev2xcUfFOkh1pCMdoVd7P7QMLPHo5z7+mSFZ1jbbl6pZVUqoZcgmkYCNPT5uPyjWaF6Xbc14w4qXPyBWLoLV9iF02UdiF5vuMIuem4Nc/W5iNB7aNoQYPD+Ds48MU5cIN97xy1NhNcFOfEv4/U8rjDWvaYL0zA5/60bc/v2RqZ7axj00X93G6e/MXlD5lD3Hc009Pg4+YUrQvW2vKMfQ80K1+u8LUxWzzKzf0moXl1wQaDdTfyKmH1tGPTRvr2Js9+eEEql1rQhQEO3j8s/FrMpvwoEB7zELpVLGluZqHPbv99Aci5TOR1ObpEuPgz1tLoYuq+VCz+eIz1XuTNXpSkRlK0EkLqsW3jdI1m6d/g58fV54pXkf8vgee0LLCwsMDU1RUdHR+0KN/Erw/j4OP39/fj9fl7W/H7b9YKdEqP3Brm0L8X8GWssmssx4faLU+2uSgFSAl+rk947mrnwg2m0csrEFfy2Le/swdfkYt9fVEiDWsF383e5SEzaM1i1fMbrie7bwyxfTREbt58mw+mD3rvbmD60SHJKzJ77u90kJurwsetA284QWc0UTuE18rouMOHMExV87Ur1XtvF4oUEcy9cn1QSxfC1Oxl4eTuXfjZL8gb4sTc63dvgQ+0Yqsn4DVq/R17fReR0jPlj9m1QoMfL8Cs7OP+9aeJXBeZPyEnnjhBT+xZuSBpCX7sTLaYLt9X38lZSEZW5I2J2ufeuZhYvJIhfFZMtvx6olO4NrPRt2bRWfj2wKq/51bpXtdGyMcizf3G+coq5/KFdkWR338saMTJZJvZVt0WSr+hmZUkaEztQ11nKELt3pclm4eiP7Uump7Qkvzjz57jdblIp++P5Jn41aG1tZX5+nj33/SEeT8h2vR0jaRwOOHjCIv25Z8RSNQA41IKvJaWqr+dt6xUcCkyfLPLP8n5bpZQdCux6S4iZ0xmu7i9jRwwDs0y6DsUDkmKReCsi77PVm5op769dQ6o3b6tCQ7uLmSNl0hdVQdOwB0+DwtQhsRQUigcUj0J6yX4Kr0qoFZpVPNCyMcD82fiaNH3V4GtV6H9ZE5d/sUhyzv5zNg56aBrwcvGn9lO81oVc+omuPQ1IssTEs9ffz4Mbm+7NE1bo3hNiYl+U9KJe1/5fBE3DHkI9Hi79fGnN36pdVBq4pxHThMtl6tVqT3JA5Oz19U3yc8TTopCeF5tznrBCy6if6UNRdIHH9Lcp+NvczB6zbEpdF73y/lK9KX/z9Suke8vDE1ZIR9b2i6TIUCFN7vY3BkktGpz+Ufn1yvTkSKmuAlFfUaB3TGLqrEm6ii3SwgW/K+sS/+7zOVWIgVSGzS0ZDkx7WVLt37Wff/J/cOnSJc6ePcu6detqV7iJXxlUVcXtdltxrzf9ju16Xgxe5klyRHMzo1ljNTAp7kPIamH9dVVJyelyGnS0mUzPSqhaYT46cgRVR6a87zU4miUUhsPPlJ8Hkp5F0tbWdflYIfJWgpS/GFNvKqecvyicXhhWfM6mPpl01Fi56GELMrQOO1meUslExfxGVwDUFNZpe72Xb23WC7bLIEFsuuT91Ej51rHJhaxITBwRi811bHKRXDRWyErXE7IbOje5mTuXISMeKhbGjU731rpOAUli7mxJYOE6Xdju3OIkPpclNlPm3eXbLPH1XT7o2e5h6kSa1FKFD87XKYpryy4I9ShEr+oYtcKV+fp178+yuLxgmI7abZUgPOREV02WBe1yuF8hFTMKfVKH32yWiRsJIRcvMpXKbeeVxMr1S9atkHWtbbuj06B3wOTgPgnDKP9sesDyufSiC3MdIWscT0erp4BLthbqGG7xsR7dbK2Bd0+ryMAv8pJWNmCkU4z/0f9FR0cHExMTQu0Kv+FsbtFzD6+vUXI1kvPqyi1Q23DBrg8P0ra9QThQcfEHc0IEpTyWrySYO1ZlU1zGkK17oJ3dH16HAGcLsMgSA69or13wRcLimbgwQQlg8pkFYYISWKQtUYKSKwD997WtEL/som1rA527m2ka9NUuXITFU3EO/tU5IYISQNuWRkKDgi+cXCq2otQidhFeFyQ8Eqxd8NcQTUMBgt0+6xa0ANa9pmtVWj67aN3SSOOw+Ls79tnLwgQlgL6XtdH3srbaBUvQvqeRlrGG2gWLoSJMUAJYvpjk7BNiBCWw5s+NJCiF1vlX0gGJYNdvr2fzWwbW/qGGYxq9kGD+RO3D92ICRHpO5cS/TVQlKK1Bbl0de0cXQ69srlF4NZajDut2RYUcuWXR3EgmZpV/z3veI9TeTdx4fOxjHwPA5e4mPWLfZzCzJumYQXxGbGIP3NfE6GNWuoRiglItJOc0Tn+tAkGpChZOxoicq7BJreK7bXlrP2Pv7rfVRvFB+vpHO1dSvN0ITDwdESIoAWhJuPDdWZLT4nnh6yEohTcFV1J9iaDvZW0MvFzcjz3z1UlhghJAeKSB1s1i66Iz5OTWTxTSiNmFv8NHaCCwSk3wfyc0r2+gZVT8ne/+nUKqPdH2mjeIvbv41RQv/MNFIYISQPNIgJ7bWwkNi30/Z8hppVMUS/tOckariww1/tM5i3AnuMe98uTCDSUo9b28hbYd9kkaYKX43Pn+QXrvruL/lvne86fiRM4l8hnlq6NofRr/xVJNgtKa5nWDllEnY68X+24AibRMIir23hy9bZimSTr9qyeX3URtRCIRABK7xdaO5YSDWFw8iLr5dit9RzFByQ5mz+rlCUpVoADz51WWrpRpK1e/WJEwj44xH9vf3Irbjmkt2mOFh9wrKd2q4kUilKfmdGGCEsDi+bQwQQlATyNOUFKgdYsPpSQkUYv8EOzy0HdbE429YjGv5JzOya/OCRGUwFKPadngr12wBOsfambbOztrF8wjd/AQXu+neUS8vV8H+FqchNf58IYVoYOWjh0Bdr2/C0XsldO83l/23dUaY5d+tiRMUAIrfWDPrY3C9UL9bkL99uKAxSQ+UYISQDqic/UZMYISQGJWXyEolT6HMGz4fJ5mhb47iwxtjYPwPDa8OsSmV631aVZI2RUuGy1cVFm4aCNeoBb2pboOFw9VJyiVwpFTHt+wXmWgT2yPO+eViasOIQ5GslNiqclKJfif/tN/EmrvJm48Pv3pTwMwP9BGfJP9+JUDiGQV4prYIXRPSGVDq2UMiglKtaBqMuMTSlmCUjUszsNchTvneZKRWSamO7pbYv0umw9XtLZ0rnfgseOvVSK020GRz7k4LkhQAtBN5k6rZMS2cACocXIKVdgmXviaZQJt4mSFzi1uerZ7Vv/Shl2ePqEKE5QAWtc5aeoVTnxkpRFbLxbIcPkkmgeceEN1kjhe4mjqcxLuEwzuYKVzG7hF7IwSoHXYRairzLsr9r1K/DA1CReerkJQKkbRuPM2yvTv8hForfHuSuaH7IKmfsU+bye38Kqp8kScWohc1FmeMIQJUpHL+uo+qZeECbb2x+EeiVDx/X0bF9pkGbbeLdHet/ZvWXculbW6tu1oFGam7Pl2SpFK3nTUWZOgtOYZMybNssYt/iQFo2kPEf9apaRayA4oZGUHMzPiPBIhqxePWx6oJM5t4tTXVt9OkTzummpKTYM+nD4Himfti5McUsWb8a3bG2gZCXLyiznGls3grxpROfZZG8o4krRqck08H0HLZK1FUgBdtzTjcDm49EOxF7fn342gxnVe+PsKqgMVMPauASIXYkw8uSBW750DTD6/wMIJ+7RaV9jFtncNMP6LWSEFmaaNjfTc3oquGULPefXpeRKTaRYvib2EQK8bT6NbWAXgyGfEcyuClRrCqMCsr4Z9//V0Xe3d9u83kl5WOfTX5+uqL4KGQR9b3j7A9MFFLnzHvuLT5R/P1kV0Sc5mSPeo4EKIXHP4U/X1hafNRbDLy9xhsZt9J754eUUCVQSD93Wgpwzhsbnjw8Ok5jKc+tJVoXob39zL0niCqWcituu4ArDhTYNMHYwI9UvLWAPrXtXN+e9NCtXr3N5EeDSEKzwrpLo18ew87oaShdwGc/5EJVJamRtwZtZcIUJ03dZEsNPD6a+WnwdSuVts2SzuoGIr6JVXUQKIzcAL31YBD2A/IL+x85Xsv/zPnDt3znadm/jV4Gc/+xkA6zc8IlQvPm1y7Our10SpIVhTTcnXrODyyWUJSpKiVFRTWvdwK9ErKeaOVliH8xuqEt9tan8FG1DDd7v6bIT0oqjKkIvWzQ1WGogJ+9Jj7TtD9N/TyskvTwgRjlq3NtC6pYET/yJmjzt2hQh0eDn37emCvbHhy468tgt3g5Oj/ySmgjj48nYcTomIgJ8HcOLzl5Dc4nuCli1BolfSaFGxAPWz/08dKkOaTipSSIFlF3MvROtSbBp6qIP27Y08/zfnhb9fPdj2gUHcQSf7/usZoXrP/+XZutpLzqdXUoSJ4Jk6FaLCGwKkFzMkZ+z35fThRVLzGaJXxRiTHdtC9N7ZSnw6RfSC/bodu5ro3hvmwN9VVv8ph/CGAK1bQpz+8oQ1v23eru++PUywy8OpL4sR/cbe1Y/sdnD4U2J7mM6dTaSXNWYPrZ0P+b14qaJSal5j+oUlZo8sVf/wku+9dD7J0vnyfV+ONIFhWNEhJ6y7v4WFMwkWz5e30cUqSnkoTgmXT8bXKpGcq+5/5VWUAE4edwJOCIMzYn+stLW1sbi4SDQaJRQSJ0fdxI2Brutks1kkp1hwWsrChSurSdCZdl9NNSVvADxecMpr/SvT666ophRsh6YeJ+MvaFbquFK/beVgevXvdR0uP1NmnpTUl2THKkWl+fMqJpS/aV3FR2kf8+MJKUwfqdAP5WJ6koNNr2vGyGQ5/S2x2NXgvY3EZlTmj4oRlQbvbWLhXJLlcYE1ToEtb2hj8mCMyBn7/mGgTWHgZWEcisTMYfvPuTie5sRXp4iLKsg0KrgaZLHvhpVq7OKP7ccG8kjM1+H/OBwc+5f6VMN3vq+H9LLGiS+KB8RFoQQc7PjNHqYORbn6tH0/MXImReTMFeGb4Okl3epPwbOZc99bO2/sKAApAfC3eIheEmPynP3uAmYdYmIDd4cxNIPo5erxwNIYyeijLWSielmlqGrouzNEYk5l4bQAAV6Bdfc3s3A2weL59Mrz1OpPX5vCyKtaGX9miciZov7M28sKfl940EP75gCzJ1OkF0o6NZ+DpYyi0tTRBJ7g6jjTGtVIXV+jqHTl+fJ2YUVBqRiqtqKo1NQFwWYYP1q2+ioVpTwcahafz7R1OJpXUQJIoPBzLQAh8CzYP+hsu/2VLL/wLAcOHLBd5yZ+Nfj85z8PQPCBO4XqJbMyB9KrLxXFuxw11ZQCriwBV7YsQUkNKRXVlLo7dRJJiaWoNYhLCUpZd+73Jec+SwsOlsq4M1JJfdMpr1JUmjhbSCFUq24esgs6RhSypr6S5mgNypCT/G0OBna6ubgvRbLW0l/kM/pbZJr6FaYOr04hWhWmSbBTxt+sMH0sU1FlphzaN7vxNTq4+FSRHTfNmjH+7q1uXH4Hx78t5h+efzpZsFk2SaNg9Us6YWAICuge/YY40R4ZEgsGmbiYs5BaNHnhCXGCfvOQQu8ODyd/EL8hCkxDt3vwhWWOfUusb878pELn1xgvyUghFZkIjny9zPOVa6eEV+BrltAzZnleQemccORTFBqc+mGMVEyA/CNJBDtkBvb6OfvTOPHZGmeVRcSgYIdM51Yf53+ZwLDjIua+tzcsE+5XmDiUsTVP8wj1KgTbFK4eKvJRstmafnT/bhcuv4MzvywxnHmbVcEB6RxVUFMm0ekyapR5ImmJopJhwMQZk1iJbc8TlPJwqMYqRaVUUmb8UvnnzysoFUNJZXOKSgZ9zTpLSYXlVPnvUayilIdTN/E7sjTIsFzjledVlACOBl0QBDBwRuwTGdt7e5i/fIVIJEI4HLZdT4ik9K53vQsAr7MJAKnXCtaZV6pvJhv6XATa3UzuX225ahGVFk8nefaUeBC9YyxEoCfnEAvcTu2/t5WsaXLlpzbkfosMSvRcgug58UVk/38/g6dN/DZ/JqahLYtv/PO3wUXIP66wi2Cvj+aYLkRS8oQUHIoDRxVJtHKYeWGJrGYSPSd4MKRaSlGiGH5lN742D/NHTwjXrQdnnhA7qLxWLJ6NEZu9MSkF0nNpli7FWThTBw2+Dkw+s8DkM2JBy2vB6Gt68LV5hElKZVOM2cDZb0yQiYofBCpuGadXnHXfOBzEGVSESEqqCv5OL+GhoFC/pCNp9JROVhVz+i587yoXvndVmBA6va9Eot6mUxTocdN7Wysnv37VFhEuT1Rq3dKAt1Hctj//V5dqOlzFBKWV52yDULvMxFE/xKqsRc2NK/8bDvQQCoVYWloSfs6buLGIxay11+ezbvPn1ZQ8Z6oE4k2TjjEny5MayRIzWYuodOKLc0IKSnk0jwZxBZ2VSUpl4PRB3z1tTO5bJJU/0LDpt008JWb/JYdEckpj/1+cRhN0oYxMFi1pkK4i/V0OTYN+GnoErz4DrWMhfC1ui6SUh+So2TeKV0bxit+COvmVcZw+8XUjWc8hFLD+1d1EL8U58W/X3yfSkiZHPn3pureTx8LpZRSfAy15/QlKAHNHo3jqWG/qxYnPiytKXgtGH+th6WKck18QGCsaRC+Kp1iafn6BxGya6BWxug6XhMMl4ws5heZEy2gD4XVBS7lJwzZRqXHQh79dXOErE9VQ6iAVHv5fl8hEqn+vcmSli9+zeQGh5LCu+/Ymslq2MoG1FIalJtk84geJiiSlcpg6nGLqcKpm6rdigpIFjc5uiC1DHF9VolKmoyCV0t3dy+zsLI8//jif+tSnbD/nTdxY5N+Np81SYFjYYgULm49VngdSFvwenYAfZhagOMxWi6iUisOh74qf7jf1OGkddjJ+QLN1QzSPlvVOHLLE7Knc5qZK3WKiUjqiM1GaRqiaX5Lbb538egRnJRHjKupJmWUDvczt01po7PeguBzMH0/aV2dSoHnEh6FlhYg8br+C7JJxKGJS+vFZndPfnitL+s0TH8peXNEhXiZ4XgvdtzYQHvKx/29vTCxqcn+d8SCHo66b0rMnYmSWrz3dnh3o6Szzp+Is1RPjqSNVxdLFNEsXr12Bz26Ksr7bw4SHvDz/P8VSNKwh09jE+R/N1VQ2KjcXFI8DQxXf87Ru9OMNO8VISrplV/SUsUJSyj9XtX5V4zpa3MDIVLBDFfy+ycNxZo/F0VWp8oF4GbJS9LJOlKJ0oZV8m/yFoxxZyR2A1lE308cz9lSmckSl5h6JUKuD8aNidvrwfmfN1G/FBKU8Aug0KwaXm91ViUrJzkKfKYEAjY2NzM9f/5SON3FtOHbsGACuXLwzr6YUOFF5nytloUNWiRkyCVaP91pEpVNzHiEFpTw62g2Wlx0sRWVbCkoWsnT1wfwcqClr7FciGMFqolKkzHFrtbo4HBg6HPlelQB2BfWkbBYySbO2HSjxGwMtDpr7nFw9kLFsVi3fK2fTm3pdNHbnSEp5lJA3ykFxSyieMjakBgHi8r4kskd83TBSOf0RAYISwPCdXqITGpf3i5/rCMOw1HhuFBILOrNnVfQb8NUAFi5rJCIvcvq7/DgrM2auHq5DMqgcqvleRWN93Z0+liZ0xktJw9XmgimRWqr29/J/i00anPlpgsSCfYISAI7c3HOCkaxBFir63sE2mdZ1bqZPZixykx2ikkMi2KbQ1FNCUso/V5W2M4ksWap8fv6SWwlO/1KzxnOVuFA5stJsyf3gUoJSHnlFpTxZKdxigASROXs2ySIqQW+zgSJTkaRUDnOqk7l5Z83Ub8UEJQAMg27VJCZLLIepSlTSOgpxkrbRdcxcuMQnP/lJ/viP/9j2c0qmgFZpc3MzkUiEbT2voyO0YeX3tUhKW97aTqDNxbN/sTawXVVNycZBVSU1JVcA1EqM4Qq45fdHIWuy778J3EY2TTb9Rh/RiwnhA7ObePEw9FAHjcMBDv6VmCpIw6CPYJdX+N1tfe8gik/m4P8Qa69pQwAjk2VZ8PBk12+vR0voHPl0fQpOorj9P2xieTzBsc+KqTHUg+ZNQda9upsLP5gSIrq4AtA02sjM0SUhJaX++9vo2Bnm0N+cEiK7hNb58bd6hIlRw6/upKHPx6G/uf5qVtcEQUWqXye4Ag5GX9dnKcKdtP/SB17RRvetLZz66pUCSdPGAaLkkSr2ZVkVpVJUcbjKkZS2vcqDOyCx7wsp2yQlgO8ft5yFa5Isv4nrDiv4KXHP/audu1okpT3vDBGf0zn53bVjohpJyQ5BqZKa0sphey3kfLfWsSDrHmrn4o9mmT64bJugFN4YoHVTA6e/MSmkXAKV/caXHMr1pWBaqOuNbe8bZPFcjPGfiQV+O3Y1EZtOCqWmczc72fqOAa48Nc/0/sXaFXJw+iA0FGT+dExorLTtDNF/dzsnvni5rhR6otj09l4aev08W6fikCi2vLMf2eXghX8Q8yuDfT4csjgJaMeHhkhHVE5+UVBVbE8Ty1cSJAXTR2//4BBzx6K/nnszm4pKL0UUk5Q69zQS6PJy9usCyhiSg90fHSRrZDn4t4U9SFkVpRI4g3LFdKPlVJTWlKkSkFpDUpI17rgDIhE4ecxpm6Q0PfUCp47/G4ODg1y4IKaIfBM3DrfffjvPPPMMna96K01b9qz8vhZJaXQgQ2s4yy8POim9C1iNpGQnxVslNSVFAd2OSnPRgdTm1wSRFYkjX1m2TW4yjSz9dwRIzGvMny56Fjt+SbV9hh2f7Fp9n18Xv68E5fZn7Vv9tIz6Of4lMRVqT1gh0O5i/qTY2j30QBhvo8LxL4q1F+hQMLNWmiwRbHx9K4aa5czX7audXgt2f7iX6KUUZ79z/QkMvnaXparz9JKQ6hYKNPZ6iE+lhdKUtWz00X1LiBNfnUUXUFbwNCv4m50siDwjVlq6pkEvJ7/64r67Fz1OoQAvMp+tIlHJzoF2NZ/PTv1iRSUFBu8IELmQZnnKLkFTITykMHSbn/O/SLA4bnVOWRWlUvicFfuynIrSaug5olL52Fg5ktKtngRtToNvxnx4Fir7bMUkJYCTn3wc09Bvxrxe4pBlGdOl0Pu3/3nV72uRlB7wxZg3FA5m1l7gqExSMnIEpeqHvOXVlAwkQNJrz8+8mpIvmGXTDrhwCiKzjuokoyL4vQbhTpg6t9pds1W/GuHXRoo3yahQ3y4pvpLvVToPZdZmILqWuVqLFFIHBu/wEp/Rmbsgtng0dMpk4oaQ0pAsw8j9PmZOZYhcFiDlyBAIy6Qihsi9BfwtMv273Vx8LiWerq8OdG9107rOyeGviotM1IPe3W5cPgfnn6zi05QZF+6gtbzaSsFWhOE7PagpkysHMvbHm2nS0CWTiZWMFRvzYOh2D0uTGpFyY9POPKpUxs6FAZskJeEydsmAFdo3bcSNqso52kjzVkxSCrVCoBEmzlYmKJUi65LZsk0HCY4dLtQpp6K0pm2viVFh7SqnorQaBkaVZyxHUnr9gsplt4PnQ27bJCV1LsL043/KXXfdxc9//vMaz1SAUBQ0r7hQTFCCgqJSJZz55gwXflI+SCx53EieEgfUzIKZZc/vrmP3x4arfnapvHy+vihBCWDfJ09z+B8viVWSJEJ9AZpHG8TqueCWT2yg/7424XotYw0WoeB/Q/Tf38aOD1d/5+XgbnDWpQKwfDFZ1wFGVs2StStjWYSRR3sYfW2PcD0jk0VPi7OGhx7qoHX7DUon4IJ1r+kiOCB2u1tLGWS1rLCqTtvuFtY93E37WKNQPV01yOpZBM0f0XOJupSb3I1OnH7xHLhDr+pk+wfF50LduMEEpUC3i4ZBcYWRPf9uhNHXic0hVc0S7PXRurlRqN6ln8+y/89PChGUAMy0WZYIUYug1H1HI3s/PkTTsHuNUyh1tZclKAGc35/m5M9yTnfQb/0rRQlBCUDKOTbj4zbSnN7ErwRTU9bhrqKsDdTlFZVWwTRXNhonvx/l8r7ypDWpIYjUsDpJvWkYNI+6ufW3+2jZXGYMFdevNJbtkkByvtvc0RjPf+oC00ftE5QAmkeCNA35hQlK6x7pYPsHB8UqAcE+L742cTt+TSj33a4TeWHs3QP03tUiXM8VdOIOivfL9IFFYeKPLEFWM8lWCphVQPPmJkYe7aFlg5ifnlWzGBkD0/YNSQvBPh8DD5a31dcDLVuC9LysWbientLRU+J+5ehru1n/SLdwPUPLYmjie7Pp/YvCBCUAp1/BExLfLG173yCdtzYJ13tRcb3IiE5oGvFbBEgB9N3dXHM/nkex79O8IUjTcPW1pMwH8MJnrwoTlAC0mFE2cF6LoLT9bWG2vy2MqRuYJUF7dV1nGRUlwHBy+hScy2Xj1sK+sgdyxQQlgI7ObQDMzFz/lEQ3UT9On7ZebHDDjlW/zysqFUPKWv8Azl+VOXF+LUEJLDWlTPvqMeJQdRyqzpaXO9jy8urj3PSWST1nGPYISrAq4Hr86zFOfNc+QQmsedg85CY8WPQcNm3V2FtaaB8rmR9Zszp5SIFgj9Pqyl9j4mYltGzyseG1rVXLlCM+OIMKzoB4zCsd0YUJSgDZTBajDqWJoVe0MPyguF+pJ7PoKVNYcah9e4DGIY9we/Wie28If7vAe3A4yGqgZ8RjiE19HkYeaqVRMG6SNUyyWtW75GWRXtCFCUoALr+Mq46x2b7dz+ij5f3Y60IquQ6CW2WfM7fX9TQq+Nqq9Evu7KMUm17fTN8dwTIVSpAtsuM6NA95aBSJx+o6kXGdw1+JihGUAJKapapUgloEpXCLzt47TVqCWRwlMeD5MXdZghLA8bSbX8Ssz043S6Sb147uUoISgBKw9oD5tf0mXnowDINsNovcuPbsIq+oVIxi3+vppI/TmfJjNt7lIN61ej2RVZMQJneMZGgJVg8mqaG1c9ehS7YISlBI/ZaMOTj0FERmbRKMcmhok2ntlVZxeOzUbx+C9beXsTu6UZWg5A6AK2c+yh7016G2vgrlbGW5j6yTTLTSRrl2JImBvV5a1onHrtxBB86AuC+6PCVGUAJABkMzMQTXqkBYZv3dPgIdYkpRWSOLljHJ6mLrrSsAreudtXh+Lxr8LTLhQXEfw8iYldUM8ygzZvr3eBm4Vfy8ytBMy88TGcOSxPKkOEEJrLHp8pV5CTXqD93hJdyvlH9Ou4qm2Wz5sgLkrGtCmbZN2QEy+JqoPjaNtXGjpm7YeI89/6fYDodaoaVHsk1QAktV6eQJiWOHC31lh6AEIKUklDKpCGsRlPY0JrmtKYOcMZFL5kR0s76WoAQgy/wi5OJQzr/XwgZaeK3RLiYoAbharRRvZ84IiAAhmO4tW2WgSr2dFRWV1DjMHhXfFC9eiGMatQet5JAKQVEzyy2/P0r0QoLTXxWXM1Yj4oHwZ/5YPFWYK+CCrIkheNjSvaeZgXs7cP5oSigtU889LfTsbeX4v10SSj818Ip22nc0cehvzqAK3MDZ9Bt9NPYHePq/iPWNv8WNu0HcaTj5hfrST6x7TRcur8yJfxOrX6/C0KUfT2MIknEADn+qPhWe9h1hGvozwinK6oE/7KJ9q3WwIzLGli8m2f/fxQwXwOzz1vhfPC0mJz7x5IJQysM8WreH6L61hcP/67wQoefE5+ojgPib3bhD4nNhx4eHcTe4ePb/PilUb+t7BlH84upgOz6yDocMB/5SrN7mtw+R1bJ1vXvhWLWKZYtENzsqqPnArEijLrj1t9czd2J5Jd2JHQWl6IUkTQN+tLjY5i9e7nJrsCj1WxmCEsC2bVs5/MIh/uAP/oB//dd/FWrzJm4M/vN/tm6S+f3lSQ/pkfaColKJkx+v4ww0GdFYnsgQvVrbhkuKsqKoNHB/Cy0jAZ7/m0v2G8tJQWvR8sHZajj79SnEkwFbBz4S0mq/0QZGX9MFEjz/l2Jr8Y4PDaKnDI7+k9g6sONDg6TmM5z68uTaP1ZJ+7b38VHi02mO/bOYj+JpcuFtESd01GO/nT6JDW/s4+qz8yyetp8qOTmvceCvxdYZgIUzcSTHNNHzYr7C/LEY88dEo0rQsS1E61gjl34yI0yiqwfde1vwNLm4+gsxv+bUl8TSeORx4fsCqjhFqDfl3sjru0gv6Yz/WEzFYb+IKm4RPI0ufM1iB51On8Tu3x5l7niUc9+03z++Fiebf6OCOliV1G+hIR+jj3Vz8UczzB2xP66794Tpv7uVU1+fIHLC/u3FlaXFplJePvXtsc/WtzfTljIr390uQQlg+OFWQr1eDn5qfOV2nB0FpcUrqq14QynmZ9f66Fq4kPqtlKCUR2trKy7X/6a3jf43QTRq7ZuVMr77whbniqKSVLIU67pCpI4td2Qya2ubYXrdBUUlw2DLI36ik7p1W9cOFHnlcEqPiR80Hfxs0Tpj129TgDpi0KFuFyOvbObSL5eYO24/rhBe56H/zkbOfn+e+FQu2Goj9UjLJh9duxs4/fV5MgKpfXvvCNE+FuDwP04Iqdx4Gp14m2rvDSVJWkWAuPpUlKtPiQ+yrt1B3EGFiz+1r0QJcOnnS8JtWfXE2snj7HfrUz/suaWR5ILG0oXrn+pE8UD37hCyy0Fixv73TC/pHPtX8c1ZbDLNhZ8tsHRZLJ4eOZNi8ax4fwR7XHTuCHLhhwtCY3r8l1HGfyk+Nr2NTjxN4mviyCPNBDs8HPh7MX926P4w3rC4Otjooy0oXgfHv1C+XqXUbyOvasY0TY7+i0B7jtx+1W7oKmusKCo9/7/ma6awXYO0jp5b72wTlHLY+rCbhXGDiTPWw9ZWUILlZViMQFpweMbLHF+lm6WV1G/lCEoAmzaP8cLTP+dP/uRP+Md//EexRm/ihuAb3/gGAM6B8hdh4pvUFUWlUt8rXgdLQjNgJioTS9Z2vtSQsqKo1B7W6OzMcuSIA0x77WbdMo6MgWHYV1DKY+oyTJ8r+AC26zuwCKqCKVT7t7tQPHDiR2UOPKoQlIZf5sU04MLTRf5aqe9VhpAwfJeXTNLk6vNljEGVtG9bXhMkMa9z8SkxQq230YGWEScbnfqB+Hk2Mgzs9jB3XiMxb9/nNlQ48xNxonAqanDxmSTxOTH/PrVocvan4u2Fupz0bPUQvaqh1pH9VhStw06C7TKRi2Lsrcmj9d3Gv/pCGkcdKXovPSegoFSEzs0u9EyWuXO6EHnn5PfLjE0b9b1NMqnlLKLM7W1vamTuTJrJwxUW8DLfXXbByL0BZk6liVwqTRteQugqEqJxBWD93X4mDqdZmqgwrsukfmtokRje6+H8cxmWp+3bP1OSMU3reQ0bw0bSs5iKg/ETMH7ChPL86srtJYBc6je7BCWA7jaN1iaDw6c96F7ru9dWUIKZtIIkiW/KZ91r1zotbKyoKpUSlPLo6OiwnWo6D3EaYh3Y8Z5OImdTXP7FUsUyksdtpX4rCnic+8a07TYkh7SSoiSrZtGSYicDgR43m94ywOWfTjNzQHBzZSNnainUiMq+/yrO5J87GcPpU1g4uiRUT4vpaEmdzLLYgmVmTUzDFCIoASycXEauw6CLkoWuFQ19PhQBtmMeroADVc0Kq8/MHFgSbgvA0+Yim1SF0pMBHPqHc2ST1+G6UBkkplUO//1ZEnUQ/fwdLqueQFU1nuWqYIqZPFxhlzAhsaHHh7fZjafRRXr2+ssOHf3nS3XVi5yO4WsWD/ToqoGjRm74cshE1brm+vgvZtET4mOznkNxoO7bGDs+PIwW0zj2OQHSq2opfhiZLGbWxOGy53DEp1SOfb4o0JZzuCopKK3ABdtf6WHuosbE0SIbX0xUKgNJbwRg3759tp7vJm48fvKTnwDQ3rmzesESH6R7u4twv4ujX6++aEgNQczl2Ir/lJzWOPkV+wH0PFEpq2bRM+IE3I1v6kJ2Ozj2zzdGzevsNwoEAhGi0qWfzCLJ4jYks6ShJcUPAg3VrH5zvQJRKXI6xvKkeJSgXkJHPXCHPfjbvfjbPEIkJQBnyIkWFfPvtajG1HN1HJY5wRdykpwXa+/s96aYeGb+hhCUAE78yyUcXnE/1ukDnOL9GTlVpzS3E5xOCS0ptl8K9frxhDRulN7fc58U35tpSZPopTiRs2KkNi2pWzftKpnOCkQlbVlDTejCCquzx2MgScQuib3DK08ucEWQ3J8nKtWD9p0hem5v5sjnJtAFSNt6OouRX4cMAyloQ4EAuPyL1f1h6gaSIpdXUCpC/5BGOAyHnl/t4xUTlcohm80yN3djUhndRH0wDKOmkkvpIRnAttE0kSWZKzOV/f5Muw/3THJVirdJAbNjet1IcWt8Wb6CmO+l+GDjg0GuHkyweEHM/kuyA9MQJJbrcPSLOfshSWDzgl5iRuXyU1EWL+R8mioE7WJo6SyZmLE29WMNopKpW6ozRkZsbxq9ksbpl4XIHABXn45y9Wl7McdSolI9aOjx4G4Q9xUUD+g6wuozy+P1pclVAlZbeprCHLRxwHrkX6cxtRsT89LTcORzk6TjNtorsSOekEI6oQv1p56G+RN1HJBizXddsKov7CTY6UbxK+jp69+nl362BCyt+p2d8R45l0IVjG0DGGoWow5F/PSSjrPG4fYKUanI/7nyTJSsSFrLHMn6+BOChL0cUUmYoJTD6L1eNA3O7xfrU0PFUuBQdbQOewr+uqpwuugus0PNknU5KiooFdXkZb40k6rCeb1woaCYqFQOWv8IPP1zXnjhBVvPdxM3Ht/61rcA8G0drVqu1PfqkFV6FZ39GTfVZDPiXQ4Ck9lcijfIGDLnZuzPFTWk4FlQMU3QdMk2QSmP3qEsbjecPypUDQDTKSNphhDBaeYczJzLlXc4yiqelcPESRW5yFUwZYeV9q2GglI6li0fV8v7XhVselaHbNWYV/mz1vnzKula9j9fr2gdPvk9sdiT7bRTZSC7oKFDIbGgkxA8trJLkiiGoVKZyFG1MXC5ECYazZ3XiF65MQQlgCuH0nWpNsky4ALDznMWEWaSCyblZb5qNQiyIv7+GjoV9HSOpFQP8mPV5j7r+LeK4h/5szIbSmnz5zMsT5XYkzxRqMKZm6GCYZiVfaF8v5fMN0O1bIteqy9z7efV3xKLJpcPqSQiNvoi/53dLpamYWla7J3niUoiKkp5BBtN+tbpnD4joQtIneu6ZK1DGCgpWO6z1/Z4evU5sZwxMdxSeQWlIgwkNfoyBk82rb7IWUxUKgfDIbE0J2b8bPeiqlqjQqqSIknq68IcX3vrW/HIOAM1rImmWYGP3MLrCkDPXW1M7l8iPVd7dptZcyV48fxfit+vl3MDKitog7pvb6bnzhZOfnGc5YsCO0AXdaVXUiMql34ofgNn5sBSXQSZyz+e5bLg7eVraa9e7PrtdcguhX2fPCVUT1Q1Jo8dHx4hq2eFD/Y2vb2P9JLGhW+L3UTf8b5h0lGVQ38tpuJwI8g0xUjUkZKjYdDH2G8MMnUwItQv/g4X6x7p4dJPZ4ies+9s9tzTQv/L2jn3nQmhMXr+W1Oc/5a4gsC6R7toHWvkwN+eq0upTRT1zFeoX/Gp3noiSnClcAUQJuzt+K0hkCQO/Y3YHJIc9alQ7v+Lc7n6Eqau21JSAui+PYSeyjJzyDrsdDQ1QipTPs1DHio43RKeoINSR/rcn3ey7o/Ke+SN6hjwU6an7ROCb+LGIv9uWtt3VCyTGm3He2r1O3QFZZy+2uRBM50GlxNyaZ9ax/w4ZImZwzYnmGEgSRLjT0YYf7KOOW1WSNtbA9veN4CRMYSVOpw+Vg6uRJSU5o+LK+oAnPg3cUVPgCOfuVS9QIWDujNfL6O8dJ3g73Yz9o5Brj41J6TiE7+a4tk/FfPVADr2NDH0ig7OfHOC+aP21WMa1/npua2F09+YFCLkDL+ik/btjez/63NiRB4NYWLTtUBLmla6BUFsfscQroBT+MLEwIPtON2OVYQ/O9j94fWQNXle0O/e/+f1aKbBnt9dTyam1a3gJIp65rqWNOtSB0vOaxz+1EXx9qJaXSmugUKKOIGh1rjOx/pXd3L++zNETgooN+Vss9MNuoCvd/knC+Q15CSXCzIZcNe+0uZphLYNfsYPJFa+n9HRjBxXMQKVSf9uF7jcYFVaHViK/zcV55+Wr7e4uEw2e+NsxE3UB4ez8rufH3PS+kLpO9TxuE1cruq+hTOmkfU5V5GUukZgYQIydrazmo7pdiFl1PK3Z2tAcUqYwgmgINSrMHB7kPM/jRKbFNjP5rc/OtaGyoaqEVjEjNlj4t8vdlXlxFVxEuDCmVRdKa6WxzN1E3JEkCcqbXhtK+4GhRf+SWwNPvW1+oiRm97YAcCRz4rtFfvvakRPZ5nYJ6ZiufXNXWSWdY5/qSieYUMJQovdGIJSHuklm+0V3fBWArD17Z1MHlrm6jP2L8UqARi6p5nJg8vEJ+2vHU3DXtY/2MKFHy8Ije2ZIwlmjgge5GKlbeu5NcTxL8+SXri295G/eV2NrDR/MllXCsPLTy7V9Ux26pW7Mb4oou4lOSz7mNsbK27QBc3L+vv9KG6Zk98Wm3soEtRB3jr+I+sBTb8HJZZBD9qTEmhp0zGzsDBvLRLRARfOmIkWrLY+KXglE59j7XM+/Ps/58ufv6dsLb1rPQBTU/Wpwd7E9Uc+FZ9nbH3FMomxNIEXVh+S+iSTgCNLLfaCK2aiBiW8OTJbo89AdpgsxO3FaOVUFs2nMD8H83Usp6YEUh0SEcNbAd3ggiC/TpaL+AbZ7ColzWpIlNsmmmbNdXjicH1+0MWna6xNFdaA6WM22ruWlHF5ZE1kr8TmhwJMHUsLEUiMFBypcWG0HAKtVtq2C88kiQqQjjwhaB9xM3UsI0QcahlQ6N3h5fj3YmJnLIY4selaYJv0k3/vubHTf6sXf7ODo98U82tahhRcfonJo2J79pG7vciKxMkfinXO6R+n6jp4Gr3fh54xOf+LlOU/1CGisgIblwMmDlT5XqWqSEU480Nxv9JQ4fyTNvqx5EKAoUJkXIDcIefsY50kb3fQwbrtWcbPS0QX7NsdEzAdICtitmomojATsRaUTKOMe9kk01D7M1wYtHsMJtMyRm7NjPdnkeMOjEDld+7JmgQM01pU5NV99Cdv+Dy//8s3la23JJtomoZhGMiyvb61LX/xne98BwDZUSFgkxuIUl/Xmj/t/5urnLMp3Zs/yG3aEKJjWxPNI/6adYoPmlwBCHSLq4hEzyfY98nTwmmxdNUgq2ZJC8hCA2x6XS93/MfNFllJAN13NTP2rgGxSlh9EhTJTZ2DK+DAVUfu1c7bwnTfVT63eDXs/Og6bvl4dfZ8OUQvJYmN13m7uw5MH4wwdVD8QDbY7SPUL57XdObQIpPPih8s7PzYOtY9unZOXg+4ArDn340Iv/fliSSzx5aYPSLWn56wG1+rh0CXWFqOxVPLzB+PsihCKrwGRC/FScykQBUjKA29qpPb/nATrrCYkQj0uut75y5LsUu4WsBBy1iDcL3el7cy9s4B4Xq7fnsdOz+6UbieHjfQ61AVO/hX5zn+uXHhdFSugEWkyyOfFqsWum8J032rlb/V0Ry23d7+L6U4//RqB/rcH1nv5dx/LG/7Xa4AiqLgs5EO5SZ+NUilLKfc6SzPrDdzvmhqQ8eq31/8RYqD/2o/OCl5LTvac0sjPXub7FUqumnha3VayiwiyJqc/NIkR/9JXEFRS+iodRxI7PjQOsbe1Sdcb9NbeujYZe92aDGaRvzi/QK4w87SM+/acMLAK9rwtYtV9HW42Pv4BrrvEFu71XiW2JUksYkbE51Yvhhn5vAS0XGx9gKdHgJdXmFfdubIElOHIsJKQ913NLPzw8NCda4Fww93svW9A8L1Jp5dYHKfuBplqN9HqL/23qwUU/sjTD5fPzlZFNHLCZYuiAdDdv/OesbePSBcr+u2cF2+kNMnVbYRVfI/BXo8+FrEUwJvelsPbTvEbJk77OT23x9l6P4223Ukh4S6rKGnsisXkOxi9vAyB/76EslZzVJtEYCvvcR2ZmoHsZvX++jc6qehw6qY7bH3Pc+ccvLcU05KjXXm/1wCQHu8/HgPhy1bm1dKvImXFvLkcNlTfmLm/a65baXzT+G5I17OX7G3l9IbLd882AzdGxQaO2pUAChWilGsAwkhGFnSy3DsazFhFSUzC1oqi5bShVJgd+/ws+dd7TiLsx/aIKeHhz2se6Bx9QPYgKdRwdta5iSwBjFK8Vj/RNE45KFls7ijN/qaFra+w85LL0CSJJYvp4heunGnQlMHl5k+JE7UD/V5CPUK5j0AJvYvM3lQkFwBbHh9Gz13NArXqxdb3tZJ21j5lJ5rkDvs0eMwcTBKROByHYDiUWjo9uBvsd+fkiQRn00z9UKM+MyNIcUmZjNExzPogmpkbWN+dn2gC09Y7ATf06jQtadBPDeEAs6g+EGU4oGGHpvvoMjeNI94GX6FjZhOiV3d8OowW99i3+/Kp3tTE1nUpLi68ekfpbjwVBrJpuJKHoobPEVTQYnZIysMDJr09lv9tDhi3/j+IBHkqLo6tvW6d/8MgDe8/Wfln1FRcDqdZAXSXt3EjcXEhKUmLwfK21VJtt5dfNtq0t8F3c1PUzZtMZBqtuZZX7PKcJu9+LycKowbl8tAlgWVNtQsVy7InDlWR1q6NKi5r2wq9n2vjXfLrNtTUt7GAXzPmEJjd6GeZIPYBOBrdiCXc3/ztrACcUH2Upc6TuuIC5fd154jbMgu2PraIC3rBPfPqsnSVY3E4o2xH6llg4ljaVIRsXHmDsiEup3IHjHCw/KMztUjaWHCUahbZv093rreXz1oXacw/DKBM+3cmJs7pzJhh9RWVAegoV0m1Ck4ViSJ2TMaM6evUZxAgGAXndQsZaPifY6N+iOv8DNU3J82iU2hXoVgl/hLl12UtxFQeN4yezV3EFw2t1lSUdyoZ6tCY5cNm1lCntnxkEJnZa7sGmRdCppm2WpRFyO+JHHsqJNUSkZJifjOxpq1yL1c+/2FXQYbgxkanVbZ6Ii9d34q4OI7Ld41ffXJe//N+u+dXyxbL9TWCsCPf/xjW+2AgEv/uc99DgCvUiYaUjIBKikqlYW21gmWFIWZ56MkZ9PEpqsbk9Kb8H33dtG+tZEX/tc54hMChqFOZaOZ/YvM7BdPIzFzZMn6H8E2w0NBAl3iZKP1j/XiCbl45o9PCtXb8u4h3AEnz/yJWL2evS04XA4mBNMDxCZSOL3iBu/cN+pTD9jz70bQUgaH/6eYusrlH9WnVvNcHeoBABe+W5/SieJW6urPeuFwOnB5BCMFKpx9QiyXPMDCiRjPnDhRu2AJEtMqp78qfuO9dWsD617VzbnvTgqRGeeOLDN3RDzYFptI0tDjA1Us0NNzayvNG0OM/3JeSLlp0xv7aBoK8tQfHRdqb/QNfQS7fcwfFXsXTUMB/G3i0eDpw4t4GsTJVCvp8+q4UbGi3FQh9Uo5bHvfOhyKxL7/VlBJsKOodOIrE6iL6hqCkpTK3VKrpqhUhDxBaeXn/+gtq6gUCoXwesXXlJu4MdCrkNvMkqGc2tCxRlGpYt302ludktfDsX+dwGknH3KJFOzmt/SgJQ0Of9qmslpeKSOvbGQzjUceJ/61PoWi2aNRknMZIRUlgIZeH1k9y7RgOuCNr+9h/uQyZ75m/+amM+Rk1weHmD0S5dy3S95nlT7yt7np2tOMacLlGfs+iqGZJGZSJGbEcpVoUY3jnxdX0mvf2Uj/y9s5/dUrRAXIwsl5jfPfEb8Be/UXC0JKT3nEr6aIXxU/CFS8MnKZvN3XC4rPgVPU7wLmXhBMbZ3DC38nruADMPF0fQo+W987gENxcPhTF4TqnXmivn1BbCJJekn8QK/3jlbSy6qQyhfAro+OkJzPrFVPq+FrbHlbH/GplLCaXEOPDz2VZfaQ/fefiWjMn1hmwaYaUl4dLzmrcagOxaeV7+4ENDCNLJJc2/dqHPKy4bVdXH1uiYl9RYfqNRSVZo8kWbyskpzV1xCU5LjlR1dTVCpGnqCUh/Z4BOefrvbnBgYHmZ+f5rOf/Sz33nuvrc+9iRuHr33tawA4G9cSd0v9rrlt5RSVysMZW1tOb/QSW0hx9Gd67ZRMJams2jZ46Nvq4tQPl4nbudWfD9wqWKpGipLL42UP0XGV6HjRvtKm3xa9nEFxSWgxQb+rx0WoN7dPFPAP++4IEex0c+AfitYAGz7fugdb8LW6OPgPYmtH544gnpDC/HGxy0+xiTRqTJxoOnUoUVfqt81vbMPQTGFFpTnB75XHkc/VF7uaOVJhnalxu9vpkXF6xC9W1gvF40ARaS+nqDTxrHhMKD2v8/yn7MfK8mo+ehzbKQWLEehQWP9wK5d/uUREQIEpPqlzblLc10stqMSmMuhlYl7VUh2G13np2RMicj5JOmLflvXeGqJzWwMHP3NFKE1jz62NtG0Osu9vyvtda1SUcopIDT1uQn2ChL2syeypBJ5Gm/69o7DvuJRLYSuU9s1l2aL8siCpGqbLnn0auceDyw2His6g7CgqHTsioWtrCUrO3FpRXVGpgDxBKY83vP1nZRWVwuEwik1l85u48VhcXCyrRAYFglIe8W1rFZUqwVXG90g1Ozg+6cJlY4oUE5QARraYGIbESZvKRlIuJa8sGxgGZJ0yDs0++eTK8dVlTcVhK+3bzHkDLZWtnFK8Apq6ZCQHLE1k1xKUqqgpjdztY+6CtlpRqdT3KqPwsvWRBqZPZZg6UnLuW8XPkV3Qs8OLJEvMnixzXlxuHJkmILE8pZOKinWKYcD4vrRw6jd/i8zgrR4uPpsmsWD/nRsZmD0lHouIThgcmRAXblDjMHdGvD3ZCU6PhExdSdHE23M5UNxV3kG59y5JxGZtPl1J/QvPCKqD5erXlXLPNBm41Y3T4+Dsz/Npru0pIk2f0Mrvc2rUj83o6Blzpf1VqDLXu3f40RJZYpOx1eWLvstK+0XY+MoAqSVjrTJSBd8pj5F7/CQWDC48XcFhK1FRkowspuwg3G1teJcmRVKUG0yfhajNrVLWZfkUhgqnDwCY4LRvJ7JehcLssYhKure2n+J2wY4tKufnXSSLthW1FJXmVJlfRnwkjbUEJTlu9WM1RaVi5AlKKz/f+cU1ikq93b3MHzjK9773PR544AFbn2vbSzt3zjpo9XtaVv+hkiORIyoN3ttI25Ygx788Q1xAGlpSFGI1pJPLHTJNH4qAhBhBCRh7az/Bbh9Pi5B4TBNX2IXLK97ewokYCyfEbyUd/cdLwnUAxn86i7dN/DbT5HML+JrF673wT5dw1XHuXQ9ZBaDjliaMtCFMBslENbSEuBrDutd0kVrMCJOw6sWGN/YQvZoUTpElmv7uWqDG6yRhuSyCzNSBCIunrr8alivsYt0D7Yw/NUv8in3HQ00aZOIaalxsvLjCLjp3NDL13Dxq3P4COXc4KqzsBnDhe1e5+tyccGq5qQMR9DpuXV3++SxNw/Zvr+Rx5NN1HnTWOedcAQfuFjexSykhotKO3xrC0+jimT/JjW2bRKXJ/ZGyxWoRleJX1hKU7GDnazxIisSBr6TWEJTyKEdUikQiLCzcGDt2E+KoFJgtPSjLI09U2vGWBvRUlqOCEsO66UGbrRGxLZOreuK5RbS0zQ1Zke+287eGiU9lOP4vYqSjQI+bTCSzkrrNLi79cE6YoATw7J+JpXbN4/KT8yxdEvP1tKTG9OFF5gRTzCUmMhz+zHmSC2K2P7OgcfSfLtcuWAJnyEnb5gZmD0eslGN221vWyMRUNMEUZcE+H507Grn4w0nh914Pmkb9tG4OcearYgeWl380WzeRvR6c/nKdfvOeJvytnrqIX/Wg67YwTr8i3DfpRRVZ4OZoHuFNQRyyJEwaqrc/j372ApoYzw+AyQOLJGvZ3DIY/8UciSlxaf1n/7Q+W3bm6/WNE1+HEy1logkqDu/9xDALZ+Kc/bqV4twOUSkxnWLqheXyqVWqEJW0DGhlCEq10NiksWkMLl+CiXHnGoLSyueXEJUmp6znm529cXbiJuzj+HHrsoYr3Lrq95X8rjxRqatFY6hP58gZJ8s204eARVRKL9UgAmhr5090KsuEohG3c1eu6GZp324PrcNuDnze/h7TNLI5pSEH6SWxvWJ8Vic+U8afqZH27dLPl7n082VhJdvJ56N4WopIhTZ9vumjcXyCSi4AZ787h+ISrzf5fH0xj8YhD6ZhsnRJbN1ILemYurj/27U7iJYy6iYriaLnjhDpiCacxuvo529sGqfDn6nDV8hmGbyvmYWzSZavXp8UgcWH/IoHum8NMXcyQXLW/hqsq5CO6miCMS/FA03rfCxeSgqlao1NasTqIDdNHo4RuZASIigBRM4mMLNCHE0Apo/HSS2W37tUIleQNbn4kyUuslT9w8sEjSJnxA/FARQXKAGFdEQXIiqtv9tDsMPJwS9Y9touUWnynNXmmueoQVRKpxQhBaU8XuaL45FMfpgIriEo5VGOqBSJRKpe/rqJXy0ymUxZElkpQSmPPFHpTm8CzZR4Li2maBhvdOJdqO5flBKUAC5POnNn8LXX0zxBCWDrHohF4ZzAcaOkGbh8FmmlTPitKuYuU56gVCPt29HvW2tTRQWlCuSF8QMpEsXKPzZ9r4kjaWIzYvPSUOH4t6MYgnfJjIzJpWfFL6DJLmjokFmeNjB0+zbZ0AxSy1kMm2pUebgC0DzgYvaMaj/F2TXA2whNvS4mT6hCbKPIJYPIpRvjGwJMn1CZPiHeIcFOBV+jxMzJKrHHa00NWFQ/1C3j8kpCqQEB0rEseunXs0FU8ocdOBSITYuNsxVioODFh3M/ia62Rw57cbrJYxk0u+eNRUSlKwfTZCrVq9C2ZGQ58l0b+6QyKcimTtWX9s3ltey0oWYxnXZjlwZ7bs0yOy1xOReOt0NUyqhwfsHFQmLtc1YjKhnIZQlKtRDQDB5YVDkcULjgc64hKOVRSlSabLPOiZNJ+3bCdtR3cdGKgATcRQGbGhNZ6usiNpEhMacSny+ZbZpWVkUpj767w+z6aOV0CZUOmeJXVc59Y1pIhhpg+oUlImcFDoRyE3njG3oY+811Qm2BlQ5i6OFO4Xr1YuFEjKs/E0/rML1vsS4VHzWiChO3wFKrad4UFK7Xf087A/eJSWYDHPnMRU5+QTzVTOumEO3bbKbEKcItHx+tK11f0/oG2reKt/frAFfARdNQkNaNjUL1At0u9v4fG+l9eWvtwkUIdrhpWt9A86iYRn70XIKD/+McUUGJ7taNQXpubyW8Saw9V9hlpd8RFA1S4wiRr/JYPBXnzBPi6iTLF5M39EC2aUOAjW/qEa638a0DbHn7oPWDgCM2fXiR+VMlh5w1AuaSQ2LymUUmnip/clAt9dv6R9rZ+vrKNlBKZVZUlYqxNG0QnTYqEpTyKE39Vs9t3Ju4sSgNfFY6KMsjtaGDpQmNxatrfSwznS6ropTHljc00//yKmtNhQjJ1P4o80fjlYO0eZT4bnPHl5k5umT9IDls+25b3tbH8MNiaS3NrMm6V3UQ7LtxymETTy2QEPWFNLjw3VlipWnNbBzUJadVELwI5fRJdOxqEk5L17opSP89bQQHxEiqS+cSvPB3F0kKpp8IjwRo2RzCKaik13dPC7d8fBRnSEyxoGW0gZYNIfG0e78maNsaomWzeHqyzW/vY9dHxPc97dubaNvaKFzvzFcnOflFcd9k6L52Bu5tF67XNOqnaVQ8nV1yRhNODQgw/uPZ1UQqm3Zw8plFojcwMNh/X6utNHFSyYHa1ncMsO6VNt9D0XefPxVjvuQyT63Ub7ruYvzJKMn5Cu+hUuo3J2x7c5jOwcqfLcfVFVWlPBJxWI5CfHmtglIpilO/uZzWha+ZmZmqdW7iV4N8yhFnQ8EXquV3zW1zEktJRJYcJEtcLGdMK6uilEdbh87mu6vM+TIEJYB0HCZPGpgVtfNzKJk3i5d0Zs/m5oKiWP+qID/v+m9vYMtrSy5R1LJVpkl40EXXzgoORq0DeEGCEkB8Ri+oGgmQ0pcupOsiDulJSC+JH3wHe1wEe8SVgfvuaKTvzsba/nYJLvwwwsWfiqu/t48Fadsifhlp7G3trH9ILI0wQPsmPy0bqqzBDoftA5GXHBRo3einaUhsH6L4YOd7umjfXv09lI4JxafQtilIY58YESQd0Tn5lTlik2I+jb/dzcDLwjT2i20oFI+VEq1SukVJksqPdx1hghJAYlbn6jNRS1FOAOl5nZkja+OAonvftR9Qfjz72hT6bgvUru9YfUjVd0eQLY81AmDWOhx3OVdUlObO68ycWe0n1Ur9Zvo9LE7DXAVh3Wqp33r7dW5trhxXdcbMFVWlYkxpCtOaUpGglEdp6rdqqlw38auHrutrSEqVCEp5xLelmdIUZrS1B7WumFlWRSmPrQ0pesKVYzTlCEoAkWWZxZiM5qvuOxUTlACmrsJs7lgt65TJOqsfgks5taVNt0n0bFj9t5pp37JZOofBW2nbVuMAvmaKtzJrcOSyQSa/batmsyRp1Tny7CmVVGkaNRvzVI1XCEtWsceyDA1dFdLSVYEvLDNwqx9/iyzkV6ajcP4XKdKC984DzTIdG9y4/GJ+XmOPzOZX+W2nxsoj2O6kfdSN/OsqNFcypkrR3KfQPlJFeKNC3Z7tLkbvs+GvldRvGVBoHxEYZLnxPn1C4+ohm8pgeWRNura66d1R0YGqWNUblvE3V7ElFfxtNU6BIFjNHy+Zx5EL2moiVY33lp9rSxMGqcUy867GXkCqETcqR1ACaOmXCLUYVcmcUFBRymPTrdCbSxMnadXbznqVnIqSzMRVB5FIif9eI/VbptHF1aiLlFH+O1RO/WawO5SiT62y9sUdK6pKeaQccMXtYElxVCQo5VGc+s1st/aBc3P2VXxt7/DicWvT3ujLHQrZ3BgvpJo49q8zq9OaVSEn5eEMyshuqaziRLVb8N13htn4xu7cM9rfwM4djnLqSzaC4Ka5arJd/eUc08+L3/xo39lE+7ZG4Xrb3j/Enn83Ilxv+NWdbHiD+MH+4APtDD0kTv4Ze9cAY+8cEK439Mouhh8SO3gEOPmlcU49IU42ahj04e8QDxA98ycnOfg/ztUuWAI1rpNaFCdvPfPHJzj8KbGUdAC3/eGmukhRdcEFt/+HTcIEEjWi8tQfHRcmyKgpS3FCXRYLoCyciPHUHx0XJ9a4LIKMKGloYv8Cp792henDYoHBzh2NDNzbQesGsUPE1u0hdv/uegLdYg/aMOhj09v7cAXEAn8tYw1sfe+gcL8MvaqTvf/HBuF6nbvChAUJZgBXn5pjen+RrS6x5ZUw9cwiZ8uljakQOM8f0HXsDrHpLd0VP7ccUcnRHMbV5EZ21X4HpUSlC89pfO+V9oKQxUSlzs5OgkFxYuhN3Dg4ihzwWgdleZyYC3H1wOoxUo2clIfT68DV4ELylhlLVa5wjTzWTniDtSOudpu0FBe+N8f80ZJDITsH9M9FmHx+qWa5PMysiTPkpHVLA+1jYvbDGXJyy++ts0ijgvU2va2H0IBYpMAZcjLyWCe+jhw7xszaOqgL9HjZ8VvDhIbE2gtvCDH0YAdNG8T6Ze6FCCe/Mi5G8MdK8Sf6jGApFD39xyctIpYAMss6alwTVm46+40pS11VkHcy8voua227Qdj8G33c+olR4XpHPn2J5/7stHC9TFQjHRX3Yw/97Xn2/zdxFR9fuxN/t7ii66knJjj5ZfF0hMOv7GL4AfFLJJve1svoGyqv+ZXQd19bwbYI7FvXP9JJ38tbahcswa4PD7HpzeLP2bmziY7tjRX/LjmkNQQlgMl9ESbtpEUv+e7nvjnL4tm1JKxKRCXJZTmTw68M0zpW5YC7DFEp296G4ldw2nChiolKmubk2AtOZj9q7/JCnqjU0tqeqy9OaruJ6498IM2dU1Ky63ddWOflxAU3ul6IXVUjJ+WhuMDpl9EbyzBiKxCUAMJ90L/Tast0V9hMlZkvsWmdK/tK/MFy8TYju2q+zZxIcvX5MmO9ErEyt8dq2+ijY2sVckUFotLw/Y1sebOYuhlA544AfXeGhA6SANrG/HTtFifjDN7bxPCD4gq4A3c3Mfhy8XpnvjPPuR9Y+1kRopKnRbGfOqoIh/7XJMe/IH4ZKR3VSS2LE0gO/P0kp56wEcwuOZzY9YEe1r9KfE2sF7t/q5fB+wTfnw77/mqcyz8TU0bXVcjEdLRk5X1YubGQjujs/9urdZHvAl1KRdJQJUQnMpz65ixL58UI1A29Hobua6aht3qDpd8x0OVk85vb8LWKjWtPWGHg7kYUweke6FBY/1AzStEWxs4cbBvzs/03O1DKnXVW8fvCwx7atwSs91DOnjnkNQQlgNnjKSaKbLWpG+XJSiUqSUtXdSYOrfXvKxGVTL/1vkJtMLSt4tcoS1RaHPFgtsl45Np2upSodE7zsP7tz9WsB6uJSu3t7fh84vvPm7gxyGazOJ2FMVmLoJTHC5tNLhmr94nVyEl5eGQTR9BK/VaKSgQlgP5OjcaANZ8qEZVKCUoA01dllhdXz9dyRCVJM1YISgDjp0zmyhxzmYqjPFkpp3LUMaLQ1FFlX1mOqCTDlvtdtAzZUBEpWoNlGXp3u/E1O+z7XpKE7IKurW7c+eMOm/F5lx/W3+vH31rynDXssadJZvgOP8F2sfOO2JzB6Z8kWJ7JvRe731G2VIoQFGWJXDY49OVYeWJGFegZSC9nhVW3Zk9rHPpyDEPwnnvHJifbXhsQ/n71ome7m62vKVm4bazBl/ZlOPKNRMV0cJWQiWfJxGrYoTL1zz+V4dh3bPhBJePd5QV3pWOZcs+ZG4eX9yU5/1SVWESF79i7y0PvHhskrBJ/u3uXl549PnsXBoq+Y3jISXhQqfpMa5A1ad/gpHVdia210fb6uz3076jgH1YgKAF0jDhp6c/VK+M7ZV3KGoISwJUzMFtkqyUtW5aslC1RSZqckInF1j5PJaJSptEqO9CYodVXOc5QjqgUHXHgDGRx2zAtxUQlQ5bZH3Lzh6/8Uu2KFIhK/kbrfEHkYp5tj17NMa2Cri4hKbSGNmjoDXHlKTH66PlvzXGetRvUWmk6WjYE8bUUbXAkh63DnY5bmvC3eTj/LTGp4HrTth381Dlc4twYYUJGHk3DARw12Nrl0Lq1CSSE1ZScAaWumwpnvnFVOG8uWGou9WDTm/vQkgYH/vJsXfVFUQ/R6FoQu5Igcu76p1ADQIX4VIr5M+Lzoa7mIioH/lKcKFYvWjeFGHmkh/FfznLlp/aZoKgIpxsBmHpunkxMY65UxacGFK+M7JZxuBRWs0Oro2VDA01DQfxdPtQz9sdMQ58ff4eXQKtLSD0tE1PRU+L5ek98abwu21mvrW4ZC9K8PsTpr5Yh0ZWkfis+oGvdHMLfUT3YVi7128lv1yn/3wNbZwyOtNuz8/nUb06nE0N0J3MTNxR5kpLdgzKAnk4NNeogNiW2oB76bAXbVmOMNA1aQb/IKWstXnNbsYLvNvxwG/OnYkQvlOamru67jf/cPjk87zdqUY39f3G6rlRhWsJAtXHYWAxfk5OGXh/R7pSQ4kmox0PLxgZiU2mS0/bJrU6/A6dPRvaI+XqRU0tkDZOls2J+upaExdNiyoIAnbe20nNbC0c/d5nY+PVXgpk5uMTMwaXr3k4ei+cSdaUnqxcLp2NoNW7bvJg4J7hPulZseH0fsltm/38XIzjFr4rLuQOc/eaEHQX/NXD6FWQ7O/4StG9tJKsaTDwlduGlcciPmtAZ/6mYSq4a18nE6jg4/uszdu4YrYEtW13mkK7/3hbi02kWTqz1iUpTv0lFTmF42IvidjB3tIptKpP6bf8Paj/mWmj09sNsFJZtcjy1xyME/rQ99xjXJ93PTVwblpetfZcr1Czkd4XQ6WrTmJyVEAixMTmuMLnCpyyaZFUISgBNnU4auxxcPmiVM90upEzRPqwCoS/Uo+BvdjD5QsmeTVGq5j+KT+vEp23ajiL/79T3F2ur5pemfjOzZGI6sks8/UJjvwdnQGb8SbF6bZv9yC5ZmNDhCjhw2Jb1L+DijxcErosWkF5Y/Q7sqoNseHUreiZrXR69ATj77RuQSrwo7UzkfJLYVB05V+tE5HySpcv1+RmA9dx2FaF0OP6lykQxUVWtWvC1KWx8TQdXnl1i+pDAfNAhdlWcxL58Jc25H8wTm6j9/orHu+yUcfkUFLeMiCxSoMNF2+YgS+NpluL2x4y/zU2o34OnQSGe1G33u5Y00OJGzi4W1alBTL/6TJzpQ3H0/CMWpT+phvisTrxWer8yadwCrdDY6+LqwfJEpeLUb3mCEkBzp/XvwguVmyuX+u1otD5l4yZ0uBCGIXtkv3zqt5sxr5c2TNNcISnZJSgB9CQMshgsCzIl9i2WJ6xVIygBdDQbKLLJUtxqT/MpOJOF+VaOoATQ2WOwHIVEbC1RyaFVHpcRkcyiRWnYjnxPreQGFlCS+k3SDTIJE83u9iS3BstuaOp1kooYJOfszzGXz0H7BjfpmEFGgNTsUCScPivFVeHha9vGxKLBuScTJCOGtde3u3YakFwo+V427HFjp8zgXh9nfpokUVr/OiA+ZxCfuwa/RBCx2SyKRxNKEXctWJ7RV4eH6/F9itOn1ag/d05nrppv8SL7Xn17vLj9Ese/ayM+WrRnUu24aaVp40yTK/tSq1ySqijyt90+R12paNvWuzBNiFwUi0M19igYKoX0eTZ950wii5rIIhlZzKK4UTWCEsDJn6irh7RuL/3bQhldg1KUEpQA2toN0mlYjpYnKhWnfssTlAB6QjrzSZm5ZGXZ/3Kp377nr4+s3ZfUSS0F8Dba2xd88s4v8vs/eQxJkkil7NslybTJJOno6GBmZoZ//wf/0faHAyhO6+BWy5gVgyW2cJ2VORWfA0mS0BLVLOzah3A4rZujRuYavttNXDMUr4yZNYXfg0ORMAFTFxtgii/XXlrwvTskaxgJErgUn4xpiH+/euH0K5iGiZ6+AR6HBE6fgqEaZDXBiV4a1LRZx+mVMTIGWcH37nA5yGpZMXvkkFA8DvR0VvxZb+JFg6RIyIqjwpiu7GQpHgeSXGttuNaHQzhFaTGMoIw7a31MWvBj/uXv/oHZ2dmbh2UvUTidTjo7O3nL294rVM/rtvYRGQ0cmWtQazBNrqcD5ml0oWeMyoTFCk07fTK6lsWstWbcNLnXD05weRXUhC4WnHDk1lJB/8nhkXC6FTIxTYzMLmHd8BLkZTg8DpxumUwdKbzqgTOo4FAkMos3pj3F78ChOFCjoh2D1aeCS6LTLyPJEqqgsoLksuIqWcElSvE7kLjOa/dN1AxuKT6ZrGGSrbR/qVDfHXKS1U20RK3xcg0BQkmqmeqqGrKNWXy6A13Kogqkhcxk0vzl/+/PGBwc5MKFC3W3fxPXB9u3b+eFF17gPb/9cfwh+wqDPrK4JFgyHbji17Bfr5Vmoxay1dt2Bx0oTolEpJLfZZb1nRS3hMMJaryWY3WNjtc1+23/ezt+7qB1EVCNi40T2WXFvLKqWP94Gp2YhilMbpVk60BENGOft8mJoWdRYwLf7xpeub/NhZ7JkhH1heqEt9mFntLRklmh5cuhSGSN8nOzciXwNrrQkhp6WjD26HVgZLJC70+SwR10oiZ08Zje/6cgXZPrUquywwlOj6O8AoRUuW2Xz4qRJhaqzAVHfYeTeZgOB4an/phXqD0GcRcYMoTEDuM/95dfYXx8/KaK5UsUbrebjo4O7v+IWMyrPW2iSrDolnBG6h9bsmoiXYPrJhkmUpVYfygMmTSkK/EPsoC5dt3zBkBLV+WQF+rXC9NEupZUiBX8RoEPuJbK14ja9kxSwNsgk1o2MEvfQ5XqkgSyR7LWX4GvqLglPA2WLRbyoSRLXC8r6M4oHglPUCYxr4seU9YFT4MDl9/B8tQ1+F0CBCG3HxS3g0Qk15mmaau+JAGOstOyKjwBCYdTIlmaxrAGHE5ridWrxbzKzDV3UEKSJdJLdtp7EfZo19F/qVn1Gohh5jXWL6dcWQyPz7rXXZbk6ZAw5fJth0ImhgHxeOVnM2WJrFL/s2cV0MXFglewsf0qiZlWZE8KT0jsMs8nPvh37NixgwMHDtgqLxyZcwg6pdksSNl8Pft1HU4HkoMbRsqwNuwmjqovfu3fZKcDJHHD5XA6kCQwKjCt/78Kh9MBpilMHpEcVq5ys45Ys4RFYBCrY23wHIK35WW3A0zx9y5JknWwJ9ieJEuWikQ9a5Ek1deeUd/CJzkcOBTBAIpHxtCzwiQzqz2pxnwvgyw4ZME+cVjvT1YkzKxYe7LLgSFKivp1goTwd5Nk670JExJzhFLRMZ3VTdBrrQ3XikI+Xtlp/WiIXEQ0rfN3CbChmr265Rf5BsBNvLiQJAmHw4Gg2UHTrT2M7BBb35w+B1nDxMjkBpJZcuviRYYa18EUt6sOlwPFAUbNZ1v9d6dfQVezmDXyRK9tsA5C7K8LHBKKR0ZP6UL2WFKknD12gEOwbwwTh1PQ73I4csEXSUhWWvY4kJ2ysBKWJOf8PMHnzPtqWVH/PteMcL/IkrXxFRzTUm5fJtqe4lOQHKDFBQNLsrXOCfdnjifpECCBADgUOff+xPpFzh2eCF9C+HWBlHO8BKes4lMws9ky/VL9fcouBw5DnHeh5Q7ga64N1+LDSAVb4nRD1gBDYFhLkoTqMDGRhHwvhy6t1L+Jly4UByiS/RerYvniimTWimOugssFsgKp/MGVJF3TYZMkV0+3oSdNdMlErhAsBQmzjIFw+mQcMuiZWpN59ee6vJavkLFD3CoKvlv7Z2teiuHXY165/A5ME4usIgDZKWEiCcdM8gddovtZyYG1Bgvun71NClnDJLMs+AIlcNQRg5LdVjxW9HAOrO8oqoaluCWymlmLE7i2LSkXgxJpT7LUWbW0ITRe8pkY64mxZTWrnsgdKodijU85F88VeU5XQEZLGnW9v18HOOQSW2ZjGsouizSUWS45OK7hOzg9EorbgVaGmJaPYZeDoYKhGchVbISZO7StF6YM5NZVt8PE6YC4LmCTdAc4dVB06/8F4HA4bvpdL2HkY16KYNwpqlj3ZhTTRGTZaFQMNBMShuWwSQo46jhTKMCsyt+LLwNmFREPB2Vl093enAhKLU5eid/nD0lkUia6nZiyCVKubUkWP9vM79V/dbA3ryUF3H4HmXhW6DvKLmvNV5zSWve8RtOmRhV/uzwcsvXOHYrYfsDptchGsXldqJ5DlgrticQCZStuZQiSoPP+fbW1pmw9xXpGI22PZFT8nKvbs1fX0yAhOyUSC4IxNtn6jqLfD9Oae3LVM+21MWnF5cAhg2arvcIBnNNn+XjqtVysEcaNIylJcs4VzXPTbNb3Bq1LAZlSQmmN9cXts+JIZfetEpgV4uXxXLIXuUo83ayQWd02nBJK7r03G1kyQFzg/CWrK7galsGRJavXf8HPDmx/eiJhyab/nx/6Rx571TvEWplenT7ETNSWL+u+PURjv5/j/zqJWUQbrpXubdObe/B3etj/50VpoESv8FTDi3RYt/U9gyg+mYN/JZauavfvrkd2yzz3/5wSqrf9g8PIbodwWrOt7xvEoTg4/D/F0pTt+b0RAPb/N7H0DHt+bwQ9k+XQX9+YNF4b39xLelHl4g9ujPR178tbSc6k60o7VQ9u+w+bSM6mOfLpi0L1bv8Pm4iNJzj22cv2K7ngjj/YTOTCMie/UCZx8osNFwze087c8UWhNGP1wtPmYuTV3Vz66Uzd6QVF0L6rkaEHO7nw/SnmDkdt1+u/r42uvS2c+so4i6fss1y7bmum585Wjn/2Aolp+/3Zf38bnbvCHPz7C6gR+/U2vKGH5o0h9v/3k0KOUf/9bXTsDPPcn58SyWZXGdcarKiQ7m3ktZ2EBvzs/+/VbZlUlHLE0Riie6ebYLuTU9+t/e7O/E7/6s/qFRuXZ+7+J770WTfukrQnN/HSgaZpTE5O8l9++3Pc+06xm2We8aXVv4gslSu2CiMPN7J4Kc3ciTRmcdqQGrcOd/1WP3On44z/pJDewU66t6p4kXy3vN/oDDnZ/q4+rjy1wPTzS7br+7tdbHvnIBP7Ilz+sf1Un74OJ1ve1s/4k/NC7QV6PGx4XTeXfjzL/PGY7X5o2RJk3au7ufCDKWYP2l8z2nc2Mnh/O2e+PkH0wvVf20JDPrr3NnP2a1fRktc/ouXvdhMeDnLlSbG0WPViwxu7aVoX5Lk/F/O3N729l4ZeP/sF6429qx9/m5dnBevVi6ZRP55GF1PP2U9FeC3ou68Nl1e+YWnmtn9wCMkhcehvxfY9uz+2DkM3xepJDra+px89oXPiCyJ6/rDzt4ZIR1VO/EuZVLRVcOvH15OO6rzwD5eE6m3/4CDphQynvlxey1q6hpv19URdKqV72/GeTpbG01z8UfXxKQUL18mMtiY23gILUzBrY/ty9vdW5xzubluy99A5/Kn6Hf4cCASu4UrbTVw35H2X33rkC7zth78nVLfh0ur1OnC1diqhcKtOcyucPaEgxwvXL6VU9U1Oz5hCU5fM0e8X1VGLfLV6FJmKY26iCujFvkqR/zd4TwPeJoUTT9RIzVOS7m3ja1vxNMoc+edpe+3n6q97qBl3UOb4FyunxyqHoQfCuHwOTn1NzFfY/KY2HE6Jo58XiyVtflMbZtbkxJcFUshXgB1h/N47QhiZLJPP35gYVMsmH+qywfLVG6PUu+sD3SRm05z+hlh/7v5wL9FLKc5+R+y97/lIH4sX41z4gb2UU2VhN90b0L49QHQ8TTqylsXzYhMvFA/03x1m5ugy8cnrzxoKdjlZ/3Ar409FiZyprY6TH+/hES9D94Y59/0Fli7aT9vWNOSh945Gzn1vnuSc/e/XstFH795GTn59lnTEfrq3rj1BuneHOPqFadJLRXa5hu/TMuqha3eQE1+fQ8+HhYp9LRE2LCAVpyspk+6tFiqle+taD6098MJPq9fPtBVSjCz3OunyqLR5dA4v1U49MvTu1WcKm4Nie4L/1HqCL/6DgnIN6pk3cX2hqiqxWIy//c3PMfTD9wjVdY67LZa43/o5OF61OACjgTRLqoMZ1YVrubCGumoQa7ePpJlbkpmYLcwHpUip31FHJopCujcHUpXUb+Ug6UW+V541K8PGOxVmzum108UV+YqKw2Drq/1Mnsgwc8qmbcylexu9z8f00QyRy/ZtqsudZejuAJNHUyxP2P/e3iaZ9ff5ubI/yWK+PRv2ONAmM3i7j/H9KeKzxrWfA9TY+3pC0LLOzdSJDMYNyMLm8lnfMXLFuCEp2Dq3uOjY4ObYt2NC7XVvddO6zsnJH4jFHXt3u2nqdXLsh9c/XgngbQK3X2bpavG6/SL6WyW+e3hAxuVzMH3CxsXKerJUlaR7G3qZD8UjceaHCXv1c/Zl5IEgSNivl8PA7V6yOozvSwn5v8N3ezFUuPRczs+zWXfTK73oKZOzT6Yxi/2fGvWHb1FQ0yZXjhTeu+lUyA9y0ynme5nuQvmsW6wuWClF81BDhfo7u1IsphxcXKx+lpfodEASSEKiO8u2dIZ52cGEs7Yf+NGHvrfy/zLQ6xTb8zziWuYPPgJyjRR7xbDtpblyAcADR1S+88Mv8PAr3myrXvcGaHtFK4c+K7ZhnHg6ysTTaw9ZJIdUlaikq4YlhZuHzcOd9a/tItTr53lBEk+9OPIZMdJIHleemkPxig9sNa6hGOL16mVFRy8my97CqwVRUtO1oqHfj7fVfcNISld+WmcgykVdhIwTX7hMKnKDJG1Vq73EZB1OQz3fT6X+91ZHe4F2D/5OLw39vhtCUpo5sMTMgSXhestXkoQGUiRm6xgwpri/oyUM61atKtbexPMLqElDmLl9+UezXP6RWOD5WlB1bSgJLplZc+WgzlCzNaXOpTLkoImDGUA8oHtXKkHgQpbvDtmz82fu/icA5ufnb8pev8SRzW0IfvLPn7ZNVNq+OUOyWWb8kNgO9cx3lsr/wemsSlQy9KyVCjOHNQcmFZSIdnywn4UzccZ/urD6Dy8iuTzvN2pRjf1/IUY8AEjMqlx9doH54/aJP2DdSNWSVVLZVYBp1qeel5xLs3wlQWLGfqAeYObgEjMHl8QbrBMNPT4a+vy4mlxoSUFb5wQEzVViIkNios5DsjraO/+DWTw3iMADcOqJSdzBOoLu+X2p4PdbPJ0AxIIS14LwugCKp479S504/Kn60m8tnk9gCAaWAevWXB3zXY1rK2pDIhj/5byVMlEQhz9V377VFszsGn+q4trAaoISgKmqK0SlrG5i1FB6KSYo5XFyn+hDg1PTeGgSpnSJyS57L/HJsSf40jet/r+ZZveliTx57MqEzrHf+Ru2/MWHbdXrQWW0V+XQFRe6gFh5ZE4hUiY8YHpdVYlKWd1cFfNaRVACUOSyRKWuMRdN/S6Of6vkMkTNXCICkAoqnBd/tly7fKl/KDmYPLiM02cziF1UX43romf3FuqMeS1eTAmr8ADCJKpKsENQAggP+9BTxg0jKc2fqDNWkp86gsPx5BMzVvrhG4STX50ivVzH/lnB+m4CBzQAM4crX14yTbMyYSbfngCcQYXGAS/xmcwNISnFJjUO/kN5AnQpisd7MqIRvZwmvSj2jPlM5qL3Z/R0FjWpY+TiO1X7vQiRsylM3SRd6rOV8X2KMX86zfzpoj3dtZDBS6Fqa4hKnZudhPudHP/O2rlrlpSVEukCUSlbW4WymKCUx2TaxWTaVaZ0dbSd9UN6EG6355f+p9YTAEQiEQzjZgrolyokSULP+SEXXvEZ20Sl3fM6aQNOy2KXLk/HPWV/rzbIVYlKuiGtUtBTSkhJWY9clqi0YcxgaRGmr652UBz17B0rweGwiAQGnPy5DbtY4iPqWZnxQ2liczafKd8RJmgJU9iNNKhzD5wyWLyskSomfdpI4RWfNTj6tZwPdJ0JSgCegExzn5PIJY1kSjC2KSNMNFKTELlU53iqo73ZMypLV9UbQogCmDySYe5snbfU6/h+qUVILd64NaOxy4mnwSZJSXaIHdyVTjRJ4sIvBPz0IqO3OK7W54/UGfPSUiZ6pqhiNmvLh544qpLVzNUEJRv1z+9bbcgsgtKLA0fGWENU2rBRZ2lJYnpq7ea1mKAE4IoaK0QlIwtGjUw9ic613/MFj7hAgWGAum+E5eHzNHTb4zS8PrDM9LSBaZorfCI7kEybO9u+vj6uXLnCn/7HJj7+4WYAW0SloU0ZWtb52PeP06tIAbXUlAKdLlo2+rn4g/IdUEtRKVeodpkcNryxh2CPj/3/3SZJJtdtm97Si7/Le8PJNTexGrd8fBQ9YwgrU9WL2/79RjIxTbi9TW/pJTGfESZZ3PaHm0gtZDj8KfED1npw+3/YxLKoklKd8LS52PXB9cwdi3LmCfs3wl1hFxse6+bKL+dYPGNfMahpQ4BNb+xn8rn5G0JOsxSRurjw/cm6SEc38eJgwxt6aBgIsO+TORU6mxuTimtDlaCSHUWBcgQlgLZtfuSgj5lj1R3wUhWlh5NxfKbJVzbUjsznCUoAcqdlw+wGuW/ixkKSrFSm+uTwyu/sEJVu25YiGc1y+smSTU4NNaX2MS+ZpQyL5yoQXWwQ2qqOpRLfbddHBlg4k+DSD4t8PRu+2+6PDTN3YllI2ciW3/hSxoupCvoioGNXEwP3tXPqq1dYOnf9SSsDD7bTtSvM4U+fIzlj/2CoadRP584wJ758RYiQs/7RTlq3NPL0n50UJvLUg7yS0rP/t5hSar3Y+t4BvGE3z/3ZaaF6vXe14Ak5OftNsVvMOz40jNMvs++/3pj90vYPDuGQJQ7+zY3xm4VwTXrNL22U+j+7PjrE0oUE579jw98u6peyawNrCUqr/mYjAFKOoIQTusfczC36SNUwZcUqSv60xiOTcLIB5jfVtoFPjj0BwP/9lwv8hz9ZZOfOnRw4cKBmvZu4sXjta1/L1772Nf7s/wrze78VBrBFVNqylGIgrLNv3E26SAq9lpqSx6PT3GAwXYEfWUtRCcoQlIpRcgjVtd1NeMDFsa8VkVWqnCzlFZV6bvXR1O/h6BdLblFW803s7C2q+WZ2/J5fd99OEFve3EbWsBSYbsTebcd7ulDjujCpqu9lITIxoyq5phx2va+LxILGqSfqvNgnmH+tXiWluqDALR/qY+ZYnMtPLtmv5oGBu8PMHIsTq6IeXkqY8TQqjL21g4kDUSb3XX9yWrDLyfpXtXL554ss2FBEEsVLNVZhS1GpWmzIjk9YrX4JK7Nrl4+W9R6O/Jtlq6XSA7piFJGPura5CPc5OfbN1f5MKUFp1d/85YkexShHUAJoatDR22UmahCVSlWUuo824Ik58Tx4rGbbeYISgLd/HFVVX7Lj6P/rcDqdOJ1O4he6V35nh6h0/wWDmCRxUPau+n0tNaUWl4YjDkvp8gfQtRSVYC1BqRilRKVN2w0WIzA1XpiP1QhKeUWljbdJLE6bTJdw8lYpKJXCzjpYRW1TsqPEWa0NO36ZaK5Uu7BjjwUJSpYCk5eLT+cUmF5MwmgZhAdk+nf7OPWjGKkl+/W8jdA85GbqWAZDgMvTNuqke8zDkW/HbojiU15J6fBXxfzDeollA7e4aehQOPINsXhluE/GHXQwdVwTan/odje+RpljZQi/ZXEta5KRZehOr6WI9KMK7VX7fFv7tCpzVZBwL1y3qu9Tu/4agpJo/SoEpVJFpQ17IBaBiVzo0ayimlRMVNq0RWdpUWJyYnX5UoJSMYoVlSqhHEEJDHplg/FWiWQNdaNiFSVDhfTPt+IcnmJ4tHbs+PUB64LSvkMpbnt4gscee4wnnniiZj0QyCjc1NQEwLHTBWv3nR9+oXql6Tku/GSZfX83vUa1RPL7kPyVpT07dzfRuSuMK1zeaa12COxpdQkf5pz60lX7BCVYMVBqyiBbzUGogG3vH+K2P9wkXK/nnhY2va1PuJ4r4CA44K1dsGxl8Sqt20N03hYWrrfzY+vY/TvrhevFp1PEJm7AiprD3IkoM4fEb8o3DPhpWh8Urjd/MsrUwbW3iWthx0eGGXq4U7heXXDBrt9eT9dtzULV0ksqkdNRZo6K9ac37CTQ6SXU7xeql5hVWTy7zPwZGzc7XwSkIiqpSIbkgtiN6f772rjt328k0CvGdA10u+i/v0183tYxz8EiiwW6xSt33hZmyzv6axcsQb22U9eyZPMbQQEHt+zaUCOYZGZNXAFwVcjkUYmgBNC7t4neHZXXxjO/07+GoATwHV+AL/uDmFeqS2YXE5TAujHu9da5NtzEDUFpMO0n//zpquU940sc+mZmLUEJINxo/auA3j1B+m6r/HcqyII6fda/moG/Et/twF9fKhxCm1nbvpuhZjEFfS/JIXHbH4yw8U3dtQuXYOObumnZLL52+zqcOGur2K+Fk4LSTR61gthO6L6jGXezmIR/aMjHrZ8YpX1no1C9VCRDYjaFGrv+6VYBFk7GmD8eRRNUgQn1+Qn1+/GFxPpl9liUuaNLwgSlrtvCbP/gkFila8DAg+2MvXtAuN70oUVmDov7seGRII3rxOfCzAuLzLywJFyvXsQnUsSuiis57PrIMFvfMyBcr31nI02jNvzR0nksnnEDsNJQ1mNbRl7XRceukHA9u7azlAxqqCaaXTW5ojVg1dqQQzWCEliKSs4qX60sQQnwN0H3Vh+tVbbXZ3/PtSbNW8Lj5N+GnLzQ4mRitrHqs+UJSgAvnLbmT3Oz2H7pJm4MOjutffPFKwXizrHf+ZuqdRouZRlfcvPkBf8qghJAvMdDvKfyQW64Dfo2OvA1lP+76a28x1I8NQhKYCkqFWHycKZAUNL1mgpK+XmXzZirFDOth6vhh0kSQ/eF2P3e9vJ/r3KQ1TziYeCexuqfX6a+4gFPc523XuuoFuxxER4R30dteKyFLW9pE663PJlheerGHbTPHI0ze1zwIAkID/kID4v3y9QL9bU3+mgL3bc0XNuBiQA2v7mD1i1iMSh0mD4aY0GQ2K+4FZoGfQS7qhNCSseEntaZPRFj6dKNiZFqSZP4dIaMoMJUeMTLzvd1EugqPwFN0yw73p1BmfatfvF5W6958IAnvLZyrbkYGvIwdF9T5QIV7OjQvSF2v7+j9oF4drWPZWomRk51oCpBCSxFpdwaMvmCKkRQAktRSVGgUha1SgQlgP4eg42hynvIoXefWUNQApgYW+b87Qscj1WPcRcTlAC8Xi8eT21S1U38aqAoyoqSUh4XXvGZqnWc425+rvjWEJQAYn3Wv0oYDaoMhCvbKrWh/NyRZQNZNqoSlMBSVCrGicPyCkHJoRk1FZTyB+C6ZlIqAFaVoATgcLDtQSd9WyvM/yokpJ4xhWB3DbtRhrTg8oGcd1er2axsdm19UfVLGcIDTlzlluAq9tgVgLHHgjT1iTWoJg1iMwZa+voTlADi8wbTpzKogmEMb6NMc78Tp6DrtTytMXUiLURsAmjolBm+yyv+/uqBJNEypDB0m7gKzMIlnamT4urFoU6FcJ/TOjsSOD9auKwzc0agM69F1Ut2EJ/XLfJcOVSZD+tf7mP47irBpHJzFQh2yfjb5EIZ289q7/NXkJtrrkCRbSmtXwWdW100dlfZE1Sov+0hF307lZoKSqWpOQ29cJ+7GkEJLEUlR075+8QxRYigBOCKqrhkg0ryYOUJStaR7xZvmt4qa8BHH/reKoISWP3vf8URXENzXNGq8zzyBCWAI8ctH7KhoUKQowxsu+gDAwMcOXKEY6dWL+QVU79NX1t+9Us/m2H22BJqpMptkTKp30Ze20nrphAH/u4c6XrSHYlAkjj3dXvStKWYPbZEY5/gxhZoHmnA1yxumDe/cxBPo4tn/vikUL2dH1uHO+DkmT8Rqzfw8nYcTgdTz4jlLEzNZpAUcSN94vM2Eg+Xwc6PriOrmxz+n2I3ret97/XekD/7RK1kwuXh8jvxNNV5AiLalgucPgVPkyBhRYWTX7SvoJRH9FyCp//LidoFS5uLqJz4tyvC9dr3NDJwbwdnvn6VxVP2g2fLF5PC4wus1D3pZQ01IRaE7L61jZbNIaYOVrefpdj0xj4aBwM8/f8X69PRR7sIdvuE30XLaAOBLvETtnpt58qcvVZpV5sKCFvfPYzDJbHvv65WW6tGUAI4+cQsTj9A/cQh84oPqbdoV6OqfOsP/ycjT3kpZaN5PJ6bJKWXMCRJKhv8rJT6zTO+dE3tnfrGDJlEjc1GmdRv2987gBrXOfwZG7a1Quo3ERyqM/XQwpk4kTPit4kbB/0Ymsn8cbG62989xPypGGeesO8zOH2w53dGmT0S5dy3p23XC7R76b+7DdkjM/5j+zfetYRGKpIhvSTmM0cvJjl6UVxtMbwpyPArOzn7jQkhBabYeJLYuDjp5NIPZ7n0Q/G0KtELSaIXxNtzNThxBW6M3wXgDTlxN4i3N3tQLH1hHi/8Q31zb1JwP5DH1vcOgAlHPnNJqN65b4kpPeWRmE2ji0qyA/0vb0eNayyeFksXt/d3R0jMZTj6j2JzaeztA8SnUhz7rJg/Gx4OoHgcTB8Qe/8Lp2NEzoofHB/+uxcnTVwtghJAQ7+HTW/oZvJAlCtPr76IUImgBJCYhZPfXyYdNSBQ5SCxBiZmG+luW7J+0DT+6hNf5KN/9iae3PmtVeVm5luB8RUyzE28tLBx40YAzlxY7edUSv3WcOnaboMvnDFITEGyyt2ZcqnfOkcd9GxxceL7Gsla5rVC6je7kGQHk4dTTB4WJzssnE9hZMr0UQ0/sLHfQ2Ofh0s/Xy5/iF+h/uB9zTR0uznwd2Kxmg2vacHX5uLg34vV690bwt2gEBFUjonPaTg94oSa8V9E6yIobXisFSSEFYom99d3qevwP9W3BtfbnjukoOXX7nzKm+sId1DBFRBkuzgcjP9C3PdKR3X2/097sbLiFGR6Gi7/XLy9YI+L4fubufjTCNHL9g/20ks6Z74pfqlSi+sk53U0QVHW1lEfPbc0EpvKkJyzn2eob2+Ijq0NHPzMFXSBDNm9tzXRujHAvr9Z63dVTP3mkGjq9xAe9nLhx1UuBpRJ/Ra5mMbQxef61JEUU0dStQlKNVCLoJTH6K3g9sLBH63+fTWCEsCpszKKE7gGvvbxWCebg0W2Rtd588cPsOGfvZQedXk8Hvx+8RjiTdwYuFwu4vG1+4xKqd+c4+JnYsU4MeGmVqa1cqnftq3X0HSJk8dq2/+1qd8MRBgdplPm7PP1+W6zlwwSkTLrYA1fsLlPBgmWZyooKlVYWze9MsD8RY2rh3Jrhs143443h5g5mWbyiP21RnZC/60+Jo6kmRUgnxiaRGLeECb/qHG49ExKmKDkbYTB23xcOZAhVolEUqG9qRpZFcohcskgckl8r56OwnRUXDbc6ZXwBB31ZFITQ25tdfkl3EHxdS02axCrI8Pyxecyq9q3i+hEfb0xcKsbhyJx4SkBxwSYPWuAIf7+EguGNZ2LUnTbQe8uP1rK5OyPcnFxm+nXtrw6SGrR4PyTNiZg0VwbvddPfM7g4jNl+qVC26Yi09KnsDxrsDRRQ3WupP7sBYN4TPzM8OyhXNs1CEr/L3v/HW7ZUZ55w7+1V9g5h5Nz7NPdp4O6JbVyQiCBJEQ2Aptog804YY/Hr+edmfebzx6PPcbGNsFgMJhggi0MCAmEBEIot9TqoM7p9OmTc9w5fH+snc4+O6zaklry+/V9XbrU++yqvdZ6VtVTT1XddT8bkWsrhTq1CEqgi2Be0RHh7LzG2PLG61UiKIGuHfTEmp3YGiB+bjuPiwkfbWrR4kMqxa7/OU73/3ZS/CwvHPUBI3g8HsO/bTjd27e//W3e8573EPBJTB/t2fT9BqJSEUHJ2aqx5S0+pl5aZ/SJyps7xenfMoLJTIuJSq5OC407vZz60fgm9aZq6HxDiOYr/Rz/7kWh1FEA9gaV9alLc5K8XgSHXdhCFuE0Yy3X+rH6zZz5gdiCTU61afUSndzx9jtQbDKzB8Um4sMf6iKdSAunNeu4LUQqmWbssUsgDQ303t3M2lSEqefET73Xg0uZ7k1zQM+drYzvX2DlvPiGoCjsjRqt14Q4/9iMEIknsN1F122NnPjeRaF2bQlpeHscwoS9eqE5wNXlYu6I2CJfYLuL4JCb498W2/Dy9jvw9jo592B9i5GXCppPg0SCuGDcfuUnByCT4blPnRJK0dK8z4vZqTDySMFH1CIolcLkKUgClFNPKsZ71ldZlSR+ZCtsxOWISj/7xF/RPrdEul2GZ7s21JObzmA2m4lGxYLhy7g0UFWVZDJJarK37PfFRKVigtLW2zTMdokD368xcS9K/5aJCcYxRUSl1uu8RJfizB4R6GDpDHs+oY/BBz4vtpGt2gBVJVHHhDqHS5H+rePWIAun11gdFYuF+t/axPTh5cokmQqnbr0DdtYurpN49YdSUKFhu4eFs+tC78HdZaPnjiZOPzApRDqyBVSargww+uTcy3rvRuHushHa5hZOa1YvLnW6t8YrvGgeVYjQ9nLQco2fTCYjTFYa+pU2MqmMMJk9sM1JbCVVF7GtHthbzGRSGcKV5oMV4oeuN4VYn44x86LY/KXtBj9rU1EWT736qRbrQU7x2OxTiS2I9Vf/kIO+tzQx8rM5pl5YNkRQAn1caLkmwMyRZSKLhcWlagSlckiFCkSlUvWkYuyZSdC/Cg80w4q1sJnXElriy7/xT/SfnyO9VYVHNsZvbTvPMzGd4vHHH+f6668XurfLePUxNjZGW1sbvV0KJ5/q3PR9MVGpmKBkUZLs64hyYVHl3ELleL84/Zu8Jnayt5ioZLUm8HepTJ9IGN9oT6bwdyt07rNz+tFlVsbE1twUa5pELsyrJwVt8bKjaAxWfL0qdZ2tGraAyvRBwbQOfRasPo3xZ8XmzxafAhJE58VsWS9sQRnVrrB0Xmze1n27D0mCsz8RG4ODW21IksTMS5dmrGne4yS6khQmfZWFAaLSJUv3ZjKBAu373MyfXGd95tVtL5IkoTigcdjN7NF1YsvGr+doVOi4wceFxxdYmzJeT3GAq9nKwrkIvEKPV22rQrGALWBmZUzMjzqaVQJ9dkZ+sSRUzx5ScLdbmXi+8p7GBqKSqOJGcZxYj1pHNu2b4gApKdcSyduErfe6kRWJw99fN0xQAvC2gtkuMzlWqFOLoFSKlbZC3XLqScXoezJAzJpkdPdS/m85otKvfvhJevbPk77OAt9t3VBPbjqD3W4vS4S5jNcenZ2dXLhwoeKaVzFRqZigdEUqgj+T5mGlOgGtOP2btiIWfxQTlZqccRIJWFoyvhFtiqbYukv/jePPCV0aWQYpncqr3NRUUSqH4rFQkLC+gahUZUz1dyuEF5Kb05MVx2tl6jduN7MykSQ8L3ZfNr9MbCm1SWVqA4r98cs8qOxsVggvp4TSoWkO6NhjZfxIjPC88fcmm8HfpbJ0IUH8Emynmp3gbVOZPZmobs9XCELp3l7uAXPA2ShjcUjMnhEcFOu8tqdFxiTDwqiYMVuGVSRZYuyAWExjD5hIJ9JESkmJogcaMtX7ag6aM5tVarXk92sQlYL9GrH1FCvlSFymyvGPr0MmtqaTqiqiqH7VFG+16tZQTyqHnOqdZoYYEgIJy7Da0wxdAefPmZiblQ0RlEBX9Gv0pVlYNrFcpLhcjaBUDusthfdcqp5UjPiFAPFjbVivOY7sLsw/c0SlvX9wns7vL5J+hwP+rjH//ds+OMH3fxzm0Ucf5ZZbbjF0T4af4N577wVgZa18Q8+nfitRUFqdiRNZTLI+Y6yj5QlKGuz+zW5arq19orE49dvK+TCnvidGUAKYP73C0sga63NiFbtub2DnR/vwDootgNobNfrvbUVzXBpJ4tnDK8IEJYDxJ+eFCUqgk5PqISg5WjSCw8alwHLofXMz3W8UP5F6+Mvn6yLiNO720bRbPJ3dnt/tY/hDXbULliC4zU3TXvHr/UeAJWjDN+AmMCSWfsLda+eq/zxI45Vip569gy4CW92428XUY+aOrLD/r08Jt+uO60J039ZUMXVlJdTbF+JrCBOUQK8jSlACWDy1dkkJSh23hoRTCgLs/HA3O39jQLje3LFl5o6vCBGUACaeXuT8w4Xx0ChBaeeHW+i4SW/T6SXjm5bzksS0aWNAlkv91ja3pN9DSaC8kCXpyTXy0V7GawebTX+HiUT5Td5c6rdSBaWVmSQrs8YnRjmCUvv1brb9SoW0HKUoSv128ZcLYgQlAJPEzLEVpl8S91c7PtLD9ve21i5YgsY9bpr2eoTr1YsLj84KE5QATv37ZF0qPosn6yMo+Yac2AJiajyOBis9b2qiaY/YGLx8PsyBz54VJo+4Ohw07PQIj92Ne73s/b1+bA1izxfY4ia43YMqmCbuPwoa93hp3CmuGrPt/R11pbNr2uujeY94HHvsXy7WpbbZ86Zmut9k0JcVoZ6+ALA+HqtMUKqC8z+eESYoAVx8fP6SEZRUt0r3HSGhvpBJZwhsd7L7o1007hGL78MzMRZOr7N8IWyYoASQCMPII3OEpwvjpRGCUvMOM9vfWkhhKM8YOxAyZ4YFDVZK1pPGZzz0jugb3tKxzWP30oq+IHSZoPT6RGurHlvMlTuBTiH1W6mCUjQJSxETK1FjbbaYoDR0DTQYyIBdnPotugzjBwUISgCKzNpMkrmzMSHSAoC/X2Pnu4N4OlUhgpLigJa9dpTirlgPSdzgPGx1LC5MUAJYOB0VJigBRBeSdRGUzG4Fd4fY4ZVMJkPnjT66bxEfS889vCBMUAJo2u2icZd4itet7wzR/xbx+XrjDieNw2LrqhVxiVK/1UT2PhQLNG534e0TU3OxeBR2fqCJwBbjxI9MJoOzwULTDicOwfh3bSrJ0e/MCBGUAEKDDnpu9WNxi23y1NMXQFeKEiUoAaxNJIQJSgDrM8mqBKUNqIdkVOJXAwMWAv0C6cmyad8G3+hl6F6P8OVnz8SZOxsXIigBLI7B1MnCmoNRgtL2wRjtzXqM5LponMy+6oux7t0Yb+dSv3Uf1JW8pGfLD4y5dZXLeP2hpUWXdVheLr9+lUv9VqqgNIvMlGR8LTNHUGpyxtnWaGyNpjj12+ysLERQAl1RaWYSZupYMh+4Avqv0P2JCEHJFQJvc8kf61DUNLrhP3+uDEEJCr6wAulh6khMmKAEEJ6vQVAqRhHZxB6Qy6eJqwLZKtF7nQ1/h5hvjK/B6cciQgQlAKtLpmWbBZtPrJ05G2WG7rBhEczq7mpQaBqyUCZr4muLV4CgBBDsUmgcFI8xWndp9N0gniI01K/SMCCYXQYYP5wQJigBdOyx0LrTCsVrJgYISpv6gkF7x1czmwlKBjB7Kl6eoAQF/1Amdlq4kKpOUCqCMEGp+NropNCGLtAE+oKUSGFzwfbrIdBYu3wx4gmYmjSxtmpMQSmHVEpmfFYlEi88rxGCUqMcZ68ljJxVcLKPG1yzcESQQ8tg3Rhb5VK/dfxsCQDpJxvn3xcu6vOIG2+80dB1QCDdm6bpnazCPpn+nc+GWpqZIg5Hvl37ZIpkt5FeK3qgOKg2GYvHWOeWTBKZ7Cg19O425s+uMv38kqG6AKsjUY6NiG/QzxxeRLHLrAumlvP0OAluc7Myvi6kjtO0z0f7DSGOffuCEFnCO+ig9eoAR745IkTg8vY7aNzpEd4g6LgthH/QxYG/P1O7cBH67mnD4tGYPSy2SHTmRxOY6kgTpzlMaG6FtXGx9/fiZ08B4iz2ZDRNYl18IeuFvz0urAADcPV/2UJ4NsrhL70y6RaqQfNpXPHxXmYOLXJWIM3Gyvkw+//6qPDzpZNp0ok0yYhYUDv22Bwzh1eEVJRAZ8JrXjNrF8UCh/OPzbAyGRa+Xtcb9DRqs4fF0qj13tOMo9HKwX8QSzHXcq0fs0vl3EPG0wsBdN/ZhEkVT32567d6yaTEUy02XuEjnUwz8bSYnPj4s3N1+Yi8PQRJSlvf18b0wSXmXlrFZDUe3KpWGXNxDnRN5dTHS2eYm/HTIgUlbW2NF/70f6Km08imEj/VlvXJCvy39+4ERmlvr5Kw/TJeUwSDQVZWVvjuDyK89+3lJ8aRkIqlJOPpxcNpDI1RPs8GNSWzU8Eskr5AVcnE4/gG7QT6HZz6wbTxusDoz+brOo0/+fwiyaj4gkbL1fqGyeT+pbIpgythx4c7SSfTHPmqWGrZ7jtCJNZTXHxczF+13xIgupioTF6QTGXttv2DnSyPrDP6c7F0HoNvbWXuxDKn7jfux9emI5z58QSLZ8VZUbZGjcRKXIhQNfXCIvNn1oRVlJLRFKlYipRg6HX2wUlGH5sUJn313NlEcLubZz51Al59wSe2/1oHFp+Z/X9d/eRxKQ5++Vwxz9Aw4uFEXalmDn3xNCA+ButtJUEiLHbNUz8cIxkRv8/+u1pYm4gIH2DY+RvdTB1YZGp/mTldpfhBhb43NTH54iJrY8aZBqpbpfeNIcaeWRAiQXp6bfS9pZmzD0+xcMx40B0cctC408vShTALAv1veTTK1KEl5k+LdaLIXEJPkSmZhEhKoR1OHE0Wzv14lkw8jslvbCNfc5pQbRuvk7YqnP149WuPuFVGsgvBajjKc7/7l5gTuqORck0vA3Rl41wNeLEdn68ZFi+NMu5l1I/1cOXYJBpM4xop/avCixO146e1Vgv28Y39XbNJaDZj/ipj1TAt62tmrbs01ufTLI4aH+BiqxkuPCG+qLA8HmfypTBrc2IDm92v0rzDQWwlxdzJKKSMxXzuDo3OGzyce3SB1Ymi56sRt9lCCo07XIz+ckGIwGUNKgQH7Iw+syykAhMYshEasnPsX8Xirvbr3EJp6XLj7sgvFpA18UV4xQKKTSG6IBYMHfuu2LpADolIikSt9NFlcPgbE8IKMAA7P9hMZC7OyR+WrDu/GqnfFNjz0TamDq8y9uRS9bJFRKnkGsIpxgBSqQzJSLp82sQqWDwb5cWvjpEUjGPrbSszx9aILieJChIgm3Y5CG5xsP9zhfVmI3Fm824HrjYrJ74v1vd8/VYsLsU44SiLhp0OVKvM2NOVieXl0r4NvMWPJEuc+L4Bta5MWt8lA5p3OchkYO6UQIMxSUweiaBo4gS9mSMRUBSwiG2udl6hsDieZHkqSrTLOIHSomWIaIX3nLJK9L3nZM16U1sK702JJvm7X/kWlkgSu5wozLsSwJZs+mWrxL/+t0GgQEK+jNcf+vr6eOqpp3j4F2HeeXd5Yqzfv8ZKCUlpVNYwsjqz2g6Ooi0tVc5g1zIYTcEWd8nYZuI4HCl8vgyjo2JkzNlpGVNcfO1qcgQyGROiCbUae0woqsTiREofh+LGYreuPSqSDOeeLSlfYxwN9qmkUxnmz5Xx/1X8ua9bJRlLVyYvVEDnPivrCylmT1bZY8ldt8gn995oY/583DgZxCSRisGZJ8KEF8Xfn+aAVAQhhaK12RSHf7hKSpCvkkpkSEQyOb6qYcyeSbJwflVYRSnYq9C0zcLRh9aE77UetF1hxtUgc/RBsaDm3NMxZFnwBiWJZCxDQhVfSzr7eFQkq2Memg1SSUlXTRNYazv/bLiw7C+bDJMRu6+3sTad5PxTRWtJBuLl7hsdLF2IszAitr/ZuM3M8liSyJJAQ5OhddjM/PlYeRJkDiVp2zQH9F2tcfFInBUj2xPpNBmzhs0LLQMy0fWUkIpZLAoXz0usCJ4FScVNjJ+GtFkGAQ61x5HC5UgzOmVCW4bFQWOLulYpg8OU3jCapOxpfueGh6vWk/3rWP3nCn+Ip7jvV/ajraVwmxKQI62tZuDqEf3fThOrkUYslhkhUQRhLatafSUx1IF6bOPCrr9fw+xUmHihsjPJE5RkOe/Bn/0/p43fVzqT37Rx9+ipv0RISgDdb25ifToiVG99Ks7p+8eFrgMwvn+e+dOrRAXJTYm1JOm4+ETb2+3E2WLD1WITSqnVsMODb8CN5pggvmb8ulaPJp6nHRh5ZBqzR3zXRDRFXw7DH+lBNss8+7/F0muI2KIYooSMwvXqqsb6VISVi5cm1QXxOOGZKCuj4qcX63m+1ZGI8KZc/nqChCGA7je14t/iZv9nTgvVjy/E60r1dv7RSdxd4icJrV4NzSXeh5r2+FAssjBJyT/gRFJMgBhJKRVJ1ZVu6dm/OYHmqIOZ/vhcXWz8Le9sZWz/HKsXjL9zzQHudhvpWJr5Y2tkYjHDSkr7/74wzTaFAgD0f26iKlHJH4/TmU5xxCQT1zSuGLuINZlEYjOPQUrq28SZJDz9jL7Itm3bNsPPdhmXFjfffDNnz57lH7+xwnvfXllZbXFPEO/zRYu0KrT0mZgdTVf3r1mCkmTWyMTinH5QjExDKoUkywQHnXi7xU8nOtvNhLa5OfsjMb8z/lR96TNf+uZFYqv6oouI/0lEkmQS4uO+f8BFIiJOUmra5SW6XIWkVIHYZXGrxHzi/v/8o1Msi+awT8DMAXEFGHuLmR2/1s34c/PCCp/1pHmbO7JSl7ogUJcq1fLFdax+7ZIQlACWzq9jD9exo5eofvCkEk79m7i6KuRsKT7mb39fF9HlOIe+KEa2XzxZn8rQuZ9OEhHchEcFzaFiqTR/yaTLEpVsfpXgNheJaFKIpORo0PB02Vm+GBYiKWXSkIqlSayJrUJOPL3I0uk1wgJ2kUwSieUE538sruIb2unC7NK4+EsxPx/Y4sTRYObcj2eRNI3M6pohJaWRJyKMULBjoiMIQM/n0lWJSlvmEyyZYdKhsm10Enc4qsdXJeWkaEb/exQyRxKsrYdxOsWVSS7j0kGWZRKJ6v1kZi+E9m/8m8eSxKalmVipPE/JEZSSTjPKqr5ofvAR475RiuhKF1I8QbBXw+pKCpGUABqGrcTXkiyeM96nk+sw9mzWr1YgSpfD8oUEh78zTWwFwwQlgEQkTSqaLqw95q5nkqoSlWxBDV+PldnjGqtjxudu3k4rDdudzBxbFyJnaHYZs0vRV1UFXsP4/mXmTxlfK8sRH/Q0YeJjfv9bgljcKge+JDaGixJqcjj1gOB84mVeb+VitLIi/itNVErCyliU9akaN1tGyame50uspnjp22KHQHLtRZSgBBDa5qBlr4cj354S6gvJsK5Ihkkq5GswMNeaOrjGWsmaeO7+q5GVzF4Ns0d8vblxuwOLRxUmKQX6bKi26iSlPEEpnckrAiTCaSQjB+VycWK27uF/nUMVEXFQdFvMn4kh1aEi1nqVnYWRGOuC4XOgU0GSJJZWZcwzYcNKSvsPFx5usV8fM09/a6AqUUlZA9eClYWGCJih+cIigZn18rHXUlr/+xJ859/0jrB161aBJ7uMS4k3v/nNfPWrX+WBn65XJCkBuHbNs/JiQaVPTqVoJsUcMpEqG6E5glLMI2FeyjC6ZKZEiLwqtLUUSZuM252ksSHN+HiKVMr4xqvZmsLfDlNiZ/hZnNGVOgAyismwmtLZF9IF0kkiWVgHr7Ghm4hnNmZJyxEeaoyj/i6VVLwMSSkX90lS2Ws3bbUQW0uzMi7meCxumWS8xvhS+sySxMgzYSIV1Lo2oUjVZXVKnKAka7D1TU4mXooyfUJsbaEe0k94Ps3px+rLD1dPmrfwYobl8cQrlt51EzKZDfs367NJMqk6lFip4/kyGabKqCEbvlYd9uy9wUoinOH042KBYiR37inXzmWTofnWyNNhktHMxrq52KFKX7d6ZNbnSmKaGjGHrOl9PZOJlicpmTbGPzmYbbpviSyniCxVaWjZ+lIylVdTikchaWQamKubSLI6p3D4Zylj9bLIqDKpOMyczZAxC6qfedJoThOzgstlPk+KkCfN6JRK3C1jn0wbUlI6nzRzPlnYl1zp12366cdvr0pUSox7MFkSyH7dT7snIoSOr5WPvS4k839f9q8Jr3lJGYHjsLIsk06ny+aJfcO7P7jhczFRafcHQsiqxP4vVp5cbVBREvQgmzaa1LRwujeAfX88SHQ5zoufPVe7cBEG397C+nyMi4In1/9DQANNq58kc6nQcWsIT4+DQ18Qe3eNV3pR7Yrwu9v+gU5Mmkn4eppPw6QgTE7b9Zs9JFaTdaWmqwfX/MkQK6Prl+R67l47A/e0cu7hSbGNRA0cQU1YBat5n5+WfX4OfWVEiGzk7LTSMOwVTn/YdXsDznYbh//x1VezernQfFpdBK7XPTTY/t5ORp+YY/ms8QmQq8vG9vs6mXxxkXM/mhRWU5JK5CqNEpVyyJGUgKokpRsi67Sn0/y7amYtq3p49Px/w/xZ/VmL7yK/1v+f3Ni/sEw0BpOTkzQ2CmpTXsYlwejoKB0dHfg8JmaPb06xtO8PPrbhc46oZA/AtlssTJ5KMHqwSkxVpKKUS/lmGCWxWkZ09pfO0HNnkNA2Nwf+8QKxeeOzcXe3jeY9Xo5/R5wkDmIEpdcCqlutTMipQ3nq1cK2X+1g8cwa408JbEap0HlTiJkjS0LpsWwNKlve0cGFx2eESUe2BpXwQkKIOBTY7qLzphDHvnNhQ/qoVwtD97XharPzzJ+Lkebrvt57WpHNMke+Khbnmf0q6UhSWNlo+wc7ia3EhUlOLdf4ia3EmXtJbDNp+wc7mX1pubyy0WuFMjGEasuSxS4Rqe1SIBf7tFzjQ3MpwkSlHR/pxOxQeO7T+hxLRE0JFSRpI0HECFGpGDmSElCVpPSecwnCMvwgK///6z94jP/ynZ/q1ywql4+7/qsXfsuP3HQGTdOIxS7BsdPLqAs+n4/FxUViFztRlI2b4L3f3Bh3FROV9raFsakZfnGuci6JYhWlHEnJKKRIyUZ+WnBzIKv0tfPdbmIrKY4/IEY0bt5tIRFOM3M0+wwi8YgAQaksSq/1Ssdxir7HXy9J5lLBP2jF32fj5A8MqLIUwdNlQbPLzLwkthHYdbMXs0sRVqtRLCCpMolVsbnBwF0BkvF0XanpaqLMpsue32xjeSTC6QfF7FkTZTZsLB6F/jcHuPj0EovnBBqaAhaHQrTaBk0RckQZT7eF1qtcnHlowXBdAItPwddjZeLFVSH/Etxmw9tp5dSDJe/uZfTVepQ7jUBx6MpWryRKFZSEU76Vxogi9YvGqe6bHMyeiLM2Y/zlKR6Fnfe4mTwWZfzFGBlBNaWMfSObqjZRKXdv+n3nSEpAVZJS8IyN4KiTs1fME3Prv/GdJ/8N6T9nU+wW31Pu//8nQP/fL3F2JMmJEycYGBio9TiX8RogHo9jNpsZ6lc58ovN+W/3HnjXhs85opKWSnFnJswJSeOEXHmttVhFybyUax258an6xrK24XBHCiVsTH0pB1MsRagpRUcPvPQCxARCL6sdAo0pxk4Xblck7Vsu7stD0KdKpaosIoTfcnFfyfVlDV055tVAqU8WObBc4n/b95hZm0uyMCIW0wR7FZankkL7qbIZeq61MnU8zsqk2PU0G8RjCJFkbH4TbTstXHg+TFT8/KEwWobNBHtVDt5v0CgvM+1by7CGZpM4/4zYnEu2SZASb58dezVS8Qxjh8QWdzytMqkErE5nX57Bvtqx18zKVJkDKyLzrtJriRL7DRCjZTnbLEvbZrm6IvFPSX3hlG+l9VXj5PeMql/L2wgWK0xMiF27d3sGhzPDgRf0tSSRlG+QIu7eGKvVJiptHLtyJCWgKklp/ZFhJGsc27WFderfffoI0kenIV0m9jJB5ksNyB+cpqGhgakp4wfShY4euFwulpaWePixNW6/qbDgV0pQAl1RCXSy0qmHl0hEy/fsDeSkHLIM6OFfa8HmN/PMX1ZWVCq70ZQwUVZCogYO/9M51gU2TPQbyODtc2JtMAsTXXZ/opfIbIzj3xZLM2cJacgmxO+1HsQhfgk5C8FhFy3XBDn29bNCA7m9yYLVJ55nVCTVXjFMqgm5DhndnR/qBgme+0uxTSjJJCHJ4oNz8z4/kflY3UpTQtCg7dogs0eXhUhYJkUCkyQce3Tf2kjTHj/Hvn1B6PlkiwmTYoK4GOV7dSQilGIxB0ezFatfvG3239uKrEnC/uHl4FISlLz9DuF2qfk0dn6wi9Ffzgj1XW+3A2eLDW+XXYiktHI+zP7PniG+lrVLBTWEUpSSk3Kopai09V0NOJot7P/m5nvs/5y+sVuOrPSMrDImZ1jTNF58718DEMdL/L12nNdt3hzMPNsO7RrpfwgDicsEpdcxcqn4llc3xzOlBCXQFZUAeH6WU09FWawUDxaRk3KQzBqosPcDIRbOhDnz4yobBGUISVI2djNEVsrGbqOPzTL62KyusiJwMt/TZcfdacPWqBKeMj4BbNzjpuUqP89//qwYKUAFd4uN5ZFLo0x4qQlK/W9rJr6aZOSnYmQCW9BCfF2QXZFA+DoApMCkSsiqWOwV2Oak/+5Wzj86xeSzxscNyaTHJqLBiS2g4ulzMlGHgmI9cHfb0Jwqs4fEVpUk2VRXXDn8q12k4yle+IyYMqismVAE3x0gRoArgi1gxtloQUSjTXWrDN7bzOjjsyyfexX6epkYoh61rnphC6gkEuKKZP1va8bsUjnyldqEtuL4JzDkQrXLYiQlycShL41iDRRUqTKptCGikqSV31Srpai051c9rEwmOHpq86Zaz+d0n1uOrPRQI+Tu8sQt/wi3QPwPWtGu3JwiPXOgA5pUvvZd3faX467XN3p7e9m/fz///lCYd9xVULEsJSiBrqgEOlnp+JRGssKacmmKN9DVlAAGemJ4GiRe+EnlBelSghJAxqSCBpKRNB5FG1XHf7RMbI0NCua1kEmlCfZZia0lCyQlg3HbwB0eYqtJRn4hRjBWHCCbTMTKpY+qoagkjCR1pRmrF45mheYr3Jz7+bwQWcIe0HCExBWFl87Xx76SNQlZq0OJ+N4GZM3Ewa9OCtWTZAmTKLkD8PZYSERSrE1U6QuvoKJScJud1bFYefJPpc0aRX8+0cy3gX4b3Tf5OfmjWZYvVH+PxUQZk6LHzKI8n+hCkokFMWI4gD2kYS/XNmv01eYrnWg2mZHHljZ9J0nSq0JUetUJSpBXBHA0KKzNJysTvsqtLSmw/Z0BJl9cq53urYigZPFI+DrNRJdSxklKikJyDQ7+WyHVpRSNGyIqlZKTcqilqNTbkaYhkOaBVY3SLanT39JJROXISrOdYcLuODF7ku90P6r/sdtD5g0OpF0jm+/vSCcEFGb+xyqQvExQeh1D0zRMJhNjk5vbbSlBCXRFJdDJSr9MWVmq4Fgdm0NyYh4JSHGrJ8rUqsKZ+coby9om9VmZpE0vr5OVqsMU08vMzMD8DLr6kobh1G82W4pgm8T8eIZI1i0bUVRyBqC538SZp0tIFgYUlaxuiCyXISjByx9HSxSVXhWCUqW1m0yGxu1m0skMM9WUjcrEII6gTDoJC4ISObNn6ggsMyCrEiZBroXVA4O3ObnwfFiITCUhIcniXCDZCk6/zNJkqi7lIMPIKipZ3aBaZVYEVa0kE3WtefVdayGThpM/E4ufZUWqa8l2aazkuSqoj5XCEZRJRNMslua9rKKoJMvQdqWV2dNx1mcrxLFG+rmAamPZ6WYdqo+16kvJFKpTJp2pcfCkTN2mQRmrC86+WPvSOYISgLcBHC6YPJ8yrKaUNsucOpVCK5pjqeGkIaJS3C1TjihbS1HpVluE2ZTMEx2b1d8//fjtQHmykuWa45DUf/d3vSP6H+90kjliQ9q6WYwjc6yLU3MyME1v72aRo2oQIildd911PPDAA/zR/1zYQFKqhbWJ+kaehTNhklUG/kon4XvvasQ/4NTTxQl4h3oISgBP/6/jYvWyMMlSXUSXXR/pIboU58XPim0QXPmHg6xeWOP4d8pEapWgwZX/aYCZw0uM/NS4zLB/yEn/vW1cfHKGsceMn0xyNFqx+sxoXjPxNeNM12NfN5KJeDMa9noIDrqFFYMOfVFMQSmH8adn68pPeuDvBXVBs+i4OURkMX5JSEqOBjPt14XQ7ApnHzC+ILV4Yo3nTogrB8wcXsCkmVifEHu2iz+frUv1rO3mII6gWaz/AEe+MiJ8LQBnm1UncAniqv88SGw1wcHPifmHvb/fz+LZNc58X0zl4Oo/GmTmyDLnHjT+zp2dVobe3cH0oUUhZSqrT0WSxRerFk+s8dSfHiv8QSAC30TcqkFUkkwS297XisVr5vm/2/wOqhGV5s+GyajiqZrimkY5j2T72MKm6boEZD46BT9px+FwYrVaha93GZcWkiSRqkPadlHMVelIwPJ4nKVqi+AVNrR2f7SV1ckYpx+YrU5UKordNm3QG9zwuvDoLBcerVO9UgKbVyU8Y3yjvveNjYS2u9n/2XNCG/ydt4cIDrnY/zdiY3jPnQ242m28+HkxBb4dH+lCtSs8/2nj6ZIBXK12cbIR8NxfVT7tWg399zSzMhZh6gXjpKHwXIL9fyP2XADL59aY2D/PwhmxWGH20LIw8QegeV+A0HYPs4cWhdWG6kHnrQ1Y3JrwvR79Rn1x89hTs6QT4s918B/qi5u3vLuV6UNLLJwQe3/P/qV427T5VewhnVguQlJquyFAy74AR75+nvVx43OX9lsCBAddvCCo4Nt/bzOuZivPCxLF+u5tweJSefavxPqRopkwqeLx6KF/HBGrUBRblabcq0VUkjSNK369mekja4w9vZkIUY2otDSeYDEifphg2bY5XpN/d7Z83PXb0/DdVv7x2wHgAtdff73w9S7j0uHd7343+/fv53NfXdlAUqqFtYR46iGA+VWZdKZy3FSOoATQ2G+isV/l4AM1iEolJ+ljxe7UAFEpk13kPvjN+kijObKEKLa/o4HoUpLj36sQ71UgP2y/r4HV8VhZ0kM1bPuVEAunw0w8b3y8sfgVtr49xNhzy0wfNH4QxuLRcDaasbgU1taMb2KNPrHM6BPisYmr3Uxg0M65h8UI1GfqVDQaf2GlrnWME/9eX2zfdZOP6FKCY/9Wo/4rQFRS7NB1k5/JgytcfGJp8+9XQHQuyaF/FiNtASxfjDG2f5n1aeMEJYCFUxEWTokfsPP3W3E0aVz4hVg7G3lsmRHqaJstFlR7lfG9AlFpx682EV9PcrzWOy/B1neHWB6LMfak2L3u/EATs8fWGX9uY4xRlqCUhWLLsOXeBiYPrzL2lHGSpsWh6PuTQncI0aUMz3+l4Kdrpn0rIjiVbubVIipl7Ba6toPTB4d/sfn7akSlhWUTSZ+E4HYUKLAeLOMv/3uF2Ou/zsLnm7Da3DicdSzCX8YlhcPhYHVVPEX7vFxP7CUzllBYCYsQlHRs74mxFpY4P6lVJSrlCEoApOQNPI60JtckKkmJFAsTsDBRx3pCRh+OFEGlomC3TOs2lWMPr1cWDSgzjvq7FRoGNY49mJ0/V1NxKSJfBAc0vG0qpx4RVHm81orVo3DsR2KEWleDrlZTlaRUBscequ9UUeOQSnQlvZmAUgWpOBz/ifj14qswdijK2owYiWd9PsWJh8Wv52tRaN1p5eiPVy9J5p3GLWYcQYUjPxRrK2MH6+MjTB6LC5O8Ac49XZ9ScsuwyspUitWZor5jgKh09EeCOVrRCWauRoWViQTrlUKoMv3c067SfpWd0z9bJTJvvJ35OlUC/WZOPbpWILRVi0+yJO/GIRVPq1q+fVap37ZVwR6UOfyQ2LswyXnNHCGcO1T4txSrTVRK57+XN4nC1CIqxd1wZVuYiWWFsTLp5asRlcYSChNNVW+tLGRbBX/56Qr7jX+zwF+sdwGwe/duoWsJjeZf/epX8fv9HD+lW7GcglIpEkMdqGcusPs9IebORRh9ojCIlFVRKsLYk/Wp3CTWk6TiadCAuPGT+W03B2i6ws9z/8fAwvYrcKJDdBMph4nn5mtOUsshGU0SN8D23oA4YJKEFxlWp2KEZw3kai/B+YenOf+wWM71l4PAgBtXe2VJ9lca40/Wt7hXL07/cJzowqXRLV+7GOPUD8dYHq0vD67w9cbjnBkXI9S8HPgHXVg94icX68ULf1uff1gdDxOtQxGp2gJLJWgOE8lYitia2PVicxEmX1hg+oBYf1g+s86zf/EKpMIpyW9cCds/0IFilXnxc8Y2EHMKAslommRM/DjBzEUzMxer99f+z01sUlN6+/oqF2SFL37o8xv+Lh/VF3EyQOx9NsxfDyMB0pE4h45GWFhYoKWlRfg+L+PSQl+wWWX0YoL2NrWsglIpFvcEGY7P42tROPRQSf8so6JUjFMPVv++EhLRNImo3u4lWTac/m34g23ElpKc/F524T63Uf0KqwZl0hkmn1ti8rkl4boTz88TX02QCIstaCTWUySjKV1uQ6CqJEmbfbIBeyyNrGO2iy/UPV/neFMvfANONJcqRFKqF4lwpj7lpjpx4fE5Fs6uXRKCEuhxnuYQJ7fWCxE1qpcNFTxdDpLhlDBJqR4snwvzTB0xxtp0hLXJCOszBhZCiojOJlmqqLxYDcloknhEPMa4+MvZulRnj32rNuO1nucoqpz/p2qDHR/qYuypeaYOGNuokDQN1aHHXokKGwrVcPxMrbQkuqJSsZrSFTMJWsPw/RY48cav5v8uP6e3gQwQ/y0X2mdW9LjrmSgZ4MiR45hMJv7mb/5G+D4v49Lhd37nd/iDP/gDDhzW32c5BaVSzOyF0P4kV7bFmV2TOb9Y6GvlVJSKMTejMDejoCC2mKrHXRkUCyRRjSkqAb5uhdadNo79YEVXD8qtyJaJ2zK10gVUi9mydY//e33rH2PPLRNbqUHgKUNUSoTTJGLiMaRUh3pidDnJ6kSM8JxYfDh3LMzcsfql9EQVZrydVvw9Ns4pC2IpAutEPeSYl4PTP54jETH4zl8mUSm5DicfmGF9rmR+9XJPhFdAYjXFxP7q42E96ziV4Ouz4Ww2i5GUasUAue/LkApPVCIhFqFce1++ECG+Lj7mSyZJVMwKFEiEs3O6kvuqhmQULj69xNJoBd9e4eBbdCnJ4W8W2aWcfZXa871MOl2eqFRSt3OfBYvLxAmDG+M5BaVEHBJ17MeeDdmgxr7q6W8NbFJT6nrOx0owyudu/eGGv0uP6PedkSDzf/uQ/ucCUgakn4ZZXEoyOzubV6e+jNcvhoaGeOaZZxgZjdPZrpVVUCqFa9c8nueddGSS/FLZGM+XU1Eqxsl1C5jBHBGbs8cTkExl131tsiFFJYDeLSkScbhwVo+50pr+/3JkJSlRgzyu6P26rKJSIsnqFByvJidcgfywPJkik0iRqjWEl4yjyViGxHpGT99mZCwuvn4dc8iV6SSxMkrztWK4U1lfUbbcy5nLVkCgW2N9LiVEUqoXqRTMnr50+eMXRpOEl8KXhKBEJsP44RiK9dJl/lgeL6Ns9Coi0KWv520gKeWuWynerzUPyB3wKpnLxdfg8P0G1llK+nlsNc3yeJz4ekYs5jVlixshKOWQzpCKZ0iU88816k+djmGplnqtQv3xo9m9jOzncqnfihWUKqESUSm94W8ptg+nGR8zsbBgjBkVd8vIpIglJeIp8fa4v6t23Pjpx2/foKYUvxAgNeZHu+oknwyObCgr/bve+TMaZP4qhPTJGaQ4SPev8azvLJIk8Ud/9EdC9yhlBCUpcoF4arLXEEkph6uvS7B0fp2zP9UnO7UISjl03OIjsZ5i4qmNp3gqqShVhIHNnZZr/LRc7efoN0eqqyqVmKzt5iAtVwU48IWzwumSNIeJ+Nqrk77j/5/QcIWH7jc2cebBCWYPvvqJVLd/oBNHi42ni9VZDKDt5iB2v5kT/yomcXHlHw5COlO3aoEorvmTIVZG14UVpupBx20hWq4OcOr7Y8wdMX5yIrjTTWibh6NfF7vHnb/Rg9Wv8fSf1aeAJoq9v99PMpbiRcET75exGZqDuoLgXb/Zg2SSNiuS1Qg0hz/YiWwxVSYpFS0siW7QlaopmUIB+m6yMHY4SsTAodUcUUmLx/k1luntOsftNz61oYztjilMoynWXgyCpkE8jmPXLLSrXCXB84fi3HLLLTz66KNC934ZlxZ33HEHP/7xj7n7jTa+95VmQyQlgKFAlAZ7koPfjxQ2JGoQlABsQYXGYRvnHl0hEyuJaQwSj3LYQFSqELcNf7CN2HKSk/eXOV1cJXbb8dFOkpEkR79ubDwtjhtV26VNs/Sy8CqleHslsOPXuzDJJl4UVO6rF1f/0SArF9c59k2BNKgqDNzTwsyRJRZPGj9pFNrtpvdNzZz98STTB5bEb1YQQ/e14Wqz88yfvwJEXAPY+7t9pBMZXviMmMpX311NrE5EhQlm+/7LIPOnVzj1b68+ubxht4eu2xo4cf8YS2fET5ddMhhIH/t6QDV/WSn2sTWqbH1PO6OPzzF9oMq8rMQG9maVwXtbuPD4HHNHygd8xYpKlVK8VbxciZpS4FofJhnGLxhbHMoRla6dTLCbVX7rvvs3fC+/awLT2SSJZ5pAVSGRQL16knSPgum7bchNen97NdLXXMYrC5PJBGRITvQaIinl8Ja1dZbnZE7O6pu4tQhKOTQ0J0mnYPFMySZ4BRWlSthAVEqUZ6N42hVar7Bx5rEVoqWuvChuKyUo+Xo02q92cuJHi0SXKsQmxTFLUX3FUkN2v9rvGMErmfrtdQxns0rfnUFGHl/ME4FeTX/SdbOXwKCd/Z8TW7vyD1ixhzRGfym2Lrf9vQ2YFFNdikPCSKfZ85ttLI9EOP2gceX3TTC4UePrt9J7W4DTP5ll8azxzuBqNeMfsHP+F+UJZpWIMr13+HC3WXjhC69i3FUUA2x9R5B0isrKZ/Cy++nraewUJoYVx0s14r9N/rK4bhVyUv8bXChWiWM/2NjvNhCVytTvusaC2VmZpFSsqFQpxVsllKopLfab2G6Ncz6isWbgzHyeqJSEmw9a2NJ1gZv2vrSx0Mcm4WQcftqiP18yCW8YhwGN3w/JfPqLK7z97W/nX//1X4Xu/TIuLT71qU/xyU9+ko9/wMXf/6+QIZISQOsstM0rPLLmIJUlXdciKAFYSNFiS3I2rGBe2tgnK6koVUIxUclU4bBq75YUiQRcOLN5zlFMVColKPXsgkwKzh2ufP0NZKWi2M9QVt8iv1o2xVs1lBJ+axHbq1z7ZaMeEklxnSrr+d3XWFAsEqd+dmkI2NvvsrM6k2LkWTHBgZZhM0sTSdbnjL9Hm99E/002LuyPsDj66pOpWobNBHtVDt5fx8ZOHe944FYrkgQnHhF7dw2DKrG1EhUsA9cfvsfGwoUEYwdfYcJYcV/J/tsekOneZ+H8M1HWZqu8u+J+WU+fK+7nr0KKturlS2wuWD+jFPnbGnVlFVJFr62YpFSJnCRrMHQljJ2BxRJiaDFRKV1CWtK0FP0DacbGTCwtlv/tYkUlPcWbcZSqKTnao2jpDCNllMDLIUdUip1upGnazq/eVWbP8P+ZhWNx+GZjYbB57xQMaTi+skI8YSIpmEtd+Li1yWQinU5z473vQWRd8JknVMCDKigB27jDQzKaZuLZZaHNMc2n58RezJ28NZBCZPypecafqnHSq0yHjs7HSEaSaHaJuIAicv+9rQS3udn/mdNC5KbgsIvmqwLiKcc08HY7CjYRqerThAlYjVd6ScXTwqShq//LFpbOrnLiu8YXQ8LzMaLLceICctkvB7PHlkklxDcOg1vdmJ3iJ97nji3XNakf/lAX4fmYcAqvemAJaQy9q53RX8wIkY0Wzqxib7SwYnARN4fgVjfuDnEVrNmXlnC11j41/UohMhsjUccpr31/vIWFk6ucvN94P9Ac0LyvgYkXFsX6a86XCxLT7Y16RdFUmd1vbkKzyUJ9HGDHR/sxqSZhNaXEahJTuTQDNRSVDv/TiKHfL96k0xzg6nAwd9S4nzWFAgT7TPhaFcKLKuMLxgPaZz/wmYrfhR9q3PgHTWPtqK6cNLPPhCRd5J/+6Z8MX+syXhv8/d//Pb29vfz8KdkwQQng2JyFY3PATgfe541L4fu7LQR6rMydiLAyzmaiUhX4+m0snA/nVYOMKCod/qcqhJMqsVtiPVk1JXAxiglKV/5+H/G1JAe/IJZKrf+eJiKLcS4+LqYIYAuppJIQE+jXgK6+BEJ+WXWrNAy7GHtmXki5qe/uJrx9Tp77q1NCtxieiiLVkc6jXiycWmHxnDjpxNfnJBVLC5GU1kbDzJ1cZnVc7HqBbU5arg5w7Jsjl0RNqefOJjSnzPFvi42n00eWydQRx/q3uLD4NWGS0vzpFeaOi0my14vYSoLwfIzIolhs0v+2ZtwdDvb/tVg/CGxzAjD3ktjzqW5VKH1kDu5uG8sXw0J9HGDb+9sYe3qepTPGGZqOVgvD7+9g7Jl5Rn9ufBNX1mQS4TSRan6vzCbd+kSCFz4zYugaxQQlT6fG+lychMAUN9ERpLk9hSzDuOCZjC/d99Wyf099p3lDOgdUlcQL+un9sYkosizjchlPH3YZrx28Xi8LCwt0fuF9KOUzBZbFAw47OCAkmLWqrV3fV5qdNqOsGpemUCxgdcJq9noZrbai0tJokqXRCnP17CJjOQWl+HqaRDiVnVPVGD+K6jftstF6pZuX7p8lMmt8rcbZrNK4w8XphwzEXcWKSgo4QgprE+LrQooNkoIkdnenvmm/PCK2lrHj15pYvhARSksXXUkRnkuQKFrzElVVEsHiSH0bcoEBO44GszBJaebYOnIdcWX37T7i6ynhFF71QLFA35sbmHxxmaVzxt95eCbB7PE1InNi7dLTaSHQb9NJSiWoRpRZOBMmEX4VDzqUbBytz8ZJ15qWlVE+2/nBJhbOhA21lXxbV6BhyMH8uTWSIkvbud0PQdegOmVkWSK6lMzfhxE07LRjcSsbVakMENT77/CjOWUO/nNWCTab+qQW4uEU6fTm388rKlUgOJ1/ylg73kBQUsDtg2UBsdrFfg2fkqTdnCScNrEWM74d9Z3+R6G/wpefL8lfoijw8w4AfnKzAqzwp3/6p8Zv9DJeE3z84x/nk5/8JD95PGCYoAQwFoSxYBI7S6y86Ddcz6Ol6LHHWYjLLHokzEtGx9EUDitEopDK6BvHRhSVzhyvvMmcS/9WTkEpERUQ/ysiKA3dqpGMZTj1RI0JY4lSS8OgQjKWYf68gXW2IqUVzQqkIC4SNkgSmLLXFtgykTVwN6ssX0zo28QGfXJoUCM0YOal75fM2Wv41/WFFIp26Q4XzZ5NEF4W30MK9qlkMhkhklJsLc3M6TjrC2LXs/lNNA6auXAgUlt56xVAsE/F7DIxdkBsfWf2XBxTHeSmYI9KeFEsVR/A3NkEq7OvYuxV1FdTiRTr86naCtuyacO8rHGbGX+3xtEfGFy7yvZze0jGpJhYnRKziZxLOylIMLJ6JSJriCkwAe17NObPJ1ifL/LpNeoqZth+u5nx4wlmzui2khLJsmpKxZBliIUhXiaMyikqlRKUAOJxmZeOGFdQysGhpYinIJ4yTlpa6U+yazGJM2WcpJTDH135TOUv/3tw42dZhm+3EImkSH4pTENDsHy9KhD2slu2bNH/oTyR/9vQ1gQ9A/rAp2kJdl6RIBDUPze3JtixW/+3w5Gg5x3NdN2QJQhosP39rQSH9cXd0E4n29/fmv/d3reEWBpb54XPjQB66p2GPW4y6QzBYSfDH+rIb6733tXI4NsLKXCu+I0uBu7RP3sHHQx/qAPNrytXdN/RyJZ3Fa6z/dc6aLleD2bcW+zs+I0uLCH9h7tub2DoV9ryZbe9v4O2m3VDO9rMDH+4i8hijOc/fRp/v5ut7+so2OW+djrf0ADom/nDH+7C1aU/e+tNASxBlYWTyxBPMvSeNrrv0DeUNZ9e1tuvr4g17/Mz/KGu/O+23RTC3mDBEtLQHDD84S4C2/UFz8YrvQx/uFB24G2t9GbtMPz+Lra8s53gTjegK9EMf7irYMN7mhl4W8Euwx/uovFKL1f8dh+7P9bD8Ie70LKLdD1vaWLwnUVlP9RF8z7dht5+B8Mf7qLzlgY6b26g+45Ght5TsOH2X+2k9aYAAK4uG8Mf7sqTHXR7ZYhkCRZb39dBx62hDfZ2tOnvse3mINver9t7dSRCbDGBr1u/QUtIt6G7VyextNzgZ/sHOvP3sOXdbXTf2URgu4ur/miQ3Z/oxTuo123a59tg78F3tNJ7d7ZtabpdUtEUx74xSsNezwZ799/bSt+9hfRJwx/uouEKT97eyUiKp/9KV/DpvbuZwXdstGHTPh8A/iFn1t6FLmp2Fpzj9g900nLtRntrvqI2m7W3xW/GP+DKt1lnp1W3YYtetuO2EEPvK0jfDr2vnY7bdHtLZonhD3fh7LRusjewqc0OvqMVs0vF7FVpubbE3u9qpfvN+uRRc5gY/nAX/iG93zuarCianCfVlLN3rs02XFGw97FvjDJ7bJn+eze22Ya9WXsPuza276y9x5+c5/i3L25ss4Mbbdh9ZxNb3l3UZj/QyZV/OJBvU8MfLvER7y3YsNRHmDQT4/v1leOOW0PGfIQGqXgae0thIcCIj/Bv99FydYAt72ql5y05e9f2EVd8rI9r/igDisAAAQAASURBVPMQmm+jvWv5iO0f7GH4w70ABLa7DPsIX78T34CrYG+DPmLyxQUiSzGG7ivY24iPeOlrFzj85fMMvbedrtt1e+d9RE/WR1zvZ/uvFd7Nlve20vfWpiJ7dxb5CC/DH+wEdILSwNua6Hmz/rutNwTpv6eFrjv0+2/Y42b7Bwr32/fWRnrvbiQTi5FJJtn2a20E+0zMnk4zenAdd7OSt3fXPo3eGwqKS0NvstKwRQ9Grnpwgj+wnOHw8Q7icfjJL67hez++LV/2X/79zTz9wjAAJ8+28Y3772J6Tm8DjzxxFdFolFAodFn6+j8Aenp6AEgkEnS49I0rrznB3uYwNlWPr3q8UXY0FGaHuxrDdLpjQIImW5jeu+3YJH1DqvkKO723u/Nle29307JH7wcWL9hDKqceWWBlPEHjsJWBt+r9i1SK3juDtF7nAUB1y2x5RwOudr2N9tzpZ+CuBpp26L69+41+2q/3IMkyqg2G3tOMt0+PgYLbnQy9pxCz9d7dQOftep9B1cv6tuj35N/qYuhXCr6k8/YQXW8KceybY5z690mGfqWV4Hb9mt4+G0O/0oqaDTPbbwnQc2dDvu7Qe1pZm4ow9cIC7m4bQ+9tRXXrgXr7zQH67i4scm55ZzONe/RndbRa8G9x4cv63Nbr/fTfW7j/gXc003KNPn7bGlWG3tuKrVH/3R0f7mb4Vwu+pf/eZlqzMafZp5d1tuvjbOMeD1ve1YItoLLvk/3s/HAn7dnxRHWrDN3Xhrtbf7iG3Z4N8WnvXU0MvLWJ9utDePvsDN3XhndAt2Fgu4uh+wplu+9opOuOgl0cLTaSUX1Ryzfk1Mtm5y+db2yg586CXYbuayO4Q28/s8dWUKwyqk2f+LffGqLvrqKy72ml8QovAO4uG0P3taG6Vbb9agd7freP/nsKNtzyrlaarvJm7W1l6L42bAH9Jlqu9dP/9mZOfW+C2UPL9L+9OR8D2Rp0u9hb9HbYvM/H4DsLcVj/W5oZe3KOMz+cxOzXyzrbdRs2XuFl6D2FttV3VxPt2fEkEU6iWGQ0p+6QQ7vdDL23yN5vaaLzDdm+oep28Q06sHg1rH4zA+8qlO26oyE/fudsmBuTfYMO3d7ZtZPON4TofUuRDd/bRmi3bm9Pr/5e8/a+OYhv0IEtoMcKW97dSuNe3YbOdt3eZr9uw7YbAhvarM2n5sn29hazbu+GjfbO2/DthTZ7+MvnSCXSOFr1Ntt0lXfDnKr/nmbas+N3vs122Tj1bxNoVmWDvXuL7K3a2NBmgzvc7PxYF3t/rx9nu42eO5vofGPDRntn48jANueG9u3tc7A2ESU2n8jbO9dmvQM5G+plO24L0Ztts5G5OJIs0bDbA+hkoFybzdl7g494l27vzpsa6L69aYO9W6/30/+2Yh/RQss12TbbqDF0Xxu7f72T4Q910nKNj4F3FNm7mo+4ysPW97Tl57h9dzfRfnORvd/bWuQj3Hl7O9utuNpstGbvARWG3tuKtz/nI5wMvbfwbrrv0P1sbDXF7NEVXB02Alt1e/uGHAy9txXJrLfDzjcE6b4jlK879CutWNwqB79wHpPCRp98c4DetzTmN+m2vLOZxt16X3B1Wtn6/pa8vduu99F3V8FPDb69maa9+nt0dNoZfFsAi08v23dnkB2/WjSm3Omjea9+v7aAyuDbAtgaVDKrazRskem9S/fXLzwFKyvQ3q2vfllsKbbuSuHy6J8bW1IM7SgsxL3pFwk+JR9kZs7F8rKNbz5wGyfP6f7mwEu9/MuPbs2X/dFjV/PwE3sACIdVfuv/HiCVSrF7924u4/WPe+65B4Dgz36e/9uuSJTtUT0OU5JJrg9HaM5uCLUkElwfjkAyiSOZpHkozJCW2z1PMrA1iS+gl3V79c8o+ufWjiSLC3Doeb1015UyvuYMUiSOww+9V6so2Slh04CJ9l2FNYEdd5jpu0Yf/2zebFmPCpkMoUGN9qut+bKd19oI9Ot9xuKBvjfYsXj074IDKp3XZjuqLNN5nYOGbfpFzU7ovdVFKgFHv7eEzSfTfZMz/7sd1zhoGtavo1hN9N7qwtGk36Ov34K9SWP66BqJtSRt1zhpvkL3O4oFem/34GzV78nbbab3dk+enN68x4mn04w1qP9W7xt9uDv0Z3V3mOl9oy9POmje66D1Gt0/dN3oZejtjXh79Pt3tmr03uHL27B5j4O2awtxcM8bffj7rQy+NciO+5r1stn5bOMuBx03Fsp23+YjMKTbyRpU6L3DR9dNHtqvcdMwbKfzJk++bNctXoLbbFl762UtPv2GA1ttSHKGyJI+TnXc6KFhp24X1WGi9w4ftlC27KCV7jfoPiuxliY8H8fRYC7Y8A4fzhY1a28rvW8qbNK2Xeumea8Le0hh5weaGHpnMB+3e7st9N1RKNu6z03L1QUSZe678z9fxN2RLZu3t2uDDXvf5MfXr7cBZ4tGOpHh0NfG8++x/foSew/oZe0hhb47/BuIgJq9sPDefZuP4NasDQN6WYtHv4mGYTtdN+sxjz2gEhyw0TBsz9u77w4/loBeNrjVlrchQOeNHhqv0J9VUqDvzgCOJt2G/kEbPW8s2KX9Bi/Ne1x5e3e/MYA9pGF2KXj7bBvs3Zq1t15Yt6G7Q294Fq+CYjERXc76jKtdtO4r2KXvDj/ebr2sq92ct/foE8uMP79C+9VF9n6jD/+AbhdHs962cpmOmnY5aL/ezcLpKBd+sUT3G3wEBnV720J6WTW7xtgwbKfjRk/+d7tu8TL8vkb63+LH4tvYZoPbbHTdotsbk0TnjW4atusXNbsVFIvMbPYwQGCLle5cWaDjejdNu/SXrNgleu/w4WjWfzcRS+NoLpCO265107zHkbd37x0+nK36994eC313+nE1mum4zkvvbQFartzYZnP2Lm2zLVe6GHpriL0fbcXi1ttHzke4WnV7F3yEk/brCvbe9s4Qw/fpcbyzSTXsIwJ9NkJbHZjdCqQzNAw76LyxcL9dN7kJbtXfjcWj0Hu7B4tXYfroOmszMbpuLvxux3VOGnbqF1Ud0HurE1vWNwb6NbpvdDDy5DpnHl2l/Wp7wSdb9LKO5qyf7VDovqEwLrReYaZtT9b+CvTcYMWVfTeeNoWeG6yQyZCxW2gdgJYsUSjUDFuukmjLfnaHoK8ovGnug7ZBMM+EkcNJunclaFbiLCQVDqxpeJU4SpYt1muOsM1aWMfYbV+nVdXH2tnv9PCecxFOXQiSTMIzhwd48Ikr8mV/+NhVHDjaDcDErIf7H7mGmXndTvtf6mVlZYVAIMDAwACX8fqG1WrFbDYzMTFBY5aTaY3AllETuebRuAB94wXCQe+4RNM8kALPMlzlX6RhMhvDa3EGHIWd415bjBazvuegkcKvJXhhwcxiUiGoJehujSGlM2hrKVpDCRp9+vgsSyl6W+M4rPrvNvlTXDEQJ+jVN8Bbggma/AmSNhlI0dmbwunSyzrd+ufcLntTW4qm1sK8orO3MOew+qFjayEDb7ANmrph9DiMnYT2LeDK7vlandmy2a4b6DTR1FPYkG/dJrM2n2LmXBKzA9p3KDqJCPC1mWgZKoyzLVtlvK0mpGRKP/S8RcPbrvsAb5tMy3BhU7tpq4qvQ68rW6Ftt4bFo48nQ3c66H9DYTBv3GbG36PXlTVo22PB6tXLulpkWvdYkGXY+XY3vTfbCPZlH0aGtr1W7AH9Os5Gmba9BZ8VGtRo2W2h4yobtpD+nSOkl7UHZdr2WCBnwwGN0GBhfHE1KcTDKZDB6pNpu8KMbNHbU6BHoXGo8Kytu8y4WvQfWplKYNJAzi7N+7oUmrYVfrdlpxlPtqzmgLY9ZjSb/v8tb7TRPFwo2zys5W2YK5PbQ/G0yrQMm5k6FmdlPEXTNg1fZ5G995ixZIcFV4tC667CXkHjkMrYwSgTR+JZe5uxeqW8DVuvKJRtGFQJ9unPmkqCrEmoWSKFIyjTtqdQNtivEhoo2KVtjxlnSEa1SDiCJtp2mQv27lVoGCyy4RVmnI36l1avRNseM1J2TPZ3KzQOFezSutOMO2tDi1u/jpxrs50ygR4Vu1eGTIaWYQ1Pa5G9r9DtDXqbbd5euAeLw0Q6pfcNzaqXNWenMJ4WmZYdhXto2qri69J/9/hPwyRiGaw5ezfLtO7U8iShhkGFYE/23ch6X7D5YeIl3W+07S78bmhAIdibffBsWXtAytrbRNc1GkO3W7F6dRuG+gvzvLbdGs4GGSQJm0+3Yc5HOIMK64upfLaR1t1mXE1Ze3uyNszehr9Py7fZ2GoKyaSP8QBml97n8j6iU6V5uNAGWnZZ8HZpNO+w0X6VTS+bbbPeDoWWXYV9y6ZhM77ObL+36r87dKeTnpvtuFtkWncXtdltGv5u/R4KPkLK23voDget2ffTMKTl7Z23oT/bvkOmvL01KwQ6FUID+mcpmaJ9l4ojG6o7/NC+Qy602W4TDb0ymTRMnUxi90g4s37W5oGOoQwmi1442Kr75BzaB8HmgFMHIJ2Eji1FPrkFWnoKCkodHUl8vux6kyVFb18CTdPbij+Yoq29MC60tafwB1NI6QwmHwwEolhl/fvhxihXtxfipW5vjEZHdlyTUwwEoti1FPbJNE2JOL2Nelz+C5fKuCrRG85yd1Ip9izH8GVV/BqjKfasFA5JPfzgTewbU1hetRKPy/z06V1cnNKNODoR4KdP78rrCD1/tJfnXuoDdG2hP/rf3SQSCa666ipEIUxS+s53vgPAwkKBMu/ygjc7B9E0sDvAnf3s9YLDCYFggp1XgC8A3k57oWyDGXd24dXbacPeYM5v0Ho6bDgbCoORvcGMt9OOZJJwd9ixN1jQHHphT6cdV5GqigREFvSAxNNuxd5gwezUG7Cne2NZR7MVX4/ewwbvbsUetGAPZBdAuu042wqqK85WG77eHLnChr3Rir3RiubT8A+5cBYptLhabXiyv2sNWrA3WnG26c/j63Zi91s4/p0x4mtpnO123DmCjVvB3mjFld1E8fY4sDcW7KCYFWIrcaIzcUw2DXujNa8o4+3aWNbVacOb/d3x52Yho187fw+N1rwilrfbgauzcP/2RiveLgdTBxeILsSwN1pRc/butuPqdGwsm31WV7tul4tPz3DkGyO4ux0424vs3WLN34OzTbefNag7NU+PAzJw4dGZvL092fvP2drZqv+Wr9e50d4dNrwD+u/aA+Zs2YK9Hc1Fdumw4+m2E1tNkE5lsLg1PNl79HaX2LDDjqcr22Ydur29g05672nG17uxrLvLhifbvtEKNgTwZN+NVmzDonZobyqUdXdmy7p1h+0fdOLuKSwG6m1W/+xqy7bDQPZ3+wr2fu4vT2CSpXwbcGbbrDWY7XM9zg2qQq5WG97s78qaSbdhky1vl2J7623WnrW3htVrYeLZecYfn8fXs9Hezg4HnmxZLdu+3dn2Exhy6WW1je8GQMvegydrl3z7zvmITjvuro1t1ldqw5y9u3R7t9zgp+Vav/67WYKKp92OvdGK2SWXfTeOZism2UQylsLZas3aO+sjehxVfYSjyZrfMPKU2LCij4hDdDGO2VEIroz4iMkXFjj57xcxO7W8DY34CJNmYvH0KsSzNjToI0wmieiSPiC6O+yGfcTskSUyGf05AMM+YuyxOUwm04Y2a8RH5AhxzlYb7uw9FHyE7nt8PY4NbdbT6SC03Yuj1YzZZcLeYC34iCIbZtIZXO12PNlnnTm2SiadwWTS25K3Ux+rcnC32/F02PVIVgO7z4Q7uyhqdWvYfaa8vT1NCq6GQoBq9xfKulqtzC0E+NmTN/G1f3sHFydamJwqbILPzAcZHdM3HKemG5hbCLC0rEfYP/l5G7OzsywtLXEZ/zFgs9mIxWJYpCUA3JY0Xksaa7Z5hOwp/NZCYOu3pQnaU1zXHmdbQ7ZsY3YsatXwtBYmB+4WDXeW2Gf1qjgbNcz2bN9sN+PKLRzLMu4OK56sz7U4TThbLDib9PYtqzLpVJq5Y/qJDE+nDW+3jUwqhWJTcbYWxmRPp63w7x4boa0uAlv0fqqq4Gy14s76N3e7RS+bdYfeLjve7Jjs7dN/x50dd51t+meTJbsQ21MYe0AfL1PxNFMvLONs0Tftzc5sX+125Md60MciX69uM0ejhUwmw+jjc9nfteftoN+jHW92PLEFLfq4HNKfL7aSwFR0Ktzdacv7QltAw9Vmw5G1oa/XgavdRnguwfyJVTSbki+rOUy42uw4W/TfdXfZcLUV7tfT5UCxKhz7zihr43Fcbfb8995O+4ay3m5HPt5ABbNbZeWCPtnxdOhlVVUqlC22Yas9H8d7e+242+2oWRK1r9eRH6cA3Td25zZRrLja7FjcKqloClkzbSzbYc8/q6PBopfNjrO+XgeeTgeNe700XuHF0+ko2DCol835WW+3A3dH4XfdnQ68vbmxU83a0JK/f1fR2OPpKTyr6ldxd9jxDert0lNiQ0+XPR8vqTb9d10ddsZ+Oc/csWUcjYX24e0qsWGbPR8rurL2zinyeXucG9thcdlW3YaqK9u+ex2QJp+yzd1hz1/H2WLJ2ztX1l00Jnt6nISG9THBnrW3LRuLe3sceDoLMWexvS0BM642O46GQtnieMnd7cjHNTl7u7psdL6xAe+gHVd70T10O/J9LGfD3Pjt7bRj9ZpJx9PE1xN4u+35uZqqZu2Sva673aG/m6yP8PU78Q4Uta02O54OW/7frjY7JmuRj8j2hYuPz2EySXmfofsIe/6QgO5PNrZZX6+DI/9ygZljS7oNs7G4t9eZ/1393Wxus6vjYaZeXMTTZcNd1A6r+oguB+lUhvFn9NV7T5c9H+NrDglXm63gIzrtuLLx6epohPhqEiU7aOj2tuW/93Y68v+GbJvtcpBYTnD6oUkcDZZ8O/R06PXUrL09XUX+JGu34LAb1a3o99NqRXUU7O0uiiNdbUX+u9mCq8XK9vuas+3DvrFsuyX/buw+E84mM1af7r9jq0koOiznbrPgyaqbWHwKziYz9qAKZjOeNkt+nQJkXG7wZheuLBZwecCZXZD0BSgqC54gnDzXzVe/fxdnxxqYmA4xMauvZF2YaGZiukCqGhlvZmRcJzBFEyrnz08gSRL/8A//wGW8/vG3f/u3AKxNFbTbW1IpWrIrcgrQlEoRyH4OJVM0pVL4kkneEonSm07jCRXGfq8P3Nl25XTpn5XsSpzPD25P7lezn/2QsajZeYIJJRu2eZpkPI0bT0+uL+r3YPNIuJtMWLIEdm+biretMJf0tKp4sgeV+m9x4m1Tsbiym9EtGp4s0YVUCk+7GU9bdsHXqeBu07D7ZRQLBPoK3wF42jXc7fpn1a7gbrfk1yXczWZcjWZGn1glGQFvhwVPu943JSUb4zXoZZ3NGu72wpxJtSpE5pO6+lKubJNuCEejXjYnDOLttOHN9vmpw6tkUhlc2VjXmS0rm7PP2mnF21W0ftNuwdVmYeboKqtTUdztFrSsxL6nw4qno2h+2GHG3aZfx+ZVcbdbGD+wwokfzOLusODpKp5LWvBmD3uZPbpdbP7s77ZbkZCYPrheuKfsdSwuWS8b1O3iarfi6SjYxddnxZslBCk5e4fMSJKEu8Wyoay3y4q3y0IqBqlEGnvQnCc4OZvNeUKHbkNLwS6KTvLwdJhpudKFq13D3WFBya0JdBWeTbeLBVf23TgbsmVzNuy04C2KmT0d1vz6rz2k34PFkSXCDNny5JvcPXmyZW0+FXeHRSd8wAZ7H/nmNCDl35XZreDusGDLElk97Va8Rc/q6Sy8V5Niwt1hxZZb22m34Ckae7zdVjzdORKegqvZysT+ZaYPruFu3WhvX6c1TzRSsjZ0NBUINt4eK1g2vpsc3B0WnFnCvaNBt4uSL1vatqy4smXtIbPeF7Lju6fLiqfLir/fSmBQbzuunA0Del+w5Na8ujb2BU+nBdkskYxmsHr1tpUjhXk6rPq4mo1Xi22oOU14uiw4s+sU7lZrfgzO/W6ub6s2Oesj9PsPT8WxuAp+yttlxZNtW5Ji0vt9Y85H6M+6Mhbj+PenUW0y3u6NbdbZurF9531ElxXNbmL22BrR5STudgvu7DqQozHbZrM+wpu1YQ6yamJ9Vl/zsgXNhn3E1KE10qkMmtMEJgl3m3lDe/F0mPFm7WL26M9q8ynMn4pCWiopa8Gb9bsWh4K7RcOWjYFczRqedjPOHLmoyH8rNhl3i4Y9Rw5oUvA0F+wd7FFp2mbF0WDS22yLiiOgl3WEZNzZcUFai+BtAG82zFmYgHQyk99Rcnh0olK+zYb0ssns2mCDmsKv6aQkuwwNar4r0KilaNAKCjAhNUVQ08c1hyPFufEmHvjFdXztgds4d7GZcxcLpPSzY02MTOprYHOLLs6NN7G0qs9hPv3EbqampkgJpqu/jNcOW7duJRqN4rioz3NsMWhcMmHJigEFVkw0LBVioIZlmcCqzM4LMrtGFBqXTKhunejs09I0aoV332AutCtNhkZLBi3rH3xqikaz3gYTNhMBdwqfS/8dWYaAO43Dqn9WlTTJFMwuZ8kt7hR+dxolrKuz+kPgyHIRHU79MzKYrSm6eqGhcJYKf0iPCQEcVvA2SkjZx/OEwNOgX8PmAm+ThDPLtbU69bK5uZgrCN6Wwrqxr0Umk5ZYmshgdYC3Vc73TXeDCU9zwYbeFhlX0ERGNmG2mUilYfqEbgtng4y3tcg/tyq4G/XraBbwtilYsmtpa/NJTGpR3Num6gdw0ck93g4Va5bQ5PAr+NpUUimYOh5DtZhwZe9fVvWyOf9mDyh4O4pi2TYVs0Pm5CNrrM6n8HaoeUKTzSfj7VDzJA5Ps7IhDrZ5ZVanU5ACm9eEt0NDlvUJpLtZxVP8rG0KziwR1O6T8XeqeRKHp0nB21qwt7dVwZG1i8Up421TUW0yqXgGxSxtKutsyM3H9bJmR46QpeBtV3C1yLhbZLytBX+tmXWbWrOqKs6gvCnGz+0VyJpe1uYtlPWVlm0plA12qbia9Xdj95s2/m6LgqeobXnbVGx+E8vjKSZfiuFqKNi71Ia+VhVnMEea0e/XlH836ka7FNk7Z0MtO/dxN6lIEpx8JJwv68ra2+yQ8bYpeYK7q3HjOw90q/i61Ky9TXjblPz6r6NBwdtWuAdPq4one9BUzbbvvL0D8oay3lYVV1OBYONtU7B5ZYK9Cq5G04Zn87SoeRvK2fu3+3Jt1oS7QSEZz5BKlLO3gt1vgkwGuy/7znOxeLuKv3Nj/8zZ0OrWy+bmj+5GOR8XLF5IIgGO7AFFi1PvN4otF1MoeNqL5nltKq4mlXNPrTN1LIK3o7jNqnjbi+6hXcOdvX/Npv/u0kSC2VNRnA0b3423pB1621Wsnuy7CSikEjB/Lp63Yd7ecs7exW1W/y4egbX5NIqm+6KMZsLbbCrY22PC2yIjZ2MXT6MJT7OJVAImT6VwBWWc/mxZt6SXze3PBfXYJn//DeBr0u/d6gBfI/m9PFdA/94UyR4E9mdwuXVfY7FAqAEGh7K/68ng9xeUrvz+NO5sWWckSciRwqrpn1dj0oZEE0FHCr+tMK6FHCnsapqYS8KnpWiLZQvLMqFkhuYsKUlLQ3s8jSebKjSULCoLtKWTHD7Vw1d/cDsXZ3ycutDKzLy+KDY55+fUhcLhxrMXmzk3VjjI+cR+XQH5L//yLxGFlKlDGzgnb3rDHf8bZd2oVmqCrW3rXHx2hchsQW4wHashZ63B3o93sXh2nTPf35ibPCOa/spAbvvmfT4kRWL8l2Jp3/b8Th+qTeHp/3Vc6JY6bg2huVROf29cqN7/m+FoM2PxmIVShgHs+7+2EF2K8+Jnz75Kd1ZAx20hWvcFOfnvF4Xus+ctTQSG3MLpqvb8Th+KVeaZPxerVy+u+ZMhVkbXeelrgvkP6sCWd7XiG3Cz/6+P5hnARrDt/R1YfBrPf/q00PWu/MNBSGd47q9OCt6pOJydVobf3830oUXO/MB4yj1LSMPZbBVOlfj/Znj7HTTt9XHm+zqx0yiG3tuOp9vB8589szEFXg3JT0eLRstVofLp9kpkuiUD8tsbIMsbPzY3sufddhYuJjn3VPUxMe20bvjcsQ3ec9+z7NlhbOy56yP/ied/+ReE1+Z597vfzbe+9S2xe7+M1wT33Xcf3/zmN7EG2hh82++irhuLf1qccTzjS0we2SjznFmvnsui60YX3k4zB746uzndm+BC36Z0b2Vit547g0w8t0RkrowcdYXYzRZS2fHBLqYPL3Huodpa87mYUXWrdN0aZPzZOdbHBXNcvpYwEMO+HPiGnKyOR4XST/Xe1URou4f9nzlTV9oqUez93T4yyQzP//0ZoXq7f7OHtckIp75nfBy2Najs/HAvEy8sMPKTadFbFcbQfW242uyXLM676g8HiC7GOfSPAmkPVdj7W31MvrDAWK15UhFCu930vqmZcz+ZEk4TVw92/HoXFpfGs/9HLM7zDTqILsYIT7/KbdlAqo/XC3rubCA8H2fy2fLvrVL8c9Un+4gsxjn85QulFaper+lKN8lImtkjm+XHJbkk9hLJOw9gNm/42HVPAx4v7H8S8sfpKiDuKVzLYUvQEkzz9//VeLrcff/jE7z4hU8CvGppmS7jlYeiKKRSKdo//xfI68b77Q2nIkwuyISjhUVmbalWvJFk95WwOA8XX9y4viZFxXySVBq3JTfHbd4OBdksMXeqzG8XxW2lad+23OXG6lU58M8V0j8W53sqivcCg1YsbpmxZ6tM9l9unCO6Nvgaw+JR0FwyK6PG0/sB7PpQE9HlJMf/rXxOwVfSx/gHrPTcGuD0T2ZZPGs8tVnDsIPGXU4OfWNSKLXWlrcHsXlVXvhH4/Hay8Gej7WwfCHK6R8J5mcUTFkBupJPyx43h78xmVdTMoLOGz04ms289C96LGo01dj29zYgyRKHvzZVu7BRVBjzFSvs+rUWpo6scvHJKmujJX1UcYDdb2b5glgfgNd2LDX6DvIotVuVWMjiV2jcZmPsuRWSucPyxfUrpGxrvdJG01YbR+6fI7ohu1zRtcrUNTsg2G9m7MDmd5Axb0wLknFYN5WphhxBKYe5nRq3uSNMxBWORar/VrwkM243Mf789p+ytX/U0LW7vv/rLHz+q6wdPMpHP/pRvvCFLwjd+2W8Nvj617/O+9//fgLX9zD8/9zNUo12koNvBTjiYgyZ4pjeslDdT3RYYrRZkzyxaMGysLGfqoLpMkvTvZlim2OvptYU8zN6qp9SmOKF8sVp32QNhm+UmBnJMF5h62NDmrhszCer0NgnszCWIlJty6okl5xUJt1vVZTmohOtX4qX49sN+GZ7UCa6ltJTlBWXr7KmH+xTad1h4eiPV4X2rOrFwG02JBOceLjCmm3pc2Zt1nujlchimvHDNcbUovqyDMNvdTBxNMr08Vd/Pa9l2EywV+Xg/a+AIQ2876132IitZzjzuFhOui2325g9E2fuXIV4rcy1bX4YuNHOheejLIy+guTY0j6R/dy1z4IjKHPkB+vV6xf3yUwGm18mGU0Rr1HtVYFI/FzaJwVj70zJ2lHpPlwxQj0mEtE0i8XUDKVQPq2Vj72Gr4fouq6mtOHaauHaaevmul5fikwalpY231PSsvFvMa/x1LgAMddGuwX7o3RGkzzi0UhVsQGA7C6sIVjjKbpW4Xtv/Vo1023AG47fxc9v/1tkJBIJcX9S1yqpzaafLBkffZak3aixVE49ML+BoGQIcUjF0qTjmwe6WhvDwx/qoP/eLJvL4KLHxNMLtQlKsMkhjfxsmjM/EicaBbe58fU5axcswZ7f6WP3J3qF6219X0c+3ZFRaA4TQ+9py6eWMoqGvR72/l5/XgbOKAbubaPvLS21C5bg/CNTnP5hGUJBDWg+LZ92yiguPD7DoS+fFiZSpWJp0knxoO3w1y5w4AvnhOvt/f3+utpJPWjY62Hf/7UlnyrMKI7/+xiHvnxaONhLJ9KkkuIB7MHPneLoNwQ25bLIpRATwepEhHOPTDL6RIWF3ArofkOj3gcE91+2vq9jQ5o9oxh8ZyuNV3prFyyGBjs/1pNXKTKKhr0e9v3xFoLDrtqFixDa5smqFYn1nzM/nmL86TkhghLA2ni8PEGpDHLkB80BV3yih8D2KjYpM7prDkglMkRXxQPZCy8hRFACCAWc2Gw2/vmf/1n4epfx2uArX/kKAJE5vU0m7MYWR8dXtU0EJSOIraVIxtKoljJfVolQ/Vts7PhgS17RZBNBqQLOPjgrRFACCM8kGP3lHBefWjB0DckkIZn0E2f+fgeBQbGxKjjs4qo/6MPTa6tduAi+IQfbf008rWLDbveGVHVGMXRf24a0XkZg9qsMvrWV9msDQvUmnp7jzI8n6iIo2RoFBzjg6NdHOPRlMYISQCqZJp0QixfC0wkOfukMIz8TIyg17PZw9X8ewNNrr134FcDO3+hm18d6hOsd+MI5jn1XLGZWVYl0IkOqzJysGmYOLHPwS2eYOixGUFLdaj61nQjO/GiCsz+ZrF2wBP13t9ArOP8w+1V2fbwH36DYZMfTa6P/nqa8rzSK9lsC9L+1qXbBEuz8jS52fKRTuJ5/0EVom5ivBDjz0CQXHivZ9DVAzpp8brksQakcMnE9rut+g5eBe2r4LvPmGD6ZAD1Tl8FVlyzWwionLxifE+z7H59AuvgsAP39/ULXuozXFrn3tfrUflJ2437v7IR5A0HJGBTiCUiWWQvPWKo7iu6rFNp36tfbRFCqgMULyZoEJdhMDhx7fp2zv1gydA1MUn6BOTBgIzAgFj8BbLk3yNDbg7ULlpAfOm705FNGGYYCHTe6cTaLOWZXu5mt7wrlU2gZRedNXnpv99cuWILzjy1y/rHK42klAoViYUNaNSOYPxvh8DcnhQhKkIu70pX4FBVx+qFZDn1LnKC09d0htr4zVLtgJQhsfDhbzVzx6y359HZGMX5ghcPfFCMoAaSSGdIJ8fXD4/dPc/IHYmtQQD692yZUWXtPRuDsI/PMvFTlEEwZEmHjDjf9dwaF22XHjR767hTvO63XuoXfG8DA3YENqmNGCFLOZpXdH27C2yt2PV+nmcCADVk1bfChtTB1OMyFZ9cqE5Sg7AATW6MsQakcpLXCJu/Wa3Wll0ooJSiBrhUYS0tEUuKx/TnMQgQlgNBqFLPZnFdGvIzXP973vvcBsPC8/q49VmPEggUXjKEhGtNH0iaiaVPZZfeErfK44LSl2NYVQ5ay6pphY2tek2NyTYISQEYtlEnF4cKRDFNGz48rcn5zPdSt4AqJ2cQWMrHtzTacIQPjYhFByeqV6LzKIvoKcDbKNAyJrwu1XmHZkGbKEGTou8lOqM+8eU+gCtF9YTTBmSfCxMV4LgDC+6EA558Mc/oxgwSlIqQTkK5F2C+pn0rB0QdXmS43J6gCe0Bm+112nILtq150X2el/5aS8dTAWHzi0TDnnxF/calEJp8mrizKXDs8D0d/vM7CuNi+jqwV0oQZuU4O40eijDxXIz4vJQ1KEt3X2WjbIzYnk2Xou9WeT99nFFaPTNN2s2GSSw6+LoWW4ZL1llJCZBl0X2Om9wbLZoJSDQQ6ZPzZNJfFPrQWzh6B8RKdlGKCEhTUlIqxuCCXJSiVg3lRr9/ujjEYrP6+SwlKAAkJoiapJkGpFBFN5phfFiIopQ7PIaUzbNu2TehaOYiungDw53/+5/z2b/825088QEv7VXmiUi1VJbPPxOBbQlx8epGF03ogbMouGlZTVDrw+QsVT+5LJqmiopLZpRrZi96EoXe3kYinOF3rxLUk5R2GKFklh+c/dxrqOMgfno9BHQQNZ4s1L+EmAk+vk1Q8w+Ip40wSRZORzSYsQRvxteqqDcUYeWQakybOn5t6rr7T2Vd8rIfIQpyDnxdQYIrrJAZRjPx0mpGfip/I30CwEMD6TJSU4AmAehFdTBBZjBOZF1vEqteWx751UbgOQHwtTXxN7HqOFo0dH+gVVkQiDpNPG9tAL8a5n04RGHIJ+wbNrYir+gDePheaWxXqQ95OB1afGUeTlfljxjaUAFJRPXXL8jkxVtrJ+8d00pagTeIL8Xz6SMAQQUnzaQy9q5VzP5li5XyR76qxwebqcKBaTZXfQYXRPXJqihfXGst+l0OpghLA9hthxQCnNkdOAoivLzE6OkpTUxOaqArBZbxmUFUVWZZJpVIkwmFUmy1PVKqlqtS6S8Pmlzn1SGFyJtn1SUklRaWJF9aZeGF9s4pSDrJcNi5TzCY0u4KryVz5ZHiufxTFbu5uK+3XBTjyLxchNz82QC4fN0hQKkZkIcnTf3WqcB2DWJ+IEF1OkBHbW8DRaMHeYMHWqBKeMn7R0LAbW8DM2QezMYNkMmQTs1NDVsRuMjafYOTn08wK+HKA8FyC8Jy44l/fXU0Et3vY/zcnSISNx7LhckQ2Azj0BXFiMlCXok54Ls76bIz42qt/Eg30dlnPuF8PsSwRzuRTy4miHlsOvbMVi0dcEWl9PMb6uPip/DMPTpBYF1tUsno1VJu8IaVjVWTjiNBWN/5BJzwoRqbydNoxOwWZTUB4NgbVFtoq4LlPna5KpMrNwUvb4PyxkhjPAEGp584gIHH2wY3KeKUkiVJYfQqqpcrctgxBCeDig9Oc76tO6CxWUAIIeRO0hpIcOVd7CWXf//hE/t+nnnoYgE984hOVil/G6xBf+tKXuOaaa1j+/o9xXrM3T1SqpaqkKEmG2pOMzynMr2Tl57NtqZqi0ksvKigr5efRGYtaUVHJ5jKRiFbp37mF1hJFpda9FsjA2PPZa1Zab5NNeUWl1ckK8UW6iu80SZz40Xx1RZ0K8U14Lp5PfVIRZdYCPR0WYstJJp4Xm28Gt+i7SasTxmMbkyKh2mUsLpmEgNrv2DOLyBbx5dilc7XXWiRJ2kSk2PG+ZsKLiYoKTGWRhOiSYOALzB0LM3fM+Ppf/nLiVQBYn4rX3pirBZOp9gaISe9r69NxYkuCcU2dtrz4pN4WRdV7klFIRsWup1hg+7sbmTq8mr8uYIgos3CmSrus8G6mDi0TXUqQFDysaHbJ1cf9CmgYsrM2rbJwyviGZS5l7OpYlOUikkAmk6n6TjISRJZShOfLMU/TFeOiiRfWmTi0DukKv50jGpUwAJNRmDlWeAebCErF9bN1FQV6brYxfijC2kzhHZUqKJXC4QGzFUwV3Fc5ghKA52CcX+6svmNfqqAEcJW0zlKm9vvOkZMAktEo4yMjhEIhLBZBIsNlvKZoa2vj4sWLxJcjaG5rnqhUS1WplThBU4oX04VyUZ/ejyopKs3EVWbiKpaF8r4/YTOVVVSSAIs5g9UCaxXcSdqst9liRSWrNUVzB4ycg1SWrFRKUMoho8p5haSFCoJ4GxSUSpDKyLz4UAyqTW3LjHnRVYispKl5tr6krsVpwtWkYPWYiCxhWFHJ26anCJs+lo2Pi/ZZq8FsN23eC85kqq/3p2Dk2XVW5yrcWzpTdrxLxWB1SvxAcV6B6cFV4gLxTUUyVKVny/793FM1xrYK9eMRYzYvRiKaYm02RTxyadJprs0l8ym8NqDGO0/VKZx/6ucG4oQy1xZ5zzm07zLjCMkc+WFJ5UrvJHvN+FqG+FoV+1fog+efjlQnYJWBYgfNZqo9JyuBs0mhYYuZmZNZX5RO1z4YYJJwNijY/TLjh0u+q1E/vJLBZKrwbKlUxT25Yz9L6ATLCuQkU1yPvUoVldaXNpYrJSjl60eSeUWlxqYUsgLjFzdeq1RBqRQ2LYNNrfzeyhGUAJZOWji3q3o/LVZQAvBGUgwsZTjkrx3/v+H4Xfl/H/vyL0in0/z2b/92zXrlUFe6N9iY8q0Y5YhK6iGd/KE5YOcHW5k9tsb5R5fK/m5ZslIqRcMeN9HFOMtnKzuKiunfBKWjr/z9fpKxFAc+I0BayWTY/oFOUtFU3eSJ1zM0h0koxdJrgY7bQni6HBz6opjiUPcdjayOh5k9LEY02/O7fcwfW+H8w2KkI82nCZOOet7ShKfbwQt/K5barF5cynRvffe24Gy1cuDvxDa+NJ+mk40Eg469v9fP7EvLQmQxzQHttzQz9eI8axeNb3x1vqEBd6dduE2+FtAcXBLp0ksJe6PGlnd3cPahSRZPG9eybLzSS9dtjZz697ECAcvABpsoOSmHjpt8TD6/QMq1mahUjpyUw963mAgvpjn6pP75uw9+ZVOZYoISwHOP/QXRyDy33norjzzySNX7uozXF+644w5+/OMfY2/oov+ejRud5YhKvid1dcfBN1ixemRe/G7lDl6OrKSocYKDTiaer0FcqbCpZUhFKRu3Bbc76b49xKkHJlk8GTYct3n7bHTc3MDRb18kIXgyWThl8CWGaoNEpUnuq5z6TQTbP9DB3PGViumgysHRaiWwxcnIYzNCZLH2W0P4+xy8+HnBMVUF1aYKE3N2fayb+dNrjD46U7vwy8SlTve2+zd7mH1pmYuPC5yyr9OOHbeF8PY4OPgPYu8tsM2J1WcWu0f0Njl/cpWJOkjirxrKxBBV+/h/MBTHPwNv04k/J++fEEptt+Mj7ciyxIF/KMw9ahGUoEratwrkJABXm4qiwcLZBMkyRKVSclIO/e0xGv1pHn9RIcfe+ukXP7+pXDFBCbic6u0/MEwmE5lMhvbP/8WGv5cjKrU8lhubk1y3Lc74vML5yfJtqRxZSVmJ4g5BKglrVdxXJbKSIRWlIqLS1rudpJMZjj+4ZjiVbyaVpusGB5kMjPyyKK6sRlLKl3ll1uoM/24dUCz6Zv/rGYGtNnzdVk79sPZJlWKf07DTQWw5ydJ5sQfc+s4Qi+cjtecDJVBskIwjlO6tYaeDwICNo99+9eMuKEr39lCJLcuRlepI8VaM5j1OvN1Wjn5H7NkUG6QSkpAdQX9vC2fCTL4osMCjQPMuJ4sjESKz2QsaICgFttrwdVo59aMybfISzLdExtZXso9XJCkZPTxQKUYyUr+IpKRYYOCNbkb3r7M2ZdCfKgquZoXeG2ycfyrM4qj+vmsRlKBy2rdK5KQcGpqTzM/A1LbNTKRy5KTsr3KHHGExbeKZjK5Se/QTn91UqpigBDD35X8h/NyLvOMd7+C73/1u1fu6jNcXPvWpT/HJT36S0C39bPuvb97wXTmiUvhJXU11mylCgynFo0krleR8ypGV7AsJAs4006vV236l9G9GVJRyRCW7I8XAdjhzHFaW5IoEpVLYLClaB3QV/XiR/6pGUsqjTMpfwJAqCVRJ/2akvgGiUoWzjzpejdRvRgi/ZXxwx14zqzNJFi4YJ+VoDnA3KiycTxoNswHwdcj4uzROP1a0/23kvmWQTZnyxJwq9Xuus7AynWT2dPLl2dwAXtF0b8Wo8Hw911tYmUwye0YgiJKz7dLoXmP22r5OGX+7yunHxYIMe0DC7DCxMFLUSAy8h469ZlanE+XbpBGS4CVal5C1MrasFFMbiX8q1DWsnlRpf86AelIxSamlRydrXzxZmZy0qb5VoX8giaZleOlIYcypRVCCymnfKpGTABxyCrMpw3xCYmHX5u9LyUk5dC+l2LqY4cH2ggLTmZu+sqlcMUEJ4Oe3fxpTRiJZThraAOqeaeVSvl04/fMNf6+W/i2+Bs/93VhFglI1dN3aQOct1dNelN0gVtNYQmJqEc996pQYQQlAkjC7VTSvuDLF3t/vZ8dHu4XrNe3z4b5E6SReFkFJ0CSaT2Pnx3qE00E5m6xY/eL2P/fQlDBBCUDWZBTD6Q51NF7pZe9v9dG8T0yeWLXIyGbx00LefodwOq56ofk0PWWY4CtQrTKKJv5suz7azd7fEk+bYFJNyGYx1xdfgzM/mBAiKEH9bXL4I13CaRlfLi4VQanjtpBwekVHm5l9f7yFlmvF+o2ry4FqU4TTAk49t8jTf3ZciKAEYG8sM7GtQVBytGg07/XS/cbqSkrlsP+BAkGpHEoJSgBOhwlZlnnwwQeFr3cZry1+8IMfALA+PbLpu2rp3078NFKVoFQJXTcFaNvnQa2V6adMG7f6DPrYbNw2e2SVZ//qrE5QEoRml3E2i52QbN7n5ao/6EN1iymS2AIqLdf4hOrUi0tNXmi/NcTQr7QJ17MFLDgbxVIZrI1FGPmpGEEJQDXXFwvt+Y1edn6wU7iebJbRrILXUyG4w11XmrJ64B2w42wXT6EjayZkwWdrvdrP3t/qFU5lp1lllDre29xLq8IEJdDbpD0olqI3uMPN9g92ir83cVGjPC5VH3d32oTnVKCTvXZ/3Nj8tJj0afaomL2aEEEJ4NA/jgoTlKwBNZ/2bQOqEJQAOq5y0HOTR+j+AE6NmjcQlMqhlKAkn/0lAI2N4nHeZbz22LJlCwArP3tiw9+rp39TeOIlrSJBqRp6d5toG6zuh8qlf5NiccxGUkoULcAe/cGqTlASgCSbsHhkrO4in26EoARsfWeAgbeIx1DebguOhgprLq8wAeJlkRcERZEUCwzc7cfTLRbD2gMq9qCxtlVMopg+uCZMUAKQLSYUq5g/d7Wa2f2BNhqGxOIFRTOh1KGQYw8puFrFxv16oVjA22MRft+yWXwNCmDrO5vYVkcqO9liwmQRvF4SJvavChGUINsmQ2XGxRr9s+eNPvG0jC8TryQJsRo5KrjVhtkt1kgUB+z+YAPBIQPzqqINIHtAQXMoldWTKmBlIsmBb60IEZQArGw+OF6LoKRoSbp7oFM4Q7XCQyknz2Qq9+9SghKA6+IUsizzta99TfSCl/Ea43d+53cAmHtq8+GWaunfXkprPJp0IJpvrM2XZCCUwCpXj2XKpX+zJY2xGHKqSutrcOBpnaAkgrRJxmqXsBS5SyMEJXcDbH+TGU0wy6ViAV9blXs0SHDCwFxOhLwjhHL+WZLwdSu07akRd5UZuxxBGaugT4+vwewZMYISgKxKKGbxtaS+66wM3Fom7qpBcJI1qbxKUdVKeqq+imnKXmFYvRJWj3g91SwZV7zOwtUgM3yXA2eDWD9VtPre2/pcRpigBOAIVGiTVQhK9oBM5zVWZAvGiG85vIysfobJXkYJ3hX8j8UFrgZx+3fskum/3lj8k1NUAjDbwWo3TlDK4dRJhZeOFOoYIShpcgrz4ub96GoEJYBuW5ydbvHA95xH5oft1VPElRKU4s9OQirD1q1bha+XQ13p3gC+8pWv8K53vYvRsw/T0Xfzhu+SdqVq6jfNAZJmIlZGUnFT+resNz//6DTTh2vLLpemf7v69wZIRtI8X4cCjaiyyPN/e6YuJmJsOUFsUTwNQtctjazPRDl0xvjJ5OCwi963tDDy82mhNFS99zTjH3Dx7F+InfC+8pMDZDIZ9n/qlPFK8SRWnxlnq12IPFSv6k/zPj+eDpuwApaoLQAWzqzjbl1m+bzYSbQT/zomfC2AvrtawCQxf+zVP5nfus9P024f4dnYxhRZNXDsm8Zyi5di+sAiibA4O7Oe99a0z4e328Gxb4jd65F/HhG+FoDVZwZBXmDLDX46rm/g9A/HhPrN9g90YvFq7P9rgT4KXPmHg8RXE0JpEjWfRsvVAewhi9B7l80K8fUEK+NiO3qTTy8w+UwdaSBzaeUENtgadrvpeVMjF5+aZ+zx7ClCA8lb18bjnH5ompWRNVJrIDfrm1jVFJQAHH5Yq3KAthxBaW7qKAsLC/T29l5O9fYfEKqqomka8Xic1akRnI2dG75P2KWqqd9sAQhX2O8vTf+WicU5/8s5Zo6aSRjJeFF0BKr1Og8te9wcv3+S5fMGZHKL0r+pNkisG3d+i6fDPPfX4umn1qdjxFaSaHaJ5GrltMGl6LglhKfbzvj+BSGCzfCHOtGsMs8LEuD3fKKHlYkIp+4vSTOa801l1AdCu9303N7E6QfGmXvJeKzhaq6PVCuaiiuH/rc3s3ByVegezwqmxsphfP88JsG85ADPf1p87uDrcdD35mYuPKYw/pSBfJwvE713tpCKpTjwWbG2tf9vxJ9t4fQqFrfG+oRxZUKA0z+s7731v72ZxTPrzB4SSylYT5t0NOvEJpH0gwB7Pt5HOpmubP8KccSVv9/L1ItLjP7cOAmreZ+X9uuCHP32RVZHjacqab8piD1kFj6QEZ2PkyqzIF8JmXQGySRx+MsXhAlKxapSRshJOQy+rRGTYuLAPxa1sRoEJYAj31/E16kvRimnJ/JqSpUUlABsWoJ4HJICBCWAmdMHUBSFv/u7v6t5X5fx+sP999/P4OAgSz/4Ca5brtvwXcqerpL6TUEhiaJANLl5ya00/VsuzdvZA2mWDCzRlKZ/G36rnVQiw9EfGZgrlaR/U0ypigfty+HEj1bz6d+MEpQAIotJktGUHvfl4i4DKkrdt/hYm45xslQ5qErsZgspDN4TYvSpJeaOGp8/Nu1y0LDTycF/Ehu3tr0nhKRIHPm6caXmZBTsDWbs0wlDKdxyuPCLZS78wvi4mEv95u2x4Gm3cv7nYnPjw1+rkGemCsJzMSYPrbA8JnbAa/y5FcafEz882HWrH8Vs4uBX6os3NqE49VsJ8cPXa6fzBh8nHpipnNq6DC4+ubwxhZoBSJLE5IGVusTG6nlv7k4L3i4LIz9fMr5ZRIU2aWBuZQ9p2c1D44vunm4Lvbf7OffoPAun9X5TLr1hKbpu9uJsNnP4G2J2Gb6vkXg4xYnvlU+TuCHtW85mCnRc62HhbIRzj1bpb8Vp30wSilkhspQksmBwkplN3bY8luTgvwiueSWTKBaFZNI4OQnAEYDBm6xcPAVT2W2IWgQlgGRc4ejhJOEIBOJh5nbqaw+VFZR0uEmyjEKlratyBKXExSnm5+bo6em5nOrtPyBkWWZgYICTJ0+ycmYGV+9GkqbHGqmQ+k2PbRykWKuwo16a/s2ykOairLAQVoikaq/dFqd/C7iT9LemOHECVlYNKHCYZUDGFEshyykyxqdyRMNw6ClTnphkSEEJiKxBZDmDZJb1tatcsFeDZBTqVmjoVVieTpGK6z4qr6hUpW7nVRYsbhMnHi6Ku2RTTVWXvlttRBbTjB0oiYVyvrWMf7cHZXpvsjPy1DrL4xXsUZyOK/t/m1fGGTLAuChJ/Xb0wfpOFzVv11idTQmli5s9U6L8Y5BMMn06jqKyMWWegbqnflai2GRgX9vigN7rbIweiDB/rj7VFBF07LWSScHJRyu8hwrPe+IRgY6WRXQxxfjRGOFFg+8s285mTiWZOSVui6YhlfWFNCtTKSFOwdGHytiiRl+zuE24GpTCWrbB991/ix3JJHHyJ2KHW4be7GT2TIzZkyVMpdIYu6ivORtlOq+0cPbJCOH5Kkpu2bo5BaWGXhVvi8zBH9aYUxWnfVNkouuQwbjdTfEkaU3h3GFxgpIaT5DQTIBsiJyUQ19XCrM5w9MThXWuWgQlgKOrGp5oBpDxvQgL2bRvlRSUAKzxFHEZIYISwPg/P48kSfzZn/1ZzfuqhLpJSu985zsByGTSxOPxTRueOaJSLtVbMXZ+sJXYcpJD/1x5gmAymzekfpt+XmAiniMqZdLMHF5mfVacNXblHwyQSabFF/ElCc2rCqXzOvyl84J3p+PsjydYPLkkVGf53AqxlRDRRbEcWbGVBKlYSpi4tXBmlXRCbME/vpbm6T87JlTn5SC4zY1N8MR1vYgvxDl5f32Eo3pw9qEJJPnSnOYfe3qe6EJcmEhSL0TStb1cBLe4sQsqRbwc1EOkWr0YYW0ywvI5sYW9xHoSuY4Ti+GpCFHBlC/xhTjH/3WUiGC6w+Uz67zwt+JEBEuDmeiM2LWa9nnpurmRsw9PMv2CcVsujoRZOrvOxafmkJAMEZRymHtpo1OtRVByh2DL1SZmL6Y5+2Lh7++88wN898GvlCUoAZw4/C3SqRR333234Xu7jNcX/uRP/oT//t//O+cf/jLDv/r/2fR9jqiUS/WWQ9e1ZgKdGkd/tEp4qfLvS3ZbnqiUWIalZYHNhSxRaWr/PGaHTHhabELYeIWbzlsCnPzeOIunxcYRs08lZnRBF1g+F+bQuRGhawBc+NkME8+pwgpA61MRonUoycTDKZIRsYnu4tkwyyNrhOfENoYuRXrXYvj7XEiSJERSqhciqeheLhbOrnH2x5MsnBUj8tSLsw9NkIpfmvR/4ak4Zx54hTYADcDX60JWTMIkpXpw/qFpzj8kHlfOHV82fJg0B9WtkginiAnGUNHFOJGFOKuTYr71xHcu4OwUVyqoh1ymulUSK+JHYoc/0Ekmk+HA58T80NjTi2guhUw8rqd9M0BQAiABC6c32r8aQQlgW28Sswa/PAjFSkpv+OjH+OkXP1+WoJRIhBkdHUVRFN7xjncYu7fLeF1hYGBAJ4hHYySjUZSSDc8cUamQ6i2HJFdtixOJShw4U0Vp3KNtSP22JJAJKkdUkmJxpk+kiYuvw7P1HicS8NL9S0L1JNmEbE2TFJh2nvtZfb78zE/nWZ8Wi2nCC0nCcwniq2L+KLaeIrGWQnFAUmjNKyx2IjmLA1+cqF3oFYAkSfh6bXg7xUlK9SAZRZiQ83Iw8osFTMrLS8dmFAvn1knG06xMiLVJUeSIL7MvXTppVV+3FV+fjREBElxZGDz8UQ+RKrqUZOFchJXxjWv8tYhKiWiauIG0TKVYnYiREI2zk3Di+zMkBLchootJjn9fPFWx6jIJ+SsAV7NC320uRp4JMzdeu3wO0VWYOZtk/mQCVKshglIOK8sbx8JaBCUHSW6Rw5xLqRyisD629e9/k6Of+GxZghLA7Je/QTKR4L777jN8b5fx+sJnP/tZbr31Vk7874e58ovv2/R9jqiUS/WWQzcxhpQ4jyVtFYlKoJOVckSlVEpGZOqSIyotTaaZMJlYF3TRLk+K/q1w5jCsCJ5nUuwyyXXjNxtfhzP7xf3ezLkkixNJ4wooWawvpEhEyvjhGkSlRCRDIirmZ6MLKebPJ4jWivOKiUrA2AsxwOD4XUJUqgeBHg2TmhAiKW2AQGy5MlF0DYPkk4rXrFE3ugZnnwyzvvBqSWFtxOgLUcMHS18u4hGYOSG44FvSzkQQ6FFRbUlWJuske+Xel4EUb/NnE8yfFRdJmT8fxyTYF2QZ4uE0iUiN+yr53WQ0xfp8mtiSmE8YO5RgflT82abPAQIkJdBT2CUzdaidDYNJTfPSEbG9gbFpGYuWwbyYJOZVDBGUAFLIzJeYpBpBCWDHfIZgFH7Yntqwr9n72Ac4c9NXyhKUUqkU54+fwWaz8eY3v3nT90YhZUQSOJdgeHiYI0eOYLEHufKGPyhbxvrMqU2TlO7bPCyMhFk6U90w6Uh0w+mqnb/eCcDBL4zUvLeMwOmscui9p5lkOKmnoxDA1X80QDKSEj593bTPR2ItydwR8ZNDl5GFBvv+YAuLp1c58d1Xnwi09/f6kRQTz/2lGKFk6D1tzJ5YYfag8cl/793NhLZ7OPDFM8Kki3pwzZ8MsTK6fkk2Leu243vbmX1pSehkePedTTTu8vLSN0eE1J7qxb4/3sLy+TVhla7L2IietzRx8bFpobSTDVd46LmjmYtPzXJRQKnA2Wmh65ZGDn99BBL1L3ZKam0OcGCbg+7bgpx+cJrFU3p7lBQFemqkXNKgfweMHNMnnjmYFtcIb20qWyUeX+O5n/8p6XS65knDy3h9I7dovevX/6pimYZHJzdoJ1vc0DBo5sKBWE2CTWZ5JX9C3tdnpftWHyd/OMPquIGAP6GXqaeNqZYMvXc1c+Fn04RnjE8u2m7w03K1j+P/Os7yOeN+XXUrNO10M/qL+Us24X3VUGes+0pg8J0tuNodPPdX9SkqicA36GDgra26GqgA8SiwzYm328HpH4iRLvb+Xj/x9QSHvlDfYQIRDN3XhqvNzjN//uorXzrbbWx7bzsXn5xl7JfGV0eDO9y4222cESSv7P29fpKRJC9+3rjya73of1sz3h4nz/7lq98ea0JQTej1BN+QA5MsMXdEjER4xW92Y9JMPP93Yn2m/UY/mGD05/NCSkp5ZBdQJFvt1Ifb3+klFc9w7PtL+b9Jmsr6jpaq9fzuBB57hrMTGzfkLLNR5naWJ4GNPfRZZi+e5fbbb+cnP/lJzXu7jNcnPv7xj/P5z38eraeTxj/8zbJlWh+WMJUczGoPxVkNm1hcqz4nsE6ubzgV379XTxlw7MnasYkU1jdapEQdC9vJFM3DZtLJNFNHxHbTh9/lJRVP89J3xVJyejo1MqkMyxey6xkvJ375jx67vQzs/nATC2cjjDy2JFSvnvh867tCKFaZQ18VG/vbr3OzOhlj8azxttUw7KD9Wg/H/m2K9ZlX/2T+no+1sHwhyumHXn3ly63vDKHaZcNqT7n5Xvv1bpYvxlgeMW7HwFYbndd7OfnALKtjgmuHdWzI7vpgI0sXopz/2dJr1i9fy/UNSZLq38guUlJq3mVj5nhYKCWdo9nM4J0exg6EmX7JOHHO4obmK5yMPhUhIdeRu1jT6yR8teMuhyPJlu1w6gQsL+rjYcoiM31ldWK5TJItJBhBZa3ofL1lLpNXAyiH8d/6Y9LpNGnRUwSX8bqCxWIhHo9zw8P/CbnCAdCxx9swFbk4jRQdUpJzGYVUjfxEzotp5JjuNxxaiqHmGCemzKxEDaTeWdXblhwTJ2iYonE6emFmBGIC5HJvCLqG4Mz+JGuzxtu2LIOvFWYvUCAx1JljTUqljad6K0U6Uz9pBl5eXUmqm0ACgEmiaZtGoEvlyA8FD6LVQRYyO2HLGxyMHoyycN74u7L7TbiaZCZfEiNqDL7BRiqe4fQvShrkqzCutgybCfaqHLxfkFkrguy7lq2w/U12xo/ENipT1YAjKOMImpg6VocdkxlOP1ZnXlkBezcMqoR6NY48tA5JYwSlV+K6rzgkyVBayLIwmfIqSsLIjim2gIyiwkp5scyK6L3ahNkmc/hZMb/ib8wgmyWmJmWSdnHdoFQ2/fa6ATW4HS69Px9aKZC8kzaJ9Sur75l4IikCMTjj2XiN9KKZnsHyh2tG/+5JznzvOT7ykY/wxS9+sea9VcLLWj19/vnnAYiul3+b1mey6YNMG4P2c48sGSMogR60ZwP3VCylS0SLQDLRd28zwx/qFKp25vsTwgQlgJmXVhh/TnyS23lzA+03ieUat4Q09v5+Py3X+oXr9d1bfSG2Ur3A9hrHHUqgOaD/3lacnWIqNMMf6uLq/7JFqA5x9BPGE3UcI6wD86dWWTgpTirz9Dhp3OkVvNYKq+Nh0mGxRYbee5rZ+r4OoTr1omGvh50f69FTZQlg/uQqS2fEAxRPt4PgNo9QncUzq6yOhy+Z2lN4LsbyRbFrbX1fB/v+WLDto7/r4E63UB3NpxEcFuvToKdIbLxSrA0D7PndPmHf4x9y0rjLR9tNDUL1Fs+HWTq/xsUnxRbPV0eiHP7yiJ7uzSAadrvZ9fFuNJ/YAo9JkcikdBUmSVF0ghLA2Rqktjic2l8gKJkW1zAt6n3IdrT8wmd88Sek02m2b98udI+X8frDwMAAAGceKh/8NTyabQOynA++o8tw4VljBCXQT8hLsonVyQjpeAZFUAXIFtQY/rU23F3Gx/5EGI5/e4LwbEpoc3/q0DLzJ9cIz4uNj+3X+mm52o+9WWzQ6n1zIzt/vUuoDuh+oh5/G9jqRK21/ltir8A2Jx23icWUqHD1fx6g7+7yRMdKWB2Psi6omlUvVidjLJ1fY3VcbOIf3OomMCQ2PgIsnl5l/rhYnKfaJLZ/oAPfoLhyTT3Y8u5W2m8OCtWJLidYOr/G8gWx9xbaXp8d504sM3fs0hzCWB2PsD4lvjB01R8OMPAOsfjE3WWj+45GKmb/qrD57hu0o7rFN4S63hQSrtdyrZ/dH++u7UNK0HFDkJ7bGw2Xl0wSkkliYv8C0wKHMHIY/cU8oz8Xmz8PvbuZ9pt8QsqVsPG0rqSpSNmNNvuh6lIC88vqBoKSZTaKJavWHDhYfh5jiq/hdrt54IEHhO7xMl5fyKXqi58dKft968P6OldalUirhTWv0RnNEEEJIKPKZFS9LSfjkIiJLRhnVIXmbSq9N4iltpk4HNMX4QX70fTxCJOHw2CS9f8MousGD61XFsVCBuI9xQLb3hUitK3EkZmqEwMUB7RcJR53KQ5wtQuqbCvQss+Fo1FswbnrVi+7PywWdwGsTsVZq+PgmlTHJt3cqTBzJ8XVIUNbHQQG7UJ11qaizJ8NEwuLEZSa9zjpfoNPqE69cHdYGLg7gCKYRWruZJh5AaXYTCZDJpMhtNWBv09sEF+fibNwNiKsXl0v0WZtMs7qdLzwGwZ+p/16N7s/0iyc26F5jwN350bj1yIoKRbwdImn/fL2WPD1V57LSpJU6FNF5KyhtwVpvcaA7ynyfxafQsseF407DM4fsr43upRk9nSM+TMCyl6KQnRd4dzjEZICXc0ZhC03m1FdYrGorOiZ6dZXdXJSKqvi3vBc9XtOofAS1jxByTKXwTKn29n3Yvlxx3f/w6RSKfbu3St0j5fx+sP73/9+MpkMpz7987Lfjz2uH+xMa/p/AHFkTmfMhghKACmzRMosEYlDMiUJu0CTDfr7E7icIvuUMhfOyESSMmnVePy0OA/ToxBeh4xiImNQPdDXBq1bVazFLslAzBfqlem7rjDvyad7M5k2pUEthrNRxtVU8vs5/1iFLGQPyMiVluUq+Hh7UCY4UGMtr0zKuG13O2jZYSDOKxrPwospVqYEHGbxswrGXrEwzJ1PEBFUKXI3yzT0C27IAQujcRYulokXqt23rKf3M5Q67xWATm4yGDDk3nVKt+PanFhM6Wmpw46SxPxInMU6lHyKf8NoW4mspFmdSeoEJdCJPgYIO1vvctC6pygeMkBQ0pwQGtREp4rY/DJypRCq+FlLCFbBfrVyPdjgg3J+ydNsov8GzVhsXvQgTX0mOncYf7Cc750egUlBLYq0JjO7oDA1KWbI7tYETcFknqBkFLG0RDyt2zhpk0ja9H/bn6s+p1iyyhsISulFM+lF3V+ePdFctk7kuXEcDgef+cxnhO6xFHWnewPQNA2n08nq6ionDn2bwR3vNly3540+nM1moXzvR75qrAWUnoi3BcyYneKLwR23hnA0WTj69VHDdc49UJ9k8+kfjjMnSHiJzsQxKSY0QfZd69UBQts8zBxZYvmM8QWH7e/rxKSYxNSeNI3gNjcmGU6MGFc3Wh6tL03Gwc9vTi9YC/ZGjW2/2s3UCwtceNQ4Me3cj+pLefHUXx4TIkAALJ5YY/GEOJHH2WJFtddxMqYOuFrtWH3iafPOPVinHf+/x4QJUYun1lg8JW7HKz85wNpkhGPfNO4LAA59UVw1YHlsHdkizh8NbvVgD1mEFLo6bwwR3OYmunKO1RHjm5Wt1wSQZImp58Tk4k2yCZNggD5/bJVj6QssnhN7b/GFOMe+MSo0IWi4wk3DDi8nvjMilNbS1W7D4lKIrxUC0kwiWVNNaebgKjMHsyoFBt145zD4GiUOPJYR8iMHDz6PxWLh4YcfNl7pMl6XePbZZ/F4PKxeFFNcUW2w5XY7s2fjTB4xNnlKrMGBLxuMaxKF30yGE1g8Ku42K8vnjfsW1W2i784mJp5bNExeTSwnOf198XFk9LFpZo+tsjYmlq5BkiVMdaRR7bgpSDKSFlL/8/Ta6L+7mbFn5hmtpQgnmfKkiOYr/dgCZi48IkC2T+ibQytjYsSV8afmGX9KnJy/5V2t2IJmXviM8bgtsZzg+LfFlTKP3z8mnKIPqCu1mcmqYA9ZcTRaWKgjbhOFo8mKLEgirNeOR78+WpmQUwX1pFFrvylAwy4fB//hNImw8c36yWcX60rvtzoRZkWQVN6wy4O/38W5R8TSlfTe2UwykuLA54zHiL4hB027vCTWU0LqV4rFhEmVSAhy81/80nk8HYLMJmDqhWwMKkA0HXxHM8uj60w+J0ZusvgU0qmN845MOFxTTenEA0tC1wG4amuEuSUTZ8eNz3Mu/OLbLExPs2XLFlT10szFLuPVgaIo7Nixg0OHDrHwre/je889huu2h+IE3SleOG2ctH3ukLFyORWlHCw+Fav3/8fef0dHdlzn3vCv+4TOOaMbjRwGM5gcmfOQFEWKCiQlKgdLDpJsy5bDXd+69/2+dV9fJ9myLVu2Fa5py1YONBUoKpCixTQ5JwxmBgNgkAY5dvz+ON3oRqPDKTBYouZZi0vCdFVX9T4Vdu16zn7E/RN/u4IzpND7tP7MaUOH1/bCT8+PxpkZKtmQi/yXckgtglExIAuej33NNuq2OpkdWmLqkn5fr+PeIKpd4tAXxHyAyCYHisnI7NCk7jozV5aQVPFndu674n6XbIb1D0UYPjbDlYP6n/VwBRJmLez//AAIJkOaG0nR+0NxuStHxIRZ8GWhtcLmk7GHTRgUCQReoB0+ukY7fnZAOGq/MJqi9ylBOxoNbHg4yNxoQsuIJIBzPxB/ZrPDCUxOWXiMhLc4mR9JLGeW0pNBKbjBQWynm1PfGWZmQH8AJbrThWKWGD8rdjYyKobasiglftLiWJJTj4+xOCVmkNQiXHp2BoOs/yxgDxkJd5q4+OKCWNYmn4zFbSSbKqzXyvh8zWxKU5Myh/bl/tA5lptZotGY5L8yZhICE+DoT36Kqqp85zvf0V3nGn4x8dnPfpbPf/7zDP3gBOt+9w7d9STS7JSWGEzLXNJ5YZBG4uBlfX5aPosSQDINNjvYbDAtkHxWktLEmmB8DCrkfCjXSQZPi2cYHL8Ms+NJFiZK/CxJqppRyWBgTTGv2CYTmTRMX6niJ5ZkF1Id0H6bjYGji4yc1r9G+1tUXFGF0TM66+QkuaavpJi7KmbLqYE0UwPiGagiGxScIZkzP17Qn7EmDf2HxYnogyeTDOqM8xZj5EwVW1TJBOUMy8yNp5kZefUl3xwhiaVZg/6MSNks6YRhTXbsP5yg/5hAvbw8b4+4HTz1EpF1KmeeXSAt4GpMD6aZHhBfD6aupJgfzdXTOR499SYiG0xc7U2AwE9s3G0llchw9qmS+/0qd3QWN8Q2miGTFcp+ZVQMSIqhtk9TwrQ6/1ISq1ucaDc9BoylwaTfP4k3ppmbg6ujIu2lsdsyoBqh6BhhG0nXzKZ0elacnH/DYIohs4Eer/4+Dv34FAMDA2zfvh1VFSdJFuNlyb0BHD16lE2bNgFw0z1/uvzvy1mUyiGTpe0NPpwxEwe+OLjqonU5i1IZWEMy8Rv9nP5a+UuzqpIdgumkN32oCbNb1S8ZkDNl+4MxFJvEiX979aWy1gLVDia/RYiUABDY7CKTyHD1pFjqf3tUZVbgMPhy4Gi04Gq00f+0QPYUFXb8VjuDL15l4Of6Az72qErdziBnv9svTDoShWo3ErspxPDBq8wNvb7k3hpuDzI/uih0cbtWRG/yQRqh5wyw9bdamb48T8939JMQPe12LD4Tg8+/+unDAVBBtaskBN6YU70qka1usYvsXFvOqPU1kcxbC3xdDuK3BDn19cuaPKJOolLXw/W4mu08/yenCv/4MuVaKhGVYtd7yGazDL5UJWBZRvatfQc4A0b2fy+znD2pHIpl384c/TrDA/uw2+3MzIit39fwiwmPx8Pk5CShrXdRt33v8r8vZ1Eqh3SaLW+zc/VSkr4yby7msyiVQ3izlgJ45FgFAnGy8mFYl5uZ990U2PWxFkZPTNP7g1zERofvZg0qtNwb4cKPhoVIR6+lzJsjbmHmyoIwWSZ2o4/hA1f1kwyyGRSXQnI+uSZizloQ3uZhdniRWQGCU+t9EawhE0c/f1GorcguD5lkluGDk2KdXAP8GxwoNnlNpBdRvJZyb9aQgr/LTd9/jb7qY0SxQuzmEMP7xpkf099Y9Dofoc1uDv692MsH0et8TPTOMP8a+Mqg2XJ+WMfvKvIlvJ02shmYOCv2QoY9ZmZ2ePE1m9d6YCi6hOt8Wx0L40ku/Xg0/6Gu79j58WZmrixy6qsFH1uX5FuV1/kqEZVabnfSt2+a1GLly+xS2TdFSbJjXYqRcSM9/abl7EnlUCz7duifPgHApUuXiMfjFetcwy8HJicn8Xg8YDQS//v/s/zv+SxK5WBMZmkIJQh7Uxw4pZIquWjNZ1EqB0VKE2uDi8fKf15KUFrxmR7pt1Qhytx8kw1nWObwV3NEwRoyIHlJ4LqtVswuid6fFp0tMjWi169grK7md8tg8cgsjIoF8R0xFYPRwHSfGInd7JZZnHz1JcpAI2naIypjJ8TO4hseCTJ8fJbR4/O65bHMLhnfOivDh6eFCA1rggx1G+2M9y6+JrZ8LeXe/F1WUgsZJi+IG1E0A5a33YJRNjB2Uuf4yO3lnff7mB1L0v+c/ricJSBj9ShcLUfkeTXOWbJGuEvN6pd4k83ga7eLE8VksHnlVdKDVZ+HnlQs1fyjWvWLMtdZfDINu21c/PkUi5PUJirlsnZHt5gIdZg4+PXpZZJY1qSD5KdWLlOJqOQPppAkGJyQqMRQKif7tp4F4lKK76ctmMcq/65i2beZ5/Yx8djXiEQiDA6u7eXxa/jFws0338zPfvYz2j9+K7EHNi//ez6LUjkYE2lukRcZSMucy64eW/ksSuUQkpMYyDI6V36sFxOUCkgDki7pN+MysTXNlj0wMggDl7TxbUxWr29IpJBViK8zMHQxy3zRux2GVA3/qZoUlA7pN0O1+iXybyaHlglomcxQ1e8rfOZtkJm6kiKdKP95OUhqrvvlfkKtfbPW52XWYmdEIrmQZmGyetXi7w60yTiCMr0/z+39tfatXF1XVBsXayFGicLmM6JaDUxcrtLWKyQJ9prIveWgWsBRJzPZn145rl5J5J+1BMEWmcn+FAkB19wZkQh3KJx9dnHlOK5hb3fUyPxkuvzL9bWk39bwLFVbQclDLyw+CaMR5kaLfljV7Fyab6TaIb1QZmmqksFNl+xbtVRQNfyn4sx10Q4t6/HwBe3vTA2iUkaVgDSbtmWZmTbQe67Qlh7JNy2DkrbPlKISUanFusTAvMystfL3l8q+Sek0twxmGbAZOO2VlrMnlf3+Itm3Zx/8B5JTi69IzOvl3b4CGzduRM45uxfO6szQYDRw7rtXOfCPqwlKtVC304enxY6rRUw+DCCwxS104Xzkny/oJygVwVZnxhoUzyiz/eNtdL+3Ubieq9WG6tXPVkvMIkxQAhg9PCVMUALWTFCK3uQTlpdruiNM/fWCEicJ2Peps8LEleAmH4ENLlxxsTTWGz/YxJbfaBGqY4tZiWzzEtwoLrH1i466nT7qbxJ7ZtHrfez8/U5sYTGWZnSHn+h1YrIoAAf/rkeIoATQcFuIhlvFJMoAWu6LYA6ugX2aQIigBFp5YYJSri1RgtJaZI5sYZVdn+wkskcsfbu72Y7ZrQrLI578yuWVBCUd8LTZUNeg6hPe4iK6Uzwt/dl91CQolUIxXEGWZX760/Kpkq/hlw/5jFijh3+kv5Ikcehrs2UJSrUQ3eEistUhXE9xgrPepD+4noQX//J8gaAEuvy25BJYfSZcDWKTMbLLw47fbhWWQkIBT7vY3j/TJ05QAuh/VoCgBGAwkpxaG0HJ6leI3y7oQwFNd4ZouFlsb+154oowQQkgdl2A6G4xmWN7zML2j7cJ+5T1NwSpv0HcZ/hFR3Czl9geP1bBrAObPthE1yMxoTqORgeRLV7cbWLrx8BzV4UJSigQvylAw81iY9jb5SC01S3WVg66CEolGD89J0xQApjtFyMombwKtqi4P7n+0RibPthYs5yhJHhrC5lx1Im/sfXSp3tXEJRqQpLwrhPfjzzNCr5mE6F1YvtEMqnw3FFLTYJSMQznn8FgMBAIBK4RlF4ncLvdhMNhyGSYeuoZXXUyioFLwyovnrKuIijVgr9eIlBvxLmGLchZL5Otkc21GL0/mysQlEC39Js9KGMPlOwjOqTf1r3JR+td7tUf1PD3zD4Zudr0Lb1QSiFMUAKY6U8IE5SANZNqvO0WXA1iscO6bU4abxSPCx3/8gijxzWnUq9v7qw3Ed3qwhYSW99b9npZ9xaxAWy2y8R2e/C1i2fy+0VH/W430R1ifqin2cymd0ew+MXe8q7b6iC6Q6c8b9G8Of34VSGCEkB0q5OmWyqMxSqEm7rtdkyuNQg7pMQISqBlG1pTJqsUYgQlwFGnVM8WVGadky2w6V1B/J017jhK1ldnnYLNr+iTbJMLnRo4tMTBL0/rz2KlKliDirDEIUC0HuqbQDQd2AksfD/tqEpQKoXzmZeQJOmaxO7rCF//+tcBGPjcS7rrZFSJp1O2sgSlWmgKJol5RPdyCUlKY3JDWnd2Y4lDzxcISoAu6bdsGhw+A7aS5b2W9JszCF23K6jllpgaPp/dXWOtLSEOLM2gP9tK0Xo6fiklTCRJJwTaKoJkgUBLlTWpwt7VuMtCqENsIRw9lyoQlED3C9SRLhPhTrFzvGqBzjstOOvEfIZQp0p0Y435sga54P9u2MMy8S2W8uO+Cpp2m4hv17F+FNnEYofoBhOOkJjtp6+kOfv0otg4zmZp2GEh3FmhjxUIO1afhKtubTQQUYISwMLVtH6CUnFbs2IEJUkFi60GMavMOhfrlmjbU9s3KV1f7W5WrcGVoBGUACSOHJDpPaevHmjkJJs3SyWCUiXYpTTNtiQBl9jimJYkflwv1yQoFWPhvwZIzyRoamp6RWJeL5ukBPCtb30LgMvnfwzUyKK03LKm7Rm/0YUjrn/h7fnPYY79ax9TvWKBg+Z7Q7S/oY7QVpdwZgx7TMfDKTokHfpMD/s+pcMGJUgtZUgnxd4gMwdV1j/SQOvdYaF6zfeE2fXJTqE6oBFsOt4sdkERu8XPrj/oRLWL2T1+Q5C44EVD7/cHOPkV8ew/ql0je4mg/2dXOPzP54Qk8wDIaM6lCCZOz3L8Py5y4WkxyYzu9zay8/fFn/NasO6hGLv/ULytY4+d5+RXxWTUAMhkSc6KHSAO/+MZTvyrmASb6lWx14sfcE7+2wV6nhCTU/G02wlv8RLdKXYBu/kjLWz5TTHim2o3sv3jbcLkoe73NrLtY61CdVCh9Y0xNv1as1A1s9dENp1lpk8sqHT+iSs8//+eKrDKdQSx7JUu8mq81dv+QB1bPtIm1D+DLHPgs/2c+qaYREzLFjAnZ3URlKwntIw6Z45+jf7+ftra2ti+fbtQe9fwi4sdO3ZgtVrJZDIM7n8SqJFFKQ9JQnFLxLeJHXhPfXuMo/82oi+7RRE2vquBtvs0/6RiULfC21UWf9HFVw2/LTmV5MW/PCdENs5msswPL5FNZjH7xU6uG9/VQMeborULlmDrrzfT/ubyOs6V4O92sOUjTWIyWwYjmz7UzPpHxQ4Kdbv9xHb5sPrFyCtnHh/g7LfE93Fb1ITiEmvrxL9f4OA/i5FXMoupNb3NfebrfRz/lwvC9Xb9XgfN94j55WvFjt9pp/0tYmPq4k+GOfZvl4QJNtlMlkxazI7jJ2c4/PkeBveLSYE44lZxabkknPxKH5d+LOYrN9wUoPE2MVK51a+w43fbCW7VGaHI+RJt90eEiV4osOO3W4leJ0Zsbr4jyMZ3NgqTMDOJDOkqbwMbjIZVBCWAA3/Xy/F/LZJm15MFL1z+IWcrvQEoSYQ222m/N0B0p5j/OtkPJ56YZOCQ/hiCx5GkPpjAPLqgi6Dkz8kinX3xpyiKwuc+9zmhPl7DLzaeffZZAKa+9X2gehalPDKKgYySJuJN4rTqP7deuQhHnzcwNSkW7A62yrTfaMXXYKxMVEqVn99md9EfFS6tiufm2R9Mc/SrZdZ2o1SerJTbh1OLGTKpCnuJwVj+Et8MG94SJL6rBjGnZG0KbLCy6T0RYbmslr1e4jfqXN9z8LaZ2fzeiDDxouEGN7GdYm0NvDTN6W+LS6kigzVY6J8eotLI6TmO/vsVpi6JZQDKpsVjXouTKU58/QoDB8WIMk23etj83kjtgq8AYntcbP2AmN8FcOobI5x/UlAWzZDzvRJipJzjXx/hzHd0aAgVzRfZohEBRXHxmXHOPSn2sqfJJRPd4SawXiz+2nqPj3Vv9gvZAhnWPxTE0yx2sdx0u5cND6/0DfXMl/Z7/XTeUyaWV2FtA1AdMplklsWJZPnzSoU1dfjYAgf+ZYxULjSUrbC2FxOUTBWInoalCmeCXPaklu0y628RGx9ps8TBExJHT4rtY+tYwD2WxDxW+zl7D2nfPfPcPvr6+mhra2Pr1q1C7V3DLy4CgQBbtmxhbm6O/sePAtWzKOWRUUFW0zQjdm94ZNjE/lETaZMYIaO7LUl7gzaHKhGVjKvkQbXsGqqp8O+ViEqGhOY/ptNw5CcZRsuEXbKysTxZKZ1hcRbSSZArXWtIUlm/r3GbQssNltr34yUEgpYbLcS2mPTFX3Lrqs0v0XqrFSkfptS5zjffYKHxupJYXo212htViG21YHaKxTXO/9cClw/V8IXKtK3aKfyuav0r+vfe/5qn52mx5BLp9NqSkl46uMjZn+p4K7Kk3+vvtRLuem2kdtfdZdXGlADG+1KcemqGhUmx55zN1E4MW2qLhSk48f05rvaJOb5mZ4UjV6UxkpsXZ34yy9BJsfUtvE4lvlPM75JU6LrPgbtebP8PrjMR31k0L/UQlNIZ1u214m0qaasKQQkg1K7Qebu1PJG6wtoGkE1pGZGAsmfjSmvqmReh93BR95bKn+8LBCVQzfnvX9kXea583bTFiMuaZmPjEhG32KSeNMk8PWflQlL/M3MspWmYSpMZk3URlM6f1s5BJ//uRxiNRv7hH/5BqI+VsIZXF1bjvvvuQ5ZlUqkU509/nw3ouyxX7RDe7MARM3GiT8vmUU3qLY/ZQW0UqR6ZxEThgVaT7ej9kXaIHz6Ye0vMYNS1ejfdFSKyw8vZx/sZOyaWRcjTbmfirP7L9cOfFXxjGFgcSTB0cIL+F8QOhkvTSTLJDOagqskh6YTJqQinG16aTJJJZDD5TSRm9W+yp795mYleMXKClrVJPHNT9/vbUG2yUBaVxCwkZsXbOvoF8QsvQJwMBcyPLWFUXxEuYu22xhOYA+JvlK8l09bAz8Wk+fJYyzNrvTuMu9nO/r8+WT6VYsW2MsISdhNnNTLawpCgM7qYxiCoF+1qdaBYZeFMj+lUhnRSsFIC+p4e1mRKBHD15AxXT4pls7NHVRJTCaFnBdD19ibIwkt/Kdbe2e8MYvZVJnxkk6lVkm+q10hiPLO8l1XE+cvLkm8mOwTqjZgUK6ef1J9WZXhgPwCPPfaY7jrX8MuBp59+mp07dzJ88KkVkm+10LTdhCskceVUYjlDTzWpN4D5UW1tV1yQKI2vV5F6639+nLmieW8wGHQFlrd/tIlMKsPBfygiHevw2xQryFaFBZ2yUlMX59n/GXHfq+9no5ic4gfydCJDttLFXAUYZSOKVcZVb2WqV//cTy+lSelIO16MS8+OMXR4UkiWCzQiiihMPoVN72lm+PAk57+ng2CXw1oy18yPJdn/tz1rqrcWLE4mWBgXz8Kw5rZGBf2oJMz0icu1Hv3CReE6sLZntv6ReuavLgln25pagwztoc/34qoXY/IoDoXMUpqlCYHfls1g9qrIZjG/3OpTyCQyLM2I2bH3RyOEup1imdiAUxUk1avB2Whl+qJghs1uBy13B7n09BhX9k3VrpALMA0fnsXklBl4qfK+lZ2fXyH5pji1TArzOo4OtiMDy5JvTXUpHDYYPVG7Xh4D+37A7OwMNpuN+++/X3/Fa/iFR2trK5FIhCtXrjD5g58QM96uv24syeSMkWMXtDNBNam3PBZzZxnZzAqZrWpSbyM9KWQFrl7S/KWsIuuSf/O3KTTsstL77BwTl3LlJUmXDIg9KDM7op+Ade4H4hKqqUXof2mKqz061hmjYfliLDmfIZ1IY3bKLI7r76PZJSMLXlImZlKkFtMoFljSsaTlce4Ho0L2A1iaSgm1kUfnfQGsfoWDnyuS16zlm6fWliWq90eChJwcSjPX6MHCZBKT8xUJbdfE4lSShUlxv2ZxSvx3TZxfZOJ84aWmbDarLxar55mVEPrCW5xENjo4/G+DJGfFshRNXari8xbNxzyWplIc//oQyQqXM5WQXsoIx7zsQQWTQ8Ygi9XLJFe+QKw3Bn7h6QkSs2LjY34kxbEv6yCVFcHk0EgHNSUY5ZXzovVWG5Js4Oi3dATLiuTdevansFZJYqmMz6+SfFPkFMmUTK0rntBLS8uSbyopOqQkbmeGQ9P65/TEv38Tslm+9KUv6a5zDb8cePLJJwkGg/R89hli92/UXa+NJM1ykoGUzFLuYria1BvAQlorp0pp0iU5HcpLvWm4OKCQKFrO0iZ98m/rt4IBOH6w8G8ZRaop/SZJGnkgofPaIDEPZ34mvm+NnFli4rKkL8uL0bgs/ZZJZsmI3BkYDGSzYHZKmF2SkB+QSiD+ElVfkpnRJItTaA+gGFUyAM6N1TBEmX1CkqDrLhvDZxNcOZ5cWbbY9yqpq/fZFiOdgDM/Fq+YXhBI5FPU74XJDIm5lynVrBPzk2mWZgSZ72m0ZyyIi7WUByr4A2t5Zq03WFmYTnP+v8q0WTpGiv5/zd8lGVfJvvU+N4/FKUYalkyQXMyQXBCbYxaXEVM+UYlO/0myaMlbUomitmoQlACGzyZZmsuQnstUzCJVDgOnxNOwWRywoCP0XUxQstvTrOvOcrEnzehobftr8m4wNQ/nhxSuTFb+TbaR9ArJN5U0KQws6Mi8ZHvJuiz51j4J9XNZBpz6GRVjL11gamScxsZG9u7Vfx9VDYas0GsIlfHkk09y9913A7DX8wHd9XwdZq6eWVw+uOghKQHs+kQLyfk0B//h4vKlVTWSUkXUIiqp0PVgPT3fvVz50ruMCbveEcfdZOfgP/cIkYAcjRbcTXYu/1TskHINBWz+SAuLV5c4/TX9WWxC29zINomBn4kRX7Z+tJXZ/kXOfkssY47qVYWlubb+VitTF+c4/4T+y7y14rr/0cV03xzH/1U8K5UQVNjxm+0MviRGOlLtRhKJjBgfTYWdH+1g4IUxobYcjRYCXW56BS5RVbuRTR9qpe9nIwwfmBTo5DXkYY+q+DrdXPqxmBzd9o+3IVtkXvg/ZQiHVZyjuj1eFIvEpZ9UWHsFM/CtqJojKRlkGf96K613BRjcP0Xfs5O1K+dISsaJWZxRmB5F97ifDOznhQP/hdlsZmFhDR7zNfzCw+FwMDs7S71jC+uD+i7LFItG5pm/yvLlUy2SEkD8OifhzQ5OfmeE2YFk4W36KiSlSlh2PSv4bdHrPSSmU4xWIodX8N12faKNhYkER79Qe+8q9hljN/oYPjqtyaS9HrGWV6oEENzqIrbbr2U4EjBhwx1BRo9NCJFYotf5CG/xcOAzgqQjBRTFQHJe/1khep2P4EY3h9bwEoEouh6tx1lv44X/c/pVb6vpnhCOiEWYdKS4FOE50vbGCJagSZhsFNnlYWkqyfhp/Yzj9gfqUJ3Kq++7vhy8DF/itUD0Oi8TvTPMD61+zuWyJwHY6lS639nAyLEper9fxmer8JsVKzTeGeLcdypnA1nO3qdTfmpF3RxJyaAqbHyrE0kxcOg/9EUq8yQl8+gC7gBMjuq/3Dxy8TOMjo7y4osvsmPHDuF+X8MvNnp6emhrawODgese/DPd9dzWFJPzYExqY1kPSQlg882QSsLx58CQu7SqRlKqhGWiUqVMG0B8t4XBwwvlL73T6bIZzmK7rITXWzn+7cnKJKD868hFfpfZI+OoUxg9UeN88nL8l7XEBn+J0PYGH4nZFJee0X8D44ybUO0SYydXk72qhYU7HwwwP5ag71mx2x7ZznKWF73ofFOAmaElBl4Qe9lrLdj+kShTlxY5933xl99Esf6hIKMn5xg5rv/FQ9mMJuVVNLX0kGU2vD3I8LHZZWm/VSizn5vdMt5WM4P7BR6YDBveHGTw4DTjPTXi+C9zPr5C1xZrguhLukDBxjX8PsUO3iYrw8eKnlW+bhX5zHVvdGHxKBx8bGzVZwZZWkVOysMTl1GsBkZOl/fns6YcMUkVfxknT1JKmyUc9hQbu9Jc6pfoH6xNNsqTlMxjWRxyioUUumVSld5n2f+j7+Dz+RgdvXaP8nrEzp072bdvH/473oD3Bn0xL4k0VmAGCWMuflqLpAQQtibo9CU5OGxmOiEhLWlrTzWSUsU+5IhKq7MoafAG0mTSMDleIftSMr2cRakY3TcbWZzPcm5f5XXRkMr1t8h380RhblwHmSIXIzRUymxbDTmi0prX/GxWdxalslirLJnBUJWgBGAPSEQ2qPT+fKG8NF2Ftn3NEjMj6fJ3yvnfWlLXWScR7lQ5+4wIgwjIJY4Rkc5zRSWCrSrnnhG4M1jjM4puNBFoVTj8zTVIsAoi0CrjCCn0/jz3u/SSZdQq9qvwHcF2GUdA4vzPxc5orqhEainDXKXMgXk7F9k7tE7B4pS4+KIO/kQ68/Lm08vBWudiPv6jg6BUiqzO2JE7CvNTrJyTslanknymaob1NxoYuZhloIxsW8YkryAn5SFJacJRGBgA0uX7lbJp/k6eoCSCPEkpZTWwwzKPzZDh6XkLeiTi8iSlzJiMLw1Xy/S/Epb+918zPDjI0aNH2bBhg3C/y+EVi5Tu3bsXs1nLrTXTdpb4DVoKdktAZv3DQRz1WqaJ6C4HXW8uaJP722003OzCHjWh+g10vyeGu01zbqN73Gx4VyElfsebwzTfo9W92jtL1pDFv94OBiPhHR42vr+hqGwdrffnpBZU2Pj+BgKbnWz7aAvbPtpcKGsw0vZglPYHC7IdGz/QSHinlkra3+FAthceUst9ETrfVujTxvc1UrdHS+fq6bSz8QNNqF6VvmeGmB9fpOnWQorY7nc3Er1JK+tssrLxA02Yg5pdGu8M0fVonI4HYsR2+1n/zgYabtekzuz1JjZ+oGlZcqrh9iDr31n4rV2Pxtn1yU6a3xDBHFTZ+IGmZemy6E0+ut/buFx23cP1NN+rpUJWQyrbPt6Gp1PL+Vq3x8fG9zctl+18W4yW+yIFG36gCX+3E1SI3epl4wcKZdsfjNG2woZNhLa5AQhsdrHxg02Ed2s2bX2gboVk3MYPNC3b29fl0GxoN2KvN7HrjzrZ+KFCO93vbSR6fc7e7QV7gyZh1/VIPYpFQnUodL+7kdgt/hX2toW1sg13BOl6Z0EGxbfOiZybjPaoZkNHo5aarv7WABveVWTvd8Rpukt7rpIq4W6zFex9fYm9H4rR/Iacve1GNn6giY0fbGTHb7ZRd5N3pb3fGqP1/roV9s5LcYV2uDG71OXMDdqYXWnD0I6cvTc6tWejamSo9e9poPOtRWXf30Rkj3eVvQGa742w7qFC2e73Fsasq9W2Ysw23RWi6x0FG3Z/qJH2N2tjwNFo0cZstLy9u94Zp/HOEKpdRTIZqdvpxdmkzfvYLX66312wYdcj9cuyKapXezabPtzG7t/tXGXvzrcV27tozALxmwLIFgmDom2UHW+O0fpAib03a6nWQ9vcy+N75uICksm4yt7La0S3M2dD7bOW+yJ0vK1ey2Bl1Oxdbo1YtvfDhXS1e/5oHZt/Q8tEV2mNyCO/RjibrIR3uWquEY13amM2v0YEtrqBGmtEzt75NaL1gQibPqJjjUAbs3kb7viddjZ9uLn6GpEbs1o7dXQ83EB0t3+5v+XWCIDmN6wcs+lkhtkhbaNdtUbcHaKryN7d724gdrP2bGaHFnE12QprxO1Buh4tlO16R4yG27X9x16nsvnDjez5g3ZCW13U3+JjwzuLyj4So+kuraw5oNL97vrlfc3slUknM/S9OAlAxwMBmu/Q5qNqhw3viODt0Nae8DYHG67PYjNonlOwzULTDvOyvbvus+Fv1ZyZYKdC132F1J3NN5npuXQau93O008/zTW8PrF/v5Ypa3D+KB23mZblkeLbFBp3FzJ8td9qItCWuxhzQ/0mE4odzF6J2DYzzXcW5DPa7/MR3qiNJXtUofNNflSXgSuHp1mcThHaqK0HBslI+xv9RHZo66Y1pLDubRGsIa0TdTtdtD8QIrjJwY6PNtLxlhDR69xa2YBK10N12GNaHyM7XHQWSVZZvSqW3LxVXEa6HqnD1azNi9BWB+seLsz5lntDxG/T9vrBw+Nksxk8ufkW6HbQ9fZC2eZ7gjTeWfBBu94RI3Kdh/rrfbTdH6brHbFlGzbeFaTl3tCKsvk92dNuY8uvN2sybEDD7QFa7yvIe3U9EiO8TbOLq9FK1ztiy7JmLW8M0fVooU/r3lZHJCdfYo+Z6XpHbFluLXajj/YHNbuYvAodb61blnyyBhWtbE4uqW6Ph863FmzY/qYIzfeFsIYVTD4TXY/WaxJaQHiHZ4UN2+6PEL9Vs0vHQ1F2frIDV7NWNrjVRdc7Cutb630RGu/MSfEqGrnGEbEgmSWiu30r1s3me8I03VNkw0fr8W/QXsP1djmwhUzMj2tB8sY7g7TeV5Dq6HpH/bKUlrvVRtej9ShWA0bZgGKXaHuwqOwjMcLbNBs64latbM7e9Tf5aX+wjl2/3UHXOxrpfFuUupwPZItqdsmP2ej1vhXSaYHNLk22RdHGd9ej9diippy9vSv2nvYH6ojnfE7vBgcb3hfHlfNrwts8KyS+2t4YIZ7z8RWrga5H65Et2loe2LTS3i33rra3t0uzoX+Dg00falr+rU33hFbIzHU9Wr+8J3s77dqzUcBkl7H4TbS+sciGb68nlPMLXM0rbRi/NUDHw1F2/GYrTfeEWPdwjPCOlfY2+VaPWQBXkw2TW5vL1rCq2Tu3z0av89Hx1oJf0P7mOmI3anvy1PlZwts82GPavI/s8qy2d27MKi7t2ViCJhSbTGirm663F43ZN0ZouCNvb80ung5tjWu5P8LuP+hc7n/LvREa964cs3l7e7scyzYMbHLRuDdEy72RFWUDm7Qx6+nIj1nts4Y7grQVST1WWyPiN/tof6DwvZs+1EhkT+01AlheI5ruDrL51xprrhH1OR/f5NXWk/ob/LTdFyW83c26hwrPpu2BCPGcv6RYoevtseU1whYyk5hNc/m5iZwNQ8v+Egp0PVKHp0Mr6++20/WI1ofkvCb7tGJNfqQOX5e2x3jX2Vj3UB2Ytb0rfouHbR+pp/udmm063xwk0K09R3ezmXVvCS3bO36jm+Y7nBhyl2yZdIb5XPZle8hAx147Ss5vj24x0XxL4e3/ttttNNkW8C4tYHNBXSNY7VpwL9qSpX1TIdDXvilLtEX722rPkjA/w8jICBs2bLhGUHqdorW1ldbWVshmWer/LnGfFsU2yyk21C/iNGvjLOxKsj5WCB4HHGka/GkstjRGJU3bZnDmFBy9IWjbXGijvh2iOWXt0X7IAi4/ZBUJV1Si9bqCf1e3QSbaXbjIbb1OxRMz0HmrifV3qrRepyLLWkalyEYzsR2FXPjNN9nwNmt17UEJxVQIDYa7Vep3FdL0N93swN+h7X8Wn0zr7U5MDhg6Mc/0lQThrsL3Nt1kJ7BO+9vsNtJ6pwezJ7fHrbfQdIuLpptd1O9y0nizk1C3Nv8UO7Te5V6WI/N3mGm+veCfxm9wsemdIaI7HcgWaN3rxR7RynrbzbTcWZDErL/eSd3OXNoPM6x/KIAzrvXf3Wym9Z5C2egeJ9FdBfnI1nu8uBq1/ns7TFrZnInrdjqIXedaUdbTopV11Cm03uPFl/vtddvtxG8olG2+y4uvXbOpPSzTeo8X2Q6K3cjmD0TouL8gEdV8hxd/V+7s6NPK5mXkgt02Gm91o1olVJtM461ugrm10OzWyuZlu/zrrTQV2dDTZEFSDTl7G2m9x1tkbystewt2id/oom67ZkPZbMTbasWRi+142y203l3ob/31Lup25GwoQ9s9Ppr3etj67nr8XRbaiuSvorudxPYU7NJ2j29ZissZN+GImDA5tD7V7XBSf32Rve/24c3Z0BFVabvHh2wG2QpNt7lpuMm9wt7+dbl9KijTdo8PxaHtJ6HNdhpvLip7h5fA+py9/VpZsztn7w02mm4t2LBlr2dZCtDs0spaAzkbdllpLhqHjTe7CW+xg6z5XuFNduxhrayvw0Jrsb1vKLa3Zpd1D4bY9t46PC3mZRtms1li17kK41vOjdkGbXx728xYPArG3GVr3U4H0T3F47tgb0dMpXWvF9lcyLxUf32hbMudXrztWll7RNbK5paFyBY7zbe4kC1GjJKB5ts8+NdpH1oCWtn8mA11W2m8pWDvLe+P0PlmzWc2e3Nj1ptbIzZYabqtYO/GW9yENtow+2VcTdozt+XH7DorzXcVbNhwk5u6rdrmLls1G7pbisZsBXvnx2x+jYhss9HxoB+DwYDBYKi6RrgaCmvE+oeCtL3RV1gjDEZa73Ljada+11En03qXe1mSpG6LjfZ7fdTvcWL2yDTf7sKXt3fYROvtTuScrxLuttBwXUGrLZ3MMDW4WLBhbk0GCK630LC7sCY37DYT7ND8oYXJFI6gvCzv6W+TabquqOwOldA6raxihrY9RrbcK+ONga8emrcX9ol4t4G69pwJZWjvTmMP5HwiS5pkEoZy3PWmeJJ4NE+MSrGuLYHHqY05rzvF9ck5vGMLQIqIKUWrLbVcdptrnrCq1Q3ISba55pFzzL026yJ9R5/HYrHwne98h2t4feKpp54CYOLpJ+lOz6LmWBuNJOik4GttZIFI7o1OK9BCAjMJTGqaqJqg2VUgELS6lwhbtXFlkdJ0ehexSGlG5yWmlwxErFrZtMlAQzBBwKuNOVVJ0xJLYMnJtPncKRqjCZz2NNvWL9IUXSSUK4sVGlvSWO1aWbc3TUNrgXFisoCaU9aRpDSNbWlsDu1zpydNvKtgg1ATBHMh/oEeTTbXkVsq7R5oWF8oG2yAYFvRXN0k4Y5CwxaVunUS8U3S8h1+oMlIuK1w51m/UfM1ASwuaLvJRPutOZ+oUSJSJO8V3ajgzpU1OaB+q4pq09oNdcrEdxVkg+o2mvDEc5mqbFC/3bx8h+KOS0Q3a2UlC0Q2mvA2K8t/1++wYHZpe5orqsUv8wh3mwhtUDA5QTIZqN9uxuLNZc6KSMS2F8qGulQC7cpyvY0POrD5c2VDEvXbC/0NdijLZQHqt5uweowoZgPOSK5s3oatMqF1Bd88ttWEI5yzoQesHnmZ9OJvlldIpMW2mHBGtT3N7IT6bSYki8aXMtkMRDcW21vFHcvZ0K6VVXNHWG9coq5bYf1dVpp2W6jrVvDm7W3Jlc3bOyoR3VTor79JxuI2IKkaQad+mwlLbhtz1knENhfKhrsU/M0yGAzY/NC424TFoz0bR7jEhp0KgbZc/yXNhmruysIeWFk20K4s71N5ezty5AubT6LpBs0uBXsX2XCrCWekKNa93YSkar6rzWck3JXrfzZLbLO6PL6L7Q3gbdBsuPGNdsJdCtGNKp76EnvnbOipl1Y8G0+9vDxGVYs2F/J7sju6smy4S8HXpH3v7Ggab1zB4s7ZO7zS3qF1CoHcnY+Us6HNI6FYDavt3VFk75wN7Tkb+ttVNr7NiZp7roEOleC6Qt36HZblMWv1SdTvsCBJ2jMNtKuE1hfKxrZbcObXCHeubG6aeZsV6raYIJe9MrrFhDtnQ5MzN+/z9m6UqdtY+N6mG814cudS1W7U1pP8mI2ttGFkvYK3QcLfLNF6k4n6rSpmZ8HesQ2FNS3SIeFv0PojKdp62NCt0tAt4wxqax4A2SyhNiOB/LWrpK2rttyzMdlgYTbLaC5HSfGaDNDQBQ6ntn7bHWmaWtNAmnRaIpWESJEqdWNLGpdbK2uzp2lqSkIu3hRxJ9nWvMCGem1vawkv4bVre4pVTdMaXkKVtLohV5IW9xIpq/b7MpksE2kjIGEjTbdpAUtuv4xKCTrUwn7ZoS5SP2jEOipjAZqWUthzL0TFFpNsni3slxtml2ie1/ZLUzpN7JkXGB4cZPPmza8YQQleQZISwJkzmkzOiTNHsUe1wWPzydj8Co7cRbu7wYI9VJhwjjoT/g4L698SINBixhYy46rXRqy7yYY9XNhQnHEr7kZtRRt8bgKTXcEZ18p6Gq3YQoWyrgYbniZtNKuqFkD1NNm0lLKS9nf+QtzdYMXVWLjctYUseHJ/uxrs2EIWut/XStfD9bibbDjjRWXDFjytWjuuehu2sAWzS2Z2IIFRMuJsKJS1Ry34WrVZ46i3YAtbsOf67G6x44xZOfv4AIc+fx5HzIq72b7chi1swR7Rdh93sx1HrBBMdcSsSCYjZoeMPWTGFrbgyAX1fa1O7JFCgMnZYMPdrPWp/e4wZpdKoDt3CdSi9b9Q1r7cB9WuYgtbcDXY2POJdcR2BleUdTUVng1qzi45+3uaHNgjFppvj4CqPVdX00obenPtuJrs2MIWVJdMYmIJSTZi9RUWLXudBU+urDNuxRa2YPFqY83VbMMRt7Hvr85y9AsXsEcteJu1XcFRp9nQGtTs7Wlx4CyyoTNmJbLdS2ibG1vYmrN3bmy1rLa3O/fMe747gKRIOHMyEd42B/a6Ihs22pftrXoUbGELSzNpxk5M4Y7bS+xtw52zy7K98zZstJMFTv67Jj7sbrQtX37lbehpLLGhXaX1njDuBvuKcWgLF2zoatCeuepRlseAs7Fw+LXXFWzorM/bOzeXW0vsErbiX6+NJXvEkhu3hTHrjBX64IxZcbfYSYwnOP+9QWSrgiNnN2+zA3u0YBdH3IYr11+LV7Ph3OgiI0cm8TTbsdcVPcdGO54WrR0lZ8P8fLX7zWSz0P/0WM5OtmU7qMtjVvut7obcs1E1kpG3zb7a3k0rbWi0qsu/1eKz8OKfnmZ436RWtmX1GqGVta14NgbZgJpj0FZaI5btklsjWt9QR9Md0ZprRH7M5teI9jdEab43UnWNMDklbRzWa38HNrixBWqvEQDe3Di015swKkbMbqXqGmELW1Bz0oTuJhuSwcj5HwyyOJKouEYAeFpsOBoKY9bsVpffNFixRhgMuTWiYBd7nQVvi4Odn+ggvN2DLVS8RthL1ggL7twYsIUtWL0mMuksExfn8TTbcRSP2Zhl2S5Wv4otqC6Pb1fEilEyLmdDcsYsuBq0z1SnVtYZzfWhwYzNK7Fur5Otb3fiDCu4c3urqmrOujMX6HRGZGy+giN2sOdpxsbGcLvd7Nq1i2t4faKjo4N4PE46neZM3wGUnN/ujsi4I4VLK2dIwhnKHcADCo6gRPfdVjpuseAOgru+yH+KmnA15AKkARVHxITVrZCc19Lsu2NFZWNmPLn1who04YiZsfpza2GTDVfcwuzgIqmlNM46y/IeZ3YrOGJm7KGCv5f350C7tPd12dn2m42YPDKOmAV7JLcWNthxxgpl3c2FtXzk0DRWvxlHbk92NdqW/SHQ9s58WRRtX7O6Vc795xUWx5Zw1luXbehtsS+vUaCV9eT674hZMLtlZIuEyavgaSns9fmy+d9qj1pw1luX1/1Qtxt30brvbLAtf689ZMJZb8WU22c9zTbcTVaa7g6y9deatP7n9jhrwIyz3rq87nuabcvrb/63hze5adkbweJVcNbbcOTWFm/LyrLuZvvyPqWYZWTFuLz+uRttK/Zvd5OtUNaqfW86kWHfp85icas46wtlPc0FX1yztw133ldpsOKK25aJJ54Wx7LNNBvalu3krLfirLehOBUu/2yMhYkErnjRs4kX7OKMWXDW27DmfENPmx1Xo50rBye4cnAcV5FfZg9pZc2+wrrvLvKBVIvM3NAiJMHsM+OstxXGbMn+7Wq2487Zpf0NUZx1tiI/cuXZwdVc5Ks4ZJz1NuQcEcPTbFtpwxYbnlbNN1EUA856G66G3LNpsWMPW2i4Sbvo8TTZC+M7Z8P8eWbZhlaF018bIDGdxN20smzez3HGtLJ5MrCnxY4zYmX48CQjRydxNdjw5vpvj5hw1tuweHJjttWx7LuCRuafz0k+2nL2tgYK9nYV7d/uJjueVgfBrS5a3xTV7J2b957mlb6sq2gcmnI2vHp6mkOfPa89m/ry49to0cZs/nNb0IRRMbB0NZnrgw1vy8oxm/ev3Q225bHVem+E0Cb38vpXam9HzLZs7/xv9Xe62Pm7rcvPo9Ia4W5xLJ9LvZ027CEzka05klKFNWLZLrm5YLLLKFap5hqRt4u2RlgZ3H+Vnu8Prl4jGq3L41t1qzhilmW/x91gQ7FKy1m23EX+tWLV1m9nNLcm11txxCx0PBhhwztjeBqteHJkJ5Sc/5R7ScRZb8URNaHkthxPo3a5npzLBe+jhZiBM2rWytpz55kmC65IIZBltstkcvcFjpCCIyxjzl1Wu+sV3HWFss6IQjC4xMbdEG0GhwfM+QCZXyOLLNvQD54cx0o2Jzly9CCSJPHVr36Va3j94tChQwCcObkfj1Vz6BUZfPY0Dqv2BrnHlsZnL1xE+Z1p6jwpdrQuUc8S7oABu1v7zOUFd4Grhzeo/QcwfAmsNpYvopyWFK6ItEya8UYkPNGC/+8KSzgCspaW32jAFZYw5GNeESOeWCEO547JOCM5EqlXwhWTabvVRuP1Vtx1Kp5YYV64owqumBaTsfkkXPUqqkMmNaspZbjjhXiNO27CnXtB0ezWylo8+flmxt1o5sKzU5z4+ijuBjPunM9pdsq44ubl/dsZMy1/BuBuNKPYJFS7hGzVytoCWrvOOtPKPjRYcMe1uvHtDhx1Znw5AruzzoQrXvheT6MZT1PubxlccW092fy+CA3Xe3HFzctJSTyNlkJZwFVvxpnzi+0hE54WC023aMQZV4MFd1ORD9pgxpXzda0BrQ9mu0xyNoNilrAVxUjdDSZcOd/c6lNwxc2YXNKyHdyNFk58bYRz37uKu9GybCeTS8rZMLefxM0lNrQQ3ebE22bG5DRqNszFaV0NFtwNhf56mqzLdXuevIpsMhbKRld+r6epYBdZBVeDmcxShsEj01j86vK5YrlsY3Hc1oyjLkfiCJvIZrP0/Xw8V9aMp9SGOV/WFtS+V7bL1G11Eep2rrC3p8GCM2/DgFbW5DAuP8fSZ+POPxuvgqvBvEysc5f0wd9mI7JZi+mqLglXg3k5HumOW/AU/VZXY25PS8GZJ0ZQHTK2oPZbXfWFGACAp9m63I5sknE1mJm/muDK4RlcMfPymDUYDNqYze2Vcm7M2nM2tAa0GMXwSS1jk7fU3nFTkb1VXHEzBtlA8+0e/OuseIr65I6bCvb2a2UVu5z7HjP2sJnD/zLE2JkF3I1mXLkzl82rjVk1Z293g3mFvRWrtOzzmN3aXLbk7R234G5cOWbdTRYarnPTfk9Qs3furOmKm1fY291kwZW3oVWzYfs9QaK7nbii5hX2djdZCvY2a+PQHsq9iLDVtcIOldYI0MhErrgZs9uYuxBVCmWzGVxxM87c2mkPaTaUzTkbNpiRZCPnfjjO4kRKG9+5slafEVe9itmat4uKu6GwRtgDKmQ1+1o9WlmTS8YgGXFHZDyxQhzAE5NxRWU2PGDH16LiiipYcvZ3RRRc+bVeMuIJGfHkLntNVnAFjGSzWeYmwBUy4g4VrpDcYQlX7lJTshrxOtPYc/6Sw25EliCVyhFJPRl8Hm1/lGXwurM4HdqFnNuaISSn2eFNcpt/kbApTchU2D+DpjReVXPiPGqaoCm9nGNpaP+PGR4eprGxkeuuu45reH3C5XLx8MMPk06lGHvuZ/mrPMKkqStKM1NHmkDubydpoqS4kSV2sUj9dIpgkV8WsqVxW7S/LUqWkC2NWc6SRmIhbcRXOAYRMaVwu7Txqyrg92Sw5Ka5y54h4MmwsACJpAGvK4snd/msyhBwp7HYciQON/iK/D2fHwJhWL81jaJqn9nyc8gBPn+WbI5N5A4ZcIe07xkfAofPiNWtlbW5wRMxLhOP3CEDnmBhrnqiEhaHRM/zCebGs3iiElLOiK6QEU+0qGydhN2rtWNxSdj8EqrFgGoHd1jGXby21CvLJAiTXcJTL6OYcwTZzVYCLQW/zBNXcObOZqpNwhNXMOUSQjhDCp64gq9Zpvs+J94mFVculqmaJTwNCuacD+QIK3jihbXQE1OIbbYR3WRFMoGnQcHi1n6PIyDjrS/yZWMKrtyZzyhpRAirr0DMWOn3yrijK3+rwQgnvz+PrBrx1CvL9nZFlRVlvfUyjoDWB4tbwtcoE9uS2/vr5OWYfv57ncE8KUyzoWqCyYE0c2NpXKGVRBhHSF5pb2vut4ZkPDGFK6eXGDmbwBNTlu8KFKtRI9Hk7G0PrdwjTDaJ2ZE06YRGsPHUy1jy9g5IeOpX2sVVp9Vtus6Gv0nFmvPx7f6VNvREFdx1BYKNp15BzmWKsfk0G+aJXuXsbfPn9zgDgWYT4U7tuTvrlBU29NYr2AMF0oynXkFS4crxBHPjGTz1ue81GPDEtIxHAGZHzt75uRzWns3AiSUm+5Ml9pbx1MuYcvZ2hqQVfZAUA3NXtT1NtuZISzlpNXtAwhsvtouMKyxjDxiJb1VX2jtoxFsvryjrzMf1Vc0uMyMpzv10AZt39bNZtqGk7f1Wb/7ZGDFZjWRzSaXcMQV3UV1PXMGeI9xbPdqckyzQfKON8AbzinY8cQVHUMnZ24inQUHJSWS7owqhTjMb7nPkyqrYc2PY5NC+V7Hl5n2k0AezCwItZkKdOelXi0Gz9/IaUTK2YjKuiIxiNqJajCvt7TPgrSucjd11xoKvYtLWw8FzSfqOpXD4JLxF52hP0IA7dwaXJPCEDdhyxC67C8xWw3ImOncQ3Ll3G7OKhM+XxZ4jStnt4PVniTdmaetM4fFl8fkKL7r5/Fmcue+1OI0E7WmUXDe8jjQmJctSSrOp35HBbcsRmsxZgq4Mav5c6soQzRQyY7rkLJmchqVVyhBRUpglrV2/nKZOLmTmq5NTtI2k2Du5RPt8ivhSGkcuA144laG+SLI0lkgTyWVjtqTh9I+exmg08o1vfINXEq+Y3Fse8Xicy5cvo2LmFttDy28wVoUKnff4OPn1fiH5Jk+HlbZ7w5x9YoiJ0zpEActBZwrp7R9rZWkqybF/qSEhUGTOvOTT6PEpLj5VOZX9fxdUuxFvl4uhlyaE6rXeX8fMlXmG903qruNotGALmoXbWjNUxKTAgD3/o4uJM9Oc/rqYdNta2nqtsFb5wLXIvXk67Vg8Jgaff/XTZa8Ja3xOe/54HTOX54VsodqNJGZfG21ee1TF1egQk8vzqrTcGeLCT4eF5CjNObLN6OE1CPu+Btj5iQ5Gj01y4YdF622NFJP+bgctd9dx+pv9TJ3XkX5dp1RLqSyKwWRi64diLIwnOPWNGhJ26ZX5XCM316FaDVzeXzt1aObqOEvqLM/PPUEikWBpaQlVVWvWu4ZfXiSTyeVnfJP/fVgVK1gtNWpBdJPC4nSKsQPjQu213+fDZJc49uURsomSVPEZfeteOcmQUng6rLTsDXH28SGmL5akHq7iu8Vv8+Nvd3Dwsxf09eU1lgPxdzuY6lsUks2yBhXqdvq49JMhkhWUG8ohvN3NRO8cS+NFbb2K0m+KVUxOTcvCZOXFvzizhsYQkpZ7LRHe4WFhbImpC/of1lrl3ur2eJnsnRGSzHtNsYbn1P5gHd42Jy/8mYAt8sfN18gMoa1uZgbm9NvdYCS4xYXZo9D3k9XSHNXbcjF8bOq/fbyXk3uL3+bH2+rg8BcvVO9fie/U9UgdskXi6Bcvry5bph1DBdmS1XVXtuPr9tJ4nZWzP55irobrlU0VySko0Hp3kLNHAGqnKpcuj3De9iPO9Zxh69atHDhwQF9/r+GXFg888ACPP/44VluInbt/m4RLzxhN0RlJcflgeoV8U600/FYHtG+F3uMwe7Ektb9Ov8uwVGaClqm77m47iYUs559ZeSZaMT9gpYyHDOvf6GbiwhKDh8tIRWTSJX8L+F2vhNybDN5mC+NnxaSv67bbWZxKMX5Oh5xCDma3jDWoCLe1ZuSHXQWlvXLY9mt1jJ2Z59IzkxXLlA0Ry2LtvJYwu2UcUZXREwJOMmuTe7OHZcwelbFTYm29EtAlO6b3OZXstVveF2ZmMEHPk/rPhbKZ8vKQxXiFzlmK3YgzZhKyu2yGuu0uRo7PLWeK0tWWw4A9aGayV//cX0apDyMi81tat4Lc24a3eBg/v7hivV2Wx81DWXkPYwsYaL3JRu/PF5gZKlmTS+sCWat51b+VQ7bE71oK29jUlWBxCc6crx6DkpZWru/qJgmrlKF3wVShRgHungSp1Cz7XvgLlpaWWFhYWFb2uIbXJ9LpNGazmVQqRfuH/7+oNjsJZ+16MRIkMTB/caWfZkxXX5taXEs4TBkOj1gwTa4cq8aUvnVNmSnne62sa7GmaeuC82dgbmblnDcurly3DEVxYm8UgnEjp58v7ycty73lISLdVhKPFpJ9y/mW9oDEwnSa9IL+PUAyZwm0mBg9u6RlHtJ5Xe2MSixOZUjoV1NdidK9tYbsm6gcWHSTirde4dgTa+ighJjc22sIZ1giuZBiYVJ/nbXKvbljEvOTFSTz9GCt0mN6667hOYU6ZULtKkcfr+DXlI7//N962iqds2ukfjjCEktzaRJ6KRcGA46QhNllZPSsWPDKEVWYH08X5paA3Fu21I+pIfe2suzKullldV1vFPxROH9g5fJYWjZtXrnPNDSnsViynD6xOk6QVVb/Pn3xBEgrJfeNUdhiXeTwvJnpGjJvxhVrV5qGhiVOWGTSOmzm6JFIPvt1zux7jje96U1861vf0tVfvXhFMykB9PT0AJBgkbHE4OoLrHJIwMl/FyMoAcwNzJPNamw8Eahelc0falyWANKD/X/TU5ugBCsWr8RsBoNkRLaK9S92i589f7xuWSpLL1SvuixFogeJ2cyaSEM9jw8KEZRAk8xaK0HJWfSGsB4ENru47ve7lqXe9OL5/31SmKC0/p0NXPf7XbULlmDdw/VCzwo0yawdv9suVGfm4oIwQWmtmDg9K0xQargjyJ7/0YWn3V67cBG6HqlflmbTiy0fbGHPH60TqgPw/P97SoigBLD1t9rZ+tFWoTr2etNydjcRzA4khAhKAInxBKe+clmIoASwOJIQIiipdpYl3USw/eNtwvZTvSoYDGSKD306nMmxYzO8+Odn9BGUcuh6R4zYTb7aBYuQXVoim8muKdZ+5ZlB3QQlgD73IZLJJHfcccc1gtKvABRF4U1vehMAPx/7V+0f52tfjgwcSQoTlEC7uMhmsvr8uyLU7XTR+oZA7YI5TJyZZ//fXFhNUKrZQe0yXdHpOuQv3rd8pIlNH2wUawtNYhUdfPw8xo7NCBGUAOZHkvQ8IUZQAhjaP7mSoAT6guU5eTMRbPn1FjZ/uE2ozskvXV4TQWn3JzvZ8EhD7YJF8Hc7aSuSN9MDb5eD3X/YuSwlpxdD+yaECEovB4PPjwsTlLZ/vI0tH2kWqrMW+6HAnt/rpO1+sXpnvzUoRlAC4tf72fOJzhXZEvXAHqtN6CyH4YOTQgQlgJFDU8IEJa0tMYKSt8uue/3LwxG3sPv32wluEfOtFbOk3aEJEqhOfnmwPEGpAiw+ha6HQigOsXZkwxLZDMyJHkGT0POfI+glKI0t9NM/0EcoFLpGUPoVwXe+8x2MRiPzc8NMjPeiTum5AJe5/FJamOgxvwBkwZQRuzCXzdB+g4pJ4Jh96gezqwhKZVF8gZPSfCmjSecFQK6ut8XM1veHluXG9ELLelL7Eru4f2shDQ3unxUiKIEmmbVWgpIlIGYHe1hm+wejhLvF4igH/mmwKkEJVpNhGm5ys+NDsQIpSifiN7pwN4kRB9Y/FGTju8K1CxZhcTIlTFBaK2aHUsIEJV+Hhe0fia7IKKUH8Rtdy9JsughKQPvdPrZ+qK52wRIc+uKQEEEJYP3bwqx/S5WzXRmCktktC48jgORsRtjuqUXo+68pIYKSwWAgNYsYQUlGk32scbFdinVv8rH+LbmYtc66snn1UW4VQakM5kazHPnG7GqCUhU0bDQQEDsuYBqaI5MR5aalgBSJI2ndBCWAoYGvsrS0xIMPPniNoPQrAEmS+NSnPgXAhf/4awDU6dr1+lFzBKU0IiyCbO4/06TYIcfnTtEQ0V9nYV7i6H5pFUGpbJ+KL5EzWrhb0hvuza0TLbtk2vaILcJZyYg9YBS6958dTZNeQmhdTC/A0PGlAklB5743PZBeG0FJAtVRpo0qC1jLDRY676hy0C5DBhk4klgTQWnDG6w07RDwdwGb30hkvVgcz+KCTW+yLcvD6cX0UJqFqZdB/hHAZL84Qan9Ngttt1qECEqaPFyR/XTW3fRG6wo5Mj0YPp3ST1DKwR2T2PyAfYWKxiqUIRWaXGt7TjNDYgQlgJnhtDBBCcnIzFC6MvmvDGw+TaJwFUGpClQLbNyr4s6HJ3XWlWWQJENVglI5XOqVyhKUKvZPStNRV5Bz0wv3eIosILbKpAGJS5esuglKialR+k8eIRAI8PWvf12oNT14xUlKqqrysY99DICDyR8BkE0kdV1mdb4tzK5PtOi+qE/Mwr6/7mVIkDBjchiw+E1Et4sFYlU7y7IUVVG0iL30F6fp+c6gUDtjJ6dJzCYxqmKOw+b3NdFyj9iB1NflYNcnO8VJIu+I0/6gDlsUoeW+CFt+U4x40Hp/Hd3vbBIiKo2enGLm8jxTF9dKo9aPkaMTTPSIZ/HytDoIbRK79JronWXygthv8rTb2fShZiFC3lrR8eaY8JiY7p9nbmiBuUGxgIO7xUFgg9j8HTkyyfiZNWZcE8TYqWlGjk0K1el6qJFdv90pVKfprhBbf0uczLPlN1uFyX9bP9rKhneJXQo33xOj9d6ocFvzY0ssjtYm5RQjMZ7gpb84zaUf5V6V1+FMNtwWECa7gSYn5O8of1NmMBrKZhsAOPT5AU5/q8qr/On0Clr2+rfXseNjjTX3xMzV8WWC0snFF7lw4QIul2tZu/0aXv/41re+hSRJpEnRM71P+8f5hZpkJcUK2z4UoeVu/fvRue+Oc/yrFcivRmPFNx68HY5lmSoR+LvtRHYUzdMaTL++n45x4O97hQg9BqOBhbEE8yNi646300bbGyI03qKffAXQ9UiMje9vFKrjarRqdQTOvooVNn2okeh13pUf1CAq7fxYO51viVctU4qRo5MMH50UqrNWjJ2aYuSEWFvBDS5868XW+7nhRaYvzzE7LHZJ2frGCI17Q0J11gKrX2H9O+PCRJvJ87OM94hFeYLd4vYDuHpymtGTOiLILxMTvfNM9s4y06d/4ns77Wx8dyOxG8VIx5s+1ERc74sQubnWel+Y1vvELl29XXa2f6wFe0zs4qXtngjd7xG7VTIaDSxOJ5k4U5mIXi7r3PnvDXPwH3RkrStat1vfGCy/jhkNFQPZgW479rAJuVKG5gp7z/DROQ5/pTrJK5tKLWeJUVTY/l4/DTfaKlfIQbo8gnRZ8+n2Tz7OwsICb3/722vWu4bXD774xS8CcPTwFwBQp1K6yEqxNth2K8sSYhgM1c8tKTj8M7jaV+azKn6XJIMjKOGrrxBTqlRXhvpdhX1lVRal5fqFPh//xgT9L5ZZf0uzKBXVnb6yxOJkqvL9VQV/r/P+IM23ect+Vmh35XplDcpsfFdYjNwE1F/vov56sb0vvMXOumrEjTIIbbSx4a1hHDH9MZvZoRTjPQtMD6wh24sOFJNixs/PM3pS/PX14Ho7/o7a62kxJnoXmOgVI3pZAzJtb/AtS4i9mojudBK/QWxMLIwnmbq0yHzpiwM1EFxvx9dm1U1QAhg7M8foSR0xw1cgw9HoiVlGz1Roq8L3t+71svldYuT1wAYr694SwKAIXLLJ0PlgAHtY/5gwGAx0vilAy94a60sJ6rY6aN3rLz9/q5xb58YSzF1NVr7EL7N+phbh2NcmlrMoVSQoJQtjzd8i4y63D0jGqhd07oiEL1r+4iprNK7KopTHsdMq53orr2XSUmZFFqXmVti+O4ssV98/3T2JZYLS4MB+enrO4Xa7+eY3v1m13jW8fvDRj36UaDRKcnqc8WMvABpRqTZZKc2e0CLtrsK8yEgGMlLlNaV3ysSREQuUyUqRkQ1k5PJ1va40Pk8VQlSF847DmcYbKNQpzaKUR56oNH4FTj2XKXupvyqLUh6SkfnpLPOTVdb/9Op+m53QeqMFf1uN9bQkQ2d0o4mWGy36iEo5UobJCc03WArkKz37n8FA840WvE1iPsC6u+w07q4Qn6ywh129kGDkXI29/BUSLBo5n+Rqn9ibDe46LTuPCBILMH45xcK0GDEi2CET7JBfXpYiHZBMEN9uwuIWqzfRn2KyX9B+UZlQR85+en+XBMNnk0wOvELpRiuNH4OB+ck0o71J5iYrPKsyBCWzC7rudhIQHBfNN1oJtOmsk7NVsFMlslHsrGXxGVm317r6+dbIFty4w0zLDRXioGXWMQCDBPNTGWYnK/s/huTquiOX4NTzhedSiaAkLa/baaLxNFIZslFWMZbNogTgsWfwOjIVCaFpxbAqixLAxILMs/M20lWyKBkTxVmU0tziXqDNXPsM6eiRcPRo39v75c8wNzfHJz7xCSQR1qpOvCqnuE9/+tP8wz/8A8lkkv3zP2S79S5AIytVk3+bvLCA2W1CVSEhIvvWaafhJj+H/+mirvIzl5Y48LdnhFmYkV1BPG0Owjs9tbMC5RezbBZ7VCW0xcf5J67oamdxJMGBv+kR6xxw4cdDJGbFFsWZoSUtG5VbjPFpj1hILYltYCangmIVG3L9L4yBARZHBW4bE3DssYtC7QB0vjWGp83B839ySned0aPTjB4Vv3x57s9PCmcOEyW7ATjrrViDZmx+lcT4q6tJ51zD5fPE6VkmTosHvJ773yeFsw6JZhsC2PShZkxulZf+XOyN/rU8q75nR1BsYvPD7FGF51RgnQOzS0WqsClWRJaVWYp04PR3+mmYSDAtmFHi5JfKReErw9flwF5n0QhKAg5yeJuXbDorLF/3wp+dWzX+KhGTAJr3BlCdCmcerzAGKzhQs0OLGBVj1bUiT04CSCQSjMoXIa294X0Nv1p46qmnuO222+iZe4kGy2aUfJr3+YWK8m/Jee3t47kRcR2htvsCzI8mGHixzPzJBy2LDhbHv9y/JrmixpsDZDNZruybEpL9iN3oY+rSHDN9+i5vznxTfN0ePz1H33+N0f+C2P6STWeEZeYkqxGrX8Xf7mDshD7CbXIeVJuMuZyPlycqlbHpwAtXWZoS8xnWsscC7PjtNuaGFzn5H/qzqvT8pz5/uhgnv35ZePwtXU1y8kv6+5WHu9FGOpnhonBNMVjDZhwxK9agymy//gu9Hp3nkWKc/PfLQgQ5AJJwVtQfUmD373QwdGiCi0/V0OcqwkzfPKcECEpanTmGDk0wLJJRTtHmlGqvYYwSIqAjaqnqJ5SDatEO/qIkudPfGsBYIXBeCVMX5zn8j7XJRtlMdvl3NN4ZYPjQJAtjOidWNkNkpwd/p4PZgUWGDubOTzrs0vf0BFdemlhNPq2SBnzDIyEuPTvOXIXlsizxQobFmRRTfdXXvzw5CWDA8TxcyeJwOPirv/qrqvWu4fWFd7/73fzxH/8xAwMDnDj2H6zv1khq6lSqarr26XFwlOOGF8WPysHqgfoNCmeeLTPnyvhdS7Nw5PEFUqkaOcFK6nrjMsE2lYXxFKOnauwt+fmbyWJygK/dyuCB3EStRFDKIbUIJ789Xv4iqIq/d+m5SbJJsdS08+PafJdNYudfV8wknAVXtkooNklIHu3q2Tlkm8TCmJjv1fsj8YyodTschDc7OPjFwZr9y5NjZgYSzAyIx5L2f25AOHPY4H7xl8rMHgVXzMyIe45FXVnN1g53oxlJMdL3X/rjB/OjKSFJuTz2f3ZAjJgDjJ9b1J8BLJMFo4GWO73YwwpH/nVYqK3Bg2XieDXON5dfnBZWQjA5FVS7rGVtMxjKyxGWwF1vxh5UkUy1J2IxCSybzZIVCXMbDQweniW9lGGmv8IcyWbKviDS95yOOGgmvSz7Zg3IOMIKw8cWdGVPIpkERSG83oxRgsnLufZ0Zg448mRq1Y1RJWISQKhZkyc9PZyi3FVTqbxbHnOzYDJDKlV538yTkzQs0d/3fQD+8z//s2Kda3h94rnnnqOhoYGRn34TV9eO5YtSdZoq8m8SUwkj08nV4zdPVCov/5YmHkySSBkYGl999ssTlYrl33ovyTl6kgRUcSCK/CeAeIvmjo2PViYo5ZEnKhnSabwRWJyH+dyWVJGglMOVs2IEJYDFabh0MMH4YAYko275Ny0De+6Pkt9bUnD5/xqNRuxBGVtAYnog159q/nHuM5NdQrVlEHE6rpxcrJ65Jd/XorPq5IDOjFz5vub613mHhYWpDJf26X8pcuS0ePB04ESCgaNi/lo6AZcPiL2sCeCKaHNi5ExK+52vEDmrFKoF3DGF6aEUC5XIOWUwek7cHxw4mmDgREKMeJWGoZPiz2rDG6yM9CQ0+4Eu+yXmDAwcLvOsqszJ5Cz0H1lkvF+sj6rNiGypYYcSO9kDErLZyBV0jKecLyKbJbJZSAiE8rKSkZ4Xl5CrheTS6VWyb0uz0LOv9vplSKaXiUiBepga08h8erInSYspbGEDddEsiwsGrube765ETCrG8JTC2JRxFdmoHDEp9wnrwkkujyvMViAoGcssBxIwmZKYSFb/PXlyEgDHf0Zqbprm5mb+4A/+oGq9tcKQ1ePhrwF9fX00NGhZN65T7sOuFt5GKEdUysytXbe9aa+f0EY3x//jIjOXBBZWJUPjzUGhILirxSYkCwSw6YNNWINmDnz6pBAxquPNMRKzSS78UOyweA0aaSGyzSsk01W3x0dwk5uT/3Ze6Dm1PlDHzOC8sASeKJxNVnxtjtdkPFz3P7qY7psTljkThb/bicmjMPCztV1uiqDrkXoG9o8z1aN//rbeX4fVb+LoF3S8JZ5Dw+1BFLu8JqLSrzxU2PTeZs5/f4DZy/rX8i2/0YLZbeL5vzwlRv5TwR40Mduvry1fl5Y96eqplWOo1sXjlo80IVsk9v99mcvuCgfBUhgDq7M2FBOUAC7H9nHqzCk6Ozs5dUo/2fIaXj/o6Ojg7NmzmAxWbg2/b+WHZYhK2fG1ybACbP1AhMXJJCf+owbhoeQNCE+7heRcipk+ffPOVqcwN5rUCCY6b4oUK2z9jTZmryxw4kv6ZVztMRMNtwQ4/pg4MeWXFmvRoKyA5nvCzI8tMbRP/7ha/844MwML9AlI07qarQQ3uDj3uDjZRhR1e7zMjy4xKeA7rAVdj9bjrLfxwv8RI0WvBfFb/IydnmZ+6NUlrwe3urB4TYUMhzqguBQ63xzlyr6rjB3Xf1G57qEYg/vGXzOZvarQI6n4C4T4bX6MspGLP9T3nAxGA4pLYduvNTJ5cY7TXxPwdw1GHHFTYf3XQVCKXe+h/+cTGOSSy6sqF2WuBpWO+4L0vzjF0NnVn1fMDFOCTHx1RrRigtJUcowTie9jMBjo6enB7xeTGr+GX37Mzs7icGjng+27fge7Pbj8WTmiku2yzr2kTIguFFgivlHlzLNLzFY7Opf4XYalJKF1CsOndASnc3WtPgPzV7O65wpA8812vI0mDn9tjNQsNUlKedRtt0Eyy+ChItu8HN/kFcgQ88sCe1gmuMEpRFZyNZoJb7Jz/qkxUjq3zGw2S912B4vTa5ez0wuzV8bdYGbokPiLbKLY/pEoU5cW10QgEoEjqmJ2y8KSdCIZlPKI3+hi/Pwcs4M6567RQGSLHVtQFZJ783dYMLllBl4s8dVeg/n3Sl5hrMXGyxAhn5f4hu33eri8f5aFMR3PKUdSarvLibNO5eiXx0npvWtUFJDBbIfFSXQRlKxekM1GpiZXvpVXjaAE0LHHgMVu4MVjCqUkpUoEpVKMr1udPXQlQQlGh77MiRNH2LZtG/v379f1vdfw+sL73/9+vvjFL2IO1dP66O+s+KwcUclxUd+asZqolGa3f5HFpJFTl6pnBykmKgG4sxpZdG5WBykzk0W1pLVkDWmpJkmpGJtvzjJzNUvvEa39WiQl0EgfdR1GLh5OreTb6IxNA6uJSjWynqwsW2JnkTW9tOzLWcP11i1Z6wNtCqmlDBN9OuyVayO21cTSdJrRHv3P1uwET73ClRNreNNTEK6oRHIxw/zVl7m/1niW0Y0mAq0Kh7/5Kvt4BgPeRom5q2mWRLnvgmPKETRidhqFnq0kQf12E+OXUkznZVh1zIPoRpXxvgQLEyVldRIHX1Ei2cuZewISbaUxHxF5t2KSkrfegGIxMnxenw2yioQkQfctBiaGs1w8o59gnzbLWCxpFhak3HfV7nPAn2Z0DBKulXtNZYISWNQ0W2NL9I4pnHOs9p/KEZTKYWr96rWsmKCUWphl6D8+RTqd5vz58wQCYhmD9eJVi6LG43HuueceAJ5LPrHis1ryb+1vCrH9o0262smm0/R+b5jnP3VGjKAErH8oTt0OH/aY/lRkeYKSq0V/2uJTX77I0S+IEV8A3K12PBUkhSohepOP3X/YKSzvFd7pwd9dkXZeEbawuIyYq1Us5XN4p4fNH2kRqhPocuGM24TsMPj8VQ5/Vvw5Bda7iWwTk4rofm8j2z7WJlSn4cYgkR1i7fyio/6mIPHrg7ULFqH5njA7f78TVUCh0B5V8bQ5CQhKlfQ8PihEUALwr3fi6xSbS63317H+nWJSarawimoXXMJVxOugSTWK2Bs04tCW3xCbt5FtXqwBM7agmHTNoX/o5eRX+3QTlFS7NiZIoJugBNB8V5j2+6PLf1eTdlvRv89eYN9nesguFbVVIu22op27/Wz/rcaKNi+Wd8vj5OKLnDpzCo/Hc42g9CuMM2fOYDAYWMrOc37mwMoPq8i/KTbY8r4Iddv1TfRsIsmBz/XVJijBKjmRtnvCNN+pXwprblAjKNnqFN2ZXJLzcOrrA0IEJQB72Iw9YsG7TmzB2/TBRrrfLSaPplg1coAoFJd+OxTXMXkrVDIYy5Iquh6J6Ze0yiGw3kVwo9g+e+Lf+oQISgDB9S78610oVv0HY8WlsP3jbdTtEZNwiN8YpP761xHxQIHYdQFiu8R+09bfaKH9zWKS0pGtXsJbxKSNk1NJjn3xohBByRY14W62424Rm7cbP9CIf4PYOcsRr5E1tMxcsvpFU1BpUm/+9WJ9swYVdv5uK4GNYj6or91RUcK2EpJTSY7+60VOf1s/QckR1wInM31LVaXdiuFsMBPb7aH13qJASBV5qzymLiV46Z/6Gdw/Q2a6MJaKpd1KseUdXuKVUv6zUt4tj+fHvsr09DR79+69RlD6FYXdbud//a//BcCBfX+74rNa8m/RFth0Q4UPSyTgjDOLjPZmOfBEDYISrJoj9dtNxLZYsOoJI+Tq5i8prAH9GXt7fz7L8e+MawQlAfhaLHhaxM5+nmYzm98Txuwu6V8NgoSr0Sws+QZgWoOMmDUoVsfVaKbzAbF1xBkz4221YPbpb2vq4iJnvqOfoAQakSOy2UFog9g+23Srhw0Pi8nfhrvtxPd4XqWc//89qNvmJH69mD8U2GBj47vCyAIml80Q3GDH0yQQb81kuXJgRoigBODvsBJcV9ROJltz/oW32Gm+S8wPV+xG5JKtuSaxSEaX3Uq/p267HVmvwm7Oh2l/g491bxKbt64GFUedCZtXbJD3/HiWM09O6ycoyWB2AylYnKku7VaMhu0WWq4rGL2atFsxzjyf5fBPM5iGCjGvUmm3YkTqUmzdkawo81Ys75bHlcEDnDhxBLfbfY2g9CuML3zhC7jdbhaHLzN+4qUVn1WTf5NIsyM4T8xWPnBcKgFnmjRwtEetSVCCUgm4NG1dWeJNOgkBRgOJJRnSEqopXVHqpxzOHDBw/rhYjN9kA1fIiDMgVq95p0LzTu1cu4IoUIWgJEkQaC190aRo7a1AmpBUyintrSRGlKzhkqoRsHQhVze6WSPNVEXJ/hZoVfA26LxrzGYhm6X/4JIQiQXAEZQJd5pQBURLJAk677TgbRTLWBjfYiLcLu4fr8KrLP0m0of4VjP+JrE765YbzUQ3isVufE0K4XVi7aTTcPHFJY2glBsjtSCp4G9RcISL+pfO1CQoNV1nwRHOjQedz8fsEsugBAJzr2jtsPqMhb5VQtH6kpWMSCqsv8uEu05s/fJEZbwVJGwrIZ2GEy8Yudyjv57FBqARlKpJuxVDVdM0NaWJxwvjoJK0WzEWEhIv9Jq4Mq1gHyjcL66UditGmt2OeZrMle9Bi+Xd8uj5t08xOTnJ+973vleNoASvIkkJ4Hvf+96y3Mjz80+s+jxPVCrNopRaykAWMTmnhHZp3/Ym/frWJ77ax/knB4UuqUG7fO96qF5/12azzA0lNIKAAGnm0N+f5uDfism+zVxeIJ3IYKl0GVUBTXeEid8iRhbZ9rE2ut/TLFRn4/ubWP9wg9CztUcsWLyqkO1OP97Pc//7pLDEma/LQWibW6jOgc/2cPiz54XqpJMZMmXTiVbGmScGOf7vF4XqOJus7P7DTur2vPrkph2/287G9+sjF+Zx4j/6OP0NsYwVmZTmIIqQyWYHEuz7qxP0fF//ZYpqN1J/a0BYVu7A3/Rw6DNimRDsUQu2iFhwtv3N9Wz7WKdQnc4HYmz/eKcQudDX5SC8xUvDndHahYuQmk+TmheThLzy/DgHPn2S4QOTuuvYo9pvEclw1/lQI93vaREmcx753Dl6fqCRMvSQkzwdNpruym3gxUtRrTdUjAayJWM8Mzqm/e/V1QHERGKOYWMvAI899ljNfl3D6xvf/e53ATg3+wLJZJkoZo6oVJxFKTkH2XRWTCIo99Xxmz3Yozp8jlxws+cHwxx5TEzS0eJX6H5HnI436idJTF/Ubl+sQf3+0ND+KQ5+5hwTZ+aEpJlSCykS82JBh8bbI0R3erFF9a9DjriF7R9povEWsYPBto800faGcPVCJeQKW8SKIyYm43rw789w9PMXheooVohe5xMiXp37wRWe/4vTJOf1+1HJqSRkssIye6e+1idExADY8K4GtgqSdNeC6HU+dn6iXYwEk4Rj/3aJC0+LEcPSyQzZpJjtjnzuAgf/qVeojr/biatZbNzNDSzx/F+e5tIz+jM22aImrD4TFq/+YJxiNbDhHXE63lrBH6qQQan7PY1s+kCj7nYAGm4K0HJPjTlbAtWpkFnKMjcoluXi0GcvcOTz+s8xJq9GlJwfSuqXUFSg66F6NrwzJtS36UuL9PxghJ7v5carjkuypjs8qG5pVd+qZYRRrFpmhtTSyjFu7NOy15aSkwAuWJ4Gstjtdr7yla/U7Nc1vH7xP//n/6Suro5sJsWRQ19c9XmeqFSaRSmV1BIGlSYJW4HSIHBKG6+xDTout3Pz5fL+Jc4/O8+8YLKY9jtsrLvHpZ8skoLFySzIoAgQK059e4wT37xauLTSkUVp/mqK9FIGWez4TMvtHmI7xcjUnQ8G6HqLmN/VdJuHrjeH9BMeAItHxhpUMQsQFwYPz7L/cwMsXhXzQe11Mu5mgc4BR79yhVPfFPQdUhkyOrI6FKN/3yQnvn5FSCbO7JLZ8v46ghvEXoZcCzY8HKL9PrHY2vkfjXHmcf3Z0A0GA2Q1iVUR0l9qEfb/8wCXy0lxV4IMgQ1WobEKcPrxqxz78pBQHUfEhCMsdgnadIuHTe8SI8nXbXGy5V2xqiTLUoKS2SdTt8NF3XYd60PRGTG5kCa5oGOM59c1o4Gpy0mOfGmYsbP65XzNbu1/50b0T4ymPTbW3+vEJPiy4amfLND7fC5eoMPvsrqgrj33R1H3amVPMhi1u8di98x7SrNJKTkJIJVa4MJ5Td7tq1/9as1+XcPrG3mS2uAPv0I6sXq85IlKxVmU0mhcgFpRnmKiUl52J+RJYjPXjm9rRCWJ86cNnD0pRtiQpDTd2yAm8D77Qm6P0E0QAGbG4PiPUkyPUiAM6MiilFjMklgs2FNPRhNvi0JsswWLp8QWVWJtqgU23O8k1FEhTlaBaNH1BgfRrWKOoSMkYRMg5AOc+eE8558VzCopgTsmaeQrnRi9kOLot2eFZLDS6VwiU8GEOT3PznPpgJjEfGyrifbbBB3xNcAZlVh/rxWTnneqisbGqafmGDotcCdsMJBN6U4Eu4yLLy5x8kmxTJn2gBGLGHeddAKOfGuOkXNJ3WQjyQL2oIzZJUDOkaDjLgex7RWebYW2226303JzjTheyZoRWWeicac+BzS/3ihmSC5lmZ/W4Xvl1zXJyPl9ac7+XCDbVY4omUgIJZmjfQu0d4pNwERC4vRpib4+zba1yEkAMVcCVUqvkoarlj0pL0JakvgP1wntO0rJSQCpfU+SmpmkqamJT3/60zX79XLwqsm95TE+Po7Ppx3iNig3UqeuJjFkE4k1pcbPloySje9vwBYyc+Afe0mM64iaFgVARGTc/N0ObAEzl34idkjf84edLM0mhYlHgc0uRg8LHDTXAH+3k7FjFejmFRC9yYfJptD7ff2HU0+7HU+LXajOa4ldn+wkm87y0l+e+e/uyisCW1hl3cMNXHpmRGgMrUXubfOHW1gYXeLMN8UyV/yiovHOENHdfs7+Z/+rPv/WAk+nHU+zg97v6Ze7cTZZie3xc/LfxQgC/m4nY2emxaTUBOHptDPXPytEPgtsdNL2xhhDB8fp/YH+wJ85qFJ/vZ9z39J58VwiC2fQ+WrL5l9rxOxWeeGvz66w3SrJEh3IplIY1PInmot1L3D23Fk2bdrE4cOHhb/7Gl5/2LlzJ/v27UNC5s7Ih8uWyczNYxBJlZpDcSZMxQpbPtjA7NASJ7+qb1/PptOQyWKPqcwOJ3RfcjftDdD//LhGNtGJxjsDhLe4OfHly8z06T90K1awBK1MX5wXJrWItGENW5nqFTvQtr+5jv7nRjWCgE7Eb/Mz0TPHTF+NYMorKP2mF+FtHpr3hul9coihA2uXH/xFQtv9EVSHwokv6d9r1yL3FtjkIrbHx/HHLggRtn6RseO328ims+wXPCu9JlAgfkOAq2enmRsoecGlyjk2fpufxYkkI4cEfEkF3A1WJnteXfk6b5ed8ZNiaU+2fKQZ2WJk/6fFXtCIXu9jZnCRaZ1rsbPBzPQlrazBYNAkS2rA4lXofkeIqb5Fzjyukbvzb98Z7Gu4vF5YxFBGKnWIXs5OPYPJZKK/vx+rVYxYdw2vPywuLmK1Wslms2zofhf+YNeqMurYHFlV/AxgnF65dzfvkPHEJI4/tcSSjulrWEosvwFuCxiYG9W3X9i8YPMZGT4hdmmx+REvyYU0J74hxopy1StMXdYIxa+W3JujTmFmJClEgPG2WzA7JQb3618rLQEZd8zMlWOzQm29Vuh+NIRBMnD0sbXF5F7lELIwZDN03B9k8MA0E+f1j9e1yL213eMjMZfm0s8m19DT2nhZ8mNrgK/dQvPtPs7/9CrjAqSZFXgVJd6sQRl33Lxq/lUbg2avTGSTgws/rXyuKGdne53M4niKVDUziEi8lUKSsIdkFqdqtFHar7CJzvvcXDmywOBh/Rfjsg1C66wMHNd5uyaDxQELE4DBQMam7/K5fRc4fUYO/zBDKgWGnN+V9In7XfLMEglv+XavDDzGmdOnuOmmm3jmmWeEv/saXn/45Cc/yZ//+Z+jOD10fPD/U7aM7UqGlEl83lpzUoxZgwGJNNvXJZiaM3K6Tx/RUp1KYshkUc1pEkkgrS+GHAmlGB/IkhSIvfujEO+Esy+kmR/X7z9JEqg2WJgGUmkxybYiGFLpyplgJLA4DavlqSDn75WvF9loYvziEksC15S+FoX58TQLEzp+x1r32jXuAbaARPvNVi7tX2D8kiAL5hcUoU4Fi9PIxZdK4iJV9ue1yL3Z/BKRLpW+fQskam2Br4X83yuAjtstGI1w6qmFtUmwZbP6Jd4q1a8Cb7PCwniGhcmSsVrFRt5mhfRShqmBCuPbUCaTtgRWt5H5q1V+i8FAVhbLgLSiTUXG7oVZsYShtOySsDgkjj4nVs8bhsUlmE7pYyRqsnAAEhnJwJKndqxAktLsaVhiZFbi7Ii2JxlzZp+tlZmqDExTGRaCq+OZC1cHGP7GPyJJEv39/djtgqx3QbzqJCWAj3/84/zN3/wNALcoj6CWXLRmi1nPRUHexjv9+Dsd7P/b8nJLpSQl7SJZZbZf526eC35s/kgzFo+J5//ylPglvIruOm1vqmOiZ0aIDJQnSlz40RCDz+s/PDfdFSKZSNP/9JjuOr/oUO0IERi6392INWzmxT/Tf+Hj73YyO7zI4oj+gVB/a4C6HT5e/OvTQuPHFlaZG0/ormOPqnS8pYG+p4cZPSpGKBPFWkhKa8HmD7cwP7LE2W/pJzbZoyqzA2ITdeMHm5BMRg59RuxCJbzTw9BL+i9N1z0Uw9lk58W/0j8WRMf1LwO6393ImScGhTKZrYkgqMKGhxs4LiD1JrJm57Hpg01Yg2YO/M1pErNZ3SQlAGeTmekLK6NQlUhKLfcGcMUsHPy/hd9T/OZ/OZLSc/P/yWx2gkgkwuCgWLaPa3h9Q1EUUqkUPqWeHf77V32emStcfi+TlRTY9HCIqz3z9L9QXm6pVK7XHlWYHdBPmMmm05g8CpvfV8/0pQVOfU1w3CpAQt+BTLFC010Rzn73iv6MH8D2j7WQzWQ58He9uklKJq9C8+0B8d/zi4IKF4KKVZPP0wPFamDLr7cxenKKC9/XSRxVwN8pTpTf9GtNJKeTnPyyADFaAatLYX5M/2Boe2ME1aVw4t/EyL2iWAtJaS0IbHIR3e3jxJcv6yf8KWByKixd1W83xaWw+f1N9D0zwvDBSd31rH4F1a0y2aM/O+KO32ln6tIsZ7+pf+6JjOuqWMNLNq8Gotf7IJtl4Dn90ZfodV4abg7Q+9QwQ/sna5bPZ5fzrrNjj5jp+4nOM6YCpIrspCO4q1hh60eamR1c4uRXcs9VB0kJwBpWNBJnSaC9Eklp89s9DJ1YYOhoka+2UPj/pSSlZDLJj8f+CaPRyO/8zu/wF3/xF7r6dQ2vfzz22GO85z3vAeCGm/8ncklqEnWssK4Vk5UCMYjEqRgELSUpAZhdsKiT92hY0g4VrTeZcYYVjn57Wt8FedEZJGvM6Cbb1G00MTeW1AhHoCv47m8303Szm4s/n2L0eNHiXIOsFFhvxWCAkeMlC/qrSJp4tSGbESIwNN7ixtVg4ci/6H9xyVGnkJjLslRFjrAUvnYLsd1uTnzzCqlZ/UQlxSGRXEjrHj+yHTruCTJ4UIxwtBashaS0FrS9wcfSdIq+Z6tP2mLijMklszSXEiK5Nd/lxeSQOPUNgZdpjQbczWYm+xZ1txXd6SCwzsbxrwwVxmqNOSc6rivhlbq+eFlksJwf03ybh8svTZKc1dknSWLj2/1gMHD033U8I2Mu5iRD03V2+g/M67ehYig8T5O+i7Lm60x46hWOfHeO1By6SUqgZVMqJQZUIinVxVIEglmOHDFAWtsL5ZnCJXc5ktLpU99kaHAf4XCYK1f0r3XX8PpHU1MTFy9exLPxOqJ3vHXV57YrhXFZICul2eJLcHXJSN9sedJRnqSUh9mUYSEB5TXIVkOdSiJJaTZvzzAxZuDCOX31jEtF7epV35CgvilN/6nCPxl0EI46b5AxynDy6ZRGUsqjmnybCpFOmf6jWj8NxfVE1+fifeO/g/xctA9Iko5sKfkzrARdd1kZv5Rk6KTO+IjBgCMkMTMsRlBq3mMmlczSt19MAUi1IpSBKdghY3VJqwlHa8ErTFIShsGAzWck3KVy+cCifjtIoJoMtYlQJXW6brcweDLBZL/+ZytZwGRFy3Krc+yvu8vK9HCKgcNFz6gGUanquBaZc68U+UuU5FdUNytLuKMSRpnaRL+ies6oTMt2hUtHkowP1G4yK2txK5tb+294UP8LRvm6AGmLnnpptm1NMzVj5GyvFuvSQ1ICsEhpFtJgLCHAlicppdntWOLyksxAouATmqYK46eUpJROpzn9mT+GdIo//dM/5fd///d19evl4DWJrH7605+mrk5L0fpMskZazpJAhEEyoHp0djMBs/0JVDs031NDuqyonUs/GWHowLjwxfWO325j+6/rz8N47lsDwpcwF58aZvjIhBBBCSC42UN4k1juuA3vamD3H4rJR4V3etj2sVahOqEdbrb/dpuQjFbn22Js/3gXqgBpb25siaVpgVtJYOzYtBBBCSC1mCaTymAP6P9BoR1uNn+ojdh1YvrlilXGJChR5WyyCstarQWuVhuqXWxJUWwSJpfYG6Ub3tXM9o8L5D8Fsqks2TW8xShCUAJYmEiSmE0KrSUb3tfKrk+KzbuuR+NseFeDUJ3Ot8Xofm+jcDu7/6BTaK7W7fHhqLfi79CTi7OAnicG6HtWv1QLAAk0Ip1Oe9ft8bLnE+sIbHQK923s1BSJXABqFUG2BO42G3V7tPW3lKBUDYrFiEE2lCUolcNMqJ85JgE4ePCg7nau4VcDfX0aqeJq8jJD89Ull7L5w00SjLIBxaafiJcnKIW3ObCGq18i5+fO0kSSkWMz9PxQLCNloNvBro+14O3St74k5+Hst8UISgCX/2uMc08MCWVR8nc6cDfb8a/Xv/YpVtj5u2201pJiK0HXO2I03S0m0dv1SIy2+/VLIgPs/EQHnQ836i6fnM+yNJVkaVLA4EmEfWPQ9vV0aZ7aGtj2a62sf5eYLK3qUjA5xSSUFZeCPfbqp75eSzsmp4xqVyCp3ymK3xBg24dbhWTYTA6ZbDJDclEsEDc/lhQiKAEsTiaYH9UfUDP5FLZ/rJPGvSHddRQrbP2NFrydYm8Pbf5wE94usTq7PtFG+wNiczW8yUVku9i5b+C5cQYPTAgRlADGT83qJygBWz/UxKYPxIX6lpyHKwemuPizoj2inHxpEeI3uAoydDrfBFZdYJSMK1PiL1T3244Zvg3AunXrrhGUrmEF3v3ud3PXXXcB8MLP/7xqWUOiaA3OglEGVUBuaXEKkKGus7q/licoAfQfXeTK8UVhosC6NzjZcL/+9WXw0HyBoAS6AttjZxcZODSzkqCkA5HNDoLry6yxVYLgDTe72fJ+sTXW1WCi661ikm/OuIn1DwWFZLTqdjrY/N4ossC2sTCeZFHE7wJmBpNCBCWA1JIm3aboCrprsNcpbHlXHeFugR+U0nwI1SYWI7IGZOTXIKmdLSjejskhY3JW/z2lpJnONwXY8FYxX1+LeYlf9E726icoASzNpVkSzAbUstcvPO/iN7po2esVqhPd7aT17tpyfMVkp/rrXWx5f0RorroaTXhbLbgbBPzwdJren0zS/1L5F4FWwFi0tqfgws9mddvbWa+w9REPngaxOdR3cImhMwlSOTfcOFf9ptbsBH/OvdOVuSQHRcmpkeaOCMUEpXJILvUyMnQAgEOHDulu5xp+NXDy5ElkWWbi6HPM9lXPxCsXyTpLxiyywPXF4pIRkPA4UjVl39Tci0DptMRAn5EBwXe/bS7YfCM4gzov9NOsICiBPqnGgdMpLh4qISjV6pvXiL9Rxhku8/2V/D0J1t9rpa676GKhNM5Wpm5sq5lQl9hdVnSLibqNOmVFc/tA1702Gq4TWcthcSpDYk4sk40oQQkgk86SEdzXW2+20FZLdqsEqsUofJ8nqdo+sAKvAtlMUtEn9VYExWzA7Cg549eAOyKx/h4b9oB+O6gmSCWzpAXvG9MLCMtwL0ylWZwWIEKpsOFBp9gckqDtNhv2oFg2npabLTjKkWNK53XRvF9/r5VotblaZk0INEqE28R8m+mBFP0nxQhKAHOTMHJRfzsd26Bzk2h2K4m+yxL9VwrtmiaqD6aIM4lEmoW0tIqgVAkqIBlWToZiglI5TP/nP5NNJbn33ntfE4IS6FeYf9kYGBjAaDSSzWZ4Yf677La+ASjJopRHjkB08akxLj4lngmo861x7BEL/S9O6srkMXF2lomzGotT9aq6s3/MDCwIbxaORgvrH2lk4MUxLv9U3+Vcz+Pib+Uf+b+9wmSbqf55JLMklGnE5FBQbQr2ehOzl/VdEBhlI4pFxtNoX7Z7LQwfmcRoMqLx6vRNehEZrGWosO0jbYyfnubCD/VlAbjy/DhXnhfLGzdxapKxejsTp/VfzM0OJHjh/5yqXbAE3e9sYqJ3hpMCsiNrwfqHG5gZmOfY/72ou86+T50VbufK/nESc2IegEif8tjxO+2MHJvk0o/0E2cuPjXMxaf0y44BjB6fwurR6UTnYHKrK+IWemD2mVCsYpXmhhZRbLIQ6Wrw+atMXZhhbkhs/bl6Ukewpgi7PtnJTP+8kHTd3MgSi1MJoUxkqt3A3FBCvzQc0HRHCJNDZvB5MZLb6W9oY6cSOSmbSCxnU0ok5uiZOYaqqvze7/0e4bAYyeEaXv+IRCL8yZ/8CX/0R3/E4anvc7vyayi5TBTFWZTyyBOVDv3fNUg/KBC/3sv8WILj/65v773wlOYDKW4jyUl9+/ro6Rki290sTRXJBOuQBOl4Sx32iJkDf1edrJXH8EFxic+B58aZODsjlKUnOQ8L40vMDovdGFp9JuGXWcweFclUYe+sYMPxs9PMDor17cjnymc/rYb4LX58nU4OfVbf8wE4+oWLwu0MvHAVoypmuLVkUOq4vw57nYUX/vTVzYrUdk8IV6Od5wWyL/U/e5X+Z8UiImOnplAsspA04Wz/Avv/TkyyrfHOIK4mG0f+SWwMHfviRaHymRRMnJ9h9Pik7jqOuB3FJhcutXRkUHI1WjE5ZGSTft9LscL86BJTl8Uu6g/8fS8mrxiZDuDiD2v7uHmCUv1NPsJb3Rx9rI8lPbLqORtN9y2QShSdlzPZqgQCxWkgNQOXf6b/bGX1K0S2ODE5Jc49oT92kJiCg/+Wmw8VyEnZ+YXlbEoXTE8zOjRKfX09x48f193ONfzq4Mknn8TpdDIzM8OxI4/RvendwMosSnnkiUqjAzKjOgKnpWjcJONvkBjvT7OoI6SyOAlXJpNgNCCr2eoX3kVnkanBJEYZDLkLr6wOEqDJCeve6Gfo2DxDR+e1QHONi4vB/WUIqjV8vVPfGamcxSS/zpRchM1cWcLklIQyu0gmI2aXjD0sMzukLw6RzWQxOSSsQRPTffriZOPnFzA5ZL3hLgCGj84xfFSM3Auw7i0Bpi4t6Jaxm7q0xLFLhThHnlRTLbPN7GCSwSPTTF7S70umFuHgF8Tjn+vfGma8d57zTwrqOQhi3YMhpgcWOfuEfl/q+Jerx4fKZfUZ2D9FNikWa77wE4HYQ25+rH9LgKvn5xk6rH8MjZ2YZ+xEiZ9iNFTNpjR2ag6rwEudABaPjGzWfCi9GZSsPgWLR8wfWriaYH5M1k+6ymSZurjEsa+MCJP9ZodTMFyjTlGgb+PDXmaGElx4Ro+2p/ZME3Np5q+mmRjItbOUqJlNSbYYSC3CwBEBWfUNBuxuA1f7U0Jr1qULMpcupJBn0iwzlYqgji8sZ1NKpRbpOfc4kiTxJ3/yJ9diXtewChaLhSeffJLbb7+d/m//E20f+X+QVG38FGdRykMjKhnZP2pCb1akPAzZFO2xJLPzBk5c0ld36IpWTlLSZJLZqm3msyjNTcHMJCQXASm3P+jIqhRtB1fIyMlntd+dNRqrZlSaqXRkyhOcytSdHspw8qlFEgslWZTyyO9nxWt2GmbH0ixM6ch+UlTP6jWSmBOL3ZidRrIiXKBslrHzCRILNRaxkrNr73M6N4yi/d0bl/A1q5x7Wn+qnrVkNho+k0ARzFPQf1hUVggiXSq+JoUj38r5D69SNqxQp0qo3cShr+u8M8pmmexPMVlJdqwC5q+mGTixxIKAZGJiHs7+VCxe6m2U8MRkzv9X7tmWmzNlcPGFMu1IxqrZlEbPLjE9WMHnKHM2szgkTA5jIdSlI+is2sHilpFNJf5DtboSzIykmRsv07cK9QypNOd+nqhOKK9Qd/RilTo55AlKnjDEOoyc2ZfRlYUrX2/yamZFiFBaSFXNpiRJaZLIDI/rp+aoUpqWQBKHItEzon//SiDx82kzIFUkJ1lGCpJvC/ue5MrFHhoaGnjiiSd0t/Ny8ZrIveXR09NDW5uWAaVF3kSLaVN5klIxDEZC25zEb/Rz5LH+FQSiitksVAh0Ohg9WmUBKxPo2PyRZixulec/JSbbpRs5U2//eBsDL10VIrZs+lAzZo8qJF0GWhad6QuvhJ7BLydcrTbsdWYGfqY/iLDrk51M9c5y+usCEiIq2EP6iVqvJZrvjTB2akpoHKxF7q3prhCTF+d0E89eM6zh2ah2I1t+o53R41O6yW72qIqn3aWbfPh6hKPRwsxFkdyY0PpAHYEuF4c+f14/sVKFLR9qYfz0DJd+PPKqaQevf2ccZ72NA/94fhV5tarkmwr+Dgdjx8rvQaVyb93vjgFw7LH+mtmT8iSlH849BsCOHTt46aWXqta5hl9tbNq0iaNHj2LAyN7IrwPlSUrFMEhG1r8tQGoxw5n/XLl/lsq95eFttzJ+tvr3lvpt1oBC9zvruXp2lp7/FCN4rvzi6gfJ+M0+nA1Wjv/HZd1ZlSxBme53NjL40jiXBXwIFC1APj8kmL7pvxM6iF66oUB0p4+x09O65cEa94YIrHOy7zPnhLJe2aIm5kaWhDNlvdpwt9qwhcwM/Fz/uFmL3JsjbsXdaOXyz37xpJ3X8mzaH6jDGbey/2/1k5siuzzMDCwy2y/me7ws/IJIvOVhj5mZ7RcLju347Vbmrixw8ivVmRHFGZTC212Etng48s8XazdQy0YVSEqKFbZ8qJnZoUVOfbWM/11F8s3bZmH8TOVL1mK5N6sXOu/1ceHn00xcSNbMnmSwWjg/c4Bzsy9gsVg4duwYLS0tVetcw68uJicn8Xq9ZLNZWtrupz6+pyxJqRhZVcbpg+b1cPolWCwakuXk3vJwhWGqCre8OJNSHq03mXGEZI59Y4aKx44a55GqRKWcr9f1Jg8jJxcYO1v0Y6qFHjNZmm934agzceRfyxAoq/gqloDMwmiFPv8SS7/phSUgYwuojJ3UH+/pfjTEdP8il54RIObLYHbKLBZdKryG4eSqCG22Mzu4yNyIftLIWuTeQhttzI0lmB18ZZzPlyU7VgwZzC6Zxas6f7/RADJsfDjE2Nk5Bvfpi+EpdgOeRgsjp+dXZ196lebaqzXG1mp7s1dmcVa/hCFo4ya6zcnJb4+yOF3l9xS/iShDx51OpgeSXDm6UJBnL4dav6UKSal+u4lAs8LJH8yxWBK+qiX55g5kmKpwhC+Ve2vrTKIocPKYIUdQqow8SenZp/8X6fQSN9xwA88++2zVOtfwq43f+q3f4jOf+QySxca6X///AeVJSsVImQx0uTUf6+TkyrFeKveWh8OaZnrBQDWykVoiqS4paTZtyTA2bODyhdokpYqoQlQyJNN4I+COGOg9kl3B/6tGVJLlNJ03qQz3pBntLTMvq9Q1mdMkKm0dtdbtavvFf7P0W1mUnl0lLfPO/Hi6OpGh6Ht9zRLBVhNnn54nLXDnrNrRJMjEEzG9qrC4wOKWCtJbOp7bWuTeTA6wB2Su9gqmK3qlJMqqYC3PJtQp44kpnP5Ryfmuiv1cdUaWZtPlpb5rSL5VRbVn9mrZr5bkW4W6JgcsLlS5hytTb91tKnMTGfoOpUCpTAYqzqDk9EOoycC5fTklFbVWvQyVhMoqk5TSbNmSYXrWwLne1fGtapJvTnOa2TmotAcVy72ppNnpWuTUrMrVtFIze9JC0MhM31kuff2zmM1mjh07RmurmHrWy8FrGmVtbW3lz/9cS319PnWEqYQOkk42Q2ImicEAZpfOCZJgmaDU9ib9KWWv7B9n4vysMEFp20db2fiBRt3l93/6nHDmnZmBBRbGxAgwDbcH2fBoI9Hra6e7zUO1G9n4gSZ8OqVU8vC027GFxai6rlabkIyUp93Opg81C7XRdl8d8evF0iS/+GenxQhKwM6Pd9L1sJiESPM9YdoejArV2fXJTrb8plhQvPd7V14TotqFHw4LEZRcrTb2/I8uGm7X/3w87Xa6390oJF/XdEuITe9txd+tX+IrMZvhxT87LZSNK35zmPrrA0J9a32gjtYH6nSXB/AISo2AJssoio3vbxKu1/VwAzt+t12oztzIIovTSbHMbwk49JnzGkFJBxyNZnb/QQehbS6hvvU/f5WZ/jnd2fUiu9z4uuyQoCJBqSwMgCFTk6CUx8XICwCYTKZrBKVrqIkjR45gtVrJkuGnQ/+iq042ndHGpYBmdJ6g5G234u+y1SitYX40yfTlBa4cmtDa0tlecJODHR9vwuLPOfQGY9VL8b5nrnL8Mf0EJdAkgxYnkyxMiDmF23+9hfUPi0kbhbe56HpYzB8A8HcL5j2G1ZJdNQhKLfdGiAvs07agiYabg8R26ZezvfjkMPv+WoygFNzqYtN7mglv1r9PmXwK6x6KYYvqz14YvzXAnj/sxOrX/1b2ZM+cEEFprZjpmxcmKG36tSZhydyWeyNCZwmArrfF2f5hsQPt2e8MChGUABpuDtJyj8Bb1QpseHeDkEyeYjUUxoxOgpI1qGCPCeiGAP71DroeiYFAAoDo9T663xkntFXMv5kfXWSqCrHJYDSsICgBDO2fqk1QKlqLN7wzxsb31evuk8FgILVgYKJ3jiGBbHaNt3kgk6lKUCqFbFXAAInJxZoEJYCkYZTLqcMA/PM///M1gtI1VIXb7ebJJ58E4Py5x5mdrZ2h0pBIkZ5PYTAgJDmUJyhFN+h/m3L4bIKrF5OkMvr9LoDOe5y036n5HQajcTmzUiWc/PbESoISaAHkKoHr2eEk86MVnIEKvp633cz6NwcJbqggbVHOv5ShZa8XV6PYOm0JyJjdYsnozT5Z6JlaAjLt9/mEct433uQhfp1bqF/HvjQsRlACuh8K0X7fSv/OYDBUJXuENtqIXS+2R216d0RYXm/48KwQQWmtGD46J0RQMrtkdnwkRt3W1TGcSnYz+2Sa7/CiCEiv+FstdD8UxttWY7AVz4cUHP3SsG6CEkBog4OGGzyYXWUGaIX1pG67nege/bE4AHud9v0iBCVPs9h8zmazNN/lxdcuJp3c/gY/Gx/SLxkMsDSbZmEyxWIlGQ+jxKpU6Sk48/1prhytQsQvWlNNdtj0sBtPk87FI1d39HyCyYHkKoJSJXjCGjnJkKlMUKrUnDGdqUlQymPkypdJp5fwer3XCErXUBN/93d/x5YtW0gvzHH+y3+rq468lEXKiN3Fz8xLGLJGHOYUHru+sZxOSlwdMTA6YiBr1P7TA4cbuveAKb9ESYZCZqUyGL8CvQezqwgTWaOxovxbahHmJzMszVb4LUZjIbNSEdpvVmm9oYqkWBl/zxGWiG0z1Sa0ltQtKyNVAxavWJ1Au0KgvcIhvMzzklRo3GXB16z//udqb5pTPxQjKFl9BtbvteON6f89kgrRTSoWAdfLUy+x6U221fJtVbAwhRBBaa1YmkGYoNR8nZmuvWJ7e6BNxtskNm6adlnovFWsneHTqdUEpWrIZqnfbKZ+c4V2KhCYG3ZZsLhr+JHFc1Qq4l3oJWlZWNlGjXMegMVtoH67iVXv/Vep66yTWHenDU+5eVCl3uzVDPMTlcdmVjauICgBTI+xTFDSU6+hDdq7M+hNKZmRDGQkA0OjRoZH9fv5MVcCYzrN7JyE3iyAqqRd6zBbW94NgLlxRr6nJUT49re//ZoSlOA1JikB/N7v/R633XYbAC8mnyCR1CHHdmaOlz7Vw/QFMZJO870hAl1OQttLVuYKFzLD+yc5/TWNnCJCNEgnMqQWxCitnnY7O363HXNQXzu937vC0S+IyR9c+vEIE+dmGNgnclGSwRayEFivfzdT7bDubXFa3xjTXcfZZGX9Iw103q+/jj1qwRo0CxGozj0xyKHPn9ddPg+R5w8w8OIol3+uXxYMwNfpxNMqdsE40z/P5DmxTEXrHorReKfYIVoUqldl4/ubcDbp171NzSaZG1pgolf/7/F1OnHUi2nrjhydYPT4FGPH9Et86Z2XxTj5732c//6gbkILgKfZjqdFjHTU+ea4EFHNFlZpvjPChnc16K6j2sEWMuMVHJ99Pxth8EWxi9krz49z6DP6LyU3/Voz6x7Wf+kFIJtlMsksswM6HUFV+2/q/BzH/7W81E+5TH711/tpuVs8BfXRz1/k6Of1SQodTP2Int4eotEo09P6x/Q1/GpjcnISg8HAUnaWg+M/0FXn+H8Mc/qbYvsaQNPtfuLXryaOVMp+eerrV5gbTKLkl3YdQZvZ4UUyySySWeztjvY3Reh6u36/48jnLooRDoGBF8e5ICATCuBpseOIWYXICV3viNF2b6RgNx3Y9KFG1r1F/+8H8LTZ8bbq36fmBpY4+3g/59cguWvy6TfAyLEpBg+MC/kQikXG3WzH06z/90xdmmPq8hxJAQKVq9lK1zvqhZ7NWhC/NUDLvfpfxgCYOD/HlIDNALwdDgIbxC4YLz87xuXnBAhUCigucbmyo1/oped7+mVh/J1O7HUWLD4BsvvdETa+uwlrQD+5reXeOjY8Ghea0952B05BH3fgpauMnZwRlqg88aX+ikS6UnKSNayw9debsNWJ+caphQypRX3BGoPBgJILivY8McJET4WXK0omYnizldB6O9GdYpef0/1JDv7TAHM6LpqTySRHEj8hlUrx4IMP8uijjwq1dQ2/mrjzzjv55Cc/CcD+F/+GlI4XEean4PBTKWYnxdoKthiJtMv4SvjR5bIoAcwMZejbp8XVZDO6iUqppQxJnXM6D7NXZsNbvZhL3witEEweOT7PuR+IyWWPn11k5MScltmlGkp+pytuxiNCUpKh681BGm52665icslseFuI2G79dSxuGUfUjEuA6Hrh6QlOfE3cZ5etCJGhBvZPM/CC2H7j77DhbxPb2yYuzDN5USxDYOx6V1ki0CsJ2Qytd/uw1+nf3FPJFJOXFpgeWhnLrkbsctWb8LZakC36w/VT/UsMHJhi/IJ+uyl28bfk+1+Y5uwPxvRnbALcjRZ8rWJjoP0NQda9Rf8LD7IZWvf6abtHgFQvgytmwtUgdsF46dlJBg+JxWEmexc59a0KGddLyUlA6x1OGm8UG8+SWSKdzLJQiQhVjNz4k2VNCrT3ufL7hXFuZfzMkMlQ32WkcYsIWVPrT+9LGU6/qK/GuTOPc/bsCSKRCMPDLyPb8jX8SmHfvn24XC4WBi8w9LPHddU5NWrmzFB+v9V/r9dWn6QpksBQQs4ozaKUx6WLMgsLEkiazKEeotLSvJbYsswSURWRNmjcuPrfKxGVel9KMS3oQgyfSXH5sI472qK9zu6X8NTJq8kJVRDdYqLlRhuqwDLdfL2FtpvF9hxPXMEd1b+upReg52cLXDle5f6nwj4vCfyW+atZBo4vMjsicOcsQaBZwR7Q/3vmJ9OMX06REYh5mZ0Q22JCUl/dzFfeBolwl1icaHIwyUR/Sog85WtU8MVz8Q6d9QZPJLhySuylVqlSSKXceMn149RP5ug7qJ/YZPFKuGIyJqd+Py/UYaJzrwOT3gQxQGSjhfY77EJz2hmW8USVlattDWLT9HCaodMJJvrFuBeXj6QYu1i+Tik5STVDx24DFsH3gFMpSCVBD8UmIxmQpDQgMXBFZnqmvOFMJX6c15Sm2Z8i4hL5/Wlm0xIv9VmYTdR+QOl0muFv/TNLi4v81m/9Fnv37hVo65XBayr3Vgyfz8f4+DgGDNyhPKyrjjmgsuk9ca6emaXniZHKcm9FCGwsI/tW463xrkfrccVtHPjHXiHCQVWUmNleb2LDo81c/MkQQy/pD8Rs+lAzyfkUJ7+k70J7TVARzibVcHuQKy+OkZjVH7hqvb+Ovp8MCdVZS99EEdrhpmVvHZd+NiwkE/eLil1/0ElyLsXBv9NPBBGVe/N3O2m/P0bfz0fof/oXT3ZEFLv/sJPUQpr9nz736jcmOKaj1/tYnEhw9aT+i/PoTT6unp4Ry1b0KsMcVNn4ribOfXeAidP6L0y3/3YbiZkURz9fQtp8BSXfNn+4GbNb5YW/qi79WSr5pnpkTA6Jmb7qhzWDLKPaYfMHGxnvmeXct2u/YQ1wMrmPAc4jyzI/+tGPuPnmm3XVu4ZrADh+/Djd3d0AtKhbaTFv0lWv5S4P7iYrx/79Csn5ynJveThiCovjSZIld0XVfLZliZ8ri5z8ahHhYK2yARX8vA3vqkcySRz53EUdX6G17e200Xx7mCNfPL/qN71iUBCWLLMGFRwxqxA5wdtpQ7bIjBwqqlNL6m0NfVsLtv1mC0bFqGVU+iVH/BY/0d1+jv3bJd0yZGuRe9v84WYUi/S6sFn9TX5i1/s59bXLTPboz4izJgiOacVtom67m0s/1i/nq7gUAl12Bp8Xu2x/tefbuoeiGIwGTn55dcbYUnJSHuFtLupv9HP0sT6WxqtkOBFBrq38Ja3Fr9D9zhhXz8xy/vs17JyXfMvJD3jaLEycqz3PDHYbTTfb8dSrHPvSoO71/IdTXyRLlq6uLk6cOKGv0jVcQw7XXXcdzz//PEaDwh0b/0BXHVmGDbcYuTpspO9Mdbm3PJwhmC65x61EUsqjfpuJQIvKie/NsJQ/iuX9Lp3ZXfNYln8r8fVMTlj3Rj+X981ytTSr0nLl7Mq2gZY73GQzWXp/UsXHeTlStZmsRs4RTLzjX29l8sI8KQF/sG67nZGTs0J11tI3UTjqFDoeCHL5+UmGD78y++5/p/TbpvdESM2nhchaonJv1oDM+reEufziJEOHxAjfpXjFZN5EULLPb3pXmHQiw/GviBPcqqLc+U1gTGezWbztFlKLGaZrxFWK4W23MD+SZHFS/+QxGAxrn286SAayBdY9EOTSzyeZvpxbk/MxpCrMg3X3u0gnspz9wUoy1LLkm+j4ycu9FdVrucGEMyhz7PG5qkt+XvItLxkly9pLjfOT1ZtM+mzIcur/z95/Rsd1XWne+K/qVg6oQiGjkEMhBwIgCYjKEpWzlWVLsmQFW06SLNrWTK//h3dm3nfmnW67o7vd0R5nu+WcreAgyRJFiWLOJEDkDFQOt+r/4VQCCKBOsU1b/S48a2mJZO1777n7nrPPvuc8dz/09qnMT8DIIbmmjs7u5dDZH6AoCi+++OLmmtcm8sL8/DylpaWoqkrDtrspadwmdVyNI0JlQYzXp02oKOvKvaVgNqhEVFBVMY4TybG1HklJQKW3P453WcPJ4xkCiSYZM3PKvZ1zOnGcJroy96rtBINFw/E3N5CHS+VtMXGs2QE1PQZOvhkhthHXNXmcJnYe2mNr5Hu5oJjBVqhlaUz+emaXgt4My3kcg8JKjloqVuZRcXQF1onRTZeZMVo0HPzphVc7udBwVinUDpg4/psAgTm5nPx85N4adpgxFWg4dL4++yPIvsnC6Vao22bk5KshvNPr+CyROL/KVKtl31b36fWQvJZi1OCq0zNzTH4xSjFAQYWOhZE844FeI9p2Hv5N6JK50wbHutsVdEYNw+9kxdSk3NtqclIK9iKo7dBybHdcSPhlX9Ow8bHrISX3Fk9WwFMUlb7OGFOzCiNjG5MIU5Jv2qRrC8wqyxvJ3SXhK1eoNYZp0Ed5a9JIRJVjkO37/v9N2Dv3J5XX/aNXUkphbm4OnU5HggQvRb8DBhjc5aHpZlHxpenmMgZ3eTAkPx7o+0gDnfdWEw3E8U+HGHyuidY7hUxSw7WlDH2mBVOJIW279ZOiJNXMPi9Dn/aw9ZNNGFwGaq8sZuizremKL71PNrDtUy3pdg1+ugWDTYdvIkhxi42hz7am5TR6PlTP9ucyttufa0nLvJX0Orjov7bR+xEhR9b9wTq278rYbnuuld4nRPWTwlYbXR9o4Oxr00y+uUDH+2sZ/ExbxvbZFrZ8RNjaqo0MPd+WroRjLjLgrM98UbH1GQ99HxP3anAZGHq+jYYbxVfVLXdUMfR8G+3vr2H7rlYGPtGckXgwwNDzbXhuF1/UN95UwdDzbRhsWohA38eaVrR/6LNt6eol9deUMfR8Gza38PeWpxop6y1Mk42GPiuuCVB1eTFDz7cJaTeg98lGtj3XCsCJH4zT95SHroeFD8u3FTL0fBsl3eJr2O4P1bN9V2vG37ta6XmoAQxQ0l3A0PNtVAy5AOh6uI7Bz2Rstz3XSu+Twoc9T9Zz0Z+1U3W5+BKn/f01DH12lb+fEj5MVZ0JLUdYPOal7W7hw7S/n/bQ//Gkv21ahp5vo+mWSjDA1mdbGPov7WkJu4FPNDPwyYykxtDzbbTcIfzdcGPS38mKTX0fbVohkzX02Tba7xX+rr26VPi72oijycrWT3nY9mxWn/1MW7pKjvvSIoaeb0tLgvU83gAJ0gSl7bta6X5EyNKVbXUy9HwbZf1O4e9HVvrbXmNNy+sVtdsZer6NyiHxZVLXgyv93XBtJYH5MKOvzFJQb2Ho+ba0jFv7/Sv9vfUZD30fbaKo3U799eLeGpKVAFrvXMvfK/tsSh6t6dbKZJ8VP/d/vImtT2f58Pk2Wu+qovvRejofrmPo+bZ0haQ1/f2A6LO1V5Wi1WmZPylIQNl9Vvi7la4H6wCoHBL+br23mm2faqXniYZz+mz3o8LfJb0O4e+tSX8/Ws/2T7emSTCrY8TQ8224LxX+zo4RY6/O0Xh95boxov3e6nP8XdZTSGg6sm6MSGHgE81sfaYFe5154xiBiBEpf7feVcVFf9ZO2/3rx4jsPjv02TZa31eFVq+hsMm2bowAGPx064oYobfomEhWhzsnRjzXQs+Hkv5OxojBT7dQ1G6n66FaBj+dFZM/1ULvE6J/OxqtDH22larLkl/eaRJodZrMs3nGk/a3tdzA0Gdbqb9G+Lv1zkqGPuPBVmkgshCj5dYq+pLzgMEm5rXGG5Pz2i3lDO7ykNDGCAdiaHQaHHUZWazBXR48t4tn03B9qZgDkzHCfZ+JJZvYffi7v/u7zcWaTeSNzs5O/vmf/xmAk5G3mY6O0Hp7Cf2PZ2TG+h9z0363kFdw1BrY9lQVaCHii1F3uYuBxzLylH2PVdH5gOivlnI92z5Wi3u7A+9olNrLS9j68VrqrxZjasuHquh+SMQHvUPP9k82UJMcb43XldD3eANLwwEm9i7S+2gNvY8mywEYNWx/ppG6naJNtVcWs/2ZxnSFmr6P1DK0qwmjS2xab3+mkaYbS0GjperSYrY/25yWhOv6YC1Guz5NUNr2dBOepCRwxfZCtj/bjL1GfEXX+YFqBj4uxrwaSmBw6mhLSriVbnEw+JwHV6sYux0PVLH1E5kyqFs/2UTHg9VsfbqJljsrGXzOk85r2u9xs+2ZjO3AxxvpeqgGouCoszC4y0PN1SJX8dxRyfZnMznEwEcb6X5EzPWWUj3dD9VjsIkXl+ZbKtj+qYxt34cb6HmsTvjbAoPPeai9qoT5I35s5UYGn0vOf4k4W55sZMuTmep8g7ta0tV5aq4qZfDpFvQOPXoL9DxWT39WJb/tz7XgSc7JVZcUMbirBUu5AUuZnoueb2NbVvu3PdtCy52ir5VvLWRwVwuOZC7e9VAtikXH+G4hhbz1GQ/t94n+UtxVwOCuFlzJKprtD1Sn556K7YUMfraVjmTOWdhiZXBXC2V9TgDa7qli27OZuX7gE810fVD4xVZlZnBXC5XJPNJzRyXbs94H+p9qSs8ntVeVMPjpVmqSeWTTzRUMZuXIfR9pTM8negtUbiti4p0FfKNB6q8vE7ZJXkXvEw30fWSlv5tuEv7WaDUM7mpJV5Tq+VA9/U9l+sv251rw3C787b6oCJNDz6Fvi48Wuj5Yx8DHs/3toe1uMX+X9wt/O5usVF9aTNcjtWzNyk+3Pu2hPTl/F3faGdzVkpbIbb+/ekVutfWTzXQ+KPqho8HC4K4WyvtF5bTWu9xse1b4v/2+agY+1kT3I8LfVreRwV0tadk4z62VK96pSnucqNE4iyf86B16Bne1pGUGm25a6e8tH25ky5MNbPlwI547Khnc1UL99WKerdtZyuCuFvQWzbr+br5O+Lv60mLRZ5MxovvROgY+muXvT7XgeV8V0aUo0UCMwec82GvERk3XQzXpGAGw7Zkm2u4W/bt0i4P+x+sJJaUi14wRD4hn42q1Mvich4abkjncHevECJIx4jkPFduFvwc/42HoM1n9e1WMGHzOQ3Uyj0zFCJ1Fh86iWxEjDDYNg895qLlS9O/660pXxJ7yfhfRQDxNUNr+bDMN14tnU3NlCdufbUbvELlh9yM1bP9UI+33CV9se7qR5uS7vXtHIdufacRSrkej0dD1gSr6nhD3FpyNolE0GAqU5DXtbPtEPQW1IiZ33Oem78PJeSEeZ+BJN1seFz5U9Bq2fbQGl0fEk7b3ldH/ZKbiZv+T1bTfVSZk3aIx9GYtzkYRvz23FNP/RGZe2/JoJR33iPnGWqkn0HWcBAlsNtsmQWkT54XXXnuNyspK4okorxz8PAD912qpaRe/lzdC/3VaTMm8pm1IQ9vFGsL+BMGlGP1XxKnrF3N9cYOGvluNmJ3CtuUSPd3XiQpvy1PQe5ORruv0GG3gqoEtd9mwl4ux2XSpie7bMu8cPbdbMTk0LE5EMRYobLnLRmGNDrQaGi4103OPM23bdaczLfNmLdUx8EEX7beIOaJuh5XeewvT8m9ddxfReqM41lSoo+P2Eibe9TN3LETNRTb6HsxIeHXe6aLtlkLQaNCZNfQ9UkZlv2ijvVJPcUvmK/iO9xXTkVVVpe+RMtyDBaDRUjlgo+/RCuoud9DzYDltt5fQeXdplm0FNReLaoBlXRb6Hq3A5NJDDFpvK6b34UwV3C2PVFB3hWh/cbuFvscqsZUL/3tuLqKyryBNNur9YAUN14gcorDRRN9jlThqxfNour6IngfFXDP+lo+OO8tpvkHEY3uVgb7HKtOyXA07XfR+MFMVsfsD5XiuF3JvllIdfY9VUtwhfFF3uZMtj2Rsu+4vo/U24dOGa51s+1gVZb3ChzUXO+j7UCa+dd5bmpZQ05mg+cYSgnMRlkbCuLcX0PdYZbqqUsddpXRk+/CxyrRkW8e9pfQ/WYkuuQbTdkcJnfcJW41GQ/+HKqlLVpsq67bS/7gbU7E4cettJXS/P+Pvvkcqabha+LCoxUz/425slXpMxTo631+e9iFA78MVNF0nfOisN9H/uBtnvfBh03VFaDSkCUo9D1UIyTzA7jbQ/7ibohZz2t9bHsn4xVlnovVW4RdTsY7+x92Udgof1l3mpD/Lh407i/BNh5l8x4fOBv2Pu9PVm6p3OFa8U3XeU0bHXaXYKvWU9go/uAcL0Gg0aX+nZADb7yyh856V/q5O+rt8i42+xyoxJuXVWm/P+BuSffZyJ43Xuqi/2knfY5WYk9UTWm4pEv5OSrz1PlROw1Uih3B5TOitWpZGxE5M83Uuej6Qqb7e82A5TdeKZ+OoNdL3aAU1F9vpfqCMphtc9D6UeY7dD5ThuVH421aW7LOtwt/1OwtFn03uE3U9UEbrrWIsm1zCtqw72WcvcdD3IfHM548Fqd3hpP19yT5rSfp7QMSiqlX+7ri7lIpee5qg1P+4m6oh4cPKATv9j7tF5bCkv7veX4a1VEcikaDv4QpqLknGiG4rfY9VpmUdW28rpusB4ZfKrXa2f6yK+p1OAIrbzPQ9WoGtLBkjbiyi+4GMD3sfKqdxpwvFqMVaoqfv0QoRI7QKTdcU0nOfK+Pve1007xRx1V6pw+zUp+UyG66w03t/ap1KQ9edhemYbClW2PJAIb33OSmo1FF7kYXe+zIVjTtvd9B6XQFoNBjtGrbcaaWsJbUxFkcxZjipHdebadspOqVOB1vutFLZqUMTj1PVEmfrbTrMTmFf36vQcXlm46vvJh1VnSL3rmgWfzdFw7CgotODK6vwa/9OqOsQfy6rgf5rwJSsXFDZMcfY8q8B+MpXvrK55rWJvOFyuXjjDVGy69Sb32J5+iSNrjCDNRmCw4A7QEepiH1mRWVHrR+dNk4gqqHBEubSsgyBorsxTFutIEsqisq29hDlrijBiEK5K8729iBVpWE0iQRd9SFa21Ob4ip9W6OUV4gd5tJylb6tcebmYHpKQ0tbjLZOYZvQatiyPUaFWHqgqBx6LhaVPQBatsDWq0lXE+reAe5GQNFQWK6h5yot5uScXN+jweLUpglKnZdrqUrmnPZi6LlKi7VQVFWq6dHSfqVYb1ZVKCjRpKukWV3QfZ0BezJtq+pW6LjakJZ/a91ppm7QSPu1Fqp69XTdbMXpFjGhsktP542ZHK7lKjMNQ0bQaDCYE3TdbqOsXVynvMNA162ZPc7mKy00XipuVDFA+7U2DBZx3tJWA12329NKR02XW2i6InOdrtvtlLYaCM6rGMxaum63p6vWNF5qxnNVxrbzVjsVXSJnc9Xq6LrFjsEmOKT1O8y07LSkCUodN1pxdwtbh1uh6xYrZicoRuh9n43OmzP5dfv1Fqr6hK29VKHrZivWYpGLV/cbMTs0TBwW/antGgs1A8LWXAhdN1spSErbuXsMdFwv2ltQrtB7u4W67cLWaBe2hdXCtqJzpb89V5ppuEh0HsUsbFMyZmWt4lml/X2ZmcaLha2zRki+lTSJZ1PSpBO2SX83XmKi+bJMGajqLUYmD4cJzMVx1evousWarhLVsMOM58qMbedNVio6xcPQ6qDrFivGZNyv226i5eqsnP8GC+5eca8FFQrWIi2nfy/Ga+1WI23XZmzbr7cICUHAWiyejb1UwVWriP55vSVNwmm7xkLt1qS/ncIvjmSfdXcb6LhhZZ+tHxS2Bht03WzBVZP0d7vwt71MoWqLAc8VJhouEraKQdgWNyT7bIuOrpsz5y316IlF44KgpAjbkuakvxsVum62oOgTSX+bab7CTOMlZty9RrputqYrSrnqxL0akqduuMiM55rMOOq8xUZlh2iTs1qh63Y7pmRh9LohM63XZvpAx812qvrNqBEILcfput2OtVi0v2aribbrM+dtv8FGzVZT2t/tN9qJJffNqvqMtN+YOW/rNRbqBkUfMDmg6zYb7m7RByrbDHTelLFNxwjAYEn22TrRhp7bLWy5M2PrucRI40WGtL+7rzdSkuzfpU0K3dcb0Zk06E0amncYaN4hbBM6Ld3X6ChLxtmSaui5UpuOEWV1GqLhRJqg1H25lsrkklhhJfRcCgaz4D00tsfp2xGnoU3IvHVvj1PVIH5zFsfpvSiO2RYnrmhobIrR0yGcpKoivzIaxbxQYFfZ2hPGnpQObayN0tspbLUqbKv2M1AXAFTicRhqCuCyinmjoTTMtobMvNZXF6StIoRxKY7ij2M1xHEZxfpdgyPMjqqMbX95kO7kHGhQVKxjPyHsnaOuru5PKq+bn6D6Hxh+vx+j0YhKjN8Ff0TPwkfxTYhE3DcRwlpuJpLs7P7JIFqdlsPfGgOgtNtBcEkEdu9UiIKFCPFgJHlsEJ05kzCHlqOYCw00XVPK1L5FggsRIn7xUH1jQcyFGcZfcC7C4mk/wy9OU+ixEVqOEppPXmciREJNZNmG8Y2LhxpaDJNQE6R4fN6x4AoKWHAmRGBWnCeyGCG4ECEwHcZWbcRabiI4n/lCxD8VSrcv4k8QXIjgnxLXGf39LMWtjhW28bAYCBGfOK9/MphsbxBzmZHAVBiDXU94PpJhY0YguBDBOyk6qW8qiH3BQiSS/DrCqKAYFUylBkLT4rzLE0nbyaDwYXLg+sfD6K0x2u+txl5jJTAXxp98jv7JEMGFCOFlMTB840HMriyGpVaDqVBEhOC8uE5wIZy0Da2QdAzOhokEY1z0XDszh8RzDMyE0/7W6DIsyuBUiOBiMgiE4iTUBMHpjK3ekun6/qkQUb9oU9QXI7gQYez1WfyTEZYngxhdxhW28WjS35G48OFEACKgNyuo0Xia2OCfCK5gdgrbYNIvQSLNNvoeb+D0Lyfxj4dQsso5B+fFtVPXFH02QevOUvQmHcvDma/dgnPh9HkD02Fhm7x333iQeCS+0nY0kPRnsh/OJf09sZIqqkbjeJP9O7wkzhtM2i6PB9AaM+0NTAUJJZ9xaEn40D8dStsa7JnSjP7pEGogTvWlpZhdRoIL4XT/9k4EMWXJafgngsSzxhwacNRa0u21VWbFiIkQ2ix95uB8BO9kkJpmO4FZ0f54IDXuQ+isK/2dulffRJDAXJjxN+fTPjQ7V8aI5fFA2p/BhQhqWJSR9I4GSUSzYsRsOO3XUHLcB2dFg23lZuJZXxCsFyNSbTI4dGx7rpXjPxzdMEYsTwYxOMWYaru7Cp1ZST/z9WJE2t+TIRz1Vjrvr+P1/3F4wxgRmAihNWiT9xYloSZYHt04RqQQmAuzeNIn4myrjYJq67oxIjAXxjsWpO2eahJacsYI32Qo+UzDRPxR9CaF8FIY73gQTRbrOTgtxhVA2BsluBAhFhbXnTvqJZElveqfzo4RwtaX7N/+hSCFGhv115Sz/99G8E9nxwjRXt9U0nYqhLXMhK3YgG88IqpFZJG/gwuRdPt9EyHsVRGIRFiIzvH6C68Ti8W47777eOyxx9jEJs4HjzzyCPv37+fzn/88e4Mv0nKmhnJNZsPIPxMmMCfGYsSbIDAXZeagj+WzUdzb7OhtWvH1lFaLbzpC2CvGdTQYJzAXITCXnHumQhQ2WihpszH62hy+yXBGFjcaxT8bwT+T7OuTIczFRo4mK4oVNYfQJF/MiIJ/NkIgNd5mQvhnTWnFn8B0CL1Vh6VIT3g+in8mjC8ppxCYDeOfCRMLJGPLRBC9SeSG9deVosbieJO5SnBO2EZ8oo3e8RCx5HyxdCbA0hl/ehE/OBfBPxMmlJxnveMhEllpjX86hG8ihM6gEFqKJm1FG5bHQytylVSOBCK2aHUaiprsjPxqFv9kCIM1k8t6J4NEfEl/h8WzCi2F2PqJJgJzoXQ+lLrXeHIuikaFbWpOTiBImJZiPYHZKL6xwIo4JHyYzCmmgvhnLLTfXYXBrmfhmBetIWMcmAnhTdnOCB9GgwmiS1HisXi6f6SelW98pb+j3qRfxoLEQmpafso/FRR5NBBaED4MLyX71lgQkt3DWWdFo9Gkn2N4MflsFlLPJohWn4n7/okg5goTvU80cPg7Z0V/n0nNsyGMWbmKdzJALCBiecXWIhJqHN90Zu4xF2fmTt9YMD2fp/2diuXjIWzlWc9mPIg264s8/4yYn4ocdkgk8M+EiQej6WMVc5a/p0PpXCUwF0r22Xj6XqMFma+e/FMhlpM+DM4n+7c3QtWOatEvJ4NZtsH0+0xwIeVDca5EAnQmLbYqM77RIP7JIP5kHhNdFs8m9Q7jHQ+hM+lwNlgpqLaweNpHONlnI7648PdsKOnfIEZnlr/HAqih1LgX5w2kcsPxIOaSbH8HIAHWSjPxqPCZfyoTT/wzYaLJ/u8bDwrSMYLApDVoCQdFm/zJGBFN5YbjIXSWrP4yHcJeYabjgSrG3phP+juWblMqRqT8neqHdVeUoEbjOWMEJHPDxTBlnQ50BiVnjEj1Wb0FYgEVNevL2bViRGrce8eDmAr17P+SILV5bqs4J0akxoJ/MoS/1ITeAq331BKYCxLPKsgi/J20nQrjnw0TTY4V/2QQo01J5+OBmUxeFphN2ibnAu9kCKNVh7lYT3A2inc0xNLpVJyNEpiLpHMv70SQWNhAIpF8106AwaJgcOoJLQnb1HuIdzK0opqHfypM2CtuYOpdP5ZiA+Hks/FPhlH0Wf6ejhBKfgH90pl/Z+nIHI2NjRw+fJhNbOJ8MTY2htVqJRDw8ftj/0zL9g/hTxYICnrBv5BIL/B6FxLoDXB6n/i7qyxOKJmbhL0J/PPxjO1snGgoq68vxXGWanG36Zg+GSMwpxL1J8fmnJr6+D15rIp/VmXqcBSTEwJLKiFvKjbGVsiX+KeihJZFG2KBGGo4ka426Z+Nos+S3vVNRYkEkrbBGP6ZKMHFKMYCIWHln42usI1FxHliMfBPRwnMizaM/N5LiSezqO+dCqfnfhC2wWSVg8B8DP90BN9sBJNDj28ugqJktylCYEY4LbgobGPJagU6owaDTYfJpSOUPI8/aRtajOCfjhBNTpe+iTCxUIKqHQ6KGi34JiP4kzln2CuODXvFvfsnw2kfAWgUMLvE+pP46DJCaCnp76lwep4S14kQi8bof9TN1IFlcd7knOybiWCwZeWGE+G0BJ8aTqBG4oSSEgGB2Qj+aV2WbYR4LNvfEab2+wjNxwjOi3tNEUm8E2E0WR/e+qczPjQ5dcQjiYztZARdVm7om47gS/l7PkZgPkL7LaUMv7qAdzKM0abLsg3jT+ZW4aUo/qkIMX+CioECLIU65o5lFtT9UxF8ybkn5I3hn4qk+2zq39PnnQwTTL7PRP1x/FMRwsnY7p8Ko2S1NxpS8U6I42Oh5HmTRBffTARjQVZ7JyJEU2trMdGmQNLf/pkI/qnMZOmbDBOPJ6jYUoCj2oRvIqsfzkVFP0z7O4I2a2VeoxXj5SwQnBe2arLPeifD6E3ZuYrwd82gA99MWJw3GE+fNxrIHsuRtL8jSzG8Y2FmDgfT54ln5Sq+yYxt2KeK80ZFXugdDa/4Ot83mZk7o6HkXJqck10N5hVFz3wTESLJuT0WEuMmmPR3YCaCv1hHz4MVnH5lHt9khFjS37GIaH8wSZgOZPnbPViAuUjPzOEMscA/lXkvDc4n+1Yqdk5EKGm10HZ7GXu+OL52jIjE0rap97FIQCUWjuObiIBWQ2hRPJtosuqIbyq8QubWNxnBOx7i6A/msZTqKHBHCC+rgBb/dHRFoQTfdIzAbJSq7RYUvQb/TJSQNxm/Z6Ir1jl909F0rImEVMLLMQx2hWg4jn82hiErl/VOR4kl5wk1hpgXwiroYHE8gaLPyiNn1PTaawwIzMYILMQBhaBfLG1Xtysce03FOxdfUcTAv5AgsCiODXjBPxfHaNQSC8HkmUwRTADfIviSBaKCfvAvCqmUUMjHv3//y4TDYT7ykY9w7733solNnA/6+/v51re+xd13383hF/8ed8ku9EpGw2cxpBCKiQ6sAotBLbN+PacWFEosUZb1ETQqJBRY8mtJFw2Kw5JPQyAsxlggpCWeAHdJnIk5lWWfFm1WDFhe0hBM5hChoPj72bMaUBWW7VH0WbJPy0sagj4xhsIh8C6CmkyZvMtgc4LBCJEgeBfEOEvbzieIJuObbzGRfg8uqYV4LE4gmXPGUrbJmBVYhERq7doHk8dVgkvi79FQKs9M2i4k0Gqz4ttsnLBXRavREPbF8U3HCCdje3AxjteUiS2+GZVoct9SVTXig5EqA1OHYgQXVbxTK21TuYqqgm9aJRSI03qdleCiim8qlp5/fDPqinUs31SMUDI2JkigM2gwWCEYAd+sipKda03H0nNPyJfANxXD3WvG6lKYOhrBEIiLik9ajYjPi6n9FxXftIoaBjUMsWginSODiKOpXDYSVPFNx9J5mn8+RiIB80n5Ke90jNByKocTbUq9JwcX1PQ7qq1Ei1ZY4jM5AAEAAElEQVSnwT+XnDtjwjb1fhBcjOOzZPswhr1MR/NlZk69HhTPxit8GlyO453OrGH4ZmPpub+m10RcTRBK2oa8CXzZtjPqigKAvmmVYHKeCnsTQpIu1Q/nYitzwxmV4KKK1aUjkRDHpuZk/7xKNJiZEL3Talq2NBpM+TuRtlWziuMsT6sE5pN7NSFhGwmqNOywib41k/VspmOEfSv9ncpHVDWOwarBXAjBBdHeSDAOiQRqRCP6Yap/L8XxzahYi7S4qnXMnooSS+0DpvpsyodLiRVSfctTamZffrVt0odqXAMk8M3E0Oo0mB0KCTUh/JIcn2GfODblC99cDH3S3646HcYCLbHkOlHYL8ZGKkb452LEwlnvElMxzIVa6gbNTB4OCtuQmvZ3duGz5ekYwQXxW+12M2o0ke6zgXl1Za4yqxJO9o9ocgyWtBrR6DT451W805lcZUWMSPbvsDcBCoSW4hl+hVaLb15Nx0ZVFXEqNRZCXhXvrJbht4VjKlqUFTHCO5cgmEwVQz7xd4CGLcn4m/2uPJ8QcVarJRyE5QVQU/17GSw2wdkELd7F+IqYnLY1gNenIRoDg0ElElGYno2z7BM3FI3CkleblIuDZb+WRDyOJtmOOBrspgRmPURjsOjXEo6KG/KGtGQXdloMaImH4oDKTEjHhC+OPyaSL19Uy0LW3LQY0hKNi/OcePXfmT65m/r6eo4f/9NW6P+Tyb2lMDk5SUWFoNXbcDKkv07quL6nGtCbtfz+f8k50FZlwDea7E2SpaFrryzBPVjM6Zcnmci3XP9qrOPmsq1OGnZWcvpXE3nJvrW/v4bl0cAFk9YyuAwUt9gZf11e7qz+mjIKPXbe/uIJafmq3icbSagJ3v3HU9LX6X6knuHfTLN0AeUgCj02aq8sY++/nLxg8nKmUgNdD9Rx5uUpZvbKybWYSg3oLQreM/JapD2PNaAza9nzVxdO7q1uZxllWwp555/kJRINNi3WKkteUl89jzcQWYxw+FvnylT8odB6ZxWxaJwT3x/PbfwfvI53OigtKVi+rZDay8vy8nHDDRU4G6x5Sf0ZXAZK2uzpzeILgd4nGzn5s/G8+vG2Z1uIRVTe/ut17uUPUIZz+3MtxGNxdn9Obl5Jyb2tmF/WQWqhuu1uN85GGwe/PpxTFg7AG13m9/wEEJIRr776qlTbNrGJjXDttdfyi1/8AoCLDXdiSX2+uAEctQZaby5jcv8Sw79Kxod1dO1TsJToCcwkyQ4SEr0A/R+uhQTs+fus+ecPLPu25Qnx+cQ7/3B6zd8Ta1zPXmOm7vIS9n/5wsntlg84mTu0mJesXO/j9cweXmb0t5JSFaV6Ou6r5eQvJ5k/lJx/c+TF7ouKMDr0nPqpnDTl+aLh+nISJDj906ncxucJzx2V6M06DuYhm+xosBCYDK7Y6NkIljI9HffXc/Z3M0zulsvtz0fure8jjYQWIhz6+lnpY2xVZsLeGNENS9FnUNLjoHpHMfv/7cLJHeodelpvq+T0i9PS8njnA0e9BfdgUV7+6nq4lngswcGvyuWdegu031/H9P4lJt6Qf6+r2F7I7P6FC+bjqkuKMBcaOP6DiTV/X0vqrXzAQe3lpRz7/hgLx9dpWL4yb6nDknIl5QMF1F5SxOmXZpl+d30Z4+zlCo1O7ORaSvUEpnP0Y1UFPWz9cD2hpRgHvi4XW37v/SFL8Rk0Gg1jY2PptYpNbOJ8EQqFsNlsqKpKsaWRvub7pI5rG9Jgtml45/vJ2Jgj7zLZIZQcSrnk3lJwNeio32Zm+M0gs6eSq905pH3XQyJb/iMrt7BX6vBc42L4teV0dZCVB2bNr1k5WM3FdkKLKtMHNgiO5yv7Fk+gM4GzwcLsIfngW9xuoaTNyvEfz2wsiZKF5huK0Chw7Ify79eN17qYencZ3+SF030zl+ioHnRw6sW5/OToJJCK2zoTtN5extibSyycXNth2dJniUQCnQ0MZh2BGfl7b7rWhdGp42Ae0mX5yr0Vt1mo2u7gyPdmpCXFdCYwufT4xleOqY3k3pquLyIWVDnzyqLUNaSwap53b7ODBsbeWH/uPS+seodyDxUQ8caY2WgMZ8FRa6T2skKOfm8mTeTLhbJuG8Utlryk/nQmKKy3MHskz7wzD+kfz41FjO5eIpDa5M3OmXRrfy/eeUchiQQc/O7aOaRGp6z572sie74wZFhCnTcJAuiBH20UVzPPMWERVRNMNrGptyGi4l7dnToqWnQcfgN8EulweHmJX5/8SwBuv/12XnjhhdwHbWITOfDf/tt/48/+7M/QaLRs3flf0RQV5DzGrKgMVIeYmFQ4OynGTWLDYadiMEAkIoz0y3Jxq70rhqIk2L9XS6pUjRLKOjaPrVpNJOu4rJSoeasGRafhyOtr50ma6LnXM9jA3arj9Fsb38cKubd4HnlYIkGBW8E/FUtv+Mug4RIzS2NR5k7FpHyjGMBzlY3Rd4J4J+XWIR1uBZNDYepQsmH/Ucm37HNkoaRJh1anYerIhdN4L2/XY7RqGd4tL5lqdkIkgPRzUQzQcqWFyUMh5oflfHw+cm+Nl5qJBuKMvCV/LwabWAZQg0jtFVmLtVR2GDn1enDt+/9DyL4pUNdvZOpomOBaW8DZ/TpfqkYq90okMDmguNnE6FuSLylAzTYzWgXOvC6ZEymietPiaDRNupNBQaWCfyGOGiY/n2blMwll/Xdhp1uL1aFh7FBWm7LypoT+3GBuL4LGXi0n347jzc5Xsq4ZN8nX+Elk3VfMKo5zFqi0NMU4eUbH7Pz6E4omK5RGkhU9zXqVYHTj3E9JkpP6W6P4E1r2Tps3tE9h4vc/ZvTEy+j1esbGxigpKcl90AXEn7SSEkB5eTmvvfYaF110ET4W2R19ia36K3MeN/bGHJasr5hzIbWB3HxbBRrg2HfHch4z/LsZCmosTOzJj6DUfn81pkIDb//tyZy2U7sXmXp3MW8iTEGVBb1FlxdJqf39NWg1GiniSWQ+kiEoGZBq3+lfTHH6F/ltLO39+9w+Wo19/7L2puJGMNi0FHcVSpOuTEUGzEVGStod0gSifBGajrD7c8fyPkZ+mhEQX4hf2KEeDceIR+NEfPIdOeKLE8mDoATw7hflyWznC3uNZc0N6vVgqzZiLjQys285t3EWjnwnP6LV5JsLeREZAU79ZO3NqHVhEGNflqBkqzbSdmcth78zjO+sXMJY3FWA2WXEWW/Li6T05p8fTUsp5kL5tkJqLill3/85TWhavk9Ovr1AXPIFy1RqoO2uGg595bQ0QQng9MszNBm0UgSlQNTLWfe7aMY1NDU1bRKUNvEHw89//nO6uro4cOAAv4t8hyu4E30OotLScITFkSDjb2bFh2RVpfUQmImit0PLbZUceWGU6HLu2Dq1b5lYKD9Na0upnra73Jz61TQLR3Mvgr/zL6chzzWBwkYr1nIT9hoz3hG52GWrMuG5uZKD3zyblkraCJNvLYo/6JFu394v5pcTBaaj7P7LVWRPjXbDTb6x186PtFrcaScwGSIwK3czhQ22ZEWiC0dSOvZC/gTkpVP57dxFQ6CGVdTIeW6cyl4nECPqz2/zMl8S0My7S8y8e2Hy4BRcjVasFWb0VnnCS3l/IXOH8yP1LJ0OsHQ6v2e5/9+G8yLiRAOkJSWlkBzr+RCa2u+tIhpQ1yUcrQVXkw2jQ5/bMAuTby0x+e6SdCzq+VAN/okQJ34sv0k4+e4yzlqLNEGp6cZSsUj520U5ghJAFKYPLeMdl7uR+bqD+A8uoFf07N+/f5OgtIk/CEwmE2fOnKGmpobZwEn2nXqB7oY7ch43diJBgT1782njvCtFUKpsVdDpDJzdk/s9aP5UDGdFlNmR/OaT6u0WbCU6Dv9onXfgrNzCOx5jz1em09V3NoRWk15sL6w3E16IbUxSWoWaix3ozQonfzm/vlHy/LEQGYKSDqn2zR4K5EVqAjj+k/zzqJM/36D960BnAkeNmbljcnO93qxgrzRRUGVmXvIYWWg0GhKJBLEQ0gTR1HExX4KYL7/+GA3GUYwXNu9SI3FioXi6yo4MYiHOISjlwglJ0lReSFaESMFZY0KjaKRJSkaHDlOhwtKZDdYw1lhDG3s9vzWypeEw734pvzWsqX0+pvbJrytq9BrUMNIEJb1NS8uNxZx8aZ7gnNw7qqVUh73CSEGlUZCUJHPJAy8sSC/dFlTqqB2ycfxXi4RWp+obzBOThyIoG6WEWXmXzgSNlyic2K1KE5QApk7EMBTopAhK6rKf09HvotFo2LFjxyZBaRN/MPzX//pfGR8f5wtf+AK7f/U/2HrNn6EptG54TFBVGF/WMTWTiZepqkprQyESEVJwzVUxzh7NEJY2wuSkBg0a0lpaq6HRnENU0BuguRdGT8DyeimCljRR6fjuBCvKUG6E5PWsDg0FpQqWwhgByddTgw1qB8wMvxUkslGcSN7P8pgKaJLvwXLtO/XbrHi9hm9WQ43A4Z/mt9+0NKayNKZmrpHCqvlzNaxFCtGwuvG9Z8Hp1qNRuKAkpclD+Z87uJifvapCNJRIV4W8UIgF48TC+ZF20s9Ckgjjn41z/NcX7mM5AGuhhoIKhbkRBZbkcomCCgX/nLoxcSw799JoCC0l8iIoAYy8mee9q1ljUsbHCpDQsDyZlacnEhse6+4xkIgnGN8v35edZVqsRdoMSUmC2O2dg72vxFdUCN0oh2rujBPww9jpc20S69zP4jJMz2qZ3eDVLpugVFkRI2KKM75gkCQoASiMTcdZMsglkdrh3zI1/DuMRiOHDx/+kxOUYIUg2Z8OQ0ND/OxnPwNgkWneif42J0lg6q0lTv1EvOw23li2oW02nLXWtFxUTkSSi9MRKGq3S2+Qa7SaNb9I3eg6BpuW3icbMdjkHsnbf3Mkb8KGyWnA4MxvgXrrMx62PuWRP8AA7Q/UUNbvlD/EBp7bq/JqV9eDdTTcIL9o3PFQA7VXyveTidfnef2/H8qLoFR7VSlDz7djc0t2FJIVq7pys/mz7Qc+0Uz5tsLcxkkc+upIXpWqzgdjv5kThKs8yHZbnmqk6dZKaXtTqYFCjy23YRYGPtnMwCea8zpm918c463Py5e4a7zOTfPNVdLxAaDvo00ipkjCvaOIkl5HbsMsdD9ST2GrvL8qh4oYeq49r+sUNhWgMyl5JYyz+5fZ81eHOPvyjJR9+wM1uHcUib9I9i+jXQ8a0lIruVDSLcbg8IvTnH1ZjvhZ1unAVKDHXrO+jxPxjByC+6JCbJUGQjMRDn5tY4JaIp4gHA3zKj9mbGyMvr4+jh3Lj9C4iU3kwv79+2lsbATg5ch3iIZCmU3ddXD0B7NEl8Hm1lPSlez78fiGX08VVFmwFOopapKLR6OvLjC5RyxoF3rk8rWoL4pGo8Fok8xxku85FdsLabqpXOqQkZdn2fM3x6QJSgDxmIreouCsk8w7gdItDgaf9uBql4/fhR4r7fe4pe0Birvs6dgH5Fw8d7Xa6H60Tvr8eoee5pvc1F0tn3vt+dsTvPOF/Mjr/U810vN4fV7HOBos6PMgbDTeUEHXw7XS9tGlKG//3ckLTu7Z/2/DeRFVyrcW0vtEA3r57khhixW9Rf6dxlFvYXBXK2V9Tuljpt5e5Pf/zxEWjkpWSNVD/c4yWu6UfyZ1O0vxvE8+5wTx3Mnjtamsz4Hn1vwILQOPN6Yru8nC6NRjcuX3PrfvX4fZ+0W5qppGl57OD1TnRZaEjatCnAM9OOpMEIUj/35uhbZEIpH+LxuOajOFDTk6sKqm57Kay1wADP9qjoUTGy/WJWIx3vW9zO5338But/PCCy/Q0tIif0+b2EQOVFVVpaUDJ72HODz8EzShjQfZ8gyMHRCr/5VtyUXHHHkXgLNSwVEhHydOvRqCGNhKyOvbppzjXqPN5BfJ76Y81znR5UpxtBrQajj47WmO/GiDFd01CNZmpw5TQR7VRoCOu0rpuls+XwGovcyByyP3pSoAOqi6KL/3+bornFRulV8zaNhZRN0VLulnuDwSZs8/jOVFUCrymOl/rBJbee6LpPqHzgQFVWt/YLpWH9KbNXTcVUpRi7x/h3+zyNEfXJgq8yksnAxx4BtTeVWdarmlmKod5z739QQNdDawVeb3gWHb+0rovLc0r2MOfmeGA3lUnXJvtdN8TRE60xo/xhNrEpRabyumoEb+w+LCRpPIDfJA47WudfvWWnDWmeh/pBJXs/x17JVG9DYdibh8nhOYjvHuV8aZfDcoRVCquchKcWvyPiQ3fPVWDRoNxFbzxtbZXCsoF+2fPRVj6uiqiyQSmf+yj6nQYXVosDo3aEg0liYouapFNY5YCE69u3H7NYEw6rKfl05+npGREbZt28Zvf/vbjQ/axCbyxN/93d9x//33k4jHeOuX/x3tcgi9f+Mc6uS8kaiqYDSoFBaIdwqNKv5bD2YDFFgT2CSn+fkZhbkZBVCx2dc58ar5MaqKf9Ll2nvQsmK311EKbpltPY2GhXE48PPwhgSlFVWUADWhxWjVYnHK517WYoXum23Y85jvzIUaqgaM6bZKXadEocAt3y6zS6Hh4jXeNdeZ51Cg6VIzFW3rzENrxNXjvw5y7KX8SCFNl5lpviyPnBMwO0DJ45CSJh0NQ/LzKSocfyXI8viFJYgP7w4zvl9+s9FertB0qRnFKD9nW4o0KBuNq1XP0GCB7lssFFbL9y3/bIJ93w+cW9lrjT6S6t91283UDqyTr6zRJ4sadLj78sujSlsNKHm8NtlKFSq7jRl+pUTVp+bLLHiuzK//muxaTHblnJxGo67f3868HePISxFBTspBUFIUqO/WiHtPPRKtNkfV4jga1g4/axOUVGwWFVA4PaJnNSlVE8/8lw2nM06JbeO9GSUUT1dQKneJ9YTJeT0L4Y1jqnE5zvy7r/LGb7+PxWLhF7/4BfX1+a1HXij8ySsppXDttdfyjW98g3vvvZdZxnhXfY0eLgLWLkGfQtmAg7IeJ4kEadLSRtj9BXkpshQMLgOe26oIzIR49x9zf7F+8Cv5S4HYa6yYi4xUDBYz/KvcL4spVmjTrZUsnfZJVXHJR/IpheUzAdRYHhNOBBy1VhS9lqk9i1KH1FxVSXFHAXNH7cwdkvuSx1JuQmuS59id/Mk4ivHCcvIWTvko9NjzKgXZ+UANRpue2f2SXxhFIujMOkyOPBgxBrCVGaUr3ZwPDC4DWh15Va3RW/QY7PK7H43XVOCos/La/zokPYb94xeWCQ1w+OunKO4qkm5TcVcBxgIDept8+HUPlaDRIk2as7kNWCvMFLc5pOX0vBMBgvPhvIh5Z1+ekSYbAXR+oJZjP56QlqsDsLstGB36vOTnhl+cZvhFuUU3e52J5pvclHQ5OPRVeQmYkV/PM/L6/JrPfS2Sbc0lJUQHXLz1V+tvwKeOi6gR3rb9EnxQVFTEW2+9Jd2uTWwiH5w4cQK32834+DgvR77OFdyX2ZPf4E2l+cZydEaFmf1Z8SW1YbYqqZ87HGDuxHDelYva7qzEUWPinX89S3hu45gRDcBbf5N/lcXSLvG1vSyiAUG+adhZwtHv5K7IE5iM8saf56frPH1gifJeJ6F5+Tm7uLWAghoreodeWsarYWcZaii+Mn9MLaKvselnKjRgKTJir7HgHcm9OxNdinL6l1NM7vsPyiXngHc8mNaol4Heoafj3lpm9i9y/IdyBB9jgYLBmh8pxFKsJxpF+nmcD6xuI/7psPTYMhToMdh0eVUfarm1msBsiH3/ckbKXo0mCMyG8I5dOElmonD4O2eJ+OR9W1BtwSBLYkTI3JX2OIj4opz9zazUBlNxmx1bRX6LL/OnvMTzKxzHO38vH+tKugswFxkYeXlW+rmX9TiwlpmwV5jwjsh/hbf3H+UkogE673VjKTLw5t+eW9VuIyX6t/9pg0rIq0i29TtLKO2y4R0LsXBi/ZtPJD//nK85xuRh4dtvfvOb7Ny5M8ddbGIT+aOlpYU9e/bQ39/P2cW30aClrewqABKm9WOUvRQqO/Ro9TC6L7m5vE7eBXDoJZE35SVOoAPPFXb8czGO/jR3fD37Rh6TSTKGWgq12MsNlDZZGN+b+/hYRANaqOgxE1pSWTiVOzc6+qP8q9AsDAfRKPlJORQ1WTBYddIEn7JOK+U9NnyTYRZPycXWAreJiDfGOHJrZCOvLaE3LkuTHM4H/uko/ulIru8a0tBoNDRdV4y11MCeL46d89taiIXAYNdhtOexXK0Dk1NHaPbC3bzOAjq9TlqGDMBgU4iG1l5PTSQS5/igcouDsk4773xpVJoM5Z2IoOgl+m+OahAb4dQrCyyNhM6VOFzn42JbuQ5LiQGDXf49y71NfAC390xow1wgBZ0NnLVmogGV5dGNY0PKz2Gvim8qwvxp+fxm/kSI+RPyHwXUX+Hk7FvLxPIo4uGsMWIt0jF7RP79b+54lLnji5l/2GBjTWeF5kstLIxGOfXaqvfqDXw9N6Vj7mextWNK9Nx/rN1iIhpKcOAX69+HJiB+i8Vi7Jn9ZxKoNDU18fvf/37dYzaxif8IvvrVr7K8vMyPfvQj3vz5/8W2a/8MvV/sqUQ3qOTbVB3DbE7w1gFIbS6niEqrKyv5ggp7DoGKgp4YYtc7d/yrroWyijgH3hXVmM9Bao5IJECFg2/kPGUGyVsrcmsw2zWMHZPb21PjGhQjlDdpGTuYe7JXg3Dgp/ntvfhnVbyTMcI+NTMv5ShWYSvV4ao2MH04TMTPSt+sg5oBM3E1wbLk2oTOCLYSHZYihcBalfNWz6MqnP59EP90Dj/lqBqTC7485G8BUKDlKiszJ6KM7ZPbf9GbNRjyqGwNSRKUCmokd3Wr84XBBpEgKyvdbAC9EYx2rXSeCtAwZCa4GOfk7yRzAy14p1QCi3ku5KzGRj7TaDj+im/ttaL1cq8SHZZChdzaUQKWIoXKLhOJBMwclesnzmo9hdV6xvdJ5CvJsbI4GkWjy6//n1ydq2wAaxFYnAozw9LdBEcpOEo0GG0JAl6Zfh8HtBw7sPJf16ueBNBcH6fQGWfPPlDVcwlK50LMG3sn1icLKqveKcpdcerdKqGIlkXf+nOOcVkcF17Yzcn9onrlL37xC7Zt27buMX9saBIy2f8fEX/913/Nxz/+cQCKqaBXuRRYm6iU2tAtG3Aw9VZ+XytXDDqovbSUA189gy/HCw1Aw/XljL4xn9fmev01ZZRtcfL2P54mMpf7GgYb0uUBxQEw9GwboaUI7/yd/JfnTbdWEvXFpDfx84XBpiXiy49JW9hqkyZT/LHQcEMFZVsKeecfT+RFvskHxV0F6MxK3jJe+aD7kXpsFWZe+++HpI+56L+0szzil5IGBOj9cCPmQgOv/4/D59vMnLC5DRS1OaVIfOeLgU82o9Fq2P0X77GqNQZw1FhZOiG/6Xc+4zAf9DzWwOF/H5WOicVdBXhuqWLq3QVO/iiPEt4pPl6uy2g0dD9ah9GuZ3celbAAGm+q4OwrE1Lxd8uHG0ADe/9h7bGxXhXAwlYb/ukwkfnohvNZRA1zuORVZmZmqKioYHw8f2miTWwiX5SUlDA7K74+vsJwH3p9cqNsLaJSNIqhUI/RqsG7ntThOouk3Q9WEgvGOfiN3K9NegtUDLgY+c18zgWLbPR/pA7fZJijL0xsKGEmLsKaBI+Nqnk23VhOcWcBB746gm9U7iXW6NLTdH0ZB7+an8xnPtBbyIt8Yq8x450Irk9wyeW7C4SBTzQTDcSkPgo4X1RdUsT84WVpGbrzweBnWvGOBqQ/XGh/oJqCaiu//3+OSF9j6LOtzB1b5ti/X7h5oqzPSWgxkrfknSysbiNdH6jn7G9mzltW8ELB2WRlMZV3Scp05DsO80HNZUWgaBh5Sb5SRM+H6jAW6HnzLzbOi1bnJbL3YSwy0v2BakZfn2PiTfl3cWOxkZJ2K2OvLq7497WWJezVRlpvq+TUi9PMH1vnfXqdVcjiDiuzB8Uz1BjO/cAjRVB6N/hrFnQTGI1G/vEf/5F77rlH+l42sYnzwW9+8xsuu+wyAKocvXSUXwusTVRKbeg63bC4Xvq0Tt7lLI5Tv93IsV/7CUiE2LJWHXOjMWISErUpFHsMVPVZOPCjRaK5FusTcXTGNSp/5FiS3PKBEkJLKoe/t+omNshVKvuEhOzk3jXen/PIK9eDzsS5hI0csFXq8I1fYF2MPFHaZaX6IicHvzNFaO7CtM1WqUO/BqFLpgKf7HJ1/VUuij0Wdn9BPtceeNLN0nCI45Lyas03FuGoMvHWP8hu/+TGah8YHTqctUam9l0gsrdWQ9vtJegtWvZ99T8or/wHGEcroAOLS0dgOib93GXGYV6VHrOh1dB8nYszv1sg6pNrj6VUR/ttpUwe8DH6+gaLS7o1CHgSkpManUL9xVasJToOfDeZd2341X8SBj3lbTpmT8dW+msdPzdfZkJn1HDod+vc9xoEJQBLodhMjoUgYT23mkM2QemA7ytMTU3R1NTE8eP5rd9tYhPng507d/KrX/0KrWJg+87/gmIQH5esRVQyLqooiorJAP7g2hu/60nAtVeIQXb8aG6iraKoFJXA9KSCEpKYg5NjtqUPQgEYPgKaXBKk66RKmnXGMUBJvRZ3m45jr4YJLK46LrZ2rqcYoKpbz/Bb0bUrfsrE9RzzimLgXOmrDc5rciCkKvPhksjMGedD+M06r+dKM3EVTlxAiTFXjYJvViVygdYmALpuseKdinHmjWRin+MZu7uNlDTp2fuC/P5vz+025oajjL4tSeI9jznfXqagxuIE5nL00fPMJxQzdF5jYXRfmLnTWZ0x15hY63eZ3CsPqoe5UEtwIb+133PG4Vp+kRkjaxxXWKNHZ4KZE+sP2oSyMmY3bNVjLdKy/8XYhgqXCf3KoK0oyWWkHHmUxqqlox/GR2B2UthuRE5KX69Ag6sQZmZzE5SMBpX2NpXTpxWmtWuTlFYTlFJw2tQ0QSlUeO7ElCIojZ/+HePHf4FOp+P73/8+V155Zc57+GPiPSH3lo2PfexjfPGLXwRglgn2qK8AK2VzUkgtqKYISk23lNP9iFzp/8B0hHg0QSImqX/600ki8xFsVUZqr5TT6fNNBlHD8gM9tUHe83iDnARYBPZ/+WReBCWAopYCitrzkBizadn6tEdaXi1FjEhLNEkgTVDKo0AQgKNpYz3hbNTtLGP7rlZp+9nDSwSm81t5steZ85Khm92/fEEJSgBnX5thcu+FvcbYqzNMvrVBKfY/AHxjkbwISiXdBVRfkZ+m5uIpv1SFiBS6Hq6j76NN0vYGlwFTaX6d3GADIkgTlIq7CjC4DPIEJQNse7aF2qvlS4RXDLmwlJoobpEvPz+7f5l9/3ZCmqDU+2SjkMSLIF2lKrIcI+KXW1w12AQ5CeDkj+QISgCxgEossDJZSs1Pq+eoonYbAx9rBIOIcWsRlLKPC6o+fsP3mJmZobW1dZOgtIk/GmZmZigrEzIXL0e+TjS1O50lm5OGXk9kIYp3NILeAj2PVFNQu2oRMiVFsmpxIhZUiQbkxmg0gCAoAbVXFkvLLkV8KmGv5CZLcg/O1Waj4wE52dkTP55k37+eliYoARS32rFXWfKScKu5opj+jzRI20cDggzlbJLT8vKOCILSutJf65AyLMX6vOS/ep9oyEtma/mMn4UT+ZHW3RcV4cwjHxz97dwFJSgBjL8xx9jvLyzpZnz3PFNvL17Qa0y9vZgXQan26lIs5fJ5TiIWxzceZOGYZEVRPWz9ZDMV2+Vlj+01eejbJa8BZAhKkJO0V9YnavvLEpTqrytly5P1ecnJFbc7KO3MTyro3X86w4GvnJE7f5ed9vtFHMyHaKWGVfySH3O4dxRiLhZzSIqgtJ60WwpxNU48Gie4uqJean5aNUd13Oem5hLRP9YjKCVisTRB6Z3gS0zFh0kkEvzP//k/NwlKm/ij4NJLL03L2owu7WXfxI8A0ISi50jAJSxioTJFUKpo1eG5ZFWcXSfvCvtixCJIV2ybOhIj5gOjDUrb5SQfgotxoiHJxXCNllhE5BdNOx046+Tmi8M/nOfwD/Jbayhus1IkmRMBoBOyb+7tcutkqY3+fCTfUgSlNSWzNoClVL6iUHG7he4Hy6Vr5i+NhPGOhfLawDO5dFQOyOe0vvEYC8dX5s2yxBFZu5mDy4ztvrAyu5N7vYz/ga+xeu4LL8XyIijZK/WUdOaX5yyeCbI4LP8eU3e5g/b3rVpX22CTTGcSZKt8oDMBMSGTBrmfu91tQG9X8iIodd5XSsUWyX6r1eCoNVJQbcJZKz/GAzNxDnx7dmOCUhY81xbgqE76SvL1NeyPE03JVeUiKOmgskfE8snDSYLSOtJu2YgE14jrKVm3VcQGWxF0XG1Ep4PAwtoEJU0gvIKg9NLJzzE1NUVnZ+cmQWkTfzT88pe/5IYbbiCuRnjjl/+NSEQQRPT++DkScGGngqoq+IMKCirtjWFs5pUTZUoCbrUMXCQKEck1bFVVmJ4Um8olVQkURY4kEQmJ/6SQlH+zOKC+R3JOPR3n0MsRAkvy6z5Wl4KzUoe9PJdkUgauWoWWqy2ZolM5iA1qBBSjqACThkazLnkktASoGxaJXxOKmY3lv1bNgQ07zFT15sibs+Lu0niMpbH81qOcVQrWIvlt/PmRC0tQAhjbF2LmRNZ9/AeqRW10jTmJSqr/ket7p9TcBCVIP7+iekXs1eWBhbEYvtlUKbaN52CAtmssuGpXddwNci9TfstE6TGXD0EpJZ14DlFwNZLjuKhBR/Pl5o3H0orjtLhqdJQ05FfF/tQ7cY6+ujFBKQWrE+q6xJ/VhHysioQhmEzPcxGUXCUqBrOKqippgtJ60m4pJIBoFMKrwkJK1m01QampKkJFsTBej6BkXI6nCUqjJ37Dqf0/QFVV/vmf//k9R1CC9yBJCeCxxx7jy1/+MgALTPGm+qv0b2ttBKdgLTViLJDryEsn/bz5F8fwT0awlhswuORGTOsd1VRukyPfzOxbZvfnjxOZj0gHL4NNi6XISGmXU8reNyYiQ9XlxZRvk1uwf+efTvH2X8tLv0V8cdCQl1xaw40V1F1ZLt0mgO27Wul7XJ7wseUjjbTfXStNbIr4YiTUBFbJzZPl0wHe/cdTeVVRqr+ynPIthXmRrXoea8B9qTyha+szHrY92yJtv3DEx6kf51G55jwws2+Z07+Q/xKrbmcZF/2Xdgo98rN675ONVA7J+6nqklKqhoql7QFO/GCcI9/Jo9JFXP7rPoC291Wx5bEm6XhQ2Gqj/xPt1F4lTyBqvL6S3kflN7ZtJQbQaqTJPQATr8+z5wsnGH9dbgO2/YEaMGTiVS5Yyw2YXQaKWuSyrJQ/j3x7VLr6RssdtZR1O7FVyS3Ap/rq/i8Ns//f5CqMFVSZ0ZkVrGvML6vnsqhhgdOV7wBQWlrK4cMXrirZJjaxFiYnJ6mqEhvUL0e+QyCaJS2xFlkJIZ1lsOmwlsqNo4PfGOfYD8RccQ6xaR3Yq41U9Dtovq5Myn7/l89y5pdChnJdAs4qFDXbsZaZ0DvkcsjAdBT04LlNjpQ89to8e/7+NPOH5Mk3sZCKRtFItwmg+8FamvIgStdcVkT/xzzYqtZ5FquISnqHnp4PNdJ0s1v6Ggk1IfWymMKx748zkoeMKED1JSVU75Cf7yu2F9L5oNxHDQDFnXaGPtNKeb98Tjvy8sxKkssFwPCvplk6Lb/yNPCJZrY8KZ8fuHcU0fFAjbS93qKhcquLqjyeRWAqyoEvD0uTxqylRhJqQp6IqIeO+2vyet5bHm1g4BPN0vYV2wtpvLYc90Uu6WMUnVZsnOWxNvn2F07x7pfkKnOV9zvSxKnAtNxFilvs2EpN0nFTb4HwfJS3/36Y5TMSX4HqoWq7i+aby+XO79Cjd+jxj0fZ8/fDBKbk7sPoULCUrR3TsslJAAueY8xrxDvSj3/8Yz784Q9LXWMTm/hD4OKLL+bNN98EYGL5IG+PvpD+bS2yUgoWpxaTXW5dJrQEB37kJ7QIOrP4Twb1lxTg3mKRIrr4p2Mc/N4SMR/oJNdAdEYh++aqk8sFQ8kKTS6PmSKP3DGHXpji4HfyyCdioFFAm4ccQUmnhcariihulyeJdH+gnJab5d/tPTcV0XZ7qTTpKOpXSagJTJIkkfBSjGM/miO0KL8WUN5jo3LAkRfZqun6Ikq75AnlHXeV0v0BufkCwDcZY/wtOVm884V3LML42/K5fFGLma1PVuGQfOcB8bzz6U8V/QXUXOSUtieeYOIdHyO/y4NslUjm81nn2Ag1l7jouq8MneRtmEt09DzkplyWQAQ0XFVEx/s2HkfZBCWdDTSKhmhEYjMuubm2NBzm3a+MM3NQLteuvcwJOqTHks4GtlI9zmq5/pGKr+PvBDn6C6/UxlpNv5mKLhMWyRTVmkzhh9+McOI3cgwIk0OLwaJBt8bwziYnAYQUH8ci3yJBHI/Hw/79++UatolN/IHw4x//mFtvvZW4GmX3L/4vIsFMLFyLrASCrGI2JTCb5RY1hk/pGD4t5mCzRY4BbDCqVDdCZb2EsUbD6UMwcSbZPkkCjr0Y7MUaDJK5YCQIKOBul8snlidVDvwsiHdSkkQJRMNiyWnF9yQ5iErNl1uo27ZG3FyHOFBYq6PzNjvmQoncWaNBUaDzBjvunhyxOXsuTCTyWfJi6kiUmRP5Va+s3mKizCO/2VhQrlC3XW6dFsDshJ7brLhq5Bld82dU/HMXtgL77MkYwUV5+5arzHiukCcXO9wKtVvl/YQCVT1GSpvk12nVIIy8FSEsmaYazKDGEkL2OoWNci9FSHbX70jetwRZq+EiM+03yOdd9nKFxh1Wihpz3HfW+FX0GjRaCVITpOPFydfCHH1FLv+wlwryHiTjlQScJVBQrEXRy71Li2pLWo68q8Xv1UpUUFKpaYR6SXqDoqgYDCqRiMKBQwaC61TuW30NqzmObZ05KZucBBCd/zVjx3+ORqPhd7/7HXfffbdc4/7IeM/JvWXj29/+dtpxJixcrNx8jo1Gq1mTtGSrMuBbT4YkheRXsdt3tRCPJtj9udwSTwabBnOZhaWTeXzdUmei8756Zg8vcfy7EqWBDUhXDklh8DOtxEIqb+Uhc1R9RQkRX5Sp3Yv5XUwSdTvLOPNLeeJK2z3VBGbD0jJ0xV0FmIuNnM1zMysf2KqN1F9Rwf4vn5GyN5UaULTgn5R/gEOfbWNp2M+hr8ltPDTdUgkaOPF9uSor9jozdZeWcfRH49LSXPnKvTXdUkk8GufUTyel7AtbbVTvKGHf/zkt1dcNNuj/WBsLx715kYgKPTYWjsktJDXcUIEaVi+YDCIIybqyLUXS1YRMpQZabqvi8NdOSVf6sdeZsRQZmdqzeP4N3QDt99dw6Dsj0jGqcqiIuivLOPvaTH5jVTIOGmxa+j/Wgm88yP4vy/XXFIq77Mzuz50l1l5ZgnuomOHfTDP22zk0irKhHNR6889689WMOs5+7asAdHd388477+RxF5vYxB8WDQ0NnD4tyH7bDNfj1K9RkU5RBM1/FSxl+o03krVaEqqK+yIn1UMuTr84w9Te3GOwsNnMwtH8PgNqv8+NrdTIm397Qo4IkCX9ttH4TqHmimLc210c/+EEswfl3jb1FqjfWcGx718Y4nBJdwH+yaA0KUHv0NNySzlHfzBJdCnHMcmcue7aMqb3zF/QSkTVlxaTSCQY/a0cEdZRb8mLrOO5vZLCJjtv/L9Hpez1Dj3NN5Yz8ptZfKNyb7+1V5eSSMCIZE6Rr9ybpVhPzRWljPxmWpq80XhDBdGwKt2mtrursFdbefPP5fwEIgZEQ+TuTwB6aLu9iuGXpi5of6q6pAjvaFC6j1RdUoTJYeDE6lxtA8m36kuLOPubC1M5q6zPgUYDk3vkNxT7P9KA1qBl9+flPkpJV3lcRwJzNZpuLqfIY2ffl0cI5vHsCurMLI8FQc29cNb/4Vo0Gg1v/d0Z0Uadbl1ZN1h//tEYDCuISSm86v8eAY2XoqIivvCFL3DnnXdK38cmNvGHxL59++jt7SWRSFBgrGCo7sFzbBIm/YqN3hRMBRDaqBCdVosmLN5Jum+1kkjA/h9IrGPFo1hdOvzT8hsoRhu031LI7LEgI7+XuEZK2igRl5Yl6HmgBDUS58C358RivYQ0bZHHTIIE88eyFrz/gDJVZb1WptaSlFsHVTscRL3y1XJs5eJjgAsm/wWYnDoqBwo49cq8VDUXnQ10Ol1exKYtj1SwOBzi9IsLJBKJnJVyKgdsaA0Ko69l5r6Nlq5T9zC+e5nQkly78pV7qxwQVaRlyVDWUh0VfQ7O/GaO2AYpSLYv+h6tYO5EkOFfL0pdA0Qf8U3K3XNZtxW0mvPvTxJjx+jQUdRiZvxNOT/pbFB/WRGnX17pp1zP2+zSsXDq3I2s/4i8Wwq1lzgY270kJ+mo0eKoM9C808XYW8tMvCORb6bk3iQk3lJ2W+4twjetcuKV/J5dQaWOZYllOFetjvpBE2f3hpg+GiNhMa0r6wbrzz8Jq2nN+coXmuX1kX8lQYKBgYE0SXcTm/hT4N577+Wb3/wmaLT0XvYJbAXnfugVtWoxpmVsVUTpERWjAcKR9TeSEwrol2O4ilQam+OcPK5lfi73xnOBIYp/GUA+hlU3J3AVxzn42/hGr0kZiFuA+MZybyk43VC3xcCp3RGWp4BEYl25t+xrVLTomDiUdf64fK63Amvt95YqRALqxnskWddSFKjaamb03SBqrqWc5PxR0qRnaSJKRCbcno/0G1BYo0Orh7lTckQ2swOCefCLy1r1lDbpOfTTgHTfqO41MnsyLE0KctUrKIpmbcLVGs87X7k3xQjlbUZmToQ3ft5Z835Jk5hfZUlgFZ16iur0HPiR5HqiRhD9VMjdn5Jwd+uZORUl4j2PMZBISOVezhqFsC9BcD6eOW4DFNbqMNoVJg9IVqkCXHU65s+s4VeN5vwlEJPkJHupBkWvZXEsd2dNKFrQKTQP6jBY4OBLcs86oVfE9VJxMAfK6qC8Dg7u0xKWIg8JmC0qkTBEDLnJb53tEXQ62LtPARQiTt26sm4gJEhDkewbyFRRyiYmpXB873eYPrubwsJCXnjhhbTc/HsR72mSEsDrr7/ORRddBICCniuUO841SsRXLBybSgxs+VA9vrEg+7+8AfEjuahRdVkR4YUoM/skpQYQpImuDzZx7IejeM/kfnPpeayeU7+YwCvzpWkSHe+vJUGCQ1/JTV6x15nzOjfA4GfaiAVjvPWXcsQmg01Lx0P1nPr5pLT0VOo4aempPwLqdpYx/vqMVJuqryih+qISjv94jJm9F7Z89IWC+9Iiai8py+se8iUpbXuulYQaZ/df5Cb6vVeR7z1UX1HCzMGlvCptXVCkCPV5NKfnsQZmDy0x9qrcwlz5tkIadlYw/uZcXgRER5NVKmbYqo203VnLoa+fyYvo1/1IPeNvzUkRjnoeq2f+hJezL89Knx/EZu3hbyUJchtsVFrLDXR/sB7v2QAHvnI288OqeSqFcOM0r574NfF4nPb2dg4ePJhXuzaxiQuBbdu2sXv3bgC6DJdSoa87xyahqisWgdvuqsDuNvHOv5wmukE6lVDjoNXQdGMpJ34sSQpNvpRVXeKiwG3i0Ddyk3SLu2wUe2wc+Y68bKKlXE/LrVUc+vYoodncMcheYxayaZKovaqEyoFCjn5/jPkjcnlU5VAhznorh74mT9DVW/KTa5KGxGbgWrCU6XHU2Zh4Q056duATzSRiCfb8rXzVz/caBj7eTEKVv4d8SUplfU4ari3n+A/HmD1wYSsHXCiU9TlpuKacEz+dYObd3Pmp3qGntKOAsdf+A2Qgjfb8+vE6836+Y63QY6XqoiKOfGtE+rj+jzSgNWrZ/bk8xoMeLEV6ApO5CUTt97iJhuKc+KHchwYABXUWqne4OPi13PG1oM5M/VUlvPvlkQwBSmIRq7jDhqLXCCJrPIFGWT/3aru7AnuliXe+eHqFXxOJBJo1Pi8+6HiZsXGRo73zzjv09vbmbM8mNnEhMTo6Sm1tLfF4HLPOwaWNT55jowlHSOgzX7PrjNBzg5mlKZUTr62fs2jCUdBqcNXpiMdgcVRiITeSHKw6aLu2gOE3/ARmc6/mNl1pY2KvH18e5Kaai6zoDBpOvZR7HjAV6gh5Y5lNfQmiUu9D5cSCcQ58KyvnzCFV1XhNEeNve/Hm+uhx1XFShIY/Eko6LSycCRCT2AcqbDTRuLOIUy/OMX/8PXQTq7DR0nVhg4mma4s5+eIc88fkcvN8SUpd95ehUTTs+z/y86UMzptUcx7ovK8MraJh39fk1nKK28z4JqIZQtofkOCXC+s971xjbbU/m64vYnEkyGyuikjJ3KSg2oDn+mLG315m/K0cAygrP7SU6tJydRtBX6Ch5bpiTry0RGhRPidtuNzOwmiMxZHc12i8zIpvJsrUgaSjjHLVN6r7DZzdEwE1TsK0/jE6E/Rcb2JpUuXE65lcUxOJkljjWmHTWX574JuoqsoVV1zBSy+9JNWeTWziQuKTn/wkf/mXfwlAx9DjFJacW/pC742hmjLvEnXuCGWuOO8c0ROJrr9prfdGSWjjuKth7Cxk9MzWhxIUY8lVDg4XnD6ce26wFiQoLlEZOSQfmw0mqOvRMPy2KrUvZrJDKHu5IR5Ho65/nKtWoWaLgZOvhfFOZxEm4usfU+BWKKzUMbx7FWEiR/UYYG2ywX9kq/s852TFqsFepLA4Kkc68lxlQauFI7/Kby/3vQTPlWa0Chz55ap7WMf/+ZKUrMUKzZeaOf1GkKVc5JU/Yi6Vz7WsxRqaLzZz5s2QFAFHMYCjQmF+WIUNxtmG+ANTPRRDjmpIq0hKJgdUdpgYfiskcVxSBvxiI0abloM/23g8JLQayHofNliRIhO627QkdApjeWxbGyxQ2QAnT2rJFcONZpW6RjhxGOLJClgxW+7cy25T0ethfkFBG1GJbqAQ1uCOUFIY553DeiJqpj26oErUdm7Fu/HDX+XU8XcxGAzs378fj8eTsz1/Srwn5d6yMTQ0xPCwIEqoRHlR/RaRtXp41uJEaCbC4kkfp34h9/I4+us5QVAyQM+H6qWkukwlFgxWHa4Gu9Q13v3iKbxnghhcBhxNcmWOjYV6TE65l4kUQamk10Hz7XIyHAe/cUaaoASAQYfJYZCWogNBHuj/WIu0/Fmhx8a2Z1ukJdlsbgPbnmulYkiufm2hx4Z7sJj6ayql7M++PMNbf3kkL4JS14N19H1UXrYuXxhcBppuqcRgkxu+Y7+Z47X/fuiCkqze/H+P5EVQqr6ihLKtzgvWntqrStn2bIu0jCOIe3j3385I21cNldB+t7wMytZnPLTcUSVt3/tkI233VEvbd91fx9CzbXlIS4K5yIijVr7s+uSbCxz85rAUQclUaqDj/UJeRZbU6KixoTMpKGa5crIlvULKZN+/nJYiKGEAk9OAs0bunptvr8R9kZAYTBOUcsA/GWHplJ8TP8/y0TqL54fVt3hnfDd6vZ7rrrtuk6C0ifcM3nzzTW677TYA9kd+w8nwvjXtshePh38zy9xR34YEpTTiiTRBqXK7k5rL5KQ8HdVmzEVycX12vy9NUHK1yQVGvUWP3qJgd5sylUU2QIqg1HZXpZQs2/CLMxz4+llpghKAo9qCtcwkKpxIQO/Q0/+UB8/tcnkOgOeOSjoekJ+fmm+pYMuHG+XPf1s1tZfJS5u8+29n8iIoWcr0DHy8mbI+p/Qx+aK0z0H5Vnm5t7f+6vgFJVlNvb3I6//3EWmCkt6hp/bq0rzkA/NF7xMNeO6Q73dTby/y1hdOShGUAOqvLKHmshIsZXL3UDnkYuBjTdL3bKsy0/9UE7aqVeXBNyAo9T/lofVO+Xsu8tixFOdRThzY84+nOPQtuWqrjTeU4WyyQBQpghKAsVBI7MrA0WBBb4HlMwEOflUuL3LWWjAW6LAU5X4Oegt03Cv8OXvQlyYo5cLwr2eZPeI7h6C0GtFolAMFv2Js/CwOh4PFxcVNgtIm3hOoqqpiaWkJo9FIMLbEi8f/ktgaFcCyv3qPhWH6dJTRAxJEmniC+TOxNEGp6VKTlFSXyQamAgV7udy72fFfLeObVdEZRHUXGVicOsxOOdvQgiAo2St1VG1P5nYbfDwCcORHsxx4YRUpXrvxF7/WEgPOWnmpiPqrCun+QKW0/Jm5REfnfaWYS+TuW2eDrgfKKO6Q088yuXTUXlyIu98pZb9wMsTeL4/lRVCqu9xJ+51rVFv9A0FnEdWUdFkp/EZknoVTIXZ/YVSaoHQ+2P+1qbwISsVtFlwe+X6UL1weM13vL8MkOX4ADnxzmkPflf/YrGbIScNV8vlvx92l1FzikLZvvqGIuiuc0vb1VxTS86BbWkoOHdjKDBRUykvuLZ+NcOh707kJSggJzYYrU/K6EuRMrQZrsQG9VYvOJLee66gWz/fUK14pghKAxaVgL5XrFxXtekqahW2KoJQLsRDMnI4xun8lQWktjCy+y55TP0RRFB566KFNgtIm3jP4/Oc/z5//+Z8DcPD1LzI5vHtNOyWUIRaMTypMzCgbEpRS0MS1jJ0V1TGchSrlFXLkFWsBWAoACQEx/7KGkcOARoNNMlRrdWA0aTAXABt8BJJCiqDkblfQJV9jExscNz+scuSlYIaglL6wdl0JOGuhgq1UJy1dpyjQdZONqh759+ryTiN1Q/JzcmmrAc+V8vKrtX1mavrlz3/yd8G8CEqKQUiZpeStLgTspUpe5z/2UlCaoHQ+8M+q7H3Bl5uglIRiEJWUFPmtwLzRsMOEu1t+Tc0/m2D/j/1SBCWAogY9tQNmzJKpVEGlQus1FgySW3sGM3h2WjE7JSkhCrRdb6dqYJ08ao3c3F6mx1q0QT/SaM457sTvwhz/nQRBCSit12BLbiFIVTvTaDDZtJglfWS2iRgTCcCZAyBDMrXZxHEGidRLg0pjfRRQ8fqUNEEpF0ankvPPKoLSWhje+0VOHX+XoqIipqen3/MEJZBWNv/ToqamhnA4jNlsJh6P8xu+yw71RszKqk2nrI3gw98SsmqmEgNt73Pzzr/klpWq6C/EUmqiaqiI0V9v/DXN8ukAr2d97WywISXH1PNwHYpey+//Z+4vpd/+6/w3N2ouLUFv0SFDPUoRm8r6neisCmM5ZAoi8xFe/9+H86rUMrV/gaJIgfQxkeUIWr2Ggnob/sn5nPa+MXFig0WuKy8c83HiZ2N5SdzlWwUqkUjkNSfXXl1K5fZi9v/bifT9bITiFjtlPYUEZsKMv35hpCUuNCq3FhGPxqWfw9anRTCVkWQERHVUrUZa3i6FfOz3/5+T8ic2AAlQ82BB60xa4lb5ED25d4HyuFwcAmH3+//nsJyxAdpur+bwN89KE44ariyjoNaKrdqI76xc+cixV+ekqzq13lWFy1NALKBKSfqlYrSsvA+Aq8lOQZVFqmpDww1l6E0KR18Y59A3R3N+1ft79ef4WEQJKtx999187Wtfk27XJjbxx8B3v/tdnn76aT7/+c9zMraXxfg0/earz7FLbQT7JyOc/KmoJd94QwmhxShjry2uf4HkxnNZdwFavYaRjfIurQbiCQ5+LSOZK1vBxNVmw3NzBROViwy/uHGt+6VTAd7MqlaSIiptJP9mrzHjaLBRs0Pl5E9yL/qniE3Nt1Rw/Ae5Zd9S+awsoktRlkf8zByUJyYbrAqKSWIxIrkRmIgjs2aWxokfTxAPyVdVkJIKy0JgPgoa0Orlv2ga+GgTsWicvf9wSsq+ZkcJaDVM7parBvVeQ2lHAe5tRXhHA8xL+NdRb6HtnhrOvDglfc+JRCKvfgH5Petj3x2nuMsnLW+nM2oz18jexF6nmpLdbUIxaQl7Yxm7DRANwNIZH1P75MfaiR9NcuLnk1KSau6LXARmwywc8+OXeD9AD8VtBVjLTSyekJe/fefvT0uRMgFabq0k4lfZ+8XTuZuTjNEjv55bGd83uFZprxNbpQlXq5X5QxvndnoLtNzh5ugPxghMRTn1s5kNq2wEogF+F/kOTEBlZSWHDh3C4ZDfSN3EJi40bDYbPp+PkpISFhcXeenk57i08cOYdCvXvLKJSmf3iv/rTNC03cCJVyOswW0SSOYyBVU6Cir0uGpjTB9dx9igh0iU0CK88/XMHKDTsf75s9ByYyEGm8I7X53LSTQ88pMliMst3Kfg7rNjdukZ3e0VVZVS8XqN2B6aEw22VxkwOXTMZFdTSeaX2YiF4O0vTchJMCUxe9SPRqORrqQU9cfQmRSsRXqCM7kvlKqGpDPIbSiE5mOc+MUci2tIYa17jTwrcCYS+e1DFbeaqb2skKPfn5aSJrOWGHFvdRINxZk5kGmcRqPZMNa/l+De6iChJjYkTmUTr9rvLEExaNkvWeVIq9Og0WjkZfeS828sDx7XwX+fQZvPZt/GxTLOgc6szZVurcDc8QBag0a+v8Zg77/Jy2zXXOxg5HdLcoQjoLzbRmGDGcsB/8bHZOU+i2civDMiKTHYb6Gyx8LxXy6ydDZ3m3Q6iEXi7P/3xcw/5qiiVNxkIB5NMHMkd65Z1qRgtGsYeSfGyN4Ymkh0Q2GqA5M/ZWxpH1qtlg9/+MP8zd/8Tc5rbGITf0w888wzVFdXc/fdd3Pi3W/jX56gseuWc+xSRCUVGFEFQcFdGiUW0zA1v/66vSaZY5RXJDAYE0xOwHob3qpZjxKMcjZr20PRJVAlZLLNdmjeqmXyZIKJU2w4QYd8sP/XcTSpkJIiHG2wX2GwQHGdQjwOE4eEXYqotFZVpZQUZHmbjsljsZU5lVZ7zkQxcSDChAzpPglVhfmRqFx10CR0Jg16k8Q7b9J3iXhCLG1ISkONpqU+Ja6h0WxcYWYNqJEVhWek0Hy5GRJw/NdyE395uwG9ScPi6IUoy36BkUhgdemo6jER9gVZnsz90AwWaL3GyujbIeZHJN9F8lwLJZHI61lPH4kSnI1lZNtyQEmGn4gfqcTc6FTQGzWoYclkTYX50xG8U6vG2gYfDswcizJzMrr2uFl1nMOtoEbi+GYS6+5nJlatH5XUK4R9cGIux/jPutbJt1QSMgwioLEXohE4KqFKqyiqiEeTGuYnE6TG/0ZVlAoLweWKMzenZTlnpWKVltoYp0d1RGIKI1PKusQkAFWNsPuX/4NYJEBtbS0HDhzAZpOsZvEnxnte7m01bDYbfr/YJO/iIsqUZKWRtTaENVrqrymhvM/Fke+NsXBkVW9f4xiDy5AhKhiQItf0PtGAyann9587urF9IkFRux29Tcfkm/KbHA3Xl1PS5eSdfzqVk0QhqqjkJ6+27blWQFSSkUX3I/Wc/MlYXpJM/1lR0uug6QY3p345nhe5SRYF9Rbqd5Zz8sejUiQlDGCvzE/eb/uuVuaOLHPiB3KyN/nKvW3f1crc0WVOfF/u/AabFoNDJ3e/QMsdVWi0cOQ78nI3+WD7rlbCy1H2/n0exKP/xGh/fw1Tby8wd0iuAkPDjRWU9xZy8mfjTO1ZlL6OtdwgFSO6Hq7DVGiQJ6EBGKDpukrRp3OU2my7uwpno419/3pKLmYlY/+K+SAba6ykDXy8Ea2i5c3PHV93Pkphsu0gBw8eJJFI8K//+q88/PDDudu0iU38ifClL30p3UdN2LjUmpHdTawhbq7RaOh7soZYKM6+fzs3ZidWL2LoQW/UCMKRnvU377M2kSzlerrur2H64DKnf74x8YhEnLqdJZz5ZQ67VW3qf6wB73iQY9+bSJ5m/XTZUqwnMCtPtijrc9BwTRkjv5UnZrparRS3FqTb8yfHeUq/yaL70ToMFh1vnQdhXwbNt1QQDcc583O5jSBLmZ6oN0Y0IPfa1HRTBc56q3T785V7a7yhgsJmW14VUW1VZnyjcrmj1W2k4epyTv5sXJoUlA8qthdSe1kZh78zwtKpC7wIttbul0z/zWfXLAesbgM1O0ryIh1u/WQTiWiCt/5WPjfVO/REA9GcJCijS0/3Q7WMvzHP2Gvz0iSl8n4H/pkw3pHQxv7Rw7aPNOCbCp0rz7nWtbJiv96hJ7pwbu61Wu6tsNlC841lnH11nondS2tuWqek3pYLpjgZe5uZmRnKysqYnPzDSvVsYhN/aHR0dHDo0CEA+t33UGyrA4Tk22ok9DqKGxRqew0cfy3I8qrurQmfGxB0Vk2GqKBjbULOqqoYjVfYsJfp2fudhQ0JPIl4HEuJDrNDy9yJiJw8VFylpN2Mu8/Gwe/NEM31/YkuuRm/ek7eILZ33VeKVq/l3S+vMf7XaWPDThfjby+niU7/X4atUofnxlJGfrvA7JE/fDUik1NHzSUORl5bkvanuUS3LolrrZjf/YFy5k8FGX1Vjjycr9xb9wfKWTgV5Kzk+XUm0Jl065KIVleGqtxmR2fUMvLbC1ABXauh6/5Sov44R76fn+z9CvwR5d5gY4m/9ZDya+1lThZOB1kekftgrrTbSs0OJ6denmf+mCTBT6PFWKAlvLxBXpnMe+ouLcBebmD/C7MQl69UUdlvYXxPAI1h48oN7j4TpS1GDv94gdBi1g/rkZSSsV9nglg4fk5cX0vure1KA3qjhn0/Da9ZOSlb6m3S8Ev2H9xLPB7n3//937njjjvOsd/EJt4r2Lt3L1u3biUWi+EoaqBrR0Z2V+89N4arJuj2RFHjGg6eOLeaj967enyoaPUaVFUBRQV17RiQknwDMBigbRvMjMP46Y3f1TSRGKW1MJ3awpGInZpYHM+QQmA5wejBZAzbiKhkhkiQcwhG60m/2Uo0NO0wMbovwuzJNebBNRit5kINhdV6xvcl893zmXP+kNvc5yMhJvNenTxv3XYjpgKFI7+8MOshZa16EgjiiwwMFlBjOaS9slDSpKOo3pBpfw7f5yv3VtKko7jBwOFfSPpHoxEfqAeRIpYZLFDRYWTySJiw3PbYimvlgr1ES/2giZOvBvHP5bF+ej4yb39Mesda967VYDBDaZuR0bfXybvWOK71GlGt7Miv1s+7VpOUFLMuWQhi4zYqBmi5SMfUyRhzZ5EmKdmLQI1CYFmQR9eHSvdW8C/BqVXynGuRlDSoSX6bgk5Ria/xurVa7s1qVuloiHJ6QsfMvG5NglJK6i0ammR439eYnJykv7+ft956K8edvrfwnpd7Ww2fz5cuUbWf1zii7hE/rLMAffrnU+z5m6OCoGQAW1VWJ1njmNSGdPej9Qw+LSdTNrVvAe9YUIrQNHfImyYodT9aLyXN5J8OEY/FIZL7ZT7iE5V/7HVmtnxETorj0DdOs/cL8gQlW7URa4WZ6ovlpTt6Hm+g72PyEmgF9RZa75KXHin02KRl7kBIb/U+IeefmUNLhJYiRNZITNeDwaalqF1OCnD5dIB3v3hKmrBDhLwISgDxaJx49MJtKMajceIR+fNHfHH5+wWOvjAqTVDKx/cp+CeCeCWZ4vY6M0OfbaNySE6eqLDVRtOt8lIgJd0FNN0ib1+21cn2Xa3SMpIGGzhqrLgHi6WvcerHExz+9ogUQanhxgpa7xRjV5bEGFmOEQ3JsdZb76wSMm8RpEl3k3sXCcyEpdrTdncVQ8+0ShOUCupFOde3/v4kb/7F0Q0JShE1wovqtzhw4ADV1dW88sormwSlTbzn8dBDD3HkyBHxpS4+fuX/KtGoeMnVrFGPOZFIsOefhtMEJZt7ZZK9eqOZKER9CSzFOrY/1UD9znWkI7JeTAKTUXxTYab3L0rdQ4qgVNpbQN1651/dppCaqaiCqKq03kZ+iqDkua2Cqktyzw1Tby9x6Buj0gQlAPe2IgobbdKyb84mC1ufbqLQIy/p2XB9KY4GyZLWGi2NN1RgdcuV2K4ccrH9uRaMEpJPAN7xIMtj+S3WuFrl/XP8BxPSBCWAwFRUmqAEov+o0Qu3UBCLqPJfPyUhS1AC8I+F2f+lYWmCUmGLFb1FfhEvtBghMBeSJih1P1rHliflJQYbb6gQsm2SRKPmWyqwpKSmNdqcx215op72++XfU9xbi3DUWTG65EuD7/3iCQ59U0LmTQ/dj9RiKdaLqlESjyyuQjwcJzCbe+NO79DRdq+418k9S4KglAtRWB4LMbVvlf7nGjFUb4FtH66n9fYKiCdyEpQsFcKHC8cDvPPF04y/ubghQeloeA+/n/g5i4uLXHbZZZsEpU38p8DBgwe58847Adgz9k1Ozr4GrNwATkETjTF3NMy7P8gQlEzOzO8J47lxJ+ZPQDxB/ZCR3ltt6NZas121IT57IsTyWESqwlBgJiYISkDj1QXoJOaH0FKUWDhOQmbJJSYqHpmcOlpvdmXqw28Qv4/9ZJ6D31pn/K8h/6a3aSmsN1HWKf/1adP1Ljrukl8jM7l0eUljWUp1VF0kb99xVymtt8q98/vGYwRmooR98lWtdCZRoUoGocUYx344lxfha6MqU2tJv6nhOPE8c6N8oIbjeeVesRDSBCWA8Te90gQlnQkKaiRlbpJ92zsWxjshR9gxOnT0fbDiXInBdd6FzCX59U1bpQ73UIG0fUGVkd4PVmJ3S5Z10kFRk5nyHvnxO30gwJHvTUsRlMq6LNReJu53XYLSqrgS8atEg+eSgdaCe6uFwnoRg8f3SOTK8ThzJ4P4pqJSBCX3FgNbbrNissaJ+XMTlMxO8f/DL0XY/2PfhgSlWCzGS8f/inf3v01FRQVvvPHGJkFpE+959Pb2MjU1RUFBAUtzp3jzF/8dNcnUiNrPTZKUEBzcp+XgCfGb2aiSzYqI2lfnXgrxqBadLsaWLXHc1WvPtdkb4pEILM3CwjRSBIQUQclWCOUN58oprYVoGKKhrHMr2nUl4CLJpYRyj0JJfWYdMKFo15R/880kOPpykNlT6+QVa8i/FTUYKKrVS8u+mRzQfoMVe5k88bPEo8daLGmfSFDi0WMulFvnKKhU6LzJuvFeb9Zz8c+p51aoyQFzIdJyZlNHotIEJRDyVvlU/VHVRGbN6wKQZFQVYpE8zptIVuORTGUjARjeLU9QWuH7XPebSBCLqPhmVPyLcrlj3TYjnsvk5WlLWvSYnRpp35e1GzDKp140XmqmdnCVhOEGcaWwVo+rRn9u/19D3i2F4y+HOPXa2nlXQqtZQVBq2CbOrcY2IChlXyvZf8ISaZSiQG27+LN3ThCUckGjaliYgdlVy8prV1FS6e1WaaxR0UZyE5RMBjGn+IMKew7rWRjTbEhQmhnfzxu/+AtmZma47bbb/tMRlOA/IUkJ4OjRo9xzzz0AjHKCV9Ufb2gf8Ypg0PdYA10P1EldY/bQEoHpsBTxaOL1BQ5+RSwiN9xYgcGVe7Yo6XVgLTdTdUl5TtupPYvs/otjRHxxbJIvZSVtDkxOI4We3C9lvrNhIj5BDJIh+vjOhtnzhRN5VbWJBVTUkPwLfd2VZRQ2F0iRuABqryyjuE0+0oYXo4Tm5F7QicA7f3vi3EpcG6D3iWaabpInTRW126m9Og/S12MNdD1YJ22/+3PHOPXTC7con8/5Cz02tj7jobBV7uE6mqzUX1MmRRgEqNtZSev7aiiol9cOPvB/hjn5I7nqFDqDQjQYY/aoXBZTvaOEkk6ndF92X1RCSadD+n61Oi0JNcHSiJwMW8QHe/7qKPv+JbdUh63amCYcyUiqARQ2WimoldsUT8Wzoy+MsvcLcpUCnE12qnZIkAyAppsrMNhE29/9p9z3CzBzeIngfERK+q/rA9V03FuDqcQAORYsfaWL7C98hQQJdDodx48f57LLLpNq0yY28adGS0sL4XAYg8FAHJWXI19nMbpBZaKoICtZKvR03F1F0425x2xgOop/NszsEYm3AeDgV0fxj0fRO7TUXCFHGq3Y6qK4XS5X2Pcvw2l5OEtp5mVho4ojjlorrma5YL90RrwpNd9cIUVc2P/1Ed7+wnEpAgKAfzxAIppA0cul+noLlHY5cQ+65Owdekq6HVRfJLf5tXjKS8QbQ2+W+3rl9E+nOPaCHBEVBEGp9Y5qai6Wmx/QQ83lxdIkK1erjf6nmjJElhwY/tU071zA6oz5nr/9/mra76+Wtq++tFiesAY031RF18MN0vYLR/3s++cz0vah2QihBcm8XQ8lXQ5qL9+gL2RtYusdeoraHdRcUiJNaoqFVaJ5bOQe+94Ee/7hNOH53AO46cZyLOV6ogGkKrS5Gq1Yiow4JWNPisy05+9OsXDMn7OKUuVAIQXVZqn+YC7WU32JiCFHvjPOXA7JNhCScP7pMDOHJWK/HjrvrqLjAfGOFfFvvCA35znEiCqq0Tz11FO88sorua+xiU28R/Dtb3+b//W//hcAJ+Z+yxsjX93QXg2KTY6WSw20X2HOEHc2wPxwDN9MTErCbelsjFO/Fe+bZZ1GdBIhx1amw1lloLTVvPGX5VoF71iMA9+eIxYCY4HcZpCtUo+11IC9fFUetUYsDy/FBLGpUEfVRevkglltjPrivPu1cYZ/vSjVFoCITyUWlp8bKrbYKWm3SvkSoLLfQVmnVerZAgQXYwQX5TenjnxvBu+o/O5U662lNF0jl4ODIKaU9cqT5xuvddF4rVxeCnDwW9OMv5Xvp/DyyOf8JpeOrvvL1iQSrUVQMhXpKN9ik362pZ02Wm4syU1UyurTZ369xNibcu3XGiC8HJP+sLC8205Zlw2dZOpY3lNAeZcNneRenFavIR6JE5yT7J8x2PfVCY5JVMnS27TUXCwIRz7JzeLCBguO6g0an+V3k1Nsho/v8XPkh/Ogzb05XtxkoqJbbqxUdBrQmSC0kOD4r+TW7BbPRgjMqWlJpo1Q26+j40oTJgeCnLSBi2K6Wd5d+hLReBCbzcaJEyfYtm2bVJs2sYk/NVwuF/Pz8zQ3NxMJLfH7n/7/8C1vtE+goITAoKh0e6LUuXPP/2oElhdhUVJc5cwRCPrEBnqpW5KIUAcl1ckYtAGhIKHTcvptlamT4ryGbC7COkQlAGelgqP83N/XIioFk7zbslbd+nsiWUSl0T1hDv3cv3GFlCyEfEkSi+y3UgqUd5goaZJb01EUUWmnqFHO3j+nEvaqwn0SVaBmTsQY2yefdxnt0HqljaJ6yWRBAVedgklyu9TsBM8VZsySnOP50yrHX/nDV9/MnD+W1/ndvUZqBiQJ3ICrRsFcKN+e+u0Wmi4x5zZMkoaCi3Dq9ZAcaUqNE1xSCSzLv0eUtxkpa5O7X0WBshYjpR55ElQsDLHsvfwcxMepI1EO/tS3UrZtnWNKW3QY7YJsFFmDRLS6epLZAbZiBXvRBjlU1rUMZnHuY6+p+OZyV1FylkNhuSB55oJiUCktFc9p9KSG5XmZAKSwuKRhXqqYqUpXU5S2OpFwaXJs94anfs6xPV8B4H//7//Nd7/7XZmLvOfwn5KkBPCNb3yDf/3XfwUgiI8X1W+x9VPN9DxWD4hqJEPPt1E5JF5qux+uwWjTMXNQzJDbP9VM7xPC1tFoZej5NmqvFIvZHe+vofayUvb96xkABj/TysAzzYCQLxp6vo2G68qAZNWNz7YBQhqofIuT/ifFIr3BpmHo+bZ0FRXP7VUMPd8OBpjZu0QsEKOoNTNTDD3fnq4e1HhTBUPPt6cJT30fa2Lbp1roeqiJ7g/VM/R8G+0P1ABQt7OMoefbsdeJQLnlqSaKO528/r8PsXDMx9Bn2+h6uA4A96VFDD3fnq400/tkI9t3Cbm3xusrKOl00P0h4ZfybYUMPd9O2Van8OGH6hn8jLCNzEfYvquV7btasVUbKe4qYOj5dtyXikWKrofr0n4BsFWa0RrEoC2otzD0fHualNP+/hqGns/Ybnu2BZ1VYc/fn0BrMTD0fDsNN1Zk/P18e9p26zMeBj7ZzKFvnWXP3x9l6Pl2PLcLHzbf7hY+TCZCA59oZuszogrXvn85TaGngLZ7xIZNww3C39byLH8/25L1bNoYeMYjyERXlTL0fHuaBLPlIxkfAgx9to1oKMbJn47j3iH8XdwlnnPvEyttBz/dSs9jDdReWUbl9mKGnm+nfJuIiN2P1jP4mYxftu9qpTf5FbneqsNea6HqcrE52PXgSn9ve66Vvo+KylW2aiND/6WdhlsEIa79/nP93f9xYWtwCX+nErzWO1f5+2kPW5/2ZPmlnZY7qzCVGmi6pTLpbxFW+j+e8XfKtv3eagwOHTqTQuv7atIklb6PNqVlB1M+7PxALQBNN1RQsb2IwibxIHs/vMqHn2mj+xHRZyuGXBS1F7Bwxsvy6QA9jzUw+OmM7fZPt9LzuBifIka00/vhRora7XQ/soa/Pyz87Wiyij57VSkLx3wEZyP0Z1Xi2vapjL9FjGin4Xrh76hPTCqpSXrrMx4GPiHiicGmZej59hUxwuwysv9rJyECA59sPsffq2PE3FEfb/75UfqeOLfPro4RnY/UYXMb6Hio4Rx/rxUjGnZW4morYPuns/3dumGM0Ft0vPnXRzM+TPppdYzofqKe7kea0mNw+65WtjwlbDeKEW9/8SR6k5KuzGYqTcbkVIy4q4qh59uwVRkp7XLS/7HWtL8xCL94kmTM5tsrGXq+DYMLuh+pY+ATzdRfXcHeL55K+6XtbuHvhuvLGXq+LRMjnmrAXGJi4biX0HSIoc+20v6AuJfaK0sYer4tHSMMV/k44H0Vn89HY2Mj0WgUg0GShbaJTbxHoNfrCYfDNDaKcfpm5KcEPaNsf7oBfXIzqeeD1fQ/WZs+pvPuKiK+GGd+M4N7h5Ntn6zHUiY2kroerqb/qbq07banG4j543iHQ1QMFjD4qUYcyUplne+vYuCjGdutn2ig/V4RN9vvqsK9vZDyAZHXdNzvZusnMmSJgU800vkBMTZHfjeNotdS3i/eutvudrPt6UyVx4GPNdL1kIibtioj2z/VTM+Haul6sI6WeyrZ/qyIJRqthoGPNdLzIdEmS7GewV0epg4usu9fhmm+pYLBXZnY3f+RBrY8KeKm3gKDuzzUX1eKpVhPcWcBfU80pCsAbXmynv6PZNo/uMtD880VEIWKwWIGd3nw3CXiXc9jdQx8LDMXDT7nwXOH8EvpliJ0FoXQktic6n6klq2fyNhuf7aZ9ntELCzvd9D/UQ+nX57m0NdG6Xqwhq2fzPhl2zNNdDwgYmFxl53BXR6ctWb2fek0WoPCtmcz97r1aQ9dD4s+4GyyMvjpVsq3FhKYihJaCNNxX03Ws2mm+1HhQ6vbyOCnW9OVqDx3VDL46Vaab6lIPpsmep8QftE79Ax+ujU9RzTdXIHn1ipGX5th4o0Z+j7SyJbk/I1e5FqNN4jz1F1bxuCnW7E4NLiHium4v5b+pzL3Orgrc82ay4uFbbGeRCKB0aGn475M/97+XAstdwofVg65GPx0K/YaEfe7PljH1qebMz58toX2+0Q/LOtzMvjpVlH5Ceh8sBZHFrl36zOedA7karcz+OlWSvtEn22/v5ptz7agd+jRW2DrJ5vp+qDwoaPewuCnW9PvPq13udn+nMgLFKOCo9ZGT3L+tpQJH9Yk80jPrZUMZuVW1ZeW0Ha3eFZ6i4bBT7dSt1P4u/GGCpFbJfts30caicdUzrwyLXz46VaabhI+rL26lMFPt6J3COPeJxrY+kxz+vfBXS14bq9MXjPp7+Q82/1oXXr+Pvb9cQpqrOk5uWJ7IYOfbk0TZ4S/k/0wphUVaJMo6S5gcJeH4o5kjHigim3PZJ557yP1BKZDHPn+BIUeK4O7POkY0X6POz3uAbZ+opHuD9ay/99GmHh7gcFdHtw7svrsc5mxMPCxRrZ8pJ6mm8qxFOvpf6KemiuEv9eLEXoLFLcX0PNIA/XXCX83XF8qbNeJEZ5b3Mwd8zL++gI1V4oYkSI+ro4RFz3fQs9jIt64dxQxuMuDrUosbHU9XLPCdtvTTbTd7Wb4xRlGX5+h9Q43hc3C350fqGbg4/VZfmmg4343jdeX4R4sZPuzjZR0CX+331u5MiZ/tI7O+6so67XjubWU7U83MHfUx9whH613VrLt6Yxt/1N1dD0sxo2lQs+2p+rxz4Y59cspmm8uZfsns2yfrKXng0kingVGa99izztvUVxczE9+8hM+97nPsYlN/GfDc889x2uvvYZGo2ExOMqLxz9P581mWq4S+ZGlCPrusVPiEQuv9f06rC4tU0fDEIOu6020XSnGuNEGffcWUN4h4kP1ViONF1s48UoQ4gl677TSdYuYi3Q6cd7KXnEdd7+ZvvcXCpk1E9Rut9J9e2YVt+/9hVRtFbaVPWb6HyxCZxUb/sHFGEWNyQVxrYa+B4upu1jMf2WdJvofLsbkEu1vvclF933FdNxRguf6QvoeKqXhShGPiz0m+j9Yhr1S2HquL8Tdb2fPlybxjkbpfbCUpmucADjrjfR/qBJng2hT07Uueh8S7+bVgw7cfXZabhax215loP9DlRS3CNuGnS62PCrmpZhPSHz1PFyBpVSHuURH/+OVlCXJA3VXOOl7LFMB2VFjQpskh+ttWvofr6RyQNxrzcUO+h/P2HbeW4qlSM++r04SC0H/45XpyjLu7QX0P16ZJnB03FVK532lnHl5jne/Mk7/I5XpCkwVW2z0P16J0SH80va+EroeEGuVp345T1GzlborhF9KOi30P16JpTTp71uL6f5A5qPJLY9U0PX+Mhy1RlweM/2PV6YrJXluKqLnoYq0be8HK1DVOCd/NY+jzkT/45UUJp9z47UutjySse15sJyWW4pwDzioHnTS/3glxe1iPmm42kXfoxnb7g+U03q7WJc12BSKPJY0san2spX+7n6gPF25SmeBgSfcVO8QPqze4WDgicxHg533ltF5T1n67wNPuFF04v2lcmsBA0+40wSbjrtK6bo/Y9v/uJu6y5yYHDrKem0MPOHG5Ez6+46SFT7s/1AlDVe7MFgUDDYdLTeWYCsXti23FNOb5cMtj1SkSVi1FzupvdRJYZ0Yr803FtH7wSwfPlSB5ybRZwtqjFT0FTB7ws/ySPgcf3c/WC4qaGk1WEp19H+okpbbiiioNlB/hZO+LNuu+8toS/rb6BC2FVtsBGdieKcidLwvQ/juvKc0/XedSfTZym1iro8EVCBBLLnX2nF3KZ33Zj7C7H+8kuodos9WDthwVJs4+qNpYqGVfRag77FK6i53AlDWLfwd8sbY99VJmq4voefBTPv7P1RJwzXCh8VtFgaecNN4vQtTkY6GnUX0PLCyzzZdL3zobBB91tlgomqbg/ItdrY8nHmOPQ+W47lxnRhxVSFml5593xCfznffXyIqugHmUj39j5ZT1pm0vbqAnvtLqL9c9Muuu4tpu0X4QW+D/oeL03G2ZtBK/8MiTzz43Xm0Og0dtws/oIO++x24t4j+UbnFSN/9DowFcSq6zXTfWUjHbZld5b73F1K9XXTo8nYdfXfbMNqgYYeRtp1m6rdbOPorsSu45R47tYNi7JZ4dPTdW4AlGd5bLzXgLNMyfTxCeCZK7/tsNOwQtq46HX332LEnyQr62lPsPvttFhcX2bJlC16vF5NJfjN0E5t4L0BRFI4dO8Z9991HIq6y95XPEZ5/k4GBCAaD2JT2eKJ0dWWIJT0tEULBBFNnweVQ2dYVwmoWtg2eGF39GWZfz0CCeFxDYFmLoyDK4I4o9gKxXlPfFKO3L0Ms7hyC+uR2TG07NHRCcUUCEglqPAm6L8qQYNp3aGjoEX8eOwaKDlzJ8Of2aOi+IrP92zqkpalfzH8GM/Rco6Npm4a2S3VUdWjouSa5ma9o8Vyip3lIl/QN9FxvYH5M5cTrUUqbFHpuMKarHjXvMNB8uSlNVuq+2Ux5qw7FAJUdBjpvsKAk+R2NO4zpXBag6xYblT0ivjkqFLpvt1E9IPKPhh1m2q7NrJV03mKjqk/YFpQrmOwKatJtdYNm2m/IsKE6brJRs01cx1aq0H2rndF3Apz5fZDqARMdN2Vs22+wUTckbM0uhe477NjKFY78wksilqDzloxt6zUWGnYIW4MNum+346rToYbBPxen6fJke+MJPFdZaEwSWxQjdN9qpaRJ+LSsVU/P7VYqkrl58+Vmmi9L+kURtqWt4reSJh0tV1o5uzfI3OkYTZea8VyZ8WH3LZnzuOoVum+1YjBDzRYTTZdaaLk6y983WXB3C/86q4St2SGEIaxFCo0XZxjHHTdYqErOPfZyYWstEs+4dquRjhssoBV9sf16C7Vbha21WKH7Nhv2ctFBqvqMlHgyHxW0XWuhPjn3mJ3QfZsNZ5WwdXcb6brZimIU/a51p4WGi5P+tghbV5KoVdFpyLy/GMBVo6Pp0qS/DSv9Xdqqp/tWKyT7bMNFZlquyPSt7lutlGX5u/tWa7pyUuPFJhLxRJpU1nVzlr9rFbpvsYj950SChiET7deZxbkU6LzRgrtHnMjhTvrbKc5bt91I+zWivVOHIjjKdVQPmDL+vt2OrVQ0uGariY4bk+1NJFCzCHqWItFnC9xJf/eb6Lw1ozLj2WnDNxfj7DshjAXQfYcdV63wS2W3ka7bMrYt11hpvNTM8BtBZo6G6b6jgOJm0f7yTgPdt2ed90oLzVebqeg0oCjQcb1NPGeNJu3vdIy4zIznCjMoUOYx0nmDjfJW0YbiBoXum80oFlE9qXHIQOvlGQJW8w4TcyMx5oZVXG7ouVaPMTkkGwZ0tF2W6Vt9N+noulqHooCjTMQ4azJFqu+Cjh1pUzovhtoOmBuDMwehqVfIvYGIuz3bMqSxrgGVxhaVmlqo8UDfxQmcJaLv1zQl6MmKyV2dETzNUQoKVGorwmzdEsa/mGBpUaG6VqVvW2Ze6OiJ0dIu/q5XVLZ3RvEvJxg9o6G2MMxAf4QU0629LUpbmwh4qhrBO/x13nrzJYqKinj99df55Cc/yX9WSFIv35t4+OGHueWWWygpKSEej/PXf/dXXLvlJgCCcyECMyF8k6Jk2NKwn0QiwYkfJlnQGtCbRTno4EKUwEyI5XHBzlwc9qMYMxO4RqtB0Ym/R31J26QExdLZAIbkwntkPoJ3zE94UXScSCRBYCaEd1RQ3pZG/ZiLDenqTMvDATRaQegxFxkJzIRYHBa2y6MBbBVmUd8RWB4JoDeJUT36xiz1V5ezdEbYescCOOqshJNsy+VhP8YCPUQECQINxJNar75x4ZfQfDhtay4Sg/6dfzpJ10P1LCfP658Wtv5J4ZelM34SscyA888GKai0Un9FBad+MS78PR5K+zD7y1zvWIDQYlQQIfQa4cOkvNbSaT86U4YJ6R0NEA2pROYjWKsMhL1hvGdFmxbPBjA4Mpv73rMB4rGMTF9gLoR3xpf0mR9LsTHlQpZHgmizenxoOYy5xJi8ph+720zUF0k/G4Ml0yb/dAhbuZnyPhfjb83hnAkRWhIBZGk4gMmZCYb+qRBLw35m9y/jaLIm/Z3sh6d9WMsyL2r+iRDeiSCzhxYwFOiovrgc/3RWn1Uz/vaNBwkm7/PA187QcmsV/qS/F0Z8aHQZf/vGAoSXRdCK+BNoNFDc4uAUkywN+9FbM47wnvUTS5ZnjPgiBGZC6TYujvgxFq70d7aaVWAmhEYH/U80M71/nsBMiEhS9m35bACdXrPCdnE4wNTuRdRQHPdgMZGkD5dHVvl7KsRi8pmf+tkkddeWEZzNPBtTVtUJ/2SQ5bOB5J9DBKZDjLwkqjotnfGvKPntHw/inxI+C86FCMyGsJSYKNtSKPydxXT3jgcIJb94D86LcW9yCTLW4ohvRYzwjfqTCzOClJTq37ZqI0sjAQxZJft8o4F0Ah2JxJMxQrQ/oVXFODoj7tU7ElzxIWh2jIiEY6BJYClRiMyvjBEg+mx2jHA2WbFXWKi9oiITI7L9nTxvdozY9y+n8dzlRm/M9Bf/ZGbspmPEXJCtz3gILYbxT4bSMc43HiSYrFgWnAmtiBELx3yYHEZO/nIq3cZQ8kvP0FJsRYxQDFo0Wk1agi0VIwDiQfFs0jFi1I/Bqcc3Gubo90Yp6XAQT8WtiPDhUtI2FSNcnkJs5WYC8yFCc5mXwsBsph96xwLYq8xYq4x0vr+WhTNedFqFI98ezfh7RLR3eTyYjhEnqt5i+JdnUBSFm2666T8to3kTm0jhxIkTPPbYY/zTP/0Tv33nJbyxBUqCYvVk6WwQXXZsnAwxd8xLdDlBLBRDo4DJpRCY0rI0EsCYVTrbOx5KV4SzlhjRaISMx1I8wfJIgKgvay4aC+FN5mwnfjJB43VlLI+m8o8Aajgrlo+G0vNqeC6KbyJILKqy9ZONeCeC6fOAmLdSpJ6wN45vIsjUoWVctVaWRwMoWV95LY0EiAZUNFoN0YA4b0pOSzGt/AZgaSRAPKkrHo2CbyKI92yQwGyUkd9NU1hnS1dIWhr2o836Cs03EWQpGQt940HisTiuOjt6xyxLwyvjvnc8wHIqlk8E8U0E0TsUBm5tZOGMl9BClr/HgiwmY5Z/JiLadFocGw3FiIxmXpq8o0G8E8KHgZkQvokggbkQgckoS8NBNAqiakEizvJZP8GkhFRkMSLmgeTfl0YCWEpNVGwvZOKNBZZH/GlJvYgvjm88iC95neXhIM56K0VtDo7/dIKlYT/R1HwejeIbzzy7pZEAJqeBkVfEZynLI1m5SlT4LRX3fWMBfKUmAksJDn1zhP8/e/8d58hV5vvjb6mkUmip1TnnHKZ7evKMczYeG5wAGyfAxmDCYsDAcu/uH9/fDXv33mX3sruwsMCSMyxgDDY4B5xmxp7c09PTOeduZamqJP3+KEmt7pGqali4u7D9eb144R49derUU6ee89Q5n3o+xe356U2qtA+T99E/GyYwE0YOKYSWZGYOLyM6LRtsvePr+UdgJpwePzEphjXPSck2N0un/ASmg3gn1HaDC1HVNlkZyDum5uKpvCIwFcI/q9pGltV2QwtS0jYE8QTb392g/j0ZTOcqEZ/ql2Dq3WcilN4sPfn1MdpurkIKqf6W/Yrqw+R5vJMhrBnP4+IZbzrnl+UEgZkwvmnV1jcdwlEsro/ZMfV9ZqVf/Tpf9Xco6aMw7sowckhO9ilISXs+Jd0ehn45q8r6Jf3in0n6O6ye1zuuxoiud9Uy8dIS/ulQOlcJpXyY9Ld3LIhULGMtsIEs458K45tOjtnl9TGr9iGcliguaMnDPxMiOBcFGaJr6rMQXFT9vTYR2vj1l8mEYFP/jvpj6ecM1HFnyXj2veMh3HUOSjrzmXltboOtdzKU3lBO3at4LI4cghPfG6Xpqgr8k8l2p8I4S2znxYiaS4sp2+ZRY8TEeowIzIaJR+R0HzJjRGA+QkKJq89Fsj/RZMVh73gIe/KdFiuYLSasLiF5bREC9WEiq6l2w8jB9fzaP62+z0wfWqW020VZV8FGf2d8de+fihBajFK1uxCL3UxgNkooWRnBOxFU40kSvqkwUiBG151VJEwJArNRpg+tEpqX8U2FsDjWjb2TYZRwnGiZn9fmfo3UL1FUVER/fz8lJcYljrewhf9oOHDgAKFQiIqKCrxeL//0L3/P9XvvADxIIfDPyYRX1YfMv6AgiDBzXMIEmM0JLHZV8i2myPjnZILL6rMbXIphz1t/7zELJhBVGTgFU9JWTtrK+GcFVWZNgYVzEZRwRq41KxNcSNoux/DNyun3wbUpCYtopuHiPPKrRHyzEv4FGcwmQisxfDMSSnJu8s1EsDoFYnKClZEIlb15+GaS6zyrCr6ZKFKyip1vOoocjoGiEibMVhMJ1D5FfDF801EiazEwmfHNSOn3wXNPLNN8XUG6v5I/jm86SigZ33xzUXUdy2yCeALfbITStjyqduUz9tKKaptcl/BPRzesY3knIijROA1XFmB1CvimowSS5wnMRzfG/ckoiYRasclih9CyRHBeStpK+Kaj6QpXa1MRzGYTSiTl72j6HTu4LOObjhKLKuk+WJ3rc1FwMUpeiZpDh1fUdlO5gG86guhd75NvOkphk4OSjjxm3vSpPg4k54ipiCpVlbKdjBJciOKbiGIvsuCbjhJeW283c83IOxkhuqawMhLBbF+lZnchkeS6lm8msiHueyciyEElea8WabyyOJ0D+WejiHkb/Z2SGVEkMAkmitvzmHzZR2AuiqMw098RMmsa+KYjeOrVTaHggoRvOpIm2KxNRhAy1rF80xFisTi9d1cye8yr2kaU9H0UM/ztnYrim4ngm4py9hfzVO32EE1W/fNPrY/flK0/uTYy8coaZksB4ZXk+J6MbHif8U1F0nOllBzfc8f86/7OuDjfZATJn1yTDin4pqN4am3I7XF8kxEE0bzBVk7KR8Siqq3FbqJ6r5vAQnTDu5p3KpJ+jhRFHS/BBRl7kYXgvIRvKpqusuOdim6obOGbjhKYS1bEFNS/IyspH0Y2vD/6pqL4Z1RbOSqr60B5EFlS+7thDExG8E+n1vck/LMRCursEFfbycxVfFPrfYh4lWSMUBh9dhU5rCC61tfHfJMRwqvnx4ht7ywj4k1ea8ycvjYpEAOzCTmixqnQSirvlXCXi8y8qd4r73Q0Pc4SEvhmJALJqplmG5gtaqWMqB+8U1J6fdJktuKfUwguyRCPE1yQ8RcIRAMw+LQfT7V1w7qhf1YmsCABZkIrcfyzMk6PmcIaK74FmeBKxtiaVQgsqPcivBbDtxDD6oDt+0VWJiUiPjOTbyT3D+YV/EkZxrBXwT8nIwfjjAnPcPapk5jNZu6//36+/OUvs4Ut/DHje9/7Htdddx33338/h3/7E6LBacqKDwLg9ZoRxfVnaHXVjNdrQpIE7GEJwQQ2S4ygW8TvjSFnFMpZWzERSBa0y3Oqr5k2EQLxBH6vKfnOpLa9tqhWUQKYOqsWNwomKxP5V5MhNpEAk4m1ZTNyMLknIcPaQgIpCt2XmvCtJPAuJtLvtN7FdYmumARr83FW5xK4/XH8SwkES0bcXIgTjydAMBMjztpcjNCaeqxVTGASkqEwBt75WLooUkIwszarylzFJBg9FMZTbl3fD52PIYjr5/HOKgRX4mA2E/bGUCJxCmtEZk5G8c0riP71ALc2LRNYSq0hxfBOy5jMMdquduKdlZAjG23Dq6n5MIZ3WiG4rP6tKHG8M+svqd4ZmXBSvjMWVm2loCofFlxSsNpNaX97Z2MoyZwoJoF3ev3YwLKCu0KgqN7CyriCb1ZO7wHFFPDOKISS8l+h1ThyOE5pq8jCORnfnLKeq8RU2/CKahv2JvDOKCyNxdTfZuUNucrajJLO8SM+9dpiEpx9Noir1ILFlmE7GyOQ9EPUH8M7oyBJEAvDxJthbHkZec3Mus+koGqbygelaAxHvhVPhYB3OoZ3NpbOBeWQem+k5LgMLim4ywRsyZzJO6sQDaTaUX2YkhwOLiuYRWi+2IFgNbE2raQr+sQU1TaS9HdwOabeG2D8UJRoIE4seVtjKR96k5WNVpL3PJmKTZ2Ibtgn9s4ohFaT92Yt6cOkrW9eQbCaCCzG0v0PJnO2sE/1Sypv8y8qiE4L5R0i8+dk9VlYSvowkPR3MiXyzcnIQYGanTaWhqNqH1L3Jjm+U/uNgUWFmJJAsCbXy2ZkwkkOgpIc36k8M7Aop/MwR6EZ34KsytPG1JzZO62kx2xwWUEQ18eHyZxc8zKZiMnJ8b22/v7oda6/P3rnFDxVAqUtIgtjUtI26e9VdczG0rayWk00BmefDlLZY0tL4YX8cdZmYySSTfsWY1gsJgqqBcqaBbzzMTVGWC2EA2rcUmQTmMC/FCMaWO//ylQck5AgFoNoULVNxQXfChtiskVcryIX8qlxN5rcIvAGzMTMYEqu5a8tQTQEi7OwMg/F5eu2fu/GQr5rq2bkcJzqMgWHA1ZXIJyy9bNhv3xt1UTUItBSIyHEYqwum1lcNBMOC/itMWyrGTFtzUQCiMVWOHTon4iEQ1RVVXHy5EmKioxXn/2PCFMi8QcQjfx3QFlZGYuLqixHCVX0mS/WtO97qImEkuD4vyRFWzPfojdBLBKRAhJIqjyRkZK3lQcKabi8nIGfT22UCcvi7uabKnHXODl2AbINYpFI3SUlDP1CRwpDhL0Pd7B02svI48bkrMQikc7bazj+lRFdW6P+SGHHh5rBZOLoF4YM2acq5rz+fwZ0bUUX7PpoF6GlCMe/rN/31lurKenycPJbwwQm9SUk7GUikQXj19p1Tx2CxczJb4wZPuaCIGJIjhCg/uoylEiM6Zf1yx0DXPQXXfgmgpz69riubV6FSPWBMsaemkEK6Ev6iS42lv77PaK4y03jtRUM/HTC0D1N9QeM9WnXR1ux2AVD49FVa6P3vmZWh/yc+eGkrn3rrdWUbStg8LEpFo95de2rLyum9qJSjn1txPC4zKsQCc7p2zbdWElCjjP65LyuLagxY8f7mpg/usrYU9rHuGptlHQU6NplonxPAbUXl3Lkn86dP+Y3lY7c+RG1CsCbn9ePp5n+0H2+k9lGYauTtpurGXx0WlMCLxAPMFL6BguLCzgcDn70ox9x00036fZpC1v4Y8ETTzzBwYPqQo0JE5cIt2C35q7xX9jipPn6Ms78bJrQrPrWmIjlnjNsRda0NJKtyEo0+bKrVTa578F6YtE4J7+1KeZuyvGsTth2byNjzy+wetaYVCZA3eXFLJ72Ec4iwZRJcq27qoSybR6Of3UY2YD+NUD91aXEpDhTL+nP084SqyEZKABnhZVtd9Uz9twiC0f155bynR6ar69g6pUlJl7Q70vH26sobHbx5leSUlYa+TTA3kfaiKxJhqS+rE51kc2oxJ27zknLwUoGH5siOG1QGuwCYXVi6J7aiq1U7S1i6pUVZK/+BXTdXUt+bR6v/bV+fgFqJSGA2dcN1oq3YtiPF4quu2tRAjEGHzUuz2crthJd1u+Qp9FJ1x11TL+2lCah5YTJTO9763GW2Hjtc4P615uIs/eRNuJSgiMGcgaAvvc3ooQVTn1bP69LwVlmJbSg0xkrbLuzlrP/Omk4ZjRcV0ZJu5sjXxrWvdaG68qY/u1C1rZzyb31vLee1aFA9piUsQJT2O6k9YYKhn4zz8oZjXiaPI+zxKL6wwpWq/bzZEoSNrvvriahxDn9A+0xdiL6MsG8JcLhMI2NjZw7d07Tfgtb+GPDxRdfzCuvvAJArauX7pKrNe1bLrNjFkyc/a0aJEzR3MHCYknyCxSw50Mktdgr5T4mv8ZC06VuRl7w48vY6EnEz88FyrfZKayzMfD4plwklT/Fz5c3sNigrCePmSMasSWeAAv0vKOU5aEwM4c1XuozchSLHRqvLObcU8ua8kXEE9gLLETWtIw2ou2txVhsZvp/oiGNnIGeu8sRRDPHvm5gvc4CO99bRWhBYuBRfc2Aih0uavZ5GPj5PIE5/WuwusxpYpIR1F/uweoUGHpixfAxFwQL2vcniUQika7OtNRvbCLd/VA13vEI5wxIgllcUL4tn/lTPhQD60YWO2lSWQrZZN5+F9iLLTRfVcToCyuEFrI4J9u8bkk+45Hzf9qMjptLsBdYOPbNuewGGe88VpeZ7fdUsnwuxOgz+jlpxQ4XtfsLGH5mmZVBfQmXwlY79ZcUcuanC4afQXuBlahX37a8Lw/BYmLmSEBbjjIJix26bitnaSDIzJuB9Vwoy7G2fBOFDQ7mTmQZiznk3vJrLNTtdTPwy9U0kSkFk5gkUCVja/v1bgTRTP9jGu92NpWcaHHE02PW4kJz/Cbs6jEOp0z7lXmMvBrGP5c7HihKhBPST1lYmMfpdPLYY49x1VVX5T7BFrbwR4bBwUG2b99OJBLBanWxd+/HETfoom2EwxGjtTXGuXMCgYT6PFn9ufMoUYwhSQIQQxQhqiSrFoVzH9OSrJg0dDz5D8m5xSSdH/da98DcCPg3T3PJvUmTcv7zXVQNgRWQsoXo1PpdPE5RrUB5q8DgbyViWkvpqWMSCYrqBcwCLI3oSFrF44gOfWnvFAQHdFydx9TRCN4p/fifVyrQdmUeU8cjLJ41sMfbY6Os3caZX/vUvSOd+bzrYB7RQJzhFzOcaDZlPS5VZcaoxJ3ogrqdDqZPhAmvGTvmQiEIxvojiFDcYGFtQs4+XjahutdGaYuVYz81timYXy0gCLA6YdA56qOk4veUc6VQ0ycSjyWYOZnl2TSZsu73Cw6V+JUTyWdDdEHn9W5mTkZYHNRZ2EkkqN/vwFNl4cSjfkNScl0HXSTicObXxvzedImDRAJGXzGQNCYhukyqbJuO3+v32Jg6HlVjRpLVuFnaLRMlDQKlTRbOvBBVr9WaZJVlOU9pA6zMkDUe5ZJ7a+yFwCosZlneiznU3MsUi+NwJWjrgdGzaMq7KS417tuR0rFdfZ5yy9TJySISbRVRBCHBuSFrTluAqanXmZ97jmAwyNVXX81vfvMbTfs/FvzJkJQA7rzzTn74wx8CIGDhSvOtho5rvbWKpdM+zQ1nUKU/eu5rwjscoF+HdJDf6KT95mqOf2s8XeUnDQ2XV19czPThZV3ySe/9jeRVOjj6laELIs4YIYjUX1NG1b4Shn41bYgsASrRKrgQYe6Qwc0SgyjfVUDEK+MdMraJ2HZrDbNHl/GPGdMs/Z0IMwbJQTs+3IzJbOLNfzRGyNrx4WaUYMwQqanmihLqLinj3C+mWDxhQEj8AnEhJKULxd5PdZCIxTn8d4O6tq5aG113NjL61KyhsVh/dRlVe4t54x/PGiJMXQjRK31IspqPEXS+s4bhpxcM2zfdUMHIEzkWg/4N6HlPA2d/MmHMJ6hSMyaTiUN/e1bX9kKfoZ0facGWb+XVz57R9X31ZcVMv6ixaJglKem+p45EPEH/97RjtFgksusDzQTnw5z42phuv7vurmXo0UlD1zpu7edc9DQATU1NHD58+I+e0byFLWRDKBSitLSUUEhdgG0VdtJg7dQ5Cqz5JhqvKGPw5/rxbts9NeSV2XjzS/qEn463V6GEFYZ+tXD+j7nIM1ao6PUw94b2HGN1ws4PthJcjHBqMwlqw2k25nhGSS27P9pMXE7w5hf1SdagSp61XF/GmR9NG7K/ENRdWcLEc4bEsnGWWancXcTw4xnEUw2iktVjNUTa2XgQhgg2zhIrPe9pYvy5Bebe0M9HS7d7aLiyjGNfHzPUp90fbYV4giOfN5bXXQgulKR0ISjfWUDT9RUMPT7L4nH9XKrr7loEq5mT3zCWA+74YDNKSOHkNw3Y/w5kKUNjJrlR5K5zUNzhZuzJLDEgCzxNTgTRxMqAcbKiEVTsLkDMEwwR/QDKdnhouq6csWcWmDuypmlrNKak4Kywsv3djawMBzj7k/NJPpkkJasTCtvyWTim8W6R+YkYKom06x1VnH10htCc9n1qv62SgkYnx74+kSah5kJBsxNPo5PxZ/V9KMsyr/IY0VgYq9XKu971Lr75zW/qHreFLfwx4m/+5m/49Kc/DYDd7OKSqvdisegXSK/qseKbUwjMa78PWlzQe1M+qxPS+uK0kn3Dx14AzZd7OPuM97yN72xEpRSKmqz4JmWUzDAQi523TtZ4RT7FzQ5O/XSZyGqOTacs5PVsBJFNnaOk3UH9ZYWMPrfCypCBRfh4goodLpRwjKUBY2tNRpFfZyOuxAjMGCNhVO11szYWzk5QyQJdf2Q9CEPkoLa3FmN1CJz+kbF5t+2txcSVhCFSU2GzneZrixl5ZpmVc9oX8Lssa18ISelC0Xt3BZjhxLfndMlJFhd03VrB5CtrrA7r36iSDge1FxXQ/6+L55NxchCUjNzLDYc4QNEa5hnPXc1FHpb6g4ZJRJU7XMweNbaAdCH3tem6IiZ+u0IsbGxjsvudZQg2Mye+PadLUsr6DAm5N5zaDxbiKhc5/r15lM3fTWwiKRW32lgejea8RybL+eep3efEKpoYeSlH/pqcEywW6LndTXAxxuCz+slj/X470yeihuLFgjTAmzNPANDY2MihQ4e2Kldu4U8SsViMvr4+Tp06BZjo7r6TsrIe3eMEIUZ1dYKp4QRpfakcqG+JUVyc4PgRU3oz2xzNHhSqk+rc01m+sTHJuRkLBWWwtmmqzmbfe62F4GqC4SMa7Ad5Y9+MkFpMSkyVJ0skGHzOWFIimGNUbrMx9eYFfIBmcN4oarKyMmJsYUKwQ0mTyHx/xiaGxtwuiNmJEgjmLP+Y+g1DhBNBhM5rnUyfiLI6qX9AXomZ2h12Rl4NGdrPaLvSgdliYuApAwsOF5h7XShJ6UKQVyzQeoWDsdfCrE0n/aJxj2r6RESHiZFXjY2t5kvsJGIJY/ZG7uWmD3YNEcOS/hbdUFAtsjBgbK/R7gGLTSCwYJDsZZDg5a4QsLvMLA7J2mM7ibwSM80XO5g6GmFlIkYiS36TQk5/iNkJPBYRuq+0sDIVZ/L0+e+gG0hKAniKwKvxLUlc3Ng3wZKgtQfGzkIklN0/qWOq62JUVCU4ecyEFNGO/Q5nDE+xmdk5bbsUjh/7KisrI1gsFv78z/+c//E//oeh4/4YoD+C/ojwgx/8IP1lWQyFp+M/ZimuswEmQkl7Pg3XlGnbAYGpKN7xACPP6VcA8Y2GOPy5c0grEvmNTppvqtQ9RiwSqbuinO3vbtK1PfG1UQZ/NnlBBKXtDzax8yMdKjFDA+NPL/DGF4cME5QASrcVULW32LB9+2019NzXoGs3/8aaSlASVf/oYfBnU4YJSqCSK0SXGXuZftugkjf2fLjNkO3RLwwbJihdKJb6fayNBggtGEvsKg8U0XlH7R+kLxfa9tJpL4snjY0tR6Eqxxc1uKE5/swCr/6vM4bIONUXF3PgU12U9nl0bUElHgKGCUcAZ340Zcg+r0Idf0YISvmNTnY/3GroeQCV6OeudlJ1oNSQPcDhvxvk2D/rE5S67q5j10c7DfcF4M0vDzHwk0ldgpKrWqT+0nJDcSKvQqTt1moATn9nQpegBOp99I4EGH1W3+fFXW4K6l3UXakfx8fqjzKeOIfZbGb//v0MDw9vEZS28CcLp9NJMBjkyiuvBOBc7E1ejfxK97i6i0soasnDXWfTtR1/cZGlAf/GTfkcJJiBn8ykCUrNB0uxerS/QADoensN9VeV6drKIRj42bQmQWkznGVWdn24jZYbK3Rtj3912DBBCaBqdwEFjXkUtOSuXrWhLyVWdnygEWeZvk9SBCVnib5taEHeSFCC80gMmUiRTVw1ub9AzETZTg8HHumgqMutaxtaknn9s2cNEZQAlIhCIgHOIv3rBFg4ucb8iTVDtgBtt1ZRsk2/378L2m6toqQn35CtfybE8qCPtXPGSO0mLuyrs6NfHDZGUAJ2P9TCjg82G7J1llhVQo5BghKoMrlGCEqp5907EjJEUOq6q4aG6/TfFVOo3FVI+Y5Cw/YLR7288aVRQwSlnR9spevOGsNth+ZkzvzrlC5BCaD97XU0XlOORlG8NBquKcFZpla8O/rP47kJShnxevK3S6wMBXQJSgD1V5RQvk1/jK/I8wyW/5ZoLIzZbObkyZNbBKUt/EnjU5/6FKOjo9hsNiLxAE9PfZ7ViH4lu7I2G7V99pyEoxSUACyNSsyeylhnyLEJEVmD04+qBCW7B6r69Od2ixUaL8mn+epNz7cgnLcoPvq8j7NPaBCUsqD5mgJ67izHYte2Wzob5vh3ZowRlJIo73VT3mN8Xq/a66b5ev33QN9EVCUoWVTCih5mDvkNE5RAJVdY7GyQm9NC9zvL6Lmj3JDt4GPLhglK6zCWZ/hnIyydDRJa1r9Wk8lEYbODhssLLrAvxlDQaL+gtudPB1g4ZWwTzu6yQAKUqLEPypYGwhz92qwhgpKnwcbu+6soasnxQGwi+TlK1TFilKAEMPWK1xBBKTX+jBCU7AUWut9Rht3gmHVXixQ3OSkz8L6QwukfLdD/Y/21oNqL8+m9uxJ7gbG+AJx9fJWzTyzrEpQsLmi8xE3L5fr5jiUPavaoMXby9VBuglJGvFYUWBySmDqus9msKDgLEpQ0iVR06a/tjfA0/SvPYTabufXWWxkZGdkiKG3hTxaCIHDy5En+8i//Ekhw+vT3OXnyu7rHlZZCeXmcPHtCkzwEMDcN87MmzWobKUwPrxOUyutANLAcX9MOjb0mNheBSljPP9+51xVtgtImCCJ0X2ujqku/78MvhA0TlAA81RaKG0VcZcY28AUbtFzhRDQwFaQIShqFsdKIRdhIUAJNgk6KoGTbHNpzHJNXYqb3rXnkV+hfZ0yCU78KGSIoQSq3SGyQe9PC0ojE4rBxUlhFl4jbQL9/F1R0ibjLzJrV9FOQQzEWBiX8K8bH7nnQuKfDv41kJyhlOab1UodKyMuFDIKS4EiS2gwSlAAkP4YISoIICBDxYoigVL3DRlmH8f290laRsg79Nf0UgktxTj8RZEWvMpYAndfYqd+5aZ1WgzylSHDuNUWfoAQ0dEJjT9I/OiitTmB3JogpJgaOmnISlEwZw2BxDhZmTUg6oc6sxKmpTVBZGUOP1RYOr3Bu8IusrIzgdrsZHBz8kyIowZ8YSQngwIEDJBIJCgoKADjGSxyKP5P7AAmOfm2Eo19VN4bKd2kTFvq/qxKD8ipE9j7STmGb/ipC81sqKOvx6JKDpBWJiefnOf5NY5tUy/2qkO2uj7bSmtyg18L88VX8U2FDlWOkFQlE2PXRFuoNELhOfmOYNy/gy3JnpQ17sfHAt//jHfTeW2/ItnxPAQf+S2eaVKKHXR9tp+uddYZs10aDrJzzG7JNwWg/jn5h2LA0XGRBov+7E4akuwBKuz0UNP9hNsoutO2Rx2cNS30tnvBx6G8G8I3qM7hFlzlN9jGCwHyE0GLEEBmvsMPFtrsbaHlblaG293y8jb4PGNuEq9hbyPYHWqi/2tjmV3GrG6vTgtXgpc6/scaJbwzp+1xUSXjlewoAY9WRZt9YITgf0SVi2ctE9n6yg9LefJDQrVoHEJiWmHh5gZPfGtO1bb6xmuLOfENkqb6HmuhKkur6fziJfyx31pCaD5b7/Zz41ghDj+Uuwb8SX+Tp+I8ZGh3C4/Hwv/7X/+LVV1/V7c8WtvCngGeffZYf/OAHAARY46nI9/DKuYkiw08scuK7k/gnomCFos68nLb+iSjDj6ubHx23V9F9VzLfScRzkpUcJVZKuvJpvkafnNn/kynGn1swVEnHO6LORSU9bnZ9uAlrloXzzE3/0IJMYC7M3PE13bZTJKzynR52frBJrTijgfFnFjn+9VHWhoyVVDHZTIhuCwXNBna/UKXttj/QSGFb7nuTid731tP3/saME+Z+xWh5ayU999STV63/Qrtw0ot/JkzUa5wg7Cy3GiJZrJ4NcuTvz+E1kGMATDy3yOSLxipMARS351PabYwIfaEobs+ntMsYSSk0JzH4rzPIIWNfup3+7oThKkruOmM5bgrLQ37DeXT722vZ+aF2baOUFGtbHvseaaWow+B4vbuWPQ+3GLIFcBbacJUbX4A5+s+jnP6Ovg/rriph+wMNgAEyFmqc8E+FmDumT8Rruaki3bbROHH2JxOMPZtdFi4TVieUb/fQeI3GJnYyRhe2Otn1oQasHlX27tyjGvloxnzQ//0Jjn5zSrMfR6JP80bsaebm5ti1axexWIz2dp0xs4Ut/AmgoaGBSCTCzp07gQSvz/2Qo/OPaR5z6vEA536jklXzK1Crq+TAxOsRIj61msq2t7lwV1nUxXGNxfva3S4qttl1yUGKDKO/9TP8fA7irGmjHIY/WV2o821F1B7IksNsImYsnQvhnYxoVwJJzh0pIkbHzSVU7dTJj8wmBn6+yOkfGyfkuMpFnMXGiNAAvXdV0HGTsTWB/DobO+6vxF1lrP2euyppvtYYeXZ1NMzK0IVVi3KWGSNwDD62zJDBykVKCMaeWyOyYoyQVdTspLTLWJ57oShqdVLaabzt+WMB5o8FDUm8BeYUTnxnDv+Ufq5rsZOdLJOjElDUH8M3FWUl25pHWmpR/X97sYXuW8uovVgjv8zYKOx6eykdN+sTUxKJBO5akZ53lVOxw5gPXdUitnxBr/hIGv5piZM/mGP2DZ11Jgtsu7OMojZ181CJoFtFaWkwhH9G2kjEylJFyWKHnjtKKGhQ16SMyCsqARh72c/QC/ofEtTuzKOs3Y4tlwszYnTL5Q4aL1KD8dQbUUIaj1xqPggtxTj9hJ+pN3OPw6C8xpNj/8jg2Eny8vL4/Oc/z09/+lPdvm9hC38K+O///b9z9OhRbDYbS0uneeml/0Y4nLsq4NycwPHjAiG/CUiQn5c7JkTDAtMTySoc9TGa2/Xjh2CFygao1K9zwNRZGD2VMCTJFU6Go7xC6LjEgiXbMrt1fR6KSbA2H2N1WnuTPWER0kQMd5mZtivsujF+ZTLBmd8ECCzFDclyCmawewRcJcZyksJ6C5035hsm2TTsd9B6Zcb6h0ZeXNpqpfM6N47CZL9T/c9yTHApjndaQQoZJ9iIDmMki6gfBp4KE1o2tha0Mh5jWU+OLwNlbSKFNcZJvBeCslaRwlpjea4UhpmTkra8WgamjkkbSUca99KWa8szxzFrUzKrkznWdjZVUKrf5aDrBp3cKHkeuwe23ezGXW5svDZe5KTrLcZzV2eh8WcHYOSlMOeeCehWUSqqF2i+RH3eUwQ+rSpKxGB1RmElJd2Yeje0nt+3skZo2aO2FTJYa2XsDIyezFLtLJVHpe6rkKC6AaoaN7ewDlNC/Z/DlWBbn5KW8JwcF8gd4GJ4XOq1DQ/AqdNatjAy8jSvvfpZpqenuPjii/H5fDQ2anTqjxR/mCjyHwCrq6s88MADfO1rX8PHCs/Ef8JFvAWH+fyHM1WNSCwSabq+ioqdRRz/yqhm+45SG2aD3jv6xRGVqCIlNRr9uQPf9Mvq20Nhh4u2t9Uw+PMp3Q19s8WExao/Wc8dWk3LsdVfXcb4Swu6hCXBZsFpYOM/RZapvqyYwnqXrkzY0S9kqUupgaUBH/4ZYwvsq8MhlEtiCDZjHLyFE2usDBrbMDn3swuTVdn9cCsWh4XX/vqMIfu8ChFZMlatp/bKUqx2wVD1nRNf1R7P/xZcSNvuBgc1e4sZfnzGULWjwg4XqwPGvkBreVsNBY0ujnxxyJD/vENBjg8ZIwSujgRYHfQx8az+V6oAUZ+MHDC2mLbSv0ppl0d9Hg1g9Ml5Rp/UJ3kVtrmov7KcY/88TGBa3x+uchuC1YzFoZ/s1F5ZyvzhRVYHAobuj8WqrgULdv22d3yomZgU58RXR5l6XnszOCW9d+JfRslvdBq674LVjCVPvx+uGhvN11dR0unh9HcmCEzl/pJgsW2Ikekh8IPD4WBqagrRyOcsW9jCnxDuuOMO3vrWt1JZWYnP5+NQ7HHK4/X02i7Jah+aV1/aOm+rwlPr4Oi8vvyPYDcjiJvynRRRKYMUE16SOf2DSQLJxX6rx4y8lmPOkWHuiPo2s+2+WhLxBKe/o70xbrGZMQkmzIJ+7nXq22rlJasTirsKdCulWBwWBJsZp8dKaEnbH6EFGazQc3cdI0/NEdSI9cFpidc/e063vynMHl4mr9zO6qgxGayIV0awbPKHyZyVSDb+4hIkIDht4AstGU59y7j0bF61jd77Glk47mX48dzE0kx4Gp2GiEpWj5WGy0uYfn0pPX618OofQLrtd2m7/poyoquyoQpTtuRmanTZWAXL7jtrCa9IHDeYC44+YYykDjD69Dz5tRokqE1EODkUwz9hbLxOvbaMrcD4xvERg+8tXXdUs3jGz+IJn+7zC2AvELEayLuwQtXuQmZeXaX/h8beRcyiGbPG+2GKUFnQ4qTlYCUDP50iMBVl/k2N1R0rWEWVLHX6h+sxdgM2P/NmEyaLCUehRZeI1XNXLc4SkdeHkvKekez2ITnEQuMpVofU8fRf/st/+ZP7kmwLWzCCN954gy984Qt85CMfYT48xFPjn+fS6vdgz1KORwmjyglZoOUKN8FFhbO/8adlgbLB5jIhbA6VqYXbTeSLc88EcBSb1ao9FpDj5JQvWhlRY4ej2ELbNfmMvODDP6dsrO1v2riZY7aaEKz66zvecQnvuNp+SZeDpcFw9n5k5ChWpxkxXz8WR/1q34pa7RQ0Ohl5UluybPCxC5MRW+oPENlcHScHQgtR5FDM0KYdwNxRP4F5Y1/Gzxy+sI/yOm8rxVFk5c2vGlsrsbrU+ygbWA8qbnNgyxeYOaK/5jDy1AojT5EmBv0uEnA5235yhRH0JepAJRGV97qYOXq+DGI2uCoshggtABU7PVRsd3Hqh/Pr5C2NMRBZVhh8PMs4zFKVILKsMHcqwNyJHISZTcdEvDHisrHqT76ZKMvDIWZP+A1V7Fw8FWTxlH5OZy+xUH9RAWcfXyLq1d9UteVZEGwCltRasYbvStodrI2HCS8qhiQBTZbk2ryYI05lVFFquz4fTDD4ax9Lg9rPZUpqbvSlIHP9YaKbx1SWcW6xm7S+F1GhKFhc0HplIasTEiMvBIlopICL9jcYWj1OHIXy8nLGxsaw23VYqVvYwp8Y+vr6CAaD7N+/nyNHjvDaa5+lvv5KmpquzWovSQICcWqaobwaTh5WkMKmrBWMUrBY1f/pISbDwBGIJJcxBCvENV611pJbR/XdIFhg5Lj6d8IqZK30ZBbAbDmvAFxWTBxV5yNBAHeFmbXp7HNDwiJgUmKYrSYsdrWyk94H0lLEDMRp2Gdn/myE8Bo5K+tIYTj1C+NSYqtTCnklEqFFY6ScSCBOTNm8HpnIWuFlZURGEE2EfVn6muWY8cPGqxcJInS9JY/5QYnZ08bWbRwFqL4z0HZpi5WVCdnQx+snfv77l25L3d8TPzOejxY3WYhFE+tSbxpIVRiKhTl/Ds1yb1oudRINJBh6MbzRLscxi0M5crrY+c/F7KmINjEo4zwms5loIEZo1dh4nT8TxV5gvMrVueeMMbyq+2wEFhW80zEkSf/dTMwzY3Ws+ycnQUmAwkqB1akY0yeV8z5cyXqIxYRZI16mqig5XNC0HUZOQNi/SeotSx4lCAliMRMDRxPpGJsJU5bHWhDUynaSxtakWYnT2JGgsBiOvxYnFjMjSdn9EYtJzM3+gInxs5jNZr70pS/x4IMP5m78jxymxO/zze0/ICYmJmhsbCQeVwNBJQ10m/fktK+/qpTZY16kFSm9Aa4H0QXtt9Vz0sAmyt5PtpNQ4hz+v4OadsVdbppvrKb/eyOGCAYplO8qYP6NNU0bV62N3vua8U0EdclEGyCiS2rqe6gZW76V1/+Psc2T+mvKKGh0cfwrxiVOjPTjD4nyXQVU7inm2Jf0Nywq9hZicQq6ZAsARLjoU134p0OGKirt+XgbZqvZsK8vBBf9RdeFjw8DaL21mrJtBbzxz+f0pQpT/pgMGaqm46oWqdxbaohI1nRjJfZCK/3fmTDY8z8QLmAsl+8qoGp/CUe/MmTomM531lDQ4uboV4cN+dpoP8QikV0fbCG0ENF9bvMbnUhB5YJkKfs+0EwsGtN9BuqvLqNqfwkjv5lh/g1tunTVgSJsbqshcldm3G96Szkjz87n9I0Ul3iJX5Aggcfj4fLLL+fRRx/VPccWtvCnjvvvv5+vf/3rAJgRuEy4Bas1+yKm1Z6gfFcRUy+pC/9WjxnZq7PgnYhTd2UJoaUoSyeTL645VmIrduZTf1Up488uMKcTK7rvriERh/7va5OUMuEss4KZDVJHiSyLJr3vrcdZauONzw/qVilJwwrorDk4y6z0vruR+ZNrjP7aANnVCtvf3cD48wuGq6sY6UdO5Kh2daHoeEc1gbkIUy/pbxI03VDB3OFlQySR7rvryK91GiL9uOuc9NxTz9Qri0wYyesuAF1315Jfm8drfwBi095H2pACCsf+WT/X7r6nDneN03A/qg4UIflllk7pLyD13t/A1CtLrBgkn+tCd/clCy5wLPe8p47FUz5dcmGq7b1/1kJgLkL/93RiyAX2o/vuGtw1To5+ZVSXzFnS7WbptP79SJGUXDU22m+pZvAXM/gntGtS7/pwE4l4gje/pPF+kHzmO95RxcDPZ9Tr1LlXVo8V2SvjKLFS0Ohk9rA358bhGekwU3H1Pbq9vZ0nn3ySujpjFXG3sIU/VQQCAerr61lZUXOppvy9tBVdnN1YkilpE/HPSEQDqoSQEtX5+k6WwQKNF+Ux+mKSOKCxaNx9iweTCU7+qzY51llqoeVKN+ee8RNOSXpl0zvYtGTpqRfTRCQg62aV1QXb31XB2niEoSfXsncgW45iISe5KnWulhuKcFXYOPbtWW3bJEo6HBS3OTn7iwsgLen14w+M/DobVTvcDDyqn+94GuxY88wsnTaWV+76QDXeiYihikpdby9FdFs49nVjxPNM6C11736oGu94xBAB5UJQudNN7f4CTv1kjvCi/k3c/VC1Ok4N9MPmsVDS5WT61SSRSINkU96bh7PEyuizaxt/yCWbokd4MyC3shmJROK8saxVXcpdZaV6v4czjy4aGv/V+/Op6HVz+kfz+iSlbM9Ujmu22GH7PVUE56MMZCMbZlRSsheqleYiazrnz9jpb7k6H5MZzj2lXUGpuNVGw8Vuxl4JpKWJzkNynBfUW3B4rMyeCINVm+FgsSjpanPl3Tbmz0bJtcunKAovzvwLUjyE2+3mtttu4xvf+IZm+1vYwn8GfOUrX+Ghhx4iHo9jtxeyZ89HsFiySzwJIYnSSlicVasqCSIoCa3cK4Y5mqC4Qq1A6dWZHtyF0NILE6dirOh8x17bARYRRk+s/5ueHJ1FVIkdG0iS8vlBun6HhYIqgVNPRc+vUpI6l7LpXAJ6SkcItjhd1+SxOCwx15+MhVpzkgBN+x0sDEYNyVwZ7UdO6FVNzDW/bjquqseKFEywNKI/AZa2WpLVl/S7V71dpLTJyrFfBHWvUXRA90EXUyciLJ7T6ccFUgqqe22Utlg59lOd9aBs91YnR+l6ixM5kuDc85uINlnuTU2fSElj0h9KlnNtOqagWiCmgH8+6bxs1508pmGfjaURhcBm4lsWgpIh/C60jQscy/X7HfjnFFbGjb14dB3MI7QSZ+y1sHYVpRz9yEVSqum1UNJgof+ZCFI2WbWMSkquYggYSN9TJCXRAS19MHYaQpmpVxb/tu0Fs1Wg/wjkkqhWSUoJaltgZhRiMRMxG2hVRLKaFWKSGUGM4/HAyqKZmCP7PDA3d5wz/T8CEnR2dvLss89SUVGhf8F/xPiTk3vbjLq6OmKxGHv37gVgljGeif8rUjz7bDn+7GKaoLTrA81su1d/0bP2ikrcNU5KDOjTL51aY3lAv5Trcr+fQ38zQGBawl4m0nCtviZ87ZWlNN9QRe2V2vImgckoY8/OXxABpfueevZ/ohPRpT1kjn1pmNc/Z3yDJb/Gib1Q1JXCS2HfpzvY8T5jMlpVB4rZ9VFjUg41V5Sw79MdutcH4Kp04CgScVXrd3ru0KoxghKApEryjT5jbAHm+FeGDBOUirvc7Pt0ByU9xqRBLgQ7/6yF3vuNlZk797NpDn/BAEEJQIKZQ8tMvLKob4sqD2a00lV+nRNXpTGJku3vb2LHh4yNuZa3VbH9QQO1VlHvyYFPduk+rykUNrmwua2G9KYBzvxoilc/e0bX1z3vaWD/JzoQDVaAlFYkRp+aNSRL2XVHHT33NOjaiUUijdepMe7YPxuTPZw9tEhoMcL8Sf16jjUHSijtLdC1y6sQ2fVQM13vUuXgRn6dm6C00j7GycIXSZDAbDZz5MiRLYLSFraQxNe+9jWGhoawWCzEifF87F85Ix3JaiuHSBOUOm6vYucDjVg9+nNxWa+H2osyJAZS8m+bNpyWB3wEZqPMndTftD/93ak0Qan2smJDkmGd76w9TzLWlOUF+swPxxl6YtYwQcnqsbLvo6203VKpaRdakHntc4PGCEqA1WnF7rFS2GIs6NdeVsz+j7fhrtPQVM9Az3111F1evP4PGuSE7e9rpOvuWkPtumvyKGgw1ueRJ+YMEZQApl5dYuIlY3mGfyLE4S8MGSYodd9TR29Sbuv3iZKefPZ8rBVXjbF7cuhvBzn9bWOVjsafX2TmdeObdTOvrhgiKLlqHDhL7DiK9SXTbMVW9ny8jbKdGlJ5GeNqxwcaVTlZA9j+ngZ2/5mxnM7qBHuhqF3NKRMyHPrHIV2CktVjZd/DrbS+TfvZzsTpH00x8uS8LkGp7soSWt9aSdkOfZnB2suKsXosBKaivPH5EV2CEsDSQID5bBUWNsXfkh43BQ15VO8tPt92EzrvqGLnA3VYnWoVvNnD2fM6WY4w2fAG0wm1ItxNN93EwMDAFkFpC1sAXC4Xy8vLPPTQQwCM+A7xzMSXiOTQPFsaTBKULNBzSyFNl9hA0V6YLmuzUdRgo6A+uZi6uSR+BhYHIqyM6n8RHlpUOPGjVcLLChY7VPTkmNdSX9KaTBQ12Wi9tpCK3ozYnCXvkgMw8uxaboJSFtRd4mHnvZVkKUS14VxDT6wYJigBuCpsOIpEXSm8FHrvqaDzZoNrBM12ut9hTCKuqNXO9ndXpisZacHuseAsE3GU6peP945FDBOUAGYOeZk+YkyTYfCXi4YJSo5SC733VlDQpDraZDIZklszgo5bSmm9UX9OM5lMzB0NcPSbU4YISgATL68xd9yYP6JexRBBCSC/2k5+zaZBl2NTt+WGIjpv0ZBuyziuYoeLtrfq+yKRSJBXZmH3A9WU97k2/HvOPtc6cBRYs8sLZcH0az7e+Nq0LkGp/vICdtxXicVgSqdEYPjZFQayEcc2Sb21Hyyk7S36UoqZMW7oGZ8uQQlgZVLBPyfjm9iU/2WJv9V9eZR16ultKlgsCj23F9J4qSqvO386mrvqneMER8PfQ4qHcDgcnDhxYougtIUtJPHggw+ysrJCbW0tkcgqL7/8P5mYeDmHtSlJUILqJujdCzaTokEOUuNMRT1UGdhi8PtgbRHW1vSrpkwOrBOUiqqNSYY17RZo2bMpH8givTR+QmHkcG6C0mYIAnRf56RmuzaxMhY1c/Lx4DpBCdQ5MPW/ze0CjkKBvBJjVWQK6gR6b3bjKDJmX7fXQWlbRp815rXGix3U782xBrLpuPwKK+5SY31YPGeMoASwPCox8WbEEHFFCsOJxwL6BKUkanbaaL7E2LqULuKJdL7hLBbofEsejiJj1IX+X4cYecVYJaCFIYnpE5HsBKUsWJuOaROUkv8uOsFdZsHh2TQmsxCUBFEl+3iqNe53xrmaL3eQr2Wbgab9Djr1JOTSHVFl3pzFxisu9f8mqEtQEkTovt5Jda9xlZGpkzFGDkV1CUoFFdC610KBAc5OUaVKspTC0P9qBkFJQ8Z8eUFgcRo2E5RS0m6pKkp5+VBarZ5DRXYfmpU49XUKvbtBEOPEJDMri9l9F4tJzM99n7MDPwYSPPLII/T39//JE5TgT1jubTNef/11nn32Wa6++moSxHmRR6mI17PNvDervbQi4Z8KMvFb/Y2I4V/OMn90OV3xqGJvYVpWbTNGfr1eyWPnR1oITEcY/Jn2YnbHbbU4im3MvLqoKZE1+dwiNreVyef0N1tmXlVftqoOFFOxu5A3/3FI037pjBeLQzAk0YWkynS13ljNiW+PapIkjJARMuGfCRGc1V9EB7AXWLE6LeRViGk5ulwIzkRIxMFeakcKaM/yw7+cZfiXxr/kari2nMI2N0e/oO3jVNtGYeheJCGHY8SVuC65+3dBXEkQk4z3xUh1shTGnjImC9J0sJL8Oqeh6lYAx75oXG4woSQMfzTmLLVhyzcmH+KfixJZizJ/2Nhm4MCPjVX22P5gE7FITCUhGnD1Yr8Xk8WkW8az4dpyClpcHPvicM74thnjLywQWtRfoO66oxZHoY3pV+Y1++GqFum6s5Gzj07hHQ5pynKKLhP5jS6WTvo59o0xpIC+M4JzEoGpEJOv5o6h4XiAV/g1iTMJ3G43Bw4c4JVXXtFtewtb+M+G5uZmZFnmiiuu4IUXXmAqfpaZyJBmVaXpw8sk4kX6lZSA418ZTr+oFHW68I8HshKA5JBKPgIobHXSdG0Fp34wqbnZb/VYqNpXRH6tI31sLgz/eg4hV1n/Tf1IVX3a/kADC6e8zL6eO5bKXpngQoQlI3K0yUvpuqsGYglNOSjZK/P63xqXfZs77qOw2UVkydgLv63ASl540yJMDtm3uBInbjB/0KtAugFW6L23geWz/rSMci54R0J4R4xvrOnJVWUiLsezEtZ+H0goCeSw8RILcshYIhOYChOYMnavtz/YyOIpLzOv6sufBKbCvGaQWG/3WEnEEwRmcvQjg6CUVy0iuixYDci4Aqyc9WMvMLZQIofg8P/Vz92dFVa63lHHwM+mCUzpv6PIXpnQYpTFfp0NSSv0vbeRqZeXWDrtZ+Go/gbmxHNLmC0mXVt7iUjVviLc1Q7dynEtN1VgLxI59a0Jxp/Vfi8u68tn4ZiPpZN+QvMRVZJSB7NH1lAiMU0C52npdWbiQzAAjY2N/PCHP2TPntyVkbewhf+s+OIXv8gjjzzC9u3bCYVCPD/1RRrz99BelF16V1FgZTTKclJ+DUXJKf+20B/FNx1NywEVNllZzVHZY2Fg/f2v44Z8QisKE69rz7UNF7vx1Igsj4aRNQgHKyNR7IUB5k7oz90rw2pMLmi0UdXnov+x5Y2b8Zvyk9WxMHaPxZBEF4pKimm5rphzTyyvS29lwdjza8CagUZVrI2HifqNzfGC3YzoFrAXW4gsax8TWlZIxBLY8s26UmsLJ4MsnDQmoQpQ0u2ktCOPM/+qvxY5e9R4RcUcPLusiEuQiJ2f75hMpn+z9Fs8Ficm525jMxlKMZ5aGvZzWU8eRU0OBn61BHH9/PK8ClEai1oxKYHZkuP3Tcc5S0TsOpK5KX9HfQqBeYnlIWP3fOo1L1Ov6ec7zdcXYTKZGPp18pnWccfaWBibW9h4X7Lk6CWdDkra8hh4dIm1EWODb+y3Xn3ZO7NA46X55FeLLJ0La45rqws63lLI2Ct+AgsJzj2d23cWKzjLLfimFM7+xqu9AZ0koioRWB2TWDibuxOKEuHFmW8gxcPk5eXxlre8hSeeeEL7Grewhf+E8Hg8TExM8Bd/8Rf81V/9FcPDv2J6+hV27foIopiduLE0q+7tS5Iag0yyQiIL4Qfg9JF1XmRePkSC2QtOEoPRfvU/nW6o7zYxcjyBpPFaLwhQ127CW5xg9ER2ybcUJk7EyHE55/XDn/x2rmmPlbXZOCtTG9tNSb6Bei3+BQXvnIE1oWQz1b02BBEmjmTsNZhNG+aqWAxO/9J4ruGfi+GfV5BCxsrPOArMJOICG0oj55B9i0k6e0oZxw08dQHJA2rVHv+iwvKIdr8jPoj4jJfWMUoyA0goaOZHhrHJSSaT2u6F7Dca7bfkT7BoMM9uOmBnbUZmZTymW9VICsHJxzbldDkqKFnsEFMSRAM57kvGuUQH2PNTUrX693F1SsbhMei3GJz5tX4eKjqg8RInE0fChFf173dMgsBiDO/s+c//ZjQfEFkcU/DNJfAZ2AZem4OpM0pawjIXzA4LdR3gXYLRk5mdOL//5Y3gKoDho6QJpbmQX5jAtwpBn4lTryeQIrntzYoCmFlMbvdrjdHZ2TcZOPOvQIKmpiYeffRRtm3bptmXPyX8yVdSysRVV11FIpGgp6cHgDnGeSb+k5xVlU59ewLfaAjRBfv/vIPOd9TkbDtFUOq6u5amayrIb9T5RMNmQhDNWBz6t+DYl4YZemxKJaXorKsP/ULVga+/pozdD7fq2udXO7A6LLoVhObfWEtLO1UeKNJt12w2YbaYyCvR/2IaVCmrPR9v0223/zsTjD9jrFrAyBNzvPbXA7oEJYDVwQCHPjuAb9R4QuCqtSEW6W902AusiHkWQ9WixCKRvg82U9qn/wW0q1pk36c7qLlC44unJHyjIQ7/3SCLufTl/w049sVhTn/HWFWuPZ9oo/MOY1UTtr+/yVAFMQBnsWiYHHSh1aROfG3UsBzhiX8Z5dDfnjVkK61IHP2nYV2yWdedtfQ+YKxSFYBgMyM49DfrKg8UAWq1rxNf1a+wkFdux+a26o7jhmvL1dgDzL66gncod7KTqt507F+GGfz5pC5RKhFDjStl+p+hbn+whdYbq4EkMS5HGLCXiRz4TActb1Wpzye/NY5/LPuCjW/bBKc8r6SrJz322GNbBKUtbEEHzz//PEePHt1QVem09FpWW/9ElLM/U7P35oOl7Hm4KXtVJZMZOQSyV32xbD1YSffdGXEyR1Ule5ENk9VEXOe9TvYqDP58mtM/UjfvtSoqrQ2FWO5Xg9eODzRSua8w2cXsLypWJ4huCy4DcezUtydZ6Q+AFUOVYix2wVD8T6HnvjqaD2rPs7JX5sTXxw1XgDryD8Oc+fHM+T9kqah08hvjDPzYWAXEFArb8/SNZLB5RMM5aN0VJXTfbawaS9vtVez4oLFKPGd+OMUpA1LQF4qlkz6OfH6I6LI+AaTm0mJ2P9yK1aOfI5Xt9NDz3gasTv2NL6vHii3fimgg93KWWHGWGMvRQCWOHfn7c4Sy5e+bxlFwWuL1vz3HzKvGyNOTLy5z7hfaHwRYnbDrQ00UthkYa6hxxWw16RPSrKSr7p785oSu3KLVaUV0CbiqdGKFFXY81EjF7gIAxp7S2CBO3oboiszgL2YMSVtaHGasDuH8Z3hTnC1ocdJ0XXk6pqQJSlme/babK9jzcCNYYW04xLlHs69GReQQU41vMptQPy648sorGRkZ2SIobWELGmhpaSEYDHLvvfcCMOo7zNMT/0QkB/Nm/JUQgTkFLLD9jgLq94rnV1VKSgelCEo1e500XerGVaFdVclkNqtrXnb9Na+hZ/yce9qLHED9lDLX55QmEzNvhsBkoqTNTvftxaqtRgx2FlsR3YJuJSP/lMTgr1RiR2GTPXcfkucymUAQzYguY7mXu0Zk251luv2YeMnL/DFjxJWl0yGOfm1Wl6AEEFlROPGdOQIzxknO9gILNo/+t61inoAt32KoUo3FDu1vK6awWT8Xtjih994Kynv15+SoV+Hk9+azkkv+rVWVBh9bZuTJ7KTsze12v7OMhisLDLXbckMxFTuMfe3uKLJiK7QaIii5azYt2uh8dTf6zCqDj2UhImc5buSpFU58W2dnKAklAgM/XzyP+LeZNFZzkYe2m/SrM6Vgsa3HFa37WtisPsfe8SiDv9T/OFBdV7TkfkaTbIGSDocaewDvuIRf45myJF9Hzj3nY/DJNV3iXQIwW03nE8GyxNm2t3hovlx9R1QiqizUeVJvyepJfXcWULNHZRmMvRwktJT9hdibf5I3gj9Aioex2+28+OKLWwSlLWxBB//zf/5PZmdnqa6uTlZV+u9MTLyQ1TYaNjExpMatspoE2w+AmKWqUtxmgdj6pnZzjypXpAfRJWCxogYTDcRiMHgkwehp9W9BI5WJBMCXfMVs3SdQVJ38IQe5CgFsbhMOA9svE29I6So17gqNTpjVmG+xkz2vzFFZqXaPg8oe7XWhmASjL4eJGSRGn30yyOSRLMZZyA8Tb0SZelPn4+1NxzmLjeUrDo+A3WAOWlQvUL/H2PpYZbeVtquMVUeaPhFl7PULYJRvRkb1pEwEl2IMPhPS3ScCVY6t8zqnISJdXrGZxv12BCOuEMDuMWN1mHQJSoKN8xVKNCTeoj44+2Qo/W61AZvOJYXh9GMasq+bsDquMHNCZ8wJ0Hq1E1e5sfo1gsOMIJrWiXi5qigJ68/x+OHo+bJ3mTCZEGwmbC4TDrfGu2IyzmTGnsUx/T7HYnDuaAZBSaN6ksWiVlyK2zY+T5urJ9mdCVp61Yp4QJqgFNt0nFmJU1Ol0LsPBCFOJGxmcsRMNirOevUklaD04IMPMjw8/J+KoAT/yUhKKZw4cYJXXnlF/aKGBC/yKIfjz+W0lySI+iVWRvS/Zu//7iQzh5fTZBd3Q463GwkO/90g/d+bAKDzjlrcDbmjaYpcsvtDrex9pF23H44CEbOoP1EN/GSK1//PAFIgrsqX6RAQ7GUijVdV0HuvNmliud/Pa/97gOV+vyFyjsUuINgE3FXGJsE9n2hj50eMSbmV9ubT+c7cBLNM1FxRYohEI7qg975mOm6r1rUd+LHqYyNVbaSAhKNQxFOnvwgTmJayfimWC6ILQ3J2F4q8CuOl+9SqS8b67CgUySs3VhP91LfHDUnf2ctE2t5WQ/c99bq2+Y1Oeh9oNCSDVtjmousuYxucpX0eDvzXTsr3FBiyt+ZbEV0GkobkbXjz80Mc/7I2qSqvIvkcG5Dp87SoY/H0d8YNjWPRZcUsCrp+azpYya6PdlHY5gJJjRm50HVPHfYytSLaa/97QLNqg6tGzTSHfjXL4C/0N78jCxJRv4x/NvcnJivxRZ6O/5hDJ14nkUhw2WWXEYvFuPzyy3Xb38IWtgB9fX3Issx1110HwEx8mKcj38Mr5yYWBOYiRNZkQ1WVzj0+y9ATKjHGWbF5QXd9E332kJcjfz+M7JVxVlhpvTm33NLquRDIavWlnR9qpeqAdhl/q8eCIJqxOrVzLzkEhz83xLnHVKKEERm1bXfW0nxDhS7R5MTXxjn5jYlkh3SbRXRZsOl8CZ1CxS4P+z/VRkGLMZ2E9rdXkbdZFjcLWcHqNNF9Tx3Ocv1+dN1VS8ettYZINIf/7yCDj2YhS2WBq8qB0wBpDCAhJfS/ls7AhZBzjMLqsRq6v5Ac+rGEoQpQ+VVOnCU2Q1WXZK/Mob8dZOw3+p86Nb+1mt4Hmg31ue22Kip25XjWNo2ftlsq8TQZG487Hmpkx0PGCN/2EgeCXUCwGsuZV/oDHPq7IfwT2hWoeu6qo+Vgpa6MpNWpjhvZK3Po74a0SUeoe1EWm4DdwIcTez7UzPb3NQCwejb3Bri7zp4mGw38eIaj/5xBZt9EAM2rUs+7NhRi8uUVhh/XHxPeySBhHem6N6PP8lLsZ5w5c4aGhgZOnjzJs88+q9v2FrawBRXf+ta3GB0dxeVyocSjPD/1FY4taG80h1dj+OeSz6ai5JSAmzoUYvJwUCU3AfbCjHi5aQH49KNrjLyg7jDU7nPi1JAP802r7XUeLKT3HfofYokeAcGmH6tnjgQ49q0FlADY8s0bCQhZchOLHZquLqLteg3ShNlEaEHh2Ndn8U3oVw4GMFvUPFHMN7Yh0P2OMsNSbq4qC/WX63/oBlDc5qDhigJ9Q0uScGOg3ZlDfo59fdZQBSElAnllInnl+jtESkitjmS4EJIFTaLU70pWsmchauVqK64kiBusKpBXKpJXZmw9bfwlL8e/pU8Ostih/WAJzdcVJTuUuy/2AgutB4vXn4lM203H2YstuuSrRCJBIpHAXS2y6/3VFLfnfs/JJCrZ3IIxsl/yNpz9xRIDP1/UvJcWJzRdU0Rrtud40ya2s0xteOK3Xo5/e06XSCQ6TAg2sy7hsLTLwfa7ynFXWUBBk8xUf7ELewEoATj+/RWWBpMLb1k21ewF6v+PvhJg+IUcH6JmxHAlAuG1GCENMmNQXuOp8S/w6omnkWWZm2++mXA4zM6dO7Uvcgtb2AIAFRUVTE1N8d/+23/DZDIxPPwbfvvbvyIczr1+HQ5C0A9y8nE3ybkl4IZOwETym2gtMsbaEpx6KYEUUTfdq1tz24Z8QAwcbth2tYVine0wQQCLaEqTL3MiBmeelZjuV6/F7t74c7ZqKjV9Ik37bNpEE7OZ8UNRRn6bfO/ONW1kEJZsLhNinrH3ene5QM+tbvIMSq5V9tpwFGz+kCcjXifnGkGA2t02bJv8kO246l6RtsucCAa2R888GWL6hLHyQQ6Pcfm7mJK4oOpIhqpsbUYOclIKgqhNnDuvuTialcNSc6mzwISrTCCmxddP3cMY9D8RZP6M/lpadY+Nzmvy1vusQVCq7LFRUJPj4jbN9xXdNsP3relSB21XG1sfE50gOgXMRl5JBAivxOn/VZDwSlxT5q22z0bTfnvW8Zt+7k0msJgQHSpBsP9piflz+hWiLKJJJYzpoOMSC6371HMFV3PLk4tOqEx+fzp9Ds6+DqnSnJnEJACbIwEkiIRMjJ2F6RzbrmYlnqyepMpwBgPata9GR5/jxRf+f/T3n6SpqYmRkRG+/OUv617jnyJMiX9r3ds/clx88cUbKmH0chFlZm3iyb5PteOfCdH/3UlNu8531FDY6ubU98ezV+hJul4sEtn1UAvBuTAnvqZd0aTh2nLsHisDPzEm/QRq5ZioX8Y/pr14vv8zHcSicV1JjdorS5l8edEQ6QZg36c7iKxJusSJC0HXPXXIwRjnfqZPQuj7QDOOIpFX//aMbp93fLgZMc9qiPDSdLCSmSPLmnJ2mSjucmsSMf7QOPBfO4msqdV79HDRX3ThmwiqkmEacDc46L23ifnjq+kqXv+v4WnJwzsRNDweG68rZ+HEqm6FrY531FDYms8bXxrSlajreU8DriqnIVtXrY32W2s5+bUhQ4xwIyjuctN2Sw0zry8brjRWf3UZ4y8taPqt+rJi6i8tZ/q1Jd12668uM3xuUAljHbfVcuxrw5p9cNXa6LmvmbUhP2d+mIy5ORajdj/cisVu5rX/rV3NKr/RSfcddUy8vMj0S9pf1M13DjA0MkQ4HMZisfDqq6+ye/duzWO2sIUt5MbZs2fp7e1FktQH300h+8UbNI+pvriQqt2FnP7+5Hp1jizyYQB7P95CxKdw4l/Gzv8xQ9aj/fYqChrzOPa1MU3pN6yw7V11nH10Jl25yQiqDhQy8+oqCY0X77orS6jeV8S5X82mpeCydsEJJT2FmvJwG9q9vJiqvcWc/uGkLnHCKKweK9131DD40ylCS9ov6bYiKzve18jKUIDBn2bJDTLunbPESu8DzcwdW9UlvORV2yiodzH9ijGZVKsTbEUOw/Jlv2+0vLWSsp4CDn9hSJck1HV3Lfm1ebz21/r55/b3N2LPF3n9s8YqN/4hUNCSx5pGpcRMOEusFHd5mHxRX0J77yNthBaj51eg2rSJbHXCrg+34ZsO0f89/XeilpsqMJlNulWULgS9761HdFs48g/GJISNPse7P9KMyWLi8Oe0pebcdQ7MFtMFyRW23VxJYCGq24dt99aSV2bn9X84t17FPotsY0GLk45bq5k77mXsyRw5YPLedb6jCmeZyBtfGNM894J1Gm/pOGNjqt3b3vY2Hn30Ub1L28IWtqCBP/uzP+Pzn/88ACbM7C56G8V27Y+4em4vILgoM/JiUP28VM4+j1XtdFC5zcHZJ31p0lIaJhOJeDJuWGDnncUEFmQGn9Su7lzSbiOv0Mz4y8Zfll0VFuJKgtC89ny7/d4y4nKCkz/YRADdFN9KOh2sjWrLMgHpDZbeeyuQfAoDj+rPdUZRd6mHRBwmX9aXv2q5oYj8Gjsnvj2j2+e2txbjLBE59nX9ObG8L4+10ShRgzmwu8qKf8a4NO7vGzvuryTiVXRl5xKJBLsfqsY7HjlfFm0TLE7Y+Z5aZo/7NtyLf0tlpguFo9yK7FcMy9+Vdjvxz0lEFrXvRfW+fCq2uzj1w4X1e7xJNieFhisLKG51cuJ7cznlAlPbC3aPhebrijj7qwVN4lrKh0a2JfLKLHTcUs70YS9zRwOG/F/S7WRtOLTRb5sISgVNdlquKWL6sE9bilAQKO1ysNhv/L3CYofmq4s4+5R3o9TkJlhd0Pv2ElZGI4wmSZ0mi5B1U63zJg+2fIFj38tBfLBaQVGwe6DjhkJmToRY6NcmUs4WvMbQ+BmCwSD5+fm88sordHd3G77OLWxhCxuxsrLCvn37GBpS3+fKirrpbX2n5jEFpQnqmmHwBERCJhJWAXM0e+DouQiiERh8M3tbKaJTVQuU1Zvof0Vb+g2gqRcmT8ZQLkDqq7AaVqcBOXeAK6w2U7/TyuhhCe/cpoqbSsb2vQCFVQKrkwZkyeJxCusEavrsDL0U0pefiueuoJIJQYCGSxxMvhHW3a8RROi60c3qhMzUG1kmZ9N6VSdBhO4bXMwPRnUJL6JTJdGsjBuUZxPAnqdKuv0/RyJBaYuFmj4Hp3/t1/VZda+N0hYrx34a0K3w2HixA1eJwMlHk43qVa3OBZN+FaRcxzkKMCRtBiA4oKDSwvJoTJOgBNB1MI+IN87Iy5seys39FGDbTW4C8wpjr+nnHqXtIlabSb+KUgoG8qj6fXacRQJnnkiu/WkQlNTfoaBSYC2LzGPmOdsuEbE64PRT2gFHLLBgsUJoTberaVS0mIjKAisz2veuvhsKyk2ceiGRltGM2ywbyEmgVk/q2gOz4zA7lt1nMZuAWYlT3RSnsAhOHQGt2kCB8AILvl8zMjKEyWTiYx/7GH/3d39n/CL/BPGfnqQEMDc3R319fXrDzIrIAW5ANGf5okWEHQ80sXLWz/izyRffHLqjYpFIy7Xl9Cc31sUicSOBIcP1eRVimjRRc0UJU68s6ZIutj/YhOST1zfuc2DfpztIJODQ32hvfNRfXUZoMWJYEqy4y039VeW8+XntRfSe9zSwNh5k8jl9fXp7mcj29zQx98aKccKDiLavRBBFjBFC9Nr6HdF4XTlV+0oYenya+TfWfq/9KOxwsTqgf3FNN1YSnAsbOr9RkpLoMtNwbRUzRxYJTGpPgq5qESmMLolHbdfg/SI5vuNw6LP6G3sXigvpx3nPd1YjjN1XEfZ9rIOVc35DRDzRBdve20L/Dyc0SXMN15aTX+vUJUNmouuuunTFt1xouqGCyt3FjDw9y6xGlaP8Riftt9Zw8jtjuuS+6ouLmT68DJI6dlKSmsB58Tbl+8oDhYgOy3pszsSmOL37o61MvrzA/BvZF32H46cY5QwA5eXlXH311Xz3u9/V7PMWtrAF43j44Yf5h3/4h/Tf7abd1FnbstqWbXdTuaeQ41/NiEU5SEo1lxYTWoqyciaA1WPRJBY5y6yEFmSsTihsy2fhmHb+46yw0nFrDQM/myI0l3txoepAIfWXlTL27AKzh9dyE5Ws0HawksFHjRMnuu+uYWUoqEkycFZYab2pmuPfHFsnGGig5aYKCpryDJMtsKLbrq3Iqk3+yrh/VieG5eQuBHs+1koiDkf+4Zwhe6P9sBVbEUzokrVcNQ5Ke/IZfXpe118XQlIq3e7BUWhl4nn9jVBPk9M4icXAfQWo2FNI07UVjDw1x9xhY8S5C8LmfmSpcgEqcU63QpTBawKVNFjeW8Cxb4wbqjxVe1kxeWU2Bn6iQdK3wvZ3NzDy5LxhwmBJjxuLTWDuyJqm3Z6PtZCIJ3Sf2/a3VyFYzPT/QCVz5ZSls0LFdg9zR7xgBZs79zOcGVvbbqlk9MnZ3M9O8v7VXV5Mfq2DU9/JTiqTZZlXE78kShhBEGhtbeW1117D4zFWGWQLW9iCNgKBAJ2dnUxNqc9gnlDIgeI7sFiyf0Lbdq0b35zE3En1HT8Rj2clBVjsUL0rj/GXg+m/MwkBidRCvdmE1QVyBFCgpE1kaUTKvXGvKGAy0XxVPvEYjOaqFpJE753FmMwmjn9vSXNzoKTdjiIlWBvdtHaRI690llmov6iAM79cyt7XZI7XeHUhoWXJkEybxQldb69g8WRAmxSx4SA0SQ6pdo1UMjLS1u+Ckg4HjVcWM/LMMsuDBua8C+iHq8piSKauYoeLqE9hdVifzbPrA1WGSEpYoHp3PqvDIUKLiiY5xuaxEI/Fc5J4NjS76VnRQs89FZgFOP5t/WqFaehsAP4u/bC6zFmvbcO2wgXc1957K1gbDTPxW30iHhbovLmU0edWiazkvg8lXU4KGxycezzHfc2SB9Vf6mH8VQ0ikSCo4/tSD2MvezWJSvZCCy3XeBh62ktkVQFz7goIRU0ivhkJJaJWR4qsrf9m2rQRmLpP+TUWHB6B+dPnr78mEglM5vXjOm/KZ+5kiNXx7Bc2Gxrk+NpTQILS0lLuvPPODe/nW9jCFv5t+M53vsP999+PLMuYTBZ6Wt5BWVFHVlt3QYKqejh7HNRqHgnMUpyE5fx34aIKUCTwrYBghdimVzaTlHzmTWq1EikMCOApAq/G1pxJjiE6oGGHwPiJGFGNFCW/DJp3W5k4KbM8iSZRqapLYKb/fNLNBpJSBmr6REKrsdxEnXgcwQENuxyMvRpOEwy0UNpmpaTBypkndUqbpCCgayfY0ZaIy4jjgoChfgKGyCMptF/jwGw2ceY3QUPHntePHHvaggiCBSStvDKRQHRBQbWV5VE5LU2YC2mS0k/0Czi4ygTs+WaWhpKDW4Ok5CiA8FqOH+OJjccauK/E4rjLBVqucDF+JMTKmNEbh+Hc67x+5KBnCELSLFsXUsdYTMbGNFBUb6Fim52zzwWJGUjVC+sE8kosqmRhIgFZqqABNF1kZ/ZMhHCO5cHEJmnIvGIQ7WZWpzXyZauFzkstmATof147saxsNSE6TIyfiCfPlzv3KqiAtWRhUtEOUuZ7q7jeT8GSIKaoY6e6McHcJOm/M2GSY8TtqpRbUVmcwhIY7ofs0m4ypwZ/zOLaAGazmW3btvHiiy9urXnxn1TubTMqKiqIRqP8+Z//OQAyEi/yKMfivz3fWIKjXxxJb4Lv+Xgbve9rzBpMpBUpTVBqvqmSXQ81q9JGKWRMAimCkr1MpO7iMnrv0ZckUEtF62snnPnxBOceTS4Ia1QSHn9mQSUoiWpFkuIurTqEUNSej81t1ZX7OvmNsTRBqeqAts54ZE0irsRRIsaia99Dzex9OHuCl4akEk1ctTaabswt7ZKyBbX6VGGHvs5X663V7Pu0zvmB0efnmT+xyvzJNV3bkp58LvpUF/VX65f27nlPA523G5MZG/nVrDGC1AVACsQZ/NmULkEJoO3WOnY91Gyo3Z0f6WTHh43Zjjw5y9TL+gS4rnvq2POJ7Bvgm9F0QwWgT1ByVYs036SOKT2CUsvbqjjwSCeuWmMawDEpRmhZe7XIVS1S2OZCCsCb/zikS/zxNObhKNE//44PNVN9mfqsahKUko/+yBNzTPx2QZOgBCBYzQiigKdWu/ykvUyk/orydBzUIijtfriVHQ+odrOvruYkKJX25nPgMx2U9qqi2Ef+4VxWgpIvvsJY41EmBLWiXHFxMRMTE1sEpS1s4feMv//7v0eSJKqqqgA4mzjCM9IPCcnnP5cLx/1pglJpj5u9H2vKKfM09dIyK2fU4L39PfX0PtCQsw+pqkxtt9XQeG25rgyTq8KBYDPn3uRPYubV1TRBCcgtcyWTJihVX1xMz7t15nMrOEvtFDZqS8KG5mSOf3UMZLXSia1IO1eMeGWUaNyQHJe7zsH+j7VRc6l2PpciNzS+pSy7TF0G8SRFbqi7Ql/aBatKMm19q04+B0y+vMTwb4xVedz+/kb6PmAsR9jxvmaab6rStQtMhRl9Qp+gdKFYPO41RFCyOk103VFH2636fa27uowDj3TgqtGv1b18epXZoyuGCEp7Pt5GnYF8tqjDtf5M6xCUGq4tTcuh6Z7/wy10321M8lmJxIhJcd12y3eqCwiTLy5rE5RQ5WzsBVYKm7Wf2aIuF33vV3OZpZN+bYJS8nEaenyW/h9ok8hBleG1JmWDtWLXtjtrqb+yTI2DMjkJSoXteex8fyPVF6kyMoM/z01Q2nZvLTver0osT7ywnJOgNF54nNMlzxNFXSn77Gc/y5kzZ7YWa7awhd8jXC4Xk5OTfPe730UQBIKxVZ5e+BKnV1/Iaj/4lD9NUOq+2UPbdflZq50oEdIEpbJOG73vKCK/en2BN3OjXQ4AirrZXr/fTdtV+bk7bLEkNz8ERKf+suXgb7yMPL+WPDa33dLZSJqg1HVrMZ765AttDkKsp9qOo8iaVe4LSG98jD6zmiYoFbVpz6VKCGKROLJkTD629WAx2+/Wz3uUkEqSqdqjvY6XImK4qiy4a/Slxqp2u9j+bv3zLw2EmXnTh9cAKddRamH3+6qp2q2/5tZwRQEdN5frSmsBzB0NGCIoXRAUmH7NR3gpplu9p+FyD713VRhqtvuOSjpvLzVkO/biKtOH9D8mrbvEQ89d5WDW3ySr2KH6Xo+gZHGpFZcAXfJVeZ+LXfdXk1dmQD/Eoj4HUZ/22q/VLeCuFkGBM/+6qElQAvDU2nGWitnjQEYe1HZjMWXb1Nxz/CUNglKynaWBMKMvaROUADCBxWbGWShoEpQsdmi8LJ+my1XfahGUOm/00H2zKofsm1JyEpRc5Rb63lVIQb3a6TO/9GUlKEWUAEPO33A68CyQoK2tjZmZmS2C0ha28HvGPffcQzgc5uDBgyQSCifOfZ/fHvu/hKXz17z8aybOHjcBJlz5CbYfgLwCMCnnx92VOZWgBNCxE9p2bPw9c6M9VUGprh2atpuwaEz7CaugykDZTejRZHwLMPpmkqAEKlEiB1IEpYJKE0171teGssm+AbhLBdxlGhJXZjOxMAz/ViUoOQpU6SYtyME4StQYgUR0Qc9b3ZS2aC+QpQhKpS1WxGyv+xmk+RQxqKjRwPwYi9N2lYOqHv0FutlTEhNvGst7mg7Y6Lg+i6Oy5Pdd1+dR06eTeMUTSL4EC2f1CUoXisBCbJ2gpAUB2q9yUdOXZa9rE2GoqF5g+80unMX67xX+pRhTxyOsGKjs1fUWJ6VtVt0KSo5CE87i5LjObDYeP+8elLRYEV3JcaPThc5rXTQcMKa5pygJ5EhC937lV6n9XJ2IqZXCNAhKogOchWZcJdnHdoqg5CyA1otFECC4jDZBKXmqseMKw0f0me+iQyUpqefLHTvqu6Fx23oczEVQcrgS9F4EpVXqfZkeNeUkKNV3Q2cfQJyVBTPD/SphaTPmV1+nf/zLLK4NIIoiP/rRjzh+/PjWmlcSWySlDPz1X/81iUSC+np1MXWJWZ6O/5jm+4vpukMVZq08UMj+P2/Hk1xsFkQTjtJkILQm2PvJdrrvVjeZSvs87P/zdkp785k/ukxcidP6VlVKTnTB3k+00fOeBkCthrP/Mx146p2MPTuPEo2x79MdaaJQmgyFKrG1/zMdzB5d4fhXRuh4Rw0H/qIzTarZ/XArfR9QCR5ikUjXHXXk1zlBhAOf6uKiv+xKX/POP2tZJ4OIquRb+y3VWJ0Wai4pYf9nOtJEhB0fbmbnn7Wkjy1ud7N01kdwTqLhYDn7P9OBWKQa9z3UzO6H14Vv9326g90fb6Xh6nJabq1i/2c60mSN3vc1sufjyY0hCcwWM5561b/VlxSy/zMd6WvreU8Dex9pT7drLxQBNWCU9uaz/zMdlPapD3f3PfXs/dQ6gajn3U1U7CwEEQrbVH9XHlAX2LvurN1ANmq7pYaO29R77qoW2f+ZDmqSm2cdb69J24ZXo5hFE30fWvf3/s900HBtOaASU/Z/pgMkGHp0hp3vb2HHh1s2+DtFcmm6oYL9n+nAN+ojMBumuCt/g7/3/3kHbbeqGy31V5ex/zMdzJ9eZebQMn0faGb3xzb6u/Odqm31xcXs/0wHTTdV0PH2GnofaNxA1tn7qQ66kmO2fFeB2t9k3N3s772PtKfHbHGXm/3/tYPtDzWpPrynboO/93yijd4keSS/0YnotuCbVhfuOt9Zs8Hfuz/Wyvb3q+3kVYiYBJADyc3jW2vY/+frtrs+2sKOlL9dZprfUom9QE3cmm+qVPufxI4Pt7DzI6oPlWAca56Flrepm3WN150/Znd9tJWKvYVU7i7mwH/tpP021Yc1V6jPgqtatd3+YBN7Pt5G01uqKdteyL5Pd9B1ZypGFKnPcos6hnvvV/29Nhog4pPourOR7nvUGFPa51HHbJI403Nfg+pDCY587hzVe0rOixHlewpUf99VR+/9Lek+ZosRKaJR57117Pt0B8e/PMLrnxs4L0bs/0wH9deom4itt1XjKLbhqVX7ny1GNB2spLDDxUWf7mL/f+0EESafWzwvRuz/TAett1bTc18DDTeU0X5bDW9+eZj5N9ayxoie+1W/FHe4iScSjDylbv5tiBGokptdd6v+Dq1EMVtNGTGinr2faEtrzu59pJ1t99bjHfUTU+I0H6zMiBF17P2kOr6luMTazlHetLzA0PAQ9fX1fPe732VpaQlR1F+83cIWtnDhsFqtTE9P88tf/hJBEIgT4+XErxitOsKeh9fJ2tsfqKPnPvWZTxBHsK3nCXVXlbDnY83pjfue99TRm4wlS2f82AssNFxbitWpzod7PtacJs1su6+WvgcbOf3DKcafXWD7g80031hOfoOTyj0F7PlYM84K1bb77hqq9xVz+HPDBGckdn+0mV0fVuetsr589nysmfwG9YW/845qKncXpvt30afb6UoSJYo68tj7iRaKOtT+d7y9it1/1kx+tR17gZVdH2qi607V1tPgZO8nWtJzRNvBSkiQroiy68NNaQKGs8LK3k+0ULlPPW/LjRXs+VgL7bdU031HLTs+0JgmQVk9qm2KaGRxCIh5Asjqb9vf15D2IVbY+4kW6q5Sc6DC5jzMVhPBBXW1q/e99Wx/sCF9r/Z+ooXGt6jzScO1xVTuKqTlRjUn6rmvjh0Prd/XPR9vS5ONuu+ro+aSUir3Fyb9XcfOD62TlXc/3ErbbVUgQyIRp7g7n4LkPNt1Zw27M+ae3X/WQuc7a9Ikmr2PtFGyTc2n226v2jD37PpwC1131bJ02od3IsjeR9oo31kAQOvbKtmTkVvt+GAz2+6tZ+qVRWaPrrL3kTaqknlk88HKDblV3wea6HlvA223VlG63cXeR9qovawk6Zcy9j6ybrv9fY24q9YXi/Y+0kbDtaoPay8rYe8jbVidamLW894G9n6yjbIkUWbPJ9poPqj6sOpAEXsfacNZoo7Z9nfUoUTiTB9SvyTf87FWWt+m2pbvLGDvI21pUpKn3kkiQVoab/fDrbTdruZLJdvc7H2kjcJ21d8tN9VQ3LK+Abr7z1rSY7agJU/1d08+tmIrZouJih0FadudH2pOvyflVdvY+0gbFbsKaby6gq476jfM9Ts+2EzPfaqtrUgds9WXFVGxo5Cuu+vY+4n1e779wQZ636uOWaszOWavLCE4GwaT+ncqRvTeX8/29zWs+/sTLTRcV8bMq6ssnPKy9xMt6RjR8546dnxgfczu+2QrzW+poOG6Mir3FbL3Ey0bYsTODzal+7DnYy1U7y7m9b8/R2RNZu8nWvAkY0TXnTXs+lBTut3Wg5U4ikScJdacMQLUZ+iiT7XTdWcNq4NBrE7rxhhxcyV7HlaPbbiujJ0fbCIuxzj+1TGcFVb2fKyZymQe2XywnN0PN1PQovbJ4rAg+WTkkBoH9nysmeqL1RjRcG2pGmeB1bNBEvEExZ3JjWUr7PlYM3VXquO77vJknHVCZFXGmiew/YF1Auaeh5touFbdlDX1+ekvfYHB+dOEQiEOHDhAIpHgYx/7GFvYwhb+MLjrrrtQFIUbblCldifDJ/nNzD9RcUWEhovVuJNfY6HvzgLyq9TFWsEG7gr1vxNCgm23FdB4uWqb2hQvbLCwMhlFicZpuEidIyxWleDUck0+xBPY8030vauIgjqRkRd9RAIK2+8oSrfd/TYPbder8cySB333lLI8FObs46tU785j1/2l5Neotp1vK6TjxgL1oizQcbAAd5n6zrbr3eXsfagyTS7oeGsRnbesk6v77iuj/jIXtnyB8m4nffeVYXEBJjNtNxbTnUEcKetxsXg2SGRZobTHQd+7K7AXqg23XF/EtneuE3F7762g644ymq4uovqAi773VuJK+rDpuiKVPJKEWTThrlDXw4pabfS9txJPvfp341WF9N6zTnTJq7CS0h5wllnoe28lRa3qxlH95R5671u33fauMmr2e7DYwV6g2pZ0qXG+5iLPBrJR120VtN+kXqvFCX3vraS8T72vVXvc9L1XtQ2vKlgdZjrfvu6XvvdWpglGFTvUa7XYYfp1Hy3Xl9C1ybb6gHpfS7c56XtvJXEJVkfDeOrsdGf4cPt9ldRdouY4xW0O+t5biXc6wuSrazRcWcS2Ozf6u+GKAgA8DXa1T3tc1F3ioenaInruXvd3z93lNF2r5mzuKit9763EJKi5VeOVhWy/b90vPe8qp/UGdbw4Sy3sfH8VnbeUgkUlAWXadr+zjLabVFubx4KzVMQ7oTJ3qw/kp30I0PX2UjpuVudKix0sdhNyOCnJs9u1wbbjllI6b1v3YfPVRYhuddOlvMdJ37srsCT3o9pvKqYrOWaVcAy7R6Bmn+rDki7V3/YCdRy23lhM9zvLcNeI1Oz3sOv9VdRfrtoWtao+dCYJRs3XF7HtXWXU7iukcoeb3vsqaLxKzdM99eqYza+zkUgkaLqmiN57KwjORQguSjRfW0Lz9aq/XVVWdtxfRWGzOmYbLi+g792VoMDpHy9Q2pWX9re9yMKO+6so6VTHbN0lHna+p5LWt5Sk/d3+tqQPXerYKutRx2z95aq/h3+zwvHvztJ5cykdtyQ/gLAkx+xOdcxW7XJR2GDHVak+cx1vK6bz1owx++4Kqve6sRdb2PNAFbseUGPE0kCYthsK6b51PZ5sv7uU2gMuGq/Ip7TbTsfBQgZ+tcrKSJSWa/LZdlth2rb3ziKar3WBBdyVVhIkmDmpjpemq9z0vH3ddtvtBTRepl5bYFlCsJnS8a/hkjx63l5AIpEgkUjQfauH5qvcBFfjagy+2EVhciO8br+T3rcXpNtdq36Dl1e/y9DQOWpra/n5z3/O2bNnc1bV28IWtvBvgyAI/OpXv6K/v5/y8nIi0TVePvp3jC3+jG17FVJ7Ws3dCVp71P9OAHYnOJJkiuLSOD0H4ljM6qZ+Uze09antL0yD0wWVDWrVlcJSVQ5OdACJBPXdCdr2wEQ/jJ5I0LbHRFULONzgLoZtl5pwJF/t6zqhql3g1LMKkQB0XGqh83K1D3mF0H2lhbxkmKruNFPRosaNomrYc4uNxj1WVSbLY6L7WpH85DRc2SHQeZVIXqEZu8dE2yUi9TvUY60ege63OCioTs5xHRZMZhg/rLIoWq+w07BPjdWCCN1vcVBUr9qWtlrpPuik6SInDQecNF3ioOmi5OQoQPdBJyXNqVzWhJhnQhDMCKIqJ9Z82Tqxo+tGF6Xtah6ZV2zB6jARCan+btjvoOXK9fWaroMuKrrVPhU2CjRc7KRquzrH1e2x03b1um3HtQ6qetR2q/tEWi5xUpz0W02fjfYM2/ZrnFRvV20TsTilLVZcpeq1VvVY6bh2vb9tVzqo2WnDNxdDicbpPugkv1KVCa3otNKZQUZqvdxB/R4bKxMKq5My3Tc4KahR2y3rsNJ1gzO9h9J8iZ3GfTamj0dYOBeh+wYnRY1Jf7dY6L4h2W4srvr7EgeV3SKuUoHug05KU2OiQf1bSG6nNO63U9iwPs90HcyjrEP9saBOoPumPHXMAvV77Wx7Wx75yTHReUMeFV3qmkt+pdquPcnrqOmzIUXjLCU/QOi4zknVNhHiCVxlarspUpKrwgIkCC2r97X9aic1O9T76CiA7hucuEvU3LCq20ZxozVNEGq90kHdbtVWdKljK79aQBBVPnJFR3KxKZGg5QoHDfvVixEc0H1THkX1Fmr67LRf5aT7xnVGW/OldhovTl64OUH3TS6Km61U9thpuTSP7ptcacJOU+aYTSTofqub0nYR35xMPKYeKyR5ZQ0HHLRckTFmb3RR3iXim4mzOBil+4Y8xORyTt0eO61XZdjelEfrFU4qukTc5Wa6b3LhKFB9WLPDRttV689Yx7UOSltFTv06RGglTvcNTvKS/q7uFWm/dr3dxj0i7lIzogMcHrLGCIC6Pgu7b7FT32sm7INETI09BcnXnfIWE11XWHB6oKwJWvcJmAUT516PIYhqTCtKfqdZVq/+7Ux+F2MRIexPpGUtt11qolTdaqC0KkHPgQSCkCAcgHgMCtdfJejZn6C8NoFJjlFcHKNnf0xtL2pGtEN7b4bt7jhVdeo4M4szDE79CycHfoXP5+Omm24iFApx++23s4V1bJGUsmBsbIxz586lN6a/8rUv8/2nvk04HkAOKCjhGLGkLuzacDD9pemuh1oRbCaiPhkSCZRQDCUcQwrGCExLrJzzIwVlqi8tZtdHO4nF4kR9ajtKRLVVgjFmXl0msiYjhxTabq2l94FGpICC7FPPE0/aSsljo14Zk9lEw9XJ6i9+BcmfZJtKan+jPhkkkIMycnSdgin7FaQMKRQlHCMwHeHV/3WGpQEfSjimEnsAyasg+zfaSsmvjSt6CzFZTJAsKSn5ZKQMWzmssHzax8zry3hHg+q1JhnMsk9GCqzbSkGFiFdm98Ot1F5SrtomKytJPgUpuG4bWZNYGUyWCTSrfVJCqm3UJyMH11m34WWJlVG/6oewjBKOISfPG/EpyKGN7a6NqZUYFFltN3XtEa+MHFb/e+r5JYIzkbQfkCTV30mCTdSvngcAEWz5VgQx+dhJbLCNrKm2kgQnvjZKZFXa4G85HCPqlza0uzYcZuypeSSvtNHfIYVo8m8paVvQ4KKw1a3em0CmrUw02X8pqKz3N3mtmf5O3ZtUf8BEXok6A0bXZOTQur+lgJL2S1xSUEIxFo6uJfu/0d+Z41uWQA4oLPb7krZS2t+gjoFo0rbvA60k4gkia0l/B+QN/Zd9MnLyORn82RSSTybiS/kwea1JmUfJLyMHFOYOrTLy9CxRv0w0+RzJSdvUFwgpH574l1EGfjyBHFKIJM+zOUZIQRk5GGPppI+jXxhGDsrp/qdjRHLMWvMtWOzmdMU1KagQ9Z4fI1L3JuqTGX1q7jwfZsaI+mvKKKx3EU8xuqXsMSKRiONpyUPyquOh/7sT6WvfHCOiXonVgQByWCEWXmc+Z4sRZqsJd60Td6Uz6e/sMSIWVXBX5dFzXwOST0EJKufHiOQXc4LNjLtGTXTm31hVfR5JtRtLj9nG68qxOMwosRhSAM7+bFr1eSpGeNUYcSz+MmdKX+HIkSMIgsBdd93F8PAwd911F1vYwhb+8LjxxhtRFIX3ve99AAyNDfKPX/oH+uXDQHLuT8aLpYEg4WUZySfjrrNTtbuIeMYXMqqtGt/GnlxA8sWI+hR639NE5c4C5GAcZDltG/XLIMPcG17kYIz8Wied76gmHo8hB+PpL0yiXgUpkPEljxmsLgvuOjtyUFG/zIok56KMeXZ1KEBMThBaVBuSQ3HkYAw5ueAR8anz9ZkfTXP474eRAgqJRFyVsorISdtk/uFfb7dyXyE2jxWTVc0pYhKqbTqvUefvkSfnGfjxpDqnpXIVWW031ZbkV/8u6shj10ONCFZzep4Ctd1Uzin5ZMLLEqsjIaxONR+RM2ylDNvgvEzEKzP0q/mkD+UN7UqB9Vxl9sgqkl/GOxRY96E/M0+Q0znz8BNzas4RTuVlSnq+BogGFCLJvwvb3AiiGTmYkUdm2vplJJ/C9MvLTP12Qb2XSX9HN+enPpmoV2LqpWW8Y2HkoJL+PeKVkIPn2xZ35FPYmr/BVs1PN9rGY+tjWA6u5zlSQEnaJpI+lLDYBEq7PGnbiFfaYJsc3kRXJUILEYLT0XV/p3KtkGobT5ZlDy9ECcyufxkuBeT0fZSDsfQYb7qhAnetk2iGX6J+mUgyT5DDartKOEZ0WWbu6CqR1fXPtCT/eh8S0bjql7DCia8PszzoXX/GTOoYTI3ZeCw5DtcUTnxrlNmjq0jBjfleOmeTQQ7FkHwy/T+cZnkgkL7/6fuaMQ4tNoGSdneGD2PpGBHdNLYiXpm18SBjTy4gJ21TMUKNNeof29/XjNUhqONQJum/GPKmGJEiF4WWJGbfXCW0JOeMEQArQwGUSGz9PuaIEXWXl1G2LZ+oT0JKVihQY0Q8nSNFvAqC1Zz8OEXtU2Au+WW+LCMH4+n3KNFtweIQKOlR/eSbCBFdzXiXCMbTz1X5zkLMVjOyDEO/WsA7Fk6PJVBzW/+Kn9NFz/P8sd8wNzeHx+Ph3LlzvPLKK2xhC1v4f4PHH3+cxcVFqqqqSBDnWz/4Gj997ptElAAxCaRAAkVS556lQYngghpLOq73YHcLSME4iUQCRYojBeLIEVACsDgQRQrEKGyw0HtnEYl4AikZz2JKHDkQQw7GWB2TifriSMEYbdep5KRIIE7Un4zXMTW2yMl3TSkYQ7CYqdmtxqFoIEY0o6qLHIynzxNaVYhsmKdi6RwCQArECC3HOPrNBRYHwsjBOJ4aW7JdhYh/fc6Q/DGk5N/VO/OxOgVicizdp6g/lq7OIvljrA2HmHx5Dd94FDkQQ4mm+rAey1O2Ub9C522l1F1WhByIEUuu00X9yoYcKLQos3xOnaPNVlQfpvziW+8fgG8yytJAACWS4e+kX+SAsiGv8U6HWRpKyoPE2WArhWLIAbXd1eEIK0NhVboq5e9ALO1vKajaKsmfHaVWzOL618aSX0m3JYfUPsVkheHfrBBaljf6JaCk53c5otqGFxXmjwWJ+GJIgdiGdlPXE5PUc+TX2CntyiPq2+hDNf9IrqvICbU/iYx7kzE+ohn5aVwGEuCutoGSzHM3jK1125isIPliLJ+LrPsoow8RXyy9ZqQoEFlRWBkKJ/0dT/tovU/q39veVQaJOFLynsvheJb+q7Yzh/0E5tbXEdP+TlbiiPoUpEAM/5TEyNPLBBfldJ6QajeupPyg+nv0mVUGfj6P5M241mjynidzcXXMxgjMKQz8bFHtU/J6FCmBFFBQImofxHwBm8dCfp1tvf+p+yirtqlxGA3ECCxEGX1+Jdn/2HrlJSU1ZmOUdDgo2+ZeX/NSNtkm74eixHBVWpACMQJzEiPPrSb7cH6MkIIxIssKIW/Svym/+BUi/o22kKC42UF+lV19f0zm11IglvYDqLlsUb2dlivyUSIJoquxdCWrqF+1TVVRsuWZKahV9ySWh2Uiqxk5ZyCefhZK2m04i1SZQRQYetaL5EukY48UjCEF4wz5DvOm8iNeO/wqZrOZT37yk4yMjHDzzTezhS1s4Q+Pzs5O5ubm+OpXv4ooigyNHOOrX/+/jM+p7z/RCESTr+NBn4m1JbXSnehQq38k4kBMrawUDav2AItTEPSpFUFa+qCmBaIhiAsqIUQKQzSkElDWFiASTOAuhI69JkwmiIYTxFLxLbJeeQnAZErgdJtxFqiSclIokZaWkyJxtV0gsKaeI7Sm/h1TVJkwRVZzASWq/j7dH6P/aYloME48lsBiV9/zo8H1nFMOJ9L5nbtCIL9cQLCsr5VEgwnkKGA2I4fjRAMJxg9HGXs9hBSIb8gNowG1agyAHE0QDSQQPdD91nx1/zaY0W4gnp6nlGgC36xCaCkGAkTDcaL+zHZj6TlZCoB3RmbmaCTZP7VPKUiB9fl9ZVzGN6/gn0vOEeFN/fWv57ITR8IEF2PpnFMOJ5A2XFs8PVe6K9SPDtNzxOZ2g3GiwThr0zHmz8pEg+uVdJTwxv5Gg3GioTgrEzHCK8l7kxwTcjhxns+iwThlbSKeKkH1dzixfs8DiTTJJxqME5M2+Tvpw1hUvfbUFB4NxRHzzBTViedda0xS242nljaDcYKLMSLedR+mcuSYpN63eDIHCq/G8c1k5FqBdX/HJNVniqxWMSqstyJtuo/RYLKDMbUPsajan5mTEULLmTncJlt/HDmaYOTFMLNnIkRS9yYeT/Zho1/kSJyzv/YzdyZy/n0MJNJVl6Jh9Vqnj0ZYnZRV2/i6bSTjWFu+meIm1Z+KlPR3sstSaOP4jqzGWBqWmDsdVW0DcWLJahZSOJ4eh22XO3B4BNWHMYjJcXVsyfH1doMJ3MnvC4IrCaZPy0iBjBiRGofJGAHgnYsRCcSRkmMpHlNjj5K658lxWNEqUN5oIRJcf9ckpsa0VLtyFCxWlZwpiGqMDaylL5VoWI0nCdGCRVQJn+4SABNLsxDJUPGOREBJnqeyWZWKSwBzU2aW5iAS3mgbDEgMTnybF177OlPTk7S1tTE+Ps5jjz2GIGhUivtPClMiW83mLaTx2c9+lk996lPpv0Uc7Oc6RPOmyhqJBC03V2G1C5z54WSajSgFOE+eKK9CpPXmGo7984jaZqE1p1RU08FKZo4sE1mQcFWLG2WPMiAWiUgBCSS16svCCZ+u/NSuj7Yye3iFmVdza7C331ZDcVc+534xpUrB5UD9NWUoUozpF3X03JPouquOiFdm5Fezudu8ugyry8LQo/pSHW23qv08/b0xfKNagqmqr2r2FzPyeO5zp+CqFgksSmkZuFzoeHsNweVoWtYuF/Y+0o53NMjZn2aXO8jsY8ct1Yy/uIB3KKhp2/nOGhQ5wbmfTWt38gJw0V904ZsIcurb47+X9lzVIi031TL8mxn8Y9rlkbvvqWdtNMD0y9pjKa9CpPveJmYOLzGlI3uy/cEmhn89rStL525w6PYP1MpQ+fVO3fOCWo1AsAm8/n8GdG3tZSLtN9dw/CsjOW3EIpFtd9dx6rsTus+4egD03NXAyW+MaZrt/VQHJhOa/RRd0HN/C1OvLjGfkjHKgcbryhl9Ut2Y1opdmb+1vK2KiWfnNiTemdch2kxIAWi7tRolrDDy6/mNNsnpzF4mElmQyKsQabu9jtPfn0BaPb9MaKhlnteHXyYWiyGKIj09PbzyyitblZO2sIV/R8iyTFdXF0NDQ+l/6zDtpdbacp6trVCg/ZYqzvzrNLJXwVZkzSlRlKoENPHsElZnkoOQxdTqsVC5q4CJZ9X47iyzpmXhNiP9mxWq9xZrzluJeIKKXR7KdxRy/JtjmhJgez/RSiwS441/yj0XYIXOW6s58yNjc7/VY6XrHdX0f28spzQTqPJMZ38xZ0hKa+8nWoj6FFVaTgfVFxezes6X05fqqpuKvGpbmliTC3nVNhquKOf0d7XlrmovK6G8T/W53jVV7ivEXeVg8Gfaeae7zknDVaUM/GzGkJ+MoOvuWvJr83jtr/VzBaNouamSRByGdfLdgpY8KncVMvTYNHJI+7Ww7eYqXNUO3vynYU27mkuLsbosqtydFqzg9FgJLWX4MYfkTv3Vpcy8uqg5fkGVOOy4vYaZwyvp51gLLTdWEJgLM5dFAjaFphvKMAtmhn45p9seqOM9Fo1pyraV7fDQ8pYKpl5f1uxn5b5Cyno8us+ZrchKYaOTuTe8aenKTF9lSr2lYpezwkphc37O2GX1JGX1rLDtXbWcfTR7bMiMqW23VBJZlZh4Yfm8eynLMiOVh5mYUa+lpqaGj3zkI2nJ9S1sYQv/PvjlL3/J7bffjpT8eCffUsreotvPq6yRiMep7HVgc5sZezkIFlWVTYlwnvySJQ+aLs5n8FkfKCA44ijZpNTNJsq77Xino0TWEtg9pDcaANLMF0jLfSkRKG6z45uNqhJy2ZDc6ei8pZjFgRBLA7nf8at25FG9N5/hp1dZGY5syEkyUdLuwGw1sXAqx0S0SVai9mIP8XiC6Vdzr6MVtzlwlIpMvZx7Dkr3c7eLyl35DD62iH9GO/+w2KFsm4uZIzr69agVgKJBJbfcVRLV+/JRwjHmT2ivT227swzfdJSJl7SvyWKHukuLWDzt172emos8YMKQn4xi1weq8I5HOPdE9jlQT9ptMywuaLqymKnXvYQWtJ1Zf3kBwUWJpX7tpMbigs5bylk4EWA+17gDiCdoPVjM5OteIsva57YXW3RtQK3ElV9rY+Fk9vuduZXQeXsp9nwrR7+uv3ZrcUHTFcUM/jL3e5PFDm03ljL4m8UNcUPrnjRdW8TIcyvZx3EyB9p2RxlWh5mj39DI5yzQeVMJC/1BlgfDammSHCjf5mB+IAwK2AsEImsZmiwZUm/2gnU5t6o+BwsD4ewyexaw2swoEdUOYObYxtiV8rvVpUpoWuzQcrWH4Re8KKHzc+hQwSSvnfs1khzFYrGwZ88eXnzxxa3KSVvYwr8z7rrrLr7//e8DIAg2tjW/ndLC8+XnrcSo74SpAZCiaiWQ1AZ8wrLxmS+pBMEK8xNq6IpLSlapKMFioqgaFpNLKaJjEzlJXj8o87eiGljR2s5SYrhLobzFyughOU2CUDu7MUfqukYkocCZ59WLMSnZNa1qtluZOiXnlryKr+dsgggNex2MHQprylnV7bYxfTpKTEfCFKDzBhdyOM7Q8zqLEEBBrUBoLYbkz2GQIeUpupJ7xpnYlEeKLqjssjN+KLLh2PPOW2WmotvGyEuhDfcROG9POr9KwFVsZuZkMu/KQQsQ3SaqumzMnIoiZbt0LWmzHBLz1b02SlusHPtJLgfpIEu7Ze1WzALM9cvn+S/zOLsHSpptzJ6Knj82Nl1LeZeIp9rK4FNBbb9Xm7C5BOb7swy2TL8LKqFFykyn4jneNVpFVic05PNS+14eE23XuJk7HWFhQDr/nJtQ2i6iROKsTuR4kBIJSlqsWJ1mZk9sWovNIfPmqRYQBFjJ0WbCaiGvGNousjF9RmFhKLduXX6FibJGC0OvJselNXuOIojgLoK1OUBQ41ymrzKl3lKxyyJCYZlK6MzVpoJaZaupC6aGQJI2+tIkx9LpYCwGlU0q0WphAuL2jX2NxWRmVp7g7NARQF3z+qu/+ivuvffenNe/ha1KSrr45Cc/SSKR4OqrrwZAIsyLPMqh+DMbDU0mhh6d4cwPVTHWrrub2fVRVQYpVTIvheCclCYoFXe52f3BFpoOZtd4H3l8lsiChOgy0/PuFrY/2JTVTlpJEmlEqL2ojG1312W1S8FeJmJ1CtiLtDfjz/50irk3VjQJSgDjTy+kCUp9DzWnK8HkgqvSQUFjNsHWjDafWUgTlGqv1NZqn3h5geBcWJegBNB5ew3lOwrTMl+5YC8T6XlPCz13Nei2WdDsoqQrX9fu0N+e1SUopeCqdFDara9L6apxkl+rI7777wxPsxtHiQ2zRT/k5Nc6Ke7Q92VwTuLQ3wzoEoVK+zw4y+x4GrXHZF6FyLa7G9PyalpoPlhF7UVlaSlELcweWWH1nPbiYGmfh7wKlVijRVACKGrJw+YWKWzWvufbH2xSv9CX0CUoAYz8eobBX+iPTavDgqdG25clPflU7i1OS9HlIii5Gxz0vqclLU049IuZ7AQlYP8nOum+T41/gz+b3khQyoixvfc3suN9LYgudYwc/cLQeQSlxfgMz/EzXh9+GZPJhM1m4+jRoxw5cmSLoLSFLfw7w2q1cu7cOQYGBnC51FgzkDjEM9IP8Mob4310NcaJr40jexWsHit99zfQfltV1nYnnl1KEwG67mpgd4aUWCZkr5K2a7+tip53N+Aoya4FnyLctB6spPbiItx1uTXbTWYT7monokt/QXjo8RmGfq1DhpBJE5RKe/PpuqtG07y4xYmjUMTdoB2/T317EtmbJC+0aedpK4MBZg6taPcTlcBQe3ExzW/JnusCKpnBZKb77jp67mlMy23lQlGzG3etE0+T9lw4+eISR/7hnCEyUUlnPgVN2v4BsLoE8sodFDT8x8698uucaXkxLZR05uNpdCHL+t+tDD46o0tQAijuzKekXT+X23ZnPb0PNKtydskxkA3OEitVuwtpualat8218RD+qRCzGqQjgKoDaqXYoV/NaRKUADz1ebq5dmFbXlqebvrlZU2CEsDCUS9Tr2kTlAAcRVZEl0X3meh6Zw31V6qfqcmh3ASlbffV0XNvA1ghNCfnJCg1XFvKzvc34KqxgQynvjWZk6C084OtdN6uxqDBn89mJSgdkZ7hSN4TTMyMpatWTk5ObhGUtrCF/wC46aabiEajfPKTn8RkMuFTFnl64UscW/71BjuT2czsibBKUAKaL3PT+45iLFbSskMpKEEYfFIlKDmKBba/vYSqXVniaDzB/MkwkZU4WKDrrcW0X58xf2RspCsR0hv79Qfyabu2KOfmCoIZiwNEt4DNo/216szRIFOHvCpBSb3QrHZLZ8NpglLbjcW4qzbF5U2bJ55aGwU1uXNDgOXBcJp4U9KtPc8s9AfwTkTx5yJ8Z6Du0iKqdnuwebTzTotdJW60Xl+saQdQ0u6kqFU/rzj1gwVdghKo/LPCJjsFjfptempsFCSrXf2hYTKZLpigBOAut+OutGGx638dXdTsoKjZoWunBODkd+a1iWHxBK4qlVDkqdb2kcUJ3beX0XKD/v2uu9RD7QFPmhyYwuZnHWDumJ/lc9rktfwaG/YiC0oATYISQF65HUexiKd63UfZ7knLDUUUNKkdHHlKm6AEMPbiCsPP6L+7iPkW8spETYKSs9RC7f586ver1d1yEZRsbui+pYTGy9R3jJljOQhKQN87i2i9xpO2yyQoZfq98VIXvbcVY8lTY+LAr84nKAXkFZ6d/xdeGfwVsbhCSUlJumrlFkFpC1v498f3vvc9lpeX2b59O7FYlOOD3+WlN/+WQGhhg52MwMhxlaAkCNB9MdR1qL+ZlDgmZX0NfWlWJSgB1HdBzyXZ85mYkmBxXF1Hr2yG7otMiBlTceZGf4r0Ut5sor7HgrNA46IsAg6PgC0vyxxqMq3/Dxg9LDF+fH2vIJGDCDF1XCUo5RWbqN+dZb3evH6NzgIBZ5EZZ5H2PDxxJEosrJIY8kq1bZdHJRbOaX9AB4AAtbud1GzXmNtjcYjFqemz0XmtKy1vlgsOj0BBrVXtowYpaG06xsCTWQhKcN6etKfSQlG99roCgNmcIL/SgqPwd6j4Ek/kJgz9nuEut5BfbtE9n7vMSvHm607ej82Y75dUgpIWYnGKakWKG/X3kGr6bHRc70ZwoJKTchCUBBGqttup7ssyMDbdx4g3weqEzPK4tNFmEwrq1Pu3OCifT1BKtZk8Lr8y6ctMbHouHR7S8ove6ZgmQQkguAwTJ7QJSgA2hxmby6TmnDkISgAN2wXqepK/x3ITlOq3QecBE4KgkjpzEZRKa6D3UhNOdwIwMdJv2kBQMsmxNGmz+1Ko61L/fXYkO0FpeOI5jpz5HGeH1P3F/+//+/+YnJzcIigZwFYlpQuAJEm0t7czNjaW/rcK6tlm3qv+keHK4i43Zds8nPmR+hRUHSher1iU+XIlQu89DQz8cBQpoFZoyUW0abu1hsXTa6wOBjQrvhR3uQkuRYksSJT25rM44NOtBNR1dx1DT8xpVmZpv62GwjYXb355JKedq9ZGz71NLJ3xaVf2EUn3SSwSNc9bc0UJ9ZeWM/XKIuPPLOS0S6GkJ5+lkxqkKhEKm1ysDuh/VdZ+Ww3jv10gsqDtQNFlzkmu2Iy8CpHCjnz9KjwZPvp9oLDDRdvbahh5cpbFY9qLRkYrKe36aCuSTzZEgrkg6Fy7YR+mmjN4f9pvq2HqlQWCc/qOL+5ys9yfm/2tOw4zsP8zncSkGIf/bjCnzYZr0PGP6DKz68/a8U4G6f9O7ioTPe9pwFlm5/XPDWi2135bDXMnVnWrepXvKUhXWNoQ8zYhM8513VXH0K+zxx5XrY3AfBQktWLYykiA+cyNxGTMFYtEPDV2Fk/4KOxwUdFbkI69QDrmymKAxcZx+s/0q/0tL+cv//Iv+chHPqJ5XVvYwhb+/fDzn/+cd7zjHSjJL+ktiOwzHcSZKhWS8bV7682VzL6xQmAqSnGXC99YIGvVlbK+fFyVdkaeWAArODxWwkvnb/g4SqxUHyhm6DGVMOSqsRGYyr5AUdaXz8IxNeYXd7lY7s+eYySSL88FLU4KGvMYe0qjAqMV9nykBe9YSLO6T9cd1biqnRz90jntKjNW0hWcrE40bXd/tBmT2cThzw3lNspAQYuTtaHcDRa25bE6qPOiD+RVi5R2exj7jU4FHsDqNOlW/kmh+qJiFk77tMlKGf75faH77josDoHjXx3VtDNaSalsp4f6y8ro//GEbrWpC4KBa///s/fe0Y0cd77vB2igkQNBECTBBOY05Mxw8kgaxRlZWbIlW1ayLFsrex3X2uv1vffdc3bPPbvvbXzeaN/1OkdZtiRLlmxZWaOs0eThzHBIDnMOyDm8PxoAAQIN0rvat9578T1Hx+awWF1dXV1VXfWp78+5z8bykI/I8uYqaTPPR1+tpnrAxsVfl3YihY3b2GbTgOSsVr+nkgtPz5Y8iJF1EtqE2m+qxdZp5Pi3xmQd3fR2NX0fczF/0l3y3dfY1DQdsDP0RGkXLLUejPXSu6V3qBG0KnwThd+HCqUCfY2a4FyMinY9pga9LByV6efUFjVtH3Bw9rHpom2jZoclC3e131zL/EkP3rE8MgqAYM80p0aO4fV5USgUXHLJJRw+fLjkfZVVVln/sbrhhht45plnsj+3GHbSYdkLSG5KGRkdKipbNYy/KY3vlW0iy8PpE/G5a14qaLnEyPg7XuJ+0FWqCMk4uTgH9PgWYvhm4mitCsLuVJ6bUkb6KhXJWIqwO4GpTkVoKU48WmRTLGfzoemAmZmjXnn3JSS3ouotBgYfW8yGXV8vtVFB34drWBoKMvFakXWVIhslKj3ESwxPFa1a2g7ZmX7XvSn3I5NTvaH70GbSgOSQtHw+SNhd2l1HpUUWrlgvtVGJpUnL0pkNxmQVGzo4/TbSVqrouMHO1JtuVi6ULmwxJ6ViIEz3B6skFwUZx6V/tTa4d5URKlx6FnMdlNa7COS0tc0+H+dukxS+b2XjijfVi/im8tdpcrcQTHUiPpkDaeu17f5akokUJ78vfxAj7x5y6qfYc1Fpoe+uWjxTEUZ/Iw8eua60YnXpOP7DuZL17dxlxDcdWXtnZAAlS5OIJ70paGvRsDJaZD6uFPL6uab9RuZO+YkUWT7UmNIhnuJQv0tP0J1gdXTtvc3Ut0oLhioVnsk4ukoVjk4N42+sfVsp0hv1YVWQZdO7nDpzCpDWvP7iL/6C++67T/7myyqrrP9QnT59mg984ANMT0v7aEZdDQNd9yKmw7Qoo2sb/LUt4F6EkA8MVggH1zbqc52VTBVgMsSZTZ+DXu+WlJEgQo1LwfQF6WetQQpxlOumlJHZAd70tpzJDj65LZm0K5LWBJZqgXk5QCGVAgF6rhDxLiaZPiq/vuHsU2NrUHP2+WBxl5nM/FQg67okiJR0VOq4Sodaq+DMUxvPuwD0lUJeWK/10tkEQiulYQyQnoW1RcPCuZw5mgxkU3AP6519csZka51AcCVRHFYCaW8kp37W/31JrR+Hc+bX9QMaNCYlI68UuXDOvGWzTkqGKoHGHVrG3goScueUr8QcqKQyf5d77zLQl6VOeoZ5dbi+znP+tmQbS9eZoIPKJpGFwY0naboKgZAvWegclvOcSrbDnOdU0aTCtUfPxTeDuKdy0q975nn3kFtHRcDBqnYVNZ0azr8cKHQCy8mv8xo9S2MJ5i/Ivw+CCDVtAtODOWmKAUoCGMwQWJVckUQdBIt8fqXUAqJeCiOnM4HZDvMyy7CZfk4QoL4LxkYFSOTDSQDmKvCml+1qW8CzBMGc5cMMpBThNKfOPofbvYpCoeCGG27gpz/9KTrdxgcSypJUdlL6LSSKIhcvXmR5eRmTSTotMcc4zycf5VzyaF7a5UFfdpO86456XFdXU9GVPp2dSz9G4eS3xoj6Jeee3rtcbLm3qej1hx6fYnVI6gG2fNTFjs+3F023POjLQjVtN9ax41PF02VkaTNgdRlpudpRMp1nKiDFGi8BFPknI7z5V2ezgFJVv8wp6nQWVdss7Ph0G82HqmXznHp5adOAkrFOpOPmevruc8kniiIBSiJZpxc5nX9sKutkVUoZeKTuko1PJHV9uImG/aWdoTLlBDbl1rMZxXzRbBzW90vJeJJE9H3MM3OvG6xztHzASeMlDrSO0pVTvcuattAsXcbM8z3/2FRJQKl2n42qbdLJplKAkmgTab+5nv5PNpe8bkYjz0xz9tHSQNjAZzvY/pl0uCOZIhpqRIx1IlF/kjf/+mxJQAnAPR4g7C4dzlA0gq3LjOtK+XcUpHe59VonbTdLLiZygFLN7gq23OXKvvODPyoetk60ifTd15p1Mjv76PQaoLSOIN/2QAut10nXXT3nzweUgFDSz0vJxzgcfZbBs4NYLBb+6I/+iLm5uTKgVFZZv+O69dZbicVi/Mmf/AkKhYI4UV5PPcEr0ceIxfI/8i78YjYLEbVeW0PffcX74IXjXglQAno/XE///a5seKRchZZiWUCp6eoqttzVSIXMCfIMoNR6fTXtN9Zu6PDTeFkV1VutEhwipxiEV2N4xkvDPYOPTPPO30uAkqFOlHdcSa+BbHuomW2/Vxg+L1fnn5hh6MmNQzYA9N3fSNcH64vWYUYZQKmq34y91ySbLjAdZew30legWl/6FHssmEJtUWPfIp8fgL5GpPHyKpqv3mDulVkj2vhg2aaViCZIxt7fuVcqnto0GL+hMve6CQ6n8TIHXbeVnjcDVA9YpSw3AJTUegXB+diGgFLbDTUAG8JHPXfV0/Wh+g0dh0ByVht/ZbEkoOQ6WMWOTzVjbSv9Ltu6JMexC0/N8vbfXpAFlACCSzHCnhje6dKhhZuuqMLWaULvKH0vfR9roeMmaf4TXIgVBZQAtj/UTO+dksvT6oWgLKDU89F6eu9slCBGT4yzjxQHlCp7jDRfU50No3nhydl8QAm4EDvBc9Ef8frxV4jFYzidTvx+fxlQKqus/wR6+umnCYVC9Pb2AjAaOMKzM//IqPdYXjr/QjwLKDm36Wi5zIylQVqszXNbicPoK37i6dBEPTdZabu6+DrRzNEgvikpZEPXdRVsudVaNF1wMZ51Lmm72kbXTZUFJ4JzpbWqsHfoqdtR2uUvsBQl7I4T8cqPszF/iqPfm80CSuaGdWsS6zZRTE41W+914twlP19ZHQkzdnhlU4CSyggdNzlou85WMl0Gtqi/pLQ79/TbXsLueIFjznpl4BFbx8YL7q0HK2m6xLphuiw08j4Zu8RDcVLx3/4cbin3pETsfV7zytzrBoxQ/U4rTZdWoLUVqZwclwKLSytBcBvsfWWe78w7vpKAksWlpaJVSlwKUFJpofPGKjpvtpe+cFrDv1li5NnShwy33FlL7x3pdWkZQElllGC0eBiOfW+2JKCEUoF3NkJoJVa6vlVQ02fasH8w1qhoP1hBwz5pbb8ooASYnCp6b7HiHJDmkONvFAeUVCJs+ZCd9iul604fDWcBpfWOVV3XWWk5IL3LoeV4HqAEEI+HOTz/Q16d+g6nzpzCarXyd3/3d8zNzZUBpbLK+h3Xli1bmJqa4qmnnsJkMuEPzfHqsb/k3TPfIBrL/76bHZUAJYDmLdA+sPa7XGcl3yrMTEnjR0M39FyiRCiyhZKIwvSQNHeyOVN071dgktnaygBKVc3QtkuFsfQ0hOo2FdXtgrwpnUIBSQVBdwr/clLWTQlg5lSM089KgJKop9CFKOOolOYdWvbr6Lqm9Hf82DshLr69Ofq6cZeWtiv0CCXmShlAyVAlYKqRv5doCBbOSOOHIFIStklEJZDCVJ2JNVXc/UfQgWuPDkdXCUfFVGoNQBHYPKCU+VuZ9Mm49F/xX/72rkoKBSRiKRJyTt+/bZ6KdNoNACWAxl16GnbLtJucujfXSc+jFARHKiUBQCE2BJQc3RoQILSagPXz2Jx6rxvQ0n6VAVHO9D4n7ep4nLG304CSzDeSrVlF702mNUcxGUDJUCm9X4sX4pz6lTygBBBPqQh5UwQ9pYG9KpdAVYsKzQZm9m07BFp3Sn1ZPFocUAJo3wGdO6U5Y8gnqOOJngABAABJREFUDyjVd0LXXgUqUQrdNnZBlQWUcp2TdCZo3Qo16W2F2dF8QAlgfnmQl975U15761HC4RB79+7F6/Xy1FNPlQGl31JlJ6V/g44cOcKll15KJLL2YdJMN62K3oK0Tdc4GH9eGs377ndx8bmZtRBICkW2k+j8YD3Tby/gn47i3FfJyoivqItP09UOwt4o8++6MTfrCS+Gi25YVO+yShtcwwEsbQY8E4GiQIKxQYN/UrqPlutqGH1hriS40HSNA2uzsWRoquZD1dTurmTshXlZYAGksFRnfzy2qQ2X1htr0VpFzvxAHuhou9nJxIszJTvMTDpHv5ULT06V3KQw1on0fayN1Qtezj0qHw6reoeVtuvrmD26wujT8iefTS4dqVhCNgRWRqJRyY7Pd+Ee9hZAF/kJYd/D3XjGAwz+qDSUsllt1klps9r333o2rL9MOs+4n8Efbnwf1TuszL/nLp3ff+0mFoxz5G8vyKaR6rkT32Rww/vd/V+6UCjg7b8o7XQA0HJ9LVNvLctCfeZmPW03Ojn6v4Y35ZjV/eF6Vi76s05FxbTny12kkvDOX8mXr2Z3BbW7Kjn2j6XdMeoOVOIe8hGYi+b1D+uV6yjVckOtbNvPdZbqubuRwUcnit6362A1Y89JDhpdd9QzeTjtbJXTT4LUV7onpfqo6jcT8cULXOiiqSgLnUNMTE4QDEq/u/7663n66adL3ntZZZX1u6v77ruP73//+9mfNejZx3Wo1fmb+WaXHqVKAhtqdljQ2sSiziV6h5qaHRVZaKnuksqi4Y/UenBdU8uFJ6U+rqJdz+qF4tBE45V2Jl6SFuHXO7ukcj6mM84m+ho1xlo9C8dKuxxu/aSLyTeWWJFxaQLY9YU2UqkUR/5OPiRX9YAFY42WkWc2ditCDVvvd3HhqWmCc/LuMJU9ZiZf3fiE+e4vtZEIJ3nvn0qHNu25qx6TU8fbXz1fEqDZ8ZlWBK2Kd/76fMn8Nutu2P2ReixNBt76i9L5dXzQia3NtGG6zWqzTkqbVfdH6jE3GHj7r0qXr/P2OipajLz1/5auZ5BgL4BgCZi79fpaHFstDD4ygWdUHirq+JATW6uJ9/55rKRTkWO7hdZrq5l6Y3nD9qXWQ+1ee8nwaT0fqcM3G95UW1Vb1HTcWM2ZH8rPXev222g8YGfspUVm316VTdf3sUYWT3tKh5VTQ8O+ymzZMv1DQTI9aGxa/FNhrG16lCoFK+cKQUa1RY1oVBCcjVE9YEGhhLkjhdfX2dUYa7UsnvJhatRS2Wkq2lcanCIN++2c+9lM9t6n3yjcGJxWnidYu5p1Hrbb7fz6179mx44d8vdeVlll/c5qamqK/fv3Mzk5CYACJV2my2g0FK55OXq02UX4lsuNzJwKEU5v2CgUClLphX3nDj2rY1FCy3EqmtUEl2JFN/DtHRqSiRQrF2NozRAPxouCGJYGNclECt9MHJ1dRcwXJx4hvcuxtsakrVARXpV2Uar79cwPBkuCC/YODbY2PUNPy48Z9m4drgMVjL/mZjHXNWjd5knbdZWMHV4mvonD+tXbDBgcmpLwhXOnkYXT/g3BlOptBhr2Whl9Ybmks5DKCP0fdbIyHGTsJbdsOqNTRdct1cyd8DP1hvyYlgFrNnTrUcHAxze+LsD2B2rxTEaksF7vgzJOSsO/fn/yG3jQycqFIGMvuzdM5x4Lb+o+rC1a3KM5z02pKGhb2x+oJRZMcPonJQ51qmDgfqn+Rp4tfd0tH3Wg0goc/3b+uk6xrYPqbUY8F8OEZVzHtDYVLVdVMPjE4qYcs+ovsRBcjLIyJG3KFwPH+u+tQaGAE9+Td2SyNGlw7jBz9onSUJStTUtwOU54NZ7XPwB5TkompwrfjPQ753Y9M8eKz3FNdSp8s1I9Ne03Mn3ET7zItLl6i5b509Jzrd+lZ+lCkLAbFIIyr56dAzrC7gQro1FMNSpSSQkOzVU8HmfW9gYTM2P4/X6USiUPPPAA3/jGN0ree1lllfW7q6997Ws8/PDDhEJSX1hhdDHQcifCOspIawBBDQE3mGygt+RvzKdUShTROKIWKp1kXZVsdbBSLPiJAHUtSK5KCgUGQ4Kgu3gZq5pgMb2ForesAwfia3BCxtlE1Enp3PJdN6RStO5UsXgxjm9eHnDovFqHoILBZ9cd0Mlx+zQ5BAx2JXODmziNJUDrXg1Tx0NEZJaMBC1Y69Qsj2ycX/d1RlLJFOeeLX3YsG67BluTyOCv/CVhl7YrdOgsAqd+sW4SKSjz9kmMVQL+xY2dnJx9IvYWkZPr81unmh41jnZNfrp1c+vfRnXbtJtyUiqpnHmQs19DZbOaU7/0FzoP5aimV8TRoeHML72loSKQ4B8lRHOLKCjz7rmqTU39gI4LLwfwL8hfuKZXg6NDw7lfeeTdrZCgtvYrDUwfD7M4lFPAdftgIE1NbK1ifrp1qtuuJepPsjgS3xBEE0So26Zj4p2cAq4DlMw1Ai37tUwcDbMyJn+/Tbs0+ObjLM+WOGwqQGW9wPK4lI9ogGjua5JxUhJAq4OwH3RmCeou5twmCKDSQTgiYKoEtRpWivQxKlHqf7yLUl9UUbPWV6ZEVRZMEnXgaIKp9LKsraZ4fkveEVaTbzI2dpFUKkVPTw+PP/44HR0d8vdeVkmVnZT+Ddq5cyfhcJhXXnkluzl2kbM8n/oZo6nBvLQZQKmiw4ipTo9jWw6WnNNhnH9sKguvNF3hoO9uV9Frj7+wkIUVum5vZPvvF38J5t91Z0M0dd/eyK7PFE+XARDMzXpqBmz03N5Y4s7B0mhAW1Haxebib+ZZOuMtCSgBnPjGKFF/EkubYUPnGXOTAUN16SNew09KgFJFh5GmEu5Qw0/OcP6xyZKAEoB/OkpgLsTsMfnNB4D599xMv7VUElAC8I2FNgSUQHL/CcyFWBnZYCUrCsGlCJ6pjcOoiEY2dB/atEQJ4NrMNQMLIVbHNrgPEfxTQZbPbS5E2kaAEsDQL6YYebb084j6k/inQky/u/GG1fGvDTH4U3mQSTRKYRkBRp+ZLek6Zu8yozGqMTnlydrafTZ67pbexbM/nSoJKAFMHF5g5JkSYRYBc50BjUmNaJN/dqIRGi+rpv3WBgBZQKnukko6P9iQfc/k2n7bzU46bqnPulAN/rA4oOTcV0ndXnvWZencoznOVutp704TtTukfnTxpDcPUIqmoryrf55XeZJz589hsVg4ePAgqVSqDCiVVdZ/cn3ve98jlUpx6623AhAhyMv8nMOxp4jF1hYMvGPBLBxU1W/F0Vt4ijyVTBFciGUBpaarq2i8tBJbd+FRjliQLKBUPWCh64P1su6JGUCp8fJKuj5YR2XPWn4KpQJF+oR9BkBov7GOlmuqSzr46B1qtBY1xprSc6CR5+YY28B5cv6oJwsodd/hxNYjf3TFUqdHZxWpaJE//R9cimXBirYbakrex+BPp3ivBOCe0dxxN6ujgQ3BmdHn5zj/2OSG+W02/OryBR+ro/4N3ZS84yG808FNuS7pq98/ayZNpXpT1/RMBPHNbBz2bHXULzl1bWLtLjgXLQkoAYw8M8vka4slASWAhRMevBPBDUOpLRzzcPZnUyWhooYDlRjqRGJBSgJKAPpqLVaX3LEzSVvubUBfI4V5KwUoAUy/scL8CXdJQAk1aG0ilubS1+2+rY76fZVZ9yQ5KHDrA6103y7NNd3DwaKAEsD2TzTRnZ7HzR/1FAWUAHo+0oArPY/zTYSzgFJq3SZo9VYrlmYD+hqpfOsBpeXqSZ6L/YTByDFmZmZoa2vj2LFjLC4ulgGlssr6T6z6+nomJia4cOECNTU1pEhy1vcKz819nYnAmby0GUBJa1VQ0aTB3rp2mjuVSmVD9M68F1wLg7TPTMcHKopee2kowspIFJIp2q+xsuX24o6InslYFiDouLaC7lvsmYtKmxnpeVcGQNBaVTTsMWddSeRkcmrRVapLuvwsnQ0xe9yXDyhBgZvS8K8kQElrU9F+Q2n3bUuDFmN16XWWmSMSoKSrUlG9TX58mT8e4PyTCxuGPov7wT0eZvl86TUl/0ycydfdJQElkOCkzYQTIy5d1zu1sZOBdzqCd2YTjgcqKdzcxlJAadNOQGovm7mmdyqMd2aDULwqWB0J4R7beI4G5ANKUNQ54MIzi4y/5i6dURxWRkIsycwZcnX60QXO/zIfVs4DlFTQkHbnmj/ulwWUAMxODboKEaNdvg4tTVpaDkp2HFOve7KAkpwmXncz9krptVlDlYi2Ql362anAdXkFzZdbgbX+AUHIA5QsTSKd11dSu01yVpADlKq36Oi8rhJbq/Tujr9RHFCyNKho3GPKuixNvSsBSqSSBSBYdZcOR5e0Xuibi+cBSvF4nBORX/LC0j8zOHQag8HARz/6URKJRBlQKqus/+T69Kc/TTAY5M///M/RaDSs+sd44eT/w3vDPyCRQ1mEAxKgBGCvh+p1W3mKeBJFIkU0nA8ouXoFzMWmVAmyYd+M1hSd+1RUFQ/2kgWUKuqgc78KS27wBZWQBR2i6S6zrldF04BG3lUJEDQKdDahuINgjiaOhpg8UaSDVa6N/b6FRBZQcvaLJZ2NRB3obSoMdvmFlkSYLKDk6BJL3sfIa34uvLTxeLsyFmNlPLohODN9Iszw4SJjzzpYaDOAEoB3LsHyWHTNYUhGgaUk7ulY/r3KQC+iAcmdqaQ255Mi6GQirqbyHZQCy3E8M/GSgBKAf35z9QwSMBNdz1DF8y+wOBxj/N1gSUAJwD0VYWUiWhJQAggsJjj/QqAQPMqp64omFTqrQCJBSUAJwFilwlStKgkoNe7SorVITlB5gFIRONw7l2DmTKQkoARSGLqNnMCdnQIN/WvuSVlASa3KC/XWsVugbbf0c8grH1qy4xIVLduldL7l4kARQMs2cPVI9xYN5cCciVReaEuLHaqcoEuXb31+wdQoL536a46O/JDJyQl6enoYHh7mzJkzZUDp36iyk9L7qCeeeII77riDeHztw6GeVroU2/PSiTYxCy8MfK6N8Eq0qHOMsUGDoFHhGQ5Qd6ASrVlk5JeFEEBljwlthcj068uYXDr0lZqiAEfN7gpSqRTz77qxtBmIeGNFXZqqd1mzMETu/5dT9Q4rWqtYMhyb62A1NQMVnPruqGw4rZ47G7C0GDn2LyNFy7VeufVYTLv+oANBI/DW/3N2w7x672niwgZQiXRRNuV6s1HZLG0Gej7cxMzbS5sKY/d+ac8fdZGMJnn3/x0qmW4zTkq1+2y0XFPLxefnNgTR3k/t/UoXwYUIJ78l49vHxvW/lpBNuxhNvbOMb6z0zKLnzgasrSZO/2iswNWnaNk2uP62T7Witap562/Oyabrf6AZjVXNu38j/0xFm0jrNY7SjlxIThPei16i/tJOVbn9Qtft9Zz7WZF8RWi6zCG1bxHab6jLhoHMlblZT+OlVdm2JudiUtFlpOPmes49NolnOFD0GftTft7leXRGLX6/BMXt37+f119/veR9l1VWWf95dejQIZ577rnszxp07OYg2nWxx9QWCTqoaNfTcm0N55+Yxj8VyduIVygV1OywZN1Ouu5wMnF4sSgs0PwBB6Np0KfukkpmjqwUBT1ar6/OAkH2PhNLp6Qv3jwAQA22diMrg37UFjX6SvWGkEf7zbWMPT9LrESynZ9rxTcb4vzPZMK2qWHP59vxz4VKwxhqsveWqcdisrbp6f5QPQunPBu6NFlceqp6zQw/XeooXc71NwqzoQa1WlEyxNiWe5vQ2TUbzoHeT9VdUknT5Q7O/nyC1RIbf5t1Utr5uTYUgoJ3vyrvEPl+q/FqB84dFZz87ijBeXmoqFTbyJOo3Ni1ya6m/lI7Q0+UBs0B9vxhOxFvnOP/LD8vzJYtpy0XvW6Nmv57m1k8I9+G9TVqttzVxOTryyXhpIYDlfhmQhuGqcv2C2qwd5hYOlN4slDvUKNQKwhMR6kesBALJ4o6qjm2W/BPBwkuxKjdU0FgPoxvonBD13XIQXAhzMJxL5YWPTF/jOBCrKA/7Lrdidqk5tS3pTlasWc8FDuO2zyLz+8jlUqh1Wp59tlnueyyy0red1lllfWfUydPnuTKK69kZUUCFRUoaDXuodU4kJdOZYB4etjrut5CNJBg9BW/5KufkUKJ1goqrQr/XBxbi4iuUsX0u4X9pr5Khd6qYOl8GK1VQGdTsVok1JKlQY2gEVgZDqO1qUjFE0S8hWEhLC4Rz1QU4mBt1uC+WAIuSSUx1YvobWrmT8qP5fZuHfW7LZx7cmkNeFh33fr9Fqp7DZz5+UJpiEcFxCWHo1LuSz23V6G1qDj6zY3HS9cVVmaP+YmUgEpyr72RNiqb1qqi5w4Hc8e8mwpj936p/74aUvEUp35Uei6646E6PBMhhn8l7yxkbtTQeUMV46+tsnBq4w3H90tbP1ZLcCnKhRIuXiotxONs/Kw2+TzrL7HgHgngn1tLXGy7oP4SC7X9Js49uYBP5vBlXtvY4Prt11Vicmo4+t2ZvHS5LkrNV1VgdIqc+oH8M1VpwbnLwsRhTwEkmCtjrYqwO048JDkueaYj+eVL74xaXSLuMen+6vcYmXq7SBtWgaNTx8IZaZ2wbo+paP+ltSpxbjcw+pI0x6ts17B8IZIFNzPX1VWqaL/axMVXffjm4nn9aEbheJgjq0+g1Mfw+XwoFAo+9KEP8eijj8rec1lllfWfW//jf/wP/vzP/zx7KM9qaGBb652IQv6hZ0GUoAOdEZr74eIpKexR7iZ8SlBgqQJPmkWt74SlacmxZL0cLlgcTkBKgpFW5xVFgZDqNgXzw9J4YbLnAAWxvE4dox38S1I3qzFDsARvqognqOlSsTgaJxGRX+PpuFJLcDXJ1PGc8SiZ27dC77V6AstJxkqFdhOQ7i2RRNBKUFIxaczQdcjMwvkIs6dKg8kaM1Q0aJg7swHAnLl+cmNyOvOMC5Qe9+p3aLBUC5x5ZgMYOnd+WmLM3PBvkUKfte43MHw4gG9OHmSp26ahqk3c0Emp/So9aq2CwWcChaCNTGhe+bLmtIUSf2trUlE3oOPCiz7CGQ4/99rpvy3VNvKVWHtXlMXBeUEL1Z0aZk5s3D56bzYRDSS58IL8XDRbtg3qSNRB5wdMLA1HmT29rjEJymyativ0zA1GWBmXf6YVjSpi4RT+xdLhGk1V4Ftc9/9zy6kSUImS41HYL/UjUBxOMlZCNCwBTpZqiMSEbAjMXFU1QCwC7gWpT0wkJECJRC54r6SuXfr9cDqqebF3bG51kInVF/H63KRSKRoaGnj66afZsmWL7D2X9dup7KT0PurWW28lFovx+OOPo1JJFN8UIzyf+hmnUu9k0+VurCsUZEFS0SYi5hxm909Gsi5I1VsrqCriAgCwPOjLbuq331hHy7VOCX5Yp7l3VrNgQeetDWz9eEvR/DJpTC4drYec9N4jg02n1XBpFbW7Sp8Gi/hjxCMJWUAJYPAnk7z3d+cJL0QRbWJJxx9jg4Ydn2qj+yMNsmlOfGOY0z/c+LS+yaXD3GSgpYTrEkjPZ9/D3VlnGzl13FbPjk+3YXLJO+R4hgOE3RECCxuPbF231+M6WF0yjWgTabvFibjBibG5IytMvVX6lPlmtTriZ+G0m6XzpScXTVc7sg46shKlsH/m5tLxggECc2FWL5Ze5Oq/t4k9X+4qmUbrENn3h910frC+dNGMYG0z03KwdsOyDf5kkvOPT5YElHZ8qpW++13SP8i8DhUdUkdw/OsjHP0HeUAJILgcIRYsTTO3Haqmot1csk2KRiXtN9fTc3crIO9U1fnBelqvdVLZI7lqFAWUgK0fa6Fur11ybIpSFFACcO60YWo0YGyQTtquB5Qy/x5Ig4v6Kunn3H40Iq4w23OWtxXPkkivMF155ZWkUqkyoFRWWf+b6ze/+Q2pVIpDhw4BECHEYZ7kpdhjBGNrH3CZjXWNRY1CocA/L30IZlxBQAKHMoCS2aXH4jJQ1Wstet2Lv5YAY71dTeOllXTd4ixwHgHyAKX262tpvFL62lLkLgTEyAIH3R9ySi4pJQ6gWFr02LtNNF5Rem4QDcQJLZb44I3B0a9dyAJKFpfMGJxmEnrvrmfgQRdqmWTu4SBnfz61qTByjVfYqew2begK1HFLLXu+0I7aUHp+s/vzHfTc5SqZxjMewLcJ10lTo57ee0rP9QDsW0w499lKplk652XmvRX8GzgQbVZTbywz/fYGYc8salwHHaj1pRcnGq+sovm60m0IIDgfIrAYKQkoWZr17Px0K40bzKV77mxg9+faN3zu9QeqsHWa0Jc4zZjRmZ9Mcvzb8oBS1+1OdvxeMxqbWhZQ0jvUqPWSe9F7/zhUsg0Hl2PEQ0li/tI7fs7dNpqu2KA+7qqn/frabNmKAUoAW+5x0XWLNF+dP+opCiip9dByqJrW66X56uzbq0UBJQBHr5nqrVYAPKPBPEBJrSfvHc9dO8oFlPxdUxwzP8845/B4PbS3t/Poo48SDAbLgFJZZf1vrP7+fpaXlzlx4gRVVVWkSDHsf4tn577GkOfNbLq8jfXcNWit9B8AqSRhN1kowtGtw9FZ/Hs1uBhn6bzUpzXtM9NyhRWVpjCdZzLGyrCUru1qCz23pK0C1m3AeMYkQElthLZrKmg9aJW/aYWS+l0W6naa5dMAsVCSeChJ2JczPqy77tQbHk58f4bwShyVtoRLT1xyA9r6USfNVxV3mgIY+uUiZ58sDNG5XhqLispOPbUD8u6ZAKhg+321tBwqPb9x7jSy7Z46jDXybgdhd5zAfITA0saETN0eM7XbS5dNglBMqDa4hZn3vMwc2ZyD5kYKLkWYfs/D6sXSh9XsvXosrtJupwDt11eid2zszOSdCuOdLr1W2H5DFdvuLb1GpdJLYd6aLt9gPU4Fjm49dbs3SIfkdlQSUNLC1o86ab8uvUYs8/gzbefCr5Y5+UN5QAkgtBoj5i+95lUzYMHRa8RYV2LuqILOGxy0HZTK5hkvDig5B/S0H7RhdUlr0kUBJaDlgIXGvWY0Zqm8xQAlAFurloomDcb0s18PKGkrpH+PeeOAAo1Z+u7J7UfDKj8z9sMcXvkOgcQKyWSSm2++mWQyWQaUyirrf3P9z//5P4lGo/zxH/8xGo0Gd2CSl0/+JW+d+wah6Fr/lNlYV6eHo2h6KUjMmVopEqksoCTqwN6gpELmk3VhDEhJm/ZNfWqaepVF3VkygJLeAm27VFS3pvvwHGcUUin8i1K6hq0q2vdrEEp012qrQHWnGkebSvoglQEvooEUEf+6A225UEgCzj0fzAJKOqvMBdNDTP0OHT3XmRBktiQjXhh6MbAhoASSG15VR2nXJZCcmfpuMiFoS/uIdF9noHm/zL5O+ls+sBjHM7uxo5LGDE27tWk4Sv66BrtARWPpGwgsJpg6GSLo2ZyT00aaG4wwe7r0HEgQoapDLfucAEgmsbnUVPcU+WBYp0gghX8hXhxQSks0wZYbTDi6SrudOvvUbLnJUrpsgL1VQ1W7BlHetD6rCy/6GD0sv5ZZ06eh9wYzokl+DVDQSSBTNASDT/tkASWQ0sSCKWJyzTz9Tjq3aKjpFksCSnVbVLTu1WSZB9+SogBQAsmRzbUt7Yq0JO+e1LpDRX239DeeeYoCSgDVLgX29JZvyJ8PKAkCa88nlV+cXEApKJzmxPT/4uTYz3B7Vujp6eHll19mfHy8DCi9zyo7Kf076tVXX+XQoUNEImtvtBkbuxVXFU2//TOtaM0ib/7fxZ1/Ms4h1TusNF1Vw+BPLhaGYRIlO/75d91oHSLt1zs59aOxAsjB5NJhrNUx++YKxgYNugpN0bBnTdc4mH1rQXJWKeGqZHLp8I2FsLQZEI0qFo/L2z9X77JS3VdR0gln15c6ENRK3vpz+RPlffe7uPjczIah00SbyNb7XQw/M8PqueIfl8YGjWxIq1xtfbCFuaMrJUONlar3f432fLmLWDDO0X8Ylk1Ttc1Cx031TL25mA0t+G/RZpyUNqt9/7WbaCDOe38nf+q/epeV1kNOLr44x+yb8ifZNqu6SyrRO7SyYAwAImx7oJXRZ2dloaKMjHViyXY28Nk23KMBRp/Z+ATjlnubmHhtUfaaXXfUY+swc/bRCVaHirfX6h1WqreWfocQwXV5NWPPSRtt5mZ90Wvmvte57/v6vOr325l6eQlEaLmmtui91h2oRFehYfgXM4hGJZYWY9F+pe9+FyqDwLF/HJGyl3G+6rvfhbFOz3t/e47o+o8OYC41yRneIZUmPW02G/v37+epp56Sr5eyyirrf2vdeeedPPLII9mflQhs4zIq1TUFaTU2Nds/4WL5vK+oY4tYIWY35fs/4SK8HClIl0qmsPeaWBryQUxyTvLNhlk45skHkYDGK+3ZUHC1eyqKui+p9VC1tYKZN1dLOquYGnX4JqQNk4YDlSXDYYEEGM28u8rqUPEPW1uXgc5b65g96mbsN8XnEZYWPdVbrQw9LuPMlCPXIQfmOh0nvy0/j9Db1QSXSlvqWNv01O+r5PT30yHdUsUdlVqvr8U7HWTxROnwI5tR3f5KGg5Uce5nk7iH5RcCBn6/FUErlHQy3Kw266S0GTVd46BudyWnfjCOb0J+frPtoRZUWoEjf/s+uDKpoeeOBi48MSXvZqVQ4thuwd5tYvBHpZ0dQQII5UKe2XqMuC53cOq7oyXdxAAMdSKN++2cfVS+3e55uJ1oIM6xr8vPqzZ6h0CCEUMrEQLTUYz1WvzFwteowd4luSepLWqqeozS+14kr+BsmOBSjJodFryTEkyUl5Ue2m+tT9c7VPWbWTzrhVg+CGlq1NJ5Sx0Xnp7FMxrMOiIVgJVq2PvFDvzzIc78oPgzOhJ7iVWkuaVer0cURQ4fPlxepCmrrP9DNTw8zJVXXsnU1FqfUS22ssV8dfbgXq46DpkxVqs5+oOFQnhBocw6sJhqVTRfbmb4BS/BxZyEyQSooKJRw+poBJUWmi61MH7YQ3zdco7WKmBwqFkeCqMxK9BVqIs6Jtl7dLgvhoiH0q5Kk5GiYIXOriS0GEdbqUJrURWG4sqRqV6kZouRC79Or20U2QDqvcOBaBI49i35NYSWa2zMHPMSXi4N+qi00HWrg4k3PHgniq9raW2qTYVga73WxuposGSIOJUWmi63MfLCyqZcejZS/701xEMJBn8mD1wZa1R031bD9Lvu98WZaTNOSpvVto/XEg8lOP0T+bU4k1NNx00Oxl9bZWl9eMB/hSpatRiqNaVD76mg4wOVzB714pspPefWWFRZl61i2wRdt1bhm4kw/c7GAFjzlRUsnvfjl7lm3W4zzh1mzj+9WNBeM4CSuVFD9RYjF54p/Y1Tvc3A/HFpbqavURNcKGyQFpcGz5T0Xtt79bhHgsTXN28V2DuNLJ2Tvq+c2/VFQ7vZWjToq9QSuKQCS52IZzwKyvwNOtdlRnRWgbNPSc9HZYS4r/A7xnWZCXu7jhM/XyZWpFm7Iwsccz9NNCWVy2az8eEPf5ivfe1rJeulrLLK+t9XX/3qV/nv//2/EwxKfZRetNHf/CHM+kJwVRCg73JYnkoydaawb1fqFNlN+ZZtCmKRFJPrtiUVsQSGCgj7IBEHR7OCaCiFe44CeMjeCEvpYDHWGnAXCcclCGCpFViZToIAJtuay0quNEaIuqU/tjUJrEzluNMUGacaBkRWJ+P4F9N9bTK/z9VZoeMqI3NnI8yfLT4+aUxgb9YwfWyDGF1AZasai1PF6GH5tKIhJ6SVjLQWqOnRMfZOSLo/GSCrqlNNxJ/EO70BDLQJZySTQ0nLJXpGDq8LW7bub9sO6NCalJx+OucmSkBNpbRZJ6VSYcoydWNzqWjapWfo5QCB9WHucp57y2V6tGaBwad9m3NhKnVtlYL6bVpmB8Mk5B55IoGxWsDWrGHirZw5hIybkmikcA8uLV2lQMOAlpFXAhuGqhMN0mGPqffk5+69NxqJhVIMvVhkDpoGlOoHNHim4viKhbJL15/BriARTRH2SuWPhIsDShnHJEEAi1NgZapwDmSwQSwmEA2B2SGFsCx4XwSo71IyeyFJIprv1pZSr11b1EHrdgVTZ1P4VnMckRKFz7T/KiV+D4yeKFp0hmdeYmzhTZKpOFqtlubmZp5++mmam5uL/0FZ/2aVnZT+HXXgwAHC4TBnzpxBr5eOpHpZ4fnUz3g19UuiqfweZuKlBZbOpT/4RCmMk2hbwy4zm/iiWUKNMy4AuWmIrjkhNVxShbFOj8lZSNn6xkJZGKTjlgbabqwv6r40/rwELIhGJS2HnGx7qLXovWbCYLXf6KTtOmepaqG6rwK9Q1v0ehmN/nqW2fdKLxac+s4Y/ukoWodI/wPynYRoUCCISvQOeXI2Ayh13V5f0inpxDdGJUBJRLb84YUop74ztilAyXWwWrZOM3r7q+dKAkoAi8c9DD4yviGgZO8zr7n4/BvlOlhNx22lXYgA3vv7s5z/eWnYaf5dN2/85WBJQKnuQCXbPtVast1kNP36cklASTQCUcmpSA4WMjZo2PmFdkSjsjQIJ0oW9Vqr/BGAuksqabtFei9Of3+8JBQ1+qspVoa8soASQFWPBUO1Nv/dX6ctH2nCubsy60RU7JoZt7SetGNE5n1fr60fa6HxEkfWFUkOxqodsFHZKZ0wjfqT+YCSSJ5TXK5yAaXmQ9W0XCfBBBOvLbJy1lsAKJ1LneC04zXOqd7LAkof+tCHWF5eLgNKZZX1f7h+8pOfkEqlePDBB1EoFCRJcJSXeS72CBdjg3lpIysxls76sg6DTVdXUbd/7eR4dLV436/Wk+cEs3TGl4WNKrtM1O6UTryvBwAygJLeoabpcjs9H6wryDsWJAss9HyonvYb0y4r65QBlEyNOur3V9Jxi/xJao1NjbFWh71L3gFg5VyApTM+xl6Sn0d4RoNZQKnthhqq+uXz01lUqHWlT1wFl2KoLWq2P9Rc9B5BcmfKAEpqPaAo/uky8szspgAltV5B/wMu7H3yZZ9+Y5m3/vpcSUAJ4Nxjk7z79xsDSm031lK3v7Tj6GbVc2c9lpbSrpPjzy9w5selASWA4/9rlCP/VBpQ6vu4a0O3KABiMPijSXlASZSe28IxT0lAqfsOJ65D0lFOOUAJQFehQaVTotTKz7167qpHbVETmI6WBJQAZt5dYfTX8u5Jaj0Ya3U4+ks4DKih7QO12e+gooAS0H+vi7brakEtORMVA5TUemi7vpbWG6W85t7zFABKAHqHHkuDnto9kkPb4klvHviotkj1E15KnxytkH7OBZQ0NjU9d9VnQ+EtnvEw+Vr+fDwWi/Ba7Je8Z/pNFlCqqqri9ddfZ3V1tQwolVXW/8Fqa2tjcnKS2dlZ2traAJiPjvDC0j/zxtJPia8jAWaOB1kYDEpgiwparzajznwjppLZEFGiUZpDRNPQRJ57TpxsqLeqLj0VTdqijkRhd4LlIen6rkuttF5dsebilKOlQQlQQgWtV1XQdX3xMTuUhqWaD1TQcmWFFMZKRvZ2PaZazdr1imwYjR9eYeZoaeBj9PkVwstxVHpou05+PFaolKh0AlpLCWejNKDk3G2i5Rr5vEaeXVkDlOSMnsJSus0ASvZePZ03l54HnfzxXElACSTHrbOPz20IKBmdqg2doDarqi166i/Z2F3o9I9nGf5N6fVL30yM9745XRJQqmjV0nWLvWg7Xa/VkXBJQEmlBeIw9MtlWUBJY1HRe4cDlZGSgBKAWq9EU6J9VbRqaUjX1cWXVmUBJYDpo17mT/tkASUAa5MWU62IuoRbfNPlFhr2WrPuVMUAJbVRQfuhSlqukL7Pls4UAZSAlisqcF1iRmuV+p5igBJAdZ8Be3t6jT2OBChlpEL22eUCSlU9Opzbpfn83OkQ8+dCBYDSVHCQ46nHOOr/BdFUCJVKxWc/+1mWl5fLgFJZZf0fri9+8YsEAgG+/e1vY7FYCEZXeOv8N3jp5F8xt3ImL20iAbMXYWlc6tsrG8CWs5WTDOX3+ZkhQBCQXHbSCqxKgBKAvUmgyqXK/4O0MoCSIIJrm4qm/sJxI5FAAo5SKeo6lLTu0RTdL4hk5oQGaNwuUteb8+2/zl1JEMFSo8JSm1PodWBIyA1zZyMsDcmPTxEfTJ+MgKCkqlPEXCe/piUalKh1yrx6Wq9oQCpb2xV62T2RsAfG3pQAJUFAFpRZPB/bGFACUKRw7dFiKVF231yCE0/48gElKACQJo6EOPvrjd3IHV1qbK4SE+PNKpWifkCLvrL0WuLKWJxzz/lKAkoAo4eDDP66NBTl2quTyr6Rj0sCpt4rASiRAAH884l8QGlduZz9mqy7kxygBCBqQa1VlnRkqt+pQ9BBNKgoCSihUDB7OsLk8SJpMg5KAlhqBCx1qoK/zX3XmvfoaNimLVl+1w41Lbs1CKKCRFJRFFBCgLa9Ghp6pWftXSgO9IlayfGtMr18vt5hKVM/0ZBk3ptx2s0FlAQRGnvJvqtzF5PMrTufmEgkOHHxUY5O/hOj84dJpuIMDAxw6tQpBgcHy4DSv7PKTkr/P2plZYW+vj5mZtYWypUoGeAKrIr8j+imaxzU7bEz9OQUS6fkFy6MDRr672tl+ayX848VLvpnHUpE2P25TqbeWGLmzXUnUUSo2VbB3DuriDaR9utrOfODQqik7pJKli/4CC9Eqd1nY/m8v8D9RDSCpcXM4kkvxjoRtUks7l4kAlEprJWlyZB1eymmHZ9vI7wSK1omkMKrVfaYGXxkPBser5RKueIMfK4NpaDgyFdLb9rs+XKXdOL6H+Xhoa476rG2Gnnrb+TDdfXe04TRqePtr5YO6QXybjO/jTpuq8feY+bI14ZL5rUZJ6Udn29HpRV4+y/+jaf+M4PtBrfWc1cj5kZ9SZeBLfc2YagtXZ9V2yy0XV/H5BsLkjOQjJquduDcXcmZn8hDRZt14Nr5hXYEjXxdVXQZ6bi5nqEnpmThJNEm0nR51Rp8lX6H1qt2n02CvXJc1Qru7RpHFmhzHaxm7JX5gryqd1kxVusY+eUsok3E0qgrdEgTYeChNrwTQck9Sa6NirDvD7sJLkY48Y3SIRh3/5cuUolkUWcK/8AUZ4bO4PP5UCgUtLW1cfvtt/Nnf/ZnJfMsq6yy/s/VV7/6Vb785S8Ti60tRFTTSL96f/bnzGb9zs+1kkqkeO+fivdTGWeSvo81oqsUeedvhvP+PiO1XoKN2m6sQe/QcvJbY3l/D5JLimfERywITddU4Z0KFoZwUkPd7spsGMy6/Tam3yjcAKnqN2eh0OoBC/NHi2xYpAEEgJbrHEy+sZoXuilXFR0G2q6r5ezPp2RBi91faiPijXPiX8aK/j5XpRxxLC16uj5Yx/hLC9lQe8XUcKCSur2VnP3ZFJ7R9Ji8zlVJrYdtD3XgHvFx4UkZVwI17P58JytDXoafKu1+qNZDLIZsiLDNavfDHYTdUU5+c0w2zWaclIz1OvruaWL67WUmXto4tEspZZx0SqbRw/ZPd7A65OOCTF1JaTpZHHRz8VdF5vJpqGzbQ82oNEqO/N1IyWvu+P0WYqGErAOX3qEuCuusl7VNT9eH6pl5d4WJF4vP9XrurEelV2Xfz2JqvNLO0lmP1H5z3qFcVXQY8M9HiXliea5qudLY1JjqtCyd8qGvUWNw6AqdJtXQdYuTkWdmiAXBsd3CwmlPQV61eypw7qjI9lPFnqVCqaD95lpsnUaOf3OMyIr0+2IhKav6zbRdV8PF5+ez72Cmr4rZgyxYhxk8KwGeZrOZzs5OXn755ewBnLLKKqusXIXDYa699loOHz6chR00SgM7Km7EpE6DKglpQ6GyQ0vzpWaGX3TjHivyDZkeQ9RG6L/dztJQmPE3/JKbUo4y7ksAfR+2M3vCnw0Nt5YIbI0aVkYjqMQUDfssXDzsKYBsKlo0hFYThFfjWJs1BBYj+fBAKim5p9Rr8IxFUBsVaK1qfFNFyq8C4qCtVFHRqGX2mF/29HnXrVXEQgkJ/Cki504jtTvMDD21uKEjDkhh5MLu4gRR1y12VHolp39c+oBb/z01xMOl3Y3q9phx9Bo49aPZouAHQOOlFmztek7/WD5NRrnP8l+r2u1G6vZYOP3ofEkHqs04KXXdWoW2QsXxb2/smF1SKlCp2PD+Gy6xYO/Ul3TXarrcgtWl58wj8vVpdKrovNHB1DuerMtQMVV26Gg6YGXomUV808Xb1WYduLo/VIXWrObYt4uD4foqFe3XV3HxhRW8U4VraAqFApUeqreamX4zPUdKv0PrZevQsTIk7RJWtGpZHQkXgIBVvXoW00CYY4uehXPBgrwsTRoMDjUzR0OoNGCsFYv2RV032ggsR5l8049KW+Q5pl2UBu6tJLAU5/yv0t80Mg6wW263oRAUnHokvTafEwvIWzvI4OgxPB4pj/b2dn7v936PP/zDPyyaV1lllVXWiy++yP3338/kpHS4S6lQ4XLso815ZTaNIibNnTr2KVEKCs69Vhx2SQlSX+rqA4tdyYmXknl/n1HGpaSqWYHZLjByJA4p8mAGo00Ks5SIQlV9irA/UeiYJIDNKbAymXZMaih0XFHEE5gcCnzLKUiAqUaJb65I/6pMZZ2WqtpVrIzHJVAhWZhWZwXXHj1jbwcJuYtWBT0f0BMNpRh+ceO9xlKOOBoztF9pYvp4iNVx+fHU2ijQuFNyN8rCN+vdfwToPmjAOxdn+rj8flTvDQZWJuOFIb0gfy6aGX6KNQc5R6Yic9me6w1E/ElGXpV3lSrppJT+ZhC0sOVGM7OnwyycK/ZtIFemwmcsaCGxfrwuUp891xpxT0WZOSFTnwL0Xm9iaTTK/GCRMqW/a1oOGNGYlZz9pcw+fhqaa7/KQDKRYuSV4nuNm3HfAtBaFHRcY2JuMFJYV+n7rNuqQWtRyj8XQYmtSSDkThDykA7/V1jHOqv0HkeDkpNSeDVFIkFemDdBBEMFeBcUqLRgsIJnrvCSdb0CcxcSJJKC5Iq0SkH7Mzugtl3F+bckJ7asK1KOUmqB6mZwtig480ZKCucGRZ2TDFbo2KNk/GSSlcwUWyU9jwQe5mOvcPr0cQBMJhP79u3jiSeeQKeTCa9Y1vuu9wFxLGuzstlsTE9LgMGePXt45513SJLkCC9CCuppp0uxFZBOQc8edWc3/Pf+UReB2TCnvjeWl6d/PoJnPMD4a9ICQ+uNtQSXI1lHmszfWxoNKAQFsZA0GObBBFGYe0c6xdt8hQNLk6FoaKjMJhmA64pq6vfaeff/zQcJon6yi+4dH2xEYxJ5868GC2GK9M+ugzVoLeqikERGqWTxRfWMhh6fQnxlDcYy2EQCc8Uz2/apVnQ2kTf/6mzR6x39+9KORRn5poP4ZkpbP7rHA+irtYgiRGXuTQ68Wq9tn25FZ5UPBQiS01D93iqO/dNQ0dBYINXV0OObuuSGKhW+LaNtD7WCQnIsklPvh5swNxlkQ3plNPijiQ2vF1yKoDKoSgJPnmEfYXeEhSOlT7qNv7DA+AvyC3f9n2jGUK3jva/LA18ZiOnI1y4gliCfo+4oqRSotPKnxLpuq8NQo2P8lUXpekUu2f+JZow1uixAWAxQqt1no35fFYIoMPrMrCwg2HipA6VaycgvZ4muRFnMucds/xEFQa1ENEhDSXRdms4bnVKfFQX3sE8KQbJOJpeOLR91MfPuMuPPL3D8m6N5+fhTfo7wAnFi8B7odDq0Wi3PPvssBw4ckK2vssoqqyyQTpl98Ytf5PDhw9x44414vV7mmeC52ARa9OzgGnSC9OFx5O9Hss4jTVdXUbPNyqnvjmVDkmXmItPvrFDRbJAuoIbum50MPz2TDTuV+V+VVolKs9avq0wqYp4YCqWCpVNrH+aOLWasLkMhpBRbm3s1f8BB7fYKQisRVs7lf7Fm5l16h5qWg9XYWg2FzjHpfQe9Q011vxXRoOLcz4pvIggaJalUiohP/pTWsa8PZ++zFISkt6vpv68Zz0V/UTcbz2iQt/9q4/nE3Akv1hYjwbmcualCmbf4HwtCxBMluFxiEhCDd/76/IbX01Sq2f5gK8tnPLKADsDWTzYTDyU480P5Oco7f/1vDwcH4J8K8eYG4eD0djW99zYz9uJ8SWepHQ+14JsJceYH8uWOBTdTdgURXxTPxSKrKDmuV0uDXnTWja0w5QBBkGCc/o81450OyroxZSAm93CQ975+sSSIlUokS35fqPXg3GXD0qDn1PcmisNqaui8tY7gYoST3x4vGpoRoO+jjSg10nsfnIsVfV8sDXoqWo0491Ux/sIiC8fyn18GRkrGkihFZfa9y73Hmh0WRKOKycMrTL+zhEIJEV9hWLeeu+oxVGl592+HWTzpxT0eysvnQuwEY5xDMQfMgcFg4Morryy7VZZVVlkbSqvV8sorrwDwe7/3e3zrW98ikgjwxvIjKFHRbtyNS9cHwPJQGM9EOLvhv/WjdvwLUUZeSH8zpsf4WFjJ8nCY+UFpDlC7TU80mMy6JGWgFm2FCqVakWWY8mCCOKyk3ZccvQYq23Qsngvgn83fLMo4NAG4LrOQiKY49ZOcHTWFEuJJPGNSutYrbRiqNbz3nZlCmCL9c+NeC6ZaDYtn/cTDiqKbO6lUilSJw/EzR/wsnPOv3WsJCKntOhuWei0nfjhDvMj+x7lfyB/UypV7LETEWxpO8c1GMNfLO5YDTLzmYeK1jd0u26+vxFSn4eg35N0PK1q1NF5awbknFrPOP+s1e8wvAWHvg849sTEU3nZdJSqNsmTaxr0WqnoNnPzhHLESa16Tr3uYfL10XYVW4uissZLAU3gljn8+yvIGhziXh0IsD8mva7YctGFr0XHiR3PEZL4LMhDT2Z8vlnSAigakDWxBLNz8yjgoNeyroLJdz/LZoNS+izzilmts2Np0BBfmCbvjRQElc4OI67IKRIPA9Ds+Fk4X3wis22FGNAnMHA0Rj5AHKOX2H4JGkf2my613lRYa95kZfT0AcVgYCuGbiRbASRoz9N5axdzJADPHg5z75UpePuF4mKPuJ/HFl2BOWvOqqanhySefZNeuXbJ1WlZZZZUFcNVVVzExMcHFixe5/fbbOXr0KKPzhxmdfw2bqZn+xg+hUUjf4kNvJrPOI7Y6qOsSOP9WIgtFKNIb/IuTCiLBtb6svldg9kIiCwpk/lctKqT8Mg5M6pT0O4UCf862S1WrQCws4Ftct1aTIAso2V0CDf1q4tEw3oW1fj2lErLhpwQRWvZoWJmIM3ls3Td1UgEKqQy1PSIao5KpY1EJDlkHsSgFgVQKoiXOnZ9/LiixE4ISUZeUhZAEEboOmlidjDF5pHBwjnjh9C82CHGG5G7km48T9uSMt6lUPliTgJA7Schb2lHpTG54NhnYSBCh9wYTSyNRZk4WqYhkCpQKXHukwX3sbfmJx+Azm6Bq5JTjn5IIw4mflXYZFUTovMbA1Imw5CxVBFAC6L7WRGApzsXXS+zfxlNSKLhS1wNC7gTBYuB7Yu05rIxF0FWUdoACuFAKehOg85AZ31xMctcqIlEn7TOHvXDmGV8+iLUOwkomSxhECZILWF2/lsBSgtE3w0UBJQRou0xPcCXByOsRAktShrmAEkDLbhGtQcGp30SJh4sDShojVLlUxCMwP1bcFSkRlc6jCGrQ6iDszweUzFWg0cPCDCxPg0pMSfvu6+Ck+m6wOJSceSVJwA0nX0rm5TO3epbzU78imgiQSqWwWq08+OCD/MVf/IVMhZX176lyuLf/IL399tukUikeeuih7AfZFBd4z/oCy32jRFNRDA6RvV/ppvYSG6GVKGqTij1f7qJ6h5Wmqx3s+lIHWz/WwpkfjKPSKNj7lW6q+q3U77XTdUc9e/+oK3u99hucRLwxFo97EG0iOz/Txu4/7JR+d1sde7/SDcD5x6aI+qO03eAEEXb9QQf7/ls3rTdKYURarq9l71e6OffEOOefmGL7Z9rY9Yed1OyWrHP3fqU7GwJsZcQHpNBaRUSjkh1fbGfnF9uzZdrz5S7Ci2EGfzpB3d5K9v3XbhoPVgGw9cEWdn2pA4Cj/zCMqV5Pzz2N9N7TRPsHnez9SjcVXZJPYv8DzWz7uGS5NvBQG1sfbMuGNKvqN7P3K91U77ACkEwkpHlTulPa9aUO+j8h/a2lzcDer3Tj3FdJ7T4b+/+vHvZ+Za0Od/1BRzY028TLc9TtsdNwZRVah0jX7fV5aXd+oZ3anTYpTJsoPcdMCKu2m53Z+gYY+GwbOx/uoLLHlK3Dtpul8A4t19Ww9yvdLJ11s3TOy/bfb2XnF9bqcO9Xuuj8oFTfxhodgkaJpVPKZ9tDrez6g468+u65swEA575K9n6lG0ubtMna/8nmbH0DoAR9tTQJqd5hZe9XurOhUfrud7H7D9fudffDndn6ruwxSfW9S6pvjVmNrnJt0WrXlzrY+mALIMEpe7/STSQYw3PRT+sNdez58rr6/pRU3513SG206RopBEjnB/Pre8fn29j+mVZGfzXH4A9GpPq+XmqzrTdKbRYRtA6RLfe3oBAUWSBq71e6ab9N8gxsPlTN/v/Rw8DnJKv6bZ9eV99/1EXXHVJ9BxZCKJRSOEFIt9mc+t7/f/XQf38rhhqR2h02Bj7bTUXHWpvd/XAnWx9sQesQ6b23heBciMWTXqq2WdLvsllyKvp8G7v/Sxcnv3mRwUfG2fbx5mx4w4ouI3u/0k3nR6Tyx6MJkslkFvLJ1LdohN77Gtn7lW4EjZKxV+YQDUJeH7HzC+3s+6/Suy7aRFRagfkTEryY20dU77Cy8zNt7HpYutd3/2EIc6OhoI+w9xoxNejZ9XAHOz7fxtmfSq5we7/STddd9XR+sJ6maxz03ukiGowTXo2y7VOt9N/XBMDF1DmmOk9zQveKBCgBjY2NnDt3jlAoVAaUyiqrrN9Kl112GR6Ph8XFxaxNa5ggbyieYqL1GMtaCXrouq2W7Z9qJrQSJbQao/feJtpvqqXthhoarqxk95faCbsjDP9yjt6769n5mVasrUZMjQZ2faGNjtuk8buq34y50cDIs9KX2cDvt7Drsy1Y2/Skkil2fLaFrg9J/ebwc3OIJhW2HiOt11ez64tt7Pz8WijYnZ+RAOvR5+ZJhFPs/lI7ffc3gho6bq1l1xelMSu4ECMeTSKkw6zVXy6V17lPmqO13VjDlnuaGHxkinM/m2H7Q83s+GwzqCUAYveX2mk4UMnSKR9L53xs/4QLvUNN7931bP2ki62fdEkFUsP2T7XjOliFsV7L1o+3sO8rHVI4NqD/gSa2PSTVcXApBkqIx6Uxt+4SqUx6uwSD9d3XyMCnpXnB9oea2fffOmm/WaqXmh0Wdn+pHWO9Ng1nJOi/vyUbGm7XF1rp+FA9KJTY+8zsfriTiVcXmX59mZ4769n5+bXxe+fn2+m5Uxq/KzoN7H64M/tzx4ec7MqZn+74TBttH6hl5YIX71yQ3Q93UrNDqsP2m2vzxnqdXYOhRpov6e1qdj/cmQ3t1np9LbsfXku77aEW+j8h1aFar2D3w500XinNe7U2DUqVIhtGcOsnm9n64Jqd8O6HO3FdWw1AwwE7ux/uzAJ1/Q+42P4pqQ7VZjVqvUBleo7s3Gdj98Od6KultFvua2Lg91tZPO1l/oSbXX/QkW2z1QNWdj/cialRj63HxNYHm9n52ba1OvxCO113SPMN+xZTOq2BE/98keqt1rX5kkLJzs9J9a2xqbG06HHusuEelxZjOm5zsusLufm2sv+/dWLvNWGoE9n9pXZqdlql+r6pll1/IKWNeWKkUknUBql9a2xSm62/TKrvlusdbHuwhb77pXlEz4fr6H9Aqm/UsPtL7XR9xEnHrbU0XmXH1GDg1A/Hs3W49UEprWO7hT0Pt1N/wMHZn06xejHA7i+1Z+u77/5Gdn6hJeuslEqlCKVDQ9buqWD3l9ox1InU7LCw/SEXO36/hQtPz3L6R+MFfcSe/9LBjs9Jz65ur41YKMH4C9Im587Pt9J9h5R2x2el/sPWY2T+qAffVJCeD6+Fp975mVZ67qqnfq+d6oEKdn+xDWONjvOPzdB+XQ27vthGw4FKbF0GBj7dgs4mElgMo3dIdVjVYySWiDHdfIpzta8zxlkghSAIfO5zn8Pv95cBpbLKKuu31j//8z8Tj8f5h3/4BwwGA0ninPe/wVvRn7BQe5R4PI5Kp2L7vVXYO7UEFmOo9Uq23W3HXK+iuk9H7202Og+aGTvsJR6Ls/2eSmq3GandaqBul5Ht9zqy12s+YCbiTbAyHAYV7Li/hm33SONs7TY92+91oNJIYZwCyzEa90qhqXpvtzPwgIO6PdLY6diiZ/vHHIy8uMLFl1bpuN5G/912bB3SeL/1vhoaL5X+dmk0CIqUFGZNBT2329nykbUy9d9TTTQQ5/xTC5icWrZ/vAbnHmm9pvVaG313S2P7+V8sYahR03LQRtPlVpy7DWx/oBaLS7pm81UV9NwmrSd13mJn6701tKXD0ukdKrY/UIutQ4Luk4mkxFKluYwtH3HQcZOUVmuV0lZt0WNxadn1+3UMPLgWMrj3Dgddt0ghRGeOeHDuNFOz3YjaqMS5y8T2B9bSdn+wirqdZs7+fJF4GLY/UItzl3RvNduNbH+gNgutdN1ip++easyN0trQto/XZsOoVW3Rs/2BWlYnQiycCdBxU2VeHW79WC1Nl0tpNRVqtGYBYzoURdt1lWz5aE5931tD81XSnM3i0rL9gVpM9dJubMtBG/331GTTqjQKjDXS70xONdsfqKWiVSqw60or/fetpd3yUQft6frWVkp1aO+S6ltnEzA510Ds3g+v1bfaqGT7A7WkSLE8FMTRZ8yrw57bq+i6VWqjdXuk39VuT8/hdqbTpo8Wd91WRfeHqlg4FeDcL5bY/kAtdXukNbrqbVJ7URmla7YeqkQlKrNQ27aP12ZDsdl79Oz+bD296Xprv6GSLXeu1eG2j9XiutwKgH8hjEJQoEmvebV9oJL+u9fqZeen6th6dw1auwpLk5b+u51YmqQ6bLnGxtb7amm/rhKtVUXPbTUEFqKsjoYx1qgY+IQTW4cOhVpB1212tt5Xy8UXVjn3xDxtH7DRfkO6vm1SfbuulMofS695ZSC93jscdN5UCSpwXWFh+/016CrUXHxJ2h3ffv9aebtvq2LgEzXU7zWDCjQWgYX04Y/cPsLkVDFwfw1b75LehTM/X8ZSr6FuV7qP6NWx/V4H5gY1tlYdW26roPc2K1Nv+fFMRNl6lx3X5Ubq9xixd2jpuaWKiDdO2Jug/ZCFrhulSAoL4THGba9wJPSIBCgB/f39DA0NMTs7WwaUyiqrrN9Kzc3NvPfeewSDQW699VZUKoEV3yivDP4Vo+FH8Sak+Eb1XQo69imJhiHoSdG2Q6CuE6pboMIJW64SSMVSzA2laOyCLZcrsTcp0Vug+4CK+nR4JkMF2OoFZs5J/XHrboEdN6gxVgKpFJ2XCDT2SVvPo+8l0RoUmGsUVDUL9BwU6bl6bezsuFTEaFNw8d0IYS9sOSjSvFNAUKaobhfo+YA05iaiEAkkUWmlcclar6T3AzpsTVKZqtoEuq7WM/RyiKnjMVov0dJ1jQbUEpDRe4OBqjYVgeUEi8NRuq4yIJqhaZeGlv1aWg+sOad0XavH0a5G1EHvDWa2fcSMmP61a6+O9qv02TIpVGvhUs11Ar03G9FIQzSNu7R0XCOlbblMx8BdZuq2SfMhU7WUVl8pkIhCLJyi7QoD6XOUdB4yUD+ggVQKnU1J701Gli9GWRmN4+zX0H2tYa0Or9bTuEsagzVm6L3JSMMuDSRT1PSo6blOnwXl26/U0zCgY3E4im8pRu9NRmxN0oTD0SXSe2M632QKc42AySE9R0GQ8q1skdJWtavpvcmYdWRquUyXV4e9Nxmp6pDWUXQVStT6DNSWonmflrYr1tL23GCkukdqE9ZGqV7EdDGa9upov1qqQ5UWdBYlFXUCJJPp+jahS4drbdilo+OQkfnzEZbHonR9wEjddqleDHYlvTcbMVQq0dmUtBzQ0fWBtTh8nYeM1O9Mz+8qpHz1VQKjh4OYHCq6r0unTSTouFpP0149gg5Ek4K6AT2hVQlaqunT0nPzWrjgzutNDNxtwVSjQNBC780mbC6pXqq6RHpvNqXzhWQihUqXhoUEKa29TaoXe5vI1g9bablUqoumnXpaL9dnQ7L13mikYadI3VYNNpcKm0vN+BEJdnLt09F+pXRvxho1vdfrqelUc+HVIMuTcXqvN2RDEjbtFOm5Vis9q4T0vELpsLWmaoHe6/XoLGByKGjbr6bzCg2TJ2MMvRGl+wqR+r50H2GD/utEuq9UgyCFioyEUsyPpevlElW2j2jfKzBwvQqzA/zL4J5N0LJjzV+nY5+Aa5uS6lYBR5uKvgMKTJYU04MpahpSbLlcia0OTJXQvluByabAvyJBmX1XKrE4pJBuc7GXOOv+LifHHiUS92O32/nrv/5rVldXy4DSf6DKTkr/wfr617/O17/+dV588UVuuukmAoEAx04eBY6iHdZhnrmH6GqcE98YpeX6WizNeur229EY1QQWw0TTp17jkRSxYIyJVxfxTIRw7qggSYo9X+7i2D8NEfHESITTdGc0TiKWxDctfYwpVAoSiTXqNLwSI5lKUdFiRKUViEUThNOL7+HVKLFgjNWRIEQh4o6itRhouqKauXdWiQZihNwSfRtajBD1x0jGofujLjQmNf4c96FYME5oNYZnOICoF0AJdburmHhlkchqNC8WetQfI+yNUd1rJeKLEQvGiKfvJ7QaRaGSOu+Lz83RfmNddrMg4osTC8aI+qQJU2A2gjJNevbc1UgykSSyKtVhIiTlG/XHCC2GScSSxAJrlGzEGyPmk9JGQxALxqjZXkHdHjuzR5bR56b1xEhEpTptuqoKpVpByC2VKeSOEAuu0d4RdwyLy4DrmmqWB33Egmt1GHZLZVo4skzUL5VZENfYwmggTtgj5ese8WOs0eK5KNVxZDVCMqZelzbGri91EAtK9ZIISeWIrMTy4r8DJNMbitFMHfrj2foWdAJ7v9LF1FtLRP1SvgDRYH59Lw56sDSthYOI+uJE0s8mGU4QC8bwDPtZPOml+VA1uqo1oCniiRELxKnaZqGy00Iilsjea9gTlU5ipaVUC1Ks+rRrVSwYW2uzXqnN9tzRiKXJiHc2gCIHfo4FY4RW023WHSURTxJclDDk6GqUhHaNDI4G4pga9Ig2Ee9kCGtzlHgklX6O0byT6mF3BBQKAnNRtDbpOcbS9R1ejSHolegdWur32on6Ymt16E/XYTDB1vtb0JpFgitS+TzDASK+GOF0m40FYigEqGyzgDhNeDmGxpzTtrwxop4YzYfqsTQaiQbiRNwSrOg6KC2YZsLGRTwx1EYVersGonGigbU6jIWljUGA+ffcuK6uybbRTB2GV6NsubcJY52OWDDGzNsreC74abq6BkHIbbMxDHYtGpPIxBtzxIIxTv1gguhKFFOLjpGVc5ywH2dxcRHFeQUul4uuri6eeeYZyiqrrLL+rbLb7YyOSm4td911F48//jgXLlwglZIcY1bf2cWe3ktYOOZh4ZiHrZ90EYvGqN1mwzsbIuqPEw9JfX14RXIoufjsPMGlGPX7YlS0Gei4pZaFM55sfw4QmA+h0ilxD6+d5A0Hpb+PrsalsdafQFuhRqGC8NJaXx72RgmvRpk74kZfoyYei2Os1dJ4mZ3wahStbW1xJzAfJuqNo9ZD/V5pcT/qzYzfMSLeOJ4xqQyRYAxrg4GeD9Vz4ckpov44kfT4HfFI475zVyWmOj2eqSDJ9LyGmDRWhVdj+KfC+GfDCBolmYh64dUYgnptThFajhKcj6KxqanqNUn1kpM2kZ5vBBYiqPQC4fR8KRqIE/XHSabnexF3HKVGyfYHm1k64yXsiWfTxoJJov4YsVActV6BqdFAIrw2t414ogSzY2cSSGFpNmJp1hN2x/PGzrAnSng1xsgzs+jtaqIDMaKB9PjtjhHxrh2/8U4EiKXrLBaT5qsRXyZtlIg3RsMBO7W7bPimg9m5YSyWktKmx/5UPJWt28zf5k7Lov4YFc0GbL/fmp57xchUYng1mj3d7RkNEpgP40uH6Yv6pHltLH26KrIaJZlIMvKM5A7l3G3LjvXRgJQ2EYnRfmMtGosa39TavD3ijRHK1GEkgUqjxNZpYuWcn9BKFJVOyLonhT1RQu4o2x5wEXJLbSkzjwy7o2ita/PTsCeKoFbimQqjFKS2FQ2m26w7ijmmo+3GGoZ/OYdvKkw8JLWHZFjKN1OH4dUY8VCCi89LDpFRdzT3YBtRfxyDXYugUTLxymK2PJkyCYLkntRyqBpS0jvgGQsimlVS2nR9RwNxTE4d3bfVcfan04RXY4SWM98dsWwf0Xi5A4US/LOhtXfOG8tps3Hi4TgqjYCxXkt4NYpSWHvoyWQyW/7V0QCVnSZi/sy3jzRn09jU9H+siWQ0SXg1ysiv5xFE6Li5fq2+031E3Z5KAosRaQ7tjTP8yznUFjWzU3Oc8L3LaeE0ieEEBoOB/v5+vv71r7Nv3z7KKqussv6t+sxnPsNnPvMZzp8/zw033MDk5CTHTr4LvIs+YMI6+RFiQS3Dz3uo3qLD1qygtt+IoUqNezJCIpIez+MQ8caZPRXAvxDFUqshmUyy7Z4qzjyxSNgTzzMwifjjeGfSY7agIBFPEk/3q6GVOEol6KpUiAYlsXAy6yAZDSSIeBOEluPEQxD2xjA5DTTtM7MyFCbiTaylTadLxaHligqMDg2rE2tjZ9QTJ+pN4J+PY6wFpUqBc5uZhVN+wu54nqtMxCOtqzh6jUR9aiLeOIlwel7mjSGapHWJyTfdaMyVWUgjGZXqJRaUyhRcjCPqpTGr4RILiWSS8KqUNh6PE/HGifqTBJbC0vwpuDYehtzx7FxFum6cyk49zgETE2+585yVcp2cnDuNqHRCduyJ+uN5aUPuOKZ6DY37LJyeWJDK4M2kTRLxxnGPBYn7pfBwiejaukrEEyeSdgwIzEXwzUYIzKTHOE8817iRiDdOxBuj98MO4pEEEW+ceLr9hD2x7KYmSCfLM9eJRVJSHaad56O+OFFPnG0fr2X2mJewO0E4Xd5Uuh1G0w4TC2cCVDSvrXmFPWvPIpWU7s03E8U9Gsbeqyfsya3DBMl4EmONitoBC/FIkkggPe/1JvLqUKkGXYU66/AT8caJZOrbJ6V17rBQ1WXAPRYiFs6vw8waXSyQIBpKEFqS1lzD7hipnNPnYU8cU70WtUkgtBQnuBglHl37nTJnF8E/F0HQKAkvxRGUUpniobVno7EIWBq1hL1S287cezzdZuOBBK1X2zA5NfjmIuk8JReJzL0nokmUagX2biNTb3qIuuOEltL1olQQ8sRJRJI4+43YOw3SGpg/wepoGHu3Ltt2Mm1AVylIUGG6jqPeZLpMSVKkiCfANxMn4ksQXM5ZW/NJ733TpSZsLVoinjjeqTinHl2geosRtW6tIUa8CbRWNcZKNRdfXyXijTPy0ioRL2grlQzPn+eE8hhzvjkUQwoaGxu57bbb+P73v09ZZZVV1r9VOp2Oxx+Xwmj8/d//PX/yJ3/C8MgFLqSGUCrUbGM/23svxb8M/uUkLQNKYlFwdgi4F5KEfSkS6e4vEkwRWE4yM5QiGlIS8qaoqFeSSsHSRCIvrX81id6iwJ8OxKJQpIiFJSuXZBxCPmn/0uxQIKgUBJbT8w0Bwv4ksVAK92wKQYRoOEmFUyDoThELpgj7kqQEJYpEEv9SUhq/BWjcpkGhksZxgFgIwr4kYW+m/EmsdWqaBlKMH4kR9iaJhjJpU4S9SSy1Kix1alanoqSCa/OEsDclzZNCsDIZQ61TZr/Pw74k8fhaWt9snOBKAkGEqjaRsCdBKraWNrO4E1hOoLMIRPyZsSdF2JMgkQ6nF/EnUesU9F5nYmk4SsSbzKZNRBOEPXHi0SQIUNGkIpmzvxXOSZuKSU7w9haRlYtxooEkYXcy68wU8iWIh1PMnY4iiBD2JLLzhlgwQdi7the2Mi7t7ZJMkSCVlzYaTBL2JLDWCdT1aXHPxiFnLh72JIil50uJWEqap6fXvsL+JEIkt74TmBwqLE4VMycjUr0k1n6XjEuOWBE3rI5Hs+5a8bB0nUR6kh/xJVAKsJgOgWZrSmSNChLRJGF3gng0Qf12PeZaFasTsbwyRNNrLolYAlGvxOxU4ZtLEAmmAel0ocKeBBF/gq5rLYQ9iXS9pPdSA8k8R6zQShxRqySymoCUMi9tLJgkHk1S26dh9lQE99T6eZk0bwOIhhIEVhLMnpH2HMO+JIocQ6OwN4HWLKAxCnjfS7tyZdtsgnhUARqBlv1aFAqIBlOEvSCIScK+tbSRUBK7VU1dv8jEkSj+pSSRNKQUSygI+1Mk4gqad4uoVCm880nCaUOqkC9JJA3Jx6MQDaUQdQp0RilcXCYdSGteyfTH2+pcAo1eyM45I8EUYX8KQYDOS1XSHr4vxcQ5gBQtWxXE048uGoaQP0V9p5KAJ0U4kCIZg+khCaxbnHNzfvZ1Tg2dIB6Po9fr2b17N9/5znfo7l4zEinrP06KVErW9Kus/wBFo1EGBgY4c+ZM3r+bqGA7lyGm7RlNLh2+sRDmZj29H3Ux8cp8Xjg2ANfBamxdpmwIs7abnUy8OFNgTzjw2TY0ZjVv/pl8KDGQnHhCKxFO/svF/F+IYHJK5aneZaVmu40T3xnND0clQv1+O1MvL4EIrYdqGfnlbEE+tTtszL65gmhUYm42snQq3+JPNCqzA0vLdTVMvb0iG2pr6++1kIqnOPmti4W/FGHvl7oIu2MlQ5GBVNepWAL/dOF1qndYsTQaGXq8eNgJgKarHTi2Wjnxz8Oy4czsfWaWzntLhimztBlov8HJye+Py94zSC5JM28uy/5++++3EpyLcP4x+TLv/+89eCcCnP5+8XB0xjqRrjuaGH95gcXjxe2oK7qMxHzRovWWUf8DzUTcsZJlAajaZpG9DkDHbfWYG3Uc+Vv5kDHGOhHXVbWy91SzuyIb9lBOlT0mOm5rYP7YKqPPFIZ/qeo303ytk5PfHSW8UPy+W2+sZfLlWaL+/PaclQjVfVbm33MjGpVUdJsLwrZZ2gwYq7VMv76MsUGDrlJbUD9NV0uhGzPt39JmwLPO7ruyx0THrQ1MvDbP9Kvybab/gWaMtTqOfK0wtJ1zXyURT5TlQR8tN9RibtRz/JsjBW1598OdRINxjn9tBNEISr2YraNQ/SLHFt8lGJY28QwGA7FYjO9973t85CMfkS1XWWWVVdb7oSeeeIJ77rmHQGCtjxRQ08seHILkHKN3qCXIJQZbP+lCJSoLQ1Opof9eFysXfEwdXsbWZUAQhWw4toz0djVbP9HMyoif8zIh1wDqL6ukfm8lp388gX8q31rZ4tJnwYfeu+tZPu9n7og7L01VvxnvVIjISozaPRV4pwIE1o3Jju0WFk57IAb2PlNeGLrsbeml0F9qPdTusTPxUvEwIfoaNT0fbuTCL2fxjBaGVXAdclCzzcqZn0zimyhhuZwu+/p6y6j7DiejLywSWcmx914XVmHg91tZHvIx/rx82FZbl5GVc6XDgbTfXItKK3D2p/LzFH2NiFqnwnOx8J4BHAMW6nbbOf3jCdnwYz13N2BuMPBWiXBu7TfXoq0QOfVd+VDBNTsqmHtPfi6jr1bTeVsDQ09NE5gu4W2uBmuTAbdMmBC1RU3/PU1Mv7VceL2c3cK2G2tYHvKxOlSYj7FeSzKcyIZTlNPWT7gQTSre/WrxkMxb7m0gGUsx+JPiz0iC48xMHZbmOZn2nCtbj5GVC36IQfWAhflTnoLwbq6DVYw9J7kcOfdVMHNkNS+NWg9ddzQy+foS7uEgxnptwXsL0PexRrRWNe/+bYnvDzXs/YMOAgsRTn0n/3mr9WRDwgFse6iZhZNuZt7Mfw51+200XGLn5LcvElyK5ZUnlogx23iWoQnp20+hUGC1Wunr6+P5559HrVZTVllllfXvpXg8zt13383Pf/5zEumFfgUKHKKLLYarUKkkgEBnVxFaiqO1Kum91c7EOz4WB3PmD4kk9h4djm49g49LrinOAT0Lg8GCUFid11dgrBZ57/vzayGkioRd67+7ivBqgqFnCkPD66pUhBbjmJwqareZGX1xhXgoZ/6hAnunnqUz0iDj3Glk5si6eYYKbC1aVoYktydLrYhnPH88zg0zVb3NwMpwSDZEWOu1NgS1gqFfFv+W3/qxWiLeOOceLx22TGNRoRQhtFgYysJUL2Jt0pUMQ1bZoaN2h4lzv1goGmIOJLci30KsaAivjLSVKlqvsjH8mxXZcG6Z65UKU9ZxUyXh1XjJMHM7HqrDMxFi+FeFzxpAZYTO6xzMHveycqF4iBNjjYp4VAqvJqeWa2zEIwkmDpcO42Zu1OCdkJ+bOXcasbXqOf2INLfNLOXnHjZUG5U07LUy+nzxe6po1bI6EqbUNoDBoaL7tmpmj/mYfqdwLm50qmm9xs75Xy7K3rdzwMjCoJ94eF3Yxbyy6HCPSu9BRZNUrlxpK1UYq9QsnQuhNioxVov5aZQK7J06Kpp1XPi1dL/GahX++fwy6apUdN9cxfQ7HuZPrWucwtrOXvMVZipbdZx6dIGIN79+Klo0JKJJvFMxqrfoqHDpOPfMMqTyg1Nsud1GIpLi7FOroAKtUSltCgNB0yIn51/CE5Dma3q9Hr1ez49+9CMOHjxYtB7LKqusst4vnTx5krvvvpvTp09n/82gsdPrvIEKg+QwrRIhlZAYjOYBJRqdgnOvrwsrlkrQvF2FfznJ4ngKvVX6O++6ZRdBhL6r1CxPJZk8nZNHPD8/a62Cxm0iw29GCLrz89BZIJQeOhu2qvAvJVmdTqLIMVow2CUwKRoAc61ANJDIAkoZmRwKgm4pDJ2xSoF/MZ6FMXLLm4hKw4KtWcXicPHxTdBB+6U6Jo+ECSwVhlyrbFVTt1XLhZeDhFZKh2Qz1Qj45oqnqduuYXEokg3Dl6f0uN92hQ7vXJyFc/LrKYYqgcDiuvBxOXmA5JwkGhRMvSc/BxENUrjW0Eqy4O8z13FuERl/J1S8zEDdNg1VbSLHH5UP5+boEjFUCsVDtOU4VXmn5etW0ELzPgNTR4OEPSWwBwH0VoHgcvG8BBFaDxhYvBBhdTzdHoqElnN0awiuxPHPF+YjGgGFgqgvJYUdlJFrvw5DpYozz/gK2iZA/U4dggrG3yn+jAQNWOpUrIzGs2VPrNuX01cKRELSv5tqBHyLiYJrVbUJLF6U/t1aJ+Cey0+T0qpw9atYmozjX5LuLxqiIJ/GbSqMdiWDzxfZG80JE9d/UEVgNcXIkfwMBAFsDbA4Jv3cuktgdSrOylSKlHqNlrfWQNMWJeffShL2S+000/4SiQRLybc4PfQ6iWQUhUKBzWbj9ttv5x//8R8RcuaAZf3Hq+yk9DsmURSzE4Y//dM/5Y//+I+Jx+P4WOVVnkSRUtDNTpxjTdm/iXijLJ6VNpW67qgntBJl/IUFxp6bZ+w56TRxRYcRR78VQaUsAEKO/sNwNnSasUFD70ebGf31TMHmUHAhjHcqmM0PYHXID1HwjUmDR2W7GX1OeK+sokiAEtBxQz32XjOe8UA+hBSF2Telj8ueu5vR2TV4L57Lgzgy/180QvWADXOTQRYyUgiKbEzcYuU5+g9D2fyMDRr8k8U7+p4PS3X99l8UbhzNv+dm/j03IA8Hjb+wwPgL8ptkQLYeMvBZMSXjSdQGFfZOkyyE1P3hemydFnyzQdl8jv1TaShrM/JPRznyVXkgCKDteieCqCy54aaxqlGK8oO0uVmP92KwJKAElITE7H1mvNNh/NNRWUCp5YZaarZLtuDFQCVDjUhgTgJx3ps4JwubxaNJFArQWcWikJK5WU/11go0ZjWDP5ooms/2B1vRWjTMn3IT9ScLACWAztsaUChg+vVl/JORom3X0mSQnKnSTklZQEmEhkuqmHxpkeVBH+ErowQXCv9++2faSIQTnPzmRc799CIau64oHNd0ZTURr1Q3o0+vgVuGGpG2m+o5++NRon6p/1hzi4Koz88RXiKk8KOYVmQXytrb23n11VepqakpuFZZZZVV1r+Hbr31Vvx+P8FgkEsvvZRjx46RIMZJXoMEWKhi2+xlqAVp4943HUSllabQaouajhurGf7VPJGVGCe/NZbNt/FyBxqTqnA+tRTj9I8n8c1K43TffY2ggFPfnchPtxgmuBzJggXOfRVZECEDKKEGQ7WOWChZACnlXrfhEjuJcEUBWLVwTBpf1Xpou76Wmm1WTn9/Mi9NBuhou7EOa7OBpVOeomCJxiyiUCqIR4ov6Iz9ZoHp1xak/NSgManzQaO0avdU0HyVA9GkLgDwAc4+KoFdersatVldFIg6uom5TgZQMtRpZIEdXZUGQV3647Xv3mai/jjHvlb8mgtHPSwcLT2P2YwuPFkIR+fK2mag5doatHaRsWfni6axuIyIJjWpSPF5DEjQVXAuKgsogRR67b1/LA4NQRr0Oeph+JdFAtGn1X17PalEiiN/X7ze9DVqgnMxTnxzLBtKsJgUghIl8vfTeWsd+kqRqbeWIVYIKKktajpvcuKZDDL4oynmizwre58J504byXiKiZeWCoCgbJmrNNi7zLiHg3mAkrVNTzycxD8VxjMRJBoQC/62qt+M6yoHJ783TmQlxtmfTRVt280Ha6nsNrF4xk1wLsbx/7V2GKPhQCVqg8DorxZYHfJh7zZnv/b9U2HmEhOc5R3UWjXhCal8er2eP/uzP+MLX/iCbB2WVVZZZb2fUqlUPPLIIwA89thjPPTQQywtLTEfvch89JuICh29xstxLKXXvBRKAksxvGl3v7pdBuLhJPOnQiwNSv8BaCtUOAdMqPUC46/lQ9fnn1nFWKOCOKiN0HNLFRNvelkdzgcjfNPR7Der3qFCUEmuKrAG8FhdOozpMKoolGugdJwsoFS73UjdTgvBlbgEYmQURwKUgNarbFS4tBz/wXQ2LBfkAB0qqNtlocKl59wTxSEjpUohrXvJ6Mwjs9n8tDaVLFTScVMlSkHJie8WzjV8U1F8U+nT6B06VorAQctDoZLQEIBvJrZhOVJxKQSXqU6UhZScu03U7bAQ8c/hnymeZugp+QNYm1XcD2ceLb2O13TAhsYkcPSb8nM0XYWKREx+LqmtVBFejpcElABmjviZfrfwMAGA0akiFpAck+QAJUefgaZLKxh9aZmls4XzC7VJIBZKEFiIc/y700XBIoBkLIVCCaJeKPoctRYVdXusaO0io79ZKZpP5012THUaTnx3hniYAkAJoO2QDZVWYOmcBOmt+vMBJQCTUyOF7FMBcfIAJXuvBAyGFiU3qJB7XVkFgY7rpDXAoV+tcvE1L/NnggWAEkDzZRbCnjiDE8vMnwwyfzIIghK1EZr2WRg77CEeBv98LOuMQBz8S1FOB15iIXoR5YqSZDKJUqnk8ssv56c//Sl2u714JZdVVlllvc/q7+/n1KlTRKNRPv/5z/O9732PQGiJdy5+F6VChdPaR1fNtdmNe/9Kkmg65JQgQH2vgtkLKaIhgYtH1vrTmjYVpkolJ57NX9dJRGHwcIxEuutu7BdQiTB6hDxQKRJM4V9JZgEla50S91wSEmuAEgKYq6S9o9XpNUclgEDO+bn6PjWJuJrzL66b2y2ksvm07NXiW0hw8Y38OUsG6HB0i1R3iHjn/USKDLmiBpSCgqQM7Ls8EsM9GcvmJ+rSEMc6mWoEWi8zMHUsxNJw4ZrY9DFpTiBopfE2D3hKX3v4pWABLLReGUBJY4ZI7rJkDqyktwqI+tL5tF9pIBZKMfR8IP/v03kEFhNceKn0PHAzWji3bt9pXT2LJmi91MjsmTBzp4vPmwyVAjqrQLLIYYTcfKI+ZAElkNrE0POBomASgLlOhXc6zsJZ+flb6+VmUMDZZ4ofjhSN0h7Z2BuhtdBqRSSoFChV8s+oYbsOc60Kz7iPRKIQUBJEaLtCj3cmwdi7kaJwnL4S6vo0oIiyeCGOex0IloGDTFVKomEB/1IizwhFlw5vGPKCfylJMlFY/0aHQGO/iuG340RDcOHtOKEizJrdpcDZIeBfjBLywshbyWwZbLWgMcDsMPhWwL+aE4kpAN7QLKenniKOl3A4jEKhoLm5mT//8z/njjvukK3Dsv5jVXZS+k8gv9/P9u3bGR7O3wzQomc312TdlUByO4qF4pJ7kgjaHFiissfE8qA0wg58ro1UIlUArFRts9B8sJbj3xwluhKlepeV+RPuAleUnV9sR61T8eb/XcR9KQ1FmJv19HykkZFfzxZAJrnOOH33uzj/5EweACEaoXavQzoBn+vClKOKDiOBGT9RP7LlzKjzg/WsDHuLnsq395npuLmehVNuhp8sdDSo6jeTjKeydVdMDVdW0Xipg6k3FmWBpPor7NTttnPsn84VuFmB5HTT+5Emls96N3QWkpNoE6nqNhXd1FtLBPZOc4FLVa42dFJq0JCKpQjMybskGRs0GGv1G7oTlSrnvj/sIbQSkQXR+u53oTaqOPoP8htle7/STSKa4N2/GSp5uZYbavMgm7xyPNxN2Bvl2D8WKYcI/fc0c/IHF2XbX65LUzF3CK1DxNKkZ/5dN8YGDaZ6QxbYy6jtZieBxTCzb65gbpZswtdDQwOfayMRTnLiG+vcPXLUd58LU4OeE98cLnh+NbsrmDu+ClHY9qlWEuEEp74zlpem7pJKGi5zcOo7IwTmonn9CqyBdpn3auL1hbx391zqBClnEI/Xg98vvQhNTU3cfffd/Omf/qlsucsqq6yy/v/Ut771LT73uc8RDK4t4isRaKaXZmHNDrbhQCX1+yo59UPJ7chQJ+a5FVnb9FlXld6PNDDym7kCt6Keu+pRKODMD6dQ68HSbGLpTH4aY72WvnsaWT7rY+gX8hshffc3oVDAyW/nj98amxqVTkFgOkrNTiuiSVXgiFSz08rqaIDISgzHdguro8EC5x9bl4GVcwFQg72ruPMSSNBT+011DD4yXfT3236vGdGo4p2/KQ48N15lZ+LF4o5NGe38fCsKpUJy2EkVXzjY9lALwcUwQ48Vd6za+slmtBUib//l+ZLXKiXHgAX/RLCkI5A+vZkZnP/XOylVdBpYHQ0UOPzkqmZXBctn3MSC/7rPu47bnFR2mjnx7ZGiZVVb1Gz7uIuJVxeZP+oumkfjVQ7q91Zy4elZWTcsAHuviVgoURTEabuhhqotZgYfmVoD8nL/ts+EsVbH2G9kNg/VYO+Q3iO1HjS2QlejXOiv/rLKLMSUkd6upunKqiwUZ+sxsjKYP4Gv6jfTfI2D098bl56/mqLPZ+9/6SC0GuXEv4zJljPjRDb8zGxeWEiQ3NtSiZT0XqvBUrfmpJbr8rb9U80IopIjf7c2Xw0nghzjFax1JmZmZkilUqjVavbu3ctjjz1W3iArq6yyficUDoe54447+NWvfpV1VwKwqmrYajqEVqXL/lv/RypJxFKceWwFFEm0RlU29JixWoV/OQ5JBV03VKBQKTj7i/zvapNTRfMBK0O/XiW8EsfiEvFMRQscfrpvrURnU3H0W0XA3zQUobWq6LrZxvhhN6uj+eOMpUmTdUlquaqC6fd8+eCNCqq79ZK7SzKVhSpypatSEfPFiYfB4tLimQrLOhE5d5sILsXyoai0jDUqum6tZu6Un6kijkhGpwpBLRS4OuXK1q6l9Ro7U2+5mT1WfLPF1qGjfq+FwZ/NFXVU0tpUbPlwNYtnA4y/4pa9VimptBIotnSuxGaYCkw1YhauKqaNnJS0NhUk88PaFaSxqtBXqWSdljajgU/WElyWd7tyXWlFX6lm8GeLRR2QFAoFWz9WSyqZ4uT35eFwgNodRmaOFJ+7D3zCScQblwWzWq+1Mf5KcegIoKJFy+qE1D6LuUKp9GCu17F6IYzaqMRSryl4hrXbjcRCCZbOhdBWqkhEkgUuYl232EkB50uAaE2XWajqMXDmsYUCdzCLS0NgLkI8JtB+yEoqBcPPufPSWF0izQesnHtmhdBCDJNTlYUVIQ2WuZPo7Cp6b7Yx+Y6P+dNr9zIVOo/bdAGv34vPJ9W3y+Xii1/8YhkKL6ussn5n9Prrr/Pggw9y9uza3p5ObaGj+ipqrD3Zf7PWgGurwNBbCYIeELX5cILeCkE3iAYFHfvVTJ6J4Vk3HNX3SpDS2LEEpBKYbOBbN+yJOui5RsPSWIKpU/Jjb9N2FWpRwcgb+eOMIIJKAxEfmGqUaI0KFofzQQtTjZKIL0k0AKZKCPoSJNZNJwyVAoE0vFLK7QiS1G/XMnUsXBQuablEh96u4vQvi7vj2NvURQGlXHVco0etU3LmKRkHcIWClkt1RINJpo4Wn8O59ukwVQucerJ4OTYCnUCqh4g/ITkCyZRD1AECRfc8YXNOSvpKgaA77d4jgyyY66Tnk/hXTr0c3RqcfRrOPesr6rQkCNBxyMjs6TDuyXhRSKmiSY1rv5GLr/txT5RYB7QLoFAWhaGqOkScW7VceDFQ9PeGKgGDXSVBUMVcmAQw2QV88wkEAUSTgpA7/36s9QLu2QQoBGyNAp7ptRB6IDmD1XaomToh3YPBriCwlJ+Hwa7AtVPLhbdjUhg3gaLtqP9akZA/xYXX19WHQPZ9F/QCHXtUTJ6J4183/W4ZEFAIMPJuAhLJbL8C0nsdj0NKqaJtpwKNXsGZV9eeSyIRZXDm1wjGFaanp0mlUuj1eg4ePMh3v/tdLBZLYYHL+p2SvIVJWb8zMhqNXLhwgVQqxd/8zd9kLfjDBHmVJ3k+9TOOp14HJLef09+WgI3u2xoYeLANQ40EMeWCBDHfWgx4Q41Iz50NIMLicQ/v/OW5LPzQctDJ9gfbCsp08l9GGH1e2iQzNmjY9QcdmFzphaMMLWxUkYyl8KRDemTcl4AsoFS1zYKpTo9zR0Ve/lE/2RAdPR9soPFSB5Y2Q16a1SF/OmQWtBxysu0TrbJ1WNFhouGAo+jvlk558U4EmHix+AbW4kmvVHeiBIFk7zNHky8tMntkuaRjUsQdI5UC0VJ4ehokpxv3iI+Lv5EP/QJS2LKqfnPR30VXoqUBJaT67Ly1QbIc/Feq64ON9N0vX98A/slISUCp/ooNNkWiMH98lclXS5xeS0oxdktp5Jlphn8pszn5YEu2HEUBpXQ5ls/5GHuhuCtBVY8FY62OlquLO/+Ym/W0HKql5+5GgKIbdn33uGi+uhaQ6m09oARQ1WuhdocNAO/FYPYdNTfrJTAQSISTJMKFM4WeexrZcq90EvX8YxOM/GamAFCq6DDSeq2Trpslm9fjXx/JAkq1+2y03CCVzzPmIxFJIJoL+5WdX2in904XIL1XR/52kKmXl1hMzTDbfZbXtU8zxQWmZ6apqKhg69atRCIRxsbGyoBSWWWV9TulBx54gEAgQCAQYO/evSgUCpIkGOEkzyce4dXEL/Aklph8dZkjfz+UBSC2fLSJrZ90ZfPJwAZqvUA8lMCTdi9xHazC3mcCYPBHU5z5oQQnN1/rpP2mWvSO/HBL/qkwI8/OM5QONdpzZz3tN9cWlDsRThCPpMcBteRGAxBZiWXhqdodFdRstxb87dwRd9bZqPlqB1s+Wl+QZuWcdHKq+7Y62q8vLGdGdZc6sLgMWFqKW+CMv7zAwil30d8BWUCp7pJKeu4qLAfA8DOzDD05IwsowcZzhOm3lph+qzQMBeDcZ5P93cLR4s5Suer/WAvtNxW/j81Ib1fT/aFGWq4p7TI49+6qLKBk32JCU1k6jNfFFxdZGvTIwlQak4pUCsJu+U2/iRcXmHx9qeh8x+LSS++HGpbO+IoCSgDjL82xfMFfFFACyRmsqrf4XBhg68dctF1fC2rJOWk9oFTRYaDp8ipar68GkELBrbtlx3Yr1hZjtg3nAkoWl/RvgbkQyVgKtTldr+k8TI06Bj7dgsYm/fvIs3MM/misoJzbHmiWygkE52Ic+bsR3MNB1Hro+KATtUX6+5gvRtQXy14jUy/Gei1bH2im+WrpG+f09y5mAaX5+iGGG97mNZ4igBe3201rays/+MEPiEajvPrqq2VAqayyyvqdkVar5amnniIej/OrX/2K6mqpf3bH53hl9Xs8t/gvnPW9BsDJR5Y5/7T0vVy308SWO+zoqqTTvf75uATxJFNE/Aki3jgkU6i04DpgRqWRnJFO/mSJsDsBSgWtV1XQc3NlQZku/HqZiy+7Acl9acsddvSOtD1deu9MpYNELEVweQ2SyigD/BhrVdjadFS2a/MvECcbfqp+vwXXgQpM9flrRaFFCVBCBW0HbXTfXCVbh44eI3U7io+N/rk4y0NB5t4r7uzon4lL5VVB94eqJNepdVq5EGayBKAEEPPHIQVqQ3HT/vBKnIUzfqbTbuRyUhuVWFzaor+LhykNKAH1uy103eRAY/nXBw9ovqKCntvl6xskgKkUoGTvLWEFmdb0O15mj8kfiCQFyWRKNkRbKpVi5LlFLr5QfB2w9Vobjj49qVRKFlACmDvpZ/LN4u3D6FRja9bj6CvevrRWFW3X2mm5Kr1eVcQVqvMmB80HpHXfmD9Z9BlWbzNRnf4+Ci/Hs4CStlKVdYaMRVLEw4V10XiphZZrpPzH3/Qw+sJKAaCktapov7aS+n1Sugu/cWcBJatLxLnDAMkU/oUIsWACVfp1zAWUum+tzPYXoaU4x3+4wPzpEL74MlP213kt+APO+F9menYai8XCoUOHCIVCXLx4sQwolVVWWb9TuuSSSxgcHCQej/OFL3wBk8lEKObhxNTjPHv6z3h75Hv4w8u45+DU8xKgBNCxT6R939r4mgEJBCFFNJQktJqCZIqqJgXm9DA6dSYhAUpATYeatv06dOu4gWgIRt6KMHte6nPrtqio6yl0IozHIBZdc0fSSMMGiShZ96MqlwpHW+H+m28umQ0H1bhLR+u+wj2+DKDk7BNp3a/L5r9etmaRSpeIwVbcLXF2MMLC+YisO04GULI2CDTtKSwHwOSRcIHrU55SKVLJVMl1r/nzEWZOFgepMnmQSmGtl3d99M0lZOGjTB7t1xho3FH8PjYjQYDOqw3UdouygBKAd1oeUDLYBURD8d9ltDwSYf5sRDYUnKCVLh8LJWRdlFbHY4y/EygKKIkmBa1XGkGtJLiSknVrWhmJsjQclf19dbeGqnaNbJi45j06mvfrEQQpRON6QElrAddePbW90nx6ZSIfUAKwOAQqXWoMdglUywWUMu9n2JsiHlcgZJYS03mIRmi/RI2YnupePBpl9J3C+mjZoaJllwZUAokonD2cBpQEqO1Iw22JJJGA9B9pl7RMvyLqYMs1IjWdUp9z8VgqCygtJY4xHPgxLwz+BbPukywvL9Pb28sLL7xAIBDgiSeeKANK/0lUdlL6T6poNMqhQ4d49dVX8z5WFShoZQsuRSfGOpH6/Q7OPSptfO1+uBPPxUCBS0/nB+up7DZz8jvD+KejiEZlNgxV1TYL8WCC1SE/HbfVY3Hpefcfh/IcYxqurKJ+r51j3xwhvBAtGrJMNMKOL/QQXAgXuLxoHWtuTwOfa8M7HixwNKo7UMn0q9JHd9cd9Zz7xVReGWr32fBe9BOYi1K1zYJn2JM3eIpGJdFoEqJSXounfUVDV1V0GKWT/z8dKwihZWkz0PPhRmbeLg0jtVxXQyKa3DDEW0ml3aiKac+Xu0il4J2/LH7a3rmvkvr9dt75+/NF8zA2aKjstDD+6oLsNTZyUrL3mdFWigXuVhn13e9CoVJw8l8uFv19y3U11O6sZPjX00XDmZW6/01JhP77mjn5PXl3I0TY88UuggvhArcggP4HmkEBJ79Z/B5cB6uz4RQz4eByVbvPloWNctNmVLN7LbxcRYeReDSR994Y60S6P+Ji9NezLA/68t6TbJoGDf33teK+6GfwR/lhggw1IoGVKERh4LNtoEByWMtR+21S6J6My1TzoWou/mY+Wz+Zutv1Bx0o1cqCkIeGGpHee1uYPbLM5EuLOPdVImiVTL60SEj0E+pe4Ojxo9n0NpuNeDzO448/zlVXXVW0Xssqq6yyflf10ksvceedd7KwkD++m7GxnctRCyJ1l1QS8UZZOuWj8Uo7jj4LJ747UeBItPtL7UR8MU58Y0xyXwEJcFBD/d5KCZoAdn62lYVBT4Gr0PZPNRMPJzn1nXHUelBqC0OndX9Y6uOPfP1iwfU1Nim9vc9E46VVnHlkMu/vLS49ibgUnqp6wEIiksx3d1JD3e7KLBhdzCVQb1dn3WVy065X332NRINxzv+sECjuvbsevV3Du38rE74tlQQ19H64kTM/nSjpMrShZFxwavdU0Hx1DRdfmGP27eLwdd/Hmoj4YrKOTc59NgLzYVkoZ0MnpXS7WBnyFnc40ivY+kArY68syDpl7vqDDlLJFEf+ViZcr8z9b1aNV9hJRFNMv5F+zorCxZTGyyup3WXj1A/GCM7lX8xYr6XrtjrOPjaZ50aWkcamxurSM3/Ug1oPsVh+edV6MDVKTl+GOhGdVVPQZtuurcmGoKvdU1HwPFuvr8ZQo8uGbcy8J7nq/3gTeruGt746VFBfGSc1fY2avntcjL24kBc+Tq2H/vtbWDznZeLFJaxt0orOGswoQVWmRh1b7mpg+p2Vgne//eZazPW6bOjG9ptqmX5zieBSjEjHCucWT7C4JPVRGo0GjUbDddddx/e///3sQZeyyiqrrP8MisfjPPzww3zjG98gFFr7ThYVOjoMe6nTdaAxQ3WPgYnXpf5+y0fseKcjTKwL9+bcYcA5YOLME0uElhOotGth1Ux1Kkik8M3Ece4wYGvVcfqxpTzHIluHFtd+C4O/WCa8Gs+G6MqTkGTHx2oJLEQ5t87lRW1UEPNL63Zdt9jxz0eZeit/vLZ361g6G4JkioZLLEy+7ckrg8WlJeKLE16OY27UEFyI5LvaqEClku7L1qHDNxMpcKEBCfhov66S4WeXCyEOm4qe26qYOepjrgSMVLVFj6BWlkyzodJuVMXUf28NCoWCE98rfpDM2qKlYa+Fs4/NF3X20VpVWBo1zA8GZK+xkZOSyalGU6EucLfKyHWlFdEoyIaWs/fqaT5g4+IrKywNFsmjxP0DslBS7t+3H6zkwnPLEJcclYrlsfW+WoLLUS48XVjO5qttiHol558qvq5X3W/I1qHWoiK8LgRfRas2G6otN21G1mYtSrWC1QthdFUqBEEC5jJSG5V03mhn8i0vnjHJYWl9m1UZYds9dayMhBh9IX/epjYqSMVTxMPQeVMlKlHJmZ/nW3M4B4xUduo59WNpblS91cj8uZBUzsweezRF962VaC0Cx76b/52n0kHPrVUsngsweyyItVmDaFKxcCZEPB7G23SeI8ffJoX0vGw2GxUVFfz4xz9m165dReu1rLLKKut3VSMjIzz44IMcPnyYeFzqr5UKNTXmbjqd1yIKItYaSEYTeBegog5q2tVceDNGfB2f2nO1mlgoxYU34lKYzowDiwJsdbAyJtEOHQdE3DMJFta5HrXuTR/4eSsGAohiYeg0Z6eS6g41g8+FsvBRRoIOEiHQVfx/7L15mFxXYab/Vt2l9n3p6q7qvdVqtfbVkmzLu7GxMSZsYQkxwSSBQBIgYWAIM8kzmYQAgQAJBEzALGazwRi8YIM3GUnWLrWkVu/7Ut1dS9e+3qrfH7e7ukvdMmQy85sh1Pc8evR03XPPPXXurbqnznnv90Hjdh1jJ3LkV92OdRaV/8jEwLIEU13pmuRsFoiMX91VaXWcm7NRS2Rs/Rt74x49ZWDq1NpBS2C3HmudSO/TyauDRAI07dIzceYVYKNlXc0ZqVy+qguOxSfQccjE+KkMkZHCunU07dWjFEqVKLorZW8UyKdXRahdUccrOikttc3ZKJEMFdYHogTovMVM8FKG+PT6ndB1hxmtoKH3iatA2Vd5/xVdBUpalqNZQiNqiAxffdHS0SoT2GVk8Lm1Tk2yGVqvNTNxPENmcW1DBBnMHoHYbBlBUNu7OrpNEEDvFEgtKMgGNSK56poUoG6jzFxvHkQBm191T1otT4eAtU5k+MhSpODS52S1mvfI2BpELj2RpqitBv6XI+pEPWw6JDN5qcDi9Kr3KcCG/RKxuRLzQwoGKwh6oeKctAxVyXKJ7ptlZvsV5q747Nd1CDgatPQdVifcfBsEwnMa8hlQ9JP0TR1menYMKCPLMg6Hgz/6oz/iv/23/1aJrKzpN0v/64+V1PR/VbIs88ILLwAwNDTE9ddfTzAYpEyZIS4wVL6AMCWw8Qe7aNA0gwylYonCkstK/QEn9kYjl38wRf+Ppqogi91/upFUMEvP10arYtq0y5/xpS/Htjt9jDwbZPL5BSafX/ohKMOWt7aSXqiGkfJJCJ4MExlJVvbVSlqGfjKzAl7IIMoCkl5b+Xv5WMuAkv+QC+dGK43XelaOCVXOMx2vbqCQ8lYtwixDV8jQdJ2Xuu2ONcAGgN4loxE0lAtrJwRiQymOffpypU2OLjPRvrV3TfcWO2Xl6pCSrcPEpjc0Mf7i3LqOOXV77bTd3sDYc8F1t489HyQ5uf5ECUBJKaERNFj9RuKja8slJ3MkJ/8DABW8YlQcgKAT0EpXt4sceSqIki+tDyihwkP5ZGFNHOGy9v1lF+lg5qoQVfP1Xkx1Bnw7HGvdnGQqfXP8n/quCjFpZS1c5S24t1ppuMaFbJYYeHRqDaBUt9dO2631GF06hh+fXQMoAbTcXIeSKxE8ESU6sJqoA/KQj+XRSlrMDQbCvYnK58TWYaL5Bi89/zZKcjJHqDfO2IvV59Psl9l2XwfRoQSXvz9ZFYe3Or6wVChVHXMZUDI36tj6jnYWLi4y9NgMFx4aqxy/brcdV5eV3ocmSAXzlJUSWkHtqLGjswxYTxEszyAUBZRzCoIgoNFoeO9738vnPve59Tu0pppqquk3QDfddBNzc+r35F//9V/zD//wD2SzWeJEeJFHQQHnYR9bOYgkSFAqUyqUK4DQxjc0sHAxRqQvxYkvDCIZ1UmXDXfU49pk4fSXVZhoGVCSbBLlUhkltzTp3WWiVCyzOJTm7L+uALTtr27A0W5eAyMNPT1P4ICj8trmtwUYe2Ge1HS+Al4Y3ToEnZbcskvLEqiy2sGm8Vo3GkFTDXwUqEBHHXf58Gy1UkgXq2Kqlt2FOl+tvr/4ZJrExNqnwLSyFlFZ/+mgSw9NVSAuS5OBxGxmDRji2+HA2mjEt81B8PT6EFH3WxsxOHSc/pf142G3/2ErkkFcF+CZPR5FK2ivCiiB+qNbKl59MWlmnfHcv0sFKtfFejI1GNFIWpT81WdcLn1nFL1rfVeChgNOmg556f/xJNH+1Jrt9dc4aLzOw6XvjZOaXn9SyrvNAaVVkNIq2dqMxEbSTLwYZuLoWtcigHK5hEbUYLDr1oWUNr+5EckkMHcmRmGdYfC2+9oQDQLH+wZJTefX1NF0nRvPFiuL4ylCFxLV53Ppuhf0q36HQOVz0nanl1xcYfpImImXFjB59Wvew9b7mjF5dLz8qQHSwQLHPz1YqbvpoIuJF8OVdguyeozVn5et72jC6NVx/NODJCYynP/qaAXy63x1PaHBBJHeJIWsgqKsXGs9L5/n+NwRiuTh8soiZVdXFz/4wQ/YunXr2s6qqaaaavoNkCiKfO5zn+Nzn/scoVCI173udRw9epR8KcPF5PNcTD6PPmxm0/x1eKVGAEqFMsWlcZOtRcYe0DP+cpyZ0ynCgxlycfX377Y31ZFcKDDwVJTE9MqCkkarUecAll7y7TASvJgmMpAlMrCysNT9Whep+QL9j6+6vytaJl6OkY2qNwjvFiOSSWD6eKICKAGIei2ifmmiYRWoErqsjpHsHQbqtpkppJUqCCg2tnL89ludFNIKF7+3ah6gqEYhALRcbyeXULj0g7XzPjqLiCBq1zWizEaKnPnGbKVN5gaR5MzaBTffNgtouSqkpHeJdN3jYep4bF1AxxKQ6Xy1m/Eji+tCQOOHo+RiVx/TlIpltJIWg1MiMbN2UJFdLL5iTNuvo8RMYd26lyXqBUTd1cMJQpfSaDSsDygB297io5BWuHwFVAMqXLTtbT7SoTxDT68/hnS1G7A3G3BvMBK6fMUxRDA6BFLzRc5/Z/aqMJQoaxDk9Se9TF6RpmsdGBwSYy8urgGULH6ZjtvdBHsSTB6JMdezdvzYcoODUrFMdDBbDcQtXfeFbAlBJ2B0iMTGqHJOarzGxuCTYYpJmD2bYO5y9YKjaIbtb60nPJhm9PnFqvg3S4OERtAQn8yjFEqUSypsVMwLlVg20Qzbl6IHJ44kGPxFuAK8WQMSrg4joy/EKGagpJQrpg6hkQwj4suML/ShEajMeVksFj784Q/z0Y9+dP3Orqmmmmr6DVB7ezvPPfccAI8++igf/vCHGRoaYibWw0ysB0mrp2F2Kxu8tyCg/vZUlHIFUPJvEojNKyTD0PtsAVGnvu5t1VC/UeTyiwXyGYhMAaKAUFagDOWlW77RDhoBUuElOGlJ9RsE6jaI9P4iVwUqzY2WUAr5FXekXRLzQwWy8RXwwmAREHUalOVpjCVQJbfqtuLr1iHr4dKT1ffTZUDJ0yES2GFg6HCaxPzK+GS5Ld6NEg1bdGQT60d3iTrNVQ3Ap05nK23SWSGXYg1IY/EIOJokEvNFouPr39T9O3WYPSL9z6TWQkblMq3XGtBbBS4/tXbslggqjB1Pr9RdLq+pQ9Rp0F7F1QdgcfKKRi/fOF8pTm41kK1AZOzq4y6dCURJU7lW1tPIi0lky/qQiqVeoPWgidEjqXUj/Cw+DU17bQy/kCR7lTGoZ6Me7VUgJYNDIBMrEx0vEp2Krw9DKSCIGkQDsLh2c8sBI0aXyIWfJlXXoyvqaL3egMEmcOGxJPkM5DPVBex+gfpuHdkUxKaVakBp6RoTJA2iXlv5e/lz4ukQUIoqPDg3kCexoKwBlJp3itjrBc4/rT4oceGZfKVuV0BLeLxUafPyac+kBVj6WDVu0eLwael5Ok8+A73P5SufofpOgWRUIbEASqGEUlgBG0fHgvQMPU0sM0OZEhqNBp1O5o477uCzn/0sra2t63R2Tb9Jqjkp/SfTgw8+yPve9z5SqeofiCISW7gGt0aNidj+h20YXTqO/b2aO+s/5GL6ZfVH3abXNRIZSTB3cpH2u+vVha8vDVbBHJ4dNjpfEyB4NsLw49VPN7XdVU9sNEm4N0H73fUY3bo1TjV7/mwDWllYcQNaxzln9592IOjENY5Bq+Gg7e9uY+Z4daTEavcnzw4bmXC2yhXJ1W0hFcqRnV/fdWlZeq9M220+eh+aWLOt+21N2FvMXHhodB3XqBXXpnUlw94/6WTs2eC6URjIsONd7Qz9ZJLkOos0q8v9r7oNdf9uI/m0ssaxalmv5KSk98p0/U4jI0/PrgtB/Ur9Gu3e9OZGMpH8unAPwM4/aSc2kmLkqeC625fbeaXzEMCeP9+AqBd5+ROX12zzbLNiazUz9Nj6/bLaHanhgIuZY9ULcasdk9ru9FW3b8ndaeZ4mNCFOLYOE7GJVFVfdNzTgGernbMPDK1t+1K/tb26nrqdDnq/P05saOVzXn/AiW+Xg7P/ooJdm94UYOLw/BqA6sB/3UQ+WeT056sXYjte24C9xVRZoN16XwtTL4eI9iVxdVvIJfIkJ3Nsva8Fc4ORY5/uVWGqcp4ejrJICIPBUHnKVRAEDh06xCOPPILTefWYnJpqqqmm32QVCgXuvfdenn76aZQq71wNXgJsYi+SICHZJHb/USuRgQQDP57FHNAjyFpiI2kcnSZ8221cfli99+x6TxuhvjgTz1c/1bzrPW1IRoHj/1j9/W30STTsdjH0hHrP2f6uFqZPhAldWJl1cXSa2Pg6PxOHF5g5Fl3XNcfkl9n69hZmXg4z8eKq+5sE5jo9yaks7q0WvN1Wen80XbV/0w2uyj6B611rgJq6XbaKo8x6rkvLan91HaG+dWLAJLjmzzaQjS25T0FVzJvOJZELX31Co+VVdVh8ei58Y324uekWL7JBYOjx9Z/YX92O/xW3IVubkaYbvPR9f2xdwOZXOSm13elDK2oY+umvaN/V9CvabfLraLu9ngtfH1t3u3uLhaZDXs48MHz1eiSQluLVKtJosbUZ6X5jgIWL8co1ulob39DAyM8X1rh9geosZA6YiA6kMHolBL1YBbqZA3oko0B0ILXGlQhQr9etNnq/o7rILsNSq7X3zzrIJQr0fO2Ka2NVn+398w7yiSLn/626f7rfGiAxlWHycBhntxmTW8fk4eprv+MuH95tNi59d7IK/pOMsOUdrSxcijP1UhjfbjU+eOjxIEjg22arxPLs/8tO4pNper+nvo+wMsclXkYwaMhmsxW3hZaWFv7qr/6Kd73rXWv6sqaaaqrpP4sOHz7M/fffz9DQUJXbjFFjY4v5BhySGhXXfqsdW5OOM19Tf5+7OvWER7JQhMaDFtKhAuGBLHVbjbg3Gul/Ikwxs1KfuU5k070eZnsSTB2rnjDy7TCSiRaJjeep22bE4pMZemZR3bg0Ptl0rxvZKnL+m0v3vnWcc7rucaGziZz/VvW8h7leJDmt3oQ67nQS6k+zOLICKVkaVII7MVPA2qSjkFGqIBCjV6SUV2EdS0AmE8qv6zgkGqFxv4PR59aC2IFrbfi2mun7ydwaUEnULwFRV+OARNjyei+Tx+NVcNVqbbzHxfiR2FpHqivqeSW3oVdS47U2SqUy08fWH3O+kpOSqIf2211Mn4qtC2n9Sv0a7Q5ca6OUU5g5pV5bV07Nb3yN6rg1feLqDwhKFoFCYuX3h0ajoVwu0/0GDwaHxOmvz6xph7lBwt5sZOoq0W6r3ZGcnQYiA9XznXXbzMz1qG327TRXg2oitN/iJDKYJjqSxeiVyESLVW3w7TTj32fl0sPzZCNXNG6p3zxbjDRd62DgiQUSU3nVgQPVQcu31UzfY+pvpMBBK6He9Bogbec76ymkFC6uhvQEgfrtBpztRi49ou7fdrONhYE0iakC5noRpahGLDYfsuLuNHL+oSDFjOrqNpg9wXS+H9kgVea89Ho9d955J9/85jcxm83r9mdNNdVU02+6FEXh7/7u7/iXf/mXykN7ALJgpNG+k1bnQdW9RIDtt8mEJxWmLinIRhBlNbbJYANXk8DUBfWeteGAyOJciYWxMhRX7mMdByWMNi09T1U/GCUb1P1n+9WybfskQuMF4kvN0Sgl9FbovMHA9MU84VFlXdcc2QBdtxqYvZxnYaga4NCbIBtVMLq0uFslJs5WR7U5W0Uio+r9ZrXD0rKs9QLxWQWUEpZ6gcTs1UAXmVRIWRdm2nyPmXyixODzayeN1nO8WS1nm4S9XmTkyPqFnC0islkgeHH9h85WDsRawEajecUINlDjxXzdBibPZdZtp3+nfsVJaZ26PJ0yok7D7IVf0b5/T7tXSTaBf4eB0ZczK+VWOSeZ3AINO1UHpFdytBKucDcCkG1aNt1hZaE/x0zP2vY3bNMxN5hbt18EAfQOgVRIQTBpkQ1aMpGVdslmkAyqe5LBrkEraUktrDTQ5BZwtUpMnFTHbga3QGax+hhdtxooZEoV96TV72f5vXbdaqCYKzP0klpPWVIBpcA2gVwcFsYUjHYw2QUWxq5wZ2oVCGwRGTiSI7V6WC0KbNinZTFYYmG0hMUDZqfA7NJnz+aB2NLPpG23y8QWFMaXYiFT+Qi9wafJlBfI5bKUSiVEUWTnzp389//+37nrrrvWdmZNv7GqOSn9J9N9993HfffdB8AnPvEJ/uZv/oZsNkuRAuf4JZRBQCL45V00WZoBNbKp+VAdtiYTvd+eYPiJyQq0IxkEtKK2AlJselOAySPzLJyLoZU0FSec1RESI0+sLKCYGwzobCsZsMsLU6c+N4hsVunbxps8BA546PvRRJUzUXQwic6iXqKyWUvgei8jTwUrZfReGaNHh2tj9WLXaventtvrAapiqsK9K4t2HXc2UEh7131yvu1WH7YWM2a/vAYWGnpsgpbbAmsAJVhxbXJ1W+h8bYCRX8xWOwbl4eRn1Xgt5JXXVm8/96WrxJosyb3VyobXBBh/fm4NKLMszw5bVV+slrnRRDHzvzbbY28xYXDq0NnWj4zwbLOy0Be/elzdn3eRjebXxP6t1uXvT677uuyUyUfyFRDnSu39YKe6iPTAyLqAEsDoM0GMdes7CTTd6EUySutCSsvuSAanjpEnZtf0e8c9DdRtd5CJ5Jg7vbgGoJJlMHn1eLfaCV2IVwAjS4sBW4uJqRdCBE+HMPn0lK44Nbv/tAOtqOXkZwYYeXKWqcNz5JMlZKeMziqQGMtg8ujRW+UKnHX5B+pCVvMtXhqucXPhG2qc48jTs8xdWARUoDAxmWKhJ44gaNXP+hIM1f/ImPo9IMPG1zWSWshy/isjXPjOGPlcnnO8hOjQkC/kSSbVz6TJZGL37t089dRTtUmammqq6bdCkiTxxBNPABCLxXjNa17DkSNHKJVKzDPJPJNoFA3OiI/0Jw9U4pbabq9TI6M+OUB0IEVySr0nSEbQihr1SX7AvdmC0S0z8WKYC98YwdKifrfaWoxselOAsWfnCJ6OVeAPk19G75DQ29UBhjmgJxfJEh1IcfoLAxWAZM972sknlUqsFUA+WSYVzDJ7Th1T+Q86iQ4lSM8XSE6pP1Q9XRYsjcY1/bAMKPn22Gm6zg1UO/8sA0rtr67Du81GMasQHbjiiWsJ3N1WTD49PSNXACMFmD4eITa+Phy9DChtfWcLol7g7BXjqLGnVybTJJu0BoiZ+DUiere+swWdVbpqXJpkVMdX6zkRGRw6TB79Vbf/KtmajWiFqzy1JoGz3UxkHXdPAP+1Lhqv9XDpexMkJtbvv9R0bl1AaTlWLXQxQejiWsvsul12mm+q4/LDkyQm0moE2xWKjaRVQOmZtYCSpcmAs92MkimtCzBtu68NQS9w4jODpOevyHcDut8UoFQoc2pguApOWpZzgwVLg6ESo7YMKDXd7GbipZDqGjaeIrVQPWZ0dpvpvLuB4Z+pDxSc+8pQ5bPj7FIj5UAd1y0r0pskgnoOdr+3jWKhxPkHxhh6JkhkNElsLI3JL1O/w8nQE0EKadVRSTKpT/oFT8dAUj8n3a8PYGs2Eh5KU4gVOP0vA0wlJunnNI46OwsLC5RKJcjAli1beNvb3sZHPvKRtZ1fU0011fSfUIcOHWJgQJ1Peeyxx/jTP/1TJiYmSJdjnEj8BFCBpdCTB/FZA4DqotJ6gx1bY4aRZ2NMnkhUwAnRqEWQNCqgVC7ReK2Nhf4MybkiAz8LE1uaC+p+nQutpOHiD0IEz63cc8x1MibvypyXtVFHfDLH5R+HEJduE442PW03Oxn6eZjY+MoCQWQkg8G1NK8iQsM2MzNnkiRn1caJerA26ChmSlWQ0mqHn+br7QiylnNfX5mHS8+vTCh03O6ikFG4+N21Yx3fThuuTiNzFxNV+wBMHVfvSetBOsvAk9ErsvFuD+O/XKyGWYpw8fvzlfe1HENXLpcrjn/9P7m6Q+Ry3V2v9TL1coz5C+uPnaxNOuIzuXWBIFuTjlKhzPQrHmV9GdwyZp8OnVkiuU7lrwR+geqSlIsX6X9s/Rg1gKkjK3N1qwEl0QjFNFeNYNv8Zi/FTIn+n4SqAKXV9YwfjmL26dftl8A+Oya3xNTJ2Jrt1oCOjtvdKph3JLYuoNR8nYNiTiHcn1nXScveqKdcgujIinuS3i5iCcgsXEwTGkxiDego5qsP3nWvB8ms5cK351i4mCY6lKaYBdGoQbKIZBaK6ExajC6pErc4dVT9zeLqNNByyMHln8yTni8y8lyE1Jz6OfPtMJFZLBIbL6DRatBKmkrc48TRWOUcbrzLTWouT99PI4wfjTN8OEJf8ihpwzwKCvG8eiyTyc4NN9zAww8/XJvzqqmmmn4rJAgCH//4x/n4xz9OPp/nv/7X/8rXv/51IpEIw+EjDIePIAsmGmxbUZ64HkFWf982dInYfVrOPZ0nE4PZ3qV7lgBaSYNWq4FSCZMLjFaBhVGFoeMFzA61mGyATTfpmDhfIDpdqgBKoh5MDi2JBZWwkM2g5LVk4yUuPZ2pACSd1+tQClSBGYoCsdkisRm1LrtfIB1TyCchu7S0aKsXsdWLCGdzVazKMqBk9gg07zUiSBkWhlbuZfElKMmzUSawXc/QiykSc2tpF2+nTLZOYfjw2jXF6XMZcon1YaBlwKVpnwG9VcPAL65wfRopqFFtqLFhFZBmyRVJjaJ75bXA5msMmFwCvU9ecX8vl9V/ogbTElBzpUSdgLVexDgikMisR/mU1X9XgZ0sdSKySXtVSMnkEargnNWy+gVarjEx9OL6TlYA+RSMrga4lgGlJeOlVEhh8Odr57wsPoHm/WaGX0qSCSsoV1av1ZJPwOyFLOHBtWuRsgncnTrKwOw6AFPrIRN6m5aLP0mhZCCTqbbcar/OBMDln6XILJa5kqAyewVsDWIFYlsGlJwtArEZBSUPi9MF8pnqfjfYYcP1RibO5FicVhg8vPLZMdaJFdjI4hQQhBKMqcBheimmbsNBCTQweKTAwqhCNqmQiqwCCvuKoJTQSgKCqI79EwuQjiiggL9bwNsmcOlZ1U3p0vN5ovE5+heeQ7JkK3NeWq2WnTt38sEPfpC3vvWta/qvpv8cqjkp/ZboL/7iL/j85z9P4YrVAy1aWunmwDUHiAylyEfy7HhPO3qbtOZpbnOjjm3vaCd8OU7/j6awtBjIxRXykTxdb1Qnf/oensLcqGPDPY0M/HCiysWl4YCL1lt9TB1bYPwXKxMkrm4LTTd5qxxggj2LVcBS91ubsLeu41y0ypVn1/s7KOXLnPvyysKU3itjrtMTuhDHvdWK2WeocudZ7brk6raQmEitRMNBBVCSzeDeutY5B6DrjQHMDYY1i1Z6r+pIcPnh8Sonp9W65sNdKHmFU/+0dsFLBZH8jD2/fizczj/pYOzZ4LqRc3V77XTc4Wf2VPgV3YaupldyUvpVOvDRTRTSxasu4m35vWaSwey6LknXfLiLTDhHz7+Nrtnmv9ZF0411jD93dTBr+7vbSIdyDD5aPRXVfKsa8XfiC/1r4CnZrMXZbSN4IopsBtBWXQO+fSuRcW2vrmfkyZXJP5NPxn/Ay8CjU5U2LsffLO/bcnMdF781ooJu67hI7f1AJ4JOqHZ2kmHTvQGmToRJjGXofF0Arah+vlZr/0c2oeSUFehtSRt/J4Aga+j93iQmn0zn65sY/PEEyek87q3WSlzfgf/aTTqkwker1f3WJmytZo59SnVL8l/rYvTkJKdyL+JudDEbnK18lzQ3N2O1WnnmmWfw+XxrT0pNNdVU02+hZmdnueuuuzh37tyaJ6OtuNipP0Rgq4e5MzEkI+x+fyehdZxmtv1BM0aXGiEFK4CEOaCn/VU+er+rOvN0/k4D+WSRsWeqF6D2vK8djajh5D9Vx5x13ltPPlVk7OcL2NqMeDZZVYhk1TDxmr/YQD5R5OyXr7gnLznMmAN6ut8UYOhnQSK9K2MR3+4VB5iOu3xMHgtXYrOg2nXpSlclySZRSBegoLovRfrWRntJRth+fzvTxyNqZNcqR6UNr6lHMov0fnd92LnhgJOmG7wMPTGzbnTt1vua0VllTn1+7Rim6RYvervIwA/Xd1vc/ScdCHotJ/5xYN3tr6Rf5aT0Smq9s476nU4ufW98rQMV4NhoovFaTxWQtqyGA04ar/PQ+/3JdQGm3X/SgUYLp9aJSAYwBwx03tPAhYcmqsEvWcuu+9uIDCfXXJOwdI30xKAARq+0BCCpkmwSRodEbCyNvcOIRqupAtqabnITG00TG0vj7DKRmM1XHXvbHzRDGXq+vjSGvcJFytZmpPtNAeZ7Ygw/uTIWdXSacG2wVD6D2/6ghfHn5qvcj5pudhO4xkXfo1MVUAlUN7MNd/npfWSaQqxA5731FLIKoz+bR+eUEERIz6uvuzZa1kQzgvp5S85muPTQFEa3hLFOz5me0yy6pkGA+Xm1H00mEw0NDbz73e/mL//yL9c9LzXVVFNNv4168MEH+ehHP0owWD2W0mlMbDDsobtrC9lIkVy8xIY7HFh8MmcerJ6TEM2w4y0+FvpTjL8YQ28XUZQShST495oRDVrGD8cRzdBxi4uxwzGy0ZUFH1uzTOcdLqZPxJk5tTLOMPtEAgccVQ4wsYms6hKzpMB+K77tZvp+Ml+BlADQlitrSl2vdYMG+n68ArCIZjA6dcQncph9IpZ6PbOr4BFLQIZSmcRMAXODSDZepLhqCklvF1UnGhFcbQbCV4Ap5XIZ/34rjmYDF384h0ZZie0QjdB1j5fhZyPVcV6rtPVtdZRLZS5+d75qTKzRaFQQ6R4PE8di68a+db3WzfTpeFU/Vfq0QWTTa31Mn44xc2LtotKv0is5Kf0q7XhnPcXs+uAXQMtNdvKJYsUlabW2vr2OXKzIwE/Da34jONr0tN/uYvylKAvr9AdAx6uc5NMKEy9VP5Do7jbSsNtK78PBNfCUqAdr05IrkrjkhLWqaavdk650R5IsAr5tZiaXoCrXRgPh/pVrxNasp+0WJ/0/nSe9oF5Hq68RgM1v9KKzCZz56ipHUBEC19hYHE2RnCnSsNeCZBQYf3FxpYxWw47f96HkS1y4oq8b9pqRTQJjL8QQDdBxu5vxo4tkFopYG2Xik+o1s+td9aQXCvT9tPo8Bw6Yqdts5vy31f5yduqJjCxyJnIYQ32Z4FyQfF6to7GxkdbWVn74wx/idrvXPS811VRTTb9tSiaTfOADH+Dhhx8mFlu5J0laPV5LJ5vqb8LpM6hOKQJsv11mYVRhpq8asmjZJWKr03L+CfU+ZHKpcW+yAQLbJCbOFyhmob5LoKTA3GD1/p3XychGDRefyaFZ5crk2yRSUmB+UEFnAYdfJDhYrGI8Nt9hIJ8pMfjilet2KkghG2HDjSrIsToizOoXiC9FaXm7JBbHC1UxdK42kfCICmlYfELVvoK8VL2iAjDpiLLGmQcBNt5iYqE/R+SKeDdvl4zBJjB+fH3HJKtfoGW/kbGX02obV481NBoa9+gxu0Uu/2ztGMXZImJwCEyfvaI/lurYcLMJnUXLxZ+s/4DcK8m/U6c6Kf3g6g6RV5OzTaJ5r5GhF5PrRrUZHAL1W3SMvLR27GT1CzTvMzF0OEUmrFS5JwFsuMWCqNdw+Yn12yWboeWgheGXEtVOSFotHTeZSMwXmbu0dt3X6heIB5euIxOVSEJQrwHZIpAJKxicwhp3JGeLSDZRJh1WMLoEcmml6tgt+w0IMiugm4Cak7iqzd23GpkbLDB7aWXeyWBXIbzgZfWaatuvY7Y/R2aVoaqjVaZ5p8TwyRzx1QExBghsFZm6UCSfgfqNAuUyBAcUBBkEsUw+BXUbBOq7JHqfz5O/4nRsuVUmFS0xerqIIIPRBqOjo8zkjlPSZipObUajkfb2dj7+8Y/zxje+cd3zUtN/LtWclH5L9OlPf5pPf/rTAPz1X/81n/zkJ8lkMpQoMcxFho9fRIMGDwF852w4mqzqjjIc+NAm5s4vMvLkLGceGCK7qN45O+/xI5skjv395Sp4wt1lR2+TUZa+8wM3ulkcTjBzOozRq6sASrve10EhWeTCg2MVdyPZDPYNVkSjqMI3S1BH73cm8OywVQClfX/ZxcL5KKPPrEwqFTMKpVxpqR4tWqNIdj5fcdRpusGLzipVwTGrnYY6XuOnrMCJT68sEC07KHX9bivmOgOR4cQahx6tsH62anY+z8nPqAtVeq+Mq8vC9BUREJHBBJno+gBTqD9O801esuH1HYHO/sv6C0YAcycXMXkMjDz77weU/qMaeuKVn1V7JfApE86RmFx/MmbhfBh3t42Z09V9KJuhfr+X8V/MX9WdSSmWQKNBNqtOTKu15Z1t6CwSwXPRJQexlcFKy211+Pe7ESQt00fCVYASQNsdDZj9RuQX1XqXASVrq5H4aJrERIpSoYxkWbqQ82p7t/9hJ+H+BCNPzNL36CS5+NJAZKmYbJZxbLCiEbX0jk1UICjPNittdzRw6bujJCdzTB8PERtTRzltr65n5BezkAdLo6HiwpEK5ivXytZ3tGBpNBKfHiIfyXPxOyvQ3zUf7iIxk6b32xPMX1hUFwXzs8w3TDIwARM5NfZwbr5IfX09drud559/vhblVlNNNdW0jurr6zlz5gwAoVCIe++9l5dffhlFUYgT5sXso3ASDFjYWThIbCTJwiX1R3H3m/0Y6/Sc+vwwPV8bx+hTn7A3eiU23usnfDnBwGOzVdFTFp+e4tIYSDJC3W41cm3w8VkMbvXpfluLkc7XNjDw2AwDP165nzXscWBrNTH+fFB1wlmCOi48OFb5pdB2pxd7i5kzXx2pAB+SUaCUL5OYVscxliYDiYlMBVAyeiU8W6xodVoGfrQC9iwDSv5rXTQfciPIWoKnFgEq4IZkhNZb66jbYV8Tw6XVq/1RXH46S7PiMDS4Kg4tcL2LqZfDVYDKwvkIzg4Lob71JyAS05mVeq/Qr3JbGn1+jlK+9Ipl/k9o6sU5lIyyLqAEEO1PXdW9Kb2QIxvLX9VhKXguiqAX1rzecMDJQm+C5FSGM19cejhg1XlY7vPlJ6ZWy+iTaL21DkebicsPz1QBSgA77msGypz83DruSBI07HFiazJyYWyiAgoZvRLpqAq3FdNXTMQVVLjI223j1D8PExtJ0/+TmRWwbul691/jxOwzVGC9Zahr89sCaCWBCw+OM/FSCK2gIdKXwuSXsdQbCZ5aRCNoMLhk3F1mZo9Hqz5fO+9vJR3K0fO1cUafmWX0+RCFWIGW273UbbVV4hujwynCQzEuKScxWwVmhmdIkYIw1NXV0djYyEc/+lHe8573rHuuaqqpppp+27XaVfyRRx7hL/7iL5iYmCBXTnEx/SIXz7yIpNER0G3COnCAfHrFGXLnfXXMXUoxczLJue8GoaDez1tuUF1nTv/b7ErslkaLPWDA5F5xlnZv1JMMqfFv06cTzFxIgSCw8W4nSl5h6KkIfY8uqIVF8G4yYbCKJKYilYirqZfjJGZzFUBp61u8hPvTzJxJghYolclnSmiWb60i6M0qYBRPqmOxhr02LD4dsxeSFbBpNeDTdosKOfV8c2WeaDkqq+1GJ84OA6nQ3JoYLo2gAY3azjIr99hiWsPF76njI9EI9lbjGtgo3J+imCuvAXLK5TKpuQKZaIFcdP0s2b5XcCJKzhSZfHmR4IV//0LZf1TDT4fQSldxuATGnl+86rbkXJ5spLCmPwCiE1niU1miw1eMf0So61Zj1oaeXh+qKhVVlyqNJEC2eizbcYcHc51MfGKaYrYaUHJvMtJ2k4vxX0aY60mtcUcK7LHi3mhi4VKK7GKxAiiZvCKp+SKphSxKroSoE9Bo1MW45bi/6ESW6WNxhp+NUF5u0tL1LopQt8WEbBBIzkSYOanOCZt9Iu2vcjP8TJjkXJGpl2NkF9Xro26bifBAimIWrA16RL16DoqZlWul+Xobnm4TF78/T3axSO9j4Uqk4La3eEjO5xl5NsbiSBbZIJAoRhiXz8NsgfF59TeHPCdTX1/P9u3b+cY3voHdbr/q+ayppppq+m2V2WzmgQce4IEHHiCTyfDRj36U7373u8zPzzMd62E61oPQL+E0NbPRdxOhcS+LS85C/m4Ba52Wy88XGDtTXHpoXIU3NhzUERpTmLpQZOT4yvjA7BagvAQpCeAKCITHFcbP5THY1PuBZBPo2C8zfipTATEAnI0S3g6JhZGi6oSzFHPV91xGhYYAd5uAs0lk+KUciqLG1wmyQiEHuZjabp0FcgkqgJKgA98mHbJBy9QqsCc8oh7b2iTRfsDI+PHUkpPRKocjAVoOGEmHi2tclYSlIWaptHasMN+3Mq5zNovEpopV7j7xoEJsqkgqqKx1LSqXSb1CzG5krAhjV98+05Ot1FORZv110f+diowX0GjT6wJKAJmosi6gBFBIQTpSJBMprF7yq2hhMItkXDumszWKJENF8kkYeGYJhteuLbfOSwgGaD1oIjJWYPJkpgpQAui4yYwgaeh9cn13JP92PamQwsiRTMUZSjCoxZQ8FLIlSstAuKjO1zmbBbwbZPp+kSGfhMFfZkiFls7T0vXuapFwNkksDKjXzMjL6jUb2C4hWQRGjheJTJUQ5CLxBRXSM9o1LM6UKZXB4hYwu0tEJkuqU9KSNt+kIx0rMXSswNyIQniqTDEH7mYN9Z0SF57LgwLhSYVMTGEqep6ibYyZ0SkSCbVvvV4v27dv52//9m+5++6713ZqTf+pVXNS+i3Xgw8+yJ/92Z8Rj69drGn0NbPNsp3Nd3YTGYyj1QrorSJ6j475C4uIeoFyocz4S/NsuKcB90Y7c2ejRIcSODstDD+uTtAf+Fg3Sl7hxKf6QYb2V9ezcD5G+531lJQSyeks8xcXabzWQ2w6hUYD8yfD5JOw7y83ohU0vPyJPiwtBrxb7EyfDbPtd1uJTaVIzWXJzOdIhXI07HERHUkQ7Uuy471tGJ16Tn2xl3xEdRaSzRKxsRTx0TSdb/RjazJz+XujFAvg3+ciPp1EqxUoKWWcnWbme2JE+5K03FZHKpxBNkssXEzQeNBFZjHHzC8jeLZZMdWtuDNtvb+FfFKh/3uTyGYtjTfWMX0izKY3NmGwywTPRRhZekK78SYP+WSBuZOLyGbY9NZWhp+YJjmdx9FlxtFuqUTnBW50o+RKqqOSDO231zN/cRF7qxnfbieRvnilv/3XuiiXqLgNtd9dz8KlGPHRNNZWI57NNuJTaTpe3UB4IE5qPluBp9ruqic6mGDTG5tIzqVJBXMMP6OCL759DkSjQMMeN/lkgfhEutLfJp+Mb4+LyRdmySehbrcdvV1mfGlBr/X2OswBI4JOS98PJ/HvczF5NEw+ksezw4bRo2P852rZltvqSM1lWOiJIztl2u+oIzyYYP7kIu6tViz1hgqc1nyLF/cWG7JZ4sI3hqnb4SR4KkwqmMe310bg2jpO/dPAmv7GDN2/08TEs0HQanB2WRFlsdLfW36/mfBAgtljEdpeU4+mDPMXF0mMZdj2rhZkq8ypzw6ADK231JGPFyuA0r6/3IggCxz7VC+WBvWaHX5mFv9eF6VSGa2kUa/V4SSlYpnoYILoQJLN9zVjC5g4+k+9kITGm91Q1lDKlzC4dZTyJdLRHM2H6pg6HkJvkZjriZCcyNH+Gh++HS6CZyMMPz5L6+11JGYzhC7E2f+RLpRCmfNfH0U2aQhc5yUbyqMVNbg2WZnvWSQdyuHf7yYZTHNx7BzhbIjJyclKjJvVakWr1bJ7926efPJJZHnFzr6mmmqqqaZfX4VCgTe84Q089dRTa9wtZUHP7o49bG7dgdmnJz6RJj6doePOehYux6CsoVwuMXcujqVeT/PNXrRaDSc/N0TgehfphSyRvhQbXufDs8nO5ccmiV5K4d1pRTZL5GIFWm7yEDy/SGo+h6PFRDqcRTbLRMdSxIfTuLcY2fCaRubPLzL85BwNBxzkk0XsTSasTUbCAwkWLixibTSSiRawNRuZeD6EZIQ9f7qRTDTHuS+PgQTNhzwkgynCl9JYmgxseE098bE0Q08E8e22US6Dzi4x8VyI5ls8CLKGkafmMQf0uDZaSMxmSAVz2FuMmBp0jDw9DwVovsVDZDBJYiKD0SfR9fpGLnx7hEJMhXlFvYbYcJLt97eTTRQYeWqW2EgaY52EZ6uDmaPzFNLQfLsXjQbGnlbHH42H3CTnMkT7U+hcEr6dDmZORinECji7LRgcMtNHwmy/vxVFKTFzLEykL4lkk2jYu1LWsdGEuc7A5GF1scR/0EUunse/341oEAhdjrNwLko6VMDeYcIaMGD2G7A2mph4cZ58sqi6PEnQfIOXcrlMw24n44fnkExyBZby7XVQUkrMn4lVyoYux0hN57A0GXF2mnFvtDD9srqYVS6XmTuzCKgOk+HhBMnRDCa/DvcmW+UhAu8uG84NFvq+rwLSTbd4iY0kiY2mMfpkvDvt+LY7Sc1mCJ5bRDIKzLys1rv5HQHSCzlGn1rA6JbwbLczc2yBQhpaXuWhkFCYPhrBt8eOZBRIBtUowrrdNqxNBsaeC2NvNiCZ1LjpqZfCmPwy3W9qYvJoiODxRRydBqyNZoJnF8lFCnh3mGm/009sNEXv96bwH3SSixVIL2TROSWsfhMaEVztFsZenMPkNTDxvHpu9v+XTrLRPOe+MoZkg4ZrPCwOLuLb7SHUn8Dk0WH26RFELQu9cdCWCZ5QIbx9H+pAo9Fw/NODlWt2/NkFWu/w4tthZ+zFOWaPxfBf68LoFgmejdN+p49MJEc2UiAdydGwy8nI2QmGUpdIZhKMjqquZVqtFo/HgyAIfOUrX+Guu+76P/BtVFNNNdX026HDhw/znve8h76+PjUqc0latDR529lo20vXdU0sTmTQajVoRQ1Wv465C0lEk4ZyAeYvpvHvM1O/3crMuTjRsSyOZj0zp9UFkd3vqkPJlzj3LRVE8u8zER3LEdhjRaMpkZjJsTCUJrDLRmwmg1bSsjioxllteUsdslngzL/NoreLODv0hAeTbLjDS3I+R3K+QDaSp5gBe7OO1FyOxEyBDXe5sLfoufCdabJRsDXr0FlFEsEcmYUiDftMuDrNDD4Vppgr4u0yk1jIIooiSqGMrVEmNpknPpHDu9VELl5EMgksjqTxbjGTSxUJ9Waw+NU4u2V4pe02O+UyjP5iEVEPdVstRIayNF1vw+rXM3M2xsxxtay7y0BJKavuTCJsuNPF5LEY2VARk1fE1mRg5pS6OOHeZKRcohIx1rDHTHQ8i9Eh0bDPSrgvVXEmcm7QoxU0hPpWysansiSDRfROEWebnngwS+cdXkKDSdILRUK96rmq32kmMZdl42vqiM9kSc3mmL+YpJgFW4se2aylbquZYrZMdDRNOlQgMZVHMmvxdBmZ701STK/093IUXd02EyavhGyRGHp6AW+3mfm+JMWk6mZldEuVPvRuMZFPKSyOZhH10LDPSmo+T7gvi8UvY6mTVTgN8Gw24u4yYfbouPBwEGergchQhuxiEUujSPP1bi5+J1jpw5JSVvtQD63XOpg9n0DJlXG26hBkodLfrbc5iE9kCfdnaNhjASA2kSE1X6T1FgfmOh0XfhCEInh3millS4Quq3249W0+9FaRs1+fQtSLODsMzJ5P4mozoBTLiAYtdZvNxKZzFNNK5ZptudGGZ7OZCw9Nk10EV7cerVaLkithcMsUMwq5ZJGmAw5mzsaQjSKRsSTZEHi3Gmm53sHMmQRTL8fxbjGSSyjExnPseIePklLm8mPzaAWBuh0mctEipRL4tpkJ9iTJpxTqNplIhQuMzPYxnxtnamaqMhdusVjQ6/XcfffdfPGLX0SvX4n0rammmmqq6deXoij8/d//PV/5yleYmpqqQLkatFj0brZuPEiLbxMWt0BsTiGXKuPfIhKdXgJdNRCbU5D0EOiWEPUaLv08jzMgkM8oJMPg3SDQtFVi4GiWeBAsXpANArmkQuN2mfmRIoW4gt6qJZ8pI+shtaiQDoPBBRtvNDLXV2C2t4jdL6AUyuitGhwBkehEkdicgt4qkE8pWFwaNdZNgB33mklHFQaeU8cfng6RTLxIMgw6IzTtMZCYUwj25rHWC6AFWa8hNFzE0yqgkcrMX1ahLJtPIhUrUUwr6CwCRqeWuf6CCpO0S6QjCploCdkALQeNjB1Nk8+o8V6SQUN8tsjm11jIxRUmz+RIhxUEAzj9EpGJgnrv7xCRZA1zverco7NFIpcskQqp7jfOZpnIVAElC0aXgN6qITJapPWggbIWQgN5kvMKglTG2SwTm1KjuQwuAYNNW4mXszeLKDlwtcvoLFoiw3liswXyKTDYtZjcAjqLFk+HzOiRFKUSJGZV2MzTJqMUFfw7TEydTSNKWhaWYtOsfhXAWYbCPBtk4nN5cnGQLWDzydibJBYGcyiFMlotxJbKujtkUhGFTKig9neDzMKwCstYfAK2Rompkyp05eqQSYcVMlEF2QC2Jpn6bUaSc0Xm+zNIei3RSbXewD4dxWyZYE8eQQ/ORpnIeB4lrx6zVCwTGStg8wsIkpZcqkRqQcHsFbDWC8wN5DHYJCSj6ioaGS0im6DjBhOzvVmiYwoGO5jdErFp1aHL6Naw8RYzkdEC4yey2AMCShHSKdWlyWwTKJXB3SIzfSGD3iIQGlHbu+0eA5l4icEXcggCONsE4vMKrkaJxEIBvVlAtorIBg2hySIaAdX9TIHNt0qIsobzT6opQza3loUJBXejQNM2kbGzeSKTZRx+LTqLhtisQkO3TC5VJpcqk0mUqGsXmR6JMx45RTwzx+joSCX+2ev1smHDBj71qU+xf//+/7NfTDX9P62ak9JvuVY/bXbs2DHe/OY3MzmpRmRMBseZDI7zxOBPaGlu4bbbbkOTs6LVavDvc1MqlCiXymh1GrybHOSzRRZ6F2m6zout1YSj3cypzw1SKpRQH7uCja8L4N5oQ7aInP3iMJveFMC304lkFLC3mDHXG0CjITWbI9+XRNKL5NPqDc+3y4l3i51UKMuJf+xn7wc6sTebl6NVESQtJq+OaF+S9FwWk8uAwWkiH0nRdns9ZaXM5PPqpJF7ow00kM9A3XYbvp1O4hMp5s4usut9HegdMs52K8f+/jL1e51kInnO/esw9Qec+HY5KZfKxMdT+A96MDjlCqRkqV95Gs/WZsa300kxo3D2gSF2/VEHdTucFUjJf42LYkZh7uQiG+5txOwz0nSTj95vTxDY78biNzLyxCyyU6bpei+logop6e0yvp1OtJKWfKKAqBPw7XSuQEoHPVAqM3MszJ4/34DOIiObROKjaRr2OHF12ZjriZCLF7C1mHG0rTg8+XY6MDhUAEW2SFjqTcydDZOcztN4rUe1H5zNkEsW8e10YPbpifYl8W5z4NvpxL3ZxvTxEHXb7EhGqQIp+fa4KCsllHwJd7cV304nydkMc5E8jde50Tt06C0y/T+aon6vk+xinoWeOI52I84OK7ZmM/MnFwkc9GBw6SqQUsM+F7lkgZGfzaCzqv1SzCqkgvM0Xu9FMomVKBn/PhfFnNrfe/9oI7JJJLezwPDjs7TcaMTaZGLkiVm6396EtcmEwa1n9liEqSNh9v7JBkRZoH9sCqNHX8lXJg+ezQ4EWYNsEhl9Zg5JL5KJ5CAPDbtcuDfbEAxaPF12CtmiuqD1SdWt6+DHu3FutHDqMwOUlTIarQab30A5r6FuqwNRL1DIKIj6JevHYIbjn+yj+VYvvl1OPFttvPz3fdhazJSUEsOPz9L26np8ux3Y5nOELsTJJ4sYHDoc7UYa9rkRDVocrWZmT0bQaDS4tlsYOXmZ4z97ntGxUcrlMlqtFofDQaFQ4L777uNf//Vf//d+8dRUU001/ZZKkiQee+yxyt9/8Rd/wVe+8hUSiQR5Jcux/l9yrP+XgIY77riD1n1toAGDU4ez3UxoMEHnPQ1oRQ2SUSAyqC5gBPa70Ioaxg+HiI9n8HTZEAX1XtVxZz0AR/+un4WeONf8xQay0QI6m4Qta1TdL/NFlGwR304naGD+ojph33TIQ7lU5vinBrE0Gdj6tiYMLglnu4VsrIDOIjLxfIhCGkpKCUFWHyPquKMO71YHM6c0hC+lqd/jwGCXKbjUp20C17qhBKf+eRgk8O9Tj6sV1P29W22c/Fw/hTQ0vsWNbBex1Bs5/8AYDXsd6GwSiYkMzTfXYXDINOx1M/6LEI3XuhF0WmZPxBh8YoYNdzXg3+ckNpLGvcmGf5+LxWEVuPHvdQErkJL/gJvkjAopbbzXj6XBSDaaYe50gcABFwanjukjYSSDgNGix39AQ6Qvib3FiH+fi2wkj2QSlsZs5QqkFDjoJruYJzWnQjP+fer4Lx0K47/GpTocTqYqZQsphdCFOCavDv8+F6HBOJlIHnuzGXuruQIpNV7rVsHnvS4ufU8FwAVJy8h0kPrddtybbBSyCuVymcbr1bHh3JlFkCCw3039XienP9dH/U4n3m32CmTVfKMH2STTdJOHiecX8O91YnRKxEbTeLbYadjpYvzwHNPHI+y8vx3RsAIp2RpNWHxGRp9awLnJin+fk8XRFJRUB6SyUmb6aITgqUX2f7iT1BKk1HprHYKoJTqUYqEnzrZ3NmN065h6KUy5UEYyCgT2OQkeX0SQRPz7nLi7LJz+lxG8Wx1AmbFfqGND/34XuYR6bZaUErJRYuKXIU5/cYTt9zdVQUoaLYhG9XPiaLfg3+1ENgg4280YPTr0Noljn1Bh970f6EAyCshmidmXQ4iywHyfCixtfksjoiwwfniByECSuh12/HvdaNDi2WzF6JLRaLRotarjUt6U5PzUEZ74nvrkWLlcxmQyYbFYaG1t5aGHHmLLli3/4e+bmmqqqaaa4NChQ1y6dAmAoaEh/vAP/5CjR4+Sy+UYmx9kbH6Qpwehyd/MbbffjhC2ohU0+PdaKStllEKZsgYadtnUh7Wmsng2mqjfbsbZYeTi9+bJpxW0S+6BDbtNNO6zobenGHgygn+vGf8+O4JOg6vTiNknoZUEsgt5FapxiOSTRSiVsTfraNxvU6PEvj9P9+s92JsMFLMlRL0WQdISn8qSmAmTCGZxtBqQLTqy0Rwdr3JRLsOZB2aW2mFXXb8VsNbr8e+1M/yLEJHBLBvvcWFrNuDpLnHmgRkC+6xkokUu/2gBS0AmsN9OuVwmGwni22bB1qSvADaeLjNlNIz+YhHZIuLfa6esRBl4KszGe1w07LRVICX/PjtKXiE8kMG/z4K7w0RZgaEnw3g3W/BsMjNzKoGoh/bbXCj5EuH+NBpJg3+vHdGQIDWXR2cW8O+zV2Cihj1WtKKWUF+G7jd4MPtkFnolksEoznYD/j02Ig8HyUQK2BoNOFq0FUjJf42N6OjSnJdZwL7XTnwmS3KmiH+PBZ1VJDqSQSmUCeyzkZjJkZgKYwvo8O+1491qZvZ0AkebAaNbqkBK/n02SkoZJVfC7FP7OxdXCPWnqd9lwdFqQGcRGT+8SOAaG9nFAoujWQwumYadNoq5EuG+abW/m/UVSMm/z04hXWTomRCUIbDPDsDMqQRN+52YvVIlrs2/z0apUCIykGHzaz1Y6w0UsiWmjsQwOGS8my3qftfZqOs2Y/PrCPdnmDmVYN97G5FNAqn5RWwBPXq7WImFq+syobOJyCYVctLbRDKRPMUs1G01qOdKr8G3zUYuWUArajn3dXV+cu/7/GRjRS58aw4lX0Kr1aB3SCCU8W6yLNVVxOAU0QoaEsE8PQ/N4eo00LjfRv0OC6e/OoujxYBSKDH1cpy6rUZabnAQm8wRG8+RjhawN+qxNepxdRiRzSLyBoHxIzE0gHe7jnM9Zzl9bJSRVYtjTqcTn8/H+973Pj72sY/9H/4mqqmmmmr67ZAgCPzVX/0Vf/VXfwXAd77zHT75yU/S29tLPDvPkfM/5sj5HyMJRm668Qb8Td1oNRKyEbytMgsjeQJbJMoKGB1aFkaX3Jc2i8gmifEzBVIRhVJJWpo/KrHhoB5BhJOPKFx+Ls/m22RyKQGdQUMxX8LkEBk/l0XJK7iaJQQBYsEClKFpt0QZDRceSxObVth8hxF5OIe3XUcyXMTsElkYTYOiUCyUESR1vOdsE2jaY2C6J0tyvoA9IGFvECtOSb5uHVoB+p5ZGn/sNiCIIOrzFNIlAtv1XPppnHwGmq/RYfdLWH0FBp9LE9hpIDyWZ+pUFtcGGXujjLOjQPBCgbpNMnqrQHQ8ychLadquM+LpkBkPZ7C4BQK7DKRjJVLzRVr2mdCKGuZ6F9U27DSQnC8wGsoQ2KmnrttA8fk40TEFb6eM1ScSGU0gGjSYPSKCFpLzGWSLWq9SKFNSyrQcNFJSqEBKDVsN5FMlYrMFSkUtgV0GymcgNFTA2Srh6dCxMLTk+rndgJIvk5hNIUgQ2GVgfihLKlTE4BSo26CvQEoNWw3IJi2ZqMLgcykCuwwEezXMXshhD+jwb9OTS6suo/Vb9AiShth0Ekolmq8xUFKg55EotgaZwG4TsZk8+SQEdqnj8VyizEJfjsAuI+GxHFMnMpjrZQK7TEycThEeztN+yIzBLhCdVCFvX5c6Lg/25DG51H7JJhRySYWWA8YlSClGbFph671GUqEiIwsZ2g6Z0Jm0pCJlYtMKzdfosTVIREYTKEUwuQTqN+mJjqVAoyGwy4CzXaL/6TTOFhkNMHspW+nDQraMpNNQBvRmLVM9Wfqfy9C8T8LTLhMaT4GiznlJBvWaNTghsFVPsD+Hp13C6NZidoqcfTIHCnTdKGN1axg/V2RuSEFn1LIwUoBymc6DMgaLQHQ2QzykUCqL1G+UUAoF3C0iJqcGUdai1YLBqkFrjXB+/Bi/uDBGIhGnVCphMBjweDzceOONfOITn6C1tfX/2PdQTb9Zqjkp1bSu8vk8r33ta3n22WfXPOkPYNU52NN4LQffsIPgmSihvkW82xxYGoxc/u4IG97QjKQTOfflYfR+mW1vaWPqyAKphSxNhzz0/2CMfFKNmMpEc/Q8MIrslNEuYXM77+8gE80x9PgU+WiOfBI8u6103BFg6IlpFs7FCNzgIhXOUYjmMftNJGfTmBv0NN9Qz8ATUxTiBZKTOep222m7o4HplxeYeHYB2SkjGyAfK5JPlpCdWna/p4twb5yBR6eQnTImtwbZYmDu9CLePVbqtjm58O0xAMwBHd5NzgpA5N/vYPRJdWHE5JPRGESSo2k8O2xoxDLzPfGlCC8tskNi0xuaKeYVBn44SSFPJX6s7e56RpZci5bLJifVG/jO97azcGGRqZdUmMjcqCM5l6vEh8kOXaWs3qtOuGTn8+z9QCfpcJbBH02QT64tu9znyxF25kYd+WiOPX/WTXwqxdhzwaqykqzGh62ULZBPlkAG7zYrLTc1MP5CkOhwurqsX670NzKY61a1v05my5uaGH06SHQgqZbNLPWLDJ6tFvUptktJtV9sIma/idZbfIwdnid8OVHpQ3OjDvdmO2M/m0M2a7G0mghfUAcRjs1mZJPE3Ikoji4z5kYDky8uqDDR9U4crWYufXMCZGi83s3c2Tj5iEoK737/JuJTKS59a6LSh/lUmXwkj94rs/2dbeTiBc59abjSh91vb0ejhcGfTpGcy9F8yMvsmUUar3My/BMVVNv3l13k4nnOf3mk0i8aQcvWt7cSGUkw+dxc5RrxXWOj9eYGJo8tMHU0RPud9ZSLMPLELLve30E6nKXvO1PUH3ASOOCm70fjONttODotDD2utuGaP+9icTrO4z95HEODzNTkFMmUOvllMBgAcLvd/OM//mMt87Wmmmqq6f9n/exnP+P9738/w8PDayIgRI1Ei7WDW2+7DXujmfPfmECSoOOeBuZ7YuSSeVpv9jH2wjyRwSRd9zYgmyV6vj5O26u9FDIKk8+HabrBRf1eJ30/miQ2kkWySUgGCBxw49pooedbo5QLVCK4tt/fjKgXOP3Papxq66u8jD43T2C/i7nTYSSrxIa7/RQzRUafnqNQUCPbtt/fgmwWOPkvw1AAY50EGkgH1Xq73x7AUqfn+OeH1O0+CWuTkeCJGJIR2u9uIHQpQehSAp1Twr3JTHwyS2IiQ/1+O7HxFOnZAkhgbzOy2K9O/DTf6mbhXIx0SD2O0SdhCehoubGewadnyM7nSC+NTdzbrBTSRWJLkWLGOolCokghXcbRbaLxWi89D6jONpJNQtJDeq6wUja7FE8ngdElkw7n8e1wEDjgZuiZaRb7lup1S5V+UduklqUAklGDZJVouaUOa6OJnq8O/8qyy+3XudT9DA6Zc18euaIsSFa5qixALqzW6z/kxtFi5OI3J9aUlWwSdTtsTL0YqrShEM+z+fdUYG7gx1Ok54qVstYmHaVcmehACtsGI+npNIU0IEHTdS4mng8vXTse5noWK+et+3cbmXwhSGKygGenlWwkQ2JGjWzb8Pp6XG0WXv6nAfX68EoUltzTC2kVpKrf6eDyI1Okg2kks4TOLtNxVz0jvwgSn8jhbDeSmEhjbJApoSHSk6R+v42m6+vo++GU6q61dG663+jH4JDp+dYo6XAByShBoUDXm5vQmSVOfWEYnVOi7VV1TByexxow0XCNg56vjlBIw7Y/aCYXz9P/yCxb39FEfDpF8Gwc30473q02jj18nilNP0VNgbGxscrn2m63UywWufvuu/nXf/1XbDbbv+9Lo6aaaqqppv9lFYtFPvzhD/Otb32LUKg6VkyLgNPoY7v7ALtft5GF3iSR4SzWJhl7wMDIs2EaD1rRmST6fhpGMmvousfD7NkEyfkCgb0Wxl6MUczCtrd6yCWK9P80imhYimwQRDa/0UsmUmD0hSjFdJFiFswBkc47vYy9GCUykMHZpaOYg9xiCVOdSHq+iGyBtpvcDL8QphAvkY0UsTRIdN7tYeZMjNlTKUQjiLJIMV+kmAb0sOv3Ggj1p5g4HEM0ooIcZpHFkSwmv4Rvm4Xhn0egCDqPgLNRz8zpJKIePJvNzJ5W5w30NhH0RbJzYA3oEPQaomNZNcJLD5JJou1mBwCDPwtTpkQhoY5r63ebmT2frJQVjWIlWm7ja91ERlMs9KjuBHqniJJRKGbXlhXNqiNDIVli8xu9ZOMFxl+MUsyixuBZq8sKgkguVqzUW0wX2f77fmITGaaOx1fKGkGQVpW1ixSzxUq9lgaZlusdzJ6OsziRQZTFSlye3r6qv0XQWQSy8WLlvXa82s3MiQTxqRx6m0ixsFQWsDbpKFMmMZGvvFedRaTjNifjx6IsjmcqEW16p4itWc/cWfXc6D0SyUl1fGfwCRisIpGBHCaviLlep8btZcGxQY+z1cDwM1EAvNuNREdyFBIKiLDrvgZi01mGn4pU+rCYVdsommHz6+vJJ4tc/uFCpQ9bb3EhGQRGn4+SjRTVOLaRFN5NZmZOqg3e+vY6CimFvkdDlXqVfIntb68nNJhi9lQSpVCkmNVgbZRpv9XJzOkEc70pfNvUxdWZE0m67nWRSxQZfTaGrVlH40EbY89H0Nsk3BuNjL0UI5sosu1NdcTmMvzyuSOUvQmmpleiRPR6PZIk0dnZySc/+Uluvvnm/8A3SE011VRTTf9eDQwM8F/+y3/h+eefJxaLVV7XoMWkc9Jat5OdO3bjbBAZ+GUeQQD/FonFGYVsqkTjVpngQJ74HDRsFjBYtAy/XMDTLlBWyoTGStj9Whq3SQwfz5GOgKhVXYMcjSL1XTL9L6RRCpBfuq+27pfRWwQu/3zJHalTYGGkhNMvEAsqKkizVXXImVyKO1My0Lpfj8Gppf/pNIoCsgEQVur175Jx+CUuP5lSt5tBbxWIzymglPBvlYnPKSRmFQS96pCUT5TJREvY/KorVDam1mmwQ0adVsHTKRKbLJJfSoiTTeqYo/kaI+Mn0+TiitqGchmTV0BTVkgurJRVCmpkmMEl0LBVZvhoBvJq1J4gQT6tAi2yAZSleDHKZWSzavZg8Qj4dxqYOpMkOcdK2TIoS2lwshnyWRWUF2T1n2eDDk+HzIWfxuHKshnUsoIaa7bch4IB6rp0mJwig8+mkM1q3yvrldUD5RLKUr84WgRsAT1jv0yBoLZxdb02v0hkqFhpg5KH5mtMCHot48cS5NPqA5SCDHobgEBqQcHgVOtR8uq5cbUKhEdVFzDPRkl1kIqr2xr36AkNZslEwNIgUcwpZOLqe/VtlvFulLn0eBIlv9LfoNbtahXw7zQy/FKabEy9hgVRQ+tBI1MXc6RCZYwOgVxCQTKCVtSSCJYwezW07TcwfCRDKlyuxMQ17dRhqRPoey6t9pEAZa1IYLuA0SZw+Xl1DOrboCU0qiCbNPg3SQz8Mo9SgJY9Ekq+xGSPQvNOkXSiTHRKweoRqO8SuHQsxETsFPlylOGREViKh7bb7bhcLu677z4+9KEPVdYfa6pptWpOSjWtK1mWeeqppyp/P/DAA3zkIx8hElEjI+K5KM8NPc5zn3gcDRosOHj7DW9D75DJJ+HSg+Ps+ON2/Ne6SMxk0GjVJ+xjQymyW+10/W4rPV8dJbuYJzmt3pW826zU73Jy/sExJo/Okw3nSU7m6HpjAEeHhdNf6OfY6d5Km/zXeCiX4cSn+khOqzCJJmCirJSJDiYhry7ehQfiHPtULyyRzDvvb6OYLXL680PqC3nIhHMsXFoEwL3RQjKYYe700t8dNsz1RmSzTD6SJzmSIzmiPhXUeNCFb6eT9EKOuZOLS1DOEnR0ez3lMsyfUt0I8skS+WSOTCi35PazkiELMLLkhNT99iYAer89Udl29ovDSycG9Ha5Ag6p9YJjk4GWG31c/NZ4BTgCOPnZgapj5JOQT6r7mv0y7m5HxQUKqKqXUvXf+Uge61YrtlYLM8fC1WXz6vtcfq9UekGNXvHtcnLhwbHKhuV9zY0qMHXmC0MrbZjOY+swsf33Wzj/wBALpxOr2l8in1StJQMHi8SHVwAlAO9WJ/W71ZiP2WORCqAE0HlXAIC5E1GifUmifcnKtrptTnQWsdK+yWdDtN9dz/DjanxdaiHL4kiq0oeurSZab/Yx8vNZgieiHP+s6ozU9YYAI8/Nq4OVrIJG1JCczCGbYfwX86rL0XYnqWCO4IkoJz6l7rf93W3oHXLFYWnhUozxFxfouNOH3iFz5p+HCB6P4b/GSyFVxL/fha3JVOk3QdKi1WqRzeDdamf6WJjEWI7ANaoLwOXJi+SaYlz+9jGmp6cB0Ca1WK1WJEniuuuu45FHHsHpdFJTTTXVVNP/Hd1xxx0MDg4CkE6nedvb3sbTTz9NJpOhWC4wFLvM0COXAdBhoMu0ky32FgxumeCpRfS2KA27HUQGk2g0GkS96hAz8uQ8O/6wlXysSC5RJBsrEBtRx16b3xwgNZtl9LkQ+ZRCalpd5Nj3wQ0kZzKc/+p4pX0NBxzU73KQixeYeimMZFShIyWnUMyVSIcKGL0SjXd6Of+NMXWngrpf8yEP/Y9NVyCl6GAKiup2AM9mO+PPqjMnhbTqyCPpRUKXEuQiBaaPRCvtCBxw49/r4tQXVABqGVBqOODAv9dFMV0iHVLHq8vHyyeLJIaSFNIr8FeoRx2z6FwSW363ics/nKxsj/amiPaqgJLRpwI8hZU5NNKRAt1vamT6aJjYaLoC+ARPRgmeXGkrUAGmAHy7HWSiOVgqX0iXKaTz65ZV25+n8ZCbcK8KXq0umwsX6P/BVFXZZW24J0CwJ1Z5bRlOMrol0qEC04dDTB+m0t+FdJ7u3w1QSCkM/nS2Aiitrjc9n4WypgIogQpTtd3STLlU5tTAMLHB9Mp73W4nsN+NkofpI2FGn16obDM6JKwNBrxbnSQm51g4G8fWYsSzycBCT5zwpTg6o4ikskKk5wvsek8bWknDqc8PM/7zBcZfWMDRaqJ+v5uJ50IUkgXKxTKakgYKBebOLLkcvV1tX6QnyezLMWZfjqFzSuz/y06C56KM/XyByaMhZIMAJdjzh+1MHA0xfzZGYjpLyaNGA3XeXU9sKk1qOo+tyYRWo0UyS3i2mykVSvQ/oo7jDW6ZRDTFsYVf4B61MvnSJJmMOlNmNBrR6/V4vV7+4R/+gd/93d+lpppqqqmm/zsSRZHPfOYzfOYznwHUWLg///M/5+LFixQKBULpaZ6deIRnPweiRsYtBriz+y6MboliFkafi9P5ahfuzUaS03nVtQjIhoukQwXabnYw8ESYdKigQsTlEtYGE/49ZgafDDN+OEoxp0JGDfss+LZbuPDdYMUJCSCw14FGo+H8N2fJRQuIetBZ9SiFEpn5AsV0mYY9ZhLBPKe/NqOOrYDu1/tQciUu/UB1XxSBxEyOxTF1/Gep11NIFVlcGg86mo3Ym/TozSKZaIHsfJGZeXW+xNVppvEaB4W0GveVjRVhaUzUerMTjRaiQ+o9sJiFYrZAaj4PGg2FZKkKvF8GnZoP2RENWoafjlS29T+2MvbQ21YgI4BCBkx1Ag17rIw8E1kCdtT786WH56tPbJHKvjqbiL1Vx9y5VGXz6nqv/LuYBn0DmOsMhAcyFQBpud7ERJ4LD82tKq9uN/tEfDutDD65tIJYWKlX71TfS9+PVt5fNlZE7xbZ9FoXl386R3xiZW5N7cMixXSRbKJIcrZQAZQArA06mg84KOVLLFxKVwAlgA23edCKWiIDM6Tmi6TmV9rv3WTG5JEBdZw6fz5Nwx7VWYkixCezxCazlfeqs4hsfbOPscMRFi6lOf+Qeo4DB2yELqdQchqUbBmtVr2GRT3M9aRwbzbi32Mnny4RupTmwrfV/mp/lROrX8fZr6n1zJyJM9+boGGHDbNPR++PFohP5skuKhSyCs42Pc4WI70/UsePgiSgoQQieLvNBM8lSAaL2JoNGJwS07ExwsZhen+Sq6QDaKIabDYbTqeTe+65h89+9rPY7XZqqqmmmmr6v6POzk4effRRQI2F++QnP8mDDz7IyMgIyVyICxM/58LEzxE0Ela9jw73fjbYN5KNa4hOQ3CwgNMvEg8V0ZRBkNWx18KwQvt+iWKujJIvkYmVSC8NMZr26cktKswNFCgVIbM0XdP9KgOpsMLoyyvzKJY6gcAWPUo+S2SsiCBAPgfFvOogpOQFBFGhrktidCkqbDk+rO2ggZGjGfJJlTRJzCkIWk0FPLH5RDU2DgAt9kYZnUV1FFKyEJtQKu1o2KaCHJefSoKyAihZ6gUCO4yUlAzh4aW5rhRQUsjFFdIRRYV/lsZeqfklOF6GtkMmJk+myafUbZmwwvAL6jyFbF4F3izBJfk0BPYYiIzmSYeVCuCTCCr0PbVqYAIVYArUiLZilko/KDn137KUDNX7JtUYuuSCGg+nJKvLzpzNAblK2WX5tumJzxbIx9V+UJamogSD+j6iY4rqSrR0jvJJ1UmqTJmZs9kKoLS63lSkiKgXKoASqHU17jGj1WrofSJBZmXoisUj0LTbjFaTYWEwz0L/yphMkMAR0FHMasgs5kgEFXRWsNYJxGcUYtMF9Bahqg/bDxnQmbT0PpUiPKoQnkhgsGpwNkssDBZAp0VRNJRLWlAUEnNqH7cdNKDVQm8wQ3K+TM9P0ggybL3byPxQnrm+InNDOaJTAkoe2g/pmRtRWJwukQqX0ZQVKJdp6BLJJspkEyAby6rzuA7MLg2UYbJHPZ7JqSWfz3N56iWkbJSplydJpdS+NhgMOBx2du/ezcc+9jFuvPFGaqrpV6kGKdX0a+nd73437373uwHVZemd73wnP/rRj8hms5QpEyfCF7/1BQA0aHCJdewxd2CpNzB9JMz0iRD1e5wEz0UxuGT0NtXt5/xXRtj1vg7qDziRjRIaQUs+kmfqhRA7/rgde6uZ2FQanV1WXXiAvR/sJDqc5OI3RzB41Jxw/yEXzdfXMfjENCf+sb/Sbs8WO+YGA9E+1YUHINwXp7A0mVC3245vl5Pebw9XbkiN13sol+DEp1VgpPd7k8hOeclVR8vO93Yy8dI8s8ciDD8+i5IrMXdyEYCNvxNg9Jkp8km4+M0RZLv6Ph1dZopZhcRYhovfWlnw2/YHrYSH4pW4NVAhpKV0vDXa+yedaCVtBWZZVt12ByaPHmRW6KAlmXwydTudjDwVrHq99bYGLH4jYy/Ordnnamq6wYvOKjFzLFz1uqPTjNlvqMTprZZvhxNzvaEy4FnWxt8J4Npk5fLDE0QHqgc3Ro8OUS9gajCSX9omm2HLfR30PzJBKpjn1D8NVsoHbnQz9UKIkSdnyUbzzB5TRwyNN3lIz2UJ9yYYezZIan5lJLT7TzeQCeXo/c4El74xVNW2ltvq8O10kgnnmTkWpuerozTf6mXrfS1ceHCM2WMRPN02ktMpzH6Z5HQec6MOZ5eVcgn6fzRVgbL2fWgj5XKZk58ZYOTJWXKxPJGhFPs+tJGZ02GmXggRH09RypUw+2U2vr6JsV/MkY/k0Wo1aLTqxbD9D9sIXYoxd3KRjnsakE0islOm8aCLfLJYgdqMLh2L+jle4mmGXq5j5ocz5Mt5GFfpZVmWaWxs5Mtf/jK33HLLr3fia6qppppq+v9VRqOxMnkDcPLkSe6//34uXbqEoijkyHA+dZTznzoKgB4jdxheTaPHDQW4/INptt7XRNMNLkKX45Wn5ScPh9FZRDa/LcClh6bQCho0WhU2SU5n2P7uFvp+OE1yOs3ihPorv/GQC+8WGz0PjlAqlAmeWgRg+7vaKRXLnPnSSKWdgYOqI9PkUTU6zOiTWBxNYm81EelTf7R2vzXA4miK3u+pgI3/Whf+fU5yi3mCp9VVr+OfH0RSzX/Y9MYGZJvM+a+OAXD54Slks/pj3tltRjYIBE/HmDkWpZQvVeqov8bB7PEo6WCBs/86CmgwBXS0v8pHzzfHKoCU0S0jGkT0Tl0V6APg7DKz8d4A0ycjlZg1AMkoYfUbKe5QiI2muVL+a10sjiVJTeeqXm+5tY7UfJYLI2O/6hJQj2OTCFzrxuCSGXh0pmpb0y1eZk9FK65LK23TYGk0US5BpDdRtW3L77eRTxY49+URrpTOoUMwKFWv+Q+6sAYMXH54hoEfr4wjLU3qpFliIsPQk7Mk55ZcmIzQeIOXkafmCZ5aRDQITB9ZihTeY6fxWhcnvzhMer7A6X8drWp752sbKJfLLPTEifSlSEyk6HpDE5NHQywOpQn1xkDQINlUcqmQhqbrPegdkgoppeHUF4ap22Vjz/s7GXx8ltClBMM/myUxm6fjLh/WJiNnvjRCLlIgNZ8lGczSdqcXo1vHxW8tLWiJGiSjiG+PHWvAQM/X1HG7zi5hzumQjODeZGP88ALp+QKB6wzIDoHzvITOJ9DzjeeZn1evlfhoCJvNhk6n4/d+7/f4H//jf9Tckmqqqaaa/h/VoUOHOHPmDKC6LH3605/mi1/8ItPT0xRLeYKFEb7+uDrnJWn0eORGtjh/B3NKInQpzeSxGN7NZhZHM+jtEnq7Ot069HSErntc5DcqaCX1PpNdLJJdLLLhLhfmBh2puTzJYI7C0pzX5jd5iU3n6H00iNGpA8Depqfjdhcjz4arQBnfDgvWcJG+RxcQ9YAWQpeTlJZu6ZYGifrdVkZ+HlYdgYDGg3bQQM831Xv71NEYwXOxigvQ9rfWM30yRuhymrkedaIkdFkd7wQO2AieVV2iLv1oFqNdbZ/Jq77f1HyRsRcXK+1ru81JcjbH/MUVUMjgkBB06096bX6jF9kicvZr1eMe5wYj9kadGkGWrd5HNIO3y8zMqep5pfqdZtybTIT7Umv2uZr8e1RoJjxQvYqmd4lYG3SVeLfVcm00Yw3oEY1U3JEAGvZY8O+10f/EQhWIBKC3iEhGAaNdR3zpQUJE6Lrbw9gvo2RDRS59f2Xs6e42EupNM38xhVIoEe7PLB3bQDFbJjaeZezFKMXMylhu0+s95OIKIz+PMPxMiOIq5sq10UBgn51itsT8xRRDT0fwbDbScYeLoZ+FiY1nWRzLkJjNV0ArySJQv8OCqNMy/uIio8+pK71b3uxFI2m48O05QpfSlAtlYhMZtrzFy8LlFHPnUsSmspTLIJm1dLzKxczpBMUkaATQLAF+G+5wEh1NExnIUrfNhM4qoLeL2Ft0FDMKI8+qxzP7JKZmwxyNPYO738rM8zPkcjkIg81mw2KxsGvXLj71qU+xd+/eX+/E11RTTTXV9P+rBEHgox/9KB/96EcBmJiY4K//+q958sknmZ+fJ5qZ5OTkJCf/BSStHpu+nv2+67F4m0EpMt2r0LJLg6dVIDKtoLdokAxaFkcURFmhZZfI2JkiWq0aeaXkIRkq0n6djskzOWKzRTIxddxl9wvUbZQZ+mWG4WNZ4rPqvbT9kB40GgaeWxkTuNpk6rtlolOFSmpJLq4QmSiQCKr7BXbqSEeKTJxS7+/WeoHADgNKIU1kXC1z6ck0ggAIWuo3SxgdAsMvqoOI4ZeSSAZ1zsvgFNCZYXFCdV0aPpIiPq3WYW8UWJxUyGdg8Hl1X9kAgd1Gxo+mK4CUbBTQmbRIRi3ZWPWcj8Eh0HmridkLWeb7VubDBAEcAZFyqUw6XL0PgL1JJBtTyMaqXeCb95lIhYuMHL5inuxqWU4CNO0zEBoWmDpdPVhztkkkZwtVENTyPo4mCa2I6sa9ShtvtVLIlhn8eYIrpbcJXJkpZWsUsfgkpk7nmLtcYHmiULaAIApkogrjL2dQsstuqODq1DF/WQWPxo+niYyp+1jqBQI7DQz8IomS13LpiUQl/g+gZb8RQdTQO5Mis1hm8mSGwG494bECyXmF6HgBQdYgqMvJKHmo69Jj9YksjJZAgf5nM5jcGrbcbWT0RI74rMLE2Qy5NHg2iDgCIgPPZ1HyEA8WSS+W8XQImJwiYyfU61EraBAlDdY6sPq0jLy89FCjTY1PRAB3k8RMX5FcEhwNWvSOEiPRY+Tkac4/miYYVH9DCDEBh8NBe3s7999/P/fff3/NLammf7dqkFJN/27JssxDDz1U+XtiYoJ7772Xnp4eFEWhTJlQMcgnPvUJQIWWdoZ2covuVshDz1dH2fnedjpe28Ds8RA6i4TBoWPkyVnKxRLb/7CN818ZQbZIGOwKQz+ZoZgqsuM97fQ+Oqne1MpqlJhzk41d7+tg5NkZknMZFs6pC1O73t9BIVHk9Od7QVa/2Tf+ThPmRiOnP9dbAVKcHRaMHl3l77q9ds5+dQSTW92n+RYvvt1OLn5zhDxgajBSLkN6Qf1St7QYKk5Eji4zrm4r5XKAgUenSAXzFbekDXcH0Ahw/B9WwUUyGDw6XFirIKUz/7ziKlS3215xdAKYfjmMbF77se356ui6gBLAhnsbMbh0jDwbrNo++OQMklH4tQElgIsPDmFpsqx5vfnmOgwuHZNHFtbUd+GbY2sAJYDRZ2YQjUIVoLT8fmePRSqg0bJ0bgM6q4x3m4PR4Mqk3MbfCeDqtpKZzxHuTawAVDIEDnjIxvKEexPMnV7E2mqs7Lf6ib58UgXGZKvIqX8aZOznc2QiOfKJInqvTHY+j73VjN4hV/bp+bdRdv5JO3qbzLG/u0xyMseFb4+is0hc8+EuLj88QXw0TWQwQalQouO1DZjrDZz71yVXLK0GSRbofF0A2Sws9ZMW2SRh8RsxNxgQTSKnP6/CWAanTDFtwOyXsbeaGH5yhnwkj9GtYy45wwvlx3DXuTj2uacq9PLCwgI2u41iscjHP/5xPvCBD/yKM1xTTTXVVNP/i9q7dy/nz5+v/P2lL32Jv/3bv2V2dpZyuUyWND9+9hF+/Ky6XYcBf+53MbnspOcLjP5iDv8BF8Hzccw+PcYlyPvMl0bY9s5m6q9xIJkE9FaJXKJA7/en6X6zH9ksUlLKaLQaCmkInlpk2x80sziWYqE3Trmk3ksdnSY6Xl3PwI9nmD4ZrsAn236vlWQwUwFAkMDs01Mulpk5FsXolYhPphn4yQyhS+okwu73tpGcz9L/iLo4VS5DubTSF+VyiUifOnnRdL0HnUWsgEnL/7s3W2i92YtsFisOTQCebhtGlx6jXae6FpVLRPtTHO/vr7TPucFSgXsifUmiwwlmj1U/pV+IFTj9z/1qrNkVkowamq73YGsx0vvQZNW2/h9PEh1Zu7h1NRViBS4+NEF2HRDJv9eJxafn0kMT1fukyxz/p/4KhLVawTMR0gtXTPx0q+/37JeGqwtrtDg3WKrGPsva9IYASlbh9BdHiA6svJ/W2+pxdVmY61kkNZ1n6qUwJr9MajpPLl6gXAaTV/1bNmvY8c4OJg4vMHcmxsBPZ0gH07i3WghdSFAogKlOj6vTwuJQmokXw+icEnv+uJVwX4KBx2bpe3SaXKLA5rcFEHQiPV8bY+5CDPcmC4Vsge3vbiF4OkohttJGo1ei4+4Gxp9bIDaWxrvVht4qgwRb39rE9IkwM8eitN3pRW+XkWwSTdeqLp29319yozSVuJQ4wWUuc/Gwg7n5OcrlMpoZDR6PB4PBwHXXXcd3vvMd3G73r3Wua6qppppq+n9HoijykY98hI985CMALC4u8r73vY8nnniCWCxGoZxlJjfIP37hHwCQNDo2x7dTb76BYhZGfhGl8y4Xgf1WgufjGFwSOpvI9IkEpTJ0vsbNwFMh9DZ18Wf6WJxiukjXvW5Gn19UG1GGYhLEBi2bXu9h8miUxfEskVH1Pt51r4dirsSZB2eR9OoDef5r7Hg2mTj37emK+46txYjZp6sAKvY2Pb0PB9E71XklZ6eBxgN2+h9foJguYrCrlPjyE/B6t1gBlfRuUYVUZA1jLy5STFIBbNpucSEZBc78WzVcZGnQIem1VZBS32MrYzNbs57Y+MrYZPpUHKNj7ZzXyM/VGDJWgTYajQq3tFzvwtakZ/5isgpGmjq1yHxv8tcGlAD6nwxj8a0d+wT2WbE1GYgMqsDT6vmksReiTL0cXXOc+YsJ9HapClCyNeuJTWdZHM2u6Su9ScTklXG2GJgJrSyuNeyxqEBRpsTiaLYCKKnv3UE2ViQ2niU+kUPvXum7conKomAxC623ODF7JS58d45wf4ZSYYF8sojersbWWQN6LA26Sj8PPhWm8zUuLPV6Tn9lmmKyxMWH5xAl2P6OekaeC5OYyhMeSKMRoGGPCmv1/Vh1jdJoNQiihoa9FvQOiZFnlqLkbCImt4hkMqK3SxU3LKNHRimWEc0pXBuMjB1eJLtYRG83sVgMcST2KCaPzJGvpEgm1WtSmctgs9lwOBz8t//233jrW9/665/smmqqqaaa/p9RU1MTX/va1yp/v/DCC/zP//k/OXHiBPF4nFB6lMcPj/L4YRA1Oqz6Opxbb8FoqUfJw9iZPA1dMrFZBaNdi8mljo2GjhZo2S3haNGgKSsYbAJKDqZ7Cvi3SXg2aFDy5QrIFJ9VaLlGRyqsEBotICzdVnUWaD9oYOxUht6fF5fcdkpsvMlEKqwwcnRlEGD1CWgFiIwrCAYoZBQGX0yTXFDHVhtuMJBJlJg6szQ+0GjUf4IWlBIaLaSWytZ3y5g8IovTCVCoAEoGp0DLfhMzpmq4yOwTMXlEBJMGJQGUy2QWFS4+tjKuMHsFkksuS5moQmgoT3ikekFPUaD3p4kK6FQlAZr2GonPFhg7Wk0QDR1OkV9cb6erSIHep+IoxSteFyCw00DcJ645BgpcfFztjysVvJSlmCtVvWauE0jOKQy/cMXipFaLtUGHxSuCkKuqr+MGC0qhTP/TSTLRlQ2uTh0NW3UkgkUyUYXIWAHZAvkEFLJlymWQzQKZxTKCAJ13mgheyhKdUJg4kSGfLmPxCSSCCooC1nqRXLpEcl4hMl5EkGHLayyERvJMn80xeT4PZ/IEdkjoTFqGj6hRb9GpIvm0QttBHZGJogqSldXjCwZo2qZjbihHOgzWbRJ6q/p5aN6nY25YITKp4GkVMNm0yAawNQjkU2Umzi5FIJsKjIZP0zt+FnNcZv7JeUqlEhqNBrfbTVNTE6973ev4m7/5m9qDeDX9h6Upl6/kB2uq6T+m3t5e3v72t3PhwgWKxSvvMKoOHjxIwNlM5IkC9QecNF3vpfcH47QcqsPo01ecgna9v4PF4RQaLXi32Tn26cuQh63vaCGzmEeUtdjazRX4Z9u7WomOJHF1WcknCvR+ewJHl5n2V9UzfXIBW4OZvkfUJ/ev+XAX0cEkA4+qf8tOmT3v6SAxna644DTe5MG308HJz6ixaRte52fm2EIFPjrw0U3kkoVK7Jajy1yJEdv2B60kptKMPjOHySdjaTIRPBHF1mHCXKdXnyxfBRZ1vi7A3IUosaFUpT2739NBKpih599G1/Rh5+sClbYvy9Zhwr/fVRUVp/fKiJIao/br6uDHuolPpKpcn36VXN0Wwque2PfssOHaYKHv4eo2Nt7kITaWIn6F84DJJ7P9XdX9D2r83dCPJ1TIaam/ZKdM4JoVd6jmW7yMPzuPySez8Q1NDDw6QXI6j6PTXIGgPNusavzJ2SgjT6gW022vrid0OUZ8NM2mNzeic8qcW1qkk81a9vxZF8nZDD1fG628tvO9nYT74gz9ZIa6vXZMbj0Glw6tqOHCg2PITpkd72pj6lgQT7eTqV8uEO5NsPUdLRi8ei4/Mk7HXX4Gf6y2ceeftCPqBM4/OMbWtzcxezLKzLEw3W9rwtpo5OVP9LH93W1oZQ1n/2UY5Dy2u2ReeP4FkqkEkixVJmhkWaa+vp5kMskHPvABPvaxj/3a56+mmmqqqabfXC3HlczOzlIqldZs97rruPa664j8uIQkyGy/v4VCusjgj6fY+ccbiPQnGHoiiP+gE/dmK70PjbH9/nZyiwUufHMCS5OB1lu8DD0xw+a3NBEbTzPw41ncmy34dtmZ743RdK2H818dppBW3ZKKKYVsokByJkOkL0XHXT4cHWZOfnGoAtBsfUcTpno9L39moPLatj9oITmbZuSpeWxtRqwBA5NLMHfbnV7qttu5+J1JEhPqRIWtxUhsLI05oKftdh+XfzhNIVbAf62r4uLTdJOb2eOq2w4SUFBdilpv9qw4FJVLbH57E5aAkdNfGl7jUGRrM2Jw6Aiero5z63xdA3PnF4mNrIxrHBtNRPt/fRip+22NWBtNvPyJvl9deElGn0whU65q56Y3BRg/PL/GEartTt8aR02Arfc1Y6ozcPoL/WrUnUaLvcOIvc3M2DPVYFbDAQeLo0nSwQLenTaiI2kKsQJNN7sxuXVc/oEK8CyfD4Cdf9yKZBQ58ZnBpTZLeLfaGfu5uji5+71tTB8PV+CyLb/XiKXBwKkvDFQAsA331GNvNXHyc+pYe8Nr6olNJwlc46Hv0UnSwQKb3uRH0GmJjqSxBfQVmGjfBzuYvxhHK4BoEBn40QySTWL3H7YyfTyMoNNibTTR87WxpfIbWBxNMXd+kc7XNDD89CyRvhR1r5UYnhri+Inj2Ow2EokEytJsndfrRZZlNm3axFe/+lWampp+7XNYU0011VTTb6aCwSAf+tCH+NnPfkY0GuXKaVUBib179tDk7CB2UsbaKNNyg4ORZ8O4O004Wg2cfVC9L3fd4yY+nUUplAjstXH+oRmKaWi5yU4hW6KslPFuNnPu6+ocRvurnCRmctib9RRzZUZ+HkHvEmm/xcnMuThmj47JI+p9dds7fCyOZph4Sf1b1MOO+/zEJrMMPqGOkVydBup3W7j4XfW+37DXQmQ4U4kr2/kH9eQSxUp0nNknkgyq29pud5KNFJg5lUA0g7XBQGQgg94pYqmXWbhUPefj32clNpUhufTUu6iHHb/vJzGbo/8nIa5U4ICNqWOxqtf0bpGGHVZGfrHyUJtoBFEvkov++otiu//IT2wiw9BTkV9dGBVKsgZ0xKdWgCNzg4R7g6nKOQpUl6Jcolh5n6vbueMd1f0P0HqTg8mTURUsWwKERL0aazZzRp3rqdtmYq4nhWiGjts8TPwySnqhWHU+zD6RTa/zMXsuUem3uh1mUvM5kjMFAgdsmH0yfY8uQWIi7LnfT2I6R/9PQ5XXtr+tnshQmskjMaxNOix1MpJJQDIKDD0VQdRD9xt8TJ1cxNVhYv5SithYluYb7Nia9Az8NETLDXbGjy6SWSjS+RoXeptE7yNBNtzlYWEgTehSmsBBK55OIxe+F6T5kBPZJHD50QWKxSyOW3Mc+eUxQtEF9AYdiYQ61yhJEg0NDRiNRj70oQ/xrne969c6fzXVVFNNNf1m6+mnn+azn/0sJ06cYHFxsWrsJWgk6tx+9u7bQ2owgIBM2z4JpVBm/GyRzbfJRKcVZnoVrD4N3haBsRM52q8zUEyXGHk5h2yEwDYdUxdztF5jILlQZLqngNEFnjaZ6GSBhi16Bg9nUPIQ2C5RKkE2UaKQLJGYV/B0iHg6ZPqfS1ccdBr36HA2SVx8PFl5rXW/nky8RLA3j84CZo9IeES9l7vbRQI79Aw+lyIVWgKS7FoyiyVkEwR2GZg6lSGfAUezSHRc3c/ZJhGbKqjHEABFjXmr69Ix07M0dimXCezW42qTufx4fI1Dkc4KBpvI4mT1eq5vi47EXLECTgEYXAKZdRyWrib/Tj2eDTLnfhD/tfeRTaCUqiPi/Dv1hEdyKw5OS/Of3k2qu9GVarrGiKNZ5uJPF9V6tFr0Ng3WemkF7lrqL6tfIJdQyMXVCL9cTHWpcrZJGJ0iU6fUhhgcQgVcaj9kxOAUufiTpbU5A9iapEr0W+fNRuaHciwuxfkFdutwtchc/OmKy5K3S8bdJtH7pDqHWLdJJp1QqOvUM92TJbMIDVsldEYt0ekiFq/A5Bl15+5XGQiPFygVy8hGLdM9BRBg66uNBHtzlEpgbxAZOq6e0+5bZeJzJeZHi7Tvk5m+lCc+B7YNMWbC/Zw6eRq9Raia8/J4PDidTu644w4+9rGP4fF4fu1zWFNNv45qTko1/W9Xd3d3xSYbVKelt7zlLZw8eZJCQf2CPnr0KKBGlOhO6ehY7GBhLEp4dA/XfnALu97fwZkvDCEZRHR2kcvfmSSfKrL3fZ2cf3AMg1ePYBI496VhLC0Gdv9pB4M/ncHo0VMulDn3pWE8O2xsf3cbi5NJJKNIuCfO7NFFut/aRC5ZoJApko6qlHPbq+uxtZoYe26O+IT643fb/a3oHTpOfEpdMJKdMp5uGzqzqMI7Mky9HCKfVN9T8y1e7O1moiNJyIPBrav0QSqy4qrU9iofepuO6ZPhFdchGVybLBh9Os4NqZBMPpJn9kSYmWNrI9TqD6iLiMVs9aJT03UezA3GSjwdQHY+XzmGWvGqc/X2JnRWibNfvOLp+XXkP+SiYY+L8w+OVepe7pd8JF8FKAH4r3FjcMprHJ4C+93UbbdXxbWB6owVPBNRHZ+W5OgyY28203ybn8FHpyv1bHp9AKNXz9RL8+STJcZfUifMlBLorBLebU6S00GsjUaab6rj3JeHWeiJ496UYO606sIkm7X4djow+/T0jI5y+fuTdL0xwIGPbuLY318mnywxfTyEaBLY9b4OzvzzEPlkiWJWQSvCjj9up/cHk8ydXGTnn7Sj0Wpou6seg0NWrxkZmg814NhgwbfLiaKUOPHpPiwtBvQ2GVu7haabTICmAsFJRhGDS8Z/yIWt2czF74wS981y8vI8/QP9zJXnEIoCyo9W5RT7G6ivr+f9738/73//+3/leayppppqquk/nz74wQ/ywQ9+sPL3Aw88wN/93d8xMTFBqVRiPjTHoz/+obpRgUuP1eOwOtEmrJh+YqTrdQFik2n0dgnZLKrRWZ8fZvu7W9hwTz3pcB6jR0chByc/N0zXGxrovLeeUrGM2Wfg4rcmmT8dZ9Ob/CSDWXRWCUHUMvDYLEa3xNZ3NJEKZcmnihUYafu7W4gOJ4kMJdXXJLjmzzYw1xOrADKN17ow1xuYPBaGAsyejSKIQgVQ2npfMwsXY8TG0rg3WTC6ZFgaa06fUBd/dE4J/z4nZq9OhVeWjt9yyI2r01xx+kGjZeBHE9Ttdq0BlAA67mxA0GurICXJqMG5wYJoFKogpWVASbJJVXUZ6yQ2vaGZiV8usHC+etFtPW2/v5XMQo6Bx1aetJeM6lu8EkQyuiVsrWYCxRIDP1op33pnHXU77CyOJon0VT851vfoDN7N1gqgBNB8oxe9TaqClCQjNB3y4Npg4cI3J5g/G1NhL8DqN1TcliQjNN3gZt4ZY+5MjOnjEbSCpgKGtdxch7XRyPSRBQppOP3FEfb+eQeONhOXH55h9Lk5jHX/H3v3HSdXWff//3XOmV53Z3tPsi2bShpFCE16E6R7g6CgSLFjwfLzttzw9VZU5FYUAekgoIAoLYEAJpSE9GTTs7vZbG/T65k5vz9md5LNJpCEhAT4PB/G3Tltrpnds/PmOtf5XDYmfW4c/c1BOt4cJO5PkgxbGXdaEWariU3PZX+nzCdp5Ne5qD3NzbaF/QS2Rpn8X9l86J3gYMKpJay8v43EYIrp147DZFFxFJppuqSKlld66FkWoPHiitzUgTO+Mp5kWGftU63Ej+ih5bWVrNm4hjTpUbkrnU5TX19PQ0MD9957r1RKEkKIT6DS0tJR1cX9fj8333wz//znPxkYGCCdSfH2u2/xNm8BYI1YqU3VEd0GNe1HMPPSKiZfVMTap/qwuDSsXo2W+SFS0QwTP1PMpucHcZVaSCcM1v2jj77mCJMvLqZt0SDuMiuKqrDxXwO4yk00nFtAYFsUi0sj2qMztDFO9XFe9FSGZChNIpC9KFE81UlBvYOtrw0Q7RseZHSqD3e5lZUPZAdAmWxQNtODo9CcHbxjgvY3/WTS2QtBvgY7RROd2anD4uAutWIanrZNj8Pg8BRpNcfm4S63MrQlOqq6UMlUF54qK+v+3pfbZ9siP4OtYwd2e2tslB3hxkgbdCzecUGrbKobX62dziUm4sOvTY+CHtXBBGazMuo5a07w4iiwsO4fY/vVdpVfa6PiSA+bXxgk7t9xgU5zGtmqUdtHX/wqm+7BU2Vj+zv+Uc9ZfWw+ejzN6kd7Rm2vR6H9zQADO1UTtxWaKGx0ktYz2cFkw0877gQf+RMc9G2KkQql6Wkefo90cBZZyBvnINoXxOazUHlUPuuf7SPcrdOzJkT/uuGMaYKqo7wEO+Ns7Bxg+1sBKo72MOtL5Sz9ayfosG2hH82mMOmiIpqf6gMdUmEdwzBoPK+QtjcCdLaHaTi3ALNNo+QIJ84iK6sezvbbjTveR9yvk1djQzUprHqoG7NLxVliwV1qpWiiE82i5ra3uk1YXRr5E2wUNznZ9EI/g3QT7tzCxk0b6BrqQtM00k/vyF4VBeXU19dzyy23cNFFF73vz1EIIcTHz+mnn87pp5+ee/zGG29w++23s2jRIoaGhujsa+XZf7cC2VldSgPlFPkqsEXr2PRWJU3HW4kOZTDbVGxulXQSNr4aY8LRVsqnmIkMZXAVZ/sGNrwSo3yKmYppZpJRA2+ZibZlSYLzY1RMM5MIZ7C6VIw0dK5OoVlg3DF2okNJElEjN/hkwrF2gr0p2pfquWVTznHStyU5PLUYFNVbKagx49+eHcQU6NQxWZNEhrLZa9wxdgKdKWL+DK4SM85CU67gz9D2bGjQLFA1w4a7yETbO7FcRSDfeAtFDVaG2lPEhjKgKGxfESc6lB47hRpQPduJ1a3ib9/pGp8GhXUWbG6VSN+OnUYGKGkWRk1pptmgdq6TnuY4gY73H8Q0/lg7iXCGzpU7Zazsj4HkLvFQs2Rfk6Iyamo4X62F8ul2YgGdUOfo5+xYHiXcp+cGKAGUTbHhKjbTuymZfa/S2eccd5STcG+KrQtj2an7htvh8JnwlJhybStutBDoTOHfptO7KYVmTeUGOhU1WimstTDYkhr+HYvSdLoTd3Ga9nfj9K5PEOzSqZljx9+VYnCrTjKcJhHWKKg3YbGb6GrO/k7ZXCqOPI3iOo3+1hSRfoPK6WY8JSas7iSV061sXhQjGYbxR1mxuFQ0S4raY220L0/g356mbIoJiyP7umuPMZOKQ9uKKBH3BrqXDLBm7VqSqTjpjTveN0vGw+TJkzn99NP54Q9/KJWSxEEnlZTEhy6ZTHLTTTfx5JNP4vf7x6y3WW3Y7XbC/gi1RRO5+LrP0LNsCBSF4qleWhf00L14iCO/3UgyrNO3zk/1scWsfnwL4ZYk0744HhRIDKXwTfTw1q+bs9WXrh5HpC9B4SQvekxn2f9txllqoe7cStLpNI4Ce25A0vQvTUBPZdA0JVfFaM63Guhb46fzzX6S4QxHXF+L1WPOVXGafEUN7go7bw8/LprmoW9VtjPliOtqsebt2HZkna3YwsTPVtH8RDuqCeL+JCSh9pwygtsiuf1dVVamXjGBziUDtM3vHXP8ne08QGnHQjjm201E+uLZqeGGTb16HGa3KVcJasTuKimNP62E4iPyc1Wucu36fC0DzcExVZ2A3FRpO/PWOYl1R3KVkY76xkSivfEd1ZMsMPmSGtY+0QbJ7HOE2xNMOLsMi11j/VPbsbhUnOUOhjaGabq0irxaV67KlrPUgqJlK0dN+q9sRYR3frsektkKA3l1O34n8htcjD+tlOC2KJv/2UnZMT5Kjsgnk8zQs2qIniV+mi6pxDPOxeDmEBiw6ekO8ie6mHhhNT0rh/BWO9j03HbC7Qlm3FCL2WmmfWEvVZ8qYvGdGyAJs75ej5E2aF/YR92Z5Wx+oZNod4yJl9QABkt/v5ljbmmia1s3jz38N2omVTI4OEhPT0/uzgBFUTAMg/LycsaNG8evf/1rjjnmmDHvuRBCCLGrJUuW8M1vfpPly5cTjY6+q11RFPLy8ogEo9jTHi6+4rMUlxWy+DebmXn9BNJ6hvV/7yBvnINxJxez/h8djD+1BCNtsPKeVsxeM9OvqKb1tV7Gn1pCbCDBmofa8Y5zUH1iIaHOKKUzfKx6oIVod4ras0pIGxmKGr30rw/S8mIvpbO8+JrcmMwa298ZYLA5TN3ZpTiKrbQtyE7LZfaamfWV8fSs9NPyYi9mB8z4Sj0D64Nseb4HR6mZdBISg6nstteNp29NgC3P95BX58DfFoUUNHymjNhQkvY3BnCUmol2p8AMDeeWjxrcM/m/KrH7rLw7PO2q2WvG4lKJdIy+QGUtMJMYGDuoqf68MgomeVn+ly071pthzk0NdL4zQMebO+6g31MlpRlfqSXSF2Pj33e0a+oXxuEosPLOrzeMec49tcU30ZUboFR9UhFls32suK+VxGB228LJbhyFFra9PoDZAZjNqBo0nFfG+qe7SAVS+CY6GVyf7SU68lv1hLtjND+6ffj4o9f5t4TZ+GxX7nGkJ8baR7Zj9popneGmqCmPZXdtBbLVk/RkGlVTc8eb8406wp0xTDaN9U9tIxWFGdeNRzOp9G8KYfWY2PBUJ2YHzLqpga6lQ7jLbeixNOuf6sRbb2fiZyrZ+nIPZbPzMVk1lt21lZKZXmpOLKLjnSHMTo3SGV6euPOfxL1BHC4bLVtbSCQTufPCMAxMJhNTp05l7ty5/PrXv8ZsNo95f4UQQoid6brO//3f/3HPPfewZcsW4vHR84BZrVYcDiepgEG1t5Hzv3wKXctC6LEM5XPcbFsYYHBjjCmXFqMnMvSsDjP+xHw2vNhHpENn/KfzMdlUIj0JymZ6WPlgZ3Y6r5PzSYR0CuodZFIGa5/sxWSDCacWoMfTuMvtuQFJtaf7yBgZTGYtV9VnymXF9G8I078hih6F+rMLcJVYWH5fdp+aE7z4ah25aco81dbcVGZ1ZxTgKbey7L7R60wOqD2lkK0LhjDSachkByeVznAR9+v4h6evM7s1pl1aQteyYK560M7H35nZrZEKjb3wNfOaciJ9yVFVmcaflI+zyJKbUmzE7iopFU1xUD7Tw4pHunKDhcxujemfK6VvXYS2N/x71RZboQk9qqMPR+5pV5YSG0yNrp70aR8trw+CDjafifigTskRLmweU/Z5TOAusRDqSFJ5rJeSyS5WPtyBHs0+p2ZWiA/qVB3rpajRyapHs78DFUd7KJvuZsVD2W1dpSYqj84n3Jdk+6JAdvDXDDd6Ks3Q5hgDG2JUHO2hqNFJ78YIqqqwfVEAe4GZyReX0LUsgLvMSsfiAOFunYZzCrAXWGh9fYjqT3lZ988e9DA0fbYIRYVtbw7RcGYRrf/xE+pMUHu6D01TWftEL0d8oYy+nkH+/eQL+OodBAL+3NTVkM1eiqJQWVnJpEmT+OUvf8m0adPGvOdCCCHErrZt28ZvfvMbXnzxRVpbW0kkduQHBYW8vHwySRMecwUnnnIsJeX5rPl3lNrjskUG2pcmMDsVJhxtZ+vbMUrqs9eXtixMoGlQd4KdzuYkFVMsJEIZWt5JYHFBxXCVofJpVja9FiU2lKGoIdtnUDjezFB7iu7mFO5SjfwqE6qmMNCaItSdrbzkLjHTtTZGzA9oMO1cF70bE3Q3Zwe+TDrdwdA2na6VcSxOIAPJGGgaTDrPTd+mJN1rEtjzVJLRDOkklEyykE4a9G9OYXGRvQanQcVUKx2rd0xrVjnLhrtYY91L4WzlJQ3MLmVHlaJhmn10NaMRxRMtlE2xse7FYPY5hjWd5aJnfYLBrTv6pvZUSan2BAeJcGbUoKPqo+x4y0ysfm7slG6aDdK7TuObyeAs1HKVp3zjLJTPsLPxlVCuXc5CDUe+Rt+mJGigmbPvZdVsO+3LY6RjjDrGpHPcRPp12t6O5fbPrTvXTWC7TsfwwKpJZzmJ+TO0vBlDs4CnXKOo1srGV7JBsGq2DSNjoGoK25ZkG990upPQgI6mKmxfHScdgwnHO7A4VPq3JrG5VbavzP4OTDvLQffGJFanipEx2L4ihc0N9Sc42LY8QX65CYtLYeOCOO4SjeqZFrrXJzEMqJph5dVnVjKY2orFmaalpZV4fMcPc6Q/eMqUKZx//vl8/etfR9O0sT9sIQ4iqaQkPnQWi4W7776bu+++O7fsjTfe4MYbb2TDhg3EE3Hiiewf7PV9q/jF/6wGsuWVp7RMYeq0qSTfSRIfSmLzmTFSsHV+F9M+V0fLq92oFhXNptK+qI+Wlzs5+ltNdC0ZwFFsQ7NqLP7VevIbXMz+Rj2BbRGcxTbWPNpKsCVKwwWVGGoGR5GVoU0h1j65nZI5eRRN9qKaVJKhNMlwhglnlqJqCqH24V4HCzjL7LQvzN6dld/gov68Snx1QTb8YzsDG4N4Khy5bUtn+ghsj1M+uwB7gRWLUyHcviM8FU3xkl/ryg1CSkYMUlGdgQ077rofWTfxoko8410sviM7ECc5mMTiszDlv6pZ88i27IClJATaIvSt8Y/6Wew8rdr7aXm5h5aXR98JFu5JEO6Ism3Rjg6fKVfWEOmJ0/JyT26AUuNnK/HWZts4Mp1d9oVlB2aFO3d8OJYekY+3xknN8cW0ze/NvS++OheqKTvyt+JTRWQyBkMbw/Q1BzC7TFgskEzCtC/WEQ8kWf6HzTQ/so1ZX6un6YIq1v2tnb51QWzFVqZfPYGVd29laGOY+nM1XBV2Jl1WRfPj7XS9NcgxP5hEyRFQOsPHyruzF9GO/HYjRsZg6tXjMNIGb/1PM64KCyXT8ilo8DLpknxifQnWPtjC+HMqUDQFb7WTiZ+tIp1Ms/r+zUy8dDx6Mk0mmcF9nIlVG1fy0osvku/L5+3fv5ibtm3Dhg04HNnfl8LCQs455xxuv/12fD7fXv+8hBBCiBFz5sxh4cKFucepVIqf/vSn3H///XR3dzM0lK0OlKSPex7+c/YO5nSaN+6ycMrpp+I6Io9Udxo9oVNxVD4r7mth1pcmMPurtWx5qRvFrOAZb2fF3ZupP7+SmddPoH99EGexjfVPd9H6cj+TLqtET2Zwl9owDFjyu82YHdlBKhkD3NaDP+kAAQAASURBVKU23vl1dkBQwwXl2HwmzFYtN3XYxAvKiPXHc4Ntxp9RTiKYYsvz2WzS8JlKbB4zb/9qI6RShLti9KzK5iZPhR1nsY2ONwfx1DiwF1lpf2MgO0AJqJ5bSEG9a9Rgm1BXHMMgW2HIyJAKpEgFstWCjvhyPb1rArTN780NCqo5pRir25SbPq5j8QAmm0YiuNOgoRQs+e3Gvf65Lf/T2EqXXe8Okj/emXtsLTAz8bOVND/SmmuL2aFwxJfr6FsboHVe76gKSkNbo/gaPGR26uypOaEI1aKy7fWB4WnWUrir7ThLbBRP8dC/LkjJtLwd7832KENbs983nF9GwUQ3K+/PDkLb/lY/5XN25JXAtghWrzk3/V4mpaBZVRovKadvVYA1D7XTeFE57io7E84qJpMyWPK7zeQ3OGm8oILyuYUUTPDkpnab9sVxWJwa1ScUUDrLx9u/3Uj+eCcFjS6MjEHFp3xUH19I8xPbsfssmJwa0a44qXQKoy7M0//8Dxs2bqCwqJCBlweyJaxD4HA4SGfSOBwOZs6cyY9//GNOO+20vf5ZCSGEECNMJhPf+MY3+MY3vpFbtmHDBn70ox/x2muvMTg4yNBQdnBM89DbrPvfdwBQDJXG3olMP2I6ejNE+lO4SsxoZoVNL/TTdF4Jrf8ZwmRTMbs0QiuTdN7XyYzPl9G1PISrzILVo7H60R5sPhOTLylmsDWGu9zGxn/3sXWen/I5bhSTgrfKyuCWGJteHsBTbaVwoh3NqpHRFfRotvKSyaLib91xJchbbaf9nQCKomDzmWg8u4i+5jCtr/vxt8VyFZcACic6iQ3p+MbbcJdZsdgVIjuNEyqd7iadyOQGKRnpNPGATmD7jucbGaBUPsdDUZOTtU90occhFUpjskH92UVsfnkwN0hoYFOU4PbRV65aFuyogKkoyh5/ZoZh0Ls6Qu/q0bftp2JpBrfG6FmzI0uNOyGPZCRN57uh3HOXz/FQNMnJ2r91Ee8fPU1KrD9FpG/HzXueaiuFDQ4SQ0k6l4VzU+sV1NoxO7ODlIonOlFMCqGOJEObIjjyTTA8o/O0y0qJ+1OsfbKX9kUBXKUWqo7Jp2XBEIHWKO5yC7WnFrLh2X7C3Tpmu4qr2Mz4k4a3aYsz60vlKCgUNDjYOm+AjreDTLm0BEUDs1VFs6gs/XMHJgeUzfDgKrMx7kQH8YDO2r91UTrLg2pWsedZGHd+PkbaYM2TvUw42UcqkSadyOCZprO5u5lXXnoVh9fGm/emctO29W1QcTqdWCwWJkyYwDnnnMP/9//9f7hcrj3+jIQQQog9qa6u5ne/+13ucTqd5h//+Af33nsvS5cuZXBwkEwmQ4BeHvr7cjRNw8go2Ns9HH/SMTjLy0kPekjG0hTUmGlbnGDCsTaaTrXT8k4MzQROn8KmN2KUTjTTeLKd3k1J3MUaHSsT9LdEqZhmhhpw5GsoisG6l6KgQc2RVjLpbEWm1f/M5oyyKRZsbjDblOwAJaBmtpVQb4pgTzZblDZaSIQNutYkQVOpnGnHVaiy6unsZ6m/PUWgM5sh7F4Ve77KYIuOt8JMRs8OUhoZpOOrNFFUbyXYrWerBAHRQR3NrEBGAQzSaUgHDNBg4mkuBltT9K5L5AYo+SaYsXs1OpZns9ZAWxKLUx1TlWnd86MreL+XLa9Hxywb2JIkFcvkBihpFhh3tIPWt6M7BihpMPFUF4Nt2TaODCACCA/qxIMZ0jvFsbKpNqwuNTtIKQ3pNFhc4Ckzk9er49+eIr/GTGQoDWkIdKSIDAxXI22yUj7Vyob5EWJ+g+0r4pRPscIaIA1D7To2r4JvgonBrdmqWSarQuUsC4Ht2QpKpZMtFNWZKW40YwDrXopg9cDEU93Ewhm8pWa2r4wTC8C4I63YvSr5VRnKp1hZ+1IUiwO8R1hJxRQ8pRoTjray5c04iqpgdStEBtOk02lMVb3MX9DMuvXryCt0MfD6QG7aNofDgaoq1NXVceyxx3LTTTcxe/bsvf5ZCXGwyCAlcVg4/vjjWb169ahld955J7/73e/Ytm0bup79UFjTvIY1zWsAeOPebAAx0gYJfwpr4zlUzy1lzYNbmXT5OBrPr2TNIy3oMZ2CiR5aX+mmdKaPY25pYtuiXsx2E/HBJO/esZ6mz41DURXMjuxI0bduXQcWmPW1OjJpA5vXylu3NgPZKdIcxVY0k8ay/8tWIJp+9XgUBZKh7MWhgiYP8WCSlpezF6oKGj2o5myHSOWnCnFXOPBW29n6fBfblw6Q7Enmqh31rw+y7P/WgyU7dUbtOWVY88y8e0f2wp3FpTLjhgba/9NH51sDJCM66UR61JRq3kobVreFoiY3HYuyd2s1P7pt92++BQrq3GOmaxu1yU6Vi0ZJjh3o5Ci1Y3abYKcBTfFAEndyR1iY/fV6wh0x1j+1nZV3b6XoCC8zbqxl+R+20L14iHBXlORQiqO/NxH/ljDrn9rOqsfbsu8TUHxEPplUhrb5vTiLbTiKrIAKZBhqCWEvsOSeS1HAUWaj9Mh8uhcPkV/nprDJy9QvjmP7m/0svn0D064dj3eCi2nXjCfan+CtW5upOL6A6rkl1F9Ujm+Ch+V/3Ih3govqE4vJpA2mXFmDu8rJW7c2M/Xz48ikDeKhFPWfrSSvxs3SP2+i8TOV6KkU8194lVhVlI4lm9i4cSOJRILM2kyujdFolLKyMjRN46STTuJXv/oVdXV1e/x5CCGEEB+E2WzmF7/4Bb/4xS9yy7q6uvje977Hyy+/TH9/9g70ZDrJ88//O7eNY4uDqqoq2uLbCc2fzvFnzKVsZj7rntrOtCtr0DSVZFDH6jXhKLDw9v9u5OjvNTCwLoTZbcJkZNg6v4fEYJI536hjcHMIV7mdzf/qonltiNqzSrB6THiqnQRawqx6chu+iU7KZ+fjLLbR+c4AgdYopbO8OEutZJI7LoYZhkHf+uygJNVmxlFkw1ViJbw9TvHUPFCg481B3v39FszD1YobLijHW+NgyR82098cyA1amn7NONpe72Xbq/3D21VgL7Ky8i+tpFIZ0skMiaHRFYvyJjgxmXfccRTtTrLuibFVJgG8ExwE2qO5qed2J6/Oib8tMmab/tVB+lfvuPussNGDPd+Co9Sem3IuFTXQExlS0Wz2Kju6gIqjfLx71xZC22KsuLuFpovLCfckaH9jgDWPt5MIpag7pxRfg4vFv9lMaFuMpfe0kBpIUTrLS954545KoD4LBWaF7nf9tL3Rj6PYSmGTl23d/ejxDIoGTZdXsO6xDjY81cmR36qjZLoXZ5GFjc900bFogKO/14DFZaL6+GJW3J2t8jn7q7WkUxk8VU70uM7SP7VQPNWFya7hLLYz7crxBLdF6Hp3kPKj8khGdKw+Mw3nlZMI6rS93k/TxZW0bmxnRfRNfF4vb/yjh23btmUH3j22I4tqmkZZWRnFxcXccMMNXHPNNXv+YQghhBAfUGNjI08++eSoZS+++CK//e1vWbp0KUNDQ2SMNOs2rmXdxrUAvPIPqKysQlM00kMmbBuPp3JOGRv+3cf4E/KpP6OA1U/1kAjq5E2wsf3tAPm1DmZeW07LgkEsLo10Is3KhzoYd4KPitnZCjyqRWHZPdnqSJMuKkJPZXCXWFl6d7b/quaEPFylZswOE+uezt6IV3tGPooKmWS2H8M3wUakP0HnshCKopA/wY7Fmc1B+bU2Cmod+Ftj9KyKMNASQR/ubprxxXIGNkZY8XAXZnt2+9IZLhyFO1U7MsH0z5XR8W6A/uYo6UQaPZEeNaWazWfGUWAhr9pK39ps/tldpaOR441UJdrByP5vZHIBE7iKzYQ7dwleOmydNzhqkbvCSjqZofPdHX1oiWCKdCLDcNclky4qItqXovV1P5teGMBdYaHps0Ws+0cfwW0JVv+tm3hQ54iryvC3xmh93c/Gl/rQh7vcSo9wgwE9K8LY8s24iq0oZg3iaXrXhXGV7tTnBTjLzBQ02hnYECPYGqd8jpeGs310r46w+rEeJpzqo6DBgWpRSITTLP1LJ3njbdSdXkDZbA8FtS6a/9GDLc9ExZEeFEWh5gQvhY1Olt7dyfhP5w+/zjTlR3oomexhzVPdlM/0kFEyvPXaO4SKBunZpLLp35uIxqIYq3aqxBDNUFZWRklJCeeddx7f/OY3qays3P3PSwghhPiANE3j4osv5uKLL84tC4fD3HPPPTzzzDOsXbuWoaEhIqlBXnh5pz6vdU6qq6oZ2B5ncPEkjjxuCsUNFjb8J8a0M51oJkjFDTKZDI58lVX/jDLtXAcDbSmsDhXFDJ1rEsRDBpPOdNLfksRbYaZ1cYz2pUmK6s3YvCp5ZSb8XTotr0Sx50FhnRVvqZmudQmiAxncpRruYg0js9OLUg16tyZAU8ECnlIT4T6d2CAU1FkwmVUGW8JsnBdBs2d3KZlkoWC8hQ3zwjS/sKPi0YRj7fRsTDLYkh1hVDLZirvExOYFUcBAjxu5/qQReeUmLK4dfV7p2Ohp13Zmz9NIRtOjpoIbs02BRsyfHlMtKdKfHjXoyFmk4Sg0YfPsqGZEGlLxDHoi+wZ5qsxUTLOz8ZUwyTBsXhChfLqVVNSgb1OSlreyfWtFEy2UNFpZ869slaW1zwdJx8BVrFFYayHcq+Nv17G5Vcx2M/7tGQZaspWwXEUmYv4U6QSoJqieZWXb4gRdqxM0nenEPF7B5tLoXJWguTPCtPPdWOwpihstbFkUo3ttkoaTs0UJnD4TBrDmhSjuYhWrS8Xi0qg91kqwV6d9RYKiOhOJcAbNkv15JcMGnavi1M2107Gtn+bu5TgKMyx5pY+WllY0TSXdtuN9U1UPdXV1HHXUUVxxxRWceuqpe/5hCHEIyXRv4iPl/vvv57bbbqOlpYVUauyVHZPJhNVqxePxUF5WTlFxMRPrJ+LJd5OK6iQjKZyFdvREhsV3rOdT35uEkTGIdMdRbQqOfBv+7WG8FS6igzGchXb61g7RtXyASRePR7OokIFwZwx7kY1kMAkqOApsGIbBxqe3Y/VaqPl0MYqi8ObPswObPvWjSaRTGd755XpK53iZcEYFXcsGaPl3D8f8cBKKAu/+cTNTPleNya4RH0zS1xzA4jFRcWQhGd3g7dvW0XRJJd4JLowMbP5XB+NPK0WPZVjx5y3Yii0ccW0t0Z4Yq+5tpeHCSnz1rtzUIbO+VodhgMVppuPdPipmF9K7KkDBRDcmu4aRNnj7N9lqTJ/68SQyeoa3b8vue8wPm1AUhVV/3UzR5HxKZuZjGBBqi2DJs2Cyqrx71yZIwlHfm0hgS5itr/Yy7coaTHaNNQ9tJdyRZPqXJmBxmXLvuafGSWhbhHggRclMH0Y6Q7AjSvND25j2xfE4y2x0vj1APJik9oxyYoMJlv9hCzNuqsXmtbD5uQ70ZIaJF1Vl23/beiacWUrpbB/pRJp3/ncD+Q0umi6tJp1KE2qPgQHuSgeaWSU6FMfusxLtTbB9YR+1Z1dgsqpkMgaxvgSqWcGWbyEdz7B9cR/jTypDj6cJd8ZwltkwWTViQwns+VbioQR9gV46OjpYsngJdrudRDLBwMCOkt4Wi4VkMomiKEybNo3x48dz7733SoUkIYQQh6VAIMB3vvMd/v3vf9PT05O7A2eEoiiYzWby8/OxmCw0TZ6E0+Ri0vSJKIpK71o/xU1eFE1hYF0Ik1Mjb7yT3vV+8spcpEljsZuJ9iWx5ZnRrCqKAuv/0UG4J8KcmxpJhnRMdo2upUOUTPMS3BbFVWHD4jQT6U2w8p5WJl9ZibfaOTxV7XamfKEKT5mD5r+14N+S5Mhv1oEGi3+9mYpjC6g5sZChLWFCHXFKpuWhWRXWPNxGycx83FV2XMU2Wub30vXOEHO+Xkcmne386F46RM2JRax7qoPQthiTPleJp9LB0j+3kPInmP31ekIdUTY824Gv3k3dmWVEBxLYvBYiXTGcpXY2PdfB5MtrSKcyhNojND++nWnXjsNVamfTc530rQzQ8NlyCid5ifUnWP6nrcy8oRYUBZNNZfMLndSdWc62hX10vzNE/bll5NW5WfLbjdScUkLRFA8Jf4rVD2zD7DUz45oa/K0RPJUOAu0R8sdnByHN+XodmlUhGdbZ9p9++teHOOob9ejJDKv+soUZX6nDZNd48383kD/eycQLKogOJln5l1amX1ODo9hG9/IhWl7s5ajv1KOZVVpe7aHrbT9zvlGH2akR7IzSvmCAhvPLMQwDzaySTqYx2U1senE7zkIHlUcVoKfSqKrK0ntbmHXteDKpDKH2GI5iC1avhQ3PdjD+5BJUqwoGpJNpzFYTQwN+ev3dbNq4iQ0bNuIryGdgYCA3rY6iKJhMJnRdp7S0lLq6Or73ve9x9tlnH4rTSQghhHhfb7zxBr/61a945513GBwcHJO9Rvq8vN48iouKKS0pp66qlrxSL/FAimh/Et8EJ8lImrVPdTPz6goyaYPBzXEsLhVXiYWBrVF84x2EuuLkj3PQszpI79ootacUYMszkU5kCHUnseWZSIRSgIqnwgqGweaXB1EUqD3Vh2pWWXzn8FStN1agJzIsv6cLe5mJqReW0LE0yPY3g8z+SgWaWWHpX7ZTd0YRVq9GfFCnd20Yk1Nh/PEFpJMZlv6lk8pjvBRPdpJOGrT9Z4jyWW4yOqx/pg+TDaZfVU6kO8H6Zwcon+OmZKqb5Q9mB1dNPLcIzQIWh5nO5UHKZ3roXRMmb5wNR4EFPZFh9eOd6FE46mtVpBMZ3v1zB0C2jRaVtU90YfNZqDo6DyNjEGhPYLIpWN0m1jzVAzpMv6qMQGuM7Uv8NJ5djMVtYtPzvYS7depO92EvMJNOZogN6LgrrYS7koS64tQcn08mZeBvj7H1pSEmnJIdOLRtoZ/YYIpJFxYT7kmw5vFeGs7z4a2ws/nlAWIBnamXlpDRDZb+uZPCSQ7qTi0gEdZZfm8XNp+JI64sIxnRGWpJkE6k8dU5MNlUwr1JPGU2Au0xupaHGHdCHvY8M+mUQbg7QSZj4K20kQil2f7uIA2nl5AMpxncEsVbY8PqMhHqTuAqshLxJwim+uno7GT5u8vRLCqpVIqBgYHcYC+LxUIqlcJqtTJ58mSOPvpo/t//+39SIUkIIcRhKRaL8eCDD/LUU0+xatUqBgcHc8USRlgsFvLzfFgtNiZObMCmFNI0bTyg0r0+SVGtGbNVoXdTCiMDldOtdKyJ4SywYBhp7B6NQEcaV6GKalbQLCob5oeJRQxmfdZFzJ/BbFdpXxWjrNGKv1PHVaThLDAR6NTZ8kaMqpkWSidZGdiaYuubcarnWCiut7JhQYhQF0w83YHFrrDq7yE8FRqNp7jo25gg0KlT1GDBbFXZ8p8w7lILzkKVwvFWtr4ZZXBriomnOzEMg3QKutYkGHeUnda3Y0T601TMsFJUZ2H1cyHSMYOG01xEB3S2r4hj92hMOM5BZEDHnqcR2J7CW2Fmy3/CTDrLQzplEOjU2fZOjOojbZRMsrFxXohAR5qSyVaqZtkJdKbYND9C3UlOVBOYbSpbF4WYcKybrtVxBltTFE3Mvta1z4XwTTBT0mglEUqzdWEMNJh8lpvBbQnyyi0MtScpGG9l7fMhJp7qwuJUSIQydK6OE+pKM/UCN+mUwYaXwzSc6sbp01j+pB+LXaPhFCfRwTSbFsQYd4yVggkWti9P0NOcZMq5LmxehZY3owxsTdN4mgN3iYmBLUl6NqSomW3DUMBsVUhEMzi8KlveimC2qNQc5UBPZFAUlfULojSdbEdPGQS6Mti9kFdupvmVKFVTbZjsBqqikAgbWF0qg/0hAvFuWrZuZcP6DXjyXQwODhKLZQeXjfTJappGTU0NkydP5rvf/S5HHnnkITibhNg/UklJfKRcffXVXH311aOWNTc3c8stt7Bw4UL8fn/2Tvq+Prq6sneGvfjiC2iaRn5+Pmk9TUVFBaVlZRSeX8Dg9gC+Ci82n4VAewSHz4bDZyM2FMfiMGNkDFxlDqY25ZOO65AB/+YQQ9siTKhyoKhmVJPGpvnbqD6qjJqTizE7zSgoRPuypaln3FALCrnpPgqnZG/f12PZwJNO6igmheRgkp7lQ9ScWEIyplN1XDGKColAim0Le8ACJpeGalZZ83B2erqKYwpxltppuKCS1td7UVRwFNkASPiTpKI6M79ah2ZSiQ8lSesZVE0hFU2TiqaJDyXZ9nov3glO3GWOUdWYMjvlsWRYJxVJEe5I4q5OkYqmMTIGoZ44blXBVGzlmJubWP9UO6moTjyQovq4QixuM8mojuKwcNR3J5CMpEiEUqy6p4UZN9aiWhTiQZ2tr3QT6IxQd2YFeTUuCqd6sOSZIQNtr/TircuGpVh/9qKTxWkCBZLRNIHNERQU0KBkVh5bX+imeFoemkVjzrcaaHujm2RYBwVc5Q5MVpV0KoO/LUxaz+Dw2bDmmWm4oIrOxX1UHF1EIphEMSlY8ywoqoK/PcL4E8tIxlL0D/TTG+xl87JNGIZBPB6no6Nj1FzHACk9RVlZGbquU1VVxZVXXsl3v/vdA3MiCCGEEB8Cr9c7anreEQ888AB/+tOfaG5uJhqNEgqFiEajtHe0A/DsiyoWiwWPx4P6tkpNTQ0VFRXY/B5cSRvFjXl0vDtA2RH5KJqCQYZIXxxPZfaC2cQLKgj2xiAD8UCC5PY0eTUOTDYNd6WD+FCSuD+JYijMuik7AFqPpxnYGKF4hhdXkR0MiHRlg41qU3N3Z/k7QlRnCoj7U2z/zwAl072gKngnOCmbkU+4L46/NULXsuz0IGaHRiJssPIvreQ3ZKdZm3hhBSv+vBkDA9WkUDrdQ/sbAySCOqhw9Dcb6VkxRDKsEx1IoCgKsUAKk9NEoCVKx+IBPJV24oFs2DKG25aKZB/HAzqxoQRtr2UrCiSCKRQTGGkT8d4EybBO1bGFFE/2MrQ5PJxzVIqnZacnTvij1J9XRt54B8lImqHNEXpXBWi6qJJkRAczLPnjZpouqMA7wUnN3CKiQ3E0k0r/uiCpKNmKSMNVQBWTgqIpqNbh97A1irPURl5t9i6wrS/1UH9uGZXHFOKrdRHsiqKZVTwVDiacUYLZoTG4OYQeyZBX78RIZ2g4s5LAtmg2D5tUon1xGs7JTqcc7UvgqrCjaArhwSimSXGWrHyHbe3bMJvN9Pf309u705wxjEzhkk9ZWRnpdJqTTjqJb3zjGxxxxBEf8CwQQgghPjzHH388xx9//Khl3d3d/P73v+f555+npaUFXdfp7e2hs7MDWA5kKwbk5eWRSWcoKyunvLycwmOK6d4QoKTei7vCwsCmCN5KG65iC+GeBBaXhp7MYPWYmfTZEuLBJEYGetdHiQ4mqTu5AJM1e0Ftw0s9VM3Jp3S6C5vXhKIqBNuz/TP1Z/tQVIXYcJXJ4kY7iqqQTmXvbk9GdCwODT0O3StD1J9RSKgrTuXRXkw2jUhvks7lQTCB2ZmtcL7phR5CHUl89Q58tXZqjs+j7U0/qqbiLMkGkmQ4TTKkM/GcIiwujVBXEkUFDAU9ll2XjOhsfyeIp8qCp8yWmzINwyCd3Km6dX8SPZkh3K1jsptIhvTszWuDSSwuDbNLY9YXK9j0fD+JoE4ypFPQ4MJRZCERSIGaHbyUjOgkQjobnxug8dxCbG4z/euj9G2IEh1KUn96IYV1LoY2x7D7sjfw9awKYys0kUkbRHqz2dWeb0E1KejxDPF+HSMNJouKr8FOf3OUijlebB6Nqf9VQvs7Q4T7kxi6gbfKitmuoacy9G+MkklmcJdas9PznVPE1gUD1J5SSHQoiWGAq8yKalIZ2BSk7tMlxPwp/MEhBtRe3lqwmXRGJxFP0NHZkRsEPsLpdFJWVobdbmf69OlcfvnlfO5znzuQp4MQQghxUNntdq677jquu+66UcsXLVrEY489xqJFi2hrayMcCdHT28227a0APDdfwWqx4vV6UZaYqKmpoqy0HFPCRyRQQkmDjY7VcYrrLGgWBUWFYG92KrlgZ5L6E50Ee1NkMgqRgE6qEzxFGjavhjsNyZBBvz+Bqik0fNqO3asRC2Twd6RwFWnkVZoxMhAdLvZocymAAppK3J/ODpYOpxlq0ymss2Svc7k1KqbZCPam6NucZLAtm9usXo1kOM2GlyPY81QMA8Z/ys66eWEwDDSriq/aTN/GFMlQhgwGU8/z0L0uSjyUJubXUTWFZNwgEUqTDMP2ZXGcRRqJcDZrGYCRAX342mMqliHYlaJrVTZbxEMZTJZs31gyDPFQmtLJVvKrzQy2JYkHs51mJROtmOwKgc4MxRMtFNZaiYeylZcGW8JMPN1DMpIBDdbPC1MxzUZRg5WK6XY2+cOYrCqDrXHSSUjG0pjjZLOhAiabgmm4zyvYmaawTiGv2kRPc5KWt2NMPM1J6WQbrqI0we7slHLeMjMmm4rdp9GzPntcb4WJtA4TjnER2K4TC6SxOFRCPTqlTWbMdpXwkI6rSMVsURjsiGOt6mXN5h62tbVhtmrZ64+9vexcX0ZRFNx5Tqqqqhg3bhyf/vSnufjiixk/fvyBPi2E+FDJICXxkTdp0iSeffbZMctfffVV/vu//5sVK1YQDodzU5cM+YdYs3ZNbjtVVSksLERVVeLPxzn2uOPI9+ZRqBfhNDmxuMwMbPZT1JBPuC9GXr0HR7mddDLDUEuYvBo3JU0FWN1mkuEUsYEEsaEEoHDMLU2gKvhbw7TN66bqlALc5U4yqQztr2Yr7GgWLdd5Y/Vk5yXteLOf9Z3tzPhSLYGtEUxWE8d8ZxI9qwcxO8wEW4an84jppGI6kd4YycEkax5uJRHPfmgnQim6VwzhKLBhdmg0PzJ6urfuN4dy3/cs9Y9+8zIQ7d4xoezS4anmALreGqTrrdHlrl1VVhovqCbSHyXWE6d1Xnaqt2BXlN4l2WOnk2kyaXIX3CKdCRKBFAUT3RQ0uml+rJVkKEXfmiH6VwcZd0opaX2kZKMDRVFIDZdwDLZEyG/0MOG0UrbSzbt/3Mys6+sYf1op5ccUEOqK0b2sn/pzqqg5sQzNpBAbTKKoCkZaQ0+myRvnItIfxzBAj6dJJ9KUzS4gHkzSP9RHJBlm/cL1JJNJkskkXf/syk7TltnRkWU2m/F4PCQSCcxmM9OmTWPWrFnceeedWCwWhBBCiI+jq666iquuumrUslQqxe23384jjzzC1q1bicViuYEk3T3dOzZ8LjsXemFBId3zepgydTJ19XXYVReOsBVnsY3oUByL1TQ8uFqjoN5BdChJbChBOmGQTmVwl9vRE2lMFpU1f99O2fQ8iqd7sXnMYMCSP27FVmhn0hklKCh0Lc9ml9JpPlAUwp3ZzhDVpJIM63S97Uc1K/hqPWz6Vw+zv1xLOp1haEuY6EC2J8XIGESHkpgsGqkorHu0g4JpbgZWZaf7iA8m2f5mF44Lx9O5NEDLvGz2HF2jG9rmjx5gk06myegG/s0RALa90su2V3Zss/bhnTKcorLi7laaLi4n0p8kk4b2N7PPs+KhNswmiHanqJxbgKvCRrgzRt+q7PRw0f4koe1Rjv5WAxue7iA6kERzqKx5pB1XpY1MxiA+mO2oMtmy1UNJwWBzmPRZGaxOC6VHeuhr9uMosuCtcXLUzfX0rB6i890B3KUOLF4zXq+Fgc0h9FiaYEcUk13DXmDBMs5CfCCBuchK95ohihq9GGkI9gYIxv0M+odY+8paHA47fX19uTvzd+6Y8Xg8ZDIZzGYzZWVlTJkyhe9///vMnTt3L35zhRBCiI+e0tJSbr31Vm699dZRyzds2MDtt9/O66+/TkdHR3bKuEyGIf8QzevW5rZTVZWCggJMmon4f1J8au7R5Hnycafz0SzZz+jutQFKp3gJdSconuQkEbSQjOr0b8pWXSqsdeH0WQkPJogOpAivC6MAM68pQzErDGyMsn1JEN9EG4WNbpKRNN3vRrJ3eDtMO/q83BooBt2rw0T7/DSeVUioM0E6aTD72gq6VgYJdcRzU7OlYmliQzpxfwp0WP14N/rwHXWpaIa+dRFMFgVbgYWWV0b3Uw1s2NGnFWiLAzumy81WEtpxl17zU3257/0tcfwtowfkmN0aDWcWkAgmiA2k6FyWnS8lHkwQ2JrNTno0m+e6lmVzYagrQSqeIX+CjYJ6O+v+2UN8ME3n8iBDW+KUz/KgJ7IZx+41oSiQ1rOP+9dFqTjKQ+UxXra9McSKBzs44ooKxp3go2RakuD2OJs3hmk8vYjqo/Mx2zSCnQkySYNUPI2RhqJGJ6GeOBndQI9nSEUT1MzNJz6UYijURywTYfO8zYRjYdJpna5FXcTj8VF9XiaTCa/XSzqdprCwkKamJj796U/zwx/+EJNJLikIIYT4eDr22GM59thjRy1Lp9O88MIL/O1vf+Pdd9+lq6uL/oF+0uk03b0dOzZ8Gex2B4WFBQRfi1FbN4HauvFYMvlYB/NxFpiI+XU0k0I6aaBkFIrrzYR6U4R6UiQj2elo3UXZwS6aBTa+FsZXbcVbacZVoIGhsOIfIcx2qJplQzUpdKzK3kDvrc7edJ8IZJtjsigkQmkC29O0vB2moNpK18oY9Sc4UFToW59AT2bzh2FkiPp1TBaVdAw6ViTxd+tEurPZIB7K0Lc1id1tItCRpm8kaxnZLNS/Mfuwf3OS/s073pJMKnsjXKQve91ycGuKwa07ZsnZ/u6OzAaw5bUo5dOspBIGGd2gd0P2tW18LYymQTIE3orsYPvoYJpgR/a4oR6dUI/OtPM8tCyMEAuk8XckaX0rhsWR7dOLhbKvxeJQAZW0rhLzG8QDGawuE75xGuEenc41CYprLUw5z0XPxhjt78aweTVsboX8Kiv9LQmSkTTBLh2zXcHu1XD4NAJdKRxeEx3NUQon2MAw8HfHCacGCMYGWfDYRiwONdvn1T9AxsiM6fNSFIXi4mImTJjA5MmT+da3vkVTU9Ne//4K8VEi/0UhPrZOPvlkTj755DHLBwcH+elPf8q///3vXAWcgYEBMpnsB8K///2v3LaqquJ2u3HYHURfiFJfV0+eNw+7w05dXR2+Wg9kDJzFdtLJNKpZxe6z4iyxZedEVaFn1QBFTflM+q9xmO0mMnqGjf9sZ9JlVbiqHSiqQqAle1HKVWlDUbPTkYVaY9i8FsxTTKx/qp1kKImnzMmaR7cx86Y69FgaZ6mdcHuUjkUD2IotNF1cA8DiX62n6tgiNIvK279cn3s9k/6rmkB7hI63BzjqGxOJ9sZZfX8rVScVUTa7gMW/Ws+upn5+HJpTY8VdW/CMdzD5shq63h2k860+Jl0xnuYn2gm3J1j6+01MvLiS/HoPnvEOCid5KZ2Rj81rZtv8Plbds4VZX5/I+FNLsH7WwtrHWiidUYCjEIY2h8irc2L3WbE4soN7zA4TYOCqstK+oI/KTxVRMiUfV5GNjpUD2Iqs2PIsTL6shkQwSbAtgrvSjmZW8FY7sfnMaGaNWCCKw2fH4jSh2TVSyRT94V7a17ajp3W2d2xHVVSCoWCunPrOJdXNZjN2u514PI7D4aCxsRGPx8P3v/99Tj/99APyuyqEEEJ81JnNZr7//e/z/e9/f8y6BQsW8Ic//IHFixfT19eXrULY2UE6nWbZ8mUsW74st63VaiUvLw89pePxeKgZVwProba2lqKCYixujVQkjWpWSAymsLoc1J1SjC3PSiyYyN6F3hVj0qUVOAuspNMZwl1RwgNxpl5djbvcTjqVoW9VEEdpdoo51WLOvgabCXe5DVeFhYEtIfInOIn0JQi0RJnzjTriwSTOQhtv/zbb81J9ciEVR/rY5jIT6Y1T2OQmFdNZ/ucWAByFZmrPKmP9U9soO7qQshn5rH5oK9GeFNOvHU9sMMHGf3Tu8kbC7Bvqaf9PHz3L/Ey+ohp7gZV3f7+Fik/5cBRa2fTPLtY9md3vqG/XkwjpDDaHOeKKGoy0wcoHt7H9PwN4q+0UNnmw5plQNY1Nz3RQe3YZscEkyUiK4qleVJMCKcivcaKaFFzVNngT/K0RCps8zP5aLYGWKBv+3U7j2VWMP7mUZFhH1VS6Vw9RMjmfgokezFaNjA4ZPYOeTOMut6OaVQrq3cSSUbZ1bGMoMITf78fv95PJZBhcMEg4HB4zEMntdhOPx1EUhQkTJlBcXMzpp5/O17/+dbxe7wH9vRVCCCE+qhobG3db8TIcDvPAAw/w3HPPsXbtWvr7+xkaGiKdTmf7vJ7fTZ+Xw0HsPzEm1NZm+7wsTurqaylqcIAKngobqaSO2axiKzLhLrOSiqdBU+haEaKowUnDGfnYvNlp1Ta90kf1cV7yxtswWVV6NmYHLLlKLahmFU+5lWiXjqvEgr3AzOBzfUT6kriKrWydP8TE84tI6xm8FTYC2+L0rIpgckHDWYWoJoUV93dReaQHq8fEsnt3ZKma4/OIDaboXRNh+ufLiA4k2fTvAXwNdqqOzmPlo10wehYXxp+Uj81nYt3f+7DlmZh0YTHdK0P0rglRe2ohbW/4iQd01j7RS/kcD8WTXQxuieIoMFN9bD7bF/vpWhpm7dO9zL6mgoo5HmynmNn8Unbgk6PQzODWGI5CK94aG8HO7IU2W74ZVVOw+UwMbYmTThqUTnNjyzPTuz5CcFscV6mVyReVEe5N4N8Wx1VqwWSBoiYnziILJqtGdCCO1WPC5jNhdZlIJdIMBvtZs7gV3UjRsbADRVEIhUO5aWx21+eVSqXIy8ujvr6epqYmbrjhBubMmXMgf2WFEEKIjyxN0zjnnHM455xzxqzbuHEjTzzxBIsWLWLDhg309fXR3d1NKpVi2ap+lq1anNvWYrGQn59PJm3gcrqpqalC7bBQWVWFz1mIx2MmHkpjtqlEu5PklVupnGbFVWwm1JcirRsEtuuMO9qOu0gjkzYYak8RGkpTfaSFgnEW9KSBvyONxatidqpYnMOvwayRV2OmvzWJf1uK/BozqXiGQGeKSWe5iAZ0vKVm1jyXHXCdP06jZo6T7ctjhHpTlDRZMQyDLa9nCyhoNqiaYad9aQxvuYny6XY2vRokEYTxx9pJxgw6lo0e+I0GE0910b02jr9dp3KWDXeJiXUvhfGWZqe561yVoHN40NXkc90koxlC3RHqT8hOH7vptXB2Cr2SNEUNVkz2bFWitsVRqmbYifTrJKNpKmbYs4OR0jFseRomm4q7UGNwa5qBVp2qGSaaznLgb0+z9c0IE45zUj3HTiyQnY2mfWWUimkOfDUWrC6NdNwgkzFIJdK4S02YTApF9WaS6RhdgQ4C7UP4g0MMvTtEJpNm8M1BQqHQmD4vl8tFJpMhLz+P6upqxo8fzyWXXMJ5552H3W4/YL+zQnwUyCAl8Ynj8/m44447uOOOO8as27x5Mz/5yU94++236e7uJh6PE4lEiEQi6LrOu0vfHbW9yWTC4XBgGAZer5eCggLMmpn8Ah8ul4uKinJ8Ez1oVhVj+A6pTNpg4gU1oEAmnUGPp7H6LBz9gyY0TSWtZ0iFdRovq0TRFDRFI9gSJbAtSvHUPCqP85HRDeyFVgJtYbqWD3DkdyaSTmarCWxblL3zvv3tXqqOLcFVZcVeYKP6+CLMDhMWt5mONwZIBFL427KDo0amF3FVWQm3j562TDEpKGp2uo9gR5RUVGdgUxBnuQO7z8qUz1Wjx9OsuqcFzaoRDcSJ90XZOi9K4SQPFUcVkT/BjaEbtL7eTeWRhQDYi6wUTfNCBrb8q4vJV2UHWOU3uamKpwltj+CpdjL1ygnosTSJYBLNpuEstVPrK0ezqCQjOma7hsVlxuqxEA5H6B/oo3/9AIl4nGAwSCAYIBqNous6fr9/TIlqRVGyF0N1nVQqRUlJCSUlJTidTr70pS+NmV5QCCGEEPvmpJNO4qSTThqzPJVK8Y9//IP777+f5uZmBgYGiMfjDA0NkUqlGBgcoKU1O+Dntf+8BmTLcZvNZkwmE0WFRbg9bixmC3l5eRQXl5Cfl4d3vJu0nr0QlwilcJU7GJ9vwWw3kYykSEYyzLpxAmaXCdWk0LchRNlR+RROcoMC+ROcbP1XLyXfrafiKB/R/gRgYLJobH6pkymXVWEYBp4KB8mITsebg5gdEBtKZqekBaZcWYVmU7HnW7HkWwhsjeKrdxMdSoOigqqgamr2e7I5C0XFXW5HURSSkex2wfYdd5QVNnmweEzMuG48W+f1kE5m0FNp2v6TrWDZ+e4g1ccWMumScsx2E5v+uY3SOUV4Kh3E+hOUHp2Pu9JO+6J+Ih1JzHYNFKg9t4TBDWEyukHBBA9HfdtBuCdOIqxjtqkUTvFQONlNMqZjMZuy07E4NPLq7AwFB+jY3klKTxIIBAiHwvQP9KOqKqFQiFAoNOpCGIDNZsPpdBKLxTCZTDQ0NGC1Wpk7dy7f/OY3qa6uPqC/f0IIIcQnicvl4sYbb+TGG28cs66/v58///nPvPbaa2zZsoX+/n7i8TjRaDR7IW3Z0h0bv5S9IOd0OrN9Xp5sn5fJZMLn8+FwOCmvKCO/wYXVayIRzN6op6fSTDyrBEWFTMog7k9hcmrMvLYMk10jncwQ7dWpnuvFZNcwZQwSA2mGWmLUzM0nNi1JRs/gKrIw2BKjd1WQ6Z8vIxXVsXpMtC3MVgXfvmSQcXMLcRSZUM0KNcflY3Zq2AvM9K6JEO1LEuzK9m/p0Qwo4PSZiPSOHqWkaArKcBSLh3USQZ3Athgmlwl3uZXxJ+eT1jNsfG4Ai0Ml0pcgNpAk1JGkZKqbyiPzcJVYUVTY/MoAlbM9oGZvvCuf4wEFOh8PUXWcB0WFwiYHqWia/q0RSpvcTLmkhERIJ9KXwupVyR9nx1lkxuIwEe5P4Ciw4PCZcJVm+7yGokMMtPURS8YILg8SDASJRCOk02n8fj+x2OhqBAD5+fm5PFZeXk5ZWRmNjY187nOf45RTTpGqSEIIIcQH0NDQwI9+9KPdrlu8eDHPPvssK1euZMuWLfT19REOh4nFYvT199LStmXU9jabDYvFgkkzU1RUiNvtxmyykteVT2FBIT67j6IGJ5l0BkMxiIcy5Feas5V88lTCQ2lSUag/2Y7do2Kxq3Q2J8irMVNQZ0YzK7hLTXSsSFE6zUpFkZ3oUAYDA4tDZetbEcqnZaszeStMxENp+ltSaECoJ4XJkg1N1XNsmGwKriITFodKeEAnHkiTiCqggKIqKBqgKLkuLwCLHVCyVS0Bwn06mlmBNOTXWHAWmrD7NLrXJEjF0+ipDN3N2et53Wvi1BzjYNzRDsxWlbbFETIZg/wqM9GBNN5qM0WNVlrfjpIIq9i9GqpZoXSahVCPQTKaobDehqfMTLBHJzKoY7arlE3RKGm0EI+ksdhVNLOB3WuieKKFcGyIjs4uUkacYCBAKBRmcHAARVVyfV66PjpbWq3W3ECksrIyKioqqKqq4tRTT+Xiiy/G5/MdkN87IT4OFGPnIXxCiPfU3d3N7373O1588UXa2tqIRqNompbrBFBVdVRp5BEjg5lsNlvue6/Xi0kz4SvwYTabycvLQ1VV8vPzcdgdaCYNgHQijaIqqCYVRVUID0SJ9SYpaMyW/mtZ0EXNcSWoJpV4MIGRzk4hZ3GaMAyD5n9so3R6Pr5aD93LB2iZ38O4E0pwVlgxktD86DYmXVFN8xPbYLja9ad+OIngtghrHmoDYNypJcQGE6STGcadXEL36iH8G4Jodmi6aAIYsOwvW5l0aSWOQht6VEezaLQt6qZmbilGBmL9Caz5ZkxWjdhAnMHNYSqOyg5YMjIGsUACe54VRVFQFIVYNEY4kg1s4XCYRCJJJBQmGo/iH/KTTqdJJBKEwiEikWyHzK6BQFVVDMPAbrfj8/no789eNKuvr6e8vJwbbrhht6PfhRBCCHF4mDdvHo888ghLliyhs7OTZDJJKpUilUqhDF9R2vU/ZxRFwWq14nQ6cxfXbDYb+fn5qIpKvs83PFDGgcOR/ed0OMkYBmAQ6U1g91nQzCoYsO0//fganLhK7SQCKZJhHXuRFVWDlleyuUpPpLF6zPjbo2x6tp0Z19RiGAprn2hDVTQ8VVZKpvvY+nIPVm923vrOt7IX2SZ9rhJPlYO3f5mt0GR2wPjTy9n4dCcTLyong0GkM0HHkkFqTiykfHYBPcsH8beGabygGgyDZFgnGdQxuTRsHjN6IkP7on4mnFqCYRj0rvTjrrbjLLCT1jNkUgaQwWQ1gQJ6SieeiOMf8pMxMrmy04FAdrB3MBjEMAyi0SiRSIR4PE4qlRrz3o9k4eLiYhRFIRwOU1hYSF1dHXPnzuXGG2+ksLDwoP/eCCGEEGLf+f1+/v73v/Pyyy/T3Nycu3kvGo1iGAaKorxvn9dI9vJ4PJjNZvLzfbmBTWRUCovysVpsmCwmyEAyqoOSnWrWZNYIdsYIbk9QNtODqilsfLGP6mPyMTs0ooNJ9HAGi0fDnpethLn+uW48FXbKZnrpWOync3mYkklO7EVmVEVl6/xBxp+UT/tbQ+jD96zN/koFgbY4m14YAKBosoN0Kpunao7Lp2dtiHBPCgyDps8UgwqrH+9i/IkF+GodxAZTmK0qLYsGqD2pkEzaINyVxOLRcBZaCLTHGdoco+b4fBQN9HiaSF8KT7l1+MKdSjQcJRqLEo1FiEaixBNxopHsMv+QHz2tk0gkCIfDuT6vVCo16n0f6fOy2WwUFBQQCoVwu92MHz+ehoYGrrnmGo455piD+0sjhBBCiP22bt06XnrpJZYsWcKGDRvo7u4mGAzmsteuVXhgR5+Xw+EYzmBO7HY7eXleVFR8BQXYbFacDhd2mx27zYHT7SBtGCgGDG1L4S7JDi4y0rD1zSieCo3iWiuhfp1IbwZvhQnNAlsXRqie7cxWDyo009+SpH1JjMbTnKiawuYFYTJpcBRqFI630rk6gaqBxaEw2Jq9Vlcxw0pRnYUVTwxPvatB+RQrnSsTlE2zopogNphhsD2Fb5yZmiPtdK2O4+9MMfFUN4qmEOlNoccNFIuCp8RMMpKmfWmMxlPdZNIG25fHcPpUCuvspBIZUpEM6bSBM0/L3giY1EnqcfwDfjJqhoGBQTAyBIJBotEIgUB2fryRghXv1ecFUFBQgNVqxWKxUFVVRVVVFaeccgoXXnghLpfrIP/WCPHxIYOUhDjANm/ezF//+ldef/112traGBoaIpFIYDKZMJlMhMPh3F1Kuw6q2ZnFYsFsNucCh6Zp2Kw2ULLTYGiahtVqJZ1O43K5hkfnGihKdsS11WplYGCQvDwvZrMZi8VCIBDApJrJL8gOiErEkoT6IlQ1lhMPJBlYFaB0ViFWt5lkVCcV0hnYEqDy6CLi8QTb13ZTOrEge9EpFCESCeP2uFEUJTtgKBjC6crWj4wPVzLyeDxEo9HcP7PZTDweJxaLoad09HS2gtFItapkMkk8Hh9z1/2IkffOarXi9XoJBALEYjHGjRuHxWJBURSmTp3KscceyxVXXCEjk4UQQoiPsVQqxfz58/nnP//JsmXL6OrqYmhoiGQyidVqJZlMkkwm0TSNTCaz2wtrkK0UYDabsVltmC1mnE4niqJgsVhyHQ82m410Op0b2GS32/H7Q+Tne7BarQBEozFcLmdu20gwisvtxOFyoKCwbWkf42aXYbWaaV3QT8kULxanGbNLIxFI0fHOAKVHerHlWWhbvp28Gg8Wuzk7PVr/IKDg9rpyg7X8gwF8hfkkk8ncoPmRwUGhUAiz2UwqlSKZTBIMBlFVlVQqRSKRIBqNkk6nicfjJBKJ3b4viqKgaRqGYeDz+VAUhWAwiM1mo7KyEl3XaWhoYNq0aVxyySVMnTr1oPychRBCCHF46O/v51//+hcLFy6kubmZzs5OAoEAuq6jKAqRSCR389n79XmZTCZsNlu2z0vVsNqyecrj8aBpGhaLhUw6g8ud7fMyDAMMsNqsWK1WhgaH8OZ5MZlMWK1WAv4QStpEQWl2/3g4W0F83MxSIv0pepaHKZ/pxZ5vJh5Mkwrr9G2MMOGkPOLxJK1L+qieU4CqQSgYIRwM485zDt+cGCcSiuBw2kHJ9nn5hwLk5XuJx+OEw+Fcn1cikSAWi5FMJslkMqSSKSLRbJ9XIpHYqz4viyVbKTQcDufuxHe5XJSVlTFt2jRmzJjBWWedJRfChBBCiI+xdDrNunXrWLRoEcuXL2fTpk309PTk+r1isRjxeBxFUTAMY4/5QtO0XO6yWCw4HA4URcFms+WuQVqt1twN/3a7HYfDSdAfxJvnyWW0cDCOJ8+R2zbQm8DhseD1OcmkoGN1lLKJXhxuM61vx8kvs2BxKzjzNcJ9Or0bExTUmvBWmNm2yo+rWMNRYMYw0gx0BshgkFfkJJlMoad0BnoDFJZ6s/kplsAgg6qqRCIRQqEwJk3LDuyOJwiFQqiaSjKZ3Oc+L4C8vDzMZjO6ruNyuSgsLKS0tJTp06fT0NDACSecIJW/hTjAZJCSEIdQOBzm6aefZtGiRaxbt46uri78fn/uDrVQKITJZMJisaDreq6DR1XVXGdHOp0eM6J3f6mqiqZppFKp3IdzJpM5oMe3Wq2YTKbcaxwpfRiLxXA4HOTl5TE4OEg6naa8vByn00lZWRmTJk3i1FNP5YQTTjggbRFCCCHEJ8+GDRt44YUXWL16NVu2bKG3tzd3x1QsFiORSOSmk4vFYrmLbCMVG9Pp9B4HOu0rRVFyd2Gl02lMJtN7DqTan+OP5MiRygcOhwOLxUI8HieZTFJaWophGLkcVlpaisfjYdq0aUydOpWzzz4br9d7QNojhBBCiE8WXdd58803WbJkCc3NzWzfvp2+vj6CwWBuADVkB+akUqkPpc9LVVV0XUdV1Vw+OpDHHxl8NcLtdpPJZEgkEsNVDvKIxWJYrVaKiorIz8+noaGBpqYmZs+ezfTp0w9IW4QQQgjxydPX18eyZctYt25drs9rZFDTSHXGkRwUj8fJZDIfWp+X2Ww+4Mcf6fMaqeo9UrwhmcxOGePzZWexGclgHo+H2tpapk2bRnV1NTNnzpQB30IcQjJISYiPuGQyybp163jnnXdYu3Yt3d3duYtskUhk1EU2VVUxmUy5KerMZnOuPGQwGMRqtaLrOuvXr6esrAyv10smk8HpdGIymUgmk4RCIQoKCgByFZE8Hk+u9LTJZMptn5+fT2lpKQ0NDVxyySXygS+EEEKIj7xAIMCyZctYu3Ytmzdvzk2JNnIH20gmSqfTuYHmJpOJSCSSq9A0crFKURQGBwfp7++noaEBTdNIJpPk5+fnKiBlMhm8Xi+pVIp4PJ6rppnJZHKVA8xmMz6fj7KyMvLz8znqqKOYNWsWZrP5UL9dQgghhBD7Tdd1tm/fzsaNG9mwYQOdnZ1Eo1Hi8TihUIhoNIqu67lBTiM5K5VK5S6MWSyWXIXJdDrNhg0bKC4uJj8/HyBXRUDXdWKxGG63O3fBzjCM3MCjkYtchmHk+rsKCgqoqanh+OOPlz4vIYQQQnzkJZNJWltbaWtro7W1Fb/fTzKZJBAI4Pf7c5UhR2ZESaVSKIqS668amaJu5z6v3t5eGhsb0TSNdDqN2+0eNWDJbrcD5K5dapqG3W7H4/HkMlhZWRllZWU4HA4mTZrE+PHjc4UWhBAfTTJISQghhBBCCCGEEEIIIYQQQgghhBBCCHFQqYe6AUIIIYQQQgghhBBCCCGEEEIIIYQQQoiPNxmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qCSQUpCCCGEEEIIIYQQQgghhBBCCCGEEEKIg0oGKQkhhBBCCCGEEEIIIYQQQgghhBBCCCEOKhmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qCSQUpCCCGEEEIIIYQQQgghhBBCCCGEEEKIg0oGKQkhhBBCCCGEEEIIIYQQQgghhBBCCCEOKhmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qCSQUpCCCGEEEIIIYQQQgghhBBCCCGEEEKIg0oGKQkhhBBCCCGEEEIIIYQQQgghhBBCCCEOKhmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qAyHeoGiMNbT08Pfr//UDdDCPEhycvLo6Sk5FA3QwghPrEkewnxySLZSwghDh3JXUJ8skjuEkKIQ0uylxCfLJK9xHuRQUpij3p6erj4sxeDdqhbIoT4sNhsNh566CEJDkIIcQhI9hLik0eylxBCHBqSu4T45JHcJYQQh45kLyE+eSR7ifcig5TEHvn9ftDAtDEPNW4CVBRVAWXHP0VVQQEUNbtsl/V7/je8j6oAI4+VnR4r2ckIFXKPjZFlw9vv/NhQdhzDGJnEcOSYI9uO+jqy3/B2O+1jjBxHyS4yFDDUnfZTdhzbGLUPo/YZ9fzs2C+37S775v7x3tuP2mcPy973+9wyY9QyY9QxjVGPs89vjNmfMccc3k7dsV5RjOxiZeTxyI9xp/XDX7OrdmynKsbw/sZOj7PbZH8FDFCM3HJVMbLr2GWZYqCS/acoxvCv6vAyZafth7/m/mGgkEEdfi5VyQyvA5UMimKgDT+fpmSGvxooSia7PLd+58eZ3LFVJZNrg4n0btZlUAF15HjDzzPyWlSMUc+T3Xa4rcPfaygogKaAgjL8eMdXFQVVUWnvMPM/d+bh9/slNAghxCFwyLKXoh5WuSv3+DDOXoa6076HQ+7aZZvDMXtp6uGVuzSG95fsJYQQn0jS55VdtNvspXJY5a5dlx2u2etwyl2HY5/XrtnLpKQldwkhxCfIYZO9FPXwyl075arDNnupu7SDQ5+7YOeMNfKjPHyy10huOlxyl/R5icORDFIS70uJmlBjFlBGQoOaCwfZ0KCAuiM0KDutH7Uu93jke3VsyBh+bCjDn1Q7rTOU4U8lZeRjZcc2xk6foMbwNiMf+DsCyc6Pd/leVcYEglEfhsODlEaCzJ7CxNivyphgsKdt3y8g7G67913P+227m+Cw6zp2XrdrUDDGrFNGvt91kNKor9ltlJEAsGto2GmdkfveGLWfyshzj3QE7finsGOfXUOAusdlmTGPtZ0/vEc+lEe+V4zsB/pOQWDkw1xTMqiKkts++5Xh7bIf4tn9sx/k6nDYMCsZNDK5Y2vDj0eOmQ0FmR3fDz/3ju+NnZ5rx/E1lOHvswFBGw4K2cfq8PfZr0IIIQ69Dzt7Gap6eOWuUdtyWGav3CClwyV35dpw+GYvk5o5rHLXju0lewkhxCeZ9Hntuu1Izjl8ctce13MYZS9110FK0uf1ftnLrKQldwkhxCfQIc9eqnpY5a4dWeMwzl67DlI61LnrMOzz2nWZSU0fVrlL+rzE4Uh9/02EEEIIIYQQQgghhBBCCCGEEEIIIYQQYv/JICUhhBBCCCGEEEIIIYQQQgghhBBCCCHEQSWDlIQQQgghhBBCCCGEEEIIIYQQQgghhBAHlQxSEkIIIYQQQgghhBBCCCGEEEIIIYQQQhxUMkhJCCGEEEIIIYQQQgghhBBCCCGEEEIIcVDJICUhhBBCCCGEEEIIIYQQQgghhBBCCCHEQWU61A0Qhz/DoZNRAVQUVQFlxz9FVUEBFDW7bJf1e/43vI+qACOPlZ0eK9khdAq5x8bIsuHtjZHjoGBkvxn+HrL/x8gBsuszO/YxRvYbfrrc9iOPc8cefqwqO63Lrs7+H6OWj9pHAWXk+XZaNvKcI8uM3ez/XtuP2mcPy973+9wyY9QyY9QxjVGPs89vjNl/96/fGP5ZGcPvQ/YNVpSRx8Pvz87rh78q7LwcVMUY3t/Y6fHwTz13DGOnthkYGMOvzSCTey3Z5QYGGcUY/lU1UDGyx9zla+4fBgoZVIXhbTPD60Alg6IYaGT305TM8FcDRclkl+fWj36sDv86Z78qqAqYUNFg+HkVVEXJfgXUkeMNP4+Kkfs36ri5Y+74XkNBATQFFJThxzu+Zp9Lpb1DPhKEEOJw8KFnL0U9vHJXrr07/h1u2ctQd9r3cMhdu2xzOGYvQz28cpc2nIIkewkhxCeb9Hnt9HikeSqHVe7addnhmr0Op9x1OPZ57Zq9TIomuUsIIT6BDnn2UtTDKnftyA6HcfYaLndyOOUu2Dljcdhlr8xwbjpccpf0eYnDkfyGiD3KZDKYTCb0Bv+hbsr+MdgpQOw9ZZev4qNn5EefOdQNeU8jyerwKmhnMpnIZA7vd04IIT6uPtLZS3LXJ9rhn70Oz9wFkr2EEOJQ+UjnLpDs9Ql2+OcuOFyzl+QuIYQ4dD7S2Uty1yfa4Z+9Ds/cBZK9xHuTQUpij1RVRdd1fvSjH1FTU3OomyOEOMja2tr4xS9+gaoefmFGCCE+CSR7CfHJItlLCCEOHcldQnyySO4SQohDS7KXEJ8skr3E+5FBSuJ91dTU0NjYeKibIYQQQgjxiSDZSwghhBDiwyG5SwghhBDiwyPZSwghBByOtb+E+Bh64403uPnmmznppJPwer0oisLVV199qJu1Ww8//DDXXXcds2fPxmq1oigK999//6Fu1geWSqX4+9//zlVXXUVTUxMulwu3281RRx3FXXfdRTqdPtRNFEIIIcQBILnr0JPcJYQQQnxySPY69CR7CSGEEJ8MkrsOPcldQhwYUklJiA/BfffdxwMPPIDD4aC6uppgMHiom7RHP/rRj2hra6OwsJCysjLa2toOdZMOiC1btnDRRRfhcrn49Kc/zXnnnUcgEOC5557jhhtu4Pnnn+ef//wniiIzBAshhBAfZZK7Dj3JXUIIIcQnh2SvQ0+ylxBCCPHJILnr0JPcJcSBIZWUxB4VFBRw9dVXU1BQcKib8pF30003sWbNGoLBIH/9618PdXPe0z333ENrayt9fX185StfOdTNOWDcbjd/+MMf6O7u5plnnuGXv/wlf/rTn9i4cSOzZ8/mX//6F0899dShbuYhJee8EEIcWvJ3+MCQ3HXoSe7aO3LOCyHEoSN/gw8cyV6HnmSv9yfnvBBCHFryd/jAkNx16Enu2jtyzov3I4OUxB4VFhbyxS9+kcLCwkPdlEPq73//OyeccALFxcXYbDbKy8s55ZRT+Pvf/77Xx5g9ezaTJ09G07QP1JZMJsM999zDkUceic/nw263U1lZybnnnstrr72W2+61115DURT++7//mzfffJPTTjuNvLy8vRq5e8opp1BTU/OB2jkimUzy29/+ljlz5uB2u3G5XEyaNIlvfetbDA0N5bYbN24c48aNIxAIcP3111NWVobT6eT4449n2bJlAHR2dnLFFVdQXFyM3W7ntNNOY9OmTXvdloqKCm644QacTueo5U6nk29961sAvP766wfgVX90yTkvhBCHlvwdltz1QUju+uiRc14IIQ4d+RucJdlr/0n2+miRc14IIQ4t+TssueuDkNz10SPnvHg/Mt2bEO/hrrvu4oYbbqCsrIwLLriAgoICuru7Wbx4MU8//TQXXnjhh9qeW265hf/93/+ltraWz33uc7jdbjo6Oli4cCHz58/nxBNPHLX9m2++ya233spJJ53El7/8ZbZt2/ahtTUWi3HqqaeyaNEi6uvr+cIXvoDVamXTpk38+c9/5vOf/zz5+fm57ZPJJKeeeirxeJxLL72Unp4ennjiCU455RTefPNNTj/9dMrKyrjiiivYvHkzzz33HGeffTbr1q37wIHMbDYDYDLJn0QhhBDiUJHctf8kdwkhhBBiX0n22n+SvYQQQgixLyR37T/JXUJ8PMlZIsR7uOeee7BYLKxYsYLi4uJR6wYGBg5Je8rLy1m1ahUOh2PUusHBwTHbz5s3j/vuu48vfOELH1YTc3784x+zaNEirrzySv7617+O+nAPBAJjPuy7uro47rjjePTRR3Mf4DNmzOB73/sexxxzDF/4whe4/fbbcyO0b7jhBu666y6effZZPvvZz36gtt53330AnHbaaR/oOEIIIYTYf5K79p/kLiGEEELsK8le+0+ylxBCCCH2heSu/Se5S4iPJ5nuTYj3YTabc6Nfd3ao5tG0WCy7Hc3r8/nGLJs5c+YhCQ26rnP33Xfj9Xq54447xrTX6/XicrnG7PfrX/961Ajjyy+/PHe8X/ziF6NKSI6sW7ly5Qdq6913380LL7zAySefzFlnnfWBjiWEEEKID0Zy176T3CWEEEKI/SXZa99J9hJCCCHE/pDcte8kdwnx8SWVlIR4D5dddhnf/e53mTJlCp/73Oc46aSTOO644/B4PKO2+93vfoff7x+17Oqrr2bcuHEHvD1//OMfmTJlCpdddhknnXQSxxxzDHa7fbfbz5kzZ9Rjv9/P7373uzHb/fd///cBbef69esJhUKccsopo8osvpf8/Hyqq6tHLSsrKwOgvr5+zGjukXWdnZ25Zffffz+tra2jtjv//PM54ogjdvuc//rXv7jpppuoqanh4Ycf3qt2CiGEEOLgkNy1fyR3CSGEEGJ/SPbaP5K9hBBCCLGvJHftH8ldQnx8ySAlId7DzTffTEFBAXfddRe33357bvTt2WefzW9/+1vGjx8PZINDW1vbqH1PPPHEAx4c7rjjDsaPH89f//pXfvGLX/CLX/wCm83GJZdcwu23305hYeGo7UtKSkY99vv9/PSnPx1z3AMdHAKBAAAVFRV7vc+uYQx2zNv6XutSqVRu2f3338/rr78+artx48btNjg8//zzXHTRRZSUlPDqq6/mgogQQgghDg3JXftHcpcQQggh9odkr/0j2UsIIYQQ+0py1/6R3CXEx5cMUvqYiEajPP744zQ3N7Nu3TpCoRC33HILZ5555gF/rr6+Pv7v//6PJUuWkMlkmDFjBl/96lcpLy8ftd3xxx+/2/2//OUvc8UVVxzwdh0MiqLwxS9+kS9+8YsMDAzwn//8h8cee4wnnniCTZs2sWrVKjRNGzOi9mAxmUzcfPPN3HzzzXR2dvL666/z17/+lQcffJDu7m5eeumlMe3f2bhx4zAM46C3My8vD4COjo6D/lw7e+211/Zqu3//+99ceOGFFBYWsmDBAiZMmHBwGwYkk0nuvfdeXn75ZUKhELW1tVx77bVjRqDvzt6ec8888wzLli2jubmZ3t5ezjjjDH7wgx/s9phLlizh/vvvZ+PGjZjNZmbNmsUNN9yw2wAVjUZ54IEHWLBgAQMDA3i9XiZPnswPf/hDbDZbbrtQKMSf/vQn3njjDRKJBE1NTdxwww00Njbu8bV1dHRw1VVXkUwmufvuu5k4ceJ+t1MIIT5Mkr0OPMld++eTnrs+jIwF2bviHn/8cbq7uykqKuKiiy7iwgsvHLXNG2+8wbPPPsvWrVsJBoPk5eUxadIkvvCFL4x53YlEgieffJKXXnqJ7u5u3G43U6ZM4Qtf+EKuc3LE3uahSy65hO7u7jFtP++887j55ptzj1esWMHjjz/Opk2bCAQCuFwu6urquOqqq5g6deqY/VOpFI8//niurU6nk8bGRm6++WaKi4vf930WQogPSnLXwSHZa/98UrLX4ZSx9vWYI1atWsVNN90EwD//+c/czw7g9ddf59VXX2X9+vUMDg5SXFzMMcccw1VXXYXb7d7jMd+vH2tv+8buvPNOVqxYQXd3N8lkkpKSEk4++WQuu+yyURUebr31Vl588cU9tufvf/87RUVFe1wvhBD7Q7LXgSe5a/98UnLXzjZs2MBf/vIX1qxZg2EYTJ48meuvv576+vr33XdP/UKQHej12GOP7Xbde2Wm++67j/vvv3/MPhaLhfnz549atq/n6SuvvMJTTz3Fli1bMJlM1NTUcO211zJr1qzdHmd/LVy4kL/+9a+0tbWRl5fHWWedxec///lRUwK+8MIL3Hbbbbvd/+mnnz5k0zJ+nMkgpY+JQCDA/fffT0lJCXV1dSxfvvygPE80GuXrX/86kUiEK664ApPJxBNPPMFXv/pV7rvvPrxe76jtZ8+ezRlnnDFq2d78IT0cFRQUcP7553P++efT39/Pq6++yubNm99zAMbBVF5ezuWXX86ll15KY2Mj8+fPJxaL7bEc44epsbERj8fDkiVLGBoa2usyjB+GkdDg8/lYsGABdXV1H8rz3nbbbbz22mtcfPHFVFZW8sILL/Dd736XO+64g2nTpu1xv3055x599FGi0ShNTU0MDAzs8ZhvvvkmP/jBD2hoaOC6664jEonw1FNPcdNNN3HvvfeOCiDhcJivfe1r9PX1ce6551JRUYHf72fVqlWkUqncIKVMJsP3vvc9tmzZwmWXXYbX6+WZZ57h61//On/5y1+oqqrabVvuvPPO3c57vK/tFEKID5tkr4NLctfe+6Tnrg8jYz377LPcfvvtnHDCCVx66aWsWrWKO+64g3g8zn/913/lttu6dStut5uLLroIr9fL4OAgzz//PNdddx133XXXqNf/85//nEWLFnHuuefS0NBAf38/Tz/9NNdffz33338/paWlwL7nofr6ei699NJRyyorK0c93r59O6qq8pnPfAafz0coFGLevHl89atf5Ze//CVHHXVUbltd1/ne977HmjVrOOecc6itrSUUCrFu3Toikcje/6CEEOIDkNx18En22nuflOx1OGWsfT03IdtPdccdd2C324nFYmPW//rXv6agoIDTTjuNkpIStmzZwtNPP83bb7/Nvffei9Vq3e3re69+rH3pG1u/fj3Tpk3jrLPOwmKxsGnTJh599FGWLl3KnXfeiaqqQHaw+ezZs0c9j2EY3H777ZSWlsoAJSHEQSHZ6+CS3LX3Pim5a8SGDRu48cYbKS4u5uqrr8YwDJ5++mm+9rWv8ec//3nMNHa7+upXvzom93R3d3PPPffscaD5+2WmEd/+9rdH/U6MZJVd7e15et999/HAAw9w4okncsYZZ6DrOi0tLfT39++xDfvj7bff5oc//CFHHHEEX//619m6dSsPPvggQ0NDfPvb3x6z/TXXXDPmpkCXy3VA2ySGGeJjIZFIGP39/YZhGMa6deuMuXPnGs8///wBf55HHnnEmDt3rtHc3Jxb1traapx44onGn//851Hbzp071/jNb35zwNvwYVqwYIGRyWRGLUsmk8YRRxxhAEZra+s+H/Ott94yAOOqq67ap/3i8bixaNGiMcuDwaBRWlpqWK1WIx6P59oNGD/5yU/2uX07u+222wzA+Otf/7rP+37nO98xAOPKK680dF0ftc7v9xuhUCj3uKamxqipqdntcQDjhBNOGLO8paVln9/H559/3rBarUZpaamxfv36vd7vg1q7dq0xd+5c49FHH80ti8fjxmWXXWZ85Stfec999+Wc6+rqyv2+nnbaacb//M//7PaYV155pXHZZZcZyWQyt2zTpk3GCSecYNx5552jtr399tuNM8880+jo6HjPdr7yyivG3LlzjQULFuSWDQ0NGWeeeabx05/+dLf7vPPOO8bJJ59s/OUvfzHmzp1rrFu3br/bKYQQHzbJXgee5C7JXfvqw8hY8XjcOOecc4zvfve7o/b/2c9+Zpx22mlGMBh8z+cZGBgwTjzxRONXv/pVbllvb68xd+5c4w9/+MOobZcuXWrMnTvX+Nvf/pZbti956OKLLx7Tzr0Vi8WMz3zmM8a3v/3tUcsfeeQR46STTjLWrl27X8cVQogDQXLXwSHZS7LXnhxuGWtfzs0RzzzzjHHOOecYd9xxhzF37lxjaGho1Pply5aN2eeFF14w5s6dazz33HO7Peb79WPtT9/Yzh577DFj7ty5xpo1a95zu5UrVxpz5841Hnzwwfc9phBC7A/JXgee5C7JXXvjO9/5jnHWWWcZfr8/t6yvr8847bTTjB/+8If7dcz777/fmDt3rrFq1ardrn+/zHTvvffudvnu7O15umbNGuP4448f1f91sFx55ZXGF77wBSOVSuWW3X333cbxxx8/6rx7/vnnd5vvxMEjlZQ+JiwWy16XGnv77bd5+OGH2bhxI4qiMH36dK6//vox0wrszmuvvcbEiRNpamrKLaupqWHmzJksWLCAL3/5y2P2SSQSAHu8A+Vwdv755+PxeDj66KOpqakhlUoxb948mpubueiii6ipqdmr4yxcuJB77rkHyJavHFl29dVXA1BYWMivf/3r9zxGLBbj2GOPpaGhgVmzZlFdXU04HOZf//oX3d3d3HzzzQfkPb7nnntYuHAhAKtXr84tGylveNxxx3Httde+73F+9rOf8fbbb/PQQw/x9ttvc+aZZ2K1Wtm6dSsvvvgiCxcu3O38rQfL+vXrueCCC0gkEpx44om7LWs4bty43M/kQHr99dfRNI3zzjsvt8xqtXL22Wdz991309PTM2ZO3xH7cs6N3HH/XoLBIK2trVx++eWYzebc8rq6Ompqanj11VdzZR1DoRDPP/88F154IeXl5aRSKQzDwGKx7PY1+ny+UeUc8/LyOOmkk5g3bx7JZHLUfrqu8/vf/56LLrpot/MJ70s7hRDiUJDsdeBJ7pLcta8+jIy1bNkyAoEA559//qj9L7jgAubNm8dbb73Faaedtsc25ufnY7PZCIfDuWXRaDS3bmcjf1NGfrf2Nw+lUil0Xd+nux5tNhter3dUOzOZDE899RRz585l0qRJ6LqOruujpvsVQogPg+Sug0Oyl2SvPTncMta+npvBYJB77rmHL37xiwwNDe22nTNmzBiz7Pjjj+fWW2/d7VQ779ePBfveN7arkX69nfPY7syfPx9FUTjllFPeczshhNhfkr0OPMldkrv2xqpVqzjqqKNGVRErLCzkiCOO4K233iIajY6aFnZvzJ8/n7KyMqZOnTpm3d5kpp1FIhEcDseY6f929X7n6ZNPPonP5+Oiiy7CMAxisdgeX1cymeThhx9m3rx59Pb2kpeXxymnnMI111zznrkKoLW1ldbWVr75zW+Omtrtggsu4KGHHuK1117jqquuGrNfNBrFarXusXqmODBkkNInzEsvvcStt97KkUceyXXXXUcikeCZZ57hxhtv5N577x1TwmxnmUyGrVu3ctZZZ41Z19TUxJIlS8b8gXzxxRd55plnMAyDmpoaPv/5z3PqqacelNd2MNx22228+OKLLF68mOeeew6n00ltbS133XUX11xzzV4fZ/PmzTzwwAOjlm3ZsoUtW7YA2eD1fsHB6XTyy1/+kldeeYX//Oc/9Pb2kp+fT2NjI7fddhuXXXbZvr/A3Vi4cOGYti5atIhFixblHu9NcLDZbMybN4//+7//4+GHH+Yvf/kLmqZRXV3NV77yFcaNG3dA2ru3uru7cx+Mjz/++G63OeGEEw7KIKVNmzZRWVmJ0+kctXwkfG/evHm3nTv7c869n2QyCew+HFitVlpaWhgYGKCgoIDVq1eTTCaprKzkxz/+MQsXLiSTyTB58mS++c1vjirRuHHjRurr68eUeGxqauK5556jvb2d2tra3PInn3ySUCjE5z//ed54440P1E4hhDicSfbae5K7siR37b0PI2Nt2rQJgIkTJ47arrGxEVVV2bhx45hBSqFQiHQ6zcDAAE8++SSRSIRZs2bl1ldUVFBUVMTf/vY3qqurqa+vp7+/nz/96U+UlZVx8sknA/uXh5YtW8Zpp51GOp2mtLSUiy++mIsvvni3718kEiGVShEIBHjppZdoaWnhyiuvzK1vbW2lv7+f2tpafvWrX/Hiiy+SSqWYMGECX/va15g5c+ZujyuEEIeK5K59I9krS7LXWIdTxtqfc/Oee+7B5/Nx3nnnjfl5v5eBgQGAMdPpwvv3Y8G+943puk44HEbXdbZu3co999yDw+EYdbF+V7qus2DBAqZMmfKef9OEEOLDINlr70nuypLc9d5SqdRuB97YbDZSqRQtLS1Mnjx5r4+3ceNG2traRvX17GxfMtOll16amwbwuOOO48Ybb8Tn843Zbm/O06VLlzJlyhSeeuopHnroIQKBAD6fjyuvvJILL7wwt10mk+GWW25h9erVnHvuudTU1LB161aeeOIJ2tvbufXWW9/39QNjplIsLCykqKgol0d39vWvf51YLIbZbGbOnDnceOONo6bsFQeODFL6BIlGo9xxxx2cc845fOc738ktP+OMM7jiiit4+OGHRy3fVTAYJJlM7nZQwMiy/v7+3JyYU6ZM4aSTTqKsrIyBgQH+8Y9/8POf/5xIJDLmLpnD1fXXX8/111//gY9z9dVXf+CLMGazme9+97t897vffd9tTzzxRAzD2K/nuf/++7n//vv3a99dWa1Wvv3tb+92Xs+d7e4OpRF7eh3jxo3bp9f4Qd6TD2pPg2l2Pm92Z1/Pub3h8/lwuVy5kesjAoEAbW1tuWMWFBSwfft2AO6++27Ky8v5wQ9+QCQS4f777+cb3/gGDzzwAIWFhQAMDg4yffr0PbZzYGAg1xEzMDDAAw88wA033DCmw2t/2imEEIcryV77RnLXB/NJzF0fRsYaGBhA07QxVY/MZjMejyd3MWtn119/Pdu2bQPAbrfz+c9/nrPPPju33mQy8fOf/5yf//zn3HLLLbnljY2N/PGPf8TtdgP7nocmTJjAtGnTqKqqIhgM8sILL3DnnXfS39+/23PrJz/5CYsXL869nvPOO4/Pf/7zufUjWfDJJ5/E7XZz8803A/DQQw/xne98h7vvvnvUhTYhhDiUJHftO8leH8zHOXsdThlrX8/NLVu28Nxzz/HLX/5yn+9+f/TRR9E0jRNOOGHU8r3px4J96xsD2LBhw6hzsLq6mttuuw2Px7PH51i8eDGBQOAjc1FeCPHxJdlr30ju+mA+zrlrZ1VVVTQ3N5NOp3M5JpVK0dzcDOyonrW35s2bB7Db3LC3mcntdvPZz36WyZMnYzabWbVqFU8//TTr1q3jL3/5y6hstDfnaSgUIhAIsGbNGpYtW8bVV19NSUkJL7zwAnfccQcmk4nPfOYzQLYK1NKlS/n973/PtGnTcs8zfvx4br/9dlavXr3bClEjRvLknv7O7NynZ7VaOfPMM5kxYwZOp5MNGzbwxBNPcMMNN3DPPffssYqo2H8ySOkT5N133yUcDvPpT38av9+fW66qKk1NTSxbtuw99x8ZGbrzVAMjRkZ2jmwD8Mc//nHUNmeddRbXXnstd999d64cnxCfBIlEYq/Pm133g70/5/aGqqqcd955PProo/z5z3/mrLPOIhqNctddd5FKpUYdMxaL5fb77W9/m7trob6+nuuvv56nn36aL33pS7l9djfCe3ft/NOf/kR5eTnnnHPOAWmnEEIcriR7CXFwfRgZK5FIjCoJveu2u3uO73//+0SjUTo7O3n++edJJBJkMplRd9W73W7q6uo48cQTmTRpEh0dHTzyyCP85Cc/4fbbb8dqte5zHvp//+//jWrHWWedxXe+8x2eeOIJLrzwQoqLi0etv+6667j00kvp7e3lxRdfRNd10ul0bv1IFoxGo6M6ZGbOnMnll1/Oo48+yo9//OPdvjdCCPFhk9wlxIFzOGWsfT0377jjDo466iiOPPLI3R57T+bNm8e///1vLr/88jF3y+9NP9ZIO/a2bwyyF0V/85vfEIvFWLNmDUuXLh3VF7c78+fPx2QycdJJJ+3NyxJCiINGspcQB94FF1zA7bffzi9/+Us+97nPkclkePDBB3ODaUYqbu+NTCbDq6++Sn19/W6rTe1tZtq1OveJJ55IU1MTP//5z3n66ae54oorcuv25jyNRqNA9ga8n/zkJ3z605/OHffqq6/mwQcfzA1SWrBgATU1NVRXV4/6OzNS2Xv58uXvOUhp5P3aUz4baQvAySefnKtsDjB37lyOPPJIvvrVr/LQQw/lbtwTB44MUvoEGbkT9hvf+MZu14+MdkwkEmPmvi4oKMh9yI90iO/svaYiGGE2m/nsZz/L7bffzoYNG0aNehTi48xqte7XefNBz7k9ueaaawgEAjz22GM88sgjAMyZM4ezzz6bZ599FrvdDuz44D722GNHlVWdPHkyZWVlrFmzZlRbdxeQdm3n2rVrefnll/ntb387pvz1/rZTCCEOV5K9hDi4PoyMZbVa0XV9t8dJJpO7fY4pU6bkvv/0pz+dK6t94403AhAOh/nqV7/KZZddNqqM+sSJE/na177GCy+8kLvD7IPkIUVRuOSSS1i8eDErVqwYMy3dzlP3nnbaaVx77bXcdttt/PznPx/1HkyZMmXUHWMlJSVMnTp1VBYUQohDTXKXEAfO4ZSx9uWYr7zyCmvWrNmnKd4AVq5cyS9/+UuOPPLI3M14I/alH2tv+8ZGOJ1OZs+eDWQvhM2bN48f/OAH3HPPPdTV1Y05TjQaZeHChRx55JF4vd59eo1CCHGgSfYS4sD7zGc+Q29vL4899hgvvvgikO0ruvzyy3nooYf26ZrYihUr6OvrGzPICPY/M4049dRT+cMf/sDSpUtHDVLa1e7O05Hz2mQyceKJJ+a2VVWVk08+mfvuu4+enh5KSkrYvn07bW1tnHfeebs9/tDQEJCtzLbz3xKr1YrL5cpd49xTPnu/66vTpk1j0qRJLF269D23E/tHBil9gmQyGQB+9KMf7XaeyJFybq+++iq33XbbqHVvvPEGHo8Hi8Wy2ykNRpaNTP20JyN37waDwX1/AUJ8RBUUFOy2DOP7nTcH4pzbHbPZzPe+9z2+9KUv0d7ejs/no6qqip/97GeoqkpFRcWoY+9aentk2c7/ceHz+d6znSPlFO+66y6mTZtGWVkZXV1dALkR0AMDA7nwsS/tFEKIw5VkLyEOrg8jYxUUFJBOpxkaGhqViVKpFMFg8H2nnnW73cycOZN58+blBim9/vrrDA4Ocuyxx47a9ogjjsDpdLJ69ercIKUPmof29m+A2Wzm2GOP5ZFHHiGRSGC1WnOvbXd/v/Lz89m0adN7HlMIIT5MkruEOHAOp4y1L8e86667OPHEEzGZTLk+p5G+q97eXnRdH9P2zZs3c8sttzBhwgR+9rOfjanutC/9WHvbN7Ynxx9/PP/zP//DK6+8sttBSgsXLiQej8tUb0KIw4JkLyEOji996UtcdtlltLS04HQ6qa2t5e677wYYU+3xvcybNw9VVTnllFPGrNufzLSr4uLivTr3dj1PR859l8s1Zpq5kUwYCoUoKSnBMAwmTJjATTfd9J7H/tGPfsSKFStyy8844wx+8IMfjJpyd9fp2gYGBmhqatqr9m/btu19txP7TgYpfYKMdGDn5eXl7tLYnTlz5vCb3/xmzHJVVZkwYQLr168fs665uZny8vJR1VZ2p7OzM9cGIT4p6urqWL58OZFIZNT8rCPzyO6u4wEOzDn3Xnw+X+4/INLpNMuXL6epqSl3zMbGRiA79/Oudp4PGrJ34q9atWrMVCbr1q3DZrPlwlNvby/d3d1ceumlY455yy234HK5eP755/epnUIIcbiS7CXEwfVhZKyRakPr16/nmGOOyW23fv16MpnMqGpEe5JIJIhEIrnHI3d6jXTqjjAMg0wmM2rKtRH7m4f25W9AIpHAMAyi0ShWq5Xa2lpMJtNuL1L29/fL3xUhxGFFcpcQB87hlLH25Zi9vb3Mnz+f+fPnj9n22muvpa6ujvvuuy+3rKOjg5tvvpn8/Hz+93//d7fn+L70Y+1t39iepFIpMpnMqNy4s3nz5mG328cMdBdCiENBspcQB4/b7R5VHezdd9+lqKho1DW595JMJnn99dc54ogjdjvYaF8z064Mw6C7u3uv+sR2PU9VVaW+vp7169eTSqVGTfk4ci1yZNvy8nK2bNnCrFmzUBRlj89x4403EgqFco9HXvNI+zZs2MCkSZNGPU9fX98eKzTt2n75G/P/s3ff4VFUbR/Hv7ub3hsJPfQgvfdeBelgw4Y0u2DH8ggqoj4WUPG1oIKCHZDee5deBEIooUN679md9488WVkTIAFCLL/PdaHZM+fM3HMmm5zs3HNOyVCS0r9IixYt8PT0ZNasWTRp0qTAkyGJiYn4+fkRFBR02QzJjh078vnnnxMeHk7t2rUBOH36NHv27HH4Yy1/X5dKT09n9uzZ+Pr62pMfRP4NOnXqxI8//siCBQu4++67gbxBwpIlS6hTp449gzcqKorMzExCQ0PtbYv6nrteP/74I3FxcYwZM8ZeVrlyZWrUqMGmTZsc3tPbt28nOjqawYMHO8S5bt06NmzYYJ+iMTExkbVr19KmTRv7tIrPPvusw1rSALt372bOnDk8+uijDude1DhFRP6qNPYSKVk3Y4zVpEkTfHx8mD9/vsMNtPnz5+Pm5uZQ9ueZAAAuXLjArl27HN6DFStWBPKm1x4+fLi9fNOmTWRkZFz1Q57CxkPJycl4eno6PIWWm5vLd999h7OzM40bN75inCkpKaxfv57g4GD7Ng8PD1q1asXWrVs5deqUvf9OnjzJwYMH6du37xXjFBG5mTTuErlx/mpjrKLu88033yxwLqtXr2bNmjW8/PLLlClTxl4eFxfHM888g9ls5r333rvszafifI5V1M/GUlJScHd3L/BzatGiRQCF/gxJTExk586ddOvWDTc3t0JjFRG5mTT2Erk5Vq9eTXh4OI8++qhDEnRh47B827ZtIzU19bKzLxZnzFTY+2/evHkkJibSsmXLK9a73Pu0c+fOHDx4kGXLltk/W8rKymLlypVUqVLF/jOjc+fObNu2jYULFxZIKMrKysJms+Hu7n7ZnwFVq1alcuXK9vb5n5nNmzcPk8lEx44drxj/1q1bOXLkiMO9ULlxlKT0DzJnzhxSU1PtUyFu3ryZ6OhoAAYPHoyXlxdPP/00b775JiNGjKBr1674+fkRFRXFtm3bqFevHk899dQVjzFw4EAWLVrECy+8wF133YXFYuHnn3/G39+fu+66y15v7ty5bNq0iTZt2hASEkJcXBxLliwhKiqKl19+2SEzUuSfrk6dOnTu3JkvvviCxMREKlSowLJly7h48SIvvPCCvd6bb77J3r172bBhg72sqO85yHvPHzt2DMi7KXX8+HH7mrLt2rWjevXqAKxYsYL169fTsGFD3N3d2blzJ2vXrqVPnz4Oa8ACPP744zzzzDM8/vjj9OvXj9TUVH7++WcqVapE//797fU6derE7Nmzeeuttzh58iS+vr7MmzcPm83mcPOtRYsWBfonfxrJRo0a2f8YKW6cIiKlQWMvkdJ1M8ZYrq6ujBgxgsmTJ/Pqq6/SokUL9u3bx4oVKxg1ahQ+Pj72usOGDaNp06bUqFEDb29vzp49y+LFi8nNzeWhhx6y12vbti1Vq1blm2++ISoqijp16nDu3Dnmzp1LYGAgt912m71uUcdDmzdv5ttvv6Vjx46UK1eOlJQUVq5cSWRkJKNHj3ZYXuS5556jTJky1KlTB39/f6KioliyZAlxcXFMmDDBoY9Hjx7Nrl27GDt2rP1DmTlz5uDt7c1999137RdPRKSYNO4SuXn+amOsou6zffv2Bc4lf3nali1bOtx4eu655zh//jx33303Bw4c4MCBA/Zt/v7+NG/eHCje51hF/Wxs7969fPjhh3Tq1ImKFSuSk5PD/v372bBhA7Vr16ZHjx4Fjrl69WqsVquWehORm0ZjL5Gbb+/evXzzzTc0b94cHx8fDh06xNKlS2nZsiVDhgxxqFvYOCzfypUrcXFxcUjCuVRxxky33347Xbp0oVq1ari4uHDgwAFWr15NzZo1HRKHivM+7d+/P4sXL2by5MmcOXOGkJAQli9fTlRUlMPykD179mTt2rW8//777Nmzh3r16mGz2Th9+jRr167lvffecxiLFebRRx/lxRdf5JlnnqFr166cOHGCX3/9lT59+lClShV7vUceeYRatWoRFhaGp6cnERERLFmyhODgYH3+VUJMhmEYpR2E3Bh33HEHFy9eLHTbTz/9RLly5QDYs2cP3333HYcOHSI7O5syZcrQoEEDBg0aVKSM4+joaKZOncqOHTuw2Ww0btyYxx9/3P5EMMCOHTv44YcfOHHiBMnJybi5uXHLLbcwdOhQmjZtemNOWORvJCsri6+++ooVK1aQmppKtWrVGDlypMOHHU8++WShg4qivOcAJk2axLJlywo9/osvvkivXr2AvOlSP/30U06cOEFWVhaVK1emf//+9OvXr9ApE3fu3MlXX33F0aNH7U+zPfzwww43uyDvSbD/+7//Y9OmTWRlZVG7dm0effTRqw4Sli5dyltvvcUXX3zhULe4cYqI3Gwae4mUvpsxxgJYuHAhP/30ExcuXCA4OJiBAwdy++23O4xJvv76a7Zt28a5c+dIT0/H39+fhg0bcu+999qTxfOlpKTwzTffsHXrVqKionB3d6dZs2aMGjWK8uXL2+sVdTx05MgRpk+fztGjR0lMTMTJyYmaNWsyePBgOnfu7HDsuXPnsmbNGk6dOkVqaire3t7UqVOHu+++m4YNGxY49yNHjvD5559z8OBBTCYTTZo04ZFHHrnqkiUiIjeSxl0iN9dfaYxV3H1e6uuvv2bGjBksWLDA4YZbhw4dLtumUaNGfPTRR5fdfrnPsaBon42dO3eOGTNmcODAAeLi4jAMgwoVKtCxY0fuvvtu3N3dCxzzkUce4fz588ydO9dh5kwRkZKisZfIzXfu3Dk++OADIiIiyMjIoGzZstx6663ceeedBZLxLjcOS0tLo3///rRq1YqJEycW+diXGzP997//5ffffyc6Oprs7GxCQkLo2LEj999/v8OSjMV9nyYkJPDpp5+yZcsWMjMzqVGjBsOHDy+QIJ6bm8vPP//M8uXLOXfuHK6urpQvX562bdty++23OyxNfDkbN25kxowZnDp1Cl9fX3r16sWwYcMcZoCbNm0a27Zt48KFC2RmZhIYGEjr1q0ZNmwYAQEBRe5HKTolKYmIiIiIiIiIiIiIiIiIiIiISIkyX72KiIiIiIiIiIiIiIiIiIiIiIjItVOSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiI/EWYTCY6depU2mGIiIjIP9jJkycxmUwMGzbMoXzYsGGYTCZOnjx51bo3SpUqVahSpYpD2YwZMzCZTMyYMeOqdf/KLnceIv9mSlISERERERERERGRfy2r1cq0adPo2LEjAQEBODs7ExwcTIMGDRg5ciQLFiwo7RCvaN26dZhMJiZMmFDaodxUnTp1wmQysW7dOofyv8ONq79DjDdT/rW83L/MzMxC2x06dIg77riD4OBg3NzcCAsLY/z48WRkZNzkMxAREflD/u8vEREpnFNpByAiIiIiIiIiIiJSGqxWK3369GHZsmX4+flx2223UbFiRbKzszl48CDff/894eHh9OvXr7RDlX+Rw4cP4+HhUdph3HTjx48vtNzJqeBtjN9++40uXbqQk5PDkCFDqFSpEmvWrOH1119n9erVrF69GldX15IOWURE5B/nrbfeYty4cVSoUKFU4xg4cCCtWrWiXLlypRqHiNx4SlISERERERERERGRf6UffviBZcuW0bBhQ9avX4+vr6/D9vT0dH777bdSik7+rWrXrl3aIZSKos4GZrVaefDBB0lPT2f+/Pn2JEKbzcYdd9zBnDlzmDx5MuPGjSvBaEVERP6ZypUr95dIDPL19S0wNheRfwYt9yYiIiIiIiIiIiL/Slu2bAFg2LBhhd4E8fDwoHPnzg5lM2bMwGQyMWPGDBYvXkybNm3w9PTE39+fIUOGcPTo0UKPlZ6ezltvvUWjRo3w9PTEy8uL1q1b88MPP1w2vhUrVtC3b1+Cg4NxdXWlUqVK9O/fn1WrVtnjzo/vtddec1giK38ZtEvjXbZsGZ06dcLX19e+DMnJkycxmUwMGzas0Bjyl+K61KVLzO3cuZNbb70VX19f/P39GTx4MGfOnAHgxIkT3HXXXZQpUwZ3d3c6d+7Mvn37Lnu+1yM/plOnTnHq1CmHvvjzuYWHhzNs2DAqVaqEi4sLISEhDB06lCNHjhTY77BhwzCZTJw4cYKPP/6YBg0a4O7uTqdOnQDIzs5m6tSp9O7dm9DQUFxdXQkICKBbt24sXbr0mmI0mUz2/V8qKSmJF198kbCwMNzc3PD396dnz57274fCjjVhwgT27t3Lbbfdhp+fHx4eHnTs2NH+vf93tH79eg4fPkyHDh0cZjkzm83897//BeCzzz7DMIzSClFERKRIsrKyePvtt6lfvz4eHh74+PjQvn17fv7550LrG4bBhx9+SJ06dXBzc6NChQo8/vjjJCUl3bDlZPPHPidPnrxqXZvNxpgxYzCZTAwaNMhhydXly5fTu3dvgoKCcHV1pXr16jz33HMkJiYWKY5Lx7CFSUtL47nnnqNy5cq4urpSo0YN3nnnncv+/v/555/p0KEDvr6+uLu7U79+fd566y2ysrIKrb9r1y4GDx5sH4eHhoby6KOPcuHChULrHzt2jNtvvx1/f388PT1p06YNixcvLtK5ivzbaCYlERERERERERER+VcKDAwEICIiotht586dy9KlSxk4cCCdOnVi7969zJkzh7Vr17JlyxbCwsLsdRMTE+nSpQt79uyhSZMmDB8+HJvNxvLlyxk6dCgHDx5k4sSJDvsfP348r7/+Ol5eXgwYMIBKlSpx/vx5tmzZwqxZs+jWrRsDBgwA4JtvvqFjx44OiS1/vkk1e/Zsli1bRq9evXj44Yc5depUsc/5z3bs2ME777xDx44dGTVqFAcOHGDu3Ln8/vvvzJ8/n3bt2lG7dm3uv/9+Tp06xdy5c+nevTsnTpzAy8vruo9/qSpVqjB+/HimTJkCwNixY+3bGjVqZP962bJlDBo0iJycHPr27UuNGjU4e/Ysc+fOZfHixaxdu5YmTZoU2P+YMWPYuHEjt912G71798ZisQAQHx/PmDFjaNOmDd27d6dMmTJcuHCBhQsX0rt3b6ZNm8bIkSOLFWNhEhMTadu2LYcOHaJ58+aMHTuW2NhYfv75Z3r06MGnn37KQw89VKDdzp07+e9//0vr1q0ZOXIkp0+fZs6cOXTt2pW9e/c6fJ+Wtp9++onIyEhcXFy45ZZb6NKlS6FLtq1ZswaAW2+9tcC2atWqUatWLSIiIjhx4gTVq1cv8bhFRESuRXZ2Nj179mT9+vXUrl2bxx57jPT0dGbPns2dd97J3r17mTRpkkObxx57jE8//ZTy5cszevRoXFxcWLBgAdu3bycnJwdnZ+ebFn9mZib33HMPc+fO5bHHHuOjjz7CbM6bH+W1115jwoQJBAQE0KdPH4KDg9m/fz/vvfceS5YsYevWrfj4+FzzsXNycujZsyfnz5+nV69eODk5MW/ePMaNG0dmZmaBJWRfeukl3nrrLYKCghg6dCheXl4sXbqUl156ieXLl7NixQpcXFzs9RctWsTgwYMxDIMhQ4YQGhrKrl27+PTTT5k/fz6bNm2iatWq9vpHjx6ldevWxMXF0atXLxo1asSxY8cYMGAAvXr1uubzFPnHMkRERERERERERET+hXbv3m04OzsbJpPJuPfee405c+YYJ0+evGKb6dOnG4ABGAsXLnTYNmXKFAMwunTp4lD+wAMPGIDxzjvvOJRnZGQYPXv2NEwmk7Fnzx57+fLlyw3AqFq1qnH27NkCMZw5c8b+9dq1aw3AGD9+/BXjNZlMxtKlSwtsj4yMNADjgQceKLR9x44djT9/jJx/TMCYNWuWw7bhw4cbgOHv729MnDjRYdvrr79uAMaUKVMKPVZx5Me1du1ah/LQ0FAjNDS00Dbx8fGGn5+fERgYaBw8eNBh24EDBwxPT0+jcePGDuX51658+fLGiRMnCuwzMzPT4XrkS0xMNOrWrWv4+/sb6enpRY7RMAwDMDp27OhQNnr0aAMwRo8ebdhsNnt5RESE4ePjY7i4uBiRkZH28kuv0fTp0x329dlnnxmA8cgjj1w2hj+bPHmyMX78+CL/+/XXX4u87/xr+ed/wcHBxi+//FKg/pAhQwzAmD17dqH7u+222wzAWLJkSZFjEJGbKy0tzfjqq6+MZ555xujdu7fRvn37637PhoeHG88//7zRv39/o0ePHsYDDzxg/PLLL0Zubu4NilqkaPJ/j13NpEmTDMDo1auXkZOTYy+PiooyQkNDDcDYvHmzvXzDhg0GYNSqVctISEiwl2dlZRnt27c3gCuOL/7scmPA/LHPpeOKP9eNi4sz2rZta5hMJuPtt992aL9mzRoDMFq3bu0Qp2H8MS4dO3asQ3lhY6P8un8ex+T3Ta9evRzGWFFRUYavr6/h6+trZGdn28u3bNliAEalSpWMCxcu2MtzcnKMPn36GIDx5ptv2stTUlKMgIAAw2w2Gxs2bHA49ttvv20ARvfu3R3Ku3fvXugYd968eZcdj4n8m2m5NxEREREREREREflXaty4MbNmzSIkJIRZs2YxePBgqlSpQmBgIAMHDmThwoWXbdulSxf69OnjUPb4449TvXp11qxZY5+pKC4ujlmzZtGsWTOef/55h/pubm72ZSm+//57e/nHH38MwPvvv0+FChUKHLtixYrFPtf+/fsXOvPM9WjXrh333HOPQ9kDDzwAgK+vL+PGjXPYdv/99wOwd+/eGxpHUX377bckJiby2muvUadOHYdt9erVY9SoUezZs4dDhw4VaPv88887PDGfz9XVtdDr4evry/Dhw0lISGDHjh3XFXd2djazZs3Cy8uLt956y2H5vZo1a/Lkk0+SnZ3Nt99+W6Bt27ZtCyx3N3z4cJycnNi+fXuRY5gyZQqvvfZakf/NmzevyPvu378/Cxcu5OzZs2RkZBAeHs6LL75IYmIid955J8uWLXOon5SUBFDoEo2Xlhd1ORkRufmSkpKYMWMGp06dokaNGte9vyNHjvDoo49y8eJFhg4dyqOPPkr58uX56KOPmDp16g2IWOTG+/rrrzGZTHzwwQc4Of2x+FFwcDD/+c9/APjyyy/t5d988w0AL7/8Mn5+fvZyFxcX3nrrrZsTNHDq1Cnatm3L9u3bmTlzJi+88ILD9o8++giAadOmOcQJeUvJNWrUiO++++664/joo49wd3e3vw4ODqZ///4kJSU5LOH79ddfA/DKK69QtmxZe7mTkxPvv/8+ZrPZoZ/nz59PfHw8d955J+3bt3c45jPPPEOVKlVYuXIlp0+fBuDs2bOsXLmSqlWr8vjjjzvU79+/Px07drzucxX5p9FybyIiIiIiIiIiIvKvdccddzBw4EDWrl3Lpk2b2LNnD5s2bWLevHnMmzeP+++/nxkzZjgkhgCF3nCwWCy0a9eO48ePs2fPHkJDQ9mxYwdWqxWTycSECRMKtMnJyQHg8OHD9rJt27ZhMpluaFJRixYtbti+8jVr1qxAWfny5YG85cvyl0TLl59wdfbs2RseS1Fs3boVgH379hV6LfKX/Tt8+HCBJKYr9d/Bgwd599132bBhAxcuXCAzM9Nh+7lz564r7iNHjpCenk7btm0JCAgosL1Lly5MnDiRPXv2FNhW2DVydnYmJCSEhISEIsdw8uTJYsVcHE899ZTD67CwMCZNmkT58uV54oknePHFF294gp2IlK7AwEB+/fVXAgMDCQ8PZ/To0de1vwULFgB5Sb75S0j179+fJ554gmXLljFmzJjrjlnkRkpJSeHYsWNUqFCB2rVrF9jepUsXAIff7flft2vXrkD9Vq1aOSQ6Qd7v7hkzZhSoW9gYqKiOHDlC69atSUtLY+nSpXTt2rVAna1bt+Ls7Mwvv/zCL7/8UmB7dnY2MTExxMXF2ZdeLi5fX99CExwrVaoE4DDG2b17N/BHn16qVq1aVKxYkcjISJKSkvD19b1ifScnJzp06MDJkyfZs2cPlStXdrgufx77AnTq1In169dfw1mK/HMpSUlERERERERERET+1ZydnenRowc9evQAwGq1MmfOHIYPH863337LwIEDGTBggEObkJCQQveV/4R2/mwvcXFxAOzYseOKM+qkpqbav05MTMTf39/h6fDrdemT4zdKYTPZ5N8gu9K2/MSsmy3/WkybNu2K9S69Fvku13/btm2jS5cu5Obm0rVrV/r164ePjw9ms5m9e/cyf/58srKyrivu/O+lcuXKFbo9v7ywmYP+PINBPicnJ6xW63XFVdJGjhzJU089xd69e0lJScHb2xv443srv1/+LL/8cucuIqXPxcWlyMkJ27ZtY9asWURERGAymWjYsCGPPPKIw+x2aWlpuLi44OXl5dA2MDCQM2fO3NDYRW6Ea/ndnt+msDGoxWIp8J46efIkr732WoG615OkFBERQXx8PI0aNaJJkyaF1omLiyM3N7fQY18qNTX1mpOUrjS+ARzGOEXp69OnT5OYmIivr2+xr82VrguUzBhc5O9OSUoiIiIiIiIiIiIil7BYLNxxxx0cOHCAiRMnsmbNmgJJSlFRUYW2vXjxIvBHIkX+/5966ik++OCDIh3fz8+PuLg4MjIyblii0p9ngspnNpsByM3NLXT7P2nJrPxrsW/fPho0aFCstpfrv4kTJ5KRkcHatWvp1KmTw7a33nqL+fPnX1Osl8qPO/97688uXLjgUK8kTJkypVjfC40aNSrwnikuNzc3vL29SUhIIC0tzZ6kFBYWBvwx89WfHT16FMibHUFE/t6WL1/OpEmTaNGiBQ899BBZWVnMmzePxx57jK+++sqeLNC4cWPWrFnDe++9xx133IGbmxu//fYbGzZs4JFHHinlsxAp6Fp+t+fPEhYVFUW1atUc6lutVuLi4hyWCe7UqROGYdzQuPv27UtYWBgvvfQSXbt2ZeXKlQUSjXx9fbHZbMTHx9/QY1+rS/u6evXqBbb/ua+Le23y/3+1vw1E5A9KUhIREREREREREREpRH5SRGE3eApbtsFqtbJp0yYg74Yp5C0TZjab2bhxY5GP26pVKxYtWsSyZcsYOHDgFevmLytxrbPi+Pv7AxQ600RycvJlE0H+qiwWC9nZ2YVua9WqFXPmzGHjxo3FTlK6nGPHjhEQEFAgQQkK/x65WoyFCQsLw8PDg3379pGYmFhg9oC1a9cCXHZGgxthypQpnDp1qsj1H3jggetOUjpy5AgJCQl4e3sTFBRkL+/SpQtvvvkmy5Yt48UXX3Roc+LECSIiIggNDS1wA1dE/l7S09P58MMP6dOnD88995y9/NZbb+Xee+9l1qxZ9vI+ffoQGRnJggULWLRoEZD3s3bs2LH079+/VOIXuRJvb2+qV6/OiRMnOHr0KDVr1nTYXtjv9saNG9uXJf7z77ht27ZdNuH8RnvxxRdxd3fnqaeeolOnTqxatcphFqFWrVqxePFiDh48SN26dW9KTFfSuHFjdu/ezbp16wokKR07doyzZ89StWpV+/gqfwy/bt06RowY4VA/NzfXPqbPvzb59Tdt2oTVai2w5Nu6detu9CmJ/O2ZSzsAERERERERERERkdLwww8/sHLlSmw2W4FtFy9etC8L1qFDhwLb16xZY78Rmm/q1KkcP36czp07ExoaCkBwcDD33HMPO3fu5I033ig0mej48eNERkbaXz/xxBMAPPPMM5w7d65A/UvL8p9eP3369FXPtzDe3t7Url2bzZs3c+jQIXu51Wrl6aefJiMj45r2WxwnT57EZDJRpUqV695XYGAgMTExhcb94IMP4ufnx2uvvcb27dsLbLfZbMW+kVSlShXi4+PZv3+/Q/lXX33F8uXLix1jYVxcXLjnnntISUnhP//5j8O248eP89FHH+Hs7Mx9991XrNiL4+TJkxiGUeR/M2bMKNJ+IyMjC51pISYmhgcffBCAu+66y758C0DHjh255ZZb2LBhAwsWLLCX22w2XnjhBQAefvjhy85+JSJ/Dzt37iQ1NZWuXbuSmJho/2c2m7nlllvYvXu3va7FYqF8+fK0aNGCl156iQkTJtCmTRumTJlSrCRhkZtp+PDhGIbBc8895zA+jI2N5Y033rDXyXf//fcD8OabbzoseZqdnc1LL710k6LOM3bsWD799FMOHjxIx44dOX/+vH3bU089BcCoUaMcyvOlpaWxbdu2mxZrfh9OnDiRmJgYe7nVauXZZ5/FZrM5JCMNGDCAgIAAfvjhhwJxTpkyhcjISLp160blypUBqFixIt27dycyMpKpU6c61J8/f/5lk9ZF/s00k5KIiIiIiIiIiIj8K/322298+OGHlC1blnbt2lG1alUgL3Fi8eLFZGRk0L9/f4YMGVKgbd++fRk4cCADBw6kRo0a7N27l6VLlxIQEMD//d//OdSdOnUqR48e5dVXX2XmzJm0a9eOkJAQzp8/z+HDh9mxYwc//PCD/fg9evTglVdeYeLEidxyyy0MGDCASpUqERUVxaZNm2jVqpU9CSQsLIwKFSrw448/4uzsTGhoKCaTifvuu8+eKHU1zz33HCNGjKBt27bcfvvtuLm5sXbtWnJycmjYsCH79u27jl6+uvwksUsTUa5V165d2bFjB7feeisdOnTA1dWVhg0b0rdvXwIDA5k9ezYDBw6kVatWdO3albp162IymThz5gxbt24lLi6OzMzMIh9v7NixLF++nHbt2nHHHXfg6+vLzp072bRpE0OGDGH27NnFivFy3n77bTZu3MjUqVPZsWMHnTt3JjY2lp9//pmUlBSmTp1q//75O1m/fj0PP/ww7dq1o1q1agQEBHD69GmWLFlCUlISzZo147///a9DG4vFwvTp0+nSpQtDhgxhyJAhVK5cmdWrV7Nz507atm1rv0EqIn9fZ8+eBfJ+zhbG09PT/vWsWbOYPXs233//PR4eHkDerGtjxoxh8uTJtG7d+ob8jhEpjmHDhl122//93//x7LPPsnTpUubPn0/Dhg3p3bs36enp/PLLL0RHR/P888/Trl07e5uOHTsyevRovvjiC+rWrcvgwYNxdnZm4cKF+Pr6Ur58efsyvjfDww8/jJubGyNGjKBDhw6sWbOGypUr07VrV95++21efPFFatasSe/evalatSqpqamcOnWK9evX065dO5YtW3ZT4mzTpg3PP/88//3vf6lXrx5DhgzB09OTpUuX8vvvv9OuXTuH2dq8vLz4+uuvuf322+nYsSO33347lStXZteuXaxYsYKyZcvy+eefOxzjk08+oXXr1owdO5YVK1bQsGFDjh07xq+//krfvn1ZuHDhTTlXkb8L/UYWERERERERERGRf6VnnnmGmjVrsmrVKvbv38/y5cvJzMwkMDCQTp06MXToUIYOHVrojCyDBg1i9OjRvPnmmyxevBhnZ2cGDRrEW2+9Ra1atRzq+vj4sH79er744gu+//575syZQ2ZmJiEhIdSsWZPJkyfTvXt3hzZvvPEGrVu35qOPPmLRokWkpaURHBxMs2bN7E/SQ17Cxq+//sq4ceP45ZdfSElJwTAM2rVrV+Qkpfwn+T/44AO++eYb/P396d+/P5MmTWLw4MHX0LPFc+DAASBvxpzr9corr5CYmMjChQvZvHkzVquVBx54wJ4A1LVrV/bv3897773H8uXL2bhxIy4uLpQvX54uXboU+3xvvfVWFi5cyMSJE/npp5+wWCy0aNGCtWvXcuLEiUKTlK4WY2ECAgLYunUrb731FnPnzuWDDz7A3d2dFi1a8Nxzz9GjR4/iddRfRNOmTbnrrrvYtWsXe/bsITk5GW9vb+rXr88dd9zBQw89hIuLS4F2LVu2ZMeOHYwfP54VK1aQkpJCaGgor776KuPGjcPV1bUUzkZEbqT8BNZXXnmFgICAAtsvXVJp3rx5NGnSxJ6glK9t27ZMnTqVixcvUrFixZINWORPvvnmm8tumzJlCh4eHqxcuZIPPviA77//no8//hgnJycaNmzIlClTuPvuuwu0+/TTT6lduzaff/45n332GYGBgQwcOJBJkyZRsWLFAsuZlbRhw4bh6urK/fffb09UqlatGi+88AJt27blo48+YtOmTcyfPx9fX18qVKjA6NGjGTp06E2N85133qFx48ZMnTqVb7/9lpycHKpXr87EiRN55plnCow1+vfvz+bNm5k0aRLLly8nKSmJsmXL8vDDD/Of//yH8uXLO9SvWbMm27ZtY9y4caxatYp169bRoEED5s2bR0xMjJKURP7EZBS2oLqIiIiIiIiIiIiIFDBjxgwefPBBpk+ffsUn5KXonn76aT7//HNOnTpFUFBQaYcjIiI3UXh4OKNHj+bFF1+kV69e9vK1a9cyfvx43nvvPVq0aHHFfXTt2pX27dszYcIEh/Lvv/+ezz77jJkzZxY5cVfk7+jo0aPUqlWLu+66ix9++KG0wxERuaKbN+ebiIiIiIiIiIiIiMifrF+/nlGjRilBSURE7Fq0aIGnpyezZs0iNze3wPbExET71xUrVmTnzp0kJSXZy6xWK2vXrsXDw4MKFSrcjJBFStzFixfts4zlS09Pty+LOHDgwFKISkSkeLTcm4iIiIiIiIiIiIiUml27dpV2CCIicpPNmTOH1NRU4uLiANi8eTPR0dEADB48GC8vL55++mnefPNNRowYQdeuXfHz8yMqKopt27ZRr149nnrqKQDuueceJk6cyMMPP0zfvn1xdXVl1apVHDlyhJEjR+LkpNuh8s8wZcoUfvjhBzp16kS5cuW4ePEiq1ev5uzZs/Tq1Yvbb7+9tEMUEbkq/VYWERERERERERERERERkZvmp59+4uLFi/bXGzZsYMOGDQD06NEDLy8vunfvTlBQEN999x0//vgj2dnZlClThgYNGtC7d2972x49euDn58esWbP44YcfSE9Pp1KlSjzzzDP079//pp+bSEnp3r07+/btY8WKFcTHx+Pk5EStWrV48sknGTt2LCaTqbRDFBG5KpNhGEZpByEiIiIiIiIiIiIiIiIiIiIiIv9c5tIOQERERERERERERERERERERERE/tmUpCQiIiIiIiIiIv9KmZmZHDlyhMzMzNIORUREROQfT2MvERERUZKSiIiIiIiIiIj8q6xatYpx48bx7LPPMmrUKE6dOlWkdsePHy/hyESkNOi9LSJyc5w6dapYY698+jldOtTvpUP9fvOpz0uH+r10/BX63am0AxAREREREREREbmZunXrRrdu3Thy5AijRo0qcrusrKwSjEpESove2yIif236OV061O+lQ/1+86nPS4f6vXT8FfpdMymJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKC33JiIiIiIiIiIiIiIi/ypWq5WcnJzSDkNuABcXF8xmPZMvIiIi8negJCUREREREREREREREflXMAyDixcvkpiYWNqhyA1iNpupWrUqLi4upR3KdTt8+DDLli1jz549XLx4ER8fH+rWrcvIkSOpVKlSkfaxc+dOZs6cSUREBDabjUqVKnH33XfTtWtXe53Vq1ezZcsWDh06xLlz52jUqBEfffRRicQjIiIiciklKYmIiIiIiIiIiIiIyL9CfoJScHAwHh4emEym0g5JroPNZuP8+fNcuHCBypUr/+2v5/fff8+BAwfo3Lkz1atXJy4ujl9//ZWRI0fy6aefUq1atSu2X7JkCe+88w7NmjVj1KhRWCwWTp8+TXR0tEO9+fPnc+TIEWrXrk1ycnKJxSMiIiLyZ0pSEhERERERERERERGRfzyr1WpPUAoMDCztcOQGKVOmDOfPnyc3NxdnZ+fSDue63HHHHbz66qsO59GlSxcefPBBvvvuO/7zn/9ctu2FCxeYPHkygwYNYsyYMVc8zssvv0yZMmUwm8088MADJRKPiIiISGG0SK+IiIiIiIiIiIiIiPzj5eTkAODh4VHKkciNlL/Mm9VqLeVIrl/9+vULJFpVqlSJKlWqcOrUqSu2nT9/PjabjREjRgCQnp6OYRiF1g0JCcFsvvotwuuJR0RERKQwmklJRERERERERERERET+Nf7uS4KJo3/69TQMg4SEBKpUqXLFert27aJy5cps27aNTz/9lJiYGLy9vRk4cCDDhw8vUlLSjYwHIDY2lri4OPtrJTaJiIiIkpRERERERERERERERERE/oJWrlxJTEwMw4cPv2K9s2fPYjabefvtt7n77rupXr06GzZs4Ntvv8VqtfLQQw/d1HgAFixYwIwZMwqUR0ZGFmvmq9TUVA4dOlScMOUGUL+XDvX7zac+Lx3q99JRkv1ep06dItVTkpKIiIiIiIiIiPxtvfvuu2zevJnMzExCQkIYPXo0bdu2Le2wREREimzChAmMGzcONze3YredMmUKd911F2XLlrXvKzExkSlTptzgKKU0nDp1ismTJ1O3bl1uvfXWK9bNyMjAZrPx0EMPcc899wDQqVMnUlJSmD17Nvfdd991L3VYnHgA+vXr5zAuO3XqFBMnTqRq1aqEhYUV+biHDh0q8o1PuXHU76VD/X7zqc9Lh/q9dPwV+v3GzO0oIvIvZDKZ6NSpU2mHISIiIvK3NWHCBEwmE+vWrSvtUETkb+yOO+7g559/ZtmyZYwbN46JEyeSlJRU2mGJiIgU2WuvvUZmZmaB8tzc3Ku2nTJlChcvXiyJsKSUxcXF8cILL+Dp6ckbb7yBxWK5Yn1XV1cAunXr5lDetWtXsrKyiIiIuKnxAAQFBREWFmb/Fxoael0xiIiIyN+fkpTkpnvhhRfo2rUrlSpVwt3dnYCAABo3bsxrr73msDbxpVJSUnj55ZepXbs2bm5u+Pv707NnT1avXn3Z40RGRvLwww9Tu3ZtPDw8CAkJoXXr1nzxxRdkZ2cXqL9y5UqeeeYZunbtSmBgICaTiXbt2l3zecbHxzN27FiqVKmCq6sr5cuXZ/jw4Zw9e7ZA3RkzZmAyma74rygD/sKsXr2agQMHUrZsWXscPXv2ZMmSJQ71zpw5w6OPPkrLli0d6rZv357p06eTk5Nz2WN88803tGjRAi8vL3x9fenUqROLFi26bP3du3dz++23ExISgouLC5UrV+bRRx8lKiqqWOc2bNiwK/ZZeHi4Q/2S7OcbZeXKlZhMJlq0aHHVut9//z0mk4n+/fvfhMhEROSfTmOGP5TEmGH27Nk88cQTtG/fHh8fH0wmE/fee+9V223ZsoXevXsTEBCAu7s7DRo0YMqUKVecFn/RokV06tQJX19fvLy8aNmyJd98880Vj1Pca2O1Wpk8eTINGjSwj+l79+7Nli1brnpON0Pbtm0xmUwFvn8LExYWhslkYs+ePTchMhEpCaGhobi4uAB5D5Pk5OQQGxtbylGJiMjfxbyXN/P942tK7N+8lzdf8fgPP/wwAO3bt6dRo0b07t2b4cOH06FDB+rVqwfk/X5LTEy0twkKCuLkyZO8/vrrnD9/njvvvJNGjRqxd+9eAC5cuEDfvn2pU6cOXbp0IT4+vkT6TkpOamoqzz//PKmpqbz33nsEBQVdtU1gYCAA/v7+DuX5r1NSUm5qPCIiIiKF0XJvctNNnjyZJk2a0L17d4KDg0lLS2Pbtm1MmDCBL774gm3btlGpUiV7/YSEBNq1a8ehQ4eoW7cuDz/8MKmpqcyfP59u3brx5ZdfMmLECIdj7Nixg86dO5ORkcGtt95K//79SU5OZuHChTz00EPMmTOHZcuWYTKZ7G0++eQT5s+fj5ubGzVq1LiuP9zi4uJo06YNERERdOnShbvuuovw8HCmT5/O4sWL2bp1K9WqVbPXb9SoEePHjy90Xxs3bmTNmjX06tWr2HE8//zzvPvuu1SsWJF+/foRFBRETEwMu3btYt26dfTu3dte9/jx43z33Xe0bNmSAQMGEBAQQFxcHEuXLmX48OHMnDmTFStW4OTk+GPj2Wef5f3336dixYqMGjWK7OxsfvzxR/r27cvHH3/M448/7lB/0aJFDBo0iNzcXPr27UutWrUIDw/ns88+Y+HChWzevJnKlSsX6zzHjBmDn59fgfI//6FUUv18I3Xr1o2qVauyY8cODhw4QP369S9bd9q0aQCMHj36ZoUnIiL/UBozlPyYYeLEiezbtw8vLy8qVqxYIDGqMPPnz2fw4MG4ublx5513EhAQwMKFC3nqqafYvHkzv/zyS4E2U6dO5YknniAwMJB7770XFxcXZs+ezbBhwzhw4ADvvfdegTbFvTaGYXDXXXcxe/ZswsLCePzxx4mPj+enn36iQ4cOzJkzp9STqEeNGsWWLVv48ssvHb5//2z9+vVERETQrFkzGjdufBMjFPnnSU9P58cff+TQoUMcPnyYlJQUXnzxxUJ/XmZnZ/PVV1+xYsUKUlJSqF69OiNHjqR58+bXfPwPPviAJUuWkJ2dTatWrRz+5hYREbmS9KQs0uOzSu34n332GZ9//jkbN27Ez8+PYcOGsWvXLjZt2oS3t/cV27766qt8/fXX/PTTTzRq1AiAefPm8dtvv7Fr1y4CAwO56667+Pzzz3nxxRdvwtnIjZCVlcW4ceM4c+YMH3zwAVWqVClSu7CwMM6ePUtsbCzly5e3l+cnbxf293BJxiMiIiLXL/ZEEqf3RmPNMbDl2rBZbdisBrZcI+/r3LzXGFCxURA121XA7PTXnqtISUpy0yUnJxe6tvbLL7/MpEmTeOutt/i///s/e/mECRM4dOgQgwYN4qeffrLf8Jo0aRLNmjXjiSeeoGfPnlSsWNGhTVpaGjNmzOCBBx6wl7/33nu0aNGCFStWsHHjRjp06GDf9sILL/Dmm29Su3Ztzpw5Q9WqVa/5HF966SUiIiJ4+umnef/99+3lH330EWPGjOHRRx9l2bJl9vJGjRrZ/4j8s9atWwPFT0SZNm0a7777Lg888ABffPGF/anSfH+e5aBNmzYkJCRgNpsL1OvRowdr165l7ty53HHHHfZtW7Zs4f3336d69ers2LHD/kTGc889R9OmTXn22Wfp06eP/Y+WzMxMRo4cSU5ODnPmzGHQoEH2ff3www8MHTqUxx9/nAULFhTrXPNnrLqakujnG81kMjFy5Ehefvllpk2bxkcffVRovWPHjrF+/XoqVapU6olVIiLy96YxQ0ElMWaYPHkyFStWpEaNGqxfv57OnTtfsX5ycjKjRo3CYrGwbt06mjVrBsAbb7xBly5dmD17Nj/++CN33XWXvc3Jkyd59tlnCQgIYOfOnfZzffXVV2nevDnvv/8+gwcPtp8DFP/aAPz444/Mnj2bNm3asHr1avvY/uGHH6Zdu3aMGjWKLl26XPWGSkm68847GTt2LIsWLSIqKoqQkJBC63355ZdA6Y8BRf4JkpKSmDFjBiEhIdSoUeOKs5O99dZbrFu3jttvv52KFSuydOlSnn/+eT788EMaNGhwTcd/+umnGTNmDHv37uXEiRMODyWJiIhciYev619u/7fffvt1jadvvfVW+6w6rVu35sCBA9e8L7m5rFYrEyZM4ODBg0yaNMk+m9afxcbGkpaWRoUKFez3TLp06cLq1atZvHgxo0aNAsBms7F06VJ8fHwICwsrsXhERET+iqw5VrIzcsnJsGJ2MuEV6H5d+7PZDA6vPM35g3FYs63kZlux5tjIzbZhzbFizbbZy0wmqN62PE2H1MT9GsaDmanZ7PwpgvA1Z8AoWpvI7RfZ++txGg2s/pdOVlKSktx0hSUoAdxxxx1MmjSJo0ePOpT/+uuvALz++usOT+QHBwfz9NNP89RTT/H111/z6quv2redOHECgH79+jnsy9PTk65du3Lo0CFiYmIctl16s+Z6pKamMnPmTDw9PZkwYYLDtscff5wPPviA5cuXc+LEias+2XngwAG2bdtGhQoVuO2224ocQ1ZWFi+//DKVK1cu9GYjgLOzs8Prwurk1xswYADr1q0rcG0+++wzIC/B7NIpZKtUqcJjjz3GG2+8wfTp03nttdeAvJtgUVFRNGvWzOFmI8Ddd9/NO++8w6JFizh16tRNXZv6Wvv5ct59911eeOEFWrduzcKFCwkICADgt99+491332XTpk3Ex8cTEhJC7969GT9+vMOTLcOHD2f8+PHMmjWL//73v4W+Z7788ksMw2DEiBEFbhKLiIgUlcYMxXM9Y4arJSX92ezZs4mJieH++++3JyhB3lh64sSJdO3alU8//dQhSenrr78mKyuLF154wSGpyN/fn5deeokRI0bw2WefOYx7i3ttAD799FMgb3aoS8cpzZs3584772TmzJnMnj2bBx98sFjnfKnTp0/Tq1cvjh49yldffcV9990H5M3U8uGHH/LTTz9x9OhRTCYT9evX58knn+Tuu++2t3d3d+fee+/lk08+YcaMGbzwwgsFjpGYmMjs2bPx8vJyaCsi1yYwMJBff/2VwMBAwsPDL5v8d+jQIVavXs0jjzxif+/17NmTYcOG8emnn9p/xgA89thjl72pet9999lvvuWzWCw0bdqUX375hYoVK96wv/NFROSfbcCbbUs7hAK8vLwcXlssFoclnzMzM6/Y/tJxusViITc398YGKCXmk08+YfPmzbRp04aUlBRWrFjhsL1Hjx4AfPHFFyxbtoyffvqJcuXKAdCuXTuaNm3KrFmzSExMpEaNGmzcuJH9+/fz7LPPOvw9v3fvXvbt2wfk/W2UkZFhXya8YcOG9gd3ihqPiIhIUdhybWSm5ZCVkk1m4vWPT6w5VvYtOEH00USyM3PJ+V9CUs7/vrZZHbN7qrYsS6v7b8HTv/B8hStJupDG+s/3Ex2RWOQ24avPcHzLeRr2rU693lVwcrFctY1hGBzdeI7t3x8hMzkbgNBmIXgFumF2MmO2mAr+32ImKy2bQytOkxKTwcYvfs9LVhpQnZrt85KVTmXGMC/uNw5nn+SWcycYENiSULcyxe6HG0FJSvKXsXDhQoACT01evHgRoNCEnvyy1atXOyQp1a1bl/DwcBYvXsy9995rL09PT2fNmjV4eHiU2IeV27ZtIyMjgx49ehR42sVsNtOzZ0+++OIL1q5de9UkpS+++AKAESNGYLFc/YdWvpUrVxITE8PYsWMxm80sXryY33//HTc3N1q0aFGsc7darSxZsgQoeG3WrFkD5D2Z82e9evXijTfeYM2aNfabWle6lvnl+/btY82aNcW6qbV06VKSk5OxWCzUqFGDLl264OPjU+T219rPf2az2Rg7diwff/wxgwYN4rvvvrN/IPD1118zevRoXF1d6devH5UqVeLo0aN8+eWXLFy4kG3bttmXrClbtix9+vRh3rx5zJkzh3vuucfhOLm5uXzzzTdYLBaGDx9+zfGKiIhozFA6Y4aiuFKfdejQAQ8PD7Zs2UJWVhaurq5XbZM/82J+naIcp7Brk5mZyZYtW/Dw8KB9+/aFtpk5c2axr82l9u3bR+/evUlJSWHJkiV069YNyPvgvEuXLuzZs4cmTZowfPhwbDYby5cvZ+jQoRw8eJCJEyfa9zNq1Cg++eQTvvrqq0KTlGbNmkVmZiajRo0qcBNIRIrPxcXFPmPDlaxfvx6LxeLwUJGrqyu33XYbX3zxhcPsZ5988sk1xWK1Wjl37tw1tRURESkN3t7eJCUlXXY5rho1avDbb7/Ru3dv5s6dS1pamn2bj48PSUlJNylSKWnHjh0D8h7e2bJlS4HtV0oKMplMvPnmm3z55ZesWbOGZcuWUalSJV555ZUC7Xbv3s2MGTMcyr766isAhg0bZk9Sup54RETk78NmtWEymTCZr29WYsMwOLb5PHEnk8lKySEzJZvM1Gz719npjolJmUedaHF3WJGSd/4sJSadNR/uJebE1cdBTq4WrNlWIn+7yNn9sTS/qxa1u1bGXITzNWwGh1aeZvsP4VizbTi7W2jYtzqeAW5YXMxYnM04uVj++L+LGYuzhZTodHb8eITYyGR2/hzB4VWnaXZnLWq0LX/Zfo4/k8KW6Qe5GJ4AgF8FL9oOr0O5W67+eQtAg9uqcXj1afYvPJGXrDTtd/bMO07i7Zl87r4SEyZsGGy/eJIZF9cyIfRO+ge1KNK+byQlKUmpee+990hNTSUpKYmdO3eyadMmGjRowLhx4xzqBQUFceHCBSIjI6lTp47DtvwZk44cOeJQPnHiRLZs2cKwYcP4+eefqVOnDsnJySxatIjc3Fxmz57tMHPNjZQfS61atQrdXrNmTQAiIiKuuJ+MjAxmzZqFxWJh5MiRxYphx44dQN4TM40bN+b333932N6hQwdmz55NmTIFsyNjY2OZOnUqhmEQExPDypUrOXbsGEOHDqVv3772emlpaZw7dw4vLy/7kxpXO8+goCAAIiMjC437ctfzah599FGH197e3rz11ls89thjV217Pf18qczMTO655x7mzp3L448/zocffmif4SgiIoKHH36YKlWqsH79eipUqGBvt3r1anr06MGYMWPss4ZB3pIj8+bNY9q0aQWSlBYuXMjFixe57bbbqFSp0jXHLCIiojHDzR8zFNWVxpROTk5UrVqVgwcPcuLECW655ZartilXrhyenp6cPXuW9PR0PDw8runaHD9+HKvVSrVq1RxmOb1Sm+JYtWoVgwcPxtPTk40bN9KwYUP7trFjx7Jnzx7eeecdnn/+eXt5ZmYmAwYMYNKkSQwZMsT+YXrDhg1p0aIF27dvZ926dXTq1MnhWFrqTaR0HD16lIoVK+Lp6elQnv+z7NixY5ddorEwqampbN26lbZt2+Li4sLGjRvZs2fPZd/bsbGxxMXF2V+fOnXqGs5CRETkxnrmmWfo3r07Hh4ehX5uPXnyZJ588kleeeUVbrvtNofE4CeffJJRo0bh4eFRIOlE/n4++uijItV76aWXeOmllwqUe3h48OSTT/Lkk09esf3w4cOL9ABsUeMREZG/LpvNICMpi7S4TNLiMkiNy/zf15mkxmeQFp9JRkIW7n6udHykARXqBV3TcXKzrWz84gDHt1y4al1XT2ey0nI4tPwUFw7G0emxhgSGFv1h0lO7olj/6X6y03Nx9XKmyeCaeAa44uzmhLO7E85uFlzc8752cnPCbDYRdzKZTV/9TszxJLZMP8TRjedoN6LeFY+bEpPOhs8PcOFQPADl6wbSfnR9vMtcfdk4nxAPytcN5PiW8+z4KYK0uEzWf7qf35eepOW9tSlf54/xXE5mLrvnHuP3pScxrAZOrhYaD6pBvV5VsBRjyTYnVwv1e1fllq6V7clKZ3NimeW65X8rxuX91/q//0849RONvapS+SbPqKQkJSk17733HlFRUfbXt956KzNmzChwE+y2227jyy+/ZPz48fz444/2p9ZjYmKYPHkyAAkJCQ5tateuzY4dO7j77rtZuHChfZYmZ2dnxo4dS6tWrUrsvPKfWvH19S10e355YmLiFffz888/k5iYeE2JKNHR0UDesmN16tRh48aNNGrUiMjISJ599llWrFjB7bffzrp16wq0jY2NdVjOw2Qy8eyzzzJp0iSHetdynm3btsXPz48dO3Ywf/58+vfv73C++dPL/vl6Xk6HDh3o3bs3rVq1Ijg4mPPnz/Prr7/y2muv8fjjj+Ps7HzVm07X08/54uPj6devH1u2bClw0wzylkTJycnhww8/dEhQAujatSv9+vVj4cKFpKSk2Gff6tmzJ6Ghoaxfv56jR4/ab/iBbqiJiMiNozHDzR0zFMe19FtR2qSlpZGUlISHh0eJHePPbYpq1qxZDB8+nBo1arBs2TL7LJMAcXFxzJo1i2bNmhUYa7m5ufHOO++wfPlyvv/+e3uSEuSNl7Zv386XX37pkKS0Y8cO9u3bR+PGjR2W0xORkhcXF1fojEv5ZbGxscXan8lkYtGiRUyePBnDMKhQoQL/+c9/HP6GutSCBQsKvYEbGRnpsIzO5aSmpnLo0KFixSgif316b/972Gw2bDYbmZmZGIZx9QY3yfPPP19gnJuRkWH/ulOnTuzfv9/+Oj85JSMjg3vuucfhIcf8WUTz248YMYIRI0Y47O+fJisri5ycHI4dO2Z/cBQo8NCziIjIX1lmSjYJZ1NJOJtC4vk0Aip5E9a5IibTtc9udOFwHGs+2ktGUvZV66YnZLHs7Z20vKc2dW8NLdZxM5OzWfnBbqIiEjBZTNzSpRKegW64ebvg6uWCm7dz3tfezrh6OmO2mNm8YBcnlyaScDaV+f/ZQvM7w6jXq8oVZ3Oy5drY8XMEBxblPdxapoYvXZ9sjFfQ1ZOGAqv40Pe11oSvOs2On44QcyyJeS9voV7vKjQZVANntz9SZwzD4Mi6s/w28zA5mVacXC20uDuMW7pVLtZsUyaziRrtKlClRVkOLjvJ3vnHiTuZzJKJ26ncJJgWd4eReD6Vrd8eJi0ubznf0OYhtL7vliKd0+Vcmqw04bcfARP5CUoO8WHi17jfGFOhzzUf65riu6lHE7lE/jIeUVFRbNmyhXHjxtG4cWMWLVpEkyZN7PVef/11li9fzuzZs2nUqBFdu3YlLS2N+fPnU6FCBU6fPu3whwfAnj17GDBgAMHBwfabbYmJicyaNYtXXnmFefPmsWPHjsveXPkryF9O5KGHHiqw7eTJk4V+qDphwgQg749tyHvKfsGCBVSpUgWA+vXr8+uvvxIWFsb69evZunVrgWVcateujWEY9unxf/31V1599VU2bdrE4sWLCQgIuOZz8vT05MMPP2TYsGEMGjSIfv36UbNmTcLDw1m0aBGNGjVi7969Ba7n5fz5SY9q1arxzDPPEBYWRt++fXn55ZevuhzLlfq5KKKiomjbti0nTpxg1qxZDB06tECdrVu3AnnLGuTPWHGp6OhorFYrERERNG3aFMhbGnDEiBG8+uqrfPnll7zzzjsAnD17lmXLllG+fHluu+22a4pZREQkn8YMN2bMcLWxmVzdhx9+yPz582nbti0LFizA39/fYfuOHTuwWq2YTKZC+zUnJweAw4cPO5TfddddPPXUU8yZM4ePP/7Yvt9p06YBeUvCicjNlZWVhbOzc4FyFxcX+/biyP+dUVT9+vWjbdu29tenTp1i4sSJVK1albCwsKu2P3TokG54ivwD6b3975GZmUlkZCRubm64ubmVdjhyg5hMJpydnalataquq4iI/OVlpeWQcCaFhHOpJJxNJfF/iUmFJRLFHE+i7Yi6RVqW7M/OH4xjxXu7yM2yYjKBh78bnoF5/7wC3fEM+N/rADc8/FzZ9ctRjm48x7aZh4k7lUzb4XWLtAxb0oU0lv93J8lR6bh4ONF1bOMizcbkX8OdJm/XY+O03zm9O5rfvgvnzL4YOj7cAM+Agr/P0+IyWPPxPqIi8h5crderCs3vDivWTENms4k6PUIJbR7Ctm8OE7n9IgcWRRK57SJtH6xDpcbBpMVnsnHa75zdFwNASC1/OjxcH9+ynlfZ++U5uVho2K86tTpWZPfcY4SvPsPp3dGc3hNtzx3yKuNOmwfqULlJ8DUfp8BxXS3kVLRhSigsRQkMDM5nFe1B4BtJSUpS6kJCQhg4cCBNmjShVq1a3H///Q5LjZQrV44dO3bwxhtvsGjRIv7v//6PoKAg7rzzTsaMGUPNmjUJDv7jzZqbm8sdd9xBTEwMv/32G2XLlgXAy8uLcePGERUVxZQpU5g8eXKJ3DjKT3y63Drg+eWXW18c4ODBg2zZsoWKFSvSu3fvAttPnjzpMHNBvvzzyd9348aN7Tcb83l4eNCzZ0+++uortm/fXuCGYz6LxULlypUZM2YMISEh3H333bz66qtMnTr1us7z/vvvp1KlSrzzzjusW7eOJUuWcMsttzBjxgyio6PZu3evw/W8Fn369KFChQqcO3eOQ4cOUb9+/ULrXa2fi+LixYskJydTsWJF2rVrV2id/KUE3n333SvuKzU11eH18OHDee211/jmm2+YOHEizs7OfP3119hsNoYPH37FG6kiIiJFoTHDjRkzXG1sdi2upd98fX2JjY0lKSmp0FlK/jwL0rUeo7htimLDhg0YhkHXrl0LJCjBH+OpHTt2FJr0ne/P4ylPT0+GDh3K559/zqxZs3jiiSdIS0vjxx9/xNPTs8CyuiJS8lxdXe2JhZfKzs62by9JQUFB9mVFRURERERERC4nN9tK9NFEzh+MIyoigeAafjS7s9Z1zWx0bPN5Nn5xAGuOrdDtXmXc8a/ohYefKxHrznJk7Rlys3Lp+HADzMVIxjn3eywr3tuFNdtGxYZBdHuqyVUTjjo8XJ/AKt78NiucoxvOkXg+lW5PNcHT//IJwBcOx7Pqg91kpeXgVcadns81xb+id5HjdPd1pfszTQhfc4ZtMw9z/vc45o7bRLuR9ajaoqy93tn9Maz7ZB+ZKTk4uzvR4aH6DtuLy9Pfja5jG3N6TzRbph8iNTaD5e/uomLDMkQfTSA7PReLs5mmt9ekXu+q15QkVhh3X1faPliXuj1C2f7DEU7vjsZsMdGgbzUa9a+Ok+uNv/db3tUf0xVmUirvWvCz2JKmJCX5ywgNDaVOnTrs3buX2NhYhw8NQ0JCmDp1qv1mV741a9YA0Lx5c3tZeHg4x44do0mTJvYEpUt17tyZKVOmsGvXrhI5j/wnLyMiIgrdfvToUQBq1ap12X3kP6l/uSf6O3XqdMXpiPNjuNzNofwbP0Wd4rdXr14ADku9eHp62m/qXbhwgXLlyjm0udJ5du7cmc6dOxcov//++wHH63mtypQpw7lz50hLS7tsnav1c1E0bNiQkSNHMmzYMDp06MCaNWuoVq2aQ51Lb+b5+BR9PdUKFSrQu3dv+5KFAwYM4Ouvv8ZsNjNy5MhrildERORSGjPcmDHD1cZm1yIsLIydO3c6zLSYLzc3l8jISJycnBzGHWFhYcTGxhIREVEgqezChQukpaVRsWJFPDw8gGu7NtWrV8disXDixAlyc3NxcnK6apui+Oqrr3j77bd57bXXsNlsvP766w7b88dTTz31FB988EGx9j169Gg+//xzvvzyS5544gl+/PFHUlJSGD58eLHGZiJyYwQGBhITE1OgPD8Z8WYlEK1atYpVq1YVSG4UERERERGRfyeb1UZsZDLnf4+zJyZdmkx04VA8Tq4WGg+scU37v3A4ng2f7cdmNfAMcMO/kjf+Fb3s//wqeDksOVahfhBrP9nH8S0XyM2y0uXJRlicr34/8+z+GFa+vxtrjo1KjcrQdWzjIs2IZDKZqNerKn4VvVn70V5ijiUx/+UtdHu6CcE1/ArUP7rxHBu/OIDNalCmhi/dn2mKh2/xHzwymUzc0rUy5W4JYN0n+4iNTGb1lD3U6lSRVvfW5sDiSPbMOw5G3pJtXcc0wifk2mc1ulTlxsGUuyWA3XOP8fuSk/bZk4Kq+dLx4frFSrgqDr8KXvR4timxJ5Nw9XTBu8y1L+12NQMCWzLj4tpCtxkYDAxsWWLHvpyip9uJ3ATnz58HKHLCyLfffgvgsMRW/tTwsbGxhbbJ/zA0fyr5G61Vq1a4u7uzefNmUlJSHLbZbDZWrFgBUOgNN8ibcnjmzJlYLBZGjBhxTTF07doVk8nEoUOH7Mu4XCp/pqqqVasWaX/nzp0DKHATqkuXLgAsW7asQJulS5c61LmaxMREFi5cSJkyZejevXuR2lxOUlIS4eHhmEymy57jjejnfPfeey8//vgj58+fp0OHDgUS1Fq1agXAxo0bi73v0aNHA/Dll1+ycuVKTp06RY8ePQgNDb2umEVEREBjhps9ZiiOK/XZhg0bSE9Pp02bNg4zjlxLPxe3jZubG23atCE9Pb3QsU1xr2c+Pz8/Vq5cSfv27XnjjTd4/vnnHba3aNECs9l8TeOpJk2a0LRpU/bv38/27dv58ssvgT/GWSJyc9WoUYOzZ88WSA49dOiQffvN0K1bN95++22eeOKJm3I8ERERERGRvwLDMEhPyuJieDxHN5wj7mRyaYdUbNYcK2f2RJORVLzlwguTm23lwvZklr+7k5mjV7Hg1a3s/DmC8wfjsObYcPdzpXqbctS9Ne++3K5fjnJ0w7liHyfpQhqrJu/GZjWo2qIsd33UiVtfaEbLe2pTq2NFylT3c0hQAqjWqhzdn2qCxdnMqV3RrHhvFzmZuVc8zpl9fyQoVW4STLenipagdKmK9YPo90Zr/Cp4kZ6YxaLXtxGx4ax9u2EY7Jp9lPWf7refz22vtLymBKVL+ZX3ou9rrWnYrxqYIGLdWb57dA17fs1LUKrdtRJ9J7S6YQlK+ZzdnGg5tDYD3mxDlRYhNL+rFv1ea1ViCUqXCqriW6IJSgChbmWYEHonZkxYMGP63//NmJgQeieV3cqU6PELoyQluakiIiIKXRrCZrPx8ssvEx0dTZs2bRyWeLDZbIU+2Thz5ky+/fZb2rRpw4ABA+zl9erVw8/Pj9OnT9tvQORLTEzkvffeA/Juyl2v8PBwwsPDHcq8vLy47777SEtLK7DEx9SpUzl58iQ9e/YsMNtOvl9++YWEhAR69epFpUqVrimu0NBQ+vbty+nTp/nwww8dtq1YsYLly5fj5+fHrbfeai/fvXs3Vqu1wL5SU1MZM2YMALfddpvDtocffhiAN998k4SEP9arPHnyJJ988gmurq48+OCDDm3+nLgFkJ6ezgMPPEBiYiKvv/56gen9jx8/Tnh4uMOSABcvXuTs2bN/3hWpqakMGzaMzMxMunXrRkhISIE6cGP6+VJDhgxh9uzZxMbG0rFjRw4ePGjf9vjjj+Ps7MxTTz1V6Axb2dnZl73h1qtXLypWrMjy5cvtMwqMGjXquuMVEREBjRlKY8xQVEOGDCEoKIgff/yRnTt32sszMzN55ZVXAHjkkUcc2jz44IO4urrax5z5EhISmDRpEvDHtch3Ldcm/7ivvPIKmZmZ9vIdO3bw008/UaZMGQYPHlzsc/b29mbZsmV07dqVd9991/79BBAcHMw999zDzp07eeONNwr9Hjx+/DiRkZGF7jt//PTss8+ybds2GjRoQMuWN/8pIRHJm33OarWyYMECe1l2djZLliyhTp06l/15LCIiIiIiIkWXlZZD9LFEjm46x67ZR1nz8V7mvbyZb0eu5PtH1rDo9d9Y/9l+fn1pM6um7Cbx/F9/ltmstBz2LTjOj2PWs/zdXSx6/Tdyswp+RlRUhmGw9uO9RK5I4MyeGHIyrLh6OlOleQhthtVh8LvtGfpJZzo/3ojW99ehQd+8e7sbph3g3O+FT5ZRmMyUbJa/u5Os1BzKVPel46MNMBVx+bDKTYLp+XwznFwtnDsQx7J3dpKdXnAJdYAze6JZ+f4urDk2QpsG03Vs4yLNvFQY37Ke9Hu9NaFNg7HlGmz47ADbZh4mJzOX9Z/uZ8/cYwA06FuNLk82KnYi1OVYnMw0vyuM215pgWegG9ZsG06uFjo91pB2I+rdsOMUJjDUh25jm9CwX3XMln9WGk3/oBbMrzuOB8p2opWlKg+U7cT8uuPoH9SiVOLRcm9yUy1ZsoQXX3yRdu3aUbVqVQIDA4mKimL9+vWcOHGCsmXLMm3aNIc26enphISE0L17d6pXr47ZbGbz5s1s3bqVW265hV9++QWz+Y8fFK6urkyZMoUHH3yQUaNG8eOPP9K4cWMSEhJYsGABMTExtGrVqsCT8Js2bbInNeUnRR09epRhw4bZ68yYMcOhzS233AJQYHmPSZMmsW7dOj744AP27t1LixYtOHz4MPPnzyc4OJhPPvnksn2Uv5zI9T7Z/cknn7Bnzx6efvppFi9eTOPGjYmMjGTevHlYLBa+/PJL+7IZAK+//jqbN2+mTZs2VK5cGQ8PD86cOcPSpUtJTEykTZs2vPjiiw7HaNOmDU8//TQffPABDRo0YMiQIWRnZ/PTTz8RHx/Pxx9/TJUqVRzafPPNN7z//vt06tSJcuXKERcXx8KFC7lw4QJjxowpcOMM8hLKTp06RWRkpH1/4eHhdOvWjdatW1OrVi2Cg4M5d+4cK1eu5OLFi1SrVq1AktqlblQ/X6pfv37Mnz+fgQMH0qlTJ1atWkXDhg2pXbs2X3/9NcOHD6du3brceuut1KpVi5ycHE6fPs3GjRspU6ZMgYQ3yJtVbPjw4bz++uts2bKFsmXL0q9fvxsWs4iIiMYMN2fMMG/ePObNmwfkJU4BbN261T7WDAoKsifTA/j4+DBt2jSGDBlCp06duOuuuwgICGDBggUcOXKEIUOGcOeddzoco2rVqrz77rs8+eSTNGvWjDvvvBMXFxdmz57N2bNneeaZZwosA3ct1+auu+5i7ty5zJ49m8aNG9O3b1/i4uL46aefsFqtTJs27ZqXUfPw8GDRokUMHjyYjz76iMzMTD777DNMJhNTp07l6NGjvPrqq8ycOZN27doREhLC+fPnOXz4MDt27OCHH34odFasoUOH8uyzz9oTw5X0LVIy5syZQ2pqqn3pts2bNxMdHQ3A4MGD8fLyok6dOnTu3JkvvviCxMREKlSowLJly7h48SIvvPDCTYtVy72JiEhxWQ0bu1NPEJuTTJCzD028qmEx/bNuYImIyN+fzWpj+/dH+H3ZSTAuU8kEXoHueAS4En00kZPbozi1M5paHSvSZHANPAPcbmbIV5Ual8HvS09yZM0ZcjL/SEpKupDG9h+O0GZYnWvab8T6s5zaFY3JDM3uqEWF+kEEhPpgvkwCUfM7a5Eam8GJrRdYNXkPfSe0IqDSlWfbseZYWTV5N8kX0/EKcqf7s02LnWhTvm4gvV5szvL/7iTqSAJL3tzOreOa4+b9x6pBp3dHs2rKbmy5BqHNQ+jyRCMsTtc3TnFxd6LbU03YPfcYe+Ye4/elJ4lYf5bs9FxMZhNtR9SldueSeaiz3C2BDHq7Hcc3n6dC/SB8y93Y2ZP+jSq7lWFMhT4cSjpEnQrX9p65YQyRm+jAgQPGY489ZjRs2NAIDAw0LBaL4ePjYzRr1swYP368ERcXV6BNdna2MXz4cKNWrVqGh4eH4eHhYTRs2NB48803jbS0tMsea/369cbAgQONsmXLGk5OToanp6fRpEkT46233jIyMjIK1J8+fbpB3q/ry/77s8uVG4ZhxMXFGU8++aRRuXJlw9nZ2Shbtqzx4IMPGmfOnLlszIcOHTIAo2LFikZubu5l6xVVdHS08fjjj9tjCAwMNAYMGGD89ttvBeouWrTIuOeee4yaNWsaPj4+hpOTk1GmTBmja9euxueff27k5ORc9jjTp083mjVrZnh4eBheXl5Ghw4djIULFxZad+vWrUavXr2MsmXL2mPq1auXsWTJksvuPzQ01ACMyMhIe9np06eN0aNHG40bNzaCgoIMJycnw8fHx2jevLkxceJEIzk5+bL7u1H9DBgdO3YsUL527VrDy8vL8Pf3N7Zv324v379/v/HAAw8YlStXNlxcXAx/f3+jbt26xujRo43Vq1df9jinT582zGazARgvvvjiNccrIiJyORozFO5Gjs3Gjx9/xXFmaGhooe02bdpk9OrVy/Dz8zPc3NyMevXqGR988MEV41mwYIHRoUMHw8vLy/Dw8DCaNWtmzJgx44rxFefaGIZh5OTkGB988IFRr149w83NzfDz8zN69eplbN68uUj9kS+/X9auXetQnpWVZQwcONAAjAceeMCwWq328o8//tho3bq14ePjY7i4uBiVKlUyunTpYkyePNmIjY297LFGjhxpAIa7u7uRkJBQrDhFpGhuv/12o3379oX+O3/+vL1eZmam8cknnxj9+/c3unbtaowaNarQ3zk3Q3h4uNG+fXsjPDy8SPUPHjxYwhGJSGnQe/vfIyMjwzh06FChnw9fycr4fUb3fROMBjufsv/rvm+CsTJ+XwlFWvrGjx9f7H4qiunTpxuHDx++prYff/yx8cADDxQov9brKjdfccde+fRzunSo32+utMRM49zvscbeHfuveR8ZyVnG4om/GdPuXmJMu3uJ8d2jq42Fr28zNnyx39i34LgRuf2iEX8m2cjJ+uNzpbjTycbyd3fa23x9/zLjt+/DjcyU7BtxWtcl9lSSsfaTvcaX9y61xzf7+Q1GxIazxqndUfayM/tjir3v5Kg0Y8aDy41pdy8xlk/bUuR2OVm5xsLXthrT7l5ifP/YGiM17vK/e2w2m7H2k73GtLuXGDOGrzDiTl/+c8iiiIlMNGaOXpnXD89tMNLi8459cudF46v/9dGqybsNa471uo5TmBO/XTCmD1tuP5dr6fM/08+Y0vFX6HeTYRiXy6EUERERERERERH5xzpy5AijRo1i2rRphIWFXbX+oUOHqFOnlJ84FJEbTu/tf4/MzEwiIyOpWrUqbm5FmyViVcJ+nj0xo8BkFPlzLLxXbRjd/BvcsBhzc3Nxcir9RTBMJhMJCQn4+fkV2HY9MXbq1ImxY8cyYMCAYredOnUqO3fuLLDiwbVcVykdxR175dPP6dKhfi85tlwb8adTiDqaSPTRBKKPJpISkwGAxc1Mm/vqUKtTRUymoi0JBhB/JoWV7+8iJTojb3msRxtQpXnZIre/GB7Pjh8jiIpIAMDV05kG/apRt2dogZl/DJtBelIWKVHppMRkkBKdTmZyNrd0r4x/xSvPLHQ1hmFw4VA8+xed4Oy+P5ZUK1cngAZ9q1GxQZC9X7ZMP8ihlafx8Hdl0DvtcPNyudxuHdhsBksm/sbF8ARCwvypNtibuvXqFjnGzNRsFo7fRtKFNAJCvenzaitc3Av+Xtzz6zF2/XIUk9lEz+ebUrFBmSIf43ISzqWydNJ20hOy8AnxoF7vKmz79jA2q0HVVmXp/GhDzNc5g9LlxJ9J4eiGc9TqWOG6rzPoZ0xp+Sv0e+mPdEVERERERERERERERP5irIaN/575tdDVcgzyEpX+e2Yenf3qXdfSbyaTiVdffZUlS5bQqVMnXn31VZ5++mn27dtHZmYmrVq1YurUqbi4uHDu3DnGjBnDkSNHMJlM9O/fnzfeeIPo6Ggefvhhjh49imEYPPHEEzz00EMAVKlShfvvv9++7PWIESN45ZVXAJg4cSLfffcdrq6uAMyfP5+33noLgPbt22OxWFixYgXPP/88ZrOZY8eOER0dTXh4eIFEpqCgIHbu3EmVKlU4fPgwY8eO5cKFCwA8+uijODk5sXPnTp566ikmTJjApEmT6N27N++99x4///wzubm5BAcH8/nnnxMaGkpKSgojR45k7969lClThrp1i34DWUTkr8SaY+Xsvlii/peQFHMiCWu2zbGSCdy8XchMzmbjtN85uuk87UbUxa+811X3f3JHFOs/3UdOphXvMu50f6YpAZWLl0RStnYAfca35PTuaHb+FEHC2VR2/HCEg8tPEtapElkp2SRHZ5ASk05qTAbWHFuBfUQfT6L/G62LlVz1Zzt/Psq++ccBMJmgSsuyNOhTjTLVfAvUbTG0Nud+jyPpQhpbph+iyxONinSM3xdHcjE8AWc3Cx0fbsDZuJPFitHNy4VbX2jG/Fe3En8qhTUf7qHHs00dkoOObznPrl+OAtDmwTo3JEEJwL+CF31ebcWSSdtJjkpny/RDAFRrXY5OjzbAbCm5pWgDKnnT8p7aJbZ/+fdQkpKIiIiIiIiIyD/Y7t272bVrF7///jvR0dEkJSXh5uaGn58f1apVo1GjRrRu3ZrAwMDSDvWmWbVqFatWrSI1NbW0QxERkb+ob6PW8dWF1SRa0y5bxwCichJ5+/RcXg4dcl3Hs1gs7NixA4DRo0fTvn17pk2bhmEYjBo1ig8//JDnnnuOe++9lx49ejB79mwAYmJiAHjiiScICwtj7ty5REdH07RpUxo2bEirVq0ASExMZOvWrcTGxlK9enUefPBBPDw8eO+997hw4QLu7u6kp6djNpv57LPP+Pzzz9m4caPDTEq7du1i06ZNeHtf+cZ3bm4u/fv357XXXuPuu+8GIDY2lqCgIGbNmuUwk9L333/PkSNH2Lp1KxaLhZkzZ/Loo4+yePFiXn/9dVxdXQkPDyc5OZlWrVrRsmXL6+pnEZGbLSsth2Vv7SDmRJJDuaunM2Vq+BFc05fgmv4EV/fFydXCmm+3c3ZDMhcPxzN33CYaD6hBg37VsBQyO45hM9gz7xi7Zx8DoHzdQLo82Qg376LNKPRnJpOJ0KYhVGoczLFN59g9+yipsZnsmXusYF2zCa9AN7yDPfAq486JrReIPZHE2f2xVGp4bQk5qXEZHFh0AoDaXSvRoE81fEI8Lls/f8aoBeO3cWLrBUKbBlO9TfkrHiPudDI7f4kAoOV9t+TtP674sXoHe9DzuaYsnrids/tj2Tz9IO1G1sNkMhEVkcCGzw8AUP+2qtzStXLxD3AFPiEe9H21JUsm7SDpQhrV25Sj4yMlm6AkciMpSUlERERERERE5B8mIyODOXPmsHDhQqKiojCMvDkgXFxc8PHxISsri8jISI4fP87KlStxcnKiTZs23HHHHdSvX7+Uoy953bp1o1u3bvYlR4oi4VwqGXE5JRyZiIj8VaRZM6+YoHSpuNyU6z7e8OHD7V/PmzePrVu38sEHHwB5v9ctFgupqals2rSJ5cuX2+uWKZN3I3jVqlXs2rULgODgYAYNGsSqVavsSUpDhw4F8mY7qlatGpGRkbRu3ZqaNWvaE59uu+02KlaseNkYb7/99qsmKEHekl6ZmZn2BKX84xZm3rx57Nixg6ZNmwJgtVrt21avXs3kyZMxmUz4+voydOhQjh8/ftXji4jcKDar7boSP7LTc1j2dl6CkqunM1ValCWkph/BNf3wLeeJyVxwxqHyLX1o2acBm78+xNl9MeyafZTjWy/QbmQ9yob52+vlZOay/rP9nNweBUCdnqG0uqf2DVnqy2w2UatDRaq1Kkf4mjPEnkjCMyAvIck72B2fYA88A90c+sbF3Ynfl55kz6/HHJZkK469845jsxqUqxNAuxH1itSmTHU/Gg2ozp65x9j89UHK1g7AM6DwpT+tOVbW/99+bLkGlZsEE9bp8r/zinrszo83ZNUHuzmy9ixeZdyp3rocK9/fhTXHRmjTYJrfXfSlLYvDM9Cd/hPbEHcymZAwf8yFfC+J/FUpSUlERERERERE5B9k/vz5TJ8+nYSEBKpXr86IESOoW7cutWvXxsPjj6dQDcPg7NmzHDp0iB07drBp0yY2btxI27Zteeyxxyhf/spPoP6bGIbB5q9+JyoigexIZxoPqoGb17U9nSwiIn8PnhY3/CyeRUpUCnQq3pI6hfHy+mM5H8MwmDNnDrVq1XKoU5wZAP98c9jN7Y8bthaLhdzcXCwWC9u2bWPLli2sW7eOVq1a8cMPP9C+ffurxpi/n0uTijIzM4scXz7DMHjxxRcZPXr0Vetez/JBIiJFlZ2eQ+T2ixzbdJ6Lh+Op2bEibR6og5Orpdj7Wfr2DmKOJ+Hq5Uzvl1sQGOpTpLbeZTzo+XxTTmy7yNZvDpF4LpVFr22jdtdKNL8rjOz0HFa+v5v40ymYLSbaDq9LWOdK13K6V+TkYqHerVWKVLdBn6ocXnWa6IhELhyKp3zd4s3UmxqbQcS6swA0GVyzWG0bD6jOmb0xxJ5IYsPn+7n1heaFJoDtmn2M+NMpuHk7025UvRvyeyW0aQitH6jDlhmH2PXzUQ6vOE1mSg5BVX3o9FjDEk0ecnF3otwtASW2f5GSojm/RERERERERET+QaZMmULz5s2ZPn06X3/9Nffddx9NmjRxSFCCvBt9lSpVomfPnrzyyivMnz+fZ599luPHj7NixYpSiv6v6fSuaC6GJ2DY4OCyU/zy1AZ+X3YSW66ttEMTEZEScn9IJ9Y0fI0QZ18ud3vRBIQ4+zGu8qAbeuwBAwbwzjvvkJubC0BCQgLHjh3Dy8uLDh068P7779vr5i/31q1bN6ZNm2Yvmzt3Lt27d7/icVJSUoiKiqJ9+/b85z//oV27duzZswcAb29vkpKSrti+Ro0a/PbbbwDMnTuXtLS8hK6wsDA8PDz44Ycf7HVjY2MB8PHxcdjvgAED+Oyzz4iPjwcgJyfHHkO3bt2YPn06hmGQnJzssD8RkRvJlmvj1K4oVn+0h+8eWcPGL37nwqF4DAMi1p1lwYStJF0s2ux6kD+D0k5ijv0vQemloico5TOZTFRvXY4h77UnrHPejD/hq88w+7mNzH9lC/GnU3D3deG2/7QskQSl4vLwd7PPTLTn14LLw13N3vl5syiVrxtY7MQbs5OZTo80wOJs5tyBOA6tPF2gzsXwePb/bym5diPr4eHrWuwYL6dOj1Dq96kKQHpiFp4BbnR/tinObpovRqQwSlISEREREREREfkH+fbbb3n55ZepVq1asdq5urrSp08fvvvuO3r06FFC0f01rFq1inHjxvHxxx8XqX6F+kE0GVIDs3PebeqstBy2fXuYOS9s4vTuaPtyeiIi8s9iMZl5vtJAgAKJSvmvn680AIvpxt5qmTx5Mu7u7jRq1IgGDRrQtWtXTp48CcDMmTPZuXMndevWpVGjRkydOhWAjz76iMOHD1O/fn06d+7Myy+/TMuWLa94nKSkJAYNGkT9+vVp0KABOTk5PPDAAwA888wzdO/enUaNGhEdHX3ZOMeMGUOTJk3Ys2cPgYF5s2Y4OTnZZ3asX78+DRs2ZM6cOQCMHj2aSZMm0ahRI5YsWcI999zDsGHD6Ny5Mw0bNqRRo0asWbMGgP/85z9kZGRQu3ZtevfuTbt27a67b0VE8hmGQfTRBLZMP8h3j65h5fu7idx2EWuODd/ynjS7oxZdxzTCzceF+FMpzHt5C6d2Rl11v9npOSx7ZyfRxxJx9XSm10vNCaxSvASlS7l5udB+VH1u+08LfMt5kpGYZZ+pp//ENoTU8r/6Tm6SBn2rYbaYuHAonotHEorcLiXmj1mUGg+qcU3H9qvgRYuhtQHY/kM4ief/mH0wOyOX9Z/uBwNqdqhAleZlr+kYV9LirjBu6V4Z33Ke9HiuKZ7+hS85JyJgMvQpioiIiIiIiIiI/AsdOXKEUaNGMW3aNMLCwq5af8+2/STvgaMbzzmUV6gfSMt7byGg0vUv9yMiN9+hQ4eoU6dOaYchN0FmZiaRkZFUrVrVYfmzq1mVsJ//nvmVqJw/ZgAKcfbj+UoD6ObfoCRClWK41usqN19xx1759HO6dPyT+/341gvs+jmC5Kh0e5m7rwvV25SnRrvyBFbxsS8FlhafyeqP9hAdkQjkJeI0u6MmZkvBBNXsjFyWvbOD6Ig/EpSCqvoWK7Yr9XtutpWDy06SnZ5L40E1cHIp3hJ0N8PGaQc4svYsFRsGcesLzYvUZtNXvxO++gzl6wbS++UW13xsw2aw7J0dnDsQR5lqvvSd0Aqzk5kNXxwgYt1ZvILcGPR2O1w8nB3a/ZO/1//K1O+l46/Q75pjTORvIjc3l9jYWKKjo4mNjeXkyZPExsaSk5NDTEwMp06dsq8jnpCQgNVqxdnZmdzcXDIzM7HZbFitVrKysnB3dyc9PZ3s7GycnJxwcnKyT7fr7e3N+fPn8fHxwWw2Y7PZ8Pf3x2w2k56ejsViwcfHB5vNhmEYGIaBp6cn2dnZeHt7k52djbOzM76+vri4uJCWloaPjw+1a9fG2dmZrKws6tevT5UqVfDx8aFChQr4+Fx7BrmIiIhIScjOziYtLY3U1FSSkpKIjs6bJSMjI4PIyEhiYmIICgqyL0Xg5uZGhQoVOHfuHMePH6dixYr4+fmxZ88eMjMzqVu3Lrm5uezduxfDMKhevTqnT5/m4sWLpKSkUK5cOWrXrk1aWhrR0dG4u7tTp04djh07RnZ2Ns2aNcPNzY19+/bh5ORE69atAdi7dy+VK1emRo0aJCYmkpKSQqtWrfDz8yMlJQVvb2+qV6+Ol5cXbm5ueHp64uSkPwNFRK6Vq48THR+pQ50eldk2M5yoiLyng88diOPXcZsI61KJpkNq4n4Dlw4QEZHS182/AZ396rE79QSxOckEOfvQxKvaDZ9BSURESt7F8HjWfbIPw2bg5GohtFkINduVp3y9wEITjzwD3OjzSku2/3CE35eeZP/CE8QcT6TzE40clgzLzshl+Ts7iY5IxMXD6ZoSlK7GycVCw37Vb+g+b7SG/aoTsf4cZ/fFEnM8kTLV/a5Y/9JZlJoMvrZZlPKZzCY6PNSAOc9vJOZEEnvnHyewik/e/k3Q4eEGBRKUROTm06fTIjdZZmYmERERhIeHc+TIESIjI0lKSmLtsp24e0NWdhYpySlgtuHu4UpqahpWa26R9m0ymTAMA1dXVywWC+npGQD4+/thNptJiE/EbLYQHBKEYRjERMVRrkIILi4uZGXmkpmeTVBQEK6urri5uZGZkUVifCo+Pj5kZ2dz7sxFDMOgbPkyWK1WoqNi8PXLyybPyMggIyMTT08PbDYbGRkZxe4bX19fLBYLKUkZuLu5U75SCImxGTRufguurq74+fnRunVratWqReXKlalcubJusomIiMgVpaamEhUVRVRUFGfOnCE2NpbU1FQ++2IJZnMGqSkZ5ORkYjJlkJuTQXpGJtbcLAzDetV9m83OmExmXFzMmM1mcnMsuLiYcXYxs2/f7+RkWfDyMWOxmDkWEYvJZCYgyITJZGbb5mN4eJlwdXUjJycHV1c3dmyNxNktF3cPG2lpmSyavxFPHyuGYeP7WQswDBtuHlZsNhubN+7EwIrFyYbVaiM3x4ZBLjab7epxW1xwc3XFw9Od3Fx3LBYP/PxccXV1Iz3Dk6fG9CM1NZWwsDBq1qxJYGCgfYwoIiJ5ylT3o8/4lkT+dpHtPxwhNSYDw4Dw1Wc4vuUCjQZUp96toVic/3pPNouIyLWxmMw0976+m6ciIlK6MpKzWDN1L4bNoFqrcrQfXQ9nt6vfZzI7mWl13y0E1/Rj4xcHuHAonnkvbqbLk40oWzsgL0HpvzuJikjAxcOJ3i+1uOEJSn8XPiEeVG9TjmObzrNn3nF6PNP0ivX3zT+OzWpQvm4gZWsHXPfxPQPcaDu8Lmun7mPPr8dx8ci7vvV6VaF8ncDr3r+IXD/d3Re5AdLT0zl06BBHjhzh2LFjREZGEhUVRXR0NHFxcaSmppIQn4hB3uxDhTNhcvPH1c0VksHd1ZOwsOpkZeZy/kQy9ZpVxs/fl/1borDY3GhzW2VcXFzZuyQVF1d3Ot4ZQnYG7F+UTVhnJ/xCnDm0JoOUaGjU3w0nZxM7Z+clDjUZ6EZ6gpXwdTm4eUPNdm6c3p9N0jkb5ELPu12JOWEl9qQV/OGWzi5kptiIdM7F3R/qdnHjQkQ25w7YqNHOiYAKTuxelEluGjQb7IbJAjt+zgSg+R0upCZn8Nu8OKq2NOHl78yR/ec5dyKFem38sVqtbF93lFxbFrXqlCUlJYWjySdxdjWTmJhAYkoiS5eetPfSjBkz7F87OTlhzbXh7eNFYGAgLi4uhISE4OPjg7+/P61ataJmzZpUq1aN6tX/2pnlIiIiUjSGYZCcnGxPPDp//jxRUVHExsZy7tw5Tp06RWpqKvv2R5CTnYrVmvOnPZhwcnLD1c0Nby83DMMdJycPyob44OXlzsVoL5ycXLklzIxhuHDqrCdBgSaqV3Uh+rwzcVHu1G1sISDQme0bnAATTVpbycqEg3ssOLtZadAEzkRC9AULQWWtlK0Ah/eBNddCcHkrLi5w9qQJMOPjZ+DrZ3A20kQFP/D0thFSAU4dA2sFM5Wq2/DwgiP7zIBBg5YGmWkQ8bsZL18bdRrD6eNw8YyZ2o1sePnmsnVVNlZbLrc0zSQrK4d9vxuYSKNqaDYJidmcOWsjwC8VkymDU6czycnNIjMjjqTETJKTM3nqqfXYbI5J8iaTCWdnD5xdvKlVsxy+vr40adKEkJAQsrKy7AlNZcqUITg4GBcXl5vzDSEixZKSksLmzZu59dZbSzuUfwSTyUS1VuWo3CSYg8tOsnf+cXIyrORk5LLjhyOErz5Ni6G1qdI8xL5UhIiIiIiIXJvzB+M4se0C9XtXxbecZ7HbGzaD9f+3n/T4LHzLexY5QelS1VqVI6CSN6um7CHxXCqLJ26n2Z21OLMnmqgjCf+bQakFQdX+nQlK+Rr1r86xzec5vSuauFPJBIYWvqJKSkwGR9bfmFmULlW9TXlO7YzmxLYLZKXm4F/Ri2Z31Lph+xeR66MkJZEiOHv2LDt27GDfvn0cOXKE48ePc2j/UTJz0rHZcjAoPPHIhJmy5fKSZrJSzHh6eNGkdW2y0gyiIsw06VyBCqFBHFhskJsDzQY4g8nEzl+zAWjRw4WUWBuHs3OpGGKifE1nLNE1SIkGf09XXD1N+Lvn/WK3ZpvJSsl7cv7Mvlw82jvh6mkmBRsXw7MJruaMiwdkp8OF8FwsznkfkGamwOG1mYQ2csFiziX+zB9P3zu5QGgTZy4cySXxYl65k5OZxPM2LhzOe23LNpEaYyM3La9NVrpBZnLeNnc/MHJNJJ5yxsctGB9XC4FBzpxJ9qO6H9Su6YoJyD5RP+98uzmRHGejgmGjWjMoE+rM4U05JEdB494msnLTWfPLKTKyE6jdypvY2Hh+330cLw8LJpOJM6fPcuRIBCZT3g3MmTNn/nEuTk7YrAZuLh5UqV6JcuXKUadOHSpXrkydOnXo0aOHZmUSERH5C7BarVy4cIFTp05x+vRpIiMjOX78OPPmbyYzM5GsrASsudkObcxmC07Onnh4eBHg70FOrjdlghtQuaIb/gGenDnnj4uLN62aO2O1unMowh0fr2zq1DY4Hgkxca5UC80iIAB27nEGzFSplEVODqTHWXDKtuLlCSmu4OpiIT7aiqsLWCw2rFYLUefB+X+TDOVkmomLsWEz8sZa8dEmnJ0NnJxMWHMh5oIZd0+DkAoQfd5xDOnpbeDpbeLUUQOrNS8pKS0FkvJWEsLJ2SAtGaLP5702mSEpHmIv5L1OTQZrrhPOzi44A+7ONqxZUMbVjIeXjRrVIPIIEOpKtdBsAgIM+/k2bpBFbi4cOOSKi0sWDetmczwyjZOnsgn0S8DJKZXDR9LIzs4gLS2ZmJgT/Lb9d7KzU7HmZjqch8lkwsXVG1dXf/z9fejYoTGtW7emcuXKeHl5Ua9ePQICrv/JOBEpvqioKN5++20lKQGrVq1i1apVpKamXve+8pdcqNmxIrt+PsqRdWfAgJToDFZP2UO5OgG0uu+Wy34wLyIiN19RZiCVv4/LPxgsIv8EudlWdvxwhIPLTwFwalc0t73SAr/yXsXaz94Fxzm7PxaLi5muYxoXO0Epn18FL/q/0ZpNX/7O8S0X2PHDEYC8BKUXm1PmX56gBHl9VK1lOU5su8DeecfpOqZxofX2zT+OcQNnUbpUm+F1iD6WQEZSNh0fbYCTi2a5Ffmr0B15EfKWAdmwYQNPPDCJlMxoMnISsZFJVk4GVlvBpdbc3T3w9PLAluyOh0cITdvUITvFRGykhXqtylO1dhD7lxjkZkPDPs5YzCZ2L8i7mda0sQuJUVaco62Y08BiccbNL5PUKEiJt+HubcaUnffEf3aqM7mZNkzZOSREmgmq6ISbl5mUaBvxp3MJruaE2Qw2G8SfteLkknczLD3e8XX0cRtOLla8Ai3Ep1u5cDiXai1dqFDHwvkDORgZkJloJSvJhslqw2QDk82GNd1KVrKZ3DQrpmwb7n5mKtRx4sz+HGy5YHEBa47BmQN5y6E4uUN6ko2oI3mv3X3MpCUaxETm/9FvIi3BRn6X5mYZpCcakJ2Dhx/kZjmRcDIXsq1Yc12wZhskRxlggM3qhBNelPWtDUCD+k7En7findSByg2gbHUn9q/JJTMJ6vc0k5ObxoZfz5CWnUBYC08unL9I+O+ROHvYiImJITw8nNWrVztcVxNmgsoEYTE7k5liwccziBGP92fQoEHUq1fvhn2/iYiI/JsZhkFcXBwREREMf2gKGelxZGcmkJWZSEZGIlmZSRjGJUnTzm74+frh5OyHv3s1ypX3JjjIm3MXA3Bx9aJpI2dsVnciTrjh4Z5DnTAbJ06ZiU9wpmKFbIICDVIz8hJxcrOyyLWCJdNKejZkpIEpG5zjM0m2gIcFXFOyseVAfKwJN/e8GHJzzSQn2Mj/3Ds50YSXt4GLm4mMNIiLNuEfCGazDZvNTNQ5E55eYDIZ2Gxm4mNsBJWF2KNZ5GYDVsg1TJhTDcwuYHLP+9pmg5xcE0aygdkA/3ImzBYn4qPzDuzqDvExkJKcN8azmCA2Ki8+gNwciIvOi9FssZGZCQkxea+dnSE1BVKTwDktE6s/pOSCc3zeGDU7w0RSEpizrLg6QW6OC9YMF3x8XSlXoSwB/gYZOXmZWA3qZJGRBUePu+LikkO92llEHEvj/IVs/H0TcHJK4XB4MlmZyeTmJPDrvPl8O3MWOFxXdzw9/fDz8yXX8MfVPQA/v0A+++hxGjVqhLOzcwl894n880VFRV1xe2xs7E2K5K+vW7dudOvWjSNHjjBq1Kgbsk8PX1faj6pHnR6V2TbzMBcOxQNw4VA8v760mbBOlWh2R03cfbV8pohIaXFxccFsNnP+/HnKlCmDi4uLZrv7mzMMg5iYmP/N/qq/I0T+aWJOJLHu//aRdD7vSXl3XxcyErNYPHF7sRKVzh+MY/cvRwFo+2BdAip5X1dczm5OdHqsIcE1/flt1mEsLhZuHdecMtX9rmu//ySNBlTnxLYLRG6/SMK5VPwrOF6rlJj0EplFKZ+blwsDJrXFmmXFM9D9hu9fRK6dkpTkXyM7O5tt27axceNG9u7dS0REBEcOHyc7JwMDxydnzCYnypUPwZbrR3aqE1WqVaB2vVBO7rHgYQumYS93LBbYuyQvmahpExcSL1o5nmDFKceECWc8ArJJvghpcTa8Av6XSQRkpRlgA2w2Es9D2Zrg7mUm7VwOqVFmXN1MmJ3AlgtpCVb439/I6fE2ctIMLC5mwEZytI2AiiY8g/KSltLibJSp5pSXOJQNuVngFWgBrNhywWQ24elvIuFkXsyJZ3LIzsi74WWzwfmDf14KJc+5/X+UZyTbSLqQS2ZCLqZccAt0xtXTTFZaXtaRX7AZZ2cTmf+b0cnD10xuFuQ/XO/kbCY9Ie+YTm5555gak5fQ5OpjJjfTICkq77XFZJCRbEB2LjjnzYKUlmADw8AzIO8cEy/awACzJe84mUn/C9Rqwgkvgn1qYTZD/XpOlPe1EphpULmeiZDqFvatziUpPomKTVJJTU/itw0RZGQn4u/vRUxMLInpCSSmn2b8+N2MHz8eAG9vH4KDyxAaGkq9evWoXLkyffr0ISwsrJjfjSIiIv98ycnJHD16lIiICI4ePUp4eDiLl2wkPS2W3Etm3nFx9cHb24+AAF+yrZVxc/OnVjVPnF38iE0IwtPTiVtqWTl52kJikhNlQ3IoE2QjPdsJsGC1ZmP931AuI9NERhY4WQ0smVbS4gx8PcDVmktujoXkJBNuHnljEVOqjbR4sPxvqJORAlmZ4OIGmTmQEW/gEgQmsw3DZiYtBZyc8gZmuTkmcnMNXP+XpJSTbcLibODmYSI9NW+7i5uBswtY47OwZkC6yUT+BFBZGZCVUfBJ36z0vFkp86UnG5hTczD/b5IPt2DnvCGlYQIM3L3yjgdgthg4u5hI/t9Yy9XNRG6OQUZ63naTGbKSDaz/m/3SMCAtKb8tWNMNMmLAkpaDxd9MRrpBeroZc64VcvKSm8xZViAvET81NS8xysXZTE6uMxCIj68T5cqVxc/fICs3b7m3OmHZ/D97fx4myVWfacP3ORGR+1KVtW9dvW/aV8QihACBLRmDMDZgDwaD8DavxzM2w8zYZl782eP9M8aez349GBvMZ7xhCxlLgBEgsWjf1Wr1Xt1VXXtVVu5LLOe8f5xcqrqrJGGEBCju6+qrKzMiTpw4EZl5Mn9PPE+jCSenbLTKMzKY5/SZMourZSLWKp5bYG3pJI3aQyjlcfXVfw1CEov3MtCf44bXX8vll1/OxMQEExMTXHjhhWHhISTkGfixH/uxZyy0aq3DQuwLQN9khht/9WrOPLTEA58+QmmxBhqOfnWGU/fNc9nNu7jgjZNYTngnb0hISMgLjZSSHTt2MD8/z9zc3IvdnZDnCSEE4+PjWFb42RoS8v2CChSP3XaSR281Tjvxniiv/umL6N+Z4Y7/9SBrM2Xu+M0HuPE5CJVqhSZf/d+PoTXsefUYe68bf176KITggjdOsv3KQaQtw5sRziG3Lc3klUOceWiRx287yWt+/pINyx/77CnjonTh8++i1CaWisC3ZrgVEhLyAhCKlEK+72g0GnzlK1/hy1/+Mn/1//wjNXcNN6ijdbBhPceJMDg4SK2YJWbluOzqPYyNjXL6/jRSSi670aa4EHDqwYDcEGwbj9CcdSkvQW1NkcxZXeFRpSs8Ks6Bv8/Gcczj8opxFGo7HlXXFMLUdGgWAry6wmr9RlxcDOgds4lnJdVVRXHBJzfpdLZdm/WIxs0XrVpeszzlEksJykuwMh1QLwXEM5LKimL+iIcIFNGoiXg7+0gTMBFuvgtrM2Y8IglID9msnfHZyuU40SuJJAWFswELh00lT0agtuhxfNE8FhJKcwGFeYXvgpRQySuWThoBUyRuRE7LU+ZxMitoVBWrrX7EUxaNiqJRMvuUtqBebDk0CR/lWVRXA0AQiQu8JlRbzgAIqFU0bXsDrcw5QmtiGQg8KC0ZQRNS4LngViAeyTIykCNQ0Bw/iIzAZW+wWZhSnH0a+nfViGTX+NoXD1OoLNE7aFEul/jKV77CV77yFQA+8IEPAIJYNMHo6CiXX3EJ119/Pa973etC8VJISEhIyEuCfD7PU089xaFDh/jN3/5rqpVFatVlPLcbn+NEUvT05OjrH6Rv8AJS6RwX7u+hXB+gXEsw2Ocx1Bdw6GkjPBoc9tBaUyhHaDYDmq5ACuOA1Cxo/BREgwDfg1oBonEjSgJBvUhH5F2vSZoNheMYlyG3oIhaYNU9NFCvgGx9I3Ib4NYhEoEGUCtCPAUxFHUka3lBJmPEQCoQLM0JIlENAoJAMDcNds3F8s20cLFg2hXSzE1KK2aeksiA1zT/NkMISPZArQTNavd5acHaqdY8DLAcWDoCQdJpjTEsnNV4TXPwtq3JL4HvtsREUlNc7fbJsqBkDD6IRMH3zXgA2E2FVwaKASQlSmmqZdnqh2qNu0Y2A+xYgNeAelEhVQCBNuKqlqApCKBalQghSaV66B/IUKxaxFMWo8Mu2YzmqVMxtFZsH1lmaWmNk6eL+M0lJMv842c+x1/91Sc7c3khbeKJHH19A6TSQ/zGh3+egwcPsnv37lC8FBICpNNp3ve+93HppZduuvzMmTN8+MMffkH79FJFCMH2q4aYuLSfp75whkc/ewKvHuDVfR749FGOfHmGl/3EfrZdMRgKx0JCQkJeYCKRCNu2bcP3fYIgePYNQr7rcRwnFCiFhHwfUZyvctefPs7ySXN31Y6XDfPK915ALG1uiLrxV696zkIlpTRf/d+PUS+69E6keOVPXfC89zd06dmay96yizMPLXLym3Nc9tbdZIeTgHFROva1tovSnheziyEhIS8CoUgp5HsWpRT33HMP//Zv/8YDDzzA0aNHmT5zFk3QyaC2LIuB/gECL4v00lxz3UH6+weZezRDqt9m79UOpRXFsXsCtg1J+kYktcmAldMBflOTHZJEEgHlVVPMGT9g8/SCS3lF0DtmMbDbYvlEQLOqyA5JYmlolE0hanivzeoZl8oqjB8QjF1kMfN4gFtTDO50SKRd6mvgNwMGdzssHvGoLimQmsG9DlP3NqnlA4b3RUiPSopnFXZEkB22EEETbUkGdkQQQrN8KsC2Yc8rYzSqmqNfqtM7ZjF6URyvDse/UWfswghoTaLXZnXKIzdps3jMRVqCkYMOfdttjt3dAAXRtCA3abNyygiKdl8bw6trCmfrZIYlwwciIGDtjE8kIbAigsDVJHLmi+DqaR9hC0b2O7gNzcn7XeJZSW7cwo4JTj/gopQg2WvRM6pYmQpQgSKSsIkkwa+DExMEre+V8awkkhBIW4Dnk+6xicSB1vJUViJbNSlpQSQuqBXNj7zpPrAd8FqGDckegZR0BE3RpKBeMX+nckYcpTwFSPqHEqT7U+weGIMBuOJGSeBpHvuSRtlrjF5U5ehTpzj69Gni2YBiKc9nPvMZPvOZzwCQSCRIJBJs376diYkJXvva1/KOd7yD/v7+79wLIyQkJCQk5DtEtVrl8OHDHDp0qPPv7rvvo9k0CmMhJNmefnp7BunJ7aS/v489u3oo1fqp1jNsH3fJpBXHTkVoNCHX55HyoDxlxERyIGCgL2B51aJWFwwNKFLSp14T+HUYzAUUFyxqVbAk9A9rFmagUtH0DUIiGVCrWvg+9A9AfknjuWYeMNCrOLuiqPowNAmZPiiuQKMGgxOwMgsqgCCAVBZKq0a0k8oa4VJzyceOS4bGNM0GVCuCTA8MjWnOnBQ0F5sMTgoS2wX5OaiXNf3jZo4RSwqqBU08LVg6o0n3CWIJWFvQlFaN2CjdL3CmNV7DzEdG90qmDynqZeifEFg2WDYsndEMbBMUFjW5UUGzprEdn4VTmtw2h0gUinkorGoSKUimwfc0zYLCsiE7YI5NWmYqFI1DtWD6YLf+eU2znRMFBNg1j0wCqg0zP4o4klgi6Iju4wmwbRAINJBI6I7wXVqaeERT8BSyGZDMKCKOGVuAeNy4fUpfo2xBLpdFi17qKkJv1mf3Np+njttUa4Kh3BJ+c4Unj5SoV1dAzzN14j7e9jYjHLcsi1R6kB9+0+vZtm0bO3bs4IYbbmBiYiIs/oe8pNi7dy/lcpkdO3ZsujwIut+XQ14YLMfi4jftZPerx3j4H45z9K4Z0FBarPGlP3yE0Qv6uOZdB8ht+/biJkJCQkJCvjXa0WCh0D0kJCTkuwetNU9/aZr7P32EwDU1o1e85yC7Xjm64bt9PBNtCZUeYG2mwh2/+QA3fehlZEeS57X56D8dZ/5wHjtq8br/dBl2NBQ0vpD078wyfskAZx9f5vF/OcWrf/oiAB77rHHIGruoj+F9vS9yL0NCQl5oQpFSyPcEruvyhS98gTvuuINPf+Kz1L0Cvurefi6EQAqHdDLHBRftwwoyqNVRDlw1xMA2ydFv+lQLsHObhbRgjoDKCniuxq2bKkplVdEzLGlWA1CKelmRSEsCVxG44NYUnmt+zK0sBzRrNlqZx9W8IpaW+K24kGZVGyEMUF1RNCoBWmmEH5A/E5DsNZFtZrkm8Lp37ARNOtvWy6CVoGfEpnjWJT8T4MQkuUmb/BmfpWMuvquxLIX2YPm4R2HBVH0aZc3qlE+tqFCuiZ3TSlMvmnXsmMCtQr0Y4FabpIesdpcIfGhWurZKSyc8SvOmj24dSgsBXlNTXvBJ5CykLSgv+sQyAYlei2bFxM+5VY9kr4NuBFQWAqYfVthxiRWBnmGL5VM+jbImnoW+bTblFYXyIN4rsWwozJl9qgBqRUVlxfTJdxWFBR+/5iMDCAKLcivaJNlr+l9eaY+pNMXFlhNB4EKtaNaVlinclVcC0JpIRBB4mtKyRgQBgWfhVro/4AcuVErmcba3l7HhPtyVcbLuq9l1hYm7u/9zNVaqpxnaW2Z+YZ5jR07yyCOP8tBDD3HrrbfyC7/wC0QiUYYGh7j4kot47Wtfy0033RS6LoWEhISEfFextrbGI488wiOPPMLv/+HfUCnNUq+tYmwJBbF4L8n0MDv3XMbw0CA1d4xILMfBPVCtwcx8hEQ8oDfnU2u2XCDrgmhEEAQCENRqoF2NXfXxXGXiYZstt6SiwkuD7ynAolKBWMz0zfcljbrqRKd5TYHnduOLqmVB1FKImkJoKMyDbP2O5bkm4qy9rdsw4nI7Qme+kBsxYh3fg9V5cGLG3SgoKxaOKbyixvKgCSzWoNlydqyXNY0qVNbM+tWicSZyG5rAB42ZQyxOaVI5E80Lxi3TbZgYXDD9mD9uBEoAjYpGaRDazHGqRSO+zs9pVADRVnzd8lGPRMasY9dg5Rg0+wVBTZLMmnllu82efiPAb7Sck6IJs9/2XLZRb42RNu6Z5TWoFDVW1SMagfoaNGpmUC0LqlXQWgAtl6VaOwoOalWotvaLgGpZo+vauC75UGuYGDnHD/BqUG3FyAHUGoKmB0JaJBJ92Nk+xuoRQHPhHpfVNYszsw2EmiUq5zl5aoXbPnc39eoiXsuqyrKj9A+MkEqP8ev/8+e49NJL2bt3b1iMCvm+5S1veQuNRmPL5UNDQ/z3//7fX8AehbRJZKNc+/4LOXjDNu791NMsPG3s7OaeWuXW//EN9r9uG1e8bQ+xTORF7mlISEhISEhISEjIC0813+Brf/4ks0+uADB6QR+v/tmLSG3hUhTPRLnxV67mjt8yQqXbf/N+bvq1jUKls08s8+hnTwLwqlsupGcszP16Mbjs5l2cfXyZ41+f5bKbd4PWHPvarFn21tBFKSTkpUgoUgr5rqNWq3HHHXfwi+//TUqNeepugUC5neWWZZPL9aPqCXoS47zsugNkE32cetjcYX7wapv54wErVU29qPCaohNdUS1oIjGB8kwxp1HWNEsKvIBaAdy6hWoJkUpLCmkZYQrA2rxC+a3tquA3NKpVyCkuKHqGNLYICHxYeLpJOicRrllhbVpSzRvRTKNo7jRPZG3qaz6Lxz12vCxGekBSXlYc+WqDRFYibVAunHmo0REMVVcU3rgmnhGgjQhpYLfN7lfEOPGNBnNPmf1lhiW1gmL+cFdolD/jbxjnhae9zt/VvKK6pk1FDfDrmupqd9t2xJvpv2Kh2F3m1roCK6+uKC8qeicsqmtQXoDygsfwfofUoMWJbzRABST7JPGM4PQjHm7NbDt/xCM/Y9qNSzj05Sa0ujy8z2b1TEB5SSElZAYcVmd8/IYpKpYXFctTHngghWR5KmD5VCtSJS1Ym1e4dUCAtAT5s2Y/sTRU8pql1rp2RFBeVVRb0SftaBYRBEgbXFeSnzHLIlHjvlCYba2rBZU1jW3HGM7u54J9km19ilEB6X4Y2dvk/q8dY3Z+imhPjUq1xO23387tt9/OL//yLxOPx1G+QzY5yDvffRPvfe97ufjiiwkJCQkJCflOs7KywiOPPMLP/KePUCnOUinO0qibD0NpRejtHWFoZC/R+Ci9uUH27u5jfjmO60oGcj6JuOLMrCmo1uoeTdfMJ5quoN6QBK5ABJp6VZCISih52Fq2Il5bcw8PymWB55vHjbqgVADdWt6sSWy7LRwWlEsgfI10AzxXszoLYq2JXYVmHQqejTDTJdw6pHu6x1tcgWQWqiUzpzt5yHyuAxSWjWCoLdapFGBwOCCiFV4Vyq5keKf5zC/nzfZCmFi4cn7juLbj3dpujuuj2yp5EL4yR+cKmsUAVfMRgOtCs9YV0FTWzml3WXfGDIyYKJo07VfWjAh7eJeguNwSXrsNYgmJ9iBfinTGoFIwYyUt0/f8AqAhnjTjsdSa88STRohUKZjHgQf5RVBLHjYeXkywpm3wTVSe8gVrrbGwHUGzKam1BE0qEKwuGxE+GKerQsEscxxJo6GorSpsz8eOKopFgXItBJrAF1TqRsBkS03TlZSqkkg0RTa1i4G+HeiYjdaS0YEmjXqRE1N5KqU5bGaZnzvMf/gP/6G1rwiJ9AjJ9Dh9/SP86R/9Itdccw22HX49Dvne59WvfvUzLk+n0/zgD/7gC9SbkM3o257hpl+7mtMPLvLA3xyhvFxHa3j6zmlO3jPH5W/bw8HXb0Pa8tkbCwkJCQkJCQkJCfk+wHcDPvfr91FZrmM5kqt/fB8Hb5hEyGd2Ro5nW0Kl//UAa2c3CpWq+QZ3/f8eBw37XzvB7leOvkBHE3IuQ3t7Gb2gj7mnVnnic6dQgQpdlEJCXuKEv8KGvOg89thjfPrTn+arX/0qjz7yxAZBkhCSqJPmgj0XEWWQmLuD0e09jO6xOHZvgO9CQkoTA4YRCPmuxomZwkd1Dbw6xNOaah7qRY3TugsfP8CtSSIJCQRUV6FRUkSSguqapprXxDPm7nHlgg4g3W8BAcqHtRmPaFwg/IDGKqycwZgLKONqlOyPYMdc/AbUCgFD+yJUlhooH058vY4dbRXlGlBdNc5EANKGbZdHWT3jsXzCp7ykSPZJoklNeUkx82jXQQqtKcz6qKB79z0ShvZFqK4EHdESwORVUWprAcsnumKlnnGLgV0OJ+9pdrffgqF9DoleydR93f1HUrDtshhnn3BptIRL0TQM74uglEtx1giY8mc93LruODVVVxXH7zYVO0tCbpfD8qmgc/zjFzqsTgcsnfRBQmVFUW85GFkROHFfsyMQG9hp40Sh2RKipXIWTlSbvBbLorCo8JsalCaWNi5XhSXTkXROEokJvLrZNggwYq3u8FJaMv1KZo2DQb0UABaWba6tdpwJWlMx8cjYEeNOUG09jsbAtuL0xS6id+IidlwCli049qDHSvkUvTvXOHnyFHOzZ1kunuSjH/0oH/3oRxFIJrdvY9++fbzrXe/i5ptvJpFIPPOJCgkJCQkJeQY8z+Pxxx/n3nvv5d577+XWz36xI0iy7CipzBgjEwcZGRrBUxPEk/2MDyuaHqzkbSypEMLHsTQu0HAFqaRACIXWklpdYFlGlKQC41wkLPPZGlQUMqtwHAvXNZFpyaTGTKAk9apCtz5XfV/gRCAWF1Q8qFY1MVvhKAh8QS2vO3FjsubhaAFJQaOq8ZrQYwWkeizKeSPcqRaN0CYIwG1uHJNML6R7Ye6k+eyvlSHVC7UFD9WEhRPrB1BRWpE01gmO4mnoHRY068YxCSASM8+tnO0+BzA4KaivKSr5Z45asgKPwV0Wayuy43YEJsY2EhOszna3z/QLoglYaImuVWAEUvUyXcH8rBlYSYNYSuDJKM3W/CfVs+74MVFs9YppB4wQq1Yyp0lI6BmEQmuOZzvm+KtnPaw66JxDIW+iewUax9KU8ub8gomgq5TaDkyaRgOajdZjW1OvCbzWHM+JgKprrEZAEDNRcs06iEDjOJqGC83W1wbbFriuRGtzUUhLgpUjNzDI4PBeJoYDFlYsSpUGlprBb85ycmqBtZWjzJ35Jtde+xmkdEhnx/mhG1/BG9/4Rt7whjcwNDT0jOcpJCTke5s777yTO++8k0ql8uwrP88IIdhx9TATlw7w1BdO8+itJ/GbAW7N576/fpojX57mmncdYPzigRe8byEhISEhISEhISEvNMfuPktluU6i14iOvhXHo3g2yo2/ulGo9IO/cjXf+ItDNMoefZNprvnJA9/B3oc8Fy69eRdzT61y9K4Z2gnkl/9I6KIUEvJSJRQphbygVCoV/v7v/55f+aXfp1Sfp+GVoRV9IaVFxEqSS05y8MKD7Nq5m9nHzG3te66xqOYVc8c0jZIpmkST5s7xZh2SudYOtKaSV1iW+bteMSIS2zGipXpZ0T/pEI26NH0ozgfEe7pKbBUY8QhAo6xIpG16B4SJVjse4JYtrJZISQdOJ5ZN+YpkrySeiTD9YIPyoqJerhGJS/yGor7mU1mSpj6jIDVoMXIgwqn76jTLMHfII9knQWqUC9OPNKnluw5F/TtsEFBe6lbVhvY5LJ/08GrGUal7EDB1f6MTY9KmWVZGKLQut9etQXlZPatACUwsXOBtLKi5tVYsnO4+3yzDyXvqHYckALcC+YrZSW6bRa2gaLRER8lBSf82m8qCiX7TAZx+xKVebi3PSpZP+h0x0PiFDsISnLrfHGCtoPBbjg1IIyoqt2LhUr2a4V2S0w83AQvLAQS4VSOYalQ0Zw975vgl9I1K8nNm23a0S7N1HNKB8mpAowSCgGSPg7suRUEIiVttCbWS4NZ0x/kgkhAovyskE1LQqIKUNiMDe9l3QDLgvIxCD+TGNXbPAl+78wnWytMUCkX+7d/+jS9+8YsADPQPEHUy/Id3/yhvf/vbufTSS5/95IWEhISEvGSZn5/n3nvv5Rf/6x9TWjtDpXgWpXyEtEhnx+gbPkimd4J9u4epB/00KhaphKKvN2B6zkJrSdNVWK05T6AEWglsu+1wBF5c4AiN52u8psCOK4xDksD3IR6F+kqAi4nykpaJjPM9gZAm5lYp868npaitmO1Xz7bmiK5Aexp6WkIjH6h6DGyXLJYUHrAyrYmt+/2qXga/6QM2WsPguJk3rs6bPrt14xbkNo2LUL0MouEhACcKvT0Sv0RnPuNEwY4K6iVNbVWh17lb1EpsEChBy8GpCarRcktq96sgOsL0Z0IFRlyvah5i3ZwuqArcc77CFRa7gq02lTUjUBISkjnZicwFSA9IAs8ln29FHtegXomZ6Zww85/iSve4h7fD8oxxkBRAfU115kDSNuKotqCpP2XE87WyJkibebxSRrQmLU1xRVOrGqFRImmujdWWKElKQRB0BU2+bxy1AGJK4dh0BExSaHQgCFwjhpJaU62YdrHBtui4cjk2BBpcX+A4Cfp6dhON7CKSMeM43FfJC3z5AAEAAElEQVRmaWmB6ZkFqqUzfPa2z/E3f/M3ACSSvQyPTCCcSf72kx/i4osvJhqNPuv5Cwn5buM1r3kNn/rUp5iYmHixu/Jdxetf/3pe//rXc/ToUd7//ve/KH2wIxaX/PAudl87xkN/f4zjrciDwmyVL/zOQ2y7fJCX/cT+DZEVISEhISEhISEhId9PBL7i8X85BcClb97174pkawuVbv/NByjMVrj1f3wD5WucuMVrf/Ey7Ij1fHc75Ftk5ECOoX29LB41hbOxi/oZ2hu6KIWEvFQJRUoh31GWlpb4xCc+wb/+67/yxBNPUCwWO8siToz+njGS9jjbRy7g8lePM304oLwCfb2QiEvaeV/1om7FfWjcmrmLO5ExEWqVlYBkVmI7Gt81kRqRRKscpMCra9L9kuJiQHUlYPW0RrTmIyqAVK+FtI3wqDAfkB2UrJ4wj5eOe5RX/E5bAzsj+K5L4WzAypTH4G4HJ6rw6rB6yiXoGhcxflEMacGpexq4VVh82iXRJ6msQmEuQCuXZrk1FgnjnrR4zCN/xu8IlJy4ceuZebTZdewBomlBz7hNrRhQXugu6N9pk582MWjnsnD0fCVSbU1RW1Pnr7wJpQVFxwqpjYKZR93z1m0X9LJjFvVigNu+MVVCbtIhmgqYb0XIlRcUJ/L1jqjKiUMjHxiLJQkTFzuUlgLmnjb9nz3s4URbUR8xcOuaYmsMeoYlowccTt7fpFkxAqblUz71ItASFi2d9DuHMbzborgkKLfckhaOB9TLCpRxWfKaUG0JjZJZiRPtlhlrqx61MoBFLAWReNc5yXYAIXBrrSKk0hSWdGcMoklBpTXu0biJlam1XZcSknh0lP1jxnp075WCYr7JQw88SaF+EideZ3buDL/zO7/D7/zO75BKpRgeHua6667j5ptv5oYbbiASiTzb6QwJCQkJ+T5Ea82pU6e4++67ufvuu/na177G6dOnAYjGsvT2b6N/5I2keybZPjlMLGoxt2y+DkQTPn5N0MDEtLmeaAk9jNgjkTaORyKAckkitEIEAl8JEApLSjyMs01P1ohE/ADKy8b1xghPJI6jiEYFjTo0m2YuFrcC6g1BY03jrzOziMUhloSFqkZrQXFVE4mBv+biYqJ4O/OHKPRvk6ycUTSqJs41EgPb9/Ftm7UlNszTegZMRNvcKSMoCsoelm0EUF4T5o+rjvAGINkriMRFx9kRjNOPFYFGZWPbYNoozAScS2X12QVKbYqL58/R6iUNJQ8i3Tg4rY3jp5QQz0C1sG4MU4LMgKReVJ0+Lp8OOpr19jEH+QYkY6SyZmzmTplz4zVhZdYIlAAiVkBxmfY9BvQOCyP+ajk7FZd1p+1oo4lSEaqt+W48Ab19UKuYFeo1jVICfBAo4jFNudJ2QoJEAmrV9txLU1wCv6wgKknETSxeOy5QSvC8liOTVtRrRowmAk0kYtYKgk5TNFq6f4HGicSJp3czvmMviZhiqM/j2FSFwuosqjlFfnWGleWnuPrqz2FZNpdddik33XQTr3zlK7nqqqvo6el5zuc0JOTFQuvn/t4T8uKQ7I1x3c9ezIHXb+O+v36apRMFAKYfWeLs48tceON2Ln3zLiIJ55kbCgkJCQkJCQkJCfke4/jXZqmuNkj0RNn7mvF/dzvxbJSbfq0rVAJ49U9fRHY4FPx/NyCE4LKbd/GF33kIgMt/ZPeL3KOQkJAXk1CkFPK8cvbsWf7yL/+SO+64g4cefHRDdFs8mmH39ouJetsYyhxkz5UxtILTT5gCTLOmcVo3JjeLCq9XYMdMHJpSJspi/qi5Uzs/G3TuVnfrEE1K4hlFeQXKK4qRvTaWYwpGhUVN4AbgKxSQHbFxYorZx5oUpwOEUsTimvqaImhoAk90HI+kBZNXxDjxtQZ+A45/oyumQSkywxb1kk3xrIll699tfjCsrSnmDm10MxrY59Az5nD8rhpKSYpzQef43BpMP9ygutotRo1eGCHZb3H8a/XznI6aZc3xuzc+H0lC/w4Hr6lNzFqrQhTPClIDFsun/A0aI2lDelBSXlAbBFDPRDwrkTYb+gmQ7JMkeozjUXcHMLjbobwsWWgJklBw6t7GecfTHqeBPTa5CZvjX2ugfAUBnHm4SbMlurJjZqzcmtn/4E6bdL/F0W80QUFhTtGsup3ot8HdNvkZv9OfzIBxNKqumcfH7+tWFAcmJdkhixMPmLaVAuWamDgAr6FZOhOAMiKx/u0Os0d8RBCgPVhboCVagnROUFkXGxfPSGpFU9y1I1BZVR2HgnSvcW1yW5ErOtA0yl0xlNbg1SNM9F/Bwb4r2HZAcuIRxeLyWXTyFGvleU6dPMWJEyf4+Mc/TjQaZXR0lGuuuYY3vvGNvPOd7wxFSyEhISHfp2itOXr0aEeU9E+33o7bKAGCZGaE/sEdXPyyVxBLbSedyjA26DO3bNP0BK4XEIsqjNpE4NY1siXi8AOjgYnZGr+paVTAEUb8oZAgIBaBIqC1oN6AeEzTaApcV1AsCWTDxwokVkqQ61fUqxpdV6ye1cQTxh0JQDd1W++C70HfiJl/VUtQykNxtXu8ceETj0LbrLFZg1ROUF4xEW+LJxVeW3wioH9SUlnVlFb8jvtQO/KtuArVRQ/ZmoNIC4Z2SYpLmuqa3iBQAigsaITcWORP9giiSePMCCD8lpNjTtCsabxz5juRuJlf+OfEzW2FaAmbmxW93rQSISCdCaiXuiItHXGIpaBnUFCv6M5cq17SNCp+J0bPrGzmF0LA4C6b6pqitKSQ1Qa1Kvh5UDLWGZd6a15lBQH9OwXFZU3FJASyPN0VJUXiRizWFklF4pCJeNTKGj8VpVqGRk0YYRKaoVEornWPSfnGMUsE4Nia/KKmWdMIJJmMidArFQVWI6BZUARRc9eBZWlsG9Zagu+IA7Eo+EHrGvM1xYJEBACKVFxRrHa3db224AksqWk0LZxIjoGRPob7DxIoweKyplKaIcJppqfP8L9+6/fxvV9HSot0dpz/+HM/waWXXsrrXvc6crm2xWtISEjIt87g7h7e9OFrOHnPHA/87VFqa01UoHnic1Mc/9osV759L3tfPY6Q4tkbCwkJCQkJCQkJCfkO4tY8nvriGfLTZV7+kwdI9Ma+5TaUr3j8tpMAXPymHd+241E8G+XGX7ua+/76aQb39LDjZSPfVnshzy9jF/VzxY/uwYpYoYtSSMhLnFCkFPJtUSqV+NjHPsZvfOgjlBtLKN0WfQiiTpod4wcYyh4grnaSHZCM75ecfETh1qG4osj2d7MpGlWNDhQi0DSr5k7wdK9gbU6RPxvgNumIhyIxSSIL+bMBvgsrpxVO3Cxs1qBZ1ebOcA9UzWXsgij1JSMwOvtIE6/ardQM7HIoLwbU1xTlRQXKJ5GVHZchIf3OfpM5ydAehxNfNwKhY3fVNgh/ekZthDAiJbdqIsKSfZLqqmL5uEfhbNAqGimcpGTXK2IsHTfuSdVz7qxfOeVSWbE2tN+/0yaWsTj7WHOj0Edr3JrkxDcbpvC1LtItmbPoGbVYPrGxUpbql4xdEOVEsY5bfW7ne3CvibibWt1YXUvkJJlBe6NIScHUfY3zCnHtfqcGJAO7HM481D2W1TM+Xl1vOLZG0QyAZcOuq2MUFhSLx8wKc0d84mkjvpK2EVG1BVRODLKDJibQrRp3pBP3dFVjo3ttoinB1CNm/VpBmWFrjbftwNxRU6GMxKF/m2Wu25rCq2qmHnapl836QzssLLu7bbOuOw4DdsS4PS23HAZSWUj1SeaOm5XrNVg41T3JPYOSwpIRaNkRE2fYLg5GYlArmWu8JznOtoPjSEuwM62pNfLYAyc5evQIZ06fZWrqb/nbv/1b3vve9xKx0vzwzW/k3e9+NzfeeOMznuOQkJCQkO9upqen+dKXvsR//9AfU8yfwmtWQEhSmVGGxi5lZHQ7VnwHtpNguM/H8wWrRQvXV9SaYNuapifwfInraaxAgS8gJkgnFaWiiWlbXREErY+nQAtSKUW1Lmk0oFyGbAaEMA5Hvi87IhqtBUntE0lBYVnTXNMsVgAvAATRKGT7oFbRqECwtgKJFIBpq1rSHaGRUjA04NOoQnlFU65BeZ1oyYkaoVBbVOQ1IZown51aw/LprmhJuj7pUZtkImDhhALd9uts7SuAtXndERyBEQn1T0iKS2buul7oI3xFcc6IeMR6QZMwrktaG4HzerJDksDT5Gefm6OJ5UD/pMXyVECz2t1GA6k+QeALfLclkHI96ivQXDOuSutL1+1+58YljYqmVtCtcwVrc4GJA16HWwdJg1ROkBmymJu10Y0ABSxOafzWdD8SNw6mLT03saRxbqq22q+VoNZynnKqTYZ2CdbmNVURRQiolISZ32NcqcolcJum54mUcdKq18zjwrLGsk1snGVp+vo1ywvGPkoIIzIKWqIk24bVNYHW5nEqoWm2poBCaAolSa2uEYEmHtPEHU3gaoRWKGVeH7QcXAFqdZCWTd/AdkYHx8kMvoamqxFqjlppitOnz/D7f/BRPLeKEJJUZoye/l38/v/6Wd70pjeRSCSe0/kOCQkJaSOkYPerxpi8cojH/+UUT94+ReAp6kWXr/+fQxy5c4aXv/sAg3vCH/VDQkJCQkJCQkJeeLyGz+EvTfPE507RrJgfCQJPccMvX44Q35qY/sQ9c5SX68QyEfa/dtvz0r9ENsprf+HS56WtkOcX46YUOiiFhISEIqWQbxGlFP/8z//MJz/5Sb74+S/jBfXOspiTZSg3yb49l6DWJpBSsvsKSbWkmT+uqa6ZQkU8ZYofXgNTWGkJgAIf+sYkhVkjPFo8oaiXWlUVAYOTDl7Np7iomT0SkBkQnfpBPCs6d7z7TWiUFJmsYnXNp5aH/LTfcQuyozB5ZZyT99Tx6nDymxudfQb3RmiUg45IqVFUxBKCRsGnnleUl7rCKtuGkYuiLB5p4lbhxDfqG0RFIwejJHolx+8yoqZmubvQqyqWjnsUZrs7lxEYORBh/im35Ri08TZ+FYDyzy9s9UzYFObVpnfmr0z5rJw5P+qttKA4Uap3otnWowXoTe7MnH2yucEdqs3ySZ/l4+fvo92fZL+FVws27CvwOM+lQLlQOGue7NtuE/i687gdv1dZVQjV6p+iFeUG/dtt+iYsjn2zSdCK/Ws7LAGMXeBQWQ060XCVvMKtC4Tno6M2gQ9LLbFQPAsDOy3qFUV11VyvR7/pda6T8YuMmn/6cdO3wqIyhTNPYUcgnnJYOGnOUzQJiazoVPACH6YeUx0nsJGdxmVpbc68FhZPKyN+AjIDxoWp2RLV6cAcVxtpmWIfQC6XY8eFffTKq6iOQixbouAd5bHHnqBSX+Yf/uEf+Id/+AeEsLjoogu4+uqr+cAHPsC+ffvOP6EhISEhId81lEolvvrVr/KlL32Jj3/y72lUVgBBKjvG0PiVjIxuJ5Xdjq/jxKKKwd6A2SWbQEGpKkjF2y1JAr/ryOMFJn6rWdLUfEGlJmi6krazUjyuiTgwt2DEH3MLEtmaAmkEsbjCqYDrQa0m6MkqmpUmWgmqms7nnNaCbL8m8GFtCWoVqFfp9CMag94BIyzyPSivCZyIsfqRpTr1mLNB7BNPQyQuKC5p6mWoV1RHGCwtE/lWWDRuSN76eZHnU5vz8ZJWZ31ofUZrM0ddH+UGZpqp1PnzFTsCEoXryvOWoY2j02Ysn1GdMdyAHyCUQPgB2u7eMeg3Yf6I3xnL9fuYPxZsOI42qmWmGUtq6hVx3jJ9TtcaZdOItCAzJCkuqM46taImCAIo+WbKHXG680AB/eOCahGKrUjb0gqUWqJ7O2JcUAsLGtU6RbWimVPZfgPR61AqSjPpBNJZI6BbnGuJklZpuYQIbFszPAFLc63D11BaE7gNsLVPKqNx67Ll0ASRiDbXYc2IkoplQaM1f0rEIdejqNbMODddWMl3BU29KU25JZQSwrgxtR2ZHFtTqwtcTyOEJJcbYXhomETvtWitiNsLzM2eZnF+ioWZB3jHO+7CshwyfTv5xZ9/J9dddx3XXXfdt/yDbUhIyEsXJ2Zz5Y/tZd9rxrn/00c4/cAiAMunivzL/30fe64d46p37P133bEeEhISEhISEhIS8q3iuwFHvjzDY7edpFEyPxBkR5KUl2pMP7LE6QcWviXnIqU0j992CoCLbtqBHf32XJRCQkJCQr53CEVKIc/K8ePH+chHPsJfffxvabhF2hUR24rTn97Ngb2X0RvdQ6Ms6R2GwR2S4w8qlA/LM4pUr/khXikQCLCMGKNegeEdgnROU85DZdnHrXQrN6mcoGfU4tSDAY0ynH7Uo9ESb0QTMLrPJmh6lFc0M0/4JLKAMneSR2MO2jH79V2orgVkhi0KZwOqecXaWZ+gVVSyozDxshhnn2jQLGnOPFjvin0CxdiVMaJJyYm7fdyKZv6prkpHKVMoiyZlx60HCbGkpFFWLD7dRDrrBlPCtitiFOd9imd98qe9Da5H0aQk0WMRiZvt12+Hgvx6sVFru0gKRvZHAJfC7MbKUyRh4tHYvFa2qUBpPdraWEnzG1s0pM7Z33oswdhFESrLAXNPtW6915p6QXHmwba9wfl9TOQkyuuKlIDO8Ukbtl8ZYfG414lVWzrhU14OCFxa54DO9YI0d/tbTnesS4sK0RIO9Y9oBnc7HP9GAy+wqRfh+D1e5zrYdqlFvaBZPm32X1zQHYsCOwrxlGCltSyaNHf+66YP2Cgfjj/QjdQb3mVcDGYOm32ffKRbsOwdhJHdkmMPtlyWSrA2GxBggYSeESiugJZgSVPxa7sXOHFTGKy2RFu5gQyjqauJ1a4CID2a58jxx5iaPsJTTx3miSee4C/+4i+wZJRXvPJq3vzmN/Nf/st/QW5aPQ0JCQkJeaFQSvHII49w++238//947+ivDYDWhFN5OgZ3MPuA29kZHQnDT8FwGi/T60pKJSN4KJaFzi2JnDbwguNdoywqIkgldFUAoFCUFkJ8LxWJJaCgX7F0rJFvQGFgkRrE1UKgp6MxrI1CwsWgS+Ym5PYtllsl13iGajZ4LlGhJTKgttsiUVK64U+glSPxolAfhEaVZibai/XOPU6IxM2qzMBdaCy6IHT/coibYG1fm6lzWex3zRtLE2pDeKkaCQgPSBZPWME0kEhgHVCoGjSiF5qpc3OBazOrJugtKylUr2SWNJi4XgA6+dKwoh9zo21Xd9XFcB5OXB02xD+RtVTwBY/0LU+/9vxxuuJZ6B3zGb+SFdgjZQU5tdbQbFB5GQ5xgWp4nRF5iqAetGslOgRxFIB+VmFdhzQsHRad+fTkVZ8b9tJ0jHPtecpWhkxk2ip04b6AppVn7V5TZCMkJ/XLVcqhR0X9A1olhcEAeY8lAoCrzUFjyWgUacjLHIioLXCrmpUTFIpCDwPJJp4XDPQrzg7b6F844o0t2B1XJcG+jTNJlRrZlCLZbOtFhCLahxH4/oSLdpTb9E5XwIotCJ6bUswMDCAsIfJDb+CiOOhvDmmTp4knz/Jb/zGb/LhD3+YSDRNdmA3/+OX3sXb3/52RkdHNz+/ISEhIetIDyZ4/X++nLmnVrn3rw+zNmOsdo9/fZbTDy5w6Vt2ceEPbsdywqJOSEhISEhISEjI80/gK47ddZZHP3uCWt78aJAejHP5j+xh1ytHefSfjvPorSe555NPM3pBP9GU8ywtGqbum6c4XyWacjjw+ufHRSkkJCQk5HuDUKQUch5tt6Q//dM/5RtfvwevVamIRGJkEiOMDV7A5ZdfTmPVoZyHfZdLfFcxcxiKSxDPKIa3w9wJU/BI9wrSfZryGhSWFQMTgkZF06yB52rSOagsBjSqMH5AYDuwNAWrZwN6hiWxFDQq5s74ZE7y9Nd96gXN/HEPaZkKSywFe14RYe6oz8oR47iTHrKRtikUDe52iCREJ27NrSmSvZLyool1sCK6JWDRRFOS3A6L8nxAPa9olANKC6b6Y0egb5dNImcz83CDSFKyesanvGSKPtlxm94JGyciOHlPncyoTWnBVIfivZJYWhonJKXJjlr4rqa6qrFjkBm2KS/6HL+7TiwryU3a5M/4SAn7XhenvBxw9jEXLEFum01lycetmYJJ/qyJkkMI0kMSNJSXFJNXxlBKMfOYi1sxgqZUn0V+JmDy8gjNiqJaUJRb7kK5SYtaPuge66TF2kyAUiYezrIlPcOStVkfJyqpFYzTlB0zzke5bQ5zLbclOyoozgWgYO2sR2W5JW6LmmMtzAeopiYzIhm/JMrMY03KC4qecQu3qpl5xEVGILe9e6zxXkksJSgvBgSBJt4DIKiuKkREkOiReM2A3lGLwV02iyc8VqaMeCx/Nui6Fx20icZg/rCHW4NqPqC0JPEbgANjBy1KS4py0wjqnKig3qq6xbNgx2D1jBmzwZ2S3JhlipgKYinJ9JMevguRLOy+UlJY0Mw8rUn3wfK0opI3/Zg4COk+ybH7FZGYiahbnFL4DUj1wtg+yepZhfACerdZ+C40G6YYN7RN4gdQKQqSWUXvINgRcw3nhk083vxJjR2B3Aj0j/Uh/deyZ/S1JHKwsjbN448/RNWd49577+XrX/86//UD/5U9e/fwqle9il/5lV9h165d36F3mZCQkJCQ9ZTLZT7/+c9z22238Y//9Dm8ZhnbidI7uIeBiTczNr6LbG8f5YIgHtMM5QIW8wHVusVKUdKbVkQcjesJohGNlArXF9S0JGP7ZFOKQsXCCwQJFFEnQK0Bac3wkGJu3sIPoFgS2LYCLDSwfVvAct6iVBKsFQTxqInaCgLB4IAmEQ+YOmMT+ILCshGZAEgJ/SNG5FItmRi2WKIrWrKtluCjJViJJ424p7xmnq/kVcfVKJoUJHsVXmBRXtForSktm/1YjhHkZAcla/MK3zX79pqA55PoESil0cqsG0kK6kWNxgjehYVxMgQSGYHXNO5LiR7om7CYOxIQeBCJKCxHUG8JmZoV3RGTSwtiaUGjrIkmBQOTgtWzxskJjPNT4BuBdTIrqBd8GmUzP3Vi4MS6AupYRrTmqRohIN4jEVIRSduUlhWRuOhEtcVSgsygREhYPBmQ6BE0K5rAA7eqKC12xVLRlJkfNCsapKR/h8R2BAvHAyzbLK8VNAvHAqJJMxdvVo3rVqJH4NbNGCLM43rBQ2uwEg521MzTB7aZvufnzRi6TaiumeMQFgxOCsqritqa6VNlTXVcmaJxTSxhzj9A1FZIAcrVYFkkUppGzYjupFT0D7Wi4ZYFTkTRbECt5RqVy2l6ehRnzlhmji81C3MC5YIT04wNK4oliVsUxGMBlaqg0RAIoentUcSimoUli6gMiEeh6QqUhnhUkUoqihWJFpp03KxbdyW2pUknFYWyoN6EWFSRTQlsawyfbRy46DVo0WBxYZrlhZMUV47xS7/0S/zyL3+AbN82bnnP23jTm97EtddeG7oshYSEPCOjF/Rx82+9kiNfnuHhfzxOs+rhNQIe/LtjHP3qWa75yQNsu2zwxe5mSEhISEhISEjI9wkqUCw9XuGJP/8alWWTqpLsi3HZzbvZ++oxpG1u4rnkzbs4dd8CxfkqD/ztUa59/4XP2rZWmkdvPQnAhT+4nUg8LFeHhISEvJQI3/VDAMjn8/zRH/0Rf/j7f0a1sQpopJTEYxn6Mvt4xTWvZGLHIIfvhYFx2LZbsxzVlPOamacVu6+0iGcCiksmsk1aMHdKkV+EoR0wsF1SXlM4ccj2S/LZgGYN3LpmcFIyfzTAb4AdE2SHLJamAupl2PtyC+1r5o4qvKbGiQosoQmAgW0WsZTgiS8qGhXwXSPmACNm2X5VlBlHs3w8wGtoI2hqFcPGLo4gLcHhz1eJJiS2I1GtQkl22GJwf4TVmMtM3qd3zKG0GFA8G+AkJX07o/iNADsmyYzYZIYsCjM+SBjY5dAoKZaOuERikuH9UdyqwrU1/TuMuOnoncZqaNerYjQrmuqqy/arY6T6LU7eo/DqivSARd8OI1JSyrgGOHFzC7e0YXivw6ynEVZAqs+mb5vD4hFTieqbtNEKyksuc4dddlwZJZWzyFcCkr0Ww3sjFObraA2pAUk8IykvmIMf2uOwfLLl0JSQ5CYsivMByoXeMQsnJgh8jbAkA3sc8tMBjaJLPCPp2+awdMKlvKwYOegQS1tGpATkJhyk5RMECicqGd4boVZo0HAh1WdjOYJmK9pvYJdDZcXE7UXjktEDDmqfw5mHmqQHLTLDRjh15kGX3a+KEk0o7CjUS4rh3Q5uTbN82hTr+icdVqaaIE0cnFvXVFYUjgM9ozaFswFuTZHqt8kMWszikUwphnY7xFOa8opGSuNw5bumf+MX2GQGJatnzJhF4pJK3hQFkbD9CpulqYCZxwNSSYVWkuWz5rob2S2IpwRPfrUlahuQ1CumSJcdhPF9FqdaEXK9I4Jogo5rwOgOU6Arr5lIlP4x41ShFPSMSNL9cOwRE4M3MGmKfdWS6f/QpGT+lKK4BKO7YWBC0DuwHV3Zzr7LoV7zeOihh5meO8Ts7Cx/+Zd/yV/95V9hWzF+4MbX8+53v5sf+ZEfeb7fdkJCQkJe0pw8eZLPfe5zfPi3/pTSyim0Dsj0DDAwcRl9w/u55OAYa9UIhapkx7BHzPI4XopQrUOtAbmMolq3iEZgsDfA9aCBw1rdYmLAZ61h4/uQTmiSOqBQsag3BWN9CmqalZZDTzKpsR1N0JQ4Dgz2K8pli8A3TjVRRxkLP2BiImB2XlAsClwXklLhlI2Qu3/URLedPGQELX471lVrojHYtsc4JhVWjIC2EzsmYGjQQ0hoLvhE4oJUTlKcV2gglZPEewTl5QCQ5EZagiTPiHx6hoygt16C3KjAkorGWkA8I+gdtSguBqxOB0RTgtyYxXzFx07A2AGLWlGz0BIbZYcFlTx4TdP/SBSEVhBAPCuJpwX1shH1ZIdNVGujrLBsyI1KFk8FNCqaesnEnLVFSpk+aFYUzapGIsmN2yyf8mn6mlhaku6XlJdNH9KDFn5D49YChAW5CZvyso9QilhM0zMiqa/4aNsiPWCcrtZmFUJgBNPTAXVPE0lKssMW5WUTQ5vul2gNzYrJe0tmLdM/DZGEGZd60UdrSOYE6X5JdU2zcjqgd8yiMB9QzRvRUv+kxYpv5tbJZIATFTQqktVZzeA2QSxp5i5OxIxL44QyQq4kCC2prbWONSepFjSNsiaX9ukdkZxaDGjYEewInYvDJmDbTsgvahbPCmzLjGut5WDUNwA9fZojT5jHMelTKwiCwAjuJrYFzM9b5nqNBNhS06iCDDQDvQppw5mzNlJAb1ZRbwiUgmRCM9QTcHI+AgiyKZ9MUlOpS4SAwf6AYllSbQhScc1gLqBaF5SrgkwyIOJo5pfNa2yw18eybbTcx8DIPkZyN3BmrsLZM8co55/mj/7oo/zBH/wB0XgvuaH9/O7/5+e4+eabSaVSz/8bT0hIyAbuvPNO7rzzTiqVyovdleeMtCQH3zDJzmtGePgzxzny5WkTg7lY499+/2HGLxngmnftp2c0fA8JCQkJCQkJCQk5H601J++Z59AdU7h1H926uUsr3brRq/sv8BVBqy4S74ly6Zt3sf+14+c5eNoRi1fdciG3/8b9HP3qDLtfNcrIgdwz9uP0gwsUZitEEjYXvHHyO3a8ISEhISHfnQittX721UK+H5menub3f//3ufXWW5mdnQVAIEnGBxjuvYCd41eh/RgAB18Ga0swPwVWEBiHImXu0B7eZQpER+5RnbSKSAzchrmbfd81kuUzihWzCyzbJEEoH4YnNOkByYn7u7EX0SQ0y8bBZvfVDitngk48hR0BJPgNUyDKDApmDgWIhimQJfsl1RWz7vABh/JSQHWl5QwUg2jKLLcjkBq0NkSJ5SZtKoseblWfF1sWSQmG90c5+1hjY4SHbEVF7HbIjNpMfaPeifVaz+TVMSwHTn2zsem56N3m4NYU1dVzNpaYvInNkLDvNTGK8wELT7dyPp6nu6/3vz7G8pTPylTw7Ctjojm2XtiKwYjBnlfFWDzukT+zRbtCnx9NJ40oa+mkv2l8Ss+YZORAhJP3NXBbvy1r2R2HgZ0W2WGLUw+4KJ9OxFtn+S4bFWhWT3f7FEmCWzV/9+2JUJjr3u0fSRj3gtKSRtomlrC0ZNqUNgzttsifDWhWIJYGr2FiWLRj0zNsCpfTh7ruCvVWJJ2UsOMyydqcIj/fikhRXReEgW3QOyI5+khLRNZ6jbW33XcVrMzC8lmwbTOM5ngVI7sg2y84cr/ubKsUeMpE9ey7EhZnzPa2DXU1xdPHH2C1dIZANdBaE4/HefnLX8473vEO3v3udxOJdCqIISEhISHPAa01TzzxBLfeeiv//M//zJNPPomQFtn+XfQOHaBvZC/xZB9KS7KJgFw64PSSjdYSO/ARAoJAIoBtwz6FiqRYsVAOSGFsbpSWZJM+2YRietmmnadqW+AHEoFme8alUBRUqhZGlG4+G1QgSSUDkknN4pKFCbMywl7PM+0M9GsqVUG9LnHKTaQ0TkK+J3AimnjKuOG0BUixJDRqgDZuSW6Tjquh1RKu1M+aO/HOjS1L5QRa0xH7dHBspISBHZLyiqJWXLesFaPmxGBol83KGSMcOhchIT1kU1re4mvQFvOaVE6QHTbi+k583TnRuBs4L9Ztc9L9kky/6MbiPge0/QyRPq3JaHbEIpEVzB/1N0S7bcCS5y2LJgXSouNmdS6Duyz8piZ/tjtOOmKs3IWEoe2Ccl5TLZhlYt3XTSGNELu4qDvXApjvB4Fv5j9Wr0OtAu1MukQK6jXQShCNazy3HQ8oiCQhGofSmgQ00Zim2QCQ6LigL6dbbkkSy1JoDUqZc5ZMKNIZzcKCeSyj4PtmW1CMDStKFUmxaSOFEc1pbfaTSSp60orpBXPPj3EY04CFRLFtJGCtaFGqCqTQIDRaSwJLkEsHpBKK6UUzZlI3KK9NsTB7jLWlp2nU1rDtCD/yIzdz0003ceONN9LX17fFCQwJeW78+Z//Oe94xzvIZrMvdle+Kzl69Cjvf//7+djHPsa+ffuedf3Dhw9z8ODB70hfAq14pHKKFa9Ev5Ph8tROLLH1Z83q6RL3/vVhFo6sdZ4TluDCH9jOZTfvIpJ4blEbISEh39nXdkhISEhIl2917tUmfJ/+9qnmG3zj44eYeXT5OW9jJySXv2UPB2+YxI4+c7zw1z92iKNfnSE7kuTm334ldmTz9bXW3Por3yR/psxlb93NFW/b8y0dx0uB8Hp/4QnH/MUhHPcXh++GcQ+dlF5iPPXUU/ze7/0ef/vpz+D5RoUjpUMuvZOJgavpz+xBSsnQNugbgcP3m+1OHYJGS7ShgH1XSfKzisVpWJqBpZmuQGloB+SGJU/fr1AKjj2gukUICXuukhTmAhZPKBanYPGUgpZwpH+7ZGC7xbFvegQenLhvY7Fm55UO9ZJi5lBAcUFRmvZoy1HSg5KJS6OcfqBBbU2xcNjdsO3IwSjRlODE1xr4LhsESlIo+nc4WLZm+Zi3QaBkxkjgJCVOXNIsn1+4Ki+bO943EygBzDzWQG6iH2qLqtamvY0CIyGwY7DzmhgLR1xKC5s0rODs4y5ubZNlEiYvj7B43KNRPL/AJCMt8cszaIueCTtmhGJt9LoC3eh+i0ZJsTazUYjkN2DusEtxs2Np9XnXy2OUlwKWjvsd1ysULBxtFR3jZpjWn5/CrKJe7AqUYKMQqbIaIKTYVOAExkFAKwF0+9sWKNkx6B+X6GbA6rw5P27NxLCAcQgY2GlRK3n4DTOm80e67YwesNEBTD3sIzyf4gwUWsWseBp2XmZx9ohxIFMKTj7cHZuRXYJ4RnDsfvPc8rSJihOYAt6eSy0Wp2Flzmz79IOdlyCDk5DJwZEHQUvJ3BSszBvxliUVuy8XLM1oludNMe74Y+2iHAxug0xuB47aYc6bLLFUeJCTp5/kK1/5Cl/5ylf4hV/4BS655BLe/e538973vpdYLLb54IaEhIS8xFFKcd9993Hrrbfyv//0L2nU8lh2jNzwAfZf/S56Bvdg2TFAMznoU6xqClUo1yXVhux8FKbi0JtRTM9LAkcys+bgK6AVVTsxoChWJYUqlGoWpWpbZASZhCaXUsxNKbQWnK20lrXaHh1SVGuStQJUqpJKtTsfSSRgoF8xOyfwfcnyCjhll5Ychb4R48azPGsivrxm99gtGwZGYHUBahXj/reehGiQSVk0pBE1Befoc+yYaImdzp/HKAW1osats6kQyGvAwnG/IzDutBkx4hYVQGneh/VCn0CRGZREk4LlqfPPJUC1oPE91RUorT+eHhOTVprbXGjUjiD+dyGMuEev26/wzQMnLkgPO6zOnN+pympAvSC2FCjFM4KeUcnicd8ckzQziWa1u0EkITrznjYrZ4KuE1a7P273uGslh+Y557uN5ZgYXcTGNtvfFeIZQTId0FxSBAnjYlTrzPE0uUEjfFtbbs3LquafQBGNa4ZGYH5O4jZB1DX5WVAxc1y9veA4mvl5DQiqNUm1Zv62LM3YkGJ1VVCtmudmF8z1IVH0ZhWJjGZmQQCCUtWiUpOAiYobHwxYK1mUqqCQTC8II2oSgkxKkUmZ1y8I8mVJuWZ1tp0ctllN7iOZO4jWPwTuErPTT/GvX/gGf//3f49l2WT6d/MHv/Vf+YEf+AFGR0c3H9yQkGfgZ37mZ17sLoQ8B+5ce4Lfm7mVRa+rwB1ysnxw4mZe33vxptv0bc9w04dexqn7Fnjgb45QzTfQgebJ26c48c05rv7xfex+5WgYJxkSEhISEhIS8hJGa83Ru85y////CF7dR1qCS2/exejBPoQUCCmQrf/NP+PgKSRML57mwot3Pqf9XP3j+5h+dInifJXHbzvJFT+6d9P1ph9ZIn+mjBOzuOAHQhelkJCQkJcioUjpJcDTTz/N9a/8MVaLx/GVqR7ZVozB7H62Db2C3tQEAHuvgLVF48SytrSxmJRIw+RezbGHTEVi/qSi0vrdTPmw/SJJJW/cktYWoFZWHQFMPA0DE5KpJ8xzC0d8qmvd5UO7JIEnWJlWFOYUzZruFKrsCAztsVg4FhB4MHvEo1lpFUK0Jt4jSfVbLJ/wKC8GnHm40YmRAMiOWgSeprKsmD/cPE9E1L/DojDt4btw4uvVTuQbmDrNwN4Ii8dcGiXFybs3KpfsGAzujTD3RJNGUdEobmw82ScZOhBh+sEGfvN8PVBmxGL8khhT99apt7dd98OhcqG8FFDLb60kOs95SWsQgkgcrEg33u5cxi5wcOKSU/c0N13+TOQmJMP7Ihy5q7Fpsc2OSSwXIDjP2ak49wyqKAWlxaB7TO1t1x3D+MUR0DD1wMaqY7NVvBraZ2NHBbNPdAtljTVNY82I2bKjEsuS5NcV8maf7K6bHZV4dTrXkN+A499soFxT6s1NWpQLoiOSWplWVPKqI9ga2iNZnlKdcZl+3Mdq3bgaz5rImuUps7BetjsCJYCh7abo1n48P6WJJ82xWzaMHxDMn9S4NfBdmD0aUKm0YkQmzGtl7mSrX7NQbf+uLWHPxbAwbZyXAiU5ewJqJQEKhrcpEj2SU4da2851t5USLroiw8KZ1zGaeR2+36AqH+XI0Ud54IEHeOCBB/jABz6ATZaP/Mlv8lM/9VNI+QyOEiEhISEvAdrCpLe964OszD2B1yjjRFPkRi5g58iFZAd2IaVNKqbIpQOml40gYrlo4Xrms09pGOoNqFcEBdei4ls0S5LAMcsdWzOYUszlrc62zda2WkNfWuH6oiN2oqg7ohLbht6egJVVidaClbzViRYFQSJuIszKZUm9JlhcsvB9I05Ca9K9UK+YOLe1pY3CGykhlYXSmhGdzE+zQShkOxALGtQKmipQK/gbxC6RhEBKaFQ0hU3mDMleQeAZd6Ty/PljnxuXuHWorKrzBEoAveMWyofV6XWCnnWuSY2KIvC3LuJqBY3yOXOrQIElsXSAtUUBWNowesBh5bR//vbPgaE9Ns2KpjC3uROlJRUWAQEbFfOBC8GWFkrQrGmqa6q7SfuP1md5JA6DOy2Wp4INwqX2Obds6Ju0WJsN8NaJ18stoZaI2PQMCkordIRdfrN1gwKAgHTOuC61u1le0VRbj52mSzwtKLm2WRnB4oxu6++IJcxGjZp5olmHxbPgNRQCQbpH06iBV1VoS5LPS2zbtGNZmmxGUyiaeLcggOUlSaM1NU6nTR/LZeOcVClCo2m2FUIzlDOipKb5SsJSvvv6zSQV0Yhmec2MY6kuafgCLQQiUEwMBqxULLzAuIUtrHW37UkJUvEBRPT1jO+5Ae2tsLZ4iLNnnuZ977sFIaB/aAfZwcu47yt/HjoshTwrruuGDqjfI9y59gQfOPWJ8961l7wiHzj1Cf5g53u2FCoJIdj18hG2XTbAE587xRP/OkXgKeqFJnf/6RMcuXOGl7/nAP3bQyetkJCQkJCQkJCXGuWlGl//i0PMHVoFYGBXllf/zEX0jqef0/Zy9bmL3aNJh1e8+wBf/uhjPP4vp9j58pHz9qO15tFbTSHj4BsmiaXC7yshISEhL0XCavL3KWfOnOGWW24h4iQ5ePAgi2uHEMJiJHcJLz/w81x/yX/jVVe+ncuunuhsU1yGWit6ym1ANAHp1u/ejYagUtDtmgXlPPT0d/fnNTV+S+vh1qFeMhEe0L0z2o6AaPrGSWfdL29OXGDHzETHd6G8tG6hgGSPJJYxD6t58P2u+CbVb5EdtTpXcjvqrU3fdofsiNHi+Q26IiStsW2fvu0O6dZydU4xK9Yr6d3mkOjd/GUSz1gk+y0iyc0naYELfkNverc9QGk+YOaRzQVKYOpE84e9TYtsQ/sdJq+Knvd829HIrcKpe5o0Spvve+V0wPKJze/017Zl+rJFoa20rJg97G7pwjT9mMfyqQBtyQ0OS22yo5Ld10Y3ffdZPuFvEJkBG/ox95TLzBObDEgLr6HxG1sX41L9FqmBrd/2chM2fds3WpC2rwspzfXUO7xxXBotgVQ8C72jFvF1c26/2RVQpXKSnuHutYrsCpIAEj2SWGrdtg0om+8NRBIQiXfdoOyI2TaomYtLmJpZBycKxZXWuja4bjcaLt1rCsvtgnS9Jqmuc83oH4NGvdvHtSWott4XhidiHNj9cl524Od53eW/ytWX/hB9vcOU64vccsstZDIZrrzySv7hH/4BtZWtWEhISMj3IVprHnnkET74wQ8ST/fxyle+ktW5Q/SPXcJF1/4cV/3Ar7H70reye/du0omWW40nKNZk5+3b8wWZhMJMkgRladFsLfWVQGmIOuYzLlACL+ikzlJrCmxLd7YFEK3Jliwq6o2O7sSIP+yuiVCjIVo6nVYkaBRiUdOWRpjlcQu0RggjQorGzba+u9FF0olCOmfESO3l60lZTTIDsvOZda4bT7pPksxt/Tkdz0iiqa1F2L4Hgb/1PCA/E1CY31ygBMYtsZrfPB5ueI9FLLXFD3OeT3lFsTa7+aRPK1g945/nSNTdgUBLsem8CaAwF1DdQrTu1TXLrUhc4QfrTnSX/h02qf7zn1c+lBY3zsvNArMvt855AqVzVwtctpzr2pYinhEmrnkTInFI95+/vH1NxVOQGRTYnt+52JUSqMD8nUhBuge6ByBoNrpColTWRNyCiSYOkLhuS+jnQDy+8bjqDYFuxSzblplDGTRaQ7MqsBtBZ4jbl49jQ9MVBEp0nvdbcXSgSUQ1zWbrdSmg2hA0Wuc6EdXYks62DVdQbjk0gWZosIeRHa/m4lf+HNe84Ve49Jo3EyiLE0/8MwMDg4zv2McnP/lJSqUtJv0hL3luvvlmPvKRj3D06NEXuyshz0CgFb83c+umstL2c78381mCcz84z8GJ2Vzxo3v5kd+7lskrBjvPLx5b47O/eg/f+PghGuWtv0+HhISEhISEhIR8/6CV5qkvnuaf/ts3mDu0iuVIrv6J/bzp11/+nAVK/x62Xz3MtssHUYHm639xCK02znLPPr7CyqkidtTiwhu3f8f6ERISEhLy3U3opPR9RD6f58Mf/jB//v/8Fa5nlBGWFWWo90J2Dr+aVHyAngEjTug4pdjmB3jfh8VpSLZvrLME2T4jhigXoL7qU1/t1j0SPTC4XVIpKBpVmD22caKx7YAECaceN45MU4dA1I3CIhKHXS9zmD8aUJhXnD20sbLROybp32Zx/H4P3xMcu9cHREfcMTiuEMJh6ZjH8gnvPLFN/y6b6oqiXlScfqDl9rOumJUdtylPN/HrcPyuCsrfWLRJ5CS1vKK2qjj21SrqHC1PJCVxK4ryUkD5rlpXrNMqnkRSJhajUVZMP3S+U1EkJYjEBZVlRXmF84pJdhR2XBNj/rBLZXnzHyEbJYVqFeHOLWhpWxCL6Y44ZjPq5wqBaImTzqXdt3UVSL/xLI5ItK6rqHEcWt8/ESgaJUUtr5By63i8HVdHqOQVyyd89LqcvEbNRLlJGzLD1obIPoD8me7jWIbzRFqzT3id6yiS4LxYv6kH3c4hx7ICt6w7fVQKTtzb7AiFsqMOlbzquH7Vi3Dsm15n+fAeSf6sMlE0wPKUYvmMcRCLxGF0P8ye6oqHpp7oDsbQDkhkJVOPmefqJTj+QHf5rsslpRXN/AmN8AIWz7bOnTTiwfHdcOJxE9Hou3DmcPcY+8da+2u9B5TzUFzRaEcSS2gyOSisAjVNJGJcmdpRcNLqFp6ltNm97Qr6Elewb9hnofgwNXWCRx55hLe//e1EozEuvfQSfuM3foMbbriBkJCQkO9Hjhw5wqc//Wl+74/+jGZ5BTuaJLftYgaHLiXTN4ltCZJRRanecm+RGtkS33qBESNYlhE0qLQgntQoKfGVoLKi1utPyaUVQQBLRYnrC5aL3Wl81NaM9fnM1CLUPclia24TL5sPqd4eTTyumZuX+IFgbqEtggDQDA8pqlVBuSJYbVrQFNASItmWZpw6ecuIUebPsEHUYtmQTBv3pGYd5qY2io+kZYRP7kKdUhkz91mvR5emDd+F/Oz5MWIIszzwYOWM39225R4JZr7quy3BzSYksoJ6SZ8XKdduIzMgcOKC1enNtxfCuDt5zc3FOlZUoly1lXYKraBe2mThJoLw9rxJrBNQNSvP7r5kR8EL2vOBdXNDpWhWFP4WfQeIpgS9oxaLJ1rOVlZ3TthszZWiSYHvbhxDrejGzK07TwBYEt+F+WOtcyYllrMx1s+twfxx1TnnTowNjkzVAlSrxgXMarhEcg71WnfM8ksaIc3OIzGNE4FqyTzWWjB/Zt38P6cJgiYFjMi/7grOtqLbpFCMjCjW1iT1uml/rWAclACSSU0up5mdlSglEFXFfCv0EAv6+wKUp1nMm9dktS6ptuZ/EQf6ewJc36LZEkjlSxagCRISJ2levwUlsJpmIEo12R5CrHWXSDKVJp25hmT/K3CbZRprjzE38wTvec97+Kn33sL49n382n/7T/zkT/5kGMUb0sF1XT772c9y2223sWvXLm666SZuuOEG0unvXFHipcDt3pP84hP/+Ly15yqfQrBFTibm3WjRK/Dax/9vIvI5/ox3AwSvUbg1DxV03w/FI4JIwsaOWrxr6Dp+cug1317nQ0JCQkJCQkJCvusozlf52v95ksWjawAM7+/l2vdfRHYk+R3ftxCCV/zUQeYPr7J0rMDTX57m4A0m0s24KJ0AYP/rJohnzr8RPyQkJCTkpUEoUvoeRynFn/7pn/Inf/InHDt2DABLRhjo2c/2sVfTEx3BiXRdUwYnzI/31SKU18y/Nj2DML5HcOIJIwY58aR5XrhGobDtAoEQcOaQprwCx0rdKA07AuP7JIunFfWqZG5q493zjnLpmZSsnFGdu7Ir66PKZKuAVYd6SVEtCKQlzrszW9SbWI6zlcmPEWmM2QgZUC8E5wmMnLiJ21gUivyU13LJUZ1iTiwjmbw6zvxTTQoz/vkCpQTsfGWcpaNN8qf9892EJGy/KkZlRTH35OZRaoO7I8QykhOrW0StaaitBTRKWwuBiq24j02digYl4xdEOHV/fVMnJTsCvdts1mZ8/OYW4qRzOUeslB2VoDCuWJsweXkrlu2hjQOoLUmzoph7anMXpza1gqJRURsESp02pCA3YdG/06ayEnSi1tYTScGOq2MsHPVYmznnImqd7u1XxygtBCwc8TYsUwqQsO3SKNV80ImD01Kg22IdCcO7JaUVwfzRbvttgZITg+ywRb0Ebl1taL+9XDoQVH1T0VuPNOKi9RfXuYKqhVOqUzRM9oJtBxRK5jwWVoyTRNsNafIAlFaNIxIYwWDbsSDVCxN7YepJaNQUjZrk6UdaP2BbktHdGqE1J1vvBUtnu32IJWBwrC2Estk29DJ892VM9gdMz3+TpjrBQw89xBve8AZSqRTXXXcdv/Vbv8XFF28eURASEhLyvUI+n+fv/u7v+OQnP8kDDzyA5cTonbiI7VfdTGZoN5E6LSGuIGor+jKKWlPiK1gqbnzPH+kNaEQE8xUHfM1U0QEEkYoiYmtGcz5zeRvXFywWrA3i3lRMEYsoVko2VcdiumoipQyaXNklcASuJ6hWjSNSF4Ft65YIVVCvG2eXIL5+XmFcmSILDeSY+bhSAee57kRikOqBSsksP1dklOmFhO2ysGi2PVfI0zMiiSQEi8c3ESgB2SFJPCNYOOaft28wEXA9oxYLR/2Oe+d6LAd6xywQAbXCJg1ojdsQKLW1iEcFUJjfel6WG7dQntgYI7eOWEaAXhcVt+VEdl231omVpG0cF6t5tekYOXHB0B6HxdPqfLcmKSlvIXpv4zc0jbYQytpMtC7oHZPUS3rLuV/PiCSWFCwcP2cMWs0ms5rssMXCCbVhft8+nkQWekclC8dV5zxqS3SmQ8kMZHM+s02746SElKZ5aaLf4sm2SKlN9/UgJEgNdtHFTzu04+Pax1drSDyvPQSaIOhuX68L1vLmNQ0mCq5a9WjGjVBpMW8hhelvzArIJjUrBYnS5vU3vWB3XJcGcwF+IFgtWNg1RR6rM0h2EkZyAYuLFvWWM9N8vvuekU4oIjbUm5JINE189FVkhq+lQoni7KOUZx/jZ37mZ/j5/+s/8+PveBtvfetbefOb34x4DtdbyPcvt912G1/60pe44447OHLkCH/8x3/Mn/3Zn3Httddy0003ccUVV7zYXfyepI7Lkld89hWfZwpBFbZwr9uSxBbPe7C4WIChb7NTISEhISEhISEh31U89cUzPPDpIwSewolZXPXOfRx43TbEJrWW7xSpvjhXvn0f937yMA/+3VEmrxgimYsx99QqS8cLWI7k4pt2vGD9CQkJCQn57iMUKX2Pctddd/Hrv/7r3H3X19AoQNCT3saOsdfQl93VWS+bVYzvgeOPGQHQiSe6QgqAkR0gHcHsSeOeEigjUIJWvNUIFOZMbFVxeWPRw3dNYcptgO9L47ISkVDtRmABiLpLZlzSP2lRmDfCppUzGwsck5fY2BE4+WBAowpzRzcu334hVFcDVk7BwuHzBS4Dux2Ksy5uDU59vX6eQ08sLWmseXhlOPmNGm75nBWUUa40SoqzjzUoL2z+y59bg4XDTQqzm1TBlCnmzR1qPqPA6OwTHk58y8X4bsvxZzMkjFwQYeW0f54LUJvykuKs2jrqLZqW9O1wKC5r9Lf6A2dLrJQbc/BdtWWhavGY14n/O5d20a1/UuJWFeVNXA8Wj7XVQJtPnJfPBBSXNxcoAbgVmDvsbtk/pWDhiEtti+gUFMw84eLVzPJzxVJKwakHmgSuWTfWY9Eod5d7DTj+Ta9zHQ7ulBTmu65K1TU49YA5Rlv47LjCYf60ptISDRZXWnFtEnLDMLxLcuKh7vbrY+Jyw4JoQlB8OEBHTWGx0v69XBqHirZ7lO2YQmtbQOjWYW2x+5rvH9FUStBoxb+dOQ6OI9CWcfcY36GZPmpe840aPP1w9/1kYo+puZ48GmHnxPXA9ewarTF19i5WS4e54447uP32OxgfH+MnfuIn+LVf+zVSqXX5diEhISHfxXiex+c//3k++clPcutnb0NrTc/oPnZf+y56xg4iLaez7mjOxQ+MIKnmCk4v2Z0IKcfSDGYDZnwHXwnmAhuvE7kpiFiKmKVoIHB9KFZlR9yglImwEmiUFgQxgXIkftyILboCJYgvefSOaOp1cAtGKMG6z2XH0YxMKBbzFrWmJO9tFD3HIoohmiydNdObpZmN42E7RqxaKUK9YgSr54qPbAfUap1yBSpdU5rzKC4q5DPopcvLAY2S2Hx7rakWIPCDTQVKYJx7Fo7757soraMjHtqEWFogLTYXOLVYmw0QW+XgYqKLNdCofOtRqNqSyChkRm2aFQ9vk1hbr65ZmfJwG1tE5UmJHYFkr6Q4f/5ABb6JlANgs3OhYfm0esYxLC0papHWNbiJiL5W1CjfOA5tFklXK0LgnSNQWkelAI2qBs9DAjLr4HvddUoFSbmoQQpsRxOL6dZ8yLw+Civdtnotl0gUFmsRQKC0YK3QFixpBoc0rgurK92IuUrrdWpZmp4eje8LVNXHS9oESnQ0A8ISCFsTSIEI2oKnbj8rVUlbD2dbmkQsoNww10fTF8yu2TSEgKigP+WjGlCsmpOyUrQ6U2PH1owP+MyvWnhOD4N7r2dw7/WMlpZYOf0w/3Trv/CpT32KWLqfX/3gL/LWt76VgwcPbn0CQ75vSSQSvPnNb+bNb34zp0+f5vbbb+dLX/oSX/7yl/nKV77C4OAgN910Ez/wAz/A0FCoVnmuxIkw6GSffcXnyLM5KbXpsZLP3UnpHLTSuDUf3+3+CHD64QXu+sbjXP3j+0n0hHexh4SEhISEhIR8L6OV5v5PH+HQHacBGLuon1fdciHpgWcoRn0HOXDDNk58c5blE0Xu+cRhbvily3n01pMA7HvtBIne0AE4JCQk5KVMKFL6HiKfz3PxgTeysPokQWBceOKxHBODL2N86Cpkq8IzvE0jBCyc0JTzsHDaiIzACAp6RwTlvIlw8oOOfgFoOStJQIHwfQaGJaoB+fmNwgikpH8MBrfBsYeN6OHUExv7O7ANIiJg7gjkzyoKC6orkJKCRNYURZpVWDq9+d3zYNyT3KqzsSizrhImHegdt1C+zeqUf55AybYDtl8TZ+W4YOWEe55ASdqw/RUJ1s4Y153NBEq5SRuloDDjU5g5v7gjbejd5rB6yts8ok1K0kMSr65plDReffNjnbwqSv60t+kd79qSxNKQHrBYm93EyqCFUlDaQpyjbYtKEZ7+qrvp8ufK1MOtKtUWmW21gn5Wl4DMkEW9JCmt+BsiTdpICWOXOqzNBZSXzl/u1gBb0L/NYuV0gDjHAaEdSRfLgJOQlM8Zk/YY2REY2ucw/5S34VDakXgyJthxZYTlU/4G0VM7jkTasP1Sm7W5gMWT3T6027Ic6B21CDxYnTn/OIQ0bkvNQsBmb8n5JdAo3CbGKWwQCkt0nAVmntZYttlv3AkY3msxc7wrRDr9dHtAYXQ3xOJw7DGzvdsw7w/t5f1DGku3RUoa3wW/FU0iJPi+oOkBlqCnX1MvaFpGayxOG5cN4QU4acHEDpg5FWPfjhuBG/HVLIeOfoXZ2VP87u/+Ln/0R39E1O7nM7f+VRgHFxIS8l3LkSNHuP7mn2Fl6mH8ZpVE7ygTl95E3/bLcOImKseRmoGkx2LFRlY0a54kUF3hkSU09EDNk3hoGhGFDIywuRm01TvmcY8fkHYUM9iAYK3aVYz4ccFkj0/Vk6xULcpNKK8zZbSlZjDlUz6t8REsLMoNn2sqLohHNbWmJACW1gS15rmf1aYf1nwTr898lG8WYRZLQrrHuNbozdyR4k2SvZKFvHHKOXeOF88I0gOS5akA5W8U0IP5zMkOCYqtuWPTP78TsbTAb2p8V28QCncbMS5L1fwmMW/r2ohnBGvzeksRVTQpsCPPLFLyW6LlTRFi08//bwWvAbNPteKPLbHpvKlR1s/4zU7agkSvpJKXZjw2mb9FU4JUv9y0v+0xdOLG7bRZ3XjilQ+ur8GSJHsFtYLecF1oBfWWGCyRNhFu9erG66/tEpnoEyQyguWZjeelLYBP5yDT7zN3QhPEIt19tMSAsQSks4Jqpfuc6aRpLPDBk2CXvZarEnRdlwQrq0Y0pKXAsTUI8DyBUEZwZGLfzNqDEZe6bVNuRbTVXUk9b/6WjmZiKGBpzaLakIhAU10nJItHNb2RgPqajRe3EEBjnWAw0ALfhiBqoiKjNjRb17ofwHLBouEKHFeRGVCt951BJi7+QcYvuoH6yinmTz7Mh3/9N/jQhz5EbngnvTtezlNf/TjRaChGeCmyfft2/uN//I/87M/+LPfccw+33347DzzwAH/5l3/JJz7xCa688kpuuukmXvWqV2Hb4U9Fz8RNzkX814Nvf97aC7TiB5/8DZa84qYfRwIYdHr4/EW/hiW2EKQ+RxaO5LnnE4fJT5s3lBPMcebhJa54224OvmESuYnQNCQkJCQkJOSF5+mnn+YLX/gCjz76KAsLC2QyGS644AJuueUWJiYmnlMbDz30EJ/61Kc4duwYSikmJiZ45zvfyete97rOOl/+8pe55557OHz4MLOzs1x66aX88R//8abtua7Lxz/+cf7t3/6NcrnMrl27uOWWW7jqqquel2MO+fcT+Iqv/fmTnPzmHABXvXMfF//QjhfVWVdKwbW3XMStv/pNzjy0yH2fepqFp/NIW3DJD4UuSiEhISEvdcJfnr4HuPXWW/n1X/91Hn/8cQBsK8bY4JXsGrueSCQFaLJ9UF7TnRiCNkrB6nzrgWWKLKM7YF5CfgGWZzfuKzcEg+Nw5FFQLhy9X22oYaT7zJ3Ya4vmn+9tjHUDuiIn6P7eT6sAtc6RZvwCm1pBc/ZwQP0cp3TLgR2X26wca1Csw/x696RWxSM3aVOY91EunPh6/bwCV7sffgPmHm9QWtj8FnvlQ6OoaFa2thVKDtjoQG8qUALIjtkM7I5QXvBwt3D3GdgVwWsoZh7ZXCBkR0wxcDMngLb7UKMMR7/e3LIQFk3C4C6HhSPueS5DzynW7d/DFkKl/kmJsATLpzYf11MPeZ3j0JY8r+AWIBDy/DS09SR7JAM7beplTW158/0M7HJw4pLywubxepGkJJGziCS9TYucgQ+NiqZxrvtWC+XD7FMe1TUFWJ3rrrO9B8fv8zrXZ25MUlruRiX6TZh+3PRdSJ/d10RYnVPk269bBWsL5s9YCkb3SjSqKxpU3WvGdsw11G773FOzMA3R1o0TdgT6RmF5urWOgqMPYvpvweh2SKTgxCFTsK6VBVNH2i1pRiahmBLMnTbF0tq6sXNa9b52MTHTq6hVRrj0wLtQSuFymBOn72dh8QxveMMbGBoa4sYbb+QP//AP6enp2XScQ0JCQl4o6vU6n/nMZ/jYxz7G17/+dexogr4dVzKw80oSvaMAWEITsRR1XxIYDQOW1GiMSMGgcVMWmbhPKhJwuuigaUW7ddBMZHwqrmStYVGsSgpVSXsCJYQm1QuFunluuWrjBhvnegKNRnQcl7oJrWa9doRbMq4Y7AmYWRL4gdgglgBIxRWZpCL/lEcA5Bc3jotlQSRunJMqBRMdfJ6AyWhcqawoGmW9qcAJwGtq3NrWy21HE0tbVPOqIwo+l+yQRbOmKMxt/vkcTQh6Rizcmr9lG1K2NNVqa3F1cUFtmM+eS7pfEPhQy2+y8Dv0Y+Bm8ybLgfSopLSoNp1LujXN/NF1kXmbzN+0kCCMSGyrmwcygxIhMSKlTbAj0DMsCXy1pUNVLCVQCupltamrktc0bo9bCccqa+YaMn1sr7TOragoqJY0WgukpYnFoVYR5nuI0ubv9vHgkhyyWViSHUGTu86hKZtRRCIwtyA7zprdYdMbLg3zWuz2JVCwtGZ1xICJpMYPwG1FL5ZrkkpdoLVxSZvM+SxXLKpNMybrRYrJiKIvHXDGc1BaYDU1lfrmQgIpNDFHIgb2sGtgL9p7C/7K45w4/Agn7/0bMj238ta3/DD/83/+Tw4cOLD5IId8X2NZFtdeey3XXnst+XyeL37xi9xxxx088MADPPjgg2QyGf7lX/7lxe7mSwpLSD44cTMfOPWJ9kdph/b7zAcn3vJtC5QAhvfneMv/egVHvjzDQ/9wzHxO1n3u+9QRjt51lle85wJGDuS+7f2EhISEhISEfHt8+tOf5sknn+T6669n165drK6ucuutt3LLLbfwZ3/2Z+zcufMZt7/jjjv43d/9Xa688kre//73Y1kW09PTLC0tbVjvtttu4+jRo+zfv59SaYtohha//du/zV133cWP/uiPMj4+zuc//3k++MEP8tGPfpSLL7742z7mkH8fbt3ny3/0KLNPriAswat/+iL2XDv2YncLgNy2NJe8aSePffYkhz5/GoC9142T7Htx3J1CQkJCQr57EFpvVR4IeTFZWVnhkoNvYHH1KQJlFAeZ5Di7Jl67Ls7NiAciMc3ei2HuNOSXWkUtr23jIugdhP4ROG40TkSiGFeWFtG4ETdUSya+LTcIy6dajkTnFA4mDph1p85xTWqz5wqMe9OUiXk7N64rN2GKJ75rBDXNZ3A0H9upKMwF1PLni0/sKOy+NsHySZfVqc2djXZcE6Mw47J6cvPb5xN9EiEF1XPFLeuOeQv9zabYMSOI6hzzOWPXdmU/T0z1DOh1dzE6MSNGeabt0wOSob02U/c2Uf7mwqTxC20CXzN/ZGtR1oHrIyxP+ayc3vzg41kYO+Aw/bjXiSDr0Bqw0QMOwobZQ898wLE0G8RB7aLbuRFrW9EZ93Wsd1V6TuO+Xli07u/z+iDpODdt2pcI7HxZlMVTm0fhSRv2vNxhbTZg6dTm7lHD+yxWFwWNLV4bsSSdZX1jUFw+RyioQEctnAjsvgTmplrRceeQ7YfRnSYK8tztAVKDgmgMVubNz+S9/bC2Au2fyaVlxlgFgqFxTSINU0+DCMzz2rE6DR64DEoFmJ1qD665rl2/zuLaXawWTrCysgzA6Mh2fuM3P8R73/vezQcgJCQk5DvEoUOHeP3bfo6VqYcJ3DqZod0M7H4ZvRMXITuKWTP3Gkj4JBzFmaJD+33RqZo3UDclGEv7lF1JqWkhhRHjdOUMmpSjqXgmhiobDWgGAlUwS/1497PflpptPR7zZZu6d35hMhVRDCR9zhSMcCG+5HVESWCEU/FoW8ygsS3wg3M/X1vzSVvT22hQzLOpOCSTg1QW5k9v7q6USENPwmXx5NbumMmccTbaCiGMPbl5sHk/OuvKVj80W4qBpP0tzLs2acOOdt1It6J3TBK4mtJisGk7dgRyExb5meB8YX+LdL8kPSCYO7x1Z7MjEjSbzi9EoBAWDOyJsDYbnD83W4e0AHHOuHTsH59d0C6t1urnnpv2RWHJb2nchWiJo9rNnBPzFk2YqFpvi/OQykEiLVhYsUGffw7TWU2mF+amQavzl0ciingCVr22s5B5Paw7sM7rxrI0saimWhMb1hFK4yVtcumAWEQzt2qd04ZpZ6QvwPUEq6WN4ywCbQSJfVBqGCe2mKPwA4G/rs+W1C23JM14r0++alFzJVbTjL2XNOOYiQYMpAJO5x0C3X4hmXbqpSUas/dw+ugjuI0amYHt7DxwFV/714+TTqc3H+SQlwQnT57kIx/5CE8++SRCCO66664Xu0svKEePHuX9738/H/vYx9i3b9+zrn/48OHvSITinWtP8Hszt7Lode/iGnJ6+ODEW3h97/Nf+KuXmjz4d8c4dtfZDc/vesUIV//EfpJhBEfIS4zv1Gs7JCQk5N/Dk08+yf79+3Gc7o1OMzMz/NRP/RTXXXcdH/rQh7bcdn5+np/8yZ/kh37oh/jFX/zFZ9zP4uIiAwMDSCl597vfTTab3dRJ6fDhw/zsz/4sP/dzP8c73/lOAJrNJu95z3vo6enhz/7sz57zsX2rc6/1fQjfpzdSLzb54u89xMpUCTtq8br/fBkTlww8r/v4dsfddwP++b9/g9JCDWEJfuwPX016IPE89vD7k/B6f+EJx/zFIRz3F4fvhnEPnZS+y7jrrrv4wAc+wMMPPwyAbcfZNvgKdo69Btvu2vL3jxjRwPEnNW5DcOKQplHrthNLgrAF9Yq5E7le7Qpu3HN+5B9raZ5OHWrFP02DQBodgYTJA0YIUViC2aPni3ZiCTr7XluAWnlzgZLlwOCkRApYmVbnCZTsKExeYrF4MqB6tsncoU2iPbKSRlnhN+HEN2rniVPaqEZAZcnfVODUZnBvDARUl2sbFyhzV3d62GL0whhT99VxK5tX23ombISAtWm/2xelNxx7ZlhSL6otI94ActttmmVFdbW7H32OzfrwXodoWnDim1tHtZWXFeVlF6G2dk5yaxoVfHvaxMDd+g769oU2d+TZq1P9k5KBXTbHv+F2CnfnugNIGwZ32Syd9DcteLXHPTdhkZ8NznOZam9jx2Bwt8PcYe+8ddqPJy5zkLbgzIPupiKpzIBxbqrkAxqb3Fji+1BZDait+sD54698OHm/1znWRBZq61zElIK5p1vXbNRm52WSwqIiP9ddpy1QkjYMbJNIS7E8vW4nEkQzIJAWa8tQLpin179OwQiXyvnu63nXRbB0thX5CJTXBG3tWLYPxnZCvdZtQ60rcjcb7bqmQFvQm9OsFdpiJMnxJ7sD3j8CPb2KE4chYseZGPhBJgZgpf84p2a+zGp+nve973184AMf4H3vex8f+tCHyGQy5w92SEhIyPOA7/vcdttt/Mmf/Al33303dizF4O5rGNj9MmLp/s56As1YxqfYkJRdi3zdYrW+XoigSUQVBcc81/C74gJ1jnAiamlG0h5nSw51X1Bsms8L2bqJLOEoeuIBcyUbXwmm8s45fi0aR4KnBHVPUGhYaM15AiWAdEKRTmqqDePW4p8zLUonFMmYYiFvIWcbnGNsCYATNQKRUt44KG3pjrRUp5aTWwqUInHoGbbwm8Hmcwit6Zu08F1t3JG2yLvpGZaUlhQq2LhtWxwkhImTqxX1lkIZaUEqJymvqi37a9kwvNti9ayiXtx63rQ2u66BLcRSXkNv7O+/g8Ddeuy1JSFQLJ549p0M7rJolDWF+XX9PkeVH00KLBtqmxx3+zgsB+yooFlZt05r7toe90SPMI6llc07bkdhYLvF6kyAW1svcO6S6TdtrM5t3oZbM69PWfVQich5y8tFQa2i0cq4FVk2+OucklxX4rpgKxdnwKEnq1hcluvcabuvm2RCk8koanVrY5SdFDhVn6ojcf22gOlcUaBgftXqvJJTcUU8qlguWGhLoBGs1br96ksF+IFgsdT9ut6OkZQCGp7Aa7VtJTWiAe3bMkpNSd2THYHSRI/PWl1SaVrEM4PEM28hu/eHWJs9ROH0vTz2tX8k1387v/Sf/y9uueUW9uzZs+lYh3z/UavV+NKXvsTtt9/OsWPH0FoTi8W4/vrrX+yuvWDceeed3HnnnVQqlRe7KwC8vvdiru+5kEcqp1jxSvQ7GS5P7XxeHJQ2I56J8uqfvoj9r53gnr96ipUp8yX35D3zTD+yxGU/socL3ziJtMMIuJCQkJCQkBeaiy666LznJiYm2L59O2fOnHnGbW+77TaUUrzvfe8DzLwvHo9vGv01NDT0nPpz9913Y1kWP/zDP9x5LhqNctNNN/F//s//YXFx8Tm3FfL8UFqs8oXfeYjSYo1Y2uGNH7ySgV09L3a3zsOOWLz6py/ii7/3EPtfvy0UKIWEhISEAG07i5AXFd/3+e3f/m0ikRTXX389jz76KJnkKC+/7D387C3/jcsufAO2HWV8l2b/5eYX8WbNiA5GW9GtgQ/7rxAkBwRCaXZdKth/hVlWLYNtw0hrXTsGl10HQ9vM48oaOBFQEQsVsZjco5hY5/yfG4Jkj/k73Q/7ruqaBE1eAAdfAbkRU1jIjUvikQCkID0Ae19hM7JPIi0Y2iVpVDUr06YIsucam/6JVgRJDnZe6RB4AlVxGT7gsP1l3bv2dl0bY2ivw/arYoxdEmXv9XEsx2w7tM9hx8tjICU92xz2vTbO4P4oi4ebaAV7X5ck3mvWHdgbYeerzSRo+sEaCBi+wIi/IknJ3tenSPabAkksI3HioiNQmnxZjJGLop0x3PvaBLlJh9SgTW67zZ7rW5Mr22LblTHGLjJ3OQztj3DghoS5Ax7oGbfY+5rusY1fGmHsQofMsNnvnuvjZCdMQSI7LNl7bRRpw8Ixj8DVbLu0e/fE3ldFyE2Y7dIDkn3XRbGTNjrqMHrAYvLy7rq7X+7QPylZOhVQLyn2vsoh0ury8F6LHVe21rUkiawgM2jajWdh76scYq2bq4d2W4xf5DDzpI9bh51XOQztMetGU2bdRL8NtsXATovdr+j2YceVDsP7zLE5MeibtFmdNs4C/ZOS3a8wxSVtSSaviDJ60MGOQO+oxf7XREkPmjHMTZhx6bR7lcPkZQ7ZQYmUsOe6GJlR06fsqGTvdTGiaUmqz2LbFQ4T68fwuhi9rTH0GppkTnbcl8YucNh2WXfdoT02K2d8GiUz3nuvjWK3TuXIfpvtlznMHfbxmoLd19jseYWDdATJXtj7SjPevgvDeyQ7r7aZvMxhYIf5e3CnObZY2qwbj/k0q5pUD+y6vPtWvfNSyfBOUwA885QiNyJJZo2r0the2H2FERjqZkA8CcMTgISdF8Ilr4Z0r2mnf8Q4LYFxeUhmoW+k9TgG+y9VZAZA2xLLMrEvjZopdl18jWb3Ra3qnNQMTxghJMDIJOy9TJDOgrIl43s04zvA980xjIzRqulLsr2Ki1+miEQU/b17eOubf5p3/MgvsX3iakrFKn/wB3/A2NgYb3zjGzl+/DghISEhzxfLy8v81m/9Fsneft72trfxyOFpdr3yP/D6H//vXHXtG4ml+5FCszfXIBMNOnFqwykfW2oCLeiNBfQPBzRykrij2b3Noz9u1AwVVzKY8HGkea8cTXkc6Deq2mZghAwxW1MfkASDsDPTJGabbVMRRU8s6OidRzI+uVa7ttRcMNRkstcFNPYARHs1TlkRxCVDvT6DPT7JuMKSmnRCsVIwAqVUXDE+0FXtDPQERHs1lYhFfLnByHYztwSIp2BkO2R6TQxw3zD0DnZ1LCPbzToqYdG/XTI66qMwbpk9I5LcePdza3ivRaLn/2Xvv8NkOep7f/xV1d2TdmdzPrtnT07KSCAQAiQkMBiMjX2Jvr5gmWSCMSAwyDiA4WfgYvsB4y8XbIzMta8vyb5gTE4SICNAQiDp6OS0ezbvzsxO7lD1+6N74s7MrgSSQOrX88xzzk5XV1dXd1fX9Ofd74/ALsLarEf/pD8vBH+eMzglq+qbWLK2XiQhGNtvYgS34Z4Ryehug1iPxIgIRnYbdA/65a2EZGy/iRmBWI9gbJ/J6J6a4GV4p0FyyC9rRmDiAoOeMT9tWfegYGRPTQgyNC3pGZF4LqydV/SOyep8qatfNNQ7NC3pHZW+e1DMZGy/QbQrSO3VJxjba+DavpCpb1zSF8wFReCcGEv6ZaPdkuSIAZbfjv5tBv3batsZ2++7YObXFLGk3y+VeHXfuGRgykBHLTAk4/v9/gZfbDS236jOa3pHJVrD+rJ/IEf3GHQN+GUjXbLa3/EeweB2ydB07XiM7DLoHgxcw6IwfanJwDZ/eXJIMLw3gg6cmIamJckhQTwpSPTB2F4DK5gvdQ+I6pzHtX2H1njQD4YlGN8jq6lpu3p9sdjavH9+DE4I+kYCoY6E8d0CYfii6/iAwfQuj1gXaCEYGNH0D/nreQompjXD45rRbRDvVkxMaxD+8v5hzcAYiJyDbcP4mEtXwu+jWEwzOeEipWY9KykWBEMDCik1vT2KiXGX7i6FlgKzrOjv9ZCWf+3tnbQZG6g5um4b8kgG9ZqGYrDHo/JOQX/SZbLLwYsKvKgArXGCyzUZ87hgokzUUMHfiqilqyKl3cM22yccpKuRMdg+5GIEY09vzKMroqplp3ptxpIO0jAZmb6E637997j6uTcytPMK/vpvPsj+/fuZ2HMB3/jGNwgNlx+53HnnnbzrXe/iuc99Ln/zN3/D0aNHOXjwIG9+85v593//d9761rc+3E18yLj++ut5z3vew+te97qHuylVDCF5bHIPzxx4DI9N7nnQBEr1jOzp4zl/cRVP/L0LiHb7N16n5PGDfznCv73te8wdXn3Q2xASEhISEhKyOVprUqkUvb29HcvdcccdbN++ne9///v81m/9Fs94xjN49rOfzT/8wz+gtpo2oonjx48zOTlJV1dXw/eVFNInTpxou+7KygpHjx6tfjYTWYVszsrpDJ//s++zvlggORzn1/78Cb+QAqUKYwcG+B8fexpXvvjAw92UkJCQkJBfEEInpYeRpaUlXvva1/K5z30O27aR0mT/vsexd/tTKGW7MSOa9TQ4DoCmd6AWHMpmBAuzGqfsi4t0zMU0NTJ42H7+FMTrBMm5DFTMc5TtBwUqb45nSwIjsEwxCg5OGYanYG0e8mlYPAupIFWxXfQDAV29vuNKdhWUlqyuBdtZcCgX/IqdEhTXFb2jktyqopDR2HVOLtlVhW0rdl5usjqryK5qlu7JoWyIxD1cuyKCgNySRyHtkU952EWFmo7g2f52ilmNCnamd9RPhVFc9/92bUV2ycUt+39LCxJ9RjVFWH7ZrYqQlKPILroIQ2BaimLKY/lEzbUov+LhBOkUlAvZJY/UOYdSTtHVL8kuelQiDfk1VXUrOvn9EqN7rOq+l/Oa7FLtTfdCSlFY81ib9dCmQXZZYRd10N+K7LKHUqBKkJ73kHVpMNZXVNWNwIpDvFcSSfiin0JGYxZr28mtKEoFTbTbd0TIrqjqm+7FdY3n6eob8K4TpNUwDTzPL1tx/ymua7RWmBE/yJZbVdU35D2nsezAlFENRALk1hR2IehDBetLisy838ZiDsyVoL1Skk8pXMd/Q/7o98qM7jJxiiroQ8jWpelbX1Lk1jw/BYr0l9lFP2BkF/2/88uKY98pMbDNaJBnZpe9qgtAes5DCP9t9q4BSSHtYZiirqyikA6CPuMSM1pzCyisK5xynbtQwaNnyCSSAMcRZFfr+jsLnqdYyihyKT/QVgz6xXX8a8Mtw9zdDt3bTBLdiukLBOurmlxKUQ7OJacE2VWNY8P4mMRzNNm12g/N/KqH7RmgYOYk9A36xzXeDbZdc1lybZg75YsdAXYe8Nvk5nw3pJIjSAUOS9Lwy1UclSR+Krdy4GiVWYWFaODIFIFEQlMq+oIl6SpWl/FTCeGfP5YVtGfNF1QaVpQ9k89mz+Szkcl7OXz4+3z1q19l37597N27lxtvvJFXvOIVhISEhDwQfvKTn/A3f/M3/N//+3+xXY/B/Y9h12VPQDCJRmBrDzfQFMRNTdT0DRIBVgomtuehNJQGJJ4p6BL+mFtwBWczFvkgJZunBVlbBEF+ge0JHFcg0GgEywmTUlyCgtiCxuiH4S6PmYwka0tsZVUdmAq2xFUQMTSuguW8wWrMpDjg591S5xUV975CWZJMePQYimJJkitKnEAk6riQL/liJaNPsO5KVFlg3FtECN8Js3IfUK7/dzYNpaIvJKknV5bYUmBJSGibQlFVnWXKBU19PNWKCaJdgkJa45Q1hbSulrULGteASFxgF/2UaZU5hXI1hXTN6cgu+m5EuTUvmOtpnJIGKVGeP+9RCooZzcJxt2G+VFzXuOW6+ceiJp/yUK5/jy5mAxdMpSlldfUcKGU1ZrTmyOSUNcVMo+OQFRdkVvx2FtIazwnu52VNIaMxrEDom9fVfdE6KOsJMASep3EqjpyWSbksfHvGgELan1uZUXBtv1+o628pNSCxYpDoN6oiJM8J+ruuD12ntj+FTG27npYUMgqNIL2gKOVEw3EvrqtqWeXB6qwiFziA2iXQ2SDdq2H4rqe2P5+REroHa85XTklTrLhRakjN+fM9EfeFV4WMrp6Hjg2Fdb+/DBO6+iGzpGt9uO7PPcGfP2kFXTGPYsGkVBI1tyPtzzGKed/sSilBPquDPhSUi/73dllgzyq8CQMEjAx7ZNKCXF5W6yqWBVJANKrpSSryBf/aBvA8KK75bcuWJQsZA8/2Bd6xiCZfInBaglzRYDElUBriEcVgj2JtXRLJKuweybo2setcPcuuwA3a4LiQL9cusvm0GbgmgSkVptS4lsCTgrIrWcz6/4L/UyVi+nkSNX47iY8yfdlz2HPpdZRX7+TeO77P9ddfz969e3nBC17AW9/61g2BiJBfPpaWlvjSl77El770JRYWFtBa09fXx3Oe8xye9axnsWPHjoe7iSEPM1IKDl63nZ2PG+NHnzzGkW/NgIb0+RxffNcP2PWEca787QN0DYQp4EJCQkJCQh4uvva1r7G8vMwNN9zQsdzs7CxSSt7znvfwohe9iN27d3PrrbfyiU98As/zeOUrX3m/t726usrg4OCG7yvfraystF3385//PDfffPOG70+fPo3nbd12OJfLcfjw4S2Xf6SSPlXkyGeWUbama9Ri/4sGOZ86y/nUg7O9sN8fHsJ+f+gJ+/zhIez3h4cHs9+3mkZO6PAVyYece+65h9///d/nu9/9LgCRSA/T25/EtonHY5ZrgY9YQrN9D5w5BnZJEInqIFWbQEX8YJQZUbi2BKnYu0+zfFZX0zXVk+yHqT1w4m4/kFBZv4Yi0QXlQPgxugNWZmvBqoa6BmD7IcnpI5DP1B6ey1wQuZB+Gqrls34ARZo0ptuQsuG/0xdLls4qCjNNadeCunZfFSO34rF4xNmwfoVIAuyM6ysm6l8GaDq9I92S4T0Rzv+0tDHlV2B3uvvJCdyy5uztxbZpO7ZdGmV93vWFSVAVJ9XTNeineWuXagT8YJOMGRtS3zW3ffslFuvLnp/+pJngrXszAj2jkrWZoIy3sWzXgGD6UovTd9gUKzldjI39efApJstnNStnm+qoyxOz63EWrq05d1eLHQzqTA76wcB8auP6FcwIbLvQYvm0SyFVEaa1eFtUQqKrJhJqR3JEkl3auO8iiDJLE7ZdZLF43MFu4eqvpaB7SLL90ghnf2w3pOCrx3dWECyfatqn+nOmcj6aBpG4L/JrIGhTJAE7L7eYP+qyvrRx/3TcZPtBQWZZk1lqs+OVLlPQOxKkeQzEh83pU/Ze4sc+T9/buqq+YV+4lMuAmZQoVXNCqu6m6/fLzgN+8PPMsVbXimb6kCCTFqytSKSpfKGl8gVLAJGoCsY1yY69imIRFmdr21JRg3x+iTPnvkQ2O0uhUGBoaIjXv/71vOUtbyES2ZjaJSQkJKQerTVf/epXef/738/Xv/51rO4+Bi96IgOHHo8Z7yKWqo3zA3EXU8JS3gQ0pqSatq00IBFB4jWFoNfw6DIUq4uSWtq3GuPdDkoLFvP+fbo43DiOGoHKJLagiZvKFwo5rd0SJnocnC7BuXLjmNd71p8bRSyNITXFskSIigioTuDQU7sPdEc8EpZmKW/Qe3zjBCTe5bsmLZ7zRRcAXqzxvQbD9IUk1mqhktmqRtP8IzkksYu6bYq3aLdgeKfJ4gkXp9g+LVhyyCA979XSszXPFQRE4x3S0QZYcXAc2TqdXN19uXtAkpprkw4umOdEAsef6v29xTxnaNrv+5Wzdcua5l7JQUFyWDJ3tMXGAjudSEIwsttk8bhTEzTVY/rCmkSPoJSrSy/XYj6Y6PWFY6n6eWWL+aAZAc/WbVPigS9eNiywvY3vvojgBIp1+4KuzGLrY6MjJsNTAgQsnwvKNP9EFdA/Klhf0Rt+nzTMc4LzUSSMoFzjtSmCensHNNEYLM1tLANgDJj0JhVLK62vbyC41nzxYTKpWc+Kalmnu9ameEQxPuAyt2RSbnGNS+E7L2Xywbb6wfZqdVXbVNZYhmay32EubVaFR/XEI4pkn+Z8zgQEhtBVAZNh++KkyrgWMTSjSZf5ILVkhXI35OZPUjhyC/On7sOIJnj7W9/MDTfcwNTUVMu+CPnF5Rvf+AZf/OIXufPOO1FKIaXkiiuu4FnPehZXX301phm+twZw9OhRXv7yl/P3f//37N+/f9Pyhw8f3vJDt19Wlk+mue3jh1k+VUsGa8WMMAVcyCOaR8O1HRIS8svL2bNnedWrXsWOHTv40Ic+hGFsjEdUuOaaa1BK8cpXvpLf/u3frn7/5je/mbvuuovPfe5zJBIbU2695CUvobe3lw9+8IMblr3whS9kamqK//k//2fD93Nzc7zwhS/kta99Lc9//vNbtmdlZYXV1Zoz49mzZ3nXu9615blXhXCchpO3zXHLh3+K8jQTFwxy/RsuI5KwNl/xZyDs94eHsN8fesI+f3gI+/3h4Reh38MnUg8hX/jCF3j+83+XYtFXlXd3j7N3z7Pp79tRV8ojkYRCVmCXfLeTSgympE2oi00NjSjGJjRH7lG4ruRUs1hEQleX/+ZwPgNrawJbgopsfJg02u8xMg0nsr6IafEMG+rqHZWkVwTrWd1eoAQkkjC0XVJYV+TXAoFSfSBJwsQeyfI5/43s03cpRK6FQAlAQWZBkU/p1sIVYHy/QXLU5MS3XDa4lQo/XULXoO/MY+cU5+8qbSxTx8ydJTZWVNd8CZGExIyKluKkChMXRiimFbM/sduWGdobpXdUcuQ7dmvRlNa++KTVrluNl69rUxMotaG4rpm52/XFKy2CUZtS2V/XY+Gow2YvOmSbXeHr1q/g2kGAywyiSu2O8z6D3hGLI7e0EJgFxHth6uII5++xfVelOnT1bXRNJCGJdsmqi1YzuRXFzE/aC5SAhvq7BqVftlnUFhQZ3Ql94wbHf+A1Cfb88rbtp17Jp1oH70TR5dy9teM9tgsyyzURUv22AIYm/YDwzH1+fcLxGgJ4p++j6nAV6/KbXawTbKWXa/+fnFREonDkPqg/EXXwUHptTVUFYKapMSOVtHAAgrOHa2PO1JQmnoAj9ypUsH7Jk0gUoCiXqbpwmZbCMKGoDLq6Rrjg4EvwdJHjx77CwuKP+ZM/+RPe//738+IXv5j3v//9LX9Yh4SEPLqxbZt//dd/5VVvehul1Xniw5Nsf/rv0LvnYkSdzZ8lNZ4GpQWuqnNfQZDrq78naXbGHHKeZMkxyXgGpZXGcT9iKFxPoBBkywaFfkkx0eq+ptlfKlN0JEuYFFuIDaKGIt9n4GjBjLDwyo3bqgiUAPq6FVL4IiUdCBLqhUlRU5EwNamSQc42yNnQe7yFUhffGS9bktiWAGujOENKzWR/2Xcx9HelEUOCUr47UkGTXWlxL60ToJRzmuVT7QVKAGZEYEWDbbWZJ8R7BIOTkoVjbvVe0oyQMLLbYn1ZkV1psb3ATUlKgTTYKM5pmjttEB+3ID3v1ZylHsjcK5jvOSWX5VPt9w0A7TsRNVDZZrNYSbQoU79Ywuhu35Wplfi7Qt+4xOwyWDzVQmQdPDQ3TIUVFX56tTaHObWgGxdV5lSVc0X7ZSqLzKjvKNksxEb7bZ8Y88imIZ1rnC/roN5CocGsagPemstS2X/Qa5qa7i5NOtMoHKpca9Eo9PUqikWjmqLNynlVoVLRFpxfNSkrCQYkoopioVaX0oJMPngBxdBMxVyWUgapSGPbvahAC1hzjaojU9RUlN1aXUVbUlwCEgJTaHb02izmTbKOgRfxy3nUBEu2J6qnRqUuISTJiT0kJ/YwcMUSC3d/l3e+6938xbvexdj+K/jmv/0T+/bta995Ib9QvPOd7wRgfHycZz7zmTzzmc9kZGTkYW5VyC8Dw7v7eM47n8DRW2b54b8epZxzqingjn17lqt+9xAThza6KYSEhISEhIT8/FldXeWP/uiP6Orq4i/+4i86CpQAotEoxWKR66+/vuH76667jttvv51jx45x6aWX3q82RKNRHMfZ8L1t29Xl7RgaGmJoaOh+bS9kI2d/tMi3/u4noGHX48d5yu9fhNH8mzgkJCQkJOSXhFCk9BDwsY99jD/+4z9mcXEREAwM7GXf3ueQiA9sKDuxw0/JdPjHGqUEZ47431ecjyJRRTQG2YwkvQYg2j5gn5iG3kG4705wTYO5mcblUiq6kn5da/N+UMpu8Wa2tgyGxjWjk5Bf1zi2IJ/ZWG5gm2TtvKKQgePfD4IoLQJJhoTuAUFhHdILtBQoDewwQfuim5VTHSIIjsvyCZf8mtdWVyRNmLwiQXrGYfFwuXFhnahkaI/FyimnUbii9QbhiVJw+rZiR4ESwJkflDa8BF6PNg0Wj7msL4q2oht/g3Dux00/AJoESggY2+P3v91G7wVBmrpl9cCCZPWYBoXM1qxYh6Yk5aIiW+/4ahoNQqXTP9z4A6eZ5dMeqfMeCANove1iBs7cYVNIte9QTwlOfq/ccpmuS6uRDVKl9IxK7IKilG25CmbMd7paPuVudJ4KWDnrp69RJdX6vFEwf0wBAjOiGd9vcP6+RkGTKLvoqImUkByQuGXVKFKq4+RdqnrpdfeDXYZyXRfXBzhHpyASg+N3ta5r9qTvTAES01TEEpBbr50/6TX//wLFyBT0DfjjF2pjYHtpURCJ+nVJqejth9RqJRUczJ+rlR2Z8MfCew4r0P42DBHnwP7fYN/e55AvfJ+jx27jwx/+MB/96Ee59tpr+fjHP87k5GTrHQkJCXnUkM/n+chHPsJf/dVfMTc3R3L6EBNPei5d23Yjmu7pAs32Xoe1okGqZLBero3RpQEJaJKGIudJNIIl26CsW99DJZqpHrda13KfuUGQkRCKkvZFTIs5M3BL2UhxQDAeU8SUZsG2sFts0zI1UkDZEaykZTUtXb04qULc1HRHFemSvx/NAiVpQN8QpJbBsUzSHSzCjeUCqbKopmVrRfegpGdEsnDUrTn6VAgmR1YMpCEo59u4LNVRympKWa+tQAn8NG+LZa+jiEcLydIpr6VTaMP2cnrj/jXNnWLdfvs3iIKaqLbnZ5x7acOknN+k4fjuR4lewfpyi/YHapRCRm/abq1g+Yzn/zYIxFutyCzUhMftyGUl+XTruZsOhDiVFHtCQKKH2m+Nimi/jp4hQVcvzJ1s48ykYG0RykWQykVFNv7ktcvCd3IUkEz6To+FXOP1aOYd3C6LaETTldBk1kXLuX2pLJidM1DKF9x3JTT5Qn1dgrITpGMzNGN9HovCIF8SiKZucT1YWDUo2gIiEDcVJbfi4eYLmtaKJkTBtBUTfS6pgkG6sPG6dzUsFcxqGsqEqbA9gasFXkRg25LFrL9MCs22Xr+uxTpRutUzwtQTf5Opy59G8cRtnLjrNvbvP8D111/HjTfeyK/8yq+0PAYhvzhcd911POtZz+Lyyy9/uJsS8kuIkIID106x47Gjfgq4bzamgNt9lZ8CLtEfpoALCQkJCQl5sMjlcrzlLW8hl8vxoQ99aEtin8HBQWZnZ+nv72/4vvJ3NtvmofImdS4vL2/4vuKQFIqQHlzS53N8+8O+QGn/tVNc/XsXIGTrZ0ohISEhISG/DIT+zA8SSik+8IEPYFkJXvayl7G0tML42OU8+eq3c+nFL60TKCmGRxT9AwpZdFmag1NHAOWndKt8KkxMaia2acB3T1pZ8m12jJIftIh3+6ndABYWBadOCFQbMc3EFEzt1CD9B/P1rjfaMtBRSfeIf4qszMPJe8GxW7xRnyvRPeiLZLr6ASn91FBNgaTkoC8Y8lw49n2vtUBJ+uslBkzife1FQNKEyYtNZATcEqzPtQ/aKE9w7gcFFo/UCVOEaBAfxfskQ3uiJEda6PYq0QgJ26+IEe+XHQVKVtwv6xT9tm2ozjTQwfp+KrRN0pfVp4exzI0CJSCagL5R6bsMtMOQ9E0aDGz/+WgTY30GYwct2JA6sJGeMUH3QIuhxjQa+jGSgGhX+3rcMjWhkGH4nxZUBEqRDnVpKXxHrwstksE5rttM6kf2mAxOt7dMdUtw7i6nrUAJwLMhM+8vH94OvWPtf0BEk4JYj8SMiarTUgVR9t3Cjv9IsXLe/653iI0juaqlWBzdKZnYLRFO6+Dg2WNw9qj//0jUH0Ma9s+uBQpHxmF6t0bKjfuqTcn584KzpwQogZSaoXH/LX1p+9suFiSZlN/YgSGYnNJUsrUpU1Y/AAszcPYEyJK/valpj0jE366UkmT3VVzxmBu58NCLGBwc5Rvf+AZTU9t55jOfyZkzZ9r2b0hIyCOXTCbDu9/9bnqHRnnTm99MsXeSfS9+Czt/7WV0T+6pCpQsoRm1HEATTWnOZ03SpcDdbUBWP35Z2BZx6Tb88SenfGcjgGhKAZqeqAdoFIKTVoS5pLkhtRv4IqbtEYc+wx8TS65E6do4XxyQ6CGwB3y3k5myxYLd+p7de9ZhsMejPxmMr0mTco/ZIFASaBKW3+50STKTMVsKlLyYiU4YWEmJ6G5/T090aXo9f95WXO+cAiyXhpXTTQIlrRvEJt2DBr1jnX+KxJKiVqaDQMkIbtNOidapeg1ZFQk5ZTYKp+owI7X6mtetJ9olSPR2fiAoLEnPmIER+/n85EoMW8T6W88FKxiWn6rOaFWkfl+En0KuE3aRmtBObpyXALjCRHl+t8sOU0Jt+KlvB7bVuTK2EA/FuqBvVGDWH4Omefv6imZ5Rlfn060o5v15tpQw1O8iRPv5thUTROICLUTVaamCmXfIFyTn532XMik10cjGulQgzo5FYWhQEYn4bkrNuJ5gZsUkXwrKxxXa0OjqrgiKtp/2TaAZT7r0x1tfbG5Ecq5gkVL+yomIwjICEWDBF7+v2wYqyIE3knAZiNfa5EVE9aO0YDZtkilJIllN0vToMevaH0sSv/BXuOCFb2fqSb/FD+74Mc94xjPomTrIrbfe2rZvQx5+/vRP/zQUKIX8zMS6I1z9exfy639xFcO7eqvfn7xtnk/feCt3f/E0qkV60ZCQkJCQkJCfjXK5zFvf+lZmZmZ4z3vew44dO7a0XiWF2srKSsP3lb/7+vrud1v27NnD7Ows+Xxj2vjDhw9Xl4c8ONgFh6/99Z04RY+xA/088XcPhQKlkJCQkJBfekKR0s8ZpRTvete7iEQS/OEf/iFKOUxNPpGnPOlPOXjgNzHNyhtmlQc4kmRS0dXlP1B2bUEpL+qESYqJSUVvn19+9qzg+BFBu0M3tt0XQaiIgetKioWmt75jimSvX9fceThxn8Coe4CuLaOaNmF0Aqb2+CkOQNSlcKrRbfgqnNwqnLxDkc+0cRcwYdsBg5HpWh0bBEqmJNbrrz97l835u9u760SjinivQSTe/hSO9UrGLvBVO8W07uhWVEwrTnw7R3ahvdjJjIAVF4hNHJQmL4kyfXlrtVAlmCIl7Ls6smlwLt4rmLok4gtpOgSkynk48l2XfAfnA/CDVt1DP58JrBWD3mGBGelc7tQPvcAlqA1Bn0xfFmFk9yb5kyXsvtJkaHvQb22ESskRyZ7HR4n3tlwMgEYQSQiseOf+OPNDm/P3dHZ6qgjNEn0wurfz+RHvlXQlO9UFx//L9R2xJMR6NgqVKphR2LZfMrStfX2nf6qYPer3fzziIZtPI1VLVzO6Hba3SQMuyy5zM3DqqEAp3wlpYNhP01arS5LLSrQpSQ4LxiYrLkwbWVmSHDviv8UPiuldHvGEX5cyJUpJ8oFjUzwOyaSui0/WtjkyciEXHnoNV1zxUhKJIb785S+zf/9+Hv/4x3Py5Mn2HRMSEvKIYWVlhT/5kz9hYGSMP/mzP6dv76Uc+O83MXXdC4kNjNWV9MdqGbgjRQLRQsn13YUqwqSoUIwFIiZHC06WImS91mN7xNCMJDzkiKA4LClqX1xQv81eWRMxnbYt1jyDrrqUocUBSXFAItBMRh0GLX9e5ouhGu8BEs3grG/Ns5w2OOdGWjonAfTGFOPdLlLooJ4WDkpJA9C4jmBuVrQUo1fosktENxG19AwLzCAtmz++tyd13mPlTGdXRsMSmBHRUaAUifspYSPtsn4GopzuAcHwjs1/+vSMSga3Gw3rtiKzqFk51zkga5jQ1d9GMPQASCQF0a7Ox6Cch7mjm7hFGZJ4UjCyy9h0HhfvEYztkbVTsc2D0KEpwcD4JnNM099eJzFTMQfzJ3XVWakVWoMdCHN6h5pEZU0Ylj8XsToo09aWIRU8u7ciGt20G2beodIBvT2a4WEP0SZvXaksOD9vYNuBq1J544FwPP96NKRmrN+jJxAhaYM6sRJY65pzGYtUMZgPmQpTNm7X9nyxoxeF3l5Ff1e7/RScy1qsFP0NdFmK/qhLZVz0IqJaF0Dc0HSZlfNbV8tJ02LowBPY9ZtvYedTfxsnn+YpT3kKY9t38pWvfAXdyUY25BcC13X51Kc+xSte8Qqe8YxncO2111aXHT9+nL/+679mZmamQw0hj2aGd/XynHc+gatfdiHRbn/wdYoet//zEf79pttYOLL2MLcwJCQkJCTkkYPnefz5n/859957L+94xzu48MILW5ZbWVnh7NmzuHXpNp761KcC8J//+Z/V75RSfOlLX6Knp6cqYro/XHPNNXiex+c///nqd7Zt88UvfpFDhw4xOjp6v+sM2RytNLd8+Kdk5vN0DcR46usvQ27iZhwSEhISEvLLQJju7eeEUor3vve9vP3tf4ZSDoaMsGP7tezY8VRkU2DFtBR79ijm5mA9Izl1UiKLqsExqZ5El8bzBJk0vkNR45YZ7VcUXUE2Izl7RrVN/wYwPgVmRJPNKJQrsV2QDQ/2NYluP93B4hxkUuC6rQMOyT7N9F6Lsz/1yKeg3CLNmJS+nEC5cOYnHqUgNiZyhQ0Bp7EDFr1jBsdvLTWkuWqozwRVdCmm4fg3860LBXQNGnQPG/46Li3frI8mJX2TFov3lVu6HlXRGtc1OflfHXKIBMwftjGsxm1teNNbQm5VUVzvHNwqZrSfviz3ACeeTcG12Xu3lqJtK2RX4OhKUF/9/rkPYBumwczddpCqrsO+KsivKUr5un6rCJW82nazK4qFYw7FFmkJ6zn9oyAC1uHNg0qalkS/pKtfsHyqaf/qzquuAYPuQcniSa+tKK4+dZ+MGW3PdYDxPX66nOO3uQ3pDCup39wynP6JohhcV9VzvQ7l1poydcC/5s8cbr29mZMQi9fqikSg1HBdS4rB331DvrNbLitapolMr0ryWYXjSDAVkxMuSyuyIWhdDpxLojFIJBoPQ33qmOKa4nDed40Dxb4DitQaLC/VyiS79vD4x/0hhdI5lpe/ze23386ePXt4whOewEc+8hEuuuii1jsdEhLyS0sqleL9738/7/mf70drGLzwKoYvuwarq2dD2X7TJWkozpUtylpyohQhltJVYVI9UkBCakzAhapzUgVTaEaKDrPDFkVM7sPAbVY1BESEZsJy8RyTnKqliisOiLoyCkf76ZxmShblNnUBbIs6RMc1s+vtp/BSaJQWpEuSglMTHfQez+HFausJqZmY0GQygvU0NAui6suZywXSbbdYKecLWjwH3HIgVDDkhnlB95CklFW4mzgaAeTTkE93Fj3YJVibbZHutmkO5JQ1IsempM4rX/TyQNOz1a3n2jB/7Oc391qZqZsM1IvXnc3TwDVTLAgWTwTpmTuIhpyyprDelHWtcsOuSwGXWdabHs9yARbPCX+DkfbneaWeniH/HKgKroI5lw7mCEL6DpBOGQptRE1OGebPBM3GRUcN9IZrTAT1aUYnNOtpwXq6deq3VFqQyxlohO/OpKmmYqtQ+e0Uj8HoiMe5dUl5w284PwXx+VUTO9i/iKmxXdBGrT63mj5XM9zlUXIFS/lW17/g/LqJEKCigrip6HZdUoZR3b9657aIVMRNTapc+86rOybpFQM7ENV3m5qhiMu5ghW4MoGQJn27H0PvrktR5+/m3J3f4BnPeAZdI9P849++j+c///kt2hjycFMul3nTm97EPffcQ29vL11dXZRKtYn8+Pg4X/ziF0kmk7z85S9/GFsa8ouMkIIDT61LAfctPwVcaibLF955O3uunuBxLz5Aoq+TzXNISEhISEjIZvzd3/0d3/ve97jqqqvIZrN89atfbVj+9Kc/HYCPfvSjfPnLX+aTn/wk4+PjAFx99dVcfvnl/PM//zPpdJo9e/bwne98h5/+9KfceOONRCK1t1XuuusufvKTnwCQTqcpFov80z/9EwCXXHIJl156KQCHDh3i2muv5aMf/SjpdJpt27bx5S9/mYWFBf7oj/7owe6ORy13/b+TnL1jCcOSXP+Gy0j0hnOskJCQkJBHBqFI6efA7kPP4ezxr+K5ZQwjwu6dT2dq6kkbxEnRqKJclrgO5Aui+oawG7Mw6153NiOKnbs0czOCfF5y4qiinXDDixn0jinMLGQzrURMfhoBw4R8VjJz2k9H4MUiWNmNgpvxaegbhqM/1ihPUGqlA4oJ5FqZfAFmHDq69+x8jKSUh/P3KUo5P6gg1zcKlACWjjlkl7z2og0h2HGFRTlrcP6ucptCNVZPOayecWoKDa03CJW6hw2SYybLx8vttyth6vIEi8dt7M66KABK67W3jQF0iyCXcmHuvi0ElCyTwhYCansfb5KaV7WUY0I88OCalEE/PcA3oU3DXz9Q1UgT9jzOZOmUR3qhfZ2lQrBeJ8srYOF4m+WGURMqKVib6VxPPaP7TErrisxC+3WSQ5LuIcnymSYBUt15tXzK27i8DfFemL7M5Px9bkOqxXoWTyqyq6pBoAT4wcFgm8Wc36fxbthxsWT2PkW2zTV57j6FBoQDIm6i3Kbjoahe8+PTfurII3dS3R8ZuAF4cYu1JUkuo7DLvnBoYAjWVqB+rHICQVIs7jsdpEsSu8XLteWS5L57KuOcYtdeP0C4suyvr0yJFzUxyh4IyOUExcD9KRJR2A4QBP4Tse1MT/0PBvsXue/oZ7n99tu5/PLL6erZwX333MrY2NjGBoSEhPxSsb6+zq7nPJ/U929Be4qhi69m+LJrMJvyVQo0EvAQlJVsmEmVhhrTR/UZHglDMWdbFJXkVNminWhHjSri6xrLBgdwN5TT9EjFupLYWnK8HMFFUBjTdJ9rcsdDMx1zSLkGK45ZFTE1Ux7S9B7XpKXR8e6csBRj3S4zGQtHCWwPyr2CwXuKDQIlAK0Ey4tQ7jCligxIxs0iS5maaLcdWsHiKdU4fWgSKAkBXX0SNOTK7W+W8R6BEZHk1rYwF9FQyDSVM42G1HLgOwyV85vXpwwT7Xa+kSd6BT3DgoWTtf3VloF4gC4y2vTTsGlLtE3P2hHL9LcfqF26BwSJPsHSqQ77ocFxJDpuVtdrhVuG9aXW+6XrhFIVV8atYEYgOQyphfZlpISuHoFr+yKplttXsHCWLU9ZB0bBiGkWlgSiRTdrJVheALvFNeGnggMQVU3YQL/CNGBxudlBzadYgoVFA1XWWHg4PcaGOaIdCJqk0EwMuKRykkyhphqzAmF+ucdoECfGTIWrRJ2IyRdLVU7BrogiGtesKAOjhZg8VTZJBWLCmKEYjHvM582qkMmLCNy4wCxqXAV5T1abbgldFW8KITEmL2HHtovJzh5l+c4v8YIXvICXv/kmBq7+VU7/ywc3bjzkYeN//+//zd13380rX/lKXvSiF/Hxj3+cT3ziE9Xl3d3dXHrppfzwhz8MRUohmxJLRrj6ZRey75pJbvv4vayc9gfrE9+d4+wdS1z+vL0cetp25AN9LhESEhISEvIo58SJEwDcdttt3HbbbRuWV0RKrRBC8O53v5t/+Id/4Jvf/CZf/vKXmZqa4u1vf/uG9e68805uvvnmhu8+9rGPAfDSl760KlICuOmmmxgdHeUrX/kKuVyOXbt28d73vrehTMjPj3N3LnHHZ48D8MTfvYDh3X0Pb4NCQkJCQkJ+joQipZ+Bj33sY7zlLW9hbW0NKS12TD+VHdPXbhAnAfT1K6a2K44fg1JRMnMW3JgBsbpCUoGSuLavtRDVahrrk1IxtkOwsiZx1hQn7/PTL7VjcodGazh5xBcxNQepwHdXcm3B4iysp0F5Gx+0q4hBLK7YtU8zfw9kVyG73LmP1uYU5XztjecN243BtouinL/bdzLKr7QIplSCiLbD2hlNOdc5cDR9ZZzsksva6SaBUuXfuqDkBiFTC6K9JtEegWH6Aop2DOww6ZswOfX9UrVYK4FSckgS7RadU5yYBoleGN1jMHOPh7uJJmt9uYUrU8Mr74CEfVeaLJx0WV9qU1HzudtcRxO7LjdYX25Kd9IkBFOu72xULm4eQRrZKTGjkrkjCrxOwUs/Hctis2CpXqgEDO0w6B0zOPn9zpHVRI8fMO0kUlo87rJ4ktanQP15pfzzevoSi/mjDoV06/qK64LUec8/50Xr60N5fipFgPF9knKxJr4StouOmA1ipdSCItvBPare7Wz3hZDLCObP1gRl9cyfhvRKsL8ycEWri2FqKQKBEvT2w7ZpTakoKLQQ8pWKkiM/VSil0VHB1KQitQT5fP1+y+o/nltnChGMiwBe1AAM5mZrx3j7dgUCThxv7MPu7lEee/mr8dR57r7386ytHmdycpInPelJ/Mu//AsTExPtOyokJOQXkkKhwIc+9CHe+973ksqs03fFVYxdcB1WonUOze1RB1cLztsWBSUpKElpqL6E73+iEXiAp/3vKqnR6olJhTXssShNYssGJ5Ab3FMqxIVmm+Xi2hYFLaoCpXoMNF6w7dmyRUm1rqs0BKO4JFCkMHDalKtQdASpkoGjfHFSK7qTGmnAelpQKrUu4yX8uaI+nWN9ABzPCHppI5E49I5JVs+pRiedFs6KWsPiSXdTUYkVl37auE5ZYwSM7jLIrioK9W5LLeZePcOCwrruOJ/ShkH/mMApa/JtxMMV3LL27+9N+6EjjYKf7kFBrEt0TAtXSbNc/3c7oVI8CT0jksWTasM69TglTWETN0nwU6H1TwlSiyauTUexUveAwC7qjmIkIWFkWrC+oilm25eTEqJxgWFpvDYOSErB/Gm9sY+bf1MEy7t7/bRuqx2ET9m8xCiBdHXVsVF4TWK24JowTM3AkGZ1SaCC687Mu7hdZjUdXC4nMYzKmNEKQSk45+IxxfiQ5vyaiasEQjVuV2nBQsqg7ASiJamr263gSokM2juU8PAUzOda57pbKZgINBZgJBXdpiK9bjSNWxWhkW+KVWmSQFfLuXFBDoNSkHIuKhU7uhxmChYFr3YshBD0TB0gObkXNXcvR3/4Vc78n7/lqtM/4k//9E95xjOe0aaPQh5KvvnNb3LZZZfx4he/GPCPWzMTExMcP378oW5ayC8xI3v6eM5fXMXRb87wo08eo5x3cIou3//EfRz79ixXvfQQYwcGHu5mhoSEhISE/NLxwQ9uTfB/0003cdNNN234PpFI8Ad/8Af8wR/8Qcf1b7jhBm644YYtbSsajfLqV7+aV7/61VsqH/LAyczn+dbf/QQ0HHzadvZdM/lwNykkJCQkJOTnSihSegB87Wtf49m/9t+wy+sIaTC58yns2PcMIk1vhEtDkeyGTEaSToE0JKViIE6qw8y7JHsU23dojh/1nUlOtXgu6AXraQTJbo9iSZNeo6VAKRZTIKFUkJw7KSibJirWWggxMqkZGIVjP9EoV5BvCmrUp6ErFSE773YMPCSHINYtWJoVrDWJYeR6Yy4OaYBhCQyLxnRr9Q9MJfQOaTKzkJ7Z3H3ILatamhHYKLLRmr7tFoYlWD3VWaCEaVDOak7cUtrYribKOUUh5bvotBInVUj0C7oHZXuRUpA6TUjQHpsKlIBasKpD+6SEXErhtEpr10JYV6VSZwuxUmFdYxfbdGClTqWYP7YFayEh0Kou9Ysh2wqV4j2S3mGD5dNqowNWXfq3YlZjRlXFoKftdk/f4VT/30mUhYJIFwzvtDh/T1NUrU6opFxwnQ5pbIJyiyf8ApGEwkrIjq5kpiXwmpyPqkKloM6F0wT1aYYnBeePtd+X9IJLoRSsW3esqruqqI4FEzsg2QdH72ysQwfpXtIZg/JhLwhgKXoHILMG9QLLyjhlmtDVrcnlDXTgtCScuoOjJGdP1/7cuUujlMfZU7WguS9WAqPsMTsrsYL4XCSiiEYhm61t15DbuPBxryOTOsPKzBe55ZZb2LZtkpe97Pf4u7/7uwZ745CQkF9MPM/j5ptv5lVveCNuPk/fZVey8+rrsXr6sJrGzYRUlJXAQ7DkmNU0bI3iJIitwkTERWuYdyyynkHW25jzqjDuj6MRpUhqxbL2BQkbBUqabqnIKYOilpy0LdKjrV0JBZqdcZuUa7DqmBRbzOPq25tFEjnXXggh0AwlPFIlg3xSsoCEuqFt8J5GVYlh6Lrbfl2qp0TtZ0E0ojFm83iaqtufNgyE11p45DlNetdmgZKAvnFJdlm1FaXUygrWl9qLn+tbXsxqnFJdarkWSAMSfRK71DQ/rN+HYO6glL8/WkpECwFvBbsEdrDdZoFQPa4NZdHOhaj9epVlzWIlz4FSTkMbw8vKnKBccCkXNheHu9L0py+ytn47oVJXvwABdgfRuQ4cGTc7xrYjWDi9NZcsgO5+vy+L5fbzVc+rSwvXqirLaHBI6op65MuyIbVavWBJSv/caT79KkIlgJIjwPH7pS+pKJUF5XLr89V2BMVVTWUqV5lD1YuVSo4Mtq3ZPuSymjXIFhv3WQXtnc1bGMG6EUOhdKOrEtTS0EUNTZepWKn7DVrvrlR0JcXAjdeSiqmky/mcCWlJua8mVvILC+aKJoXghZYuQ1HwamOiEAbGtovZdcFF5I7exeHvfYVnPvOZ9By4lDu/8Bl2797dsn9CHhqWlpZ40pOe1LFMPB4nn9+CffAvMPfccw+vec1ruOGGG3jJS17ycDfnUYGUgoPXb2fn48b4wf89ypFbZpjbluJYYp6f/uNZnrLrAq580cEwPUlISEhISEhIyBawiy5f++s7cIouo/v7efzvHHy4mxQSEhISEvJzJxQp3Q/uvfdeXvSiF3H33XcDgrGpx7Hn0K8jZaUbG4MZY+Oa/n5N9l4/QL+Ua3JOwndFAsjnIJNpL2rQCcH0hMv8ksS2JYePAUhMWj2NV2zfrXFswYkZk+LGpgWp3vyA19pSIKhoqqoqTpK+gGplUVDIy00FJ119kliPgNnG4EO9QCmS8EVJdh5O3Vb3lLxFIGpgDEYPxCimCtj59tuW0g8ubSUVXGLAwIwGIqV2mAaj+y1Wzzo1AVWLlHEV8iuK/IpqLVCqW2/xuMfiyc4CJfDT6OVTm6f86OoHzxOUOgjHIEgxd6RF/3USKNXTQsDTNvVaU/3ShOSAJtMh3RvA8tmm+toIldZmFWuzm2zbMMiveuRXO5RrOpaD05J8SlFqThtTRyQuSfQJIgmwC63LKBfO3ll3bnU24WJsn4kVE5z8YfvjPXNvbVmsG0pBGsAGoVJAIino6hWBQ1rr+lZmQEf9KOfUXlhb8FNC+jvQ2NiVOSjWpR00ig5evPHN/WLZAAk9Sdi+U3PaFeRapGdxXcmRI1ARME1MeGSzglwbt4xMupa6RMpK6ruas1JeGxhZv2+GRzR9/Zr77t0o3uzt30Fv/6sZmDjK0Z9+hn/4h3/gs5/9LK94xSt4z3ve03rjISEhDytaa774xS/yR3/0R9x7770kL7iMoWt/lUj/YMvyEs1k1GHVMVh1ffFPszhJVJUdgpwnUR1uS2LMY1gplqVJWkjSQradA3RJzXbL4aQtSI0KCi0ERd3ngMChZMk2KXQQJyVQ9OIxj0kBSaTD1EYKSEQUqZhBs9lRTaCkMS1wHUEmXWlbkNYp0fxzQDMmC5SHBan5Th2EnzKsxKb3ZNOCWLekkNJ4Tvs6rYTAiopGZ6Q2cy+tqYmZWs29gnmL8mDhePv7a0WgBJBpk9assV6IdUHJMdCbTEVKWd1yftZJoNRcrl6oVC+O6rhexMSKgnDc1uL0akFYaZqvtxMqNafyq++3ejbtwzpRkGFCogeynRyzgFhCYBuaYofroJirzVU205yblmZoDFhQ5Mu1/agIloTn/45aPA8gEMIX9nleo6NSDU0s7jvXthMpeZ4gnRHQI4iaimRcsZI1WoqVlILVrEG+6nSmia57lHtqbVUIVLDuUMJDAOezrV2VMo5BxvFT0llC0xfxWMFAtnBSU1qwbkvsYF/rXZUA3LgkhcR0NRLNRNxh1TZYsxvHESEkyQOPoXvfxXTd+yOWvvNl9u7bz/P+22/x//1//x+Dg63H8ZAHl3g8Tjqd7lhmbm6O3t7eh6ZBDwJKKT70oQ9x4MCBh7spj0piPRHs52k+ecXtrOjaDfBr2Xt46ocO8cIrnszB66fCFHAhISEhISEhIW3QSnPL//op6fN5Ev1Rrnv9ZUGGj5CQkJCQkEcW4d1tC6ytrfG0pz2NCy+8kLvvvpv+of08/ro/Zd+Fv1UVKJlF/2F+Mqno7/cjFgtzguNHJXbE2uCeBDDU73LBXhfTVCglmT1r4Lq1Q+LFjOpHSuju0nTFKw+wJWahMYAgTYVp+rmZTp+3OHW+tQbNytr0Dmr2XgzS8NO8rS36qU1UxKh+qvUC0Zj/MdPtczxYSYk2JfNn4PRP2wuUAKYfG2P8wuBBuhC1TwvWzjicvq2zQCneL9n71C4Sg3WntNZtIxRzd5U494M2URvTANMgkoC+SZOugU0CSRImL4kQ6e7soAR+ShRgo2Al2Gb1z4if0mxThGBkl8nY7s2DXWYUol317ZZbFyjVba/+OBkmxFpn2Wmgqxe2HTSJ9Wy+PcNs2ndDtnVHMKN0HsWCANrIHpPeiU22LWFg0qR31Oh4PuZWFMe/a7cWKLU453ZeYbHtUN212KLe2Xtczv54M2sJn1gSdl1u0jtW9+Z/UzAxvQTHfqRxHYG0BGYbsyBRdpBmcG3Xv9RaOTeC88MuQSpwRRvdDjsO+kKlVqxnDU4ek+TW/XVjsSaHubJH7aApkt2KeEyjLVn91LO2Ikmt+t9NjXvs3+XSfAF5UQMvanB+VnDyuEQp6afFHPdAqOr4DPjj91P/mMsf/1tIafDe976XwcHBDbnXQ0JCHl7uuOMOrrvuOp797GdzKldi++/9IRO/+TsNAqVoyg+gD5guAo1CcKZkseoalIY2uieBZhcOI4GSZ90zyKnG+2dhXFc/ca1JVsb14L4QW24cw63AJSevBPf2WaRG26RYOweTUZd+U1W3Xe/y1NxeC00MjQT62giCDaGxe6HQIzmmI+S9xvGz3kEp0QUT2zSm6QvUvYSFlzBbCJQABMvnNOkWwuJ6YUr/uGRgsune6not07y5Niwcc9u78AT9G++RdA9uPleI9wq6B4K+7jD3EsJ3w2mFNoyG/bFibbOvNmB2GwztNLG2YMRnRhvr1JaxZYFSu3XMSPt9qqdvRJActzYImVthNbczYm5cr2JY1VoH04AZgf6x1tdCPdE4JAfEpvuzcl6TSW9tzhqJwfhOXxhXobnPXUcwfw6K+dZt1IYIPv42B4ZgZFxTr9Iy8/VzL8HCkiSTE2jhp4pr2751F8uAiNnox6alqH5AkC1KlBZIoZkcdIlFFNH11mK7uaLFQsnfYUPoOjGmj5WvObHFDEW3oRCAF6t9KnhasFI00QgModkbs0nKFtd0XGDHJafzEVK2379J0yMWvIATTfltENKk76LHs+flN7H/Sdfxb//vc4xsm+Qv//IvyeVyG+oNeXC54IILuO2228hmW7/dsri4yPe//30uueSSh7hlPz/+4z/+g4MHDzI9Pf1wN+VRyddTP+XGUzc3CJQAct1lPv8rP+Z/f+9bfO7tt7F4rIOFcEhISEhISEjIo5iffP4UZ3+4iDQF1//hZST6QifKkJCQkJBHJqFIqQNKKd74xjcyODjE17/+dbp6JrjiyTdy0WNvIBJJtFxncFgzOOQ/nLUjFgW58Um+GTy8TWclK2sSt+ll5ZowSTE14WJIhetK7j1qkMr4D4GbBUqg2HVQMLlX4MVMSiXZMg1chXIRyiWqz9qbhUkA8YQiEvEFVMcPC7InN76+rE1fmNQ3KdlzmSDaoluaBUoA84cdFo+7HdOTDe8xSQ76DSytd35VvZxVrC+6lFJBuTbipIGdFr2THYI1dUIhuwDHbymSmevsZhTrFsT7DcRminah2fnYCGP7m7ZvbozM9I1Ldl5mIjvFlYK+O3uXx/kjmzsuDW6T7HyM+cDESa22LQTDOyXTF20eKcum4Pjtnu/+s8m2J/ZLJg+1qLMpCGnGYO9VFv3jm+yLYZDoM4h1b1JOwcnbbRbr3RY6nJ9mDLZdYLUeRevOv8yix/pi53R8yvXT+kmhmLzA6BgALGVh7pi3wZWqXXqW7QcE0xfKtsIrnXc5cTdkVvxlyf7GIFzz+WKX/LSPncjnJVoKuvs1ey6A7mQroRKA5Ogxg6Ug6D866pFMqpZiJYDVtMFqWlKxpqo40VXwohZ57Xdeby8MDWkibfqyq/9xHLziTUzuuoZ0OsMNN9zAwYMHOXr0aOedCwkJeVBZWlriZS97GVdc8Vi+d/dhtr3g95j6nVcTn9jesrwpYMjyiEt/3FoflJSGGsc6SWVcE6xikGkxcFeESV1aMRDYWq4IySlpVsfOZoFSQiimB8roUY/CGBQ7KlwEZSWoNxHaKKTSdAUizAwGp7HoOb5xPlPuFZR7YWTUZSxaGfubnAGbUrwV8rCYNSlHrDbCJD/F1GCfR2w+h+e2d6KpCHuK64riel2hFuIkIf05TUcRSt29aX1RsXx68zmNFRNEutuLmCsk+iTj+4wN22/lAjQ0Jegd7iys0ZaBU4K5Exq7k0NRwMhOg+4B8YDESa22rS2Dsd2SeM/mAqC1ec3qXJCSroNQSRowtlMQ726xzab1ekcFwzuMti5KFYT0hfGbCZoKWZg/qdunx20i3g2JTcTxThny67XUb+363XWCdGVRj+5khxR2hiC1LlhZ852I6mkWKoHAsjTbxj1icYUWoFscKntZMZfyhUCmoTGNJjerqljJp+wKXK/9MVda4CiBMgQjPR5jvRs71BcqQdY1OF2wUIEIaTjiizybxUp+vbDqGuSD35SyRY7BUkzixCWg6Y8oeiOtf7NJK4K88hnsesUf03fBFfzx29/OxNR2PvOZz6A72V6F/Fx54QtfSDab5Q1veAN33303XpDCs1Qqcccdd3DjjTfieR4veMELHvA2CoUC//iP/8iNN97Is571LJ785CfzpS99qWVZ27b58Ic/zHOf+1yuv/56XvnKV/LDH/7wAW87k8nw6U9/mhtuuOEB1xHywPG04n0z/94qG2l1+PzOtUdZPrfOf/z597n1Iz+lmNlCbvuQkJCQkJCQkEcJM3ct86NPHwPgqt+9gJG9/Q9zi0JCQkJCQh48wnRvbfjMZz7DC1/0O3huiaGhES56zHPwjL0kuxQ7JsocP2tRsiWTo2WG+jQzpyWZjCQaVWTS4MYMuuKKXVMuJ8+ZFEqSiVGXsUEX25EcPmmye7tLMQUgicUUu/ZqTs+Z5PIwNuIyNOAhEKxnJSPDDqWSYGZOEokoDuz1mDkjyGZgaFQzOC6ZmTWwbdi908FxBedmTExTcWCfy+x5v9592x0MA47cKTh3DLYf8lMKnDsFSMWhCzXz5wWpVdhzUBGJwB23A0oydUgiJJy7R6FNyf4r/Tft1+b9NHXSoJpaats+sCKCc7flAdj7lBjpOf9BfimjGb8gwunb/ejO+CGLaLfgzA/8lXc/Mcr6gkeiB2LdJuMXRDl7e5FyVjF6KErXgMGp7/rCp11PSpBfc1m81yZ1zmHPU7uY+VGBYkozvD9KctTk1K1+G3Y+MUGsR7I+71JMK3Y8IcH5HxfJryqG9lj0bY9w4la/TXuuiVFY9Zi728GMwa4nxJm/t0x2STEwbTC4w+L4LX7Zkb2WnyIsC9KEvVdFWTjmkFlQ9E9KRnZZHL21DApcWxNLBk/oJOx/UpTFUx7peU3vmGBst8Hx77uszCi6hwSThwzO/dR/eLzvKpOVc36as+SIYGKvwckfebg2jO2QRGKCM3f5ZfdeaZCaU6yc03QNwORBk5l7XHJpGN8riXXD6R/7QYTdj5WsL2uWz2gSvTB1qBbMG90t6OoTnLrDL7vrckk+rVk8qYl1Q9+YZPGUf1xHdkiSw4KTP/LL7rxMUsrB/HFFJAo7LzWYPeKRT8HQDoP+McHx7/vr7rjUwC776ehWZxVTFxkkhyC7AgPbBEPbJcf+ywNDsv1CgXJh9l6PxeMeI7sMlIff3xOSkV0GR29zQMHURQYIOPNjFzyP/U+OsnTKITWr6B03GNtncvw2G+XCtgtNDEtw7scOyRHJ+D6TlbMuazOK5JBg4qDFyR+UcUswccgk0S8wDEk8CZMXRkjNeayc9ugakExeaHH6jjJ2QRBJSHrHBNkVjRmB6cdYZJcVSyc94r2w/eIIZ39iU1qH8X0Gw9OS1JzfT7uuMChkNAvHFdEu2HGpfxzT85rhHb6DxfJpxdp5xc7LDEp5xdwZSSQGOy8RzB3TLJzWDG6DfVcIjv3IdwPZcZHAKWnOH9MYJuy5HObPaFwHdl/oX8f33O6fA9P7NUrBzHEJUjO6XbNw1l+2Y8qhd1jwk7skKMn0Lg8h4MxJ/wSa2q5Yz0A2L+nrV2zbrjl2r8B1JVNTLhFLc/KUH8E8eNDGsmB1RSKAqSmP4ycMnDxMbveIxeDEMcglTA7usUH7Y87Z85Kdk4rjZ0xKZcnkmEtXQnHiPoPMOuzZo8iue4i4Jp0VTI97nJyxKJQk20Y9LthzHXcfewqZ+f/kyH0/5tChQ/zqr/4q//qv/0p3d4uIbUhIyIOC4zh86EMf4sa33YQQgoue+WuUH/MkhDSYxEEBc1gINAdEmZKWzGERkwqtNUUlKA3BNhwEMEswtlAiCsxgYiMYw+XcagQFjFoOpoDjg/50eL9nozS4QlBWsF17HJcWLjCmXJIWzDh+G3ZGHOZ7BWeFidCag67NSdPCFoJRz6VLa06ZFn3KY/eay7JpsuyYRIVix1CZM1iAZAiXXhQniZBEcSllTmFxHosIsLPPZi5nUnYliUFFn+VxuhgBBL4swMcUmh1xh7mSSfynZbq6Nb19mkxaYJchOSbxPE2hCFJoto15rKQkxZKkK6EY6FUsrRp0l0vEJgWei5/qTcD4HkF6QVPMQjwJ/eOC+eMGpZxH37ggnhSsnfXd9cb3m2QWPQppTbRbMLzTQLmQW1UkRySmJVg9589VxvaZZFcU+ZRfdmSnwdwRF8+BnlFJJC5YOeOXHdklKaQ1uTWNFYOuPn8OCpAcEsS6Bctn/PnH8A5JKavJrmqcssYwBYblz1W7BwXxPoOlM/66w9sF5SKsL2tWZzVD2wWFdbCL0NXvuzUtnvTrHdxh4tiazLIv4BrfLVib15QLkOiF3kHB/Cm/3oFJifJg+YyHMgzG9whSC5pSzu/DvlHB/Am/bP94o0BofLcgveT3d6zLdyRaOK3RCvpHwXYFxUC8P7bHn8PlCxBNwMC4YPGML/rp7vfn4ivn/e2M7rfILbnkU5pIHAanDBbPg+dAfl3T1SsoBKKz0WlBfl2TS4GZNBke1yyf9cinNYalGJk2WDrrlx2ZFpTymvUV30FpeFqwMqNZOKnpHoCuXsHiab/s0LTEKWkyK75z5si0YHVO45ahZ9hP67YQlB3cJvAcTXrJv9+P7gTP80VIAL1DMH/a///gmP97puL62JX0j2HJlcTiiv4hwdw5QAsGhjVCwOqSPx+f2K4pFjxyWYNYHAaHNHPnBVoJ+gcVhgErSxLPhYlpD8+BlQWBFfF/gy3MOpRjFv29ikhEs7jsv4TS36cwc5DNSSJRzciQx8KigesKensUVr9mLmUx1O0xmHQ5v2aSLphETM14n8t82sR2BcmEImKA6wkEmgu7isx7JqslC0tqJpMO8zmTkifpi3pEpeJ83kIZgslEmbIrWC1aGEKzvcsfI4qepNf0GIs7OEqScgxGog6uFixhYpU10z0OS3mT3IpB96BizHLQCJYdk4RUaGA+GA/3xGwWpMm5vEnS9NjdbbNYMogJQUJ4SCE47/lj8qEei8Wn/Tq5y57A4rc+x/Oe9zy6p/fylf9zM1ddddWW7hchD5xLL72UP/zDP+SDH/wgr3vd66rfP+MZzwBASskb3/hG9u/f/4C3kclkuPnmmxkdHWXPnj38+Mc/blv2L//yL/n2t7/N8573PCYnJ/nSl77EW97yFj7wgQ9w8cUX3+9t//3f/z3Pe97zSCa3YPUbAsAnFr/N/1685edSl61c0l6+fQEBuZ4yH3vVLRiB+6O4CyIJCzP6wIW8vzP6FP7H6DUPeP2QkJCQkJCQkF8EMgt5vvWhu0DDgeumOHDt1MPdpJCQkJCQkAeVUKTUxOnTp7nw4idQyC0ihMH03qfzhKueTDYvyebBdiCVlbjBS6L5gmS4xyXZo1ktG6zlNAXXf+jtuJBaF7guSKnIFwTLUlIuS5SC9azEziu8mEHZFKTyCttRjAz5QaS1lMHCokQFIiY7eOPXcyGdEjhlmD4giFiCdEaQzfkPetazmuClSJSCdFpStiEeg2gU0utUXZNy6wpVeeFVQToF5ZICTGbOKLq6/e/NdJFcAgickwDWVzTJIShkfGem1Tk/gAKQT4Np1d6hW1/0MKOS5LDB7GqJ9QX/IT9AIe3hFGtvwmeXPIqrNsv3eUQSMLAziuf4FRdSHqrehkDA4I4Iy0dtXFuxPu/glPyypXTjW8TZJZfV04r1BRfTJCjrLyvmwFj0y0sJsW6JWwJwUC6sL9ZSlJSzfh0A8SGTQlbjFFW1DzNLHuUgNV05p8ks1dqROu/5EcXAPSmzpCgXgnrzmsySQumgnnndkHpjfVlRzvsiE6cImWVNVy/0jknWVxV2XcqK9RVNMReULfn1lot+gMWMKJxyrWx2RVPK+m1wypBZ0QxM+MsL641vt2dXNaXgTWzXhvSiJrcmAE0xqxocd7KrGqfkl/UccB3NwDZJPqUoZrX/dr2UoBS5VY3jBq5ZWcgs6uqxKec168u1Y55Lgw7atDaniCREtb9LeUVmSVSzgeXXdO2ld8PALmnKQb+UC4rMoqorq5CG75A0eaGJXQjKAnbJP44qeGE+n1bYBcHKOV8Mtb5Uc5NwSsov6wBaU8woPEcwts+gZ1iSXqiVdcv++VIR960va+ySQ35FgSHJrmjKBVXtw8ySqpYtZhVaSfq3CdbOQ3bND8YCuK5/DthlKBcgvQyeo5nYC2tzkFvzBUkIgVaa9UWPcsmglBfMnNBEqi6ymlyG6nWNgvU1QbkMSEEkqvAU1T7MrosGo6x0WpBJCUBiRlxiCYhENa4L+ZykVOcckMkYZLOabFYSi4Ft++OmtkxyJSh7dWWzMlgOtiNJZTyU9lNd5goC15N+CjgM0gUXrTxGEh6ZrOmP38FxLJR8RybTTDA49TyevvtJ/Net/5cvfOELjI+P8+d//ue86U1vIiQk5MHla1/7Gs9+0X/HXlum7zFPYPKaX6EvEWeJYK7S5N+R05KBkmJFaLL9AoFJMRB55JCBn4lGA6uYSDTrGEg0axhofOekNS2QGiJaE0WTEpKcEBSEJAKsoavJJQtCIhREhWJ8wCEjBCUhyUuJpTVrUuPVlXWFnyauVyk8Jcj0SUqAi2ANAze4ORXrpEZZJCexWA/2u/uEIhOTFLsljhZIJSh6giHLZcUxWHNqKeOUhrTjl4sDjgPrjkH3sKZQFBSLwp9fBFvL5gVuZb7q+H9zJs8CkKhPuar9OV3l3uM5EE0Iugc0uSX/Hi3qJgr5lKqKSDxHs76oyK4qtAd2XuPWjfv5tK6WjXWBFRdVUyW7oPHq5nvFTG1OYSUk+QzV+YlTrM0/AYrrdfdDG9ILCuX67km2DdS5PxWzwf0wKJtbqznwOCVNIV1z4inm/DlR/6jvKpjP6Opc1i37f4PvPlTKeWgFtmeA8vvQs2vbyadr7S3nNaYJkbi/8/mMbujvfEZXXa1KBd8J1ZMGwvPFYE7gctNc1ilDV68mEqu111YGOgKe65JPKbTn71sh0zhvL2Rrx0Z5kMsJPGmii77IyUzUlV2vtVd5/r5V5kue68+hADAExVytz7QK+tCFniFI9gvSdfO9Uq42B1VSkl/3HZJcByJR///V41gXE9c6cFLyYHw75LP+pzKINLtBrixCIQfS9duSy9XKlkuiwYSyWBD09PmiOrsMuXWq11XJJnA7EuQLAtPw29Lfq8jmfMG2p31nJdsWqFUNEpbWDWwPyq4/FngK1ovSn1/huyhpfIdKywQhNJ4KfhNqWC/L6jhQ9gSpskHZ8+uKWUFqwKK/SxlH4gbrlpVgpWyyZhtoBAVXEDd91zk3CmktKUUAF2wlSLkGjpbkPImCako5DaRdA1sL3LikIGBNCBKGwirCStxA1A3gKWVQRuANjjP+Wy9n5PS9nPz6f3D11U9i+DFXcewbX6C3t5eQB4/f+I3f4NJLL+Vzn/sc9913H+vr63R1dXHw4EGe+9znsnPnzp+p/sHBQf793/+dwcFBjhw5wite8YqW5Q4fPsw3vvENfv/3f58XvehFAPzKr/wKL33pS/nwhz/Mhz/84WrZ17zmNdx9990t6/md3/kdXv7yl3Ps2DGOHDnCG97whp+p/Y828l6JJSfzkG6zlGhOG16GrWU+b0ne24K1YUhISEhISEjILzjf+9i92AWXkb19POF/HHy4mxMSEhISEvKgI3Torw74qd1e85rX8L/+1/8CYGDkIAcueSGmGWtVmslRj3TWIFeQmCUbN9o+n8HkqEtPt+LwSZP63FCVFAFerPbWWDym2Lfb5dxsLbVbM2bBxYv5+rKBAT8Ikkq3f/OsK6HIFwAkhuNAhzRww6OKZK/m1DFRbauZLlaFSfUYJuy6xH9DO7WwsS65XtiQXkqatcBFKyIJmLo0yvkfFyhlOqd4A7ASkByzWDtViXi0Pp37tls4RUV+uUU+CWujVs+K+8GeTm3VpsHux0dwHc3ZOzo/VTMisO1Ci8VjLuU8LVO8VegagMFtBrP3eY3bb5Gqq3cEBrYZnP5xhzwZwXpDU34gMtPiWDVz8MkGy2d8J6ZOmDEYmpKszKhA1NWeoe2CeLdg5nCL46pUw/4NTPquCHNHOpwDQfRmdK/Es2HlbOfzJTkkmLrY4uyPbfKrncvGeqC03mJBi/NLmjCy22ThuFsV6zQQ7Fc0KUj0SlLnNz+vAaYusSjnNUunO5eXBhvSpLRK6yJN2H2JYPW8Zq3VOaA1um4c6xvSDI3DqcOg2qYY0XhRP/1aPKEolmg7vpimYmybZvasP7YIpVFt35hVHDzokcsJZmZq+yICsWJzqqKRIZfhAcWREyZem+0btoMbiwCK6QmP5TUjECltxMndxZ0/+BzlcoEdO3bw8Y9/nGuuuaZNW0NCQh4o8/PzvOENb+CTn/wk8e27GPmV5xIb29aybAxFH4oFDEAQS2mKQ63HJgPNHmwWMMnQOM7EVv1/C+O18XxSucS14ri02qbljC0LCmMaoTVjymNJGnhtygqtiaApC4nQGqPoCxfatXUHDguY5OvmiH3HFeXeFvd906Pf8jhbtNAt6hy8pxiMkX56OyEqopX2qaL6ehRSavKHN8nlGZDo9QWwqhTcfFqleROQHJZkV1SDgKihQBNm1Bf7dCLaYzC8w2DxlFcVM7eje8DfRi6453dKUdY3KrCLmkLdvV8o1TJV2MC4LxYqdIrpal+M3dUryKU2T2eWHICeIcn5Fun9mokn/XRqHbcfMDwlWF/13Z6aEbZbnS9IA/pGIbtGx34VtosZhZ5Rk7U53TYlYHX72/1jsHxOg9H+HJT+Zd1y3t3qN0g07guVix0MOwASg5JivtM8poYV0fSPCZYWRcfy/jVVWR5cZ57G7do49+ruUvR0a+aXZN06dXVpsHv89QSasT6XbMkg12Z+UilX7jYATdTQgSCpNd2Wh0aQd4J0bZ7G6Wq9b0nTYyzmcjofqYqeAIzKSwN9te8Emp1Rh7QnWXPbv/NkFRWlfklCKBJCsaKCA92Ma1O+8xZOfe8bGJEof/Oe/x+///u/j7FJWsGQBw/P834u/V8RKb3tbW/jmc98ZsOyD3/4w3zqU5/iC1/4Al1dXdXv//mf/5mPfvSjfPrTn2Z0dHTL2/rUpz7Fxz72MeLxOAC5XA7DMLjmmmt429vetun6R48e5eUvfzl///d/vyUnqcOHD3Po0KEtt+8XlYfUSSmgz+jCwsAuurjlxhukFTWwEiaiQ9r1ZkInpZCfJ4+UazskJCTkF537O/eq8Egdp2fvXuHLf/lDpCl43vufTHIk8XA3qYFHar//ohP2+0NP2OcPD2G/Pzz8IvR76KQEfOUrX+FZv/ZcPKdINNbLoce8hGRv6yBZhWSXxnEVGWWAbidQ8p090lmJ0/TQ3YtJhFd78JfsUmTzUCxJ7jtmYjutHzh7MYPhPo9YzGV2zmRtrfPDw2hUsWe3y8ySSeacR71IqhW2DXYQINKmCP7duI6U/tvRx+/YGJ3QFSuV4MHS9ssj5JY81ma8TUU/OGWcoolb3kSYYQIKnAI1gVIH+qcsnFILkVKTWMiM+W+4O5vE6XSw3ukf2ZiRTTdPJA5WVOBhbHrVmabAiLCpQAkgs0SDU1MDTet0D0rsop8WrRO6st4WngsaBvQOCdaXwC3V1hUtola+4Kl1NEsbBkLV2iUNwabPxQ3/PLMiom299WRXNKd/ZFNcx++bDpG1ikDJinUO1gFEuwR9EwbZJUU+1aJvg+2Uc4Jyzl++lUCsU1S4Zb1pW5Xn17f9YoP5Yx7FNkFL1XS9BiZWNZrOF8f2nRc6B1YFRlnjxRU7d2uy6zBztnVJ15XMBsticcXYhOb0vASn1YkmOXq09ldXl6JYBGX5x1xZAlnnsLGelRiSOoGSP/bW40UsvJgg7kIyoUhnJbQ5tlb3pTz2mos5fs9nmZv7KU9/+tN5/vOfz80334xphrfNkJCfFc/z+MhHPsJr3/QmpDQZ+/UX03PR5R0DUhaabqEwtEF+1GsjOPEFA17gVlRoGgdK2xxURZQRCIlKQjInDBBG23ut2lZiCIMFbWILwbzReRyYUB5Jrbh3myZ6upXYva5u8F1Fgr/Lg4ET41JjW3xnKEHGNci4kuabtBsID7yESTSi6e/1WFo1UKrzzdxOGshUqcG5sR0VUWxFHCNU+3uTFRd0D0kKGbXxftfUz4bpzyk3uy9iGpQLsHjSq7r8dGyvGdxCI6ZvOdOpbAvthI6YLe+/a/Pt66nMmYXjYZjQ3dfomtR+PQNtCLTlr9uJWMI/XSvHoSI0EvbGSfbyTIf5QyKCCKxhlQeGKZCycz/piImyBGbEF2FVHJTasTZfJ9DqMJ+plQnmJ/VdsPGWTnevX11bkVLwWyS/HsxLAyufVkKh+jZ4ti/k8Uyj2jfNVOroTmqiMc3qMv6xqxz7uvVyeUku314wqAXouqmL44lWmr/G7SOI5BTxAc1wwuV0JoLXZr9yTm2cHIq7lFzBmmViOBuPQ9Y1KOYrrkyamNSUlMQLhjA3AWah0gZIuZJ8dd6lafXDwYn768dtRbdQrNBmcm9GiD7uaew5+FhWv/FvvO51r+NPPvi3/OhLX2T37t2dOyTkfvFv//Zv/OZv/mbHMp7n8Y53vIN3vvOdD2pbjh8/zuTkZINACeDgQf+t8RMnTtwvkdJznvMcrrvuuurfH/zgBxkfH+e3f/u3W5ZfWVlhdXW1+vfZs21+xDzC+R+j1/zcBD6eVjzz7r9gycm0/HUugBGrjy9d9HaMYOKxcGSN224+zNq5bLVctMviihfsY/9Tp5By62KlkJCQkJCQkJBfRrTS/PBf/QfhB6/f/gsnUAoJCQkJCXmweFRHW3O5HL/2a7/Gt7/9bRCS6b1PZ3rPdW1K++5JKymDki2575TZ4IDUzPiwS7JLc+wM5AqSXKH2dN2LNT5pj0UVu3e4zM4brKzRUaBkFjyspMaKBDnB2oqO/GVFbXJ6TpCfczuW7R+E1CpkUpJMqiZQMtMbo/gTeyDRIzhxZ3uBkpGpRQ08R+O2eBjesJ5pgAQ7D+d+UNpUc7Lt0hhWXHLqOy1eDW/B6e8VGtJQAS3djCYv9vNcnflB++iXrltPudAiJrSBYgZO/mhrDjqZpcYUce2CplAL7G2FM3dtbfv3h3Iejv7XJtGUeqR/FqpWWh4pq0KlzVyR6pk9oquuSptRrHdH2kT8kxyRTF1ocvIHNuVchzozmmPfKXcU4NXTv00yutfk1O02dgcx3MKxoF9NY3OhkgvKqaVlq3dHaMXAuO+ucPIu3RBgrF8vvy6qqVQS3X4KyXKxjRNIUXPujKhLodJpbIJoBKwIGCUPJ2IhWwSPVZ3gaMe0x3pWMDNTq7NeqFQqS+aX/GUDvR4jQx7HT7d2VSqaBvecoNq+yVGHlbRBqdxYVkrJ/oufh2s/mXvu/Bf+5V/+hc9//vO8733v41WvelXbfQsJCenMT37yE17xilfwgx/8gO7HX8nY1c/GiHe1LBtFkUSxgkkWg6yWlEZbj/cGmp04zAeORMtNU9zStkZB87j26NaKo9JCdbjPOlNlIuejRLSDpTV2pzf7tS8snRv3sBQdBUrRwHqvjGQWX+xeESj13de4DVNodsQdFssGWW+jmqYiUBq62642w1OitYNRHXbSH/dyFdFRh7JmBEZ3+m58pQ73xGrdBc38EXdjG5r6z4rB6G6TpdMedqHD5K9u7rUVgRLA+pJu6YTUirW5pm23EOiD72C0Wb9WsIswd+Lnb1ibWrx/5Vs5LlbQpqyKapY3cc+s4DmwOCPA3by81/wewSbzmeEpgXI1q3NNC5qmFWuLHatpQjO6DcplSC13aKsnWFkMzk9TN/RNK5Rq7Fcz5+B2Wy3WEwg046N+6u/MeuM1EMm42L0mWgpWspVxS9MV1eTL7V3Yimswp6w6gVJroVBlmSU1jhBEsho7KVoKlSoOSr2WYjTqcqrJVakmVBKkvFpbpyMOGc8g7bW+3pYiJqslv31RFN1SsdrCVclK9jH2GzcwevKnHP/G59h74ABvfP3refe73000Gm1Zd8j944Mf/CADAwNtHUKVUrzjHe/g1ltvfdDbsrq6yuDg4IbvK9+trKzcr/pisRixWO2+G41GicfjJJPJluU///nPc/PNN2/4/vTp03je5r9vc7kchw8fvl9tfDTwYnEFf8M3Wi7TwIvF5Ry970jD9/v/ez8LPzI5d0sar6wp5x2+94/3cteXjrPrmQMkJ8LrP+ShI7y2Q0IemTzcLgEhIZ049f15Vs+sY8UNLv2N8CWNkJCQkJBHD49akdInPvEJXvq7v4dWLt0D0xx84g3E3fbBJCmhL6mwHUG+YEC7N0EDCiWBYTQ+/G0WJ0mpUEpSKktOnTNZz7KBihBKSkV/l0u2IJhfrNTTXnS0c7dmPa9YXpOkswZWyzxUPr19MDmtKZcF+VLtYXErgRJAegnKxcZ903UKoIpASUZA2XD+p62djurFPoPbJf1jgtPfCxyENgliLB+3sRKbv/bfNWzg2ZpSRjUKY+oFSkFQEWDxmIPRPnNftc2xHpi+LMrZH5dbpwWr31QEZNzE3oKeSkqQVuAmsInFuZSw/4kGCycUa+fr+up+WKPXo1us18kZaSt1Na934CqD1Jxi8VQbR6XgPKqIlSIx381nUyxJPK4aRUht2H6xgfJg9h6343mWXVEsnnRrKVI2EQkhYWCbZG2mzbUW7FNmEQzT7ShQqmd4u6Zn1OTkHV4tnVxTW5QHZ+6qPUyXJqgOQqX1NbCiuqUDQiuB0/gOv/mnOzyry2WD9JCmYucezfkZRSHf+hrNZCSZjB9xtExFrBuyuVoqkkYkp8/4Lm/gj4WV8VdZ/nlW76pkO4JiSXTUrVXG1ajt0ZdUlMpig0ipghkZ5cKn3sjc8e+wfPKbvPrVr66mpkgkwjdbQkK2im3bvPvd7+ad73oX1sgwY697DbFdOzHW2t/LE2j6hWJNawptxEkVPKBQ50hUoVmcJLVGCcGiMFgRsuU905nyVTDdjkYp8ITghNE+FRxAXCvGusuc7pK4UuBK6BRSm8BFIziDrIqTYKNACXwtSMqRFJrSOrl1aZuG7raRQqO0Pw4ur7aep9pJ/3uBZrLfxTllU5GV65iJKLVW3Lo2pBc15TyIZnvQJhJ9gkJGbypQAl9wtDa3NYHSwDZfeJWa33xOYkXBVnV9YIi2bkoNgu824qQKyQE/hdv8yaZ58CbrtaOViKry3WaOShvWa+Go1N0HfSOC2WPt+6zeAcgwwfNo/7JA3TE04xJVVi2F5/VYMRieliyeC0RLHeZe6yu6QXxf//uiXqhUWd2K+jIXu41wTQTHPL0G7ibGq5W5q5Sa8RGXVM6gUPeSSbNgqZAXFPK1dZQSDUKl+nU0gmxOUCq3HkNqQiX/77ihGe11OZ8yKbd0nAQQFFx/hd6IR9TULBXapFNDMJ83q8u6DY88spoyslmwlHEktrKqrkrBrB7whUpQc1UCKCpJuYNLFYAX85d32Zo+qVhTRvvTbPfFTF2yj+zXv8pf/83f8JH/83+49T//k8suu6zjNkI256KLLuJd73oXPT09POYxj2lYVhEo3XLLLZu6Lf08KJfLWNbGH96RSKS6/Gfhpptu6rj8Oc95Dk984hOrf589e5Z3vetd7Ny581GV7u3nzSEOMZma4n0z/86iU7P4HbX6eMvUb3B9/8Ut17vgQij8Rpkf/J8jnPiur1TNz9vc/fEFDlw7xRUv2EcsuQUL65CQn5Hw2g4JCQkJeSjxXMUdnz4OwMXP2kW8JxRnh4SEhIQ8enjUiZTS6TRTuy4hlzqHNCz2XvnfGZq8xF+44W1ZxfiQYjktcV3J3bMRVJMwyCjW1hno9ejpVpw5b5HJGmSyxgZhUoVY2eHAPpfFFYPlFYP1bFNqoiaXpvEBj+E+j/uWjZbuIAAqUufWpLxqcMjKdn4qn84ZlE8oiqVNAjODkF2Fwrr/0RusiWoCpd4xyfihCKduL2HXpWLQLdyLAIqLZSKGtTHFWVMQQ5q+IKSUUZQyLaIiTesM7wuckb5X9yS9VRsCoVIx3T7S0uyglF1Wm7sJWCaDuyQD2yRHv+tuGsjpGRVM7Dc5druLu4k4RwFzRz0K6bov2wRQDRN2X24wf8Iju9q4rJU4qZlOYqWdl0nyKc3SmRbOWkI0rLNwwtuSA4OWkukLwYwITv1o8yDdxD5JctDg6Pe8TV2Vcmuq0VGgXbBMwWrF0WkLIq2eYcnYPotCprNwTbk1p6jK+dyJfEohjTqBUqXNFZratv0iA8OC03d6bR2V3DIsnvH/39Xrp0vp1I5zxzZ3jjDKHl40EA+p9q4NNfzxY2JMkexS3HPUBCTKCAJ+dcHkSpBQSsWBAx4ry5q5fO0hdUWsBI3OdckuxfCgx5lZA6UkZkHh1okbyxGDu2cFouRva3TQJZWV2PbGsW1i75OYmL6ME3f8M9/61rfo6e3nfe/9S974xjdutqMhIY967rjjDp7wa7+Gs7hI7/XX0fe06xBtUidaaLpRpDBIIVkY1mjROABFVwIBN5ptuCxjUEIyFzgSNQuTKkwsCga1w3Fp4QqB2xTMr4iTwL/f7cgrViOCJWh7f/XGfAWl42m8OvFp9FTnB0snBvwAvSfaD64GGlNqykqy6vj9VS9MquA7KGlGhjwcR7CabpznVIRJ9WhAnbM3CIFbCZUq7kGVtGUbWlCXPzQSFwxMGrh2k/Co3VxDQyG1NQelUnYryV19kc/wbkE2pVnfghHH0JTALkFqefP5UGEdnNLWBEo9g2DFfPepVm3cjHZipVgX9I0KFk7rlh2iI2ZVqFTMg9fsEtUGIy6ZmNYsz2hK7dKoBQgJYzshvSTJpWnxG6qGW4b8etN0pc3cq1w3XW/1O6PZUal/JJhX1afga7FeqVBzG/I33Xis6+fCSkExL3BzqqGu+uNcL1iyLM3YhGZ5EUqlmlCpeZ1sdf6riUVpK1gCKHqSmZSF7YmODmeRnMLulmi2MlUNBElCsy3qsmSbpFz/HPOsZrGSoOj53/VZioGIx5k1i8JAbX/cRK3epULNVWnccsl6klwgEoykwe6rtWI5YrCCRLoCE01SKlJqYwpLGYnS+6u/xtBFF3Pqs5/mMVdcwcRTruHYf3x+Q3qwkK3znve8h9e+9rW8/e1v5wMf+AB79+4FfIHSX/zFX/Dtb3+b3/iN3+D1r3/9g96WaDSK42y8X9vBmwkPtnvW0NAQQ0NDD+o2Hq1c338x1/ZdyJ25U6w46wxZPTyme1c1xVs7En1Rrnn1Jey/dorbbr6X1EwONBz55gynf7DAY1+4n/3XTCLCFHAhISEhISEhjxCOfnOG9cUC8d4IF/7qjoe7OSEhISEhIQ8pD+y1319SPvaxjzE6OkoudY7ekb1c8ew/rwmUWmCaMDzg0d+j8GJig0CpGSl1EEvZPA+E60rWUnKD5T80CpRkUNf5FYMTx9oLlPz2KroT/tP7M+ctVtKdNGiKqZ0e/aP+w+hiobHeZhelSBymDggGxv2/WwYO6siuKFZn3E0FSlKCKJYpphULhzd/W3LyMTGmHx/ftFyFM/9VYPaOTQRKQNegZNdVMcw2z0Kb224XYO6w0/lQW37/L59VnLtnc4ESQG5Vc/7o5gIlABSkFwKnISE2dVDKpfWGFClbEShtVr6wril3cEDQQlTXSy+wJZESwPIMzB/bmovAyjnF2Z8EZY3O5+bajCI913QwOvTD6B6DqUs62GsFrC8qTvzX5s5alROhZ0Sy74kRopvEWQopWDzugeu1irttaHtqzmPl3BbdFyRMHhCM7WyqsimHoWMLXFdgmpqdhzSxRPvj7bqSk8cMSiUJUtHT2/nEnz2hOXHGFyj5451fviJWqkcpSK1J0pmtnbeWqTGM1ukFq3Ui8WIGUipGBjwGezoUjnSz5wmvYs8VLyQei3DjjTdy9dVXk8tt8aQOCXmUUS6Xuemmm7jyyisRUjL+xtfT/8xfaStQAujDY0h4CDSlUdXxPqUBE71lxf26kKwIo+WtuypQ0hqhNVoIjiclS6n2Lpvguy0JrSkbgtPdBl6HwFkUxTQO7oCHKwRe0741uygNRzy2RV0qSpRWAqUagky2Mb0wtBYoCTTdZwusr4HTwlGvHisKE3sF0UCQsJmLkl3UzB91tyRQGpiSdA902KemuVdhXVNc3yR9cCDsWTqnq6KqzVib1+RazMdb4dpQDIZ8bcqODkqO7fdHuzZulebyngvFrO4oXtEREx0x8ZxaezfDdWB5QVDegtOjVv48LV8xyejQD1pDZrmFGLqDsH5kWmC10yfUXcCrc00CpTb4jkqakQno31STIEivCVxHIMu166+e+uPuOJBJCzYzfams092lGR32NjjuRjKNHWQHIqHuhMdgd+t2VFi3DZaLvlNSzFBI0b6spwWzyyapwIVJ1NXrWRuPSd6VpGwD1fGMI6jLNy3brKRG4MUgKRXD0u34C9uZmmbytX/I4LXXMX/Lt7n44ov50Y9+tGlbQlrT1dXF+9//frq7u3nzm9/M3NwcWmve+c538s1vfpNf//Vf5w1veMND0pbBwUFWV1c3fF/57qESEH3961/nrW99K3/7t3/7kGzv0YIhJI9N7uGZA4/hsck9mwqU6hk/OMBz3/1ErvzvB7Di/j2wnHP47j/cw+f/7L9YPpXZpIaQkJCQkJCQkF98nJLLnf92AoDLnrsHK/ao85MICQkJCXmU86gQKZVKJa655hpe9rKX4Xqw/wkv4YInvQLTbG0X3dvtIaWquictFNoLFCKmYmTQf6i8kjI5cc7Ai5l4MdnCRUkxPewwZPpvDM4tmg2OHV7MaBAoJRMeF+22ScR84VGphdORisjqZ2rUY8eEQ/3T+1YuStoUaFMgTdFa9NACuwin7xGsLsq2AiUjk8eMgBn1AxHLx120aVQ/rZi8yGT6yg4BwKYAxuppm9S5TfI1CIGMgBkHFDXBT5s2VHBK2k+z1kRz23vHJANTm3ScVZtUKhfya52LV9rtOoLMwhbKAslh6B1lS+ndPBfmjtacn+qFQ/eX5nUXT2oyS1tbL5KA4R1b224hA4Vc+/OtHrvQJH5qJ1QKXjOPdsHY/qbzoU1/OGW9wTWhUzsAYslNCipFbk2xNuttKRgIgajpCQaRVhnGKiI1IciuQnal1o5mwVFjO+DcvZq5k1trAxIMo/0pZ5QbxVGjo7B9p8Y0OwmVZJBqTbFrp8eOqVodyhBNYiXJ/IKBbUsiJYfd2xxikca6lSWqn7WMwfHTBiCJRRWD/e37wokY3HM+wvxKkDol6VVFos2MTF/OoevexOi2vXzve99jdHSUj3/84x32MSTk0ce9997LlVdeyV++730kn/40xt/wB0S3bWtZVqLpCq63ZQzuHZYUO6R368PDQqMRnMYih6S0zal+6ol6mumiR3TJwBaCVdk4iDlT5QYHpem8Zirvj/llo7UA2Buz8cZs5EiZ3TmPfrvxHtHKRak8qHD6Fap7C4rlgEXb4Iy0cLtkW4HS0N02lhkIzkuSsi2wk0b104xlaKaHHKId9N667sGYa/spuMrFTQRKUlaF3l79Iegw1/BsGlJ7NdA09+oZFh3T8UKjmMcpd6i7YTsSx5UbRNwtEdDd74totpLerZiFbN38T1vG/RYotVrXKfuin61k4tURk3iSqshsM4o5ULKz+KpCudjUhnbrBN8nelq0o9X15YLnbLJzwWXkVfTppu/u1OmHjfAgm4Fck5i8/XxYMzKuGRhok6I4EKlp02A9I9DaT/UtpMbMtUt1LcmWDeZWLTxva/NhIUAYoCXVdHD1RHK1MUWgGe92GYx1Fqs7gXNRTCp2x22idY5uniUaxEqOFqQc/9wbWncZFhsFU27C/zgJwaxtkg1clPoMj/ZJ3WAlYnDMjKAQSDSJNs5ywjTpe9oz2P+a13O+VOaxV17J2972tpYuPCGbMzg4yF/91V+hlOJNb3oTf/Znf8a3vvUtnv3sZz+kDqF79uxhdnaWfL7Ruu3w4cPV5Q8F119/Pe95z3t43ete95BsL2RrSFNy0a/u5L+9/8nsvmq8+v3yyQyf+5Pb+O7H7qGU20RpHRISEhISEhLyC8w9XzxDad0mORJn/1OnHu7mhISEhISEPOQ84kVK3/jGNxgaGuKWW24hObSLK579ZwxOXLihnFnwH4qapmLHNpfRQQ8vJnA7OBcBDPYrRgcVpqw8VO1cPhZRG4LqsDG9G0C+JEjnDEptnr3Up3cDODtvcGLG6tgGbQpMK3BbOi1YWd7EcrsXhqd856RCtmNRACYutJi+Ihpsa/NATPpMiczcFqJIQTPzy4r1LZQfOxhj19XdWz7D86uKmTs22he12ofksEHPSId9qxMoDWyTTBzYWiOkCRMHJJHOpg1V+kYlA9u2FuwyIxDr3lq995f7U3csKRiakph1+9hJLDU0Bf1jW6s7OQTbL6rr6w6OSpGEpHfUINIcpG3RlrVzHgtHtxLp9Bnda7Lj8ihyk5cflK1YOultSF3SjtyaIj3vbUjNs4FgHwYmJTsvMzfuYxPFHKB8t7SxXZ3LurbgxN1+GhTQmGbnIOLiPJw6LnDdrVwDknRGkllvIcZs4apkmv54amx6Cfj1DQ94jA3VnJpa4SrfVcmUih0TLqPDfpCvcn9o3H43u658OXuueAFaw8tf/nKe97znobZimRYS8ghGKcUHP/hBLr/8cg4vLDD+h39A39OvR7S4WKNr/vU5hMd24SAD9yTV4b4gtGYUlz4qQfjOgX5Ta2JK02qoqBcnVchEIB3pIKwZq03KHCk4ljRY61AewBvwQGuKUnIiYm5wUGpEM2S5mELjdEnsTW4QpqnZNuaRiPtjTythUj2uAueMs/m9pNIa7af67Sh4BaQBo3stuge3/tMis6haOyM1zb3MCHT3C4wO99V68c/ghOgowqonkfTFM22pO1amCX3DAiO+tX00I36/PBiYkY56nAa6hw0STeLpdiIk04K+4S3p3wHoH4V4fd0dxE1dvX6qug202NjKwhaFY8HqY9OQ7OTKFVBaB7vsz2E2Tx4oyGUFxdTm93W/P31RU38bUVN9vbbjvzDSk1RYVufy60WD5awBCAypWwqVqu1AcD5rslLc2olnK8G6a2DrFmKxFq5KEamJdnBp8glSx6EZsVy6jc795wWuSoPSY7vh3wcAomsbt+9sm2Tbq/+AgSdfw3vf+16uuOIKTp8+vUl7QloxNTXF+973PlKpFLfeeivPfvazefOb3/yQtuGaa67B8zw+//nPV7+zbZsvfvGLHDp0iNHR0Ye0PSG/mHT1x7j2tZfyq29/HH3bgocOGo58Y4ZPv/FWjn5rBq229kJRSEhISEhISMgvCsX1Mj/9z1MAXPH8fRhbeFEoJCQkJCTkkcYj1kNQKcUNN9zAP/3TPyGEZPdl/43RXVe2LW+ZCsf1UxUdXYiQ3+TBeCKiKNiS+WXJckoGwe3Wk4mIqTANKJQlR89bmPk6W/0W4qTRfpdUVmK7krOLfp1moc5dpE6cFDEV09tczp43sV1JqU27tek/6B0eUYyMKo4eAddpE6AIUr1pKUkOQrIPls637wvwXZQA5u9zsLrbOydVkCbobJnsVlxkhGDbJREMU3Duh1uLqi0cKdO14Nb0CB3aM7TLIrfiUVpvfIjebh9m73bai0qsxktKmmCYmwRNguBMNOEHWFbPdS5eYeberQRYfPrHBUPTksPf+fkJKCriopGdgu4+wbHbN08xllmCzJJi0/hGQHefxC5rUgtBSopOAhABhiGQZl1KEUOCF6xT97p/dllxdLmN+k+IDfYEUsLgDoPMgld1S2rH6lmX3JramNakDckRyfg+g1M/cHA7vAyqXFgI0t/JiNE5faAQrM1rPNfDLoLARUc6D/fd/dAzKFg+p/FcPyDdeh3/uE/tgXgXHPuJpr1IQFLIAygmt2tKJcHK0saLxyh5eDGDlbXaNTc67LKaklWBU0WoJD3/2Ni25N7AJQkUvd2aTK7xmlVBgE06mpl5A9MEIrIqKm0nQi1HDI7MC8pB8DxiKtolIxmZvoKhbXs4efsn+MxnPsPY2Bif/exnedKTntSmT0JCHrnMz8/z0pe+lK9+9askn3Q1/c9+FjLS3v7GROMiWMZgcQjKsv3AZiqNFuAJwQkiVYlSs3NShaSryBqCvCk5aggihUb3pOa6ex3NalSSrptjGXM1R6R6cdJQWWFoWIxJih3u8eVBhdCaA2WHjCGZs8y26o9KqjfdJUhairwr2czEb+huGxfB0ookbZmQ7DzfEELTdabAVpKkyG6T0XGP1VmNvYW5mvJg5azCztcdwzb7akYg2i3Ip/TGaUyLuZdrw9yx9udGvUBJGr6jTsuuMwQE95CKmCYS99cpbJaqFT8d2syprbtQjmwX5NKQyfz8HjZW9nV8l2J1XlPYwsFcmgUwEWw+MRES4t2QS4MbqGGEG/R9i+MpZAuxlCl9NVzl/wHLM502vHHuZUUhEqtLKddMIPLW2k/5Zm/ZUEMzNOYfz1QLIUw9hVwwj8BFxwx0CzFPtVbTYDWlcUvBiy85B7e7/fgngO4kaAPsnES4ikjGxe5tPfcypWZqwGE5a5IrV+bFG0vawdzGlJqRuMtCwUS1aHckq7GTgiXH354lNHGpWPdq11NFqGQEzlZrtom/e4IYCheB2zQHdCtuWQXByVJtrI6gOoouFyIGKSTKFQh025LCNOl/xrMY3beP+z79SXYfPMiHP/ABXvnKV7at+9HMzTff3HH5wYMHOXHiBIODgw1lhRC85CUvecDb/exnP0sul6umbvve977H0pJvvftbv/VbdHd3c+jQIa699lo++tGPkk6n2bZtG1/+8pdZWFjgj/7ojx7wtkMemUwcGuQ3//KJ3POVs/z4s8dxSh7lnMN3/v4ejnxrhif+7gUM7ex9uJsZEhISEhISErIl7vp/J3GKHoM7etj1+PHNVwgJCQkJCXkE8ogUKc3OzrJ730XYxTSx7mEufMqriMTavyYtpeLATofUuuRsxiBf7vzAerjHZWrI5fBsBKcoKZuyY0/uHHUwJBwOXI68Dk45UipG+12kNJhfbXw82+yc5Jf30y+1epvayjpVcVIF/zmh7ChQqk+vtXAGWmgKGjAyeeKDBqUs2A7Yqc7lAXZeIilloszdvbXXpHMrquMb9A1IUDZkl4LH4h0ESlLCwLQJEl+kpDUI0VagZMXAKdHajMXa2MCVs5uIguoCPsV1OHrb5kKfLb/eXkdqXpPPPjgOL8szmtTc/au7InASm+QqOXN3k3BMyrZCpewyZJdb9F+9UKmJitvRBkFRJVhWaZ+Ewe0mnqNZa+GqU49rg7uqqut1MO4BpSiuKXJrorPoqI54L0xfajBzr0c+3aluyCz6+9LVD/m1zkKltTlIL+iGdrQXKsHyPERj0CxQMsoeXnTj9WMYbMH1yMcyFSNDCqUFyytNu9WU/g1gqFcxNepx5KygWG7hxGQJwMB1NERg15iDadTG5FYUbAkxiHseB3c5zGQ0S+utg43S7GPvE/+A6L1fZfHkt3n605/On/7pn/K2t71tazscEvII4Gtf+xrP+M3fRAjB6CtfTvzA/o7lB12PKaE4piPkRxUdHZG0ZnfZpSgF56ImHqKtOAkg7mn2FDxOJgzWTT9lWyvXpAp9tma0pElbGk82tqNenFTBUGBoqnOGeqKnopQHawOpFoI5y6TY4d7dd59oSOd2womgN3GIGrq7jOiXlF2J3dInqpGYpZhWRRYtX5yxGVpBoWTg5kothRANBMY05bymeuPrsL/RLkHPiEE+1XTzbTH3ErLWnpbtbEqfpjxYmd1E3VUnnElvIV0tbC29WzPLMxrvQbJSWjgv8QpbmDMClWurcj/v5IrllGG+yZhGm7ImVGpibb5NRfVCpSYMs00qvmDuVfkdEuuCrp4OIiWoCpXK1ZTYnYTTwWY8KOc0didLoiYGhsCwXBbXzI71l8t+bjZhaV8Y3UGopBHMLdeET5VzrJ1QyVWwmjPI27XtV3YhklPY3Y37I9EYcvOpaIUe06PP9MgW5YbxZ6Orkmab4VLWglnVev/cBLgIzAJEUezF4Swm2bbjlaCMgBiM2x690uNebbV1XLV37WXy9Tey+vl/41WvehXv/F8f4eh3bqW7+0Gyjv0lZavpiP/pn/6p4e+fVaT0yU9+koWFWg7zW2+9lVtvvRWApz/96dXjdNNNNzE6OspXvvIVcrkcu3bt4r3vfS+XXnrpA972/eXrX/86X//618nlcpsXDnlYkabk4mftZPcTxrn9X45w6r/8m9DyiQz/7+23cfD67VzxvH1EOwhEQ0JCQkJCQkIebrLLBe77uv+W+mNfuA8h73+sJyQkJCQk5JHAI06k9MlPfpIXvejFaK0Y3/Mkdl7ynA6l/Ue2Sklm0ybpwmYPq/0n4cvrEqVNSkEQe7PypxcrD0k61V9ry+EzkQaHD7PgbRAomVKhFJRsyZFTZsu66wVKvb2KfN53ilruEJCpBAa2H4D1VUgvs6l4QkcMpi62yK1pzt+7NfuY1IyDs4nYo57MrLvhDetWxPslU5fHOffDIqWM6ihQAn/fjt3SaBHQ1gVKwu4nRFk967J8qikw1EKgFIn7gcCtOurcHyIJmLpAcv6IorRJGj4tBI4DzhbEYw8Euwg2YrOYUJWpgwLH1iycfHDaE0uysU8MCW7jMZMm7Ls6wsoZl5UzLc7Furf6lQvHvlu+X8dy+yUWWsPMTztHg10b5g5vNdAIxQyk5z1KW3yOHu2C6YsN5o8p1lY6l1XKDx5OHRQsnNKU8u3LlvKiurx/RJNagk6OSmdP1/LaRSIK224csypuSgCOK7nvuFmXJq5zTryVjKRoyzqBUuvyFWelc0sWllkXTO9Qd9EQzKZNVvKVcaF9+e0XPJ2pXRdw7/du5qabbuKrX/0q//mf/0kikWhZPiTkkYDrurzjHe/gXe9+N7F9exn+7RdhJJPtVwiEPWlD4g1A3txskuGXn40Y2EGwuq1AKShbNARHukyKLVJF1iO0RgvBSlSQiogGgZIxF90gUDKVxpWCxbhsKVACqgIloTU9SpMxJJkO6UcB3C5BVCiGDY8510Rt4YYaHRYMJ13OrVq4avPyjivIrm9NoAT+/SC9DB3MraoMbJMoD9Lz7R136smnNIWM22h31Gbu1dUv6BkSzB3d2JBmgRKAFQGnk6POJudEJ3qH/F1LL29eVlsGducMoz8TdgnfAmoLOhsrqhkYgeU5UN4D3P8Ox1RKX0y2QXjUQtiVHPA/cyc23042Bdm1LbQtuC1bUc3wBCzNalyn837mMgK1mdNpHYU8wYPjra0zMKCJRjVzc50PUEWg1BVXxKKa1bTsIIgTrJf8c96QGsvQlIKXTlrprWwlmcn6bRZohGCDo1LFTQlg1TFIO0YgUNpM7CU451l1p3f78m4CFIJzmGSrJ2zn+pcjBnmEL1BqM9YCyFiM4ee/mG279nD08//OwK7d/OjrX+Piiy/u0PZHFx/4wAcelu1+6lOf2lK5aDTKq1/9al796lc/yC1qz/XXX8/111///2fvz+MtSeo6b/wdkXn2c+655+5L3Vv73vtGs28toIAIIoINgiCjgCiCC/MwOA4zPx9cUGeYn446Mygw4OMwo/DMjDigwyLaIFs3UN3VVV173br7dvZcIp4/Ms++5QGa6qbz/Xr1q+ueE5EZGRkZESfik58vp0+f5o1vfON1K0dIcFJjcZ7z1ls49pwF/uFPv8X21SJoePBTlzj/xWXueuVRDj9jPtzwCwkJCQkJCXlM8pX/egblaOZOjjN/48T1Lk5ISEhISMh14/tGpKSU4tWvfjUf/ehHkUaE40/+aUanD/fLweEZm13X4OquwXq+f1XETcXBWZvzKxF2hcmKBWav17qBXMphdszloasRLEfixiQYYPYQ5ixOuSRiitOXI3WBkop6iyrKaV95Vhza52DbgkcuS9p3KDoXqhVzexSFvOByr1BizcWSfriMQVHKaqIhBRfvt3GCRGLzFU9bF4OpPcYPREhkJVe+Fsxxya0qCquOJ1DyVuOhx+KUNL2NlZYQW/2sXpQXzq7cFhaum0AJYOaIQSQKj/xTFwFKl8o99jSD1fOKzas9xFhNeQSeOCjoZmNuxttA2lwKln4Y4ikvnNzKBR1IxGNVNa5fbl3bLOyziXf0bsnmkmLNb7s1IV03R6WxOcHMYYOH/9HpDJ3W5qikHFg545DfCLaDWLu2aJKBId8ACpsuKqj2SGsyU5KJvSbnvzz4pi4/7Dbaw4DN72oRLj7gUtwCTL9t9Xm4Nd7zb0SBIg1xYI88sYRmbp/3762+jhReOTMjin0HNOcfURTybWWvPatK1wVKuVGXuWnFw4944qWW5FWFkzIAg2LZK+fsuEMqoTl7pXHOljy2phD3nlkTh8OzDoWy4Np2rzduJas7EistiUrFyVGLi+sR8pXufYVIzHPiOb/Kqc//CZ/5zGc4dOgQn/jEJ7jjjjv6VU5IyOOSpaUlfuInfoLPfu5zjP7gC8g+99mIbtaOPkmlmHdczs+7uFKwtRnte/xJ2yWuNJejBs58BQnore7qcKE1+8su26ZkMyopG4KxWc+CZWur01kj4moO5xWXUpJCRFDTbkxPenlW1GhL+rStOVhweThjeCHe2vrEeNqbp1R2vL4k5yoWbJdT8Qh2rz63Kfap15PpgUFcpT+25SsS2xWBBEqRogsIdoMIPgRMzkF+xaUaJCQvUMnrho68JuTo4WBoRMC125yR+oxj5R2Na3XWSjeBkhmBmQOCtSu6q5C3Pn/wC5sZg1QWls93pq3nqQlGtD93CbjfKSKCkRFNYZf6nGdwpoDp8ByGlAtF20Da/ecxyvUckmrN0E15z52sdp+0pbKQHYelc43PavUt7M6JzdQiVCuwtdzxFVqIFtfMct4rSz9q4sHawyANr730fFfB8IQstgWlfG/XrS6lY3wKyqVGWLdeVMq+A2jUC7WsRf+51/a2QAj/WRgwj6p91fxzpRbaVvUQ1Y2lXOIRzeXNQcIp77vZlIMQcLXQZa5T13cLPzSbZjFmU1SSDbvzN04kD1bWe0FBKK/f2mvYLCuTUg93KmkJNsb9eWBeMYfDJSIdoeJqOAh2MXBSLlO2S7IsuNLnx6l1x13ML+5l5SMf5Lbbb+df/fqv8653vatPvTxx+F46EoWEfK+ZOznOS//vp/GtT17gq//tLE7VpbJr8bk//kY9BNz4vt6O6iEhISEhISEh32s2Lu1y9gveBs2drzrq/24MCQkJCQl5YvJ9IVLa3t7mzjvv5OzZsyRGprnxmW/GjA5yrpBUtMB2IVIevJptKbBdcCISHDAr/fNYjsRyVOA3qHeLwt+ADxJ6QHJt1cDp8jZ097VhySNnwOklIGkvo4IL3+pfgvoGTw4KJajsDiqzx/47I5R2NKvfCLZjozXBhR544pGlB6p9NwJqjB+IMLYY4czflTztlC9QEkqjewibdpaDCZQAls+4RGLByi0lbFzRlHYGu0UBVEtw+ZuDG1ctREJ6TPgipQDHr7WhgHPkSBxGJgUbSzqQa8DKuf7ft7N5TfUP9dHEzqrGrnYRKNU2iNqESltX+xS2iwhq7rhJZtLg9OcGi+Y2Lw9nn+DaGtfRGFFw+7lA+MQzsHhThMunXMoDnr+i76KVzEKlCMrp/Va6cuDc17u0k16uIWXBI9/UVErBGkx+F1aWBYUBDmA1SiVBviCwA7pYWQ5EBnQv0byLlTFw4t4mvx3AWSJaUDACZSRVp396KU1ueOabsFf/nvu/+Nc86UlP4o//+I95wxveEOwiQkIeB3zhC1/g5S9/OWuVEjNveRPxgwcG5nGEwB51AIEaIFDy0nt5YjMlQFDpIVACT89QlYIe0Ww7jy1hJyrooTfsoGjClaSk3CV9TaDUzKYhKUo5WKDkj08lLbnoROg3+ErLEwSYwnMhqQxwiwGImYq5aZfl9WAXKqUn8nCHmHvV5y6DHAsETB80yW8o8mv+GGk0REDdxhjX8YQtzXQTKIEn3F69pD2XoQBUS4PdQpspBJyLaENiGJrkqKBc1IFESrV5p5YCoQI4h6bARlLcABWRfYVKriPYDBjWDjwRfCBBm8/mcvfwbbU5aLNQybGDCexrQiUhYe6AF5ZvYP0r2F4fZoFXoALUdTOjowozQkco2nbc+rxCE49qKlZ/R6BCSVIo1dyFGi5D0tVdhUrrBcN/3IJd72bQjg7vmAVXUlbBOlMNVLXAGVCVsQ1BdVxjpzVOoSaI6k98zcDOuZQTGqz+1xqdmmbhTT+P+//+Jf/iX/wLLl68yPvf/35isYA/xkKesITh3h7fGKbkphcd4OCTZ7nvvzzE+fs8xezqmW3+6l1f4Pjz9nL7yw8TS4Uh4EJCQkJCQkKuP1/+84dBw/4nzTB5IHu9ixMSEhISEnJdCbiV89jli1/8IuMTU5w9e5Zb7ngGP/Rjv4AZTRKPKE7OV0hFvUX76azNsdkq6ZhLdtTl4LyFowRb6wZRU3FioUom7i2XTo04HN/jbThlUw6HZqrMTCpObSSwFNw4UyGb9NJOZBxOLDQ2p47vqbI4WaVYlZzZjHJ0n8PIqFeGScPixN4qNRXH3ukqxxYrgGK7KMllFLmci4oKRkZdTs5XkH6cjT3TNvvmqkyNOYBiZtJzXgLIpBTHDlgY/rXOT9ocnqwipWLPgsuhwzYjI14ouWRKceSoQzTqCaimp132HfSuJeFY3PpsmDvoXUs8BYdugbiv95qch/0nGwKl/TfAwVtgYq8kmoSDT4qQ8OdWYwuS/bc3FoIWbjSYPigpbCissuLA0xKk/DdqRxdM9j81UU87f0uMmRPegvL2FZv4iCQz5S2uZ+dNDjy9IUCbuznG7A1e2rlbYhx9XpLMrCccyswYHHhaot7KZ09GmbupsVA9Mm2QX7VRCtLTEQ48JYb0NUczR0323NQo/4G7oxx6WpRoElI5ycG7o5hpL/H0AcnCDY3F//23GowtSKySJ7A6eKdBTTM3ud9g8eZG2r03G0wsSpSC3TXF/DGDuG/4MLEg2HeLn1YIFm+QTO3zFuiTo3DoTkmyVt/zsP/WxuO8cFIyddBLa0YhmhBs+A5NuRk4cFsj7Z7jgtlD/maIhIO3SQz/0rNTcPD2Rtq5I4K5I41NgoO3S6QBp7+oiKW8vLU6nD0k2HOsKe1tktEZ79+5OTh4h8T096inD8LCiUbaA7dKxua8fxe3YfaQJOrvTU/tg8UbBFpKtJTsu8VgYsHLG4nD1H6DmF/fE3sle29qlH/xZoPJg14BYymvzc6dkIwtSMYXJfua2uzizRGmDvmOO3E4eHeU0q7i6inba993NTbY99wUYfqIl9aIemlT4xIjCoeeGuXw0xpp509GmD1mNur77iiZKUlpS7O95LLvFrPeZueOGcwdb7SXg0+KkJ3xvowkBLE0aEeBq5g5LJk/3rjWA7cb5Gb9MCI5rx3uPSmZ3iuY3g8Lx+tJ2X+TqNd3IgMHbxVE47B4Ag7d4LL3mJ9Qa/Yf10zMem0pntQcurGxK7X3mObobRqj6vUp+w+6TM96/VI0pjhy3CWZgtVlycQUHDvpkMp43+874DI37e1yRqKaY4dtMhlN1ZIUS4KjB12SCUUsqti3YLNn1ksbK9te/511UaZASUEq4YVyyyRd9s9WWZz2dkQliuP7LHIZr3xjCUUiqVn1nQJOzFfYP9Xoz08sVBnPeOfJJl1OZKuc3Y5QjBrsmbG4eaFMrT8/Pldhyk+biXv9d2ruKRx72puIxRO88Y1v5CUveQkhIY93tNb8h//wH3jaM5/JbibOU3/u50ge2A/AjOMw36QoPGTZZB2XCcclnSuzN1Hhakpgb8eYsl0WmpxcDlQcco5CaM2U7XC4YmPPVthcrDJRhj1NIt79JYdxy3v2Uo7iZN4mpuBq3GByrMANsXzdRWnkcpIJX1gedTXHtx1GqgotBGUDFouK6ckdpid3uMnIk/Md3kylOZx3magoYq4ma2tGrYbIYE/JZYEq8XQVqeDAJhiXkow6LnOWw2HLoeoLT+Yth1m/XgSKw1WLjC+YPX5VcXO0jEABginDYdpo1Ms+0yIjXKQFSak4kaiwN2Yj0OSSLhPpRtq5UZuUPzeMmYrFpEWkpChXBKmEy9h04z5OznluPOCFSJta8MJ96opLNe8y0uQ4Pr4gSeUac4qpAwZm1BtzZw4bTOyVdYHS2LwkPeb924h4aSP++J3MCpTWlLa9MuYWTDIT/vzDgKl9kqg/HUyMCPacaJx3dEYwMinQEQMhYWqvqI/18ZT3N3jCo5FxyE42Xes+SSzj3dd4Eib3CoTwQqYZJoxONdJOLULCn4dF0pKpBW+sRgpyU5BrSjs5D0k/smE05tWh9F1QEymolqkLpia61LfpTznSo55zUb2+ZyDtz+/MiJ/Wn0akRrxjrV+DrQ3B+KQmk9WoiMQwNVN7NNGY96wkM5rJOe/fUmrGZzTpSVH/e3J/Y26VSMPUHu/ftuWdt1YmYQim9mhiCY2OGMSykqnFRnkTGUjnWuswlvbOE0t6f9fax8gEjM/B2Iz3KE0uePkBonEvrfSnPSM5TW4SNq5BqQCTeyBZq8OYl9bw55yZUe+YaE08qVk8okmNeNduRr16MSPe3+msVxcAW+uCZAoyWT+tqZmeV0Si3t+pjGZypiEAS6Q0hqERWmFIxcyMS9RPm0wqpqcb0puxMcXsrGJ6wsU0FLOTDvGId6xk3Pu7njbrkhtRxKKa+SmHhRGLhP+7LmW47Ml6zzx4LkpjKRdXCYTQHJmpko66REqKhKlYyFhIXwQ5FneYSjhUXEnFlexJW8wkbUATN7y0Ru24UYfZmA0SNh2TiYhL1nBIGS4xodgbt4j4x50uOuwRNlqCKz0xWUpoBJpR4bDfsIj686OccFmQDWXalOuykxRYGUigOEaVuJ92FJd9NJT689iktiQrEQOSLidEhVH/7ZWscjnQpHibcx2mTQPj5a9k6kdfwX/8z/+ZuaOHOH36NCEh/bjnnnt473vfy1vf+tbrXZSQ74DUeILn/vyt/OA/v5PsbArwtKGn/uYi//Udn+PM566ie1ryhYSEhISEhIQ8+lx7cIPLX19DSMEdrzhyvYsTEhISEhJy3Xlci5QW7nwJd9/9ZJRy2fe0n+D4bc+vO2IoDVVb4LvlU5WSshZMT7jMjThUHY3VntYPmWG7ULUEKgZ7p10SCV0/rgYqTiO8hq28vADxiGI0pYjFhRfeDe87x1/bdlxRTwtedIJcRpFJalRUUHEbaV3Vmta2BRET5qZcknGvfLYrvMVhv/w1BxvbEVgWpFIwktUoRd2FRLlgVUXdnci2Bba/FqyVF4KhUm5KW2m8Ze5YGqvSWNiplGH5AqxfVCgFVlnXj+vaYFWUl1kp7IrGrmjWzrnsrijssqq/de3aGqvY2ABwKhqlFDMnYkgD7LLCsXU9rd0UMs8ua+yKAgmxlIFyhOcSAyhbY5fb0jb9XS1o8ssuGAauS8txnYrGLjeuVbmaSEygFLiOwqo2wlDYVbCrjbRWRZPKwtQB6dVh2a9DIXCqGrvpDX+7rHEsRWbC28ixKrpe37bt17e/IWpVvXsAnmgnnhZt9d04rlXVOL7Won5v/Pp2HLCb7qNd1l75fSMvq9II2+K63rHqaau69VrLuu62oBy//HjHsau65TxWxXMTyIzBnmMGym1cq2u1nqeWtoZhNL5zLFrqsFoB268XpbwN9Nkj3vPnVFXHtToWYNTujSaakMRSAscCq6l9WBWNU/X/9uuwsqsorCsvbantuH75db2+Na7jbSw2u4E116Hy61DV2rfj1d3EHtG7vmtpLc32ksLyn1enrHCay1/W9eemdq2XH1Rce0T7dai9lVvt3ad6CD630Q7tqteumkOzVCt+ObWXxqo2+oh4orHpCmBZYNfuo/bT+nXh2F76WX8D1bIEVq0M2uvjXBeQXn9btTSLe1z2zLl+2kafXLUFruvfc1dQcQSYmv1zDqmE1yfW6rtqC5zac6O8/hzATMNIRmPGGv1ua1rR0s9GDU0yoTFGBHZSUHUENSOLWlqlIJ3bwzNe9cscPHyET3ziEyRGp8M3tUMet1SrVTLPuos3velNpJ99F3ve8Qb0yEg9RJktRItzUDXnYI5ZzMWrJFyoGg2zPUeA1eS8U5XgCpgeLbE3UoVRq3FcCVaTEUhVCmqGZlOWYtTRZKd3GZvdwZUau2nMsKTnmgSgBGQcmPPH99HxAomxRvxO2wRH+n05UBWaqapitqJwhaDqlyGerkLKwWkukwkKTc5VpJWi0lQPlvAdnvwN/qpsuIhYCCpaoH1HFFsL7KY9NNsWaLsxX113DC5VTTTenLE53JvlCJSGSFFhFDW2480VN3YMXCVbHGxsu+GWpLU3tqZSLrGEN543OxI6VqPv1tobm7QGMyowoo15JIBj6/r8rp62NpQ6UNn1xxtD4li6xYHHtprSut45ao6Urg1OzS7UP25t7PHmr5qxWS+96zRCrGkpW8qvlH9t0hMYabc1HJvtj1PalPV60UA0CmPTosUIx7Gbjqu9saZ261zX+177TlHNaevH1d73rhat9eBSd6Wpp63Xi38/ol7jc5zGfXQN/1qb0/rXNj4Diaxo3HO8tuX6rlTKpeU+CtkQC2nayqDAdhs/IV3Hm8PWBFt2Uxm022hLWgjvPjoQTXgito62ZTXML737qCkXGuXrVoe1+q7dR8Pw/IXqaVVn2mZ3WdfRJFMaaWi/DKK1vpt+j5UKwg9V6/0OcCy8mw8oJbCb0joO5PNwbc3AVQLbfz69+ZNuTet68xfH8dpRPS21tgXC1UhX4yrqbroRCRFD1++V0mC5on6tjmrMTbx6E4zFXRKmrqet14MW2Nr/W3p9U1R6od+iQmGppvatBVaTi5OlvT45ayj2SAdHU+/THGhNKxr992jCIRV1sVKqnrbanBZRDwmntSapNCNRFyelqCY11aYH0hbUx5/sHXdxx9veQGVrlxvuuoOZf/GzhISEPDGYv3GCl/3m07jzlUcwY17nWNm1+Ox/eID/8Z4vsnEpoAV4SEhISEhISMh3Ea01X/qo9wLF0WfvqYuqQ0JCQkJCnsgI/Th9nei1r30tH/zgBzGiCY694K0kRqeJNgldmnFiAlMqHCWR/vaY8vVZvUO9KZyYSdxUVBxo13P1CveWyGgKluhID2CWOvOk4oq86m3B354nGlVYlnfs7qHdPCJFb/VdSoVqtuvvGQ1CYRR6x1MSbc0klaUegkuUeoS+aoqhMXcigmNpVs/6TgLV/rEeRhdMpg5HOfu5Ul1cAzR2GDoK2CcEQJfwI/M3xyjvajYvdQ820CvcG9A3xFuNmcOSSExw+Zvu4PLhudxYZd0Zwq1Hvtpb5+0hUGrotnwHb5PsrCnWL/cpRFMzOfFUydolxVotfZ9wKNL0jr96SbHTHE6kRx5pes4+xa0eYVbaPktk4MCtBhe+4dbDlnVD+AdL5WDmkMHF+11v86hfF+f2ubAeMWCiSZg/EeHqgzZWsXf2wLTdq7ljJrG04PyX7f7txv8unvHyXLq/Kcyd0b1z0Kb3eSzpbf61hMXrc65eoXU68knt3z+BGxscWsQ0la9jbNrsTPZ+vmKm623ItoUgcVLdz5WMKqySrvf3zViZzjxJU1FywKyAdyFd8qUbn0WlwlISUJgSRKF7HVopCTic//z/w8b5rzI6Osrf/M3fcNddd/W61JCQxxxra2u89KUv5Qtf/CJjr/0R0k+/HQC51T18hjlZwRWAEJhK4zSNq11DvfmhkGLTRaIuWGbn89Qt3JvUmsmpXeweXcfWVrrlb0NpJDA23XuTamVltCU9eG4h0D20W718V9Ogva35lnFYdBmH/OtNX+zdV8qmPtpEgwDHFxGkl7rPXyL+XNgwNJM5l/WtRnjg2Hq557mE7TK1KKgUNbsbbd9VeszZ+s2V2sZXMwbZaYOtFd06r2s50bc5DuEJXibmBJvLui6s1bL3RDme0EwtCJbOdYZjq42VLUWTnluSVdY9pxW6aexNpjUjOVi+7IlLelHLkxnVZMfgyrlGHfQL+5aakCRSmtVrrWXtFfYtEtUoU7YIY1ryVVtvyvisJ1Jau4JvJdUdYfvOhLOewCvvh4lrn4e25Pk2fnqmsmDGBNtrXb7sEg6tcbLu36mmeyylZnZBs7EmBoau1VEvXzarEAK2txvH6XXN3osrmmiEusB6UPkA3Dj0CufWHAJOoBsix+Tg949MqVvEjQBWtnc5YlpR7fKj0+oamUATR1PtESquOt5674XWmHjiokgeel1vZdJrZ1JrNF5dG1rjCoFZ7H4ue8ZCb+2y+ocfpfrIZd73W7/F29/+9u4XGRICnD59mje+8Y38yZ/8CUePHh2Y/tSpU5w4ceJ7ULKQb5fCRpkvfughzn9puf6ZkIITz1vk9pcfJpoMQ8CFdBI+2yEhISHfG4ade9V4vPbTF/5pmU//3tcwYwav+N1nkMx1rm89lnm81vvjnbDev/eEdX59COv9+vBYqPfHnZOS4zg86UlP4oMf/CDx7DQ3vfzXegqUnJjAiQnmMzY3z1QxpUIh+wqUnJhkbtrh8IIXVq3i+PYyTbQLlObHbGanHdyYpGAZHenbmc45TGYdVFT0FSjVmBh1mBzzNg8sS6Jlf4FSLuOwZ8EFmgRKip6ikeyo4thJVQ8l0YzQumMzIZ6CvSchN92Zvk6bwEMrje6z2dLO9mWHhz9T6r2R1UQkJUiO96mQLucVhui1Du5935RHmo0wG0EESgDLZ1RggRLAI//ksvRQMIESeOKkoAIlL72m2ntvcnBP0Ot76d3qcl63uO30y6MU5Dd6aoA68pXzcPq+/gIlaGxGFre8+hwoUIIWMU800fR5z8KBU/HaTyQavPuUJmQmg6VfetjxBEpQdzrqh1P1XAKM5ue3n/gK2HejZGZ/Wzvpc67ZfbC/11jVnE8JQJDKavYe8PqgvmV3JEpJolHF4r7B6auOgYuBaXoh32rhMHtRsiSOaRBNao4sWJhN6aP5zg3+kt/fj+QUJ/Y5kOxIQrTQ5Fbl968HRm1unLCwkxo72fn8eeOTyf6n38vCXS+lVCrx3Oc+l0996lN9yx8S8ljhoYce4u677+Yfv3E/0+98Y1+BkpiuIqcqHN5RTPuORYMESqnJIidjJcbGiiDEQIGSqTQHSg5TkzuMzvUWKNUwlGahqDCUZmJ6t69ACby5z56Si6k0rhS4UhBPV3sKlISGPTuQUAqEaIzDQvcUKB20HKbs7kIjabUKlACmIg57o16Ypl5EmubCUnhdc5/hzCui7daFJquXOgVKvYhlvBBPPWkTy0pDIEzR4izYQdMYZDQ1rUECJfBcdFYuBhMoAVTKgqtngwmUwBtnq+WGO0zH923X6zo1Z1LR8V2vPB3f9xCBqaiB7UC10vm9ivQQh2ijp0AJQMVaH6KtlcECJWjcm81rwQRKzd9LI9AUGfDSiW5tv49AKRr3BEiDUEpw9eJggVIz3aZM/cRX6aRmbsptcQbteSA8keGe8UZ4uHak76oEtTapmUg7JMwBDzwN97Vs1CXV4/jNVIUECVnTZcTo9wADCCp4v1UnDYecaE0f22itY+277wmt2ZOwGUk62JnO+oiv+Y5ffv9qas3xik3O8VyVnFTndUSWo4jcCFO/8tNMPukW3vGOd/CLv/iLqEGdYkhIyPcN6fEEz33brbzgnXcwMuP9sNNK861P+iHg/j4MARcSEhISEhLy6KOV5st/8TAAJ1+w73EnUAoJCQkJCXm0eFyJlNbX19m7dy9f+tKXyO45yYkX/xKGGe0pUKqxVjRYyps4Pd7qbOTxRQ6WpGh1ipN6IWIQGbAI3uyIlE4o0ongC6TplGYkpQHVV5xUIx6FaDT4YotlQbEgWl1V6L3YXinC5Qe9DYyudFn8vfaQw9q5xkK1jvV+ay0zY3hVH6SKhGB8X4yF2xJDteYr99tsXhy00O6Rmzc48vQYRh+Hl2ZksGQdNIf66LdrY0Zh5qAg0mU+22tjaOmMJr/e44BB6609XdPfV05rSjvBjz02B6NTwc/V3jaDYAS9D4Zk4SaTxVuCvUmpFJz7okVxK/gzPH3IZP5kJFhd+4dNZOl6j4GW9uFYcP4rDtX2CGJ9hEpXHlIsnellBdH5ebkApR6iuG4Yhuc4YQa8B7E4pNLe/4MQj0Eq6YXfATCL/Z9lQ3jP5YC91jpVR1L2Q3U68cGZlgsRrhYbAtXeQiWYPvY0bvqB11EuV3j+85/P7/7u7wYrVEjIdeJv//Zvufvuu7lcKTDz7jcTO7QI9BYogTcWrSQlm7HBm/6xmRKuhLLphXULggRGsmUG6Q9qLkoRBWlHE2A/HoCoghG7kb6fexJ4JnJRl4HlaaYgJaUuIpR2cVKNZdvkqmXSS2EdaZsL245gZcNE6Ub66kSiPRvgCYK6CdV7IUzB+IJBeiy4qMMqadYvqn4aqxYm90pGp0UggRIE79+bcdvcZHoJlAASaUimu3/XTWxUrQi210XPNIMESvV0bW2kFuatUhLsbPUQMXURKhmmJpvTiD6NtFmopBTfVqX2Fa41IU3B3CGI96jTdgrbsL06MFlLOSbnITXCYMG6lwOEJp7o43rVJE7f3ZXs7HRx3OpxrkJJsLxm4Lo9npm2fK4LFUt2tNF+RIzBv0ebTkgqogKJmmrpk1KRMJrE3t3m/U3pDTRGwPJooCxEPXxbN6FSMw6wbBrsNj1HPYVKpkH8DS9l7qXP5/d///d51ateRbH43bBCDfl+4dOf/jTvfOc7ef/733+9ixLyKLHnpkl+9Defxh2vOILh9+XlHYvP/sED/M9//UU2Lw3xQzckJCQkJCQkZEgu37/G9tUi0aTJzS/ef72LExISEhIS8pjhcSNSOn36NNOz8ywtLTF743M5/JzXI9sWz2vOSU5MIFHsz3nuSZaSXMv3FiA4MYkTg1zCU4lslEwubXffrWl2URIJz8L/4maM85tBBA4KFRWcWY/wSKD0HheuGpy9agx8K7zGtQ2Tc4/4Iqs+Dkq1L8slyeW2cCO9Ftmjvogg383Vxovb1PLR6JxkYl+wDSbwQmntuSXO2EIPdUPdnUDU/718qsrFL5aDiZoMg8xcMLFIzU1p55rL1YdVx9v2vZg5JDl8t9lSxn7k5gSLNzUVaECeaAJGZ2SHCKfnm+vS3wR6FJ/2aLzRNrqdv/3f2QlJOjegbpryjc3B3hsH16WWEi0lE4uSI082+rplNbN+WXHtIf8GB3zDOpbyQq0FYe2cw9n7qp1ttM89W7w5yuR+/yYHcFSKp2H+ZNuz5qquYqXijneZZrTHHmTbubbXYaVfqMC2Mu5uCs48KHCcYI0uvyt58JuCaiVY+kLZ4FtnTCqWwYBODoBiVXLqcoQKBkR1PexnNzclgKItObMRAySpiMJI9xcrlRzJatHr0+fTNiNRBzsp6v91MH6U4z/8K5jRBL/0S7/EvffeG+SyQ0K+53z4wx/mnuc/j+rCFNP/4k2Yk7mONGK6Wv8vZWvGKl4/sBUT2H1cTmIzJdKTRaKORgvB1ZHuDkrQcFGSWjM+s0N6fpdL4wpr0FTK75eys7tsHiyQne3voFSjaggeHDHQo9ZAgRKAK+FcDoq1DfNeDkq1MgnBSsSg0O421EWgJNFINApBpYtSPVJUbQIlzXjWxWx3bGmj2UEpMwaTC31CrcX9ipYCpEArWDnrUtgMJkAwkxIjgODTO5l3zM2rinwh4MsCAuYOC5IjjXnAICbmPeFR/bR9BEoAiVRTetFbfFTDMDWG+ei5MwihiUQ0vVRfzUIlFZEYBqRHNMaAKXmzUGliVpNIDb4GHTHQEcnsAch0dhFdcV1YXxJUh9SKxBOdDq9dy6S8eUv990rTHEX1uNfpDEzOauSAZ6fpLGQyqkPY1M2FFgQVy2s3PZ/NljyC9byB7XouSb1oOCoJru0Y7FpBf3MJloom6+Xg6a85JiuO6c/PB9WR4Jo2WdMmWrY6WrW7KXnJBcuGSUFK0Jq0UtgZ3VusJATrEQPXD/s2a7sIreuuSu2CJWEYmC95FhNvuZeP/eVfsu/kcZaXl7sfO+QJxz333MN73/te3vrWt17vooQ8ihgRg1t+5CAv/+1nsPfOhiX48kNb/OX/9QXu+9CDWKWACz4hISEhISEhIUPwrU9eAODIs/aE4WZDQkJCQkKaeFyIlP7xH/+R4ydOohybfU97FfO3/lBHGqftbf24CWMJRSY6INyQ756USygOT1pk4wHiiwHprOLm+SqZWC19/6qMRxU3HLTJxF0/bf/0EsWx2SrZjOtvtgy+VXtnbGbGm8ozQGsxMQmHj6mWkEndF9Y9onE4dBuMzXT5soewI5mVpMaCNzOrBOf/sczm5WD3oUZlN5iwJJmTLNwUIzMRvEyOBTvLwTeatpYUqxeCuTSBHwoveHJKKj7vLwABAABJREFUO/DQF1wqTc45/UJrJFJw8DaDVLbLl8P2ALLt/z6LJyXT7eHD+pzn/AOKK6eD16ly6R8ipo3ddcW1M8EzlHcZGE6unYVbokwdCPbDwrG8MHGBUXDx6xZLp9uegz4bc5G4IJWV3d2XergqHbxVMnOgz1v9beebmIVDN/YreHMZJfG44tBRl+iAfriWXkrFoX022UyQe+fZrR06oJibDnZ8UByds9m/ELRtKA6MW+zPecqBwa5KivGEy3i89fjdhErxzDg3v/RXmV9Y5CMf+Qg/9mM/FrBMISHfG37v936P17zmNaSeciuTb3stMtnZudSck2pkLU2uOlhUGZspATC/C/NDvLx+Ml5gbrMmBBqcfqaiudkoePvpAdIny4KZDYnQmlhmsIVfxIV9W97/68fvJU7Cm2MdrjrknNY+q1t4txqTEYf9se5h3trdkwBMAxJx3dcER7SFmdtehbXLwwlqXMcTggQhOyUZ3zPchMMqD+eiuLGkqZaCp1duQIMdn80V2GjTNPRzQxqdgPG2sMi19EFdlOr5fDelmosSeM6Dswu6r2Nhs1DJqgquXpQ4fUK+deQPbnwFCLZXPWfWoJQLgXXhgCfGnloQgV2/hnXhLObh2mWB6uV21IVEAmI93Gu7/Z5KJxXz025vh6G2uZcUmvkxl1Ssf0XVhEoAuZjLeKDfs16I3qSpmB8QSrI5fUIqDiRszD59XSM9JFEclRaxASF6a6S15qBje+EzGeyqlFKaMUfRrgns5qyUvPMGjrz9Deyub7B4x81cvXo1UJkeryilOHfuHOvrnXa6juPw9a9//XtfqJCQ60xmMsEP/OJtPP9X7mBkuhEC7pt/fYH/+kuf5+wXlsIQcCEhISEhISHfNbau5Ln6jQ2EgJPP23u9ixMSEhISEvKY4jEvUvr4xz/OU576VLTWHL7njUwcuKPlezfWKlCSvqtGyZF8bSnGVqX76r0bFXWBEsBW2eTBlSg7PdI3zidxY5J8RbKSN8hXg1WhJQUlq/EW7SBqm0uuDrpQ7i/EahCDjUUAqFpQLgmUHwZPJfpfu1WB5XNdwi2Yvd/CXXrQ4eJXg72RVguTVtlR/cvfJMg59Kwk40GEIkKAYVDaUpz/UoX8arCF8sysydwNQ8RAwRO87KwG3+DYXobL3/LKE9QtaxiqRbj4DZfyd8vFvEsRl84oVi8OWMz7Di5tewUunxoihGEJtq/pYXbXyMxI5o4Hd/268oDFlW8Ef9vSjMKRp8fIzgSriMouoLqED+yxaJpf1zz8Dzb2EGKo5fOK1Uv9K6m5TVZKUCow+F5qjXA1jr9HJgNWq1LeInEAAzIfSaksKFvBYxaubBssbxsoU6B6uLY0pz+zHuXcRqMPcOISJ9Ern+Sba1HO70b8vxr9jJ0U2Km25NE0U894M8mxPXzsYx/jSU96Epb1bcQ2DAn5LqK15p3vfCdvf/vbGfmhZzL2+h9FtI3zE5P5FoGS9PulpaTg3EhvF8Gx0UJdoARwZQQujwwu09jsDmOzO2ymFFvp4KqG1ESBSpTArnoCiJousXSw57AW+cgVoJToK1CqUZSCZtO4ykT/PBu2ybLdGebNTnbv9xxXcGXFwOohRmkXKAnfqGWgoMMXyiSzgplDMnBYLwzJ5lXF5tXg9y07ZxDNBh+PtYZyHpwhJhqby174Yi2Ch5RrYcBAtbMBW2udnw8rUKrRLFACqFZhZUngDtDcdgv9NvhcXnzUzRVBpRh8Plsqd4aO7ouA7JQg2s1xsAuVAiyf1ziWLwAKcGnpUZhebPqgz8az1sIXcWlEgGcZBKuromvYt/ox29zkimXB2pbsF5EXADfuC9M0VPzws4OouSo1Sh481Bo6cDeJrQVlJQgaia6MYEUbVBFoycDQ5QUpediMUG6af9oZjU53b+y7huRU3MSWouNlGyelSGRaxbSl43sZf9fPoMpV9t90A/fdd1+wC3mcsby8zOte9zp+6qd+ipe//OW8853vZGenEaNvd3eXt73tbdevgCEh15mFWyZ52W8+jdt/7DCGP1aWt6t85v9/P//z33yJrSve4omrFf+UP8tfb36Vf8qfxQ2q0A4JCQkJCQkJAb71NxcBWLx9msxU8jqXJiQkJCQk5LFFf1XKdebP/uzPeN3rXocwTI694OdJjc/Xv3Nj3v8jxeYFWMXxKQvLFZzZiKHaVq/daGM11fTDkcyP2FRdwXrRJF/tXh2qSQOT1t5rxWVHcqVHSLga3iKswpTgVCRnV2IDr7l2HY6SPHQthlEJuggiubQ03EZEfkeS3wExaKXcOzwob1OnhrB6v6UrTchMSHaWO48tnO6LzHtu8VwaLn05oMpCws41m9LWgB2atg2h8k6Q0BVeW4glBLF08A2aZBZSYwZrgwQ7TUSTnqgmqEBp/phEGp6wqWXzo8dtVAoK7S5B32UtVClYBJ06mXGYPSg5+1WFCmiaJb09s8AbYKkxQSIjWL8Y7BmKxCTxtACzFiaxf77KkKIvx4LdNRer3ORc5j97vTYtM5OS+ZMmj9xntYqPamXr0mYicYinBfn1zjYo/F2uWlibnZrg0H++e+J6xyrsCAo7fdK1Z6sKHjklOjbpeiN55ILRKBOKQY11acV7VnVKYEqv76yFauzGZqHWzytyKcWKaPTjsktXUvFD1plSsT9nc24rQjQvsTJN40m5cb7auDMSdTgyZnN6M0reD78SLWgsvz+J+CFupDQ59kO/wNaXP8yXvvQlbr31Vu6//37MfvYYISGPEkopfvZnf5Y/+ZM/YfRVL2Tk+U9r+X5i0uv4tnYairukrdmfVzwyIqmYomNbfGy0YfuXL8UxlGamANfS4PTpG8YzjThQMm9SjEE5wDRqOl1AuqAM2KokCLRR75uQ6BGLdYDtwVkAKhE4lw0+R9BCsBT1nm2zOFDtCYCDwGlSA8S2e19PPKawbYHbRT0Q2e0cPM0ITO8TrF3WWD2mXu2iJruqKW4HcFFqmltqFWzs1hEDIbywttUhBLfpUag6suc1tCMN37BG4Y35AzAMmFrwnJSsCqgmUVOvOXQ3x6LmkHIiiOrEp1mgVBvftBJD1RHA+JTGsWFna3CbVaZEOi6GCa4TrI0LAakxqBbADjJX055Lq1VtOIIOCuXWcVw/fGIvurUJ6dd9r7BvkzMa1xVstonMhOPXfYvA2RM1JZJQKXtCp87z1cLMCbQWlMr+taLRA6VBgo38cCK63ZJ/XQHnXmVHslMLEycG2845WnDN9sXYUuP65RQ9mrRGsKH931UoFIJq0ym66cFqAqVR5SI0bBkG5noEZ6LxcoAoNOql1n4WLRcBXGgKW1hZSpGY88aTct4bRCJzU0z/Xz9D8bc/wDPveS73ff7vufXWW/te9+ONP/zDP2RiYoLf/M3fpFAo8Ad/8Ae85S1v4fd///eZmJgACN1iQp7wmFGDW196iENPm+O+Dz7Ixa94P46XH9zkv//zL2C9XPPf932JVafxA3g6kuVXFl7KPbmbrlexQ0JCQkJCQh4nVAoWZz7vubeefEHoohQSEhISEtLOY9ZJ6Y//+I953etehzRjnHzJr9YFSm6sIVDqRLJWNFgvBl3MVWRiipFY8LBQ+8YsDk5YDLIqqr0lum/U5obpaoujRj9SMcVNCxZxM+jmheLQHpvxTPDwaLkxxYFDDlKqQAIlKeHI7TDR0Ij1FSgBjM0bzJ2IYLZFh+klUALYumKzszxEmDcFa6dtylt9rqFJ/JGdFRy4O9Y3BEo76xcV5/8peJmSOYOxueAniMbh0J0mIwHddQDKeUU5H3xROTEC0wcCJ/+2yEzAxJ7g6e0KFLf7h6Np59DtA0LKtZEek4wOUa+bFx3O/ZMdyIWsxsR+g323B48lvfyQQ9lf42wW0vR6Dotbiq2rLm6vJthFSDVzxGD6cH+BS/PmqGHC0Ttl9zCO7fhipdwU7DseIL1PRLgcOuqS6hJ6oxd752z2zgV/9uZzNicXLKRU9dA4/ZjIKA7MOCQD9rVxU5OOKuLt8UR6ULAkGyVJsYd7np2i7qwkpWT8rp9k4dhdnDp1ihtuuIFKZcjd55CQ7xDXdXn961/Pn/zH/8jYT7+8RaA0MZmvC5TaqZiwERdUA069oi6kbAg6zYlasLBhkKwOTlsTKE1fjZMaYmN/Ia+Z6xI6rRdJC/ZuA0G7KK05UHUY8fv6wQIlGDUUB2M2zbKvfgIl0EyMKkYzndfRTaAE3hCS39TYPeq2RaDkiwDsCl1FsC00jWkTC4Lk6BBCLg2rFzXl3eDznPSEJNot1GkPshO+u04AgRJ4crFygd5jcbcyZTWxxKMnABBCMzKqiUSGcJmsBBQP+cRHJXP7PSFKELSG7Jgnvg/K6uXhhO5CwtQixJqEwv3ckawKFLabD9DkvttDKFbMC4qFrl95h3Baz2eYMDmpSAy4btmUbyStmJt2Cep2JIRmZtQhESh8rn8Ow2EmGSSMm0dUKA7EbKIBJ8ICzSFhMeHLlAY5JIFmj3SYEcEfpJTSpIYQ0myaks0+z3UiU607K5kTOSb++T9DTOW4/WlP4Utf+lLg8zweuP/++3nzm9/M7Owshw8f5n3vex833XQTP/dzP8fKygoAIrh16fc1n/70p3nnO9/J+9///utdlJDrRGYyyQ+843ae98u3k5lKAHBm/zL/Yf5TrNqtb+is2jv80rk/5dNbD1yPooaEhISEhIQ8jnj4/1zBtRRjixlmj49d7+KEhISEhIQ85nhMWjXU3vSTkTg3vORXiCazXYVJNRcliWIsqVgvmawWWwUDze5JrXgOHQ+tdRcYqB66gzNrUX9Po4+1f9NXy4UIZcftcHXqhaugZAkGaIDqGADaDzMyBEoJtD3YpcRL6zmu1Nx4BgmUANYvuuTXXRx/n72rOMmQLRtZ+eXgYrFoSpBbjLB2xurtxNPmTqNsTbWk+hrk1ByUwHPuUQFD53kZJOuXNOuX/OsQou/GCXjOAldOKwqbTWUQou+b5JtXAXSnO00PN5xEGnIzkpVzqpHuu0xmVBDPCNavBKusShGuPjxg06HtUNfOqkChzIR/g1ceUaw8QqD70IwZ9R0fagqqPg3Grmqs0nCbkJkpSSwh2Djf2nCFqzoclZQDK2cGxXJpdVW69pCLUoOfJeEotClxHdheVZSCOkO5GuUK77SDHJh8HD+MW2BDJaBcEYDwYp1APdRQL9byBo6iHr5SS9HXUWk9LynbUUpNm1mqSdPQ7qpUsAy+di1G46IFtYepOfxbzVVJITm/6w1ccVMRk4ody2xxU4KGUClShOm7fpyyKzl9+j5uuukmvv71r5NMhlbAIY8+juPw2te+lo/8+Z8z/jOvIHX3LQBdhUk1F6WUrbEk2IZguS1cU7N7Uh0NaE05Inh4rLv7SbN7Ug0rCuenXKoD9KDTae+cSsLuqE056cKAiJzJiA0arIiBCijE8E7iaTaDTr0k4Pr/BREoAZSVYMuVdaeV/gIlAMHSqtFigtJNnOSmohhF73Plwu5Gj6PZneNIKidwqppqqUuG+glaBwW7ogc6JjaHW5OGV66gaFNy7ULTBwHGpfwWlNrDmPWZKygXttf9f7eFhtOG7Co0TmWgXIRquVHO9nIHcVNqD/PWPLaNZDW2JbADRp7N7wZosE1VUCnDyrJEBQlt489Frp7z/w44P4BGV6D1YEclrTyhVcfUrI+jkpCQGYXCTmc+6agOR6WOtgEdc5BmVyXXESxdlTgBHKeko1GmoFxtzCGCoHVjOhQ8jzeHMlyNG2ACZmtBRQkUotEO+mTTCFa1Sb7pOrSkp6MSCC6pCO2Pd7P5VLur0lWjyUWsrU00h3+ruSrlm19OcRQ7hhd+tLKUIj7XGF9qQqUyaSZ/+adZf98HeNozn8HH/p+/4Id/+Id7XcDjikqlQiTSGDillPzKr/wK73vf+3jrW9/Ku9/97utYuscW99xzD/fccw+nT5/mjW984/UuTsh1ZPHWKeZOjvP1/3GWD4x9zvuwrR+s+c391uW/4tmjN2AEjn8bEhISEhIS8kRCuYpTn/JCvZ18/t7wBYGQkJCQkJAuPOZESu9///v5+Z//eYxogpMv+VWiiUwf5ySPqZTLwqhDwZL10DzQW6CUiTgcG7N4eD1G0epcVOgUKCkWRxyWCiaOkvTaU2gWJ8VNheV4oYIqBYkR6C1WRcUeJiyctyH/yOXhFka212B7zRcABGTFm1MFEijVRB7Vzr3GrsgIzN8UZ+WhKlYx2Ap8csxgdD7C2uker4R3CZ+VX1Xk1wPu5ACTeyW5OYOHPh8gTy9LoAECGRfZCLkVkGQWyiUxONSKz+YSbC49egIlgKWzmqBvateIp8BxwAngjgGQ77GR2ozoJSgKKFSaOWyQnTU4/blgVgM7S4qdpaAqNo/MpEEsCRvnuxSzi1AJYPKAgWtrNi8PPlctpE4QkV1NqLTSpSz92FnVXrsNqjpSknMP+f8OaG6yut6cUA3MaDmSlR2v7hJRRdmSdUel7mIlSbECpGEubbNdMSg5rYKlzvBv3q7r0QmbakTwcKGzr3YSoiX8G8C+EZuYobl/TdLrIbRTnlBp35N/jLmxOA988TOcPHmS06dPE432Dy0aEvKd4DgO9957L3/x3z7GxJteSfLOG4HuAqU6WrOnqCiZgsttIVG7CpSAmW1JpgpLIwQSKEUtiNmCfEr3FSjVxEkApi1wIpriiP/wDhq+/Z2m/MgQqhigEBUUhngslRBcdaLBnZeAqpZU/T5pkEBJ+Dv7SovAQ3EqCwgobnc5XheBEkAyK6gWodpLnNtFrLOzrLrOyXoxe1Cws65bxNu9aBf+1BkgkHGUrIvog2CYXpO1gg5gwMqVRhvvVc5BQqV2gVI9nxSg4MrF4RY5hdCYEbB7OPx1nN8VVMqAYfR0HfIS9vguiFBJwNxB2Flvczzqw9Yy6G5V00OoJPBESlbFE151FLOLUMk0NdkcbK53D+HWTk2gJKUe+OKIdDQ2ArtLSMDeCFZ3hvvZXrQlRXsIIRSCJStS/yvI78Qt/5kQaAy88JS138PdxEq2f0xTK3JKsSZlyz3Tok2o5H+XUIq9rsNZFypd5p467baEf4spzT7L4ULUZMfsfR2JTJUycWbe/jryv/OnvPQVP8bn/+7/8JSnPGXgtT/WWVxc5PTp0+zd2xpW4h3veAe/+7u/yzvf+c7rVLKQkO8+H1z5DB9a+ex37XjWAYeC23uRQgMr9jbPuf9fEpXfvSXV10w/k5+cftZ37XghISEhISEh14+LX1mlsF4hlo5w8Klz17s4ISEhISEhj0keUyKlD3zgA3WB0g0/8k5kNt3xtmU3losGu1WjLlDq7Z7k4RYF+aik3EWH0M1BKW7CVNKlbEs2K52LvZ329oqjkxZlW/DwejDB0XjKYTbn8NBSFEcNXlAWSnFg3mVjV7ITMKRJIqmYnFBcvdhwGxnE3CFP9LB2NtjOmhGFQ0+NsXbOYeOi2ze8m5dBEktDbESi3OAil+3LDttXne6bH102w+IjEmlAaUv1FBQ1uygBbK+o+hvwKN3bycU/XmIEFk4aXPqGS6VPmIj6+aRkbM4LH9IuVOrlpmSYsO8Wk6WzLlvL3cpSK2+f7x4j7LtRsrOmufZIl/vepfzROIzNw+pFBroy1Fi4QaJduPKg6i9U8jdWt5fdzlB6UvZ1UzKjkBqT3kZsAJYe9ELK9eqlao4MzWKleFriWJq+u31NjkrShMNPjrB51WXtXP9y1TZIY1nJ3GHJpVOqLnQaxOiYJp4RLF8Mll6aisX9sLIEpUqwfmt2yiGd1pw5ByAHOipl4i5HZi0eWYmwXfKe6X5iJYliOuVgSs2l3VbVQS+h0m5VYpdFz2eq5qxUEyud3Y74Sfs/hDVXpejRFzO1q7jw4Oe44YYbeOCBB4jHh4hlFBISEKUUb3jDGzyB0pt/guTtJ/uLk2oIwbmMxG1q0r3ESTXWdATdQ9jTzUEpXZYky5J8snuH3yxOAoiXJBOrUZbnqjjR/vOJmoPSzGqEQtKl0CVEWjdiVRgrw7W0RgUIKwkwa7uUKwaFgGOwiWYuanPNjiC3guXJphWZlObysgGInuHdaripKJGY1TEQ9RIn1Vi70Gfw6iJQimcEVkmj3N5CJd3mTLS51BR+ro87Tk34MzbtJdsKKPiWMUF6RFPY9UQ4LfSYJ2RGIZ4VLF3qfszaeN3NUamnkOo7ZJBbYDeSaRif1Fw6T6t9Tf2gXfKkvA9LRdlfqOQTicHkHKxeAcdmsFBJw9YKVNtEY/1cRbUhiMY9hyunXYjYpc0o1eTw1Gsq719bs1gpGteYpsBubydNNDsqZTKK7Kjm6hU5UNhUC/2WyWmk0GztBpsTSaEZSyu2SxKnT7maSUYUqYhirWSiAojLDTSLcZsVy6RU+704INuCcDDRnNOReuJ+YqW0Uky6LltSdmg3O4RKQFUI8kKiNw2Y7D4m1JyVRMGgKgUPxSNUA/TTiUwVMhLnnW+g8Lt/ytPueQ6f+n//J8997nMH5n0s84xnPINPfepTPO95z+v47u1vfzsAH//4x7/XxQoJeVQoupWOsGzfC7bdIoEWLANSdMNw3yEhISEhId8vfOuTFwA49txFzB4vIIWEhISEhDzRecyIlP7iL/6C17/+9UgzxvEf+1VkMj0wz+KoRbEq2SiblJzB4iTTVwZYSnJ2oyEe6hXarUbFkXx9OYaD7HiHulOgBCA5txHBHSIEm+UKSlXR06WphmjoEIhEvIXtbjgpE7PYWMQVriIZUySS2rPxHwY7wOZdNAKWjevA6lmH3bUAAiWf8pbi7P/pFzukFRkFZdG56dHnTf3x/SaJrOTs5yrebkWTUKldnFSjWoBqYcC1Nx1HOVDY1Fjtl9Jl00v7+UYmJK6j2VntvI/dNmgcLbjwDbchngrA9AGIpwUXvzlknIghGJ2CyQXJma8EdxW69KDC6rYO1+MQRhRGpyU7q4pylz30bi5KpR3dGjZmgKNSJQ+VfJcC9An9NjpnMHnAJL9eDSaeUp5Yxoz1d5FqdlW6/EBwBzCUQjmStQsuhXW/vAFcLNyyQmvZCHcXgFgCEkntLc42bXy1h8NpKhqRiCYaE5R917SOsIVtlCoSw2iq9wHh3/IVwcX1CNulboLSzk1dheQbK17/3rXMXULAXcv7g0YG4lJR6SH6rIeBK3vfmygO5mxOu1GsPkJROwWzz3oJUeFw5tQ/cOedd3L//fcjezm2hYR8G2it+bmf+zk++KEPMf4zP87iCxaB/gIl04WFguJqSmD7z+4gcZLpgGPCdrz1me0mTGpmc0SxlekuimkXKAFUEoqNSauvQCkZae1LK1GFHRk8NtacUSJKE1W9w7xFZ0pYy40QjZGCIK3A7TFX64YhNBowtwbP10qTJsk1h0JJYjue88kggVKN7TZRzyCBkheGrcsY2kWYU0s/sddg84pLaVt76YzmuVf3caIcROTdJCSplnsM693EMabENDWZHJQKPcLKdZkn7BQk+SHmXUJophdga0t2de5ppnEtjcL0clBqZ2JWUy0GDOOGF35u2erhttWjiSZ88Wyp6Al4OoRKbfMi14Zivq0KBwiVeoWb7Rb6rTZnmJj17uH2WreMfvp2gZsAITW6z++zmquS4wiuXfYzBRh6haMplQWuEvXTt7sz9cqnB/wObUYD8agiWhUdIiU72f18Umgihkag6/OYfmIlFyi7gpZ3RwaEf1upW1t1cTnqEgJu2zDYlRLVS4TYFgJOCcFV0/u9ZiiNEo320ZHXFytVfWelrKuIKc1u96LXSU1oEu9+JWvv+hAv/OEf5ov/8A/cfPPNA3I9dnn1q1/Nq1/96p7fv/3tb6+LlUJCHu+kjDhTkex37XiWcjwB0gCSVpRUPI4YJqZ5H1JG+FJKSEhISEjI9wPrF3ZYfmgLYQhO/MDi9S5OSEhISEjIY5bHhEjpr//6r/nxH38lwohw/Md+mUgyEyCXIh1RoGCjPFigBHAkZxGRmm9djVJbce4nUIpJxULW5txWpOsGdjeBUjKiKNmQt4ZRSCvyFYP8AGeR5gVepSSnL5gMY4+zuS7ZXFd987jJCEbJ28QTlsO1U4EP7xcMNi8HFyjFMgK3wlBhN+ZuiBFNSc59vmnnZ4AI4+r9FtFU8HOkcpDKSVbPtYkjmoURbYKBagmWTg8W6eimfBceCC7qqW3MFIO8JNi0IWSX6Xwl+buMbUG5MNw5SkO+7FjehYf+YbjQahuXu5SpfQOybYM1PS5IZiWr54K14c0rLtvLbmB3J6E0uQWDmaMRTn+u4gnueqVtC/+WGpcUNwLUgVJsXg5WnhqOBRe+4l+Ev7Gmjf590koPV4ne5ZKcOdXaBwlX9xUq7exKdnabLcJqgrFe7maS9Xxz2DdaztdNqFTr3ycSDjFTczXffWBod1aaidnsT9l8fTtOuY/oqBYCzjQhGdEkteorUqox/swfJWE4fPMbX+IZz3gGf//3fz8wT0hIUH71V3+VP/zDP2Ts9T/K3hcfCJQn4kDS0RhKoIzBAqWoDXtXDZbGVIv8qZ9AKZuXWBFNOa67mr10CJQ0mI4X5q2c6t0/tgiU/EhG27nB/Xxz6KbdmGA32tvdpx0tBOcDhAEpzWmSS/4xtwSrDKFaABxX4JSDC5RicY3TdAsGCpRMmDssWb+sqBSaxtAeAiXwBEBLDzmBQ9MCZMa9UMEtAuY2Z5x2Z6LiIOVBDT+fVRVcPRd8vqIiBrjgBpgSaEPW3ZSq5WB5vhOsqhc2NyhKCayAIXZrbKxCs/Ckq1Cp5Rxe6LYO+gmVBGRyUCnScNEawMoVTxDVl+a2I2BmESol2O5Wvuai1sO/CQxDI4xGOLd+qAqUAqRrZjdf81nUKD8smZvoPT/QWnBlw2SYkN0FS1KwZEse6eo+QiXBst0j7FuPKHDV+jxLE0Vjtf3W7CZUUkIgtWbWdVkxDJw+gqX6zxitOVR0KRuCS8n+c9RaCLiE0sSVZjdABDuZiDH3a/dy/l/+Gbc/6+mc/vLXOHjwYP9MISEh152fnH7WdzVMmqsVP/iNf82qvdNdw6shnY/x2v/4dEwpufGF+7nlRw4SiT8mlldDQkJCQkJCrjPf+qQXcmD/XTOkxkIRckhISEhISC+uuy3DAw88wA+98EUIKTn2sl8kms4FyOVtVJ9ai3K+EgskUAK4kI9yqRAhiEAJIB1TjEQUzfshWjb+a8eQihNTVRZHg+8YTGQcjs3ZSNl95d6NS4RqXdidnbRJJ/uLjWoIVyG0w/ScAhksD0A84jCxMNxC+8Reg/njRmCBEsD00Sh7n5QcnLCJjfM2a2eaNuICuMQAWG17ojpi9nRRSoxIRme6LH7XXVw6z5mZ9EJ/dUXUQh8M98hpIbz//I2EVA5mgu0l19lcgZXzw+UZluI2XDk9nEgpMw7T+5o+UPQPCdKHbi5KNVI5L1Rcawa/bXfZYE2NSjJTPe6TlB33XjnDiewA8qsuy6ftQMKm2obn2IJk780mkaC/bZQiMw77bh1usTQxAuMzw93LdA4yWQ2BQjZKpFTM71WYEe/ahKsRrsaN995wmhh3ObTfpaWRKN14JtuISMXx+Sqzo539kZai/l8zIzGXkVjbOdpodlZarRpcKEYoB2i3TkJQiBh8bTXKtmMStMEnn/bjZPYe5wtf+ALPf/7zB58oJCQAv/d7v8dv//Zvs+dnfoB9P3p0cAb/MSvH4HRWkhkvDhQoAVgmrOQUxXjjOe3roKQhWRHEq63P5nS6UP+vncyuydRSDNFj6pGM2B0CpenVCMli7/F4dnQXpUTDQcnVTBe15+gSQKBkFiW5PCS0H2o0oKhpquQQ6TEf7I5metwhbVUDC5TMiGZ6ThOd8ibBgwRKANr1wrBVm50i+wiUaiiHDpGSjhg9XZRSI6JzvIa6KKpdoGREuozvzdSSdzjaCPqqFfx7VnMFHBnVxOLBx0WtBZtbBrY1xDzan8sGdVEC2NmWlLqEoe5TMrI5TTSmmz/q6aLk0XkNdYegHnMvaUCs29S+V1G1F1Iv0iNCdm0u3MxAgVI9c8MCaGcjuKjNE2JppuYhmwt+74WjGB91SaWGmUdpMmlFJLCiTyCEJpt0GXDz6ulBEDcV2VjjeZeuRroaa6R7O5VoFmM2qfY+qU+bmRYuB4SN6JKg229oA8goRayPyyk0OSsJwVJcshwP1u512uXaqOZC1PCqIUB1uaMJ5t7zamQiyo1338XFiwFjGoc8bvn0pz/NO9/5Tt7//vdf76KEPEYwhORXFl4KdI6Ctb+f95UbkVqgXM39nzjHx37585z/0jJ6QH8WEhISEhIS8v1NaafKI/+wBMANL9h7nUsTEhISEhLy2Oa6ipSWlpa45fY7AM2RF72Jp+4bYSLq7dpPRB1uHy0j/U3cQ+kqR9NVUobL7bkqd+WKjGe973Ixh1snypj+Iur+kSpHRxuqgTsmi8wkqpQcidJw03wFM+alXRyxODbWeG33hokKsylv5dtyBQpd1yQsZCyOTzaOe3yqwvyIlzYZUZycsljaMVjaNZkfsTkx3Uh7ZLbKnjEvbcxU3LinQibu4iqIGopjM40yHJ6usjjupY1IxYmDVTIpb1F5YtRi75xDxncL2D9vszjjpZV+2mzGSzs26nD0BpdMRjM5o9l/SLOwv7bQrDh6g8vouPd3Nuf9LaVCWA6LNxjMnzDqLeTgnQa5WW9JJj0Oh+4y6oKcmcOSxRskQiuEgANPiTO21xNGJMckB58eJ5Lw0k4fjbB4R2MXwogKStteeeNZycFnJollvJNOHo6w9+7G7tPeu+NMHo5Q3lJUC5qDz0ySGPPOM77fZH9T2sU7Ykwf9Tbg5m+KcOOLkyTHvOOO7TU5cHdDTbRwk8HMEW9TyIjAobsjVIuah//BJjcnOXh3Q+Sx5waDuWOmX99ePYxMev/ed5PB0Sc3NpfmjkrmjzcesUNPMhmd9v6dmYDjT5UceZIkGoe5w4KFE40lsEO3S8bmvH+nc3D4di8MVyIJU4uSxZONtAdulUzMe/9OZr200QQgvVBvB26WGP4l7L9JMrng/Tue9tLGfYepyUXv+xoTC7IuIoomvbQJ3+RsYh4O3NJIu/ekYM9R75xmzEub8vWGY7Nw8LZG2oUTgtmDgmQGRsYlh2+XZMa970Zn4PCdjbR7jgvmjvjXKuGm50oO3+n9nZ3y0hr+69VzxyR7muv7LoPRGVi8wWD6sOTQXUa9HmYPSxZubNyrg0+KMLbg5S1suggBpt+cpg8bLN7caAP774gwsdfLm8gKDj0lSm6P5OCTo0wdMtl3e6Ql7eQBL208A4eeEiWeFThVMCKCfXc02uHi7VGmDpv1+j741BjJnFem8T2C0TmDC1+zsSuweHOk3mbNKBx6cpTUuJc2Ny85eLdXBqU8Z6haO5SmVy+ZCe+c2Rnv7xrzxyWLNxqMz0uEozhyG4xOet+NjMOR2xoarbmDsOBrG6YW4OBNkJsGXE0mqzh6o4tpev3L3KJi3+HGJtehE16flM5AKuOljUb9tNMOB/c1dh+PHLCZnnTqm73Hj9jE417amSmHQ/vtulDp2FyV+ZyX1zBBoCmUvXwzozbH53r0yVJxy1SF9ZLkwfUoMymXm5r6+qNjVfZnvT7alIqbZitkUw4KiQZuG60yYjqA4mi6yqG0l1aiuH20XB/XpqION89agMPxlM2Ts2WOJmt9v+L2kTJTUa9M4xGH20fKmCgO/NBPc/zkDfzv//2/+aVf+iVCQr4T/uIv/oK3v/3tTP/YkznynLuY32j0m3Obklzee2ZMB/auSmIWTO4K9i1LFtYlYzlPZDSzKRn3w0wZrpc24TfnTFFwYEmCgN2kZnpbcliVGc8UEQr2LJskKr74tiTYs2zWHTpsQ1PfE9de2rgfvjFekkxfjdWF29lNE6Mq2Jy00AZMLcVIFL0+LVaWHFpvuJ+NbhtMrJsIDY6pGds0SRW848aqgrlrEQxfOJrdMVjYaWwyHd6E+bzn5hF3NIc3NVHH+368pNnblPbQrsuEcpnQLnOuw2HHIu6LD8aUy/4mdcWiazPpq1XTOy4HRqvkfBFBJuqyJ91IO5O0GY97aaXQLGYs0hGFUXaIxTUz840+dmxCMzrmlUkIzcweRTzh/R2JaJTSlIsaYbuMTgtGZxpziukDkrg/1sdS3t8IL3zqyITw5oK+QGnqoEEi6+WNJgXThwykAULC3ltMpg402tbkfoNkxi9DHKb3ifqYnBmD8XnB8nlNYRsmFgTpUe+7SNRP67vLpEdhojY/GoF9xz2BC3hzuJnFhtgllYXJxca1jc9o9hzUZMc1hqGZWdREffFRMqOZ2tO4j2NTmqxfh+mMV4c1oVIy5f1dIzehGR3385qC6X2aVMYTuSSSflp/rjI6pslNNM4zs0eR8AUtRkwwO68Q0k+bU4xPNM4zM6tI+mljMc3cHpdIVKGlYGRUMz7VOO7UrCJVq++oVwbT1KTSnlBpYrpx3MkZRXrES2tGvLQRPwxiNqc4fNIl4odRnJhWZLKeA6JhttX3CEztgVQGJudgbAZGxrzvpOGljfripWQGpptc7ytF716D135m9jaETom093dNsD866f03Nu05MM0sUp/LxpPe3zVNU3YCcpNe2ctFwdg0JNJ+HSa8NiD9+s6Oacamm+7NjKJUhM11QTTmPWOG4X0/ktVMTDXqcGpGkc54nZhpwuS4i2n6aTOKqYmGOGhqwiWT9vKapmZuxmUsp0jENdm4y2yuoWCfyjqM+r8BTanZM24TMxVRQzMz6rI40Ug7nXIYSzT1EVmbuD8PS0dd9mZtMjFffJVyGPfTCjT741ZdjJQ2XPbHLRQaWwvGTYfputDTS5s2XNCQQnFIWP5syBM2VQHtb+MfFBZZP5Rh0k9r+GmnHYdZ1+F0JEJRSg7aNjnffiyhFEdsi4i/2T/pOiw6NlpAPiJZKCkmKy5xVxN3NUfzDjFfKD9ZVRwoNup7f0kxEXWI23B0HY6uQdy/nFwZ9m3Vk7JnByaLYGbTHP7VVyMqVe547t0Ui4PDPj0eeNaznsXly0NarT4BuOeee3jve9/LW9/61utdlJDHEPfkbuJ3DryuI4zcVGSU9x18He96649zy48cRPoueMWNCn/7+1/jk+/9MjvXvj/6jJCQkJCQkJDhOf23l1GOZvJglqnDQcwYQkJCQkJCnrhcNz/iUqnEzTffjHZs9j7nNSSn91JwbOxaiCoFBUfWfSbKrkSicbSgKD2xkeV6CwK2Kyjasv5Cb8WWuEZtsVSRjmjG44olF2xDULRF/bgVt/XdqKItiBmK/dkq14oGRdtAKc95o6IkZtObu2VLUPVt/SNSUbIFmxUTR0kqjiJiiYb7QFVSsb20SkHREjhK1EO8ZRONhe6yLbEcL6/WUKpI3Nq1OgbX1jTX1rzNmoolWsJJlCoSVdZIS2EDpZIgvwMPPQBjk60vkJZKAsd/8d5xvL8pK1QswuaSw86aqBt9VAoa2/JyuzZU8rpe31ZJo6qKtcsgbIu5G6LYFeWn1VR2FNovY7WkaXYPqWy7FDddkALlaCo7Lsrf/LLKGmO3UeLqriY5bpAtaoqbDpVdhWu7gMAuayq7jYqo5hVWyctrlzVWQaP8e2dXFOUmN4BqQeP432kNlbzC8a/Vrioq/oYthqRaFmi/fAqvHhzLu6eXvuGSmWxsyFkl1XBQEsKvQxp16P9tWd61yua2VdBeyAsJjguVolff61dBKdXytnmloKn6G8PK8dP6VWFVYGovzB8RXDqlqRR1PdRHt7SVou8SIcCu6HrIlfa0dtVP66O0ZmLeYHNFUS1639X2YW3LK2O9vkvedxtXYe2SYv6I3w4lOHZb2qJuvASvvHop5b0PnKqXVilACKyiRjQ545TzXh2e+6qLNGB8XtYdHWplqDkXlPMK279W1/HuK03tu/nBqRYUlu/y4TqaSl5jV7325lqKSqHRBsoFXW+Hrg2VXYWyvb+Vq4ilDcy458RULSiscu07rx26fodoVb28pS3t14vCrvppVWtap+qXHyhuKFbOufW2j/K+q92b5rRevUC1rFm/oNCmpJJX2Jasl79caDy9VtnbdAS4dMpz+Kr1J66lvbS1+q60hr0pFQQrVzU7W5J4QlEqCpTy3uq3KrS4jpQrAssS7OQllSrMTjeOa1mCWpRM6WjK5UafrBRsFQ1sJYmaCsvWlKzGvSlVJZbttXVXeH2/owxAYoraxp7nPld2RH28QXlpbVfgxgQlKam4cMOIxcVyhLIrcJveuS04sj6uVf1xzU4b5E2F4UhKTWNQ0ZHYvnOLrb2/a/W997kv59ryKu973/s4cuQI/+yf/TNCQoblc5/7HK95zWvIPeskcz/5LOyqptrkKlmJaGx/Y10LKEc1SnqOSHvGttEmXMFTsFQjGsd//ry04PqPWLIKmbLAcGEymyflmmzbjYGrElO4vjDANaASVUxsSfJpjRWFWqc7lcwTH4lSM4txDU01rjw9k8I7RlxTSfp9ZUzhGhopNNpUVGKNkHG26V2LlrAx7pCTRn2uqCT1tFXHpCQElaYZ8kYCyiYoKVBaU4xALQqcbUBZQ3XLU7aWAQs4L01iWjOhVb1PsBGUm/qHihBYCBKrgtK45Go+wnbVq1RXiZY5atWVOPWQR1BxJHJTc8VJMFKp0Byd07YaJnMaqFZEvd90XUGxIJBlFxWLYFutln7Vkq67/CkXbEuTnRLsrnlzFomqh021WtJqqiVvzJbSG0uanZesssb1K00rbwypje+O7Ymp6uWvNMKYKaQ3b3E8AYhrN0KC7Wx441A95Jnyxpv6tTqiJXScVfWKblveuatl6vMa12mEmVOmpOo25jzXrghGx5vr0KvT5vqmqb6VEkzNai5XRCNt07U22zJUKwLlgo55v02q1UZa226d41erjfIqBdEYjI1rVpYFtpJgNebXVlXg+vWilX8eDUuXBcmUJhKl7iZYdZrS6kba2rWVi6J+ryyrkVaZkmpF1edWruPVf3EXinlPtFRLi/bvDQJMgYumWm7cc8ui/luBLvemWgYdkQhb4VheFRmml6ZaaaoX/+/akR0LiEq0ITzXRjzBf7ngpy030tp2qzlUxZFUKwKtBUpp77i1++jQMldpDr23uS5ITcqWtFbT/NRquq9aQ6UqWFsX2I4kMiqg0lQvjsCuzWuAiiVR2puDXNkwiDX131VHtBicle3GfXSUYLMsWSt5oeKqTsPrSDqaii2oVb+rBWXXc1+6ZkUYNd0WJ5GyK3D9jlW7UJai3s9WtMTyLYsiQAmB4+d2/b9r57WE1+a1EAitSShFxK9TJQRFIRv3BlEfB4ShKEc1o1WYslzOpiRFQ9T75KqkpT8sGwJLQiRhoyqCsmvWxypbQrl5DDS9Ph2A+Rwnf/FevvJbH+CVr3wlf/mXf4lpPr5DOYUOLyEhw3FP7iaePXoDXy2cY93eZSIywm3pAxjC60TueMURDj99nn/8s1NcecCLJXr1G+v8t1/5PDe+6AC3vORAGAIuJCQkJCTkCYTrKE59+hIAJ58fuiiFhISEhIQMQujrtFoVn5ihurHC3F0vZPrm5wTIoXBTAtVk/hTbDlb0bNQhj8Tx85rl/vnm0za5uMs316NoabR8Z1ideaNScdNclas7Jtfy/kpnl1MYduPDkYTDVMbl3HoEpdoMrdrymn4soWzGpVoVVKy29D6yaXOiRlpaviCnv2mWLDc2qeJJsLYCxlGwvXyjc5LdVYVyQNjBwt0deEqMjQsOO1drux2D7+e+u+OUdhSrp9vKFzCUSkd4t25h2yYEc8dNzn/Zxir7H3YLKRf0nAHTdeW74HWWHPE2qMqDI/N4CMGJpwrWLmnWLgV7xqSE1JiguEMjhNm327UMEelGtJ8j6Dm7pWva2dlzg4kRFVz8aoDnoE+ouWZEW/uWUTj45DjXvmVRWO9/jNpGojRh721RNi+77CwHOK/fvjMTgmpJY5UIHB7RSHrCz9r91IbRPwNe31F2RWP3vlb+nudUTEzD+gqARLWFe1NG57MzlnPJpDQXrzSeZTfRWTblv9UqpeLmxSrreZPLG50xPu1U2zk0TCUcZtIOp9ai9XGjG9Vsk/MYNlu2JMhDW822njNWcFvGtl44lRIPf/Q3EMrlox/9KC972csG5gkJqfHII49w/LaTjBycYOFfvhrZI+RWM0LBofG1ls/Obk8MPpmGhAXZ8Xz9o81y79Cu0oW5dYPNEUUpoZlK5lu+r7idz2520yRZNLk2X6k/dlJ09u1lp5F3fMOklFCUk539Z9VpnR+s76ZAa3IV2IrTc8yviZPq16I1iU0TK8DYn1j1+ynfdySyPjALAPEtl4jhOcBUbU9MENusDsyXTGkycZe1K03lrfYf52IpyM1KVh52OofOoGNu2xjQLdzbxILnMri92nTMLnM03WVc6Ep7/Q8xF1Md4eECUjN+lJpozBfL6GDnzYxBdlRz+aIRuF4jUU9Y3hxWTgQIw1ejOeSpCBSu1U/bVr4gIQOBrvcTx3cUinjOSmtXaRGW1csaa20zQc/Z3tayY5qIodlYHnxfaqH3kilNekSzem1AmEAfN24gpSYe05TKw4XjE2kDu0mcqAfubWsiBpS6hQnsUdSoL+SsOF7ZrExrwtr8qYZEMxN12LANqk2x2uxM57FrIXHHcZgSLg/rKG6XglijnfP3g47DppRsDZhvqimvrzOUJmJLymawZyw30RhXhIayFQlyOyl+7QxXf+MjnPiBW/nmJ78S6FyPVZ75zGfy4Q9/mIWFhetdlMckp0+f5o1vfCN/8id/wtGjg0Phnjp1ihMnTnwPShbyWEdrzcUvr3Dfhx6ksN4YxNITce5+zXH23jGN+E7WhEK+p4TPdkhISMj3hmHnXjUey/302b+/ymf+4AGSozF+/N89C+PbXVt4DPJYrvfvZ8J6/94T1vn1Iaz368Njod6vy0h57733Ut1YIXvi9oACJVjMOdyerDCMgiEXc1BRxRZmy0azk+i/QHC1EOkqUOqFpeDSVoTVYrD0AFETIqbu1Df02SOYnXSZnwm4EYC3OX/gqGZuwDpks0DJjHphmyYWgi+imHGYPWYyOhu8OUlDew5GlSEUKcCF+yqdAqU+xLOyHlqiQ6AEXQUmVkWzs6IaAqUATO4TTB8YbuEpkaEeMq8rXapz/02SmQNDnYbS7nACpb5/90BpQX6jSaAUgGgSjtwlSWXbvhjQjJJZb5+rQ6DUJ/3em42herv8umJ3ZbhNNylpcdIahLLgzGcrAwVKLXkccCoa5QwhAJMwd9xkbE/w/gnpheybagrFItz+9WFG4eDNMDEd/DSZLMzu0aS6bHSB56zUjmHgh1AJVm9KSS6tR7i2FfD6BayWTR4YQqAEsE4EN2KQNlyiMvg93WtY3D5ewQxwPWY8yfF734oZifCa17yG1dXVwOcJeWKTz+d5yUteQnQkzh3/5gWBBEqGC3cVSsTywd8ANx2IODCTybcIlADGEqUeubyN7StTbleBUi/yWYetcStw3y60d01ddEwdAqUaKRv25CE+xNg2biuOuBZywBhVEygBTBguB6JNdjwByKQUU7ngc0IAym7d8S4o1SIsn1VD6Y5jKdHY/O8iUu0mMCnt6BaHxkEICeOzjRBhA9EaIbUftqz3edoFSrG4ZnahEeYrCEoJKmURWKDUIeQNOPeybdkiUArC6JhmYkq3CJS8MvQ+jmHoevi3oHOvkXFIt8/v+uDYUNhudV2sly3W2V/VxEdmxPsvKDubBBIoNeO6vlvWENmSCc3EuKqHkgvCSEYzP+m0iC3FgL5nLK2YG3MYpu+YSDqMJXr3HbJtjqkAU2jMbp1nD7YxuKLNrgKlrgjBI6YZWKAE4EpBJaYR0iXtBJ93CQ371iSzAV+qSd16mLte+2y+9Tdf5T/9p/8U+DwhISFPHIQQ7Ltzhh/9radz80sOIv0xtbBe4dO/9zX+5rfCEHAhISEhISHf72it+dYnLwJw/J7F7yuBUkhISEhIyKPF93y0fP/7389HPvIRYhMzzL/w3oHp7ZTATglWHYMV2yRokZMJl6M5i6lY8A2cqYTDnoyNljqwQMmUXjig1aKJq6S3RhxgDXc9b/LgUpT69QTI9/AFk0tLneWSlurqoqSU5OJZwepK9+PJstMiUAIvLMKVs7C5OWBT0nbqLkpOBc7+g8Xm1YALxNoLD3L1/irFjaY8sv9CtpkUvdP02DSZPhJhzy3x7gKlHlQLsPyw324M2dt5pumchikw2t7k1UL0dVHac0wye7DH9z1OWdxRVIIKjnym9npuSgPpVdZBm2X+99P7POFVy+d98roWFLYbofZa6HH98TTsv9kgNdqnLF3OKY0mQVivDbame72zrNgK2p4BpGRkRrJwc7QuimspVh+XMGl6//WifSPx8gM2+TUV3MFCwfmv2I027aoW16ju55QsnVGsXWr9XLhuT7GSY8GVMzVXpPZ8qqu7Q35HcvpbgmK+d78uXd0iVlpbFzxyIcJAdzhH1zfaNgpeGE4payHcBiAAIUmZisO5arA8ACiOjVbZlwkupFxzTZZdk3JaYKcHb+Y5YzOM3fNySqUSt912G5Y1pOIg5AmHUorXvOY1nL5whjt/44eIZuID8xzOrXFgfI3yiI3dZzO7nUN2lWMFO/h+uYbJTYOIDVOpfDCBkvIcnpRBPcybFLqri1LLqQSsTjmUmlyUqo7ZU6AEUIwKHhqHSqTz2axuxTtclAA2IpILMoLqMf4lVkWLQAlgwzVYsiNUJvr3a/Etl/iWdz82dyXXNrzQTUGQZYdKEbbatI0q1lvhISQI3WfM6HKNZgwm9xvEUyKwcx94gupKbf9Oyu6uOzQcf6Th/ddx1/vMPWJxmNnrhQnrRjcHJeVCuST6mya2GexEY5pMNthD0NNpMMDcKxrTZDKtBdOG7ONe6IUlK1e7H7uXUGl0HMYme1+PjhgdjkWG4bWfOj3uJ6b0/sML3+cGHz7REYPxWU8Q1ev7TgTa8Nws+6GanImqFcHWhoSAojOAYklwdclAqeB5dpTJ8qbRYSwrnN5ipd2SZHnLoGs/0OO35UrB5NoA8WnzHAoEl6oRimrwb2Ppev+5CPJ46WXQAcEPIznpOowEdCkFyFmaQyWXGAHdtQRspzTFuCYetYlHBze6yZ88xuKLTvDP3vTP+MIXvhC4bCEhIU8sInGTO3/8CD/6W09n/saG8+iV+9f5b7/6eb78Fw/jVIcUmIeEhISEhIQ8Llg9s83auR2kKTj23NC5NCQkJCQkJAjfU5HSP/3TP/ELv/ALyFiC/fe+bWB6OyV8dwlFXplcsoO+Lg0F1+Bbu1FWq8HdQ1JRl3TUEx0FwZSKm2erzNQ2pAOswZpSsThu+ZvlTQKlPqgUmKZCKYnttJatmzjJzwVAIS9xeoSH68XOOjj9Xi7t8uap3WRy1VcQpDVIGF0we+5XdEXCoacnmTw8xOvSwOWvVbny4BAWCMDYvOzvcNSF5bOKpYeHc4W6fEqxcrHLze9TL6sXYXtI85SxWUly0NvsAYVI/c8jWkVKA3AdWHpYU+1lrtGlHioFuPANl9JW8Le5Sztw/qsuTpfwIf3ITEoSQ7gA7K7DuS9WvJBqAZEmHHlmnNwwLkdAIitI5WR/oVLTA9a1TAOESjvr3j0ahp11/FBv3cvVTahkVSSgMEf6t7GGUMm7ruyIYmJs8CJvbZNNSsVNCxazo8EXhqOmIh1VxAL3VZJThRinS8E7kBKSc04MkERRgYRKI0duZuJJz+Hq1as85znB3AhDnri85z3v4ROf+AS3/doPkNk3NjD94dwawvWccMo5C2UG7293xi22pqqBHUdMFxJVwWQ8+NvlmV2T6aVYfc4xSJwEkCpIYhW/UP7/+omTAGaSRdAau4two5s4CfBE2EJQGGqC423oF/VggVLTiQCB0xQWqjoW65lXlh2i8SFch3xSo4LZo8ZQDjJOFZbPOFQqwTNF4hBLDFc214a1KwzlDFUtwcrl7mNbrxBvti3Y3gjuigQQjcFIAJFSPzERMHDuFRtCDFWjVBQU8r2P202otLMJG6sisIsSeGK4/NZQRUMakBxiHgmwvi47hHeDGMnBzAIM4z4khCaZGvxGieuHrdVa4NbnQ8HO46paSO/gbc1Rgmr9t2GP87R97GqBRmAI3TVkWzPNQiWJZiLiBBIdSb+7GsPlsLCCC5WAtNLEdfDfVFtRwZmMxAoaChLYSmksE9AgFQOFSsIQ3PiLz2Ds8AwvfOELefjhhwOfKyQk5IlHdjbFC955B899262kxrw5o3I0X/+rR/jYL3+ei19eQQ9jURkSEhISEhLymKfmonTwKXMksr3XZ0JCQkJCQkIafM9ESpVKhbuf9nQ0sP/en0dGvZ2S6mjngmLNPQkUNyWq3BAPvgOhoopsytt92HGCOy9pKTiXj/PgVv8dHDfaKK+jYDlvslno9ip3d0YSivG0izlgPbmZPTmXEwdsX9jk0cs9qcb0tOLQQRs33nn93RyUACbmYd+g8INtAqXcvOTI06J9nWAAT0zhL8RkJiRzJ2PEMl3uTTenJOk5KF37VpWdpT6LyF0WelxhUh3kPKRUPexbLA0zR00SuT4OSt3O2ZR0kINSjUqxi3hkUKizkd4vo/fiofsU65f7JAgYVqRruqbPHvxHzeZSj3w9zhFPQbSfqUeXay1tdgmTGOCc0iSY+5DvqDRz2GBsT3AHLuVApdglrE0fFyXlwPJDVs/Qcu0uSjVmj0WYOOALm5qerX7MHJYcuLPtegYIlUan4MAtXa6ph6OSjkjGpjSHb4R+QqV2sdLcXjh8yGWQY1Gzo9LYqMtoNtgmlnQ0WILlHYOtQkMQ5o0zvdmqmnxtNUZ1gHigmbwyUUjMmCYWC774nJMOd8fKZIWD3cNVqfmzqWe8iEMnbuALX/gC//bf/tvA5wl5YvGpT32Kf/Wef8WR19/F9JP31T+fz+x0pD2cW+Nwbg2zbDB2MYVRDd7u90QLzCXyaAlONHi7HxvJUzmwhRPr/yzHjcbYX0657GYdpDHYPQkADemiQarUuJ5BAiWhYM+KyWTbGN3LPQm8MFhHSy5ZW2GPdc6xujkogWZvxCIlBlx/m0BpbsIlmwog0mya72UnIDvZPV1XNyVXUd52PVfBftXcZXx3HDlwfitstx72LZ0TZKdFXwellryubnXpqZVjwHxGa/xQvq3pegmUAAxT+yFGuxWk41AAFHYFVy/1v46BAqX6OXrPvfK7kqUr3UXO3RyVtBRgQHRAyLt2oZLjiEAOR+2OSvWiB5m4mpJYWjA+57kwgRfmrVuot5ay2QLVJURYdxclj1IBNla96+wmymp2UaoRicLEtCI6hNBPSs38nEsiPsxGtGY655CKd/YJvRyV7IRgfsRmpF8/2nbLpdDsHbUZjQyeR9WESoaAnOkSDxjCTrpQdCWrujWgrTXaJ78QnDdNVnvZnfXIUzI9F6a0dhFGcIHT/JZgbttrA71clY5MrgEgIwZ3/vrzsYXDU3/8ObgDwiCHhIQ8sRFCsP+uGV7+O0/n5h8+0BQCrsynfver/O/f/gq7K2EIuJCQkJCQkO8Hihtlzn9pGYCTL9h7nUsTEhISEhLy+GGIFcDvjGc/+9koq8rMPT9KbHy6Z7rWTWPJRSvSYXvfCxWFsYji+EiVb+7URErdcRICs+wdOBd3iBiwUjYIrtvynJCu7gynGNksmmwXJYrBGzg1lrYMilWBUsHPZVUFZQO862kSN3URJ9VwHVpCb6lYBFlt+qCLg1K1qNhdU6i2r3TERHRJD5BfVZz9fBEryJpMTaShYGdpuMXg3IEo8RHJ0reC28FUC3D68xbuEPq97KRm/rjJw18K7tYTT8HYvGD1gm64AAw4ZTQO+28yuPKQ6znWXG+Cipv6sHhSUtjWLD3czxGIFu3K2Ly339VXeNV+nhslRgTOfyV4Gzr/FRunGvwcAJkpSW7W5NLXggsrt4cJK+dz+X4Lu98pumwIFnc0jt3lXK5qEeTpps1a1wG7qpGSrsIw4brots3BahnKRXrm6cbatkG+DEH6X+lqlCG4eMkIHIStxuq6iTI9AWzwvl4SNxTTSYeLu57wtZodnPdkqoKjBA+oBIY9uLPfVpJLjkm+SRBlpwWRQu+85vN/EvnIr/H2t7+dpz/96dx2222BrijkicHS0hL33nsvE7cvcPg1t/dNezi3Vv+3E3MpjlVxo8GesJl0nuw17y2xjdn+neZYosRmOQkacrsSGRVDOTWhwYloVHQImzcBK1N2XUsySKAEfmi4MRcZKUEpFfQ0FAxBtYu4tFOc5CEBW4uWIEWVCUF8vVEnrQIlj0JZYNldHJ7GYsQ2u9+DtSsN8cdAfCGpa0M5QP/VzPhek/ymGspVcOuaxouyHHxeMTWrsWwxlItOOuuFbys1zT/7CZQAsqMQjWuWr3znc57vCt/h3CuRhMkpxeWLsu8YrQ1RD61nGJqRrCa/A64T7PxmBGb3weqSoFoOVrZKyQsbO4SJDqDJTUC1LClvB8vo2KLl907ztfbCqsLVS7Lv9ddclGooBcWibHE861mmRC2v55DWT3suHNAt3ZigYgvsIULLKS24ok1KTrC5kHQ0tik4W46ih3hObQQ7roEX+c1zgBuIH/YtpxSWEBT9Oa2a6j++pB04lHd5eMSgZCq0O/jatlK6I4pfPGpTsbo795ozSW7+Vz/AP/7ix/n1X/91/vW//teDryfkMc+nP/1pPv3pT1MoDBlTPSQkAJG4yZ2vPMrhp8/zD392iqVvbgBw+etrLH1rg5tefICbf/gAZheBbEhISEhIyIMPPsgnP/lJvva1r7G8vMzIyAgnT57kp3/6p1lYCBZS7Mtf/jIf+tCHePjhh1FKsbCwwKte9Sqe+9zntqT7+7//ez7wgQ9w8eJFRkdH+aEf+iF+8id/EtNsXUM5ffo0//k//2dOnz5NuVxmdnaWF73oRbz0pS/FCLzo8P3FqU9fRivNzLEcE/uGCMsQEhISEhLyBOd74qT0nve8h/vuu4/U/mOM3frUrmka7kketTBvG67Jluq/oaSi3n8Am7bk1G6sr0CpGS0FYwnFVHIYAYzi5JTFfCbAa8VNjIx4TiFKBxcoAThKslHwrmeQg1KNrW2Dq0teHjfu5+0jUALYWvE2Bzqwna4CJYDSNiyf7nPcHi4vfQVKtQ2+po2+mRNRkuPBnY10xEQaAmMI638ADImr5CBDlxbKu7By3hMoBXFQAi+0SWasKW2AS7MsOP8Nl/x28LIZJhy6XZLO9Ugw7GZXn/T7bhBM9vt91CXv5QcVq91C3rXj14/QmsSIJDEynAPBxhXF+qXhRG6OE9BNq/l0gGEKZNTL189FqY6E6aMmyVwXx4MeNIdXbGTo76iUX9WsX+jRsF3V1VUpvwmXH+zvXFVzVNIRr/zFvODKOYEasFnW7KhUrUp2doPXtXQ1uAKQxHMC0wz+wMZxuXFPlUw8eHtIRxUTKZcBhg4tPFyMcaroCTfciMCNDHD4QHLBjXkuTE03t5erEoA0Tfb++FswDIMXvehFVCpDxjQM+b7FdV3uvfde8rrEbe++B9GjP6m5J9UQLiChMmoP3EueSeeZSecB2Jqqsj0RXJw5Gy0wb9mYdvDnPlqRzFyLYg4QEzQjHcgoBwRUXDOQQAkAAaWExvWT93NQqqGE4GrcoOLPO2puSr0ESgAKwZITodLFrS2+5XYVKIFgt2j4YaG608sxs5/xR91Nye+Xo0nITIpguiF/rJVR2elwFAQpvbnxEOxuQHG39fyDiCW8+VdtrBwkUALY2fZCnXXQ55SZrGZ8qp9T0ZCV1MuNMq6ZmVPQx1Gsdq7anKJShmtX+wuUGnm9PAJNIhVc5KYjBo4NmyutLz8MzKcFWkoIcF8aCKQBQjbck/q5KNWIxTUjuUa91a61m4tS7TxBBVrNebZ3JHYXQWE/NnYNSgOc7GqOSnbCS7dRNikH6U+bHJUKroEaQnAkHe25OaGJZIaTiU8qh716uBjC48plJKjaHSiYcGbE8FyVAGGoga5KpRiUo9TDvtXo5aoEMHHrPMdf8yT+zf/v3/DhD384cPkeC/zET/wEIyMj17sYjznuuece3vve9/LWt771ehcl5PuY0fk0P/jP7+Q5P38LST9Er2srvvbfz/LffvnzXPrqkLFLQ0JCQkKeEHzkIx/hs5/9LLfffjs///M/z4tf/GLuv/9+fvqnf5pz584NzP+//tf/4h3veAemafLGN76RN7/5zdx8882srraOO/fddx/vete7SKfT/MIv/AJPf/rT+eAHP9jh3H769Gne/OY3s7y8zE/8xE/w5je/mbm5Of7dv/t3/Pt//++/q9f+eMGxXB7620sAnHzBvutbmJCQkJCQkMcZj7qT0unTp/mX//LXMRIpFl72+o7v7QzIjsVbxW3JCtuuwcPV3jFcy5OC2E5jgTlluBRdg60Ai7TKaCzYn92JIYM6a2hvw7loCUpDLDpHpeLwhM0V02RlI+BbqyhOLFhc3jApbMlA4iSAuVmHzS1JpeKdx6h036xqZnQKSrtgte9x99n4yc54x99Z7lEuKTt2xDLTkqnDUS5+qdJwEOqat3FeaUJ60qCaV5Q2BtSBYdQ3ZNYvuMAQwhQpWLhBUt7RrF8OvglqVWD9SsCNPJ/8BpyuXcsQ5l2lzgg9A6mWNW777a857QQJf9ZOjzZhVfTgzSj/7ega5fzwp7/64JD+OUJQ3IbAlmw+ZhwWjhssn9WUt4Pl3V1V7K7W7qtEC90R2qwDBSPTBnZZU9ryPuonUKoxfcQklhRc+npbpfd5ZqMJyM1JVh4Zrg5zM55gqdczK1wXZPPGq2Zi1gupUsoHECs5Em1qDh502dmRrK8H3AmNw+E5i428weW1YA+S5UC5KrGjAmGBDnCq9bLJZtl3wKuF9xnQJArKO7CJwpBQVRI3IqiOgdFHS5TG5dZYhYfsGGtNAl07LbBGNdHt1vpMTM9zw3N+kK/9zSd45StfyV/91V8NvqCQ73ve97738ZnPfoYn/9sfIZZLdnx/V+4C3zTnWj6LFk0yq3G29hRRkd4N/NlzZ3hwdwYAwxEoqVEGYAzuJydjBUzh4gKrC6WhpPJR08aKSdQQYsHMbgS5HWNzLvjmeDYviVuClTGXla0RnHx3R41mkq4mrjSbZiPkWGTDJLHWu/8z0SSkIq8kHROIntk02ZSiUJa4PYSgOiKhzblmYs5zuctv9b8OHTHqY1YkJkiOSPJrAeZR0usYlQvrl4YbX6JJwcg4bC57LkdBqRT9aw0S8s9nY7nx7yACJfCcgzqKNWCIdt3u4pyamHdoG0DwYm215VXKE7APGpK0IRvCLCWwgusJ0abEtTXXLg1XXB0xyFcF0hnuYtNZTSQKG9tmMKE3sLHSuCE6YqBMOfC8ZgSSKdjdarj7uEkT4fQ+p2FoJmc0m+sCq9raCNpdlJpJJhRKCyqV7g3HjXW2RdPQRE3dV6wkHC+kWq1PjEhNKqrYrgToJLUnSk1GFRNRh4vlCEF/yGSTLpO4PEQ0sMipikBqcNIK6QgGvH8EQvCIGWl5+UM7EtFPlC4ERf+4MVdTrYnsDEVurIBut0xqYnpXELfh4rhuqYZ41GYuucNSqfVt6IOvvY3dL1/jjW/7WV74wheSy/V6G+Sxxc/8zM9c7yKEhDyhEUJw4O5ZFm6Z5Gt/eZZv/K8LaFeTXyvzv3/nKyzeNsWTf/I4manOuXtISEhIyBOTV7ziFfzar/0akUhjXeI5z3kOP/VTP8V/+S//hXe/+9098167do3f+73f42Uvexm/8Au/0Pc8f/AHf8DBgwd53/veV3dOSiaTfPjDH+blL385e/d6Icw+8YlPAPD+97+/Ln5/yUtewlvf+lY++clPDjzP9yMXv7xCtWCTnoiz9/ap612ckJCQkJCQxxWPqpOSUsq3jtTsfcXPImXriqSd8f5fHevMe8mKsGz3XmRVbXtGuYjDzdkqWXPwRlRtMTcqFbmYl14NVRWSC1sxtsrBNV6WkpxajrKyG3x3zTShagsc33XIjQ8uY8RUjOUUibgfoqESbGNuZh+Mz7Z+Jq3+ebMzBqNz3a+nlzDDdaBa0P0FSm0oB85+tszW5WDXIlyFND1x07BoN3iIqhq5OUHy23XyHKLZpbIwe3C4t7FdBy6f0t+WGGhYls7C1vLgdM0imuwETAUJ1ezfk6BOVe1ICWML0nNQCEitjXaJnDaQZqeGIJz5XJXNIZ2e7LKiWuxxjh7njqUEuT0GsT7Ri0Tbxp4ZhdmDkpGJwWVqfu7HpyET4LlQMdM/r8CyBG6AsCj1vEpy9kqEy2vD2AlLzl2LUrCGsyBWSEypGIv7/VDAYt6UrnA00RqixO3TDgsIrrgm223hPa1R3fL/Zqo3PYvY1Bwf//jH+fjHPx6sYCHftzzwwAO8+93v5uArb2XilvmO7+/KXQDghsxSy+d2zKWYq/YNv7aQbFW5jK5FGVvpLSZvZjLmhVGJlYy6Y9MwODHF9sRgh6dmdkZtrk26Q+VxDI1taFa2vAU3M4BrZsZRTDYJySMbgycgGamYN52Oaohv9K7/iAm5jMLoIQiL5ruX1aoOdrQRbZOf4pZm5ZHhxiVjsJ6rJ8MIlIwIJEdACP1thT9TAZx2aoyMamKJpvoOcLpSQbCz9eiHh7Mswea67Cu+qFOrJ6HJ5hSRaIA5ip9nmPqqoaUgGtMk0sMJxAeYQvZESo0QOrD4rJjHD+HXWnfa7BPOzfWepWHLl0lrUsn+Py7aBVkjScV41iWI9a70n524qcjFXWQA4V7NvdhxwFJiqO54SxmcsyNDuTAVtMGaNod6Xmtz/oxSGDWn3ADh6dK25viOS7JNcCb61MtOQrOR1h3P992zFwGYS7a+JSJMwfF/9SzcqsNb3vKWgWUKCQkJaSYSN7nrVcd42XufxuyJxmLopa+u8rFf/jxf/e9ncKzh5mAhISEhId+f3HjjjS0CJYCFhQX27dvHxYsX++b9+Mc/jlKKN7zhDQCUSiV0lx8zFy5c4MKFC7z4xS9uCe320pe+FK01n/nMZ+qfFYtFotEo6XS65Rjj4+PEYsHWhr7fuPLAOgD7755FDuuaHBISEhIS8gTnUXVSestb3sLVq1cZu+OZxKcaG2U1cVJ3PEej5R6LkO3ipGrWc1PasiVnixF2+ixetr99P5e2mUy4fGVFDhYp+XO4qYRN1NBc2zQIusNmaIUCiv6muAwY681yJOcuDrfjYzuSb57ybmuzQEklzL5uSg9/tfXvFoFSNAJW5+7Wpa/bXQUcLQIlw2hxUyptKEob1c5M/ZAMfuu8LQbF+Lxk4oDJg5+1Buc1G3mvnPLLGnARXUvJ5D7J7pqmtBN812LxpEDjhdIKSiwFmXHBtUeG2B2R3tviTnOVN9+0Nmej7wTD9MJtBBKg+eeNZyCVlaxeDK4MS40J9hyTPPJVL8ReEISEmUMGrgs7SwHP5WjOf6UmSPHbQ4C6mjthkBqVnPmCVxE1d6GBjkrguREF3PTZvOyFxGzN33RvdefmbX5d89Dn7e7PRNMPKeEotL/R51hw9iuq02WtiebQKsJVaENy+gENA0K+tXPlvNF3g7AbxbLEC/zm4g4R+zwddZlJO5zdjAAykKPSQsZmLKFYKZsNVyXou4d4vhKl7AuOmgW5NaFSp6uS5Lzj/bAXKHSXcaYmVGp2Vdr7ijdx6T/9Bq9//es5f/58GM7jCUq1WuU1r3kNsfk0R9/wpJbvauKkrmjQpvbCvHWhXZx0fGSZB3dn2J6wkAOe85o4CQAF2dUYxaxNMRcwDpSGkY0opREba4hZa74SRwsgiBijiWJSc67Sd6LawUrMYDXq9bnNAqXypO7pprSlDPKWbNnobxYoVcYM4putG1S2I7i4bHbtcpoFSu5IFGO3MRjvbvQue7s4SccjiKodLCxxm+vf1H6D4rZid3VwZh316skqw/oVP33AuVc0IxmbhuIjgZID3lxoag+srErUEEL5REqjtaBaJrDYTUrtRdVqejbqLkoQbF7bcsC2f9fz6qZpdkChktak02Bb3n9BGZsTaEuxtR58jE6mIJEUFKsSaQe74HzZqDuB1VwlBzkqCaGZ3w/rG5Ki393UxEq9HZUaoi20QDXFc63NQzpdlQSbXa6/n4sSwGofIVmzi5JQun7N2wXJVqGLy1oTTrKRV7qQtyR5q3+ediwlWS4FmwPVUAgsBNL2ZqyDwtk20EwqlwqCvP97fZCjktSavY7NimFSew+iJlTq5apUMOF82qDkX1NurDEG1YRK7fejEm0pZtcqrAmVaq5Kiak0N731GXz0//4od911F29729v6X8xjDNd1WVtbY319HcfpvkZwyy23fG8LFRLyBCM3n+aH3nUX5+5b5osffpDSVhXXVnz1Y2c587mrPOW1J1i4NXRkCAkJCQlpRWvN1tYW+/bt65vuK1/5CouLi9x333384R/+IWtra2QyGV760pfy+te/HumvIT/88MMAHD16tCX/xMQEk5OTnDlzpv7Zrbfeyt/93d/xO7/zO7ziFa8gHo/zxS9+kc997nO86U1v6lue9fV1NjYaixODRFaPB7TWLH3Tu6b5GwO83RsSEhISEhLSwqMmUvrmN7/JH/3RH2GO5Jh59kvqnw8SKN2aqLLrSh6xOtXX7QKlGhKFQrLaxxK/W3iQM06E1Y1IYIESQCqiiJuaawQTDwkNByZsIobmwZXgNi7ZhENUKTarkqBiKCm9rS5Xya4OSv2ESqrp40EOSl4iQHW6DvUTYkRTEE1KCmvDWRUdeVaSrcs2a2cCbmgCu8uOF85iiFOZUe96VPCoMACcvk8N7QhRCBg+rJnNJdgMKrDxSWdh70mDR77uUinw7dkCBWTvSYHraC5+K2AGIVg5rxl4k9q+tiqws6aHureuAw993h3aJQu8EGlWeXC6GptXXPIrw51ImnDkGXGWH7bZGuIeR+IQH5HkV3vk6SJUqke2HHCaZqFSUIFSPa9bE9d4YVtsK/iGWcxwGR2HldXgO2a5jMPCjMupR8AWwfJFpCYTVUQlWMoLezJok+7yToRzdBG19om1s+XUhlnlV3trXjfePfxbGpebYxW+acXY0d2H6ubwb2YixYnn/Qhf/fhHednLXsanP/3p/hcT8n3Je9/7Xk6dOsVT/uhlGNFGg+4nUDIrBpmVODtzpa5h3toFSoDXf2hwIxq3j5qlRaAEIMHZv0mxn51YG4YjiJYNyungg3OxFGfvtQgrEw7lePDxNpuXnK+kYIgNe1NpHOG5fnRzUOouVPJ2wZ0eAqXu+JvrXXbPezkoAcRTYFc6ou/2JZkVjM5Ilk67wcRKPptXXdzgUzXAEzh3hKQdQCkvKBc8cQkQSHCtFeSLcqh6AFi56vfZQ+hnx6c0aFjzw5C1CJS+G/hjeDQKs/OKpasyuOBISK4GCWncNncolwVaGQSZfNWFNluwvTm8o5SQXitXAYXOWgvWlzUBzWPrjOQ0qQxDhrLTxOKeM1lQ58eaIEagBwrRa0IlVRfRdFfMNAuUakhXoAyQQnuOVIEbrSYjFLYQVFTQtqrZa9pUtGTFNnv+Rm9FkNYKhCBPTUTWX6ikhOBMJEppzKbD9apX+Dch2PFFR6JHvyCE7iocm9wVxBy4kut0VarRHP5t9nmH2f+3F3nPe97Dq1/9aiYmHvsbE0opPvShD/Gxj32MfL6/1W7zW/MhISGPDkIIDj7ZDwH338/yzU/6IeBWy/zNb3+FvbdPcfdPHiczGYaACwkJCQnx+NSnPsXa2hqvf/3r+6a7cuUKUkre+9738qpXvYqDBw/yuc99jg9+8IO4rlsPBVwTDo2Pj3ccY3x8vEVY9KIXvYjz58/ziU98gv/xP/4HAIZh8La3vY2XvOQlHfmb+cQnPsGf/umfdnx+/vx53CF+qBcKBU6dOhU4/aNJecOmuFlBGLClltk9tXq9i/So8Viq9ycSYb1/7wnr/PoQ1vv14dGs9xMnTgRK96iJlF70ohehtWbvj/1s/bP+AiWPTceg1LZA2m/hM4bizlyF88Uoq11ese8mTgKIS0VFSUr9FrS7rGue343h7QwIDKv3In+zo/xG0SDSFJpDRby3T/sxkXBJxjSbu63X5MYlRqX7BsHUpGJqzOXB+0Xg8HXROBy4CS6fhvJan8poc1M6eFeE0rbm2kNenr4uMf5r3qN7IowtRnjob0tDCUzWz1mUd3pk6OGcYpXAKjkt7jAdmK15J/dJRiYlp7/gdBd3NKHbxT5DvhG/eW2I9N8B5TxcedjFKtFboDSES1A/Vi7o4Q8xaGOxS71aZbh21tu0EUPsntYFSrV66KdY8t/anz4oye0xeOizdqO80LfMlR1NpUu5+jkqKQc2LjqU88OJmyYPmGQmDE6vVnvf31pZ/bLHUrD/jgiXv2lTrP3O7PGc1EK/aVOy/yZJtaRZOhuszoWrmDsAmTHBQ1/rvslWC/XWTDoDkxOKjU2B08cZz0k0nt98WbK5o1GAcP2NfKP382ulJVZFsrXcKgIV/m/iXmIlB4mFRKIwAau5n+3rqqS4M1PhGgaP0CnA7eaqVESwqQws3b8vbxYqVY7cSXzm7/nbv/1b/u7v/o7nPOc5ffOGfH9x+vRpfuM3foP9r7qZ7OHJ+ud9HZQAZSislNMR5q2rOMnH2EgxsR5jfa7adSO3Q5yEF9JRGxod0UMJX9yIZn1PGQREUVh9drR3q97DJIGdjEu1yUVJCt208d/lmhyILieJZ6A92rCZsXHyXSajWnOs5LBVjrA6RIzZGdPBAK46kb7ipGY3pURMMzXqcmXNxPXFG/3ESTU3pfFZyG91uim1Oyg1YymTnVWn932S3euxWux5yDo1B6UaswcF2yuawjaD515NotgOgcGA+YQtDXZ6N+n+DKmzaQ711lOgVPu437Dfr/uXYDuwsizpYYLSm0Fzry73oFjwP4sYSLv3ArJubhtN90j59dDPUclLo5lf1OxuC3a3W4/Zz1GpWO0+cPdzVKqUPIGcinWv6G6OSkLA1Kxma0NQ2B3solQjN6qIRTXLTQJst8d5a9cZizee+X59VzOm0uwbs1ktG+z2qJNaqLdmJmIuRUcOFCnZ6VpewbYysP1ySb8r6veb3cpqzncJ+Sb99tura68K4bnUKY3d1vf0c1UatRTzJc1yDrpdVjdXpXJUd/T/3agJlYQhOPyup/J/Xv0RfvmXf5kPfOADgzNfZ/7oj/6IP//zPyeXy/GDP/iDjI+PYwzhRBoSEvLoEE2YPOneYxx55jxf+MAplh/cBODiV1a58sA6t/zI/8fen0fLkpzlvfAvIoead+15POfsM5+eJ6RGs2QkMwlk42swZhDce8FgayEvMEgg8L1wkYwN3Mt44bNgIS3ABiR9n8AYgyyBMUNragmp1XOfPn3mac9715hDxPdHZFZlzVXdre6WyGets86uyjciI9+MjIjK94nnPcGdbz6G7abPa4oUKVL8fcaFCxf4hV/4BW6//Xa+9mu/dqhtvV5HKcX3fd/38e3f/u0AvOENb+Dg4IAPfehDfOd3fif5fB7PMzteXNftqcN1XWq1WuuzZVmsrq5y//3384Y3vAHXdfnzP/9zfvEXf5HZ2Vle+9rXDmzPW97yFl796ld3XMu73/1ujh071qPiNAyPPvro2IHPLzYe/e8XgKssn5nlzrvveLGb80XFS8nvf5+Q+v2FR+rzFwep318cvBT8/kUhKb3nPe/hwoULTN/1CjKzC2ORkwwkF/z2gmicXZk+cLNpseN3EZuG/HaftgNuL3o8UnGp9nPBgCDzfFax2WgHtcMBRCXR9dVOvQ95agBRyWqal6znrznYsv+L/EFEpb3rirAqUENeMHerKWkFB9vQ3BkjwpEgKu1cCWlGa9Sx0lhZFjef8Nm9EkxG6AG2zw9o24AXqtKGxZMO2xd9vJpqkUM6YPeW3b6iqGwnGjcgWJYkKJUXYXZV8sznxryoqGhpBqoHk6k2HTojEHKyFHFhAHs3GU9B6TmmfqvuTV6mNAMrJyXnPqd608QNcWmuBCqEZk0M3CXdjfkjgvyU4OLDUcVS9icqJYJgO9cUtf0+9Q/yVfTd7GFJ6JtnssfEkn2fmY2ng87g3hi4eTbg+pPBePc36s/NKuxcDfFjdagx8mWLQFHZAa8rU2M/FaUkdm7Cwe74BCWA7U3Y3ZYoZUho/dK/JQlKAEEguXyz8zpEqPsSlbxiZ96crK2wpabiJVPWmf8HkZXuKTbwlOThWh81mL5kJckNz2ZzhJpGkqykkTzmj6c2k0z/duSffA/P/OZ7+I7v+A7Onz/f9yVDii8/aK35/u//fuyFLKfe+jJgNDkphnI01fn2wz2MnNQqU2xS84KeR7sfOSlG/mYeNFTXxmCyRLCbEmXpDgKVK4O+RKWYoARmDbhT7h1nBxGVbmyb9IjXZ/XAqWcQUelqI2OC6EPQraZUVRKLcdST2kSlIBDsViTx9DGMoBQjnHK5ds7ruU/DCEpg0oAF/eY+GEhQypYEUjI09W03QQlg45LunP8Hrb0S883csqZRherBeEQl5VjYjkaIyZT9bFuzuKrZvCnwmhOk0GpOoKA0SNlwnGkdQWMCpccYcwuKMBigcjSgLwupcV1oNow/+xGVutcwQmgWlg3hqFE3x5TTP/WbavlKsHkD/D7dW0vRl6ikbIltawolHRHE+qw5bNlDVPKawqxrMsPvrbZFi6ikteDaJQiC8QlKYJSovEQ/H0RQSiLwoFKXPWqN/VSUYigtuFmxqPuynxv6EpRAcLHqoBDtJUyfS2sTlAz2+vzYln7/3+9eOUGY15qS1hxE5KNW2SFkpWKgOFlVPF60aPRZ2/UjK1VswUa2gyvXF0myUmV8kb92+jfK3P69r+L9/8/7+Zqv+Rq+9Vu/dfxKXgR85CMf4fDhw7z3ve8ln0+VWVKkeKlh5lCJN//E/Tz9wDU++Z8ep75rUsB95oNP8dRfXeGV330bh+9eGF1RihQpUqT4ssPW1hbvfOc7KRQK/PRP//RIonkmk6Fer/OmN72p4/s3vvGNfPKTn+TJJ5/knnvuab039LxeeV7P88hk2pstf/d3f5cPfehD/Of//J9ba8mv+qqv4l//63/NL/zCL/DKV74S2+7/vnd+fv5LQnl0Elx5JEr1dseX13WlSJEiRYoULxSe99xPu7u7/ORP/iQyk2P5H/7TsQlKR6abnHCbow27oJA87mTxR6hNJLEfSM7XHXaHqHR0YzajODXTpOQOD+wkCUoSxcn5Jrl+UvR9EBOUYnJSMLbkPliNAK8p2d6c7Jb6Hlx7NJg4xdn2JUV1S41HUErAq0xGgikfssnP9bmmIQvxTEFQXrGwnAFvpfsQlMAoABxsDm9Pj4KShnCEKlYLUVE3C0dutyjNjFcsRr2iqQ8KGg5AtgAL6xP0iRGB1mEozcLs8mRl/KZJfdcv5cIwHL5NMncoCgKO2eYw0ATdQa8R5B6vBgcbA3w+5LzlZYtCv34boR9xTmYF80ctrAk4JYE3YXrCKHh74yll1LUmwOYzyhDeJkC9YkiQsbrReJAoJZFSmRSWwbhlFasLPnPltkPGOe+pOY8j5cnyE11ouDzTGC/lZ4ynCi57z4IXXJYB9xTryDFyFXrTGrtQ4o7Xvolr167xgz/4gxOfL8WXJn7nd36Hv/zLv+SuH3oDVsYei6CkQ8Ft202sIalyB5bNBayvXZmoTH2uTnNmsnXe1LZLeaNXfawbSYJSsSqYOhj/mm5sTyG1RmiN6gqaj4Kz7XAgJN6Ec+eBsmhsTLheCwV7VQsQYxGUYihlSL0xRhGUpAWFMpDvM8YNIdJmi4Lc1BAVpD4EJYBmbXS6t25CrAqHiyF22EZlp8pRGrYJoIFaVUycIi5f1LjFCfpEd1cYs2sIoSmVFbY92XU1G+B5k/X1XBaWV1RbjHIESRnMkiMMRQ9vTI0gbzXqgjDo37ZBZG7LglIJBrwPN+e1e8/rTElyudH+SxKmg6A/EWoYGk1BtTbZMx8qwc6eHDvtXYxK0yJUAjlBv1XR9ciIDSXGLOuiWLF8kiwqOWJ4KqA5FvrkJ5DUq1qCiznJJNNVIAX+am0kSakH2qR9e232+ljmq/k9Dn3DrSyfWuPHf/zH+wZ3Xkqo1+u88pWvTAlKKVK8hCGE4OSrV/nmn38td3zdUUQ09+3fqPGR//AgH/2Fz3Kw8SxYyilSpEiR4ksWlUqFd7zjHVQqFX7+539+LLJPnL5tZqYzABF/jlP/xnbJtG4xtra2OtLA/eEf/iH33Xdfz1ry1a9+NZubm1y/Pt4a+ssBSmmuRSSl1Tt6U+WlSJEiRYoUKUbjeScpfdu3fRtBELD+T7+NsCyRSjGrAuwompBViulEVL2sAgrKvBqVQjEjA6SjUA5kUZRl27ZESCHabixQ3OvUOWaZgJcrFWU7QFlmB31BhhRaSkSKaTvAjcraQDU0P/T9PORtRd4OzftVDWU3wJVtwlDZDdhuSr6wmSVUkoLdfnNbyhhbocERiqlsgIzOU84ppnNh6z12KRPgWuaYlIpSLkSisJqKvA4oZBUSxe0nfI4s+7hOwjZvAvYArqMo5M3fViOgZHmsHglZWDE2xVLb1nEVhVI7kpPLK9yc+TtjBxw6FmBHpAjbhcJ0+15mi5BJrDkLM2DlHWYPS6bmoJi0LUGmmLCdkx31Lpy0OfqKHNKBTEmSLclO2yi+KF3zOe6Ziycd5o+3A2X5GYldMIERaXfaugXIlQX1Pc0T/6MBUuDkjNKTtKEwI5CRPLabg1yZRL2wdqvEzRveSmHGBOrQGicL+XKboJQr0fLh3hZsXdXEWV7syLbl7xK4eVptLEybYNzTnwupV6NA4CB/T9Phw0YVNqOYcLZg/g2yje9jflqytG7qbtmW27bS7myDm4Ncqf02P18GO9NlK5O27bLzh2gRh6Q0tjJBzEra5krmu0YNrj9trkVGpDLXhXy3beyX6N5cflxx87xu+TsmKvXts9G9OdiEvZvtZyFbNKnP4kYWZmgF+mzXfAaYOyyZWxedPpyJfCgEVmwbReEyBbj2uM/VR4LIVrT7d9QPkYao5BYgWxZoKbAcWD5jU5yXbdtZ2fZhvqvPTgvcPCycsDl0l236rN2+Nx39sNz2oRSa0pxm4ZjEKciePpvt4++43ulZxfKRhA8LXf4utwOEtms+ZwuwfgvkcopcJi6rKZYUdkTgtG0zbsVyEvl8wO13h8xFm0RLuRAnipjZthkPY9usq8hnFSApZDXTRYVrt8fvqUyIFUWYs66i6CbGbzfk4q7N4xsullSUM+3xO2srSlbYCtSV3BAR9YmdQOIK3baVXXOVDMhZCoQhq87YATaKPIqvFDWWaAewpgjIR/VIFDMEWFlFmDXpTONjWaCkQopxZF4p5lSAG312o8/eVMjBV72RTKnMe9/7Xra3t0nx5Y1qtcqP/diPsfa6k3z9Pwy5f+Y82rPQzXa0XtedltKEDgW61v6MAqspOZzf4XB+B1G3IVanDIX5HD+6VRv73EzruNMUyECwkKmw4FSw6lbLVvgCK5FuSCBQ0bpmxq7jNCQiFrYLBHYi+mx7AssX7Cw12J9tGtuwbetEtvvNLPVKFjsOimso1CS5RjQXhZBJKOA4vvkHcGOrxMGNEpbSzDbgtm1F3lPtsTzUZBIkybyvsSMVl+ymxcyG4Ejo42qNqzUZnVhraYUd1SO1Jq9VKz3p8kHA/H47ip+xFHbEcJdoslbb1paajKUI5yWlnKLoNcnVzPghhMbN6JYKiGVp3ER6O8fRLCyG5FYdEJBxVWvMkjY4CcUQxwUrWmq5WZg/JJAW6KyDtKM1TxQgszPtNQSYY9KC3WuKnavtNSYYO9ttE5TcbLS2wvxfmoX8VGTrJOrVumWrHQspNW42WqQD+zt0kI7djMaK0ioLy5wHYYg0lq1xXM3uDmzeEDhuwrbbh5GtOWjOf7APYSD6+ttJ+tvVWNEaYmoOpsoKIQffmzaxKKo39ovTaWv3sZVRvVJq5hc0TjbqL7bGdgbbuhnjw8qBxGuadsREJTfTnutFwjauNwg0Vy5LlAI38qFyrJZfiNrf4UNMyraglTG37UPlyJZtTFqKfWjbmvKMws2ozv6diRRvpGjZKluC0Gg0Vy4bApFM2Hb7W9mi5ReVsSiVFLNz7Wd3mL+FS/RZMX8Y8nmFkyCIZdxOf2fcTh8Wcub3W5iRZByNFdsKTcbR7efe0rh2u4/OFgPciHEkhCZjd44R8W9LANcy6pDlbMhUNiAnFFaYGE8SKr0Z2R57BJqljM/xogdobKHJadUad12pcGj7JScUEqNOVpSKkki0AUXG1xFZSZNDYUXjoa01WmuetGxqQpLRqj12RmOl62tkAJbW5JUinPHQQlC1BJn2acgH7THZUpp8oMEX6EDihppsdN0zFcHqliD++S4VZL32xiIngIxvfCuEJhMQ2QpQIDvmNYlstOc12bAQvmRtap/X/NQ9nDv/DL/yK7/CSxnHjx/vG4BKkSLFSw9u3uEV33kr3/TvXs3yLe0A84VP3+BDP/JXfO4PnyYckoI1RYoUKVJ8eaDZbPKjP/qjXLp0iX//7/89R48eHatcnEJtc7NzR3b8eXp6GoBTp04B8MQTT/TYbWxstI4D7OzsoPrsGAqiHOThpDt8voSxeW4Prxbg5m3mj0292M1JkSJFihQpviTxvJKUHnnkEf70T/+UIydPctepk4DZLXkfDcrR270j+NxNeyf97Xgcx+NJmeFcLsOdhQbT0QvUFdvnLqdte4vb5JhjgjNOtHOzFL20nZ0Oub3cDvyeLPgcz3uti7yj1GQuE3JbscEtxQZ3lJqtiz8y63F8qh3tuG2uyXwuqjcTcttcA1tCxbc4UvI4Md0+z5kln8WisZ3KKm5Z9HCil/xzhZBmgJHcB04t+CyXzKKt5CrOrHpko4DM8mzIsVXThqsbFjOlkKVZU28uA6cOe+QissjSbMj68fai78hxzew8ZLMmMHPstKYQkTzmF+HoifYL9MPHNIvHTXumF2D1jE1x1hybWRUcubP94nX1tGQpsrVsWL/LojQP80dt5k/YrN/XVjdYvtVl+daY+QLr92WYWjZ1lZYslk6bV9vKh6UzDiu3tyNcR16WZXrVRMdK8xbrL89hR8Gyxr7CdtsBxiMvzzFzyDi4MCtZvy9jglHAwgmH1TsS9d7jMnvE2ObKkvWvyOBGxJ75dcnh29oB3CN32MyvWzgZQ7Zav9shF60v5w4JDt3Rtj10q2Rx3bSpMAVH77RaRJ+5FVi/o/1YrZ2WLB1vB/aO3mFRnIVGBcpznbarJyXLka20jW0pujflBTh+t9UK4K2ckKycaJc9eodFOSZ0zJrP0obta0bJZvVEy5T122FmKbKdhqN3iBYRaWkd1k4lbG8TzK2QuFZJJvL34mE4dLp9b9ycoLJj+lquFNnG/j4ER25p2x6+RTB/OGrDvLHNlQAhmF2DI7e1r+3QLZKl9XYQ7eidFpZjVIRml9s+1EKweka2+rftmj5bjDaXTC8L1u+0WqSflVOS5RMxIUiyfrfD1IL5PLUoWb/XBQnlZcnycZuVM+0+sH6vy/SyjNpvsX6v21JAWjrpsHprm1h35B6HmVXzLBTnJOv3ubiRvxdPZ1iL+qxXhaAJ2UJEhitHtrEPjzkcurPdvw/d6TJ3xEaFJni3fq/bIq7NrVscurPdhkO3Oywciwh6eTh8t8vSCYvCNMytyY7nfu0Wi6VjccAQ1u+yKc7E12axdqvxg3Ys1k7A8hFzzLbh2G20+uz0vPmMhkwODp2ElWPmmMpZHD8ZMh3VW56G4yfD1r1ZWhGg4SBKIXjshGJ21vSt/Jzg1GGvRYZaXQhZXzbj6lOXbEoFzdy0GR8LBc2pwx6Oa1SVFpdDTsy2x/rT8x7TOYVCUnQCblnwyEXB1dWSz6m5iAwQwolFj8OuKVuQiruKde4v1clLxZrrc2shMVflPY5kTNmsBbdNN5hG4QFFFHeI9hxyq/A4GZGWXOBe2WAW0/7FbMDJvM+n7Cw1KblV+ZzWxtYG7gubLES2K4TcF7bb8Pp/9q2EYchb3vIWUnx542d/9me5fvM63/zNXwGx4sbGFPpam32oz8/DfsQeqbvo8wsIqZHrW9wSHHBkLxGkvzyN3DcDvWjaOOdnITBjhLVVQG7nIQqK37rnsdYwz4XlWZQul7Ci1ImZvQyFqwVkU1K8VKRwpYC7a8YwGUgO3XCwvWi8O7CZvd5mzZQ3shR2HbQ0aYfmruZwIsJTtmqzfMNuqSctbNvM7EfkZQWFuqQSEbkLdcnajfbYPbdrMb8fpQUCTu0pSh4cOHDgCk7t65Y+ynJVs1ptr59O7mlmM9EYoBWnQ5+81mhgSQUcSsgVnQh9pqPAex7NydDHnzd1rRV9jpTapMa1QsBUxpR1Lc2Rko8TkRemMyEr+YCspZgrh8zPK0qlKNjvwMqKwomG+mJJs7DYvo/zCyG5nMlgatuwdFS01kuFKVg83J6TZ1YEU9HGP69plIqcaLrJTwkWjrd9OLMsW3OlkLB43CITpZDKlgSLx9vzyfSypLzWnouWjrYJv9k8LB8TFKZN2fICzCy127R4BHIz5jxuDpYOG9KQEJrpeZhZbJmysNYmN7sZWDoCMhvN59Mwv6hRoSDwBYsrmmK0vnNcWD6kW2vO0hQsLOvW5oLFZcX0rCGa2DYsr+mWX4pTsLjS7h9zi5qpafP3xk1JPg+ZyLZQ0Cwtt+/N3JymHKXplJa5j27Uhnxes7zStp2d1UzPxIQVY5uNHuVsVqAU1GumwTOzmpnZdptWVhW5fGxrPktpCDRz84rZuXYKruVVRaEQEfQyxjYWLZ0qm98ZgW8UhBaXFYVi1A+LFkuH24TwqbLxd+veLCumomt1XOPD2N+FOclcoh/OL2lKZVNXeQZWDuvWeqlQiu5N7JclmIrWEJaElVVNJkrbVijAUtJ2XlOeiclDpn9kIh82m6JDiWp2VjMz0yaqrawocrG/c7B8WKO14TJOTylmZ9r3ankpJB+pMmUzmpXl9rpmuqxYWgwpT5n+tDwfUMiZshlXs7oQtPxdLioWZmJSEqwvB8xORZtTSoLD035LFLacC1meao8nK1MBU9kQ19bkbM3hab9FeCqUFWu5hG0uYDYibtsS5jIhe36kPOaEHMq310uLUyHzlilrA8ccj7xQNLVkM7Q4ZCfqtQMWY1sf1vMexWg8LGnFyTCgIYxjVsKAlWjsFMDJwKcU2ZZ9xUm70fq9vtJU3LYfcKhu7E9VQ6YjNdtCqDlTCYj4hyxV4RbaKiOL+5KpKOVg1oejG1aLtDRbEazstH93HNkWnFq8gT/TQDYt8hfLyMgvzm6G7LX2roXstSLOrumkC+vz3PW623nX//HjXLp0iZcq3vrWt/LXf/3XPUGoFClSvHQxe6TEm//tV/L6f3UXubJZXISe4sEPPMn/951/w+WHNl7kFqZIkSJFii8WwjDkJ3/yJ3nkkUf4qZ/6Ke64446+dpubm1y4cKFFFgKThg3gT/7kT1rfKaX40z/9U6amplokpmPHjnHkyBH++I//uINk9Id/+IcIIXj961/f+u7QoUM8+OCD7O3tdbTxf/yP/0E+n2dtbe35ufAvAVyNVJRWbptD9smYkCJFihQpUqQYDaF1twj/s8ftt9/Oo48+yq1vfwf27CINaZSUiigqSJSUuEqRQXMQbaWeVwGzhDwVRZxn9jQ1JCHS7MREcxBtz82jUIB5XakooagjCZA4KIo1RUUZ25xUaKChjG1RahpKcywf0ghhx7epKIHQkqxU2A1oRKoCRTukoQSBktgobp9rUlfw5E6OrFQICfWEbVA3qdmkVORsTdUTuDY4UqGUbNnmXYUfgK8kEkXe1tQ9kDVwbRM4aMQBu4wiDMELTL1ZFxoeKCVxbYWjFPWGxK4FZHPG1vckSEUua1I5KCWxbYXjQj1KMZDNKmgovCbIRkB+BhoHJmWU7RoiTcOofRo1FQVew3zOlsCrg6oHOHaInRE09nTbFloppLJlgVfVqMAQbtxCZKsUbs4EgLxqbCvx6grlxbaSRhQwdXImCOZVASnJlgVBwxBUWvUeaFBGxUjacOiODAdbIQfXAwLPED+Ea+EWoVGXxjZjgiDNqA2ZglE4CpqANOovXtWkE7GzRhWqXjUvtzN5CBUEDTj9Ckmzqrn0iDa2kWpAo0LLViuIlf9zRaNeUJwR3Lxggl31Sn9/54rRfQxMW295hWTrquL6ubaSk1dv23oNcw3Shkw2aq8QLUWBpK3fNDvbW7ZxG7LG3yfugY2LmoMd4+vAM4GdTB7qNVo+tC2jhgTGZ4Hfadus0faLnbDNQxCYY7e+QrJ5WbFxEVRoAoHdPoz9DYYAlS2Ye7Z5qW0rtMaN/O1399nAKCedvN/i0sMhezcjH+qu/n0QtvtsLvEs5CIf1tq2fgNCH7NjP0/7WciBnYNDt7lcezzA91Rnn81H16ZMX5AWNKM0iNmS6YP9bO1s1Gcr7TYEgSBoCqQEtwheJfJ3xgSwWz4sRv27EfXvIgSeJAhE3z6rBvjQzZv21qNd5E5Jdvgw2WftSKkj2bcAGsoGFNkpSdMDFUikrci4Ud9C4rpGhciL1FJyeYXvQdOykVLhFiW1RmTbNXbmswGOBXtVuzV2xrZyCnBEe0y2FYGCnKM4Nefx9JbDXtNCIXGlwpZQi2ztaU0ANKSFRFGSIUezPucaLk0lcaSmGs0/eakINTS1GevtOWXmNdU7rxVQhJh5TWLmy1o0r7koWAzYsyVLm5oFFXJZOtSkBKWYQlNDEERzaxbNPgKkJK8Utf/8Pp558gkefPBB7rnnHlJ8+eHy5cucPn2ar/jWVb76X90BmQAhQPsWaBBRAFo3bLAVwlZGSWmzCFN1jk1fR/k2D1cPQawy1rQMCcnWoATCl2gnNIxvX4IW4IZkpQ9NiyteGW2beVj60qglSRCBQCjzL7OToTHbQFsabWuUEkhfsqtdtDSKRzIUBBFJ0K1JZm7k2FqtE7gK2xeEtkZLQxr0PZddTJDGDoxWSWiD2xRoNIFDq14rBD9WGgzgoJkhsKBSyZANwZOgpEAqjaugYQFC4EQqHL4VBbYDTWM3QygE7r7ARdPAzLOONuSmOO1bRisCBKEQSK1x0cgbEhDk90IsAV6U0teRCqUFoRYINI7U+EqgEVhCIwX4SpDf8sk2gyh9m1H2sW0zl2pt1GOkjIkkRrklTrdl1XxcQgLfkCukZf4F0drEdqLUXNH7TMeN6lVgaaPOGUQcyFhxKYz4C3YGnIygvCjYuGDWyC3bjLnGQLeJr2E09wtp5gk/aoNlAyJRb8EytlogpG7Z5oqwuAZXz4MfqWTZrllvKhX5xTG2yrawLKP2UpiCZr299mj50AHfB7p9KGBqRjEzp7lwVoIAJ+lvqY0Pu/wdaAkWOE6nrWWB3+fegMZxDDmpVIarl0WHrWVrk1o4YRuEoFWyXtBCYkdqNiZVmrENw8gvUmNHttMzmmJJc/2qWQcgwbF02zbqW74PICIfakpTUK0KtErUa0X9sK5AR7aJfji/bAhYVy/Jnj4rXLN+CRsx8U636u7n7w6/5EwaudCjda2FosZ1YXNDjPS3Z1kIX/fWO8TfsQ8b0kJEBHEBBJE6r+MM96EUmoZtgRY4tiZUCVsL/CCylabPxvW6jiIIBV7WQhD12TAaI2Q0RsRtsMzvkdZ4Ymn8UODlJZbQCEcnxp64z/YfeyxhbP2CwBEaZUGA8UtGaHwtUAgsNFmhaGhJiMDBkDdjW1nUNDKghMDSGicaOw+rAKnhqmXjCwFak0XjJ8ZOUQ5pSMDVOEoz55k+fj1rkQ01voBQRuOsgqY0mxYcpZmZq+DbkYKXD6GE0AKhwAnBi8YcOzSqSn6sRurDaw6dBanxNqdQ2ZAwF7TmNZRAR+nfhSdB6tYc2LgU8Hvf/v/j277123jf+97HSxV/8Rd/wS/90i/x6le/mhMnTlAoFPrafe3Xfu0L3LIXBx/72Mf42Mc+RqVS4aGHHuI3fuM3WkG7YXj00Ue57bbbXoAWpkjRhlfz+cyHnuLRj1zoSKd69P4lXvGdt1Kcyw0unGIspM92ihQpXkr45V/+ZT70oQ/xqle9qkU6SuKrv/qrAfh3/+7f8Wd/9mf8wR/8ASsrZrex1pof+qEf4rOf/Szf8A3fwMmTJ/nrv/5rHnzwQX74h3+4Y1PjAw88wI/92I9x77338sY3vpFz587x4Q9/mDe/+c38yI/8SMvuv//3/8673/1u1tbW+MZv/EYymQwf+9jHeOSRR/ie7/ke3vrWt459bU888QTf+73fO/baK8ZLZZz+b+/5FFcf2eKV33Ubt3/N+ovdnC86Xip+//uG1O8vPFKfvzhI/f7i4KXgd3u0yXj4i7/4Cx599FGyd9xCML9MzNtWUrKfEGzypEwkujGqEssEPIWNkpKD1h528Oi0rUX15FDMyJCryiIWg/KRVFS7bF0lGcySSrTR9ala7yU3lCSxAZRK0N4FHiC5UbeJ1OQN6Ul12sZS80pJqlGDD5eblLKKz11pqw3VvHabtBJUvUg1B4UXSGxLcXTF5+qGRT2R9kSpOCAftalm2tU6rttBHpSMAv2RbSBJkOjxEmoJALWdhK3XDlhBm5ARo3FA/AbdkC4aerDtXvuYUpjoVyQH2mvbbpMK2p8XTjnkypKLDzZbKbkae+3UFMa2fZ6YxFLZCmnsqxbBRNsWWkFjn1Y6iqDZDqJBm6xkKm6TU5Cy7ZeoezUT7b/2lMJvti6tx4ct2+h21SuQmzLKBIGnh/o7JneACeo985Bq2Xv1wbYqaBOq5lY1xRnBhUeG2CY+e4l+hhA0Kp33MWkbNCHRtciXoLwgeOYLute2yy+NxLWef8TcKxUFhINggA/j9h9AaQ7yU5LAU6P7bPx3BS49GlLdjWzr/WwtwBCVkmX72xqoIOpbUYDFqxv7yo7Cb6r+thFiIlBcNluSzN1h8/THvR7boNHp70YlHu80whZRgDay7e7fiXtBx7OgCTwx1N8dfoiPRUFq/0Ch7fZY1HHPAwiS59Xg+USzjqSxT6usCiT15DgVjZXziwo0bG5E57DMeNjYB1zznRckx3ooF43a3ENnZc/Y6QXSODFqf0xACn3YqltUfUNQAkMg8BLDZS2eUyQoJHtK8vlaWyGkry3GNp4DBWZecwlZxecqDlX62xLZ1iMfLemQORRPxgelJNE9eubWmpTUvuXNqP/rMb7ru76Lz3/+86T48sO73/1uCoUC//LtWc4lFjLC6ZTYFtnEAyY1HOQQloZpkE7QJigBZMIOWx19lvsZVLbXVscLJAkqkYtH2zoKVUNtpWtgiWwjYbAoVW9iPnc1tSmfwDGExSCR/qqOA64m7vBBtKyTIRy6abMxE3IQtSNOARxjJ8i01gEIQcOG2YZGCc1uRphgeISYnBSjupdtrQNaAfhoPeKLTtumSDzXQiCvx581oZaEiaCSnxgvNAIvsZYNtSDUkNsM0IgW8QMMccNPpDxToUB13naUBqtqjDpt6bBNpk5bOirY29D4HojAbA5QoSH8Q5tE1CrbNCSA+kHXMSnbn6N75CcGKa06P4eJLqodq31MmDWz31r/aG5eNmTrVhu8Lr8k643IG9msIvQFjfpg2w4faqjsCRo1ETWiy4dKkFS5DwKTuhVgcUFxUJUt4ks/2zbMfVTRSUMtUX67g4R9bJNtmJtXVKqCWs0QpESrc3XaaiXwozYcHBiyUUxQgojk0sq61Vm25cOcotkQ1Jp9+qFtIXxlbBN9a29btNSEBvZZSyBC1dG/x/E3EC/b8H1Dko5JQsP83ZSGxKltAYFibl5Rr5s0eMP8rZWg4ZgBREeEtuRxf8jzGYaCEAG2IcD5QZdtov+HqnM88fz2+KGjNsV9LVQi6e4WWclYG5JfrA8XagGeaD+PKmlrxh5baGbdgM2mhafbY5OvhVk/2ZEPdWKcAtbsgF1lcTO08enytxAID8hoQhH5ATgQEiUS46cQhvgZQQmRGIc1vhRcz7YH9IbVaZvIwoYvRYt0BIaQNFUXVDOa0DLk1BiJn/3G1sGQdEOBu5ujuVBrPSfabqfwA1pkJcBsAli3+af/cpb/9Kv/iZ/8yZ9kff2lF6zwPI8HHniAvb291q560TWHaa0RQvy9ISm96U1v4k1velMrUJYixUsZbt7hlW+9jdOvP8QD73uUG0+aF3rnP3WDy5/f5N5vOsEdX38MK/EbPdSKz1bOsenvM+9McV/xOJaQg06RIkWKFCleQjh79ixgSEQPPPBAz/GYpNQPQgje85738Ju/+Zv8xV/8BX/2Z3/G4cOH+Ymf+Imecq961at497vfzfvf/35+6Zd+iXK5zHd8x3fw3d/93T3nm56e5nd/93f5vd/7PWq1GocPH+bf/Jt/wz/6R//ouV/wlwgCL2zNwWt3zL3IrUmRIkWKFCm+dPG8kZS+7/u+z6Rq+q5vgfpo+xjPuA6XlIWK3mB7Mxp3Rwwts2gFHLF9bjRznS9miwInQapIwkaxlAm5FqlkiC6zIA92rW9RricC0f0QZAR2s7PCCzsOeVfRL6OeUP3bmM9qSgWF2rD6HgeQXifJKMhLbj0ZUjkQXHpmaDORzfYb8JlFWFizOffJgD6phHsRvT0/9jKH2p7ixlMggvHyDBdnJUfudXnmkw3qu6pFyBh5yobGcnSLoNSCbhOV+uHmU+3r1HaXL0Nl8kJ0Ye1WiZCCy48kg7OddkJrdNd5D7ZGXESMRFfYvgrbV8dxeidq+6NtgA7fhD5RsGv4MzW0rjHF1kIFgT+ebRLVnT5ftuOhfXHzPNw83zYQY7Zx7/oYRrZlts1HKM0LVk7bnP2Ujwq6bLvPm/DX1Ue6jUdACPwmNA5M4Gus5zLC+j02oS+48Hf+aGMAS+Lm4eg9NlceC8w9GPJMJbF42qIwJTj3+Sj9TNBJVOqHTB5O3Q0XnpHsbbe/H1W2WDSEN/oo2EtPodzeshu7koOq7PFfkG/bWlE/DZ04yCd5ZifDIHhTbd/IICKl2ua7shXgCs1G0H+eaCR+q8bxvsMqYEaEXNVtom0/1FfbfejhOWkUnnbHf6FsLy/gnjnBF77wBf7kT/6EN7/5zWOXTfHSx/nz5/mt3/ot/vkPzZEvWWOvvYSA9VsfJTkv3JW/xEO1w4MLabBuFmG6jru413HoUG6Hy/WZvsXsio22NWHWjKmqay4quw32vGxPOWVrDua8ju8aYeczVnSbVLz2c6skXFkM8O3+88FBo/8zXvA1oYDdzOAxMNzqLFvIhxw/CHnUcglGjJ356+3jR12f/TlJdWvwOi+J3GZA1lXMLyqubVr4BRunOt7cMjunkY2QjZiw7VgIf/i6TUhDAgoDMz53YMjE5DdgL0Fc71k/9RnrLRsWDgu2r+kOgrR2unzTteYLQ0G9yliQgUJF571xdfJgnFICrznaDtqkETBEGR2Mv/Yya0vd8XncdU2oBDpBGNGWSBCVBpQJOoktLQxdewmuXem6N93Lc0ci/M4KfK+/D3TXWlxbEhEmUuItmn64u91bXjtdJ7YEhJp6XYwcB1Wm8xqULfE91SJijYuMCyuLIdeuWoaAPQbCrGSmFOI6mhvb0U/wMW6zlJrlVcVmxaIW+VMo3dHn+mGxGJKxNec8t+N7GYAa8gagaCv2fUlD9dYvAtA9ZQWXAqeDuBTDL7X/tiJyW5gxF70rh4+D/kyil8ZELUchtWbG0+y4AjVg/J1ZaDPstRZIBct7ghtl2MsPd/pXrT0VNVjDyZtkpCYIB68Ru/EN3z3HH79/k3e+8538/u///tjlXij86q/+Kh/96Ec5ceIEr3/965mbm8OyxpuTUqRI8dLB3PoU3/B/fiVn//oqn/zPj9PY9wiaIZ/+/Sd58n9e4VXffRtrd87zsZ2H+NlLH+aG316/Lzll3nH4m3jTzF0v4hWkSJEiRYpx8Mu//Mtj2b3rXe/iXe96V8/3+Xyet7/97bz97W8fWcdrX/taXvva1460u//++7n//vvHateXK248sUPoK/KzGcqr/VVJU6RIkSJFihSj8byQlD760Y9y9uxZcvfcgV0s0iwGZDaGV61tTUmFHCiTqmYSXAhdroU24ZDgbjfm3JCjOZ+NpsUgHkUvUUlxbMrnWs1ppYIbhG6iUqAk+42uIM0AclKQl9g1xX7V4gtnBf2C1t3kpCQuPSMIR/CFkgQlAK8JlV0IXBvZGBHwSmzvre6oVmoqbVujiUpKUdtWXPq8MgSlGGOQX3YvBb0EpRFw8ya9SH1H9RKUYvQhKtUrJgjQwoDzJolKbg7Ki7B1hV7ySj/056yNBWnD0roJ5nUr3XQ2sPNl/e5N88/k/fniEpX2bpp/k2LhMHg1zd5m14ERRKVW8ybIWFleNEHY3VFkpQRRyWtoKjsmpVhHcwadN/KXnYVMQVLdGp9tVN3WVLfGiHZ13cvrT/hGDUn3HutB1Pe9unmeW0oXI8h/YILHjQPayilxc0aQjZo1uPI0HFR6j8WB8H7lz59rj4dhZvC4mCQrBYGk0vU8JglKSVi+bhGVQLFSCmn4gp1Ge/5KEpQ6zh1olC04lBlOUuqHJ6WDwmmzlsZATOSVUz6hBLE7/HzerOm/S9/2T7n+7v+Hd7zjHSlJ6csM73nPe5iZmeHrvn0egDtyl3i4PoRoBBy2tkELzObpCUilAqyT17EmJLxmd7KEmZB6tt5DUIrRTVRyaxZWKKiX2g9yN0EpRgdRSUAz03tNg8hJxUKDSjXLpZIcOJ53k5NadVqC89KeiKAEmoNQ0tCS5rQgszvc/7lNc/1KCWoNQczfGIeoZFV99i71DumjiEpawc6NPgSlEXDzRlFJhQxeP3XNExpoVHXH+rWHoNQ60J6f8kVTplkfry8miUqTIpfTSBuqByPmxi6yyFas/oc2BJphZQf0oXGISloItrb6kHhGEJUcR5MvaPYOhEnfmMSYa69B69luopKUmkIJapW2IlM3Qand7jZRyWvS97dND0EphiUgVLiuKTcJ6Wi7YiPH6PNhguDkeXB9w8LTYjxiWNa0u+mLTqWkTn5aX3hZSaUJ3U0cRVTarUvz2Li9x2Q0hHSTlQItOFd1iAl2fqE/UQk6yUr1PuuZJEEpCaspWkQlV2tmVMgNaXUMWB0EpY5KJbYVcqih8KTkwBnvPisJZxeMitJEs5g06f+KQYDOhFRHkJW+dvohwOJr/skpPvT+D/HEE09MlLrihcBf/uVfcubMGX7t134N237e9qulSJHiRYAQglOvW+PIVyzymQ89xWP/3aSA27tW5U9/5tMcfL3H+2/9nz3lbvp7/PC59/Pzx787JSqlSJEiRYoUzwJXHja71tdun+9RJU2RIkWKFClSjI/nReP3bW97m1FR+vZ/Opa9tjWuUtwfNjmuJ1MbsaM3596ETb/hOXxqJ4s/QVA4Z8N8LiQjJwvWHJtrsjbVSTQYRFCKIaVCyv4slmEEJZDshi712uDr6iYoAVT34OoI5SWgg6AEcPPpkL0bY/oj2nGvAji4PpkPpQ25mSEvTgcEbmaPOBy5xx1MUBqA7UuKzQtRG8ckRuVKsHBYTvayW8HROyVrpydbwNoOTC0InGHvxvssiqU0vnzOGHPBbT2Lc5XmBPnygPoH3IrcFNzySkmuMJlyU3lRMr085hgQ9aFmBa4+FnakRBsJIZg7bHH4zskdYmcE2QGBnUGo7SZSsY1L2tJw5TFFoyMl2xhktE24eaH3+1FB7a1dGzWE7Nm/vImW2vbwurvHyKyrOLPu4Y4oB21VJZAsFEKmsuOPVTLQPLXv8HfV8XfYg0nXqZBYUjFeNNjAVorXHXgcb4QtEtJILMxSOHWcRx99lM9+9rMTtTPFSxcXL17k/e9/P1//v1lkB5DwurGe2aS5Nc3+U0fQk0zJGrIE5nGUk425lUMVanONgQSlfsg0LHKV9tg5iKCUhB3A8obVkboXBhOUWuWUHkjQHERQAgiFYHvQvBWhk6AEINgK7Y50kIMQE5QAvECwvW8xbmg9Tu8W+J3p1MaB7YI1rHMMWB8tHLXMPD4BsVwFhkQdE2UHEpS6UCib9LKTIGuFrK0rbGey/pvJQn6E6kovSURHpPfR5xpEUBr3OJhUe6JbHhZDVBoEy4bilGYgv2XAbZydV8wtqJG/HpNEIiFhelZjj8njjQlMB3uCWmXCl72WYGlFUyj2P9ytopQ4K3ZO9PXjwHYiaDRlS8VqmL+TqDUk+9UuB44sKtiuWj3pbWH470svlFTc4c+V7PszXCDRiBF9WHSVnZMBC9Z4v+tjVaWM1sxqNdGuKS+0eDjncDCIsDYAYeQKMaFqlrWdx7kwA0pQsMaTVvumt9kUy4Jf+IVfmOhcLwQ8z+Pee+9NCUopUnwZIVNweNV33cY/fs+rWTw1DYASmg8d+kTf5Uj81c9e+kPCiX4UpEiRIkWKFCkArj5iSEqraaq3FClSpEiR4jnhOb+deuihh3jqqafI3n4Gq5hvfd9c6FVT0okUHB7wkOWy1+dN9+CUb4qXuw22lMWTQf/gUb+UbxKF1iYwPApJNaV6IPn0jd40JAPLRmpKyZaPIifFmF6AI2Wfh886BIkA1nCCEhxaDahUJbvY2LXOF8P9yElgglCFKUzaJQUqO0BNqYugVJiBMIBGW0G/RQbqUVRKpARZu8tl51JAbad7C3DkqW5ihJQUFiWH78pw9m/reIPSevQJLN4867MzDokqqaYkTcCrdhB9GIF4Z/veTcHezclf6lS2FGNmymvBq8MTnxhyrgGBrNVTkCsKnvrM4EDs2BihqDS/BkvHJI/8zQQ+0ZpzfzfiGemzq99vwN5NkwpkElx8eML7FSkqudHQNgkRaOuiYufyhDcaOHynAwKeedDvn05uAFZusalsKg42Vf973Ue5QNomnd3e9cR5BvSTZAA5WwTHgYOuVH2DVJGUa2PbipXDsHmDgaTKfopM68c0bgEef6pvkfa1JFSVgqhfODbU+qSE60ZMVHrouktyDBikopREgDRBPluhusaPxpDfqnkU91PnMZnhBhLR1TWTqd5a55KSh/I2W1FgLiYqududQchuAlPu276JnR//Gd72trfx8Y9/fOQ1pXjp41d+5VfI5DVf/c9nO77vp6a0nmnL1GXmdrEL9UhJqRP9Ur5lpQ/7WcS1WfSJDRhA/Oub8k2BkgLG4J4k1ZQOZj3Q45GTwKgp+V4WoQVhdF2jyEkxbmt4bGqHq11qIcMISjmlmAkU1x2LoKSwDzqd2UtOir6XikCDF5HlB6kpJQlKAk0uq6k3O1N6+QWzvu5WVIoJStk8uFnY36YH8VjeragkAsXsmiAMBNtXhsxxfdK+XX8qRI+zfkqM8ZYDaLOuHIugFM2HG1fGkJ7pQhhCdUdPnNLLpBqLyvQp2k/FRgg4vK7YuCmpVYGwv5rSOASk2K6folJcfnVVUa0KdnfHV1RqNAVXLo/weZ+1V6Mu+o4dfdsdKSqFgVF8BTFQQam33RKpQhyXKN2eaNU5HILrNyRBs/eaBxOUzHpmdSXk2g2LZlP0qCqFA8pmXE0+p9jZs6J29/o7VlBKwrU1CPD80YpKsRKkQJNzNQ1foLrUr+Lfmt390c8LCrYiYym2m4N/8nenf7OF5njR4yIOI36G9qgqxS0YpKKUhNUU1LTksYwznopSAqEQ4IFwVM+zlEz11o3FPUHeg/MLUXu7iGmtVG/Jc001UHmPOFd8TFTqVlUyKkoG+SnBm79rjvf92nv5t//237K2tjbyml4onDlzhsuXL7/YzUiRIkUf/PaNv+R3bvQqH02E/wWCZkit2aSRG6zQrIEb/i5f9fn/E/d52dVm8J1Lr+etS2943upLkSJFihQpXmpoVDw2nzFpVFOSUooUKVKkSPHc8Jx/jb7tbW8DYPaff9NkBaVk41kIOT0TONS7UxN0oZuodEvBwxbwhYPxCUdE4ebuoPMoBBnBuSHBrUHYrUtgMoISKPJZje9PlkdsahZWjkL1wd7UAS34vQHypZMOYQgXPjsiHVUieCVtyE1LKpsCdoaUaRUw11HdVFz4bHMwQWkAQizCwe+m+yJXhKP3Olz4Qkh1nDY+R2xe5nnSMIswJNC1dRVsdzQB5fnA/jaE4WQEpbHRFSwLPLh+9gXa9WdbHL5L4FU0lx4en3RklJcmD6Zee9I3KXNg7FR7APlpgVcHYj7CGPe6UIa1W2y8mk99P3FgRNnFI+BmBQc7419boKBQ0uzvCupDUhZ2E5Vu7llYEz7TgZI8ccEdmOZtMCLlJknHWDwKC27AqYLHJw5yLTLsMIISQA24iNOXqDsM1zPPQp1rdobVUyf47Gc/y9NPP82JEycmriPFSwf7+/u8973v5au/dZZcYTLVQGkrZLE+2QlzHnrhYCBBKUaSqCQCQenCFJWVGkF+fDapCKMsiBNOU06xwTV3wrWXhhtTmkB6kEg3N4ygBOAqmAo1V8fP8AjAshNQCwXXhyjKJQlKAK4DS7MhVzZsvBFLr5igBEZ9MZvvT1Lqh5hgunNVT+x7gDCcfFEzvQDSFty89mwWRJM1MgwE+9ug7eew/tGdpx2UZktr2LgpaTaSDRid9m2ipiTm5+3tNjG3r203cWYSd3etvWpVMVH57tRvk8AtSJYWQ65eFEOvrxu+L0AK4/Oxy8C161brGVO2HCv9m21rchnNTqJzjJP6bXYqNMHh7a75fMiSUUpYKQdc37OpeuP3JVdqctZoXySJSoEWXBYOtQmf662ognEISi0IAQKk1qarTfAb5WQ9pNEUXE6cbxhBCWA/p6ll6Hmeh8JRaGfyfvzV3zrHB//fTX7qp36K9773vROX/2Lhe7/3e/nBH/xBHnjgAV71qle92M1JkSJFAtWwwU1/77lXJIHceKa7YRUm31c1ENWwMdooRYoUKVKk+BLGtUe3QcP0WoHCzCSxxhQpUqRIkSJFN54TSWl7e5u//du/xTm0gj0323M8VlNKKigBrKiAtTDgs5aLGpAaor+akuT6BIFjMJsebzZtnAkk/AHmc4oTZY/P3czSnOCcJSeg2RRoNVkwwgskNw9kK53daIISgOTJc+22BXmjpjRIQSnG9nWo7NLx0r+lptSHnBTj/Gd8pNv/mLYto6bUtbteBXD2r0a8qIiJGIm+oAJDVBqJmMAhBNo26bW2r4RUt8e43xGhplmRXHgo7CRpjIGVkwLLgcuPTda3ijPQqEYkljG7VmkOlo9JnnlIdaYdG/Eyv97vXf1zISoNIc14dfNvLCTqWD1l/Hjp0fEUlWJFgXwZ/KZRVRoXpTlYPC555jOqu6sOxZUnNKoRTkasAtZut9i/qTm4Of6bv0b3PYt9PuKePf2JPhHsuNwA9YKDHTj7Sb//fUs+W10qF1fPggoG+yKpqKTcaJpRkscfGlikp3xMVKp0p0UZgbaiEhRcqAegxhzDLV9zatHDduDhm+P/0NwLJJcbNjLQE8yqknO0B9Q4E6lQ/VWUkjhWD5gPFJ8umfJJRaVBaeCKX/8mrv7Sf+Sd73wnH/rQh8ZtZIqXIN73vvdRq9X4+u9c7Xs8VlNKKigBVM6v4E4f4E5X+paDtppSVibGE0fB7BBmYR8oIajPNgkzk8ndzV7PUXUEu3MjGDkJiBCsUICGg+YERCUBrUyN0bw6iqAEsGdL9hJEylhNaZCCUoxnmk7PlB+rKXWTk1rHfbh0wx6ovugXbJxq0EFQAqjsmX/DoB0L4YcdqTaDcd0er9eUIjslyeQFezfHmx/j8+1uSBhD6a7jtBYsrGp2NsBrjr+OsWyNtMBvRvODPd555xY1gQ978e+RiNgwiKBkIIyCUjcSRKVxVZRiJNWUusvW66PrahFnosu2LM3ikmJrS472Y0xUkiAtjW1P5nvtSOamQ/xQsD9B3LXZgGvXLIJQjaGg1EYmq8nnNTvbEkI9VEGpDUGzKzViTFQapKIEUK1Jqn2UIWN/91NRAtjYtRgotBu7VtNBtA6V4MKWM3hzCZ2KSn7eVLTjWex445FZk0SlvXAyAmwr9ZutyWpNY1zJLSDX0JzC55xrU5ng2dh0JIEAfGnmqTHQ6PodGyvUCaH7qii1EArsq1OEszV0wQyUSUWlpIpSjPKczWu+dpUPf/jDRv0wM/kmpi8GHnzwQe655x7e9a53cd9993HixAkKhUKPnRCC7/qu73oRWpgixd9fFKwsi075eanLU4EhII3AtFV4XpWUClYarE2RIkWKFF/euPpwnOpt/kVuSYoUKVKkSPGlj+f0a/THf/zH0Voz/U++oe9xWfLRO70vOTUQCAYSlGI0ZzWZbRE1VHHG8XjGd6mNwewIcwK7Zl7WbvmTXWaYgT0klw+ciQhKoLhl1mMnJ7lwYwCbpw8KrmK2EHJl1xoR+OiElKoj+G7Xw7HJJ96z2OCkFKgB5foRlCZCV7uXzjjU90L2r4+uU1sSpETa4OYFtjOZeo3SguruhO0FgqZGP4tdZ+t3Wlx/OmTrygTn8qB+oFHJOOYY97o0ZzaU722ONB0fA9L0uVmYmoPNa/SkCOlAV7lmzQQPJ8WROy22ryhuPjOBmo9vUraJPmlMhqFxAKjJVZEyBYmTDSdSRLJcWDphs3UpoBlzCZ6L+pXWoLTpCN1QYxDL+pw78PrYDSgr/RCVIDmZcQtGMfR0QnViuqzIuIobG+OP5XZOcNtqkwtbDjcPxh/Hbx5YqLwkzIzvc09JLtbNmC8DTWNu/LLH8fAQXMbIstSPeuANb28gwBeYMTcxj3qzIfNHdtm8ON1TpnHLCWR5ij/5kz9BKYUcMf+meGlCa81//I//ka/86gLzK/3XGa/KbnCgOrdPawXCDhFy9MD3utLjfKoaqW3t5sywNzMeA3XaqbHtF8DSNGeaY5WJobRkfzqgOaFKTr5mMbPlcG12srXeTBWaNtQyEDRM2VFn7kcUyV0bbwLTiL4b1aU/bG4QQ9PD9iMoPVs4GciXBfubGj3u/Cgllm3KToowEBPOqAa+N/lyszAFxTJcfcZ8FlqPRRTymiZVXBKj1ulCaApFqNfoSS83KTmp73m7nJbLaZSC5gjikLZFm8SiodEQY/sxLlvIa2ZmNRcvTLZo84Xs8ePIc2qB54F27bFTZ4PhZLsugCGFadHK0jUU+ZzCtmE/sV7wCxH5eHRr6R49tCUGpuoLx9jI0k8JMhhzA0yQEUaVrnWbdMQ1G10+XvtINLNWyL6SrRSV42AhF1BE8YR2x/9NiuAaNtUchBNsKtpNktd8SW5+PDKtE8BcRXCjrInFme9bHPGjTGqw+j8wBavJnFVhKyz2HPsnb8vxP/7LJf7oj/6Ib/mWbxmrfV9svO9972v9/ZnPfIbPfOYzfe1SklKKFC883rr0huctVVqoFV/3hZ/mpr/Xf72lYaqW43fn3s7h2xeel3OmSJEiRYoUfx9w5WETZFm7PU31liJFihQpUjxXPCeS0u/93u8hcllyt57qOSZLJmgSHGlgX+zcTXNd2lwfsVunO6NbQSjKcrw33LFZkBeshx61ULATTHapDSW5Up88VdBjNzOTcB8AKGQUc8WQSzsWk7z2P30ipF4PuXB5/Jwjtg3rt8K181BLKLbIxnC1g/KSpLwsufj5IXZS9kSODt+XQUi4+OBkwcr8jESFmlFMEh0rxCiFCiRPf3LCYJ1tUV4EtyDYOD9ZuGzzorEXTBZ4evqzoVH/maB71Q/g8hOJ9o15vtllsGzB3uazCQVOhtwULB2T7G6o8UksMBFZC9qKAuc/H+JPmLWovg+XHpmcTFeYhql5ybUnaSlwjYNzn4r64wQKTFpBcV5ysClpVsY/V2lRcug2m6ce8Dr9P4KMMrsmyU8LLj8yeHztTsEGcPgMNGqwcWnsJpLLK07cqjn/lKAygXJZsWBSW97YGL+MF0jOXnHY8ycbx/fqNt4A5alhcFGs5XyezruA6FAkGIYyinp34NBVQ4lKl7I2/dw+f2S39X8/otLMa76SrT/5KD/3cz/HO9/5ztGNS/GSw8c//nEee+wxfvJHj/U9/qqseUi+Jn+Rj9SOtL4XEgqHbo6sf9rq3HEtmjaEEj0GSakSGKbKLHWq29N45WYiSD4emvkQT01WqFYIueblUJOQTzVM1QWVbJT6Z0wUleZ4M+CxrIM3Aal81gqwBdzsWovmNoY3eH46pNYQ1BqDx4Ow4HQQlSwbltdh48pwQrrwO8d8y4Hc1PiKSDGqu1DdnayMdizKC1CtGUXEcaFC2L45OdGnsgu1iPSrJ0i7drDXSzwZBcuCuXnFjWuTE3OeDcplhe+LkSQlMEQnoTRKCXa2J1RzkoJqVVBvxITt8cprKdiL/DgpLW1qStFUkkZDjE1UqtUEtZo5XxiRWMYhKjkOZDKa/S41S2WLoUSlxfmQMICt3c5xKxyiEiaEZr6sOKgJGiNIyUlkbMVcIeTano2egMy5lAtwJFyujv97UQOzdkjTF3gT3LYNbbMZAM4E/UsItrEIxOTr81KgcDTUV8xg1/Acsu7w34JCQ94TOKHGSwzJu36eaWcA0UlAsNo/ldw/njYkn35EpUMnspy+q8zP//zPv2RISr/0S7/0YjchRYoULwAsIXnH4W/ih8+9vzebaPTh1R87xUfOPsiJV63wld9+C/k0ZU2KFClSpEgxFJXNOvvXawgBK7f1ZpVJkSJFihQpUkyGZ01S+uhHP8re3h7F172i51hMUOqHGRXgI6kMCJx3k5NiNaU9bfNAUzKK2dHJY1IsZQL2AjkWSUlEZYt2yLwbcBEH0Rz/5bEMdVvlyQVrzLe6Nw9stjYEVuKFc5i1sBrDoxs3NiSBL4yCUgIq6yAb/e+BtE2QJxk46SAoOZGfutK+CQtEn+CM6N7i30VU2r8e9C3XF4mUVs98YnTUSncTCbpURUbCNgGFXFmSKwo2JgyeuFnwPFopyMYlKjUqTERQAhN0tFyjAjSJqs6FR6DjldRzUeTpRpei0t5N2Ls5JMAwgKjTcW3DkKhaC0Hj4NkRr2w3UgWbIAuRm4XSnOSaUGab/gREpUlTxKkAnvzrCVheERr7iu3LYWcvTj4PcYCvO7AuBjw2XV92E5WUZqjaRjJFnIyC4fWa4MZVQXOEklsyPYsMNFcvCpQ9/nQVFEz5vVpUz/hxObyiZDYTkLMVV6pGqSYch8QgYDkbsoXiZvSAj0NU+jtc4gGhcSRx393IuQMCmFIpVn3FZUf2vYH9iEq5N72W3F/8De9///tTktKXKH7zN3+TxUMOd76yV7EhJih1Q2vw9ws4pRpC9h+PuslJ9xee5lPVE+ilg7EE5GKCEoBs2GR3MjTL47FPdpp5APL7NoGjIDcZUel6rQjR6bsVJgdCwIV5ze5mARLkDl0IEdXB524IwWXHwhO9Ckp+EZwBmfQ0At3lyCRBqVk2dWX2wo5SUvSngjjVzgksSVTSGva3h6duSxKUtC0RgaJRgetnn4Mi5pjQjoWQkCtBs6bwJ1gQCcsQPFQ42VpGKYHyOklG46zbbFsTKtBKjE1uCgLBhWc6r6mb5DsxRJ+/o+50/fqIuruabYhKRjUovrZhSCpHhUjUUOWv/mWF0EgJIQIxljKRQbYEuq5pNESLYDUuwi6SzCii0t5+px/DTGK9M4SoVK31KlIlCUpxH0sqKpkM1xrRT6kyN/h+ai0ItTC+HPCo+ony8e/afc/qK6bZU7aQeD4CwdnARdnjP2t+EeIOJ3zQE6y9gqmQxUCxKyVetElI5UaPR6VQkw81yf0Oo4hKngPnFlTr2fiKpcutY7u+mY8GkZVE0wIl0Ln+PyL6EZVe8zVH+K2f+zRnz57l5MmTI6/pi4177rnnxW5CihQpXiC8aeYufv74d/Ozlz7MDb+dc3VBTvHGT9zOwlkzXj39wDUu/t1N7vtfTnH7V68jn+u6JUWKFClSpPgyRZzqbeHENG5+gh88KVKkSJEiRYq+eNYkpZ/+6Z8GoPyNX9vx/TCCEsDp0Ech+LQcf5eORGED3kQEJVPyU0EeuzZ6K7NImJRsxWI25HzNGVvZSIaa4zNNKp7kZrRTNXTFGEQlhdXQTMxaAXaiXbt2nwQig4hKXgOeeTTR7hEKSjF2ryp2r04evNq7OnF+h7GIND0EJWDptM3UosVTD4yhpmS37+z1pxLXNQGJ58T9FpsX1UQKTG4e5o8Ibp7XE6kNzR+C2VXJYw988QOILzQW1wVT84InPjnk2vocmjsi0KFme0IlptOvsLh5XrWUsEZCKXauwk6y/49JVFo4Jpk9ZPHEX01OOpoUfgNunJ1ctmH7smL78mg76CQqXXlysF2SoNQJyca1ydoXl5OBRtmjx8qYoATg2oojCwFXt2wqE0i6lN2QKUdxJeJtWM3RRCVPS/6HzPW0bzRRyci/ZIFJsnAu+oo7qz7VUoadAS7pJirJbJZwdYnHH3+c/f19pqamJjhjihcb9XqdD37wg3zD/zaL7Io4DyIoAYS1LJULK0ydvIydn6CX+RJs1Z8lk0CSoASgSh7WmWsQFEaeIiYooSF/YFMvBHhjBKZj7O4UWa4IbpY1MTdpLKKSht3t4rhiMC34UrA1JD/pIKLSTthZZpSCkoHgZp+UyaOgQjjYGVKr3ztPxESlZ4PVM5LdG4ra7mjbeG7QCq6fi9pDr1JfXwhBcUpTnoPLT0/WxsKUNkpAXUIoo4hKy4c0+7uC/d3Jzjdxx3pOeHbnWl1TbG8LKgeDy3entrMszdSM5mC3N5XdMEyVNFNTmkuXLZM6bgyikrYFN2509v/xiEqatUOK3ZrF/sFkRKUYSYJSjEFEpWrt2QRyBTe2J/8J7oWCG/uDy/kDCE718NkGm0W09jJ/D4Of4OVME5IRmhu+PTZRSQMLQUjTEXjRuWRdjiQqXXUluYVepb+RikoCrBAmdY19o4iWEBzaG2jTTVR647dr/vOvSX7/93+fn/iJn5jshCkmxtvf/nYeffRRLMuMH3fddRc/93M/9yK3KkWKFw9vmrmLfzB9B5+tnGPT32femeK+4nHkPYInbrnMp3//CZoVH78e8snffZwn/+dlXvXdt7Nya6oOkSJFihQpUnQjTvW2ekea6i1FihQpUqR4PvCs3loqpfjkJz+JPT+LVcy3KxtAUAqONAiOmMDYp60MD1tuj40WvSpKMWbLAa/M1BmUSE2G/QhKEDMbgvzwII/oKnut4fCp7SwgRwamZaiRoXlp7VrgTOjRaam456RH1u29tjA7uN1TJcXsTNijojQKboIbNpSg5HS+BLe7bpkIwl4VpVbFRtlDulBetRiR2a8HM4csTr8hO7B39iMoAVS2FDuXxiBd2UP6wwSqN5cfDdm70bYXY5R1slCcFhMJPgHsXIdLj49H4Epi9QQsHY0b+EUKmkX1Zotw7C6Bm+tjM8Q3W9c0l5+YjKAEkCsJcuXJh7DLj4Xjp7Pp3h6fxBgpwarbIduXJycOrdxic/z+yXdk5KehMCNaz2BfKN1WVYoh6XxOh3TQZCDbzkwmXib9kGxOsbgy2K9JFaUkjh0LOHlkMl8GAWRsjWNrpG/+DYNXNBfzzIHD57c7O7I1QhSmMSeICUfdnVYG5t8g3I3HHYUBUmKuaqsqJXDdkfz1VIYdRzJ/ZLeV6q0b3d+X3vg6AN797ncPblCKlyT+7M/+jEqlwmu+odzx/SCC0tfkL/I1+YvYhQblMxewcr0EpWmr2qOiFOPYzRBxfTCRrRJkeghKaFqZoGad/vXGaBGUMPabaw2qZfOguCPS+96oFLlRKWIpyASCEWIwPZi9lOPwAAK7Lgw4t9Ys+CGu0j0qSsMg0FgtxwwnKMWKSmDUZ7plrJxq0KOiFCMsOIQFBzcLTp+1q/DDvgSlGAsnLErzk68T9jf0WKlXB5NXGU2QitYZtQpsPguiq5sXfX0Cw9duN68JKrXxVZQAbEezuKSwbVPvc1JREgzmhkTfl8uKcnmA/waU1VJy/aZFvTY+QQnMbcjlNGIMdZ1k+WpNsLGZUBcaUX7Y8X7t6molO1WLxoD0d4N+a0qpObQakCn3Pw70VRWSQpPLKoTQhK4cmOZNC9FFiNPILmW7YSpKMQQaa4Ai3sAyIZSckKw1+DlLqijFyAjF6ZxHLpzsfBYaOxq7hG/+DYNXVmgheCTjsNe1tpYjUq/HBKV+5LOG59Dw+q+lnQBO3ZB8Zel63+O7fr6lqpSEv3JAsGoISv94+jOtVG/dmLPabNV8UfKyf1Di93//94deywuFL3zhC/zqr/4qW1tbfY9vbm7yq7/6qzzyyCMvcMueP7zjHe/gIx/5CB/5yEdSglKKFJjUby8vneTrZu/j5aWTWEIipOCWrzrMN//fr+OWrzrcWjPsXKrwJz/9Sf7y1z5PbXeCnLwpUqRIkSLFlzm01lx9xKyhU5JSihQpUqRI8fzgWb05/6M/+iM8zyN//72mkpI/UkEphpKSeiKqPYycFGNLWDyWdWj2ae6wONbLsw1OOIN/WIuwl6DUDjC3zzWIqCS7Xto+vpnhykHny9DQFYRu/wu0Gho/EGzuWTQGCK0MIirNFQKWpocH8VS298Xssdvh0LoaT0EpIipJG06/xmVm1fhkIDmpC4VZydqdGexxUiUl0Kgo9q4FfckpgwhKANUtxeaFMMrlNeBFfB+C0sn7LeYOJ+7RmESlg03wugJzA4NdUabC6i48+SmFN4lkCuA1BZUhygiDEIUIvngEpRjCRNL6Xv4If3o145e+GBK3vPSo5vJjuk/gZzj2N4zq0Egk+5CE06+0mV7pOs+g/qg1aE1tFzbOTU5Squ4o9m9MXm7phMPiiTFZgQmi0plX2iwea8mQjCwqAkXGVpx5uaTU9btsWCAaoJDVLC5rpN17cwcRlAD29iQ7O3JgypWgYHWoKAEoJI9cyrTTvsFAolJMUIqsWjUkYTWHk5XyKF5n1ZkfRKgdMOyeXYIniiPuWzdZSUoqYwa/kySm3N23UZqa4g//8A/HKpvipYMPfvCDHL0ly9pxwzZ+VXZjqIJSElbG75gGhpGTYkytXuee1cf6HushJ0WQVZfM03MQDB6Td5r5ToIStLk4iWKDiEo3Km2FiloGLiTS9rTaIRVS9n8Od7eKbDuCPWcIEaIPUckGjmxryjfGVxQBKEnF6WyTwqYaS0EpJirNlBSHFtvtGERO6sb0PEzNdH43jJwUo7anaXqTrxUq2xp/RAyre17IT8Hy0U6bgUSlRMcNA0FjCLGm57yWIRhtbwh2NweXG7R2awZyIsWg1nkBZcnnTlAax2YEiWkQmk1BoAcQagYQgYJAcPWqhe+b9GuD7Lq/DwJBo9GlajSAiJT8vlRSLC/3Uf4acN7QkYSO5KAi8Yb05X6/O5UyadH8IWMXGKJSkqxk27A0H+KOqxgU9ediTrO+FCCiwW8cghLAfDFktdw7FgxSUYox64SUBpCU+hGUADwt2PItQsTA9Ytf7B3ztrC50iWhNIio5CUJdkK01s9JyLocSlZaPoCjQ34j9SMq+RZMn7hGmBk+NvaQlRw19tuTOavSIivd+8rDPPLII3ziE58Yr/AXEX/wB3/A3/7t3zI31z+wMj8/zwMPPMAHPvCBF7hlKVKkeDGQLbm85nvu4C0/9Urmj7U3J5z9m6t88N/8FQ//6XnUJKnuU6RIkSJFii9T7FyuUN/zsFzJ0qnpF7s5KVKkSJEixZcFntXb81/+5V8GYOqNrx+bnARwd9DgZDh52qOGlFyyel8wDt9or7ge2GxHKTaC/HhBhjlX8ZWzDbJdwa1uolI3QcmWveoZg2A1dJTiDRqe5PKGwyS3wq6HXHrG4qnHR19TN1HpylnYvjLhSwYFVx8PONierNzBTXjqr2p4w+OgPajvKG487ve8pB5GUAIoLUgyw7LLDFBQquxoGpXJdgnbWVg4KnoUpmA8RaVJUZ6H2dXJy117Gm5ceN6b0xeNKpz/gu4kbo3hi1wRlo71OfBFehc2vQzlxQkLKahsK/xGn+sZ1i8lTC1J7PGzWwKwf0OxeWFyB1x6xOfC5yYnN11/OmT3+mTn8xpw5UlFNZHxYhRBCWDnJjz6KaA+2XOyvW1ISgAy0APJSv3QPT53E5U6CUoGZ8pNbp8Zb74yKkpQA64pm9qQ8bxfoG8rI9nok15mFKYCxWt3m/QRyOmL+SO7SCnJry5z9uxZarUB6k0pXnJoNpv88R//Ma/6OiPzMS45qVbLsf/0IUJv8tRCmWINp096uEEEJQDthgQzdbDMMzZKTSnG7PUMU1u967xuolKSoISGATykvtjdKrK7ZcrvupL9CaUvnes2jyqX6hjrtWTQvqoklzwHNYqR34VKTbK1N/m4cH3XZme87tF5vl1o1iZT/rFshq+76D8vBL5RRRqJLgJyrqDJFp7/NRb0WbsJzdS0bikijYvAF2zceHbkpva5xzfd25PsdfeTMcoXi4pstvfaRisVDUe/8lJqSiXVoxw0SlHJ9wX1+nhEqCQcW5PNDL9v3Y9jmLHYORhNUuqG58Olq8Pn/X5oeM8uneNe3WLjoLPcKIISwKUDh8263WdzzmBoBFuBTRA5a5QqZHdp2aUE101U8roUwDJKc0fTJz/m76jcvFnDHGRgp5+KawI9RCUB/pSPnvD5BrA289g3iqMNI8xZFV75Zkkma/HRj3504vM933j88ce56667htrcfffdPProo0NthqFWq/Fbv/Vb/PAP/zBvfvObed3rXsef/umf9rX1PI9f//Vf55u+6Zt405vexPd93/fx6U9/+lmfG+BXfuVX+MZv/EZ+6Id+iKefnjA/aIoUf0+xeHKat/z0q3j1/347mYIZM/16wCd+5zH+8Mcf4Prj2y9yC1OkSJEiRYoXF1ejVG/LZ2axxnj/nSJFihQpUqQYjWdFUnrwwQfJzs1iL5kJudxUFDzzolEqxVxD4UY7orOB+QxQnwkRZY+iUkZBSSvmVIAbKZZklPkcK5gUlWIx8LklaOIGAcVpHzcKNLuhYkYGxIHnPIpiIpg1LRU3ApsdZWPTZasVpcRb2rIdkIkiXV4IB4HEi9qQlYqSnbC1AnKEkfMU5UyARHFq1uOuxSZFt21bdEOykVqIdjVT2RDHM8ddW1HMhcyXA1xbkc+qVso3iaKUD6PAOlhFQbFg/rbrIbm8IptVoExqoWJJYUfnsW3zOUY2p3BnEulDvIAgirvbLhQSu+0zBZOyK0ZhBuyCjVJwsKnIZjRCRe0vQjaRBSY/0yZiSBsKcxIk+E2JW6AjLVd+RuLkOm1j8RY3D7NHbdxo02puWuLmDUFJ2kadKU5L5WQhP90OJhy+y2H+eHRQQmG6ncLKLlrkEykcsiVa57j+lGq1peWXcnsnb7YImcQm2sIM5Eswf9iQopI+zBaNH+NgV2GGll9sF9ZOw+mXmYvNdvu73E6rZ9mm/QijglRehLnV9rXmy7QUqqRtysZPs5uDXCkqawnyU+00f1Ia25a/s5FthFwpkRJQ9NrmpwbYxvU6pr12BvJT7Rf/uWLb32CuzbLbfy8caveBbNH4Junv2C/JPrt4FE5/pWz5UAvRYWvZXf07b+qeXpaUFyWF6batTNoqhZtVZBN+yZfh5gVFdSdhm+izuZlE/y5rnMQ9X7/HYWrBHHdzkEv0w1y57RcpTao2aZu6p9ckxYX2Pc9OJXyYtMX0scKMIPAkSpn+3QocS9PemOfZ8dwrTTavaRxoGgemEYP8Db1jRFBvjzVWzjL9MLbNdd3HKXCS/i6DDM14kskqsjPtay0UFG48HkpFsaiQMmBmRlEqBeTz0bFAU8grrLJo2ZZyYUtBxbUVa7M+dx9v4tpQyCiyTjRW+iFlO2jbSsWU046+1QPYbykxKMpugB3NITlfMavatiVCCpEC31PaIYNqz1UoZmjPP0VCplpqdIrCUoNsoDhUDzl94DPXbCvBlXxF2Wv7eK6pyMoAXIWrFEtz+4hyE6kh14BignM0VQU3HusDKFcMoWP+yC72y+9Fa81v/dZvkeJLA3/zN39DpVLhvtfP8KrsBmEoqVQLqCjPWbPpUqu1o7TVWh4vCsrek7vBa6yb6FAwbVUphU38epto5NczLRKTVgKvmqNyc47GfpHQs7lXXGnXW8kjvGi8UyDqNsRkjECCEoRzNSPg17Tathoqe0V2a2YQkwE4jfa42cyG+NGziTbH4mWaDGFvu8iNAzP4OAG4PrgBnL5mMV0BK7ZVkPVoKTNllML1aZGT8oGm4CumfIWlFPlAt+ZrN9RkEwT0bCbAjhTnCtckORQCE7h30B0piLMonOikEk0ORVhsaRlib7brdS2FLeNjmqytkFGuIktoMpaiWbbwAkEQCnJN36goCY2b0YiorLQ0rtuu13EMoUZrgZ+1cbNghSbFm7Q60/3aLtiJmH1yPSItOtK22m5nyl83Z2zArAOWT8gWKcZ26FDPtEvtlL9CRm0QRoWyuteZls7JgI1CBMrY5uKUd2DZGsfVFKagUALH1VgRuUAIjZvVnbYZ3UrR5ria1XVFcUq3fRjbWuZzqw1u5ENLIGyYmVWt47Lb1kkSmMwxKTXaFgiXaA4zx227y9Ztp/qSMr6Pka2jcZxEf0nYCtFla2scR5lcV8LYdvglYWtZnfVOlzX5vDJkH4sevyRtHUdjWaautbWA6bJq2UqHVj/UUvT6xTUpV2emzd/dfdaK+qW2wcnT4RelaBGw+vlQxEt+qbELonWt5bJicb79eyzT5e9M5BctIh9G9dqWppRXrXRqUmgyjm6pHdlW21bZAjtneOqebSEEZBzVYesmCDCunUjTJs0zVGsKNAIKAjehLulaumOMyNhtf4e6MwmkKICTHE+szvEkTvGmEbhS4Ugdja3mWBit0yw0uQTr0xUKVygcoSlZATmporSV4ASanFD40RjnJtY8ADkUJ4XPqghMvbT9kvE1WT9hqxR2NAaHaA6kIL5zrtJkE6qmhSpkIiU1qTU533T9qmv+ZRMkqKwPTlSR0JDzwWuYQc8O4eXla4hAkNnMYlUthN+e16y6RdwIEQishtVSVBJNi1cXnuQ104+hlaBRzRMG0YYo36ZZbQ+eXiOD3zSD59pUhbteOcVHPvIRXmzs7u4yPz8/1GZ2dpadnWch4Rthb2+P97///Vy4cIGTJ08Otf2Zn/kZPvCBD/AP/+E/5O1vfztSSt7xjnfw0EMPPatzf//3fz9/8Ad/wIc+9CFe9rKX8SM/8iMpKT9FijEhpeDWNx7hm//v13HmHxxqfb998YD/+n99kv/56w9R20tTwKVIkSJFir+fuPKwSfW2lqZ6S5EiRYoUKZ43TExSevrpp6lUKtxx1x2t7+7YVZzej15UKnj5Zsh89Nt1taZ52ZZ5wfjojMW0D6eUiZzawH1BkyVt3gQu6ZD7gnZSt1tDj9tCj2UVomJbK0CGMG+F3JVtEGsDnMh4nHbbqhf3ZRucdE0jZmPbSE1pveBzqti2vWXKYyV6s2lLmHFDspE6ypG8z+mSsQ0zcGrOYyVSjyq4ilvmPfKu5uqBja/g9Fy73lOzHmuRbc6BWxabFKNdy4szISdXPY4sBkwXFceWfVbnTNDbtuH0IY9SFIifK4ccPxZi142f1k8obrtbkckqbBuOnVaUInLAzBwcO9V+fb12RLNy2HyeKgScfLnF1II5NrUA63dZLXLI8gnJyql2l1i/02J6CUqrNsvHBev3ZbAjhy+dcli9vR1dOnKfy8whc7AwJ1m/L8Pa7YY0tHDSZfXOdoTr8L0ZZtfNi+LctGT9ZVncSMlk/rjL+ssyzJ8w9ofudpk9Zv7OFATr97lkS8Z27qjN4bva9fqeRka77jN5WL/PNaQa22JuVXLkzjZZa+0Wi6Vjhhhj/GBTmo18uCI5clfbdvW0ZOlEpOBiRz6z4LG/DskWzecYKyclKyfbPjx6p8VU9B54ahbmVi0Ods19XTomWE3Yrt8hmVkyfxdn4egdViswqDWoxO7n9dsEcyvm70IZjt4pcaPbsXgEDp02fjh1L5x+GcxGtrkSHL1DtAgs84fg8C3teg/fYr4DcDPGNiYxza7AkYTtodPmXLHt8bsEd7xaUJqBuWXN+u3ta1s9LVk6atpku+baipG/hejM0Ld6sm0rZeTDaP0/tWA+A9QrJiCa9Pf6XTblyIel+ehexX32hGT1tOT85xQXH1YcudNiJiJ+lWaNbUwuWjpusXZr+74eudOkQ3PzhrC0frdDJopDLKxLDt1mm0iV1hy+02Vu3ZzUzQmUgvp+9Cyvd/bZQ3e4zB+LbAumz+bK5l4evdfl6L3tKPLabe1Ubm7G2BZmzbXPrFocudshU4Aj91gcut1m6YRpv23D+r0uxTljO70iWb+nXe/KGZu1WywWjpuxYP2u8ceIY/daHDljxpfiDBy7ldYYsXwEDh1vmbJ+C8xEClbHb4Uz94LrgvRDFo8Ijhxpd/Bjx0Lm5yNyQAFOnAjIZGBtLeTwYc36esL2UMDyjPmcc+H0mkchCoIuzxgi6MWbDoGC48seK5FtJrLNTUd+yPvcMt0ev2ezinx0LVkJt800mc6Y+7iYC7g1UllqzAnOSI+T0nzOo3iFVWMeM/YvEXCv1VajOSM9TknPKBIA9+/6LDcVc57icF1x/67fmtduqYTcXmlf68v3Ag5FpN95HXLrVZuzK4pqDtY3JCevt/vsrZctliPlqak63H7JJhNd3qteeRzXdfnt3/5tUnxp4CMf+Qjz8/O8cc0M9NVanscevwXPM+PJ9ZtLnDvflqQ7+/QJNjbnyefrrKxc44knz1AMTZ+sbs2yc/5wy3bnwiGqm2aQDTyHzbPHqG1N41Xz1Ham2X7GDPSVIINzvYS1Y4hGIpRkLswgG6bHWrsZMk/NtUhLzo0S9laBWaeKCAXzV7O4DdNHszWb+Wtt1kymYZGtRz1fw/zVLJm6sS014eiG1RKHWdyXLO5LAguuzihWdi2KUSqpfGQbcwHmDwRTV9vnOVUNOVI3z1o+hDOVgJhHsNRUrNfaz9uJasisE5C7ZpFFc7dssBpJgcyJkMMJSZEj0mcmYlW5aE5IDzcKyp/0mhwut6PnK8WA6ayxtSUcLvu4kfLUVFaxNhUAmtwSrBY9psoR4UDCyooiE831hbxmabkdwJ+d08zOKeYXFI6jWTrcJljnirTmVYDpRUF5MfosYOWEYPWEQEpDWFo8YbVEjKYWBNPL7bKLRyW5KfM58M3cHc8RpQXBTJQWVTsWi4cNqRsMQWlpXWBZZu6eXmivTQAWDtEiujoZWDrcJlIVp2F+BTavCbauC+ZXoBjZ2o6xjUmwhSmYX2u3d27JrDN8z8xPy4d0a72UL8FiQqVybl63UuUJIUAb4h5APg/LK+319cycZno2JgTByqoim4NcDk6cCFldbfelmRnFzEz7Xq2shORyERE+q1lZCeOsuUxPa2Zn27bLy4pCpB6VzZiyVjTUl6c060cUy1E/WFpq27qusY3n5PKUZn6+SyU2flYd07esKD11qaRZXGjbLiwopqY0YNK2zc6FuJG/i0XNwnLbL/PzsS1YlmmDkIKLlyxcx7Sx5e9ZRblsiF1SGtu4f+fzmpXlsEW0mp1VzEyrtr9XQnJZjZYCtyRYWQpbY4QlNV6CsLKyFJKP/Z3RrCyFrT5bLitmFiNyU1FxbNWnENlmXM3qQtAi5U0XFQsz7fu6PBdQLGjKhZD5qZC1+aAl2jpVUCzOtMeIpdmAqWjDiWPB2nxAqaCxp2Aqp1iZate7VA6YzkdjhAWHZgIy0UBVyoYcm/dapKblQsBMNJ5YAo5M+WSj8aTkKg5Fv0Ndqbh1tslizny2FBya9SlEJKaSpTiaba+BltyQRSekaCnW3ICj2SbFyLZgKY47Xuv3+pIIWRXtaz0ufOpasKUt8ihOyLbtgghYE0FLRemkFzATpRHKapgJlSFuAYthyHoiVeVxL2A2sp0p1zmxDfHeoNV9OLHVvudH9mA2UnbNBHBiGzKhUVSargkKVwuG2LfvUrhaJLNjOp4MJMVLJaymeXCcfZfClTY737syR+i7TC/dJAwtrj51imbVDLS1vTJXz7YJOVtX1ti5tgyAVpLTx47x8Y9/nJs3b/JiolgsjmzDjRs3yOVGyFMNwdzcHB/+8If54Ac/yL/8l/9yoN2jjz7Kn//5n/Mv/sW/4F/9q3/FW97yFn7xF3+R5eVlfv3Xf73D9m1vexuve93r+v77jd/4jZbdbbfdRj6fJ5PJ8G3f9m3k83keeeSRZ30tKVL8fUR2yuW133snb/mpVzB3tL1L7am/vsKH/s1f8chH0hRwKVKkSJHi7xdUoLj+mFEVXL0zJSmlSJEiRYoUzxeE1pPlpvrBH/xBfvEXf5GT//b7Cc6YIFfBUygJdVuCUpR9qDoQSIkbKHKhkdX3JFihQAnwbuSMLZoqwtgqRQ7NHgKkJB+xFuK9b9OBpoHAk5LCjtnxeaAkIMmikNCS2//KbJWmFnyumcdGkZOKimdsi83Q2CpjW7RDPCXwFKxmfRpKsutZKCQZqbAE1EKJDKCkQgIFnpJIFDlHU/cFCokrFbaEWmDqzduqZet4ITkXvIpGKYltK1wLGj6gTDBBKfACo46Uz0LDw9hKRS4MqdclVjOkPB0wtwjnz0lUALk8NBu06nVcqNci5ZasQtZCvIYhlMwvaZ78ZIgKDOHGzWEUVOjc4Q5GjcWvw+pJcPOCqw83aexFu2hzZld8nMotOwVBAwIvqrcgmD1sE3qarQs+0tJ4ldhWEjQVQTO2lTQOFCijCJMpCZoHmqAR2foa3zeEIrcIXsX4ys6a4FTc/kwRwsC0A2lUAbyG8ZGdN4SfRtSGTN7U4eYMseXKEwEHmxhb1ygBtPxSEKBMeqvYL17d2Fq28UXLNnqf69VBW4Jc0ZQLI39nsoZc0/K3BC/q4LmiCaIFnlEk6rFN3puisQs8ExzM5Nu2dgYsW9CsmbRmQkJlu8u2Zvqd7ZqgXSNqQzYPQWCITRuXoLJj0r+o2NYxad1iH4YhBBEhsVA217B7I1KqSfjbzdPhw1wx6rORvx03ca2xbeyXEjQT/nZzUO/j79jWq4Pydf/+nfB3tmTa3uqzOahXTGDEdYzyRLPatl27xcL34PLDIW4+8kPUDy0LmgdRAKygCHzTDyfqs0KbPlsXqMAoGIUKGlE6tUwh8neyf9cSfTYr0BrWbnXYuBDQOAC/X591jApZyy95k5Ju4ajFU59U2Jm27agxYvVWQXFG8sSn289yPfKZm4ls4zYUIn8H7eDzlXOgXAvHVYisRSNSVsnlFL4PQSCRUpHNQq1m+qqUCilly9YtC4IQGpaFRJHNQKOJGZPtaEyO1FxyriKMxtnYtiIlXtZqKQxUox3xeVtRdgIOfItKICjamkYgCJA4UpGRmq1CTDBTaKCOZAaPr7A8PhNm2MHBQZFFcYCZf/KR2sDWqjZzoIJaLsQT4AD5APZszBwYmHmtEqVfKnuKugTPlnzF8Qs4Dck5r0ypDk3HiJnUIz5GoQ6eDb5jVGvyHlSiZ8D14MYP/R47OzvPaad8ihcOd999N3feeSf/4d1/heMEhKGk6blkM02k1Hieg1KSbNYMyPVGFksGeH6GTKZBxbPJZDy+EMwS+hZaWdgRay1ouggZYjkhWgmCpmuOCY0KLJ6pLyMzJgB9YX8BLQFbgQbhWWgnBAniwCFzcYbmyS10JkR4Ei3ggj9tpD+aNqGt0RJEaNaDgauxmwLHkzRzCmUbmRDbF4SWRluwVS0QNGw8GxBGGUwAfkS+cH0ILCMuKZVRyYhtK5sFBNDUETkq1PhohDBrUVdBUxolPkdphAYvUuDJhhpx0yEQgkwFFkWApwXb2NhRKqM49O6iUAgCBAKNi8baMJd9suBR2ZdsRSQsR2qUhlAbW8fS+KFRVLGExpKgNJzINtnclQQ7KiKTaBzHjKFaC6TUWJZJiQVtpZnyNGxfMiQMVQ3REYnIss0aA9rKehFvDTdj1ul+w6wZbEvjeyBCbVQPRdvWzoCKyElCmrridUBsG0Qps+y8RIWGZC2EGfd9D+bXQFiwc80QncDMYyqEUAljmxP4PqAF0tJIaVKpgVEbUgpUKEBEfvGNX4Qd2YayZatVRMjpsu2u18qYeTRQ4/lbazrujY9Zq+bzmmYTPM8wj6yINJK0DUNQSiCExrYhW9BMT2muXLOQ6JYPHUf32Po+rXozGY1WglpT4jgaFeiBtiJ5b+zIh5Gt5QqCAAiN2pCU/W37+YWsxA8Elqf6+mWUDz3LAjRZrTpsczlDrLp61WoR2bvr9bM2UmgcpTqvFQjC0T6kIBECQs+Qmxxb4wWibWuBH0T1ysiHcb22xnck5bxChoqDmmXaH9lKAX5sa0XPvTLPvW3D/GJI3ZfsVuVQW8cCXxm/WEKxPhdw3XfY8ywcaXxoUrJpXKkJlEAhkEJjC42nJJbQLOUDdhoW9VAS5IytZ0lji8YRmqY2z40TqTGZzLoaV4CvRcuWoqaJQNmipSLnR+SiDIoAQRjXi7EFgR1RkOolCDOajNIEAkIhkFqTVwpHw45tYWuN1OBFqf0yShMK8Od9hNZMZXw8y4xdx7aNYtK5KF7gBqCEmRuENmQmz4JDs7vIEKQSrM5sm7ShvkRLbVK/KfNZOcrMa4FAhAIVkdS/pvAoQmjmrQPCwJA5bddDWoowsAh9BzfKwes3XdOHXB+t4cnPFfjef/IF3ve+9/Hd3/3dvFh417vexWc+8xl++7d/m6WlpZ7jN27c4K1vfSv33XcfP/MzP/Ocz/f444/zL/7Fv+DHfuzH+Lqv+7qOY7/+67/OBz7wAf7rf/2vFApt+dXf/d3f5b3vfS8f/OAH+7ZxEnznd34nP/ADP8D9998/0vaJJ57ge7/3e/mN3/gNzpw5M9L+0Ucf5bbbbntO7UuR4qUOpTSP//lFHvyDJ/FqbULq7HqJV/+vt7N0emZI6S9NpM92ihQpUrwwmHTtFePFGKevP7HDf/2pT5ApOnzH/+eNiOeYJv1LEen8+OIg9fsLj9TnLw5Sv784eCn43R5t0omPfvSjSFvy8q8P+PjT5ruqmxBkkpK9RPoGz5Z4NrzyRoAS8IkFp31iKdlL1O1JiZf4XJOytUVbBrCfOE2AjAhKBo0uUahPNnKtiwuQEUEpslWdtpUoKJ2RimPFgKcOMhHlCZqRbbxh/kBaWEEk9Y+k6kPBUUxnfa4dWHiJumOyUsvWA1ywGpogkCYYELcpeeFIao3Ex4qmnri+vV2bvd324XpCwby73mC7vQP15kXYPNv+rII2+QDaZIJWmw6AIOTSw+az8Nt8Nr/eZbvf/lsF0NjTXN3zWynToJ2GobGvumzbn4MGBI32eRoHcQoDhUJ2nMfYmr/dAiyecLjxVBTtUtCotH0WE3piNCOfhR6c/1xA7YA4G1OPrVfVtCQFIr/MrkJ5SfLM3ynCpA8jv8RpRmLiTXytYWjIGo1qr7+7bZOfF46AVnD1bNSGpK3qtI2JNwB7XRtle2y7rrVR67QfZtvssq3uQXVHddjH8IbU6+aMetLFRxReo49twr9h0P5s2SaoWdvrYysEKtB9+/f8YZM28MLnO/thTFAC8HwL0Wg/K40DuPJYGAVFO5+boAGJR45GVbZkoZSC8qJFOAub58OOPgvQjP2gTWC+sU8rbU61izsSE6ZMxZ3PXOCLVqD33IMB3Ui2N/TbwWYw/t68CJsXzfUGXtsPo8aIq49ptJOw3VNGGgTwupTgG4n237jUecz3JHgaImWGej0xdipJnKXBjG3tY2HWoh6fxzLjbC1xXi8wc0o5H5JxNDf32lOeQrIfSSnYDY2XlSQyq1ELJLdNB+x4msp+hkrCrb6SJLKV4FUlQRRb2cHmL0ObIGqnj8RPtLnW+js0c6AEfAnZEB/Ys9uyJDW7c67aS8y1yoZmUXF6u8Ls5Wk+fzQgkWWk429lQyUx2x9bvsmNW212/9suly9f5tChtpx/ipcetre3eeihh/iB//0Ks5kiBwosS5HPtR9I1/U7yuSyDSpVo7Z07PRjFIvtB9ByQlq5bKBFVgIQUmNnm60p74KabxGUALSb6PgCdKZdjy75NG7ZIJYx0q7iQm22ZRsk0jxpC4KIuJE/cMg0JPVSo8d2o14wqZHyQYuVFMTKMDVB09Y0EqnIlDSE+Bh+NBcLFDqQNKxIriZCw0rYdr1kCjfclqlCcD0e7ICAznq8xDOuEciNdkqms9UMTj2xflKiw9YL259DLQhDyOyFnI9WsU7YXkf5iduslCCRCYkgEASBoHEdZKDMHXZsZDMwc1diTg47u0vHeK0VxOIl2hKEQedehiBhW4hS7laaEQknMISvlm3inFq3SVI7N433gkQ7Aq9dVmvwa7o1n6hQoEJYWNVUD6B2kLhXWrTq1QJ0ZBvfksA3JCylDZnHT7QprjfpQzBtsxyYW9BsbRi/9/N3G8ZG2+b+HRx09aWw17btF/PZ8Es1YShQCZfHhJ6kbbLeWk20/Ob7gohb0tc2iamSIcLs7gqUkCg/bp0eeq2OY9Y2WpvvlBKE0fHQlXRMpK1r1SwthezvS+p10VFv2JrXBA1hYWnVqrdWg2vXrBZxaZAPlRY0hSEqg1myT08pdvYkYSgG+jDMWa21v0ATKkHoddkm5v5QdfqwYVugYbtqIb3O+TpUIjHKtglIxhum3ku7DvE4IhKpJrttvURFoZac23Txc9EaQ3X6xUt8VlrgRX4LteBq1em1VYBjxrhmwsd+l7+biT7ZLHaOfz6dfmkikWhmCakgaSbGxwBBUIqUtpqCZuKdgRICGzgShOxbkkCI5GloJsZoLQR7nks2bx7oC9OGlBTDS6x5tIBm4rOyQFmai5UZjhR3DCEpLitpEZIAtB2RlyLYGdN5zj19hrJTYenY+dYxyw6xEinineTcKuDbX7HPe47YfO5zn+PFxLd8y7fwwAMP8La3vY3v+Z7v4WUvexnz8/Nsbm7y6U9/mt/8zd/E8zz+2T/7Z1/0tjz11FMcOnSog6AEcOuttwJw9uzZiUhKBwcHPP7449x9990IIfjwhz/MwcHBwBdum5ubbG21JbguXLjwLK4iRYovb0gpuO0frnPs/mU+/ftP8OT/NGmgty8c8Mc/+QlOv36Nl3/rGXLlzIiaUqRIkSJFii9dXH1kE4DV2+f+XhKUUqRIkSJFii8WJiYpnTt3jvxycbRhAloLPjtrkYxtBYea2JeH/5B1leK1QYNHcLkpO5vanNFkdoYtCmSLOCC6YvZBLtrBW+8MvDSV5JObOVSnObKrfOgKLK9dtuSGrJYCrhxYdCNp142VWR/XhQvXnb7H7VrY812YscgL36ivBLJPqUS7a37Pd8q1kV4viaEvgs7za8fcA+GPWb5bpEuI3u+6YGdg6RaXjXN+S3lpHBiFnag/yD5+CUJaORgSUKqT5DIQupOoFAbgNweYWoP75dK6IFMQnP3MEHls0Vvea9COeA5DV9nygimbJPp8sSBRTC/D/k5nEHMUVADNmu4IiEUV0vMwJlBegpUTFo/8TdjXTguB6NPfAr+3fbqPz7VlIcIEUWlYf1Rd54n7oFLYWYHofRQHI2rz0ikbv6HZvjxCSr277V19dSisPs/KBOW10/tMiUCh7eFjExjVrkYcIIsgo0iccnvrBZOWZWEh5OxZi+5spVYcJM/0tn26qChmVAdJKch1lrcbmiDbWfah7WxnvDVCs9x7DrtKRFSSjBoh66u9Y7toWLymWmfLETw6Ndx/955uB1GqUz7hrTvMFgOqlfF3sh7+qqM889+e4nd+53f4sR/7sbHLpXjh8alPfQqAV7xsspf/Mlvj+JnHyOXazM+73U0+780PLXdwbQm/nmXvUKPn2NHsFucbQ6StrfZY2CIoRbBlRIRUnc/3/pyH7POcbdQ7g5ZZJ6Dht5/h2YrgIAsNt3ec39npv04VWnO8qrielVTt/uOc02dNFhYUuSp4XeSkfsht9LbHLwqcynjCpZm9eHyIiCeRYptTHWftpZH1zvFFZQxRaRgK5Vh1cSJxVaOcFJ+537wRtImrSXSTpMYtH/idqW87y3d9oTRIk0Zs+ZBm47poKf31Ld89HyrwvN7pvW/ZRBtjdaNabXRfaZWXbSI/DF6/9IOTMQpA9SjlYezHUeWDwFyb7nrBqqVADLnohQVFvS7Y2UkQkxIIXYnVM3EaAl13k7rLdpfXWuB5PSbta8h1jiUqqk+oEMcefykEZu3u2JpyNmRnX6J6OlRXO7OdbVcuSM+kxBuFIN973aP8noSfG73G6gcpjLpTo2udJKNNKMrp3/Zlx6euJHth79os/o2sut4oaGBFBFzSNh7tcjFBKYbVFISZ9nd7UvKFjET1W5fP9XaGRs0QldQYLjk8s9vz3cbNOU4cBOwf2+teVvbgzbOfb/1dWruOtkI2wikWrP0hpTrxipdl+PjHPz62/RcD99xzD29729v4tV/7Nf79v//3gElvGYtrCyH4gR/4Ae65554velu2traYm+tdU8TfbW5uTlRfGIa8973v5eLFi9i2zcmTJ/kP/+E/UCz2XxP8l//yX3j/+9/f8/0zzzxDGA6YbBKoVCo8+uijE7UxRYovZcy/1iZzbJlzf7pF9YZZzD35P6/w9CevceQN0yzfV/yyCNymz3aKFF+eeLFVAlJ8aePqw4bYvnZHmuotRYoUKVKkeD4xEUnp5s2b1Ot11m9fA+CVJ54B4ONPHxtYJt752rAl3eGucYhKl7HYH/XWsAvLls+KE/B3jQxiBJGnG0HiXN3kpCSSRKXrVYfr1c6g+TByUpgd/cO9H0EpxpFT4NU0F54eXL4fQenk3bC7CZtXxiAqJQhKJ+63uXk+5OBmpI7g2MOJSlrj5ODka3JcfqjJwY2k8sJwopLlCrIlC2mFdDNPRJT3vieQBNT34OlPeP0JSslr6iIqleYgPy258fQIIkh0XXHEY+8m7N3sLTOMoARw47xG2gOuf0g0ZePi6Ob1K7+0DpXdF4CkpBR2FlZOWoSPh+xNQFJqVOHSYwN8Et/OPrdnfwPqB/0JSjH6Bfp2r8PuddVhM7B8gqg0sK8MCypJyZWHhz8rg5ApCMSo4atP20++0qG2q7j6WDg8Qtf1HB29x2J/Q7F9RY9FVNKOhZRw4l64eQH2EnGEUUSlXBGO3wnPPAmVPn1TemFfopJRbwCdt1ADIlL9yEoXblqYZGoG3QSlGHak4haTlbxxol7J8hFRaR2Paan4vMpOVP6qtKn2IVwkkSQomZNCY8r0scNTO1zaH0xUOjPbllZb+YrDOI7DH//xH6ckpZc4Pv7xjzM/Kzl+1CzZStJIBx2owdH7hjbpmgqFXlbGKKKSW6xwwyrQnyo4GM6VKcJiE1Vu9hCUhkIYZYsY3eSkJJJEpWcWVQ95dxA5CUDYCltpuriRHehHUALIozme9TnbyDCMc9pNUCrZIbNuyIWaMxZRKSYolfKKXEZzc6ftGL9gDyUqyXrAzILGnYMblzvH71FEJdsBOeCGx+uapNJLjL14XThsvuhDVJqa61SUHLf8zkZ/u4F8EqVRSnPtkiAccPn91pRglId2NsTguuPyXdeWyRgiz8WL1ihevik/IJg3DlFJC0GxEJLJQP261XNsWPn9Azn43NH3/UgzGxsSpfoTjGL0IyptbfWSmcYpXy4rGg1Bs9nZ1m6CUhJNaXHt5uAbFw4oK4Umk9WICjCEn9BNUMpnFMvlgPMbDkqLiKzUH0mCUsFVTOdCruyZPInjEJX8nGQ6E1JwFFcq/cerQVjKB5CBS/X+5aSvBxKVBOAP2aPUTVbSCB7RLknSVjdBKYYV3dswo9FCjLUnI4lGzSWf9TiyB5t5qEzA5/UczYWsw4zuJAp2I0lQArCz7fl3FFHpZQnFwSPry3zwjx6kUqkMJM68EPjmb/5m7rvvPv7oj/6Ixx9/vNWeW2+9lX/0j/4Rx48ff0Ha0Ww2cZze/ui6buv4JJienuY3fuM3xrZ/y1vewqtf/erW5wsXLvDud7+bY8eOpeneUqQYhNvg5W9UPPaxS3zmgyYFXNhQPPNn2+w/HvDq//U2Fk+Nv3HmpYj02U6RIkWKFEn4jYAbT+0CsJqSlFKkSJEiRYrnFRORlD7wgQ8AcOh1RyY6yWJdsVxXPDQth5NIuhAoyVNy8JvGQWpKYSRvP4qgFOREh5rSsYJ5EfZMNTOUoNQ6T4ei0uS7Wq9tT/ZyOcbFyxYmG0L/l6n9CEoAtQo0o4DQUEWlBEFJ2uA1NMqf7JVx6MPNsz71vTHIPwk0K/D03/aqNzxv6CIqZYuS4qzgxhDCVwci8kYs7KUSLhxFUILedFnjwnYNQUMN6pcDAnxnPzuUw/O8wmvAYw+EvYpIY8DNTu6b7vRzg9ATqJNg252pZYaWj4hK2ZKkONfVV8bc9f5scPFzce6VAW0c8P3WxRCvPnm7gqbuTOszhKgUKygpZQhwQZ8hZxhRqR4Izp+F2hBVi344OJAcHEhUdtLxNqHEMYYCQayqVHICjpYCHtt2WwTWfipKHWWrEBRET/qTGP1UlGKcy8Vzwujd20mUNl2yVYuN9fpo4wgyKylMFTh37txE50rxwuNTn/oUL7svg5hEFgS4cuUQpdI+U1PjqzwAXM0UsTKDH86+akoatK1A6pEEJVuGLTUlGQimN132Zz0CVw8lKMXoUFSacLN2IAXPFCZfr9UQnLMc6gWNXe1/0n4KSoEW1ELZaugwolJbQcmMrcFkw4Bp50Fv2tZxsNen7c8ruohK+SmjSOk1xpuHTXmBtGIlpWTap1GFBb43YUcBEBpLmjS9g9rYb46r1XjOBKXW8TGISjs7cuBzMKy8sNup3SZBK3XaCBZjN1FJSm1IxloMJSh1ly/kNWFAB0lpGEHpuaDpS65sRmpMA35jdROUADxfsLFvTUyuCVVnajcYrqjUSvEWChoTzgcAN7BgMs4HANf9Z/d7dRyCUhKxqtKKHxAIwUbi91o/FaUkanWHQPoDx4N+KkoAoaM5KIcc1Kc5Utzpa9MPWgkq1xbITu/jFMb/AfOGV2l+9hcUf/d3f8drX/vasct9MXDixAl+6Id+6EVtQyaTwfd7f0R4kYRaJvPFTR81Pz/P/PxwdckUKVL0QlqS279mnWOvWObTv/cET/2VSQG3dX6f//J/foLTbzjEy7/1NLmpNAVcihQpUqT40sf1x3fQoaa4kKO0mH+xm5MiRYoUKVJ8WWGiSM3f/u3fArD6qk6SUqyolITWoqWilAs0U77uS1AKDjUJDnW+MZWB+TenAsqD8jpEaM70vvTc9GwerY6nYBGnfus+/7gIXcHtCw1Wiu0XbMNUlJIQeU03hcSuhUNVlABqNUm9IQkzfWT3BxCUAK4+DQdbIxrVFRVTAVx6KKTa9d42Tv3W+aVuKcOoALaeCQj6vbcVoj/5YcwX7rGiUhILJ23OvH7MlyCJa9y4oHj60xNGArVm7Yzk2D3t/jwOQQlgfg1ml7u+HOSPBI7eIVg7NeDgkLJK8cVnKSVYSc+GoJQrwamXWRSmhxhJekYrNwurpwS2O/ocyQDjzDKcfqWFGLBbvG95y2LjvOLpTyX6ypgEpaUzNqdf06dvjpnKpa/dkHu+c0VRjVP2JJ7JDvRRjrj8mGLvxuRtvPwkVAekTBRBb4dQrlFBOtiTA9WQwKgpxenfkgizAtkvN1QXYkUlAFsqbj/cpDQ7fge1GxqtBUq3Y+ujCEoxblQdnjzovefDCEpgUpyuNQOsmkA0Osf3e09f6FVRiuB4gkzdjMmHp3Y4PNUbaEuqKMWQizZbW6MmhRQvNh5++GHuvK03SBwrKiXR0JqGNmSAWi2PPyC4fLe7yd1uZxqVc80lnq4tE+7n0OGIOSnb1W8EPF1yecYaTxkiTv0mtKFbazFcQakbs0HI+oZEJB7pYSpKMaTWkVJjJ5zrzkAVJQAlBBUh0ULgF3vHxX4EJYB6KNlojt4PkCQoAVQbku393jVenPotCVkPkHWzcG02BPUBJCqVsVGZAWu3MdBvnbN8WlKYHXMuTcwH158x88ZYBKUIltasHYdsopuMJiiBZWvKMwopOsd/bcmBKkoA2SysrSts2/TTbgxWC4x//4wgII2ZDmUgQSr6XtP+vTVueS0FczOKhfnhc6KWoqeduWnITg9vc4wkGWlpSTEzrcciKCXLX71mUakmicbjEJQ0h4+EfdeVg1SUemro09/7EZQAAiU4aFit+6BcgXJ7y3eneWsEkpsVo6LUce4RfaMaSLYak2VsD3JGHXKUQqT0dSv9W6JFhH3Gvb7lE7+hZwk5IvyxCEoxrGaf/jqCoASAEJx1XLaC3nlxEEEphtMUuE3BxcoMF7vS5r559vM9KkrmfBq/liMMzH3YCKfYCKd6zJIqSgBfeZ+PlPDkk0+OuKC/H5ibm+u7Do2/e6EIRB/72Mf40R/9UX7lV37lBTlfihRfLsiXM7z+++/iG/6Pr2T2SKn1/ZN/eZkP/Zu/5rGPXUR9ETd1pUiRIkWKFC8Erjxs3p2t3TE38ebBFClSpEiRIsVwTERSeuSRR5COxM72vhhNEpW6X5ZfKFn8zdLkuzBPap/jQxNrGCSJSiKArFDICZgZMVHpmWqGC3uT7/ZpBAIvCuiNS1CSQnHvkSZzC5P9aHdsxaHVANfpvb5hBCVpdwZ2wKgpdaDPtn0pGUgC6UtUiuAWoLw6+U7n+eM2p14/mmDWTVSq7ii2Lk1ANno2EgUJbF4MuXEuTj83/gK1MC3Ij0l0SOLaM5rNy30OjFgcHz7ThxT1fCLBSpI2rN8hKJQnq6JZh8tPhNQrk5WzXCjNjUdSgnag7mAbLj+uBqtSDSpvJfrzBC/bKluK7Std/W2MoPDSKZuTrxrz4hLITkFpccjQPiAoO/BZ72prrKIUw84Ywtgg9CMqAcwvKmZGBEi7EWYt7jrts7Iw3vMbE5UCBQ1fTEyia1Qkj+xkaSg5NkHJQOGiyFbbJxxFUAKYChR31nzKE77M3V5tcvmWzrx5SaJSP4ISwPzRRYIg4OLFcfJJpngxsL+/z+XLl7n1dP81VJKo1Eg8q0LAqVNPMjc3GQlNN1y8/z97fx41SXLXd6OfiMysvZ5966f3dfZNoxW0wrAIIwwIsLEv2JjtHnEF9xyB0Wu/GDhe3gHbLxeDgQu+NgZ5A7FJNkgwGO0atI1mNNMz3T29Pt397GvtuUTcP7KqnqyqzKrMnulpSeTnnD4zT1VGRWRkZGRkxDe+v2uzaGf0AnhQqHStMoX0xLBoOQOY0sOzNNsLLVbcZLvRtICmpdHt7iyOQAlgvqG5Z1chzGSdwYTymIgQzUcJlAAsoTH6FC5Oqbcv6Rcoge86I8KUMYQLlTrkChpzRMjIMBZOCEoxInP0j3cqG5pWfAO3HqFSEoES+MON9Ws6ECIuXjppQLGcyMgVALsFa8sSL+SyDwtnms1qZmYUw26GuAKl7vF9dRX8u1RUTE6MEBuF1PXunmR7J7mrWC6ryWfjt7GOKGlrS7LTSv5eEBQ1xXdQEmxXDFp9DlqjBUqaI3MOpXxSxb2mkFWYMl6Yt2A6Q+hQ16b+NuL0uEBqMlJFuj1FYQrNTMZFJkxXKivuMWzidvAdoZIDtJLa3QFryuq6KMUSKLURWmN5mmZ9/7k4SqAEMLFrMr6TTPQlBEydvkpuvPflJShU6hcoAeTzksMHszz55JOJ8vtq5dSpU1y/fp1arde98ezZs93vXwkee+wxHn/8cd797ne/IvmlpHy1sXD3FN/+L7+G13//PVh5vz9t1Rw++R+f4wM/8ynWXty5swVMSUlJSUl5Cdx81p/7WrwvDfWWkpKSkpLycpNodnppaYnsxHABSehu3hgrwx03peAOzM+KLM8Tb5G+NakRLoDi1cUGR7KjxU19hSQTsZg+ivO1HJsNM7ZACQANVzYtdhsSLydiOSgBZDIwMaHo6CU6bkrDBEoA5Qk49dCgmKArVIoQ7UwckJx5Y6Yb3mzgNDpCpT4hw9i8yeK9I65dx0Eo4CTU2FXs3IynHhGe8ledpKS+DRtXkl+/xTOSIw8kX6Rp7EF1K5lACeDqc5rr5wJ1FXORrrbth9XqIUZaYYBIfnrxCLmvDUMkzk+5sLs+JJRdkMBvN/bg3JOKZgJxkxYCtwm74ZqNoYzPwumvsZAJ19hqW7Bxdb+txnWtqO8odlfa92XHESmG69bUQYMDp/sK2clziGvEwXslRx+KOLl2+n6BEsCh03DwzNAidYVKKrOfvjyhKQ1uOh+g46jk5fy011cNtnfjXwRfqCQ5t5tjN4ajST9m08NMaEcmgTeU6hywXMxaPIESwJYp+chYlu324mTHTSnKQWmAvmKGOSr1fH/yMADvf//74/1+yitOZ6Hu7tPDn6fNfjFhzOFIx03pUmseAFFokbvrBiLmGOpYbpOr9SnyVYuZq8ltr4WC9Xp8B6UOjZxmd9YvY1yBEsB2RnC9LRYQphrpoNShpBVlvX+DddyUhgmUAA7kXOaygw+3jlApTKAEcGDaY2osut/pCJU6DkodpuegOKI6uo5KAae96o6OHXJVGwIt/H/VbXAShmqVhi+KyuaTpdMamjVQnogtUAJwWoKbVwSuI7oC42EOSh2UEjQb+y5FQredv4YIlMB/RMshYpWkAqVuuo5zUt8YYFR+wfRBZyTbEdgxw+B10ngZyca2wcZ2soGQl5G0WgLHTX7uc9Me5VuYC96rSWxXoDISlZExHZSEn64d0k4bAm0IvJyMdFHyU8GBcZdcpvee7bgphQuUwBBwfNqmECEs7NS70xemNiM1x8Ydcma8jt7Nd/LTTFgKM0IAGaTjqOSUoKolS8pMJDeSLlQwuFG6tdB8VpP4D7I2803NXRX/GjTrmVgCJYDNaYeN2f1nXsdNKdRBqY+wIoY5KvWUc36ap556KlbZvtp561vfiud5fOADH+h+Zts2f/qnf8q9997L/Pz8HSxdSkpKEqQhuf+bj/Hd//bNnHrjYvfzjct7fOBnP83Hf+tZmnvxhacpKSkpKSlfDjR2W2xd8xdkUpFSSkpKSkrKy0+iFdtKpcLE3dEP5DeffpGPnu+LSaUUj614XCppLo1FT1Tqmokz6ZFd3z9GSUnctQ+jIXBKYFXhhWaW+gg7+34KBjwy0+CF7SzbCRayJYq8p2lqGBXaIYhCsl7xy2jWFF5WYrRGL4TX6pJnz/YuVgrHQ1sS4USnr+zA1eeJvQjVTbepUM+70QISz0NLgfB6Z2k3rrjs3EhoVQPUNhW1zXiCAG1IXygjJflxX4xTH74m3/cDmkZFY4aEFhjF+Dx4WlDZSpz0lphaBLsB1eD5dUQrQ7h2NuKLzqz6rdiURogOlQuXnk4uFJMSpg/5QiU7jiND59a+xTB2Rl4wMQvby+AlaKJ2E6rbGi0NIH5CMwOFCcHeWntBWMpYws3KuqKy3vdhjOu2csEDQha+pRjaZjaX1FCBWZQgb+VKdJpu2hBx0+Xz8ReuvJyJtBUqI9naTS400oYg63rojBgZ6qSfBw7bVBzJczp+eRWS55tZ9lyD5ozG2pY4k6Ovedgz7+iRDbaaRaZytdA07Qw58fQEWwca7Cz0hk/97w/8R372xreGJiu8cRx+FW7cuDGybCl3hkuXLgFw6kR0u58xilx3e9WaGxtzrK4scN/9zwzt5j/X6rXaEwKw4jsNfqFyhLLVolYUuJZKMgwCQN0cY9EV3JxPNl4wXFjfLeElFHw0TdG9x+RaBpXRyBhCjevGoJDJrIFTEFj16IX0lSHOMdKNTre5K1EqulxWLby+bl5jpNlJWBjNaoKxTGe8p6UgV/CfjSMiM/eiNI09jecl64ulAYUS1GsKL9keiy6jBEZBTFOTL0ClQte2SZsCofVQF6hmU9Bshl/3WxUoASDaAqW+61upxjunjutYR5+Sy2oMQ1Orx0vfDTGdUDjSwZoQZJSi0Ux27ZotgW1K7HGJTLAZJGtplAbHFbhtkU+czSQ7tcFr1xHFRWl7NIIr6xZeyPdOUUam9TQs71k0neh20S9QAnCUYKli0Roh+vL6zIFbSvJiLb5Dp1sUGDY4GYGTYAy0n78ia4NtJXNOKyvFUbPFl7JW2Gg2ku2MoGr6+UxOVtmoF5gp1EemUyGndjy/wdnGQe7NR4+PauuTNDammLnn4sB3D2VsILzOXvuqGh/+q72R5fpK5w/+4A+oVqvd0G2f/OQnWVvzd4m8853vpFQqce+99/K2t72N3/zN32RnZ4eDBw/yoQ99iJWVFX76p3/6ThY/JSXlFilMZHnrux7irrcd5lO//RzbS1XQcO6vlrjy2RVe83fOcNfbDiNeypgoJSUlJSXlFeLmc/5YdupImfx48ugrKSkpKSkpKcOJvdpr2zae51FcCN/xbkl/GvEtZy4MCJWulCTb2Xgvoa1ZX6iUU4p7sHkRi8oI6xKjEfxtyYabbALcbGps4GI1Q81JlnYyq7hrrMXTKzmaCAwn3gR63lKM5T1W9/bPLa5QKYhZjbcbSblQCRHwSLu90GUaoW5KThN2lm9BDaLAbY0+rJ/cmEAIQWN3ROiK4C54pZg9lsHMCi59JqaDVjv99k11S0KdqUMmrqOpbOhEfmTHHpC06prli+12EkNoBDCzKKhu616R0q1yiwtMtwtpwuxhiV1X8URKbbIFOPqA5PoLivpu3Mz8dHPHJLUdNehONYRGBRqVdt1ZJsKJt6hempYs3mNy7uMtvM7tGkOoZGYgPy6prLePi9lOk4ax6zCsDrsLu21RYJAkTlbSUSgrWR/r9YUXLRcVlqlii5U6Dgan5h2UAc+vjQ4nGeRqzcJWYLkapxi/r1hzO6IGv83EFSrdW7dpCMHlvMWRM6vxMpOwM9ekWey9+P/66B8B8PMH/2eoUKlw2LdcuXhxcIEt5cuDpaUlJiYmKBXD75us8NvZIbPUI1QqFqvML6zEfrwdzmyyZE/jbpXAk5izoxdQv1A50v1/ZWpsM1kY1RvVcbIlhTFEjBPFwpZBpgHXxsC0PFwn3gL6uK2xJTTM/TzjCpWC5FfjHR8liszu+H2BU5RYtcF+oWnfoggnSV0GnkPZgj/eG6WfDQrSTamZPWKwdk3RGqKh7MHww27uru+LZuJiWjC5AK2roGwVyw0JIJvTTM3B2o2AvDjG2MvKwMS0plrxg2pp86Utpr0kgVIQQaKwigPlEL5gppDXZLOa2mgNR89ze3Lcw5SwnsBNSRuCsaKHBhoJN0vsVSVeW6ijMiK2UGlmwqNpC1btfYGhlxEjhUoZU6M1OJ7opomDl8Teq4ugNqTvcSPenTWCRgJXKqGS329uYLwj0IwLRU1LnJhKVKekyWrNXcrhgraoJ3jXagjB5ZyJEv4mJlGMN7BtGYJ+XWgcoZJlC8Z2TbamHbSEt8xeiJVfpthAyM2B7uSxvO9Q6GgPSwzeJ0cPSZaWltBaI25ls8hXCP/jf/wPVlZWun9/7GMf42Mf+xgA3/iN30ip5I9B/8k/+SfMz8/z4Q9/mGq1yokTJ/iFX/gFHn744VesrE888QRPPPEE1WrC2OMpKSmRHLhniu/4l1/L2b+4yufffwGn4dGqOnzi//cc5/7qOl/zA/cye3LiThczJSUlJSVlKDc6od7uT12UUlJSUlJSbgexRUqdkCOlQ4MW5h2BUoceoZKUvDjE9VzXBovQmvUorgoyWo/cld8rUIJMSTEvHW7sWagY6hHTt0DCRbLSkmCATKDJqVYFF5wMzfb8qWfFEyqN5z0Oj7lsLguSqFxmZzymJhXnLlgDAqVhbkpj05DNwXpgQ2hXoNQhRKhUmgYrK30xTxCv9zhtSD/8WpuZEyZGRrD6QrKwe7OnLKys4NKnoxVOYQtTN5+zIe4O+UD6TAGUp31BVcyJYi0ll54K1Ici9iWsV9RgaJQYi2XnPxe1fXu4s87dr4XtNVi90nd8grx7GLKCKU24+3WS5YuK7ZXIwwZwbTj7yeRCOE9BbVfjxm1i7WtU27m1/JCQL0Kr5leDjilU2ltX1LcDAqXu7w0XKpVmJIv3Zjj3sSZe/y77IdetOAnTR02uPePuu00F75mINpMrQXlasn61t0wDzhN9QqXCOIxNwcrl8PPod1HqCJVmDyjGJzQvPh9/oVPaipl5h0KJWCKlYIiV61smOqHNi10SbNj7+Vi1+EKliSkHA80N9hdI4wiVMkrjGWJAoLTV9AXCUY5KWwd7O5aOQKlDmFBJSkmxWOTKlStDy5Ry57h+/TqHDh0CBhWVHYFSh6BQqVCoUxiyMNvvoAS+UOmyN4Z2R9+TQYESwFRToQ3NdohrWhg3quMAtDIAGrRAxghB1OGcyKMD0eXiCpUO1hU7dYuWmcyR7ZRnsykMtqUxIFCKdlPSTGc8qq6kFRArdQRK3fQDQiXNWFFTbwpcrzevfgcllTe7Id+E9MU4e1vghAgfwhyUkBJDKuaOSNaXFM0hYqN+x0zPheXzHl5cYVTbjU8IMCxwbf+ctYw3gLJtWApoB4QXT6jkeVBvSTyDXgfGEeOfRl2wdHnfQSmI6IRADUlfKimmpzVXr0o6LzEvWaDUnzwgVJqYUBQLmhs3o9ybQj4TsLUTr977hcW2I0myF6Tjwri6ZQACjMG2FIWXlxhSYwrdvRfiCpVWNg2ckBBto4RKsxMuLVuysWcMCJQ6Aq8wpooejgeVgIuWZ+2nj3JjKmU9XE/Q7KvUKIFSh4msR8sTNCIuRr+Lki9U0hwrOGzaBpUY/XwHw4bDWYdrwmI3hqNSJxymjeCSbDs+xTdwojGhaARerOIKlQylOZqtU8npHr/TkUIlDYYnkAreON8rUDrbOAgQ6qhkFZpYhd6xV0eg1CFMqFQoTtBsbnPz5k0OHjw48ry+Uvm93/u9WMdls1ne9a538a53ves2lyiaxx57jMcee4xz587xwz/8w3esHCkpX21IU3L/249z4vUH+Ov/eo6Ln7wJwPqlXf7kn32au7/uMK/+njPkygkeEikpKSkpKa8gW1f9DXwLd03e4ZKkpKSkpKR8dRJ7mvnZZ58FYOxY70O5X6DU4S1n/Em+nKtYqCtkjPBGQbbmNX9t5Ie6KPULlADKeBwRbqwT6wiUAEqGx4GsQ5IYUkZL4yrJVsMkkZ0OsLJn8dQ5ayCdlx3+O7YjqNdFpIOSjnApKY7B+Oz+3wMCpQjG5w2mjsQMJRFYLJKGwLyFuYblszbXn05uweTa4NZjXLu+Ba1D9xksnkmwGzxqMS1ms1m7QriA5za5G61fDzhoReURN+8R97ByYe2aov4KRTBwbbhxXmPHcAGIvD0T3LaFMpx4xCBX3v9MW6MXupWjEzlEddhbU1x8MkSgNAJpSkxL7OuIYrpNFCYEM0dj5hVoC4USjM+EHxYW5g18oZLdhHptRKiS3GD9Xl0yeO7iYOilUVRbBrWWjBXuJciY6bKQ3VfCWbV46ee1y6IefD5a28OvxxdLWRoPJY8jmasY5NvCrX6BUoefP/g/Bz4rFovs7Owkzi/lleHmzZssLi4OfN4vUOpwyPSdCarVEo1GMtcwgOMHL2MdGG7Z1y9QAsjuZrBCROdhdARKAOW6IBPPELLL+naZhilo3oKzzdlxyaox2C+pzPD7uiYkjhCRDkpOIfzzCUuRkfu/3S9QCkMKmBrzyFrx+hqV9+tdAIbB0LCdYXhKsnxJ0YrzLO1P6wIqRjkD4UIzOThwIuEYMeKcguL4KFxHsLMpwl2mYox/kjootVqCrS3BbRMo9X3eqAt2dpLnEcf4J8z5sNaQVGpx3wuCmYiIz4czM+YxU+59lqoY7katrIG6BXej1W2TraqM7aDUwZCa4KUOCpSGMVXwKGSSC+fHMh5ZI7z99guUOgglqLsSd0S9uH1ibA2cbWVjCZR60glBVUiUEIgke1a0ZspRZAN9S9impn6khtmKIBMyNbFRLwx+2MbJatYWbN54IJ6DUgflCVp7RVRb8NUvUOr+ft9YcGHOP5fr168nyi8lJSXlK5XCZI63/dhD/K2feS2Th/x3FTS88JdL/P57PsYLf7WEjjOeTElJSUlJeYWpbvgT+uW56PeJlJSUlJSUlFsn9lLG6qrv6lAIPJSjBEod3nLmAjMteHjbxeybf9U1M9aEYxRhAiWAFSw+4hVplIafWlCgBDCV8ThWdACJskCNWAM3Wn768azLwXLvzOuoiWmzpjBr0fY7w4RKu7uS5XMjQqGFLCosX4YXv+j//1CBkmn4/9rcOOtx8cm+473o694RKq1dcLjxTDIXJQC3yVDRSdSu+blTJtNHjeFCmjAHphc8Vi+1z2fEYlVQoHT4XsFs/zptjDWGbIHohbkh+R+7XzA9bLOt1qHpN2+2w3iNWogb9X1MkeHGEokXOqWEE49IyrewKSFX9B2chvZkfd+ZWTjxsCRfDv8+imYFrnzJo9lnaDJUqKQ1mQIcut/ECtMLDHGQUC60hol4Iq55ZV1x6bOOH/ZtmECpL+3Wdc3zH9u/t7UpB12Uegrot4mNG3DusyE/P8JRpbIGN69F/36YQMlHIm3fVWkYQRclgHLO48CE3yeNEirZJYFd8ut+NutxuNjbl40SKjVnNE8bOT5rhItERgmVhrHVLHZdlYJMreSZuZGPFCh16BcqmaZJvX4L6oSUV4Td3V0mJ3s7xyiBUodDZokb1w+zvj4/8N3nWguhLkpxCRMoAVQP1WjMNilbw0XGQYESwOyOQbHZDuWkxUhRwfq233HPNDR5t/c+NK3hY1K5lkGuZ0Pdb2C4UGlZmnhrw/u0QaGS4GIt03UsGSZQcooSp7hfD1eWLWrN3n6i30Wpp+x5E6UEazcEdjOmi1IA15VDhwFhzjeGBRMHBNLcdxYKpU+QYrdg9arGa3erYtT4ol0NmRzMHhx8bA4TKmlTgiUwLU1kjLSIsufymrlDQ9Lhn3f/uTuOoFLxC3nbBEqB71u2oFYffKZoOTzEV7mkmJ6ObhdRoVkNqTGNtgvVECeqfiHSeMljetyL/L6fToi3rYrBZiVMWDgkTFpeMpbzGM+Hn98wAZLrCZwhYx8twgVe6xWT3YZfzmHvgf1pr21n2Krvj3fcrBjpogRwrZJhpz+2GdECpW45myYNL/r8+gVKPr7ozrB9V6VhdFyUOkxrj7z279FRQiVn3MNpt5EjLY9SX78zat6gNFPj/AFFPaIOhgmVRnG2cbDrqtQtj2eyc/kwTiMbKVDqEBQqnTjiW9Y5TvL35JeTSqXChz70oTtahi8XnnjiCd773vfyK7/yK3e6KCkpX9UcuGea7/hXX8tr//7dWDn/GdaqOnzit57lAz/3aTYuDYk/D3ha8dnKi/zZ1hf4bOVFPH0L7tgpKSkpKSkxcVsezYo/Zi9N5+9waVJSUlJSUr46ib1SurHhT77lp/0JvlECpQ4nH7rIx+ZM7GC0oRjipBMNl7cYNamWg/kAAQAASURBVFrTgxN4UQKlfpxS+Of9AiWAaw2TT2/1LiiHCZWMlu4KlADGs4q50uDCkWeJ0Elqsx3SY2Ha5dhi9ORklFApZ7fIZGPs/I5YXIjroBQUKu0XyhsqUOrmbchYITjCmDlhMnU0vH0M+81sQZDJt+s7bMErIm2z4ofv2s8kXPjR76DkuRA6JzJinuTo/ZK5IyOEJyG4jkbFueX60o/PQDYfc1da2LkrFVugBDA+5y8kJsWzdZJsAF9sdPIRg3InLHTYJQ77TIPn6t51xxjNVSmobYdXR6hQqV2X0oBsSWBEam7CM88UBQfvM0e7TYS1GUPGc1CKau9xQydGXLRRAiUAaWgKlkfYTRMtUILxccXpk77rXZhQyS3IAYESwFhOMTe2fxMZtg4VK3XESR0u1iw+uzXYqKOESs2ZePdbmFDpyJlV3ljY4r5zI1YZYUCotHa0yo+87b/HyjsoVMrn87Rayd3rUl4Z9vb2GBvbj5k7SqDU4c1332RxsTc8TRxx0sYLJ5jc9kO/9RMlUOonSqjUL1ACuHTAZbvcex+HCZXWt8tdgRLAXF2TDxnOmJYXKlaSaxmE1pxwHIpDHjahQiWtGV/TiCFilQ5RjkpxHJSArlApiFVzhwqUOqi82XVVCjJKoGSYMDEHRia8348KzSWl/7zv6FRChUohQhStwG70PnqEUuFipWCRdDvUamgZB9N2nmP5Aiwe1sMj24aUXUnhO0XFIHjupqnJ5/VLEyjtGzGNxLQ0uVyfmCPmmMZTIlRwEyVQApgYU8wFxU0hFRsmQFJaDAwZwo7z8rIrUAJwPIHjhVdGmFDJbae1TI0V4TQE0UKl4piinIvxrhOSPOrdLyxtWPo44qRhjBIoAZhCY0a9awwJZ3vAdJhov/uHCZWckh4QKAHMaY9C4K4VTrhYyRnvbVNPF002Q1zMouYQJierkWUPEiZUevP0Bd60WUXvjl54CAqVpOUwc8+LvH1mKVbeHaFSqV3P29vDXQtvN6urqzz++ON3tAxfLjz22GM8/vjjvPvd777TRUlJ+apHmpIH/9ZxvuvfvJkTbzjQ/Xz9xV3++Gc+xSf/43M0Q1zjn9h+hrd/6Z/zQ+d/jfdefh8/dP7XePuX/jlPbD/zShY/JSUlJeVvEB0XJStvkCneutFCSkpKSkpKSjSxlSSbm/6CVW66EFug1MmhbsmhjiFhbJmSS3ljIN0ogdIRYfOIsR9bqV+oFCZQ6hY0pDpGOSpd28vw1HI8NXVHoATxImz1C5XMqs3iUTh6V6zseoRKiyfh6KnkO40WzhgcuDuZvT/A0UctjjyaPN5brizJjYUteAxvP0vPOCy/EFhNiql4mTksGZ9Lvihw87xmI8qlf0jW188pNm4kdzW6fi4iTNyI9Iun/MXHV4pDZwKioZgoBVef09SGb5wbwG3B1ec8qlFz/BFNxrXh6rOaRrz1jC5mBhZOxhRhBa5BswIXn3RoDstvwBrCD4VTGJe+U1SC/MozknvebJJJuGG8MA4nHjUSh2ksTypOP0q3nHEESgCTs3DqAZB9C+DDBEodgrfIKEelDjd2LJ6+Nvzi9QuU2jkQ1Zj6hUpBgdIh5fBarzk0vzCh0s6Yx9p0zJXxAG4Gcrn4cbM6QqV8Po9M+HxOeeXY29ujXPbFOXEFSgCW6WGaydtRcW6TbKk28PkogVLpehGrun/v9guVwgRKQKQYY5Sj0tlpyVYu3rNbru13anF6i36hUmlNcCprU5IxhUZtoZIpNMcKNmPVZNfBMDQL0y6WmSzshWVpjhz1eoTsowRK4D9+coV2mLi+viBKoATgtGDt8r4jEoxwVGpjWDA2nTwsnd2CzeUIgTjRjkrNBqzeFKPH3YEDtClotQQbG5K4aqHOuefzmtm5V25nf6momQmIhuIIlABqdcn2TtvxKXCKwwRKALsVycZ29HM+yiGpUpNshzgijaKQVZRy8erTDYibNqsmG9Xh44l+oZKXEWQtTTbmvRest4UJl/mQTSujmCm6TEQ4Pg1joeAwldvPL45ACeBwwWEq4yH6qnSYQKlDsFZGOSp1eF5m2BQjXOjGB89fD3Hq6hcqBQVKhzYlY/Xh5zIgVBIg5vYgl8zZSAgwMi5Sxu+rHe2RzfoX6/z584nyS8rq6urQf50NaCkpKSl3guJUjq9798N8yz99LRMH25tvNDz/xDXe/56Pce4j+yHgnth+hp+89NusOr0TRmvOLj956bdToVJKSkpKym2huumvL5am84ihu55SUlJSUlJSbpXYMuCO00KxZMRb5WmT28zyt/UaO6d3+chTHXXN6B/YMWDH8MN3taYV2XUDoyUYFnYBwNYa3+hoPw+nBFZ1mEAJFnMOZVNxrjo4y6sskA49Dkpx8dpritmd3gnY1a3ORPrwuvCyYLQUZtWfOF27AYYBo+qhg7YEwtE4VRdvRGiFAUwDjUC14jkoBdm5kXzCHeD604Oz3rfqyoRS/oLbkPTlOUGrBrtrffXZXmzSRvjEupTtKxd1+SKi+dXjCnG07pmcl6b/m7Hdhtrlv/B5P2xYIrT2V16SWhsB5z7j4SZfo8Ewie1YEGRAoCSJrPuew2TI6Y24JU0LJuYklQ2FHaI90ZaJcNx4CsRhhWpf9/oOXPhUfNFJp800G7BxTeEmSIr2nbpcr+0+kSCta0NjTwOiLYyMd/67W/j1qEAqD2WJtkBpeLvb3YXd3c596R8rbYU9YfZ8FhfD9hcmfYHSYNlnsy7zOZdndyNCt9XAKQqaU7ona1dpGh3rjyFYm+BMKo6cWQcFeyUV+zS26v6E7m/d9T5uLB3h2acf4t4Hnh6dsM3PHviffK91gGZzuJgq5c5h2zaZTIYMVqKu5eLSASbHqkyNV/jjWoStZAi5Sf8hpTUcsjZZsqd5KoaDkrKUv2AfKGPZbFFxstECJQ2LmwbbJUUjN3hySguk0Kxvl4jbr3ToCLTUjXw3rQaumB015fDfU5ZG2oL8msBDc6Vl0eo/wSE4BTAaGmcP/PWV+OV3CwLbEpg1B9z44zbP02xvCWzTgJYXW8Dp2LByJfBB+1k0TKA0DKG1LzCIGHOaFpQmBdVdPSA46rgpRbn5CTH80glPoQ3RTu8fqBS0ul1cDJH4vjUUsjsUii9UqtQF1Ub8thLIvC3aS5Zudw/2KhKEDnXniUK089GBRCrGM9z1AI/e4wSgdVugFJ5etM9P9xVStx/n+65IvekLGYVhaKohYQz9dCBt3RYo3cJ7WsZ3VvQFS5r1rpAqvlBJaNhxOiET45dBC3A1uBa4Klnalie6aeIKlACWGwZeuy8Tyhe1+QKl4Xkvu50x1v5xhg3NSd3/cSyEDdpqC5RC0h5peuyZgp2IvkBXDUTRZXKy1pPeMTSe0CPLs1ErMFOo8+bZC/4Hk744N85z9rm676b07smnuXTtCLtTJcbK8Xc+ZAv+nEo+f3tDRnzP93zP0MUUrXW62JKSknLHWbxvmu/4v97Ic392hS/84Yvd0Dof/81nOfdX13ndP7ybX6z8UWi37s9AwC8u/TFvm7gfI6kCPiUlJSUlZQjVDX8ioTSThnpLSUlJSUm5XcQWKXUWMQ98Zj5RBtKWGI4kv53j7dX4IWUMpTEAux0uQSDiOYq0WZD1nr9FGUQx4mAgIxWGgJls+KKOUIROeGYNhSGh7gx/IZYL/Yk7f4+eHBRKI25N87OfVXsVYPboLaRXgpljt2Zreei+DLeyaLBPeCiKfnJlgfY0rXrIlyMmYPNlmFiI2OUbkTZf9sU/rUbo15FY2XaIjTibdQNZF8rgOoSKY24HhTHI5AzmbqW9JEQIP79W3T/HJGRyfpqeUHgj1lqE9OuzWY95Hfo49tCQHeFaDqxwSANyJUGzGjNk30ul3WZnjyV3LEAI7nrtrWU7Pkfs8DRhaKlBxFGqBes3sLhqDq9cy1BkTKi1oF/Fpo1o9wkTTcbQjFvRN7syot09FtToTkJVFbnn/Jde6fkLnl6CLvcvL30bzUYex7FYvp70pv1s6qT0ZYxt21y7do2Pff7BROlWNyco5puUCk3W7Pj2aG7LQpoe0vAb9Jo9xaQXL312b/A43SxwOuohrqHUEIxXBW5Ee6+3LA70rxprzVQLqhbYI8TX2g4oLnvii43urMy6QN5C+NIOBmCYmon8rbnqTB3S3Mr4aWq6HVIpIkRWLNRowYdhQmFcUN0eFBuBGCkWPnhqyOJ5SFrTguIY7G2NEBJI0AGhjzQ0ltURKsWoE6FBCixLUyhqdncSxF6j7QBzC2Szfti2l9IdJ2kt+ZzGMjV71XaGUhBHHWsafhltp09sNKLJFHL++1KlHiE6GTFkOTEfPWBTpkD0DbAKGYUQUGuNrlBt8JLes+K6V0XnL5gr3FoBFqSXSJzWj7KI6asc/t7qjmgy49rDRtAIWThWWqOr4Y1mzFXYUtAcEjZRuh7ZxmDDmRw0AwxlOi/RG4sAaNsAQyGGhAjs56/zBmsb05RLVfK5+HMcrquAG9h2kt0EySmXy/zgD/4gDz/8cOj3V69e5ed+7uduaxlSUlL+5vE7qx/hd1c/mjzhUdA/obHrLm7ACdS7/sc0C9FjAA2sOjt83dM/SybJhPEQvlHfzb3c+7L8VkpKSkrKVy6dcG/F6ZcwMZSSkpKSkpIylNhvcZblWwL9/Vd9ll/fiBlvrM2lnWnAgjF/Abq5M1qBfKDlMeMqXihYyLr0S2qCGSZCCSDRSMANTKIaAWGHcQuiBBkMZdG3s3w865ExFeu18DAshh1YKHH3/39u0iNjaa6vDb8ERmt/9lfaHoWSvzBU2YlXdtGePZYGCOUlE2UoDbKt+VAkctbJFgEFdj3ZDtuZkyaerdle8nrmwUct+pRnJJ4L9Z1AGYNpbtWNKey3gPyYL3Cxo/QHEdktnJA0qordtYT5tUVKTkKR0vQi1CvQqCRIpDWH7pLsbigqm8nymzkoqO5omjEXCDoUxqFVa7spdS7hKDckEw4cl2ytKpqd8wvWW9QqpvQXOhvVPpep/jaW1EUimF8g7IxhQXlaUtlU8e8/rcnmYfqYxeZVJ1x810+7/NKE7JiksUfi9e2uw1QS1zUJZsZoOzfp9kLnaKysLxbb3QAvEF4mykGjw1hZMTWpuHJtPwybsoJOEOH5F7Me5ZxmZbe3zw2Ge/GyyVf63Dx+m3XADQhhhVIYgDtixdmddmjLGZiZrDK1bVCqGVxfGL149fcW/rrn7zGZbMFr3sjzW7fq/JXyimCaJtPT05w++ilkgt3Bdx1b4ku2hw2caH+24ZVHptt68QjZ8Qr5yT2+WD8CVLCAHWf4uE14wheGBIq4VJ2Eor/I4Krk99ZuNQ8d3VNwFV6DbcJuBppm+O96O+2EBRC2f4yhNacclxumQXXEfZnthGIU/jhu3FBUPdkzthxGpuILjEwBoq7QCUQuVl21HYNMQGC04okXhNBkMuDteu3HkRitIMDviydmYWul/QwOPL+GhW+TJtR3BfW9XpGSP15rp0vq4Nmtp8H00oC9TV9gHEXw+dEZN+byMDYJm+swSs2hO88vQ2C0xU3NuOKmdqkzGU2+CLu7ycadpZLCU7CxmSxdLqvJZDS71WTpTFNjSGi174+4rqXloiKb0T0h31TgOgkV3mYsUyID+XVw871/y4SumsHndvA9K28JhIC6Pfy8vMCYwXA0kwUPIWCrFk/ordp9UMbQaA1OAnGgNn2HKb/UIpHAzRAazwDVbptxhVIlU+EqaCrp11172DBKJHbIcmgowWZAQe3mgfb16g+T2aGhBU0E1b7nl5ffP15lk49DzLKNf19aFAv7AiGp/Nt8lHDr6Ng2Ffwn3KniGlyehbEGYny0sPx1hYvd/58/uMQJK5nATLT8OrzdLkZnzpyhUqlw/Pjx0O89z0OnY0AAnnjiCZ544gmq1YSxwFNSUgaoeU3W+sKyJSLb/peQHa/Wdnp86TTM2ysiTUlJSUn5yqAjUkqdlFJSUlJSUm4fsUVKmYy/4HP6yGV+9dRVfuDam2JncqNv4nSvNTrbpazEVNA0JaYdmDkdg8xu9KTeGdliXrh83PNXi62QuabwsG/hygijTxQSnAAHWKmGi5M6WPXeBSLZFi01WwJDwnYlelbYqrt95ZEcLTpIAzZWRk9sysAOpCP3gpUxuPTZBG/uruLowybShMufcxOFfDv+aj80zcrzES4GEQgBnqvZuTG4sKaHiB+2rvWVTfZt6Y6o5iMPGrRqmtWLffn1LWAOTHbfiCzKUHHNZsh5DfAyTlqPTQvqu5qt5QSJNMwfg9o2bA47zxAm5n1Xhd31ZOm6+USFYItg/Wp/rJi+PyLaXKj2qr/a+5pUJgdHH5DcOK9Cw/b1LsyJdkyUdjkvJXfSMLMaLTw2rircUeK0wKJweVYyd8Jg/ZKDHUfcBCAl43OwcI/B+b/2cBKIGScOGCwcgxc+QzvUn4YRQiOAyVnNxCys70qU6j1eZaL7xb09wV5Fsr4hAImX61v4ykXlHd5XO8EF0trggukw1Zw9JroLdADsQqsd+uQ0LQ5rj/8to2dZnSMtgp2TmvXYmPQwFcQxv1k4frXn71kjvrXbScsPAaZ1EdN8eXadprz8mKZJPp9nfsaPbZkkjMGVZm8nVvNG90MLj5xFSIU0NMra73jGaLJhR4eNm7gwTmO2QWvMf+Zf3J2BYm9+jgope4Sp5OZuEYKb1XoewoLtEXNErhnoQ0yQLYHQGk8IqlLiDHnO5tYlwTvJsDTz2mNDS2ph59BHdkfTBEyhOTFuc92zcPZGJutSsOHwvMvyukHTlpiNeM8Py4LpacXaGtitzvkZCGf42M0w/UdlbRdUqz8vMVSoVN3s/W5AZBHSlWfyMDkvWF8KcRfsSz5KONFzrNV7cGfMWKsKX6A0Kn3/GDOhuL1z7lprMhlFtZYsvTS4pXSgEAa3kG6fUeLgINUQJyTVJxaMEiqF4fSNtw2nN+1k0cM0NOt74c8pt+/ZLNvpK83RjSco0umgawIhdKz0yhLdseLBMQdPCbbq8RutUnC47GB7gtW6kUikdHjCpulJVgPljCNUmrAUDoIt0+wd53q+aCoKzwFPCxrtTJw+d2IvIkzhtgivDzfoWOSC6nOcE7ot3gqpE2uiRbCz2FY5yiW/1z69LNksabbK0W3wrql1gr5HotyA+6+DoRFydNsdK2/1/D2XQKSUFxl29vw6vN2hdr/92799aB7z8/O8973vva1l+Erhscce47HHHuPcuXP88A//8J0uTkrKVzRFI8ecFRHqOSFO06Vh2zTzoycnJoziy+aklNfxXWhTUlJSUr56qW6m4d5SUlJSUlJuN7Hf4iYmJgBYXfc4fFDyn458PJZQaeX5Q7xxU/CJE/s77McOVNhbHr6j35USKkZoAe1xHSlUuqlMdtqrImECJQA3JwaESscLDrNZj89sF7qf9QuUYH8iviNWMqTvlmH3LVz1i5O66TMCaWv2RuzQ9QVKg1y9aSEbo7cZBwVKAOvX/DBX2hq9YAV0BRYb11xkd2d5u8wjxEpCaa5/0R4MGiGiRSMdNq+4kSIdoXSkUCk/7of8alUZEBj5ZVahC06tmu51Q4pwVxBa9ywejM+B2/IX9Xp4qVGTIs59asF3D6gnWOgEuPxMgh2yL8Nu2otfuIWwNhJmDsDeRogzlSJ+nYbVXUibkxImD/gOPm5rSNqOM0DbUUkpaFZ1qBuSCHMZMw1wPaQJ+XFBY1f3OjeNwG0JVs7FSNBX9sqm4sInW77r1qhF1kB7r+3B8nkPZbfvtRgOGNowqOzA1XMdgVKn8GqkUGl7XbCxF94PStuLFCq1bMn6hv//YYIko6lCv5NSYUqw3fYC24AYycds6B6h0rGiw3zW46+3Cj3H2WPh6bPbgtakZhmLSsTiHHQESr1cW54C4MiBrYHv+nn81B/0/H3pmQd4rlLirW/+3yPTdgRK4C+SeQkEqCmvLOVyuWdnv6dVLKHS+585QaFcYerASvezBWOXFW/4ooFheXyycjr0u5lMNVKoVDtQw8v67eji7kzoMZZUA0KlkzdNNsY8dgMLypu7IbF5Owvg2u/TTQ2eGBTFuBvhNtwqq5EtwbYxfOyVWx+sWw/BWZHFiPF4y+7sn4en4XrVouUJvIKIHBcGyVQUnoC1LQPb9c/NzfsjYXPE2E/tuix3HAkDjBr3ea7//I1yXdIiXKgkpO/C5DT9x2yowMLTA25K2gO7ofsid0aM+7z9Z5FhQq4AtQoDLoH9AiUYPmbsJ+w4UyiyRUGtCqOclILnXq8L6nXDd8iJk/9L1KVX6pJKXEFygExGYxqamvPSFvT6BUrg12e/UCmbUUgBjUD4NacYcr+1nY06YiXHE0RpntyQMYCyBNLRWIbvX2ZHOBtFOSfuYmCEbmYZzCfIcqVdjwEjsei0+/+/0TC659f/rjEs/WrTHKgXoUYLla7VrRAxdju9Gy1Uqqr9e6xfoARgtIWRXp8rkqk1ClDt83KL4ZUjG7JHqPRAzWU5I1nvGwv6AqVBKtU85VKDm5MKe0iTvmtqULH4bMUP+XZ/+WZ0wjaPlZ/t/r/yJFeeu4/a0au8pi0kHkZe+IverZb/InH6dPiz9uXizW9+89Dvy+Uyb3/7229rGVJSUv7m8f3zb+X759/6sv3e7kaNd5z/v9jN1EPHTAKYsyb4swf+z0SbOYZx9uzZl+V3UlJSUlK+suk6KaXh3lJSUlJSUm4bsd/ipqenAbi5sr/68Z+OfHxomi+sHKKSgxvjgxOSYwcqjB2IjkE1bXs84jSRESHG7JDfBKhisIYZKVDq4OZ633A3bJNrdX/W2GiGC5SCdCblD425PLDQO2E6aiFKZQS5kmZ6PHzBKUqg1E2fH76g0C9QAj+0VUfgEraY08X1ehxgaltQ2eir6yGLfJ1FCdcGFeaSPGLyPVMSZKPNGiJ3Zx+4O8P8KStSZAT0hDDpsHpRsX2z/fmI8C/BRbr5Y5LJA33nEuNuOvaAZO5YVAbRdTN7VDA+O/r3b5k7aPdvSJg/blCMWjuPuJ3MDJx6VFKcEMPbVd93Vg4WjhvkS+HfDxawvbBiw9LzeiD0WqhAqVtIg1wZjj5kkQtZ1BmGNKEwJaLblYg4bxUICzjMOaWvvbtN2F7ej+ooPD0Q3jKIbvcDrk14WMARYYa87HCxQFg/BlDIK8bn1RDHJJ+OWKnD4oTHfQf9vjpKoNTBbGjMhn/umy2Tq33hPKMESh2y275by0rEbs4wgVKH4xWPQzej+/jHT/3BgEAJYHxmnenFm6x7w3f4BAVKAPV6nWz2Fjz1U14RxsbG2NvrVad6evi99WTTY2x6k3x5cIy1YOyyYESHYKiuzCB3o9vDTCZ8cOWUXJSlIwVKHSzZW/a1CY9Grn2v7RbDBUpB2mKle7Y0U33jtCiBUgeV1ZQNj2zEOCJMoBTEGzEvFRQoAWgEdVfitV2gnEL072cqikzFrxutBbWGRPWFyHOHjP2MugsIPFcQtoIzdNwnwDIVw9Z1woQTVhbmjksMa0RI3r7niGPD9moggvCIZ3DnOZTJ+oLt/qHasHMTSpPLKhYOqkiHlCghUTYHM1PDBZxaDA/RNdJR6CUKlEaFtBpGsaCZmEqebrzsMTPpoUwRKlDqlq2vXssFzWR5//4PEygF6YiVqk3Jbog7UZhAqYOyBNNFj+lS+PUbFtrVkhox5DGqLBEaVlZpgepckCHXRfWZOjZcScvbPxeh9VD3sk76picHNsiAL1QaRpRAqZs+4hV0THqIogoVKAUxWr2/f5e2mWoP5KMESh1kQyIb/jktZQ0qfWL3KIFSh0o1Ty0HUbq7MIES+HVWWsuhm9F97GPlZ3sESn5CzeTCKla2xVln+Ji2I1ACqNb8+picnByaJiUlJSUFxmeK/LN7vidcBKz9aax/fOhvv2wCpZSUlJSUFAClNLWttpPSbOqklJKSkpKScruI/SY3O+srJG6u9c5eRgmVvrByCIBKHi7PJsnJJ1uV5LUemixMqFRAcUzaRCobAgSFShXXYKU1PHRbP8oUrFdNLm0nSwcwVfY4NDc4eT5KoDQ373HylBspVIpa2C9NwszB/b+HLlgFKE7C+EK8ixdcjJk+ZjB3OuHubCFYuDvDgXuT2ytff9bm5vkYbiB9og0z4/+LS2fh4PznFNdfCLS/mO27Vdf7ApKeHx6+aHDurzXLF2MWMsCZ1wjmj4046GUSKEkJ93yNZHIhWTrPhuc+5rG9MuSgiNu5VdPxohAG6rdVh+c+4fnCmiSh9aQfpqbnZ4cJlNrUawaXPmtTj9ZkhlKelhx7JIM5ZDEtjMI4HH7AD9MIDBcqBcgWYerg6ONgX6AEUByDucMRB0YIlbyswfSM4vTdwy9eWH82OalC+85RbFQMrmxYIwVK/fQ/G0YJlDrMKZcDIdZZwwRKAFkPGtuFoceEMb240g3/FiVU6hcoAbiuS6GQPL+UV4axsTF2dwdFRVFCpSfbId7GprfIl2qJ83tu9wjCG/5ACxMqWRULM2aYo6BQqVLU2EmHUBKujAn2biESw1HbpRxSd8MFSpoThk1ZeJFCpX6BUifdZNYjEzjfYUKlYLpSQWEa8Z7NRnvcKKVmak5jZZI9002hWDguySTcHOg0YeVFhePE6BODQiUBhkUigY7wNI0aLJ2nJ0RcnLGs8trh70KqZZjTUa0KVy/LAZHVKIpFxeHD+4WMFCq9TAKliTHF4kLyZ+JW1eDGaoJ4em1cV8QOCRus340dyc0NP79RAqUghtTIPoHZMIFSh9WmyfqQkNpRzJdcpvPeUCFTGJN5j3I2cB1iJi9ZHtk4Nm30CpwmMh65iHRRQiU3LziSsRk3RjjihryKLpou5Rjv1v1cFRZ7yJECpX62LUkz0H5GCZQApNZM1ARmSPmjBEoAKIFhS85Vkr3ASKmZnFsjk/PLFiVUCgqUAK7e8Mdo4mUM752SkpLy1cxjkw/yb0/8Q+YyvbvaSpUsb//AgzR/tcHWtYSTLSkpKSkpKUNobDfRnkZIQWEi3diZkpKSkpJyu4itIjl16hQAFy4Ozvz1h37rCJQApILJmi9WCrNf77gpBcO/mbsGawasGaOL1x/6bbLpcTznsI5JmJFPP53QbxmpmLI8NncNVAJFVRWDemP/+DjhPABubhrc3DS64d/i4jiCVnueVuXNntBvUQIlgNIElKdg48b+ZwMhQNzB9OMLBsUJye5K33n1hX7rX4SxchIzagzXmZQNimPan628MPqqhYXwsBsJVHCB0G+HHzDwXMG1L8WfeBdao4MOBwmyXr4Ycq1v4yT19ooeHiLuZXRQUgq2bioaSeaHkqx39IV+cx3B0rkE6ftDvyWpd0NQmoSj90oufsGjWY0nUAJAQbNh9K6sxqCyqbjyeRvXTlZ2IyPJFEVv3QbDHUY4hpWnBXPHJFs3essZDLcDvQIlgMIYTB2AtaWIAvWFfus4KLkuNEc41vXj5STXtkyu78Q73mjuOy41HUnFTLZgaTY05XEPNGw7ZmyBEsDhhkdGaJYL+8+xUQIlgBcm2mVcnuoJ+xbmnhRke22GbL5BoewLU9a9PLNGO36iUpz8zx78kBq4/vV6nQMHDsQ5pZQ7wNzcHM8++2zod/2h3zoCJQCnlcFzTXLF8DhQHTelYPi3T1ZOw2K8Drw/9FtleZpWRsNkvH6uE/ot3xRoATeayYRylSw9NjKjXJQ6PJu3/K5R+OHf4iFoaoHXVh14uV63zXCBks90zsXTJnZgaOMUZM9YseOgtJ8bzE56rG0ZuI1wN6VO6DejT9huZYl0ROoIenrHfQpXwMpltR/+NIL+sG9aE0+g1KEd+i2ThfljgpUr4IzuErsMPItiiu0dW7C91v4jUDejQ7EFvu8LWzfMPcm2Bb6uUHd/Y2Dc+jI6KDVaImz4Pjz9iHCsw6g4BsQUKUEw9FvbUSyBQMmzBHNjHsLTrO74bT+OQAnA0wLPEMi+95NR4qPVqtnVs3lZgdHaTx/moNQhY2h0/4UNuD70Oyh1mC147LV63ZRgMPRbf/rJjMeObdCMuPb9od86DkotLXETWnA5RXiW+KpQoyW6Yd+qIrlAyawLypbHninwhIglUAIwFExsZtgeE4iA1d5QgRKgTc3uIf9Z+WxlsSfs24B7UgDXMbGbOfLFWtep7axjcK/lgdYYn26R+ZrB8PZr6/5FW1hIuKvjZeCtb30rv/u7v8vhw1G7C/5m8sQTT/DEE0/0hNdNSUn58uKxyQd528T9fKF6ietbG6z+5RbyL0FqwQrb/NE/+ST3fdNRXvXOU2QKyTeRpqSkpKSkBKlu+u8Txakc0rj19+eUlJSUlJSU4cR+yr7qVa8C4PylcBFJx1EpKFACyLhw/7JkMuaGfnO3b9EhhhAg6Ki05hp8oprHTqAccXOCoqE4WbLJJTT/yUrFwTEHQ6rYAiUAhRwQQ41yUQLY3pJcX9qvo1Gh3zqsXIYLnx/8vLvIE7HCcfOcx4VPJ1iN6OT3gsP1p2OmC0zC2zX/38gkwUUHKZk6JJk9kVCoBKy+6LF+JfnO4AOn2g5FCcepZgZ6tHcxhTKH7+l1worL+hLUoiP7vOysXoFmXPOOdrUbJhx/WEaHewtJ0yGTI9k1EIJcEY49KAdckUZRr8C1sx52PYFACciPweLdEplJJpBRLtR32T/nmG2lsq64+KQTp+vsYeOa5uwnwvuBTridfoESwPp1eOEz8fIIhnjb3ZEsXRldJ4PiS4kKCXESRSfs23TRZTo/uo/t53De5WDBTSRQAnjWzvGF1r5SM45ACeh55l1bjh+L5+qz97N65VjPZx1HpZP/3kH+7Cb88vZAur29PQ4dOjTwecqXB4cOHeL69euR33cclZ7sW6neWZ9lfSn+IuQnK6f3/4i5nhx0VLox57IRU6DUwZKKyYpkopp8wmespSm3Bd5xBUoAKiRM5qgwbwA3lUU9sOI/KvSbj+DF3Sx79mA/13FU6hcogR8m7soNk1oS8TWglGB1SWA3Y/ZVHac77bsixdEs94hzDMHEvEjkRomncWxYu6ZxEw4tzQzMLGgMM75ACUAIjWFqgg17tEAJsjnN3LxCtEMMxnVUchzB3p6kX4k0MvRbTPr1Ja2WoFqL31Y6AqVyUTE9ntyBSQqNERE6LzJPKZgoeZRmk9fBZk2yXW2Lm2MKlAAmch7FjOoRFsVxR3KUwFXJ0oAvbtppJHduurxrsdkMT9cRBYYJnC5XM2yH9C1hBEO8rTomtRhjqH43JY0YFGENwWgJDK2Z1h5mwg0RWa051nTJKB1boATgGIIvTQuqgfoaJVACBp55z1YWY+XXqJa5+eIpdN9NedYxMP+qSfG7NxAfaQykq9V2kVJy8uTJWPm8nOg7GN77y5nHHnuMxx9/nHe/+913uigpKSlDMITkNeVTfMfR1/P//Effwtv/8WsYm/c3OmilefbPrvD7P/lxXvzEjbS/S0lJSUl5SVQ3/HF8aSah5XRKSkpKSkpKImLP9k5MTCCE4OpS9CLvwdzOwGdNEz57RLE+uJGwh7EDlZ75fKkUX9+qczim+4g9rrGq4J9S8gWvnabkMzfy1N1kaXOmYnHMJZ9w8aGQUZxZbJExFSojYgmUfBSZrKJfrTHMRWkkw17gRwkdQkQLsQlZLCzPS2ZjhokTSnddQbIlQb6c/LrXKzKZ808nb8Et7YQ//oBk8ZQI/EhMFNzK+lZpcjBEWZeXMnET0S7K0zHD5wXSCwlaxV4XbyfyxUanXy0pxxE3BTGkX/UJT1+5UNkWiYNdWFkoTrSvdQInn+KUYOFM3/Eh90xsAvdL9DG39tMjcdXAwqqZUZhmvAyl7XUdkQ7NOxyYSba6rQVMTnnMFpL3k2dXLM7u3kJcKQAk2W0RX6AEfP2qx6m9/XLmTGekixLA3a9/koOnXhz4/ICRQfyBLybp/LfDxqaL1ppjx47FLl/KK8uhQ4dYXl7GcaI7rC+2BtvX5PwqiydHxwhdMHZ5un6k+7exWcC6HF8cN5OpcnF35padYZ4zszxnJLfOnm7CREvj7CRLO+94zLWdhFRWxxIoARhozL6HhtHSQ12URmE2o9OOEgO4eRPh3FqHrS1jQOQzNiuwYs69aSF8VyUBuVKf8DpOekfTaggiIhYOSdhuZgnbWjYPB49qDKM9boz7DNUhwwRPD3VRAjAMTS7XK4rq4SW4KIUZ4JimJhszxF+Pg1LY+Q1La/hhrqfHPeYTChIB3Pyt7T61PUlDSFpjyd43cpYiY3REPiK22Ggy55HvG5soSwx1URqGNqJdlHyGv1Dol/Ka1eemBBpTDGmb/eld30XJQnNEOFgJB86mpZk3XayE7xsNIfiSkaVxK0YY7XFypZqPJ1ACcnsWU5dLA9UyzEUJoDi+w5F7nkeGhN1rftBf1JD/c3DnxtUlxcLCApaVOn2kpKSkvBQOPzTLd/7CG3n0u09jWP4Dr7HT4iO/9gz/65//NVtLaQi4lJSUlJRbY1+klHCHc0pKSkpKSkoiEs0Y5/N5lm4OF9O841jfhJ6Eeg5GbdrcW/FVTO5Ee/FISq5Kk71Ri+ptstsCtwCgeLjQYMFK6v4jca3kE+i7tuQLlzM0HJloAlvj6wWkAKvqoUyJihF+YWwc7r7HI9deTOqEe1MjXFrKk3DqEZB9i0nCbl/PCOvK8ozg+KNDVqDa4d76d6VPHzO4623J1ea5MUl5Jt6MvJbCdx1RiuUXPK49ndwlpTytmIq3YbaH5fOK1cskFnXcvKRYX0qwSNZm6Rxs3Rx9XD8Hzwimo87vlsUuff9tY5hw5B6D0mTM9G1cG648o3zXoFF0mqnW2A249ryinmTuSQiaVbj8jMZOGGosV4S5ozqxBnJvHS486aE87QvDYtrE5kqC8kzyPmnhjMHJ1/ctfHSu9ZCYMLNHBYt3hefXCbEjvMH0iyfg8JnhZdLtvjUopjx2THP0xOiFK5UxUBmj64gkhf8vLp2F0QvXs7ywmXxByM0nCwHqo3h1ts6cdGhNaaylmEIKpbhalGy2F1PPHF4F4OeufNvIpLlCk0y+LVZxFWd+bI3Xfv9Ncn93FS61n4cXHfieG/6/H1nmTz7sP3enp6eTnV7KK8bRo0fRWo8ce+X6bC9My8WwRj8TP1x5AICS4bcdVbDxpsJDxIXxha3DWIZHsS44sJZQrQIoeWvCy8tjcKntFKbN+AvgQkPHBCa/bKCNeCKAw9JhQe7XZ2a37eI0Yr5qPu8ylR28Dvmt9lg3Ytw4PeFRKkQPMKw9u52+t29aOKopTw6vD2G7/tjPEN0QZsVxsGJqMYXWfigqV7NyUdOK31z89BJKYwojYXfsOn7IYs/pC1k3ArsJazcFngLdfv6KGE2m1RKsr8quS4q2pP8sG9FccznN/Pxg+brj5FvUtUVF6BoraWamYgxG22HXOo5Olbpkq9+9Nirv9mFCa3aqBpt7yZ6Jbl6wXTfYridX3JSzHtaIjS5hrFQsthsGTl7g5AVuTJFSKbMvbtLS/6dM/180mhNTNqVM73XvCIRExOURaBZLDrkQkQv4orCw9IbQHCnaken207ePb4esywrN6VyLXIwbwMu1Q1u2QKKRCRuuW9I0heQ5kaGRtI8XAresEj8bJpuao3t+nUyN17i0G29s4+Q86pOt7r3dCff2ROX+oemk1GRynRjsmvnfqbD4q7sc+9Vtxv/UX9QQ/7OK/OVt/99/2gWl+czTZcbGxhKdW0pKSkpKOGbG4JHvOMV3/Zs3cfTRue7nKy9s80f/xyd58n3PY9eTO8OnpKSkpPzNprrRDvc2nYqUUlJSUlJSbieJVpTm5+dZXr0S+t3/ufZA9//fcexZPnhlf2Lv8BZYHlyaTVa4F2OumGS39ycx3YLEViKR64xV8w++a6zFniNZ3UuyctI7Ua8sgRzieNChYUteuJ7FqibbjVyvwdXLBnZI1D2VMSIdlVwXWg1/cb8bPcruWzgzZDcMWs/vKl9QNRA+KkSw0C3nrmZriOtWFOsXXNYvjE4XJ1THUNoLVWMzBtkCbN1MGLoiOHGuiC1cqXWiLb3E4sfl8tMab1h1CpHMUam/DQTO3XPhwhc83GHin6j1FDnku6ifUlDZTJAgeM2SnjeQL2mmFyUb1xTKlAg3YYGDRNxrQTavKTavJc+jtqVxW0P6FdcLdXSKqo6OQKmD8LyesG9Oi6FtTEeIP5dvJL8JjKbi2kr8/nnQuSFh+KS85sHxFldrJrt7ZuyQbxJoakkjsAZlLWVxDo9wVJKSF29h3Wpvc5K1a0c5ct+zZDIu5qZi+s9qiBCnDPHxBgJ/wfuZ8goA3/Zto0VQKXeGe+65B4Dnz9ucODrY9r9k70+654RLU/vDOs8x2Vw+wMTc2v4iagx03kXHDIv4ha39cHLS9HAN6Te4mLf2ynaZoq2ZbcCVMZItSPcdq02NcEenX2kLuvPLycQSq8qMfES5eTAHI/oA4Chw+9QlHYFSh7jjxg4dgVIY1R2w41/uLssvxnRWeRlCZwgB47MC94bCc5L1ycHnkXC8WGHflBI0I67PiNz8tqxhoFEPcWOs1wU3bvSWa2DMmuA+gWiBEsDOnmC3MuLHQsfMnRNI9ix23GRWovuhxm4tv9KYxnAVDVfiZQSGfett0M0KzNbw9EuJ3gH32aob2F70uQ26Gg0finYESlHpW57EG9IwwkRVjhZca2WwhzWoENyW5Eo2vqOkWwqclBCJ33kmMw75puZ6zsCpZLDK0X1eEE+AIwVT4/vuRZd2pzkxPvxlwcsqvGzy8fbW8gJWtkV5ahtZ1xz6v3ewdtrOoZ1rVdfIX9z2x2MTEvXdZdbW1nnggb+VOL+UlJSUlGjKswW+4T2Pcu2pNT79n89SWWv4IeD+9AqXPrXM6/4fd3PiDQcQt7pRLyUlJSXlbxTVTX8SoZyGe0tJSUlJSbmtJFodOHPmDNWaRvWpVYICpQ7vOPZs11Up40IuYvPK3kq566LUwZ3wcCc8SkqxMFRh0StQ6vCMzHEzE2+SuSNQAn9HK4yy5e9L31CcmWuxOLF/gnEdlayqg5R9IQVGOCq5rmR3V6KU7Loo9aSPcFRqVGDpBX8n+lD6XF4qG5qrT7mxBEpaiu5CTGNbsf5icpFSHMIESjNHBKfeEFNzFzjHG897XPq8F6LAGpK/EBy9X3DikUBdxUw+Pi+YmE8+MXLqVYLD9yROht0cLiAB4i8MR51j4HO7PqQqIz7Pl+G+NxoUhzkwhURxzGQ1c0f0gDtYKIFznJiD+75WYMbcVQ+A1myvwPOfUt3z0zGczwDmjglOvibk2JiOSkmpbCg2rrYLGRUeLsRRaeOa5ua53ovUL1AKY/0GrF4L/y5MoNQRUtZqklotug46Dkp9n2L1iysjCAqUTKm4/2CTKeL3SW5eYMredejMXrzF0caU4POlLBt9jXOUo1LJViw0FGcOrnZdlDr83JVvi3RUcp0MjWoJUyoezHjce1jQ+JM5dLHtwtA+rrtUXBLoDx7k7LUqQghe//rXxzqvlFeeQ4cOUS6Xef784MM7KFDqkBMuOeEipMJu5PHc8A7yw5UHui5KHUpGi5JsIaoZGCEeCQqUAJp5zc6cjWXGE16vbLfHfe1GKRPqDrLrGc7U3R7RTFxHpcLy4LmNclRqIGm1H0IdF6UgUY5KWy2TPTuGkKZv3Li5Y1CtD5YzTKCkLNl1VKruCuxmeL/ddVDqJ0Y/D+ECpYXjgtJ4sounPLhxTtOsAgnEvjIrOHwGsoVAmWI4KkmpKU0JZKZP9KGHOyrlcnD0mMIwI8S2EdWmtcANCHkiRfUxq22UnkQpgTdEHBMmUBJKMzulWJgZXn9h90Up61HIxLvP9wVKcGjCZbaUbGOGm5csVTNsNPf7MS8Tr70emnXIjw22r7iOSv2CIhjmpiTYaRrYnuymDUvf74iktGC5ZtH0+ja8mMPL6GnBatPEUeHHhZXTaGkUgpqSqCGqoY6DUk+50V03plEEBUqznschz8Ww44+3VUgbcSrxBFLmXJ3mwUFrt1GOSpmaiXQE95dvdl2UOjxRuT/SUcmxM7iuP2mQLysu/ukstUczvr6xfRrCAzSoV2dx/+IQqiC4dKWRjrtSUlJSbhNHHpnjnb/4Jl71Xae6IeDqOy3+6lef5k//5WfYvp6GgEtJSUlJGU3XSSkN95aSkpKSknJbSeSk9Oijj/LhD3+Yzz9t85pH4iuJL86NPiaMxYzNoZpixQgvZphAyUdRAOoFiTkkDEVQoATwwt7+OSkL5AhBj9XwZ5tbnsAdtkAQwT13eVSrgqUbycQKs3MKe8+j0oiYnI5wVDIzoJUvWgldqOrQ7/LSKV6CTaZSQnFGUttRqHgbYAEoz0kW7s5w8clmonSNisZYi1HAYcKQjmXUEDoOSlvLGmn0TdjHcFSamAUhBDtryRb11pc07i1ovg6chHoFdtdGHDjKWShOJBETDp4SbNzQNPrnfoaktxuwfNGjVYs+JoxsEaYPSnbWNEN1K30infoerF7RuDbxHJWGfK9jOCo1KgohkguSDt5nIA3B0jPJLnxxSuC2dOL6lCaoQFbDBEpBN6VMvu3c0VcNUQ5KANJ1mT8m2d6AZjN+3WQycO9dLhdXBDuV+E4oUkDLEbhKYNoaNze8v+4srNpK8qXd3mddZk8PdVRqTWkySqEAN6Q/GeaodKihuUs1eH7E+fQztbDK1EKvqEk9mqP2hYMU77o+cLx++jgUJC9ezTM+nkXGDKua8sojhODee+/luXPPJUonDcWhu87fUp7F5SKN6SbeVLj9TL9AqZtne9hhGR6OF31/dgVKQM0S1MaTlc/ZzmEKTVP6j9wksodxV3FGOpxV2aEL9f1kUIwJxd6OJEqdEuaoJNCYkq6YoN9FKUivo5JuP56SjS1NSyMl2K1k6aYPC9wm7K4nG5vU9zTOLTg39eAqGCH61YZAebC14oeIDTLKUUkaMDGpaTXFMAPQARwHNtYlnpTRgqIQR6VMRlMqaba2YjgOjXBUinP5C3mFZcFuWAi2Ia6jlT2BiClQC1IuKFwlqI8YowcFSgDbdWOUgWRf+ug2MdpRSbPn+M66STCl5mDZYaVuDgiHOigTZN+wTApN1tQ0HYFO0K90NscE0wwTKHXclIy2ui7MSWlYWLqy6yGzsDukfw5jQbrkheYC8d2UAFyxL0A1bIGXGd6/dARKm5nBuh/lqDQ1XsN0wTUIvaciHZU0lFdzLBxKHlN7/mivQt85aHL5v89wz0PLGPXAuRYE3h8sgiV47nlJvaE5depU4vxSbh9PPPEETzzxBNVq9U4XJSUl5WXAzBi86jtPc+prD/Lk7z7PtS/4k2HLZ7f4w//jk9z/9mO86jtPYeWSh6pOSUlJeaV5/vnn+dCHPsRTTz3FysoKY2Nj3HffffzQD/0Qhw+Hz83087nPfY7f/d3f5fz58yilOHz4MN/7vd/L13/91/cc94lPfIL/9J/+E1evXmViYoJv+ZZv4fu///sxzcH+Mu5vfqVS3fAnd0qpSCklJSUlJeW2kmhl8ju+4zsAeP8H/Qmc/3PtgVAXpSAdNyUU9JkGDTgo9fNiweB/zya33T8mXV5rNQCFWxh5eA9WoJDKinZV6giUAK5uZlir9A7YlCUiHZWsqodV9Vhdk2ztRE2CR1+a6XGP8ohFvTBHpdOvgplDIwRKHTpiHgn3vjXD1MFAeUas8mgpMIuCww9lKU4kW/x2Goraphcqagk6NfVT21SsXnCHOyKFCJQmFgQnXh2oqyHpgyHeKpsRwp+o5G1Hm6vPwZVnk4eq2F0PhIpLQK4oyMTVE0Y5KsVZVGrru3JFwcC7y4j0ngtbNwYXHoFQB6UOlU3f2chu6GghUcg52U3YuDH8mC6B3509AkfvHzx2qKOS1lQ2YPVSRCUYMlI419jTNHaTh59YvNtk5rg52iGrz03pzOsN5k+0nR9iLFwKz0NKOPMITM/3fjdMoAS+2Gh6SpGJMBaKcoTzXLixbNDc1hjN8Lpx83JgcdP2JBfWstRt/3OzGd5e3LzoWVj1AzzFvwatKf93T2uHN6hhcQ/DUfducPFMbeiTOcxNyXX9BA/2uVuY768OrNUJgN/fA2Br2449qZFy53j00Uf53JcOdv/+ku2EuigFyQn/Oa9CFun7HZR6EMDJNfIzO4nLubicYawtHrSM+GoQoTUyZoxeZ9t/oDUMwbWciRcS9i3KUSm/bKDWTa4PscuMclPKCs287TJqab/fUWksozhWtgE9VKDUoTNunCgrDs33jtWGhXnz00pKs5LJkI0Bo8Z9rTpENSmhdWSYt8qGxm4kDwM3c0hQDI5jh4h9O88jraG2F+4OGeWopA2JowyWrshI4VaUo5LnCaotY7RQrO9rKSGbbYvM4oQmjgq1GlPrYpmQsUJ+ZETeLVvQjNjsMMxZbGXLZGPHGNou+gVKADVb0nTjvRPsP8M1h0s2RXOwfQxzVHLyks1WtNDIzYpQRyWtoerKgRCN/fQLgfKW5uCYgzDCHZSCBN2UxrKKk5MOnUYwykGpk34y43G0OHjDDhMoARQNxZSO7of6HZQ67GiDdWVgtMCIECW6Jd0b5g3YlgargY1GUY5KquT1OCgZSWK24wuUhILjKyZj9YTCOwEL91+AieHK/n43JaVE9xWhKPY7pfzTdq9ACRB1zbXP+rs3/upT7fHagw8mK2fKbeWxxx7j8ccf593vfvedLkpKSsrLyNh8gW/8yUf5hve8ivKsP0jXnuZL//Myv/+TH+PSk8volyGUcUpKSsrt5L/+1//KRz/6UR599FF+/Md/nHe84x08/fTT/NAP/RCXLl0amf5P//RPec973oNpmvzwD/8w73rXu3jooYdYW+td1HjyySf5p//0n1IqlfiJn/gJ3vSmN/E7v/M7/PIv//It/+ZXKnbdwWlHLylNp+HeUlJSUlJSbieJto68+tWvxjAMPvrp8N31UbzjyLOYnz7O5/NFrk35n40SKAHYHXeHCQ9zp3e2PNpFCVaVSTUwS+wW6HFU6ndQ6rCQdzhRsvnMeh43sErc76oUFCi1j6CQob2ruM+yv73gtL87fp+t7eHLXR2hkgws3siGy/lnYOTubAYdla6fB3svgStL21Fp5bxLdUuNFCcFadXgxSeb2BF1HUWzAjefGxWTbhApIT8uaeyq/XCEQXeQCCGI52qcfi1BiKOS7lsIzRUhV4adlZAf7XdUehni3penAA2VhEKly88knHTpdxZKsuu9CRc+H0gQM62ZgbFp2FnvdfJJJqHEL3ewriPqPV/y3X921+k9tn+Cqu9v12awrXQO7XdUCqTNlf3wNvYQV7cwtpaSC5QALn/BjR1GpitUMg1WL3o0KvEESh2043H1BcMP29P5bIRACcBuCs5+DkBBYMd8lDipg6ck6xvh3w1zXciYfpg+VwVCwDV7HZXCFlVPl21yhuapnV7lQSfsW9BRqSNQArgqLFZF9LmEuSl1wrvZMd5/f+7Kt/Fzxz4A+N3VpY+8jXvPvAineicorPf7jU7NSZq/Mk3u3ZvINYX4HxWee32earXKm970ptEZptxRXv/61/Nrv/ZrbG0fZWoyvgNGY32SzdUFDt73fLc7HCpQ6mD5fU/JaFH1epWEUS5KABszDm7AYbDfUSnooBTk9A5ULbhZGl6sjkCpg6E1QoMbIsboCJWE2/udi2BnhNSoI84QgSFPa0dwgeHhGrt5BByVao7kurLaAqV4fauyBLWGxHb840eJk4LsbNFWSQRCGccQpld32v/T6f+9eA8Rw/Ifn669L1TqHy+F4TohmvAQR6X+51G+CI4dHrq431FJJwypKnSvMEhkBYWcotEUoWK/3sSdTKHZFCwvG/EESt3C9v2ZIOlupe88Y+abyyq0FrTsXjHVsLCHYQite6552LMUoJhRtFzf0XAYwWe5wHc0jGqO/Y5KTjtviSZjaFpefGcjLf3+YaMR79U46KhUtwVXdjNxb5uuUKnuSFZqACKWQKnDXsug1if4GiVQAli3TUBjoPECIq0ocVKHxhDlVb8wqYvWZAAbesbj/Y5K/eHdTKV5oOpyMW+w1zee7IR9CzoqTY374iIt4PqMhx0m2GsT5qbUH95tGE9U7uexsr/5andjlvraNKfv/1LPMWNP+C8Ku9+UY+WfjrPwL3YZ//Om//nXjHH16gonTpzg2LFjsfN9Ofl7f+/vMTY2dkfyTklJSblTHH10noMPzPD0By7xzAcv4TmK+laL//3vvsjifdN8zT+8l4mDI15EUlJSUu4Q3/M938M/+2f/DMva32z1dV/3dfzAD/wA/+W//Bd+5md+JjLt8vIyv/RLv8R3fud38hM/8RND8/m1X/s1Tp48yb/9t/+265xUKBR43/vex3d913dx9OjRxL/5lUql7aKULVmp615KSkpKSsptJnGMlwMHDnDuUnakg1J/LurINg+dSh565KGKw4mGizsRXyDTQLKhTYKnF8dRaadlcLGSCdVWdDbeDwqUYLqouG+xRSbGuMWq7p9HJqOYm/EYpeYYdFWKP5EdXPSvbCUXSmBItq6r5OnwhUpJRC4dcuMCs2/CfNRiT25McPTRDLnxQF0Nc1VqU9mApWdD2lYgbdiC29gsHDg1LHRc+MezR+DIvSOLNcDMIcH0oZcudrrt3ML1zpfhwGkDK1kUCcbn4OQjEddgyCLp5DwsHBuRJmRH3fYK3HwxxgpUX9qDdxvMnxix6heymFoY90OwJcVtRbhSjWB7GRoRrgrDqGz5i8YQT6DUSyDEyQiBEkC5rBgf329kUW5K/ZyYcTizMFgpHUelqEXVmw2Ta/XRbn5BgRJAVUo2Ely8M4dXkS6cOJ+nUE1Wh/ebmvvvOs+B2fWB75zvKWL/gxL1zy+i3pin/vlF7H9QovU9Bf7HE/8A8BesUr68ecMb3gDAF67++kgHpSCFcoW5g9e7rkqxqVtwbQqUL1SKSzOncftulziOSstF2BqxSN4vUAI42fBYDAltG0Z+eb9/KeFRiPGw6hVrJOsbO45KrhY03OgQcVG0hKSeIBRmB+X1CmpiOWfi67KtEA3WKIekiXnBxELvucVxVdpZDQkLCz2OSmGC2akFKAzZ4xDmqCSEZv6AIpePL9rWlsQwYGZWDbpDxkmfRKB0hxgva8ZKfn2LBM41c5Mu5UKUk2HUeWsWxlwKmeH3Xb/YWCNYHRJ6LYgTyDtraI6WnFFRBAfclAyhycj4ddERBmlEO6RjsuvuKEHVNhIJlDrpGoE6iSNQ2qc3r1ECJYFmQniYASVdnMdCFs3drk0ppD/oOCr1C5QAlIDLeYN6DMF8R6DULiiNnCZJJLv7yzfRW0X0anLRzszYNnMHbwy8buw9luPaL09y7f87hX3U5NpvTnHtlyfZeyzHC06Lz3zpnu4z/U7woz/6o4yPJ4yxmpKSkvJVgJkxePS7TvPOX3wjhx+e7X5+87lN/vC9n+Az/+0cTjPhO1NKSkrKK8ADDzzQI1ACOHz4MMeOHePq1atD0/7Jn/wJSil+8Ad/EIB6vR7qIHflyhWuXLnCO97xjp7Qbt/xHd+B1pqPfOQjiX/zK5nahr/xIA31lpKSkpKScvtJvALy2te+lr29PerbyULZqMM7MGbzjmPPxnJR6iDYDyfgTnhIZ7iLUodF6XBQ9i7muYVwR6MOTSVZbVqoiGqJihCy25C8uGrhDnmnVZboESgBFPKaAwsemRjiDGVKZNtqcnxac+YhTVy7FJUxQGuKeZe548kXvYozkon55APO+dMmk0fNxIs1x1+TZfLg/qA4TvrmnubyZ1s0+8NjKRXpotTBzBG+rqBUpCPAxjU496kYAom+9J7ji0iScvVZzZXnkl+DEw8JDpxMmKhT5oTZZXJw9xskpXESiZUqm/D8JzxaQSFcjGaqXHBaw92Pwrh5ES48FfFlmKNSGzMzYLDVm7UpQ9MuPeexeinGQnpfOz32aF+YxVEIgZkTHL7fIFuMnwwgm/OYPJx8UbU8BbOLHshkAqXFo5pjZ/y6krYXS6AEMDfjMTfbW5dGUw11UQK4tmWxtBXegUcvqsKua7JpR6/+SXdQoFRQiru9FpkRIklrKQs7ma6Dkun45xBjLRbw3ZQezHiYpuLuk1eYHB9c8Xe/v4z9r6b2G66U2P9qCvf7y3zwgx8kl8vd0cWylHicPHmS+fl5PvrRjyZKl803GZvaRgg//FssFyUA2Y5/1W6MJaPFucr8UBclAMOFiR0D2dfdWYbH2m707uRKRtBMuEgPcD0rWR3Rd2hT9wiUAGaFx4SIJ27SBmR2/Xv8YNZh2oq/eOHmfWH7fNMmayVT8Ao0hTFNrp5swGBZmqlZjQ4JZTWMwjjMHQ2kMURssdH28uBxo9IKCTLq0rkq0tHv5mXY2xpZrB4XJa3BHRENuFsuTddNynHg2jUDO4noV0CuAIcPusgEYpduWUnmogQwNdHZ8EBsFyWAtQ3JxnbggaN1LBcl1xMDdSl0rzNPGJc2LCpDhHdhz3GBxhDD33e8jOgRKAE0PcGVioUT45q7WdEN0TaWVRwaS+bm6mYF5bzHRC7+ZpoOZdPDyiZvJ1NZlxwKLeILlASa4wWbguFXitHSIwVKABaaRcMl0xcT0WgNcVECHASXDIt6xHtUmEAJQAnBjiVDHfK6x2jRK1ACxmqCYgyh/aXdabZahX0HpYTV/0TlforCJZdvMDE12BnVX5Nl99sL++9SQrD77QXqr8mytWnyuc99jnvvvYXdKq8AWmuWlpZYXV2900VJSUlJuW2MzRf5xp/yQ8CV2iHglKd55oOXeP9PfZzLf52GgEtJSfnyR2vN9vb2SPH55z//eY4cOcKTTz7JO9/5Tr75m7+Zb/3Wb+U//If/sB+FAjh/3jcVuOuuu3rSz8zMMDs7y4ULFxL/ZhgbGxucO3eu+2+UyOpOUW07KaUipZSUlJSUlNtP4v3BP/iDP8gf/uEfcv43Gzz80/7spvHsAjrrok5vQFNifukQ7vENmKkjb5YRNybwHrqBvDmO2MvysFvni2YBqRRv2rU5VzBZyZosNl1ON1w+Pp5BSclDFX+i+GLBAqV4y67NVZXhZsliseZx0rT5nJPDRXK30cJE82x7xvUBo0VFC24oi2lcTls2z25ksZEcL7XIG5qzu/6xD002WG+a3GxYHM63OFR0eGqrQFNJjhZblEzNc7s5rLrmngMtduqS5V2LQkZxctbm4nqG7YbJwQmHsZzD8yv+dvS751tUW5LrOxY5U3HX3Q5L1wxqdcncjMfEhMszz1poJCeOOTRbgpvLJhlLcfK4x/WbBpWqZGbaY2bc48JZA+F4zCyAabYXeITm1L2wvASVbcHknGZ2Ac4/40+OHj6l0QpuPg/5aYNDdwtaNcXumu9EM3vM4MXPeaBg8W6JFHD9eX9Qeeq1BhvXPIrjgvJshpljisufs/FsOHC3iZkVLD3tX6OTr8+wfcNla0lRnJYcuMv0BSQC5s+Y5Apw7Qv+scdfl2Fv1WPzikd+XLJ4v8XSF1vYNZg9ZWI3FNtL/kLgsddmqG0q1i575Mpw6IEM15+1ae7BzHGD8ozk8mcdlIK5kybNimb1gkumAEceznDznEt9WzF9zGR8XnDpc/6k+JEHDOymZndNceJVFp6jWTrrUtuCyUXJ1CHBxc94CK05dJ/Ec+HmeY00ffeelcuKygZMzMPsEcmFz/p1duhugdZw45w/sXH6VYK169qv7xmYXhRcfMr/bvEUGAYsnfPvrVOvEmze1GyvQHkSFk4ILn9J49owf9x3Obh21j/25COCnTXN5g0ojsPiKcHV5zR2E+aP+eHorj4He1ua6UWBY2s2lnzXokNnBEvPa5p1mDsCxXE/H4DjDwhq7QVZKwunXyO5/oKiUYGZwzA2I7n0lH+uRx8QNGua1Uu+QOnog5J6RWE3YXpRM7FgcPEL/rFH7hc4TVh+UWNm4PhDkpVLisomTC7A9CHJi5/zjz18j8DzfNciKf36Xruq2N3w2+zcYcmFzysqWzA2A4fuElzv1PerJetLmp11KE/7jkkXn/YFTYunwDBh6QX/71OPwNYybK1AaRIOnIBLzwq8BiycgExecK0tDDvxiCRf9Otz84bm4CnJ1bMKu+HXd74sufK0QhsGJx6CyqZm46ry2+y9Jtef89vz7DFJaVJw+Sm/HR572KC+p1m7pPw2+0CGG8/ZNHZh56bL+AGDjavtOnzIpFXXrF7wMHNw7BGL5XMutS3N1GHJ5EGDG8+5ZEqCxbv9EGzL5zykCSdebbH6oktlQzOxKJk5YvDik/79eOg+g9y4xMoJtlYUpx+RrF1T7K7D+CzMHZFceEr5fcQZgSFh6QW/Xo49IPGUYH0FypOaA4fh0llwXcHiMY1pwbULfl90+gHN1hpsrgqEhLEpsDIaW5scmnXIluDiZV9IdOaUw86OZG3DoFhQHDnscemKwcXLBosHPE6dcHjxkn/syTMuu47mxs5+n3xpPUPNlhyYcJjIK55f9vvkuxZa1FqS69t+n3x63ubinsWWaXEw7zCbdfliO7Tbg2N1DAlf2skhJTww1uJSzWLbMVnIOhzIu3zWLpBfE5yZbuIAZ40sY8rlXm1TEYIbMsOicjiuXD4psyAl93stNPDFiQxSKc6cLbA2b7Mz7bI563D0So4Xz9RRJixezWIowdJxXxR8+vkCG7M22zMu8zWP//WXb+HwwRvMTW9zfXmeeqPAm1/3OQA+9NE3cuzQDe4+eZmV9Wk+/8z9vPl1n6VcqvMLn3mMy5ffz+HDh5HDlHcpXxYIIfiGb/gGPvjBD/LAO09wz9wlmvUCK9eOcPDERayMw9bqHM16kcXjlwFYuniK8vgO2XyD2l6J6u4k5ozAzWjYKkAtC4fb8UOXJqFgw3QNbANuTsDijh/2bTsPe3kYh6JlU7hZwM5odsc9DBfm1y02p1xaWU2xLllcztDIN2kZmpkNE9fUPKdKGEpzctt3TapmBOMtzVwdLkwKDKU5s6WpZOD6mERozakdWCn6Aqb8RoYTLYfzeRMtBAdbHgK4nvUVFXfVHVYyBrumpOQqDtoeL+ZNPCE40PLIZzUrLb+/OCFstrVkG4MCigPS5aqycBHMCpcsmuvaP/a4sKnWDHYsg7znMWF53Gz6301ZHnmpuNH+3UM5h5or2XYNMkKxmHO52TQBweysQrU0l1d8Rfr8pEvTFuzWDExDMz/psr5jYruCcl5RyitWtg0W8g7uEUF9W7O7LZCGZu6AZmtdYLcEhZKmPK5ZveHfw1OzGin8ftcwYO6IZucmtOp+mNOxGcHqFb/vnpgHNOys+U2gNCnYXfe/yxVhfBrWrghQmvF5v8/eaYuR5o5LKhv+uMC0YGJBsn7FD6k5NiswLNi+6W8wmD0mqe5o6rt+mNXJBcH6kmZyXlAYh/oubN7wf3f2iKC+p6ntQEZ6TB0y2Fj2Q7uVJyBbgI22rmBmEZp1P0ydacHMAdhc8V39SmOafNFjbc1vHzNzGrvl15lhaGYX2nVoC4olTWlMs3qzXYcLGtfV7OwZSAnz84qtLUmrBYWCYnxMs7zi/+70lMJTsLMjEUKzsKDY2jFwXGjZsDDncXPFAARTkwrQ7TDPmsUFxfauoNGQ5HKaqQlFre7r5SfHFVJqNtshoQ/Me+xVBLW6JJvVTE8qVtYkSgkmxhS5nGKvHfLtwLRLpSGp1iUZSzMz5bG6YeB5gvGyIpPRrG/6vzs3o6g3BJWawDI1M9Me61sGNpKxoiKfVaxu+a+J81MujZZgr2awV5PMT3k4rvDbbEGRH9Pc3PHLMF92sT3Bdt3AkJrFcZe1ikHLlZSyivG8y40d/76ZK7u4nmDZtLBczaGSw3rDpOFKSpbHfMHFEHB5L8Nk1kUBGw0TgeZw2WGzYbKdMygZHvO4XK1agGAm5/cRa02//EdLNptNg6prUDAUs3mXpaqFQjBVdDEFbG4b7LUkE1mPcsajYhvkDMVc0eNGxcTTgqmcR8bQrNT83z1Udth1DSylyRqasXHFzYqJqwQTOY+8qViu+ue6WHao2ZLdloElNQfKLoap2bYhb2iKluJGrX1swaHhCbZbJqbQHCw6rDRMWp5kPONyrOxwvpqh4cBizqGlBJu2iSE0h/MOq02ThpKMmR6TlsfVRgYJZKVmzPSoexKdhVPaZlma1LSkLDzmDI+Lrt9PLUgHEKwokxdci+Omw6pnUtUGJeExm/U4p/0++YDnB0m/Yfj1ctq1WZMGu9KgqBSLnsMlw8ITgnnPJYPmcsNE5z1O11w2M5ItS1LwNHfVXC7lJLsZg/mWR17BlbzfZk/VXbZNyQ5Q3Shyr9dkedrDMWF2W2J58MJRf3y9uCGp5zQ7JY3lwIEtg5Upj0K5QalioGrTyKObiOka+vokeqOEmKmiHQO9NIU4sIPIO+idPHqniDzmxxq2lkss7xwmV2hQLO1x/cpJFg4tUShV2d2eZGttnuN3vQDA8rUjGKbL3OJNlCf5b79/EM+7yrd8y7dwJ/noRz/KJz7xCX78x3+cctnfOLa8vMx73/ve7kLRW9/6Vn7mZ34Gw0gY/zElJSXlKwAhhB8C7v4Znv7ARZ7+4CWUq6ltNvnLX/4i48dzHPyxo0wspiHgUlJSvjz5i7/4C9bX1/lH/+gfDT3u+vXrSCl5/PHH+d7v/V5OnjzJxz72MX7nd34Hz/P40R/9UQA2N/2QyNPT0wO/MT093f0+yW+G8YEPfIDf/u3fHvj88uXLeF78TR/VapWzZ8/GPj4pV875c2W2qN/WfL7SuN31nhJOWu+vPGmd3xnSer8z3M56j7tJL7FI6Zu/+ZsxTZPnv3CBR8Wr8bREF23IdHbxgi41wfL/VlkPo9QCBRvnjrCZhWoerPEmUil2ayYt4U9st6Rg15RdE5aKKRAaMkqhlaLaMmm1dybW8pq91v6xNS0ITqNdUwZrbesjG8GeChwrJG5g62TVkbQ8/3fHsgpT7hvBNDyJCNjC1BxBs73l1lNQawlcBdNFl0LGo2bvL/jWHUnT8X9X1hS1osRuLwjbjqBeN9Bty5hGQ+C0j1Ua6g26zkxuVdHohBSwDKq7LrubflgPKTWNur+IA+C0oBHYXNpsgGj512JjCXIF3Q0F5drQqOjuydo13bMLu1HROA3FjWXIX/eYOmyghQF4tGoa196vw8aexmmba3m2orGnWTnv4NkweUiClmgpEErTrGjsdpglz1U09xSq3XzsuqK6sR+uqrmnsRsKoTSeI2jsaVS7XpyG9svfJpMTOO3fVS40KuDZ+7/bDIRRatY0bgtaVbhxzqU8JfHadei2FI2K2XUfadU0Xsc8QUGjqjEsX6SzvappVHXP7/oXvF0vVY3b1IDAsf2/ZQZUE+yG7ybQTVvVXZcl1/GP7WxCyOZ9IVDw2tid+u471g6YnG0s+UKQ7rVx22Xy9o+VZuA61jR23S+v1z7Xzrk7LQbOtRMGUCm/TBtXNU4dnAI0A9emWd1vd6r9u52/zSxkC74gSSn/d7XqVjeNqu6GE3MDZZCm76TU3aghhH+sA2iNaws/nEz7+1bdTzN/DNDQqPrntF/fvjuANgxaLdBq/wWpWdFUtzWVTVBeu74DdRi0jmrUBE47DJlSYOXAykOzCnZT06gGrmO1U9/t393T3XZY3QId+N1Wdf++0ap9rK1B+AKwxp6mWYWLT7rMnthvzwCNiurer05T0ai073PToNkQNOuKrRsg+q6N226zwT4i2Ga31gQ77ShjXlPTqIuedugFTEcaNbqOFJurvshSGRJcaDV7TajqDYHd7g9dD+p12vUtaTb3XRW8rKTe3L/vXQU1W3QjBtmOwM3AkWmb69smdVvSdNsuGZag6klc5Z9Q0xNU3UD4FCGZtDz/1BVUXInTtrhoZCR7IhBKE4HXfjatSZMLnke9038g2AtUWg3RDQWlgOuVEuLwBpmGxJGKRsGjXSTsnEIENiI18h6ZfIuxjINnG3xUzZF9fpFvP/U0Y6UamYDLy+T4LoV8O456xmZyYhfDdPmFzUdYub7K3t7eyAmNlC8fvumbvon3ve99VPZezZWpaRZllXypihAdUamNDlgC5gs1zIxNZWeCz6zegyi1QFawhEJnHNygZVfOgUy77QjtC5aE9gVLluK8Nwn4HYos2LjtoaMW0Mzq/fZqaZbnbVptZxA7o/EMDS3/jm1kdNv1Q+BIqAXMzcoOVAKukjUL2rcqroCaIbuOh00pfIcVrZm1FbYQ3WM9IagZsjvCU7sGTcDLaYymoI7Exg+/5qGpa9E91taix8XGru/f864p2bBN9tr15igQgfpueqJ7rMIPxZTdBhdY2jHJBZ6zLUfgtsecWkPTlnSibbme/71Z8bhWlZTLGheBykqk49Jqiu7z0XOh1dwvg2P748JaVWC4Hq0GeNJAZwSe59Jq7JfBadHjINKsaexG+3c9aDXaXwuB09LIgBuK3dgfFxim7zLY+SnX1iiv79j2s0i1fxcNe5sap9Xb79sNP2/aY4FWVaHbjct1QDR9catSYLfo/q7W/jNEKX+M7LoauwXCU2hDYtsCz9Ndo8RWk259e57/d7AOPc8fq0qpyGY0htEeE3mCZsDYynZ63ZmaLYHyfJHu7q5Bsah6ju1pLy269aQ8/+/O164DIjAWb7X224tS7WPb5XdcqNYktYpEtI/tjHuV9sukA8cGbUMzlsL1BLruvx+1bOHXi/DfP1rBMtidMvhCuKa9X4ctUyLaLrVCQcsVuGq/fTccgRC+eKlui+57EfjHNgsSHPBMqCHx2tXmKkHVllQdA1eB7e2/jWmg6UoaBQHKD6tYDcR2M9BYRmBs60rc9v3paf9vje+QaytBp8l6WlCxZbf8SgsabqCPUHT7WWUI6kriKMGua5FrKSZy3n59ewIRsAVtBurFNQU1LdmqSDwtKJiapujrTzp12C6/apffUZKrdYu9tvti05F0qlRr/721M3p19X5YOA/BastEafCyfh/aUAJtA1lwEdQCoSJbyG470whqSuK1z93OCGpaYNYETgmaQvQYoNaEpKwUHn7fXBP7fXI95/e13WMNgd2pfyCjNGOeZpdOGwxcx6KHZylAoAQ0sppOkVemFdmA61kzA057mKbbx5bzTTzANTRfas3yoNd2Qup7Boq8DbLd2kyFyNsU2jHuvFyGpxpHUKsFvunBj1AoVpGGn9ayHPLF/UF+Nt9Atq0FX3RnOH92iePHj/Pwww9zJ/mTP/kTtra2ugIlgF/91V/lypUrvOpVr2Jvb4+PfOQjPProo7zjHe+4gyVNSUlJub2YWYNHv/sMp950kE//57Ncf9oXpO5ebvKHP/0JHvhbx3n4209i5W4h9m9KSkrKbeLq1av80i/9Evfddx/f/M3fPPTYRqOBUoof/dEf5e///b8P+GL0SqXC+9//fr7v+76PQqGA3Z6szYSE+shkMtTr9cS/Gca3fdu38bVf+7U95/Iv/sW/4Pjx4wMuTsM4e/bsbXUnXXnii8AeR84c5N57j9+2fL7SuN31nhJOWu+vPGmd3xnSer8zfDnUu9C34GV7zz33cP7Fc7z3c9+KlBJPy9GJgPeffQjV59rg7Az3mpdK8Q3bNldyBpfrg8da1VHW7gqQ3XAdQYzQEA7+8QP51AfTS3f/s6PTNgVLd12U+jFrg5aXhq1YXHCxLM3VpYhYcoDRHFSTZ6WLkNAaYW0vW4OhSYSTICSBN1huEqjbB/JWo5vb+KLEykk2Lg2WfVjotxOvzVDdVKxdbKcLcwgZEfqtS0jaYOi3/BgcOCm5/rzqEQX5aUN+r5125jDMHRGc/WSy227uKGSycP18omTkSoDyHQdi4fnluvdNkvWrivVr8fOSEgpjmsZu78JdVMi8DuVp342q49DU+6PR6Q6eERTHBefbLlb9ofWiPuuEv1u+OLyMIm47Dyl2J62ZheOvMlk571LZHDwuinxJMXHAYPW8NzpEzYj6HYo5uEM6KsxOGNoKSz/8HpNSkytArSXpv8BeNnrHdrmsODDvOyq1jMGJQrcQnu9s2eXgpMsXr2W6+YWFpXEKoTEfB8ro5zV4bGOufU8rNTQuoFMevPfvvmeJe54rsTbXYv3A8FAzY5m+DkfBfzjyYUxzdFybX9h8BIA/+6kX+PyHz3H+/HlOnz49Ml3KnWd1dZWFhQX+X794hLd95xQAx8zRnYpSgj+rPjDQTTij4jptFGGjBHet8vndIwNf15whcWrbQgeAG1uD9uNKhfS3Wof2w6FjRL2f5r66y7WswZ4Zfs9l1wfPM9uEw8JhWZs0hzxkrL4IigJNzlO0lCA8Ruw++a3B+9xsxA/5ZlUHxz+yFe+ZJB3ftSdYRmEPD1MnpB++s74HbmOw7FHh23IlGJ+XrF1WXfFUGKPGAV1CLkfwOTMx43exYSHfhj2PFo8oahXY3Y6+3rov5KAQmpl5ze6upNUaXv7g+QmhyVi+MEnHjd0mYKysmBhXXLu+LwKMg2VqhALH7U3Qfz79TE962LZgrx4y3o1IK4Tm2AGX9W2DaqMtIMuFpO/7yJKa2bLLetXECYjYWmODaY2Y0dbs0mAZzXbbncq65A3NjXr0u1VYCO9Zz8VWgroz+l1BdcdKnXtDYAwJKR7Es8LGq7GStvMe/GxUl24JjQZamcFzGxb2bdFwaGrBljLxQl5xo0K+nXQdKkKwFhivufnBY3W+r1/TvgwsrM8wSoONY2ai2t/dhTKRawx89ia9it4qIs6sjBxKd0RK3WIqwTeW4+00u+DM4nmad73lHO/82/+A3/iN34iV7nbxnd/5nbzuda/jp3/6pwGo1+t867d+K295y1v42Z/9WVzX5Qd/8AcpFAr8+q//+h0t6yvNuXPn+OEf/mF+67d+K9ZC2ZfDZF5KSsrLg9aaq59b48nfPUt1Y/99uzid4/Xfdw/HXjOPeCnzLikpKSkvA5ubm/zYj/0YruvyG7/xG8zMzAw9/pu+6ZtoNBr8/u//PvPz893PP/ShD/Gv/tW/4t/9u3/Hww8/zH/7b/+NX//1Xx84DuBHfuRHMAyjOy6M+5txSDr26nC7x2Af+NlPs3Zhh6//iYc5/roDty2frzTSse+dIa33V560zu8Mab3fGb4c6v2W4rz83b/7d1Gu5vxfrgBgCIUhRi++qI5VSmDV3ZpoYk30qzx60zxdMlmuhi+IORGTowCvMevcPWS228v4/3qJJ1ACUIFJ/KubZqhAyaypUIGSn7/EdQWuG/2yGyZQAjh8RrB4IrlA6fiDgrnTRuhizmAB/XIbFhx/tUmx4/oZ0/p9bF5yz9dlMQN1PExk1CE/ZlCaCW+aw0ROlz5j+wIlKaNFAiGiq6nDkuJk4IOItMFFusYeXHoqpkAJ/O3NWrO3ATfOJ49xv3Y1uUAJ/DBwc8diHuwlL1cHoTWFsubogwbZ4uB3w6hsEi5QglABUIetm5rlS8oX6URNGIXkvXxxtEAJfEelLhLmjkGmfzNIRPm0YaANA7cFFz6dTKAEkBszKc/I4QKlkPM+8pDB0Udi7vQLCJSOPCCZOtj+2RjtQFsGIm9w16N+aMKeYoUJGwMUpiQn7od8yMYaY9givG67XkSIoMy6wqwP5r1eMUcKlCCqn+/Nyy2IUIFSh7xSfJ1qMqPCBQFhAiWAF547yLWjDXYmo59XY5lmqEAJyUiB0i9sPtIVKAEsf6nC/Px8KlD6CmJ+fp6v+Zqv4crHHux+dsWd5oo7aMcdRMp9B5kglvCwxJD7bbwBR7b5/M6gQAn80G9h5BuCI9czyCE/LaVGyt4CxRYoQXcxWgvBswUzVKCUXTdCBUoAdtZ3JxpGv0AJICc0x0oOIZsLe+gXKBUsxdFJGy8vcPOjh90dgVKppJie3r+31RARZ5DZRc3kXO9nOjP8uaC1H/rVNML7qKjnZLMKqxeHC5RgcBxgZqA01XdQRNUEhfU7G/EFSuA/j4Sn2Fr3HaaiCBPlaC1YX0kmUALIZODAgocZd9N9xM+LGEMyoWBqXDE5OXgBhDv8Bza3jVCB0rC0WsPqpkGjJXBzMlSg1ClXEEcJbu5aIwVKAF5APJQ3FWVrsDMJEygBuHmBmxdstczEAiWAfMkP2zYMZYiAQAksCafHbfJGPBFiR6BUMBWHig5i365oJMqAybzLYn5wrDCsOweYK7nMlsIPMqJfw3G1wNMiVKAEYFYFZsi9ddG0WJP792WYQAlANPruXSEG7imj5IQKlDrM7koWN6L71jCBEsCnvHnEwe2hAqWC0eoRKLVf5xBy9AW74MxywZkF4PxnBBsrzZ6d43eKvb09pqb2O+BnnnkGz/P4+q//egBM0+TVr341N27cuFNFfMV54okneO9738uv/Mqv3OmipKSk3CGEEBx7zTzv/MU3cfBrx5DtZ31ts8lf/n+e4sO/8Dl2l2sjfiUlJSXl9lGtVvnH//gfU61W+Tf/5t+MFCjBfvi2ycneidvO35VKpee4YFi3Dpubmz1h4OL+5lcy1Q3//aE0k7/DJUlJSUlJSfnq55ZESu95z3sQQvDX77vY83mUUOn3XniE33vhEXKO4q03YC5krnCYWGlrL0tzmDNFSYeKlVaUyYYyQl2UgvQLle4db3Kq7E9IRgmUOihTtMVKnfLF3ykPsLxncWM5fCUjSqAEcOOa4PoVEU9sFKBe0TTb79ZD0waEBp7jh0/rmUA3jJFipWZFsXHFHRBaaCmGipVWXnC48pnwBVAY4cY0pJ106RNRTB+UlDuiqBHphwpuYmRt1zW766OPe7m4fk6zcmnEQZ5+yQIlaAu3vuD1hBvsP+aWiLilGlWobMXYzTYk71HuDh2hkmnB9KLsFdbEuNV1TEFfP9s3Fec/PWTFKaLcuyua3ZURBTONAQcl5UEgut1QoVKn35ASqrt+2J24aMugUoErFySNCHevKKFSpSo5fzNLsseWoqPk8bIiUqDUodPfF6TiNVN1yua+2GiYOAkgvybwgCVhsNdXRqesIwVKAEjJ55cWcUI0GaHipDaHnhtn8nqef3jl7fzDK28PPSYoTgLYvFrl5s2bvOENbxh6Pilffnz3d383f/7nf06t0nuPRAmV/rTyIH9aeRC9XkJfDZ/AihQrWYrP2wtD3SmKlj0gVrItze6Y/3thLkpBgkKlgqO5Z1Njtp/vo1w26ZgZCZH4+aKF4Eo22kUpTKAE0NCCK60MLS1QYU4oETjtsFWdbnuYUCnooKR7Nf2AL1SKEitJRyEdRW2PnrCi3d/LmNFiJQ3L5xXNkHTdQ17i7vHgdbKyMD4r9sOHjujWhzmAxhkHt6oa1wkv/yjHIaFU5LgzrE5sG24sG90wzNE/zEj3F6GjxUqdV67NLcnWVkKxkQA9QgUVnlZQb0lamdF13vtKuB+mFaIFSh06QqWipZjM9V77KIFSEDcffUyUQAngWsNiTUary1SI06TSsN40/bBxlgh3SYKB7zT+0Lunlodcko57kq32Q7jFxcsKbjoWa070dYsSKq0pk60Y1ztI914XAjevIwVK3ePbQqVDTY8jjd7rPUycBLCxU6KW01QKg3lM5BqRAiXwQwx+vHk49Lt+cVIHVcnjXFhEu5K/qN3DX9TuCU3fESd1+NzHbzI1NcXf+Tt/Z9jpvCIUi0X29va6fz/11FNIKXnooYe6n5mmSbM5RL32VcZjjz3G448/zrvf/e47XZSUlJQ7jJUzOfq2SV+s9MD+O9b1Zzb4g5/+OJ/7vfO4Md1NU1JSUl4uWq0W733ve1laWuLxxx/n2LFjsdJ13Ik2NjZ6Pu/8PTExAdDdwHju3LmB49bX13s2OMb9za9UPFdR3/HfA4qpSCklJSUlJeW2c0sipVKpxIkTJ7jxpW1U3wrKMEelpgFrBf+/iVCKe70WcxHuFB36hUpLKsPeTrzMgkKliiPZi2H131NEU3D3QotTs/uTqVEOSv0YBchmkombGnWJbUeXMcxFCWD1Mj0imbgip6tfdKmF7F4fhl2H9UseUZctjqtSFGELRrMnDE69fsjqQ5CAUOnCky4rF4aHaOrJuz35fs8bJbPhJhORmBmYPaR73KXiMH8M7n598vqyGwy6Pd0mlIJmhaQ6PRZOwl2vH1H3Ib85MS8o9zsxxODeN8DMwfgLrh1HpOc/pdjtvIPFPMfZo3DqtXHtFEIIcw0aUu7dVcXOcsILAFw/q9hZGX1csL9wbbjxIrRCxEZD3ZSUpLI3GOptOIr8hP/fUQTdlIoZeNXRFvlysjpRwK5t0HDb4WxGCJQ6GBsGF4wsdqAvGSpOAlCKh+stJt3hz7ewQlYnbZrF6HT9AiWAT/ymb8n28z//88nyS7njfNd3fRe2bfPZJ3YHvhvqqJR3EGONYXrNUDJNyfiGNdLhIyhU8kzYHfdY2h0uUOrQESrZBuxEOHUMzVspHqi5ZAJjgigHpSBCazJZj1j2JfupaCiJHqIsCQvz5niCzZqJCsTviuOoVKtLtoeEJ4uiXhU060Ncg8KESjGFymHPzYWTksJEvLJ1Rc0VuHFO+w5MMU9ROB6lCTh4Mt7xQXJ5TSE7uKA0SqB06LBHeSyhCE4LHEcMbScvJ54ncL3keR076FEuDn829guVDKkpTGhkHJunABN5xbFp//1olECpg2fBRsPkWmV/XB9HoARwImczFuLANEygFCQs/GuYQAnA04KdloEXNz5fm4YrWa5bxInzFgzvVnENtu0o57Do33C1wI4Znr2DhYZsvGsddFM6rFyOeM5IcVI/NUNQC9TzKIFSh2vN4oBIaZg4CSBXl4xvm8keAYDIuMiJGmKIg2W/QMnzNJ/+sx3e+c53khllxfcKcOTIET71qU+xu7tLpVLhiSee4MyZM5TL5e4xKysrA7vjU1JSUv4mMX6gyDe/9zV8/f/7EYpT/uYJ5Wq++McXef9PfZwrn11Fv5SNeCkpKSkx8TyPn/u5n+O5557j53/+57n//vtDj9vY2ODq1au4gbnFr/u6rwPgf/2v/9X9TCnFn/3ZnzE2NtYVHB0/fpwjR47wwQ9+EM/bf6n44z/+Y4QQvOUtb0n8m1+p1DaboMGwJPmxOz92T0lJSUlJ+WrnlkRKAD/wAz+AcjXP/PG1ge8ihUpScnZashcRHgAGHZUy6wZISRlNIcZMYr9QadZymTLjLf52wr8t1TOsNa2RLkr9bDQMtupt55WYAiWA00cdFg5qvMx+vQxzUfJRHDrqUR5XaKs3fFuUQMn/EkqTvXqcHqGSp0JDoiEZCOPlF3S4o1JxUlKcjr7eYUIlMwdn3pKjPD/C1ahPqNSoQGUjgRgheJ4xBUrdvLVm/aqiut1JHy+dlYHZI5JsLlnb2tuE9aXkkyBTi74gJ5KX6KAUdEbIlWDxjCRqE3r/8R32NmD9WozrFjxECKYPCibmIo/uJZDv2jWo7CZbTOpxRErQxJpV2AtZtB7FydcYzJ1oN6qgUGmIQMmwYOJAdP2HOSiBL5wzQtIIT/c4KvULGotjkBkiKggKlfb7KMWREx6lEaKhoJuSl5VkxyVnjtqMDwnvGaQjVHIUrDVM6nb8623VNU0lOV/N0iwYsQVKoDiaaZEJCHdHCpSAHFBWGkvD+S/t7+gf5qAEgISdQw0aESHiwgRKACtPNpmbm+PBBx8M/T7ly5dDhw7x5je/mef+7FTo91FCJVFqIaZqQ0Pa9DsqfX7nCEKBZcuB0E1hBIVKhgfTdT3UxS6IlBplwnJJ4Eox2kUpQFMKVrOy2y3HESgBlNCc0g4yq/ECz+MoF6UOBamYt/x7Tlm9jkphAqUOptRk+sJBBYVKVtXtcVHqEBYaDwYdlaSz/9tCavIljRgiJOkRKrX7+bEZmD0yur/rFyrVdjVuAke9nnFAwrcQe89j5xaE9sUxKI33PZdGCJQAtrclzaZ/XHDMqUNCUnWQUjM5oSJD5/k/FqvY+4cHfkqoXpeicklRLETfpMLVPWIjX0uj2diWNEeEsuuk7yCLgtmyR9w9Bp1y1m3BZtWILVDq4Dsq+ZnFFSiBZteTNDK9eY0SKJUMjxMFG9l+1wwKlaIESgB5Q5Htu7eDjklR7kqW7HWXChS/5+OgQEmiyRkqPF2boFCp4yBZkh5zZr8l7iBBNyUvC7NZl6MinlAI9oVKO8JgM4YQM4hoGGxbks2MHBneLUjJ1pTsZAIlANMVZGwJAj62sf9MjXJQ6iBzDubcoFC4Q79ACeDpv5SsLtl8+7d/+8hyvRK8853vZGNjg3e+851893d/N5ubmwNlO3v2LKdOhY81UlJSUv6mIITg+GsX+K5/8yYe+rYT3RBw1Y0GT/zSF/jzf/159lbTEHApKSm3l3//7/89n/zkJ3nd615HpVLhz//8z3v+dfjN3/xNvu/7vo/19f0X5je+8Y08+uijvO997+Nf/+t/zR/90R/xkz/5kzzzzDP8yI/8SI+A/l3vehcXL17kPe95Dx/84Af55V/+Zd73vvfxrd/6rT3OTUl+8yuR6qb/LlGcziFeopt0SkpKSkpKymhuWaT0Uz/1UxiGwad++2Lo9x2h0u+90LdQqhSHKorJxvBVr/7Qb39t5Lgi422B7QiVMruagzmX+ZDd06MYt1zGs8mcLdZqFhutmNt0A1y5aXF9Nam9lB96KpvQeSBXgKP3SYp9myNHLfTMHpGceK2VuMXMnTSYOz78t/uFSm4Tqhsezog2AoFFIympbmpWX0x4rT3F9GHJsYeS3wqb1zSNConqpFGFs59U1HaJvYALvgBr80biIlIoQ34sebpbwcxAaVIk1XtR34WtmwkStF8SLj6lWXohQbp2fa/fFN2Qh3GZWoDjD8nELlGVTd+9LGnYt8qmprHXl9mIl6PCpGDxHjO5S9cJyclHR9yjIf3DwZMwfzRZXlJCNhcuihpGvQkvLllUhriDhNEwDK7uZlAJblKJ+v+z9+fxkiV1nTf+jjhLbnff7626tfdW3U23KEsDNozggvzA8dHRmZ+MwyioOIIv5kF+8xOGQZbxARxFHxUVBAT1GXAbxwEcN3Zsuml6r6696tatW3dfcz9LxPNHZN6bmfdk5smiu2ngvF+v++quzIgTceLEiYg88TmfL1MpH9njxR6UikNuwFBNqBBHoARQkZIv9KVZcfYapaM4CUDB8NUMdqX5vOoh39oJlM5/bonV1VVe8pKXxKpbwtOPn/7pn+af/umfWJqL3kStC5U+lW8WoWnfQm9EKY2baRQqVbOKtZkqOubwVRcqra4NMF2EXpdeUmmGKtFi1naEQrDsWgQdRARRFBGcFw49+pdhoUkLjejRfmM0FzLRv79BujkqzUwrBro4+TQKlABsG8amTUi1TrQ6KnkVKOd7d1TKr2m87pqAJoTWjB8WZPq7p23Er0Jp3bRjL+GO15dhdbEmNurk9NdCsSDwG0SuHcMN15ASslmNvL5orz2TSmniPgfeM/sRFEoSP4h/3wRpSdmXXFh1CHqYHoUCL5SspXr/fXQw69PvhD0IlAAE675NWcndsG9xHJR8LdgJ9s/8nQRKAKOZkJGIwa5d2DcwYqOjAx4DXVx0VUsfytqKwzmfGPq6JmwBaanoVR23iM013bsb6EZOsB3lBNqBXKjIXMeLE6NVzXhFs7bVB8QTKAEUBkJWJ5vDlXYSJwGoYopwJ7Pv51s95FuUQAngc//rGtPT03zf931frLo92bzoRS/iDW94A0ePHmV2dpaf/dmf5aUv3QsZ/OCDD1IsFnn2s5/9DaxlQkJCwtMHJ23zrH99E//H//UCZm7beylk/sFV/uJNX+T+Pz9H4CUh4BISEp4czp8/D8CXv/xl3vnOd+7764QQgne96138yI/8CF/60pf47d/+bTY2NnjLW97CK17xiqa0z3ve83jnO99JPp/nN3/zN/n85z/PK1/5St7whjdc9zG/GSmsmd8TfUmot4SEhISEhKeE645D5LouL3jBC/jc5z5HfqVM/8T+ydsSCiH2azGObMN6Bja7zPf2dvPTWakUaaAUQwVheRBmBI/m3Z43oaQPhwcCcDXbq7010UgmQJY1Oz1sihfLe2lFDw9ozz3e3D7asZClzm+eVgpw6WFFaSd2MQBsLSkqBd1epGFZJt5Xy8Wef9gnThQjLUXT5s+1x+K/uSuURgsNQpAbhmrZCJ3iEvgavwcXgDq5IRAW5Ld6z7uL1l3FJwB2yrgAbK30dvirZ9p88XVYU7fbQC5swNmvdH84I5RCN9zD2UGzqbfrSvUkYoRUsL1mumtcwgD8au9t1j9ihGlhj3lXLvYmUALIr2jOfsnb72ghRUensNUriu1OxiVtyr70GIgYw1zjRrJSknOnuueB1n4m2elRWGaHIVP9muWiRaDij8eDacXxPo+8l8HrnnyXbWXzzwVJJQtOQcQTKSlFn4KCvVe/M+dmeNatFztmcyqSweU01VxAkN7rKwuFwbYCJYALH1UIIfid3/md7nVLeFryoz/6o7zuda/j2j/9H0z9+09GprkcjFJSLlnZ0IMrDnplAPrLCKfz4PfP60dxrb2x3PIFoa1j7W8vbfdDSnNqVKB6DOkqt1McLAYUM5pSD6IjW2mGAsV2Ib4IQglBueGEuuxN75JXFvmWUEvKEWTWO7fpetFqO+1Kr33e1TXZcQ2lUhYIgWzYGPE9WLgIqscQYJVCT8l3hUqWpbEdehYqBR6oHvdzhIR0Dioe9Ja1uS3iRuZKpU1IOq/RjU/vO1wTQSBYuNYmHFetE8QNN9uIDKPzrq3HVEMpDbX7SghNJqWpeAKlYrhnNd3LvdfdHgCkotrDXAwaXwkqWdnTxbaFxhaaihJoS8QO8VZVkmpLGO0gI5BdFgJXCzZRw5WW7YVKCpgvOHgd7tFWgRJAIZDMFRyCLssLbZkw5HW2QoutMGY/aTh2gCDo8Xr3BYog1BR6FClNBSFhRXMp09vv7rk+gdSQTvsUKqlYIiUrEIRW85z2te1ZXjByvmM+tZNBlVNYA81lKC3bCpSK+ZD7P7PDW97yFmz76wj//ATzL//lv2zr7HTnnXfyqU996qmtUEJCQsI3AUMH+njp//9ZXPrKEvf88eOUNqqEvuKBvzzPuS8scNdP3sLh75z8RlczISHhW4zf+q3fipXul3/5l/nlX/7lfZ9ns1le//rX8/rXv77rMb77u7+b7/7u7+6arpdjfrNRXDMbSolIKSEhISEh4anhup2UAN71rncB8Pe/9ljk9//99HcCZo9795m6lNwzBY93CAEGoOfMG//KNX8A36U9btW9bBtDNWNhTrM3V4yzmy6PbqU6vgkbxcxAwNhAiLZFrFASBsWhKZ/Rwb2dKOXEuzRSKpDm3OoCJS1lkwiklSiBkvBrOwCWbA4vVcOvmLfl21JXfLRsngQesZu+cRPETtMxTNxuHkui6/XVmsN3ugxNxezWtXPdXtIsnOpVygajhyTjh3t31zn6DNkcpiyGYKhvEA7cKHt2yYnk6wi10ovDRaeyRYNCaPyQYOJIjIrUk2gTRujYHYLB6D2BaIQgNwQHTtA+JFobdlaUEXxZgsjdqDbM3ioZmar9Q8pYYQXdDM1OZzGcG+pECpSgoyLLKxmBWSvaluiaeEZE2Cb4nnHeiKLxvtwdWwBpx7tZVFOYFsXxWZ9cJmbelEClBLm05sBAQNruof1SglXt8NW1DKWgl5tDAcpspvZwU00FihcUKwwECp0O0WnTVvc9dqxjPj+ruHLHJqVBM+YvFAZZKAwC8A+L0fHfS8seDzzwALfffjtDQ0Ox65jw9CKbzfITP/ET/OEf/iF+Nfqe+GrxKAAl5VKqL6D6Kogbl7oKlOphb7zQwgstnKpkcj6DW+3hfhAgHL07VselLOGRPpuSIyAixFk7UlpzoKpIo1FOPNcUgIxWHNR+Ux1VzDlWNuzk1wVKyjZ/UQRKEEYoY9xts/YIXdkU8rdOtSoIOwgZ6gIn5TYKEEQsgZLwauuehjnNzfTudJcdEowdit8/6qHSNhc11R6FUZYFo4csnFTz3NKNTE4zPq1RtkTVRaExXgoYHtb0NQhO6wKhOI5KrTSun3rN35j+etZhunbK9RchLAmTYyGu0/1Y9fnY8jQDMmRqoLf1stcnGU8HjFi9OgwIruFQVCYkV1ytzIAVcijl7zrA1UOedSNjKSzR2M7mv93HhP33dr29ddvbQlAOZOSY0GkcAUFFSdo1RuNvZllTMgniO7+FDe5rQ4RM9PCaT5jRhBnNqA6ZCHq71jqluNAvmU/1Zj8mai96uNne+uTomsPYqpko+pwqfY5ZPH9xo3N4M3t6C+fw3tsiSktU7SJfrEbHn/7ff1TF8zz+3b/7dz3VMSEhISHh6YkQgmPPneZf/drdPOPlRxH1EHCrZf7+v32N//3er7KzXPoG1zIhISEh4XrJ7zopdXqbNyEhISEhIeGJ4usSKT3/+c9nZmaG0/9wDdWD939Q2yCwe4kXAFwQNo+L7jtI6Y3mh7fHBzzu7O9N3OSp+mZzj3W8bHNhsdc3JSUpV5PWzWV1EyrZtuLkHZqRkd5Kyw7Ckdu6PLCPECoNzch4G1ENQiXbhcPf6ZAbjtfV6kKlsSMOB5/RuyLn4lerbFztUTUEOGmQord8849rLj9Uy9OTK495M7+JLptOW2tw5l5lRF89MHMcjtze6ADwdYqMOjA4CTc+12qvw2kpuy5Umn9MM/dIlwaMOGbg6/huSLU+ub0CZ+7TPbWjUAo3HUtftI8LXw3ZXOytzYdnJLO31caQHjYyZ2+3GDnQUMkYLiapHEzdIPeJtrTd+WTHD8LkodhVq6G4+VbN9MEu4U1aNuqzKiTVg9CoTr5i8cgFh4LXi9DU1M3rye0BpuyQ5wyUcRsGguxi92Os2JJHMy47vRQXmGoqm55m8M+9d44gCPilX/qlHgpLeDry+te/nqWlJb74ya3YeYQAIc3cs2/+6YDvKjYmq3hdwhIBXFjbC39gh3ByU9MX3xQRhCCoj1s9zFVFKTjtp6jEsXZrLA4jcMrsNI8R3UQJ43bA0VQvJ2YYyQYMpDtv3rcKlaTUDA0pLCuOmGRvgz83oBke72HcrG2wTFxHCLbiFixdug7RjqgJonroj4EPC+eNYybEFyppDWEItIo1ugiVVpYFm7XfFK0ORu2ERlJqDswEpNNfn7CoE43HmxwPGRxo34itQhkRaoIQ5q7ZVKud58fW+VjrWNquXbw+k3++4LBa6e23kU4bV6R916wLW4HFJd+hN8cnzWzaZ9A2/UnELDJjKWayfpNosb0waY9BNyQXIdpuL04yYqOZjE9K9vZbZcBS3Jj2ugqVwpbwkK6ncXtse4ArwmbB6zG0n9boxvE/Jie2NbNB81h8dWuoa76NUZ+dwd6ETbom/BQxxuI6Yaj52z+9xgte8AIOHDjQU3kJCQkJCU9vnLTNs//NzSYE3K0NIeAeWOUv3vQFvvYXSQi4hISEhG9Gius1kdJo4qSUkJCQkJDwVPB1iZQA3vrWt6ICzeff3xxXqu6i1Eijo9JN64rnLxHp8FF3UWpEubCatil0UQq0CpQANkOLJSzi7IQ4DSGFDvVXuW3UI3RELEclp6hqYYX2xE1xHZUunbFYXt7/BmknoVIQSJauCQo7RIZ56+SoJC0TQgw6bPK0CJVyQ4LscMu5KBXt0lK70IFXE3f00NO0FKxeCbjwz51jtukIIVVlB5Qf4wFyQ17bhRue6zAwLmLFAKu7AKigJXnMfYMrpzTba1EH7uRURc8CJYBSHopbuvPxY16bbptsfgUKG22EQ23yCqVQyoRTa0ub+l15TJNf71ilWiH73b2E1rE2DetCqqN3CCaPNnwRw01JaI1XirhuXcaw1UuKy/f7PQmUTIENW3lRGz0R92o6B4PjoqnvthMoNbop2TaRrl5NzmaNeWtjzOJVwVaEa9NuFSOcRDxPcvZxqyksZmTemoNS7V+AGY+dGC8yBilBkBJMpEO+Y7SMXWsQJx/vGmy7khVl47V01m5CJSUl8wMCnd1fTjs3peHFDIcfGoag2UGpkVY3JRUoHvnseaanp3nlK1/Z7XQSnubcfPPNvOxlL+NzHxtEt4xjdRelRuqOSjoU6HNTsJ2NPG7dRakRT1nspOk6TzQKlAACaUL6hjGcWgCqW+YtNVtpbi4E9IfauCnFcFRytmxUPbZwrT3iOCqVhGQ+nyKMEDN0EirthJIV3wJ0ZJi3dk4olmwemusuSq20CpX6cprWKEHSU5Fh4naFSh1Ckgkv2HNRaqqgYGnOiI56QYUQ+vFCmDWmGZwQjB+uu/11L0c7Ftqx9q0x4giVKiXB2oZFZKN0UN0oJdBatD23KKGS1lAqyZooqv3aKa6bUrt09eOWKwKvjWaunWBGhLVz6yDkiZqPS1XJRszwcnWBEoBGoLRABiBjaEPCtKDfUtyQqTbXMIaGJbQEXsSJd3NTulhy2fGtSIFSo0NRU3Vqv2vrXTKqvbXc/3mfo8i0iJQ6CZQA7JqRZ1RvaFc/GWhKSrLk2x2vdatACWBd2SxWuouN6g5KwG4IayUETiHGeJBS6JTiRDlkvGEjN9yJ8ZKK1hQGQooRSbsJlQJH4/ZVdh2UGolyU9IK/PMzhGtGwdnooNRIq5vSff+wzfpKYdd5+hvFG9/4Rh5//PHrylsul/njP/5j/vIv//IJrlVCQkLCtwbDB/p46S8/i3/xujvJDpsJNfQVX/uL8/zFm77AlQdWuhwhISEhIeHpRCEJ95aQkJCQkPCU8nWLlH72Z3+Wvr4+HvnEcuw8QsBSDi7s31vtyogV8OywgoxtoQKrymYhcAkzFmEm/luapcBixxPUHz/HDf12ZMrnxoPNOwZxhEpSKuyoN2s7CJXWliXBVucNmlahUmkbLj6k94eGiqJBcLBwKuTKQz28DVTb1Ll0n08xYiOvE0EF/A4OKFFCCICBScnMSbsnF4bAg4XHAwob9dgO8eqaHYQjz5DNmpM4WWWHcCpt6m27cOgkpPtiVW2XrRVYnY9Xp07EEfSUtuHa2YgG6JL3wAkYmemxXrIWsq1bvVo2FicOweSRzll2szb0g2tnNZuL8fKBaa+BcZi5sc0JdBAqqUBT6TEEDsD8wyGbCyqWg1Kd7RU48+Vwt8t3c1Cqs3jZuFk00u6erCN8zea6pFyKThe1IQoKN4aDi2rZfBzKKe447OHGCC8XNOSthoK8JwliTo1B1vzlsTinInb5OnBDxeM2v7MQM4rCaJXN6RILlfgTqPenN+F5Hm95y1t6Li/h6cl//I//kUceeYT+i++JnacsHMTkDuTiTP4NaMiupsjt9OCEImClDzwbLEthWfHm1UBA3hYEjWN3DKGSqzW3hD7Zli38OKHf7DZuIe2ESlUtySuLzHrnerWKDlYLNlvleAKPulBJKcHVBdnV8aapXNeimBdsrvTmSgJmPaR7dDMBGJoUpLLxhEp1CpuajWsNbRhzmTg4akLgNtJNqKRsgZQdXHnaCJX6+jQDQ52vc6uISGvB5pbE92OImbsIleIImXbyknKEiLeTo4/raMYHA2Qby6Do+Zhaeo3lda5Xo0DJEprprI8b0wEoTJt2KyrJlYrTUVzTirZg0vHJtimrvVBJELYJydiJUiBZKBrXpjgOSnUWig5rlb2xoJtACcDXgvmSs8/psZvzW+jDdth+3IkSKFkxQ8TtipNqHFUBkyqeQ5FO1ReemrwlqPQw7qTTPulMwGYWSj2Y7goF40suQ6pHJzwB1uQmsr8cKU6KIgw1n/ujCe6++26e//zn91beE8zW1havfe1r+cVf/EU+9alPUSh0/5Hx2GOP8Ru/8Rv82I/9GB/96EcZ6dW2OSEhIeHbCCEEx++a5kd/7W5uf9leCLj8Spm/e+/9/N1/u5/8ShICLiEhIeHpjtaaQhLuLSEhISEh4Sml17hkkbzuda/jV3/1V7nno+d57k+eiHRRamUnI9nJ0KuLP74QKAm2A1Evgrcjg+Kg43POdwgzEqu8v+BGFyWAtbJNaxOFjsCKcOpxinsPxPNFgWXtfyBcFyqJoDm/XTabKzfdFFIuCy5f3v8AtC5Ukn7zg3cpFZOHYXsNKsV92fbKlrJJdAHgpsHPxxAdWRLCiAf+ccQ8tQ0rN6vxOtQvipmTNqUtxfbV+MIo24V0X0O4mKgNswgxxfZyyzVVKlJI0roBJy0jllGNbjmKjqKfI7caYdPFh9q0X5t6O65A9hBmAEx72C5U4jjCtIluGDdMie0ad65KvuHDGHktF+wol6gObTg4BgdvtDhzX0hQbXOdIz6TlvnbTVILMbEva0vfzm9GVVxEbmzW28tNm3BqvaE5dIfF2uWQ0nb8XHYKVCji6eva9e0YAiURKKys3Oci1k2gBDB5UJMvKYr51g229nmzWbjhRMDlyzbbOxCkm8fVVnFSHc+XbJWs3TnCKSn87P5ygpb8277Ntt885jt5jd+/v5ygZkYzI32UhiUdP7yJTocQquuKvnhZ9UMMseI/LN7ES6bPoDzFhz/8YcbGxvi5n/u53gtMeFryL/7Fv+DZz342v/Irv8J//CONECLSRamV8kAAWGTpRXBs/uOHEi+0cK34eQcrZlrJp41YKQz334d1FyVTlmAhHbGhLjWoiHlx06T1gC0hCaJckWq3pmzZl3a3BX0i5JDjc85L4XdwVJItc1RGKgZTIdvVzqIjZTc7xwg0QoDdRVwORqhkeQpzAfaskaIclPbX20IIjRWEqHDvvCIdlBpwM9A3BBuL0fNb23xp8Goh2LQQkeuG1rk20h2yzfpJO3vtLKT5a0X4YVO63UPaEtvWHJhVLC1Kqu20oaHe55IoLIhYzu8vW+kGcZfGcUx4OR3jVmnO2/x517xaY7umLNVwf3TTUQhhHBEJ9T5hc6c5eWokxA9gddvG8jShu7/ejQKlelmt5pMyiBbm1AVKAIEWBDqi8eu3QwsmqSYtNKW48dpqDFghKalZ8zr/LFZu41igsSX4u5XqjJZGJLN3L5s8cQRKYELfBbr1WnXOkxKKnKVZr8mOGokSJ9WZtgIcobkUuFgVCFuez7eKk+psC4nfcJ87BYHfFzEWpBrGMCFYTu2/zuGOizWwf5BIp32EhvECbGQhiKf7BKBfeqRsgRdD+NqIECAGK7EeWVysTnAstcK9nxTce++9/Mmf/ElPZT0ZfPCDH+TTn/40H/nIR3j3u9/Ne9/7XmZnZ7npppsYHh6mr68Pz/PY2dlhfn6eM2fOUCqVkFLy4he/mFe/+tVMTk5+o08jISEh4WmPm7F5zk/czI0vPMCXP3KKxVPGQvrK/SssPLzGnT90nJMvO8zD3hxr/g5jzgDP7DuG1WPI6oSEhISEJ4fKjkfoKxCQG0lESgkJCQkJCU8FT4hI6Z3vfCfve9/7+MLvneHZr4wOURNZuFKcXIVrOVjNmR9mUaHeGtmWFvfWHma2/pSLCvVWx5GKCTtgMbQpKAgzIlKo1IorFZPZgPmCvVtiO6FSnfX89TXrwoKF12tIr0LI8Enwq51FStAsVBo7AJOH4PSXIdZLrzWh0rFn2VQKmmuPxX8LdXBacuCkw7kvVujFOMRJC+yIDZBOgoiNecXGfKN6okXA0iZv/xikMpK1xrwtYo7WDbbSNlx8oM1mYQeh0uq8itTUdCLw4MKDvSsaJmahf1Rw5isx87YIleIKlABGZgSjs5LHv1DblYuZd/7RWoFdwqA1UtyGa+fDPTew1uvcpoGXLu3/rFWo1CpQyvTDwCgsX2G/iKtFqNTYXmvzNPenVqTcJ/QzQi8RuQHbiQO32FgOXLw/pnhAKdyc5Ph3Wcw/FpLfiV/gzCFFul9y9gHz7zgCJdAMjUG4vF+k1IlKBeavGoFSL5Q8ydxq53JaBUpjqYBQw2aXTUrYEygBjIsQJWApjBYpZRclpen9/eBsrruo6b7HjvGsWy+afyiYOt9PMSfZGozvTPf53z/D+vo6b3rTm5A93GMJT2+EEPzKr/wKL33pS/meLxzjO+4eiJ+54KLzWZjZ2h0qo0K9NbI10n6h0BrqrZGBCoTSiJSgvVCplb5AIYB8o3iyjVAJACFYbGtR2J6ilsz7Dj1o3gEYyocMpBXbVUk3gUKjUOnQsE91U7NBfEelnAyZGFdcXZBQiT8nT05rgjJsxDc6NeIVx7gOqR50bCtzLW5CLUKlSDGwgL4RKOdbBEst66dW4dHWaof6twiVVK3/hCGsrkj8HtfYOz3MjY1iowPTIevrgkIhXv5WQVLcUHAA0xMh23nJ9o4pO47RS9UTLK30oO6osZGXTZFoW4VKrQIlgEAJrhb3z3etQqVGgRLAkB1SVYKyijihFqHSnpZJMOd1Vu6EKYFVbXlZRIDTo3DFkXB0wGO+6FAK4y3qtYTJVIgjNQtFJ7ZAyRKa4/0e10o2+Zoqp5tACSBtaYadkI2yjOXoW2cltOgh+S4bsnufahQoCa0Z8xUbjiSM8cMonTa/PVMBjJRhq0MEhqtbQxwc2mr6TDmarenuP0S/uHGCF4wYu1CVT6PyGcTUduzfblpr/vqPznH77bfz4z/+4/EyPcm89KUv5Qd+4Ae45557+NSnPsWDDz7I3/3d3+1LJ6Xk2LFj3H333bzsZS9jbGzsG1Dbp55/+Id/4B/+4R9iuUwlJCQkdGP4YD8/+OZnc/GfF/nKH5+mtFUl9BUff/CLfHHsQ+Rze3PRpDPIm2Z/mJcMP+MbWOOEhISEBIDCuhmfs4MprIgXoBISEhISEhKeeJ4QkZKUkje+8Y284x3v4PffU2H4X8bLFwDpENzrcJMYCwNCCzYte98b7lHsKJsvlSWNOx+NQqVWF6U6GVsx0xewWbUoNOhy6qHfLF83uSjVSbuKkf6Qa+v7H8y3c1SKsxkS5ah0+t6u2fbKrgmVtlYhKIXxBEp1LMnWssYv9Ra6rbCuWHjMJ/TbvP7chrmv1Rq8tukjlI4piKBZbNPOUamB/lFJekCw1hoarY3rTCzaCJWKWzHy1jf3elUztbB2VbPZ6hLVjXqde8y2cU1T2OxNoNSIUMqEJozR3EEVNpfaHej626xVoASQ6YPhKcHy5S5hWa7HFqcuVKrt+gUVuHhvj9vlUrByOSTG3lATKoT1RU2xTfi1dqxeAbumJY19PyI4UxfZ1YbETm4Nu3VUko2NiM/bhmyBwVyAI2GtRSxad1NqFSfVmcoGKBUtUmp0U2oUKAE8FKaRMeMU6XQISnG0pJhPS4Iexpbl7UEGyw66L75y4O/mbuCRP/47BgcH+dVf/dXY+RK+Ofj+7/9+7rrrLv7+9xXBM6djD30CqAYuKkyRteOHfhMKskWLYp85SBxHpauD0BpBqVGo1OSi1MCEp1BCsE/zXRcSKLHrorSL1gxphScEpQilZ5SjkkaQj3Jrac3b4qi0VZFsVeIPunWh0krBRhR6UP8AFSQbxd7WTwCb6wKlLJQrkF7Y1UUJoFqClSu1cur2Nz04KjXSzlFp93tgYEwQeHq/q1IXR8pORDkqaS0oxXHzDPfOvZfQdbtl14RKi4uSoMepvN5WvQiUAJaW5V7I1utoMxFqtCVizckVr32aKIFSrVb1ktrmbRUoAQzbITuBjBYpNR696VLvOY51oi5UqhsubfoW+PHu57qbkg9cLTlUYgqU6hR8ibB1bIESmCViY1lxBEoA24HFdtAspOzkoFTHQxIV0a+dgxJaM65DtoTV5KQEe25KTe5JNTJKM1NV5C1JVES6RjelukAJoOLAmfH9c0s7+pwqTkWiQ0mQ7u03rAptlG/3JNr65N9Lzj1U4n//71+LdFb+RiGE4K677uKuu+4C4PLly6yurrKzs4PrugwNDXH06FH6+nqMLf4twEte8hJe8pKXcObMGV7zmtd8o6uTkJDwLYAQguPPm2H2znG+9pfn+evz9/Lp/8/D+9Kt+Nu88eJH+LVjr0qESgkJCQnfYPZCvXV4GyIhISEhISHhCeUJs1V429veRi6XY/3PPouK+2ReSu6dkVzrl8ZKPe4DQKW4KfA5EppylBv3ga3ERpFu2FAOM4Iw077gbU9y/0qaQpuH13WxUiu5lGJiKMS22z8M1bbYF75tbCzkwIHu7acciWgNwRbzamopCaqa7ZV46RvZWNDk13rbQAk92F5SZhOlx00f2aAriyuIOP5ch5mbWp7+C9HWRQng2hnFxfvabBwq1Xaz6qbnSqaOd6hMxOVPZWF8tkOeNtz0bMHkkR4yaI1XMS4FTwWBZ9ylehEoSQm33G0xPF0XosXbPOgfgaGJlg+7iNGkDbc+X+zPh9kcbFf2xiKcvqfDOVn7Y5k4aXNe/e0NRhoK38sre5WN1gR85R0oRoWk64DvC5Yvx3RSa6BSgvx6LwIlkLIhvInWsTZDcznF4cMBUja8da90R4ESwGhOMT4YfS+3EygBPLrpcna7/UQSZFsFSor+Wsgs1WXw1enQCJSA4QBuKoUMd3Dja2ShMMhCYZDAgVPHfbYH4m+wFd/3VcrlMv/lv/yXxEXpWxAhBO94xzv4yle+wj2f2oqdT/d5qNktkJqScinF3PFOVSXDGw52YO4jL7TwonaWG8uq3XKplnHGshSW1b4vz2UsLqc79Nko1xMhGFchA13mEeWAXdobCyw005aPG0NsqFxwCntCCNGDcEjZ4G9D0KOoIVSC7YJE9+gCVK0KfL8h/G0PNGm8Ygwd6T44ePN+F0DdSeyjYeGMbr9GUftdlACy/TB7Q+f6CD/cdVHazZfTpFLx2qFe51xOcehQSC8CMaE1nieawq/FztujQAnMXB6GnQVhrQwNKmam9uZJEUuIphnIhtgtYYctT3cQKMFYOuRIf7T7qgyiBUoAlyou651ieQkIW54dTzkBh914N0q9XIHu6T4GI/TRCIqBRMUQRTVSEHLXDSku9bICS8QWKJlzahirdDyB0oQMGBDNayihOgiUMNrzCR2SatOOUQIlgJIlebTPptIaD7CBdNpvEig5IUgVT6DU51Tpc4wQN7vt0L8RowFqKC1RWiIHS9iH1mPnC3zN37xrnmc+85l87/d+b+x83wiOHDnCs571LF784hfz3d/93dx+++3flgKlhISEhCcTN+vwrJ+4ift+qGbp3TJ/1WfO98z/D0Ldm5A2ISEhIeGJpS5Syo0lod4SEhISEhKeKp4QJyUwbkrvfe97+fmf/3kyf/BZZv/193B+RNLnKe5YgUfHYDstObKlmCzBV2bMA+1nLinKFlQdWFjP8F1BmVO2w7plczjwORAGfDllnkJ/h1ehKgSnnBQPWw53+lUmgoAV2+bYZsBs1ue+ktlFPulWCBGc8VJIFN+VrnDZdzjs+Eg0GsG9lTQguTWsIEfgXO3h5XeMl1ko2KyUHUZSisMDPo+sO4Bkts/HtTRnNs2C5ZnDJVYsm7V1i/5syKEJn3NXXdbzkkxacGQy4PyCeaJ8y6EqG3mL5U2bvrTi6LjHhcsWfiCYng7JZhWlksRx4MQJn3xesrxskckoDh8OmZuzKJclk5Mhg9mQC4+bNjx6qwlHtTQHm8tw5CRcPQelvAnrNjgGFx4y1+nISagWQ5YuQv8oHH2mzYWvBhQ3Tbiu4QOSCzWxzuxtksCDxbMKacOxZ1osXwyRQpLpg74xm/NfNpsBB26zzYbTYwFIOPFcl9WLAdtLisEpyfTNNttLisXTATMnHaQNVx82D51PPM9lfS5gc0HRPy6ZvNHm0n0elg0nX5ymsK52yzn+HIfNayEb84rcsGD6Foe5r3n4FZi8wSLVJ9m8GlItw7FnO+ysKNYuh2QG4cBJm/lHA6pFmDgqyQ4KLj9ozvXod1gUNjWrlxWpHMzeZrPweEB5B8aOWPSPCi7WnGCO3C4pFxXLF2FjUTF6QJJfUxS3YfQADE1KLnzNPGA4dLvAr8DiBY3twtFnSIpbiqFJiVaKoSnJ+ftN2tlbBGEA185ppITjz5SszGm214wgx05BoSZEOXij+e/Vs+a/N3ynYHVes7ViruvUEcGFBzXpLMyeFJS2Yf5xU/8T3ynZWFBsLEH/MEwdl1x6WBF4MH1c4DSsxY99p2R7RbE+D7khmL7R4srDIV4FJo8J0n2CuYdN/W96nsQray59TZPuh4O3WFw9FVIpwPgRSd+w4NIDpr2P3GlR2tKsXFFsLWomjkoqxZByXjB2EAbGJBcfNMc9fJugWtIsXQQ3DYdvk4SBRkiBtBXDU7X2FoJDt2h8T7B4ASwbjt1hQrzlN2BoHBCaUi102OxNJgTMtfNGLHX8O4Rp71UYHIeJQ4Jz95s2O3Cj0QPNn2nf3hfvN4Kf6RslTgrW5hTlPBx/lmTzmmJjAXLDMH2DxeUHQwIPpo4L3IzgSu1cn/EDrunv/xyQHYSZkw5XHvLxSjBxTJIdlFx+wOz2H/0um8KGplJU9I9JsgOSq6cCKvlae48ILn3NtPfhOy0qO5rliwo3C4dutynnNUtXTLsMjO/178O3QrUMSxdN+LmjtwuuXdQUN+HQLdA/Jnj0SyB8xexJQRDAtUsCaWlO3AZLV2BnUzA8phk/AOcfg1vuBN/TlAowfwVk1efGO2B5yWJzSzI0qJiaDjl71kIpyexsQDajQRijqZtv8llZlawWJCO2z8xMyOmrLoGSHBo3Y/L5JTPOplOa9VrYm/5MyOFxn7PXXMrS5oRTxc1qTm2bTn7HSIW1imSlYpOWihsGfU5vpSiFkkM5jwFH8ehWGuXAs/wyaynJJZWij5Bn2hVcobjfzzAoFWMi5Ku1HdM7rTJ5LbmgUqQcxXOu+jw0YbHuSoZCRVlqVmthS79r26dkwak+h3SgeM6Oz6mczWrK4lBBceRr/awfLxJKzcSmTSg1lw4GyABuu+hydSJgY0gxtimZWbV5+IQHEoa+4vLgl+5hdnaWN7zhDSR8a/LiF7+Yl73sZTz6+49yy6FbGDq5DJZGrPQhQomaNgOevDSCHimhBytQcpBLA6ixAliKs8uzjPqC9XEzJ08suRRzIcX+ELcqGFl3WJ3wqaQV+X6foU2btQmTVl4cYiQFG1kjRJrdhvlBqNowUoL+Kqxl4egmlB3YSsN6DpwApq+6zKXN56OeYthXnM+ZZelsRVGRsOpIBHCiFDKflhRtybCvmNyE87bZeD8Y+gQIliybi9LmuAooKEVBSgZVyKQKOWub8eFAGGAVBUvYCDRHbZ/VUJIRmkEZ0i8DLgUOGsGkFSDRLNZCOR6zPbY3JAUsMrZidtAnVHBx02UkE2JLWC6a+h8c8NmuSPKeRdpWTORCVhckIYIDEwFCwtUlk3ZqLKRYFuSLEtfRjI+ELK9ZBKFgoE+RSWnWtiR9/YpsRlEpSfI7AtvRjE9o1laMGKlvQJPNalaWzNpwbDLEsQUb6wIVwvgBwcaSxq9AbhByg2LXNWlkGgIfdtbM/4/MCK6c0nhlyA5A/4hg+aJJOzxtjre9ohESJo4IdtY1W8uaTJ+ZI+pphybNWLy1aP49eUywvaKpFCCdg8FJwcoljdYwOCGQFmzW0k6csNjZgHIRUhkYnoCVefAq5m9kCjZqjooTsyYMbHHHrBOGZyQri4oAycCQxnU1jgOVMgwOa0pFQSEvcFzN2LhmdVkQBIL+AU06o1ldEWhL0N+vqFbNOdi2ZnxcsbYmTXv3KXI5zfKyGcvHxhS+D9s7kqHBkIEBzdKyhecJcjlFf79macmkHR1VhAFsbUuk1ExOqt1wz9msYnBQs7ho0o6MKLSCzS2JEJqpKcXmpqRSEWQyiulpxfy8xPclI0MKhGZj0wI0M1OKrW1BqSxJpzQjw4rFZUm5LMimNaMjIesbFkjBzGjAdlFSrEhSjmJsMGRpwyZUgqG+kLSjyKTA3xSMD4YUypJ8WSIH4Fja44rnECjBcCogY2mulcx90+covJowz5WK6VzAYtHGU5K+wZA+SzFfC9F20PUpKcFGYOMIzcGUz2LVpqIlQ1bIgB1ypWrSTuV8qlqwgY2N5lDKZyuUFJVkwAoZsUMu19JOOz6BFqwGNhLNkZTPcmBTRTCRCjic9bl/K0OoBZOpAAWsVs0YcTjrs1q1KYaSnKUYSwfMlRzGUiGupQmVYLli7uXDfR7rFYtCYJG1FBOZgCtFB6UFY6mArK1Y822KgeRQ1mPLt9jxLdKWYiodcLXkEGjBqBvgWprFsgNobh2ssly2WVU2aRTTmYCrFQdfC0bskKyluFo17X0w5VMMJZbQDNshAbBQcahiMe6HZDMhc4Fpl1nLp6wFa8rGQXPI9lAIAmUxJEKGZMjlWtojpYByGpaljaU1x5TPgrQpCUlOK6oaCrWd14MqIACWpI12FSc3QuYHBHlbMhgopqsh5zIWoRBMV83692raQmjNTaWAaymLHVvSrwMOXHFYOOijJEzmYWoHtjNweQSOr8NqDnbSkPVgesd8HkqYKYeUL46RObYGgOVLyn1m3rIrksG1FJtTFZStyW062J7F9qQJ7zCymOah7Ru5beAaIu0RLg5jH1xHpALC9T50MY19yBw3uDKGyFWwRgtoz+bvfrfM2sIaH3r/hxBfpxtuQkJCQsI3hk/6j/CLD//ZE3Y8TwVsqWJbs0cNLPtbfM9D/wW357fW2vNvJ1/IT06+6Ak7XkJCQsK3OomTUkJCQkJCwlPPE/cLCHjta1/Lf/2v/5WzX/pnst/73XhikKCvxI4LQe0l27INOw1vgeZds1l1dAs20WwLiScFCCgj2G5wf8gLiVd74FeWkm3LPGxGKSpasKPlbjiPotoLwKOAvJJUteC85+KgGK05HKU2NeWsBKF3QwYUfEm19kDdV1Dw4fZRj7xvUfAlQcObzsWqpBqAcgS+kJQq9bALkopnIXSIRKEw33m1l0EDBcVyLdKTLSgHAlGWu5sSBw4EeJ6pQxhCuSwIay+2ep6gXCtfpyzKniJc0exsmOOVC+ylrZh/1ykXIKhndiSIvTfm/aqmnN87t0oBwnpIOgXlvCaoKA7c4hD6oilttaCb3tQv7yiCqt49buBp+kZMKK9qSSEb3pot7xjHH4DAU5S3NVqBV4LNhYBqiV23mXLebLCBqVt5x2zeAHglDSg2rpoPyuNGNIOUhL6pU+ibt4qrZd3kWlMpacYOm/SlbU15RxMGgJT4FU2lYN5S10JQLiq8ksm3uQipbC0t4FWhXKi1g4RqUePXNp5UrQ03l+DaeUX/MM3tXdSo+svLQlAu7OX1q2ZDsLhdT0uTu0G5oPFrUXtCv3ZcBeksuCnBRkNIwnJ+L21QS1s3nqiWNMqHviHT3pU8eOX2aRsftGgNbs2VTIUm7W67lBVlZ6/ClYKmWlGgYHVeIW1JWL/nSppKS7v45eY2XLuqqRQ1/aO19q71j0rBvMVcf4e8nDf1BnMvbK+w29cqJXb7jjkuNdcJE3qmfh2Pf4cgDHRTmL5yQePX7+VaWi1NjMFqURF4gtU5k7+8w16frbWhVqbBqiXQqubyFSp2lkPy66ZSYWD6bL1PeGUQdecRae4/r6zJDkiyA4Lyjt51RfLKze4UlYKmWgttGWoL34OhKcnWiqJaEVQKje29V1+tzLmFtXO1XNlkyFEts3uN0WYzud7evm/+jYKVayBdCIOG+74kdtvQD8y/632rUhZ4ntjd/C14mkptgPYDYcbZen09sRsmxLYUxYqkEtTHTkHBt/BtCQoqviBoMAgo+AI0fNdohct524zvtfOrhAJpi705JRQEOxL6IECwpgXF0GUTiaM1Ow03ZEFLipZEWRACO0g8CdlAUUaz0eAOkrehUnPECiVs2xJfWQhfUhGKbUsytW6hBeSzirDBxaKYUfiOaQnP1hQzimuXR0BKnL//GyqVCh/+8IdJ+Nbmve99r3FAeKiPxeNlkDDjVtENYZJ01kfbtc5vKch6yI0sOIrAbnYLrKYUoW36mZLm31qY8d5LabTQWAGEthEY1Y0mlYCiY/4L4EvzfdGFuSFI+3tpi+tZCpYiFCajh6DYsC4oSXCV5rZCwJmcRcEWhLU6+oLdcG5amPVgfVmmhaAgjBTdpDX/rlMRArs2cSkHilLgh5KLgU1aKCwd7r7RXNUC0TDJlbQgrNl3eI5gM7R250cvFE1R0SqBIKg1RKgEZV/sRXF1BI2GOVWP3dBgSkGlupc2CKAqBJkgZGRSk98R+LXjagWVCrvjZhhAtSF6n1eVZLOKlFCUNFQ9iekSIYHP7pwAZo1RH8uL22C7tfWINvN4tcRuGF2/srcOQJvvgiqUK+Bmamkx6f3q3noIZb6rz2lhaNafY4fMfBlU9e56VDuWSRuYfCo0843GzDH5LWiMolQt77VhYFlUKjVzRaVrc5JgbcX8d2hYNbd3ZW/5GoRiVywkQk25LGtrcYHWmmrDtQlD0dzeHrvzSyYLSu3Naa1pfQ/qZqhaQ7Wy54SkfPPv3bT+3lqlnlY1rF0sCbZt0gVVE7qtTqXK7trK9K1ae3mCnYIwZoy1+ccvaqiYOHtKCyre3nzvBwKtJUub5gJlXDOX+lmJozRl34TPDlKmfzbuweV9SaX2I1BpQTkwx/dzAl8LE86tZvhTVuazfitk3AkohoKwdrTdtECYhooW+BhnIeVBSQkKocTTkqxUTWHiqmrvOFqYtIGGICMoepLVqr17b1fVnq+SBkqh3L23A6AcSgSaXFrheYJqg2NWOZC7xwk1lIK9NqwiGLA0ozKkGErKodwdI5Q25dTHBa+hDk7td1pQu4eUFiZtvX9o026717zWhiVlxiTHhtAybexrKDW0S1kLvFp9FVDUko3QwkOSE8qsY+q/3xHUu7AGikISAlJrAqAorb3fagh8VxNaJqReQQqChvG7YEkOVBUpDRv2npWyxnwX2BpsRRAKCpagsJkmO1qhasHiAORrL1MUnb3nC6GAkguOHWBJ8CxQQpDRIEOBlwkJa/HltdR46dDMa0DgaCBE1v7tp0PQEC4NYR1YQ2Srxr4JEE4ImT23LpHxEE7IY4UZ/G2fh//yK/zrf/2vefnLX05CQkJCwjcnZTxW/O2nvNytsAi9RYXuSDGsPHEHS0hISPg2oLBuxs2+0USklJCQkJCQ8FQhtO4xBkQXPv/5z/PCF74Q99ghpv5/vwCAO9z9x5F9KYPXGo6mS80GVcizvSqnyylWVbPeSkZHFmjAPIhPbe4vRET8MBzP+JR9SaHFot9tEH/slW2OKaXiGUc9ljctFjecfems8v6CZGCENv39kM+3D59gVfbHaBLVeL9oRbg/nQhiWguHxlWpKURUzBBdkcTpfr2GiLNhaFqyvawIPWox41oT7T/mgVsstpbC5rBZEXkbN3NTWeMwtHEtqiI9VbuZiHPODpiPi92el3wdt3Q95Mctd1usXlasXenhWNdRru2a9suvi33dSHcI/9BEVP+Iar9BcBzYXutyvJbzmDlhnJjyGzGqUruPBidqAsGdeGXs0hrCMYqIvhsX3bCrK2Xt1o3ZzjrqXnDidXJt70+nUu3DnWQyxpEiCCRhRGi4MLP/MykVdxz2WNq0WNwy421UXi/XfL4SxUw24FrJ3he2Te0ftqmOCOrzRyf251U8J1tiy5Y8OBBx4AaE33JspZg9uk7QORvXLo8BkD17mXPv+31uv/12Hnjggc6ZEr4leN3rXscf/dEf8QN/+gPkJnIATKe7TBaB4Kvbs23f6m3HyJqD4wm+ms72nLcuRiit5vZ/1xLCTWrNsK/ZcPaHDLM39mvsa/vLjKmQCRXyuOVEhhpzt/d/Jn0T9s1C43W4t1Mb+8duuxpv7nN3GpQ9tYZrDfnbDrsUIATohhhH8UKDaWTE2lD4MdaL7eapNlV20kY4VCnWPohqxpa86Ry4WcHOanNZUWHeGo+XyRlRkl/dn0y5+/vG9a4nhNCkckZg1DV829dhmiKUZmBAMTikmb9izl1/HXO96nK+KVejNPhhxPyaijev+9n96YKI0G0DTkipQZAD4Oei1m17/5uRin5LseLvv5ZhhPO+9Mz9m7MU+VCi212MNh/b5e73UlR4Menv3csd8+52Z13T64nYEQS1bfIZamKeuOG9I/pB0DZygSYjNGVtRHlRYeWC3P5Kj6uAMa04LffG2zAirGLY13zzZ0JtBN4R60MiQqXnRsqNQ2dbXLv593F/GW6tVFifLRE6nRu9LlKqI0J4zuilzgUCjxVmAHjoHQ9x6u9Pce7cOWZnryOud8I3nDNnzvCa17yGD3zgA9x0001d0586dYqTJ08+BTVLSEh4KnnvQx/n78TpJ+x4ngqMAKkL6ZKDrSROxsZJf/3vEydOSgkJCU93el171Xmy1mB/9ctfYv3yDt/7fz6Tw985+YQf/5udZO37jSFp96eepM2/MSTt/o3h6dDuT6iTEsDdd9/Ni170Ij772c9SfPBRcnfehlcLjdZJrORJiVSKQa3YtGrVqj+IbPNMcRvBWdthXUVsgNc2c6PESjkRcluqyinPxWP/Rkj9YXKjWGm1vH93OEqgZMoWSF+jlOTaus1WYX/9ogRKYFyVBgcEx2Z9zp2zKZUi8kYIlACGDghsNGsLkV8D0QIlOwUBsrtQqSagUK3F76odYlB7E3ivQqKjuMXNwvBBi+Vz8V8psl2YutHBr/rk2wlSlN4n9lh4vKWMKHET7DoqgQn1NXFEsnGt5fy7bCAcvUOysajYXokqIPoJ/MRhgRBw6eEOD9mfAIHSdXGd5WYHTRi+818Jdx2OGuvTbmPx6B2SzUXF1mo7z2y9rx1HJiHbH0Ok1NInr53vdhYNxdrmPpo4alHcMk5fkXWLYHASUJLtpQ73UuumpTF+ilc3q3ms271lQ91VqKSlxHHZdfbaLd5XHYVKblozdkCwvKAIguZ0shq2FSrNHgwJheTs5ehjW2W1T6ikFMyv2eyUa04LEQIlALeom4RKCsnVUvNuXJQ4qZFnWlW2a+HcWmmfV/Jon03QYYetVZyUVgpbQcGWHQVKdXESgFKK7T/9K1zX5b//9//e6TQSvoV4+9vfzp/92Z+h/0jDL5nPFiuDQAexkm3ckWxfoKRGtdcNNpHvr/XiUreUzUwUTEi4+aE2CeoihppYSQnBurv/fokSKIEREQgNO8I4l0UNjVECJTD37WHpo0PBlSB67IgSKFlCMzwYsrOz56AShds0F5iB25IQOrKrUMkuhRgnH2jcpddSdBUqRQmUwIiAOgmVMn01p6ao/ZTWdVyNvmGBkzLuh23XQC15K8Va+pa6RdKgDR2agNIObLeIlKIESmDWE5kByPVpVpfbVC5i7WXbMDkesrhsNTkh7c/b4bsutLuGQunrFirJUHcUKg0PKQIlWIsQX1tVFSlUyqUVfRnF8qaFn42+RnZFNwmVJJqpbMBiySZfG2AiBUrQJEApK9nkhFQnSqAEoFzoDxQHXJ+z5VS0CUGkLkozYoUUhSTocP+2fiVqYcPN77222UzeBoESiL3uH2P9pm2NJdg3tgjVWag0ZIfGRS5iULcr0UKlrNActT0uCJdSmw5tF8U+odKWsPAQHQVKAFZBNgmVypag3FpOhDipTsaHA9swN7znyNdIqzipTiEFO/3VjgKlVnGSXZEEKdVw7aKpi5MA1k+v89CnHuLnfu7nEoFSQkJCwjc5L3Nu55dO/vgTdrxQK176yDtY8bejp34N/cU0P/kHL0DW5vzB6RzPe9VJDtw+FpUjISEhIeFJoLiehHtLSEhISEh4qvl6vF7a8td//de4rov3x3+FCvYeGtbFSu24IfR5pudhtwpeBNEbAFIyZzs194t2gqH9m8ZFLchrE26gE9qi6QFlnxNy22gFG9VWoLRXrnl4vbJl47VseLUTKNXZ3oHzcw6liA3AdgIlgNwA5EYEuoNDSSuZfrjxWZL+YSOwiHI8AfY5vBy6w+LAyYZypGwr6qkzeYPFjc+LeDVXiLbCHDdrMXzAIhVhutAOrwRnvlBtL1CqozSNMVekDbnh+j86n4vQGqE1Gwtw6ku9CZTAhKqL1HV1cI26ekYzd6o3gVJuCG78Lom9X0uxV2SonxCB0oFbJAdu6W1I2VkTnIsQKDXWLYrQ14TdXA1a2uPqWTj/UMyK1a6DmzFuWb2gbcm5r4QsXWi1htIdxVyDE5KhmTb3rhSRDkrjhyU3Pb+z1lRbVpNAKZWFm++SZAYaErVpZy3lroPSkVthNv6LLWhbkhkQDA616eu030A/v+BwdanzOGaVWw8qWcvblKXdVqBUx61tih/tq3I4t7fzHDVf7EexrSWFlh3CznkVoFhzLbYi6iZ8ud89CbixHPCcoofsIAJtFCgB/H8vbbC4uMhrX/vant5ESvjmZnh4mPe97338+Z//OT+y8iNN39XFSlEIBZOLLv078TXrfkrjpbTZYO9h6qjYUHJi5FFiT7AETFVDJmpjRTuBUh0toCoFOw2hh+q0EyjVuaZs5kX08aMESmBOZcBRWBkIUvEFJRNDIRPD5pyUI1FtxJ5GoGRwU5oDswqrIeSjlqKtkEVWjfvSgWNmfbiv7o7VVhCUG4JMf4fzkexb62wta1YudxAotclru2A5e3XqiBlKWZqD7fWWr9oIlHYJNBE6fUObtZfvw9UrshZOuF3e/R+NjiiGhzr/ThBKdxWZdUtj25qZ6RAnQoAhO6zrVjYsNrY6uLVW99dda/NToJ1AabdOlb1yFYJz2y4FX5rwbu0ESruFmP9kpDLhvGuE6fYCpTrbtsWZcmo3rNsu7X5DAq7QjDkhtHkGrUWUg5LmWM5n2Knfv23ytvyGnEyHTKVbFE3t9Fq2+ctZmhNZD0fEH2i1Jcg5mozs0G8i1twlLToKlHbzFpu/94VgW1qEKd1WoFTHKkgsrTleCkg19mtbdRQoQS0cnWvCiDbi2kFbgRLaiLkq/dHfS6Ej3ZOGr2XJ7HReDDYKlFSoWP6dZU6ePMmv//qvd8yXkJCQkPDthyUkb5r9YWD/1C8wy9C33PSvuO37juwuSbcXi3z6V+/jH3/zgd1N84SEhISEJ4+gGlLJm99riUgpISEhISHhqeNJESkNDAzwnve8h3w+z8ZHPtH0XSeh0gXL4X7XJWgnEGnz3HRK+tzlGPFQO5ofIktOVdMEGzFDFdUeMvuhQApNt32Q5nIFo/0Bx6c92sbI2IckX5Ao2+ohD1y9CJfPmnOKEipFuSiV87B0UVHM733WVqjUQGlLU9yKeBjdQdxTWFOszbUXWUXmWVec/qxHtbs7chOh1z1NKyMHJIefYfd0V6jahtkuMfNeeUzvF1F1CWsXeBEuVnXaiF9CH4o7uqeN5J5oKLda0FQLPRRUO1+/SzTIKKHSlcchvx6RuEP9oEP7tWHyEBw+eX1OBr2WdeURxdwj8R3DAAqbivWr7ceIVvckME2S39BUC52P3RrebfEyrEeENRQRLiD1MWRrQ3LqIYGKcERoR+iCH0hKlfh5RvsDjk16hBEayE7UHwpCHHGSIbUhuKBSLOu9DN3y3ozPM6lGOs5FiZPqPJqx+VrWQbUZV1sFSu7yOr/5m7/J5OQk733veztXKuFbjh//8R/n+7//+/kP/+E/4BebN8PbCZW0hNVJj+2hHgcsDYe3YKwHN6WdNKznoLQWU3VcEyp10Bi0RaA5GPr09RCOtookRKC6hARqqqIWXMg7lGphs6KESm6Eo952UbKx0yp07DzmBT6UitEt0U6opLUR87QTArdj7apmc6m3hYO+zsi/44cEfcO9XeHWsroKlIBySbC5HGWn06lsQRiaHhgpmm6T1fPN35ON1lCp7A+XWydSqCQFSomu4etahUqlqmTRjzfJNgqVNKJ9+LUIJJojaY8+q/cOpXocKapacqbiUuny0kora1WLUtjBeSlCx1UKxO440Qnd0JXLoWCxauNHdb0oo86ae9ZVz2E1iP/CCmiUKyghiT3aas2s8unTqqs4qRFHmRJ2V7tdxEl1NvIZFgeaq9dWnARYCo6tSrJtHNBaxUl1tAWbMyXK/e1v4EaBEsDFP7zIvffey+///u+TSnV4KyQhISEh4duWlww/g1879iomnObfZBPOEL927FX8wNR38Lx/d5J/+a7nM3Hj0O73l76yxJ+98Qs89DcXCbs53yckJCQkXDeFNSMIdTIWbvYJDzyTkJCQkJCQ0IYnRaQE8Iu/+IvcfPPNlO57kMqZC03feZvpSLFSICVblg1KkW33xL1ltyq9LthWFpsx4pS0Ol0MOAE3DlaJIwTSFlSE5OG1DKU2oUDaEVoC4fTa2IrjR3xmZnvZJDIlpDPmfBqFSlECpTob1/YLKpqESuH+9lmbU2y1hjjbrUb0mRY3NRvzHdq61VGpi2inE4PTNseeHXNRWXNU2lpUXHygIZ5IDITWHL5VMDLTPW0rdo+Civ5RmL054osO7jyVIiyc1QRtRFtPZIi3tXnN2nzM49Wu7fA0zNzY250hLYG8jt8Lx+6A/uHu6XYRgsVLgvnTvbXRxGE4eHvDOXVxUGpCAVZD3jYOSnXK2+ZejCJKoATglWHhTIS7UUNfaBUoARQ2oZTf9zHQLFSqjx1uSiFlb/eTzMKtJwL6sj0+gHMFwhE9lQVwsZDiYjUVW6A0lfI5ktmbM+I5L8EWkk0sMtf2Nq/auScBSKVIK4WSks0IZ5Frl8f2CZQA1Ef+DKUUH/jAB5Bd3OASvvUQQvD+97+fjY0NMn+6/82vxcpgpFjJS5mwb1ZAbEHr/NYQBde4I/WENs5IA3EfsivBomOz3INDJNSGUtpvRLcji+KE9BE9CJVAINDYtbIahUpRAiWAqi+pRtz/jUKlRhclAKUEmxuyJprZT6NQSVb3FnWF7f2hOpvytToq6R6EzS2uSCMHBX1DveVdm9fsbMvuLkoNpNMw3vO6SyOl7uhMF8XwiCKTNQ3StGbqsETN5yXFYvsxuJuDUtz0YSjY2GzfJ6BFqCRNjLGx4ZCU21sdVK6H+LI1BtyQseGgu4NSYzkaLpZcCqGM5aBkMKHK0qmGaxtL3ah3EwaZvcTRDkp7B94OLKoN4uvGdUC7EGH5wGInKk5ZQzm6ZTxVCHYCi3Yn0ihUqguU3N0P47f5eCpkRvSmqpOAsDVhj/2oYgnOZ20CV8cTKGnNbDkk3dCPO7on1bMBxZSmasPFzdG9eke4J+1+5wvQEKRV5HLyscLMPoHS9uVt7v3YvfzwD/8wz3ve87qfz9OAz3zmM13ThGHI+9///qegNgkJCQnfPrxk+Bl8+vb/zAdv/Hn+r6Ov5IM3/jyfvv0tvGT4GbtpRo8M8PK3Ppe7f/Z20gPmgWFQDbnv/znDX/6nL3LtsThv6iUkJCQk9EqhIdSb+Dr2oxISEhISEhJ640ndxfzHf/xHbNtm9Xc/0hT2rU5dqKTmmt+qvyXweY5X6byR0LBeKCM5HaYIYp5O/WGyJSFnK7pEBtpHnx0yORD/Ye5G0ebsYqoWli4uknJZUKkKlG1OtlOotzqDo4obboN0dr9QqRMzNwiGJps/6+aolBmEwak2adpskKcHYPxYlzq1LAaHZiQ3fncPih4pCTyFX9Y9iVkCDypd3GWi0PWQNz1c3tlbBEcbhSwxFsC2A06694VyOtc1et0TgpuNKbxqOFfbFR1D0e1mqW9OCMHwNNzyXBn/nLTGso0Qr8e9SQIfyj32CRWYvhTHkazO9A2So3e23BcdxElgQhOOHIwuo51AyU1jBHUdqhYlUDpyErL9Hatj8jac8+xRzbGbum9e1UO+ha5ESChXBZUeXT9W8g5nV+K/vZ6xFQcyPr041YEJQZOzzc0eV9gEsITDJfZujk7uSQA3VUJekG8O87Z4fhzY755UZ/PPP8nFixf5t//23/Lyl788fuUSvqU4evQov/7rv84HP/hB5r84H5mmLlT66sah3c+EgqlrKfp34gtF1nNQuA7TiKzSzaF+YiC0ZsxTOHEFn0Jw2XbYlr2JmzwEJQSCvbViu1BvjczmfCYye2u0OKHfUo5ifGi/MqyTo5IQmlyfEdtE0c5RKTcAbpdr1SoSGj8k6B9tkzgKadwbe51n/WiTuY5oDSo0y4k4Lkpg1kEHj2rS2eY1RTdsp3kNFUfcLaVuCsv3ZCGExrZjxl2Ue85ktt2+DzVSd1Pys5KDQz5jufhuj3U3pd7f+RdUtezJFckCqloQAirmzwWB5oaUR59sPqdupkrDTtggBGqmnUCpzw5xZeeWaBUoDdghY2485WhdoJQWiuNpj2yXsmAv5JtyTdtVenShUkJwyXEo9PADYyQMex77HQ25UFPvrt3ESbv1k7A8qAkbI5N3EK0KBSMLWbJbzYu7e7aOAvvdkwBUoPjC27/A4cOH+fCHPxyrXk8H3va2t/Hud7+bSpvF9tWrV3nta1/Lxz/+8ae4ZgkJCQnf+lhC8qz+E7x05Jk8q/8ElogIBS8FN77wIP/q1+7m5Pce2gsBd63Ip951L//0Ww9S3OjxgUlCQkJCQkcKa2Zc7RtNQr0lJCQkJCQ8lTyp0oWZmRl+4zd+A12psva7H4lM422msUvND0Yv2w6P227bEDd10qui6en3lPS5w64Q55G4cmA9tHlgPYXXQygibcGk6zM5GMYqp6FEBgdDBpz4D/ivLdusbZinq8oWqBiih+1NmL8ElYYQLDpltRUt1HHTAqdHZ5+RgxbjRzocN2LzJzcsGTlodReYNOStFhU7Kyq+4Ehripsw/0jYc8it8cOCsdne8sw/pthYpKfusHZVs3Sxt62bzSW4+GDLA/YuG7ZuFo5/h0WuxUFIhPr6XZSUitxRPHy7xeTxLhe2pb6rc5orj/TWDvl1WDiretrUDH3N5ceguB0/j5uG2ZvMf3thbQEWL9CTg1JpR1FoDJ9od99Y7x+TjBzY396d7vX+UZg81oPAC3P+jttlm8wS+0RZC5cFi1e7b3ppSxLWlKKeJ7k47xDEHJNFoJgcC2uOTfEZyYYcTPvQg9AI4FI5xaMlN7ZAaQafZ1BB1gYHEUJ2rnvmC2mLx9N20xzobMq2AqXs5QUqn/0y09PTfOADH4hXuYRvWV796lfzgz/4gzz6nkepbEY/wF6sDJL39lQrWsLGqE+hv/sa5dLqKEEtlJBUcHAb+tqE1NmHgItZyarbm3hIKMHMNvT3GFPM0poRHeJuxUsfILimHILahr1y4okeVio2K+XmRUqQEoRdhMWO1WyeV0cG0SOuEDA6pkh3mpciRAADI5DKdqwK0CxSrRR013Csu9Syba9qSjsx89Sw0oLhSehFT1Ytw/qiCSUm/XjraqVgbUnshr6L62a0uiwpFpqvY7f10/CwZnw8IrxnoBFtrm03ovKm03DgQNh1Trca3Q4RLK3alGOGVNW1ZCsFm50ewrB6fYItZbHs9TbRDtshQ3YYW2wEECK4FjpG3GQTy0RIAFuhhdegSvL7OmeUaEbdgFSEAK3RiakZzXgqZNCJ9+JNHUuAI3T0l/Ujiz2BEkBFC656DqUuofwAlL03tm1hsdGqkupAzteke/g9C0ZoOhmGDBWJHeINwJeC0zmLUiqmQEnDgQ1BrmHs0lpwYSN6/bSbRsLOeIXyQHMZ65VcpEAJ4PT/fZqNxzf46Ec/yuBgdEjVpyPPfvaz+dSnPsWrX/1qzp071/Tdpz/96d3PX/nKV36Davj186d/+qf8yI/8CN///d/PT//0T1Mq9RCbNiEhIeFpQqrP4Xn//lZ+6J3PY+LE0O7nF+9Z5M/f+Hke/l8XUUkIuISEhIQnhHq4t76xRKSUkJCQkJDwVPKkB1n9hV/4BT72sY9x7733UvjSvfQ9/9nRFakJlYKspiwl5doT97RSVLo9fa/9LgukAKGxgLiPTpUtyUrFsBWyWI73IH1+w2YOwJLIHp7Rzg76FF1JoWTKETF+UDq2YnJCcfWa3K0vgGyXV0m21po/EjWnEm1ZbcO+Xe4kFKnvoLWEfVs8E6KCLg1QFxvVxBrr84r1uQ5xRyIob0N5O6baqKE86QhSWSj3sGGWzkLYo7AJwE5DUNfHxdjDKbeGzdK69/B2MQQwXgWunAop9rhp2JYOyqCF0yFhJ4Oxen2V6tnaaXcTRmu8yt4mY1xsF4IedYW2q8n0iaj93o7lSAu8ksmkbRnrPt9eZq9y9X4gZcf2XjqnjEKgRjchIsD6Amyvqv3iPat93/MqcO7BDget5ZVeiGoQHlQqEjpcJ92yMz82HBAGgs18nNCdJm82rTjQ71P0BNs9bLheLTgslixUX7w8GakYTocsVC16CgdZLzOMF3hFKoUFeFKykDLlOJudy1NBwPoH/xTLsviLv/iLJMxbAkIIPvjBD3L77bez81s7pP5zCtHGYacuVOp3q5RzZjyRoXGh6NZpg8CqiTEVPUVVEwJQjPqaHSnxu7jGgXHteNxxULXxUcRce2W1ZrYQch4Lv17HGDdjf62AfM0apb6ZL9ssXyrh/vsulTftGaYFVmV/A1V9ybX19verqok3pbc3zisluHpForqIEFTNFaku4Fmco7shS014U18r5je6pG+D7RqXIxXzGgkgndYUhcbr5d0JsTdNSj/cPedOGUrFhkIBEap9c1Hs4gONtqOvw/a26GwR31sk1LZrl2oVlpasjqLtuhjLqoaEPYZNDDKmknZFUe6hwl6fCQ1ni/rvsfjrWyel0FrE/yEHpITC04Kwdj2CDNjlznkUgtVg72dw3QUpyAnsYvTNohCcLzarp1SbPrCH4FLR6fmtoE3fwnhERVPXVjX3Q0E+7HyNVcMvf4FmXISsa4swxjUKa7rWER3iljRncyL2bxdlCx636r+z413cUU+Rd8Hr2sZ71B2XQmnESbHyBAJla7wGp7D1Sq5DDlh+YJmvfuKr/ORP/iTPfe5zY9fv6cB73/tePvGJT/AHf/AHvPa1r+XVr341L3vZy/j1X/91PvOZzzA+Ps673/1u7rjjjm90Va+Lv/zLv+QrX/kKv/u7v8vExAQXL17Etp/0R14JCQkJTxpjRwd5+duey9nPX+W+/+cMlbyPXwm590/PcPZzCzzvVSeZubUX+9OEhISEhFb2REo9vqmckJCQkJCQ8HXxlOxmfuYzn6Gvr4+NP/5L/JW1jmkbXZVO+B53eRXsmJYpa4HNQ36GMMZpNYbvmMz4zOSCXbeLbpiwbRLXVmQycVUPknNzDnPX9h4exwkH5TgwMqjot3p5Y1Uxe0wxeXB/3ToJGaSE3NDev/eJK1o2cnaFDlGn0U5AUz9kjz3PTsNwhGtMJ6ZOSA7d0dsb3POPhVw709vbSEPTgpuebWH18PzTdmH8UEt4tG6uSBm45a4ew68oyG/QJEq5bgelVlrqW9qGao8vqh5/lmT6xs7XVbcIaEamoH+4TeI2zJyA48/oLU9pG85+VRPEdQgBRmfg+J29ic2yg+w5XcUVqtWb7DpenAtaN9lb2lc0jLeOa8IFtiVC3GTbihtuDcnm4lfOLoUMD2iGBuO44O31l1JF8tgll+1KvJtPS8VwJgAUYQ8OehOpgIMpf7fZ02vx7qEFHB4J08Qd8G4tBzy/IcxbN4ESwOr//SFWV1d5y1vewl133RWrnIRvfaanp/nYxz7Gpz71KR79k0e7pq+LlYSCycUUA9sxJzQhuNxnkY/5HKe0bux8LGC6GjLQw9u/SgjQmn6l0DFCVQHkheBc6OI3bsDHyDooFANCkdqMP1+mLcWhnIeMKKCTo5LTEnrLLjev91RLTOI9gdL+ctqKYnsQaMHeWjGVBaeHkH5CwNRRQXYgfp7Ah6VLGr83/TpTRwSDnc1R9pHOaLK55nYTYec+ODyimJzubbINAoHvt8yt1+mg1ErjcZQSVKuCXkRAmbTi0EzQNdxbXaAEYEvNYDrsGC6rFVvA8X6PgS7t28pS4LAc9iIo0ByxfUZ6cvbRDFghFnVhXrxcgrqzUXR7h27U5yZPt/B1jcLLjFS1sqKJ0t6M2QETTm9vWfSVNSMi7CCF2iNsGAeuYjOHE3vNmhYKW2u0EOiYeaTWTFYVg/5eO2yu93XNpyQsjGjKTrxyRCgYmc+S3tnrc90ESpWtCp/7z5/jrrvu4vd///djlfN048d+7Md4//vfz/T0NL/3e7/Hj/zIj/CZz3yGu+++mw996EPftAKlMAz52Mc+xpve9CYmJycRQnD8+HFct0e76ISEhISnGUIKbnrRLD/63+7mlpcc2l2KbC0U+NS77uUzv/0gxTYOugkJCQkJ3SmsmzE0l4R7S0hISEhIeEp5SkRK2WyWv/3bv0Vojf6dj6IaNsHTS/sfRNslgV0SXLVsLtgOPT1yVTBCwG0xw74BzBUd7t9KEcQRDRX3jnlizOPwiIeyQMV4wusHRtyUTavdunUTKpXKkkcftykVWzapbNkh/JskDI0jUN1FqRFtRYd/mzomOHRLt5gRzd8PTklufoHTPRSb2HvbdmBScvPdbrNApwv9o5Lpm+zOeVoefK/Nhcw9EGPXSwrz10R0SLNWtBDkN+Dq6ZDdKDR7l7d9kTaMz0oyrc/BOwiVgipsLGqqxfhhxAAmj0Cm3/z/1yVQimqPhnpMHJFko6IdRIU9q4WM27ymKKy3b6xWgRLAyLRgYDxupQ2r87AyF7Pd6vW9jtFxdV5z5fHm8+l2j4/OSqZOWNGbPW1ccQ7danH4DnMPt7ufWzl4s+DonS3H6+CgBDB+EI7exv62sERkXumF2DaEPnhtxF3akpHOFefmLOaudnEAaBAo5WrjqBd0v1Bamr/RrOKGMY+ca/pBaqd7f9AWXPZc7t9J1wSq3ZnC5xZd7br53crFlM35tI21bUcKlNzV5vb58fOrVE+f5+677+bNb35zT2UlfOvz0pe+lP/0n/4TD77/QV7tv7rpu9NbE/vS570UO0GK7SGfYl9vm92hLxnfkrHDvoVC8HifzXpa7llfdMCqOaxlteaY79OnNdqKIS4QggCBQJNqnJi7FLmgbBYi4joqt334N18JAi2QYs9FqZEwvT/8mxCaA2MB/V0E781CJc3klGJouHu7KcfadRgaPwDD7ebOiLWBtiyGpi1yQ/EFMFrDyhUdL7Rqw7rQ/NuIZEWcFxMsweYqFLb2PpJ+2DX0W7YP+gYjxF0dxupySZDfiW6DduHbUilNf79qSrePuNNDRLr68VxXMzAQfSCh9L6QdlY1RBUVWzuy4xK3UaAERkg3kQq6SqG8PlFzUTJdaqFkUwkFVjVGX02BTmkab06hzF83LmqHzZbBIOjwbNkGDjgBaUdFjiFBLkKALTQ35DwylqmQCcPduUUsoTnR55G14q8FBJrZTLToSotogZIINCEi6jbeRdnNLkoAZS05o1y8Lle2LlASWpPSCoQgjCE2qo/RB/2QWX9vTpH57iI0ZcPpQclqKq6yEmY2BamqiO2gBKClpjBapZoLWK/kIgVKlwsje+kDzeX/cpmMyvDxj3/8m1r8cuLECZ73vOehtaZarTIwMMBP/dRP0d/f/3Ufu1Qq8aEPfYg3vvGNvOxlL+Puu+/m05/+dGRaz/N4//vfzw//8A/zkpe8hJ/92Z/lvvvuu65yV1dXqVarfPazn+WHfuiH+Imf+An+5m/+5us5lYSEhISnFek+l+f/1K380Duex/jxvYdvF75sQsA98qlLSQi4hISEhOsgCfeWkJCQkJDwjeEpiwvz/Oc/n7e85S0sLS2x+n9/KFaeoGJxxXZASjIx3ZTAnFRaqNix7BQShcSViuFs/I25S2suZ1f2Hk7GESq5juLGIz4TIw1hmrqIGERFI6WKdCZpJ1S6NidZW+rt8q5c0Vx4KM7m0N5xy9uKzcWWB+mdhCBCUNpUbF4N45gZ7LK9qDj9eW+/C0wHvBJU8l3qs69+cPMLbMZm47dd4MH2SixNU1PdTn1Jkd+M+LJNfZWC5cvgdQlh0crwtNwVKV03MU5ueEaQHejNRWhjAfLr0d9FCZQAzn9NsXCmN7FVOU/PoWtuea5g7EAPGbRGBVCMuqYdmH9UMfdwbw+StpZDtldULHFSne01zc5qQzldBEoA1y7D3Cl6cmyqVCQXz1oEEeKhKHGSlIpsVmGXdEcRUKNASaK44YDHoYnuzgm64ZDrJcnjyy5FL167OZZivOZMEPQwXabRZHpoNFcppFIUbclyKd6GV/XyFX7zN3+Tqampths/CQnveMc7eN7znseP/diPUVqLZ3W37DqEthEHxA1pq4FUCHYPY0V9k3vAV8g4SgSgJCVnHYdCg4AzjgvKpAw5bPnN7iQdphGNILWpSbdxNIkSKoVacK3kEPSyQa4F19Yttovdx5c9oZKgWBSUy61OPe3bUDkWxR0otYaa7cLKPGwt9zbfemX2RNsx6RuCmeO9rR+qZXp2X9pYg5XF6LZuJ1SqVASlYm91S7ma/v4Y7datnbp878Ytp4EgEOwU2sdzbBUoAZQ9yaVlG1GOf2E1gkJgEfZwP4xYITe4HrHszmooW1BF0l1CtUeA4GzFpdiDo6LWsO5ZVMPO4qRGNyWtYdOzqHYJz9hUDoJLJZctv7fQfJuBxXoQ/cu3VZwE5neyQGOV4gmUAEYIOYGPFeN3VeO4fNG1Wegh3NaACrGUNu55MZ2XLA1OzNC6dWQgQEBlIGDN7+yeVOfhDz7MPffcw6/92q9x4EAvPxKeXiwvL/O6172Oj3/845w4cYJXvvKVFAoFfuZnfoa//uu//rqPv729zUc+8hHm5uY4ceJEx7S/+qu/yic+8Qm+93u/l9e//vVIKXnTm97Eww8/3HO5q6urFAoF5ufn+cQnPsHb3/52/uAP/oCHHnroek8lISEh4WnJ+LFBXvErd/GCV99Gqs+8WOGXQ77yx6f5qzd/icXHrzNuc0JCQsK3IUppihvGSSkJ95aQkJCQkPDU8pSJlADe/va384IXvIDqqbNs/c//HSuPXRIcLAY8v1phQMXbLVtTNl+tpgl6ePgMcDjrc6zPQ9kq8oFuK+VAEiiJLRWOrL1Z28VVyfMllxZsVjaa66Zt2VGsNHtEc/iYJmrHop2rkm0rJg+1r0urA0vgGfEMdN7sAoxQyZJ4ZVg+p5rCiXUj8AXL50PCHjaXlKJzGW0eYo/MSiZvsOILlTSszSkKG6qh4Oi2aAxZMDgBQ1Otlea6wnGZg0fXNzekyXSPdtDE6X9WbFz7OlyUugmUanU98+WQtXnd/HmndpcwOKYjw+S1EyhdD24aJg6zV067OjXWV8LqnKYQV3CkNZl+mL1ZRLqKtb23axswHcV3EW5KOyuwudLb+JZfg/UF2rogNVWrfs1Vy6Z2l7xD49AX4erQzj0JYHxSc/xGhd1G3aAc2SRQMtWSnF9wWdpoP9jW3ZPqZG0FSPJe98G9/vb/TDrgRNbD7uFGFiHMhS4PqBRxp9hnFn2euxHECu8GEBZK5H/zQ4RhyCc/+Umy2Wzs+iV8e2HbNh//+McBuPKOKwTVeJN1vpqi/1qW4Y2YIVOF4PIArDkWQRB/c91WmiOVkBFfG0elGK5K5dqYmGoYy7u5Kq0ri7nQQbduYTcbtzRhCc3hjM9Au7GpjatSxlJk3fZjRqujkufXBSN6X6i3/WVKlCsp5AXVSm/zZKFiUY0SOXdYG6gwvltfHWnB8JToyS2zWoKt1UYHnQ6OSrU5SFom9KtsqVpnR6VuIbf2lymlJpPp0FHY76i0k5dcq4V37hrmrV1X6TLtiEBTKEgWFpobIMpBqRHH0WR09DgQJVBqODLt2q/RQalOvx2Sa3AQauempFLmD6CgJCuB3bacfXltmJABgyL6erdzU9IWBJbYPx405m1xUwoRrPt2LNfd3fohWPfs2EIts07X+FoQNtStnYMSGOelESeMDDMZ5Z5UOyKzjs+E3X68CVPNAiWADSwu43R0UWoci22tkVoTCoG3z7E2AksjpOJQSTERw32rkUAILo9AOea4Y1ckY1dyFLf6uoZ3qzP32Tke+PADvO1tb+NVr3pVT/V7OvGZz3yGn/qpn+LRRx/lR3/0R/m93/s9XvOa1/Dbv/3bjIyM8Bu/8Ru8+c1vZmdn57rLGB0d5a/+6q/4sz/7M1772te2TXfq1Cn+8R//kZ/5mZ/h53/+53nFK17B+973Pqampnj/+9/flPY//If/wN133x3594EPfACAVMp02le96lWkUimOHz/Oi1/8Yu65557rPpeEhISEpytCCm7+nln+1X+7m5u/Z3Z3+bQ5X+CT7/gKn/3dhyhtxbS5TUhISPg2prxZQYcaIQXZ4USklJCQkJCQ8FTylIqUwDwYm5qaYueT/0jp4VOx8qxgcUk57PT2fiR9hNxplbFaNjpSG9EPPi8UHB7aSlNvljhCJVDcMuVxbMyPXbPtvAUYcVMr7cQMi1cFF88JerlkbhpGZyAXFYKrscyGzSfbhRu+SzK4PxJMeyRMHpdkh3rI4ggmb7Bwelj79Y1Kbni+2z20XANOWuBmav0mSpwS8dB8bV4ZB6YeGJoUDI73tmE4fVxw8KYOeVrrqzUzxyVjB3sX8DxpAqU6vbhV1Uhl4MBJm2x/cxmdBEq5YTj+TGk2P2OWmcrB6AGB6GW0U7C2AJU4xiO1ergpSOdET4K9mZskB7uFWGxh7LAkO9bbG/bTJ0TPblo3fAeMzTR8EEM4NjoJoz2G4lteFFy+ICOdl1rFSUBt3FQUKjJWqDeAwVTAbVNVBtPdL06j0OFyxeahfDrSRSm91tz/RAjHVZVjov4gMP51Pe85XBTxBjblefBbH6JcLvMnf/InPPOZz4xdTsK3J9PT0/yP//E/eOCBB7jn3feg44ydAjYGFAvZHsYnIUBrxkuagbzcJ1Yqre8X0wVScDpns+Y0jC8xhEr9SnGz75GOOUf5GLcV0JGb+VEfhVpwpeywHXOcqTPkhgyku9erUag0kA2ZGQ2jK9IG19UMDvWmhHb6JbmBnrIwMgWDY/HTa2XWn1EC5F1aRA6+B6U4IeIakBIGR8COqaNDgGVrJg8oHLeD4KhFqJRKwcSUoged1t6xugmU6rRexpiXNfbxGxgY1AyPaKyWcNCdBErjAwFDOZPersSr3ICj6Hd6659VLdmOeNMjymit/hvNRWP3cN9YaI47HumY7m0AjjBCIN3D74+0pRh2e7un+23F4Uyz41s3fVNGasacAFv00hcEc77DWhtBaas4CcDSGi0ExR4W07N+wDEv5qLYMvXXQnCm32IpHX3im+vNb2qIUDCzLnECerJRClKK+X5BJRWv3XYe2uGLb/0iP/zDP8xb3/rW+AU9DXnb296G4zi85z3v4Rd+4RdwHDOInjx5kg996EO85CUv4Ytf/CL//t//++suw3VdRkdHu6b73Oc+h2VZvOIVr9j9LJVK8bKXvYzHHnuM5eXl3c9/53d+h89//vORf695zWsAmJ2dxXEcRMMcI2K6cSUkJCR8s5Lud3nBq2/jFb9yF2PH9h7+nv/iNf7s//w8j376MqrHMPQJCQkJ304U1o2LUm4kjYzzckVCQkJCQkLCE8ZTLlKybZv777+fVCrF9h/8Cd7qctc8SkjmhItdsRgthsge4mo5QpOCWA/8FRJPSWwU4ynzULX9W6h1JFc2bC63uA20OirZpeYK9GUVt97g05eNFiq1ipU8T1KtSFPLCHGTqWuzo1J5XXP6q1CMsfFTf1M+8KC0o/HjvnBjSRCSgQmL7KDsSawyfMAmOxx/18crKco7ar9IqcPDx+VzIfMPNzwgb3LLic5nOTB2SDaX09LndEuZc49o5h5pc+5t+p5f1fg9vik896hi4XxveQ6fFEwee3IX2U4ajj9Lkq0/E4nRD6pFOHePHx3yrg06BL+i95yHYpSTX4fHv6yb3YoiBGCNDE10F/e1OkVtr8G5+9sPNE33dM1BySspKsX411NbFsMzVve6NWC70D8qcPu6OyjVkdKMG+UisZyX6lx4FBbONbqbtHdQAmruSZJ8vsUpKcI9qfYNN876HJtu3vRqHF9bHZQAtquSy5s225X2dWl8+z8jFcN2AEhKMRz56iYOrjB/cZlYVzjrsC1t1mOqL2/6H59hYe4K/+bf/Bt+/Md/PH5hCd/WPOtZz+IP//APOf/J89z2hdti5SmnNb5jXJWqhYhd6yiEwGkI+xbHVcmTZjzsCxR23QGmi6tSXgjmLJtKy1zc6qiU2mz+/oAMmJVtROURZjllZVyOIoVNNVodlTZXJUs78dY2dVclLxCUqvEHD+VKrKwgl9MIobu7X9ZIZyA3ItqMr9H4VSMiiuuopDUsX9ZU24l826zZ3AykW5wi97kpNcxFgQ9XL4BXiS6myU2plk0pCDzRi26ESgWuXpGEMcxc66KhVEozMxEgYwjuvh4GhxSjQ3sV6+SgVGdjXbC22tua0A8FQUPIskahUquDUp2FssNSpbm/tLopqYZhxUIzJKMdgWBPqNT6u+yqcljvoB5qdFPSFmBBSQv8HsLQpVzNcDpm7EtMyLeM1Ax0cCqKwleCUijRiI7uSY2UlOR8ycX39xJ3+u0qawOdp2WTWxNEuycB5LTiZjxSLXEc7YYwlVFudgu2zTWny5hh6V2B0oCvEFrjS7Hvd1YUWgtsBT1p4RTs7PSxXs1R6FexhE3eZon73nEfB6YP8Id/+Iff9KKX5zznOXz4wx/m2c9+9r7vstksb3nLW3jzm99MudxjfPHr4Ny5cxw8eJBcrtnN6pZbbgHg/PnzPR0vk8nwwhe+kI9+9KN4nsfly5f5p3/6J5773OdGpl9bW+PMmTO7f3Nzc9d3IgkJCQlPAyZODPGKt9/F83/6VlK5egi4gHs+9jh/9ctfZul0EgIuISEhIYrCmln3JqHeEhISEhISnnp6eCf0iWNmZoa//du/5Xu+53uY+8D7OPqLb8bOZhlFkUfiCYmrFf0o1jEimH4dYqO4A4/5ss0WFhUkVSQOij6p2FISjSSHQqLIY3Ofl2ZYKpRSVJSNjWLICdnxJQpJRipsqcnXNtIG7YDxVMhYOiRfhbSDSWtL0lLRF4TkqyZtfyrECwXbFRuJYijtU/IEnrJJ2QrX0rtpcxlFGELFk0ipECJkfUtQqoDrKFwHCiXzsDebVigFFYwoqb9fUS5DEEhuPKnQCs6dNmkzWfPvSqWelt20KR2SzkBhGzL95u12gErR/LdvECplE+bNdiCdhcK2xbVTPqmc2SyqFEza3LARlQSeeTs+3Q/FmrgklYWrp0PKG+Fe2jIEFZA2ZAYExS0NCtysEQGVt+H0Fzyyg+BmBV5Jm7SDkvK2CR/nZo3AorRlyrFTsHIhMMeVkBmWlHe0SZsBOw2lWp0ygxD6tfB1EgYnBflVk9ZOQyqjKe6Yh8zpWttUi4CA/jGYOCapFhXlgjm/4iaglEkrrN02bGwX2zWuPfV2qW+2VQqAgtxoc9pysSFtzuzblevtPVRrw6rea+9tsxmXyoLMQLnm9pQbNJuIXr29+037KmU2VpQywh6A7CAE9bTStFM9rZs2bVzaBrTGTWvcrGnD3bR5E3bPSZs2bzzXwIPQ1yBM/etpTXs3pG1ob79aO9eiwtdWdBvqvT4rLLhWE2ntpt3aa0NE/D4rpd5r70GoVkzbSBumjgnym5ritjlPy95r7+wgBBXd1N7VvNnztBxzL5VqERKyA7UwivX2HpdUNvRue5d2oLRtziczAGHQpr2zEictKG7D2XsVmX5zDvVN4NwwVPImf2t7Oym4ckrvukJ17LO1PYJKERbPK3Jj5poEHti2+b5QEz2ms7X2Lprv+obNd4EHVj9kMpDPGxFSOq2QEkq1MS7Xp3BsxcHDMHdZgZLki6Ach7SrsKSiWBMU9WVCPF/gBRIpYbsoKNTCHKVdhS2hUJFoCf1uiK8ElUAiUfSnFF4I5cBmpwr9riLv1Y7rhgRKULEsM37binwgCZAcTXsMOyFf2paApE+GKERNsKQYrqUVoUUKRZaATVxOqxT9+PQRUsACFCMoCkg8JC6KPhQr6wIXeJaqsoDFYzINSu3NgVLiqoY5UEr6lOLa3/8F//iFe7j77rv5kz/5ExISeuEnfuIneOyxx/ilX/olXvjOF1J91nOwA7CUoFpzlnE9UBIC24gCUr4gWxYMFiXzgNWwa54ONEqAZwmE1mQCqFpwrc+IlLK+pmQboVIq0KRCTdUybku5UFORglAKbKVJh4ojFcW6I9l0zDZ61RIgFLlQE2hJIASW1qS0piQEW5ZFSmtsFVKsxfzKKoUnBIFl0mbQVDBhnVw0JS3wMGkzKHwEQU2ElKqn1QIHTUoqqkqStRRHMh6XSy4lJU1aqakoc1xHaKTQVF0ztjiWRimBEJpQa1wJ1dAc15YaS2qqNXcm11YoJShiEa76pFzwfY3SAsvSWBZ4nmlzx9FoDUFgQsMFAVxbtxC+Qloa2wav2pAWE14XNG7KiHq2tyC/Y5z/PCSyEu6GZasLed20SatCE0qtWt4TAtkOCNciqIWlc9MQBGaektKsIbzavrabAsReXjdt5qgwBCHN3ORXjKjJcmBgDKQQVAoaJ22OGQYgtcJJgxdaJq1t6lUX0zspU9cwMOsoJ1UTVSlwdIhIy902tG3Y3qy1odC4Lvg+aFVr71obilDhOBolJUEgCENNKlW7NkogLY1jQzWivUWgcNIar6aFk1LjOFCtAghsxwQZq4tKUimNHwBm+UTK0XtpbY0Qe2ndlK61oUBIjZSm/UWgsV2NsBrSupowrKWtnavnGWEHQhs3qWpIdcjBtTW20gS1fuvaGi/Y67PlqmjosxqlIQD8PuMY5IUChcAWGltoKjVxb0qatL4WCDQpS+NVBdUBiY0mJTTlmqp4UIbMOAGPV1OAJiM0Xi3smYXGFZqCbULOpVBoTDi1AE0G8GhIi6ZcC0/nohAZCGpzvyM0K4FNWL/vhaasTVqH2r1cq5Pdp1FVwU5oUSwL0lJTUezd9+ylTUtFoAWBNsctWpKtkjmuLTSW0FR320UR1tLutksoqChJUBGkHNXQhgpVE1UJNGmpqSrT3lkZooBK7a0Yx1EoBEqL3TasapO23oajtpEmLdd+93paErqaLCZtWB9n0ZQwAlKlNRtIqjW3vCyaKiatlLUxWZu0KaWxtaIkJV5tfLe1bhq/y0KApXFDjQyhYpl0N+YVVzOCpYyFpTRpBSXLvBjihhpLQ9k2/TLtQSDBs2FuWJMOIVBGpG7XhLKV2vtDaR9CAeuVHEObFge3beYOVlE2WAFYocCrOSo5nkALTeCA0CC3As7+5z/H9m0+97nPMTw8zDc773nPe7qm+b7v+z5uv/32J70u6+vrkY5L9c/W1tZ6PuYb3vAG3v3ud/Pyl7+cwcFBfvqnf5o77rgjMu3//J//k4985CP7Pr906RJhDGVqoVDg1Kl4zuAJCQnfPHzT39vT8IyfnWTun7ZYedA88Nqcz/O/3v4Vxm/PcfjFw7h912ERmpDwTc7Jkye/0VVIeJqyJ1JqEy88ISEhISEh4UnjGyJSAnjRi17Ehz/8YV71qldx5Xfey7E3vJk7bY+zpJhHMkHITVT5DFkUcAMeEniUFBtIXkSZORzmcBmVITe7Vb5cyeIBxxyPlFB81bMByTOcEgJ4yE9jA7cOVrl/I0NFwaGsT85WfG3LLERuGvBYrUoe2kyTdhS3DlZ5aCtNIYCDWZ+RbMhDC+YH3fFxn62y5PK6S9YNuXPWY71g8ciizdRAwEhW8cBVk/bwAZ9iSTJ3TeI6cOJQyMV5B6UkY6NVxobh4bPm9dXDMwHVquDigsS14egxxdwlyfam2XgZbHBROThrNqouXTCCiaM3KK5ekWysweCUYPqgZmMZBkf3QlddetT898itsHQZ1q5B/wgcOA6n7gUdSg7cApl+yWOfMY4lh263WJ3TrM0p+kbgwC02Z/85IPCMoMdNCy7cp0lnFbPPcNm4GrJyISQ3LJm93eb8PR5eCcaP2mQGBOf/2QcFs7e75FdDrj0ekumHw3c6XPpqlfI2jB2y6RuTnP2i2Tk7eJtLYUNR2lJ4ZcXhOx3mHvAobsLIQYvBaYsznzdpD5x0KO9oFh4LOHynzdghi7Nf8smvKkYOWIzMWpz+gjm3AzdbeGWYfzTEdmDmJodrZwPy6ya01sQRyanPmbTTN1qEAcw9ajbkjtxusXguZGsZbnquxHYED/2jeag5dUwiJFx6UNXa22L5UsjagmnvmRMWFx8KKRdh8ojAcgUXHzBpD52UrF1VrF6BviE4eLPFua+aNjp4k6BaFpyvufbMnpRsLimWL0GuHw7danHhgZDqjmb8sCSTE1x9LKyltdhe0yydM4Krw8+wuPxgSGkbRg9J+kcFZ//ZpB2ZMRsk104r3CwcvsNh7mGf4gaMHJAMT0tOf9G0y8Qxi2oRqnmNm4HDd7jMP+aTX4XhKcnYIcnjnzdpZ26yCKqwvaroHxMMjFlcOx2wuW4cjCaPWDz2RVOH6WMSreHyIwokHL3dYumCacOBUZg+bvH4F0OUEEwdNSHdLj1sNhoOnxSsXNYMTwkqRc3AmOTMvYrAg8kj4LiCCw+atIduFawvaFbmjGDJsgXrV813k4cg3Sc4d38t7c2CrRXN0kUjUDpyq8X6YsjIlGR7TZMbEJy9r3ZtbpbkNzTXzmtSOZP28oMBpW04cLMk3Sd4vHauB2+2KOU1C48rnIy5NvOPhuTXYXhGMDItOfdVU/8DN0qqZc38KY2dNv3w6umQ7RUYnoDxQ5JTX1TYrinHr2rmHjNjxJFbJdfOKzaXYGgcJo9KHvuiqe/0cYGbho0lzeq84MgtsDQHa4u1MeIYnPqq2TyeOmSOd/FRGD8IszfApcdhZUnS3w+HjoScetQi8GFqRuO6mrM1ceXR44qNNc3qikSgOXIi5MzjFh4wPRKQTSseu2zeYDk+47OxYzG/CrmUZmok5PQVM1ZODocMZEMevlJLO+qxXZFc2kyRcTUnpyqgJaeWYSijGM2GfO2amfaOjfiUfMGWskhLuLWvyuOFFOuBpKRgBE3dbPDGnEdFCU4V07jAbX1VzhZSFLGYEh7PkD73hYIlHG6SAQGCB5WFDdxpVTgTplhAMknAjcLj78ngSUlJidoMZ3imqnJWuswhGSfkpPL4nMzgAaNf/TIPf+leTpw4wWc+8xkSEq6Hd73rXczPz/OJt3+Cqf98lNtumqK/KJmbMePz5IZNOaVYG1bYIRxcsVkYCyhlQvoqkuG85GrWCCQO5qFsw0K/2RA+sam5OCQouILBqubotmYlK7gyoDlQgLKnmMtYWMCNpZBLGYstKRgMNIcqisdyFp4UHCuHaOBS1kbU0s4ri03Lol8pDgcBj7guCjjie0yFintTKcpSciLwWbBs1i2LnNYcdX3OeClCYFwGuEJzKTRjwBHLY0XZrGubjNAcsTzOBil8YEwGDKQUl8su5VBgCchaISUlcaXmcNbnYsnBU4IhJ6TfVlwsGbXPxGhIuSgYSCvyFclgRnF106YaCPrTioGMYm7djC2T/SFlX7BWsNF9kiNTHovLFjt5QS6rGRpUXLlq6js6ovB9WN+wsCRMTymWVyRBRpBzFUOjMH/RCFSGx4yYZm3ZCHemDmrWlgSloiCThbFJxdx5CbZkaNyMQWsLpo9MHoaNRSjuGMHr2AGzVrQsMz9KG9auSFCKicNmPixsGkHv+Kxk4bwCDYdvl2ZOO2PmzvFZwc4G5DeMYGnikGDxgibwoX8YbEewdNGkHTsgKG5rdtaM8GnysGBxXuN7gr5ByPbD4mXIDcDMMVi9CltrRuw0OQvL80YclRuAvhHN1SumXUbHNZ5nhEoAUwc0K4uCShmyfTA0rJm/bNKOjGv8ULO+JhgdUwwNa64tWJRLkM3CyKjiymWzxh8eMWKctRWB1JqxMcXqqoVSxu1qbEIxd1mChuFhIzxaWTblTM0o1ldrohhLMzWjmJ+TKAWDw0Z8trxo0k5OKbY2BfkdQSplQrddvSIRgWJwSOPkBEu1tBOTip0dwc62wHVhalqxsCAZGFDYthHALV4z9Z8aDsiXJZsFC8eCA6MBC2umzw5kQwayissrDiCYGAwoe5KKb2FLOJzzuVJ0KIeCASdkxA1Zqdq7oc4qocVyxcYStbS+QxUYsEImrJDTnpnP+y3FZih3xUNHXY953yGvLPqlYsbxeTRMoSVMSjNGpIWmoAUjMmQhdNjSFn1CcdDyeTxIoYAJGWJrzTwuFpob3SrzvsOGsslKxSHH50y1NkbYZoy47Jt7+YjtsxFI1gKblITDaY/z5RS+hhEnICs1lyom7cGUz1Zgsebb9FuKA67HJc/FUzDshvTZiktFk/ZAJiAfSFardm088Sj4FqueRb+jGEwpztfGk5lUQCmULHs2toDDGZ8rZYeyghtyJjTcg/kMWgqmbZ+qFiwGDhZw1PW44jsUlMWApZiyAy57DlLAlB0QasFCIJHAce1xRThsYzGA4qD2eUSkQGsmhDKGQzWR0nHtcVU4bNiSPqU56vk8knYJgakgZDoIWLEtLroOJ7yAa7bFmm2RVZrjns+jtbSTVUUmhLP9FoEUBEJTK4lMCDcUQh4bsPAsmKgq+nw43W/Gw6OrAoHg9LTCDeHImuTiuKIqYbgoGKjAhQkznsxsClZxYLBEKaMY3QAnFFRtTV/RYiBvMX/Q/H4cW7eppjQbIwGiorjwlk9TnCvypS99iaNHj7abWr8lmZ6eftLLqFaru+HmGnFdd/f7Xunv7+ed73xnrLSveMUreP7zn7/777m5Od75zndy9OhRbrrppq75T506lWx4JiR8C/Ktcm/f8V2wcm6TL334FOuXzVt0q48U2b5Q5Tv/1Q3c8pJDyA6u1wkJCQnfLhTWzJtViUgpISEhISHhqUdo3UN8rieBt771rbzjHe8gNTbFM/7dGyj2WwRCYmtFBk0eAUKS0eaxZUnUNna0TyqvWQpdbBQpp5YWSRqFBEq1DeY+fG50fC6FLjtKMlRQFAKTNiVN2nLtjdWcFeJrgackkoAj2YDLJRuFjSsVmaKmXHubOGuFBCH4yrh2TAyEFCuCvGfjSIVtQdk3afuDAKXACyRWqEinoeJBLqM5esDnyqLNVt48eE27ajetXfbIZMwb2MoX2LbCcaFcExy55oVjPM84fGSyxhFGKYmtAtxUzc1GaMLaW931t9rTOfCqtTfgbXOsShFEGDJ20GwSnf9KSBgYRxu/Unur3TYbTHXHGjttBDujBwSDE5LLDwcERSOmkLbZuKoUAWXSWlbNtQg4cZdD4Gku3x8gJbhZ3TZtKlcTYn2ny8LpgGpe4ZUEShlHGMuFaq1ObrYW1qMC2SFI9wu2FmtOSi7YKbFbf7dPoJU5PzCOO17ZtIvlGNegSs1Fx83tpdVSku4z7akCOHiLoLSt2bhWS5tuae96GypzHv0jcPBGiyuPhVTLGMeBcktaj1q7GJHZyDQMz0jmH1fGJap2HQPfuCA0phW+xnZN/X3PtEUqZxymGtN6Jfba0IFqXnHLC222FhWrc4qgCshafynupbXdvT6Q7gMhNeWtWtp+YY4b1tu7oQ2zxuFgcFzSNypYuhDiVYRpbxvsPrl3bVra8KbnGvesK6eM85bbUAc3JyLbcPIw5GsCv6bjNqaNasN6/06Zz7wyoHVk2iCE/kGz+WrZew5HjWmRxn3IzxsnpZufZ1Hc0cw/ajaIU1lzfzWm9UoQaoHtwsC4Eb5detC4stX7d/1c6/3Qsmt9tmRER8PTgvMP6L3+0pC29V520zB+CFJZwcWHIDUoI8cIaHbJkBKGpmF73bi4kRKk0vVxSuK6CiGphayEdCYg8CVBYJzlnD6JiSohkQMCKY3rHEDGVfhKcXRSEYSa5U2HStWE53RSajdtkJFkbEWoqI3fioyjGEqHLOQdXLMfTykwrktp24yz+X7jeNQnNWkZUlEWnhI4UlOsuRNkpaq5FUiEMmkrSlAYtUgR8AzpcUm5rGGTpZa27oRXd3Qom1CiORni9oXM2ymytVBGJWk2/Ptr7gSelNjKzIHVvGT79ENc+19/zNTUFKdPn2ZgYICEhOvF8zx+8Ad/kPvvv5/Rt/4bcgcnyA6awdDxjZNSaBkXCTuAwDLuFDKAwaLgXJjbdbbQUhPUnJTcEHwLlBBYSjNY0WRDwULNWcnbSeFLs8mdVuDJWlqtcRRUJCAE/b5Zl207cjdtWLBQwghAHA3VmsOHoxQjSrFsWcbFQyuCusOH1uS2a2kRuEHNwQbBAeljo7mqnF1RhIPGq7kuZfNmzelrgVDGfUUBYc3txhEaX5u0ltDIWlqAbFmhNLiWJixoLEsQhOyllSZ8FtRclzSESmBVQmYnQkqbmu0dCyk1lgQ/qLkAWcatJwyNS4pjQ6g0s1Mh+R1BsSgIauFDLVuDbkjrmHlKK0Eqo5g+CIsXjOjHsjUExqEHzJwdBmaeFtLMKf1DZo5avWrSKL/maGgb50vVkLbuyJQbNvNmfW1lu6CUQIVG62A5e2mlZeaRoLZOtR1zzHpamZHmOw3SFrtpUxkjRNpaM2kRJm/oG4cmkaqnFWhpnImGx8w1WL4mTLsExl1ISo20au5Teq8NA2ExMRlSrQh2dsRuWqvBtaixvYVSe85KSpo6WcaxCYxjE7vX0bgwhSH0ZxWDw5qlBfMbZDetgDBoTlt36nJTGr+k0EqatClZc9oC29GohrS2DX6gmZyEQgGqFUHVsmvXUeOlpEmLxrbY7bO5dMjMcMilFYcgFNiWxnclYc3ZRw+YMGX1/m3+oM9WbHmWaYeas4+d2rtvdNr8NvFqTkQOtTaj5v4lNEHNBUjYGrs2P2ppHI9A4wgItQYEPiZt/V6u3/eOMvd9GAgGZcis43Om6uJjXNHsmmMTCGz2xggRgisU006ACgULVRunMa3Qu2MEmLShFhBqbsh5bPuS1bIdOUY4NYepehumLcV0OmCp6lBVAmFRK8eMNY1t6DaMPVlpRPrlWpw1y23fhhJVO1drt71Ddy+tzGrThvVxFo3QmiMiYEHbVITEr4mUXFvtplUZZcZkYcZvR2syoSKUguL/y95/h1ly1Pf++Kuqw0mT8+7sbNauJEQSyYAAAbLB1zY22IC5JtqE+2D7e/ldbMAXW8YYDIavA/drgw0XgwGTbIyNRLQAIbJAEpLQSrvSxtnZyeHMnNih6vdH9Ylz0oLQKvTreUbac86nq6uru6uru979/khJQmkCAaEwx6GjwROgBgNspZFK0xfCmitIKEysNHVwFZSlcVKyA5MB1LMEQ2M5BgvQXxScHTH7wQnAt02KPCs0GeQ8G3L5JG6oyfiaoZ0bKAtsXxDY2lzXQuMm6DtRn+abMs7m+lh837Vsff1WPvCBD/CKV7yCmJ+Mu+66i1e/+tX80R/9Eb/4i7/Y8NvLXvYyhoeH+du//duG70+dOsVLX/pSXv/61/Orv/qr91ldjx49yqte9So+8IEPxCKlmJiHMA+2c1spzV1fPcMPP3UMrxBUvx/Z08+TX/EwJg898F0CY2JiHpic79irwr3dT3/53T9k9pZlrvidh3HxM3ffa+U+2HiwXR8fKMTtft8Tt/mFIW73C8P9od0vmJNShbe+9a2cOnWKj370o/z4E+9j32/9P9AHgZBs1cUVReMbHpOE9CcUCwWbgGjyInoRr0RjbA6Hm/3KW3o1gRJQtd6vkA9rtreDDkylFKseZAMz8U1Q03QVQguhdFSqZGGzUpaZ3KoIlKA24Q4QWpJCNGmTLyqyOYtcsXUsVCbvAcsIAIJAcfCwZmtTsDjfFFuofVKBoBTdg/rRhJKsC6+IDUwslAIjUAJYOQsrZ42TiEBVRQzV2LrPFaHE6qwiu6gobZq6gJm8Km01xtZui2HxnpDQMxP1SkEpZx6At4qtiJXu/o5nJr1ELe1M4NUmu4CqIANMurjChm6M9VvHgqlvZti4RZ34YVCrvxANsUIpSrlag569s1HvVxHWVMttasPsEigVko9SerWNVbXPa/OwNq8aY/PbY0Woq9u685DETsCJm1S1DZvLrcTWt6FfNunPTHDTfmyKTQ1IdhyyuOsGz+zzrAYpWsZW2nBlVrEyS8N+DAMI6urU3IazR4ywBEB5RujXLraybeeOs41tsXXtMn0RKA1zx6JtLbePrW/D9eg8rd/W+lgqscJMSh37Xkh9t1YubI/VotaGG4sghaqmnWu1rRCl04nKWjytyW1ovIJoGdt8LntlwdzddXXKKrQta7FBfaz5v7TNb6uLtY1RqrEv8ur6NNtW7DsAZ2dhKwuBZRMU62KDxj65GC2bzRuBX6FsPmurRWxQ64NtCXnfJu+by5ynzF80H0opaOw7c0pxUSYk0Irbc0m8utOsEF0nhKrEVpZSlLH5gapdSgs0lrsF2JVjA8mADJgRIcvKpEOphTZe8wIpKWcF1qk7mP/8v5BMJvnhD38YC5Rifmpc1+Uzn/kMT3va01h812fRf/J8PHuEoUwRv87QQAsaPktgeMtiwIZswkwWQyRUEIJy3YgylIK1tGAt+hxIbQRKAEJQqsswEApB3dCLCd+kcso6shprRX2hEsJMhkcT+L6ULEbnka11VbxUjaXW93m2QEZ9WE6blHJh9LuiMTaoS2unpRFhZCzFRCLgdMGpCivACA3qk8L4yixbDIzoQSsdSR+i2LrgiljJKpnx1uySaVNSYBfD6vUOIAhrdQJhUoQhWF4y6cG0FuAKhKeqopZqbN2Yp1wULC9AEI1nTayAyNWt/hqmlfmcXQW9HAl/6t5tCAIjsKyPrVBJI1qN9aLVYMqpj1Wh+RueNL9tLNX9ZklUfWygUdE+LhfNX63CzeUaURSAUJogEGxUDsqmdlFKNLR3pQ0FiqXFxpQYbWOVEcwoBdN7FIuLUCoK/PrYhv1YEzpF1TefLdE9VgtGRhTlpGB9JYotaHCjcUNTbEUktbgQ1SNR26YgEChHRHUQ+HXHaLEsmVs1QjuAkmOZikaxnqobw2lhhDpAMWy8PitXVIU3AKIEXrImUNrt+JwN7Ojca4wNo1Ru1XaIBEh+i9ds6s9loSoiHMCGbGCRL8vqd6ppPZXvRbStnpYs+TYiEmw1xOrGfeNpiQzN/p8tOniRkKjaLnWxvqrf54KisjhRqLSXMDc/0e7xG9Zj6iDRaDQFZaFlc7s0xlYYsRQpqZn1jQCu7DbGluvG4pW+00aTxSInZHU8qh0o141zqn0ypg/2Ad+uHVvlqH5amm0t1602kIKMgpliSNGyKNqNdaheJ5SgMmQT2ggCs2nIpnXUhuDVXatCC0KMQAmMIHZfEVKbNmsjAb5bO3CUBcqq69McmF/rY/ND/8XGdTdXXZ8fTLRKb9YKIQQve9nLfqZ1GR0dZXl5edv3q6urAIyNjf1M11/huuuu47rrriOXy3UPjomJiXmAIaXg0p/fw74nTPGDTxzl2DeMfera6S2uecv3uOip0zz+RYdJDSYucE1jYmJiLgxxureYmJiYmJgLxwUXKQF85CMfYW1tjc9//vOc/td/YM/z/wcAQV/7ZX6MSzpy6aggo8kGtd01vMrDHQ97QHNkM9m1Xuu+zc3rklKTkKkeLUVVqFTh4LhP2tHcds5tqF/DctGDVxWaFHDRp7bxVSwBWOTzYTV9WyukFzZ81o5k78XmjdWTd3ReRT1uCixbUlpXnQO1xivWnGlMXaVRFXRga7nF76ImVGpFs0CpF/onJJlBwcLd4fZlK/uv7kF/uQj5dY3osjuEUuhoglRKI27aWu2hQtGu3lrpEtNmufNh+bRC9pJyXnXZxx3YWjZis2axVVda7EcR1IQxzRQ2o3+0qmqoqxN7FVL9RrTTcFx2odjq+XSH4zEzDAMjgvmTunW9WhVnCVTYOV43tY0KjHiwK3VNp4LK8ai7nzNCMDgO2e1zBW3pHzZp3o7fRUN/JP0Q5bQ/6PI5Qd6TKKeXg9kc9EsbNXFSN6b6Q3YNBNw2n4gcKQy64+okt24ltp1eos0+GrYD9lset4VJtmhdKbvFcTcbuJwVFiXZvjJu1uyr/Jm7Wbr242QyGX7wgx+wc+fOThsQE9Mzg4ODfPnLX+ZpT3saxb/8T8Sbn8cGJpfsUKZ1hxnYcHoqILvV2JfoaMJdyNb9ZDLQ7M3C3UJTtLpfu08lLVS3MKGrQiUAR2su9j1mLZsNq30nUdETZoP6GCMs6ISWUEJQCDr3WU6+sQ2sjGZXf8DCikW5y7IG42qSTmgKSOxi54uKDBSlqiDJbId2JcLrtJwgvwWyuZFtCUHr5apCn1bXwkpf1jSGEAIGxgSFTY1fpqdxm1fueLmtoWvXNNtkIWsQJwEtxxFCGfeozmVv/8qMSypiru6EISzNm1Sr3ZYRLcbJle90lxQca4tGHNY7pj71AqUKdlERpLavT2lBIWqzILn9dzen8frqt1GTsjSlsCbSUW73muW1aBLk1M7XekQkNp6QATktKbS4sLe+bmuULapOU+0QjbdPFLVsOw6oxwiUTPtW3HmxtpfXTNJSBFpsEz21RzOdDPARzHuNN7zSa9/WJW2cYJXb43q0JhCC+ehRgba7nJhac9Dz2ZKSOadxx3Uae+VtwZEBqyZirdDqIqA1ewuKxKZgYbB9fSripCpCcHwQdg53vklZyPYDUP74N5j/wnd529ve9qATKAF86EMf6vi7EAKt9X0iUjp48CC33HIL+XyeTCZT/f7IkSPV3+8LrrrqKq666qrq2/wxMTExD0ZSAwme+ppHcPjpM3znQ3ewetq8InX3DXOc/uEij33BIS6+ajey+ZocExMT8yCnku4tE4uUYmJiYmJi7nPuFyIlgGuvvZYrr7ySb3zjG8z+54eZ+dWXY0digVZiJSUkHmCjuCTpcXfJrToodRIrrYZWy4fe7TACJcXuVMBy2W54k7dC5S3WilhpPutgW72pSSoT7mlbcWDG58RZh0Kp+3Lz85UJBk2vypX15cpkYu8Z/nYdlqDhxK3ms2gzgVVBStj7aIuNBc3anDJCJegoVkoPwvgBh9M/8muijcpkVpvZqn2PdShkFYt3d3n6H5Hsg/SwbK84ACNWqrj/lGDuzrqyO0yuVYRKmRHYfanF8ZvDBnea9uuD/gmT1mv5zPbfWmG7cNHjJefuUWSXtv9ecVCqp5Xzzr2K0gRl2FzS274HGsRf9Rx6ok12WbN4vMUEXQuhUnoA+kdhsYUzUjum9pl1n7yt92N+Za7piy4zpqk0ZIZEbXu7YLtw8HLJubvCloK2ZnESwPgekw5n8USHghsNfLjo0ZKl2dbHSQPR+gbHYNchgVfUrYVaLSiUYHWZjoLJRhSesDnV3MYd4g/t8imUJbNrHdSnTSznjdNDRaDUWZyk2Jf0mSsbd5T6o7FTd7E6aDGkbfItrgnbxUmKixyfTSVZDB2KbQRKFXESQHH+DHOf+QBSSq655przsj6OiemFyclJrrvuOp7ylKcg3n0twZuegz3Sz0bePJhpJVYKo/HTUNmkd1tK1zmCtBErlS3jvES6DFvdBeJhdM1wlGbYVyy1EFSYFVXsXAS+EJy1bDY7iP/qqYwDp1SAi+assukmJgm0YCGwQdYcc7pRDgVrJYuiI6suTt1IOJqpkYBzqzalSABpFzuPddJpzcCgZmEeKkIloK1YSQaKgRGT4i2/Wbcdletui7FeMgMjk7Bwso0wRsoGoZLWkOozroxdhUER+Y3Gz+3gs1CKAAEAAElEQVQEy9UVCMHIpBEFrc73tAqkVvQNC4r5RmciU2brZYZGNMm0Yn6h9Q1E88sKICgVK//SDW439xYiUHgtBDeVfV45BupJZ2B4QjM7r43zVhOthEqD6ZByIMjJ3m6eklKzO+NzOu9QCkVHgZJV0oRJk6ptIWi8xne6V5NK02cpPC1oHn60u25PyJCE0MwFrccSzWIigWbaCVgOLMq2RLQ5f2XduHvQVvTbirOl7v1J5eeJREgIzBV7HeMIVkOr5f5rjemrNu1e3lYwpLRihoBT2qHcc7UEc7aNVzeG7TT2SoaaTKBZTcjeBErROsLxIrk25TaLk5xQs6OgOZsRBFK03SUVcRLA6n9+h+XPXs8f/uEf8uY3v7n9BjyAec973tPy+1wux7Fjx/jMZz7DYx/7WJ773Of+zOty5ZVX8slPfpLPfe5zvOhFLwJMStovfOELXHrppUxOTv7M6xATExPzUGPy0DC/+vYnc9d1Z/jhp00KOK8Q8J0PH+Ho9Wd58isuZeKi4QtdzZiYmJj7hHLexy+am72+0e7Pq2JiYmJiYmLuXe43IiWAr33tazz+8Y/npptuqgqVAOxce1clG0hJRUKqbY5H0t8uVDoXfZFAk7HChvRu7ZDARNI8vV6g/dPayiRE3pNU0p2lXSh43SfNymXIF2U346EmFPsOKraygpUe3E+yq9HTWccIlUSrPAlNnD2qGtJdaVt2FCopBeWCxi/3viFKgeWAm2jheNPGVSm3FlI+D0f25ROK5RPqvByYpA39Y4LsQvd2EkqRX5O9C5Qi+voFqSHB8pne2ivwYO1sJaVeb6QHjYhm+XSH7fhJXZSiibnMKCTTktXZHssRgtU5RSnXu3go2QdD47KlqKlKk5vS7F0a6zx6ufTA9jR43ViZg5W582u/zTXdUjzWSqAEYNsCYUGvAkMpoVTQDen9WlK3vuwKeKXeBEpm4lgR+JKF2Z6qhJSKA4cU5xYVW+1mmFqQL0kK5d7OW1sqJEactJCTXcRJhoSESTekqCQLdX11u4lOV5qUgzks7lTbLdFbuSeBuU75AG20BvUCJXvhJIv//kG01nzta1/jyU9+cvcNiYn5Cdi1axdf/epXeepTn0rfuz+P/4e/hDNiJmw38qm2rkpuCImQBkebClqJBqGSFoL5aAxnK23SrPUg2ugPNGO+ZtXt0u9FYqX1yEHJ0ZoQqinBOlHSopYOqkfSUjGeCJkt2lWnmA6VYz3KWaSSRixglzpvT9mXzC47+HUClCBldRQqBYEZR3YxomzAsjrEtnBV8svGzbCj1L1JqLRwMoo8jyZ2XBPvl7uGgtasLdZSulW/7iBu0hoGBjSB35jurRPFAnie6Oj02Exfv8bzTBpVoVoLlVq5KDX/3spNqTIO7x/UlIq9i8BKWGxsthYotaMvqQm1hA6OlPVuSiUlOJlz8FVngVINTZ9U5JXs4XyqLCE4Ebo0H4mdhMVFLZrSodUt1+LUcoTGFjpK4N0bgRaUVQ+OW3U/ny3a7bT82zBjGtHTvWuFYUuREoqz9CCciggR5BH0eHqQUJqyFGxZvQjDDYO+ZtjTrLm6cezbRqCUCDVlS7CZbl3eNvckwFHmOmVGrK2pFyjpT36X5U//F3/0R3/EX/zFX3TfiAcoj3rUo9r+dsUVV/DzP//zvPKVr+SpT33qT7Wez3zmM+RyuWrqtm9/+9ssLZk3J37913+dvr4+Lr30Up7+9Kfz/ve/n42NDaanp/nSl77EwsICb3zjG3+q9cfExMTEtEdKwaW/YFLA3fiJo9x9g3mLbPXUJp/70+9x6MpdPO43D5EaiFPAxcTEPLjJrZob3USfg5O8X02TxsTExMTEPCS4X119pZTceOONPOEJT+CHP/whZ/79g+x+3u8AtHRV8oaBdcmNhSSVR5C1/0Zl1j1hrRcsjScCLurzuC2bIBd0ftirkNy8nkAhcXsQCVRSwE0NhOwaCrjtXKLrUqElObEgowflveb0kgRKt3R36lA79l5snE8WzkiE33mCpCIaknY076S6C5Xm7mzxWwdHpdIWnPh+h0fhLWbdlk/8ZKIaO2lcktpS5/7TPyaYvtimuOn3lC5MB4rSeYgvAOaPR+kh6hfrsmmLp+o+1C3XykUJID0oGJmWLJ9uM8H5UwqUAPpHLfpH24iU6hyqTEXNv1dnO58VzZOBa2eNQKsrdUKlwNueAqYTk3sFQsCJW3VPM722e37lV+p07pjeNinWTqAEleOkDS0OORXA7J3dJvbrRDHRdvQqUHJdxb6L4exJRX6rt2NeJEx/5fU66xX1g2fXez+nDoz4JGzNbQtuNQ1jN8pKcuNmEkVvKV0uyZgd/n1qNsDthElg3P4CJLeVE4CkNNK4X+rFSQD5sydY+PcPYNs2//qv/xoLlGJ+5uzfv5/rr7+eZzzjGSTe+Tn8N/wyzphJ/dbKVWl8eIslHQ3GhEAqjWqaZdd1E81VwZLW7CuGBAJOprsPP9dcyYYjUEK0SajYhDApNA/4PjkpOWt3X0clNZwMIsebHsZTgYYAELL3VFtJSzGZCTm7ZRMkuwuVKgIlS2rCqC07CZU8T+CttXD6bOGoJKPx2/pyl21tEiqFQY/pQJuESojtX3VieIcg9DWr53qLD7xGoVx3EZFg7lSlrnVfd9gl5VLd8dw0NtnuomQYGNJsbQq8ci2uXqjUTaBUH1cvVKqNvzWDIxq1IvBbjEOEpxrclMKERRiAn+u835vdlE4XelIa1QmVBF7PAiVICM1ux+eU51LQoie3WxsdCY7q2rNLc25pa9twG9qnY/O05JRX2wht0+CmJFuMufOhJB92yxNd+Z/pbRSiJyNOLQXjToAtNPNe74KjwAZfiPbuRA0rMXXyhOip/wRwleZiz+e0Y7FhWT0JlAAWk5LlRCRQ6lK3dKA5lA+5J9NYeCthEhinLSWg4AjuHgSEYPfEWkNMvTgJYPUz32L501/lpS99KW9/+9t724gHKTMzMzz1qU/l4x//OM985jN/4nI+9alPsbCwUP18ww03cMMNNwDwC7/wC/T1mXHE//7f/5vJyUm+/OUvk8vl2L9/P3/5l3/ZUUx1b3Pddddx3XXXkcudx1sqMTExMQ8CUoMJnvY/ohRwH76DtSgF3LHrz3L6B4s89oWHOPyMmTgFXExMzIOW3LJ51tUXp3qLiYmJiYm5INyvREpghErf//73ueKKK/jud7/L6X/9R/Y8/zXV31ungDMPLS9JeKSk4uZikm4in+WyROCQa5EqoRUV4dNExieTUJxcczquQ0vB0qaFFwq8QOJ0U55EWI7i8B6fpVWLlfXuu2f2dDR1Z2HEGV0RlAoaLxLqaKe7UElKOPRYyfqiYvFktFwXoZKbgvG9krm7VOPEjyXbpn5LDRpdSEuXoHqhUjQZlR6E9JBk5XRvbTuy22LyoMXRb/qoHtKuZJd0JFDq/YZ8aEzRP2Exe6R3hyCgd10aZruFhPx6b/ErZzQrZ3pLi/eTsnAsZKGdRUwLbBcyQ7C10uPE5U+goxqeMs5Ic8d6X+b0jzX2ebwstuOAIJEW3HNTbxVM9UFm0LgvaUtUhWWdBEpDU7Cx0ObHFsfMyE4zcb7ebhnYJlC66DEm5eC2VHdN1E/MlovmrxeUI1EBHD/Z20FuS8XFez3m121WNnu/TJ1cc0g5qieBUr8bsrM/4MeB2yBs7cY9eQcpNfQwATtl+ex3PW4upqrpSCs0i5MA/NNHOfuZ/4sQgi996UtceeWVPdcrJuan4eDBg3zjG9/g6U9/OvId/4n3xufgTgxVf98mVor6EDfUHNzQzPbDltvNPUQwl7TocdgFGDckS2v2+AELlkW52wNyCbO2Tfk8XBMBBuyQMRFyyne6Oqd4WjJXltX19SJu9JWgFNY5I/UgVBpIhwz3K2aXbJTuLlQCyGSMU1Uh3yQac2Xr1G9Ck0pDMd9mm+uESkJrEOYaVs5D0ElwWqdKmtonKeU1G91Sj0asnjNp6Hp1LAIYHtcU8+I8Uo8a2jkcbYsTmmQKSqVGAV4nzs2en2j9/BGcPXl+x3nC1WgNXnOauzYEyfPfhh1Jn3UsCqq3ZYOi4G6d6Nm1x0ZzyPaYDW02jcVk13NwWIYUlKCMRNlUUy+2EyglhEJjzvVWNAuUBJpxN2TNtwg6uVTV/TTqhgw4ipN5p6s4snKMekpE/WeP964uZLVFtsdbkhEUwzLguHR6XocnBScdmy0puguUtGbaD9myJFl6c7sDKFhwKi3JWYKhbsFac2BTk3NgPiO2Of01i5NQsPbpb7D86eu5+uqrufrqqxHnef14MDI0NMSZM825yM+PT3/60z3FJRIJXvva1/La1772p1rfT8NVV13FVVddxdGjR3nVq151weoRExMTc6GYOjzMr73tSdx53Rl++Om78YsB5bzPt//pDo5+fZYnveJhTBwcutDVjImJibnXya+aCbJYpBQTExMTE3Nh+Fk/Qf+JkFLyrW99i6c97WnkTx3l5L/8H1STksHOmT+vLlX2gm+z4LcXD0m/9lceslgqm9gxN2DQ7kG1AtgWuD267IfSYrXooKVguD9E9qC0CBRsFmSUMq5XFDN7QiZ2qoZUV+1YOCNYW6p769yRaKf9+pSCxVOK1SYBg7Zl20kky4G+EUmyVZo+S9acleqYvtRhYl8HQYJofNjcP2YxPG31fBRvLinm7wp7FMVoCDTe+U54SXDaZwRsyaHHS0an6VmIM7FHMrk32ujI3aqdi1JXfhIXJaXp6bXv5mXq9l9mCKYvsbF6edM+quLhn5OM7Oh9lZYF9nnuC6XAK/TmogSwMqtZ7FEkB9A/CqPTtQNWC9FRoJQehOlDFv2jTT9UMkq2oG9I0DfcpkyxfcIm8Iw719pi+3o3n+ueJzl1tyQIOp98ypHIFBw66JNK9d5OvoDNgkWu2NvJPZgJEFJRRrLh9yZqciyNY2mEovrXHsXeVBlQ5JXF8qCDXaT614610GIhsKmYt5VGNG5WtBQoBffcytlrPoLrunz3u9+NBUox9zn79u3jhhtuQAiB97bPUD673TZnI59iI59ifNi8ZetJWEkJ8h1OO61E9S8Y8fCkQGjNRDnsua910Ng9prvMW4JAgkSR7vHCWkCwiSQ4D+l+Qipmkj5C6q6T86EWLOZtwjoBQ5AUBMn2/X+uJFnJWtsut0HKIki1HoimUppkonU7aVc2OOsAJNMwtgPsTin1bGn+IgZHIdEm5VIDkVh0Y0mT2+ghPiL06TWzaRXLxohHeyTTr9kxY+LbOSE1lz++Q+NGImYRKPN3nmMhobT5O7/czohQVdd5Xst5yjgoJczxMjIUMtDfY3rhpGQwGTIz2PsOEWike16ZlQHwESi7NxelEDgb2hSik66bQEmgGZMB6brjQ4TtBUoA43bITmf7faEMdUsHJVdqBuwO8sYWGeA2fIulstVRoKSlaBDRZUOL9R46KeXCcDJgQgacz8lUsGFTyI7j0gpCa/q0QkvIOhLVw/2nAFytsbQ27kmVvzb0BYq+wKTq3nAkQ+N5cvlk9a/1SgQrScF6olbu7ok1FrL92wRKWmn893+FpU9fz1vf+lb+7M/+DMvqPZXegxXP87jxxhurTkcxMTExMQ8NpCV52LP28vy/fioHr9hZ/X7l5Caf+9Pv8s0P/JjS5nnaiMfExMTcz9laqTgptbm/iImJiYmJifmZcr9zUqogpeT666/nV37lV7j22ms58aG/ZP/LXo+0G1UNdg6cnMbvE6wrm/XoYfW07bMcWHgdBEuWB6GrmE4H+AqyPTh2zG/YzKNASiSqJwcO11LsmQyYdywW17rFS2YXoxhLgQPdXy+WoOuetlsCbckukyCamYNQzMPKfPcHy11dWZomGoubcPTbXYRfTa5KZ271qw5PHYnWt3gyZPF4j+49QhCUYWP+/CZ4MoOaqYssTt6qenJf2liAjQWTgK/XdFNba5pSIXIpCDu76gCcvauxLkKpjjNCqQHYeUhy5scKv759g7AxDVuvaL1tfTsvsdAK5o922B9BaFR+QHYJCptBY31aIMpmQ3XCZnNZ9+ySIPyQlTmrqzNQPTv3m02bP9H7MsUcUHH+6mF3L52GlSglngh1131dyMLxm0JK+dp3QndOSXSmnYtXqMFuvdzafIdK1J3btq3YcwjOnYZivoOTnCVRkfCxMt8T9nD+aGnc5AIlOb3c2/kjpWLfRECfpzm10d0Gy/TbsJ63Wc9L1GD39Qzbih3JkHXfYqsgOwqTAKZtj8XAxkNywjd1svMat80k3tot32Lxq5+lr6+Pa665hsc+9rFd6xQT87Ng9+7dfPOb3+TZz342c2/5JP1/+FxSh3dti9vIp/A3XZwBj6VIsGIrTZ8PG4kOk+5KIEqStB0w5Sm2bEmxy5xwKAQnlA1agBOl9e1hEn0qDBkTmqPa7epU4iFZqiiNbF1N29uJiruRFEaHqyVdl0tYirFUyLmcXa1TO5GFUoJ8Nc2Yphdnk5WVFmqI5nJdC+mZa3UpD/OnIejBWafioDl/omdtGdqyKBajccp5MDgpUSFsbvQWv1JJDdfjmMb3IZ8DMCkChdINKdWaCXyYOyUI64Y4IlRo2f7gHRoxTqIbTSlLZTlA9fq2Q/1yfohyasvZjmZ0XLO6LDruP2ejjD9krkMLy1ZPAiKrpLBKivKYJCckvbrq2EWYdXtXh1todiV9Fso2Obu3NtEINrWF9IyJbLe0chrBPUEtyCrRdXPmfHvbcMkq6bbLlZXknkJr9yEZNKYbr4iGAi06phuXPoTRkGbYDnAELPlW58rLWnvoapfRyw7XaEtTFJKi6G3sNaoVkypgUzuEPRxUUmuUEJwWUV9O90HheNn0kjkbRMlqL0yi8fqzXif+DPLOdvckQAch8++9hq1v3Mab3vQm/uRP/qRrfR4sfOlLX2r5fRiGrKys8NWvfpUzZ87w67/+6/dxzS4ccbq3mJiYmBrpwQRXvvaRXPyMGb79oSOsz26BhqNfn+XUDxZ43AsPcfjpM4g4BVxMTMyDgPxK5KQ0GjspxcTExMTEXAjutyKlCtdccw2vfvWr+cAHPsA97387+1/xBuxUZltcRagEYKPYm/BwhM0pv/OkteVJ7thw6x6V9pJ3S5KWIZfs8Di55rBW7NyMXig5OutSKPX6mN9waCYAX3P8pIPs8tb17Jn6B90mtrNQabuwyCwTpU4It4tN7AQceKRk4aQi22ywUJfaox7LgcwwbLZL81EnVKq4FkmbngRBFYME24UgoCcnIjsBOy6yWDwR9uSS5JfB9zS2DV5vZlvVOvk9xs/fE73N32PZQauXl1oIhyqogO3iryDav0qfn1Cpcjw1rS/0NKqTXqzFsdZNoNSAgvnjvb8NLiWgQ0LR+0RgGOjzcm/YeVCQ39RkOwn46rATEJR7N6+qnAfNAqV2uElIpGCrVRrANuu86DGwsQTLs9t/0y0ENTLq6sIOwsnGiV5FuSw5dk/3SS8tYbBfsXtvyNE5l0K5t4kypSTH5lyyHdzg6uvz8EmPbFFyesOle19vrgfrgc0P1iWqB4c7F8Vex8cCzkQTo3a+w367+Sssfu3LDA4Ocuutt7J79+4etiMm5mfHzp07ueGGG/iVX/kVbv7zTzDyv36NvssvahlbESoBDJdgrKjZdEB1ua4UAps7+oSZ3G5K5dqS6LedZUVaKu5x7K52LfOWxZaKBBY9XuZSKPYKn3PSoYTsKDjytWC2VFEf1EREnYRKFSclS0BQF6KiVHnS277cYCYkk9KcW9kuUFC2RDa465jfk0mN5xmhUytqQiURpW3TCNlbKrPK7up5rAak+sFxYXO1t3gVnr/Ro7AFWvcm5vJKom5c1Fuq5BbDYoQfop3W44wwFNuKlpHwWnrheQmVKqKyBqGShiAQ6A7t1HwPoLXoWWAGUAokpfMY+1pCk8hqyj2If8EMPwMtCHo8QRMoRmTIkrK7Cg8hcnYCwvO4+5JoFAK/rp2sDqkZM5aiGIqWaSKt8vb4flsxlgg5nW+TWrLjcd9ZoGQw58Catns6tJWl2SN9PA2zoneB2QqSLdmbQGkwVOzyAu6xHPxeVHLRPcaptDQmVKXu58pICUZLmk23JmIN8q23R+Z9Vt/1rxTvOsXHP/5xfvM3f7N7nR5EvOMd72iZ0k5HnYMQgmc+85m85jWvua+rdsGI073FxMTEbGfq4hGe+xdP4shXTnPTv92NXwwp53y+9cE7OPr1szzpFZcyfmDoQlczJiYm5qciV3FSGo9FSjExMTExMReC+71ICeD9738/09PTvOUtb2H+n9/FxPNfS2J0cluck6s8jRXcRIqaBqKz8Eh7EgtIpBSXDJQ5tuWy1ebt1vKgJJFVFANYzUu2ir09+C6UzPoH+kIcW7OStTsKDgCWNyQ6cuxQ0cR/N7HS5FRIKgWnj2pAVgUDrcRKs8c7uB1Y1jahUlA2rj/lduKeinNQ3czSxD7JwIRkcyVo/+C9ImoIFelB2PNolzO3euRbiS0qD1Wj/9sJzUVPdFk4FrA+131GS4WQ6Jck0sqk9eqCV4AzPwob69mFmcskbkpw/AdmuW6OStKG/johl9CdHXaSGZjcL5i7WxMW6ra5jVCpXIDZH/8Ead3Og8XjHcqvP84jN6XJAxIVwHKnVGl1x2xqALSCUpcXXCtuDUM7BVMHJXf+oMdJ1FCzeLLucw+7OpESeMXeZ/sOPlqSXdYsHKttV6d9ve+REq+gmb1Td+0rAEanBYMTgmPfV7VTsMtu31ylZRqeVgIlAK8kOX6kdVnNLhT9/YqdUyHHT9IxLVx9mqStPCxnLQotJvaasaVix0jI7IpFwZPQg0hJKMlKzmIzEkCVBzv134qH9XkUQsHpbKIH17xIbInkpmKKIN89PdUjZm/kU1/7MjMzM9x6660MDQ113YaYmPuCoaEhvvKVr/DCF76QL77z0/zjP/4j7x4+0zLW3zRivHNasz7soaJ0bho6ColU2UIAO/CxNMwmZdt4fyzAWbHJCklZCaQvUZ1SlGFcCT0EAs0EISvaQiHQHU77EoIVbVFWNcERdE4JZgvNdMJnwbOr/US75QIlmMu1FwIoV2wTKpU80bEnUVEqtopYSQjN+IQiuyHY3OzQ/pFIRnohI5PG9W75XJvg6BpUSfs5NKxI9cNCj86Dliuxk9CLmlxLyeZa3Rc9XI8ty7ghrsxDMRKFtruOVXCi46cimBah6uim1D9o4reyomFM3U6otNUiree9SRAIVtu9AEDjuN/ZKKNHXYYHFetZSRB2GP9Xf9KkHUXRF10FQTra/OmBgKIvONtjHmZfC+bK5nyof9mkHY7QpJVG95hpZFAodlgBxwIXSnVlt9GypaVixvU5WXbwtOwoTgIjaNqZ9Fn1LNbqUs22EidVKCvBli/PS6DUMcVbQ1NrdsmAvJas687CHlX9WbCqbHzRw3hWw5AOKSMoCknZ+MZ2XawYCtawqsbA4XD7gXkq0OwphpzIWPhe9ySflXH0UgrWkgKv0NlaK9jIMfj317Nx7Az//M///JATKAG86U1vavm9lJL+/n4OHTrE2NjYfVyrmJiYmJj7I9KSXPaL+9j/czv4/sePcvzb5mZh+USW/7z6u1z8jBke+4JDJPu7WFvGxMTE3E/JrUYipdE43VtMTExMTMyF4AEhUgL40z/9U6anp3n1q19N8SN/xY7nvJz+A5cCUB4WJNYbH2OGOQF9ghEZcChZ5rZiioLu/NA8LJsHqeUe3iQHyek1cyPmypBUUpMttW9OPyNx8orRgYpIqXv6hPUtG6uoAEUqCcWSRFmyo1ApCASB37twAmBqt4lfPN74fSuh0rl7eii7zlVp8YQyQpQeNTKFLKyeaUxv1YmgLFi8J2BzubcVqADu+W7X/Hnb6B8TbK0p6CENwtpZxXkY+JAZgl2XSE4UwqoIp5N4RWuwHIFtaba92N9GqGS7ZtuVouaiVKFXN6Xm465uXXYycnhq3g1txDVWt5e1m9a1Y6+ZuDz5o9728+aahnsUqoM4prYuTWYQysU2LlVtOHnr+Qm/5u5R+Lnez82VWdXWsUiEetsE7Pxxzdq87lmgBLB4avt3rSZ23YRiZj/MngCvR4cjrUxKnaCDSKzSJVtSYVng+ZKzq72dPAMZxWh/yOKGRT7RRQiIYiihWC/anNvq1SlAkg8FpR639xLXwxLw47JLkN+ecskbqH1WQYnU9f/KJ2+5hYc//OF873vfI51O91ivmJj7hlQqxb//+7/ze7/3e/zO7/wOb3zjG/mPxyWq1v7psQKFlbrjVgiKuQROf5k9W5qyJZjfbny5jVIgsdz2boD1mHRE5t+DZeOa0UnUWx5R9K8JRkRIXkvy3cQWCJaxSWDER6E233V2RzJii/PBlprJdMBCfvu4sVmoVPYl5eq1oL1TUMVVSWvB/DnZsu8VQettyG+2/LotubyklO/9Glhx+DufVpIWxsWyTFehUhjC6iKUz8OhcXgMVKBZWajVqpNQSVrt699SqCS0MQuNBEEVF6VqeT26KVVclKqfIzclITRCtHbLavVigpBgWbqjk1L9Yew6MJ0oc0onKAW97bnlvIXSmFTVXRBoklJTVN1TFFbIaYuC1/sAe0tLVGg3CpQ6UFaCZd/Ca3c+N51+CsHJgktY77rUUWSt8ZRkpZUrY4vTacwJCHUXkVITPqJrIrWKQMlF4SHIIQl6EilpRrSiGImU/P7Oy2RCRTkUBEKw2GM6P19C0RKococTLiIRaPZtaU73QdERlArbD7z0SO3NGn18ieDvv8hcqcTXv/51nvjEJ/ZUpwcbv/iLv3ihqxATExMT8wAjPZzk6b/7SC5+xi6+86EjrJ/NgYa7vjrLye8v8LgXHebw03bFKeBiYmIeUISBorBhbuD6xmInpZiYmJiYmAtBb7Ov9xNe+cpXcv3112NZFmc/+0FWbvx69bfy8PabISen8XKCbGjRyjSn1LRMoCRHV5KEJUkiUAzarR/zNqcx2D3is3/ER3TMd2U4MW9z96wDSLTo7JhTYXJccdHBAMc2T7CVJavOSs2srkjOnrUwu7b2xFtbsv3Ei2ivUdGWVU0BV8F24eBjJJnhDpWO3INUYByYkOB2G+9ZEizJ0omQ8DzEImtndef4NqKdrvWJSPbDzCMcBsbEdqFOC/IbkKtLaSK65CwprGqO/yDc5hLUzj2nXIATNyvKW23KbbHcoZ+zGNkltguUKnRwiQDab3e0roue6DC+W7b8bRtByLm7VHv3pRbrOn1rwLk7Oh8U9e0clGDtnEb4Xc7JaGZp+mLJjoMNM08dSfe3+LLLMrlFTblH8R1Adgnya725KCUinUDV5axLXfY/EkZ2NH6nLdHWecJ2zGnU6vDZ3rcYYWUuLzlxyvR125aRjQ5Ku3eFHNwXdq94tXxY27K57bSL10WIJhRM9wUcGPGxZa38di5KEsUoAdKDM9kES6XGSS9vqPVy66HFZl5i57f/Xi9QCnKbbH367/nRj37Er/3ar3HbbbfFAqWY+y22bfO+972Pv/qrv+Jd73oXl33iDlRNMUN6bLu1or+VYM1zaWcYZI83KknWbYsVZSNKkv58+2ufP1Ybk9laszf0GS1rpNd5HOUhOKZc8lFfJLSm+3y8Zk/CY8KprVNLUXVIaowUnCs7lJXEqBh092UiTVY7sx/limoKuAr96ZCpkbCh/G3LRU5HQWCEH7atO8abdVkUQ5tyj86gYAS9pS7pL1uNb+1Ul2XqnCeHJ2B4qlLJLhWSksKWQNU5BImw83avLuiWTkTt0iRn1wQba6Lt783jjYEB2LHL1KFZoFStttd5jNLud+mH9A3Azj3bt7Ftmudlj4Vlm7DNixjNuhzPh9kFG1Y617HesKcYSMqhJJHtPm7psxR7Uj5O3XqdDkJuB43dIh2i7DA0DBHki+eR9hfBWmhjlTqneAPj6gSaQNecpjoJlNKWYnfax2rufBRtjm+Tqq7tWSnZ5qIEgkVls9XGRUlZNYGSg+Yi6TMoehh3acx9ghCcFDbzPbyJYXmafaWAyaaXXdq5KGUCjVWUhJ7NGeluSyNnDW9vXM+CLQeKJadlard6gVLp5uOcufrD2LbN97///YesQCkmJiYmJuanYcclozz3L57ME37rYpykGQ+Ucz7f+sCP+dxbvsvKiewFrmFMTExM7+RXS6DBciTJgdgRLiYmJiYm5kLwgHFSqvDUpz6Vo0ePcvnll7P0jWsoL59j+pd+q218WUnuWU1An6BPhvRJxULQ/RXfvf0+A6mQH6xtewq8jZMrDgkbQCKUbjkhVUOigKSrOLDT49SCS74k207KhSnJ8qrE8wV+02R8J1elwWHFzt2ae+5U+HUTSdqS2yYwzp2O0pJ0mMiqd1UKPCgXNbqbJqvOUWnvIywsh2oKtI5YkqFJGJqyOHVznZVMB0HXyIxF34jgzK295PaCvY9x8AqKM7d2r09pC07d5FGo3G+Hqmvqt8EpsGzB2lnTpkKptmnflKJtCr2Oqd8adWgdmbsrpHieTgnnw7kjIcV2oqnzoc3xrALwAtq+nV8vUHLTMDItWT6pCDsdDnUTmCduUXTJyhdVBDLDsPfhFmfuCNla7b7I4DgMTwhmf6xppVdr3sfDUzAwLjhzW2/tOTIFUwckx29R5jjqOplrXKO8Op1At7Q4hZzknhZp3loJH2f2aWwb7jnTOs1mK0O7uXmLRAKCTLe+WXFop89WSTK/5qBUd4ESwNlNm/WSRdAlHmB3ymeHG3LTsiTo0ve7KCbtgNnAZWWz++U0f/Y4Z/71/RAGvPrVr+Yf/uEfui4TE3OhEULwv/7X/+LAgQP89//+31G3fpfpN7wQZ2yg7TKrroRSAsf1GC1qNhIQdnmz1taa/eWAOUey4naODYTgbsuhFE3hS090TP9WSa00JgKSaM5qG6Hbp34rDwnmN52WzprtXZU005mAUihYbXLWbF4m1IKzkaub00l0VOeqFAQCrwcjyIqjkuNoduxULC9JisXuy+mEZHwkJLcJpXqxZZvxqZAwOiPJrSjKPZSfzMD4Llg4KfG97gLujeWmVXfO3Iy0NP2DkMvW3ItauQ5WCDu4A7V3VKqIvroLugp58LoI6H4ainnwz6d80b7urc8D0dEJERoFSgOJkEAJCn5v779shZKTRacnFzLpwU4nwHI1p7xeHh5rdlkBuaJkizaCmoam0My4AeuBpFjopf6a6aRPWQnmo3R1nR2UjManHMoG16XO4zXBkt9mXNFURUdodic8znkOW21OEtXUDD6CWWWzhSTo62SvBWmt2KkDTuEQ9PByjfSNSPG47dDLISq0Zl8hZA3BfA/uYkNlTd4G3xKcFm7H01GHmo2v/IDFD36Jp17xFP7t3/6N8fHx7pV6EPHOd77zJ162XWq4BxvXXXcd1113Hblcl7ziMTExMTFIW/LwX9rH/ift4Psfu4sT350HYPmeLP/xJ9/hkmfu5jEvuIhkXzzhHxMTc/+mmuptLIXo4T4nJiYmJiYm5t7nASdSAtizZw+zs7M84QlP4Mc/voniwix7f+t1TDoWXigpKGnS+7iKTc9MNA8UQg72l3ElLGAxJBUBggATO5hQbPmSQEmSUrFeEizkE1iBZMD18G2LXGABihFXUZbGecm1FRnHpBECxcOmPNYKFvObDlpqhlOKfFniRbGphCKbl3iBSdHg2op85Ko0mFGUSgIvkNi2IpPQZPMCpSTlsiKTViSSmq1NQToFxTJ4nontSyo2NwEtSaYUoMltCsIA+gcV5TJ4JYm0FZkhk9pD+5BMaywH8lnByA4YnYLTd4FXBGlDZsDEqgDcfgvHgfxayOwRTWbITDqVN40eKTMM+WwUmzJ/uTXzsDy7HNZSV0noH4HiphE8uSnjBFMRfKQHwUpAGGhTh2FJMasIfJNWLNUn2FoxD9RTg4A2Qh+toH9cUtxUBGWwE5AakLXYAUBAMQvn7vRxUgInCX7JOCulBgRbaxqUcU+SFhQ2TJ0sR+CmNF7RpCpLD2q2ssLE9oFlGwclMO0wOCERQrCxEJIZhPw6KKVI9Ess13yuxIYl8/9kn2RrRdXaMA1OAvLrRsSSGYbQg1IeDjxaIKTk1C1GiOOmo/autOGARilh3JkkqBBU9Ea+k4RkXRumB037lbbM5/4JUdWD2Y4i1S/ZWqbW3pg2hKi9txTZRYWdiNLirWjQmuSAcegq1MWWthROCvZdbrFwMmT1LNU2lEJV27tvFLyCOQ4HJmF8j83pmwN8zDFn2eZYA+gbVPhlEy9tGJmGoUnB0nFzXFl9je0dlKG8pRuO2cAzbdg3DLlK7CCEgWlvKc3nQtaUNX9Po7gtPWjauBSJzfpHobgFYVHjWOAkRVWglBowE6+lrVpsIWfqYLuQ6gcdTQym+qNjdrOu3LxxiqrEri2ZY0sK4/BUbe9RKOeNGKkSu7Vl2nt1zrRhZfK2f7gmXJI2ZPpNu/QNw8QuWJhTbGXNudw/qCgHknJJIqUysVuglCSZVASejib5JP19Cj+AUkkibEV/BnJ5CJUk4SomxkPm5i08X+K6irSrKHimT+7PKPJF0ycnbEUy6jvLvkQC6YSiUDZKveGkIu9F/axU9DmKbFFyaMxnrSQoeBY5z/TflT65jIUrFf2WYtWXSA/6bc16XrKetwiQjLgBhUBSqpRrKxYwTnV9MmQm9BiRiuW8xYCjKIQm1kYx6CjWfYlC0kcId3ybe677Ahaaf/nkJ3nBC15ATMwDiV/91V/lm9/8Jr/2a7/G1h//C8n/57/Rf/Ee+gJFzhIgBMnQeIoUo74ls2IxVVKUUxbFYZ9UABXDi4TSSDTFSCGaUJrTrkU2lNhFSIWKXMZMdidCjQVUhhFpbcZwCEGfCtmhQ06UbEIpsR2FrTWFqNwUihDwkARRdlOJRiFwtcZBkxfbY4tKkJIaT2nSlqagJK4w/9dSkJQKHWo8bRyU0lJT9ASlUGILjWNpipG4PGEptARPSYRSpGyNFxpp+PSwT74k2ChagMCN3I8qLnGJjIktliTlQJN0NaVIuOTYJuWX55v2TiY0fgAhEl9oNrOaYsmoMWxHY1kar2xiE0lNEBixjpAa19WRS6fCdjTSAi9Kk+UmzTUu8I04yU2YNGwakEmJY4GfUw2xfmC05W7KXFtKeVg9Z8ZWYFyTEq5CqSjVqjDXbL9slgdwXKoCKCcBaFMuQCIFvmdiLUvjJqFvCEpFkJESxPeM85HbJwg8I16SlsZxwStqhsdMvF+uCX4SKU3gG+t34QichKmDm4CdM4rlOXPNbowVSKlx7IByaKG1AGHGVhUXJTdpxhRhUNeGJeOWZDtg1wnzkjI07U3UhsmovZW5dls2eEVFKbBwE0YAHfgCqULcVNSGSmDZRjRcLgnGJsF2yiwUE/iBQKBJJDTlQKCVwLI0jq2rKU4nRkPKZcjmLECTcjReIAi1wJIax9EUI8cu11IMJUMKvqTgC1K2JhSSQAssNAmpKURp3VyhEMK8RFJWgrRUeFpUY12hKUTuRC4K24cSknO+Tb8McYTG1wLZlC7ORWEJKGqJXYJEQldTQ1ZiS0qgEDhCYwtNMVJNZ4RCoqFkXthIWZpS2BQbiZyTUqE0zJdt0NAXpTRTCHPeS00xrDvvNZQQlJRABhJLmPSEttC4lqZQiY2cHstKsDPl4yvJMjYhdW2I2dZEpMAuR/V3haKoJJ4yscm6NnQsI9EsReKlQUIksI5FHkkazaaO+lmtkJi0mmjIaJMOLkDga0ESRQGJElHfqVS1n82EijAUJLRmOAxZk5KClOhKrNbko9h0oAkFlC2BLAgyWnDKkhSkwFVRbCQSTIeKUJgUdkJr+jzN5Jpk1TV/fUqRixzkUqFGAyVLILQmtRmw8Q+fZ/F7P+J1r3sd7373u7HtB+Sjj5+KL37xiz/RckKIh4xI6aqrruKqq67i6NGjvOpVr7rQ1YmJiYm53xNqxRH7LOXfUux62iSbH9ti82wBNNx53RlOfn+ex73oMIeeGqeAi4mJuf+SWzEPGzKjyQtck5iYmJiYmIcuD6h0b/Wk02luv/12Xv7yl+OtLXHuQ3/BqD7HzrSZwkrbmksGy2Qc8yB3KuWTshW3byRwcoJLrBIzTpnSsCBhw8XDZQai2Il0wIGhoCpKetSYz2V9ZSwPXAmXDJQZSpnY0XTIwXGzTgkMpUMm+s2EhKU0h8Y8hlNmtqV/THNw2sQqJQkVjA+FSKlIuoqD0z5DA0aQMtinObDLJ3ruytRkyK6dPjunQsbHFXv2BAwPmzr0ZWDvPoWdNMGTk5rJGcHsSYlSkt0HNKNjZsImk4G9BzVuwrigjO0UTO816wgR9A3BWJQGKpWGPRdDMkqLNjoF04eopn+bvkhy0WMl/aNG4DFzmWVEFcDwTsGuS2pvw47sshmYMA+GkxmYucypCl4GJyW7HlZ7aDx1kUVm0GL2DoV0JDMPt+kbM9s2NCGZeUTNbWXqoM3EAZuNc4rZI6FJyzZh1jswbpatOORM7LeZOmjWU9iA6YttBiejh+sjptzKs+uJfRZTh2p12nWZzcGfcxiYEKSHBDOPcHCj42VsRrLjUG1bd11qUc7D6VtDUv0wc5mNG2VzGp2G6YtqN+m7DklGdkksW0TtYpHMRG02Ldl1sSlXaM30RZKxGYFQis2lkPSgJB214fCUbGjvHYcsxneb9dgu7Hu0xfi+qA2nJLsuq29vm4n9Zllpm31jRy89DU6YNqy1t8PkwVr7zzzcZninZHyvZGDStKG0dLW9Jy+qxe66zGZwSuIVYHNFMbnPqrb3+G7Bjob2dhjaEU1QDEoGd0isBAg/YGy3YOdhM9ErlGLXJRYj09EERR+M7LQ5fVuIUjC6S7LrQLVYpg8KRqPjO5GB3Q+zOPgY49w1sgN2XVzrEncelIztqrXh7odZpIfMb47bGLvjgGRiT13sJRZ9A5GLliVwk7V9PnVAMrHXLCul2ecDo1F7j2mGd0hmj5hja3K/ZGp/bT0zl1kMRS+A94/AnkstLGBjAcb3CKYO1GJ3XSIZnDT/zgxG2/pI4+w0vouG9Ha7DprUOmAESnsuNpOiAMmMYMce829tSab3C0YnIuFfGvYeVCTTYNuKkQnN0KhgccPs9127QibGzeR8woV9ewIqmc0mxkN271SMjpiydu0MmRoxfadjw8EdPv2VfnbA56IdPiA5vewwmFFMR7G6X3Jo1GMwoRAKxlIhF415CAm2pZnuD9g1WOujLxrzGE6bPnnUCbkkU2YgVDx6tMyBgTL7+kO2AnMsHh70GE2Y2CE35PBYGRfoK4bs1x59juKWbJIAycV9HpMJU6dBR3FJf5mEhFKfZuCWL3PjF/6DkZERvv3tb8cCpZgHLJdffjk33XQTl156Kefe8jFefHeSS3Sx6lUy6SmmyzUR556yYj4hWXck7obD/kWBpUzKt4kgZFddOqv9XkBCA0IwFCieUPDpKwhESTLuK3YX68oNA4YjO8cUmh1hgBs5Eo2VFXtLYTUN3FSfx0g0qV9EMiBCkkACxZAImJE+QhujmWkRMCZMubaAPUmPCSdkyg0YsgJmEjUro0knYDSh0FJgYVzY8glBIZBknJCZvloeqrFkyGg0FkQKdg0EpB0jdhBJzeRgWDUDGc6EjPTVLFZ2DgekXYVyBUlXs2fSZ0eU9m1wUDEyXIudGA/JpE07uC4MjIBwLaTUDAxoRsZqjiljk5pMn/m368DkTs3GuqDg26RHJSOTtf0+OmVE62DSf07sAseB1XlzPRzbAToasI5MGYErGDHNxIwR5IAReY9N18odmpL0j0S/WVFsdO1J9cHOAzC2M2qXCcy1Uplr58SMESohJcmMiZs7AeWiYHAMBkdr65ncoUkmzLYnU+Yz2tR9YBiGxmqxE9Pm2gbG9XRypxFshSUjiB6oS3U8vgPSURs6CZicBitSWA0OKXbsqrk0ju2otaHjmja0oyFSZhCGhmv7pl17g/l+bAekMuZFg9Fx4yAlQoW0TB2cqL3TfTAetV9u05Q1Io3lj5QwNRGSiBzI0knN1FjtWBrsUwz0R22WDZge9Ek5Cm1BKqHYNVA7F0ZTxkVppWB6gl0DPsPR+Zq2FLtTfvWGc8wN2ZP02ZXwEWhmkj79lllv0tLstb1qfzKuQqailIshgkknZECacpNSs9f1orRrMCJDdloBVsmkYLTR1d9cYdI3Vj4PWSHTTq3+O0RAuSQoKokjNbtTPglpYgeckOlUzVJqR8Jn2A0JihLKgpmMTzIa9/Y7iulMrdyJZMjOtM+uVIAtNDNpn1TUF2VsxUy6FjueDBlNRP2AFkxkAjJRu2QcxZ6UV+0jxpyQCcf0ARaa3QmfQigppwVpodhreRCldhsTITtkrf6HLY89lmfEWGj2WV71jaUxpZhWQTVD5P7QZ1gFeEKwLC3266Dq/DaYDNjtBUjfOCftLQWMhCFSQ1JrDvg+icgKbSQM2VNny7W7GDKegx2bsK8ccrBg2kFHff++Ui12lxcylSghtcbastm7KplLShYSkiFfc6BQuy5Ml0Imy6bNEuEChXf8G3M3H+Ed73gHf/M3f/OQFCgBfOpTn/qJ/j75yU9e6KrHxMTExNwPuW79Nn7x9j/nlcfey5tOfow3+h/jAy++HvHbNnbCjOJKWz7ffP+PuebPvsfKqTgFXExMzP2T/IpJMdA3lrrANYmJiYmJiXnoIrRuk8fhAcSHPvQhXvnKVwIw88RfYeSSpwKKlISyAoVxtrAllKI3YR89VCAEbgoygGJ4S1MOolipcCTRG/CKiwY98oHgXD4BKNykKdfJgpQKV0IpeuPdtQNQxtGjzw0IlHFNCqWFJRXpsqLkARhnJYBd4wHppOKeORsvMMIiKRUJS1PywCoaAUDlBRTPx6RG8o0jiZQKx4FyOSpXBEgJfs4sd/EjNcuLsHjWMrEulEsm1rbNpIYfOcAkLIUKMCke6t6WR4FtGxFLJU1UwgnZeUiwdkaxtWqESl7JxFq2mYzyKm/AJ80b4NMXCwRw7lhIUIreMreNsMOL6mAnTRmBB0NTAiehWT2jUKFoHauNOw7A+H5Jbk1R3DCpP2wXvOhVajsBCONCAzA6Ixiatjh+o2mvhnJds/2VWDcNOw9ZrM4p8qsaO1nbVjslEdI4MlViQ8+8LY+M3oCvK1dKKEcp+BIJXX2zvhrbrg1Txo0nLKnqetq1YaW9jTuB4MBjBH5Jc+bWsGsbumk4+HMOS8cD1s6qxtho4qs+NpER7LrM4dQtPqGnG2NFYxsGnnGJqtbBMw8xbEtta8NqrKShva2MEZ75hVo7dGtvrwTasXAdXXNtwDg4je8RbCxoCtnG9naTJhNHff1HdoCTEMwd0w3t4ibNfqjMwSQSmqAEI7sEm6tmMrTV8V0p1y8LhISp/YK1eUVps+44pDG20i4DU4JdF0uO36Qo5Vofs/Vt6GZgcp9keQ7KnkCK6NyO6h8Ede2dqLWDlRJIC8qRcMetOF8EEqQi4UKoFIcvFawua9aWJUURpTFK1sWiSLrgeVE/GznLbeWN65LrKrykRRBGsY7p6xSSXaMeU0MhPzqVIAhN36k0BKHEz0DSjhw1kKTsAEfCpmfc7dxoZtRTUbk25DPGRc/2FAkJvlIcGgyYzduUo/4bICUVvoIASTCkSQL9ns/F/QF3bTnkQotyi1iJKbecW2P9W5/k5MmTPPaxj+Wb3/wmyWT8hk7MAx/f9/nDP/xD3vOe9/Bbv/VbfOMJh5HJBHaU0iyIBiyuMo4ZoRD0BYrDhZC70hbeSICtNOFyEr9FbCJU7PJDTrkWoZRYWiMSCl8KnBUbR2sUJlZELh2+ENjUUmj6wqSAc7TGWZeEGPcYG+OWclD6LCqLTSz8aPrfRqOEEUQkNjSOgEBrLCFQGixBNT2VLTRam1jQuFoTaLDzgtFEwHAy5ETWRSGwInFEqE2sIyFQGMENmkRJEyjjeFTJMhZGqeZsqQk1aC0QQtMnQtIJzcaicdkRopbezLbMNU5FsZYEKTU7xkOWlwVBoRZr2RqtjOMOQmNb5jogJQwOa/IrisAXoLVx3lNRBl9hBEWh0UjguEZ8vhW5ENoY95hK/S3HXFu0Ng5CYzuhmIPcRuTop0H7JiVuc2yqHxJJWF8069TUXJashKm71sYJSkqqKV4rbk0qNO1t2abuSkiE0Eiho1jjrCRobBfjzmnaULqSIDCp46RlnKsqqeK2xVpUy030C6YmFfOnjbNRyzas1DdyGM2MCM4da2pvzLKV9pbStM3wuGmPtXVzMClVt60hTe1St881lPuT1dhQmVgpTGxQaYdIpBNG5YYjNqECZUWxIjqGEVjCbFTl+LalSW+mtMAbNII/X1diNX2WIi0V856DI8zxrSrnp4BCRiA94wok0exyAxYDG1+LbbG+NmkRLTR2maobU0mb+tTHBtoImCRR/REMWiFWWZMLZPVcdppia+e9Zk/aJ1CChU2n4VyuxkrwK8e+0KRtRSqpWChZOFq0KTfqT9CEkTObTEaxsj42akPMMTtohwzbIbNlkzbPS5tYYVVc52qxQdTHOVHySw9Z7Q+LGQ1CYCmNBPyoX71UeWwgmbMc089iytVCoPoUUtfOm/4wpCCl6ZOVwhGiGmtpU25pxJy8bkGiBAwGCkdr1i2JL0U11tLgRdeF5EAJLWB6xaRLn0tZ+IKWsZXrj3v73Sz9y2fJZDJ85jOf4XGPexwxMb1QcVL6wAc+wOHDh7vGHzlyhEsvvfQ+qFlMTMx9SXxut+e69dv4gxMf3pasuiKkfvv4fyf1HzYnvjdf+03AJVft5jHPP0SizyEmJub8uPPOO/nSl77ELbfcwsLCAgMDAzzsYQ/jla98JTMzMz2V8cMf/pCPfvSjHDt2DKUUMzMzvOhFL+KZz3xmQ9y3vvUtPvShD3H69GmGhob4b//tv/HSl760o9j/Xe96F9deey1PfOIT+cu//Mvz2rbzHXtVuLf66RvefzvHrj/L5b9xkMufd9FPXd6Dnfj6eGGI2/2+J27zC0Pc7heG+0O7PyheKXzFK17B4x73OK644gpOf/s/WT15hAPPfiXFus0LkNHDdMOJnJn9dwIzKVQMaq4igaqPldydrU0qT6VDVgoWAkmQArsIpbpyvWgifzQTsH/U58hCAoVEKJN+K2dZ2NEtXSWVx9llm4SrKXk1JxylJMVoIgMRRpP8NVxXMb0j5MQponRwdXXQNoRgERAEkoVZxcZardxyqRYbBNLkk4hW7ZUUfYOw8yCcuqMmVDCxmNiIsm9x8g6QnmmAiggDaiktKlTEJ2vzGhU0xqoAvLrYoK5+/WNGAGSeO+uOsUgY3mEhLShuGFFTQ/3r2gggv6FJD2kzUeQ3les1xnoFOPWjsOFzNbaoqM4q1v22++ESIQWnb60tVylXELVZqc76uCJciY6nbW1Y1BCEYElsF/qGBRvz5lhqbhe/vl2CkOPfr1tNpzaM6q9Vm9jy9livoLnz600N1iYWoH9ConxFfh1E4KEdmyBsHQsgrKZjq2TS8bSK7R+G6UssTtwc4hWa9mOo8ZrWU8rB7B21Ryz17e21aBfz3fbjsD5WaCPUspMwtlsSeCEbC7XfW7U3aPqGoX9UsnS6LrbFcVhhaxWWTxuBUrdYk84PTh1tbbVdX3+lYHKX+ffs3eBru+G897y6vqjan0gWzyk21gRBINGpFrFISh6MDIUM9PucmrWqjkWV2MCRtdiawQDnVm3yJRkJmGp9Z5CSCAXlum3fP2oqe8eiDUi8uv4ZJFuOAM+4Ko0lQzY8iwCbI9ntl8NKehcAmRd4wCo2pwqCVd+kfWsVq5Ccu/tWFr/1aYIg4OUvfzkf+tCHtpUfE/NAxXEc/vZv/5bHPvaxvOY1r2HvLXtZf8GzYedkQ5xXZ++fswSnkhZ5S8Cmiw8N9v/1sWVLcjy6rjpKk9KaTc8yk+19CnK1800LgSeMmGaP8gkQnJLmAbj0BCGCsA+cnBEHVCbvzyiHPCKawjcECNBU3UwqsUE0Bpl0AjYDi7wyqaxqRHUwC7LhWXhRaimoiJNqsX6lX5JG5BSokPEBRagEazmLegJVW1ZrwZa22SqCqwPMewZ19Q8bY4MQCGF9y6IYCGRY6xDDunEvWlRFtkJq0hko5CyUEMhy0HBtRDdeK92kcRfKZyOxLtVBm1lPXV+ulbneVIRG1XIiu6Hm2EK2lsI0bLp+h2WM+gUjEgoVOK5mYgaWz1JNaweiuh4Rjb9DUb/tRqjTql20FoRljQwV2pLGzUjU6r0ttv5amVWcqXtxvFMbKmXaRERp6hpi2R6LgpXq3I9x82re1vp2EVKTypiUe0oJ3PUy5ZFEw9hLaVHdL1LoqE1q5fpCVO8VlBb1u5jJPuOktJQ3EsD6+y2NiMQ10bZoQTawyEaF+XXnRiW24oJW8Rcra5NurFUsgPQAZVKCDdshA5bieNmp1r+5DopIdFhWDCZDfEuQDeq2tUVs5bfVnA11n33VFFv9rAm1YMu3yKpoW2mKrVuPAGbSAfNFm5KSpr1F69hKu2wEFr4W1bRvyqLa59THCjQzwmdZW9W0b5V2qR4v2pwXlUNCC8FJ6VCutKEwYyCAMKkhqMWmlWJ/EHCP45AXAi0lDcNvIfBTGlGysLSmT2nWbcma09jXVWLrujGKJXO/vpAwad/qrxPNsT6a7DVfZevar/LIRz6Sr3zlK4yPj29bx0ORfD6P67o4Tjw5HBMTExPzkxFqxbtmP7tNoARmaCSA92x8gS/+/h9z+Bm7+M6Hj5A9l0drOPJfZzjx/QUe/6LDXPSU6TgFXEzMefDxj3+c22+/nac//ekcOHCA1dVVPvvZz/LKV76S973vfezfv7/j8l/4whf4y7/8Sx772Mfyqle9CsuyOHPmDEtLSw1x3/ve93jzm9/Mox71KP7n//yfnDhxgo985COsr6/z+te/vmXZd911F1/84hdxXfde2977kvyqmTSKnZRiYmJiYmIuHA8KkRLAZZddxsLCAj//8z/Pt771LX78L3/GRb/8WlLDO1rGZ6uT44pLBz1yW5KFLYfQbX+z5ErF7n4fKeBc3jzkFQp0i6R5q3mJxiHvtfixCS+QkeBBsXsiZHXTIl+qLRekLOxiSP3doJTmLWwpqXsg3oR56ZeVJVOWbStSGdjKdqiThFLRTGQEQfuwerQQ7LlMUNzULJ/ubMy1tdy4DW3rHjF7JKyKdrqi4PiNfsMkVydKWzB7e9g9sI5kn3EFyK83/RA2CpUAsosKOt17hwrs2gP6A4+TeHmqqb464aZg6qBFKRdUJ/DaUjFLEz/DBwGVHSm7H+/jey2CsiS/3v0AS/bD/se5nP6RRz4S2uH5JjdNC8pFWD+nGwQ6gGnr5rpJGBqHjcXW6xbKODvUszbXub5CqWo7ByW4+3vhtsnGdmytwNG13o73imPE0qnusbYLex8hOXe3Il/qHg/G5aLjsVuth6J/ALIbstrPdMOyTd/VTJBp/lKxdyJkYcOi5EnW872Vf3LNpZ0/oKhrWxvF3j6fpZLiVC7Rtjy7rElYigNjHvfkXHKhxVypfV2U8ij+8HOcvuW7JJNJPvGJT/Abv/EbPdU9JuaBxotf/GIuv/xynv/855N91z+QfMEv0fekx7YOFoLVaIyVCjXT5ZC5UoJACIJ0+45vLFQMB4o7k8ZpA8AqC8JE04kuBLPSbhAddSIXTdabtG+KRW1R3/F5Q+BuNHyFhRFwdKMiTgBI24piIDrXSwvKvojccHoj4WhGRhSLy7LLcoLNLfO7EBqtO68jDARzs6ZOvZDfhEKuJm4GwK5YRW0nu9KmIGN2tx1hUpsVcy1+07phbON7sLW2XdDUbplkWjOxE+ZObRcGtaJ/yLgYLRe7hkIkOML62Y29RNTG2m1xUa3DdWFsEs6d7j7uBhgdVlgSFlZq5aYXfApTrcde2ZLVcsJKtNgPKakImgRH9VglCOuecYcIzvmdhRVOXhOkTHnLgc1q0Cjea49grtTbrbBAo6m47HZnOBHiSljekiir+zIKKIYCTwm6dTFpqSgpI8DcDCvKsU51N65OsqlcGYA32PhlSisGtGJRWBREb9taEIITkUCpFTIQqOgIGQ4UU17IpuU0igWbsPKS0TAkkQk5k5Tk7c51sVezLH7wkxTvOcXVV1/Nm9/85liQU8cv/dIv8YpXvIKXvexl1e+OHDnCkSNH4jEqcN1113HdddeRy7W60MTExMQ8MPnI4vV8dPEb91p5ngrYCPNtf9fAor/BM279U1xpw0vBLwX4xaD6fOa9+jqs70jcjI3sYXz0ksmn8dLJK++dDYiJeYDyghe8gKuvvrphbPuMZzyDV7ziFfzLv/wLf/Inf9J22fn5ef7mb/6G5z3vefzP//k/O67nve99LwcOHOCv/uqvqs5J6XSaj33sY/zGb/wGe/bsaYjXWvOe97yHZz3rWdx8880/xRZeOHKVdG+jsUgpJiYmJibmQtHb08cHCMlkkm9+85u84x3vQHlFjn32r1m87fquy4VKVN9Ut7z2T4Y9Jbl1Ocm5vHkg7ErzRFioxslvg2QtbwZ1Y5mAQxNRzjSM00rlr2EJCf3pkEyyzZNmQfWZezYrufu4hVImbVKrp9Nh0m5YZscM7NqrW8ZWUK5NEMCZY8ZFp4OjZxXtWPiemRzSPQphZi6z2fPIzpMqpkLmf5lhSA8L6PLGTUWglBrsqRoADO2QZIZ7i91x2GZif5tGCRvbNbsE2TYCmCp1r7Evn1KszvUwexQqCmuKu77Zg0ApYmRGsufRPxtN4sg07H1M7xMBJ270mbu1jGi2T2qBX4KFYwHFKP1Z55lH4x60eKKpDcPWbTo4BtOHLZKZ7b8JpRr+DzCxt5Z+rRXVWK1JZGhIPdMWrUFrxnbRfoK2if5xuOjnLNx099gKgQee6n6+Vc73lXlYOQcq2Xm/TuwwfYq0axUPUq3X40QxyysWx081uhC1rIuE/lRIJtHYKJX+tr7PHUkFXDxu8gEWfLltErE+XqKQKAIkt60lOZVrv4122fTRfmiuE926N29rnexX/oG7b/kuhw8fZm5uLp78iXnQc+mll3LjjTfywhe+kLUP/ytXfusOVKnccRkBJrVb9NkutO8P5m3J3QkbLQSybuxklQVWufGkLAuJF6Uq2hv69NUpZ2RQ+6sniaZPqPY9ko7+EJz1bLYiUUBrWQZ4/bU6WUKzM+Mz6Hbu3L1+yWbBIhcJIHsRQhX7zHitVr/OOLZmx36TjrQrUbq4TEahHIlq4XjSEB7pc22Hmmiog6jAsqBvqO4L2fT/+nq7MDYNiXbPDRvG0oLNddHoEtUCEdnSeCVYWehNuCNCxdq8Zvlc99gK47sglfrZZNUen1Kk+nuLLZcEsydMatweDi2yW5KNrVobSr/zQnlfUvCbrrtthmsTbsiE23pwZFXS1W6a9aWEok9Gee7a4OTNb3ZRkYgu9M1uQs0ksprBXEjGr1rWdowHzUwqYEr29mKDDDTKh9DXBIlut9ompV2oBYtFxzigpdvXR6CZdn1G7agu0S2g1+K+R6Cx0CgEp5RDITrBWvWDFVJa09+iBaUnqn9g7mX3+AH9kTh/S8ptL0PIQCCjc9GOztMVW3I01V2gBNE1oofbyuIdx1h/5/twltb4r//6L97ylrfEAqUmtNaR816N73//+/zd3/3dBarR/YurrrqKd77znfz+7//+ha5KTExMzL1GPiyx5Gfvtb9OAqV6NsJ8dZl1K0+ur0y+v/a3mSqyorZ6Wmc+7PEtu5iYBzEPf/jDt41tZ2Zm2Lt3L6dPn26zlOE///M/UUrxO7/zOwAUCoVtY0KAU6dOcerUKX7lV36lIbXbc5/7XLTWXH/99duW+fKXv8zJkyd51ate9RNs1YVHa01uJXZSiomJiYmJudA8aJyU6nnTm97Es5/9bJ7xjGdw7sZr2BGew3vY87DdZItoydGtBG70kHtm0GO1YFPwZUtXpXKU0mfQDbh42ON4YJMtmmasTII3OytFhkYtqUy2aSFQSnLHKZfKLE3SVZS8SlqjyE2pUmB1RYpDB0O2coLZsx0ehAuYOwOuI+gmDlCujfQCpA0HHgXZNVg40XER5k5KhB9Wt6V+21qRXVaIHjRKFaYusvAKUMh2nyDIjMKeR7qcvtUjv9q97LG9FoV1QX69e9ln7wjwt2c2q9HkqJQZhkRasDant8dViMQ6m8vn0SCA8re7N7Wtlg9BWd+7rkrRrF7oS4Ie3asARBD2bI4V+rB2Vm0XJ7VwU0pkTHrAtVlVm3Csa2fhB2in1uVll6CUCyk3uS6JFrOVyQyM7pIUtxRbLY6p5mVmLrXwSpozt3ff0swQjO+TFHMh+Y3u+6WwKdhYUtvdotoQeHCyTZq3etwkHHgELJyC9aXuAiWAhTnIrgtUF2eBZFJxeH/AmXMW6xvbBUr1Lkp2JP4MlOT207X+cLsQtEbl7GrWeW1fRvGIEY9SKLgrm6SkWtfbiJMUe4d8zm06eEpy+1ar60eN5+7M8da3voMwDHnJS17CRz7ykY7xMTEPJjKZDP/0T//ElVdeye/+7u8y8a0JPvrRj/KiO77VMr5gCU6mbJySwNGaYRWylLeglauSEPhRF7bbC7HQnKXmelQRKtU7K1V6vHbdRmWCXtmQxWJTSTQCK3JLqUzRV92UoCpUQsCAFTLlBpwouU1p3xoJteDMloPXg0OS1y9xtxT9iZDR/pDZVacpTVwjgRLMqQSuipRKldg2i/gBbOUkJUtUU852IuFqRsY1Xll0HvdEjO4w4tylesfBNo5KbtIIhYu5FmLepo7cL8P8CbaPM+odiurckYTUZPqhmGe7WKluXCqUNinlcr2Ph7SKHHV6dEcKg8hh6l50Vaq4J1XL7pVe1B4Rnm+EO83ipFZuSgOJkHIgKIe162m9QCm5pimN1NZ9pmS3bAarxRzUoBWSlJpcG1faikAJIGNpdiZ9TpTcavqzTgwnQywB5Zwk6Hx5BwTZgiTsch7LoKIYFGx5FkGie5uPuyF9jooE050FSmBStJ0uO/g97M8pEZAWmuPKlN0sTKp3UXK0xheCNWmxrmX1Xq4iStpeD0OrX2XTedenFLsLPsdSDiVZ68+bsfKSpFb0qZAVy2JDWgTJDgK5UplfvH2Of/zHD/KMZzyDD3zgA13TXcTExMTExDxUyFhJJpzzeHuzC92clCoMWRnjpNRE6Cu8go8K68bjUuCmbOxE62ehGavrIC0m5iGJ1pr19XX27t3bMe6mm25i9+7dfO973+N973sfy8vL9Pf389znPpff/u3fRkbZA44dOwbA4cOHG5YfGxtjfHycu+++u+H7QqHAP/zDP/DiF7+Y0dHRnuu9srLC6mrtoXo3kdXPktKmR+ibDBiZ0biviYmJiYmJuVA8KEVKAI961KNYWlriuc99Ltdeey3JO+5g6skvZHjfI1rGexlBqhgymg4JlaDgSyxPt03/lvUkczmbbLHyIFzRTvyznLdZjlyV+hMhBLoqPqogtI4eCEciqEzAgZ0Bx8465IptxCsC0JKFRU0+3/1htVISY26gmNkPywtQ6uBeoJRxU9naoGeXl6kDkB6QnLhFoSM3g1ZsVtK+SYlEdX2L/fStIUHFmEEKUO0fWudXYe6OoCeBEsCJH/ioHlNy+b28yFMnVBqckKQGBGtzvb19Pb5HkFvXNeegepqchyYPSCxHcO7u7q/FZxcU2YXzmc3qnfMpO9OvmbjI5eytXnV/NouH6pnYL9laURSb0+u1KntIMDYjWJmNvmjjoFRPLwIloRSlvOTo91TPx8nsjwNEt8nI6NzIb8DdN4YEJbq+zC8sQeDBwvHudRiegvHdkhM/UvSiIfNKsHrOiBI7o9i1R7O2KijkJMUexFKlEiwsS7Kb3fopxUXTPqGCY3MJOguUFBMZxVJesl60WS92u5yZPvps3qHUYXKv4p5kSxhJKQp+yNkOisrAK5G8/bP86T/+kOHhYT73uc9xxRVXdKlLTMyDk5e+9KU8+clP5iUveQlPecpTePOb38yHd6QQdutzyB8OGF4VjGjFChYK46rULv3boiOxKmIh2qd0UkJwyorEFFozqBUlrG3xMjBCpUoqthnhGxGA7iDS1LAVSqRnE/TgSuNFYsikpehzFCul7fWoJ1+WCFF3CevSbVqWZmpSsbYmKJZkh2YRbGQjIU9KIoudr5GlouDcaQij/lI5FtJvP5bJrnQcmjVQzMO5E5HIptUwtGnM2ZMQuk6oNDhmtM0tU8Q14SQ0yRRstREJi7qxhGXDyCRsLCu8sLsQZm2hh3r/hKyfR9nDo5oggFzdNibWypRHtqc6dR1NwtVs9XBfAZqhpCLnScpRCrx2DkqVeI3Ydt60Eii5m5qFAbsyCuhak3woOJd1KLud90sia1Y+n28tlmpGoJGeIEfnFwkqAqWZ/oAtT7JR7v7igdCQ9S3KqrubU0IohmzFom/1dOwBrGqLnDYdQjvnJICMVuxXPselQ0F0FiglUFhKUZKS023G7lWiczIvBOdci1KHTay4J/UrI1pdlRJ/pP3B5J05h/vhz/JP8/P87d/+Lb//+79fnWSJiYmJiYmJgZdOXnmvpkoLteIXb/9zlvxs6zS/wIQzxBcf/sdYbVLGhn7I7V84xS2fvYfQq42xJw8P8+RXPIyR3T3ahMbEPMT5r//6L5aXl/nt3/7tjnFnz55FSsk73/lOXvSiF3HgwAFuuOEGPvKRjxCGIa95zWsAqsKhVoKj0dHRBmERwIc//GESiQQveMELzqven/vc5/jwhz+87fuTJ08SdsmcUE8ul+PIkSPnte5tZcybSQknLTl67K6fqqyHCvdGu8ecP3G73/fEbX5hiNv9wvCzbPdLL720p7gHrUgJwLZtrrnmGj796U/z0pe+lFNf/Wcu++VfZnbsKcgWecxCJbltPlGdFxnLBGwUJYFq5aokOZt3cVCkXcX+cY+7F13KgWyYUG98mVexZ8QnHBLcc3L7TVu9q1I2Lzm7bJMrdlMtwNqGeRAupWLnlOLcgkRFk2Jh0sYqNT6Zth1IpTXJlKDURWCwGk2CSAnpQchV0ou1mNvSjkV+I0TVTejUp39rJViaPCDoG7Y4/oOwY7qSiqAl2W8mtcr5zkKl7KKpg7TpKiyp/O6m6cmdZminZGKvxbHv+e2FW5FQ6dzdqidxFwBByMhOB63aiJSa0DoyM2pyb2qH7WJSwyh+OkelJiFPQ7kdEEGIkBKte5twlDYM75QEpbAnkdLanGZtPjT1aCNQqgiidhwUJPsEJ39U57TURilnu+Cr9sdRw3LRxKoRP+n27Ru1/+CEcXQKSnXft1lmdAZGpiX33NSbWKqYg9yGxu9iWSZtSGUgn4Wls93LldLEJwtQaJoAbk71NjYS4vuC7JZkcbmXySPJ2RW7OineyT2pbwz2DvsUfYetOtFnq2X2DJeREk6uJlgpt77sVcRJY+mAjZLp9380n0Ahoa91HV5/xQSvfvWrKRaLPPWpT+WLX/wi6fR55OGLiXkQUnnw9Y53vIM/+7M/4/LLL+ef//mfefa3rmkZvy4tNqKJcUtr0lqzFQmom8VKxWgSOgHsJMBHsBwNZetTv9W7KqXR7FEB9wwKwuz2/rDeVWlB9zYs1lqwEZiyMpZCCE0urJXt9QvcrcYximtpkrbu6K4JoLRgMxKnJxyF54uqiKqVjqHYb1Mo+Pj17iWNGdAakFKzcyokuwiFdkKUaHxl+mJNMg2lgugoVPKr9ig60pDVpX1r4aZUSREnLFCtimwSKo3PQCkPW2u0dyTSGq0EcyfqnKW6kHBgYBC2NtqL3iooFV2+hREv6S5jLyFAyLrt+ykclUR9GwpzLW7Zbs3LVUw0exSQJROawZQiv9GLu6fgTNautlo7gVJyTVMegf0pnwXPJl8nsmklUAKwhcZDth1a1rsoiUj8lA8FdlETpFq3byKrcaRJ8eYrUd0ddomWbkoCzd60zxYW616rvmN7o+Z8SSkQbV2UKun2UpaiFJp6+D2k43XRpIRCKmtbm9SnepNoxkTIsrYIAklA99zueQSz0qZAZ/ckgMmUjwrhZJMgqNk9ydWa3aHPGcvBE4KVNikjrbzE0pqMVmxKybKUrEjZNn249n1evaJ56zvey6FDh/jYxz7GU57ylC5bGBMTExMTE/PTYgnJG2aeyx+c+PC2+5nKVfsNM7/WVqAEYDkWj/rVAxx88k6+99E7OfWDRQAWj67z2f/9bR72rD1c/usHcdNx2taYmHacPn2av/mbv+FhD3sYz372szvGFotFlFK85jWv4bd+67cAuPLKK9na2uLf/u3feMlLXkI6ncbzjHWy67rbynBdl0KhNlkyOzvLv/3bv3H11Ve3jO/Ec57zHJ785Cc3bMvb3vY29u3bt83FqRNHjhzpeeKzHWdKS9zGAgPjfT91WQ8V7o12jzl/4na/74nb/MIQt/uF4f7Q7g+JVw5f8IIXsLCwwOWXX861117L7R+7muyZ1uowhQQktjSpfqb6zeyV5bV/ui+AIBT4XcUokrsWXY4vmxsu21K0UnYYMY9kacMGJIOZkP07vLYP3SukUjA8pEh1cakMAsmxOwQbazKa6NheB+U2TtRN7YGZQ2ZSJNqUlmytwtIp82+7aaza6oHz1oomu6h7njyZeZjN5P7oQbfs3B4jM5KLnujQwml4G4NTkoNPcEi0ESPUU9xUbK0pur6wG56HQCni6Ld9Vk729vbA0gnFwrGwtq4OzkGpQTh0hUum2e25Q0q+lrQQ8uy53GXm4e0fIoggREQuUPlVxekfeD21iyqHHP1GmbXZ82jEDgKlegqbmtx6d4ESmNRt+x/Zemc3L7fzoOTA47pMNkVtnh6E6Uts+se6VheArTVBdqm7QMmKjvdSDs4d675/p3Y3ndu0S/WmkFKhlOTuI4K1rqIjxciQYnio8/EcZCyGMgH7Jz1AsVW0KHiyrUDJts0P60WbHy8k2PK6n+CBkh1To9TckxT7hnwmM2G0Ba23UfkeS1/9v7zsZS9Da83HPvYxvvGNb8QCpZiYCNu2+ZM/+RO+853vkM1mefSjH032i19Ht3k7rjI+GFEhM6GPjPpJu63boyZAEPTgsFIQkrssl0L0wNxqM+CQAZSQlJCAZqfwSaPwhjqXP2iHDFqKbgOZTc/ibM5GI5BtYr3+OsGl0OwYChjK1CvfWy0lWN+QBIFACI0QTUFNH5Uyad8KXZxhKqTSMDGlcRxTkGojNqisbGo3DAw1fW233o8TMzA80aG4usVKuR7dLHVFoNSbMie/CedOdhbFVouOHEb9ihNkqBqclpoZmTJp8LYRnt/YSzSJvBIpmD4osDvM3whdE8RkVwW5bG/CqNy6YO5cr7eHRrGlEV0clMy90mYgI9cgQzuBUkIq9vd7ZFrcn0CjQMkSmgN9Pv125wpUHJTGUiE7Mj69HBsa2CxY5JvTBrJdoGQJ0xbrJYtSG6ejyv6QQjOd9hl2G+vcKtWbRIOCrdDiVMmppqJsRxLNiAhxu2yfP6DYpXxSkVpwQ5h0m60FSrrab562bU63eNGnmQC69s8V96QxFbIrDMz9rxBtBUre3AK5v3gfV199Na973eu46aabYoFSTExMTEzMfchVw4/g/93/8m1p5CacIf7f/S/nquHWmQua6RtLcdX/73Ke9cbHMjBpnqFopfnxF0/xr3/wTe751hz6fJ9VxsQ8BFhdXeWNb3wjmUyGP//zP8eyOt/TJxLGOfeqq65q+P6Zz3wm5XK5muatIjaqiJXq8TyvWg7A//k//4fLLruMK6+88rzrPzY2xuHDh6t/e/bsOe8y7i3y6+ZmNDMSp3qLiYmJiYm5kDyonZTqGRoa4qabbuK9730vr3vd6zjxlQ/Sv+ti9l/1MmSzmgYzqf3jxQQVE6L+RMBW2QiY6l2V/Iwkn4e7FsyAzbUVOwYDZldtFNtdlYLI4Yi04mGTPrmi5PRCZ1clx9Y4dg8TLQXJHUftyEVJYdtGkNTKTaky8zO5QzEyoTl6h0IFsu0z+3OnYX25SaNSX+3oe+1YCD+kfxR2XSI5fbuikK2FNTsrFbKY36XEshRhF4edM7cH+MXOMRVyKwrbaamr2UZ2yYiOyj2kBinnYP6uHm1IQ8X4XsnwLotj3+1hmUpdgxDapMepx3aNw091G9u4KpXzMHckoNQqhXwvrkodGnHh7gDdZsJNNKWos5N1rkGdOA+bV4DJ/ZKBMcHd3+0lJ4xxL6rQSaAEcO7uMBLcNaVobLFcdklRKtS7WbR3Ripk4eQtwXbXrKZlpIRQC8oFWDzZsaoA7Hm4JAw0p2/X6ET3Y+jcKVhf6n6e7JzR9A/C0SMK1PZjrOaiVOt77jnV2/nnWCbFjCRK/9OGdEJxeJfHPVmXtaKkELRPBzecCkg6mvlNh7msmcn1Mo37oiJO6ncD8p5xT7p9qdbvt6J44ibOfOuzFItFHvOYx3DttdcyNTXVfSNjYh6CPP7xj+dHP/oRV199NX/913/NRbMrnP1vV+DuaqXcgGVpkZUWSgik1rjoalraelel8qhiabU2hB0lpIigEPXTza5KXtSnJgcC9hZCjgcufosJ9GpKJNs4l7QTNNVzrlxxkhFYQhNGn1q5KREJlHYP+GTLFusdUkJpLTi3buM1CyRavLbsDdm4GwHjY6aNlpatDsuIaupNkZLIUtjoOtTkUlkswPxZUeeU1ILqNUuwtaHxWl3nWzgqbaxGToydiByVtnpwVKyiNTv2mnTFuWy34BpCaXQXATyAZTUOU9q5KnWscw+uSs3ipAp+GVbmdNu2q9epGeEaKNV9u6RvXIZ6Sa8Gmn1DPms5i80eUpspBMt+7ZxtJ1ACKCvBfNHG94GBxt/qBUpgDtc1T1KoEwZ1clNayNuRZq5pPNDkpiTRCE+wUSfma+WcBCaV467+gNktm3IoG1yUmjWDps6C2bzTINjaHmQElftSHsu+TTZonSay4qJkoQmBUiC5B7ermAnABRw0RTq7J+0kIIXmrn6rcXza1DdJrZlUIcvSIhCCU5GKLuhvPI6tvERoTVIrilKyJC3WpNVWnCQ8n80vf4PcF65n9+7dfPg//oPnPOc5XbcvppGvfOUr3HHHHdXPc3NzAPzhH/5hy3ghBO9617vuk7pdaK677jquu+46crkeHgTExMTEPMS5avgRPH3oMm7OnWDF32TMGeDyvv0dHZTaMfPIcXa+6wpu+/xJfvQfxwk9RXGjzPXvvY27vn6WJ7/iUoZ3xSngYmLApGN5wxveQC6X4+/+7u8YG+v+xuvo6Chnz55leHi44fvK562trWocGBHU5ORkQ+zq6iqXXHIJADfddBPf//73edvb3sb8/Hw1JgxDyuUy8/PzDAwMkMlkfvINvY8orJs3j9LD21Ogx8TExMTExNx3PGREShVe+9rX8pu/+Zs861nP4oc//CH3/OvbGH/CrzO8/5HbYkvRBLgtFYfHfJbyFmc23Kqr0vYUcDCQVAylFXPr2yfnKxPpJgWcZH7Voliu3MgpWtkTCa1Z3bBY3TA5I5JJM61WLLVx+IjEAzt3KoYHFXdWRUutWV8DjTACJag9/9bGTUl6lTwoJn0UwM59sLpYSWkVUbcZ2rHYWg1ZmW0UKDVT/zB6eFIzdcDhxA99vA4ipHIksnGSJoWGVxGEtEj95hWN21BPKFg/dx6OPRLGd0tya6prarbcumo0LOrw1r3twoHHOyzcHZJdjGbA2oiV7AQcerLLuTsDNubryqyUXzdhpgLILnTZvlZipR4UJvnVFm5gQWuR0f6fS7K1FDJ/pI2YqG7W7+CTXbLzIcsn2giWPB9cMwGSWwkIvd4eikztVmysSUq57gIlMMdcOQ8ChZYVUUzr5fIbkN9oM6lddxD0jUJulfbHTp1QafpSie0KTtzS2/G5fFqhNF0FSvXncbHumXxrFyVYWxF4Hi0FSg3lTilGBhVH7u7c94BieFCzHFisbNisbBgRaLtYkBTKsLBusVFuL06qMJQOSdqa+U1rW7kVcRKY/v3iMZ/5nM3ZTVnt95sJSgXSd17DrT/4Aclkko9+9KO8+MUv7rB9MTExAKlUine/+938xm/8Br/927/N6jv+nje/+c18cNxBOE3DUCGovLs3pkLGVcidtosSouqq1JwCDjQDhFjIqkipnopgKUxotoRkMRT4dcu2FGQEgjM45jcb+qyQXChbxyIw/peafUmPVd9iPWw/vFaR20qhTV/j9UvcLbONXhTjWJq+pGI931SHSlcmjFBpc1N3yoTbuAyaqUlF2RNkK88XWy4s8D0Tn0hCuSSqbkqtUr/lN+sGks3tVS9UklDuUXReESo5LiQHRE+Cpa2NpvI7vI3dPwypPliaNUIloK1YaWgckmlYON34fcVRqV6s1FKs1UxYtxMr/2ojTqqgwsbrdnW5FpuY6oPRKTh73KTCa4X0I4fHtGZ4KOTcvIVuky4vveBTmHIQwHreanvNrCdhKwYKmqW0Edp0EihVjpst3xxj7qbGGzB1aRYoEaV5W+vgqFhxUHKkOTdC3d75tiJUcoRmf8LjnHIolbqLfUqhYKVoUQ5rad5a7QtXKvocxVrZotw0Pqq6KNUP54E13yLXpY0lmovwWFEWa9gdBUoJFAqBJwSnfNPHtS/d7Is1LJy6FMbN4qRaPWBIK3JastVCcFRxTgKYUCFjYcgRx0WL+j65Ee/kLOlPfIHsqVO84Q1v4E//9E9JJuO3nX8S5ubmqsKkem688caW8eInSQn+AOWqq67iqquu4ujRo7zqVa+60NWJiYmJud9jCcnj+g/eO2U5Fo/+tYMmBdxH7uT0TeaNwoU71/j3N32bhz17D5c/L04BF/PQplwu86Y3vYnZ2Vn++q//mr179/a03OHDhzl79iwrKyvs3Lmz+v3KygpgXugHuOiiiwA4evRoQ8qXlZUVlpeXqy8ILC2Z8/OP//iPt61reXmZF77whfze7/0eL3jBC857G+9r8muRk9JwfG8RExMTExNzIXnIiZQARkZG+MEPfsAHP/hBfvd3f5dTX/sIS7fNcPgpv42b3P6WRqAkR5cd8pEIos8NyXkCy5PbhEorOZuVXC1l3Hh/yHy2cZJcKCNUWtusNL/i0O6AtaxkJdtul5i3TnfOKBw0R+/u/MB6ZVXi+QKlTUq31m5K4JUlS9Hk1NCowitBIW+W2SZUAqQNfUNQKjaJlGrVrAqVlk+byatUv3nrO9juGloluypwU6qjQKme3Q+3CH049aPujjtjeyR9o5JTN3d7XR8mL5IkM5LTP+oSq2B42kygFDc7TyYVs1DMbhcOtSLwYHNZUS7UldnGVSkow7m7AnJrvYlXRmYk5bwmv3Yv2iZLGN9rkV0I8VodD03MH/Hwi23q2+SetLmoKGR7qGuoyK9Dfr17O9guDO20KHmacpf91j8Gk/stTv0obDh2WwmUBidhZNri9G1h13Rs/aMwc5nN6dsC8j1MtK6c1bjJ7u3QP2rSLW6tdRco2Tb0DUOp0HgebxcoKSZ3wuI5KBUlpTbnZ81FCVbWJJ4nugiUYHRYs2tGkTutKHntBUq2VFy0y+fsis1WwWJ+TaIyrdPBpV1FylGs5m1Orla2pbVAqdKPB0pybNUhW25f3+yPv8bZG7+C7/s8/vGP5/Of/3xPby3FxMTUeMITnsDNN9/MW9/6Vt72trdx4MAB1n/5aTgTh1vGL0uLnJAoIRBak0BTEhK7IJuESoKT1PquAUJKSLymiXqrLAgTsG6U4mSEYkwGzIbtUiiZ71KBccg8l7XJh+371opTTL2goLWbEmQ9K1qDZjChIuGlqFuuJlQCSDqKTEKxUZCttTaRHmgz5eBuBIAmkYByudMks3FU8gNBLzlYEymY3KlZOAtex3JBSs3YTsiuasrFDkIlTIrS8WlYW+wi6pFGoN43aNyROrnuAeQ2Kv9q72hYwStt1zC1c1XKZ1sLhFphO5Dsg9z5uED1QCJlxuPFre6x5YJJUddNoAQQ+IJ8XrYVKDUQCrIdzod6Uo5mIKFYwuoiUILpdEAhkKx7jWW3EijtSgVs+pLNoHs9JtIm+djZXPcJLl9jhERd6moJjRTgK8FG2eooUAJIWZp+W7FebvRoaxYoJaXCAvJKsha0v1X3Bivub4IlYZPT3QRjmmk7IJ+CorfdRbieIUIGUZzGjtJgmgpuEyhpzahWrAtJIAR3WU5LR6SKe1KlH1+RFlkh27onyWKBjS99kdzXv8dFF13EF77wBZ71rGd12b6YdnzqU5+60FWIiYmJiYnpSP94mp9//WOYvWWJ737kTjYXCyYF3BdOceI78zzhxRez/4k7HlIi2pgYMC5Fb3nLW7jjjjv4i7/4Cy677LKWcSsrK+Tzeaanp7Gj9MzPeMYz+OpXv8rnP//5qhBbKcUXv/hFBgYGOHzYPIvZt28fu3fv5pprruE5z3lONY3cf/zHfyCE4GlPexoAl19+OW9/+9u3rfvd7343U1NTvOQlL2H//v33ehv8LChE6d7SI7GTUkxMTExMzIXkISlSqvA7v/M7vPCFL+TXf/3X+cpXvsJtn3sbk4evZOaRv7gtdit6S1eiODzmsVaUnFxPYHkaGWpUQ7oG85B4JKPYMRSwmrfwmoQL9RPsUkAQiu0pPVpwcs7GjSZ3LKki05ztD6U9TxIJ45kYC1EKVtZsrGI7BYVifFLjlQWnj1cqWf2pugoVwLFbqT5Il7KF2U5TdWYulRS3NLNH2gstVACLpwDLIpmB8mZn8dHcXSFBuX6dnRyVNF5RVwVUnSjn6C0/FXDsu34v83qAmVgb3W2xcHcQTSa239fzR1tsu+ebxm5io5P7U5Nj0+iMRW5NkV/rIuzSuvbXBTcJY3ttSjmNV1BtHZQqbC21rq8oe+gmIdbSPZ3VPiJUUCwztDeBCiG72H1nBB4c/bZvbLi6EPpQ2tJdBUpgjl+/pFsLlCrLRPt8a5WeBEqJPkEpTy0lYgdS/eY8mzuqGlLZtUJKk17n2I/oevxm+mB8UlPICbbauD4FKQvHVkzvCDkzZ5m+Z619mbatCALJalaSx44ESu0JlOkf62f02jko7RzwSTma1fx20ZPlKWyT44Wkrbh03OPMhs1CXpItt74UFtbnyR35DKdOnWJoaIiPfvSj/PIv/3LH+sbExLQnkUjw9re/nRe96EX8j//xPzj6V+/n2S99KTfsOYDV19cQq4WgEPWbI1qxMwy403YJIlcl6YOq6g1q7j0ThOTRzLcY4lplgYguU9qGQIuul/EykpOegyoDtnEtaedUko3EEhLNhBuw7Nl4fQI31/p6mrI1o8mAgu/gNYlI6kUyWyWLXEmiEQh01B22TwOXSWvGxhRz5yyCDmPLQuRORUJi26C32l/Dy0VYnBMNAiXlVhyVGltRKXO9bTuMsGuDxzAwZXcTHQEUclBolba2DanIZb6Ya7wON1MutnZ1kl6IbkrH5ncQ3EPNUQnAScDQmLmGdx1aKo1QGtFdT0+qH9xUTaTUThQDEIaCYps2S6yW8AdqD2U9X+Blu9+LZBY9kjMW2ZIk7EHQtFG0yBYlVrpbrKYYim3nwnaBkjn6PSXw2zk+RePNMBIOLeRtumfy06RL2oiO6C58Gk+HuJbmzKaN9AWije5HRI5PWd9i0zfncQUZsG0sNmKH2EKTL0dubi0IMjAShmgBWW2xoTvVV0e3QIKzZYdSD0YEAcbdSED1mGzloOQCO8IA37LZFNtTttlboupCujMMGdCKO22HUAjCFuej1pribbfifeHzeIUC73znO3nd616H48TuCT8NcVrimJiYmJgHCjOPnmDHw0a5/dqT/Og/jxP6isJGma//3a3c9bVZnvTyOAVczEOLv//7v+fb3/42T3rSk9ja2uIrX/lKw++/8Au/AMD73/9+vvSlL/GpT32KHTt2AHDFFVfwmMc8ho997GNsbGxw8OBBvvnNb3LbbbfxB3/wB7hu7Qbmta99LX/0R3/E61//ep75zGdy4sQJPvvZz/LLv/zLVeemycnJbengAP6//+//Y3h4mKc85Sk/o1a496mle4udlGJiYmJiYi4kD2mREkBfXx9f/vKXuf7663n+85/PuSNfZfnEjRx88ksYmNiu/lZIjq24lKMHtWlbEaAglE1CJVjaslnPS3wlkShG+lTVZQkgSErskkJpyYm5Wr60PVMhKxsW+RYp3QIlCaTEIuDg/pCyB6fOdE6plMmoSKTU6QG25PhdqjqJIqWqOqGolI2siJvqhD4jkzC+C47f3tolSScsRDlk9ojqOaWH7cK+R0tWTmlWTref0SlFEzPShmSms4hjc0mzudRm4q0pxVlD2rRuhObt/GQflLq8VW+7MLRDkl0wzkqdkDYMTkg2lxVhff4DpbYJlVKDMDAmWTzevt4V4dDd3+m83p8ErwB3fq2MCKMp2w7iq/4JiZsWrJ5q2hetnImmJOW8qu7nTgxMSpSvyS52jrOje6+gpMDpLlIy4qDOafQqbK3CVou0dw1IyAwSuT51CbVh3yMlawuKxRNdq0pxC07/2DhKdXJR2rkP0v1wz21smxSrd1Ey5z/kc5K7bjeiolZU5gZd10yKJ1wodnAe6M8o9u8NOX5GkA1s8m1iJYqZyZCldYuiJ7l7rnbjHKQa65K0FQlbkS3ZnFhzou3aLlCCmntSKZDcveqw3i5tZlBi4ZbPMnf3zQgheN7znscnPvGJhhv4mJiYn5zLLruMG264gX/6p3/iDW94AwD2059J/+OegGghyF0TkrLlEAgBWpNEmwRvDUIlAMEJk5gIgAyKMoKgbqLf7wMnBwUtKUTOI0kUA1KxrKwGAUGFEhKGYGgrZDrpc8pzKXdwLXGEJmMp1oQm1AIZaJS9vdxCIDm56aK0sa+s/RfKgxaJrLleaimqv+4cCciXJBuF1n29N2hD1idY6CxQqmdoSNOXUSzkdAcXHVF1lkkkdfTv9rFrHQSzWgCWrAp61ruIa5uRFsbts8tlN91vhnm9OB85rnF1KjW5QopQbxMq9Q0asVKnsa30AsprcDZ3799qbVTaq+JI5bS77msGhqGYB9/b7oBTj5SaZFJTLIquTkquA0OpkK2yrGWra4NjafwQrLKGdOdYEKw1iYadolmB19dYJ41gqY3AuJ6EpfBDQahF17oOJ0JGEyEns050TnZmqWDhhCBDgZ9pHW8Lze6Mz2LJJh/UBEoyuq2q366KmGm+mr6udZkmJaEgLU1632xHgRLssgIsBWcCh0Jf++1KoRhAsYhNDkkuGksJwB+oazytGdSKTSHxhOCuSDy6bdu3BBKNqzWeECxZFqvItvcKzvISs5/7HIW77uTKK6/kPe95D494xCM6bltMTExMTEzMgw/btXj08w5y8IqdfPejd3ImSgE3f2SNf/+jb3PZs/fy6OcdxE095Kc0Yh4C3HPPPQB85zvf4Tvf2f5gvyJSaoUQgre//e383//7f/na177Gl770JWZmZvjjP/7jbcs96UlP4m1vexsf/vCHec973sPg4CAvfvGLefnLX36vbs/9hTjdW0xMTExMzP2DeEQfceWVV7K4uMgf/MEf8J73vIc7v/pe+sf3cfCKlzLYl8FXRiAkUYRKYOa8FYcnSpSHJcdmXWSoSTqKIARPWEgUtg2hpxjrV+wZ9fEDh2yp5uaBXREAKJIuqFDRl1IUSkYTUXEZcR3zILoam4SlZUEQSmxbYVuKUvSw3nUVWoEfCQvmFwVeJCLqHwoJfSjkrVos4HsSpSCZAnTI/othcS4knxOUikaolAgDhIzScUjwyrC1bgRKUhpXncrkju0acyO/bAQUiTSQgNFpwcI9GjcFpXxdbFRu4MHyaUV2KXqIL8FJRSmpdBRrU00ttvvhFm5KcOw7AUhIZATlvAa1PXZ8nyQ1IDhza2hiUxq/YCa5LEdju4JyVKedl0jKeVg9YyaAEn3gl4xjjrTBcTXlPEzsl4ztsbjnRh8vWnZbbBKKm3DXN30cB+wkBCXzsD/RL7bFqgB2XGwjrP8/e38eJVtW1nnjn73PEHNGznPmzTtW1a25iqJAXwYVacEWrG66HRqF7hZ0udQefq3YtooC0gzdvErpqwtbJhsbUGwnoKULZCqogpqHO8/35jxFZMxn2Pv3xz4xZGZE3gKhqijOZ62ouhnxnH322WfaEc/3fJ+A0qrCr3e2q0ysK3GSkOqT9E9arC8oJLTK5SUyZixVNTBjmIZGNURLa9e4uGmzzsAz+zWRppUXeSqxXlSSxnZBOhqvKtqxoSlLh4T8hEUiI1m/ECJd46jjldvthhKCaFsnrnUorYXMPxG0xqXRjHUVWpsqeABLpwP8yFVrZ6wdfdcI6jB2UNI3Ijn5ZQ/lB8iUjZOgtc9t1xgs+Z5xJSosKirFaN8IhZON2g0Vdkq2js2hacnqeVMqMQw6jtkKoHVrDPtGJSP7BBcfM6XxWmOYihKdHcdsoy65ckrhN8x7TRFgMmP2sVImmdo/YZZbnwe/ZmKburZk2pxTSpnybpYLxQ1z3rrJttMFgDtg4TWMMNF2A45cBxtrkqX5aHtche+Za08iBZ4HSkn6BwIqWlOpSp48aeM6Zv940XUrmVT4nrmWSVvgK83KuqBaATdjjhsvuk4lXUUQRNdZW5HPhFTqmprnYtvR8R20r51BdE2eG2yQdOCReVDKxpEKVyr86JhNOopAgtUnuH6kzuUth6WSzWbdxpYKWyrqHe1ePnYv6yf/ga2tLQ4fPswnP/nJVn32mJiYbx1SSn7mZ36GV7/61fzyL/8yH/rQh5g+f5blF3wvmX1z2IAXJbNtoB79O68UB1TA8SyEZQvb19hoPATKES2JYoBmgoAAuIQp6SYxsRqBCAVNSVLS1mSFoojEh22xPkYgZKPxFax7Nr4PCaHwLSNeF2gcofG0AASBFlyqO/haApqsG1L1JUobJyTpCgLVFiQ5UtPnhmQcxULFRmsjqmjkJdlySBBGfbag6gmqkeDElsZVKVRGwORYTd2KwPc1tq1JJTW+L/BNFbhWrG2bKqtaC8ol8H1JkJRYtQDLMnOUMIxiHXN/01pgO4qJGVhdhEpFmFhLoKN5je1o064SSEszPAGbq+A3zN9ICCPxlJUUaE+jVOQ6NASrC9HxYRktQxiJOSzHtKkUTOwzwpuNFbNNu2Jt48y0vgQIU3YtCACtkRKEJbbHalPKOJGEtcXmtpr7n7QgiEqiyYRoxVZLJq4ZKyRYFgQ+yHpg2gXwApRrmzEMTb86Y8H8u1Obt1estM0ULayrdmzDRyUchNBYdjNWYDnQN2jmNb5n9o0KzP1fCLPtflQrMJ1WjAxpLl620Bps2+wXpcwxa9nRtmKOpUsFm0B1HIcawuj4blb0kwL25xpsli02GxapzRB/UJpjNhLmOVFs1lE4UlPyzcMdAKmGQgsT65YVuk8QKM1YMqQSSOpK4jf7ENlJBVrglhSOhFBrJjMhVd+In/zo3LCEOfMC3T7/Qg3FmsQPwBKgtO4Rqxi0Q9arttF5SWjWW9wVKzQhmqIvaYTRerx2H4Js2yVy0A4YdkLO1lxUtKyvzXhbaCyt8bW5LqUtxRYWC6GNQOOiWtcpK3JN8iNRoxPClpKE0d8umgDRcY2jVRozjSJPyCoWBGyP1bp1TU6g2R8GXJQ2m5ZFALhaEwCyLFvXTg8Yz/ikfM1Z28aXEh9BQmtznRWmXavRYO2z91D88pcYGhrif/7lX/KjP/qjcTmXmJiYmJiY73Jyo2le/v+7nUsPrfDVDx2jtFpDh5rHP3mes19Z4M7XXseBF4zHc4aY5zTvfe97n1Lcr/3ar/Frv/Zru95Pp9P80i/9Er/0S7901TZe9KIXfVNuSB//+Me/4WWeSUI/pFE2X7Djcm8xMTExMTHPLFe3E/kuQkrJe97zHubn542N5up5Hvubt+Fd+r+MZ83kJZ9U3DBRJ20DSKqeJOmYREHaVVw31WByMESGmkxSc8NUg3RCG1elqmRuxPj6D2cCrhmvMzEeLZuAo/s9EgnBk+cdEg4cmfWZGApIuIrDUz4zo0aVkXDh2sMBCkmpLBkeCrn5hpDRYfP5/tmQ6Wnzb9uGaw8r+vsEAsWBa+Hoze1tnjmgmZ6Lki8SDh/VpPtgc00gLfN3M3EyfRimj0QLKpi71ggeAMZm4citZn0AUwdg9pq2q8uB2yRjByA3KMhPwMHbLdxIQDJxUDB7Q/tQHJ6RDE6Dk7MYnIGDdzgkoyowowck+25ua+sSGUElcrtJ5UxsOm++oA7PWey/rW2xMLLfIjskW+Kag893SQ9EsbMW+2/viJ2zGdln+uQkTWxuyPw9NCM48HzjqLJxJST0NOOHopIntontGzWxAxOSg1EsCqZvcJg+Gq1Hmv72T5jY/JiJDQM49RWP7JBg+ob2th58vsvgtFlPbtD8vbWiOPkln4nDFjM3tmP3P89haMa0mxmWHHxhirEjNrM3SsYO28ze7HTEugzvM+1m8qZdGT2UPXrIZu62tnvM3O0JRg/ZrfG+5sVJDv8/ZkI/fMBh7vntJxBmbk0wdsSsx01B36jNyhk/GkOLA3emWrHTtySZuMbE2kkjaKkWzH4dnLE48HyzDhEqpm9OMHm96ZMb7cd8NN79zfFuHrPX2cxcb/q7fDrATgoGpsyHfQOKg8+zkdGwTV4jmbneIpmGZEYwe6PF0JSEUJEbMu02RU8ThyUzN0aCL0uw7xaL4dlovAfg4PNsEmlzXo0dlOy7yWbtQsilx0JmjloMR8dWOmdiU9HxPTInOXyn6VBpDWaPSkbnzDGazJrzJpWPYvfBzHWydVzuu1Eyfk0kPkzCoZshO2BiZ6+FgzdCpQhrCzB7xJyjYM7Zw0cV+Sh2YECSTEEhKtk2s18zvU+jBQgLjhxVDAwaAdKBa+DGa8PoGiGZnQ6Zm247ZV17KGBsNOTawyGjQyHXHgxZ3bBQSGZGAw5Otq3CrptpcGTaw7UVuSQ4lmKrYsZidjjg8JTfclG6YaLG3KBZdq1s4Vohadd8NjPgc+1w06JJcf1Mg6mhkLJncaXoMNPnkXHNsTXd53N0JLqIFc9x8fN/wPmv/zVaa/7rf/2vnDp1KhYoxcR8mxkZGeGDH/wgX/nKV7Asi4U//H2uv+/LzK6vtmKmw4CpSFVSEgIrclMCGCPgiGwgAOnDJAHTBIDgPA59hORRpFD0E3INHiq65o5bAVO2TzGwOBc6HLB9hkXAoAhJC8Vh22sVfRqRAZPJgA3fAgQHMw2OJhvYQpOUmoMpDzcSSgw5ITMJ099+W3F43GM4Zf52Lc2BbINkVN9sIBEynfUpeZJCw2IqEzCYNNdRR2pmRnwSjmk3nwzJJ1Uk2NTsG/EYzJh2bQmzwz5JR+PlbTJZzeREQDqtSaU0I0OKgQGzTilhejIklTTtJpMwMqQATWJIMjiiGBhuOk3C5KxulU5zEwIhNNVICDowrBka1ajIoXBiH2SiCgyJJAyMGiENmNJnwx1Vh8ZnaM3D3BQMT9GaG+aHYHiyHTs2K8j2m39vbRg3o2YFqL4BGJ1ux45OQy66pzkOTB4AN/rtMTsAY9NtV5iRSSPkKa7B2hJMzLX7kOmHsX3tdofHNP3DsHTR3E8n9kfCbiDTB+Nz7djBKUH/mGB4VpBOBEwcMEJjgHQWJjrMWgfGTR+aTBwQrXlBMmP+blapHRgx9/R0NBcYPyjIRP9OpE3/reigzQ9EDwtEYuyxaVqxbtLENuftrmMqC6tI9DM+FtKXM+PkuOZ4sR0QQpPvU0zl23XppvI+A6nomLU0+wY9ErYR/lTqkny6PS+Yo8FQIvqOIuBAziNlaVypGXRD9kXft5yaZjwbMJQxsZaAAxmPrK2RArK2Yn+mbeM6ngwYTQa4JSMU2jfokXY1i+s2dSXY39eU4sBoOmAs3e7/4XyDfjuIyikK5vJeqzTcSDpkPNuOPZDzGcooXEuTcsy26sidaDgRMpU2/U9aioO5Bv2OYr1hk9BwMO3hSDOmg8mQmUR7DjTkBIQaQiARXU8S0pQAHLQCZlMmdjQRcm2/x7A01zgHOOx4pKJrz4AMOWB7DMqAKREw4/hkpaKqJTZwDR7p6No5QMi1NBjEjHEfiioCAoEFHJEeWRR+n6ZfhdzsN0BrGkJSQdAXXcMEcG3gMVhut3udbCCBJcvCFzATto+Ba3yPAaXQYUjy619j7XffQ+W+r/JzP/dznDhxgrvuuitONsbExMTExMS0mL1tlH/+7hdx2z8/hBV956huNviHux/h02//OoX5p2CbGhMTExPRLPVmOZJEJi4rHRMTExMT80witN7h9x/T4vOf/zw/+ZM/yeLiIvl8nqFrf4iJQ7eTcRWlukQhSdnGiaO2Jbl2qkHCVpycT1APJFIqcknzBK1SkqStcGyNY2kOjPhcXrcp1iyCsnFqyaU1lZogUBLXUaQSIbNjitVNi1JNEobGWUmiyGU09aImCCSuG7BvWrO+KdnYtMikTammWt04n+RyUKsZF6ZcNsAJQoqbFlIqkqmoFEY1is2bZEYQSGxXkclqsjmYvyxIJUF6ilpUgis3YNyQfA8O32IEDKceNp8l0+bp82ozNh3i1YwDiyUh3QelAqBMAkba7ZJtmQHjCjNxWOAmBUunfaqb5snvRMa4xTTLZWWiBIxXh8EJgVfXVCP3GzepcRLt2HQ/hL5xuJHS/F0tmqfK3RQ4KUFlw5RwS+fNU+yNMiBNUqu2ZZZ3Eho3I6ism1MnlQcdRiXfhCA7ZMrRBR7YCSMuKa8DQnP0pS7F5ZD5J82P9dkhQb2sCTyB7UIyF8Vi/i2EWS9KkR2S1CuKoE4UKykXozHMmvFvlpLLDIFXgaBknIjS/RInLUjlJGsXfWxHUimJ7WNYNfshnRfM3myzcjZgayXEcSWVTRXFSnxP4W8ppA0jB20SGcmlhzzcNDgpacYQSA9IAt+4JUkJ6UFJtaBQnjKxaUllLRKY9UuUEKa8m4TsoKS+pcwYJiGZlVSWg2i8JVprvKrmyEtTFJcDVs53Ge9oDNGK+hbReO8Yw0G7HZs1jgW1rfax5ZWNk5XlQKoPyptmvBN9EqvLMevVozHs061jtm/UrGvjShQ7KHaMN63YkQOSsf2Sk/crvKpJJvp+FCtNwrSyZWJd1zg2NY/v1LCFCiM3M4k5l0tGTLbvWpNUXYscKtI5WrEqaZHLg+MoQFLaMo5qpWLkZJBV264R+QFFpQRBYJMb1SgNWyVTxjKVVAgB1ZoEKejLKjxPMT2pWV4VCCHZKkOYsEm5CilplbXsz/rMjQUsrDtsbEkyKU2pIsx11lVYEgrCZFNvmaoRhPDEUgpbqtY1WXjGkcmRmlLdYjgXcGDM59SCwyouEkVfUkUlasw1WXsFuPIl7r33XlzX5Sd+4id43/veh223RX8xMTFPD0opPvjBD/Kf//N/plwu86Y3vYkPSoe0Y0q4NYQErcloTUMIUiWTSF9UtnH/QJCIalnWoh+w0yg8BLORZ8wyNjUEdlngYq5ZzdJtKaHIWIp+GXIhdHAE1LRxKHExjm6qEDk62QF9juJKzUEACUtTFaackyM0ltDUlRET9VshwaZxT7KEcTzyQoHSAltqpAP10PQhYSkytqIWSuqBIGlr2FCtWMvSNHwjkJ8eDlgs2JQbFgJNwtF4gWnXkpp0NcBrGLMW1wGtdeSyqUkkzP1FKeOGZNvm3jI5EbK5KfEKYVQiTJNIRrGhcUNyXGjUjfBHSk0YilY5sZQVEvjGhUnKdiwIbMc4KTVjE0lNEBhnJUsr425YxzhnOpG7YaQjdVOi5VwkpFm3VzdzWMs2wpymcN5NmDlcGEAurxkch8unzX3Pss3LqwNC4CYiZ0HfzLncpGlHK7BR7ViM25NWGPceYURYfiNyN7TMvb5RM05KTsL0rW9EUNk0jldBAwLLRlpG+NMsF+e4xp0p06eZP20cFn3P9HdbbKBM+eAxQaWgW06lvgeh47THuwFoM95mDE2ZRDfJrjGsuK5xyLLNQwlec9+4xhErCI0ozXXNHD7fp+nLKZZWJMW8UX4lbOMyG0SuSwlbE1YVWsttxyyAa2uqeQs/ik1amoaKzgVhHJCCciRcs5Rxboocvaw8eMq4jNlC40hNrXneSIVTNucVaAbTIcWauddbQmOloRYYpzNXRk6O0fl5uK9BxZcsVhyk0CQs3Yp1pMYKdNSucV0LFaaUt9DIHNRDc41wpEaiaSjJdNrH0Zr5skOgRavdemBidQ5sochZmjXfIiE1gRYtt6QkyoxLdD1xhKKqLFM+rU/T0BIPM4YpoanrKDY0rm6u0CSEZisaWw9JkNWk0DQQhJE73DgBaTSncUgFGgV4kTtcM7beB30q5Ejgc9x2qUjZElnWhcQuQTpyswuAw8JDIzijHfw8JLQpCV2PlHYZpShcusjofV/lwQcf5OUvfzl/+Id/yIEDHcq9mJhngJMnT/KGN7yBP/7jP+aaa665avyxY8c4evTo09CzmJiYp5P43H52s7Vc4asfPs7lh9sPtEhLcMMr93PrXQdxkvHvODEx3yl8o3OvJv/Y6/TSiQ3+7i33kxtN8WO/+9Jvup3vNuL74zNDPO5PP/GYPzPE4/7M8GwY91ik9BR4xzvewW/91m/RaDSYmZkhc/iHyY8d2hWX9AIcG2qeSaonHcVmpf0FSVntp0LTrqIalU+aSAasF2SU/tqOlEZwBJLhfMBWRbZKHgFYUbmHTqYnA0oVSbHY2ygr4XscuV6zsiRYW+4dlx9QTM1qzpwUeJGYQNaCXXFNNxrV/KhLk6LRfop2/80S39NcOd778LNsk0QJa2HPmCaDU5Kxg5KzDwSt0mQt1PZ15IYF/eOSy4/v3o7tHRYMzUi2OkquASbrtIN9tznUCoqVc6HJcnVDawanjeCnWWKs2zrBCHP23WKzdDqgsg7RQdCVmZsdVAjzx3aPk/Cvso2Atq1d7133UofV8wFr57e3KcLe/WgH7d7+ZF4wc5PL5Ycb1Le6t9Hsx/47HEqrirUL4d7rlDA4bbG1EuKrHk8+KJPQ23+Hy8KJgMr6jrac7T9gDM8ICquaoLL3dvaNCnKjFvPHd8R1OTZmb7ZwEnD2ax1j2eMY0VKSzLRLIXYjnTfl6C49qVqCqqZjWS/cRDt524lKtsdt30HjiHT+tECL7tcE21YcuU6zuiJYKvYYcymwLcXMZMj8orXtegUQJjr/Voz1K9a3pCnzJk3JuW7k0iEN26LqSxK2wg9oXTMtr70fbEvRn1aslWxAkU3Cptz9Q1UQVBnb+iqf+cxnCMOQ5z3vefzZn/1Z7JwUE/MsoFgs8ta3vpW7776boaEh3vKWt/BfVzcR1u5rXW5LU8cICvKElGmWNjKolnmhKYMUIEiicCpQ192vNxJtShxZURk4LaGjTbew/VrvCM2QG7LSsFAIlN39Gj9e98knQi4VnVapt50oG6YyAZ4SrNY6nCOLu+/xltRR+TYAjZa7t8ctmnlAwtWMjIQsr1j4fm+XEtvWBIHA6jLXAzqGQTMxrWk0BBuru9uTfsf9UWgGRqBSgkZ9b4cUWyiSaSPI3b7e7cslUsalafmyEQ71wrI0iVRbNN+VqO1cv2l3bTF6O+jesJM0Lk/LC4LQ3/25rF997qXc7fel3CDkB41IaRc9+tGJTu2+Jw+MatCwudJ7Ob8vQTKpGcgrlldly0mpF7atcV1NtSqpjXSfB9gNxUAmxLE1K0UjHuykNtA+jx2pSVmKLV/i1PZas2YsG7JmWS1hUhO3tON8tDSz/T5LJZuK144NE923zdampHbnOSl37NfRbIAQsFxq7zc/0+W4D0zpNylMCbxu57kXOS+5QjGb9JlvONSURKju34kG7JBBJ+R8zaGR637NEiFkRUhSatbC3XMeP9v+t4MmhSkZJwNzXVRd+inQ9KFY64uEYFoZoWiEXWpfe3Io6phybi6KAEEjv7ufzsoyUw8+wOc+9zluuukm3vzmN/PP/tk/67pNMTFPF/fccw/33HMP5XKZxx57LBYpxcR8lxOf298ZXHxwma9++Djl1fYEMjOY5AU/dS1zz49LwMXEfCfwTImUzt23yOfe+whj1wzwI29+wTfdzncb8f3xmSEe96efeMyfGeJxf2Z4Nox7XO7tKfCrv/qrbG1t8frXv575+XlOfO6PePz/vIfa1uq2uEBJatGP4aP5kNlhU9qtiQw1MjQ/QFejuIwL06Mh+Vz3BIRJ2Jvk/cRwyOjA1QQ7ilRKk3T3Tmg0HJv1VUFxs71cN4qbkmOPRwIlqUhne/QzMC/bgWueBwPDu2M6hRTFNUVxdW99XBgYdxyRsJg+atFFZ9BiY15x7sEuAqUuSEtgJ8Se7Zk4zfCcRf94x2nSQ9PXKCm8uu4dE723cWUPgVJHXFAHr6LRV89zUSuE1IrhnkKmJnaSXWe9CK4uAoPuYqFu7e1CKZQfUt0M8apX72O9pPGjsdxTFKVg41JIUAfhdckSNsdDQr2saZS6tNUh4rJdGJ6V9Hc5dnfiJAROj2TXTi49bsq87cXwPklfdJztJVAC49JVWtfG5YvuAiVpm/KLwxPm724CJTAiyHTGjMvFs4JzZ3oJlExMEEjW1wQbtS6iKClo1UcRkEpqksndYZ24NkwOBQz2mfZ7CZRAsW/MZyJv9nMjMKJOy1PbBEoAY/mQ6aEAKY0zVLm+vU2lFJcf/iRP/O+38elPf5q5uTm+8pWv8PWvfz0WKMXEPEvI5/P8t//23zhx4gTf933fxxve8AaS//ODVI4fY6e2vo4REFloJmVAXmy/JkjfvBSCIErEDxMyaQVA93t6M2Gf14oJK2BvGagRWiStjvleoCOxwnbWUzaFutUhXNgdIwNYLFqsRtfZhKUQPfrZFCj1pUOmBkNkl3mAlzeTHd+HSkUSXGVeEQSRk86gJJPba54mWFkSbKzuEdJEm7Ji1lN4sDmVF+SHYNutqEuSIfCNw9Ge+QetCYOrCJSiOIAg6H2/7CT0oVYGEWhEuPdcVghaJXQ7kd5TmODBboFSj/Z2obVxMK0/hVDVLPX2FLoTCKrVyHlsdffcy25ELkWhoOEb8eBOUpvtOVHODhlOhri1vcdRCrDlU3uuxg8FlzadbQKl3e1pRlMBUinCyC0N2teLnVQ8SaXR3pZuAqW8CNmX85FCozra3ElSmtKKnpacrbnUA9FDoGTeK4eSdd+ikesiJArNC0yZOFP2be9xGiRknAArElR1EygB5FBMywA3Oj+aAiW7JDoESmYPT4mA/qhsnIfc1WZYLrH2V3/J2f/3PTz66KO8733v46GHHooFSjHPCl72spfxjne8g1/8xV98prsSExMTE/MU2Xf7GK9594u49Z+1S8BVNup89vce4f+84+sUFuIScDExMd2pbJgvyZmBq/xoHRMTExMTE/NtJxYpPUVc1+UDH/gAy8vL/OAP/iDVzQUe++Q7ya58Gq9Z86mDi6sWx+ddQOLairlRHzsqL9ApVqp4kscXEmxGT+aODQa49u4sgVKS4+cdrqyazMRwPiCd6JZNkJw+a7G8anbt2EhALtM9bnlB4ntGAHXoOk0u3yM7EQkHJiZh/2ENPZ7iBZM0KhWiJ+BVxyuiKajYmIfSmnlvYLxnc4ApvZEekCQye8c1xT9jB6QRzzSR238oLy6FnH/Ab7s+9UAFcOY+j9UL0QbsYTq2dDqksNC5obpn/MCkZPzwHhmmaLnLj4emnNhVskZrFxUbl6MYpXrGJ/OCIy9KkRnYvf9EEPYUK4lQ9RQL7bs9yfSNbveOdfTFK8P8Y96eY95c/+KJgOJS73WCOR6mbnK6C812jEFQh8uP+gRej8YioVLgwemv+qxdvHqWbv2y4sKDO7JYO/b3yJzETQOK7U5cXWIzA5JM/96ip9ygOReUgoVTGqV6OyipIDoP90jMqqTD1Kxm30GNFioSJ3V3czt4RDMwaMZleVHiNRN/TWGSFEipmJnwsaQiCCTHTttslbu0h2Ji0Eei8ALJkxddVgpddyRj/c3roeT4WpKza8a1Yac4aTgXMNZv9uPihsUTl9yugqd/cqDIxXvezeKxfyCXy/HBD36QM2fO8MIXvrD3QMXExDxj7N+/n4985CM88MADjI2NsfTBP2H6U3/DB154x67YEMEp5bIZuSMNipAc7ftap/jgCjZnkw4gcNDkZUi3xP6msjjTcE2Zs1AzKIKugqFqKLlQdVCRWGrYNXFNsVJTsORrQbFhrts5N2Q82329IJABWIFiKhswmAxp5HvPG+qRgEJjxA7NVxMvb6O0YLMgW6W9Eu7eQoZkUuPm5fb+7bhNhVFJLNvRZPu2t6ecbSojVhahWr66uLdUgIUrou2O1EOFFAawsWxKol0NKY3rkt1jugKA1tTKsLURrXYP9yIVQmHF9AFAhL3FSgOTgqHp7tsgvaC3WClQXR2UEmmYOiKxepgZds4/K1tdHKl24Gw1aHiC9Y3djkc76e9XpFPdx8VuqJZACUwp12K19zHbFCpteDbzq3ZPQU8TpQXzWzZhcXtcp4uSLTX9SXNO+V0coaxGO9aVmowdYsv2tWG3OEmTiR76qHiSsme2p1OgJIP2qx5Kyr7caeC6jTAL+5I+A3ZoztEeh1nGUswkzXXE14JC0N4/TWGSCCEtTHlKgPXQ4nJg020/JlHkCJEBrAUW5wK365g76JbYaAvJkxkHr+ny2iFOstBMiAALHZV2c6OSm9tRtRo/cOoEq+9+F+KJJ3jb297G2bNnecMb3oDVxRkvJiYmJiYmJuapYrsWt7/mMP/snf8P0zePtN6ff3ydv3zTl/n6R0/iPwWH05iYmO8uqpvmyaT0YOIZ7klMTExMTExMLFL6BhkeHuYzn/kMx44d4+abb+azn/0sD//1Wzn5hT/Bq3c+qdEuy5ZJKPKp3VmUplipHsXZUjE2GDLQ1/0X60A1RQSKsQHjqhQmu+3Cdlx/vybfS3zUjJYQhkZgtBeLC8ZtRTXLN/U4ehbOmCe3pYSJ/a2udP0hPpWDicOS/Gjv9dbLcPI+RbVs7bleMAmo/glJ3/COoKZQqUMckuyDudt7CF0iQs8skx+TV3Vesl2Yut7C6kyCdREq2UlIZK9y6kVJptywwHkKwv7MgMBNbX9vZ6k3r6SZf7LR3VGouUzwjZV3WzrpsX5xx5f+LtucG5V7Jwcj8uMSx9pboATgpAWJrLVb9LRDoDVywCI3evXLXH4UpFBdy7Zsb8+UFWzR7OeObZa2EaP1jeyxbq2R0pR4u/CYYuHU3gnjicOSsf3thFI3gVJ+GPqGzL8Xzxunh240KwItzAsunBPsdVIpZRKxu3brDvGfY0N/nyabaQbubjNMSJIJGB8M6YvEkzvLwXX2cXwwYKjPHJONQGJ57HJOAsilFH1R4lQho2tlm60LX+XBP/8N3vrWtxKGIf/pP/0n1tbWeN3rXtdzu2NiYp493H777Xz2s5/lk5/8JMVikRe/+MUs/Mn7qF++tC0upOleosmiSIsuTkU+SL/tqtQnQ0atoKdEolk6LiMUYyLECcHrKio17yUtTb+jdl4idzkrKS24WgVVjWCxYFGsyGgN3e8TXiAoVMw9IZ1QpCJhxU6xUpP+vGJo0Li59GJjU7K2LglTDkLoPfUrqTTk8trEddAUKmlheg+a/KAm07fX/U6glUA4gmR6j7CIZAayXcpKbeuHMiJfu5ewp4nWSKmf0nqlZUrD7Xp/RyKktK4prlzFJWinUGkPgZRfh7Uru+crorb9Dcs2pV6vhmVDInF19x3QuI7u6uLUKU6ypGYoFyK7nHudSKFJ2wqnZlyH9oqbyPk40rj+ALhl0/bOMm9p13zf2nnu7e6rpuELLq05hI3ewVlXMZ4LonUbmgKlpjBJoBlqiomUYL3eXSRkzl1NiOBy1aawh8sTQKAh7HLaiR1fJ3NSdYgsuztX+VkYCUNGQxOn93BP6hMhYzJARu35QuxyTiJaSx8hiei4CXasW3o1ip+9h0vveDsf+tCHeNWrXsXZs2d505veRD5/lRM2JiYmJiYmJuYbID+e4Z/8yu287D/cRnbY/ICqQs2jf3OOv/jlL3H+a0u73HhjYmK+e6lumieJ07GTUkxMTExMzDPOUyi8ENON6667jkceeYT777+f17/+9Zw4cZwHl95G//j1HL71X2C77YnOZsVms9Iu23bdlM+VdYti1Qy/DDUi0AS25Ng5p5WbmBz2afiC9eLO3SQ5fsFpaQAG8iEaQaG48wdvycnT7b+GB0MaDUEpSnaFqajdWsD5U80oxb6DsLoE1cqO9pSkHD2RPX5Eku3TnHmg9xe9dB76R6Gw2iGWUKAdC+GbX9lrJTj7oKLxFMq0AUzfYOM4mvMPd390PvDg9P1Bd8ceKcwv/k20EZPYDuxVdcN2YfJai7WLmtXze2QUBWQHLZI5RWW9Yz1KbXMCWD3XQ7G1s7sSpq+3WLtwlfUCszc7bFwJWT4Tttep9bb1KgXFhauvVwQhQjs9Sk9sp7LWpb0d2yttmL4lwcppn/XzvQdaWpqp62xWE7B2bu+nnYrzIcX5HYIqz0fb27Nn2SGJtBSlld5tSRsmDlsk07B8du/xsWzREvi06PJjhwrgzNd6HIcR+THB2GGb8w+rp1SO5cKjCq+XG1TE4JhxeNha3yNmzmJ4RHPyhHE86lr6RypmZjSFTUFpS3LhnHk7TG+/FkmpmBxVLCxJGp7kyZM2qos4ybYV44MhF4sO1Ybk8XPuLiERgGsrpkcCLi3bBEry5AUTJ32NZXXuG8WRSZ9CxWKlaHN+xaabKGrl0kOU5j/P0tISiUSCX/7VX+V3fud3kLt2YkxMzLMdIQSvfOUr+aEf+iH+8i//kt/8zd/k+O//Hq961at4bPQwybGpzmgu6fb1alCEpFFc0W0BgfTBasB6wqagTAk2C82oFbAS2i1xUpOytjjtS0IEItQM2wGbgbUrrhJKzlYc42qEZtAN2fBM+zLQeNkoviyp+FHZLFuRdhTrtd1uNo0wErKHismpkPWqRX2zt7Ail1JoTav8MBixkp+zcEqR48qGjO5lRjjUXYEUuafYmvGDgs0FTb3Wfb2lIpS3BLqL2EQ5ssOVSCAtjXwKZcVy/ZDNCxbP7WlkSSIJjgvl3aam21i+tPfnTTJ9kB9QzF/FgSjdB/0jcOVU+71ubkq7nBR7IP0QQmHUKXugQjN33t0A2wYqmzev+XN7rzeT0+RyDS40rqZoEqysWuwUM6VXvFZJQQDX1mQSis0uToqd5FKKvBNyQTh7ipQsAZbcLaHaKVAC2KpblBtyj/Y0k/mAui9Yb3QXEzXjQFD2LBqbsuXKZPk6cg/r6Iel6U+ElH1JI+zenkAzNeRTDCw2fEGthzA8KRX9tmLJs2goyULDxAXptoMSGPckS2hKymI5tIBuLliarFBIX7AZSBaxozHsUqaOEEvAhrbY0Bab2kIhcMqgO+bzWRSjIuC8dggQnNTurvZU4LP14L3U7v881WqVn3vjG/m1X/s1pqamiHn24Ps+X/rSlzhx4gTlchnVw4X3V3/1V5/mnsXExMTExHxzCCGYu2OM6ZuGeeSvz/LY351DBZrKep3P/u7DTN88zAt/+ij5iatY9MfExDznaZd7i52UYmJiYmJinmlikdI/kjvvvJPjx4/z+c9/nn/7b/8t5849zgPLx8iPHeXQrf8cx20+jt10SzJPvDeixJRrK7wAwpTEqimT/AK0rUgn6XgSWdGZhFfIls6lfwRkEFIoRJ9v+71YtpYYGlTUG7RESi06foB2HEgkNZa9d9mFwgb4gQDZKcbZHlPehJMP0hJqJDNQj0qydQqVmgKl/nEYmZGce1i1SmjsWu+KxrnKHLK5vqEZUyJu4URHx6xo20NFvQTn7r+KdQ5G+HTuAY/GVUqaBw04ea/XXX/UTBx1jHVuWFLZUD2ruSkF5+5vtMrY9Sp5AnD+Qa81tl3XGy2fn5QoBaWlp5AhvAq2CwOzNptXAoLqHmVRAjj75Vp3MUxHP1UAp79QRem9E1uZYUmtoK5arg/g/Nf9q/rFqQDOfa3RLmG2B0unuojjlG65CqXyMLrf4vIT4VX7V96SpNb0ngKlsTlTCu7cDiFTp4uSlOAkzXl08XiPan8dx06xALYt9u6fgmTSJH9LeyRqky4M9iuKJUmpwi6BUjNhm05rBoY1KzWoeXQRKLWvb5mkIpXQVLY0CoFEEyYj9wRbRc5LEj+QHS4k29sLNh7g0qkvsbi4iOu6/PiP/zgf+MAHSCbjp2RiYr7TkVLymte8hrvuuov/9b/+F7/1W7/Fhb/5G+666y4eHthPcmI6imxf90INvmg6fWhsjPOH1wfulom1ADepSUtNu0rcdgFPU5CUEJq+PkV5Q6IiAUPnratZRillaQadkC3fwt+hqRAd12rX0iTsq4hTNBTrFlVfYnWIYfQOZ5vlgtXqsWNpzFTLvNMUKmktCEMjnhgbU1QqglIPUUkQQLkiqQmBoLtAHARag5SaoVHN5rog8KNeCIF2TCeFH7K52u5Pb4EUbG1CeQuUECDoKZwu7iHKbd37ormQkEbQtNd9t1KE6uYebUZUt3qIhXZg2ZDqE1QKul3C7h9BMmv+Xy+z5/ymuHH1Um9ozdYGVEtAem83I8eBhgetkmM9lGM1T3JprbujT6s9T1PyBLWSQGX2+r5h3ImuFNuCIqfcHkQ/Y8oRjmRCar4RFe0leAJBqS7xeoiJACyhmcoHrFUsGlWBwpQ2A/A6XFBdqfCUoBFKzhfdrs5EnaK1gm9R2WO9Zt2QtBQW1p6VnvutEAsoqe4l+qxI0D7sKmo52NSyh3OSOf+SQkcSJgu73CznBl7OxDSvlz7gIZA0L5HbnZPUw1+l8uRDrC0v8+pXv5o3v/nN3HTTTXtuc8zTz9LSEv/xP/5HFhYW9nSVEELEIqWYmJiYmO847ITF8/7lEQ6/aIqvfPAY84+vAXDl0TU+8aYvcdM/PcAtrz6I3cWZPCYm5ruDVrm32EkpJiYmJibmGScWKX2LeOlLX8rZs2f51Kc+xS/8wi9w/vzjPLD0JH0jRzh06z8nkTLW9l4gOb3YrHuluGbSo1KXnFvZXgtLBIIzVxyaipeJ4ZB0IuTsvMXOrMSZKxZOVK4gn1fkMoorC9JkY1pITp5pl3ka7A8REtY3LMKkhVU3Pzf7vsWpYyqqzaGYnIWNVajXtq+zWpFUK0BCMjockErD5aZrU8cP600hxMgMjEzBqYeM6Ae2C5UAGhWobumeAiWAUjMZZVkMjCi2VjWqR85MSLCsvRMCYMQ2s7c4LJ/2qfRITDUFSplBQW1L9xZ4KOPMkx+TbM53yTBE7kZuCmZuslk6HbBxuXcmolHZvWw36k8hUQYwOG3jN/S3RKTkZiTDcw6llZDgKk5Y3l6fd/xAHjS4qqho+kaX0krIwpO9BWbpAYFWmlqRPU2rciOS0roy/dtjvftvtyksKjZ7OVFFQiVpgbXbaGAb+THBVkESeLB4eu+kdLUEwtq+zp1l3qYPGwHgqYe6CJSi4yU3ACOTcPq8JGxIFue7bgQTU1DYhFpVcvrkdmFk00XJdRVjQyGXFy2qdckTp2yU2i1OyuUUA3nFpSs2pZLksfPWrjiAgVzAxEDIsUsOXiB5/LyL9Hcf55mE4popj3PLNoWKzfmV3XV7Fs5+meKVL7OxsUE2m+VnfuZnuPvuu2NxUkzMcxDLsnjta1/Lj/3Yj/Gnf/qnvP3tb+fC2f/NK17xCp4cPUR6en8rtohFMbrc5lDMyIAzysXbkbj36pKzCQciF6Q522c5tKnuEM82tOSU7+IoAM1YIqToS+pKbhMrVUPJ2UpTwKAZcUM2fItQCxp9gsSW6dRWzWKrJkEKEpYi5WgKdcl2AYJgs26u/6oPZmyfzZJsid7bYqVmUTjNxGBApS5ZL7XvG52OShqo1wWet7ewo1CI3KfSFikd9HRU0ph5ZsusruucJSqfl9OkMrC21F2opLUw80GhSSShURN7Ojy6CTOd8Ls5DgoBWtM/bO6Xi+d7NmPMIHtpsTrjnkIMGJFSflRQL+vW/PcfQyZvRFv18lXcLvVVyjh3zr2uotdPZzRDA4rL80Y8012gpMkmNZW6aIn0umEHygiefEGwxximbMVgOmSxZPcUHjkVhZ8RSLGnjh8pNClHU/EkW429E1KhhpovUI3t73cKlGyh2dfns1y12fKsXQIgI07SjKZDaoFgPWHjBd3X6wpFzlas+zaVUFKtmOtPEz8blUmUikALKlqyGNhdp5m2pxlxQkpSUlOSK55No+v0RzMjAspasonFsjZiJ6fLwxjTIiCB5qx2aCC5suNaGDbqFB74MurR+ygUCrzmNa/hbW97G4cPH+66vTHPPHfffTfz8/O8/OUv54d/+IcZGRnBsuJEbUxMTEzMc4v8RIYf+tXnceHry9z3p8eprNdRgeaRvzrLmS8v8MKfvo7Z20cRe00iY2JinnNoralE5d4yg7GTUkxMTExMzDNNXPPmW8wrX/lKzp07x2c/+1mOHDlCYfkED/7923ELn6Ze2fm4t+TSmsPylkn+JwdM6bamqkIEGhEIUwouEHi+WQYUrq22teMnojYSilQ6+ulaA1p1CCZkSyTQ16foz/dSb0gQAjshyPdDMt0jLELbcnspDtnxilidh/kz7ErQNJ+uB/NE+vxJ01BmAPIjvddpuzB+jc3gdO9DeO2i4vKTYSt+G5ZsuSoFAYQ+V33CXdowc6PD6P69f8jtH5eMH7Fx03SvUaI1XlVz/kFvT4FSk9lbHcYO261lu7WZyJg4Zy8thtacv7/BlUe+BVkyoLoecPwzFeqFvTN140cdhvZ30UN2bIvtwqGXpEgPXf2SdO6+Oitnu2fURJTxGp6zmbxut4ilEztpygcOz0b7s9dj6xICTxN4vROClgMoTWUDzj0Y9kxeShvGj9iMzPbul7RhdM78u7QOS2fbn+0UKAEsXYQrHWUdEaL9iggDUJbA3mt4JeT7Nbm+jje6kEpo+vs0yeical5TRKijl9l4x9akUhopFUF6p0CpfQ1reJKGL3BDjfT1NoGS6yiGxkx7lQbMb9gmkd/ZklK85LoCp+/9b5x/7G9MeZGf+zmWl5f54z/+41igFBPzHMdxHP7Nv/k3nDhxgo985CNcvHiRSx+6m4mv/C2//3037XKKqCBZUHZLoJTpC1tOKQBWQ2A1wGmApwV+JJAwsoAOByMEXl603E9k0zhIaYRqOyU1BQyu1OQdhSN63UsEQkHa0vQ5e88NpIAgJbaJN0TYfjXbWy5YFFrume31+jmrFVMoShqeEUL05RSiZ/+gL6cZmBQ9Y7QSLC8IvIYR0ki5PU47VmveF4bmdTVyeRiZACE1WvZOIgyOmRJxPRGCrQ3xlMq+JVIwvn+H1r8L2QHoG9o7xqvD/An1LREoAawvatYX9J7f4GwHhsaNQGoXHXOv/JAZt6tRLgsWlyx02F2g5BYDHAtG8yEpt/fxIz1NPqsYGwpaUjp3q/tBoIFQCZq6NKestrkoQeTwVNEsly1Ke4iP+pKKsWzQ4U67m5wMSekQy4eNgoXf4XrUFiiZ5QMtWCg7bHWWVGzNgZrriNzL9nSKgqSl6bcUVnTd6OVAlZch2ahOohGBRY5HHliexvJM71JS4Ubb2ejb7mjVvoYJvMgXzSmDU+4UKGlyMkTkzLrWtcWC3l0aL6xWeMnKCRb/v99h6957+LEf+zEee+wxPvaxj8UCpWc5Dz/8MLfffjv/5b/8F2655RampqYYHx/v+oqJiYmJiflORgjB/ueP85p3v4ibX3UAGT3EWl6r8X/f8xCfefeDFJe6WdLHxMQ8V/GqAaFnvuvETkoxMTExMTHPPLGT0reJ7//+7+f48ePcf//9vPGNb+Qf/uEfgH8gnZ/kwE2vIj98AIBitf2j+nAuJO+GbBZ375a1NQsdlWAbziumx0KOnXfw/O1ZiuUVm+UV44CSSStmpkPOXcCUsur4ffnCJQcRiaHyOUXfsGLhCnRmPQJPcvxJBcosOzEVUtw0LkqdrC5JZMO01XxKfeli9GG72hxF47LLyLSJO/uY0YXsdFQCGJwQOElBcbV7oi7w4OxDCq8q9nhe25DIwP7bbBZPhxSXdiQoLAmh4uLDbdGLlN31KiqAi494xp1nDzauKMrrHl5t77haIXJGMrqznjTKGq+2I2CHq1LoG6GPnQB/jzImvZb/htmrDsUOLFsQ7jykdyS5pA2NLYVX3u7e0w3/KuMKcOlRH2enMG0HQT0qk9dZDkWpDgsI0y8VwOXH98ikSjhwh0N5XbF4eu9xCbXFuUfUns5S+WEYmpQUltW2Y6hToDQyZco8nn3MJEC9Orv2ZzpnkpSXTxtHprOndifwpFRMTGlWlwWeJzlxPDrfd5DLKXJjPpcXHIoliydPim2l3ZpJuenJANvSXLgs2dgUbGzudn4DODQV4NqaYxcdqg3J+UvdBWUDfYrRwZC1khFYLhc6rk9BleLFe7hw6gG++td1BgcH+fmf/3nuvvtupLxKZjkmJuY5h23b/ORP/iQ//uM/zl//9V/ztre9jZe97GXcdtttLM0eJXftzQjLuJ4UMNdDC824DFi1bLbC7dfIEMFS1SFMAGhmbZ+aFiyG269XoRZcrLbdTyaSAQ0l2PBshGqXgfOU5GzFiQQGmtFESN0y5aI6KdQtinWJQGBLTS4VslmztrnThFqwUHJwAwVohvMhxYplyvDSFio1ouuvEJqpwYBCxaJcN+91OioBODb05xW+b1HrMY8oFAXlskWQEFh1n+6CCvPewJBxQFqaZ1ecdizq1ZB6dC8UQqN7uOWUilCrGgEUgJbdHZVWF9jTiROaoigz/nsR+KaEqpB7C9iF2DZl+PbzFNclLSOe3iWY3jH38r2rO0IJNBqBv4dQG8APBZdWbYJeeu9o+c0tSbkqtx3P7laI12d1rA/qgWQpKkG4U5wEpjTscD7kyqqN33NgjCCnUJOUG7KnI5PlKwYGQhq+YG1H2cOmQEmimc75bDYsSp5FJWgLtDvXN5QKqfqSWiBZqdp4XRxdk1KRtnTUlqTsbR+P5jgMuSEFYVHTksuBsyvG8sARmmnXZ96z8bTkYmO7E1MTF8Vh6XNJ2ZSwWNZ2V+ckgDEnwBIWK1pS2zG29sYKy1/7IpUnH+ZPgR/5kR/h3e9+N7Oze6jvY55VKKViIVlMTExMzHcVTtLmjh+/hsMvNiXgFp4wDxBffmSV+SfWuPlHDnDzqw9iu7GzYEzMc51q5KKUyDjxOR8TExMTE/MsIM7kfpu58847efTRR3n88cd50YteRG1rkSe+9EdceuBuli8+sC324qrFyQs2IEm4iqMHPVLJ9g/zxllJs7kpWFixWgKl0f4AWyrCVHN3tner55kXgG1FrkotoyUTl0wpUnkIk10mZ5FgQUpFXz9kct1rKqjIySmRhlSmy0B0uCtVS1AqbNe5dDoqAVw+prnwmAmwewjbm0KP7KjFoRc4PeMaFVi/rCit9UiwdLgqzd5sM3NLbweepkAp2YdxSuqBVwO0Jt3fOwZg7KDk0J091hcN0PLpgM0rPUrHRQmnwINz9/tXFVDlxiUHvie5a/mnjFKtfo1d4zB969WtUecf81g97e+5Tq8Klx9umHJvPQRQQ/ttDr04uWdC0HYhkQhB7S3Wyo+bRrYJlHaQGxEceaFDIts7BgAF6xdDNq6E0KMUzfgRm5mbzTnSS6DkRrtlcwlOfa23QAmgsgXlYuSiIbqfk5ZtBIO2C2Gyhx5VQl8/ZJvuSV0ESmHaxuqTZFIaK3qKXyFbjgGWDpHR+54n8FpOSOaED9IWoBjIBaTc6JjesLiyYCN9gfS3j9m+SZ+ZcXO8rK5LHrvobnNhqlc3yTc+z8N//3ZOPPZlcrkc73rXu1hdXeUP/uAPYoFSTMx3OVJK7rrrLh544AH+/u//nqGhIRb+6n9S+7O7eeOQKU/UJERwUrlsRUKhUSdgxNmudLEaxl1ppWazocy1OCEUaWEEQl6+061E4ymBHwlqJBrZ4azUFBlYQNpShH0icjvZTjMu5Sj6HLXNmakTr09iSUg4uqtLTMtZKYBqw7jWddJ2VAI/EFxZsKjVoz5a3e5ngiA0Ip/BaUlmtMf1VgjKW4KtwnYnl23bGLkqOa5mcg7cZI/5iBYEkdNTMnIK1VLsclVqCpRsZ28HJCFhYr8gnevxeWjKDm8u07u0b0RpAwqre8cADE4KsoP/CGF4NH8WAkbnBImrOJx6dVi53DHd6jH3as7HAZxit0mTZnJC0ZfdW8nkuhq36BOo3ftbehrpaWzLvEC0xHTd1jfRFzCSiRwZu7gnNak1BJslSahM2bed2FIz0x+QsBUgor4ZLF9j+RrbV7ih+XyxYLNW3j7X6izxphBUfInvdXNNapO0NIno3PFyu7dTKEgLTZ8MIzep7uXxvKwgkdYkRLN4Y6dzErhe09UJGrrzgQ3zL6/PiDDzmLH0EMwrm0ZZRu5J7XUlhGK/60WOcoLzDZcVvX3eWLtygeuPfZljf/hOgjPHeNOb3sTFixf52Mc+FguUvsM4evQoFy9evHpgTExMTEzMc4z+ySyv+M938AP/7hYyg+YHOBVoHv7fZ/mLX/4SFx9cfoZ7GBMT8+2msmG+96bjUm8xMTExMTHPCuJs7tPEDTfcwBe/+EWWlpb4sR/7MRYXFznz0Me5729/kwtPfAqlAkASBE1REDR8QSMSGGXTqiUEUEqyumYhAk3CVUyOhvTndv9AX6lKzl1wAInrKo5eGzA4ECUaOsRKyys2p84ax5N0RnH4uhDH3d6eUpKTTwpWo+9sY9Oa/qHtP86rhM3yJTh/zPydG4Cxmd1jUSnBUlRuo38UZq6JurRDqNRMDu2/STJztHdyx69Do6rx/d4K+NULChWAk4T+8d5tFZcUhYWr1x+Zud5h/PDeRmRjhy1mb3GRe4SV16P1XUUslMhAfrLH6dqxrJvasxnCBnhVtb1PT1WotEM85Dc0/k6Hpx3YSdpXmR7rcTOQn7q6qVt1U1FcDPY0cRq7xmHujuSeV7b0gGDqeofcyN6Xv2pBU1hWNHo8aW67MDBl2tiYVzR6uERry6JR1TTKvcc5nYdDd0hyw+bvTjeIpkCpbwjmrov6VhYsXtjdTioLk/vNv0ubcPoRaOw4AG1Xse9AiLQVKpAcf1KwsbZ7LCamFDNz5lxY35ScOGsTKrkjMae49nDI5LjZKStrFgtL3fflzEjASH+I9DWVyEmhSef1zfNpCZ1UR4nK4upZlh5/P4/c8y4+9alPMTs7y+///u+zsrLCL//yL8fipJiYmG0IIXj5y1/OZz7zGR555BFe8pKX8Cu/8ius/PE7Wfns3+IXN4BmObaoNJM2pZzACIySHcqgmpIEdYnVgH6pmLC7KVgE655NKTDX7eFEyL60T3PC1RQbhQguVB0qTXFUJiCf3D33KDUsLhWMg4olNKOpAGvHvbSWtZhfs2n4EtAM5kIce+f9RrBZtFpin7H+gGRUUq5TqKQiIUcqpZieDHGc3vctzxf4fm8RrO8LqhXTXjqrd5V+a8V5UC6a/+9FKgMjk2B3lBPbKVQSwsw7+wZ6t6NVc33dBb7b1pnrUTJt20qNc9FeBL5JgHxTdNzahDRz3qu5H1lPYY6XykalavdAaE2pBPV673GSUjM+rsjldq9HdrgvDeZDRgdC9naxEmzVLcpe7/t5JqmQUqO0YKtq0UsEFyrwAkHYRZzUZLQvZDwfADpyWdpe4k2gGU/7pKPytBsVa5fzGWgGkiEJy4id5ss2hYa1S6DUJ0MGLLPjNn3JxdpuZyRHaPalvKgkpOBC4FCIhJFNcRJAnxVyMGlERRrBgufQ0LvHLIdiSgbYaJyyoFJuO7KJjuubrwWeFq2SlWEUo1VIcPxhNj70u1z64Ht54okneNe73sWFCxd485vfzMjIHnW5Y561/OzP/iwPPfQQn//855/prsTExMTExDztCCHYf+cEd737e0n8yySnji5xZXqDrbUq//e/P8Tfv/sBtpb3sD6PiYn5jqa62QAg3R+XeouJiYmJiXk2EJd7e5oZHR3lox/9KJ7n8eu//uv84R/+IfOnP8/SuS+RGz7Edbf/CGk5SK0uOX8JkkmoewEHZhRbZVhas6k3IgckV6E8OHbKxg8U6YxibMInqAlWViWODbWorIdAsbYhKBQFoBgbVRS3oF63sW2F40CtDjppobUfPd0rkTIgkZQ0PFCBRNqKhBuQyYAUkmokvPA8CVqTGJCEJUUQQLbfJIqWL5ttd1yTYPGih7WTWXASJrkjbXATUK+Y0m920gi1vCosnFZYjhGFBJ55301jyoQok/xZPm/6keizyPUrCkuawAOkcZPxKkZjM7pf0jcsKawEoEw7KsQ4+NiSRrXtYJMbBb8K9Uik4qZNG0EdLj3hI2W7HJjlmu3rjC0shpTXjDgqmTPuSiqItjUF9RJUNjV+PcRNgVcz25DsE3gVZSqPRbEDUza5EYvqRsOMYfSdOZkDvwGhp+mflkxf73LqSw28GtvG0MSadq884iFts556WYMCO6GRlhknhEDaIB1AKTPeWWm2TZmSctIRbFwwCVo3K1CBJqhH452VeBWNUjB9SwLbEZz5ohlUNxONd0dsfsKif8ahsh5gO5J6ybg1uVnZGm8ArTTr5806pQtuUlDf0q3x1hoWj/uk8iHJjOg63gBBXXP58Qal1fYYdsZmBxXVAgS+ZP1SiJvuGMNsNN4+DM9JBiYtiisK5XeOtwYpSOUhM2SxehEKy5HzVlTaz3ZNErERtRv6sHpRUVrbfnxrx4pihanQZ5nEou/TPr5TUf+VcUTqG4Kly2Z77H6JpZQ5P1Gk0qbMQzotyOYUXh3qNXONcBMKtMILJCiQliK0zXKO0NH1RJvrx0jIZlHgeTYrqyFBAJZUhEpiSYXrghCK6Tm4sKRRnuDUWQcvgHRS4XkQKImUimxacWA6YGHFprAFG0WLRpSgdLINagv3c+nMAywvL2PbNrfccgvve9/7uO222/a+2MbExMRE3HzzzXz4wx/m7W9/O+9973t53/vex/mvfYFXvepVPJwZx913EEqSzcA2CX2hyVqKMSfgQt2UUVIIRPTZWlVSwCIByIRibChgddNMqZU25dgEmkogqIVGSGELRc5WbPoWQgkcAQpNIKCRAquio7kXSKGRwjgy6ajsW8JSpB3FBpKEAD807irC0uh+iShopIRcWuEF4AcWYK7dQQhaC6Qw/ZcaCMFBo2Sz9FuA40AQQK0m2NjcXhbNioQ4YWgEDNWqaAlq08OCYCvE8wQI2XJhCkOBlJrhUUVhXbBVFAihsW1zHwOBTFqUt0K0EliWxnaiMmTKxFqOud/VKrAyv738mu2YuYYKBVKb2NVFI+SRlrmfBn4zNjKDDI17kO0YjZJGmFihCeum303xzuA4FFagUTP3aa2jdq3oHgyMz5n+rs9H63GN0FhH1WOlDVurUbvRt66W61NHLIK2gFz2jt1c0gjZnhO32hUQRHFT+zUrl82YCUFrDFv7UcLAKJQLxk1JhWZs3K06eihB4BmRjJTmWAgi5yPbjsZbbd+Py8uSINDYeU0QipZzkpYQKnMuFEoy0kuZY0IKIlcusC1NquFTa0jKfRLXArcSmn0jNJY05eSE0Iz0B2xVJBsle9vx7VQUYVbQl1CUPUmgBIWiRKKxFCbWMuIlZaZplOuSQJlttaSR7wRK4GUlrlSEgUZqjaMUCQ1mCI1gUAha7kz5RAhIGqE0xQT7NGgQSmAL025SahxprglKC8Lm9URqAmVE2ToqdRdmzamX9EFpTYjAFYqUVGyFFuVQsoaFJRShNiemIzRKw4AdojKaTW1RLQvO4WIDllB4kZDJEZoRKyBjKU43HGwBC75txhuNlkWq934NzjzJ5cuXOXr0KP/9wx/mX/2rfxULwp8DfPWrX+XWW2/lt37rt7j55ps5cuQImcxuG2QhBK973euegR4+/dxzzz3cc889lMs9nkyJiYmJiXlOcc/mY7zr8v9meaYI0YO12VKCF33uGngYFp74Eje/6gA3/ciBuBxUTMxzjEpU7i0TOynFxMTExMQ8K4h/aXyGcF2Xd73rXZRKJT70oQ8xNzdHYfkk9336v3Pp5AdYWXyURBKuOeCTSUlOnbcJFRyZCxgeDJib8tk/4zE5FuIHEteVXLvPw7XARzAyEHL4kI8bOSLNzWqSrnFEsm3Fwf0h+2fNZ4P9mmsOBaChXJaEUjI1J3BdxXU3wTU3KgYGTb/7B+DQdXDhDCxegal9miPXKyZnQxCaQ9dBftoCIaiVjQjJdo2w4vCtMHtNewwO3GASOBdPQKYfjjzPuCrphMXEAcG+683hWdmEyYOS4Rk4cKtk4ggcvM0iGZW7GJ0T7LvRxA5NC2Zushndb/5O5eDA7Q6pvIkNjTYp+g/M3mgzdiAq35KGA89PkBmU5EYlB+9IcPBOt9XfmRsdJiL3pNCH/be79E9I+kYlg1OS/Xe0Y6evdxg77FDZ1EgbDr4gQX7M9Kl/QnLg+e3J8ORRh8Pfm6A/cko6cIdL/6TpU35McuDOJKsXAs7c22DiOoepG9rr2X9HgoEpEytoPs2vEaFi4jqX6VvaTwbMPT/J4D4HOwG5McmBFyRbJevGDjvM3tYuA5fISXLDkRhuQHLge1KkcubvkUMu+56XJJGTIGHf7UlGD5k+JXNR7IARrQV1hZNuPyk+c3uKsWvMtrspOPA9KaqFkLNfrjIw4zD3gqgPQjB9S4KJ61yzjue7HPreJLmotMzgtM3+O9vbNnVTgskbXVQAtaLi4B27x1u60D8pmTzqMDzbtg848PwEg5EjUt+o5PD3JpmNSv5NXGMxfX1by7n/eQ6D0ya2WtBIW7QStxOHLGZujGKV5tCdDpOHJbZrju/OY3Zsv2DuJsmR50syAzB3k8ROiGgMTWxqyCbTLzh0s2DuOuOMdP5JmDnSdihLJuHILTB92Pxt2eY4UKEgTNrMHdBMTGkyOcWR6xSHr1UkU5LjTwhSScmha9oJ6H37FTfeCpOTJvE4NCqoliUiFOYacdhkSlNJ2D+nOLQ/clnasJjbpxgYiARMoyHXHPLxkIQezA37zE0ERvyE5Micz+xkwKFZj/5cyMGZgIsLNisbkunxkP3TAfXaJqOZr3P/p9/F1+/9JOVymZ/+6Z9mcXGRBx54IBYoxcTEfFNMT0/zrne9iytXrvAHf/AHnD59mosf+SOKH/l93nDEJfQajLoBk67PZiC52HDYlwzI2wHTrs+QbRxMbCEIEAw7AbP4aF/QcAVzCZ9h1zizJC3NdDqgEQkZJlMBR3IeTnRLnEn7DLghQgm2PIt8v8K1NEPpkENDHlP5trXQZF9AytFcLDhIIZjtbzDb7+Nain5XMdPn42clSgv8EJKR29BQX8jcmNf6O5tSTA6HLG0Y56WRfMDcsE9CaFTGYmoyJJWKSlBpwdSEIpnUTI4rhodChgbbCqGpiZBUWmNZmtERxfRhgYisWAaGNEMjZp1KmVJUzWqoyZRmYka13Ifyg5qhKYl2LIbGYe5ayEQlSN0kTM42BTuCdBZGJowzkxCasSnIRvM7OwUT+0FH5pT5IRiZau/7kSnj8AngODB1AEanzd/ZPIzOtOcqw1Hs4jkjGJ7YL1pOlZk+GNvXblfKtiGTtGD8kGyVY0vlBWMHzZzBdmFgUpAfi5xspIlNRiVlE2nIDYnWN7P+McFAh/PnxAFJtt+sI5kxfzfL2uVHBYMTAuGHhH5bxNRsd2KuLTLLD8PwBCyeN2KtsVnIRGPopAVTEwG2DZmMYnIyZHSkbds0NqboixyTHAempgIcR9NoCHI5mEk0Wu5J40Mh+awilVC4rmZqJGyV6+1LKyZH2k5k06MBB6Z8Eq4iWVXsTzdIRi5e2bRiasScU1qbUnFNEZwUMDPik4qO734VcGiwwYAdYvmakb6Q4ZzpvwBmh3xG+wLG+0PSCcV4f3NuAsO5kJFciJ+CYdfnYM4j62oWyw4hgn39XstpaCQdcGjAw5FtgZPWAqHB7oODKR9Ha0bcgNmUz2TSZ9WzWKg77EsH9DumT0mpuTbrcSRrXJEGHYV0BEFDYnkwm/AYtE3suBNwNNUgIRQK43o0mzBj6AjNrOsxqgNCAXYNrgk8UtK4IvVbIXOux4Tjk5MhU46PFJoLnouN4GDCIyMDqssXOTz/VY7d/XaWvvxZXvayl/HQQw/x5JNP8lM/9VOxQOk5wgc+8AHuu+8+tNY88sgjfPzjH+cDH/hA19d3Cy972ct4xzvewS/+4i8+012JiYmJifk2c8/mY/yncx9k2S9ue7+cbfDpVz3GmUPLhL7ioU+c4RO/8iUuPbzyDPU0Jibm20HLSWkgdlKKiYmJiYl5NiC0fqq1nmK+3Rw/fpxf+IVf4Atf+AJhGGLZCWbmbmVy7vux7T5cR+E6xokkk9Ysr1uoUJFICEolTSYjqdWMQ0la+UxOKbI5eOK4TTJhEkT1unFGyfcpGp5xUhobDujLa05HJd9SKYVsBHh1GJvSVEpQrUjj2NJQuAlJuQQgSaYUI+MKrQRXLlpkcwH1BgSejRsGJNOactEkRIanjSCpFjnaZPLGAcb3zNPjUwdMQursY0bAYuvQxCoT6zdgeEZQ2tSoEGrF6MnvlEnGVKPvmLlhaFRAeyFKG4FUrWScZVqxW7D/Vguvrlm9oPCqJtGUykOtLFABDEyCVwqpbJp2U3nTRqMCSMj0CwanLZJZwfmHfBJpQWWj6YYEOtQ0yqbs2/Cczel7G3hVs/5ETlJZN8m+ZM4IlUqritVzIZkhSWMrJPC6xOYBDfWtaAyHJI2KIqgbN6dkTlLZVIhA42bBkoJaUbVivapi/51JyushxYWQyqYyjlIZsBxJrWBir39FkvVzPkvHfaQNqbykVjSuUG4GEn2SmZtTzD9Wx6tpQk/hVaIxHLRMrK9x02CnJNWo/6kB2YpFmj7VCm0nokRGtsYw1W+hlEIrmLk1ycZFj+KycQ9rxUbtzt7mkh60OPG5mjlehi0aJYUfytYYpvOCoVmLS495KL/trNQ5hrZrBFyVTeOelMia5GMztn8CRg84zB/3qZfMvqsUzDGayJjkoe+BH9pk8uacq22Z4zuV6zhm08bFYWhKsHrRCNmCBniRU1hqyKZagv5hGJmGhbNQio7vdM44Q3h1Ezt1CBIpOPOocSNzkrDVMGKpdCZAhSaROT2rWFuB0pYpK+m6CjdhEqWlIqTSMDCoKG5KKhXjAlWrQxBIhgYCRoY1J06ba0S+L8DzZOTUpshljRPb5Lginwu5eFFS8E2pyVRCRY4DJqHo2BrXVgzkNZcWpLl+VQQgKaw9TGHl6yzMXyQIAqanp3nta1/Lb//2b+O6bXFeTExMzLcCrTX33HMP733ve/nUpz5FNpslOXcjIzfciTVkFCwpaZwNR9yQjUCiEcbdREuEMGXhmqWW+qoB09mA9cBiw7NwLU0jjNyQhCYhFZXQOBztS/tseBalwEKgSVgaXYCErUk6mpov8EJBwtboyJ0piFxpMq6iPxWyVDKCWksqGlGJuUwjRCkIQ5gcDqh5gkLJQmkjprAtHZWGg4SjGBsIWStaVBuChKPRZYVSxi3Gto2TS19Os1USEIlEQJNwwQ+MCMm2FZY0JYrdIERIIwrxo9KdbkITBEbYMjSi2FwX1KqmvJZtG1GN55t/O64mKCvCQCCkxnHBawBaYNkaxzFzys1Vc78NQ0ysZYTxQcXMIaYOGpegjahMsZMwjkFhYO7r6Zxx/FxbMJ9bFvgV1Y5VRpCOMHNTv2EcjyzbvJquoE7CvN90bHKTEFbMPpCWmVfYDgxOS5bPK3TYdjVyU+bfKoS+EUF+XHDpmOl/U2TUGZvtF7hJWLmksV1azp+2a1xPfA+0LU0ffDM2MhIsNftrO1HZuEZHfwMItERIjdXv4HmQy2mSSc3mpmzvR1eb8Q4FlqWYnVGsbwi2tizjgiU0nifwMzauo1FKMzGsqNShUpN4vhG/mePQlLUGcG1FwtKUa+ZcsFPgR45DltQM9oVIAcubFo4xUMIPo+PQMceWRqATAtdW1DwJCJxIzNQZ60jjvrRVFdh21AdtYoOUwFMw0xdQCwSbNYswciBzLU09MMesKxXTfT4rVZuyZ5G0FEEoqGUkEkVCaupKMpoICTWUAkkjKl2blKrl5OQpQUoqkpamULOwBJCGujal5qZdn1JoUQgtbBSu1NSUbF1PbDSeFhxOeWxVBZueTS0lo1JumoaGpDTrsYVm0A4ph5KGFigEvhZov07t9MNsPflVVheuMDs7y2tf+1p+7ud+jpmZLjW7Y77jeeSRR55y7C233PJt68ezkZMnT/KGN7yBP/7jP+aaa665avyxY8c4evTo09CzmJiYp5P43H7uEmrFKx5/6y6BUicDfoZ/9f99D6Kjsvfs7aO88KeuIzeafhp6GRPz3cM3Ovdq8o+5Tv/f//4gFx9c4Xv+9VGO/uC+qy8Q0yK+Pz4zxOP+9BOP+TNDPO7PDM+GcY/LvT2LuO666/jsZz9LvV7nN37jN3j/+9/PhTP3ceHMfdx444341o2Mjt9EuSphwyyTTcOBGZ9zl22KpaiWFFCVDpcu+mRzgA91X7H/kGZpBSoVSXGr/TSsRhCGprwbmGRJTblYKmDxcjNKMXNUUy4JLp9vL1uvyW1/J1KSqX2a08cUHjbBVgAC1pbMC63Nk/H74crZdvJFBXD5VHssLAtygxa1UggSKpFIZOGsbrkgzVwnKKxqSmvtRA1Aac38/8CtDiqEiw/7rc+8Wju2VtJUNlWrlJdSUCm0n1rfXACwyI+bJEdxqaPGiILKhqZWCIzAxDNlxFrjsgUgQMD6JUW95LfWE3gQrLfbqpfg3P3tPlbWVavCSmdsul8we4vLhQcb22MjQg9CXzF5rcPiEx5eGUy9CbEtduFJD68aCYWa41KJNqq5eX5UAg+zbzrX41UgqCkuP1SjUjCiIYTZVqXbsf0zNpYD6+fa3+5rm9vHcPSgi1fVzD/WIGgIgkZ7DJviKoCzX67TSVCHoN7+fOFJj/SgBdr0o9Vfqz2GlXUoLoWt/dA5htKGyWttFs4oNufbnzV2uP5vLUNuSOFHpV8qGx2xFchO2MzdLjn/mKLS8buHCowjmGXDvqOC5QuaahGqpd0a0eSAETiVi7CxYl6dVEvGEUJasHwJLp+OPhACz4OaMInqiSlFrk9w6jiA5PSJ7U/Ae54pt3bkqOLKJcnGmqRWja4BCYtyWWFHd4hASYLQuCAoBcWt5q1DMTutKG8Jyg3J8qJgfdWmpJzW57WoPOX1BxvUPcnZyw5gsR6NT6lcYDj9GF/4whcol8vYts2tt97K7/3e7/HCF75w1/jExMTEfKsQQvCDP/iD/OAP/iCXLl3ij/7oj3j/+9/Pk4/dy5133skb3/hG/t+vryCdBFe89jV02vWxRMjFhouR4xhHla20zaWyIFRG+JBAkUsoVhsWgRYEobk+WwKUFgRatP6uhwJyAl3S1KPbZi4RMpYNuVBwWqWlNIKyZ1H2mqUHNBM5xVYDinWLSsLCqSgQML8eXau1oD8bEoSCcq29HQ1fcmlFRNsAqYSiqi0oKUItjEgHwfqm2UTX0QwPhaxvSBpee74UBJIASLia8RlYWrbwSx3zhoaJDYWmXmsLlMyygmgYCAJTWkxYgv58yNYGePX2esLAlJhbvKQJg/b7YMrZefVoMIG1FY1Xbt9j/UZnLFS2zKvddrNH22MHxozQZ32hHRd2JC38hhE7BYEp+Wv6YIEFIaBqRnS+ekHh1+msoLdt7qrV9nab8+PO2K3AiJpVGC0bze+C9hSS/hFTxi2MDJCUaguUwGzLyLQpxRx4tARrpg+CRrSvtrYEW1vmuG71oWOfh6FkeVlQr2mEMmXgvM5Y3+zjhVVBqNjWTqjMe5mkEezUa5LmJmgEfg2ULVqxlZrEsSPB0bb9Lmj4grHRAK0FS0WbWuu8aIqTIO0qUq5ivWzTAIjGI/SarWiSeU3JM32+vGVv66/SgiCE8UzIatXCU5Lzm+bcF0AjkHhZgYVmXzpgpWGhESw3dn/NrivJeMInIzTnyw41LJqHQT0lcKIDxHhTitbMPEASRH+kpGLADlneshCYUm21UOCnZWvZmpZkZciM63Ou4VLXkoWOfS3WLnFN4wqf+cxnKJVK3HHHHfzXt/wWr3/967Gs9hjGPPf4bhMexcTExMR85/Lh5c/zp8tf+Ja156mAQljZM2bTqfDhf38v1DSh3/4+I46Dc97GSdqd08SnxE+NvYSfHnvpN9HjmJiYbzWVyEkpMxg7KcXExMTExDwbiEVKz0KSySTvfve7efe7383nPvc5fv3Xf537778fpR7nlPUXDI/dwIEjP4Sb7KNchdMXHMqR8OLATIjnKa4s2ygl2YqEAK5rHExEqABJIqHwfVP+bWXNYmXN/CCdyyoO7A84d96muk0XIjl7wiQT0Jr+IU0iBcvz5rMmtSqUCgIVPTGcSEGjIwmDME+BOwmT0OhFNm9KdSxfsRCNcPuHpsoYdsI8Vd+L5XNqz4KGS6fbHRielaxdUduSR03ykxaEertIKUIpUJET1PgRi6VTISrYHhN4bYGTm9qelNq5XSNzFhuXg1bipJPqlqawFG5LRu3ESUiyQxI7aYQ82xACtKa8usfAP0WUgtKKarfbhXS/hZ3YLlLaSWEhIPB09za0ZnDOobweRIKr3UgXUEZQtdVl/wAM7ZN4VSitql0CpVZf85LcmEVyQVHvsq78uKS2ZZa//ES4OyCitAYrFxW1re6fa2WOWyepqXfpi3aNQKlvEJav0Kkb24bjmmNu57hJqbFchedJymXjcLGTTFYxOKS5fFFQr0vOnoJKl20+ctgca2cvSIpF8zIo0imo1kwpONdWOI75zPMkngckjePb/imf05cdPE9yft6h3hQlKo/G1mM88djnqVVWEUIwPj7OL/3SL/Ebv/EbJJPxl8WYmJinl9nZWd7+9rfz27/92/zd3/0d73vf+/iZn/kZstkszr4bGbz+TlIj0wghWPBsbGEmDK5QTLsBVzwbT0saYXviYQlwlEb6AuVoXKnxlCTUgsu1dtnRsWSAAK50vAdQaki8UBBETjAj2ZBiXeKF2yc3JU9Sj1xpbKkRaDRtIRBCY2+bL3WKT6LyY0KTTSnCUFBKWdi1Hfc6AZZtHHC6zZUAGh6sb0oaHli71mNESBtrUT8d49RUr+2+T9kOZAYktbIyLko7aAqUkmmNlFAt726jVhUIpVsl0XSP+6ntGBfCppPkrnbKV89DJDPG7anb/EE7FsoPafSYf3wjBD601Dxd5k2WY9xDq6WOuB2EoRExBR5oa/ck2al7JIZtyuWO42fneixNGAqqNYHoMmxSaPpzis2SNIK9rmgyaYUOBPUu82IhNNmkplSTVBsSuhwHzeNrs2KcwnohpcaJyiHTJc5PC/oSAYEC37PYvt1mHQpwLY0jdDS3asc4UuMhCBFsBRJv1zo0Q05ITUnqDclGaLNutnJbVFoqZhM+5+sODS2Z99rXA4nGEuBrgWxoEtHfoYZqx/Vg1A6QQrPkO5SV5HzDbTm9iUaVrdOPsPz4/dRWLnN5YICf//mf52d/9meZm5vrOX4xMTExMTExMc8ElbDOyh6uR98utnQVkpjXNhrQ++fNnlTCnT/OxsTEPFNUN835GJd7i4mJiYmJeXYQi5Se5Xz/938/X/nKV6hWq/z2b/8273//+1lZeIiVhYc4cOAA2rmGqX3fi5RmV9Y9gRclJmSfYCgZsr5mxAOnIicViWJuJkCHcOaMjepIUpTLML9gUSoDSZuJsYBaQVEqSrxGOy6V0qQyGrTJVklLo5SkWpZUoyRNLq+YOwQXnmSbq0y5CKcfNT/MSwcOXg8L5/W2mNV5WF0EFDg5i7FJxcJZ3RIAKeD8Y1FmRMLYfiMQqXa00WrPsth3gyl7tnphdzYlmYWROYnvaYrLu/fBpeZ6bAupwq7iqkQGckMWhVxIdXP35wjB4LRk7JDN2fsbXcUytgtDsxZ+TVFY6LISBUsn9v5GXFpVlFYbXZNGzX4k84L8uMXyiT3UTlehb8LCTkg2Lvbuz8LjXTNK29i83Fvwg4ShORsnKVg+2b2v0ze62EnJua90X5cIFX3DDl5dU+oizpISFJLyJpy+1+8unJMwdsCivClYOL67v24aZm52uXJcUa/A2uUdi0sYPyRYuawJGnD24d0r6R8DJ2OzcoXWaydz1xlHsdV5wcKF7YnfJvtvFgS+5txpKBVlq0QcqMgFSZrkbxZs2zg/VMrRdcFWTMwIllclng9LSxaNHcMuQk0+r5mbCzh92qZalZw9206iZbMKJytYK0Ddg5onWzrBal1SKl5irO8sX/zSF6lWq9i2zUtf+lLe/OY389KXvrTL4MfExMQ8vTiOw1133cVdd93FxYsX+ZM/+RPe//73c+ZjX+GGG27gp1/3Ot5/vILK9LWWqWtTOgkg1a9QJWiEkoJnQeTsklGamYzPpZJDPZSoDj3SasNqGgCh+qDfCSlvSJQWNCJBjiUhZStKSGOSiEYLI5Yo1NrOJ6PZALKwutjphiJYK0Z1sgTkMwrX1qwW2oIMrQVXVttfCzLDoMoqKutpqNUltboRFtuWJpvVFAsiEkSZ9ZQjwZCVlQwNKtbnjaBlJ315jZuAxQXYeT/zPcH8ZdDaBldj+SG6i7gknTWly6o9BEDaFozNGCehzcXuyqpMH6QyUCt0b6Ob8Ggna/N7f64di0wewlpoSgZ/k/QNC6ql3S5LTUIfFs/v3UYYQKEgmyqyXaTSkO/XVKui65zItjVTEyGrqzJyxNpN2g/IpGCrIgm6TPOE0BAK1tasXno3srZiKK+oeU2R3nbymRA7CasluyXQ6yThKJK2pli1KNck5Rp0HmdSaAazISvKRmvBxaLTcRxHY2ErhlMh81sm5nJxu8NSM2ZiOOB81aGhJGte+xwSaER0/mZcDVpTh5aDGkDaUlgZzWZgEyhY8GwaO451q66ZSftoDVfqDnUklyLnS4Em7yg2jQoLTwtka1AFtTCkfPk0L0xt8YlPfIIgCHjlK1/Jv/k3v8crXvGKWBT+Xczjjz/Opz/9ac6cOUOlUiGTyXD48GH+yT/5J9x0003PdPdiYmJiYmLIWElGnfy3rL2n4qQE0G9lcGXTkVbj1UL8+vbfPm3Xwk3bCHl1W6WMFc+3YmKeDahQUStETkoDiWe4NzExMTExMTEQi5S+Y0in07zzne/kne98J/feey9vfvOb+eIXv4jvn+PSmc/w/Oc/n1LjWqBdwzefVYwNKdbXzA/ZbqL5RLrk4gXZKuWUTQZMTiouXZTUQ5u19WYLinyfRvhQKoKUJluhlGTxSru0XC6vmD2gOXtSU6/K1tPdpSLMX5SU6kYYNTIFpU22OcjYFvheVM5DtIUT6HZZt1QWUv0S7UC3bIeU0DcoCQNlnh5vd7+F3wDfF2jLQoTb26iX4fTXw5bzkO12TwC5adh/q8vCqZDS4vY2akU4ea/X0/kGiIRHAV5NRNVhtqdmgjqc+Yq3reRZN4b2WWgFG3sIfKTNLkenJomMID9hs3o2MDF67/VtI9q32WGbRLa3SEnapmRcrzakCxPXuiyf8nY7PjVRcPbeenfhUNSPpVM+ifQedlnAha81uroFYEv2P9+mvK5YPq12r0dGIqYAzj3ot8rfdaIdGz9k92cdqxM25IaEccLaUboNjHtSqt84OezcRtvW5nxA4Hk6Kr1j/jbr0YxOwOYq1IXN4hVFo0s/9x8y+/j8GShuQnFTRJ1UuK4RMQLk84pSReAVicpHGmHSxESIbWsuX7YpFuHiRbuVFLZtM3ZKSQYGFKmcYK2gUEpy7rLE88rcemSNv/qrv2JxcREwjiWvfvWrecc73kE6nd7d4ZiYmJhnAfv27eMtb3kLv/mbv8lnPvMZPvShD/Hrv/7r+L7Py1/+cl73utfxO1+8yIJ2oyU0w3ZI1RE0QolEIwSEWlALBfNlx5R1A8btAC8UFDwLz2nfNJKWos9RlCL3E0vqqDyW4FLBoXn9n+gLCJRgpRxN5qLbwmrZxpIaPyNJ1UNSCUWpKqOAdgmtICS6l2pkVH6u7TKjSbqaRk4SiJ2uSiYmkdBk0priltjurKTb/wtC8G0LbQusHa6YG2sCU51UIGXTXbP9I39TlNQ/oEkkTTlR6W2/UW+sALK5Xd3Eu4LCmsb3QdvRPS3Y3sbWhnnthWVD3xAUVvaeMkWGlV3J5KHuWC1HQeHvIdLu0rC0IDsg8Oq6p0hJ7NgVnWhLkunTaEXrYYJuVEqC8oLs6sQolCb0NOtrklpXV1Cz9kZDsHReE6S7uDm6iqF+xcKq1VW81jzeKzVJfUEQdEn8KFfgWyKac3fs946NT9maTFJRbB372/HTgkRW41Y0taAttBO6fT4EoSBQAhk5FjXbcS0jgNpqWBSTElW3aXSMlwwgIRUzGZ/LFSNeulJtC5wkGo0pbZe0FUlLsxlEJSOjkpCJhmIiFbBUt/ERrNatDnGTxhZG7CSAkURAA0FJWRSi5evrS/xAdouPfexjbG5ukrz2Wv7Df/gP/Ot//a+55pr2d8WY707uvvtuPvGJT6CjC5YQAq01J0+e5JOf/CSvec1r+IVf+IVnuJcxMTExMd/t/PTYS7+lZdJCrXjF429lxS92nTMLYNTp59M3/jqW2P4b4sblEl/5wJMsnWg/lWq5klt/9BA3/vAclhOXy42JebZT2/LQGoQUJPOxSCkmJiYmJubZQCxS+g7ke7/3e7nnnntQSvE//sf/4Hd/93e577770PqrZDIZUtn9zB78AWCC9YJEKg0oDh9RbK4LFhbAa8hWCQ1LmqSK5xkx0cCAolSXeJ7kxOkoBsX4tEkWHXvUlIxrKjHqNdhYFS3x0fBoSHkL6nWLjbWo0ykYHDOJoU6RkteAC8fbfx+8ySSLFi80Ew6a4hoUo3bslMXsYc3iWeNaA6b02OkH20mnkRkjPCp1OBotnG5/BR0/YlPZDCitRm8I0RLK5Edh8hqL8w+Hu56e96qwtaqNU5Jt7RZMRV2YvsFGBZqFE9s/Vwo2rpigVB5qxd3ZrKZAKT8uu5aXA0j3S1QI9BAp5cclU0cdTn+x3jWRVVxQFBc6lEGiPdY92VFWZOGJHhmyiKmbElgOXLhvhwIpaieVk2SGrJ7ZtMyQpFFS3UvBCUEyB/UKeGXwyl3csfKCqRtcrjzaoNEtGWcslNhaVpQ3uo/z3M02QsL5B4NdIiTLgYmjDovnNEEdLjyuOk8JU/5vv0nShQGcvH/3OiYPCRqBxdoCLHQ6H0Tb6yY1h240nxXWYOHc7vIjUsLQBHhI6mtQ2mp2QDEyYgRJnicpbAhTqtF82GplYhoGBzVPPqEILIcnjjfPbcVgn6ZUggAZiZDayxcK5l+2rTh6NGRhQbK2BpfWHdQqqCCgsPYVGuUznD59mvs+C0NDQ7zqVa/i7rvvZnZ2tuuYx8TExDwbsW2bV77ylbzyla9kc3OTP//zP+dDH/oQP/ETP0E+n+c1r3kNn1t3yE4d4lzDQThg16HPVQynAs4VXRSCStAWGai2Fhsn0CQtTUkIyoFFOZCQEyRKin39PutVi2J9exmqYt1q3bZtqUk5ilJD4iuBHwkmnDwM2IpyVUa3W3PvKNfa94FsSjPUF3Jl1W6X5tKC5c32D+3pIXB8RXGrvVylKqlUm/ciTT6nKWy1xR5+IFiNSgnbliY/AcUl3RIfaSGiEmyakTFzr1xb3S0mqVZFS6yrXAvp7RRMCRxXMzQKa8uaYIerTrOcnBAayzb3tE6hktZGuCQtU/rN6yGcTmaMiN3vYRI5Oms+2+ziyAmwcmn73zpKZOwpVuqY/6gQFs70nqdZNkwcFKws7CizTLusWyLJHiIlTTJt5uiiFEBme+lBoRSOYwT/lR4PoA8MatCwudkpeOtsAxqeoFwVhF0223U0EyMBy2sWdc+UipNKo2zTVjqhsFNQqFqU61az2y1SrsK2NKWaRaEqKewQKLm2cU+64hlnpAvFtugvqt7IcDok7WguFW0CJVgqd35VNsd7xtH0JULWHHNOlgLTl6QygqMtLBpKsOF1Coui9aA5kPNYb9hsehYrlh2VshM4QpPyFJVQEgJKG0ETCOqqfe6NJEL6HMXZsoNCcFIlUAj8cgF57iHEynlOP/kkq/39vPjFL+bf//t/z0tf+lJEj/LMMd9dfPrTn+Yv/uIvmJmZ4fWvfz233norg4ODbG5u8vDDD/OBD3yAv/iLv+DQoUP80A/90DPd3ZiYmJiYmG8ZlpD8ysxd/KdzH2w94tCkOUv6lZkf3SVQAhicyfHDv3EnZ+9d4P6PnKBW9Ag9xQMfP8WpL17he153lOmbR56OzYiJifkmqW6YL/upfhf5FFzQYmJiYmJiYr79xCKl72CklLzxjW/kjW98I4VCgbe85S185CMfYWX5CdaWn2BgYAAnOcfsoe+nz+rn8iVJI0q+DA8r8v2Ks2ckpZJ5ASAUk9OKjXXN4oJxT1IawqTN2ooXlXYwIoa5Q7C8ALWqZLFZnkoqRsc1liWoLxhxFIAKJcePCWTdfA2c3G+SPZdObt+mlSu0xEepLGgltjsvJUC6kdtSD3LDEtvVlDY7vnJ2fMdM9gkC36K0ujtDUlqD1ZTuWd5j8ZTZHtuFwTmHlQtql1ipUVUdjje7SWRh/20uCyeD7WXdIhVIut8IbJTyKK3sFrdcfnTvMm3V9ZCVM3R3INqLbmKlbzKhsXnZx3JEzzYq64pT/9D1MXwAJq53aZQ0lx9umP7Ijh0oYfa2JJWNkPnHu49F0ND4NYUfHe8iVCZJJyWpPCQyksKCYvV870FauxRECdQuuDapnCCV0ZS66LVsB/qGBKV1TamHQ4N0LSzN9vGRmvygprgm8OqwugDlwvbl+gY14zNw5nGNCgTHnhSoVvLKiIykhLFxkwxeW4HNjfbnk9OaWlWwuSHZXINaRaAcCxHqyLnJ/H9mJmRxUbK6CsvL7WT18HBIf7/izBmLIJBcuQJbW+C7msbG1yhtnuDkyZNorcnlcnzP93wPv/M7vxOXc4uJiXlOMDAw0Jp7nT59mg9/+MP82Z/9GefPnWNsbIx/8S/+BZ9eFKQn9lGqSAJto6KfwaezAYWGpOxbrNXbU/CcY8RM1aKLhsjJBRo5wXLZbpV8y7ohjgWbNYuK174vpl3FUDqk3JDRLTxyZalblIXEQiOFZnIoYG3LCECa1BqCjZJsCZTSCUW10XZdAnML1kkJW822odOZKeFCJqPYKlmR40xHCGbOlEiASlqI2s4bq6Cw2Tn12O6I5DVES1SfyWq8hsT3hRErRT8shiH4/t7znoFhSKRg8ZJuuSoByKh0w8CYuXcvX9y9bBjA4rnebQOUNkzcN4puPXXd0flvYu6lFWwua/yKmTN1c5DcWNmZjmmTysDwBCxehMAHq+KjUh3l/7IwNKSYvyK7OiCB2Qed4iSnEuBnbITS9GUV5Yo5zja3dj5pbva558NG0aLhdW/fTkHS1tHB0qX8n6twbCjVdn5u/lYadAJsH4IO5y7XMmPihYJSQ1LbNbXUjGdDGoFgs25RqEtWsZDb0luCbEKRdxRbvhFHbTTM+CWkYsANWarbaATLNZtaKAnSAruuWj0cTATkU0Z8pBHM15yoZc1UKqDoS0qBRcGPhIyATwn95CMMeRt86UtfwrZtXvCCF/CJT3yCH/7hHyaRiJ8QjtnOX//1XzMyMsIf/dEfkc1mW+8PDg7yAz/wA9x55528/vWv56/+6q9ikVJMTExMzHOOlw3cxH878Hredfl/s+wXW++POv38ysyP8rKB3iVPhRAc+n+mmL1tlIc+cYYn//4iWmm2lqr8n3c+wNzzx3jBa68jO5x6OjYlJibmG6Sy0Sz1FpdgjImJiYmJebYQi5SeI/T39/Oe97yH97znPZw9e5a3vvWt/O3f/i0riw+zsvgwjpNhZPgoc/teSjLZTxiC57UFRzOzmo11QaUiOX6s3e7YmGZgSHPsiQDPl60nzJNJSKTaSYB0RuH74HuSY4+rliZochbSGc2Z4wqURLkgvZBGjfZT1BJyeeN8tNlRDmtsBhwXTj/afq9ehTOPCYRnljt8m2T9imJjqR1z7uF2omd4yvx/bb79+flHo88di5EpqG0pKpHrklKwdtF8nhmAsQMWlx4PdzkS9Q0LBqcEG0sQ1Le7Kq2ea6/fOCZtX7ZRhvljAcXlHdk0KUEpqgXN+a/Xdy23k9yIpLSudpWY833B+oW9y4jM3ubg12HxWBeRTzM51iNH5mZg3/NSXHm0Qa3QPSNYXlWmnS6JtsyQpFZUPcvRAVy4v95ev9yRaFNw5TEPb1ei05TkCzxTOu/SQzu2LWpncNoimRHbBWIRI3OSZJ/g8mMh5fUdi9swfshi8bJxdTj19e3LJ9Iwuk9w+aTGq8GJr23fN9KGgzdLVq8oCiuCy2d3j83gCEzsg1pZ49UFq9Fxa7saNwHVkhHt1atmc3zHaq1jaFgxNqE59qRCBbL1f1Dk81AsGqunVDpsnXv1uqRR1QhXMDlpxEfHjkEQSE6caJaBU0xOakolQalkksNelEBUymNx8XEee+wrVKvLKKVIpVI873nP49/9u3/HT/zETyB37r+YmJiY5wiHDx/mrW99K295y1t44IEH+OhHP8rHPvYx5ufnmZmZYaXvIAP7byE9NI0URgTRFAOlbEXKUmw0LAqepOy7kQuRZn/OZ71uUfCMGEG0py24dlMUoUk5mpofiZEaEo1ACs1sv89qxabiSZQWqLQgWQ9p+AI/EjwlHIUfmP6UqlbUvmZ8MGBpw46ESoZCxXxuiZBsWtOX1SytyJYrUq0umF+w0AiE0AwOKArFtpilXhcsLBnhhkxL+pMBxYJoLd+otx2mhkc19RqUSzvvkZq+vKZWhcJm5KoUNIXwgvXIwUjKqMTeDiFNcRNkEXZOblTSRtaDq5ZyM20bwVU3t6Vqw9rTFclNwtCkEUGpLmEt4VSPuVf/KAgJm0vdP1cKKgVQiS5f7YQmkYRGbbv4rJNaRbB0qe1EpdztQqJKGcKwu0DJcTS+LyiXdt/vhTLmo/05RRAIqvXty1tSMzoYsl608HxBqbL982RCYVtQ0DaFSrP9dkxfKkRpQbkuWS9buz7PJUP60or5DRtfC+a3tjtEGQFSQCMQLFdsGqHEVCbUpB1F1Tdj1ggEfnQe+knZWnY241P2JRuezWbDYqNh3JVsYYSBnpIIAQmrWaINSoGFCMGuKw5mPdYaNgXfLLseLZ+UipyjWG0YYZOnhCnJCASNCpsXnmTpzKNUF8+gtebFL34x73//+/nRH/1R+vv7d+2HmJgm58+f55/+03+6TaDUSTab5SUveQl/93d/9zT3LCYmJiYm5unhZQM38X39N/BQ+Rxr/hbDTh+3ZQ90dVDqhpt2eMFPXcfhl0zxlQ8cY/mk+UH5wteWufLoGrfedZAbXrkfy45/C4uJeTZRLZgv8ulYpBQTExMTE/OsIRYpPQc5ePAgH/zgBwF44okneMtb3sLf//3fs7D4dRYWv87w8DCWnGbf7IvJZsewbchkNFtb5sfvZAIsC0olxeamwPeNmEk7ikOHFCsLUCpKTj7eLA0Fk7MareHsCaBDm1EqEiU8JEjF5DSsLgnWl9qZoIFh46x0+tHtiZ8LJ8F1zb+TaSNamj9rXJS0ayMlVIphq2yFmzLl4zqFIalcO/HVjdyoxE4KKpvdE0uBr7uWTNtY0BRWQlRgklYybZm4DrFSZgD23epy+fGA0up2QUtToJTOm2RVy7kpEnTUipFQakhSWe9SziwHMze7zB/zKHYR21hpwciczdoZv2v/a0WN37hKNq4XGiobIX69u0Bp+KBDo6IoLUdCpR1Zv6kbE8YF6bHdHUv1SxplZcqrSbnNAQugf9qicCWkutl93bO3JWhUFJcfbguUdMIkpNwUeDWYPx7u0j01CX0Ie1Sys7I2uTHJVkFtKyXYREpzvCVT2riBRV1MZoywSIVQ2dJ4oY122wm04XGNk4DFi4KNZaiWwNuRxJs5ZM7JM4+bzy6dhjBhMTSsCEIobkoqZZO4ldGqmyKw/ADs2684fcK4np07ASAQhOy7RlAoSDY3oVAQ1KPyKbatyGZhI3KB6utTBIGkVIKNjQYnTz6I41zh+PHj+L6PZVnccMMNvO51r+Pnf/7nSSbjL3wxMTHfPQghuOOOO7jjjjt497vfzb333stHP/pR/vzP/5wTT36e2dlZ7rrrLj590ic7uh8hISE1GUezEYmBknZILZCEGlZqFvXQ3KjSGUXa1qwVpRFANIyUKWlrpvI+VwoO9aCzpCdsNWTLfSnjGh+nMharxQ4xUD7EDwQrhfZXAT8UXF518KP7x0A2xAsElbrpS5iyqNsCuxEadygBtq0J/XaZN9s288jdGuW261K6X1BsWFDdfS8PQ7qWAgPB0kI0pbAElqUJLXPPko32AoOj5n65PL/dTScMBGG07ekMVCvtPqmkbXwI6wFCGkelbmXd+kfNXGLp/Pb3m25IiX6JZUG1y7wtDMz9/ZvFq/c2WJI2ZEYsSgV2CdcB0lkYGoOFC5ow2NmIxk2auYXviV3iJMc1Jdx8X1DvYoCZSmlGRhWLCzL6vmAIExaW1AilCJXgypLdEtl0ohSEezhgJfrAsYFCd/ekhKM7lm+XVJM2BErQUIKqLwlT7WPUEpqRTMha1SJQgsWSTbCjD66lmcr5zJccqr5xUDIbDENu0BITlXyLeiTc0h19mEgHKA3zVUk9FFzaMqXlMrYinw6Zr9mAYKVhUwskoElYmlCDpwSO1GQsxToahWClWGbt3JNclynz2c9+FqUUL37xi/mX//mXeMUrXsH+/ft7D2JMzDdIXBowJiYmJua5jiUkd+QO/aPaGJrt45/+5p2c+bIpAVff8ggaIV//6ClOfWGeF77+KNM3Dn+LehwTE/OPpe2kFLvNxsTExMTEPFuIRUrPcW644QY+/vGPA3D//ffzrne9i8997nOsFR5heeUR8vk83/d938d9943Qn58FYHhEk05rThy3qdfBshSgsG3zA3yznEa+H5yEYm0Zzp0WuNHRlMnBvgOasycVpaKkFDkCpdMwMKTZXBP4roXjKsKyZnMFGrW2QGn/9VBYNa5KzffcpHk1kwiOC74H8xdN0kAQMHOdJPThwuPtTMPlE+2s3eA4ZAYEl4+332u5LtmSwUlQdUUxcnOqbEIlEsMkszA4JVk43VZgNUUgE9dI0n2C0/eH5nFxmsuHzB/bLVDqZOJah8CDiw/vdv1J5ozIqZsQqV6CCw80qBZ6C43y4xalNYW/ZpYVHRnM1bPfRE2SCK8KC4/vUPJ0/JidG7Wwt4QRKXXh3H29y7xN35qkuhky/9huh6fssGTiOge/prsKtwAWnvTxaqolTGoyvE8yPCs5c39AUN9eEiY3LEjnBcv/f/buPM6Sqj74/+ecqrv37X3vnp59YWYYhmVAkFVGRE2I4h43UDGRLOZRgyaa/EjkyaM+MYbHJCTGCIkmUaOiqKAyKvs+w7DMvva+d999rarz+6Nu356eBRAGuoHv+/Xq6VtVp6rOrXt77uk+3/p+D3hMDc49rh2ClpUBhvYdPztSXQs0tGsOP+WRz8DeRyuTaJXLEW+CnlM0h57yyOZtBvv89do2fjCfp7CCEAjBTDmSQs6f9O1Z7Zc/zCQVgwdn329WXFGqXP6GJkOx4GeIKBQ0Q5Wyi4uXuigNhw9AatJwoKAoZBXRqEt9I5XyjP6kmFL++8JxIJPx1zc2urS3eyQS4Hmap57KccklFtu2fZve3l5KpRKWZbFu3Tre8IY3cP311xONRk/4ugohxKuF1poLLriACy64gBtvvJG77rqLW2+9lf/5n/9haGiIlpYW3vKWt/DWt7yVz/73k2jLD5roiDqM5GzSZYu8o48KrZ4J0DA0Rjy/JJWn6EsGKHoKBbTHHRxPMZG1mcodUaYr6KGVIVPSlKMKW4PKwPCkXf3ojoQ8aqMeYwmrmmkJDAF7NgBk5rOiWNYU0RCBqOfQ0eoyNGpVM+yVHMXAiEYZv7+tzR6ptKZQPE7WpbCmvs6QHvfwPD9jzfTk7Hiirt7PqlSs7DuTecmyDJ1dHlOTmmxW4YVmx17TE04lEPn4k+yhCDS1gzNAtYzcDC9s09TqBw6P7Ts2Uio58czZlsIRP8Ape0Q5s5nsSq4DyfET7/tscqlj181kTQpGDTV1kEqcYN+0P2Y+NkAJonFo7NQM9Suco7e7hoYG/wmPjZ4gA1Mexsb8ACX3iNdBYehodcnmFdNJa06AklKGhlqPVEbjuIqxqbm/jkbDHm5Yky1qJjOqesSZ47bUumQKmlxJM56yMFrNCWrvqHcwRjGctMlZFrmZ8ZMyuMYP6AtoQ0AbHE9RrmQ3iwddYkHDSMam5Gr/58v138cmonCNIqT80m3psqbkKaZL/nMOao9FMYf+rE3J04xmbFzP729d0KOEIu8qDP5Psx9Qbii6inLlZ6Uj7JB2NONFTdrRTExN8aFNzXznO9/mscceQ2vNyosu4oYbbuDKK69k1apVx3/BhXgGS5cu5e677+bDH/7wccfuuVyOu+++WwLfhBBCiOdAKcXKCyol4L63j52/6MUYSA5n+dn/eZSl57TzmvetIdYkJeCEmG+5acmkJIQQQiw0EqT0KnLOOefw/e9/H4Bdu3bxxS9+kTvuuIMf/vCHAEQiEYLBNoaGT6dnkV+HOxj0WLbCY3hQMzGhOXTIzwijgJo6v5TbxKiF50Co1qNU8nDLkEoqipUAo84ej0IOpiY0O57wy74BLFlpKBcVfTtN9e5yrf2JHLcyoRCOgrYgNeV/gX+X/sqNMNYPE8P+OhO0GdzjoCvzI+EYxOph8ogyb0dn5alUV6uqbdK4ZUVy7NiJqWidH8gyk6XmSOOHPCK1x7ngtkVyxD9WTZOitlUztGvusfueKFef69EKaX/70WXHZswEKFnBY7P/OAXYfdfc2Tej1WygkoZYw7OXXTueSL3GKXqUZ2KNjrrb9tBDx0k/gH+nv+f5fTt+A03f1sIJr0dmwuPggwWKmbnrow2ahm6LwafK5KaPDVACmBr035dOCdCKI1NORGoVsQY/09fRL64dt6ltUkyPGPJpqttn3jsz7x8dUNXrGKnxM2RNDkJ6Egb3emTzsxN3WhtWb4SpMRjt879AoS1DvN6QnPTLyXmuX9oFZjMrhZsVy1YYDu5XZNOwf58CTxMMenQuMgz1K0olTTZdmdL2XKKx2dIykUqg4OiIh6MD9Pf7GZLAY9Uql0RCMTCgmZhQ9PaOc/jwg9j2KCMjI9x3n0MgEGDDhg28/e1v57rrrpNSbkII8Qxs22bz5s1s3ryZr371qzzyyCPceuut/OAHP+Bf//Vfqa2t5fLLL+eRYYty9xqskJ8+sjHsUhPwOJgKkC5b5ByNG1QEy4a6sEvBUZQ9jWcgaEEJyDq6GggS0IaGqMtk1mIsY6MqIU+RgKGr1qFPBfDSzEky6ZnZAJxoyCNfmsmy5K+sj3nEox59Y34GGICcthibMNXA2ZqYR6HoB7sY5X9WmiM+cpUyGDOb0SYY8PdJZyzIzv0AVsoQiRhcV1E8clhhKVzXMDWpyeVmVs5m2SlbdiWzkqGhBTJJKJdmxynFvGL4iLJmR0tUxpozZeCOVB2fVGKRjw5YSkzA0cFRJjBbBs6y/THt8bI0PROl/eD8I7ONHlnWrZBTDB46fqYhrQ2ep054zkzRojzEsQFKFePDoALHZl9qaDRkM37510KeOQFKYDAoJhO6GrymPOMHE1VEwoZCyeDkjz1vuA7AI1vUHBmcZKrvZMACUw1GM9SGPXIljeMpJjMWrqdwQ7PHrg+7NEZcDk0HMCj6U/77OGR5eMYPVPKMwjMzYUSKYiWbWWuDg1YwkAtQ9DQH0n5pxtqAi60MUyWbsqdIFzXGVWjPD/ArV37fqQu6ZMqavKvJKkU+b+OhqA+4tIYd9qeDeCh6M4rU2ADJvl3EUgc5ePAgn/1hiMsuu4y//uu/5uqrr6arq+v4L6QQz9EVV1zBF7/4RT72sY9x9dVXs3HjRurr60kkEmzfvp2bb76Z8fFxPvShD813V5+XN7zhDXOWC4UCH/vYx3j3u989Tz0SQgjxahCKBTj3g2tZdVE399+yg7G9CQAOPTxC//ZxTr9yBevfuERKwAkxj6pBSo2SSUkIIYRYKCRI6VXqlFNOqZaEGxgY4P/+3//LD3/4Q/r7e0kmD7Nn7w9ZtmwZig5c71xqa2tYssTguhCrMaTShlJBMdgPWnssXWWI10HvAT9YIxQyaK3wPI/GZkOxCFMTftmIFatc+g/DUJ8iWmPoWaeYHDC09/h3exfzswFJK04D48GOhyFWCy2d0LcXhg9DKAwdS6CYAzTU1NkkJ4CUQ/MiaFmkSY57OCVo7oJAeDaL0vLTFdFaxd5HPZSCtiWKgb0eThkaezQNbYrMtGFsv0fXKZpcwrD/EZdgFDpXaT+L006Phg5FtF4xuMufXFvzWgunDPsfcbHD0LkywNghj3CNId6iWWQr+p/yZ7k61liU84aJXo9wLSw/O8ihrSVy01Dbqqlr1/Q/6bftOSNAIWUYO+ihtUf3qQEmD7uEaxUdq23Skx69W/3sQ20rbYwHYwcctA2LNgSY7HPJTHhEWyyaeizGDpXpOTNEetyhnDGM7vPPs+j0AIlBfzItGNP0nBli4IkingPNy2zskCLWbFNMeygNyWGH1IhHuE7TutxmbH+JQgoal9iEoorhnX6fujYECcU1SsHAE0XaVgUZ3lmkXNQ0LLKo67A4/FiJYgY61wfIJz2m+/3rvXhTiNSIw+gel0idpnmpH5AE0Lku4GciCmsCjQHal1uMHXIppKFtuaJtuc3Ou/ySd6EYNPdoJvo8atsVHSss+p9yGDvokc8YetZb9D3pEm62WbxOMTlkGO+DvY95LFqtmBg0ZJOKFWf4Zd2eutuQnoJoraGlG0YP++/ZJaeCshSTw4Zok0VdOxTK0NhuKBf8CcqRPsgkYPFqw/S4/37vXOKXNHzyIUO5oMgk/Z+paNwQDIIJKFIJP2AQ47FytcfUFEyOaxrqPRobYXIUygWX2npDcsqfnFu2yqAt2P2Ux9SEAQUdixXFoktbm0ci4ZLPaw4dchkY2EkkMsjevXuZnPSj42pqati0aRMf+9jHeO973yuBSUII8TxorXnNa17Da17zGr7whS/w9NNPc+utt/LjH/+Yw489Rm+lZNwFF1zAz/Z51DV30BZxyZYVHTGHqYImGIX+hIVj/KwvbTUOZVfRmwwQsgzlSiBIMOjRUuPvg6NojjlYGsYyNqMZi9qQQ9HWxD0Xx1UEbMN02i9fVRNxWdzq0DsWIJNXNMRdHEeTymnKDrTWuyQymnjUUCxDOKhIY2MX/KxKqYxidNxGKY+mBkMipSmVFeGwx6JOl8mEZmraoj7uYQwMDFoYoLnTYFuKySmN7bjEaw0jlUD0eK0hGjNMJzSlEjQ3GzIZhTH+cbsXefT1aUpFTU3cw6pTpNOaYMilqdWQmPIDeQJBQ20DTE/4x23p8MeAY0P+51pDi6GQg3xWYQc9mro1E8MK11XUBB2CIT/TZ/sS/7M8USnRatmG+mY/SMl1IFZrCIZgetz/HK7t0JSLEImBHQQn55Ga9AOnwzX+eqeSQLK22S89m036QV717X6p2vpOi8lRP3h/spLVqLbBL7WcTvqhOo2thnTSD2wORQzxej+709SYwar8xpdOKLygpqXVI19QZFJ+kE9zi8fkhH9Na+s8authqF/heYrGBkM2A4WCIhg01NZ62AEoFRV2jV96L5ECMCxZ5JDLKcYmbRxH0VjvMZXQeB50NDkUHcVk0mZw1KKp3s/Umssr6lsN4YDHSCLAeMoiFvZoqnGYzNgEAoaVbUWGEwGmchaTOYumGpeSA2VXUxPy6G4sMzAdIJW3iNQYSi6ElAsGokFDsqAYzdhEAx6xoMdYNgAYljeWyJY0vckgeUcRD0HU9miMeqQKmlDMMF2y8Aw0BcuEbRjJ23jG0B5yKDiKaRdilkdQezieRTzgsbS2zGDWYrIQoD9j0R71CIVdOsIu+Up5uPGiRWaqRH7waZYEEtx7772k02kaGxtZ99rX8id/8idcffXV1NTUvIj/M4lXmze96U3s27ePH/zgB1x//fWAnwXCVKIujTFceeWVvPGNb5zHXj5/P//5z6uPJyYmeMc73sGFF144jz0SQgjxatK0pJbf/svXsO++QR75rz2zJeD+ew977x7gvKvW0rVeSsAJMR9my71JJiUhhBBioZAgJUF3dzc33ngjN954I4VCga9//et885vf5OmnnyaXO8D+A/fR0NBAe/tSYpHVLOpZQ22dxgQ91p0Go0MGpaDvAExPQX0DxOth5TrDnqcsEpMepnLvc12dn4HJtiExpYnVuNi2wQT8SRmlwLKgpcsvbZFPQ7ISsBQMQVOHXwZuegzae/y70mN1/mSRZfnfgxGYHvZLeoA/IdS5SpM9ojSa8RTZpEcxB5E4hGv8TDYU/eMEIxCpZJixAn4WIPD7F6lRRBSM2P5664jEPcaAV0kZoAE7qFAaJgb9u7NrmxXBqD+JZdkKt3LjeSiiCIQVwTDk8I9rB/1JDG1DY5dNNuoxdtADrbGDGmW5JEddog2aQHD2bnHLns1asPK1IQIhxdSAH3ikLbADilIKDm8tUduqsY7Y1w6qOc/VCs6W0LACCiug6NtaQGnoXBdC25U73LUfBLbs3AhDO0pYtt++2qegIjftUkgblFZYQYWy/APbYUV9p0XzEpuJg45/vWduyNcQjGoidRpw0baqXu9og0bbkM9p+nZ62GG/zMpM9iHXUZgjMiZZtsK4/nK8WROu1dW2utKnmfdLMKIIhir7GkUo6r822aT/vrSDs6+5ZUFjp0Ipw8ghKOYUk4Om+p61bP/9Hq+DLH4ypum+StmeVv/9k5ry3+eRGCgP2hYZ/71lQSkLpYAiYhvCERgdhnDEn4i1AzA16v/8TU1CJqVpbvNoboVsygAW/b0uLW2gleGUDVBy/UxNo6OKZDLBxMSTJJN99Pf3UygUsCyLrq4uLr74Yv7qr/6KdevWIYQQ4uRRSnHqqady6qmn8pd/+ZeMjIxwxx138KMf/YibbrqJXC5HV1cXHa95DX3JKE7nCnQwQsT2qI1DjXJJFhWpomY67wcXBSxDa42L6ykKjiZR8D/gjDY0xDw8D0bSimxJE497lD1DMaChbAhrv8xoJOQHDk1lNNlKhpv6mAEcDo0EyZc08ahLwDbEwh6Oq7E0WNoPlpmc1tXycA11hvpav9Sb/5wNxZIil/OXLdv/7PKURhlDIADBY2g4VQAAoNJJREFUgEHpmbGg8T/QjUJrl1gcCkVDqaSwrNkkjkr5ZeDcSsZArf0xhOcphsctWlsNSnnVz3SrmvDHEArPTQZ55HHjdVDfBJNjBlwFYQsVBnBJTfpjz5kxhFL+OZXyA5TauiE1fcRxNbgakpP+PvXNGqX8C6VVZYxZnu2DmUkqpcCyFAWjGemfzcQ0Q1sQrfHH1SN9/vYjr4vWkJiEQg7iDWBsjRf0S73WxCEWN2TTpjr2nmHbEA4ZbNsvLztzXbQ22LbBshTDCQvP09RFPGZjlxUckZHryONqDbGYQeVn22pt0JUOhwOGUMBUDqFQ2hAOGUwOSi7kS7qS5YhKe4/uBo/eyYA/BspYpPIWtjZY2qA9RTTg4XpgKfCMJu9omqNlOuMOEzkbzyimchZFVxG2PcK2h6UMHgrHAxMGWxk8A0VPU69cWoIOqYIm62gKjmKi6Gcb6447aAyDQKasGclpFIraoEtL2KGgFLqoGCtAbnKE3NAeAulBduzYgeu6OKtW8Za3vIX3ve99XHrppVhHviBCnGQf//jHufjii7njjjvYv38/2WyWWCzGypUrufzyyznttNPmu4snxZ133sm6devo7Oyc764IIYR4FVFaserCbhaf0cbW/9nLri19fgm4oSx3/M2jLH1NO6953ynEGiVQQoiX0my5N8mkJIQQQiwUypijixUIMeu+++7jH/7hH/jVr37F+Pg44GcD6OnpoVxqZsP6TSi3nWJB097lUVtv2LvDD+gIhQzppIVte6zZYBjoVSQmNbbt4jgW4LF2oyGVUAwc1mjtoUsGz4NVp/uTOaN9fkBIKAzFArR2wUg/eI4fyGS82ZJvAHXN0L0cDjwFxYSfHcgOQscyxdB+g+tAvMm/K71YKRNiB2HVJs1Yr8fEwLHXIN4ErYs1fdsdv1wYs+W+tA0dKzQj+71jypQ192g8zzA1MPdHbPkmC7doOLytfNxrrnWlqtgRlU+idf7d+sfUmpvhHX9Dfadf0q2YPcF+x6E8wymXhhg/UGbi0LGl705IQ2O3RWLExTuq/BzGwDNk4IlUSs8d+fy0zQlL0cVbNN1nhOl9okz2iInAYBTallkM7nSPuSQNnX4mp6lBb6Y6iM8ztK62Cdcoencc52lpWH2OIjFmGD5wxHNtg6nKe69tCRSykByvPN2gzbJ1/mTbwadnZkAN4aj/vu0/AHiK5g5DseAH44VjkEn6wXJrTofhXpgeBxXTuCVFMOSxer1hsE8xNT7zc+Qfe80GQ2paMdSvsW2PSMyQTipaOqC5xbDrSQVo6puy7Dn4FLW10+zZs6eaLSkUCrFmzRre9ra38clPfpJoNHrC10oIIcSLp1Qqce+99/LTn/6Un/70p+zduxetNZs2beL1r389P9w2SWtzNxknBBiW1JeZzFmkS5powKNQKfvWHHWIBgx9yQAKg1IGz2hqQy6tMb/slWsUljFYWY9Y2NBc59I3amNQhIMepbIiFDRYGjJ5jVKGplqXRMbCcWGmFFdnk4PjwljCxsr744ZoxMOyIJ3x94tGDNmcqu7TUO9RE/XoH7Kq62bLthlamz0KeUV20vhRJtUPbUWsxh8r5nNzS4UpZWhsNCQSfvajGeGwoa3dY/SwoVQ8cp/ZYyptMN4R25QfOHVkqbij6YKDCcwNJrEsQzAC+czs9XkuauMutY0wuM/MKeX2bOyAIRD0sz/N5V9LL3iCYJfjPD+lKrcUGMXsa1FhKVrbPExAMzI+95jxmIdnIJubO87T2g9Um05qjFHVcn/gj/GaOzzGMxZFRx9zvrqIS1ONy+GJwGwZQ8sPQCqUNValpOFU1qput6OGnroyA6kA+SOOWRty/YxTJQtL+SUTEwXtl0p0/TJvjRGHWMDQn7LRCkohhXIVrRGHmO1xKB0AFJbycI0mHnBpjzocSPql2iK2S9nVOAYWx8skihbJkkVQe6jCFIMDB9hQl+fuu+8mlUoRjUY588wzueSSS/jwhz9MT0/Ps7/YQpwEo6Oj1NTUEIvFTtgml8uRTqdpa2t7XufI5XJ8+9vfZufOnezatYt0Os2f/dmfHTc7U6lU4t/+7d/4xS9+QTqdZvny5XzkIx9h06ZNz+vcR7r66qu58sor+e3f/u3n1H7Pnj1cc801/Ou//iurV69+1vY7d+5k7dq1L7SbQogFRn62xck2cSjJAzfvZGx/orrODlmcceUK1kkJOPEq9puOvWY8n/+nnaLLLVf/AoAPfH0zwWjgWfYQR5PPx/kh1/2lJ9d8fsh1nx8L4bpLJiXxjM4//3zOP/98ABKJBP/6r//K97//fZ588kny+cMMDj1GKBQiYDWweGIdq1acDtRRKngsXwXjIx5TEzA6BJmkPxnU1qWIxlz27bQ4uNur3hnd0AwdnbB7G+x9nGoGn6Z2/2v3YzB0yA8q8vBLXsyE2GntByilp/w2hRwQtFm0EnLTDv27ZwOF2pdoCjlTLf3mlODgE56/D9C6xA+OmQlY8jwoFQxlT6PwCISh7AffE62DmkY/+9DRQUrhGioTXnODlPp3VAJ/bAs895jAo0WnBUBB7xFBTLlk5Zhxv7RZenzuTi3LbeLNmoMPz40OSgydKKoJ4q2aujaLgafmBksZXZlEVMdOrtV1WUTrdLWM2xweTPUdG9TUsMiioSfA4UeKc4KOtA31XRZTvS756bn9jLdqOtcH6X20QCF9xAYNJhAglYL+p+cGKIGfVSAcVwRjzN0P/3UCmBoETCXrgQZHBSgVZ7Nlgf/ealsK/bv81//w04b8EceLxKB9maJc9Eu+jR4GOwRLNloM9/oBS6P9/nsiUmOwLD8ACQzRGgiHoVQyTI362R66VxhqamH3NoPnws5tgKfoXmkIxzz27rAoFTWH97ukk9Dc6tHaCTu3+xdlbMSlkPVLL644xTA26gclZVIlRsb2s2PX4+jANBMPTeC6Lkopenp6uPDCC/n0pz/NOeecc+zrKYQQ4iUXDAa59NJLufTSS/m7v/s7ent7ufPOO7nzzju56aabmJycJBaLcfHFF/P0sIW9eDkq1gYobA3dtQ59SZt0UVNwZj9bl9Q7jGX99SUX3EogSndDmVxYk5zU5AozIxZDW4NLKqeZTlso5Qc5BSyIBA3TBqgEMrmeYiI5G7Ri1SoaajymRvxSYeBn5Wlp8iiWLBzHP/50QpHJ+gFKWhmaGj2mE7oS/ATlsqLsghu2CLh+kMlMgEsk4pcfPjpIyQ5AKGxQR41fCgUYHdEUUJiIwiqUK4E4leCXoKGtC8aHDcVCZV+jKJf8vsZqIZumso9Pa0PrCovUhJkTIOS6qhKgdDx+WbhCzi8/N2eLrTE2eKFjg40aWyGbYrZvR3DKqloq7sh92rohldNkj+pLOGJwyuA4M89vdp+WNv+6To7PXhsAlMEJ20xkNN7cIS0AwaDBeH62yCNpBbGIIZODUsl//SzL4LqKQkRTcs0RI2RFXcTFAKm8RaqgyZVmzucHGzXGXGxtGExo/32XsYmHXQIRGM/ZuC4MZ2yKDtQEXTIl/xeJsO1nQ0qX/LNN5W20MnTXlhnPWiSLFtN5zVReYSlYUl9mqGiTcS2mi5rpov/+XlxTIl3WTBU1eUcxmvdLFdYFXepDLr1pDSim0wVGBvuYGNhLMHWYwcFBlFI0btzI7/zO7/C7v/u7XHLJJYRCcgeveOm9613v4qqrruKqq646YZvvfe97fOMb3+Cuu+56XudIJpPccssttLW1sWLFCh5//PETtv0//+f/cNddd/GOd7yD7u5u7rjjDq677jpuvPFGNmzY8LzOD3DgwAH6+/u5+OKLn/cxhBBCiJOheWkdv339a9h7zwCP/vceCukyTtHlkf/ew957BjjvqnV0rmua724K8YqWrWRRskMWgYhMhwohhBALhXwqi+esvr6eP/3TP+VP//RPAT/i/Z/+6Z/42c9+xoEDB9ix55fs2PNLotEoa9as4YEHG2mIrwevCWM8Vq4z7HrKI5XwsyIBFEqwdgOMDHikk/6UiKMttPJYtcGQTvgZZVJTs8mCVm6AqTHo3zfbt3gDdC2DfWm/FFwwBKVipVKIZYNyCUf9oKID2001IKWhHVq6Nfu3z2bxCYYUng1g0BrKeejf6U9shOo0yzZqBvd4pEY8MpOw54GZGiOwZIPF2CGXXBIGds5ODta3g7YVUwOGUm6238vPDpKZMowe9JiZmZvqd6sBWkdrXWZjh9UxQUr5lMEKGLD1bNBT5YLVtWtqmi0Gn547i2XZEIxWyrmdOJZpjkBIEYwd27l4m6a2rXIOD4w9O2FZLGnyKXNMVqS6DovWFQEy4+6cawKQnfJI9DvVQCMTChCMwtLTbYZ2O6QnIT3hbwtGoWWxZnCXRyEN+x6snEhB9ykWmSmPxIjxg8NmKrgFbZafpcilDQN7YHqkcqyIn2XLMxAMK4JRQyHjZzpqWwKxOsXBJwz5jGL/Nr+kXWMHTI1A2fiZmmwbgmFDNuV3Yulav5RKJulPlO553G9zyukw3AdTo352MAMEIrBivZ9pKZXWTE662EkFeKw+1TA9oUgnNdmMy+SYH5zX3uVRUwt7xzSeV2Lf/n3YwRQ7DmxjamqKUsmfhWxqauK8887jQx/6EO973/uwbfnvXwghFrrFixfzkY98hI985CN4nsfjjz9eDVoafvo+ereVaG5u5oILLuDsU8/mtodHMJEuiq6mvcbB1i6pomYqryk4fimtiA0tsTL9SYvxrI3jGUo1mhptaIs79E0FOJwOgDEooCbi0RT36B216R+3q+ErDTV+Oa2xhF/yytIGS/ljuXLIQjn+vsWyRe+4hasUGpeONo9MVpHOVMq+2hAIzAae2xZMJ2cDZepa/O3DowqrbJgYnw2gicYMoaBhelpRLimGBjUz2ZgaGg2ppJ9VqVDwg7AjYUNjp2ZkVOO6CivvUC755dmKxWOvvx3wg+hdh2owO/hDrHxJUdIa94jAIqvoopShvsUPLCrNCSxSBILmqOCgZ6b03FK2R2psNeQyswFP1QxMypB3DOXysQFPDY2GYhGmJo7epkin/Nj5GU7Mpr7WJRxUjEwYSq5CVYKG4jGD40K+oJmcnrnmEAoaauMe45Max1X0D89mygo0K9pqXfomA+ApxtI2tjbMBCEFrNlMS8YoXM/Q0+gwkbHIlRQTGQtjDPGIS76kcTyFF/QzNIGHrRWZkkXQ8uiocehPBSg4MJbVgKYp4hAPeRxOBPAM9CVsSq6fdSxsGwZSAUoBxUjJIu9oagMuzRGXgyk/i1KypCm6Gq0MPXGHsbyFQVHMZzh4+BAXndLIz3/+c7bt2YMxhiVLlnD62Wfz+te/nne+8500Ncnkk5h/zyWJ9gtNtN3U1MStt95KU1MTu3fv5qMf/ehx2+3cuZNf/vKXfOxjH+M973kPAG94wxu46qqruOmmm7jpppuqbf/gD/6Ap5566rjHef/7388111wzZ93Pf/5zXvva1xKPx1/QcxFCCCFOBqUVqy9exOKz2tj63X3s+mUfGEgMZrn9fz/C8vM6OPu9a4g1SAk4IV4MR5Z6O/qmJiGEEELMH5mlFs/b6tWrufHGGwHwPI9f/vKXfOtb3+Lee+/liSeewHVdYAvhcJiVK1dydsPZZDIx8Fro7HEJBj1GBmF6AkpFQ6loYQU8Vq932fM0TEwqShl/4iIYNvSshgNPw1BvpVSbUjS3G5o7/cxLe7dDqRL8tHiNHwjVt6fS2YBFvA2aWj2mhg1eyc+4UyxAJmHwXH9WrWM5TA0bcil/t8ZOv9Tb3kc9nJKfIWfkkEdyCrA1jR1QSHrkUxAIVkqUHadCWqxeYwU4pvRbesKQTVYihCqBPekE1YCltpUWiSG3Wq5tYMfx659lJg2ZyaNOXCmvZgU1gbA+JhgpMeSRGPoNZsqAiYMOEweP7YMdtQhELIz2jgmwyk56ZCe9Y4qeTPe7pMddnMLsurbVNtP9DqUcjPQpCM2mXy3lID3pkT/qVv1ACGINmmDU84OdZpJXGdAB0AF/hdbQtNRmYsAvEzjaa+ZkO1h0CkRiir2PGUp5OPC4oWWxQmk/SKmQ9SdQgxGF4/jvtY5OiDdrJicBDQd3KKJxw6rT4NBuyCZhYD+US9C5xBCrg71PKsquYbgfUgnoWm4IhODQLr+fUxNQLCtaOzwam2F35e/xmRTkshAMeixbDQOHFKVSiUXLDA8++CA79u1gamoKx09TQX19PaeffjqXXnopn/zkJ2lsbHzOr7MQQoiFR2vNmWeeyZlnnslnPvMZcrkcDz74IHfffTd33303119/PcVikfr6ei644ALWLN/I6173Oq77l0cou5qeOofDiQB5R1X+MKfIlf0sS1N5yJc1U0UL1xgwms46h0JEkyxYlAuKctj/JF8aL5PKaUamLLT2xzWRoKG90WVg3GZk2kZhMDY0NHikUopkxm+rQopMSVM0Ci+gCQUMoZBhaGQmKMnQ3uqSyyumEv64KJHS+HG1ChOCmijkEqZSSdZUhjvHZlWKRg2ZjMJ1Z7JEQqkMuby/DsCt3EU5XQTLONgBQzTmfz6DwikrhnvNnPJxPsX01MyAZ7ZUmRuyAIOOGJSjoDA3Cnx86Df7g6jxFGODx65XyqDDFqas/DHs7B5gFInpI0vozfZ5dHg2GAz8cnHRKKSSinxO4cTsOb8dFoqz1wr8ZFLKKCJhj3IZ8gWYHXgpjAFLz5ZFDgbA1CmyRU25ZBhL2cwk+LK1YXFTmdGUTaboByGFbEN9zCWRs/CAbEnheBCwDWVXoYDmGoexoqJUVKSKmlRR0V5TxlIwmA5QcuFQIohnYGl9mfGcRaYI6aImX9bYyrCo1mE4YwOKXEmRUxo3CEviJaaLFq5RlD2YLmoU0BR2iNoefRkbiknOXB3l4MH93P/o/Wzd4dcKnt6zmHPOOYf3vOc9vOtd72LVqlXyB3DxsjQ+Pv6CSj8Hg8HnFJR39913Y1kWV1xxRXVdKBTizW9+M1/72tcYHR2tlpz7x3/8x+d8fs/z2LJlC5/85Cd/884LIYQQL6JwTZDXfmgdqy7u5oGbdzB+wE+bf+CBYfq2jXHG21ay7g2L0VICToiTKjvl35EUa5RAQCGEEGIhkSAlcVJorXn961/P61//esD/4+B9993Hf/zHf3DPPfewa9eu6t2PgUCArTsaqK3pIB5ZSSx+CktXWezZ4ZHLQDAIgaBiYtTPsjQ1akhP+8E7ngPJCcWydYZCzjA9BnrUz3xTKipWnmZITMDQwdlpmXgDLFrhBzhNjGhMACzXZekGxdSQYegAUJlQiTcqClnIpf2sOpmEoVzyA5QAFq9XTI2YarBPU5cmG1PkUy7lAhx8bHYmZ/kmy8+SdMBjcPfsJFVtC9Q0aYZ2e4wdnl3fs0GTmTRMDRqwLTQuda0ap2goZv12M9mI7CB0rQ8wvKtMKT/7OjR0ahq6LQ4+Vq72cWrAY2rA40Qpk7TNMVmOjv8iV45w1CGMbTHV7zHVP3dD4yK/nNyhbeU5p+1cFyCX9EgMzA1Q0kGobbcp5wyTbiW7Qhh61lsM7XEppGGoch3jzfil6na4ZKdh74MOGAjFYMlGm4GdDtlp6HvCrc5bWjGbpm5FMWdITkB6ErrX+FmU0lMw0Q9Yhli9Ipv031N1zeCWIZ+F5IR/rdacDeMDMDasGRmEoX5YvNqvjnd4t//eGToM5SKsPt0w3AelKUUq4WcvCMcMS1fD4T1+8FI+B4U8aNuwZiMMDyiKJTAYpqf8vi9bZdAW7N45imN2se9nw4yPD5NMJrn7YVBK0dDQwLnnnsv555/Ppz71KQlKEkKIV7hoNFotDQdQKBR4+OGHq0FLf/u3f8vnP/95otEoZ555Jg8nLez6pdQ099DcGiZguYxlLJIFDRjKnl8GbkmTQ+9kgEzRL7flelB2FYsbHQYTFhNli5KCclgTC3p0BMsMTVmMJSzKrh+s0tbo4jiKvrHZgKXasEdd3KNv2MagUBiCQUNN1JDM+Bl3QgHD2KSploqLhD1iUcNkJSAoHDI01HtkchaqaMikFZnKB304bGhq9hgZ1jhlxeCAn+HHaGhq8shkFMWiYroSwBMMGhoaPMbHNZ6ncCM2sUCZWC2kk7PBPDMBSrG4wbYhOT0beKKUXyYtk4ZcteybYmyk8jhkYRXnBpErZSrHfvYAFqX9UmpHt3WDAcZGj2qrDG3thmRybik82/YzKE1MzJbgmxGJQKzGkE5BOeoHhsdjHqGgYWJaUyhqCkX/2I11LtmcplBSjE3OZk+qr3UJBWF0QlMqK0bGZydVws0QCrhkiwpjFJ4xtMZdxtI2jqcYSdqUHPwycJ4iGPCIhzySOYVBMZm1aYi61EcdDk0EcIKKg+kgtjYsaygzkLIpuopEQeMZRX3YJRbwGEwFAMN0XlMsa5qjDrY2jGQCKDzSJb9kXEPEpTbkcjAXwlaGnKMouoqg9lgUd+hNaQpT/YwlDjI81E/US3Hw4EG2/jesWLGCiy66iA9+8IO88Y1vZP369c/6egoxH2655ZY5yycqv+Z5HmNjY/zyl79k7dq1L3q/9u3bR3d3N7FYbM76U045BYD9+/dXg5R+E1u3bsVxnGctZz0xMcHk5GR1ube39zc+lxBCCPF8tCyr44q/Opc9dw3w6Lf3UMyUKRdcHv7P3ey9e4Dzrl5LxymShVOIk6WaSaleSm4LIYQQC4kEKYkXhdaaCy+8kAsvvLC67uGHH+Zb3/oW99xzDwcOHKBv4AngCXbsg4aGBlavXs3w7iDnvXYji5Y0cnCvYmwUwhFwxvxMNqecBbu2+mXgtPIDQbIpf/2hXf76UhGyGahvhu6V0LcXJkehWAnmWbIGSkWLvh1utexc6yKob1XsfXT29vK2HojWafY8YkD5gUG6cic+CiIxw+A+v8SYsTUtPVDfqtn/iAMeJMcMhYwfVBOK+aU6Cmm/jFgofOzElOeA68ye38Ni/6OeP6FkW8TifkAOgLYq/QkARwQplfIepZw+bjhSvEVTzDKntNqiU22CETjw0LNnVKrvtGg/Jcje+0u4RzRv6NIkR71jAp2cEhRzswFdxtIo18MKgh2cff6hGnBUAKcE+x9x8bzZyS2v5F8XfdRNRNpWBML+dcBArAnS41DMQnrCo1wp2dKywvZf18cMpQLs32aI1gJK4RmwAv6XtvxApNYeaO6C3Y/65937mL9u9Zmwp7Kufw+4aFafAYd2+hmVEpN+UFzHUkMo4mdF0tqQSUGpBEvWGIwLvfugps4PuHNdP3guHIF9Tynq2iCdMuRyEI9Dc2uZ++/dTceiPL+8ezf9/f2Uy37JvkgkQmNjIxdddBFnnXUWf/AHfyBBSUII8SoXDoe56KKLuOiiiwAolUo89thjPPDAAzz44IPs3/8gw0/eBcD0kiVs2rSJ9114Id/42T7WLG6m6IYpOIqMowlFIJW36GkoE7INqYJFtuiPvdIFTXuti+c5JAuatNGUg5oSis62MrkSTDsWupJFKGAr2hocRqctCpN+8AkYFrU7TKctBsf8jElaGzpbHCYSFumcRgUNBBUEwA3MlJH1GBjyg4oIQFeHRzKlyCfAcSCbmc38E45AvuiPIWzbHJHVZjbzkefNDb5OlQOkJwwm7H+O20UH1/HbWpZfKhcMXiX7pTFQLh8/i6ZShkgUcsyWwLUsQ+ciw2S/N6d83Im0dUO+bB2RtcnPfhTQhmLx2LFkqQzOkdV9lf88LNt/7dzK8w+GIGcHmHYNiSSY6Oyx5l6T2QxJAdvvv1+2DoxrcFxFoahmEoD6gVI9humcJl2wmMx6BC1DwIKy5192rUFrD89osmXFkqZypa0mXdBkCoqeJpfprCZVsEgXNLmSoqHeRSvFWNam5Bqm8hbGwOK6EmMZm5KjCChDzmhClktXrUt/MoBrwPUUJVdhKcPSBofhtO0/s4BhwvEHk+1Rh3w2zUjvIOd1uzz56yfZu3cv+Xwey7LYsGEDF17422zYsIHzzjuPNWvWPPsLKMQCcPPNN1cfK6XYvn0727dvP2H75uZmfv/3f/9F79fk5ORxMy7NrJuYmHhex/3FL37BpZde+qylrW+77bZjArgADh06VMkI/cwymQw7d+58Xn0UQixc8rMtXlLtsOGjbfTdlWB0m5/qfXogw08//wjN62MsubSeYFymbk6GlyIAWyxcuWl/oiAqmZSEEEKIBUVGuuIlc84558y5o3Fqaopvf/vb3H777Tz++OM88sgjeJ5H73fvwbZttApTV9vGaaevxTOLUMlWUtPQ3gNDhxSrTjOEojDS52e5idbA2BD0rIDGNhjt98ttKfzHy9ZDPgO5jB9Ak8lZhGOw7FSPsT7D1NBsgNDKMxXTI4bJYX+dZcPKsxTD+w3pyg2XzYsUkRo/AAZFJUOPh9F+yiE7SDXLUctiTbROsfdBl4l+w0S//4fPaB10n2Jx+EmXgZ2zs2Tdp2iKeRg/PBvktPiMIEN7XBIDrl+O7KHKLJSGYNgPPspOQ3baqa6vRipp6Fxjkxp3Gd49+0fXqUEXbavZuhwnYGyLbBLGDjpzApSCEWhfbQMO04PenPOmRj1So7PHDNVAMaPpf3x29syEAyw+2yYzZRjc5eJ5/nPtWmvR/5Sfnerwdr+/XadotKXof9olOWJIjvjrW5Zomns0exMObtm/5oG4TdGBTBKMMuiAwnP8zEitPZCZBteBQ0/Cqk0QisLoYZga9rct3wATQ36WpUzCn3xctBpcpRk8oNABU822tWwd9O71g5ECAX9ysK7JsGg57N7uZykoFfz3XbSGahalUMTPGjY2CCU7T5leHn7sAIcPHyQc8Zi+YxpjDI8/BS0tLaxbt45LLrmEt771rVxwwQUnfK2EEEII8EvunHfeeZx33nkAGGPo7+/nwQcf5KGHHuLBBx/kE5/4BOVymZ2hEKeddhqHpyzaOjpobu3EsbuYyGrqIx6WMuTKFj2NfpaldEETsv1Srsm8xbLmMkNJi1xJ43qQLyuCQU1Xs8to2iJf1H6pVCyaG11wPaZTFoWSX+atJupRG/MYHLNwKpmL6uMe0bCpBjFZ2qOl1TA2bZHNayzlkc4oiiWFG1AEQoZypZaYtgytbYbJSchkNaOjs5l/mpsNjmNIJDTj4/6xbdvQ1OQxMaGrmZMaGgyhkGZoSGPlXVIJP7jKsy1s2+BXV1VMTx4R/KTwa6IBsRpoaDIU8lQzGLkuTE0qCli4IXVMlqUjeSGb6ZTh6LnyeNwQiRqGBmafE8pgjGJqYm4GJceBUlkzMuRV24ZbLJobPPpH/DJ2xkBd3MPShqmkf22zeb/EWluzy+iERdlRjEzMnM/Q1uSSzSumE/7rFQ4ZSnE/G1aq4PqvoQKDor3OJVM0TGb994dWsLjJ4fBkAGMUw0mbkO3R3eAwMG1j0CRyBtdAT2OZ/lyAoqewHD/QrDniELAMw2mboOWRLWlcA121DmVXMZGzqAm4lexK0BpzsbVhIGXTHHVJFTVFV6FNgvxQH/v7RiknBjiUGmFqyk9hmWxu5tRTT+WGG27g7LPPZuPGjdTU1Dz7D50QC9BMeXZjDH/yJ3/CG9/4Ri6//PJj2mmtqa2tpaenB330HSIvgmKxSCAQOGZ9MBisbn8+PvvZzz6ndldccQWvfe1rq8u9vb3ccMMNLF26lNWrVz/r/jt37pQJTyFegeRnW8yH086C8QMJ7r95JxMH/RJwE09nSR4ocubbV7L2sh60JSXghHi+spVMSrEGyaQkhBBCLCQSpCTmTWNjI9deey3XXnst4KeYf/jhh/n2t7/NQw89xL59+5iYOsiWLQcA/w+nLS0t1MSacPNN5Mur2XBWJ/F6TWq6kiGp5GdNqmv0M9aMD8Gq02DwYCXYxPgZmQyw9mwYOAj5ymRMedyje7UflJRNGHIZyKWgsR3q2xUT/YZMwu97+1KwAorDO/z2wTB0r9EM7vMnqIIRqGtXZJKKYhnGDrpY/t9bscOw+FSLwd0ungu5pKlmN4rWQS7pxwsZdzZoqpiF/qddP0DKtgiEoVwAHJeOVRa1rRb77itV44widdBzWpD+p0rkpgEPDj1WmlMaDiA7ZagWxjvij9FGg9EaY8/e/V/Kw2Tv3ECmUh4OPDj3uEvPDFDMGoZ2zqZWal9tU9+u2Xt/Cc8OoG3/tMaFgZ0O+RQz816Ui2AcPzBMx/yAMrcM+ZSfZQGg6xQLp+SX0pvs9yjmPBwdgBDUdYGe8l/vXAq6V0MgCEP7/SAkAyzf6GdJApgYgHAMlp4Kh57yg4yyKT/D0qqz4MATipJRmCAYD5ac4pdpGToMkdhsVqSV6/3HU+PQ0gEj/ZXnvtgv6zbSB8vXw2BvlgO9uwlEx3n6wCQDAwMUCgVMpa5MOBymoaGLTZs28fa3v513vvOd1NbWIoQQQrwQSil6enro6enhXe96F+CXiJsJFN+2bRvZrVvZcf/DeJ5HIBBg3bp11C5ZwtAgBGu7CdBKW61iIGFTG4ZwwGU0ZTGe0cTDhkTOoi7i0hB1GE7ZZIsKrQzjjkVrq4trXHJlhdGanLGwPEN3o0Myo8gXFCXHD1pqb3IolBSJtB8YozB0tHiMT2tyhZkyY4ZwSJEoWBCAUMzxlz3/15vRsTKFSsbM+np/vJNIKIpFqoE/WhuU8ku2mqMyCE1NKQIBvz9edCZzksJyXTq6DMmEIpWcvb6NTQbLgvExAEUm7Zddm1tizV8/ww35x/UCBmMbvJDFkfL5Y7MlTU8pUkm/XwChkKG51WN0xC9z57/WhvZOj1TSb+vEAn5JNVeRyRkcx6pcg9lMSZ4B8AgGFKWywnEgX/C3BQOGpno/YMkzfrk3x4NSrYUd9IjEXaxpv2Sb4yk6GhwOTwTwjGIwYdESd6mLeCTzFoWyYjJj0VFbJpG3yZUUSmlyRUNLjYNnNFMZjQpD1oOQ9lhc59KftLGUn/2y7CriQY/2uMOBqSB1IY+io8iUFBHboy3u0psIEAt6BLTL4dEsTrKf/nQ/LXHNwZ07GRkZ8V+3xkZOPfVUFi06g8svv5yLLrqI7u7uZ/xZEuLlZOPGjdXHV111FaeffvqcdfMlFApVs8QeqVQqVbe/mJqbm2lubmbLli1s2bKFTCbzop5PCCGEeCYty+u54q/PZe+v+3n0O3v9EnB5h4e+uYs9dw3w2qvX0r5mNoO6azy2ZQ4yUU7RHKjljJplWEoCmYQ4ntxUJZNSg2RSEkIIIRYSCVISC4bWmnPPPZdzzz23us7zPO677z5+/OMf88ADD7Bnzx4OHtqFMYbDw/fywBOaeDxOd3c35dBSsMLkpzqob26ioRkKORjqhbZFfpBITT20dsHBnX4wU7zOz7bTuRS0rSlk/Qw7xZSH58G682FyyA/GSU4otGVYdprCKRvKRVMt79FziiKT8MvNgZ+tp5g3pCvl2bpPs9EK9m01WFF/nVOsZHRKeNS2+MFJi0+zmB42jB3ycCoZi3pO1VgBxaFtLpYN0XroXmsxtNcln7KYHIFMwsXTFuFaP6NSPu2SmXKr8Ucz7LCf4amQgnCNn+GnplETjEFm3KOQmXktwD7ixtZ4K8QaLMYO+E84GAGUfxzP+MszgUr5lEshBQRstIZgFMb7IJv20CEb24Ylp1lkpioBRlmobVG0Lbfof9ohl4JDj7sEw7DiNTaTAx7jBz0CYZisZGtyHYMOWZiIRW0LdK1UuDsMmWn/XJ0r/CxIpQKM9UNzNzR1weSgX/avlIflp8PYYcimFaaSHGD5Rr9c4NQIGFsRyUPTYmhph31PQUuXv382A03tfjDS04/C8rWQTkImBa2dEArDcG+JaNMgE4kcQ0ND9A308cBT09U/gGutiUajLFq0iHXr1nHGGWfw0Y9+lNbW1uf/QySEEEL8BsLh8DFjr1wuxxNPPMG2bdvYunUr27Zt4+COHTiOw06t6enp4fTTT2d9x3rC4TB3bh2moFtpiHgQgXTBD0xqqXEYTlqsaHGYzBhSBUXAMn75uLxiaVOZsbSmYCtyQQtVguZmF9s2lMqavAFXKaJhl/q4R6EIrqcxBuJRj1DQI5n2/xCvlUddjWGsUhYtGPBob/ezMOWLFm7AYJU9QJPJ+NmItPaorYV43GN4WDM27g8GbNujo8NjfNyiUFDYtqG+zvMDnif9mm+jaY+Co9E1fkCQ42ryuTKBgJlNTqn8Ur94HgHbL0M3sy1eC4W8oVyuBDEpfz9VyYiktSFeaygWFIWCwrINxhgsrSiX/eMqz2/ruoZCwQ+yLsctvySbUYzkDAUDdoMiFvRojnsMjfnPsVCC9haXUkmRzGhSGQ0Ymuo94jGX3iGbgG0olfxSbtqAwUC9puxo2ho8PAMjSUOupCg5hsaox3hGkS8pMgVFZ32ZgekAjqcpux6RgEskYBhNawolRchWhCyP9maPwWk/eEmHLbTyy/4VHU26pIgFPKZyGmMMXbUOyZLftj7sMpy2iAVc6sIeqaLGlDIEigOsW70SK/k0Dz/wMA8PDZFO+5FhdXV1dJ93Hh/5yEfo7u7mggsu4JRTTjmiFKAQr2xXX331fHehqqmpifHx8WPWT076aYubm5tfkn5s3ryZzZs3s2fPHq655pqX5JxCCCHE8WitWHNpD0s2tfPod/ay565+MDDdn+Ynf/0wKy/oYtPvruYBbw9f6r+V0fLsHRNtgTquW/RWNjdsmMdnIMTCVM2kJOXehBBCiAVFgpTEgqa15sILL+TCCy+srvM8j0cffZTbbruNRx99lD179rB//3527NhRbRPcFqS+vp5QME5XVxfpYjvtrV2UCnWEwrDyVNjzBKw9028/cNC/i37xKj8DTssaTWrcIxhSuGWD6/hBLZEaxcghyCYU3ashFDEEggrXM9Q1aSYGPKIt0NQJnuunBtLaLzOWmvAjhkIhaOjUJCZg8pDLorU22oYnfu7Q+5RL1yoLy9YUc36AT12bJjHsB+c09WhaFiuG93kkx2D5GRaeZzi0zcMOwprzbTJTHvsfgWJOs+R0i70PlrAs6DwlABjCcc34IYfWZTbDexwidYraVk3rUpudd5XAg2BM09ANI/v8oKSlZ4UwHoztc6lt13SeEsC4hsSIRyCssIMwesAlO+nR0BVgwjPUGI9Fay20pdj7kEMpCx0rNcGoYvSgSzFrWL7JZrLfY3rIo5D1WLYpQC7hcXCrS8tSfyJy9KBHOArd6/wgrMM7LWpaIN6gSIwbkuPQvdqw9FR46h4o5vwArNWbYMf9UEhDbb0/YRqvB9dVRGr9TEvxZuhYClOjkE1AxoG2xVDbpJie8MvANXVA3z7/NWzr8oORQhEIR8AYWHpKibGJYfr6+7ECWbbtGmVoaIhisVjNjqS1prm5mWXLlnHGGWdwySWXcPnll0tAkhBCiAUnGo0eE7hUKBR46qmneOKJJ3j66ad5+umn+drXvsbo6CgAgUCAFStW0NXVxfC0Be0thGpaaYo1kncUnfUO4xmbYhl6GkoMKJvRlEVTzCEWNDieIhz3CBo/W2G26MdZn7q4xPC0RcHRlJWis8Mhk/azCEVCBtfzyOYV7c0u8RqX6bSGIjTEXaJhP8gGoLHOz3I0UbCIK4cli116+zTJpAaj6OpyGRy0aKj30NoQCPjZOQG6u1xSaZjK2ISC0N5SZnjcxhhFQ71DS5PHgb4AmVKARS0OyvIo5MF4ho4uQzarCIUM2YwhWqMYHlTEaw31DYZU0s+MZFtQW2cIBqFYhHitR2eXYWhQUygoWls9tOVnfhoZVnR2GSYnFLksRKIQatCUCzYtDR7xqEs6azGe0IQCfsDP2LRmImVRW+MSjxkODwbI5TW1NR51NQ7j0xbZvKI+7jCZsDBG0drk0lDr8vTeIKpe09AEXtZlMKFJFTTLm0tkCopUwb8WixrLFB1IFywCFsTDHj2NZSYyFg1Rl1ReU3ZheXOZUMAwnLApOQrPGHoay7iWpjcRYG1riYmsRd5RNEddWmIOu8eDLG1wKDpQFyoRcAsMDU5BdphMYpRsEA4ePMjY2BgAv/5JgNWrV9PZ2ck73vEOzj77bDZs2EB3dzeWNTdblRCvRk899RR33HEH+/fvJ5vNEovFWLlyJW94wxvYsOGlmdxcsWIFjz/+ePX8M3bu3FndLoQQQrwahWuDXHDNelZf0s0DN+9g4lAKgH33DnLn1BP8+A2PV6s+zxgrJ/nUwVv422VXSaCSEEcwxpCrBClFpdybEEIIsaBIkJJ42dFac84553DOOefMWZ/JZPjlL3/JHXfcwZNPPsnhw4cZGe2jf+DAnH1jsRgtLS20tbXxg/+BdRuW0dbaRT4VJTUN0Tj074emDk0+B4EaRSzmkUtBagKCISiF/HITjqsoZ2BiUNHUaehYrtAapsf8rD2RWj+YqZA1jBzy+xCth0LGIzEGJmCRmDAEKqXgwhFFKAqDuz1qWzUYOPS4Qy4JdW3+hJfSisyEAQ9GDrgsOc2ibZlm9KDHeK+L6/i/qSbGPPJp6F4fRNswvNfFeBAIOqQnPArpMoW0YXoQxg64hGsUVMqclHIeyRG3et0OPlymkPWzS2UmPPq2lzHGUCxa2EFDbSssPj3Agcdc+p52Keb9bAH5lGFq2MXzYMUmi+SYYXivW8kaZeM5hmzSD7Dqf9qjvsOjod0iGIFAWOE5/vO0agLk0jDS608sFXMQjBgKGT8jQXLCDyxq7IT0NAzshboWWPMaGO2HkcNQyCsCYWjugNQUBEJ+2+kx8Fyo71BM+XNb9B3wSwYaA4lxCEcdXDXBr395mJr6MqOjo4yOjpLL5cjlctVgpGAwSE1NDcuWLWPZsmWsXLmSD33oQ6xfv/7k/hAIIYQQL6FwOMymTZvYtGnTnPXj4+M8+eSTbN26lf3797Nz506G9j3F7q3+H9Ity2LJkiUsXryYhoYGzjztNG67t4+ejnpCdiPZsvY/bDFMZiwWNTh+6bi4h52BkWlNJq+IhcF4HsYoCgaKZU3BaJQyLF7kkisqDo8HKRhFTZ1HtAZGJzWuUYCHMYZEys+ylFUW0zmPHDbGeMRqDPm8rvTXMJ1QTE1rbNsPjPcM6KAmn9ZoZcjkLNqbXfqGFKmsJhDws3ACjE1aaKVp63EZm7AZnPYzHQUSLq6nyOXAeIqBPggGVbW8nOtCOq2qgVGZtObAfj+7I8DkhMbzDLatyIdsBlIeTS0edoNmKqnJTvpl28oOTCUtsgVNQ9wjHvMYmdAUHY2loa3RMJ3QRMMeqYwiX7BoqHOxrJnSd5qy648j85Yin7UpxS20Y8iX/RLGYCiUNOmCpi7iUihrxlIWWkF9xCMWMuRLiulMgJqwIRb0n2TJgYAFUxmLUMAQD3l4toWnNVnPMJW1aKspMZWzKJQ1tXaOybFJDk2Ps7JVkTiUYXBwkD179pDL+XWSlVK0tbWx/DWv4dJLL6WpqYmzzz6bs88+m0DgiJSgQoiqr371q3z/+9+v/v6ilMIYw549e/jpT3/K29/+dv7wD//wRe/HxRdfzLe//W1uu+023vOe9wB+qbfbb7+dtWvX0tbW9qL3QQghhFjIWlfUc8Xnz2P3L/vY+t195HMlfv3ancdt6/82AF/q/yGX1K+X0m9CVBTTZX9+AYjWS5CSEEIIsZBIkJJ4xaipqeF3fud3+J3f+Z0568fGxrjzzjt55JFH2LFjB4cOHWJsbIzDhw/jeR4H+h8EwLZtlArQ2tJCc3MLO/YH6exsp2tRB1OTDbR2WBRzfomNSBwKWchOQ/tSP2NSvAkSI/5cm2VDY4cfOJNLGcZ6FUpDz1qob4XJYb8sR7jGUNukSE8aTMAimwe3cjvMyD6P5WdZuCWN1h5da2wObnXIJd2ZWCJaFltMDrhMDvjLmSmD5/oD7/o2TTACA7tdbJtqKbcCCrSF44JXqVfnFKFgZmvDee5s+TYrCJlprxrAFKq3yUzPXl+n5B87n3Sxg9C6xOLQE/4582lIVQJ/hva5NHRYWDYEw36WJteBRettMIbB3S4tPTYDuxxKOVAB7U/mhTSlvF9+rrETBg8qJoehpgFWnAmJMejdAz2r/DJ79S1+VqyRw9DWA9EaiNZCuOg/r+QY2CH/cUObnxUpm1akkymK3jj33jsCVo4n904xMjKCtjzS6TReZSZRa00wGKSuro4VK1bQ3d3NJZdcwkUXXcQZZ5yB1vKHACGEEK8OLS0tXHrppVx66aXVdcYYBgYG2Lt3L3v37mXfvn3s3buXJ554gh/96Ec4jsNj+IG9K1euZDwNTY2NBKP1TA420t0Wp0AjKhTGtiAW9vA8RSgIUxlNOGAI2h6RoCGdh0JZkchqGuKGWNjDtiCZ00xkNPUNhrqYi6sUU0UbE4LGsIulDcUyeGHLH/8EFI6jSCQVzc0ew8PQ0uLhKkX/WACFwbIMwYBBK8PYhMYYP6gol9f+pIAy1Nd6TCc1I+MWhaKf8QnAsf1slsEgUHQBRalsmKkyZozCdfzybf4ylIr+Y60NxaiN487cLm0olCzGpjWuZ2iIexRLiiJQrGSOKjt+ABVAPAb5ab8nA+M2GOhscRgetYmEPbRSJNOaUNBQthWZgIUTt0B51AQ9Apah7GgSWYumGhelHNIFzUjSJh72WNRYJp33A4uUMhjP0FjjkVSKeMQwktCEbT9bVMD2sC1FKGAYLxhi3gQDY0nc3DSlXIID0wkyiQnc/DTJ5Gz5in21taxdu5ZTTz2Vc845h7PPPpvTTz+dVatWEY1GX4y3thCvSHfccQff+973WLRoEVdddRWnn346jY2NTE9P8/jjj3PzzTfzve99jxUrVnD55Zc/7/N8//vfJ5PJVEu33X///dVMZ29729uoqalh7dq1XHLJJXzta18jkUjQ1dXFz372M0ZGRvj0pz99Up7vc7Flyxa2bNlSLckthBBCnEz/MXoX3xy9+4UdpA3MHxpy+SLZQPGEzQwwWk7wuif+P4L65E35vL/tIj7QdvFJO54QL6Vsws+iFI4HsAKSVVcIIYRYSCRISbzitba28t73vpf3vve9x2zbt28fd999N4899hg7duygt7eXiYlxhkcG8DyPXftm21qWRX19PfX19TQ0NOAUbTo62yn119PY0Eo5H6auBUoFv0xYctLPfJTPQc8aRS5tCMX8zD2lAizd4JePMwYmRxThOPSs9oNmysbGBMGOQLxDMTKgCRx06DnV4uBWl54NFk7J+JmIpsF4EKuH9hUW+bQhPeGh8AOqnAI4ABqWbrTIJQyjBz0Wb7BIT2mGdns0dCraV2j2PeTilPCjfGwLAorOdZpgWHHgMZdgFBZvsBje55FLGhafajG4xyWbhPQkRGr9c9o2hGLQ3KNQAc3IHo/MBNS1GsK1fmDS4e0OTYs0SsPBHRa1TRbhOnCtIF7Yz3RU2wTJKfwsVlPQ3AU19X52o0wSLAtaF0F9mx9UZQzkC9DQ7Jdpi8b9TEvaMiTTY+SK04yNjaPtIolEgunpaRKJBOVymXK5XH2ttdZYlkVtbS3t7Z10d3dz/vnnc84557Bp0ybq6+tf1PesEEII8XKllGLRokUsWrRoTvASgOM4HD58eE7wUvX70w/iOA5PVNrW1tbS3d1NbW0tHR0dLFmxgvu39lFXV48O1hMNRQkGNLGwwTOGSMCQymtsbQhYsKjZIRSAdE7hoYiGPOIRj2jIYSodgJAmEvBoaDCkcopSrY0OuETqXVRRMZAP0h0vEY+55AsWHa0OkwmFZxTFsgYMjfUedXGPXMHGc/1AJc8YSkWNwhAKeTQ1eIyMW0RChqYGjwHXwnWhs82lUFRMJSy8sIcb9CjHbSzL0NXql2jLFTTNdS7hkMvAmEVD3CMYMIxNacqOAjRKOdVgp9qYv310UuF4UCj5Y6W2RgelFBMJi47mMmNTNpmgTXNDCYOhXNAo2xANOrTXOoylFMmcpibosai+TK6kKZQV01lNXcQjaBtiQcNEWhMOgsJQH/UoORC0DEXHENIlpiYTkE1ysD/J4labqcq4a2BggImJiWoA+MzrvWLFCs5Ys5GGhgYuvPBC1q5dy+LFi2lpaZEgcCFOgh/96Ee0tLTwz//8z9TU1FTXNzY2cumll3LOOedw1VVX8cMf/vAFBSl95zvfYWRkpLp8zz33cM899wBw2WWXVc/953/+57S1tfHzn/+cTCbDsmXL+OIXv8jGjRuf97l/U5s3b2bz5s3s2bOHa6655iU7rxBCiFeHrFtgrJx89obPxXNMFJpws+A+e7vnKusWTt7BhHiJ5ab8wL5oY3ieeyKEEEKIo0mQknhVW7lyJStXruQjH/nIMduGhoZ49NFH2b59O7t37+bw4cMMDw8zMTFBb28vjuOw/anZ9pZlEY1GiUQixGIx6uvrqauro6mpCZ2Kk0t51Ol6IjVx6pstlIJ81g9Kau2B2maFWzZkEn7QTU09xOogk/AzD6mQTbwFGpfaDPdCz2qFU/JLsK0+zw9O8hwYO+iXTwvGDLUtmvEwxBoUrcs0iVFDLuVPCA3sdsn71VhIjRmU8vwApaNM9HkEKtlQSzkY2OmSGveXc0lDY5embbni4GMuLT2aQBisgJ+paPSQR3OPpqbOopT3g6e61gYY7YNcKcCq5VAugB32y+fZFizbAMnxSkm2MCxZA8W8n50qMw11TX4MVTjmMTWZYyqZJlpjM50fJzmSJJVKkdieIJ/Pk06nyWQylMvlakkDgEAgQDQaJRwOs3TpUhobG1mzZg1nn30269at4/TTTyccll9ehBBCiJPJtm1WrFjBihUrjtnmui4jIyP09vbS19fH4cOH6e/v5+DBg+zcuZMtW7aQTqfnHKuxsZH6+no6OjpobGwkGg7T0dxBXV0dLS0t3P3gXqCGlvoAmYKiJmRIZC1qIy6xkEsoCCVXkStAc7xMY42fOUihsCxDqAbi9R67BmymijbNrWVGhmyaGzwsyyMQgPFJhcLPeBQMGOpqPCYTio5Wh2JZky8oXBcyOYXr+l8A00mN46hjroPnwkTSIl/JpDSVUgQCflamQskPbl/U7jA+beO4UBszTHsKrQ2TKUVHk0djnUskZBgcswgHXUwQhpM28QaXxgbDZMnDKhk/+1PEo+w6ZIuKVE5TE/KoaysxnfUzRDke1EVc6mOQLzi4xSy5dJ5T17XSEJggkUjg5HL0HxhhfHycbDbL9PT0nNfKsiwO1dezdOlSTjnlFM466yza29s599xz6enpob29ncbGxpP5VhNCHMehQ4f4rd/6rTkBSkeqqanhoosu4ic/+ckLOs93v/vd59QuFApx7bXXcu21176g8wkhhBALVcwK0xqoOynHKnmOH4D0LOqt2EnNpBSz5O+j4uUrO+0H2cUa5H0shBBCLDQSpCTECXR2dh63fNyMXC7Htm3bePzxx6tZmIaGhpienmZycpLBwUEcx5lzl/gM27aJRqOEQqFqYFMkEsV1oaG+lmAwRFbFmUwHCQYi9GyIEY5EMASJ1igaWv0AJm1pxoY0hQI0LdJMDRvalltEav0sQtMjhoZOjcEjXAOMQHoCuk7RRON+8M/QHo+eUy2G9vq32Rz5e6zWkE9B8zpNMGwo5gydayzqOwwTvR7jfR4rX2ORTxmaFynyaY+GbosVr7EwjuLwXkWsAQp5SCagdYVFNO6XwovE/XMEwg4rzswzNZZlYLBEJpfBKZdIJtMcHHHI53IUS0Xy+TzFYpFcLkc2m6VUKh1zbZVSWJZFKBSioaGBpqYm1q5dS1NTE+3t7bz+9a9n06ZN9PT0nIy3iBBCCCFOEsuy6Orqoquri/POO++4bRKJBH19ffT29tLf38/g4CC9vb1MTk5y6NAhBgYGmJycnBOYDH5pudraWmpqamhqaiIWixEKhZhIlAiFwgRDEeI1IUbTEeI1EeKBMI1NQUKBICVj0VbnEAkZWmo9CiW/3Fl7rUs4AMPpIF2NJSzLYGmYTgaoiboobaiLe/QO2oSCUFvjEgkbRif80mq2bZhK+CXS/OIMfiYmYxSlMrQ1uoxNWTQ3+IFT+aLHVMomEioTDfml0wI2FIrQ1VymNgrZQoCyrWhvLDM4HUDFDG0tDqUyaAVlx6CVS099gWLRJZvJMjKdxy0XKGaLDDs58oUCpWKepvoYBycnSafTZLNZMpnMnMCj2yvfI5EInZ2d1NbW0trayvr16+np6UFrzdq1a1m/fj2dnZ3YtvzaKcTLgVLHBk++kkm5NyGEEC+mD7RdfNJKpbnG441PfZ6xchJzvAYGatIh/mrf2znn3WuI1IZOynnF/Nm1axc/+9nPePzxxxkZGaG2tpZ169bxkY98hEWLFj2nYzz22GN885vfZO/evXiex6JFi3jPe95zTNbj++67j5tvvpne3l7q6+t505vexAc+8IE5v8dt3bqVO++8kyeffJLx8XEaGxs544wz+PCHP0xzc/NJfe4nS64SpBRtkJ8HIYQQYqGRvxYL8TxFo1HOP/98zj///BO28TyPoaEh9uzZw/79+zl48CDDw8MMDw8zPj5OMpkknU4zNTWF67oUi0Vc95lz8tq2TSgUwrIsgsEggUCA0J4QoVAIrTWBQADLsggEApTLZYLBILZtc/hRjed5WE0WfYkgKqlQSqFaFQPTQUyzIdJuo5TiwW1D1NXVEVsRw/M8RvMernZxIy479rtYlkUpVMKxHB7eZtBaUy6XKZVK7B7zj1sqlSgWi+wZ0tXHhUIBz/MolUqUSiXK5fJxg7hmBAIBAoFA9XnNZEZYs2YNtbW11NbWcvrpp7NixQo6Ozs57bTTiEajz/s1FUIIIcTCNVN2d8OGDSds4zgO4+PjjI+PMzo6yujoKJOTkwwPDzM4OEg6nWZ8fJyRkRGSySSZTIZs9sR3JAcCAYLBIKGQP9aKRCJYlkVvKIRt2zQ0NLB/qIQxhmAwSCwWo1wuM5J0iMfjNMWCOI5DPlUiYjeytDNKJpNBKcWKDR0UCgUymQzFfJFTFzcQCoXI5XJMTk6ypClKIBBgYmICp1ymORgkqqMc3DPij+ksCx2J0Ld3otrXUqnErkoWSc/z2HV3jkKhUB13FYvFY4K4ZsxkBa2vr8c4TUQiERobG1m5ciU9PT2Uy2UWL17MqlWraGxspLW1lYaGhhf2ogohXjJLly7l7rvv5sMf/vBxf2fK5XLcfffdLF26dB56Nz+k3JsQQoiXC0tprlv0Vj518BYUzA1Uqixc8OvV7N8/RN8jY5z1rlWsubQHrV9dAcivJP/1X//FU089xSWXXMLy5cuZnJzk1ltv5SMf+Qg33XQTy5Yte8b9b7/9dr74xS9y1llncc0112BZFn19fYyNjc1p99BDD/HZz36WjRs38vGPf5yDBw/yH//xH0xPT/PJT36y2u6f//mfSaVSXHzxxSxatIihoSF+8IMf8OCDD/Jv//ZvNDU1vSjX4YWolnuTTEpCCCHEgiNBSkK8iLTWdHd3093dfcwdCifieR5jY2McOnSI/v5+hoaGOHz4cPVO9pkSGsXibHYhx3GYnp7GcRyUUniehzEGx3HQ2g9O8jyvGgA18/iZAoROZCZbkdbaD3JSCtu20VpjjKkGFIFfumVmUm9mIi8cDhMKhYjFYtTU1FTXL1myhMbGRhobGznzzDNZvHixlFwTQgghxG/Etm06Ojro6Oh4zvuUy2WSySRTU1NMT08zMTHB+Ph4df3ExASZTIZCoUAqlWJiYoJyuUwul2NoaIhCoVAddx35NXPsmTHXzNdvQimF1hqtNZZlYdt2dfwVCAQIhULVgKWZDJ1ANaNkJBLB8zw6OztpbW2tHmfp0qW0t7cDfvbQjo4OYrHYqy6LihCvJldccQVf/OIX+djHPsbVV1/Nxo0bqa+vJ5FIsH37dm6++WbGx8f50Ic+NN9dFUIIIcRxbG7YwN8uu4ov9d/KaDlZXd8WrOc9E+ehBw1lHEo5hwdu3smeXw/w2g+to3VF/fx1Wjxv73znO/nLv/zL6t/ZAV73utdx9dVX85//+Z/8xV/8xQn3HR4e5itf+QpXXnklH//4x5/xPP/0T//E8uXL+fKXv1zNnBSNRvnWt77F29/+dhYvXgzAH/zBH7Bhwwa01tV9zz77bP74j/+YH/zgBwsy4Hu23JtkUhJCCCEWGglSEmKB0VrT3t5Oe3s755577kk//szkmOM4lEol0uk06XS6OgmXzWYZGBggHo/T2NhIS0sL4XAYrXW1nIfneQSDQYLB4EnvnxBCCCHESykQCNDc3Pyipag3xswJYiqVShQKBfL5fLWUWqlUor6+nmAwSDwexxhDJBIhHo9XA4dmAoyEEOL5eNOb3sS+ffv4wQ9+wPXXXw/4gZAz2dWMMVx55ZW88Y1vnMdeCiGEEOKZbG7YwCX169mWOchEOUVzoJYzapZhKU3ujCKP/vce9t07CMDk4RS3/eWDrL6km03vWk24Vv6O+3Jy6qmnHrNu0aJFLFmyhN7e3mfc90c/+hGe5/HhD38Y8DNmRiKRY25KOXz4MIcPH+Z//a//Nae021vf+la++c1vctddd/HBD34QgI0bNx5zno0bN1JbW/us/ZkvuelKJqVGuRFaCCGEWGgkSEmIV5mZux1mgoxqamp+o2wDQgghhBDiuZvJfDQz9pLStEKI+fLxj3+ciy++mDvuuIP9+/eTzWaJxWKsXLmSyy+/nNNOO22+uyiEEEKIZ2Epzab4imPWR+tDXPSxDay+pJv7b97JdH8agD2/HuDwo6NsetcqVl2ySErAvYwZY5ienmbJkiXP2G7r1q309PTw0EMPcdNNNzE+Pk48Huetb30rH/rQh6rzA3v37gVg9erVc/Zvbm6mpaWFffv2PeN5crkc+Xyeurq6Z2w3MTHB5ORkdfmlCmrKTvmZlKKSSUkIIYRYcCRISQghhBBCCCGEEOJV4LTTTpNgpIotW7awZcsWMpnMfHdFCCGEOGna1zTy1r85j52/6GPr9/ZSzrsUM2Xu+7cd7Pn1AOddvZaW5fXz3U3xPNx5553PqTzvwMAAWmu+8IUv8J73vIfly5dzzz338B//8R+4rsvv/d7vAVQDh5qamo45RlNT05zAouP5n//5H8rlMq973euesd1tt93GLbfccsz6Q4cO4bruM+57pEwmw86dO59TW881FFIlAAbG+xjLSVbi5+s3ue7i5JHr/tKTaz4/5LrPjxfzuq9du/Y5tZMgJSGEEEIIIYQQQgjxqrJ582Y2b97Mnj17uOaaa+a7O0IIIcRJoy3N+jcuYdlr2nnkv/ew/74hAMYPJvnRXz7Imtct4qx3riIclxJwLxe9vb185StfYd26dVx++eXP2Dafz+N5Hr/3e7/He9/7XgAuvvhi0uk03/ve93j/+99PNBqlVPKDeILBY98HwWCQXC53wnNs376dW265hUsuuYQzzzzzGftzxRVX8NrXvnbOc7nhhhtYunTpMVmcnsnOnTuf88RnZiLPQ/ShLcVpZ65HSQax5+03ue7i5JHr/tKTaz4/5LrPj4Vw3fW8nl0IIYQQQgghhBBCCCGEEEKcVNGGMBdfexpv/otzaOiu8Vca2P3Lfv7nk/ew+9f9GM/MbyfFs5qcnOTTn/40sViMz3/+81jWM2cFCoX88mabN2+es/7SSy+lWCxWy7zNBCfNBCsdqVQqVY9ztN7eXj73uc+xbNkyPv3pTz9r/5ubm1m9enX1a/Hixc+6zwuVm54t9SYBSkIIIcTCI5mUhBBCCCGEEEIIIV7hyuUy9957L7t37yaTyeB53nHbfeYzn3mJeyaEEEKIF1PHKY289W9ey46f97Lt+/soFyol4P71afb8qp/XXr2O5mV1891NcRyZTIbrrruOTCbDP/zDP9Dc3Pys+zQ1NTEwMEBDQ8Oc9TPL6XS62g78IKi2trY5bScnJznllFOOOfbo6Cif/OQnicVifPGLXyQajT6v5/Viy04XAT9QTwghhBALjwQpCSGEEEIIIYQQQryCjYyM8IlPfIKhoSGMOXHGBKWUBCkJIYQQr0Da1pz65qUsO6+DR/5zNwceGAZg/ECSH/7FA5xyaQ9nvnMl4RopAbdQFItFPvOZz9Df38/f/d3fsWTJkue03+rVqxkYGGBiYoLOzs7q+omJCQDq6+sBWLlyJQB79uyZU/JlYmKC8fFxrrjiijnHTSaTfPKTn6RcLvOVr3zlOQVMzZfs1GwmJSGEEEIsPBKkJIQQQgghhBBCCPEK9tWvfpXBwUEuu+wy3vzmN9PS0vKspUJe6bZs2cKWLVvIZDLz3RUhhBDiJRNrCHPJH25k9esW8cDNO0kMZsDAri19HHp4mE3vXs2qi7qlRNY8c12X66+/nh07dvA3f/M3rF+//rjtJiYmyGazdHV1Ydv+dN/rXvc6fvnLX/LTn/6Ua665BgDP87jjjjuora1l9erVACxdupSenh5+/OMfc8UVV1THhj/84Q9RSnHRRRdVz5PP57nuuuuYmJjgxhtvZNGiRS/m03/BcpVMSjHJpCSEEEIsSBKkJIQQQgghhBBCCPEK9vjjj3PmmWfy2c9+dr67smBs3ryZzZs3s2fPnuoEnhBCCPFq0bm2iSv/z2t5+meH2fb9/ThFl0K6zL3/+jS7f10pAbf0xSsB5xqPbZmDTJRTNAdqOaNmGZbSL9r5Xm7+8R//kfvvv5/zzjuPdDrNL37xiznbL7vsMgC+9rWv8bOf/YzvfOc7dHR0AHD++edz5pln8q1vfYtEIsGKFSu49957efLJJ/nUpz5FMDibLevaa6/lz/7sz/jkJz/JpZdeysGDB7n11lv5rd/6rTmZmz7/+c+za9cu3vSmN9Hb20tvb291WyQS4YILLngRr8ZvLjddyaTUKEFKQgghxEIkQUpCCCGEEEIIIYQQr2Ce51VLegghhBBCgF8CbsNvLWP5uR08/J97OPhQpQTc/iQ/+twDnLK5hzPfsYpQTeCknnfL9JN8qf9WRsvJ6rq2QB3XLXormxs2nNRzvVzt378fgAceeIAHHnjgmO0zQUrHo5Tif//v/83Xv/51fvWrX/Gzn/2MRYsW8bnPfe6Y/c477zxuuOEGbrnlFm688Ubq6up43/vex1VXXXXc/tx+++3cfvvtc7a1t7cvwCAlP5OSlHsTQgghFiYJUhJCCCGEEEIIIYR4BVu7du2cO96FEEIIIWbEmiK87o83svp13Txwy06SQ1mMgZ139nHw4RHOfs9qVl7QdVJKwG2ZfpJPHbwFc9T6sXKSTx28hb9ddpUEKgH/7//9v+fU7s///M/58z//82PWR6NR/viP/5g//uM/ftZjXHDBBc8aZPTd7373OfVnochO+ZmUpNybEEIIsTBJ/kwhhBBCCCGEEEKIV7Df+73fY9u2bdx1113z3RUhhBBCLFBd65u58gvns+ndq7BDFgCFVIl7/uUpfvzXDzF5OPWCju8ajy/133pMgBJQXfel/h/iGu8FnUeIark3yaQkhBBCLEiSSUkIIYQQQgghhBDiFeSWW245Zt3pp5/O9ddfz2mnncaqVauIxWLHtFFK8cEPfvAl6KEQQgghFiLL1px2xXKWv7aTL/7qB/yy5enZjYdvIzBiEYzYoH7zrEolzyHhZk+43QCj5QSve+L/I6hPztTVnRv+v5NyHPHyUco7lAsuALFGyaQkhBBCLEQSpCSEEEIIIYQQQgjxCnLzzTefcNv27dvZvn37cbe9moKUtmzZwpYtW8hkMvPdFSGEEGLBqWmK0PnaJrLDxWM3Oi/uuRNuFtwX9xzilStXKfUWiNgEwjIFKoQQQixE8gkthBBCCCGEEEII8Qpy4403zncXFrzNmzezefNm9uzZwzXXXDPf3RFCCCEWnJgVpjVQB0C54FDOO5gjarVZtiYYC6Ct55ZV6dkyKc2ot2InLZOSePXJJfzAOin1JoQQQixcMtITQgghhBBCCCGEeAXZuHHjfHdBCCGEEC9zH2i7mA+0XVxdzkzkeehbuzj8yGh1ndKKdW9YzBlvW0EwGnjG47nG441PfZ6xchJznO0KaA3Uc8epn8NS+uQ8CfGqk61kUoo1SKk3IYQQYqGSkZ4QQgghhBBCCCHEK9DTTz/Nxz/+cd7whjdw+eWX84lPfIKdO3fOd7eEEEII8TJU0xxh85+cweWfPova9igAxjM8fcdh/udT97L/vkGMOV74kc9SmusWvRXwA5KONLN83aK3SICSeEFy036QkmRSEkIIIRYuyaQkntHo6CiJRGK+uyGEeInU19fT1tY2390QQohXLRl7CfHqImMv8WI6cOAAf/Inf0K5XK6u27p1K08//TT/8i//wtKlS+exd0IIIYR4ueo+rYW3ffF8nvzpIbb/8ABuySOfKHLXPz3J7l/1c97V62hcFD/uvpsbNvC3y67iS/23MlpOVte3Buq5btFb2Nyw4aV6GuIVKjvtl3uLNUomJSGEEGKhkiAlcUKjo6O848p3gDXfPRFCvFTC4TDf/OY3ZbJMCCHmgYy9hHj1kbGXeDH953/+J+Vymfe///287W1vA+DWW2/l3//93/mv//ovPvvZz85zD4UQQgjxcmUFLE5/ywpWvLaLh761i95H/RJwI7unufXP7mfd5Ys548rjl4Db3LCBS+rXsy1zkIlyiuZALWfULJMMSuKkyE3NZFKSICUhhBBioZIgJXFCiUQCLLD31qMLNqBRWoGa/VJa+7lYlfbXHbX9xF+VfbQCZpbVEcvKL0aoqC6bmXWV9kcuGzV7DDPzu8zMMWfazvk+s1+l3RH7mJnjVHLMGgVGH7Gfmj22mbMPc/aZc35m96u2PWrf6hfP3H7OPidY96yPq+vMnHVmzjHNnGX//OaY/TnmmJV2ena7Un6aX6VmlmdexiO2V777m2bbaWUq+5sjlv02/lvAgDLV9VoZfxtHrVMGjf+llKm8VSvr1BHtK9+rXxgUHrpyLq28yjbQeChlsCrns5RX+W5QyvPXV7cfuexVj62VV+2DjXucbR4a0DPHq5xn5rlozJzz+G0rfa08tlAowFKgUJXl2e8ahVaa/sEA//ur9SQSCZkoE0KIeTBvYy+lF9S4q7q8gMdeRh+x70IYdx3VZiGOvSy9sMZdFpX9ZewlXsGefPJJTj31VD7ykY9U133oQx/i8ccfZ/v27fPXMSGEEEK8YsRbIrz+f51B//ZxHvz3naRGc34JuNsPc/CBYc553xqWnduBUmrOfpbSbIqvmKdei1eyXCWTkpR7E0IIIRYuCVISz0rlbHQ+CGpmokxXJ8T8iTIFenaiTB2xfc626vLMY33sxJo+YmLMMGebmflFRs1Mpcy2MUfMGplKm5lJrtlJuCOXj3qs1TGTYHMmgCpBSjMTeCeaQDv2uzpmMuxEbZ9tUux47Z51O8/W9jiTZUdv48htR0+OmWO2qZnHRwcpzfnut1Ezk15HT5Qdsc1UH5s5+2lmzl2ZSDviSzG7z9ETX/qE67xjlq0jJ6xmJqJmHivjT2IdMfk1M4FlKQ+tVLW9/51KO3/iyt/fn7zSlQm2gPKw8KrHtirLM8f0J8K82ceVc88+Nkeca/b4Fqry2J8UsyqTY/6yrjz2vwshhJh/L/XYy2i9sMZdc9qyIMde1SClhTLuqvZh4Y69bO0tqHHXbHsZe4lXrunpaS699NJj1q9du5Zdu3bNQ4+EEEII8Uq1aGMLHWvP56mfHGL7jw7glj1yiSK//ocn/BJwV62lofv4JeCEOJmy034mJSn3JoQQQixcEqQkhBBCCCGEEEII8QrjOA6RSOSY9eFwGMdx5qFHC8uWLVvYsmULmUxmvrsihBBCvCLYQYvTr1zBivM7efCbu+jbOgbA8M4pfvBn97P+8iWcfuUKghGZlhIvDuMZcgnJpCSEEEIsdFLkVwghhBBCCCGEEEK8qmzevJkvfOEL/NEf/dF8d0UIIYR4RYm3Rrnsk2dy2afOJN7iB0wb1/DUTw/xvU/dw4EHhzHGzHMvxStRPl3CuH4W4GidBCkJIYQQC5WErAshhBBCCCGEEEK8Av3iF79gx44dc9YNDg4C8Kd/+qfHtFdK8aUvfekl6ZsQQgghXtl6zmilc30TT9x2kCd/fNAvATdd5Ndf3c6eXzVx7lVraeiqme9uileQ3JRf6i1SF0LbkqNBCCGEWKgkSEkIIYQQQgghhBDiFWhwcLAalHS0Rx555Jh1SqkXu0tCCCGEeBWxgxZnvn0lKy/o5MF/30X/9nEAhnZM8oPP3Mepb1rC6W9dQSAsU1XihctNV0q91UsWJSGEEGIhk5GfEEIIIYQQQgghxCvMd77znfnughBCCCEEALVtMS770zPp2zbGg/+xi8x4HuManvzxIQ7cP8w571vD0nPaJWBavCDZaT+TUqwxPM89EUIIIcQzkSAlIYQQQgghhBBCiFeY9vb2+e6CEEIIIUSVUorFZ7bRdWrznBJw2akCv/p/2+lc38R5V62lvlNKwInnZ6bcW7RBMikJIYQQC5kEKYlnZaIOngbQKK1AzX4prUEBSvvrjtp+4q/KPloBM8vqiGUF2n84s2xm1lXam5njoDDM3GGhMID/DzMH8Ld7s/uYmf0qp6u2n1muHruyrNUR2/zNzNzVoY764sh2lfMdsW7mnDPrzHH2f6b2c/Y5wbpnfVxdZ+asM3OOaeYs++c3x+x//OdvKq+VqVwH/wIrNbNcuT5Hbq98Vxy5HrQylf3NEcuVV716DHNE3wwGU3luBq/6XPz1BoOnTOWtatAY/5hHfa9+YVB4aEWlrVfZBhoPpQwW/n6W8irfDUp5/vrq9rnLuvJ29r8rtAIbjQWV8yq0Uv53QM8cr3Iejal+zTlu9Zizjy0UCrAUKFRlefa7fy5N/6B8JAghxELwko+9lF5Y465qf2e/FtrYy+gj9l0I466j2izEsZfRC2vcZVVGQTL2EkIIIYQQ4qU1UwJuxfl+CbiBJyol4J6e5Aefvo9T37yUjW9ZLiXgxG8sWyn3FmuQTEpCCCHEQiajPHFCnudh2zbOqsR8d+X5MRwxafbcqaO+i5efmZfem++OPKOZ2UQ93x2Zw7ZtPG9hXzkhhHilelmPvWTc9aq28MdeC3PcBTL2EkIIIYQQr1517THecN2Z9D42xkPf3EVmIo/nGp647SD77x/iNe8/hSWb2qQEnHjOcpVyb9FGyaQkhBBCLGQSpCROSGuN4zh87nOfY/HixfPdHSHEi6y3t5cbbrgBrRfeBJ4QQrwayNhLiFcXGXsJIYQQQohXO6UUSza10b2hme0/OsCTPzmI5xiykwV++feP072hmXM/uJa6jth8d1W8DOQqmZSikklJCCGEWNAkSEk8q8WLF7N69er57sbL2j333MNtt93G1q1b2bZtG6lUig9+8IPccsst8921Y3zrW9/i3nvvZevWrTz11FOUSiVuvvlmrrrqqvnu2gtSLpe57bbbuO2223jkkUfo7+9HKcXatWu56qqr+OhHP4plWfPdTSGEEELGXi+QjLvmn4y7hBBCCCGEEL8JO2Rx1jtXsfKCLh78950MPDkBwMCTE3z/0/ey4beWsfF3lmOH5PcIcWLZKT+TkpR7E0IIIRY2CVIS4iXwjW98g3//938nGo3S09NDKpWa7y6d0Oc+9zl6e3tpbm6mo6OD3t7e+e7SSXHgwAHe/va3U1NTw6WXXsoVV1xBMpnkxz/+Mddeey233347t912m6QPFkIIIV7mZNw1/2TcJYQQQgghhHg+6jpivOHTZ3H40VEe+uYuspMFPMew/YcH2H/fIK95/1oWn9Uqv0uIYzgll2KmDEC0Qcq9CSGEEAuZ5JUX4iXwh3/4hzz99NOkUiluvvnm+e7OM/r617/O4cOHGR8f5/d///fnuzsnTTwe5x//8R8ZGRnhhz/8IV/84hf553/+Z/bu3ctZZ53FT37yE773ve/NdzeFEEII8QLJuGv+ybhLCPFysGXLFj7zmc/w1a9+db67IoQQQogjKKVYenY7b/+/F3DaFcvQlh+QlJkosOUr2/j5l7aSHMnOcy/FQpNP+KXerIAmVBOY594IIYQQ4plIkJI4oaamJq666iqamprmuyvz6vvf/z4XXXQRra2thMNhOjs72bx5M9///vef8zHOOuss1q1b94LLWniex9e//nXOPvtsGhsbiUQidHd389u//dvcdddd1XZ33XUXSimuv/56HnjgAS677DLq6+uf0x0mmzdvZvHixS+onzNKpRJf+cpX2LRpE/F4nJqaGtauXcsnPvEJpqenq+2WLFnCkiVLSCaTfOxjH6Ojo4NYLMaFF17Itm3bABgaGuJ973sfra2tRCIRLrvsMvbt2/ec+9LV1cW1115LLDa3fnksFuMTn/gEAHffffdJeNYvX/IzL4QQ80v+H5Zx1wsh466XH/mZF2J+bd68mS984Qv80R/90Xx3RQghhBDHEQjbbHr3aq784vl0nTo7Zh54YpzvX3cvW/9nL07RncceioVkptRbtD4kmbaEEEKIBU7KvYkTam5u5kMf+tB8d2Ne3XTTTVx77bV0dHTw1re+laamJkZGRnjkkUe49dZbedvb3vaS9ufP/uzP+NKXvsTy5cv53d/9XeLxOIODg9x3331s2bKFiy++eE77Bx54gL/5m7/hkksu4aMf/Sh9fX0vWV/z+Tyvf/3ruf/++1m5ciVXX301oVCIffv28S//8i984AMfoKGhodq+VCrx+te/nkKhwLve9S5GR0f57ne/y+bNm3nggQd4wxveQEdHB+973/vYv38/P/7xj3nzm9/Mrl27XvAkZCDg31lh26/u/xLlZ14IIebXq/3/YRl3PX8y7np5erX/zAshhBBCCPFc1HfWcPlnNnH4kREe+uZuslN+CbjHbz3AvvuGOPcDp7D4zLb57qaYZ7lKJqVoY3ieeyKEEEKIZyN/GRbiGXz9618nGAyyfft2Wltb52ybnJycl/50dnby5JNPEo1G52ybmpo6pv2dd97JN77xDa6++uqXqotVf/EXf8H999/P+9//fm6++eY5E1rJZPKYCa7h4WHOP/98/uu//qs6aXX66afz6U9/mnPPPZerr76aL3/5y9W7IK699lpuuukmfvSjH3HllVe+oL5+4xvfAOCyyy57QccRQgghxPMn467nT8ZdQgghhBBCiFcypRRLz+mg+7QWHr91P0/dfhjjGjLjee788jYWnd7CuR84hdq22LMfTLwizWRSijVIkJIQQgix0Em5NyGeRSAQqN7xfaT5KssQDAaPewd7Y2PjMevOOOOMeZkocxyHr33ta9TV1XHjjTce09+6ujpqamqO2e9v//Zv59xV/573vKd6vBtuuGFOmtaZbU888cQL6uvXvvY17rjjDl73utfxpje96QUdSwghhBAvjIy7fnMy7hJCCCGEEEK8WgTCNme/Zw1XfuF8OtfN/p7Y//g437/uPrZ+bx9OSUrAvRrlpiuZlBpC89wTIYQQQjwbyaQkxDN497vfzXXXXcf69ev53d/9XS655BLOP/98amtr57T7+7//exKJxJx1V111FUuWLDnp/fmnf/on1q9fz7vf/W4uueQSzj33XCKRyHHbb9q0ac5yIpHg7//+749pd/3115/Ufu7evZt0Os3mzZvnlBZ5Jg0NDfT09MxZ19HRAcDKlSuPyWAws21oaKi67pZbbuHw4cNz2r3lLW9h48aNxz3nT37yE/7wD/+QxYsX861vfes59VMIIYQQLw4Zdz0/Mu4SQgghhBBCvNo0dNXwxj/fxKGHR3jom7vITRdxyx6P/2A/++8b5NwPrqXn9NZnP5B4xdjwW0tZsqmNcDw4310RQgghxLOQICUhnsGnPvUpmpqauOmmm/jyl79cveP8zW9+M1/5yldYunQp4E+W9fb2ztn34osvPumTZTfeeCNLly7l5ptv5oYbbuCGG24gHA7zzne+ky9/+cs0NzfPad/WNrcWdyKR4K/+6q+OOe7JnixLJpMAdHV1Ped9jp6ABKp39z/TtnK5XF13yy23cPfdd89pt2TJkuNOlt1+++28/e1vp62tjV/96lfVyTchhBBCzA8Zdz0/Mu4SQgghhBBCvBoppVj2mtkScE/f4ZeAS4/l+cX/3UrPma1c9skz57ub4iUSqQsR+f/bu/e4nO//f+CPujofVEJSiUKKkkMZkcpmCbFF2IFGztJYY/YZttnWRpvzWcQYxcZIB40SxkzLRCLLoYNKqXTS8fr90a/r63JdnejqIo/77eb2cb1er/fr/Xy/6n193vN6vl8vHa6iRERE9CpgklIrUVJSgoMHDyIxMRE3btxAYWEhli5dipEjRzb7uR4+fIiNGzfi77//RnV1Nfr27QsfHx906tRJrJ2jo6PU42fOnIkPPvig2eOSBQUFBUybNg3Tpk1Dbm4uzp49iwMHDiAkJATJycm4evUqBAKBxFvksqKkpAQ/Pz/4+fkhIyMDZ86cwe7du7F3715kZmYiMjJSIv6ndenSBUKhUOZx6urqAgDS09Nlfq6nxcTENKrdiRMn4OHhgXbt2iE6OhpmZmbNHsudO3ewe/du3Lx5E48ePYKamhpMTU0xefJkODg41HtsTk4ODh8+jBs3biApKQmlpaVYt24d+vbtK9buyZMnCAsLw7lz55CSkoLS0lIYGxtjzJgxGDNmjMR2L3v37hV9R+Tl5cHLywvTpk2TOP+ZM2dw+vRpJCUl4dGjR+jQoQMGDRqEqVOnQltb+8UH5xkJCQnYunUrbt26BU1NTTg7O2PGjBliqzjEx8fD19dX6vFbtmxBr169mj0uIqL68Nmr+fG56/m8js9dL3L/hYeHw9/fX2rdkSNHxLYWLCsrw6FDhxAZGYnMzExoa2ujd+/e+Oijj0RJc03t09PTE5mZmRLt3N3d4efnJ/p85coVHDx4EMnJySgoKICWlha6deuGqVOnwtrausHrbKq7d+9i48aNSEhIgJKSEgYNGoT58+eLfr8A4MGDB5g4caLU41esWIHhw4c3e1xERERERA1RUVfCwPd6ooejEf4MSsSDxEcAgPtx2XKOjIiIiIikYZJSK1FQUICgoCAYGBigW7duiI+Pl8l5SkpK4Ovri+LiYnzwwQdQUlJCSEgIfHx8sGvXLujo6Ii1HzBgAFxdXcXKunfvLpPYZE1fXx/jxo3DuHHjkJOTg9OnT+P27duwsLCQSzydOnXC5MmTMXHiRFhYWOCPP/5AaWlpnVuQtCQLCwu0adMGf//9N/Ly8hq99UhLqJ0oa9u2LaKjo9GtWzeZnCczMxMlJSVwdXVFu3bt8OTJE5w5cwZLly6Fn58f3N3d6zw2NTUVv/zyC4yNjWFmZobr169LbZeRkYF169ahf//+mDhxIjQ0NHDp0iX89NNPuH79Ov73v/+Jtd+5cyfatm2L7t2749KlS3WePyAgAPr6+hgxYgQMDAzw33//4ciRI7h48SICAwOhqtp8b6QkJydj4cKFMDU1xfz585GdnY3g4GCkpaVh9erVEu09PDxgaWkpVtaUlSOIiJoLn71ki89djfc6Pnc1x/03ffp0iRWdtLS0xD6vXLkS58+fx5gxY9CjRw/k5OTgyJEjmDNnDoKCgtCxY8cm9wnU3JPPJvsYGxuLfU5LS4OioiLGjh2Ltm3borCwEFFRUfDx8cEPP/yAgQMHNvma65KdnQ0fHx9oaWlhxowZKC0txcGDB5GSkoJt27ZBWVlZrP2bb76JN954Q6yMCeNEREREJG96xtpw+589Ui48wF/7klCSXybvkIiIiIhICiYptRL6+vqit3STkpIwc+ZMmZzn6NGjSEtLw7Zt20SJAgMHDoSXlxeCg4MlzmtiYoIRI0bIJJaWEBMTg2HDhom9GV9RUYFHj2rexlBTU2uxWMrKyhAXF4fBgweLlRcXF6OoqAjKyspQVFRssXjqo6SkhFmzZmH16tXw9fXF7t27xVb1KSgogEAgkDppI0vh4eHw8PCAnp4eoqOjZTppO2jQIAwaNEis7N1338WMGTMQEhJSb5KShYUFQkND0aZNG8TExGD58uVS27Vt2xZBQUFib/KPHTsW33//PcLCwjB16lSxCa/g4GAYGhoiPz+/3vN//fXXEqs2WVhY4LvvvkNUVBRGjx5d77U3xfbt26GtrY3169dDU1MTAGBoaIhVq1bh0qVLsLe3F2vfp08fODk5Ndv5iYieF5+9mh+fu57P6/jc1Rz338CBA9GzZ8866x8+fIjY2FhMmjQJc+fOFZXb2Njg448/RmxsLDw9PZvUZ6127do1eJ+OHj1a4pnrnXfewaRJk3Do0KFmTVLat28fnjx5gp07d4q2LbS0tMSiRYsQHh4u8dzYvXv3V/Z7hoiIiIhaNwUFBZgP7gQT2/b457fb8g6HiIiIiKRgklIroaKiIraNQH0uXryIffv24datW1BQUECfPn0wZ84csUSHusTExKBnz55iK5mYmpqiX79+iI6OljpBUFZW88ZCc66+0lLGjRuHNm3a4I033oCpqSkqKioQFRWFxMREjB8/Hqampo3q59y5c9i5cyeAmgmP2jIvLy8ANRMVAQEB9fZRWloKBwcH9OjRA/3790fnzp1RVFSE0NBQZGZmws/Pr1nGeOfOnTh37hyAmm24astqt/QYMmQIvL29G+zn66+/xsWLF/Hzzz/j4sWLGDlyJFRVVZGSkoKIiAicO3cOtra2LxxvYyUlJeGdd95BWVkZnJyccODAAYk2Xbp0Ef1MZEEgEKBDhw5ISkqqt93T25zVR1dXV2wLjlpDhw5FWFgY7t27J5ak9Oyb/XV5NkEJqNlC6LvvvpPYYqe6uhqHDx9GaGgoMjIyoKmpiSFDhmD27NkNbg1XXFyMy5cvw9PTU5SgBABvv/02NmzYgOjoaIkkJaBmVREVFRUoKfH/wohIfvjs1fz43MXnrsZqyv1Xn5KSEqiqqkpskVtbB0BiZara89b186+vz6dVVFSgsrKySatxqampQUdHB0VFRRJ1J0+eREhICO7evQtVVVXY2dlhzpw5oqSj+pw5cwaDBw8WaztgwACYmJggOjpaanJ7aWkplJSUJFZZIiIiIiJ6GahoKOONDywbbkhERERELY4zvK+ZyMhIfPfdd7C3t8esWbNQVlaGo0ePYt68eQgMDKw3iaG6uhopKSlwc3OTqLO0tMTff/+NkpISsQSLiIgIHD16FEKhEKamppgyZQreeustmVybLPj7+yMiIgKXLl3C8ePHoampCXNzc2zZsgXTp09vdD+3b9/Gnj17xMr+++8//PfffwBqJhsbmizT1NTEDz/8gFOnTuHs2bPIzs6Gnp4eLCws4O/vj0mTJjX9AqU4d+6cRKznz5/H+fPnRZ8bM1mmpqaGqKgobNy4Efv27cOOHTsgEAjQuXNnzJ49G126dGmWeBsrMzNTNGl78OBBqW2GDRvW7ElKpaWlKCsrQ3FxMc6fP4+//voLzs7OzXqOZ9WuOPHsFkAvIjc3FwAkkqICAgIQHh4ONzc3eHh44MGDBzhy5AiSk5OxefPmehOJUlJSUFVVJbF1j7KyMrp3747k5GSJY/z9/VFaWgqBQAAbGxvMmTOnUSsWEBHJC5+9Go/PXTX43NUyfH19UVpaCmVlZdjZ2WHevHkwMTER1RsZGaF9+/YIDg5G586d0b17d+Tk5GDr1q0wNDSEi4tLk/us9c8//2DEiBGoqqpCx44dMWHCBEyYMEFqnMXFxaioqEBBQQEiIyNx584dfPjhh2Jt9u7di8DAQDg7O2P06NHIz8/Hr7/+Ch8fHwQGBtabOP7w4UPk5eVJ3UrR0tISFy9elCgPCgrCli1boKCgAAsLC3h7e0tNLCciIiIiIiIiIiJ6FpOUXiMlJSVYt24dRo8ejU8//VRU7urqig8++AD79u0TK3/W48ePUV5eLvWt5dqynJwcdO7cGQDQu3dvODs7w9DQELm5ufjtt9+wcuVKFBcXY9y4cc17cTIyZ84czJkz54X78fLyeuFJGGVlZSxevBiLFy9usK2TkxOEQuFznScoKAhBQUHPdeyzVFVV8cknn+CTTz6pt92zq/M8ra7r6NKlS5Ou8UXG5EVs2rQJx44dAwAoKirC0dERCxculNn5KioqcOjQIRgaGjZr8s4vv/wCgUCAYcOGicquXr2K0NBQLFu2TGwCvF+/fvDz80N0dHS9E+O1iU91faf8+++/os9KSkoYNmwY3njjDejo6ODu3bsIDg7G/PnzsXnzZvTo0aM5LpOIqFnx2atp+Nz1Yvjc1TiqqqoYOXIk+vbtC01NTdy8eRMhISGYO3eu2HZnSkpKWLlyJVauXImlS5eKjrewsMDmzZvFEn8a2ycAmJmZwcbGBiYmJnj8+DHCw8OxYcMG5OTkSP39X7FiBS5dugSg5vfS3d0dU6ZMEdVnZmZi9+7d8Pb2FktecnR0xPTp03H06FGJpKanNfQ8Vvs9pKKiAkVFRdjZ2cHR0RHt2rVDRkYGQkJCsHjxYvj7+0tsdUzUkpKTk7FmzRqkpKRAR0cHH374YbNuU01ERERERERERM2DSUqvkcuXL6OoqAjDhw9Hfn6+qFxRURGWlpb4559/6j2+9m1oaUv6q6ioiLUBgM2bN4u1cXNzg7e3N7Zv3y7agoKotZswYQKcnJyQk5OD6OhoVFVVoaKiQmbnW7t2Le7evYsffvih2bZDi4qKwokTJzB58mSx1QCio6OhpaUFOzs7se+UHj16QF1dHfHx8fUmKTX0nVJeXi76bG1tDWtra9HnIUOGwMnJCR999BG2b9/e4IoYRETywGcvopePi4uL2CpIQ4cOhb29PXx8fPDzzz/Dz89PVKetrY1u3brByckJVlZWSE9Px/79+7FixQr8+OOPonuqKX1+//33YvG4ubnh008/RUhICDw8PNChQwex+lmzZmHixInIzs5GREQEKisrUVVVJaqPjY1FdXU1nJ2dxb5n2rZtC2NjY8THx9ebpNTY7xkVFRUYGBjgxx9/FGvz9ttvY8qUKdi0aROTlEiuvvnmGzg7O2Pjxo1ITk7GggUL0Lt37xZfSY6IiIiIiIiIiOrHJKXXSFpaGgDg448/llqvqakJoOYfoYuKisTq9PX1Rf8ILy3BojaZoL7JL2VlZbz77rv48ccfcfPmTdjY2DT5GoheNaampjA1NQVQs3LGokWL8Nlnn2Hbtm1QUFBo1nMdOHAAx48fx/Tp05ttkujff//FDz/8AHt7e8yYMUOsLi0tDUVFRXB3d5d6bF5eHgCgqKhIbBJdWVkZbdq0afA7pXZirC7GxsYYMmQIYmNjUVVVBYFA0KRrIyKSNT57Eb0abGxsYGVlhbi4OFFZUVERfHx8MGnSJLHt/Xr27IkFCxYgPDy83hXKpPUpjYKCAjw9PXHp0iVcuXIFI0aMEKvv3r276O8jRoyAt7c3/P39sXLlSgA13zNCoRDvvfee1P5rk9ZLSkpQWloqKhcIBNDV1X3h75k2bdpg5MiR2L9/P7KzsyWSrIhaSmZmJoYPHw5FRUVYWFjA1NQU9+/fZ5ISEREREREREdFLhklKr5Hq6moAwBdffIG2bdtK1NdO8J8+fRr+/v5idbGxsWjTpg1UVFREWwI8rbasXbt29cZQ+4/Wjx8/bvoFELUCTk5OCAgIQGpqqmh7nuYQHh6OrVu3YuzYsZg6dWqz9Hn79m0sXboUZmZm+PrrryVWZhIKhdDT08OyZcukHq+rqwsAWL9+PSIiIkTltra2WL9+vWhbkbq+Uxr6PgFqvlMqKirw5MkT0WQ/EdHLgs9eRK+ODh064P79+6LPZ86cwaNHj+Dg4CDWztbWFpqamkhISGhwG8Vn+6yvHdDwfaqsrAwHBwfs378fZWVlUFVVRXV1NRQUFLB69WooKipKHKOurg4AOHjwoNjWgh07dkRISEiDz2O130ONib+wsJBJSq+5kpISHDx4EImJibhx4wYKCwuxdOlSjBw5UqJteXk5AgMDcfLkSRQWFsLc3Bze3t6ws7N7rnN7eHggKioKU6ZMwa1bt5CdnQ0rK6sXvSQiIiIiIiIiImpmTFJ6jRgZGQGoSRwYMGBAne3s7Ozw008/SZQrKirCzMwMSUlJEnWJiYno1KkTNDQ06o0hIyNDFAPR66h2RaFnV8x4EWfPnsWqVavg6OiIhQsXNkuf6enp8PPzg56eHlatWiX13u7UqRPi4uJgbW1d7xv27733ntiqANra2gCArl27QiAQ4ObNm2JbpFRUVCA5ORnOzs4NxpmRkQEVFRXRBBwR0cuEz15Er46MjAyx+6R2RcjaZMNaQqEQ1dXVYluuNbbP+toBjbtPy8rKIBQKUVJSAlVVVRgZGUEoFMLQ0FBsW95nubq6iq2mVvvs1r59e+jq6uLmzZsSx9y4cQPdunVrdPw6OjoNtqXWraCgAEFBQTAwMEC3bt0QHx9fZ1t/f3/ExMRgwoQJMDY2Rnh4OBYvXox169Y918p/AwcOxLfffouff/4ZALB48eJGvfRAREREREREREQtS/JVS2q17O3toampiX379qGyslKiPj8/H0DNG/kDBgwQ+1Nr2LBhSEpKEpssu3//PuLj4+Hk5CTR19NKSkpw+PBh6OjowMLCotmui+hlVDux9bTKykpERkZCVVVVtO1ATk4O7t27J/WebIwrV67gq6++go2NDZYtWyb1Dfqmys3NxSeffAJFRUUEBATUOWHm4uKCqqoq7NmzR6KusrIShYWFAIAuXbqIfZ/U3v9aWloYMGAATp48iZKSEtGxkZGRKC0tFUtSkvadcvv2bZw/fx52dnbNct1ERM2Nz15E8iXtOUvavXLhwgXcvHkT9vb2ojJjY2MAwKlTp8Tanjt3DqWlpWLbsDW2z8ePH0skN1VWVmL//v1QVlZG3759ReXSniULCwtx5swZdOjQAXp6egAAR0dHCAQC7N69G0KhUKy9UChEQUEBgJrk8qe/Y6ytrUXthg0bhj///BNZWVmisri4OKSmpjb4PPbw4UOEhYXB3NycCSEEfX19HDlyBIcOHcKcOXPqbJeYmIhTp05h5syZmDt3Ltzd3bF27Vp07NgRW7ZsEWs7b948ODo6Sv2zY8cOADX31pIlSzB37lz88ccf2LlzJ7Zv3y41+Y6IiIiIiIiIiOSLKym1Ir/++iuKiopES/WfP38e2dnZAGqWPtfS0sKiRYvw7bffYvr06Rg+fDh0dXWRlZWFixcvonfv3g2uwvLOO+8gNDQUS5YswaRJkyAQCBASEgI9PT1MmjRJ1O63337DuXPnMHjwYBgYGCA3NxdhYWHIysrC//73PygrK8tuIIheAgEBASguLkafPn3Qvn175ObmIioqCvfv38e8efNEK19s374dERERCA4OhqGhoej42sSfu3fvAqhJ3Ll69SoAiLZzy8zMxOeffw4FBQU4OTkhJiZGLAZzc3OYm5uLPkdGRiIzM1O0mtO///4rOs/bb7+Njh07AgA+/fRTZGRkYPLkyUhISEBCQoKoDz09PdEWDLa2tnB3d8e+ffuQnJwMOzs7KCkpIS0tDTExMViwYIHYBLo03t7emDdvHnx8fODu7o7s7GwEBwfDzs4OAwcOFLVbsWIFVFVV0bt3b+jp6eHu3bs4fvw41NTUMGvWrIZ/IEREMsBnLyL5acz9J+05a86cOejRowcsLCygqamJW7duISwsDB06dMCHH34o6t/BwQFdu3bFnj17kJWVBSsrK6Snp+O3336Dvr4+Ro0aJWrb2D7Pnz+PvXv3YtiwYTA0NERhYSGioqJw584dzJw5U7T1GlDzPNa+fXtYWVlBT08PWVlZCAsLQ25uLr788ktROyMjI0yfPh3bt29HZmYmhg4dCg0NDWRkZODs2bMYM2YMJk+eXO9YfvDBB4iJicHHH3+M8ePHo7S0FAcOHICZmZnYNl1btmxBeno6+vfvj3bt2iEzMxPHjh3DkydPsGDBguf4KVJro6KiIvZ7XJczZ85AIBDA3d1dVKaqqopRo0Zh+/btyMrKgoGBAQBg06ZNDfaXnp4ONTU10X97mJubo3fv3vj333+ZpEtERERERERE9JJhklIrEhwcjMzMTNHn2NhYxMbGAgBGjBgBLS0tvPXWW2jXrh3279+PgwcPory8HO3bt4eNjQ3c3NwaPIeGhgbWrVuHjRs3Yu/evaiurkbfvn0xf/58sdVWrK2tce3aNYSGhuLx48dQU1ODpaUllixZgv79+zf7tRO9bFxcXHDixAn8/vvvKCgogIaGBiwsLDB79mwMGTKkweMDAwPFPoeFhYn+Xpuk9ODBA9G2cWvWrJHow8vLSyxJ6cSJE7hy5Yroc3x8vGgLBhsbG1GS0u3btwEABw4ckOjT1tZWlKQEAH5+frCwsMCxY8ewY8cOCAQCdOzYEW+99RZ69+7d4HVaWFjgp59+wtatW7FhwwZoaGhg1KhREolHQ4cORVRUFEJCQlBcXAxdXV04OjrCy8tLtNIBEVFL47MXkfw05v6TxsXFBRcvXsTff/+NJ0+eQF9fH2PGjIGXlxfatm0raqesrIyNGzdiz549uHDhAk6dOgV1dXUMHToUM2bMELv/GtunmZkZTE1NERUVhfz8fCgpKaF79+746quvJLa5dXNzw+nTpxESEoKioiJoa2vDysoKy5cvR58+fcTafvDBBzAxMcGhQ4cQFBQEoGYbNzs7u0Y9dxoYGGD9+vXYuHEjtm3bBiUlJQwaNAjz5s2DioqKqJ2dnR0yMjJw5MgRFBYWQktLCzY2NpgyZQoTQahJkpOTYWxsDE1NTbFyS0tLADX/PVKbpNQYJiYmKCsrw9mzZzFkyBDcu3cPV69exdixY6W2z8nJESU41p4PAO7du9eo892/fx8CgaDR8RHRq4H3NlHrZWpqCjU1NXmHQf9f7Qu0jX32qsXvafnguMsHx73lcczlg+MuH7Ie98Y8eykIn10TnoiIiIiIiIiI6DklJSVh5syZWLp0qdiKXEDNSxd6enpYu3atWPndu3cxZcoUfPLJJ3UmGNXl0qVL2Lp1K9LT09GmTRuMGzcO77//vtS2u3btEiX0ERERUeu3evVqsRXbSb5OnjyJb775Rt5hEBERkYzs2LGjwRcauZISERERERERERG1iLKyMqnbkNau3FX7dn1T2Nvbw97evlFt3d3d4eDgIPpcWFiI9evX49NPPxVbPUyae/fu4ZtvvsEXX3wBU1PTJsf5utmwYQN8fHzkHUajyDNWWZ+7uft/0f6e9/jnOa6xx/Debhre2y/HuVvLvf08xzb13lZXV3+uuEg27O3t8cUXX8DQ0LDBZ69a/J6WD467fHDcWx7HXD447vLREuPemH6ZpERERERERERERC1CVVUVFRUVEuXl5eWiellq164d2rVrJ1bWqVMnWFtbN7oPU1NTbnPYCFpaWq/MOMkzVlmfu7n7f9H+nvf45zmuqcfw3m4c3tsvx7lby739PMc2tb2sny2oaXR1dTFixIjnOpbf0/LBcZcPjnvL45jLB8ddPuQ97opyOzMREREREREREb1W9PX1kZubK1FeW/ZsAlFLePPNN1v8nK+DV2lc5RmrrM/d3P2/aH/Pe/zzHPcq/Q6+Sl6lceW93XL9vcjxTT32VfodJCIiIiJJTFIiIiIiIiIiIqIW0a1bN6SlpaG4uFisPDExUVTf0jjZKRuv0rgykaHl+mOS0qvvVRpX3tst1x+TlIiIiIiosZikRERERERERERELcLJyQlVVVU4duyYqKy8vBxhYWGwsrKCgYGBHKOrn76+Pry8vKCvry/vUIioGfHeJmqdeG+3HvxZygfHXT447i2PYy4fHHf5eFnGXUEoFArlGgEREREREREREb3yfv31VxQVFSE3NxdHjx6Fo6MjunfvDgDw8PCAlpYWAGDFihWIjY2Fp6cnjIyMEBERgRs3bmDNmjWwtbWV4xUQEREREREREZEsMUmJiIiIiIiIiIhemKenJzIzM6XWBQcHw9DQEABQVlaGwMBAnDx5EkVFRTAzM4O3tzfs7e1bMlwiIiIiIiIiImphTFIiIiIiIiIiIiIiIiIiIiIiIiKZUpR3AERERERERERERK1BeXk5vv/+e4wfPx6urq6YPXs2rl27Ju+wiKgZrF69GuPGjYOrqyumTp2K8+fPyzskImom165dw7Bhw7Bnzx55h0JERETU6nElJSIiIiIiIiIiomZQWlqK4OBgjBw5Eu3bt0d0dDTWrl2L4OBgaGhoyDs8InoB9+7dg6GhIVRUVHDjxg0sWrQIBw8ehI6OjrxDI6IXUF1djblz50IoFGLw4MGYOnWqvEMiIiIiatWU5B0AERERERERERFRa6Curg4vLy/R5+HDh2Pjxo1ITU2FhYWF/AIjohdmamoq+ruCggIqKiqQk5PDJCWiV9zx48dhaWmJ4uJieYdCzygvL0dgYCBOnjyJwsJCmJubw9vbG3Z2dvIOrVUoKSnBwYMHkZiYiBs3bqCwsBBLly7FyJEjJdrevXsXGzduREJCApSUlDBo0CDMnz8furq6LR/4K+zGjRuIiIhAfHw8MjMz0aZNG/Tq1Qve3t4wMTERa8sxbz537tzB7t27cfPmTTx69AhqamowNTXF5MmT4eDgINaW4y5be/fuxc6dO9G1a1eJ1QsTEhKwdetW3Lp1C5qamnB2dsaMGTP4sk8TxcfHw9fXV2rdli1b0KtXL9FneY45k5SIiIiIiIiIiOi11JTJmeeZKEtNTUVhYSGMjIxkeRlE9AxZ3ds//fQTwsLCUF5ejjfeeANmZmYtcTlEBNnc1wUFBTh06BC2bNmCDRs2tNSlUCP5+/sjJiYGEyZMgLGxMcLDw7F48WKsW7cONjY28g7vlVdQUICgoCAYGBigW7duiI+Pl9ouOzsbPj4+0NLSwowZM1BaWoqDBw8iJSUF27Ztg7KycgtH/ur65ZdfkJCQAGdnZ5ibmyM3NxdHjhyBt7c3tmzZInqu4Jg3r8zMTJSUlMDV1RXt2rXDkydPcObMGSxduhR+fn5wd3cHwHGXtezsbOzbtw/q6uoSdcnJyVi4cCFMTU0xf/58ZGdnIzg4GGlpaVi9erUcon31eXh4wNLSUqzs6X+XkPeYM0mJiIiIiIiIiIheS42dnAGaPlFWVlaGb775Bu+//z60tLRkeRlE9AxZ3duLFi2Cr68vrly5gpSUFCgoKMj6Uojo/5PFfb1jxw5MmDAB2traLXEJ1ASJiYk4deoU5syZg8mTJwMA3n77bXh5eWHLli3YsmWLnCN89enr6+PIkSPQ19dHUlISZs6cKbXdvn378OTJE+zcuRMGBgYAAEtLSyxatAjh4eGiBA9qmKenJ5YvXy6W7OLi4oKPPvoI+/fvx7JlywBwzJvboEGDMGjQILGyd999FzNmzEBISIhoPDnusrV582ZYWVmhuroaBQUFYnXbt2+HtrY21q9fD01NTQCAoaEhVq1ahUuXLsHe3l4eIb/S+vTpAycnpzrr5T3mijLtnYiIiIiIiIiI6CVVOzlz6NAhzJkzp852tRNlM2fOxNy5c+Hu7o61a9eiY8eOUifJKisrsXz5chgZGYlt/0ZELUNW9zYACAQC9O/fH3Fxcbhw4YKsLoGIntHc9/WtW7eQlJSE0aNHt0T41ERnzpyBQCAQSwpQVVXFqFGjcP36dWRlZckxutZBRUUF+vr6DbY7c+YMBg8eLEraAIABAwbAxMQE0dHRsgyx1bG2tpZYjcfExARdunTBvXv3RGUcc9kTCATo0KEDioqKRGUcd9m5cuUKzpw5Ax8fH4m64uJiXL58GSNGjBAlywA1ianq6uoc+xdQUlKCyspKifKXYcyZpERERERERERERK+lpkzONHairLq6Gt988w0UFBTw+eefc6UVIjmQxb39rKqqKqSnpzdLvETUsOa+r69cuYLU1FR4eHhg3LhxOH36NH755Rf4+/vL7Bqo8ZKTk2FsbCw2eQpAtHXN7du35RHWa+fhw4fIy8uDhYWFRJ2lpSWSk5PlEFXrIhQKkZeXBx0dHQAcc1kqLS1Ffn4+0tPTERISgr/++gv9+vUDwHGXpaqqKqxbtw6jRo2Cubm5RH1KSgqqqqokxl5ZWRndu3fn2D8nf39/uLq64q233oKvry+SkpJEdS/DmHO7NyIiIiIiIiIiono0ZqKs9o3bgIAA5ObmIiAgAEpK/Kc3opdZY+/toqIiXLhwAQ4ODlBRUcHZs2cRHx9f59Y4RCQ/jb2v3d3dMXz4cFH9+vXrYWhoiPfff79F4yXpcnNzpSal1Zbl5OS0dEivpdzcXACo82fx+PFjlJeXQ0VFpaVDazWioqLw8OFDTJs2DQDHXJY2bdqEY8eOAQAUFRXh6OiIhQsXAuC4y9Lvv/+OrKwsrFmzRmp9Q2P/77//yjS+1kZJSQnDhg3DG2+8AR0dHdy9exfBwcGYP38+Nm/ejB49erwUY85/KSEiIiIiIiIiIqpHYyfKMjMzERoaChUVFbEVHFatWoU+ffq0TLBE1GiNvbcVFBQQGhqKNWvWQCgUwsjICMuWLUP37t1bNF4ialhj72s1NTWoqamJ6lVVVaGurg5tbe2WCZTqVVZWJrEtFgBRgkBZWVlLh/Raqh3nhn4WTNx4Pvfu3cOaNWvQq1cvuLq6AuCYy9KECRPg5OSEnJwcREdHo6qqChUVFQA47rJSUFCAXbt2YcqUKdDV1ZXapqGxLy8vl2WIrY61tTWsra1Fn4cMGQInJyd89NFH2L59OwICAl6KMWeSEhERERERERERUT0aO1HWsWNHxMbGtmhsRPT8Gntva2pqYt26dS0aGxE9n+dNbvn8889lGhc1jaqqqih54Gm1E6eqqqotHdJrqXac+bNofrm5uViyZAk0NTWxcuVKCAQCABxzWTI1NYWpqSkAwNXVFYsWLcJnn32Gbdu2cdxlZOfOndDW1oaHh0edbRoaeyaGvThjY2MMGTIEsbGxqKqqeinGXFHmZyAiIiIiIiIiInqFcaKMqHXivU3U+vC+bh309fVF29E8rbasXbt2LR3Sa6l2BbK6fhZt2rRhAsFzKCoqwuLFi1FUVISAgACx32eOectxcnJCUlISUlNTOe4ykJqaiuPHj2P8+PHIycnBgwcP8ODBA5SXl6OyshIPHjzA48ePGxx7ft83jw4dOqCiogJPnjx5KcacSUpERERERERERET14EQZUevEe5uo9eF93Tp069YNaWlpKC4uFitPTEwU1ZPstW/fHrq6urh586ZE3Y0bN/hzeA5lZWX47LPPkJqaiu+//x5dunQRq+eYt5zalfWKioo47jKQk5OD6upqrFu3DhMnThT9SUxMRGpqKiZOnIigoCB07doVAoFAYuwrKiqQnJzMsW8mGRkZUFFRgbq6+ksx5kxSIiIiIiIiIiIiqgcnyohaJ97bRK0P7+vWwcnJCVVVVTh27JiorLy8HGFhYbCysoKBgYEco3u9DBs2DH/++SeysrJEZXFxcUhNTYWzs7McI3v1VFVV4csvv8T169fx1VdfoXfv3lLbccybV15enkRZZWUlIiMjoaqqKkoU47g3r65du+Lbb7+V+NO1a1cYGBjg22+/xahRo6ClpYUBAwbg5MmTKCkpER0fGRmJ0tJSjn0T5efnS5Tdvn0b58+fh52dHRQVFV+KMVeS+RmIiIiIiIiIiIheYU5OTjh48CCOHTuGyZMnA+BEGVFrwHubqPXhfd06WFlZwdnZGdu3b0d+fj6MjIwQERGBzMxMLFmyRN7htRq//vorioqKRCuNnT9/HtnZ2QAADw8PaGlp4YMPPkBMTAw+/vhjjB8/HqWlpThw4ADMzMwwcuRIeYb/ytm0aRPOnz+PwYMHo7CwECdPnhSrHzFiBABwzJtZQEAAiouL0adPH7Rv3x65ubmIiorC/fv3MW/ePGhoaADguDc3XV1dDB06VKL80KFDACBW5+3tjXnz5sHHxwfu7u7Izs5GcHAw7OzsMHDgwBaLuTVYsWIFVFVV0bt3b+jp6eHu3bs4fvw41NTUMGvWLFE7eY+5glAoFMr8LERERERERERERC+hpydnjh49CkdHR3Tv3h3A/03OADX/2BcbGwtPT0/RRNmNGzewZs0a2NrayvEKiEga3ttErQ/v69dLWVkZAgMDcfLkSRQVFcHMzAze3t6wt7eXd2ithqenJzIzM6XWBQcHw9DQEABw584dbNy4EQkJCVBSUsKgQYMwb948tG3btiXDfeUtWLAAV65cqbM+NjZW9HeOefM5deoUTpw4gZSUFBQUFEBDQwMWFhZ49913MWTIELG2HHfZW7BgAQoKCrBnzx6x8qtXr2Lr1q24desWNDQ04OzsjFmzZomSyKhxDh8+jKioKKSnp6O4uBi6urro378/vLy8YGxsLNZWnmPOJCUiIiIiIiIiInptNXZyhhNlRK8W3ttErQ/vayIiIqJXH5OUiIiIiIiIiIiIiIiIiIiIiIhIphTlHQAREREREREREREREREREREREbVuTFIiIiIiIiIiIiIiIiIiIiIiIiKZYpISERERERERERERERERERERERHJFJOUiIiIiIiIiIiIiIiIiIiIiIhIppikREREREREREREREREREREREREMsUkJSIiIiIiIiIiIiIiIiIiIiIikikmKRERERERERERERERERERERERkUwxSYmIiIiIiIiIiIiIiIiIiIiIiGSKSUpEREREREREREREREREREQkF/Hx8XB0dER8fLy8QyEiGWOSEhERERERERERERERERERUSsRHh4OR0dHJCUlAQAuXLiAXbt2yTkq4MiRIwgPD5d3GEQkR0xSIiIiIiIiIiIiIiJqQEhICFxcXPDgwQNRWe0E4Msy2RYaGgonJyf8999/8g6FiIiIXiIXL15EUFCQvMPA0aNHpT439enTB1FRUejTp48coiKilsQkJSIiIiIiIiIiIqLXzIMHD+Do6FjvH09PT3mH+dIoLCzE3r174ebmBkNDQ5me69KlS3B0dMQnn3zSYNuvv/4ajo6OiIqKAgC4urrCwMAAW7ZskWmMREREREKhEGVlZc3Sl6KiIlRVVaGoyPQFotZOSd4BEBEREREREREREZF8GBkZ4a233pJap6Wl1cLRvLxCQkLw+PFjTJ48WebnGjBgAAwMDBAXF4esrCwYGBhIbVdUVISzZ89CS0sLjo6OAAAlJSV4enpi3bp1SEhIgLW1tczjJSIiopfbd999h4iICAAQPTMAQGxsLACguroahw8fRmhoKDIyMqCpqYkhQ4Zg9uzZ0NbWFrX39PRE165d4eHhgR07duDOnTuYOXMmPD09ERYWhsjISNy5cwfFxcXo1KkTPDw8MG7cOLHjMzMzxeKwtbXF+vXrER8fD19fX6xbtw59+/YVHRMdHY39+/fj7t27UFdXh729PWbPno327duLXd+ZM2ewb98+rFmzBnFxcVBRUYGrqytmz54NgUDQ/INKRM+NSUpERERERERERERErykjIyNMmzZN3mG81CorKxEaGgpra2sYGRnJ/HyKiooYOXIkgoKCEBERgalTp0pt98cff6CsrAxubm5QVVUVlQ8fPhwbN27E77//ziQlIiIigru7O3JycnD58mV88cUXEvUBAQEIDw+Hm5sbPDw88ODBAxw5cgTJycnYvHkzlJT+L6Xg/v37+Oqrr+Du7o7Ro0ejc+fOAGq2cevatSscHBwgEAjw559/4qeffkJ1dTXeffddAICPjw/Wrl0LdXV1TJkyBQCgp6dXZ9zh4eHw9/dHz549MXPmTOTl5eHw4cNISEhAYGCgWAJVVVUV/Pz8YGlpiblz5+Ly5csIDg6GkZGRWKIUEckfk5SIiIiIiIiIiIiIqEGOjo6wtbXFl19+iS1btuDixYsoLS1Ft27dMGvWLLG33muVlJTg4MGDiImJQUZGBlRUVGBpaYmpU6fCxsZGrO2CBQtw5coVREVFYe/evTh16hSysrLw4YcfihKpat+Sv3PnDjQ1NeHg4IA5c+Zg+vTpAGpWPAKAlStXIioqClu3boWVlZVEXIGBgdizZw+WL1+ON998s97rvnTpEnJzc/Hee+81eqyys7Px6aefIj09HV988QWcnJwAAHl5edi3bx/+/PNPZGdnQ0NDA3369MG0adNgZmYmOt7NzQ179uxBeHg4pkyZAgUFBYlzhIWFAQBGjRolVq6rq4u+ffsiJiYGixYtgoaGRqPjJiIiotand+/eMDExweXLlzFixAixuqtXryI0NBTLli0TW12zX79+8PPzQ3R0tFh5eno6AgICYG9vL9bPhg0bxJKmPTw84Ofnh5CQEFGS0tChQ7Fz507o6OhIxPGsyspKbN26FV27dhXr28bGBkuWLMGhQ4fEEu3Ly8vh4uIiSu4eO3Yspk+fjhMnTjBJieglw00diYiIiIiIiIiIiKhRioqKMG/ePNy9excjRoyAo6Mjbt68CT8/P6SkpIi1ffz4MebMmYOgoCBoa2tj7NixcHR0xK1bt+Dr64uzZ89KPceyZcsQERGBvn37Yvz48TA0NAQAnDhxAsuWLUNaWhrefvttuLq64vr161i0aBEqKyvF+nB3dxcd86yqqiqEhYVBR0dHbMuTusTFxQEAevXq1fAAAbh79y7mzp2L7OxsrF69WpSglJ6eDm9vbxw6dAidOnXCu+++izfeeAOXLl3CnDlzkJiYKOqjY8eO6N+/PzIyMhAfHy9xjpSUFCQlJaF79+7o0aOHRH2vXr1QXl6Oa9euNSpmIiIiej1FR0dDS0sLdnZ2yM/PF/3p0aMH1NXVJZ5DDA0NJRKUAIglKBUVFSE/Px+2trbIyMhAUVFRk+NKSkpCXl4e3nnnHbG+Bw0ahM6dO+PChQsSx4wdO1bss42NDTIyMpp8biKSLa6kRERERERERERERPSaSk9Px65du6TW9erVCwMHDhQru337NsaNG4ePP/4Yioo178D269cPq1atwm+//QY/Pz9R27Vr1+LOnTtYvHgxRo8eLSrPy8vDjBkzsHr1atjb24tNPAFAbm4udu/ejTZt2ojKCgsLsX79eqirq2P79u0wMTEBAMyYMQN+fn64efMmOnbsKGrfp08fdOnSBadOncL8+fOhrq4uqrt06RIePnyICRMmQEVFpcExSkhIgKKiIrp169Zg2+vXr2PJkiVQUlLChg0bxI759ttv8ejRI4nVB6ZMmYIZM2Zg1apVCAoKEpWPGjUKly9fRlhYGPr16yd2nrpWUaplYWEBALh27ZrUiUQiIiIiAEhLS0NRUZEowftZeXl5Yp9rk8eflZCQgF27duH69et48uSJWF1xcTG0tLSaFFdWVhYAiJ75nmZqaoqrV6+KlamoqEBXV1esTFtbG4WFhU06LxHJHpOUiIiIiIiIiIiIiF5T6enpYokxTxs/frxEkpK6ujpmz54tSlACAFdXV/z4449ISkoSleXn5yM6Ohr9+vUTS1ACAD09PUyePBnr1q1DXFwcBg8eLFb/0UcfiSUoAcC5c+dQWloKDw8PsckqJSUleHt7Y+7cuRLxu7u7Y/369Th16pRYDKGhoQCAMWPGSL3uZz18+BBaWloNJjRduHABK1asgL6+Pn788Ud06tRJVHfr1i1cu3YNbm5uEklDJiYmGD16NEJCQpCSkiLa9m3o0KHQ0dHBmTNnsHDhQmhqagKo2f7k5MmTUFFREdt+5Wlt27YFULPtHBEREVFdhEIh9PT0sGzZMqn1zyb+PJtcDtQ8Ty5cuBCdO3fGvHnz0KFDBygrK+PixYsICQlBdXW1LEIXIxAIZH4OImoeTFIiIiIiIiIiIiIiek3Z29sjICCg0e2NjY2hoaEhVqakpIS2bduKbeWRlJSEqqoqVFRUSF2pKS0tDQBw7949iSQlS0tLifb//fcfgJptO55lZWUldWLq7bffxrZt2xAaGipKUnr06BH+/PNP9O7dG126dGngams8fvwY7du3r7dNdHQ0/v77b5ibm2P16tXQ09MTq6/dyi0vL0/qeNy/f1/0v7VJSrVJSIcPH8Yff/wh2sLk/PnzyM/Px5tvvgltbW2p8dSWFxQUNOoaiYiIqHVTUFCQWt6pUyfExcXB2tpaagJSY5w/fx7l5eXw9/eHgYGBqFzalrWNVdtPamoq+vfvL1Z3//59sRU0iejVwiQlIiIiIiIiIiIiImqU2tV8niUQCMTekn/8+DGAmq0/EhIS6uzv2e1AgP9bBehpxcXFACCR/AMAioqK0NHRkSjX1taGs7MzIiIiRCsUhYeHo6qqqtGrKAE1KwaUl5fX2+b69euoqqqCjY2N1Bhrx+PChQu4cOFCnf2UlpaKfR41ahQOHz6MsLAwUZJSQ1u9ARDFq6amVm/cRERE9HqofSYoLCwUS3J2cXHB0aNHsWfPHsycOVPsmMrKSpSWltaZFF2rNllcKBSKyoqKikTPLE9TV1cXS2yvS8+ePaGnp4fff/8dbm5uohUtL168iHv37sHLy6vBPojo5cQkJSIiIiIiIiIiIiJqVrXJTBMnTsS8efOadKy0N/1r+8vLy5Ooq66uRkFBgdTVjsaOHYuIiAgcP34cvr6+OHHiBDQ1NeHs7NzoeHR0dPDw4cN628ycORPnzp3D4cOHIRAIJK65Nn5fX194eHg0+tzm5ubo2bMnbty4gTt37kBbWxuXLl2CoaEh+vXrV+dxtUlRz27RQkRERK8nCwsLAMD69ethZ2cHgUCA4cOHw9bWFu7u7ti3bx+Sk5NhZ2cHJSUlpKWlISYmBgsWLICTk1O9fdvZ2UFZWRmfffYZ3N3dUVpaitDQUOjp6SE3N1esbY8ePfD7779jz549MDY2hq6ursRKSUDNSp2zZ8+Gv78/FixYgOHDhyMvLw+HDx9Gx44dMWHChGYbGyJqWUxSIiIiIiIiIiIiIqJm1bNnTygoKOD69evN0p+5uTmAmpWZnk0wunHjBqqqqqQe16tXL5ibmyMqKgqDBg1CWloaxo0b16QVhszMzJCeno6srCyxLUyepqKigm+//RbLli1DcHAwhEIh5s+fL6qv3cLu+vXrTUpSAmpWTEpKSsKJEyegp6eHqqoquLm51bltC/B/28fVbh1HRERErzdHR0d4eHjg1KlTOHnyJIRCIYYPHw4A8PPzg4WFBY4dO4YdO3ZAIBCgY8eOeOutt9C7d+8G++7cuTO+/vpr7Ny5E5s3b0bbtm0xbtw46Orq4vvvvxdr6+XlhaysLBw4cAAlJSWwtbWVmqQEACNHjoSqqir279+Pbdu2QU1NDUOHDsXs2bMbXN2JiF5eTFIiIiIiIiIiIiIiomalr68PZ2dnnD59GgcOHMCkSZMkkmoSExNhZmbWqIShIUOGQF1dHSdOnICHhweMjIwA1GxDEhgYWO+x7u7uWLNmjWiSbPTo0U26FltbW5w9exaJiYl1JikBNYlK33zzDZYtW4aQkBAIhUL4+PgAAKysrGBlZYVTp07BwcFBNClYq7q6GlevXoWtra1Ev2+++SY2bdqEkydPQltbG4qKinB1da035hs3bohiJyIiotfPyJEjMXLkSNFngUAAX19f+Pr6Sm0/ZsyYBrfDDQkJqbPOwcEBDg4OEuVubm5in9u2bYsffvhBol3fvn0RGxsrUe7i4gIXF5d64/r888/x+eefS5RPmzYN06ZNq/dYImp5TFIiIiIiIiIiIiIiek2lp6dj165ddda///77UFVVfa6+Fy1ahNTUVGzZsgWRkZHo1asXtLS08PDhQyQlJSEtLQ1HjhxpVJKStrY25s+fj9WrV2PGjBlwcXGBpqYmLl68CBUVFbRr167OlYVGjBiBrVu3IicnBxYWFujRo0eTrmPIkCHYtGkTLl++3OA2ccrKyli5ciWWL1+OQ4cOQSgUYsGCBQCA5cuX4+OPP8ZXX32Fw4cPo3v37lBVVUV2djauXbuGgoIC/PHHHxJ9ampqYtiwYYiMjER+fj4GDhxYb7KUUChEXFwcTE1NYWJi0qRrJSIiIiIikiUmKRERERERERERERG9ptLT0xEUFFRn/YQJE547SalNmzbYvHkzfvvtN5w+fRp//PEHqqur0bZtW3Tr1g1Tp06Fjo5Oo/sbM2YMtLW18fPPPyMiIgKamppwcHDA7NmzMWHCBNHqSs/S1NTE0KFDcfLkySavogQAhoaGsLOzQ0xMDHx9faGiolJv+9pEpRUrVuDw4cMQCoXw9fVFp06dEBgYiODgYJw9exbh4eFQVFSEvr4++vTpAycnpzr7HDVqFCIjIwFIrkjwrH///RdZWVmiVZyIiIiIiIheFgpCoVAo7yCIiIiIiIiIiIiIiJ5HWloa3nvvPTg7O+Orr76S2mbq1KnIzMzEb7/9Bk1NzSafIy4uDgsXLsQXX3yBESNGvGjIMrVy5Ur89ddfOHDgALS1teUdDhERERERkYiivAMgIiIiIiIiIiIiImpIYWEhysvLxcrKysqwceNGAMDQoUOlHnfx4kXcuXMHb7755nMlKAFA//79MXDgQOzduxfV1dXP1UdLSE1NxenTpzFlyhQmKBERERER0UuH270RERERERERERER0UvvypUr+OGHH2BnZ4cOHTqgoKAA//zzDzIzM9GvXz+4uLiItT969Ciys7MRGhoKFRUVvP/++y90/gULFiAqKgoPHz6EgYHBC/UlK9nZ2fDy8sI777wj71CIiIiIiIgkcLs3IiIiIiIiIiIiInrppaamIjAwENeuXUN+fj4AwMjICC4uLpg0aRJUVVXF2nt6euLhw4cwMTHB7NmzMXjwYDlETURERERERLWYpERERERERERERERERERERERERDKlKO8AiIiIiIiIiIiIiIiIiIiIiIiodWOSEhERERERERERERERERERERERyRSTlIiIiIiIiIiIiIiIiIiIiIiISKaYpERERERERERERERERERERERERDLFJCUiIiIiIiIiIiIiIiIiIiIiIpIpJikREREREREREREREREREREREZFMMUmJiIiIiIiIiIiIiIiIiIiIiIhkiklKREREREREREREREREREREREQkU/8PB6a0dn/CBOsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "title = [\"100-158.489 keV\",\n", + "\"158.489-251.189 keV\", \n", + "\"251.189-398.107 keV\", \n", + "\"398.107-630.957 keV\", \n", + "\"630.957-1000 keV\", \n", + "\"1000-1584.89 keV\", \n", + "\"1584.89-2511.89 keV\", \n", + "\"2511.89-3981.07 keV\", \n", + "\"3981.07-6309.57 keV\", \n", + "\"6309.57-10000 keV\"]\n", + "\n", + "position = {\"l\":184.600, \"b\": -5.800}\n", + "\n", + "i_iteration = 49 # ==>50th iteration\n", + "th = -5\n", + "\n", + "fig = plt.figure(figsize=(30, 15))\n", + "gs = GridSpec(nrows=3, ncols=4)\n", + "\n", + "ax0 = fig.add_subplot(gs[0, 0])\n", + "ax1 = fig.add_subplot(gs[0, 1])\n", + "ax2 = fig.add_subplot(gs[0, 2])\n", + "ax3 = fig.add_subplot(gs[0, 3])\n", + "ax4 = fig.add_subplot(gs[1, 0])\n", + "ax5 = fig.add_subplot(gs[1, 1])\n", + "ax6 = fig.add_subplot(gs[1, 2])\n", + "ax7 = fig.add_subplot(gs[1, 3])\n", + "ax8 = fig.add_subplot(gs[2, 0])\n", + "ax9 = fig.add_subplot(gs[2, 1])\n", + "\n", + "axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]\n", + " \n", + "ax_spectrum = fig.add_subplot(gs[2, 2])\n", + "ax_likelihood = fig.add_subplot(gs[2, 3])\n", + "#ax_background = fig.add_subplot(gs[1, 3])\n", + "\n", + "#plt.subplots_adjust(wspace=0.4, hspace=0.5)\n", + "\n", + "image = all_results[i_iteration]['model_map']\n", + "\n", + "for i_energy in range(image.axes['Ei'].nbins): \n", + " plt.axes(axes[i_energy])\n", + "\n", + " data = image.contents[:,i_energy]\n", + " data[data < 10**th * image.unit] = 10**th * image.unit\n", + "\n", + " hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = \"s-1 sr-1 cm-2\")\n", + " hp.graticule(color='gray', dpar = 10, alpha = 0.5)\n", + " hp.projscatter(theta = position[\"l\"], phi = position[\"b\"], lonlat = True, color = 'red', linewidths = 1, marker = \"*\")\n", + "\n", + "### \n", + " \n", + "plt.axes(ax_spectrum)\n", + "\n", + "energy_band = image.axes['Ei'].centers\n", + "\n", + "err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux = get_differential_flux(image)\n", + " \n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "\n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlim(90, 10000)\n", + "plt.ylim(1e-8, 2e-3)\n", + " \n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {iteration+1}\")\n", + "plt.grid()\n", + "plt.legend()\n", + " \n", + "### \n", + " \n", + "plt.axes(ax_likelihood)\n", + "\n", + "iterations = [_['iteration'] for _ in all_results]\n", + "loglikelihoods = [_['loglikelihood'] for _ in all_results]\n", + "\n", + "plt.plot(iterations, loglikelihoods, linewidth = 1.5)\n", + "plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = \".\")\n", + "\n", + "plt.xlabel(\"Iteration\", fontsize = 12)\n", + "plt.title(\"Log-likelihood\")\n", + "plt.grid()\n", + "\n", + "###\n", + "# plt.axes(ax_background)\n", + "\n", + "# plt.plot(iterations, background_normalizations, linewidth = 1.5)\n", + "# plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = \".\")\n", + "\n", + "# plt.xlabel(\"Iteration\", fontsize = 12)\n", + " #plt.ylabel(\"Background Normalization\", fontsize = 12)\n", + "# plt.ylim(0.7, 1.4)\n", + "# plt.title(\"Background Normalization\")\n", + "# plt.grid() \n", + "\n", + "# plt.savefig(f\"fig_{i:03}.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "351b4d7e-6054-4919-853e-5b6d06e646f7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb.txt b/_sources/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb.txt new file mode 100644 index 00000000..cc8365d1 --- /dev/null +++ b/_sources/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb.txt @@ -0,0 +1,1126 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, Crab, Data Reduction\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on how to produce the binned datasets with the spacecraft attitude (scatt) binning method for DC2. An example of the image analysis will be presented using the Crab 3-month simulation data created for DC2. After running through this notebook, you can go to the next notebook, Crab-DC2-ScAtt-ImageDeconvolution.ipynb.\n", + "\n", + "### Notes on the coordinate system of Compton data space in the image deconvolution ###\n", + "\n", + "We have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) with, namely the Galactic coordinate or the detector coordinate.\n", + "\n", + "Using the Galactic coordinate is intuitive, and the spectral fitting adopts this coordinate. Thus, we suppose that Galactic coordinate should be adopted also for image deconvolution eventually. However, in this case, we need to convert the detector response into the Galactic coordinate for each pixel in the sky because the response matrix is described in the detector coordinate. As for now, it takes a long time to compute it. Thus, the pre-computed converted response are provided in DC2 for several main sources (511 keV, Al-26, Ti-44, continuum). The pre-computed responses assume that we analyze 3-month data without extracting some time intervals, and the pixel resolution of the model map is already fixed in them. While there is less flexibility in binning/modeling, it is relatively fast to perform the image deconvolution in DC2 since the most computationally heavy part, the coordinate conversion of the response, can be skipped.\n", + "\n", + "Using the detector coordinates for Compton data space may not be so intuitive. However, the advantage is that we do not have to convert the response matrix. Instead, we will convert the model map into the detector coordinate. Because the model map generally has a much smaller data size than the response, we can compute this coordinate conversion quickly. \n", + "\n", + "The disadvantage of this method is that we need more bins due to continuous pointing changes of the COSI satellite. Since COSI is an all-sky monitoring satellite with ∼90-minute orbits, it changes its pointing by ∼4 degrees every minute. Thus, in this case, we need to divide the data into several bins so that astronomical sources can be considered at rest in the detector coordinate for each bin within the COSI's angular resolution. The straightforward way could be to divide the data every $\\sim$15 seconds, considering that the COSI's angular resolution is an order of degrees. However, we need $5\\times10^5$ time bins for 3-month observations, which makes the event histogram very huge. To avoid this issue, the spacecraft attitude (scatt) binning method is introduced. Instead of binning data over time, we first analyze the satellite attitude and find the time intervals when the satellite has almost the same attitude within the angular resolution. Then, we assign the events in such intervals into the same CDS. In the DC2 simulation, the orbit inclination is assumed to be 0 degrees. In this case, the number of the scatt bins becomes 100-1000, which makes the computation more executable. With this method, at least in DC2, we can perform the image deconvolution using the original response matrix and have flexibilities to change binning/modeling, e.g., the pixel resolution can be changed in a relatively easy way.\n", + "\n", + "While both methods have pros and cons, our baseline is to eventually use the Galactic coordinate. But we still need to carefully investigate how they will be scaled with longer exposure, finer pixel resolution, etc. Thus, we provide the notebooks of both methods for the image deconvolution in DC2.\n", + "\n", + "For the Crab image analysis, the following notebooks are based on the scatt binning method\n", + "- ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb\n", + "- ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution.ipynb\n", + "- ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb\n", + "\n", + "GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb uses the galactic coordinate.\n", + "\n", + "If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "2a7ca026", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "Before running the cells, please download the files needed for this notebook. You can get them from wasabi. \n", + "\n", + "Basically, the data reduction from raw tra files may take hours depending on your environments. So we can skip this process.\n", + "Please download the following data files and then run the following cells.\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5 (please unzip it)\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/ScAttBinning\n", + "- inputs_Crab_DC2.yaml" + ] + }, + { + "cell_type": "markdown", + "id": "8462d0dc", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4e6e7dd-af43-4fef-980d-cb7a30a48739", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (Crab):\n", + "# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\n", + "# File size: 840M\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip')\n", + "os.system(\"unzip SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "326c8a34-4e48-4f9b-a37b-a23f0772601a", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (Crab):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "# File size: 619.22 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "397b5225-6ae0-441c-b96f-870ffbc9cc68", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5dce412d-9ff5-49e5-be4b-2b36c317e484", + "metadata": {}, + "outputs": [], + "source": [ + "# Orientation file:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "# File size: 684.38 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16.6 s, sys: 1.57 s, total: 18.2 s\n", + "Wall time: 17.7 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(8, 768)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside = full_detector_response.nside\n", + "npix = hp.nside2npix(nside)\n", + "\n", + "nside, npix" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "Here the orientation file is analyzed to define the indices of the spacecraft attitude binning." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 7.329037678543799 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a3c41c4036b94bad945ff87f8864345b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(532, 13)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(532, 26)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.955010022713545, -23.741156770888438][45.95764244902919, 66.25906763976249][1.0000000000065512, 0.9999999999969589, 0.999...26359.0263590
22(532, 42)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
33(564, 42)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[49.549399237968544, -29.168814518824405][49.59320571194872, 60.83674837374497][0.9999999999969589, 1.0000000000065512, 0.999...111115.01111150
44(564, 63)[[51.09862804289071, -31.321406880638527], [51...[[51.09862804289071, 58.67859311936147], [51.1...[51.90542254254405, -32.39811966891759][51.917215575378705, 57.603714738909005][0.9999999999969589, 1.0000000000065512, 0.999...57871.0578710
.................................
133133(468, 13)[[40.16189499252812, -13.801710443269755], [40...[[40.161894992528104, 76.19828955673026], [40....[40.89892831460051, -15.138427135287458][40.92208802371745, 74.8623891583036][1.0000000000065512, 0.9999999999969589, 0.999...67576.0675760
134134(499, 13)[[41.655148156368654, -16.49006256585185], [41...[[41.655148156368654, 73.50993743414816], [41....[42.7796358426142, -18.460371889534287][42.82335612555313, 71.54190445396517][0.9999999999969589, 1.0000000000065512, 0.999...99833.0998330
135135(716, 188)[[145.12720043519377, -61.03941171474516], [14...[[145.12720043519377, 28.960588285254847], [14...[145.15270150626816, -61.035193201971055][145.1526970180014, 28.964811462201155][0.9999999999969589, 0.9999999999969589, 1.000...992.09920
136136(128, 128)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
137137(58, 188)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
\n", + "

138 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (532, 13) \n", + "1 1 (532, 26) \n", + "2 2 (532, 42) \n", + "3 3 (564, 42) \n", + "4 4 (564, 63) \n", + ".. ... ... \n", + "133 133 (468, 13) \n", + "134 134 (499, 13) \n", + "135 135 (716, 188) \n", + "136 136 (128, 128) \n", + "137 137 (58, 188) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[45.66020516346508, -23.269427365755966], [45... \n", + "2 [[46.29919922293719, -24.286823740507035], [46... \n", + "3 [[48.1115581160702, -27.07000329743496], [48.1... \n", + "4 [[51.09862804289071, -31.321406880638527], [51... \n", + ".. ... \n", + "133 [[40.16189499252812, -13.801710443269755], [40... \n", + "134 [[41.655148156368654, -16.49006256585185], [41... \n", + "135 [[145.12720043519377, -61.03941171474516], [14... \n", + "136 [[180.0238082643748, 46.67626678787605], [180.... \n", + "137 [[325.1571038593629, 61.0351405587937], [325.1... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "2 [[46.29919922293719, 65.71317625949297], [46.3... \n", + "3 [[48.111558116070206, 62.92999670256505], [48.... \n", + "4 [[51.09862804289071, 58.67859311936147], [51.1... \n", + ".. ... \n", + "133 [[40.161894992528104, 76.19828955673026], [40.... \n", + "134 [[41.655148156368654, 73.50993743414816], [41.... \n", + "135 [[145.12720043519377, 28.960588285254847], [14... \n", + "136 [[180.0238082643748, 43.32373321212394], [180.... \n", + "137 [[145.15710385936296, 28.964859441206304], [14... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.77592919492308, -21.83137450725276] \n", + "1 [45.955010022713545, -23.741156770888438] \n", + "2 [47.169799754806256, -25.642813300423782] \n", + "3 [49.549399237968544, -29.168814518824405] \n", + "4 [51.90542254254405, -32.39811966891759] \n", + ".. ... \n", + "133 [40.89892831460051, -15.138427135287458] \n", + "134 [42.7796358426142, -18.460371889534287] \n", + "135 [145.15270150626816, -61.035193201971055] \n", + "136 [180.01420731505038, 46.68360608975279] \n", + "137 [325.15317939441115, 61.03567974667542] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.79590102793104, 68.17007080261746] \n", + "1 [45.95764244902919, 66.25906763976249] \n", + "2 [47.188380045186555, 64.35902575261872] \n", + "3 [49.59320571194872, 60.83674837374497] \n", + "4 [51.917215575378705, 57.603714738909005] \n", + ".. ... \n", + "133 [40.92208802371745, 74.8623891583036] \n", + "134 [42.82335612555313, 71.54190445396517] \n", + "135 [145.1526970180014, 28.964811462201155] \n", + "136 [180.01420553833427, 43.316394483057174] \n", + "137 [145.15317503922358, 28.964324759952632] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 71072.0 \n", + "1 [1.0000000000065512, 0.9999999999969589, 0.999... 26359.0 \n", + "2 [0.9999999999969589, 0.9999999999969589, 1.000... 71137.0 \n", + "3 [0.9999999999969589, 1.0000000000065512, 0.999... 111115.0 \n", + "4 [0.9999999999969589, 1.0000000000065512, 0.999... 57871.0 \n", + ".. ... ... \n", + "133 [1.0000000000065512, 0.9999999999969589, 0.999... 67576.0 \n", + "134 [0.9999999999969589, 1.0000000000065512, 0.999... 99833.0 \n", + "135 [0.9999999999969589, 0.9999999999969589, 1.000... 992.0 \n", + "136 [0.9999999999969589, 1.000000000001755, 1.0000... 646.0 \n", + "137 [1.000000000001755, 0.9999999999969589, 0.9999... 970.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 71072 0 \n", + "1 26359 0 \n", + "2 71137 0 \n", + "3 111115 0 \n", + "4 57871 0 \n", + ".. ... ... \n", + "133 67576 0 \n", + "134 99833 0 \n", + "135 992 0 \n", + "136 646 0 \n", + "137 970 0 \n", + "\n", + "[138 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(\"exposure_table.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(\"exposure_table.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "8ebcb20e", + "metadata": {}, + "source": [ + "The sum of values in the 'exposure' column should be the same of the observation duration." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0f073766", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$92.36059 \\; \\mathrm{d}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(np.sum(exposure_table['exposure']) * u.s).to(\"day\")" + ] + }, + { + "cell_type": "markdown", + "id": "e9306cf5", + "metadata": {}, + "source": [ + "SpacecraftAttitudeExposureTable can produce SpacecraftAttitudeMap that has an exposure time in each Z- and X-poiting pixels." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b24d8dc3", + "metadata": {}, + "outputs": [], + "source": [ + "map_pointing_zx = exposure_table.calc_pointing_trajectory_map()\n", + "map_pointing_zx = map_pointing_zx.to_dense()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b75a6097", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm375mt2l1Jq957sywXueFeKKaZjinGgI0pIbQAAQIfJCEhCSFAICRvSKEl9EASTAkQugPGgLGNe5Ml2+q9a/v5/ljtWpIlW2WlLZr7unSBd2dnnjkzc+b8zlOOJIQQKCgoKCgoKCgoKCgojENkfxugoKCgoKCgoKCgoKDgLxRBpKCgoKCgoKCgoKAwblEEkYKCgoKCgoKCgoLCuEURRAoKCgoKCgoKCgoK4xZFECkoKCgoKCgoKCgojFsUQaSgoKCgoKCgoKCgMG5RBJGCgoKCgoKCgoKCwrhFEUQKCgoKCgoKCgoKCuMWRRApKCgoKCgoKCgoKIxbFEGkoKCgEAJkZmaSmZnpbzNGjfvvvx9Jkvj0008Htf3q1auRJImysrJRtWsgysrKkCSJ1atX++X4wUgw38Njdb8N9TlQUFAYHIogUhhXSJJ03D/lRaOgMDgkSWLJkiX+NsNvBOr5P/fcc4Pq6zx//hKNCkfjuXbPPfecv01RUBhXqP1tgIKCP/jpT3864HfBOkOpML756KOP/G1CQPHggw9y9913k5KS4m9Txpzi4uJj9nEA//3vf/nyyy9JSkoiJiZmjCw7NsF8D4/V/XbTTTdx6aWXkp6ePqrHUVAYbyiCSGFccv/99/vbBAUFn5KTk+NvEwKKpKQkkpKS/G2GXyguLqa4uHjA77/++mseeugh9Ho9a9euJTw8fOyMOwbBfA+P1f0WGxtLbGzsqB9HQWG8oYTMKSgMQGlpKWazmejoaA4ePNjru46ODgoLC1GpVL1C7Dxx5AcOHOC3v/0tEyZMQK/Xk5qaym233UZra2u/x/r222+58MILiY+PR6fTkZGRwQ033EBVVdVR29bU1HDHHXdQUFCA0WjEbDZTUFDA6tWrOXDggHe744Ve9Bfu0zM+/aWXXmL27NmYTKZeXrPOzk4efPBBiouLMRqNmEwm5s6dy8svv3zsBu2DJ1+gvb2d2267jbS0NMLCwiguLuaNN94AwOFw8Mtf/pK8vDz0ej05OTn84Q9/OGpfNpuNP/zhD5x55plkZGSg0+mIjo7mlFNO4d133z3m8VtaWrjppptISUlBr9czceJEnnjiCYQQgz6XJUuWIEkSVquV++67j6ysLHQ6HTk5OfzsZz/DZrMd9RtP+1dXV3PNNdeQkpKCSqXqdb3+8Y9/sGjRIiIjIwkLC2Py5Mk8+OCDWK3WAc+nP15++WVOPPFEzGYzer2ewsJCfvGLX/S7H4Ddu3ezZs0aMjMz0el0xMfHs3DhQp588kngyL0F8Nlnn/UKv+o72fDVV1+xfPlyEhMT0Wq1pKWl8b3vfY/Kysp+j/3tt99y+umnEx4eTkREBKeccgpffvllv9sei/5yOnrm9ZSVlXHppZcSGxuLXq9n5syZvP3224Pa91DO33PcoRxrqNdrKJSXl3PeeedhsVh45plnmDVr1qB/+9xzz3HhhReSnZ1NWFgYERERzJ8/nxdeeOGobf/1r38hSRJz5szBbrf3+m779u0YDAaSk5Opra31ft7fPWyz2XjiiSeYPn06UVFRGAwGMjMzOffcc/nwww8HZfdY9Mu+uN+WLFnCVVddBcBVV13Vb1jjQDlEnv6kvr6e6667jqSkJHQ6HUVFRTz77LP9np/VauX+++8nOzsbnU5HVlYW9913H1arNWDDQRUURg2hoDCOAMRQbvvXXntNAGLevHnCbrd7P7/yyisFIO6///5e269atUoA4pxzzhFms1lcd9114q677hJTp04VgJgxY4bo6urq9Zu33npLaLVaodFoxIoVK8Tdd98tli5dKgCRnJwsDhw44N22o6ND5OTkCEAsXbpU/PCHPxS33367uPDCC4XZbBZvvfWWd9tnn31WAOLZZ58dsC0WL17c67Of/vSnAhBnnXWW0Ol0Yvny5eJHP/qRuP7664UQQjQ1NYlp06YJQEyfPl3cdNNN4oYbbvDadO+99w66bTMyMkRycrKYM2eOyM/PFzfeeKO49tprhclkErIsiw8//FBccMEFIiUlRVxzzTXixhtvFPHx8QIQr7zySq99VVVVCVmWxYIFC8TVV18t7r77brFq1SoRHR0tAPHXv/613+MnJSWJmTNnitzcXHH77beLm266SSQlJQlA3HDDDYM+l8WLF3uve1JSkrj55pvF7bff7m2Xs846S7hcrl6/AcTkyZNFRkaGKCoqEjfddJO45ZZbxH/+8x8hhBD33HOPAERsbKy4/vrrxR133CGKioq8181qtR51PhkZGUfZdtVVVwlApKamijVr1ojbb79dzJs3TwBiyZIlve5rIYR4++23RVhYmJBlWZx55pni7rvvFtdff72YO3euyMzMFEIIsXnzZu+9kpGRIX760596/z755BPvvp5++mmhUqmEwWAQl156qbjzzjvFeeedJ2RZFklJSeLgwYO9jv3FF1+IsLAwoVKpxEUXXSTuuececcYZZwitVitOP/10AfTa/7HwPIulpaXez0pLS73nHRcXJ2bPni1uvfVWceWVVwqdTidkWRYff/zxcfc9mPMf7rGGer2GQkdHh5g+ffqQn1UPer1ezJgxQ6xatUrcfffd4tprrxUpKSkCEPfdd99R2994440CEHfeeWcvGwoLC/s9//7u4RUrVghATJo0Sdxyyy3iRz/6kbjiiitEVlaW+OEPfzgou0e7X+55jJHcb88++6w499xzBSDOPffcXvdVU1OTEOJIH933OQDE1KlTRX5+vpg0aZK46aabxLXXXivMZrMAxHPPPddre5fLJZYtWyYAkZeXJ26//XZx8803i5SUFHHeeef1+35QUAhlFEGkMK7wCKKeL5qefw8++OBRv/n+978vAHH33XcLIYR47rnnBCBOPPFE4XQ6e23reSnGxMSIsrIy7+dOp1NccMEFAhA///nPvZ+3tbWJ6OhoIcuyWLduXa99/frXv/YKHw9vvvmmAMStt956lJ1Wq1W0trZ6/z0SQWQwGMSmTZuO+o3n/B566KFen3d1dYnTTjtNSJIkNm/e3O/x+pKRkeEVCxaLxfv5unXrBCCioqLEzJkzvQMBIYQoKSkRGo1GFBcX99qXxWIRhw8fPuoYzc3NoqioSERFRYnOzs5+jz9//vxex29oaBDZ2dkCEJ999tmgzsUjiPLy8kRjY6P3866uLjFnzhwBiL///e+9fuO5F6+44oqjBrnr168XgEhLSxNVVVXez+12uzjrrLMEIH75y18edT59B5Oee+D8888/6vw91/rxxx/3flZXVyciIiKERqMRn3766VHn2beNjzVo2rNnj9BoNCInJ0eUl5f3+u7DDz8UsiyL8847z/uZy+USBQUFAhBvvPFGr+0ff/xxb3v5QhD1N5nx3nvvCUCcccYZg9q/EMc+/+Eca6jXayi4XC6xfPly7/77CvTBsH///qM+s1qt4qSTThJqtfqo62yxWMS0adOEJEni3XffFUIIsXr1agGIn/zkJ0ftq+893NzcLCRJEjNmzBAOh+Oo7evr6wdl92j3yz2PMdL77Xj99rEEESCuvvrqXm21Y8cOoVKpRGFhYa/t//73vwtALFy4sNfkSlNTk/c5VASRwnhCEUQK4wrPS2Ogv8jIyKN+09XVJaZOnSokSRK///3vhdFoFHFxcaKysvKobT0vxZ4vVw8lJSVClmXvLLsQQrzwwgsCECtWrDhqe7vdLjIzMwXgnUn3CKJ77rnnuOc6EkHUn+Cqr68XKpVKzJw5s9/9bdmy5ajZ4GPhEST9DbKysrIEID766KOjvluyZIlQq9X9DpD649FHH+1X3HiO33fAI8SRtlu9evWgjuERRH1FjxBCfPLJJ95Z4p4AQqvVipqamqN+c8011whA/PnPfz7quz179ghZlkVWVtZR59NXEBUXFwu1Wt1LVHpwOBwiJiZGzJo1y/vZI488IgBxyy23HOt0e53DQIOmW2+9VQDi7bff7vf78847T6hUKq+I//zzzwUgFi1a1K+tHm+bLwRRRkZGv/dPenq6iImJGdT+hRicIBrKsYZ6vYbCfffdJwBRXFws2tvbh7WPgfjnP/8pAPG3v/3tqO/27t0rTCaTiIuLEw8//LD3GvfXJn3v4ZaWFgFuD/1wBJyH0e6Xex5jpPfbSASRwWAQLS0tR/1m0aJFAhBtbW3ez04++eQBJ308568IIoXxhFJUQWFcIoaQH6LX63n11VeZOXMmN998M5Ik8frrrx8zgXbx4sVHfZadnU1aWhplZWU0NzdjNpvZtGkTACeddNJR26vVahYtWkRZWRmbN28mPT2dxYsXk5KSwq9//Ws2bdrEmWeeyfz58ykuLkalUg36nI7HCSeccNRn33zzDU6nc8A8CU+ewK5duwZ9HLPZ3G8idXJyMqWlpcyYMeOo71JSUnA4HFRXV/eq6LRjxw4efvhh1q1bR1VVFRaLpdfvKioqjtqXWq1m3rx5R33uiZ3fvHnzoM8F+r/uCxYsQKVS9buvzMxM4uPjj/r8WPdFfn4+qamplJaW0tLSQmRkZL+2dHZ28t133xEbG8vjjz/e7zY6na7X9dqwYQMAZ5xxRr/bDwVP3s9nn33GN998c9T3tbW1OJ1O9u7dy4wZM7zn3F8bqlQqFixYQElJyYjtAgZ8XtLS0oaVr+SLYw3neg2Wl19+mV/84hckJCSwdu1ajEbjUduUlZX1m2/Y81k/dOgQDz30EB999BGHDh2iq6ur17b9PWN5eXn86U9/4vLLL+fOO+8kNjaWl156aVD9VUREBGeffTZvvfUWxcXFXHjhhSxcuJDZs2djMBiOf+J9GK1++XiM1f2Wl5dHREREv8cBaGpqwmQyAe6+TZblfvu/BQsW+MwmBYVgQRFECgqDID8/nylTprB+/XomTpzIqaeeesztExIS+v08MTGRgwcP0tLSgtlspqWlBWBAceX5vLm5GXAPEDZs2MBPf/pT3nzzTd5//33AXXnohhtu4L777kOj0QznFI+ysy8NDQ2AWxj1N8D10N7ePujjDDSYV6vVA37v+a5novaGDRs46aSTcDgcnHzyyZxzzjlEREQgyzJbtmxh7dq1/Sakx8bG9jtQ8Zy/5/oMlv6uu1qtJjY2tlfyeN/j9GUw98WhQ4dobm4esA2bmpoQQlBXV8fPfvazQdnvuc98UTrYc788/PDDx9zOc794zvlYz46vMJvN/X6uVqtxuVw+O85QjjWc6zUYvv76a9asWYNOp+Pf//73gAP4srKyfo/rEUQHDhzghBNOoKmpiYULF3LqqacSGRmJSqWirKyMv/3tbwMWfTj11FOJiIigtbWViy66aEj316uvvspDDz3ESy+95C0lrtfrWb58OY888siA90t/jFa/fDzG6n471nEAnE6n97OWlhaio6O93/VkKG2qoBAqKFXmFBQGwa9//WvWr19PbGwsO3bs4MEHHzzm9jU1Nf1+Xl1dDRwZ6Hv+6/m8L55qRj0HvampqTz99NPU1tayfft2nnjiCWJiYvj5z3/Oz3/+c+92sux+vB0Ox1H7Pd6L3FNBqyceG2677TaEO9y2379PPvnkmPseDX7xi1/Q1dXFf//7X959910ef/xxfv7zn3P//fcze/bsAX9XX1/fa5Dgoe91Giz9XXeHw0F9fX2/M7f9tXPP4w7lvhhoH9OmTTvm9erpLfUMqPqb6R8qnuO3tLQc89ieWXvP9sd7dkKV4Vyv41FRUeGtKPfXv/6VuXPnDrjtkiVLjnms3/72tzQ0NPD000/z6aef8sQTT/DAAw9w//33c9pppw24XyEEV155Ja2trcTGxvKXv/yFdevWDfocwsLCuP/++9m7dy+HDh3ihRdeYMGCBbzwwgssX7580PuB0e2Xg42IiAgaGxv7fT8M1E4KCqGMIogUFI7D+vXr+clPfkJBQQHbt2+noKCAn/70p3z++ecD/uazzz476rMDBw5w+PBhMjMzvQPPadOmARxVQhXcA+n//e9/AEyfPv2o7yVJoqioiJtvvpkPPvgAwFuuGiAqKgqAw4cPH/XbjRs3Dmj7QJxwwgnIsuy1KZDYv38/0dHR/ZaJ7e9aeHA4HKxfv/6ozz3Xw3N9Bkt/x/r8889xOp1D2tex7ov9+/dTXl5OVlbWgDPCACaTiaKiInbs2EFjY+OgjjtnzhyAAUuV90WW5X4FZc99DfZ+8dzj/bWh0+k85vPmL451/kNlONfrWHR2dnLOOedQVVXFj370I6644ooR7W///v0AXHjhhUd9d6xn7OGHH+a9995j5cqVfPzxx2g0Gi677DKvB3EopKWlsXLlSt5//31yc3P5/PPPh7SfseiXR4rHY+2r+2ogpk2bhsvl6rf/C8RnTUFhtFEEkYLCMWhqamLFihWoVCpeeeUVEhISePXVV1Gr1Vx22WUDDlx+97vf9Vq7yOVyceedd+JyubzrTACcd955REdH8/LLL3vzNzw8/vjjlJaWcsopp3jDXHbs2NHv7J3ns55x9TNnzkSWZV566SU6Ozu9nzc2NnLXXXcNuS3i4+NZuXIlGzdu5IEHHuj3hV1SUkJpaemQ9z1SMjMzaWxsZOvWrb0+f/rpp71hhQNxzz339Ar1aWxs5Be/+AVAr2s1GB544AGampq8/7ZYLNxzzz1D3teaNWsAt+errq7O+7nT6eSOO+7A5XJx9dVXH3c/t99+OzabjTVr1vTrFWxqavLmSwCsWrWKiIgInnzyyX5n8cvLy3v9OyYmpl/BDXDTTTeh0Wi47bbb2Lt371Hf22y2XmJp3rx5FBQUsG7dOtauXdtr2z/84Q8+yx/yJcc6/+Ew1Os1EEIIVq1axaZNmzj77LP51a9+NWLbPOsD9RUJ77//Pk899VS/v9mwYQP33nsvubm5PPnkk0yePJnHHnuMiooKVq1adVxvV11dHdu2bTvq846ODtrb21Gr1Wi12kGfw2j1y74kJiYGcOdrjSZXXnklAPfdd1+vddJaWlp44IEHRvXYCgqBiJJDpDAu6a8ogIfzzjvPu8r7mjVrOHToEE888YT3s6lTp/Loo49y0003sXr1at58882j9uEpdHDJJZcQGRnJ+++/z3fffceMGTN6iRGTycQzzzzDRRddxOLFi7noootIT0/n22+/5b///S+JiYn8+c9/9m7/wQcfcOeddzJ37lzy8/OJj4+nvLyctWvXIssyd955p3fbpKQkVq5cyfPPP09xcTHLli2jtbWV//znPyxatGjIBQPAPTDdt28fP/nJT3j++edZsGABCQkJVFZWsmvXLr755htefvllsrKyhrzvkXDrrbfy/vvvs2DBAi6++GIiIyPZuHEjn3/+OcuXL+f111/v93dJSUlYrVYmTZrEOeecg91u5/XXX6eqqoobbriBRYsWDcmOwsJCioqKWL58ORqNhrVr11JSUsKyZcuGNEM/b9487rrrLn7zm98wadIkli9fjtFo5N1332X79u0sWLCg17UeiDVr1vDtt9/yxz/+kZycHE477TTS09NpbGyktLSUdevWcdVVV/GnP/0JwJvwvnz5ck488UTOOOMMpkyZQmtrK1u3buXw4cO9BO/JJ5/MK6+8wtlnn8306dPRaDQsWrSIRYsWMWHCBJ555hnWrFlDUVERp59+Ovn5+djtdg4dOsT//vc/4uLi2L17N+D2eD799NMsXbqUCy+8kAsuuIDc3Fy2bNnCRx99xOmnn8577703pOsx2hzr/IfDUK/XQDz66KO8/vrryLJMXl5er1Da/li9evWAi/p6uOGGG3j22We56KKLWL58OcnJyWzfvp333nuPiy++mFdffbXX9s3NzaxYsQJZlnnllVcIDw8H4Prrr+ejjz7i9ddf57e//S0//OEPBzxmRUUF06ZNY/LkyUyZMoW0tDRaW1t5++23qa6u5pZbbvHudzCMVr/sS+bOnYvBYODxxx+noaHBmzt38803+zRE78orr+SVV17hvffe69X//fOf/2TWrFns2bPHG3atoDAuGLX6dQoKAQjHKbtNj3KnTzzxhKB7Mb/+OP/88wUgfvvb33o/85ReLSkpEY888ogoKCgQOp1OJCcnix/84Af9lkQVQoivv/5anHfeeSI2NlZoNBqRlpYmrr/+elFRUdFru507d4rbbrtNzJgxQ8TGxgqtVisyMjLEhRdeKL744ouj9muxWMQdd9whUlJSvGvC/OpXvxJ2u/2YZbePVdrYarWK3//+92Lu3LkiIiJCaLVakZaWJk466STx2GOPDXptkIEWEhXiSBnr/uivvK0Q7oUUZ8+eLUwmk4iMjBRLly4Vn3322YBlbD3Hb25uFjfccINITk4WWq1WTJgwQfzud78bUplfj70Wi0Xce++9IjMzU2i1WpGVlSXuv//+Xusceeiv/fvy8ssvi/nz5wuTySR0Op2YOHGi+MUvfnHUIpI9z6c/3nrrLbFs2TIRFxcnNBqNSEhIELNmzRL33nuv2LVr11Hbb9++XVxxxRUiOTlZaDQaER8fLxYtWnRUGfCamhqxYsUKER8fL2RZFnSv8dWTrVu3ilWrVon09HSh1WpFVFSUKCoqEtddd12/ZdU3btwoTjvtNGEymYTJZBInn3yyWL9+/aDuzZ4cqwzyqlWr+v3Nse67/jjW+Y/kWEO9Xn3xnPtg/wbbpl988YU48cQThdlsFiaTScyfP1/8+9//9paW73ntPev79OwfPTQ3N4usrCyh0WjEV1995f287z3c1NQkfvazn4kTTzzR+3wmJiaKxYsXi5deemnQz+ho98s9j+GL++3dd98Vc+bMEUaj0XuNPPs9VtntgfqTgfrMrq4u8eMf/9jbX2VkZIj/9//+nygvLxfgXhxWQWG8IAkxhAxNBQWFY7J69Wr+9re/UVpaetwZVwX/4rk+ZWVlI97XkiVL+Oyzz4aU8O5rEhMTiYyMZM+ePX6zQUEhEFH65aHxwQcfcOqpp3L33Xcft4CQgkKooPhDFRQUFIKcxsZG6uvrSU1N9bcpCgoKQUJlZeVRnzU0NHD33XcDcP7554+1SQoKfkPJIVJQUFAIUlpaWnjkkUd4//33cTqdQy5DrKCgMH65/fbb+e6775g3bx5xcXGUl5fz7rvv0tjYyPe+971+F+hWUAhVFEGkoKCgEKQ0NTXx4IMPkpWVxYMPPsj3vvc9f5ukoKAQJFxwwQXU1NTw1ltv0dzcjF6vp6ioiKuvvnpQVSwVFEIJJYdIQUFBQUFBQUFBQWHcouQQKSgoKCgoKCgoKCiMWxRBpKCgoKCgoKCgoKAwblEEkYKCgoKCgoKCgoLCuEUpqqCgoKCgMOYIIejq6qKiogKbzUZaWhrh4eHetZxkWZmvU1BQUFAYGxRBpKCgoBDCCCGwWCy0t7fT0dFBe3u796+1tZXOzk46Ojqorq7GYrEghKCzs5Pq6moiIiKQJIna2lqamppITk7Gbrdz4MABJEkiJiaGjo4OKioqMJlM6PV6amtrsVgsmM1mHA4HjY2NuFwutFotVqsVq9WKy+XC5XL1a68sy8iyjFarRa/XY7VakWWZmJgY1Go1zc3NqNVqkpOTaWlpwWazkZCQgNlspry8HICJEyei0WjYvXs3ERERFBQU0NraSkVFBYWFhcTExFBVVYXT6WThwoWYTCZKS0tJTU1lwoQJaDQa2trayMnJITY2Fq1Wi0qlGsvLpqCgoKAwhiiCSEFBQSFA8YiTpqYmmpqaaG5u9v5/f/9uaGigra0Nm81Ge3s7LS0tdHV1DSg+PMiyjEajISwsjJiYGIQQtLe3ExkZSVRUFA0NDTgcDrRaLRqNhq6uLjQaDdHR0RiNRjo7O4mNjSUvL499+/bR0dHB/Pnz0el0fPXVV6jVak488URsNhsbNmwgLS2NGTNmsHv3bjZu3IgQgqKiIqZPn84XX3xBTU0Ns2fPJiwsjA8//BCHw8G8efOwWq188cUXaLVaJk6cyI4dO2htbSUhIQGj0UhFRQVOp5POzk7sdjvNzc20tLRgtVqpra2ls7OT8vJy1Go1dXV1WK1WXn755eO2jyRJaLVaYmJiMJlMtLe3Ex4eTl5eHnq9noaGBqZOnUpGRoa3vRctWoTZbMZms5Gamkp8fDySJPny9lBQUFBQ8BFK2W0FBQWFMcJqtVJXV+f9q62t7fVvz2cNDQ1ewWO32/vdV1hYGJGRkQghyMjIICEhgY6ODrq6upg/fz4mk4lNmzbRVtlJ7cZWTLEG8s9Io3p9M20lFrKWJJE0JY7NTxxARmb69blY2x3sfPEg2nA1J9w+gb1ry6nd0kz0hHCSZkaz44WDABRdnomsltj2XCkAhZemU/llAy0HO1DpZYyJYXRUd+G0uEieE4MxQc++tRX9nkfhpekA7HrlUL/f552bQkeNhcoNDaj0MqaEMNpr3PuOzDCSPDfG+9vJV2UhHILtz5eBBBNXZlC9sZHG3W0kTIsi75wUvn50N7Z2B0VXZKIxqtj85H5cuJj2g2yqdzRw4MMKzBMNxM2IYP+H5bRWdZC0MAqNSWb27Nm0t7fz2WefIcsy8fHxHDp0iMrKSoQQ3vbvD41GQ0REBACpqalkZmbicrkQQnDSSScRFxdHS0sLGRkZFBcXExcXh06nG9yNpaCgoKAwIhQPkYKCgsIIcDqd1NXVUVVV1e9fdXW1V/i0trYe9XuDwUBkZCSxsbGkpqaSnp6OTqfj/PPPJy0tjdf++AYJBTEc+HctGjQULc/G0Qjln9QTZtQycUUGB96roumbdjIWpZJ6YhxfPrgTgOwzMjBrbKikBuQ2mUhbLF3ICKkDqUlLRHQ4Gq0Gl91FzXfNuOxuT4mtzcF3T5Vgtzjd52h1EZUTjiFOR2edlcP/q+11Dn3FTNGKDA59VkvF+noqNzSMqH17CqnE6dGkL47n68d2A9BysIOWgx3e7w99XOvNQTLE6ojOCafii3r3toc62PJUCbZ2BwANu1qR1VK390dDRFQ4VXUtmKRITFYjkdZowhusGKUYkh0x6CUtn/9sOwCn/78zKP9fLYffric/bxqnX3omO146iMViI+2UWNQxEttfLcGOndzlCdQfbOa8VWexe/duNm3aRGxsLHa7nZ07d9Lc3MzHH39MZ2fnUeeu1WqJj48nLS0NlUqFWq3m5JNPJikpiY6ODnJycpgxYwZxcXFKSJ+CgoLCCFAEkYKCgsIAdHV1UV5ezuHDh3v9VVZWUllZSVVVFbW1tTidzl6/i4uLIzExkYSEBAoKCpg9ezZtbW1sfHk7Uqea1OmJpE9PYtdT5ai61Ey5LJvWgx2UvVdDSxjkLZrEzmfK+ba+hITCNJKM0TRK7mOYDCYc3f9vabbTUWPB3uEe5FdtbKRpfztIgACn1Yk500jlhgZcNhf6KC1qg7vbb9jTyrd/2IvL4RZBlRsa0Jk13nPIWZZMZ62VvW+U03qoky1/LaGz3gpA68E+g3cJEoqjqP2uCafFxba/ldJRY/H59aj8qoGWsg6cFheSDPFTo6jZ0gTdcQ49xVFnvZUtfy3x2pG+MB5DvI4tfykBoGl/G9Zmt/fNaXfx7R/2esWS2qBGH631CkRzlvHI+Uiw9bkD3t/a2x101Fiwtrj/bYwOQ6VVYZTc3qCEsBREexhv3PwpYXFaiqZP5/AHdTgsTk45ZRkR6Ua2PnMAJw4mXpdK5fYaStdXoo6D5LkxJCYmYrPZ2Lx5M7W1tezYsYO6urpe7aJSqTAYDKSmppKdnY1arUar1bJs2TLS0tIICwtjwoQJREVF+fqSKCgoKIQEiiBSUFAYlwghqKuro7S0lLKyMsrKyo4SPvX19b1+4/HipKamemfm//Xr99CiJybZTFJ+AtWftiDXyxSfn0NbVRclf6ukxtDFpFVZZMfk09bVhVyho8HSiUpyd8GH19Wi1rtn+F12F8mzY+iottBVb8XZ5cLlEMgaGZfdxf63K3FY3YJIOAUHP6nFk5qij9JSfE0Om/+8n45qC20VXVhbHV77t/y5xPv/TquLLqvN+++YCREUXpLO17/dja3Nwd5/l2NttXuP017ZfygYgCFOR86yJCyNNloOdhxz25HQ046IdCM5y5Joq+iks9baz8b0sqPk3Up0EW7Bp43QMOsHBex69RANu1tBQFfDkbao395C/fYW778b97Vj624LY4KeadfmsuWvJbR3duFyuK+BcLpV2f53KlHr3NfSfc0Eji63sApPMZA8O4aDH9UA0FFj8Yo4laSm/vNOnA1aYqUkwvVh5KamsO1vpTg6ncw9azGm2WFs+WsJLlyknmmmZn8DVXvrwOggc0ki4eHhtLS0sGXLFurq6njttdd6NUlsbCyJiYkIIZg2bRqTJk1Cr9cTExPD0qVLlTwnBQWFcYuSQ6SgoBCyNDU1ceDAAa/o6fvfnvkekZGRpKWl9fp7+cdr0WNATxg6DCRMjgYB9Tta0BhVzL6jkJ2vHKRxTxuxEyNIOiGGbX8rBQGRGUbsXQ7vYF3WSEgqCafFhSk5jNxlyWx/oQxHl5OcM5PQRmi8oWcxEyJoq+zyDsJ7ojGpMWcaqesesE+9OpuuRht7/12OrJaIyg+nuaQdp/XYhQIACpanYW2xU/ZBNSqdTGSGkaaSdu/g/ngYk/R0VLk9J7oIjVdADYXj5RAdi57H7GnL8ZBUElE5Jre3yeYi69REtOEa9vzz8HF/q9LJmHNMNO5pQzgF+Rekoo/SsvXpAwDETYqkuawDe7vjqN9qIzSEJ+tp2N0GwMRL07G02jnwnyrUYSomXZ7J/rcraK+yoNarcDlduOzdIYDxOjRhareAkmDyqiyqvm6gfmcr0QXhTLw0g68e2YW9w0lsUSRIULOtESudGCaoaW1u4ewbT2P79u1s2bIFgOrqalpajgi/sLAwwsPDSU1NZc6cOSQkJOBwODjppJOYOnWq4mFSUFAIWRRBpKCgELR4vDz79++npKSE/fv39/prbGz0bmsymcjKyiIrK4vMzEwyMzN57vbXCMOIHgMaSQsSROWa6KyzYm22E1MYQd65KXz18G734Pe8VFxOF/vfqgQgbnIkLaUd3lCrnuijtBgTdN7B76xbC6jd2sTBj2vRRWpIWxzPoU9qsLUd/du+RBeEY2my0VlrJaYwggnL0/j60d3YO53oo7TY2uy4HMfvyjUmNanzYjn4SS0uu4vEGVHYO5xuL8kQCYvVMf2GXHa9eojGPW1D/r2HkQgiDzETwplwcTqb/rifrvp+vEXH/X0EGqOK6m+bkDUyGSfGU76+vl9R0xdZLaEN12BpsqExqDjhhxPY/fphGna1YojXoY/SDqp9tOFq0k9M4PBntVhb7GSclED8FDPfPL7He44dNVYsTbajf2tSE9lDJOeenYysktn7RjmSSmL2nRPYt7aChl2t6MwaDHE6d2ilAMnowhVhp66ynqseu5i33noLi8VCW1sb+/fv7zVpYDQaiY6OZuHCheTk5GC1WjnhhBNYuHAhcXFxindJQUEhaFEEkYKCQsBjs9nYt28fu3btYteuXezevZvdu3ezb98+2tqODDaTkpLIzc0lNzeXdc9+jQFTt+AxokHrHbCpdLLXg5I4Mxq9WUPZh+4wprn3TOTgxzVUftWAPlpLdF441ZsavTP1A6HSyaQuiKP2u2a66q2kzI0hbVE8G36zCwSYc0xYmmxYGo8e0PZFF6HBlBJGwy63UJn5g3xqtzRz6LNadyEAlTQoD5AHtUGFo9OJLlLD1Guy2fHSwUF7U45FZJaRltKO4294DHwhiHxlC7g9TUWXZfDdUwewttjRGFTYO53H/2E3Kp2McApcDkH6knjip5jZ+MReAGImRtBe3jUoT5o+Wos+SktziTsnbM5dhRxeV0vFlw2ExeqIn2qm/PO6494HskYicXo0jfvasDTaSJ4TQ8aJ8Xz54C4AMk9JwNJsp3pjo9d+zz6FEKhjoamxmS5XO7ocMKbqcblclJSUUFlZeaTdjEYiIyOZPXs206ZNw2QykZeXx6mnnopWqx10+ykoKCj4A0UQKSgoBAytra3s3r3bK3o8AqikpMRbuCA6OprCwkIKCwv59KmvvKLHgMmbk9OXqFwTtg4HHVUWItINTLkqm42/34ul0UbSrGj00VpK368GQGNUe4sUHI+0hXGow1SU/rcaSSUx48Y8St6tpGlfOyqtjHCJQXluwJ2bYu90YGtzkDgzmsxTEvj6kd24HAKVXsZpGbwA6kn26YlEZpnY/OR+9wfdBReGg6SSmHBRGnV9cmxGgq8EkYfYSZHETYpk92uHBx36dxQ92mja93NpPtDuvT+GiufayWq3p6b0gxqqNzaiDVejMagHXXxCVktIsoTT5iIqz0TOGcl8+3/7EE5B1qmJOLqcHP5f3fF3BGiMKuwd7ucp+/REuhpsVH3TSFiMlhk35bP12QO0HurEmKRHa1S7vUn9IBmhy9VOa2cLUoIDQ7YaWZbZvXs3DQ3u6oIqlYrs7Gw0Gg3Tpk1j6dKlpKenk5mZSVZW1qDsVVBQUBhtFEGkoKAwpgghqKmp6eXt8fx/RcWREsvp6ekUFhay8/0SjERgJBwjEWil46/NEpVrImZCBPvfds9gT7s+l5aydg68586Vic4Lp3Ff26C9LJJKQjgFpuQwJlycxtanD2Brc5B0QjQqnYryQQ5E++LJgZFk92C54st6Dq+rQ9bIAN4qZ0MlpjACS7ONjioLhngd2nCN29PgA3LOTKJhdxvNB3yzP18LInOOiZiCcEr+U+Wz/dna7HTWWjEm6dGbtV7P3VDpeV3TFsWRMieWrx7ZjXCJYedgAaQujMNpcVL1jVtoTbk6m93/OEx7ZZf33h0MfZ+N7NMTicwwsrm7GEfuWck07G4dUCD1RIQ7sOk6qaurp0vdjj5HoqWlherqI8IyOTmZwsJCdDodOTk5nH/++RQUFJCQkKCUEVdQUBhTFEGkoKAwalitVnbu3MmWLVv47rvv+O6779i6das3t0etVpOXl0dhYSGb/rXTK3oMhKMewNvjQaWT0RjU7twNo4pp389j3xvlNO1vJ6YwgoRiMztfOQSCIXtYeoYNTVmTTVtFJ6XvV6MxqEiZH0flhvpB5f4ci5R5saQtjHMPiJ0CQ5yOrgYrYngaqBfTrs+lcW8bBz+uGfnOcAtCvVnTqxKbr/C1IOpJWKwOS5Nt+J6iPmScnEB0Xjib/7R/xPuSZAiLca/rJKkkZt8xwRsSNxK04WqS58RS/kUdjk4nWaclEp5iYOsz7qIPPe/tweB9diSYeGkGNVuaaNjVSlSeibxzU9n8x33eXDZ7p+O4+3YIByLGioi3cWhXBdMvmMgXX3xBXV0dLpf7t3q9nsLCQhYtWkRycjKpqalccMEF6PX64TeMgoKCwjFQBJGCgoJPqK2t9YoejwDavXs3DocDSZLIzc1l6tSpbHp9F6Zuj08YJmRJHtT+NUYV0fkR3nVnCi9OR6WT2f58GeCeJW/Y2TKsQbukkpBV7nCkuMmR5J2Twobf7MJlF8ROjMDa5qDt8NELZw7tIDBldRa1W5up/rYJXaSGsBgtzaUdww5h86CN0JB3djL736nE2mwf8qD3eGSclEBCsTsXZrAhgINltASRrJaY+YN8aja7C1n4Ck/b6swacpcls++tyn6rAQ4Jyb3WUVeDDWuLncSZ0cRPjmTrc6UjvjfC0wzowtXU72xF1sjMuWsC+96soG5bCyqtjMsphiUYw2K0xBRGUv652zs66cpMnBYXu/5xyLsuVePeVm9o3vFwCRdddGAP70SbI4hONbN371727duHEAKVSkVhYSFGo5GpU6dy4YUXMnnyZBISEpDlwfUhCgoKCgOhCCIFBYUh4XA42Lt3r1f8eASQJxTGaDQyZcoUpk6dyqd/+goTZkxEHtfj0x9pi+LoqLbQuLeNiDQDk1dnselJdyUxQ5wOl1MMqkhBf6jDVDi63IO1E344gcqv6in/vB5thIbIDAMNu1pHPPg3JYeRMM1MyTvu8K20hXG0Hu6kpWzkyf9wJJRP1kgUXpLBwY+qafdBsYS+qLQyxkQ9rYdGKAr7YTQ9RBHpBjqqLThtvhOHHkxJejJOTmTXKwdxOcSQQtOOR2SmkYg0gzcnKGdZEjWbm0e8vpOslogpjKDlYCe2VjupC+JInh3D14/uBno/E0NFH61FVkl01lndFQi/n8vW50ppO9xJdEE4xgQ9h9cNI7RU58IRZaG6qpol15/Au+++S01NDRaL+z43mUxMnz6dOXPmEBcXR1FREUuXLkWtVpZZVFBQGDyKIFJQUBgQl8vFvn37+Prrr/nmm2/4+uuv+e6777yDkbS0NKZOncr2t/cTjplwIgnDNOzyu9EF4SQUR7HrVffguPDSdFrKOqjc0IAkg6SSh51XgwSSJCFcgpS5MaQucIerIdxllztqLcMWVz3RhquRNTKWRhuRmUayliay48WyIVUqGwxRuSZyz05h85P7cVh8u28PsUWRtBzsf00dXzGagsiDxqQmMsNI/Q7fFILoizpMxbTrc9n/VsWg8muGgsagomhlJqX/rablYAf6aC0uu2vEIZvgFjHGeL277LqEO2zvf3Xdz5uEEGLYHipZI+NyuEBA8pwYIjOMR57rS9Kp2dI07HLtQgi66MAR2wlJNuLSY9i6dSuHD7vXkdLr9UyZMgWj0cjSpUs5//zzyc/PVzxJCgoKA6IIIgUFBS8VFRW9xM/GjRu9Czfm5+cza9Ysvn5xW7f4MbvX7hkGslrC5RDIGpmpV2dz6NMaGna3Yc42ET/FzL63Knw22w5uT8rMH+Rz6JNaajY3eQeCjXtbfZKz05Pi63LoarCy55/lvt1xNyqtjNPmQmNQkTw3lsPr6oYvEo+BrJaYfmMeNZuaBl29bDiMhSBKWxhHwvQoNv3fPp+H/IF78J+2KI6KL+txdDq912g0KLgwjbAYLVv+UuLT/UoyROcfmRhImBZF+pJ4Nj6x1+fPYt7ZKdRubab5QDsxEyJIXxLPd08fwGV3efuGYWFyYjV0UFNTw9SL8vn444+91e4MBgNJSUlccMEFzJkzh+zsbCZPnqwUb1BQUAAUQaSgMG5pampi48aNvQRQVZU7tCspKYkTTjiB7Wv3E0E0EUQNW/xAd96FzT1b3DfJO/OUBOp3to44HKgvSSdEkzAtii3dFbISZ0bTerCDzrqhL9x5LAzxOgovSWf738uwttgxxOmwtthHZUCcPDuG5NkxbPrj6Azs+6IxqLB3OUecx3IsxkIQIYEmbGjrCQ0Xj5Cs3NBA5VcjK5DQHyqtjC5SQ2edFZ1Zw6QrMtn16iE6a318X8fpiMgwetcnmva9HKo3N1H1deNxfjk0TMlhxE6M8K4DNuXqbNoOd1L632qQuicARpAPZxc2WmmCdCuuKCt1dXXe9ZMiIyNZvHgxxcXFREREcOmll5KSkuKT81JQUAguFEGkoDAOcLlc7Nixg88//5wvvviCr7/+mn379gHuQcGsWbPY/+HhbvETjV4KG9HxJJWEJkyFrd3hzSfY9lwprYc7iUg3oDGqh126eCBkjUTBhWlUfdNIc0k74alhRKQZqNjQ4PMBvS5SgyFeR9O+dmSNRPZpSRz+vA5r8wiT6wdA1ki47AJ9lJbILCM1m5pG5Tjgvnbpi+Mp/+L4i376gjERRN2odDKp8+M49FmtT70efUmYHkVLaQeWJpv32o0GOrOGtAVxHHivCpdDEJVnorPWirXFx/ehBClzYmg93ElbeRfmHBNJs6LZ88/DPj+3mMII7B0OWg+5+4rJq47kDWpNauxdzhFfO4voQl1gp7axmuSp8WzYsIH2dneoY25uLhkZGRQUFPC9732PoqIixYukoDAOUASRgkII0tXVxTfffOMVQOvXr6e5uRm1Ws20adOYM2cOH/9+AxFEYxhBzk9PwmJ1dNW7Z6mLVmbgcgh3zoCn4tSeVp/P0EdmGjFnm7zlpfPPT3WH4vhozZ2ByDo1keiCcL79/b5RPQ64w71iJkbw3V8PIFyj310bk/QUXZbJjhfKBr1o6EgYS0FkTNBTdHkmO14qo2MUik/0RZIliq/Npn5n66iGHXqYcXM+jXta3d6VUcSc4w5t3ftvd1hoxkkJNB9o91mxEA8ag4rogh6VJS9NR1ZJ7HjxINC7zxkJQghUaU4qDldw8i1zWbt2LYcPH8blchEZGUlSUhKLFy9mxYoVnHDCCYSFjWzCSEFBIfBQBJGCQghQX1/PF1984RVAGzduxG63ExERwdy5c9n3fjlmYogkGtUwqr31h6yRUelk7O0OzDkmJl2eybd/2EtXg43wlDCcdpfPw3iQICrHRFeDDUuTjfipZhKmRbH976U+zwXqdVhZoujyDOq2NlOzpRmVXkY4xajN/LsPCggwJuoxJeqp2dI8esfqw4jyOIbIWAoiGNtzA0goNtNebaGj2uK9pqOFrJGQVBJOi4uEaVHETY5kxwsHR1VISzJMujKLms1N1H7XjD5KS1iMlqaSdp+fqyFeh0oj01bRRViMlhk35bP9hTKaS9rRmNQ4rS6f5dM5hYMWGmnXNyFl2CgvL6ejowO1Wk1SUhIXXXQRCxcuZNq0aWRkZPjkmAoKCv5DEUQKCkGGEILS0lLWrVvnFUC7d7vL5qampmIvlzATg5lYTET6xPvjQWfWeMPCir+XQ3tlF/vfqkRWS0RkGGkp6xiVUCRdpAZrix1Jhlm3T6Byg7tE9mgTkWGg9aC71HTGSfE0l3bQUurbWfD+SJ4dQ1ReODteLBvVAXRPNAYVSbNjOLyublTDyfoy1oII3KIodWEclV814BiDvCIAJChamUnTvrZRyS3qS2SWkchMI4c+ca/B1PNeHk1SF8SSPCfWXcpbHHl2fY2kkojMNNJ6sAOXQ5B7TgqmJL03Z7BnX+ULhBC004LI7KJFaqTT0e6tapeYmMiZZ57JrFmzKCoqYt68eUqYnYJCkKEIIgWFIKCiooJPPvmEjz/+mI8//piDBw8iSRKTJ0+mcWs7ZmIxE4teMvj0uJIMstpdECFuUiT5F6Ty1cO7cXQ5iUgzYG2zj1rejIekWdFknpLAV4/sxmUXaEzqUS0D7SEi3cCUq7L57ukS2sp9W/DheERmGolI716HZox66Oj8cHKWJbPlL/sHvZimL/CHINIYVRRfl0vJO5U07h1e6echI3WvQ3XId+tQDZbw1DCmXp3D1mcPjMpaUn3xPKOyRmb2HRMo+7Caqm98W4yhLzqzBl24htbDnagNKmbfMYE9/yqnfnv3ArQOl8+9yBbRiWaKg/KKw4SlaNi2bRtCCFJSUli6dCl5eXmcfPLJzJ4927cHVlBQ8DmKIFJQCEDq6+v59NNPvQJoz549AEyZMoWmrZ1EE4+Z2BFVfhsISZa8ITYzbsqjfmcrBz+uQR2mIjwljObS0fEC9WTCxWm0lHVQ9XUj2nA1hng9zQd8H4LTl8jM7ln1T92z6uEpYbRVjI0YMueYiM4P58C7VWNyvP7w5eKig8Ufggj8c649yT4jica9baOe7+ah572cviSelrKO0RdmEpizTXTWWLC1O0ieHUNEhoHd/zg8uodVSZizjLRVdOHocpJxcgIxEyLY9H/unL+efZxPjxvuQqR3sXf7fqKmGvjuu+8A95IFS5YsISYmhjVr1pCbm+vzYysoKIwMZSlnBYUAoKWlhXXr1nm9QD1fpB17HUxmDlHEod2mI953EXBHEVsUQc6ZyXz92z0Ip6Dsw2q6GtyLlTq6nD5fdNKDNlxN/NQoyj93J5531lqxtbq9QLY2B7a2UR40dud26KO1RGYYvQOmsRJD4F7cU2/WjvlAXR2mIm5yJFXfNPpVIIw1wimQZHc59rptLTi6xs4rJqkk9GYtav3YhVV57mVJlojMMGJttbsF0WjmNQl6CT5ri71XXmHqwjhqtzT5ZJHZXod1il59Vd3WZtor3J4xWS0x67YCSv5TSf0O31a6FG0y7DCSL02FrXByRBZt2iYq9x7mv7b/UlZWxoMPPsiUKVOYOHEiRUVF3HTTTZjNZp/aoaCgMHQUD5GCgh9wOBx89dVXvPfee/z3v/9l48aNuFwu0tLScByWiSaeKOJ8HgLXH5OuzKRhdytVXzeij9ISnR9O9aamUVnssyeSLKExqrC1OQhPDaPosky+e7rEK8DGioIL07C22ij7oGZMjwvuJPjo/HCfD8yGQuykSHLOSGLT/+0bk3V6+uIvDxG4Q+em35BHyX+qqN/RMubH9xBbFEHj3rbRLdIxAJlLE9FFqEdtIeGBCIvRMvWaHHa8UEZbRRfacDX2DueoV1KUNTKJ06No3NuGpclG8uwYogvC2f73slE9LoAU66SyvpxGUYclqoWmpiZkWWbGjBkkJSWxYsUKli9fjlqtzFUrKIw1iiBSUBgjKioqeP/993n33Xf54IMPaGlpITo6Gk2joVsAxROG0adFEPojMtNI8uwYd0lsIHVBHO1VXWMWuuNh4mXuykw7X3KX0B3L6l9akxp7p3vwlTgjCnuHk4bdYy9KEqZFkXVaIt/+Yd+Y5EUNhEo3ssUvR4I/BRGAdkoeTjs4d41+CfX+aL1pDqdGt1P6ZvmYVhIEcJw0g9gYJ/oDB6n+tsk9SWFwrx82FvR85vv2B2OFOceEKSnM650uvCSdyq8aRj2cUAiBw2iltqOKFl09TXItXV1dREZGMmPGDAoKCrj77rtJT08fVTsUFBTcKIJIQWGUsFqtfPHFF7z33nu89957bNu2DUmSiBBRxJBIDAlEED3qAggg6YRoOuustJR2EJ5mIHV+LPveqMBhGTuPgMaoIvv0ZA5+UoOl0UZ4ahgOi8sn64gMBZVOZtatBRz8pIaqr0c30ftYNngEyGhV4ToukruQQuOeMSoqMAD+FkSqwjwAopJlmqpc3vCxsRBItTfMA8Agu+h0SYBE0tMbxkScOk6acdRn6R1lpC+J55vH94y5QA6L1aHWHSmpnb4kgQPvVY5pgQ+1XkXeeSmUf1FP2+FOIrOMGOJ0Y9JPCEnQShMNrmq6YpuobqhGCMGkSZPIyMjg3HPP5corr0Sn0426LQoK4xFFECko+JDS0lKvAProo4/o6OggISEBuUZPDIlEE49WGv0XmjpMhTnLSP1Ot9dj8uosmva3e2dBxwpZLWFM0NNW0YWkkph0ZSYHP64Zk/K/fYnKNXnzCmImRNBc2u4Xr4gpOYxJV2Sy/YUy2scwR6kv0QXhFF6SzqY/7h9zUdoTfwoijxgKC5eYerqGPV84aKrsfU+MljDyiKGeRKkdzI/s5IsWI5onvhqV40L/YghArRKYzS6aX9vitifPRNO+sfUcg7tEeMZJCWz/exnCKQhPDaOj2jKm60eBO8cpKsfEtudKAXdoY/OBjjHJN3OqbNQ5amiUa2g11NPe3o7RaGTWrFlkZ2dzxx13UFhYOOp2KCiMFxRBpKAwAlwuF1999RVvvvkma9euZdeuXajVakwOM7EkEkOiz9cCGghJJaHSyji6nMROjCD/gjS+eXyPOxRrlBeEHIj0xfEkz47hq0d3+zVh35QSRvE1OWx7rpSWg2Nb8rgvkgwpc2Op2NDg9yIGYTHaMc/Z6ksgCCIAfbiEpW3g6+FrYdSfIJIR5IbZ2NelReDuM+L/uN6nxx1IDPUlpmQ3k1dnseWvJbRX+k+4SyqJ2XdMoHJDA4c+q/WDAYBwh9nOuq2A3f88TMPOVtRhKpw215g8w0II2uUWGlzVdMY2U91YicvlYsKECUycOJELLriASy+9VFn7SEFhBCiCSEFhiHR2dvLhhx/y5ptv8tZbb1FbW0tsbCyaehNxJBFNPGpJM+Z2Tbs+l9bDHZS8U4WkklDrZL8kyWefnkRHjYWazU2oDSrUOhWWprEfdKu0MjGFEdR+1wy4V7nvWeFqrEk/MZ66bS1+9cZ40EZosLX6IUyvHwJFEHnQhoHtOOP/kYqj/sRQX8JVTtJ0dnZ26gDJJ8JosGLIg9HgoqNTRv3xt8RPNdOwqxWnbey9qvooLQ6rE0enk4RpURgT9Bx4b+zL02sMKhxWtwjKWZZMRGoYm7sXgh1LXCo79Y5a6qmixVhHR0cH8fHxnHjiiUyYMIFbbrmF6OjoMbdLQSGYUUqZKCgMgpqaGt555x3Wrl3LBx98QFdXFwUFBYTVmpnJRCLrY8bEC9ST8DQDeeek8N3TJTgtLkr/W42l2S08hFOMqRgyJurpqLa4/yG5vSAAjk73IMYfROWZyDkzmZbSDqytdr+KIZVWJjo/HEujze+CSBuuZsZNeex/s4K67f6rrOZv+hNDsekyOTPVbH7XdkxR5PntaOYZRamdJOoc7O3S4RBHRNRwhdFQxRBAR6f7QVadMZ2cGTZcjkN+qYjYc0JFkoEeXW2vvmeU6dmnVnxZT4PZPfGl1quYcnU2+96soO3w6IcDy04N8VIK8aQgugTt2iaqayv44osvePXVV3nooYdYunQpRUVFXHLJJRQXF4+6TQoKwY7iIVJQGIA9e/bwxhtvsHbtWjZs2OAuiOCKIpZk4kjGKIWPuU1xkyMBqNvWgsakJmNJPIc+rR2zqlD9YUrSU3xdLtv+XkpLqX/D0fRRWszZRqq/bQJAY1L7tXqbJEvIWgmnxTVqi0EOh9iiyO4yz/6pLNcTf3mI+hNEshqikmQaDg+tXYYijAbjHfIgIRBIaCSBQ+ANo4OhCaPhiKG+aDUCmx3UH28icUYUzQc6/OL57UlklpHJV2ax+S/76agaG1HUH9pwNemL4zn4SS32DkevfnqscZotlDcdoo5KWqQGAGbPns1pp53GvHnzOPXUU8fcJgWFYEARRAoKPdi5cyevvfYar732Gjt27MBgMGDsNBNHMrEkjUlBhL6YUsLcMfwC8s5NweUUlLxdOeZ29CQy00hklpFDn7hj+s3ZRpoP+FcMAaTMjSFxZgybn9w35gnY/ZF3bgr6aC3bni31tykBSyAJopEyGGE0FEHkRrDY3Em7U+bbtrCjvj2eMPKFGOqJLAtmTbdRta6Kyg0NPt33kJHAnHWk70k/MZ6W0o5RL5l9PHLPSkaSJfa9WQGSu5CKXwqomJzUU0VF22Ha9A1YLBby8/NZsWIFS5cuZc6cOUrekYJCN4ogUhjXCCHYsWOHVwTt2rWLiIgIDK1mEkglmgRUkv9eGIY4HdNvyGPHi2XuCml+Ko7gwbNuSHyxmYTiKLY/XxYQhQGMSWHUb28BqdtGPyxw2R/GBD0aoyogxCK4BZq12e6f5PQBCERBlFqkQm+U2P/18LyLAwmjoYshN/EaB1aXRItz4L5oIGHka0EEoJIFTheARGLtfjqquvxenENSSUy6IpOazU3Uftc8puua9W8QINyhu0WXZbLpj/vorPNfuKwUJnBktLN71246I5tpaWkhMTGRa6+9lgsvvJBJkyYp4khhXKMIIoVxhxCCbdu28frrr/Paa6+xe/duIiMjMbSYiSeFGBKQ/SiC0hbFEZ5q8C5QGJFuoPVwp1+FEMDkVVm0V3dR+n61fw3pQ+YpCUTlhrP5z/v93kbgFmRJJ8RQ8WV9QNjTk+Q5MdjbHQGVO+QPQXQ871BsuoxGL1G1d2T5b32F0XAFkQepuwpdSZcWF/3nLPYURqMhhvraM2O6neYttZR9WDOqxxoq2acnYkwIY9vf/OydlSAitbsPB4pWZtB6uJPD68Z2CYSeuIQTeZKVkop9NIk6mpubiY2NZeXKlVx11VVMmTJlzHNiFRT8jexvAxQUxopt27Zx3333MWHCBKZOncrvf/97Zs+ezdtvv01NTQ1F0izipOQxF0OSSiJpVjRhse5wvPbKLppLjqz90XrIf2IoKs+ErHa/GKu/bfSua+RvwmK0ROWZADj0aS3fPVUSMOIjPNVA2sI4DLGBt4Bi5YaGgBJDgUr9IdeIxdBoEK5yUWCwEq0JDNsEEpu2aDj0qdvjGJVnIixG62er3NTtaKX6W/eCqrJa8vYXY47AK4YAmva3e8uYh8XqSJoVjaQaW/EhSyrYYSCneSo1NTX8+c9/pqCggL///e8UFxeTkJDARRddxJYtW1DmzBXGC4qHSCGkOXToEC+//DIvvPAC27dvJyoqivPOO4/ly5dzyimnsEy/0m+2aYxq7B0OJBlm3JLP4XV11Gxq8ps9fdFFaJhxSz771pb7JTn4WOSdk0JYnI6tTx/wtyn9otLLOC3+L1jgwRCnI2ZCBBVf1gdEblVPAtFDBCCrIClfRWOFi67WkbWZc9e+EXuHPGgkgV14BtAC+vEUxf9x/ah7h45GMD2rmc46K/vfrBjjYx+buMmR5J2bysYn9gZMuXmAhOlRpC2M49vf70W4jrwT/MU7lhf58MMPeeCBB9ixYwdtbW3k5uYybdo07r//fiZOnOg32xQURhtFECmEHE1NTbz++uu88MILrFu3jrCwMM4991xWrlzJqaee6lcR5CG+2EzOGcl8/dvdOK0uJJXk91wccK/VkzQrmpJ33Gt8BMLCnR40BhW6SA3tVRZUWhkhRMDkCiHBhOVptJV3UvGlnxPN+yF+qpnUBXFsfnJ/wFS681B4aTqSycieLxyjWsa6J03vuAVR7B0DbyPJMPU0DRU7ndQdHLm4rfmNhOvd2BHvx0NemNtT9FVrGP2JouYZNrJfHLtrXXWDFZUL0i7fidPmwpSkx9Ji91vZ/b707MtyliVR9XWjX3N6PHj6fpVe5oTbJlDybiW1W5r9bRb/sb7EBx98wMMPP8wXX3yB3W5n4cKFzJ49m6uvvpoJEyb420QFBZ+iCCKFkMBisfDOO+/w4osv8s477+BwODjllFNYuXIl559/PhdErvG3iaTMjcHe6aT2u2Y0RjWRGQYadrciAseRQHhqGLlnp7DjhTJsbf6bqeyPggtSCYvTscUPCyEOhrRFcbRXWWja1+ZvU/rHzwU5BqKnIPIw2sLII4g8DCiMfNRmNb/pLVh8IYwStXbMahe7O7X0FUTNM3pPYoy2MKq6obewSFu+neLv5dBZZ2Xvv8pH9dhDRRuupujyTPa/WUGbPyq/DYAkQ8yECFoOdmLvcBA/1YzGoAqICZbXGv/K22+/zfPPP88HH3yALMucddZZXHTRRSxbtgyz2exvExUURowiiBSCFpfLxbp163jhhRd4/fXXaWlpYcaMGVx++eVccsklXJlyi79NRB+txdLoHpzknp2MrdURUBW+AFLmxxKZZmDnGFf5GgySLKE1qbG22tGY1CDwa0hJf+giNVhbAicMpy/GBD0dtZaAFEPQvyDyMBrCqK8Y6stR4kgCQ6REZ/PwG7CvIPLgK4+RQXbR6XKnBPcVQx5GUxT1FUQAejskX7sbe7sDXYQGW7sj4LyTABNXpNNysJOK9fX+NqUX6Yvj0Uao2f+We4mFnu8Sf/L7nQ/w73//m3//+99888036HQ6Lr74YlavXs2SJUuQZSU1XSE4UQSRQtBx6NAh/va3v/Hss89SWlpKVlYWl19+OR8+8BVGKcLf5nkJi9Ux48Y8drxURtO+9uP/YAyRVBKyWsJpdRGVZ8IQr6fii8AaEIA7V8iUpGdzgHqFYiaEU3BhGpue3B8Qg5W+yGqJE344gYr19Rz+n/+qWh2LYwminvhKHB1PEHnwCKOUQhXJBSq+fcuGaxjRXwOJoZ6MRBiZVE5Ojurgm9YwKm2aAQWRB18Lo/7EUE/Slm9n2vW5tFd2udflCTBS5sfSWWuhaV87Kp2MyyECIny5J1F54RRdlsG3f9gbMCHMAFKSg5hFer755htKSkqIiori7LPP5mc/+xmZmZn+Nk9BYUgogkghKLBYLKxdu5ZnnnmGDz74AIPBwCWXXMJVV13F/QsfD5gSoVF5JszZJm9p6pgJ4TTuaw+4F+yUq7PpqrMG5AAF3J4h4RLoo7Wo9SpvVaZAQ5IlYidGBHTlNmOCHlu7HXtHYORy9GWwgsjDSIXRYAWRh6R7QaOX6GwZ3jM8GEHkYXjCSJCqc1BhVdM0Y/CeSl8Io+OJIQ/RnRBz614sjTbvsx2I5J2TQlisjq3PBFaxFkklEZ1nomG3Oxw367REmkva3WvTBQBCCO7+4Hp+8pOf8N1339HZ2cmsWbNYuHAhP//5zzEajf42UUHhuCiCSCGg2bx5M8888wwvvvgiTU1NLFiwgDVr1vD3NW+iltT+Ng9wz8LLahmHxUnc5EjiJpnZ9eqhgHvpGxP0dDXacNndXiFLk52uev8nFfclZV4s0QXhbP9baUDlV/XElBKGo8sZkF6hYGOogsjDcIXRUAWRh2MVYDgWQxFEMHxvUfMMGxF2F1oX1OsGF7Y0ElE0WDHUk/SLtzN5VRYNu1sDIjemL2GxOvRmDU3721FpZfRRWjpqLP42qxeSLFF4STp125qp296CWq/C5XAFTPVIp3Cw6rnzePDBB9mzZw9ms5nLLruMU045hXPOOUdZ/FUhYFEEkULA0dDQwEsvvcQzzzzDli1bSExMZNWqVax7aAtGKdzf5h3FtO/n0nKwgwP/qfK3KQOi0snMuq2Aw+vqAi5Wvi/hqWFEpBsD2s7Jq7JwWJzsejXw8q48xEwIJ3lOLDtePIjLHqDKkuELIg9DFUbDEUQqJ8zeq+FAohPHLwfflkMVQz0ZqjBqnmHj5DobWpfg3XgtDMFrPlRhNBwxBICAOY9V03qwI6AKGvRHyrxY0hbF8c1je3BaA/f5yT4zicgMI5uf3O9vU46iS93BojuKeeaZZ6ipqSE7O5tbbrmFlStXEhvru4qLCgq+QBFECgGBEIIvv/ySJ598ktdeew2n08nZZ5/NmjVreOzsZ5GlwEnUVIepSJ4TQ8UX9ThtLqJyTXTWW7E2B15ifWxRJA27WhAut1ejo6orIL0upiQ98cVRHHg3cEVlT1Q6GUmWcHQFZhgaQESGgdiJkQHfpiMVRB4GI4yG6x0CmFSmpiraSUOEGLS3aCSCyMNghJEnb0jnFAgJbPLQjzsUUTRsQdSDtOXbyT4jiZotTXRUBZYXBtxV34xJYbRXdLkrwBVGUr8j8EJjdWYNhlid16uVMj+Wyg0NAdU3uSQXS385i6+++op33nkHIQTTp0/n0UcfZf78+QET8q4wvgmcUabCuKStrY0//elPTJs2jfnz57N+/Xp+/vOfM9dxOm1vqPjdOX8LGDHkMUNWSyTNjMaYqAfcK48HohgyxOkouCAVc7Z7hfb2isAUQwDaCA2mpDBUgwz18QsSpJ8Yj9qgwml1BdSAoz9aD3YGvBjyJarCvEEtuDpctmc6aIhwi4b6R9x/x8IXYghAPmPwnlKrSsImS+idgunNdqQhzHceWClxYOXxbfaFGAKofnUSpqQwdBEan+zP1wiXu88EMGeb3GX/Y3V+tuporM12by6RMUlP0sxoZLX7OgbIqxNZyHz0/76lfa2aufbTWbFiBYcOHWLhwoVMmjSJq6++mvLywCrPrjD+CJDHRWG8sX37dm688UZSUlK48cYbycjI4N133yXrwDQ+uPsbdJLe3yb2InFGFMXX5YIEtjYHX/92D62HOv1t1lGodDLJc2IA6KyzsvH3ewMm8fYoJIjOd4dANu5pY+szBwI6NEVv1pIwLQpjQmDdm/0ROzECQ3zgDd7GgtEURuGdEkmNR16bgxFGvkA+o35AYdRfVblou4v8DiemYRRzOZYo8pUYArCr4J0zDDTucRcKiM4P72992YCgaX87G3+/15tzmTwnJiAnb1oPdvL1b/e415CToPi6XBJnRPnbrF5oJR1VL3RRVD2f//73v8TExPDss88yYcIErr/+ej7//HN/m6gwTgm8J1ohZLFarbz00kssXLiQyZMn869//Ysf/OAHzHOdTudbWh498+mAcp1rw9WExWgBaKvoonZrM1J3KEqgVY3zEJ4SRvqSePTRbrsD0XPlITo/nMJL0gNy1rU/LE02vn1iLy2lHf425bikLYonbrLZ32b4ldEQRqkNMvkVqqPWdAoEYdSTSr2K15J0tKmH94ofjKfIJ0hw+PVJhMXqKLwk3TtBEoh4+lJ9tJb0JfGEp4T52aL+8bybJFmidmuzN1crLFaHNjwwChEBSJLEb077C7rPE1hiOJs77riDt956i4ULF5Kbm8vzzz+PxRJ4oZQKoYsiiBRGncrKSu677z7S0tJYuXIldXV1vPDCC0ysnkfl+kYmnZPr3XbKVVnETYoE3Mn1xdfloDG6O/HUhXHkn5/q3XbSFZkkTHPPfhkT9BRfl4PO7A6/SJ4Tw4SL0rzbTlyRTtKsaADCYrQUX5fjHYgnzoxm4mUZ3m0nLE8jZW4MEy5KJ/uMJIqvywGgYn09cZMjmXRlpnfb/PNSSVsYB4DGoKL4uhzCU90vytiiSKasyfZum3tWMhknxQOg0soUX5dDZJa7HGl0Qbj3OADZpyeSdWoi4A57KL4uh6g8d+ibOcdE8XU53rCI7DOTmLw6C4DmAx10NVi9XoyIdAPF1+Wg1rsr+6QvjifvnBTvcSavziJuihkAU7K7vT0vzdT5sRRccKS9iy7PJGG6u70N8TqKr8tBH+UWXsmzYyi8JN27beEl6SSd4G5vfbS7vQ1x7vZOmhVF0coMGve0sflP+0lfHE/KfHeehDZCQ/F1OZiS3W0YP8XM5FVZ3v3mnZtC2mJ3e6vD3O0dkW5wt/fECKZec6S9c5YlkXFyAgCyRqL4uhxv+GB0vru9PSElWaclkn26u73dM6s5RBe4B2fxxWZm3zkBjVGFyyHIOCmBnLOSvceZcnU2sUXu9a8i0rrb2+Bu77RFceSde6S9J12ZSfxUd3sbk7rv2e6QoZR5sRQs73HPXpbhnd0Ni+1u726hmzQrmsJLj7T3hIvTvJ5BnVmDcAka97QCkDAtiqLLM73b5p+fSuoCd3trTGr3Pds9uIubHMnkq460d+45KaQv6b5n9d33bIb7no0pjGDqtT3u2TOTyFza3d5qd3tH5brbOyrXfc9KKvc9m7k0kewzkry/jYiTiU5xX4yIeInJSzWouiOp0iapyJ55ZCBXdJKG2HT3tqYY97aabqddSqGK3NlHtp24WEPSmQWoCvMwJuhZtF1DWLeTI7tKxcx9R7Y9YY+azJru/XZJLNquwdTltjejRuaEPWr2JjtZN8nOjP1qsqvc1zjMCou2a4jskKh/BOIyZXKvPhIGNuOAivxK9361dliyU010u3u/KY0yC3cdsaG4TEVhuXu/aqd729hW97ZJTRJLdroXJ5bPqGeK0UJ+tlucS0JwTpWV1O4wzpQuJ8tqbOgcLhY02Jlfb2Nu45HJkbOrrWR2urdNsLg4p8qKtnsgPa3ZzoIGuzeEbsIpNhLinVTdYCW6E07bB2HduyqshXk96oosKYWcRvf/m7vc25q627ugHhYePLLtwjLI79Z2lb/Lo1Uveas2evoIDwUXpgVMH2FptLHxd3vJPCWR6IJwkk6IJmZiBMXX5aDSujcOhD4icXoUEekGOqot3v163kc6s7sNPe8Jf/cRqk4tO186yCVnXsZ9991HXFwcV155JXFxcSxbtozS0lIUFEabwJkuUAg5vv32Wx5//HFeffVVdDoda9asYftLpeTlZvL3NW8iSzKWRluvXIy2yi5s7e7kaofFRVt5Jy6nO4zK2mSDHqWs26u6sLa638xOW/e2dvf31hY7Hdojs0vt1RasLd3b2oV7W5t7v7ZWO+1VXah0MulL4rG22bE029m3thzhEqTMjfWGctnaHLRXHamO1FFnwdZtg8vp3q9nW3u7g/bKI2F1nXVWHFb3uQqXe1vPuds7nbSV99i23gbd8f9CQFt5J/buAYyj00Fbeafna2SVhDFRj9qgwtHppK28C3uHpw3d+/WUALc02XDajrR3e2UXtrbudrG6t/WUb7U023pVqmqv6vKe65H27r42LTY6qo+UU+2oOdLeLrt7W6fNhc6sIX1xAk0H2r1t0lFrwdrsHgi5HN3bdreTtc3eq70766xee71taHFva+tw9Kpc1Vln9d4PwtXdhl3udrF39G7DrnrrkXP1tHd3G6q0MsIljrRhoxVVx5Fzba/owt7u7N3eziPt3bMcbntVlzucBXBau9vQ4fK2t6w60t4d1RasrY5ebeht71a7d6DTt73Bbb/nObId1YYWLE3dbdh9zzo893e7o9eaT111Fu99J5z0am97u4O2is4e21pxOfu0d2ef+7u7wbsarL3OtStMwm51f+ewQXuD8F4bS7vA0SMqrL3Rhc3i/tJpd2/rWTDV2nHkdwDtTS5sXd02paVRbdXhktzn3qUTtPSI0GwxCrrcY0kcsqDJJHDK3ddR6/7e2X3Z2/SCLl23DTI0mQR2VXd+0eUC/XMNUOCe2GkNO7JfIUGjUWDv3o9VLWg2HjG4LezId4LubdWebd3/9tAxoRPjH2vgBveAs04nY+32YFtkiTqdDBKY7S7qtBKtmiPtXaeV6ere1ia7f+vq/rpNLWOXjxynXisjvtoHy7Owy9BgAGf3th3a3lFuTWHQ2W2vXdW9bbeg6NBAk773th3dutEpQ60JHJMKeOzB//Dy6xOo33mkgEGg9RGOriPPedrCOCq/bujdzwZgH1GzpQl7d5+gDVcjSe5iRhA4fURnlZXtz5ZhcqVydtFFdCU18dFHH5Gfn89FF13EBRdcwAUXXIAsK3P5Cr5HqTKn4FOcTidvvPEGjz/+OJ9//jmZmZnccsstvHn7Z6ilwEye9SCrJaZek8PBT2q8ce2Bij5KiznbSPW3TYA7dyiQ82+8SO7Z08oN9QG7UGgwo4/SMu37uex4vozWw4GX49YfhZem0zHVzIcxbg9i4WPNo3KcfauOVGuLmjz8ku7RbRJz9mj4dJKNzgHSyaKWHal4V/9W/rCPdSxiz97r/f+9T88ceEMhhlSCuz/yr97o/f/Dr08a0b4GIvVRt4DQaAW3/GAz82duQpYF56eeMCrH8xU9+97EGVE0H+jA0hTY65NFF4STcWIC3z1VEjDrFw2EQ9g5/3cn8eijj3Lo0CEmTpzI/fffz/nnn49arczpK/gORWYr+ISWlhZ++9vfkpuby/Lly5FlmX/961/klM3gPz9cH7BiKCLDwIyb81CHucOhNv9pf8CLIXCHIiTPifWGIAW6GEqc0V2MQMDBj2qCQgwlz4kh85QEf5sxJBwWJ4c+re012xts7LrNzK7bzKN6jKZtsTRtG946KC0GwZ4Up9eT05eeYgh6C5fRIv/qjb1ESy/crgBmNtkpah16afO++01bvn04Jh4TjxgCsNskHn14OrIsqG2I5v7/tvDv8q/5d/nXPj+uL/D0vZJKImVuLDETAjcPyoMnXNnlEKjDVMy4OY+IDIO/zeoXtaThrVv/R96hWTzwwAPExsZy8cUXk5iYyJVXXklTU5O/TVQIERQPkcKIKC0t5bHHHuPZZ5/FarVy6aWXsuf5SiKkwKps0xedWYO12Y7aoCJjSTwHP63F0RnYg3RdpAZTchgNu1pBcnu0POEegYykkpi6JpuG3a0c/l+dv80ZNMmzY9AY1Rz8uMbfpoQ0fT1ER33vI49RTw9RX0biMTpqX8sGXg/JV96iY4msgbxFM5rtdMkSOyMGN6s+oMDqxleeop5iqC933/M1+w5msOKct1Grek/6BKLnSNZIbo+LcE9atVd29QplDUT6vgM978ZApk00I81pZ+PGjeh0Oi6//HJWrFjB4sWL/W2aQhCjCCKFYbF161YeeughXn31VcxmM9///vf57Beb0UmBWXmnJ5lLE4mdGMG3v98bsOvy9EfmKQnETIhg0x/3BYfdUnc4icXlFm8BHpoR7ISnhhGRYaTyywZvLkMwcDxB5N1uhMLoWIKoJ4MRR5ILsqtVNES4aDb1butjCSIPIxVGg/E6HTOMbhAcTxCBb0TRsQQRwGsvP4NG7cRi1aLT2vqN/gs0cSTJMP2GPOp3tXLwo+CZUJFkmHFLPvU7Wij7IPDttgoLJ/10Bo899hhtbW2ce+65/OQnP2HatGn+Nk0hCFEEkcKgEULw+eef8+tf/5r//Oc/ZGRkcMcdd/Cvmz9CJQV2LK8hToekluiosqCP0qIxqmgrD/ywIo1RjSFOR0tZB7JaQlJJAR8e5yH79EQi0oxsearkqDLFgUzOsmQ6aixUb2z0tylDInFmNInTo9jylxJ/mzIkBiuIvNsPUxgNVhDBIESRgEU7NByMc3IwoffzOBhBBMMXRUMJwetPFE1ocxBlF3wZPXAY82DEUE+GK4yOJ4Y8/OvVp3hx7dmkJNRw0ryvjrltoIgjlU5GOAUuhyAy00hnndVbqCWQCU8Nw97hxNJkw5ikRzgEnXW+W39qNJB0LiZ9P4M33niD0tJSCgsLuf3227n66qsDaikPhcBGySFSOC4ul4u33nqLBQsWsGjRIg4dOsTzzz9PzsEZrL3ls4AXQwA5ZyV7y2NbmmxBIYYA0pfEk3NmEkjgcoigEUMA1d82cWhdbVCJIXBX0PNUagomqjc2Bp0YGg6jnV8Eg8gxkmBdkX3YYgjcwma084v6EzYOScIhAT6cCx1OXtFgxRDABZdcw6cfxjNlwp7jbuvJN/J3zpHT6nJ7xSXIOTPJW5o60Gkr7/IWhUhbGEfOsuTj/ML/CKvMtscPk1U6jSeffJKmpiauvfZa5s6dywsvvIDDEfhCVMH/KB4ihQGx2+28/PLLPPTQQ+zcuZP58+dzzz338NhZzwb8rIskQ9IJMTSXtNNZZ0Ubrsbe4QyKUCJJJaGP0tJVb0Wlk5FVkrc0aaCj0smkzIvl8Ge1wRHWFyKow1TuUreBf3sfxVA9RL1+OwRv0VA8RH0ZyGMkCdA4wNbtbBmKIOrJULxFwxVRgw2hG6p3qCdD8RQNRRD15J+vPsWX305j5pTt6HWDr+bmT8+RxqDC5XRPaIXF6rA02QJ2ce+eSCoJjUGFrc2BIU6HOcdE1dcNAd+3CyG47e2r+M1vfsO6deuIj4/n17/+NStXrkSr1frbPIUARfEQKRyFzWbjr3/9K3l5eaxatYrs7Gz+97//EbY+icfPfi7gxZAbyb0wXfcCcbY2R1CIIYDs0xKZuCIDJPcsY7CIIQBTUhiJ06LQmYPvpTPhojRiCiP8bcawyF2WTNHKTH+bMeYMtiLdSMQQMKC3aPYeDZMPjtxDPlhv0Ug8Sn2FTkankxPrbL08RSMRQzB4T9FwxRDA5VddzfY9+dQ2RA/pd/70HNk7nW7vvgQTV2SQfVrimNswHIRTeNdEisgwkjg9it4rTwUmkiTx+NnPof1fPE8//TT5+fmsWbOGrKwsrr32WlpaWo6/E4Vxh+IhUvBis9l47rnn+OUvf8nhw4e56KKLOPSPJkxSpL9NGxTacDU5ZyRT8m4ltjYHkkoKilk4D+owFY4uJ9pwNRqDmo4ay/F/FCD0bOtgLKAgqyVyz0qmdmszzQc6/G3OkDEl6VHpVLSUBZ/tI/EQHbWvATxGIxVEPenpLYpplXDI0GISw/YO9eVY3iJfhNh5PEXJXU5yO5x8Ea3B2b1I60gFUU8G8haNRAx5kGXBv159CgCHQ4VaPbxJI394jYwJeuydDmxtDm+fHyx4+vm+79pgoF20oFts47PPPiMlJYV7772X1atXExYW+IWgFMYGxUOkgM1m4y9/+Qt5eXlcf/31zJ07l9niFBpfcwWNGAJ37ofGpEYb7o5fCSYxlHFyApNXZyHJbm9WsImhqWuySZkbAxB0YgjcNu99oyIoxRBAe5UlKMWQrxmr/CIPDRGCFpNv7/eBRI+v8o08axZVhqlYF6sdFTEE/XuLfCGGAFwuifMuupZvtk7i5beW4XAMb7/+8Bp11FjcE3YyTF6dRcbJwbPWmeedqg3XoDGpcdoCPHauByYpEs26OBYazmDx4sXceOONJCYmcuedd2K1BnbRCIWxQfEQjWNsNhvPPvssv/rVrzh8+DCXXHIJZa80YpKCJ2zIlBxG9mmJ7HjpYFAVHOhLWKwOQ7yOhp2t/jZlWCTPiaH5QDudtcH3Ysk/P5WazU1BKyjSFsXRVtFFc0m7v00ZFr70EPXabw9vkS89RD2JmlxPXLOEuUOm/rrdPt9/T2/RaBRg2Pv0TJIsTvLbnVT9aKvP9w+9PUW+EkQejCbBbbd9ycwpO3y637HyHMVMjKCzxkJXw+BzoQINlU6m6LIMDrxfTXtlcBQrAnCYu2jLrmbz5s0kJydz9dVXc+utt2I2m/1tmoKfUDxE4xC73c5f/vIXcnNz+f73v8+8efOYLZZS/6ojeMRQdxizrc2OvdOJSht8t3JMYQQTL8tAkqGr3hp0YkillzFnu3O0Kjc0BKUYUulkNAbfDtLGmoh0I2ExwZezNdoMNr9oJDRti8VokYhpG53+Z6yq0EVvbUGlG51z8HiKfC2GADraJX7xwDwAysqTsVh98xyMldeoYWcrXQ02JBkmXpYRlDmMKq2MvdOJra17MdfATzECQN0cRtSmLGa7lrJ48WJ+/vOfk5mZyR//+EdstuAVqArDR/EQjSNcLhf/+Mc/+PGPf0xJSUlQeoQA4iZFkjIvlu+ePhBUYXF9iUgzkDAtipL/VAZlmFn6ifEkTIvi2yf2BqX9CoHBaHmIeqJuHN2lAbLv/nJU9x8KiLlTR23fqm+2svSXWUwu2MP8mZtH7Tij5TmS1RI5ZyZTvbmJtsOdo3KMsUBSSUy9Opvy9fXUbw+uwgWqNAe6Yhdvv/02SUlJXHLJJTz00EOo1YG/rIiCb1AE0ThACMH777/PPffcw5YtWzjrrLOoe9tCuGT2t2lDQwKEe5HV+OIoDn1SE3QDcV2EhoTpURz6tNbfpowcCfRRWiyNwTmblrk0kfodLUEV5tEXjVGFvSN4krL7o/DSdDomR/FRpB6hHZ2w1/zrvgHgwK/njsr+s+/+MuivhSk5jNiiCMo+qBm1Y4yWKJK+/A59tNa9fo5g1Lw7+x1H7s87M+eMyjHAvf5czaYmrK32UTvGaCCrJdJPTKB2S5N7Mdfud3Yw0S5asE1vYNOmTUyZMoVf/epXnHnmmUFSXVdhJARfnJHCkPjyyy858cQTOeOMMzCZTPzvf//D8o4+6MRQ8uwYJl+ZBUBnnZWyD6qDTgyBe9ARP8WMxhics06SDLlnJ2OI14EgaMWQSicTmWlEF6HxtynDRpIlZtyUT9IJQys/HMhINhnJ5tvXkkcMweh5cpJOiGbGTflIcvAOmnSRGiIzTaMWOgdu4TJa+7Q0usWQIV7Hnd8/jwvST/C5RydXfaRtHi7bwMNlG3y6fwCNUU38FDOm5OCrfuZyCMo+qPaKocmrskieHeNvs4aESYokenM2H330EVFRUZx11llkZ2fzz3/+09+mKYwyiocoRNmxYwf33nsva9euZcqUKTz44IP8dtkzwTfL0T3DFJFuICLNQPn6+qCbcQK3EPJ4IoKtHHhP1HoVRSszOPhpbdAm8XsJwtnLnkgyROWG01FrwdocXDPJPenpIeqLLzxGPQVRT3zpLSr89UaM8Xqa9rcF/KKVx2SMnglfeYr6E1jmHBMZS+LZ8eJB92LF3fjSa9TTU9QTX3mNer4jer47ggoJUufF0nq4k9ZDnUHZ3wohWP7kKTzwwANUVlaybNky7r77bhYsWOBv0xRGAUUQhRhVVVXcd999PPvss2RlZfHAAw/wzMp/BZ8Qwl2K2hCjY9c/DvnblBERmWlk8qostjxVQntFEL7YugnG9YX6I3FGFM2lHUHr3Qo1jiWIYOSiaCBBBL4RRaGWP6SP1hKZaaRmU9OoHmekomgw3qaB+ixfiKOBRBH4ThiZUsIoviaHbX8rDdoqmB4KL0mns87KwY9HLyRztBBCcO0rF3HPPfdQWlrKiSeeyN///ndSU1P9bZqCD1FC5kKErq4ufvGLX5CXl8fatWt54oknyDxQzLOX/zsoxRBA2+FOmkra/G3G8Olu9payDrb9vTSoxVDK3BimrMlGUgXnveRBVkukzI0lpiDc36aMmKzTEt2hiyHOaITReci++0ufCRpDvI6s0xJ9si9/EjMhgpS5saP+rI9G+Fyv/askpvRYH60n56eOPJyuZ/hcX3wVTtde0cW2v/cQQ0Hc/Tbtb6OtPDgLRkiSxFMrXifn8DSuvfZatm3bRn5+PjfeeCM1NcEn8BT6R/EQBTkul4uXX36Ze+65h+rqam655RY2ProPjRScZXgzlyai0smUvF3pb1NGhDZczaQrsyh5pzLoZ/bAPdgzZ5mo/KrB36aMGFktIVwiqEObtCY1k1ZlUfJ2JS0Hg/v+Op6HqCfD8RYdy0PUk+F6izyCKjLTSM6yZLb/rRRbu2NY+woEJNmdnzZW3uDheIoGK6aS58TQXNLuzmk5DsPxGh3LS9SXkXqNvPfX30uxtQXv/QWQe1YyDqtzVAt4jCYOYeeEuwp49NFHMZlM/O53v+OKK65AlhUfQzCjCKIgZv369dx22218/fXXXHDBBVT/qxODZPK3WSMivtiMrJap3tjob1NGhCRD1mlJVHxZH9T5HYY4HZ311qCL/e6P8JQwLM127B3BPZgINYYiiDwMRRgNVhD1ZCjiKNRC5jxojGr0Zg1tY+DZHoooGpZnSQJDrG5UhNFQRBEMXxjpzBpS5sZy4L2qoO+PE2dG47K7qP2u2d+mjAg5yYl2up23336bwsJCbr75Zr7//e/72yyFYaLI2SCkrKyMSy65hPnz5+NwOJjBYlr/LQetGMo4KZ70xfEA1G5pDmoxFFsUgSFOh3DBgXergloMqbQyk1dnkbYwzt+m+IScZclkh0BIExCUCxH7ktEKofMwEpETKtcm+/REcpYlj8mxRjt8Lm1hHJNXZw3q2njC6QYbUnes0Ln+GG44nbXZzoF3q7xLT8RODK71A3tSvbHRK4bSF8eTcVK8fw0aJq4qFZZ39Hz++ed0dHRwww03cMEFF1BSUuJv0xSGgeIhCiIsFgu/+c1vePDBB4mOjsZcmUwSGUGbI+QhdUEswimo+DK4w7EkGaZem0NzSTtlHwZnKEBfIjIMdFRZcNqCOL6sG7VehayWgjqcCUAdpuKEHxaw+7XDNO4J4hy7bobjIerJ8bxFw/EQ9eRY3qK+wim6IJwJF6Xx9SN7elU4C0a04WpcdjGm53E8T9FwhZNKK2NM1LurnQ2DwXiNhuop6slQvUaZpyRgzjGx5S8lQe8tSpkbgyRLlH9R729TRoQQggZTJfXmw9TU1HD66afz3HPPER0dOssihDqKIAoS/vOf/3DLLbdw6NAhku3ZZFGIWgrOtWwAkmZF43KKUa9kNCZIoNapcFicqPQyTktwiwdZLRFTGEHdtuBaaXwg1AYVLrvAZQ/u6+JBpZWJnRhB4772kAj/G6kggmOLopEKIhhYFPUVRBqjmug8E/U7W0NiEgHc95ukknB0jY0wGkgU+cqLFDfFTMPOlmHnSB1LHI1EFMHQhJHnXaPWq3BYnUEvjAASpkchqySqvgneKBGncNCSV8F3BzaRmprKE088wdlnnx30E9fjgdDw7YcwZWVlnHfeeSxbtoymkjZm2k8kT5oc1GIIICxOR1h0cBZ+6Evu2SlMvCwDIOjFEEB0QQS5Z6egiwzeRUt7krU0kSlXZfnbDJ/htLmo2dIcEmLIVwxUic4XYggGH0Jn73BQs6U5ZMQQwOTVWWSdOnahpqMZPqcza8g9K5noEVSZHGpI3VAYSjid510z8bIMcs8am9DG0SYsWktYbHBXzlRJaqL3ZzBHOoX2gxbOPfdcioqKWL9+vb9NUzgOiocoQLFYLDzyyCP88pe/JDY2lqjyVOJJCepZhshMI7Jaoml/kC/o2Qdjgh6NSR38C5X2QBehwdoavPlPPdFFatBHaUOi2h+48yHqtrdgaQqNdZR84SHqSU9vka8EUU96eov6E0r6KC1xkyI5/L86nx/bH0RmGrE02bC2jG1/0NNT5EuRNBp9W0+v0Ui9RD0ZjMfInGPC3u6go8bis+MGAlF5Jlx2EdT9thACW1YL25o20tXVxY9+9CPuuusujEajv01T6AfFQxSAvP/++0yePJmf/exnJFgyyC2fSYKUGtRiCNxhcgnFUf42wydoDCp3IqgEHTWWkBBD0fnhxExwJ+qGihgCsLbYg/ql2hNthIbkOTHozKHhvRsNRnPdIji+t0hn1pA8OwZteHB78T20lHWMuRiC0fMUefq2mMIIovJ8sx5ZT4/RUIssHAuPx+hYXqPmkna3GJLcBYrUBpXPju9PEqZGkTQzuPNvJElCV2ZmWvMSkqxZ/PrXvyYtLY0nnnjC36Yp9IPiIQog6urquO2223jxxReJIo4JTMMoBW8lGXCvl6IxqumosSBrZFwOV0jEOptzTOSdncLWZw/4ZbAwGuSenYxar2L3a4f9bYpPiMwwkn1mEtufL8Me5IUUeuGZFwmB5wh87yHqSd5NX/l8n8dFImSujQeNSc2kKzIp+U8lrQeDc3HNvky4KA2Hxcn+t0ZnzTtfLMzaHwN5jXSRGqZclc2+typCYoIOCWS1jMvuwpiox97uCPqCOCLGxgHjdkoPHuCSSy7hscceIykpyd9mKXSjCKIAQAjBiy++yK233ooQgsTGHJJID3qPEEDhxeloTGq2PnPA36b4BHWYyptcLKvHbvHCsUJSSQhnaJyTIV5H4vRo97odCgHJ+5VbeOW9JXy1Pok9/7Oz++YYn+7fL4IoRMk+PYnqTY101h5/LZ9gYKz6Ol8Lo/915gHw5sSjn5We76Se76pgZ8qabOztDnb945C/TRkxQghqOEx17AE6Ojq46aabeOihh0JivBfsKCFzfqa0tJQzzjiDK664AnWDgUmN80iWgr+UtsdtX/KfSna9ctDP1vgGjUHF9BvyiC82A4SMGMo+M4mINANAyIghgM5aa0iJIUmWOOGHBUG9/khP3q/cctRnE34f3KX3PcROjOCE2wuQQugNe+C9qpARQ3Ckr4tIM5B9xujN0t+ZOWfYi7H2x0LDPgDO2dnAOTt7Py+ed1JCsZnpN+SFTPjcrlcOUvIftycv2M9JkiQSpXSKrQvJTs/h4YcfZunSpezbt8/fpo17Qqi7Di6cTiePPfYYkyZNYufOnRQzn8nSbLSS78NGxprs0xOZdEUmSGBrd2DvDI1ZKnunk0Of1YbE2i8eVFoZY5wejTG4XzK9kNzhf4a44K5W1BdJJVG5oYGOIB+Uvl+5pV8x5GHC7xuCXhh11Fqp/KoBSRVar1hDnI7cs5OPhG2GABqjGmO8ftQX1PW1MPLQnzBq2NPGoc9qcYTQu9fW7gAJJl+RSfbpIbDAdruKpL0TmMYCSkpKmDhxIqtWrcLhCO6wwGBGCZnzAzt27OCqq65i48aNpIoccihCLYVOkrQhTocuUhMy1eSMCXq04eqQOZ9QRxuupmhlJvverKC9ssvf5ij0oD8h1DNkri8jDaFTQuZ8iykljLyzU9jxYhm2NmXgNhJGGkrnCZ3rS99QuqhcE7a20KlCF5Vrwtpip7MuuCeGeuJSuWiZcIjNOzcxdepUnn76aaZNm+Zvs8YdoTV9FeA4nU4efvhhpk+fTnt7OzPFEgqk4pAQQzETwpl4aTqSDJ111pASD8mzY0hdGOdvM3yKxqii6PJM9CGyFlRPbG0ONv9pf8iJoZgJ4UFdXe5YXqGBCGZPkc6sIWaCb6qYBQrtFV1s/tP+kBRD+mgtRZdnohmjkKyReow8oXN96esxSl0YR/Js3+bm+ZOm/e101lmRZJh4aXpIPGOyUyZqRyYzXEtwOBzMmjWLyy67TPEWjTGhURc0CNi/fz+rV69m/fr1pIs8EndNQCWFTpiSvcuJvcsJUuiVWNr/diWyJoRiRACVzn3vuUJoAUkAU3IY9k4H1ubQqPznRYK8c1M59FktlRuCSyQMRwj1xCOKfF1wYbSJLYwgbWE8DXt2hVqXiM6sQROmor0qNLwOcKQvVOlVYxrm7RFFvi6+4BFF70yTcdlD7AYEkKQj444QIVKKJnxHJDMmG3n11Vc5cOAAf/vb3ygoKPC3aeMCJWRulHG5XPzpT3/izjvvJDExkagDaURJoeFtUGll4ovNVH3d6G9TfI4hTkfBhWns+schLI2hsQDmeKDo8kwQgh0vhkYhj57IaglJlnAGkYgdjBg6VshcX4YqivwZMqfSygiXCJniKz0pWpkBksSOF8r8bUrIMVRhNFDoXF8+WJjEhIvS2fPPwyEVbuYh6YRoarc0B1X/eCyaRQMteeWUlZWxcuVKnn76aWRZCeoaTZTWHUUOHz7Maaedxo033kh0ZyLpB6aEjBgCiMwyknFiQlCH8QyEvdNBR3UX9o7QclkbE/UUXZ4Z9JV6BmLXKwdHbV0Rf+NyiKB52R+vcMJwGUrBBX/nDzltrpAUQwD73wqd6qF9URvc4cTGRP8UOBqt4gsnf1RL1AnNIfdOA9BHack4MYHILKO/TfEZZimG1H1FTCqYwnPPPcdJJ51EaWmpv80KaRRBNEq89NJLTJo0iV27djGNBUyQpqOWQiNC0bMCe+OeNjY+sTekwpN0ERpUOhl7h5O9b1TgtAbHAHSwyGoJl92F0xJa5wXuGXmXQ3hXog8l8s5JCZo8gNEQQn0Jltyi5Dkx5J2T4m8zfI611Y7LIUa9Mps/cFpduOwuZLV/w6QHK4wGyiXqi6x1YpqzhzM21nLWlma0EaEzkWlpsrHxib3eCrCeMUqwo5LUxOzIYjqLKC0tZeLEidx2220ogV2jQ+j1Zn6mra2NVatWsXLlSgytkeRWzCBGCoESkd0Y4nXMvCUfc44JIGQWfvMw4eI0cs8OvQGMh7byLna9egjhCq0O1ZxtYtZtBegiQ+cl3xNrmz0oYuXHQgx5CAZRZO90Ym0LPYEOoIvUMOu2AszZoTMrD+71iXa9eoi28sAoyjIaHqOObwqY+0ASZ+8I/GdosHjGIuYcEzNvyccQHzrLLkRL8WQfmkZuVh6PP/44l112GS0tLf42K+RQcoh8yMaNG1mxYgXV1dVktBeSJGX426RRIaHYTO3WlpAbVIO7xLbD4sTaElqDmJgJ4cRNMrPn3+UhtfiqB61JTdzkSCq+DJ0XfDAxEiE0lByigegvt8jfIXPjgZS5MdRta3GvERNiSCqJgvNTqdveTMPuwFl7bqAco8HmEgE4O3QIuxq1uQM4ulR3MCPJEvFTIqnZ0uxvU0aFanGYQxG7CAsL48EHH+Sqq67yt0khg+Ih8gEul4uHH36YefPmUbu/gSntC0JKDEmyRM5ZyUSkGwCo2dIcUmJIVkukzI8FCTpqLCEnhjw4rM6QFEPgXgA4VMWQzqwJ6IVzx9IrNBCB7C3SGNUhmWcJUPFlQ0iKIXB7ihw2F4E2ZewLj5HKaEVt7kC4oGtXGmdvbTpqcddgRbiEVwxFpBvIOSsZSQ6dKrGJUhqTW+ejVqm55ppr+NWvfoXTGfjRA8GAIohGSHV1Naeffjp33XUXyfYsZnIiBsnkb7N8ji5CEzJxuX0JTzOQNj+OsJjQcbH3pWF3W8gWG0g/MZ7YiRH+NmPUyDgxgYkrAnOCJRDEkIdAFUUTV6STsSTB32aMGrETI0g/Md7fZowK+9+s8OalBBp9hdFgc4l64mozYNmVhqPB3X/2XcMo2NGGa9CFUK6UhzDJSEH1bDKkAu677z5mz57Nt99+62+zgh4lZG4EfPjhh1x22WXIskxyTV5I5QqBe2ZTpZWxNIV+2WmVTg65AgoAMRMjiMwwcuC9qpBbC8VDwYWptB7uDMny7+BOENYY1AG30ryvxJAvQuZ64gmfC5SQOWOCHnunIyQXMwV3ueOINAN7/lnub1NGBwmyT0+ipayDhl2t/rZmQB4u2zCksDkPLpsKWdu/hyGUQun0UVqcNlfIVdlrFLXsC9+My+Xi9ddf5/TTT/e3SUGLIoiGgcvl4sEHH+THP/4xUSKOSZyAVvJPic7RZOKKDFQ6mW3PhWapx7RFcbgcgor19f42ZdRIKDYTkWFk39oKf5uiECL42ivka0Hkwblnv0/3pzB+yTs3hdaDHUGRlzJcD0/XrjRwSYQVHTrqu1AQRpOvysJpcbLz5aPPL9iRo1xsbv2Semc1t9xyCw899BA6XehGvIwWiiAaIk1NTVxxxRW88847ZFFINhORpNCJT+2JLkIDEiGbU5O+JB6XU1D+vzp/m6IwDFRaGVNyGC1lHf42ZdSISDcQXRDOwY9qEAHiwEzeEM6z6f/z2f5uvf0cAPZu1vpsn4EkhiQZMk5OoHFPG62HOv1tzqgRmWWkrbwLlz1AbtRxzHBEUdfOdIRTxjC57KjvNrZmUjknMEMHB4suUgOCkFyWAUAIwUF5DyViB4WFhXz22WfExsb626ygQskhGgKbNm1i+vTprF+/nmLmkyMVhZwYCk8zMPHSdGS1hLXVHpJiyLO+xKFPa0NWDEUXhJO2KHQWAe6P6AkRTLoiM2Rz28D9Eo9IMwaUGFIYGsIFEWnGkC0JD+6wzkmXZxIzIbTvj7RFcUQXBP45vjkxZshenbCJh7xiSDiOHhombwgP6uff2mLH2mpHVktMXJFOeJrB3yb5FEmSyBQTOLnwTKqrq71jVYXBowiiQfL0008zb948GspamNg0h1gpyd8mjQqeKmShVJWlJzqzhhm35BOZGVprZ/QlLEaHMSH0wjh7Ure1mc1/2h+yuRkAddta2PrMAX+bAfQWQ1cdWuiTfZ6WXOz9f195dQLJO+Rh6zMHqNsWuuuG2NocbP7T/pA+RwBjop6waN95Mkeb4YS62WvMNP/nBJzt/b8/glkUQffYRhCyFVfZFcbExjm0lneyaNEivv/97ysLuQ4SJWTuOFitVm666SaeeuopUsgmn6mopMAtgTtcjIl6OqoDK2l7NJBUEumL4yn/oi4kiygohBaSLAVEifuBBkEjCZ3ziKHCS9MB2PWKO7ZfVZA77H0GohjyECjXUmF8MtgwOpdNhWV3OmFFZUiqI/frxtbMfrcP9lC6kB37qFw0FJSxeccmrrjiCv7yl7+g14f2JOlIUTxEx6C2tpaTTz6Zv//970xkJoXS9JAUQ9pwNVOvziZhWpS/TRk9JNBGaBBOwcGPa0JWDJmS9KF9HbspuCCVrFNDq6pjX8JitMy9pxBTSphf7Qj2GeFAwJQSxtx7CgmLCR7vwnDIOi2R/AtS/W3GqJMwPQpjUnANLgfrLZK1TgxTSpFUAmen7rjhusHcPyRMi2Lq1dmhGXbtlInZmc0kTuC1116jsLCQLVu2+NuqgEYRRAOwZcsWZs2axf79+5lim0+ylOlvk0YNW5uDHS8epGZLk79NGTXSFsUx9ZpsZE1ohgJ6MOeGkzQrGkL7NGku7aCtPHQT1AEcXU5KP6imq97qb1MGZLihcz1D5foyXC9PIHuHuuqtlH5QjaMrtBdQbCvvpKU0dIucACBB0sxoonKCTwgMJbdIOGRaP5iGZdfx10AL1vyimi1N7HjxYEiHXSdK6cyJPImGhgaWLl3Kxo0b/W1SwKKEzPXDP//5T6688kpUnVqmMg+9FFrJdx7ipphRaSSqvw1dIeRBHaYiIs1A497gdu8PBlkt4XIoj7XCyBnMIGeoYXN9xVDfkDkPQw2dC2RBpBBahEIfO5gQOltFDOrYFmSdY8CQuf4IxjC6xBlROO2Cuq3N/jZlVLBrrGy2fY5N38W9997Lfffd52+TAg7FQ9QDIQQ///nPWb58OeGd0cxkSciKIXCHV5mS/BuOM9qExepQ61U4upwhLYY0RhVRee7Ba7C/qI+JBGkL40IzxKEPsUWRhMX6by2Jwc74+qrAwkgIBjEUFqsjtijS32aMOtpwNWkL40LaS+3pY6Pzw9EYgzOMfjDeIm1KA7LOgcuqRtM2+CqJwegtMiWFYQqyMMihoLHrmMESksPT+PGPf8w111yDyxWaqQPDRRFE3VgsFlasWMFPf/pTspnIJGajkkJz0KXSuS976fvV7H+70s/WjC4FF6SSsyzZ32aMOvFTzOSfl4JKG9qPdFiMjpR5sWjDQ7eEsYecM5KIzjP55dhDHdAMVhQdK1SuL4MVOcEghsA9eM45IzSrk/ZEG6EhZW5sUFVjGw4qnUzeeSnETTb725QRMZgQus5v84jfGgNDmGsLtjC6/W9XUvp+NXBkjBRqqCQVWXVTmJ52As888wwXXngh7e3t/jYrYFBC5oDGxkbOPfdcNm7cSJ6lmAQpdJNCIzOMFF6SztbnDtBZG7i5Cb5CF6lBCLCF6GJsPdFFakJy3ai+SCopdEum9kQCWeWf0JzhDGSOFzo3kBgaKGTOw/FC54JFEMlqCZdTDGlQGayMl2c01PrcgcLonJ06trWm4jAMLwcumELoDPE6pqzOZterh2g5GLr5cHWikt26b4mPj+fTTz8lOzvb3yb5ndCUwUOgrKyM+fPns2vXLj7++OOQFkMAbRWdlH9RR2ddaIuh6PxwJJWEtcUe8mLIEO8OqwqlF3N/yGpp3Ay0ABAhHv44znA5xocYAvcaL7Ja8i6CHap4+lxPHxyqqAxWHAYnkhMMNaEdZt9ZZ6V8fR1tFaFdtCdOSuapp56iubmZ0047jf37g2NiaTQZ14Jo06ZNzJ07F5vNxvr16/nJ/N/626RRIyLNgC5Sg8shKP+iPqRfzFqTmoLlacRPMfvblFEnOj+c6d/P82uuyViRMD2KWbcWIKlCe5AFkLogluwz/RNeNdwwl2OFzQ0lVK4vx/IABYt3yEPOmUmkzo/1txmjjqyWmHlrwbhYAiAsVsf07+d5cziDmeOFz5kqTcRviUVlGVreVFCFzwko/7wel0Ogi9QQnha6eeR/u3ItW7ZsQZZlZs2axTPPPONvk/zKuBVE7733HosWLSItLY0vv/ySGyfc62+TRg8JcpYlk7443t+WjAm2dveq6TWbQ796XuO+Nna8WBbQpZl9RdO+dko/qB4XHiJ7pxN7+9iXgh3poGUsCywEmxgCd99kD/HS2+D2hpX+t5qm/aGfn9BVb2XHi2U07Q+esLBjcaxiC22p7VQsqMKpH949HDSiqJv0JfHkLksO6QIh38v9EevXr8dsNnP99dfzxhtv+NskvzEuc4iee+45rrnmGs4880za31KFbPGEnmhMapxWJy57aF/uuClm6rY1h7QHzEMolH5VCBx8NVjpm0t0PO/Q8XKIPPTNJQpGQaQQ2oRan9wzp6hX2W0Bpkoj7ckdwxYLwZBXJGskVFoV9o7QXafIg9C4MJxm55133uF3v/sdN910k79NGnPGnYfod7/7HVdddRVr1qyh4y1NSIshjVFN7jnuymP2dkfIi6GIdAP556aEfClxAJVeZuYt+cRMiPC3KWNC4sxo4sZBCCS4B1U689hW0fPlzG1PL9FIQuX60lMABbMY0pk1IZ9b4yFuipnEmdH+NmNMiCmMYOYt+aj0oTOsGshTpGvRErctBn3T8EO1g8Fb5LIL7B0OVFqZ3HNSgrbE+mCQ7DKdb2m59tprufnmm7nyyiv9bdKYEzpP7nEQQvDAAw9w6623ctddd3Hgr43IUmifvj5KQ0RqGGp96D7EPWk91MnGJ/bSXtnlb1NGHeEUVH3TSOvh0E789GBK0mNKDN01InoSkW5g1g8K0EeNTdni0RiYXHVooU/FkAfnnv1BLYb00Vpm/aAgpPMSemJK1If02i49aT3USdU3jSEX0ttfCJ3VbOPwogos0SML1Q6W3CK1XkVEatiY9cn+QpIk9v+5nnPPPZfnn3+ee++9l/EURDYuQuaEENx111088sgj/PKXv+TjezchSSE8QydxJGSs5/+HKCqtTHR+OHXbW/xtioLCiFHpZMJTDTSXjE3+xWgNSAYbEjPYkLmQQAJztom28k6cVmVRRIXg4qi+QoCxykBnXBdCM/yBhoygfE6A55uNs3HVab+ZzZ133slpp53Gm2++iVYb2mIQxoGHyOl0cv311/PII4/wxBNP8Ml9m0NbDAH556aQfXp3haoQf2gBYidGkHNWMhpj6IY/9iTj5AQSpod+9SYPusjQX4S1J06ra0zEUOoGE6kbTMij0EkEQ36AXxDQXNI+7sTQeHqGE6ZHkXFygr/NGBUq57T1erZVNpm47TGYqkfu8fT0RwFLdzeZfXoS+eem+NeWMeD9u77irrvu4v333+fiiy/G4Qj9PKqQFkQOh4MrrriCp556imeffZY3f7DO3yaNCc2lHeMmlAqgZkszm/5v37hIfAS3R2y85CBIskTx93JIXRD6pYo9pM6PJSJ9dEOq+g48fCmKFDF0bCLSDeOi9LaH1AVxFF+XgySPjz5LVkuotCE9tPIKI6fOxeGFlbSl+W4B04AWRUDr4U6aS0N3wdaebHr4AE8++SRvv/02F198MZ2doT2uDNmQOYfDweWXX84///lPXn75Zf588av+NmnU0ZjUfinV6y/UehWmlLAxCy1S8A+RmUYsTbaQX3jWQ/H3cqj+tonqjY2jsv+BBhwuH9SWHY4YGlchc7gLhCTOiGLLn0v8bcqYoDNr0Ju1tJSNj0HkeCR5QzhhdXqsZhsuzdC9nwNNyAR6GN14GXPd/MYVXHjhhRQWFvLNN9+g04XmuochOY3hdDpZtWoVr7/+Oq+88sq4EEP6aC0zb84nuiDwExR9RcL0KCZcmIZKF5K38VHoo7TETooM6TUR+qOlrGPciCGALX8uGXMxBCP3EimeocFRvbFx3IghAGuzffyJIQliJ0WOebVIf1GzuIP4LXGEH/atdyeQvUXRBeHMvDkffXTo59b8/rznuf/++9m5cycrV67Ebg/N93HIjSSdTierV6/m1Vdf5eWXX+ZPF73ib5PGBEujjQPvV40rb0nF+nq2PFUybuLxowvCyTo1EVk1PhSRpJLIPy8FQ1xozkaNNYMZXIxGPpGCgiFOR/55KUjjpO+SVRLZpyaOm2URnFYXmx/bz67LKny+70DNLWouaefA+1VYGm3+NmVM+PTHW/jnP//J2rVrOeOMM0IyfC6kBJHL5eLqq6/mpZde4sUXX+Qvl/zD3yaNOpJKwpjgLmtas6kppBaFGwi1XoWxu5TreOmMACo3NLD5yf3j4hoDaMPVGOLGR8leDynzYpmyJtvn+x3tAYXiHRoaU9ZkkzK3/zVeQhVDnB5t+PgofONyCDY9uZ/KDQ3H3zhE8LyLW863I9t8P7QMNFHkcghqNjUBYEzQjwux/4fzX+Cvf/0rn3zyCUuXLg25QgshI4hcLhfXXnstzz//PM8//zxPrXjd3yaNCSlzY5i8OmvchI0BJM+OYdLlmcia0O+APHhCLxxdTj9bMnZYm+1s+WsJnXUjW+simGiv6qJ+p3/Lxw/VS6SIoaHTsKuF9mqLv80YMzrrrGz5awnW5tAMtekPT189XsLmAGSNxKQrMpF/PDpe/UD0Fql0MpNXZ42bCY4X17zDQw89xFdffcXq1atxOkNnTBISRRWEENx66638/ve/5/+zd95xcpX1/n+fM73slO29l+ymdzYaCEWUJoKCqIjAVSwgdu+F6y1e7+tiuT8LWO614BWwoIKKIArSRCAhISEhfZPd7G629zZ95vz+mJ3NJqTszM7MmTnnvF8vXi+SnDnnu8+eeZ7n83zbz372Mx740GNym5Q2BJ2AvcTM1HHlNyONIYjR08aZAXVsKIwOA+vubOTw748zrJZeSwKYcgz4J9WzgUoViW4gFlJkIRliSG1FFdSMyWHAPxVURTsIiOYRNb6rjB33thFQyVxmKzLjGfIhzUayL6TPWSKhuplUcCGn3MJ0n09xTXnPxkd+dR3ve9/72Lx5M8888ww6nU5ukxaNItwK//Vf/8W9997L9773PdWIIVuxGbPbiBSWVCOGBFHA5DIgRVCNGAIITAU59NsuRg+p5yTeUWFl/Wea5sJB1YKzxobOnLxpeTGnqefapGieocTRmUWcNTa5zUgrtiIz6z/ThKM8tSXlM4nRQ1Mc+m03gSl1iCGIrs1SJOoZE0QhZfNEJnmLpo57kcISZrcRW7E61qwf3fAbPvGJT/DCCy9w9913y21OUsh6QfTDH/6QL33pS3z5y1/m0duflductFFzaTG1l5XIbUZaKdmQy+qP1Sd1w5gVSDBycIpIUB3FIwBm+n0c+E2XqoSv0a5n+U01OCuTs1FO5WZBE0OLw1llY/lNNRjs6sipgehGWW3f6UgwwsjBKdV4xGLozCKrP1ZPyfpc4M0NXZNJpogigNrLSqi5tFhuM9LGwe/1c8899/D1r3+db37zm3Kbs2iyOmTukUce4frrr+cTn/gEB77bhyCoJ6dEZxIR9aJqmpFCND7ZWW1jrC1zXOWppnRjHpZ8E0ef6JXbFI1UI4DZZSQ4EyIcWJz4TeYm4XShc8nc3KgxZE5nFDHY9PjGA6rbLKuRuitK8Q776d2mniIL7gY7E8dmiARPfsFPF0KXrOqWcofRGex6IsGIairfxlhyezHf/e53+fznP883vvENuc1JmKw9an/22Wd5//vfz3XXXcfBH/TPiSGdUZzr0yKIJ3eMFg0Cov7E4n7Wa/VvvlYQY9eS5GtjRpx8raATTiocIBpE8pc60Vt1hAORkzwGp7t2ruqJcMrPqhMQDSePS0LXLmoM4xvv6EQjMdY2fdYxTPZ4n31ckjDep46h7uRxiYQihPzh01+bge+sqD95XBIZb0uekdp3lGByGs4yhkka70yaIyTwjQWQItKi3tnyl2bFUASEkDC34RbCQvTPsc+GBIi9WtLJ1xJm7loRCSEkIMxe29s6ldQ5Yv451mLmiIW+s5kwR4SDkZMOsxYzRyRvTk79HKG36Ki7vARrkemc155rDM/9vc+cOSLkDRP2hzNmH/GmcYnn2gXuIyY7PURCUtS2edf2njdF/+bpuflkbu6JbWdi81bMprCAEBYWdG3FSzmyzhHB6RCRkITJqSev2bHAMUz9PiLVc8SB7/axadMmvv3tb/P444+TrWSlINqzZw/vete7uPDCCyl1VFD79mjomMlloPWuFpxV0ZCT0o25rP9M09znlt1YTd3lpQAYbDpa72ohtyF6WlG02sXGLzbPXdt8QxUNV5cD0Ze09a4W8pqdABQsc9F6V8vcF6Lp3RUsua5i7rOtd7VQuMIFQG6Tg9a7WuaqwNVfVUbL+6vmrt3w+SUUr3MD4Kq103pXy1xp0rrLSlh+U83ctes/3Uj9VaUUr83FUWGl9a6WuaZg1ZcUsfLDdXPXrvlEPRWbC4BovlHrXS3YCqOxrZUXFLDm4/Vz1676SB3VFxcBYMk10npXCzmzcd5lrfmsu7Nx7trlN9dS+47Z8XZEx9tVE92AlazPZcPnToz30g9UU39ldLz1luh4u2fHu3BVdAxjLLm+ksZrouMt6ARa72ohf2l0vCsvLGLj55ZgyYv+rI3XlNP83sq5z573T80UroqOt7shh9a7WtBbogl+dVeUsvTG6hNj+NmmOTe+q8ZG610t0Y03UPuOYlbcXDt37bo7GyjblA9ATpmF1rtasORFF/Kqi4pYdduJMVzz8XoqLyiMjndhdLzts7HEFZsLWHP7iWtX/kMd1ZdEx9s8O96Oyuh4l56Xx7pPnRjvwlVuDLM/i9Guj45hXXS8i9e62fiFJXPXtry/ivp3lgFRD2LrXS3kNkUn5YIVp4z3eypoenf0nRXE6DtbsDw6hnnNs+/s7MTXcHUZzTeceGc3fnEJRWui76y7PjreBtvsO3t5Kcs+OO+d/UwTpRuj4+2smh3v2apLNZcWn1Rieu0dDZS/NR+T00BuYw7rP90014Oockshqz964v1e/dE6qi6Mjrc13xR9Z0stAJS/JZ+1n2yYu3bFrbVzYQyZPEeUbMil9Ly8Rc0RG/+tCeexqA2mcRNVT1eh90SvdR9yU/LKiTDbshfLcB2N2mCcNFL1dBXGqeh3zHXURenfS09c+3IJ7sNues+bSvocEcsTW8wckd/ipPWulrmFPFvmiMot0T8vZo5YdlMNdZdHxzvT54hwIELBMhdN1574LiQyRwDYS6PjnQ1zROezAwztm8yYfUTZedGKaKneR+Q1O1j3qUbqrih90xxh/q/omBl8IlVPV2Eeid7X0emg4tkT41C0vYi8vVF7xWD0WutQ9Ltg77FT9fSJcSjYWcDKe6sp32qXd464tY7ay0oQDUJG7CNSPUcIgoBlazF1dXW85z3v4fe//z3ZSNaFzPX397Nhwwby8/Nx7qoiv85F0BNipt+HaBDJbbAz0TlDcCaMJc+ItcAUjeElmrAc9keY7vUi6ATymnKY7PIQmA5Fk+FKzIzsnwTAUWWdK1ggiJC3xMHUcS/+ySAmp4GcMgvDByZBik4qCDDZFW1Uld/iYKrXi388iDFHj6PCysjBKaSIRE6ZBdEgznXuzmt2MDPgwzcawGDX46y0Mnp4ikhIwl5iRmfWMdERvTa3KYegN8z0cQ86sw5XtY2xI9OEAxFsxWYMNv1cY1Z3Qw7+8QCeIT96sw5XrY2x9mnCvgjWQhMmp2Eu9MxdbycwFWJmwIfOKOKutzPeMUPIG8aSb8KSZ5xL6HfV2gh5w0z3+RANArkNOUx0egjOhDDnGrEVmhk5GB1DZ7WNcDDCdM+88e72EJgKYXIZyCm1MBwb70orkgRT3R4QIL/ZwVSPF/9EEFuJmbLz8jj8+x6QohVdBFE4abyn+3z4xgInxvvQFFJYwl5mQTd/vJc4mBmcHW+bHmeVldG2KSJBCVuJGYNFx3j77Hg35uAdDeAd9qO36HDVzBvvomhPjbEjsfG2458I4hn0ozOLuGvtjLfPEPKFsRaYMLmMjLXNjmGdneBM9J2NjffEsRmCnug7a8k3MXpoiuJ1uQSmgwQmQ0z3ehH1ArmNOUx0eQhOz453kZmRA7PjXWUjEoow1eNFEAXyluQwedxLYDJ42vFGgsnuee/s7HibHAZyyi2MHJxEisyOt05gstNz4p3tnx1vux7H/He21ILOJM69s3lLcvAM+fGOBDBYdTirbYy2TRMJzr6zVj3j7dNz4+0bm31nY+N9dJqwf/addRhOjPf8d9Yk4q478c5aC0yY3UZGD8feWXtWzBG24ujYDe0ZT2iOKN9qxzpgJWgLErQHEf0i5lEz3gIvkl7COGFEF9DhLYgWYbEMWghZQgRzon1DzCNmfPk+IoYIhikDeq8eb+HstUMWej88lZI5onJLISFfmIO/6U54jjh1vLNhjljy7gpmBv0ce7o/4Tni1HdWmyMyd44w2HRUXVRE9wtDsu8jvCOz76w19fuIotVuJrs9GKy6084RFX/PwTJkwZ/rJ2wKo5/RY5wy4imOjoN5xExEFyHgCkAYrINW/G4/YXMYvUePccKIpyR6rWnUBAL43f6ox/0fRHnmCKuOmX4/wZmQ7PuIdM4RriVWdnj/xsjICK+99hoNDScOHbKBrBJEHo+HLVu20NPTw6uvvsrNFZ+W26S0UbzWzeCe8TfF42ooE3OukdUfq+fArzrnNl9qQNAJiDph0Tk0aiMWl5+sWPxTSWVsvhpziNSOzigSCUuqKlPsqrXRfEMVu35wBN+YehqKL5RUFkeQK7dINAgUrnDR/9qYLM+Xg2+/8e9ccsklFBUV8fe//x27PXOKXpyLrAmZi0QifOhDH2Lfvn2U9zarSgxZ8ozUXFoyF3aiFvQWHas+Uoe9RB1lLOfjGw2w/ZuHVCWGIHrKuPGLS1RVfWuxzE9SXkjvoHiRO1FZQ1kY7Xo2fnEJ7np1rWfj7TNs/+YhVYohe4mZVR+pmwtBOx2pnGfkqkTnqrFTc2nJXEiiGvj08n+nun857e3tXHzxxfj92dNYPWsE0Ze+9CUeeeQR6j0rcQhuuc1JK96RADu+c2jOva8WRIOIdzSAb0I9PRwgmqiIACGfcjpAL5TpHi9H/thLcFo91RMhmrew6Z9PxIAvlIU0PVwMmhhKHY5KK5v++UTugVoITIc48sdepnrU0T9vPiFfGAROSlpXA/6JIN7RwElFAU7H8fOmUzbnyNG3aPTwFDu+cwjfqLpEsF1wstp1Htu3b+fGG2+U25wFkxWC6IEHHuCee+6hXlpGoVAmtzlppXClC0GEoEd9m+PAZJBDj3QTUtnPXtqaz5pPNJCCw/6MJzAdYnD3uNxmpJ2wP0LH0/14RxZ/mpYKL5FG8vGO+Ol4ul+V4aGDu8dVd+gBgABrb2+g9Lx8uS1JK0FPmEOPdBOYXNjhppK8RUFPGEGM7uXUhPG4k5W5G/jtb3/L//7v/8ptzoLIeEG0a9cuPvrRj1JCNZU0nvsDCsJeaqH+qrK5ak5qonxzATkV6vu5AUYPTXL8xSHV9ScxuQxUbC6Yq6SkJkLeMH2vjhKcWbj4P5t3KBmiSPMOpZbgTPR3HvKq68AHotWrKjYXzFWTUw0SdP9tiNHDk3JbIgs5FVbKZ6vWnQsliaKcciv1V5Vhn61yqBbyRysop4477riD+++/X25zzklG7zxGRka49tprMfgsLGG1qhqvAkz3ennt3sNzVVDUQqxyT6ycqtrwDPoZ3DMutxlpx1pgpnRjHlJEZUqQ6OFHTvnCF8uFhMotRhRpYig95JRbVLdJApAiEqUb87AWqC8/dHDPOJ7B7MmrSCa2QhN5jTkn9cQ5G0oJoZvs8vDavYeZ7lVfmGgjKykuKuZzn/scg4ODcptzVjK2ylw4HOaKK65g+/btNI9uxCLY5DYpreQ25cyVTFQtAqrzklReUMhkt2euzKyGOmh6TwUGi469Dx4757Xx5A0lUnUu3WJIzVXmln2wei6cSEM9uGrt5FRY6H5hSG5T0ssi1nSlVKFT494uZPaxP+dVWlpaePrpp9HrM7NoUsZ6iL785S/z1FNPUTXaojox5Kiy0nJDFfYy9Z0cWgtNcw1Y1SaGEKKJ1mqqSHMS6nIAn8ThR49zcAGb4niLKMTrJdI8Q+nl4CPdHP7dcbnNkA+VfufNuUaclTb1/fyza7olz4i1ML4IECV4i+xlFlpuqMJRpa50AL3PTMVgMy+++CJXX3213OackYz0ED3++ONcddVV1LGUGqH53B9QIJZ8E95h9bnVm95TgdllYPeP2+U2RSONWAtNrLi5lj3/167acJJzsZiKcgvxFMklhtTsIVIz2ndevaz8cC2+sWDCntFs9hapdW8H4Fs1xN93vcAvf/lLbrjhBrnNeRMZJ4iOHz/OypUrEUdNrGST6vKGbMVmZvp9cpshG4JOwJijxz+urlLbED01846oqzxnDKPDQNEqFz0vDxMJZdSUlHJ0JpGGq8vofmGImYHTf/eTUV77bKJITs+QmgWRrchMxQUFtP2hh7BfXdXmRL1A2aZ8BnaNEZhSYcU51Dvnm1wGAlOhRTXmTbVHJ9Vzohr3epIksVfYhjdnkt27d1NdXS23SSeRUSFz4XCYm266CYvFQgvrVCeG7KUWVn+0Hme1ukIEY+iMIlJYUqUYspWYWXtHo+pc6TECk0G6/zakOjEE0fdeZxA509mU1mtIuUiShM4gojNm1FKcFiIhie6/DalWDDmqrKy9oxGbChuP+8eDSGFpUe99KkPoILWCy1ljY/VH61VXUEUQBJqlteTk5HDhhRfi8WRWwbCMmoW/8Y1v8Pzzz1PUU4dRUF+FseleL3sfOsbEsRm5TUk79lIL6z/bhK1IfYsDgGfAz/5fdqquoiAAAhStdmOwnrmLuZIJTIXY9/PO04YNJVMMnZpPlOoNhca58Qz62ffzTtWKAoNVR9Fqt/pyaYhWHtv/y048A+oMn7IVmdnwuSbsixSE2SiKJjpm2PvgMVVWndMLBlpsa+jq6uJLX/qS3OacRMYIoldffZV/+Zd/oUpqJFcolNuctKM3RzeD40fVuUHxjQXo/tsQM4PqciHHkCISo4en1FdIAjC7jdRfWarKErzAGUvQpsIzpDVtzUwWWoZYaVgLzNRfWYrZrcJCMhKMHp5SZZsBgJlBH10vDOFLQkRIqkVRKoRRrJJsbO+nJqQ2E9WRJXznO9/hxRdflNucOTIih2hqaorVq1czdHSUdVyIKGSMTksLBpuetXc0cOTxXob3TchtjkaacVbZKFzp4uifelUZMgbRsLFIKIKkrjQKAKouLiJviYOd32ub+7tUh8n1npc5ZV/VnEMEsOb2BkYOTtL5zIDcpqQdQQRRLxIOqPCLD4gGgbrLShncPc5Ep/oiQ1JBNhVcyF/qpP7KUl77bhvBGXV5iSVJ4nXji4StAXbu3ElNTY3cJmWGh+gzn/kMAwMDLGOj6sQQQNAT4tgzA4wdzZxNSjqpuqiQwhUuuc2QDZ1ZxGDXq1YMAYQD6hRDACP7J+h89uTNcCoFSyaJIQ3ofHaAkf3qPAiTIqhWDAFEghIGux6dWX37nhiFK1xUXZS8qKBUeos6/6OVzv9oTdr9xo9Oc+yZAYIedYkhiOYTrXW/FZ/Pxyc/+Um5zQEyQBA9/fTT/OQnP6F8uhGrkJ6uwRmHBP07Rgn71LkwGO0GVS8Io4em2P+LTrnNkI2W91dRsNwptxmyMd3nY+TA5Jv+PhXCRRNDmcfIgUmm+9QZKgxQsNxJy/uq5DZDNvb/olN1jTrno7foMNoNSb1nqnMjkyWKQr4w/TtGVRkqDxAZFKnzLeeJJ57gsccek9sceQXR1NQUH/nIR8ilkDLkd5fJwdIbqyle65bbDFlpe6yHvldH5TZDFkxOg2qLCQAggG88QNATltsS2chf6khLM15NDGUm5lwj+UsdcpshG0FPGN94QJWFFWIYrDpMzuSKgmyhd9sIbY/1JP2+yS4a89JTy0/6czI9RcVr3Sy9sTpp98smiqmk0FDKBz/4QTo6OmS1RVZB9E//9E8MDQ3RzFrVldiGaPz0VI8H76j6+hBAtA+Fu0GlXsFZKrcUsuwmdR4GACBB+5/6VFtMBKDxXeW4607/PUiWiNHEUObirrPT+K5yuc2QjfGj07Q/2afaU3KAZR+qoXKL+opJzcfdYEfUJ38fmA0hdN7RAFM9HlSYMYIgCKzK3Yjf7+dTn/qUvLbIVVThhRdeYMuWLTSyikqhXg4TNGQmr9nBkusq2HHvYVX2HgLQz54Mzqg0ZMacayTkDRPyqtdDJIgCgshZc8gWU2Qh08WQ2osqiHoBKYJqq41BNGxKb9HhU+nhoK3EjH88qNp50OQysO7ORg7+pvu04cPJYLHFFk71EJ2Oqn99ZVHPUDM9dHBAeo0///nPvP3tb5fFBlkEkdfrZfny5QwfHWcdW1TpHcptysHkMNC3XZ2hYjHU2qlbI8qym6oJ+cIc/HW33KZkPImIokwXQ6AJIg1ovr4SnVlk7wPH5DZFQybStRdIRBgtRAzNJ1FhVLIhF/9EUJU5ZZIk8bru70jOIPv27aO4uDjtNsjioPva175GV1cXLaxTpRiCaCNSZ41NbjPkY/bXrmYxVPaWfMpa8+Q2Q1baHutRZbnhGM5qG0uur1hQqEi84iYbxJBG1EO05PoKnFXqXQ+OPdOfkjySbKKsNY+yTflymyEbc3uBFG8J09GMOtEwOle1HXupJcnWZAeCILC2aBOTk5N84QtfkMWGtAui9vZ2vvrVr1IWrMUmpLbXRibT9dwgB3+j3lPxhqvKqL+yVG4zZEVvEtEZVVxQAfCPB1UtihGifViSXXJdE0PZQyQkIerFDKj5Kh/ekYBqw6Zj6Ew69CqutgpQf1UpDVeVpfw58YiieL1DMRIRRQd+00XXc4MJPU8JRPp0VNPEww8/zMGDB9P+/LSHzF199dX85bGn2cTb0Qn6dD46IxBEcNXZGWtTbxI5QP4yJ4IAQ2+os/+GBjgqrbgbcqI9eNSbPhE35wqdyzYxpIXMaSBA1UVFjLVNMdnlkdsaDZkoWO5EkmB4b/r2BecKoUtUEM0n3hA6d4Od8aPTquzNF5bCbOUpmlY1sGPHDnS69B0ap/U44k9/+hOPPfYYjaxUpRgCcNfnsPT91VjyTXKbIivDeydULYZMLkNKKupkE2a3EVe1TdViKJF34GyCJ9vEkMYJVD0fSOCqtmF2p778fCYj6gVMLnWW34boAWk6xRBkXgidJd/E0vdX46pTZwSVTtDRumQzr7/+Ovfee29an502D5Hf72fZsmWMHplkNZtVmzsEYC0w4Rnyy22GbJS/NZ+hvROqDpFY8Q+1+McDHHrkuNymaMhIyw2VSBIceDh+78ipnqJsFUOahwia31sJgrrHQAOa3l2OyWlkz/3tcpsiGyaXgYJlTo7/fTitzz2dpygZ3qH5LNRTpPY9IsBe0ysYC3UcOHAAq9WalmemzUN033330dHRQSOrVCuGREP051bzi27M0VN2Xj6WPHV7yNr+0EP3i0NymyEv6pwGTqJn6wi920YS+ux8AZStYkgjSu+2EXq3JvYeKAqVzwndLw6pvriEJc9E6Xn5GHPSG0WU7Eaup2OhfYtie8TYnlGN1PqW09/fz9133522Z6bFQzQ+Pk5tbS3WMTfNwppUPy5jWXVbHaOHp+h6Xr1JcxDNo5IkVB0qpXaMDgNr72hg30PHtJyBRVC6NSfrxZDmIdIAcFRZWfqBal677zCBqZDc5mjIhQCCgKz5M+Vb7Un3Dp3KubxFlVsKyW3M4fUfHk2pHZnMcGM7+zv2cuDAAWpra1P+vLR4iL7+9a/j9/uppTkdj8tMBOh5ZZjRtuzevCwKIXriIUVQtRgq2ZBL4UqX3GbISiQYofPZAbzD6vWWAhSucmFyJp4zkO1iSCOKyWmgcJVLbjNkxTvkp/PZgaRXXMw2Cle6KNmQK7cZ8iFFxZBoEGTzGGZCXtFo2xQ9rwyr2mtaOFiNwWDgvvvuS8vzUi6Ient7+fa3v02hpxKToM766gBI0YTB6R6v3JbIhqvWzsbPL1nUBlAJWAvNqi+qEfKG6d06QtCjzs7sADqzSOPV5YvqO1H0ioOiVxxJtEpDDuxlFhqvLkdnUm/Z5aAnOieEvOqdEyCaP2ItNMtthqyYnAY2fn4Jrpr4m6gmg/GbWnEeAeeR1D3jXB6i6R5vtPCUis8HIuMixTPVfP/736etrS3lz0v57Psf//EfWCwWqmlK9aMyFpPLQO1lJejN6u454xn0ceyZAfwT6i2mAHD08V5VNyMFcNbYsBWpe9EP+yK89JV9CXclny+ENFGU3YwenOKlr+wj7Fdhnd152IrM6m5YDhz76wBHH++V2wxZ8U8EOfbMAJ4hn9ympFQUnQu9RUftZSWqrjxYSQNms5kPfOADKX9WSgXRkSNH+PGPf0zeaDl6Qb2/UEueCWe1jUhI3YtdYCpE36ujcpshK2o+AZ5PzduKKV6v4rCQWaSIhBSJ/wjwdAJIE0XZS6LvgdIoWZ9LzSXFcpuREah9reh7dVSWXLLxm94cypZsUbTQanORYARntU3VRah0gp7lZavZsWMHe/fuTemzUvqN++pXv4oubKCculQ+JuMZPzrNrh8cUXVstKPSSllrntxmyE79lWW0vL9KbjNkZ/dP2jn21365zZAVZ42N5usrEcT4gsQ14aM8BFGg+fpKzTvy1wF2q7jkdIylH6ii/soyuc2QFwHKWvNwVKan5PK5SHUI3emIhCR2/eAI40dTn9OUyZgO5GGSLNxzzz0pfU7KBFF3dzcPPPAAVTSgE9QbKmbJN6EzqvukB8BeaiF/qVNuM2Sn79WRaKKkypHCEmGfuj2mgjBbcTEOz8C5xJAmlrITKSIhiNF3Qs2EfGGksHoPDmMcf3mYvldVXoZdgvylzkXlWMbL6bxDp7JYUbRQ79B8dCYRS556mxaLgkitpZlf/vKXPPPMM6l7Tqpu/P/+3//DbrdTRupL5WUyDe8so/Fd5XKbITu9W0fY/WPt5G+y28NEx4zcZsiKs8rGkusqEPXq3v2Nt8+wP45S0wsVO5ooyk72/6qL8XZ1zw2iQWDJdRU4q9TtKZvomGGyW2tHsPvH7RnZnyvdnqLGd5XTcLW695El4SqsVivf/va3U/aMlAiioaEhfvjDH+IaK1Z17hDAwd90cexZdSfQiwbNQwaQU26hSOWldQEEHYg6QdUhpEBcgjBekaOJouxE7YcEkaCEqBNQcVDJHEWrXOSUq7gy7zzSsYdYiHdoPomIokS8QwDHnhng4G/U3adNCIqUzNTw1FNP0dOTmubFKXnLvvOd7yCKIhXUp+L2WUVgKqT6XivVlxSx4lZ1ewoBXDV2Slvz5TZDduL1jCiV+qvKWP6hmnNel6i40URRdrH8QzVa3giapyxGaWu+bGWnM4kVt9ZSfUmR3GaclnTlFXmH/VqzYqCcOiwWC1/84hdTcn9BkqSkHtN6PB7Ky8vJGcunUViZzFtnFYIosOymarqeG2SiU92Tu73MgilHz8hBrYlkNGdEbivkRW/Rqb7XCICjwopoEBlvP3PCbDJEzUDr5KLvkUqab6gE4IDKRbKrzk4kENFCpdDmCNDWihh5S3LwT4VS2sMxXu/QmZg4iw8gUe9QDGe1jcothex94JiqK1JOrehh14HX6OnpIT8/uQfMSfcQ/fKXv2R8fFz1leX0Fh3+iSCBGU3VT/d4NTE0i7bAwZrbGyjfXCC3GbIz2e1JuRhK5n00Usv40WlNDAHlmwtY84kGuc2QHW2tiDJycCorxBCk1lsUmA7hnwiit6g7BSGnu4hwOMyvfvWrpN87qSMrSRLf+973yJOKsArqdvUGZ0Ic/t1x1YfLuevtWnU5oiWW13yiHoNVC44/8sceRg5kttciHeQ1O7Dkn76/hCZi1Icl30Res/Z7HzkwyZHHU5MjkE0YrDrWfKJe9aXYIVptzl2fHXvK04mixXqHIBo2d/h3xwnOqNtzypievHAx3//+9wmHkzsWSRVEW7duZdeuXar3Dol6AVedHUHdQh4Ad0MOhStdcpshOyFPmLGj0wQ9Kp/MgNFDU6o/KACov6qU3MacN/19KsSQJrAyn9ymHOqvKpXbDNnxDvsZPaRFFARja4YWZULRKhfuhjfPlYslmd6h+aQqt0gQo6G1ai++UutYwoEDB7jvvvuSet+k5hDdeOONPPrz37OJdyCouKFCbmMOLe+rYse9h/GNBeQ2R3a0WGiNGNYCEzllFgZ2j4N6w6CB6PcCQTip70qqhUsm5hNpOURRBJ0AkqTNlQIUrXQx1ePFM6QdnGikbg+RKkE0H9cDi/cOxTC7jay7s5H9v+xk9LB6Dw0kSeJ11wusXreKp59+Omn3TZoPY2hoiN/85jeUU6dqMQQweniK177Xpomh2ddA9Qs80YRInVlzGTqrbdRcWqJ6MQTR78V8MVTwsouIlLp3JBPFkMYJpLAmhgCQoObtJTirtVAxnVlUfU8mmLeHSPLWMpli5XQ0fXxfUg+5fGMBXvtem6rFEIAgCOSPV/Dcc88ltQR30lbfhx9+mEgkQglVybplVqOFBEH1xUUsvbFabjNkR2cSWf6hGnIbtbClvu2jbPvvA3KbITsmh4Hm91Zizo12Hy942ZXS52liKPMx5xppfm8lJoe6e/cBbPvGAfq2j8pthuzkNTpYfnMNOqN2mLb0xmqqL05++e1UiyJIrudf21tGKaESnU7Hl7/85aTdM2nfsoceeghXqACjcPokYbXgbrCz9MZqRIO6vWQQ7TczvG9CbjNkJ+yPsP07hxg9pG1KQfMYQjQ8KpZjeKoYSraXSBND2YMgkqLugNmFNkdEGTk0yfbvHCIc0AZkeN9EyvpTpUIUNX1830l/LnrFkRRhJBpElt5YnTVFJlKFXjBQV13H448/nrR7JmXqPXz4MNu2bdO8Q0Q7bfsng0SCWkzQePs0A7vG5DYjI/CPBwn7tUVtyXUVWpENoqEP+3/ZRc7j1tP+eypD5zQyE99o9J3wjwflNkV2Cle5WHJdhdxmyE7YH9Heh1kGdo2dtU3BYkmmKDpVDM1nsaIoEowQmAwSCWl7THN7Hn19fezZsycp90vKqvvzn/8ch8NBPiXJuF1WM3FshiOPaSVDzW4j7gZ70mN+s5HSjXmUbMiV24yMIDAVIuTTKu0hQMFLrrNekgxRpHmHshBtziTkDROY0qqrAZRsyKV0Y57cZsiPEI3AMbuNKXtEOsLnYPGiqO2xHiaOpcZblk24Q4Xk5+dz//33J+V+i15xJUnioYcewj6Zi05Qd48VY44eW5FZbjMygrwlOTRdq53wARgdeow5Wl4AQPuf+7SSukDdr0tpfKoMzuE0XIwo0sRQdiGIAm/9t2UULnfJbYrsjB6aov3PfXKbkRGYHAaMOXq5zcgImt5dQd6S5Jffno/rgVcWJYzO5h2az2JFka3IrPr3QhRESt3l3H///QSDi/ekLloQvfbaa7S3t1NM5aKNyXYKV7lZfksNgqgd8fW8MsJr323TqokBx54eoPOZAbnNkB1RL2CwqfvQJIbXFWBg6ZiWL6IxhxSRaHush8njHrlNyQgMNp3q+60AHPvrAMf+qq0fSPDafW30vDIityWyI4gCy2+poXCVW25TZKcgWMbU1BR/+9vfFn2vRS/Hjz32GG63Gxf5izYm2+l5eZg9P2lHimgqANAaykE0/EVb04Foye2Nn29W/alWwcsugrYQE+UL2/gm4iXSvEPZycCuMXyjKm/XABgdBjZ+vlkrvR1DW0eA9O4pMrn6nBSR2POTdnpeHk6yRVnIMTPFxcU8+eSTi75VUgTRFVdcgShoR51SWNIayQEml4FlH6yeKymsZpzVNjbd3YLJqYXMTfd62f+rTgLT6hXKsYpypkkD1uGFV+SMRxRpYih7cdXasBVrYdeBqSD7f9XJdK9XblNkx+Q0sOnuFq0fEWDJM7Lsg9WYXOlZT+MVRQsNl5tPotXnPEP+k/rYqRVBEDj//PN56KGHCIcXl5+8KBXT2dnJ7t272f1Q26KMUAI5ZRYary1HZ9KEoagXCfnChLXkeXwjATqe7sc/qVUKCnrC0fwhlc7h88trO4/bKDjsjOvzCxFFmhjKbqovKaZojRYGgxTNIwp6tDXEPxmk4+l+zXNItNhGyBdG1KXPXbYQUdT08X0JiaH5xCuKdCaRxmvLsZdZFvVcJTC6f4qBgQFeeWVxXr1F7d7/+Mc/YjAYyKN4UUYoAdEoYrTptdLKRBuHHfxNt7aYEV3M+l4dVa0ImE9uUw65jalNiM1UTu01NLhknO71Q3Hf52yiSBND2c8bP+ug48/9cpuREeQ2qne+OAkJ+l4d1Q7ViB6qHfxNN96R9IrDs4mixQqh+cQjisL+CEabXmvaC4T3m7FYLLz88suLus+iBdGWLVvQC1o40ETHDHsfPCa3GRmByWXQCkvM4q63ayEwsxQsdVK4yiW3GWnnVDEEgAgRQ/JUsiaGlEHYH9FyUGcpWuUmf1l8XlSlYis2q74RZwxBFNIWMjefTCzJvffBY0x0aOW3dZKOSy+9lD/84Q+Luk/Cgsjv9/Piiy9y7Gmt+gkCGO3qThSfz8oP11FxfoHcZmQENZcWa41IZzn06HEO/rpbbjPSymnFEJDX5sDZnVhOwKleIk0MKYfitW4qLyyU24yM4MCvuzj86HG5zcgICle6qH6bFokDUHF+ASs/XCfLs08tyZ1M79B84hFFRrteK7gBDO4fZevWrfT29iZ8j4QF0fbt2/F6vbjRNr7WAhMbPreEnHItlhPg4MNdDLw+JrcZGcGu/zlC13ODcpuhIQNnEkMAupCAGEp8FYuJIk0MKQudUUSv5aFqnELXc4O8/r9H5DYjIxh4fYyDD3fJaoPrgVdSJoZiLEQU5VRY2fC5JVgLFl6gR6lYp9xEIhG2bduW8D0SnnlfeOEFHA4HObgSfrhS8E8EOfBwFzP9PrlNyQgmuz34x7V4ZwApAuGAllcGsPzmmpQ31csUDv9o/Vn/fbB5grGa6UU9QxNDyqPnlRHatRwiINrce/nNNXKbkRGEAxEkbRkBwD8eZLJb/l5d6Zh/C152nfVgbabfy4GHu/BPaPst+g0UFhayY8eOhG+RsCB6/vnn2bx5M4Kg+erC/ggjByeJhLTYb0ellZINuXKbkRHYisw0v7cSg00Lp0QA74ifkFf5q3pMDL20r+HMFy1yqhjaNL64G2hoZDghbwTviF8LBwIMdj3N763EVqTlowKUbMjFUWmV24y0HUqdSRRFghIjBye1Yl5Ey2+vW7eO3/3udwnfIyFBFAgEePnllzn8hLxuy0yh9Lw8rfThLDnlVoq07skACDoBQScQCWqTFRIc+WMvE53KTgA91TN0JlFU+7dico8m5i3TxJByqdhcwLpPN8ptRkYw0TnDkT/2ahU6gUggMreeaEQLbuSUyy+IIHWi6NRc0TOJInuZhdLz8lJiQ7Yx1ePh0KFDDA3FX8EVEhREr7/+Oh6PB5eWPwRAybpccko1QQTQ8/Iwr//wqNxmZATTvV72/6JTC5kDRL2AQeGFR84UJnc6UTRcP8lMfvwhtpoYUjZjR6boelbLOYxhsOsR9ZoICAci7P+F1qg2xus/PErPy8NymzHHQOtkUoXRmdornE4U5ZRaKFmnReUARA4aiUQi7N27N6HPJySIdu7ciV6vx45WEhPgte+20bd9VG4zNDIM0SBo4R6zOKpsbPzcEowOZZboP1fO0KmiaLLMg98ZX9y3JoaUz3Sfj8E943KbkRGYHAY2fm4JjqrEqjEqDmF2TdHIWJIhis7VgPtUUdS3fZTXvtu26OcqAZPfjsViYdeuXQl9PiFBtGvXLlpaWtAJuoQeqqFMBBHWfrJBa6Y3S8M7y1n6gWq5zcgIZvq87PtFJ8HpkNymJJ1ziaEYc6JIAvugGb1v4fOnJobUgTFHT26TNn8CBKZD7PtFJzN9mlcEYNmN1TS8s0xuMzKC3MYc1n6yISMPHNNVbEHjzYiCSElJCb/+9a8T+3wiH9q5cydDeyYSeqDSKD0vj2UfrJbbjIxA0AkM75/UKp7M0vfqCMdfSiyWVWkEPWHG2qYU13RyoWIoxkv7GhAiULYrH+vowkqlamJIPThr7LTcUKXligBSRGKsbYqgJyy3KRlB99+H6HtVi0SBaGXf4f2TGRtOmWgI3bm8Q/OZL4qWfbBayyOaxYKNnp6ehD4rSJIU1w4lGAySk5NDlX8JlcJZqiipBHe9HVuxmeN/z5x4Vg2NTMNeZsFaYGLw9XG5TUka8YqhOSSJ8xvbiegkJN3Zp181iKHmGyoBOPArrUiPqBcQjSIhTQQAULTKxcygX8ud0chaFtpkNR4xNJ+hTeOUvzWfmX4fY0cW18pBCfRI7RwSX2dqagqrNb7CG3H/Bg4cOIDf79f6D80ydmRaE0OzGOx6LPlag7AYhStdmN1Guc3ICFy1dio2F8ptRtJIWAwBCAJ/a6vTxJDGm4iEJE0MzaN8cyGuWrvcZmQEZreRwpUuuc3IGCz5pqwo1LMQT1GiYgiiniL/10OaGJolBxeRSIRXXnkl7s/G/Vs4ePAggFZQYRZ7mQWd1lkcgKKVLlbcqjXSg2j4YMPVZeSUa9UHAY6/OMRr9x2W24yksCgxBFjCEptHA7zxet0Zr9HEkDqx5BlpuLoMg03LzwV47b7DHP+7FnYMkFNhpeHqMi2ccpaVt9ZmjUA8myhajBiKIQYFKv6knAPHxeCyRyvuPf7443F/Nm55ffToUVwuF4YJ7eRbNAis+nAdhx7tZugNLaeqf9cYY+3aKQWAFJZ46Sv7tMbFCmOxYghAJ0k4QhJn2vJqYki9CDoBc64RUS8CmqdI4wTDeycYemNc68s0yxsPdmRVvvJA6+SbwueSIYYA7EMWSt7Ixf9ikMHNY0m5Z7YSmYG8vDxEMf6xjfsTR48epa7uzCebaiISktj5gzbNVTlLyBNmpi/+3iqKRUJxRQQSperiIqouyu4TrGSIIYBpvcgThSbGDOKbynFrYkjdeAb9vPHT7NropZKqi4qourhIbjMyAikiaWJoHjN9vqwLL01VBbrpfB8dm/qRREmrQAc0NzfT398f9+fiFkRHjhzh+GsDcT9IkUjRBSzkza4vZaooWZ+rldyexVpoovmGSoxZEOOcDoIzoayuFpUsMXQ6YqJIE0MaGicT9IQIziivVH8iGO16mm+oxFqo5elCtPR2yfrsa0gaE0XJ8g4BRIwRAjmhuTLkahdFvQcH2bZtW9yfS8hDZEFLcgRwVtmo3JLdp97JxFVnx16q5cwACIKAAEQ0DxEAvVtH6N06IrcZGUF+IMKNPV6cwcjc3/XfXSujRRqZgiXfxHn/1Iy9xCy3KRmBNm+cIBKREEALw57FXmbBVZede9FUeIry2hxY5rVyCG9Zk/RnZAuFpfn09fXF/bm4BFEgEKCnpwcLWudoAHOuEXd9dn4hU8GBX3XR9fyg3GZkBDMDPvb/qivrXPqpQmcWM7ZnxEJo/Mj2pN1rRiewy6HHJ0bHo+7n0XdEzQuYRpTgTIiu5wfxT2leEYiWIdeZtaJFEA1J3/+rLmYGtLB0gK7nBrO6VH+yIwJsw2aMnmhmauyATa1ryvSeEB6Ph6mpqbg+F9dMMzw8jCRJGNFctgADu8bY/eN2uc3QyEAEUcjILtpyseKWWqovye5cgGSJIq9OYF+OAb9OmBNDMdS6gGlECXnD9G4dITitCSKA6kuKWXGz5j2dQ5hdWzQUQTJFUVfrIBPlnjdFG6hxTYlplMHB+A7o4xJEQ0NDJz1MQyOGziSy7s5GnDWa9xCgbFMeGz+3RG4zMob2P/fRvzP7q98kQxSZwhIlvjD1vzj9pleNC5hGFFEv4KyxobdoZbcheujY/pf4Q1+UysbPLaGsNU9uMzICZ42NdXc2Zn3bk2SKojOFXqttTXEURKv5/e1vf4vrcwkJIoMmiABovKac2stK5DYjM5BgaN8EAS3UA4DRw1Mc/VOv3GZkDBMdM3gG/XKbkRQWK4rygxEuGw5gPEvnArUtYBpRDFY9y2+qwV6i5WJCNPR4omNGbjMyhqN/6mW0Lb4wIKUSmAoxtG9CEZX3kiGK7PdXsmTJmfdfalpThOnogZLPF194qeYhWgTjHdNMdnnkNiMjCAcidD4zgHdYGZvexeIZ9DO8PzUlNrORwhUuRVVHWowosv5OYts2A/5zfFXUtIBpRPFPBdn+nUNMdmkiAKLVOgtXuOQ2I2MY3j+pmIOlxeId9tP5zADhQOTcF2cBixVFExMCY2NnD6dUy5oieKPVfY1nO3U8DXELIpPJhC7+fq6KZPD1cYb3aQ1ZIdqk1lpo0rpoz2IvMWdtBZxUUPOOYtwKG49ERFHdz8NEIgI+n8BCkszUsoBpzCKBfzxIJKSAY+8k4K7PoebtxXKbkTG46uxaBcJZBF10zyEalLPnSFQU9d9dy9CQjoGBc4faqmFNEQURp9NJR0dHfJ+L5+LJyUmcTqdW9nEWW5EZg00ThwD2YgtrPt6A2R2fIlcqRWvcVF+U3UUEksm2rx+k5xXllc+NRxTFCijY7RHq60OI4sI2vWpYwDSiiHqB2stLsBVrm16AnpeH2faNg3KbkTFUX1xE0Wq33GZkBGa3kTUfb8BWrKzw0nhFUSxvyGCQsNkW5i1Tw5oiiiK7du2K7zPxXOz3+zGbtYk6xtIbqyhao01OEI31fv3HR/GPB+Q2JSNof7KfPf+nVSBUAwsRRfOryRkM4HDE5wFQwwKmAQgCjnIrBqtWVEHjzez5aQftf+6X24yMwD8e4PUfH8WjwDLkCxVF84solJREWL584TncSl9TXC4XZWVlcX0mbkFkMiknD2Cx7H3gGAO7sr9yVjIIByJM93i1UI9ZpIhEJKiNRYyW91UpumfX2UTRqaW1x8ZEdu40EInE52lX+gKmAZFghNd/eJTxdi2HCMBdb6flfVVym5ExRIIRJK3ZNwCRkMR0j1cxOUSnci5RdGpFuf5+kT174otYUvKa4nA4UptD5PP5NEE0D8+QX+sXMYslz0jFBQVZ3XwzmZS15lH+1gK5zcgYogu53FakltOJolPF0GJR8gKmoXEqUiQ6d2hEKX9rgVZ2exZRL1BxQQGWPOWG6Z9JFJ2uvHYgIODxxF+CXKlritfrjTuHKC456fP5MBqN6IzZXfc9WVRcUMjooUlm+pXnso0Xa4GJ4jW5DO4aI+TTFjCdSYfOIGrflVnaHusBUPx4NN/+Gm33nVhgdLo3n+bm5kaorw+zY4c+bi8RABevRvfi7sWYmVHEGk0q/d1YCKJRZPVH62l/spexI9NymyM7U8c9TB33aO/GLAarjnBA0MYD0JtFitfk4hnwKbrdx+iWSfL+6pz78+CXq0+7rthsEvn5ETo7Ewi3VdiaAhAMBhkeHo7rM4IkSQv2v1555ZXs3r2bD3/4w3Ebp6GhoaGhoaGhoaGhkUp+9rOfUVJSwksvvbTgz8TlIXK73bhcLg7+pitu4zQ0NNRL03sq6H9tVDVNFh3/aWP8l4UpfYa4L75wgEyl7C35APS8FN9pnobycdbYKF6by6HfdsttioaGrPR9tI6iv6c2+kYpawpAXl4eRUXxVfqNSxA5nU5EUWT4Da3hpMbJOGts1F5azJ7/6yDs10LmGt9VjjFHz94Hj8ltSkYg/O44Uz1efKPKr0JY8LKLKbzoPtN52lhvvV7CapWYnFxYL6LToXt+5+KMzCAKZhtvao2MAQFyyix4RwKEvMnNP8tGpvt9THZ5tHdjlmUfrCYwFeLw74/LbYrs6EwiK26uof2pfsUftB3+0XoAOi5Nfl5qDCWtKQDDVcNYLPGVZI8rENVkMuE/V3t1FbHyI3UUrnTJbUZGEPKEmeic0SrgzDKwe4zebcrru5MoQ29MqEYMnQuXS2L16hD6BFuYKW3h0jiB3qRj5T/U4ayyyW1KRuAbDTD0htb8PEbvthEGdmuVbSFayXWic4aQR9kHBzExFOPoB06fI1RUFGb16mBCz1DimiJJEnZ7fJVt4xJEZrNZE0TzGD86hU/ruwNE+xC1/7lfKzU9y0THDKOHp+Q2I2PIX+rEnKvcakBwejFU/F9v7kU1NiawfbueUAJ5wEpcuDROEPKH2fn9NsbbtYIKEK1emr/Uee4LVcLo4SnFe0MWSiQo0f7nfmYU2IcoxqliKMbpRJHPJzA2Fn/EgVLXFJvNRlNTU1yf0TxEi6Dz2UEmOz1ym5ERCDoBs9uIoNPKbgNYC03aKe88Gt9VhrtOuX2IzuYZOlUUhcOx8qjxfVeUunBpzEOKtnNQam+VeHHV2mm4Or7mikrGWWXDWqi1PgHl7znOJIZinCqKJiZEjh2LL+xAyWvKzEz8BwdxCSKbzcb0tHZyFcPkNGDMSTDuRWHYCk2su7MRa742WQMUr8ul5h3FcpuRMWz9+gH6dozKbUZKWEiY3HxRZLVGqK0NIYoL96YqeeHSOIFoEKl+WxHWAm0eBejbMcq2bxyQ24yMofYdxRSvzZXbjIzAWjC751CgQDyXGIoxXxQZjRImk7amxBgZGaGzszOuz8QliPLz85mamiIiKTtmc6EseU8FlVtSW0kqW/COBHjjZx34xrQQQoDOZwZ44/+UU7FlsUSCEigwmnIhYihGTBQZjZCXF0Fc4Oyr9IVL4wSiXiC30YHBrh20ASChhWHPY8//ddD57IDcZmQEvtHZPceIsvYcCxVDMWKiqLo6TEvLwuKwlb6mSJKE1+tlzZr4ms7GJYgKCgoACKCFzQEcebyX7heH5DYjIwgHIkwcm9FCPWYJ+yNatb151F1RQv4yZeUCxCOGYhT/Vzvj4yLbtxsJhc4d6qH0hUvjZELeMDu/16blicySv8xJ3RUlcpuRMWjrygmUuOeIVwzFOPoBHV1dOg4fPndTVjWsKSGChMNhmpub4/qcJogWwcyAD/94YlU9lIagEyhrzdNCPWZx1dmpu6JUbjMyBlEvIorKifVORAzFOF2hhdOhhoVLQ+NsiKKAqI9rm6Jo6q4sxaXgXMx4sBaYKGvNU0wOUaJiKIbPJzAzc/bvilrWFMEVFcniQsMwZklIEAU1QQSAs9pGyQYtnheiJTArzi/EWmiW25SMQG8SMbuVXVUtHtr+0MPgnnG5zUgKixFDAOYxI63v8Jw13lstC5fGyRgdBtZ+spGc8vj6ZyiVwT3jtP2hR24zMgazy4jepAlEAGuhmYrzCxXR6mOxYgjAeLWEy3Vmb5ma1hTRHR0HfZy9LeK6WvMQnUxOuZXcphz6XlVmsnhcSLD1a1rya4zh/ZNaM0EFslgxBBA2hZkq9pB31yC9/179pn9X08KlcTKRYIThfRMEphOoya6hePY9dExuEzKG4X0TDO/L/h5VyRBDAHWeEF2bdfDHN/+b2taU4Y5or67W1ta4PidIkhSXvM7Ly8M9WkKNEF9snoaGhnpZcWstniEfR/7YK7cpCZMMMXQ6+u+unft/tS1cAM03VAJw4FddMluikWnUv7MMa76JPfcvLMxUQyObSJYYOpW6n58ofKbGNaVTOkyP9QjT09MIwsJDKuP2vdbV1eFBS/jUeDN1V5RSeaFWdQ8gp8JK690tWtjcLMdfGmJw97jcZiRMMsWQEAbTpAFhtqhCLKdIjQuXxsmIBgFbkVkxeRGLZfD1MY6/pBUuAjDnGmm9u0ULp5yl8sLCrM7TTZUYghOV59S6pliaRJxOZ1xiCBIQRPX19XjRehFBdIJa/fF6RdbBTwTfqF8rMjGLbyxA5zMDhHxaiXqA0UNTTHZlZxPjZHuGDB491a8UYZo2zP2dWhcujZOxFZlZ/bF6LLnaQQrAZJeH0UNTcpuREYS8YTqfGcCnrbEA+MeDeEe09A0AdyDCNf0+HMETOUQLLd6jREZHRyktjV8sJ+QhspZqkzVEJyillX1cDD2vjDCwa0xuMzKC4HSI3m0jhLyaIILoRs9ZY5PbjLhJRZhc0Bqi87wB/PboxmZo03jSn6GRncwM+Hn9R0e1fm6zOGts2Iq0Qj0Q3W/0bhshqOWXATCwa4zerSNym5EwjR/ZnrR7hUToM4n4Zyu5vmVpG5C6MO9Mx+QwsGXLlrg/l5Ag6u3tJaw1ZyXkDdP+ZJ/mFZlF1AuYtZPNOVy1NkxOw7kvVAFFa9zUXFostxkZgaQDnzOIpJc0MaRxEpFghOleL5FQ9lfOSga1lxZTtMYttxkZgclpwFWbfYdKqcKca0TUa6GlAFN6ka1uI36dMCeG1EpEiNDZ2UlVVVXcn41bEDU2NgLgQXNjAxjsek0EzFKw3MXaOxoQFNRvZjG0vK+K3MYcuc3ICDqfGWDP/R1ymxEXqTpdE0ICeUccGGbiKwmqoXwseUYqLyhENGillQF2399B5zMDcpuREeQ25dB8Q/ybPCUiiAJr72igIMubfSfLS+QIRrCEpdOKIbV5iYyVEAol5kWNe9Zdvnw5giAwxXhCD1QadZeVUJ/FiX3JZLRtijf+r4M4Cxcqltfua9NCCGcJByJEgtkTWprKRUSICDh7rHg+6k3ZMzSyE5PTSNFqN6JWVAGIesy0kPQoAzvH2PlddZ/+x5AkiTf+r4PRI9mfz54MUbRpPMiVkTO3f1GTKOrriVayveqqq+L+bNxltwGamprwHo7QJKyK+4FKw5JnJBKWtLA5DY2z4Ky2UbTazeHfHZfblHOSjsVDC5U7gVZ2W+NMNF5TzsDOMSY6tcq2Gsom0apzb1nahsGjA0kgaDu7Z0QN606btIdIhZeurvjXk4T88mvWrGEK7eQbwDsS0MTQPMpa87CXamVBAYpWuyl/a77cZmQEol7AaNdDhh98a2JIQyMzEEQw2vWIhgyfNNJE+VsLKFrlktuMjMBeaqGsNU9uM5JKIp6iWIhc0Bo+pxgCdXiKIkV+KioqEvpsQoJo9erVhOx+LTQK0Jt1VL+tCEuelkcEULJeE0QxjHY9Jqf2XgCMHZlm74PHIIOnjHSKoVW31ZG/1JHy52lkF/lLHay6rU5uMzICKQJ7HzzGmALCopKByWnAkKMV6YGoICpepyxBBPGJopgYMk7rKTjkRAxqBweSJDE6PUxBQUFCn08oq3f16tVMT0/jYRob6k4aj4Qi5C1xMn50Bu+IVip1x72H5TYhY+h+UWsomC2k2zM0cWyGwJRWPlfjZAJTISaOaeFhGm/m6BO9cpuQMfTvGKV/x5lzZpTO/OIJep8O+4CF4fqJBX224GWXYqMU/HiZmZnhlltuSejzCeUQTUxMkJubS1NkNWVCTUIP1tDQUA8mp4G1dzSw7+edGbfh08Lk5EXLIdI4Hc5qG0s/UMVr323DP6GFpWuoh7PlEyWrrLYS16R+utgrvUp/fz9FRUVxfz6hkDmn08mqVasYZziRj2somLxmB2s+US+3GRmBo9JK690tmFxamENwJkTHU/34RjPLiyqXGDI6DBhsupQ/WyO7MNh0GB3afAHgGw3Q8VQ/wRnNk2pyGWi9uwVHhVVuUzKCNZ+oJ69ZuSHHZwqdO60YSjAMXYn5RLrmAAUFBQmJIUhQEAFs2bIFQ6Wk5REBhatcbPj8ErnNyAj84wFGDk0haGVj8Y4G6HxmgLBfKxsbCUn0bR/FP5k5J71yeoaWvr+Kis2FKX++RnZRcX4hS9+v9ZoB8E8G6ds+qjWpBcL+CJ3PDODNsAMlORB0AiOHpvCPK3ssThVFZxJDdc+V4OjRhDLA2PQoa9euTfjzCQuiCy64gK6uLnx4En64Upju9dL9t0FNBADTfT46nxlACmuLWHA6RO+2EULesNymZASOKivWQpPcZqSNs4UktP3hOL3bRtJnjEZW0Lt1hLY/ZH5p+nRgLTThqNI2egAhb5jebSOatwyQwhKdzwww3eeT25S0caYwOUGCkbopfI7ExKGSvER+yUdXVxcf+tCHEr5HwoJo8+bNCILAGFriuGfQT9+ro5oImMXsNmLO1aqrAeSUW7Sqe7PUvaOE4nW5cpsBpH4hOFd89nSfD9+Ysk84NeLHNxZQ1UbvbJSsy6X2HSVym5ER2Est5JRr6wiAOdeI2a2O/UXjR7afNWdIEmG8appATuJCuXSrMgqjRaqizpnNmzcnfI+EBZHb7WbVqlWMMpjww5WEtdCEu94utxkZQeM15VReoIUDAVRdWETZJq0XEURL6B57ql9WG8ZvamX8plba/qdZVjtym3LIX+qU1QaNzCN/qZPcJmVsUBZLx1P97HvwmNxmZARlm/KpujCxvAilUbmlkMZ3lcltRto42+GabciMaSrxnEODqJzolUnzMPn5+ZSVJf5uJCyIAK688kr87ikikpYjUbTaTfXbiuU2IyNo+8Nx2v/SJ7cZGcHBR7o5/KgWAgMQ9IRlzQcYv6n1pD+nShQtpHpPbmMO+S3KTQrWSIz8Fge5jZoggmjeYdCjnA3bYjj86HEOPtIttxkZQfuf+2h7rEduMzKCgkPOhPOH5ouhbPcSSZLE0MQgN9xww6Luk1DZ7Rg7duxg/fr1rOUC3EJijZCUgs4kEglG0LShhsbpyW3KwV1n5+if0i+WTxVD82n42IGkPUeJpUxTjVZ2W+N01F1RwljbNKOHp+Q2RUNDdk4b5h0BMSwQMcS3jT+TZ6j3vOz8rk1Io2znWV544QXOP//8hO+zKA/RmjVrKC0tZQitYVjYr4mhGHqzjrorSlSVQH8mrIUmllxfgd6ilVjWGUSMMnRaP5sYguR5ijQxpKGRPIx2AzrjorYoikBv0bHk+gptPSW6ntZdUYLerL719LTri0hcYsgghhUVJhdDXOHFarWyadOmxd1nUR8WRa688koMdRGt/DZQdXERNW/XwubCwQiOChsGm15uU2QnEpLQGXXoTNrCPrR3ggMPp9cLcC4xFGOxoiheMVS0xk2LVl5Z4xRa3l9F0Rq33GZkBAce7mJo74TcZsiO3qxDZ9Rp5ccBg02Po8JGOKCdPhcccJJ/eOFh1wsRQtkaOjc0PcDatWvR6xe351z0Lu2d73wnR48eZYbsdLUlE/9EEP945vRZkQspLLHrf44w0TEjtymy4xsNsO+hY9p7MZ8MrU6fqChKxDMUmAriGdSqiWmcjGfIR2BKmysydY6QA99YdA3JtKbWcjDRMcOu/zmCFFGnOJy/1oQsYULmhXl74vEKZZso8koztLe3c+eddy76XovKIQLw+XwUFxeTO1FKnbB00QZpKAedUdROcmbRmUTVN2g12HSs/3QTB37dxVjbdMqft1Dv0KnEk1OkhcktHi2HSONU3A05NF9fwfZvHyI4o7wQn3jQ1o4TaHuKKPG0jUgkRC6bcolGKro4MLiHoaEh7PbFVXpetIfIbDbznve8h366tLA5wOQ0aLG+gLPGxnn/2IzRkf6ckUyj4eoyWt6nhUcFPWE6nu7HM+SX2xTZEXQCJqdBOwnXOIEQXT+0Bt9RT1nH0/1alTmiYZQNV6unzPSZMDkMnPePzThrbHKbIjumKQN6r/ryqE5FkiS6Z9ppaWlZtBiCJAgigA9+8IN4mWECrfN63eWl1FyqNZOb6fNx5PFewn5tQet/bZSuF7R+XUjQ9+poWsIHE/UOwcJD5xbjHXJWWVn/6SZM2oGBxiwmh4H1n27CUZlYGV0l4R8P0vfqKGhnrHQ9P0j/a6NymyE7IX+YI4/3MqM1LqbgoJOi/a5zXpdoAYVsCZubYpzhkWH+8R//MSn3W3TIHEAkEqGmpoZwl55mYU0y7MpazG4jQU9Ic3FraJwGe4kZnVHHRGfq8ssWI4bmc67QucUIIr1Zh63EzFS3R/XJ0lrIXBRRL5BTYWWmz0fIp+6DJGeVjXAgzLS2+dXQeBM6k0jR426CttPPE8mqJJfpoXOH2Y2/cJLjx48vuqACJMlDJIoiH/jABxigW/VNWn1jAU0MzWLJM1K6MU9uM+RHgKJVLi2UEig9L5/KCwtTdv9kiSE4u6dosblDIV+YiY4Z1YshjRNEQhITHTOqF0MAlRcWUroxX24zZMdaaKJolUsLrQVKN+ZhyTPKbUZGEPZH6H3b6SOylFhW+3REhAijtj42bNiQFDEESRJEADfeeCMhglpPIqB4XS51V5bKbYbs2EosVJxfoPWSkKD6kmKcVVrs89Ene9n7wLGU3DuZYijG6URRMgopCDpBW+A1TsKSb6J0Y56WQwTsfeAYR5/U9hLOahtVlxSrPnRQZxSpOL8AW7FFblNkp/7KUorX5Z7235IthjI5dG5MHGR6epobb7wxafdM2k61paWFzZs3082RZN0ya4kEI0S0SiiM7J9g238f1KrCAK9+6xB927U48LAvknUlU+eLoqRVlZOg6qJCbMXm5NxPI+uxFZmouqgQtOJESBFJi7QgmnO5/VuH5DZDdsKBCNv++yAjB7S+VOHAif3l/PVILZ6hGF2hNtatW8f111+ftHsm9ej+9ttvZ5xhpiV1v7SDu8fpeKpfbjNkR4qg+pOtGFJYGwiIVtFqvr4Sc25yPSOp8A7Np+1/mpNaYluKSLxyzwGG900m7Z4a2c3wvkleuecAKo86x5xrpPn6ymgVRg1t7YghofrvBkDHU/0M7hmf+7NBDKdUDGWil0goCTHCALfeemtS75tUQXTNNddQXFzMcY4m87ZZiWgQtPKQQOFKF2vvaJDbDNmxFZtZ/fF61ZchjwQjiAYBUZ/csCDXA68k9X6nMlEPnf+RWtGloaERLS4hGgQiQXXvfk0OA6s/Xo+tSPMir/1kA4UrXXKbITvOGhui4eS1M9WFDzKxsEKfoQOLxZJU7xAkWRAZjUZuu+02+ugiJKm723bBchfLbqxGb1F3rfiZAR8Dr4+pPi4+MBVismsGQd3DQNATZt/PO/EMJr8XUapFESRXFDW8s4yyTVriuEaUsk35NLxT6zfjGfSz7+edWg8iASa7ZghMq3svJegEBnaNMTOg7oqDeouOZTdWU7Dc9aZ/S4Vo6T1vKiPFUFgKcbBzPx//+MfJy0tu0a6klN2eT09PD1VVVdSFl1Mp1Cfz1lmFziiit+rS0nNFQyPbSGXH8WSHz02cZhqr+tfFi6+KCwrwjwVPCn9QI1rZ7SiFK1yYXAa6/zYktymyksq5QUMjmzG5DIQ84dN+P5IZ2paJQijGaF4Pu0a2cvToUWpqapJ676SX/yorK+O6666ji8OqLsEdDkQ0MTSLMUdPwQqX3GbIjs4kklOuVclpek8Fze+tTNn9k+kpOp0YguR4irpfGFK9GNI4weCecdWLIYDm91bS9O4Kuc2QnZxyCzqTyiu0AgUrXBhzklNWOdvxjwfPeFiQLBGTyWJIkiQ6pcMsX7486WIIUiCIAO666y58eOinOxW3zxpMTgOrbqtTfSUpR5WN+itL0ZvVHT5YtMrN8g/VqD58sG/bCN0vpnbjlwxRdCYxFGOxokjUC9pCrzGHMUef9Ny6bKT7xSH6Xj19jxW1IOgEln+oRvV5M3qLjvorS3FUqjsf21ZsZtVtdSktNJKpIXLzGaSHkZER/uVf/iUl9096yFyMq666imcff4FWLkVQaeKEIEL9VWX0vDKckpyJbEHQCQiiliSrt+rQm3T4xgJym6IaEg2fO5cYmk+i4XOVFxZStMqt+rK6WshclPWfaWJg1xhdzw/KbYpGBmB2Gwn5w4RUnkulM4pEwpKqq+1ZC02UteZz5I8956y0l0joXKYLIYh6h17lGTZcvJa//vWvKXlGyvyxd999Nx6mVN2oVYpA2x96VC2GIFo2VO1iCCDkCWtiiKhnpGi1G5Mr9RX3MrnQwuDucQ4/ejzJ1mhkK4cfPa76EEqTy0DRarfmKQN8YwHViyGIph+oWQxBtNBI2x/OLYYSIRvEEABLPEwxzu23356yR6RMELW2trJlyxY6OEiKnFBZg6PCiqvWLrcZsuKotLLuU42qD5srWOak+pIiuc2QnborSskpS08+VbyiKB7vUIxERJFvNMBE50z8D9NQJBOdM/hG1X1gklNmpe6KErnNkJ3qS4ooWOaU2wxZ0Zt1rPtUI45Kq9ymyIqrzo6jYuFjsFCBkw0hcvPZc3wX1dXVvPOd70zZM1KasffP//zPTDHGMH2pfEzGU3peHiXrc+U2Q1a8IwFGD02qPn9GZ9ZhtKs7byQSknjlnv1pbUq6UFGUiBiKEa8oMtj0lJ6Xp/rS/BrRXInS8/Iw2NQ9Nwzvm+CVew4QCan7ENVo16NT+eGhoBMYPTSJd0TdhwQl63Ip3Zjc8tLZJIQARqVBhqb7+c53voNOl7rvRcpyiCAa83fRRRex/fmdnMfbVJtLpDOJhP1ayJiGhtycLadoMWJoPgvNKbIVmVlxay17ftrOTL96e2xoOUTRpOkVt9Sy+ydHVR9iraGhcTKJ7CHPlEuUbWJIkiT25r9ESXkxO3fuTKmOSKmHSBAEvvrVrzLDJH2od7GLvchqPwkWdAIFy52q95AgoPoxKFjmZOmN1Wl/ruuBV07rLUqWGIKFe4pmBny8cs9+VYshjSgz/dF3Qe1iaOmN1eSrPFTMaNeDOs+O5zDa9RQsd6o+oiS2Z0zGgXq2hcjFmHQPMjDcz4c//OGUO1VSXuR+48aNXHvttbSzj4ik3gRBZ5WNDZ9rwpJvktsU2RD1AvVXleGsUXcJzcZryml6j7r7bAQ9Ybwj8m3+Ul1sIRl9ijQ01IZ3xK/6QgJN11XQ+K5yuc2QFWetnfqryhBVLIgs+SY2fK4JZ1Vi+6X54icbhRBARIqwb2wXb3/721NaTCFGSkPmYhw8eJClS5dSH1lOpdCQ6sdlJIIuWllrcPcYkaB646P1Fh0hr7oXPHuJGQSB6V6v3KaonvGbWpPqHTqVc4XPNb+3ktFDkwy8Pp46IzIcLWQOila5yG1ycOBh9Y6BRhR7qQVJkpjpU7fnWO17BdEgULjSzcCusYSr7JVuzclaMQQwWdXP9s6X2LVrFytXrkz589LSBnnJkiXceuutdHCAoKTOBDkpLNG/Y1TVYgiYm+AEUb0nP9N9Pk0MAQarLqWN5hbCsk+8IevzfWMBgipe9DWiBL1aSX6T04DBqu6wcoDpXq+qxVBsb6BmMQQQCUb3jGoVQyEpxP7h11m3bl1axBCkSRABfPnLX8ZkN9LO/nQ9MiMp25RP+Vvz5TZDVlreX0X129RdejqvxUHxWrfcZshK8/uqqLpQvvegfGu0FP5bLk2NKFpIcYWOp/oZPZS9i5ZGchg9NEXHU/1ymyErVRcV0XxDldxmyErxWjd5LQ65zZCVmkuLaHm/ut+D8rfmU7Yp8X1irKBCIk1aM4UODhAKhfj+97+ftmemTRCVlpbyr//6r3RzhClpPF2PzTh0BhFRn7Zhz0iG9k4w1qbuTaCj3IqjUt25VEef6KXzuQG5zQBSJ4rOhagXMOaou8CGBhhz9KpvRtr57ABH/6TeRu4AjkobjnJ1990ZPTzF0N4Juc2QFVEvIhrinw9Kt+ZktQiKEXL66KKNu+66i3Xr1qXtuWnJIYoRCARYuXIl/QeHWcsFqi3DraGhIS8x79CpvPTU8qTcf6Glt6suLqJgqZMd9x5OynOzES2HCNbd2cjQvgk6n8mMAwINDY3sQkllto9W7mRyeoLu7m6s1vQdEKTVVWE0Grn33nsZZ5h+utP56IxCEKFotVvV8dK2IjMVmwvkNkN2dCb1egt1JpGqi4vSWnmxfKv9jGIIkuMpWqgYAhh8fYzDvz++6GdqZDeHf3+cwdfH5DZDNiz5JqouLlL3fGhW788eo2JzAbYis9xmyIbBqqNotRshzlfhbF6hbPMYDdHLsa4O7r777rSKIUizIAJ429vexrvf/W7a2ENICqb78RmBzqSj5tJi3PXZ9aImE0uBicKVLnRG9S4Cte8oYdlNNXKbIRuRkETBUidml7yFFU5lMaIoHjEE4B0JMNnlSfh5GspgssuDd0S9RRXMLgMFS51EQuotOrT8gzXUvqNYbjNkQ2cUKVzpUnVrEnd9DjWXFqMzLuywXCkhcjEEU4TD7Obyyy/ns5/9bPqfn86QuRhdXV00NzeT6ylhibA63Y/PCNReUhIBUO/aB4C9zILBomPsyLTcpqiCs3mGTkci4XPxCiK9RUfhShfDeycITIfifp4SUHvInNGuJ3+Zk8Hd4+peE1SOu8FO0BNmukflFUhVvjdY6N4wHiGULWFz48s7eX3/Lvbt20djY2Pany/L8XxlZSVf/epXOc5RxqQhOUyQndgLby1Q6WnI7IRntOtV6yWa7vFqYgjS0pU9XjEEUU9RPN6ieMUQRE9Fqy4swpxrjPuzGsrAnGuk6sIidAZ1zoNAWuaATGesbVq1YkhnFDHYZ4vLqFQMxfaC5xJDiXiFssGLNCGN8NqeHdx4442yiCGQSRAB3H777bzlLW9hPzsIS+o8GS1Y5mT1x+pl78UiFzqjyNpPNlC0Rr3lp3PKLYsqr5ntuOrstN7Vgt6cuny6RMTQfBYiihIRQwD+iSCv3LNfC5tTMZNdHl65Zz/+SXWGkOstOlrvasFVt7jvaTZTtimfnHKL3GbIRtEaN+s+2aDaw1GT08Dqj9VTsMx51uuyQdgkQkQIs58drF23lh/96Eey2SHb2yeKIvfffz+SOcxR9sllhqwMH5hk3y868U+ocyEMByIc/E03AzvVm0xsKzJTuNwZdxKlUvAM+uh8dgApw48FzyaKEhVDGhoa0apSnc8O4BlUZzNSQYTCFS5VFxMY2DXGwd90Ew5E5DZFFvwTQfb9opPhA5NnvEapYghgelkfPp2HH//4x+j18rWhkCWHaD7f+MY3+OIXv8h6LsQp5MlpiqyIekHVCaWqReXx0qlmsd6hUzldXtFiBVH9laX4J4N0/02d4cNqzyGqOL8Ak8PAkcfV3YNH9WhrgSo5194vmUIoE3OJJqUxtvMs111/HQ8//LCstsh+Lv3Zz36WDRs2sE/FoXMVmwtYfkut3GbIRsEKF0uuq5DbDHmYnQf1FvWWYLfkGclrTn539mSLIXizpygZ3iHvaEC14VIaEJgM4h1Vb4W5vGYHljz15tDNzf0qFUNLrq+gYIVLbjNkY/kttWdsQaJkrxBAWIqGyq1YuYKHHnpIbnPkF0Q6nY6f/exnSJYQh9kttzmyMN4+Tf+OUdUmloY8IQLTIQRRnQPgqrOz8fNLMDrUmUuWt8RB3RWlcpuxYGKiKFmhcj0vDzP4+nhS7qWRfQy8Pk7Py8NymyEbdVeUkrsk+Qci2YDJYWDj55eoNn9KEAUCUyFCHnUehiNA/45RxttPLq6ktHLaZ2JiaRde3TQ//elPMRjk3//IHjIX40c/+hG33XYbK2ilUCiT2xwNjbShM4rkL3UytHeCSFB9MdSiQUQKS0iR5E1FqfAOncrx85JTIVDQCZhdBtX2oVF7yJwlz4hvPIgUzoilOO0IooCgE1Q79xUsczK8b0K1+TMaJ5NKIZRJIXPDUh+v8xI333wzP/3pT+U2B8gAD1GMD3/4w1x77bXsZwc+SZ0VlyrOL6D2shK5zZAHAQqWO1WZWBoORBjYNabKDQFAJBhRrRgCyG3MYe0djaoOm1QreouOtXc0ktug/NPgMyFFJFXPfQO7xlQphmxFZgqWO1UbGVN7WckZQ+VSgYiUlrVxIfgFH/vZweWXX879998vtzlzZIwgEgSBH/3oRxSVFbKXV8kQx1VaCc6ECEyp1HUMVJxfiFulGwOdSaT6kiLVxtJXnF+QNWFzyRRDABPHZtjzf+2q3BSpnXAgwp7/a2eic0ZuU2Sh7srStG4KMwlLnpHqS4rQmTJmG5ZW3I05VJxfKLcZshGYChFMQ6igiISYQQlqkiTRU7kfi9PMT3/6UwQhcxSxfPXtTkNubi4PPfQQF110ER3SQWppltuktNL/mnrLTyPB7h8dVe2mMBKSyFviYLLLo8rQqcBUKCleokw5AYuHkDfMZKc6veJqRwpLqv7d+8cDBKfVeQhoyTOR2+Sg87lBuU2RheMvDtG3bUS1xSSO/z31VUUzSQjF6KKN9mPt/Pd//zeFhZkliDMmh2g+//qv/8pXvvIVVrOZPKFIbnPSTunGPMLBiGr781gLTHiG/HKboZGFpFoQJds7FKN4XS7eYT8Tx9TnKVBzDpGz2oYl3xQtqqOhoRLUvMYXr3Uj6kV6t42c8ZrF5hGdTQilag1bCJOGEbYHnudzn/8c3/jGN2Sz40xkpK/23/7t37j00kvZyzZV5hOZc42Y3eoMnXLX21nziQasBSa5TZEF0SBgUmm1OWOOflEhg9kqhgCKVrnIqbCm7P4amYmjwkrRKpfcZsiCJc+IMSejglTShslhQDRkTqhQOrEWmljziQbc9dnnzU8GJldq93eZ6BUCENxh9hu3s3zFcu655x65zTktGekhAhgZGWHt2rWMdU6yli3oBC3hWBUIUVE01ibfKYacLLupmkgwwv5fqu+0fNlN1YT9EQ48HP/Pnm2FFDROoGYPkZppfm8lOpPI3geOyW1K2ml5XxWiXmDvg8fkNkUW3A12xo5MqzZc7lwk4iFaqBCSYx2LSBF2Ci8guCI8//zzrFixIu02LISMPZ7Jy8vj0UcfZdOmTRz2v04za+U2Ke3kL3MiiAJDe8blNiV9SMyJIUEESWUpRcf+OpCWRMtM5OgTvQQ9YbnNOC2aGNLQSC5tj/VgsKrzoPPok70YVFhVMramq/HAs2CFCykiMbx3Iun3zlSvUIwOy15mQpO88MQLGSuGIEND5mKsWbOGH/zgB/TQQY/UIbc5acdVY8NZpc4wmvK35rPsphq5zUg7071e/ONBuc2QBe9IgJA3fkGUzaFyMfKXOlj90bqUP0cjs1j90Tryl6qzKWnIG1ZlARkA/3iQ6T6f3GaknWUfqqH8rflymyELziorrmpbUu+ZaRXkTkdo6QQd3sP8y7/8C62trXKbc1YyWhAB3HLLLXz0ox/lILsYk1JflSOTOPJ4L0f+2Cu3GbIw1e1leP+EKnsUOKtttLy/SpU/e+WWQorWuOU2I+34x4OMtU8jiCr8pasUQScw1j6tygOQojVuKrdkVoWptCBAy/urcCZ5Y5wVCDC8b4Kpbq/clsjCkT/2cuSJ5O3nEhVC6azEOiGN8re9z3LBBRdw9913p+25iZLxggjg3nvvZcuFF7CHV/BIKnK1zr7vzhqb6hJvJzpn6Ht1VJUxxiF/GCkkoTerL6RCb9HF9XMrwTsEMNXj5djTA0ltUKuR2UhhiWNPDzDVo74Not6sU2UjYr1ZhxSSCPkzMzQ4pUjQ9+qo6npuFa12nxDAC5zee8+bOuO/ZYNXCEAsDLNHfJnzNm3kz3/+Mzpd5n/fM7aowqmMjo7S2trK8cN9rOdCDIJ6qrDVvL0YS66J/b/slNuUtFN5QSGBmZBWllbjTShFDMUw5xqJBCOqa86s1qIKxhw9okHEN6rOsDEN9VC8LhejTU/XC+rrudTy/iq8w346nuqP63OnK6yQLCGU6rUtJAXZl/8yoXCIAwcOUFSUHe1zssJDBNGmrU888QTmXAN7eIWIirLtjz09oEoxBKAzi+hV2snbWW1TZfl10SBisGdsvZeUsfymGkrW58lthkaaKNmQx7KbquU2I+0Y7HpVlpw2u43qDJUD9CYRnVmd6/j+X3Ry7K8Di7pHtniFIFpR7g224fP7ePDBB7NGDEEWCSKA+vp6fve73zFtGKfmH9xIkoRoEBB0JyZXnVGcy70QRCH651lEg4CoX+C1+jdfK4ixa0nytTEjTr5W0AmIBmEujMZeZqHsLflnvfbEzyqeGBfhlJ9VJyAaTh6XhK5d1Bgu7NqOv/TT88rwgscwGeO98DFMwnifOoY6Ye5nb7y2nKI1riSNd3reWVF/8rgkMt4rbqmh+uKis45hxd9zIBZ1IoEQEk6EI4Rn/xx7TkhACAsnXxs7T4mc/trYCVo6x3v/rzrp3Tqc/Hc2nmtlmCOEeXvjROaI+WN49msza47of210rsR8InPEgq7NwDmi5pIiVtxSu6BrF/fOJmlOTtI+onCli6ZryxH18YxhPNdm7hzRs3WEzmcHT39tHGP45nHJ3DmirDUPW5E5Okaxj8YzR0igC4EYC+KKZ107x7WpnCNMl3kZ1w3xyCOPcMUVV5BNZJUgAjj//PP58Y9/zE9+8hOOcZAVt9ZSc2kxACaXgda7WnBWRU9hSjfmsv4zTXOfXXZjNXWXlwJgsOlovauF3IaoW7JotYuNX2yeu7b5hioari4Hoi9p610t5DU7AShY5qL1rpa5L0TTuytYcl3F3Gdb72qhcIULgNwmB613taCb9XLUX1UWTZifZcPnl1C8zg2Aq9ZO610tc83q6i4rYfm8SmvLb6qmdGMegk7AUWGl9a4WzLlRD0L1JUWs/PCJKlVrPlFPxeYCAGzFZlrvasFWaAag8oIC1ny8fu7aVR+po/riqIq35BppvauFnPJodbuy1nzW3dl4woaba6l9R0l0vB3R8XbVREOXStbnsuFzJ8Z76Qeqqb8yOt56S3S83bPjXbgqOoYxllxfSeM10fEWdAKtd7WQvzQ63vlLnbTe1YK9JGp/4zXlNL+3cu6z5/1TM4WzOVbuhhxa72qZi0+vu6KUpTdWz127/rNNlKzPjY53jY3Wu1owOaONUGvfUcyKm08s1OvubKBsU1SA5pRZaL2rBUtetGFs1UVFrLrtxBiu+Xg9lRdEk4RthdHxthdH7a3YXMCa209cu/If6qi+JDre5tnxdlRGx7v0vDzWfaoRKQJ7ftyOs9pO3eXR8Tba9dExrIuOd/FaNxu/sGTuvi3vr6L+nWUA6EzRdza3KVrBqmDFKeP9ngqa3h19ZwUx+s4WLI+OYV7z7Ds7O/E1XF1G8w0n3tmNX1wyV/jAXR8db4Nt9p29vJRlHzzxzq7/TBOlG6Pj7ayaHW9XdLxrLi1mxa0nxnvtHQ2UvzWf9if7GDk0SetdLXMNeiu3FJ5Uha30pVLcbVEbDNMGqp6uwjQevdbZ7qTsb2Vz15ZsLcF9MHqt3qun6ukqzGPR342j00HFcye+u0Xbi8jdF7U33XOEbyxA0BNe1Byx/tONlJ0X9TJlyxxhK4o+c1FzREt0jogtztkwR6z/VNPcPimROSLGsptqsmqOEPXzNpMkNkcA2EstZ50jVn+0jqoLo+NtzTdF39lSCwDlb8ln7Scb5q5Nxz7i+EvDGHMM5DbJu49I5xxRsNxJ8bpcyjZlwD4izXNEwXIXjiprwnOEeSq6rhkno78bV7uLshfnrWuvlOA+NLuueaLrmmksel/HMQflz5fPXVv8ajG5+6P26vy6lM0R0gXjPPnkk3z84x/nbW97G9lG1uQQncpXvvIV/vVf/5U1Ba1U6OuY6fchGkRyG+xMdM4QnAljyTNiLTAxcjCaoOassRH2R5ju9SLoBPKacpjs8hCYDmF2G7GVmBnZPwmAo8qKFJaYOu5FECFviYOp4178k0FMTgM5ZRaGD0yCFJ1UEGCyywNAfouDqdnyycYcPY4KKyMHp5AiEjllFkSDyMSxaGJhXrODmQEfvtEABrseZ6WV0cNTREIS9hIzOrOOiY7otblNOfjGg3gGfOitOlzVNsaOTBMORLAVmzHY9IwfjZ5suxty8I8H8Az50Zt1uGptjLVPE/ZFsBaaMDkNc70A3PV2AlMhZgZ86Iwi7no74x0zhLxhLPkmLHlGRg9Fx9BVayPkDTPd50M0COQ25DDR6SE4E8Kca8RWaGbkYHQMndU2wsEI0z3zxrvbQ2AqhMllIKfUwnBsvCutSBJMdXtAgPxmB1M9XvwTQcxuA8tvruX4y0P0bRslp9yCIAonjfd0nw/fWODEeB+aQgpL2Mss6OaP9xIHM4Oz423T46yyMto2RSQoYSsxY7DoGG+fHe/GHLyjAbzDfvQWHa6aeeNdZMaYo482lyPaaM4/EcQz6EdnFnHX2hlvnyHkC2MtMGFyGRlrmx3DOjvBmRAz/SfGe+LYDEFP9J215JvmxttZY0MKS0x2eRD1ArmNOUx0eQhOz453kZmRA7PjXWUjEoow1eNFEAXyluQwedxLYDJ42vFGgsnuee/s7HibHAZyyi2MHJxEihAdb53AZKfnxDvbPzvedj2O+e9sqQWdSZx7Z/OW5OAZ8uMdCWCw6nBW2xhtmyYSnH1nrXrG26fnxts3NvvOxsb76DRh/+w76zAwdmSa0q05WAbNRMwhgo4gQlDAMmzBl+cjYoxgmDKg9+jxFkWT1c1DZiLGCAFnACEkYBmy4Mv1ETFF0E/rMU4b8RRHfzbzsJn+22ZkmSN840EKljsZ3juxqDnCOzL7zmbJHFG5pZCQL8zB33QnPEecOt7ZMEc0XVPO8ZeGmezyLHqOiK1r2hxhODHe899Zk4i77sQ7ay0wYXYbGT0ce2ftBD2hlO0jZgZ8SGEpY/YR6ZojzG4jhStdHPxtd3S8ZdxHpHuOmOj0IIWlhOeIyhcdmIfNJ69rXj3ewnOva4ZpA4YZA56iE+taRB/B5woihAX8HyHpc0Sv1Ml+tnPbbbfxv//7v2QjWSuIJEnizjvv5Pvf/z5LIxsoEsrP/SGFYHIYKD+/gPYn+5DCWfnrixvRIBAJquNnnU/RGjeVFxSy497DqvldQ/SUMBKMMPD6+Jv+bX6yaSriquVqwuqut1NzaTG7f9JO2K+eHEk1FlXQmUVW3lpLx1P9c5shNVC0yoVoEOnbrp4iOYJOYN2djXS9MMjAzjG5zUk7okEkElTHfCboBGovK+H434bwTy6unH4yiwZFTunhcbYqdokgtczw3IG/cPPNN/PjH/8YQRDO/aEMJGszlwVB4Dvf+Q4jIyM88sgjGAJGcgV19DXQ23Q4q2yYHAZ8Y+qoUBQTQ3lLHEwci3pe1MDEsRm6RXX13wKwFpkJn+Z3fGrlnQhCUkWRXGIIYOzINGNHjsj2fI30EfZF2Pl99f2uLfkmdKbML7+bbLpfHJrzLqgBvSW6Rxk5OKkaMQTRw2pnlY1+2+iiBVGySLUYGpOGeKPtFZYuXcr3vve9rBVDkMUeohiBQIB3vvOdvPTSS7RMb8QhuOU2KT0IqK5Hj96sY92nGul8dkBVJ4waJzhdKVJIjqdITjGkZtToIdLQUDIl63OpuqiIHd85rJrDyzmStDdbrIfoVCEUI5mCyGeb5g3dK6xZs4bHH38cq9WatHvLQdYVVTgVo9HII488wtKlS2nP3820NCm3SelBiia8NV1bPpdUqnRCvjC7fnBEfWJIgKqLi8htPL0YUCwCJ5XfPpMYgjNP/tnG0g9UUf227ClTqpEY1W8rPikpXg0Y7HoU8jVdMLmNOVRdXKS6n7tv+yi7fnBENWLIWmii6dryaNGLDDioTsd6GMnz8zp/Jz8/n9///vdZL4ZAAYIIwGaz8cQTT1BSUkJH0W5mVCKKpAgYcwxz1XvUQMwNHUuIVAUSWPNMGB0GuS1JK43vKmfJeyrOfeEsi1kEMsU7NLx/ci75WUO5THRMzyUxq4Ul11XQ+C715PoCGB0GLHnGjNgkpwNBFMgpj1byy5SQsXRgsOox5hjmWqTIRQQhLWLII01zyLQTh8PBH/7wBxwOR8qfmQ6yPmRuPoODg1x44YWMjY1R3bcCm6CyE3WVYMzRs+5TjRx9oo+BXepLUlUL9lILCDDd4z2rd+hUEgmfyxRBpEa0kDl1YC+zgATTvV65TdFIEUVr3NRdXsKO7xwmMBWS25ysJp6QuXhE0GJD5sSSEK+HXsblcvH8889TUlKyqPtlEorwEMUoLCzk2WefxeVy0Vn6Bh5JPZuc2stKqL1MOS/m2QhMhdjz0w7ViSFBJ5C/zCm3GWljutfLdE/8m6d4T8gySQzFytXOb9anoSxEQ/R3PL/BoRqY7vGqSgzlL3Oe1HxUDQzsHGPP/R2qEUO1l6dm35UqMbRYvNIM270vEAqFeOqppxQlhkBhggigqKiIZ599lpycHLrK96pGFM0M+Jjp98ltRtqIbZStBSbVLDqOSitN15TPNbJUA84aG5UXxl89MltzisxuY7RZabFFblM0UoSt2MzSD1TPNR9VA5UXFuKsscltRtqwFZlpuqZ8rpmu0hF0wlwus5pE70yffPuudIXHxfBKM/RUH8DtdvOXv/yFqirl5UAqKmRuPr29vWzZsgWfz0dF91KsQvJqumc6eouOkFf5yYx6s471n2mk87lBereOyG1OWjC5DPjH1RObXbTaTfnNefStH0jo+OZc4XOZ5B2CaLdvo0Ndv2M1hsyZXAYCk0EkNVQkFmD5TTUM7h47bV8xpaKmubr0vDyqLixk+7fUUVUu1Xuss3mIFiOCEg2X05VGeNXzHHa7nZdeeomKioXn9mYTivMQxSgtLeW5557DbDbTUbKbaWlCbpPSQl6zg3WfbMTkVP7pY8gXZv8vulRVdS62wBqs6ujlMbBrjL6NiYkhyD5PkRRBNZsoNeMfV4kYApDgjZ91qEYMxeZmNX2P+7aPsv8XXaoQQyangXWfbCSvOb2FBNLtEYoxI03xhrQVgIcfflixYggULIgAysrKePHFF8nPz6ctbyeTkvJzTsaPTtP5/AD+CXVMxhOdM0hhCZPLgKjPrs1votReXsLSG6vlNiMtxIop6D2JV1I80yKSad6hGIUrXVRdpI4m02qk6qIiCle65DYjbagpNBBg6Qerqb1cWbkVZ0I0CJhcBqSwxESnOqpj+ieCdD4/wPjR9K0fsh3slfs5UrATp9PJG2+8QWtrqzx2pAlFCyKI5hQ9//zz1NfXcyDnVcakIblNSinhQIS+V6MeE3uJWRWJu6JeYOWttVScr45N5MDOMTqe6pfbjLRhHbBQ+ULZokVRtniL9Gadqkrpqw2DTRftV6ICTC4D6z/VpKoeah1/6Wdgp/IPXwEqNhey8tZaVRxG6owi9pJo/m7fq6OEA6l38cq5bk2KI/x96GnMZjMvvPACZWVlstiRThSbQ3QqU1NTXH311WzdupUm71ryhWK5TUopol5g3acaGXh9nM5nBuQ2J+U4q21M93kJ+9USh6IOSrfmIIQELCNmPPleSFKkoIiUsR4itaHGHCK1IOgE3PV2xtuniQRVsdVQFTqTiL3EwsQx5XuHqi4uomilix33HiYSSt27XL7VnhIRFE/+0Kg0yCHbazQ0NPD73/9ekQUUToc6jqmAnJwcnnjiCS6++GL2GbYxIB2X26SUEglJ7Huok67nB+U2JS1MHJsh7I+gt+ow2tVxur7kugpKN+bJbUbKeOf+aKEMSS/hKUqeGILMDZeLIYio4tRVbYh6gSxxVCYFKSwxemhKFWKodGMeS65Tbn7FfIw5evRWHWF/RBViCKDr+UH2/bwzpWII5M97FVZ42KN/mU2bNvH3v/9dNWIIVCSIACwWC48++ijvec972Ctso0s6sqDP6Zrq0TXVp9i65DMz4JvLr6k4v0Buc9JCy/uqVBO/7RnyKz5XbJ3jGABiQKRgTx7GSXXkI2z43BKK1+XKbYZGkilZn8vGzy+R24y0YCsy0/DOMnRmdWwz/BNBPIN+uc1IC7WXldDyPnVslCvOL5jLk5oZyL7WJj+tfJGfVr64oGuPS+0888afaWlp4Xe/+x02m3pK5QOo4yh9HgaDgYceeoiSkhK++c1v4pNmaGAFgnBmVR4+dOQkURQ+tDAhlSk4K20ULHfR++oIYZ+yQ8qOPtFLYFodTeGU7P2LeYcgKop2jFdjmNGj8+uAxEXgYrt0p4ujf+rLysVX4+yMtk3jn1TH/GTM0WPJM6omjHnk4CQjByflNiMttP+pD4MKIjF0ZpGC5S7840EGx8flNicu5ougt5euOuu1kiTRX3yEg/27uf3jt/Otb30Lg0Edh4/zUU0O0em49957+fSnP811113H0K+D6IQzx+SczkOUTcJI1AtRV68A52jNoghEg4Al16T4TaXOLFJ1YRE9Lw3jn1SOt2i+IIqxY7J60ffNFkGkJrQcIo1sxuQwUPaWfDqfG1D8gaOt2Ix3xK+KEMjYXmlu75QGYlVVF8PpvEFnE0QRKYJ4ySR//etf+cIXvsDXvva1szoIlIw6fNln4M477+S3v/0tjz32GOHzRwhKgbg+n02hdJGQhKgXWH5TjSpKvlZfUkzzeysRlP6GR8BVY8My2yVcyaxzHEP0iximEzuZzCYxZLTrKdmQq+URKQhRL1CyIVcVOY6WPCN6lfRKsxSYcNXYkBTegkcQofn6SqovUXZBKoi2Plh+U01axdBiiSc0LkZICiJcPMHf/vY3vvKVr/D1r39dtWIIVBgydyrXXnstzzzzDFdddRV+gqyS3opFUGbcZCQkMdXjwTus/DjnrucH6ds+qvjmh+FAhJ0/OKIKrx9A0a4CIvoIA+uUXT7f6DBQ87ZiJjpm8Awp//uqBsxuIzVvK2bquFfxYb01l5agM4q88bMOuU1JOeNHp1UxB0sR2PeLToIzyn53AbzDfqZ6PFkjhhJByA+zn1fwvurlqaee4oILLpDbJNlRdcjcfA4dOsRll13G8Y5eVtKKS8h/0zXn8gZlUwgdQE6Zhaker9xmpBYB8ppyGDmYPd6BRBD1AsVrc+nbPqIIEXi6kDmA0ISVPcFiIsb4f8hs8hAhgCCgiN/luVBTyJwggiSh+M2z3hKt9qlkMS+IULI+j/7XRhW9cQbIW+Jg5NCk4t9bufdEiYTMncsrdLpwuQlplD28jMVl5uc//zmXX3553M9VIkoPKFowTU1NbNu2IVKtjgAAdJdJREFUjdbzN/IaL9AjxX+ylS3hcwAFK1wsv6VW8V3E85pyWHJdJZY8o9ympBRLnomqi4uwl1nlNmXRnEkMAeidHtbkt6fRGpmQ1CGG1IYUQfGbSoCQN6xoMQRgL7NSdXERljxlhytb8owsua5C8c11TS4Dy2+ppWC5U5bnp0IMnY7g0nFeE55nTetqDhw4oImheWgeolMIBAJ88pOf5Ic//CEV1NPACsR5iSgLFT3Z4C1yVFqZ7PLIbUbKseQZ8Y7Elx+WjegtOkLe7A9kP5sgAgj05uI7UMnhteMLPtLJKu/QLKUb83BUWjn4m265TUkpavEQLbmugskuD73bzv5+ZzUCrLi5hu6/DzHWltm9vpKBUubcc6GWNVTOPVE8gmihQmi+d0iSJI6KezkWOURrayvPPfccJpOyxXy8aB6iUzAajfzP//wP9913H8c5ym5eirvYAmRHwYXYF794rVu2U5F0EJvIi9flYsxRbtpcyBsGAZw1ysyBiyGaA+hyPKyxds/1KVIi/smg4k/Z1YRnyK+oSpCnQ2cU8Qz7CUwpO8/EWWMDAUWLIWOOfq4XmpLFUMFyJ8Vr3QAZL4YSKZwAINgk3jC8wrHIIf793/+dF198URNDp0ETRKdBEATuuOMOnnr6KSLuANt5lhkpesIcr+cnG4SRvdSCvcQitxkpRWcSqXhrAblNDrlNSSn5zQ6W3ViNOTc7QwTP5R0C0OdOY9twGNEY3YwoVRSNHJhUdK8ptdH1/CAjB5Tdpybsj3Dkj73M9Cu33YE518iyD1aT36zstSS3yUH5W/PRmZS9TbSXWLCXZvb+JxEhFPMOeaRpdpleYFI3yp/+9Cf+7d/+DZ1OHRUg40ULmTsHbW1tvPOd76Tt4BGWsp5CoWxRAifTQ+lMDoNiTzF1JlEVTQJtxeas3ZAsRBBBNBcj2JOPzj2Nzh79Wc/Upygbw+VimBwGBJ2Ab0y5J7RqCJkzu41IYUmxcytEf0ZbiTkq+hS+q8jmOTYelLxmZtJe50weokS8QTHeXrqKIamXfWynpKKYH/7wh7zjHe9I+H5qQNnSPwk0NDSwbds23vXuq9nDK7RJewgePJzw/TLZY2RyGFhze4Niw+diE3tes4Pyt7y5iqBSiC3U1kIFu8QlgZnXGgj25M39lRI9RUveW0nF+QVym6GxSCrOL2DJ9RVym5FSchtzqLu8FEFUbh+T2JyqZDFU/pZ88ma9X0oVQwUrXKy5vR6jQ/6iUqcTQ4mGxsW4tGQl4y3d7OZlLrvqHezZs0cTQwtAuQkVScThcPCb3/yGb3/723zus59jglFWhUox6e0J3zMmijLJY+SfDHLk8R7Fh3VY802Kb2Sav8xJ0zXl7LjvMP7xzDgFSyaCTsJ52XZE08m5Cuscx87oKcpG2v5wXBV9P5TOsb/2Y7Ape7nt3TbC4J5xpLAy3UMml4HVH63n0KPHGd43Ibc5KcNaZAYFi1qAkf0TIEkEMsRDFGMxIijG4HCIXbzI2L4hrrvuOn7xi1+g1yt77kkWWshcnLz44ou8973vZaRvjJWV15JrrVz0PTNJFMUwOQ2UrM+l89kBZZf/FVBkeIcgCjhrbIwfza5KTwsNmZtPJKCbyyeKERNF2RwupxbUEDKndJQcWjUfV52diY5pZa6JCl0LYwgiVF1URN+roxkZKpcMMfTT3+Tx6X/ah9Vu5Ve/+hUXXnjhou+pJrSQuTjZvHkzO3fupPWCjezo+iUdI9tYrKbMxDA6e4mZ3CYHOrNyk++shSbW3t6AVYHeIikizYmhTAgLWAiJiCHP3iom/7qGU7+CSgmfEw0Cte8oyfikX40zYy+zUPuOEkS9ck/dV364jooLlBvaGZtDx48qUwxZC02svaNB0WHWOrOO3CYHthKz3KYAJ8TQYsPjIFpS+74fj3Pbp7aTm5/Lyy+/rImhBNAEUQIUFxfz17/+lS/+4xc5PPQcu47/lkBo8eUaM0kYjRycYtcPjhDyhNGZRAw25Qkj/3iQ8WMzBKaVG5KU1+xg7R0NmN3ZWXXuXBjLhrEuP30TZSWIokhQIqfCquhy8UrHlKMnp9xCJKTc4/fOZwcYPahMb6zZbWTdJxvm8mqUSGAqxHjHjCLDqw02HTqjSMgTZtcPjjB6KDPe02QIIYAjx8ycf42XT//LMJ+885McPHiQurq6JFioPrSQuUXyxBNPcPPNNzM17mN5yZXk2aoXfc+Dn4wmijfcsW3R90oGjdeUY8038fqPjsptSsrQW3RIkkTYp6zjP0EnkL/UydCecblNOSffOLaVFz0NSb3nYy15575IQ1a0kDmNTKdwhYuhfROKy4/SmUUEBEI+5fZTWnVbHZ4hP4d/d1xuU07iL72vL/oez7/s4T3/MIHPH+EnP/kJ73vf+xZvmIrRPESL5IorrmDPnj1s3nIeO7p/xeHB54lIyZlc2r67MSn3WSydzw5w9Mleuc1IKc03VNJwVZncZiQdKSzNiaFM9vJ949hWADZb2+L+rBTUMbO9kdDIydV6lCSGRINyw62UjpJ/d/YyC/VXlaIzKnMrEZszlVosouGqsrkDCaVy9Mk+Op8dkNuMpOLzCXzsn0Jc8p5elq9YywsvvKCJoSSgzFkszZSUlPCXv/yFr33taxwbfZVtnQ/hCYwl5d5t390ouzDyTwSZOu4FoPYdJYoMHeh4qp9jzyhr0pyPo9LK+k83YSvOjPjpsxG3KNKFCU9biPiUGRZoL7Vw3j+2KDLXTelYC02c948tis0BM9r1mN1GwgFledYh2mto/aebcFRa5TYlZRx7ZoCOp/rlNiPp5DU7qH1HCQBT3R78E8oJBTzWHWTlJZP8+IFO7r77n3n22WdZv3693GYpAk0QJQlRFPniF7/I1m2vUFBm5eVjP6V3Yu+iCy7EkFsUQbRymd6qQ2dQ3msz3ePFNxpA0AmUnpcXrbijICa7PbT/pR/PYOb1z4h5h+YTjygSRHBcuBtj2YmiDEryDnkGfbQ/2UtAK7+ddQSmQ7Q/2ZuR37tkMHpoir0PHJPbjJTgGfTR/pd+JrsXnx+cUQhQel4egijgGw0w3euV26KkozOK6K06BAVtVSIR+N8HI6y5pJtA0MRPfvIT/vM//xOdLnMjP7INBb0umcGGDRvYuXMn73v/9bzR9zi7e/+QlIILIL8okiIShx89zuBsCFbekhzFVU6yl5ip3FKIPQs8KXEhQf+OUaRIZofOzSdeT1EkoCfQoxwhFCMSkuh/bYyQR7lx/kol5AnT/9qYIgsq5DbmoDMpcwthsOmQItE5U2mlqO3Fs2tcqbLWOFEvkNsUDZse3D3O4UePK6Yi4OhYmAuujfCJL7Zz0cVXs3v3bm655Ra5zVIcypzNZMbhcPDggw/y8MMPEzIO8VLHjxmcWvjmbsl9Zy4/nAkhdAAGu57GayooWOGS25SkMnXcy47vHGa6T5knuma3kXV3Ns4tHHJzOu9Qovg7ipnZtoQnVimv/K/ZbYx6LjWyitLz8hRZ4VFnFGm8ppyi1W65TUk6uU05rLuzUZG/N4DpPh87vnN4LgxeKRSscNF0bQUGe+ZX5IynoMKjTwRZcWEX+w6O8IUvfIFHHnkEl8uVMtvUjCaIUsj111/P3r17ufSyi9jV8whv9D5OMJycjbbcwig4HWLX/xxhYGc0V0pJJ4Uhb/QkvnJLITWXFstsTXLxjQVo/0s/4+3Z0bA1Hi+Rua4X52WvKjKfwZJvonJLYdZ49zTAYNNTuaUQS77yNtbhQITXvttG/2ujcpuSdMbbZ2j/Sz++sYDcpiSVmkuLqdxSCJxY45RAbO8xsHOMXf9zhKBC2mhMTkW45L0i1324k2UrLmLfvn18/etfRxCUFZWTSShnF5uhFBcX89hjj/HTn/6Uabp4ueMnjMwcS9r95RRFsQUjlnyaU6asxOHAdEiRPYoGdo4RCUoYbHoEUb7JdaHeoYWKIkEf4fG1DgQRxVW9GjsyxdavHSA4o5yNjNIJzoTY+rUDjB3JjsOHhaIzighi9OeLBJUTTyaIAgabnkgwMnfQpyQCM8pbz3LKLCcVC1KKiP3Lc35WXdTFth3Hue2223jyyScpK1NeFdxMQ1m7hgxFEARuvvlm3njjDTadv54d3b9if/9ThML+pNw/5i2SSxx5h/0cf2lIcWFm/TtG6Xl5GCArqrPFg6gXWPWROirOlye8LN5QuXg8RSturaXq4qJ4TcpsJBSXy6AKFPh7q7q4iBW31sptRtKpOL+AVR+pU1xebGzt6nlpOJoTpSCm+3wcf2kI73By9lJyM+OJcNkHzVz+/m4qa1p54403+N///V+tcEKa0ARRGqmsrOTpp5/mu9/9LiOBg7zU8ROGppPb7FQOURQJSRz/+zBSRMKca6TlfVWKCu0xOQ2s/HAthQrKl4qEJI4+2Uvfq2fOV8s0FiqKjv99SJGhPMVr3az8sPI2okpl5YdrKVqjvByb/tdGOf73IbnNSDp9r45w9MleRRXAKFzpYuWHazE5DXKbkjQMNh0t76vCnGtEikT3Hkr4nT35jJcVW7p44cU2brrpJp599llqa7X5Pp1ogijNiKLI7bffzt69ezn/ovPYefw37O59DH9oJmnPkNNbpDeJiAZBUaEU/okg+37eyeAb43KbklRGD00R9ITRmcS0LpiLKaRwNlEUK7U9cnAKz6AyTgzn4xnyM9o2pbiS8IpEgNG2KcWcXM/HM+hn5OCU3GYkDZPTgM4kEvSEGT2knJ8Log1l9/28U1F9eCIhCdEgoFdI3vLIaJjN1+i48sYeauo3s3fvXn72s5+h12d+cQiloYw3Kgupqanhz3/+Mw888AABfT8vtf+Inok3kta3COQRRtN9PvY+cIxwIILBqqN4rTJOSCc6ZkCKNlqsfUexojalTdeU03htudxmLJiFeIpMLgPLb67B5FLOyehkl4fuF4YUF4KlSCTofmGIyS7l9LAxu42K+04BNF5bTuM12TP/nRMh2kDdWmgCaXbtUgDFa90YrDrC/gh7HziW9SH64bDEzx6eYen5XezZ28PHP/5xnn76aerr6+U2TbVogkhGBEHggx/8IAcPHuT6972bvX1P8Fr3w3gC40l9jlzeotwlDiq3FKK3KCd8zpJvIqfMqqjmtB1P99P2+560PCtZZbZPFUWnNmINTocI+8LoTcp59yB6mu2qtclthsY5cNXaFBWmBNFiCmFfWDFVvGK0/aGHY0/3y21G0tAZRHLKLVjyTXKbkjT0Fh2VWwrJXeKQ25Sk0NkdZOUlEW79dB8XXvxu2tra+P73v6/lCsmMICXTJaGxKJ588kk+9rGPcby7F8fVb8dx0WaEJH9BGu7YltT7nQu9WUfIF0Y0iFgLTMroii0AEtHTqqBEJKiMMs+CKOCosqb0RDGZfYcAXvQ0AG8WREql8sJCile7efWbh+Q2JWk031AJwIFfdclsSfLY8Lkm+l8bo+v5QblN0TgDzhobk50epIgytkCiIRquHvKE59aobMdeasEz5CcSjMztJbIaXYRuqZ3jpt1YrHl8+tOf5p//+Z/ltkpjFuUccyuAyy67jH379nHnp+5g/Pd/ou+/voXv8JGkPiPdYXSxCaz0vDyW3VitjHLIswvNkusrabxGOaUwi9e6abmhCoM1NadUyRZDEPUUnU0MmXONlL9VOY1ae7eO8Np3F15xT0MeXruvjd5t2VOw5FyUv7UAc65y+inFEvOVVPSi6Zpymq+LHi4oQQzpjCLLbqyea0id7WJoTBpij/vvHI68zs23fIKjR49qYijD0DxEGcru3bu5/fbbeemll7CuW4X7mivRu5xJu79kjNB42/ak3S9G+1dbAaj9p1dO+ntBBGuhmZl+X7RPjEmX9c3h7CVmIiEJz1D6E6elTSsBEF7enbybCmDNN6Xk5/nd8VcBOBJKvjftC9XnnfHf8loc1LytmNd/eDTr3zelokQPkZLQW3Ssuq2Ojqf6GTkwKbc5ScNaYMIz7FeEeIDozyPoBWayPLdGb9ER9oeRItGS4Z5BH1IWB2EIuWH2jr5Gn9RFY2Mj//7v/8773vc+uc3SOA2aIMpgIpEIDz74IF/84hcZmpjAdfnbyLnwrUkJo5OMJ2aYZAujM4miGBUXFFC02s3O77YpolwmAtRdUUrftpG0iqOYKIIkCyOgZEMuQ29MJE1ExAQRJFcUnU0MxRB0AlJYAe/ZLCXrc7GVWDjyWHryvlKN0gRR/TvLmO71Kqrni1K+Q3qLjoLlTvpeVcbvxlpgomRjHkef6FWEsBP1AmvvaKR/5yjdf8vu0u4RKUKfuYN2aT9Go5Fvfetb3HLLLYiiAqJkFIr2m8lgRFHkQx/6EIcOHeKO225j7PdPzIbRJbd30eEfrufwD9cn9Z4QFUYxcTSf/h1jdDzVPyeGsr0Rnt6sw15iwehIbxL1fBEkbVp5kkBaDAabnorzC3HX25Nyv/liCKBen95pRwpLGKw6ciqsaX1uqgj5I5q3K4MJecOEA1l8pD2PnAorBqtOEWIIwF1vp2JzIQabMkoaGx0G7CUW9ObsTsaP7QEiIYn2p/rof21MZosWh1Tr5VWe4YBvF5dccgk7d+7kH/7hHzQxlOFoHqIs4vXXX+f222/n5Zdfxrp2Je6rr0Cfl3gM9Hwv0XwW6zE6nQiC03uMSjbkUrIul9d/dFQxvYvspZa0FY84mwhajNdIZxYJ+5KzqTtVEMVYrKdoId6hGA1Xl2EvtbDrB8nNydNYPErzECmJ1R+vZ7rHS5tCvJGQ3LlNLtK5xqQa0SCw6rZ6+raPZL3nzid56HYcpHOynSVLlvDggw+ybt06uc3SWCCaIMoyYmF0d911F31DQzguOh/npRciWsxx3+tMgijGYoTRmUQRnCyMLHlG3PU5iklAdtfbWfqBanb9zxFmBtITy70Qz1Ci4qhwhQuDTUfPK4n9fs4khmIsRhTFI4gMNj1SRFKMZ0VnEjHnGrM+XwCUJYhsJWZ8owHC/uzecMfQW3QIokBwJrtLbZe15hGcCTO4Z1xuUxaNrcjM6o/Vs/ehY4wfnZbbnKRQujGPsSNTeEcCcpuSGJYwIyXH2X10J/mFedxyyy3853/+p9ZcNcvQBFGWMj09zde//nX++7//G79eh+uqd2BvXY8Qh0v2XIIIEhdFZxNEMU71GOW3OCg9L5+9Dx7L6lLWzhpb2pvhLTRcLl5hVHlhIUa7niN/7I3bpnOJoRiJiKJ4xNB8RIOAzigSnMluYVTz9mLym51s/3b2l99WkiBa/+kmhg9M0PGX7O5rY7DpCAciivHa119VSmA6RNdzyiiDLscak0xEg8iyD1bTs3WYkf3ZW6hDkiT66KQ/t52JiQk+9rGPcc8995CTkyO3aRoJoAmiLKe7u5u7776bhx56CENpMe53X4VlSeOCPrsQQRQjXmG0EEEUIyaMcsot5Lc46XgquzcTMfKW5FCyIY8Dv+pKS05BvDlE8YqjeBOrFyqIIH5RlKggWnFrLf6JIIce6U7o85mCaTZfzT8ZlNmSxaMkQWRyGJCAQJb/XpreXYHJaWDP/e1ym7IolFIMQmcUab6hkt5tI4wempLbnKRQc2kxw/snmDqenaF/QpOPXf3bGB4f4r3vfS+f+tSnaG1d+L5HI/PQBJFCePXVV/nsZz/LSy+9hGVZM+5rrsRQXHjWz8QjiGLEI4ziEUVwssfIWW2j6qIi9v+yM2vDnHIqrBSucHL0ib60PTORwgoLEUa2IjMt76ti/y87FxQKGI8YirFQUZSoGAJwVFrxTwbxj2f3hlVJKEkQKQWTy4DJYWCyyyO3KQkT75yV6dRdUcLgngmmurPzd6K36Gh5fxWdfx1gojN7vVseaYo23mCIXioqKvj5z3/O5s2b5TZLIwloJS8UwoYNG3jxxRf59a9/TdG0l4H/+iYjv/gtobHxM35GCMT/609VRTo4uSpdOBDBM+zPWjEEMNXtmRNDOWUWcpsy040eq1B3NjHlHfUzvH8C39i5Y7wTEUOwsOpzixFDAJNdHvzjQQQxenqczeQ1O6i/qlRuMzRmqb+qlLxmh9xmLApBJyCI4B8PZrUYAvCNBRjeP4F3JP194pJFblMO9jILAEef6MtaMQTR6oueIT/hLA2H90tehpYcYZvur5grdDz44IN0dHRoYkhBaIJIQQiCwHXXXceBAwf4xje+gengEYa/8t+MPfo44enknsikWhjtuXPVXJ8VW5GZFbfWYszJ3gTFwlUuylrzU/6cxfYjOpMwigQlOp7qJxyIYLDpMdpT87tIS0luIRo6V3lBQeqflUIEMRqLT3brOmUgRH8XQpavqJUXFLLiltqsfqeMdj0Gm55wIHJSe4dspKw1n6JVLrnNSBhjjp4Vt9ZiLTQBcOSxnqyrjifkRDjCG+ywPMuRrjZuuOEGDh06xI033oguCT0hNTIHLWROwUxOTvLNb36T//f//h+iKCJesImcCzcjmoxz1yQSNnc6zhRKF2/Y3OlY/q1dlG8u4PDvjmd1PLjOKBIORDA5DSnvVZKsnkTwZpG1/EM1REIR9v28803XJuodOpXThc8t1js0n8JVLmb6fcz0Z38oTbajhcxlDrZiM7YiM4O7x+U2JWGWfqAKUS/yxs865DYlIXRGEb1Fh38iOLdmZCuCTqDxmnKOvziUdWGLYSlEn+UYx6SDSJLE5z//eT7/+c/jcrnkNk0jRWiCSAUMDg7yX//1X/zgBz/A7XYTvKAV+1s2Iuj1SRNEMU4VRskQRDFq/+kVTA4DLR+o4tAj3XgGszMUYsWttQRnQhx4OLUbwGSKIjghjMy5RqSI9KY8nGSJoRiniqJkCiLFIEQ9qNks7JQgiGzF5uiGT1tNZcfkMiCIAr7R7Czh3PzeSgxWHXt+mp2CzlpoounaCvb/ojM7i77oInjrR2ifOMzQ0BBve9vbuOeee1i5MrnrqUbmoQkiFXHs2DH+/d//nQceeABdrhvnFW/Dtm41WJIfHxETRskURAC2SITVIT8D/7knenImkHWbEHOuEUEA70gg5VWQki2KYggv70bUC1ReWEj334b47dGtKXlOTBSlQgwJOoGlH6hiaO8EAzuzszN6yfpcat5ezLZvHMza3jfZLoh0JpGNX1hC+5/76d+RnY0li9a4KVjqZN8vOrPSC68ziVScX0DXc4NZGyIXWwsseUYkiewTdLNrsc4kUnd5KZ3PDuCfyB5BJEkSA3TTaT7ElG+CK6+8ku985zvU1tbKbZpGmtAEkQrZt28fX/rSl/j973+PviAfx5UXYdu4CiEF8bCNt21PuiiKYZQkru4Z4eiTfdnZoE6A5TfVMHFshq4XUtMfI1WCCMBik1i+JsLBnx/lga0vpOw515RvSNm9Ky8sZKJjholj2Vn1SG/RYXIZsrpBa7YLIog2ZPWPB7O2CIyz2oazxpa1fXpyyi0sua6SvQ8ewzucfZEDlRcU4qy28cYDHVl3wAfgqrNTd1kJr//4KGFfdh3MSJJEqHmCPb07GZsY5YorruBjH/sYV155pdymaaQZTRCpmF27dvEf//Efs8IoD8eVF6dEGDV/a5y2DyW/oIBBklgV9NO9fBrrNW0pjbce/mMj+VcdTvp9i9fl4hn0sePfWmj8hx1Jv3+M7t8uA6D8m8n93QqihBQR+N3DPyIc1qHXJ39DmEpBpCE/ShBEGvIw38OezT2HHJVWrIXmrPMwxtZco11P+Vvz6XxuMGs81REhwrCuhyPBfXiYprm5mfvvv5/zztNCs9WKJog03iyMrrgI23mrkyaMmr81Pvf/qRBG7uXDiBG44A0DQ38coOeVkaQ/Y/iPJ5rdpkIYHf7xWjaNhThuFjF/clfS7w8nRBEkXxhV1UXYtKmX6674M6KYvCklLWJIgKZryxnvmMnK0DlroYnqi4s49MjxrEzAzmZBpDOKNL27nGN/HcAzlH2eieK1bpzVNg49ejz7PBNCtMDLxLEZup7PPs9WblMO7oYcjj7eK7cpCVHWmkfx2lx2/uBIVgnRiBRhgG76co8yOjrKVVddxZe+9CU2bNAO3tROlhcJ1UgGq1ev5ne/+x27du3iqreez+j//Ya+f/l/TL+0HSm0+BP/A59xzf1/w8+G5/5LFmNv5BMR4GhJmGOfy2PsiQa8v2tg4o8NSXvGfBE0/MfGuf+SRdNHd2IKS4jA4Z+sm/svmVS8Z+/c/x//bHjuv2QwOizw/HOlSRVDaUMC/0T2hjuF/RFEg4ghRaXQNc6Mwa5HNIhZcyp+KkFPOJrnkYVfWyQY2jvBWNuU3JYkhKATMJh1WdUPTdAJc+0vRtumOf7ScNaIoYgQIbR8gq3CU+xjOw0NDfziF7/gscce08SQBqB5iDROw+7du/mP//gPHn30UXR5bhxvPx/bpnUnleuOl/leolNJhtfIvfxkgfWW/QZ8BonXGkLRf7+ibdHPAM4ogpLlNYqJoGWTIXrMImPG6JlFMsPp5nuKTiUZnqP//safKSsaxGJe3Im5FiqnDrLZQ6SRfvQWHY4KK6OHs08IWQtNuOvsKYliSAdLrqvAYNfzRhZVwAtLYfo4Rre+jZnQNJs2beK+++5jzZo1cpumkWFogkjjjOzZs4evfvWrPPzww+Tl5RF4yxpytpyHaLPGfa+zCaIYixVG80WR3Sugi8CETcLiB11EYNoiLVoYLcQrtFhxdPRHa7lqIMAhu44Dp2lGmwxxdDZRBIkLI1Ensf4tEbZseo3/396dx8dV3/f+f51l9hlpRqN9X73JNtjGBgMGzA5OCVuAJiGkCTcpNEubBdrb9LZpe5vb+6PZCCEpBG4CCQmEQEhYAg1gAgWMMeB9lyxr39fRrOf8/pjRaGTJtmRrGaHP8/GwPT7zPed856szo/Oe7/d8z/rVp36T2LkKQxVX5BPqi9D81vw7YXHm2gj1ReZdb8V8DUSaTcWWaZmX0/8XnuPHlmmh7g+tc12VKSu5IIeCs7LYeu8BjMj8OtYL1mWRv8rHBz85PG9mw3Nk2zCiBqHeCK58O0bUnBcTV0TMMEM17ext2UkgEODGG2/ktttu4+qrr57rqok0JYFInNThw4f5j//4Dx566CF0XUc5dxWeSzeg+zKntJ3JhCI49WB0bC/RiBX1Ojl9Ki+vDI+5A/uphqPJDpU71WC0/ydnoZkmMQBFoWIoRqtdZXiCoRWnE45OFopGTDUc2ewmoSA8/fiDGIYy5WF0c9kzVHZxLqH+6Ly7uFl3aJz9tSUcfLZ53l0HNV8DUd5qH9WbCnn7nr3zbrhl/llZ2DJ0jrw8j669GbnFggI2j2Xe3OPG4tbJLHXSubsfmGeTPyiw5guL6D00wKHnWua6NpOiZhnURfbRajYQDAZZt24d999/PytWrJjrqok0J4FITFpbWxvf//73ue+++wgEAljPPpOMKy7Ekp8zqfUnG4hGnEowmigUqQY4Q/EeImsEyto1DufHiCXO86cajE7l2qGphqORoXOaYXJDS4h9bp0PMo9/jcipBqPJhqIRUwlHLrfJZVd18dHL/4gvs3/S68lQuVPjKXYw2BzENObXR/p8DUSKquAutDPQODzXVfnQs2dZWXpzKft/0xi/Ae48UnJBDnmrfWz7wYF50SukWhSKzsmm9d1uIoEYjmwbwe5w2n+uBMxBjrCPVq0BXdf567/+a7785S9TUFAw11UT84QEIjFl/f39/PjHP+bb3/42bW1t2FfVknHZBqxVZSjKiS8QnWooGjHZcHS8XqIR+T0qK+p1Xl0eJmKZYP1JhqNTnVBhKsFoJBTZYiYRFQxFoTAYo8uiEjrBhbhTDUdTDUUjThaOLFaT8mqTQ/sUfvPYg5PaZrqEocJz/Dj8Ng49Oz9ngJpP5msgmo+qPlLIcEeI5rfn15BQzapSeWUB9S+3ERmMznV1Tkp3aLjy7fTVDaGoCppNnTe9iLpDY/Wd1Rz8fTPd+9L/Oq2Qf4AO3xH2H9pPTk4Ot9xyC3/zN39DWVnZXFdNzDMSiMQpCwaDPPLII9xzzz3s378fa3kxnkvPx7lmBYo+cW/GqQaiEdMRjFQDDBW0GJx1wMLekih9rrFvg8kEo9OdZW4y4Sh1pjnVNLmxOUSdU+Md3wRpbgKTDUenGopGnCwcWW0m//5vz1NR0nTcMukShgByz/Di8Fvn15AioPKqAkK94Xl10fZ8DERF6/3YMq0cfmF+DCMaUXZxLsNdYdo/6J3rqkyKr9rNUGuQ8DwIQakqLs/HvzSDd+89kPY9KxC/sXD5xXns+VUDRtRE1ZX07s3SDAZzu9jdvIN+uvH7/dx+++384z/+Iw6HY65rJ+YpCUTitBmGwQsvvMB3v/tdXnrpJTRvBu6L1uO+8Gw0t2tM2dMNRKlOFI5O1lMEYA/BmXUWtpdHCNjBEoWIxpjrjOD44Wg6p90+UThKDUWOaLy3KKoq5IQM+iwKYXXy07aeKCCdbigaMVE4Kq82yM4z+dsv/D90beILodMpEM1XpRtzCfdHaH13/lxHNB8DUf4aH9YMCw2vzK/APJ8omsKav6qhc3cf9f/VNtfVOSndrmH3WxlsGkazqmhWNe2DnG7XiAZj2LwWqj9SxIFnmgin8bVZETNME4dpdR1hcGiAiy66iK985Sts2rQJVZW7yIjTI4FITKudO3fyve99j0ceeQRFUdDXrcRzyflYCvOSZaYzFMHxg9FkQlGSCRfutNCeabCndOKhDRMFo+kMRTBxMJrwfkSmyfUtYdptKq/7J9dbdKyJwtF0haIRo+HIxGqDcEjhiV88hK7FSB1dma5hKGuxh5Lzc9jxszqMiHxUzoT5GIjmE9WisuJT5Rz9U8e8map6pIfC6tHjoWIevPWqrykio8TJtvum5xYPM638sjx8VR7e+9HBua7KSQ2Z/QSWdbD30G4Arr32Wm666Sauv/76Oa6Z+DCRSC2m1fLly3nggQc4evQo3/jGN/AcOErLP36b9u/+hOEde7FHYngLVJTEkef0Krj9o2fG3nwVW6JTSbeBt0BFTZxTOzMVPNmjZTPzFOxuhZqfdrL0sU6KYlH0RL7PNGL4+0fLZvcpuIfj/9ejkNujoie+vHMNK2T3KewtjtHsN/D3K+R2q2QOKWixeFlLBHqerSH0ZA36z0dDUOWdjWQE4ttVDcjrVbAmvmBzhuL/H+EbVMhMlFUSZW3h+HOORNnOZ+I3fI0+thh3gR2IB5eS4RjOxBAGZ9SkJGjwQq6FrV4df9igajCafL54OIYr8dgeMykZjqEm2iUrbJCbmJZ5/0/OYugHq2j5Ufx+DLpDY+XfHWGkAyczCDlDoz/b/AHwJGZbtcSgsB/0RHbMCELu4GjZvMH4ssavxGj9cgzjdgMjBmDyz/9xG7954fJk2dvOuwhnji3ehhYFX40H3RH/odt9VrxV7mRZT4kTV168XRQtXtbiipe1ZVrw1aSULXLgyo+XRQFfjQdr4ual1gwLvhpPsqy70IG7cHSoha/GgzXDwnBXmEBXCG+VJ3nMuvLteIpTyla7sXnjodTi1PDVeJI3W3Tl2ckoGZ2m3lvlxu6zJtvbV+NBtcTLOnNsZJSNls2scOHwx8tqNhVfjQctcV8qh99KZvlo72tmuQtHti3ZDiUX5qDbE22YZcVbOVo2o9SJMzfR3nqivZ2JNvRa8FWntGGxY7S91ZH21lPaO6UNixzJYzbZ3olp460ePV428XZwF9hxF422ocWlY8tItKE7XlZJ9HyeqL31RHureqINc21klKa0d6Ube1aive0j7Z1ow2wbmWUpbThRe9tS2rsiXtZX48a3yJ1yzKonPGYzSsa3t+VE7Z1/THsnjlnbRMfsSHtzgvY2TUIDkeRxNvIabJmJ9naNP2Y9Jztm9ZRjdkx7u5LtrdmPOWazbcc9ZjVroqxdpfqaIpb9eRmZFS7CA/EwlFHmTMvPCFdh/P1hcev01Q2y65H4/XnS9TMia0kGjmwbmlUl1Bel8fWOeBum4WeEK9+GZXWI98zXeZMXOXz0INdddx0NDQ388pe/lDAkpp0EIjEjcnJy+Pu//3vq6+t55JFHWGZz0/H9h2n4h3voUt4mRgCAwkUaZStGrzdatF7HVxj/4HV5FZZusKAn7gebV61RfuZo2ZqzLfhLEh/+HoVLwsMsfaqbmp92snZ7P8v2jZ4snFFnobgzXtYZUjj7gAVXKP7JW9ylcka9hTafQZ/LZPkRnaVNGqsO69gTZT3BeNnCbo3Vhy30PFtDz7M1lHyxnGWPxL91tUZh/UEL3kToye9VWXt4tL7LmjSqW+N10I14Wf9QvGxuv8r6g6M9PUtaNHLvqqTzd4vo+u0iLuuIUJAIMnkhg8s6IoRVhaCmsLI/yjk9Uc7rjiexSzsiFCcu4M1JlLUmQs6ygRhre0aHRGzsjFA2bLD/J2fRc89Kaj9eRsXn9gFQ3QVrUuYUOLsRSnvjjzNCcOERcCU2VdkDa1MuD1rbBBWJsq5IvGz/7QaNXzHoq4D9h4uBeM9Q1ZUF5J+VFW9Dt4Xaj5clf8H6l3hYckNJcrsVl+VTcLY/3oZ2jdqPl+EujJ8g+Go8LL25NFm2dGMexefFew81i0rtx8uSJ2/eChe1Hy9LhpySDTmUXpCYLVGB2o+X4a10MdwZonvfAMtuLkVLBIyic7Mp25jS43lzKVmJX/ruQge1Hy/DkjhZK1iXRfnl+cmyi68vxr80A4ifvNd+vAyrJ/5zz1/jo+qqwmTZRR8tJmeFFwBHlpXaj5clT5Ryz/BR/WdFybJVmwrJW+WL7/NsP2UX5eHMi5/QZNdmsui64mTZyisKKEi0t8Wlx9swf6S9M1h842h7l1+aT+E58fbWbPE2HDnR81a5WXbLaHuXXZRL8fnxNlQ1hdqPlyUDR2b5SHsn3nPn51B6YW5y3YxiJ97ESVZGcbwNR8JI0TnZlF8y2oZLPlaCf3G8Dd358bK6M/4+K1jrp+KK0VmlFl1fTPay+O0BHDnx9rZlxMvmr/ZRtWm0bM2fFZF7Rry97b5EeydO7nNWeqm5pghFU1h8fQk1f1ZE3up4e1s98TYcOWHPXpbB4utH27viinwK1yWOWUf8mHUVxNswa5GHJTeltOHFeRStjx+zqjXehiMny94qN7UfH71QvPTCHEo2xNtQURPtXZFow1JXog01jKiJaUDeqqzkuktvLkue1HqKnPE2TLR34dl+Ki4dPb6X3FiCf0n8+Hbl2+PHdyI05J+VReWVKW14bTE5y+Pt7fQn2jsRvPLO9FL9kdHju/ojhcn2tnnj73tHlo3OnX2Eh6Isuna0DdP1M2LRNYVUXllARomTxdeXEE18RqfrZ0TNnxVStN6PNcNC1VUFBHvj38il02dERAlzxNzP5sBzPP/u78hZ4uWnP/0pHR0dPPbYY+Tmjn5uCDGdZMicmBWmafLWW29x33338etf/xqALHs15Tmr8bmKiEUSvTc2MKJgxEBRQbdAJAyYoOnxZdFEr8qJyqo6qImysT0HGHq6hpgKMS3eO2OJxa8XMhOTK2gGhBN5xBoBQ4mXCVrBE4CaZp2dZVGi2tiylkh8G967oe3fFWyJ65BGJm3QDQiNlE2M/Ijq8TqmllUTdQrpgBIvCxA5pmz0D9kMrA5hMSCoAoqC1TCxGPEbdAzpCrnBGDEFumwaqmliTSlrMUwUE8KJbyftMZOoEr8maaRsSAVTUaj5pUH7Z8OEE5nOFoWYAlEtXl9ror6mEu8pUk2SZa3ReBtGNVAS9U8tq5kQ0uC8+9rpPTzIUGuQWNiIv3anRnTYwDRMVIuCZlGJBOIBT7drmKYZv/noSNmggRmLXwis2VQiQ/Gyml0Fk+SNSi2uE5S1qaBALDhaNhYyMKImihafXnnJjaXsfbyBQGfohGV1e6K+Zvybb0VViAbj+7E4NWIRAyNioqgKuuOYspqSnI1Kd2oYERMjYsSPb4dGdDiGaUxQ1qFhxkxiYQPNrmJ16wS7I4k2VFEtCtHA+LLj2vBE7X2yNpygvUfa5UTtvfSWUlRNSV7QnWzDlLKKckwbhk/Q3intMl3tndqGukNDs8ZnDZvUMXui9j6mXaarvRVNwVvhpPrPitn5s7r4sLOTHbMnau+RNjxJe49tw5O0d0q7uArs5CzP5Mgf28a193HbcI4+I2wZFkwDosNRNJtGZCiKETXHtWE6fEZYMy2UXZhL3UutxMIGVrce//zi2Dac28+IWMRgQOthsLKN/XX7UFWVa6+9lksuuYTPfvazaNqp3ShciKmQQCRmXWdnJw8//DA//vGPOXToEG5bLqW+VRRk1qJrtmnfX2zP6Jjunmdrpry+b0BhWYPOW0sixDSwhSFkHV8u+2ujj9v+7+QnOpgq4/nRa6Z614THPX9BZxhfxOS3+VY4yTToJ1P589GPh5Y7p/fu5HoMLjkM+7Mh+j92Tuu2p5uiQtkleTS+3jlvps9N3sgyzc2ra4jmSZtC/KS2+PzsZMhIZ7lneilc52f7w3UYkfSu7JmfryLQFmT/08efMXOuWVw6kaEoqkVl+a3l1L3UysDRwFxXaxzDEiO6pI8Pdr9HX7SHvLw8Nm7cyPe//31yciZ3f0MhposEIjFnDMPgpZde4v777+d3v/sdLpcLr15NiW81Hvv0dounhqIRpxKOtBhc+r6VfcVR6vPG/+JODUUjZiIcpYaiESPhSDVNnDGTQV3FHTXIDZkcdqqnHI5SQ9GI6QpHI1OgAyz/eh199UNpf8I55tvTNGXLtLDi0xXs+01jWp4IpZovgSijxMmi64vZ8f/qCPWl70xcx/Y4pC0lPkyqry5+oaKiKmk7RXXOikz6GwKE+iLYMi2EB6JpW9eCtVmUbsxl63f3p+1nVCQzwKHeffRndDAwMMDatWv5p3/6J6644gqZLU7MGQlEIi0cPXqUBx54gAcffJCWlhYyHYUUec+gIGPptPQaTRSIRkwpGJlQ0KPS4zYIWiGnVwEFOjLjb6OJAlGq6QxHE4WiESPhaHl/lNqBKE8W2IhOYXruY00UikZMRzhyhuHP9sHBpxpp39572tubSWf+jyqG2oMc+G36fkMMUH5pHq3begh2j+9FTCfzJRDZs6zkr/al/RTQNR8twplr54MHDs11VU4od6WX6msKeffeA2kdMFWLwpovLKL5rc60vb+Xt9INCvQeGsTq0fEUO+na0z/X1RojakZoo5He7BZaOpvJy8vj9ttv56abbmLlypVzXT0hJBCJ9BKJRHjmmWd46KGHeOGFF7DZbPisVRR5z8DnLEE5jSFgJwpFI6baa7TqoI5mwtaa+AVCign+uya37nSEoxOFohFWxaB9dRRbzGTFQJTtGfqU7l004kShaMTphCPfMPTYoeRjO9Gsatp+u5lZ7iLYGybUm74ncfPJfAlE84XdZ8WWaYn3tqah1Pe2K9/OUGtwjms0nmZTKT4/h6Y3OokGY8lrc9KJopIcCrn05lJiEYP9v2mc20odwzRNetVOQou7OXB4P+FwmA0bNnDBBRfwd3/3dzidzpNvRIhZIoFIpK2mpiZ+9rOf8dBDD3Hw4EEcFi9F3pUUeVdgt2RMeXuTCUSpJhWOzPgkCzEN/P0Kqw5beH1pGPffT61upxqOJhOIRuRaoqzxDPNUqZWgNn3D507kVAKSdzh+bdGeBw4x0Dg85fVni6IpZJQ40/bEE+LTK1tcOu3v9851VY5rPgSi3DO9RAaj9BwcPHnhOZJZ7qL/aAAzlr6/0j3FDmo/Xs6On9Yx1JZ+QWiExaVx5ueqOfBME72H0u9nbs2wcMZnKtn/VCN9R4bS7gskMzPKQH4bO/buYJhB/H4/V111Ff/2b/9GSUnJyTcgxByQQCTSnmma/OlPf+Khhx7iiSeeIBgMkuUop8h3BrnualRVP/lGEqYaikZMJhy5ggolHSp7i2OgwJJ7VfrbDcJTPKefajiaSihSMDFRUDFZnxlgS4lGh21qY7anGopGTDYcaQYs7oS92VB0U/pOtlB4jp/Si3LZ+v39ydmZ0k3FFfnYvVb2/Cp9w8Z8CERLby4l2Bum7g+tc12VCelOjbVfXsSRV9ppfis9h3VB/EuE4nOzaXqzEyOaXqceniIHpRvz2PPLI/HZ4NLsmiarRyez3EXHjj4Ayi7Ope393vQZEmsx6bG3Ud9/kB61HVVVueaaa/jiF7/IBRdcINcGibQngUjMK/39/Tz++OM89NBDvPnmm2RlZeEyyyjIXI7XUXTSIXWnGohSTSYc6TG47L+tNOyM0nbIOOXZqSYbjqYSigDsqsFqzzDbB+0MxrRkUJpo1rqJnGooSjWZgOQKw8aXA+x/qpHhrjT5xT9CAWe2jUDH9M6+N51Sh9Wkq/kQiCD929KZY4tPqZxmv9EdfiuLritm76+PpuUw05HgY8+yUnllAQefaYpPU54uEr878s/KomxjLlu/lz6TJZimST/dtNBAt7OFQCDA2WefzW233cYVV1xBZWXlXFdRiEmTQCTmrT179vDwww/z2GOP0djYiMPipSBzGQWZy3Hb/MddbzpC0YgThSM9Br6/i59Ela7UcGYo7H391H/RniwcTTUUjTLZ6B2iMWThwPDoBBaTCUfTEYzg+OHIFYZVLfB2MeTfnL69RSUX5tC1uz9tw5Ej28ZwZ3rWLd0DUTq3nTPHhn9pBkdf65jrqhyXZlOpuaaIupda0y4QFZ2bTfayDD548PBcV2VCy/68lKH2EEf+2IaiKaiakhZhaMgcoD+3jebIEXp6eigsLOTCCy/kE5/4BJs2bZrr6glxSiQQiXnPMAxee+01fv7zn/PEE0/Q19fH6tWrGWryUZCxDJvFPW6d6QxFI44XjrK/Bt58FasT2g8bqBrk12i0H44lbzI7VccLR6cSihRMKuwReqMq3VEdp2oQMyFkjg5xOFE4mq5QlGqigGSNwvm/6KH+v1qTNwVMB6pFYeVfVNKytZu2bT1zXZ1xnLk2Vt9Rw66f16flNTDpHIh81W5qP1HOtvsPEGhPv1CUt9pHwVlZbH/4MEYkfX6VW5wa5ZfmU/dSa9pNRmBxaqgWlVBfBE+xA3eBg5at3WnRs6bbNfLW+Gh5uwsjapK/xkeoL5IW79uQGSS2rI/2cAsHDx7E4/FQW1vLl770JW666Sa5eaqY9yQQiQ+VYDDIc889x6OPPsqzzz5LNBrlkksuoWWXlTzP4uQU3jMRiFIdG45Sp+P2ZCss3WDhgxfDhIZA0yF2GiM0jg1Hp95TFLfOE8CtGbzc6yI+XmO8YwPSTISiVC13hvAH4OxGeLkCcv48vXqLUq83SLdrDyA+uULPwcG0OOk7VjoHIpR4KOo5MPcnpKnS/XizunWWf6qc/b9tYrApvSZGOfNzVQx3hdn35NG5rkrSyKQIdp+VVX9Zxa5Hj9CfDvcPcxgYiwZQ/AavvPIKiqJQW1vLP/zDP7Bp0yYcDsdc11CIaSOBSHxo9fT08OSTT/Loo4+yefNm7HY7H/nIR9j/ZoQcTzXKviOzU49na8bdn0jVwEh8cbryMgu9bQYN26fnm9S2/6ucViiyKCZOzaAvqmFXDUpsEQ4NWzFOEo5mOhTFmbTcGUYzYP2PO2h8vYNYaO6HkIzwL8ug7KJctj9cl3bfjKertA5EaUh3aKz8iwqOvNKeVveaGZmq+ujm9rSaMEHRFArXZdGxs4/wQBRXvp1QbyRtblxbfmke3ko37/9n/L5RqkWZ294+h8GAu4uyi/J45plnCAaDnHnmmdxxxx1cf/31ZGef3hduQqQrmfZDfGj5fD5uv/12Xn31VRoaGvjmN79JXV0d25t+y38f+SEZ1xm0mkeJmjN7Aa1v0wFiew6M6ZUyUn4XH90Vo7sxflLv8StUrNZRT2P0Qd5dJgWvdJD7w/8+pfUjpkJfNF6BbEuMGmeY0dsWjf9F7X3XivddK91LbOgvv3uKtZ4shYIf2qj+uYW8dTlY3ZOfYXA2DLUE6do3kDYnW6kKz/ZT+4myua7GvFH7yXIKzz7+tYhzJRqM0b1/gMGW9Op5sbp18s704sq3z3VVxlA1haJzs8kocwEw1Bqc0/enalGovLoAT3G8d6VzTz8Nm9uTz89FGDIsMdrMo3hvgNeiv+ft9s0cOHCAf/zHf+Sdd97hvffe43Of+5yEIfGhJj1EYsE5fPgwv/71r3niiSfYunUrdrudq666igNPNZFNAbpimZV6aEvHX3OUVaySX62x+9X4xceZuQoDXeaYADUVEw0NbL/z3KnVE5MYChomG31DbB+00x45cRBJDWPRi9dMaX+TpaomhqGgYFIWPkrLlq60uOB4hCvPTqg/kjY9Rd4qN+5CB42vd6TV0Lm07CFSoPj8HAabh9PmPjS6Q8OWYUmr+/doVpWCdX4a34gfU6qupEXvkLfSReWVBbz/wGGMiDHnvS6qRcFT7KSvLn7PshW3VdC8pWtOe/iiZpROWii6wssf//hHotEoa9as4cILL+Saa67hwgsvnLO6CTEX0uvrVSFmQWVlJXfddRd33XUX9fX1yXC0ky2oqPjNfHIpJmcWw9GI7kYj2VukW2HJBgv178en7p6raX9jiaFymmLSGdEYiMU7ljO0GAFDJWqe2k1eT5dhxPfrcpkUr82m9/Agg81p8q25AotvLKG/YYiDv2ue69oA0HtoMG1O7tOeCY1/Sq+Z28ovyyejxMm2Hx5Im0DryLZRfF42PQcHGGoNzmkY0qwqtkwLgY4Qw51h+o4E4gEtMje9LjB6fVfuGT4qr8xnyz37iAZj7Php3ZzUJ2pG6KSFYFkP9Y11RGNR7F1nceONN/KFL3yB8847b07qJUQ6kB4iIRKOHDmSDEdvv/02Kio+csmhkBwKsCkzewHpRD1GNhdEQmBEoWS5RkaOyq5Xpj517fEmkZhqb9Eok4t9QwxEVd4ZcE5Y4nhD9maix0jTTJSXtgFQfF42be/1zPlMdPYsK5GhaFpd44QCReuzGWwZTn5bPdfSrYcos8KFu8BB05udaRM8IH6NjsWlz/mNOC0ujbwzfTS+0RmvV2JCgLm2+IZiHH5b8lqcubbi0xX0HRmi4ZV2NKuK7tTmZNrxkBlkwNfJYFYXhw8fwjANFi1axNq1a/mXf/kXKioqZr1OQqQjCURCTKChoYEnn3yS3/72t2zevBmADHyJcFSIi4yT3gT2dEwUjjJyFOxuhfa6eG9R9Tqdpj0xAn2TewtPZma9qQQku2qgAUOGit8SpdgWYeegPdmjBMcPRammMyDZbSZragPsf7oxLaaqhfgJ5OLrSzj0XHNa3Fx2+afK6TkwQNObXXNdFSD9AlHRej++ag87H6mf66rg8FupurqQfb85SmQoPYZe+qrdLLq2mPcfOESob+7uK6TqCuWX59O5s4/+hgB2nxUjahAemJubqjpzbZRsyGX/042YMZO8VT6CPWH66mf3iwfTNBmin9jiQRo662jragUUKirKue666/jSl75EWZlcSyjEsSQQCXESXV1dPPfcczzzzDM89euniRHFgYtsCsihEC/ZqMrMzU9yvJ6jmnMsHNwSJThg4slWMGIw1HPyt/NkpxyfSjgqskWosId5vc8JKDhVg4Ax2iZTmeDhdAOSppnEYgr6y+9SvCGHngPx4TxzxeLWWXRtMYeebSbYM/eBCIW06vlIt0AEpE0b2X1WqjYVsv/pRiKDc3OiD+DKt+Or8SSHEc5lr5DNa0n2tCy/tZzWd7vp3D031+K4C+youkr/0QAOv5Waa4vZ9+TRWe8JMkyDkK+fYFEve3bvJWAMYtEtLF22lK9+9atcffXVMiGCECchgUiIKQgGg7z66qv89re/5ZlnnqG5uRkdC9nkk0MhfvJn/LqjiQLS4vN1FGDv6/GTJrtbITh4/Lf2qdyHabIByakaXJE1yNv9DprDo21xqrPenWpA0lST1dX9NL3ZSfsHvae0jemm6gquAgcDaXCPEf+yDLr3Dsz5PWzSJRApqkLWEg9dc3RyncpT4mSoZTgtJigAyD3DS9H6bD74SXySgrniX5rBkhtL2Pr9/XPWO2XPsiaHLS778zJM05yTYzdqRlBqhznafYT6lsNEieDxeLjsssu4/fbb2bhxI3Z7es34J0Q6k0AkxCkyTZNt27Ylw9EHH3yAgkImfrLJx08+bjJndGgdJAKSEp+EIRoCt19hxSVWdvxXmMFu87jfdp/uzWmPH5BMCq1R2sI6MRSqHCGihsKRkPWUQ1GqqQQkRTExTdBf3kbJBTkEe8J07Og77TqcqqJzsynZkMM739tHLDh3J5YOv5XVd9aw51cNdO8fmLN6QPoEoqxFHpbeXMq2Hx6Y06GNml1l7ZcXc/RPHTT9d+ec1SNnRSZ2n5Wjr8V7heZqUpfcM73oNo3mt7tQdQVfjYeuvf2z24OX+Ax1Fzk48/YqPnjwEANNw1icGpHh2KzUxTRNIr4A0dIB9mzfR6/ZiYlJQUEBn/3sZ7nmmmtYtWoVui5zZQlxKiQQCTFN6uvree6553jhhRd47nfPESOGFTt+8vCTj588LIp1RuugLa1B1SAzT6WnxQATFq3XiYSh7t3xQ25ONxSlOl5AOtM9TMRU2DVkR8PEoRk473172vY7uYBksrgmSnBnM01vzN1JJkp8Ou65HMI3wu6zpsUQvnQJRJA+beLKt8en157D387F52Xj8Ns48EzTrO/bnmUl3B/BiJqUX5qHZlM59GzLrNcDoOojheh2jX2/PgpKPDj3Hhqcld67iBlGqQ3S2HGEhvYjhAlisVhYv349N910E5deeimLFy+e8XoIsRBIIBJiBoRCId544w1eeOEFXnjhBXbs2AFAJlnJcJRB1qz0HvlLVEwDupsMbC6oXGPh8LsRQolrfaczFKUaG5BMQKHMFmaVJ8jzXW4y73trRvYLJwpJ8XqUh47gLnKw9/GjM1aHkym/NA+rW2f/07N/wpnKmWsj0B6as/2nQyCa6zYAWHRtEeHBKPX/1TZndVh6Uyn9TYE5/dLA4tJZ95XFHPhdE+3v9876/m1eC9WbCjn4+2ZCfRH8SzJQNIXOXTPfs2yaJrHcAMN5fezdsZc+ugEoKCjgE5/4BJdffjlnnXUWPp9vxusixEIjgUiIWdDY2Mgf/vAHXnjhBZ7+9W+JEsGClSzy8JNHFrnYlYmnr55Ornw7FddUsu/NCEYU8ms0oiGTtj/sm/F9A3TeuR6/JUZHRAdM1mcM0/v04fgQmBl0bEDK9sdwOkyaf/YBQHzoyyxP0529LAOLW6dlS/es7jeVt8rN8k+W896PDs7ZDT/nOhC58u2s+nw1Ox+pp/fw3M1MWLAui8hgdNYnCEg99ovPzybQEaJ73+wOo/QvzSD3DG/yGMiscNHfEMCMzc7pSc5KLxZHYlieRWXpTSXU/7FtVnpyg2YA/Yww9Y31NHU1ECGMzWbj4osv5vrrr+eCCy5g0aJFM14PIRY6CURCzLJoNMrbb7+d7D3aunUrAE7c+MjFRw5Z5GBVZv6C2JpriojaPTTsiEHdIfJXZ9H2Xg/R4ZkPB6quUPTVM2kIWlC+twVXvh2rR6fnwOydlEYvXkNeboya8hDv3rt/zqY2zjvTS7AnQt+R2b83kK/aPadTlM91IIK5a4PMMhc2n2VOekIgPiX8mi8u4tCzzbN+bZ2vxk24P8pQW5DMChe5K7wceq55Voai6Q6NvFU+Wt/tJhYyKLskD6tLn5XhgWEzRKx0kAFHNwf3HSJA/LgrLS3l1ltv5dJLL2Xt2rW4XK4Zr4sQYpQEIiHmWGdnJ5s3b+bll1/m5ZdfZu/evQC4yCCL3ERIyp7x648yy1ws+3gp7957gPBglMwKF9FgjKGW2ek5KL80j6xFHrb98CAQP2mZjWCm2zWylniSJ6W5Z3jp2tM/q9MKL/t4GcNdIer+0Dpr+zyWxaUTGZr9qZ3nMhDN1WseUXFFPg6/jd2/ODJr+9SsKv6lGcmZF3PP9NK9d4BocBbeaynv6dV/VUP3vv5ZGyLoKrCj2zX66oawenTWfKGG3b9omPEvISJmmD69C3VJkMOH6ugdjvcIZ2dnc+2113LFFVdwzjnnUFxcPKP1EEKcmAQiIdJMc3Mzr776ajIg1dXVAfEbw8Z7j3Lxko2mTP9sQoqmJIeprLitglB/hP1PNaJoClk1HnoODWBEZu4jY+SEyerROevLi9jzq6P0HJi94Ts2r4U1f1XD3l8fnd1hQwooSnwWr4xSJ0PtwVmdhc5X42bJx0p5/8cHZ32GtbkKRA6/lTM/X83exxtmtXdIt2s4c230NwTiM7eZzOrkCVmLPSy5sYR37zswq/fLyVrkYclNJWz93n7CA9EZ/8JDtSj4qjx0749PLb/oumJsGRZ2/DT+eZr6WTedYmaUXjoxKgO0DbbQ2h6fDMLr9bJ27Vpuu+02LrzwQglAQqQZCURCpLm6ujpeeeWVZEBqaWlBQSGDLLz48ZJNJn6sim16d6zET96iwzEySp2s/IvK5LUmzlwbsZAxY/cCUS0KObWZdO7pJxYyKLkgB92hzUoPisWtJ2+CWX5ZPsNdIdq29cz4fiE+tfGaLyyie38/h1+Yvd4iRVPIPcNL23s9sz6z2Zz1ECmQt8pH+we9s3atCkDllQVkLfLw7g/2z9o01nmrfTj8Nupfih9Tqcf4TKq4Ip/ocIyjr3Wg2VSyl2bQsatvxr5UsWVa0GwqgfYQrjw7q/6ymu0PH6a/IRAPYMHpnyI7rIToM7oYcvcS9A7Q3NSEYRr4fD4qKyv5/Oc/z6WXXkpFRcX07lgIMa0kEAkxj5imyb59+3j55Zd57bXXeP3112lqio97d+FJhiMv2ThwTessdql3iK/9RBkAu34eH+rjrXTT3zA0Y+P/88/KQrepNL7RiaorlFyYS8uWLsIDM3tSV3V1AUNtQVrf7UGzqai6MuPXGdkyLESDMWJhI97mfZFZDSmzNVRxxFwEotl+jSjxk/VQbwTNqqLbNUL9M9s7Y3FpGFGTWMgg/6wsXLk2Dj03s1NXWz06Bev8HN3cjhE1KT4vm2jIoHXrzEwcouoKGaWu5GQYtZ8sxzTM5BDE1M+s6WCaJkp2lObOZvroJJg1QFd3fEa+wsJCcnNzueqqq7j11ltZsmTJjM8iKoSYPhKIhJjHTNOkoaGB119/Pfln586dAFixJ3uQvPhx40VV1GnZr2ZVsbh0gj1hnDk2Vt9Zw46f1dFXN4QzxwYKMzaNsbvATu0nynn/wUOEeiN4ih1Eh2MzPtSr9MJcCtZmseU7+2alR0HRFM760iI6dvTO2nUWniIHyz9VwY6f1jHYPDwr+5ztQOQudLDitgp2/qyOgabZeY3ll+aRs9zL1nv3z9qxs+4ri2nZ0k3D5vYZ3ZfDb0V3aAw0DmP3WTnjs5Xs/Hn9jF176My1gQmBjhCZFS5WfKqCbT88QKAjhN1nJTIUnbbr/wzTQK+M0trXQmtXMwPWHobDAQBqa2spLy+ntraWO+64g7KyMglAQsxjEoiE+JDp6enhzTffTAakLVu2EAqF0NASw+yyySSLDLKmbZidI9tGsCeMGTOp+WgRrjw77//nISB+7UD/0cD0fiOfuHM8wPJPlRMNxpL3FHL4rTMSjjS7iqfQQe/hIRRVoWpTAU3/3TmjQSyj1EmwJ0x4IDo7w5wUKFznp2Vr96wNI5vtQKRoCgVnZdG8pWvGe95GfmZWj47dZ6W/ITBj+3L4rRSdm82hZ1swDRNvpYuB5uEZuRYt9T229KZSNLvKzp/Vx59MeW9OB92hkVHipHt//Jq+Mz9XxVBbkAO/bULRFOw+K8Od0/PlS9gMQVmQYfcAh3Ydpo8uYsTQdZ3169ezZs0asrKyuO222ygtLZ2WfQoh0oMEIiE+5EKhENu2bUsGpDfeeIOuri4A7DiT4SgDHx586Kc5WYOiKdgyLAR7wuhOjXO+vpS9Tx6lc2cfzlwbzmzbtN5rRdEULA6N8GB09Fqn/zzIUEsQzarOyGxx9iwry24pZc/jRxnuDGHzWggPRGcuRCiw6i+r6asb4vALMzvsacRsXWcym4FoNmeVq7yqgMxyF+/96OCMBS9FU7B6dEK9ERzZNpbeVMLuXzYQ7J6BLwQS7yV3gZ0zP1fN9ocO0380gNWjEwnEpu/YVyB7aQaBzhCB9hA5yzNZdH0xb9+zl2gght1nJdQfOe39xcwo/fQwZO9DKQ1xtL6RwXA8dDmdTi6++GI2bNhAeXk5l112mdwMVYgPOQlEQiwwpmlSV1fHO++8w5YtW9iyZQvbtm0jEIh/e+0iIxGSfGSQhZvM0xpqZ3FpxMImRsSg+PwcCs7K4p3vxm8EW3i2n4GmAAON0zN0SdEUvJXu5Mx0S28pxYgY7HuyMVGAGTk5XfmZSsIDEfY+cXT6N56QWe4iPBhluDM0/Sehx7A4NdZ8YRH1L7fN2PUfI2YrEBWszaJ0Yy7bfnBgxm7Cq2gKFqdGeCCKI9uG1a3TVz9z0zov+VgJVo+F7Q8dnv6Np7xXFt9Qgqor7PlV/Gfkq/HQe3hw2o4/T7EDT5GT5rfjX9Ss/ZvFtLzTTePrHagWFc16etfuGYqBVhblaH0j/WY34awhuno6MU0Th8NBXl4e69at47rrrmP16tVUVVWhadq0vDYhxPwggUgIQTQaZffu3WNC0o4dO4jFYqioePAme5Ey8OHEc8rj5VN7bVbdUU3bth6a3+7CmWMj/6wsjrzSNm3DfDIrXCgK9B4ewuG3svKzlez8Wf2034HenmVFs6gMtQVxFzoovTCX/b9tJDpDJ97Lby3HiBrsfmzmQkT28kx6DgwQC83sVGizFYg0m4qvxkPnzpm7AemyPy9F1VV2PlI/I9vXnRqLPlpMw+Z2BpuHceXZiUWMae8RcuXbWf6pcj548DDB7jDeShemCX110xPuNLtK2cY8Wrd2E+gIUXi2n7xVvnhvGpxWz65pmgQYxH6mSXNzE63tLQyqfcSMGJqmsWLFCgoKCqioqODzn/88y5YtQ9en/xYGQoj5RT4FhBDous7KlStZuXIln/3sZwEIBAK8//77yZD0zjvvsOvAOwCoaLjNDDx4cZOZ/FdXLCfdV+qJznv3H0w+tmVayCx1YiSer7yqgMhQlKOvdcQLnELvTuoJXCxs0LKlO3m9QeVVBSiawqHfN09toxNIPSFVdQXTMJPXTOUsz2SgaZhgz/SdtB56vgXNGu+1s3p0VF2d1u0DyeBgcWroTn3artOYbY5sG9FAlEggNiNhyO6zYkQNwgNRGjZ3TPsQTbvPirvIQefOPqLDMUzDRNXjX0YMtU1fsK/6SCFmzOTw8y0Md4Zo2dKNEYm/lt7DpxiEUt6zJRfkYHHpHH6+BSNsklnmonv/AIGOEM1vdyV7h4DJt6EtRl+sj/5IDxSF6I/20tbWhkEM3ofc3Fw2ffxKVq5cSVZWFjfccANZWVmn9lqEEB9q0kMkhJi07u5u3n//fd5//30++OADPvjgA3bv3k0kEp/a1oErJSB58ZCJHecp9SYVn5dNZDhG27YebJkWVt9Zzc5HjzBwNIDVrWPEzNOaqCH3DC+KqtD2Xg+6U2PV56vZ9+uj9B+dvgvfFVVh7V8vounNTpre7EKzqygo8fuhTJOqqwvwVXvYeu/+GRkOuPTmUqwenQ8enIFhWcx8D9EZt1cSHogmh3tNKwXO+uIieg4OTOuU1rpdw8QkFjQoWu+ncH02W7+7H9OYvh9wRqmTxTeU8N6PDhIdjpG3yocZM2nf3nvq9XZoqJpCeDCKp8TJ8k+Wse2+g4T6I+St9mFxaDS+0Tnl7ZqmSZAAlpoYPcFumo+2MKT1EYjFp9vWdZ3S0lKysrK46aabWL16NbW1teTn55/yaxFCLCwSiIQQpyUcDrNnz55kQBoJSyMTN+hYxvQiecjERQbaFCZvsDg1cs/00fZeD9HhGJVXFeCtdLPtvgMA5J7pZeBo4JRnfLO4dYrW+2l6s4vIYJSyi3Nx5dmTQ9IUVTnlk1FVV0ABI2JSvCGH4vXZvH3P3mk7uVV1BYffxlBbEN2ukbfKS8s73dN2TyiLS0e1KNN6P5dUMx2IbF4LRsSctskUVF2hYG0Wbe/1Eg3GcOXZGe4KTVt7K6rC2V9bQuN/dyauoVEwDU75ep3UY3fZn5cy2Bqk4ZX2ccf8qXD4rXiKnbR/0AvA6r+qoffQIIdfaEF3aPEb377fM6VrthSHwRCD9AS6MHKDDFsHaG5sIUr8+HM6nZxzzjmsXLmSWCzGRz7yES666CKsVuspvQYhhAAJREKIGWCaJs3NzWMC0gcffMD+/fsZ+chx4MJFRvKPmwxceCYVlGwZFqwZOgONw/ETyK8voe6lVtq29eAuclCwJovDL7Sc8vAlX40Hu9dCyzvdKFr8BPXQs8107OxDs6qYhnlKJ8AWl4Yr30HvoUFQYM0XajjySvu0DeXyL8mg5poitt67f9pvPKrqCmUX53H0Tx3Tuu2ZCES6Q6NkQw5HXm6b9psF606Ns764iAO/baJr7/TMlpi9PJOyjbm8+4MDYIK3ys1Q6/ApTSSg6gqKqhALG+Qsz6RqU2E8gMdMCtZmEeyNJCcdmSrNqlJ5ZQEt73Yz2DRM3mofFZfl8/b/Fw/4nmIH4f7opG46GzOjDDGApdogoPRz9EAzQ/QzTHx4nqIolJWVkZmZyaZNmzj33HOpqqqipqZGJjwQQkw7CURCiFkTCATYuXMnu3btYteuXezevZtdu3bR0DB6MhwPSh6ceJL/OvFgxXb8oXdK4pvwmIm3yk3Jhhx2/L86IP6teKg/wqFnW0ABb4WbgcbApMOSalHIO9NHz6FBgt1hCs/xU3phLm/93z1gxi9AD/aGpzwRhGpRKFqfTdeefgIdIXJWZJK1KIN9T57eTHUjF6QrmsIZn6nkyKvtp3wCnMqeZWX5reXs+00jA9M4rHAmApGnxMni64vZ+Uj9tEw44KvxUHZRLh88dBgzZk7LdO6Lbyihe38/HTv6cObY8C/NoOnNTozI1H4la3YVu9canyhEgXPuWkrD5naa3+rCnmXFV+Wm7f2eSW9Xs6p4ip301g2CCVWbCrB5LOxO/HxWfLqCo3/qoPfQIIqW6H06zqZN0yRCCGuNSU9fDx3tHUQ9QQLaAL29vclyXq+Xc845h9raWgDOO+88Lr/8clwu15TaQgghTpUEIiHEnBsYGGDPnj1jQtK+ffuor6/HMOInnjqWlJDkTj524Dphr1L28kyMsEH3/gEc2TbW/FUNO35aR1/9EL4aN55CJw2b2yddV5vXgjvfkewdWPuVxbR/0MuRP7ZhcelkLfLQuatvyifM/qUZeCtcyWtRqv+skPbtvfQfObXwodlUyi/Np/mt+M1jXfl2osMxQn2nPvQtdfiV7tSmZRa96QxEqXU6nWGOEJ/kQ3doDLUGcWTbKDzbT/1/tZ7yrHuZZS5yVmZy8HfxSTyqNhXQe3iIrj1T62XSrCrZtZl07x8gMhSl7JI8cld6eec78ans/UsyGGwdntIQx9KLchloDNBzcJDMChcrPlXBuz/Yz3BXmKxFHlSLSueu4/diGpqBtcKk/Wg7fcE+1KIoQ7F+2ls7kkPdFEWhoqKCiooKNE3j8ssv5/zzz2fJkiVkZmZOqQ2EEGK6SSASQqStUCjEwYMH2bdvH3v37mXfvn3JP6nfMFux48SNAzdOXCmP3eNmvrP7rIQHIhhRk4J1WWTVeNj18yNA/BqI9vd7aHyjE92h4a100XNg8IThxu6zYsRMwv0RfDUelt1SGr+J5HCM/LPiM1pN9V4+mlVl6c2lNL3VSc+B+Emqf0kGdX9oPeWT/NpPlKGoyrRMCV203k/Rudm8+4MDpz0t93QFIs2msuYLi2h8o4Pmt7pOvsJJLL+1HNMwk8fGVCmqQsUV+XTt7aevLh6+i87JZs+vGqYcllOPI92pcfZXl7D7l0foOTCINcOCqiknnGVQs6r4atz0Hh4iOhyj+Lxscs/wsu2H8Vkeaz9RRveBAVq2dKPqClaPZfz2HAZKboTW+vb4tNY1Cj09PXR1dhFidLa7zMxMCgsL8Xg8XHPNNcnAs3r1apnhTQiRtiQQCSHmHdM06ejo4ODBg8k/hw4dSj7u7h4NIBasOHBhx4UDZ+KxM7lMU0avR8hf42OoLchA4zDeKjfLP1nOlu/sI9wfoei8bKxunbo/tAKJoXLd4XEnt6pFSQ5PqrgiH0yoe7EV1aJy1pdq2P90E72HBqc0WUHO8kxyz/Sx69F6ACqvLqDv8CBdeyc/FE61KFhcOqHeCO4CO4uuL2HXo/Wn1GOkOzR81W46dpz+tU/T2UOUsyKTnoODp3SNk81rofYT5ez7zVGGWoLYvBYiQ9EpDWHzL8kgs9LF4UQvX+0ny2l7v2dS14ilTv7grXKz6Noitn5/P0bEHHMcwdhjbIRmVbFnWZP32Kq4Ip/wYJSmNzqxZVhY+zeL2floPb2HBvEUO3Dl2Wl9tye5fsyMoReZBBmio6mTsHUYa7lCR2Mn/YE+IowGpKysLDIyMigoKODSSy+loqICVVW54IILKC8vP+V7lAkhxFyR+xAJIeYdRVHIzc0lNzeXc889d9zz3d3dyYB06NAh6uvrqa+vp66ujoMNO4hGR2fVspp2HDix4+LAVgc2nNhx0H/QSde/96AO6yiKQixkENPj4UdR4cz/UcWh51to3dqNp8hBwTo/h55tJhY2sHp0YmEjGZ4AFA1at/Ykr2nJX+2jaH12/FokoPAcP4GOUHzChWN07OyjI+Wk2urSUS3x+xB5SpyUX5zH3icaTjiblxExk+ErFjHpqxtMXvxeeI6fQHtw0vebiQ7HkmEo90wvvio3+37TOCPTfp+QAouvL6bn4CDtH/ROOaB5K104c+00v9VFqC9CX91gMmhMJqhaXBpLbiyl/o+tDDQOo1oUrK7RX6sjAXbCfVe5cebYkr1Zqz5fHZ9Z7k8dBLvDtG7tQdEUiJjJ40izqWhWlfBAFM2qUrWpkJYtXQw0DZOz0kvllQX89//eBSbEgkay9y7YF2bzv7/HcGQQ9woLh44eoe9oH0p2jKgtRHtTJ2GC0BSvm67rlBaXEjVUzr3kHNatW0dWVhaZmZlcdtll5ObmTqmdhRAi3UkgEkJ86GRlZZGVlcXatWvHPReLxWhqaqKuri4ZkkYC09GjR6lv3E04nPg2fBgUVOymA9s7DuyJsGQzHPR+vx0tZEEzrbgtdmwZFmKJG1lWf6QQ00z0eiiw5GMlNP13Jw2b2+MzzeXZaXm3m97Do+HHvzgDVR+k99AgzlwbtZ8sZ9cj9QQ6Qrjy7KhWNTmZwd4nRideMA2T0ECESKJXZOnNpYQHoxx6Nn6tiivfTqA9iJnSkTXcGRpz3xz/4gwUTaH38BBWj05muYvO3f2Tmuo5ForflHTWwxCACeHB6KSHoCmaQvayDPrqhwgPRHEXOPBWueOhxGTCewkpKjhz7cmel6pNhVjdOnt+FQ+goYEII+MsOnb0jQllnpL4jYaH2oI4c2zU3lrOrkfrCbSHcBc68Fa4koFo16P1DPeEceXZCQ9GaNjcjqfYQdG52fGftwmLrysGYPcvG4hFDGwZFkyLiZIb48ihevbdu5doThhLPjy3eQtBMwAZUQaGBoiN9JptTwSeylK8Xi+apnHrp25l8eLF2Gw2qqqqWLVqFboupwdCiIVDhswJIUQKwzDo7Ozk6NGjx/3T0tKSvBntCB0LNhzYsOO0u7BrDtQhC3aLg+oLS+jbGSTcalJyVj7VVxUlv8mvvDKf8FCMxj91oKiQs9xLoDNE1mIPTW90EgsbVF9ThCvXlrw5au0ny2l7r4fOXX3oDg1Hto3BpmFMwyS7NgMjYsYnkfBbWfOFRex8pI7ew0NklDpxZNto29Yz0UsHIGell+qPFLLlnr3Ewga+Gjeh3giBjtBJ2y5rkYf81T72Pnl00kPNpjpkTrUoLLmhhNZtPXTvP/mQQWeODZvXQs+BQTSryrqvLeHg75vpOMENSPNW+xjuDNHfEMBb6Wb5reVsvXc/we6RSQYUOnf1o6gK7iIHw50hosMxsmszyVs1OrTxjNsrGWoPcfCZJjSbStG52XTv68eZbad9Ry+YULwhB4tTi/cCKXDu39dy8LlGOg51o3oNXNVWmne1Y8lXaDnQTjA6jJplEBgeoq+nf8xQNgBN03C73SxZsoSKigpisRjZ2dlcfvnlFBcX43K5qKmpkcAjhBAp5BNRCCFSqKqaHI63Zs2aCcsYhkFXVxctLS3j/jQ3NycfN7YcJhgMsv2/3hpdeStY3rViMW1YsXHgHQ9WxU7UNHHoTjKqK+juGKD55SYKVuRStbGE7fcdweLUKTo3m8hglGBPiGgwfq2J1a2z6Npi3vr/9hANxG8Uqts1uvcPEOyNcOTVNkL98SGCmeUu/IszkoFo+afK6dzVR+u7PWh2NT573u4+evYPJHtdKi7Lp+fgIHUvto67Qe64domZhAOxZBiyZVpOa1a7VLYMC6H+SPw6m0AM4zi9V8feEDRvlQ9ftZueAweJhQ3e+fY+jKhBZrmLwdZhYkGD/DU+smsz2fmzegAKzsqia28//Q0BQgPheBsmXoev2h3vjdvVj25XOeMzlex7qpHIUJRoMP6zyV3pxeLW2f3LBiKBKGd8sZyDrzTSeLSJqDOMVu2kp6MZPQfe2LuLsBEkmhthODTMa//6O8JmInz2AvWJ19WhU1hYSGlxMYZhkJGRwUUXXURBQQHd3d2cccYZrFy5Er/fj6qq09LmQgixUEgPkRBCzBDTNOnr66Ojo4OOjg7a29uTjyf6097ePjpc7xgaOk6HA4tmwxxUsOo2ClfkMFQfRg3rZGS7KVieTe+eYax2Cza7HSWsUHlJEU2vdGHRrSiKSuXlBbz344OoqkLFFQUEe8Mcfq4FX7Wb2k+U8/5/HmSwJUjR+dnY3BbqXmxBtahklrtQdTV549fIYJSi9X40u0bDK/Fpy3WHlgxKrnw7qz5fzfaHD9PfcPypwyfTQ5RR6mTlX1Ty3o8PJoeupe6rdGMusWCMpje7sLp11nxxEQeeacSImvTVD2FEDCquKCDUH6HpjU7cBXbO/Fw1u35eT8/BQaquLsDmtVL3hxaMmMmqv6yOP8YgakYovCCLQy83gcVEcRhEwhFsuRotuzqx+FX6O/vRs1S6jvaiOA0GuocIx0KEY2HC4Yl71iwWCw6Hg7KyMgoKCggGg7hcLs4//3xycnJobW2ltraWFStW4Pf78fl8MlmBEELMEAlEQgiRJkzTZGBggK6uLnp6eujt7aWnpyf5J/X/3d3ddHd309fXl1yeOlnERBQUdM2CRbXgyLCjhFUsugWbw46GRkaem6HGEK4cB4oBzmwHXbsGcOXYySyOD50bbApi89jIrslgsCWExaYRC5jYPFYyS1x07x2AmIKiqGQWu2h9pweHz4Z/USaqotK4uRPVouHy2xhqClFySQ6KotDwX+24im1EwjFCfSGKz8/GVEz6GgfpbRikYG0Wge4gRswgGo2RtdhNoDPIUHcQ1QoGJo5sC137+gkOhPDWuNFsCn1HBwl0h8ha4ma4L4QRM4gEI1gyNfraBjGIYqgxwpEwkWiE4YEgMSVKOBzmZL8edV3HZrPh9XopKChA13VCoRCrV68mLy+Pzs5OnE4n559/Pj6fj56eHqqrq6moqMDj8UjAEUKINCGBSAghPgRM0yQQCDA0NMTQ0BCDg4Nj/gwMDCSf6+7upqurC0VRGBoaorm5mWAwSCQSIRAI0N/fj6qqRKNRYrEYgUAARVGIRqPJP7HY6d+UdSZomoaux2cGVFUVXdex2+2Ew2EcDge6rqPrOtFolOLiYhwOB6FQCIfDQWVlJVlZWdTX17No0SKqqqoIh8P09PRw9tln4/P5GB4eJjMzk+LiYpxOp4QaIYT4EJBAJIQQ4pREo1GGhoYwTTMZnPr6+lBVlVAoRDAYJBAI0Nvbi9vtpr29HcMw6O7uRtM0/H4/O3bsAGDlypXJa68qKyvxeDyoqkpbWxtnnHEGTqeTlpYWMjIyyM/Px+l00tTURFlZGZmZmZimSTgcTk4JbRiGXEsjhBBiUiQQCSGEEEIIIRYs+fpMCCGEEEIIsWBJIBJCCCGEEEIsWBKIhBBCCCGEEAuWBCIhhBBCCCHEgiWBSAghhBBCCLFgSSASQgghhBBCLFgSiIQQQgghhBALlgQiIYQQQgghxIIlgUgIIYQQQgixYEkgEkIIIYQQQixYEoiEEEIIIYQQC5YEIiGEEEIIIcSCJYFICCGEEEIIsWBJIBJCCCGEEEIsWBKIhBBCCCGEEAuWBCIhhBBCCCHEgiWBSAghhBBCCLFgSSASQgghhBBCLFgSiIQQQgghhBALlgQiIYQQQgghxIIlgUgIIYQQQgixYEkgEkIIIYQQQixYEoiEEEIIIYQQC5Y+1xUQ4sOora2N3t7eua6GEEKIDxmv10teXt5cV0OIDxUJREJMs7a2Nj52/cdAm+uaCCGE+LCx2+088sgjEoqEmEYSiISYZr29vaCBvi8DZdiKkhyYqqKoSvyhkvJv4rGiqpBYnFxJUUAdX3ai9Y//OGWbavI/KcsTD1RltLCijA6oHSnH6DbN1OcZ3Y+Z3NbocjO1HiPrpw7WTa1H4rF53MejK5kpL2Xc4F8lpaySUpaU7SRfC+O3n7IMRcE8pq4TrjNu/ZR2SV1/gn2lPj9mG8fWBcbV5dh1TvY8k3z+uMtOVGbM8+aEz5sT1sEcu71xr8Ucv30lvo/j7n/MtiZYHzPlcDdHi6aUVVK2pRyzL0UZu/5o0fHrq4qZsg8zsU58+chjJWU5gIqZrHd8/dFtjexnZJ1jnx/Zl8rov8llCuOfV47ZVsrjkX/VlHUUjOS2RpapipFSdmS5kWwfjdF6a4myI/vRFBMlsUxLqauWsq/k+oqJRsq+knU1Uuoysr4xuo/jrDNSx5GPEFUxJqxraluqpNQvpa4j2xnTLsntgpY4SkaOFU0BJfE/DWXM43g5BTXxWFVUVBSONOn873u99Pb2SiASYhpJIBJihigBHTVgSQlB6pjHwMjZSWKRmnI2ND4QKamBJjX4pJYds/zYssesf2y4SqmLqaScjU4QspIhJ/X5xClavMDo8tFTxXiZkafHBJLk9lMeqxMtP84y9dhtnaBs8nllfNmUEDhhoEoNM8d7nFxfSXk8vl5jy078eMLnOcnzJ1n/ZPufMBwy/rVOtK+xz58kEB1Tdsw+x5U9TiBKXZ7c/0SBZhKBKPXxBOsrKeFlonVGD5fRE3clWS9zzPLkdlKWjZxkM8E6KGbKa0gJRKnrHye8jFt23OcnCgyjwUFLWSe1LMTDQOqy0bIpy1IfHxMyNMVATTRW6rbij0k8Hg1hI4FBU0YDhzbyMcbo/sduy0hZZ+SxMbrdlLqMhhsjWVctpU00Uus3NhCNrfPY+o3Ue3TZaODRUsKPpoyUU1OWxf8nhJgZ8u4SQgghhBBCLFgSiIQQQgghhBALlgQiIYQQQgghxIIlgUgIIYQQQgixYEkgEkIIIYQQQixYEoiEEEIIIYQQC5YEIiGEEEIIIcSCJYFICCGEEEIIsWBJIBJCCCGEEEIsWBKIhBBCCCGEEAuWBCIhhBBCCCHEgiWBSAghhBBCCLFg6XNdASE+rExnFENRUZJfO6goqhJ/qKT8m3isqCokFidXUhRQx5edaP3jP07Zppr8T8ryxANVGS2sKKNfl4yUY3SbZurzjO7HHLPPRNnRDaQsG/mLcc8l1zEY3Zcy8ni0rJnyUsZtK+WlkLL+2OeVCcqOe6kpD44pd+w649ZPaZcJ6pVa/9TnzQnqkrqPMduaYJ2TPT9RXSd6/rjLTlRmzPPmhM+bE9bBHLu9ca/FHL99Jb6P4+5/zLYmWB8z5XAfPYCUlLJKyraUY/alKGPXHy06fn1VMVP2YSbWiS8feaykLE9uJ1kXk3FthZnclqmYGCnPm2PKxP81EstUZfQ1qowsM5P7P/bxyL9qyjpK4s058nGiYqIqRkrZkeVGsn20kdeHiZYoO7IfTTFREss0RttKS9lXcv2UbakpH0Oj+1SSjzUUlEQJLVnORE00pqooo4+TzxsT1jXZVpjJx8fWdWQ7Y9olpX5aYl8jPypNASXxv3hdRx/Hy6XUT1FRUTjSJKdtQswEeWcJMc0Mw0DXdaKL++e6KvODecy/02Si824hPixG41Dyu4MFKDXhLpwBL7quYxgL96cuxEyQQCTENFNVlWg0yje+8Q3KysrmujpCCCE+JI4cOcK//uu/oqoLJwAKMRskEAkxQ8rKyli8ePFcV0MIIYQQQpyAfMUghBBCCCGEWLAkEAkhhBBCCCEWLAlEQkwzv9/Ppz/9afx+/1xXRQghxIeI/H4RYmYopmlO89xOQgghhBBCCDE/SA+REEIIIYQQYsGSQCSEEEIIIYRYsCQQCSGEEEIIIRYsCURCCCGEEEKIBUsCkRBCCCGEEGLB0ue6AkJ8WITDYX7yk5/w4osvMjAwQFVVFbfffjtr166d66oJkXaefPJJvv/977Nnzx76+/vJyspi2bJl3HHHHdxwww1zXT0hTmrPnj288MILvPfee7S2tpKRkUFtbS233347JSUlABiGwR/+8Ac2b97MgQMHGBgYoKCggIsvvphbbrkFm82W3F4oFOI73/kOe/bsob29HcMwKCws5Oqrr+a6665D18eesg0MDPCjH/2I1157jVAoxNKlS7nzzjtZvHjxmHI33XQTra2t4+p/zTXX8LWvfS35/+eff55vfetbE77Wp556Sqb6Fh9qEoiEmCbf+ta3ePXVV/nYxz5GcXExzz//PHfddRff+973WLly5VxXT4i0cf/993PnnXdSUFDAddddh9/vp7W1lS1btvDUU09JIBLzwi9+8Qt27NjBxo0bqaqqoquri6eeeorbb7+d+++/n8rKSoLBIN/61reora3lox/9KD6fj127dvHwww+zbds2vvvd76IoChAPRPX19Zxzzjnk5+ejqio7d+7kBz/4AXv27OF//a//ldy3YRjcfffdHDp0iFtuuYXMzEyefvppvvzlL/PAAw8kA9mImpoabr755jHLiouLJ3xdn/3sZykoKBizzO12T0eTCZG+TCHEadu1a5e5YcMG8xe/+EVyWTAYNG+55RbzL//yL+ewZkKkn9WrV5tWq9Vsa2sb91xnZ+cc1EiIqdu+fbsZDofHLGtoaDAvueQS85//+Z9N0zTNcDhsbt++fdy6Dz/8sLlhwwbznXfeOel+vvOd75gbNmwY89744x//aG7YsMF85ZVXkst6enrMq666yvzmN785Zv2Pfexj5l133XXS/Tz33HPmhg0bzD179py0rBAfNnINkRDTYPPmzWiaxjXXXJNcZrPZ2LRpE7t27aKtrW0OaydE+rFYLFgslnHLZViOmC9WrFgx7hguKSmhvLycI0eOAPHjfMWKFePW3bBhA0Cy3Ink5+cDMDg4mFy2efNmsrKyuOCCC5LLvF4vGzdu5PXXXyccDo/bTiQSYXh4eBKvDAKBALFYbFJlhfgwkEAkxDQ4cOAAxcXFuFyuMcuXLl0KwMGDB+eiWkKkpVtuuYWhoSGWL1/O17/+dZ577jn6+/vnulpCnDbTNOnp6SEzM/OE5bq7uwEmLBeJROjt7aWtrY3XXnuNX/7yl+Tn51NUVJQss3//fmpqalDVsadxS5cuJRgMcvTo0THLt23bxuWXX84VV1zBTTfdxBNPPHHcun35y1/myiuv5PLLL+dv//Zvx21LiA8juYZIiGnQ1dU14TfbI8s6Oztnu0pCpK2vfe1r+P1+7r//fv7jP/6De+65B13X2bRpE9/5zneoqKiY6yoKcUpeeuklOjo6+MxnPnPCco899hgul4uzzz573HOvvfYa3/zmN5P/X7JkCXffffeYSRW6u7s544wzxq078junq6uLqqoqACorK1m5ciUlJSX09/fz/PPPc++999LZ2ckdd9yRXNdms3HVVVexatUqXC4X+/bt4/HHH+fOO+/kwQcfJC8vb2qNIcQ8IoFIiGkQCoUmHP5jtVqTzwsh4hRF4TOf+Qyf+cxn6Orq4k9/+hOPPfYYjz/+OAcOHGD79u1omjbX1RRiSo4cOcJ3vvMdamtrufLKK49b7pFHHmHr1q185StfwePxjHt+1apVfPvb32ZwcJB3332XgwcPEgwGx5QJhULJ3y+pJvqd83/+z/8ZU+bqq6/m61//Oo8//jg33HADubm5AFx88cVcfPHFyXIbNmxg3bp1fPGLX+SRRx4ZMyOdEB82MmROiGlgs9mIRCLjlo+M406dWlUIMcrv93Pttdfyq1/9iosvvpjdu3fLEFMx73R1dXH33Xfjcrn4l3/5l+MG+j/+8Y88+OCDbNq0iWuvvXbCMllZWZx11llcdNFFfPWrX+Xcc8/lK1/5Cl1dXckyNpttwuuEJvM7R1EUbrrpJmKxGO+///4JX9fKlStZtmwZ77777gnLCTHfSSASYhr4/f4xv6xGjCzLzs6e7SoJkbZeffVVTNMcsywSiSSvq7Db7XNRLSFOyeDgIHfddReDg4Pcc889x/28f+edd/i3f/s31q9fz1e/+tVJb/+iiy5ieHiY119/PbksKyvrhL9zTjY5yUiv0GSu3cvNzZVr/MSHngyZE2IaVFdX89577zE0NDRmYoXdu3cnnxdCxF177bVkZGRwzjnnUFZWRiQS4aWXXmL37t3ceOONlJWVzXUVhZiUUCiUnHjg29/+NuXl5ROW2717N9/4xjdYvHgx3/zmN8fdZPVk+wAYGhpKLqupqWH79u0YhjFmYoU9e/Zgt9vH3YfoWM3NzUB8ZrqTaW5unlQ5IeYz6SESYhpcdNFFxGIxnnnmmeSycDjMc889x7Jly+RiVCFSfOtb32LVqlVs2bKFH/zgBzz66KO43W7uv/9+fvGLX8x19YSYlFgsxj/90z+xa9cuvvnNb7J8+fIJy9XX13P33XeTn5/Pv//7vx93OFtvb++4nlOA3//+9wAsXrw4uezCCy+ku7ub1157bcz6r7zyCueee27yWqL+/v5x02dHo1F+/vOfY7FYWLVq1Zj1j/Xmm2+yb98+1q1bd5xWEOLDQXqIhJgGy5YtY+PGjfznf/4nvb29FBUV8cILL9Da2srdd98919UTIq3ccccdY2a3EmI+uu+++3jjjTc499xzGRgY4MUXXxzz/OWXX04gEOBrX/saAwMD3HLLLbz55ptjyhQWFiaD1IsvvsgzzzzD+eefT2FhIYFAgC1btrB161bOPfdc1qxZk1zvoosu4te//jXf+ta3qK+vJzMzk6effhrDMMbMcPfGG2/ws5/9jAsvvJCCggIGBgZ46aWXqKur43Of+9yYoXV33HEHixYtYvHixbhcLvbv389zzz1Hbm4ut95660w0oRBpQzEn+jpCCDFloVCIn/zkJ7z44osMDg5SWVnJ7bffLt+sCSHEh9CXvvSlE05K8Nprr9HS0sLNN9983DJXXnkl//N//k8A9u7dy2OPPcbu3bvp6elB0zRKSkq4/PLLuf7668cNsxsYGOCHP/whr7/+OqFQiCVLlnDnnXeyZMmSZJl9+/bx8MMPc+DAAXp7e9F1nZqaGm644QY2btw4ZnsPPPAAb731Fi0tLQSDQfx+P+vXr+fTn/40WVlZp9BCQswfEoiEEEIIIYQQC5ZcQySEEEIIIYRYsCQQCSGEEEIIIRYsCURCCCGEEEKIBUsCkRBCCCGEEGLBkkAkhBBCCCGEWLAkEAkhhBBCCCEWLAlEQgghhBBCiAVLApEQQgghhBBiwZJAJIQQQgghhFiwJBAJIYQQQgghFiwJREIIIYQQQogFSwKREEIIIYQQYsH6/wFTfoMN/sT/gAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb1f3H8fe92sOSvPce2XuQhBAIewQIEEaYIexZRmnhBwVKS+mAslpoyx5lFCgNM+wdQvbesR3vvYf2/f2hWDiJ7XjIlmSf1/P4gciS7pF0fXU/95zzPZKiKAqCIAiCIAiCIAgjkBzsBgiCIAiCIAiCIASLCESCIAiCIAiCIIxYIhAJgiAIgiAIgjBiiUAkCIIgCIIgCMKIJQKRIAiCIAiCIAgjlghEgiAIgiAIgiCMWCIQCYIgCIIgCIIwYolAJAiCIAiCIAjCiCUCkSAIgiAIgiAII5YIRIIgCMNARkYGGRkZwW7GoLn//vuRJImvv/66V/dfsmQJkiRRWFg4qO3qTmFhIZIksWTJkqBsPxyF8z48VPtbX/8OBEHoHRGIhBFFkqTD/ogvGkHoHUmSOOaYY4LdjKAJ1df/4osv9upY1/ETrNAoHKrjs3vxxReD3RRBGFHUwW6AIATDfffd1+3vwvUKpTCyffHFF8FuQkh56KGHuPPOO0lOTg52U4bc5MmTezzGAXz66af8+OOPJCYmEh0dPUQt61k478NDtb/deOONXHDBBaSlpQ3qdgRhpBGBSBiR7r///mA3QRACKjs7O9hNCCmJiYkkJiYGuxlBMXnyZCZPntzt71etWsWf/vQn9Ho9y5YtIyIiYuga14Nw3oeHan+LiYkhJiZm0LcjCCONGDInCN0oKCjAZrMRFRXFvn37Dvhda2srY8aMQaVSHTDErmMceX5+Pn/9618ZPXo0er2elJQUbr31Vpqamrrc1tq1aznnnHOIi4tDp9ORnp7O9ddfT3l5+SH3rays5Je//CWjRo3CZDJhs9kYNWoUS5YsIT8/33+/ww296Gq4T+fx6a+99hpHHHEEZrP5gF6ztrY2HnroISZPnozJZMJsNjN79mxef/31nt/Qg3TMF2hpaeHWW28lNTUVg8HA5MmT+d///geA2+3mwQcfJDc3F71eT3Z2Nn/7298OeS6n08nf/vY3Tj31VNLT09HpdERFRXH88cfz8ccf97j9xsZGbrzxRpKTk9Hr9YwdO5YnnngCRVF6/VqOOeYYJEnC4XBwzz33kJmZiU6nIzs7m9/+9rc4nc5DHtPx/ldUVHDllVeSnJyMSqU64PP6z3/+w7x587BarRgMBiZMmMBDDz2Ew+Ho9vV05fXXX2f+/PnYbDb0ej1jxozh97//fZfPA7Bjxw6WLl1KRkYGOp2OuLg4jjrqKJ5++mng530L4Jtvvjlg+NXBFxt++uknFi1aREJCAlqtltTUVK655hrKysq63PbatWs5+eSTiYiIwGKxcPzxx/Pjjz92ed+edDWno/O8nsLCQi644AJiYmLQ6/VMnz6dDz74oFfP3ZfX37Hdvmyrr59XX5SUlLBw4ULsdjvPP/88M2bM6PVjX3zxRc455xyysrIwGAxYLBaOPPJIXn311UPu+9///hdJkpg1axYul+uA323ZsgWj0UhSUhJVVVX+27vah51OJ0888QRTp04lMjISo9FIRkYGZ555Jp9//nmv2j0Ux+VA7G/HHHMMl19+OQCXX355l8Mau5tD1HE8qamp4eqrryYxMRGdTse4ceN44YUXunx9DoeD+++/n6ysLHQ6HZmZmdxzzz04HI6QHQ4qCINGEYQRBFD6stu/9dZbCqDMmTNHcblc/tsvvfRSBVDuv//+A+5/2WWXKYByxhlnKDabTbn66quVX/3qV8qkSZMUQJk2bZrS3t5+wGPef/99RavVKhqNRlm8eLFy5513KieccIICKElJSUp+fr7/vq2trUp2drYCKCeccIJy++23K7fddptyzjnnKDabTXn//ff9933hhRcUQHnhhRe6fS+OPvroA2677777FEBZsGCBotPplEWLFim//vWvlWuvvVZRFEWpr69XpkyZogDK1KlTlRtvvFG5/vrr/W26++67e/3epqenK0lJScqsWbOUvLw85YYbblCuuuoqxWw2K7IsK59//rly9tlnK8nJycqVV16p3HDDDUpcXJwCKG+88cYBz1VeXq7IsqzMnTtXueKKK5Q777xTueyyy5SoqCgFUJ555pkut5+YmKhMnz5dycnJUW677TblxhtvVBITExVAuf7663v9Wo4++mj/556YmKjcdNNNym233eZ/XxYsWKB4vd4DHgMoEyZMUNLT05Vx48YpN954o3LzzTcrH330kaIoinLXXXcpgBITE6Nce+21yi9/+Utl3Lhx/s/N4XAc8nrS09MPadvll1+uAEpKSoqydOlS5bbbblPmzJmjAMoxxxxzwH6tKIrywQcfKAaDQZFlWTn11FOVO++8U7n22muV2bNnKxkZGYqiKMr69ev9+0p6erpy3333+X+++uor/3M999xzikqlUoxGo3LBBRcod9xxh7Jw4UJFlmUlMTFR2bdv3wHb/uGHHxSDwaCoVCrl3HPPVe666y7llFNOUbRarXLyyScrwAHP35OOv8WCggL/bQUFBf7XHRsbqxxxxBHKLbfcolx66aWKTqdTZFlWvvzyy8M+d29ef3+31dfPqy9aW1uVqVOn9vlvtYNer1emTZumXHbZZcqdd96pXHXVVUpycrICKPfcc88h97/hhhsUQLnjjjsOaMOYMWO6fP1d7cOLFy9WAGX8+PHKzTffrPz6179WLrnkEiUzM1O5/fbbe9XuwT4ud97GQPa3F154QTnzzDMVQDnzzDMP2K/q6+sVRfn5GH3w3wGgTJo0ScnLy1PGjx+v3HjjjcpVV12l2Gw2BVBefPHFA+7v9XqV0047TQGU3Nxc5bbbblNuuukmJTk5WVm4cGGX3w+CMJyJQCSMKB2BqPMXTeefhx566JDHXHfddQqg3HnnnYqiKMqLL76oAMr8+fMVj8dzwH07vhSjo6OVwsJC/+0ej0c5++yzFUB54IEH/Lc3NzcrUVFRiizLyrfffnvAc/3xj3/0B58O7733ngIot9xyyyHtdDgcSlNTk//fAwlERqNRWbdu3SGP6Xh9f/rTnw64vb29XTnppJMUSZKU9evXd7m9g6Wnp/vDgt1u99/+7bffKoASGRmpTJ8+3X8ioCiKsnfvXkWj0SiTJ08+4LnsdrtSXFx8yDYaGhqUcePGKZGRkUpbW1uX2z/yyCMP2H5tba2SlZWlAMo333zTq9fSEYhyc3OVuro6/+3t7e3KrFmzFEB5+eWXD3hMx754ySWXHHKSu2LFCgVQUlNTlfLycv/tLpdLWbBggQIoDz744CGv5+CTyY594Kyzzjrk9Xd81o899pj/turqasVisSgajUb5+uuvD3mdB7/HPZ007dy5U9FoNEp2drZSUlJywO8+//xzRZZlZeHChf7bvF6vMmrUKAVQ/ve//x1w/8cee8z/fgUiEHV1MWP58uUKoJxyyim9en5F6fn192dbff28+sLr9SqLFi3yP//BAb039uzZc8htDodDOfbYYxW1Wn3I52y325UpU6YokiQpH3/8saIoirJkyRIFUO69995DnuvgfbihoUGRJEmZNm2a4na7D7l/TU1Nr9o92MflztsY6P52uON2T4EIUK644ooD3qutW7cqKpVKGTNmzAH3f/nllxVAOeqoow64uFJfX+//OxSBSBhJRCASRpSOL43ufqxW6yGPaW9vVyZNmqRIkqQ8+eSTislkUmJjY5WysrJD7tvxpdj5y7XD3r17FVmW/VfZFUVRXn31VQVQFi9efMj9XS6XkpGRoQD+K+kdgeiuu+467GsdSCDqKnDV1NQoKpVKmT59epfPt2HDhkOuBvekI5B0dZKVmZmpAMoXX3xxyO+OOeYYRa1Wd3mC1JVHHnmky3DTsf2DT3gU5ef3bsmSJb3aRkcgOjj0KIqifPXVV/6rxJ0BilarVSorKw95zJVXXqkAyj//+c9Dfrdz505FlmUlMzPzkNdzcCCaPHmyolarDwiVHdxutxIdHa3MmDHDf9vDDz+sAMrNN9/c08s94DV0d9J0yy23KIDywQcfdPn7hQsXKiqVyh/iv//+ewVQ5s2b12VbO3rbAhGI0tPTu9x/0tLSlOjo6F49v6L0LhD1ZVt9/bz64p577lEAZfLkyUpLS0u/nqM777zzjgIoL7300iG/27Vrl2I2m5XY2FjlL3/5i/8z7uo9OXgfbmxsVMDXQ9+fANdhsI/Lnbcx0P1tIIHIaDQqjY2Nhzxm3rx5CqA0Nzf7bzvuuOO6vejT8fpFIBJGElFUQRiRlD7MD9Hr9bz55ptMnz6dm266CUmSePvtt3ucQHv00UcfcltWVhapqakUFhbS0NCAzWZj3bp1ABx77LGH3F+tVjNv3jwKCwtZv349aWlpHH300SQnJ/PHP/6RdevWceqpp3LkkUcyefJkVCpVr1/T4cycOfOQ21avXo3H4+l2nkTHPIHt27f3ejs2m63LidRJSUkUFBQwbdq0Q36XnJyM2+2moqLigIpOW7du5S9/+Qvffvst5eXl2O32Ax5XWlp6yHOp1WrmzJlzyO0dY+fXr1/f69cCXX/uc+fORaVSdflcGRkZxMXFHXJ7T/tFXl4eKSkpFBQU0NjYiNVq7bItbW1tbNy4kZiYGB577LEu76PT6Q74vFauXAnAKaec0uX9+6Jj3s8333zD6tWrD/l9VVUVHo+HXbt2MW3aNP9r7uo9VKlUzJ07l7179w64XUC3fy+pqan9mq8UiG315/Pqrddff53f//73xMfHs2zZMkwm0yH3KSws7HK+Yee/9aKiIv70pz/xxRdfUFRURHt7+wH37epvLDc3l3/84x9cfPHF3HHHHcTExPDaa6/16nhlsVg4/fTTef/995k8eTLnnHMORx11FEcccQRGo/HwL/wgg3VcPpyh2t9yc3OxWCxdbgegvr4es9kM+I5tsix3efybO3duwNokCOFCBCJB6IW8vDwmTpzIihUrGDt2LCeeeGKP94+Pj+/y9oSEBPbt20djYyM2m43GxkaAbsNVx+0NDQ2A7wRh5cqV3Hfffbz33nt88skngK/y0PXXX88999yDRqPpz0s8pJ0Hq62tBXzBqKsT3A4tLS293k53J/Nqtbrb33f8rvNE7ZUrV3Lsscfidrs57rjjOOOMM7BYLMiyzIYNG1i2bFmXE9JjYmK6PFHpeP0dn09vdfW5q9VqYmJiDpg8fvB2Dtab/aKoqIiGhoZu38P6+noURaG6uprf/va3vWp/x34WiNLBHfvLX/7ylx7v17G/dLzmnv52AsVms3V5u1qtxuv1Bmw7fdlWfz6v3li1ahVLly5Fp9Px7rvvdnsCX1hY2OV2OwJRfn4+M2fOpL6+nqOOOooTTzwRq9WKSqWisLCQl156qduiDyeeeCIWi4WmpibOPffcPu1fb775Jn/605947bXX/KXE9Xo9ixYt4uGHH+52f+nKYB2XD2eo9reetgPg8Xj8tzU2NhIVFeX/XWd9eU8FYbgQVeYEoRf++Mc/smLFCmJiYti6dSsPPfRQj/evrKzs8vaKigrg5xP9jv923H6wjmpGnU96U1JSeO6556iqqmLLli088cQTREdH88ADD/DAAw/47yfLvj9vt9t9yPMe7ou8o4JWZx1tuPXWW1F8w227/Pnqq696fO7B8Pvf/5729nY+/fRTPv74Yx577DEeeOAB7r//fo444ohuH1dTU3PASUKHgz+n3urqc3e73dTU1HR55bar97nzdvuyX3T3HFOmTOnx8+rcW9pxQtXVlf6+6th+Y2Njj9vuuGrfcf/D/e0MV/35vA6ntLTUX1HumWeeYfbs2d3e95hjjulxW3/961+pra3lueee4+uvv+aJJ57gd7/7Hffffz8nnXRSt8+rKAqXXnopTU1NxMTE8K9//Ytvv/2216/BYDBw//33s2vXLoqKinj11VeZO3cur776KosWLer188DgHpfDjcVioa6ursvvh+7eJ0EYzkQgEoTDWLFiBffeey+jRo1iy5YtjBo1ivvuu4/vv/++28d88803h9yWn59PcXExGRkZ/hPPKVOmABxSQhV8J9LfffcdAFOnTj3k95IkMW7cOG666SY+++wzAH+5aoDIyEgAiouLD3nsmjVrum17d2bOnIksy/42hZI9e/YQFRXVZZnYrj6LDm63mxUrVhxye8fn0fH59FZX2/r+++/xeDx9eq6e9os9e/ZQUlJCZmZmt1eEAcxmM+PGjWPr1q3U1dX1aruzZs0C6LZU+cFkWe4yUHZ+rt7uLx37eFfvocfj6fHvLVh6ev191Z/PqydtbW2cccYZlJeX8+tf/5pLLrlkQM+3Z88eAM4555xDftfT39hf/vIXli9fzkUXXcSXX36JRqPhwgsv9Pcg9kVqaioXXXQRn3zyCTk5OXz//fd9ep6hOC4PVEePdaD2q+5MmTIFr9fb5fEvFP/WBGGwiUAkCD2or69n8eLFqFQq3njjDeLj43nzzTdRq9VceOGF3Z64PP744wesXeT1ernjjjvwer3+dSYAFi5cSFRUFK+//rp//kaHxx57jIKCAo4//nj/MJetW7d2efWu47bO4+qnT5+OLMu89tprtLW1+W+vq6vjV7/6VZ/fi7i4OC666CLWrFnD7373uy6/sPfu3UtBQUGfn3ugMjIyqKurY9OmTQfc/txzz/mHFXbnrrvuOmCoT11dHb///e8BDviseuN3v/sd9fX1/n/b7XbuuuuuPj/X0qVLAV/PV3V1tf92j8fDL3/5S7xeL1dcccVhn+e2227D6XSydOnSLnsF6+vr/fMlAC677DIsFgtPP/10l1fxS0pKDvh3dHR0l4Eb4MYbb0Sj0XDrrbeya9euQ37vdDoPCEtz5sxh1KhRfPvttyxbtuyA+/7tb38L2PyhQOrp9fdHXz+v7iiKwmWXXca6des4/fTT+cMf/jDgtnWsD3RwSPjkk0949tlnu3zMypUrufvuu8nJyeHpp59mwoQJPProo5SWlnLZZZcdtrerurqazZs3H3J7a2srLS0tqNVqtFptr1/DYB2XAyk6OhrwzdcaTJdeeikA99xzzwHrpDU2NvK73/1uULctCKFIzCESRqSuigJ0WLhwoX+V96VLl1JUVMQTTzzhv23SpEk88sgj3HjjjSxZsoT33nvvkOfoKHRw/vnnY7Va+eSTT9i4cSPTpk07IIyYzWaef/55zj33XI4++mjOPfdc0tLSWLt2LZ9++ikJCQn885//9N//s88+44477mD27Nnk5eURFxdHSUkJy5YtQ5Zl7rjjDv99ExMTueiii3jllVeYPHkyp512Gk1NTXz00UfMmzevzwUDwHdiunv3bu69915eeeUV5s6dS3x8PGVlZWzfvp3Vq1fz+uuvk5mZ2efnHohbbrmFTz75hLlz53LeeedhtVpZs2YN33//PYsWLeLtt9/u8nGJiYk4HA7Gjx/PGWecgcvl4u2336a8vJzrr7+eefPm9akdY8aMYdy4cSxatAiNRsOyZcvYu3cvp512Wp+u0M+ZM4df/epX/PnPf2b8+PEsWrQIk8nExx9/zJYtW5g7d+4Bn3V3li5dytq1a3nqqafIzs7mpJNOIi0tjbq6OgoKCvj222+5/PLL+cc//gHgn/C+aNEi5s+fzymnnMLEiRNpampi06ZNFBcXHxB4jzvuON544w1OP/10pk6dikajYd68ecybN4/Ro0fz/PPPs3TpUsaNG8fJJ59MXl4eLpeLoqIivvvuO2JjY9mxYwfg6/F87rnnOOGEEzjnnHM4++yzycnJYcOGDXzxxRecfPLJLF++vE+fx2Dr6fX3R18/r+488sgjvP3228iyTG5u7gFDabuyZMmSbhf17XD99dfzwgsvcO6557Jo0SKSkpLYsmULy5cv57zzzuPNN9884P4NDQ0sXrwYWZZ54403iIiIAODaa6/liy++4O233+avf/0rt99+e7fbLC0tZcqUKUyYMIGJEyeSmppKU1MTH3zwARUVFdx8883+5+2NwTouB9Ls2bMxGo089thj1NbW+ufO3XTTTQEdonfppZfyxhtvsHz58gOOf++88w4zZsxg586d/mHXgjAiDFr9OkEIQRym7Dadyp0+8cQTCvsX8+vKWWedpQDKX//6V/9tHaVX9+7dqzz88MPKqFGjFJ1OpyQlJSm/+MUvuiyJqiiKsmrVKmXhwoVKTEyMotFolNTUVOXaa69VSktLD7jftm3blFtvvVWZNm2aEhMTo2i1WiU9PV0555xzlB9++OGQ57Xb7covf/lLJTk52b8mzB/+8AfF5XL1WHa7p9LGDodDefLJJ5XZs2crFotF0Wq1SmpqqnLssccqjz76aK/XBuluIVFF+bmMdVe6Km+rKL6FFI844gjFbDYrVqtVOeGEE5Rvvvmm2zK2HdtvaGhQrr/+eiUpKUnRarXK6NGjlccff7xPZX472mu325W7775bycjIULRarZKZmancf//9B6xz1KGr9/9gr7/+unLkkUcqZrNZ0el0ytixY5Xf//73hywi2fn1dOX9999XTjvtNCU2NlbRaDRKfHy8MmPGDOXuu+9Wtm/ffsj9t2zZolxyySVKUlKSotFolLi4OGXevHmHlAGvrKxUFi9erMTFxSmyLCvsX+Ors02bNimXXXaZkpaWpmi1WiUyMlIZN26ccvXVV3dZVn3NmjXKSSedpJjNZsVsNivHHXecsmLFil7tm531VAb5sssu6/IxPe13Xenp9Q9kW339vA7W8dp7+9Pb9/SHH35Q5s+fr9hsNsVsNitHHnmk8u677/pLy3f+7DvW9+l8fOzQ0NCgZGZmKhqNRvnpp5/8tx+8D9fX1yu//e1vlfnz5/v/PhMSEpSjjz5aee2113r9NzrYx+XO2wjE/vbxxx8rs2bNUkwmk/8z6njenspud3c86e6Y2d7ervzmN7/xH6/S09OV//u//1NKSkoU8C0OKwgjhaQofZihKQhCj5YsWcJLL71EQUHBYa+4CsHV8fkUFhYO+LmOOeYYvvnmmz5NeA+0hIQErFYrO3fuDFobBCEUieNy33z22WeceOKJ3HnnnYctICQIw4XoDxUEQQhzdXV11NTUkJKSEuymCIIQJsrKyg65rba2ljvvvBOAs846a6ibJAhBI+YQCYIghKnGxkYefvhhPvnkEzweT5/LEAuCMHLddtttbNy4kTlz5hAbG0tJSQkff/wxdXV1XHPNNV0u0C0Iw5UIRIIgCGGqvr6ehx56iMzMTB566CGuueaaYDdJEIQwcfbZZ1NZWcn7779PQ0MDer2ecePGccUVV/SqiqUgDCdiDpEgCIIgCIIgCCOWmEMkCIIgCIIgCMKIJQKRIAiCIAiCIAgjlghEgiAIgiAIgiCMWKKogiAIgjBkFEVBURS8Xi8ul4u6ujpkWSY6Ohq1Wo0kSQD+/wqCIAjCYBOBSBAEYRjzeDw4HA5aW1uprKyksbERlUpFS0sLO3bsQKVSIcsyVVVV5OfnExMTg9frpby8nLa2NmJjY3G73ezduxeTyYTRaKSxsZHy8nIiIiLweDw0NjbidDrRaDS4XC7a2tr8wcftduN2u1EUBY/Hg9fr9f+3K7Is+9vU8aNWq/1hSZZlDAYDarUal8uFXq/HarWiUqloamoiMTERi8VCe3s7bW1tZGVloVarqa6uxmg0kpiYiCzL1NTUkJWVRVxcnL+do0ePxmw24/F4sFqtxMfHYzKZ0Ol0qFSqIf7kBEEQhKEiqswJgiCEKEVRaG1tpbCwELvdTnt7O8XFxezZs4eIiAgaGxvZtWsX9fX1qNVqGhsbKSwsRKVS4XQ6aWpqorW1lcMd5mVZxmQyIUmSv6fG6XSiKAoGg8EfGGRZ9t+/c3BRq9WoVCoMBgNarRZFUdDr9ZjNZmRZxuVyYbPZMBgMeDweFEUhNjYWtVrNhg0bAJg4cSJut5uamhokSUKtVmO322loaECtVuPxeGhpacHhcCBJEk6nk/b2dtxu9yFBqyNseb1eNBoNAO3t7UiShFarxe12U1tb639/uwtnHSRJwmQyYbFY0Gq1eDweMjIysFqtuN1uIiMjycvLw2q10tzcTE5ODqmpqRgMBvR6PRkZGf73VxAEQQg9IhAJgiAMkfb2dmpra6msrGTTpk24XC5aW1vJz89n165d6PV6qqurKSoqorm5mfb2dlwuV5fPZTAYiIyMRKvVYjQayc7Oxmq1Ul9fT3JyMklJSahUKt7713LsZS4kjxpDhB6NSoO7wYtWr8OWZMYUacAca8QYa8AYo0Nn1fi34fUoOBpd2OudOJpcOJtduFrcOFvcOJtdOFvcuFrceN3B/RpRaWU0JjUakwqNSY3WrEYboUFn9f3obVq0Fg2yyhdIFEXB0eCircZBW42d1po2WhvsNJY342hzoLbJuDwu2pvtKCo3+iQNZ1x9Mh6Ph7KyMkpLS4mMjKSxsZG9e/fS1taG0+mkvr6e9vb2Ltuo0WgwGAxERESQlpZGbGwsdrudvLw8srKyMJlMaDQaJk6cSHx8PNHR0RgMhqF8GwVBEEYsEYgEQRAGoKNXo7S0lHXr1mG322lsbGT37t3+IWlVVVWUlZV1ebJsNBqJjIxErVYzevRoEhIS8Hq9REREMHbsWP5x48tY4yLwNEtI7TIaWYsGDZLS+yFc+igt5kQ95kQDpgQDpgQ9WpNvxLTiVWivc9JWbae9xkF7nRNHvQt7gy8EMcjfEJknJwJQsLx8cDckgTZCg96mwRClxRCjwxCt8/03Sosk+8KSs8VFa4Wdlgo7rRXttFbYaa9z9vp9UCQPLly4vE4UgxdVhEJjVTPX/u1Stm3bRktLC5IkUVlZyfbt23G73dTX19PW1nbIcxkMBpKSkoiLi8Pj8TB69Ghyc3OxWq3o9XqmTp1KcnIyMTExqNViBLwgCEJ/iUAkCILQjba2NrZt20Z1dTVVVVVs27aNTZs2oVKpKC8vp6CggMbGxkOGXMXGxhIdHY1Go2Hy5Mn+eSufP/897ioFDTrMZhNSmxq5D8GmNzQmNZY0I5ZUI+YkX/hR63zbsDc4aa2w+36q9gegWieKN3hfA9NuygVg7ZO7g9YGSZbQR2owxukxxesxJegxJxj8vWUep4eWcjvNJW00FbfRXNKGq9UT0DZ4ZQ+KwU1rSytOHKjjJI5fOtc/n2vDhg24XC5qa2uprq4+4LGyLGO1WsnMzPQH6okTJzJ27Fji4uKIjY1l7NixGI3GgLZZEARhuBCBSBCEEUlRFKqrq9m6dStr167F7XZTUlLChg0bqKiooLGxkZqamgMeExkZiclkYsKECaSkpKDVavnx7XW4KyV07J8z06ZGUoZuRQNjnA5LmglLihFLmhF9pBbwhZ/mknZaKtppLW+npdyOuz2wJ/HDndqg2h+O9EQkG4lINaKz+EKSvd7pD0cNBa201ziGrF2K5MVrdPvmVGFHHa8we9FUnE4nJSUlbNmyhdbWVurq6g54XExMDFarlYSEBCZPnkxKSgoqlYrp06f7w5OY5yQIwkgkApEgCMNWfX09+fn5rF69mvz8fH+BgnXr1tHQ0IDdbvff12q1kpqaSkREBDExMcycOZPXf7OMqLhI5GYNqnYdKin4lcZ0Ng22LDO2TBO2TDMakxqvR6G1op2m4v09GMVtOJvdwW7qsKS1aLCkGIhINRKRYsScqEdWyThbXDQUtNJY0EpDQQuOhq7nfg0lj+LBY3DgjXBRV1XP4t+dyapVq6ipqaG5uZni4mIaGxv999fr9dhsNqZOneovBJGVlcX06dPJzs4mMjIyiK9GEARh8IhAJAhC2Oro5dmzZw9ff/01NTU1VFZWsnXrVnbv3n3AvAydTkdeXh6ZmZmoVCrGjRvHe7//AqPKjFFtQnaG5hwMlVbGlm0mMseMLdOMPlKL4lVoLmunsaCFhoJWmovbgl7YoL8mX5MNwIZ/7g1yS/pHVktY0oxYM83YMkyYkwxIsoS9wUnD3hbqdjfTkN+K19VzJbtg8WrdtLlbafO0cOZvjmfLli14PB4KCgrYtWsXDsfPPV9Go5Hc3FzGjRtHXFwcMTExzJ8/n5ycHGJjY0XvkiAIYUsEIkEQQp7T6WTLli188803NDQ0sGfPHtasWUNRUdEBvTzR0dGMHTuW9PR0tn23C0+5Cp3TgEFlRu3RhM0Jm86mISovgqg8C9YMI7JKpq3aTkO+r/ehsbAVjyM0T7D7Ku+sZAB2vVsa5JYEhkonY0kzYcsyEZkTgTFGh9ftpbGwlbrdzdTvbsFe7wx2M3tFURQ8KjdtnhYc2jZUiR7GHpXHvn372L59+wFDSvV6PampqUyfPp3c3FxsNhtHH30048ePR6vVBvFVCIIgHJ4IRIIghIympiZ27NjB9u3b2bFjB1999RVlZWWUlZXh8fjmv9hsNsaNG0dSUhL5q4pw7ZMxYMKkikD2Bn9IW3+ZEvXEjLUSlReBKU7/80n0rmbqdjeHxBAsoe/0kVqi8iKIzI3Amm5EVvvCbc32Jmq3NdFaaT/8k4Qor+yhzdNCGy1o0r1kH5FOWVkZW7dupb6+HgCVSkVSUhLx8fHMnj2byMhIpk+fzsyZM4mPjw/yKxAEQfARgUgQhCGlKIq/5HBH8On4/9LSn3sJ0tLSSEpKom5XE3KdHpMUgVVnQ3Zoenj28GJK0BMzzkrMWCuGKC2uNjd1O5up29VMQ34LHufw6AXqiTFeB0Bb5dAVJQgWWSNjyzIRPcpC1OgINAY17bUOarY3UbO1kdaK8A1HB/PqXDQ6GmhVmvFGO7BmGSkpKaG8/Ofy6tHR0SQnJ5OWlsaxxx5LfHw8s2bNIiMjw78IsCAIwlAQgUgQhEHjcDjYtm0bGzZsYOPGjWzcuJFNmzb5q1+p1Wpyc3MZM2YM6/67DRMRmLBgJAK1FJpzegbKGKsjdsL+EBStw9XmpnZ7E9VbG2ksbB30dX9CzczbRwGw6pGdQW7J0JJksGaaiRlrIXq0BY1RTXudk5qtjVRtrKe9NjyG1fWVGzceq50mewOeSAe2bBN79uyhpqYGt9tXCMRkMjFu3DgSExOZPHky8+fPZ8aMGaJsuCAIg0YEIkEQAqKqqsofejoC0I4dO3C73UiSRE5ODpMmTWLd29sxY8FEBAbMyNLwvxKsNqiIHW8lbnIkEUkGXO2+EFSztYnGwhaU4d8R1K3o0REA1O5oDnJLgkeSwZphImasLyirDSqaS9uo2thA9ZbGEVEu3YsXxebCoW+hydlA4tQYNm/eTGVlJYqiIMsyKSkppKenc9JJJ5GYmMi8efPIzs4Om7mBgiCELhGIBEHoE7fbza5du/zhpyMAVVRUAL6ruxMnTmTSpEl8/Y+fMGPDjHXY9vh0R5IhMieCuEk2okZFABL1u5up3FBP/e6WoC6GKoQuSSURlefbbyJzIgCF+l0tVG6sp25X84jrQfSqPDQrjZDoIHl6LNu2baOkpMRfQTIyMpLRo0eTnp7OpEmTOPHEE5kwYQIazfAZWisIwuATgUgQhG55vV52797NqlWrWL16NatWrWLjxo3+ym6pqalMmjSJLR/sIQIbEVgxYB7RV2y1Fg0J0yJJmBqJ1qyhpbzdd6V/cwOutuF/pb+vMo6LA6Dwi6ogtyT0aIwqYsZbiZ8UiTnJgKPJReX6eirW1o3odaYURcET4cBuaqGutZaYCRHs3LmT2tpawDcUNysri7Fjx3LaaacxduxYZs6ciVo9si7KCILQeyIQCYLgV1paekD4WbNmjX/hxry8PGbMmMGqf2/eH35saCRRTreDLdtM4vQoovIi8Li8VG9qoGJtfVhXERsK03+RB8Cax3cFuSWhzZSgJ2FaFLETrKg0MnW7milfU0fD3pZgNy1keLQumj0NkOLEmm1k+/btlJWVAb6y4BMmTGDChAlMmjSJY445hvHjx4viDYIgACIQCcKIVV9fz5o1aw4IQB0VoBITE5k5cyZblu3BQhQWIkX46YJKJ5MwNZKE6VEYonS0VrRTvqaO6s2NI6JCnDD0VFqZ2AlWEqZHYU4wYK93Uraqlsp19WKf64JX68ZhaaHd2ETcmChWrlxJQ0MDAPHx8SQlJXHEEUcwd+5cTjnlFKKiooLbYEEQgkIEIkEYAbxeL1u3buX777/nhx9+YNWqVezevRsAq9XKjBkz2PN58f7wE4VeMgS5xaFNZ9WQNCua+CmRyCqJmq1NlK+ppbmkPdhNE0aQiGQDiTOiiRlvxev2UrmunrKfanE0ijWreuLS2XGYW6hprUafLbF3717a231/u/Hx8YwePZoFCxZwxBFHMGvWLDEfSRBGABGIBGEYam9vZ/Xq1f4AtGLFChoaGlCr1UyZMoVZs2bx5ZMrsRCFcYTP+ekLc5KB5NkxxIy14LZ7KF9TR/mqOlytI3c+x0BNuiILgI3P5Qe5JeFLG6EmcUY0CdMjUetU1GxvouzHGppLRUDvDUVRsGtacUa1kjY3jrVr11JSUoLb7cZoNDJq1ChOO+00f1CyWq3BbrIgCAEmApEgDAM1NTX88MMP/gC0Zs0aXC4XFouF2bNns/uTEmxEYyUK1Qir9hYItiwzqfNisaabaK91ULqylqqN9Xhd4vA5UKPPTQVgx1vFQW5J+JM1EnGTIkmeFY0hWkdDQQvF31XTWNAa7KaFHa/kxh3XTqNciz5VxZYtW2htbUWlUjF27FgmT57MrFmzOPXUU8nIyAh2cwVBGCARiAQhzCiKQkFBAd9++60/AO3YsQOAlJQUXCUSNqKxEYMZq+j9GYDIXDOp8+KwpBhpLmmj5IdqaneOvNLHQviJHh1BylFxRCQZaCpuo/i7Kup3iwIM/aUoCs6IVuy2ZsqqSmg3NfsXmM7JySEjI4P58+dz6qmnMmnSJHHcFYQwIwKRIISB0tJSvvrqK7788ku+/PJL9u3bhyRJTJgwgbpNLdiIwUYMekms5B4IUaMiSJsXhznJQGNRK8XfVotqXoNEa/X1WDobxbDDwWDLNpM2LxZLmomW8naKv62mdkdTsJs1LLiNdtrMTVS3VuC0tlJWVoaiKMTHxzNx4kSOOuooFi9eTE5OTrCbKgjCYYhAJAghqKamhq+//tofgHbu3AnAxIkTqd/URhRx2IgRld8CLDLXTPqx8ZgTDL7hRt9W01gohhsNppm3jwJg1SM7g9yS4c2aYSL1qFhsWWZaytvZ92Ul9XtEyA8kRe+hQamhPbKBNl0zhYWFAMTFxTFr1iyOPfZYFi9eTFxcXHAbKgjCIUQgEoQQ0NjYyLfffuvvBdq4cSPgW/undZebKOKIJBatpAtyS4cnS6qR9OPisaabaCxsZd9XlTQVtQW7WSNC7EQbANWbGoLajpHigH19Xyv7vqikqVjs64PBo3VSL9XgjGui3lXrX9YgJSWF6dOns2jRIk466SRiYmKC3FJBEEQgEoQgcLvd/PTTTyxfvpxPP/2UNWvW4PV6SU1NxV0s+wOQGAI3uIxxOjKOjSdqlIWW8nYKv6gUQ+OEESEyZ39vaKKBul3N7PuyUiwiPMgcUjv26EYaVDXUOCqpr69HkiRycnI44ogjuOKKK5g9ezY6nbjwJQhDTQQiQRgipaWlfPLJJ3z88cd89tlnNDY2EhUVhabOuD8AxWHAJCbjDgFthJqM4+KJnWjDXu9k35dV1GxtDHazRqTUebEAFH9bHeSWjEwx4yykz49HH6WlakMD+76sxNki5nMNNkVRsKvacKe0UG2voLqtgubmZvR6PZMnT+bss8/m7LPPJjs7O9hNFYQRQQQiQRgkDoeDH374geXLl7N8+XI2b96MJElYlEiiSSCaeCxEiQA0hGS1RPKcGFKOjMXj9FL0dSWV6+tRvMFu2cg141bfHKLVj4o5REEjQcK0KNKPiUPWSJR8X0PpjzV43eL0YKgoioLd0kyzuZZqdzmVNRV4vV7S0tKYMWMGV111FXPnzsVkMgW7qYIwLIlAJAgBVFBQ4A9AX3zxBa2trcTHxyNX6okmgSjixDygIIkZZyHj+AS0EWrKVtZS/G01HqdIQoLQQaWTSZ0XR9IRUThb3BR+XknNFtFzGgwuxYkzuYlqdzk1jkoaGhrQarVMmjSJ0047jfPOO48xY8YEu5mCMGyIQCQIA+D1evnpp5947733WLZsGdu3b0etVmN224ghgWgSxFpAQWZK0JN1ciLWdBO1O5oo+LQCe70z2M0ShJClj9SSeUIC0WMsNBW3sffDMjG/KIg61kBqsdRR7S6norYct9tNcnIyRx55JNdffz1z5sxBo9EEu6mCELZEIBKEPmpra+Pzzz/nvffe4/3336eqqoqYmBg0NWZiSSSKONSS+GIKNpVWJv3YeBJnRNFW4yB/eTmNBaKEdqiZsCQTgM0vFgS5JcLBrBkmsk5JxBijo2xVLUVfVYle1RDgVly4kpup8pRR0VpKc3MzZrOZuXPncvbZZ3PhhReKoXWC0EciEAlCL1RWVvLhhx+ybNkyPvvsM9rb2xk1ahT2nQqxJGElWvQChZDosRayTk5ErZPZ91UVZT/VgjjShaSxi9MA2PZ6UZBbInRFkiFpVgxpR8fhtnvI/6Sc2m1iYddQoSgK7RFNNNtqqHaVU1FRgUajYcqUKRx//PFce+21pKamBruZghDyRCAShG7s3LmT//3vfyxbtoyVK1f6CiJ4I4khiViSMEkRwW6icBCdTUP2qUlE5UZQu72J/OXlOJpcwW6WIIQ9nVVD1smJRI+2UL+nmb0flYuhpyGoVWnGkdJAWWsxlQ2+dY8yMjI47bTTuOiii5g1a1aQWygIoUkEIkHoZNu2bbz11lu89dZbbN26FaPRiKnNRixJxJAoCiKEKgmSZ0WTNj8eV5ub/I/KqdvVHOxWCb2g1ssAuO1iKFY4iMqLIOuURDRGNfu+rKRsleh9DVUu2UmjsZqmiGpKaopwOp1kZGRw7LHHcumll3LUUUchy3KwmykIIUEEImFEUxSFrVu3+kPQ9u3bsVgsGJtsxJNCFPGoJFWwmyn0wBCtJffMFCJSDJT9VMu+L6vwusTJdbiYebuv7PaqR0TZ7XAha2Qyjosn6Yhomopa2f1eKe214dNblLTy0N79slnD+wKKovZSL1XRHFtDaX0RbW1t5Obm+heEnTdvnghHwogmApEw4iiKwubNm3n77bd566232LFjB1arFWOjjTiSiSYeWYSg0Le/Vyj92HgcjS52LSulubgt2K0S+ihheiQAFWvqg9wSoa8saUZyzs9Cp4OiLyso/bEmJHuLugpA3RnuwQhAkb20RdZT2l5EtbeM9vZ2UlJSOP300znrrLM47rjjRDgSRhwRiIQRY/Pmzbz55pu89dZb7Nq1C5vNxplnnsm5557L8ccfzwLDxcFuotBLB/QKraxl35eVYhFJQQgC5dgpZGR4SEnx0FLazq7/lYRcb5EIRN17r/VlXn/9dT777DPee+892traiI2N5dJLL+XUU09l/vz5omCQMCKIQCQMa0VFRbz++uu8+uqrbNmyhcjISBYuXMiiRYs4/vjjOU1/UbCbKPRR4owoMk5IwNkkeoWGg6TZ0QCU/Vgb5JYI/eE5ZioAFouXUaPc6HRQ8HEpFWuD3+PXlyB0sJEWjADeb3uFN998kzfeeIMff/yRxsZGUlJSWLRoETfeeCPZ2dnBbqIgDBoRiIRhp76+nrfffptXX32Vb7/9FoPBwJlnnslFF13EiSeeKEJQmNIYVeSekUzUKAtlq2op/KxC9AoNA2IOUXjrCEQAsqyQne0hKclLTY3Erl1qvJ+tH/I2DSQIdWUkhqP3Wl/m1Vdf5eWXX2bNmjXY7XbGjh3LggULuO2224iPjw92EwUhoEQgEoYFu93Ohx9+yL///W8+/PBD3G43xx9/PBdddBFnnXUWZ1uXBruJwgDYss3kLUxGkiR2LSulfvfIO0EZtjqmKog6GGGrcygCiI72kpfnBmDnTjV1dTKqr9cNejtiV9jQyJ5B3cZIDEfvNr3Ak08+yTvvvMO6detQq9VMmDCByy67jKVLl2I2m4PdREEYMBGIhLDl9Xr59ttvefXVV3n77bdpbGxk2rRpXHzxxZx//vlcmnxzsJsoDJCkksg4Pp7kWTHU72lm1/9KcbW6g90sQRA6OTgQAWg0CqNHu4mKUigpkcnPV6EovrkogxGOYlfYDty+CEaD4qWSx3nmmWd4+eWXyc/Px2Qycdxxx7F48WLOPfdcVCpRkEgITyIQCWGnqKiIl156iRdeeIGCggIyMzO5+OKL+fx3P2GSLMFunhAgOpuG0eemYYrTUfh5JWU/iTkmw9H4SzIA2PJKYVDbIfRfV4HIRyE52UtWloeWFolt29Q4HAdO0A9EODo4DHUmgtHgcVvtzLp2PM8++yw1NTVERUVxzTXXcMEFFzBx4sRgN08Q+kQEIiEs2O12li1bxvPPP89nn32G0Wjk/PPP5/LLL+f+ox4TVXCGmai8CPIWpuC2e9j+nyJaK+zBbpIwSEQgCn/dByKfiAgvY8e6Ualgxw7fELqDDSQY9RSIOhvMcDSSg5GiKFz/zoW8/PLLfPrpp7S3tzNu3DiuueYarrjiCoxGY7CbKAiHJQKRENLWr1/P888/z7///W/q6+uZO3cuS5cu5eWl76GW1MFunhBoEqQfG0/q3FhqdzSxa1kJHruYXCIIoexwgQhArVYYNcpNTIxCUZFMQYEK6PpCVl/CUW/DUGciGA0er9rDCQ/M5MUXX2Tnzp0YDAZOPPFErrnmGk4++WRx8VIIWSIQCSGntraW1157jeeff54NGzaQkJDAZZddxrd/2oBJCmz1ICF0aExqRp2TgjXdROEXlZSuqAl2k4ShIIoqDAu9CUWgkJLiG0LX2OgbQudydX+C3Jtg1J9A1EEEo8HVrm4h/dwoPv74Y+rr6xk9ejSnnHIKt912GykpKcFuniAcQAQiISQoisKPP/7I008/zVtvvYXH4+H0009n6dKlPHr6C8iSWDV7ODMnGRhzQRoSsOOdYpr2ibWFRgpRdnt46F0g8rFYfEPoFAW2blXT0tLz8b27YDSQMNSZCEaDy4uX6/6zmCeffJIffvgBgNNPP53LLruMM844A1kW3+9C8IlAJARVc3Mz//73v/nHP/7Bxo0bycrK4pprruGDX3+HTtIHu3nCEIidYCX3jGRayu1s/08RrhZRRW4kSZqzf2HWFaJoRjjrSyAC0GoVxo1zYzIp7Nqloqqqd9XJOoejQAWiDiIYDT6vwcXYpal8+OGHFBQUkJaWxkUXXcSdd96JxSKKIgnBIwKREBRbtmzh6aef5pVXXqG1tZUFCxZw3XXX8fApz4oxxiOFBBnHxZNyZCyV6+vZ82EZikccjgQhHPU1EAFIkkJenoeEBC/Fxb7S3N3NKzqY6ut1AQ9EHUQwGnyKonDpS2fw9NNPs3r1arRaLfPnz+e2227juOOOC3bzhBFIBCJhyDgcDt555x2efvppvv/+exISErjyyiv5+vfr0EuiCs1IotLJjDo7lcgcMwWfVVC2UvQOjFTx0yIBqFxbH+SWCAMVu8JGxf9l9fFRvtLc2dke6ut984o8nsOHor0X+XqUjhy3ux8t7b3BCkciGP3MrrSRtzSBd999l/r6embMmMHChQv5xS9+gclkCnbzhBFCBCJh0JWVlfHUU0/x1FNPUV9fz/z587nuuuv46Kkv8Nqh7KdaJFkidoKVhvwWnM1iyFS40JhUaIxq2qodAMRPttFe56SpqA2dVUP6cfHs+7ISR4OL+CmRRI2KIH95OeMuTEcfpaVyfQN7PyxDY1KTsyCJfV9V0lblwJJmJCLF6C+soI/U4rZ7cLcP7poiQuAYYnSoDSqai33zwTJOiKd+TwuNBa2YE/VknpzIjv8UM+XabNQGFTveKqZuZzMRKQZS58ay890SPA4vkbkRyBqJ2m1NAGjMat/ivOKbK+Qc3GNTc28majXY7b6Ak5LioblZorFRxmTykpHhYdcuX2GF3Fw3CQle2tslNm9Wk5vrpqZGpqJChV6vkJHhoaBAhcMhYbV6aZ4vsdvkqzRqc3mZOKYAj25wK3MMRjjqCEZJK/tfMCgcw5Wkkogdb6WpuA17nRNrhomEmTYmzB/Diy++yMqVKzEajVx44YXcc889pKenB7vJwjAnZrIJg2bt2rVccsklZGRk8Pjjj3PGGWdw7tyLUH0dzb/O/w9qrcY/OkJjVpO3MAVjrG/eUMw4C6PPS+3t6AlhEMWMsxKR6uvBM8TomHxNNoZoLQDJs2MYc8HPX1SJM6OxZZl9/5BAa1Yjq32HGVebG7fdw6QrspBUEhVr62nc1+q7q+z76TjJNcbpiZtk8z/v6HNTST8uHgC1UcXo81IxxuoAkDWS2E+CxJphQh/l2xcsaUam35KHZv9JavKsaLJOTvTfNyLZiC5CA4DHpWCvc6IoCuue3k31lgbcbT+fbCqA1+3bGaLHWIifaPP/bsYteSROjwLAlKAn65REVDrfPibJYkcYctL+v0FA26ImaX00Kqfv8xh3fj2TTmgl4Q/5ACQkeDEafZ+rooAk+X4AGhokystlZFlhyhQXLhf+CnSy7Jtz1HFfm83L2E5zDU+ocdK2No0ftuayeUM26Svi0Lb49kNDvZaIckNAXqrLq8Ll7d1cp+6UzWo+4CcQklZGdPmTstJ8wE+wpR8XT87pSb5/KJBzejKWFN93i+JVkGUV79z4BeafUjhr+mLmzp3Lm2++SVZWFsceeyzvv/9+EFsvDHeih0gIKI/Hw//+9z8ee+wxvv/+ezIyMrj55pt577ZvUEuaHh8rqyUUr+/AGDUqgsjcCPZ+UAbAqEWp1GxtpHZ701C8jBFFpZOJGWOhbnczrlYPSbOiiZ9kY/0/9wIw5doc6nY3s++LSjQmNWlHx1KyogZHgwutRYNaJ/t7iHoSmRvB6EWptFbZ2fb6vgNOgA/HFK/H4/Rir3eis2nIWZBM/sdltNc6SZsfR+x4G2uf3AVARIqBtmoHHoeo4xxokbkRRKQYKPqqCoAZt46iamM9+76sQmfVkDAtitIfa3C3e1AbVSheJbDrSEkQmW2mrdqBo9GFLdtM5vHxbHhmL4oXxpyfhtetsPOdYgAiUo20lrf7w5UwcCqdjDFWR3NJOwDTbsqjeksDRV9VkfxpDHE7bFSOrcdl9KBpVSF7ZBwWl//xhxtSp9EojB/vK7awbVvXi7jCz0PmwNdD5JKgVS1jdnuZ0Oxmg0XD1Il7iNllwVStZ9+Rvn0244c4GpPbqM9oQeWQMVXraYlvx6vp2z7S296ivoaegfQUdUfuRXdqyayWgG/XGKdj1FkpbH1tH85mN/FTIpHVEuWr6wBfL9Hh5o16JDdTbsni1VdfpaqqimnTprF48WJuuukmtFptwNssjFwiEAkB0djYyHPPPceTTz5JYWEh8+bN45ZbbuHvZ/97wEUSJJVE7pnJVG1ooCG/BZVe9p3sij231ySVhCFaS1uVL7hkL0jC2eii+LtqdBYN02/JY8vLhTQWtmJJM2JONFD2k29ejySDMsBz2oRpkWSfmkTdzmZ2/rc4oCeopng9+kgttTuakGSY9esxFH1TTemKGjQmFTqrlpay9oBtbyTRRqgZdU4q+Z+U01puJ2F6FNGjItj6732+31s0uFpcA9o/xlyQBsD2N4oG3N7IHDOKAg17W9BHapl+cx5b/11I/Z4WjHG+IXyipHvfmZMMOBqduFo9JB8ZQ9q8WFb+aTuK19eDZ69z0lppB/pW+a27cCTLCmPGuImOVtizR0VZ2aG9Mp0D0eEcOWa3fzxMZKEZu9VJe6QTY62OlDUx5M+rwG3wELU3Ao1dReW4BgC0zWpcRjdKD5vqKhgFoucnWMHoYH0OShIYonW01zhQ6WSyT02i6Osq7PXOPm+7M0VRuPL1Rfzxj39k48aN2Gw2br75Zm644Qbi4uIG9NyCACIQCQNUUFDAo48+ygsvvIDD4eCCCy5g5ytlWKTIQdvmmPP3n0C9OfATqOFKUkkkTI2koaCV9hoHCdOjyDo5kR//sA3Fq5AyNxZXi4vKDQ2Ar3dusK6ipx8bT+pRsZT9VEv+J+WDHmR1Ng1el9fX23VENBnHx7PyzzvwurxoI9RijtphZJ6YgNqgYveyUiRZIm9hMiUramitsA/K9iZcngnA5hcKAvvEEpji9LTXOfG6vGSdnIgty8S6p/YAvhP5puI2Uea9Gx1/K7JGZtavRlPwWQXlq+rQmFTIGhlHg6vLx/Wn8lvXwUghO9tDSoqXfftkCgsPrEDXl0DUoasCDJJHQpEVkMBaYkTlVFGX1QxeyPs8marRDTSktaJtUWOs1dGY0tplQNLInkGZyxPoYNSfUHSwnkJS+nHxJEyNZPVjO/G6Budg77S1opnq5LvvvgNgwYIF3H333Uyd2vdKh4LQQQQioV82bdrEn/70J958801sNhvXXXcd3/x+PTopMGO1e2JJNSKpJBoLWwd9WyFPwh8wkufEoLNoyF9eDhLMumMM+cvLqdrUgMakRmfV0FLePnQ9axLknJZEwrQoCj4tp/THoa8kJ8m+eU9tVQ6QfEO8KtfWU/RN1ZC3JVQZY3XknZXC9jeKcDS5iJ1oQ1ZLVK4bflXftGY1zhY3Kq3MEXeMZu+HZVRuaEBn0SBrZdprDj/0cyRIOyaO+Cm+k1oU39CntmpHr44dAymF3VUwSknxkJ3toaxMZvduXyjqTxjqrFeV6RTQN2pwGTx4dF4spUbidtjYc2wZSBC33YZb76YuswUUqJ7bMGjH1lDpLTqcklktqLQyxrifh1QOJq/eSep5kbzzzju0tbVx/PHHc9ttt3HSSScN+raF4UcEIqHXFEXh+++/549//CMfffQR6enp/PKXv+S/N32BSlIPfYMkiJtgo2pTw9BvO0jUBhWyWsLZ7MacbGDCpRms/8de7PVO4qdGorNoKPp6/8l+p7A01CRZIu+sFGLGWti9rDRkPiNrpglHowt7nZPoMRaiR1nY/V4pindkHQbjp0QiayTKV9X5hrWctn9YS93AhrWEE5VORvEqeF0K6cf6rmqv+usOFC+otDIe58iZgybJErlnJFO7s4na7U3oo7TorBoaC/p+0SlQawN1DkcJCR7y8jxUV8vs2KFiz4WB+b7pc8luBX8nVfRuC269hz3nl6KP0jLlmmw2v1xIS2k72gg1XrcS8KqYIRuMFIjeEk1jdiNuo6/H1bv/jRqKCniKyssZjxzN7373O2pqapgwYQKPPvoo8+fPR5ZF7TChd8SeIhyW1+vl/fffZ+7cucybN4+ioiJeeeUVsvdNY9nN3wQnDOEb1557ZjLWzOG7ToHGpCIq7+cvwQlLMkmdFwtAe42Dom+q8Th9X7qV6+p/DkMQtDAkqyXGXJBG9OgIdrxVFDJhCKCxoPXnk37JV8CjIwyZEvRBbNngklQSMeOsyGrfSYohWoshxlelz+Pwsuu/JUELQzNuHcWMW0cN+XY9Dq9/SE/RN1VsfrkAxeurmDbj1lHEdqpsN1x17POKV0FRFP/Jvr3O2a8wFEgJf8j3V6erqFCxbZuamBgv48a5UQXoAsYPW3P5YWtu7x/QaTpsbW4Te84vBcDj8FD0TbW/hzF1XhwTlmT67xuVF4HGNLBeLSCglek6eANQolNlV6Gr16Gy//waO4LWwZXvBoPkkXn/lu+YWDuPv/zlL7S2tnL88ceTm5vLU089hccjlmsQDk/0EAndcrlcvP766/zpT39i27ZtHHnkkdx11108uuCFARdKCBS1UdWnamWhTpIhZryNlrJ22mscxE+2kXN6Miv/tB2P04s52YCr2Y2jqevx+8Gm0smMXZyOOdHAtjf2Bf2kqrdMCXqmXJPDllcKacgPfLWlYOmYG6azaZh+cx7bXi+ifndorVmSerRvQnRxiAxjlNUSsRNsNOxtwdHkIm6yDUO0jn1fVAa7aQFlyzIz/pIM1v9zT8DnhwWql6iziv/LwmbzMn68mxqDzGcxWpwBLrPelx6j6jkN3f5OZ9GgiVDTUtqOSisz69dj2P1+KVUbGjDG6jAlGqjZ0jDgYjUhNb+oU+/ZwXoKXYPRg6QoChe/sIBHHnmELVu2kJOTw5IlS7jtttswGAZ/WL8QnkQgEg7hdDp56aWXePDBB9m3bx8LFizg17/+Nb+d93iwm9atQFRCCxZrhglTgp6ylb45Nkf8cjRF31b5hjNpZSSVFBYLkqr1KsZfkoE+UsvW1wqHZAx5INmyzP4wFD/ZRuO+tgFXRgqm9GPjiMyJYMO/fOXTtRYNzhAN0qEs6YhoDDE69n7oWwLAlm2mYW94hmZ9pBZrutFfTKXzPh9IgxGIOrQ+lMG4aW6a1BKfxOoCHorg8MGopzDUFbVBheJR8Di9JM6MInVeHKse3gFA0qxoWivs/Z4TG+xhdCq7Cskj+YbK9fBR9LYnKtAB6eZll/Lkk0/y2WefER0dzfXXX8/dd9+NTqcL6HaE8CcCkeDndDp58cUXefDBBykuLubcc8+l6D/1mCVrsJvWo4lXZNGwt+XA4WIhTK1XkXxkDJXr6rHXO0meE0P0qAg27a+yJWukQavOM1jUehXjL81AZ9Ww5eVCfwnecCSpJKZen0vF2jpKV9QEuzm9J0H85EhaK9ppKbdjTjZgiNJSvbkx2C3rUewE3/El1NsJvjWuJl2Rzcbn82kuDr/y3clzYkiYFsm6p/Ycdv2XgRjMQATQdradMdfl0KwavFAE3Qejvgaig3U+xk+8PJPanc2UrqhBH6klfmokpT/U4Lb37SJYsHqLrLutWPZZKD6uuFcLZPd1iF6gApLL2oZ3QjPff/89UVFRXHXVVdxzzz2YTMN3yL3QNyIQCYcEofPOO499b9aFfBDqEDfJhqPRFdJV52LGWdGYVJSvqkPWSEy9IZe9H5RRvyc8rzR31tEzpLNp2PxSgX+to3DWeZHg+Mk27I2ukB3+17l3dOr1OVRuaAirIDfzdt/8oVWP7AxyS3rHlKD3DzHLOT2JpqI2qjY2BLdRPbBmmtBZNVRtaECSJSSZQV+odrADUfWcBkzxesZfmkGjVcPyIQxFAw1DPYnMMZN9WhLr/r4br1sh6YhonC1uarb2/mLBUAcjySWhadPgtPa+N72/85YCEY5apSY0c+1899132Gw27r33Xq666ioRjAQRiEYyp9PJCy+8wB/+8AeKi4s5//zzKXyjDrNkCXbTwp42Qk3KkbEUfVOFu91D+rHx6Kwadr1bEuymBdRwDEMHG7s4nfZaBwWfVgS7KYeISDEw5rw0Nj6bj6PJNajrSQ0WfaRvtflwHJ6YfVoSTUWtVG9uRK1XoXiVkKtOl3lSAoYoLdteH7p124YiEIGvHPiESzNxNLn437TIQQtFHfKuWj2oz3/I9s5KwdHoZN+XVagNKtKOjqPkh+rDrqUWUnOLejDQgg4DCUhuazsRR8l8+OGHWK1WrrzySu69917MZvOA2iSELxGIRiCXy8ULL7zA73//e0pKSsI+CBlidKj1ctDnrESPsSCpJGq2NKIxq5l0RRY73iqmpSy85tL0lkovM+GSTHS28B8mdziSLKF4FaLyInC1umkuDd5n2nmdD1kjk3Z0LKUranANo+Ii4Sjr5EQic8ys/VsfSzkPgohkA2qjmvrdzf59d6jF/+j7PvEqgS9m27mXpnMo2vxyAdufnBbw7XUY6kDUmTnZwOhFqWx8Nh9Xq5uY8VYUj0Lt9qZuHzMUwchSYMFtdNMW378hpIGocgf9D0ceqx3VdDtffPEFCQkJXHrppdx3332i+MIIJALRCOL1evnPf/7Db37zG/bu3Rv2QahD1qmJWFONrP/n3iHdrtasJm6yjdIfa1E8CrlnJgOwe1npkLYjGFRamfGX+gooDPcw1NnYC9Nxt3uC2tOXeWICMeOtrHlsZ9gWEuls1KIUAHa+Hd69p9oINcY4PQ17W3yV6ibaqNpQH5TPKO+sFNQGFdte2zf0G9+vIxB1CGQwOnjYmjFWx4QlmbTXOtnySiFel5ddz8wI2PaCGYS6k3tmMiiw+71SJJVE8uxoqjY04Gw5tPcokMHo4FAUtzYOh9VBY87A5gAGKhhB/8KRXddK5AlqPvjgA2JiYrjrrrv4xS9+IdYxGkFEIBoBFEXhk08+4a677mLDhg0sWLCA6g/sREi2Xj+HalQOnp17Bq+RAyBrZDQG1ZCUojYl6JHVEs0l7RhjdUy8IovNLxT4AkEQF0IdSrJaYuyFvtLam18qCHjJ3lAmyb6iC16Xgilej73Biccx+Ge8UXkRKF6F+j0tqI0qZLU8bCrGTbrStwDnxmfzg9ySwInKi2DUolTWPbUbR8PQfE4qnYzepqW10o6skVA8SlAD88GBqLOBhqOu5vGYE/WMvyyTltJ2tr62z180IhDBKBQDEeD/zjEl6JmwJJNNz+XTVu0gIsWA160ccGwOdjW63ghkKOrwQtp3nJQ0udf3d0W00TaqmtWrV5OWlsY999zDFVdcIYLRCCAC0TD3448/ctddd/HNN98wd+5cHnrooV6Xz1aNyvH/f6iGoUEn+YafdAzHG3dROl63wvY3fePxJZU0qNWaQo0kw+jz0rBlmdn6SiFNYVhpK1CmXJdDS1n7kPQIjjk/DVe7hz3vDf/ex+FCY1T5hjFKkHNaEmU/1dJWPXhz7HLPTMacaGD9P0LjWN1TIOrQ32DUXWEDS5qRcRdn0JDfwo7/FB0QCAcSjEI2EHXS+btozAVpSLLk7yGMSDH4hvkqvmA0kLk3XQWrQAajwQpFHXobju76/DpuuOEGduzYwZgxY3jqqac45phjAt42IXSIQDRMbd26lbvvvptly5YxceJEHnroIf562vOHXVC1cwjqEOphKPu0RGq2NQWuCpjkWzfC3ebBmmFiwmWZrP/XHlrL7WhMalxt7hHRE9SVvLNSiBlnZfsb+4ZFhbyB0Edp8dg9/pPeQO4Tsloi44QEarY00lTcFpal2AUfnUXD2IvS2b2sdHDmE+7f9zRGFSq9CntdaBSn6E0g6tDXYNRTpTdbtpmxi9Oo2drU5dDWvgajcAhDh5BAY1TjanVjStQz5eocNr9UQGNhq28x83ZPwI5XSbOiiR1vPaSHN2XlwIoTBDoYdQ5FHQ4XjhRF4aLnT+ORRx5h69atTJ8+nT//+c/Mnz8/oG0TQoMIRMNMeXk599xzDy+88AKZmZn87ne/4/mL/ttjEOoqBHUI9TAkyTDuogzKV9dRu6P7yaV9Mf6SDFytbnb+twRJBnOSIegFG0JB1qmJJE6PYufbxdRsC8x7PRyotDITL8+k6LtqagP4voy7OIOqDfVUbwn99XkGYvrNeQCseWJXkFsyNPIWJlOzrYm6XQMvIRw91kLqUbFsfqEg5Krb9SUQdehtMDpc6evoMRZGL0qlfG0d+R+Vd3mf3gajsAxEB4lINdJc0gYKjDonBY1RzZZXCgPy3JY0IxGpRkp/6F2p/74EpaEIRR16CkeKonDyX2bxyCOPUFlZyXnnnce9997L2LFjA9o+IbhEIBom2tvbeeSRR/jjH/+IXq/n/vvv592bvkKWuv6C6SkEQegHoUAyJegZc34am14owNnkwpphwm33jKi5MYeTelQs6cfGs/v9UirX1Qe7OSFFkiHj+AQq1tbRXtv/q/Nas5rchSnkLy+nvWb4lS/vTsbx8QAUfl4Z5JYMPlktkbswhaqN9dTvHngPqyFaS8K0KAo/rwjJAhv9CUUdegpHvVkLKH5KJLlnJFPweUWPJ+s9BaPhEIYOZkrQo9araCxsRWfRMOHyTLa/WRTU77ueQtJgD6HrSnfhSJG8nPTHWTz44IO0tbVx4YUX8uijjxIZGRnwNgpDTwSiMOf1enn99de56667qKio4Oabb2bNI7vRSNou73+4IAThFYZUOrlfk9oTZ0QhqyVKf6xFpZVJPz6e0h9qcDQOj4nqgRQ30UbeWSns+6qS4m+rg92ckCbJErETrP1aqFNSSYw+N5WS76qDWtZbGDo5C5JorbJTvqquT4+Lm2SjenNjUMpp98VAAlGHroJRbxdHTTsmjrSj49j532KqN/fc09pVMBqOgagznVVD8pEx7Pu8Eo/TS/LsaLxuhfLVfdsfjXE6JFkKaKg6OCQNZW9Rh26DkcZD0vlmXnvtNWJjY7nuuuu4++67UalUAW2jMLREIApjK1as4NZbb2XVqlWcffbZVPy3DaN06JWW3oSgDuEUhgDGXpCG16Ow463iHu+n0snET46kYl09XpeXtPlxyGqJws+G/1XpgbBmmHxDtzY1iAn9vRCVF8Hoc1NZ/8+9verl0Vk15CxIYvd7pYddbHG4ihrlm6Rdt3PgQ8jCTcbx8bRVOaja1NDrxxhidEy5Jpvt/ymmfndg3rN9D8w+4N/p9/4YkOcNRCDq0DkY9TYQAeSekUzsRCtbX91HY2HP80wPDkXDPRAdLOOEBLxuL0VfVSFrZBKmRlK5of6wFx3HX5qBx+5l+38Gb/HflJXmoISiDl2FI7u6DeN8N59++imZmZk88sgjnHXWWQFsoTCURCAKQ4WFhfz617/mP//5D1OnTkVaF0GkFHvAffoSgjqEWxgCsKabQKLLLzpJJaGzaLDXO9FZNUy7MZet/z78l6LgY4zVMXFpFs0lbWx7fV9IDskJRTqLptcl4FV6mTHnpZG/vJy2qpEzTK6zmbePAmDVIzuD3JLgSpsfh7vNQ9lPtYe9b1/2sd44OBAdrL8BKZCBqINXkfsUiCQZxi5OJyLFyKYX8nv1d9YRjEZaIOrMmmFi3EXprP3bbhyNLvSRWhyNri57JXUWDc5W95BWXA1UGfG+hKIOB4ejG9+9mFtvvZWCggJmz57N3//+d6ZMmRKQ9glDRwSiMGK32/nzn//MQw89RFRUFLayJBJJP6BgQn+CEIRnGDqc3DOTMSXo2bB/wVaVVg65icehSmtWM/HKLNztnpCcsB0O0o6JQ6WVKfi04oDbtRYNmSfEs+fDMjx28b6a4vUAI2Zx3+5kHB+Pq9VN6Y9dB6LMExPwOLwUfVMV8G0fLhB11pdwNBiBCKBydt+Kl6i0MhOWZKIxqtn47N4uFy8VDtX5O3PKNdm0VNhDduHxgQSk/oQiODAYKYpCvaWcfHkbLS0tLFmyhMcffxyj0djvdglDSwSiMPHRRx9x8803U1RURJIri0zGoJbU/Q5AHcI5CEWP9h0Aa3f4ho1oTCrGX5pJ/sflNBa2YozVAQzq2h/DkayWmHh5FhqTmo3P7R2xQ7kGKnFGFLJWPmRCt86iYcziNHa9WzJie4WEniVMi8TV7jmgamHykTF4nd4+z+/orb6Eog6HC0ehEojAd5Fn0pXZOFtcbH6xAK9bnPr0RefvU2umiayTE9nycgGuVg8AWackYq9z9qqHcyj0JyD1Nxh1OClpMl7ZQ21qEdvLNmO1WnnggQe4+uqrxcKuYUAEohBXWFjILbfcwrJly4gijlFMxiRZBhyEILzDEPh6gLQWNY0FrZR87zvpzDo5gcr1DSP+avNAjDonhag8C5uezxfvY4Doo7XEjbdR/H31iFrItzdyFyYDsPt/oXnlORjyFqbganNT8GlFwIfHdac/gaizrsJRKAUiAFOinomXZ1G7ves1ioTeMcXriZtso+ATX+93ytxYDLFamva1hWQV0r6Eo4GGIvAFI7u2laKo7RSVFzJ9+nRef/11cnIGft4mDB4RiEKU3W7n4Ycf5sEHHyQmJobIkhQSRx192IVVeyucw5DWokHxeHG1ekicHknclCg2PZcf8hWXwkHK3Bgyjktg+3+KqN0u1hoKBFOCnklXZuN1edn670KxptVBJl+bDcCGf+wNcktCjNQxjyODne8UD/rf40ADUWcd4SjUAhFAzDgLoxelUfh5BSW9XDtH6J4kS0y8IovKdXVUrK1HY1IhqWScQxDi+6M34SgQoQjA61U4emY6hcoOqqurufjii3nsscewWAbn70IYGBGIQtAnn3zCjTfeSGFhIcnubHLyTkMtd11Guz/COQxJMsy8fTQV6+rZ90Wlf5V2YeAicyMYuziN4m+rKfo68PMURiJrhonGfa3ETbRRs70Jr5iLJfSFBFOvz6W5pG3Q524EMhB1SL/3x0EJRQMJROArYJF6VCzb3ygKyAK5AiCBxqgm7ZhYYsZaWfXIjrAoxNNdQApUKAJoaVWYd5yNraUbsdlsPPfcc5xxxhkBe34hMMSgxhDScQXh5JNPpq7MxRGpSxg9+qwRH4ZsWSamXJuDrJZQvLDtjSLMSQayT00UYShADDE6Rp2TQt2OZhGGAkQfpWX8JRlEj7FQtbEBr9OLMU6HKUEf7KYJIc6UoPfN2VBgwz/3sPejcsC3T3Wz1nZI2vfAbHY+PY6dT48LdlMOUPRVFbU7msg7O8U/N0YYIMU33Fpn07LtjSIUr28+6pRrc7BlmYLdum6VzWr2/3R2edFRAduG2SSxbmUj33+Qy+gcD2eeeSZHHXUU+fn5AduGMHCihygEKIrCv//9b2655RYURSFJN5sky/iADY/rEE5hyJrpO4A2FrSij9SSPDuafV9V4W73TeCMHmPB4/DSkD/w1d5HOpVOZvJV2Xg9CpueyxcV5Qao82LB5kQ9LeU/z8Mad3EGildh22v7gtW8kDPtxlwA1v5td5BbEjrGXpiOJEtsfbXQf5ukkph2Yy4125oo/Kyi+wf302D0EAFYD/raGXXd1gE/50B7iABkjcykK7KQVBIbn9krjnsBYIjR4Wp1+7+n1QYV6fPjKP2xFnu9E1uWCUXxfa+Huo6eo0D2FIHvfO/PTxt46LF9uN1uHnvsMa688kpRdCEEiEAUZAUFBVx33XV88sknJFjGMjruOHTqwF5NCZcgJGtkvC7fl9LYC9LwOL3s/K+Y+DrYRp+Xii3TzIZ/7cVe7wx2c8Ka2qBi8jXZFH1dRdWGhkN+rzGp8bq84uSrk6xTEgHI/7g8yC0JHSqtjKyR/BW8OlhSjbTXOXG1Dk7lx8EIRQcHog4DCUaBCETg63GbfHU2DXta2PF2z4t7CwM36uwUZK3M9jd8C7h2/s4PVYMVjIpKVfzingbeW17JuHHjeOmll5g2bVpAtyH0jYikQeLxeHj00UcZP34827ZtY2rKIiYlnRHQMLTjpuiwCUOGaC0zbx+FJdVXs3/nuyXdhqHkOTH+tUuEgUmaFU3MGCu7/lciwlAAuNs9lK2spWFv1z2XrlY3HqcXjVlNytyYIW5daMr/uFyEof1S5sagMavxOL2HhCGApuI2XK1uVDpf74YtyxyEVgZGKAyls9c52f2/UmLGWUmaFR3UtgwXcZNt5J6Z3OXvdv63xF/dz5JmZObto9BHBW5KwGDoGE53UtLkQxZkHYi0ZA/vvhDB80+Oo7q6mlmzZvHAAw/gcIilGIJFBKIg2Lp1K7Nnz+b2228nRjeGPP0iYs2BKce446Zo/0/ujT8F5DkHizXDRMrcWADaa50Uf1NFe53vpLxjyNHBZI1E4vQojCIQDVhEioGM4xMoWVFN3U4xsXggkmZFE5nrOzktW1l72LWbrGlGEmdEozGph6J5Ic2aafIPkR3JNGY1iTOisaYdfiFHxavQVu3A0Rj+FzE6glGwwlHtjiZKVtSQcXwCEaliEc2B8rq8Pfb6dHy3d3zn2/d/56fMjcWaEfrHgY5gFKhwdNkiB9u/tXLRogR++9vfkpuby9dffx2Q5xb6RgyZG0Iej4e//vWv3HPPPWRnZ2Npm47N0PWVlN7YcVPXV7RCOQjJGhlJ9h0UE2dGETPWyuaXCvpeHEFUlxsQtVHFlGtysNc72fJyQVhUAwplY85Lo6WineJvq3v9mHAYLjIUZt4+CoBVj+wMckuCrz/7hCRD4oxoylbVDviYOJRD5npyuOF0gRoy10GSYfylmegjtWz45x5cbYf2zgmDSIIJl2VSs7WR8tV1qHQyipewPD5+Urah34/96CstN97VSklJCb/+9a+577770GpDuwdtOBGBaIjs2bOHJUuWsGLFCtIjZ5ATMw+V3Perw92FoA6hHIaQYPrNeVRvbmDfl/2rZNZ5wrrQf+MuSseUaGDDP/cctjdD6JqsltBaNL4rnP0M6CqdTOYJCRR9XYWzZWR+DhH7e0Sai9qC3JLg0JrVpB0TR8FnFf06tllSjYy7OJ1NLxbQWj6whZRDJRB16C4YBToQge9zmHxNNq0Vdrb+WxQ9GQhZLRGRaux38YT0Y+OJnWBlzRO7wvrCZ3/CUWsr3HK/mxdfKyI9PZ033niDmTNnBr5xwiFEIBpkXq+Xf/zjH9xxxx0kJCQQ455NpDG1148/XACC0A5BOpuG5DkxFHxSgeJRiBoVQWuFHUdj3xdtM8bpmHx1NpueL6ClTCxu2V/Jc2LIOD6eLa8UhkW1n1CVfVoitkwza/++u99f2hqjiglLMtn7YTmN+8RnMRJZ001knZrIlpcK+t0zoTao/JW9ZI2E19W/HTLUAlGHg4PRYAQiAFuWmfGXZJD/STllK2sHZRsjQex4K6POSWXVX3f064KbzqrBFK+nblczkkoi86QESlfU4GgIzcVee6svAWnZpzpuuLOO6upq7r33Xv7v//4PlUo1eI0TRCAaTMXFxSxdupTPP/+cVNsU8uLm92pNod6EoA6hGoY0JhWuVg+GaC3jLspg2+v7aKse2GRBtV5F7EQrFWvqUbxit+0PU4KeSVdmUbaylsLPK4PdnLCmManQWbUDD+cjfPhn9mlJAOz9sCzILQmiAO0DyXNiiJtoY8Mze1E8fX/CUA1EHTqC0WAFIoCMExJIOiKKjc/m01oxsB63keqA3vMBMsbqGLs4nS2vFmKvc/rPLcJdb8JRY7PEtb928Z93Cxk1ahRvvvkmkyZNGvzGjVAiEA2S1157jeuuu46IiAgS5LnEmDJ7vH9fQhCEbhACyFmQhCnRwMZn9ga7KUInskZi8tU5eJ1eNj6XL0JlP+ijtGSekMCu/5UEdOimJEPmiYnU72mmfs/IWltr6vW+gjLrngqPipiBEpljJjIngoJPywM2h88Qo8OWaaJ8dV2/Hp+y8ueqdT98OiEgbQpkIOpge/nHwD/pfpJKYtIVWcgamQ3/2tPv3jZhcEy+KpuW8nb2fDB8LqAcLhy9+Z6Wm++uoqmpiT/96U/84he/CPg6lYIIRAHX3NzMjTfeyMsvv0yiZSxj4k9Eo+q6IlpfQ1CHUAtDkgzxUyJpLmmntdKOOVGPrJFpCuCcAFOinqjcCEpX1OB1i122P7JPSyJuko0N/9xDe234V6cKBmOcjuxTk9j5TnHA516NPjeV+t3NVHaxfpEw/MRPthGZG8GOtwZn/ZuoURG01zppr+l9z3znQHSw/gakcAtE4FsGYvLVOVRvbhhWJ95DSWfVMOqcVPZ8UEpbVeBKSVvSjHhcXlrL7ZgS9EQkG6hcXz9sCgN1F46qamSW3GLnky+KmDt3Lu+88w5xcXFD27hhTgSiAFqzZg2LFy+moqKCzIhjSLKOP+Q+/Q1BEJpBSPECEky9PpeKtXWDNu46bpKN5DkxrH96ZF1FDpSoURGMvSCd3e+XUrmuPtjNCTs6qwZHk2tED20Twojku5LeVNRG/vLer/HUUyDqrC/hKBwDEfgu8uWekcz2N/dRu0MsS9BXkiyRtzCZkh9qaK0cnKGHSbOiSZgaybqn94DS6ZxkmOgqHD36jIbfPFSI0WjklVde4ZRTThn6hg1TIhAFgNfr5ZFHHuHuu+/GoIpmYtKZmLSR/t8PJAR1CLUwZEk1MvrcVDY8sxdnsxtZLYmemxClMamYen0uTfva2P6fomA3J+zIaolpN+VRub6eoq/7Vx2xL1KOjMHt8FKxpn/DnsLNlOt8Q+ZGysWOxBlRqLQyJT/UDOp21HoVbofHF+J7OUept4Gos8OFo3ANROArpx+RZmTdU7txi1LcIanj3EMboWbyVdnseKuYpuLhV7GyczjasFXN4mtr2VtQx9KlS/n73/+ORqMJXuOGCbEq4ABVVFRw6aWX8tlnn5ERdQS5sfOQJVVAQhCEVhDSmNQY43Q0FrTSWmmnanODf+LuYIYhjVGF2+4Vc176KfvUJFBg9welwW5KWPK6FXa/VzpklQ01JjWSauScfLWUDr+Tl56oDSrU+sGvFuW2+/YhY6yO0eelseM/RYctbFMyq6XPoejIEzf7/z9Q845CxZ4PS5l6fS7Zp/iGyQp9F5FqxNXqDkiBha50nHsoHoWqzQ3+3ihrpom2Kgeu1uGxnEHnhWA/KdvApi8t3PB/Zp599ll++OEH/vvf/zJq1KjgNXAYED1EA/D5559z4YUXIssyKdpjqLlzekCfP5TCEED2qYnYssys/dvuId3uqEWpaIwqtrxcOKTbHQ5ixloYfW4a298qonbb4FVmGo4GOkFdEEKBWq8i48QECj4tx2M//Hii/vQSdaUjHIVzDxFAzDgroxelimNoP02/JY+aLY1DXtV02o251Oe3kP9R74eMhqOl/9rC9XdUIMsyDz/8MJdffnmwmxS2RCDqB6/Xy0MPPcRvfvMbdKNyiFlyIaqIwHyJdAiJMCRBxvEJNJe0Ubu9CbVRheJRhnxhVGOcDrVBRdO+kXUleaDURhXTrs+lsbCVHW+Lq5t91VHCeOOze4MyHDRuog1dpIbib6qHfNtDKSLZAEBz6fBeWyz16Fgc9S6qNjUErQ1qgwqVVu5xHbhABaIOW54KfK/RUAYi8BU8saabWPfU7n6vFTVS6ayafq07OFAqnYykknC3eYgeYyEixeALZcPwjNepOMiP2khpfTFLlizhn//8pxhC1w9ysBsQburr6znjjDO45557sJx8HHE3XBnQMJR7409BD0Mq3f7dQgFthBqN0Te8w93mGfIwBNBW5RBhqB+yT0kCCfZ+JKok9Ufpiho2PhecMASgMavRWYb/l9qYC9IYc0FasJsx6HQWDRpzcEep556RzKhzer8weCDYXv5xyANMoHWskdWxZpbQe8EIQwAeh9c/70tjVKGN0PjDkP8cZ5jQSjpG1c1gYuJUXnzxRU488UT27dsX7GaFHdFD1Afr1q3jnHPOobGxEc0FZ2EYPyagzx/sIAS+8eaTrsxmy6uFNIfAxMTMExOo39tCw96RtTbLQEWPsTDmvDR2vF1EzVYxzKO31AYV4y/OoPDLSrHPDZHIXN8Fpfrd4v0ebDqrBlkt9Vh2P9A9RCWzDv1cGy4d2AKwwQhY0WMtjDk3TVSd64fMExNQ6VXseS/481gtqUbGXZzBxmf3Dnix+FDUoK1ml249KpWKl156idNPPz3YTQobwysmD6LnnnuOOXPmUOZ1Y7z12mEVhlRamai8CADaqh3s+6qS9hA4UEiyL6BpTKL2R1+odDJZpyRSu71JhKE+8ji9tJS3Y68PnXWaInMjSJ4dmCItoah+d8uwDkPJs6OJzI0IdjMA39X69lonkiyRdkwcsiY4pwDh2GtUu62J2p1NZJ2ShEorTp36orXSHjLFU9qqHez7stIfhqLyIobV52lzxjLNezQaRcdZZ53FX//6V7zeYVSLfBANn71gkDgcDq666iquvPJKNDOmkHDb9aijowb8vIrWi6L1hsQQubjJNvLOTvF3I5etrPVXKAomxQtb/72P6iCOuQ9H6fPjUWll9n4shsr1muQbHqp4FPZ8UDZoFZH6w5ygx5JmCnYzBk3miQlknpgQ7GYMGkuaCVNC14tzB4s+UkPC9CjMScFtV7gFo/yPylHrZdKPFQti9kXVxgYq1obG+nduu4eyn3zrJap0MnlnpxA32RbcRgWYqlXHhKY5ZBhzuf322zn++ONpaRm+F50CRQyZ60FVVRVnn302q1evJuK8hZhnzxjQ8ynaA1N63tWrB/R8AxE7wYpar6J8dR2SSkJjVOFsDq3ylMY4XUBXuB4JzIl6Jl2ZTcFnFYO2SO5wlHZ0HPFTI1n75K7QW0+rl2vIhKtpN+UCsPbJoa1eOaRC8DOUNTJe16FXjodiyFx3ejuULpghKnl2NBknJLDxmb20lA/OgqPDkc6qISLFEHKjFrQRalxtHhSPQuKMKNx2D9WbG4PdrIBpS61hdfkPpKSk8M0335CaOrRzCMOJ6CHqxoYNG5gxYwZ79uwh6qar+h2GOnqCQikMAZgSDP6rlopHCbkwZErQM/W6XKwZw/fKeMBJkL0gmdYqu/8KmNA7Zatr2ftRWeiFIfCfSEekGIifGtnzfcPQ2id3D8swFD81kogUXwW9UAtDgD8MpR0TR/KcmCC3xqc3PUbB7lEqXVlLa6WdnAXJvqAr9ErUqAiyT0tCVofWm+ZsdvvXUzQlGkKuN3egjMUxzIk8gebmZqZNm8ZHH30U7CaFLBGIuvDOO+9w5JFHUqF4UN90JbqsjD49vrsQBL4gFIwwJKkkJl6RRfwU3wlV4WcV7Hk/dIdUtVba2fJqIU1FrcFuSthInB6FOVHPng/KQvIELBTZskyodDLuNg91O0N7onRkbgRxE23iJCwcSBA3yRYyc4d6JBFy+1RID6VTYM/7ZZgS9STNHL5z+wKtcn09qx/dGZoXnfbb814phZ/51kuKnxLJxKVZSKoQ++PoB021kTE1R6BS1CxcuJCHHnoo2E0KSSIQdaIoCg888ACLFi2C0bnE33Y96khb7x7bQwjqEIwgpN1ftlfxKNTvaaa9JkyGoCnQsLcFRcwF7BWNSU36cfFUrKmjZZiv5xIosloid2FKyFwdP5zib6rY/FLBsAu7k6/OZvLV2cFuRmApsPnFAoq/qQp2Sw6r6KsqSn+oASDlh8AOlxuoUA1GLWXtlK+pI+2YODQmVbCbExa8LgWvSwm58N2d9hoH9Xua/b1H2jBfAkEnGRhbP5v02Cz+7//+j1tvvRWPJ/hzxUOJCET72e12Fi9ezH333Yd1wYnELL0IWavt8TG9CUEdghGGjLE6pt+chy3b9yVX/E01TSFQSvtwrBkm8s5KCVoFpHCUcVw8ikeh8MuhXQ08nHndCpuez6f42/BY+FTxAgoYorXYskLrxHUg2moctIXLhZpesGWbMURrQSGsLuhEjYog+btkZEfoHXdDMRgVfVWFoiikHxsf7KaEDXOygZm3jQqLcNFU3Ob/brBlm5l+cx6GGF2QWzUwslcmvWw8eZqJPP7448ybN4+mptCa0xVMoXfkC4K6ujpOOOEEli1bRsyVl2A75QQkqevLGH0JQR2GMgxJsuQPQG3VDna/V0rTvvAadqbSyqi0XU/4FQ5lStQTN9nGvq+q8NjFe3Y4kkoi+cgYJFnC0eDyXwEMF6lHxZF2dGywmxEwu/5bwq7/lgS7GQGTdnQcqUeFXxWy5tJ2WhNb8WpC9xgSSqHI3e6h6Ksq4qdEDrt5J4OlvdpB1cYG8IbXMbdpXyu73yv1j7CxZZuR5DDp6jqIJEmkufOYk3Asa9asYebMmVRXh8dFwcE24gNRYWEhRx55JNu3b+fLL7/ENGVisJs0ILETrIxdnI42wrd2T/WmhpAes9uVul3NbH+zKNjNCBtZJyXSVuWgYm1dsJsSFiKSDaTOjcUYG55X+/YuL2Pzy4XBbkbAGGK0GGJ67o0PJ1teLmDv8tCdn9kdV4ubhlENIIPKoRp2QzMHQ/maOtqqHWSdnBjspoQFj9NL4eeVOFtCq4jT4Xjdin/5D22EmrGL04kdbw1uowbIUBHJu+++S21tLRMmTGDVqlXBblLQjehAtG7dOmbPno3T6WTFihUsXv9Dl/frT69Qh6HoHTLF64nfX0e/alMD6/+xJ+SqxvWWPlLrD3PC4cWMtWBNN5H/Sbk4gemlpqI2Vj++k9bK8CyZ67F7UTwKWrM67IdwAEy4LJMJl2UGuxkDZojRoTGr8bqVsO6pVdlVJH+bjKlMVPg8LAXyl5djTTcRM84S7NaEBUklETfZhj4yPC+COJvdrP/HHqo2NwC+4gum+PDsIXx0wQt89tlnSJLEcccdx3vvvRfsJgXViA1Ey5cvZ968eaSmpvLjjz9y4ucH7ggDCUEwtNXkosdYSJwZ7V/rImwKJ3Qh7eg4xl2UEexmhAVZLZFxQgK1O5poLAivYZHBYErUkzLXN9QsnE9YO+SdlTIsrkznf1xO/sflwW7GgGWdnMios1KC3YwB8+g91I2uoy0u9OebhoLGglZqdzSRcUJCyJWUDlWZJyaE9ZIa7TUO3wVICRJnRBE9JnzD8B1TH2TNmjUkJydz/vnn88wzzwS7SUEzIhdmffHFF7nyyis59dRT2TB/FrLu5ysV/Q1AnQUiCOX/8ecF6rLuPHTcdPxkGwpQtaHBVxZSUcJqAm93VDoZnVUjFmTthZS5MaQdE8e6p/Zgr3MGuzkhL3FmFLETbGx+sSDs5g11RR+lxdXmHhbhbjhQ61WoDSrs9eH7t3jwoqyyQwaZAc0r6svCrOFKH6ll6g257PuyktIVNcFuTshTaWU8zuFx3JJkCSRfJd+4yTYkoHJDQ7Cb1WcexYNyTD3ffPMNv/nNb/jtb38b7CYNuRE3Nunxxx/nlltu4aqrruKTCdnIKlVAQlCH/oahzgGos67CEIA52YjiUaiiYVic3HXwOLwiDPWCWq8i5chYKtbUiTDUS+Wr6qhYUzcsLhwA/s9dpZWRZAm3PTxLqKYd6ytAUPRl6Jeo7opar0LxKrjtnrD9DLqkQMKqBBw2B7UT+rfQ80gIQwD2eicV6+pInRtLxbo6cZHiMDrCkKSSwv78RelUIMKcYEBShWcgUkkqlG+iOeuss3jggQdQqVTce++9wW7WkBoxgUhRFH7/+99z77338qtf/Yo30mJAp6Aw9GGou/BzsM5hSJIhZ0Eydbubqd3exN4Pw2/S7uFknZxIe52D8lWiOMDhpMyNQZIJm5LRwZQwPQqv20vVhoZhE4Y6m7g0i6aSNvZ+EJ7HhLiJNiB8A1HG8fFEpBhZ/489wW5KYElQN7YOl8kV7JaEheJvqomfFEnKkbHs+0Isf3A44y7OoK3aTsEnFcFuSsDkL/956G/0WAtRORHs+aA0bL53JCQa/wu33nor9913Hzt37uSVV15BlkfG7JoREYgUReFXv/oVDz/8MA8++CD/iFUhSYG9KtFTGOptAOrs4J6hjj8oeRismtwdr9sbdhXxgkEboSZxZjSlK2pwtQ2jK9KDxBinC/urkD0p+LQirOcNrnlsV7CbMCDF31YPqyp5ndmjfYVHJLeEyqHCbQrPYj1DwdXqpnRlDcmzYyj/qTbsKqkNtaqN9WFb/Kk35P1lucMlDHWQJInNjxVz44038re//Y3GxkaWLVuGSjX8FyAe9nOIPB4P119/Pf/617944okneNjQHvBtdBWG+hOCOnSEIbVRxdgL0in8ooKmfWKCq+CTfVoSMWMtrHliFx5HmB1thUEjyeH35Rvuhtt7fvAcog4xG2LQtGoon1PuK97TSyNlyFwHlU5m+s151GxvCtseWyHwrOkm0o+LZ9vr+3C3h89FzFl3j+bBBx/k7LPP5rXXXkOrHZ4XfjoM634wt9vNJZdcwrPPPssLL7wwqGEo/4+zD/jpr6w7f/R/4bjbPLTXOEZEr4klzYisGb69X4Gij9QSPyWSku+rRRg6jNR5sUTmdn2CN9yotDJTrs0Jy7UxJi7NYuLSrGA3o89iJ1iZcm0OKu2w/hoFoCG3gZpJNX0KQyORx+Gl+LtqEqZEoo8a3iePgWBJMxI/NTLYzRh0HreX9hrHz2EoTP6OVj64g2eeeYZ3332X4447Drs9PJeq6K1heyR3u91cfPHFvPXWW7z55pvc5w78+HR1nXrAAaizrDt/xBCtZdoNuf5FI3e/V0pLaeCDXCiR1RLjLs4gcXpUsJsS8tKOicPV6qZ8tZhn1SMJzEkGDFHhv05Pb3icXqq3NNJaFX5fWM4WF86W8Jun0lppp3pL47CpltVd7xCA2+TGZXaBF9StI2Kkfb+Vr67D2eIm9ajYYDcl5NkyzSRMGf6BqKW0nd3vlQK+IdzTbsjFEB0egfmNq5bz1FNP8eOPP3LKKafgcoXfsbq3huWQOY/Hw6WXXsqbb77Jm2++yW31ewPyvGMebfD//+7LYgLynB2y/28lildBUklkn5JI8ffVOBqG7453MJ1Ng8fhDavu5KGmj/KF5fzl5SIQCYIQUD0Fog6R2yMxVZoomVfSq8upI23IXIfEmVFknZTI2r/tDusy7INNkqUDqrSNBDqbhtS5sez9uBzFo4TNe3DR86dx9dVXM23aNL766iv0+vBcjLYnw66HyOPxsGTJEt58801ef/31AYehMY82+H86BDIMZd35I5P/vpFpN+eitWhQPAp7PigbUWEIwNHgEmHoMFLnxuJsdVOxrj7YTQlp6cfGE5FsCHYzgkJn0TDu4gx0Nk2wm9JrWrMarTl8eh10tv3vsSV83uNAacpoonpS9TA8cwisynX1uFrdpIheoh51BIGRNFze0eBizwdlKB4FrUXD9JvzsKQag92sw/r30g95/PHHWb16NcceeywOR/gW8unOsDqseb1errjiCl577TX+/e9/88vGgn49T1chqENAw9BdvuIJrVV2arc34R0mQy/6QpIlxl+SgSUt9A8IwaSzaYibZKN0Rc2wrpg2ULJawpppwhAzMobKHcy1/6KC2hA+FYEmX5PN5Guyg92MXut4b13tw7dCVnc8Bg+OSAcooLL3vI+N1N4hAK9boWRFDXETbWF1cSIY4ifbmHHrKN8CpyOM1+mlZnunoc4h/hb894Yvefzxx1m1ahUXXnghTufw6v0cNkPmvF4vV111FS+++CKvvPIKd7WV9OnxXYWfgwUyDE19ZjNZJyey6bn84bWYXx9pTCqyT0mi6NsqsSBrD7IXJBE92sKax3aOiCIbAyIB4i0KG3GTbQBUheFihsNJb4bMdbDttmEuMVM6rxRF1fUf20gOROC7ODP9F6Oo3SkqzvVEH6nFmmGiatPwWmS+r9R6FROvyCJ/eTkNe0P7b+fK1xdx4YUXcvTRR/Ppp5+iVodPD39PhkUPkaIo3Hrrrbzwwgu8+OKLfQpD3fUEHSxgYUhRyLrzR9oq7TTkt4TF2NHB5Gr1sOPtYhGGeqC1aIifbKP0xxoRhnqQOCPK1zMk3iJ0Vg2pR4fHcJ2qDQ1hE4bSjo5DZxVX/FuSW6gdV9ttGBJ8vUSlP9YQP9mGdgQOr+wte72TyvX1IzoMgW/4YEN+C22VoV8Y59nFb/PnP/+Zr7/+mrPOOoth0q8yPALRH/7wB5544gn+/ve/c4+j/LD372lIXFcCFYbSPC7Ozq9GVks4W9zkf1w+bCoU9ZclzRjy3cTBljInGo/TS4UopNAtWS2RODOayJyRUWb7cAzRWhKmRYXFiVjK3BhS5ga2SM1g0Fo0xE8bnuWU+9I7BOA2ummP81U/ldziAN6d8tV1eJxeko6IDnZTQprOphnxVfk8Ti/5H5fjbHEjqyUmX51N9GhLsJvVreV3rOS+++7jgw8+4Oqrrx4WoSjsA9G//vUv7rnnHn7729/yR01zt/frawjqEJAwtH9HiXh0M00lbSIA7GdOMjDx8qywmFAYLCq9TPyUSMpX1Y348NwTr1thwz/3UPZTbbCbEhIa8ltZ8/gunE2hX5wlaWY0STND/4TR2eRizeO7aCxoDXZTQoZ1r5XElYkgDk1d8rq8VKypJ2FaJCpd2J9uDRq9TUvSrOgRWaikSxI0FbfRVh3avUXf/3YLt912G88++yy/+tWvgt2cAQvrOUTvvPMO5513Htdffz3LJqYgSYcmjb4GoM4CEYZSPS7y3C4K7t8ohvJ0wZxsoKWsXbw33Ug+Mob0Y+JY/dhOXK0jd65ZTyJzzLRW2nE2j7xJ7oej1qswxOpoLm4LdlPCWkSqkfZqx7Cd79nXHqIO2kYt2mYtLcktB1zoG+nzhzrTmNXMuCWPfV9UUvqjuGDTpY59R5wHHEqCsYvTqVhTR92u7i/6B1PcYi2vvfYa//rXv7jqqquC3Zx+C9tLFl988QUXXngh559/PssmJB8ShvrTG9RZoIbJ2ZHRrK9FVotuoa60lIow1B1ZLZE0M5qqzY0iDHVHgqyTE0k5MvSHXAVD+nHx5C1MDt1e6f3tCunjowR5C1NIPy4u2C0ZNF4k/09fOK1OWlJaRCGTHrha3FRvaiRpVkxo7+fBpPh+RmKlucOR1TLuNg+uttC94Ff5moPzzz+f6667jueeey7Yzem3sAxEmzZtYuHChaSmprL7iDFIssyoVjeLNrb6g5AlVkJn6t/zDzQMJXjczHLaQVGIuHsVu/5Xgtclvi0600aoGXNBGvrI4Tce35xk8K9CrTGpyDghwV96NXaClTHnp/nvO+7iDDJOSAB8cxSOvHcctizf1dqcBUnoLBrKfqwBYMJlmb6TW3xD6Y741WgicyMAXy/JuIsz/M8bN9lGzHir/98RqUZU+rD8c++ZAhue2cu+r6qC3ZKQVPR1JZuezw/ayao5yeAvQhCRYmDCkkx/2eqc05OYtDSLCZdlMufuccRP9a1Yb8syM/WGXP/9InPNROVFBOcFACiw6fm9FH09MvaxzuGotyHJusdK9NbQH/bYVyq9TESnId0x463+qojgO353zFuMzI3giF+N9h9n8xYmM+GyTABKf6xBZ9GQvSAJAFu2mSPvHeef45d5YsIBx+8x56cRu//4rbNpyDghAY3J9/dgiNFhThp+66xFpBiY9evRomjJQbwuL7v+V0JziW/OXs6CJKwZ/Ty5HSBthPqA84qsUxPJPjURSZKoecdNTk4O1113HcuXLw9K+wYq7M6QKioqWLBgATk5OSRecxFNei1jHm3A9m4rTVU/D2TOnq4hIcd3AFFpIC5TRtWLv7OBhqHICTXY0puINDnIuXfVgJ5rOFMbVKi0ctgsxqoxqfyLR2pMajJP+jnkJM+JYfrNef775pyeROL+SbSSSiYqLwKNyfdYj8OLs+XnKz3VWxpoyPcNL3G3u9nzQZl/3LAp0UBLeTtt1b4KfCUraqjcX41LcSuU/FBDe63vd16Pgqv15+e1ppv8c7NUOplJS7OI3B+0osdamHp9jv9qXPToCGxZwTnADoQ+UotKJ+NxePE4xCSGrrhaPbhaPUgqaUjmMFgzTAdMIB93YTpxk2wAuNs9OBpcSPubUbmhgeLvqvG6vLRUtPvn5rha3dTvbvYPT4sdbyN+ii8sSTJMvDwTa+bQ7K8qnYykkvzv43CUtPLwYfNw4cij9+A2uMOyl8iWZSJ6tO89kFQSU6/PIXqsbzJ7ZJaZSUuz/H87llQj1vSf9z1Xmxvv/upo7bUOSn6oQdlfCbRyQwMlK3wXs9qqHTSXt/uDTFu1gz0flOHev5ZVQ34L1Zsb/M/rbHH754xqTGqi8iKQVL42JM2MImd/sAKYfnMeyXN85y06m4bMkxL83zdas9ofpEJdW7WD4m99xwOha7JGRmfTotIOzam7JEPCtEj/fhuRYmT0Oamojb59qrXc7pvyAEgeicn62SQnJ3PJJZdQWFg4JG0MpLCaQ9TW1sYxxxxDaWkpq1at4ooT/97tfVVqkFTgdoAtQWLUkRrWf+TE2Q4aPbi6mKvW1zAUOaHG//8RbRLxDTJ7knxfmpGn7e7TcwnBp7NqcLd78Di9ROaaiR5tYc/7vvUjJl+TTXNJG3s/LEdrVjP+0gx2LyuludT3JWdK0FO5rt73PBYNbodnQCfp1nQTE5ZksuWVAhryBziJWwJDtA5nswuPw4s52UD0aAv7vqgEYNxF6Thb3OxeVopKJzPjF6PY8U4xDXtbMMToMMZoqd3ZHHInOxOWZOJxetn22r5gNyXkTboyi9ZKu39/DhSVXib5iBiqNjVgr3eSPCeG6DEWNj2XD4A+Souz2T3wk5z9Q7LUehWZJyZQtqqW1go7CdOjiB1vZfNLBYOyf+acnoQpXs/GZ/MD/+QhojeBqDtyN296SM0hkiB6VARtNU7aaxzYss2MPieV1Y/vxOPwkntmMhqT2n8cST8untodTbSUtqPSyWgjNL4LTwPcv2xZJsZfksmm5/NpGsCcPpVORq1T4dhfMCV+aiStFb4T04hkA7lnJrPl5UKcLW6yT0siItnAhn/tBXz7c+32Jur3tKDSyqgNKhyNoV94RehaytxY6nY2+S+aBoohWkt7rW/R1anX51Cxrp6ylb6pH5Is9Vjg6aWSx5k+fToqlYr169cTExM+w9nDJhB5vV7OP/98PvroIybFn4/FkNCnx8tq8O6/gD7pJA315V6KNv18xa83YahzADpYWpVMZqWK78e68KhEIOqJJEvoIzX+P7hgiZtsQ/EoVG9uRBuhZuZto9n62j7qdzcTPcZC/ORItr3u+5I0JxlwtblxNAzNl8eoRamY4nSse2rPkGyv44RTpZdJnB5N9ZYGHA0uUubGkjQrmlUP7wB883Vaytup2tgAku+zDNb6EdoINSqdivYasYbV4UTmmLHXOwPyN6c1qzHG6WjIb0XWSEy7MY89H5RSv7t/J8Hy/qud3n5UUbRm+npCi7+tBnxDjcrX1AVsYUNDtBZ9pJb6PSF0gh9gAwlEHWQUUMBSYKHydy3Ubm8KQMv6RlJJvnX9FN+x3ZxgIH+5bxmOI345mtKVNZR8X4POpiF2vI3yNbV47N4hnf809YZcWsrb2fXfvi0c3186mwaNUe2/ij/2wnQq19dTu72JqLwIxi5OZ9Vfd+BsdhM7wYqkkoK6JpjGpCJmnJWKNXUooqOoR7JGZtIVWZStqvVfjA2E2AlWcs9MYc3jO3E2u5Fk+vxZuKxtrHJ8xZgxY1i5ciUaTXgMgwybIXP33HMP77zzDnlRp/Q5DMHPYQhg30YPNft8n7DOBEWXRnX5mMgJNQf8HEzthsQ631tYFOvlu3EiDPWGJc3ItBvzMMbpBn1b5iQD2gjf8IGYsRZm/XqMf6iYNc1ERIpvWJmz2c2WVwtpKvb1xtRub/KHIYCWsvYhC0Mak5ro0RYq1gbuIHdY+08IPHYvJd9X+19ryffVrP3bLv/dpP1XiABM8Xpm3zkGU7we8A1h6xhWOJgk2ffjbHaLMNRL9XtaBh6G9o+WSp4TQ84C31w2r0th9aM7+x2GAKbflMv0m3L79djGglZ/GFJpZbweBa/bd2w3Jeh965wNQHutc1iHoUDxIuGVJLSNOt/iyENAa1b756AefCySJAmpUwGDNX/bRcn3vu9wR4OLku+rfWEIhrTnu2JNHTFjLUM2jM3R4PKHIYBtr+3zh9XGola2vFror84ZkWLEmuYbDiipJGbdOYaY/UMHtRHqIZm3pLVoyDwhAWOsftC3Fe68Li8bntnrD0PRYyz9HhatMaqwZfuG1NfuaGb7G/v8+0V/gqmm0cg025Fs2LCBX/ziF/1qUzCERQ/Ryy+/zGWXXUZe3LFkxhwR0OdOvcCIFliuNRA5sW8lMbPKVeSWqfhikhP3/vNAEYYOT1ZLWDNMg3KiETUqAn2klrKVtSDB7LvGsu/LSspW1qKP0hKVF0HF2rqQLnKRclQsqUfFsuqRHSE9N8Z/NW+tb5XxvLNT0Nu0vkn8+K40NRa0HjBnKhCSjogmYVok6/+5d8Svbt4XWrOvkMnej8oPOEk6HFktMXFpFuWraqnc0IDaoELxKgHbNxNn+i5Ila8K7MLD2aclEZFiYMM/9/b5seZkA9mnJLLtjSJcAd5/Q0kgeocOoEDZ7MEpDaw1q7Fmmqje3AjAxCuysNc52fVuCZJKImFaJDVbQ7sip0ovM/O20RR/W03J99XBbk63ZI1EwrQo6nY1Y69zkjw7mrRj4vnxj9tAgaRZ0djrndTtDPxnLWukkP5+DkUqncz0m/Mo/q7ad+7TR5knJRCVZ/Fd/AzgW1+uL2Br+1p+85vf8MADDwTuiQdJyAei9evXM2fOHKL1eYxLPLXLtYYGovkPoPFItBh8Xe2HLaijQES7RLPRd3+9E+z7L4iJMDR0JJVvqJYhRkfemcnseKcYR4OL1KNjMScY2P5mEeCryONocOJ1h/Ru/jPJN0m2oaCVPe+VBrs1faIxq9EYVbRVOdAYVcy8fTQ73i6mdnsTpgQ9xlid/2RmIIxxOqzpJspXB/YEetiTIPeMZMp+8s2/ORxbltlf8CP1qFga8ltoLu19kAoFGrMaV4sbfaSW0eemsuPtYux1h+8pMyXqSZoZze73SkNu7lwgBToQlc3ynSDHjLdSv6t5wItJx06w0lbtoLXCTvQYC6MXpbLqkR242jwY43S42jxhF1hzzkjGlmVizeOBPfkcTLJaQmfT+nvkx1yQRkt5O8XfVKOzaRh9Tiq7lpXSXuPwfzcLQ0tr0eBsdoHi+45sqzr86Am1XoXb7kHWSKh0qkH5WypJ3M7uyh288847nHnmmQF//kAK6SFztbW1nH322WixMSbhpICFIc/23Xi276bmYXBoocWgIHlh1k4NGRU9vyWZlSrmbtOgdQGSCEN9pTGpyTk9qW8rUktgjP15GMaEJZlkneQbNulqddNe6/QP4yr+ptofhgDaaxzhE4aAqNwI9DYtFavDbwG//2fvveMkqct9/0+Fzrl7ZnpyzpvzLrJEEURBEVGPgBiAI4I53Mu993fu65x77wl6jseEmAOiiB4TICogQdKybA6zOznn7p7Ouap+f9R0TdgJHaq7q7vr/XohLlNd9Z3a6vp+n+/zeT5PzB8XXsKxIIMj/3ZBaCRnaTWg/iq7cGzlHkvaksngXEQOhtKBA/r/MJlUMGRq0mHrnY3QVfLSlfGX57MWDFUfsK1wphOTxARPUARCzgiii4XoCZek9QhMh9H/h+IOhrKFQk+j7eYaWDtSD7a0FSpU7rEIf2642i7YWi/0+3Dk3y4gFuQzQMG5SMEFQwAw/aYTapMS1rY8WsmnCBvnVsiTL/xyDOMv8RkugiQQckaFv4vmGyoFu3Fgce5OYelmqNFg72faBac8meSIevlgSKGlsOPuFiHzvh72XRbsfqANCh0FNsZl7btUM9MBm74M9913H4aHh7NyDbGQbEDEMAxuv/12eL1e7Ky9BRSZ2ZcjEQQxF/jAZeGPKzXrHAG49Cyf+VkDcnGja7SCwdH2GKLL1vNyMJQ8KiMNQ61W0Pmvh6FmqX+JfacFuz7eKlhNTr3hxPw5PtMQDzHo+/1EUru+hUDlHgt8k0H4pzdftEodJsoKO4UTr8zj5MP894QgCdRdUQHjol5dbVWibItx06Z8tJZC9wcboLYWX++qXKKxKdH4Vvsl/11poIVeQJ7hAE5+byCp4ClTai8vQ+3l2XUiCjki6P3NBNg4B1pLYe8D7YId+Goa32oX+ogVM6LL5RaJ+eM4/s2+pLLBBEmgbItRqAUy1utQd0WF8C448e1+ofaHjXMZZ5ykQGA6DN9kULCSL3TCrij6fj8h2OTPn/Vg6ii/oUepSOz6eCvsO/nfVWVSwFCzcS1SeCEKZ49XsOeXSY1YkEHPL0aFGmSCWntedV70YvT52axLTAmORLtnL/x+P975znciGpXuWk2yj9w//uM/4plnnkGT/jpolOa0zrE6CEqwOhgCABBAXy0Dp5GXwmmWZRvLPQSuOa2EJgKwJPhjFpGDodTwT4dx8uEBYZcvgbZchbItRuHP3bcv9S9x9npx5sdDYBate50XvPCOpW9bKlUUehqWVgNmT+bQTCGHJDJ1HMsX4id+T0uLHq3vqEFiO97YoBWaci5HqaNB0kTB9K6SKkqjArYu0yUGGNYOI+qvqhAKcwM5CsqPfb0fx76eu/doPMRg+JlpIXu5PFut1NP8vUklgy1zCYmC7IShzXJoDQVjQ8LsgkPrO2qELNDsyQW8+Z+9vFscUFDZ/VSYPeVe7E9XGD2CUsE7FhSMG5goizM/HoKzl/9zxQ4zum9vEI4t22Jcof4A+AX98DMzwjMkkzqekQA4hoPKqMDeT7ULzd4BvgEuraYQDzGiutNthJrQYIf6EC5evIg777wzJ9dMB0nWED311FO46aab0FZ+JZrLL0vps6uDn9WsGQytommGQvvkklmCIg60TFPoq2HALgsh5WAodZZrVsu3mrEw6EfUG0Pt4XJU7bHiza/1AuCzBhF3tKSsN2sO2dBwjR1v/Lu0zRSyQaLBKgjgwBc7Mf2GC2MvzYFS8o0x5SBIZBathlVmBYx1WmE3X/h7KBEIisDeT7Zj9vQCxl6Y4/9bGjazhUi26ocS2Hdb0Hx9Jd78Gu9SyTF8hqf+ygpUHbDija9c5K3+S+yZA/h5cP/nOzDy19m0iuALFYIEVGaloOjY99kOTL/pwsQr81AZFTC36DF/zg2SImFq1MF5Mff27cUEQRGov6oCk686+AweAez+RBs8w34MPj2d8/E4K8dxcvoNPPzww/j4xz+e8+tvhuQCoomJCezYsQNU1IZddbcmXTe0WSCUIJmASBkDKl0kyr0kzjTFEVtHrScHRKlRtsWEjltrce6REfgmQzjwxU70/34Cjh4v7ywT50pas7/r460IzkfQ+5vxfA8lryh0NDiOQzzIoGqfFY1vrUT/U5MITIXy3ruqmFDoaTRcXQFTgw4nHh7IWyH0lsUd4/M/z0+DXXOzHkFHBEo9jXiIQXih+J+xbMjlVgdEtIZadBP14cAXuzDy7Aym33SB1lIgCAKxQGlnADreWwdtmQonv5OjXnNShOANG9gYh7ItRrS9qxZvfOUizE06dP9dAy78egzOHjkoEgNaTaH1pmpMvuZAaCGKeDD3m4wcx2G48jSm3BN44403sH379pyPYSMkVbXGMAw+9KEPQaPRoL1sc0e5ZIOgBMkEQwAQVQDzZhYN8xQ0YQIx/aULBTkY2hxKTaJiuxlzZ9xgwixMjVqEnFH4p0JgYyze+MoFwV6z1G02dZVq6OxqjDw3k++h5J3lCyVHjwcRbwyN19rh7PXB0qLH1BEn5s648zfAAoekCeiqNKg5aIPKpMCp7+XXvnw9jXuuSDjpdb2vDhqbChOvzgt1KzLpUbHdjOoDNpz6Pm953vtf4/BN8jLnfCzEpMjcqQVsuZ03LslFrZ4k4Zbmfsd5L1x9/JrAPeSHdzwIY50Wzh7vJWsJmdQx1mugNisR9cfz9h0kCAKNrq3wGt14z3vegwsXLkiqaaukaoi+8pWv4MUXX0QVfSWU9NoN9darC9qMpIIhDqh2kiBZIKQCJmws9g0oBEOFBHIwtD76KjVMTXyxPKUg0XRdJfRVfBHl0J9ncOKhfqEwttSDoOXYd5oR9cWwMCg3gVxOLMDA1evDye8OYup1B1z9PgSdfIGfuVmHuivKU3IwkgHqrqxA1/vrMfLcDM79bCTvhernHhnBuUdG8joGADj3sxGM/20ezovZ6aNTzEwd8qHuinLh3R90RuAa8IGkCTTfWAWdXS3p/kD5YGHQj6gvJhgOyCytCdg4hzM/GsLIc7MAAH2VBk3XVYJS8EtWU5MO+iq5eWvSEEDz26vhmwwi4omBoIgVNdu5hIzR6MIejIyM4HOf+1xexrAekgmIjh49iv/v//v/0Gg9CJuuYcXP0g2CEiSbGdJEgZ1DNCoX+NsyZ2HRXx0Hu2zBJQdDKyFpArZOg+AKVH2oDHWHywHwhbVHvnwBnuEAAN5NSnYIuxSCBMq3mjF31lPSksG1IGkCtJoCx3CIBRmMvTAH/6L9s8bG9yNK3DNDrUYOjjaApBPW9HM4+5NhhBdiYCIsSAWZ9yxNPiEoAqSCr2OZfN3B91IhCXS+tw7GurU35goZ0eRyHKBaUAn/39Sog7aM/7N/MoSxF+bAxjlEvXFES1wetyYcMHfGjfJtJtlRbQ0sbQZ0vb8eAO96eeTLFwSjhbrD5ag+xDtTEiS/Bkm832TWgFvc8HmZt0ov6+LliQkn31yjchqwxb4TDz30EH73u9/lZQxrIYmvoc/nwwc/+EHo6HK0VhwW/nsmQVAqKOIAOD4r9ML2KKZs/I5pQM1hrIIVFllyMMRDKUmozPwXSVOmQtf7GwQrzaGnp3HuZyPCsYkdH4WeRtU+G9RmOSBajblZD4WOxrwsA7uEih1m7P10u+B8tpzpN13Cs6YyK7DjYy0o68rPrpfUsXYYsOeBdigN9IqeIiRNYM8Dbajau3HPimyy//Md2P/5jrxdv2qvFXseaFuxoOIbFUpiepQeixsQuhktao5Ugg7yyvtzj4ys2R9s4pX5nLlZFRrz5zxQaGmYGvWbH1xisDEW8SAjfC+XK0rO/WwEQ4umAIYaDbre3wDNYjCutiiFFh0yENavYVdUCCjnz3lw4tv9iHj4vmyUOvf3q3y6EZWWKnz0ox/F/Px8zq+/FpIwVbj77rvx+OOPY1flHdAqLaIGQZtlhygGuPKcEmPlDAaq10jpc0D3OAWPlkPwrt6Ur+94sn3Fn8tu6kv5HFJguRPQltsbAILA+UdHAPAvoFIoRM4WbTfXwFCnxYmH5IB7NQotBVOTHo7zm/c00ddoEJgJg2M4NF1fCZIi8uKkI0VoLYXq/TaM/23uEge1ih1meEYDiLhjeRlbogdRvup2VGYFTA06zJ12r3uMpVWPhYHikLPe3LPkanbM25jSZ23nreBIDq6uBRAMoPQpMXzD5i5ptIZCxXYzpt4oHUe1ZNnzQBs8owEMPDmV76EULMvXIFvuaAQ4TjBpKUUXw+XYd1lQudeKMz8cEuzsl1N7eTnsu8w4+fBAzm3uWX0Ux4gXceWVV+KJJ57I6bXXIu+mCs8++yx++MMforvqBqgGHWAg3qSYjFSOoYC+6jicxnW+MARAMwRM35rD6s43q4OdzSjUYEhfrcH2jzbh1PcGEZyLYOS5WaEJGwA5GMoAPt1vxNSb8kJhLWJBJqlgCIAgpQP4LvYJGQqlJGFtN8DR4ykJO+XlVB+0YfbUAuJBBmMvzq15zEaBQC7It4FBxB3DnNu97s9NTTpsub0Rp74/CP9UaN3jCoHlwRAA7DWOrPjzJQESy2eCghUhcDSHqCEq7DhzFBAxJ/fu19iUaLjWDvewH8G5yOYfKCHmz3tQtc+KwT9Or7lgLWVImoDSqNi08fryNcjAk5Og1Xx/J51djR33NOPMD4eKotl5OgQdEbh6ves+W/Nn3Ij6Ynnp+UX6lego34Enn3wS3/ve93DvvffmfAzLyWuGyOfzYdu2bfCNhrALh5O22E6GzYKhxlkSDAmMl2+8Qir7AjD75czHVWjBUNP1fAHjwFNTIEgClXssmD/nSbsfzM57WzB7agHTRy+VVJQyllY9ttzeiBMP98sLhVW031IL50Wv0OQvXWxdRnTcWotjX+8rqWZ/SqMCu/6+BQN/nNrUulZfrUHjtXb0PDaa84nRvtsMAJg94c7pdUkFge4PNGDkr7ObBjo6uxqB2cJfUK0OiNaD44DjvkZQIQr1L9VgbqcDgcpLm2GvttreiFLfqV8PbYUKu+9rw/mfjxRNFlIsmq6vhLXdgOPfTE89QWsolG81Yeb4AjiWQ+tN1WCiLIb/Iru5roV9lwUkTawpfc0WHMehr/wYPJEF9PX1wW635+zaq8lrhui///f/jvn5eezClaIGQ5vCAYYQiTi5cuIv+8KlhyaCIZoB9GECbl1x7uAojQo0XF2BkedmEQvEEZgJC4XWHMtl/AWZP+cpXWvRDSjrNiHoiMjB0CoIkgA4iLJj6rzgxbGv9SHq54Ohnfe2YPpNF2ZPFnFdAwFEvTEc+2ZfUja1sWAcLMOB1tKIenMrnWu4mp8Acx0Q0RoaLMMhFtw8SE4EQxU7zdBXa4T6hWIkMlSJ8EA19lx3AoQRYG8ah00TTVletxomwoIgIRhYyPAE5yIIzodRtsUkB0SrmD7qwtwpd9qfj4eYFWsX32RIaDGg0NNovNaO0Rfmcv7OyxXWDgPiIQbesUs3M9ZCU6YUnPxyBUEQaA3uwJvE8/jUpz6Fxx9/PKfXX07eAqKXXnoJ3/72t9GOndAQOlHPvV52iGQBQ4iAR8dh+lv8JFiW5Dm7JyjYvSSe3Zb6F0eq2SF9tQZKPQ1Xnw9MlIG+SgOVWYFYIC66jGbyNbmvx2pkudz6cCyHvt9PiHa+RDBEUAScF73CAldboQI4IDhfPAFp09sqodDS6Pv9RNI9OyLuGHp+kZ/GqKe+O5iX60a9afzOHJDLvbtcEXfzbnq0OQjKFICyxgGwBEBxIDW8HGm5vC7d4Gj7R5vhmwoVdUCZDo4eL6oP2DDw1FRee4JJDbHl+MvNPVQmBfRVGjBRXvVibTcg6o8XvCx2OVX7bIh4okkHRCPPzgr/X1epRsgRyYligAoq0W7bhl/96le48cYbcdddd2X9mmuRF8lcKBTCtm3b4Bh0Yy+uyolUruwLQP02CuWNFE4+HQWbhPJruVROEwFAAKEUTdKkFgwpDTRiQQYcw6HlHVXQ2TU486OhrF7TUKcFE2aKatEpBuYWPbbeIcvlVkMpSRgb+A732bYhb393LbQVKpz6Xn4W5dnA1m2EQkNh5njqGTBDjQZKgwLOi8XdHd7WaUTUF4NvMv3Fj1JPC4F2IbCeXI7jAO8zu0GZAtAfTN446IluW8pjsLQZEPFE5ffdKhKyuXM/G4Z7KJDv4UiKyj0WMDEu6y6s2z/ajMBMCINPT4OgCCi0VFFIrEkFkXLPR5ImsPfT7Zg95cboX2c3/4AIcByHC9Y3EGT9GBwchNWae+fTvHgT/tu//RvGxsbQjb1Zk8qVfWHlPwAwcYHBxZdjKQdDAG/JXQzB0L7PdMDWwfehGHl2Fmd+nN1gCAAa32pH7WJvIpklrB0GhFzy4mA1llY9uj9QD6Uh+z0S+p+YxIVfjQHgnYq23NEIpVE6nbNTIdHjy9njTSsYAoCKXRZU7c/tRNT1/nqh30iuqNpvRUUGDTGVBhq7H2jLW3PDTGECKnhf3AbGpwZBAPrLz0O3P/vz1UK/T37frUFwLoKwOwprR2E+T9nEUKOFzp79JqxnfrzUCNbWacC+z3RAaci771jGpBoMAXxj3PM/H8XEy7mzwyYIAh3xXQiFQvjHf/zHnF13xRhynSEaGhpCd3c3qiKNaCW2iXpuquvS7JDWRKB5L42+12KIJrkZuJ6JQq2ThCVA4Gz95hGVVIKhyj0W2DqNggWlrdMA91Agp93pSZrv6SF3Kl/J3k+3w9Xrw9CfZfnIatRW5abOQmKjr1Kj4Ro7Ljw+BjbOQWVUIFIg2nJtuQo7/74VF381Bldf8oXuqyEVJNhYbus7tn+0GQCynqleTaa/q323BY5znpy+SzPh5h4nmIAKlC4CLk7C/+oWaLYNg7amXreSTnYogbFBi/KtZgz+UbaZXk7z26tgbTfg2NelsXYoZSglCXOzDs6L/Lt0y+0NcF5Mf6MpH3S9rx6hhShGns3MQEJpoNH5vnoMPDmZk82MaesgLrrP4OWXX8ahQ4eyfr3l5DxD9NnPfhaIkGhCV06uF49yiIU4sCLMWRTLmytIGYIiUHPIBl0lv6MSdsfgnw4JVqnOi76cT+BsnJODoVVoK1RQm5UZLV6LmVwHQwDgnw7j/M95lzVKRWLXfa2o2pe/hqWpEJyPoPe343D1Z/Y8JQIElUkBMkfFtWd+NJSzYIhUkEJ39kwDv9kTC2CiLJR6GhqbtBtO39zjRLi/Gt6/7AUbpUDQLAxXnk0rGMoUSklCW6aSm2euwtXng9qs5OsaZS6ByOHjwkRZIRgCAfinQwgv9mnTVapRc8gmmE5JFVe/D77x5GqHNoJjOMR88bQdhlPF7m6CTq3HvffeC1aMhXsK5PSN9PTTT+OJJ55AO3aAIsRNRa7ODhnKCJAUEA0Bva/FEU8ysN3IYnu0nMXJJmlmhxITMsdysO+2Ql+tAQC4B/0YfX4u67UY62HrMqL93bX5ubiEsbYbwEQZeEZlvfhymq6vRPst+X9emAiLvt9NwNHD90Ayt+ihr9HkeVSXQqlIGOv5gnhnj1eU7zmlIrH7E62o3JO+pEyqVO21YPcnWkGpxJv6Wt9Zjdaba0Q7n5joazQwt+gBAMq6eegOXAShyGxhk0l2CAAW+v04+9Phgsms5QrPSADxCANruyybWwEB7PtcB+y787Q5xQGjz8/BPchvHuirNbDvtgoOqFLdDJk9uSBKLWgsyODCr8YQ9cVBKghhvskWJEtiq3Evzp07h1//+tdZvdYl187VhSKRCD796U/DigpUQNzJY3UwRCmAzrcoUNVOpXSeZPoNESyg3EBFk49gyL7bgl0fbwWtoQAOOPlw/wo3lXxSjI5MYmBtM2Bh0C87Cq3COx6UTJDo6vMJmc3q/TbUHErWkzJ31BwsQ9f76kXN5jARFhceH8PM8dz0otj7mXbs/UxqTa7TZfqYCz2/HBPV9nnw6Wlc/NW4aOcTk9pDZajezwcwpDoGZY1TMu9kbYUqp7v+UodjOLgH/bC2G/I9FGnBAeN/mxcl2yEGsycWcPLhfoADaC2FXfe1wr5LWptH2nIVDFnYwKs+WIauD9SLuqG0FtoZC6oNdbjvvvvg8STXmF0McvY6+uY3v4nh4WG0Y2fWew4xMeD8izFMXhQ/xXe4l8aWibUDrVwGQy03VqHmED/ROS94cf7no0JKk5PQxpujxyuqfXIxQGsoGOq0WJDlcpfg7PFKJphfTs8vRzHw1CQAwNysQ/t7akEq8r+yHPvbHM78ZFj0uh/3UIAvxs3Brzh32i26zf+aEHyBsWdY3IA74o0hFoiDUpJ5X8ySCgLt76mFuZlvZdH/1CR6fpkfO/WN0JTxrmqJ7JUMj6vfB0Otht/clBGYOeaSVGPkxBorHmRw/tFRoXl4zSEbmm+syuPIeKoO2ND6zmrRzzvxyjzO/mQ4J33EOsid8Pl8+OIXv5j1ayXISUDkdrvxz//8z6hkGqAnxE0HL88OVXdQaNrFS/GCHi4l+Ugy2SEA6KlhMGTPfcRB0gQqdpqFHbVYkEF88aGMhxh4RqSxq74cggQUusJ3aREbc4seBEHAJTfhW0HFDjM0ZRLVz3MQevqQChIkuWRlStK5D4z0VWpoy/keSiFHdgpdLa167HmgLeu1HmMvzGHshbmsXoNSktjzQHYX4JV7LGi/pTYvi9nEM8jGOJAUIWQMmTCLm8+L1+csU7lcgpAjgrOPDAsyJBke96AfBEHA1CRub8ZCR6GlULHDzDfslhiekQDiYX4zOh5hEQ/y/58g+UbO+Zgfhp6exvnHxsQ/MQfBWKH57VWouSx7qgnKq0JnzRY8+uijmJ/PjdtdTgKiL3/5y4hEImjOspFCPMYhFk1dgpRsMAQADiMHj/bSa2QtO7Q4NI1NhbabamCo5fWbYy/OSXInfTm6Sg0OfKETuqrsW2YWEuYmHQJzYcQKqIdJtiFIAg1X22Fplf6OsavXh4v/xUuktBUq7Ptch2Bikivqr6pA8w3Z3YkMzIbh6vNlfRFStsWYdftqgiTg6vMhOJe9XebJI06c/M5AzoqPE+gq1dj3uQ6hGP/ir8fh6pV+9tkzHJCUmkEKRH1xBOfDMDdL/z2YS9Q2FdrfXSvZep0EsycWMPYiv7ljqNWi7aYaoR1CLrLtCTiWQzTLDqnxECMEgtnCOloPkiRx3333ZfU6CbJuuz01NYXW1lbYQw1oJbaKeu5EdkhnJhBwp/9rpBIQKWNAnZPEhI1FZLFdSbaCoforK2Bs0OLcIyMAAIWeLqhFNKUiYW7Sw9Xvk2tllrH3U+1w9cl225dA8AvXQnpWaA2Fqv1WTLw8D47lF6eB2XDWTUxImgClpgrqfbAe+z/fAQA4+h/JNwWVMgRJwNquX3KpyspFAJ1djcBMGAQJ1B2uwNRR55rB2HoNWVNFrOyQAAG03VyDhX4fHD3F3Qg4FZrfXgVLqwHHvynbbycgSICkyYIz4li+Ztt2VxM8IwGMvZTdbLjKqEDT9ZUYeW4W4YXcuLXqKvl3UTZw1o3i7NRJHD16FLt27crKNRJkPUP0T//0T9BoNGhEh2jnpLrahGDIXEVi23UKaE3phd+pBEMAb73dNUVBHxY/3CdIAvbdFl4KA8AzFoDj/FJBWaEtfpgIC+dFb0EtcLONyqyA2qKEe1iWiqyAAMCh4J6VeIjB+Et8MESpSWz/SDNqDoq8cFyGsU4LpYHmrexz9D4o325G+TZT1s5/5ifDOPOT4aydv3ybCeXbzVk7/2psXQZ0vLceakv2drNrDtqw/SPNoNQkOBYYe2musIIhYGnTQIIyqHziHvJDY1VCZS7MBtHZgGNRcMEQsHLNNn/ODc8YX9qgLVfBvtuSlew7qSRBqymwOZpLtRUq7Ly3BZa27NRPWiZrodFo8OCDD2bl/MvJakA0MDCAH/zgB7C5akET2flyu6dZXPhbjK8ZygEhJfDUrhicBv56YmSHloqzOdQdLhf0w57hQEE1AltN5V4rjHXZtWgsNMxNenAsJ8mar3xBKUkc+EJn3gvSM4UJszj702HhO2tu0Yu+KG66vhJN11WKes7NMDfqsmq1GnZGEXZmbyfTWK+FuTF3NRmO816cfLhf9N1ZtUUpSKlmji/w1tXhwlskLqf/D5NwnMudi1Qh4BkJgGM5mJtk2dxy7LstaJOovX0yzBxfEAxdTE061B0uR0KgJaZBT8gRwbmfjWRdMpcgOBfB+Z+PYiHDHnjrQbIU6iLteOaZZ/DKK69k5RrCtbJ58n/9138FxShQixbRzpnIDNV0U9Db+IfIM5teMJRqdggAv5O9+DExgiFrhwH7P9sJWkOBY4ETD/Vj+mhu7G6zTeUeC4wNckC0HFOTDv7pUE5cWgoGAph83Zm1lHsu8U+FhJ3MxmvtqD1cLur5z/1sBEN/yazzeKr0PzmJwT9mT97Zfmst2m/NXu+pwT9Oo//Jyaydfy1CiwGemNa3dYfL0XitHQC/W+6fCol27o3ISnZoGQodndVsWqHBRFj4pkJyHdEq2CgLJlocDd6nj7pw4qEl6+79nxVvQzBXDbWXkzBHMdRqUCfynAcAVUwjjAYj/vf//t+in3s5Wbtz4+PjeOSRR9CANlCEuK47BAmYK0jorekPP61gaJHuCQrbx9L/nYz1Wlg7+IffOxbE+MtzYON8UJf4dzFw6ruDmHjFke9hSApzkw5ukW1/Cx0mwmLilXlEcrSjlSvO/GgII8/wwYu5RY+Knea0z6W2KkGpSDARFrFAjqWzi68kU4MuKxIPrVUFrVV8d0GCJJY2ZPLwWi3fbsb2jzZDZUpfHVGx0yw44w0/M4MzPx4Sa3iSofuDDWi4xp7vYUgKz0hA3kxcxfw5D4b+nNvNoGwirPliHMZfnoN3sc+StcOQUUa+87Y6dL63TpQxpoq+WgNzsx4EJe48QbAEWvXdeOGFF3D8+HFRz72crAVE//Ef/wG9Xo8aNIt2TqqrDSTF60nPvxTDTH9+dgsCKg54JMXCuGXPh32XBZW7+UZe8RCDydedovcRkZEeaosSSr0CXok0HpUCJE2g+oCtKPtusHFOcOExN+lQ1p1+HU7bTTXouDU/kxzAB2TbPtwkbOSIyanvD+LU9wdFP6+1w4DtH27OW/bBcc6NMz8eQsSTfqBfvsUE06LcLx5mUtowy7R+6IluW9azQwDQ/4cJDP5xKuvXKSR840GoDAq5jmgVtJoCpS6ubr5sjMXk60uGKJW7rbDvXNboNcXYYvJ1B6aP5UdlNH3UhbOPDINjONHtxk2zVbBYLPjGN74h6nmXkxWXufn5eTQ0NKAy1IgWYoto57Xf0IHabgrn/hpDPAN5drLZIfZPa3usu/ekdnEVw+HmmQiOWhQY1VLo/PiJog+AqvZbYes0Cg55MvyOcccttXj933oKXvsvFvpqDbZ/pAmnvjeI4Hx2+ulIBYIkwLEc9DUaVO21YuhP00kXCiv1NGgNldd7pK9Swz9dWLJGqYyZ1lBJ2XFTShLNb6/C9DEX/JMh4ZlJh6+MHFn3Zy8H29b9WYJcBEMya0NrKBz8Uhd6fzuO+bNyjVWCQw92YezFOUy+Ll5vLSlCKkiwMRa2TiOa3laJU98fzLmdfybQago77m7G+N/mMXfGLdp558pHcN55EmfPnkVXl/htfLLSNfPrX/86SJJEHVpFOyfV1Qafg8X8CJF2MMRc6AcAsH+6LLOxcBy0cQ5+mgBHrB1cKVgOdSEWQzoKEYpAv56GR0Gg/WPHUApL4ZAzKkvDVmGs1SA4H5aDoWX4p0I48uULQpPTYiaxsFXqaSgNCjBJbIoQFAFwQNQfRzTPLpOJwIKgxLVG3/vJdgDAMRFthhNjlEIwVHt5OSr3WHD8W/2b3jcmxkJpUECp56fmdIOhzTis7d/w519sPJiV665H7VvKwHHA5GuyxBrglSNBRwTGOq0cEC3jwq/GESryjTMAwoZ50BHB7KkFIRgq22rCQr9v3RpkgiRQvs0E95AfUV/+5ot4mMHcaTc8IqthyhbqoFL14B/+4R/w61//WtRzA1mQzAWDQXz729+GLVANJSGOLtxQqwFJAZEAMHlh4yiZudC/7j8AMPeJzIIh954o7GEWt01Hod1gKHUhFpc7Y9AuShxOmWhUfPxERtcuJNyDfky8nJvuwoWCoU4L70RuCqELiVIIhpbj6vXh/KMjALcoRftI07p1JjUHbdj18RbJdGivOWTDznvEM8kBAEevB45ecRd9O+9pQc0haWQ4HD0eDD8zs24wpDIpsO0jTXwDRw44/+hIxo1VN8oOSRFSSYLKQzG4lPGOB2WX1lW4B/1FV2u6ESFHBON/49dRSgON9nfVbGhvrdTTaH93LbQVuW0UvhbjL88j4omBpAkYasUxlyHjFFqsnXj66afh9Yrfu0z0N9Bjjz0Gt9stmrMcpSTRfUczqjsurTFYL+hZDzGCIQBwKEk8XaFAeNXd2+6JY98C/2Ud1pL4dbUKQZF1lIWCoVYDSilPcAkoJQldhRq+xcJJGb4n077PdEBXmf+Xd74gaQLxILOuUYKrz4fJI86sZQpSxTMa5PXpIr7WRp6Zxcgzs+KdkACmj7kkY20fdkXhvLD+5B0LxBEPMqJr7tMl19khABh7YS7rDSsLDd9YAFq7Wp5Hl6EpU6HuCvFdzAqBqC+OY1/vE3pTNl5XidrLV96LiDeGV//veXgk1Oew5rIydP9dg2jPsWmiCuFwGP/3//5fUc63HFG/aRzH4aGHHoKNs0NLiGMZyURZnPvxIMZ+35tS8JNNohSBGTUFhiSgj7OgFxcrMRKILu7kcgSB0LIJrv1jx/Iy1nyg1NPY8bEWoRhYBtDXaECQhOAkIwOABRwXPAi7ctNNW4oE5yK48PgY2DgHhY7CngfaVuwKB+cjmD0hnV5k/qkQZo65RHVts7QZxG3qxwEzx1ySkMstp/ntVai9nK9LNdZpseeBNih0FNg4hwuPjyE4V/xSoI0gFQSURtlEIIF3PAiCEG93vRhQW5So2mcFrS0+E55kiPrjwruXiTBgIrxMiVKSgsqAYzhwElLlT7zqwLlHRkRrrKsmNGioaMZjjz0GhhG3rkrUgOjIkSM4efKkKNkhpVEh9PAIzIYz1qyLlR0CAHActnrjsIcZ3DIdRaef/0u5YKBx2nRpWVYpBUMAEAvGceLhftH1o4WMoUaLeJhByFHai57lRLwxDP9lpiA7kGcFDnCPBBB0RPjM+AfroS0X3446UwgSaLjWLthBZ0rbzdVou7lalHOZW/RouNYOQoKb6jF/XHAdDDoicI8EsmIHXmhyuQTdf9eAlrdX5XsYkiHkjCIeYaCrkgOiBAv9Phz9j17Eg4VjMJAtxv82j+k3eTe5yj0W7P5EK6ydBnS+L39upGvBMRwCs/zmVO3hcigNmVsX1MSbMDExgd/97ncZn2s5ok4bDz30EDTQwYbMO6mbGnWo3GWRhB3v8mBIG+ew2xPHVm8cpjiH58oVuKjP/xilBMfyO99y89El9JVq+Kfl+qHllHUbi85CNRNiQQaDT00hHmKgsihgatRLMsvKsYDOrs6ov85yzv9iFOd/MSrKuVQmBXR2taR2SBOEF6KoOVQGSkkiHuL/rmMSW9jlQy6XYPjZGYw8Vzx9ZsQgMBOGvoQlxTLJMX3MhZ7HxsDFORAgUH91hSiBh5jQGgqVuyyizGkqhxEGyoTvfe97IoxsCdFWI/Pz8/j1r3+NWrSAWMd5LaXznXHjxLf7RbEazDQ7BABYdCfXMBw6/Az+ZFeiT09jWk0hvkHBc6llhwCgfKsJVfut+R6GpNBVqYVdEhleC955Wz30dnn3cy1CjigmXp2Hq48vrpdKfUmCnl+MiiblC0yHERBJ3jZ7YgE9IgVXYpH4u/OOB+E470HVAavk/j6lQGA6jJCzdOWza+GfDkEvZ4hW0HlbnaAekuFhYxw8IwEsDPgx8vwsqvZYodBLKyCKhxic+Ha/KK6JBEGgq24r/vrXv2JgYECE0fGIFhA9/vjjYFkWVWjI6DytN1XDvotvSpVKE7ps4d4TxRZvHNfN82YJThWJX9Wo4EnCEacUgyEA0FaoYKiW3XESUCoSGqtKtEVfMRByRPDGv1+Ua6rWwFCnhcaqxPhLvEsPQRLYcXcLai5buy9aviAoArYuY8bnaXtXDdreVZPxeWxdRtE7pGdKzWVl2PGxZhAkgYgnhtmTbtRdXpG1RW4mcrl8ZocS1ByywdoufvPfQiUwHYbGppKNFZbhmwjK0vN1ICgCIUcER/+zV1hvdH+wAdUHpOG4mVjT23dZ0HpTZjJp/VQFKIrCV7/6VTGGBkDEgOjRRx+FOV6emdU2wd+wZPpzJEu62SEVwUJN8uPwKAjMqUgQi1kihiBw0BXDHnfp2D+mwujzc+j7/US+hyEZdHZe8uCfkSVzy4kF4pJxT5MS9VeUo/G6Jdkxx3KYPuaCe5B3DiIlYk9sadGj87110NiUGZ1HX6XJOEDQ2JTovK0O5mZx6poyJfF35B70Y/r4gvCchxei8kbABpga9dBWSK9uLl8kZNal7MS5msnXnRu6NpYy7e+qwdY7G5dq7gnANx5EyMkHkEo9DYUEDCnYGMsHRxnsX5ExCtX6Orz44ovgOHHWEQQnwpn6+vrQ0dGBbTgIO1Gb1jlImshKRii9gIjDdZYApkwEXrWtrZPv9sbBkEDvOmnJUs0OyVxK9QEbGt9qx+v/0iPJ2oZ8sOWORkwdcWBhQDr2oFKBIAnQWgqxdRqxbrurCYHZMIb+PJ3jkV2K2qJEeEEaMiepjKX5hiro7Gqc/enwuscQJECpKNG7zxd6hkhmFQRw6MFujP51FlNvOPM9GklAKghoy1SSc5GUAsZ6LUiahHto7Xm19aZqmBp0OP6t/Lk0ryaTtb9HN483/S/hmWeewXXXXZf5WDI+A4Cf//znMBqNKEN6DjE6uxp7P9UOfZW4uyCpBEMkODSro1AQHAACL9bQeNO8vgazx0jLwdAaKLQUDn6pC6Ym6RWD5wtdJV8/JAdDPJSSRMwfQ1w23bgEguQzQusFQwAw9YYTjgu8Djvf2aJEAJJPSU/i2vkOhhJ/F44Lnk0Xr1vuaETLjeI6qhVVMCQt5WP+4IDgXFhQGcgAlhYDdt7bKolMh9TwjgXXDYYAYOTZWUG9Q6lJVO235lVmrK/WYO+n2tPOChsCNhgMBvz4xz8WZTwZz2Icx+HRRx+F3msFRaT3gIYXopg97UZwPn+6UAXBYYsujHIFvxCZV5GIbvCgKFgOWgnUOEkNluUw8ep8SfeWWY22XFXyPUaWw0RZ9P1+Um5SuwpKTWL/5zthad1Y9uW86IV3lL93be+qQedt+bVZ7XxvXUY1QLvvb8Xu+1vT/nzbu2rQ8d4834Pblu6BdzQI58WNJT3jf5vHxCuOXAytoCBpAge+1InyraZ8D0UyhBwRaMpkGWEC94gfJ787IFjYyyxhadNvGDzHwwx8E7wM09ykR8PVdtB5dHoNzoUxe9qNSJrlJyRI1Fub8Oc//1mUnkQZ34njx49jaGgIlahP+bMESUChpcBEWYz+dTbnJgoWmsEhYxAEOEQ4En92GTAVTc5Kdpcnjuvn5EX/apgwi4lXHYh45PqqBJoyFYJyEaiAyqQAqZC3gNdi6ogT/pnkpSAzx1yYPcW7veVrp2/21ILQDyMdPCNBeEbSD46n33Rh7lQemtcSS/d89pQbMyncA89IQHadXAM2zmHsxTlZDrWMoCMiyX5k+YIJswjMyIqLtWh6WxXKt5uTOtZ5wYs3v9aLWIABQRHo/kA99NW5dTRk4xxG/zoLJspCoaVAbODYvB7acRsWFhbw1FNPZTyejAOiJ554AhaLBWak7oBUf1U5dtzdkpWJfCO5HLXYDS/OARTBQUXyf45x/DhWNGFdh149tWZ9USnL5QC+uDnXXyopozTQoFWU7IqzjPZbatF2c+auYsUGE2Yx/vL8hnK51XhGAljo5yUSTddXYsvtmbl8psPCgB+ekfSbMA/+cQqDf5xK+/MJu9lcs+WDDWh6G29+sdDvS7kRtalJh6brM+/ZlylSk8tNH3XJ78tlBOcjoNWU5GyU80nNZWWSMVCREie/M4CxF2aTPj7RK1KhpUAqSKFJeq7bAhAU76Raf1XqdupG1gqDwYBf/OIXGY9DlIDoHe94B8g0WoNPH3Vh+JnpJUeMHNCtDeOwOQCAg4+h8IpHhzCb+tg9ChJzqpWfK/VgCAAq91rR/m55sZsgIXWQM0RLDD49hfGX5/M9DEmhtihRfdCWUebMcc6DuTNu/g8EclqHoTTQ6LytDkpj6s1aTY26tJr1KY0K/pq5bEC47L7OnXHDcT79nhoKLQWdXS3KhmAm9UNSQ6GjYd9pluuIFkmUEshZoiWsbQbZjXANOIZLS2kV9cVx7mcjwkbEtg83of6qCrGHty4cw2H4mRlMH01daUAQBA4fPoznn38eLJtZ2jCjgGh0dBSnT5/G6UdTc6xQW5QgFSSi/jicF32ZDGFNVmeHFAQnWGjPRGkMhda3iU0mOwQA5hiLLd7kd3JLhbEX5nD+59JqjJhPtGUqsAyb94JvKRGci8g1VavQV6lRd7gcyGBvyDsWFJre1R0ux7a7mnK2qGQiLJQGBVRpBCcdt9ai49bU3UlVBhpKg0LY5cw6BO/wV3c5v4s5f9YD71j6Uj/HeS/OPTKS0w3BQkBbrkLrzTVQmzOzcy8WwgtRsHEWWrmOSODsT4cxdUR23VtNx611MDdnbmg1fdSFhQF+ba400KBU2a8zcl70IuqPg1SQUFtS++47XwvC4XDg4sWLGY0ho9/yySefhEKhgA2ppf0731eH1ndm1pQpeThcbgpgu47XJLviNMYiSmS6UiiLcNjliQu9ieTsEA8TZeX6oWVoylR893V5zQOAtwWtvVzuMr4aR48XR/+jV7Q6SvdwgM9eJE6X5cCIibI486Mh+CZT77XV+5sJ9P4m9b5lvskQzvxoSJB5ZI3EveMAx3kP3BnIA9ci1clfTKQmlwP4wP71f7kgbyIl4ICQKwqNnCGS2QRKRaZVh7OauTNuwXyh6foqbL2zMeNzJkvrTdUpGwVp3RYolUp861vfyujaGQdEV111FWgiNZlE728mMJqCzjEV+OwQh0plDCqCBUDglF+NM4HNbSuTzQ4BwICewqN1anCEnNdfTvMNVaLsUBQLGptKaIomA2gr1CjbYsz3MCRFQjIlZpNa33hQMDqw77Zg+0ebc6ILVxpomFtS0/Z7RgIp1yCZW/Q5kcqRNIEdH22GfbcFAG/gIKY7oq3TiL2fak9LapigmORyAP89YEVszl4MhF1ROWO2jKp9Vuy4pyXfw5AcPb8YFb2ecvjP0xj8E9/zTqGjYGnLbu3W6POz6P1tahtkFEFhz549ePHFFzO6dtoBUSQSwcsvv4yRZ5MPbPTVGoDgbSTTtdlLBpoA9hpCqFPz11iI02nVCSWLnB1aQmdXg9bKxZ8J1GYFwgtyxizBzDEXTn13MN/DkBSVeyzY+6l2pFGGmRTB2TAW+n05cfGsuaws5f46LTdWpfGZatRclrqRT6qwcQ6ufh+CWXKEcw/7cf7nI4gFci+/lmJ2KEHNZWWSMJyQCmF3FGpz+kFzsRGYC8N5YWNrexlxiPrj8C9m/iu2m9F+S21W+85F3DG+lolASgZdzCSJ3t5eeDzp13Wm/Vu9+eabCIVCsCA5+QulJrH1Q42oOWhL95IbQqsplH9xNyhwiHMEnl/QY2CDWqHVpJIdAoCKCIsbZyPouv9EqkMtas7+dBiOc+k/kMWGyqRAxCNLP2TWxzsexPgr81mzkfVNhjD+N97EwtphwLYPN2VtQht/aT7lgNfUrIcpRceoU98dwPhL2THmoJQktn24CdZ2AwC+Z1A6UsBkYCIsFgb8ch3RKpgom7vasAIg4o5BJWeIBLyjQUy8IhvzLEehp/GWf9iyaR+7TJh83YlT3x0EE2VBKgg0XGsHrc5Og9yaQ2XY+qFGUEn2SaLGdWBZFs8880za10x7VnzppZdgNBphgDmp45kwi3OPjGTUr2IjKDWJBnUMJppvzhRkSWRTOB8nAB9NyLUhMuui0NMgaTKr2dBCgqQJvvFollPuhUZgOozZE7npoxMLMgjMhrNWdxMPM/xkSRNJa9lPfKsfJ76VnDEPQRIgaQJMlM1aY0YmyiIwG0YslJvGj5oyFVrfWZ2W21yxyeUSzBxzYezFuXwPQzKE3VFQChIKnay+AHiZsb5KndVMRaHBRFgMPDWVdcOiRI24zq6Gfac56YAlVaaPOnHukREw4eTmKi1ngF6vx+9///u0r5n2b/Liiy/i8OHDIJKooTE2aAEA/qmQqLINXaUa7bfUAgS/g/Jnpx6ueOovjFSzQwDgUpKY/dIZeRdrGaZGHQ5+qQuqDPTwxYTaxN+HsFvOEAH8JDb9ppM3mZABwC+Gy7eZsiaXW41vPIihRT24oU6L7g/Ui+4gRKlI7P10Byq2m0Q9LwBU7DBj76c7RF8IUSoS3R+oh6GOn6uG/jQtaq3QRpA0AUOtNqf24VKWyyWgF3ujyEAwmJBlczxKA42d97ZCXyP3PEzAxljMnlhAxJubDVjfRAhvfq2P3/Al+P6CusrNa/WThY1z8E/xmXlTw+Z16QRBYNeuXTh69Gja10zrDRyNRvHaa6+hJtiCBqJjw2N1djW2f7gZ538+In7zPALQWJVQ6mhE/XGUffv1lE8Rv2YPrGk49RHgMPfLrYhSAJfixl7tVzdOMRKvnU59QBIg7I5i/JV5xIKyHTkAQeIgu+7xMBFWkG7J8Jibdai7okKwy84lJE2AZTjRs0VMhMXoC7NwDydnlLDr460A+KaCm+Ee8gMExB9zlAXLcDlvSAgAgZlwUr/7an43cRQb7WkOxAt3s45SkTj4xS5c/M24LMEGBJWByqLMmnyzkIh6Yzj53QF5c20ZlJKEqUkHz2gg6axKpiSkvkodDY01O5JOS6seW25vxMnvDCCwSS2n70IUI+4RBAIB6HSpm3sRHMelnLI5evQoDhw4gH24BibCuunx+hqNUJSVKRU7zLB1GHHhV2OinC9+zZ60Phf9cARvGwSebgM8KQTFmwVD61GoQVIpU/OWMtS9pRxHvnwh30ORBBqbEgRFyD2IVkEqyLy7amnKVKi7vAyDf5rOeda77V18I+f+P0zm9LqUikTL26sw/opDaEiYTyglmVKgxwdEqXNL7f60PpdrrO0G+KZCiPnlDTYAOPClTky+6sDEq458D0VGgujsauz6eCtOfX9QyKzki67318N50Yu5025RzpdsDBFS+fBq+C/45S9/ife///0pXyetfPSJEydA0zT02FgSoa/iIwVRgqHFjbtYII6INyaK13q6wdD0JyLwqoC/NQDBFDLY6QZDhYKmTJWSK0ixozIqcpa+LgRqLitD+7tSb8BZ7OQ7GAJ48w+1RSlqcb+pScdLmjeh/w+TSQVD7bfUwtQknqU/x3BQW1VQmfIvQ6rYbsb+L3SKMq8VC64+nxwMLSPqi0Ohl2uIEtQcssHSZsj3MCRDYC6MI1++gMBMfoMhgiQQ8cSWnDNFeKUlYohETLEeqogOSqUybdlcWgHRyZMn0d3dDYpYf4FvrNdi572tMNRmvkBuur4S7e/mJ9aFAT+G/jwtas+OdIhRwKSR/3e2KZTsUPVBW8r2ucWMYlHKKcMz/OwMLv7XeL6HIRl0lWrs+vsWqCRQF+Ae9OPMj4fBxjkoDTSarq8UpX6DVlOb1ijpqtTQbTLRUSpSFDcjUkGi6fpKKA002DiHMz8agntQZCl3GnjHgxh8airpxUOxZ4cAvia1Yrs538OQDDF/HErZVEHA1KSHzi5ezUrBwwHxEJM1t9Kkh8FyGPrztFAi035LrSgW+oZaDXbe2wpjvXbdY0iQqK2txfHjx9O6RlrfrhMnTmD+jAcVG7y8vWNBnH1kWOh2mw4ERYBjOPjGg6IX0WaSHQIAmgEaPMCUAQglsZ4pBancyLMzsuvLMpQ6Ws4QLYMJs2DCsuY7ARvnJCkJ0tnVsLYZMP7SPNgMHl/PcACeJOqItnywAQBw9D961z2GibDoeWw0/cEsQtIErG0GuAf9iPryHwglCC9EhcJ5GR5Lmx7GWi3mzrjzPRRJEPXHc2q8IXV6fpH5+6CY0JSpUPuWMow8N4NYIDcOmcngGfILUuDEmj4dfBMhnH1kGN6xjc1uYuMkZhQzaV0j5dVrLBbD2bNnN7TbVlv44qpkJsP12HJHIxqvtQMAHD1ezJ5yp32ubKBkgL2TgDH/0nPJwERYRH3SWtzlE4WezkvDRUlCAK03VW+a8i4lQo4IBp6cyknD1FRYGPDj+EP9iIcZUCoStZeXZyTlMtZpoS1XrfvzgSenMPDk1Lo/15arYKxbf1dwMwiSQO3l5aBUJOIhBscf6hff4EcEjHVaWDs2lwClmx0qNEaencWZHw/nexiSIRaIQylL5mTWgaQJqC3KpJyfc8nsKTccPXwT3ca32rHljsa0z5WIKRIxxlpUVVair68PCwupt7JIOSC6cOECIpHIugGRqVGHPQ+0bSqBWHMwCkKwn50/64azNzudiDPNDgFAUAk8vg2YTaKlSilkhwCg7opylG0R32q3UFHKkjkBSkVCZ1eDUhV3HV0q6Ks1WevhkDGLMZqxXoeag7aMFmKtN9egcs/65juuPh9cfb51f16514rWm2vSvr5ST6PmoA3G+sX6I2nFnwIVO82oOVSWtfMXklxO5lKi/jiU+vzLa6VC/ZUV6P67+nwPQzIEZsI4+5NhSa85nBe9mD/rBgAQJL/mTxV9lRp7HmiDqXHtelK1Xw+O4/Daa6+lfO6UZ7mLF3mP6vUMFTyjAfT+dhyB6Y3t8VZD0gR2fbwVM8cXMPmaQzR3inxTKsEQwKdspVAgLgUIigCtoeQM0SJMmMXpHwzlexjSgQC2fbgJo8/PYuqIM9+jWZeFfh+OfaMPTJQFQREo6zambBF+7pHhDTPHjdfxSoCRZ2fX/PnQn6bTkgqVbzPB0eNFxBsTfgcpM/j0tKimFoWO2qJEx6216P/DJILzshQj6o+D1lAZyY6KCf90CLGQPL8WEt7RILyjvOSt+lAZKndbcPLhgZRUEv7pMHp/Ow7P6NoKNGWAVxP09yfX7Hs5KW9PDg4Owmw2Q0FcmrKiVCTAAY7zyWd2aA0fMLBxDhOvOOC8kJ2sUAIxskMAoIwDVw0D1tz07isI+n47gcnXpbu4yyWJjuJS3q2RySMccOp7g3npP5QqiUDC2m5A2801G8oV1iIRDK2XDSvrMqGsa+0NtsRnUpXiqi1KtN1cA2s7L0GTejAEIKlFbimYKSRgIgwCs2Gw8uIfABBf7O+n0MpZdoDPLE8fdeV7GJLB0qrHoQe7QBfI8+Hs8WLiFYcQDCVigWRwnPcCHNY27ImRKCsry11A1NLScsl/15arsO+zHUKn72RQaCnseaANFTvMAIDZkwsFU1jKEUCM3Lgpayllh2RWQi8u5OIh6RQ35pPybSbs/3ynIImV4WuICimD6LzgxfFv9Qvv6FTe9ZZWPfZ/rnNNi+tj3+jDsW/0XfLfVSYF9n+uE+aWJHTJiyRqjcILURz/Vn/WN9jEhFKR2PqhxnWlIKVGLMhg4MkphF2FsSbINvEwP5eI4bZYDNBqCrpKuSY1QcgZxegLc2ALYPMH4N/Rsyf5Op+KHWbseaAtpWDfWKfFvs92rFmfarVacf78+ZTHlPLyZGBgABPHL5U2hN1RjL88n1TPoUQkGAsyGH1+Fq7+9fXjYiJWdgjg7bZfbQAW5LY7AHiJ2MEvdcHWZcz3UCRBYtJiInJABADBuQgmjzjybgkqFaztBtQeLs/3MFIm4uFt52zdRmz/cBPUSXYn94wGMPLsDGLB5APAWDCOkWdn4B1LzpxHbVVi20eaYOs2rhhroZAwpWHja39JSik7lEChowpmxzvbxMP8c7GZjX2pYOs2Ytfft+Z7GJIhvBDF1BGn5Ex6ksHV78Po87OIBReD/iSyRb6pEMb/Nr92EiVAYnQ0dRfCtDJEGly6Y8fGOEy+6ti0P5DaqsTeT7fD0sqfY+b4AuJB6S4a1wqGAPDpOhYg1vl1SzE7NP7qvKz1XiQxacUjcgQAAIHZMCblDusCaosSpg36KUgdZ48XZ348JOzeb9ZLiY1xmH7TBTZ26Qtzxz0t2HHPpaqDjT6znMS1w64ozvxoCM6ewskKrabvdxMZtaooNrZ/pBm1l2XPaKKQYOQM0QqcF704+d2BfA9DMih0FMzNuoJUYcSDDGaO89kiS6seez/dvulmG8dwmHzNsWYASHpV8HhSl6OndOui0SgmJyehwVJKn6QJ7LynRQhw1iPxJQ67ohh9fhbe8dwW36SbHVoPJQO87zxQI+LcW8jBEMfwAXHIIQdEAECr5AzRcrQVKmgr1rdeLjWm3nDi/M8Lu49GYuFu7TBgzwNtSWWLat9ShppVC9zwQgThhZXvjZrLylD7ls0XwhqbEnseaBPsqgs9mCAVxJoGEqWYHQKA/j9MCgulUie+OJdQckAEgF9EB2ZSM+8qZoz1Omy9swlkgfeC9I4HMfr8rLDZttkGgKVVj533tICkl+pXjFoTFhYW4HKlVmOW0p1zOBzgOA5KLC1sCJqAfyaE0AY6X321Bvs+2wF9Na8vmz7qAlMAO+frZocAxEngtTrAtYZkLt3sUCFD0gSMDVo5nb8IpSLBsdymu9ulQsNVdjS+NfNu1TLSY2HAj77fTQoT2EbNmUklCUqx8ue9/zWB3v+aWPHfKAUJUrH+eRLXCDmj6PvdJBb6pddXKB2ab6hC1/tlK+EE3vFgwdQVZxs2xoFlODlDtIjSqEDDNRVQ6OT7AfCOoG9+rRdMWPpr641gIqxglsHHDu1C7LAWIVcU/pkQCGopIFJwfIwyMjKS0rVTWr3Oz88DwIqAiAmz6xY+JiY0/3QIoy/MIjiXn2he7OwQALAkMGrm+xEtpxSlcgCgMiux/cPNGzZgLCUoNSXs6MkA/U9NYuDJyXwPQzLseaANlXss+R6GKHAMB8d5Xp5gatJh72fWlzuMvTCHsZfmVvw3tUV5iXPd2EtzGHtx5XHC8VYl9n6mHaYmXqngOO/ZVKpdKEwdcWLwT9Mr/lupZocAwNyiR9lWubddAibCCIY9pY5CS6F8m1kOEBdh41zB1U1uRnAujNEX5uCf5jP/a22ShV1RDDw5tSLJQkf5LPvY2FhK10srIFIsBkT1V1XA0ra2VM7YoMW+z7RDY1MCHAqu2Guj7BDA1w41LgA6efMKAP9QHvtmn5zCXoRSkgWRBc0V8SCTsnVyMTNzYgH+FHu1FQL+6RAmX3UsbZCt4cJJkAQqdpiFHb3tH23C9o828T+jFn9GrvVB/l9hVxSTrzqESbKYCM5HkjImKhWsHQbYF11oZfgsEUnLARHANyI99vU+hJzyIgzgG5a2vKNqRaak0GHjHN+nj+Pl0fs+0w5jw9q1t5Y2PeqvquA/5+aD5Hg8tTVH+hkiAtBXqi/Z2UsUdPknQ5h6w5n3iDUb2SGAN1Q4NAHYlpVClWp2CAA4lkPYFS2ooDebkDQh34tl1F9VIfSEkQEmX3PAP1V8C18mzGJi0TxDV6XG7k+0XTJHqMwKtN1cI9hLDz0zg6FnZgAA5iYd2m6uucSkQW1RYvcn2gSb3YlXHQUvDVkLlUmBmkO2tDq4L6cYskMAMPT0dMHX2okJy7AraiVkZBLQWhqGai2IIn08It4Ypt5wChtGq80j1BYlPz8QgAL8nHP6dGpr65QDIpVKBQo0wAE9vxxb0RjL1KTDnk+2Q6GnwcY5jP9tviAXhZtlhwC+hujxLcB4htn8YgiGAEBTpkLT9ZXrNl8sNUi5m/gK9FXqNXvQlCKkgoSxXrthjUwxEA8x8IwELtkUC7uiePNrvXAP8nU/jrMeOBYb1C4M+PHm13ovkWBHPDF4RgJCL5ZiRW1Rou6KCig0vOQjXbmcTHHCxrmiygBkgsqowK77WjesLykl3IN+nPr+YEGuuZOBjS3FFEo9jT2fbF/Rs236qAsXfjkGcABJkNDpdHC73SldI6UZ2ev1wmQyQVuuFhrgLScwE4bzolcyjaGylR0CABB8HVGiMWspGiksR6GlYG7Sg1xL6lKCEHJAtIKex8Yw/abcVRwAtGVKbP9IMy8nLmIi7hgG/zgFjuWgtiix9c5GKI18UJyQT9IaCnVXVqDuygqh90TiZ0qjAlvvbITKrADHchj84xQi7uLSyK/GMxLAkX+7gIg3/d+zWLJDAFC2xYStdzbmexiSgWM4OUO0CBNj4R7yF/0micylMFEWzoteBGYvlZ0b67TQlKmg1+sRiaTmepxSQBSJRKBWq1G114rWm2sAgs8K7by3BZSKRDzEYPgvM2AkEhClQzLZIYCvIbp8FCjPwNyoWLJDAOAdC+LkdwaExlqlDkGRYOWASGYNAnMRHP9WX0n17KKUvOsis2zx0nR9JbZ+qBGVuy2o3G3Btg81oun6JSdCJsyAYznBwr7UkLNDfJYx5Cyd78lmsHEOJFXcmeVkSaw31zL0KkXKuo3Y//nOtesviwwmymL4LzOIhxhQKhI7723hTXYIoPXmGlTttUKj0SAWS21j6dKGBxsQiUSgUqkw9OdpvlcCx8sfAjPhNYtn80lWs0OLUCwfUZZ6dkjmUkhSzhAtZ++n2zH+0hxmT7nzPZS8wzFcyRUCB2bDQi2IQkuh4a2VmD/rxsKAX5DOmVv0YBkWrTfXYOS5GcSDTMnVj9BqCt1/V497738hrc8XU3YIANxDfriHisNSXQw4RpbMCRCAxqpE1Bcv6E14sQg6Ipg+6gTHldi6g+DVaWFXFOCAcz8bQdQbA1vHwul0pnSqlLYawuEwFAoFDLUatL6jGgRFIOKJof+JyaIocE02OwTwUrmXmoDZjfvRrksxZYcAfjGz7zMdguyl1CEoQs4QLWPmuAuBOXmnF+Cb1DZdX1n0NUTrobapYKzVIDgXFoIhgNfAh+ajMNZqoLGVpn0/x/LBMk3LjowAb06j0Ke0b1vUsAwHUg6IAPBZ5z0PtMPckuYirMgIzkUw/vI8UGLLDibMov+JSUQ8MRAUgdYbq2Co1YAkSYRCqRkXpTQjO51OuN1uqK0qEBQBWkutcMMhFeTS7gWx2Dwv8UeKWLEASO1YYsWuyIpjSWJFI0CSJsC+dffinzhQFAdi8QkhCP7PwrEkB5LkhGNphpfCAfy/aQbCw0Wx/D8JaAYgWT47tHRebo3zgh/DshMvHwP/u25yD1M5Np17mOH9JmkCEXcUs6cWAHLJ/WO9Y5efd+lYJHHs2vcllWMzu4fJH0tQwPI304b3MI37vfJ3TRybzH1J5djk7mEyx068wruqSeUdsfp3zd79Ji45VqGjYW7Wg1KK+Mymcmye3hEJgrNhnPzuAGIBBkqjApf9z25c9j+7oTRSiAXiOPndAQSXacNF/35L+F5xLIf/940nYC9zgeOAaJQGw/IHMwyJaHQpOIjFKcTi/AYUxwHvbT5YdO/Tih1m7P9sR2rPWxG/T0GsXO+W8vsUAM78eAiekUBJvSPWu4cKHQVjg7Zk11ykgo9JCIqA2qoEy7JQKlOr000pIOrp6QFJkvBNBHH+56Ooe0s5dnysRfj5ngfaUHd5OQBAX6XBoQe7hUad9VdVYNfHl47deW8LGq7hPcO1ZSocerAbhhreLaT2sjLs/WSbcOz2jzQL2nKVSYFDD3YL7hJV+63Y97kO4dgtdzaivZXfXVMogMOXRWG18pFMpZ3F5YeWpCpbu2PobOePnft4FLf1APUe/mcNbuC2HiAR1xwaB94ytnQvbusB3n8esFezsJYDl13Dgl6cq9q6OWzZtRQ9HbiSRVUtfyKzlT9WaeAPbn57Fbbd1SQcu+/T7ag5ZAMAGGu1OPRgt1B83XitHTvuXrqHuz/Riror+Puts6tx6MFu6Oy8LW3dFeXY/YlW4dgdd7eg8Vo7AN7P/dCD3TDW8sYYNYds2PfpduHYbXc1ofntVQAApYHGoQe7YW7md2Eq91qw//OdS/f79ka03lSDkDOKqSNOHPxCF6ztRgBAxQ4zDj3YLRzbeVs92t9TC4B/mA892I2yLbxNn63bhEMPdgtfnPZ3167o2H7wv3XBvssMALC2GXDowW7QWn4x0PKOamxZVni773MdqNpvBQCYGnU49GC34HDWdH0ltn+kWTh27yfbUHtZGQDAULP4zJbxz2zDNRXYee/S/d718RbB515bzj+z+ir+ma27vBx7Hlh6Zs1NemGXW23h77epnn9mqw/asPczS/d7651NaLmRv98KPX+/La2L93uPBQe+uHS/u/+uAW031wDgXw6HHuyGtZO/3+XbFu/34guj47116HhvHf8HAjj0YDfKty3ew04jDj3YLby42m6uQfffNQjXOfDFTqFxqKVVj0MPdgs7tS03VmHrnUvP7N7PtKP6IP/Mmur5+52wWm66rhI7PtYCQ60GtJaSzDui5R3VAABaS/H3sI23BLfvMuPgf+sSju16fz3a380/s6SCf2Zt3fwzW7aFf2YTL+z299Si87alZ/bQg92oWOyhYm3n7zetpuAZDiAwE0bne5eO3f/5TlTu5e+3uZm/38X2jgB4SRh/v/lntv6qCpA0CZImUX8Vf21r29K9AoDWm2qw5fbGkrlXf3rhCsTiFMIRJb750w9haJR/Ts73t+KbP/2QcOyTz12Dp1+4EgBwa+OBonyfLgz40fPLUez4WAuaruO/36X8PtXalLAsy4iU9Pv0v3cjOBdBPMSU3DvikvdpuxHWdiO2f7i5ZNdcOz7Wgrq3lOP8z0fhmwiBoiiMjo4iFQguBcHhu971Lhw7dgxv0b8NGqsKnrEAFFpakD1Y2w0IL0QRnI+AVlMwN+uwMOgHE2GhrVBBZVRgYYA/1tKqR9QXR2A2DEpFwtKih3s4gHiIgaZMBY1VCVefDwD/QMdCcQSmwyAVBKxtBnhGA4gFGGhsSmjL1XBe9ALg/zKYKAv/VAgERcDWYYB3PIioL877lFep4ezhjzU2aMExHHwTIYAAyrqM8E2EEPHGoDIpYKjRwHHBC3CAoY73d/eO8Y2HyrqN+Ni/zaK9aRQKOo6pWTtaGkdBUyymZssRZyjUV/O9NfqGG1BuXYDF5EUgqMFn3v0WuPp8YOMc9FVq0BoK7qEAfw87DAg5owg5IqC1FMyNOiwM+MFEWejsaij0S/fb0mZAxBNFcC4CSk3C0qzHwpAfTHjxfpuUWOhfvIctesT8i/dbScLSqod7JIB4cPF+25Rw9Sbutw7xEAP/dBgkTcDaboBnNIhYIA61VQmdXQ3nhaX7zcZYhJxRaMqUUJkU8I7x91tlVsBQrYEjcb/rteA4wDceXLrfkyFEPDGojLwUU7jftRoQFAHvKH+/bd1GBKbDCC9EoTTQMNZp4ez1gWM46Ks1oJQkPCP8PbR1GhGcDyPkjEKho2Bq0MHV7wMb46CrUkOhoQVdurXdgJBr8X5rKJiblp5ZnV0NpYFe8cxGvDH+fiee2SHeClhbroLasvTMbr2rERRN4vQPh4T77RkJIBbkn1lNmUq436YmHZgI/8wm7rd3LIioPy546wv3u0EHlmHhmwiBIPnf1TsRQtQbu/R+LzpBeseXnlnfVAgRdwxKowLGWg2cF73gWP5+kxQJz+jiPewy8rrchSiUehrGeu3SM1utAaUi4Rle9sw6Ivz91lIwLX9mK/lnduvtjej7wwTiQaak3hHC/V71zBpqNCAVy57ZLiMCs7wOWqGjYWrQFt07wjd56f22tOmFheP5x0bh7vdL8l6p3rkLajUHp4tfEFgtLKJRwB8gQVEcrBYWbg+JWIyAVsNCo+GPnf5EBJU+IEoBLi2vMqj2AvM6IKwA9BHAHAYmFts3VHmBq0aBi2cIOGYJ2Co4eN0EohECag0HvZGDY5ZfdBvN/NTtdRMgjpwu6vepuUWPWCCOwEy4pN+nO+5uBhNlce6REeF+l+r71NSog8qshOO8BwoNlfd3RL7fp0yMhb5aA4WaKsk1l7lFj1gwDlO9DmFXBG9EXoDdbscbb7yBZEkpILr//vvx3HPPYY/6MJpvqMKJhwcQ85e21jldJ6BiK361dRvRdVs9Xv/XHjCRwq8ny5T299RCqaeFiavU0ZarEPHG5GcD/GKj9eZqnPrOYElaxioNNGouK8PIszPgWKD7g/V8X7vHxkCQQON1lZh81YGoxOaWdIx6UqlLBQCCA7Y9QsLvA6IRYvMPLP/s66dTOr4Q0JarYKzXYub4Qr6HIgm2fqgRUV8cfb+byPdQ8g6tobDn/jb0/X5CWEDLlDYKPY3d97Vi6M9TeN37PFpaWvDcc88l/fmUJHNqtRoEQWD+rAfHvtGHmD8OkiZg6zamPPBiwNZpxAe635LvYUgC95AfJ78zILu9JGABolhbRqdBcD4iB0OLRDxRzJ1yl6zphtKggK3TCF0VvzPOsXwNDKUioavUwNZpFPoVFTpV307NHIIjgDN3sSkHQwDAHdqR8mekjrFei6a3VW5+YIlAEETJFc2vRzzE4I1/vygHQ4voq9T8d6UElx1l3UaQNIGYP45j3+jD/FkvWJaFQpHaPJJyQBSJRFC13yrobm2dRnTcUltyXegJikDX++thXNYpNxWKrccEE2b5JlnyyxoAeOvLEnwxrUf9VRUrukqXMiFnFGMvzoGNlU6ASClJVB/gdfr+qRCOf7MfFTvM2HnPshqHe1pQsdOM49/sh3+KdweqPmBbWVSeR+jnj2f9GgoGaHUCCqX8IgWAmeMLeP1fLuR7GNKBAORJVmYtlEYFLG2GktuIVZkUaL+lFrbF2r+2m2tQtd+KWCyWXVMFlUqFSCSCiCeGoCMCEMD8OQ+OP9SPiCcGEBAKwYodjuFw5MsX4DjvKTr5WzqoLUo0XGsHpZbG4iXvcCiJBmnJYmnVC4XBpQ5JE9BXqUvKdttQq0H91RXQLBbPciyHib/NY+CpKeGYgaemMP63eXAsv+DTlKlQf3UFDLWavIxZLFLJEmliwJ4pwPux9ILlYswSySxBkATY0tlH2RBaQ2HH3c0wLNZ2lTquXh9OPNQvvD+LHXOzHiCAiCeG4w/1Y/6cByD4fkwRTwyxWAwaTWpzR0ozsk6ng9/vh6vXh7EX5oSNioib7wZr6zRiyx0NgkNHsRMPMRk13yymLJFCR6Gs2wRaKfchAgCWYeV+Ecs4/YMhzJ6U6wAAfvNg572t0NmLvNcOwRcsA4B7KIBjX+9DyLFUUxP1x4WiXAB8kfyyuqGQI4JjX+9bUfyc76xrtrNEXjXw+DbAqQEmPl969WWrqdhhRvsttfkehmSgFERJZZY3guM4+KfDYEqwDrPU0diU2HJHA2wdfFYoEYOAA8ZemIOr14dwOAydLjVVSkoBUVlZGXw+H1iOAQjefnG5DMZ5wYtT3x0UurDrqwt7Z28jCIpA+y21wu5lqWeJfBMhHP9mHyLeWL6HIgmYKAdSIlIfGWkRckVx8rsDCMyENz+4gLG2G9D1vnphgywe4hculIrEzntbBMvf5RhqNNh5TwsoFbniM5oyFbreVw9ruyFHoxeXVGuJMgn8iilLxMbYkjQeWQ9SQcoB0SJMmMXgH6cQnJcbfgO8A97eT7Wv6A9UbCRiipAzilPfHRScDgHefa9qv5Xv1cVxCAaDKC8vT+n8Ka3YEiePIgJwQFm3CfpVk1pgsaGeuUWPnfe0QFepTmlAhQJBACqjImPZSzFliWSWYGMsqBKSRG1G1/vq0XCNPd/DkAQcwyEwEwYbL05pQ+Kd7+r14cTDA8IGWQJKSSLkjCDsuXTzJOyJIeSKXFI3FHJEcOLhAcGmNp/zSjazRDUe4KphCOqLUs8SOXq8GPrTdL6HIRn4gKg43xupQlAEVEaF0Gi01Il4opg/50HyvtGFha5SjZ33tMC82IcrMLtyQ1Ffo0FZtwngAFYRB8uyqKioSOka6QdEAM49MoLJVx1rHuse9OPsT4eFXdCEdrxYYOMczv50WOgdAKSfJSqGoEhjU2L3/W3QVhTX33O6MFEWpLJ4d2pSxT3sh38qmO9hSIbay8uKst7S1mnEzntbhKzQcolcgqgvjt7fTKzZsiHm538W9V36s8S5NDYldt7bIhTRFhMMCYRpZCwNLJYsEaVc1qleBqSCACNniAAA+ko19n22Q2iAXuoE5yIYfX42ozIOKZKIHQIzYZz96bDQE2o1k686hDYnrJqfPyorU3OoTCsgii0GRIniLVuncU0noIQ+3FCrwZ7722Csl4vfipV4hIWrzydbKy8iZ4hWMv2mC86LvnwPQzJYWg1CR/liQKHnu8A7e704/+jIJVmhBNZ2A8zNm+u6zc26deVxIWcU5x8dgbPXu+LaUicZ2dyMAThSl4PBFAgdt9ah873yDUlAyZI5gaAjgnOPjiDslmX6wGLbArs673WWYmKs12LP/W2CvHp5zWkCSknC1sVvjiViElbDB0T19fUpXS+jDBHAT0bt76kVBrQWvokQen45KnQcLoZsEaUicejBbqFoOEGpZoli/jhGnp3h3QZl+AwRTRbVyykTlHq6qAKATDn7k2FMveHM9zBEwdrBa9fVViXAQTBBWIuKHWZU7LRsek77TgsqdpjX/bl7KABwgNqqxN5Ptee8tihbsjlVnG/Oupx0ZXPFkCUaf2UeE6+trUIpRUiaLFqpbaowERbuQb8cIC5ibtZj18dbQasK39gqESN4x4LoeWwUvsnQusfauo1ov6V2xcYYq+LXoY2NjSldN2WXOavVijCWpC8xfxwnvt2PudPuDT+b0H6rrUrsvq91wwCqEGDjHEafn0Vw7lJJSKkaLGjKVKDVhf9lFIOErEEqPVTyTe3l5ei4Vd7pLSYSxbvuQT+G/jSNsGvtrNByLv56HANPTm56XP+Tk7j46/FNjwu7ohj60zQWFmUUUi8o3ixLdNUwsHdqw0NKCt94EL5xWWoLQJhbZZMJHo1NieoDNllSuYh72I9T3xtAPFLYz4ety4jd97XyG2wAXH0bK0vmTrlx4qH+FRLsCBWCQqFAdXV1StdOebXW0tKCIFbuACYs73T2zQtdw64oLjw+Btei3KFQLbo5hsPUG06EFzZfBCRLIWeJCBLYc3/bJRmzUiXhjkVr5AARACZfd+Dir8fyPQzJULHDjN33t+V7GGljbtFjz6faoTQqwMa5pCzVExNcMkXhiWMSn9mI2ZML4BgOSqMCez7VLhTdZptsZIlOVAP91kv/e6lmiSp2mOXM8iKJuSQxt5Q62go1Gq61o8T6kK4LE2bhnw4XbN/eRCzg6vXiwuNjSW2wJWKO1cqkIOtHWVkZSDK1ECflgKi1tRUhXFrUpK/WYNfHW2Fq2Fwf7urzgWMBhZbCzr9vReXeNWYAiUOQBMwteii0ay94S006x7HA6R8NwdUv14kAQDzIT1oKbWHUN2SbiCe2bl1JKRJ0RDB/1l2wkkrfZBCzJxcQD15qfrAWljYD9jzQlpJcWlOmwp4H2mBpSy7AiQfjmD25AN+ktDMKG2WJ5nWAu3i7VaRMy43VMCaxpigF6MW1RizJ71yx47zgxev/3CNLCBfR2JSov6qiIBt+V+61Yue9rVBoKXDs5lkhgLfZ3vXx1jXb+/ij3pSzQ0CaGSJt9aW7dv6pEM7/fASe0fX146uJBRlceHxMkNtpylQFs0Cg1SS23tEIQ61sFJHANx4UAoFSJyZniFagtijR+Fa70F+m1PFPhjD+t/mC2s0z1mux894WUGoSTJjF2AtzSS9G3EN+XPzV2Jquc+sRckRw8VdjG9YkLYeNcxh7YQ5MmAWtprDz3paCMvLRR4A2B0Cv8wotxSzR6//Sg9kTrnwPQxIo5AyRzAYojQrYd1pAKgpkEU0s1QrNnXbjwq/GEEth/egZCeD8z0fgn7q0vigYD6ChoSHlIaUVEE1NTYHhLh34wgCfOVLokl8EJoriSJrAtruaUH9Var7h+SIWYnD0P3vhHlrbAhAovSxR5R5LzuQqUiexc75eBrHUoNQkbF0mOWO2DF2lOilJmFQIu2MIzkVApKFR4RguLZdB50VfejayBG9Dm20HKjFlc+YwsHMG4ApkPZMrOLlmHoAsmVtN1X4r2t9dk+9hSAbPcABvfq23YDal66+qwLa7mkDSBNgYu66d9lokYoxEzLEcjuDgcrnQ1pa6JD3lgKi9vR0AEMTak5upQYd9n+lIuR8NG+fQ89gopo/yzkvaCpW0d5M5IOqNyenaZZRtMcFYVzg7stmEjXNgYqwcACwSmA7j+Df7RK25K3Q6bq1D9X5bvoexITq7Gp3vqwNJE4h6Y+j7/UTKC7LO99bxHcTTpGq/FR0pWi/HQwz6fj+BqDcGkibQ+b66pGpcc8VasrkJE/BfW/heROtRSlkiY50WW25vkPY6IIfQGgpMjJXXHIvEgwwiXlk+WEhQKlKIDaaPOtHz2GjKz7POrsa+z3SsW57DmiJgWRZbt25NeXwpv2m2bdsGgiDgg3vNn3vHAxj6ywxCjtQXPv6pEGIB/oXfcUstWt6RugYwV9BaCq3vrN7UFKKUskTnHhnB2Itz+R6GZIgHGVkyJ7MuPb8YxchfZ/M9jA3hWA4KLZ3Rcxx0RhD1pp+piXpjCDmTl9qthtZQUGhpoUeFlJGzQ0twHL+pJNsq8yi0tJwdWsb8OQ9Gn5f2+zOXGGo12HVfq6T7srW8oxodt9QCAGIBZk2522YE5yMY+ssMvONrS6nDWj5Zc/nll6d87pQDIoPBgLa2tnUDIo4FZo65wLFcRpbD538xitHFxYK2XAW1RVrSEpImoatUg0zidyyloEhmiVgwLumXU67ZdlcTag5JOyOSS8ILUUku9jQ2JZpvrOJlZ/MRnP3JMKK+9Hdix16Yy6gpr/OiD2MvpL/REvXFcfYnwwjORwACaL6xSlR303RlcyuyRBxwQz9Q5xFpUGtQaFki30QIF381LkvmFlEaaER9cp+/BLSWKpx6mRwQDzFwD/nTkxhnEbVFKThFjv51Fud/MZr2uSglCY7lFmOMtY/xU16Yzebc1BABwO7du+HDxjarhhpNWtK5BFFfXLDSa7jGjvbFqFIqRL0xnP7BEALT4XwPRTLUXl4udxVfRsQbg8ogB0QJXP0+BNbo21WqKA002m+plVwdkUJHw9yogzLDYF5tUaJqv1WUPiEERaBqvzXjjTGlnv/dFDppfS8pDpjRA0HF5semK5srNGgtBUJWywkoDQpEZYmYQPffNaD57dJVEeWakDOK4b/MSC6L2H5LLRqutgPg3WbT3VxLSOUMNRvbcLqjLjQ3N6dV65rW62bXrl2I6yPguPUjUf9MGJNHHAgvZL6j0fvbcfT+lm/Sp7YqYWktvML9UsgShZwR+KZTT4EWK1FvDEpjEiucEmHyNUdKhZPFDhNhobYqJSGrVJkUqLuiHADfHfzEwwMZZYUA3ha19rJyMYYHAKh9SzlMjZlZMEd9cZx4eADeMd6au+6KcqhM+f+OMiRwqgpwyiWYAl3vq0fbu6S1EZpPVEYFInKGSGDkmRlMv+HM9zAkA0ERUFuVkmhUa2nTCxt9vb8dR+/vNm+yvRkhVxSTRxzwz6yfhOA4Di6fI636ISCDgMjv9yO4Rj8iYWAMh/G/zYONsRn/BbExTmj+WrHDjJYbq/P+l66rVOPAFzpz0jSuUIIi5wUvJl915HsYkiHijUNlyP9iSypQahIG2XRDgImyOPPDIfgn87+JoK/SwL7bspQ5EUF1MXtyAce/1SeKhINjOBz/Zl9SDWA3Pxn/L4WOhn23BfqqzBv/ZCqbswYBdQpr3VIwVxj96yymjsjzSQJeMidniBJ4x4MIzMoKnQTaMhX2frIdujRVWWJBUARabqxGxQ4zACDijiXVjHuzc7IxFuN/m99wPuEMMQQCARw4cCCt66QVEO3fvx8kScKNzV9W2nIV9n66HfpN0lzJMvbCHE7/aAgcw0GhpVB/ZUVedKQxfxyTR5yIBpJ/QaWbJSoUSJooqF5S2SbqjUGho/MevEsFW7sROz7aDJKW78dy8iXfUugo2HdbAADOi16c+FY/Yim8zzYiUaMjpiNW4lxi1f/EAnGc+FY/nBe9ALAYEOYnW3doHNgyn5dLSxbveBB+WZIOgF8QKrRyDVECgiRQfcAGlVnecEwQckVx5idDeWmATioI1F9ZwTdWZTic/uFQRnWfy9HXaLD30+1JJR9CJr4I8/rrr0/rWmkFRCaTCTt37kwqIAo5I5g77UbYJd5fUszPT9qGOi3suy0g6dwLjaP+OCZemU/Z8z2ZoGggzl7yz1dGjqQ71JxhatJhz/1tGdceFAsJeYNKls0B4LtPH/9WH1iJFX3mE0ubHge+0AllHmrNbJ1GNFxtFyR7YgUvlIrEjntaUH1QfAONmkM27LinRTQr5sTvTGsoNFxth7XDKMp5U+WvzUCPeOpCAADx+uk1/ykElAYaVfutsuX2Ion3QyQDt8ZiQqGl0HCtHRpbfrMhUoKNsfCOBsFEc+9CQtIk7LstggIksUYXg7ArirnT7qScRt2kE3a7HS0tLWldK+1Z+KqrrsJ/Of4L3Bi3YfESx0JwiyMVRMaps+W4en1YGOAlGaSCRNtN1Rh9YS4nvU5oNQVthQq+yVDKkpCBeHoP7FdGjuCLjQfT+mwu8I2HcOZHQyl1Gy5mElbDKqNC7r8DIB5mEA/Lz8ZyvGNBXPz1WM7uC6UiYWrUwdXrw8zxBTjOe0W/NhNh0fOLUYQc4htozJ12wzcZAhMRd9KPhxiceKgf8TCDuU9chiplDI4YjVgKPtjuPWl+xz1q1H3sWHqfLVK05So0XVcJxzkP5DcGoDbzWdGE0VSpE/XH8fo/9+R7GJKCUpKo3GeFs8ebk/WG2qJE/dUVGHhyEvEQg2PfEEcevRxSQSAeYoQYYjNckXns2rUr/eul+8Err7wSY2NjCCOY1PGUmsTu+9oEXaFYJP4CVCYFtOWqDY0exMRQq8H2jzRDkUZBtJSDmkyIhxl4x4OSs33MF4nJS2WRM0QJat5ShrIt+dmFlyJMhIWjxyvqRtFGVO6xou3mGqElQrYCMe9YMCsbI7EgIxgiiE3iXtAEh92GMBrVqS0qzMfTk/LtXYihcm/6jWuLEfdQAK//S4+8ubaI2qoExy7VUsvIrIZUEKi9rCxnLWo4joOuXAWVib+e2Ou+ip1m7L6vDZQ6uTCFVUcxOzuLq6++Ou1rph0QHT58GARBYAHJCZ+ZMIvpYy54RtduppQpIUcEJ787yL8wCGD7R5pQ1p29hZdnNIDj3+pLqYZoOekGRVKXztVcViZavVihw8Y5hD1RaCRmq5xP9HY11BZZ5rAcjU2JxuvsWau9o5QkjA28lGHqiAMnvzOQNVlF1X4rut5Xn5VzL6fr/fWo2p+dICLOEXh+QYeBEP+9LVPEQRPZC1gpQLaXXgO5/9ASaosSEW+sIJoL5wJbpwFb7mjM9zAkRSzA4I2vXIR7KHtOrmXdRmz7SBNA8GYJJ787mBUlAAB4RgKYPuYCE07uRRCy8bWg7373u9O+ZtqvYYvFgp07d8KF5AunJl9zIOKOgaCIrBZWkzQB/0wYocW0YTZ0yGyM44vX8vB+knJQVLnbAn2lOt/DkAxhVxRqqxwAJOj97QQmXpGrx5dDqymUbTFlzf450R+MpAlwLLLqVBXxxBCYy34hfGA2nDX5UMW3X0OIJcGBAAkO+40htGuy1z/rDYsCL/19c9bOX4hsuaNRMPyQATQWpah12IUOE+XkeqocklhDhxeiCMyEs75+JygCEXcMk68l7zLppuZRUVGB9vb29K+d9icBvPOd70TE4gOb4lbO1jsb0XRDVSaX3hA2xmHoT9NC09Su99ej7eYaUa9hqNWg6W2VGZ2jGKVzx7/Vj5njIljjFgkhl5whktkY32QIx77WJ6ochlKR0FfzmdqJV+Zx+odDojq+rYer14exF8VxF9qIsRfn4Or1Zf06LAi8uKBDX4jf1LDQzIbZolRlc5YoCypHMu9CIjATkutllqG2KoUNXhnAPeTHwBOT+R6GtCCAHR9rhqVN3D6dbTfXoOv9fNbfPx3G0J+msyrxbrqhClvvbEzpMxzHYcI1hsOHD2d07YwCoptvvhkLCwvwILXmWFNHnJg55srk0ikx/vI8Zk/zi3SlnhbF9UtlVMDcnPmDV6zSORkePkMkB0QJtBUqHHqwGzo5i3gJYmayG6+rRMettQDB9zvKRe1B3ZXlOXXLUxpo1F0psjXbGgRZEnGOAMBhnzGIrTqRMmAch+vno9jtlnvLrGbkuVm5ifMy1FY5Q7QchV5uZ3EJHBCYCyMeyrzuTmVUCG7Bs6cXMP5y7lQdM8dcmDqSWkwRKwvA5/Phtttuy+jaGc3Au3fvRnV1NeYxldLnnBe9CMyEAQI56RLuGQ7AO7rYmfzKcmy9qynjczp6vDj5nYGMz5MJUgyKag7Z0P2B7NcQFAohZwS0ispbfxOpEV6IYeylOURFtOUsBjRlKhz4YieM9ek3rqVUpNCrYeyFWZx7ZCRnkl6NTYnq/bacWsyrTApU77flcMOBwMtuHS4E+HtsoDbOFm1+OgJ/qlCiZzGI7PvhXjEGWfCoTAq5VcEyFFoKtIqSnUqXseWDDWi+ITOFTjEy8OQUfBOZN/re9uEm1F3BbzZ5R4PwDGen9n85iVggMBMWesMli0c3D61Wm1H9EJBhQESSJN75zndC0cKm5e7WcI0d2z7clNNIf+TZWfT+ZhwA73xXc8iW90aRmUjnpBYUhZxReEX4QhYLiV09uV8CDxtjMfmaQ9Q+BcVAyBHB0J+mEcygQLX1phq031ILgC+wzaXkKOSM4s3/7IVvMnfffd9ECG/+Z29Od85DLIkIRwLgsM8Qwm59Zr+vR0EiIDcqXkHt5WXYckdDvochGbTlfDY9OJ+9OrZCY/BP05h+M3cqo0JBoaWSdmVbDkkTqDlkEz578b/GMfxsclbXYkBQBLZ9uAkN19rT+ryTmcXevXuhUmW2zspYo3HzzTdjcHAQAaSu554+6sTAk5M5tWlmoiz8U/wkZmrQofZweVpSlbrD5dj6oUbRxlUs9USuPp9cNL+MkDMKluGgrZAlYgnUFiXKtpjyPQzJMXN8IeVGz5SaFLq1jzw3g55fjmVjaBuiMilAKcmc1Citho1zoJRkTpQGKyHwuleLcwH+e60lWSgWs0XJ1BFRHIfr56IoE7mfUjEw9sIcen8zke9hSAZthQpsnEXYJQdECXzjQQTn5Puxmu0fbUbd5anLiCkVhbrDFTDV6wAA/qkQ2Fju3k0cw2HgyUlMv5GaVA4AWGMUExMTGWeHABEComuvvRYmkwmzGE/5s1FfHO4hPhVnatBlOpSUcfX6cOxrfYgFGBAUgS23NwiddjfDNxVKOa2XLb4yckQymSKC5JvqkQrZRxYAOJZDyBGBrkLOECUwN+vQ9q4aWQO+BrWHy2FpMyR9fOd769F2E28YE3HHhGbAuaT1ndVC0W0+6PpAPVreUS3qOSu+/dqmx4RYEkGWf8/tNoSw35h8fyQ1A7AAovJr8hJiQQaB2ew7FRYK2go1Qo6IbEO+iEJPo/qgDXQaPSCLnf4nJjFzIjlTK0OdFltubwBBEogF4njza71w9WXfqGY1ibW/eyiQlpTebZmFQqHAhz/84YzHkvHrWK1W473vfS9mMJZ2U1RDnRbbPtyUkX4+XRL9OGg1BY6DUJCWaFy4Hu5BP6aPyinb1SiNCuz+RBuMSQaWpUBgLixniJYxd9qNI/92QW7guwbGWi20ZRtnGJR6WjAvGP7LNPp+n9/d9P4npzD87Ezerj/8zAwGnkqtjlVsjvs0OOPnv+MakoVmk2xZgCbwbIUSXnnjaAW6SjWab6jadP4tJbQVKgTkbIiAxqpEwzV2UPJ35xK8Y8FNJcRCU+4QA46DEFhmqzfdRhjr+bW/oTa93pUcx2HUM4CDBw/CYsncpl+UJ+rOO+9ECIGU3eYS+MaDOP3Dwax1IE+GWCCOnl+MCk2mtn6oEY3XrV+0p7EpBamKWGQqm5NClijiieHMj4bgm8jf36XUCM6FobPLAVECNs7JwdA69Dw2isnXN36PbrmjEY1v5d9NwflIVvsKJUPUG+NNcvJEYCacl8zYckIsCR/DLyy26MK4fj4KrLNBqItzKI+wa/681I0VlAYapkYdmBzKdaSOrkKN4LycMUvgHQvi9X/ukfsQrYGlTQ9rx/oKg8brKgVL65Ajgp5fjCIWyN/84R3j1/7pGkHELEE4F5z40Ic+JMp4RAmIDh8+jPr6ekwjff164oZY2w3QlOVfXjTxigPOCx4AvOVloqdHgua3VwuLEjEp+KCIA7zjwbzsNkiVwGwEtJqCUnZOEqg7XI7mt2evF1khQ5CArmplAK0pUwk7eX2/n8DQn6bzMbQVaCtU2P2JVqgt+beVV1uU2P2JVsFlL5+c9mvwsk0BEARUDAfTqsV9W4DBdfNRyIKfS1no9/PurfJ+CQA+QKTVlFwvI5MU5VvNsO9YmSnRV2sEJ07nBQ8mXk2+2Wm20JarYG3nA7dMXPGchino9XrceeedooxLlICIJEncfvvtmMV4yk1aV0AA9VdXoGpv/jtUOy96hb+o6v02dNxaBywreRh4chIjz+VPJiJlbF1GVO615nsYkiE4x+/u6ez5X6xJhWggLltvr0P1wTJs/3CTIG0gKALb7mpE7VvKAPAZkXg4814TmcIxHLzjQUQ8+bcDjnii8I4HwbH5X0nHOALOxb+7bd443j4bBbksG3TKSOEpuxIMIdfQrUauPV1Jol9bYE7OECVofnsVGq5Jz42s2On73QQu/GpZYoIAOt9bh+r9/HrMNyGN2vfKPRbUX1WxYk2dKhzBYsQ5gLe+9a0Zu8slEO3tc8cddyCOWMo9iVbAAeceGcHQn6UVaAz9ZRrnfjYMcIBCR6Pj1jpwLJe1ZoeFniUy1Ghgbsy9SYZUiXhiiIcY6CvT08kWI7MnFjCRw2ZvhcTsyQWc/uEQtBUqkDQBjuHQ89gYRl+Yy/fQVhByRjHw5JQkir05lu/BEXLmPzgDlpzmTppoPFeuBEsQoFgO9jADEMSGtUOlKpvT2dU4+N+6LsmOljKGai1iwXhOGisXCmFXFGG3NL7nUkRpoNFxay0UOhrggLOPDGPoLxJbU/95Bud+NpJRJjha7UUgEMB9990n2rhEC4i6u7tx+PBhjCOzZqUJUwNdlZp3opLChhEH4YWkMiugtipRfdAGQ60ma8WfhRwUjTw3i4v/lbrrYDHjmwpdIrssdRR6Ghpb/uVWUiMeYhD1xbH1Q02w7+az5f6pkKTqrhLvP6lhqNWg+qAt38MQYEgCjsW2Dp3+OG6ci6FLrn1Yk4gvhqE/T8vysGXoq9VCmxAZnqk3nJhN0kmtlKCUJGxdRrTfUguNVSXUuEfcMUlIUAkSaHtXjbDhkVjrp8sYM4CGhga87W1vE2N4AEQMiADg/vvvhxsO+DlPxudSaGioLUqQEnOb8U+GcPr7g7C2GaCxqbD7gTbJysPynSmSWcI3GZTkAjKfdLynNit1eIWMrdMAEAATYRCcC0si+7IaggTKt5pgqJGek6ShRovyrSZpbKSt4qKewnk9hUkNBYLj0BBk1jVeKEXiQQYzx1ySCvzzjb5aC58cEAmQCoKvh5HVpiuo3GvF7vvb+H5VC1Gc+v4g/Dlskp0MpJKE2qKEQkNnfK6YLozR6RFRrLaXI+q0ccstt6CyshITGMz4XO4hP87+ZBhMmJVkv5IT3x7A/FkPxl6Yg3vQD4C3EBTTbrpQm7UqjQrs/XR7XmzUpYp/KgSlXiEbKyxj8OlpDDw1me9hSAZtuQqd76uHpUUPjuWbHIec0tst51jg9A+GMHU0PVfRbDJ11InTPxgSJZBMphdRKjAkiaNWBbwKEjVhFtc4YjDH5MU/AIAAai8vy0ODXemiMiqg1NOSW9jmE2OdFns/2Q61WVYWGOu0whrLPejH2ItzcA8GMPBkflsQrAVBEWDCLM7+ZBjuIX/G53Nax6HRaPCZz3wm88EtQ9SASKlU4t5778U0xhDnxJEFUEoSO+9tEaQjUoJjOcyeXEB4gdezVu21ou7KClGvUYjSuZg/hvlznrzaOUoN3+KkZqiRs0QJQo4IYoH8mwPkE1JBonIP/24Lzkdw4qF+LAzwE8b43+bhGQ7kc3iXoNDRS65yUlzLL45JbVHyGnqJ0OGLY4dn6X04oaHw2yol3EoS4Dh0+OKglxlClFodkdqsRO1byoX+WjKAfnGukDNES/gmQjj702G5hghA3ZUVqFpUJ4UXopg9uQCO46DQ0ZJKIlTusWDnvS2ilZdwNIOB2V684x3vgNlsFuWcCUQXFtx7770AxWEKo6Kcj4mymD/rhndUOgsDY50Wez7ZdsnLu/e3E+j9DV87o6/RYMfdzVDoM3/BF1pQxLHA6F9nJVPgLAVi/jginpgcEK2i9nC5ZCWnucBYr0XT9VVCLdXq74zKpEDLO6ol475VfdCG7R9rBkFKZ8JdDUES2HFvG2rf0Qqqqw1UV1texpEwVgAANQtoVknBPIt/p6Y4hwPuOOwRCeojc0R4IYo3vnJB2DiS4e2SI94YYrIbpwATZeEZCUhzMybLKPQ0dtzdLNQi9/5mHL2/XdmUW2NV4sAXOiUlz/eMBDB/1i1aKxZ/jRORaAT/63/9L1HOtxzRZ9mamhrcdtttGENfZhbcy5h4xYGQMwqCJCTxFx0LxuG84F2zKEz4byyH4HxEeJkZajV51bXnOihSGmhZMrcK32RQknUX+UShpYT+OqVCwpQF4KUOx77eu+HmgblZJxnzifGX5tDz8xFJ2FuvB8dyuPByDBM9S+/nRGC0/J9cctpE44h1bTmYR0HiV9UqTC5+D7Z44zCWWmNSgt9IK8WF7noY67Ryg/NVVB+wwdyiz/cwcgZBQljzxgJxBOcjQt3hWuvPiCeGnsdGJWFMwq95CYScUUy8Ik7vI47j0O8+hz179mDHjh2inHM5WVmiP/jggwgjiBmI6zRWfcCKLXc0glbndwEVckYx8tws2Pj6b2//dBj9f+DrI2gNhW0fbkLla43B3QAAmw9JREFUnvR3wsWoJ8plUFS524rO2+pzdr1CwDsehL5GI6l0dr4Z/stMydlvG+u1qN5vA7XoPraRbDDiieH4N/sRmMl/HxKCBNg4B/90/seyGYEFDizvcL0uawVJYgdM+jiLDn8cxCbmCeHFd4KC5dDtY0oqW6Q00DjwxU4YRKy/LXQIioChRgOPhJQxUsDabigplUXlHiu23dXEbxpyQP8fJjd8/7JxDq4+X8YObplCqylsuaMR1QfEVX8Eq11wuV34h3/4B1HPm4DguOzY3Nx00014/qmXcAhvAyFSAzqC5HsV5HtCVluVAAehdigZtBUqRNwxMFEW1QdtoFUUxl5Kva/IZkHNy8HNJ/InurNvS6vQUgBJyOn+Zeiq1Nh1byvO/GgI3nF55y8BSROgNRSivuJ9Vsq2mKC2KDHxCh/8kTSx4YbKamgNBWuHAXOn3Fka4ebX3/XxVvT/YVKUotjldH2A3zi58MuxTY5MHqqrDSY7gdZ9Cpx+Jop4murd2S9vPnexfypb92dV7UFs98bxmyoV4knKDCmWA0MAIAhc8+NRhBeicJzP3LlVqih0FKr22jD5hgNMuHQCwY0w1mux/SPNOPmdAQRmpb8BISMe9VdWIB5hMHXECUpJQmVS8JmhJLF1GsDGOaEWNV/oq9QIzIrnlMpxHM7aXoatwoaenh5xTrqKrFUw/o//8T/w1FNPYR5TqECNKOfkWAjBUN3hcriH/fBN5F5z3HCNHQoNxTeWSpLlKUyCIkAsJrkIkoDGpkz6gf9i40Hc3JOZu9PNPc6sB0WxYGkXy69FYCaMeISBsVEnB0TL6P5gA5gIiwuPi7cglhpqiwLa8qVu2qkEQwBgaTOg+foqLPT78mNEwQFzZ9zwzxROjUfAzWF+NPv3inz7+nIQ5qY+nFGRaE4z46O9pbborbljASatzcFixtSgQzzMIDAnB0OlgLZchZAzAo4FCAqCioSJsikFQwBg321FzB/PS0BkqNXA1KTHxMvzoicuIlUezE3P4T++9h+innc5WcsQAcDVV1+N4y+exn5cI1qWCOAflq13NsJ5wYupN3Jv/arU06BUpCimAWVbTeh4Ty2Ofb0PEU/yznyZBkVA9jNFTddXwjMcgKvPl9XrFBLdH2wAQRI4/+hIvociGQw1GsRCDMKu4jLhaHtXDYJzYUy+Ls47SqGjitKVL1sZIjFIJkO05vUZoMxHYNbMoeymPlHGUnNZGbRlKvQ/UTxW9aSCRMUOM190XUIywc3YckcjOIZDz2PimFMVA1X7rKjcY8XJ7wzkeyiiojIpsO8zHbj4X+MFnwmuPmCDrcuIcz8bEb2f2IWKI1DplOjv7wdJZqcgP6tl/v/zf/5P+LAAB6ZFPS/HcDj3yLAQDCW0+Lki6o+L5qDm7PHg3M9GhGCo7V01sLQZRDn3ZogRVG2E2qzkpXMyAp7RAIx1+TXYkBq+yVDRBEMkvbSADrujiIooGY0FGBAUkfOi4so9FlTsMOf0mmJS3kiiojm3X7iaBRL7B2moRXyso74Ywp6lEy5/1goVQ7UGzTdU5r0uWFIQgLFOA8+YXD+0nMBMGHNn3PkehihY2gxoexevnIp4Yjj7yDCcFwo3GEqswafecOLcI8OiB0PRSh8mZyfwpS99KWvBEJDlgOjaa6/FVVddhQGcg9iJqIQu0dSow95Pt0NTptr4AyJBqyk031C11IsjQzgWQq8RkiZWeLWrzAqozGs7E4mV3clmUHTh8THM5qnmQap4RwKglBR0VaVTGJoMZd1GNFwjbg+vXEOpSex5oB3l280AgPGX5jF/VtxJrnK3BV3vq8+pM5+uUg19lTpn1xMbnYWAzpzeVGf/Unrz1piNxQvdMYRFNAecP+vB+Et8DVrFdjN2P9AGSl3YOyue0QDe+MrFlNQRxY6+WgNKSUmq1YgU8I4HMfmaOG5l+WD5eo4g+B6biU0Nz3BAtFobQ40GO+9tydkmg6ZMhb2fboepUQcAov0eCTiOQ2/sNJqbm3HPPfeIe/JVZPVtShAE/vVf/xUBeDGN7NQH+CaDmHzVkbOO7godBVOTLiu7c2ycw8Vfj2Ohn5eY1V5ejq13Nq57fCEERcWwiykm/ukQ4hEG5qbSsQ5NhhUNPwuMRANFJsxi8ogDvizWh80cd+HU9wZy6iI0+MdpDP15JmfXE5uRkwyGT+TGsINkAauPAAjAn8U9D+94EFNHnIIJgb4QnbcWpwZZKrcSS4se8TADv9yQdQWWNn1BbwBsvbMJtZeXAwBcfT5c/PV4yrWkyRALMvBPh0DkaO0VckYw+aoDvsnszHvBahdmHTP4p3/6p6xmh4AsB0QAcODAAbznPe/BEM6D5cSfxNkYh4lXHQDHO9AlotRsEXJGcfLhgZQL3dJh+M/TQqG5Qkth570t0NlX7tRKOSjS12hw6MHuFcXkpU4iI2gpoV4KyTD9pgu9v5nY/ECJYWrUYefdLUKzvKkjzpTcJ1OFYxebtxLIunSOpHMvz8smJjsBMsubpk3zJC7rp6HIcvwVXohi6gj/ztbXaLDz7pasz31iU77NjD2fbAOpkDfNlmNu0cM97Bd9p72Q0diU2PLBRugLSFmhs6ux894WoWzgwuOjGP6zuOUjaxFeiGLgyamsO/yaGnX8epQDJl51gI2JH9xxBIuLgVPYvn07PvjBD4p+/tXkJNz+f//v/yFKhjGBoaxep+ayMtRfWdiym+WwcU5wpyOVvIlDQlpgadMLwdET3TZRAiOxg6LQfAQDf5wStY6iGFgY8MFQp8157VshUAjBs8qsgH23BQDfhfvsT4Zzvptr6zBiywcbstqw1dbFX0NlWlu2W0gotUDXYQWsNdn9zg1WsHi5I45Y1vxbL8U/GcLZnw7DM8JLrOy7LetKraVEcC6M2RMLWVlIFSqUioSxVgv3YH4tk6VGyBnFm1/rzWr2XQx0djUsbfwmUsQTQ8gZBblYBhGci2QlI7QWtIbK+jug/soK1Fy2fssBMfDVzWHBs4CvfvWrohqzrUdOVmSdnZ346Ec/imFcQIzL3u5p/xOTQkaFSLLnQ6psu6sJTW+rzMq5NyLijqH3N+OIh/ksW/0VFajaxze9IkjxpGliBkVMlMXsiYW8NwmTGguDfpAUAXNTYe3oZhv7Lgt2/n0raIkbcVjbDai7ohykgn995qN5ovOiF6e+NyiauctazJ/14OR3BoqiviMaBE4/E4NjLDvb7poIYAzyUjmPbuWix/Fke1auuZxEMEQqSNRfUQFrjox5MiEwE+bVHTIC5iY9CJLIew8ZKRLxxHIWUKQCSROCSVLVfivqruA35eNhBr2/GUfEnfv3Z+s7q9F2szjtblaTWFtfeHwsq46XnIJBj+MUrrjiClx77bVZu85ycrZF/Y//+I9Q6ZUYQnYaKgG8+1w8zIBSkth5TzMqdppFv8bMCRcWBvJvI336R0MYfo7X9ds6jdj/+U48vVec7JiYQZHOrkb5NpNo5ysGIu4Ygo4IzK3SX7TkEscFD849Moy4BHtY1V9dgboreP33zLEFnPhWP9hYfjUtiYaNZVtMotfqJbKXuZAG54qQl19MUVnYOO2corBviAbyvF5jYyyOf6sPM8cXAAB1V5Sj/mrpqSas7YacuakWEuZWPYKOSFFsQohJ8w1VKN8qvXWEQkth/+c7Ye00AgCGn53BmR9lVwmVDGMvzmHgqSnRz1ux04yd9zSDUpKIhxnR3eSWM1c5gnAkjG9+85tZu8ZqchYQVVdX4x/+4R8wjgH4OHdWr8VEWTh7fVlp2jp/1gP3kATcXzgIBbW+iRBG/jqLeJDBE902BI63IjZrzuj0YgVFllY9Gq/NfUZN6rgHfXId0SqYMAvvmHQkEbSGEnbD2DgnBEAcy0lmp1JpVKDt5hrYusVbLJA0gT33t6Fyj0W0c0oFewuJnTcoRa8lOt3A4PXWmGAUkE/YOAeO5YT/n3hWCZLIqTvhRpRtMcFewFbu2cLSrJflcmtAq0nJGDSZmnRofnsVAN7AYOSvs/AvrjWZMJv3TRGA38jKRisL30QIzl4fmGh2NwPjxjDOT5zG7bffju3bt2f1WsvJaRHDpz/9aXR2dqIXp0S34V7N2ItzCDkiIEgIev9M0VdrJFm4GvHGMHPMBYBfzMw+YwIX5UXsjE+D2LwprWbnYgRFk0ecePNrvRmfp9hYGPBDbVbmzC6+UFBoKXS9vx66yvzaPFNqEns/1Q77LjMAYOLledEarIpJ1BvDiW/3Y17E/hwcy2H0hTksFOHCzD3DYvxcXLSC9ToHCU0EYEkgKEFn8snXHJh4mbfqtu8yY++n2iXh1NX3uwn0/b7wTFSyibZcBbVFKQkFitTo+/1kXlt4GOu1UFv5ek1aTUFbphICtJljLkS80svo1V1RDkurOJuu9t0WECQQckQw9uKcKOdcD47jMKg5C4vFktPsEJDjgEipVOIb3/gG3HBgBuM5uaaxQYfmG6oucWdLh8q9VjRcYxdhVNmDjXM497MR/Pl6PgKKDFUicKRz6efR1Kp9Mw2KsplSLWQ8IwEwUQa2Tlk2spxYiG8+urwfV66gtRSqD/DmJEyYxeAfp+Do8eZ8HKmSkNdY2w0o6zZmfD6OBWZPLuRF+55tIgFgbphNa4NoNSQLdExTqHPmP8BIBscFLwb/OCUoC6oP2PJSr5cIyKSSZZUKtk4j4hEG7mEJKFAkBKUms1YTvtl1AQAE0P6eWth38RvrzgtenPvZiOSfX1ODTgjiMkFnV6P5hioYG3KTDAjXuDA+M4r/83/+DwyG3K6Pcv4mv+6663DrrbeiH2cQ57I/4XqGAzj+jT5Bb5+JxefAE5PoeWxUrKFlnSe6bdBsH4bhmlMgCICN0HA/cRCRsfKUzpNpUNR8QxUar5N2IJlr2DiHhX4/bJ2ZL2CLCg7o+cVoXqRzOrsa9VdXCJPI/DlPQRmC2DqNgpY9Xar2W9FwbfF/V+u3UahszWz6Y0ngpa4Y+qoKwx85HmQwf45vFKy2KtFwTQV0FblNa5E0gX2f6ihKOWamWDuNWOj3yZuIq2i81o4d9zTn9Jpl3Ubs/1wn39yUA87+eBijf53N6Rgy5dzPRjB91JX25xNr5cBsGMe/0QdPDgJ1jmZw1nscO3fuxN///d9n/XqrycvW1le/+lXQWhIDOJeT6yVsn2suK8OOj7VkpEUtpAUSADy5xQZKxxdGExQL3e4BKCrcAIBwbw0CJ1qSOs/NPc60A6OQM5JVN6xCxXnRC0ONFkqj9C1yc43KrMhJs8n6KyvQ8Z5aAPzmyZv/2ZsV7XUuGHhqEn2/W5QhpfmKI4glx6RCxvHv/D/rQRCJ/0kdU5DA/gEaNAPeXlsapQ0pEXZFcfSrvYI7Xcettai7MrWNsnTgWA6DT08VpRwzE5RGBQzVGjgvynK51Uy/6cLIs9kPRppvqET1QV4h4BkJYOjpKbBxfrOjUE0uCBKCG2oqkDSBHXe3oOYQfz9y1TplrnoYwVAQP/jBD7LehHUt8jL11dfX41//9V8xgUEscPM5u66rz4eZE660Up11V5Sj/d21WRhV9kn0KCJoFqrmGZDqxS83xYKg+QCPYwkETzeD8W+8Y5hOUDT9pguzJxZS/lyx4+r3gWVYWTa3Bi03VKExS5kKfbUGSj0vHQ3Mh+Fb1kOIiRTGbv9acCwADtCUqbD7vta0ejpNveHMyeIjVyQCo9XB0egZBjP9yW1u2b+0cr4gWUDBpFY7nQvr7VRZ/qz7JkOCo6DSQAuNhsWGY/nMazHKMTPB1mEAy7By/dAaBOcicA+JH0CrzAo0vtUubAAxUVYwzokFGcyeckteFrcZez7Zjto0egWxcQ4zx11w9eXueYyW+XFu7DTuvvtu7NmzJ2fXXU7e9gLvv/9+vOUtb0EPjoHhchN9hhwRIYVYtsWYUsFZ2BVFYC6craFlnbUat6pbp6HdPgIAYP0aREYqwMV5TXncpQfjvXRSPOZtRPWR1BfwmjIVlIYcdissAJgIC/dQQJbNrcHA09Po+YX48lSSJrD1jkbBaMXZ48XUEemZJWRC1B+DbzKU0q4eqSBRtd8qGSenbLA8OHL8O0BSQGUrCTLJ15ImCoADFvQcXm2Pg5GGYZsoTB1xwrlYL2ffZcHWOxpFfxYMtRq03FiV1o51sWPrNMIzHCjoDZlsoKtUo/qATbSstcamhK6K3/SlVRQqtpuhtvIbR6PPzwl29cXCyHOzmD/nTvp4S6teqEOdPurKmbKHI1mcj7+J+vp6fO1rX8vJNdcib28mkiTxox/9CJyawSDO5/z6ti4TylKwqp0/58Hka8XbRI4yBmG+6QgoEy+hCJ1rROBEGwCA44BT06045m0Ujk81KNr+kSZU7raKNt5iwXnRC1ODTjJ2uFIh6l1swifCmszUoMOOe3ipLBvncPpHQxh/OXeZ6VzDhFn0/2ES8RADWkslZShjatSi8dpKKLSls2nh+yegbi8N/HdyQ3kdANBx4KoeBVpnlwqti5Xxl+dx+kdDYOMcL525pwUmEQqqlQYFtOXqvPfvkhq0hoKpUQfnRekbuOQafbUG1QdtGblCqi1LxgItN1aj4Sq+L1dgNoyj/9mLkKN4eq2txnHek1JQU9Ztgq0r9/2eHLWjcHvd+MlPfgKVKn/OuwSXbf/rTfjKV76CL33pS9iHq2EiLs1iZA2C18tzLAeNTYmQK7quBsLWaURgNozwQmHWFiwnWckbxxBgw0qcZKqg9ChQ+1o1pg7MIGyNgGAIcBR/s6YOJpdS1dnVCC9Es+5fX2godBT2f64TA3+ckmWFqzA2aNH53jqc/O4gYilqmNVWJWgNBf9kCCqzAg1X2TH87DRigcKqAcyU1puqYWrQ4fhD/ZtqvCg1KTiQ5ZKuD9QDAC78cky0cy78sS2p4xTxxTqgDSj7AjD7ZQJVCwQcBm7T49c9z0196X0wjyh0FJquq8Loi7OIuGMw1GgQCzEFW2cnRSr3WNByYzXe+I+LkmxKnXcIpNzbJ7H5ZazXYvtHmnHyOwMIzIahMioQDcRLyriibIsRCh29vsECAWisSoScURAkwbfEyeHtidmC+JvzT7jrrrvw4x//OHcXXoO8564/97nPYf/+/TifQ+kcAIDjCzxJmsC2u5pQf9X63byb3laJiu3m3I0ti6wlnVvNMW8jjgcacJJZbD6mj2Nm1xzCZn4npeysDfYTvC412UxRYDYsB0NrEAvwNqsV28z5HorkCMyEMXfanfTktVxW0fS2SqEGKeKOoe/3EyUXDAHA8F9m0PPLsQ0nuISrXj6CoQSEPj/93WI0AA7QhdZO+VQ7SWi/RKLspj7EPtQL0y19KLupryCDm3SIBRj0/X5CqPlpuNaOpuuWGm0nK2Uy1mvzYqVfCJRvM2Nh0C8HQ+uR4uK887Y6tN5UAwDwTQRx4fExhJz82iXijZVUMAQA2nI1jHXrv18brq7AtruaQNJ8giCXwRBLsujh3kRNTQ0efvjh3F14HfKeIQKAixcvYvfu3bCGKtFF5L6YylivRXAugnh47RcSqSBAkERR6XtXZ4qWy+E2QzOvBsESCNpDoMIUqt6w4/x/jiIws36NFa2m0Pi2SkwfdW54XClSscOM9nfX4uh/9iIqwQZvhYDKpMCOu5tx8dfj8I4FoTTQiAWZkpv81oUAOt5TB99kcEXNFEkT2PfZDkwdceZNRtj1gXoQeh16X42DudAvyjmTzRABQNskheZZCs/tiF5SF7RllALNEBj75IW0xrHcTKEYgiiCIqDQUoj64jDWa9F5Wx1O/2BoQxcuggT2fbYTc6cXMPJc8Rh2iIHKqMC+z3ag93cTojZXLgb0NRp03VaPsz8d3lCdo6tUo/O9dTj702FEfXFYOwxgY1xWjBiKEVpNQVuhykuri5n6flyYOIe//OUvuPbaa3N+/dVIYsums7MTX//61zGJYcxxkzm/vncsiHiYAa2hsPPeFpga+WiapPkGkWyMK6pgCOAzRce8jcI/qRAqDyNo5525CBYI28Kw/JrXfdZfVYGmt1Ve8hkmykBbpoIiD40ApY7zghdMjEX51txrdwuBih3mNTO0piYdai/nrYIjnhhmji8IHcOjvtKSRWwKB4RckUsWFmycw4XHxzB7ShpyTaqrDVRX8sGMGIyXM3izLSYEQxQDmP18xuh8PYPTTekrFxLZpGIIhgC+0XbUx9+PiHfxO7cYDNVeXg5T06U70RwLnPreACaKuAY3Xcq2msDEWLjk+qFL4PtmudcMtpveVimoesLuKDwjAaF5q6vXJwdDa2BsWMrSmhp12HlPC2gNhXiYyUswFKp049zoaXzqU5+SRDAESCQgAoC7774b73nPe9CDYwhzuf/LAfiXfWA2jLCbXzTUXl6O3Q+0Fa3zUrL1PxsR1zJwbHWBVbCoPmJALBAX3K0oJYmtdzZCV6kGxwJnfjQE95DchXs1TJSFq8+H8m1yQLQWxnot9LW846GhTiu4FWrLVbxT5OLXc+zFOdnOdwPGXpiDq5f/zlcfsAlSOe9YUFjkSoVcBkVhJeAyLAbPHNA+RWFfvwIkC/7ZKs7Xf8ZE3DGMvTjH/4HgHaq0ZfzGmNJAw1Cr4SV1BL9BIUvCLqV8qwmuXp8sJ1+D8EIUI8/NgmM56CrV2Hpno7CgjwbiiAX4dxYTZjHw1FTB9grKBbSGwpbbG1Gx0wyADyIDc+G8bRqymhhOel7Hjh078O//vomjTQ6RTEBEEAS+//3vw15TgXM4inwo+Zgo784UccdAUHx2aPiZ6YL3ot+IqYM+UQKjBMQ3Y4IbH62lwMY5QYpYuceC5hsq5QXGGsyfdUNfqUmrd0yxM/LsLIaengZJE9hyewPKF7NF00ddOPuT4ZxqnosBSkWiap8VLTdWCU1ppUhOs0UcsLePRtc4hb5qBq93xsBKZnYsADjg7E+GMf0mX7hdvt2MLbfz9va7P9Em9P2SWUJTpoK+SpOSLXKpQJC8lLbqAO9My0RYsHFOcGOdfNUhPGsymxMPMTj74yEodDQIikDEHUP/HybzEohzHIcB02mQJIHf/e53eWnAuh7SGQkAq9WKRx99FB7CiWFczN9ACMBYq0H5djNC86XhpiNmUJQwWoi4Y+h5bFTYtVeZlag+UAZDjQYggC23N8DYoBXtuoXMQr8fsVBcWOzL8FTtt2LPp9pAkHx26NT3BzH5qiy9yQQmwuLkdwYwc2wBntEAbJ0GUGpJTQUryEVg1DJDocxLwqPlwFCAXyNH2Zkw+aoDp74/CN94CDMnXNj1iVZU7ZfbLizHvtOMWDCOhQFZ3gXwkq4ttzcABKC1q2HrMEJl5LPY4YUov5aQs0Bpw7FA5R4rbF2GvG5KexqmMDY9gq9//eto+v/b++/4uM467/9/nTNdMxqVUe/Fvdsp2CEJKZBOSCGFGkpgKUtdIPvde++9gb132f3dC2GXEkpIgIQEkkAgkN4d24ntxN2WbdnqvZeRpp/z+2OkkWTLtspI0z7Px0PJeObMzCVpdM55n+u6PldlZewaMo24Owpedtll/PM//zN1HKZXj80EzNKLc6m+oZh3fnyckc5wAYBUOHFfiFA0WeMrnRz7UzOeHj9Gq2FsZejwiUfu2gyW3xq/V6sXmq7pdB8cJH99Zmr3oCmw7tNVkYVT+2vdnPxbGzaXmbUfr4wMyRHzowV1eo8O0X1okCXvL6ZgY1asm3ROUQ9FOpjHzq9aXCH2VwVpy5GhS9Hi7fMz0umlfWcfJ//WRn9t+MS/4Lws1n26KqX3c4oKeeuz6Dow8yqayWj5raWRoeJaQCfk1zBaDYy0e9n5X0dpeKkjxi1MfOPnriOdXg786iTLPlASs6rJ/rxh9jTv5IMf/CCf+tSnYtKGs4m7QATwf/7P/+Gqq67iEDtjMp+o+9AgLdu6I2Voc1Y5WfvxysiY+2S2oKFIh+6DgwS9IYKeEEcfb8bdFi7OoIV0gp6JMebr764if/wkLUUOnJ17+jGnm8heNrtFbxNd9vJ0Vn24PPwPHfprhyNlUr39fnqODDHa7Wfvz09E5sCIubNmmam+vii87pBPY+99J2jbGR5+kr0sHUuGKcYtPLNo9hataDHw7hoTigY+M7Rna5iCsLbeSJoUwpwXRVVYdksJ9nwruqbTc2QoUtDD0+On//hwZKjrqg+Xk708xfZ5y9IxO4x07o2PYiYLbuwYnr8pi/V3V0XuDnqDaGOB0N3m4ejjzZHzgMBIUIZDz5M1O3wh0bXKCYC3P8CR3zfRfXBg0dsSSgvwjnsby5Yt43e/+92iv/9MxGUgMhgMPPLIIxSVF3KANwnpizMZ015gRTEoePv9dO0fiNzfc2SI/Q/URRajM1ji8scWNQsZiiwZJsqvzD+tUEXvkSFOPtMe/ocS7hkYPyl2LXey+VsrMVoNkddIxkIXI51ehltHKdgU/1fr50NRFZbdVBIuiEB4CFfAHYz8Tpu3djPUePqFkPFy7aopuf/+FprNZcZZYkMfmxvpdwfD608oUPG+AgovXMQFsudorsHIGCQSdlpyNI6UhtAnfZw0BbLcCg6vfMbmw5xuxJZtDn+uTjHYOBIp8a4aFQLuYKSKa9YSB8tuKolUDEtW+RuzGW4ZZbTLF+umRJ1qVCIXVYxWA5u/tRLXWOD19PjCPYVjv96TT7fTe2TotOevv7sKZ2nyj8pZKOPnqN4+P/sfqJvyMx446UbXIC3PQmbV4qz/pisax+xvYzQaefrppzGb47NzIW73+i6Xiz/96U/4LKMcZ9+Cv59qCldEK3tP7rSPu1vDPRl56zM574tLk7589EKFIoNZJX9DJtass/xB6ND0elekFORIl5emrV2R4gzLb51YeE0xKOSuzYiEpUTXubefrCXpkUpqySJntZOlHwj/zsYXRFaN4d3PYMMItU+1zqh4SeGF2Wz6/BIUQ3KfMC2k/hNu9v785Ok/bx32//Ikza+HK4flrHZSeEF8z/uYbTA6/4SJdQ3hkzW3Tacza+oQuZABtq4J0JUpQ+fmwzcYYP/9dYx2n/2EXwvq1D7VymBDuPqoalQnFogEln6gmJzVzgVv72IypxvJWuKgI0l6h4xWA7lrMyL75CU3FrP81lIAgt4QTVu7GBkLfkNNozS93nXWnh+D1cBot4/AaHxVvkwUpjQD5/39UvLWZwIT566nKt6SQ9ll+YvSpo6SE3T2dvDggw9SVVV17ifESNwGIoBNmzZx33330Uo9rXr9gr2PooIW0Dj0UANNr599ccL+E26at3UTSIESotEORUVvpTPa7WPX94+d80A5mbfPP2UxyRN/a6Vle/j3ZM+zsPyWUiyZ4ZMc10onxRflRK3di6374CBaUJ8YLphoxnKKMc3A2rsqcZaFr/Lpp5xfHn2imd45rL0xcDL890fs15NOSDmrMyKla6cT8muRykP2AhvpJRNXaeO5Z+5MwUjVoLrNgN0T/mAeKQuyr+ocE7OV8FpERb0T3+9sFnpNdZnVjjkPL+89OsTRJ5qn3De+73CWpbH2rkqM4xcjE/SaSP6GLLSgTs+hwVg3Zc6KL8rBtTIcVC1ZJpbfUoo9Lzy/s2VbNyf+NrGeZNtbvZHRNTMRcAep/Usrnt7UKGgVbYHREC3bes5ZrOPE39o4/EgDwIJeUB4p6eFw0wG+9rWvcfPNNy/Y+0RD/B7hxnzyk5/k7/7u7zjKXvr16K+kvvL2MireG15IdKTj3HXZAyNB2neFx9tnLXWw9hOVST2ELpqhCCZ6i+ZzhX+0yxcZauBu9/LW/68mUvzClmMJV7Ebs+kLSyJXSgxWFVuOJa4PpCG/RvfhwXAgiuN2jpvc01d1XSGr7iwDwovq+YYCkb+n3pohav8y/0WXPb1+Ovf0nxawxLmZ040su6l4xnPUGl/u5PiTLUB4KNOFX1uO2Rm/84tgIhiNHpjo2SrvNpA1ttDqUJqOdwbn6gX9KhvqjFjlnGzWyq/Ip+Td0bkoVfuXVnprwhdO9JCObygQWc9o1Z3lVF1XGNn2rKMO4oUSnkfTc3gwvtceUsLH0vHqk3nrM9n0hSWRh9OLbdhc4QA00hE+Brvbw8fgycfnuXCWpckIgFkyWFTWfqKSrKXhYehtO3sj6zSdiR7Sw/PkFVjz8Qqqri086/ZzEcgdYXf7Ni6//HL+8z//M+qvH20JcSb/P//zP1x2+Xs4wJuM6vMvUWmwqpH5Cn0nhudc9jLoCTHa7YuMf05W0Q5FVc/ksPmelVGbvB30hCJd8C1vdHP08fAVRkUNF8gY7QnvnLOXOTnvi0sxjF3pLjg/m/yxhcrGt48HHW/3Yc00k700/iYa567JiIztdpancf6Xl4VDJuF5X10HJ656Hn+yheEzdNfPV+l7ciMrlYuZ8Q8Heft/jtN9ePZXpkc6vTS/0YV/KNy7Un5FHhmVizP+fLZyy1Vu8Y7gPuCi93AOr67105I7u310q0vjlfX+GYUnMdXBB+toeDH6FWKHWz2RgA7QdXCA/trwsSkt18L5X14WqajlLE0jd038LXTtWp6ONdNM2+7ec2+8CCYf8/I3ZFJwfvhCgsGsct4Xl0aOQaM9ProPDUa2P/p4My3bxi5Q60wpiDQf5nQj6z5ZFZlzJGYm5NMY7fbN7fegQ8NLnZECHxanKSrLMIQcft52b6WiooKnnnoqrtYbOpP4byFgNpt54oknqFxWwT62E9DnftlONamc/6VlkT/8zj39DNTNLRANt3g4+XQbAI4iG5VXFyTtlY1oLuDqT/czsHZgwa+Q6Vp4gv74GNq+Y0MceKBuYkhQvoW0PCsQDslb/ml15AqLo9BK0bsmTS5fxF+ru83DUPPo1PdfJIoaLi4y3uuZuyYj0usD4XHHWWM9DO42L4d/14BvMPz32F87vGjDQLSAjhZM7gsR0WR2mkAJh6K5VG7yDwdpfTN8EqeoCs5SO9axCxo2l5m8dZkxnQi/dLORwmXhYR8DnRpvmqyMnxr0Hc6h/2D4a8YU8JpB0cGafPPeF4TZYTxtMe6F1HNoMFLK2zvg5/DvGnC3hXspspalU7Rl4ve96s6ySEAyWNRwAaUYnP0UXuhiqGmEkfZFLGM46c+y6F0uHIXhY17WUgdb/ml1ZF+flmfFnh++uBXyaRx4oI6+4+FjvrvVQ/PW7gXvmfcPB9lzX62szTQDikGh8uoCHEXhETEnn25juGVuFyAH6tyRokWVVxew5iMV82qbZgxx0LQDi9XCiy++iMPhmNfrLZaECEQQXrT16aefxppt4gBvos3iLzOjws6K28OT/LSAxsmn26JedtDmMuMosCV9mciohCKTxnDlEAWv2s69bRSFfBpDzRPVy04+3U79C2PrHGhQ91x7pKvfUZxG0eaJQLL2E5VUXRMeWmmwqFReXRAZJ29KM0S9VHHbrl4yqxyk5UZ/3R2T3UBGxcTV/bLL8iLfq8luZOPfLSGjPPx40BvCNzzR9b7/VydpfDl89VcLaPSfcEfWklpMrTt6aNkmC7TO1Ko7y1h6Y3FUXkvXdA7+pp7OfQMAZFY5qLy6AH1sXlf+xizSSxbmb1sZO7nLyFdYfYUpcrLnGdbxe8LvH/BCg9GEppwe0MaD0UzD0fo6IxfUmpJ+vx4N5Vfms/au2Cy0qAX0sX1R+Lyg8eVODvzqZPhBBXzDQQJjV88zyu1s/LslmNLChWuKt7im9DZnVNgx2aM/pyItz0JmpYO2sSH30WLJMEWKPFmzzVReXRAJOVXXFE75nRRtceEoDveijXb5qHuuPfLZrn+hg5NPt0e2HWoejcnol9EuX3wPJ4wXOjgKbNhc0e3GPvlMOyefCV/ot2SYWPepqlnNCdTQOJmzl+GRYZ588kkqKiqi2r6FlDCBCGDJkiU8+eSTuE0DVHwqE4NNjRwQbS5zZAI3wNq7KiMLfumajoKC0RbeafQcGSIwEt0rWN0HBzn4m3p0TceabZ5yMp1s5hqKVHTUsb2vwWvAWe+kZEd8XDkI+TU63u6LrITd8XYfb//38cjj7Tt76T0a/r6NNgNZ1Q6MYwedgvOy2fCZ6si2K+8oo/TScLVCo9VA1TUT4Skt1xJZEwDCn9tIRTkl3F2tGBR6jwziGwpQtGXic2RMM0Q+wyhgz5/oybFmm6cstlZ4QXakMIPRauD8ry6L9H5lL3ey5mMVkSukiqpEru77h4Psu/8kA/XhK3T9J9yRXlA4vThCLCnq2BXP4sUN1omo9qnWKYVJoql9dx+7f3g8cmJV9C4XmZXhz1paroW1d1VGLhik5VqmhCVjmiESchQVLPaJ0OPMVcgpG/+Qwvk3msmrCv876AfvkI5h7E+n5XCI3uaJD+fS35w7LM8kHNUVhthfGUyI+XyxVv9CByeemv88wWiJ7Kv08NXzgZPhfdpAvZt995/E7x670KMoU/aFaz5eQfay8D46a2k65391WWQIUf7GrCmVF/PWZ0b27QaLij3fOlFYxmaYKAABFG124RsK0FsziGJQsDgnAr053TjlxNa1yhm5GGbNNlN1TUFk4nvppbmsvGOi137DZ6vJPy/cJqNFDR+bxo4TvUeHaN818Xf/9g+P0/F2OJD5BgN0vN0XN+FDMSis+lBZpMdDTK9oswvrWEn7g7+pp/tgdEdlBEaCkflgRqsB31AA/3D4vKjq2kKW3FAU2TZ7WTome3gnrBgUDFaVtOv9NHc2cd9993HppZdGtW0LLaECEcCll17K/fffzwMPPEBgc0/kQFt4oYvq6yZ+Ue52T2RS2VDTKDWPNUVtnOu5ZFY5KDgvG9WUvEfR2YSiyUFonMFrIPN4JqYREyVvxUcoOpueI0OR0rC+gQB7fnoistPo3NvPkd83RrYdbBxhtCv8mMGqklHpiASX7BXOKZ/TZTeXUPqe8NVJc7qJC762nIwKO7oGIx0e8jdkRQ6EK28vo+rqcC+V0Wpg4+eWkDk2jyOj3M6ym0sir5uWa4kcYIO+EF37B/ANhHdqPYcHefu/j0dOGBpf6aR1x8QJpLvVE5Nen9nSdchdm0FGmaxXcUZju6CRDm+k8MhCGL8yD7D3ZyfClQAJn2D6hwORIVTFF+VQedXE5N3z/34Zliwz7moT6TkKm663YB77dWYXqxQsGTuh1KHpUJDhnvDncqRf5+TbQULnKBg3U5PD0eSQNJSmM2TXw2EveXfn86OEh6IHPaEFmzMYTVpAn1KKuHVHD42vhEvN65rO2z88Ts+R8EmmbyC8JuF4T4nNZcY23muvwLKbSiK96ZmVDjZ+bklkf111dSErbwsHF4NVJX9DFiMdHnQt3At1wdeWY3aETybL3pM3Zf+95LoispeHQ5nBMnYMGQtlo11eBhtHItseebSRrrH5H+52L3t+eiKyrx9sGKHnlHV+4pUpzQCKIkOhz0I1KRScl01m1eKcM410ejn2RHPkfMDd6on8jRssKqs+VB4ZbZKzOgP9kgH+9re/cc899/DJT35yUdoYTYquJ2b92n/5l3/hX//1X1llOI8irTJ8RURnUcYuz4RqVNCCOia7kYxKe0KX2DybUxdenezUEDSFDoqmoBsmtmnZnBrjhsc/GxA+wGohHd9AANWo4Cy3427zEPSEcBRZWfepKhpf6aJ1Rw+OIhtaUAsP61PAUWjD0xsu6qGoY5WoE/Kvee4UVZl28UcRVvLuHDIqHRz+XUNcfDZUk4rBrER66LOWOCjeksPQKidbs8xkBzRcPx9Gi8JuvPau6FQ6U3SdK/0efC+00rpdhmmequD8bErencPe+07ETW/DolHCPZq6Fj5BtLksuNs9oIeHyKlGFXebh5J351B2eR4HHqzD3erFaDPgKLIx1DiCFtSxZJpQDUqk1PTkY4QQuWsyGKgfITASjKvPhsluIOTX0QIanupetp94lQ996EM88sgjsW7anCRcD9G473znO/z93/89R/W9dOotBD2huAlDQOQDm7smg6qrC5O2NPepPUXjvUFnDUMACuEwNOkkPhF6iqJh8s7M0+uPXM3TgjoDJ92Rnkx3m5euA4MUbXahGBTcbZ6JcqZ6uPjC+JVLXSMuTngX23gYylmdsSDj/hOdu93DwMnhuPlsaAFtynDl/hNuQmO9S35VocNi4PCXM2PUuunpikKbamSkPf57P2Kh/8QwLdt7Ui8MAegTQ/NCPg13myfytzba5cPd5kExKBRtdtG1bwB3a7iXNugJMXDSHTkW+AYCU9bdiZcT3sWUlhf9+bLJIDxnuTBSFCSePhuBkRBaQGO0oJ83617nfe97Hw8//HCsmzVnCXuWrigK//3f/80dd9zBMfMe+vSuWDdpWm07e9n7sxOEfBoGs0rWkuQ76W/bPDyzEHQK07CJ0ldKMbknChKUvOVImWA0E63buzE7jFPmB4mpDBaV6usKyVkVf2V2Y22gbiRSHS6R1Hwtk5qvZca6GRFHTGYG6kbOvWEK8g0EIvNSxOny1mdishtp2SG9i2dic5nZ9PmlSXl+NFdZSxwYzCohn8ben52gbWd87se9OUPs6n6dTZs28be//S0hymufSeK2HFBVlV//+tdcfvnlHHfsYUjvj3WTpjU+lylvfSbLP1g6MTE+icxluFswLYi72I1mPP3KooSiME+vn96aofBChzKHYVohn8ae+07QvltOysZZs8wsu7kk4fc18RSKjDYDy24uSYwFQBdBRoWdjZ9bIj2zZ6NAyUU59B4Zwtsnq/yeibffz8Hf1kfm6aY6o83A8g+WRhaVP9ciq7ESzPbw9vBWlixZwssvv4zZnNj7xoQORBBeo+iPf/wjq1evpi5nP249ficQtu/uY98vThL0hFAMStJdDWnZ7J5VMNINOv0r+gnZph/qKKEorGV7DzaXBddK57k3TlGBsYpRGRX2yKLLqcySYcKabZ5S7CBRxUtvkRbQsGabo15iP1EFPSEGG0eiXrE1mbhWOrG5LLRs7451U+KarsFg/UhcDQeLhawlDhRVIegJse8XJ+P6Il8o08c7/q3k5uby+uuv43Qm/vlJwgciALvdztNPP01hYSH1+fsZieNQNH6VKGelk5V3liflwXU2oUgJKthb7ai+6T+KEorCc4UG6tyUXpwb66bENZPdwKoPl5O3ISvWTYm5wYYRDvyqLqlOMGIdjLSgzoFf1clV7DEjnV7qnm0/94YprPTduQzUuSMVScXpzOlGlt9SkpTnQrNhyTCx8s5ycsaW5YjnHsWQ08cebStpaWm8/vrr5OXlnftJCSApAhGAy+XipZdewuVy0VB4kBE9CguILqDuQ4Ps+/mJyLo3mdXJdeI/01CkaAo5B3Ow9lvPuI2EImje1o2j0JZ0n5NoCoyE2H//yZSfz1C02RUp0ZuMYt1bZLCqSb3O3LmkF9tY8/GKhB+OudAyqx04imzSO3QOZocRa7aZoC81exrHj+m+wQD7fn6C7jivSBx0+NirvIHFYmHbtm1UVsZmMeaFkFRHzby8PF555RUyMzNpLDrIqB7fZZxHu8MVw7KWOFjz0Yqkq7Iyk1CkmTWar2xmtGD0rNuleigarB9huGWUsvckx5WYhTJehc+eb0UxpN7QOZvLTNlleTgKkntxw1j2FjkKbJRdlhf1FeIThhK++BBPVV3jUfnleQw1j0oxjnNwt3vZf38dIW/iD++drbQ8C2s+WhGZPjF+ThivQg4f+43bMBqNvPbaayxZsiTWTYqqpApEAPn5+bzyyiukp6fTVHIo7kMRhEvP7v35icjJnGtFetJMoJ9RKDJpU8pvn0mqh6LG17pwlqYl3dyzaDPaDKz7dBUF56Xe0DlPr5/dPzyWMsO6YhGMBhtG2P3DY1PKJKeS4RYPx/7YHDel3ONR1lIH6cVpNL7aGeumxDXVpGJ2pthQOWXsHI/wBby9Pz9B/4n4P08NpfvZb9qOwWDgtddeY+XKlbFuUtQlXSACKCgo4JVXXsFms9FcejghQtFIR3iMcVqehRW3l5GVREOjzhmKNCjaXoSj+dzfcyqX5R446WawaYSyy/Nj3ZS4FvSEOPy7hpQbOucsS0MxKCl5pXUxglHdf2yJ3A55NRSDgrMsbUHfM56kl9hY/sFSDOakPG2IqvLL8hlsHGGwPjUuTMyVa6WTC766DGNa6gy/zKp2sOL2ssiIoPFzv3imOQPsN25DURRee+01Vq9eHesmLYik3bMVFRXx6quvYrVaqS/cj1uP73GZ40a7fOz5SW3kikHOamdSHIDOGopUGCkcIZAemPHrpWooanq1i/QiG9nL02PdlLg21DiKroE125y0iyJPZjCrrPpweUrPbYGJYLQYvUbFm12s+nB5UuyfZ8JoNaAalchCumJ62cvTcRTZaHo1PtdGjCd9x4Y48kgjwdHkHn5pMKvkrA4XS+g/4WbPT2onFlmPc8EML3uU1wGSOgxBEgcigOLiYt544w1ycnKodcXvOkWnGh+KYUozsOT9xeSsSY4FJ89WlnuwehBf1ux2EKkYigYbRhiod1N2mcwlOhfFoLD2rkpKL03+n1XIr7H//jrad6VWr9jZVP3jm1T945sL9vptu/rCcx/8qREQ+k+4qfl9kwyVO4eyy/IYqHcz2Ci9Q+cS8mkJMVxsvnLWZLDk/cWYxnrCEmW4rT9zlLeDr2G1WtmxYwdr1qyJdZMWVFIHIgjPKRqf/FWTvot+PXEqvgRGQ+z5SS2de8NBLnddJtbsxJ/Ie6ZQZO2xYuue3WTwVAxFTa924Siw4VqV+HX/F5Ie0jn6eBNNryX3lVqT3QiAp8eXFOsORdtCBSMtoOHpCV/EGf8dJKO8dZlUX1eYNPNaF1LOaieOAlvS73OiIXt5OpVXFcS6GQvGmm0md10mAJ17+9nzk1oCCdQT5ncNs9v7KllZWezYsYPly5fHukkLLukDEUB2djYvvvgi559/Pkdsu+jRO2LdpBnzDwdBB0WF0otzyFubGesmRcV0oSi9OX1G84hOlWqhaKh5lL7aYSquyEdR5SzlbIZbPGgBDZPDmLTrXKz+aDnV1xfFuhlxbzwYRTscVd9QxOqPlkf1NeOJohIOQ9IzdFaKQaHiygL6jg0x1HT2qqkifBEhmQsq5K3LpPTinPDfjz52LpcgfAVDvDX0KsXFxezcuTOpSmufjaLresrs5jweD7fffjvPP/88KwLnka+UxLpJs6IaFXQ9fOU7b30mWlCn53BizI06k8lhRgkq6AZ9XlciZ7MobCJLy7Ww8XNLqHu+XYZJzcDaT1QS8mkcebQx1k2JOmdZGiGfxkhn/E/Onc7KO8sYWZvFS7nR7f1e9tndM9pucrGEc5kuTNnzrRgsqpwEp7iid7movKqAPfediPQcitSSszoD1ajQtX8AxaCgKCTc4tje0gHeagtXkXv99dfJykqdaq3J288/DZvNxp/+9Cfuuusufv/73+PTvZQpiVNHffIfVka5HU1L/EDUstkdCUW6cez7CwFzLDoz/lrJHoxGu3107uun7D15dO0fIOSToVJnc+JvbQQ9iTNcYSYUVUHX9KQ5EVf8Krp58T/Hp4ac2QQkYEoQVQwKeiixToDOpPr6Qrz9AVp39MS6KXHPYFEpvTSXjr39EoZmwJplJjASTLr5d5mVdlDDgUgP6QnXqTpc1sGupu1ceOGFvPLKK6SlpU4VTUixQARgMpl4+OGHKSws5Ac/+AFefYSlrENREmvoUe1TrZGeFNdKJxkVduqea0/IYQ3j4aXkLQfOeifpzem0XtI6r56ikrccSR+KGl/tIndNJqWX5NLwkqx3cTbjJykGs4qjyJYU6/QsvbEIXRvbFySJWIWiyeYakJbeWAwK1P4lOX4fAXeI4GjiDPOJpdJLclGNiswdmqHq64tA1zn8uwTvsVeg6ppCBhtG6K0Z4sTTbQl5DqbrOt1l9Rxo3MMNN9zAk08+idGYcvEg9QIRgKqqfP/736e8vJyvfvWrbL5tI92PBTAoCVYLf+wPz2g1YLQYJv4QE3S8d8tmN1XPm9EMYwu1zjOjJnsoCriDtOzopvTiXNp39+EbnHnZ8lRV/O4cCjZl8fZ/H0+4oQyn6j02TIJdx5kRxR+e2hrrYDRupnOO+k8Oo8dHk+dn7PjR9Lqc3M+ExWmi6F0uWrb1EHBLgJyJE39txWhNsPOtycbPsfTx86+x6fgJeEjRFY3Qe/o48NoePve5z/GTn/wEVU2J8gKnSak5RNP505/+xEc+8hEuvPBClK2ZmJTEruLmLE9j6fuLOfib+oSaxDdZtIskJHMoUk0q539pKYMNIxz7U0usmxP3VKOCOd2Etz8xyp6mgvE5RC9nWE97bD6haKZziMQEg1Vl3SeraHy5k77jw7FuTkJYfmsJGeV23v5RrVR5TAHmdCNr76qk9qnWhB+urJmDdFQf59ixY/zbv/0b99xzT6ybFFOpGQMnueWWW3j55Zc5dOgQb/MqHj2xh9IERkL01Q5HwpA5PfE6AQ0eAxm1GSDHlnPSAhoNL3eSuzYTZ3lqjfedCy2o4+33o6hQeGF2uAJQgil5d064DLKIS9XXF1L87pxYN2NOtIDOYMMII12JWaBjsWVU2Mldk0n9S50Shmao+voiXCsTb8mI8XMp/3CQvtrhhCqhPR0tPcAB+3bq6up4+OGHUz4MgQQiAC666CJ27NhBXmUOu3iFAT1xJ5F6enzUPx8uK25zmTn/K8vIWpJYZal7P+zD2ejENBqdkpwlbzmSujR31/4BhppHqb62KCFP8GMhLd9KxZUFpJckXogMjIbwp8jQHMWvRobQJQr/cJBgAp4smdIM6CGdumfb8Q3I8NtzUVSouraQwaYRug8MxLo5iUEBo0VFNSTWWN+sJQ7O/8oybK7wCKL65zsSunhGIGeEXaGXCWoBXnzxRe68885YNykupPyQucm6u7v54Ac/yBtb32AFmyhWErz2uhKuhd99aBA9pJNRYcfd5kmIyi7jFbTiefjcwMe3kPnb6C/4OBf2AisbPltN/fMdtO3sjXVzEoIxzZCQJ67J5mxD5k41myF0MmRu5vLWZ4ZLRv/0BIGR1Ajb8zVeZnvfL04mbMl7cWaTC/AoBoXcNRl0HRhIyHlCkw0XdvF253YqKip44YUXqKqqinWT4kZiXXpbYLm5ubz44ot85rOfoYZ3OKbvQ0vkWbI6kfKPikFh+QdLE2Yoh67pqEaF1ouiO4QxWgFr4ONbpvw/1kY6vHS83UfZZXmY7Ik3TDIWxsNQ8UU5ZFTaY9yac3OtdFJ2ed68i40ksoTpLVKg7PK8hBka1HtsiIaXOyUMzZDJbqTssjza3+mTMDQLztK0hNl/Fb87h+UfLI2U0u/aP5DQYUjXdTpLT7KzbSsXX3wx+/fvlzB0igQ5uiwes9nMz372M370ox/Rwkn2s52AnvgTsPWQzr6fn6D1zfBwwJzVTvLWZ8a2UWdhSjNw4TdWkL08PepFEeY7hO7UEDTw8S1xEYwaX+lC13Qq35cf66YkDiU8DyC9yBbrlpyTxWnCmmVO6INyNCTEMDodbFlmLM7oDPtdKDaXGaPNQMir0bmnP9bNSRgV781H13SaXpFKfDOVlmdh3aeqyKqO3+HreeszyVkdvojR+mYP+35+IinWFdPNIU4W7eVQ8z6++MUv8sorr2C3x/9FwMUW50eV2FAUhb//+7/nhRdfQMvys5tXGNETv+KOfzhIyBvu8XKW2smsit8dU2A0RMNLnbjbPMDCVIqL9nC8WIeioDf8M8tbn0VGuezsZkSHI4820rJ9bN5gHF+9bNvZy3GpJBgR78Ho2J9a4n746rJbSlny/qJYNyOhZFTYyd+QRcNLnQS9MuR2pka7fOz75UkG6uK36mtmlSPciwWEvFrCVuqdTMv0sc/+Bu29rfziF7/gxz/+ccqW1T4XmUN0DrW1tdx4443UHj3Bai4gTymOdZOiZ6yWftZSB2WX5nHo4QZCvvgfIhjLeUUzCT2xnle09pOVmO1G9v7sRMKvtbOYspelU3ZZHgd/Wx+5cBAPspY4sGabad/VF+umLIjZzCE6m1PnF8XLHKLCC7Px9vnpPxF/J4LWLDNaQEuZIh3zpRoVNn5+Cf6hIAd/Ux/r5oh5MlhV1nykgqbXu8J/nwm6huOZeAr7ead3O+nOdP7yl7+wZUvsR7LEM4mJ57B06VJ27tzJTbd+gAO8Sa1+ILHnFU029ocfHA0x3OqJhCFbjiWGjZqq8ILs06rkLcQQupmYaQ9QrIfQnXiqFUuGidL35MWsDYlotMfHcMsomj++jojpxWlxPcwkXsRrj1FWdTrpxfFTzVA1KpRdlodiUPD2+yUMzULpe/KwOE3U/rU11k1JKBmVdlZ9uByDJT7+PsfPcUJejeE2D0HPWE9ffO3650zXdbpK69je9jKr16zm4MGDEoZmID4+nXHO6XTy+OOP84Mf/IAmatnDVny6J9bNiprhVg91z7UDkJZr4bwvLo2bUt3Zy6Y/mVjseUVzCTixCkWeXj/NW7spuSgHe8H8rrqnEm+fn5PPtKNrOpZMU9yUMG96vYsjv2+KdTMSRrwFoyO/b6Tp9fiZa2IvsFJ4fnakhLCYGXuBlZKLcmh6vRtvX+LPK15UOgQ9obgYgZK1xMF5X1xKWm44FNU9285wa/Kcz4VsAY4X7OZg814++9nPsnPnTvLzZV7xTMiQuVl64403uOOOO+ht72ct7yJLyY11k6Iue1k6fbXDoEP+pixGO71xu8NYiPWFTg1b8w02sRhCp6gKGz5bHS6mcf/JpLnytRhUo8J5X1pG14EBGl/ujFk7MirsGNMM9B4ZilkbFkO0hsydaunf74zq682Xa5WT4GiIwYbYL/6tmlRZSHQ2FNhwdzWKQWHfL06QLINEUkV6sY20fGu4cIgC2UvT6Tue+PPCT+XPdbN3dDs6Ovfddx8f/ehHY92khBI/l9ESxCWXXMKePXvY8p53sYetNOrHSLZM2Xc8HIZQoGBTFplxMFzHZDdMe3/LZveCDqGLRi9PLIbQ6ZpO7VOt2AusFG9JjFLr8UIL6tT+pYXWHbFdoNm10knBpuyYtkFET8GmbFwrYleGe+kHisNl20HC0CwVb8nBXmil9qlWCUOzZC+wxnwYfma1g4JNWZE5QskWhnRdZ6iijW09L5BfkM/u3bslDM2BBKI5KCgo4KWXXuJb93yLWg6yn+349cRdtfiMdNh/f12kAlfxFhcr7yhb9GYseX8Rq+4sP+s2CxGKGr8b3RCz2KHI3eahbWcv5ZfnxfyAlGgG6kYIekIYbQaKL4pNoKx7tp2a3zfG5L1F9NX8vjEyNDkWRjq9jHYl4XFqgaXlWii/PI+2t3ojVU/FzJVekhuTSoYr7yijeIsLgJbtPey/vy4pR0qELAHqi/exq34HH/jABzh48CArVqyIdbMSkgSiOTIajfzHf/wHf/vb3yAnyFu8SK8eu+E1C2m8Dr+n1z9xQBhbv2UxdLzTT/1LHefcLpqhaPsLawEYXBK1lwQWv7eo8ZVOvP1+lt9cgqLGcU3pOJVRYad4Sw7m9MVb7Na10hkpm54KVQI3XzWEoz7552SM/y4zyu2LumDr+DzCtrd66Tk8uGjvmwwUVWHZzSV4+vw0xHD4bCI79qeWRVsuIKPCHlk6wd3mwdMb3q8kw1pC0/HmDvG28RU6+tv58Y9/zJ/+9CesVpk3PFcSiObp+uuv58CBA1z63ovZyxvU6geTpwrdKfqOD9P8RjcQrte/9q5K7PkL/8fnbvMw1Dg6o23Hh9DNJxyNh6Fx0Q5FsHi9RVpQ5/iTLaTlWyl9T/LNd1tovTVDvPPj4/iHg4tWZCFvfSZ5GzIX581i6Pm2fTzfti/y7xU/6mXFj+J73Z5oyNuQSd66zEV5r9w1Gay/uxpLZnwvEBuvSt+TS1qeleN/bknak+qFpod0fIOBBX8fe4GVtXdVRtZXbH6jO+mGxo3T0Oguq2db1wsUFRexa9cuvvjFL8a6WQlPAlEUFBYW8vzzz/Of//mfNHGct3mVUT3+1pyIpoGTbvb94gQjnV4Aqq8vIntZ+oK9n6PYRtW1hbN6zlxC0alhaNzgkoXpLVoM7nYvzVu7KL04l/Ri26K8ZzIZr4y09KYSltyw8EM/av7QxMmn2xb8fWJpchA6VbKHopNPt1Hz2OJUDew+PMiRRxrwDSz8CWmySS+2UXpxLs1buxhp98a6OQlp9UcrKDh/4eZBZi9Lp/r68HnBSIc3vPDryeQ+9wql+6jJfYsDTXv41Kc+xcGDB1m9enWsm5UUJBBFiaqqfOtb3+KtnW+RW53NTl6iXW9MuoILk7nHDhKKQcFsN6IYw33VRpsB1Rjd4VlGq4H0YhtG6/TFFc5kpqFo+wtrzxiGJkvUIXTNb3Qz3OZh2c0lqCYZOjcX/ceH6T+xcFccC87LIi3PAnryDpU7tVfoTJK5t0gL6qBDWp6FgvOyov76iqqw5IaicO+9Hp4PJ2ZHNYWHyrnbPJFREWKWFBhuGcXbH93hsKpRwWgzRG6b7SYUQ/iYluxzvEZLe9nhewFvwMMf//hHfvWrX2EySe9vtEggirILL7yQPXv28KGP3slhdnOQnclZcGESPaRT81hTpDxwxZX5rL+7OqrvMXDSzf776wh6Q7N+7rmG0M0kCE2WkEPodDj+ZAtmp4nKq2fX0ybCug8N0ns0HIhcK52Rg3A0KKpCwXnZuJbHrgrZQpppEDpVMgcj1wonBedlR31un2pUsOVasGTIidJcVV1TiNlp4vifW5JyIv6i0KHpta6o99isv7uaiivD6+r0HBmi5rGmpB/OGDIHaCw+yI6mVznvvPOoqanh5ptvjnWzko4EogXgdDp56KGH+MMf/kDI5eEtXqBbT+4hMJM1b+um/oVwNSWDVaX6+qKoTUqfz1j4U0PRTHuFprNQQ+hyd2RG90Un8fb5qXuuncLzsnGtSs4T78VgyTSx7OYScqL4M9Q1nQMP1NG8LfmuRs8lCJ0qGUNR8xvdHHigDl2LzsmcwaJichgJ+TUOPliftPMnFlrO6gwKNmVT92x7ZFK+mL289ZmRnpz5MKcbqb6+CIMlfLpa/0J7Uu4nz8STP8Bu48s09zTyve99j23btslCqwtEAtECuv322zl06BBX3fA+9rODw/puAnry72B9A4HIMA2by0JmlSOydsN8gpE938oFX1mOszxtzq/Rstk9ryB0qoXoLVrIUNS5p5/uQwMsfX+xTLSeI99AgD0/raX7YLhi17yu8CtQeXUBZqcpMpQqWcy1V+hMkq63aGxoZLjXtiBSHWuult9SyvJbSqLTthRlzTKz5P1FdB8coHNvf6ybk7Cs2WaW3liMo3DuRZfGzxV0LVzEaXzpiIG6kZSYE6ebQrSU1rC94yWqqqvYs2cP//iP/4iiyJD3haLoyTzJJU7ous5vfvMbvvKVr+AbCrCK83EpKZjwFTj/S8voOTJIw0tzK2HqWumk/8QwWmD+H9torzOUcWJ+z1/6uZrT7uu+aGB+LzoNg1llw99VE/SEOPBAfdSuUKeijEo7S99fzMFf1+Mbmv1B2pJpYu3HKzn+5xaGmmZWSTHezTYE/f65y9i5o5Bjb8zu53f0S66zPr7073fO6vVixVmWxrKbSjj42/p5neil5VrQdfD0JPcQ7YWiqArrPlWJ0WZg389PEvInZ7XYxWJMMxD0hOZ0kafivfnkrMrg7R8dT6qLRDPlyx9i/8hOvD4P//AP/8D//b//F1WV/ouFJoFoETU1NfHJT36SV155hRKqWcIajEpqXaXPqLDjdwfx9PjIqLTjLEujeWt3zHZ68RSKpgtEsDChyFFoZd2nq2jf1Uf9C+de40lMz+wwUnxRDvUvdsz5M6yokAyV+ufaGzTXQDTuTMEoUQIRzP0zkFFhJ39TFseflLku81V5VQGFF2Zz4Fd1kYJBYpEoUHppLkNNowzWj2DLsWB2GBlsSK2CIJpRo6v4JIca9rN8+XIeffRRNm7cGOtmpQyJnIuorKyMF198kR//+Mf0pbXzFi/So8du5fJYGGwYiVzBTMuxkFFmjxzI03It53y+YlCourYwaovClv/Lm5T/y5tReS2Y+9yiM4UhCA+hi/YwOne7l4YXOynekrOg5dKTnd8dDAfKsaph+RtnVjUsLdfCsltKMJjVhA9D0R4aN1vJMJRO18I9t8tuKZnRfnCcooLRoqIa5VA+H9nL0inekkPDS50ShuYpo9LOeV9ahslx7uHxkc+6Hl6wOG1sWJynx5dyYcibN8A7tpc52nKYr371qxw+fFjC0CKTvegiU1WVL37xixw6dIhLr7qYfWznoL4Tv556O+H23X0ceqgBCI853vSFpWQvP/vJuR7SsbksmOzzn6w5WTRDESTG3KK2nb30Hh1i2c0lWLPMUX3tVORa4aTwgplVDTM5jFjSTQldlj/WQehUiR6MdB0s6aZzn0gq4Yn/EJ5PceTRJrRAgqfqGLJmm1l2cwm9NUO0vZW4n594EXAH6TkySMAdPOt22cvT2fSFpVizw8eeQ79toH1332I0Ma5o1iBNJYfZ1vkShUWFvPnmm9x7770YDNE9xxHnJkPmYkjXdR5++GG++tWvMtznZinrKaQsZSfNZVY7GGwYQQ/plF2eR8iv0bq9Z1HbEO0hdHDuYXRn6x06k2gNozNYVNbfXY0e0tn/qzo5sZon1aSiBTRMDiNaQIss6ppMoh2C5jtk7kyOfsmVUMPmZipriYOVd5az7xcnGO2S+ULzoZpU1t9dhaIq7P+lzBtaaCXvzkE1qzS92oViUMiosCf9Qqpnous6o6W97O/dhaZpfPOb3+Tb3/62zBWKIfnJx5CiKHzsYx/j6NGj3P6R2zjCbvbyBh49tbqKxw2cdE+sJ6ADY5P9DRY1PKxrUk40WFQszujPv4r2EDo4e2/RXMIQRG8YXcinUfOHJiyZJpbeWDzv10t144Fy2U0lrPhg6WmPV19XGK4olqCK3kqc4ZWJHIaqrimg+rqp64WNlzDuP+Fmz09qJQxFwdIPFGPJMFHzhyYJQ1GQXmzDtWLSPkIJD0ccL5mt68DYj1kP6SkbhkLpfk4U7eHN5tdYv349Bw8e5Lvf/a6EoRiTn34cyM3N5eGHH+aZZ57BUWblTV6gQT+GluiTC+ah6bUuWt8MD1/IWprOitvLMNnDQ0lUo8Kaj1dS/t6Fq9S3EKEoXofReXp81P6lldw1GRRflDP/RglOPt0WqaQ4eQidu8ObkCeyRW+lJ1QYSnQjnb4pc1lsORYu+OoyMqscAHj7k3/5hoVWvMVF7uoMav/cKpX5osS10knZe/JQjeF9nsluZOUdZWQtDe87Wnf00PR6VyybGFMaGgPlrWzzPMvgaD8//elP2bFjB0uWLMDJgZg1GTIXZ9xuN//7f/9vfvjDH2LHyXI2kK3kxbpZMWfJMOEbDA+p2fTFpQycHKZlRy/+OZQ6nq2FqkQ3196hM5nvMLryK/MpuSiHQw83MFifmr2UC2HVh8rwDQY4+UxiFlCZLgg9WPZG1F5/IYbMhY7NswZ+HDE7TfiHAhRemE3n3v6oLDmQ6jIq7az5aAUtO3pofHluS0CI6ZVekkvu2gz2/DT8Nzj52J3KfLnD1AT30NPXzQ033MADDzxAbm5urJslJpEeojjjcDi499572bdvHxvevZY9bOWgvhOf7ol102IqskNVoHV7N537B/APBciotFN+Zf78Fsc8h4XoLcr8bXRfE+bfW9T4SicDdW5W3FYamegq5s/d5iV/UzYZldGpjLiYFqNX6K0XnOhuCeCnMjmMbPriEs7/8jLsBVbad/VJGIoCm8vMytvKGKhz0/iKhKH5UlSF8ivzI5Vf+04M07qjJzLEPdXDkGbz01RyiDe6nic9w8EzzzzDX//6VwlDcUh6iOKYpmk89NBDfOtb36K3q48qVlHKElRFcixA4QXZOMvSMNmNHPptAxCecDzYOLpgxQGi0Vs0OWBFu3LcuLn2FhmsKus/XY2iwP776wh6Q9FtWIrK25BJ1/4BKq8qwN3mofvgYKybdFYzCULR6iX66tdvBOD43uiE8GTpHVJUWHpjMaO9PlreWNziMsnKaDOw/u4qtKDOgQfqkrLoyWJQTSoZ5Wn0nwjPAVrz8QrQdYJejaOPN8e2cXFCQ2O4rIMDHe9gMBj4+te/zre//W2pHhfH5Mw6jqmqyl133cWxY8f4wpc+Ty0H2MlL9OmpOwZ3MnO6Ef9wMBKGTHYjqz5UjmulEwjvtKNtvr1Fpz6/+6KBBVl4da5FF0JejSOPNGK0GVh5R9mC9rwlO0ehlfTSNAC69g0AYLQY4n7NmMWcK3R10YbI7WQJMvNhsKgsu6kYa7YZXYPjf26NhKH00jTshdYYtzBxKarCytvLMFoMHHm0UcLQHIwfU3NWOln1ofLI8heHfttA264++muHY9m8uOHPG+Zg9hvsbtzBFVdcwbFjx/jXf/1XCUNxTnqIEsi+ffv44he/yI4dO8inhCWsxaYk3jCchWTJMBEYCaIFdaquKcBRlMaBB+oW5L1m21t0rjC1UL1FMPseI2dpGms+XkH3oUFq/9K6MI1KcituL8VgNnD44YZpHy/a7GKkwxs3CxDOJQjNp5doPAytvLMMgJrfNwFgWD73CcaJHqpUk8raj1fQ+GoXA3VTK3Ct/mgFIX+Io4/JFfi5WHpjMblrMzj42waGm0dj3ZyEs+7TVQy3jFL/fAeqUcFkN6b8cLhThew+WrJqqW0+SmVlJT/5yU+49tprY90sMUPxfalSTLFhwwbeeOMNfv3rX6MWhniT5zmhHySop+5OSVHBlDZx1cU3GEALhjN+14FBWt8MX101mFXWfKwCe370rrDOprdoJtsuVG8RzL7HaKh5lNqnWsnfkEXJxVJ5bi6OP9nC0cebpn9Qgawl6aSX2Ba3UdOIRQW5yT1Dp0r0UDNbqik8B8NkD69dtf9XdaeFIYCjjzdx/MmWGLQw8RW/O4f8jVnUPtUqYWiG7AVW1nysAoM5fJrYuqMnMtRXC+pTwpCjyIazLC0m7YwHmjFET1kDb3ifpb2/hX/+53+mtrZWwlCCkUCUYMaH0R0/fpz/9b//F522JnbwHK16XUKvej9Xqz9aQdV1RdM+5m7z0FszBIAxzYCu6QQ84TkxrhXOyNC6+ZjJukWzHWYXL8Go++AgTa93UXFlATlrMmb1Psd/ecEcWpf4HEU21n+mGrPDiBbQzzwsR4fDv2ugZWzh4bwNmWRWOxatneMhaL5B6JNNl8z6OWcLQ+PmEooSNUipRpXcNRmkF589HId8GlpAx+wwsv4z1TiKYh+mE0Hu2gwq31tA09auuJ+7F2uulU5cK8LHxcBoCF3TMY5dcOytGcLdNn1xp8ILsim/cuGWwYhXuq4zXNrF27aXOdS6jw9+8IPU19fL8LgEJYEoQTkcDr773e9y7Ngxbv/obdSwh528RK+eWlVzml7romVb9zm38w0EOPy7xkiZ7uxl6eSsGgtESnitI8Uw9/ky04We+S7yulChCGYejJpe66JzXz/LbiqOrIEyU8d/eUHKBaOAO4i3z0doJkU99LEvwLXcSfbShQ9EJW85Yrqe0EzC0LhEDTgzYbQZqLy6AINZJegJ8c6Pauk7PrP5F6GghrfPR8AdXOBWJr7MagdLP1BC595+ml6VubenUgzKlEXPc1Y5w/8G/EPhY6Zv4NwjUGr/0srRP5yhNzxJ+fOGOeh6g51NW1m7di3vvPMOjz76KDk5MqIiUckcoiSxa9cuvv71r7N9+3ZyKGQpa7Er8+8BSWaKCroWnqy8/lNV7PvlSdxtHkx2A4HRUORkNR7Ecn6RosLKO8rJqEjj4G8azniVcLLpgtCyz+yeaxPjXmaVg6GmkchwzblQVAVd03GtdKKaVLoPDESlbSVvTQ1aGtEvlDGTuURnCkOnziE61UzmFCVaeLJkmFj7yUqOPdHMcMvcl1RQTQrOUvu0Q+xSnaPIxtq7KhhsGOHI75vian8eU0p4mHlgJISjyMaGz1Sz/4E6hptHI8dEcWbBDC9N9hrqWk9SWVnJD37wA2666aZYN0tEgQSiJKLrOk888QTf+ta3aG5upiBURiUrsSpJPLZXgaJ3uRhsHGFk0srus2XLsURWK1/9kXK0gE7NY02R94iXg2msgpFqUljzsUps2Wb2P1CHt89/1tc6W89QsgUjo9XA+V9ZRtPrXbS91Tvv16u6thCjzcDxP819vsipIWiyhQhEcPZQdLaeoXMFIjh7KEqUMGTLsVDy7hxO/LUNXdOjcvJZtNlF2XvyePu/j0uJ/Ems2WbWf6oKT5+fQ7+tn9eFiqQw6Ri28vYyFKPCkUcagfC6TJ7es+/PzyazykHRZhdHH29K6nWyQmkBOl0nOdpyBKfTyT/+4z/yzW9+E1WVgVbJQn6TSURRFG677TZqamr4f//v/+F1DbHb8jK1+gH8ui/WzVsYOhRd6MJZMr/QNx6GABpf7YoUY0jLtfCub6wgLc8yr9ePllgNo9MCOkcebSQwGmTNxyowO4xzfp/xoXSJPpxOMSigQNAbYv+v6qIShgDqnm2n9s/hMJRZ7aDq2sIZDecsecsR+TobdZHT/WyGyZ1JooSes1FUcBTaMDvDfzvRuBLf9lYv+381tl6YwryG/SYLs8PImo9WEBgNcuTRxpQPQ/Z8a/gYlhs+hrW+1UPTaxPDB+cThgB0TSfkDSVtGNLMQbrK6tjmf4b67pN87nOfo7GxkXvuuUfCUJKRHqIkNjQ0xA9+8AO+//3vo6oquUOllLEUgzL3k9lUY043UnBeNs1vdKOHdKquLSTk12h8OfZztRaytwimD19mp4n1n6oi6Atx8Df1BEenvyo927CTiL1Gaz5egbvdQ8OLC/dZyFuXiWulk5o/nN5bea7gczaL1Us0kzA0kx6icaf2FMV7UHKtdJK3LnPi97eAKt6Xj6PQFlmXLRWZ0gys/UQlBrOBAw/U4RtKzQqs5VfmYzCp1D3XjmJQKL0kl453+vAPy7yzmdINIfqL2zjSuZ9QKMRtt93G97//fQoKCmLdNLFAJBClgK6uLv793/+d++67j6ysLDI7CymmClWRqxuzVXhhNnpIp+Odfkx2A0tuKKb+hQ68/fO7yjYfix2MbC4zaz9RhX84wKHfNkw7VGeuvT+JFIzyN2Yx0uXF3Tr9HJCit9Jp2zz3hQojxQ90QAHroIncvbl0XtBJ0D7/E5uFDkUz7RmaTSCCiVAUz2HIYFEJ+TQyKu3krsmg7tn2Be+pSC+2kZZnpXNv/4K+T7wyWg2svasCk93IgV/Xn3NYbzKxZpmpvKqAE39rJTASouC8LBSDQvuuvgV/b1OagaBPQw8lx6mkhoa7tIujAwdwu91ce+21/PCHP2TJkrmvjyYSgwSiFNLQ0MC3v/1tfvvb32LV06hkFQWUJnwwKt7iwllqn5jzs0js+Vaqri2k5g9NBD0hCi/IBoVFOQidaqFDEUwNRmm5FtZ+ohJvv59DDzWcVl56vsPh4jUYlV2WR9ATom3nzIbHRbOim3nEgLPRSd+KPlDB5DYRsAeYa65ZyEA0m2Fysw1EEA5F8RqIVt5Zhh7SOfp47BZQLdrswmg1TBkalcwMFpU1H6/EmmHiwK/rpwyBTlaFF2aDDu27+zDaDKy8o4y6Z9sZ6Zz7XNq52PDZaoZbRzn5dPuivm+06eiMlvRydGg//YP9XHrppdx7771s2rQp1k0TiySxz4TFrFRUVPDrX/+agwcPcvVN7+MIu3mTF2jTG9ASuLSMdzDAcOviL7Y30unl4K/rCY6tbWTJMGHNNAOgGhWqry/EmmVelLYs5NpF4ybPMRrt9nHooQZs2RZWf7gc1RTdXUm8zjNSDAqKMTbzNPz2EH2rwmFI9akUbSvC0TL3YXMq+oLMJ4rGnKFzibcwlLXEgWlsXl377r7IHMRYUQxKyswnUk0qqz9cji3LzKGHGpI2DFmzzFRfX4g6tv+xZpqxZJgACHpCHPx1/aKHIYD65zto3734FwGjRUdnpKSbvRmv8mbza1RUVfDyyy/z+uuvSxhKMdJDlML27t3Ld7/7Xf785z9jw04lKymgLOF7jOKBLcfCqjvLOPxII94+PzmrnRhtRjreXpwDx2L1GDmKbKz5eAUj7V4O/64hMixoIYJMrHqNii/KwT8UoPvQ7Bd1jPaaP5EAo4O1x4ov04du0rG32tFMGp682ZdwjmZP0VyGCM6lhyieGCwqF3x1OU2vdc2453Ax5a7NwJxuonVHbEPaQlBNCqs+VI6jKDx3aiZLAiSSgvOzCY4G6TkyhM1lZtWHyjny+6akDX2LSUNjtKSXY8MH6R/oY+PGjfzbv/0b1157baybJmJEznxT2MaNG3nyySfZs2fPWI/R27zJ8wnXY2TJNGG0xdeq0J4eH+/8uDYyjt1eYCOjfKwSngLVNxRhz7cu2PsvVo+R7QkLhx9uwFFkZfVHKjCYF26XEqteo7RcC9bsufX0zWcO0XQi4UUBb64X3RQOSGldadi6bOMboYRmHnKi0UvUtnk46t9rPEsvDl8IUI0KIZ/G3p+diMswBOGehfEKY8nEYFZZ/ZEKHEU2jvyuMSnCkD3fSvUNRZF/Z5TbsReG/649vX7e+XFt3IUhZ3naxCLnCUBDw13cxd6M13ir+XUqqyp45pln2LNnj4ShFCeBSESC0d69e7nm5qsSLhit/XglpZfmxroZZ9X4cifH/hgupWy2G0kvskXCQ/aydMqvyF+Q9x0PRgsZjqyPWWi5uBd7gZXVH63AYFn43crZSoTPl2JQWHZTMVlLwsPRav/SSvPW7gV5r2jp3tgdHk4H2DvslLxaguqf+e9hPqEoVYKQOd2IvSB8ESMwGiLk1yIXYnyD8VvNrHlrN7V/aQUga6mDZTcVJ/xwOoNFZfXHKrDnWzn8UANDzYs/ZDpayq/IJ3tZuCfZYFFJL7JFljU49sfmuKhoejY5K50UXuCKdTPOSUPDXdLFXuervNWylcqqCp599lneeecdCUICkEAkJtmwYQN/+tOf2LdvH9fecjVHeJsdPEezfoKQHr/lOo882hiTQgZz5XcH2feLk5GDuCXDNOUK7orbSsleHt2hVrCwaxh5s/y0XNaDvdLKmo9XYlmkikPjwSga4Wh8HpQe0kFVoj4vKlrOOMRtrLm+TB8DSwfQzOGLGZnHMzEPRn8uW6r1Ci25voiqawoB8Pb7qfl9U8KVMVaNKqhKpCJYvH7Gz8ZoM7D24+FFog/+tp7hM1R5jFfZy9NZcVtp5N9peZbIXKChplH2/eIkfnfifK4aXurk4G/qY92MM9INGkNlHexxvsJbzVupWlIVCULXXHNNrJsn4ojMIRJndODAAf7jP/6DP/zhD7hcLpzdeZRQjUlZnEIBqUhRFZZ+oJjugwP0n3CTvSyd0ktyw5Xc/BqKqqBr8/+TXajeFcuQiZJ3cvD2GXlqqQXvAl2Jfvfq2rM+PtvwZ8+3svaTlRz8TT0j7dGfmLxgc4nOtV1ApeDNAgaWDTBaMIrBYwAFQtbp14+ayXyiaIegeJ1DZHGaWPuJSo4/2cJQ8yiWDBNBT7hnKBk4CsMXL2I1GX8uTGkG1nysAlO6icMPNcR1u8f31QazypqPVdC0tZv+2mGyljjIXZtJ7V9ao7IvjxeqSYmrxVk1c5CBwjaO9xxhZGSELVu28O1vf5v3ve99sW6aiFOJd3lILJp169bxyCOPUFtby2233Uar9STvOF7huL4frx77q3Jmh5H1d1cl1fh4XdM5/mQL/SfcAARGgwy3eSInYWvuqqDy6vDCcIqqzPl7X6hhdD5ngOYLujGZdD5wwsuqJ2JzpXMmPUc2l5m8deHHR7q8tGzrxjcQv0OfJptpIQTNpNF2SRuj+eHeyMyTmRTsmlhYUAnOLrAme49Q1hIHpZeEh9/6hgL0Hh0iMFZF0jcYSJowBOAdCNCyvZuRrnCoyFuXic0Vvxe7xgOqyW6MvxCnhHt6FDX891R1TQFrPl4BQMivMdzmIegJ7wv7T7g5/mRLUoWhvPWZXPC15ZGhfrEUsvnpLDvJdp5lf/M7XHzxxezatYvt27dLGBJnJYFInFNVVRU/+clPaGho4Mtf/jKDGV3sNL3AEf1tRvTYniAFRoJJvRr5cIuHumcn1ndo29lL39Hwz9xRZGXTF5biKAzPa0gvsZFZNbsyzAsRjPyOIPv2mTAYYMOGAGufDFL9u+l7JOZq++GlM952cjhSjcrE3K0VTsouywufxOjQsq0nUkI92mIaJBQiaxX1Le+je314PpTqVyl9uXSiGIN+5p6nZB0epxgU8tZnRoYsWbPNOMvtkZ9X/QsdcTeJPVqCnhAt23pAD19cKbssj+zl4cnxBrMaKe8cD9JyLaz7dBWqUeXAg/GxzlBmlYP0kvDfjqPQxqbPT+yLe48O07ZroshG3bPtDLfE/iLiQuk9OkTTq134R2I31C+Y7qWltIatvqc53nGEm266iZqaGp599lnOP//8mLVLJA4ZMidmbWhoiJ///Of84Ac/oLOzkxy9iHKWkoELRVn4g6jBoqIYFIKjC3PymihUo0J6cRpDzSPoGiz9QDHWTHNkPPfyW0vp2NPHYP1I+ARvBn/p0RpK1/FPVZjNOmvXBrFYdA4dMjI0FA4iJz8SnYqA5xo2F6ET/v41qH69kP5yN31Vwyghhe73DCzaldpoD5uD+RVDUAIKjlYHI4UjaBYtPNdo2EzXeV2RHqjFCEGLPWTO5jJjc1noOz6MalS48BsrqHuuna59A4vy/vFKURUUFbSgTsnFORRd6GL3D48R67o6ztI0Vn2oHO+gn8O/aySw2PNrxvadGZV2CjZlRYrjrL2rEu+An9q/tKKo4Cy1M9w6Gll6IFVlVNhxd3gIeRfngxPIG6HVdIKTrSew2+18+MMf5tvf/jaFhYWL8v4ieUggEnPm9Xp56KGH+K//+i+OHz+OkyzKWEoeJQu6ltHauyrRghqHf9e4YO+RqAxmlZBfQzUprPhgKW07exmoGyF3bQZV1xSy6wfH0EM6GZV2gp4QIx3TDzuZbzDq+KeqcHsMOmvWBElP16mpMdLbO/VzMZ9wdNZANBaC0tts5JzIoP6SDlDA0WHD5/QTSJs+TC90qfJYzSWaCVunDaPHSM2d7SgGhY1/V039Cx30n3CjqCzYifFCByKDWSVnlZO+E24C7iDlV+STuyaDt//neOTxZBoKFw2WTBOOQhu9NUOgwHl/v5SmV7vmtBbXfGQvS2f5B0txt3o48vtGQr6F/T3ZC6wYbQYG60dQjQoXfG05dc+1031wkMwqB0XvyuboE81oAV0+N9NQDArnf3kZnfv6aXq1a8HeR1c0PMX91PuO0t7VTm5uLp/+9Kf5//6//w+nM3FKgIv4IoFIzJumaTz33HP88Ic/5MUXX8SClRKqKaYKszL/+T2KqpC7NoPBxhF8AwEchVYCo6G4LnUbb9JyLWRWO2h7KzyMY/2nqxjp9nHiqVaMVgMrbi+l/oUORjq8mNONGK0GRrt9cwpG42FonKLorFwZJCdH5/hxAx0dp4eguQSjSCDSweBTCVk10KBiRz79FcMMloxiGTLh6LbSV+FGN8xuV6cqGp1bhmbdrrOJt16iyVo2uyO3jVYDpZfm0rGnH0+Pj6LNLgovcPHOj8Ihwp5vxTcYIOidfy/tQgSi3HWZqAaFzr39GG0G3vWNFdT8oYm+48MYLCpaUI9UWhNnp5oUirfk0Ht0iNEuH/mbsije7GLvz06ga+G5nP6R4Ix6oGcjf2MWS24oovfoEMf+1BK131daroWgN4R/OIi9wErlVQXUPNZEyKux9MZi0nIt7P9VHQBFm10MnHQz2h37IXqJwpJpIjhWlt61yokC9ByJzn40ZA4wWNBBbe8Rht3DrFq1ii9/+cvcfffdGAzxtRahSDwyh0jMm6qqXHfddbzwwgscPHiQj939UVosJ9hlfZEa/R3c+ux3hjaXedJibzoV7y3AtSL8b3e7V8LQLI12+yJhCODAg3XUvxCem6SaVQKjIbRA+GpnwaZs1nysAgj3mDj/zYazNbyorBJUsHdZUQMzHxqp6wpHjhhpa1NZvjxERUWQU8+eqn8XOvc8o7FrN9aQzurhAAZfePeVeyyDst1j61CpMFQ0is8RHlbjcwborR6edRgal/+mc8pXMmnZ7J7yNVnQG5oyf2aocYTWHRNrMa36cDnFF+UA4bLxlVcVYLKHJ1SrRoUZ1nyYl4wKO9Ysc+T2+V9dFpkfll5si8zvCHpCvPkfNfQdDw//C/k0CUOzoAV0mrd2M9oV/iyMdnrp2j8Q6TFc+4lKKq8KF+ow2Q0UbXZhTJvfyWn5lfksvbGYjj19HH2ieVa/L4NFJXtZeqSkeN6GTKqvmxg+tebjFeRvyhr73jQCoyEM5nB7615o58CDdZFt297qlTA0S76BieIj2UvSI/PSFINC8UU5cyq8EHR6aCs9xjbtGQ60vsOF77qQV155hcOHD/N3f/d3EoZEVEgPkVgQ3d3d/OIXv+AnP/kJ7e3tuMinOn0lZQUVDIxVUHOtdBL0hhisH8HsMLL81lLqnm9npMNLycU5FF7oYvcPjgEyrGUxGW0GLE5TpIpT9fWFuFs9dO4boPTZXMrfyqdhSyc+Z4Dsk+mkd9lo3BIeHpFXk0HH85l0dRkwmXQKCjQ6O1X8foW0NI2SEo2CAo2eHoWODhWfT2FkRMVo1MnL0+jpCW+blaVhuEhnZ2b4hPf6Lh/dZpVdmSYcQY2bO308n2Nm6aY6zG4jBr+KJ9sf9Z+Fqpz7MzfbXqRY9RKdGnrmw5ptRgvq+IcCpJfYWHZTCQceqCMwGqL6hiIcBVb23x8+sVz6gWK6Dw0ycNKNxWnCtdJJ575+Qj4Ne6GV6msLCYyGqPl9E66VTjw9Pka7fVgyTRRsyqZlezchn0bppbk4Cm3U/CHck/Sub66g7a1emt/oxpplJn9TFq07Fq4whpieszyN4GiI0W4fztI0Vn+0gj0/rcU3GKDyqgIcxTYOPhie11h1TQF9tW4GTroxO4y4VjrpOjhAyKthz7didhrJ35AV/ozs7Y8EErPDSO66TDr39RMcDZG7NgNHkY365zsA2PCZanqODtHyRjf2QisbP7uEfb84gbvdS/6GTBzFNk4+Hb4AZM+34hsKyOdksYzNwUrLs7D+09UceKCOkU4vhRdm4yxNi8zJyt+YxWi3l+EWDwaLSkZlGp2j7TQEjtPYVo/D4eCDH/wg//Iv/0JlZWVsvyeRlGJfI1EkpdzcXP7X//pffPOb3+Sxxx7j3nvvZdee1zhuyCRHL6WICore5WK0y8tg/QihgIbfHYh0HLTv6qN1R0/k9SQMLZ6gJzTlZGH8RAKg+dpuOuz9ZD4frmbnyfITMk/8btSgijrW72w265SWhujvV/D7FfLyNLKyNA4fNrJyZZDs7BBdXSrHj6sYjVBdHWJkJLyt2ayT16RR/XSIkx8xUOMw4Bkraes2KDxUZAVFYSnhqnaxdKaeo2gPtzsbDWVKKIpm+JmOt28ifA63eHjnxxPzubr29dNnnbhia7QZIj03thwz5Vfm03N4kJBPo/C8bNJyLAw2hcuCV19fNHYS3I0pzUjumoyx8ORntMs7ZT+w9+cnCbjDPcXefj+NL3cu6PcspjfUODpxu3mUN793JPLvvtph3G0T1dVsLgvmsXW+rC4zlVcV0Fc7TMirUXhhNrlrM0GHmj80UX1dEf7hIE2vdWFyGCm5OIf+2mGCoyFUk4px0mesY08fnp7wZ3K008fO/zpKYKziWee+ATonFcyIq3LdqWBstzTa5eOt/zwS6Vn0u4N4Jy1zULzFRfehQQZ7hhku72Z3Zw19fX2Ulpby3e9+l6997Ws4HLOroirEbEgPkVgUuq6zbds2fvazn/HHP/4RgCxfPiVULVp1OrEwTp1ndOoconGKoqOqEAopOBwaa9YE0XU4dMjIyMjMRu+eOtdoxpXm5mgmPURzMR6W5tNblAxlsFWjworbytB1nZrfN8Xd4o5icdjzraz8UBmKonDk0UZGOrzhuV4BPanW6xHT03WdQI6bDlsTde216LrOli1b+MpXvsItt9yCqsrsDrHwJBCJRdfT08ODDz7Iz3/+c06ePImDDEqoooAyjIop1s0TczQejM4UiE5lNocr0KWl6Rw9aqSnZ3YHvZMfMSx4IIKFCUWL2XsU7xa77LaILzmrnCz9QDGeXj9HHm3EPxzbHl+xeDRDCHdBN/We43T3dpGdnc3tt9/OPffcQ0VFRaybJ1KMBCIRM5qm8eKLL3Lffffx17/+FbvdTsZwLiVU41AyYt08MUehyzbNeFtV1Vm+PERenkZTk0p9vYHZzsgv+Pe6c280DwvdS5TqJBClKAUqrsyn5N25dB8coPavrdI7mCJC2V66HE2c6DiG3+9nw4YNfP7zn+eTn/wkRqPM5BCxIYFIxIXm5mZ++ctfcv/999Pe3o6TbIqpIJ9S6TVKUDMPRjolJRpVVeH5RjU1RoLBmYciw2t7IrejtbDsqSQULRwJRKnHaDOw/NZSMivt1L/YMaUCpkhOuimEu7CHZm8dbZ2tpKen8/73v5977rmHdevWxbp5QkggEvElEAjw1FNP8cADD/Dcc89hsVjI9ORRRAWZ5MhcowQ1k3CUmamxcmUQTYPDh4243TMbQjc5EE0WzXAkgWjhSCBKLfYCKyvvKMNgUjn6RDODDSOxbpJYILqu488bpsvSTF3HCYLBIOvWreMTn/gEn/vc57BarbFuohAREohE3GptbeW3v/0tDzzwACdOnMCGnSIqKKQcq5IW6+aJOThXMLJYdFatCuJw6NTWGujoUDnXELozBaLJ5huOFioQgYQiCUSpI39TFlXXFDLa7ePoH5rwDcl6cskoZPMxkNNJ/WAtA4P9uFwubrrpJr7+9a+zatWqWDdPiGlJIBJxT9d13njjDR544AEef/xxvF4vWVouRVSSSyGqIouyJZqzBSNF0Vm6NERhYXgNo9paA6HQ/EPRZHMJSNJLtDAkECU/g1llyQ1F5K7NpOOdPuqea0cLyqlHMtFVHW9RP62hehrbGzAajWzZsoXPfvaz3HnnnbJ4qoh7EohEQhkaGuKxxx7jgQce4M033yQ7O5u0vkwKKJPy3QnqTOEoLy/E0qUh/H6oqTn7ELrZBqLJZhqOpJdoYUggSm72AisrbivFZDdy4q9t9BwejHWTRJTouk4wb4SetDYauk8yMjJCVVUVd9xxB1/+8pcpKCiIdROFmDEJRCJh1dTU8OCDD/Loo4/S0tKCDTsFlFJAGXZl+sUyRfyaLhhZreEhdHa7Tl2dgdbW6YfQzScQnepsAUlCUfRJIEpehRdmU/m+Aka6fBx7ohlvv//cTxJxL5DuYSCzg8bBkwwMDpCRkcFVV13Fl770JS655JJYN0+IOZFAJBKepmls3bqV3/3udzz++OMMDg6yadMmhvcEKaAUi2KLdRPFLE0OR4qiU1UVoqREo7dX4dgxI4HA1FAUzUB0qskBSQJR9EkgSj4mu4Gl7y8me7mT1rd6aHipEz0kpxqJLGT1M5zTTY+hnYaGBiwWCxdffDGf/OQnueOOO6Rctkh4EohEUvF6vTzzzDM8/PDDPP300wSDQa688kpaX+wnj2Ip4Z2AxsNRdrbG8uXhRRuPHzfS2zsxhG4hA9FkuTsyJRRFmQSi5OJa4WTJDUXoOpz4ayt9x4dj3SQxR7o5xGh+H+6MPg4dOoSqqmzYsIE777yTz3zmM2RkyHqBInlIIBJJq7+/nz/+8Y88/PDDvP7661itVm644QaOPtFMDoUYFbmilUhCl23CZNJZtixITo5OR4fKiRMTBRcWKxSdKv/N6A7PTLVQJIEoORgsKlXXFJK/IYvemiFq/9ZKcDQU62aJWdKMIbwFA2jFHt555x0CgQDLly/nlltu4Qtf+AIlJSWxbqIQC0ICkUgJzc3NPProozz22GO888472Gw2rr32Wo7/qVXCUQLKuWM9S5aECAbh2DEjAwMqsQpE05lPSJJAJBJNRrmdpTcVY7QZqHu2na79A7FukpiFkBrCm9ePXu6NhKCysjKuv/56vvCFL7BmzZpYN1GIBSeBSKScuro6nnjiCR5//HHefvttrFYr1157LbVPjocjGVaXCCwZJpZ+oJjMSgetrSpNvz1EyL9ww9nmazYhKZVCkQSixGWwqFS8N5/C810MNoxw/M8t+AZlbaFEoBlDePL70Yo97NmzJxKCrr32Wj772c+yadO5F9MWIplIIBIpraGhIRKOdu3ahYqKiwLyKCFXwlFCKPjIeiorQwTdAU483UZ/bXzOWZBAND0JRIkpe1k61dcXYbCoNL7cSfvuvlg3SZxDeE7QAJ2hZpo6GwgGg5SXl3PNNdfw6U9/mgsuuCDWTRQiZiQQCTGmsbExEo527tyJikoWeeRSRC6FUq0ujlkyTFRfX0T20nS6Dw1S91wbgZHEmb8wXVhKlVAkgSixmOwGqq4pIndNBn21w5z8Wxu+IekVilchq5/R3H66Qq00dTQSCoWorKzkuuuu4+6772bDhg2xbqIQcUECkRDTaGpq4o9//CN/+ctfeP311wFwkjUWjoqw45RFYONQzpoMqq4pRFGh4YUOOvcNxLpJ4hwkECWO/A2ZVFxVABrUPddO9yFZZDXe6LpOMMPDkLObdk8LHT3tKIrCsmXLuPrqq/nMZz4jc4KEmIYEIiHOobe3l2eeeYannnqKJ5/4MyGC2LCTQyG5FJFJDqqinvuFxKIw2gxUXlVA/oYsBhtHqHu2nZFOb6ybJc5AAlH8sxdYqb6uCGdpGl37B6h7vp2gJ3F6YJOdhkYgz02/tZOW/kYGhgYwmUxs2LCBG264gbvuuovy8vJYN1OIuCaBSIhZ8Hq9vPbaa/zlL3/hqaeeoq2tDSMmcigglyJcFMi8oziRUWGn6tpC0nIstL/dR9OrXQS9chIXbyQQxS+j1UD5FXkUnJ/NaJePk8+2MdQ4GutmCcLzgTx5g/TQRlN3A16vF6fTyZYtW7j11lu54447cDqjuySAEMlMApEQc6TrOnv27ImEo/3796OgkIGLHApwUYCDDBlaF0OKCoUXuCi7LA89pNPwSiede/tB9npxQwJRfMrfmEXFlfkoBoWm17po392LHr9FHJOerusEsjy403vp8rfR1tWKpmkUFxdz+eWXc+edd3LNNddgMBhi3VQhEpIEIiGipKGhgWeeeYbnnnuOZ/76DCFCmLHiIh8XBbjIx6SYY93MlGSyG6l4bz75G7IYbvNQ/0K7XOmOExKI4ktGhZ3KqwpwFNro2t9P/YudBEaCsW5WSgqZA3hzBulTu2jta8I94sZkMrFmzRre+9738pGPfIT169fHuplCJAUJREIsAJ/Px/bt23nuued47rnnOHjwIAAZZEfCkZNs6T1aZOklNqquLiS9JI3eY0M0vNSJp8cX62alNAlE8cGWY6HyfflkL3My1DxK/QvtDLd4Yt2slKLrOsGcEYbsvXSMttLR046u6xQWFnLRRRdx4403csstt+BwOGLdVCGSjgQiIRZBS0sLzz//PM899xx/fuIvBAlgwkw2+bjIJ5s8rEparJuZMnJWO6m4sgBLhomOvf00vdolV8FjRAJRbJnsBsouy6dgUxbegQANL3fQeyQ1Sr7Hg5DdjydrkF46aO1pZtQzisViYf369Vx11VXccccdUhVOiEUggUiIRRYMBtm5c2ek9+jtt98GIA0HWeSRRS7Z5GJWrDFuaXJTDAqF52dTemkuqlGh9c1eWt/sIeSTiRKLSQJRbBgsKsVbcija7ELXdJq3dtO+uw89JKcEC0mzBvBkDzJo6KF9qI3+gfCCtmVlZVx88cXcfPPN3HDDDVitsv8XYjFJIBIixnp6enj99dd55ZVXeOWVVzh69CgAdpxkkzcWknJk/tECMVhUSi/JpfBCF1pQo/XNXtp39hLySzBaDBKIFpfBrFK02UXxlhwUg0L77l5a3uiRCowLRDMF8bmGGDT10uFuo6evG4C8vDzOO+883ve+93HrrbdSVlYW45YKkdokEAkRZ9ra2njttdciAam+vh4ILwwb7j3KI5McDIoxxi1NLmaHkZKLcyk4L4uQX6N1Rw9tu/rQAhKMFpIEosWhmhQKL3RRclEOBrNKxzt9NL/RI0NFo0wzhvC7hhk099I12k5Xbye6rpOVlcWmTZu44ooruOWWW1ixYkWsmyqEmEQCkRBxrr6+nldffTUSkNrb21FQcJJNJi4yySEDF2bFEuumJgVzupGSS3Ip2JRFyKvRsqOHjrf7pMdogUggWlgGi0rh+dkUbc7BaFPp3NNP8xvd+IclCEWDZgnidw0zZOqjx9NFR3c7mqaRnp7O+vXrueyyy7j55pvZuHGjFNERIo5JIBIigei6zrFjx3jllVfYunUr27Zto7W1FQA76ZFwlEkONuxyAJ4Hi9NEyaW55G/IRAvotO/uo21nD4ERGVoUTRKIFobJbqRos4vC87NRjQqd+wdoeaMb32Ag1k1LWLquE3L48GQOMaj00u3upLe/BwCn08maNWu46KKL+MAHPsBFF12EqqoxbrEQYqYkEAmRwHRdp6mpiW3btkW+Dh06BIAZa6QHKRMXDjJRFTlAz5Y53UjR5hwKzstCNSh07hugdUcP3n5/rJuWFCQQRZcl00TJRTnkb8xCC+l0vN1H61u9BNzSIzRbGhqhbA8jaQP0hbrpGuzAPeIGoLCwkHXr1nHppZdyww03sGbNGglAQiQwCURCJJn+/n7efPPNSEDatWsXPp8PA4axYXY5ZJCNk2wZZjcLBqtK4fkuit7lwpRmoKdmiLa3emStlnmSQBQdzrI0ii504VrpJOgJ0bqzl/bdvYS8MtRzpnRbEH/WCG7zAD3eTjp62gkEAhiNRioqKti0aROXXXYZ119/vRRBECLJSCASIsn5fD727NkTCUjbt2+nt7cXACtpkXDkJIt0sjBKsYazUo0KeRuyKN7swuay4G7z0Larl+5Dg1KyeA4kEM2dYlDIXZNB0btcOAptjPb4aN/VS+fefrSgfBbPRlNC+LNG8NiHGNT66B7qYnBoAIC0tDRWrlzJhRdeyHvf+16uuuoqWQxViCQngUiIFKPrOvX19ezevZtdu3axa9cu9uzZw+joKBAu950xFpCcZOMgQ4banUHWEgeFF7rIXppOYCRIx55+2t/uwz8k8zRmSgLR7JnTjRScn03BedmY7Ub6jg/TtquXgZPuWDctLmlohLI8jNqHGNL76R3ppnegB13XMZlMlJeXs3btWrZs2cJVV13F2rVrZfibEClGApEQgmAwyJEjR6aEpIMHDxIKhVBRSScz0ovkJIs00qVgwyTWbDOFF2STvyELg1mlv3aYjr399NcOo8uIpbOSQDQzigrZy9LJ35hN1hIHoYBG175+2nb14e2T+WzjdHT0LD8exzDDaj+9o91093URDAZRFIXi4mJWrlzJ+eefz+WXX84ll1wii6AKISQQCSGmNzo6yr59+yIhaffu3dTW1gKgYsCBk3QycZAR+b9RMcW41bFlMKvkrs0gf2MW6cVp+N0BuvYP0Lm3H0+vnLRORwLR2VmzzeRvzCJ/QyZmh4mhllE69/TTc3gw5UvBa4YggYxRvDY3w8oAA55+ega6CQbDBSRyc3NZsWIFmzZt4tJLL+Xyyy8nKysrxq0WQsQjCURCiBnr6+tj37597Nu3j/3797N//36OHDlCIBAeImbDPikgZZJOBlbSUrI3yZ5vJX9jJrlrMzGlGRlsGqFr3wA9NYMy0X0SCUSnM1oNuFY5yVuXSUa5nYAnSPeBATr29DPa5Yt18xbdeLlrf/ooo6YhhoID9Ll7GBib86OqKgUFBSxZsoT169fzrne9i8svv5yioqLYNlwIkTAkEAkh5sXv91NTUxMJSONhabxwgxHTlF6kdDKw48SQIsUbFIOCa0V4qFNmlR1d0+mvddN9aJC+40NogdTeBUsgClONCtnL08ldk0nWUgeKojBQ56Zr/wA9NUMpU7BDN4YIZXjx2Ny4lUEGfH30DvTg9XmBcMGD8vJyli9fzoYNG9iyZQsXXXSRFD0QQsyLBCIhRNTpuk5bW9uUgLR//36OHz/O+C7Hhh07zsiXAyd20pM6KJkdRnJWZ5C7JoP0kjRC/hC9x4bpOTRI/0l3ypz0TpbKgUg1KmRWOchZ5SR7hROjxcBQyyjdBwfoOTyY3IsAmzSCGV58aSOMKMMMBwbod/cxMDgQ2SQvL4/q6mpWr17NeeedxyWXXMLKlSul4IEQIuokEAkhFs3o6CiHDh3i8OHDHD58mCNHjnD48GGamiZOhsNBKZ000iP/TyMdM5akGnpnzTKTsyYcjux5VkL+EP21bnqPDdFXO5wyw+pSLRAZLCrZy9JxrXCStSQdg1lltNtL96FBug8OJtWCv7quo6UFCdo9+G0eRtVhhgND9A/3RUpcA2RlZVFaWsqyZcsi4efd73432dnZsWu8ECKlSCASQsTc8PAwNTU1U0LSsWPHaGhoQNPCwcCIaVJIckRu27AnfK9SWq6F7OVOXCvSSS9OQwvpDDaM0HdsiL7jw/gGk7eMdyoEImuWmawlDrKXpZNR6UA1KAy3jNJ7dIjeo0MJX3BDN2loGT78Ni9egxt3aIgh7wD9g/2RoW6KopCdnU1paSlLly5lzZo1nHfeeWzevBmXyxXj70AIkeokEAkh4pbP5+PEiRMcO3aMo0ePcuzYscjXwMBAZDszVtJwYMNBGvZJtx0JV/nOnG4cC0dOMirsqAYFT6+P/pNu+k+4GWwYQQskT+9RMgYi1aSQUWEna0k6WdUObC4LWkhjqHEiBPmHg7Fu5qzolhBBhxe/xYPPOMqI7sbtG2JwZAC3e2L9I6vVSlFREeXl5SxZsoRVq1axYcMGzjvvPNLT02P4HQghxJlJIBJCJBxd1+nu7ubEiRORr5MnT0Zu9/X1RbY1YcaGHSt2bKSN3U6L3GdQDDH8Ts7OYFHJrLSTWR0+sbZmmcMn1k2jDNSNMNQ4wnCbJ6HnHiVDIFIMCuklNjLK7WSU23GWpaEaVbz9fvpPDEeCbDyXydYNGqF0P6E0Lz6jF68yymhoGLfXzZB7kFHPaGRbm81Gfn4+JSUlVFZWsnz5ctasWcOGDRsoKytLqqGtQojUIIFICJF0+vr6IgHp5MmTNDQ00NDQQH19PU1NTZF1SiDcu2QjDSt2rNiwkIYVG1bSsGCLq7lL1mwzWdUOsqodOCvsGC0GtKDGcIuHwaYRhhpHGW4ZjesT71MlYiBSTeqUAJReYkM1qgQ9IQYbR8LDHWuH42bBVF3X0dNCaHY/AYsXv8GLFw/e0Ahuv5uhkUFGRkYi26uqSlZWFvn5+RQXF1NeXs6yZctYtWoV69evp7i4OG7+JoQQIhokEAkhUkooFKK1tZX6+vpISBoPTM3NzbS0tOD3T5zIKqhjQSkcksZvh8OSFcvYl7rYPU1KeK2j8R4JZ7kds92IrumMdHpxt3sYbvXgbvMw2uVD1+JzVx/vgUhRIS3PSnqxDUdxGulFNtJyLSiqQmA0yGBjOIgONoww0uWFRf4x64pGyB5AswQIWXwEjH58igePNsqofwS3Z5hh9zCh0ETFOoPBQGZmJjk5ORQWFlJeXk51dTXLli1jzZo1LFu2DJMpsYaaCiHEfEggEkKISTRNo6enh+bm5jN+tbe3RxajHWfENBaUrJOCUjg0mbFgxoIJCybMqMrClA22ucw4y+2kF9vCJ+55VhRVQQtqjHR4GW73MNrpZbTLx0i3Ny4q2cVTIDJYVOz5VtLyrNjzLdjzbdgLrBhMaiRoDrd5cLd6GG4ZZbR7YRZJ1XQN3RZCtwUJWQKETAECqhcfPryaB29glFHfCCOjI3i8ninPVVWVjIwMcnJyyM/Pp6ioiNLSUiorKyOhp7y8HIMhfoeKCiHEYpNAJIQQs6RpGr29vbS3t5/21dbWNuXfXq/3tOebMGOaFJLCgWn8PuvY4yaMmDFhxohpTkOUVKOCvcCKo8hGelEajiIrNle4dwPANxRgtMvLaLeP0W4f3j4/nn4//qHFq2oXi0BkcZqwZpuxZpuxucyk5Vqx51mxZIR7RbSQjqfHx0iXF3dbuKdtpN2DFpz94VLXdTRzEN0aQrdo6KYgQWOAgOongBef7sMX9OILevH4PHh8o3g8ntNex2g0kpGRQVZWFi6Xi/z8fAoKCiKBZ7yXp7S0VMKOEELMkgQiIYRYILquMzg4SHd3N93d3XR1dUVuT/fV1dU1ZbjeZAaMY+FoPCyZImFp/H4jJowYMWDAgHHKlxEjCiqqUcXmMmPPs5KWZyEtN/x/a5Y5Erq0oIZ3IIC33x/58g8H8A8Hx74CcwoH04l2IFIMCuZ0IxanCbPTFP5/uhFr5lgAyjajGsM9dLqm4xsMMNrtZaTLx2inl5EuL54eP1pIQ1c0dJOGbtTQjSE0o4ZuCqEbNTRDiJAaIEiAAH4Cmh9/yI8/5MMX8OHz+/D5vPj80/ciGQwGHA4HTqeTzMxMsrKyyM7OJicnh7y8PAoKCiguLqasrIyysjJyc3Nl3o4QQiwQCURCCBEndF1neHiY3t5e+vv7GRgYoL+/P/J1rn9PLhYxHQXltKBkGItLBsWI2WzGbDVjshkx20yYbCbMaeEvo8mAqqoYDOH/oynofh0tAARBH//yh/+v+XUIAhoQUiCkoIfGbwOagoJK+dW5qIpCy9ZeUDQ0RQcFMOooRlCMoBt0FAOghu9j7P7xLww6GAE1vI2maYRCITRNIxgIEQoECfpDY7dDBINBgoEggWCAoBYgEAoQDAUIBMNf/oAfv9/PuQ6Pqqpis9mw2+3Y7fZIwBkPOeNBJycnh9zc3ClBJzs7WwKOEELECQlEQgiRBHRdZ3R0lJGREUZGRnC73ad9TXf/qfeNjo4SDAYJBAKn/X/y17nCV6xMDm2T/3/ql8ViwWazRb7S0tIiocZut5Oenj4l4DidTjIyMsjOzo705jidTgk1QgiRBCQQCSGEmJNQKHTG0DQ6Gp4L4/V68fl8+Hy+Kbf9fj+hUIjDhw8zOjpKVVUVRqMRo9GIyWTCYrFgsViwWq2R/49/mUwmzGZzZLvxbSwWCwaDAaPRiMFgkLAihBBiRiQQCSGEEEIIIVLWwtR+FUIIIYQQQogEIIFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWRKIhBBCCCGEEClLApEQQgghhBAiZUkgEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyJBAJIYQQQgghUpYEIiGEEEIIIUTKkkAkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsiQQCSGEEEIIIVKWBCIhhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlGWPdACGSUWdnJwMDA7FuhhBCiCSTmZlJfn5+rJshRFKRQCRElHV2dnLbLbeBIdYtEUIIkWysVisPPfSQhCIhokgCkRBRNjAwAAYwHnOieMwokYGpKoqqhG8qk/4/dltRVRi7O/IkRQH19G2ne/6Zb096TTXyj0n3j91QlYmNFWViQO34dky8pj75cSbeR4+81sT9+uR2jD9/8mDdye0Yu62f8fbEk/RJ38ppg3+VSdsqk7Zl0utEvhdOf/1J96Eo6Ke0ddrnnPb8ST+Xyc+f5r0mPz7lNU5tC5zWllOfc67HmeHjZ7zvbNtMeVyf9nF92jboU1/vtO9FP/31lfB7nPH9p7zWNM9Hn/Rx1yc2nbStMum1lFPeS1GmPn9i09Ofryr6pPfQx54Tvn/8tjLpfgAVPdLu8PMnXmv8fcafc+rj4++lMvH/yH0Kpz+unPJak26P/1+d9BwFLfJa4/epijZp2/H7tcjPx8BEuw1j246/j0HRUcbuM0xqq2HSe0Wer+gYmPRekbZqk9oy/nxt4j3O8JzxNo7vQlRFm7atk3+WKpPaN6mt468z5ecSeV0wjH1Kxj8rBgWUsX8ZUKbcDm+noI7dVhUVFYXGViP/9qNMBgYGJBAJEUUSiIRYIMqoEXXUNCkEqVNuA+NnJ2N3qZPOhk4PRMrkQDM5+Ezedsr9p257yvNPDVeT2qIrk85GpwlZkZAz+fGxU7TwBhP3T5wqhrcZf3hKIIm8/qTb6nT3n+E+9dTXOsu2kceV07edFAKnDVSTw8yZbkeer0y6fXq7pm47/e1pH+ccj5/j+ed6/2nDIad/r9O919THzxGITtl2ynuetu0ZAtHk+yPvP12gmUEgmnx7mucrk8LLdM+Z+LhMnLgrkXbpU+6PvM6k+8ZPspnmOSj6pO9hUiCa/PwzhJfT7jvj49MFhongYJj0nMnbQjgMTL5vYttJ902+fUrIMCga6tgPa/JrhW8zdnsihI0HBoMyETgM47sxJt5/6mtpk54zflubeN1JbZkIN1qkrYZJPxMDk9s3NRBNbfPU9o23e+K+icBjmBR+DMr4duqk+8L/EkIsDPnrEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyJBAJIYQQQgghUpYEIiGEEEIIIUTKkkAkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsiQQCSGEEEIIIVKWMdYNECJZ6WlBNEVFiVx2UFFUJXxTmfT/sduKqsLY3ZEnKQqop2873fPPfHvSa6qRf0y6f+yGqkxsrCgTl0vGt2PiNfXJjzPxPvqU9xzbduIFJt03/h9OeyzyHI2J91LGb09sq0/6Vk57rUnfCpOeP/VxZZptT/tWJ904ZbtTn3Pa8yf9XKZp1+T2T35cn6Ytk99jymtN85xzPT5dW6d7/Iz3nW2bKY/r0z6uT9sGferrnfa96Ke/vhJ+jzO+/5TXmub56JM+7hMfIGXStsqk11JOeS9Fmfr8iU1Pf76q6JPeQx97Tvj+8dvKpPsjrxNpi85pPyv0yGvpio426XF9yjbh/2tj96nKxPeoMn6fHnn/U2+P/1+d9Bxl7I9zfHeioqMq2qRtx+/XIj8fw/j3h45hbNvx9zEoOsrYfQYmflaGSe8Vef6k11In7YYm3lOJ3DagoIxtYYhsp6OO/TBVRZm4HXlcm7atkZ8VeuT2qW0df50pP5dJ7TOMvdf4r8qggDL2r3BbJ26Ht5vUPkVFRaGxVU7bhFgI8pclRJRpmobRaCS4fCjWTUkM+in/j5LpzruFSBYTcShy7SAFTU64qTPgxWg0ommp+1sXYiFIIBIiylRVJRgM8s///M+Ul5fHujlCCCGSRGNjI//3//5fVDV1AqAQi0ECkRALpLy8nOXLl8e6GUIIIYQQ4izkEoMQQgghhBAiZUkgEkIIIYQQQqQsCURCRJnL5eITn/gELpcr1k0RQgiRROT4IsTCUHRdj3JtJyGEEEIIIYRIDNJDJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUZYx1A4RIFn6/n1/96le88MILDA8PU11dzd13380FF1wQ66YJEXf++Mc/8j//8z/U1NQwNDREdnY2q1at4vOf/zy33nprrJsnxDnV1NTw3HPPsXfvXjo6OnA6naxevZq7776b0tJSADRN4/nnn+f111+ntraW4eFhCgsLueKKK7jzzjuxWCyR1/P5fNx7773U1NTQ1dWFpmkUFRVx3XXXcfPNN2M0Tj1lGx4e5mc/+xlbt27F5/OxcuVKvvCFL7B8+fIp291+++10dHSc1v4bb7yRb3zjG5F/P/vss3zve9+b9nt98sknpdS3SGoSiISIku9973u89tpr3HbbbZSUlPDss8/yrW99i//+7/9m3bp1sW6eEHHjvvvu4wtf+AKFhYXcfPPNuFwuOjo62LVrF08++aQEIpEQHnnkEQ4ePMjll19OdXU1vb29PPnkk9x9993cd999VFVV4fV6+d73vsfq1av5wAc+QFZWFocPH+bBBx9kz549/PCHP0RRFCAciBoaGti8eTMFBQWoqsqhQ4f48Y9/TE1NDf/yL/8SeW9N07jnnns4efIkd955JxkZGfz5z3/mK1/5Cr/85S8jgWzc0qVLueOOO6bcV1JSMu339elPf5rCwsIp9zkcjmj8yISIX7oQYt4OHz6sX3LJJfojjzwSuc/r9ep33nmn/rnPfS6GLRMi/mzatEk3m816Z2fnaY/19PTEoEVCzN6BAwd0v98/5b6mpib9yiuv1L/73e/quq7rfr9fP3DgwGnPffDBB/VLLrlE37179znf595779UvueSSKX8bL7/8sn7JJZfor776auS+/v5+/dprr9W/853vTHn+bbfdpn/rW9865/s888wz+iWXXKLX1NScc1shko3MIRIiCl5//XUMBgM33nhj5D6LxcL111/P4cOH6ezsjGHrhIg/JpMJk8l02v0yLEckirVr1572GS4tLaWiooLGxkYg/Dlfu3btac+95JJLACLbnU1BQQEAbrc7ct/rr79OdnY2l156aeS+zMxMLr/8crZt24bf7z/tdQKBAB6PZwbfGYyOjhIKhWa0rRDJQAKREFFQW1tLSUkJdrt9yv0rV64E4MSJE7FolhBx6c4772RkZIQ1a9bwzW9+k2eeeYahoaFYN0uIedN1nf7+fjIyMs66XV9fH8C02wUCAQYGBujs7GTr1q38/ve/p6CggOLi4sg2x48fZ+nSpajq1NO4lStX4vV6aW5unnL/nj17uOqqq7j66qu5/fbbefzxx8/Ytq985Stcc801XHXVVfzjP/7jaa8lRDKSOURCREFvb++0V7bH7+vp6VnsJgkRt77xjW/gcrm47777+P73v89//dd/YTQauf7667n33nuprKyMdROFmJMXX3yR7u5uPvWpT511u0cffRS73c673vWu0x7bunUr3/nOdyL/XrFiBffcc8+Uogp9fX2sX7/+tOeOH3N6e3uprq4GoKqqinXr1lFaWsrQ0BDPPvssP/rRj+jp6eHzn/985LkWi4Vrr72WjRs3YrfbOXbsGI899hhf+MIXuP/++8nPz5/dD0OIBCKBSIgo8Pl80w7/MZvNkceFEGGKovCpT32KT33qU/T29vLGG2/w6KOP8thjj1FbW8uBAwcwGAyxbqYQs9LY2Mi9997L6tWrueaaa8643UMPPcTbb7/N17/+ddLT0097fOPGjfzgBz/A7XbzzjvvcOLECbxe75RtfD5f5Pgy2XTHnP/4j/+Yss11113HN7/5TR577DFuvfVW8vLyALjiiiu44oorIttdcsklXHjhhXzpS1/ioYcemlKRTohkI0PmhIgCi8VCIBA47f7xcdyTS6sKISa4XC5uuukm/vCHP3DFFVdw5MgRGWIqEk5vby/33HMPdrudf/3Xfz1joH/55Ze5//77uf7667npppum3SY7O5vzzz+fyy67jH/4h3/goosu4utf/zq9vb2RbSwWy7TzhGZyzFEUhdtvv51QKMS+ffvO+n2tW7eOVatW8c4775x1OyESnQQiIaLA5XJNOViNG78vJydnsZskRNx67bXX0HV9yn2BQCAyr8JqtcaiWULMidvt5lvf+hZut5v/+q//OuP+fvfu3fz7v/87W7Zs4R/+4R9m/PqXXXYZHo+Hbdu2Re7Lzs4+6zHnXMVJxnuFZjJ3Ly8vT+b4iaQnQ+aEiIIlS5awd+9eRkZGphRWOHLkSORxIUTYTTfdhNPpZPPmzZSXlxMIBHjxxRc5cuQIH/zgBykvL491E4WYEZ/PFyk88IMf/ICKiopptzty5Aj//M//zPLly/nOd75z2iKr53oPgJGRkch9S5cu5cCBA2iaNqWwQk1NDVar9bR1iE7V1tYGhCvTnUtbW9uMthMikUkPkRBRcNlllxEKhXjqqaci9/n9fp555hlWrVolk1GFmOR73/seGzduZNeuXfz4xz/m4YcfxuFwcN999/HII4/EunlCzEgoFOLb3/42hw8f5jvf+Q5r1qyZdruGhgbuueceCgoK+M///M8zDmcbGBg4recU4G9/+xsAy5cvj9z3nve8h76+PrZu3Trl+a+++ioXXXRRZC7R0NDQaeWzg8Egv/vd7zCZTGzcuHHK80/15ptvcuzYMS688MIz/BSESA7SQyREFKxatYrLL7+cX/ziFwwMDFBcXMxzzz1HR0cH99xzT6ybJ0Rc+fznPz+lupUQiegnP/kJ27dv56KLLmJ4eJgXXnhhyuNXXXUVo6OjfOMb32B4eJg777yTN998c8o2RUVFkSD1wgsv8NRTT3HxxRdTVFTE6Ogou3bt4u233+aiiy7ivPPOizzvsssu44knnuB73/seDQ0NZGRk8Oc//xlN06ZUuNu+fTu//e1vec973kNhYSHDw8O8+OKL1NfX89nPfnbK0LrPf/7zLFu2jOXLl2O32zl+/DjPPPMMeXl5fOxjH1uIH6EQcUPRp7scIYSYNZ/Px69+9SteeOEF3G43VVVV3H333XJlTQghktCXv/zlsxYl2Lp1K+3t7dxxxx1n3Oaaa67hn/7pnwA4evQojz76KEeOHKG/vx+DwUBpaSlXXXUVt9xyy2nD7IaHh/npT3/Ktm3b8Pl8rFixgi984QusWLEiss2xY8d48MEHqa2tZWBgAKPRyNKlS7n11lu5/PLLp7zeL3/5S9566y3a29vxer24XC62bNnCJz7xCbKzs+fwExIicUggEkIIIYQQQqQsmUMkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsiQQCSGEEEIIIVKWBCIhhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpKz/P2KoJodZUV86AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "cd627fef", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm375ntRatV771Z7r0XmsH0XozpEDoECBD44A0JJIEkkADJG9IogQBxIG+oAdOLMTbuxt2WJctW7337+f5Y71qyJFtlpS2e+7p82d6dnXnmTDu/eZokhBAoKCgoKCgoKCgoKCgch8jBNkBBQUFBQUFBQUFBQSFYKIJIQUFBQUFBQUFBQeG4RRFECgoKCgoKCgoKCgrHLYogUlBQUFBQUFBQUFA4blEEkYKCgoKCgoKCgoLCcYsiiBQUFBQUFBQUFBQUjlsUQaSgoKCgoKCgoKCgcNyiCCIFBQUFBQUFBQUFheMWRRApKCgoKCgoKCgoKBy3KIJIQUFBIQLIzs4mOzs72GaMGD/96U+RJIkvvvhiQMtfc801SJJEWVnZiNrVH2VlZUiSxDXXXBOU7YcbL730EpIk8dJLLwXblEEzmsdakiROOOGEEd+OgsLxhiKIFI4rJEk65p+BTrgUFI53jvfJWajuf2dnJ0VFRahUKr755ps+l/n2229Rq9Xk5eXR1tY2yhYq9Eekv9hQUAhV1ME2QEEhGDzyyCP9fqc8jBTCkU8//TTYJoQUjz/+OA888ABpaWnBNmXUMRqNvPLKK8ybN4+rrrqKzZs3Yzab/d+3t7dz5ZVXAvDKK68QFRUVLFP9nH/++cyePZuUlJRgmzJo0tLS2LFjB9HR0SO+rR07dmA0Gkd8OwoKxxuKIFI4LvnpT38abBMUFAJKXl5esE0IKVJSUsJych0oZs6cyUMPPcTPfvYzfvjDH/L888/7v7vrrrsoKSnh//2//8fcuXODaOVhoqOjR0VQjAQajYYxY8aMyrZGazsKCscbSsicgkI/lJaWYrVaiY2NZf/+/T2+6+jooLi4GJVK1SPEzpe3sG/fPn77298yZswY9Ho96enp3H333bS2tva5rfXr13PhhReSmJiITqcjKyuLW2+9laqqql7L1tTUcO+991JUVITJZMJqtVJUVMQ111zDvn37/MsdKya/r3Cf7nkar732GrNmzcJsNvfwmnV2dvL4448zefJkTCYTZrOZOXPm8Prrrx99QI/AFxrS3t7O3XffTUZGBgaDgcmTJ/PWW28B4HK5+MUvfkFBQQF6vZ68vDz+8Ic/9FqXw+HgD3/4A2eccQZZWVnodDpiY2M55ZRT+OCDD466/ZaWFm6//XbS0tLQ6/WMHTuWZ599FiHEgPflhBNOQJIk7HY7Dz/8MDk5Oeh0OvLy8vjZz36Gw+Ho9Rvf+FdXV3PDDTeQlpaGSqXqcbz+9a9/sXDhQqKjozEYDEyYMIHHH38cu93e7/70xeuvv86JJ56I1WpFr9dTXFzMz3/+8z7XA7Bz506uu+46srOz0el0JCYmsmDBAp577jng8LkF8OWXX/YIOT3yZcOaNWu46KKLSE5ORqvVkpGRwU033URlZWWf216/fj1LliwhKioKi8XCKaecwrffftvnskejrxyi7rkeZWVlXHbZZcTHx6PX65k+fTrvvffegNY9mP33bXcw2xrs8eqPhx9+mBkzZvDCCy/4r6m3336b559/nqlTpw7qxdDu3bt54IEHmD59OgkJCf771I033sjBgwd7LOtwOJgxYwaSJPHOO+/0WtdVV12FJEk89thj/s/6u19t2bKFpUuX+s/FhIQEpk6dyl133YXT6Tym3d2P+c6dOznvvPOIjY3FZDIxf/58Pvrooz5/Z7fbeeKJJ5gwYQJGoxGLxcKCBQv417/+ddRtdKf7OfjnP/+ZCRMmoNfrSUpK4sYbb6SlpcW/7BdffIEkSezfv5/9+/f3OKe6r/dY9+0333yTmTNnYjQaiY2N5bLLLqOioqLPfVy7di2nnnpqr2ttsPl6CgoRgVBQOI4AxGBO+zfeeEMAYu7cucLpdPo/v+qqqwQgfvrTn/ZY/uqrrxaAOOecc4TVahU33nijuP/++8WkSZMEIKZNmya6urp6/Obdd98VWq1WaDQasXTpUvHAAw+IxYsXC0CkpqaKffv2+Zft6OgQeXl5AhCLFy8WP/rRj8Q999wjLrzwQmG1WsW7777rX/bFF18UgHjxxRf7HYtFixb1+OyRRx4RgDjrrLOETqcTF110kfjxj38sbr75ZiGEEE1NTWLKlCkCEFOnThW33367uPXWW/02PfTQQwMe26ysLJGamipmz54tCgsLxW233SZ+8IMfCLPZLGRZFp988om44IILRFpamrjhhhvEbbfdJhITEwUg/vnPf/ZYV1VVlZBlWcyfP19cf/314oEHHhBXX321iI2NFYD461//2uf2U1JSxPTp00V+fr645557xO233y5SUlIEIG699dYB78uiRYv8xz0lJUXccccd4p577vGPy1lnnSU8Hk+P3wBiwoQJIisrS4wbN07cfvvt4s477xT//e9/hRBCPPjggwIQ8fHx4uabbxb33nuvGDdunP+42e32XvuTlZXVy7Zrr71WACI9PV1cd9114p577hFz584VgDjhhBN6nNdCCPHee+8Jg8EgZFkWZ5xxhnjggQfEzTffLObMmSOys7OFEEJs3LjRf65kZWWJRx55xP/n888/96/r+eefFyqVShiNRnHZZZeJ++67T5x33nlClmWRkpIi9u/f32Pb33zzjTAYDEKlUomLL75YPPjgg+L0008XWq1WLFmyRAA91n80fNdiaWmp/7PS0lL/fickJIhZs2aJu+66S1x11VVCp9MJWZbFZ599dsx1D2T/h7qtwR6vY7Fz505hNBpFQkKC2Lx5s0hISBAGg0Fs3759UOt5/PHHRXR0tDjvvPPEHXfcIX70ox+JJUuWCEmSRHJysjh48GCP5UtKSoTFYhGxsbGivLzc//kLL7wgAHHyyScLt9vt/7yv+9XmzZuFXq8XBoNBXHrppeKBBx4Qt956qzj11FOFRqMRbW1tx7TbdxwWLlworFarWLBggf/+oNfrhSzLve4ndrvdf02PGTNG3HvvveLWW2/1338efPDBPrdx9dVX9/jcdw5efPHFwmKxiGXLlol77rnHfw898cQTe6zjkUceEdHR0SI6OrrHOfWf//zHv9zR7tsXX3yx0Ol04uKLLxb33nuvWLBggX8fbDZbj998+eWXQqfTCbVaLS655BLx4IMP+u/7p59++qCuNQWFSEARRArHFT5B1P1h0/3P448/3us3t9xyiwDEAw88IIQQ4qWXXvI/zLo/0IU4/ACMi4sTZWVl/s/dbre44IILBCAeffRR/+dtbW0iNjZWyLIsvvrqqx7reuKJJ/zCx8c777wjAHHXXXf1stNut4vW1lb//4cjiIxGo9iwYUOv3/j271e/+lWPz7u6usRpp50mJEkSGzdu7HN7R5KVleUXC90f1l999ZUARExMjJg+fbpoamryf1dSUiI0Go2YPHlyj3XZbDZx4MCBXttobm4W48aNEzExMaKzs7PP7c+bN6/H9hsaGkRubq4AxJdffjmgffFNngoKCkRjY6P/866uLjF79mwBiJdffrnHb3zn4pVXXtlrkrtq1SoBiIyMDFFVVeX/3Ol0irPOOksA4he/+EWv/TlSEPnOgfPPP7/X/vuO9dNPP+3/rK6uTlgsFqHRaMQXX3zRaz+PHOO+ziEfu3btEhqNRuTl5fWaLH/yySdClmVx3nnn+T/zeDyiqKhIAOKtt97qsfzTTz/tH69ACKK+XmZ8+OGHAhCnn376gNYvxNH3fyjbGuzxGih/+MMfBCB0Op0AxLPPPjvodRw8eLDXpFoIIVasWCFkWfa/NOnO8uXLBSDmz58vXC6X2L59uzAajSIxMbHHeS1E3/ere+65p8/zQQghGhsbe91/+6L7cbj33nt7fLd27VqhVquF1WoVLS0t/s9/+ctf+o9P92uzpqbGf9/45ptvem2jP0GUkZHRQ/w7nU6/WFmzZk2P3/T3YsPH0e7bUVFRYsuWLT2+W7p0qQDE8uXL/Z+53W6Rn58vAP8LGB/PPffcoK81BYVIQBFECscVvht9f3+io6N7/aarq0tMmjRJSJIkfv/73wuTySQSEhJEZWVlr2V9D8DuosdHSUmJkGXZ/5ZdCCH+8Y9/CEAsXbq01/JOp1NkZ2cLwP8w9QmiI99Q9sVwBFFfgqu+vl6oVCoxffr0Pte3adMmAYj77rvvmLYJcViQ7N27t9d3OTk5AhCffvppr+9OOOEEoVarhcvlGtB2nnrqqT7FjW/7RwpRIQ6P3TXXXDOgbfgE0ZGiRwghPv/8c//b/e4AQqvVipqaml6/ueGGGwQg/vznP/f6bteuXUKWZZGTk9Nrf46cSE2ePFmo1eoeotKHy+UScXFxYsaMGf7PnnzySQGIO++882i722Mf+hMEd911lwDEe++91+f35513nlCpVH4Rv3LlSv+b/L5s9XnbAiGIsrKy+jx/MjMzRVxc3IDWL8TABNFgtjXY4zVQPB6P/14ye/bsXt7K4TJhwoRe56OPm266SQDiRz/6kRg/fryQJEmsWLGi13JHE0R9LT9QfMchOjq6xwsjH77z5KWXXvJ/lp+fLyRJEjt27Oi1/N/+9jcBiGuvvbbXNvoTRH15qH2est///vc9Ph+OIOrLQ//ZZ5/5x9/H119/3ctD5cPtdovCwkJFECkcdyhFFRSOS8Qg8kP0ej3Lly9n+vTp3HHHHUiSxJtvvnnUhO1Fixb1+iw3N5eMjAzKyspobm7GarWyYcMGAE466aRey6vVahYuXEhZWRkbN24kMzOTRYsWkZaWxhNPPMGGDRs444wzmDdvHpMnT0alUg14n47FzJkze322du1a3G53v3kSvnj+HTt2DHg7Vqu1z2IAqamplJaWMm3atF7fpaWl4XK5qK6u7lFBbNu2bfzmN7/hq6++oqqqCpvN1uN3fcXRq9XqPpPKfTH6GzduHPC+QN/Hff78+ahUqj7XlZ2dTWJiYq/Pj3ZeFBYWkp6eTmlpKS0tLf0mond2drJ582bi4+N5+umn+1xGp9P1OF6rV68G4PTTT+9z+cHgy/v58ssvWbt2ba/va2trcbvd7N69m2nTpvn3ua8xVKlUzJ8/n5KSkmHbBfR7vWRkZAwpXykQ2xrK8RooL730kj+XavPmzezZs4fCwsJ+l/Fxwgkn+K8FIQSvvvoqL730Eps3b6apqQm32+1fVqvV9rntp59+mlWrVvHUU08B8OCDD3LqqacOyO5LL72UZ555hvPOO4+LLrqIU045hXnz5g2pgMjUqVP7rKZ3wgkn8Pe//52NGzdy9dVX09bWxt69e0lLS+uzgIHvmhzMvWH69Om9PsvIyACgqalpwOsJ1HZ8ts+fP7/X8rIsM3fuXHbv3h0wuxQUwgFFECkoDIDCwkImTpzIqlWrGDt27DEf6ElJSX1+npyczP79+2lpacFqtfqTavsTV77Pm5ubAbBYLKxevZpHHnmEd955hxUrVgAQHx/PrbfeysMPP4xGoxnKLvay80gaGhoArzDqa4Lro729fcDb6W8yr1ar+/3e9133hOrVq1dz0kkn4XK5OPnkkznnnHOwWCzIssymTZt4++23+0xIj4+P73Oy6tv/7knPA6Gv465Wq4mPj6e2trbf7RzJQM6L8vJympub+x3DpqYmhBDU1dXxs5/9bED2+86zQJSq9p0vv/nNb466nO988e3z0a6dQGG1Wvv8XK1W4/F4AradwWxrKMdrIJSVlfHDH/4Qq9XKI488wt13381VV13FN9980+Pcf+mll/jyyy97/d4niO655x6efvppUlJSOO2000hLS8NgMPh/e2ThGR96vZ4zzzyT77//HrVazW233TZg22fOnMnXX3/NL37xC958801eeeUVAIqKinjkkUdYunTpgNd1rPPKd/4N9p48EPo6B3z3se6icrgMdDvHutb6+1xBIZJRBJGCwgB44oknWLVqFfHx8Wzbto3HH3+chx56qN/la2pqKCoq6vV5dXU1cHii7/vb9/mR+KrMdZ/0pqen8/zzzyOEYPv27Xz22Wf87//+L48++igej8dfuUmWvUUkXS5Xr/Ue62Huq6DVHZ8Nd999N7/97W+P+vvR5uc//zldXV18/vnnvSowPf7447z99tt9/q6+vh63291LFB15nAZKTU0NmZmZPT5zuVzU19djsVh6Ld/XOHffbnV1dZ9vw/s6L/pbx5QpU/zel2Phm1BVVFQwYcKEAf3mWNtvaWnpc9/7W76mpqbP7/u7RiKFoRyvY+HxeLjyyitpa2vjtddeY+nSpaxdu5bXXnuNxx9/nIcffti/7NEqitXW1vLss88yfvx4Vq1a1cvTcrQKkytXruQ3v/kN8fHx1NfXc9111/Hhhx/2e+4fyZw5c3jvvfew2+2sX7+eDz/8kN///vdcfvnlJCQkcMoppwxoPcc6r4ZzTw43fNdjf2PS3+cKCpGMUnZbQeEYrFq1ip/85CcUFRWxdetW/9vJlStX9vubvt607tu3jwMHDpCdne2feE6ZMgXoezLicrn4+uuvAW+4x5FIksS4ceO44447+PjjjwH8pXUBYmJiADhw4ECv365bt65f2/tj5syZyLLstymU2Lt3L7Gxsb3EEPR9LHy4XC5WrVrV63Pf8fAdn4HS17ZWrlyJ2+0e1LqOdl7s3buXgwcPkpOT06/3AcBsNjNu3Di2bdtGY2PjgLY7e/ZsgH5LlR+JLMv9vuH2rWug54vvHO9rDN1u91Gvt2BxtP0fLEM5Xsfi17/+NStXruSyyy7ze1P+93//l7S0NB599NEBh33t27cPj8fjL9HcnYMHD/Yo99+dhoYGli5dikaj4bPPPmPZsmV89NFH/OpXvxr0vuh0OubOncujjz7Ks88+C9Dvi46+2LBhA21tbb0+P/Jaj4qKIi8vj4qKCvbs2dNr+c8//xzo+54cCFQqVUC9Rn3h29e+rimPx9PnPVFBIdJRBJGCwlFoampi6dKlqFQq/vnPf5KUlMTy5ctRq9Vcfvnl/U5cnnnmmR4hJB6Ph/vuuw+Px8O1117r/9zXE+P111/352/4ePrppyktLeWUU07xex22bdvW59s732fdO5hPnz4dWZZ57bXX6Ozs9H/e2NjI/fffP+ixSExMZNmyZaxbt47HHnusz4d2SUkJpaWlg173cMnOzqaxsZEtW7b0+Pz555/3hxX2x4MPPtgjnK6xsZGf//znAD2O1UB47LHHesTq22w2HnzwwUGv67rrrgO8nq+6ujr/5263m3vvvRePx8P1119/zPXcc889OBwOrrvuuj69gk1NTT28EVdffTUWi4XnnnuOr776qtfyR/abiYuL61NwA9x+++1oNBruvvvuPvMRHA5HD7E0d+5cioqK+Oqrr3pNdP/whz8ELH8okBxt/4fCYI/X0di0aROPPPIIaWlp/PGPf/R/brVaeeGFF3C5XFx55ZUD6m3k62/lE/c+2tvb+cEPftCnFxq85/zBgwf53e9+x4QJE3juuefIz8/nf/7nfwY06V61ahVdXV29Pu/rfncsWlpaePTRR3t8tm7dOl599VWio6M5//zz/Z9fd911CCG47777euxvfX293wPvu0YDTVxcHHV1dX3ud6Dw5WF9/vnnvV5+/OUvf1HyhxSOS5SQOYXjkqM1JDzvvPOYPHky4H3olZeX8+yzz/o/mzRpEk899RS3334711xzTZ+NB32FDi699FKio6NZsWIFmzdvZtq0aT3EiNls5oUXXuDiiy9m0aJFXHzxxWRmZrJ+/Xo++ugjkpOT+fOf/+xf/uOPP+a+++5jzpw5FBYWkpiYyMGDB3n77beRZZn77rvPv2xKSgrLli3jlVdeYfLkyZx55pm0trby3//+l4ULFw66YAB4J6Z79uzhJz/5Ca+88grz588nKSmJyspKduzYwdq1a3n99dfJyckZ9LqHw1133cWKFSuYP38+l1xyCdHR0axbt46VK1dy0UUX8eabb/b5u5SUFOx2O+PHj+ecc87B6XTy5ptvUlVVxa233srChQsHZUdxcTHjxo3joosuQqPR8Pbbb1NSUsKZZ57JlVdeOeD1zJ07l/vvv59f//rXjB8/nosuugiTycQHH3zA1q1bmT9/fo9j3R/XXXcd69ev549//CN5eXmcdtppZGZm0tjYSGlpKV999RXXXnstf/rTnwBvTtVrr73GRRddxIknnsjpp5/OxIkTaW1tZcuWLRw4cKCH4D355JP55z//ydlnn83UqVPRaDQsXLiQhQsXMmbMGF544QWuu+46xo0bx5IlSygsLMTpdFJeXs7XX39NQkICO3fuBLwez+eff57Fixdz4YUXcsEFF5Cfn8+mTZv49NNPWbJkCR9++OGgjsdIc7T9HwqDPV79YbPZuOKKK3A6nbz00kt+b7GPU089lVtuuYU//vGPPPTQQzz55JNHXV9ycjKXXXYZ//znP5k8eTKnnnoqLS0tfPzxx+j1eiZPnsymTZt6/Obpp5/m3Xff5cILL+Tmm28GvN6X5cuXM2fOHJYuXcqmTZt62dadX//613z22WcsWLCAnJwczGYz27Zt44MPPiAmJoYbb7zxqHZ3Z+HChfztb39jzZo1zJs3j6qqKpYvX47H4+HPf/5zj7DOe++9lw8++IC3336bSZMmccYZZ9DZ2ckbb7xBbW0t999/f58FCQLBySefzNq1a1myZAkLFy5Ep9MxadIkzj777IBtQ5Zl/va3v7FkyRLOOeccLrzwQvLy8tiyZQsff/wxp59+Oh988IE/7FpB4bggmCXuFBRGG45RdptuZV+fffZZAd5mm31x/vnnC0D89re/9X/mK7NaUlIinnzySVFUVCR0Op1ITU0VP/zhD3v0uujOd999J8477zwRHx8vNBqNyMjIEDfffLOoqKjosdz27dvF3XffLaZNmybi4+OFVqsVWVlZ4sILL+zRF8OHzWYT9957r0hLS/P3hPnlL38pnE7nUcu3Hq3cqt1uF7///e/FnDlzhMViEVqtVmRkZIiTTjpJ/O53vxP19fX9/rY7Rysv6ytj3Rd9lVMWwtvgdtasWcJsNovo6GixePFi8eWXX/Zbfty3/ebmZnHrrbeK1NRUodVqxZgxY8QzzzwzqNLEPnttNpt46KGHRHZ2ttBqtSInJ0f89Kc/7bN/S1/jfySvv/66mDdvnjCbzUKn04mxY8eKn//8572a+3bfn7549913xZlnnikSEhKERqMRSUlJYsaMGeKhhx7qs7Tw1q1bxZVXXilSU1OFRqMRiYmJYuHChb3KgNfU1IilS5eKxMREIcuy4FCPr+5s2bJFXH311SIzM1NotVoRExMjxo0bJ2688cY+y6qvW7dOnHbaacJsNguz2SxOPvlksWrVqgGdm905WtntI8sj+zjaedcXR9v/4WxrsMfrSHwlz49WPr2jo0MUFBQIWZYH1G+ro6ND/L//9/9EXl6e0Ol0Ij09Xdx6662ivr6+176sW7fOf2/qq4T4M888IwBx7rnn+j/r6zpdsWKFuOaaa0RxcbGwWCzCaDSKwsJCcccdd/To83Y0uh+H7du3+5tmGwwGMXfuXPHhhx/2+buuri7xi1/8QowbN07o9XphNpvFvHnzxGuvvXbUbXSnv3uVEIfL8R95vbS3t4ubb75ZpKWlCZVK1Wu9g71vH+08XL16tTjllFN6XWu33XabAAbcU05BIRKQhBhE/WEFBYWjcs011/D3v/+d0tJSf5iJQmjiOz5HlhoeCieccAJffvnloMq5B5rk5GSio6PZtWtX0GxQUAg1ysrKyMnJ4eqrr+all14Ktjlhwbx581izZg0tLS2YTKZgm6OgMCoo/lAFBQWFMKexsZH6+nrS09ODbYqCgkIY0NnZ2Wee2ksvvcSqVas49dRTFTGkcFyh5BApKCgohCktLS08+eSTrFixArfbzUUXXRRskxQUFMKA8vJypkyZwuLFi8nPz8flcrFx40ZWrlyJ1Wr1N9JVUDheUASRgoKCQpjS1NTE448/Tk5ODo8//jg33XRTsE1SUFAIA5KSkli2bBlffvkln3/+OXa7neTkZK699loeeuihPvufKShEMkoOkYKCgoKCgoKCgoLCcYuSQ6SgoKCgoKCgoKCgcNyiCCIFBQUFBQUFBQUFheMWRRApKCgoKCgoKCgoKBy3KEUVFBQUFBRGHSEEXV1dVFRU4HA4yMjIICoqyt/LSZaV93UKCgoKCqODIogUFBQUIhghBDabjfb2djo6Omhvb/f/aW1tpbOzk46ODqqrq7HZbAgh6OzspLq6GovFgiRJ1NbW0tTURGpqKk6nk3379iFJEnFxcXR0dFBRUYHZbEav11NbW4vNZsNqteJyuWhsbMTj8aDVarHb7djtdjweDx6Pp097ZVlGlmW0Wi16vR673Y4sy8TFxaFWq2lubkatVpOamkpLSwsOh4OkpCSsVisHDx4EYOzYsWg0Gnbu3InFYqGoqIjW1lYqKiooLi4mLi6Oqqoq3G43CxYswGw2U1paSnp6OmPGjEGj0dDW1kZeXh7x8fFotVpUKtVoHjYFBQUFhVFEEUQKCgoKIYpPnDQ1NdHU1ERzc7P/3339v6Ghgba2NhwOB+3t7bS0tNDV1dWv+PAhyzIajQaDwUBcXBxCCNrb24mOjiYmJoaGhgZcLhdarRaNRkNXVxcajYbY2FhMJhOdnZ3Ex8dTUFDAnj176OjoYN68eeh0OtasWYNarebEE0/E4XCwevVqMjIymDZtGjt37mTdunUIIRg3bhxTp07lm2++oaamhlmzZmEwGPjkk09wuVzMnTsXu93ON998g1arZezYsWzbto3W1laSkpIwmUxUVFTgdrvp7OzE6XTS3NxMS0sLdrud2tpaOjs7OXjwIGq1mrq6Oux2O6+//voxx0eSJLRaLXFxcZjNZtrb24mKiqKgoAC9Xk9DQwOTJk0iKyvLP94LFy7EarXicDhIT08nMTERSZICeXooKCgoKAQIpey2goKCwihht9upq6vz/6mtre3xf99nDQ0NfsHjdDr7XJfBYCA6OhohBFlZWSQlJdHR0UFXVxfz5s3DbDazYcMG2io7qV3fijnOSOHpGVR/20xbiZ2cE1JImRDPxt+XIiMz9aY87B0utr9ajjZKzcy7i9j9TgW1m5qJLYoiZXos217dD8AVf4rF7VZxzXkf4fHA8hUnMGfSDrJTa+iya6mqiyE5vgmj3sHqLcXUNFg598Rv+9yPf354Aqs/srDjn+V9fl9wbhodNTYqVzeg0suYkwy013ThtnmIzjKROifO/9sJ1+YgXIKCB9ficUPrV5PQ5VVgyKynqySF9nVjiDnrG9QmB82fT8Jj1xBz2lpcDkHF6zMgvhJt4V6ad8bQujUZTf5u3IYWmtam42zXMGvWLNrb2/nyyy+RZZnExETKy8uprKxECOEf/77QaDRYLBYA0tPTyc7OxuPxIITgpJNOIiEhgZaWFrKyspg8eTIJCQnodLpBnV8KCgoKCkND8RApKCgoDAO3201dXR1VVVV9/qmurvYLn9bW1l6/NxqNREdHEx8fT3p6OpmZmeh0Os4//3wyMjJ4449vkVQUx7636tCgYdyFubgaBQe/aMDg1jD2siz2raimaV07WQsySD8xnm+f2AFA7pIsrFonKqkBuV0m2hFPFyqE1IHUpMESG4VGq8Hj9FCzuQWPy+speWfHWg7WlKK/xE5CTBv7Dibz6vun8Mr3+0iMbWF/ZaLfflmGpad/0WOf/rXiRBZO28LcyduZPXHHsMZ3z9sV/n8nT40lc1Ei3/1uJwAt+zto2d/h/778s1qEEGx9JQFjgo6pt8ay4ckWWkol9HEyan0J7T+L5vztdegy6hBuGUmSUMlqTAYL5nEHMeSYiIsyY4uNImqWEVmjp7MwGXe7nqhpnxMvwGxZgnHsfkzj9mOvyKV902lEL9iC2tJF03dZtB/UoZm8ic4WJ9UfFuHU1bNw0vns3LmTDRs2EB8fj9PpZPv27TQ3N/PZZ5/R2dnZa9+1Wi2JiYlkZGSgUqlQq9WcfPLJpKSk0NHRQV5eHtOmTSMhIUEJ6VNQUFAYBoogUlBQUOiHrq4uDh48yIEDB3r8qayspLKykqqqKmpra3G73T1+l5CQQHJyMklJSRQVFTFr1iza2tpY989tSJ1q0qckkTk1hR3PV6CyqZl4eQ6t+zspW1FDi0GiYOEEtr9Ywfr6fSQVZ5JiiqFR8ooVs9GES/Zuz9bsoqPGhrPDBUDV+kaaStpBAgS47R6s2SYqVzfgcXjQx2hRG1SsqNiIza6hvdPAQz9oQ5a9gQJNrSZiLF6B8cHKmSTGNnPeSavITKnl+vM/IN7qFXRZqbU99tfjkdi8O5eJBfsw6BxcdfbHJMY1Bfx4VK5poKWsA7fNgyRD4qQYajY1waE4h+7iqLPezqa/ltBRYwMgc0EixkQdm/5Swn/GJqCzgr3ZDiSABIbY3TjawW1P4PQPJNwdBiS1d8ydNVbU1nYAhEfCetJGVCbvemWDE7W1/fD/nWaiYtVYc40IAbEtSRjyXEgZb1AwzUj6nGJM48qQdS4WbT4RZ52VmFM24Ohys//1SbiiDuBO3EdzqZaOHekkJyfjcDjYuHEjtbW1bNu2jbq6uh7jolKpMBqNpKenk5ubi1qtRqvVcuaZZ5KRkYHBYGDMmDHExMQE/JgoKCgoRAKKIFJQUDguEUJQV1dHaWkpZWVllJWV9RI+9fX1PX7j8+Kkp6f738z/3xMfopX0xKXEkFKYSPWXrcgNMpPPz6WtqouSl6uoMdoYf1U2uXGFtHV1IVfqaLB1opK8t+ADX9eh1nvf8HucHlJnxtJRbaOr3o67y43HJZA1Mh6nh73vV+Kyeyfqwi3Y/0UdvtQUfYyWydfnsvEvJXRU22ir6OLGB/cx/ak9h/Zgo39f9Donep0TX9D0jn0ZvPnxIn647P+wmDs576RvsJi8Xgu1ykNqYkO/Y1nXFM1/v55JjKWd7NSaoy47HIRb0F7pDUmzZJrIOzOFtopOOmvtfSyMf1mAkg8q0Vk0AGgtGmb8sIgdy8tp2NkKAroaHP5lPzhdAPuBBACSpzuY+rhXDLpbTDR/Mh3rKeuQ9U4klRvT+FIklXcgo6btRrgOeWtcKiS1G0nnFayuRgu2PemYJ+4DQB3dgSa+xWuTQUXm4hpUUS7U1jic4yy0JRVhPXEjst7JmLWzcDVFEXPqOtxODxUrsuiSa7DpKmkqlbDvySUqKoqWlhY2bdpEXV0db7zxRo8hiY+PJzk5GSEEU6ZMYfz48ej1euLi4li8eLGS56SgoHDcouQQKSgoRCxNTU3s27fPL3qO/Lt7vkd0dDQZGRk9/rz+k3fQY0SPAR1GksZ737DXb2tFY1Ix60dj2P7Pchp3txE/1kLKjFi+f7kMBERnGXF2uf2TdVkjIakk3DYP5lQ9+WeksvXV/bi63OSdnoLWombH8gMAxI2Joq2yC0erq9c+acxqrNkm6rZ6J9KTrs+hq9HB7v9UIKslnvqsntz0KvS6vnOPuvPmxwuINneweM4GbHYN5VWJ5GZUoVYdvciAj6q6WJLjG5EkaGkzEh3VO+zrWBwrh+ho6Cwa7K3e/TSl6Omosg3od5JKIibP7PU2OTzknJqMNkrDrn8fOOZvVToZa56ZBctLkVQeWr8di7tdT8ziDQDY9ieiSWxGZXD0+q27U4erMQpduldot3w9AdloI2raHjx2DS1fTsI8fRea2DY8djWSyuP3UrmaTXgcGrSJzQgPNH8+BUPBQfSZddgPxtP6zQTizl2JrHdiK08EAXJSFc3VdqrWWmhra2as5Ty2bt3Kpk2bAKiurqalpcVvn8FgICoqivT0dGbPnk1SUhIul4uTTjqJSZMmKR4mBQWFiEURRAoKCmGLz8uzd+9eSkpK2Lt3b48/jY2N/mXNZjM5OTnk5OSQnZ1NdnY2L93zBgZM6DGikbQgS8Tkm+mss2NvdhJXbKHgnFTWPLkL4RYUnpeGxyXY+14lAAnjo2kp68DR3lu46GM0mBL1NOxqA2DGDwup3dLM/s9r0UVryFiYQPkXtTjaev/2SGKLorA1OeissRFXbGHMRRl899ROnJ1u9DFaHG1OPC7vrXxF5aZ+19PWYWD1lmIWTd+CVuNi/fYCjHobxbnHFgJHUtcUzZ/+dRYXn/olY3IODuq3sx64xf/v6YmdaA42DUkQ+YgbE8WYSzLZ8Me9dNX34S065u8taEwqqtc3IWtksk5M5OCqepx9HNcjkdUS2igNtiYHGqOKmT8aw843D9Cwo5WzV3XibjegTaunP8eLECBJXrHUuTUb47j9qEw22rfkYi9LIu4cbzEK+8F4b2ieubfoc3dpcdZa0WXWIknQ9l0RwiNjmb0D4ZZpeGseUTN3osuow92ux9VqQpvcyLdtubjrnNhLbTR0NXK+9izeffddbDYbbW1t7N27t8dLA5PJRGxsLAsWLCAvLw+73c7MmTNZsGABCQkJindJQUEhbFEEkYKCQsjjcDjYs2cPO3bsYMeOHezcuZOdO3eyZ88e2tra/MulpKSQn59Pfn4+X734HUbMhwSPCQ1a/4RNpZNxHwo7S54eiz5GS9knNQDMeaCY/Z/XULmmEX2sltgCM9UbmvA4j36rVOlk0ufFU7ulma56B2lz4shYkMDq3+wEAdY8E7YmJ7bG3p4DALrdinUWDeY0Aw07vGFa039YSO2mZsq/rEVWH/I02fv34nQXRUJAp02HyWCnuc3EC/9ZwtLTPyclobHf3x8N3wQeYN/BZHLSqvud7HcXPv0RCEEEEJ1joqW049gLHgNTip5xl2ex+W/7sLc40RhVODvdx/7hIVQ6GeEWeFyCzBMSSZxoZd2zuwGIG2uh/WCX36sFcP72uj7X42oz4Gk3oE1pRHig4a35GMfuxzjmAK5WI7ayZIxjypG1RxdtwiXTVZKKNrUBdVQXnbvS6diaQ/wFXyNJ0L45j/2ymZbMdq9XySXh0XjPReEWUO2msaWZ9spW3BudaOvVeDweSkpKqKysPDxuJhPR0dHMmjWLKVOmYDabKSgo4NRTT0Wr1Q54/BQUFBSCgSKIFBQUQobW1lZ27tzpFz0+AVRSUuIvXBAbG0txcTHFxcV88bc1ftFjxOzPyTmSmHwzjg4XHVU2LJlGJl6by7rf78bW5CRlhlcQlX5UDYDGpPYXKTgWGQviURtUlH5Ug6SSmHZrPiUfVtG0px2VVkZ4vBNjBnCbNSXpcXa6cLS5SJ4eS/YpSXz35E48LoFKL+O2DSyMrTsrKjex4pvplFYkc9PF7yFJ3gIIviIKg8Xllnnz44WMzy9jfH5Zj+8GIn76IlCCyEf8+GgSxkez840D3gn9UDhUlAJgyi35NO9rp3RF9ZBW5Tt2slpi1n1jKP24hup1jWij1GiMan/Rh6Nx/vY6hEtGCAlZ48ZeGUf7hgJiT1+DpBK0b8xH0joxjdt/zHUJAcKuQdZ7RVn7hnxUUV0YCipYW1FE9spUDsyswRZrR9eiQeVQ0ZnQt43uJjftVW201jZj396FvMfb02rnzp00NHjzyFQqFbm5uWg0GqZMmcLixYvJzMwkOzubnJycQYykgoKCwsihCCIFBYVRRQhBTU1ND2+P798VFYdLLGdmZlJcXMz2FSWYsGAiChMWtNKxe7PE5JuJG2Pxh7ZNuTmflrJ29n1YjUonE1tooXFP21G9LN2RVBLCLTCnGhhzcTpbXijF0eYiZUYsKp3Mwa/7fst/LHw5MJLsnSxXfFvPga/qkDUy4C2wMBTiii3Ymh10VNl4+fsy2jsN5KZX9evJGShCwAcrZ1CUfZDL//e84a3sEIEWRNY8M3FFUZT8typg63O0OemstWNK0aO3av2eu8HS/bhmLEwgbXY8a57cifCIHvlQg+XUN43IGheGggrcnTqaP52KZe5WNHFtCLcMsmdAx97jUOOoimWTyYJHI4jfEYOxUUf5PK8YTNwaS3tSp1cg+WYO/azXVWmnbW8b9Q31tJa0Ir530tLSQnX1YWGZmppKcXExOp2OvLw8zj//fIqKikhKSlLKiCsoKIwqiiBSUFAYMex2O9u3b2fTpk1s3ryZzZs3s2XLFn9uj1qtpqCggOLiYjb833a/6DEShbofb48PlU5GY1R7czdMKqbcUsCetw7StLeduGILSZOtbP9nOYhDb+ntA7/VdQ+pm3htDm0VXZSuqEJjVJE2L4HK1fUDyv05Gmlz48lYkOCdELsFxgQdXQ12xNA0UA+m3JxP4+429n/mDQM8Wl7RQHC5ZU796Q10OAM/SQ20IOqOIV6HrckxdE/REWSdnERsQRQb/7R32OuSZDDE6eissyOpJGbdO4YDX9VS8e3wKvRpo9Skzo7n4Dd1uDrdLP5HNM5GCzGneIs+eBzqY4bZ+RAC1jTke0PoBKRuSKA1rZ325C6MtXqStsZRPq8Kt86DplONW+P2h9v1h7PTSdf2DmxbO6m0VVHUmsc333xDXV0dHo/35Nfr9RQXF7Nw4UJSU1NJT0/nggsuQK/XD2tsFBQUFPpDEUQKCgoBoba21i96fAJo586duFwuJEkiPz+fSZMmseHNHZgPeXwMmJEleUDr15hUxBZa/H1nii/JRKWT2fpKGQDpCxJo2N7So3wywEBejUsqCVkl4ba7SZgQTcE5aaz+9Q48TkH8WAv2NhdtBwZfQa3nRmDiNTnUbmmmen0TumgNhjgtzaUdh9+2DxGtRUPB2ansfb8Se7Ozh6DzMVhR1D0ErijGTobZyWcHTXhEYBPnR0oQyWqJ6T8spGZjE/s/qz32DwaIb2x1Vg35Z6ay591KHEP07PiRwJpjoqvBgb3FSfL0WBInRLPlpdJhnxtRGUZ0UWrqt7cia2Rm3z+GPe9UUPd9C+dubkSSBdIAqgquasnr8X9NuxpzjZGm3FaQIO27RDxqD1VT68EDlgoTHYlduHUDU/gel4f2ijbad7bhXNuFlWh2797Nnj17EEKgUqkoLi7GZDIxadIkLrzwQiZMmEBSUhKyPLB7iIKCgkJ/KIJIQUFhULhcLnbv3u0XPz4B5AuFMZlMTJw4kUmTJvHFn9ZgxoqZ6GN6fPoiY2ECHdU2Gne3YckwMuGaHDY8560kZkzQ4XGL/osUHE0ICYHaoMLV5c1LmvmjMVSuqefgynq0Fg3RWUYadrT6K7cNFXOqgaQpVkre94ZvZSxIoPVAJy1lw0/+h8OhfLJGovjSLPZ/Wk37UUpPH00UHS0HSC0JLFo3jfbAt64bSQ+RJdNIR7UNtyMAbrcjMKfoyTo5mR3/3I/HJfzHIhBEZ5uwZBg5cCgUM+/MFGo2NvfoqzQUZLVEXLGFlv2dOFqdpM9PIHVWHN89tRPAf030V+gBegsjH5oONZJHwhHlRNOuJmtlCgdn1WCLcWCqMaBr09CYP/hQQ3eLm87vW6muq2Fqy0Q++OADampqsNm857nZbGbq1KnMnj2bhIQExo0bx+LFi1GrlTaLCgoKA0cRRAoKCv3i8XjYs2cP3333HWvXruW7775j8+bN/slIRkYGkyZNYut7e4nCShTRGDAPufxubFEUSZNj2LHcOzkuviyTlrIOKlc3IMkgqeRj59X4tn3krU0CSZIQHkHanDjS53vD1RDesssdtbb+xdUg0EapkTUytkYH0dkmchYns+3VskFVKhsIMflm8s9OY+Nze3HZBr7uFZWbBlwAIdXkpMGmwu4euTfwIymIfGjMaqKzTNRvazn2wkNAbVAx5eZ89r5bQdPe9oCuW2NUMW5ZNqUfVdOyvwN9rBaP0zPskE0AfazWWxp+p9fLM+veMRz4uu7Q9SYhhOjlofKJpf6EkQ/JJSFkATJYS6MwNOm83iMgZUM8rWkddCQNTeAJj/B6kza20LW+nVh1LFu2bOHAAW/5eL1ez8SJEzGZTCxevJjzzz+fwsJCxZOkoKDQL4ogUlBQ8FNRUdFD/Kxbt87fuLGwsJAZM2bw3avfHxI/Vm/vniEgqyU8LoGskZl0fS7lX9TQsLMNa66ZxIlW9rxbEbC37eD1pEz/YSHln9dSs7HJPxFs3N0akJyd7ky+MY+uBju7/j243jwDRaWVcTs8aIwqUufEc+CrugEVX/B5hwYqhmRJcEJ6B+VtGvY2H7uQxVCwvvwtxZdlAoyoIMpYkEDS1Bg2/O+eYXv9+kLWyGQsTKDi23pcnW7/MRoJii7MwBCnZdNfSgK6XkmG2MLDLwaSpsSQeUIi657dPaBrMelby8C244HErXG0pXbQGW/DVG0gbm80B2bXINQCyS0hVEM7Ru4aB/s2uKmprmFmYxyfffaZv9qd0WgkJSWFCy64gNmzZ5Obm8uECROU4g0KCgqAIogUFI5bmpqaWLduXQ8BVFXlDe1KSUlh5syZbH17LxZisRAzZPEDh/IuHB4QkHNaMlFpRra8sA+A7FOSqN/eOuxwoCNJmRlL0pQYNv3ZO3FMnh5L6/4OOusG37jzaBgTdRRfmsnWl8uwtzgxJuiwtzhHZEKcOiuO1FlxbPjjwCb2/YXIDVQUaWUPDo9Ev6XEBon15W97fTYagggJNIbB9RMaKrJaYuptBVSubqByzfAKJPSFSiuji9bQWWdHZ9Uw/spsdiwvp7M2wOd1gg5Llonqdd4CKFNuyqN6YxNV3w2uf9WxhJKuWYu5xkhDUTMA6d8mYbPaqS9uBg/IbumYhRqOpKQl3v9vV7uNjt3VaNbVIu1toq6uzt8/KTo6mkWLFjF58mQsFguXXXYZaWlpg9qWgoJCZKAIIgWF4wCPx8O2bdtYuXIl33zzDd999x179uwBvJOCGTNmsPeTA4fETyx6yTCs7UkqCY1BhaPdhSFex9Rb8vn+pVJaD3RiyTSiMamHXLq4P2SNRNGFGVStbaS5pJ2odAOWDCMVqxuGnZh+JLpoDcZEHU172pE1ErmnpXBgZR325mEm1/eDrJHwOAX6GC3ROSZqNjT1u+xAiyf0J4pkSVBgdVDSrMUVgAIKfYmg7oyKIDqEt3luAuVf1gbUA3kkSVNjaCntwNbk8B+7kUBn1ZAxP4F9H1bhcQliCsx01tqxtwT4PJQgbXYcrQc6aTvYhTXPTMqMWHb9+8CQ9u1oIslcbcCl9WCLtaNv1JH+XSL751fhNLtQ2VR4tG7EACLfuouiI3HUt2FYXUtdeSWZHSZWr15Ne7s31DE/P5+srCyKioq46aabGDdunOJFUlA4DlAEkYJCBNLV1cXatWv9AmjVqlU0NzejVquZMmUKs2fP5rPfr8ZCLMZh5Px0xxCvo6ve+5Z63LIsPC7hzQWSIGlyDI27WgP+hj4624Q11+wvL114fjq1W5ppLglsHseR5JyaTGxRFOt/v2dEtwPecK+4sRY2/3UfwtP37XooZbX7E0TRWjczk7tYU22g1TH4ieCxBNCRjKYgMiXpGXdFNtteK6PjKMUnAoUkS0z+QS7121v9BRJGkml3FNK4q9XfZHiksOZ5Q1t3/8cbFpp1UhLN+9qHVSykL5GkssuY6gy0pnWABCnr45E8EpUz6kB4Czk4Ta6jOjCPJox8CJdAv6uFg1UVnGnP4+233+bAgQN4PB6io6NJSUlh0aJFLF26lJkzZ2IwDO+FkYKCQuihCCIFhQigvr6eb775xi+A1q1bh9PpxGKxMGfOHPasOIiVOKKJRTWEam99IWtkVDoZZ7sLa56Z8Vdks/4Pu+lqcBCVZsDt9AQ8jAcJYvLMdDU4sDU5SJxkJWlKDFtfLg14LlCPzcoS467Iom5LMzWbmlHpZYRbjNibf+9GAQGmZD3mZD01m5p7fD3c3kI++hJGsiQGVV57sCKoO6MpiOBw/tpokTTZSnu1jY5qm/+YjhSyRkJSSbhtHpKmxJAwIZpt/9jfr5AOBJIM46/KoWZjE7Wbm9HHaDHEaWkqaR/2vh4pkrRtGmS3hM3qQNOuJntlKhXTaulMsKGyyXjUAqHuvdGBiKIjcXc6ad9ThW1zBdp1tRw8eJCOjg7UajUpKSlcfPHFLFiwgClTppCVlTXkfVRQUAgNFEGkoBBmCCEoLS3lq6++8gugnTu9ZXPT09NxHpSwEoeVeMxEB8T740Nn1fjDwibflEd7ZRd7361EVktYsky0lHWMSCiSLlqDvcWJJMOMe8ZQudpbInuksWQZad3v7T+UdVIizaUdtJQGpmT20UidFUdMQRTbXi3rNakMlBDy4RNEWtlDtsXJ3hbtgMTQcERQd0ZbEIFXFKUvSKByTQOuUcgrAkCCccuyadrTNiK5RUcSnWMiOttE+efeHkzdz+WRJH1+PKmz472lvMXhazdQ+ESS5AZDo56uWDtCJUj8PhZ9q5byeV7vmLpThcvg9nuPhiKKuiPcHjrL6tF8W0n71gq66lv9Ve2Sk5M544wzmDFjBuPGjWPu3LlKmJ2CQpihCCIFhTCgoqKCzz//nM8++4zPPvuM/fv3I0kSEyZMoHFLO1bisRKPXjIGdLuSDLLaWxAhYXw0hReks+Y3O3F1ubFkGLG3OUcsb8ZHyoxYsk9JYs2TO/E4BRqzGmf78EsOHwtLppGJ1+ay+fkS2g4GtuDDsYjONmHJPNSHRgReBB3JrAduIcnoYnycja8rjDg8fSdpBEoEdScYgkhjUjH5xnxK3q+kcXfb6GxUOtSHqjxwfagGSlS6gUnX57HlxX20lo+8KPJdo7JGZta9Yyj7pJqqtYMrxjAYkr61oO5UobarscXYUTlkcj5Lo3piA+2pncguCY8sKGkbnig6Ent1K1FfVXOwrBxznYvvv/8eIQRpaWksXryYgoICTj75ZGbNmhXQ7SooKAQeRRApKIQg9fX1fPHFF34BtGvXLgAmTpxI05ZOYknESvywKr/1hyRL/hCbabcXUL+9lf2f1aA2qIhKM9BcOjJeoO6MuSSDlrIOqr5rRBulxpiop3nf8ENwjkV09qG36l9436pHpRloqxgdMWTNMxNbGMW+D6r8n420EPLh8xL1FSo3EiKoO8EQREBAG6kOhdzTU2jc3Tbi+W4+up/LmSck0lLWMfLCTAJrrpnOGhuOdheps+KwZBnZ+a8DI7rZ5G8sGBr02KIdeLQe4nZFY64xsn9BFSWt8UgeBlSYYbCo6m2oV1ex62ApSfucbN68GfC2LDjhhBOIi4vjuuuuIz8/P/AbV1BQGBZKK2cFhRCgpaWFr776yu8F6v4g7djtYgKziSEB7fc6EgMXAdeL+HEW8s5I5bvf7kK4BWWfVNPV4G1W6upyB7zppA9tlJrESTEcXOlNPO+steNo9XqBHG0uHG0jPGk8lNuhj9USnWXyi8LREkPgbe6pt2p5v3wLavUIJkQdQadNS7bFwf5WjV8MjbQICgWEWyDJ3nLsdd+34OoapdA5vGJMb9Wi1o9eWJXvXJZkiegsE/ZWp1cQjWRek6CH4LO3OHvkFaYvSKB2U1NAmsx2p3peK3C4imVbgp3kv1pBgnxzA5mfp7M9x0F1vNu77wG6p7rj9bjPyiGbHADm1iygc9NBqnaX8dFHH1FWVsbjjz/OxIkTGTt2LOPGjeP222/HarUGxgAFBYUho3iIFBSCgMvlYs2aNXz44Yd89NFHrFu3Do/HQ0ZGBq4DMrEkEkNCwEPg+mL8Vdk07Gyl6rtG9DFaYgujqN7QNKBmn8NBkiU0JhWONhdR6QbGXZ7N5udL/AJstCi6MAN7q4Oyj2tGdbvgTYKPLYyiflsrKyo3IQQEMOVrQGzdm82HK2fwxc/3jUqfniMJlocIvKFzU28toOS/VdRvaxn17fuIH2ehcXfbyBbp6IfsxcnoLOoRayTcH4Y4LZNuyGPbP8poq+hCG6XG2eEe0QIQ4C0Gkzw1BvmXgp1OK1lVahIbVawdaw+YMOoPTXkb1bvLad5cjmvtQZqampBlmWnTppGSksLSpUu56KKLUKuVd9UKCqONIogUFEaJiooKVqxYwQcffMDHH39MS0sLsbGxaBqNhwRQIgZMAS2C0BfR2SZSZ8V5S2ID6fMTaK/qGrXQHR9jL/dWZtr+2n5gdKt/ac1qnJ3eyVfytBicHW4adga2L9JASJoSQ+7pqWx8p4u3P/q/Ud8+wGmpk72Nc+2j55XqTjAFERDUfQfvuTjtjgL2fVDVq5LgaBA3xoLGpKJ6fZP3JYXR2z9sNOh+zR95PxgtrHlmzCkGdj4cBQKm7NKyP8VFY/TInhNCCDwHWihfX41z0z66NpfQ1dVFdHQ006ZNo6ioiAceeIDMzMwRtUNBQcGLIogUFEYIu93ON998w4cffsiHH37I999/jyRJWEQMcSQTRxIWYkdcAAGkzIyls85OS2kHURlG0ufFs+etCly20fMIaEwqcpeksv/zGmyNDqLSDbhsHn/votFCpZOZcVcR+z+voeq7kUv0PpYNZHgngDqThL3Dexv+71f/GfFtn5Y62fsPCWILo2jcNUpFBfoh2ILIR2xRlLfAQhCeiN0rsQVToKXOiiPzhETWPr1r1G0wxOtQ62TaKrowxGnJPCGJfR9W4uwYvXuUWq+i4Lw0Dn5TT9Vfk4ltkTF3ypQnH73X0XBpbDMhudzY9lXSvrkE9eo91JZXIIRg/PjxZGVlce6553LVVVeh0+lGzhAFheMYRRApKASQ0tJSvwD69NNP6ejoICkpCblGTxzJxJKIVhr5B5raoMKaY6J+u9frMeGaHJr2tvtzdEYLWS1hStLTVtGFpJIYf1U2+z+rGZXyv0cSk2/250DFjbHQXNoelImnZWYeY0/Ws+MzG+0Nvbc/UqLIL4QOEVsURfGlmWz4495RF6XdCQVBZIjXMfXWfHb8s3z0qs71QVSagXFXZLP1lTLaK0e3siF4xZg1x+z3lsYUmGnaM7qeY/CWCM86KYmtL5ch3IKodAMd1bZR7R8F3hynmDwz379UCoD5HwU0RLtxagK7ncY2U6/PRGsH7d+X0rlhD+71e2lvb8dkMjFjxgxyc3O59957KS4uDqwhCgrHMYogUlAYBh6PhzVr1vDOO+/w9ttvs2PHDtRqNWaXlXiSiSM54L2A+kNSSai0Mq4uN/FjLRRekMHap3d5S1SPcEPI/shclEjqrDjWPLUzqBW9zGkGJt+Qx/cvldKyf3RLHvtQ5XsTrSUJUoo1VO109tlMNtCC6Egh1B1DnHbUc7aOJBQEEYTGWEgqidTZcVR+Wz+ijYYHQnSWiQnX5LDpryVBEWc+JJXErHvHULm6gfIva4NgACC8oY0z7i5i578P0LC9FbVBReu/s+inQv2g6UsU+RBuD879NbRv3otqzV7q9pXj8XgYM2YMY8eO5YILLuCyyy5Teh8pKAwDRRApKAySzs5OPvnkE9555x3effddamtriY+PR1NvJoEUYklELQX4FeIAmHJzPq0HOih5vwpJJaHWyUFJks9dkkJHjY2ajU2ojSrUOhW2ptGfaKq0MnHFFmo3NwNgTNT1qHA1anYcEkIZkzTUl7roaj32LXe4ouhoIghAa9HgaB3Z/lEDJVQEkY9QGRtDvI6ECdH+xqrBoPs1kzjJSsOOVtyO0Vdq+hgtLrsbV6ebpCkxmJL07Puw6tg/DDAaowqX3YNwC/LOTMWSbmDjn0sAaP8gd9hhdUcTRd0R7V10bC+jfe0u3N/tpqOjg8TERE488UTGjBnDnXfeSWxs7PCMUVA4zlBKmSgoDICamhref/993n77bT7++GO6urooKirCUGtlOmOJro8bFS9Qd6IyjBSck8bm50tw2zyUflSNrdkrPIRbjKoYMiXr6ai2ef8jeRu6Arg6vZOYYBBTYCbvjFRaSjuwtzpHXQz5hBCASg0xqSpsrYKu1pFLWD+WEAJvifNptxew950K6rYGr7JaKJIwIZr8s9NY//vdAS8FPVii0gzEFkZR8U19UEQI4L9mdBYNeWek4nF5qN82+sVHur9QkWR6CI8e954Rpvs9teLbehqs3hdfar2Khe+p2PNOBW0HvOHA7R/mDnr9sVEdAxJFktmAeWYx5pnFSDe5ce46SNPG3XzzzTcsX76cX/3qVyxevJhx48Zx6aWXMnny5EHboqBwvKF4iBQU+mHXrl289dZbvP3226xevdpbEMETQzypJJCKSYoadZsSJkQDUPd9CxqzmqwTEin/onbUqkL1hTlFz+Qb8/n+5VJaSoMTjuZDH6PFmmuien0TABqz2hsyOIp0F0KSDLIa3A7vvwcTBjUYL9FAhFB34sdFHyrzHOS4LELLQ6TSysQUmIMy6e8LXz8slV7G4xAjXpL6aHS/lpKnxdC8ryMont/uROeYmHBVDhv/speOqtERRX2hjVKTuSiR/Z/X4uxw9bhP+xiMQBqop6hPW0rrqP5+Nx1rd2Lb6W2AO2vWLE477TTmzp3LqaeeOuR1KyhEMoogUlDoxvbt23njjTd444032LZtG0ajEVOnlQRSiSdlVAoiHIk5zeCN4RdQcG4aHreg5L3KUbejO9HZJqJzTP5wHmuuieZ9wRVDAGlz4kieHsfG5/aMegJ2dyHkI2+2Fn2UzLaPBz9ZG4ggGqwQCkVCSRCFKhOvzaGr0cGetyuCbQqyWmLKLQVUrW2gcnVDcI2RwJpz+N6TeWIiLaUd3oazQST/rFQkWWLPOxUggTnVQHu3Js/HEkfDEUTd0da307FhD3Wbd+HaXIrNZqOwsJClS5eyePFiZs+ereQdKSgcQhFECsc1Qgi2bdvmF0E7duzAYrFgbLWSRDqxJKGSgvfAMCbomHprAdteLfNWSAtScQQfvr4hiZOtJE2OYesrZUEtlgDeZHhTioH6rS0gHbJxFBtc9iWEfBhjZDQ6aKkemiemP1E0VCFUcG4a9mZncJLT+yEUBVHmokT0MRp2vxV8AQLeFw7ODjcdNcHzgnRH1sh4XB4QED8+mo6qrpAoSDH+ymxqNjZRu7l5VPua9W0QILyhu+Muz2bDH/fQWdc7bLc/cRQoUeRD3enA/O0+dm7fjrSpjJaWFpKTk/nBD37AhRdeyPjx4xVxpHBcowgiheMOIQTff/89b775Jm+88QY7d+4kOjoaY4uVRNKIIwk5iCIoY2ECUelGf4NCS6aR1gOdQRVCABOuzqG9uovSFdXBNeQIsk9JIiY/io1/3juqY9SfEJJVkFykoXKHc9j2HCmIhusRSp0dh7PdFVK5Q6EoiBLGR6Mxq4PvATkSCdLmxFP1XUNwJ/vd7JlyUz5Ne9so+6Qm2Nb0IHdJMqYkA9//vTS4hkhgST90DwfGLcui9UAnB77quwVCd4EUaFHkw2N3krByH/s3baNzx36am5uJj49n2bJlXHvttUycOHHUc2IVFIJNgApGKiiEPt9//z0PP/wwY8aMYdKkSfz+979n1qxZvPfee9TU1DBOmkGClDrqYkhSSaTMiMUQ7w3Ha6/sornkcO+P1vLgiaGYAjOy2vtgrF7f6O9rFGwMcVpiCswAlH9Ry+a/lQRdMPowx8ukjdNgsITehKJydUNIiaFQpW5rS+iJIcAYryNjQQJRacZgm+JFwOa/lVD+hdfjGFNgxhCnDbJRXuq2tVK93tt4WVZL/vvFqCPwiyGApr3t/jLmhngdKTNikVSje6+QdRoaTi7C/KMLqKmp4c9//jNFRUW8/PLLTJ48maSkJC6++GI2bdqE8s5c4XhB8RApRDTl5eW8/vrr/OMf/2Dr1q3ExMRw3nnncdFFF3HKKadwpn5Z0GzTmNQ4O1xIMky7s5ADX9VRs6EpaPYcic6iYdqdhex5+2CP5OBQoOCcNAwJOrY8vy8o2z9amByASustpBAI/vvVf4btGTIm6IgbY6Hi2/rQ8Cx0IxQ9ROCdRKfNiad+R2tQG9ceiUov47YFvxhGX0y8PpfOOjt73wmNUEMfCROiKTg3nXXP7g6Jkuo+kqbGkLEggfW/343wHH4m+Gj/MHfEvER98f3ZD/DJJ5/w2GOPsW3bNtra2sjPz2fKlCn89Kc/ZezYsaNmi4LCaKMIIoWIo6mpiTfffJN//OMffPXVVxgMBs4991yWLVvGqaeeGlQR5CNxspW801P57rc7cds9SCop6Lk44O07kjIjlpL3vT0+QqFZpQ+NUYUuWkN7lQ2VVkYIMaq5Qj76FEMSFM7X0Vbnpmpn4KraaZ/vpGvR8EOREidZSZ+fwMbn9ga1UllfhKogkmSJqbfmc+DrOn8vq1AibU4cUelGdr55IGS8o7JGQpIk3A4P5hQ9thZn0MruH0n3e1nemSlUfdfYZ07PaOO796v0MjPvHkPJB5XUbmrutVz5GxNGxR5bu9fDt/fyH/Hxxx/zm9/8hm+++Qan08mCBQuYNWsW119/PWPGjBkVexQURgtFEClEBDabjffff59XX32V999/H5fLxSmnnMKyZcs4//zzuSD6umCbSNqcOJydbmo3N6MxqYnOMtKwszXoHem7E5VuIP/sNLb9oyzofViOpOiCdAwJOjYdaoQYTPoSRenjNbQ3eWiuGP4EUPt8Z4//B0IUBbsgR3+EqiACQnbMAGIKojCn6PvNRQk2k2/Ko7POzu7/OxhsU3qgjVIz7ops9r5TQVu3ym/BRpIhboyFlv2dODtcJE6yojGqqPi2d+jmSIsjnyjysfncm3nvvfd45ZVX+Pjjj5FlmbPOOouLL76YM888E6vVOqL2KCiMBoogUghbPB4PX331Ff/4xz948803aWlpYdq0aVxxxRVceumlXJV2Z7BNRB+rxdbofSuZf3YqjlZXSFX4AkibF090hpHtITghlWQJrVmNvdWJxqwGQY+QkmDiE0U6k4S9IzC30SOFkI/hCCJTkp6OWlvITuxDWhABSGBK1IdMhbe+0EVrsLeETigYeMO/kMDZ7kJn0eBod4WcdxJg7NJMWvZ3UrGqPtim9CBzUSJai5q973pbLHR/lnRnJMTRkYKoOytmncd//vMf/vOf/7B27Vp0Oh2XXHIJ11xzDSeccAKyrKSmK4QniiBSCDvKy8v5+9//zosvvkhpaSk5OTlcccUVfPLYGkySJdjm+THE65h2WwHbXiujaU/7sX8wikgqCVkt4bZ7iCkwY0zUU/FNaE0IwJsrZE7RszEEvEJHosrPITZdRcF8HZvf78LWNvRbaX9CqDtDEUWyWmLmj8ZQsaqeA1+Hpich1AVRxoIE0ubG891TO0Mu/wq8E+Wpt+Sz698HaNjZFmxz+mTKzfm0V3Z5+/KEGGnz4umstdG0px2VTsbjEiERvtydmIIoxl2exfo/7D5qCHMgxdHRRJGP6LJaxu2sYu3atZSUlBATE8PZZ5/Nz372M7KzswNmi4LCaKAIIoWwwGaz8fbbb/PCCy/w8ccfYzQaufTSS7n22mv56YKnQ6ZEaEyBGWuu2V+aOm5MFI172kPuATvx+ly66uwhOUEBr2dIeAT6WC1qvcpflSnUUBfmEJepor5saGFyAxFCPobqJTIl6XG0O3F2hEYux5GEuiDSmFRozZqQ9hAljI+mfntrSHpgwNuY1GVzY2t0+K/tUKTgnDQM8Tq2vBCcYi39IakkYgvMfsGbc1oyzSXt3t50/RAIcTQQUQTeVhYvpM/gJz/5CZs3b6azs5MZM2awYMECHn30UUym0SsMoaAwVBRBpBDSbNy4kRdeeIFXX32VpqYm5s+fz3XXXcfL172DWlIH2zzA+xZeVsu4bG4SJkSTMN7KjuXlIffQNyXp6Wp04HF6vUK2JmdIVc/ykTY3ntiiKLb+vTSk8qu6Y04z4OryTvCOVXGuPwYjhiBAeUQhSKgLonAi1F8gSLK3n1nDztY+c2OCjSFeh96qoWlvOyqtjD5GG3JCWJIlii/NpO77Zuq2tqDWq/C4PEf1Xg5VHA1UEHXHY3fwc10Wjz/+OLt27cJqtXL55ZdzyimncM455yjNXxVCFkUQKYQcDQ0NvPbaa7zwwgts2rSJ5ORkrr76ar761SZMUlSwzevFlFvyadnfwb7/VgXblH5R6WRm3F3Ega/qQi5W/kii0g1YMk0hbeeEq3Nw2dzsWF4+aEE0WCHUncGIorgxUaTOjmfbq/vxOENUWRIegkjWyIxblkXFt/U07grNsDSA4kszUetVwW9GehTS5sbTur8jpAoa9EXa3HgyFiaw9ne7cNtD9/rJPSOF6CwTG5/bO6DlByuOhiKKfIiqWq5o1fPCCy9QU1NDbm4ud955J8uWLSM+Pn7I61VQGAkUQaQQEggh+Pbbb3nuued44403cLvdnH322Vx33XX87uwXkaXQSdRUG1Skzo6j4pt63A4PMflmOuvt2JtDK6kZIH5cNA07WhAer1ejo6orJL0u5hQ9iZNj2PdB6IrK7qh0MpIs4eryhqENRBQNRwj5GIwgsmQZiR8bHfJjGg6CCCD39BTqt7fQun/4x3GkUBtUCI8I6Ql8d3JPT6FmUxMdVaHlhQGvN8uUYqC9ostbAa44mvptodWPDUBn1WCM1/m9Wmnz4qlc3eC/Nx2NgYij4QgiH5LTyc31GtasWcP777+PEIKpU6fy1FNPMW/evJAJeVc4vgmdWabCcUlbWxt/+tOfmDJlCvPmzWPVqlU8+uijzHEtoe0tFc+c8/eQEUM+M2S1RMr0WEzJesDbeTwUxZAxQUfRBelYc70d2tsrQlMMAWgtGswpBlS60DjWfSJB5omJqI0q3HbPgCYcPgIhhgAMXyYNeNnW/Z0hL4bCiX0fVIW0GAJwdblx2z2ojSoyT0z0lg0PUVQ6GXOKAZ1FE2xT+kR4vPdMAGuu2Vv2P14XZKt6Y292+nOJTCl6UqbHIqu9B/5Yj87Mi7/3/+kPvXn4feiERsNzKbDhvFkkPnU/S5cupby8nAULFjB+/Hiuv/56Dh4MrfLsCscfiodIIShs3bqV5557jldeeYWOjg7OOussbrnlFp48/W8h+bYoeVoMKTPi2PjnvSAImUaqR6LSySRNiaFytTc+X2fVhKRYA0CC2IIoGneHbghSd/QxWiZcm8Pu/xykpbSj1/d9eYkCJYS6MxAvUfxYC531djprQy9H7EjCxUME3sbFhngdDdtbg23KUYnOMVF4fjpbXtgXutf/EcQWRtG4py1ky8N3v5emzo6jZmNTSHri/M8mCabclE/V2gaq1zcN+Pd9eY0C4SU6EuHx8Hz6DB577DFWrlyJ0Wjkiiuu4IorrmD+/PkB356CwrFQBJHCqGG32/n3v//Nc889x8qVK0lOTuaGG27gi59vQC8Zg21eL7RRalRama4GB6ZkPdZcM5VrGkJSCPmw5poYc0kmm/5S0mfPilAitiiK4ksy2fDc3pAs7tAXslrqN3m5uyAaCSHkYyCCaMrN+TTuaWP/p6FfiCGcBFH2KUnE5Eex8U8Dy9cIJkc7V0MNQ7yOqbfks+Nf5SGdowXewhWTb8xj57/Kad7X+8VIqCCpJFJnxdG8r52OahuGeB1uu3tQDbe7i6OREEU+NLVNXNFh4K9//SuVlZXk5eXxyCOPcPHFF6PX60dsuwoK3Qnh+BSFSKGyspKHH36YjIwMli1bRl1dHf/4xz8YWz2XylWNjD8n37/sxGtzSBgfDXiT6yffmOdt8AekL0ig8Px0/7Ljr8wmaUoM4K2gNvnGPHRWb/hF6uw4xlyc4V927NJMUmbEAmCI8z7QfOEPydNjGXt5ln/ZMRdlkDYnjjEXZ5J7egqTb8wDoGJVPQkTohl/VbZ/2cLz0slYkACAxqhi8o15RKUbAG/+zsTrcv3L5p+VStZJiQCotDKTb8wjOsdbjjS2KMq/HYDcJcnknJoMeMMeJt+YR0yBN/TNmmdm8o15/rCI3DNSmHCNdzLevK+DrgY7piTvQ8SSaWTyjXmo9d7KPpmLEik4J82/nQnX5JAw0Qp4S+NOvjEPbdSh8Z4XT9EFh8d73BXZJE31jrcxUcfkG/PQx3gfkqmz4ii+NNO/bPGlmaTM9I63bwJhTPCOd8qMGMYty6JxVxsb/7SXzEWJpM3zJthqLRom35iHOdU7hokTrUy4+rDQKDg3jYxF3vFWG7zjbcn0iun4sRYm3XB4vPPOTCHrZG+ImayRmHxjnj98MLbQO96+kJKc05LJXeIdbyTveMcWeQt4JE62Muu+MWhMKjwuQdZJSeSdlerfzsTrc4kfZ8G9t5SoBJlJN2lRO7zHJrnUSPb2w4VACjdEE1vlHQdjq5ri76xobF4jkvYbyNl6eNn8TdHEV3iPo75DRfF3VnSdKgxfJpEyI9YvJADGXJJB6uw4wPsmW3gEjbu8XoykKTGMuyL7sA3np5M+3zveGrPae86mecc7YUI0E649PN7556SRecKhc1Z/6JzN8p6zccUWJv2g2zl7RgrZiw+Nt9o73jH53vGOyfees5LKOy7Zi5PJPT3F/9voLBNxY7w9xKKzTUy+Mc8fPpl5YiL5Z3cb7yDeIw58VcfGP+/13yPA2xR18o15/hDaxMnWkLhHTLwuF7VBJv+cNPLPTiXvjMPjPemGXOKKveMdCvcI4RF0Ndj9L3F89wgfRRdmhMw9wtboYN0zu8k+JZnYoihSZsYSN9biPWe13oX7u0cAWDIOjbfRO94ZCxMoOPfweI+/KpvESd7xNqUcOmcPhRWmzY2n6KJu5+zlWSRP8463If7QeMd6xzt5agyWTCMd1Tb/en3nms566Jw99Jzo7x6RefH35F27gyV7BQk2rzcst93NmVWHX7bNr3cypckrsrRuwTmVDpK7vMtmdbg5p/LwsnManMxo9C6r8niXTe9040yM4eMkDefedD0PP/wwCQkJXHXVVSQkJHDmmWdSWhq6RUIUIofQqFusEJGsX7+ep59+muXLl6PT6bjuuuvY+lopBfnZvHzdO8iSjK3R0SMXo62yC0e794bpsnloO9iJx+29udqbHNCtlHV7VRf2Vm8Ig9txaFmn93t7i5MO7eFE3fZqm7+Tu9spvMs6vOt1tDppr+pCpZPJPCERe5sTW7OTPW8fRHgEaXPi/aERjjYX7VWHqyN11NlwHLLB4/au17ess91Fe+VhT0FnnR2X3buvwuNd1rfvzk43bQe7LVvvgEPOWyGg7WAnzk7vsq5OF20HO31fI6skTMl61EYVrk43bQe7cHb4xtC7Xl8JcFuTA7fj8Hi3V3bhaDs0Lnbvsr63yrZmB3QLX2yv6vLv6+HxPnRsWhx0VB8up9pRc3i8PU7vsm6HB51VQ+aiJJr2tfvHpKPWhr3Z+9D0uA4te2ic7G3OHuPdWWf32+sfQ5t3WUeHq0flqs46u/98EJ5DY9jlHRdnR88x7Kq3H95X33gfGkOVVkZ4xOExbLSj6ji8r+0VXTjb3fBpOpKti/YKA+LQqhwGN0I+fM52WFw4td4xc6sF7dEu//d2gxvJc3i8O6NcOHXeZT2yd1mPLOhaVIOhKMo/0TlyvMFrv+86cvQaQxu2pkNjeOicdfnO73ZXj5LNXXU2/3kn3PQYb2e7i7aKzm7L2vG4jxjvziPO70MD3tVgR1Yd3ldXl/vwOdvlO2c5NN6hc49wH/p/Z70N26HwqcPnbGjeI4zxOtoru+hqPOyFbasIvXtES1kHbocHa66JjEVJ1G8/XMAg1O4R/nPULchYkEDldw09x7C/e0T38XYfHu/unrz2qi6/F8dtPzSGLo9/vLtfNx3VNuytLv8Y9hjvVmePe0TNpiach64bbZQaSfIWM4Jj3yPsXzeQ+l0jMfV22v44hbpuuZ7NGgnbIZs8EtTpJByHdt2mkqjTSd2WlXH7brOHlvX91qaSaDRr+G+sGpF/LnNPmItx3RY+/fRTCgsLufjii7ngggu44IILkGXlXb5C4FFC5hQCitvt5q233uLpp59m5cqVZGdnc+edd/LOPV+ilkIzedaHrJaYdEMe+z+vCf2wjRgt1lyTPzZcpZNDMp69F5L37Wnl6vqQbRQ6JD49/JbcoB6ZnI2BhMrpY7RMuSWfba+U0XogtAsA+AinkDnwvuEfd2U2G/64J2zyc8IJjUlF6ux49n9WE7L5RN3pfu9NnhZD874ObE2hH66cdWISm/9WMuywyt0vTguQVT2ROr3v6z0dndyrtfLUU09RXl7O2LFj+elPf8r555+PWq2801cIHIrMVggILS0t/Pa3vyU/P5+LLroIWZb5v//7P/LKpvHfH60KWTFkyTIy7Y4C1AZvONTGP+0NeTEE3nCl1Nnx/hCkUBdDydNivOEZAvZ/WhMWYih1dhzZpxyjqtun6T3E0Egx0HLbLpub8i9qe7ztVQgs7VVdlH9RG/LX3JFkn5LkD6sMZZwdbm/um/CGOfpCwkIV33kgqSTS5sQTNyb0euUdiS9c2eMSqA0qpt1RgCVraHm8hdeup/Da9QG28DCyychvNQ649xYee+wx4uPjueSSS0hOTuaqq66iqWngBSMUFI6G4iFSGBalpaX87ne/48UXX8Rut3PZZZex65VKLFJoP8R8FYPURhVZJySy/4taXJ2hPUnXRWswpxpo2NEK0qGkaWfoX76SSmLSdbk07GzlwNd1wTZnwKTOikNjUnvfVPfFUYRQoLxEg+k7FK6Em4coXMk6KQlnh4vKNQ3BNmXAZCxIIG6Mhc0v7AvpYjY+ZM2hQhbC+9KqvbKrRyhrKHLkM3C4lUkD6THyeYmOxHGggqzPV7Nu3Tp0Oh1XXHEFS5cuZdGiRQHbtsLxhyKIFIbEli1b+NWvfsXy5cuxWq3ccsstfPnzjegkQ7BNOybZi5OJH2th/e93h2xfnr7IPiWJuDEWNvxxT3jYLR0KJ7F5wqri1TEZgEdouIJoKEIoKt2AJctE5bcN/lyGcCAcBZEkS6TOiaO1rKNHTopC4PHdO1R6770kHJBkmHprAfU7WsOi0qMPSYZpdxZSv62Fso+Hb/dwxVF/gsiHu6WV620yv/vd72hra+Pcc8/lJz/5CVOmTBnWdhWOTxRBpDBghBCsXLmSJ554gv/+979kZWVx77338n93fIpKCu1YXmOCDkkt0VFlQx+jRWNS0XYw9CcyGpMaY4KOlrIOZLWEpJLCJlQnd0kylgwTm/5WEha5AD7yzkylo8ZG9brG3l8OIjxuqKJoqF6h5OmxJE+NYdNfSob0+2ARjoIIvFXdqjc09X2ehDDJ02MxJekoeT+MmvZKMPmGPFoPdLDvw+pgWzMgVDoZ4RZ4XILobBOddXZ/IYtQJirdgLPDja3JgSlFj3AJOuuG1xZhqMLoWILIh9pm55wDDbz11luUlpZSXFzMPffcw/XXXx+SfQ0VQhNFECkcE4/Hw/vvv88TTzzBqlWrGD9+PD/+8Y958cr/IB+rFXaIMOHaHJwdLnb+60CwTRkUeWemEp1lZMNze8NKVIBXhOpjtWGRk9Wd7MXJdNbaqN3c3POLQeYKDVYQHQ/hcX0RroIoXEmcZMWYqKfs4/AQFj7ixkTR1eAY9uR81JFg6i35tOzvpOT9ymBbMyjGXJKBxqjm+5cCV/Z6sOJooKIIQLjdPKiO5mc/+xnV1dXMmjWL22+/ncsuu0wpwKBwTBRBpNAvTqeT119/nV/96lds376defPm8eCDD/K7s14M+bcukgwpM+NoLmmns86ONkqNs8MdFqFEkkpCH6Olq96OSicjqyR/Od1QR6WTSZsbz4Eva8MjrG8gDLFowmAE0XDFkNqg8pYWDv3TuxdhLYgkUOtVPcqCK4wskgwZixKpWFUfNt5yjVGFxy1w2z0Y4nXYmhxhkRMlqSQ0RhWONhfGBB3WPDNV3zUE5N4+UGE0GEHkQ7jd/DFnPL/+9a/56quvSExM5IknnmDZsmVotSPXYFYhvAmP1/sKo4rD4eCvf/0rBQUFXH311eTm5vL1119jWJXC02e/FPJiyIvkbUx3qImko80VFmIIIPe0ZMYuzQLJW8EoXMQQgDnFQPKUGHTW8HvojLk4w9+s0s8wKsh1uY5dWbFrUU1APEP5Z6Yybln2sNejMDjGLcsm78zUYy8YgsQVW3o0pg0X9DFakqfEYE4J/XxVH85Ot1e8STB2aRa5pyUH26QBIdzC3xPJkmUieWoMEJjn/0Cr0wnj4MMMJZWK28p3sP+ys3n++ecpLCzkuuuuIycnhx/84Ae0tLQceyUKxx2Kh0jBj8Ph4KWXXuIXv/gFBw4c4OKLL6b8X02YpehgmzYgtFFq8k5PpeSDShxtLiSVFBZv4XyoDd43zdooNRqjmo4a27F/FCJ0H+twLKAgqyXyz0qldkszzfs6vB8GoJz20bxEgQyRM6foUelUtJR1BGydo0U4e4iis0247W7aq8LnWvVhzTWRONHK3vcqw/J69dkcbvd5U5IeZ6cLR5vLf88PF3xjfeSzNhAczWM0FC/RkTgqqyn8eh1ffvklaWlpPPTQQ1xzzTUYDOEjrBVGFkUQKfQSQpdccgn7lzeGjRDyodLJjFuWzb4Pq2ivDP2CCd3JOjmJ2MIoNv15b9iFmvnKatdtbabi2/Ap6dsvAe4r1JcoOl7zhfoinAWRQnBJmxNHwnhr2JTl7o4kw+Sb8mnc3RZWlegAzKkGcpeksO3VsoCHLfYljAIhiPzrOljF3LJqXn/9daKiorjxxhv5+c9/jk6nC9g2FMITRRAdxzgcDl588UV++ctfcuDAAS699FLK/tmIWbIc+8chgjnVQO5pyWx7bX/YxJP3hSFehzFRR8P21mCbMiRSZ8fRvK+dztowS3gGCs9Pp2Zjk9e7MgJNVrsLopEQQhkLE2ir6KK5pD3g6x4Nwl0QWfPMRKUawqrHVneis00kTYlh938OBtuUQWNK0hOdY6JydXi+iIkba6GzxkZXgyPYpgwZlU5m3OVZ7FtRHfAXkd3FUSBFEYCuopqoD79g48aNpKamcv3113PXXXdhtVoDuh2F8EHJIToOcTqd/OUvfyE/P59bbrmFuXPnMksspn65K3zE0KEwZkebE2enG5U2/E7luGILYy/PQpKhq94edmJIpZex5npztCpXN4SlGFLpZDRGlfc/IyCGujNSXiFLpglDXPjlbEUKhjitP1cxXNEYVah04XcP7aix+cWQNdeESh9e+9CwvZWuBgeSDGMvz+qdwxgGqLQyzk43jrZDL34CmGI80DyjoWBPS6b++stI/p8fsWjRIh599FGys7P54x//iMMRvgJVYegoHqLjCI/Hw7/+9S/+53/+h5KSkrD0CAEkjI8mbW48m58PvzCJ7lgyjCRNiaHkv+EXww+QeWIiSVNiWP/s7rC0vwcjKYZODr8376NJuHuIFIKPrJaYdmchNRuaKP+iNtjmDBpZLZF3RirVG5toO9AZbHOGjKSSmHR9LgdX1VO/NfCFC/b876yAr9NH3N5q0vfu4b333iMlJYVLL72UX/3qV0q57uMIRRAdBwghWLFiBQ8++CCbNm3irLPOou49G1GSNdimDQ4JEN7+NomTYyj/vCbsJuI6i4akqTFh+dDuheSt+GRrHLm3abLJ++bd0xH4YgHZi5PZcnkCDQbvK82chBFosDnCYkhjUuHsCJ+k7L6IFEEU7sfCnGogfpyFso/DK5/Fhz5Wi63JEZal548k84REajY0YW8dWnPnYCGrJTJPTKJ2U5O3X9ShZ3agGQlhpOrwehcd1dUkfv4pGzZsYOLEifzyl7/kjDPOCJPqugrDIbz8ywqD5ttvv+XEE0/k9NNPx2w28/XXX2N7Xx92Yih1VhwTrsoBoLPOTtnH1WEnhsA76UicaEVjCs+3TpIM+WenYkzUgWBUxNCR/w4EKp2M4aR4jCM53xhhMSTJEtNuLyRlZuyIbkfh2KTMjGXa7YVIcvhOmnTRGqKzzWEZOgeH7kUCjIk68s9OJUx6hvdCY1KTONGKOTX8qp95XIKyj6v9YmjC1TmkzooL+HYKbltDwW1rArpOt8mbg6xNTqZ56TI+/fRTYmJiOOuss8jNzeXf//53QLenEHqE6S1D4Vhs27aN8847j7lz59LU1MT777+PbmUSP1v4TLBNGxyH5hftVV007W0LaHzyaOJ7uDXsbGX9/+7B2RGYUqWjjUqrwpSoRxt17B47wyHQAuhI9v59PB9kSxyIOvxZaV2AhMXJB0cpTE6w+z8HadzdNgrbUjgajbvbDhUlCL+XND4adrSy+W8lYV2cBkAbpcGUqEelVQXblCHh7HCx/n/30LDTm1MajsLIR9OeNtqrDhVaGIFn90gIIx8/2LCJ8jPP5rnnnsPhcHDRRRdx1llnsXLlyhHZnkLwUULmIoyqqioefvhhXnzxRXJycnjsscd4Ydn/haW7N+vkJIxxOnb8K7xDaaKzTUy4OodNfyuhvSK8yoF3Z7T6Cx1NDA03dK70nxMpaBJUG6FN1/uaGHbYnJIvNGgiJWQuUtDHaonONlGzoSnYpgybcOyJ1h1zmoHJN+Tx/d9Lw7LHWHeKL82ks87O/s9GLiRzuKF0vrC5IxEeD49nZfDggw9SWlrKiSeeyMsvv0x6+sgW4lEYXRQPUYTQ1dXFz3/+cwoKCnj77bd59tlnyd43mRev+E9YiiGAtgOdNJWE8dvvQ8PeUtbB9y+XhrUYSpsTx8TrcpFUI3sujaRnqPSfE1F5BGMbBRn9VKgelpdolMVQzmnJ3tBFhZDAmKgj57TkYJsxbOLGWEibEz/i1/pII6kkJl6XS9qcwIdsjRbtFV18/3I3MRTGh6RpbxttB0e2YMRIeYwkWeb/HahA/sFN/OAHP+D777+nsLCQ2267jZqa8My5U+iN4iEKczweD6+//joPPvgg1dXV3Hnnnax7ag8aKTzL8GYvTkalkyl5rzLYpgwLbZSa8VflUPJ+Zdi/2QPvZM+aY6Zyzcj1+xioGBqKl6j0nxP9/1Z5BB4JRD8vCobkJRplMaQ1qxl/dQ4l71XSsj+8z69I8RBFZ5vIOzOVrX8vxdEeniGx4M0TlOTw9qz4SJ0dR3NJuzenJczxn18vl+JoC9/zCyD/rFRcdveIF/AYiseoPy9Rdzw2G5e0tfDUU09hNpt55plnuPLKK5FlxccQziiCKIxZtWoVd999N9999x0XXHAB1f/XiVEyB9usYZE42YqslqleNwIVv0YRSYac01Ko+LYee3N4VQrqjjFBR2e9fcRTIwbrGRqoKOouhOK7BO0asKmP/pp1UIJICZEbNpEiiCINjUmN3qqhLYw9234kMMbrwloY6awa0ubEs+/DqnBOVQMgeXosHqeH2s3No7K9wQijgQgiH5baWtJ3bOO9996juLiYO+64g1tuuWUoJiqEAIqcDUPKysq49NJLmTdvHi6Xi2ksovU/ctiKoayTEslclAhA7abmsBZD8eMsGBN0CA/s+6AqrMWQSisz4ZocMhYkjOh2RipMrrsYQghmVgmm1xx7JjHgsLkgiqFwbER8vBApxyZ3STJ5Z6YG24yAkLEggQnX5IT1sbE3O9n3QZW/9UT82PDqH9id6nWNfjGUuSiRrJMSR3R7IxVK15qYyPZFJ7Jy5Uo6Ojq49dZbueCCCygpKQn4thRGnvC9OxyH2Gw2Hn30UYqLi1m5ciVjmU7MhhxipJGdsI40bocHtyN8+3f4kGRIn59A4iRrsE0JCG6Hhx3/Kvd3gh8JhiqGjvW7HmIIQJL4JEtifWKAgvCDKIbUBhWz7h9DbFHUsRdWGFVii6KYdf8Y1PrwrHDWndKPqtn6clmwzQgIlasb2LG8HLcjvCvo+UicZCV9QUJY5xT5cDvco1bZcKQq0l317RpUt9xG5mWXsXbtWoqLiznnnHNobAzfl7vHI0rIXJjw3//+lzvvvJPy8nJSnbnkUIxaCs9eNgApM2LxuEVEVDJCArVOhcvmRqWXcdvC+6ErqyXiii3UfR/4TuM9tjNMz1B/YXNHiiGdS+CWwTXIHjH9hs4FOUxOpZWJH2uhcU972JZv704khcxpTGpiC8zUb2+NmMm3SisjqSRcXeH/0gogYaKVhu0tYZ8j5XvWqPUqXHZ32IfRASRNjUFWSVStHXkh0V8Y3WBC5vrC43Bg+mgFO1d+TXp6Os8++yxnn3122Ba3Op5QPEQhTllZGeeddx5nnnkmTSVtTHeeSIE0IazFEIAhQYchNjwLPxxJ/tlpjL08CyDsxRBAbJGF/LPT0EWPXK+hQITJ9bWOXp4hYFqt4NQyAYF49xMCOUNuh4eaTc0RIYYiDWeHi5pNzREjhgAmXJNDzqnhXz0PvHk4+WelRoR31fesGXt5FvlnRUZooyFWiyF+dCpn9hdG52vQOlRkrZaus84m7Z4fUavTc+655zJu3DhWrVo1rPUqjDyKhyhEsdlsPPnkk/ziF78gPj6emIPpJJIW1m8ZorNNyGqJpr391DwOU0xJejRmNc0lkbNfOosGe+vI5D8FMmeou5eoLzEEYHIIzE6oMQ3+2vF7iUJACPnIWJBA3dYWbE2OYJsSECLJQwSgj9GSMD6aA1/XBduUgBCdbcLW5MDeEr75kN0ZyXtbMLDmmXG2u+iosQXblIASU2DG4xSjVqW1u8douF4iH0IILJs3sf/99+jq6uLHP/4x999/P6YRbjyuMDQUD1EIsmLFCiZMmMDPfvYzkmxZ5B+cTpKUHtZiCLxhckmTY4JtRkDQGFXeRFAJOmpsESGGYgujiBvjTdQNBzHUfX39iSGEoEMrDUkM+QkhMaS1aEidHYfOOnLeO4XhobNqSJ0VhzYqvL34PlrKOiJGDMHhe1tcsYWYgvD3FDWXtHvFkOQtUKQ2hn/+GkDSpBhSpg+jL9wgGYnCC5Ik0TZ5CtYf3Ydh/gKeeOIJMjIyePbZZwO6HYXAoAiiEKKuro4rrriCJUuWUGV0McN1UtiHx2nNakxJegB2v1XBzn8fCLJFgcGUYiBxYgw6S+RMTGOLokiYED1i6x+VanLdSOoQnL1PYHAOwwkeQmIIwNHqZM2TOyOit1Wk0lLWwZond4Z9r5juaMxqptySjyXLGGxTAkbC+GjixoS/IPKhs2hInBiDOcUQbFMCws5/H2D32xUAmJL1aM2jMw8aicILsl5P7JLTKbjzh1hj4/jhD3/IZZddRlVVVcC3pTB0lJC5EEAIwauvvspdd92FEALDlfMZ84wm7D1CAMWXZKIxq9nywr5gmxIQ1AaVP7lYVkdG88LuSCoJ4Q78Pu1+fjoAY+7cEdj1PjYBAFVq7w7oVpugoFmwNkmCIVxLOZdtGbZ9Cscm0kLmIpXcJSlUb2ikszZ8e/l0Z6TudcGk+zOp+7Mq3Jl4XS7Odhc7/jW694h9v54T8HUKIXB/tJHOTSvo6Ojg9ttv51e/+lVEzPfCHcVDFGRKS0s5/fTTufLKK3GNSybxd9cQc9KksL84fG77kv9WsuOf+4NsTWDQGFVMvbWAxMlWgIgRQ7lnpGDJ8L75HUkxFPD1HhJD/dGsl1ibLEeMGJJkiZk/Kgrr/iPHC/FjLcy8pwgpgp6w+z6sihgxBIfvdZYMI7mnpwTZmsDgeyYlTbYy9daCiAmf2/HP/ZT8txJgVPcp9/5vyb3/24CuU5IkYgqnknnu7eTkF/Kb3/yGxYsXs2fPnoBuR2HwRNDtOrxwu9387ne/Y/z48Wzfvp2s/7mMjB9dgNoa/sl2uUuSGX9lNkjgaHfh7IyMt1TOTjflX9bSuKst2KYEDJVWxpSgR2MamYfMkWJo57PFgVnvEWLIXXk4lEcSgtlVHqy2oYm7UBRD4H2jXbm6gY4ImpRGKh21dirXNCCpIusRa0zQkX92akT0v/GhMakxJerDumnrkTTsaqP8y1pcEfTsdbS7QIIJV2aTu2R0qx4GWhQBuHVRaBZcRe5ZN1JSUsLYsWO5+uqrcbkiJ9Q23FBC5oLAtm3buPbaa1m3bh0xZ0wn6YoTURl7lppMPi+woUWjiTFBhy5aEzHV5ExJerRR6ojZn9GiP8/QcMPm+vMM+cLmjE7BSQcE36ZINBgG2XsoRMVQJKOEzIUP5jQDBWense3VsojKkYpkYvLNONoipwpdTL4Ze4uTzrrgvBgKRBhdVGnP/wunDdXm99m8bjWTJk3i+eefZ8qUKcPejsLgiJxXImGA2+3mN7/5DVOnTqW9vZ2cX11D6o1LeomhcCRuTBRjL8tEkqGzzh5R4iF1Vpy3K3gEoTGpGHdFNvoR6gV1tDC54XiJjhYm5/MSdWok3suJPDEUNyZKqS4XRuismohK2gdor+hi45/2RqQY0sdqGXdFNpoICTPzkb4ggdRZccE2I2A07W2ns86OJMPYyzJH/RobkTA6jR7P9AvJO/8OXC4XM2bM4PLLL1e8RaOMIohGib1797Jo0SJ+/OMfYzljGtKj52EsSg+2WQHD2eXG2eUeUr5GqLP3vUq2vxYZeVA+VDrvQ98TRg0kj5UzBBDXJTA7xKDPw1AXQ0hQcG66vyy6QugTX2yh4Jz0iAov86GzajCn6INtRkDx3QtV+sgSRNtf28/e9yqDbUbgkaTD844gMBJhdMakTOS5lzNl1lyWL1/O/Pnz2bVrV8C3o9A3SsjcCOPxePjTn/7EfffdR3JyMuKGBZjGZR7zd+EQMqfSyiROtlL1XWOwTQk4xgQdRRdmsONf5dgaI6MB5mgx0CIKgwmdG4gYAjjN1Y4H+Cxz4O96Ql4MHUJWS0iyhDuMROxAiNSQOZVWRnhExBRf6c64ZVkgSWz7R1mwTVEYIIY4LWMuzmTXvw8ELdxsJEmZGUvtpuag3B8HG0Z3ZMhcX3RUlyF9/yFlZWUsW7aM559/HllWfBgjiTK6I8iBAwc47bTTuO2229AvKkb3y4sHJIbChegcE1knJkVkGI+z00VHdRfOjshyWZuS9Yy7InvEKvUMpqLcQEPnBiqGAD5RmVidMvBX8uEihsBbQSrSxFAk43Z4IlIMAex9N3Kqhx6J2ugNJzYlR5YHzNEemc80AH2MlqwTk4jOCU5RqpEIozMlZ6M/4RrGTZ7GSy+9xEknnURp6QCUlMKQUQTRCPHaa68xfvx4duzYQdZPLyf15jNQGUYmX2O08XVgb9zVxrpnd2Nvjpwu5jqLBpVOxtnhZvdbFbjtkTUBldUSHqcHty3w+zUS5bUHLIaEQCMEbkmiUzMwQRROYqjgnLSIygM4XkidHUfBOWnBNiPg2FudeFwioiqz+XDbPXicHmR1ZMU6uu0edr9VgbPTjUono42gpuK2Jgfrnt3trwDrm6OMNoEWRrJGj5hxMbnn3ExpaSljx47l7rvvRgnsGhki724WZNra2rj66qtZtmwZ0uRMLL++nKgpeYNaRyiHyxkTdUy/sxBrnhkgYhq/+RhzSQb5Z0feBMZH28EudiwvR3gCe0MdqhgKVBnuVJebi1s7MHk8PUpw90c4iSEAe5szaLHyCkPH2enG3hY5L4y6o4vWMOPuIqy54d8qojvCLdixvJy2g13BNmXEKDg7jeJLMoJtRkDxzUWseWam31mIMTF4xaqOJYzacga3vqj0Aiyn/oC8wjE8/fTTXH755bS0tAzTSoUjUXKIAsi6detYunQp1dXVRN9wMjEnThzSekJZEIG36VvtlpaAT6pDAVOSHpfNjb0lsiYxcWOiSBhvZdd/DoZc89X+cokGEypn8HjIdbrYptWAJPlLcB9JuAmh44FIzSE6HkibE0fd9y3eHjERhqSSKDo/nbqtzTTsjJzec+AVsyqdHFGNdn1IskTixGhqNjUH2xSg//yigeQR9UXTng00r3kXg8HA448/zrXXXjsM6xS6o3iIAoDH4+E3v/kNc+fOpYIOUp68eshiKBSRZIm8s1KxZHrfvNdsao4oMSSrJdLmxYMEHTW2iBNDPlx2d8iJIejbSzQYMQTQJcts02n91eX68hKFqxjSWTUj1jhXYeTRmNQRmWcJUPFtQ0SKIfB6ilwOD5H4ytje4vSKIQnS5sVHVHig8Ai/GLJkGsk7KxVJDt7+BTq3KKZgKqnn3IZareGGG27gl7/8JW63Ej0QCBRBNEyqq6tZsmQJ999/P9FnTyfniWvRpcQG26yAo7NoghaXO9JEZRjJmJeAIS78+0H1R8PONva+G/jSq0HNGzrEFJudbMfRRWy4iiGArBOTGLs0K9hmKAyRsUszyTohKdhmjBjxYy1knpgYbDNGhL3vVPjzUiIRQ5yOjHkJRGUcO8w4HNFGadCFQK5UoHOLdJZ4Es66ncQpJ/Lwww8za9Ys1q9fH7D1H68oIXPD4JNPPuHyyy9HlmX0t5w86Fyh/giVkDmNSY1KK2Nrivyy0yqdHHEFFADixlqIzjKx78MqCPCVHmgxNObOHYMWQwjBoi47tSqZHbreRUtUqZ1hLYbAmyCsMaojptP8kUR6yJwpSY+z0xWRzUzBW+7YkmFk178PBtuUkUGC3CUptJR10LCjNdjWBJxIffYdiT5Gi9vhCXqVPV8I3VBD5o6kvWI3tZ+9hsfj4c0332TJkiWBWfFxiOIhGgIej4df/OIXnHrqqXSmRRHz62UBE0OhRME5aRScG7kFBjIWJpA2Nx4gYh8Iaq3srQQV4mIIBu8ZAkCS+NKo71MMQXh7hnw42lwRK4aOBzpqbBErhgCqvmuMXDEEILw9pdS6yJwu+Z59aXPjyViQEGRrRo6C89IoOCc12GYE3FtkTiuk+JJ70MRncMYZZ3DXXXdht0debthoEJlX+AjS1NTEOeecw8MPP0y2GEP2T5aitgamyk5buYW28sB3orefOWNIvyt5v5Ld/4ncB50kS0iqyImd7sXsidToM9lTE9hyzXuemR3Q9QEUXr9u0L9RC0Gyy0V/Qf7596werllBx5JpJHtxEpJypw5bJBmyFyf5czAjlegcE7ImMk/UPW9XhEyS/kghqSL7ebj7/w5S8n5VsM3wk/DctyQ8FxhhZNdZyDzjevKkcTz77LNMnTqV+vr6gKz7eCIy714jxIYNG5g6dSqrVq1iMvMwvX0Rkmr4Q9hdCBXcuWbY6/NhP3PGoMVQVIaRsZdlIqsl7K3OiCww4EsgLf+iloNf1wXZmpEh9pwJZOQKAu0a8okhqT1w+WQ+MTRYAZPpdHFqhw1jH4IoEsQQeKtBWTJMiMh0YB4XCA9YMkzoooOfyzBSaKPUjL8im7gxUcE2ZUTJWJhAbFFk7uPBr+so/6IWIKKKLPiwtzixtzqR1RJjl2aGTN5UoISRJMmYbr6Wk4vPoLq62j9XVRg4iiAaIM8//zxz586loayFsU2zcb19UkDW290jFGgx5EP3/toB/85XhSyYVVlGEp1Vw7Q7C4nOjqzeGT2YPRGDEUyWkRFDgWQoniEf+zRq3jEb6JR73sYiRQwB1H3fwpYX9gXbDIVhsuWFfdR9H7l9QxxtLjb+aW9E7yOAKVmPITYyGqz3R3SOiWl3FEZsZURJlkAwIhVXh0OgvEV1J5zE2MbZtB7sZOHChdxyyy1KI9cBEpllwwKI3W7n9ttv529/+xtp5FLIJFSSiuHe9kciNA6GHh5nStbTUW2jvbKL7RGa3AzeB3ftpmbaqyKw6d7sw6XeK8p8gjYwwjbUxBBCgCTRrOpZjjqSxBB4H96RVOL+eCbSj2VnXeTnLez814FgmzDitFd2UbulOWLz3twOT485jm/uEwr4RFHdLX33LhooesnIDNUiGorK+NOf/kRHRwd/+ctf0Ov1gTAzYlE8REehtraWk08+mZdffpmxTKdYmopKUlH9Vu++KQOlvzyh4XiHfKFxQxVD2ig1k67PJWlKzJBtCHkk0Fo0CLdg/2c1kVdE4ZAYMlsESWm+ULnhi6E9z8wOPTEELOyyM6Or5wQs0sSQIU7LnAeLMacZgm2KwjAxpxmY82AxhrjI9i7knJZM4QXpwTZjxEmaGoMpJTInl267h/2f1iDcAq1FE6h3aiFJ0pQYJl2fG3ItRYYbRld3yxxwy8Rtz2U8M3njjTcoLi5m06ZNgTMyAgmtsyCE2LRpE+eeey52u52JjnlYpeElpgerWMJAwuUcbS62vbqflv0dgTArJMlYmEDytFjW/343HmeEvaXt5hmyxkN8kqCmUhp2+lAoCiEfVWoV3bPbIk0MAbi63JR+XE1XfeS/eY90uurtlH5cjasrshsoth3sRKWN8CbCEqRMj6V+eysdVaHhWRgJZI3E5BtyqVrXyIGvIjPXtmZTE7YmR8h6wwLhMUqWMomPjmd9w9csXryYDz74gOnTA18lNhJQ+hD1wb///W+uuuoqVJ1aJjEXvXQ4+W6w3qGBCqHBeIgG4wk6miBKmGhFpZGoXt804PWFK2qDCkuGkcbdEdRkr5sQ6o4sCzyeI17rrR5c+emBiCFhHtxDZKBiaO9vByfEIlEMHU9Eeh8ihchDVkt4XJE/dYotjKK1vBOXLbKFPEDytBjcTkHdluZgm9IvgxVG3b1MTo2djY6VOPRdPPTQQzz88MOBNi/sUULmuiGE4NFHH+Wiiy4iqjOW6ZzQQwwNhsGU0B4pMXQszCl6zCmRHY5jiNeh1qtwdbkjWgxptIKYBG+oXC8xNEgG6hkaTKW5QHmGJCGYaHNg9HjIv2d1RIuh+HHRGOJ1wTZDIUAY4nXEj4sOthkjjjZK7e1nE8GhVj4xFFsYhcYUuR6xxt1tuGxu1HpVxN+LzCkGzCEeBjmcUDqNU8c0TiA1KoP/+Z//4YYbbsDjibDUgWGihMwdwmazcc0117B8+XJyGUsOxUhSzzv6QLxDoVQsoT/vkK8zdemK6uGaFfIUXZBOV4ODXf+OoGTYPjxDiSmQnitY95WEe4gv80YiRA4CJ4YALB7BeLsD+Q87aA/YWkOTvNNTOPhNHRVKyFxEEFsYRfrceOq3RXYlNq1FQ9qceOq3t9DV4Ai2OSOGSidTcF4aB76qo3J1Q7DNGVHyzkrFEKtl019Kgm3KiLH3vUr/v31zpFBloKF0dbfM6SGgVJKKnLqJWDNieOGFF2hoaOCVV17BbDaPqL3hghIyBzQ2NnLuueeybt06CmyTSZL6Tgo9liAaihg6lndoOB6hvgRRdJaJ4ksz2fLSPjprI3+ipYvWIAQ4WiOkn1I/YXIg0OnBbuvntewxQuaGKoaOFTY3VDF0tLC5gvvWhFzJ1BFBAlkV+aE5x0vInKyW8LhFoFuDhSSSSjourlFdtCYie/UdidaiQZI4LvbVmKhj4jW57FheHhZ51ccSRf15lOpEJTt160lMTOSLL74gNzd3JMwLK477kLmysjLmzZvHjh07+Oyzz/oVQ5FCW0UnB7+pi/gSqbGFUUgqCXuLM3LEUJ8IjGZvRbl+xVCEoBIClRDHxUQLAEHEi6HjCY/r+BBD4O3xIquliGzw2R2fQDAmRnY4meNQk3ZJJRFbGJmNaX101tk5uKqOtorOYJsyoiRIqfztb3+jubmZ0047jb179wbbpKBzXAuiDRs2MGfOHBwOB6tWreIn837b77JH8w4NJl9ooAynjHZfWDKM6KI1eFyCg9/UR/SDWWtWU3RRBokTrcE2JXDMntindyg2AabOExhMxzig/XqWRq6aXCBD5QAKHE4urWxBUkX2JAsgfX48uWekBNsMhQCTd0YK6fPig23GiCOrJabfVRTZrRwOYYjXMfWWAmIKIlsoACROslJ0UQYacwRnWwg4uLIej0ugi9YQlTG0PPLR4lh5RUfzIP39qrfZtGkTsiwzY8YMXnjhhZEwMWw4bgXRhx9+yMKFC8nIyODbb7/ltjEPDXodIyGEIDCFE3qEy0mQd2YqmYsSh73ecMDR7u2aXrMxQqrnHUXMNNbBtvUSXR1DEwmhXFr7SNS/3krpx9XHhYfI2enG2R6apWAVho6j3YUzwktvg9cbVvpRNU17Iz3Tz1tSfdurZTTtjaCiPf1Qs6GJjX/ae9zcmzJPSCT/zNSwKBAy1IILN+X/mFWrVmG1Wrn55pt56623Am9cmHBc5hC99NJL3HDDDZxxxhm0v6tCJR37bUd3D1GgRNCR+UOB9AgdmT+kMatx292R14PnCBImWqn7vjlyPGBHEUN9ltc+Gt3yiAIphLrnEQVKDB2ZQxTJ1eSOd46XHCKFyOd4KceNBAkTrCFdojoQyBoJlVaFsyP8BGB3z9BAhJLQeDCe5uT999/nmWee4fbbbx9J80KS485D9Mwzz3Dttddy3XXX0fGuZlBiaCQ9QoEUQz40JjX556Sh0so4210RL4YsmUYKz02LjFLi/YTI+VCpBdMXCuISB39Mw6GaXHcBlH/PapKnx5IQSSGQR0FWS+ismmCboTBC6KyaiM+t8ZEw0Ury9NhgmzEqxBVbmH5nISp95E+rzCkGCs9Nw5IZ2uFkw8XjFDg7XKi0MvnnpIVVifXuHqOB9C+SnDKd72r5wQ9+wB133MFVV1010iaGHJF/5R5CCMFjjz3GXXfdxf3338++vzYiSwPb/XATQj70MRos6QbU+vC5iIdDa3kn657dTXtlV7BNGR5HEUI+hICqconW5sGtOhzEUHd8wsicosecHNo9IgKFJdPIjB8WoY/RBtsUhQCjj9Uy44dFIZ+XECjMyfqQ7+0SKFrLO6la23hchPS2V3ax7tndtJZHduEBH2q9Cku6ISzvyYMJpZMkib1/rufcc8/llVde4aGHHuJ4CiI7LkLmhBDcf//9PPnkk/ziF7/gs4c29OoxdDT2PDsr4DZlfCyQPCMz9DUz1GT+9NAFIBGw8LEja9oHCvsZM9D9t++eSQNBpZWJLYyibmvv/h7202eg+2Do6+6PhuvnEPd84Mei/KdzyfxwZOLumwtN1E0L/DlX8EMlnC2QqHQyUelGmksiP/8CjrOQOQmsuWbaDnaGdJ8TBYWBkjA+msbdbbgdEX4+d59LBXBeFaqc9utZ3HfffZx22mm88847aLXhJwYHSwSXCvHidru59dZb+ctf/sKzzz7LOz/8KqhiKONj71U0EmKoeqYGhGDxpnJcS1LY92FVQC7agbhbh4L9jMB4x+LHWshZkkJzaYc/1td++sh43hquH5mxKP/p3AEvm1XgwdYlUXPw2Odxc6FpOGYdldESQsdLrw8fbrvnuBFDxx2C4/LYHk/XcNLUGPQxWvZ/WhNsU0YcjUlN3lmpyB9WUbOpOdjmjCyH5lK5S1JQ62V2v1URXHtGmBX3r+H+++/n17/+NZdccglvvvkmanVkS4aI3juXy8VVV13F8uXLefHFF3n1uveDZotPCAWa6plH5BpIEs2lHQFJ7DxSCAXSOxQoMQRQs6mZppJ2nB2uERNCEBpiCAQqNcgDiPaMBDEkyRKTb8qjYlU9B1fWj8o2g036vHhaD3QeN+EoxxuWTCOWDKO3/cFxQPr8BNLmxPHdU7sQIxQVEUrIagmV9vjIRnB2uNjwv3twtIVf0YGh0nqg87jJAdzwm30899xz3H777VxyySX84x//wGiM3HDfiBVELpeLK664gn//+98sX76cP1+yPGi2jJYY0gsPNkmmdnPzsNcd6l4h8Mb1mtMM/5+9/wyM5CrT9+Grqjp3q4NyznlytozTOOGIMeAEzmRMMEtawwZYfu8Cy/53ARMWDCbYgA2Y4IDBOeAw48k5SiONNMpZ6txd74eSNBp7bI80kqq76lzfPK6uunX69KnznCcxdHiM0bNWzNl9X898GUIwU2MIQKJ5rzk8QwBqUmXf744SHowu2DP1Jnuxj3gkKQwig+LKdZC92Gcag6h31xCj7UFTGEMAnRsH9JawoEwaQ/4qD6MdQRJhY4fO9e0+Hppv9VgMX4L8oU88zR///Efe+973csYZZ/Daa69htxuzEbEhjzESiQS33HILf/jDH3jggQd0M4ZKnlTnxRjqWmt9gzGUoSa4Sh2jWD29sITejzelhTEEWmhC/XtLSFyxek7vO5359ArN1BhyOFWy81XeLg7yrYyhnM2nd7KlR77Q8JFx04TbAGz78WG6NplrU2UmujYNsO3Hh/WWsWBEhmIMHxnXW8bCImkHG2apFqnYZerfV0K+CRrxTpJZl8HqT9XiyDR+bs3d776Pr371q+zZs4cPfOADxGLGfB8bziBKJBLceuutPPjgg/z2t7/l/655YNb3mm3+0EIaQpOMIrNZctB5Gk6/+TSE5toYAmj2lbPxgIt4Yn7c13qFyLVd4jnpv2fmQkWd+qbhckO1bsN4hgAkRaL23UW4cox5GiUQmAVXjp3adxchKeYINZIVicqL88mqn/vqtKlIIpJk2z2H6XilX28pC8bQ4TGa/95JeMAc0QvP/es2HnroIf7yl79w6aWXEgwaL4LBUCFzyWSSD37wg/zmN7/hN7/5DT+57ncL+vz5Co2Dk+QKTSCrKj6SDEoKh5jdScV8GUIw914h0ELl5MuXEwlKhCJz/4JNrRC54xxrleg5xkmbsRrJEJrElmHBlWOOkr2TFJ2ZTVa9lx33NustRTCPLL29kv69w6baQLpyHNgyLESGjHm6PJ1kXGXLjw4RDyX0lrJgTBoG7gIHkcEY8bCx//ZkXKV7yyAA7jwHwb6I4Uuuf//q+7nn3nv44Ac/yEUXXcTzzz9vqEILhvEQJZNJPvzhD3Pfffdx33338dMb/rCgz5+JMTSTCnNv5RUCaCDKheo41llWT083rxBA7o1LWFEfQZbnfvGZiTE0k2tnEyI3HbtT+1vjsdM3hmYSNqdnSe3IUIxt9xwm2BvRTcNCM9YZom/PG8vHC4xF/95hxrrCestYMIK9Ebbdc9gUxtAkk8aQWcLmAGSrxOKbyilcl6W3lAVDscssubWCoiZz/M2/vv0xvvWtb7FhwwZuvfVWEgnjGL6GMO1UVeWzn/0sP//5z/nlL3/Jz2/804I9Ww+v0HT2YqNbUojNoJQ4pJ9XCI6X0j5yTKV3UDmpp+R0SI0qcm/E5lBZdZbKgZ3Q13Xi32xEzxAAEtgzrERGzLOBAhhuGWe4xWT5FibETJ6h6di9ViKjMcP3cJkke7GP2ncXsel7B4maYC1LxlR2/fIIwV7zGPuJSJLdvz7CWKd5/ua/f3EDv3ngN9xwww20t7fz9NNPoyiK3rJOG0N4iP7zP/+T733ve/zgBz/gV7c8vCDPnK88IXh7rxBAQE3gUZMkJYk+aWZ2bTp6hSKXrkGSVBy2JKoqMRY89an7dqW4+z/YlHLG0PQ8omgY9m+XGOg9/v+Nli/0erwlLtZ8tg53nrlC5nwVbhSHIZZlwVugOGR8FfP3+01F3HkO1ny2Dm+xccv2vp6B/aPs/8NRoqPGN4YmGe8OoyY1z5gkmyNnbLQ9hJpQcQRsuPPN8c665/rf84lPfILnn3+eL3/5y3rLmRPS/s37k5/8hH/5l3/ha1/7Gn+845kFeaaehtAkK9Uwq9WZnUikUwW5qfteumbKoCnOTbBuSQSLMnfjn6r5Qici0d8jkZwoHjEXhtBbhc3pbQwBjHeF2fv7Nsa7zXPqZvNYWHJzBb5Sc22UzYivzM2SmyuwegwRpHFKjHeb7zedjCXp3zdqGo/YJIpDZsXHqilYk6m3lAWl8tICKi7O11vGgrHvB1184xvf4L/+67/4n//5H73lnDaSqs4y+SQFeOihh7j22mv5xCc+wd7vdyLNMGzs7Xh9lbm5MoROlkN0qobQJFZVRUElLL3Rpi3795ff8G9zZQi9vjnrXBlC9r++9oZ/e71nR5ZVAhlJ+odn7pq1P/7G+8+VMZT1sxPHZK4ModK/jVFYpuJ0qxzeIwHSnHqFele9cR6mgjFkWiRw+G3ExuMkosbu5TGdhutLAdj7QJvOShYOxSZjdVsID0VNt1k2I1WXFxLqi3Bsg3lCJQM1HoaPjJOMmWeCWz0WkrEkiYh51m+A+jvy+f73v8/nP/95vv3tb+stZ9akrYfomWee4f3vfz/XXHMN+37UNWUMKTYZJuwiST6xY7RslU7oMPxW1zZ/dy3KpK2oqpQ/nUSaeHNJqCjy8X4wsqQiS5M/eu3/veW104oB9K2x0LNGOyWUVBWLqsLEc2VVPa4BsKgqZckodjVJHIgjvem1slVGUqQJr9AZWKRpGlBRpOPXKqjIHNf/VtfKVmmqdGrkstUn/q3S5N86ca18knGR3uRay/HvJnLpauKXrz7hWpslSTIJ/cPKG8bw5Pc9+XgrNpmBD55B/webkN7mb1WkmYyLNt5tXz1z6nuUpn03lmnfjaKqyNPm1ptd23aJh2RSJR4HzRhyoUivm1vTNbx+Hp702uPjMn1+139hI7Wf1YwhSebE343ljb+bqVAI6STXWk/tWkk58drJMXRm2ai8pAC7z3r896lIyFb5DdeecN83vVY6odzvXK0RJx+XyWtPZQxfd60K4cEoalI95fF+szGc9bWnMoZzOd4WiennWCeOy1yPtzTja09/DE9+bSKWJDYef919T3EMlTfO2ZmM95zO2be89o1jaHEqVF1WgCvP/rbXvt0Yvv08TJ01Ih5KkIgkFny8T3kMZ3LtKa4RI61BknFV03aaa8Sbj0tqrRGxsTjJuIrdZyGrwXuKYzgH4/36MVzgNWLv9zs588wz+c53vsOjjz5KupKWBtGOHTt497vfzfr16yn0llD5zgJAi1ltuqsRX5l2il64LpM1n62b+tziG8upuqwQAKtboemuRjJrMgDIW+Fn3Rcbpq69YDTM2WMRSp5UKX9GZf3yELkBrZpGfmaC9ctDUy/yxRVRllQer4S1fnmIgizt2hy/dq1lwqnRUBZlebVWnrJrrZX3qqNUo8UX55PgOnUU58SmdbUa5kL1eIL1Veoo6whTTYyciWsz0E4iVqgRLpl27fIvLSLrsysA8FuSXJkzhs+iXVvvjnJB5vFr12cGafRo+j2Kdm2mVdNf7Ypycdbxa5fcWknZR5YSuWwNdpvKeavCBLzafYtzE5y1/Hg4xPKaKPXl2t9mUeC8VWGyfNq1BVkJzlt1/NraO5ZQe3UxkUvXIEtw3uowuZmahsqiGGevjOCya59dVBVlafXx2v/nrgpTkK1dm+VLct7qMNaJSJT6ihjLa49fu+ZLjVR4NE3Z9gSXF43hnAjBW+yPcFbO8dr6F+aPU52hfTZgS3J50RieiTFs8EU4N/f4tSs/Xo3/X7Tx9pHkWkYJTHw3i4hwOWNT176TcZajjXfGxLU5aPrriHLVtGtzC0HNtjJU68auqFxaPka2U7u2LCPGxaXHr12bF2JZtjamFhkuLR8j36Vtuoo8cS4tP37tqtwQF7drGmr/aQNNdzWSs8SvjWGDl6a7GqcWvpqrimi4vmzqs+u+WE/eyoA2LtUZNN3ViNWtDXjVZYUsvqni+Hh/to7CdVrYhK/MTdNdjVNVlyouzmfp7ZXHNX2yhuKzsrH7rGTWZrDmzrqpHkSl5+Wy4qNVU9eu+GgVZetzAXBl22m6q5GMQicAxe/IZtWnaqauXXp75VQYw1yuEQ3Xl1FzVTGgvcia7mokq8EHQM5iP013NU69NOveW0L9NSVTn226q5Hcpdp4Z9Zp412wNpPCM7KovrKIxvcfH++1n68nf7U23v5KD013NWLLmBjvSwtYcvO08b6zlqIztGpH3hIXTXc1TjUOLL8wj2UfOj6GKz9RTcnZOQC48x003dWIO1eLfy89N4eVH6+eunb5h6sovyAPAGemTRvviVyQoqZsVn+6duraJbdWUnnJxJrs1cbbX6HlxBWsyWTt546P96IPlE/liVmc2ngHJsY7d7k2hpPUX1tK7dXaeEuKRNNdjWQv0sY7u9FH012NUy/y2quLabiudOqzZ/xzA7nLtfEO1Ghz1uLUFuWqywtZdGP58TH8p7qpUB9/xcSc9WlztvKSfJbeenzOrv50DUVnZgOQUeSk6a5GnFnanC07P4/lHzk+his/Xk3pudqcdedq4116nvbfJWfnsPKO49cu+2AV5Rdq4+2YGG9vqTbehWdksfozx8d78c0VVF2mjbfNY9HGsEob7/xVAdZ9oX7q2sb3l1H9riJAq47VdFcjmXXaxi1n6evG+30l1L1Xm7OSzJysEYlokpzFfurec/y3MJs1AsBTqI13OqwRrc9007t75LTXCMWujXe6rBFZDV5Wf6aWqssLT2uNqL5CG++0WSNur6Ly0gJkq3Taa4RnIicpldcISZJwvppPVVUV73vf+/jzn/9MOpJ2IXNdXV2sXbuW7OxsfFvLyK7yEwvGGe8KI1tlMms8DLeOExtP4Myy4cqxazG8aAnLiUiSsWMhJEUiqy6DkbYg0bG4lgxX4KB/zwgAjhtWoaowPK4goZLjTzA8LhOJyThsSbyuJD1DCiDhcyeQgKFxBVDJ9ScYCcqEozJ2axKfO0nvsIKqSnhdCUYaFLonCiGUqDGGkBmVFBxqklwSdGAhIUlkqglsqHRNXFusxoio0CdZsKGSR4JjWIhLEgE1gQOVTsmCq0sl3xZnPCExmlCwSiq5tjg9UQsxVcKrJHAqKt1R7b55tjjhpMRwXMEiqeTZ4vRGFaKqTIaSwKMk6YxqP/bywQixuMRoUEaWVbJ9CYZGFaJxCac9icelVYADCGQkSCQlRsZlJGliDMcUIjEJh31iDAc1DX5PQhvvsYkxzEwwMqaNYYYrQUl+nL3NVlRkfJ4EkgRDo9pzcjPjjI7LhCIydquKLyNB7+DEeLuTKLLK8IDESJmNAkeMkbjCeFzGLifJsifoDltIqBI+awKbrNIb0TTlO+KMxyVG4wo2OUm2PUFP2EJclfBaEzgUlZ6whfESiUI1RhCZIUnBqqoUEKcLC1FJwqcmcJPkmKSNYYEaJ4zEoKRgUVUKidONQkSS8aoJvCRpx0INMaQuCCVkhqOaZyzPFWcgrBBJyLgtSby2BJ1B7b5ZjjgJVWIoos3ZfHecwbBCOCHjtCTx2xN0jlsAiUx7HBVQ79FCCbMbvYx2hIgMx7B7rWQUO+nfN4KahIxiJ5IiMdKqGYBZDV7Gu8KEB6PYPBa8pS4GDoySjKt4Cp0odnmqUlpWfQbB3gih/ihWl4Kv3M3AwTGSsSTufAdWl4WhZs1Qy6zNIDwYJdgbweJU8Fe4GTw8RiKSxJVrx+61MnhIuzZQ7SE6Gme8O4xilwlUeRhqGSceSuDKseMI2Bg4oP3u/ZWeeVkjvGUu1ITKaHsISYasei+j7SEiIzHsPisZRU769o6Aqm08kGCkLXh8vI+FiAzFsGVY8Ja4cOdrY9e7YwjZKjN8ZPz4eHeHCQ9EsXos+KaPd4EDxaFMjXdmXQah/iihvggWl4K/3M3goTES0YnxdlsYOjwxhjUZRIYmxtuh4K90M9g8RiI8Md4+K4MHTzLeNplA9fHxdmbbcWbZGNg/Od5u4qEEY51hZKtEZk0Gw61BYuNxHJk23LkO+vdpY+grd1N6Xi7xcIJ9vz+qjffRINHROHa/lYxCJ32T413qQlVh9GgQJMhumDZnXzfeGcVOJFk6YbzHOifm7MR49+8fRU2oeIqcKNPHu97LeM/EeLst+MpcDBwcJRlTcRc4sDoVhprHp+ZsaGBivCfn7OR452l9d6bmbI2HyHCMYE8ExSFT/94SxnsiHHmyC1eOHbvfxuDBiTGs8hAb1+bs5HgPHxknFtTmrDPbPjXe0+esbJHIrM1guC1IbGxivPMc9O+dGO8yN8l4ktGOEJIskVWfwUh7iOhI7KTjjQojR6fNWbFGzHqNsLoVys7P4+jzvbNeI/r3jaImVTKKnGmzRuStCDByNIjVpcx6jUjEkox1TBvvVF8jXArjXRFi4/HTWiMClR6GmseJhxNpsUb4611sCr1Af38/mzdvpqbm+KFDOpBWBlEwGOS8886jo6ODjRs3cmvJnfP2rPCVa+flvo5HNtL6tRnmmKgq1cRowUriLfKkqu5pBaDzytI3vWa2BPZrnpLEPFTAUifd1CdtaqYy5dudJXJM89SMlM2uce1bkftCNwAtH5jbRMoMNcFlsVH2PtDKkbOWzum9J/H/6pW3v2iBkRQJWZFMlUNjdsyYQ2R2FJtMMqEavpHldPyVbhquL2Prjw4RHoy+/QcEaY9slchd6qdr86DeUhaM7+z8KhdeeCF5eXn84x//wOPxvP2HUoS0CZlLJpPccsst7N69m+JjDfNqDM0Hjkc24nhk46w+m0GSVWqYfOIn/f9V97ROGUPzwaQxNB+ob1GW02pRWbMoQoZ79pvjSWNoPpg0huaDwNc28Nr/7J86iZ5rUtEYAu2Ucd0X601VfUsgMBM2j4V1X6wnUJ0+G6W5YKh5nNf+Z78pjSFPgYPlH66aCkEzC/4KDxUXF0yFJJqBO5d8lfKuJTQ3N3PBBRcQiaRPY/W02XX8y7/8Cw899BBL1DPwSgG95ZwyszWCpjMqKfwZD5HXVZSbTyMI9DOEJpFllVBYJhyZuYcoXQ2h0q++jGyRSEoQD899B+hUNYQmGesIceiRY8TGTm78GxW738qqO2rYdd+RqRAOgbHxlrpYfFM5m79/kMiwefrURMfiHHrkGKMdIb2lLDjxcAIkkBWJZNw83rHIcIzQQFQrChCa+/daqjJwYJRN391PLGievxnAI/lY4T+DF197ihtvvJHf//73eks6JdLCQ/SrX/2Kb3zjG1Sri8mVivSWc8qctjGkqlSqUSRVnZExVPDI6YeevJkxpIRP39B4M2NIVU7890hUZtdhG7H4qRtEciz5psaQt/X0Dbw3M4Yqft112vcu/apWLr2wKZuVn6iZihScKyMm1Y0h0DZLPduH9Jax4CQiSVqe7CLUnz6naYLTI9QfoeXJLlOGh/ZsHzLdoQcAEqy6o4bCM7L1VrKgxIIJ9j90lOiIeQz/SWLBBJIMucv8ektZUGztPpZlruUPf/gDP/7xj/WWc0qkvEG0detWPvrRj1JAOaXUvv0HUoC3C487WZ+gk5FJknVqmGyOny7Md3gc6O8ZAigviOHzzOxUZT69QjD/nqFJBvaP0P5i75z2J0kHY8jut1Jyds5UJSUzEQ8l6Nw4QGzcXCeJZiY2rn3ncROdmE+i2GVKzs6ZqiZnGlQ4+kIvAwdG9FaiCxklLoonqtaZiYxiF9VXFuGZqHJoFrIHSiimik9+8pPce++9est5W1J659Hf38973vMerGEn9ayY88arb8VsvTtzESI3yYCk8BfJQ+9ElbmFMITmyxhSZemUjSFJUskOJHA7T80ieCuv0FxxKsbQbL1E040hgGBPhJ4dQyf822wNGv+vXkkLYwjAleOgcF0W6kkaFxsdT6GTjGJzvSwFWqUrs22SANSkSuG6LFw5Dr2lLDg9O4YI9pjTE+zOtZNVm3FCTxwzMNIWZPP3DjB2zHxhorUsIz8vn8997nP09PToLectSdkcokQiwQc+8AFGRkZYyhkoUmon482lIYSqUkycdiwEJXneDSFIDa/Q1PWqxKY99re/kJl7hbyt0RlVm1sor9DUv52by8jR4FSZ2dMhXQyhSQYPjrLhv/fpLUMXis7MxupU2HXfEb2lCBaQsvV5U+FEZiIZU037WwetzHdGiZOjz/fqLWVB6doyaKqKa9OJTIQLZtZlTJXDNgOyJFM9sJw9GRu57rrrePLJJ7FYUtP0SFkP0de+9jWeeOIJygYacUpuveW8JXNqDAG5JDhXDZFFIiW9QqeaRzQTr9Akbo+Ky5FES6B568+mgldotpzMGELSEq3frCLNTAycdDOGgNOtrp7WHPhjO/tMtikWwL6HjnLgT+16y9APk/7mHZk2fKVu8/39E85/Z5YNV+6pHXoaCU+Rk8bry/CWufSWsqBYwg5Kehp48cUXueqqq/SW86akpEH06KOP8vWvf51KtZEsaW77u8wlp1NK+63okSxsf2gY/0875vze00klr9AkFfkxFlVGeasEmlQJkTsZpxI2d1JjCECFXfcdoWvTwKyeDekVIjcdV66dM77QYMqXJGghRHGTVSISQDyYMGWIKJj7N9+1aUDzBpvzq6f26mJKzs7VW8aCM9YRYvMPDk41MDYTASmHpqVn8de//pUHHnhAbzknJeUMovb2dm655RayKaCcer3lvCnzYQgBBFTNKxQaOr0N/1tVmpvPXCGYvTEEsOuIjZ2HbLzZ0dlcGEJvVW0u94XuhfcMTeDMOr1eBeloCE0SDyfpeLWP8ID5enQodpn6a0tw55kvn8LsuPMc1F9bYspCIuGBKB2v9pmyqMQkp7vmpyv7/nCUA382p2c01Kflj7nzzbfe27dmkycV89GPfpQjR47oLecNpNQqnEgkuPnmm3E6nTSyekGLKJwqc+UVOlmluUw1wWXqON6C+YuvnG9D6HSMIUVWUVWJUOLk+WKp6hV6PW/mJXorY8hd4GDVJ2vf1pX+ZkZPOhtDANGRGEdf6DVVb45JFJuMYpVRVfP97WZHVVUUq4xiS6lX8YKQjKscfaGX6KgJy28D3jIXqz5Zi7vAfBvjyFAMNaGact4D+CrcrPhotekKqkiSRIO6ioyMDNavX08wmFqespSajd/+9rd57rnnyOuowialnht9vrxCoFWQC/y0nb1/G2Wkc35eEHNpDL0+j+h0DCEAryvB2UtDeJxvNHrmI0Tu9V6i+fYKvZUxBBDsjrDnt62zasqZ7sYQEuStCGB1pXbhlPkiOhpn969bTVt5yswEeyLs/nWraY0Cq0shb0XAfLk0aJXH9vy2lWC3OX/37jwHaz9Xh8eEBuFwyzi77jtiyqpzFslKo3slbW1t/Mu//Iveck4gZQyijRs38q//+q+UqbVkSqkVWzpfuUKTVN3TimLT3gjDHXP/YkzlELlJQhGZlk4rY6ET7zXfXiHQoXjCSVCTKgMHRk8ppny6AZT2xhDgCNiovqLQlCV4AdOVoBW8EbPOAVeOg+orCnEETBg6psLAgVHT5pCN94Rpe76X8JD5mrUCU5VkLQ7zHQSqB+2UJ+v57ne/y4svvqi3nCkkNQXiNEZHR1mxYgW9hwdYzXpkKWXstHnFUlwEgNUpsey9XlpeDtLfPLeLQ7h2/opSxOf5RF8Jz29suaN1fst/Jg42n9J1vjI3ucv8HP7rMVOGjIEWNpaMJ1Hn3/5NOcouyCOr3suWHxzUW4ouNFxfCsDeB94879HIrLyjhv59I7Q+PX8HM6mKJINskUlETfjDB2SrRNWlhfRsH2K4dVxvOYIFJnuRj+orCtn8/YPExs3lJVZVlW22F0m4omzZsoWKigq9JaWGh+izn/0s3d3dLGadaYyh6cTCKkc3hRhqn7sfRLy9g3j7/FWpszyzGcejc+M1qyqMUpB5/G93PLpxzu79Zlif2nzKBstsmMm9FYeM1WMxrTEEkIia0xgC6N8zTOsz5tsMCzRan+mmf8+w3jJ0QU1iWmMItH5MVo8FxWG+fc8kuUv9lJ2fWlFBC8XQ4TGOPN1NLGguYwi0fKJVgbMIh8N86lOf0lsOkAIG0ZNPPsnPfvYzisdqcUkeveUsKFMGiwrd+6IkonOzIZ5PQwg0Y2juULFbVSyK9rdPN4SsT83lc44zX/cFzRCaqaE1sH+UPb+Z/+a7qUrj+8vIWeLTW4ZujHWG6d87orcMgU707x1hrDOstwzdyFnio/GGMr1l6Mae37SaqlHn67E4FWweq94ydCEeTmhtNkx6FprskakKL+Gxxx7j4Ycf1luOvgbR6OgoH/7wh8kklyL0d5fpQf0lHnLr5i5++vXG0FwaL5ZnNs+xMQQgsafVztFe67x7heCNxtBceolmcy+7z2raYgIASBAeihIzcQ+e7EXeN23GKzA+jkwb2Yu8esvQjVgwQXgoasrCCpNYXQp2nzmNgmMb+jn48Pwe4qY6+asCLLqxXG8ZupBPKbnWQm666SZaWlp01aKrQfTP//zP9Pb20sCqlCyxPd9IMoz1xgmPnl7IwGR43HyHyJ2M0zFiZEkly5sA1AUJkZtvz9BsKD0vl8U3m/MwAAAVmv/aydDhMb2V6Ebtu4sJVJnLOy44TqDKQ+27i/WWoRtDh8dofrzTtKfkAItvqaD0PHOGjU0SqPEgW8y3DwQIDUQZ7QhiwowRJElieeY6IpEIn/nMZ/TVoldRheeff57zzjuPWpZTKlXrISFlmCyuMBtOxQiKn79q1veHt/cyha9YO6v75vrjLKmMsOl7B4i8RaWZ2IWnp/9UDCGlpnLW9z8dL5Nl4mRw3KQhM45MG/FQwtTNGSVZQpIxbQ6Z2YsqyBYJNYlpq42BFjZlcSqmbMwMWh+6yFDMtOug3W9l9adr2ff7oyJ82KR00MJedTN/+9vfeOc736mLBl0MolAoxJIlS+g7PMRqzjOldyizLgO710rnawOzMohm6g2ajVE0k/C42RhFjkc34syyEep/65fg6RhEp+oVmq1BNJ+FGczA4pvLiYcT7PvdUb2lCHTC7AaRABquLUVxyOz61RG9pQh04lT2AkanYG0mkeGYKXPKVFVlm/IPVF+M3bt3k58/fxWS3wxdHHTf+ta3aGtro5HVpjSGADyFTnwV7ll9dr6LJsBcF054I47HtBC5U1kAZxPqNtMQuZkaNrMpnvB6it6RTVFT1mndI905+HCHKcsNT+Ird1N/bYlpQ0UEmoeo/toSfGWzex8YgSNPd5k+j6SoKYuiM7P1lqEbU3sBEy+F/nIPnkKn3jJ0QZIkVuWdycjICF/4whd00WBZ6Ac2NzfzzW9+k6JYJW4pY6EfnzK0Pdsz9cOPt3ecspdotsaQ5ZnNp+wlmk9jaDJXqOZdRahJlUOPHpvT+89nntAkc+UVsthlVHNGSEzxVqGSpkDS+rCYNVxOoIVKyhY5BWq+6ofZPQMAil0xZQ7JdKqvLESSJNMax3t/32bqXLpkp0K5UseDDz7IV77yFerr6xf0+QseMnfVVVfx94ef5EzeiSItuD2mO5IM/ioPgwdPTCJ/O4NoLrxCb2cQna4h9HZhc9MLJ2Qv9iFJ0Lvz1PtvvF3o3FwYQ28XOidC5OYOb6mLQE2G1oPHxC8BsyNC5gRIUHZ+HoMHRxlpC+qtRqATOUt8qCr07TJnX65JAjUehg6PmbI3X0JN8CpPULe8hk2bNqEoC1eFd0HPI/7617/y8MMPU8syUxpDAIHqDBa9vxxntv2UP2OIELnXVZHr2zU8I2Po7UgnzxBoSaRmD5NyBGz4y92mNobMPgcExzH1XFDBX+7GETB3+XnZImH3m7P8NmgHpGY3hpzZdha9vxx/lTkjqBRJoan+bLZt28b3vve9BX32gnmIIpEIixcvZuDQCCs427S5QwCuHDvB3sgb/v1kXqK5NoZO5iWaS2PoZF6i1xtDxWdl07treFbhUifzEs21MfR6L9F8eIWWfrCSyFCU/Q+1z/m9BelD4/WlqCrsfdC83hHhIYKG60pBMvcYCKDuvcXYfTZ23GveSAS730rOYh/t/+jTW4puvNke0Uzssr+CLVdh7969uFyuBXnmgrlp7r77blpaWljDBaY1hmSrRDKmntJEN6JXCMCWYaHojGzGOsOnnT+Sbl6h6Rz8S4fp48WRMLV3CKDj1X69JQhSgGMbxDwATL8mHH2x15RhUtNxZtkpPCObnu1DREfjesvRhck94uSe0YxUhpewqesZvvzlL/Od73xnQZ65IB6ioaEhKisrcQ0GaJBWzvfjUpblH6li4MAobc/1vOk1luKieTeG4uevmldjKHzF2rdstCrJoKrM+sUXu3DVvBtDSk2lyBeaR2xeK6s+WcPu+4+InAGTIzxEAgBvmYtFHyhn890HTLsRFgASSBKmNwxLz8slszaDbT85rLcU3eirbWZPyy727t1LZeXse0WeKgtyRv1f//VfRCIRKmlYiMelJhJ0vNLHwMG3ri9vVM8QoFXUsmpNCE/nFDCdPUOg9RrIXeaft/unA8lYktZnugn1mTssIHe5H7vPvDkDAg27z0rucr/eMnQl1Buh9Zlu01dczF3mp2Btpt4y9EPVjCHZKpm6BPfAwVE6Xukz9Rjk9pRjtVq5++67F+R5824QHTt2jO985zvkBkuxS+asrw6AqiUMjnWE9FaiG/5KD+s+X2/6DaAr1zGjohpGJB5KcOzVfmJB89YdVxwytVcVm7bvhOA4niIntVcVo9jNG0cbC2prQjxk3jUBtPwRV65Dbxm6YvdZWff5evwVHr2l6MZYR0grPGXi84HkkEz+eDk//OEPOXjw4Lw/b95D5j72sY/x+9//nqUDZ2ORzLkRtvutFDVl0/ZsD/GweRd7W4aFrAYvnRsH9JYi0BlfhZt4MMF4d1hvKboiydrxn5o071tPhMyJeTCJO8+BxaUw3DKutxSBzhSszaR/74ipwyctToXS83LpeKXPtD37Emqczd5nqKurY+PGN0/FmAvm9Tjq0KFD/PSnPyVroNi0xhBoSYK+cjfJuLmDYqOjcdMbQ2Y+AZ5OxUX55K8xcVjIBGpSNf0mWCDmwSQFazKpuDBfbxkpgdnfFZ0bB0xtDIEWWu4rd+PMMm9EiSJZWFK0gk2bNrFr1655fda8/uK++c1voiSsFFM1n49JeYYOj7H1R4dMHRvtLXVR1JSltwzdqb6iiMb3l+ktQ3e2/6yZI0916S1DV3wVbhquLZ3yDgjMiyRLNFxbiq/CrbcUXTnyVDfbTVxyepJFHyij+oq3btZueCQoasrCW7owJZdTkWRcZeuPDjF0eExvKbpi35uFXXXyjW98Y16fM28G0dGjR/nVr35FGTUo0sJ1mk01nNl2FJu5T3oAPIVOshf59JahO50b+7VESZOjJlQSYXN7TCVpouKi8AyYHjWpIsnanDAz8XACNSF+D+0v99G50eSl2FXIXuQTOZZo3kJnlnmbFsuSTKWzgd/+9rc8/fTT8/acecshuvPOO/nVr37FssFzTB0ut/T2SmJjcfb+zrzx8QLBdHxlbgrWZnLgT+2m9poKNEQOkWAS2SpR++5iOjcOMNwq8ogEAtAaN1vdFlM37FWtSV61/p3169fzyCOPzMsz5qUxa29vLz/5yU/ID5Wb2hgC2Pf7NhS7eT1kALJVJhkztzcAIKPYiSvbTve2Ib2l6IqkgKxIpjeGZIsYA8GJmH1OJGMqsiJh4qCSKfKW+wn2RRhtN29l2knMvoc48nQ3iYh5C3IBSDGZgmgFTzzxBB0dHRQVzX1I6bzEcn33u99FlmVKqJ6P26cV0dG46XutlF+Yx9Lb57+pVqrjr/BQ2JSttwzdGWoeZ4/wBlB9ZRFLbqnQW4YgRVhyS4XIGwH2PNDGULPwDhU2ZZu67PQkS2+vpPzCPL1l6EqoL2L6AhMAxVThdDr54he/OC/3n/OQuWAwSHFxMRmD2dRKy+by1mmFJEssvrmctmd7TO/69xQ5sWdY6N/31k1pzYCWM6K3Cn2xOBXT9xoB8Ja4kK0yQ83mTpgVIXMa/ioPyWiSkaNBvaXojlgjxLtikqz6DCKjcVP3cATwlbspPS+XXb86Yuq809GlHWzdu5mOjg6ys+f2gHnOPUS//e1vGRoaMn1lOYtTITIcIzourPqxjpAwhiYQLzhYeUcNxWfn6C1Dd0aOBk1vDAmOM3R4TBhDQPHZOaz8RI3eMnRHvCs0+veNmt4YAoiOxYkMx7A4zV2kK+NoHolEggceeGDO7z2nI6uqKj/4wQ/IUvNwSeZ29cbG4xz4U7vpw+UC1R5RXQ6txPLKT1RjdYng+EOPdNC/d0RvGbqT1eDFmW3e/hKCE3Fm28lq8OotQ3f6945w6NEOvWXojtWlsPIT1aYvxQ5atblAtbn3lKG+CAf+1E5s3NyeUwYtZCXy+eEPf0giMbdjMacG0auvvsrWrVtN7x2SLRL+Kg+SuQ15AAI1GeQu8+stQ3fiwQSDh8eIBU2+mAED+0dNf1AAUH1lIZm1GXrLEKQImXUZVF9ZqLcM3Qn1RRjYLyIKYpPvDBFlQt5yP4EasVZKshZaK1vMXZ+/0lvP3r17ufvuu+f0vnOaQ3TjjTfyx1//mTO5BMnEDRUyazNovKGMTd87QHgwqrcc3RGx0IJJXDl2MoqcdG8fAvOGQQPa7wJJMn3fFZFDpCEpEqiqWCslyFvmZ7QjRLBXHJwIxB5iEkfAxupP17Lnt60MHDDvoYGqqmzzP8+K1ct58skn5+y+c+bD6O3t5fe//z3FVJnaGAIYODDK5h8cFMbQxDQQC5mWEKk4hMvQV+6m4uIC0xtDoP0uzG4MCY6jJoQxBIAKFe8swFcuQsUUh4yvTIzD1O/C3FtLwoNRNv/goKmNIQBJksgeKuHZZ5+lo2PuwmvnbIf24IMPkkwmKaBsrm6Z1oiQICi/II9FN5brLUN3FLvMklsqyKwV+QGdrw2w4b/36i1Dd+xeKw3XleLING/3ccGJODJtNFxXit1r7t59ABu+vZfO1wb0lqE7WbVeltxagWITh2mLbiyn/AJzl98GsbecpIBSFEXha1/72pzdc85+Zffffz/+eA42ydxJwoEaD4tuLEe2mvwoA63fTN/uYb1l6E4ikuS17+5nYL8oJADCYwhaeJTIMRS8HklmnroDphdijdDo3z/Ca9/dTyIqBqRv97DoT4XWpHbRjeWmLzJhkaxUlVfx6KOPztk952TpPXDgABs2bBDeIbRO25GRGMmYCIUZah6je+ug3jJSgshQjEREvNTqrykRRTbQQh/2/LaN8IDJw2oFU4QHtDkRGYrpLUV3cpf7qb+mRG8ZupOIJMV8mKB766BoUwAkY0miIzGScbHHdDRn0dnZyY4dO+bkfnNiEP3617/G6/WSTcFc3C6tGT4yzqGHRclQR8BGoMZj+phfgMJ1WRSszdRbRkoQHY0TD4tKe+J3IXhTxNwgHkoQHRXV1QAK1mZSuC5Lbxn6I2kROI6ACDM++HAHw0eEtywQzyU7O5t77713Tu532gaRqqrcf//9eEYyUSRz91ixZVhw5zn0lpESZNVnUPceccIHYPNasGWIvACA5r91ipK6QO5SP+/4t0UibE4whSRLnPXvi8ld4tdbiu4M7B+l+W+destICexeK7YMi94yUoK695aQVS/KbwO48xymnxeyJFMYKObee+8lFjt9T+ppv443b95Mc3Mz+ZSetph0J3d5gCW3VSDJ4oiv45V+Nn//oKgmBhx5spvWp7v1lqE7skXC6jb3ockkI0eDHHrkmMiVEEyhJlUOPtzBSHtQbykpgdWtmL7fCsCRp7o58pR4f6DC5rsP0vFKv95KdEeSJZbcVkHu8oDeUnQnJ1bE6OgoL7zwwmnf67QNoocffphAIICf7NMWk+50vNzHjp81oyaFFQCIhnKghb+Idzqgldxe9/kG059qgZYvIvLrBK+ne+ugyCsDbF4r6z7fIEpvTyLeI4DYU0yiJlV2/KyZjpf79JaiP0cc5Ofn8/jjj5/2rebEILr88suRRewHakIVjeQAu9/K4pvKRUlhNCPgzC83YveJkLmxYyH2PNBKdEy81Nz5DvyVYrMnOBF/pRt3vgi7jo7G2PNAK2PHQnpL0R27z8qZX24U/YgAZ5aNxTeVY/eL92mwNyL62KH1JDrnnHO4//77SSROLz/5tKyY1tZWtm/fzvb7D56WCCOQUeSk9j3FKHZhGMoWmXg4QUIkzxPuj9LyZBeREVEpKBZMaPlDYg0nf2WA8gvz9ZYhSDHKL8wnb6UIg0HV8ohiQfEOiYzEaHmyS3gO0YptxMMJZEW4yxS7TO17ivEUOfWWojsDe0bp7u7mlVdeOa37nFbsyiOPPILVaiUrJl7ssk3G5raI0spojcP2/f6o3jJSgshIjM6NosEgQGZdhrbRMXmXbYDmv3WJXmWCN7Dzly2iZcMEmbVa8rzp1wsV8Q6ZIBZMiL3FBIlIEpvbIpr2Aok9DpxOJy+//DJnnXXWrO8jqao669X3ne98J6qqoj7lm7UAgfGw+61ER+IilwoIVHuIjsUZ7wrrLUV36t5TjGSR2Pc78UITHKfheq0gz94H2nRWIkglGq4tJRFPcuCP7XpL0R13vgObx8LgIdGHR5IlbF6L6M8kOAH3u2L09vby0ksvzfoeszYtI5EIL774IkeeFNVPkMDmEYnikyz7UBUl5+ToLSMlqLg4XzQinWD/H9uFMTRB6fpc8leJ0CjBieSvClC6PldvGSnB3t+1CWNogtxlfsovEpE4ACXn5LDsQ1V6y0gZbB6LKLgB9OwZ4NVXX+XYsWOzvsesDaLXXnuNUChEALHxdeXYWfu5ejKKRSwnwL4H2+jeJipoAWz9v0O0PdujtwxBimGxyyLUQfAGFJuMReShCl5H27M9bPvxIb1lpATd2wbZ96DwJgNklLhY+7l6XDl2vaXojms0QDKZZMOGDbO+x6xX3ueffx6v10sG/lk/3ChEhmPsfbBNhEVNMHI0KNzZE6hJSERFXhnAklsrRFO9CZr/1iX6aQjeQMcr/TT/rUtvGSlBVn0GS26t0FtGSpCIJkXPsgkiQzFGjopeXQDjXSH2PthGZFjst+iykpuby6ZNm2Z9i1kbRM899xxnn302kiR8dYlIkv59IyTjImfGW+qiYG2m3jJSAneeg4brSrG6RTglEoT6I8RD4q0uEAjenngoSag/IsKBAKvHQsN1pbjzREl2gIK1mXhLXXrL0J1kTKV/34go5oVWfnv16tX86U9/mvU9ZmUQRaNRXn75ZQ48JtyWAIVnZInShxNkFLvIE92TAZAUCUmRSMbEYoUKhx45xnDruN5KUoI1d9ZRfLYINxacSMnZOay+s1ZvGSnBcOs4hx45Jsr0A8locup9IoC85QEyioVBBOApclJ4RpbeMlKC0Y4g+/fvp7e3d1afn9XR9bZt2wgGg/hF/hAABaszURMqYx2iiVzHy32ie/IEY8dC7PlNq94yUgLZIqE4FGKiKSsArc90E+wVIbaCExk8NCrCX6Zh9VhIhBOmj75IRJPiXTKNbT85rLeElCGj0EnB6kyOvSpCsJP7bCSTSXbt2sX69etn/PlZeYi2bNmCxWLBgyi3DbD5+wfpfE30CRCciGyVRLjHBN4yN+s+V4/NKzqMA/TsGGKsUxhEghMZ6wzTs2NIbxkpgd1rZd3n6vGWufWWkhpIiN5lgjfQ+doAm79/UG8ZKYE94sHpdLJ169ZZfX5WBtHWrVtpbGxEkZRZPVRgTCQZVn2qZqqhntmpeVcxiz5QrreMlGC8M8Tu37QKD9EEmXUZ2DJEbpngRGwZFq2BsYDoWJzdv2llvFNEXgAsvrGcmncV6S0jJciszWDVp2rEgaPgBGRJpqCggN/97nez+/xsPrRlyxZ6dwzP6oFGo/CMLBbfVK63jJRAUiT69oyIkI8JOjf20/7S7GJZjUYsmGDw4Kho1ov2O2m8vgxfuTj5FpyIr8JD4/VlIlcEUJMqgwdHiQUTektJCY7+o5fOjSISBbTKvn17RpAt4ncCsPimcpFHNIETNx0dHbP6rKSq6ox2KLFYjIyMDMoi9ZRKNbN6qJEIVHtw5zto/4fImxEI3gxPkRNXjp2ebUN6S0kJLC6FZDRp+twIgIbrSwHY+4Ao0iNbJGSbTFwYAQDkLfcz3hNh7JjwEgkEb0bxWdmMd4UZPDSmtxTd6VCb2S9vY3R0FJdrZoU3Zuwh2rt3L5FIRPQfmmDw0Jgwhiaweiw4s0WDsElyl/lxBGx6y0gJ/JUeSs7O1VtGyhAPikRxwRtJxlVhDE2j+Oxc/JUevWWkBI6Ajdxlfr1lpAzObDtWjwg7Bmj/R58whibIwE8ymeSVV16Z8WdnbBDt27cPQBRUmMBT5EQRncUByFvmZ+ntopEeaGFRNVcVkVEsyrEDtL/Yy+a7D+gtIyWwui3UXFWEM0sYy4ITcWbZqLmqCKtb5OcCbL77AO3/EGHHABklLmquKhLhlBMsu71SGIgTKHZZtH6ZwO/R+mA++uijM/7sjM3rw4cP4/f7sQ6Ll7lslVj+oSr2//EovTtFTlXX1kEGm8UpBYCaUHnp67tF42LBG5AtEo5Mm9jYCN6ApGhzQ7bIgPAUCY7Tt2uY3p1Doi/TBDvvaxH5yhNk1nmpu7qYl/9/u00feZAch6ysLGR55o6KWRlEVVVVsGXGzzIcybjKlh8dJDoqKmeBFgYkwj2mocIMU/QMS9kFeaCqtD7To7cU3YkMx9j58xa9ZQhSkGBPRMyNaZSdnwcStD7drbcU3REFaU5kXLQtmGLw4ChbfnSQZELMEYCGhga6urpm/LkZm1CHDh2ifbNYnABQtRdYPCSMAICCNZmi5PYErlw7DdeXYhMxzgDExuOiWpRAIJgRsWCc2Lg4cASweSw0XF+KK1fk6YJWertgTabeMlKCeChBsCcivIcTHNvXw4YNG2b8uRkbRIcPH8aJSHIE8JW5KT1PJIpP4q/y4CkUcawAkiQhAUlxqgfAsVf7RSftCTyFTs745wZRgETwBpzZds745wY8BQ69paQEYt04TjKpIoEIw57AU+TEXyX2opOUnpeLTzQxBiC3MJvOzs4Zf25Gx9fRaJSOjg7qWTnjBxkRR6aNQLWHtudEGBCIsrnTGe8Os0eMxxSKQ0aNq6aPbwaIjsRoe65HnHwL3kBsPE7bcz1ERBg2oOXbSRaJRDiptxTdiQcT4p0yjbZnxb5rOoFqD5HhGMOt43pL0Z2xHXGCBBkdHSUj49SjlmZkEPX19aGqKjbEySZA99ZBurcO6i1DkIJIsqTlD4n9PwBLb6tkuGWM5r/NPK7XaETH4uLUW3BS4qGEmBvTKL8wH1+5m63/d0hvKamBpHmIRD6R4PVs/2mz3hJShkkbpaenZ0YG0YxC5np7e094mEAwiWKXWf3pWnwVwmULUHRmFus+V6+3jJSh+W+ddG0RhwcAFqeCr8ItqswJ3oBskfBVuLE4Rdlt0A4dm/8+89AXo7Luc/UUNWXpLSMl8FW4Wf3pWtH2RPAGvDleAF544YUZfW5WBpFVGEQA1F5dTOWlBXrLSA1U6N09LCruTTBwYJTDfz2mt4yUYbhlXEv6FOApdLLk5gqsblFwQ3AiVpeFJTdX4CkQuZighR4Pt4gQoEkO//UYAwdH9ZaREkRH4/TuHhZRGBNUXlZA7dXFestICaQx7UApHJ5ZJcIZvZGFh+hEhlrGSMbErxEgEU2K0qjTCPZEhAEwjdylfsa6QmJMgJHWcV777n6io6KHhuBEIqMxXvvufmJj4mAJtGqdnnwnPTuG9JaSEvTtGdFbQsoQ6ouIPcc0RlqDyBYRdQAghTTTxmabWb/UGXuI7HY7yszbFxmSnm1D9O0WDVlBa1LryrWLMKAJPAUOUQFnGhWX5BMQ4wFo/csiQzFxsil4IypEhmKi+MgEgeoMKt6Zr7eMlMFf5REVCCeQFG3PIVvFngOgb/cwPduH9JaREsiSjM/no6VlZj3dZmQQjYyM4PP5RNnHCdx5DhH2MoEn38nKj9fgCMzMIjcqeSsDlJ+fp7eMlGHDf+2j4xWRLA7gzndQeVmBOM0TvAHZIlF5WQHufLHpBeh4uY8N396nt4yUofyCPPJWBPSWkRI4AjZWfrwGd74ILwWwui2488S6MYksy2zdunVmn5nJxZFIBIdDDPgki24sI2+lWJxAi/Xe9tPDRIaiektJCZof72LHL0TVF8EbsboUvMUuEAdLgtcjSXiLXVhdoqiC4I3s+HmLqNQ5QWQoyrafHibYPbM8EaOSvzLAog+U6S0jZfD7/RQVFc3oMzNyb0QiEex2kT80ya5fHSEWSugtIyVIRJOMdYT0lpEyqEkVVbTOmKLxhjI6X+tn8NCY3lJ0Z6h5nG0/Oay3DEEKkowlxdyYRqDaQ8GaLPb8tlVvKSlBMiZeKpMk46rYc0yja+sg/ftEjtkkXq93fnOIwuGwMIimEeyNiOTXCZxZNkrOzRFhQBMUNWVRfFaO3jJShmQsKQxEgUAwI9SkMAKmU3xWjii7PYFskSg5NwdnlgjTB4iNxQn2iqJFk4RCoRnnEM3IQxQOh7HZbCg2UfcdoOTcXAb2jzDeJVy2rhw7+Ssz6dk6SFx0FUexKyhWWfxWJjj4cAeAGA+0U+/KSwvZ+n8HRZVKtCbGIOYGgGyTWfHRapofPya8qcBoe5DR9qCYGxNYXQqJqCTGA7A4ZPJXZhLsDot2H2i5qZl1Xo4+36O3lJQgFovR19c3o89Iqqqe8hv5iiuuYPv27XzoQx+asTiBQCAQCAQCgUAgmE9++ctfUlBQwEsvvXTKn5mRhygQCOD3+9n3+7YZixMIBOal7n0ldG0eEE0WBW+g6B3ZAHS8NLPTPIHx8VW4yV+Vyf4/HNVbikAgSCOysrLIy5tZpd8ZGUQ+nw9ZlunbKRK3BCfiq3BTeXE+O37RQiIiQuZq312MLcPCrvuO6C0lJZD+1M5oR4jwgKhCaHEqOLNsjHaERC8iIGepHxBNJwGQIKPISag/SlwU7GGsK8xIW1DMjQkW31ROdDTOgT+36y1FdxS7zNJbK2h+oksctAneQF9ZH07nzEqyzygQ1W63E4mIpK1Jln24itxlfr1lpATxYILh1nHUpNjhAXRvH+TYBtF3Z5LencPCGJrAV+5m2QerUOwiD0BwIha7wrIPVuErc+stJSUID0Tp3Sman09ybEM/3dsH9ZaREqhJleHWceJBcXAAkLvMz7IPVeotI2VQVRWPZ2bN4GfkIXI4HMIgmsbQ4VHCou8OoPUhEv0RjiNOrE4ke5GPsU7hIQIYah5jyw8PCk+q4A3EIwm2/PAgkeGY3lJSAmeWDXe+k77dwigCGDgwqreElCEZU8WeYxrhoShDzaIQyyRut5u6uroZfUZ4iE6D1md6GGkN6i0jJZAUCUfAhqSIstsArly7OOWdRu27iwhUzey0xqgkIkmtPKpwpgpej6q1c0hEhbEM4K/0UHPVzJorGhlfmRtXrmh9AmLP8XpGWoO0PiMqzE0yPj7zQ+kZGURut5uxMWGBTmL3WbFlzMjJZljcuXZWf7oWV7ZYrAHyV2dScUm+3jJShlf/ay+dmwb0lpESuHLslF+Uh2wVL3LBichWmfKL8nDliHUUoHPTABu+vVdvGSlD5SX55K/K1FtGSuDKmdhzCAMRAFuGBbvPqreMlKG/v5/W1pk1dJ6RQZSdnc3o6ChJVcRsAtS/r4TS83L1lpEShPqj7PxlC+FBERIF0Pp0Nzt/MbOmYEYmGVOFR2QCq8dCZq0XWRE5RIITkS0SmbVerB5x0AaAiujVNY0dv2ih9ZluvWWkBOGBiT1Hv9hzAJSuz6PufSV6y0gJVFUlFAqxcuXKGX1uRqtuTk4OAFEiOHDN6EFG5NCjx4hHhHEIkIgmGT4i8mYmEfkhJ1J1eQHDrUH6dolcgOGWcbb84KDeMgQpSDyUEHNjGtmLffjKXBx+rFNvKSmBeK8cR+w5TuToCz1Y7IreMlKCODESiQQNDQ0z+tyMjiinG0QCrZBAZEgkv4IWz1vUlCVCPSbwV3mourxQbxkpg2yRkWURIiYQCE4dWZaQLcKTOknVFYX4RS4moIXMFTVliRyiCSJDMca7w3rLSAkkv3ZwIMszWztmZRDFhEEEaOVzC9aKeF7QSmCWnJOLK9eht5SUwGKXcQRsestIGQ7+pYOeHUN6y0gJMoqdrPpULTaviPcWnIjNa2XVp2rJKJ5Z/wyj0rNjiIN/6dBbRsrg8NuwiHL9ALhyHZSckytafUxQsDYTX7ko5AQgBzSDyGKZWejxrEPmBJBR7CKzLoPOjSJZHBVe/ZZIfp2kb8+IaCYoOCnRsTh9u4dJxkT4i+BEkrEkfbuHiY7F9ZYiSEF2339EbwkpQ9/uYVGOfRo5S/wM7B8RYYRAX4vWq6upqWlGn5NUVZ2ReZ2VlUVgoIAKaWaxeQKBwLwsvb2SYG+YQ48c01uKIMVouL4UgL0PtOmsRJBqVL+rCFe2nR33NustRSAQpAmt6gE6XIcYGxtDkk49pHLGvteqqiqCCAtU8EaqLi+kdL2ougeQUeKi6cuNImxugvaXeunZPqS3jJRAUiTceQ5RdlvwBmSrNjdEXoRGz7ZB2l/q1VtGSuDItNH05UYRTjlB6fpckacrOCnOOhmfzzcjYwhmYRBVV1cTQvQiAm2BWvHxalEHf4LwQEQUmZggPBil9elu4mFRhRBgYP8oI22iiTGAM9PGio9V4xb5doLX4c5zsOJj1TgzxUEKwEhbkIH9o3rLSAnioQStT3cTFu9YQCsiEOoX6RugNYJf8fFqHGLdAGBgYIDCwpkbyzNudlBVVYWr8HkQVTCJhxIMHxkXXcUn6HilX28JKUNsLM6xDWI8JnHnObC4FIZbhHc5PBhl2z2HCfaKl7ngRMa7I2y757Do5zaBr8JNPJgQ1bPQ9hvinXKc7q2DektIGSZLkMdD4gAWwO61ct555834c7MKmTt27BgJ0ZyVeChB8+OdwisygWyRxAnFNPyVbtE5eoK8lQEqLs7XW0ZKkIyrjB0LiaIKgjeQjCW1uREXlbMAKi/OJ29lQG8ZKYHdZ8VfKaqITeLItCFbRGgpaN6y5sc7hUEEJKUkra2tlJWVzfizMzaIamtrAQgi3NigdZ0XRoBGzhI/qz5ZgyT6zQDQeEMZmbUZestICVqf7mbHvS16y0gJZKtM6bm5OLPEuiE4EWeWjdJzc5GtorQywPZ7W2h9ultvGSlBZl0GDdfPfJNnRCRZYtUna8hZ7NNbSkrgyLRh9cw44MuQ2EohHp9dlc4Zr7pLlixBkiRGGZrVA41G1aUFVIvEPgAGDo6y8xctzLBwoWHZfPdB4dafIBFNCo/IBLJFIm9FQHgPBW/A7rORtyKALIoqAJrHTISka3RvGWTL9w/qLSMlUFWVnb9oYeCQyGcHqL68kKpLC/SWkRJ0dmiVbK+88soZf3bGZbcB6urqCB1IUictn/EDjYYzy0YyoYqwOYHgLfCVu8lbEeDAn9r1liJIMUTZbcGbUXt1Md1bBhluFbmHAsGbYfdbkWSJ8IDIPTyo7iBZEqKtbebvk1n55VeuXMko4uQbINQfFcbQNIqasvAUirKgAHkrAhSfla23jJRAtkjYPBYQB98CgeAUkGSweSyiPP0ExWflkLfcr7eMlMBT6KSoKUtvGSlDZCgmjKEJknkRSkpKZvXZWRlEK1asIO6JiNAowOJQKL8oT+QDTFCwRhhEk9g8Fuw+MS8ABg+Nseu+IyCWDACWf6SK7EVevWUIUozsRV6Wf6RKbxkpgZqEXfcdYVCERQFaUQVrhgizBc0gyl8tDCLQopTKL8pDcYi8Q1VVGRjrIycnZ1afn1UW1ooVKxgbGyPIGG7MnTSejCfJqvcxdHicUL+w0Dd974DeElKGoy+KhoKCkzN8ZJzo6OwSPwXGJToaZ/iICA8TvJHDjx3TW0LK0LVpgK5NA3rLSAnsPhtZ9T7anu3RW4ruRAgxPj7ObbfdNqvPzyqHaHh4mMzMTOqSKyiSKmb1YIFAYB7sPiurPlnD7l+3ig2f4AREDpHgZPjK3Sz6QBmbv3+QyLAISxcIBG9NF23sUjfS1dVFXl7ejD8/Kx+bz+dj+fLlDNE3m48LDExWg5eVn6jWW0ZK4C110fTlRux+EeYQG4/T8kSXiHOewOa1YnUressQpBhWt4LNK9YLgPBAlJYnuoiNC0+q3W+l6cuNeEtcektJCVZ+opqsBhFyLDgRpSFKTk7OrIwhmKVBBHDeeedhLVVFHhGQu9zP2s/X6y0jJYgMRenfP4okysYSGojS+nQ3iYgoG5uMq3S+NkBkRJz0Aix6fxklZ+fqLUOQYpSck8ui94teMwCRkRidrw2IJrVAIpKk9eluQuJACUmR6N8/SmRIjAXAus/XkyuKbQAwODbAqlWrZv35WRtE5557Lm1tbYQJzvrhRmHsWIijL/QIIwAY6wzT+nQ3akK8xGJjcY5t6Bfdoyfwlrlw5dr1lpESHPxLO8c29OstQ5BiHHu1n4N/EaXpAVy5drxlwiMCEA8lOLahX3jLADWh0vp0N2OdYb2l6I6kSLS90MPYsZDeUnQnooZpa2vjlltumfU9Zm0QnX322UiSxCAicTzYE6Fz44AwAiZwBGw4MkV1NYCMYqeoujdB1SUF5K/O1FtGSjDWGSY8KE44BScSHoyKjd4EBaszqbxENJsErapaRrF4jwA4Mm04AmJ/AZpx2LlxgGBPRG8pupMs05wzZ5999qzvMWuDKBAIsHz5cgYQlS1AO80KVHv0lpES1F5dTOm5IhwIoGx9HkVnil5EoJXQPfJEl94yUoLMugyyF/n0liFIMbIX+cisM3fl1klanuhi931H9JaREhSdmU3Z+tnlRRiN0vNyqX13kd4yUoJAtUdEXUww4ugjOzuboqLZz41Zld2e5IorruD7R75PcjCJLJm7BnreigD+Sg+Dhw7pLUV3Dv6lnZgIEwNg30NHSYRFDhFALCjmxCSZtRlYHAp9u4f1liJIIbIbvcTDCQb2j+otRXeScZVkXKwZAAf+2C76zEzQ/LdOrE5RkAag/KJ8hprHaPm7uQ8aVVWld7iH66+//rTuM6uy25Ns2rSJNWvWsIpzCUiza4RkFBS7TDKWRBV7X4HgpGTWZRCo8nD4r516SxGkEKLstuBkVF1ewODBMQYOCONQIDgZkgyyVTZ94aZhdYDXeIbnn3+ec845Z9b3Oa0jh5UrV1JYWEgvomFYIiKMoUksDoWqywuEKxctlLL+2hIs4kQLxSpjE53WBQLBKWDzWFFswiticSrUX1si3qdo79OqywuwOMT7FEBNYnpjCEBeGsLlcnHmmWee3n1O68OyzBVXXIG1KinKbwNlF+RR8c58vWXoTiKWxFvixuo+rYhMQ5CMqyg2BcUuXuy9u4bZ+6DwAgDkrQzQKMorC15H4/vLyFsZ0FtGSrD3wTZ6d4mQUotDQbEpovw4YHVb8Ja4SUSFEVDxznzKzhd5ZQC9Y92sWrUKi+X09pynvUt717vexeHDhxlHuLUjwzEiQ6LPippQ2fp/hxhuGddbiu6EB6Lsvv+ImBfTEdXpiY7GCPaIamKCEwn2homOirVCrBHHCQ9q7xDR1BqGW8bZ+n+HUJPCOIwMxURfPyCkjtPc3MynP/3p077XaeUQAYTDYfLz88kcLqRKWnTaggTGQbHJ4iRnAsUu4nytboU1d9ax93dtDB4c01uOIEUQOUSC1xOoyaDh2hJe+85+YuPmLqwg3h3HEXsKwevpL2ljb88Oent78XhOr9LzaXuIHA4H73vf++iiTYTNAXafVcT6Ar4KN2d8qQGbV+SM1FxVROMNIjwqFkzQ8mQXwV7RM0FSJOw+qzgJFxxH0t4fosG35ilrebJLVKZEC6OsuUqUmbZ7rZzxpQZ8FW69peiOK9euvT9MjqqqHB1vprGx8bSNIZgDgwjgpptuIsQ4w4jO61WXFVJxsWgmN94Z5tCjx0hExAuta/MAbc+Lfl2o0LlxQIQPAr4yF2vurMMuDgwEE9i9VtbcWYe31KW3FN2JDMXo3DgA4oyVtud66No8oLcM3YlHEhx69BjjonExle8soOqyQr1l6M4oQ/T19/GlL31pTu532iFzAMlkkoqKChJtFhqklXOhK21xBGzEgnHh4hYIToKnwIFiUxhuNXd+mcWh4C5wMHo0aPpkaREypyFbJDJKXIx3homHzX2Q5Ctzk4gmGBObX4HgDSh2GavLQnjQ3HllB9hOJHeE9vb20y6oAHPkIZJlmQ984AN0c5SkyWtPhwejwhiawJllo3Bdlt4y9EeCvOV+EUoJFJ6RTen6XL1l6E48nGC4Zdz0xpDgOMm4ynDLuOmNIYDS9bkUrsvWW4buuHLt5C33i9BaoHBdFs4sm94yUoJEJGl6YygpJRlwd7J27do5MYZgjgwigBtvvJE4MdGTCMhfnUnVFcKd6S5wUnJOjugloUL5hfn4ykTs8+HHj7HrV0f0lqE7kiKJF7zgBJzZdgrXZYkcImDXr45w+HGxl/CVuym7MN/0oYOKTabknBzc+U69pehO9RWF5K/O1FuG7gzKPYyNjXHjjTfO2T3nrFFMY2MjZ599Njtf3EsexXN127QkGUuSFJVQ6N8zTN/uYdMv5gAb/3c/akIMRCIsfhcAqFB2fi7RsRihfnOf9Ak03Hl2ys7PpfM1kYurJlUSEbFedm4coGvzoN4ydCcRTbLhv/chibMCElGxvwRoix9k9erVXHvttXN2zzk9ur/jjjsYoo8x1dzN1Hq2D9HyRJfeMnRHTSKMoQmEMaRh91lpuLYUR6a5PSNqUuWVb+ylb/eI3lIEKULf7hFe+cZeTB51jiPTRsO1paKK1gTi3TGBiul/GwAtT3TRs2NIbxm6IhXE6aeb22+/fU7vO6cG0dVXX01+fj7tHJ7L26YlslUS5SGB3GV+Vn2yRm8ZuuPOd7Di49WmL0OejCWRrRKyRRz1CQSCNyJbJGSrRDJm7t2v3Wtlxcercec59JaiO6s+VUPuMr/eMnTHV+FGtop3Z6e1BafTOafeIZhjg8hms/GRj3yETtqIq+YurZuzxM/iG8uxOBW9pejKeHeY7m2Dpo+Lj47GGWkbN73LPxZMsPvXrQR7RC+imncVUXSmSBwXaBSdmU3Nu0S/mWBPhN2/bhU9iCQYaRsnOmbuvZSkSHRvHWS829wVBy1OhcU3lpOzxK+3FF1JqHH2te7h4x//OFlZc1u0a07Kbk+no6ODsrIyqhJLKJWq5/LWaYVik7G4FNFzRSA4CaLjOJScm0NkMGb68AdRdlsjd6kfu9/K0Rd69ZaiK2JtEAhOjt1vJR5MmPr3MZDVwdb+Vzl8+DAVFRVzeu85L/9VVFTENddcQxsHTF2COxFNCmNoAluGhZylfr1l6I5il8koFlVy6t5XQsN1pXrL0J2jz/ea3hgSHKdnx5DpjSGAhutKqXtvid4ydCej2IliN3mFViBnqR9bxpzV/0prIkMxUxtDqqrSqh5gyZIlc24MwTwYRAB33XUXYYJ0cXQ+bp822H1Wln+kCne+uWOAvWVuqq8oxOIwd/hg3vIAS26pMH34YOeGfo6+KDZ+skUSL3rBFLYMi8itA46+2EvnRnNX2pMUiSW3VJg+b8biVKi+ohBvqbnzsd35DpZ/pMr0hUZ66KC/v59//dd/nZf7z3nI3CRXXnklzzz6PE1cjGTSxAlJhuori+h4pc/UOROSIiHJIknW4lKw2BXTN1QTaJSuzyVveYDX/ne/3lJ0RYTMaaz5bB3dWwdpe65HbymCFMARsBGPJIibPJdKsckkE6qpq+25cu0UNWVz6JEO01baU1WVjTzN2gtW8dRTT83LM+bNH/vlL3+ZIKOmbtSqJuHgXzpMbQyBVjbU7MYQQDyYEMYQmmckb0UAu9/kp13bhzjwx3a9ZQhShAN/bDd9CKXdbyVvRUB4yoDwYNT0xhBo6QdmNoZAKzRy8C/mNYYAqA8yyhB33HHHvD1i3gyipqYmzjvvPFrYxzw5odIGb4kLf6VHbxm64i11sfoztaYPm8tZ7KP8wjy9ZehO1eWFZBSZO58qPBBluHVcbxmCFGG4dZzwgLkPTDKKXFRdXqC3DN0pvzCPnMU+vWXoisWhsPoztXhLXXpL0RV/lQdvibnHAGBH+1bKy8t517veNW/PmNcA9q985Stc9NxF9NFJDoXz+aiUpvCMLCRZYqh5TG8puhHqjzKwf8T0+TOKQ8HmMXfeSDKu8so39pj+1M/qtpCzxEfP9iHiIXESbGYsToXcZX56dw4TG4/rLUc3+nYP079vxPRrg81jIWzyw0NJkRjYP0Ko39yHBAWrM1ETKiNHg3pL0Y0BtYfesS5++uu/oCjz97uYtxwi0GL+zj//fF57bgtncJFpc4kUu0wiYmZfp0AgeD3uPAdLb69kx8+bGe8yb48NkUOkJU0vva2S7T87bPoQa4FAcCJm3kOqqsqu7JcoKM5ny5Yt82pHzGtNR0mS+OY3v8k4I3Ri3pfd5EQ2e5NWSZHIWeIzvYcECdOPQc5iH4tuLNdbhq6Md4d55Rt7TG0MCTTGu7S5YHZjaNGN5WSbPFTM5rGAOc+Op7B5NO+52SNKJveMZjWGAEYCPXT3dfGhD31o3p0q817kft26dbznPe+hmd0kVfOGhfjK3Kz9XB3ObLveUnRDtkhUX1mEr8LcJTRrry6m7n3m7rMRCyYI9Zt78ycQCE4k1B8xfSGBumtKqH13sd4ydMVX6aH6yiJkExtEzmw7az9Xh6/MvPulpJpk9+BW3vnOd85rMYVJ5jVkbpJ9+/axaNEiqpNLKJVq5vtxKYmkaJW1erYPkoyZNz7a4lRMny/hKXCAJDF2LKS3FIHONFxXysD+Ebq3DektRTdEyBzkLfeTWedl74PmHQOBhqfQiaqqjHea23Ns9r2CbJXIXRage+ugaXPqRsq6eK31JbZu3cqyZcvm/XkL0ga5vr6e22+/nRb2ElPNmSCnJlS6Ng2Y2hgCphY4STbvyc9YZ1gYQ4DVpZi+0Vx4MErMxC99gUYsJEry231WrC5zh5UDjB0LmdoYmtwbmNkYAkjGtD2jWY2huBpnT982Vq9evSDGECyQQQTwta99DbvHRjN7FuqRKUnRmdkUn5WttwxdaXx/GeUXmbv0dFajl/xVAb1l6ErDDWWUrTf3PGh5oouB/aN6yxDozMD+UVqe6NJbhq6UnZ9Hw/VlesvQlfxVAbIavXrL0JWKi/NofL+550HxWdkUnWnufWILe4nH4/zwhz9csGcumEFUWFjIv/3bv3GUQ4yqQwv12JRDscrIlgUb9pSkd9cwgwfNvQn0Frvwlpo3Nhjg8GPHaH22W28ZuiJbJGwZ5i6wIQBbhsX0zUhbn+nm8F/N28gdwFvqxlts7p4zAwdG6d01rLcMXZEtMrLVvOtB3BemjYPcddddrF69esGeuyA5RJNEo1GWLVtG174+VnGuactwCwQCAUDZBXnkLPKx6XsH9JaiGyKHCFZ/upbe3cO0Pm3uAwKBQGBuVFXlcOkWRsaGOXr0KC7Xwh0QLKirwmaz8b3vfY8h+uji6EI+OqWQZMhbETB1vLQ7z0HJ2Tl6y9AdxW5eb6Filym7IM/UlRd7tg1y4M/tessQ6MyBP7fTs21Qbxm64cy2U3ZBnrnXQ4d5//ZJSs7OwZ3n0FuGblhdCnkrAkgmngq9HONIWwtf/vKXF9QYggU2iAAuuugi3vve93KQHcTV2EI/PiVQ7AoVF+cTqM7QW4puOHPs5C7zo9jM+8uvvKSAxTdX6C1DN5JxlZxFPhx+8xZWCPVHGWkzbwdygcZIW5BQv3mLKjj8VnIW+UjGzZlADrDkpgoqL8nXW4ZuKDaZ3GV+Ux+QBaozqLg4H8VmzsNyyZ7kANu57LLL+Kd/+qeFf/5ChsxN0tbWRkNDA5nBAuqlFQv9+JTA7CUlkQDzvvsA8BQ5sToVBg+N6S1FoBMWp0LuMj99u4aJjsX1lqMLZg+Zs3ksZC/20bN9yNzvBJMTqPEQCyYY6zB5BVKT7w3MvDccWtLKtj1b2b17N7W1tQv+fF2O50tLS/nmN79JO4cZVHv1kKA7kxPelWPS05CJBc/msZjWSzTWERLGEJi6K7tikylbn4cj06a3FIFOODJtlK3PQ7Gacx0ETL0GTDJ4cMy0xpBik7F6JorLmNQYmtwLmtUYGlb72bxjEzfeeKMuxhDoZBAB3HHHHbzjHe9gD5tIqOY8Gc1Z7GPFx6pN24tFscms+lQNeSvNW346o9hp6vKa/ioPTXc1YnGYM0QgMhzjlW/sEWFzJmakLcgr39hDZMScIeQWp0LTXY34qzx6S9GNojOzySh26i1DN/JWBlj9qRrTHo7afVZWfKyanMU+vaXoQlJKsIdNrFq9invuuUc3HbrNPlmWuffee1EdCQ6zWy8ZutK3d4Tdv2klMmzOF2EimmTf74/SvcW8ycTuPAe5S3ymTaIM9oRpfaYb1azHggKByVFVldZnugn2mLMZqSRD7lK/qYsJdG8dZN/vj5KIJvWWoguR4Ri7f9NK394RvaXowtjiTsJKkJ/+9KdYLPq1odAlh2g63/72t/niF7/IGtbjk7L0lKIrskUydUKpaTF5vLQAqq8oJDIS4+gL5gwfNnsOUck5Odi9Vg49au4ePKZHvAtMidn3fiPqIK/xDNdcew0PPvigrlp0P5f+p3/6J9auXctuE4fOlZydw5LbKvWWoRs5S/3UX1Oitwx9mFgHLU5zhowBOLNsZDWYtzt7aCBq2nApAURHYoQGzFthLqvBizPLvDl0U2u/SffE9deWkLPUr7cM3VhyW6VpW5AkVC1Ubumypdx///16y9HfIFIUhV/+8peozjgH2K63HF0Yah6ja9OAaRNL48E40bE4kmzOAfBXeVj3+XpsXnPmkmXVe6m6vFBvGbrR8XIfPduG9JYh0InubUN0vNyntwzdqLq8kMx6cx6I2L1W1n2+3rT5U5IsER2NEw+a8zAcCbo2DTDUbM7iSsOL2ggpY/z85z/HatV//6N7yNwk99xzDx/5yEdYShO5UpHecgSCBUOxyWQv8tG7a5hkzHwx1LJVRk2oqMmUWIoWHEmRcPitpu1DY/aQOWeWjfBQDDVh0vkvS0iKZNq1L2exj77dw6bNnxGYkz61k228xK233srPf/5zveUAKeAhmuRDH/oQ73nPe9jDJsKqOSsulZyTQ+WlBXrL0AcJcpb4TJlYmogm6d46aMoNAUAyljStMQSQWZvBqk/Wmjps0qxYnAqrPllLZo15m3SrSdXUa1/31kFTGkPuPAc5S3ymjYypvLTAtKFyESnMHjZx2WWXce+99+otZ4qUMYgkSeKee+4hryiXXWwkRRxXC0psPE501KSuY6DknFwCJt0YKHaZ8gvzTBtLX3JOjmnD5oaPjLPjF82m3BSZnUQ0yY5fNDPcOq63FF2ouqLQtJtCZ5aN8gvzUOwpsw1bUAK1GZSck6u3DN2IjsaJmTBUUFVVOkr34PQ5+PnPf44kpY5FrF99u5OQmZnJ/fffz/nnn0+Luo9KGvSWtKB0bTZv+WlU2H7PYdNuCpNxlax6LyNtQVOGTkVH46b1EsVDCUZazekVNztqQjX1dx8ZihIbM9+mEMCZZSezzkvrsz16S9GF9hd76dzQb9piEu3/MGdV0TYO0nykmf/+7/8mNze1DOKUySGazr/927/x9a9/nRWcTZaUp7ecBadwXRaJWNK0/XlcOXaCvRG9ZQgEC0b+6kxCfRGGj5jPU2DmHCJfuRtntl0rqiMQmAQzv+PzVwWQLTLHNvTrLWXBGbH281r0OT73+c/x7W9/W285byAlfbX//u//zsUXX8wuNpgyn8iRacMRMGfoVKDaw8pP1ODKsestRRdkq4TdpNXmbBkW04YM5i33k1Hi0luGYIHxlrjIW+7XW4YuOLNs2DJSKkhlwbB7rcjW1AkVWkhcuXZWfqKGQLU5K+vZ/ebc30mBBHtsr7Fk6RK+8Y1v6C3npKSkhwigv7+fVatWMdg6wirOQ5FEwrEpkDSjaPCgOctQLr65nGQsyZ7fmu+0fPHN5SQiSfY+aL6/3cyY2UNkZhquK0Wxy+z61RG9pSw4jTeUIVskdt13RG8puhCo8TB4aMy04XJmI6km2SI9j+RP8txzz7F06VK9JZ2UlDWIALZs2cKZZ55JdqSQBmmV3nIWnOzFPiRZonfHkN5SdEGSQTVZSpGn0EksGCcyZL5Gnc4sG7FggngoobcUwQIiDCJzYnEqWF2KKXMm7X4rVqfCWGdYbykLihnf6ZPkLPWjJlX6dg3rLWXBOezYQXu8heeff56mpia95bwpKRkyN8nKlSv50Y9+RActdKgtestZcPwVbnxl5gyjKT4rm8U3V+gtY8EZOxYypTEEEOqPmtYYyl7kZcVHq/SWIVhgVny0iuxF5mxKGg8lTGkMAUSGYqYzhgAW31JB8VnZesvQBV+ZC3+5W28ZC0580TAtoQP867/+a0obQ5BiVeZOxm233caGDRv4yY/vwaV6CEjmKdF56NFjpnUpjx4NaRXnJEw3Br5yN0VnZrPnt62m+9tLz8slMhIzXUGRyFCMweYxJFkybbU9syEpEoPNY6Y8AMlbGcDutdL2nMkqrElauFzHy33mK6AiQd/uYYLd5iymcOiRY6bruTSsDrB51/Oce+65fPnLX9ZbztuS8gYRwPe+9z0OHDjAP559iTXq+bgkkyTjTeyLfBVuHD4r3duGdJWzkAy3jpu2N0c8kkCNq1gciuk8JhanYsrS66MdIUY7QnrLECwgakLlyJPdesvQBYtDMWUjYotDQY2rxCPmWtcBUKFzo/mqKeatCBAejGoGsInOuuTcBDt6X+aMM9bxt7/9DUVJ/d97SucQTWdgYICmpibaD3SyhvVYJfNU6ah4Zz7OTLvmMTAZpefmEh2Pi7K0AsPjyLSRjCVN15zZrDlEtgwLslUmPGDOsDGBechfnYnNbaHteZN5BIHG95cR6ovQ8kSX3lIWjLgaY3f2y8QTcfbu3UteXnq0z0npHKLpZGZm8thjj+HItLKDV0iaKDPvyJPdpjSGABSHjMWknbx95W5TlueUrTJWT1o4r+eUJTdXULAmS28ZggWiYG0Wi28u11vGgmP1WExZctoRsOEzYQ4JgMUuozjM+R7f85tWjjxlHk9wUk2ykw2EI2Huu+++tDGGII0MIoDq6mr+9Kc/MWYdouKDAVRVRbZKSMrxxVWxyVNxmpIsaf89gWyVkC2neK3ljddK8uS1zPG1kyJOvFZSJGTr8ZwCT5GTondkv+W1x/9W+fi4SK/7WxUJ2XriuMzq2tMaw1O7tuXvXXS80nfKYzgX433qYzgH4/36MVSkqb+99j3F5K30z9F4L8yclS0njstsxnvpbRWUX5D3NmM4R+OdQmvEngdaOfZq39zP2Zlcq8MaIU3bG89mjZg+hm99bWqtEV2bB6ZKzM9mjTila1Nwjai4MI+lt1We0rWnN2dTa43IXean7j3FyJaZjOFMrk3dNaLj1X5an+k5+bUzGMM3jkvqrhFFTVm48xzaGE1+dIH3Ead07RyPof3SEENKLw899BCXX3456URaGUQA55xzDj/96U/52c9+xhH2sfT2Siouzge0UpZNdzXiK9NOYQrXZbLms3VTn118YzlVlxUCYHUrNN3VSGZNBgB5K/ys+2LD1LUN15dRc1UxoE3SprsayWrwAZCz2E/TXY1TP4i695ZQf03J1Geb7mokd6kfgMw6L013NaJMeDmqryyi8f1lU9eu/Xw9+asDAPgrPTTd1TjVrK7q0gKWTKu0tuTmcgrXZSEpEt4SF013NeLI1DwI5RfmsexDx6tUrfxENSVnawUo3PkOmu5qxJ3rAKD03BxWfrx66trlH66i/ALNindm2mi6q5GMYq26XVFTNqs/XXtcw62VVF5SoI23Vxtvf4WW01WwJpO1nzs+3os+UE71Fdp4W5zaeAcmxjt3uTaGk9RfW0rt1dp4S4pE012NZC/Sxjt7kY+muxrxFGj6a68upuG60qnPnvHPDeRONDcM1GTQdFfjVHx61eWFLLqxfOraNf9UR8GaTG28K9w03dWI3ac1Qq28JJ+ltx5/Ua/+dA1FZ2oGaEaRk6a7GnFmaQ1jy87PY/lHjo/hyo9XU3purjbeudp4e/I1vSVn57DyjuPXLvtgFeUXauPtmBhvb6k23oVnZLH6M7WoSdjx02Z85R6qLtPG2+axaGNYpY13/qoA675QP3XfxveXUf2uIgAUuzZnM+u0ClY5S1833u8roe692pyVZG3O5izRxjCrYWLOTix8NVcV0XD98Tm77ov15K3U5mygWhtvq3tizl5WyOKbjs/ZNZ+to3CdNt6+sonx9mvjXXFxPktvPz7eqz5ZQ/FZ2TQ/3kn//hGa7mqcatBbel7uCVXYVny0irL12ni7su3anC10AlD8jmxWfapm6tp0WSPCg1FiwcRprRFr7qyl6AzNy5Qua4Q7T3vmaa0RjdoaMflyToc1Ys1n6qb2SbNZIyZZfHNFWq0RsmXaZpLZrRGgtShIpzWi/aU+bBlWMuv03Ucs5BqRs8RH/upMis5MgX3EAq8ROUv8eMtcuu4jJlmoNUI9d4jHH3+cj3/841x00UWkG2mTQ/R6vv71r/Nv//ZvrMxposRSxXhXGNkqk1njYbh1nNh4AmeWDVeOnf59o4BWnCARSTJ2LISkSGTVZTDSFiQ6FscRsOEucNC/ZwQAb5kLNaEy2h5CkiGr3stoe4jISAy7z0pGkZO+vSOgaosKEoy0BQHIbvQyOlE+2ZZhwVvion/fKGpSJaPIiWyVpyrMZDV4Ge8OEx6IYvVY8JW6GDgwSjKu4ilwoDgUhlu0azPrMggPxQh2h7G4FPzlbgYPjZGIJnHnO7C6LQwd1hqaBmoyiAxFCfZGsDgU/JVuBpvHSISTuHLt2H3WqeangWoP0dE4491hFJtMoNrDUMs48VACZ7YdZ5aNgf3aGPor3cRDCcY6w8hWicyaDIZbg8TG4zgybbhzHfTv08bQV+4mEUsy1jFtvI8GiY7GsfutZBQ66Zsc71IXqgqjR4MgQXaDl9GOEJHhGI6AlSW3VtL+ci+dGwbIKHYiydIJ4z3WGSY8GD0+3vtHURMqniInyvTxrvcy3jMx3m4LvjIXAwdHScZU3AUOrE6FoeaJ8a7NIDQQJdQXweJU8FdMG+88B7YMi9ZcDq3RXGQ4RrAnguKQCVR6GGoeJx5O4MqxY/fbGDw4MYZVHmLjcca7jo/38JFxYkFtzjqz7VPj7atwoyZURtqCyBaJzNoMhtuCxMYmxjvPQf/eifEuc5OMJxntCCHJEln1GYy0h4iOxE463qgwcnTanJ0Yb7vXSkaxk/59I6hJtPFWJEZag8fnbNfEeHsseKfP2UInil2emrNZ9RkEeyOE+qNYXQq+cjcDB8dIxibmrMvCUPPY1HiHByfm7OR4Hx4jEZmYs17r8fGePmftMoGq43PWlWPHEbAxcGByznqIBeMpv0aEh2LkLPHRt2v4tNaIUP/EnE2TNaL0vFzi4QT7fn901mvE68c7HdaIuquLaX+pj5G24GmvEZNzVqwRqblGjHeHURNqyuwjFmqNcARs5C7zs+8PR7Xx1nEfsdBrxHBrEDWhpsw+Yr7XiGNqK3t4jY985CP8+Mc/Jh1JW4NIVVU+/elP88Mf/pBFybXkScV6S1ow7F4rxefk0Px4J2oiLb++GSNbJZIxc/yt08lbGaD03Fw2fe+Aab5r0E4Jk7GkqSorBqo9VFycz/afNZOImCdH0oxFFRSHzLLbK2l5omtqM2QG8pb7ka0yna+Zp0iOpEis/nQtbc/3mK6dAGje82TMHOuZpEhUXlpA+wu9REbMU05fbRzn2b1/59Zbb+WnP/0p0vQ46DQibTOXJUniu9/9Lv39/Tz00ENYozYypVy9ZS0IFreCr8yN3WslPGiOCkWTxlBWvZfhI9qJiRkYPjLOUblXbxkLjivPQcIk3/Ekg4fGGDx0SG8ZggUgEU6y5Yfm+66d2XYUe+qX351rjr7Ya6q+Qxantkfp3zdiGmMItMNqX5mbLveAaQyiQbWXnQdfYdGiRfzgBz9IW2MI0thDNEk0GuVd73oXL730Eo1j6/BKAb0lLQwSpqppD1oPh9WfqaX1mW5TnTAKBEbGjB4igcDIFKzJpOz8PDZ994BpDi+nMNHeLOweY6fyCitXruTRRx/F5XLpLem0SLuiCq/HZrPx0EMPsWjRIpqztzOmjugtaWFQtYS3uvcUTyWVGp14OMHWHx0ynzEkQdkFeWTWZuitZGGRMF357UUfKKP8ovQpUyqYHeUX5Z+QFG8GrB7L8WpbJiGzNoOyC/JM93d3vjbA1h8dMo0x5Mq1U/eeYq3ohUmMoWRWhG38g+zsbP785z+nvTEEBjCIANxuN4899hgFBQW05G1n3CRGkZoEW4Z1qnqPGZh0Q08mRJoCFVxZdmxeq95KFpTadxdT/76St7/QQPTtGZlKfhYYl+GWsakkZrNQf00Jte82T64vgM1rxZllM80mWZIlMoq1Sn5mCRkDsLos2DKsUy1SjE5QHWO/fQter5e//OUveL1evSXNCWkfMjednp4e1q9fz+DgIOWdS3FLJjtRNwm2DAurP1PL4cc66d5qviRVs+ApdIIEYx0hvaUI5hERMmcOPEVOUGHsmPg9G5W8lQGqLitg03cPEB2N6y1HMA/IBXG2xV/G7/fz3HPPUVBQoLekOcNQBhFAd3c369evZ3h4mPJjS3FJHr0lLQiVl2qTsvnxTp2VLAyeIqfpNsqSIpHV4KVv17DeUgTzhGKT8Za6GG4dN01VRbMZRLJVxlfmYqQtSCJqnoRzs5G92Ef/3hFTVQcF7SDLLEZv5WUFoJpn3xVSx9kTeBVJktiyZQtlZcYK+zVEyNx08vLyeOaZZ8jIyKCteBdB1RwlTce7w4x3hfWWsWBMGkOuHPsJHZiNjLfURd3VxVONLM2Ar8JN6XpzVI8EcARsWrPSfKfeUgTzhDvfwaIPlE81HzUDpetz8VW49ZaxYLjzHNRdXTzVKNPoSIo0lctsFmMIYLzTPPuukDpOR/leAoEAf//73w1nDIEBPUSTHDt2jPPOO49wOEzJ0UWm8RSBVvIyHjJ+MqPFobDms7W0PtvDsVf79ZazINj9ViJD5onNzlsRIGeJj133HTFFHL4ka3kHZvqOzeYhAu13HB2JoZrBQSTBkpsr6Nk+aKq+YmZaqwvPyKJsfS6v/a85qsqZZY81iVKYZGPwWTweDy+99BIlJcbM7TWsQQTQ0dHB+vXrGRsbo6xzMR7Jp7ekeSerwUvNlUVs/fEhIsPGX4x9ZW5G2oOmC0uwuhRiQfMsyALjYkaDSGBczLg2S4qEt1gL9TU6dp+VFR+t5uAjHaYojDKujtJauJNQKMRjjz1GU1OT3pLmDcOFzE2nqKiIF198kezsbA5mbWFENX4C/tDhMVqf6zaFMQQw3DqOmlCx+63IFnOEzlVeVsCiG8v1lrGgmCm8KHeZn7LzzRMmaDbKzs8jd5lfbxkLhpl+uwCLbirXcktMgGyVsPutqAnVFMYQQGQ4Rutz3QwdNkE6RnGEQzlb8Pl87Ny509DGEBjcIAItp+i5556jurqavRkbGVR79ZY0rySiSTo3an16PAUOFJvhv2Jki8Sy2yspOcccm8juLYO0PNGlt4wFI7M2gzWfqTPNxsriUExVSt9sWN2K1q/EBNj9VtZ8ps5UPdRa/t5F9xbjH74ClJydy7LbK01xGKnYZDwFWv5u58YBwxdEGZH7+UfvkzgcDp5//nmKior0ljTvGDpkbjqjo6NcddVVvPrqq9SFVpEt5estaV6RLRKrP1NL97YhWp/u1lvOvOMrdzPWGSIRMfYiZUZkq4y/0s3goTHThUaaAREyZ1wkRSJQ7WGoecw0VRPNhGKX8RQ4GT5ifO9Q2QV55C3zs+l7B0jGjT2XB9Qe9rs3U1NTw5///GdDFlA4GaYxiABCoRDXXnstf//736mPrSJPMnaTOHeeg2BfxFSbSItLQZYlomPG74FQf00JI21Bjm0wR0EJMyHJWpNDo794wVwGkWyRSCZUUxQIMRuF67LwlrrY9/ujekuZd2wZFpIJlbiJcqUkRcKVbWe829hV5aSlQZ7d/QTr16/nT3/6E263eapDmsNvP4HT6eSPf/wj73vf+9glbaBNPaS3pHllvDs8lV9Tck6O3nIWhMYbykwTvx3sjZgmV8ziUKh5V5FpSo6v/Vw9+asz9ZYhmGMK1mSy7vP1estYENx5DmreVYTiMMc2IzIcI9gT0VvGglB5aQGNN5jDa1ByTs5UnpTRjaF2tZmnd/6NxsZG0xlDAKYLVLdardx///0UFBTwP//zP4TVcWpYiiQZNwbWV+omZ4mfYxv7SYSNHVJ2+LFjpvAOAbQ916O3hAUjHkngzLJh9VjA+BGgHP5rp+FfvmZk4OAYkRFzrE+2DAvOLJtpwpj7943Qv8/4VccAmv/aqa3FBkdxyOQs8RMZitEzNKS3nHlDVVW68g+xr2s7d3z8Dv73f/8Xq9UcObvTMVXI3Ov53ve+x5133sk111xD7+9iKJKit6R5Q7ZMhN9ImCJcQ7ZKODON795WHDJl6/PoeKmPyIg5vEUCY2GmkDmB8bB7rRS9I5vWZ7sNf+DozncQ6o+YIx9sYq80tXcyKEk1iXzhCE899RRf+MIX+Na3vmVoB8FbYQ5f9pvw6U9/mj/84Q88/PDDJM7pJ6ZG9ZY0byTjKrJFYsnNFaYo+Vp+YT4N15UiGX2GJ8Ff4cY50SXc6FhcCs4sm94y5h2bx0LB2kxTVG8yC7JFomBtJjYTnKw7s2xYXMY9YJyOM8eOv8KNavB0GkmGhmtLKb/Q2AWpQGt9sOTmCsMbQ3E1hnTBMC+88AJf//rX+a//+i/TGkNgwpC51/Oe97yHp59+miuvvJIIMZarZ+GUjBk3mYyrjHYECfUZP8657bkeOl8bMHwn+EQ0yZYfHTKF1w+0F3IikmDPb43tTbB5rVRclM9wyzjBXuP/Xs2AI2Cj4qJ8RttDhg/rrbi4AMUms/OXLXpLmXeGDo+ZYg1Wk7D7N63Exo09dwFCfRFGO4KGNoak7AR7eIXQxhBPPPEE5557rt6SdMfUIXPT2b9/P5deeintLcdYRhN+KVtvSfNORpGT0Y6Q3jLmFwmy6jLo3zeqt5J5RbZI5K/KpPO1fkMbga4cO9GxOPGQ0Y9jQZIw9Hc5iZlC5iQZVBXDb54tTgWbx2JoY16SoWBNFl2bBwy9cQbIqvfSv3/E8PPWFHsiYFgdYAcv4/Q7+PWvf81ll12mt6SUwOgBRadMXV0dGzZsoOmcdWzmeTpUY59s5Sz1s+S2SsM3u8yqy6D+mlLDh1k5s+yUXZCHp8ilt5R5JdgbMb4xBKCawxgyG2oSw28qAeKhhKGNIQBPkYuyC/JwZhk7XNmZZaP+mhLDN9e1+60sua2SnCU+vaXMK7FFQ2yWnmNl0wr27t0rjKFpCA/R64hGo3zqU5/iJz/5CSVUU8NSZIMmonhLXYy0BfWWMe84s2yE+o2bHzaJxamYwlgI1HgoPiuHnb9oMfTm0ix9TcziITJF3zAJlt5awdF/9DJ4cExvNfOOWdZcs7xDjbwnUlWVw/IujiT309TUxLPPPovdbmxjfqYYc6d/GthsNv7v//6Pu+++m3YOs52XDFtsYfKHn78qYOhTkcmFPH91JrYM46bNxUMJkMBXYcwcuEmio3FCfREUm7GXr8hIzPCn7GYi2BsxfCVIxSYT7IsQHTV2nomvwg0ShjaGbBmWqV5oRjaGcpb4yF8VADCsMSS5VXZaX+FIcj9f/epXefHFF4UxdBKMvaOYJZIk8clPfpInnnyCZCDKazzDuGrcHBRPoRNPgVNvGfOKYpcpOSuHzDqv3lLmlewGL4tvLMeRadwQwfGuMIceOWb4/ib9e0dM1WvK6LQ910P/XmP3qUlEkhx65BjjXcZtd+DItLH4pnKyG4z9Lsms81J8VjaK3djbRE+BE0+hcfc/QXWMrfbnGVEG+Otf/8q///u/oyjmqAA5U0TI3Ntw8OBB3vWud3Fw3yEWsYZcqUhvSfOK3Ws17CmmYpcNv4kGrVeEkTckgFYso8HL2LEQkSFjzlfQfo+SIhEeNO4JrRlC5hwBG2pCNezaCtrf6C5waEafwXcVplhjMfY708h7nUl61WPs5jUKSvL5yU9+wiWXXKK3pJTG2Kb/HFBTU8OGDRt493uvYgevcFDdQdKg2c52r5WVd9QYNnxucmHPavBS/A7jVhGcfFG7co3rEpdkierLufUQjQAAZqpJREFUCskyuMev/rpSSs7J0VuG4DQpOSeH+mtL9JYxr2TWZlB1WSGSbNw+JpNrqpGNoeJ3ZJM14f0yqjGUs9TPyjuqsXmNWVRKVVWGGo+ynZe59MpL2LFjhzCGTgHhITpFVFXlO9/5Dp/7p8/hI4slrMMuGc/NmrPER//eEUOXES05Owdnjp0Df2zXW8q8kb3YR93VxWy6+4BhPShmSGh25dqJjceJjRv37zSDh8jqVrC6LQR7jJ0TZuTfpN1vZfWnatn/x3b6dg/rLWfeqH1PMcHeCO0v9uotZd6QLRJZDV56dxrve4yqYXaxkUF6ed817+M3v/kNFotxc6fnEmEQzZAXX3yR6667jv7OQZawjoBkzNNbu89KwZpMWp/pNnb5XwlDhndIsoSvws3QYeNXejJyWIcZMINBZHTM8hv0V3kYbhkz5jvRoO/CSSQZys7Po3PjgGFD5eTaCC8ffRaXx8UDDzzA+vXr9ZaUVoiQuRly9tlns2XLFprOXccWXqBV3Y8RbUpPgYPMOi+Kw7jJd65cO6vuqMGVY7zQMjWpThlDRg0LACg9N5dlH6rSW8a8IVslKi8pMHTSr9HxFDmpvKQA2WLcULJlH6qi5FxjHg7C8TV06LAxjSFXrp1Vn6wxdJi14lDIrPPiLnDoLWXOUVWVNvUgTx14jMzsTF5++WVhDM0CYRDNgvz8fJ566im++KUvcpCdbOcloqqxQiH6942y9UeHiAcTKHYZq9t4hlFkKMbQkXGiY8YtEZvV4GXVJ2twBIxZda5/3witz3TrLWPeSMZUMkpchi4Xb3TsGRYyip2GDkNufaabgX3GrMTqCNhY/amaqbwaIxIdjTPUMm7I8GqrW0GxycSDCbb+6BAD+401TyVvkkM5WzjAdj716U+xb98+qqqMe0g4n4iQudPkscce49Zbb2Wkb4xFrCFLytNb0pxTe3Uxrmw72+45rLeUecPiVFBVlUTYWMd/kiKRvchH744hvaUIBCdFhMwJUp3cpX56dw+jJoy1XVIcMhIS8bAx874Aln+kimBvhAN/Ml7O8IDawwHXFhJqgp/97GfccMMNektKa4SH6DS5/PLL2bFjB+dceBZbeZGD6k7DVaFrfaabw48f01vGvNJwfSk1VxqvpLqaUKeMISN6+UBrBll9ZSGeIuOGlclW44ZbGR0jf3eeIifVVxYatkny5JrZs2PIcMYQQM2VRVMHEkbl8OOdhosiSEpJjmUfZAsvsHL1Sp5//nlhDM0BxlzFFpiCggL+/ve/861vfYs2DrCJZwmqxklmjwzHGG0PAVB5SYEhQwdanujiyNPGWjSn4y11sebOOtz5xoufTsSSOAI2bB5jhpV5Cp2c8aVGQ+a6GR1Xrp0zvtRo2Bwwm8eCI2AjETXWISBovYbW3FmHt9Slt5R548jT3bQ80aW3jDknq8FL5SUFAIweDRIZNk4oYEgdZ2/mK+zt28FXvvIVnnnmGdasWaO3LEMgDKI5QpZlvvjFL/LqhlfJqcpkA0/RqbYaquCCJEtYXAqK1XjTZqwjRHggiqRIFJ6RpVXcMRAjR4M0/72LYI8B+2eosOtXRwwXGz5JsCdM8+PHiI4bN9fNqETH4jQ/fsyYvztgYP8ou351RG8Z80KwJ0zz37sYORrUW8rcIkHhGVlIskR4IMrYsZDeiuYcxSZjcSlIBtuqDHm72MBTWF1Wfvazn/H//t//Q1GMGfmhBwabLvqzdu1atmzZwg03Xs9uXmMnGwxTcEFNqhz4Yzs9EyFYWfUZhquc5ClwUHpeLh6jeVJU6No0gJo0cOicQyazNkNvGXNOMq7StXmQeNC4cf5GJR5M0LV50JAFFTJrM1DsxtxCWN0KalJbM41WitqTP/GOKzTWO062SGTWaet/z/YhDvyx3TAVAWNqlLaSnWwa/gdXXn0F27dv57bbbtNbluEw5mqmM16vl/vuu48HH3yQRFaIV3mCXtVYOThWj4Xaq0vIWerXW8qcMtoeYtN3DzDWacwTXUfAxupP1069OIxE3vIAtVcXGzKfwRGwaZ5LQVpReEaWISs8KjaZ2quLyVsR0FvKnJNZl8HqT9ca8nsDGOsMs+m7B6bC4I1CzlI/de8pwWqw0OlBWzev8ATdw1184Qtf4KGHHsLv9+sty5CIKnPzTFdXFx/+8Id59NFHKaCMWpZhlYyx0DoCNsKDUcCYjflKz8tFscmGi7HOWxmgd+cQyZixfvqyVUKxKcQMGFoWqMmg7r3FbL77ALFxY3mKjFplzuq2sOpTNex/6CiDB42TUzqJ1W0hEU0YcB2RyVnio3vLoN5S5pSKi/NJRJO0Pdejt5Q5ZfreY/qeJN2JqzF6Kg+zp3kXF110ET//+c8pKjJe4adUQhhEC4Cqqvzyl7/kM5/5DJGRGI2sNlR5bne+gyW3VLD7/iOMdhjn1Cl/dSaKTabj5T69pcwLVreFeCiBmjTWEiDJIFtkYyV6T0amGuurAoxrEAGG/N4Um0wynjRMONIkkixhcRrzQAWg6B3ZJCJJLQzQIGQUOVl0Yzk7f9nCeJdxojqGLH3sim1EdsGNN97ID3/4Q5ErtAAYL7YkBZEkiVtvvZWdO3fyjvOb2MqL7FO3EleNUfkk1Beh/aVew4WZdW0amDKGjFadTbZILP9wFSXnGK+7/NLbKym7wDgHDoC2oTbQpto0GPB7K7sgj6W3V+otY84pOSeH5R+uMlxe7OS7q+OlPkMZQ6CF/7W/1Euozxh52gk1Tl9tM5tiz7Hm7FXs3LmTH//4x8IYWiCEQbSAlJaW8uSTT/L973+fAVcnr/IkfWqn3rJOm2Rcpf0ffahJFUemjcYbygyVuG/3WVn2oUpyDZQvlYyrHH78GJ0b+/WWMue0/6OXrs3GevED5K8KsOxDxtuIGpVlH6okb6Xxcmy6Ng/Q/o9evWXMOZ0b+zn8+DFDFcDIXeZn2YcqsfusekuZM6xuhcYbynBk2lCT2t7DCN9Zv9TFKzzB3iO7ufnmm3nmmWeorBTr/UIiDKIFRpZl7rjjDnbt2sU5F5/FNl5ip7qBqGoM74rFLiNbJUPFlUeGY+z+dSs9O4f0ljKnDOwfJRZMoNhlQ70w+/eNEuwxxonhdIK9EQYOjhquJLwhkWDg4KhhTq6nE+yJ0L/POCXu7T4ril0mFkwYrnR/z44hdv+61VB9eJJxFdkqYTFIhcOoGqGjci9bk/+gaf06du3axS9/+UssFmMVh0gHRA6Rjqiqyv3338+dd97J6MAYNSyjgFIkyRg7HqtLIavBS9dm4ySnunLt5K8M0Pz3LsOEwjReX4riVNj58xa9pcwZdr+V2ncXc+DP7USGjLMZMCKGziEyEI6AjZqrigz3m1pyWwXxUMI480+CyncW0LVlwFAHQ/mrAvTvHSFmkPYDqqrSY2lnX3wbdo+Vm266ibvvvluEx+mIMUzsNEWSJG666Sb27dvHtR+4hj28xlZeJKSO6y1tTsis91J6Xi4Wp3F+4M5sOxlFLkM1p215souDf+7QW8acEhuLkwgnsNiNM/dAO832V7r1liF4G/yVbkN5XUErppAIJ4iNGavowMG/dHDkSeNUElWsMhnFTpzZdr2lzBkWp0Lpeblk1nv1ljInhNRxWsq3sTO+gauvvYqDBw+KwgkpgPAQpRCPP/44H/vYx2hv66CSRkqpQU7zVssWh0I8nEC2yrhy7Mboii0BquYBS8RUkjFjlFuSZAlvmYvhFmMY5EakdH0u+SsCbPyf/XpLmTOM6CFa+7k6ujYPGq7EsZHwVbgZaQ0apsqmbNXC1ePBxNQ7Kt3xFDoJ9kZIxpJTe4m0RklyVG3mUGIngewAd955J1/5ylf0ViWYIL132wbj0ksvZffu3Xz6zk9xiJ1s4CkG1PR+oU4uYIVnZLH4xnJjNM2ceNHUX1tK7dXG6QuQvypA4/VlWF3GOaVyZNooPss4lfSOvdrP5u8f1FuG4G3YfPdBjm0wTsGS4rNycGQao38eHE/MN1LRi7qri2m4RjtcMIIxpNhkFt9YPtWQOt2NoUG1lx2Bf7A/sY2P3fExDh8+LIyhFEN4iFKU7du3c8cdd/DSSy+RRwm1LMUuOfWWNWskGVy5Dsa7wkgyKHaFeCi9FzhPgYNkXCXYa5A4bQlc2Xbj/D1AVqOXiovy2faTw2k/34yKET1ERsLiVFj+kSpanuiif++I3nLmDFeOnWBfxBDGA2h/j2SRGE/z9hcWp0IikkBNaiXDgz3htO55JWUm2DWwmU61jdraWr761a9yww036C1LcBKEQZTCJJNJ7rvvPr74xS/S3zNAJY2UUJ32YXQl5+aQtyLAlu8fNES5TCSouryQzg39hjEmCtZm0rtz2BBGhKRIqAkDzLMJCtZk4i5wcuhhY+R9Gc0gqn5XEWPHQobq+WKU35DFqZCzxEfnRmN8N64cOwXrsjj82DFDGHayRWLVJ2vp2jLA0RfSu7R7Uk3S6WihWd2DzWbjf//3f7ntttuQ5fTevxkZ8c2kMLIsc8stt7B//34+8amPc5Adhgij69o0SMsTXVPGULo3wrM4FDwFTmxeYyRRW90WSs7JJVDt0VvKnKAmVKwuhYwSl95S5oR4JGkIQ9WoxEMJEtE0PtKeRkaJC6tLMYQxBBCo9lBydi5WtzFKGtu8VjwFTiyO9A5zntwDJOMqzU90pn1lWrUyxEaeZm94KxdeeCFbtmzhgx/8oDCGUhzhIUojtm3bxh133MHLL79MHsVUswSnlN4VpwrWZlKwOpNt9xw2TO8iT6Ez7YtHKA6ZRNgYmzqAmquK8BQ62fqjQ3pLEbwOo3mIjMSKj1cz1hHioEG8kWCMtc0I75hJZKvE8o9U0/laf9p77sJqkKPefbSONFNfX899993H6tWr9ZYlOEWEuZpGLF++nBdffJFf/OIXyAUJXuHvHFJ3ElfTtyfE0OExujYPGsYYClR7WP7hKtx5Dr2lnBaTG4bcpX6KmrJ0VnP6HHmqm52/ME6fJcUu4y5I7zlmRNwFDhSDNIwE2PmLFo483a23jNOmqCmL3KV+gLQ3htx5DpZ/uAp/lTE8+MmYStemAYYOj+ktZfY4E/RXtvIyfyfkGONLX/oSO3fuFMZQmmGcldskTIbRHThwgK/861fodrbxMn+jQ20mHZ19of7oVDWm7EYvS2+vRE7jHj+Dh8bY+asWxrvTO7F1EkeWzRD9LGLjceKhBLJVwupO7/ASgNLzcmm8rkxvGYLX0XhdGaXn5eot47SxuhWthHMoQWw8/fsOObPtOLKMUSVvvDvMzl+1pLUBIVtllt5eSVaj1lfo2IZ+Qv1RnVXNHFVVOaYeYYvjeXYc2cLH7/gYhw4d4pvf/CYWizHCMs2ECJlLc44ePcqXv/xl7r//fjz4qGEpWVKe3rJmRUaxk+xGHy1PGKNJXlZ9BgVrs9j7QJshcgqMkFi99PZKIsMx9j90VG8pp4V9Il8tMpK+3uFJjBQyZ/daUYFomn8vde8twe6zsuPeZr2lnBZGWLNAK0HdcH0pxzb0M7B/VG85c0LFxfn07RlmtD09Q/+kujBbuzbQN9TLddddx2c+8xmampr0liU4DdL3KF4AQElJCffddx8bNmxg2TsWs5UX2aa+xLiafuVRR9tDU8aQr9zN0tsrsTjT9zQ/Op4g1B8xhDHkznOw+lO1aR8KeOSpLo48nf4Gd2QkZghjyGhERmJpbwwBHHm6iyNPpffvxChrFkAimiTUHyEWTN9iKhanwtIPVuIr0/KeW57oSktjKKiOsl19mSf3PYozw8ELL7zAAw88IIwhAyAMIoOwdu1aXnzxRX73u9/hKbezUXmavepmwmpQb2mzIhFNEuyLpHU1rdGjQQ4/1glARpGTzLoMnRXNntBAhL49w4QH0y+sYTojbUEiQzEkWTs9TmeyGrxUX1motwzBBNVXFpLV4NVbxmkhKRKSDJGhGCNt6fnumCQ8GKVvzzCh/vRthZBZl4GnSOs/ePixTkaPpu93Eg8lCPZGSMTS84AwooborT/EBuUpHCUK9913Hy0tLZx99tl6SxPMEcIgMhCSJHHNNdewd+9evv3tbxPOGuE1+9McVHcQVdPrpTB2LDTVZ8Wd52Dp7ZXYMtI3Jjd3uZ+ipmy9ZcyaZEyl5YkuEtEkVrcFmyd9vwskLXSu9NwcvZWcFpKsxeKT3nadMZC07yLNW8RRem4uS2+rTOs5ZfNYsLotJKLJE9o7pCNFTdnkLffrLWPW2DIsLL29Eleulod66OGOtKuOJ2UkOcRONjmf4VDbQa6//nr279/PjTfeiKKkbwSL4I2IHCIDMzIywv/8z//w//1//x+yLJMzUkIpNShSem1m3XkOis/O4cCf2tM6HlyxySSiSew+a1r3KllySwXJeJLdv27VW8qsyV3uZ7wrzHiXMYpfpDNGyiFKd9z5Dtx5Dnq2D+ktZdYs+kAZskVm5y/Ts6qkYpOxOBUiw7Gpd0a6IikStVcX0/5ib9oVGkqocTqdRzii7kNVVT7/+c/z+c9/Hr/fr7c0wTwhDCIT0NPTw3/+53/yox/9iEAggL+7gCIqkdPwONPutdL4gTL2P3SUYE96eb0mWXp7JbHxOHsfTM8NoCPThppUiQylf65E2iNpBwbpbNgZwSBy5zu0DZ94m+qO3W9FkiXCA+kZ3ttwXSlWl8KOn6enQefKtVP3nhL2/KY1PfMclSSh6n6ahw/Q29vLRRddxDe+8Q2WLVumtzLBPJN+O2LBjMnNzeU73/kO+/fv55JLLuGAtJ1X+DvH1FaSapqdPkkw3hU+vhlPw9COA39un0pYTsc8lvBAlMhQDNkiUX5RXtr2XZEUicU3l5O3MqC3lFlTsDqTZR+qTNvvwAgodpllH6okf1Wm3lJmTd7KAItvKk/L9Qi076D8ojxki0RkKJaWxtDk2B95qosDf0nDRrgTUycyHNMOB9JsKqmqSpfaxgbL07y073lWrVrF/v37+etf/yqMIZMg3qImory8nF/84hfs3LmTd777IvbwGq/wBMfUI2ljGEWGYxz4UzuJaBKLQ2HVHTVp16AuPBDVei5IsPjGckrPTc++JXa/jZzFflw56dmnSE2ojBwNpuXmaZLeXcNs/1kziUh6/H6NSCKSZPvPmunbPay3lFkTHogy0h5M25BkV46dnMV+7P707DVUem4ui28sB0nrzZdua5K/ysOqO2pQHDKJSJIDf2onMpwe3iFVVYnVD7HF9yy72Mg5F5zFI488wiOPPEJlZaXe8gQLiAiZMzFbt27lP/7jP/jzn/+MEzcVNJBPadqE0il2mbL1uRz9Rx+xsXhaxlvnr84k2BNO24pO0/t8GKXnh2BhMULInEAfjLL+eEtduHIddG0a0FvKjJh859o8ForPyqb12Z60OZxJSkn6lA4OxXYTZIyGhgbuvfdezjjjDL2lCXQiPXa+gnlhxYoV/OlPf2LLli0THqNNE6F06eExSkSSNP+ti9hYHEmRWP6RKoqasvSWNSO6Ng1MGUNVVxSmXWnuyQ1I6XnHTzjTDgnq3luctqFzrlw7jTeUotjEcr7QKDaZxhtK09ZLmr8qQN17i9P2d7v4pnJKz9M87OlmDGXWZVB1hVY2f6QtmHbGUFFTFss/UoWkSETH4jT/rSstjKGkmqRTbWWb/zl2xDZwwZXr2bBhA3v27BHGkMkRb1DBlGG0detWLrn64rQzjADUpEr7S30MHBwDtHKf6RQPLykSVoeCJKeP5ukMHhqld/dweiaVq1ooZrr2vEpEkshWGWs6l0JPU6weC7JVTouN4MmIBRNaaFOa/m57dw0zeHBUbyWzYmrNT7P31GT7i4GDY7S/1Jc2hmhSShJfMsyr0hPs5jVqamr4zW9+w8MPP8zatWv1lidIAUTInOANbN++nf/4j//gj3/8Iw5clFFLIeVpVa57yW0VxMbi7Pv9Ub2lzIqipiwGD4+lZSW9zNoMRo4G09bAECwsImROMBMsTgVviYuBA+lnCLly7QT+/+3deXgc5Z3g8W8dfXdL3Wrd9+1Dvo05DQZzGDAhXCEJhJAACcMEJslOZubJ7OyT3c3kmAyZ3cBkSJhANsCEQGCSwGAMhMMBAhjjA9+yLcm677ulvmv/aKnVsmV8IKlb6Pd5Htmt6req3n5VXVW/eq8KJy3v9CQ7K2dk4WeKMDl1ds+hEfAiRoQ2GmjSD+ELD3P++efz4IMPsmrVqmRnTaQYqSESx1m+fDnPPvssu3bt4vrPf5pD6ofsyXqbemM/IWNudPY8/HwrTW92AbFhWG2Zc6dJi6orZC9zk17iSHZWTptqUqm8Jp+8NXNzxK2yDbnknzu3ml2Os2dbZLS5WaRZ1PiEk3NN/rleyjbkJjsbZyRvTQaV1+THJiWeY9JLHWQvc6Pqc6dWyJZpweI2AdD0ZheHn29Nco5OTcgI0l/ZzPvOV6hVd7Hxhqt54YUXePvttyUYElOSGiJxUnV1dfz4xz/m0UcfRdd1MobzKKYaq2JLdtZOScXGPNzlLj7419o50zQksYNw5uI0BhpHCA2Hk5yrU2NJN8XmnzCI9U2YI2UOULI+m8BgeM6159dtGud8ayGHX2ilY3tfsrNzWuZqDVHOKg+VG/N57/4Dc642NPesDCxpOkdf60x2Vk7d+LlEAYvLNGfmuDE5ddKL7XTvGwTm2OAPCqy+t5r+I0Mc2dSW7NycEjUjSn3oIO1GI36/n7PPPpuHHnqIpUuXJjtrIsVJQCROWUdHBw888AA//elPGRkZIStUQAkLcCipPRCAoilY3SZGe4KY7Bq5qzNoebebaCj1D31VV1h9bzXt23tp+lNXsrNzWhw5VqpvKGT/U41zbhjZuchVaGO41Y8RTf3jOtFcDYgUVcGZb2WoeTTZWfnEs2aYWfTZYmr/szk2x80cUnRRFjmrPGz/10NEw6n/3VRNCgXnZtL+QS+hkQi2TAv+3mDKn1dGjGGOcpB2rRFd1/nGN77B17/+dfLy8pKdNTFHzL06Z5E0OTk5fO9736OxsZHvfe97RHP9vKu8zC7jHfqNblI1tjYiRmzeH8BVZCdvTQaqPjcO/WjYYMfPD9P8VjcA6WUOdJuW5FydmqAvzHDLKMGhuVGzlSj/XC8VG/OTnY3TMtQ8mvI3LZ8kRtSYc8FQxTX55J8z95qEhobHziW+uXEu0W0a6WWxJs/Nb3Wz8+dH5kQwBKDqKnlnZ+AqsgMw2h1I6fNKwDtEc+Ue3lVfJpwzwr333svBgwf54Q9/KMGQOC1SQyTOmN/v5/HHH+f++++ntraWNDwUU0U2hSk9l5GqK0TDBqqusOizxTS81oGvLfWfOiqqwur7qujeN0jDK+3Jzs5pMTt17DlW+o8MJzsrpyR7uRub1zy3mhQB5VflEegPzqlO23OxhqjgPC+WdDN1m+dGM6JxJeuzGe0J0rmrP9lZOSWeSie+dj/BOdJceFzZFbl4F6XxwYOHUjqYGOfIs1K6Pof9TzXGr40pHcBpUYaze9jXuptBevF6vdx111185zvfwWabG035RepJ3btWkfKsVitf+cpX2L9/Py+88ALnXH4We9jK22yi3thP0EjNEdLGT/S6XQdFibf/162pXfNiRA0+fKSOpi2xm3RngQ3NOje+wvnneqncmD9nhpjt3NU/54IhgLA/MucmJ56LIsEo4cDc6jcEcPS1zjkTDCmaQsXV+XNmkBPdquEsiN2MN77RyYeP1KV8MDR+zQuPRkBRYtdESNlgKGQEaTAO8K7lFd5t3cKqi5fx3HPP0dnZyQ9/+EMJhsTHIjVEYlrt2bOHn/zkJzz++OMoioLXn0cRVTiVtGRn7aRW/kUlfYeHaPhjR7KzckpWfa2KwaYRDj/XkuysnJwSqyUKDoVT/+ljgowFLorWZrH7sfo50edsLpqLNURziWpSWfrFUpre7JozQ1WPnyPMLj1WOzQHvnqV1xaQVmRn+08PJTsrp6T08hw8FS52/OxwsrNyUj5jkJHFXRw4sg+A6667jptvvpkbbrghyTkTnyRz4/GymDOWLFnCv//7v9PU1MQ//MM/EM3z8y4vs8N4k26jDd2h4alyxScgdeRacRVOPNXxVDrjQ3zq9lja8SFK7dkW0ort8bTucifWDHMsrXUs7dhQrLZMy6Rhq9PLHNi8sbSaRcVT5YoPUWzzmkkvc3D0tQ669g6QVmIno9qFI9eKaoqlHe+3Y/WYcVc449tNK7LHh95VdQVPlQuTPZbW4jbhqZxI6yq04ci1ArHmb54qV3wyTUuaCU/VxOAUznwbzjzrRLlUueIT4pldOp4qF3seq+foq+048qxkL0uPv++pcmJJj5Whaby8x2pmHDnWeNtwAHeFE6tnrAxtx5R31rHl7YiXt2YdK0NzQnmXJpR3qSM+1LlmVvFUuoiEYjUXi28pYfEtJRNlWGLHnjVWhiblI8vbVWTHkTNWhtpYGTrGyjvdhKcqIW3BRHmjjJXhWHmbpyrv/ITjsMqFOS02EMdITwB3hYvxVqAfdcya7MeXd9rJytuUUN4lE2mnPGbNCcfsCcrbkm6iaF1W/OmvNcOMu3wibVrx8ces/lHHbM4xx6xDTyjvhDIsSDhmlamPWcYqCJ151vjTdACTQ8eSNlaGTj1lzxEQ+355qp0Jx2zqniNiI7MZBIZC8eNs/DOk3DmiyoVmVam8toDFny8hvcwR639opO45wpEf+36YnDoD9cPsfTw2P0+qniMyFqZhy7SgmVUCA2Ga34oN1JOK5whHrgXTqgA7jLd4h5epazrM9ddfT2NjI7/5zW8kGBLTTgIiMSOysrL47//9v9PQ0MDjjz9OyaoCdvI2bwY20VfcRMQcGzK14NxMSi+dmA9j4WeK8C6I1SY5c23U3FISr8bPW+OlbMNEJ8nqGwrJXJwOgC3LQs0tJVjSYmlzV3mo2DiRtupTBWQvdwOxC2jNLSXxC3fWMjdV1xbQWzuEr81PxdX5lKzPofr6QswunZpbSuIX48zFaSy4oTC+3bINueSfHWvSods0am4pwZEXuxBmVLtYeHNxPG3J+hwKzssEQDUr1NxSEr8Quiuc1CQECcXrsii6MBuIXWRqbikhvSx2EUordlBzSwlhf5SQL0LhBVmUXZlP5TUFACz6bEn8guUqsMfKcOzGLv8cL2WX5UyU901FeBfGLliOXCs1t5TEb8Byz8qg/MqEMryukKwlsfK2e8fKe+ymKmeFm8prJgYhqLwmP17eFreJmltKsGXEyjDoC0+6sai4Mo/cs2LzFpmdsbTjF1jvQhcLbyyaKO/Lc8kb6xSuW2Pl7cyPlaGnysWiz06Ud/ElORReECtvzaTGynvs5s1dFivD8SCn6MIsii/Kiv2iQM0tJbjLHYx2B+g9OMTizxajjQUYBednUnLJRBku+mwxGWMXfWd+7Jg1jd2s5Z2dQekVE8f3ghsK8S6KHd/27FgZml2xMsxd7aHiqokyrP50IVlLY2Voyxg7ZsdulLKXe6j8VMFEGW7MJ2elJ7bPc7yUXJyDPWfsmK1Jp/r6iWO2fEMeeWPlbXLEjm9n7nh5p7HgponyLr1sYl4mzRIrw/EbPXeFk8WfSzi+L86mcG2sDFVt7JgdCzjSS8fLO3a3U7g2i+J12fF10wrtuMeO2bTCWBmOByOpdI5QNIUFNxRR9akCclbFyjuVzxGaRSMaNjCikLNyYm6wVD5HdO8ZIOgLU33dRBmm6jmi+tp8yq/MI63IzoIbiggHYg99UvUcUfWpfArO82JOM1FxVR7+/thgQ6l0jggpQY4atWwZ2cSLHzxP1kI3v/rVr+jq6uLJJ58kO3vivCHEdJImc2JWGIbBu+++y09/+lOeeeYZADyBHIrNlXjUTCJjFxKTXSMSjBINGyiagm5VCY1EwIg9RVS0iT4/JrtGJBQlGjJQVAXdduK0ul0jGjKIhqIoauzGJDwawYjGnvCqJoXwyFham4YRNdCtGoHBEI5cC0Vrs6l7sY1wIIJmGtvPeNqIEeu3ocTyFPZHMSKxjqmaRSXkm+ijZBjGxGd1nDitZlXBYFLaSOCYchlPa1HRrCqKoRAYDJFWbCMaMhhu80+ZVlEUwv4pyvAk5T25DE9S3gnl8lHlXXxxNv11w/ja/ZPLcDSKETVQTcrk8k4sw5OU91RleMK0FhUUiPinLm9nvpWFNxVz4OlGRroDH5n2uDJUT1DeH+OY/ajy1qwqZqeOvzc0VoZTHN8nOmY/qrw/xjH7UeW96HPFqJoS79B9SsdsEs8Ruk1DM6uERyOndswm6RzhLrNT+alC9jxWH2t2drJjNonnCEeelawl6Rx9tePE5+RjyzBJ5whLmgkjCuHRMJpFI+QLEw0bx5VhKpwjzOkmStZlU/9KO5FgFLNTj52/OLYMk3uOiISiDGl9DJd3UFt/EFVVue6667j00ku588470bTU7t8rPhkkIBKzrru7m1/+8pf8/Oc/58iRIzhJp5BycilGV0zJzt5xXEV2yi7PZc/jsX4kJodOKIWHf62+rhB7joWdPz+S7Kx8JNWksuzLZbS+15PyHb0VFUouzaH5re65MwnnHJkUd071IZojZQqxm9rCtZnxICOVZa9wk3+2lw9/WU80lNqZXXF3BSMdfmp/n7p9N8evUapJZcltpdS/0s5Q00iys3WcqClCeOEAu/btYCDcR05ODpdccgkPPPAAWVlZyc6emGckIBJJE41GeeWVV3jooYd4/vnncTgcpA9lUUgFTiU92dmbkmZWOesb1TS+3knb+73Jzs6UFFXB7NIJDISwpJtIK7bTtXsg2dmakqIq8ZGY0sscDDT4Uv6Gc9LT0xRlSTex9EtlHPzP5pS8EUo0VwKitCI71TcUsvv/1RMYCCU7Oyd0bI1DylJizaQG6n2xXxPOBakma2k6g40j8XNqcCicsnnNW5NB8SXZbPu/tSl7jgqlj3Ck/yCDaV0MDQ2xZs0a/uf//J9s2LABVZWeHCI55MgTSaOqKhs2bOD3v/89DQ0NfOMb3yCSN8q7vMJW4zVajDrCRmrdeESCUQ4/30rPgUEg1kbaXe48yVqzy4ga8Ru2zMVplF6WO6lDdSoZv6mwpJuoubWU7LH28KlsyRdKKb8qtSf8CwyE6N47kNI1mXNN0Beme+9ASgdDEJuLqua20mRn46Syl7qpuXWij1GqBhiqSaH0slwyF8f69QQGQimXV3e5Mz6wRM+BQQ4/35pywVDYCNFi1LPX+2e29G8ilDPMfffdx86dO3nvvfe46qqrJBgSSSU1RCKlhEIhnnvuOR599FE2b96MxWLBPZpNPqW4yURRUuvGvvqGQjRdZf/TsafbikrKNU8Zb1eu2zQKzs+k+a2ueBvuVOLIteJrj02Qq5nVlLugj0svdeDvDxLoT+0b47lirtQQzRVWjxlLuilW25qCEr/bid/5VKJZVArXZtHydjdhfyR+Dk0lideaRZ8tJhKKUvufzcnN1DEMw6Bf7SawoJdDdbUEg0EuvPBCLrroIr797W9jt9tPvhEhZokERCJltbS08Nhjj/Hoo49y+PBhbDjIp5Q8SrAqqXMiHb/Ap5c6qL6ukF2P1hEcTL2bZXeFk6prC9j588PxDrGpyJFjZentZez9dQNDzaPJzs4JKZpCWpE9ZW88ITa8ssmh07mzP9lZOaG5EBBlr3ATGg7Td3g42Vk5ofRSB4NNIxiR1L2kuwpt1NxSyu5f1ePrSL1AaJzJobHiq5Uceq6F/iOp9zc3p5lYfkc5tb9rZuCoL+UeIBnpYYZyO9h9YDejDOP1ernqqqv4/ve/T1FR0ck3IEQSSP2kSFkFBQV8+9vfpra2li1btnDz7TfRZq/nz+pmdhhv0mE0EzWSf2M/fiEKDIbo/LAvHgxlLXPH51hIBf1Hhtn2k1pCIxFUXaHmC6W4ClJvZu/RngDN73Qz3Ja6N0wQa6u/6HPF8fk5UpG73BkfolqcOe+CtElz3aQa3a6x+PPF5K3JOHniJBpu89PyTjejPYFkZ+U4rgIbNV8oRdUVQr4I235Sm1LBkNmlk7U01rc2OHatCQzFrjUpEQyZDPpc7eww3uL1wefYfvh9rrrhCl5//XU6Ozt5/PHHJRgSKU1qiMScMjg4yNNPP82jjz7KO++8Q0ZGBvZeN7kUk443ZZrUjQ++cPTVDto/6Eu50anMTp3Kawuo29yGvzeYsh2aLW4TC28qovZ3zYz2BJOdnckUsGdaGOlKvZu7canYhPNYc6GGCFK/LO1ZltiQyin2NbZ5zVRfX8iBZ5pSspnp+LnPmmGm/Mo8Dj/XEhumPFWMXTtyz8qg5JJstv0kdQZLMAyDQXppo5FeexsjIyOcc8453H777WzYsIHy8vJkZ1GIUyYBkZiz9u/fzy9/+UuefPJJmpubseEglyJyKcahJP+puGZWiUYMjIhB6WU52LMs7HsyNW/6lt9VTve+QVr+3J3srExicZsouzyXQ8+1pGS/p3FF67Lo2TeYssGRLdPCaHdq5i3VA6JULjt7lgXvojSa/tSV7KyckGZRqbq2gPpX2lMuICo4P5PMxWns+kVdsrMypcWfL8bXGeDoqx0omoKqKSkRDPmMIQazO2gNHaWvr4/8/HzWrVvHrbfeysaNG5OdPSHOiDSZE3PWokWL+NGPfsTRo0d5/fXXufWuz9Ob3sY7vEzvyjqOGrUEjOT1QYkEo/H2/AMNPnoODgGg6goFF2SiW1OkqZUCnbv6GWyM9YWxpJswpUgzsEB/iAO/bSISiKLbNKquLUiZvI1TTQreBWm4ilKnX1sie7aF1V+rwlOZuk2+UpWn0snqr1Vhz7YkOytTchXZ8S5MS7lRJE322HdVt8Um3jzw29SpHTLZtfjIdoONvtgcaClSfLpVo+CCTFQ9lqHe2iEGj8bOy8ke6j9g+BlZ1EFDxU7e4SUaR4+wYMECfv3rX9PY2Mivf/1rCYbEnCY1ROITxe/3s2nTJp544gleeOEFwuEwl156KS2v9JFNQUpM/JpWbKfm1hK2P3SYQH8o5TrELrixCJvXzM6HU2tiV2eBjepPF7D7sQZCqdSkhclzqKRi80NPlTM2IEBqZQtI8RoiJRYU9R1Knb4kkPrHm9mps+SLpdT+oYXhltQaGGXFVysY7Qly8NmmZGclbvwaYPWYWfkXFex94iiDqTB/mC1KtHoIxRvl9ddfR1EUampq+B//43+wceNGbLbU64MqxJmSgEh8YvX19fHss8/yxBNPsGXLFqxWK9dccw0Hnmkikzx0JXkDHqgmhWgo9tVb8dUK+uuGafhjR9Lyk0i3aljcJnzt/lhH3iXptG7tTanRq1RdoWhddsoNIe5dnEbJxdl8+Mv6lBumN1WldECUgnSbxrIvl3H09U569g8mOztx40NVN23pJBpOnXOFoinkn51B154BgkNhHLlWAv2hlJm4tvSyHNzlzvgDqMRrQ1LYogw5eyi5OIfnnnsOv9/PihUruOeee7jhhhvIzMxMXt6EmEHSZE58Ynk8Hu666y7eeOMNGhsb+V//639RX1/PHt7jPdtLpF0fpd1oImzMfm1D4gWvcUsn3WM3Nq4iO+VX5yW1CUzYH4nPDZJe4qDg/ExULUXalIxx5FrJWeHG7EydUfwAfG1+eg4OpczNVqL8c7zU3FqS7GzMGTVfKCX/HG+ys3GcsD9Cb+0Qw22pVfNidurkrHDjyLUmOyuTqJpCwfmZpJU4APC1+5P6/VRNCuVX5+EqjNWudO8fpHFLZ/z9ZARDUVOEDqMJ943wp/B/8V7nFg4dOsR3vvMd3n//fXbs2MFXv/pVCYbEJ5rUEIl5p66ujmeeeYbf/va3bNu2DavVylVXXcWh37WM1Rwlr1mdd3Ea+Wu87P5VPQDpZQ6GmkeS+sRw/ImlalJZ8ZVy6ja30V+X/Ll3VF2JPYlWoPCCLNq29qRU00NHjpXAYChlaorcFU6c+Taa3+pKqaZzKVlDpEDh2iyGW0dTZuhl3aZhSTOl1Pw9mlkl72wvzW/Hjqn4dzLJ3OUOyq/MY+e/1xENRZNe66KaFFyFdgbqY+fNpbeX0bq1J6k1fGEjTDdtFGxw8+qrrxIOh1m9ejXr1q3j2muvZd26dUnLmxDJIAGRmNcaGhriwdHWrVtRUfGSSzaFZCU5ONKtGmd/awF1m9tp39ab9L4Cuk2jZH0OzW92ERgMYc+2EOgPJT0IceTGJnLd83gDw60p8tRcgVV/WcVgo4/Dz7cmOzcpLSUDohRUeW0BaUV2tv/boZQJaJ35NpbcNjbRantyAzXNrGJJNzHSFcCSZqLwwiyOvtaR1AcS4+fs3LMyKL8yl633H0xq7VTYCNFNG/6SPhqa6wlHwpx11llUVlZy7733csEFFyQtb0IkmwREQow5evRoPDh67733UFHxkE0W+WSRh0WZ/Q6kFreJ8EiESDBKyfps0ood7P5/9bOej6msuLuC0e4AB59tTnZWJg1MUXhBJh07+giNJLdmxpphJuQLp1QfJxQoOC+T4bbR+NPqZEu1gCi9zIEzz0bLO90pE3hArI+OyaHj703ufFwmh0bOCg/Nb8eG6E+VQWEW3FiIzWtJmcFgln6pjIGjPhpf70Qzq+h2LSkj7QUMP0OeboYzeqirO0LUiFJdXc2aNWv47ne/S1lZ2aznSYhUJH2IhBhTUlLCX//1X/Puu+9y9OhR7v+X+1mybgEH2M6bvMBW41Xqjf0MGwPM1nOExBqY/rqxIWKJdRRecGNRUocD3vfroxx9Ldb2Pa14rO+Tnpy+RuNlZEk3UXBeJs785I9+5O8NEglEMTk0ltxWis1rTnaWwIiNmuZMsX4eqcSZa8VT4UyJYMjmNbPktlJMjtjw1ckOhgCceTYKzsuMD12drGBI1WN9cdKKY8PdH32tk31PHk1KXiA2vP2CG4tQxvpbdu7qjz90iASjsxYMGYbBsDHAQHULuzPe4k3+i5197xGJhvnGN79BQ0MDBw8e5IknnpBgSIgEqdUjWYgUUVxczDe/+U2++c1v0tPTw6ZNm3juuef43TO/5wh7seEg08gji3zcZKIqM/9sYaDBx0BD7AJrdulY3Kb4yG9pxXaioSjDbbPXbCU4NDEYhdmlY/da4v0HLG5Tcp6GDoTY9sDETO6FF2bRd2gouc15FAXDACP5D9EB2PN4Q0rc7Keqlnd6aHm3J9nZAGLHjGEASnIHNXHkWvFUuWh+s4u+w8OTvmOzbfzcEg0b2L2W+MAq/r7ZDxadeVZUXWWwaQQjYmBxmzC7dAL9ITp29M1aPqJGlIBnEH9BP/v3HWAkOozpiIlFixfxo3/5J66++moZEEGIk5Amc0KcBr/fzxtvvMEf/vAHnnvuOVpbW9ExkUkuWeTjJTcp/Y4Wf64YFNj3ZKzZkTXDnLSnyRa3ibPuq+bAb5voOZC8TsOqSWX5neW0vNMdr1lLNlVXcOTZGEqBOUa8i9PoPTCU9DlsUqXJnKIqZCx00bMv+UNZu4rs+NpGU2KAAoDs5W4Kzstk1yOxQQqSxbsojYU3FbHtgVoCA8mZ6DXx3Lr48yUYhpGUYzdshFBqRmnqPUpDWx1hQrhcLi6//HLuuusuLrnkEqxWqQkW4lRJQCTEGTIMg+3bt8eDo127dqGgkI6XTHLxkouTdJTZeLqrgMmmERqJ4Cq0sfzOCnb+4khsUkSF2a0RUMC7MI2+Q0NEwwb553gJByJ07uyfxUyMZUWdqJkpuigLf1+Qrt0Ds56PcQXnZ1J0YRbv/+QgEX/ybixtXjOr/rKK/U810ls7lLR8QOoERBnVLhZ9tpjt/3aI0Z7kNU3TrCprvr6Apje7aPlzd9LykbU0HavHTNOfuoDJ36XZlL3CjW7RaH2vB1VX8FS5Yg9aZvmchhGbHHrFXRXs+sURhlpGMdk1QqORWcmLYRiEPCOEi4fY/+FB+o1uDAzy8vK48847ufbaa1m5ciW6Lg1/hDgTEhAJMU0aGhrYtGkTmzdvZtPzm4gQwYwVLzl4ycVLDiZl5vuRqLqCu8IZu9E1YOFNRYRGIxx5ITmjnVVszCfsj3D01Q5UXcGcZkpK7VXVtQWM9ARoeTt5N5koseG4kz0iF4DVY05KM6NjpUpABKlTJo5ca2x47SRenQsvyMTmtXDouZZZ37c1w0xwMNYsrvSyHDSLypEX2mY9HwAV1+SjWzUOPtMESixw7j8yPCu1dyEjiFLjp7nrKI2dRwnix2Qycd5553HzzTdz2WWXsWDBghnPhxDzgQREQsyAQCDA22+/zebNm9m8eTO7d+8GIJ2MeHCURsas1B5l1qRjRAx6DgxicZuo3JjP4Rdak9LHJ3uFm6pPFbD1Xw4S8s3+hLjjCi/IxFlg48DTTUnLQ+llOZidOrW/n/0bzkT2bAsjnYGk7T8VAqJklwFA9XUFBIfDNPyxI2l5WHRzMYMtI0l9aGBy6Jz93xZw6PmWpNQqx8+R/9VKYCCEd2EaiqbQvXfma5YNwyCSPcJozgAHdh9ggF4A8vLyuPXWW7niiis466yz8Hg8M54XIeYbqVsVYgZYLBbWr1/P+vXr+dGPfkRzczMvvfQSmzdv5vfP/IE69mHCTIaRg5ccMsjGqthnJC+JF3LdqgEQ8sWGpM4/x0toJDxrzci6dg8QGAjFg6HFnyumY2f/rPc1GumefPNrsmuzPkz3cOsoJmdyT8HuCidLvlDKjp8dTqkJP2eTI9fKyrsr2fN4A/11yZuEdah1lNDw7D8kSDz2h1pHGO2e/cDQuyiN7OVu9v+mkZAvzJ4nGhhsnL1+dlnL3JhssWZ54+dG3aYRGAjN+LnJb4ygLw/S0NxAS08joc4glgEL669azw033MBFF11EdXX1jOZBCCE1RELMunA4zHvvvRevPdq2bRsAdpx4yMZDFhlkYVZmvkNs1bUFBH1hjr7agWZVyV2VQceOvlmZzFDVFSquzqdzd2x4WkeuFbNLp+/Q7N6UZi1zU3F1Hh88WBu/GZptOSvc+PtCDByd/bmBPJVO+g4nLxBIhRqiZJVBeokDi8eUlJoQiM0ptPq+ao680Drrfes8VU6Cg2F8HX7SyxxkL3VzZFPrrDRF020aOSs9tH/QSyQQpeTSHMwOfVaaBwaNAJHiYYZsvRw+eIQRYsddcXExt912G5dddhlr1qzB4XDMeF6EEBMkIBIiybq7u9myZQuvvfYar732GgcOHADAQRoZZI8FSZkz3v8ovcTB4luK+eDBQwSHw6SXOQj7I/hmaSjv0styyKh2sf3fDgOxm5bZCMx0q0bGQlf8pjR7uZue/YOzOqzw4ltKGO0JUP9S+6zt81gmh56UZozJDIiS9ZnHlW3Ixea1sO/Xszd/jmZW8S5Ki4+8mL3CTe+BIcL+WfiuJXynV32tit6Dg7PWRNCRZ0W3agzU+zC7dFbfW8W+XzfO+EOIkBFkQO9BXein7kg9/aOxZnCZmZlcd911bNiwgXPPPZfCwsIZzYcQ4qNJQCREimltbeWNN96IB0j19fUApOEZqz3Kxk0mmjL9za0UTYnPbbT09jICgyFqf9eMoilkVLnoOzJENDRzp4zxGyazS+esr1ez/6km+g7N3ihoFreJ1V+r4sAzTfQenMXR15TYVDNGNDanlK/TP6uj0HmqnCz8TDE7f3541kdYS1ZAZPOaWXF3JQeebpzV2iHdqmHPtjDYOBIbuc1gVgdPyFjgYuFNRXzw00Oz2o8wo9rFwpuL2PaTWoJD4Rl/4KGaFDwVLnprY0PLV19fiCXNxO5fxc6niee66RQxwvTTTbR8hI7hNto7Y4NBuN1u1qxZw+233866deskABIixUhAJESKq6+v5/XXX48HSG1tbSgopJGBGy9uMknHi1mxTO+OldjNW3g0QlqxnWVfLo/3NbFnW4gEojM2F4hqUsiqSad7/yCRQJSii7LQbdqs1KCYnHq8L0fp5bmM9gTo2D47kywqKqy+t5re2kHqNs9ebZGiKWQvd8cmk5zlK0LSaogUyFnpoXNX/4zcGJ9I+ZV5ZFS7+OBfa2dtGOucVR5sXgsNr8SOqcRjfCaVbcglPBqh6U9daBaVzEVpdO0dmLGHKpZ0E5pFZaQzgCPHysq/qOTDX9Yx2DgSC8D80z9EdlAJMBDtwefsx+8eorWlhagRxePxUF5ezt13381ll11GWVnZ9O5YCDGtJCASYg4xDIODBw/y2muv8ac//Ym33nqLlpZYu3cHrnhw5CYTG45pHcVufIZ4gJpbSwDY+x+xpj7ucieDjb4Za/+fe1YGukWl+e1uVF2haF02bVt7CA7N7E1dxdV5+Dr8tH/Qh2ZRUXVlxvsZWdJMhP0RIsForMwHQrMapMxWU8VxyQiIZvszosRu1gP9ITSzim7VCAzObO2MyaERDRtEAlFyz8rAkW3hyKaZHbra7NLJO9tL05ZOomGDwgsyCQeitG/rnZH9qbpCWrEjPhhGzRdKMaJGvAli4jlrOhiGgZIZprW7lQG68WcM0dMbG5EvPz+f7OxsrrrqKm677TYWLlw4O3PQCSGmhQREQsxhhmHQ2NjIW2+9Ff/Zs2cPAGas8RokN16cuFEVdVr2q5lVTA4df18Qe5aFVX9Zxe7H6hmo92HPsoDCjA1j7MyzUnNrKTt/cYRAfwhXoY3waGTGm3oVr8smb00GW//PwVmpUVA0hbP+qpqu3f2z1s/CVWBjyRfL2P2reoZbR2dln7MdEDnzbSy9vYw9j9Uz1DI7n7H0shyylrjZ9mDtrB07Z/+3BbRt7aVxS+eM7svmNaPbNIaaR7F6zCy/s5w9/9EwY30P7dkWMGCkK0B6mYOlXyxj+78dYqQrgNVjJuQLT1v/v6gRRS8P0z7QRntPK0PmPkaDsdHvampqKC0tpaamhnvuuYeSkhIJgISYwyQgEuITpq+vj3feeSceIG3dupVAIICGNtbMLpN0MkgjY9qa2dkyLfj7ghgRg6pPF+DIsbLz4SNArO/AYNPI9D6RH5s5HmDJF0sJ+yPxOYVsXvOMBEeaVcWVb6O/zoeiKlRszKPlz90zGoilFdvx9wUJDoVnp5mTAvlne2nb1jtrzchmOyBSNIW8szJo3doz4zVv438zs0vH6jHP6FDSNq+ZgvMzOfJCG0bUwF3uYKh1dEb6oiV+xxbdXIxmVdnzWEPszYTv5nTQbRppRfbYRNPAiq9W4Ovwc+gPLSiagtVjnrahwoNGAEr8jDqHOLK3jgF6iBBB13XOO+88Vq9eTUZGBrfffjvFxcXTsk8hRGqQgEiIT7hAIMD27dvjAdLbb79NT08PAFbs8eAoDQ8uPOgfc7AGRVOwpJnw9wXR7Rrn/s0iDjzbRPeeAezZFuyZFrr3Td/cHoqmYLJpBIfDE32dHj6Mr82PZlZnZLQ4a4aZxZ8rZv/TTYx2B7C4TQSHwjMXRCiw8i8qGaj3Ubd5Zps9jZutfiazGRDN5qhy5VflkV7qYMfPDs9Y4KVoCmaXTqA/hC3TwqKbi9j3m0b8vTPwQGDsu+TMs7Liq5V8+Ggdg00jmF06oZHI9B37CmQuSmOkO8BIZ4CsJelU31DIe/cfIDwSweoxExgMfez9RYwwg/Thsw6gFAdoamhmOBgLuux2O+vXr+fCCy+ktLSUyy+/XCZDFeITTgIiIeYZwzCor6/n/fffZ+vWrWzdupXt27czMhJ7eu0gbSxI8pBGBk7SP1ZTO5NDIxI0iIaiFK7NIu+sDN7/vweB2MSwQy0jDDVPT9MlRVNwlzvjI9Mt+lwx0VCUg882jyVgRm5Ol91RTnAoxIHfNk3/xseklzoIDocZ7Q5M/03oMUx2jdX3VtPwWseM9f8YN1sBUd6aDIovyWb7vx6asUl4FU3BZNcIDoWxZVowO3UGGmZuWOeFnynC7DLx4aN107/xhO/KghuLUHWF/U/F/kaeKhf9dcPTdvy5Cm24Cuy0vhd7ULPmmwtoe7+X5re6UE0qmvnj9d2LKlG0kjBNDc0MGr0EM3z09HVjGAY2m42cnBzOPvtsrr/+elatWkVFRQWapk3LZxNCzA0SEAkhCIfD7Nu3b1KQtHv3biKRCCoqLtzxWqQ0PNhxnXF7+cRam5X3VNKxvY/W93qwZ1nIPSuDo693TFszn/QyB4oC/XU+bF4zy+4sZ89jDfjap7d/gzXDjGZS8XX4cebbKF6XTe0fmgnP0I33kttKiYaj7Hty5oKIzCXp9B0aIhKY2aHQZisg0iwqnioX3XtmbgLSxZ8vRtVV9jzeMCPb1+0a1Z8upHFLJ8OtozhyrERC0WmvEXLkWlnyxVJ2/aIOf28Qd7kDw4CB+ukJ7jSrSsklObRv62WkK0D+OV5yVnpitWnwsWp2DcNghGGsKwxaW1to72xjWB0gEo2gaRpLly4lLy+PsrIy7r77bhYvXoyuT/8UBkKIuUXOAkIIdF1n2bJlLFu2jDvvvBOAkZERdu7cGQ+S3n//ffYeeh8AFQ2nkYYLN07S4//riumk+0q80dnx0OH4a0u6ifRiO9Gx98uvyiPkC9P0p65YgjOo3Um8gYsEo7Rt7Y33Nyi/Kg9FUzjyX62nt9EpJN6QqrqCETXifaaylqQz1DKKv2/6blqPvNiGZo7V2pldOqquTuv2gXjgYLJr6HZ92vppzDZbpoXwSJjQSGRGgiGrx0w0HCU4FKZxS9e0N9G0esw4C2x07xkgPBrBiBqoeuxhhK9j+gL7imvyMSIGdS+2MdodoG1rL9FQ7LP0151hIJTwnS26KAuTQ6fuxTaiQYP0Ege9tUOMdAVofa8nXjsEnHoZWiIMRAYYDPVBQYDBcD8dHR1EicBOyM7OZuMtV7Js2TIyMjK48cYbycjIOLPPIoT4RJMaIiHEKevt7WXnzp3s3LmTXbt2sWvXLvbt20coFBva1oYjIUBy4yIdK/Yzqk0qvCCT0GiEju19WNJNrPrLSvY8cZShphHMTp1oxPhYAzVkL3ejqAodO/rQ7Ror767k4DNNDDZNX8d3RVVY841qWt7ppuWdHjSrioISmw9lmlRcnYen0sW2B2tnpDngos8WY3bp7PrFDDTLYuZriJbfVU5wKBxv7jWtFDjrvmr6Dg9N65DWulXDwCDij1Jwnpf88zLZ9n9rMaLT9wdOK7az4MYidvzsMOHRCDkrPRgRg84P+8883zYNVVMIDodxFdlZ8oUStv/0MIHBEDmrPJhsGs1vd5/2dg3DwM8IpqoIff5eWpva8GkDjERiw23ruk5xcTEZGRncfPPNrFq1ipqaGnJzc8/4swgh5hcJiIQQH0swGGT//v3xAGk8WBofuEHHNKkWyUU6DtLQTmPwBpNdI3uFh44dfYRHI5RflYe73Mn2nx4CIHuFm6GmkTMe8c3k1Ck4z0vLOz2EhsOUrM/GkWONN0lTVOWMb0ZVXQEFoiGDwguzKDwvk/fuPzBtN7eqrmDzWvB1+NGtGjkr3bS93zttc0KZHDqqSZnW+VwSzXRAZHGbiIaMaRtMQdUV8tZk0LGjn7A/giPHymhPYNrKW1EVzvnWQpr/3D3Wh0bBiHLG/XUSj93Fny9muN1P4+udxx3zZ8LmNeMqtNO5qx+AVV+rov/IMHWb29BtWmzi2519p9VnS7FF8TFM30gP0Ww/o+YhWpvbCBM7/ux2O+eeey7Lli0jEolwzTXXcPHFF2M2m8/oMwghBEhAJISYAYZh0NraOilA2rVrF7W1tYyfcmw4cJAW/3GShgPXKQVKljQT5jSdoebR2A3k3yyk/pV2Orb34Sywkbc6g7rNbWfcfMlT5cLqNtH2fi+KFrtBPfJCK117BtDMKkbUOKMbYJNDw5Fro//IMCiw+t4qjr7eOW1NubwL06i6toBtD9ZO+8Sjqq5Qsj6Hpje7pnXbMxEQ6TaNoguzOPpax7RPFqzbNc66r5pDf2ih58D0jJaYuSSdkkuy+eBfD4EB7gonvvbRMxpIQNUVFFUhEoyStSSdio35sQA8YpC3JgN/fyg+6Mjp0swq5Vfm0fZBL8Mto+Ss8lB2eS7v/XMswHcV2ggOhk9p0tmIEcbHEKbKKCPKIE2HWvExyCix5nmKolBSUkJ6ejobN27k/PPPp6KigqqqKhnwQAgx7SQgEkLMmpGREfbs2cPevXvZu3cv+/btY+/evTQ2TtwMxwIlF3Zc8f/tuDBjOXHTO2XsSXjEwF3hpOjCLHb/v3og9lQ8MBjiyAttoIC7zMlQ88gpB0uqSSFnhYe+I8P4e4Pkn+uleF027/5oPxixDuj+/uBpDwShmhQKzsukZ/8gI10Bspamk1GdxsFnP95IdeMd0hVNYfkd5Rx9o/OMb4ATWTPMLLmtlIP/2czQNDYrnImAyFVkZ8ENhex5vGFaBhzwVLkouTibXY/WYUSMaRnOfcGNRfTWDtK1ewB7lgXvojRa3ukmGjq9S7JmVbG6zbGBQhQ4928X0bilk9Z3e7BmmPFUOOnY2XfK29XMKq5CO/31w2BAxcY8LC4T+8b+Pku/VEbTm130HxlG0cZqn06wacMwCBHAXGXQN9BHV2cXYZefEW2I/v7+eDq32825555LTU0NABdccAFXXHEFDofjtMpCCCHOlAREQoikGxoaYv/+/ZOCpIMHD9LQ0EA0Grvx1DElBEnO+Gsbjo+sVcpckk40GKW3dghbpoXVX6ti96/qGWjw4aly4sq307il85TzanGbcOba4rUDa/7bAjp39XP01Q5MDp2MahfdewdO+4bZuygNd5kj3hel8lP5dH7Yz+DRMws+NItK6WW5tL4bmzzWkWslPBohMHDmTd8Sm1/pdm1aRtGbzoAoMU8fp5kjxAb50G0avnY/tkwL+ed4afhj+xmPupde4iBrWTqHn48N4lGxMY/+Oh89+0+vlkkzq2TWpNNbO0TIF6bk0hyyl7l5///EhrL3LkxjuH30tJo4Fl+czVDzCH2Hh0kvc7D0i2V88K+1jPYEyah2oZpUuveeuBYzqkUxlxl0NnUy4B9ALQjjiwzS2d4Vb+qmKAplZWWUlZWhaRpXXHEFa9euZeHChaSnp59WGQghxHSTgEgIkbICgQCHDx/m4MGDHDhwgIMHD8Z/Ep8wm7Fix4kNJ3YcCa+dx418Z/WYCQ6FiIYN8s7OIKPKxd7/OArE+kB07uyj+e1udJuGu9xB36HhjwxurB4z0YhBcDCEp8rF4s8VxyaRHI2Qe1ZsRKvTnctHM6ss+mwxLe9203codpPqXZhG/UvtZ3yTX3NrCYqqTMuQ0AXneSk4P5MP/vXQxx6We7oCIs2isvreaprf7qL13Z6Tr3ASS24rxYga8WPjdCmqQtmGXHoODDJQHwu+C87NZP9TjacdLCceR7pd45y/Xsi+3xyl79Aw5jQTqqZ85CiDmlnFU+Wkv85HeDRC4QWZZC93s/3fYqM81txaQu+hIdq29qLqCmaX6fjt2aIo2SHaGzpjw1pXKfT19dHT3UOAidHu0tPTyc/Px+Vyce2118YDnlWrVskIb0KIlCUBkRBizjEMg66uLg4fPhz/OXLkSPx1b+9EAGLCjA0HVhzYsI+9tseXacpEf4Tc1R58HX6GmkdxVzhZ8oVStv6fgwQHQxRckInZqVP/Ujsw1lSuN3jcza1qUuLNk8o25IIB9S+3o5pUzvqrKmp/30L/keHTGqwga0k62Ss87H2iAYDyq/MYqBum58CpN4VTTQomh06gP4Qzz0r1DUXsfaLhjGqMdJuGp9JJ1+6P3/dpOmuIspam03d4+Iz6OFncJmpuLeXgfzbha/NjcZsI+cKn1YTNuzCN9HIHdWO1fDVfKKVjZ98p9RFLHPzBXeGk+roCtj1QSzRkTDqOYPIxNk4zq1gzzPE5tso25BIcDtPydjeWNBNrvrmAPU800H9kGFehDUeOlfYP+uLrR4wIeoGBHx9dLd0EzaOYSxW6mrsZHBkgxESAlJGRQVpaGnl5eVx22WWUlZWhqioXXXQRpaWlZzxHmRBCJIvMQySEmHMURSE7O5vs7GzOP//8497v7e2NB0hHjhyhoaGBhoYG6uvrOdy4m3B4YlQts2HFhh0rDg5ts2HBjhUbg4ft9PxTH+qojqIoRAJRInos+FFUWPGVCo682Eb7tl5cBTbyzvZy5IVWIsEoZpdOJBiNB08Aigbt2/rifVpyV3koOC8z1hcJyD/Xy0hXIDbgwjG69gzQlXBTbXboqKbYPESuIjul63M48NvGjxzNKxoy4sFXJGQwUD8c7/yef66XkU7/Kc83Ex6NxIOh7BVuPBVODv5n84wM+/2RFFhwQyF9h4fp3NV/2gGau9yBPdtK67s9BAZCDNQPxwONUwlUTQ6NhTcV0/BqO0PNo6gmBbNj4rI6HsBOue8KJ/YsS7w2a+XdlbGR5d7swt8bpH1bH4qmQMiIH0eaRUUzqwSHwmhmlYqN+bRt7WGoZZSsZW7Kr8zjz9/bCwZE/NF47Z1/IMiWf9rBaGgY51ITR5qOMtA0gJIZIWwJ0NnSTRA/tMTypus6xYXFhKMq5196LmeffTYZGRmkp6dz+eWXk52dfVrlLIQQqU4CIiHEJ05GRgYZGRmsWbPmuPcikQgtLS3U19fHg6TxgKmpqYmG5n0Eg2NPw0dBQcVq2LC8b8M6FixZojb6H+hEC5jQDDNOkxVLmonI2ESWldfkYxhjtR4KLPxMES1/7qZxS2dspLkcK20f9NJfNxH8eBekoerD9B8Zxp5toeYLpex9vIGRrgCOHCuqWY0PZnDgtxMDLxhRg8BQiNBYrciizxYTHA5z5IVYXxVHrpWRTj9GQkXWaHdg0rw53gVpKJpCf50Ps0snvdRB977BUxrqORKITUo668EQgAHB4fApN0FTNIXMxWkMNPgIDoVx5tlwVzhjQYnBlHMJKSrYs63xmpeKjfmYnTr7n4oFoIGhEOPtLLp2D0wKylxFsYmGfR1+7FkWam4rZe8TDYx0BnDm23CXOeIB0d4nGhjtC+LIsRIcDtG4pRNXoY2C8zNjf28DFlxfCMC+3zQSCUWxpJkwTAZKdoSjRxo4+OABwllBTLmwactW/MYIpIUZ8g0RGa81+3As4Ckvxu12o2kat33xNhYsWIDFYqGiooKVK1ei63J7IISYP6TJnBBCJIhGo3R3d9PU1HTCn7a2tvhktON0TFiwYcGK3erAqtlQfSasJhuV64oY2OMn2G5QdFYulVcVxJ/kl1+ZS9AXofnNLhQVspa4GekOkLHARcvb3USCUSqvLcCRbYlPjlrzhVI6dvTRvXcA3aZhy7Qw3DKKETXIrEkjGjJig0h4zay+t5o9j9fTX+cjrdiOLdNCx/a+qT46AFnL3FRek8/W+w8QCUbxVDkJ9IcY6QqctOwyql3krvJw4NmmU25qdrpN5lSTwsIbi2jf3kdv7cmbDNqzLFjcJvoODaOZVc7+1kIO/1crXR8xAWnOKg+j3QEGG0dwlztZclsp2x6sxd87PsiAQvfeQRRVwVlgY7Q7QHg0QmZNOjkrJ5o2Lr+rHF9ngMPPtaBZVArOz6T34CD2TCudu/vBgMILszDZtVgtkALn//caDm9qputIL6o7iqPSTOveTky5Cm2HOvGHR1EzooyM+hjoG5zUlA1A0zScTicLFy6krKyMSCRCZmYmV1xxBYWFhTgcDqqqqiTgEUKIBHJGFEKIBKqqxpvjrV69eso00WiUnp4e2trajvtpbW2Nv25uq8Pv9/PhH9+dWHkbmD4wYzIsmLFw6H0XZsVK2DCw6XbSKsvo7Rqi9bUW8pZmU3FJER/+9Cgmu07B+ZmEhsP4+wKE/bG+JmanTvV1hbz7z/sJj8QmCtWtGr21Q/j7Qxx9o4PAYKyJYHqpA++CtHhAtOSLpXTvHaD9gz40qxobPW/fAH21Q/Fal7LLc+k7PEz9y+3HTZB7XLlEDIIjkXgwZEk3faxR7RJZ0kwEBkOxfjYjEaInqL06dkLQnJUePJVO+g4dJhKM8v6/HCQajpJe6mC4fZSIP0ruag+ZNenseawBgLyzMug5MMhg4wiBoWCsDMc+h6fSGauN2zuIblVZfkc5B3/XTMgXJuyP/W2yl7kxOXX2/aaR0EiY5feVcvj1ZpqbWgjbg2iVdvq6WtGz4O0DewlG/YSzQ4wGRvnTPz5P0BgLPvuBhrHP1aWTn59PcWEh0WiUtLQ0Lr74YvLy8ujt7WX58uUsW7YMr9eLqqrTUuZCCDFfSA2REELMEMMwGBgYoKuri66uLjo7O+Ovp/rp7OycaK53DA0du82GSbNgDCuYdQv5S7PwNQRRgzppmU7ylmTSv38Us9WExWpFCSqUX1pAy+s9mHQziqJSfkUeO35+GFVVKNuQh78/SN2mNjyVTmpuLWXnw4cZbvNTsDYTi9NE/cttqCaV9FIHqq7GJ34NDYcpOM+LZtVofD02bLlu0+KBkiPXysq7K/nwl3UMNp546PBTqSFKK7az7Mvl7Pj54XjTtcR9FV+STcQfoeWdHsxOndX3VXPouWaiYYOBBh/RUJSyDXkEBkO0vN2NM8/Kiq9Wsvc/Gug7PEzF1XlY3GbqX2ojGjFY+ReVsddECRsh8i/K4MhrLWAyUGxRQsEQlmyNtr3dmLwqg92D6BkqPU39KPYoQ70+gpEAwUiQYHDqmjWTyYTNZqOkpIS8vDz8fj8Oh4O1a9eSlZVFe3s7NTU1LF26FK/Xi8fjkcEKhBBihkhAJIQQKcIwDIaGhujp6aGvr4/+/n76+vriP4m/9/b20tvby8DAQHx54mARU1FQ0DUTJtWELc2KElQx6SYsNisaGmk5TnzNARxZNpQo2DNt9OwdwpFlJb0w1nRuuMWPxWUhsyqN4bYAJotGZMTA4jKTXuSg98AQRBQURSW90EH7+33YPBa81emoikrzlm5Uk4bDa8HXEqDo0iwURaHxj504Ci2EghECAwEK12ZiKAYDzcP0Nw6TtyaDkV4/0UiUcDhCxgInI91+fL1+VDNEMbBlmug5OIh/KIC7yolmURhoGmakN0DGQiejAwGikSghfwhTusZAxzBRwkTVCMFQkFA4xOiQn4gSJhgMcrLLo67rWCwW3G43eXl56LpOIBBg1apV5OTk0N3djd1uZ+3atXg8Hvr6+qisrKSsrAyXyyUBjhBCpAgJiIQQ4hPAMAxGRkbw+Xz4fD6Gh4cn/QwNDcXf6+3tpaenB0VR8Pl8tLa24vf7CYVCjIyMMDg4iKqqhMNhIpEIIyMjKIpCOByO/0QiH39S1pmgaRq6HhsZUFVVdF3HarUSDAax2Wzouo6u64TDYQoLC7HZbAQCAWw2G+Xl5WRkZNDQ0EB1dTUVFRUEg0H6+vo455xz8Hg8jI6Okp6eTmFhIXa7XYIaIYT4BJCASAghxBkJh8P4fD4Mw4gHTgMDA6iqSiAQwO/3MzIyQn9/P06nk87OTqLRKL29vWiahtfrZffu3QAsW7Ys3veqvLwcl8uFqqp0dHSwfPly7HY7bW1tpKWlkZubi91up6WlhZKSEtLT0zEMg2AwGB8SOhqNSl8aIYQQp0QCIiGEEEIIIcS8JY/PhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFsSEAkhhBBCCCHmLQmIhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFsSEAkhhBBCCCHmLQmIhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFt6sjMgxCdRR0cH/f39yc6GEEKITxi3201OTk6ysyHEJ4oEREJMs46ODj5zw2dAS3ZOhBBCfNJYrVYef/xxCYqEmEYSEAkxzfr7+0ED/WAayqgZJd4wVUVRldhLJeH/sdeKqsLY4vhKigLq8WmnWv/ErxO2qcZ/SVg+9kJVJhIrykSD2vF0TGzTSHyfif0Y8W1NLDcS8zG+fmJj3cR8jL02Tvh6YiUj4aMc1/hXSUirJKQlYTvxz8Lx209YhqJgHJPXKdc5bv2Ecklcf4p9Jb4/aRvH5gWOy8ux65zsfU7x/RMu+6g0k943pnzfmDIPxuTtHfdZjOO3r8T2ccL9T9rWFOtjJBzuxkTShLRKwraUY/alKJPXn0h6/PqqYiTswxhbJ7Z8/LWSsBxAxYjnO7b+xLbG9zO+zrHvj+9LZeL/+DKF499XjtlWwuvx/9WEdRSi8W2NL1OVaELa8eXRePloTORbG0s7vh9NMVDGlmkJedUS9hVfXzHQSNhXPK/RhLyMrx+d2McJ1hnP4/gpRFWiU+Y1sSxVEvKXkNfx7Uwql/h2QRs7SsaPFU0BZew3DWXS61g6BXXstaqoqCgcbdH53oNu+vv7JSASYhpJQCTEDFFGdNQRU0IQpE56DYzfnYwtUhPuho4PiJTEgCYx8ElMO2n5sWmPWf/Y4CohL4aScDc6RZAVD3IS3x+7RYslmFg+casYSzP+9qSAJL79hNfqVMtPsEw9dlsfkTb+vnJ82oQgcMqAKjGYOdHr+PpKwuvj8zU57dSvp3yfk7x/kvVPtv8pg0OO/6xT7Wvy+ycJiI5JO2mfx6U9QUCUuDy+/6kCmlMIiBJfT7G+khC8TLXOxOEyceOuxPNlTFoe307CsvGbbKZYB8VI+AwJAVHi+icIXo5bdsL3pwoYJgIHLWGdxLQQCwYSl02kTViW+PqYIENToqhjhZW4rdhrxl5PBGHjAYOmTAQc2vhpjIn9T95WNGGd8dfRie0m5GUiuInG86ollIlGYv4mB0ST8zw5f+P5nlg2EfBoCcGPpoynUxOWxX4TQswM+XYJIYQQQggh5i0JiIQQQgghhBDzlgREQgghhBBCiHlLAiIhhBBCCCHEvCUBkRBCCCGEEGLekoBICCGEEEIIMW9JQCSEEEIIIYSYtyQgEkIIIYQQQsxbEhAJIYQQQggh5i0JiIQQQgghhBDzlgREQgghhBBCiHlLAiIhhBBCCCHEvKUnOwNCfFIZ9jBRRUWJP3ZQUVQl9lJJ+H/staKqMLY4vpKigHp82qnWP/HrhG2q8V8Slo+9UJWJxIoy8bhkPB0T2zQS32diP8akfY6lndhAwrLxfzjuvfg6USb2pYy/nkhrJHyU47aV8FFIWH/y+8oUaY/7qAkvjkl37DrHrZ9QLlPkKzH/ie8bU+QlcR+TtjXFOid7f6q8TvX+CZd9VJpJ7xtTvm9MmQdj8vaO+yzG8dtXYvs44f4nbWuK9TESDveJA0hJSKskbEs5Zl+KMnn9iaTHr68qRsI+jLF1YsvHXysJy+PbiefF4Liywohvy1AMognvG5PSxP6Pji1TlYnPqDK+zIjv/9jX4/+rCesoY1/O8dOJioGqRBPSji+PxstHG/98GGhjacf3oykGytgyjYmy0hL2FV8/YVtqwmloYp9K/LWGgjKWQounM1DHClNVlInX8fejU+Y1XlYY8dfH5nV8O5PKJSF/2ti+xv9UmgLK2G+xvE68jqVLyJ+ioqJwtEVu24SYCfLNEmKaRaNRdF0nvGAw2VmZG4xj/p8mU913C/FJMREOxZ8dzEOJEe78afCi6zrR6Pz9qwsxEyQgEmKaqapKOBzmH/7hHygpKUl2doQQQnxCHD16lH/8x39EVedPACjEbJCASIgZUlJSwoIFC5KdDSGEEEII8RHkEYMQQgghhBBi3pKASAghhBBCCDFvSUAkxDTzer186Utfwuv1JjsrQgghPkHk+iLEzFAMw5jmsZ2EEEIIIYQQYm6QGiIhhBBCCCHEvCUBkRBCCCGEEGLekoBICCGEEEIIMW9JQCSEEEIIIYSYtyQgEkIIIYQQQsxberIzIMQnRTAY5JFHHuHll19maGiIiooK7rrrLtasWZPsrAmRcp599lkeeOAB9u/fz+DgIBkZGSxevJh77rmHG2+8MdnZE+KkduzYwde//vUp33vooYeoqamJ/757925+9rOfUVtbi8Ph4JJLLuErX/kKdrv9uHUPHjzIL3/5S3bv3k0wGCQ/P59PfepT3HTTTfE0W7du5bXXXmP//v0cPXqU7Oxsnn766ZPm+eWXX+Yf//EfsdlsvPTSSydMFw6H+fKXv8zRo0e55557+PznP3/SbQsxl0lAJMQ0+cEPfsAbb7zBZz7zGQoLC3nxxRf527/9W37yk5+wbNmyZGdPiJTx0EMP8Zd/+Zfk5eVx/fXX4/V6aW9vZ+vWrfzud7+TgEjMKTfeeCOLFi2atKygoCD++tChQ3zzm9+kpKSEe++9l87OTp566imam5v553/+50nrbd26lW9/+9tUVVVx++23Y7PZaGlpoaura1K6P/7xj7z22mtUV1ef8pxEIyMj/OxnP8Nms5007bPPPktnZ+cpbVeITwIJiISYBvv27ePVV1+d9CRtw4YNfOlLX+Khhx7ioYceSnIOhUgdv/jFLzCbzezcuZPs7OxJ7/X09CQpV0KcmeXLl3PxxRef8P2HH34Yl8vFAw88gMPhACAvL48f/ehHbN26lbPPPhsAn8/H97//fc4991y++93voqon7tXw1a9+lb/9279F13X+7u/+jvr6+pPm87HHHsNut7Ny5UreeuutE6br6+vjV7/6FbfccguPPPLISbcrxCeB9CESYhps2bIFTdO49tpr48ssFgsbN25k7969dHR0JDF3QqQek8mEyWQ6bvmpPu0WIpWMjIwQDoePW+7z+di2bRtXXHFFPBiC2AMzm83G66+/Hl/2xz/+kd7eXr7yla+gqiqjo6NEo9Ep95eZmYmun/oz7aamJn7729/yta99DU3TPjLtz3/+c4qKirj88stPeftCzHUSEAkxDQ4dOkRhYeGkCx4Qb0Zx+PDhZGRLiJT0uc99Dp/Px5IlS/ibv/kbNm3axODgYLKzJcQZ+cEPfsCVV17J5Zdfzte//nUOHDgQf6+uro5IJMKCBQsmrWMymaiqquLQoUPxZdu2bcPhcNDd3c2tt97Khg0buOqqq/jxj39MIBD4WHl88MEHWblyJeedd95Hptu3bx+bN2/mvvvuQ1GUj7VPIeYSCYiEmAY9PT1TPtkeX9bd3T3bWRIiZX3rW9/ikUceIT8/nx//+Mds3LgRr9fLddddd0pNf4RIBbqus27dOv7qr/6K73//+9x5553U1dVx7733UltbC0w0AT3R9SHx2tDc3EwkEuHv//7vOfvss/nud7/L1VdfzR/+8Ad++MMfnnE+33nnHd5//33uvffej0xnGAY/+clPWL9+PUuWLDnj/QkxF0kfIiGmQSAQmLL5j9lsjr8vhIhRFIU77riDO+64g56eHt58802efPJJnn76aQ4dOsSHH3540mY9QiTb0qVLWbp0afz3tWvXcvHFF/PlL3+Zhx9+mPvvvz9+7j/R9SEYDMZ/Hx0dxe/38+lPfzo+et26desIhUI899xz3HHHHRQVFZ1WHkOhEA8++CCf/vSnKS0t/ci0L774InV1dfzv//2/T2sfQnwSSA2RENPAYrEQCoWOWz5+sbNYLLOdJSHmhPGaoaeeeor169ezb98+aWIq5qzCwkLWrl3Ljh07iEQi8XP/ia4P4w/NYOI6cemll05Kd9lllwGwd+/e087P008/zcDAAHfcccdHpvP5fDz88MN8/vOfJycn57T3I8RcJwGRENPA6/VOOTrW+LLMzMzZzpIQKeuNN97AMIxJy0KhEL29vQBYrdZkZEuIaZGdnU0oFMLv98ebyp3o+pB4bRhPm5GRMSmdx+MBYGho6LTyMTw8zGOPPcY111yDz+ejra2NtrY2RkdHMQyDtrY2+vr6APjNb35DKBRi/fr18XTjQ30PDw/T1tY2ZVAnxCeFNJkTYhpUVlayY8cOfD7fpIEV9u3bF39fCBFz3XXXkZaWxrnnnktJSQmhUIhXXnmFffv2cdNNN1FSUpLsLApxxlpbWzGbzdhsNsrKytA0jYMHD7J+/fp4mlAoxKFDh7jkkkviyxYsWMC2bdvo6uqiuLg4vny8n5Hb7T6tfAwNDTE6OsqTTz7Jk08+edz7n/3sZ1m7di3f//736ejoYGhoiC9+8YvHpXv88cd5/PHHeeSRR6iqqjqtPAgxV0hAJMQ0uPjii/nNb37Dc889F5+HKBgMsmnTJhYvXixNEIRI8IMf/IDNmzezdetWnn/+eRwOBxUVFTz00EPceeedyc6eEKekv7//uCDl8OHDvP3225xzzjmoqorT6eSss87i5Zdf5vbbb8dutwPw0ksvMTo6OikguuSSS/iP//gPXnjhBVavXh1f/sILL6BpGitXrjyt/Hk8Hr73ve8dt/yZZ55h7969fOc734nXSt14441ceOGFk9L19fVx//33c9VVV7F27Vry8vJOa/9CzCUSEAkxDRYvXswll1zCww8/TH9/PwUFBWzevJn29nb+7u/+LtnZEyKl3HPPPdxzzz3JzoYQH8t3vvMdLBYLS5YswePx0NDQwPPPP4/VauXuu++Op7vrrrv42te+xn333ce1115LZ2cnTz31FGvWrOGcc86Jp6uurubqq69m06ZNRCIRVqxYwc6dO3n99df5whe+MKl53ZEjR+KTq7a0tDA8PMyvfvUrINYi4YILLsBqtR4X5AC8+eabHDhwYNJ7CxYsOG5o8La2NgBKS0un3I4QnyQSEAkxTf7+7/+enJwcXnrpJYaHhykvL+ef/umfWLFiRbKzJoQQYppdeOGFvPLKKzz99NP4fD7cbjcXXXQRX/rSlygsLIynW7BgAf/yL//Cz372Mx588EHsdjsbN26cFDSN+9a3vkVOTg4vvvgib775Jjk5Odx7773cfPPNk9LV1tbyyCOPTFo2/vuVV17JBRdcMAOfWIhPLsU4tmerEEIIIYQQQswTMsqcEEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFsSEAkhhBBCCCHmLQmIhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFv/H97cTvyivR+sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZhc5fnw8e8547I7s+4ucRdiBEmAAAECxVIsBJdSoJTCC79SoaVepIUKVjwFCkGDEyRA3D3r7jo7/rx/THaIbJLdze7Ozu7zua5cLbMz59wzc+accz9yP4oQQiBJkiRJkiRJkjQMqaEOQJIkSZIkSZIkKVRkQiRJkiRJkiRJ0rAlEyJJkiRJkiRJkoYtmRBJkiRJkiRJkjRsyYRIkiRJkiRJkqRhSyZEkiRJkiRJkiQNWzIhkiRJkiRJkiRp2JIJkSRJkiRJkiRJw5ZMiCRJkiRJkiRJGrZkQiRJkjQEZGZmkpmZGeow+s0vfvELFEXh888/79bzlyxZgqIoFBUV9WtcR1JUVISiKCxZsiQk+w83zz77LIqi8Oyzz4Y6lB4byO9aURROPvnkft+PJA03MiGShhVFUY75r7s3XJI03A33m7PB+v4dDgcjRoxAo9Hw9ddfd/mcb775Bq1WS05ODq2trQMcoXQkQ71hQ5IGK22oA5CkUHjggQeO+Dd5MZLC0SeffBLqEAaVhx56iHvuuYeUlJRQhzLgzGYzzz//PLNnz+bKK69k06ZNWK3W4N/b2tq44oorAHj++eeJiIgIVahB559/PjNmzCApKSnUofRYSkoKO3bswGaz9fu+duzYgdls7vf9SNJwIxMiaVj6xS9+EeoQJKlP5eTkhDqEQSUpKSksb677yvTp07nvvvv45S9/yY9//GOeeuqp4N9uv/129u3bx//7f/+PWbNmhTDK79lstgFJKPqDTqdj5MiRA7KvgdqPJA03csicJB1BYWEhdrud6OhoiouLD/pbe3s7o0aNQqPRHDTErnPeQkFBAX/5y18YOXIkRqOR1NRU7rjjDlpaWrrc17p16/jBD35AfHw8BoOBjIwMbr75ZiorKw97bnV1NXfddRcjRozAYrFgt9sZMWIES5YsoaCgIPi8Y43J72q4z4HzNF566SVOOOEErFbrQb1mDoeDhx56iIkTJ2KxWLBarcycOZOXX3756B/oITqHhrS1tXHHHXeQlpaGyWRi4sSJvPnmmwB4vV5+85vfkJeXh9FoJCcnh7/97W+HbcvtdvO3v/2Ns846i4yMDAwGA9HR0cyfP5/333//qPtvbm7m1ltvJSUlBaPRyOjRo3n00UcRQnT7vZx88skoioLL5eL+++8nKysLg8FATk4Ov/zlL3G73Ye9pvPzr6qq4tprryUlJQWNRnPQ9/Xf//6XuXPnYrPZMJlMjBs3joceegiXy3XE99OVl19+mVNOOQW73Y7RaGTUqFE8+OCDXW4HYOfOnSxdupTMzEwMBgPx8fGceOKJPPHEE8D3xxbAypUrDxpyemhjw3fffceFF15IYmIier2etLQ0brjhBioqKrrc97p161iwYAERERFERkYyf/58vvnmmy6fezRdzSE6cK5HUVERl156KbGxsRiNRqZOnco777zTrW335P137rcn++rp93Uk999/P9OmTePpp58O/qaWL1/OU089xeTJk3vUMLR7927uuecepk6dSlxcXPA8df3111NWVnbQc91uN9OmTUNRFN56663DtnXllVeiKAq//vWvg48d6Xy1efNmFi9eHDwW4+LimDx5Mrfffjsej+eYcR/4ne/cuZNFixYRHR2NxWJhzpw5fPjhh12+zuVy8bvf/Y5x48ZhNpuJjIzkxBNP5L///e9R93GgA4/Bf/7zn4wbNw6j0UhCQgLXX389zc3Nwed+/vnnKIpCcXExxcXFBx1TB273WOft1157jenTp2M2m4mOjubSSy+lvLy8y/e4Zs0aTj/99MN+az2drydJQ4KQpGEEED057F999VUBiFmzZgmPxxN8/MorrxSA+MUvfnHQ86+66ioBiHPPPVfY7XZx/fXXi7vvvltMmDBBAGLKlCmio6PjoNe8/fbbQq/XC51OJxYvXizuuececdpppwlAJCcni4KCguBz29vbRU5OjgDEaaedJn7yk5+IO++8U/zgBz8QdrtdvP3228HnPvPMMwIQzzzzzBE/i5NOOumgxx544AEBiIULFwqDwSAuvPBC8bOf/UzceOONQgghGhsbxaRJkwQgJk+eLG699VZx8803B2O67777uv3ZZmRkiOTkZDFjxgyRn58vbrnlFnHdddcJq9UqVFUVH3/8sbjgggtESkqKuPbaa8Utt9wi4uPjBSBeeeWVg7ZVWVkpVFUVc+bMEddcc4245557xFVXXSWio6MFIP797393uf+kpCQxdepUkZubK+68805x6623iqSkJAGIm2++udvv5aSTTgp+70lJSeJHP/qRuPPOO4Ofy8KFC4Xf7z/oNYAYN26cyMjIEGPGjBG33nqruO2228R7770nhBDi3nvvFYCIjY0VN954o7jrrrvEmDFjgt+by+U67P1kZGQcFtvVV18tAJGamiqWLl0q7rzzTjFr1iwBiJNPPvmg41oIId555x1hMpmEqqrirLPOEvfcc4+48cYbxcyZM0VmZqYQQogNGzYEj5WMjAzxwAMPBP999tlnwW099dRTQqPRCLPZLC699FLx05/+VCxatEioqiqSkpJEcXHxQfv++uuvhclkEhqNRlx00UXi3nvvFWeeeabQ6/ViwYIFAjho+0fT+VssLCwMPlZYWBh833FxceKEE04Qt99+u7jyyiuFwWAQqqqKTz/99Jjb7s777+2+evp9HcvOnTuF2WwWcXFxYtOmTSIuLk6YTCaxffv2Hm3noYceEjabTSxatEj86Ec/Ej/5yU/EggULhKIoIjExUZSVlR30/H379onIyEgRHR0tSkpKgo8//fTTAhDz5s0TPp8v+HhX56tNmzYJo9EoTCaTuOSSS8Q999wjbr75ZnH66acLnU4nWltbjxl35/cwd+5cYbfbxYknnhg8PxiNRqGq6mHnE5fLFfxNjxw5Utx1113i5ptvDp5/7r333i73cdVVVx30eOcxeNFFF4nIyEhx2WWXiTvvvDN4Dj3llFMO2sYDDzwgbDabsNlsBx1Tb7zxRvB5RztvX3TRRcJgMIiLLrpI3HXXXeLEE08Mvgen03nQa1auXCkMBoPQarXi4osvFvfee2/wvH/mmWf26LcmSUOBTIikYaUzITrwYnPgv4ceeuiw19x0000CEPfcc48QQohnn302eDE78IIuxPcXwJiYGFFUVBR83OfziQsuuEAA4le/+lXw8dbWVhEdHS1UVRVffPHFQdv63e9+F0x8Or311lsCELfffvthcbpcLtHS0hL87+NJiMxms1i/fv1hr+l8f7///e8Peryjo0OcccYZQlEUsWHDhi73d6iMjIxgsnDgxfqLL74QgIiKihJTp04VjY2Nwb/t27dP6HQ6MXHixIO25XQ6RWlp6WH7aGpqEmPGjBFRUVHC4XB0uf/Zs2cftP/6+nqRnZ0tALFy5cpuvZfOm6e8vDzR0NAQfLyjo0PMmDFDAOK555476DWdx+IVV1xx2E3uqlWrBCDS0tJEZWVl8HGPxyMWLlwoAPGb3/zmsPdzaELUeQycf/75h73/zu/64YcfDj5WW1srIiMjhU6nE59//vlh7/PQz7irY6jTrl27hE6nEzk5OYfdLH/88cdCVVWxaNGi4GN+v1+MGDFCAOLNN9886PkPP/xw8PPqi4Soq8aMFStWCECceeaZ3dq+EEd//73ZV0+/r+7629/+JgBhMBgEIB599NEeb6OsrOywm2ohhPjggw+EqqrBRpMDLVu2TABizpw5wuv1iu3btwuz2Szi4+MPOq6F6Pp8deedd3Z5PAghRENDw2Hn364c+D3cddddB/1tzZo1QqvVCrvdLpqbm4OP//a3vw1+Pwf+Nqurq4Pnja+//vqwfRwpIUpLSzso+fd4PMFk5bvvvjvoNUdq2Oh0tPN2RESE2Lx580F/W7x4sQDEsmXLgo/5fD6Rm5srgGADTKcnnniix781SRoKZEIkDSudJ/oj/bPZbIe9pqOjQ0yYMEEoiiIee+wxYbFYRFxcnKioqDjsuZ0XwAOTnk779u0TqqoGW9mFEOKFF14QgFi8ePFhz/d4PCIzM1MAwYtpZ0J0aAtlV44nIeoq4aqrqxMajUZMnTq1y+1t3LhRAOKnP/3pMWMT4vuEZO/evYf9LSsrSwDik08+OexvJ598stBqtcLr9XZrP3/+85+7TG46939oIirE95/dkiVLurWPzoTo0KRHCCE+++yzYOv+gQCh1+tFdXX1Ya+59tprBSD++c9/Hva3Xbt2CVVVRVZW1mHv59AbqYkTJwqtVntQUtnJ6/WKmJgYMW3atOBjf/rTnwQgbrvttqO93YPew5ESgttvv10A4p133uny74sWLRIajSaYxH/11VfBlvyuYu3sbeuLhCgjI6PL4yc9PV3ExMR0a/tCdC8h6sm+evp9dZff7w+eS2bMmHFYb+XxGjdu3GHHY6cbbrhBAOInP/mJGDt2rFAURXzwwQeHPe9oCVFXz++uzu/BZrMd1GDUqfM4efbZZ4OP5ebmCkVRxI4dOw57/pNPPikAcfXVVx+2jyMlRF31UHf2lD322GMHPX48CVFXPfSffvpp8PPv9OWXXx7WQ9XJ5/OJ/Px8mRBJw44sqiANS6IH80OMRiPLli1j6tSp/OhHP0JRFF577bWjTtg+6aSTDnssOzubtLQ0ioqKaGpqwm63s379egBOPfXUw56v1WqZO3cuRUVFbNiwgfT0dE466SRSUlL43e9+x/r16znrrLOYPXs2EydORKPRdPs9Hcv06dMPe2zNmjX4fL4jzpPoHM+/Y8eObu/Hbrd3WQwgOTmZwsJCpkyZctjfUlJS8Hq9VFVVHVRBbNu2bfzxj3/kiy++oLKyEqfTedDruhpHr9Vqu5xU3jlGf8OGDd1+L9D19z5nzhw0Gk2X28rMzCQ+Pv6wx492XOTn55OamkphYSHNzc1HnIjucDjYtGkTsbGxPPzww10+x2AwHPR9ffvttwCceeaZXT6/Jzrn/axcuZI1a9Yc9veamhp8Ph+7d+9mypQpwffc1Weo0WiYM2cO+/btO+64gCP+XtLS0no1X6kv9tWb76u7nn322eBcqk2bNrFnzx7y8/OP+JxOJ598cvC3IITgxRdf5Nlnn2XTpk00Njbi8/mCz9Xr9V3u++GHH2bVqlX8+c9/BuDee+/l9NNP71bcl1xyCY888giLFi3iwgsvZP78+cyePbtXBUQmT57cZTW9k08+mf/85z9s2LCBq666itbWVvbu3UtKSkqXBQw6f5M9OTdMnTr1sMfS0tIAaGxs7PZ2+mo/nbHPmTPnsOerqsqsWbPYvXt3n8UlSeFAJkSS1A35+fmMHz+eVatWMXr06GNe0BMSErp8PDExkeLiYpqbm7Hb7cFJtUdKrjofb2pqAiAyMpJvv/2WBx54gLfeeosPPvgAgNjYWG6++Wbuv/9+dDpdb97iYXEeqr6+HggkRl3d4HZqa2vr9n6OdDOv1WqP+PfOvx04ofrbb7/l1FNPxev1Mm/ePM4991wiIyNRVZWNGzeyfPnyLiekx8bGdnmz2vn+D5z03B1dfe9arZbY2FhqamqOuJ9Ddee4KCkpoamp6YifYWNjI0IIamtr+eUvf9mt+DuPs74oVd15vPzxj3886vM6j5fO93y0305fsdvtXT6u1Wrx+/19tp+e7Ks331d3FBUV8eMf/xi73c4DDzzAHXfcwZVXXsnXX3990LH/7LPPsnLlysNe35kQ3XnnnTz88MMkJSVxxhlnkJKSgslkCr720MIznYxGI2effTZbtmxBq9Vyyy23dDv26dOn8+WXX/Kb3/yG1157jeeffx6AESNG8MADD7B48eJub+tYx1Xn8dfTc3J3dHUMdJ7HDkwqj1d393Os39qRHpekoUwmRJLUDb/73e9YtWoVsbGxbNu2jYceeoj77rvviM+vrq5mxIgRhz1eVVUFfH+j3/m/nY8fqrPK3IE3vampqTz11FMIIdi+fTuffvopf//73/nVr36F3+8PVm5S1UARSa/Xe9h2j3Ux76ygdaDOGO644w7+8pe/HPX1A+3BBx+ko6ODzz777LAKTA899BDLly/v8nV1dXX4fL7DkqJDv6fuqq6uJj09/aDHvF4vdXV1REZGHvb8rj7nA/dbVVXVZWt4V8fFkbYxadKkYO/LsXTeUJWXlzNu3LhuveZY+29ubu7yvR/p+dXV1V3+/Ui/kaGiN9/Xsfj9fq644gpaW1t56aWXWLx4MWvWrOGll17ioYce4v777w8+92gVxWpqanj00UcZO3Ysq1atOqyn5WgVJr/66iv++Mc/EhsbS11dHUuXLmXFihVHPPYPNXPmTN555x1cLhfr1q1jxYoVPPbYY/zwhz8kLi6O+fPnd2s7xzqujuecHG46f49H+kyO9LgkDWWy7LYkHcOqVav4+c9/zogRI9i6dWuwdfKrr7464mu6amktKCigtLSUzMzM4I3npEmTgK5vRrxeL19++SUQGO5xKEVRGDNmDD/60Y/46KOPAIKldQGioqIAKC0tPey1a9euPWLsRzJ9+nRUVQ3GNJjs3buX6Ojow5Ih6Pq76OT1elm1atVhj3d+H53fT3d1ta+vvvoKn8/Xo20d7bjYu3cvZWVlZGVlHbH3AcBqtTJmzBi2bdtGQ0NDt/Y7Y8YMgCOWKj+UqqpHbOHu3FZ3j5fOY7yrz9Dn8x319xYqR3v/PdWb7+tY/vCHP/DVV19x6aWXBntT/v73v5OSksKvfvWrbg/7KigowO/3B0s0H6isrOygcv8Hqq+vZ/Hixeh0Oj799FMuu+wyPvzwQ37/+9/3+L0YDAZmzZrFr371Kx599FGAIzZ0dGX9+vW0trYe9vihv/WIiAhycnIoLy9nz549hz3/s88+A7o+J/cFjUbTp71GXel8r139pvx+f5fnREka6mRCJElH0djYyOLFi9FoNLzyyiskJCSwbNkytFotP/zhD4944/LII48cNITE7/fz05/+FL/fz9VXXx18vHNNjJdffjk4f6PTww8/TGFhIfPnzw/2Omzbtq3L1rvOxw5cwXzq1KmoqspLL72Ew+EIPt7Q0MDdd9/d488iPj6eyy67jLVr1/LrX/+6y4v2vn37KCws7PG2j1dmZiYNDQ1s3rz5oMefeuqp4LDCI7n33nsPGk7X0NDAgw8+CHDQd9Udv/71rw8aq+90Orn33nt7vK2lS5cCgZ6v2tra4OM+n4+77roLv9/PNddcc8zt3HnnnbjdbpYuXdplr2BjY+NBvRFXXXUVkZGRPPHEE3zxxReHPf/Q9WZiYmK6TLgBbr31VnQ6HXfccUeX8xHcbvdBydKsWbMYMWIEX3zxxWE3un/729/6bP5QXzra+++Nnn5fR7Nx40YeeOABUlJSePzxx4OP2+12nn76abxeL1dccUW31jbqXN+qM7nv1NbWxnXXXddlLzQEjvmysjL++te/Mm7cOJ544glyc3P5v//7v27ddK9atYqOjo7DHu/qfHcszc3N/OpXvzrosbVr1/Liiy9is9k4//zzg48vXboUIQQ//elPD3q/dXV1wR74zt9oX4uJiaG2trbL991XOudhffbZZ4c1fvzrX/+S84ekYUkOmZOGpaMtSLho0SImTpwIBC56JSUlPProo8HHJkyYwJ///GduvfVWlixZ0uXCg52FDi655BJsNhsffPABmzZtYsqUKQclI1arlaeffpqLLrqIk046iYsuuoj09HTWrVvHhx9+SGJiIv/85z+Dz//oo4/46U9/ysyZM8nPzyc+Pp6ysjKWL1+Oqqr89Kc/DT43KSmJyy67jOeff56JEydy9tln09LSwnvvvcfcuXN7XDAAAjeme/bs4ec//znPP/88c+bMISEhgYqKCnbs2MGaNWt4+eWXycrK6vG2j8ftt9/OBx98wJw5c7j44oux2WysXbuWr776igsvvJDXXnuty9clJSXhcrkYO3Ys5557Lh6Ph9dee43Kykpuvvlm5s6d26M4Ro0axZgxY7jwwgvR6XQsX76cffv2cfbZZ3PFFVd0ezuzZs3i7rvv5g9/+ANjx47lwgsvxGKx8P7777N161bmzJlz0Hd9JEuXLmXdunU8/vjj5OTkcMYZZ5Cenk5DQwOFhYV88cUXXH311fzjH/8AAnOqXnrpJS688EJOOeUUzjzzTMaPH09LSwubN2+mtLT0oIR33rx5vPLKK5xzzjlMnjwZnU7H3LlzmTt3LiNHjuTpp59m6dKljBkzhgULFpCfn4/H46GkpIQvv/ySuLg4du7cCQR6PJ966ilOO+00fvCDH3DBBReQm5vLxo0b+eSTT1iwYAErVqzo0ffR3472/nujp9/XkTidTi6//HI8Hg/PPvtssLe40+mnn85NN93E448/zn333cef/vSno24vMTGRSy+9lFdeeYWJEydy+umn09zczEcffYTRaGTixIls3LjxoNc8/PDDvP322/zgBz/gxhtvBAK9L8uWLWPmzJksXryYjRs3Hhbbgf7whz/w6aefcuKJJ5KVlYXVamXbtm28//77REVFcf311x817gPNnTuXJ598ku+++47Zs2dTWVnJsmXL8Pv9/POf/zxoWOddd93F+++/z/Lly5kwYQJnnXUWDoeDV199lZqaGu6+++4uCxL0hXnz5rFmzRoWLFjA3LlzMRgMTJgwgXPOOafP9qGqKk8++SQLFizg3HPP5Qc/+AE5OTls3ryZjz76iDPPPJP3338/OOxakoaFUJa4k6SBxjHKbnNA2ddHH31UQGCxza6cf/75AhB/+ctfgo91llndt2+f+NOf/iRGjBghDAaDSE5OFj/+8Y8PWuviQKtXrxaLFi0SsbGxQqfTibS0NHHjjTeK8vLyg563fft2cccdd4gpU6aI2NhYodfrRUZGhvjBD35w0LoYnZxOp7jrrrtESkpKcE2Y3/72t8Lj8Ry1fOvRyq26XC7x2GOPiZkzZ4rIyEih1+tFWlqaOPXUU8Vf//pXUVdXd8TXHuho5WU7y1h3patyykIEFrg94YQThNVqFTabTZx22mli5cqVRyw/3rn/pqYmcfPNN4vk5GSh1+vFyJEjxSOPPNKj0sSd8TqdTnHfffeJzMxModfrRVZWlvjFL37R5fotXX3+h3r55ZfF7NmzhdVqFQaDQYwePVo8+OCDhy3ue+D76crbb78tzj77bBEXFyd0Op1ISEgQ06ZNE/fdd1+XpYW3bt0qrrjiCpGcnCx0Op2Ij48Xc+fOPawMeHV1tVi8eLGIj48XqqoK9q/xdaDNmzeLq666SqSnpwu9Xi+ioqLEmDFjxPXXX99lWfW1a9eKM844Q1itVmG1WsW8efPEqlWrunVsHuhoZbcPLY/c6WjHXVeO9v6PZ189/b4O1Vny/Gjl09vb20VeXp5QVbVb6221t7eL//f//p/IyckRBoNBpKamiptvvlnU1dUd9l7Wrl0bPDd1VUL8kUceEYA477zzgo919Tv94IMPxJIlS8SoUaNEZGSkMJvNIj8/X/zoRz86aJ23oznwe9i+fXtw0WyTySRmzZolVqxY0eXrOjo6xG9+8xsxZswYYTQahdVqFbNnzxYvvfTSUfdxoCOdq4T4vhz/ob+XtrY2ceONN4qUlBSh0WgO225Pz9tHOw6//fZbMX/+/MN+a7fccosAur2mnCQNBYoQPag/LEnSUS1ZsoT//Oc/FBYWBoeZSINT5/dzaKnh3jj55JNZuXJlj8q597XExERsNhu7du0KWQySNNgUFRWRlZXFVVddxbPPPhvqcMLC7Nmz+e6772hubsZisYQ6HEkaELI/VJIkKcw1NDRQV1dHampqqEORJCkMOByOLuepPfvss6xatYrTTz9dJkPSsCLnEEmSJIWp5uZm/vSnP/HBBx/g8/m48MILQx2SJElhoKSkhEmTJnHaaaeRm5uL1+tlw4YNfPXVV9jt9uBCupI0XMiESJIkKUw1Njby0EMPkZWVxUMPPcQNN9wQ6pAkSQoDCQkJXHbZZaxcuZLPPvsMl8tFYmIiV199Nffdd1+X659J0lAm5xBJkiRJkiRJkjRsyTlEkiRJkiRJkiQNWzIhkiRJkiRJkiRp2JIJkSRJkiRJkiRJw5YsqiBJkiQNGCEEQgj8fj8ej4eGhgZUVSUmJgatVouiKADB/5UkSZKk/iYTIkmSpCHM5/Phcrlob2+nurqa5uZmNBoNbW1t7Ny5E41Gg6qq1NTUUFBQQGxsLH6/n8rKShwOB3FxcXi9Xvbt24fFYsFsNtPc3ExlZSURERH4fD6am5txu93odDo8Hg8OhyOY+Hi9XrxeL0IIfD4ffr8/+L9dUVU1GFPnP61WG0yWVFXFZDKh1WrxeDwYjUZsNhsajYaWlhaSkpKIjIyko6MDh8NBdnY2Wq2W2tpazGYzSUlJqKpKXV0d2dnZxMfHB+McOXIkVqsVn8+HzWYjISEBi8WCwWBAo9EM8DcnSZIkDRRZZU6SJGmQEkLQ3t5OUVERTqeTjo4OSktL2bt3LxERETQ3N7N7924aGxvRarU0NzdTVFSERqPB7XbT0tJCe3s7xzrNq6qKxWJBUZRgT43b7UYIgclkCiYMqqoGn39g4qLVatFoNJhMJvR6PUIIjEYjVqsVVVXxeDzY7XZMJhM+nw8hBHFxcWi1WjZu3AjA+PHj8Xq91NXVoSgKWq0Wp9NJU1MTWq0Wn89HW1sbLpcLRVFwu910dHTg9XoPS7Q6ky2/349OpwOgo6MDRVHQ6/V4vV7q6+uDn++RkrNOiqJgsViIjIxEr9fj8/nIzMzEZrPh9XqJiooiPz8fm81Ga2srubm5pKWlYTKZMBqNZGZmBj9fSZIkafCRCZEkSdIA6ejooL6+nurqajZv3ozH46G9vZ2CggJ2796N0WiktraWkpISWltb6ejowOPxdLktk8lEVFQUer0es9lMTk4ONpuNxsZGUlJSSE5ORqPR8Na/VuCs8KD4tJgijOg0OrxNfvRGA/ZkK5YoE9Y4M+Y4E+ZYAwabLrgPv0/gavbgbHTjavHgbvXgafPibvPibvXgbvPiafPi94b2MqLRq+gsWnQWDTqLFr1Viz5Ch8EW+Ge069FH6lA1gYRECIGryYOjzoWjzkl7nYP2JifNla24HC60dhWPz0NHqxOh8WJM1nHu9Qvw+XxUVFRQXl5OVFQUzc3N7Nu3D4fDgdvtprGxkY6Oji5j1Ol0mEwmIiIiSE9PJy4uDqfTSX5+PtnZ2VgsFnQ6HePHjychIYGYmBhMJtNAfoySJEnDlkyIJEmSjkNnr0Z5eTnr16/H6XTS3NzMnj17gkPSampqqKio6PJm2Ww2ExUVhVarZeTIkSQmJuL3+4mIiGD06NH849bnsMVH4GtVUDpUdKoeHToU0f0hXMZoPdYkI9YkE5ZEE5ZEI3pLYMS08As6Gtw4ap101LnoaHDjavTgbAokQfTzFSJrQRIAhSsq+3dHCugjdBjtOkzRekyxBkwxhsD/RutR1ECy5G7z0F7lpK3KSXtVB+1VTjoa3N3+HITiw4MHj9+NMPnRRAiaa1q58W9Xsn37dtra2lAUherqanbs2IHX66WxsRGHw3HYtkwmE8nJycTHx+Pz+Rg5ciR5eXnYbDaMRiOTJ08mJSWF2NhYtFo5Al6SJKm3ZEIkSZJ0BA6Hg+3bt1NbW0tNTQ3bt29n8+bNaDQaKisrKSwspLm5+bAhV3FxccTExKDT6Zg4cWJw3srHT3+Ft0agw4DVakFxaFF7kNh0h86iJTLdTGSaGWtyIPnRGgL7cDa5aa9yBv7V7E+A6t0If+guA1N+lAfAusf2hCwGRVUwRukwxxuxJBixJBqxJpqCvWU+t4+2SietZQ5aSh20ljnwtPv6NAa/6kOYvLS3tePGhTZeYf7SOcH5XBs3bsTj8VBfX09tbe1Br1VVFZvNRlZWVjChHj9+PKNHjyY+Pp64uDhGjx6N2Wzu05glSZKGCpkQSZI0LAkhqK2tZdu2baxbtw6v10tZWRkbN26kqqqK5uZm6urqDnpNVFQUFouFcePGkZqail6v55vX1uOtVjCwf86MQ4siBm5FA3O8gch0C5GpZiLTzRij9EAg+Wkt66CtqoP2yg7aKp14O/r2Jn6o05o0+5MjIxEpZiLSzBgiA0mSs9EdTI6aCtvpqHMNWFxC8eM3ewNzqnCiTRDMvHAybrebsrIytm7dSnt7Ow0NDQe9LjY2FpvNRmJiIhMnTiQ1NRWNRsPUqVODyZOc5yRJ0nAkEyJJkoasxsZGCgoKWLNmDQUFBcECBevXr6epqQmn0xl8rs1mIy0tjYiICGJjY5k+fTov/99youOjUFt1aDoMaJTQVxoz2HXYs63YsyzYs6zoLFr8PkF7VQctpft7MEoduFu9oQ51SNJH6ohMNRGRZiYi1Yw1yYiqUXG3eWgqbKe5sJ2mwjZcTV3P/RpIPuHDZ3Lhj/DQUNPI4l+fx+rVq6mrq6O1tZXS0lKam5uDzzcajdjtdiZPnhwsBJGdnc3UqVPJyckhKioqhO9GkiSp/8iESJKksNXZy7N3714+//xz6urqqK6uZtu2bezZs+egeRkGg4H8/HyysrLQaDSMGTOGtx78BLPGillrQXUPzjkYGr2KPcdKVK4Ve5YVY5Qe4Re0VnTQXNhGU2E7raWOkBc26K2JN+QAsPGf+0IcSe+oWoXIdDO2LCv2TAvWZBOKquBsctO0r42GPa00FbTj9xy9kl2o+PVeHN52HL42zvu/+WzduhWfz0dhYSG7d+/G5fq+58tsNpOXl8eYMWOIj48nNjaWU045hdzcXOLi4mTvkiRJYUsmRJIkDXput5utW7eycuVKmpqa2Lt3L2vXrqWkpOSgXp6YmBhGjx5NRkYG27/cja9Sg8FtwqSxovXpwuaGzWDXEZ0fQXR+JLZMM6pGxVHrpKkg0PvQXNSOzzU4b7B7Kv/8FAB2v1Ee4kj6hsagEpluwZ5tISo3AnOsAb/XT3NROw17Wmnc04az0R3qMLtFCIFP48Xha8Old6BJ8jH6xHyKi4vZsWPHQUNKjUYjaWlpTJ06lby8POx2OyeddBJjx45Fr9eH8F1IkiQdm0yIJEkaNFpaWti5cyc7duxg586dfPbZZ1RUVFBRUYHPF5j/YrfbGTNmDMnJyRSsLsFTrGLCgkUTgeoP/ZC23rIkGYkdbSM6PwJLvPH7m+jdrTTsaR0UQ7CknjNG6YnOjyAqLwJbhhlVG0hu63a0UL+9hfZq57E3Mkj5VR8OXxsO2tBl+Mk5IYOKigq2bdtGY2MjABqNhuTkZBISEpg5cyZRUVFMnTqV6dOnk5CQEOJ3IEmSFCATIkmSBpQQIlhyuDPx6fz/5eXf9xKkp6eTnJxMw+4W1AYjFiUCm8GO6tIdZevhxZJoJHaMjdjRNkzRejwOLw27WmnY3UpTQRs+99DoBToac4IBAEf1wBUlCBVVp2LPthAzIpLokRHoTFo66l3U7Wihblsz7VXhmxwdym/w0Oxqol204o9xYcs2U1ZWRmXl9+XVY2JiSElJIT09nVNPPZWEhARmzJhBZmZmcBFgSZKkgSATIkmS+o3L5WL79u1s3LiRTZs2sWnTJjZv3hysfqXVasnLy2PUqFGs/992LERgIRIzEWiVwTmn53iZ4wzEjdufBMUY8Di81O9ooXZbM81F7f2+7s9gM/0nIwBY/eddIY5kYCkq2LKsxI6OJGZkJDqzlo4GN3XbmqnZ1EhHfXgMq+spL158NictziZ8US7sORb27t1LXV0dXm+gEIjFYmHMmDEkJSUxceJETjnlFKZNmybLhkuS1G9kQiRJUp+oqakJJj2dCdDOnTvxer0oikJubi4TJkxg/Ws7sBKJhQhMWFGVod8SrDVpiBtrI35iFBHJJjwdgSSoblsLzUVtiKHfEXREMSMjAKjf2RriSEJHUcGWaSF2dCBR1po0tJY7qNnURO3W5mFRLt2PH2H34DK20eJuImlyLFu2bKG6uhohBKqqkpqaSkZGBmeccQZJSUnMnTuXnJycsJkbKEnS4CUTIkmSesTr9bJ79+5g8tOZAFVVVQGB1t3x48czYcIEPv/Hd1ixY8U2ZHt8jkRRISo3gvgJdqJHRAAKjXtaqd7YSOOetpAuhioNXopGITo/cNxE5UYAgsbdbVRvaqRhd+uw60H0a3y0imZIcpEyNY7t27dTVlYWrCAZFRXFyJEjycjIYMKECZx++umMGzcOnW7oDK2VJKn/yYRIkqQj8vv97Nmzh9WrV7NmzRpWr17Npk2bgpXd0tLSmDBhAlvf2UsEdiKwYcI6rFts9ZE6EqdEkTg5Cr1VR1tlR6Clf0sTHsfQb+nvqcx58QAUfVIT4kgGH51ZQ+xYGwkTorAmm3C1eKje0EjVuoZhvc6UEAJfhAunpY2G9npix0Wwa9cu6uvrgcBQ3OzsbEaPHs3ZZ5/N6NGjmT59Olrt8GqUkSSp+2RCJElSUHl5+UHJz9q1a4MLN+bn5zNt2jRWv7hlf/JjR6fIcrqd7DlWkqZGE50fgc/jp3ZzE1XrGsO6ithAmPrjfADWPrI7xJEMbpZEI4lTookbZ0OjU2nY3Url2gaa9rWFOrRBw6f30OprglQ3thwzO3bsoKKiAgiUBR83bhzjxo1jwoQJnHzyyYwdO1YWb5AkCZAJkSQNW42Njaxdu/agBKizAlRSUhLTp09n6/K9RBJNJFEy+emCxqCSODmKxKnRmKINtFd1ULm2gdotzcOiQpw08DR6lbhxNhKnRmNNNOFsdFOxup7q9Y3ymOuCX+/FFdlGh7mF+FHRfPvttzQ1NQGQkJBAcnIyJ5xwAnPmzOHMM88kOjo6tAFLkhQSMiGSpGHA7/ezbds2vvrqK77++mtWr17Nnj17ALDZbEybNo29H5fuT36iMSqmEEc8uBlsOpJnxJAwKQpVo1C3rYXKtfW0lnWEOjRpGIlIMZE0LYbYsTb8Xj/V6xup+K4eV7Ncs+poPAYnLmsbde21GHMU9u3bR0dH4LebkJDAyJEjWbhwISeccAIzZsyQ85EkaRiQCZEkDUEdHR2sWbMmmACtWrWKpqYmtFotkyZNYsaMGXz62LdEEo15mM/56QlrsomUmbHEjo7E6/RRubaBytUNeNqH73yO4zXhmmwANj1VEOJIwpc+QkvStBgSp0ahNWio29FCxTd1tJbLBL07hBA4de24o9tJnxPPunXrKCsrw+v1YjabGTFiBGeffXYwUbLZbKEOWZKkPiYTIkkaAurq6vj666+DCdDatWvxeDxERkYyc+ZM9nxQhp0YbESjGWbV3vqCPdtK2tw4bBkWOupdlH9bT82mRvweefo8XiMvSgNg56ulIY4k/Kk6hfgJUaTMiMEUY6CpsI3SL2tpLmwPdWhhx6948cZ30KzWY0zTsHXrVtrb29FoNIwePZqJEycyY8YMzjrrLDIzM0MdriRJx0kmRJIUZoQQFBYW8sUXXwQToJ07dwKQmpqKp0zBTgx2YrFik70/xyEqz0ra3HgiU820ljko+7qW+l3Dr/SxFH5iRkaQemI8EckmWkodlH5ZQ+MeWYCht4QQuCPacdpbqagpo8PSGlxgOjc3l8zMTE455RTOOussJkyYIM+7khRmZEIkSWGgvLyczz77jE8//ZRPP/2U4uJiFEVh3LhxNGxuw04sdmIxKnIl974QPSKC9LnxWJNNNJe0U/pFrazm1U/0tkCPpbtZDjvsD/YcK+lz44hMt9BW2UHpF7XU72wJdVhDgtfsxGFtoba9CretnYqKCoQQJCQkMH78eE488UQWL15Mbm5uqEOVJOkYZEIkSYNQXV0dn3/+eTAB2rVrFwDjx4+ncbODaOKxEysrv/WxqDwrGacmYE00BYYbfVFLc5EcbtSfpv9kBACr/7wrxJEMbbZMC2knxmHPttJW2UHxp9U07pVJfl8SRh9Noo6OqCYchlaKiooAiI+PZ8aMGZx66qksXryY+Pj40AYqSdJhZEIkSYNAc3MzX3zxRbAXaNOmTUBg7Z/23V6iiSeKOPSKIcSRDk2RaWYy5iVgy7DQXNRO8WfVtJQ4Qh3WsBA33g5A7eamkMYxXBx0rBe3U/xJNS2l8ljvDz69m0alDnd8C42e+uCyBqmpqUydOpULL7yQM844g9jY2BBHKkmSTIgkKQS8Xi/fffcdK1as4MMPP2Tt2rX4/X7S0tLwlqrBBEgOgetf5ngDmacmED0ikrbKDoo+qZZD46RhISp3f29okomG3a0Uf1otFxHuZy6lA2dMM02aOupc1TQ2NqIoCrm5uZxwwglcc801zJw5E4NBNnxJ0kCTCZEkDZDy8nI++OAD3n//fT766COam5uJjo5G12DenwDFY8IiJ+MOAH2Elsx5CcSNt+NsdFP8aQ1125pDHdawlDY3DoDSL2pDHMnwFDsmkoxTEjBG66nZ2ETxp9W42+R8rv4mhMCpceBNbaPWWUWto4rW1laMRiMTJ07kggsu4IILLiAnJyfUoUrSsCATIknqJy6Xi6+//poVK1awYsUKtmzZgqIoRIooYkgkhgQiiZYJ0ABStQops2JJnR2Hz+2n5PNqqjc0Ivyhjmz4mnZHYA7Rmr/KOUQho0DilGgyTo5H1SmUfVVH+Td1+L3y9mCgCCFwRrbSaq2n1ltJdV0Vfr+f9PR0pk2bxnXXXcecOXOwWCyhDlWShiSZEElSHyosLAwmQJ988gnt7e0kJCSgVhuJIZFo4uU8oBCJHRNJ5vxE9BFaKr6tp/SLWnxumQlJUieNQSVtbjzJJ0TjbvNS9HE1dVtlz2koeIQbd0oLtd5K6lzVNDU1odfrmTBhAmeffTYXX3wxo0aNCnWYkjRkyIRIko6D3+/nu+++46233mL58uXs2LEDrVaL1WsnlkRiSJRrAYWYJdFI9oIkbBkW6ne2UPhhFc5Gd6jDkqRByxilJ+u0RGJGRdJS6mDfuxVyflEIda6B1BbZQK23kqr6SrxeLykpKcyePZubb76ZWbNmodPpQh2qJIUtmRBJUg85HA4+/vhj3nrrLd5++21qamqIjY1FV2cljiSiiUeryAtTqGn0KhmnJpA0LRpHnYuCFZU0F8oS2oPNuCVZAGx5tjDEkUiHsmVayD4zCXOsgYrV9ZR8ViN7VQcBr/DgSWmlxldBVXs5ra2tWK1W5syZwwUXXMAPf/hDObROknpIJkSS1A3V1dW8++67LF++nI8++oiOjg5GjBiBc5cgjmRsxMheoEEkZnQk2QuS0BpUij+roeK7epBnukFp9OJ0ALa/XBLiSKSuKCokz4gl/aR4vE4fBR9UUr9dLuw6WAgh6IhoodVeR62nkqqqKnQ6HZMmTWL+/PnceOONpKWlhTpMSRr0ZEIkSUewa9cu3nzzTZYvX863334bKIjgjyKWZOJIxqJEhDpE6RAGu46cs5KJzougfkcLBSsqcbV4Qh2WJIU9g01H9oIkYkZG0ri3lX3vVcqhp4NQu2jFldpERXsp1U2BdY8yMzM5++yzueyyy5gxY0aII5SkwUkmRJJ0gO3bt/Pqq6/y6quvsm3bNsxmMxaHnTiSiSVJFkQYrBRImRFD+ikJeBxeCt6rpGF3a6ijkrpBa1QB8DrlUKxwEJ0fQfaZSejMWoo/raZitex9Haw8qptmcy0tEbWU1ZXgdrvJzMzk1FNP5corr+TEE09EVdVQhylJg4JMiKRhTQjBtm3bgknQjh07iIyMxNxiJ4FUoklAo2hCHaZ0FKYYPXnnpRKRaqLiu3qKP63B75E31+Fi+k8CZbdX/1mW3Q4Xqk4lc14CySfE0FLSzp63yumol71Fg5nQ+mlUamiNq6O8sQSHw0FeXl5wQdi5c+fK5Ega1mRCJA07Qgi2bNnCa6+9xquvvsrOnTux2WyYm+3Ek0IMCagyCRr89vcKZZyagKvZw+7l5bSWOkIdldRDiVOjAKha2xjiSKSeikw3k3duCvpIHSWf11D+TZ3sLQoDQvXjiGqkvKOEWn8FHR0dpKamcs4553D++eczb948mRxJw45MiKRhY8uWLSxbtoxXX32V3bt3Y7fbOe+887jooouYP38+C02XhzpEqZsO6hX6tp7iT6vlIpKSFAKqViHj1ASSZ8TQVt7B7jfLZG9RGHmr/TlefvllPvroI9566y0cDgdxcXFceeWVnHXWWZxyyimyYJA0LMiESBrSSkpKePnll3nhhRfYunUrUVFRLFq0iAsvvJD58+dztvGyUIco9VDStGgyT0vE3SJ7hYaC5JkxAFR8Ux/iSKTjEZFqIu+8VAw2HYUfVFK1Tvb4hZu3Hc+zbNkyXnnlFb755huam5tJTU3lwgsv5NZbbyUnJyfUIUpSv5EJkTTkNDY28tprr/HCCy/wxRdfYDKZOO+887jssss4/fTTZRIUpnRmDXnnphA9IpKK1fUUfVQle4WGADmHaOhQdQpZpyeRNDWa+l0t7HmrHK/DF+qwpF54q/05XnjhBZ577jnWrl2L0+lk9OjRLFy4kDvvvJOEhIRQhyhJfUomRNKQ4HQ6effdd3nxxRd599138Xq9zJ8/n8suu4zzzz+fC2xLQx2idBzsOVbyF6WgKAq7l5fTuEdWkBsyOqcqyDoYQ0Z0fgR556YghGDP8nIa97aFOiTpOLzR8gyPPfYYr7/+OuvXr0er1TJu3Diuuuoqli5ditVqDXWIknTcZEIkhS2/388XX3zBCy+8wGuvvUZzczNTpkzh8ssv55JLLuHKlNtCHaJ0nBSNQub8BFJmxNK4t5Xdb5bjafeGOixJko5BZ9GSd14K0XkRlH9bR9FH1Qi/vN0Id/8pe4R///vfPPfccxQUFGCxWJg3bx6LFy/moosuQqORBYmk8CQTIinslJSU8J///IdnnnmGwsJCsrKyuPzyy/n4199hUSJDHZ7URwx2HSMvSscSb6Do42oqvpNzTIaisVdkArD1+aKQxiH1j6Tp0WSdnkh7pZOdr5XiapYLJQ8VXpuTGTeO5cknn6Suro7o6GhuuOEGLr30UsaPHx/q8CSpR2RCJIUFp9PJ8uXLefrpp/noo48wm81ccsklXH311fzixIdlFZwhJjo/gvxFqXidPnb8t4T2KmeoQ5L6iUyIhj5rsomRF6WhMajsfkMOeR1qhBDc/PoPee655/jwww/p6OhgzJgx3HDDDVxzzTWYzeZQhyhJxyQTImlQ27BhA08//TQvvvgijY2NzJkzh6VLl/Lc0rfQKtpQhyf1NQUyTk0gbU4c9Ttb2L28DJ9TTi6RpHCnNWrIW5RCzIhISr+qpfjTarlm0RDk1/o47VfTefbZZ9m1axcmk4nTTz+dG264gQULFsjGS2nQkgmRNOjU19fz0ksv8fTTT7Nx40YSExO56qqr+OL3G7EoEaEOT+onOouWET9IxZZhoeiTaspX1YU6JGkgyKIKw0rKrFgy5yXQUupg56sleNplFbqhqkPbRsZF0bz//vs0NjYycuRIzjzzTO68805SU1NDHZ4kHUQmRNKgIITgm2++4YknnuDVV1/F5/NxzjnnsHTpUv56zjOoilw1eyizJpsYdWk6CrDz9VJaiuXaQsOFLLs9/ESmmRl5URrCDzuWFdNWKYfEDmV+/Nz038U89thjfP311wCcc845XHXVVZx77rmoqry+S6EnEyIppFpbW3nxxRf5xz/+waZNm8jOzuaGG27gnZ99iUExhjo8aQDEjbORd24KbZVOdvy3BE+brCI3nCTP2r8w6ypZNGM40UdoGXVxOuYEI3vfLqd2S3OoQ5IGgN/kYfTSNN59910KCwtJT0/nsssu45577iEyUhZFkkJHJkRSSGzdupUnnniC559/nvb2dhYuXMhNN93En858Uo4xHi4UyJyXQOrsOKo3NLL33QqET56OJGm4UDQKuQuTSZgYRdnXtRR9IucVDRdCCK78z7k88cQTrFmzBr1ezymnnMKdd97JvHnzQh2eNAzJhEgaMC6Xi9dff50nnniCr776isTERK699lo+f3A9RkVWoRlONAaVERekEZVrpfCjKiq+lb0Dw1XClCgAqtc1hjgSKVSST4gh6/REmgra2PlaKT6XnFA2nDiFg/ylibzxxhs0NjYybdo0Fi1axI9//GMsFkuow5OGCTlwU+p3FRUV3H///SQlJXHZZZeh0+n473//y4KR51HycS1GxYyiKsRPsKOPkJXjwonOosEcZwj+d8JEO5HpgeTWYNORf0EqBrsu8LdJUYy6NB2DXceEa7Kx51ioWt9Ixbf16CxaRl2Sjjk+sK3IdDMps2KD2zVG6dGa5IJ/4cQUayAi7fuGjszTErBlBW5urElGxl2dhc6iJePkeHLOTCJ6RKBgSkSqidGXpqMxBC5PUXkRxIz+fiiNzqoF2YkcFrQmTfD3D4GCCp3nB3O8gVGXpKOzaKj4rp6q9Q3YMi2MX5qNwaZj9KXpJEwKJMsG+/5ziS2wrch0MwkT7cHtmuMM6Czy/BBOFE3gmm+M1mNUzDR/5uOHp1/JP/7xDzQaDffddx/x8fFcd911FBcXhzpcaRiQCZHUb9atW8cVV1xBZmYmjzzyCOeeey4XzbkMzecx/OuS/6LV64I3NjqrlvxFqZjjAvOGYsdEMvLiNHnjMwjEjrEFb2xNsQYm3pCDKUYPQMrMWEZdmhF8btL0GOzZ1sB/KKC3alG1gdOMx+HF6/Qx4ZpsFI1C1bpGmovbA09VA/86h8uY443ET7AHtzvyojQy5iUAoDVrGHlxWjARU3WKPE4A5znTg/8Gii3TgjE6cCxEppuZens+OkugUSNlRgzZC5KCz41IMWOICNzQ+jwCZ4MbIQTrn9hD7dYmvI7vq40JwO8NHAwxoyJJGG8P/m3a7fkkTY0GwJJoJPvMpGDypKjyQBhwyv7fIIHEZOTFacHGi8x5CYy6KD341PgJdszx++eGis7ffeC1zcUOqjY0otGpTLgmG4/Th8cRmE+oalX0ByTC9mwrSdNjgtsdvTiD5BmBBhRTjD5wjooNnB8i0szEjrH13/uXui1jXgK55yQH/kNA7jkpRKYGri3CL1BVDa/f+gnW71I5f+pi5syZw7Jly8jOzubUU0/l7bffDmH00lAnh8xJfcrn8/Hmm2/y8MMP89VXX5GZmcltt93GW3euRKvojvpaVasg/IETY/SICKLyItj3TgUAIy5Mo25bM/U7WgbibQwrGoNK7KhIGva04mn3kTwjhoQJdjb8cx8Ak27MpWFPK8WfVKOzaEk/KY6yVXW4mjzoI3VoDSqOWtcx9xOVF8HIC9Nor3Gy/eXig26Aj8WSYMTn9uNsdGOw68hdmELB+xV01LtJPyWeuLF21j22Gwj0MDhqXcNq2E13kiDj26uPez9ReRFEpJoo+awGgGl3jKBmUyPFn9ZgsOlInBJN+Td1eDt8aM0ahF/07TpSCkTlWHHUunA1e7DnWMman8DGf+9D+GHUJen4vYJdr5cCgZvh9sqOYHIlHT+NQcUcZ6C1rAOAKT/Kp3ZrEyWf1WCK0ZN9ZjJ73ynH1eTBGKVHo1dpr+5+FTmdRcPoSzMwxxvZ+VpptxZxNccZ8Lr8uFs8GOw6UmfFUrKyFk+7l4x5CUTnWg86n1Vv7OyZ1hCdF0HdjpZhdb4YKOZ4AyPOT2XbS8W4W70kTIpC1SpUrmkAAr1Ex5o36lO8TLo9mxdeeIGamhqmTJnC4sWL+dGPfoRerx+ItyENEzIhkvpEc3MzTz31FI899hhFRUXMnTuX22+/nb9f8OJxF0lQNAp556VQs7GJpoI2NEY1cPGSR263KRoFU4weR00gcclZmIy72UPpl7UYInVMvT2frc8V0VzUTmS6GWuSiYrvAvN6FBXEcd4rJE6JIuesZBp2tbLrf6V9eoNqSTBijNJTv7MFRYUZPxtFycpaylfVobNoMNj0tFV09Nn+Bpve9gh1J0HSR2gZ8YM0Cj6opL3SSeLUaGJGRLDtxcAQFn2kDk+b57iOj1GXBnoQdrxS0vuN7BeVa0UIaNrXhjFKz9Tb8tn2YhGNe9swxxvQmjSypHsvWJNNuJrdeNp9pMyOJX1uHN/+fgfCH+jBcza4e5T0HIuqVRhxQRrRIyLY934lVWsbjmt7B57Dkk+Ioa2yg5YSB7ZMC2OvzGTNw7txt3hIOzEOvU0XbIgzxxvoqHfLYi89oYApxkBHnQuNQSXnrGRKPq/B2eg+rs0KIbj25Qv53e9+x6ZNm7Db7dx2223ccsstxMfH91Hw0nAmEyLpuBQWFvLXv/6VZ555BpfLxaWXXsqu5yuIVKL6bZ+jLtl/A7Xs+G+ghipFo5A4OYqmwnY66lwkTo0me0ES3/x2O8IvSJ0Th6fNQ/XGJiBwA9JfregZpyaQdmIcFd/VU/BBZb8nsga7Dr/HH+jtOiGGzPkJfPuHnfg9fvQRWtytQ6usd18NketMkLJOT0Rr0rBneTmKqpC/KIWyVXW0V/XPWjHjrs4CYMszhX27YQUs8UY6Gtz4PX6yFyRhz7aw/vG9QOBGvqXUIcu8H0Hnb0XVqcy4eySFH1VRuboBnUWDqlNxNXn6NwAlcCymzIil9Msaij+t6ZfdHHjuS5gUhc6ioeyrOhRVYeb/G03BikBCZoo1YM8KzHuUCdKRZcxLIHFyFGse3oXf0z+fk9vejm6ymy+//BKAhQsXct999zF58uR+2Z80PMiESOqVzZs38/vf/55ly5Zht9u56aabWPngBgyKqd/3HZlmRtEoNBe19/u+Bj2FYIKRMisWQ6SOghWVoMCMn46iYEUlNZub0Fm0GGw62io7Bq5nTYHcs5NJnBJN4YeVlH8z8JXkFDUw78lR4wIlMMSrel0jJSv75+ZqoPVFMmQx+hmT6WLTPgMuj0pa8W5UrUL1+qFX9U1v1eJu86LRq5zw05Hse7eC6o1NGCJ1qHqVjrpjD/0cDtJPjidhUuCmFhHoKXHUukLSK58yM4as05OoXFvPvvf6v0ElSAFrkglXswdPu5f4CXayzkjkuz/uBAHZZybhavZQvqou+Hw5agE0ehVz/PdDKvuT3+gm7eIoXn/9dRwOB/Pnz+fOO+/kjDPO6Pd9S0OPTIikbhNC8NVXX/G73/2O9957j4yMDO666y7+96NP0CghqA6nQPw4OzWbmwZ+3yGiNWlQtQruVi/WFBPjrsxkwz/24Wx0kzA5CkOkjpLP99/sh/ACragK+eenEjs6kj3LywfNd2TLsuBq9uBscBMzKpKYEZHseasc4Q/P02BvE6LkGC8aVVBaq0OjCkaluymo1OFwBYoTlJ4WGOaad9t3fRbrYKMxqAi/wO8RZJwaaNVe/ZedCH/gps7nHj5zShRVIe/cFOp3tVC/owVjtB6DTUdz4eBodEqYaCf3nBTqtjez+40Q/l4POKemnxKPq9lD9fpGjNF6Jt2Qw5bnimgr70AfocXvFXg7uj9PMqwpkLswmdIva/u/57ALQuPn3D+fxK9//Wvq6uoYN24cf/3rXznllFNQVVk7TOoeeaRIx+T3+3n77beZM2cOc+fOpaSkhOeff56c4iksv21laJIhAuPa885LCZbyHYp0Fg3R+RHB/x63JIu0uXEAdNS5KFlZi88duOhWr2/8PhmCkCVDqlZh1KXpxIyMYOerJYMmGQJoLmzH2bB/LLsSKODReXNlSTSGMLKe60kypCiChCgvqhJ4r2aDH7Mx8P99foWtRYbDkiGAPY+ewJ5HT+jDqA837Y4RTLtjRL/uoys+lz84pKdkZQ1bnitE+AMV06bdMYK4AyrbDVWdx7zwC4QQwSpuzgb3oEmGAKo3NrHz1VJiRkYy6tJ0VG2IqgkecE4t+awm2Ivqc/koWVkb7GFMmxvPuCVZwedG50cM6bLg+ggdkWlmDJFHL5zUXxSfytu3f8n4+rn88Y9/pL29nfnz55OXl8fjjz+OzzdMElPpuMgeIumIPB4PL7/8Mr///e/Zvn07s2fP5t577+WvC5857kIJfUVr1vSoWtlgp6gQO9ZOW0UHHXWuYMvot7/fgc/tx5piwtPqxdUy8K1w3aExqIxenIE1ycT2V4oH1U3V0VgSjUy6IZetzxfRVNAW6nC6pTsJkaoI/ELBqPcze4yTTfsM1LUc+cbswGSoK/3RY5R2UmBCdOkgGcaoahXixtlp2teGq8VD/EQ7phgDxZ9Uhzq0PmXPtjL2ikw2/HNvv80P62u2LAujL02nrcrJ9peKB21lOEOkDl2ElrbyDjR6lRk/G8Wet8up2diEOc6AJclE3dam4y5WI3VNCMHlzyzkz3/+M1u3biU3N5clS5Zw5513YjL1/7B+KTzJhEg6jNvt5j//+Q+/+c1vKC4uZuHChfzsZz/jl3MfCXVoR9QXldBCxZZpwZJopOLbwBybE+4aSckXNVSubkCjV1E0SlgMvdAaNYy9IhNjlJ5tLxUNyBjyvmTPtgaToYSJdpqLHcddGam/dCcZykl2Exvp47udRkDBoPPj8hx9UMCxEiIY2sPoupJ8QgymWAP73g1UHrPnWGnaFx5J86GMUXpsGeZgMZUDj/lwYU0xMeayDJwNbrY+XzRok6IDaU0ahE/gc/tJmh5N2tx4Vv9pJwDJM2Jor3KG7ZxYfYQWVad+3/M+yNy2/Eoee+wxPvroI2JiYrj55pu57777MBgMx36xNKzIhEgKcrvdPPvss/zmN7+htLSUiy66iJL/NmJVBveiduOvyaZpX9vBw8UGMa1RQ8rsWKrXN+JsdJMyK5aYERFs3l9lS9Up/Vadp79ojRrGXpmJwaZj63NFfVqCd6ApGoXJN+dRta7h+wnTg0xXCZGCICnGR2uHQqtDQ6TZh9kgqGrU0J2Va7uTDB2orxKjuHGB80vtluY+2V5/ikg1MeGaHDY9XUBrafiV706ZFUvilCjWP743rCulWRKNjL0iE2ejm60vFPXtWlcD4MBz/Pirs6jf1Ur5qjqMUXoSJkdR/nUdXufgbwQDSDspjuQTYvjuDztDHcpReWwO/ONa+eqrr4iOjua6667j/vvvx2IZukPupZ6RCZF0WCJ08cUXU7ysYdAnQp3iJ9hxNXsGdQtb7BgbOouGytUNqDqFybfkse+dChr3hlfrbFc6e4YMdh1b/lMYXOsonB24SHDCRDvOZs+gGf53aDKkIBD7Z3vPGOWkskFLcXXPx/L3NCHqdLyJ0fSfBOYPrf7zruPazkCxJBqDQ8xyz0mmpcRBzaam0AZ1FLYsCwabjpqNTSiqgqIyJBaqtSQYGXtlJq4mD1ufLwqbBOJoonKt5JydzPq/78HvFSSfEIO7zUvdtsHbWKDRqxhj9LRXhkcjWLvSgm6Oky+//BK73c7Pf/5zrrvuOpkYSTIhGs7cbjfPPPMMv/3tbyktLeWSSy6h6JUGrEpkqEMLe/oILamz4yhZWYO3w0fGqQkYbDp2v1EW6tD61FBMhg41enEGHfUuCj+sCnUowMEJkc3iY3y2i9U7jbg8anDOUE/1NhnqdDxJkTEqsNr8YB2eeDQ5ZyfTUtJO7ZZmtEYNwi8GXXW6rDMSMUXr2f7y0Fu3zRxvYNyVWbhaPGx9bmgkRQfKPz8VV7Ob4k9r0Jo0pJ8UT9nXtUNuLbVQ8No6iDhR5d1338Vms3Httdfy85//HKvVGurQpBCRCdEw5PF4eOaZZ3jwwQcpKysL+0TIFGtAa1RDPmclZlQkikahbmszOquWCddks/PVUtoqwmsuTXdpjCrjrsjCYA//YXLHoqgKwi+Izo/A0+6ltTw036nznOloVIHV5Ke5XYNGFWQleSiu1uHx9i6pOd5k6EDDbX7RgbIXJBGVa2Xd3/aEOhQiUkxozVoa97QGj92h6sCkaMtzhWE3fK67rCkmRl6YxqYnC/C0e4kda0P4BPU7WkIaV/KMGJyNbhp2tYY0jt7y2Zxopjr55JNPSExM5Morr+SBBx6QxReGIVl2exjx+/288sorjB49mhtvvJHZs2dzgjiNumXesE2GAJKmR5N7dvKA71dv1ZI6JxZFE7ihjM6PICon0LrkafOy9pHdQzcZ0quMvTxzWCRDQPCGMnFqNEnTY0IaS3aSh/FZbhQEPr/C3nJ9r5OhvtabEt0jLkxlxIWp/RDNwCr7upZ971cCgSGXCZOjUEJ0hU2aHkPStGiAIZ0MAThqXGz5TyEGm44xP8xE1Q3N25q28g7WPrIbT3ugdygqx0p0XmBJBkWjkDonFr114JfAsGVYsCSE15IFB9I0G+ETO7MNC5g6dSp/+MMfyMjI4K9//St+/9BMrqWuyR6iYUAIwQcffMC9997Lxo0bWbhwIbXvOIlQ7KEOrU+oOhWdSTMgpagtiUZUrUJrWQfmOAPjr8lmyzOFgYRgmKxUrmoVRv8wUFp7y38Kw6Zkb19Q1MDNh98jsCQYcTa5B6TKVXR+BK5p+dS3aNBpBaoijlkx7lj6smfoQBHpLSQu2tHt50+4NhuATU8WdPs1tTfNJO6Jb3oc20CJzo9gxIVprH98z4AtVKkxqBjtetqrnag6BeETYVt5szesSUbGXpVFW3kH214qDuuiEd22/5pjSTQybkkWm58qwFHrIiLVhN8rhtW5ua94Ihw4RtSyZs0a0tPTuf/++7nmmmvkAq/DgEyIhrhvvvmGe++9l5UrVzJnzhweeuihQV0+e9BRAsNPOofjjbksA79XsGNZYDy+olGGx4V3P0WFkRenY8+2su35IlrCsNJWX5l0Uy5tFR3sWV5+xOcU/3JWr7ef8cCq4P8fdUk6ztgodpT0XanY/kyIgB4lRT1Re9NMgEGdEAHozBo8Dh8okHt2MhXf1eOo7b85dnnnpWBNMrHhH3v7bR+DXWS6mTGXZ9JU0MbO/5YMq4TwwGvRqEvTUVSF7S8VA4HqiK3lHcOiwa6v3PvxTdxyyy3s3LmTUaNG8fjjj3PyySeHOiypH8mEaIjatm0b9913H8uXL2f8+PE89NBD/OXspwfNgqp9KefsJOq2t/RdFTAlsG6E1+HDlmlh3FVZbPjXXtornegsWjwO77C9sOSfn0rsGBs7XikeEhXyjocxWg/R8XidosvewX3XZfR62xohmCScFCs6ahUtGiGIW+PhwPLZQu39b7m/k6FOfZ0UdSZDnQZ7UgSBRTpHX5bBnuXl/TOEdv+xpzNr0Bg1g3Y9mIFiz7EyenE6ddtahlwRm25TQGfW4mn3YkkyMun6XLb8p5DmovbAYuYdvj67hiXPiCFurK1HPbzhQgjBZU+fzZ///Ge2bdsWHFJ3yimnhDo0qR/IPsAhprKykmuuuYZx48axZcsWXnzxReI25/HXhc8MyWRIUcEUbUBr0PTZNsdenknOgiQAWkra2fTUvmBJUU/78E2Gss9KIm6cjd3/Kx12yZA2NeWwf15zHF6nQKODcedFEJ3Z81LXR+IDIvFj2X+wxa3xcuhaQopfHPQv1A5NhgCq3hx1zNdNvS2fqbflH/N5hyZDR3pssHG1eNjwxN5gMpS/KIXo/Ig+2XbM6EgmXp+DRq/icfiGfTIE0LSvjV2vlxE31kb2WUmhDic0BMG5Ru2VTjY9XUBzcaDBMOfMJMZentlnu2qr6KAuxIUd+ouiKLx0zXskbhvJH//4R8rKypg3bx6XXnop27dvD3V4Uh+TCdEQ0dHRwYMPPkheXh7Lly/n0UcfJbNgIs9c/saQTIQ6CT9sfb6I+p29PyFbEo1M/XE++sjADW3pl7WU7V+QU/gJefW6wSDtxDiSp8Ww950K6rYPzYvfgQ5Nfo7G74XmCi+Oxu9L/vamd8gk/JzqbydS+EBR+FQxU6R0P8nqbnLUX71DR3KspKhuezN124++zko4JD7doWoVFK1KXw3McFQ7aS5sx+8dRmPDuqF+Rwt736kgeVoMKbNjQx1OyLWWOoINeWVf11H6ZS0Q6L2c+uN8LIm9L4rQUuKg/OvBuYB1X1EUhQ/u/o4xNbP4/e9/z4oVK5g4cSJLliyhsbEx1OFJfUQOmQtzfr+fl19+mXvvvZeqqipuu+021v55DzpFH+rQBoTGoPZqUnvStGhUrUL5N/Vo9CoZ8xMo/7oOV/PATIAOJ/Hj7eSfn0rxZ9WUflEb6nD6xbGSnu5SVIjJ1vPdyYnQw4YIVQhOFB1sVfTUKwdXi0pc3fvj8tChdf2REHXVO3So3g6f604yFA5D57qSuzCZ9honlasbevS6+Al2arc0D/kKcscr/eR40k+KZ9f/SqndMngXNw0Vg01HyuxYij+uxuf2kzIzBr9XULmmZ8ejOd6AoirDpoiD0PlIvsTKSy+9RFxcHDfddBP33XcfGk3fjVSRBp7sIQpjq1atYubMmVx++eVMmzaNaZ55bPpL8bBJhgBGnJ/KyIvSjvk8jUEl+YSYYElWnVWLbn+JUp/bT8F7lTIZ6oIt00LuuSlUbWgcsslQX7Kl6MiebSaS7iXpFuHnFH87JuHHryisVM19mgxB93uOeqs7yRAcuacoekQE0SO6HkLW3Z6hcO1B8jp9PV43xxRrIHdhMvYcuYDksZR8XkP1hkbyzkvBlmkJdTiDjqvZQ8F7lcHFhHVWXfC6qOoC10yN4di3idkLkkifG9+vsQ4mikdD5QsdzFTPYPz48TzwwAPk5eXxxhtvhDo06TjIhCgMFRUVcckllzB79my8Xi9TOImWN1TMyvC7QJZ/U3/E1ixFo2CMCiSHWqOGzPkJRKQEFlsr+ayGoo+qByzOcGSOMzDqknSaC9vY986RK6lJ32sq9bDxtWZalP0thcfogPegoAKGAZqYZnx7dUgXT+0qKcpdmEzuwsPXEQvXJKcnij6upmZzEwDpp8STfMKx17jqqHOx7rE9NO4Jz4UwB9red8ppLmxn1CXpmOP7rkrjUFT0URUln9UAgeqqmfMT0BoD5zJjlB7lCIVc9rxZzs7XSwcszsHC6DXj/yiSN998E4ALLriAWbNmsWHDhtAGJvWKHDIXRpxOJ3/4wx946KGHiI6Oxl6RTBIZQ3qO0PHIOy8FS6KRjf/cBwQWE+1sCZOOTm/VMv7abLwdPrY8UzjkP7e+GjIH388fGud3ogPWK4aDhs+ZhZ9JwskaxYS7G7/d4+0hOpDh3TWHPdabxVQ7dbd36FAHDp/rXNTxwMV9e5sMhevQOYDM+Ql42r2Uf1Pf5d+zTk/E5/JTsrJmgCMLfxq9yrglWejMWjY9uQ93mzfUIYWFA6+Zk27Ioa3KedRlBoYzIQSNkZUUqNtpa2tjyZIlPPLII5jN5lCHJnWT7CEKE++99x5jx47lwQcfJMGZQX7FdJKVzGGdDMWMjCBm5PdDbXQWDZNuyg0OjShfVcfu/31fdnWo39T3FVWrMHpxBgqBdSyG+ufWl8nQgVyKilNRupxLFIkfczeG1fV3MgSQd9t3A95rdGBPUXu1s0+SoXBX9HF1MBlKnBJFzOjIg/7ubvcGSv5LPeZz+4Nr8oy6NB1VO3yvmz1x4Ll/1//KKN9fbMiWZWHSTbnoLN/Pmck+M6lbPZxDlaIoRLcmM7n1FMakTuC5554jMzOTf/zjH/j9Q/saOlTIhGiQKyoqYtGiRZx99tk07mtlqucU8pRxaA+ZZzAcRY+IJHFaNKlzAlWEPO0+mgvbAmssAI5aV78uhDhU5Z2XginWwPaXi3G3yhuw3tqt6NmuBIboRPh9jPM7UYXAoai8r1hoUgbXBNyeJka97R3q1JkU5S1KIW9RICk93mRoqCRTkWkWIlMDLcuG/dUvy7+u6/Fkd+l77jYv25cVY443kntO/zSCDGUHXk+9Dh9NBW142gPX2tQ5cWiMKj6PvPFX/RriirOYrszDpLVw0003ccIJJ7B37/BdMDlcyIRokHI6nTz44IOMGjWKdevWMY4ZTOJELErksV88xOkjdegsGvYsL6dhRwsxo2zBsc0FK6oOam2WeiZ1TixxY+3sfrNMfo59JEr4WEg7I3ETzf7S3IO4Z3cge4uq3hyFJdGIJdE4ZJKZvrD7zTIKP6rClmVhym35xIyS5/2+0F7pZM/yMuLH20mV5bh7rb3aSeEHVQAoqkLMqEhaSxxUr29EZ9EEl7AYzoxuC3mVU5iVcioVFRWMHj2apUuX0tIy9JetCFdyDtEg9MEHH3DrrbdSVFREijeHLEbJHqH9FBWm/2QkVesbKf6kOrhKu3T8ovIiGL04ndIvain5fPjMU+iP+UOdEoSXGqGSqXgpE1o8avfboAZiuNyxHGl+0fH2Dh2ocz5RXyZE4TyX6CAKTL45j9Yyh5y70YfST4kn7cQ4drxSQsNuWZyiTyigM2tJPzmO2NE2Vv95J0J2GAHgw0tDeinbyjdht9t56qmnOPfcc0MdlnQI2UM0iNTW1nL55ZezYMEC6vc2M817qhweB9izLUy6MRdVqyD8sP2VEqzJJnLOSpLJUB8xxRoY8YNUGna2DqtkqD9FCB+nCgdpio9CRY9HVbELH1HCd+wXDxID0VtU9eYo2Tt0CEuiEXOcAQRs/Ode9r1XCYAxWo8ir9rHreSzGup3tpB/QWrgc5aOn4ARP0jFYNez/ZUShD8wH3XSjbnYs4d3yXMNWuJKsphjWYDGoee8887jxBNPpKCgINShSQeQp9ZBQAjBCy+8wKhRo3j//fcZzTQmM3dYD4+zZVmwZQVOos5GDy0l7cE1hFpLHVStbaB+p2zZ6wsag8roS9NxNXvY/WbZsV8gHZVOCBCCVkXDB4qFEr5v0JgsnEwQ4TWv7dCkqC97hwDO2KZyWnRbn24z3BOsjFMTyDojCQC/V+D3+FE0CmOvyCRjXmKIoxsadr9RjqvJw8iL09Ho5a1QX9j3XiW7/1dGa6kDCKxl1FLSjrMx0Nttz/7+uj4caVuMjHXMZGbayWzatImxY8fyr3/9SxZdGCTkkLkQKyws5KabbuKDDz4ggTRGMAG9Ygx1WCGh6lT8+ydljr40HZ/bz67/yRv0/jby4jTsWVY2/msfzkZ3qMMZUH1dYa702jTOEu1sVgwUdLFAslH48aLgHcBy270dLteVPY+e0OcJ0cRSBaXEwOa2vj3vhfOwOY1eRdUpwUnrnSLTzHQ0uPG0y2InfcEYrWfi9Tk07W1j52vDbx2dgTbiglRUvcqOV0qAg6/5w43f6GWfbgvFLfsYM2YM//nPf5gyZUqowxrWZLNIiPh8Pv76178yduxYtm/fzkRmM045YdgmQ6YYPdN/MoLItEBlpV1vlB0xGUqZFRtcu0Q6PskzYogdZWP3m2XDLhnqD25FZaeip5Kuh7k6FRWvomAUfsYI1zEXbh1s+mMI3cY00efJEEDBH8Kvlyh1Tiw6qxaf239YMgTQUurA0+5FY1CZcE029uzhtxh3X3I2uNnzZjmxY2wkzxi+JaP7UvxEO3nndd3QtOt/Zex+I3Bdj0w3M/0nIzBGH95wNByoTi15rZOYkzSf2tpaZsyYwa9+9StcrvAaQTCUyIQoBLZt28bMmTP5yU9+QowjmZzSycQqSaEOa8DZMi2kzokDoKPeTenKGjoaAjflPlfXrUaqTiFpajRmmRAdt4hUE5nzEylbVUvDLjn88HgkjjVgTwskQTsVAx3HmOgRj4984cZ4hElwfVlQoa8lLtpx0MKqxyu+BeJ0fdfj0ZoV+Jd9d3j1EOmsWpKmxWBLP/ZCjsIvcNS6cDXLRozjVb+zhbJVdWTOTyQiTS6iebz8Hv9Re306r+2d13zn/mt+6py44BqCw4mxys7YhtlkR4zgl7/8JXl5eXz++eehDmtYkkPmBpDP5+Mvf/kL999/Pzk5OVh3JGJThlerlKpTUdTASTFpejSxo21s+U9hz4sjyOpyx0Vr1jDphlycjW62Plc4bKsB9dWQufTL4/CsKqf0i9puv+bA4SLFv5x10N8G43C5IzlwkdXeWLhFBZfC+/URx37yUbRmHfzf4ZYQQe+GECkqJE2LoWJ1vTwn9pKiwtgrszBG6dn4z714HOFT+GRIUGDcVVnUbWumck0DGoOK8DPshtN5YtoosuygrKyMn/3sZzzwwAPo9cOzBy0UZEI0QPbu3cuSJUtYtWoV6SKPbMagGWQLM/Y7Babelk/tliaKP+1dJTONQT1i75HUfWMuy8CSZGLjP/cO68VXu5sQVZ6TfthjGgRGjaDdpwKCuCe+7fH+NQaVrNMSKfm8Bnfb4d+D6+xpPd7mgQYiIerU28QophU0q63Ue3tXTfPQRKhTuCREequW9JPjKfyoqlfntsg0M2Muz2Dzs4W0V8q1w3pLb9Uy8YYc2qucbHuxONThhDVVqxCRZqa5sL1Xr884NYG4cTbWPrp72CX5QvVTGb2PnfVbyMjI4JVXXmH69OmhDmtYkEPm+pnf7+fxxx9nwoQJVFZWMlnMJU8ZP2ySIYNdR/ZZSSgaBQQUrKikal1jr7Zljjdwwk9HYk029XGUw0vKrFjsOVZ2vV46rJOhI6k8J/2wf10Za3Uxy+ZAQRDosuw5VaMQmW7GFNN16V/Du2sO+jeY9XYoXX0EvUqGOofGhTtTjIGINDOqpnfHUEupgzUP7w4mQ6pu8C76O5i527zsfqOcqNwIOZ/oOMWMjGTclVnoI3rXyFG1roGC9ytBgKJRyD4rCYN9eCz2qvhVkuvymBNzOk6nk9mzZ/PrX/8an0/2WvY32UPUj0pLS1m6dCkff/wxqWSTy/hhs6aQzqLB0+7DFKNnzGWZbH+5GEft8U0W1Bo1xI23UbW2EeGXh21vWBKNTLg2m4pv6yn6uDrU4YScNjXliAnPsRgUP2aNoNEbaNzodVWz4xj+eawepFAmUd3tMZpUrKCWG9jY2r15gd1NgsKlhwjosyHAKbNiiR9vZ+O/9yF88hzZG5mnJZJ8QjSbniygvUr2uPWGqlXQR+qC84OOhznOwOjFGWx9oQhngzt4bzEcCI2Psug97KrZyogRI1i2bBkTJkwIdVhDlkyI+slLL73ETTfdREREBPHlWcQow2ftiNyFyViSTGz6975QhyIdQNUpTLw+F7/bz6anCoZlUuk99eCypo0jejY+26LxM9bqYl2LEa84uCX+eMo8KypknZ5E495WGvf2fE2erhKjwdKjdKzE6PTtKrSrfNJw9IppPe0NGuwJUVSulajcCAo/rOyzOXymWAP2LAuVaxr6ZoPDkKJRmHBNNqpOZeO/9uL3DL/z5GA28boc2io72PtORahDGTDOuGZ2+jfQ0tLC73//e3784x+jdGPpBqln5JC5Ptba2spVV13FZZddhrnFRm75lCGfDCkqJE6JCpbCrlrXQOEHlX26D0uSkbS5cahaeRLorazTkzDYdOz6X+mwSoa8p04J/jteGgR6RaBV+vbzE37QR2jRW3vXgzyYh9Udaxjdh6P9fZ4MhQO9VYs+QtunBU066lzBZCh6RASm2K6HYkpHJnyCXa+XYojUkX3G8Kv+2lcMNh3jl2Zjju/bY7Dgg0oq1wWOcUuikcQpURyjqGfYM9bamNB6IhnR2dxxxx3MnTuXmprezcOWjmx4jN8aIGvXrmXx4sVUVVUxhmkkKRmhDqlfKWrgRk4ISJ4RS9W6BtqrnbT1w8ReS7yR2DG2HlXxkr4XPSKCpKnR7Hm7nI76oV+qty+SnwOZVT8dfoUWn4Yvm0z0ds7Q0ex8tW8WhhzMSVFPCy8MxUSoU/XGJqo3NvXPxhVIPymelhIHBSv6tnFqOOiod1OwopK8c1No3NtK/U65LEFPuVu9uJrcfd6T0VLiCP5/W6aFxMlRVK0PzEvuvCcZihS3hozqscQkJbBu3WpGjx7N888/z5lnnhnq0IYMOWSuD/j9fv785z9z3333YfJYGcsJmJWhvWBeZJqZkRelsfHf+3C3elG1Cn6vPJQGI51Fw+Sb82gpdrDjvyWhDqff9CYJ6s6QOQ2C02LaKXbq2NF+5NbO4xkyd6DU2bF4XX6q1g7dYU8HJkan7VBRWjV80vj9GiR9kQgN1iFzSdOi0ehVyr6u69f9aI0avC4fwZof8vTcY6MuTici3cz6x/fglaW4B6XOew99hJaJ1+Ww89VSWkodx35hGPNZXWzXraGuuZalS5fy97//HZ1ueBSd6E9DvKOx/1VVVbFgwQLuvvtukj1ZTOWUIZsM6SxabFmBm5b2aic1W5qCE3f7MxnSmTUoqhwq11s5ZyWDgD3vlIc6lD53PMPhujt/yIfC+lYj+xwDsx6EzqJFZx7aVSgPHEbXYBY0er+/FA3lXiEArUmDztL/gzO8zkAyZI4zMPnmPMxxcvhcT+19txxFgZwzk0MdStiKSDNjjO6/c2fnvYfwCWq2NNFeHRihYsuyDMjvLBQ0bQbGNMxiZOw4nnzySSZOnMiuXbtCHVbYkz1Ex+Hjjz/mhz/8IaqqklydN+TnCuWclYQ928q6v+0Z0P2OuDANnVnD1ueKBnS/Q0Hs6EhGXpTOjldLqN/eEupw+kRfDYc7VkIUofERq/dR2HHsi3lf9Q4NR1VvjkLzgb3PE6HB2kM00LRGDZmnJ1L4YSU+5xAdT9SPYsfYGHlh2pA6hw6kqbfnU7e1ecCrmk65NY/GgjYK3hvaQ0Y7YprZ5l2Dqqr86U9/4uqrrw51SGFLJkS94Pf7eeihh/i///s/okQcY5mOXuleydiwokDm/ERayxzU72hBa9YgfGLAF0Y1xxvQmjS0FA/tbvC+pjVrmHJzHs1F7ex8rW/mp4RSX88LOlZClGd2kWb08nmDGf8x5gz1R0IUP96OIUpH6cqhPW8uIsVE+S1jqdP2bWvuYEuI0k6Kw9XooWZzU8hi0Jo0aPQqrmZPyGIIRyMvSsOWYWH943vwyKFzPWKw6UJyvGkMKopGwevwETMqkohUUyApG4J3vG7hoiB6E+WNpSxZsoR//vOfcghdL8ghcz3U2NjIueeey/3330+mGMkkThxyyZDGsP+wEIHKV53Dd7wO34AnQwCOGpdMhnoh58xkUGDfe8OnPGnfCFwx9zgMrOxGMtRfdFYthsihf1EbdWk6p7g6Qh1GvzNE6tD1sopgX8k7N4URP0gLaQzhaN+7gXNoztly6FxPhSr59rn8wXlfOrMGfYQumAwF73GGCL1iYETDNMYnTebZZ5/l9NNPp7i4ONRhhZ2hdVT0s/Xr1zN58mRWrVrFRGaTo4wZcrXgzXEGpt85kog0MwC7/1dG1brGkMWTdXoi9pyhOSerP8WMiiRurI1971XIFs0e0CuCk6McxOu9QGD+UKiUr6pj79tDP5nd81Y5qwxDq1GpK3vfrqB8Vf8WUjiWghWV7FleFtIYwpHH4WPvexXEjrYRMzIi1OGEnazTE8k9NyVk+69a18ju/wWO+8g0M9PvHDnk5tQpikJcZRZT9HNZv349kyZN4u233w51WGFFJkTd9NRTTzFr1izqi5oZ3TiDWGXorE+g0atE5wdO8o5aF8WfVdNR6wpxVIESmuY4w5CdGNlfNAaV7DOTqN/RQt02Oea9J7wCmrwaHL7Bc2qMyosgZWZMqMPoN4172ijXDt2esJSZMUTlDY6baFezh456N4qqkH5yPKpu8Bzng1399hbqd7WQfWYyGr383HqivdpJW/ngGOXhqHVR/Gk1jv33ONH5EUPq+7S745jiPwmdMHD++efzl7/8Bb9fzh3sjqFzFPQTl8vFddddx7XXXkusK4WpnIxJsRz7hWEkfqKd/AtSg93IFd/WByoUhZjww7YXi6kN4Zj7cJRxSgIavcq+94d+70JfURAYVT9+FDa2GmkbRAmRNdFIZPrQOuccKOv0RKa6+m7tMp/Fj88yeG4AItMtWBIHVw+YMUpH4tRorMmDK67BruC9SrRGlYxT40MdSlip2dQU0pEmB/I6fVR8Vw8EGg/zL0glfqI9tEH1MU27gXEts8g05/GTn/yE+fPn09bWFuqwBj1ZVOEoampquOCCC1izZg257vEkK5mhDqnPxI2zoTVqqFzTgKJR0Jk1uFu9oQ7rIOZ4A46a0PdUhRNrkpEJ1+ZQ+FEVFd/WhzqcPtWfRRVGWlxkGj18VG/p1TC5fq0yN8TXkJnyozy8MUbeMB/f0NhDk6C8W747ru31qUH4Hao6Fb9n8CSO4SJlZgyZpyWy6d/7+mUR8qHKYNMRkWoadKMW9BFaPA4fwidImhaN1+mjdktzqMPqM460OtZUfk1qaiorV64kLU3OITySwdMMOshs3LiRadOmsXfvXsa7Zw+pZAjAkmgKtloKnxh0yZAl0cjkm/KwZQ7dlvE+p0DOwhTaa5zBFjCpewocOja1GkI6Z+iI9t9IR6SaSJgcFdpY+sG6x/YcVzI02HqEOiVMjiIi1RT4j0GWDAHBZCj95HhSZsWGOJrwUf5tPe3VTnIXpjAYTxeDVfSICHLOTkbVDq4Pzd3qDa6naEkyDbre3ONlLo1lVtRptLa2MmXKFN57771QhzRoyYSoC6+//jqzZ8+msaSFvOop2JXwH7+vaBTGX5NNwqTADVXRR1WDesJ2e7WTrS8U0VLSHupQwkbS1GisSUb2vlMxKG/ABqM4nRedInALlUr34J7HEpUXQfx4u7wJ22+wJkIAKBA/wT5o5g4dlYI8pnpCBApkWJKMJE8P/3uDgVK9oZE1f93Vr4u4H6+9b5VT9FFgvaSESVGMX5qNogn/H4eu1syouhPQCC2LFi3ioYceCnVIg5KcrX4AIQS//vWveeCBB0ggldFMRaOE90ekj9ThbvEgfILGva101IXJEDQBTfvkmNfu0lm0ZMxLoGptA23lQ7+EcV+I2eNiygwPxU4dO9qPXXEo1Iuvlq6soUQw5JLdidfnMMrRzrvm7vUGD9ok6EACtjxbSDgUIS35rCb4/xWNEmwtl46sraKDyrUNpJ8cT+3WJjztoZ9zO9j5PfuPq0E4fLQrHXUuGve2Bn8PnfdS4cqgmBjdOJOShG38v//3/6ipqeFPf/oTGo0m1KENGuF9t9+HnE4nS5YsYdmyZWQzmixGhX1JbXOcgYk35LL95WKa9rWFzQKPtkwLCZOi2PtOhRzj3k2Z8xIQPkHRpwO7Gng48/sVvmg04/Qf/DsPdeJzJGL/T8EUo8dg09NUMDQaDBx1LtpTu9eTEg7JkD3HiqvJTUe9m3CaoRs9IoLsM5LY9NQ+eYPfDSWf1RA31kbGqQmDerTFYGJNMTH60nQ2/rtg0CcXLaUOWkoDlfHsOVZGL85gwz/2hk+jchdUv0pGxVhUnYFHHnmE1atX8/777xMZGRnq0AYFmRABDQ0NnHfeeaxdu5ZxzCBBSQ11SL2mqAq2LAtN+9pw1LrY81Y5LcXhNexMo1fR6OWE3+6yJBmJn2hn33uV+JzyMzsWRRGkpvgoK9dg+ft3hNsstbQT4zFG6YZMQrT7f2UUzDj6RN9wSIQ6pZ8Uj7PBze43w2u9n9byDmq3NePtCJ/POpS8HT5KPqsh+8wkKtc00F4lCywcS0eti5pNTeAPo5YCoKW4nT1vlQeTIXuOlebCdkSYvQ8IrFeU7s0nLjGONWu/ZPr06Xz55ZfExcWFOrSQG/ZziIqKipg9ezY7duzg008/DetkCALV40YvzkAfEch1azc3Deoxu11p2N3KjmUloQ4jbGSfkYSjxkXVuoZQhxIWIiMEGWk+zObw+l102reigi3PFYU6jD5jitVj8w+dHomtzxWyb0X49Rh42rwUf1KN8Au59ls3Va5twFHrInvB0FmXsD/53H6KPq7G3Ta4ijgdi98rgst/6CO0jF6cQdxYW2iDOk6mqijeeOMN6uvrGTduHKtXrw51SCE3rBOi9evXM3PmTNxuN6tWreLns/8S6pB6xZJgJGF/Hf2azU1s+MfeQVc1rruMUfpgMicdW+zoSGwZFgo+qAyLcdmh5DOq+IwqDW4tX2820uILz+PM5/QjfAK9VYspNvxXWx93VRand3S9aOOgLpxwCFOsAZ1Vi98rwrqnVh+hZcqtecSNC+8bvgEhoGBFJbYMC7Fj5LCj7lA0CvET7Rij9Md+8iDkbvWy4R97qdnSBASKL1gSwrMy3V8XPsNHH32EoijMmzePt956K9QhhdSwTYhWrFjB3LlzSUtL45tvvuGWkfeFOqReixkVSdL0mOBkxXAe45p+UjxjLssMdRhhQdUqZJ6WSP3OFpoLw2tY5EDpTIJ8RpUIs5+MJA8g8PrCe34gQP75qUOiZbrg/UpW6w+/oQiXRKhT9oIkRpwf3iMMIHDDV/hhFQ27WkMdSlhoLmynfmcLmaclDrqS0oNV1umJYb2kRkedK9AAqUDStGhiRoVvMvzTyb9h7dq1pKSkcMkll/Dvf/871CGFzLBcmPXZZ5/l2muv5ayzzqLtbU1YVpJLmGhHADUbmwJlIYUITroOZxqDisGmkwuydkPqnFjST45n/eN7cTa4Qx1Ov+vuwqw+Y9ftPKnxXhJjvKzbaUCIwI2L4b01fRbfQDNG6/E4vGHdG9Gp4A8zg/+/rxKhgV6YVWvUoDVpcDYOnd+i1qxB+AQ+V/gfY/3JGKVn8i15FH9aTfmqulCHM+hp9Co+99A4phRVASWwnmP8RDsKUL2xKdRh9ZhP+BAnN7Jy5Ur+7//+j1/+8pehDmnADbseokceeYSrr76apUuX0v62LiyTIQBrihlrYmDRP+EbGskQgM/ll8lQN2iNGlJnx1G1tmFYJEMA2k/XHfFvB/YEHUlZjfagZCjcORvc+Jx+NHoVrTF8S6emnxrPJFdgQnq49QpB4Leo0at4nb4hlQwBjLsyi6zTE0MdxqDnbHRTtb6BtDlxaI5yDpICOpOhobDGj/CLYGlua6IJa4opxBH1jkbRoFkZw/nnn8+vfvUrfvWrX4U6pAE3bH65nWsM3X777dx9990U/LsBVQmft6+okHduSrBrdt+7FRSsqAxxVH0re0ESSdOjQx1GWEidE4uiQukX4VFKvb8cKwkCSInzkhQbmFM3VJKhA41fmk3G/IRQh9Fr8ePtZPu8YZkMAWTOT2D80uxQh9EvCt6vpOTzmmM/UaJ0ZS2KRiF1tqzW1R1jLs8kM4zPW10pWFHJvncD92UxoyPJOzeFMLrNREGh+X8Kd9xxBw888ACXXXYZfn94npd7I4y+qt4TQnD33Xfz85//nN/85jes+8O+sFtjqLMHSB0CLSpH4vf6w64iXijoI7QkTY+h/Jt6PI6hU52ru7rTG3Qgq8mP1TR0T+qFH1ZRFsaJ8dqHd/PfOHOow+i10i9qKfxwaDVOdWoubsfd6kXVKWE7CX6geNq9lH9bR/IJMeit4TnyZCDVbGoc0vPUVDVwrxZuo3cURWHLw6XceuutvPTSS5x77rn4fMPjPmPIJ0Q+n48bb7yRP/3pTzz66KN8dv+GsEmGtGYN45dmE5kRuFnY81Y5tVubQxxV/yn6uJrq9Y2hDmPQS5sbj9/jp/yb4TVW3blwereToAPtKtGzp1TXDxENDk0FbbhaPGHVEjlUKCq4Wjw0FQztoia5C1MYedHR14qSoHxVHX6Pn7ST40MdyqBXu6WZ5qKh+7up3drMnrfKAbBlWBi/NButKXyGNu/8exX3338/7733Hpdccglu99AaDtyVIX0J9Xq9XHHFFTz55JM888wzvPXjL0IdUvfsz9e8Dh8dda5h0WsSmW5G1YVHohpKxig9CZOiKPuqdthMdHYunI5z4fQevy4r2UOMrbNla2gfWxq9yqQbc8NybYzxS7M5u6Ej1GH0WNw4G5NuzEWjH9KXUQBKVtaw63/htdBsKPhcfkq/rCVxUhTGaNmjdiyR6WYSJkeFOox+5/P66ahz4e3Yfz0Kk8vRt7/Zyb///W/eeOMN5s2bh9M5tBcfHrJncq/Xy+WXX86rr77KsmXLeHHpu6EOqVtMMXqm3JKHOS6wvsiet8ppKw+/m4WeULUKYy7PJGmqnD90LOknx+Np91K5ZmgvwtqZBPUmEQJQEESY/ZiNR29McJ01rVfbH2x8bj+1W5tprwm/C5a7zUOHGiZ3CAdor3ZSu7V5yFTLOhpngztQalhBDp07hso1DbjbvKSdKOcSHYs9y0ripKGfELWVdwR7i8zxBqbckocpJjx+R69ct4LHH3+cb775hjPPPBOPxxPqkPrNkEyIfD4fV111Fa+99hqvvPIK/7x4WahDOiZl/w2Bs8lDc1E7Ps/Qv8h28nsF6x/fE5alKgeSMVpP3FgbZV/VDtlew+NJgg4kUNi8V09pdfgMUThepV/UhmWFxp3/LeVTe98sbCjM3uC//uaocQ27oiZZpyUy9srM4PVKOpzwCcq+riV+fPguPjpQSr+sZdNTBaEOY0D53H6ai9pxNgUSi3D4Lb1208c8+eSTfP3118ydO3fI9hQNuYTI5/OxZMkSli1bxssvv8w/Lnol1CEdU2SamSm35aGP1CF8gr3vVOBqGrpZeFdcTZ7vu5OlLqXNicPd7qVqCM6z6qtECCAnxUOkxU9gXMLgv9j0JUOkjjGXZ2Kwh8+cKb1Vi9l7fA1AA5UEARjs+z/jyPD5jPtKxbf17Hq9FOEfmg0yfaV6fSOedi+pspfoqDqPo+E0XN7V5GHvOxUIn0AfqWPqbflEpg3+ojIvLn2XRx55hDVr1nDqqaficoVf49uxDKmEyO/3c8011/DSSy/x4osv8q9L/hvqkI5u/zmgvcZJ/Y4W/MNg6MWhFFVh7BWZRKYP/hNCKBnsOuIn2ClfVRdc82Ao6GkiJI7RmqaqgqhIH2bj8PstAXj2NyqE0+TdiTfkcE5j74YFD2Qi1Knzs/V0DOx+BwNXi4fWssB3pZOV1I7I7xWUraojfrw9rBonQiFhop1pd4wIi56SvuZ3+6nbccBQ50H+Efzvlk955JFHWL16NT/84Q+HXKGFIZMQ+f1+rrvuOp5//nmef/55nlz8WqhDOip7jpXJN+ehNWrwufwUflCF1zn8eki0JhVvh29YvveeSJ0Th6fDR9XaoTF3qC97hA7k9yus3WGgqj58EoK+5Pf42fZCEe2V4TOkoeiTatZZeza0KBSJUKf2SifbXijC7xk6DRM9lX5yPBOuyR4SC2v2l6q1DXg7fKTOkb1ER9Nc7KDoo+pBnwz0B6/TR+EHVfhcfrRGDZNvzsOeYw11WEf15o8+58UXX+TNN99kwYIFeL1Dp2FoSCREQgjuuOMOnnnmGZ599lmeufyNUId0TI5qJ00FbcN+6IGn3cfO10rDcu7DQNFH6kiYaKf8m7ohMXeoPxIhgNR47/6eoeE3VO5QBpuOtJPC40asZmMTe03db0UPVSIEkH5SPAabbPGv3tjIvvcqh1RvdV/zewXl39SRMNGOfhgOr+wuZ6Ob6g2Nw/5YEn5BU0EbjurB35j15OLX+MMf/sDnn3/O+eefjxBD47sbEgnRb3/7Wx599FH+/ve/89xVb4U6nCOKGRnJxOtyULUK7jYvBe9XDosKRUcTmW4e7veux5Q6Kwaf209VmFeW669eIQBVEaTGew8os919Q6XS3IFMMXoSp0SHxY1Y6pxYxrUde+hFKHuFYH/DxBRZThkC8yAa9wQW1RxO8z96qnJNAz63n+QTYkIdyqBmsOuGfVU+n9tPwfuVuNu8qFqFidfnEDMyMtRhHdGKn37LAw88wDvvvMP1118/JJKisE+I/vWvf3H//ffzy1/+kv/d8mmowzkqR52LljKHTAD2syabGH91dlhMKAwVjVElYVIUlasbwjZ57s9EqJNfKKzeZqC0Ws5rAGgqaGftI7txtwz+4izJ02MY3XHkOEOdCHVyt3hY+8humguH7mKSPZU6J44J1+TIRYGPwO/xU7W2kcQpUWgM8kM6EqNdT/KMmGFZqKRLCrSUOnDUDu7eoq9+uZU777yTJ598krvvvjvU4Rw3RYRxWvf6669z8cUXc/PNN7Pjb5UoyuDLNKJHRJA4JZrtLxdD2H7S/ceaYqKtokN+NkeQMjuWjJPjWfPwLjzt4TvPqq8TIuWAoaYxNh9tDhWXp/e/f8N7a/oirEFHa9RgijPQWuoIdShHtefvJ3T5+PEkQvlXr+v1aw8VkWamo9Yl5zoewpJoxJJopEYumXBEOquWabfnU/xJNeXf1Ic6nMGp89Qt7wMOp8DoxRlUrW2gYXdrqKPpUvxiPS+99BL/+te/uO6660IdTq+FbZPFJ598wg9/+EMuueSSQZsMAXjavXgdPlTt4Iwv1NrKZTJ0JKpWIXl6DDVbmsM6Gepfgvx0DxlJPe8JMby3JvhvqMqYl0D+opTB2yu9Py6NEHBA29xg6RUCQIH8RalkzIsPdSSDTnuVUyZDx+Bp81K7uZnkGbHyPuBIRODfcKw0dyyqVsXr8OFxDJLzYReqX3JxySWXcNNNN/HUU0+FOpxeC8uEaPPmzSxatIi0tDSc32hQFIWEyVGMvzor+BxbhiVki6LZMi3kLEwGoLWsg91vlg3rikRd0UdoGXVp+pBcuM6abAquQq2zaMg8LTFYejVunI1Rl6QHnzvm8kwyT0sEAnMUZv98DPbsQJWZ3IXJGCJ1VHxTB8C4q7ICN7cEhtKdcPdIovIiAIjKtTLm8szgduMn2okdawv+d0SaGY0xLH/ux6CweruBfeVHH2pxYPIz1JOgA5V8Xs3mpwtC1uhgTTYFixBEpJoYtyQrWLY695xkJizNZtxVWVxZ6yDfGbjgJyluLihzY9g/yTrV4SPNEcIGAQGbn95Hyec1oYthkEubGxe85g0lGqNKxAFDumPH2oifaA/+95jLM4nKDZyvo/IiOOHukcHzbP6iFMZdFbgnKf+mDkOkLvgZ2XOszP75mOAcv6zTEw86f4+6JJ24/edvg11H5mmJ6CyB340p1oA12dQ/bziEIlJNzPjZSFm05BB+j5/db5YFy93nLkzGlmkJSSz6CO1B9xXZZyWRc1YSiqJQ97qX3NxcbrrpJlasWBGS+I5X2N0hVVVVsXDhQnJzc5lkmE1HbaBl2Nngpqno+7HduecmkzQtGvh+HsZAjeHV6FWMdj2qLuw+3gGjNWnQ6NWwWYxVZ9Gg37/uhs6iJeuM75OclFmxTL0tP/jc3HOSSdo/iVbRqETnR6CzBF7rc/lxt33f0lO7tYmmgjYAvB1e9r5TERw3bEky0VbZgaM2UIGvbFUd1ftbY4VXUPZ1HR31gb/5fQJP+/fbtWVYgnOzNAaVCUuzidqfaMWMjmTyzbnB1riYkRHYs0Nzgj0eJoMfjUbg8yn4fIe3LA635KcrnnYfnnYfikYZkPOfLdNy0ATyMT/MIH6CHQBvhw9Xkyc436R6YxOlX9bi9/ip1yhURAZ6hpwaKDOruPc/L6fdT35rYP6cIgRnV7pJ6tg/n66fR3xrDCqKRgl+jlLXXC0eXE3huSaJPdtCzMhAw5KiUZh8cy4xowOT2aOyrUxYmh387USmmbFlfH+u9Di8+Pcn7h31Lsq+rkPsrwRavbGJslWBxixHrYvWyo5gIuOodbH3nQq8+9eyaipoo3ZLU3C77jZvcM6ozqIlOj8CRROIIXl6NLkHJJ9Tb8snZVYsEEiess5IDF5v9FZtMJEa7By1Lkq/CJwPpK6pOhWDXY9GPzD3looKiVOigsdtRKqZkT9IQ2sOHFPtlc7AlAdA8SlMNM4kJSWFK664gqKiogGJsS+F1Rwih8PBySefTHl5OatXr2ZJ2u1HfK5Gr6JoFbwOH/YcK6MXp7P20T24WzzoLNqDbh77gjneQHR+JGVf1fbpdqWBY7Dp8Hb48Ln9ROVZiRkZyd63K4DA4pGtZQ72vVuJ3qpl7JWZ7FleTmt54CJnSTRSvb4xsJ1IHV6XD5+r9yd2W4aFcUuy2Pp8IU0FxzmJWwFTjAF3qwefy481xUTMyEiKP6kGYMxlGbjbvOxZXo7GoDLtxyPY+XopTfvaMMUaMMfqqd/Vety9DH05j0jxCyaPdOHzwaY9huDjwzn5OZoJ12bTXu0MHs99RWNUSTkhlprNTTgb3aTMiiVmVCSbnyoAwBitx93qPeZNzu5nphz174oQCEVB7xNMb/SyI0JDvUFlZIuP7HYf7yfqEIcMm+6LOUS55yRjSTCy6cmC496WFCIKxIyIwFHnpqPOhT3HysgfpLHmkV34XH7yzktBZ9Gy/aViIDDMtH5nC23lHWgMKvoIXaDh6TjPf/ZsC2OvyGLz0wW0HMecPo1BRWvQ4NpfMCVhchTtVYEb04gUE3nnpbD1uSLcbV5yzk4mIsXExn/tAwLHc/2OFhr3tqHRq2hNGlzNg7/witS11DlxNOxqCTaa9hVTjJ6O+kADx+Sbc6la30jFt/WoWgVFVY5a4Ok/ZY8wdepUNBoNGzZsIDY2tk9j609hkxD5/X4uueQS3nvvPcY6ZhKpRPXo9Rq9GvwSJ9+cS8PuVoo+ru6z+BImR5E8PYZNTxXIFo5jUFQFY5Qu+IMLlfiJdoRPULulGX2Elul3jmTbS8U07mklZlQkCROjAsUwCAz98Ti8uJoG5uIx4sI0LPEG1j++d0D2hwKIwA1u0tQYarc24WrykDonjuQZMaz+004Ashck0VbZQc2mJlAC32V314/o68IKRo0frUbQ7lRlInQMUblWnI3uPvnN6a1azPEGmgraUXUKU27NZ+875TTuaevV9lS9yt4nJuBVe97qmdzhJ97lZ6NdC0Iwr8bLzggNlls29CqWQ5li9Bij9DTu7d17G25SZsXibHRTv6NlwPetaJTAun4icG63JpooWFEJwAl3jaT82zrKvqrDYNcRN9ZO5dp6fE5/8Nw3ECbfkkdbZQe7/1c2IPsz2HXozNpgK/7oH2ZQvaGR+h0tROdHMHpxBqv/shN3q5e4cTYUjRLSOWE6i4bYMTaq1jYg5G3UUak6lQnXZFOxuj7YGNsX4sbZyDsvlbWP7MLd6kVR6fF34bE5WO36jFGjRvHtt9+i04XHMMiwGdN1//338/rrr5PrmNDjZAg4KKMt/LCKms1NQOCE0Tmmvac0BpWYUYGu9er1jWz89z6ZDHVDZLqZKbfmY443HPvJx8mabEIfERg+EDs6khk/GxUcKmZLtxCRGhhW5m71svWFIlpKA70x9TtagskQQFtFx4AlQzqLlpiRkVSt67uT3DHtvyHwOf2UfVUbfK9lX9Wy7m+7g09T9rcQAVgSjMy8ZxSWBCMAxih9cFhhf1IQKAhYvhbv/9bJZKgbGve2HX8ytL8DJmVWLLkLA3PZ/B7Bmr/u6nUyBDD1R3lcWNa731aFSQ0kQ4BOgF8B3/6rmiXRGFjn7Dh01LtlMtQDEckmTLH9f16HQGLeOQf10HORoigoBxQwWPu33ZR9FRi+5mryUPZVbSAZggGdX1e1toHY0ZEDNozN1eQJJkMA218qDiarzSXtbH2hCHdrYLRMRKoZW3pgOKCiUZhxzyhi9w8d1EdoB2Tekj5SR9ZpiZjjjP2+r3Dn9/jZ+O99wWQoZlRkr4dF68wa7DmBIfX1O1vZ8Upx8LjoTWKqazYzxT6bjRs38uMf/7hXMYVCWCREzz33HA899BC5YizxSspxb69xbxuOmkAXY85ZyYy6NP0Yr+hawqQochcmBw/C4b7Scne1ljnY9mJR8DvoS9EjIkiesX8OgwLjlmQROyYwCbCtyknJyhqU/deiPW+VU/B+ZfC1Tfvavr9IhlDC5CiEX1C9cQAToqM48DPZ904F1RsCcblbPRR+VIWjLvA9pp8Sz8iLv/8txY2z9UuClBbrZcZoJ4pGViTqCb1Vy4Rrs3t8Y9O5SGDC/rlApV/WsuGffddzWfplLZvtx3+D6FEVPovXUbV/UnvilGiyz0zq1basKSYmXJuNbgAS/KFk52ullH3ZP8PG9VYtceO+n9A98pJ00k8OVP5z1Lko/KgKd2sgsa7e0Mi+d74fHjoYzusA1ZsaEX5ImBQd6lDwOf007fs+2S94v5I9b5UDgbkjJZ/X0FYVmM8aN9YWKBCx/5SbPCOG6BERfR5Te6WTb/+wg/bqwb3+zmDRec+pMajkLkwmYVLPOwsAUk+MI+esZFACiVZfNAIZq+yMMkziiSee4Oc///lxb28gDPohcxs2bGDWrFlEORMZzZQ+L6+ts2jRGtVA62k3u87N8YbAzbwC+ghdWCx+ONQomsBQLVOsgfzzUtj5eimuJg9pJ8VhTTSxY1kJEKjI42py4/cO6sP8e0pgkmxTYTt791+cwoXOqkVn1uCocaEza5j+k5HsfK2U+h0tWBKNmOMMlGbk09sa0Mr+k7/F5Ccqwk9ZjRbD+7J3qNsUyDs3hYrv6mmvOvYNhz3bGiz4kXZiHE0FbbSWdxzjVb3z/9l77zhLyjrf/1Pp5Hw659w9PaknzyBDEBFQBEEwAYqKrKysaa/+lhv23g13113vmjGtEbOugoBIUjIMk0NP93TOuU/Ooap+f1Sf6jAdTqiT6/168dLprlP1dJ2q53m+6fPdqoYoUWL1Q4yORsQbhcqsQMedtbj0XxMI2reOlGkrVag6aBU2iHkydeQSJTuMcPR7Um4mXbrTCP9CCL7ZIKzbDOi4oxbH/+MSIn4WmjIlIn4WEW/uyhGvR8st1TA1aXHya/1582yRNAGlSYHAkvNr2/vr4J0JYOKlBShNDDreU4v+P0whsBgS12aZzKIwMIJDgF+xR90CWkUhGmRBMgQoJZWWd2myshcDc5fwu9/9Drfeeqvk55eSnI4Q2Ww23H777WCCanRgT1p6DUV8UQRsYRAkge13NaDy4Oaem8qDFuz+WLOgssFDNoYShNHSaHlXVWIdqQlAU7qchrHz3kY03SBIVa/8/gBg4qUF0RgCgMBiKH+MIQCWVj1UJgVmT+RfA7+INypOwhE/i2P/1is2kjO36FF3TTlixlB1SQRaVXybJYLlRWMIAHwBEpPzsuc+YXhg4A9TcRlDxkYtdtzTAG2FkLoy8cpC2oyhqkNWdLqkWYhVujBUumWDJ7bAExSBgC0kztcxlaSN8M0EMfAH2RhKBkZHo/WW6qQiCJoyJSr2LXu5668tF2WtHQMeHPu3XkSWJNj986G8M4YAYOaEDSqjApZW6SMs6YKL8qIxBAC9vxrHxEtCJJAgCQRsYfG7aLqxQpQbB5bW7gS2bvpqNfZ/pk1UypOJj7BbMIYYDYXd9zVvuZct32PG3gdbwWgpcBE+be9S9Ww7rLoSPPDAAxgZGUnLNaQiZw0ilmVx1113we12YxcOgyLSm3PLczw8k/4NQ7Wx9Jy50w70/GIM0Wz2xchjlAYa+hoNuOjmm2F99XL/kvIuM/Z8okWUmpx+04aFbhcAQcq3/7HJuLy++UDFPjM8U354Z/I/ZYANc6KncPLVBZz59gAAgCB4NFZGYdIJ75BayaHcHAVBrN59rjWEGJrH7rYQ1HEaUjLro7Yq0PC28st+rtDTKN8rbEZdIz6c+d5gXMZTqtRcWYJdrtTm07WG0FoCiyH0/W4SXJQHraGw/8E2UQ58LQ1vKxf7iMkkTsQbxalv9GPhgmvLYwmSQMl2g1gLZKjTovaqMtHBdfpbA2LtDxflU4445QK+mSA8U/6k05tyjaA9jP7HJhENCu/wwgUXpo8LDj1KSWLPJ1pQ3iX8rUojA3315im7QUcYth63KM8vkxgRP4ueX4yJNcgbpZbbLrkx9pe5tLcTIHgSba798Hq9uPnmmxEO5+5eLWcfuX/4h3/As88+i3p7J9REZnqkjL84D/eYIIe5sjmYqUmH/Z9qg9LAgIvycI2lKINcxHhngjjz7UHRyxdDU6pEyXaD+O/Ou5b7l9j63Dj/o2GwS4IVtl433OPJy5bmKoyOhrlFL9boFBqxSB3PE3j1ggrTNsEDaDWw6KgLi954syYKhrh846NgeFAkEInKtUOpoDAwsG67vL7L0m5A3TVlYk2kL0NG+cmvDeC/apJTIdrKEFqPaIDFyLMzYvRyZbRaoaOFe5NIBFvmMmIF2TFBm5XQagqG+pjYBY+Wd1aLUaC5Mw6c+EqfoBYH5FV0PxHmzjqX+tPlR4+gRHCP+0XhBjbM4fyPhmHrE/5dttuEzrvqxWNLthtWZX8AwoZ+5NlZ8RmSSRzXqA88y0NpYLD/U21is3dAaIBLqyhEA6yk6nSboSLU2K06gkuXLuGee+7JyDWTIScNoieffBL/9E//hCa+E1aiIuPXrzpkRdf9zeLGwDsdwPx5J8IS9y4qRmiVsACQDIHyPWZx42HpMKDx+uUC6HPfHxZ7OkX9rNCluTDXRpGynUbwHC9GvwoR1ZPHl/4fAZ4XDJvJBQavdasBFiBZDrtaw6gtF941iuRB08IX7wuQOH1JiegKgyh004GMjr8QcI34cOqb/Qh7o4IE8VKh+uxJO04/PJBS/6xk4KJcwpLbyRhCIrywIY0GhIa1uz7ahLprheL8sDeK0w/3wzUiO71SpXyvGfsebAWtpsRG3ABQddCKbe+rAwhBwerE1/owc8IOoHiEiRa7XeA5HqU7TdkeSnrhAc9kQMyomXx1YVVPr8a3V8LSLjhClQYG5XvMIBkCtIqCtcOw7ill4ifsi2L+vHNZaZAAWm+tQf1byzI+FtWiAbvLD+A3v/kNvvOd72T8+vGQc6IKk5OT2L17N0i7ErtxRVrqhraCVlOwbtPD3KzH4BPTYihYJjVKthvR/p4adD8yCs9UAIc+34GBxyax2OMGyRCCNzCnnsbMsucTLfAvhND3u4lsDyWtrO1HRKzZBCkYHjwvRIJqyqJoqY2gd4SBx0/CHySwNiFdFlZIDkZHo/7aMhjrtTj97cGsbUa331UP3w4Dnq3YOk0tXiOo7s4LcV/f1KSDfzEEhY5GNMAi6MjdlI58glZTMDZo4Rj04NDnt2H0uVnMnLCD1lAgCELy5uj5RvsdtdCUKHHmOxnqNZeLEIJgAxfhUbLdgNZba/Dmly7B1KhF5wfq0fvbcdh6Mt/TqhChVRRa3lWFqdcXEXCEs1L2wfM8RirOYdo5iTfffBO7du3K+Bg2I6ciRCzL4kMf+hDUajU6sT8rxhAgpFQ4h3xQmhRQmeXUiWShVCQqD1pALcngGhs0CNjC8E4HwEU4vPmlXiwuTXZcpLiNIW2FCtpyFebPFWa63HqsrRGKEY4QYlrcvJ1C9xCDxuooKkuiOLA9hAprcW+kUoWkCehrNWi+qRLachXOfm8oq555giLiWoiSjghtgXPYi7A7guZ3VKLr/mbUXJk/ndVzlbJdJuy4uwG2Xje4CI++/5rAYs9S3aefLXpjCADmzzqgLVeJwiVFCb+09gNYvOjGm1/qBRfh4Bz2wj3hh6FWSK1cu5eQSRxDnRoqkwJhbzRrNfAEQaDBvgM6nQ633347IpHcEiXLqafrS1/6El588UWUTzVDQWSmudtaSrYL3ZpDrgjmzznQcWcdSFquWYgXXaUKxkah5otiSDReXwFdpVBEOfz0rJCSs1QYG5sIZYDyLhPCnggcQ4XfBFL15PF1DaH1CEcJLDppvNmtxPgMDZuTgj8oTFsWA4vGqgjCN+1P53ALjtqry7DtfXUYfX4W3T8dzXqhevcjo3h6k+hQSulxiYzjp6OYeHkBtkuetF+r4CCA2qtKxbnfbwvBPugBSRNoeodgeKe7eDvfcAx5EfZERMEBmeU9ARflcf6Hwxh9fg4AoKtUo/H6ClDMknO1UQtdZREbkolCAE03VcEz5UfIFQFBEatqtjMJGaGxDfswOjqKz33uc1kZw0bkjEF0/Phx/K//9b9Qz7fBQmQ+vxEQhBRab62GdZvwoDgGvZh4dQFckeQ1JwNJE7B26EVVoKojJag9WgpAKKw99u+9Yj5+zZUlUFlk9aa1ECRQusOE+Quugo+SRd62D5G3xd9zhiR40BQPnicQYUkMTzFw+4RpS6PiYdJz4JdS6PQ16mRbHBUFMcfOxEvzuPDjEQQdEbAhDiRD5mST20wZQgRFgGRIsCEOU28sCr1USAIdd9SKHmqZdSCW3jkA4AFjgxaaEsGR6Z0KYPyFeXBRHmF3VK6/XQ8emD/vROlOo6yotg7mVr1Qawah7vHYv/eKQgu1R0tRdUSI5BKksAeRHdebwC85fJaaJpdsE9ITV4qHZRKlTY/t5V14+OGH8eijj2ZlDOuRE6+hx+PBBz/4QWiiejRhe8avHwvDhlwRnP7WABaXitqD9rCgwlHgm9REoRQklCbhRVKXKLHtffWilObwUzPo/umoeGzM48PoaFQesEJlkg2itZiadGC0NBbOO7M9lLSRqCEUo7KExVt2B0FRl7+Ek/M0zvQJz5PSxGD3x5pRsk0uxF0PS7se+x5sg0JPr+opQtIE9j3Yisr9m/esSCcH/7Yd7x9f3UQwE4ZQjMr9Fux7sHXVhkpoVJgTy2POUtJpwO6PNYtrQfcjo6I4wkomX13ImJpVvrHQ7QKjoWFs0G19cJHBRThE/az4Xq7MKOn+6SiGn5oBILTo2Pa+eqiXjHGVWSEKeMhAdBIG7WHRoFzoduH0twYQcgkpa9lIRSydaUCFuRIf/ehHsbCwkPHrr0dOiCrcd999+PWvf41d3iuhITI7MZA0gT0PtGLujENUNVtL49sr4J0OFLT611ZQSlJUn9p+Vz1AELj4s1EAwgQkFyInT+st1dDXanD64YFsDyUtbGQIcczWkzBD87AYWMzZt2rSx8N6/iJ8s0HwLI/GGypAUgSGlhbNYofWUKg6aMXEy/Pg12TIle02wTXmQ8iZnXzumitLsPieapw30ZIZQomIKihNDIz1Wsyfc254jLlFB8dg4aezbkXzOyrBRXmMPDsLgiKgLVctK1htAq2mULbLhOk386/hdLrZ92ArXGM+DD4xne2h5C0r9yDb724AeB4Xfz4GYPXepRgp32NGxX4Lzv9gWJSzX0nNlaUo32PCmW8PZlzmntOFcZJ4EVdffTUef/zxjF57PbJuRj/33HP4wQ9+gBpvW8aNIUDIVZ14eX5T7zylJEGrC69fQLzoqtQ49PkOaMoED8zo83MYfGJK/L1sDCWPEO43iAXHhUSyUaFV54gScRhDAEDAOxUQxQH88yGxyTKlIFG6ozjTUqoOW0GpSET9LMZfvNwYAoD5c86sGUMAMPnqoqTGUKKEnJFNjSFjoxbb72qArmrzhpKFCEESKN1hFD3uvrkg/AtCNI9n+biMIUBoBlx/Xbm4hsgss3DRBes2g5h2LrMMSRNxpdmv3IMMPjEl1h5py1U49PmOoq438i+GYO9zr2sMAcDCeScmXl7ISs8v0qtAu2o3nnjiCXzve9/L+PUvG082L+7xePDxj38cFpShGo0ZvXblAYvYKXr+nBMh98YbgsEnptdNBShkGm+oQMvNVQAA32wQI88sN0rzzQXFUGu8dN3fjMqD2UvLyVVMTVrQagqLFwvLIErVEAKAzqYwSs3xF2Kv7Ek0d8Yhduo2NevQ+u5qMNp4DKvCQWFgUHu0dFVTvo3QVamx456GrOThl+81YXs4tPWBEkMyBHbcs7Wh4xrx4cx3BuPe/BcSjJZC67urYWoWnqHZU46kGkd7JgM4/h+X4J/P/Pec6yxedIFR0zA1ZaYBfT5Rf125kJGSACFXRHSGhdwRjDwzC9+c8Ny1vKsKjTdkvrdlNvFM+DHx8sYpaSH3skOofI8ZlQcyu08zzJehtrQen//85zE3N5fRa68lqwbR3/3d32FhYQHbsC/jEtuaMiXU1vjrWSgFWdBeBoVBEJSIbRp9s0F4ljYAPMdj5oQd0UDyKkEL3S74ZoOSjLWQKOk0wr8YKpiNQiJRITKycRoDQQjeKikSem29bpz8ar9o0Hfd3yw6QwoWAgi7Izj5jf64+nhE/FFwLA9ak3mjsf7acuzKwjpIq2lwLI+If+uC/9gGq6zLhKZ3VG5xdH5TvseMro83AxCEcU5+tR+23tR7wbAhDgQJuTZrDf75EPwLQZRsN2Z7KDnHzHE7Lv0m+b580QCLmRN2MTrimQqI+xBGR6P11mqxOXwhYmnXw1AXvzCMukQBTWlmo7gEQaDFvxscx+FTn/pURq+9lqzNTC+99BK+9a1vocbfBjWRGc8ISROi5v/QH2fEsGo8NLytHO131KVraFlBV6WGpU0PAGDDLHSVarFAdv6cU9JC2KnXF+Ee90t2vkKg0NLlpIgKxeB5Aj3DCiw6pUlVDXuFTS9BEbBdcosbXE2ZMuMLQLppfHsF2m6tAQCwwfhy50POCHp+MYbwJpHydHH2u0P4U3PGL4uwW/ibE0oX5IEstcdLK5rS5ffANx+Erc8tKg/G3h0p2PXRJtRfVy7Z+QqFxR43rB2GnFR7zCZBR1icq6Vg7rRDjIYojQx0lWqwYcHRa2nTF1xabOUBK8p2m+I+fvS5ObHuVluhyljGAOVXoE21E7/5zW/wk5/8JCPXXI+siCoEAgHs3LkTi0NO7Mc1GYsO1V9XjvLdJpz8en/C+ZJKIwOeR1Y2DFKi0NOI+FnwLI/md1ZCW67G+R8Op/Wa+loN2CAr5p7LCJiaddhxdwNOf3sgryNEqRhC6wkrUCQPk4GDzUkiER1t5Z9OJHz9tnfXQFOmxNnvDSX82VzF2mkAo6bElMFE0FerodAzsF3KbHf48d/ulPR8W4kqWDsMCHsi8Ewlnwan0NGSGgvZpOv+Zvjng+h/bGrrg1PA3KpHyBXO6/kuHWjKlNj7QCu6fzoC57Av28PJKSr2mcFG+LSrsO76aBN8swEMPTUDgiLAaCgxqyCfIRki4Z6PJE1g/6fbMHfWibE/ZyZ8z/M8ei1vws95MTQ0BIsl8yUWWYkQ/du//RvGx8fRif0ZTZWbfGUBF38xllTxWMgVKQhj6MBn2mFtF6JCo8/N4fyP0msMAUJ0rWapN5HMMpZ2PQL2/N4cpBoVWi9tzmpisbs1DKUivvdU+acTSRlDADDw+BR6fzMOQFAq2n53Q96mUMSKj2097qSMIQAo22POeK3ftvfV4aqxzPrlKg9aUJZCQ0yFnsbeB1uz1twwVZQGBtvvboDKLDwzvb8ex8Dj6TWGAMAx4Mnr+S5d+OdDCDrDsLTn5/OUTvTVGmjL01+ucP5Hy41grR16HPhMOxT6/K87TdQYAgSxsYs/H8PkK5mTwyYIAu3RPQgEAviHf/iHjF13JRk3iIaHh/HFL34R1ZEmaAl92q+nKVNi18eaoNDTYMNcSnUspTuNaLoxvwryKvaZxaLEsCeKS78dF+Vj2TCXkR5LF386ipFnZPnjtVha9XAMeLI9jKSRMkVuJfN2Gm+cVyIU3nx6SsUQisFzvJgyRatIgOcRXaopUeaRYaQpVWLvX7eKKbDJMvLMLLofGZVmUHHCaGkoM+yI7X5kFCPPzib9+bAnipFnZ+EYyC8p7tgzHfFHAZ4XnnkIDr/1FAjTgaFeg+Z3VmXmYnmEvd+T8vtbiAw8PoXR55J/V+OGX9oTAXAMeHHpt+NihGj7XfWo2Jdfdafb3luHhuuT36/6ZoNgwxwUehq7PtaUEYVIyqNEi64TDz/8MN544420X28tGTeIPvvZzwIhEo3YlpHrRYMcIh6hYDhVSIYEpcht+W2CIlB9xCrWSgWdEXhnAmLmke2SR3zpMwUX5RHxJS/IUIhoypRQmRSw9+efQSSFnPZKVkeJhPc0ENp4apLCEFoP70wQF38uRJApJYk9D7RkXHEnWfwLIfT9fgL2FA1sbum7UBoZkHH0iZKC8z8cxnPNqWcKWPQ+8b+NIBlS7M7ObSLqEQ9zpx3ChkFHJyTQky0qD1iw54EWUEpS9AB7ZzIvdEMpSGhKlHLzzDXY+z1QmRSyNPkGZLJtAhvmYLu0NJcSgHcmgOCS40xboUL1EWvO13vZBzzwTKRet82zPCKeaEqiWolQ7myEVqXD/fffD47L7F41ozPSU089hccffxxt2A2KSG8o0lCnAckQCLsj6P3NOKL+1L/MudOOjKQVJENsQeY5HuV7LWJxoHPIi7G/zGckErQe1m0GtL27JjsXz2EsbXqwYRausfzLF2eeP5W2c7fWRbC9af1+NOkyhNaDDXHof3RSFLwwNeugq869gltKSYoqQrYetyTvOaUksfevW/LGI7qVEbSSyv1m7P3rFkmVzlpurkLLLdWSnU9KdNVqUTJ7sceF/kcns96k0jHgxYWfjGTcMZfruEZ9iIZYWNrktLlVEMCBz7WjfG+WnFM8MPaXeTiHhGiwrkqN8r0WUbkuV50hc2ccktSCRvwsen8jRMtIhkhItS4ZSI7EDsN+dHd347e//W1ar3XZtTN1oVAohE9/+tOwoAxlSO/iQSlJbHt/HaoOl0h+boIkcq5Ja/leM/Z8okUYFw+c+faApApxqVCIikxSYGnVwzHkFRuJFjuxKJHLQ8HhWT0tZdIQWom93yNGNqsOWlF9RPr5JFWqD5dg23vrJI3msCEOvb8ex+ypzPRe2/+ZNtx6KbH3IJ5o0HrMnLSj51fjkhoFQ0/NpCQNnE5qjpSg6qAVABDxsTkVkdaUKYuyWfJG8CwP55BXTptbCw9MvLwgSbRDCuZOO3Dm2wMAD9AaCnseaMm5Ng6aUiX0aXDgVR0uwbb316VdOl8za0aVvhYPPPAAXK7MqfBmbDr6xje+gZGREbShK+1CCmyIw4Ufj2DyVekLwnbe24jGFPIypaL5HZWoPiIsdLZeNy7+fEwMaWYqFzweFnvc6H9sMtvDyCloNQV9rQaOHNqc5ArzDgrTC0L0OFuG0Hr0/GoMg08K0WFTkxZtt9eAZLJv7Y+/PI/zPx5JOf1rLc5hn1CMm4E/cf6cEyOm+I5NxggSIYQCY9eItFHZkDuCiC8KSkFmfTNLMgTabq8Rm3wOPDmFnl+NZXVM66EuEVTVYtErGQH7gAf6GnXOOV2zzexJu6Ty26kS22NF/Swu/mxM7NNVfcSaE33KKg9Z0XKz9HV6k68u4MKPRzISZW4nu+DxePD5z38+7deKkRGDyOl04l/+5V9QwdZDR6QvHFx9RQmabhIeRv98KC1pYmN/nsP0mzbpT7wFJE2grMsketQifhbRpYcyGmDhGs291CuChNjoVWYZU7MOBEHAPphfBdkrSUfaXGVJFFoVl1OGkAi/3NOHZEiQ5LKUaaZ6NaxEV6kS+sbwQGAxPapd5hYd9j3YmvZaj/EX5nG+Yut7mLQhBKFuZd+D6d2AV+wzo+22mqxsZmPPIBfhQVKEGDFkg5kRzkmUwGIIFx4ZEdOQZAScQ14QBAFjY2Z6M+YLjIZC2W4TCDL7Tqi1uEZ9iAYFZ3Q0xInlGQQpNHLOxvow/NQMLv5yXPoT8xBVIptuqkT1FenLmqDcSnRUb8fPfvYzLCxkRu0uIwbRv//7vyMUCqEpzUIK0SArSa3QZrjGfJn1VCy9S2qrEq3vqoa+RsjfHH9xPmfS4jZCW6HGof/WAW1l+iUz8wlToxa++SAiBdLDRAoIgkdTdQRlM6PZHsqW2Ps8uPRfQoqUpkyJA59rF0VMMkXdNWVoujG9nkjfXBD2fk/aNyEl2w2od268a08pKrQEQRKw93vgn0/f3D11zIYz3xnMWPFxDG2FCgc+1y4W41/67QTsfbkffXaN+HIqmyEXCHui8C8EYWqSI2crUVmVaHt3Tc7W68SYO+3A+IvzAAB9jQat76oW2yFkItoeg+f4tLeJiQZY0RBMF5axOpAkiQceeCCt14mR9sas09PTaGlpQXmgHi3EjrRcQ1uhSklOOxFoteCpWLjgTLtyWt3VZTDUa0QZXEZH59UmmlKSMDXqYB/wyLUyK9j/qTbY+z0Yfjr/pcilUptz1ytAgIf1x2/m1bNCqylUHrRg8pUF8NzSXDQXTLtXnqQJUCoqr+aDjTj4t+1gjQwe3bZ6x5CKEaS7Mf391TaCIAlY2nTLKlVpuQigLRfWPYIEao+WYfq4LePGWEoQQOst1XAMeLDYk9lGwLlM002VMLfoceob/dkeSs5AkABJk3knxLFyz7bzw41wjfow/tJ8Wq+pNDBovKECo8/PIehYX6BIatK5B7fVjuHC9BkcP34ce/bsScs1YqQ9QvSP//iPUKvVaEB7Ws5vbtWj6/7mjElVUgyJ+reWQ22V/noESaB8r1lIhQHgGvdh8eJyQVm+bX7YEAfbJXdebXDTjdLEQGVWwDkip4rEiBlDPAgs3ns428NJiGiAxcRLgjFEqUjs+kgTqg9b03Y9Q60GCj0tSNlnaD4o3WVC6U5j2s5//scjeL5x9c9SjQitpHSnEaW7TJKdbyus2/Rov6NObHqaDqoPW7HrI02gVCR4Dhh/aT6/jCFg2WmQg2lQ2cQ57IXaooDSlD990NINzyHvjCFg9Z5todsJ17gwr2lKlSjfa05L9J1UkKBVlCStZuJBU6ZE1/3NMLemp37SPFUDtVqNhx56KC3nX0laDaLBwUF8//vfh9VeA5pIz8vtGPDg4s/GMtb9OuSO4I1/7YF7XDrFk+XibB61R0vF/GHXiC/pjvO5QMV+Cwy16ZVozDdMjTrwHJ+TNV+Zxl2vgLteAZrgcUOlD+Wq/DL418IGOVz4yYj4zpqadZJvihtvqMi4qIupQZtWqdWgLQyPSpgDpUiPW4uhTgNTQ+ZqMhYvunHm2wOSe2dVZoWYSjV7yiFIVwfzb5O4koE/TGGxO3MqUvmAa9QHnuNhapTT5lZSvteM1hyVt4+H2VMOUdDF2KhF7dFSxBK0pBToCSyG0P3T0bSnzMXwz4dw8edjaWsyT3IUakNtePbZZ/Hqq6+m5RritdJ58i9+8YugWAY1aJb83LVXlUJfs9RrZzjD3nYJDW9Lux4HP9sBWk2B54DTDw9g5nhm5G7TTcU+Mwz1skG0EmOjFt6ZQNZ7gUhFsuIK7vrVhsKQl4E7IkxHto8dSXlc2cI7HRA9mQ3XlaPmaKmk5+/+6SiGn8lA1/YVDDwxhaE/pi+9s+09NbhinJfcEIox9McZDDyR2f5xAZtgDEkpfVt7tBQN15UDELzl3umAZOfOJoyWTms0Ld9gQxw80wG5jmgNXJgDG86zKOgGzBy34/TDy9LdBz/bIZlCZaYaaq8kJo6ir1GjVuI1DwAq2QYY9Ab87//9vyU/90rSducmJibwyCOPoB6toAhpVXcIioCpUSc2H8009deVi2p2yWCo08DSLjz87nE/Jl6ZBxcVrKzY/xYCZ787hMlXF7M9jJzC1KiFU2LZ33wiFhVaSZQnMOBRIsAWVlOS8z8cxuizgvFiatahrMuU9LlUFgUoJQk2xCHiy3AkbWlKMtZr05LiobEoYWal3+gQJLHskMnCtFq6y4RdH22C0ph8dkRZl0lUxht5dhbnf5S92qh00fnBetS/tTzbw8gpXKM+2Zm4hoVuF4afzqwzKJ2Ie74Ij4lX5uFe6rNkadenFJHvuLMWHXfUSjLGRNFVqWFq0oGgpF0nCI5Ai64TL7zwAk6dSl9j+LTtQP7jP/4DOp0O1WiS9LwkTYBneVx4ZCRrkZSgI4ygPcF0iBXPR/keMyr2Co28ogEWU2/YJO8jIpN7qMwKKHQM3GOFZRDFGyVaawgBAAkeTbowFOTq5z+fo0QxuCgvqvCYGrUo6Uy+Dqf1XdVof092FjlAMMh23tsoOnKk5Ox/DuGNXdKnPFva9dh1b1PWog+L3U6c/9EwQq7kU1dKtxthXEr3iwbZgnKYxRj4wySG/jid7WHkFJ4JP5R6Rq4jWgOtokCpCstxxkU4TL2xLIhSsdeC8q4VjV4TtC2m3ljEzMns7I1njttx4ZER8Cwvudy4ca4SZrMZX//61yU970rSojK3sLCA+vp6VAQa0Exsl+y8ZbtMqL2qFOe+P5x2uT8podUUuu5vxsgzM7Bd8oBkyII3gCoPWmDtMIgKeTKCx7j9thq88W89eZ/7v5bN1ObWM4RimBgWV5b58dKcBp7o6kiy9QdvSDa+XIAgCfAcD121GpX7LRj+00zchcIKHQ1aTcG/kJlayfXQVargnUmPkpD3aWkdZzGVuXSOORFoNRWX6AGlINF0UyVmTtrhnQqIz4xMcUGrKRz+wjb0/X4CCxfkGqsYRx7ahvEX5zH1RuZ7QWaS2B7R2mFA49srcPY/h/JKNIVWUdh9XxMmXl7A/HmnZOedLx3FRdsZXLhwAdu2Sd/GJy2m9te+9jWQJIlatEh6Xte4D/PnnFk3hgiKELyOmxjAlJJEyQ7BIxwNsJg744B/UYgqFboxBAg59MWcGrYehho1/AvBgjOGgI2jRJsZQwDgjFD407QOnujlU1EhRIlWEtvYKnQ0FHoGbBzzAEERIEgCYW80q8YQANGwkDodYv/ftOGq09L2cYqNMReMoZorS9F1f3Nc942NcFDoGSh0QkPrYjGGat5SktYmj/lGNMDCvxiSRYnW0PubCSxeLHyJ9tge0b8YwtxZh2gMlewwglJuvG0nSAJlu01Q6OmMjHMjokEW8+eccEmcDVPiqIVSqcTf//3fS3reGJIbRH6/H9/61rdg9VVBQUgjTa2vUYOkCYScEUy8kpmOtZthrNdi/6faoDRsHM42t+rRdmu1+GBOvLyQto7yuYhzyIvJHPiucgl9rQbuycIohI6HrYwhAR4sTyCjXeuyjL3Pg4s/GwX4pVS0jzRuWGdSfdiKPZ9ozpkO7dVHrOj6uLQiOYt9LsxZJHRy8UDXx5tRfSR98ueJsNjjwsizsxu2H1AaGez8SKPQwJEHLv5sNC8aq0oJqSBBZaEYPJdxT/hlg2gNziEvQhlST8sFAoshTLws7KMUehptt1ZvKm+t0NFoe3cNNGWZbRS+HhOvLCDkioCkCVEALVXIKIVmSweeeuopuN3SG8aSz0C//OUv4XQ6JVOWoxQkOj9Qn1PeI+90ABd+MnJZcXPNlaVouF4oDl286MLJr/Uj7MlvKeFk0deoQSnkBS4GpSChLVPBMyGdXHuuEYsSrSecsB4aisPbK3wwMhtvhgstSrQWkiYQ9bMbCiXY+z2YOmbLmUiBa8wv5KdLaJ+NPjuHvgbpNjkEgJmT9pyRtg/aw7D1brx4R3xRRP2s5Dn3+cT4C/Npb1iZb3jGfdCUq+R1dAXqEiVqr5JexSwfCHuiOPm1frE3ZcP1Fai5cvW9CLkjeO2fL8KVQ30Oq68oQecH6iV7jo2TlQgGg/jnf/5nSc63EknfNJ7n8fDDD8PKl0NDSCMZyYY5dD8yisnXcketLBpk4Rr1gYvyUBoZ8Ytmw+yynDIPhPOskapUKHQ0dn+sWSwGlgF01WoQJCEqyRQq8UWFBHgA0wEavnXS5VZSyEaRfz6E3l+Pg4vyYLQU9j3Yusor7F8IYe507vQi804HMHvSLqlqm7lVj1K7dEsRTwCzJ+05kS63kqabKlFzpeDYM9RqsO/BVjBaClyUR++vxzPWSy9XIRkCik2yLooN94QfBCGdd70QUJkVqDxgAa2RVrk4Xwh7o+Lcy4ZYsCHBmUgpSDHLgGd58DmUlT/52iK6HxmVrLGuilCjvqwJv/zlL8FKrE4qqUF07NgxnDlzRpLokMLAiD08fHPBDdMNskX1ESv0dRrs/esWVOwTFEFmjtvF8GYxE/FHcfrbA5Lnj+Yz+moNokG2oNMmqdYmlL08F/fxAZZEt0uFKF+8nvFV8IBz1Af/YkiIjH+wDppSadKOpYQghdYDMTnoVGm9pQo7hlNXgms2LmJn2IuDsxEQOehUj3ijYv2rfzEE56gvK3LguUrnB+rRnEI7i0IjYAsjGmKhrZQNohiOAQ+O/0cfov78ERhIFxMvL2DmhKAmV7HPjL1/3QJLhx4d782eGul68CwP35zgnKo5WipJfVN1tBGTk5N49NFHUz7XSiRdNh5++GGooYUVqXdSNzZoUbHHDFqdW54AhZ5G3bVlqDpSAo1ViZ5fjWdN4jBX4TnB810ozUelQFehgnemcOuHqNZEVcJ4VKkjYIj4doSFHCWKEfGzGHpyGtEAC6WZgbFBl5NRVp4DtOWqlPrrrOTiL8Zwqj05R0GzcVH8DwDoIAWlR5FTHtIYQUcY1UdKQClIRAPCdx2RN3YiI8/NYvT5wukzIwW+2SB0FdmvB5HJbWZO2tHzy3HwUR4ECNRdW5Z1YYW10GoKFXvMkqxpykUD9JQR3/ve9yQY2TKSyW4vLCygpqYG9eEO1BNtUpwSJE3kXN8FXaUKnXc14MKPRwra258KpTuMoDVU1vpE5SL7/qYV9n4PRp4prAV/I0No/qrNGy3qaRZvrfDj1QU1bKH4Ju5Ck+HeDIIiUHNlCebPOsXC1FybC6UkEdntmPGzEXNHckuFKvbdKY0MKvaZwUY4TL9hK+jvU0YaGm+ogKVVj1PfHMj2UHKGjjtr4Z0NyqJNG6AuUWLXvY3o/vkofDmWNizlOuaun8HJ8TfQ19eHlhZpFK0lixD9+te/BsdxqER9SudpeVcVyvcIKWi5smBUHbai8wPC3+WdCeLEV/pkY2gTNGVK6KtkdZwYlJKE2qLMuckpVRKPCi3jiVJ4eloLeyj+CHAxRIkAQY1QbVFg4iVBpYcgCey+rzmnhGUAwWizbjOkfJ7WW6uxY2DraNPKSNB66GbVIHIs4FJ9RQl2f6wJBEkg5Ipg7owTtVeWQSenQa1L9RErLG3SN//NV3wzQaitSllYYQWeSb+8/9oAgiIQWAzh+Ff6xP1G5wfrUXUoNxQ3Y3v68j1mtLyrKqVz6abLQFEUvvzlL0sxNAASGkQ/+9nPYIqWpia1TQg3LJ7+HOmG0VBglnpBBBZD8Ez6RWUlnuXRdFMl6q/b3AterIz9ZR79j01mexg5g7ZcSHnwzhZOytxWxlA8tUQhjgSfgFxZsUSI6q4qRcP1y2nHPMdj5qQdziFBOYjMEXlic7MOHXfUQm1Nrf5HV6mG0bfx37SVIQQAjJdGxdkSaGy5kV4U+46cQ17MnHKIKoFBRxhv/r9LBS+ukizGBh00ZblXN5ctYmnWWjltTmTqDdumqo3FTNut1dhxT8NyzT0BeCb8CNgEA1Kho8HkgCAFF+EE4yiF8mEyQqFKV4sXX3wREiW6SZMy19/fj/b2duzEYZQTNUmdI9dSQvY92ArXqA+DT06v+/uqQ1awES6nFKBkcpOqQ1Y0vK0cb/xrT07WNiRKIpGh9VPneBwpCWDIq8B8cOt0uWIxhGIQJAFaQyGygUrlzg83wjcXxPDTMxke2eWozAoEHeGUz7NeytxWRtBaGD+NiDqKuSuyu1lqurES2nIVLvxkZMNjCBKglFRedZ+XyQIEcOShToz9eQ7Tb9qyPZqcgGQIaEqUOacimQsY6jQgaRLO4fVlt1veVQVjvTanUjBT2fu7tAs44X0Jzz77LK6//vrUx5LyGQD8/Oc/h8FgQAmSU4jRlquw/1Nt0FVmzwtCUAQqD1pAqYRb0v/YJEaf39jLPf2mTTaG1oHRUDj8hW0wNuZeMXi20FaoBKXEIjOGNoImgBBLIBrH/Sg+Y0iICG1kDAHC3LPYK/SiyHa0KGYMSZ3Sk4gxREQJgAcimmhW+/vGvovFXteWm9ftdzeg+R2yotqGyMKTAjzgnw+KWQYygLlZj677W3Ii0pFruMf9GxpDADD63JyYvUOpSFQetICgsvey6arU2P+ptqSjwnqfFXq9Hj/60Y8kGU/KqxjP8/jZz34GndsCikjuAQ06wpg754R/IXt5obSKRP215TA1ClKynsmAKJG6HpSCzDkVj1yA43hMvraAoD11r3GhoClVFkSPkWSMofVS56I8gdMONezhjd8f6w/eKDpjiFKROPi3HTC3bC5nbbvkhntMSLlqvbUaHXdmV2a1445atN5anfTn936yBVeeETZ88aTHraXighUV57KbI99x5/I9cI/5Ybu0eZRq4uUFTL6aO731cgWSJnDoCx0o3WHM9lByhsBiCOoSOY0whnPUizPfHdx0f1asmFt1mxrP0SALz6SQhmlq1KH+2nLQquw51fzzQcydcyLkTK4xNwkSdZZGPP3005L0JEr5Tpw6dQrDw8OoQF3CnyVIAoyGAhvmMPbnuYynzOmq1Oh8fx0IkkDEx+LEV/vizk2tu7YMO+5pSO8A8xA2yGHytUWEXNJ1ns931CVK+OUiUBE1xYGKU2672Jg+ZoN3Nv5UkNmTdsydFSLV2fL0zZ11iP0wksE16ofdkPxi5qzzwF2dhZ5nxPI9nzvrxGwC98A16hN7c8gsw0V5jL84L6dDrcC/GMrJfmTZgg1y8M0WRsaF1DS+vRKlu0xxHWvrdePEV/sQ8bEgKAKd76+DriqzYi9clMfYn+fAhjkwGgoEmfgappmwwuFw4Mknn0x5PCkbRI8//jjMZjNMSFwBqe6aUuy+rznjCzlJC9djwxxIhgSjFSJbifTNmT1px8DjU2kZXz6jtioy/lLlMgo9DVpJ5b0qjhSpcjH2WYLoMm+84Sm2yFAMNshh4pWFTdPl1uIa9cExIKRINN5Qge13pabymQyOQS9co8kbJEN/nEZPcyThyFCMgDUEf2nmN9DbP1iPxrcL4heOAU/CjaiNjVo03pB6z75CY+a4Pe/nSynxL4RAq5ZFnmQE9UZTkzSNoQuJM98ZxPgL8TdHj+15GQ0FkiHBhoV/x/bImYKgBCXVumtKE/6sgbNAr9fjF7/4RcrjkMQgeuc73wkyidbgM8ftGHl2ZlkRIwPUXVuGnR9uBCCEort/OoqwJ/4NSIyALSyGHmWWqdhvQdu7k0+fKTRiqQ75HCFK1RhamzZ3zqHEgGd9ZbJiNYZUZgWqDltBMskvRIvdLsyfdwr/IJDROgyFnkbHnbVQGBJv1mps0GJH1JPw5+gAhYozJaCDGawlWHFf5887sXjRlfSpGA0Fbbkqqzn8uQijpVHeZZLriJaIlRLIUaJlLK16WY1wHXiWTyrTKuyJovuno6IjYue9jai7pkzq4W0Iz/IYeXY2qd6VBEHg6NGj+Mtf/gKOSy1smJJBNDY2hnPnzuHczxJTrFCZFSAZEmFvFLZLiS+EiUIpl+t9HAOelNI7YqhLlKg6nBva7rnE+AvzuPjzsWwPI2fQlCjBsZwkSlzZQKrI0EqjyBOl4I6s3sQWY83QSnSVKtQeLQVS8A25x/1YuCBs0GuPlgqOnwxtKtkQB4WegTKJusr299QkVQNEhyjQQQosnaHcGUJQ+Ku9UvBiLlxwwT2evHz24kU3uh8ZzahDMB/QlCrRcks1VKbU5NwLhaAjDC7KQSPXEYlc+MkIpo/JqntraX9PLUxNqQtazRy3wzEo7M0VehqUMv11RrZLboS9UZAMCZU5sXff9rofi4uLuHTpUkpjSOmvfOKJJ8AwDKxILOzf8d5atNycWlOmRNhxTwMabxAUfTyTgWUvagroq9SCBS17sVbBhjm5fmgF6hIlArZwShvdbEC1NkmaJhfDooiiVR/CyhtSzIZQjMUeN47/R59kdZTOEZ8QvYidLs3zFBvmcP6Hw/BMJR417/vdJGZ3Jb65CZrCmDwyB55O88sVu3c8sHjRBWcK6YHrkejiX+i4x/14419789aJJDk8ELCHoZYjRDJbQCnJpOpw1jJ/3ilmQDXeUJnRevmWd1UlLBSkcZqhUCjwzW9+M6Vrp9SH6IYbbgDP8+CfT0wRRl2iBBflklaWiAdzqx7eaT8iPhb6ajVCrgjCCeTmyyRH042VsPe74RzOQpFzDrL97gawYRaXfjOR7aEkRDqMIQDQ3GRGgzaCF+cFL5ZsDAn50+mMEpTvNaN8jxndPxlJu3CNQk9DU6YSm8jGS/kbhoSO1yyoENZHEFVdLsYwd0S6PkQkTWDnhxsxe8aRljYL1g4Dtr2vDse/0oewW3YkyazPtvfVgaAI9PxCzr4AgMoDFpR1mXHuP4eyPZSCR6GjoTAy8E4FwGgp6KrUYt1qOlCaGJA0mXAdoe/wFJxOJ3p6epK+dtIRolAohFdeeQWjz8VfwKWrUgOEULuTTmOIUpBou60apTtNAADPVEA2hjKEtlwFWiMXf8ZQmRgEHfm30WEHhtNy3lGfAi/Oa4s+RW4lFfvM2P+pNiRRhhkX/rkgHAOejKh4Vl9RknB/neZ3VKL0ojn+D/BAaY8ZphF9gqNLHC7Kwz7ggT9NinDOES8u/nwUEZ+8Pq2k+ooSWXBiBUFnGCpT4vV5hYpvPhi3IrBMaoS9UXiXIv9lu0xou61G8r5zKwk5I4IxRCAhgS52ikRfXx9cruTrOpP+q06cOIFAIAAz4lOFoFQkdnyoAdVpqruhVRTqrysHyRBgwxzOfncorTmm+loNdt7bKDZylRG48JMRLHYn/0AWGkojg5BLTv2IUfbynGwIrcE94cfEqwtpk5H1TAUw8fICAMDSrhfmrTQtaBMvLeDsdxPz2hqbdNDYEmg8SQATb5mFvTk9GyJKQWLnvY2wtAkG18TLC0mlAsYDG+LgGPTKdURrYMNcQqqvhU7IGYFSrqkScY/5MfnqQraHkVMwOhpv+fvtW/axS4WpN2w4+92hJYVmAvXXlYNWpUfUpvpICXZ8qCHuPTY1oQXHcXj22WeTvmbSq+JLL70Eg8EAPUxxHc8GOXQ/MiqJoMF6UCoS5V0msSlVuutYuPBSoby8jslsAKOjQdJkWqOh6UTqKBFJAV0f1CL6vw9Iet58xzcTTEs61npE/Cx8c0FRXlVqokFWWCxpIu5c9tPfHMDYVTPxXYADCJYAR/PgFOn5G9gwB99cEJFAZho/qkuUaLm5SlabW8HsSTvGX5zP9jByhqAzDIohwWjl7AtASDPWVarSGqnIN9gQh8Enp9PeBD62t9aWq1DeZUpbUGDmuA3dj4yCDcY3z2t4PXQ6HR577LGkr5n0X/Liiy/i6NGjIIitJ3FDvQYA4J0OSJq2oa1Qoe22GoAQPCgnvtqfMSls31wQA3+Ykr1YKzA2aHH4C9ugTEJ6txBRGYX7EHTmb4RISqNo/H3lGIACntTV/gsGdYkSpTuNaUuXW4tnwo/hPwnGh75Wg87310muIEQpSez/dDvKdiVWWxoPhmktGl6qAhmV1niglCQ6318Hfa2wVg3/aQaeieQV5BKBpAnoazSiEqqMAL3UG0UGosCEnDYnoNDT6Lq/BbpquedhDC7CYe60A6EM1SJ6JgM48dV+weFLAG231UBbkUCkfwu4KA/vtLCfN9ZvrZxHEAT27NmD48ePJ33NpGabcDiM119/Hf1/HN/yWG25CrvubUpPGI8A1BYFFEtek4ymHRDChC2rzC0TdIYx8eoCIn45Hx6AmOJQ7Kp7I3dVYOSuCkQIAt2EEh6Cwvj/uSLbw8oJTE1aNN5QmZWu6yRNgGN5yaNFbIjD2AtzcI7EJ6yy5xMtqHs1vnoRvyUIW6sT3AbKcskKKrBhDhzLZ7whIQD4ZoM4853BvI0kpwNKSeLw57fB0p7+OrF8IPZsKGVFQgBA2B3Bme8Oyr0gV0ApSFja9Rkt44jtuRVaGmpLep5Nc4sOO+9tFLO/NsPTG8bo6Ch8vuREvZK6c2fPnoXf74cpjvoh31wQZ78/BMegNKoUZbtN2PbeOuHcM0Gc+8FwVgQTdFVqHP78NrlZ2gpCzgimXl/MSPF2PqA0MYgG2LyPIqYSJRq5a3mjq+dZmPjlNCTZKBL6PZz8Wn9Wru0a8eHSbycAXohUtb27WrJo0dxpR9yOAO9MACFDfFHUqIaFu1YaBUtKSaLt3dVC82QeuPTbCbjiNOLSgZz+swwb4tDzyzG4JJY4z1fYMIdIICpmHRQ7PCc4ErhIfq+tUqIyK9D5/nqoLZnfk4a9UZz7wTB8s4L4zLb31aFst0mSczsGvTj7/SH44hC20XpNiEajePLJJ5O6VlIz8OnTp0HTNHTYPCVCVylYdF4pClKXHHcRXxQhd0QSrfVUCNhC6PnVWNF7/1eiLlEmpApS6CgNTMbC17nISmMIALYhjMNYPRfIRhFyYlFXGhmozIrEo+wEcfl/SxgbtUJK8xYM/GEKc7u2qC3lgfJzVqhty4v9Fcahy/5LBJ7lobIoocyBTWbZLhMO/reOrK9ruYS934OIrA4rEvZEwejktMoY1UesMLfKEcQYvvkgjv17L3yz2Y2aESSBkCuyrJwpwZQWsyFiNsVGKENaKBSKpNPmkjKIzpw5g87OTlDExuoShjoNuu5vgb4m9Q1y4w0VaHu3sLA6Br0YfnoGPJfdKAQb5GDv8+S9919Kqg5bE5bcLWQYLV0wcu+JRonWGkMAcAYqvAqNVEPKe7QVKuz5q2Yoc6AuwDnkxfkfCX2KFHoajTdUJF+/scI4otXUllEnbaUKCtfm94CMEihBENu1M0kZP+J5GBKNN1RAoafBRXmc/+Fwwj2T0oF7wo+hJ6flFOwVGBu0KNtlyvYwcoaINyqWB8gAxkZdXGlURQMPRANsVtKvVw2D4zH89IyYFdZ2W40kEvr6GjW67m+BoW7jPQQJEjU1NTh16lRS10jq7Tp9+jQWzrtQtsnk7R7348IjIynleMYaFnom/DmXTkApSJTsMMIx4EHYUxib3lQZfW42576nbKLQ0gUVIWIHhuNq2LqeMQQAEYJAZJ0d3/j/uQJ1/+f1lMeXb3BRHp7pQM55wbXlKlha9Zh4aQFcCo+va8S3nIIWixyt0wd8+wfrQZ4iMPLW6ct+t8rwuSr5scQgaQKWVj2cQ16EPdk3hGIEHWGxcF5GwNyqg6FGg/nzzmwPJScIe6Oy8MYK5Ca1q1GXKFHzlhKMPj+LiC8zCpnx4Br2inWqqTQh90wGcOGREbjHNxe7iUyQmGVmk7pGwrvXSCSCCxcubCq3rVoq/EslH3v73Q1ouK4cALDY48bcWWfS50oHtJpCyzurhPxzGQBC3rdsHC7D6Oiia7i4kTFE8DwO8gFY+PUn6mJMnQsshjD4xHTO1dw5Br049fAAokEWlJJEzZWlKaVyGWo1y7WWa9LqAGDwiWnMb18tO74yChR1ahFZSF6xjiAJ1FxZCkpJIhpgcerhAclqWqXEUKuRRQRWMPrcHM7/aCTbw8gZIr4oFHLKnMwGkDQBlVkRl/JzJpk768RijyB20/C2cmy/uyHpc8VsCtUm4iKVFRXo7++Hw5F4K4uEDaLe3l6EQqENDSJjgxb7HmyFdotcv3UHwxCi/OzCBSdsfbnbiTjkiuC1f7qY1SLcXKP2qlKUbJdeajdfURRQylyMzVLnNjKGACEUbQYLZpPGXcVmFOmq1Lnb2HnpazLUaVF92JrSRqzlXVWo2Gte/cMVhpG93wNfuZBJsF46XGCoCp4T7esFl+JCoaNRfdgKQ92SdGtu2Z8iZV0mVB8pyfYwZHKUsDcKhS776bW5Qt3VZej8QF22h5Ez+GaDuPDjkZzec9guubFwwQkAIEhhz58oukoV9j3YCmPD+lLcKq8OPM/j9dcTzzpJeDW+dOmSMKgNBBVcYz70/X4CvpmtFSFWDYQmsOcTLag6LCwI8+eccI9lpg+EjDSoS5RQGmQPFiCEhmk1VZARovWMos2MIUBIl3uG0GGO2Pz5KBqjiAB23tuI8i7z1sdmEceABye/3i8I2VAESncm7vDo/ukohp/ZIIWBINBwfTlKLhk3rAvS7R2A8ZpzawNLW1K60wiCIhByR3Dy6/1wDHgSHHlmGXpqBhd+LEdEYqjMCuy+r0lWcl0i7I2CVlNyA98lvDMBOHKg/k8mftxjfsyfcwIAqo6UYM8nWhJudeCdCaLv9xNwja0fjFD4hBqjgYGBhMeXsEE0NDQEk8kEhrg8ZEUpSYAHFi/GH9mh1YIwAxflMfnqImy9uRsVWgmtorD9rnpZVW0F/b+fxNQbtmwPIyeIdRTPZW+NVGxlDMmsAw+c/d4QFi64sj2SLYnlf1va9Gi9pXrTdIX1iKXRbhQNK+k0wjq//jm5MA2CAChNYt3XVWYFWm+phqVNSEGTutdSOshoH708gA2x8M0Fwcn3BQAQXervx2g2FrMqJuz9Hswc30Kdsogwt+hw5KFtQn/MPMDW48bkq8ttWmK2QDwsXnQDPNYX7ImQKCkpyZxB1NzcfNnPNaVKHPhsu9jpOx4YDYV9D7aKeuVzZxx5U1jK80JDQz7ZPA6ZgoZe2vxFA7lT3CglsShRvMZQAx/GbbwHRBzvS7FEiQKLobyKINp63Tj1zQFxjtbXatYVSVgPc4sOBz/bvq7E9cmvD8D6rmOX/Zz1qWB7/AqEZyxxXePRzlIYltafoCOMU98cyBsHGyAs7js+1LBhKkixEfGzGHxiGkF7fuwJ0k00KKwltCo/NrzphlZR0FbIKnMxArYwxl6YB5cHzh9AmKPnzgh1PmW7Tdj3YGtCxr6hVoMDn21fN4JssVhw8eLFhMeUsEE0ODiIyVNzl/086Axj4pWFuHoOxSzBiJ/F2F/mYM/xVIb1YEMcLv028dTAQoWgCBz+wjZYtxmyPZScILZosaHCNIiAxKS4naBwCQrwceY9FbpRZGnTo+bo1o2tc41Y3zVrpwG77m2EKs7u5K4xH0afn0PEH78BSCrD0O0eAlPqjOt4lUWBnR9phLXTsGqs+UJMlIaL5seGJhMwWipvPN7pJhoUngupmifnO9ZOA/b8VUu2h5EzBB1hTB+z5ZxITzzYBzwY+8scIv4loz+OaJFnOoCJlxfWD6L4SIyNJa5CmFSESA3dZT/nIjymXlvcsj+QyqLA/k+3wdwinGP2lANRf35uGkmGkPtGrGDitQX4FxJLbSlUYotWtMD7VMUrl+0kKPQSidUCFLJRpDIrYNykn0KuY+tx4/yPhkXv/Va9lLgIj5kTdnCRy9eH3fc1wfHsvst+TtAc1K1TIOjN3yHWqwLPA0F7GOd/OAxbT/5EhdbS/+hkSq0qCo1dH2lCzRWy0AQAsHKEaBW2S26c+e5gtoeRMzBaCqYmrShMlk9E/SxmTwnRInOLDvs/3bals41neUy9vriuAUi6lXC5Ek9HT+jWhcNhTE1NQY3lkD5JE+j6eLNo4GxE7CUO2sMY+8sc3BP5LZhAqylc8d+3wyrLpAJYejhfW0RgUTaIAIBWFn6EKBFMPAvTBpLbG1H3tBc4vCtNI8ou02/acPHn+d1HI7Zxt7Trse+TLXFFi2reUoLqK6yrfhZ0hEFqV0fa/b118PdurSAVdath/9MhhKdKVo0pXyEZQu41s4KBP0yJG6ViJ7q0llCyQQRA2ET7ZuUMnRiGOi123NMIMs97Qbon/Bj7y5zobNvKAWBu0aHr482rxBkMGiMcDgfs9sRqzBK6c4uLi+B5Hgose3oJmoB3NoDAJnm+uio1Dny2XRQgmDluB5vnnnM2zKHvdxPwTMsvJCAYxoZ6jRzOX4JSkuA5fl2PeKERT5RoJ0LoQvzGct3TK9SDCtQoKhQcg170PzYlLmCbNWcmGRIUs/r3fb+bhPEtq/O9eZYEH914IeQiwu9oQwD6Q71QVBaGmEvTjZXY9j5ZSjiGe8KfN3XF6YaL8OBYXo4QLaEwMKh/axkYrXw/AEER9MRX+8AG83xvHeJEsQzBdmjbVLwsYA/DOxtYpb7I8IKNMjo6mtC1E9q9LiwsAMAqg4gNchsWPpJLC593JoCxF+bgny8c44FneSx0uxB251eeerpQmhTYda8skRqDUlGiR68Y2MooOg4V3sTWBbB1T3tXG0MxCswo2vdgKyr25bbkdrzwUU5UFjU2arH/060bRovGX5zH+EsLq36mMjOIelY/G9odo9DuXF+COupRw/7kEYRnhfunqpvHYzsLI61q+pgNQ3+ayfYwcgZTsw4lO+TedjHYECsK9hQ7jIZC6U6TbCAuwUX5vKub3Ar/fBBjL8zDOyNE/knm8mc/aA9j8InpVUEWOixE2cfHxxO6XlIGEbNkENVdUwZz6/qpcoZ6DQ58pg1qqwLgkbfFXhtBkEKfi/VUk4qRoD2Mk9/ol0PYS1AKMu+joImymVEUIkgEtkhuXtcQWkkBGUWzpx3wFqAgi3cmgKnXbcsOsnVqLAmSQNkuo+jR2/WRRjj/vBeAEBkKjlSAZy//IL/0OlG6ADQd46At+SfGsxX+hVBcwkTFgqVdj/IlFVoZIUpE0rJBBAiNSE9+rR8BmxxBBISGpc3vrCyoPlVclMf0MRvAA2qrAgc+0wZD/fq1t+ZWHequKRM+5xSM5Gg0MRXX5CNEBKCrUF3WkyK25/FOBTD9pq3gLNYYJE2i/fZa6GvkPkQAwHM8gvZwQRm9qUDShHwvVrCTD6Ka33gu2NIYilEgRtHU64vwThfexpcNcph8bREAoK1UYe8DLVCZVzuNlCYGrbdUi/LSw8/NQtslFEeH503wnGgH618dMWK9KjiePoSIXQeCADTbxkEq8keyPF6URgbVR6xJdXAvRIafmsn7Wjsp4Vgu4UaWMsUBraGhr9Ik3MA6Xwi5I5h+0yY6jNb6V1VmhSDDTgAMBLvk3LlzCV0jYYNIqVSCAg3wQM+vxlc1xjI2arHvb9rA6GhwUR4TLy8U7KaQDXN47Z8vYjGPFY2kRF2iROMNFRs2Xyw2SIooykaLG0WJLOCgxfr3I25jKEaeG0UkQ8JQp1k3/F9IRAMsXKM+hFyrDZegPYwTX+uHc6nL/OIFN9QN8wAAZaUdlpvfAK1fbSyS6hCYMkdBGkErUZkVqL2qDIxaFlaQuRwuyhdUBCAVlAYGex5o2bS+pJhwDnlx9j+HCnbPzUWWbQqFjsa+v2lb1bNt5rgdvb8aB3iAJEhotVo4nc6ErpHQiux2u2E0GqEpVYkN8Fbimw3CdsmdN42hUoVneWywxys6GA0FU6MOJClP1oDQl6kYDSJgfaPoJUKDfuLyupKEjaEYeWwUaUoU2PWRJiGduFBYp0FryBnB0FMz4DkeKjODHffUQ2EQNvphj2DY0GoKtVeXwnuhAVyIBs8DlEZIgWH9Sjhf6ALrVYGgeOj394PSXZ5m+Ghn/vVz2gjXqA/H/q0XIbk2FQBQst2IHfc0ZHsYOQPP8nKEaAk2wsE57BUb1soUD2yYg+2SG765y9cDQ60G6hIldDodQqHEVI8TMohCoRBUKhUq91vQcks1QAhRoa77m0EpSUQDLEaemQVbBAYRQQId763dMJ+x2HCP+3HmO4NiY61ih6BIcEVqEAHxKc8lbQzFyFOjyDcfwqlv9hdVzy5KQYJn+VUKSI1vr8COe+pRsceM4HAlnC/sge/scqNFgokCJAc+IhdNFyvRAIuArXjek63gojxIqrAjy/ES22+uJ+hVjJR0GnDwbztAFIFTmg1zGHlmFtEAC0pJouv+ZhgbtQABtNxSjcr9FqjVakQiiTmWEorLh0IhKJVKDD89I/RKWGqG55sNFmWDUpImQRRqwqZMSpBk8UaIYtT9n9fF5qq38B50Q4nhpShRysZQjMO7gGPnpTlXhuBZvugKgX1zIVz8haD4w2go1F9XjoULLjiGPHAO+fDu7nlEZi3gCQ6e4+3Q7hoGqYrAdHV+fbepQqsodH6gDiPPz8GT5736pMA57IVzWKK5ogDgWTllToQA1BYFwp5oUTjht8K/GMLMcRv4daL1BQ0hZKcF7WGAB7p/OoqwOwKuloPNllg7hoRcDcFgEAzDQF+jRss7q0BQBEKuCAYen8p77fNE4Tmg5xdjcI36sj2UnMDUrMOBz7SDVsveXEBImSvmCFGMWKRoEAo4ITwbkhlDMfIsUqQpE+rtCq6GKM6FWGVVwFCjhn8hCOeQMH8SBKCotIMx+hFZNIL1xBd5L6R0OUAQpwnYwuAixbWebgRJE2B0cj1VDI7lQcoGEQAh6rzvwTaYmtdXOi42/PMhTLyyUHRlHGyQw8DjUwi5IiAoAi3vqIS+Rg2SJBEIJCZclNCKbLPZ4HQ6obIoQVAEaA21Sg2HZMhl7wWx1KAv9k+KWLUBSOxYYpVXZNWxJLGqESBJE6tybBM9NqZcQZCI41gi4WPFvxUr/9Yt7mEixyZzDyW43yFnGHNnHQCJFfcwPfd77X2R/H5L8MwSFLByZtr0Hqb4fCd2DxM5Nr57uNWxFM+jh1DCTlBoeM4DgojdFx4UxYv3iSB4kNTyPSMpHgQZ57Fv2Zk3cwSjpWFq0oFSFNccEcM/F8KZ7w0h4mOh0NO44r9vw8Kvr0LUqwCpDsP09hOgTF7RvuKjJPjo8vm4CLUsy11g94rneAw9NS22L1j9vBXffFq224SDn21P7Hkr4PkUxOr9bjHvuQDg/I+G4Rr1FeWea+09ZLQUDPWaopsjVt5DWkOBoAioLApwHAeFIrE63YQMop6eHpAkCc+kHxd/Pobat5Ri98eaxd/ve7AVtVcKHjtdpRpHHuoUG3XWXVOGPZ9YPrbr/mbUv1XQDNeUKHHkoU7oqwW1kJorSrD/b1rFY3d9pAmNN1QAEGRJjzzUKapLVB604MDn2sVjt9/TgOZ3VgEAaA2FIw91wtKqBwCU7zHh8P+3TTx22/vq0PbuGuFGMASOPNQJa6fQBK5kuxFHHuoUv4y222vQcedyB/EjD3XiLf9rO8r3mGFpM+DIQ51ig7CWd1Vj+10N4rEH/7YDFfvNAABTkw5HHuoUUg4BNN1UiZ0fbhSPPfDpNlQfsQIADDUaHHmoUyy+briuHLvvW76He/+6BbVXCfdbW67CkYc6oS0X5GprryrF3r9ezsfffV8zGq4rByDouR95qBOGGsELW33EigOfbhOP3fnhRjTdVAkAUOhpHHmoE6YmwQtTsd+Mg3/bsXy/72pAy7uqEbCFMX3MhsP/bRssbQYAQNluE4481Cke23FnHdpuF+43QQn3u2S7cL+tncL9jr04be+uWdWx/fD/tw3le0wAAEurXrjfGuF+N7+zCttXFN4e+Fw7Kg9aAADGBi2OPNQp9otqvKECuz7SJB67/29aUXOF0NRRX730zJYIz2z9W8vQdf/y/d7ziWZR515TKjyzukrhma29shT7Hlx+Zk2NOqitwnlUZuF+G+uEZ7bqsBX7P7N8v3fc04jmdwj3m9EJ99vcsnS/95lx6PPL97vzA/VovaUagDA5HHmoE5YO4X6X7ly630sTRvsdtWi/o1b4ByE8s6U7l+5hh/DMxiau1luq0fmBevE6hz7fITYONbcIz2zMU9v8jkrsuGf5md3/mTZUHRaeWWOdcL9jcvyN11fg5rkFlPBRNP3Zg31X8qhtEpZ0nQE48jYemiUHX10Ljz1XLC/3XUd41LcI/9ZohWP1Sz0aaxqB/UeXj911kEfjh7YDyK05omyph8rKOcI14oNvNoiOO5aPLZg5gueFOWLl/f5gPVpuXrrfKgpH/m6beL/rri1b6qtCwdct/I2RWStsv78K/FJzPc/JdrheXo4C2v7wFgSGqvBoZ2l+3yusP5+23VYDkiaEe/VQZ1HPp45BL3p+NYbdH2tG4/XCHqCY51ONVQHziohIse25Vs2nf9cJ/3wI0QBblHsuAKvmCEubAbvubSq6OUK83x9rRu1bSnHx52PwTAZAURTGxsaQCASfQMLhrbfeipMnT+IturdDbVHCNe4Do6FF+VRLmx5BRxj+hRBoFQVTkxaOIS/YEAdNmRJKAwPHoHCsuUWHsCcK31wQlJKEuVkH54gP0QALdYkSaosC9n6h8Z6pSYdIIArfTBAkQ8DSqodrzIeIj4XaqoCmVAXbJTcA4ctgwxy80wEQFAFrux7uCT/CnqigU16pgm1JKttQrwHP8vBMBgACKNlmgGcygJA7AqWRgb5ajcVeN8AD+lpB3909LuR1l3QaoDQrYL/kBhvmYKjVwNbnAc/y0FerQTKkmE5n3WaAb07IcWS0NIz1Gtj7PeCiPHSVKtBqCs5h4VhLux4BWxiBxRBoDQVTgxaOQS/YMAdtuQqMbvl+m1v1CLnC8M+HQKlImJt0cAx7wQaX7rdRAcfA0j1s1iHiXbrfChLmFh2coz5E/Uv326qAvS92v7WIBlh4Z4IgaQKWNj1cY35EfFGoLApoy1Ww9S7fby7CIWALQ12igNLIwD0u3G+liYG+Si1KkxvqNOB5CLnxsfs9FUDIFYHSIKRiive7Rg2CIuAeE+63tdMA30wQQUcYCj296n7rqtSgFCvud4cB/oUgArYwGC0FY70W9gEPuAgPbaUKjJoW89ItbXoE7Ev3W03B1Lj8zGrLVVDo6VXPbMgdEe537Jkd9iEaZKEpVUJlXn5md3y4ARRN4twPhsX77Rr1IeIXnll1iVK838ZGLdiQ8MzG7rd73I+wNypq64v3u14LjuXgmQyAIIW/1T0ZQNgdufx+LylBuieWn1nPdAAhZwQKAwNDjRq2S27wnHC/SYqEa2zFMzu7dL91NAx1K57ZKjUoJQnXyIpndjEk3G8NBePKZ7ZCeGZ33NWA/gsEohEg6Af8PgI0w8NkARw2gI0S0Oh4KFWAY1GYoM0lPMIhwOchQNE8zFbAaQeiEQJqLQ+1BrAvCMearDwiEcD37IWcmiPE+73mmS3kOeIXvUOYt5mwrWkCADA6VQ6aZlFTvogoS6JvtAa15Ysw6Py4NFKF3z57LXgeuPjLMTgHvEV1r9bOp6YWHXbc1YBLv5uArde96tks5vnU1KxDxBeFbzZY1PPp7vuawIY5dD8yKt7vYtpzrZxPjQ1aKE0KLF50gVFTRTNHxPZcnqnV95uNcNBVqcGoqOKdI/xRGOu0CNpDeDP0AsrLy/Hmm28iXhIyiD75yU/i+eefxz7VUTTdWInT3x5ExFvYfSFk4sPaacC2O+vwxhd7wIbk/Pe222ug0NHiwlXMOD90GHqGQ4AlobuUxkLxPBFXMDXp0HJLFc5+Z6jgJGOfmT675TFunxpvnO3E2w6fBkXx+PmT1+DkCwb0/HIcBAk0XF+BqdcWES7GtYUAzC16+GYDojR5MaMpVcJQp8HsKUe2h5IT7PhQA8KeKPofncz2ULIOraaw75Ot6H9sUtxAyxQ3jI7G3gdaMPz0NN5w/wXNzc14/vnn4/58QilzKpUKBEFg4YILJ7/ej4g3CpImYO00JDzwQsDaYYDSwGx9YBHgHPbizHcGZbWXGBxkBUIRAp4IhShHwNmm3frwZMgTYwgAQq4w5s86i1Z0w+PToG+0FjOLFgRDDCha0GOglCS0FWpYOwxQFOu8ygOOAY9sDC1hqNOg8e0V2R5GzkAQRNEVzW9ENMDizf93STaGltBVqoR3pQi3HSWdBpA0gYg3ipNf78fCBTc4jgPDJLaOJGwQhUIhVB60iHm31g4D2m+rEfMFiwWCIrDtfXUwNKRpg5dnsEFOaJIlT9YAIEhfFuHEtBbnh44AANpMIVhVwiZPcqMoj4whAAjYwhh/cb7glMQ2iw6FwjTevNAOngeqy2z45Psfx4X+Jvzg0ZtE8YSujzejrMuEU98YgHdaUAeqOmRdXVRe4FAqEhX7LbKy2hKzpxx44197sz2M3IEA5EVWZj0UBgbmVn3ROWKVRgZtt9XAulT713pLNSoPWhCJRNIrqqBUKhEKhRByReBfDAEEsNDtwqmHBxByRQACYiFYocOzPI79ey8WL7qyPZScQGVWoP66clCq4tm8bAqPomiQthkxYwgAyjRRaOhlA0AyoyjPjCFAUOjRVaoKT3Z7E6bmS/DiiS4sOoVFi6I4XLm3G+84+iZi6/fgk9OYeHkBPCds+NQlStRdWwZ9jTpbw844Sj2DphsroSoyB6NMfBAkAa6w/ChJQ6sp7L6vCfra+CT6Cx17nwenHx4Q589Cx9SkAwgg5Irg1MMDWOh2AYTQjynkiiASiUCtTmztSGhF1mq18Hq9sPd5MP7CvOioCDmFbrDWDgO2310vKnQUOtEAW/TNN2MwWgolnUbQCrkPEQBwLFfU/SJWGkMA8Oq0FhPe1fNCykZRHhpDgOA86Lq/BdpyZbaHklY4jkDfqKBw1FQzi7/54KMoNbvF3+u1ATRWz4n/do36VtWkBhZDOPm1/lXFz4UedfUvhPD6P1+EZyqx/hmFStluE9puq8n2MHIGiiEKLrKcLDzPwzsTBFtgdZgyW6O2KrD97npY2wUHW8wGAQ+MvzAPe58HwWAQWm1ie4yEDKKSkhJ4PB5wPAsQgvyicUXKmK3XjbPfHRK7sOuqCtezR1AE2m6rKSrv5WZ4JgM49Y1+hNyRbA8lJ2DDPMgiSvVZyVpjaNNjkzWK8tQYAoCAPYwz3x0Ue80UAuuly/WPVeO3z16FRYewaGlUwroQDDH4z9+9A5NzJZd9Rl+tRtfHm0EphXcnGhA2O+oSJba9tw6WNn2a/gKZXISLcAUnPJIKJEPKBtESbJDD0B+n4V8IZXsoOYG5VY/9n2pb1R+o0IjZFAFbGGe/OyQqHQKC+l7lQYvQq4vn4ff7UVqaWOPuhHZssZOHEQJ4oKTTCF31aoPANycs8qZmHbo+3gxthSqhAeULBAEoDUxRpb3IxA8X4UAV4bOxkTG0vyyAdvP6C1fCRlEeG0OAkG7rmw2CixZedJnngZkFoR9Fe8Mk/urOJ1GyIioEAOEIA4vRDaPOd9nng64IAvbQZXVDgcUQTn97UJSpLdR1xdKux/a76rc+sEhY7HFj+E8z2R5GziAYRIU3byQDQRFQGhix0WixE3KFsdDtQvy60fmFtkKFro83w7TUhytma8TQVatR0mkEeIBjouA4DmVlZQldI3mDCED3I6OYem1x3WOdQ15c+MmI6AVVlxRWeggX5XHhJyNi74BiR21VYO8nW6EpK6zvOVnYMAdSUbiemkRZCFBwhTaebuI2ivLcGIpRc2VJQdZbXhqpxfd/fxMWHQYQBFalyMUw6Px4z9tehV57eVpYxBtF3+8m11VZCywK647aqkDX/c1iEW0hwUX54pQb3wBKsaJTvQxIhgArR4gAALoKFQ58tl1sgF7s+OdDGPvLXMGVccRsB99sEBd+MiL2hFrL1GuLYpsTbknAqaIiMYXKpAyiyJJBFCvesnYY1lUCijVt0teose+TrTDUycVvhUo0xMHe75F7EC1RjBGizVLlxjwKzPo3LxTf0igqEGMIEHrNxDrKFwIen5Ap0N4wibve+efLokIx+kZrMDy59SJlatJumB4XsIVx8WejsPUJ1ygkRTbnkBcDf5jK9jByhvb31KLjjtpsDyNnoOSUORH/YgjdPxtF0Cmn6QNLbQvKVQVVZ2mo02DfJ1uhX8pEi9kUK6EUJKzbBOdYzCbh1IJBVFdXl9D1UooQAcJi1HZ7jTig9fBMBtDzqzGx43AhRIsoJYkjD3UKhb4yiHijGH1uVlAblBEiRDRZUJPTZmxVN6SkOOiYrWsBnG3a9Q2jAjKGAODCj0cw/aYt28OQhK+/vohv/upW2Fx6kCSPpprZDY8939+Is33NW56zvMuMst2mDX/vHPYBPKCyKLD/U20FU1vEaCg5BWgFE68uYPL19bNQihGSJgsy1TYZ2BAH55BXNhCXMDXpsOcTLaCV+S9sFbMR3ON+9PxybFORGWunAW231axyjHFKYR/a0NCQ0HUTVpmzWCwIYrnbfMQbxelvDWD+nHPTz8Zyv1UWBfY+0LKpAZUPcFEeY3+Zg39eLuiLoS5Rglbl/8soBbG0hmLooRKPiEKLMYy9ZfGLCKwyigrMGCoUYsW7TTUzuPGKk7AYPFt+5o7rX8HNVx3b8riBJ6Zw6bcTWx4XtIcx/KcZOJbSKPK9oHj73Q1oekdVtoeRM3gm/PBM+Lc+sAiIra2yyISA2qpA1SGrnFK5hHPEi7PfG0Q0lN/Ph3WbAXsfaIHKIqjS2vs3X1fmzzpx+uGBVQqlISoAhmFQVZXYXJrwbq25uRl+rA5bxSTvtOVbF7oG7WH0/noc9qV0h3yV6OZZHtNv2hB0hLM9lJyAIIF9n2yVI2ZLxNSxaLVsIALAsFuBU/OJFcI727QFawyV7TZh7ydbsz2MpDE167DvU21QGBgwNIs92waxWT9AngdsLj0IAlDEESmMFY7HFsXNmDvjAM/yUBgY7PtUm1h0m48MPz2D2RP2bA8jZyjbbSqo1NJUiK0lsbWl2NGUqVB/Xfmm804xwQY5eGeCedu3N2YL2Pvc6P31OIL2rffWMZtjbWaSn/OipKQEJJmYiZOwQdTS0oIALi9q0lWpsecTLTDWb10cbe/3gOeE9ICuv2pBxX5LosPIOgRJwNSsA6ORN7wAwHPAuR8Owz6wtZe4GIj6hUWL0RROfcN6xCuxHYiS8EUSe1cW9vEY+NrhZIaV8/gXQ1i44MzblErPlB9zZxyI+uMTABgYr8a3fnULFhzxZwaoS5TY92ArzK3xGThRfxRzZxzwTOVvRME97r9MPamYaX5HFQxx7CmKAXpprxGJ850rdGy9brzxLz1yCuESaqsCddeU5aXyccV+C7rubwGjocBzW0eFAEFme88nWtZt7+MNuxOODgFJRog0VZd77bzTAVz8+ShcY/GrrkX8LHp/PS6m26lLlHmzQaBVJHbc3QB9jSwUEcMz4RcNgWInIkeIVqGhOXSYQ6DJ+BavhX3Lxw187XDBGUbeqQAmXl7IK2+eoU6DrvubQalIsEEO4y/Mx70ZaaqZwZ1vf3ld1bmNCCyGcOk342Jj1q3gojzGX5gHG+RAqyh03d+cV0I+KrMClQctebmhSRdv/GsP5k7LETMAYOQIkcwmKAwMyrvMIJk82UQTy7VC8+ec6P3NOCIJ7B9doz5c/PkovNOX1xf5oz7U1yfeviApg2h6ehosf/nAHYNC5IjRxr8JjBXFkTSBnR9uRN01iemGZ4tIgMXxr/TBOby+BGAxUrHPnNfpKlIS85wXegTR9MgbcR3HkDwqtREo4jCIVhpDKyk0o0hboYorJSxXCDoj8M+HQKzIUVmvIetaeB6gKQ4djVvXBK3FdsmTnIwsIcjQ5pMClbZChYbrKlCwjUSShJdr5gHIKXNrqTxoQdu7q7M9jJzBNeLDia/25Y1Tuu6aMuz8cCNImgAX4TaU016PmI0RszlWwhM87HY7WlsTT0lP2CBqa2sDAPixfkjLWK/Fgc+0J9yPhovy6PnlGGaOC8pLmjKl2K08J+GBsDsih2tXULLdCENt/nhk0wkX5cFGuIJPmQPiM4pcYQovTOrgj6b2TheSUdT+nlpUHbRmexiboi1XoeO9tSBpAmF3BP2PTSa8Ifvd80dx/EL7hr9/pWdzT17lQQvaE5RejgZY9D82ibA7ApIm0PHe2rhqXLOJrdeNN74opwDFMNRqsP2u+tzeB2QQWk2BjXDy87FE1M8i5JbTB/MJSkmKtsHMcRt6fjmW8POsLVfhwGfaNyzP4YwhcByHHTt2JDy+hGeanTt3giAIeOBc9/fuCR+Gn5lFYDFxsQHvdAARn7DYtt9Wg+Z35q7aDq2h0HJzVd6KQqSD7kdGMf7ifLaHkTNE/WzRpMzFGynaio2iQysplBS6nl+MYfTPc9kexqbwHA9GQyf9HPM8YDW5YdCtX9dz6O8e2PIcYXcEAVvyap60mgKjocUeFTlNHgwxU/C84FSSZZUFGA0tR4dWsNDtwthfcnv+zCT6GjX2PNCS033Zmt9ZhfbbagAAER+7brrbVvgXQhh+ZhbuifVTqYMaIVhz5ZVXJnxugucTj8+3t7cj0M+hneja9DhKQYINJzeZKfQ0CJJAyBWBplQJLsrnlKKbwsBg23trMfjHafhm5CJYmcvpur8ZnukAhp6czvZQMsZmIgtHKvyY89MYdq/vRIjHGFpL66e3lnCWSQy1VYHKQ1YM/2lmyw16PClz67HSENpf5gcz6UDvr8aTOldCEEDTTZWYedOGgC131hNAmC8mXlmArTf+OiuZ4qHlXVXQlqtw7vvD2R5KTkBrKHARTlSkLHbUVgUq9lsw8fJCThnOKrMCJE3AvxCC0siA53iEPclF9uKxKeZqhzDhHoHdbl+V3h0PScWi9+7dCw8cmx6jr1YnlToXI+yJilJ69W8tR9uSVZkrhN0RnPv+sGwMraDmylK5q/gKQu4IlPrc9dakg80iRXMBGp7I+lNOMsYQkN/RIoWeRtttNTlXR8RoaZgatFCk6Gm0u3Q43t2OKLv8nR/6uwfiigqthaAIVB60QGVO7V4pdMLfxmhz670kaQLOES9C7vypeUo3tNykdhUKPYOwnCIm0vmBejTdlLtZRJkmYAtj5JnZnDKGAKDtthrUX1sOQJDHTtYYiqXK6asvV5VbiTNsR1NTU8LGEAAktSrs2bMHTz75JHgvv+FFvbNBTB1bRNCR+gTf9/sJcQFTWRRQWxTrFlPJZJeALYQkAo4FS9gdgb4Ia6pMj7yxbqRo2CVdZGgtA187nHfRIjbEQWVR5ERapdLIoGy3CRMvL8A97sfpbw+mnL41NlOON8524tM/vxYcn7ryUc1bSsFFUssUCHuiq/622qtKMX/OeVkfi0zDRXmMPien/6xk23vrEHJF0P/oZLaHkhMoDUxCKr6Fzuizs0lnIBUiBEVAaWQQckWSE6KREHOrDgFbGEF7GH2/n0DEl7ohH7CHMXVsEd7ZjYMQPM/D7lnEtTuuTuoaSRtEXq8XfnihxfqNOHmWF2RlIXxRqXxBXIQXm7+W7TahbKcJpx4eyOqXrq1QYcfdDbjwkxH4F5LPby8k5FSP1YTcUZTomWwPIyusZxQxJA8dw8IRSo93PhYpyhfDiA1zOP+D3Eh/0VWqUb7XjNlTDmHxSmFqXRkBIgleEmOIZ3mc+ka/NAXlS6dgtDTK95rhnw9l3SDSVakRckdWdVsvdsb+PAcuKm94Yyj0dNLe9ULEPZG//cbSgaZEiT2faMHZ7w0KDVqzBEERaH5HFebPOzH+wry4d0/1nFyEE22KjeD1Efg8Phw6dCip6yS1Mzl48CBIkoSTW9zQIIqhKVVi+z0N6P31OLxTiRdQrWX8hXnMnLCDZ3kwGgqVB6yYfH0h43mkEW8UU8dsCEtg+RYKJE1AaVIIBdByoAhhdwSMlk7ZIZCvrDWKyjRR7CkN4qlRnbhJliI6tJZ8ixYxWloSD1ri16VgaTdg7rQDtktuOAY9CRscG6W/aRkWvggpiTEUIzY2tVUhSf1PxBfF6W8OiOct32uGvc8tCvtkkvbba+AY8gp1WzIA5A3vSgiKAKOhEfbIKZUAQJAEKg9YYOtzS7LhLgQC9jDO/3g4K7WRJEOg5opSzJywIeJnce4Hw5I5d3TVamx7Xx0u/nR0y+BDwOgCPMANN9yQ1LWSMoiMRiO6urowc3oR1WjcfIC2EObPORG0S/clxW60vlaD8r1mTB+3gYtkdhELe6OYfHVza7XYMDZqsf2DDTj+5UuyJwtAaGnxUhqYnBIEySQrjaJ5P40XJrWIiX2lwxiK0f+D/Sl9vuNTvRv+jvNJl7ZibtVl7Z2xdhhQd005bL1uRAPsKmMoXrGEQ393eWokTfA4WuVHn0OJkQ0ENJKl+ogVtVeX4cRX+sCGUo8exP5mWk2Jee5zpzevj00H5380ItfLrEChp2HdZsD8Oack33O+o1iqRZVrzAQYDYX668rhXwzJBtESXISDeyw7TgSSJlG+1wzvbAD2Po+kke6gPYz5c864lEadpA3l5eVobm5O6lpJ565cc801+K/F/wI/vnEdESA0VRtbkpYlGULSSI69zwPHYD94lgfJkGh9VxXGXpjPyOaTVlHQlCnhmQoUpfd/PTwTAZz/4XBC3YYLmbBbNoiAZaEF54eOIMKlLzKUKUjt+v0PgMSNJfe4H5d+O45oMPl3hmrZ3Cm16lgGMJRTcEyy+PHjjyIYUkD9t8k9mxtFh6I8cHxWDe8GAhqpMH/OCc9UQPJNcjTA4vTDA+L3YGnXwzXqy9hmPBsRwlxGU6pE4/UVWOx2QV5NAJVJcCxkO7UzVwh7o3jjX3qyPYycglKQqDhgga3HnZH9hsqsQN21ZRh8YgrRAIuTX++XfC9MMgSiAVa0IbbCHlrAnj17kr9esh+8+uqrMT4+jiDis0gpFYm9D7SibLcp2UuuS+wLUBoZaEqVGSvq19eosesjTWByoCA6V4gGWbgn/LKBuERs8VKai7OOaC2mR95AszGESm16F3Vel9rmcrPokNSwIQ6LPe6kHUWJGEMAUN7KoPmQEhQNEASgVkm9cPIACNhDNMKc9AZRxM/CPZ4eL2jMGKIUJFpvqUbFPktarrOWhreVo2J/Zq6VLziHfXjjX3tk59oSKosCPMfL0RCZDRHS1kpSVuKMF57noS1VQmkUrif1vq+sy4S9D7SCUsW3jnCqMObm5nDttdcmfc2kV6yjR4+CIAg4EF/aGBvkMHPSnjaVlMBiCGe+OyRMGASw6yONKOk0pOVaAOAa8+HUN/vlGqI1VF9RAt0WsojFAhflEXSFoc4xWeVsUjI1D9Snz+ueqjGUCsmm0qmtCjRcXw5IV26zCpIGDGXCVD/TG8H5pwJg03SbGgwR7C8LIN1FhNveV4fKg+kxItgwhzPfGcT0sUUAgKFeA0qRvnw2giLkdLl14OVMORGVWYGQO5IfzYUzgLVDj+13N2R7GDlFxMfizS9dgnM4fQrMJZ0G7PxII0AAIWcEZ747hMBiekTFXKM+zJy0gw3GNxEErIKo17vf/e6kr5n0NGw2m9HV1QU75uP+zNTriwg5IyAoAiSdptUfQnG/dzaIwFLYkFJKv9pwEV4oXpPnp1VU7DVDV6HK9jByhqA9DJUluV5chUjf7ycR+LvTaTl3No2hVKBVFEq2G6E0pieSWL2dQeuVSpAUwPNAOMDjqZcfTcu1AlEC7jCJtFl3S/jmgmlNHwp7ouA5YS3puKMWNVeWpO1aI8/MYua4PW3nz0e2392A8r3mbA8jZ1CbFZLWYec7bJiX66kySGwPHXSE4ZsNpn3/TlAEQs4Ipl5fjPtzTmoBZWVlaGtrS/7aSX8SwM0334yQ2QMuQVfOjnsa0HhjZSqX3hQuwmP4TzNi09Rt76tD6y3Vkl5DX6NG49srJD1nIXDqmwOYPZX5ouRcJWCXI0Tr0frpY5IqwUllDGUyXS6GZyqAk1/tTzgdZrN0OYoBtBZhep+6GEH3M0FwGcg+mvMz6Hem3wEw/uI87H2etF+Hi/I494NhTL4qLMy6KrWk0SJNmRIElV7jMR/xzQbkepkVqCwK0cErAziHvRh8fCrbw8gtCGD3x5pgbtVJetrWW6qx7X11AADvTBDDf5pJq6pz442V2HFPQ0Kf4Xkek/ZxHD16NKVrpzSz33LLLXA4HHDBltDnpo/ZMHsycx6xiVcWMHdO2KQrdDSUhtQ9sUoDA1OTtA+eTOEhRIhkgyiGpkyJIw91QrsURcwneezNkEJ5TspIdv0eBdquVAIEwEWBkC/doWweraYQVFTm8pwUehq1V5em/TohZ0RoAEkA7e+pRcP10jnCtt/dgPq3lkl2vkJh9Pk5OIfk5usxVBY5QrQSRkfLjoS18IBvPohoIHXPl9LAQKETNNfmzjkw8UrmFJVnT9oxfSwxmyJS4oPH48Gdd96Z0rVTWoH37t2LqqoqLGA6oc/ZLrnhmw0CBNKWJrIS14hPlCOsvboUOz6cWCHyeiz2uHHmO4Mpn6fQqD5iRef767I9jJwhYAuBVlJgtLL4BgAEHRGMvzSP8ApZzlSNonyODsVQlyhx6PMdMNRpkj4HxQBqo7BJmDgfxsU/BzOW0qtleDQaIlDRmcshVhoZVB20Zs7hwAPdj4xg/EVB8UhTqkzZiO3+yYicLrcGpZGRxGlZKDAaCrSSKmql0rVs/2A9mm6UM3TWMvjENDyTqff73HlvI2qvEpxN7jE/XCPpqf1fScwW8M0GYbvkTuizLu0CNBpNSvVDQIoGEUmSuPnmm8E0c0mpu9W/tRw7723MqKU/+twc+n43AUBQvqs+Yk1rPmSxEbCF4ZbghSwUYl49tVWuIwKEXglTry9e1qcg2RS6fK0bWktgMYThP83An0KBatMhJVquEJ6zSBAIpz0qtIwvQuL5CS2cocwZ/p7JAE58pS+jnvOQKyI2bm27rQYtN6eWih2wheXUsDXUXFmC7XfXZ3sYOYOmVIimb9WUspgY+tMMZk7IjoS1MBoqblW2lZA0geojVvGzl/5rAiPPxSd1LQUERWDnvY2ov648qc/b2Dns378fSmVq+6yUczRuueUWDA0NwYfE87lnjtsw+MRURmWa2TAH77SwYTfWa1FztDQpL1/t0VLs+FCDxKPLf+z9Hrlh7QoCtjA4loemTBaaiKEyK1Cy3bju7xIxinLFGJKqUevsKQeiccoMx+qHKAWg1AkOnfEzYfS9lPlNk5rmQBE8OD45xxIzmXzNIRflQSnIjGQarKXnV+MY/fMsAEBpYhLaiBAUge13N0BXJStyrmX8hXn0/W4y28PIGTRlSnBRDkG7bBDF8Ez44Z+X78dadn20CbVXJp5GTCkp1B4tg7FO6LHnnQ6Ai2Qu/ZlneQw+MYWZNxNLlQMAzhDG5ORkytEhQAKD6LrrroPRaMQcJhL+bNgThXNY2EwY6zdudpgu7H0enPxqPyI+Vlig7qqHvja+lBXPdCDhsF4xQJBCKgnJyDqyAMBzPAKLIWjL5AhRDFOTFq23Vm8YGc5GXVE20+VWUnO0FOZWfdzHt12pQtNB4dkK+XiE/Vs7l6RWmNtpDeJAeXJR4VjT3lTY9v46NL+zKuXzJErYHRGFMFrfVY2OO+JPFWa0NHiOT6khb6ES8bPwzQWzPYycQVOmQmAxJMuQL8HoaFQdtoKWe0BexsDjU5g9HZ+DSV+rwfa76kGQBCK+KE58tQ/2/vQL1awltvd3DvtWpdLHi9M8B4ZhcO+996Y8lpR3rSqVCnfccQdmMZ50U1R9rQY7721MKX8+WdiwMMvQKgo8D7EgbSslIeeQV879XgeFgcHev26FIU7DshjwzQflCNEK5s85cezfeuUGvutgqNFAU7J5TYxCR0OhFozJ0VMhDL2RXU/p+UUVeuzZM/hHnp3F4JOJ1bFKTf9jkxh5ZgaAIPYQK0jeiLA7gp5fjMmF8mvQVqjQdGNlWvs+5RuaMiV8cjRERG1RoP6t5aBkp+tluMf9W84psXcrGmDB8xANy9heOJMY6oS9v74muUg5z/MYcw3i8OHDMJtTl+mX5Im65557EIAvYbW5GJ4JP879YChtHcjjIeKLoucXY2KTqR0fathUTUhtVUBpkgs/1xJyRXD+h8PwTGbvu8w1/PNBaMtlgygGF+W3NIa2qinKlXQ5qen55Rim3th8Ht1+dwPq9ghGU8DFIxzIpmHJI8iScIcT89aaHnlDkugQIBThhrPckyTsiYo1Hg1vq9i0aaTSwCS9ASh0FHoaxgYt2Aym6+Q62jIV/AtyxCyGe9yPN/6lR+5DtA7mVh0s7RtnGDRcXyFKWgcWQ+j5xRgivuytpe5xYe+frBBExOyHzWHDhz70IUnGI4lBdPToUdTV1WEG40mfI3ZDLG16qEuyn140+eoibL0uAILk5dpc76abqtDwNlnl5DJ4wD3hz4q3IVfxzYVAqygoZOUkkdqjpWi6aeteZOsZRVIbQ6mky0lVP7QSggS0lasNaHWJUvTk9T82idGT2fcY6xkWV1f7oaETe9elMoRWojIrsPevW6Apzf7aMfynGfQ/JtTA0GoKauvqiF/ZHhM6P1Avywavg2PAK6i3ysFjAIKBSKsouV5GJi5Kd5hQvnt1pERXpRaVOG29Lky+Fn+z03ShKVXC0iYYbqmo4tn009DpdLjnnnskGZckBhFJkrjrrrswh4mEm7SuggDqri1D5f7sd6i2XXKLX1TVQSva31O7qvn64BNTGH1+Nkujy22s2wyo2G/J9jByBv+84N3Tlmd/s5YrhH3RuPOFpW7imutUHS7BrnsbxdQGgiKw88MNqHlLCQAhIhLNgUwrDoAjRCEQjW9jL2VUaC0hVxjuCT94Lvs76WiQFdpKAKh5Swl2fni1kurESws494NhOWV0HeTa09XE+rX55uUIUYymmypR/9bk1MgKnf5HJ9H7mxWBCQLouKMWVQeF/ZhnMjdq3yv2mVF3TdmqPXWi8ASHUdsg3va2t6WsLhdj80TnBLj77rvxr//6r1jANMpRk9xJeKD7kVFJGktJyfAzM1AeWwR4oRi26cZKjDw7g7CnMNN2UkVfrYbKpMho891cJuSKIBpgoatQwzEgNxsEgLk4Cz9XEjOK+n+wX+rh5BRzZxxwDHqE2oHZILgoj55fjouF5jGFuWzji1A4v7h1qly6jKCV8JzQgyPXGH9xHos9bvAsD5ImoK1SwxNHnn8xoi1XYffHm3HuB0PwzcgGAADoqzSI+KOieIeM0MpCTqncGIWeRuPbKzD89CwiviguPDKSc9L+w0/PChkPKfiEwlVu+CZ9eOCBByQbl2TumM7OThw9ehQTSK1ZacwY0laqBCWqXHAY8RAnJKWJgcqiQNVhK/Q1arn4cx1Gn5/Dpf9KXHWwkPFMB2SJ3TUwOvqydKJ4aPvYSbR97KQkY8i1dDlAmAPDnih2fKgR5XuFaLl3OpBTEYVj57fBrNzccZXOiNBG6GvUqDpszeg1N4OL8mKbh4r9Fuy6txGVB+Xo+XqEPBEMPz0jp4etQFelEp8fGYHpN21JOdQKHUpBwrrNgLbbaqC2KMUa95AzkhMpqAQJtN5aLaaDpxr4GGcHUV9fj7e//e1SDA+AhAYRAHzyk5+EE4vw8q6Uz8WoaajMCpA5ZnB4pwI4959DsLTqobYqsffBVjk9TGZLPFN+uZB6De2316RUhyeVUZRLWDv0AAGwIRb++WBOSu2yLIHfvngApnUMopgRlGlDKIa+WoPSHcbccKStYeakHVPHbHAOeQFi6buWEYn6WcyetOeU4Z9tdFUaeGSDSIRkCKEeRi6/W0XFfgv2frJV6FflCOPsfw7BO5Vbzw2pIKEyK8CoU09Mi2iDGJsZlURqeyWSpcwBwG233YaKigpMzg6hA3tTOpdz2AvnsJBeRFBEzk2Sp781CIIkQJAEXKOCp9hQpxFFBYoZhYHBro80ov/RyawqB+YS3ukAFFeVQWFgsq6IlSsMPTWDaCC1tNOYUZRMGl2u9B6KoSlVouO9dej5xRgcg17Y+z0I2KT1lkvRg4iieLw6rRH3JNkyftZj+rgN00k098sEfJTH6LNC3am5VYeO99bhzLcHRXW6ooYQ6q0WLrhyLr0nWygNDBQ6Ouc2ttnEUKvBjnsacfLr/Qg6ijvt1FCrAQhBqc055AXP8nAO+XIyLZ+gCLBBDhd+PCLJ+WyWCahZNT7zmc9Icr4YkvrRFAoF7r//fsxgHFFemkmNUpDour9ZTB3JJXiOx9wZh/hiVu63oPbqsiyPKvtEvBEsdLuyKueYa3iWFjV9tRwlihFYDCHik6ZeUMo0uniQKl2OZEhU7BPmNv9CCKcfHoBjUFjQJl5egGskPWl5yeL1q2B36WB65BiMjxzLKWMIgJgaojIrwGgl9felRMU+M2qOLneQdwx4cfrhAdEYqthnLmpBAZVJgZq3lEKhz53vLNvoltYKOUK0jGcygAs/GUHQWdzGEADUXl2GyqXspKAjjLkzDvA8D0ZL55SCZcU+M7rub5asvISnWQzO9eGd73wnTCaTJOeMIfkMfP/99wMUj2mMSXI+Nsxh4YIT7rHc2RgYajXY9zetl03efb+fRN/vhNoZXbUau+9rArNFg75ChOeAsT/PIWCTJ60YEW8UIVdENojWUHO0VNKU00wbRqliqNOg8YZKsZZq7TujNDJofmeVuFnOlqDCDVVduKGqC5/7q6vxlR/cDILMnQV3LQRJYNfHmnKqlojRXN6sNfZdjJFafQAAk29JREFUq60KNN5QmZXG5LlC0BHGm1/qFR1HMoJccsgdQSRONc5igA1zQkZObiUMZQRGR2P3fU1iLXLf7ybQ9/vJVceoLQoc+m8dOZWe7xr1YeGCU7JWLN5qG0LhEP7n//yfkpxvJZLv1qurq3HnnXfisV89jhq+CaQEydyTrwq66QRJQFelSkm3XAoi/ihsve51i8LEn3E8/AshcTLT16iFwugcrAlIBwq9UAMmp8wt45nyQ19dvJue9WA0iTX0jJeVRtF66XTZTJdTWRSwtOkxvVRPcvJrfZtGykxNWqitClHKOd3cUNW14e8mXpqHrceVE/LWG8FzPHp+MSbK3ecCE68sbPi7gC286hmoOmyFvd9TXEp0BIpmbYwXQ61GbnC+hqpDVvgXQ0IdXhFAkIJh7JkMIOJbav7MC3PvevvPkCuCnl+O5YQwibDnDSJgC4t7+FTheR4Dzm7s27cPu3fvluScK0lLjP6hhx5CEH7MQlqlsapDFmy/uwG0Kj2bqHgJ2MIYfX4OXHTjTYF3JoiBP0wBEJrz7by3ERX7ikd8oWKvBR131mV7GDmFe8IPXbU6p8LZ2WbkmVlMbrJZlAKpo0appssZ6jSoOmgFpRSm382MoZArglPfGJDUGIpFezb6byMIckk1LQ8kkb3TAXBRPuviCkojI6R7b/HKx54BSkmi6qC1qKJFCj2NQ5/vgL62eP7mrSAoAvpqNVw5lBmTC1ja9EWVZVGxz4KdH24UJaoH/jC16fzLRXnY+z1Zb11Dqyhsv7sBVYek3fP6q+ywO+34+7//e0nPG4PgeT4trr53vetd+MuTL+EI3g6CkGYDSJBCr4JsL8gqiwLgkVBRn6ZMiZAzAjbMoeqwFbSSwvhL82kcZXZhNBRAEnK4fwXaShX23N+C8z8cLnrhjZWQNAFaTWWkr9fglw/HdVzb/7qw4e+SMYhKthuhMisw+apg/JE0salDZS20moKlXQ+bd+NaSsUPtn6mAlfPxX3Ntdff84kWDPxhShS7kYpt7xccJ72/Gt/iyMQwNenQems1znxnMGsbhMoDFtRcWYpT3xwAF2fvlJXPRs2VpQg6wli8mLpya67CaClU7rdi6s1FsEE5TAQITpNdH2nCme8Miv3HZIqDuqvLEA2xmD5mA6UgoTQyCQmvWDv04KK8WIuaLXSVKvjmpFNK5XkeF6yvwFpmRU9PjzQnXUPaClz++3//73jyySexgGmUoVqSc/IcRGOo9mgpnCPerKTP1b+1HIyaQvdPR+P+zMoQJkERIJaCXARJQG1VFJzSUMSfW811cwHfbBDREAtDg1Y2iFbQ+cF6sCEOvb+WdkOcCv3/tHPD31FVCXx3PA8QBLSLPBQhHvg/SoAAEl0jzHMMmgY1CByxIarIQroaD8yfd8I7mz81Ht7ZAObPO7NabzBzwo758864jSEAqwxlTalSTJEpVCI+tqCdg8lgrNciGmThy6G0T5n0oSlVImALgecAgoKYRcKGuYT3huV7LYh4o1kxiPQ1ahgbdZh8ZUHywEWo0oX5mXn8x1f/Q9LzriRtESIAuPbaa3HqxXM4iLdKFiUChIdlxz0NsPW6syKxqtDRoJSkJKIBJTuMaL+9Bie/1l9wcqONN1TANeKDvd+T7aHkDJ0frAdBErj4s9FsDyVn0FerEQmwaa+ZiDc6tBlxG0M8jytmeDiVBHqshGgYNZbak7swD+j5aMrGULIRonSSrghRNiFpAsZGraQSuNVXlEBTosTA41OSnTPbkAyJst0moeg6JEeHYmy/uwE8y6Pnl9KIUxUClQcsqNhnwZnvDGZ7KJKiNDI48Jl2XPqvibyPBFcdssK6zYDun45K3iqnt+wYlFoFBgYGQJLpyYVOa4b1//gf/wMeOLCIGUnPy7M8uh8ZEY2hWC5+pgh7o5IpqNl6XOj+6ahoDLXeWg1za2E07FOZFGkrms9XXGM+GGrVWa9tyCU8U4GCKSCnOF40frwMgUAsBp+qQ4gAogoeBAsYbEzK40yEin1mlO02ZfSaUlK225Txtg0lO4zY9t46SWWkw54Igq7l94Sk878WUV+lRtONFVmvC84pCMBQq4ZrXK4fWolvNihEfAsAc6serbcKmVMhVwQXHhmBrTd/jaHYHnz6TRu6HxmR3BgKV3gwNTeJL3zhC2kzhoA0G0TXXXcdrrnmGgyiG1IHomJ5icYGLfZ/ug3qEqWk598IWkWh6cZKqMwKSc7HcxB7jZA0sUqrXWlioDRldvMjJb2/HsfcWWe2h5FTuEd9oBQUtJXFUxgaDyWdBtS/NX09vKSIDm2FguVx6xCPRrfw7/OlBEaMy5vWpKNDKyiZUaHpghFUOPHNcLLRIW2FCrpKVVKfzQV0lWroKjI7/vmzTpz5zqCkdXELF1yYeEmoQSvbZcLeB1tBqfLbs+Ia8+HNL10quOyIVNBVqUEpqJxqNZILuCf8mHpdGrWybLByP0cQQo/NmFPDNeKTrNZGX61G1/3NGXMyqEuU2P/pNhgbtACkV4vkeR59kXNoamrCxz/+cWlPvoa0zqYEQeCLX/wifHBjBulJh/BM+TH12qLkHd03gtFSMDZq0+Kd46I8Lv12Ao4BIcWs5spS7LinQfLrZJJC8GJKiXcmgGiIhalRl+2h5BSMlpbMyZBReB4lAcHZE6YI9FoILKbR1l2oCqL3gANsBuuIhv44g+GnZzN2PakZfnoGQ09Jm6WwESRNCB3kcXlPKSlxT/gxfcwmihDo8lF5a2lpkFPlVmNu1iEaZOGVG7Kuwtyqy2sHwI57GlFzpdCc2d7vwaXfTiQkrBMvET8L70wARIb2XgFbCFOvLcIzlZ66aH+VHXOLs/jHf/zHtEaHgDQbRABw6NAh3H777RjGRXC89IX2XITH5GuLAC8o0MWs1HQRsIVx5tuDGRFBGHl6Riw0ZzQUuu5vhrY8fzy1umo1jjzUKRQGywBYjgiam2WDaCUzJ+zo+93k1gcmgVTRofXqh8r9wE2jPKxLRlGvlYBHkcaFiARCWhbg0586R9IETAX0nJqadWl30FTss2D73fWCTG4aCTrCmD4mpIzrqtXouq857Wuf1JTuNGHf37SCZGSn2UpMzTo4R7xyX6YVqK0KbP9gA3R5lFmhLVeh6/5msWyg99djGHk6/Y6ZoCOMwSem067wa2zQCvtRHph8bRFcRHrjjic4XPKdxa5du/DBD35Q8vOvJSPm9v/9v/8XYTKISQyn9TrVV5Sg7ur0pd1kGi7Ki+p0pEIQcYilFphbdTlvHAUWQhj84zTCsvT2KhyDHuhrNRmvfcsHpDae05EqpwvzaHEIk/+cBni2joAtw6+iaUGBlnNGKH3p23hbtxmw/YP1UBrzN203htLIYPsH62HdZkjrdaaP23D+RyMZlfn2TgVw4ScjcI0KKVble815kWrtnw9i7rQjLRupfIVSkjDUaIqm8Wi8BGxhnPhqHzw5rs6qLVfB3Co4kUKuCAK2MMilMgj/fCgtEaH1oNVU2ueAuqvLUH1FSVqv4amdh8PlwJe//GVJhdk2IiM7so6ODnz0ox/FCHoR4dOXRjDw+JQYUSHI9Ny8nR9uROPbK9Jy7s0IOSPo+90EokFhoa27qgyVB4SmVwSZm6lpbJjD3GlH1puE5RqOIS9IioCpMb88uummfI8ZXX/VAjrHhTiqvcCuRR40J4gnzGmJLUUTUq0fUtOrayycpWH0HnAI0aI0sXDBhTPfGSyI+o6QK4Iz3xnEwoX0FC4rDYzoLZWyiW68xIwhkiFRd1UZLHkgzOObDQrZHTIipkYdCJLIeg+ZXCTkimTMoEgEkiZEkaTKgxbUXiU45aNBFn2/m0DImfn5s+XmKrTeIk27m7XE9ta9vx5Pq+Ilz7DoWTyLq666Ctddd13arrOSjLmo/+Ef/gFKnQLDSE9DJUBQn4sGWVAKEl0fb0JZl0nya8yetsMxmH0Z6XM/HMbI80Jev7XDgIN/25GTG0ltuQqlO43ZHkZOEXJG4F8MwdSS+5uWTLLY60L3IyOIStTDSsro0D7ai50LwmI8YAb+0EwgmianS1wQQEAvpM6Z55QgJLaLYtHLQuqPFvtb0hGZrbumDO131Ip1MdmCi3A49c1+zJ5yAABqrypF3bW5lzVhadMXjJqqlJhadPAvhgrCCSElTTdWonRH7u0jGA2Fg3/bAUuHEHkeeW4W53+Y3kyoeBh/cR6DT05Lft6yLhO6Pt4ESkEiGmQlV5NbyXzFKIKhIL7xjW+k7RpryZhBVFVVhb//+7/HBAbh4Z1pvRYb5mDr86SlaevCBRecwzmg/sJDLKj1TAYw+uc5cSPZdFMljDkSfTC36NBwXeYjarmOc8gj1xGtgQ1ycI/nTkqEkuNBLqljRkkC7NJsyREE2GwaQytgQiTqe/Uwz0uXakjSBPZ9shUV+zIrVZ0JKvaZsfeTrZJH1IeemkbPL8ay2gQ2BhflwXO8+P9jXnWCJNJe2xQvJduNKM9jKfd0YW7Syely60CryJzJgjE2atF0UyUAQcBg9M9z8C7tNdkglxNzgH8hlJZWFp7JAGx9HrDh9Ba4RQ1BXJw8h7vuugu7du1K67VWktEihk9/+tPo6OhAH85KLsO9lvEX5xFYDIEgIVkPCl2VOicLV0PuCGZPCik5JE1AU6IUJRdVFgUMdZqsjW3qmA0nvtqXtevnKo5BL1QmRcbk4vMFRkNh2/vqoM2wTPJaFDyP93h8aA0L9W/dJUsNVnOMiIpDzyE77JXSRXJ4jsfYC/NwFODGzDHkxfgL86LBkCplu0xQGhlwUR5BR+710pp6fRGTrwhS3eV7TNj/qbacUOrqf3QS/Y+lR0QlX9GUKqEyK3IiAyXX6H9sKqstPAx1GqgsggoqraKgKVGKBtrsSTtC7tyL6NVeVQpzizRO1/K9ZhAkEFgMYfzFeUnOuRE8z2NIfQFmszmj0SEgwwaRQqHA17/+dTixiFlMZOSahnotmm6slESAoGK/BfVvLZdgVOmDi/Lo/ukobL1CM5TyPWa03V4j/j7Ti2E6Q6r5jGvUBzbMwtohp42sJBJgQVCr+3ElQzLpckqOx7ZQGOB5hAkCb6iVGGWka6yZLsJqwVtnXFTAPJe6gc1zwNwZR1Zy39NNyBnB3BmHJApeJE2g9upSlO0ypX6yDLDY68bQH6fFzIKqQ9aspFnH1qBcrAfJJtYOA6IhFs6RHMhAySEoFZm2mvCtrgsAIIC222tQvkdwrNt63ej+6WjOP7/Geq1oxKWCtlyFphsrYajPTDAgWG3HxOwY/umf/gl6fWb3RwSf7lDNOtxxxx144nd/xBW4ATSRfjUchY4Wlc5IhkhJ1YZWU3knEqA0MAi5I6DVFA58th0Dj01iscedses33VgJjuUw+lxyjSELlY47aqE0MTj3/eznHBcaCRlEvCCOUBmN4q2+IB7XaeChlg2y9eS2E0GKhqxrRRXWo75HD5IHRrav72GOpzFr5UELFHoGY3/O3Lu67f11AIDeX6WnV9161F9XjrA7gpkTqX03tIoShW7yCZVFgT1/1YyeX46LggyZgKQJHPxcB0b/PCvWOckI7P54M4L2UNraD+Qrze+shL5Gg7PfHcrYNUs6DWh9dw1OfLkP0SALpZEpurqulXvllXvodMLTLE6o/oym5iacOnUq7X2H1pKV2PmXv/xl0BoSg+jOyPViX2T1FSXY/bHmlHJR880YAiCGc7kIh+GnpsUFsOqwFU03pr++J2ALpbVJYb5iu+SGvloDhSH3JXIzjdLEJN1sMhFjqCsYwlUBId1shqLwW4N2lTGUT4x1eDDSuWQMJenzIYhlxaRChiCTVyLVVqiw7b11YmFxPhK0h3H8y33iWtD+nhrUXl2a9uvyHI+hp6YLMh0zFRQGBvoqNWyX5HS5tcycsGfEmdp0YwWqDlsBCBkcw09Ng4sK0dR8NYYIUlCeTBSSJrD7vmZUHxHuR6Zap8xXjcAf8OP73/9+xo0hIEsGUV1dHb74xS9iEkNw8AsZu66934PZ0/akQp21V5Wi7d01Wx+Yw3BRHnNnnYgsiS9wUV4sjiNIoOFt5WnRrp85YcfcadkbuBb7gAccy8lpc+vQfGMlGq5LT3pqSZSFmhOeewdFYZEixShROAO9DhIlnugQAGE2JwCVj0Lnm2aovMvpUPFEhwBg+k1bUURyR5+bw/SbtqQ+S9IEKCWJzOdWSAsbWs4b9EwFRBU+hZ6Grio9DTB5DljodhVkOmYqWNv14FhOrh9aB/98CM5h6Q1opYlBw9vKRQcQG+bARYR3IuJnMXfWmfNpcVux72/aUJNEryAuymP2lB32/sw9j+ESL7rHz+G+++7Dvn37MnbdlWTNF/jJT34Sb3nLW9CDk2D5zFifgcUQZo4LKRIl2w0JFZwF7WH45jPfXyKdzJ60Y+wvQoGcyqJE2S6TWLuhq1RBbU09/zSGukQJhT736zEyCRvi4Bz2wdqR3maR+cjgUzOCalcStHzu2Ia/o3ge1/sColjCGEOjR6nYsI9Qquly2SCi4OAzRBFRxl8oQzIkKg9ackbJKROQNCH8zXF6UGORXM9kQKghiKRXaSmTTB+zwdazXHe64+4GyZ8FfY0aze+oTMpjXehYOwxwjfhWGakyQjS26pBVsqi12qqAtlKoJ6eVFMp2maCyCHWXY3+ZL7g0ztHn57DQ7Yz7eHOLDiWdwn5k5rg9Y5k9PMnhYvQE6urq8NWvfjUj11yPrM1MJEnihz/8IXgViyFczPj1rduMKOmMX9d+oduFqdcLt4lcYDGE41/pg39e8BLWXVOOppuqxN+rzKkZR7s+0oiKvZaUzlGI2C65YazX5owcbq4Qdi814UtyT9byuWPifxXRKG72+kHxPFiCwFM6DS4oCzdNkWV4jHV6wDI86DABtWfrZ8vYoEHDdRVgNMXjtGA0NBquq4CxfmsVTkpJouv+5rR3Zs8FJl5ZwLkfDoOL8kLqzMebYZSgoFqhZ6ApVRWUISkFtJqCsUEL26XM1fXmC7oqNaoOW1MSQVm5d2l+RxXqrxH6cvnmgjj+lT4EFgun19paFi+6EjJqSjqNsG7LfL+nxZoxON1O/PjHP4ZSmT3l3ayIKqzkS1/6Er7whS/gAK6FkbBm7sKEkC/PczzUVgUC9vCGeffWDgN8c8GclFVNFwRFQKGlEXJHoK1QYc9fteD8j4bhHveDpImEQ8nachWCjnDa9evzDUZL4eDnOjD4x2k5rXANhnoNOu6oxZnvDiGSYA6zyqIArabgnQpAaWJQf005Rp6bQe8/HUjoPPkiqLARdb066J0MTj50acu6IkpFigpkmSQbogoxEvmbrR0GuEZ9eVs3lAyMlkLj9ZUYe3EOIWcE+mo1IgE2LT1OipWKfWY0v6MKb/7HJcmaUhcUBBKuiYztUQx1Guz6SBPOfGcQvrkglAYGYV+0qNRvS7YbwGhpMTvqMghAbVEgYAuDIAmhJU4Gb0/E6sfLtj/hwx/+MH70ox9l7sLrkHWDiGVZXHHFFeg+3otDuA4UkVkPJUkT2P+pNsyecWD8hfX11fd/qg3z55wYfym9+uu5CkkTMLfoYO/3gOeAtttqQNIELv02M9Lphc72uxtAUgQu/GQk20PJKSglidqjpZh8bTEuMROChOhJ3PZ+oei9+5HRTT+zlQBDPhpEK+uFKAUJhYHZ1AuqsiiyusHNpkEUY6N7ULLdAEpJyc6KJXZ8qAFsiEPvr4XvauU7txmGOg18s0HZIbYOO+9tBBvmkk4RlllNx5214KI8+h+dBEECljYDHIOevK8HSpa6a8qgtirR97v192v1by1DeZcZJ7/en/F7xJEcLphegVKtxMDAAFSq7PYfzLpBBACXLl3C3r17YQlUYBuR+WIqQ50G/vnQhp4/kiFAkISc37uEqUkHkiZg7/dAoaex88ONuPRfE/DNblxjRasoNLy9AjPHbZseV4yU7Tah7d01OP6VPoRzsMFbPqA0Mth9XxMu/XYC7nE/FHoaET+bsCdwpYEkRf2Q1AZRvOIIl0EA7bfXwjPlx/SxZTEBkiZw4LPtmD5mw8QrmRO4WUm2DaLaq0pRdciKE1/pu2xD0HhDBWglhYHHp7IytlyDoAgwGgphTxSGOg067qzFue8Pb6rCRZDAgc92YP6cA6PPF75gRyIoDQwOfLYdfY9OYuG8M9vDySl01Wpsu7MOF34ysml2jrZChY47anHhJyMIe6KwtOvBRfi0CDEUIrSKgqZMCfd45utlZ+sG0DvZjWeeeQbXXXddxq+/lpxIGO/o6MDXvvY13H///bDyFSgjqjN6/diDQKsp7LinASPPzsI16gNJLxlCYQ4ZjSHmOCsnGoIk4Br1IegUJqy6a8pAKUiMPDu76jNsmIWmRAkmC40Acx1brxvsOzmU7jAWdJ1aspTtNgE8ML9mw2Bs1EJfrcHkqwsIuSKYPeUQJebDnuSEWjYTZMgWASlOwgMBe+iyjQUX5dH76/GiSgdey9wZB1yjPtEYIhkC2jIVPFMBjDwzu8Wniwue5cV3K+ReeueWjKGaK0vhmfLDtaaxKM8BZ783CK6I0pTipWSHEWyEg12uH7qMqJ/FQrdzXWO78e0VYMMcxl+cR9AZhmvUJ8ro2/tkpb71MNRr4JsRorTGBi0ar69A989GEQ2wWTGGAhVOdI+dw2c/+9mcMIaALIoqrOW+++7D7bffjh6cRJDPjrITz/JCrdDS5r7mylLsfbC1qJSXEiXkimDwyeXu5xFfVNSspxQkdtzTAG2FCjwHnP/hMJzDchfutbBhDvZ+D0p3Zr6YMR8w1GmgqxFkgPW1GlGtUFOqFJQil17P8RfnZTnfTRh/YV7cLFQdsopdzN3j/qQNyEIg7IkubwgIoO7qMnS8rw4EJc/7mxFyRjD+4lIaOSEoVGlKhIJohZ6GvkYtqIMRwj2W62Mup3SHEfY+j5xKuA5BRxijz8+B53hoK1TYcU+DqIIb9kUR8QlzFhvkMPjkdN72CsoEtJrC9rsaUNZlAgAEnYJqcrZqqTh1BGdcb2D37t34f//v/2VlDOuRMwYRQRD4z//8T5RXl6Ebx5GNTD42zGHgD1MIOSMgKGIp0jFTtLmnyTBzwi5GOWgNBS7Ki6mIFfvMQiNYeZ9xGQsXnNBVqKEpzZ7CSq4y+twchp+aAUkT2H5XPUp3mQAIsqAXfjwiB28ThFKSqDxgQfM7KtF+e373VpOSbe+rQ8PbyjH+0gK6HxktqsLrlOGBCz8ewcwJIUW0dJcJ2+9qQPleM/b+dSsUupxIRskp1CVK6CrVCckiFwsEKaTSVh4SlGnZEAcuyotqrFOvLYrPmszWRAMsLvxoGIz2/2/vvuPbus9D/3/OwSZAkAS4NymJ1LSWLW/HI/GO98p07DjTmf01ddube9ubtE17m6SZtZ3GdoYdJ57x3vKQPLT3JMW99wCIjfP7A+QhaUnWIon1vF8vSiBwADwAgXPO8x3P14hiUAgMhah7pj0uibimadRn7UBVFZ5++um4LMB6NIkTCeByuXj44YcZVvppZH/8AlHAWWoj77RsfL3pO5TkVAWGQux9tFlvtbdkmyk+M5fMEhsosOQzFTiPo+RtOhis8xDyhfWTfRFTtMbF6m8tQFFjvUPb/+cQ7e/KsMJTEQlE2XZfPV2bBxlu9uJemInBmlCHgjlXck4uWZV2vJ1+oqFoSpfinQvt7/ax/X8OMdrqo2vrACu/Pp+iNbLswlQFK7IJjYUZrJe5LhAb0rXkMxWgQEaBFXetE4sz1ovtHwzGziWkF+ikaVEoXO3CvSgzro3SwxUdtHQ28fOf/5yqqqr4BXIECXcUvPDCC/n+979PA3vo1+IzAbPsvDzmXV3Cll8dxNsdKwAgJ+6nrnltNweeasXXF8RoNYyvDB1rhc1blkXtjenbWq1FNXp3DVOwPDu9e9AUOO2L1RSsygFiieKh5zuwuc0s+3yVPiRHnJpoWKN//wi9u4eZ/8kSClfmxDukuJhoce7dOUTds+307h6Oc0Spwz8QxNvtp3PDAIee72CwLnbiX7g6h9O+WJ3W+zlFhfzlOfTsHErrnsjaG8v0oeLRkEYkGMVoNeDt9LPhx/tpel3m8J2qiXNXb7efnQ8coubaUvLj1PAazB9la+sGbrrpJu688864xPBREi4hAvinf/onLr30UnazIS7ziXp3D9O2vlefF5O72Mmyz1fpY+7FSdKgd9cwYX+EsC/C/sdb8XTEpoxHI9q00srL76qmYOIkLU0OnN1bBzFnmnDVZMY7lDnlqs1k8acrYr9oMFg3iq8/1kLvHwzSt3eEsd4g2+6vlwmzM8CaY2beVcWxNXgCUbbdW0/HhtjwE1dNJpas1F20dqqKi/M57c5qFFUh6AnTv28Eo9XAvKuKT3kh6nSnqAo1N5RiL7CiRTX69o7ohTt8fUEGD47qQ10Xf7oCV22a7fNqMjE7jHRvS5Ny7uPH8IJVOSy/q1q/OuwP68U2PB0+9j/eqp8HhLxhGQ59iqyuWEOie7ETAP9giL1/bqF319CcxxLJCLHFs56amhoeeeSROX/+45GQCZHBYOBPf/oTxRVF7OR9ItrcTMa0F1pRDAr+wSA9O4b06/v2jrDjwQZ9nQqDJSHftqRgyTJRcUnBYYUq+veOcOjFztgvSqxnYOKk2F3r5Ky/W4TRatAfIxULXXi7/Yy2j1G4KrVb6xVVoea60lhBBGJDuEKesP43bX2nl5HmwxtCJsq1qyb5/p0Km9uMs9SGNj43MugJo0U1UKDyE4UUrZnDBbLnmMGiYsmOJXw9O4dper0r9trHRcNRnKU2bG5JiE6FOdOIzWWe9t5OGG726iXeVaNCyBPWl7TIme+g5rpSvWJYqipY6WK0bYyxntQbmqkaFb1RxWg1cNbfLcI9nvD6+gKxnsLxP++hFzrp3zty2P2X31WNs0xG5ZysiXNU/0CQHQ82THuPhw550KKQkW8hu9o+J/FoSpQD9s0YjUZeeOEFzObE3L8m7JmF2+3mqaeeImAZ4yDbZ/35VFOsIlr5x/KOeLunPdaTkb88m9V3L5Dy0SfJYFYpWJH90S2wGrS83aNXfvL2+Gl5p0cvzlB7YxnzPxkrza4YFPKWZenJUrLr3jZIzvxMvZJaqshd4mTBtbG/mRbVUI0KqjG2+xlu8lL3bPtxFS8pWuNi1dfmSwWwUzBY72Hb/YcOf7812PE/h2gdX4A6d4mTojNSa97HolvKmX917HPo6wsc1uMYDWtsu/+QzOs4RYHhEDt+28BY70ef8EfDGnXPtjPcFKs+qhpVVKOiJ1ILri0hd4lz1uOdS+ZMIznzHXSlSO+Q0Wogb1mWvk+ef00JtTeWARD2R2h5pwfveOI30jIWW+D+I3b1BquBsd4AobH0rXx5KkwZBlZ/Y0FsuQomz10/rOTsXMovLJiTmLpK6+nu7+Khhx6iurr62HeIk4RNiABWrVrFvffeSzuNtGuNs/Y8igrRUJTdf2yi5e2PXpxwsN5D6/peQlJC9KSM9QbY+JMDxzxQTuUfCE5bTLL++Xba3o39nez5FmpvKNNbfd2LnJSckzuzQc+h3l3DRMPa5HDBZDOepxgzDCy7vQpneayV78Or2e9/opX+k1h7Y+hQ7PtH/NeTTkq5S7L00rVHEglG9cpD9kIbmaWTrbTJ2DOnGhVKzs3Ve3waX+2i7pm2Y97PYFbJXSJl8E9G9jzHSQ8v798/wv4nWqddN7HvcJZnsOz2KowTjZFJ2iZSsCKHaFijL4nnq5Wck4t7USxRteSYqL2hDHt+bH5n2/pe6p+fXMi444N+fXTN8Qh5wtQ9046vXwpanYzQWIS29X3HbNSpf76DPX9qApjVBmVvaR97Wnby3e9+l+uvv37WnmcmJPwR7o477uArX/kK+9nGoDbzK6kvuqWcyo8XArEhOcea4BjyhuncGBtvn7PAwbIvVMkQupNwKi38Yz0BfaiBp9PPB/9vn178wpZriVWxG7fq6/P1lhKDVcWWa0noA2kkGKV3z3AsIUrgOCdM7emrvrKIxbeVA7FF9QIjIf371L9vhLpn2o/4GCfC1x+ke+vgYQmWODZzppGa60qOe45a8xvdHHw6ljzkzHew5ru1mJ3JMb9o4qRZ06BotUtP7Lzd/uNac8lVk0nNdSUp11M7FyouLqD03JlplKp7pp3+fbGGEy2iERgJ6esZLb6tguori/Rtk2LelxKbR9O3Zzix1x5SYsfSieqT+cuzWfX1+frNmSU2bO5YAuTtih2DPZ2xY/DU4/PJcJZnyAiAE2SwqCz7QhU5C2LD0Ds29OvrNB2NFtFi8+QVWPr5SqqvKPrI7U9GKM/Lps71XHTRRfzHf/zHjD/+TEuKM/lf/OIXXHjRx9jJ+4xppz6UwWBV9fkKA/WjJz08IuyLMNYb0Mc/i+PjLM/grHsWzdjk7bAvonfBt63rZf/jsRZGRY0VyBgbL6HrqnGy+u4FGMZbugtPd1EwvlDZxPaJoGvzANZsM64FiTfROG9plj6221mRwenfqoklmcTmffXsmmz1PPh0G6NH6a4/VWUfy6P8wvxZeexUFRwNs/kXB+ndc+It095uP63regiOxMreVlycT1bV3Iw/P1H5y7M549u1GCwqWkRjy6/qps0JPR69e4bZ/IuDab1g7cna9VADTa/NfIXY0XafnqAD9OwaYrAuNuQxI8/C6d+q0StqOcsyyFuaeD187tpMrNlmOjb1H3vjOTD1mFewIpvC02NDZA1mldV3L9CPQWN9AXp3D+vb73+8lbb14w3UGtMKIp0Kc6aR0+6o1uccieMTCUQZ6w2c3N9Bg6bXu/UCHxanaUaWYYg4gmz2vENlZSXPPvtsQq03dDSJHyFgNpt54oknqKqpZDvvEtJOvitVNamc/s0a/YvfvXWQoYaTS4hG23wceqEDAEexjarLCqVl4zh4u/20vNk96y1kWjQ2QX9iDO3AgRF2PtgwOSSowEJGvhWIJcln/+MSvYXFUWSl+Mwpk8vn8M/q6fAx0jo2/fnniKLGiotM9HrmLc3Se30gNu44Z7yHwdPhZ88jTQSGY9/HwbrRORsGEg1pRMPSEHG8zE4TKLGk6GQqNwVHw7S/HzuJU1QFZ5kd63iDhs1tJv+07LhOhK+9oZTis2Lfl8FDHuqem5yTdqSJ/cekjb9XCknTKxZvZofxsMW4Z1Pf7mG9lLd/KMieR5rwdMR6KXJqMik+e7KXavFt5XqCZLCosQJKcTj7KVrjZqTFi3e8N2VOTPlaFp/pxlEUO+blLHBw9j8u0ff1GflW7AWxxq1IIMrOBxsYOBhLOD3tPlrf6Z31nvngaJit99bJHL7joBgUqi4rxFEcGxFz6IUORttOrgFyqMGjFy2quqyQpZ+pPKXYosYIu0zvYbFaeO2113A4HKf0eHMlKRIiiC3a+sILL2B1mdjJ+0RP4JuZVWln4S2xSX7RUJRDL3TMeNlBm9uMo9AmZSKPQyQQpf39/hlrVTqR5x1pnaxeduiFThpfHV/nIAoNL3fqXf2Okgz9BAtg2ReqqL48NrTSYFGpuqxQHydvyjDMeKnijo39ZFc7yMib+XV3THYDWZWTrfvlF+brr9VkN7LyK/PJqojdHvZHCExpJd/xwCGa34i1/kZDUQbrPfpaUnOp/b0+2tbLAq3Ha/Ft5Sy4pmRGHkuLauz6fSPd24cAyK52UHVZIdr4vK6ClTlklto+4hFO3sRJbPY8B6fdUaWf7Pn6gwRHY71XIU+Yvt3DM7K+S821JSy+tfzYGwoqLilg2e3xWWgxGtLG90Wx84LmN7rZ+cCh2I0KBEbDhMaPN1kVdlZ+ZT6mjNhwyJKz3dN6m7Mq7ZjsMz+nIiPfQnaVg47xIfczxZJl0os8WV1mqi4r1JOc6suLpv1Nis924yiJ9aKN9QRoeLlTP2dpfLWLQy906tuOtI7FZfTLWE8gsYcTJgoNHIUzXxHz0IudHHox1tBvyTJx2p3VJzQnMEqUQ7nbGPWO8vTTT1NZWTmj8c2mpEmIAObPn8/TTz+NxzRE5Z3ZGGyqfkC0uc36BG6AZbdX6Qt+aVENBUVfhK9v7wgh78yejPfuGmbX7xvRohpWl3naybQ4nMlhpPgsd8IMU4sEo3RtHtBXwu7aPMDmnx/Ub+/c0E///lhrmdFmIGeeA+P4QadwtYsVX5qnb7vo1nLKLohVKzRaDVRfPpk8ZeRZ9DUBIPa51ecpKLHuasWg0L93mMBIiOKzJz9HxgyD/hlGAXvBZE+O1WWettha0RkuvTCD0Wrg9O/U6L1frlonSz9Xqb/3iqrorfvB0TDbf3uIocZYC91gvUfvBYXDiyPEk6KOt3iWzM7Jdyqpe7Z9WmGSmdS5aYBNPzuon1gVn+kmuyr2WcvIs7Ds9iq9wSAjzzItWTJmGFDG9+GKQcGaY9Y/l86KKcOeFFjztwspWBXr2Q+PhRnrD+oFIlre7qFvz4kX6TiW9vf7qXvu1Oe+pYPGV7uofzZx3it9X6XFWs+HDsX2aUONHrb/9hBBz3hDj6JM2xcu/XwlrprYPjpnQSanf6dGH0JUsDJnWuXF/OXZ+r7dYFGxF1gnC8vYDJMFIIDis9wERkL07xtGMShYxnttYbxM+ZQTW/dip94YZnWZqb68UJ/4XnZBHoumJOkrvjyPgtWxmIwWNXZsGj9O9O8foXPj5Pd+888O0rU5lpAFhkN0bR5ImORDMSgs/lS53uMhjqz4LDfW8ZL2u37fSO+umR2VEfKG9flgRquBwEhIb2yqvqKI+VcX69u6ajIx2WPnL4pBwWBVybgqSGt3C/feey8XXHDBjMY22xLkdPT4XXDBBfz2t7/lwQcfJHRWn36gLVrjZt6Vk38oT6dPn1Q20jLGvsda5qxHIrvaQeFqF6pJhs8djcVpouLiAn1iZqLr2zuil4YNDIXY+t/1+k6je9sge//crG873OxlrCd2m8GqklXl0BMX10LntM9pzfWllH0s1jppzjRxxndryaq0o0XB2+WjYEWOfiBcdEs51ZfFeqmMVgMrvzqf7PF5HFkVdmquL9UfNyPPoh9gw4EIPTuGCAzFdmp9e4bZ/POD+glD89pu2t+b7G3xtPvi0utzojQN8pZlkVUu61Uc1fguyNvl1wuPzIaJlnmAbffVxyoBEjvBDI6G9CFUJefkUnXp5OTd079Rg2V8MryzLDYnzZIV+9290Dm5JpIW+5yOtMS+g55OP/XPts96C7a3268PJUmGIidxocSGood9kVmbMziToiFtWini9vf6aF4bKzWvRTU2/+wgfXtjJ5mBodiahBOfM5vbjG2i116BmutK9d707CoHK786X99fV19WxKKbY4mLwapSsCIHb5cPLRrrhTrju7WYHbGTyfKP5U/bf8+/shhXbSwpM1jGjyHjSdlYj5/hZq++7d5Hm+kZn//h6fSz9b/r9X39cJOXvr0z31AwG0wZBlAUGQr9EVSTQuFqF9nVczMEzdvt58ATrfr5gKfdp3/HDRaVxZ+q0Eeb5C7JQjt/iOeff5577rmHO+64Y05inEmKpiVn/dr/83/+Dz/84Q9ZbFhNcbQq1iKiMSdjl4+HalSIhjVMdiNZVfakLrE5Wybeo3Qz9XXb3GaiEY3AUAjVqOCssOPp8BH2RXAUWzntzmqa1/bQ/l4fjmIb0XA0NqxPAUeRDV9/rKiHoo5Xok6zt1NRlZObI5ImSs/NJavKwZ5HmhLis6GaVAxmRe+hz5nvoOTsXCKhKAf/2oaj0MZo21hi7RcUWPKZSoYaPbS/K8M0P6zwdBel5+ay7d76hOltmDMKKEqsN8pgUbG5LXg6faDFhsipRhVPh4/Sc3MpvyifnQ814Gn3Y7QZcBTbGGn2Eg1rWLJNqAZFLzWdrsdGcWR5S7MYavQS8oYT6rNhshuIBDWioSi+ef28W/8mn/rUp/jTn/4U79BOStL1EE34v//3//KNb3yD/do2urU2wr5IwiRDgP6BzVuaRfVlRVKa+wgS5Us916a+bl9/UG/Ni4Y1hg559J5MT4efnp3DsaGFBgVPh2+ynKkWK74w0XKpRUmIE965NpEM5S7JmpVx/8nO0+lj6NBownw2oqHotOHKg/UeIuO9SxF/lOEmb+LtFzQYOjSKtzPxez/iYbB+lLZ3+9IvGQLQJofmRQJRPB0+/bs21hPA0+FDMSgUn+WmZ/sQnvZYb2PYF2HokEf/rAeGQtPW3Um478AcyMhPjtEicy02Z7lIHz6cSJ+NkDdCNBRlrHCQ9xve5hOf+AQPP/xwvMM6aUl7lq4oCj//+c+59dZbOWDeyoDWE++QjqhjQz/b7qsnEohiMKvkzE+OahtzISPPwpr/r3ZWCgekivZ3ezE7jNPmB4npDBaVeVcWkbs48crsxttQg1evDidOXvv7/Qw1eI+9YRoKDIX0eSnicPnLszHZjbS9J72LR2Nzm1n1tQVyfjRFznwHBrNKJBBl2331dGxIzP24P3eEjb1vs2rVKp5//vmkKK99NMkbOaCqKr/73e+46KKLOOjYyog2GO+QjmhiLlP+8mxqbyqbnBif5nwD4+Oz07Fl8Tj5+oP07xuJLXQocxiOKBKIsvXeejo3yUnZBGuOmZrrS2VfM4OMNgM115cmxwKgcyCr0s7Kr86XntmPokDpObn07x3BP3Dyy4WkOv9gkF1/aNTn6aY7o81A7U1l+qLyx1pkNV7CLh+bR99h/vz5vPHGG5jNyb1vTOqECGJrFD355JMsWbKEhtwdeLTEnUDYuWmA7b85RNgXQTEoad8aokU0ml7v1iu7iSNre7cPm9uCe5Hz2BunqdB4xaisSru+6HI6s2SZsLrM04odiFMTDUWxuswzXmI/WYV9EYabvTNesTWVuBc5sbkttL3bG+9QEpoWheHGBBwuO8dy5jtQVIWwL8L23xxK6Ea+SHaALcF3yMvL4+2338bpTP7zk6RPiADsdjsvvPACRUVFNBbswJvASdFEK1HuIieLbqtI+4OralLIPy1bWhk/gqfDx1CDh7Lz8uIdSkIz2Q0s/nQF+Sty4h1K3A03edn5QEPan2DMpGhYY+cDDdKKPc7b7afhpc5jb5jGys7NY6jBo1ckFYczZxqpvaE07c+FLFkmFt1WQe74shyJ3KMYcQbYGn2HjIwM3n77bfLz8499pySQEgkRgNvt5vXXX8ftdtNUtAuvNhrvkD5S7+5htt9fr/eOZM9Lz94i1agy/5pinOX2Y2+cxlrX9+IosqXt5+R4hLwRdvz2UNrPZyg+y62X6BUzz2BV03qducwSG0s/XynDMY8he54DR7FNeoeOwewwYnWZCQfSs6dx4pgeGA6x/f56ehO8InHYEWCbsg6LxcL69eupqorPYsyzIaWOmvn5+axdu5bs7Gyai3cxpnniHdJHGuuNVQzLme9g6Wcr07LKStgXYcOP99O/L3F79RLBcKOX0bYxyj+WGi0xs2WiCp+9wIpiSL+hcza3mfIL83EUyuKGs8VRaKP8wvwZXyE+aSixxodEquqaiCouymekdUyKcRyDp9PPjt82EPGn3/DejHwLSz9bqU+fmDgnTFQRR4AdxvUYjUbeeust5s+fH++QZlTSrkP0Ubq6urjwwgvxer2Uty0lQ0n8VnV7oVVfANC9MJP+A4lTKnfOKKTfaz4B2fNiifOeR5oYrE/sZD+ejDYDZ3y3lqbXu+jcmH69RQarmlQnF4tuiy1eue/PLXGO5Pgl23ss5lbOAgdLPl0ZKxTQKAnR0agmFaPNQHAkjeYRK+CuzaR/f2wU09Rzv0QWyQyyw7geVVV56623WLJkSbxDmnEp1UM0obCwkLVr12Kz2Wgt25PwPUWA/oXIyLew8JZyctJoaJSiwoqvzKNgpcz9+ChDhzwMt3gpv6gg3qEktLAvwp5HmtJu6JyzPAPFoMiJ+hyI+KMoBgVneUa8Q5kzmaU2am8qw2BOydOGGVVxYQHDzV5Jho7BvcjJGd+pwZiRPsMvc+Y5WHhLuT4iKBmSoagzxA7jehRFSdlkCFI0IQIoLi7mzTffxGq10li0A4+W2OMyJ4z1BNj66zq9ByB3iTPlD0BaFPr2DDPWk/g7hnhrebOHzGIbrtrMeIeS0Eaax9CiYHWZ02JRZINZZfGnK9J6bstcKznLzeJPV6T8/nmC0WpANSr6QrriyFy1mTiKbbS8mZhrIyaSgQMj7P1TM+Gx1B5+aTCr5C6JFUsYrPew9dd1k4usJ7hwlp+tytsAKZ0MQQonRAAlJSWsW7eO3Nxc6tyJu07Rh02sWG3KMDD/kyXkLk39BSfb1vcx2iYrwR/LcJOXoUYP5RfKXKJjUQwKy26vouyC1H+vIsEoO37bkJZDBOOlY+NAbO5DmqyjNljviQ1rlGHNH6n8wnyGGj0MN0vv0LFEAtG0GP6duzSL+Z8swTTeEzZxjpfogtljbA6/hdVq5b333mPp0qXxDmlWpXRCBFBQUKBP/tqXuZFBLXkqvoTGImz9dR3d22KJXN5p2VhdqTuRN6vKnvZrMx2Pljd7cBTacC9O/rr/s0mLaOx/vIWWt1K7pdZkNwLg6wvIukNzKBqK4uuLtfJO/A1SUf5p2cy7skgWhj4OuUucOAptKb/PmQmu2kyqLi2Mdxizxuoyk3daNgDd2wbZ+us6QknUExZ0j7LJ/yY5OTm899571NbWxjukWZfyCRGAy+Xitdde4/TTT2evbSN9Wle8QzpuwdEwaLF5NmXn5ZK/LDveIc2aotUuClbJPKJjGWkdY6BulMqLC1BUOUv5KKNtPqKhKCaHMWXXuVjy2QrmXVUc7zDS1ryri1ny2Yp4hzFrFBUpeHMcFINC5SWFDBwYYaRlLN7hJDyT3YjZmZr7ZIg1JJSdlxv7/mjj53JJIlA4wgcjb1JSUsKGDRtSqrT2R0nJKnNH4/P5uOWWW3jllVdYGFpNgVIa75BOiGpU0LRYy3f+8myiYY2+PckxN+p4GMxq2gw/OVUZeRZWfnU+Da90yjCp47DsC1VEAlH2Ptoc71BmnLM8g0ggirc7OefgJWOVuansBVYMFlVOgtNc8Zluqi4tZOu99XrPoUgvuUuyUI0KPTuGUAwKikLSLY7tLxvig463WLRoEW+//TY5OenTSJ0WPUQTbDYbTz31FDfddBO7lQ20aPXxDumERMMaWiT25cqqsJNVlVqLmU4kQ+m4fsyJGusN0L19kPKP5adF0YBTVf98B3XPtsc7jBk10Ts40jKWtMlQKvB2+/VkKJX2XfOuKqLknNx4h5EUDBaVsgvy6No2KMnQcbDmmFOyGEl2lR1nRey8TItoSZcMjZZ38W7rG6xevZoPPvggrZIhSLOECMBkMvHwww/z3e9+l4Ns56C2g2TsJKt7tp1DL3QAsdKV1VekxhjvkrPdrPxqai32NVua3+xBNaqUnZ8X71ASnq8vQMgbxmBWyapMjYaEBdcUs+CakniHIcYtuKaE+VenztDFkCdCeCx5hvnEU9n5eahGReYOHad5VxWz8OayeIdx6hSovqII96LYfN76FzqoT8KGN03T6ClrYEPzeq666irWr19PRkb6LCkwIe0SIgBVVfnJT37Cz3/+c1qVety3GIhoyTPZTTeexxmtBowWw+QY7yROjIabvLS/35fUr2GuhDxh2t7rpfhMd8rOj5lpJefmUntjKaox+T9g/QdGGawfjXcYYtzgoVEGDqbA32P8q9Hydg/d24fiGkoysDhNFJ/ppv29fkIeSSCPR/1z7TS93h3vME7exOFDmzj/UvXfk42mRIlc2M/Olq189atf5ZlnnsFoTN0iMR8lreYQHclTTz3FZz7zGdasWYPyTjYmJbmruDkrMljwyRJ2/b4xqSbxiZOjmlRO/+YChpu8HHiqLd7hJDzVqGDONOEfTI6yp+kg2ecQpRKDVeW0O6ppfqM7NZK7OVB7YylZFXY2/7JOqjymAXOmkWW3V1H3bHvSzxuMmsN0zTvIgQMH+Nd//VfuueeeeIcUV2nZQzTVDTfcwBtvvMHu3bvZzJv4tOReOyDkjTBQN6onQ+bM5Mv0LU4TZR/Lk16i4xANRWl6o5u8Zdk4K9Kvi/tERcMa/sEgigpFa1yxCkBJpvTc3FgZZJGQ5l1VRMm5yTn3JhrSGG7y4pVFso9LVqWdvKXZNL7eLcnQcZp3VbE+xCyZTJxLBUfDDNSNJlUJ7SOJZobYaX+XhoYGHn744bRPhkASIgDOOecc3nvvPfKrctnIWoa0vniHdNJ8fQEaX4mVFbe5zZz+7ZqkW9vHZDdQvMaNLYXXXJpJPTuGGGkdY94VxUl5gh8PGQVWKi8pJLM0+ZLI0FiEoAzNSVjB0TDhJDxZMmUY0CIaDS91EhgKxTuchKeosfkjwy1eencOxTuc5KCA0aKiJlnxkZz5Dk7/dg02d+ycpPGVrqQunhHK9bIx8gbhaIjXXnuN2267Ld4hJYS0HzI3VW9vLzfddBPr3lnHQlZRoiR57XUlVgu/d/cwWkQjq9KOp8OXFKWtFVVBi8pH83jZC62s+PI8Gl/pomNDf7zDSQrGDENSnrimGhkyF3/5y7NjJaP/u56QV5Lt4zFRZnv7bw5JlccUZDCrOIptDDd5UQwKeUuz6Nk5lJTzhKYaLephc/e7VFZW8uqrr1JdXR3vkBKGtCdPkZeXx2uvvcaXvvwl9rGFA9p2olriJw9HpcV6D7SIhmJQqL2pLGmGcmhRDdWoyMKjx8nb5adr8wDlF+ZjsiffMMl4mEiGSs7JTYoS9u5FTsovypehpMlAgfKL8pNmaFD/gRGa3uiWZOg4mexGyi/Mp3PLgCRDJ8BZlpE0+6+Sc3OpvakMxaCgRTR6dgwldTKkaRrdZYfY0PEO5513Hjt27JBk6EMkIfoQs9nMfffdxy9/+UvaOMQO3iWkJf8EbC2isf3++lgFNyB3iZP85dnxDeojmDIMrPnbhbhqM+MdStJoXtuDFtWo+kRBvENJHkpsHkBmsS3ekRyTxWnCmmNO6oNy2tDAlmPG4kzs6o82txmjzUDEH6V762C8w0kalR8vQItqtKyVMtvHKyPfwml3VpMzL3GH8OcvzyZ3SawRo/39PrbfX6+v/ZjMNHOEQ8Xb2N26nbvvvpu1a9dityd+I+BckyFzH+H111/nlltuITAYYjnnYldS5+S8+vIijDYDB59O3Mpkhae7GKwbJTAs49mPV8HKHBZcU8Ku3zUy3JzcBULmjML0kvWyR5xTMmQufpZ/aR6B4SD7H2uNdyhJI6vSrlcZ694mSeSJcBTb8Hb5SNSBNzXXlxL2hWl4uSveocyYaHaAHcr7eLyj/OpXv+Kuu+6Kd0gJSxKiY6irq+Oaa66hbn89SziDfCWFFkIcP/nLWeCg/IJ8dj/cRCSQoHsqcdyW3VGF2W5k2331SbdSdjy5ajIpvzCfXX9oJOJPnO9BznwHVpeZzo0D8Q5lVqR6QlS0xoV/IMhgvSfeoRzGmmMmGopKkY7jpBoVVn5tPsGRMLt+3xjvcMQpMlhVln6mkpa3e2LfzxRrEPMVDbKl/10ynZk888wznH322fEOKaHJkLljWLBgARs2bOC6G69lJ+9Tp+1M7nlFU41/8cNjEUbbfXoyZMu1xDGo6YrOcCVdlbx4q3+2HUuWibKP5cc7lKQy1hdgtG2MaDCxjoiZJRkJPcxEfLSceZlkliRONUPVqFB+YT6KQcE/GJRk6ASUfSwfi9NE3XPt8Q4lqWRV2Vn86QoMlsQ45Zw4x4n4o4x2+Aj7xovrJNau/6RpmkZPWQPvdrzBkqVL2LVrlyRDxyExPp0Jzul08vjjj/PTn/6UFurYyjsENF+8w5oxo+0+Gl7uBCAjz8LquxckTBLiqkmsk4lk4OsP0vpOL6Xn5GIvtMY7nKThHwhy6MVOtKiGJduUMCXMW97uYW+K9p6kg71/bqbl7cSZa2IvtFJ0uksvISyOj73QSuk5ubS83Yt/IPnnFc8pDcK+SEKMQMmZ72D13QvIyIslRQ0vdTLanjrncxFbiIOFm9jVuo0vf/nLbNiwgYICmVd8PGTI3Alat24dt956K/2dgyzjTHKUvHiHNONcNZkM1I2CBgWrchjr9qfUDiMdKKrCii/PixXT+O2hlGn5mguqUWH1N2vo2TlE8xvdcYsjq9KOMcNA/96RuMUwF1J9yNwE92In4bEIw03xn9unmlRZSPREKLDirnkoBoXtv6lP2Dkw4sgyS2xkFFhjhUMUcC3IZODgaLzDmnHBPA/bxt5FQ+Pee+/ls5/9bLxDSioJ0gaaPM4//3y2bt3K2R87k628Q7N2gFTLKQcOxpIhFChclUN2AgzXMdkN8Q4hqWhRjbpn27EXWik5OzlKrSeKaFij7pk22t+L7wLN7kVOCle54hqDmDmFq1y4F8avDPeCa0tiZdtBkqETVHJ2LvYiK3XPtksydILshda4D8PPnuegcFWOPkco1ZIhTdMYqexgfd+rFBQWsGnTJkmGToL0EJ2kcDjM97//ff7jP/6DXApZzBmYlcSZezOTJurwl5ztxlluZ99f5rYld/4ni7HnW9nxQMOcPm8qqLq0kKIzXGy7/1BSr6wdL0abgYKVOXFLjlSjkvKFMdKlhyjef8vis9wER8P07RmOWwzJKCPPwoovz6Nz0wCNr6ZO9bG5svDmMkwOI7semtsiFItuLWekxUv7+/36OUwqilhCNLt309B+iOuvv54//elPWK0yVP5kSA/RSTIajfz7v/87zz//POSG+YDX6NfiN7xmNk3sSHz9QTwd40PnxtdvmQtdWwZpfF0ORCejeW03/sEgtdeXyiK3JyGr0k7J2bmYM+dusVv3IidZFbHvVqonQ+lk4m+ZVWGf0wVbJ+YRdnzQL8nQCVJUhZrrS/ENBGmK4/DZZHbgqTYOPjU3y3tkVdr1hV89HT58/bG5XqmaDPnzRthsXEvXYCe/+tWveOqppyQZOgWSEJ2iq666ip07d3LBx89jG+uo03alThW6Dxk4OErrul4AsqsdLLu9CnvB7H/5PB0+RprHZv15UlE0rHHw6TYyCqyUfSz15rvNtv59I2z51UGCo+E5K7KQvzyb/BXZc/NkYs7lr8gm/7TsOXmuvKVZLL9rHpbsxF4gNlGVfSyPjHwrB//alrIn1bNNi2hzspagvdDKsturyK6ODfFvXdebckPjJkSJ0lveyPqeVykuKWbjxo3cfffd8Q4r6cmQuRkSjUb58Y9/zN/f8/dkks1SziRDif/cm9nkKLLi6fQDMO+qYgbrRmdtB+QosZF/WjYNL3XOyuOnurIL8ij/WD47H2yQAhknqeaGUqLBKPXPd8zuEymgGlJ/qNyEdBkyN0E1KkQj2twUOlEgu8rOUEP8Czkkm8wSG6fdWU3L2z20vtMb73CS0pLPVtK/f4SuzbOzhpqrJpOcBQ4OvRA7L3AU2yZHsaSoSGaA/dYtdPV2cscdd3DfffdhMkmDx0yQHqIZoqoqf/d3f8cHGz4gb56LDbxOp9accgUXpppIhhSDgtluRDHG+qqNNgOqcWaHZxmtBjJLbBitUlzhZLSu62W0w0fN9aWoJhk6dzIGD44yWD97LY6Fq3PIyLeAJkPlUlk0HEuGMvItFK7OmfHHV1SF+VcXx3rvNSQZOgmqKTZUztPh00dFiBOkwGjbGP7BmS1RrhoVjDaDftlsN6EYYse0VE+Gxsr6eS/wKv6QjyeffJIHHnhAkqEZJAnRDFuzZg1bt27lU5+9jT1sYhcbCGqpPZldi2jse6xFLw9ceUkBy++aN6PPMXTIw47fNhD2R2b0cdOGBgefbsPsNFF1WVG8o0lKvbuH6d8fS4jci5z6QXgmKKpC4WoX7tr4VSETc8u90EnhateMz+1TjQq2PAuWLDlROlnVlxdhdpo4+Nc2WbLgZGnQ8lYPQ4c8M/qwy++aR+UlsXV1+vaOsO+xlpQfzhgxh2gu2cV7LW+yevVq9u3bx/XXXx/vsFKOJESzwOl08sc//pG//OUvRNw+PuBVerVZHmaTQFrX99L4aqwL22BVmXdV8YxNSpex8CfPPxCk4eVOila7cC+WE++TZck2UXN9Kbkz+B5qUY2dDzbQul5ao9NF67pedj7YgBadmZM5g0XF5DASCUbZ9VBjys6fmG25S7IoXOWi4aVOfVK+OHH5y7P1npxTYc40Mu+qYgyW2Olq46udabWf9BUMscn4Bq19zfzoRz9i/fr1stDqLJGEaBbdcsst7N69m0uv/gQ7eI892iZCWurvYANDIX2Yhs1tIbvaoa/dcCqJkb3AyhnfrsVZkTETYaal7q2D9O4eYsEnSyS5PEmBoRBb/7uO3l2xil2n1MKvQNVlhZidJn0olUgT40MjY722hXp1rJNVe0MZtTeUzkxsacqaY2b+J4vp3TVE97bBeIeTtKwuMwuuKcFRdPJFlybOFbRorIjTxFpGQw1eAkOzX6Qh3jRThLayfbzb9TrV86rZunUrf//3f4+iyJD32SIJ0SwrLCzk2Wef5aGHHsLrHEzp8txH4mn3seWXBwl5w6DAaXdUU/nxk2vd8Hb72fdYS8qPE55t9c91EBoLs/CmMinFfZImDshZVXZWf2MBFufJJZeWLBPuWidWSU7TljU79hk41SFuTa93cehFKTpzshRVofbGUkLe8OwXTklx/oEgG36yn6HGk5u/VvnxAk67oxoUCHnDbPnlQTxpVAwoUDDCJstaGrrq+Id/+Ae2bdvGokWL4h1WypMqc3OopaWFO+64g7Vr11LKPOazFKOSXidCWZV2gp4wvr4AWVV2nOUZsQo+8imcU44iK6d9sZrOjbLY4KkwO4yUnJNL42tdJ/0ZVlRI0Ur9xyXdqswdycl+BrIq7RSsyuHg0zLX5VRVXVpI0RoXOx9o0AsGiTmixCqhjrSMMdzoxZZrwewwMtyUXgVBosYoPSWH2N20g9raWh599FFWrlwZ77DShvQQzaHy8nJee+01fvWrXzGQ0ckHvEafll4tesNNXnx9sSITGbkWssrt+oE8I89yzPsrBoXqK4rmbFHYVOXp9NP0WjclZ+fiqsmMdzhJK+gJxxLK8aphBSuPr2pYRp6FmhtKMZjVtE6GRIwWBYNZpeaG0uPaD05QVDBaVFSjHMpPhasmk5Kzc2l6vVuSoVOUVWVn9TdrMDmOPTxe/6xrsQWLM8aHxfn6AmmXDPnzh9hie4P9bXv4zne+w549eyQZmmOyF51jqqpy9913s3v3bi649Dy28y67tA0EtfTbCXduGmD3H5uA2JjjVV9fgKv2o0/OtYiGzW3BZJfy26eqY0M//ftHqLm+FGuOOd7hJD33QidFZxxf1TCTw4gl05TSZfnFidE0sGSajn0iqcQm/kNsPsXeR1uIhiSrPllWl5ma60vp3zdCxwf98Q4n6YU8Yfr2DhPyhD9yO1dtJqu+vgCrK3bs2f2HJjo3zc56RYksag3TUrqH9d2vU1RcxPvvv89//dd/YTDIOc5ckyFzcaRpGg8//DDf+c53GB3wsIDlFFGetpPmsuc5GG7yokU0yi/KJxKM0v5uX7zDSmkGi8ryu+ahRTR2PNAgJ1anSDWpRENRTA4j0VCUSEDez2ORIXMnJme+g0W3VbD9N/WM9aT2kg6zTTWpLL+rGkVV2PE/h4gE5fs6m0rPzUU1q7S82YNiUMiqtM94We5koWkaY2X97OjfSDQa5Xvf+x7//M//jKpKP0W8yDsfR4qi8LnPfY79+/dzy2duZi+b2MY6fFp6dRVPGDrkmVxPQAPGy9EaLGpsWNeUPNFgUU96IruYFAlE2feXFizZJhZcUxLvcJLeREJZc10pC28qO+z2eVcWxSqKCfERqi8vZN6V09cLmyhhPFjvYeuv6yQZmgELri3BkmVi319aJBmaAZklNtwLp4zyUGLDESdKZmsaMP42axEtbZOhSGaQ+uKtvN/6FsuXL2fXrl384Ac/kGQozuTdTwB5eXk8/PDDvPjiizjKrbzPqzRpB4im8eSClrd6aH8/NnwhZ0EmC28px2SPDSVRjQpLP19FxUlWqxPT+foC1D3TTt7SLErOyY13OCnh0AsdNL0eqyY5dQidp8svJ7LimLzdgWlzWWy5Fs74Tg3Z1Q4A/IOpv3zDbCs5203ekizq/tquz2sVp8a9yEn5x/JRjbF9nsluZNGt5eQsiCVJ7e/10fJ2TzxDjKsoUYYq2lnve4nhsUH++7//m/fee4/58+fHOzSBDJlLOB6Ph//9v/83P/vZz7DjpJYVuJT8eIcVd5YsE4HhWKnjVXcvYOjQKG3v9RMcSf31COZKxSUFlJ6Ty+6Hmxg+yXKp4nCLP1VOYDgkJZGPQobMfTSz00RwJETRGhfd2waJhuSQfaqyquws/Wwlbe/10fxG+iyDMRfKzs8jb1kWW/+7Hph+7E5ngbxR9oW30jfQy9VXX82DDz5IXl5evMMSU0gPUYJxOBz813/9F9u3b2fFucvYyjvs0jYQ0NKnBv+R6DtUBdrf7aV7xxDBkRBZVXYqLimQ9XRmQPPaboYaPCy8uUyf6CpOnafDT8EqF1lVUhlRHD+Tw8iqu+dz+rdqsBda6dw4IMnQDLC5zSy6uZyhBg/NayUZOlWKqlBxSYFe+XWgfpT29/r0Ie7pngxFbUFaSnezrucVMrMcvPjiizz33HOSDCUgSYgS1PLly3nnnXf43e9+h5Yf4D1eoVk7mNbD6ADQoHv7EN5OP0VnuChclUNmiQ1tfL5RznwHqkk+1idFg/1PthLyRljy6QqMVqlyMxNa3u6h/vl2hpu8VF1WSN6yrHiHJJJAeCyMp91Hy9vdeLvSrwrpbDDaDCz+dAWB0RD7n2iVtZtOkmpSyZkfG76pRTUyS2yUnZ/LwpvL8Hb66d4+lPbvbZQow+UdvBt5hbb+Fr7//e9TV1fHFVdcEe/QxFHImWMCU1WV22+/nQMHDvD1b36NOnaygdcZ0NJ3DO5U5kwjwdEwu//QBMTGKy/+VAXuRU4ASYxOQsQfZe+fmjHaDCy6tVx63k6Bo8hKZlkGAD3bhwAwWgyyZow4KoNFpea6EqwuM1oUDv61nbZ1sUqbmWUZ2IuscY4weSmqwqJbyjFaDOx9tFkqQJ6EiWNq7iIniz9VoS9/sfsPTXRsHGCwbjSe4SWMYP4ou1zr2NT8HhdffDEHDhzghz/8oZTSTnAyhyiJbN++nbvvvpv33nuPAkqZzzJsigzDmcqSZSLkDRMNa1RfXoijOIOdDzbEO6yk4yzLYOnnK+ndPUzdM+3xDicpLbylDIPZwJ6Hm454e/FZbrxd/rRbgPDDZA7RJNWksuzzlTS/2cNQw/QKXEs+W0kkGGH/Y61xii65LbimhLxlWez6QxOjrWPxDifpnPbFakbbxmh8pQvVqGCyG9N+ONyHRewB2nLqqGvdT1VVFb/+9a+lRyiJSFNlElmxYgXr1q3jd7/7HWpRhPd5hXptF2EtfXdKigqmjMlWl8BwiGg4luP37Bym/f1Y66rBrLL0c5XYC6SF9XiMtI5R92w7BStyKD1PKs+djINPt7H/8aOc5CuQMz+TzFLb3AYlEo5qis3BMNlja1fteKDhsGQIYP/jLRx8ui0OESa/knNzKViZQ92z7ZIMHSd7oZWln6vEYI6dJra/10fvrmEAomFtWjLkKLbhLM+IS5yJIGqM0FfexDr/S3QOtsnwuCQlCVGSmRhGd/DgQf7X//5fdNtaeI+Xadca0nLV+yWfraT6yuIj3ubp8NG/bwQAY4YBLaoR8kUAcC906kPrxJH17hqm5e0eKi8pJHepzHs5Ho5iG8u/NA+zw0g0pB19WI4Gex5pom184eH8Fdlkz3PMYaQiUahGlbylWWSWfHRyHAlEiYY0zA4jy780D0exJNPHI29ZFlUfL6TlnR79hF4cmXuRE/fC2HExNBZBi2oYxxsc+/eN4Ok4cnGnojNcVFySfstgaJrGaFkPm21vsLt9OzfddBONjY0yPC5JSUKUpBwOBz/4wQ84cOAAt3z2ZvaxlQ28Tr+WXlVzWt7qoW197zG3CwyF2PNIs16m21WTSe7i8YRIia11pBhkvsyHtbzVQ/f2QWquK9HXQBFHF/KE8Q8EiISOY36Chj7x2F3rxLVA3t90YbQZqLqsEINZJeyLsOWXdQwcPL75F5FwFP9AgJAnPMtRJr/seQ4WXFtK97ZBWt6UubcfphiUaYue5y52xn4HgiOxY2Zg6NgjUOqeaWf/X9JryGswf5Rd7nVsaHmHZcuWsWXLFh599FFyc2VERbKSOUQpYuPGjfzN3/wN7777LrkUsYBl2BXpAfkoigpaNDZZefmd1Wz/n0N4OnyY7AZCY5G0r5IzQVFh0a0VZFVmsOv3TUdtJUxn2dUORlq8+nDNk6GoClpUw73IiWpS6d05NHMBJrB0nENkyTKx7I4qDjzRymjbyX+fVJOCs8x+xCF26c5RbGPZ7ZUMN3nZ++cW2Z9PUGLDzEPeCI5iGyu+NI8dDzYw2jqmHxPF0YWz/LTY99HQfoiqqip++tOfct1118U7LDEDpIcoRaxZs4Z169bx2GOP4ai0sNHwBvu0Lfi1FB8vrcQmp59M9aWJHf9o6xhbfl2nn+jXXFfKopvLpz1HOtOisP+JFrzdAZZ8ukLWKPoQo9XAwpvLKDzddUqPM1E6PqvSrpe0FanDlmthwbUlKKpCYDjEll8cPKVkCKBwtYuFN5dJifwPsbrMLPl0Bd7uAPsfl/LaU49hi24uZ8G1pUBsWPmWXx3U51WdTDKUXe1g8acrUE2pfaCMZIToKNvPOyMvMuDt59///d+pr6+XZCiFSEKUQhRF4eabb2bfvn3853/+J373CJssb1Cn7SSoBeId3uzQoHiNG2fpqU3o9PVNvj/Nb/boxRgy8iyc+bcLyci3nNLjJ7toSGPvo82ExsIs/VwlZocx3iHFnWJQQIGwP8KOBxro+KB/Rh634aVO6v4amzyfPc9B9RVFMpwzBSgqOIpsmJ2x785MtMR3fNDPjgcaCPsjoCCfE8DsMLL0s5WExsLsfbT5lHptU4G9wBo7huXFjmHtH/TR8tbk8EFff/CUHl+LakT8kZRdNDhqDtNT3sD64Is09h7iq1/9Ks3Nzdxzzz2oqpxCpxIZMpfCRkZG+OlPf8pPfvITVFUlb6SMchZgUORk9niZM40UrnbRuq4XLaJRfUURkWCU5jfSa67WBLPTxPI7qwkHIuz6fSPhsUi8Q4qbpZ+vxNPpo+m12fss5J+WjXuRk30T4/MVUq61O5WHzLkXOck/LXvy7zeLKj9RgKPIpq/Llo5MGQaWfaEKg9nAzgcbCIykZwXWiksKMJhUGl7uRDEolJ2fR9eWAYKjMu/seGmGCIMlHezt3kEkEuHmm2/mJz/5CYWFhfEOTcwSSW9TmNPp5J//+Z85dOgQd9xxB63mOvYWvE+rVk9UBgofl+BomJa3etAisbNQX3+AwFCsRc1kjy1eas1JnyFkwZEQu//YiCkj1gqbzkN1encN07d3ZFafo2fnkH4ybS+ycvo3a9Lq85asDJbYoTXsjxAaC6MaZ7/npn/vSFpXUTNaDSz9XGyftOsPjWmVDFlzzCy6tVxfKDUwFMQ3EBv1oEU0Wt7qmbVkyJRhSKmeyShRRsq62JTxBttbN3HJJZewd+9eHnnkEUmGUpwkRGkgPz+fn/3sZxw4cIDLL7+cg8oO3ucVOrTmlEiMSs52s+iW8mNvOAM6Nw7QtWUQALPDhNFmiA1XIVZ6tGjNqc0jSQa+/iC7/9CIJcvEks9W6Cd/6aD8wnyKz3QD0L1tEE/73BWYiPijDBwcxT+ekNvckhglokW3lbPgmhIAhhu91D/XMSfDtkbbfXRvi+2bis9yU35h/qw/Z6IwWFSWfK4Sc6aJXX9owj9wasPAkkHRGhdFZ8SON2F/BKPNgNlhAqBryyCdGwfmJI4ln62k+vLkTxQ0NLylfWxzvsnGlvWsWLGCTZs28fzzzzN//vx4hyfmQPqcyQgqKyv53e9+x65du7jsuk+wl028z6t0aE1JnRj5h0OMts998Qhvt59dv2skPL62kSXLhDU7dpKqGhXmXVWUsq35Y70Bdv+xCZvLwpJPV6Ca0mNXohgUlDlo7T8S/2CQhpc7QYv1Tq786nwKVubEJRYxXc58B6bxeXWdmwb0OYjxohiUlGq1/yiqSWXJpyuw5ZjZ/cemafNBU4k1x8y8q4r03kZrthlLViwBCvsi7PpdI95u/5zH1fhKF52b5ib5mg2xRKiXbVlv8n7rW1RWV/LGG2/w9ttvs2rVqniHJ+aQzCFKY9u2beMHP/gBf/3rX7Fhp4pFFFKOqqTHye1ssuVaWHxbOXv+1Ix/IEjuEidGm5Guzcl74DgSR7GNpZ+vxNvpZ88jTSk5gbnknFyCIyF6dyfWcKTsagejbWNEglHylmUR9kcZrDu+tWwSSbLPITJYVM74Ti0tb/XQsWFmCmvMpLxlWZgzTbS/F98kbTaoJoXFn6rAURybO5VqSwIUnu4iPBamb+8INreZxZ+qYO+fW1I26ZtLUaKMlfZzYHQXg0MDrFy5kn/913/liiuuiHdoIk7kzDeNrVy5kqeffpqtW7eO9xhtHh9Kl1w9Rpbs2NC1ROLrC7DlV3X60A17oY2sivFKeArMu7oYe8GJlwpPNJ4OH3sebsJRbGXJZyoxmFNvl5KRZ0nIUuNDDR4iwdj31F3rxFUzXqpbYU7mrKSzzJJYQ4BqVIgEomy7rz4hkyGI9SxMVBhLJQazypLPVOIotrH3keaUSIbsBVbmXV2s/55VYcdeZANiQ5W3/Kou4ZIhZ0XG5CLnSSBKFE9JD9uy3uKD1repqq7kxRdfZOvWrZIMpbnUO3sRJ2wiMdq2bRuXX39p0iVGyz5fRdkFefEO4yM1v9HNgSdjpZTNdiOZxTY9eXDVZFJxcUE8wzslo20+dv+xCXuhlSWfrUz6OUWKQaHmuhJ9LaC6Z9ppfac3zlF9tP1PtNLwUhcAuUuyOOM7tQnXSJDszJlG7IWxRozQWIRIMKq/x4HhxJ3A3/pOL3XPtAOQs8BBzXUlST+cbmLOkL3Ayp4/NjHSmrzr7VVcXICrJhOIva7MYpu+rMGBJ1sTvqJp7iInRWe44x3GMUWJ4intYZvzTT5oe4eq6kpeeukltmzZIomQACQhElOsWLGCp556iu3bt3PFDZexl828x8u0avVEtMQt17n30eY5m0A6E4KeMNt/c0g/iFuyTNNacBfeXIarNjNe4Z2U0TYfu//QiC3XzNLPVyXlyfjEPCgtooGqJN28qImFXUfbxmh5u0ef21Z+Ub5+Ii9O3vyriqm+vAiIzefa9+eWpCtjrBpVUBW9amayfcYBjDYDyz5fhc1lZtcfGhmdw8ImM8FVm8nCm8v03zPyLfpcoJGWMbb/5hBBT/J8rppe72bX7xvjHcZRaYYoI+VdbHWu5YPWd6ieX60nQpdffnm8wxMJJPn2hmLWLV++nCeffJIdO3Zw/aeupU7dye68d2nU9hHSEq96z1hvAP9g4sV1vDo3DeillRVVIRrW9BMWV00my79YrfcmKWritux6Ov3s/n0TliwTy26v0kvAJgN7gZU1/18t9qJY4nDwqTb6981uSe3ZEhgK6ZOcDRaV3EVOrNmxEy5LlglzpqxDdjwsThOnf6sGZ1lsqOuhlzrZ+6fmOEd1avr3jXDwqVhPtaPIypq/qU2qobumDAPLPl+JOcvE7j804e2c+yICx2tiX20wqyz/YjU5C2KNXFpEIxrW9Nv3/bklqYsSTMwbVU2JdWyKmsMMVLSwwfoqm1reZfGSxbz66qts3rxZEiFxRJIQiaM67bTT+NOf/kRdXR0333wz7dZDbHGs5aC2A78W/1Y5s8PI8ruqU2p8vBbVOPh0G4P1HgBCY2FGO3z6XJGlt1dSdVmsxKmiKgn32icq7xkzDCy7vQqz0xTvkI7K5jaTf1o2AN4eP23rewkMJe7Qp5MRCUTZ+t/19O+PFVsoOz+PpZ+v0m9PtJOYeMuZ76Ds/Njw28BIiP79I4TGe9oCwyH9e5gK/EMh2t7txdsTSyryT8tO6FLuFqeJZV+owmQ3xq2i2lEpsZ6eiSSn+vJCln6+EoBIMMpoh4+wL9brM1jv4eDTbXqPbirIX57NGd+t1Yf6xVPEFqS7/BDv8hI7Wrdw3nnnsXHjRt59910+8YlPxDs8kcAkIRLHVF1dza9//Wuampr41re+xXBWDxtMr7JX24xXi29Vq5A3nNIL8I22+Wh4qVP/vWNDPwPjJ7eOYiurvr4Ax3ivRmapjexqR1zinMrXF2DXQ42oJpXld1Zjy02cpE01KpNztxY6Kb8wP3YSo0Hb+j59mFmqanyti4NPtQKxoUdnfm+R3nKdjhSDQv7ybH3IktVlxllhh/E8sfHVroSbxD5Twr4Ibev7QIs1rpRfmI+rNjY53mBWE6owR0aehdO+WI1qVNn5UGNC/E2yqx1klsYKHjiKbKz62uS+uH//KB0bJ4tsNLzUyWhb/BsRZ0v//hFa3uwh6I3fUL9wpp+2sn28E3iBg117ue6669i3bx8vvfQSp59+etziEslDym6LEzYyMsL999/PT3/6U7q7u8nViqlgAVm4UZTZP4gaLCqKQSE8ltonr8eiGhUySzIYafWiRWHBtSVYs836eO7aG8vo2jrAcKM3doI3x990s8PIks9WYnYa2ftoC6NxnvisqHDGd2vp+KCftnf7UI0KWpSUaqk9EQazSv6KbHp3DxMei1B+YT72Aqs+fHOuzHXZbZvbjM1tYeDgKKpRYc3fLqTh5U56tg/NyfMnKkVVUNTYEKjS83IpXuNm088OEO+6Os6yDBZ/qgL/cJA9jzQTmuv5NeP7zqwqO4WrcvTiOMtur8I/FKTumXYUFZxldkbbx1Jy6YETkVVpx9PlI+Kfmw9OKN9Lu6meQ+312O12Pv3pT/PP//zPFBUVzcnzi9QhPUTihDmdTr73ve/R2NjI/fffT06Nnc28xSbW0qW1zHplusW3VVB7femsPkcyiIY1hpu9+glL3TPt7H00NsdBNSkYzAoT+Wne0izO/N5CvbpUVpV91ifaBz1hdj7UwFh3gKWfq9QrKc2lvKVZrP7mAlBAi8KhFzvp3RNbTyga1tI2GYLYUJ7OjQN6w4Kn08dwkxeI9Zys+vp8vdJeMi9NZjCrFKzI1hdOzV+eoxdHiIY1Nv30QNonQxBrGJg4me/dPcyhlzpj+xYFVn9zAXlLs+Y8JldNJks+V6kPxZ3tZMheaCWryg7EGpzO/N5C/XUrSqx3eWKY6d5Hm/XqfVoUhpu9aZ8MKQaFmutLKTk7d1afR1NiawjtyXuXt7tfYjgwxD333EN7ezv333+/JEPipEgPkThl0WiUl19+mZ/97Ge89tprWLBSyjxKqMasnPpwKUVVyFuWxXCzl8BQCEeRldBYJKFL3SaajDwL2fMcdHwQG8ax/IvVeHsD1D/bjtFqYOEtZTS+2oW3y48504jRamCsd2aGpSgGhdobSnEvdFL/fAfd2wZn5HEnnyBWyjzoCaOosPKr82l/v5/ubYPYC6y4ajNpf68v7U9WToTRaqDsgjy6tg7i6wtQfJabojPcbPnlQSBWhCIwHCLsP/Ve2tnoIco7LRvVoNC9bTA2NPBvF7LvLy0MHBzFYFGnFS4RH001KZScnUv//hHGegIUrMqh5Cw32+6rR4vGeoKD3vCM90AXrMxh/tXF9O8f4cBTbTP298rIsxD2RwiOhrEXWqm6tJB9j7UQ8UdZcE0JGXkWdjzQAEDxWW6GDnlmbF+YDizZJsLjZendi50oQN/emSlQEzGHGC7soq5/L6OeURYvXsy3vvUt7rrrLgyG5CniIxJTErf7iUShqipXXnklr776Krt27eJzd32WNks9G62vsU/bgkc78Z2hzW2estibRuXHC3EvjP3u6fRLMnSCxnoDejIEsPOhBhpfjc1NUs0qobEI0VCsq6lwlYuln6vUt513VRH5y7OBWGu7qybzhNYa0iIa+59opXPLAAuuKaH8ovxTei3GDAPFZ7n1KnZVlxay9PZYoQAtCj07hxgbnyju7fbT+k6vJEMnKOyPTJs/M9Lspf29ybWYFn+6gpJzYq3AliwTVZcWYrLHemBUo6LPwZlNWZV2rDlm/fLp36nR54dlltj0+R1hX4T3/30fAwdjc+8igagkQycgGtJofaeXsZ7YZ2Gs20/PjiG9Z3rZF6qoujRW6MVkj303jRmndnJacUkBC64poWvrAPufaD2hv5fBEttHTZQUz1+RzbwrJ3sMln6+koJVOeOvLUpoLILBHIu34dVOdj7UoG/b8UG/JEMnKDA0WXzENT9Tn5emGBRKzsk9qcILYaePjrIDrI++yM72Law5cw1r165lz549fOUrX5FkSMwISYjEjFq6dCn/8z//Q2trK9///veJFvn5gFfZpq1jxNFH9vzJSf/uRU59eILZYWTZ7VX6MC73IidV48NatChs+eXBaSf04tRoUfQx3sGREAeeaMXXHytd3rGxnz2PTC8vPDH0zpZrYfGnKvQT0dLz81j+pXn6dtWXF5K3LDbExJhhmDwAatC1aYCurQOUnZ/HwpvKyFng0Ev+GqwqRWe49INl9jwH1ZcX6o+77I7Jky6DWaXiogKsrljvY/fWQeqfb9e3bVvfl3RrkyQ6T6efri2TPXu7ft9I5+ZYqWBzpjE2HHJ8sEHV5UUs/2K1vu2Ca0vInhf73lucJorPdOsJtb3IimnKybN7kVOvnGjJNlFxcYG+bdkFeSy6tVzfduHNZfpwpsBwiN5dw/qQ0IaXOql/rkPfdiLZF6dutN1H27t9+u91z7XTvTX22bC5LFRcVIBhPBmpurSQZXdMVjWsvrxQ/yyYHUaKznBhsI5/Fgqs5CxwsPDmMkrPzaVr60BsfTkttm3JObl6opW3LEuvtgmw4kvzKB2vDmh1mVn8qQoycmP7KEX/J2bPw5Pr1vn6gxx4opXgeGGeiD8a9zlTqaTu2XYO/jU258rmNlP+sXy94aRojYvaGyeHvheszNEbMQwWFddCB6HyUeqKtvDW8Au0DDTymc98hoMHD/L6669z0UUXzf0LEikt/jUSRUrKy8vjf/2v/8X3vvc9HnvsMf7rv/6LjVvf4qAhm1ytjGIqKT7TzViPn+FGL5FQlKAnpA+76Nw4QPt7kwfdVCp3m+jCvsi0amuHXpiscufp8LHhx/v120dbxgiPTY7rN1gMscUfiZ3ElJ6Xy1CDh6AnTO7SLHLmZbL/sRZqri8jpyaT3l1D1D/XgclmpOrSQrzdfoKeMGaHEZt7crhl16YBvYJRYCjE+z/aq98mLbhzzz8wue7XaJuPLb+q03/v2T7IgHUyyTHaDHrPjS3XTMUlBfTtGSYSiFK02kVGroXhlljBjXlXFY+3yvdiyjCStzSL7u2DRAJBxnr80/YD2+4/RMgTO5H1DwZpfqN7Vl+zOLKR5sliKSOtY9O+mwN1o3g6JhsnbG4L5vG1g6xuM1WXFjJQN0rEH6VojYu8Zdmgwb6/tDDvymKCo2Fa3urBNL4vGawbJTwWQTWpGKd8xrq2DuDri30mx7oDbPjxfkLj+4vu7UN0T5kjllDlutPB+DF9rCfAB/+xV084g54w/inLHJSc7aZ39zDDfaOMVvSyqXsfAwMDlJWV8YMf/IDvfve7OBzxr6IqUpfMIRJzQtM01q9fz3333ceTTz4JQE6ggFKq56w6nYgvRVVQTQqRQBR7oZXFn6oALTY5WU5S0pNqVFh4czmaprHvzy2oJoVoSA5J6cZeYGXRp8pRFCW2P+jyx+Z6hdK78Em60DSNUK6HLlsLDZ11aJrG2Wefzbe//W1uuOEGVFUGM4nZJwmRmHN9fX089NBD3H///Rw6dAgHWZRSTSHlGJXEXchTzCxzppFFt8WGthx8up3+/TMz8VYkl7kuuy0SS+5iJwuuLcHXH2Tvo80ER+O3lo2YW1FDBE9hL42+g/T29+Byubjlllu45557qKysjHd4Is1IQiTiJhqN8tprr3Hvvffy3HPPYbfbyRrNo5R5OJS5L/Eq5p5qVFhwXSl5S7JoXd9L89ruOV8vScSXJERpSoHKSwooPTeP3l1D1D3XLr2DaSLi8tPjaKG+6wDBYJAVK1bwta99jTvuuAOjUWZyiPiQhEgkhNbWVv7nf/6H3/72t3R2duLERQmVFFAmvUZpoORsN5UfL2So0cuBJ1unzWESqU0SovRjtBmovbGM7Co7ja91ScGcNKCZIniK+mj1N9DR3U5mZiaf/OQnueeeezjttNPiHZ4QkhCJxBIKhXj22Wd58MEHefnll7FYLGT78immkmxyZa5RCsuqtLPwpjIioSj7/tKCt0vmFaUDSYjSi73QyqJbyzGYVPY/0aovBixSj6ZpBPNH6bG00tBVTzgc5rTTTuMLX/gCX/3qV7FaZ3dxcCFOhCREImG1t7fzhz/8gQcffJD6+nps2CmmkiIqsCoZ8Q5PzAKL08TCW8qwF1g59ELHtOpQIjVJQpQ+ClblUH15EWO9Afb/pYXAiKwnl4oitgBDud00DtcxNDyI2+3muuuu42/+5m9YvHhxvMMT4ogkIRIJT9M01q1bx4MPPsjjjz+O3+8nJ5pHMVXkUYSqyKJsqUQxKMy7sojCVS56dg5x6IUOKbuewiQhSn0Gs8r8q4vJW5ZN15YBGl7ulMWSU4ymaviLB2mPNNLc2YTRaOTss8/my1/+MrfddpssnioSniREIqmMjIzw2GOP8eCDD/L+++/jcrnIGMimkHIp351i8pZlMe+qYkKeMPufaJUhdClKEqLUZi+0svDmMkx2I/XPddC3ZzjeIYkZomka4XwvfRkdNPUewuv1Ul1dza233sq3vvUtCgsLj/0gQiQISYhE0tq3bx8PPfQQjz76KG1tbdiwU0gZhZRjV5zxDk/MAGuOmYU3lZFRYKHptW46Nsjk61QjCVHqKlrjouoThXh7Ahx4ohX/YPDYdxIJL5TpYyi7i+bhQwwND5GVlcWll17KN7/5Tc4///x4hyfESZGESCS9aDTKO++8wyOPPMLjjz/O8PAwq1atYnRrmELKsCi2eIcoToFiUKi8pICSs3MZODBC3bPthMakCl2qkIQo9ZjsBhZ8sgRXrZP2D/poer0bLSKnGsksYg0ymttLn6GTpqYmLBYL5513HnfccQe33nqrlMsWSU8SIpFS/H4/L774Ig8//DAvvPAC4XCYSy65hPbXBsmnREp4J7GcBZksuLYEgPrn2hk4MBrniMRMkIQotbgXOpl/dTGaNv49PSjf02SlmSOMFQzgyRpg9+7dqKrKihUruO222/jSl75EVpasFyhShyREImUNDg7y5JNP8vDDD/P2229jtVq5+uqr2f9EK7kUYVSkRSvZmDIMzP9kCe6FTrq3D9LwcieRgBRcSGaSEKUGg0Wl+vIiClbk0L9vhLrn2wlLT27SiRoj+AuHiJb42LJlC6FQiNraWm644Qa+/vWvU1paGu8QhZgVkhCJtNDa2sqjjz7KY489xpYtW7DZbFxxxRUcfKpdkqMklL88m+origj7I9T9tV3WMklikhAlv6wKOwuuK8FoM9DwUic9O4biHZI4ARE1gj9/EK3CrydB5eXlXHXVVXz9619n6dKl8Q5RiFknCZFIOw0NDTzxxBM8/vjjbN68GavVyhVXXEHd0xPJkQyrSwaWLBMLri0hu8pBx8Z+mt/olvLcSUgSouRlsKhUfryAotPdDDd5OfjXNgLDsrZQMogaI/gKBomW+Ni6daueBF1xxRV8+ctfZtWqVfEOUYg5JQmRSGtNTU16crRx40ZUVNwUkk8peZIcJYWiNS4qLykg7ItS/0IHg3UyZyGZSEKUnFw1mcy7qhiDRaX5jW46Nw3EOyRxDLE5QUN0R1pp6W4iHA5TUVHB5Zdfzhe/+EXOOOOMeIcoRNxIQiTEuObmZj052rBhAyoqOeSTRzF5FEm1ugRmyTIx76piXAsy6d09TMPLHYS8Mn8hGUhClFxMdgPVlxeTtzSLgbpRDj3fQWBEeoUSVcQaZCxvkJ5IOy1dzUQiEaqqqrjyyiu56667WLFiRbxDFCIhSEIkxBG0tLTw5JNP8swzz/D2228D4CRnPDkqxo5TFoFNQLlLs6i+vAhFhaZXu+jePhTvkMQxSEKUPApWZFN5aSFEoeHlTnp3yyKriUbTNMJZPkacvXT62ujq60RRFGpqarjsssv40pe+JHOChDgCSYiEOIb+/n5efPFFnn32WZ5+4q9ECGPDTi5F5FFMNrmoihrvMMU4o81A1aWFFKzIYbjZS8NLnXi7/fEOSxyFJESJz15oZd6VxTjLMujZMUTDK52EfdIDmyiiRAnlexi0dtM22MzQyBAmk4kVK1Zw9dVXc/vtt1NRURHvMIVIaJIQCXEC/H4/b731Fs888wzPPvssHR0dGDGRSyF5FOOmUOYdJYisSjvVVxSRkWuhc/MALW/2EPbLSVyikYQocRmtBiouzqfwdBdjPQEOvdTBSPNYvMMSxOYD+fKH6aODlt4m/H4/TqeTs88+mxtvvJFbb70Vp9MZ7zCFSBqSEAlxkjRNY+vWrXpytGPHDhQUsnCTSyFuCnGQJUPr4khRoegMN+UX5qNFNJrWdtO9bRBkr5cwJCFKTAUrc6i8pADFoNDyVg+dm/rRpIhj3GiaRijHhyezn55gBx097USjUUpKSrjooou47bbbuPzyyzEYDPEOVYikJAmREDOkqamJF198kZdffpkXn3uRCBHMWHFTgJtC3BRgUszxDjMtmexGKj9eQMGKHEY7fDS+2ikt3QlCEqLEklVpp+rSQhxFNnp2DNL4WjchbzjeYaWliDmEP3eYAbWH9oEWPF4PJpOJpUuX8vGPf5zPfOYzLF++PN5hCpESJCESYhYEAgHeffddXn75ZV5++WV27doFQBYuPTly4pLeozmWWWqj+rIiMksz6D8wQtPr3fj6AvEOK61JQpQYbLkWqj5RgKvGyUjrGI2vdjLa5ot3WGlF0zTCuV5G7P10jbXT1deJpmkUFRVxzjnncM0113DDDTfgcDjiHaoQKUcSIiHmQFtbG6+88govv/wyf33iGcKEMGHGRQFuCnCRj1XJiHeYaSN3iZPKSwqxZJno2jZIy5s90goeJ5IQxZfJbqD8wgIKV+XgHwrR9EYX/XtH4h1W2ojYg/hyhumni/a+VsZ8Y1gsFpYvX86ll17KrbfeKlXhhJgDkhAJMcfC4TAbNmzQe482b94MQAYOcsgnhzxc5GFWrHGONLUpBoWi012UXZCHalRof7+f9vf7iARkosRckoQoPgwWlZKzcyk+y40W1Wh9p5fOTQNoETklmE1Rawifa5hhQx+dIx0MDsUWtC0vL+e8887j+uuv5+qrr8Zqlf2/EHNJEiIh4qyvr4+3336btWvXsnbtWvbv3w+AHScu8seTpFyZfzRLDBaVsvPzKFrjJhqO0v5+P50b+okEJTGaC5IQzS2DWaX4LDclZ+eiGBQ6N/XTtq5PKjDOkqgpTMA9wrCpny5PB30DvQDk5+ezevVqPvGJT3DjjTdSXl4e50iFSG+SEAmRYDo6Onjrrbf0BKmxsRGILQwb6z3KJ5tcDIoxzpGmFrPDSOl5eRSuziESjNL+Xh8dGweIhiQxmk2SEM0N1aRQtMZN6Tm5GMwqXVsGaF3XJ0NFZ1jUGCHoHmXY3E/PWCc9/d1omkZOTg6rVq3i4osv5oYbbmDhwoXxDlUIMYUkREIkuMbGRt588009Qers7ERBwYmLbNxkk0sWbsyKJd6hpgRzppHS8/MoXJVDxB+l7b0+ujYPSI/RLJGEaHYZLCpFp7soPisXo02le+sgret6CY5KIjQTopYwQfcoI6YB+nw9dPV2Eo1GyczMZPny5Vx44YVcf/31rFy5UoroCJHAJCESIolomsaBAwdYu3Yt77zzDuvXr6e9vR0AO5l6cpRNLjbscgA+BRanidIL8ihYkU00pNG5aYCODX2EvDK0aCZJQjQ7THYjxWe5KTrdhWpU6N4xRNu6XgLDoXiHlrQ0TSPiCODLHmFY6afX003/YB8ATqeTpUuXcs4553DttddyzjnnoKpqnCMWQhwvSYiESGKaptHS0sL69ev1n927dwNgxqr3IGXjxkE2qiIH6BNlzjRSfFYuhatzUA0K3duHaH+vD/9gMN6hpQRJiGaWJdtE6Tm5FKzMIRrR6No8QPsH/YQ80iN0oqJEibh8eDOGGIj00jPchcfrAaCoqIjTTjuNCy64gKuvvpqlS5dKAiREEpOESIgUMzg4yPvvv68nSBs3biQQCGDAMD7MLpcsXDhxyTC7E2CwqhSd7qb4TDemDAN9+0bo+KBP1mo5RZIQzQxneQbFa9y4FzkJ+yK0b+inc1M/Eb8M9Txemi1MMMeLxzxEn7+brr5OQqEQRqORyspKVq1axYUXXshVV10lRRCESDGSEAmR4gKBAFu3btUTpHfffZf+/n4ArGToyZGTHDLJwSjFGj6SalTIX5FDyVlubG4Lng4fHRv76d09LCWLT4IkRCdPMSjkLc2i+Ew3jiIbY30BOjf2071tkGhYPosfJapECOZ48dlHGI4O0DvSw/DIEAAZGRksWrSINWvW8PGPf5xLL71UFkMVIsVJQiREmtE0jcbGRjZt2sTGjRvZuHEjW7duZWxsDIiV+84aT5CcuHCQJUPtjiJnvoOiNW5cCzIJecN0bR2kc/MAwRGZp3G8JCE6ceZMI4Wnuyhc7cJsNzJwcJSOjf0MHfLEO7SEFCVKJMfHmH2EEW2Qfm8v/UN9aJqGyWSioqKCZcuWcfbZZ3PppZeybNkyGf4mRJqRhEgIQTgcZu/evdOSpF27dhGJRFBRySRb70VykkMGmVKwYQqry0zRGS4KVuRgMKsM1o3StW2QwbpRNBmx9JEkITo+igqumkwKVrrIme8gEorSs32Qjo0D+AdkPtsEDQ0tJ4jPMcqoOkj/WC+9Az2Ew2EURaGkpIRFixZx+umnc9FFF3H++efLIqhCCEmIhBBHNjY2xvbt2/UkadOmTdTV1QGgYsCBk0yycZCl/29UTHGOOr4MZpW8ZVkUrMwhsySDoCdEz44hurcN4uuXk9YjkYToo1ldZgpW5lCwIhuzw8RI2xjdWwfp2zOc9qXgo4Ywoawx/DYPo8oQQ75B+oZ6CYdjBSTy8vJYuHAhq1at4oILLuCiiy4iJycnzlELIRKRJERCiOM2MDDA9u3b2b59Ozt27GDHjh3s3buXUCg2RMyGfUqClE0mWVjJSMveJHuBlYKV2eQty8aUYWS4xUvP9iH69g3LRPcpJCE6nNFqwL3YSf5p2WRV2An5wvTuHKJr6yBjPYF4hzfnJspdBzPHGDONMBIeYsDTx9D4nB9VVSksLGT+/PksX76cM888k4suuoji4uL4Bi6ESBqSEAkhTkkwGGTfvn16gjSRLE0UbjBimtaLlEkWdpwY0qR4g2JQcC+MDXXKrrajRTUG6zz07h5m4OAI0VB674IlIYpRjQqu2kzylmaTs8CBoigMNXjo2TFE376RtCnYoRkjRLL8+GwePMowQ4EB+of68Af8QKzgQUVFBbW1taxYsYKzzz6bc845R4oeCCFOiSREQogZp2kaHR0d0xKkHTt2cPDgQSZ2OTbs2HHqPw6c2MlM6UTJ7DCSuySLvKVZZJZmEAlG6D8wSt/uYQYPedLmpHeqdE6IVKNCdrWD3MVOXAudGC0GRtrG6N01RN+e4dReBNgUJZzlJ5DhxauMMhoaYtAzwNDwkL5Jfn4+8+bNY8mSJaxevZrzzz+fRYsWScEDIcSMk4RICDFnxsbG2L17N3v27GHPnj3s3buXPXv20NIyeTIcS5QyySBT/z+DTMxYUmronTXHTO7SWHJkz7cSCUYYrPPQf2CEgbrRtBlWl24JkcGi4qrJxL3QSc78TAxmlbFeP727h+ndNZxSC/5qmkY0I0zY7iNo8zGmjjIaGmFwdEAvcQ2Qk5NDWVkZNTU1evJz7rnn4nK54he8ECKtSEIkhIi70dFR9u3bNy1JOnDgAE1NTUSjscTAiGlKkuTQL9uwJ32vUkaeBVetE/fCTDJLMohGNIabvAwcGGHg4CiB4dQt450OCZE1x0zOfAeumkyyqhyoBoXRtjH694/Qv38k6QtuaKYo0awAQZsfv8GDJzLCiH+IweFBfaiboii4XC7KyspYsGABS5cuZfXq1Zx11lm43e44vwIhRLqThEgIkbACgQD19fUcOHCA/fv3c+DAAf1naGhI386MlQwc2HCQgX3KZUfSVb4zZxrHkyMnWZV2VIOCrz/A4CEPg/Uehpu8REOp03uUigmRalLIqrSTMz+TnHkObG4L0UiUkebJJCg4Go53mCdEs0QIO/wELT4CxjG8mgdPYIRh7xAez+T6R1arleLiYioqKpg/fz6LFy9mxYoVrF69mszMzDi+AiGEODpJiIQQSUfTNHp7e6mvr9d/Dh06pF8eGBjQtzVhxoYdK3ZsZIxfztCvMyiGOL6Sj2awqGRX2cmeFzuxtuaYYyfWLWMMNXgZafYy2uFL6rlHqZAQKQaFzFIbWRV2sirsOMszUI0q/sEgg/WjeiKbyGWyNUOUSGaQSIafgNGPXxljLDKKx+9hxDPMmG9M39Zms1FQUEBpaSlVVVXU1taydOlSVqxYQXl5eUoNbRVCpAdJiIQQKWdgYEBPkA4dOkRTUxNNTU00NjbS0tKir1MCsd4lGxlYsWPFhoUMrNiwkoEFW0LNXbK6zOTMc5Azz4Gz0o7RYiAajjLa5mO4xctI8xijbWMJfeL9YcmYEKkmdVoClFlqQzWqhH0Rhpu9seGOdaMJs2CqpmloGRGi9iAhi5+gwY8fH/6IF0/Qw4h3GK/Xq2+vqio5OTkUFBRQUlJCRUUFNTU1LF68mOXLl1NSUpIw3wkhhJgJkhAJIdJKJBKhvb2dxsZGPUmaSJhaW1tpa2sjGJw8kVVQxxOlWJI0cTmWLFmxjP+oc93TpMTWOprokXBW2DHbjWhRDW+3H0+nj9F2H54OH2M9AbRoYu7qEz0hUlTIyLeSWWLDUZJBZrGNjDwLiqoQGgsz3BxLRIebvHh7/DDHb7OmRInYQ0QtISKWACFjkIDiwxcdYyzoxeMbZdQzSiQyWbHOYDCQnZ1Nbm4uRUVFVFRUMG/ePGpqali6dCk1NTWYTMk11FQIIU6FJERCCDFFNBqlr6+P1tbWo/50dnbqi9FOMGIaT5SsUxKlWNJkxoIZCyYsmDCjKrNTNtjmNuOssJNZYouduOdbUVSFaDiKt8vPaKePsW4/Yz0BvL3+hKhkl0gJkcGiYi+wkpFvxV5gwV5gw15oxWBS9URztMOHp93HaNsYY72zs0hqVIui2SJotjARS4iIKURI9RMggD/qwx8aYyzgxTvmxef3TbuvqqpkZWWRm5tLQUEBxcXFlJWVUVVVpSc9FRUVGAyJO1RUCCHmmiREQghxgqLRKP39/XR2dh7209HRMe13v99/2P1NmDFNSZJiCdPEddbx200YMWPCjBHTSQ1RUo0K9kIrjmIbmcUZOIqt2Nyx3g2AwEiIsR4/Y70BxnoD+AeC+AaDBEfmrqpdPBIii9OE1WXG6jJjc5vJyLNiz7diyYr1ikQjGr6+AN4eP56OWE+bt9NHNHzih0tN04iaw2jWCJolimYKEzaGCKlBQvgJaAECYT+BsB9fwIcvMIbP5zvscYxGI1lZWeTk5OB2uykoKKCwsFBPeCZ6ecrKyiTZEUKIEyQJkRBCzBJN0xgeHqa3t5fe3l56enr0y0f66enpmTZcbyoDxvHkaCJZMunJ0sT1RkwYMWLAgAHjtB8jRhRUVKOKzW3Gnm8lI99CRl7sf2uOWU+6ouEo/qEQ/sGg/hMcDREcDY//hE4qOTiSmU6IFIOCOdOIxWnC7DTF/s80Ys0eT4BcZlRjrIdOi2oEhkOM9frx9gQY6/bj7fHj6wsSjUTRlCiaKYpmjKIZI0SNUTRTBM0YJWqIEFFDhAkRIkgoGiQYCRKMBAiEAgSCAQIBP4HgkXuRDAYDDocDp9NJdnY2OTk5uFwucnNzyc/Pp7CwkJKSEsrLyykvLycvL0/m7QghxCyRhEgIIRKEpmmMjo7S39/P4OAgQ0NDDA4O6j/H+n1qsYgjUVAOS5QM4+mSQTFiNpsxW82YbEbMNhMmmwlzRuzHaDKgqioGQ+x/ogpaUCMaAsKgTfwEY/9HgxqEgSgQUSCioEUmLgNRBQWVisvyUBWFtnf6QYkSVTRQAKOGYgTFCJpBQzEAauw6xq+f+MGggRFQY9tEo1EikQjRaJRwKEIkFCYcjIxfjhAOhwmHwoTCIcLREKFIiHAkRCgc+wmGggSDQY51eFRVFZvNht1ux2636wnORJIzkejk5uaSl5c3LdFxuVyS4AghRIKQhEgIIVKApmmMjY3h9Xrxer14PJ7Dfo50/YevGxsbIxwOEwqFDvt/6s+xkq94mZq0Tf3/wz8WiwWbzab/ZGRk6EmN3W4nMzNzWoLjdDrJysrC5XLpvTlOp1OSGiGESAGSEAkhhDgpkUjkqEnT2FhsLozf7ycQCBAIBKZdDgaDRCIR9uzZw9jYGNXV1RiNRoxGIyaTCYvFgsViwWq16v9P/JhMJsxms77dxDYWiwWDwYDRaMRgMEiyIoQQ4rhIQiSEEEIIIYRIW7NT+1UIIYQQQgghkoAkREIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdKWJERCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbkhAJIYQQQggh0pYkREIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdKWJERCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibRnjHYAQqai7u5uhoaF4hyGEECLFZGdnU1BQEO8whEgpkhAJMcO6u7u5+YabwRDvSIQQQqQaq9XKH//4R0mKhJhBkhAJMcOGhobAAMYDThSfGUUfmKqiqErsojLl//HLiqrC+NX6nRQF1MO3PdL9j355ymOq+i9Trh+/oCqTGyvK5IDaie2YfExt6u1MPo+mP9bk9drUOCbuP3Ww7tQ4xi9rR708eSdtyks5bPCvMmVbZcq2THkc/bVw+ONPuQ5FQftQrEe8z2H3n/K+TL3/EZ5r6u3THuPDscBhsXz4Pse6neO8/ajXfdQ2027Xjni7dsQYtOmPd9hr0Q5/fCX2HEd9/mmPdYT7o035uGuTm07ZVpnyWMqHnktRpt9/ctPD768q2pTn0MbvE7t+4rIy5XoAFU2PO3b/yceaeJ6J+3z49onnUpn8X79O4fDblQ891pTLE/+rU+6jENUfa+I6VYlO2Xbi+qj+/hiYjNswvu3E8xgUDWX8OsOUWA1Tnku/v6JhYMpz6bFGp8Qycf/o5HMc5T4TMU7sQlQlesRYp76XKlPimxLrxONMe1/0xwXD+Kdk4rNiUEAZ/82AMu1ybDsFdfyyqqioKDS3G/nXX2YzNDQkCZEQM0gSIiFmiTJmRB0zTUmC1GmXgYmzk/Gr1ClnQ4cnRMrUhGZq4jN122nXf3jbD93/w8nVlFg0ZcrZ6BGSLD3JmXr7+ClabIPJ6ydPFWPbTNw8LSHRH3/KZfVI1x/lOvXDj/UR2+q3K4dvOyUJPGJCNTWZOdpl/f7KlMuHxzV92yNfPuLtHOP2Y9z/WM9/xOSQw1/rkZ5r+u3HSIg+tO205zxs26MkRFOv15//SAnNcSREUy8f4f7KlOTlSPeZ/LhMnrgrelzatOv1x5ly3cRJNke4D4o25TVMSYim3v8oycth1x319iMlDJOJg2HKfaZuC7FkYOp1k9tOuW7q5Q8lGQYlijr+Zk19rNhlxi9PJmETCYNBmUw4DBO7MSaff/pjRafcZ+JydPJxp8QymdxE9VgNU94TA1Pjm54QTY95enwTcU9eN5nwGKYkPwZlYjt1ynWx34QQs0O+XUIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdKWJERCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbkhAJIYQQQggh0pYx3gEIkaq0jDBRRUXRmx1UFFWJXVSm/D9+WVFVGL9av5OigHr4tke6/9EvT3lMVf9lyvXjF1RlcmNFmWwumdiOycfUpt7O5PNo055zfNvJB5hy3cQ/HHabfp8ok8+lTFye3Fab8lIOe6wpL4Up959+u3KEbQ97qVMufGi7D9/nsPtPeV+OENfU+Kferh0hlqnPMe2xjnCfY91+pFiPdPtRr/uobabdrh3xdu2IMWjTH++w16Id/vhK7DmO+vzTHusI90eb8nGf/AApU7ZVpjyW8qHnUpTp95/c9PD7q4o25Tm08fvErp+4rEy5Xn8cPRaNw94rNP2xNEUjOuV2bdo2sf+j49epyuRrVJm4TtOf/8OXJ/5Xp9xHGf9yTuxOVDRUJTpl24nro/r7Y5h4fWgYxredeB6DoqGMX2dg8r0yTHku/f5THkudshuafE5Fv2xAQRnfwqBvp6GOv5mqokxe1m+PHjFW/b1C0y9/ONaJx5n2vkyJzzD+XBN/KoMCyvhvsVgnL8e2mxKfoqKi0Nwup21CzAb5Zgkxw6LRKEajkXDtSLxDSQ7ah/6fIUc67xYiVUymQ3rbQRqamuGmz4AXo9FINJq+f3UhZoMkRELMMFVVCYfDfP/736eioiLe4QghhEgRzc3N/Mu//Auqmj4JoBBzQRIiIWZJRUUFtbW18Q5DCCGEEEJ8BGliEEIIIYQQQqQtSYiEEEIIIYQQaUsSIiFmmNvt5gtf+AJutzveoQghhEghcnwRYnYomqbNcG0nIYQQQgghhEgO0kMkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbxngHIESqCAaDPPDAA7z66quMjo4yb9487rrrLs4444x4hyZEwnnyySf5xS9+wb59+xgZGcHlcrF48WK+9rWvceONN8Y7PCGOadu2bXz7298+4m333nsvS5Ys0X/ftWsX9913HwcPHsRut3PRRRfxpS99iYyMjMPue+DAAR566CF27dpFMBikuLiYT37yk9x00036Nhs3bmTt2rXs27eP5uZm8vPzeeyxx44Z86uvvsq//Mu/YLPZeOWVV466XTgc5o477qC5uZmvfe1rfOpTnzrmYwuRzCQhEmKG/OhHP+Ktt97i5ptvprS0lJdeeom/+7u/4+c//zmnnXZavMMTImHce++9fP3rX6eoqIjrr78et9tNV1cXGzdu5Omnn5aESCSVG2+8kUWLFk27rqSkRL9cV1fHd7/7XSoqKvjGN75BT08Pf/nLX2hra+M///M/p91v48aN/MM//AMLFizg9ttvx2az0d7eTm9v77TtXn/9ddauXUtNTc1xr0k0NjbGfffdh81mO+a2Tz75JD09Pcf1uEKkAkmIhJgBe/fu5Y033pjWknbZZZfxhS98gXvvvZd77703zhEKkTh++9vfYjab2b59O/n5+dNu6+/vj1NUQpyc5cuXc+GFFx719t/85jdkZmbyi1/8ArvdDkBRURH/7//9PzZu3MiaNWsA8Hq9/Nu//RtnnXUWP/zhD1HVo89q+PKXv8zf/d3fYTQaueeee2hsbDxmnH/4wx/IyMhg5cqVrF+//qjbDQ4O8vvf/55Pf/rTPPDAA8d8XCFSgcwhEmIGvP322xgMBq655hr9OovFwlVXXcWePXvo7u6OY3RCJB6TyYTJZDrs+uNt7RYikYyNjREOhw+73uv1snnzZi699FI9GYJYg5nNZuPNN9/Ur3v99dcZGBjgS1/6Eqqq4vP5iEajR3y+3NxcjMbjb9NubW3l8ccf5+6778ZgMHzktvfffz9lZWV84hOfOO7HFyLZSUIkxAyoq6ujtLR02gEP0IdR1NfXxyMsIRLSbbfdhtfrZenSpXzve9/jxRdfZGRkJN5hCXFSfvSjH3H55ZfziU98gm9/+9vs379fv62hoYFIJEJtbe20+5hMJhYsWEBdXZ1+3ebNm7Hb7fT19fGZz3yGyy67jCuuuIKf/OQnBAKBU4rxl7/8JStXruTss8/+yO327t3Lyy+/zDe/+U0URTml5xQimUhCJMQM6O/vP2LL9sR1fX19cx2SEAnrb//2b3nggQcoLi7mJz/5CVdddRVut5vrrrvuuIb+CJEIjEYjH/vYx/jWt77Fv/3bv/HFL36RhoYGvvGNb3Dw4EFgcgjo0Y4PU48NbW1tRCIR/vEf/5E1a9bwwx/+kCuvvJJnnnmGf//3fz/pON9//302bdrEN77xjY/cTtM0fv7zn3PxxRezdOnSk34+IZKRzCESYgYEAoEjDv8xm8367UKIGEVRuPPOO7nzzjvp7+9n3bp1PProozz22GPU1dWxc+fOYw7rESLeli1bxrJly/TfzzvvPC688ELuuOMOfvOb3/DjH/9Y3/cf7fgQDAb1330+H36/n2uvvVavXvexj32MUCjEs88+y5133klZWdkJxRgKhfjlL3/JtddeS2Vl5Udu+9JLL9HQ0MAPfvCDE3oOIVKB9BAJMQMsFguhUOiw6ycOdhaLZa5DEiIpTPQM/eUvf+Hiiy9m7969MsRUJK3S0lLOO+88tm3bRiQS0ff9Rzs+TDSaweRx4pJLLpm23cc//nEA9uzZc8LxPPbYYwwPD3PnnXd+5HZer5ff/OY3fOpTn6KgoOCEn0eIZCcJkRAzwO12H7E61sR1ubm5cx2SEAnrrbfeQtO0adeFQiEGBgYAsFqt8QhLiBmRn59PKBTC7/frQ+WOdnyYemyY2Nblck3bLicnB4DR0dETisPj8fCHP/yBq6++Gq/XS2dnJ52dnfh8PjRNo7Ozk8HBQQD+/Oc/EwqFuPjii/XtJkp9ezweOjs7j5jUCZEqZMicEDNg/vz5bNu2Da/XO62wwt69e/XbhRAx1113HU6nk7POOouKigpCoRCvvfYae/fu5aabbqKioiLeIQpx0jo6OjCbzdhsNqqqqjAYDBw4cICLL75Y3yYUClFXV8dFF12kX1dbW8vmzZvp7e2lvLxcv35inlF2dvYJxTE6OorP5+PRRx/l0UcfPez2W2+9lfPOO49/+7d/o7u7m9HRUT7/+c8ftt0f//hH/vjHP/LAAw+wYMGCE4pBiGQhCZEQM+DCCy/kz3/+M88++6y+DlEwGOTFF19k8eLFMgRBiCl+9KMf8fLLL7Nx40aee+457HY78+bN49577+WLX/xivMMT4rgMDQ0dlqTU19fz7rvvcuaZZ6KqKg6Hg9NPP51XX32V22+/nYyMDABeeeUVfD7ftITooosu4pFHHuGFF15g9erV+vUvvPACBoOBlStXnlB8OTk5/Ou//uth1z/xxBPs2bOHf/qnf9J7pW688UbOP//8adsNDg7y4x//mCuuuILzzjuPoqKiE3p+IZKJJERCzIDFixdz0UUX8Zvf/IahoSFKSkp4+eWX6erq4p577ol3eEIklK997Wt87Wtfi3cYQpySf/qnf8JisbB06VJycnJoamriueeew2q18pWvfEXf7q677uLuu+/mm9/8Jtdccw09PT385S9/4YwzzuDMM8/Ut6upqeHKK6/kxRdfJBKJsGLFCrZv386bb77JZz/72WnD6w4dOqQvrtre3o7H4+H3v/89EBuRcO6552K1Wg9LcgDWrVvH/v37p91WW1t7WGnwzs5OACorK4/4OEKkEkmIhJgh//iP/0hBQQGvvPIKHo+H6upq/uM//oMVK1bEOzQhhBAz7Pzzz+e1117jsccew+v1kp2dzQUXXMAXvvAFSktL9e1qa2v56U9/yn333ccvf/lLMjIyuOqqq6YlTRP+9m//loKCAl566SXWrVtHQUEB3/jGN7jlllumbXfw4EEeeOCBaddN/H755Zdz7rnnzsIrFiJ1KdqHZ7YKIYQQQgghRJqQKnNCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbkhAJIYQQQggh0pYkREIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdLW/w8HxjtKOjfv4AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5a6488b4", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65fd936705e540f7a3340adb29e6e9fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/138 [00:0018:45:19 WARNING The naima package is not available. Models that depend on it will not be functions.py:48\n", + " available \n", + "\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=73384;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=253950;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780618;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=145040;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=274993;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=446945;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566296;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=336412;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=128353;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=344711;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=593746;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667323;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725443;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=820810;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=18755;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=696406;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=254806;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278253;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
18:45:19 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=622556;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289295;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=323977;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382258;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=767092;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=658960;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881727;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27896;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=643709;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737409;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=944509;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=657198;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=454390;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289349;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=304829;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=256744;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=25866;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279713;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
18:45:20 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988111;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=864717;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
18:45:20 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780461;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448217;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987990;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=929178;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155167;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23710;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "505142cb", + "metadata": {}, + "outputs": [], + "source": [ + "## Crab location\n", + "\n", + "source_position = {\"l\":184.600, \"b\": -5.800}" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/ScAttBinning\n", + "- inputs_Crab_DC2.yaml\n", + "- imagedeconvolution_parfile_scatt_Crab.yml\n", + "- crab_spec.dat\n", + "\n", + "As outputs from the notebook Crab-DC2-ScAtt-DataReduction.ipynb\n", + "- Crab_scatt_binning_DC2_bkg.hdf5\n", + "- Crab_scatt_binning_DC2_event.hdf5\n", + "- ccm.hdf5" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 1. Read the response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "573a7c60", + "metadata": {}, + "source": [ + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "98a778c2-73cf-467b-96b6-affc42f17102", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = path_data + \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "\n", + "response = FullDetectorResponse.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "eab660b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "response" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 2. Read binned Crab binned files (source and background)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "04e15347-6b38-42de-a7c5-cd99b2ae66ac", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 55.8 ms, sys: 253 ms, total: 309 ms\n", + "Wall time: 327 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background \n", + "bkg_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "bkg_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_bkg.hdf5\")\n", + "\n", + "# signal + background\n", + "Crab_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "Crab_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a409aa7b-9bd8-443b-be46-ee5a053f8349", + "metadata": { + "tags": [] + }, + "source": [ + "# 3. Load the coordsys conversion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "daaf836a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.09 s, sys: 25.8 ms, total: 1.12 s\n", + "Wall time: 1.12 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ccm = CoordsysConversionMatrix.open(\"ccm.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(Crab_data.binned_data, \n", + " bkg_data.binned_data, \n", + " response, \n", + " ccm,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "2a662f5e", + "metadata": {}, + "source": [ + "## 4-2. Load the response file\n", + "\n", + "The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size. \n", + "\n", + "So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0ab4b84c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 903 ms, sys: 3.59 s, total: 4.49 s\n", + "Wall time: 5.01 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 2.15 s, sys: 2.65 s, total: 4.8 s\n", + "Wall time: 5.1 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_Crab.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_Crab.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 158.489\n", + "- 251.189\n", + "- 398.107\n", + "- 630.957\n", + "- 1000.0\n", + "- 1584.89\n", + "- 2511.89\n", + "- 3981.07\n", + "- 6309.57\n", + "- 10000.0\n", + "nside: 8\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a27500612cd453d841ffdc68bad7e61", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.383992036768139\n", + " loglikelihood: 23020491.843640238\n", + " background_normalization: 1.0601311215130675\n", + " Iteration 2/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.623693254892361\n", + " loglikelihood: 23787078.312391542\n", + " background_normalization: 0.9812080588835854\n", + " Iteration 3/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.754331827455719\n", + " loglikelihood: 24062347.36776291\n", + " background_normalization: 0.9889832567754694\n", + " Iteration 4/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24100868.36162518\n", + " background_normalization: 0.9853598178541682\n", + " Iteration 5/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.3279853605979435\n", + " loglikelihood: 24262736.203220718\n", + " background_normalization: 0.9866072495745218\n", + " Iteration 6/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.670443384185757\n", + " loglikelihood: 24350147.041354418\n", + " background_normalization: 0.9913375987634248\n", + " Iteration 7/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24364951.62048164\n", + " background_normalization: 0.988470546497861\n", + " Iteration 8/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.071670008786414\n", + " loglikelihood: 24424020.48509694\n", + " background_normalization: 0.9895862691562303\n", + " Iteration 9/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.422815741504944\n", + " loglikelihood: 24450211.195517786\n", + " background_normalization: 0.9938902344364399\n", + " Iteration 10/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24466176.96588525\n", + " background_normalization: 0.9884096079114113\n", + " Iteration 11/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.748558816310641\n", + " loglikelihood: 24480651.402792968\n", + " background_normalization: 0.9901152715531214\n", + " Iteration 12/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 7.338999823632587\n", + " loglikelihood: 24427198.88031438\n", + " background_normalization: 0.9971667543280367\n", + " Iteration 13/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.573221723840575\n", + " loglikelihood: 24515704.1840233\n", + " background_normalization: 0.9840562801688233\n", + " Iteration 14/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24521511.682864733\n", + " background_normalization: 0.9907725667489528\n", + " Iteration 15/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 7.453466242079951\n", + " loglikelihood: 24529448.60930462\n", + " background_normalization: 0.9919747556588937\n", + " Iteration 16/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 7.93231998200381\n", + " loglikelihood: 24494561.43656476\n", + " background_normalization: 0.9966116121955169\n", + " Iteration 17/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24534998.92439188\n", + " background_normalization: 0.987024209017416\n", + " Iteration 18/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.4952411015155125\n", + " loglikelihood: 24489955.411851242\n", + " background_normalization: 0.9900001865729486\n", + " Iteration 19/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24538590.74839551\n", + " background_normalization: 1.0018420710427285\n", + " Iteration 20/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 8.476365597600235\n", + " loglikelihood: 24450646.0177122\n", + " background_normalization: 0.9986575244367942\n", + "#### Done ####\n", + "\n", + "CPU times: user 1h 8min 37s, sys: 3min 5s, total: 1h 11min 42s\n", + "Wall time: 10min 27s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0601311215130675,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 23020491.843640238,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9812080588835854,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 23787078.312391542,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9889832567754694,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 24062347.36776291,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9853598178541682,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 24100868.36162518,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9866072495745218,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 24262736.203220718,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9913375987634248,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 24350147.041354418,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.988470546497861,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 24364951.62048164,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9895862691562303,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 24424020.48509694,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9938902344364399,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 24450211.195517786,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9884096079114113,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 24466176.96588525,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9901152715531214,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 24480651.402792968,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9971667543280367,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 24427198.88031438,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9840562801688233,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 24515704.1840233,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9907725667489528,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 24521511.682864733,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9919747556588937,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 24529448.60930462,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9966116121955169,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 24494561.43656476,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.987024209017416,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 24534998.92439188,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9900001865729486,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 24489955.411851242,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0018420710427285,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 24538590.74839551,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9986575244367942,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 24450646.0177122,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHMCAYAAADF4Oz/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxiElEQVR4nO3dd1hUV/4G8HeAoVfpVUSwUOwlFqwJUWP5aWJJNtaQaokplrDR6GpM19VoNKaRRF01Zk1bRbFHiR0MAipEGFFpQ52hDDDc3x+EiRPawDDMAO/nefZZuPfce7/HEXlz7rnnigRBEEBEREREdTLSdwFEREREhoxhiYiIiKgBDEtEREREDWBYIiIiImoAwxIRERFRAxiWiIiIiBrAsERERETUAIYlIiIiogYwLBERERE1gGGJiIiIqAEm+i6gPSkpKcHevXuRmJiIpKQkyGQyvPHGGxg/fnyzzrdkyRLExcXVuc/Y2BgnT57UoloiIiLSBMNSCyosLERkZCRcXV3h7++P2NhYrc43e/ZsTJw4UW1baWkpPvroIwwcOFCrcxMREZFmGJZakKOjIw4ePAhHR0fcuHEDzz33nFbnqysQHT16FADwyCOPaHVuIiIi0gzDUgsyNTWFo6OjRm3Pnz+PXbt24datWxCJROjduzdefPFFdOnSpcHjoqOjYWFhgeHDh7dEyURERNQITvDWgyNHjmDFihWwsLDA888/j7lz5yItLQ0LFy5ERkZGvccVFBTg8uXLGD58OCwsLFqxYiIioo6LYamVlZSUYPPmzZg4cSI++OADPP7443jqqaewY8cOAMCuXbvqPfb48eNQKpW8BUdERNSKeBuulV2+fBlyuRxjx45FQUGBaruRkRF69uyJq1ev1nvssWPHYG9vjwEDBrRCpURERAQwLLW6u3fvAgCWLl1a534rK6s6t9+/fx8JCQmYNm0aTEz4sREREbUW/tZtZVVVVQCAN998E506daq139jYuM7joqOjAfApOCIiotbGsNTKPD09AaDJt9OOHTsGT09PBAUF6ao0IiIiqgMneLeyQYMGwcrKCrt27UJlZWWt/Q/OY6px69YtSCQSPPzww61QIRERET2II0st7Pvvv4dcLkdubi4A4Ny5c8jOzgYAPP7447C2tsarr76Kt99+G8888wzGjh0Le3t7ZGVl4fz58wgODsYrr7yidk7egiMiItIfkSAIgr6LaE9mzJiBzMzMOvft27cP7u7uAIDY2Fjs3r0biYmJKC8vh7OzM3r16oVp06ahe/fuqmOqqqowffp0ODg44PPPP2+VPhAREdFfGJaIiIiIGmBwt+GSkpIQFRWF2NhYZGZmwtbWFkFBQQgPD4e3t3eTzvX+++/jl19+wZAhQ/Dee+/V2l9SUoKvv/4aJ0+eRG5uLuzs7BAUFIR//vOfMDc3b6kuERERURtmcGFpz549iI+Px+jRo9G1a1fk5ubi4MGDCA8Px/bt2+Hn56fReW7cuIHDhw/D1NS0zv1yuRxLlixBTk4OJk2aBE9PTxQUFOD3339HRUUFwxIREREBMMDbcPHx8ejRowfEYrFqW3p6OubPn4+RI0di1apVjZ5DEAS89NJL6Ny5M65evYouXbrUGlnauHEjjh07hs8//xweHh7NrresrAwSiQSdO3dmwCIiImqHDG7pgJCQELWgBADe3t7w9fWFRCLR6BxHjhxBamoqnn322Tr3y2QyHDp0CJMmTYKHhwcqKipQXl7erHolEgmeffZZjWtr6/744w99l9Bq2Nf2qyP1l31tvzpSf/XdV4O7DVcXQRCQn58PX1/fRtuWlJRgx44dePrpp+Ho6Fhnm/j4eJSXl8PLywurVq3C2bNnUVVVhaCgILzyyisICAho4R60HwqFQt8ltBr2tf3qSP1lX9uvjtRffffV4EaW6hIdHY2cnByMGTOm0baRkZEwMzPDjBkz6m1T8362nTt3Ijs7GxEREXjllVdw//59LF26FFKptN5jpVIpbt68qfpfRxlRIiIi6qgMfmRJIpFg06ZNCAoKwrhx4xpsm56ejgMHDmD16tX1TuwGgNLSUtXXmzZtgqWlJQAgICAAL774Ig4ePFjvLbyffvoJkZGRtbanpqZCqVRq0KO2TS6XIzExUd9ltAr2tf3qSP1lX9uvjtRfXfU1MDBQo3YGHZZyc3OxYsUKWFlZYd26dfW+ZLbGli1bEBwcjFGjRjXYriZIDRs2TBWUACAoKAju7u64fv16vcdOnjwZw4YNU30vkUiwfv16dOnSRW0xyfYqMTFR479cbR372n51pP6yr+1XR+qvvvtqsGFJLpdj+fLlkMvl2Lp1K5ycnBpsf+XKFVy4cAHr169HRkaGartSqYRCoUBGRgZsbW1hZWWlOpeDg0Ot8zg4OEAul9d7HScnp0ZrISIiovbDIMOSQqHAypUrkZ6ejo0bN2o0sbvm/WtvvvlmrX05OTmYOXMmFi1ahBkzZqhGgOqamySVSuHj46NdB4iIiKjdMLiwpFQqsWbNGiQkJGDDhg0IDg6us51UKkVxcTE8PT1hYmKCfv364e23367V7oMPPoCbmxtmz56tWtDSx8cH/v7+OHv2LAoKCmBvbw8AuHjxIrKzs/H444/rrH9ERETUthhcWNq2bRvOnTuHoUOHQiaT4ejRo2r7w8LCAFQ/yRYVFaV6Oa2rqytcXV1rne/jjz+Gg4MDQkND1bYvWrQIr732GhYtWoTJkydDLpdj//798Pb2xpQpU3TXQSIiImpTDC4spaSkAABiYmIQExNTa39NWNJWv3798MEHH+CLL77Azp07YW5ujtDQULzwwgtqk76JiIioYzO4sLRlyxaN2kVERCAiIqLRdvv3769334ABAzBgwACNayMiIqKOp00sSklERESkLwxLRERERA1gWCIiIiJqAMMSERERUQMYloiIiKhZqqoE3InNxh8x91GlrNJ3OTpjcE/DERERdRTKCiUkV7KReTMftq6WCAj1hJmVWN9lNaqirBLJZ+7h+uE0FGWVAABunryLMS/3gbl1/S+yb6sYloiIqE1RVihRJq+AQlaBMnk5FPIKKGTlyM6Wo7N7GawczPVdYoMEQYA0tQjJp+/ij5gMKIorVPsu77sF/2Ee6BnmA0cfWz1WWbeSQgWSjkqQGH0HCnmF2r77Cbn4adVveOS1fnDwstFThbrBsERERHohVAkoL6lUCzxl8goo5OUok1VUb5M/EIj+3F6pUNZ7zpRfTsIlwB5dBrnBd6AbbJwtWrFHDSspVOCPs/dx68xd5KfX/cL2SoUSN06k48aJdLj1cEBgWGf4DnCFkYl+Z80U3JMj/lAaUs7eg7JC/XabR5Aj8tJlKCsqR1FWCX566zeMXtgHPv1c9FRty2NYIiKiJhMEAZUKJSpKK1FeWomKsj+/Lqn8a9sD/19RVvlXMJJVBx+FvAKC0NKFAdm3CpB9qwAXdt2Ak58dugxyhe8gN9i5WbXwxRqnrKxCemw2bp25h/S4HAhK9Q4bmxr9GexccT8hD8ln7qKirDoMZt7IR+aNfFjam6HHWG/0GOMNy1YcNRMEAZk38hH/v1TcuZqttk9kLELXIe4ImdAFjr62kEtLEf3RFeRKZKgoVeLoR1cwcGY39JrkB5FI1Go16wrDEhERQVlZhTtXsyHPKa0ddEorUV72wNd/BqIWDzoNEBmLYGYlhrmNGGbWpjC3FsPMxhRm1mLV12lJ6ZCnKlFw769RG+ntQkhvF+LS3lvo5GNTHUwGuer8NlGupAi3Tt/FH+fuo0xWUWu/Szd7dBvpBb/BbjC1rJ6j5DvQDQNmdkPK2XtIPCpBwb1iAEBJgQJXv09B7A9/oMtANwSG+cC1u4POaq9SViHtUhbif0lFzu1CtX1iC2P0GOODoHGdYe3416idtZMFJr71EM58Go/UC5mAAFzaewt5d2QIfS4EJqbGOqu3NTAsERF1cCUFChzbdBXZyQWtcj2xhfFfgcfaVBWAzKzrCEN/BiSxhUmjIxRVrjIEvhSIgntypF7KRNrFLOSmFan2592RIe+ODFcOJMPOwwpdBrmhyyA3dOps0yKjH2VF5UiJuY/k03eRK5HV2m/ZyQwBwz3RbaQX7NzrHuUytTBB4COd0fNhH2Qk5iHxqASSy1kQBEBQCrh9PgO3z2egk48N7IPFCPCrhNi8ZX6VV5RV4tbpu7h+KA2ynFK1fVadzBE03hc9Rnupwt3fic1NMGZJH8T98AeufJcMAPgjJgOFmSV45NV+sOpk2HPJGsKwRETUgUnTChH90VUU55Y12tbEzBhiCxOYWphAbP7A1w/+v6UJxOYmde4TW5rAzEoMYx3Pv7H3tEZfT3/0/T9/FGWVIO1iJlIvZSIn5a9RksL7xYj74Q/E/fAHbFws4PtncHLuatek4FSlrEJ6XA6Sz9zDnavZqPr7bTaxEToPcEW3EZ7wCHGCkZFm5xaJRPAIcoRHkCPkuaW4cbx6HlNZUTmAmuAH3D11Et1GeqHnwz71BrDGlOSXIeHoHdw4dkdtsjkAdOpsg5DHuqDrQ+4azZsSiUToO9UfDl42OPXJNVQqlJDeLsQPb8bgkVf6wiVAdyNiusSwRETUQaVeyMDpHfGqCdNWncwxYEY3mNuZQmz+97BjDCPjtrc0n62rJXpN8kOvSX6Q55Yi7WIW0i5lIvNmPvBnrpFllyL+l1TE/5IKK0dz+A50RZdBbnDp5lBvuMm/K8Ot0/eQcvYeSgvLa+137mpXfZvtIXeYWWu3FIC1owUGzOiGvlO7IvVCJhKP3kF2SgEAoLykEtcPp+H64TR49XJCYFhnePVx1iiU5d+VqSZtV1WqhzyvXk4IeawLPIIdmzXq5jvQFZPXDsHRj65AnlOK0gIFfll3AcPDg9FthFeTz6dvDEtERB2MUCXg6n9TEPvfFNU2F397PPxqP1jam+mxMt2ydrRA8HhfBI/3RUmBAml/3qrLSMqDUFUdFopzy5AQJUFClAQW9mbwHeAK30GucO/ZCRWlSvzx230kn75Xay4PAFjYm8F/uAe6jfDUyZwoY7Ex/Id7wn+4J6S3CxHz3TXkJpaqnk67+7sUd3+XwsbZAj0f9kG3UV4wt1Ff80gQBGQk5SH+f6lIj81R22dkLELXYR4InuDbIssWdPKxwf+tG4pjm2ORmZSHqkoBZ3bEIz9djoFPdtd4lM0QMCwREXUgFWWVOL3jd6RdzFJt8x/ugeHhwW1+Em5TWNqbIfCRzgh8pDPKisohuZKF1ItZuH9dqrqVVlqgQNKxO0g6dgdm1mJUlFXWGoExMhahc39XBIz0hFcvp1YbfXPys4P/JCeEveSPW6fuIvHYHcj/nGckyynFxf/cxJUDyeg61B2BYZ3RyccGqRcyEf+/VEhTi9TOJbYwQc+HvRH0qG+LzysytzXFhDcG4rdvkpB07A4AIP5/qci/K8PoRX3axAKcAMMSEVGH8eDj3QAAETBoVneETOzSLh7vbi5zW1N0H+2N7qO9oSiuwJ2r2Ui7mIm7v0tVozZ/X4DR0dcW3UZ6outQj1qjN63J3MYUvSb5IfixLrgbl4PEoxLc/V0KAFBWVOHW6Xu4dfoeTC1NUF5SqXaslaM5gsf7ovuo+idttwQjEyMMWxAEB29r/PZNEgSlgLvXpPhpdfUClvYe1jq7dkthWCIi6gCybuUjeuNV1QRhsYVxu1s4sCWYWYkREOqJgFBPVJRVIj0uB6kXMnH39xyYmJmg6xB3BIz0NLjVtY2MRPDp5wKffi4ozChG0rE7uHX6riogPRiUHH1t0WtiF3QZ5Naqi10GPtIZ9p7WOP7vWCjkFSjMKMZPq3/DmMV94NXbudXqaA6GJSKiZlJWKCGXlqEoqwSy7BLVO7L8h3vAqYudnqv7y60zd3H28+uqW0g2LhYIe71/u3slRUsTm5vA7yF3+D3kru9SmsTO3QoPze6J/tMD8Me5+0g4egf56TJ49XZGr4ld4B7YSW8jiR6Bjvi/9UNx9KMryE+Xo7ykEkfev4xBT/VA8ARfgx3hZFgiImpAmbwcsuxStUAky67+nzy3TPVE1YOuH06DTz8X9JvmDyc//YWmqioBacfycf+8RLXNPbATxr7cV6+3jqh1iM1N0GOsD3qM9YGyQgljsWHMSbNxscSkNUNwevvvqjWkLuy+gbx0GYYtCDLIuXMMS0TUoVUpq1CcVzM6VDsU/X2eh6buXM3GnavZ8O7rjH6PB8C5lUNTeUkFTnx8Dfev/TWZt+cjPhgyu6fe3zNGrc9QglINUwsTPLy0L65+n4zYg38AAJLP3EPh/WI8/ErfVn2tiyYYloio3VNWVkGWXYLCjGIUZpZAciMXd366VB2IpKW13telCTNrMWxdLGHjYgkbV0vYuljAxtUSBffkuPbjbRTnVS/ymB6bg/TYnFYNTYUZxTj60RUU3q9+XYbISIQhc3si8JHOOr82kaZERiL0n94NDt42OL3jdyjLq5CdUoAfVsXgkVf7t/p/YDSEYYmI2gWhSkBxfll1IMooRlFmieprWU6pah2dv9T91vcaIhFg5WQBWxdL2LpawsbF4s//r/5ffY88ewQ6ovsoL9w8dbf+0DTNH85d7Vug17Xduy7Fic1xqpWYTSyMEPbqAHgEOerkekTa8nvIHbZulqqV5EvyFPhl7XmMeD4EXYd66Ls8AAxLRNTGlMnLUZRRjMKMEhRmFv85WlQdjmpWotaU2Nz4gZGhvwUiJ4tm364yFhsj8JHO6D7KC7dO30Pcj3+oXieiCk19nNF3mj9c/O2bdY2/EwQBSdF3qh/N/jMY2ntawW+KHYMSGTwnXztMWT8UxzfFIutWPpQVVTi59Rry0uUYMD1A3+UxLBGR4aksV1aPDNWEoT8DUeH94lrr3TTGxMwYdu5WsHOzgp2HFWzdLJFXko1egwNhbmuq06dvjMXG1Sspj/TErTP3EPfDA6EpLgfpcTnw6u2Mfo9rF5qqKqsQ83UibhxPV23z7uuM0Qt7IyUtWdtuELUKSzszTPjnQJz7KhG3Tt0FAFz78Q/kp8vgNla/K8szLBGRXgmCgKLMEmTeyENGUh6ybuZDJi2t8ymz+oiMRbB1sawORe5WsHOzhO2fX1vam9UKRImJhbCwa71/fI3Fxug51gfdRlSHpms//gG5tDo03b2Wg7vXcuDV2wn9pvk3+UWjZUXlqtdJ1AiZ2AUDZ7Wt10kQAdU/K6HPBsOxsw3Of3sDQpWAO1ezkXNHDF+PLrB1bd7LgrXFsERErUoQBBTckyMjKQ+ZSfnIvJGHkgKFRsdadTKHnXv16NBfwcgKNs7Nv2XWmlShaaQXkk/fRdyPtyGXVr+i4u41Ke5ek8KrlxP6TvOHa7fGQ1NeugzRH16B7M/XXBiZiBAaHoKAEZ467QeRLolEIgQ96gt7D2uc2FI9/65UWoGbJ+9i4KzueqmJYYmIdKqqSkDenSJkJuUj40Yesm7koUxW/600Y7EROvnY/BWG/gxEtm6WEJu3j3+yjE2M0GOsDwJGeiH5z9tzqtD058tQGwtNkitZOLXtGirKqudpWdiZ4pFX+zV5ZIrIUHmGOGHyv4YgeuMVCKZK9Nfj3KX28S8PERmMqsoqSNOKkJmUVx2ObuY3uFaR2NwYrt0c4NajE9x6doKzn63BrQmjK8YmRugxxhsBIzyR/OufoSlHPTR5hjih3+N/hSZBEPD7z7dxad8t1a1KR19bPPJaP1g7WuirK0Q6Yeduhclrh+BG0o1We0lxXRiWiEgrygolcv4oRMaN6ttqWbfyG3wqzdTSpDoY9XCAe89OcPS11es/gobA2MQIPUZ7o1todWiKfSA03YuX4l68FJ4hjug9pStunryLP87dVx3b5SE3jHy+F0zMOkbApI7H1FIMEwv9/v1mWCKiJqksVyI7uaB6ztGNPGQnF6jezF4Xc1tTuPWoHjly79kJDt42nHhcDyMTI3Qf7Y2A0L9GmmSq0JSLe/G5au37PxGAPlO7Guz7tIjaC4YlItKIskKJxKN3EPfDH6oFD+tiaW8Gt57VwcithwPsPa35y7yJ1ELT2XuIO/hXaAKql0MY+WIvdBnkpscqiToOgwtLSUlJiIqKQmxsLDIzM2Fra4ugoCCEh4fD29u7Sed6//338csvv2DIkCF477336m137949zJ07F+Xl5di5cyd69OihbTeI2g1BEHD7twxc3ndL7Rd2DWtnC7j36AS3ntWjR7aulgxHLcTIxAjdR3kjYLgnUs7ex/WoNIiMRBjxXAgcfW31XR5Rh2FwYWnPnj2Ij4/H6NGj0bVrV+Tm5uLgwYMIDw/H9u3b4efnp9F5bty4gcOHD8PUtPE3a3/88ccwNub9fqK/y0jKw8XdN5Bzu/CvjSLAb7A7vPs5w71HJ1g7cVKxrhmZGKHbKC90G+Wl71KIOiSDC0szZszA6tWrIRb/9d6lMWPGYP78+di9ezdWrVrV6DkEQcDmzZvx6KOP4urVqw22vXjxIi5duoQnn3wS33zzjdb1E7UHBffkuLj3Ju5cyVbb7hHsiEFPdYeTr+G84JKISNcMLiyFhITU2ubt7Q1fX19IJBKNznHkyBGkpqZi/fr1ePHFF+ttV1lZiS1btuCJJ56ApycXcSMqKVTg6oFk3Dx5V+3Fsw7e1hj0VA949XLiLTYi6nAMLizVRRAE5Ofnw9fXt9G2JSUl2LFjB55++mk4Ojb88sjvvvsOMpkMc+bMwZkzZ1qoWqK2R1lehdj/puD3X26rFjkEqidr958egICRXnyCjYg6rDYRlqKjo5GTk4MFCxY02jYyMhJmZmaYMWNGg+1yc3Px9ddf46WXXoKVlebvmpFKpcjN/evxXU1Hu4gMUVWVgOTTdxG79z7KZX+FJLG5MXpN8kPweN92s2o2EVFzGfy/ghKJBJs2bUJQUBDGjRvXYNv09HQcOHAAq1evbnRi944dO+Dh4YGJEyc2qZ6ffvoJkZGRtbanpqZCqax/Ib72Qi6XIzExUd9ltIr23FdBEFDwRxkkx/NRkvPAMgAiwLWvNbxH2MPUuhzJt2/pr0gdas+f7d+xr+1XR+qvrvoaGBioUTuDDku5ublYsWIFrKyssG7dukafWNuyZQuCg4MxatSoBtslJCTg6NGj2LRpE4yMmrZy8OTJkzFs2DDV9xKJBOvXr0eXLl3Qvbt+XvDXmhITEzX+y9XWtde+StMKcXH3TdxPUF/g0Ke/CwbN6g57T2s9VdZ62utnWxf2tf3qSP3Vd18NNizJ5XIsX74ccrkcW7duhZOTU4Ptr1y5ggsXLmD9+vXIyMhQbVcqlVAoFMjIyICtrS2srKywfft29OrVC+7u7qq2BQUFAKoDWlZWFlxdXeu8jpOTU6O1EBkiubQUl/ffQsq5+6p3igGAs58dXIaZY8j4fvorjojIgBlkWFIoFFi5ciXS09OxceNGjSZ2Z2dXP+L85ptv1tqXk5ODmTNnYtGiRZgxYways7ORmZmJmTNn1mr7xhtvwNraGocOHdK6H0SGoLykAnE/3kZCVJraa0lsnC0wYGY3+D3kjqQbSXqskIjIsBlcWFIqlVizZg0SEhKwYcMGBAcH19lOKpWiuLgYnp6eMDExQb9+/fD222/XavfBBx/Azc0Ns2fPVi1o+frrr0OhUKi1u3r1Kr7//nu89NJL6Ny5c8t3jKiVKSurkHTsDmL/mwKF/K95SWZWYvT5v64IDPOBsZiLsRIRNcbgwtK2bdtw7tw5DB06FDKZDEePHlXbHxYWBgDYuXMnoqKisG/fPri7u8PV1bXOW2cff/wxHBwcEBoaqto2aNCgWu3kcjkAoE+fPnzdCbVpgiAg7WImLu29haKsEtV2IxMRgh71RZ8pXWFmLW7gDERE9CCDC0spKSkAgJiYGMTExNTaXxOWiDoyoUpASX4ZirJLUJRVgqLMkuqvM0sgyy5BeUmlWvuuQ90xYEY32LhY6qliIqK2y+DC0pYtWzRqFxERgYiIiEbb7d+/X6PzjR8/HuPHj9eoLVFrqKqsgkxaiqKsEsiy/gxFf/5Pll2iNv+oPm49O2HwP3rA2Y+vJyEiai6DC0tEHUlFWSVk2aV/hqBiVRAqyiyBPLdM7ZUjmhCJACsnC9h7WKHnwz7w6efC15MQEWmJYYmold27LsW1H2+j4J4cJQWKxg/4G2OxEaydLWDravnA/6xg62oJa2cLGJs0be0wIiJqGMMSUSsRBAHXD6Xh4p4bEBoZMBJbmFSHIBdL2LpZwuaBr60czCHie9qIiFoNwxJRK6gsV+LcFwlI/vWeapu5jRi27lbVIeiBUSIbV0uY25jy9hkRkYFgWCLSseL8MhzbeBU5fxSqtvWd2hX9Hg/gCBERURvAsESkQ9kpBTi28apqbpKJmTFGPB8Cv4fc9VwZERFpimGJSEdunbmLs59fR1Vl9QQlaycLPPJqPzj62uq5MiIiagqGJaIWVqWswsU9N3H9cJpqm1vPThj7ch9Y2JrprzAiImoWhiWiFqSQV+DEx7G4F5+r2tbzYR8MmdMTRnykn4ioTWJYImoh+XdliP7oqup9bCJjEYbOC0TPsT56royIiLTBsETUAiRXsnDqk2uoKFUCAMxtTfHw0r5w69FJz5UREZG2GJaItCAIAq79eBuXv7sF/LnQpGNnGzz8an/YOFvotzgiImoRDEtEzVRRVokzO+ORej5Tta3LQ24Y8VwIxOb80SIiai/4LzpRM8ilpYj+6ApyJbLqDSJgwPRu6D3FjytvExG1MwxLRE2UeSMPx/4di7KicgCA2MIYo17qjc79XfVcGRER6QLDElETJB2/g5jIRAjK6glKtq6WeOS1fnDwstFzZUREpCsMS0QaqKqswm/fJCHp2B3VNs8QR4xe3Afm1qZ6rIyIiHSNYYmoEaVFChz/dywyb+SrtgWP98Wgp7rDyJgLTRIRtXcMS0QNyJUUIfqjq5BLSwEARiYiDA8PRrcRXnqujIiIWgvDElE9pEnFuPjLeVQqqheatLQ3w8Ov9oOLv71+CyMiolbFsET0N0KVgKvfJ+PWQalqm3NXOzz8aj9YOZjrsTIiItIHhiWiv/n9l9uIPfiH6nv/4R4YHh4ME1NjPVZFRET6wrBE9ID8uzJcOZCs+n7wP3ogeIIvF5okIurAGJaI/lSlrMKZHfGoqqxeQ8ljiC1CHuui56qIiEjf+Nwz0Z/iD6Uh53YhAMDOwwo+I+31WxARERkEhiUiAPn35Lj65+03kQgY+XwIjEx4642IiBiWiFBVJeDXT+OhrKgCAARP6AKXAAc9V0VERIaCYYk6vOuH05CdUgAAsHO3Qv/pAfotiIiIDArDEnVohRnFuLL/VvU3IiD0uRAuEUBERGoYlqjDqqoScObB22/jfOHWnbffiIhIncEtHZCUlISoqCjExsYiMzMTtra2CAoKQnh4OLy9vZt0rvfffx+//PILhgwZgvfee0+1vbCwEIcOHcK5c+cgkUigVCrh4+OD6dOnY+zYsS3dJTJQiUfSkHWr+uW4tq6WGDCjm54rIiIiQ2RwI0t79uzB6dOn0b9/fyxZsgSTJk3CtWvXEB4ejtu3b2t8nhs3buDw4cMwNTWttS8hIQGfffYZbG1tMWfOHISHh8PMzAxr167Fl19+2ZLdIQNVmFmMS/tuqb4PfS4EJma8/UZERLUZ3MjSjBkzsHr1aojFYtW2MWPGYP78+di9ezdWrVrV6DkEQcDmzZvx6KOP4urVq7X2+/r6Ys+ePXBzc1Ntmzp1Kl555RXs2bMHTz75JCwsLFqmQ2RwhCoBv+6Mh7K8+vZb4KOd4d6zk56rIiIiQ2VwI0shISFqQQkAvL294evrC4lEotE5jhw5gtTUVDz77LN17vfw8FALSgAgEokQGhqK8vJy3L9/v3nFU5uQGC1B5o3q2282zhYYOJO334iIqH4GF5bqIggC8vPzYWdn12jbkpIS7NixA08//TQcHR2bdJ28vDwA0Og61DYVZZXg0l71229ic4MbYCUiIgPSJn5LREdHIycnBwsWLGi0bWRkJMzMzDBjxowmXaOoqAi//PILevXqBScnp3rbSaVS5Obmqr7XdLSL9E+oEvDrZ/GoVCgBAD0f8YFHUNMCNRERdTwGH5YkEgk2bdqEoKAgjBs3rsG26enpOHDgAFavXl3nxO76VFVVYd26dZDL5Vi6dGmDbX/66SdERkbW2p6amgqlUqnxNdsquVyOxMREfZfRLJlXZMhIrB49NLMzhm1focG+tOW+NlVH6ivQsfrLvrZfHam/uuprYGCgRu0MOizl5uZixYoVsLKywrp162Bs3PDTSlu2bEFwcDBGjRrVpOv8+9//xoULF/DPf/4T/v7+DbadPHkyhg0bpvpeIpFg/fr16NKlC7p3796k67ZFiYmJGv/lMiSynBJcPHFW9f2Yhf3gGVz/CCLQdvvaHB2pr0DH6i/72n51pP7qu68GG5bkcjmWL18OuVyOrVu3NnhrDACuXLmCCxcuYP369cjIyFBtVyqVUCgUyMjIgK2tLaysrNSO++qrr/DDDz/g+eefx6OPPtpoXU5OTo3WQoZFEAT8uvO66vZbjzHejQYlIiKiGgYZlhQKBVauXIn09HRs3LgRvr6+jR6TnZ0NAHjzzTdr7cvJycHMmTOxaNEitblM//3vf/HVV19h+vTp+Mc//tFi9ZNhuXkiHfcTqueZWTmaY9BT7X8EkIiIWo7BhSWlUok1a9YgISEBGzZsQHBwcJ3tpFIpiouL4enpCRMTE/Tr1w9vv/12rXYffPAB3NzcMHv2bPj5+am2Hz9+HFu2bMEjjzyCRYsW6aw/pF9yaSku7Lmh+j702WCYWoobOIKIiEidwYWlbdu24dy5cxg6dChkMhmOHj2qtj8sLAwAsHPnTkRFRWHfvn1wd3eHq6srXF1da53v448/hoODA0JDQ1XbEhMTsWHDBtja2qJ///6Ijo5WOyY4OBgeHh466B21JkEQ8Otn11FRWn37rdsoL3j1ctZzVURE1NYYXFhKSUkBAMTExCAmJqbW/pqwpA2JRIKKigoUFBTg3XffrbX/jTfeYFhqB26duot78VIAgFUnczz0dA89V0RERG2RwYWlLVu2aNQuIiICERERjbbbv39/rW3jx4/H+PHjm1wbtR3FuaU4v+uv22/Dw3n7jYiImqdNrOBN1BSCIODXzxNQUVoJAAgY4QnvPrz9RkREzcOwRO1O8pl7uHstBwBg6WCGh57uqeeKiIioLWNYonalOK8M579NUn0//JlgmFnz9hsRETUfwxK1G4Ig4OwX11FeUn37zX+4B3z6uei5KiIiausYlqjdSDl3H+mx1bffLOzN8NAc3n4jIiLtMSxRu1CSX4bzXz9w+21BEMytNX+ZMhERUX0YlqjNEwQB575MgKK4AgDQdag7Og+ovUApERFRczAsUZt3+7cMSK5UvxvQ3NYUQ+Z2jLdwExFR62BYojatpFCBmMhE1ffDFgTB3Ia334iIqOUwLFGbJQgCYr5MgEJeffuty0Nu6DLITc9VERFRe8OwRG1W6oVMpF3KAgCY24gxdB5vvxERUctjWKI2qbRIgZivElTfD50fBAtbMz1WRERE7ZXBvUiXqDEl+WU4+0UCymTVt998B7nC7yF3PVdFRETtFcMStQnlpZWQXMpCyrn7uH9dCkGo3m5mLcbQ+UH6LY6IiNo1hiUyWFXKKtz7XYqUc/eRdjkLyvIqtf1GxiKEPhsMSzvefiMiIt1hWCKDIggCcv4oRMq5+7j9WwbKisprtbFxtoD/cA/4D/eEnbuVHqokIqKOhGGJDEJRVjFSzt1Hytn7KMosqbXfzFoMv4fc4T/cAy4B9hCJRHqokoiIOiKGJdKbsqJy3L6QgZSz95GdXFBrv7HYCD79XOA/3ANevZ1hbMKHN4mIqPUxLFGrqixX4s7VbKScvY/0azkQlIJ6AxHgEeiIrsPc0WWQG0wtxfoplIiI6E8MS6RzVVUCMpPykHL2HlIvZqKiVFmrjYO3DQKGe6DrUHdYOVrooUoiIqK6MSyRzuTeKULK2fv4I+Y+SvIUtfZbdjKD/zAPdB3mAUcfWz1USERE1DiGJdKJMzvjcevU3VrbxRYm6DLYDf7DPODWsxOMjDhRm4iIDBvDErW4gvtytaAkMhbBu48z/Id5wKefC0xMjfVYHRERUdMwLFGLu/lAUOr5iA/6Px4Ac1tTPVZERETUfHwWm1pUVWUVks/cA1C9wna/x/0ZlIiIqE1jWKIWdSc2W7XqducBrrCw5atIiIiobWNYohZ18+Rft+C6j/LSYyVEREQto0lzluLi4pp9oT59+jT7WGobinNLcfdaDgDA2skcHiFOeq6IiIhIe00KSy+//HKz38l16tSpZh1HbcetM/cg/Lkgd7eRXlwWgIiI2oUmhaW5c+fWCkuJiYm4ePEivLy8EBISAgcHB+Tn5+P69etIT0/HoEGDEBgY2KJFk+ERqoS/noITVYclIiKi9qBJYWnBggVq31+7dg27d+/GsmXL8Nhjj6kFKUEQ8PPPP2PLli2YPXu2xtdISkpCVFQUYmNjkZmZCVtbWwQFBSE8PBze3t5NKRfvv/8+fvnlFwwZMgTvvfderf1nz57FV199BYlEAnt7e0yYMAFz5syBiQlXVGiq+wm5kOeUAgC8Qpxg7cRXlhARUfug1QTvL774Ag899BAmTpxYa8RJJBJh8uTJGDx4ML744guNz7lnzx6cPn0a/fv3x5IlSzBp0iRcu3YN4eHhuH37tsbnuXHjBg4fPgxT07ofWz9//jz++c9/wtraGi+//DJCQ0PxzTffYPPmzRpfg/7y4NpK3UdzVImIiNoPrYZQbt68iSeeeKLBNr6+vjhw4IDG55wxYwZWr14Nsfivt82PGTMG8+fPx+7du7Fq1apGzyEIAjZv3oxHH30UV69erbPNJ598gq5du+Kjjz5SjSRZWlpi165deOKJJ9C5c2eNa+7oymTlSLuUCQAwtxHDp7+rnisiIiJqOVqNLInFYiQnJzfY5tatW2rBpzEhISG12nt7e8PX1xcSiUSjcxw5cgSpqal49tln69yflpaGtLQ0TJo0Se2W29SpUyEIAiejN1HK2fuoqqye2e0f6gljE65IQURE7YdWv9UGDhyIixcvYteuXaioqFDbV1FRgV27duHSpUsYNGiQVkUKgoD8/HzY2dk12rakpAQ7duzA008/DUdHxzrb3Lp1CwDQvXt3te1OTk5wdnZuNADSXwRBwM1T6arvubYSERG1N1rdhnvxxRfx+++/4/PPP8eBAwfQo0cP2Nvbo6CgADdu3EBBQQEcHR3xwgsvaFVkdHQ0cnJyak0wr0tkZCTMzMwwY8aMetvk5uYCQJ1hytHRUbW/LlKpVG2/pqNd7VXOH4XIT5cDAFy62cPBy0bPFREREbUsrcKSi4sLdu7ciU8//RQnT57Eb7/9ptpnamqKsLAwPP/88/WO8GhCIpFg06ZNCAoKwrhx4xpsm56ejgMHDmD16tX1TuwGgPLyclWNf2dqaoqSkpJ6j/3pp58QGRlZa3tqaiqUSmWD9bUHcrkciYmJqu//+N9fwdGmm7Havrbu731tzzpSX4GO1V/2tf3qSP3VVV81XdpI62fkHR0dERERgeXLl+POnTsoLi6GlZUVvL29mzRXqS65ublYsWIFrKyssG7dOhgbGzfYfsuWLQgODsaoUaMabFcTkmpC04PKy8thZlb/+8wmT56MYcOGqb6XSCRYv349unTpUuu2XnuUmJio+stVUVaJS0knAABic2MMn9YPYvP2s+zCg31t7zpSX4GO1V/2tf3qSP3Vd19b7DebiYkJ/Pz8Wup0kMvlWL58OeRyObZu3Qonp4ZfnXHlyhVcuHAB69evR0ZGhmq7UqmEQqFARkYGbG1tYWVlpRrpys3Nhaur+pNbubm56NmzZ73XcXJyarSWjiL1fCYqyqpH0/yGeLSroERERFSjxX67xcfHIzk5GSUlJbC0tERAQABCQkKadS6FQoGVK1ciPT0dGzduhK+vb6PHZGdnAwDefPPNWvtycnIwc+ZMLFq0CDNmzEBAQACA6qUPHkyqUqkUOTk5mDx5crPq7mhuPDixm2srERFRO6V1WIqPj8e7776Le/fuAah+OqpmgUovLy+sXLkSwcHBGp9PqVRizZo1SEhIwIYNG+o9ViqVori4GJ6enjAxMUG/fv3w9ttv12r3wQcfwM3NDbNnz1aNfHXp0gU+Pj74+eefMXnyZNXtvR9++AEikQgjR45s0p9BR5R/V4bsWwUAAAdvazh3bfxJRSIiorZIq7CUmpqK119/HWVlZRgwYAD69u0LR0dH5OXlITY2FpcuXcLrr7+OHTt2aDQ6BADbtm3DuXPnMHToUMhkMhw9elRtf1hYGABg586diIqKwr59++Du7g5XV9dat9QA4OOPP4aDgwNCQ0PVtr/00kt444038Nprr2Hs2LG4ffs2Dh48iIkTJ2pca0emtmL3KO9mv2CZiIjI0GkVliIjI1FRUYH3338fgwcPVtv3j3/8AxcuXMAbb7yByMhIrFmzRqNzpqSkAABiYmIQExNTa39NWNLW0KFDsX79ekRGRmLz5s2ws7PD008/jXnz5rXI+dszZWUVUn6tHkk0MhHBf7iHnisiIiLSHa3CUlxcHEaNGlUrKNUYPHgwRo0ahStXrmh8zi1btmjULiIiAhEREY22279/f737QkNDa404UePuXMlCmax6EVLfAW4wt6l/mQYiIqK2TqsVvIuLi+Hu7t5gG3d3dxQXF2tzGTIwN0/ypblERNRxaBWWHB0dkZCQ0GCbxMRErRalJMOiKKzE3XgpAMDa2QIeQfxsiYiofdMqLA0bNgxxcXH4/PPPoVAo1PYpFAp8+eWXiI2NxfDhw7UqkgxH9jU5UP3OXHQf5QWRESd2ExFR+6bVnKW5c+fit99+w65du/DTTz+hZ8+ecHBwQH5+vurdcB4eHpg7d25L1Ut6VFUlICuu+j1wIhHQbYSnnisiIiLSPa3Ckp2dHbZv344dO3bg+PHjOH/+vGqfqakpxo8fjxdeeAG2trZaF0r6dz9eivKi6hW7vXo7w8rRQs8VERER6Z7Wi1La29tj5cqVeP311yGRSFQreHfu3BkmJnz9RXuitrYSJ3YTEVEH0aLvhuvatWtLnY4MTGmRApLLWQAAc1tT+PR10XNFRERErcMg3w1Hhifl1/uoUlbP7A4Y4QkjE62eDSAiImozDO7dcGR4BEH42+tNeAuOiIg6DoN7NxwZnuzkAhTcq34KzsbbDPYe1nquiIiIqPUY3LvhyPA8OKrk2odBiYiIOhatJp5o+m642NhYbS5DelReWonbv2UAAMQWJnDsaannioiIiFoX3w1HDbp9PgOViuq1lboOdYexKSd2ExFRx8J3w1GDbp5MV33dfbS3HishIiLSD74bjuqVly5DTkohAKBTZxs4deFK7ERE1PHw3XBUr1tqywV4q5aEICIi6kj4bjiqk7JCieRfq9fOMhYbwX+Yh54rIiIi0g++G47qlHY5Gwp5BQDAd6ArzKzFeq6IiIhIP/huOKrTrVOc2E1ERARoOcGb2idZdgnuxecCAGxdLeHes5OeKyIiItIfrUeWLl++jH379uHGjRuQy+UQBKFWG5FIhJMnT2p7KWolt07/NbG720gviIw4sZuIiDourcLSqVOnsHbtWlRVVcHV1RWdO3eGsbFxS9VGelBVJeDW6eqJ3SIREDDSU88VERER6ZdWYenrr7+GqakpNmzYgP79+7dUTaRH936XojivDADg3dcFVg7meq6IiIhIv7Sas5Seno6xY8cyKLUjait2j/LSYyVERESGQauwZGtrCzMzs5aqhfSspFABydVsAICFvRm8+zjruSIiIiL90yosjRw5EleuXEFlZWVL1UN6lPLrPQjK6gn63UZ4wsiED0sSERFp9dvwueeeg7W1NdasWYOsrKyWqon0QBAE3Dyp/hQcERERNXGC98yZM2ttq6ysRGJiIs6ePQtra2tYWVnVaiMSibB3797mV0k6l3UzH4UZxQAAt56dYOde+3MkIiLqiJoUlupaQ8nY2BguLi4NtqlrGxmWmw++NHc0R5WIiIhqNCks7d+/X1d1kB6Vl1Qg9UImAMDU0gRdBrnpuSIiIiLDYXBvuk1KSkJUVBRiY2ORmZkJW1tbBAUFITw8HN7eDb+jLC4uDnv37kVycjIKCwthbW0Nf39/zJ07FyEhIWptq6qq8PPPP+PHH3/EvXv3YG5ujm7dumHOnDm12rZ3f/yWgUqFEgDQdZgHTEy5sCgREVENg3vcac+ePTh9+jT69++PJUuWYNKkSbh27RrCw8Nx+/btBo+9e/cujIyMMGXKFCxduhQzZ85EXl4eFi9ejAsXLqi1/eSTT/DRRx/Bz88PCxcuxMyZM5Geno4lS5YgMTFRl100OA9O7OYtOCIiInVNGlmKjIyESCTC1KlTYWtri8jISI2OE4lEmDt3rkZtZ8yYgdWrV0MsFqu2jRkzBvPnz8fu3buxatWqeo+dOHEiJk6cqLZt6tSpmDVrFr777jsMHjwYQPWk9B9//BGjRo3Cm2++qWo7atQozJo1C9HR0QgMDNSo3rYuV1IE6e1CAICjry2cfO30XBEREZFhaVJY+uqrryASiTBmzBjY2triq6++0ui4poSlum6BeXt7w9fXFxKJpCnlAgDMzc1hZ2cHuVyu2qZUKqFQKODg4KDW1sHBAUZGRh1qoU1O7CYiImpYk8LS5s2bAUD19FvN97omCALy8/Ph6+urUfvi4mJUVFSgsLAQR44cQWpqKmbPnq3ab2ZmhsDAQERFRSEoKAi9e/eGXC7H119/DRsbG0yePFlHPTEsleVKpPxa/dJcY7ERug710HNFREREhqdJYalPnz4Nfq8r0dHRyMnJwYIFCzRq/9Zbb+HixYsAALFYjMmTJ2POnDlqbd58802sWbMG69evV23z8PDAtm3b4OFRf2iQSqXIzc1Vfd+c0S5DkXYpC+Ul1auvdxnsBjMrcSNHEBERdTwiwcAXQZJIJHjhhRfg6+uLrVu3wti48Se1kpOTUVBQgOzsbERFRcHT0xNLliyBpaWlqk1eXh62b98OS0tL9O/fH3l5edi9ezfMzMywdetW2Nvb13nuL7/8ss65WhEREfDx8WluN/UiYVcWCtPKAABBs11h19m80WPkcjmsra11XZpBYF/br47UX/a1/epI/dVVXzWdn2zQYSk3NxcLFy5EZWUlduzYAScnpyafo6KiAuHh4fDx8cG6desAVE/wfuaZZ9C3b18sXbpU1TY9PR1z587F9OnT8eKLL9Z5vrpGltavX4/PPvsM3bt3b3J9+lKUVYz9r5wBANi6WWL6RyMgEokaPS4xMbHDTH5nX9uvjtRf9rX96kj91Xdfm3QbbuTIkRr9Qv07kUiEkydPNukYuVyO5cuXQy6XY+vWrc0KSkD1bbhhw4Zh9+7dUCgUMDMzw7Vr15CamopFixaptfX29kbnzp1x/fr1es/n5OTU7FoMya3T91Rfdx/l1azPlYiIqCNoUljq3bt3q/xSVSgUWLlyJdLT07Fx40aNJ3Y3dD5BEFBSUgIzMzPk5+cDqF6Y8u8qKyuhVCq1ul5bkHkjT/V1QKinHishIiIybE0KS1u2bNFVHSpKpRJr1qxBQkICNmzYgODg4DrbSaVSFBcXw9PTEyYm1d3Iz8+vtRyATCbD6dOn4eLiotpXsxL48ePHVWsvAcDNmzeRnp6OSZMm6aJrBqUoswQAYG5rCkuHxucqERERdVQG97qTbdu24dy5cxg6dChkMhmOHj2qtj8sLAwAsHPnTkRFRWHfvn1wd3cHACxbtgzOzs4IDAyEg4MDsrKycOjQIeTm5mLNmjWqc3Tv3h0DBgxAVFQUiouLMWjQIOTm5uL777+HmZkZpk+f3mr91YeKskqUFCgAVM9XIiIiovq1WFhKS0uDRCJBWVkZHn300WafJyUlBQAQExODmJiYWvtrwlJdJkyYgBMnTmD//v2Qy+WwsbFBYGAgVq9ejd69e6u1feedd7B3714cP34cFy9ehFgsRq9evfDMM8+0uafamqoou0T1tZ2rlR4rISIiMnxah6WkpCR88MEHau9tqwlLcXFxWLZsGd566y0MHz5co/NpeqsvIiICERERatumTZuGadOmaXS8mZkZ5s6dq/HK4u1JzS04ALB15cgSERFRQ7R6kW5qaiqWLl2KjIwMTJ8+XW3+D1A9IdzOzg6nTp3S5jLUwmRZD4Ql3oYjIiJqkFZh6csvvwQAfPbZZ1i4cCF69Oihtl8kEiEoKAg3btzQ5jLUwooeCEs2LgxLREREDdEqLMXFxWHkyJHw8qr/Bayurq5qiziS/hVxZImIiEhjWoWl0tLSWo/q/51CoahzPSPSn6KsYgCAmZUY5tameq6GiIjIsGkVlpydndUmdtfl1q1bDb6YllqXskIJeW71++A4uZuIiKhxWoWloUOH4tKlS7h8+XKd+0+cOIHExESEhoZqcxlqQbLsUuDPtwHyFhwREVHjtFo6YPbs2Th16hSWL1+OcePGIS+v+hUaBw8eREJCAo4fPw43NzfMmDGjRYol7anNV+LIEhERUaO0Ckv29vb4+OOPsX79evzvf/9Tbf/3v/8NAKoFIa2trbUqklpOzXwlALBhWCIiImqU1otSenh44JNPPkFycjISExNRVFQES0tLBAYGomfPni1RI7Ug9QUpuXo3ERFRY7QKS2fOnMGIESMAAAEBAQgICKiz3ccff4zFixdrcylqIVw2gIiIqGm0muC9bt06XLt2rcE2H3/8Mb7//nttLkMtqCYsic2NYWHLZQOIiIgao1VY8vDwwBtvvFHv8gFbt27FgQMHNH4vHOlWVWUVZNJSANWTu0UikZ4rIiIiMnxahaUPPvgAlpaWWLZsGbKystT2ffLJJ/juu+8wfPhwrF27VqsiqWXIc0shKKvXDeDkbiIiIs1oFZZcXFzw4YcfQqFQ4LXXXkNhYSGA6qC0b98+DB06FGvXroWxsXGLFEva4eRuIiKiptMqLAGAr68v3nvvPeTk5GDZsmXYunUr9u3bhyFDhmDdunUwMdH6gTtqIZzcTURE1HRahyUACAoKwpo1a5CSkoIDBw7goYcewvr16xmUDAwXpCQiImq6JqWZqKioBvcPHDgQiYmJGDZsGI4dO6a2b9y4cU2vjlrUg2HJjmGJiIhII00KS++8806dT1AJggCRSARBqJ48vHHjRrVtIpGIYckA1KzebSw2gqWDuZ6rISIiahuaFJZWrlypqzpIx6qqBNXIko2LJURGXDaAiIhIE00KS+PHj9dVHaRjJXllqKqsHvnj5G4iIiLNtcgEbzJ8nNxNRETUPAxLHQTDEhERUfM06TbcyJEjYWRkhG+++Qbe3t4YOXKkRq/MEIlEOHnyZLOLJO3VTO4GGJaIiIiaoklhqXfv3hCJRDAzM1P7ngwfV+8mIiJqniaFpS1btjT4PRmumttwImMRrJ24bAAREZGmOGepAxCEB5YNcLaAkTE/diIiIk3xt2YHUFpYjkqFEgBvwRERETVVk27DRUZGNusiIpEIc+fObdaxpL2iTE7uJiIiaq4mhaWvvvqqWRdhWNIvLhtARETUfE0KS5s3b9ZVHaRDamGJq3cTERE1SZPCUp8+fXRUBumS+rIBDEtERERN0aSw1BqSkpIQFRWF2NhYZGZmwtbWFkFBQQgPD4e3t3eDx8bFxWHv3r1ITk5GYWEhrK2t4e/vj7lz5yIkJKRW+4qKCuzduxdHjhxBZmYmrKys0L17d7z++utwcXHRVRdbXVH2n8sGiKqfhiMiIiLNaRWWsrKyGm0jEolgZWUFKyvNnsLas2cP4uPjMXr0aHTt2hW5ubk4ePAgwsPDsX37dvj5+dV77N27d2FkZIQpU6agU6dOkMlkiI6OxuLFi/Hee+9h8ODBqraVlZVYsWIFrl+/jokTJ6Jr166QyWRISkpCcXFxvddoawRBUE3wtnKygLHYWM8VERERtS1ahaUZM2ZovIK3vb09RowYgXnz5qFTp04NnnP16tUQi8WqbWPGjMH8+fOxe/durFq1qt5jJ06ciIkTJ6ptmzp1KmbNmoXvvvtOLSzt378fcXFx2Lp1KwIDAzXqQ1ukkFegvKQSAGDrwltwRERETaXVOkuPPvooevXqBUEQYG1tjT59+mDMmDHo06cPbGxsIAgCevfujYceegimpqb48ccf8eyzz0IqldZ7zpCQELWgBADe3t7w9fWFRCJpco3m5uaws7ODXC5XbauqqsKBAwcQGhqKwMBAVFZWoqysrMnnbgs4uZuIiEg7Wo0sPfnkk1i4cCHmzp2Lp556Cubmf71GQ6FQYM+ePThw4AC2bdsGHx8f7Nq1C1988QW++eYbvPrqqxpfRxAE5Ofnw9fXV6P2xcXFqKioQGFhIY4cOYLU1FTMnj1btT8tLQ1SqRRdu3bFBx98gKioKFRUVMDPzw9LlixBv379NK7N0HGNJSIiIu1oFZa2b9+OwMBALFiwoNY+MzMzzJ8/H4mJidixYwfeffddzJkzB+fOncP58+ebdJ3o6Gjk5OTUeZ26vPXWW7h48SIAQCwWY/LkyZgzZ45q/927dwEA3333HWxsbPD6668DAL799lssW7YMO3fuRNeuXes8t1QqRW5urur75ox2taaayd0AV+8mIiJqDq3C0vXr1zF16tQG23Tr1g0HDx5UfR8YGIiff/5Z42tIJBJs2rQJQUFBGDdunEbHPP/885g5cyays7MRFRWFyspKKJVK1f7S0lIAQElJCT7//HO4uroCAPr164cnn3wSe/bsqXdu1E8//VTnSuapqalq1zAU6Tf/uuWZU5yBksTcBlo3Ti6XIzExUduy2gT2tf3qSP1lX9uvjtRfXfVV0znLWoWlqqoq3Lt3r8E2d+/ehSAIqu+NjY1hamqq0flzc3OxYsUKWFlZYd26dTA21uxJroCAANXXYWFhCA8PxzvvvIN169YBqB71AoDg4GBVUAIAV1dXhISE4Pr16/Wee/LkyRg2bJjqe4lEgvXr16NLly7o3r27RvW1ppR9v6m+7jskBCZm2j0Nl5iY2K4nxD+IfW2/OlJ/2df2qyP1V9991SoshYSE4PTp0zh+/DjGjh1ba//Jkydx5swZDBgwQLXt7t27cHR0bPTccrkcy5cvh1wux9atW+Hk5NSsGsViMYYNG4bdu3dDoVDAzMxMdf26nspzcHBAcnJyvedzcnJqdi36UDPB29LBTOugRERE1BFpFZZeeOEFLFy4EOvWrcOePXsQEhICBwcH5Ofn4/r160hJSYG5uTleeOEFAEBhYSEuX76Mxx57rMHzKhQKrFy5Eunp6di4caPGE7sbOp8gCCgpKYGZmRm6du0KExMT5OTk1GorlUphb2+v1fUMRXlJBcqKygFwcjcREVFzaRWWunbtiq1bt+Lf//434uPjkZKSorY/JCQEL7/8smqytLW1NX744Qe1p+b+TqlUYs2aNUhISMCGDRsQHBxcZzupVIri4mJ4enrCxKS6G/n5+XBwcFBrJ5PJcPr0abi4uKj2WVpa4qGHHsJvv/0GiUSCzp07A6h+Si4hIQGTJk1q3h+IgVFfNoCTu4mIiJpD69ed+Pv7Y+vWrcjKykJKSgqKi4thZWUFf39/tflAQPV8JWtr6wbPt23bNpw7dw5Dhw6FTCbD0aNH1faHhYUBAHbu3ImoqCjs27cP7u7uAIBly5bB2dkZgYGBcHBwQFZWFg4dOoTc3FysWbNG7TzPPfccrly5gqVLl+Lxxx8HAHz//fewsbFRW2agLVMLSxxZIiIiapYWezecq6trrXDUHDWjUzExMYiJiam1vyYs1WXChAk4ceIE9u/fD7lcDhsbGwQGBmL16tXo3bu3WltfX19s2bIFn376Kb799luIRCL069cPL774IpydnbXuhyFgWCIiItJei4WlnJycWiNLzQkdW7Zs0ahdREQEIiIi1LZNmzYN06ZN0/ha3bt3x8aNG5tUX1vCsERERKQ9rcPS3bt3sXHjRly9erXWvn79+uHVV1+Fl5eXtpehZuDq3URERNrTKixlZWVh0aJFyM/Ph4+PD3r37g1HR0fk5eXh2rVruHLlChYtWoRPP/20RW7RUdPUjCyZ25rC1FLcSGsiIiKqi1ZhKTIyEvn5+Xj11VcxefJkiEQitf0//vgjNm7ciK+//hrLly/XqlBqmkqFEiX5CgAcVSIiItKGVmHp4sWLGDp0KKZMmVLn/ilTpuD8+fO4cOGCNpehZlB/JxzDEhERUXMZaXNwQUEB/Pz8Gmzj5+eHgoICbS5DzVCUybBERETUErQKS/b29khLS2uwTVpaWrtZEbstKcri5G4iIqKWoFVYGjhwIM6dO4dffvmlzv3/+9//EBMTg0GDBmlzGWoGrt5NRETUMrSaszR//nzExMTgww8/xHfffYc+ffqgU6dOqqfh0tLSYGdnh3nz5rVQuaQprrFERETUMrQKS66urti2bRs+/PBDxMXF1bol17dvX7z22mtcNkAPasKSqaUJzKy5bAAREVFzab0opbe3NzZv3qzRu+GodSgrlCiWlgKoHlX6+5IOREREpDmDezccaU+WUwpBqP7a1pXzlYiIiLTRpLD07rvvNvtCK1eubPax1DTqk7s5X4mIiEgbTQpLhw8fbtZFRCIRw1Ir4uRuIiKiltOksLRv3z5d1UEtiGGJiIio5TQpLLm5uemqDmpBXL2biIio5Wi1KCUZpprVu03MjGFhb6bnaoiIiNo2hqV2pkpZBVkOlw0gIiJqKQxL7YxcWgZBWb1uAG/BERERaY9hqZ0pyuayAURERC2JYamdKcosVn1t68KwREREpC2GpXZGfUFKrt5NRESkLYaldoZrLBEREbUshqV2pmaNJWOxEaw6meu5GiIioraPYakdEaoEyP6c4G3jYgGREZcNICIi0hbDUjtSkl8GZUUVAMCGk7uJiIhaBMNSO1L4wHwlO07uJiIiahEMS+0IJ3cTERG1PIaldoQv0CUiImp5DEvtiCyLq3cTERG1NIaldqQoq3r1bpGRCNaOFnquhoiIqH0w0XcBf5eUlISoqCjExsYiMzMTtra2CAoKQnh4OLy9vRs8Ni4uDnv37kVycjIKCwthbW0Nf39/zJ07FyEhIfUeJ5PJ8I9//AMFBQX417/+hVGjRrVwr3RPEATVnCUbZwsYmTAHExERtQSD+426Z88enD59Gv3798eSJUswadIkXLt2DeHh4bh9+3aDx969exdGRkaYMmUKli5dipkzZyIvLw+LFy/GhQsX6j3uyy+/hEKhaOmutKrSonJUlCkBcL4SERFRSzK4kaUZM2Zg9erVEIvFqm1jxozB/PnzsXv3bqxatareYydOnIiJEyeqbZs6dSpmzZqF7777DoMHD651zO3bt/HDDz9g3rx5+OKLL1quI62Mk7uJiIh0w+DCUl23y7y9veHr6wuJRNLk85mbm8POzg5yubzO/Vu2bMGIESPQq1evJp/bkHByNxERkW4Y3G24ugiCgPz8fNjZ2WnUvri4GAUFBZBIJNi5cydSU1PRv3//Wu1OnjyJ69ev44UXXmjpkltdzeRuALB15YKURERELcXgRpbqEh0djZycHCxYsECj9m+99RYuXrwIABCLxZg8eTLmzJmj1kahUOCTTz7BjBkz4O7ujszMTI3OLZVKkZubq/q+OaNduvDggpQ2vA1HRETUYgw+LEkkEmzatAlBQUEYN26cRsc8//zzmDlzJrKzsxEVFYXKykoolUq1Nrt370ZlZSWefvrpJtXz008/ITIystb21NTUWtdoTVlpfwW4e7kSZBTq5iW6crkciYmJOjm3oWFf26+O1F/2tf3qSP3VVV8DAwM1amfQYSk3NxcrVqyAlZUV1q1bB2NjY42OCwgIUH0dFhaG8PBwvPPOO1i3bh0AICMjA//5z3/wyiuvwNKyaaMwkydPxrBhw1TfSyQSrF+/Hl26dEH37t2bdK6WdKXwPgDA2skcwb2CdHadxMREjf9ytXXsa/vVkfrLvrZfHam/+u6rwYYluVyO5cuXQy6XY+vWrXBycmrWecRiMYYNG4bdu3dDoVDAzMwMX375JZycnNCnTx9kZGQAAPLy8gAABQUFyMjIgKurK4yMak/pcnJyanYtulImL4eiuAIA5ysRERG1NIMMSwqFAitXrkR6ejo2btwIX19frc8nCAJKSkpgZmaGrKws3Lt3D7NmzarVduPGjQCA//3vf7CxsdHquq1FxhfoEhER6YzBhSWlUok1a9YgISEBGzZsQHBwcJ3tpFIpiouL4enpCROT6m7k5+fDwcFBrZ1MJsPp06fh4uKi2hceHo7CwkK1drdv38YXX3yBJ598EsHBwbCwaDuvC+HkbiIiIt0xuLC0bds2nDt3DkOHDoVMJsPRo0fV9oeFhQEAdu7ciaioKOzbtw/u7u4AgGXLlsHZ2RmBgYFwcHBAVlYWDh06hNzcXKxZs0Z1jrrWVLK2tgYA9OzZE6GhoTrqnW5wQUoiIiLdMbiwlJKSAgCIiYlBTExMrf01YakuEyZMwIkTJ7B//37I5XLY2NggMDAQq1evRu/evXVWs74VcUFKIiIinTG4sLRlyxaN2kVERCAiIkJt27Rp0zBt2rRmXbdv3744c+ZMs47Vt8IHF6R0YVgiIiJqSW1iBW9qWM0Eb0t7M4jNDS7/EhERtWkMS21ceWklSgvLAXByNxERkS4wLLVxXDaAiIhItxiW2ji1F+hycjcREVGLY1hq49SehOPq3URERC2OYamNezAs2fE2HBERUYtjWGrjuHo3ERGRbjEstXE1q3ebWYthZiXWczVERETtD8NSG1ZZrkRxXhkATu4mIiLSFYalNkyWzcndREREusaw1IYVcY0lIiIinWNYasNq5isBDEtERES6wrDUhnFkiYiISPcYltowrt5NRESkewxLbVjNbTixhQnMbUz1XA0REVH7xLDURikrqyCXlgKovgUnEon0XBEREVH7xLDURslzSiEI1V/zFhwREZHuMCy1UWqTu10YloiIiHSFYamN4uRuIiKi1sGw1Eapr7HE1buJiIh0hWGpjVK7DceRJSIiIp1hWGqjasKSsakRLO3N9FwNERFR+8Ww1AZVVQmql+hy2QAiIiLdYlhqg4pzS1GlrF43gPOViIiIdIthqQ3iC3SJiIhaD8NSG8TJ3URERK2HYakNUgtLHFkiIiLSKYalNohhiYiIqPUwLLVBNat3GxmLYOVooedqiIiI2jeGpTZGqBJUI0s2LpYwMuKyAURERLpkou8C/i4pKQlRUVGIjY1FZmYmbG1tERQUhPDwcHh7ezd4bFxcHPbu3Yvk5GQUFhbC2toa/v7+mDt3LkJCQlTtysrKcOjQIZw9exa3b99GaWkpvLy8MGnSJEyaNAnGxsa67mazlRQooCyvAsDJ3URERK3B4EaW9uzZg9OnT6N///5YsmQJJk2ahGvXriE8PBy3b99u8Ni7d+/CyMgIU6ZMwdKlSzFz5kzk5eVh8eLFuHDhgqrd/fv3sXnzZgDAzJkz8dJLL8HNzQ0bN27Eu+++q9P+aYvzlYiIiFqXwY0szZgxA6tXr4ZYLFZtGzNmDObPn4/du3dj1apV9R47ceJETJw4UW3b1KlTMWvWLHz33XcYPHgwAKBTp06IjIxEly5dVO2mTJmCd999F4cOHcLcuXPh5eXVwj1rGTXzlQCGJSIiotZgcCNLISEhakEJALy9veHr6wuJRNLk85mbm8POzg5yuVy1zd7eXi0o1QgNDQWAZl2ntagvSMnVu4mIiHTN4MJSXQRBQH5+Puzs7DRqX1xcjIKCAkgkEuzcuROpqano379/o8fl5eUBgMbX0QfehiMiImpdBncbri7R0dHIycnBggULNGr/1ltv4eLFiwAAsViMyZMnY86cOQ0eU1FRge+++w7u7u7o0aNHve2kUilyc3NV37f2KFRNWBIZiWDtzGUDiIiIdM3gw5JEIsGmTZsQFBSEcePGaXTM888/j5kzZyI7OxtRUVGorKyEUqls8Jh///vfSEtLw3vvvQcTk/r/WH766SdERkbW2p6amtroNbQlCAIK7ssAAKa2xrh564ZOr1cXuVyOxMTEVr+uPrCv7VdH6i/72n51pP7qqq+BgYEatRMJgiC0+NVbSG5uLhYuXIjKykrs2LEDTk5OTT5HRUUFwsPD4ePjg3Xr1tXZ5j//+Q+2b9+OZ555BnPnzm3wfHWNLK1fvx6fffYZunfv3uT6mqK0SIHdL5wAAHiGOGL8G4N0er26JCYmavyXq61jX9uvjtRf9rX96kj91XdfDXZkSS6XY/ny5ZDL5di6dWuzghJQfRtu2LBh2L17NxQKBczMzNT2Hz58GDt27MCUKVMaDUoA4OTk1OxatMXJ3URERK3PICd4KxQKrFy5Eunp6Xj33Xfh6+ur9fkEQUBJSYna9l9//RXvv/8+RowYgVdeeUWra7QGTu4mIiJqfQYXlpRKJdasWYOEhASsXbsWwcHBdbaTSqWQSCSorKxUbcvPz6/VTiaT4fTp03BxcYGDg4Nqe1xcHNauXYtevXph1apVMDIyuD+KWtTCElfvJiIiahUGdxtu27ZtOHfuHIYOHQqZTIajR4+q7Q8LCwMA7Ny5E1FRUdi3bx/c3d0BAMuWLYOzszMCAwPh4OCArKwsHDp0CLm5uVizZo3qHJmZmYiIiIBIJMKoUaNw6tQptWt07doVXbt21Wk/m6MokwtSEhERtTaDC0spKSkAgJiYGMTExNTaXxOW6jJhwgScOHEC+/fvh1wuh42NDQIDA7F69Wr07t1b1S4jI0O1SOWmTZtqnWfevHmGGZay/xxZElW/RJeIiIh0z+DC0pYtWzRqFxERgYiICLVt06ZNw7Rp0xo9tm/fvjhz5kyz6tOnmgneVg7mMDE13Jf9EhERtSeGP1GHAAAKeQUU8goAnK9ERETUmhiW2gjVLThwvhIREVFrYlhqIzi5m4iISD8YltoItZElNy5ISURE1FoYltoItdW7+SQcERFRq2FYaiMeXJDShrfhiIiIWg3DUhtRE5Ys7ExhamFwKz4QERG1WwxLbUBFWSVKCxQA+AJdIiKi1saw1AaoT+7mLTgiIqLWxLDUBnByNxERkf4wLLUBD07u5sgSERFR62JYagPURpb4JBwREVGrYlhqA4qyHly9mxO8iYiIWhPDUhtQcxvOzFoMM2uxnqshIiLqWBiWDFxluRLFeWUAOLmbiIhIHxiWDJwspxQQqr/m5G4iIqLWx7Bk4IoyH5yvxLBERETU2hiWDJzasgGc3E1ERNTqGJYMHNdYIiIi0i+GJQMny+IaS0RERPrEsGTgakaWxObGMLc11XM1REREHQ/DkgGrqqyqfhoO1aNKIpFIzxURERF1PAxLBkwmLYVQVb1uACd3ExER6QfDkgHj5G4iIiL9Y1gyYJzcTUREpH8MSwbswZElG4YlIiIivWBYMmCFD6zebcewREREpBcMSwasZmTJWGwESwdzPVdDRETUMTEsGaiqKgGy7OqwZOtqCZERlw0gIiLSB4YlA1WSV4aqypplA3gLjoiISF8YlgwUJ3cTEREZBhN9F/B3SUlJiIqKQmxsLDIzM2Fra4ugoCCEh4fD29u7wWPj4uKwd+9eJCcno7CwENbW1vD398fcuXMREhJSq318fDx27NiBW7duwcrKCqNHj8azzz4LS0v9h5OiByZ3c2SJiIhIfwxuZGnPnj04ffo0+vfvjyVLlmDSpEm4du0awsPDcfv27QaPvXv3LoyMjDBlyhQsXboUM2fORF5eHhYvXowLFy6otU1OTsYrr7yCsrIyLFq0CI899hh+/vlnvPXWW7rsnsYK1Rak5OrdRERE+mJwI0szZszA6tWrIRaLVdvGjBmD+fPnY/fu3Vi1alW9x06cOBETJ05U2zZ16lTMmjUL3333HQYPHqzavnPnTtjY2GDLli2wsqoOI+7u7nj//fdx8eJFDBo0qIV71jQhE7rAq5cTZFklcOxso9daiIiIOjKDG1kKCQlRC0oA4O3tDV9fX0gkkiafz9zcHHZ2dpDL5aptxcXFuHz5MsLCwlRBCQAeffRRWFhY4OTJk83vQAuxtDeDZ7ATeoz1gYWtmb7LISIi6rAMbmSpLoIgID8/H76+vhq1Ly4uRkVFBQoLC3HkyBGkpqZi9uzZqv23b9+GUqlE9+7d1Y4Ti8UICAhAcnJyveeWSqXIzc1Vfd+cAEdERERtR5sIS9HR0cjJycGCBQs0av/WW2/h4sWLAKoD0OTJkzFnzhzV/pqw4+joWOtYR0dHXLt2rd5z//TTT4iMjKy1PTU1FUqlUqP62jK5XI7ExER9l9Eq2Nf2qyP1l31tvzpSf3XV18DAQI3aGXxYkkgk2LRpE4KCgjBu3DiNjnn++ecxc+ZMZGdnIyoqCpWVlWpBRqFQAECt230AYGpqivLy8nrPPXnyZAwbNkytvvXr16NLly61Rqrao8TERI3/crV17Gv71ZH6y762Xx2pv/ruq0GHpdzcXKxYsQJWVlZYt24djI2NNTouICBA9XVYWBjCw8PxzjvvYN26dQAAM7PqOUAVFRW1ji0vL4epqWm953ZycoKTk1NTukFERERtmMFN8K4hl8uxfPlyyOVyfPjhh80OKGKxGMOGDcOZM2dUI0o1t98enHtUIzc3l2GIiIiIVAwyLCkUCqxcuRLp6el49913NZ7Y3dD5BEFASUn12kVdunSBsbExbt68qdauoqICycnJ8Pf31+p6RERE1H4YXFhSKpVYs2YNEhISsHbtWgQHB9fZTiqVQiKRoLKyUrUtPz+/VjuZTIbTp0/DxcUFDg4OAABra2sMGDAAR48eVQUoADhy5AhKS0sxevToFu4VERERtVUGN2dp27ZtOHfuHIYOHQqZTIajR4+q7Q8LCwNQvahkVFQU9u3bB3d3dwDAsmXL4OzsjMDAQDg4OCArKwuHDh1Cbm4u1qxZo3ae8PBwLFy4EIsXL8bkyZORnZ2Nffv2YeDAgWqLVxIREVHHZnBhKSUlBQAQExODmJiYWvtrwlJdJkyYgBMnTmD//v2Qy+WwsbFBYGAgVq9ejd69e6u17d69OzZu3IgdO3bg448/hqWlJR577DE8//zzLdshIiIiatMMLixt2bJFo3YRERGIiIhQ2zZt2jRMmzZN42v16tULn3zySZPqIyIioo7F4OYsERERERkShiUiIiKiBjAsERERETXA4OYstTU1C112lBfq3rlzR+OV1Ns69rX96kj9ZV/br47UX132tXPnzjA3N2+wDcOSljIzMwEA69ev13MlRERE1FSfffZZo+92FQmCILRSPe1SQUEBLl68CHd39wbfKdce1Lw0+M0330Tnzp31XY5Osa/tV0fqL/vafnWk/uq6rxxZagX29vYNrv3UHnXu3LnRFN5esK/tV0fqL/vafnWk/uqzr5zgTURERNQAhiUiIiKiBjAskcYcHR0xb948ODo66rsUnWNf26+O1F/2tf3qSP01hL5ygjcRERFRAziyRERERNQAhiUiIiKiBjAsERERETWA6yx1cElJSYiKikJsbCwyMzNha2uLoKAghIeHw9vbu8FjDx8+jHfeeafOfQcPHjS4iYexsbF4+eWX69y3fft2BAUFNXh8Tk4Otm7dikuXLqGqqgp9+/bF4sWL4eHhoYtytbJhwwZERUXVu//777+Hs7Nznfu+/PJLREZG1tpuamqKY8eOtVSJzVZSUoK9e/ciMTERSUlJkMlkeOONNzB+/PhabdPS0rB161bEx8fDxMQEQ4YMwaJFi2Bvb6/Rtc6ePYuvvvoKEokE9vb2mDBhAubMmQMTk9b5p1OTvlZVVeHIkSM4ffo0kpOTIZPJ4O7ujjFjxmDWrFkwMzNr9DpLlixBXFxcre2DBg3Chx9+2JJdapCmn219f799fHywa9cuja7VFj5bABgxYkS95xgwYAA2btzY4HVmzJihetPEgyZPnozXX3+9ecU3UVN+zxjqzyzDUge3Z88exMfHY/To0ejatStyc3Nx8OBBhIeHY/v27fDz82v0HM888wzc3d3VtllbW+uqZK09/vjj6Nmzp9o2T0/PBo8pKSnByy+/jOLiYjz99NMwMTHB/v37sXjxYnz55Zews7PTZclNNnnyZAwYMEBtmyAI+Oijj+Dm5lZvUHrQa6+9BgsLC9X3RkaGMRBdWFiIyMhIuLq6wt/fH7GxsXW2y87OxuLFi2FtbY1nn30WpaWl2Lt3L27fvo1PP/0UYrG4weucP38e//znP9GnTx+8/PLLuH37Nr755hvk5+fjtdde00XXatGkr2VlZXjnnXcQFBSEKVOmwMHBAQkJCfjqq69w9epV/Pvf/4ZIJGr0Ws7Oznj++efVtrX2f/Bo+tkC1eF9+fLlatusrKw0uk5b+WwB4M0336y17caNGzhw4AAGDhyo0bUCAgIwc+ZMtW1eXl5NL7qZNP09Y9A/swJ1aL///rtQXl6utu3OnTvC2LFjhX/9618NHnvo0CEhNDRUSEpK0mWJLebq1atCaGiocPLkySYfu3v3biE0NFRITExUbUtLSxNGjRolfPrppy1Ype5cu3ZNCA0NFb755psG233xxRdCaGiokJ+f3zqFNZFCoRCkUqkgCIKQlJQkhIaGCocOHarV7qOPPhIefvhhITMzU7Xt0qVLQmhoqPDjjz82ep3Zs2cL8+fPFyoqKlTbdu7cKYwYMUJIS0trgZ40TpO+lpeXC7///nutY7/66ishNDRUuHTpUqPXWbx4sTBnzpyWKVoLmn62b7/9thAWFtbs67SVz7Y+7777rjBixAghKyur0bbTp08Xli9frlWt2tL094wh/8waxn8qkt6EhITUSuve3t7w9fWFRCLR+DwlJSVQKpUtXZ7OlJSUoLKyUuP2p06dQo8ePdRGpDp37ox+/frh5MmTuiixxR07dgwikQgPP/ywxscUFxdDMLDVRUxNTTUa8Th9+jSGDh0KV1dX1bYBAwbA29u70c8sLS0NaWlpmDRpktrw/dSpUyEIAk6dOtXs+ptCk76KxWKEhITU2h4aGgoATfo5rqysRElJSdOKbEGafrY1lEoliouLm3SNtvTZ1qW8vBynT59Gnz594OLiovFxFRUVKC0tbfL1WoKmv2cM+WeWt+GoFkEQkJ+fD19fX43av/zyyygtLYVYLMbAgQOxcOHCRuc76dM777yD0tJSGBsbo1evXnjxxRfRo0ePettXVVXh9u3bmDBhQq19PXv2xKVLl1BSUgJLS0tdlq2VyspKnDx5EsHBwbVumdZn5syZKC0thYWFBYYPH46FCxeiU6dOOq60ZeTk5CA/P7/O90j17NkT58+fb/D4W7duAUCt452cnODs7Izk5OSWK1ZH8vLyAEDjW8Tp6el49NFHUVFRgU6dOmHixImYN29eq83haaqysjKMHz8eZWVlsLGxwdixY/HCCy80+nPY1j/b8+fPQy6X45FHHtH4mKtXryIsLAxKpRJubm6YPn06pk+frsMqG/f33zOG/jNrmD8FpFfR0dHIycnBggULGmxnZmaG8ePHo2/fvrCyssLNmzexf/9+vPTSS/j888/V/uvAEJiYmGDkyJF46KGHYGdnh7S0NOzbtw+LFi3CJ598gm7dutV5XFFREcrLy+v8r8CabVKpFD4+PjqtXxsXL15EYWGhRv/A2tjYYNq0aQgKCoJYLMbvv/+OgwcPIikpCZ999pnG80L0KTc3F0Ddc24cHR1Vn6mpqWmzjq/Zb8j+85//wMrKCoMHD260rYeHB/r27Qs/Pz+UlZXh1KlT+Oabb5Ceno61a9e2QrVN4+joiCeffBLdunWDIAi4cOECfvjhB/zxxx/YvHlzgwGvrX+20dHRMDU1xciRIzVq7+fnh169esHb2xtFRUU4fPgwPv74Y0ilUrz44os6rrZ+f/89Y+g/swxLpEYikWDTpk0ICgrCuHHjGmw7ZswYjBkzRvV9aGgoBg0ahMWLF+Pbb79ttSctNBUSEqJ2u2L48OEYNWoU5s+fj507d9b71I9CoQCAOicX1vzg1rQxVMeOHYOJiQlGjx7daNu//xfnqFGj0LNnT6xbtw4HDx7E008/rasyW4ymn1l9//CWl5ertf378fq8VaWJb7/9FpcvX8arr74KGxubRtuvXLlS7ftHH30UH3zwAX7++WfMmDGj0SdFW9vfJ6KPHTsW3t7e+Oyzz3D69GmMHTu23mPb8mdbXFyM3377DYMHD9bocwWAd999V+37CRMmYNmyZdi/fz8ef/zxJt3Kayl1/Z4x9J9ZzlkildzcXKxYsQJWVlZYt24djI2Nm3yOXr16ITAwEFeuXNFBhS3Py8sLw4cPR2xsbL1zrmoeva6oqKi1r+YHVJPHs/WlpKQEZ8+exaBBg5r91N4jjzyCTp06tZnPVdvPrOYf3Jq2fz/ekD/v48eP4/PPP8djjz2G//u//2v2eWqenrp8+XILVaZbM2bMgJGRUaP1tuXP9vTp0ygvL2/SLbi/E4lEmDFjBpRKZZ3LRehafb9nDP1nlmGJAAByuRzLly+HXC7Hhx9+CCcnp2afy8XFBUVFRS1YnW65uLigoqICZWVlde63tbWFqalpncO4Ndu0+fPStbNnz6KsrEyrf2CBtvW51gzF1/eZ1XymzT3e0NYQq3Hp0iVs2LABQ4YM0fpR6ZoRB5lM1hKl6ZyZmRlsbW0b/TvaVj9boPrWlbW1NYYOHarVeWo+29b+eW7o94yh/8wyLBEUCgVWrlyJ9PR0vPvuuxpP7K7P/fv3NV5AzBDcv38fpqamamsKPcjIyAh+fn64ceNGrX2JiYnw8PAw6Mnd0dHRsLCwwLBhw5p9DkEQkJmZ2WY+V2dnZ9jb2+PmzZu19iUlJcHf37/B4wMCAgCg1vFSqRQ5OTmq/YYkMTERb775Jrp37461a9dqPTH7/v37ANBmPvOSkhIUFhY2Wm9b/GyB6vpiY2MxYsSIBkODJvTx2Tb2e8bQf2YZljo4pVKJNWvWICEhAWvXrkVwcHCd7aRSKSQSidrj9gUFBbXa/fbbb7h58yYGDRqkq5Kbra56U1JScO7cOQwcOFC16GJWVlatx61HjhyJGzduqAWmO3fuIDY2FqNGjdJl2VopKCjA5cuXMWLECJibm9faX1df6/pz+uGHH1BQUKDRZGFDMXLkSMTExCArK0u17cqVK0hPT1ebu1VZWQmJRAKpVKra1qVLF/j4+ODnn39Wuz37ww8/QCQSaTy5trWkpaVhxYoVcHNzw3vvvdfgLQeJRKL2Z1JcXFzr1oUgCPjmm28AQOOFD1uLQqGoc/7J119/DUEQ1P6OtofPtsaJEydQVVVV7whxXX0tKiqqNb2gsrISu3fvhlgsRt++fXVacw1Nf88Y8s8sJ3h3cNu2bcO5c+cwdOhQyGQyHD16VG1/WFgYAGDnzp2IiorCvn37VI+ev/jii+jWrRu6d+8OKysr3Lp1C4cOHYKLiwtmz57d6n1pzFtvvQUzMzMEBwfDwcEBaWlp+Pnnn2Fubq42YfTtt99GXFwczpw5o9o2depU/PLLL1ixYgVmzZoFY2Nj7N+/Hw4ODpg1a5Y+uqOR48ePQ6lU1vsPbF19nT59OsaMGQM/Pz+YmpoiPj4ex48fR0BAACZPntxapTfo+++/h1wuVw25nzt3DtnZ2QCqV2i3trbG008/jVOnTmHp0qV44oknUFpaiv/85z/w8/NTe6VETk4OZs+ejXHjxiEiIkK1/aWXXsIbb7yB1157DWPHjsXt27dx8OBBTJw4UevR15bsq5GREV5//XXIZDLMmjULv/32m9rxHh4ear+cZs+ejT59+mDLli0Aqh+5Xrt2LR5++GF4enpCoVDg119/RXx8PCZNmlTno9y61Fh/ZTIZnnnmGTz88MOqJ1AvXryI8+fPY/DgwRg+fLjqXG39s33wTQjR0dFwcnKqN+DU1ddz587hm2++wciRI+Hu7g6ZTIbo6Gikpqbiueeea7Vbjpr+njHkn1mGpQ4uJSUFABATE4OYmJha+2v+EtdlzJgxOH/+PC5duoSysjI4Ojpi0qRJmDdvnkGuxxMaGoro6Gjs378fxcXFsLe3x4gRIzBv3rxGl/63tLTE5s2bsXXrVnzzzTeqd8M15Z1F+nDs2DE4ODigf//+Gh/zyCOP4Pr166rJpK6urnjyyScxZ86cOken9GHfvn1q77s6c+aMKvCFhYXB2toarq6u2LJlC7Zu3YpPP/1U9Z6phQsXanQbY+jQoVi/fj0iIyOxefNm2NnZ4emnn8a8efN01a06NdZXAKpfsJ9++mmt48eNG1fvf8kDgKurK3r37o0zZ84gLy8PRkZG6Ny5M1577TW9hGNNPtuhQ4fi0qVLiIqKQlVVFTw9PfHcc89h1qxZGr2Wp618tjVh6c6dO7h586ZqErum/Pz80LlzZ0RHR6OgoAAmJiYICAjA2rVrNXoytqVo+nvGkH9mRYKhLc9LREREZEA4Z4mIiIioAQxLRERERA1gWCIiIiJqAMMSERERUQMYloiIiIgawLBERERE1ACGJSIiIqIGMCwRERERNYBhiYiIiKgBDEtEpHcZGRkYMWIENmzYoO9SWsThw4cxYsQIHD58WN+lEFELYFgiIoO0ZMkSjBgxQt9l1Km9hTsiahhfpEtEeufs7Ixvv/0WVlZW+i6lRYSGhiIwMLDV3upORLrFsEREemdiYoLOnTvru4wWY21trXpjPBG1fSJBEAR9F0FEHVtGRgZmzpyJcePGISIiot7bbzX7a/zxxx/49ttvERcXh6KiIjg6OmLYsGGYP38+7Ozs6jz/U089hc8++wzXrl1DUVER9u3bB3d3d5w5cwYnT57EjRs3IJVKYWJigq5du+KJJ57AqFGjVOc6fPgw3nnnnTrr27x5M/r27atq88Ybb2D8+PFqbeLj4/Htt98iISEBCoUCbm5uGDNmDJ566imYm5urtR0xYgT69OmDNWvWYPv27Th//jxKS0vh7++P559/Hn379m3qHzURNQNHlojI4MybNw9RUVHIzMzEvHnzVNsDAgJUX589exZr1qyBSCTC8OHD4eLigrS0NPz3v//FxYsX8emnn8LGxkbtvPfu3cOLL74IPz8/jBs3DkVFRRCLxQCAnTt3wsTEBCEhIXB0dERBQQHOnTuH1atX4+WXX8bjjz8OAPD398cTTzyBAwcOwN/fH8OHD1ed383NrcF+nTx5Ev/6178gFosxZswY2Nvb49KlS4iMjMTFixexefNmmJmZqR0jl8uxcOFCWFtbIywsDPn5+Th58iRef/11fPbZZ/Dz82vWnzERaY5hiYgMzoIFCxAXF4fMzEwsWLCg1v7CwkK8/fbbsLOzw7Zt29RCyvHjx7F27Vp88cUXWLp0qdpx8fHxmDdvXp3nfP/99+Hh4aG2raSkBC+99BK++OILPPbYYzA3N0dAQACsra1VYamuc9WluLgYH3zwAYyNjbF9+3Z07doVAPDcc8/hX//6F06cOIG9e/di7ty5aselpKTg//7v/7B06VIYGVU/k9OvXz+8//77+O9//4vXX39do+sTUfPxaTgianOOHDmC4uJiPPfcc7VGc8aOHYtu3brh+PHjtY7r1KkTZs+eXec5/x6UAMDS0hLjx4+HXC7HjRs3tKr57NmzkMvlmDBhgiooAYCRkRFefPFFGBsb17nUgIWFBV544QVVUAKqb0caGxtrXRMRaYYjS0TU5iQkJAAAEhMTce/evVr7y8vLUVhYiIKCAtjb26u2+/v7q267/V1+fj52796N8+fPIysrCwqFQm2/VCrVqubk5GQAQJ8+fWrtc3V1hYeHB9LT01FSUgJLS0vVPi8vL7XvgeoJ8Z06dYJcLteqJiLSDMMSEbU5MpkMAHDw4MEG25WVlal97+DgUGe7oqIiPPfcc8jKykJISAgGDBgAa2trGBkZISUlBWfPnkVFRYVWNRcXFwOoHt2qi6OjI9LT01FcXKwWjupbTsHY2BhVVVVa1UREmmFYIqI2pyZMREZGNmmCs0gkqnP7//73P2RlZeGZZ56pNWdo165dOHv2bPOL/VNN6MnLy6tzf8329rLWFFF7wjlLRGSQauboKJXKWvsCAwMB/HU7Tls1t/IefLKtxu+//15vbU0Z2al5ki8uLq7WvqysLNy7dw8eHh61brkRkf4xLBGRQbK1tQUAZGdn19o3YcIEWFpa4rPPPkNqamqt/WVlZU0KUjWTxOPj49W2R0dH4/z587Xa29jYQCQS1VlbfYYPHw5ra2scOnRIrWZBEPDpp59CqVTWWpOJiAwDb8MRkUHq168fTp06hVWrVmHw4MEwNTWFv78/hg0bBnt7e7z11ltYvXo1FixYgEGDBsHHxwcVFRXIzMxEXFwcgoOD8eGHH2p0rbCwMOzZswebN29GbGwsXF1dkZKSgqtXr2LEiBE4c+aMWntLS0v06NED165dw/r16+Hl5QWRSIRHH3203rWWrKyssGzZMvzrX//CCy+8gNGjR8Pe3h5XrlzBzZs30bNnT8yaNUvrPzciankMS0RkkCZOnIiMjAycOHECe/bsgVKpxLhx4zBs2DAAwJAhQ/DFF1/gP//5D65cuYLLly/D3Nwczs7OGD9+PMLCwjS+louLC7Zs2YLt27fj8uXLUCqV6NatGz766CNkZ2fXCksA8Oabb+Ljjz9GTEwMiouLIQgCevXq1eDClKNHj0anTp2wa9cunDlzRrWC99y5c/HUU0/VWpCSiAwDX3dCRERE1ADOWSIiIiJqAMMSERERUQMYloiIiIgawLBERERE1ACGJSIiIqIGMCwRERERNYBhiYiIiKgBDEtEREREDWBYIiIiImoAwxIRERFRAxiWiIiIiBrAsERERETUAIYlIiIiogb8PxFHvpEz2wYvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAG5CAYAAACQpg7iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUX0lEQVR4nO2deZgddZX+37r71ntn30PWTkLCEhCykQAxgIRRFtEBWRQUQfAnjIrjjKIoKDgOjgwDCERAFEZEYWQLMawhkED2zkZIOnun9777Urd+f9yuulW3b3ffpZZv1T2f58nzpO9W37pL1VvnvOccThAEAQRBEARBECbCZvQCCIIgCIIgioUEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpsOyAiYWi2H37t2IxWJGL4UgCIIgCJWxrIBpaWnBDTfcgJaWFqOXojn79u0zegm6UUn7ClTW/tK+WpdK2l/aV/2wrICpJOLxuNFL0I1K2legsvaX9tW6VNL+0r7qBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMh8PoBRAEQRAEYS4++t896Ojpgaf3GCZ/ZpQhayABQxAEQRBEwaT5NDa9sA8AEDt4wDABQykkgiAIgiAKJhFOSf93B5yGrYMEDEEQBEEQBRMPJ6X/k4AhCIIgCMIUxEMJ6f9uPwkYgiAIgiBMQDxEERiCIAiCIExGTJFCchm2DhIwBEEQBEEUDEVgCIIgCIIwHSRgCIIgCIIwHYoqJDLxEgRBEARhBigCQxAEQRCE6VCUUZOAIQiCIAjCDMgjMC4fCRiCIAiCIEyAKGAcHhtsNs6wdZCAIQiCIAiiYEQTr8NrrIQgAUMQBEEQREEIaYEEDEEQBEEQ5iIRSQFC5v8ODwkYgiAIgiBMQDycrUAyOgLjMHTrA3Do0CE89thj2LZtG3p7ezFixAicd955uPLKK+HxeIxeHkEQBEFUJPIKJIfXbuBKGBQwra2t+PrXv45AIIDPf/7zqK6uxo4dO/D4449j9+7duOeee4xeIkEQBEFUJEoBQxEYBa+//jpCoRAefPBBTJo0CQCwcuVKpNNpvPbaawgGg6iqqjJ4lQRBEARRecjHCBgtYJjzwITDYQBAXV2d4vaGhgbYbDY4HMxpLoIgCIKoCBQRGDLxKjnllFMAAL/4xS+wd+9etLa2Ys2aNfjb3/6GSy+9FF6vN+/z2tvbsXv3bulfS0uLnssmCIIgCMvDUgqJEwRBMHQFefj973+Pp59+GvF4XLrt6quvxg033DDgcx5//HGsWrWq3+0/+MEPMH78eC2WyQyhUAiBQMDoZehCJe0rUFn7S/tqXSppf62+r/tf78SxD4MAgJOuqMaIaXVDPKM0mpqahnwMk/mYUaNGYe7cuViyZAmqq6vx/vvv4+mnn0Z9fT0uvfTSvM9ZuXIlFixYIP3d0tKCu+++G5MmTcL06dP1WrohNDc3F/RhW4FK2legsvaX9tW6aLm/giCA44xrZ5+L1T/bE29uAZARMNUNAUP3lTkBs2bNGtx33334wx/+gOHDhwMAlixZAkEQ8PDDD+O8885DTU1Nv+c1NjaisbFR7+USBEEQBsAnebz/+504sOE4zvjnGZi2eKzRS6oIFCZe8sAoeeGFFzB16lRJvIgsWLAAsVgMe/fuNWhlBEEQBAskoim89suPsOsfhxALJrH95QNGL6liYMkDw1wEpqurK2+ZdCqVAgDwPK/3kgiCIAhGiPbE8eovNqLjQK/iNkIfRAHj9DrAGTiJGmAwAjNu3Djs3bsXhw4dUty+Zs0a2Gw2nHTSSQatjCAIgjCS3tYIXvrxeoV4AYBYKAkG61EsiZhCcgecBq+EwQjMlVdeiQ8++AC33HILvvCFL6C6uhrr1q3DBx98gM997nPkcyEIgqhAOg704tVfbEC0JzOLx1/vgdNrR/eRMAReQDKagstn/EnVygiCIEVg3H7j32vmBMy8efPw4IMP4oknnsALL7yA3t5ejBo1CjfccAO+9KUvGb08giAIQmeO7ujA6v/4CMloxkJQO8aPFd+fjw+f2Y3uI5nmp7FgkgSMxiSjKQjpTKSLIjAD0NTUhPvuu8/oZRAEQRAGs/+DY1j74BakU5kT5/CptVj+L6fBE3DBU+WSHhcLJlA9wmfUMisCeQWSJ+Aa5JH6wKSAIQiCIIjm1S1Yt6oZ6LO3jDtlGM699RQ43JkpyPIogLw6htAG+XtMERiCIAiCyEEQBHz8/CfY9JdPpNumLh6DRV+bDZsjW3uSG4EhtKW/gEkZtxiQgCEIgiAYIp0WsO6JHdi1JluJevLFkzH/ymn9Ou56quQRGBIwWiNPIWVMvCRgCIIgCAKpBI83H9yCAxtapds+c/UMzL5gUt7HuxURGEohaY08yuUOOJFC1MDVkIAhCIIgGCAeTmL1rz7C8V1dAADOzmHJN07GlAWjB3yOR+bDoBSS9igiMAGnwfEXEjAEQRCEwUS6Ynj1FxvReTAzJNDhtuO8/3cKxp48bNDnyT0wcYrAaI7CA+N3Ipw2cDEgAUMQBEEYSM+xMF65dwNCbZl0hKfKic9+93QMO6l2yOfKK2Fi5IHRnH4m3t5BHqwDJGAIgiAIQ2jb143XfrlR8q8EGr244M75qBnlL+j5DrcddqcNfDJNHhgdUKaQXCRgCIIgiMrj8LZ2vPEfHyMVz3TXrRtXhRXfPx3+Ok/Br8FxHNxVTkQ641SFpAPKFJLx8sH4FRAEQRAVxb51R/HWQ1uR5jMd6kbOqMP5t59W0nwdT5ULkc44YsEEBEHoV2pNqIcoYDKRL7vBqyEBQxAEQejI9lcOYP1TO6W/J8wfgaU3z4XDVdoJUWxpn04JSMV5OD10WtMKliZRAyRgCIIgCB0QBAEbn92DLS9+Kt02Y9k4nH39LNhspUdN3FXKUmoSMNqQmUSdSdN5SMAQBEEQlYCQFvDOI9uw560j0m2nfGEKTr10StkpH/lQwXgwiarBK6+JEknFeWmgppuBQY4ACRiCIAhCQ1JxHrv+tw1de/u6tnLA2dc2oen8Caq8vqeKmtnpQf8xAsZDAoYgCILQhHg4idfu2yiJF5uDw9Kb52LSmaNU24Y8GhCjidSawdokaoAEDEEQBKERm/+6Dyf2dAMAnF47zv/OaRg9q0HVbVAERh9IwBAEQRAVQ9unPdL/L/rXM9E4uUb1bcgHOsYpAqMZ8j47rKSQbEYvgCAIgrAmsd7MSc/m5DQRL4ByHhJFYLSDxQgMCRiCIAhCE0RB4fRpd6qRl/TSQEftyJ1EzQIkYAiCIMqAT6VxtLkDqQRv9FKYQkgLiPcJGIdPu66tborA6EKMwQgMeWAIgiBKJB5O4u8//QCdB4OYeMYInPftU41eEjPEQ0kImbYhmkZgnB47bHYOaV6geUgaopyDxEYfGIrAEARBlEAqwWP1f3yMzoNBAMDR7R0Gr4gtorJoiFPDCAzHcZIPhiZSawelkAiCICyAkBbw1kNbcXxnp3RbIpKiNJIM0cALAE6/toP/xHECMYrAaAaZeAmCIEyOIAhY/9RO7P/geL/7oj10AhWR+1EcGqaQgGwlEp9IIxUnEakFooCxO20lD95UGxIwBEEQRbD1//Zjx2stAADOxqFhYrV0X7QnbtSymEMRgfFqe6qRRwQoCqMN8XDmfZUPzzQaEjAEQRAFsvedI9jwx93S34tumI2Jp4+Q/iYBk0XPFBL1gtEeMQLDioEXIAFDEARREIe3tuHtR7ZJf59+xTRMWzIW3lq3dBulkLLEdDLxAsp5SNQLRn1SCR58Ig2AHf8LQAKGIAhiSNr392DNf26CwGfqgmeePx5zL5kMAPDWZE+eFIHJoq8HhuYhaQmLFUgACRiCIIhB6W2N4NVfbEQyljGHTpg/Amdd0wSO4wAA3hpZBKabBIxItFe/CIwnQPOQtEQe1WJlDhJAAoYgCGJAor1xvHrvBsnPMWJaHZbePBc2Gyc9RiFgKIUkIUZCbHYOdjc3xKPLgyIw2iIaeAGKwBAEQTBPMpbC67/8CL2tEQBA7Rg/zr/j1H4lpPIUUoRSSBKi6PNUu6RolVYoxglQBEZ15FEtD0MChrlRAj//+c/x6quvDnj/888/j2HDhum4IoIgKo10Ko1//GYz2j7tAQD46t1Y8b35ilSFiMNlh8vnQCKSIg9MH4IgKASM1sgjMHGKwKiOcowACZgBWblyJU4//XTFbYIg4Fe/+hVGjhxJ4oUgCE0RBAHvPr4Dhza3AQBcPgdWfHc+Ao3eAZ/jrXGTgJGRjKaQ7jM8y0uctUJehUTjBNSHxS68AIMCZvbs2Zg9e7bitq1btyIWi+H88883aFUEQVQKH/3vXux58zAAwObgcN53TkX9+KpBn+OtcaHnWBjJKI9UgmemU6lRyA28Xh0iMC6fA5yNg5AWyAOjAcoqJOoDUxRvvPEGOI7DeeedZ/RSCIKwMDvfOIjNf92X+YMDzvnmXIxuahjyeUojL0Vh5E3s9IjAcBwnRQaoCkl9KIVUIqlUCmvXrsXs2bMxatSoAR/X3t6Ojo7sNNiWlhY9lkcQhEU4sKEV657YIf39matnYvJnBj7myFE0s+uOo2qYT/X1mQl5FCTjgdE+KuKpciHWm6AIjAZQCqlEPvzwQ/T09AyZPnrxxRexatWqfrfv378fPG/t4V6hUAjNzc1GL0MXKmlfgcraXyP3tfdQDM1/OAEhY9vA6LOqYRsfKXg9oXiP9P892/ehPTm4gLH659q6Kyj9vyvUgUCI03x/07bMSTYV57F96w7YHNpWPg2EFT/bzhPd0v/3H94H+4lM8kbLfW1qahryMcwLmDfeeAMOhwNLly4d9HErV67EggULpL9bWlpw9913Y9KkSZg+fbrWyzSU5ubmgj5sK1BJ+wpU1v4ata9dh4P46M8fIJ3KqJcpC0djyTdOBmcr/ARobz2Eg292AwAaqodjZtP4QR9v9c81+ck+7EMnAGDS9AmIBjo1398jI2PoPdSa2ebYk+Cv92i6vYGw4me7W+gEEIPNwWH23FlSWbzR+8q0gIlEInj33XdxxhlnoKamZtDHNjY2orGxUaeVEQRhBcKdMbz6i42SSXHMnEYsunFOUeIFIA9MLrkm3mha+216ciZSGyVgrIj4+3AHtO/pUwxMm3jfffddqj4iCEITEpEkXvvlRoQ7YgCAhonVOPfbp8DuKP6wqPTAkAdDbxNv7nZooKO6ZCdRs+N/ARgXMKtXr4bX61WkhgiCIMqFT/JY/R8fo/NgxqtRNcyLz373dLi8pQWlaaCjkv4mXu2Rm0vJyKsefCotzQFjycALMCxguru7sXHjRixevBgeD4UCCYJQByEt4M2HtuJYc8aj4alyYsX358Mni6IUi7zXCY0TyEZgOBun21W7PAJDAkY9WK1AAhgWMGvWrAHP85Q+IghCNQRBwAd/2IX9648DABxuO5b/y+moGeUv63XtTrt0oo7RQEdJQLgDzqL9RKUiP7lSLxj1iIdkgxwphVQYb7zxBurq6nDaaacZvRSCICzCtr/vx/ZXDgDIRAfOvXUehk+pVeW1PX1pJEohZU28evlfcrdFERj1YDkCw2wV0kMPPWT0EgiCsBCfvHsEHz6zW/p70ddmY9wpw1V7fV+tGz1Hw0jGeCRjKTg9zB5eNSUZS4FPZMqO9PK/ADkmXorAqIZyjABbAobZCAxBEIRaHNnWjrcf3ib9fdrlUzHtnLGqbsNbLS+lrtwIgHyYolfHCIy7iky8WsDqGAGABAxBEBan63AQb/z6Y2k68oxzx2HeP52k+na8tVSJBBhTgQQAbp8TYosSKqNWD2UKiZ1BjgAJGIIgLE7z6welMtAJp4/A2dfN0qQZFzWzy6DoAaOjgOFs2YGOFIFRD0ohEQRBGESwLSL9f8FXZ8GmUVWMTyZgIt0kYAB9TbxANkIQIw+MasgjMB5KIREEQeiH6Efh7JymngxlM7vKjQBEDUohAVnBlIymwKd0mF9QAShSSFUkYAiCIHQj2hcN8Va7NO1JohgnQCkkAMoGf3ogP8FSJZI6xMPUB4YgCEJ3hLQg9SSRe1S0QOmBqdwIjMLEq3MKiXrBqI8oBDkbB2eJoza0ggQMQRCWJRZKQEhnqo80FzDVVIUEGGfiBXK78ZKAUQPRT+QOOJmaRA2QgCEIwsLIIyG+Wm1PpjaHTTqBRsnECwDw6Fy1oozAUApJDVidRA2QgCEIwsLIhYTWERj5NqK9CQiCoPn2WESag+R3wubQ9xQjF0xxSiGVTTqVRjKaAsBeCTVAAoYgCAsjT+XoIWDEidapOC/1nqk0pDlIOqePAIrAqE08wm4PGIAEDEEQFiYiSyHJy5y1QllKXXlpJD7JS1fseht4AeVJNkYemLJheYwAQAKGIAgLo4jA1OqXQgIq0wcjj3oYHYFhfZyAkBZweEsb2vf3GL2UAWF5EjXA8DRqgiCIcpGLCJ8uHhhZBKa38iIARnbhBXIGOjIegTmwsRVr/nMTOBuHK/5jMaqG+4xeUj9YHiMAUASGIAgLE1WkkHQQMLWVHYExsgsv0Jfm6Kv0Zb0PTOvuLgCZSMyJfWxGYZQpJLYGOQIkYAiCKIBMQzjznZDFFJLNwcHl1z7gXOkDHZVdePW/YrfZbXD7MttlPYUkn5cV7Y4ZuJKBoRQSQRCm5sj2drzz6HaE2qNYdMNsTD9nnNFLKhhRRHhr3Lo04ZKnkCLdbEcAtMDoFBKQSSPFw0nmIzByAcPq8E95Cknvnj6FQAKmCPgkj2PNneho6YWn2mWqAzlBFEsiksSHf9yNXWsOSbd9+v4x03zv02lBOqHq4X/J3Y4ZI1blYuQYAWm7ARd6EUEikkKaT8NmZzPREFVEYNgUWxSBsRB8Mo1Xf7ERADB8aq1pDuQEUSyHt7Xj3Ue3IdSuDG2zeqWYj1gwAbGXnEeHEmqgz/fBARAohWSEBwboP9BRD+9TKSgjMKymkGSDHEnAmBuXz4mq4V4ET0TReTCIdFqATcPptgShN4lIEh/8YTd2r81GXRxuO4BMc7ZIl3lOyooKJB1KqIGMB8NT5UKsN8HsVbWWxAw28QI5zewYFTCpeLZfDsBuupFMvBajYWI1gMwXsPdY2ODVEIR6HN7ahue/965CvIxqqselv1iI+vFVADIHND6VNmqJRaF3F97stlzS9ittnAATKSRFLxg2hUFuJJN5Ey8HuHzsxTvYWxHjNEyoxoEPWwEAHS29qB0TMHhFBFEemajLLuxee1i6zemx44wvz8CMZePA2ThFBCPaHUeg0WvEUotCHgHRV8C40XUoBD6ZmSPj8rEXetcKsfeN02OHw2U3ZA2KbryMViLlCphYMHNhYNd5dtRQiCZet98JjsFsAwmYIhEjMADQfqAXJ5092sDVEER5HN7Shnce3Y5wZ/YKcPSsBiy6cTaqhmUba8kFTMQsAkYRgdEvGqAspU5UlIARPTBGRV9yt81qM7t8/qhYTxz+BrZ+VyxPogZIwBSNXMB0HOg1cCUEUTqJSBLrn96FPW/mRF3+uS/qklNy7K2TCRiT+GAiPfp7YHK3FemOo2aUX7dtG0k6LUhX7Eb5XwBlBIbZFFKe31Ckmy0Bk04L0jBHFg28AAmYovHVuuGpzpj0Og70QhAEXfpLEIRaHNrchnd/lxN1md2ARTfMQdWw/AdQ5UmZzXx9Lnp34ZW2VV2ZAx3jwQQgVn0ZKGDMMJE63/eCtQq/RCQpfZ4kYCwCx3FonFiNw1vbEQ8lEe6MIcCQaiaIgYiHk/jg6Z3Y89YR6Tanx44z/3kGpueJusjx1Xqk/5ulRb58ncalkMzxXqkBCwbezLblZdSMRmDy/IZY+12xPokaIAFTEg19AgbIpJFIwBCsc2jTCbzz2HZEOrMHyTFzGrDwawNHXeTkpkXMgNhIzu60wenV71DnrZVHYNg8gWpBlIEeMADgNkEEZqAUEksom9ixV0INkIApiVwfzITTRhi4GoIYmHg4ifVP7cTet2VRF68dZ/7zTExfOrbg9KfCA8PYgXYgxCtab60+YwREKjYCI5+DZGQExs/+RGozpJBYn0QNkIApiYYJZOQl2OfgphN493fbFVd7Y+Y0YtENs4uuIvJWucDZOAhpwRQm3nQqjVjfFaSe6SNAOZGatZOSlrDQxA4AbA4bXD4HEpEUswMdxe+Fzc4hzWeMJpRCKh4SMCVQPcIHp9eOZJRHRwsJGIIt4qEk1j+dG3Vx4DNXzcC0cwqPusjhbBy8NS5EuuLMHWjzEZUZSvWagyTiqXKB4wBBAGIVlEJiYYyAiDvgRCKSYnKgYzotINYXgakdG0DnwSAgKKvmWEAhYKpIwFgGzsahfnw1Wnd3IdQeQyyYMNS0RhAiBz/ui7rIRMbYkxux8IbZZXu1fLXujIDpiTM/RkNp4NVXwNhsHDzVLkR7EsydlLSEhUnU8u0HT0QRDyeZ+67GerMzuvz1HkS64n2jJ9j6rsTDss+TIjDFsXv3bjzxxBPYtm0bEokERo8ejYsvvhiXXXaZ0UsDkPHBtO7uApDpyDtmdqPBKyIqmUQkifd/vxN738mJulw9A9OWlBZ1yUVMjQhCJl2gd2SjGBQl1Dr2gJG2WeNGtCchjROohFYLUVm0w2t4BKZv+wKQCCcNF1Ry5G0IfLUe+GpjiPUmEOlm67vC+iRqgFEB8+GHH+LOO+/E1KlTcc0118Dr9eLIkSNoa2szemkSjTk+GBIwhJG888h27P/wuPT32LmNWPS12ao2xlKME+iKsy1gDCqhzm7TDSCIdEpAIpxi9gSgJiylkOSl1KxFyOUjLny1LsV3JR5OwsNIxQ9VIZVAOBzGz3/+c3zmM5/BT3/6U9hsbM2GEKGOvARLtH3aDQCwOTgsvH42pi4Zo/qVXG4pdYOqr64uYgk1oH8KKbNNZTO7ihAwfREYu9MmTTA3CsVAxxBbRl55BMZb64avTjlnjEkBw2gKiTl18MYbb6CzsxM33HADbDYbotEo0mn2pt/Wjg3AZs+cIMjISxiJkBYQ7qsMqh0TKNmoOxReE3XjjRjogQFy3qsK8cFIc5CqXYanQdw5ERiWUEZg3IrvJ0tVa3IB4/IzF+sAwGAEZuPGjfD7/Whvb8e//uu/4tChQ/B6vVi+fDluueUWuN35D0bt7e3o6OiQ/m5padF0nXaHDXXjqtBxoBc9R8NIxXnDrzqIyiQaTEDoK8X013mGeHTpyLvxsnSgzYfcA+OrNSqF1H8tVkVIC1LTOBbSNfIoBmul1PLfjq/WzWyTSLEPjMvngM3OXKwDAIMC5vDhw+B5Hj/4wQ9w0UUX4cYbb8TmzZvx/PPPIxQK4Uc/+lHe57344otYtWpVv9v3798Pnuc1Wau9JvO6ggB89NZWVI01xhMQCoXQ3NxsyLb1ppL2FShsf0PHsyfIOKKavT9B2cH1yKfH4W5W98Ss5mfbfrRT+n/Lsf2wd+h7AO4KhaT/H9jdgnhNl+J+q32Pk1EeQjojonlbot++6b2/7T1h6f8t+w4hNVy/KPlQ+3r8YNbLebjtEELh7O/qwO6DSNb3aLq+Qgn3RAEAnAsD7o+Wn2tTU9OQj2FOwESjUcRiMVxyySW47bbbAABLlixBMpnEiy++iOuvvx7jxo3r97yVK1diwYIF0t8tLS24++67MWnSJEyfPl2TtQqHWnBiS+bDq+Lq0dQ0QZPtDEVzc3NBH7YVqKR9BQrb34OxE9iKYwCAMZNHoqlpqiZrCQ2PYtsTGaOwh/Op/jmo+dk2p9oBxOFw2zFn3mxVXrMYjvDt2Pu3TES42lOHpiblMchq3+PuoyFsQGayecOo+n77pvf+HhU6sAeZcS81vvp+77+WDLWv+9LrAUQAACefPgtt+3qw5y+ZtVa5a9HUNFOPZQ6KkBbwfjSTxaiqG/i3bvT3mDkBI6aIzj33XMXt5513Hl588UXs2LEjr4BpbGxEY6O+lUBKI29Q120ThEikK+tH8ddrl0IyU4dZ0WdgRAVSZruyFFKv9VNI8plDRpdQA7kTqdl6/0X/mNvvhMNlV1b3MfK7SsZSUq8alg3ozCW2GhoytQ319fWK2+vq6gAAwSA7QqFhQhXQ51UjIy9hFGFZa395RYPa2B026WDGsoDhk7yUvzeiB0xmu7IqJIbfK7VgqYkdoDTxslSFJAiC5IkSvyMsXhgoK5CM/zwHgjkBI6Z7cnu+tLdnQmy1tbV6L2lAnB4Hakb6AQBdh4JIp9irliKsT7hTFoHR0MQLZAVStK/pFovIIx5GVCABGRMp19f9tRIGOrIyB0laQ4DNKqRkNIVUPOOdFE3xLq9DKgBhUsBQBKZwli5dCgD4+9//rrj973//O+x2O0455RQjljUg4mBHPplG99HwEI8mCPWRD1f01Wt7whbD3XwyjUQ4pem2SkVRgWSQgOFsnJRKqYQyatYiMHanHU5PRhTEGZpIrSjvl0VexN8VK9G6mAkmUQMMemCmTZuGCy+8EC+//DJ4nse8efOwefNmrF27FldddZXuPpehaJhYhU/XZwyUHQd6UT++yuAVEZWG6IGx2TnNm2ApS6ljTB7cFF14DSihlrZd40KkO45YTwJCWpAiMlaEtQgMALirXEjGogp/jtHIo3Fy74u31o3e1ggSkRRSCR4Ol7EtOcwSgWFOwADAHXfcgREjRuCVV17BO++8gxEjRuCWW27BFVdcYfTS+qEw8rb0YirGGLgaohIRU0i+Oo/mJ8ncfH3dWPYEu/wkYVQKCeh7r1qCSPN9LeIZiExohSJtx4iA8QScCLVFEQ8lmRGQ8mhpvggMkBHgVcN9uq4rF3nUigRMkTgcDlx33XW47rrrjF7KkMgFTDuNFCB0hk/y0tWS1ukjoP84ARaRp2yMnNekbGYXt7SAYS2FBGTXIaQFJCJszKNSRGBkFXK5FwbGCxj2xwgADHpgzIa32i2dODpbepk1NhLWRH5F56/V1sALKA+0rOTrc1FMojaojDp321bvxiumkDg7x0zbeblgiTHig1F04ZUZ7lm7MDDDIEeABIwqiEbeRCSF4ImowashKgl5BRJFYDJEBzBK6k1uBMbKSHOQqoyfgySiGOjISCVSoSkko4mbxMRLAkYFGnN8MAShF3IRoXUJNcDegTYfzHhgKkTACIIgRWBYSR8BOQMdGekFEx0gvclaLxizmHhJwKiAsiMvCRhCPxQRGA2b2OXbBgsH2nyI6Rqn12FoNYcyWsVGBEALkjEefDLTA4sVAy/AZjde8Tdjd9oUqTbWIpvkgakgciuRCHPSdSSEE590G72MolD2gNE+AuP0OKT+GvJts4R4lWuk/yV3+1aOwLBo4AWU3g1WJlKLvxlvjVuRalN4yxj4rsTDfRcBHjvsDnZlAhtuK5MTaPTC7XciHk5SBMaEJCJJfPjH3di15hAA4PzvnIoJp48weFWFoZiDpEMKCcgcbJPHI0xcKeaSSvBIRDIN9nwG+l+AykkhsdgDBgA8VWx14+VT6WzFYM5301uV6dwspAUmLgzEdbKcPgIoAqMKHMehfkKmH0akK27pg5XVOLjpBP783Xck8QIAx3Z2Grii4tA7hQRkD77ytuisoKhAqjZWwLj9TnB2cZyA8SdQrVBEYKrZOeHJmzqyMA9J4c3K+a1yNk6K2BntLRMEIStgGE4fASRgVIN8MOYi2hvH2t9uxuv3fYRIp/KAEeowTyWZeLXm8jng9OgTUM3txssSipOEwREYlk5KWsJqCom1CIz8O5CvP5EYsYv2JpBOG9eOIxXnkeYz22e5hBogAaMa5IMxB4IgYN+6o3j+X97BvnXHpNvHzGmUJouHO9g6KQ+EIAgId2W78OqFwsjLQLhbjrICyfiDrxgFivZmxglYkWiQvS68QGaUgAgLVUiKHjB5xLX4uxLSgqGCyywGXoAEjGo0Ukde5gl3RPH6/R9h7W+3SPNR3H4nlnzjZKz4/unSVZFZBEwinAKfyFR/6JU+Atgr+ZTDSg8YaQ01spMSI83U1EaZQmJHwDhcdmnKMwt9YAYa5CjdJvdMGfi7UgiYKrYFDJl4VaJmlB92pw18Mk0pJMYQ0gJ2rT2ED5/ZhWQ069mYdOZInHVtkyRc/A0eRLrjiPTEwafSTLvvAUjRFwDw61CBJMJayaccpQfG+JOpr1bZjddoX44WKEy8DKWQgIwJNRXnmYjARIeKwOT8rhom6LKsfiia2DEegSEBoxI2uw3146vQtq8HvccjSERTcHnp7TWanmNhvPO77TguM+Z6a91YcF0TJs4fqXisv96Dtn09gJCp7qkaZuw8kqGQVyDpmkJiuJldZIBpv0bRrxJpHHvDL8uFVQ8MkFlPuCOGWDABQRAM7RJcaAoJAKIGpmblgpT1KiQ6w6pIw8TqzAkQmblII2fUG7yiyiXNp7H95QP46M97pSZbADDtnLE488sz8v4w/Q1ZERDuMIGAkZmP/TqmkFhuZsdKF958a2BN7KmFdMLjlL4TFhB/5wIvIBlNweUz7oQ8VHpT/l2JGFjJapYxAgAJGFXJNfKSgDGGjpZevPPINrTvz6byqoZ5sfBrszNm3QHwN3il/4dM4IMJGxSBUXhgWDPxdrMxyDHfGqxaSi1GYNx+J2w2NuYgiSi78SYNFTCS2OfypzdZSc0qTbzG/4YGgwSMiohDHQEqpTYCPslj0wv7sOWlTyH0lQGCA2avmIjTLp86ZJlxQBGBYb+UWtGFV8cIjNvvhM3BIZ0SmOt5JK7H5XPA7jRujICIQuwx9l6phTQHiQHPUS4eWQQhHkoAI4yLqoqixFPlgi2Pv46V1KxZ5iABJGBUpX5cFTgOEAQSMHrTuqcL7zy6Dd1HwtJttWMCWHzjbAyfWlfQa8iNsGaoRDLKxMtxHHy1boTaY8ymkFioQAKUaYGYBSMwqQSPZCxjjGfBNJ2LOycCYxSCIEiiZCBvFivVfZRCqlAcbjtqRgfQfSSErsMhU1SymJ1kLIWNz+7BjtdbADHoYucw75KTMO+SyUVdhcsjMKFO9gWMGIHhOP3TJd4+ARPrTSCdSue9otSbZCyVPZky4H8BlA3LWBN7asByBRKQ08zOwDL2eCgpNYcbSMA4XHa4fA4kIimKwBQICRiVaZhYje4jIaR5AV2Hg2icWGP0kizL4a1tePd3OxBqz6Z7hk2uwaIb56B+fPHVHt46jzSPxAwRmEifyPLWuGGz6ysgMt14M4b1aE9c4R8yCrnHJF+nUyNw+R3ZdFuvBQUMoz1gROSiysheMIV2iPbWupGIpAz2wMiqkBgvozb+ssli0EgB7YmFEnjrf7bi1Xs3SuLF7rLhzH+egYt/clZJ4gUAbDZO8pKw7oFJ82npoKjHFOpcWDEcymGtCy+QSbdJ3XgZeZ/UhOUSakAZQTAyhaTwqw0iYMT7UnEeiWhK83XlQ0wh2V02OFzG+8gGgyIwKtOoEDBBA1diTTp2hrHpv95RXG2PaqrHohtmo3qEv+zX9zd4+vpGJJFK8Mz+gKM9CQh9KTM9S6hFmBcwjHhggMxawp196ba0wFylTjlEGZ1ELaKsQjIuAqPowjtIdDDXyGtELzGzTKIGSMCojjiVGqAIjNqse2IHdq9ul/52eh0486oZmH7OWNUaVAXqvTiBbgAZI2/NqPJFkRYop1DrH4HxMtgLRnmSYOdkKq5FEDJpDFb8OWogj8AwaeJlZCK1ogvvIBccuUZeI44/2UnU7H2euZCAURlPwIVAoxeh9ig6D/ZCSAvgLHTFZRSpOI/mNw5Kf48/bTgWXDdL9eobRTO7TnYFjKILb73BERhGesGw6IEB+jcos6qAYTGFxMpE6qG68Oa7z4gLg1SClxp/ehifgwSQB0YTRB9MMsajtzVi8GqsQbA9KlUZTZg/Aud/51RNSodzu/Gyilw0+A2IwLDSs0IOa114RZTjBKxVSh1jPIXkcNthd2ZOc4ZGYAr8bnoN/l2ZaRI1QAJGExomZtNINJlaHeSVRrWjA5rNNFGWUrNr5FWmkMgDA+QMcmTIA6MY6MjIe6UWrFchcRwnTVRmJgIzyO/V6N+VvNTcDB4YEjAaQB151SfUlhUTVY3aRRzk5cCmicAYUIXkqXFD1JDMCBi5B4ahk2m/gY4WIsp4Hxggk9YHMtEFQXS+64z4e3W47YN2BFdENg34rpipBwxAAkYTGqmUWnXkEZhAo3Y9R8ySQjJqDpKIzcbB03dijnSz8T6JB3x3wMlEYz0RS6eQ+iIwLp+D2aadorDik2mk4rwha5BaHgwRGTR6zpjZUkiqmHh5nkdPTw+Syfw5xhEjRqixGdPgq/fAU+VELJhER0uv4WPcrYBCwAzTTsB4q1xS4zGWBzqKJl67ywaXzxgvvq/WjWh3PFPSbbBZXRAEadbQUCcJvVEOdLRWBEYUMKxGX4D+vWCGmommNqkEj0Qk09NlqHSvfM6YEZFN5RgBdj9TkbI+yd27d+ORRx7Bli1bkErlb7rDcRzWrl1bzmZMB8dxaJhYjSPbOhDrTSDSFTckzG8lgjpFYDgbB3+9B8ETUaab2YU7Mwc3f53HMHHsq3WjA4DAC4gZXB6cjPHgE5nqCZYMvEBOFRIj6TY1SKfS0omZRf+LSG433ioNL4DyES2wBwygnDNGKaShKTnmt3fvXtxyyy3YsWMH5s+fD0EQcNJJJ2H+/PmoqamBIAiYO3culi9fruZ6TQN15FUXMQLj9GvfHVL0wSQiKSRjxnTDHIxkLIVkX5dOI7rwirA0aTnKaA8YQJyMnTnUWimFxHoFkogiAmPAPKRCS6hFxN+VOGdMT8yWQipZwPz+978HAPzP//wP7rnnHgDAokWLcN999+G5557DJZdcgv379+Paa69VZaFmg4y86sGn0lI+2F2jffhXHi1jMY2kLKE2LtqgMBwa3AuG1RJqoG+cQJ+oslIKyQwGXiC3G6/+pdSKBosFCBh5D6Nor76Cq2IiMNu2bcOCBQswceJE6TbR4e12u/Htb38bjY2NePTRR8tepBmRR2DaW0jAlEO4I9sDRg8BE1AYedlLIxndhVfaNkOl1KyOERARRVUsmECa1/eqWitYb2In4pY1ZIsbEIGJlhiBAfT/XcXD5iqjLvlsEA6HMXr06OwLORyIRrMHe5vNhnnz5mHNmjVFve6mTZtw22235b3voYcewqxZs0pbsM7UjPTD4bYjFecpAlMmofbsCVuXCAzjlUjyLrx+A7rwihh5oM1F0QOGsRQSIIsKCcYOFVQT+X6wnEJiKQJTiIBRdrmOAajRYll5MVsKqeSzQW1tLYLB7LDC+vp6HD58WPGYRCKBWKy0E8Cll16KmTNnKm4bM2ZMSa9lBJyNQ/2EKpzY041QWxTxUNIUipZF5D1g3DXaD1dkPYUUlk+2pQhMv+2zNEZARFFKbREjr2IOEsMRGI/suBs3oJld0SkkRS8YnVNIfVVINgcHh5vNQbZyShYwEydOxMGD2dk0c+bMwTvvvIPt27dj9uzZOHDgANauXYsJEyaU9Ppz587FOeecU+rymKBxQjVO7OkGAHS09GL0rAZjF2RS5BVI+qSQZM3sOtkTMBFWUkh1LHlg5BEYFgVMTim1Ba5lzGLiNToCU14KSd/jT3YStcsUrT9K9sCcddZZ2Lp1K9rbM9OBv/zlL0MQBNxyyy24+OKLcd111yEUCuGqq64qeXGRSGTA8mwzQJVI6hDSWcD4GffAKLvwGphCYqg8mHUPjI+hii21YH2MgAgrVUicjSvIK6ScM2aMiddjkmxByWeDSy65BEuXLkVVVWbuz5QpU/DrX/8aTz31FI4ePYrp06fj0ksvxVlnnVXS699zzz2IRqOw2+04+eSTcdNNN2HGjBkDPr69vR0dHR3S3y0tLSVtV00UAoaMvCWjt4BxB5ywu2zgE2lGU0iyCIyBJ2uHyw6334l4OGl4N15JwHBsTtFVRmAScDYauBiVMIuJ1+l1wGbnkOYFQ1JIYgTGW+MqqNmjUalZPslLnYrNYnco+WzgcDhQX1+vuG3OnDn45S9/Wd6CHA4sWbIEn/nMZ1BTU4MDBw7g2WefxS233IL//u//xrRp0/I+78UXX8SqVav63b5//37wvDHto9MpAZwNENLAkd1taG5u1mQ7oVBIs9dmgc6jGfFn99gQS0V02VdnwAa+M41gWwQ7duwwLJya77Ptbs14zxw+G3bv3W3EsiRsXgDhTKqt3PepnO9xT1sIAOD02bBr966S16AVvTLRefjToxg2wmX632zH8S7p/weO7oO9beCAvtHHKLvXhnSIR7BL++OHfF+FdLZDNOcRCtp2ms/Oa+o41qXb+5YIZrMdiXSsoO1q+bk2NTUN+RhjepAPwpw5czBnzhzp74ULF+Kcc87Bddddh0ceeQT3339/3uetXLkSCxYskP5uaWnB3XffjUmTJmH69Omar3sg9ozrQmdLELGOFKZNma5JE7bm5uaCPmwzkk4LeD+Y8VrVjPAjEAjosq8HRoVwtLMD6aSAKROmGXZFkvvZCmkB68OZ96N6mN/wz/3AiBCi7R1IpwRMnTQNLl/p71Op32NBEPBB9BAAIFBv/HuSj566MLajFQDgswcQCLiYXGcxNPMdAOJwuO2YM3f24I81+Bi1s64DXaEQ+Jig+Trk+xrpieN9IfN7rR9ZU/C2N1cdy/h14nbd3reuw0FsxBEAQOOo+oK2a/TnWraA6ejowJ49exAMBpFO5+9vsGLFirK2MXbsWCxcuBBvv/02eJ6H3d5fBDQ2NqKxkb24bMOEanS2BCGkBXQeDGL4lFqjl2QqIl0xCH1XJFqOEMhF7oMJdUaZCalm+ohk3g9frfHjKeRG3khXvCwBUyqJSAp8MnPs8dWymcrITSEBbK6zGEQTL8vpIxFxrg+fyAx01KvCRm5uLybd6631IBbMpGb1mqWnbGLH/mcKlCFg4vE47rvvPqxZs2bAEeXiG1+ugAGA4cOHI5lMIhaLwe/3l/16etEwsRp7386o2o6WXhIwRSIvoa7SUcAEcnrBNIyvHuTR+hFmpAeMSG4vmNoxAd3XwHIXXhGn1yH5qjLr1f99UhMhnfWTsGzgFZH7omKhBAJufY4lxfaAyT7Wha5DGRtCIpzS5QLKbD1ggDIEzMMPP4zVq1dj3LhxOPfcczFs2LC8kRG1OHr0KFwuF7xefQdxlUsjVSKVRajfEEd9qoL8jJZSRxjpASOtgYFeMGYQMJlxAm6E2qKWGCcQDyUhXreaIQLjkUUU4sGkolWClkSL7AEjIo+uRrpj+gsYRiLOQ1GygFm7di0mTpyIRx99FC6Xel/g7u5u1NbWKm775JNP8N577+HMM8+EzVZy5bch1I+vkv5PAqZ45F14A8O8iOomYNjsxivvAWPkHCQRZcmnUQKG7S68Ir4+ARMLJhVGTTMin4PkNUEExq3oBaNfJVKpERivLBUa6Y6jbmzVII9Wh1i4ggRMKBTCeeedp6p4AYAf/ehHcLvdmD17Nurq6nDgwAG89NJL8Hg8+PrXv67qtvTA5XOieoQPva0RdB4MIs2nYbObS4QZSbBNGYGJ6qQlclNIrKDowmvgJGoRFsYJFNvp1Cjk4ioVMaYyUi3M0gNGxKPoBaNfM7tIidFBIy4MKiqFNH78eHR1dQ39wCJZtGgRVq9ejeeeew7hcBi1tbVYvHgxrr32WowdO1b17elBw8Rq9LZGwCfT6DkW1kVNWwV5Cqmq0Yu2w4M8WEWU4wTYaWYnn4PkYywCY1gKqZv9FBKgFFeJkMkFjGISNfsnO3maS89eMAoTbxG/V68ihaSXgDHXIEegDAFz5ZVX4le/+hUOHz6sqrC47LLLcNlll6n2eizQMLEa+z84DgBoP9BLAqYIRAHjcNsVU2W1xuVzwul1IBlNsRWB6ZR14WXMA2NYCkkWDWBxDpKIXFwlw+aeSG22CIy7yphuvJESxbW8mk6veUhxK6eQNm/erPh72LBhOOOMM/D1r38dl19+OaZNmwafz5f3ufPmzStnjaYnd6TA1IXGDaWMhRKw2W1weZlrAdQPQRAkARNo9OjeTC7Q4EHX4RDCnfqVMg6F2PHWZi+sLbnWOL0Oaeq6Ud14lREY49+TgZCvzfQRGJN04RUxah6SaNh2+RxF9QBTmHi79PldWTqFdNttt+U9gAuCgCeeeGLQg/ubb75Z0uKsAiszkY7v6sTLP/sQTq8Dl923iOlwO5C5shb7e+jZA0bE3ydg+GQasWAC3mrj3y/RxOurcxfUllxrOI6Dr9aN3taIokJKT8STBGfjFGZN1lBGYMwtYExn4jVgIrUgCFIEpth0r1zs6pdCyggYzs7BaYILXKAIAXPNNdcwcQVqRnw1bvhq3Yh0x9FxoNewq/kNf9qTmQcSSuLwtnZDI0GFEGrLLaHWF7kPJtwRM1zA8EleunpkoYRaxNsnYBKRFFIJXpNu04MhGiU91S7YGBB1A2ElAWO2FJIREZhkLDtbqNiLRXlkU6+yezGF5PY7TXOuL1jAXH/99Vquw/I0TKxGZHMbEpEUQu0xVA3T94R8fFcnWvdkTdfB1oiu2y8FhYFX5/cL6F9K3TipRvc1yJFfibHgfxHJ9cFUDc+fStYCIS0g1ucR8DGcPgKUvoYkpZB0xeVzgLNxmQZ8OnlgoiWWUAPGRDbF98Us/hcAoHpenTA6jbTlpU8Vf/eaTMAYEYEJ1Ge3ycJUarmBl4UKJBEjK5Hi4WxPFdZTovL1JcwegelLw9hMkm7gOE46MesVgZF7wkqJmIrfFzGyqSXpVBrJqLkmUQMqzEJqb2/HP/7xD+zduxehUAiBQABTp07FsmXLmJxNZBQKAdPSi4nzR+i27c5DQRza1Ka4rfe4CQSM0SkkeQSm0/hSakUJNQM9YEQU85B0FjCKLrwM94ABAKcnmxYwfRWSbIyAWdINnionYr0J3SIwke7yGiwqIps9cVQN0y6yqahAMomBFyhTwPzlL3/BQw89hGQyqZiH9Prrr+PRRx/FN7/5TXz+858ve5FWoGGCcRGYrTnRFwDobQ3ruoZSCBocgWGtG69cwLDQhVdE0cxOZyOvWbrwinhrXAieiJraAyMIgpRCMoP/RSST6gojGePBJ3nYndp6taLyCEwJ4jr3d6WpgJFVIHlMMsgRKEPArFmzBg888ABqampw9dVX4+STT0Z9fT06OzuxZcsW/PnPf5buX7ZsmZprNiVVw71SXxE9BUywLYp9644ByIQGq4f70PZpD2LBJOLhJNNqWxwjYLNzJR0AykU+L4W9FBJDERgDU0hmmIMkx1vrRvBEFKloGnwqDbvDfFn8ZDQlpe3M4H8RkU9YjoWS8NdpK2AUEZgSjl+5ERgtMWMPGKAMD8wzzzyDmpoaPP744/jKV76CefPmYfz48Zg3bx6uueYaPPbYY6iqqsIzzzyj5npNC8dxaJiQaWAX7owpTHBasu3l/RDSmYNN0/IJqJ+QbaLHupE32wPGa0jJsMNtl37MzEVgWEohyXpWRHXuBVNqozCjkK8xZtKhjvLGgWYooRZRTKTWoZS6HBNv7nO0vjAwYw8YoAwB09LSgqVLlw7ocxk+fDiWLl2KlpaWkhdnNeQ+mPYW7aMwsd4Edq89BCBzMp61fAKqR2TDkD0MC5h4OIlkNAXAmPSRiJhGCnfFkE4bO4AvXGJbcq0xNgIj68LLuAcGUHYKjujUYVVtzFaBJOLOmUitNQoTb20JJl4du1ybcRI1UIaACQQC8HgG/1C8Xi8CgUCpm7Acelci7Xi9BXwiYxacfs5YeKpdqB7pl+5n2QejNPAaF20QIx0CL+jWj2EgxCZ2Tq8DTg87lR/ugBM2eyZCpvc4AWUKif2TqXyNRn+fSkUxB4kiMAMippDsThtc/uJ/r7pGYMLmm4MElCFgFixYgHXr1iGVSuW9P5VK4b333sPChQtLXpzV0FPAJGMpNL+eiX5xdg6zL5wEAIoIDMuVSIoSagN6wEjblvlgjEwjCYKAcF8KyV/PVqSBs3FSaoQ8MIMjX6NRs6PKxWxN7ETk5tS4DhOpxXSqt8ZdUqWWnpPeKy6FdNNNN8Hr9eL222/Hjh07FPdt374dt99+O3w+H77+9a+XvUirUDc6ALsz85ZrLWB2rz0kfSmnnD1aagSnEDAMp5CMrkASUVYiGVdKnYikpGgaSwZeEfFqMdqbQJrXr0RYFAE2O2eKA69CwJg1hRQ0aQpJxwhMOpWW+s14a0t7jzIl6pn/UwopPyXHob/61a8ilUqho6MDN998M+x2O2pqatDT0wOez5QINjQ04Ktf/arieRzH4U9/+lN5qzYpNocNdWMDaN/fi57jYSRjKU1SAXwqjW0vH5D+PvniSdL/nR4HvLVuRLvjTAsYo5vYicgFjJGVSMoSavYEjFf05AgZEaPXGkUR4KlxMTEbaigUM25MmkIyr4lXvwiMPDJYiv8FAGx9kc1Id1yHFFKFCRhBEGC32zF8+HDF7Q0NDf0eN9jflUbDxGq07+8FBKDzYBAjptWpvo19645K6Y7xpw5H3dgqxf3VI3yIdscR7Y5rJqLKRe6BqTJQwAQUzeyMEzDybbNk4BVRlHx2xXURMEJakE6mPhOkjwB9S2O1wqwmXuU8JG0jMJEyK5BEvH0z9KI9CQhpQTORrozAmOczLfnM9dxzz6m5jooh1wejtoAR0gK2vrRf+vvkiyf3e0z1CB9ad2fmIvW2RhRN9lhBjMBwnLElw/56Njww8gZxLJVQixhRiRQLJaQWAWbwvwAWTCGZKAIjjyxoPU5AUd5fYgoJyPyuOtA38yuY0Ox7HhMnUXOAywSjIUTM10XJ5MjFQrsGPpiDm06g+0gIADBieh1GTu8vkKpHsu+DEQWMr94Dm4HNvuSGWSMFTLjLPBEYvQRMtMxGYUbgcNvh9GYaqJndxMvZzOE7EnH5nZKnJK5xBEbZA6b0Cw6FkVfDiJ04XsHld5oiFStCAkZn6sdXAX3fD7WNvIIgYMuL2bEBc/NEXwCgeoSslPo4e6XUyVhKukIy0v8CAHanXfIthAychxRhtAuviLJiQh+hp6hAMlEkwFvdZ3g2awopmJ1abKqTnY2Dq09wxTSehxRRqbw/NzWrFWIKyUz+F6CIFNKqVatK2gDHcbjmmmtKeq4VcXocqBnlR8/RMLoOB5FOpVWLMLTu7sKJvd0AgLpxAYybNyzv42oYr0RixcAr4m/wItqTQLQrjjSfhs2uv+5ntQuviFxU6TUPKWKiQY5yvLVu9LZGpCnDDpe2Le3VRvQdmUk0iniqXIiHktqnkLrUueDQI7KZTgtIRDLtUCwrYJ544omSNkACpj+NE6vRczSMdEpA15GQah4UefTl5IsnD3h1VMW8gMmerNkQMB60f9oDQcgcmIxYk9iFl+PYbNjm07FrqLQdxSBHEwkY2ecX600w8R0vlGQsW85vJv+LiLvKCRzrm+ek4sVjLuWOERDx6mD6TigmUZvrMy1YwDzwwANarqOiaJhQLQ1Y7DjQq4qA6TjYi0Ob2wBkOtee9JlRAz7W7XdmRssHk0w2s5NHYKoMbGInEqhXllIbccIRIzDeGrchEaCh8Na4MqlRQU8PjPwkYZ4Dr1xsRbqNEcSlYtYeMCKKSqRQUrPxE1J0kCsvUqWIwGgU2TRrDxigCAEzb948DZdRWfTryLuk/NeUVx7NuWjSkFcW1SP8iAW7Ee6MMRfGVqaQjE+XyFM2mWZ26pe+D0aaT0snax+D6SMAsNlt8FS5EOtN6CdgFB4Y80RgfDXaX1VrhVm78Ip4ZCfoeCihmYARf6+eKldZUR6F2NXou2LWHjBAGWXUcnieR09PD5LJ/HnFESNGqLEZy6AQMCoMdYx1p/Dp+5mIjjvgxLQlY4d8TvVIH0580g0ACJ6I9OsVYyTBNtY8MHIBo38lUrQnAbF9EosVSCK+OjdivQlEu+MQBKGk9unFEDWrB0YxD8lcpdRm7QEj4tahF4wgCJKILze1Kf+9a5WaNesYAaBMAbN792488sgj2LJly4AzkTiOw9q1a8vZjOXwVLngb/Ag3BFDR0tv2Q2Kjq7vlfphzFoxoaDGdLkzkVgSMCyaeEVCBjSzY70Lr4iv1o3OliDSvIB4MKn5Fbp48rc5OLh85uldoYevQSvk5lczChiPDr1gUrE00qnM8bjcCI/DZYfL50AiktIwhWTOQY5AGWXUe/fuxS233IIdO3Zg/vz5EAQBJ510EubPn4+amhoIgoC5c+di+fLlaq7XMohRmGSUR++J0n0o0d44TmzO9H1xuO1oOn9CQc+TC5gexkqpRQHjrXExkdoKGByBCStKqNmNNPh06lkhbUNMq9WWNizPKMzczC5q0iZ2IopxAhpFYJIhXvq/Gr9X8fuildg1cwqpZAHz+9//HgDwP//zP7jnnnsAAIsWLcJ9992H5557Dpdccgn279+Pa6+9VpWFWg25cbecfjDNr7VIan/GsnEFXxVVj5T1gmGoEolPpaUTEwvRFyBzEBLPj0YMdDRLBCbXnKol6bQgnYDM5H8BzD2ROmbSOUgi8jb5MY3mISVkAkaN6jhRBCVjPJKx/JmOcpCnkDwmSyGVLGC2bduGBQsWYOLEidJt4pwjt9uNb3/722hsbMSjjz5a9iKtSGOukbcEkrEUml8/CADg7BxmXzix4OfmppBYIdwRBfr8HqwIGJvdJg0rNGKgY1jeU6Ke3ZO1Il+vcS+YWG/WF2Qm/wuQ44HpNZmAMX0VkvYTqRURGBW+m1pfGCg8MCb7TEsWMOFwGKNHj5b+djgciEazV6c2mw3z5s3DRx99VN4KLYoaRt5d/zgkhf+mLBiNQEPhJ3x3wCn5BliKwLBm4BUJ9M1EivUmwCf5IR6tLhHFGAF2IzA+HbvxyiMXLPbFGQyHyw67OxPS06tiSy3MXoXk1mEitSICo4KA0brHUszEJt6SBUxtbS2CwaD0d319PQ4fPqx4TCKRQCxm3PwYlvE3eKR8YykRGD6VxraXZUMbPzepqOdzHCelkUIdUd1PygPBWg8YEb+BU6nl22M6hSSb+aL1iVlRgWSiJnYiTn/fPCSTeWAUAsZkfglAnwhMQuUIjNbdeM3cB6ZkATNx4kQcPHhQ+nvOnDnYsGEDtm/fDgA4cOAA1q5diwkTCjOVVhocx0k+mGhPQnGVXQj73jsqzcepm+YtqYpISiMJQPCEcXN+5LDWhVdELmD0TiOJ1Qd2lw0uP7vVNnoOdIyYXMC4+gRMMpoZJ2AWpDlIfqehQ1ZLRR5hiGtUhaR6CklrARPOCjlXpURgzjrrLGzduhXt7e0AgC9/+csQBAG33HILLr74Ylx33XUIhUK46qqrVFus1ejX0K5AhLSALS9lxwaMPbumpO1XMzhSgLUSahEjK5FEceuv8zBdbaNHzwrp9WWRCzN14RVxBrLVdWYqpRbnIJkxfQRk/GyiiNEjAmOGFJIYgXH5HLCZaDgnUIaAueSSS/D888+jpiZz8pwyZQp+/etf44wzzkBNTQ1OO+003HvvvVi8eHFZC3zyySexePFiS85TkguY9iJ8MAc/PoGeo5nS55Ez6lA1trQfSfVIuYBho5Ra6YFhJ10i7wWjp4DhE2lp0BrLJdRAtmcFoP1AR6UHhu33JR9iCgkwTyUSn+SRjGa+i2Y08IqIaRKtPDBiBMbhtsPlLT9iqnkExqSTqIEyGtk5HA7U19crbpszZw5++ctflr0okRMnTuDpp5+G18vOlbialBKBEQQBm1/cJ/099+LJCKK9pO1Xj5CVUjNSiSRGYFw+B1w+dn5QinECOnpg5FdzLE6hzsVb68403SIPzKC4FBEYc/hgFE3sTBqBATLiq7c1gng4qcl0+UQ4M+xSrTEFWkZghLQgDXOUl5ibBaaTmP/93/+NpqYmTJ8+3eilaELNKD8c7syBrFABc3xXJ9o+6QEA1I2rwth5w0revjICY7yASacFSRywZOAFlCmkkI69YBK98qZY7AsY8WCbivNIRNXvWSGinERtvgOv05899JolhWT2MQIibpmRV97ETQ1SCR58LCNg1CrvdwecsNm1qVpLRFNSOwKzVSABDAuYzZs346233sK3vvUto5eiGTYbh/pxGfNt8EQUicjQP6YtL2Yrj+ZePKksT4S32gWnJyOgWBAwka4YBD7za2LJ/wKIU6Az77WuEZhgVgSwnkICtM/XS6/dkzU2O1UI0+uN3AOjR9diNTB7F14RxURqlY28ygnp6vxeOY6TxJDaAsbMFUgAowKG53k88MADuOiii3DSSScV9Jz29nbs3r1b+tfS0qLxKtWhmH4wHS29OLylDQAQGObF5LNGlbVtjuMkI2+wLYp0Kl3W65VLiNEeMADA2ThpErSeHhizpZDkUSIte8HIh+WxbGweCIUHxiwpJEUXXvOd7ETkJ2q1xwnIBYaaDRZFMRQLJpDm1TtOm3mMAKDSNGq1+dvf/obW1lb8+te/Lvg5L774IlatWtXv9v3794Pn2S1TTLhC0v93rN+LLqF1wMfueaFN+v+wUz3YtXsXACAUCqG5ubm0Bfgy742QFrBp/TZ46437Erdty74XYb437z6Vta9lYvNkDhzxUBLbtmyH3am9/peLpRPdxxBr7tJ8m+XQG8+K8L3bPx30+5xLoZ9tmheyV44u3rDvQzkkuezn2nqo3RT7cHRv9rPt6G1Dc3PhqVQjf7e59EZ7pP/v3fkpOtPHVXvtjl3ZSHYo0aPaPqfsfUJLALZu3A5XlTqn7u592c8wGC1+vVp+rk1NTUM+hjkB09PTg8cffxxf+cpXUFtbW/DzVq5ciQULFkh/t7S04O6778akSZOY9tAM8/Rg38vrAADOmG/ADy14IoL3mzNRJU+VE0uunC/5Z5qbmwv6sPMR3robHTszJdnDq0ZjXFPpnppy2bTnEwAdAICTZk/EpKaR/R5Tzr6WS+u4BHoPHQMAjBs2EbWjA5pvc/fzWdE669QZqBruG+TRxuPqOoqWNzIiq87fiKamwhssFvrZhjtjWI9MD6qGkbWGfR/KYXtqB4BuAIAz7TbFPkS27wGQ+WxPmjkJY4s4Vhj5u83FduwgDq7tBgAMrx2B6U3jVHvt5iMtADK/2YlTx2Fa01hVXrdzXBpdew4BAMYOm4DGyaW1zshlX/dRNOMEAGDMxFFF/V4B4z9X5gTM7373O1RVVeHSSy8t6nmNjY1obGzUaFXaUTc2AM7GQUgLaB/EyLvt7/sls9Wsz06UxEu59JuJNFeVly2JUFv2qrSKsRQS0L+UWg8BkwiqO9lWaxQeGI28HYoKJJPNQRKxOTi4fA4kIilzmnhN7IFxKzwwKqeQZO0DvCr+XrVqEmn2FBJTHphDhw7hpZdewmWXXYb29nYcO3YMx44dQyKRQCqVwrFjx9DbW/rkZhZxuOyoHZM5EXYfCeXtyhntiWP3m5kxDQ63HTOXj1dt+yz1gmG1iZ2IopRaJx+MaOJ1B5ywO9URrVqi6FmhUS8Ys/eAERHfK7MIGLmJ12viKiTFOAGVe8FENDDxAjm/KxW/L/JuxB4TllEzFYFpb29HOp3GAw88gAceeKDf/V/84hdx2WWX4dZbbzVgddrROLEaXYeCENICug6HMCwnPLjjtRbwyYz/Ysaycap+0RS9YAyuRBIFjMNtV5Q6soKilLpT+1JqIS1IERgzGHgBfcYJmL2EWsRb40bP0TCSMR7JWApOD1OH435YJQIjr0JS28SrVXRQEdlU8cLA7BEYpn4xkyZNws9+9rN+t//ud79DJBLBrbfeqpiAbRUaJlZh7zuZ/3cc6FUImEQ0hebXM94Xm53DnAsnqrptX60bdpcNfCJtaDM7QRAkARNo9DJZWeLXeZxALJSA0FdwYIYeMECmAaHdaQOfTGtWRi2/AlXzKldvfDXydFvCNALG6bWbIho4EPKGbapHYPrEBWfjVO2VI480qhqBMfEkaoAxAVNbW4tFixb1u/1///d/ASDvfVZgsI68u/5xSGolf9KC0QofhhpwtkwpddehEIInIkinBUPmYUR7E1KUicX0EaC/gBGHdQLm8L8AmdJ8X60bwbaohhEYi6SQZNGjaE9c4UdjEdEvYsZUgxz5FG21PTDid9Nb7VL1OCr//av5u4qFsvtvxggMUx6YSkWcSg0oBQyf5LH95WzjupMvnqzJ9sU0UpoXENaxy6ycEKMzkOR4qlxS6bQeE6nDsgnlZkkhAVnzYjyUBJ9Uv4VBtFueQjKxgNHB8KwW6bQgpRvMnD4CAJsj2/xQzYnU6bQgpTfVNpfLv+eapZAoAqMNv/nNb4xegqa4fE5UDfcieCKKzkNBKQryyXtHpZDkhNNHoG6MNlUvuZVIVcP0vxKUG3hZGyMgwnEc/PUe9LZGENbBAyM3wfpNEoEBcn0wCdU/z2ivPAJj3pOpMgLDdjO7eDAB9FVBml3AABkjbzKaUjUCEwsmIKQzb5LaEVO7wwZ3wIl4KKlJCsnptcPmMF88w3wrtihiGikV59FzLAwhLWDrS8qxAVrBwkwklrvwyhHTSMkoX9Doh3KQjywwiwcGAHy12bVGNejGK4bQnR47876RwZB7YLQeflku8hO9mecgiYhpsEQ4iXSf6CgXravjRFEU7Y5DENRZszSJ2m/Oz5QEDCPkppFaPmpFz7FMWfPImfUYPrVOs20rIjBGCRjGS6hFAjIPktZpJHkExldv1giM+ifmmBimN3H6CMhJCzCeQopapAJJROwFIwiQpjGXi1Yl1CLi94VPpiVfZDkIQjYtaEb/C0AChhlyjbxbXvxU+nuuRt4XEUUp9XFjesEE5QKG0RQSoK+RNyL3wJgqAqOdgOGTvHTQNb+AMU8KSTEHyQoRmCr1jbxyb4oWAkbt31UyxkvDc83ofwFIwDCDXMDsfecI2vZl5nXUj6/C2Lnadhj2N3hgc2Qc80ZHYGwOThFaZw2lgNHWByOaeG12dUsytUbegVTtZnbySICZ/S8A4DFRBCZmkUnUIopeMCqVUkc07hAt99Wo0aLA7JOoARIwzOCrdUsHBvnVzskXT9a8J4rNxkkzdnpbI5IRTS8UPWAavOAMKOMulICsGkivFJKvzs30e5KLlhGYqEbTfo1ANGYC6pyQtMQqTexE3BqUUuuVQsrdVqnEw+YuoQZIwDADx3FolEVhgEwqZfJn+g801ALRB8Mn04rUhR4kwikko5lyW5b9L0DOPKRO7d4nPslLJw0zGXiBnK6hagsYi3ThFRFPStHehGrGTC1QCBgTRQMHQtmNV50ITFRjAaP2hYHZm9gBJGCYoiFHwJx80STY7Pp8RDUjsz6YHp3TSCGT+F8A/Twwiqs5E5VQA5mTA2fPRIzUjsAouvAynGosFFGEpeI8kjH1e+aohWIOEkVg8hLRODroVfnCQCFgTCpKScAwhFzAeKpdmLZEnVHshWBkJZKyAontaIPL54DTk2mjrmUERtkDhu33JBfOxkknZvUjMNbowiuix/RuNbBaCkkegVFrnID4Xbe7OThc6o9a0DIC46EIDFEuI2fWw+7KfCRzL54Mh1u/eSO5zez0JGiSHjBAXzO7vihMqCOqWdhf2QPGfCdqMToS7Ymr1mcDyOnCa3IPDJBbSs1uJZIYpbA7bboel7TCrUEVkigqXAFt3h+1U7NWMPGatwuUBfHVuPFPP1uAUFtU88qjXJTN7PQtpTZDF145/novuo+EwSfSiIeSmngC5D4kn4nGCIiI4kIQMlfvankClBEY80cCcuchsYoYgfFUu5gctFosalchJaIppOKZFKBTIwHj9DqkwbvqmHjNL2AoAsMYdWMCGDdvmO4HiUCjV/ItGJtCMoGA0cEHEzZxCglQduONqNiN12opJDM0sxPSAmJ9RlcrGHgB9Qc6yiMiWkVgxEGpudsrlbjJBzkCJGCIPmx2G6r6xEPv8YiuFRGigOE4c5ysAw3yUmptesFEzJ5CkvesULEXjDRGwOvQxGegNwoBw2gpdTySlForWMHACwB2p13ysslP5KUij4hoFYEBspHNeLj8QalUhURYCjGNlIrzuubjRQ+Mr95jioFi8snQWhl5FREYE6aQtOoFI34vtShTNQJvLfvdeK1m4BVx981DiqlQRh3RIQID9B+UWg7yFJKLBAxhdowYKZCMpaQrATP4XwB9UkiiB8bu5kw5sFALAZNK8EhGMzNgrOB/AXKakzGaQrJaDxgRcZxAPJQsu3mnHikkQN1BqeJx1+G2mzaaSQKGkDCilNps/hdA2cxOi268giBIZdRaHgy1xKuBgLGa/wXomyvUZ3dj1QNjtTECImIERkgLZQ9H1C+FlH3/y47ASJOozRl9AUjAEDKUlUh6CZisADCLgAloPA8pEclWNLiqzBd9AZQeGNUETLf1BIzNYZMMpdEyT0haYdUUkmKgY5k+GLn41C+FVPrFkxUmUQMkYAgZRvSCCbZlt2MWAeP0OODyZYSFFikkeQm1q8qkEZga9U28ijECtdY5kYrRqmhPnMlxAnKPiCdgnffdrRgnUJ6AkTee1DIC41OpbxCfSINPpgGQgCEsQtUwL8Tqbb16wSgjMOYxq4pppHBnTPXhl3IDr1kFjN1hk65w1YrARCyYQgIAb3VmX/hkWvL4sIRVU0jKCEx5Rl7xO25zcHB4tDutqjXpXVFCTSkkwgrYnXb4xVLqVn1KqZVN7HyDPJItxDRSmhcQ7VU39C8voTargAEAb5/hMNIdU+W7FLXYHCQRxYwbBiuR5N9vq5RRA8poUrm9YMTvpq/WrWkPL7X6K8Us0MQOIAFD5CCmkRKRlGpTWgdDLmDk1T2s49fQBxNRRGDM6YEBsvn6dEpQlGyWimKMgEWqkAD2u/FatQrJrdJE6nQqLb1HWo+3yHRCzvy/HLEr31+3idOCJGAIBcpKJO3TSKKA8da4TFXK51c0s1PXBxO2gAcGyGlmp0IaSVGFZJE+MEBOKTWDzezE6ARn5+Dym1dQ56JWN155hErryKDNxsHTt41yIjBWGCMAkIAhcqgeme0F06NxJRKf5KVog1kMvCKB+ux61TbyWiWFpHYvGIUHxkKpDLWMmVohzUGqssYcJBG15iHJv9t6CGufOOm9J1Gy/84KgxwBEjBEDjU6ViLJIxcBkzSxE1GkkFTuxiulkDjz9oEB1I8sxPpO7m6/E3aned+XXFhOIQmCIEUnrJQ+AtSbSK0YvKqDgBG9ZQIvlFz+TSZewpLo2QvGjE3sRPwazkMSU0jeGjc4m3mveNWehySKICuVUAO5Jl62BEwyxkvltlaKegE5Jt4yIjDyqJkeAkaNHkuUQiIsSdVw/TwwigokswkY+TwkFVNI6bQg+UX8JhziKEfNFFIylm3uZ6USaoBtD4xVDbxApoW+3ZU5BZbTB0buRdEjhaTGAFBKIRGWxOGySydnzVNIbeaNwDhcdqknhpoppEwzs8z/fSYc4ihHzXECVhwjICKvLIkx5oGxag8YEVGUlRWB6dY5AqPC70ouYDyUQiKshJhGioeSZZnbhkLRxM5kHhggG4WJdMWRVqmZndzAa/aJy2pGYBRdeC1UQg1kKkvEkl7WBjoqxwiY90Q3EGIlUiyYKLlXkfy7rY+AkXmmVEkhmff3RAKG6IeilPqEdlGYoIk9MEC2mZ2QFhDtUicKI+8B4zd5BMbpccDpzZhtyy2j1vskoTc+RscJWDmFBGR7wQi8UHIXZEUKSYfooFfRzK68CIzdaZPSaGbEvCsnNEM5E0k7H4zogXH7nXB5zddfQoup1PIeMP46cwsYINs5tJyeFUBOCqnaegJGjCqlU+VPRlaTqCyFZDUTL5Dbjbe0aLOYQvJUOWFzaH9KVTOF5PY7TV0aTwKG6Ie8F4xWlUhpPi2ZX800A0mOFqXU4U5ZpMHkJl4g64NJRnkkY6WfmJWDHM3/vuSihjFTC6w6iVpEPg8pXkJJsiAIkjiXR0a0RC5gyk0hmdnAC5CAIfKg7MarjYCJdMWlJkwBE81AkiNP8agVgVH0lDB5CglQzwejNPFa70SqEDC9DAmYYGWkkIDSIjCJcArpVOY45tOpvN/htsPZF7Eu5TeVSvBSRZ/ZBQxzcfv9+/fjiSeewO7du9HZ2QmPx4MJEybgS1/6EhYsWGD08iqCah2a2Sl7wJjzRB3QYB5SJDeFFFTlZQ0j92qxRhbdK4aozt1O9UYuyiLd7FQiVVIEppSmcPLUqE+nCExmW270RFMl9Q2yioEXYDACc/z4cUQiEaxYsQK33norvvKVrwAA7rzzTrz44osGr64ycHoc0klCq14wZjfwArkDHdVNIdmdNkvMnVEvAiNLIVkwEsBqMztJwHDmP9nlQ75PpfSC0XuMQO62SknNWqUHDMBgBOass87CWWedpbjtC1/4Am644QY899xzWLlypUErqyyqR/gQ7Y4j2pNAIppS3WRr5h4wIv46D8ABENQTMGIExl/vMbW5TsQr7xpaRjdesbxYL6Ok3rDqgRFNvJ6AEzYTd4UeCEUEpoQUUlRRHaefwMu9MKgZWfjxWSFgTNwDBmAwApMPu92O4cOHIxQKGb2UikGeRgpq4IMxcxdeEZvDJg3iC6lg4k3FeakCxQoGXkCdCIwgCFJUwmpN7EQUAx172UshWTF9BORWIZUbgdE3hSRSrOClCIwORKNRxONxhMNhvPfee/jggw+wdOnSAR/f3t6Ojo4O6e+WlhY9lmlZlDORwmiYWK3q6ys8MCZsYifib/Ag0h1HtCcOPpWGvYzogLySyWeBEmog50BbYmokGU2BT/TN47GogFEMdGQkAiM3e1rRwAsoTbylNO1UzkHS7z0qp8t1PCwb5EgCRhsefPBByfNis9mwePFi/L//9/8GfPyLL76IVatW9bt9//794Hleq2UyQSgUQnNzs6qvGUxmvS97tx5AtKpL1dfvONIDALA5Oew7uLfgdIkW+1oOvLPvoCcAWz7YBk9d6QeEnpasgIkJYTQ3NzO3v8WSjGZ/e22HOwbdl4H2NdqZPbEkEDX1+yGSu69CWpDSkZ2tPUzsY7wn661IIF7Wmlj9HovCGAA6jncVvcZjB9qk/x9tP4yu5lZd9rUrnM1G7N/dglh14cfnI/t6pP+3dbVCaC49s6HlvjY1NQ35GGYFzOWXX45zzjkH7e3tWLt2LXieRzI5sEJeuXKlokqppaUFd999NyZNmoTp06frsWTDaG5uLujDLoZ2Tw/2vNAOAPAIAVVfXxAEfBA8BACoHu7HrFmzCn6uFvtaDr2TdqJz1wEAwKj6cRg1s77k1/qk6yiAVgDAuJNGo6lpEnP7WyyCIOBj51HwyTS4pHPQfRloX4/v6sQmHAUAjJwwHE1NMzVbr17k29fNNa2Z6EvcxsRn3r6/Bx/hCABg+JiGstbE6vdYEARsdB4Bn0zDIbiKXuP+v3wAIJNin3P6LLi8Dl32tZpvxycvZjIO1e46NDUVfo4Lb92NFnQDAE6aMQljmhpLXofRnyuzAmbChAmYMGECAGDFihX4zne+g+9///t4+OGH816tNzY2orGx9A+CUFKlYS+YaE8CfDJz5WNWA6+Icip1eaXUijlIFugBAwAcx8Fb40aoPYpoid14FT4Di6aQAMBX4+ozzmfGCRht4rb6GAEg8/10B5yIdMVL8sCIaVGH2w6nx6728gakHG+Zsoza3CkkU5h4AeCcc87Brl27cOjQIaOXUhG4/U7Joa92KbXCwGti/wugbjde+YHIbxETL5A92MaCSfCp9BCP7o/CZ2BhASOKszQvKE4yRhG1+CRqEVGcxUPJoudQiZV1vlq3roJTYfou0lumrEIy9+dqGgETj2c+JKpE0o/qEZmmY5HOuGTmUwMrNLETkTezK7cbrxVNvICylLoUI6/Vu/CKsFZKLY/AWHEOkogYheCT6aKOc6lEtmpQ78igO+CEzZ4RTEVHYCxUhcScgOnq6m9GSqVSeO211+B2uzFx4kT9F1WhKCqRVJxKbYUeMCLygY7l9oKRD3K0Shk1kBPuLqEXjELAWLALr4hXVsUijzoZRSWkkADlvhXTC0b+vdR7Qjpn4yTRVHQZdV90j7Nzuqa9tIA5D8z999+PcDiMuXPnYtiwYejo6MDq1atx8OBB3HzzzfD5zDk3x4zkjhSoH1elyutaoQuviLfWDc7OQeCF8j0wfSd3d8AJh8vcBxY55Q6fqxQPjHzKNgvdeGMVkkKSRyHiwUTBaW25GPcacMHhq3Uj3BlDtDeBNJ+GzV5YPMIqk6gBBgXMsmXL8Pe//x1/+9vf0NPTA5/Ph+nTp+Mb3/gGFi5caPTyKgrlUEf1fDBW8sDYbBz8dW6E2mNleWAEQZC68FopfQSU38wu1heN4Dhrn0hZGydg9TlIIooITBHzkBQRGAOEtSSahEzzQ3+Bxw1x6rbZ00cAgwLm3HPPxbnnnmv0MggA1bLBe2pWIokCxubgLHFF7a/3ItQeQyyYRCrBlxQ9iQUT0lRbf7353xM55QoYcYyAu8plyXb2IqwNdIxafBK1SKnjBCLdxqWQgBwjb3e8IAHDp9JIxvqaE1pgthVzHhiCHbSYSi0IgiRgAg1ecBY4Iakx1FEejrZaBKaceUjyMQJGnCT0RI2uxWoiRmBcPkdZHaZZR9mNt4gIjMET0kvpxmulEmqABAwxCO6AEy5fJkinVgQmHk5K3VnN7n8RUaOUWt4Dxkol1ADgk82IiRTZCyYRTkmRKStXIAG5HhjjIzDSHCQLR1+A3HlIJorAlOAts1IFEkAChhgEjuOkNFKoIwo+WX4ptVVmIMlRllKXZuQNyw+GFmliJ+KpdkH0ChZr4lWWUFtL2OXiDjjB9ZXGGh2BSafSUomwlf0vgDKFFC+imZ3CXG6QiTffWgbDSpOoARIwxBBIaSQBCJ4or8oGAEJt2Stws06hzsVfX34ptTICYy0BY5OVfEaKPDFHKkjAcDZO6rditICplAokAHCXGIERxTjHGROlKimFJEuRUQSGsDzVKo8UCFmohFpEDQ9MuFPugbHeiVo82EZ7EpnBhQUiT6VYuQeMiNTbo8j3SW0qxcAL5Jh4i/DAiKLBW+M2xFxeUgqJPDBEJaFoZqdCKbUyhWSNSINfhW68cm+I1VJIQPZgK/BCUTNn5Admn8U9MEBWwAhpQRHu15tK6cILAE6vQ0rdFZpCEtKCJK6NEtbKqjVKIRFEP8RxAoA6lUhWamIn4q1ywebIHADDnaWl2cQUEmfn4LXgFW8p4W6gsjwwQM5JycA0UqV04QUyXj9xH2MFisZYMBshM6o6zu60S1EUMvESRB6UERgVUkh9YwQ4G6eY5Gxm5PtScgpJPhTOAqXluZTaC6ZSxgiIsFJKXUkeGADw9J3MC40ORgwuoRYRvy+R7nhBgyiVKSTzf64kYIhB8Va7pHkZanpg/PXugltfmwFxJlIikkIimirquXwqLV3xWs3AKyL39USL6AWj8MBURApJNg/JwIGOldKFV0TsBcMnChvoGDW4hFpEjEryyWzV2GBQComoKOSl1MG2KNKpdMmvlYylpB+QVdJHIgGFkbe4NJKiiZ3FuvCKlBqBER/L2ThLdA4dCsVEagN7wcircayY0szFEyjOyGt0Dxhp23XFGXkphURUHGIlkpAWFB6WYrFiBZKIPB1WbBopophCbdEITKkppN6+So9qlyVTa7nIBQwrHhh3JQgYeTfeAkqpWUltFustkyZRc4DLy9wkoaIhAUMMiVql1KL/BbCggJFXIhXZjVcuYKzWhVfEW0I3XhYqPfRGvp8xAyMw8jJqq1chAcpoRCE+GEXU1MgITE1xnimxysodcFrigoAEDDEkCiNvGZVIQQt24RUJNJTezE7RA8YixuZcfLUllHyGkxD4yhgjIKLwwDAQgXG47XC4ix9OajaUE6mHjsCwmEIqZM6YGIGxgoEXIAFDFICilLqMXjCh9uyJ3coRmGI9MOEu63bhFVGUfBZo4q20EmogY6y09fUkMTSFFKyMOUgi7iLHCTCTQqopPIWU5rNGXysYeAESMEQBqFVKLU8hWWWMgEg5zeyUk6ite6IutuRTWYFk3fdFDsdxim68RiCkBekkXgkVSEBuBKbwFJLL54DDZVyEqpiy+0Q4W6VkBQMvQAKGKABfrRt2V+arUk4KSW7ilZ/wrYDb75RC7WTizY94pVpoyacyTF8ZJ1Igm0aK9cSRNmCcQDyUhKgvKyUCo6hCKsLEa7SwLiaFZLUxAgAJGKIAOI6T0kjBE5GSD6qigPHWug29atECjpM1s+uMFRRhEAn3mX6dXrslKgMGothKpEpMIQFZoScIxU1HVotKM/ACykqrod7zZCyFZCzTK8boiKnT64DdmTmNDxWBUQxypBQSUUmIaaQ0LxTt8QAAPslLJ61AozWjDGJUKRXnFeHawRAEQbpysnL0BSi+Z0XFChiDS6krrYkdAEWPoaEiMKxUIAGZCyd5anYwrNYDBiABQxSIopS6hDSS3BdiNQOvSEBRSl2YyEtGU1LnT6saeEWKj8BUVhdeEaOb2SnGCFRZ40Q3FC6fQyorjg/hgWFNWIsRu3goCT45cBfhGKWQiEqlpsxeMFbuASPiL6GUOtwp978YfzDUkmIqJgBllKZS+sAAxo8TqMQIDGfjpJP6kBEYRkqo861hMMFrtTECAAkYokDEcQJAiQJGZuCtslgPGBFlKXVhAkYejrbKcMuBKDWFZLNzljngFoLRAx0raRK1HDHaNFQEhpVBjiKFRjaVKSRrfK4kYIiCUKaQiu8FY+UxAiKB+uJLqcNdlROB8cm78XYN/f5ExC68NW5wnPm7hhaKspkdmXj1QjypJ2P8oKkYVgY5ishF1GAXBlSFRFQs/nqP5HYvLQJjfQ9MKc3sIvIuvBb3wBQztyWdFhCTSlUr5yQKAN5qhiIwFSRgCu3Gq0ghMXDRUVIExiIRTRIwREFwNg5VwzPCo7c1AqHIUupgW1b0WFbAyAc6FjgPSTEHyeIpJJfXIfXKGbJiIpiQepGwEKbXEy+lkAyh0HlICm8WQyZeYCgBIyujpggMUWmIvWD4ZLqgFIAcMQLjDjgt2+vE5XPC2bdvBZt4K6QLr4h4tTiUBybCWKWHnrh8DtgcfeMEuo2rQrI5OOn7XAkUOpFaFAk2O8eEEPAVmkISIzAc4KIIDFFpyH0wPUWkkdJ8WopIWDX6IiKWUhfazC4iRmo45WRZqyKKtEQkhVRiEJ9BBY4REJH39jAyAuOpdlWU98hTYARGFDDeWja8WcWmkNw+J2wWmEQNkIAhiqDUmUiRrriUcrK6gBF9MHwyrQjFD0S4OyNgvDVu2BzW/zkqwt2DtD5XhukrJ40hIvpgYsEE0nxat+0KgiCdvL0VlD4CciIwA3hg0nxaen9YMPACfT6lPj1SiImXhaiRWlj/iEmoRqnN7IKKHjDW9nn46wvvBZNOC4h2s3Uw1JpCrxblkYdKeW/kSEJPKGw2j1okIimk+czFRiUZeAHlROqBIjDRngTQF1hl5Xtps9ukarGBflNCWsgKGIukjwASMEQRiB4YAOhtLbyUuhJ6wIgEiphKHevJRqasbuAVUebrB35/KrULr4hRzeyUXXgr630vJALDanNFcS0R2TFFTiKSkoQXRWCIiiTQ6AFnz8Qqi0khVUIPGBFFKfUQ4wQqzcAL5PSCKTACU2keGCB3nICOAqZCK5CAwqqQWOvCKyKuReCFvOIrHrZeBRJAAoYoApvdJkVQeo9HCp64XKkCZqgITERWam31OUgi3rrCPDARxkpV9caoeUiKCEyFpZAUfWAGSNspquMYFDBA/gsDK/aAAQDmauR27tyJV199FZs2bcLx48dRXV2NWbNm4Wtf+xrGjRtn9PIqnuoRfvQejyAV5xHtSRR0FRKsgDlIIoEi5iEpuvDWs3Mw1JJC2+SLJ2270waXj7nDlObIU0h6TqSu1CZ2QF9pMQdAyPQhykeUoUnUcnInmNejSnG/FSdRAwxGYJ555hm89dZbOO2003Drrbfi4osvxpYtW/C1r30Nn376qdHLq3gUlUgFjhQQIzAOt91SP558KJrZDRWBkc9BqpAITLEmXm9NZZXyihg1D6mSPTA2W3bmVmyAeUjMppDkc8byRDatOEYAYDACc8UVV+Df//3f4XRm3+Rly5bhuuuuwx/+8Af827/9m4GrI6pzplKPnFE/6OOFtCCdyKuGeS1/MhJFWjyUHNoDo5hEXRkCxh1wwmbnkOaFAQWMvFS1EtNHQE4KSUcTb1QWgamkOUginioX4qGk6VJIyknv/S+clCkk63yuzEVg5syZoxAvADBu3DhMnDgRLS0tBq2KEKkZUVwvmGhvAnwy08fC6ukjkWwzuzjSg4xckEdgKiWFxHFctmJiAA9MrDdbqsrSSUJPjBroWMkmXiBbSp2MppBO9e+/I49usCSulRG7/t8Xq6aQmIvA5EMQBHR1dWHixIkDPqa9vR0dHR3S3yR2tKF6pKyUuoBeMJVk4BXxN3jR0RKEkBYQ7Y4PWCItjmOwO22WMtYNha/WjXBHTGrSZrMrr6MUJdTV7Jwk9MTpdcDutIFPpo1LIVViBCagHOiYmyYSIzDugBN2hhpP+oYwx8csOAcJMImAWb16Ndra2nD99dcP+JgXX3wRq1at6nf7/v37wfMDtyy3AqFQCM3NzbpsK80LktGttaVjyO2278j6ZMLp3rLXqee+lkqCywq77R/tRNWY/Cfh3vbM4xx+G3bu3Jn3MWbY32Lh7X0HUwHYsmE73NWZw5C4r137sqI3nCz/O8MihXyuDh8HvgcIdkZ0ew+6TvRm/sMB+w7uVS3la5bvcYzPHq+at+yEb1hW0AiCIKWF7V4MuD9G7CufyEaL2o929tv+iSPt0v8Ptx5ER+qYKtvVcl+bmpqGfAzzAqalpQW//vWvMWvWLKxYsWLAx61cuRILFixQPO/uu+/GpEmTMH36dD2WahjNzc0FfdhqsaOxDcG2KJI9acycOXPQg9yWfZ8CyPx4Tpo1ESc1jSpr23rvaykkP9mH4x/tAQAMrx6JSXn2ORXnsS6WiRLWjawacJ/MsL/F0jkujc49hwAAY4dPwLDJNQCy+7qn/TB24gQAYPyUMWhqmmDYWrWikM9177ButPX0IBVJY8a0GbqMmtiabAWQSR/NmjVLtdc1y/c4uGkXTmzZDwAYM3wcRs1skO6Lh5J4nz8IAKgbWc3cb/Zj71Ekozy4pKPf9g/9fSOAjDhrmjtDtcim0Z8r0wKmo6MD3/ve9+D3+/HTn/4Udrt9wMc2NjaisbFRx9VVLtUjfQi2RZGIpBAPJgcNNSu68Fp8jICIPGU0UC8YRQl1hRh4RZTh7hiAGsX9rHY71Rv5cM9oMKFLpZpo4q1EAy8AeBTjBJRGXtYnpHtr3EhGIwWYeK2TQmIniZdDKBTCd7/7XYRCIdx///0kThiimJECleqBERmolDqiEDDsHQy1RN6NN1+FjdIDU5knUkD/brzJWEpKRVSi/wUA3PJxAjm9YOTfVRZ/s6JfJxnlkYylFPeJAsbpdfTznJkZJvckHo/j+9//Pg4dOoR77713UPMuoT/yUuqeISqRQn1N7GwOjsmrFi0opBdMJfaAERmqF0yU0VJVvVHOQ9K+EqmSe8CI5Jp45bDeHVpxYZAjeK04iRpgUMDwPI8f//jH2LFjB+666y7Mnj3b6CUROSib2Q0sYARBkCIwgUYvOJu1e8CI+GUl0aEBesEoesBUyCBHkaEFjHyQI3snCr3w6tzMrpK78Ip4BplIzWoTOxFvrax7s0zwCkJ2PpKV0kcAgx6YBx98EO+99x7OPvtsBINBvP7664r7ly9fbtDKCJHcZnYDEQ8nkYxlKsAqJX0EAHanHd4aF6I9iQIjMOwdDLVEMQ8pj4ARb3O47XB6Bva9WR29U0iV3gMGyEkh5URgzJJCApST3pPRlDSh2moRGOYEzCeffAIAWLduHdatW9fvfhIwxlM13CeVUg/mgalE/4uIv8GLaE8Cke440ql0vwqSSjbxeqtd0vcnX9tzaYxAdWWOERDRe6BjNEjeI88gE6lZTyF5B4hsWnWMAMCggPnNb35j9BKIIXC47PDXexDuiA2aQgq1ySuQKk3AeND+aQ8gAOGuuDTFWyTSyfbVnJbY7DZ4q12SwJOTTqWlK99K9r8AOQMddRgnQCkk5Qk+HhwkAsPgd1OZms1+llatQAIY9MAQ5kBMI8VDyX6hVhFFBGZYZQmYgMLI298HI0Zg3AEnHK7KS5OIB9toT1wKbwM5s3gYvMrVE70HOpKJNyOuxennA0Vg7C4bnF7mrv1zqvuyEV7lGAFrfa4kYIiSUJRSn8gfhQm1Z39ElZdCkgmYTqUPRhAEqYy60tJHIt6+g22aFxQHWEUPmBprHWyLxelxwOHOiFsy8eqHKN4G8sD4at1MpjYHMvFaOYVEAoYoCWUlUn4fTLDCPTAiuc3s4sEk0qlM1KHSDLwivtr86ZEo483C9EYUcXp4YOSN2ypZwIgDHePhJNJ8pi9OKsFLQkAe6WAJT8AFzp4RVvIIjCKyRikkgiisEkn0wHA2TlFaXAkEGgbuBaMw8FZYCbWIV3YSkHcOlXc7ZdFnoDeiiIuHkuDzTEdWE0UExmInumKQp89E0aIo7a9lU9xxNk4SvAOaeKus9bmSgCFKQhGBGUjA9EVg/PVuS3V/LARFCinHA1PJJdQiA/WCUfaAYfNEoSfyKFRM4zSSeKXu9jt1mbvEKopmdn1RKXlEg9UIDJBdW6w3gXSft4xMvASRQ/XwwZvZJWMp6YdTaekjQMyTZ/6fm0Kq5BJqEXnlldz3EmW8VFVvFN14NU4jiQbqSk4fAcoohThOQFFCzWgEBsheGAhCVvAqTbwkYAgCTo9D+rHk6wVTyT1ggEw1gyhOck28lTwHSUQRgZFFpFgfmKc38vcgomEEhk/ySEYz83MqtQJJJF8EhvUuvCL5vi9KE6+1PlsSMETJiGmkaE8CiahyeJi8B0wlChggm0aK9SaQSvDS7fIeMP4K9cBQCqkw9CqlJgNvFvk4gXgo831U9oBh9zeriGx25YnA+Nkr/y4HEjBEyciNvMEcH0ywgnvAiAxUSk0ppIG7hoonCqfHDqfHWgfbUtBroCONEcgiHycQk1JI7Jt4gfzND0UB43DbYXdaq+cUCRiiZBS9YHLSSPIUUqV14RUJyEqp5QJGTJlwdq5iW7Y7XHapYVg0Txk1pY8yyN+HrsNBzbYjHyNAERjZOIGQmEIyl4kX6J9Cspr/BSABQ5TBYJVIobbKbWIn4q/PX0otihlfrbtiJnTnQwx3R7rjEAQB6ZSARCSTiiQBk6FmlB82R+Y7sm/dMWx/Zb8m25FHYLzV1jvRFYPcJyKaeEWRzXFsC7zcFFJmEnVfdRkJGILIIk8h9eRUIskjMPJUSiXhz9MLhk+lpZNFpRp4RcSrxVQ8YyBNhrM+IZbD9HriqXLhzH+eKf29/qld2PvOEdW3QymkLPL9lyIwfdEMT40bNoYvOnJNvKk4LzXNtFoJNUAChiiDwZrZiR4Yb627Imf9AMpmdqG+XjDydIm/Qv0vIrk+mERIJmAoAiMx67MTcMoXpkh/v/3wNhzcdELVbcQohSThzplILaQFyVzOcgUS0L/DtZXHCAAkYIgycPmc0sFO7oFJJXjpRF2p/hcgJ4XUlzaSe2EqtQuvSG4lkjwC4yMBo+DUS6dg5vnjAQBCWsCa/9yE47s6VXt9moOUxe7IDmuMB5OIhRIQ+EwUg3VhbXfapUhLtCueU4Fkvc+VBAxRFmIUJtKZCVcCSr9HpfpfgMzBztY3m0R8T+Q9YCq1C6+IokS4O46kIgJjvYNtOXAch7OvacLks0YBAPhkGq/f/xE6WnpVeX25iddb4SkkAPD0RStiwYSyB4wJfrNiZDPSE7d0EzuABAxRJoo0Ut9UakUTu2GVG2XgbJwUZREFTLhLfjCs3PcGUJ4MIt1xJBQeGPZPFHrD2TgsuelkjD25EQCQiKTw6r0b8jaSLBaKwCgRfTCJcFLRt4n1FBKQXSOfSCN4IpvaJwFDEDkop1LnETAVHIEBsj6YeDiJZCyljMBUeApJYTjsjiMZTue9j8hid9hw7rdPwfAptQAyjf9e+fkGxfeqFEQB4/Rar1dIKYjjBAQB6D4Skm43w/dSLv67ZGv3kIAhCCX5esEEqQuvRG4pddhkV3Na0i+FFCYTbyE4PQ4s/+5pqBsbAJD5vb1y70ZFuqBYRBNvpVcgicjfB3n/HTOkkOS/q+7DWQFDERiCyCFfJZKiiV2FduEV8cua2YU6Y8o5SBUegVGkkLpyq5DoRDoYnoALK74/X7pA6DoUxOv3fyT50Iohzacl8UPpowzyk33XIRNHYEjAEMTAUAppcAKKXjBRqQuv02uHy1vZrfKdXgfsrswhSF6F5PI5Krb0vhj89R5ccOd8SXS07unCmgc2IZ1KD/FMJTFZ5IYiMBkUERhZGsYMUVP5GuVVj1SFRBA5eAIuqWwvG4HJ/GjcAWfFz7PJbWaX7cJb2dEXIFNZIx5s5VVIZrjKZYWaUX6s+P7pUtnvoc1teOvhbRDSQsGvoezCa72TXCnIoxXyqJbZBIwcisAQRB7ENFKoI4pkLCWdpCs9+gIoBUzX4ZB0MKx0A6+IKOTi4ST4hNhrg06ixdA4sQbL7zgVdmfmcL7vvaN4/6mdEITCRAw1setPvkiU0+uAw81+ZHCgCj4SMASRBymNJACtu7ukq79KnUItJ1CffQ/a9nVL/zeDGVAP8l0tUgl18Yya2YBlt86TZms1v9aCzS/sK+i5ihLqAAkYIL+AMUP0Bci/TrvTZsm0LAkYomzkRt4jOzqk/1dyF14Rd5VTujIWU2sA9YAR8eYRcpRCKo0Jp43AohtnS39/9Oe9aF7dMuTzKALTH3dV/2iFWYS1y+eQjjkiVoy+ACRgCBWQl1If3Z4VMIFGOklzHJd3mKW/3hwHQ63Jd7VIYwRKZ9risTjjn2dIf69b1Yx9644O+hxqYteffJEos0RgOI7rJ7ZIwBDEAMgrkeStzckDkyHQ0P99oAhMhrwpJPLAlMXJF03C3JWTM38IwJsPbcXhLW0DPp4mUfcn3wnfLAIG6L9WK06iBkjAECogTyFB5hskD0yGvBEY8sAAIA+MVpz+xWmYvnQsAEDgBbzxn5twYm9X3scq5iBRBAYA4HDZ+xl2zfS97B+BsebnSgKGKBtPtQtOb3+DGEVgMuSrOKr0JnYi5IHRBo7jsOCrszFx/ggAmVLg1375kaKrrAilkPKTG40ydQSGUkgEkR+O4xQ+GABweuyWDVsWSyA3AsORz0MkvweGTqJqYLNxWHrLXIye1QAgU6r+yj0bEGyLKB4nmnjtTpspyoT1Ivekb6YITO7xhQQMQQyCIo2ETPSF4ziDVsMW/hwPjLfaBZuDfnpAxizJ2ZXfEw+JO9WwO+047zunonFyDYDMyIZXfr4BkZ7sTC4xAuOpdtFvVoaZIzC5kU0rDnIESMAQKtFPwJD/RSLXA0MG3iycjVOYdt0BJ+wk7lTF5XVgxXdPR82oTJS0tzWC136xEYlIEkJaQCzYNweJDLwKPDml1GYSMGTiNYhIJILHH38cd9xxBy666CIsXrwYr7zyitHLIoZAXokEkP9FTm4KiZrYKZGPVaAKJG3wVLtwwZ3zJT9Wx4FevH7/R4j0xKXGk2TgVeKWCTqbnTNVGoZSSAbR09ODVatWoaWlBVOmTDF6OUSB5HpgSMBkcXodcHqy3gIaI6BEfrVIBl7tCDR6seLO+dLJ7PiuLqz+1cfS/WTgVSJPu3hr3aZKr+WmkKgKSScaGhrwwgsv4H//939x0003Gb0cokAoAjMwuc3s/JRCUkACRj/qxgSw4nunS2bd9k97pPsohaRE/n6YzXTvrXYBMr1FKSSdcLlcaGhoMHoZRJH4at2wu7JfpyrqwqvAL5uJRCkkJfLqDjP5DMzKsJNqcf53ToXNkWOepgiMAnnaJV+5P8vY7DaFAKMUEuO0t7dj9+7d0r+WlqFngBDqkVtKHRjmG+TRlYc8AkM9YJTIBR15YPRhzJxGLL1lHuRZERIwShQRGBMKa/nvyqoCxmH0AtTixRdfxKpVq/rdvn//fvA8r/+CdCQUCqG5udnoZcA3nkPXIcA/0oX9Rz4Bd1T9nDEr+1osXGOmbNXu5tCVOo5g88Ct3eWYdX+LIepOZsLdAhD391p+fwFGPtcAMPmCeux7pRMcB0RcnWhu7t/oTg2Y2N8iSSXTsLs58HEBQl2s4PWzsq/eMRzQAgTGuLBn325NPDxa7mtTU9OQj7GMgFm5ciUWLFgg/d3S0oK7774bkyZNwvTp0w1cmfY0NzcX9GFrzcwZAto+24O6sQE4Pdp8tVjZ16JpAmadHoS31gVvdeFXc6bd3yKZPmMa9uzag1MXzjV6KbrAyufa1AScdn4YdoetX78iNWFlf4tl6gNTEe1JoH5cVcHPYWVfZ84Q0LaiB/Xjq+BwadOg0Oh9tYyAaWxsRGNjo9HLqGg4G4fhU2qNXgaz1I8v/CBYaQQavfDUWzPMzTq5FYREFm+1u6gLDpaohOOxZTwwBEEQBEFUDiRgCIIgCIIwHSRgCIIgCIIwHUx6YJ5//nmEQiF0dHQAAN577z2cOHECAHDppZciEAgYuTyCIAiCIAyGSQHz7LPP4vjx49Lfb7/9Nt5++20AwPLly0nAEARBEESFw6SAee6554xeAkEQBEEQDEMeGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAeTfWDUIB6PAwBaWloMXon2HDx4EHa7NuPSWaOS9hWorP2lfbUulbS/tK/qMWHCBHg8ngHvt6yAETv53n333QavhCAIgiCIYnn00Ucxffr0Ae/nBEEQdFyPbnR3d+PDDz/EqFGj4HK5jF6OZrS0tODuu+/GD3/4Q0yYMMHo5WhKJe0rUFn7S/tqXSppf2lf1aViIzC1tbVYvny50cvQjQkTJgyqVK1EJe0rUFn7S/tqXSppf2lf9YFMvARBEARBmA4SMARBEARBmA4SMCanoaEB1157LRoaGoxeiuZU0r4ClbW/tK/WpZL2l/ZVXyxr4iUIgiAIwrpQBIYgCIIgCNNBAoYgCIIgCNNBAoYgCIIgCNNBAoYgCIIgCNNh2UZ2Zmbnzp149dVXsWnTJhw/fhzV1dWYNWsWvva1r2HcuHGDPveVV17BPffck/e+F154gUl3/KZNm3Dbbbflve+hhx7CrFmzBn1+W1sbfvvb32LDhg1Ip9M45ZRT8K1vfQujR4/WYrll8fOf/xyvvvrqgPc///zzGDZsWN77Hn/8caxatarf7S6XC2+88YZaSyyJSCSCP/3pT2hubsbOnTsRDAZx55134oILLuj32AMHDuC3v/0ttm3bBofDgbPOOgu33HILamtrC9rWu+++iyeeeAItLS2ora3FhRdeiK985StwOPQ7nBWyv+l0Gq+99hreeust7N27F8FgEKNGjcKyZctw5ZVXwu12D7mdW2+9FZs3b+53+xlnnIH7779fzV0akEI/24G+2+PHj8fTTz9d0LaM/mwL3dfFixcP+Bqnn346/uM//mPQ7VxxxRXSuBs5K1euxB133FHa4oukmPMMq79ZEjAM8swzz2Dbtm1YunQpTjrpJHR0dOCFF17A1772NTz00EOYPHnykK/x1a9+FaNGjVLcFggEtFqyKlx66aWYOXOm4rYxY8YM+pxIJILbbrsN4XAYV111FRwOB5577jl861vfwuOPP46amhotl1w0K1euxOmnn664TRAE/OpXv8LIkSMHFC9ybr/9dni9Xulvm834QGpPTw9WrVqFESNGYMqUKdi0aVPex504cQLf+ta3EAgEcMMNNyAajeJPf/oTPv30Uzz88MNwOp2Dbmf9+vX413/9V8ybNw+33XYbPv30Uzz55JPo6urC7bffrsWu5aWQ/Y3FYrjnnnswa9YsXHLJJairq8OOHTvwxBNP4OOPP8Z//ud/guO4Ibc1bNgwfP3rX1fcpueFSKGfLZAR09/97ncVt/n9/oK2w8JnW+i+/vCHP+x3265du/DnP/8Z8+fPL2hbU6dOxRe/+EXFbWPHji1+0SVS6HmG6d+sQDDH1q1bhUQiobjt4MGDwrnnniv85Cc/GfS5L7/8srBo0SJh586dWi5RVT7++GNh0aJFwtq1a4t+7h/+8Adh0aJFQnNzs3TbgQMHhHPOOUd4+OGHVVyldmzZskVYtGiR8OSTTw76uMcee0xYtGiR0NXVpc/CiiAejwvt7e2CIAjCzp07hUWLFgkvv/xyv8f96le/Es477zzh+PHj0m0bNmwQFi1aJPztb38bcjtXX321cN111wnJZFK67ZFHHhEWL14sHDhwQIU9KYxC9jeRSAhbt27t99wnnnhCWLRokbBhw4Yht/Otb31L+MpXvqLOokuk0M/2Zz/7mbB8+fKSt8PCZ1vovubj3nvvFRYvXiy0trYO+djLL79c+O53v1vWWsul0PMMy79Z4y/diH7MmTOnn6odN24cJk6ciJaWloJfJxKJgOd5tZenKZFIBKlUquDHv/nmm5gxY4YicjNhwgSceuqpWLt2rRZLVJ033ngDHMfhvPPOK/g54XAYAkMtnFwuV0FRgbfeegtnn302RowYId12+umnY9y4cUN+XgcOHMCBAwdw8cUXK0LPn//85yEIAt58882S118sheyv0+nEnDlz+t2+aNEiACjqt5xKpRCJRIpbpEoU+tmK8DyPcDhc1DZY+WyL3VeRRCKBt956C/PmzcPw4cMLfl4ymUQ0Gi16e2pQ6HmG5d8spZBMgiAI6OrqwsSJEwt6/G233YZoNAqn04n58+fj5ptvHtI/YzT33HMPotEo7HY7Tj75ZNx0002YMWPGgI9Pp9P49NNPceGFF/a7b+bMmdiwYQMikQh8Pp+Wyy6LVCqFtWvXYvbs2f1SfgPxxS9+EdFoFF6vFwsXLsTNN9+M+vp6jVdaPm1tbejq6so7+G3mzJlYv379oM/fs2cPAPR7fmNjI4YNG4a9e/eqt1gN6ezsBICC05uHDh3CZz/7WSSTSdTX1+Nzn/scrr32Wl09P4USi8VwwQUXIBaLoaqqCueeey6+8Y1vDPkbNPtnu379eoRCIZx//vkFP+fjjz/G8uXLwfM8Ro4cicsvvxyXX365hqscmtzzDOu/WfZ+AUReVq9ejba2Nlx//fWDPs7tduOCCy7AKaecAr/fj927d+O5557DN7/5Tfzud79TqGhWcDgcWLJkCT7zmc+gpqYGBw4cwLPPPotbbrkF//3f/41p06blfV5vby8SiUTeKybxtvb2dowfP17T9ZfDhx9+iJ6enoIOfFVVVfjCF76AWbNmwel0YuvWrXjhhRewc+dOPProowV7DYyio6MDQH7/RkNDg/R5ulyukp4v3s86f/zjH+H3+3HmmWcO+djRo0fjlFNOweTJkxGLxfDmm2/iySefxKFDh3DXXXfpsNrCaWhowJe+9CVMmzYNgiDggw8+wF//+lfs27cPDzzwwKCCy+yf7erVq+FyubBkyZKCHj958mScfPLJGDduHHp7e/HKK6/gv/7rv9De3o6bbrpJ49UOTO55hvXfLAkYE9DS0oJf//rXmDVrFlasWDHoY5ctW4Zly5ZJfy9atAhnnHEGvvWtb+Gpp57SzeFeDHPmzFGE2hcuXIhzzjkH1113HR555JEBqy3i8TgA5DWRiT8o8TGs8sYbb8DhcGDp0qVDPjb36uycc87BzJkz8dOf/hQvvPACrrrqKq2WqQqFfl4DHQwTiYTisbnPNyrFUgxPPfUUNm7ciO985zuoqqoa8vHf//73FX9/9rOfxX333YeXXnoJV1xxxZAVenqSazQ+99xzMW7cODz66KN46623cO655w74XDN/tuFwGO+//z7OPPPMgj5TALj33nsVf1944YX4l3/5Fzz33HO49NJLi0pDqUW+8wzrv1nywDBOR0cHvve978Hv9+OnP/0p7HZ70a9x8skno6mpCR999JEGK9SGsWPHYuHChdi0adOAPh6xDDWZTPa7T/zhFFKqahSRSATvvvsuzjjjjJKrpc4//3zU19eb4rMt9/MSD4LiY3Ofz/JnDQBr1qzB7373O1x00UX4p3/6p5JfR6xc2bhxo0or044rrrgCNpttyLWa+bN96623kEgkikof5cJxHK644grwPJ+3bF5rBjrPsP6bJQHDMKFQCN/97ncRCoVw//33o7GxseTXGj58OHp7e1VcnfYMHz4cyWQSsVgs7/3V1dVwuVx5w5DibeW8Z1rz7rvvIhaLlXXgA8zz2Yph5IE+L/HzLPX5LPY4EtmwYQN+/vOf46yzziq7dFS8Og8Gg2osTVPcbjeqq6uH/H6a+bNdvXo1AoEAzj777LJeR/xc9f4tD3aeYf03SwKGUeLxOL7//e/j0KFDuPfeews27w7E0aNHC246xApHjx6Fy+VS9DyRY7PZMHnyZOzatavffc3NzRg9ejTTBt7Vq1fD6/ViwYIFJb+GIAg4fvy4KT7bYcOGoba2Frt37+53386dOzFlypRBnz916lQA6Pf89vZ2tLW1SfezRnNzM374wx9i+vTpuOuuu8o23x49ehQATPGZRyIR9PT0DLlWs3627e3t2LRpExYvXjzoibwQjPhchzrPsP6bJQHDIDzP48c//jF27NiBu+66C7Nnz877uPb2drS0tCjKjru7u/s97v3338fu3btxxhlnaLXkssi35k8++QTvvfce5s+fLzVqa21t7Vd6umTJEuzatUshYg4ePIhNmzbhnHPO0XLZZdHd3Y2NGzdi8eLF8Hg8/e7Pt6/53qe//vWv6O7uLsgQygJLlizBunXr0NraKt320Ucf4dChQwofUCqVQktLC9rb26XbJk2ahPHjx+Oll15SpBX/+te/guO4gg2UenLgwAF873vfw8iRI/GLX/xi0JB5S0uL4n0Jh8P9Qu+CIODJJ58EgIIbpulBPB7P62f4/e9/D0EQFN9Pq3y2APCPf/wD6XR6wChqvn3t7e3tlxZPpVL4wx/+AKfTiVNOOUXTNYsUep5h+TdLJl4GefDBB/Hee+/h7LPPRjAYxOuvv664f/ny5QCARx55BK+++iqeffZZqQT3pptuwrRp0zB9+nT4/X7s2bMHL7/8MoYPH46rr75a930phB/96Edwu92YPXs26urqcODAAbz00kvweDwKY+DPfvYzbN68GW+//bZ02+c//3n83//9H773ve/hyiuvhN1ux3PPPYe6ujpceeWVRuxOQaxZswY8zw944Mu3r5dffjmWLVuGyZMnw+VyYdu2bVizZg2mTp2KlStX6rX0AXn++ecRCoWkcPF7772HEydOAMh0WQ4EArjqqqvw5ptv4tvf/jYuu+wyRKNR/PGPf8TkyZMV7drb2tpw9dVXY8WKFfjBD34g3f7Nb34Td955J26//Xace+65+PTTT/HCCy/gc5/7XNlRSrX312az4Y477kAwGMSVV16J999/X/H80aNHK04aV199NebNm4ff/OY3ADIlqHfddRfOO+88jBkzBvF4HO+88w62bduGiy++OG9pq1YMta/BYBBf/epXcd5550lVfx9++CHWr1+PM888EwsXLpRei/XPtpDvscjq1avR2Ng4oOjIt6/vvfcennzySSxZsgSjRo1CMBjE6tWrsX//ftx44426pcsKPc+w/JslAcMgn3zyCQBg3bp1WLduXb/7xS9WPpYtW4b169djw4YNiMViaGhowMUXX4xrr72W2V4hixYtwurVq/Hcc88hHA6jtrYWixcvxrXXXjtka22fz4cHHngAv/3tb/Hkk09Ks5CKmdNhBG+88Qbq6upw2mmnFfyc888/H9u3b5dMgyNGjMCXvvQlfOUrX8kbxdGbZ599VjHf5e2335YE2PLlyxEIBDBixAj85je/wW9/+1s8/PDD0lyVm2++uaAQ/Nlnn427774bq1atwgMPPICamhpcddVVuPbaa7XarQEZan8BSCe+hx9+uN/zV6xYMeBVLwCMGDECc+fOxdtvv43Ozk7YbDZMmDABt99+u+6CtZDP9uyzz8aGDRvw6quvIp1OY8yYMbjxxhtx5ZVXFjTugpXPtpB9BTKR3t27d0tG5UKZPHkyJkyYgNWrV6O7uxsOhwNTp07FXXfdVVA1oloUep5h+TfLCSy18yQIgiAIgigA8sAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBDEgx44dw+LFi/Hzn//c6KWowiuvvILFixfjlVdeMXopBEGUCQkYgiCK4tZbb8XixYuNXkZerCa4CIIYGBrmSBDEgAwbNgxPPfUU/H6/0UtRhUWLFqGpqUm3ib8EQWgHCRiCIAbE4XBgwoQJRi9DNQKBgDRNmCAIc0PTqAmCGJBjx47hi1/8IlasWIEf/OAHA6aOxPtF9u3bh6eeegqbN29Gb28vGhoasGDBAlx33XWoqanJ+/pf/vKX8eijj2LLli3o7e3Fs88+i1GjRuHtt9/G2rVrsWvXLrS3t8PhcOCkk07CZZddhnPOOUd6rVdeeQX33HNP3vU98MADOOWUU6TH3HnnnbjgggsUj9m2bRueeuop7NixA/F4HCNHjsSyZcvw5S9/GR6PR/HYxYsXY968efjxj3+Mhx56COvXr0c0GsWUKVPw9a9/HaecckqxbzVBEEVCERiCIArm2muvxauvvorjx4/j2muvlW6fOnWq9P93330XP/7xj8FxHBYuXIjhw4fjwIED+Mtf/oIPP/wQDz/8MKqqqhSve+TIEdx0002YPHkyVqxYgd7eXjidTgDAI488AofDgTlz5qChoQHd3d1477338O///u+47bbbcOmllwIApkyZgssuuwx//vOfMWXKFCxcuFB6/ZEjRw66X2vXrsVPfvITOJ1OLFu2DLW1tdiwYQNWrVqFDz/8EA888ADcbrfiOaFQCDfffDMCgQCWL1+Orq4urF27FnfccQceffRRTJ48uaT3mCCIwiABQxBEwVx//fXYvHkzjh8/juuvv77f/T09PfjZz36GmpoaPPjggwrhsGbNGtx111147LHH8O1vf1vxvG3btuHaa6/N+5q//OUvMXr0aMVtkUgE3/zmN/HYY4/hoosugsfjwdSpUxEIBCQBk++18hEOh3HffffBbrfjoYcewkknnQQAuPHGG/GTn/wE//jHP/CnP/0J11xzjeJ5n3zyCf7pn/4J3/72t2GzZeohTj31VPzyl7/EX/7yF9xxxx0FbZ8giNKgKiSCIFTjtddeQzgcxo033tgv6nHuuedi2rRpWLNmTb/n1dfX4+qrr877mrniBQB8Ph8uuOAChEIh7Nq1q6w1v/vuuwiFQrjwwgsl8QIANpsNN910E+x2e96ya6/Xi2984xuSeAEyqTS73V72mgiCGBqKwBAEoRo7duwAADQ3N+PIkSP97k8kEujp6UF3dzdqa2ul26dMmSKljHLp6urCH/7wB6xfvx6tra2Ix+OK+9vb28ta8969ewEA8+bN63ffiBEjMHr0aBw6dAiRSAQ+n0+6b+zYsYq/gYzpub6+HqFQqKw1EQQxNCRgCIJQjWAwCAB44YUXBn1cLBZT/F1XV5f3cb29vbjxxhvR2tqKOXPm4PTTT0cgEIDNZsMnn3yCd999F8lksqw1h8NhAJkoUD4aGhpw6NAhhMNhhWAZqLTcbrcjnU6XtSaCIIaGBAxBEKohnuBXrVpVlImV47i8t//9739Ha2srvvrVr/bzoDz99NN49913S19sH6IQ6ezszHu/eLtVeuEQhFUgDwxBEEUhej54nu93X1NTE4BsKqlcxDSUvKJIZOvWrQOurZgIiFhBtXnz5n73tba24siRIxg9enS/dBFBEMZCAoYgiKKorq4GAJw4caLffRdeeCF8Ph8effRR7N+/v9/9sVisKHEjGoG3bdumuH316tVYv359v8dXVVWB47i8axuIhQsXIhAI4OWXX1asWRAEPPzww+B5vl/PGIIgjIdSSARBFMWpp56KN998E//2b/+GM888Ey6XC1OmTMGCBQtQW1uLH/3oR/j3f/93XH/99TjjjDMwfvx4JJNJHD9+HJs3b8bs2bNx//33F7St5cuX45lnnsEDDzyATZs2YcSIEfjkk0/w8ccfY/HixXj77bcVj/f5fJgxYwa2bNmCu+++G2PHjgXHcfjsZz87YC8Yv9+Pf/mXf8FPfvITfOMb38DSpUtRW1uLjz76CLt378bMmTNx5ZVXlv2+EQShLiRgCIIois997nM4duwY/vGPf+CZZ54Bz/NYsWIFFixYAAA466yz8Nhjj+GPf/wjPvroI2zcuBEejwfDhg3DBRdcgOXLlxe8reHDh+M3v/kNHnroIWzcuBE8z2PatGn41a9+hRMnTvQTMADwwx/+EP/1X/+FdevWIRwOQxAEnHzyyYM2s1u6dCnq6+vx9NNP4+2335Y68V5zzTX48pe/3K+JHUEQxkOjBAiCIAiCMB3kgSEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnT8fz0TXsm8lAztAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG5CAYAAAB802v0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGwUlEQVR4nO3deVzUdf4H8NfMAMMpyCGIAiIghwp4pqICWnhUbptZdmpWllY/bXMz3bZW1127SyvPXLVaU9M0bdUyExHvA7wAAQVElPscjgFmvr8/Jr46cjMzzACv5+PRI+Yz3+PzcRjmPZ/j/ZEIgiCAiIiIiBolNXYFiIiIiEwdAyYiIiKiZjBgIiIiImoGAyYiIiKiZjBgIiIiImoGAyYiIiKiZjBgIiIiImoGAyY9qKqqwtWrV1FVVWXsqhAREZEBMGDSg4yMDLz00kvIyMgwdlUM7tq1a8auQrvqSu1lWzuvrtRetrXzMnZ7GTBRqyiVSmNXoV11pfayrZ1XV2ov29p5Gbu9DJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZZsauQGMqKiqwdetWJCQkIDExEWVlZVi0aBEmTZrUovPLysqwZs0axMTEQKlUIjAwEHPnzoW/v3+D99q8eTMOHz6MgoIC2Nvbo3///vjb3/4GS0tLfTeNiIiIOhiTDZhKSkqwadMmuLq6wtfXF3FxcS0+V61WY+HChbh27RqmT58Oe3t77N69G/PmzcP69evh4eEhHqtQKPB///d/yMvLw8MPP4xevXqhuLgYFy9eRE1NDQMmIiIiMt2AycnJCbt27YKTkxOSkpIwe/bsFp8bHR2Ny5cvY+nSpYiIiAAAjBs3Dk899RQ2btyId999Vzx23bp1yM7Oxtdffw13d3ex/Omnn9ZbW4iIiKhjM9mAycLCAk5OTm0698iRI3B0dMTYsWPFMgcHB0RGRuLgwYOorq6GhYUFysrKsG/fPkydOhXu7u6oqamBIAiwsLDQVzN0cutKAfLTS6Esq8bAB71haWca9SIiIupqTDZg0kVycjL8/PwglWrPaQ8MDMTevXuRmZkJHx8fXLp0CdXV1ejduzf+/ve/IzY2Fmq1Gv3798cbb7wBPz+/Bq+fn5+PgoIC8XFGRoZB2nHt+G1cPZwJAOg7sicDJiIiIiPplAFTYWEhQkJC6pXX9VgVFBTAx8cHN2/eBKAZlnN3d8fixYtRXl6OTZs2Yf78+di8eTOcnZ3rXWfPnj3YtGlTvfK0tDSoVCq9tUOhLBF/Tr6SCvty48+nUigUSEhIMHY12k1Xai/b2nl1pfayrZ2XodobFBTUouM6ZcCkVCobHFarK1MqlQCAyspK8bnPPvsM1tbWAAA/Pz/MmTMHu3btwksvvVTvOlOmTEFYWJj4OCMjA8uWLYO3t3eDq/DaqubadWQdLwUAuDm7wzvITW/XbquEhIQW/3J1Bl2pvWxr59WV2su2dl7Gbm+nDJjkcjmqq6vrldeVyeVyAHcCqLCwMDFYAoD+/fujZ8+euHz5coPXd3Z2brDnSd/ktubiz0pFjcHvR0RERA3rlIkrHR0dteYY1akrqxuaqwt6unfvXu/Y7t27Q6FQGLCWzZPb3B0w1Q8AiYiIqH10yoDJz88PKSkpUKvVWuWJiYmwtLQU8zDVDZ/l5+fXu0Z+fj7s7e0NX9kmWNrdFTCVs4eJiIjIWDp8wJSfn4+MjAzU1taKZeHh4SgsLERMTIxYVlxcjMOHD2PUqFHiUJynpyd8fX0RGxuL4uJi8djTp08jNzcXw4YNa7d2NERuc2ceFofkiIiIjMek5zDt3LkTCoVCHEo7duwYcnNzAQBTp06Fra0t1q1bhwMHDmDbtm3o2bMnACAiIgI7duzA8uXLkZ6eLmb6VqvVmDVrltY9XnvtNbz55pt47bXXMGXKFCgUCmzfvh0eHh7405/+1L4NvgfnMBEREZkGkw6Ytm3bhuzsbPFxTEyM2GsUFRUFW1vbBs+TyWT48MMPsWrVKuzcuRNKpRIBAQFYtGgRPD09tY4dPHgwPvroI2zYsAHr1q2DpaUlxowZg1deeUVrIrgxaAVMHJIjIiIyGpMOmLZv397sMYsXL8bixYvrldvZ2WHhwoVYuHBhs9cYOnQohg4d2qY6GpKZhQwycylUNWr2MBERERlRh5/D1NnV9TJVcZUcERGR0TBgMnF1ARN7mIiIiIyHAZOJq8vFpKpWo7Zaf9uuEBERUcsxYDJxctu7Ugtw4jcREZFRMGAycUwtQEREZHwMmEyc9vYoDJiIiIiMgQGTiWMPExERkfExYDJxllrJK5lagIiIyBgYMJk49jAREREZHwMmE6e1So4BExERkVEwYDJxWpO+mVaAiIjIKBgwmTgOyRERERkfAyYTx4CJiIjI+BgwmTgzuQxSmQQAoOQGvEREREbBgMnESSSSOxvwcg4TERGRUTBg6gDEgIlDckREREbBgKkDkNtoUgvUVKmgqlUbuTZERERdDwOmDkBr4jeH5YiIiNodA6YOgCvliIiIjIsBUweglbySARMREVG7Y8DUAcjt7g6YmFqAiIiovTFg6gC4PQoREZFxMWDqALgBLxERkXExYOoAOOmbiIjIuBgwdQCWnPRNRERkVAyYOgD2MBERERkXA6YOQDtxJVfJERERtTcGTB2AuZUZJFIJAPYwERERGQMDpg5AIpFAbmMGgAETERGRMZgZuwKNqaiowNatW5GQkIDExESUlZVh0aJFmDRpUovOLysrw5o1axATEwOlUonAwEDMnTsX/v7+Wsc9/vjjyM7Ornf+lClTsGDBAr20RR/kthaoKqthHiYiIiIjMNmAqaSkBJs2bYKrqyt8fX0RFxfX4nPVajUWLlyIa9euYfr06bC3t8fu3bsxb948rF+/Hh4eHlrH+/n54YknntAq6927t17aoS91ySurK2qhVqkhlbFzkIiIqL2YbMDk5OSEXbt2wcnJCUlJSZg9e3aLz42Ojsbly5exdOlSREREAADGjRuHp556Chs3bsS7776rdbyzszOioqL0WX29u3vid3V5LSy7WTRxNBEREemTyXZTWFhYwMnJqU3nHjlyBI6Ojhg7dqxY5uDggMjISMTGxqK6uv5Ks5qaGlRWVra5voamvVKOw3JERETtyWR7mHSRnJwMPz8/SKXa8WBgYCD27t2LzMxM+Pj4iOXnz59HVFQUVCoV3NzcMG3aNEybNq3R6+fn56OgoEB8nJGRof9G3EM7F1M1ABuD35OIiIg0OmXAVFhYiJCQkHrldT1WBQUFYsDUt29fBAcHw8PDA6Wlpdi/fz+++OIL5OfnY86cOQ1ef8+ePdi0aVO98rS0NKhUKv015C6lFcXizymJ15FfY2WQ+zRHoVAgISHBKPc2hq7UXra18+pK7WVbOy9DtTcoKKhFx+kcMKWnp+PHH39EUlISysrKoFar6x0jkUiwdetWXW/VYkqlEhYW9ef41JUplUqx7P3339c6ZvLkyfjrX/+K7du3Y+rUqejRo0e960yZMgVhYWHi44yMDCxbtgze3t71VuHpi5CZgcyYEgBAD0c3+AX1Msh9mpOQkNDiX67OoCu1l23tvLpSe9nWzsvY7dUpYIqPj8eCBQtQU1MDmUyG7t27QyaT1TtOEARdbtNqcrm8wXlKdWVyubzRcyUSCR5//HGcPn0a8fHxDU4Gd3Z2hrOzs/4q3ALcHoWIiMh4dAqY1q5dC5VKhbfeegsTJ05sMFgyBkdHR605RnXqypqbTF7Xq1RaWqr/yrURAyYiIiLj0WmVXGpqKsaPH48HH3zQZIIlQJNXKSUlpd7wYGJiIiwtLevlYbrXrVu3AGhW1pmKujxMAAMmIiKi9qZTwGRpaWn0oCI/Px8ZGRmora0Vy8LDw1FYWIiYmBixrLi4GIcPH8aoUaPEuUylpaX1JmnX1tbiv//9L8zNzTFo0KD2aUQL1F8lR0RERO1FpyG5ESNG4OLFi/qqSz07d+6EQqEQh9KOHTuG3NxcAMDUqVNha2uLdevW4cCBA9i2bRt69uwJAIiIiMCOHTuwfPlypKeni5m+1Wo1Zs2aJV7/2LFj+OabbxAeHo6ePXuirKwMBw8eRFpaGmbPnt3mPFCGwDxMRERExqNTwDR37ly8+uqrWLFiBV5++WVYWlrqq14AgG3btmnt8xYTEyP2GkVFRcHW1rbB82QyGT788EOsWrUKO3fuhFKpREBAABYtWgRPT0/xuL59+8LLywsHDx5EcXExzMzM4OfnhyVLliAyMlKvbdGVhbU5IAEgcEiOiIiovekUMP3jH/+AlZUVdu3ahf3798PDwwPW1tb1jpNIJPj8889bff3t27c3e8zixYuxePHieuV2dnZYuHAhFi5c2Oi5/v7+9dIKmCqpVAK5tTmU5TUMmIiIiNqZzmkF6lRWViI5ObnB4yQSiS63oT/Ibf8ImDgkR0RE1K50CpiOHDmir3pQC9StlFOW10BQC5BIGYgSERG1B5PdfJfqk9v9MfFbAKoraps+mIiIiPRGrwFTZWUl8vPzUVlZqc/L0h+0cjGVM7UAERFRe9F5L7mamhp8//332L9/P27fvi2W9+zZE5MnT8b06dNhbm7exBWopeS2d/bHUypqAFcjVoaIiKgL0SlgUiqVmD9/PhITEyGVStG7d284OTmhoKAAt27dwoYNG3D8+HF8/vnnTe7fRi3D7VGIiIiMQ6eA6b///S8SEhIwbtw4vPLKK3B1vdPlkZubizVr1uDQoUPYsmULnn/+eZ0r29XdPSRXxYCJiIio3eg0h+n3339Hv3798N5772kFS4BmA9t3330X/v7+OHTokE6VJA32MBERERmHTgFTdnY2hg0b1uQxQ4YM0crWTW2nvT0KJ30TERG1F5033y0uLm7ymOLiYr1vmdJVaa2SYw8TERFRu9EpYAoKCsKhQ4eQlpbW4PPp6en4/fff0b9/f11uQ3/gkBwREZFx6DTp+9lnn8WZM2cwe/ZsPPjggwgNDUX37t1RVFSEuLg47N+/H7W1tXjmmWf0Vd8uTXtIjgETERFRe9EpYBo4cCDeffddfPTRR9i1axd2794tPicIAmxsbLB48WIMHDhQ13oSOCRHRERkLDonroyMjMR9992H2NhYJCcno6KiAtbW1ujXrx9Gjx4Na2trfdSTAEhlUphbmaGmspYBExERUTvSOWACAGtra0RFRSEqKkofl6MmWNqaawImDskRERG1G26+28HUzWNSKmogCIKRa0NERNQ1tKqH6cCBAwCAsWPHwtraWnzcEhMnTmxdzahBdQGToBZQU1kLC2vu00dERGRorQqYli9fDolEgv79+8Pa2lp83BRBECCRSBgw6Ync5q4NeMtrGDARERG1g1YFTG+//TYAwMnJSesxtR+t1AJlNbBzMWJliIiIuohWBUyTJk1q8jEZ3t0BUxUnfhMREbULnSZ9x8fHIycnp8ljcnJyEB8fr8tt6C7MxURERNT+dAqY5s+fj/379zd5zC+//IL58+frchu6i/b2KNyAl4iIqD3oFDC1ZFl73aRv0g9uj0JERNT+DJ6H6ebNm7CxsTH0bboMDskRERG1v1Zn+n7//fe1Hh89ehTZ2dn1jlOpVMjNzcXFixdx3333tb2GpEV7SI4BExERUXtodcB095wliUSC1NRUpKamNnisRCJBQEAAXnvttbbXkLTIbbXzMBEREZHhtTpg2rZtGwDN3KTp06dj2rRpeOyxx+odJ5VKYWdnBysrK91rSSL2MBEREbW/VgdMbm5u4s9vv/02+vXrp1VGhiUzk8LcUoaaKhUDJiIionbS6oDpbkxcaRxyW3NNwMQhOSIionahU8BUR6lUIikpCfn5+aipafhDvLV7yVVUVGDr1q1ISEhAYmIiysrKsGjRohYHaWVlZVizZg1iYmKgVCoRGBiIuXPnwt/fv9FzsrKyMGPGDFRXV2PdunUICAhoVZ3bi9zGHIr8KigV1UzbQERE1A50Dph+/PFHbNiwAeXl5Q0+39bNd0tKSrBp0ya4urrC19cXcXFxLT5XrVZj4cKFuHbtGqZPnw57e3vs3r0b8+bNw/r16+Hh4dHgeV988QVkMlmr6mkMdRO/1bUCapUqmFvqJe4lIiKiRuiUh+nIkSNYsWIFevTogblz50IQBISFheGll17C8OHDIQgCwsPDsXDhwlZf28nJCbt27cIPP/yAOXPmtOrc6OhoXL58GYsWLcLzzz+PRx99FCtXroRUKsXGjRsbPOf06dM4c+YMpk2b1uq6tjfmYiIiImpfOgVMP/zwA7p3747Vq1fj8ccfBwD4+fnh6aefxocffoh33nkHR48ebdOkcAsLCzg5ObWpXkeOHIGjoyPGjh0rljk4OCAyMhKxsbGortbeUqS2thYrV67EY489hl69erXpnu2JK+WIiIjal04B0/Xr1xEWFgZLS0uxTK1Wiz8/8MADGDx4MDZt2qTLbVotOTkZfn5+kEq1mxcYGIiqqipkZmZqlf/www8oKyvDc88916Lr5+fn4+rVq+J/GRkZeqt7S3B7FCIioval0+SX2tpaODg4iI/lcjnKysq0jvH19cXevXt1uU2rFRYWIiQkpF55XY9VQUEBfHx8xJ83b96MuXPntngLlz179jQYBKalpUGlUrW94i1UXF4i/pyadB3FkhyD37OOQqFAQkJCu93P2LpSe9nWzqsrtZdt7bwM1d6goKAWHadTwOTk5ISCggLxsaurK1JSUrSOyc7ObveJ1EqlEhYWFvXK68qUSqVYtmbNGri7u+Ohhx5q8fWnTJmCsLAw8XFGRgaWLVsGb2/vJlfh6YssJxMZh4oBAD0cXBEQ5Gnwe9ZJSEho8S9XZ9CV2su2dl5dqb1sa+dl7PbqFDAFBgYiOTlZfHzfffdhx44d+O677xAWFoaLFy8iJiYGQ4cO1bmirSGXy+vNUwIglsnlcgDAlStX8Ouvv+Kzzz6rN3zXFGdnZzg7O+unsm3AITkiIqL2pdMcpoiICFRXV+P27dsAgGeeeQYuLi74+uuv8fzzz+PTTz+FlZUVXnnlFb1UtqUcHR21er7q1JXVDc2tXr0awcHB6NmzJ27fvo3bt2+juLhYPDYnp/2Gulrj7oCpipO+iYiIDE6nHqaxY8fWW4n2n//8Bz///DNu3boFV1dXTJgwAS4uLjpXtDX8/Pxw8eJFqNVqrZ6jxMREWFpainmYcnNzkZ2djSeeeKLeNRYtWgRbW1vs27ev3erdUnKbuzbgZcBERERkcHrPeGhnZ4cnn3xS35dtVH5+PsrLy9GrVy+YmWmaEx4ejujoaMTExCAiIgIAUFxcjMOHD2PUqFHiXKYFCxZozWcCgPPnz2Pnzp2YO3cuvLy82q0drSG345AcERFRe9IpYDpw4AAsLS3FoKQh165dQ0pKSqszfQPAzp07oVAoxKG0Y8eOITc3FwAwdepU2NraYt26dThw4AC2bduGnj17AtAMFe7YsQPLly9Henq6mOlbrVZj1qxZ4vWHDx9e754KhQIAEBoaatJbo9RhDxMREZHh6RQwLV++HBKJBKNHj8bf//53cTL13WJiYrB58+Y2BUzbtm1Ddna21rViYmIAAFFRUbC1tW3wPJlMhg8//BCrVq3Czp07oVQqERAQgEWLFsHTs/1WlBmKmYUMMgspVNVqBkxERETtQOchOQcHBxw9ehSvv/463n//fTg6OuqjXgCA7du3N3vM4sWLsXjx4nrldnZ2WLhwYau3ZZk0aVKLN/g1JrmtOSoKlVCW118NSERERPql0yo5AHjkkUcwe/ZsJCcn4+WXX8a1a9f0US9qRt3Eb2UZe5iIiIgMTeeACQCefvppLFmyBKWlpXj11Vdx4sQJfVyWmlCXWkBVo0ZtteGzixMREXVlegmYAM3KtBUrVsDS0hKLFy/GDz/8oK9LUwO4AS8REVH70VvABAABAQFYu3Yt+vTpg6+++gqffvppu+yt1hVxpRwREVH70XseJldXV3z11Vf4xz/+gZ9++gmWlpb6vgXh3u1ROPGbiIjIkPTaw1TH2toa77//Pv785z+jqqrKELfo8iw5JEdERNRudOphOnLkSKPPSaVSzJ8/HxMmTKiXTZt0xyE5IiKi9qP3Ibl7BQYGGvoWXRInfRMREbUfgwzJkeHJbe/agJf7yRERERlUq3qYwsPDIZVK8c0338DDwwPh4eGQSCTNnieRSHD48OE2V5LqYw8TERFR+2lVwBQSEgKJRCLuGVf3mNofAyYiIqL206qAaeXKlU0+pvajNembQ3JEREQGxTlMHZSZXAapmaZ3r0rBPExERESGxICpg5JIJOLEbw7JERERGVarhuQ2bdrUpptIJBLMmDGjTedS4+Q25qgsVjJgIiIiMrBWBUwbN25s000YMBlG3cTvWqUKqhoVZOYyI9eIiIioc2pVwLRixQpD1YPaQHs/uVpYOzBgIiIiMoRWBUyhoaEGqga1hfb2KNWwdpAbsTZERESdFyd9d2DMxURERNQ+9LaXnEqlQklJCWpqGv7gdnV11det6A/aQ3IMmIiIiAxF54Dp6tWrWLduHS5cuIDa2toGj+HWKIahPSTHgImIiMhQdAqYUlJS8Nprr0Emk2HYsGE4fvw4fH194ejoiOTkZBQXFyM0NBRubm76qi/dxdLurg14GTAREREZjE4B0+bNmwEAa9asQZ8+fRAeHo4xY8Zg5syZUCqV+OqrrxAdHY23335bL5UlbdwehYiIqH3oNOn70qVLCAsLQ58+fcQyQRAAAHK5HPPnz4ezszPWr1+vUyWpYZz0TURE1D50CpjKy8vh7u4uPjYzM0NlZeWdi0ulCA0Nxblz53S5DTXi7oCJ+8kREREZjk4Bk4ODA8rKysTHjo6OuHnzptYx1dXVqKqq0uU21AhO+iYiImofOgVMffr0wY0bN8THAwcOxJkzZ3D58mUAQHp6Og4fPgwvLy/dakkNMrcyg0QqAcCAiYiIyJB0mvQ9cuRIfPnll8jPz4ezszOeeuopxMTE4LXXXoOdnR0UCgXUajWeeeYZfdWX7iKRSCC3NUdVaTUnfRMRERmQTgHTn/70J0RGRsLOzg4A4Ovri88++wzffvstbt26BX9/f0ydOhUjR45s1XUrKiqwdetWJCQkIDExEWVlZVi0aBEmTZrUovPLysqwZs0axMTEQKlUIjAwEHPnzoW/v7/WcV988QXi4+ORnZ2N6upquLq6Yty4cZg+fTqsra1bVWdjkdv8ETCxh4mIiMhgdAqYzMzM4OjoqFU2cOBAfPjhhzpVqqSkBJs2bYKrqyt8fX0RFxfX4nPVajUWLlyIa9euYfr06bC3t8fu3bsxb948rF+/Hh4eHuKxSUlJCA4OxuTJk2FhYYGUlBRs2bIF586dwxdffAGp1PR3jqmb+F1TWQt1rRpSM9OvMxERUUejt61R9MnJyQm7du2Ck5MTkpKSMHv27BafGx0djcuXL2Pp0qWIiIgAAIwbNw5PPfUUNm7ciHfffVc89quvvqp3vru7O1atWoXExET0799f57YYmlZqgYoaWHXjBrxERET6ppeAqbi4GOnp6cjPz290e5SJEye2+HoWFhZwcnJqU12OHDkCR0dHjB07VixzcHBAZGQkDh48iOrqalhYWDR6fl1WcoVC0ab7t7d7V8oxYCIiItI/nQImpVKJzz//HL/++itUKlWDxwiCAIlE0qqASRfJycnw8/OrN5wWGBiIvXv3IjMzEz4+PmJ5bW0tFAoFamtrcf36dXz99dewtrZGYGBgo/fIz89HQUGB+DgjI0P/DWkhJq8kIiIyPJ0CphUrVmDfvn3w8fFBeHg4nJycIJPJ9FW3NiksLERISEi98roeq4KCAq2A6erVq5gzZ4742NPTE8uXL0e3bt0avceePXuwadOmeuVpaWmNBo6GUlpRLP6ckngNBbWGnayuUCiQkJBg0HuYkq7UXra18+pK7WVbOy9DtTcoKKhFx+kUMB05cgT+/v5YvXq10QOlOkqlssEht7oypVKpVd6nTx98+umnqKysxOXLl3Hu3DmtbOUNmTJlCsLCwsTHGRkZWLZsGby9veutxDO4mxnIjCkBALg69oRfUC+D3i4hIaHFv1ydQVdqL9vaeXWl9rKtnZex26tTwKRWqzFo0CCTCZYAzR521dX1twmpK5PLtef42NjYYOjQoQCAMWPG4ODBg1i8eDG+/vpr+Pr6NngPZ2dnODs767nmbcMhOSIiIsPTaQ16QEBAva1QjM3R0VFrflGdurLmJpPXTRY/dOiQ/itnAFqTvpm8koiIyCB0CpheeOEFnDlzBsePH9dXfXTm5+eHlJQUqNVqrfLExERYWlpq5WFqSE1NDdRqNcrLyw1ZTb3R6mEq4wa8REREhqDTkNyAAQPwySefYNGiRejXrx98fHxgY2NT7ziJRIIZM2bocqsG5efno7y8HL169YKZmaYp4eHhiI6ORkxMjJiHqbi4GIcPH8aoUaPEuUxlZWWwsrISz6vz888/A0D7z0VqI62AiT1MREREBqFTwFRSUoK1a9eirKwM586dw7lz5xo8ri0B086dO6FQKMShtGPHjiE3NxcAMHXqVNja2mLdunU4cOAAtm3bhp49ewIAIiIisGPHDixfvhzp6elipm+1Wo1Zs2aJ14+Pj8eKFSsQERGB3r17o6amBhcvXkRMTAwCAgIQFRXVln+Sdie3uTPBnXOYiIiIDEPntAKXLl3CiBEjMH78eL2mFdi2bRuys7PFxzExMYiJiQEAREVFwdbWtsHzZDIZPvzwQ6xatQo7d+6EUqlEQEAAFi1aBE9PT/G4vn37YtCgQYiNjUVBQQEEQUCvXr0wY8YMPPnkkzA3N2/w+qbGwtoMkAAQGDAREREZik4B06lTpxAaGooPPvhAX/URbd++vdljFi9ejMWLF9crt7Ozw8KFC7Fw4cJGz+3Vqxf+9re/6VRHUyCRSiC3MYdSUcMhOSIiIgPRadK3IAgICAjQV12ojepWyrGHiYiIyDB0CpgGDhyI1NRUfdWF2qhu4reyogZqtWDk2hAREXU+OgVMc+fORVJSEnbu3Kmv+lAbiCvlBKC6gr1MRERE+qbTHKbvv/8ePj4++OKLL7Bz585G0woAwNtvv63LragJWskrFTWwtK2/NQwRERG1nU4B0/79+8Wfs7KykJWV1eBxEomEAZMBye2YWoCIiMiQdAqYtm3bpq96kA64PQoREZFh6RQwxcfHw9HREcOHD9dXfagNuAEvERGRYek06fuDDz7AqVOn9FUXaiPtgIn7yREREembTgGTk5MTVCqVvupCbWRpwx4mIiIiQ9IpYAoLC8PZs2dRXc1eDWPikBwREZFh6RQwvfTSS7C0tMQ777yDtLQ0fdWJWkl+VxoBTvomIiLSP50mfb/wwguoqalBamoqTp8+DQsLCzg4OEAikWgdJ5FIsHXrVp0qSo27Nw8TERER6ZdOAZMgCDAzM0OPHj3qlTf1mPTLwubOy8iAiYiISP90Cpi2b9+ur3qQDqQyKSyszVBdUcshOSIiIgPQaQ4TmY66YTmmFSAiItI/nXqY7lZbW4vMzEyUl5fDxsYGHh4eMDPT2+WpGXJbc5TlVUKpqIGgFiCRSpo/iYiIiFpE54imtLQUa9aswW+//aaVXkAul+P+++/H7NmzYW9vr+ttqBl1qQUEAaipqoWFtXkzZxAREVFL6RQwlZaW4pVXXkFWVha6deuG4OBgODk5obCwEElJSfj5558RHx+P1atXo1u3bvqqMzVAK7WAooYBExERkR7pFDBt3rwZWVlZmD59OmbOnAkrKyvxuaqqKmzevBlbtmzBN998g9dee03nylLj7k1eadejiYOJiIioVXSa9B0bG4vQ0FDMmTNHK1gCAEtLS7z88ssIDQ3F0aNHdaokNe/uXExVnPhNRESkVzoFTAUFBRgwYECTxwwYMAAFBQW63IZagNujEBERGY5OAZONjQ2ys7ObPCY7Oxs2Nja63IZaQCtgYi4mIiIivdIpYAoNDUV0dDTOnj3b4PPnzp1DdHQ0QkNDdbkNtQC3RyEiIjIcnSZ9z5w5EydOnMCCBQswYsQIhISEwNHREYWFhYiPj8epU6cgl8sxc+ZMPVWXGnPvKjkiIiLSH50CJm9vb3z88cdYvnw5Tpw4gRMnTkAikYh7x7m7u2Px4sXw9vbWS2WpcRySIyIiMhydE1cGBwdjy5YtuHTpElJSUsRM335+fhg4cCAkEmacbg+c9E1ERGQ4etm7RCKRIDg4GMHBwfq4HLUB5zAREREZDjff7SRkZlKYW8oAAMpy5mEiIiLSJ517mIqLi7Fv3z4kJSVBoVBApVLVO0YikeDzzz/X9VbUDLmtOWqqVOxhIiIi0jOdAqZr165h/vz5KCsrEyd6N6S185gqKiqwdetWJCQkIDExEWVlZVi0aBEmTZrUovPLysqwZs0axMTEQKlUIjAwEHPnzoW/v794TElJCfbt24djx44hIyMDKpUKnp6emDZtGsaPH9+q+poKua0FFPlVUCpqIAgC548RERHpiU4B01dffYXS0lI899xzePDBB+Hi4gKZTKZzpUpKSrBp0ya4urrC19cXcXFxLT5XrVZj4cKFuHbtGqZPnw57e3vs3r0b8+bNw/r16+Hh4QEAuHLlCtavX48RI0bgueeeg0wmw5EjR7BkyRJkZGRg1qxZOrejvdXNY1KrBNQqVTC31MsUNSIioi5Pp0/UK1euYPTo0XjhhRf0VR8AgJOTE3bt2gUnJyckJSVh9uzZLT43Ojoaly9fxtKlSxEREQEAGDduHJ566ils3LgR7777LgCgT58+2LJlC9zc3MRz//znP+ONN97Ali1b8OSTT9bbH8/U3b1SrqqshgETERGRnug06dvMzAy9evXSV11EFhYWcHJyatO5R44cgaOjI8aOHSuWOTg4IDIyErGxsaiu1kyIdnd31wqWAM3Q4ZgxY1BdXY1bt261vQFGop2LiRO/iYiI9EXnrVGuXr2qr7roRXJyMvz8/CCVajctMDAQVVVVyMzMbPL8wsJCAIC9vX2jx+Tn5+Pq1avifxkZGbpXXA+YWoCIiMgwdBqzmTt3Ll555RV8//33ePLJJ/VVJ50UFhYiJCSkXnldj1VBQQF8fHwaPLe0tBQ///wzgoOD4ezs3Og99uzZg02bNtUrT0tLa3CVYHspLi8Rf76WlIYSaa7e76FQKJCQkKD365qqrtRetrXz6krtZVs7L0O1NygoqEXH6RQwffvtt+jbty/Wrl2LPXv2wNfXFzY2Ng0e+/bbb+tyqxZTKpWwsLCoV15XplQqGzxPrVbjn//8JxQKBebPn9/kPaZMmYKwsDDxcUZGBpYtWwZvb2+tlXjtTZabiYxDxQAAl+6uCAzy1Ps9EhISWvzL1Rl0pfayrZ1XV2ov29p5Gbu9OgVM+/fvF3++detWo/N+JBJJuwVMcrlcnKd0t7oyuVze4Hmff/45Tp06hb/97W/w9fVt8h7Ozs5N9kAZi9yGG/ASEREZgk4B07Zt2/RVD71xdHREQUFBvfK6soYmk2/cuBG7d+/Gyy+/jAkTJhi8jobC/eSIiIgMQ6eA6d5VZi2Vk5OD27dvIzQ0VJfbN8jPzw8XL16EWq3WmvidmJgIS0tLMQ9TnR9//BEbN27EtGnT8PTTT+u9Pu1Je5UcAyYiIiJ9Mcpecvv27Wt2nlBL5OfnIyMjA7W1tWJZeHg4CgsLERMTI5YVFxfj8OHDGDVqlNb8pkOHDmHlypV44IEH8Nprr+lcH2NjDxMREZFhmGxmw507d0KhUIhDaceOHUNurmbV19SpU2Fra4t169bhwIED2LZtG3r27AkAiIiIwI4dO7B8+XKkp6eLmb7VarVW9u6EhAT8+9//Rrdu3TBkyBAcPHhQ6/4DBgyAu7t7O7VWP7TTCjAPExERkb6YbMC0bds2ZGdni49jYmLEXqOoqCjY2to2eJ5MJsOHH36IVatWYefOnVAqlQgICMCiRYvg6Xln1VhGRgZqampQXFyM999/v951Fi1a1OECJjMLGWQWUqiq1RySIyIi0iOTDZi2b9/e7DGLFy/G4sWL65Xb2dlh4cKFWLhwYaPnTpo0qcWb+XYklrYWKC+s4pAcERGRHhllDhMZTt08JgZMRERE+sOAqZOpC5hUNWrUKo2XdZyIiKgzYcDUyXDiNxERkf4xYOpk7k4tUMWJ30RERHrBgKmTYS4mIiIi/TNKwGRjY4MePXoY49adnvaQHAMmIiIifTBKwPT444+3KG0AtZ7c9q4NeDkkR0REpBetysO0adOmNt1EIpFgxowZbTqXWodDckRERPrXqoBp48aN9cokEon4syAI9coFQWDA1I44JEdERKR/rQqYVqxYUa9s69atOHv2LKKiohAcHAxHR0cUFhbiwoULOHjwIIYNG4YnnnhCbxWmprGHiYiISP9aFTCFhoZqPf75558RHx+P9evXw9vbW+u5iRMn4rHHHsPcuXMxevToeueSYWgFTOXMw0RERKQPOk36/uGHHzB+/Ph6wVIdHx8fjB8/nhO825Hl3ZO+2cNERESkFzoFTFlZWejWrVuTx3Tr1g23bt3S5TbUCjILKWTmmpeVq+SIiIj0Q6eAycHBAadOndKa7H03tVqNU6dOwd7eXpfbUCtIJBJx4reyjAETERGRPugUMN1///24du0a3n77baSmpmo9l5KSgrfffhtpaWl44IEHdKoktU7dPCb2MBEREelHqyZ93+v5559HcnIyTp48iVOnTsHS0hIODg4oLi5GVVUVBEHAkCFDMHPmTD1Vl1qiLmCqVapQW62CmYXMyDUiIiLq2HQKmORyOT755BMcOHAABw4cwPXr15GTkwNbW1sEBARgwoQJmDhxolauJjK8u3MxVZfXMGAiIiLSkU4BE6CZMzNp0iRMmjRJH/UhPdBOLVAD6+6WRqwNERFRx2eUveTIsORMLUBERKRXOvcwAUBtbS0yMzOhUCigUqkaPIaJK9sPt0chIiLSL50CJkEQsGHDBvz444+oqKho8tjo6GhdbkWtwO1RiIiI9EungGnz5s349ttvYWtriwkTJsDFxQUyGScYG9vdAVMVUwsQERHpTKeAad++fXB1dcX69euZnNKEcEiOiIhIv3Sa9F1YWIgxY8YwWDIx2kNy3ICXiIhIVzoFTG5ubigvL9dXXUhPtFbJcUiOiIhIZzoFTI888ghOnDiBoqIifdWH9ECrh4n7yREREelMpzlMo0ePxsWLFzF37lzMmDED/fr1g42NTYPHurq66nIragVzSxkkMgkElcAeJiIiIj3QKWB64oknIJFIIAgC3n///UaPk0gkOHz4sC63olaQSCSQ25ijqrSak76JiIj0QKeAacKECQbZJ66iogJbt25FQkICEhMTUVZWhkWLFrV4+5WysjKsWbMGMTExUCqVCAwMxNy5c+Hv76913KFDh3D8+HEkJCQgKysLoaGhWLlypd7bYwxy2z8CpnJO+iYiItKVTgHT4sWL9VUPLSUlJdi0aRNcXV3h6+uLuLi4Fp+rVquxcOFCXLt2DdOnT4e9vT12796NefPmYf369fDw8BCP/emnn3D16lUEBASgtLTUEE0xmrp5TDWVKqhr1ZCacRccIiKittLL1ij65uTkhF27dsHJyQlJSUmYPXt2i8+Njo7G5cuXsXTpUkRERAAAxo0bh6eeegobN27Eu+++Kx77t7/9DS4uLpBKpZgxY4a+m2FUWrmYymtgZS83Ym2IiIg6NpPsdrCwsICTk1Obzj1y5AgcHR0xduxYsczBwQGRkZGIjY1FdfWdISpXV1dIpSb5T6AzS27AS0REpDc6T/puCYlEgq1bt+pyqxZLTk6Gn59fvUAoMDAQe/fuRWZmJnx8fHS6R35+PgoKCsTHGRkZOl3PELRSC3ClHBERkU503ny3IeXl5VAoFAA0w2tmZu038ldYWIiQkJB65XU9VgUFBToHTHv27MGmTZvqlaelpUGlUul0bX0pqSgWf05JvIaCWmu9XFehUCAhIUEv1+oIulJ72dbOqyu1l23tvAzV3qCgoBYdp1Mks3379kafu337Nr788ksUFRXh008/1eU2raJUKmFhYVGvvK5MqVTqfI8pU6YgLCxMfJyRkYFly5bB29u73ko8o7mZgcwjJQAA1+494RfUSy+XTUhIaPEvV2fQldrLtnZeXam9bGvnZez2GmwCT8+ePbFkyRKUlZVh/fr1hrpNPXK5XGueUp26Mrlc98nPzs7O8Pf3F//z8vLS+Zr6pj0kx9QCREREujDojGczMzMMHTq0XZNWOjo6as0vqlNX1tbJ5B2N9ga8nMNERESkC4MvEVMqle2a48jPzw8pKSlQq9Va5YmJibC0tNTKw9SZ3b0BbxUDJiIiIp0YNGC6cOECDh06BE9PT4NcPz8/HxkZGaitrRXLwsPDUVhYiJiYGLGsuLgYhw8fxqhRoxqc39QZaeVhYsBERESkE50mfc+bN6/BcpVKhfz8fGRnZwNAm5JC7ty5EwqFQhxKO3bsGHJzcwEAU6dOha2tLdatW4cDBw5g27Zt6NmzJwAgIiICO3bswPLly5Geni5m+lar1Zg1a5bWPeLj43HhwgUAmqCqsrISmzdvBgCEhIQgNDS01fU2FRySIyIi0h+dAqb4+PgGyyUSCezs7DBs2DA8/vjjGDZsWKuvvW3bNjHgAoCYmBix1ygqKgq2trYNnieTyfDhhx9i1apV2LlzJ5RKJQICArBo0aJ6PV3nz5+vlx5gw4YNAICZM2d26IDJwsoMEgkgCMzDREREpCudAqYjR47oqx71NJWyoM7ixYsb3M/Ozs4OCxcuxMKFC5s8f9asWfV6nToLiVQCCxtzKBU1UCq4So6IiEgXnXNfEAJwZ1iOQ3JERES60VsK7traWmRmZqK8vBw2Njbw8PBo1wzfVF9dwFRdUQu1WoBUKjFyjYiIiDomnSOa0tJSrFmzBr/99ptWwki5XI77778fs2fPhr29va63oTaQ29xZEVhdXgNLu66xQpCIiEjfdAqYSktL8corryArKwvdunVDcHAwnJycUFhYiKSkJPz888+Ij4/H6tWr0a1bN33VmVro3pVyDJiIiIjaRqeAafPmzcjKysL06dMxc+ZMWFlZic9VVVVh8+bN2LJlC7755hu89tprOleWWkd7exTOYyIiImornSZ9x8bGIjQ0FHPmzNEKlgDA0tISL7/8MkJDQ3H06FGdKkltw+SVRERE+qFTwFRQUIABAwY0ecyAAQMa3NuNDE97SI6pBYiIiNpKp4DJxsZGK7lkQ7Kzs2FjY6PLbaiNLDkkR0REpBc6BUyhoaGIjo7G2bNnG3z+3LlziI6O7tAZszsyrQ14yxgwERERtZVOk75nzpyJEydOYMGCBRgxYgRCQkLg6OiIwsJCxMfH49SpU5DL5Zg5c6aeqkutwUnfRERE+qFTwOTt7Y2PP/4Yy5cvx4kTJ3DixAlIJBIIggAAcHd3x+LFi+Ht7a2XylLrcNI3ERGRfuicuDI4OBhbtmzBpUuXkJKSImb69vPzw8CBAyGRMLu0sdybh4mIiIjaRqeA6f3330ffvn3x+OOPIzg4GMHBwfqqF+mBxd09TOVcJUdERNRWOk36/u2331BUVKSvupCeSaUSWFhrYmL2MBEREbWdTgGTu7s7cyyZuLphOQZMREREbadTwDR58mScOHECeXl5+qoP6VldaoHq8hoIasHItSEiIuqYdJrDFB4ejri4OMydOxdPPvkkAgIC4Ojo2OBEb1dXV11uRW1Ut1JOEIDqylqtlXNERETUMjoFTNOnTxfTCKxcubLR4yQSCQ4fPqzLraiN7l0px4CJiIio9XQKmCZMmMC0ASaOySuJiIh0p1PAtHjxYn3VgwzEkhvwEhER6UynSd9k+pi8koiISHcMmDo5uc2dDXgZMBEREbWNTkNyTzzxRLPHSKVSWFtbw9PTE2PGjMG4ceN0uSW1EnuYiIiIdKdTwCQIAlQqFfLz8wEAMpkM9vb2KCkpgUqlAgA4OzujqKgIqampOHz4MH7++Wd88MEHMDfnaq32wEnfREREutMpYNqwYQPefPNNeHp64sUXX0RQUJCYZiAhIQEbNmyAQqHApk2bUFJSgi+//BInT57Etm3b8Mwzz+irDdSEu9MIsIeJiIgMoShLAQgCuve2M3ZVDEanOUxr1qxBdXU1PvnkE/Tv319MMSCRSNC/f3989NFHqK6uxtq1a9G7d28sWbIErq6uOHTokF4qT827u4epiqvkiIhIz7KTCvHjW0ex861YHFoRh7LcCmNXySB0CpiOHTuGESNGQCpt+DIymQwjRoxAbGwsAEAul2Pw4MHIysrS5bbUClo9TBySIyIiPTu/MxXCHztvpZ3Kxo6/HsWZrVdRXVlr3IrpmU4BU3l5OSoqmo4ky8vLUV5eLj62t7fX5ZbUSlIzKcytZAA4JEdERPqVm1qMW1cKtMpUNWpc2HMdP/zlCK5GZ3aafUx1Cpj69OmD3377Dbdu3Wrw+Vu3buHQoUPo06ePWJabmwsHBwddbkutVJdagAETERHp04W918Wfhz8dgOCH+0JqppmeU1lSjaPrLmP3O8dxO7HQWFXUG50mfT/zzDN49913MWvWLDz00EMYMGAAunfvjqKiIly+fBn/+9//UFlZKU7wrqmpwZkzZzBs2LBmr11RUYGtW7ciISEBiYmJKCsrw6JFizBp0qQW1a2srAxr1qxBTEwMlEolAgMDMXfuXPj7+9c7NjY2Fhs3bkRGRgYcHBwwefJkPPfcczAz0+mfx2TIbc2hyK+EsrwGgiBwOxsiItJZUZYCGWdyAADWDnL0j/KEzFyGgHG9cXrLVaT/8VxBein+989T8B7uhuFP+cOuh7Uxq91mOkUE4eHheOutt/DFF1/ghx9+wI4dO8TnBEGAlZUVFixYgPDwcABAVVUV3nrrLXh7ezd77ZKSEmzatAmurq7w9fVFXFxci+ulVquxcOFCXLt2DdOnT4e9vT12796NefPmYf369fDw8BCPPXnyJP72t78hNDQU8+bNw/Xr1/HNN9+gqKgIb775Ziv+NUxX3TwmQSWgpkoFC6vOEQgSEZHxXLyrd2nA5D6QmWumf3RztcH9bwzGrYQCnPw2EYUZZQCAtNPZuBGXiwGT+iDkTz4d7rNI59o++OCDCA8PR2xsLFJTU1FRUQFra2v4+vpi9OjRsLW1FY+1s7PDmDFjWnRdJycn7Nq1C05OTkhKSsLs2bNbXKfo6GhcvnwZS5cuRUREBABg3LhxeOqpp7Bx40a8++674rGrVq2Cj48PPvnkE7FHydraGt999x0ee+wxeHl5tfi+pure5JUd7ZeUiIhMiyK/EqnHNNNxLKzNEDDes94x7kFOeORfYUg+chNntyWjqrRanN+UfOQmhj7RD35je0Mq7RijHnr55LS1tcXEiRMbfV6lUkEmk7XqmhYWFnBycmpTfY4cOQJHR0eMHTtWLHNwcEBkZCQOHjyI6upqWFhYID09Henp6XjjjTe0ht/+/Oc/49tvv0V0dDRmzJjRpjqYEvk9G/DauVgZsTZERNTRXdqXBkGlmcwdFOXV6BdxqVSCgEgP9L3PDfE/Xcfl/WlQ1wri/KaEX29gxLOB6Bno2J7VbxOdJn3/+OOPzR6jUqmwZMkSXW7TasnJyfDz86uX7iAwMBBVVVXIzMwUjwNQb16Ts7MzXFxckJKS0uD18/PzcfXqVfG/jIwMA7RCf+S23E+OiIj0o6q0GlcP3wQAyCyk6D+x+ZEYC2tzDH/SH499NAZ9hrmK5XXzmw59bvr5m3TqYVq5ciUcHR3FYa97qdVqLFmyBDExMbrcptUKCwsREhJSr7yux6qgoAA+Pj4oKCjQKr/32Lrn77Vnzx5s2rSpXnlaWpq4JYwpKS4vFX++djUNJbLcNl9LoVAgISFBH9XqELpSe9nWzqsrtZdtNbwbR4pRq9R81rmE2CDt5rVWne8+wRI2/q5IO1iIihzNl/i009lIP5cN9/u6oXeYPWTy+v05hmpvUFBQi47TKWAaOHAgli1bhm7dumHw4MFaz9UFS0eOHMGjjz6qy21aTalUwsLCol55XZlSqQQAVFdXa5Xfe2xjOaamTJmCsLAw8XFGRgaWLVsGb2/vBlfhGZtZ7k1koAgA4OLgisCg+mPNLZWQkNDiX67OoCu1l23tvLpSe9lWw6qurMW5z6IBABKZBOHPDGnbNI8g4L6Jgtb8JkEFZB0vReGVqgbnNxn7tdVpSO7999+Hh4cH3nnnHa3hK7VajX/+85+Ijo7GI488gnnz5ulc0daQy+ViMHS3ujK5XA7gTqDU2LF1x93L2dkZ/v7+4n+mPjH83knfREREbXH190xx1wjfUe46zYmtm9/0+KdjG8zf9NM7x3E7seGRHmPQKWCysbHBxx9/DFtbW/z1r3/FrVu3IAgCli5dit9//x1/+tOf8MYbb+irri3m6OjY4HDavUNwdw/RNXRsWyedmxqtgInboxARURuoalS4tC9NfBz8cPMpglqi6flNp/Hb5+dRmmP8+U06BUyAJuj45JNPoFar8eabb+K9997D4cOH8dBDD+Evf/mLPurYan5+fkhJSYFardYqT0xMhKWlpZiHyc/PDwBw9epVrePy8/ORl5cnPt/R3btKjoiIqLVSY2+hokgzpcVrSA90722n1+vX5W+a/M5wOHrduXb66Rzs+GsMMn4vQnWF8b706xwwAYCHhwc+/PBDFBUVISYmBg899BD++te/6uPSzcrPz0dGRgZqa+9s8hceHo7CwkKtyebFxcU4fPgwRo0aJQ7FeXt7w9PTE3v37tWarL17925IJBIx4WZHp7UBL4fkiIioldRqQWsblJApfQ12r7r8TaNfGgDLbprPa3WtgKzjpbh+Mttg921OqyZ9N7Qy7G6BgYFITU2Fk5OT1rESiaRN+Yx27twJhUIhDpkdO3YMubmaFV5Tp06Fra0t1q1bhwMHDmDbtm3o2bMnACAiIgI7duzA8uXLkZ6eLmb6VqvVmDVrltY95s6di0WLFuHNN9/E+PHjcf36dezatQsPPfSQ1h54HZmFDYfkiIio7TLOZKM0WzMs1jPIET38uhv0fg3lb7LsboZ+4b0Met+mtCpg2rhxY4uO27x5s9bjtgZM27ZtQ3b2nWgyJiZG7DWKiorSyiJ+N5lMhg8//BCrVq3Czp07oVQqERAQgEWLFsHTU3uF2KhRo7Bs2TJs2rQJK1asgL29PZ555hnMnDmz1fU1VWYWMpjJZahVqtjDRERErSIIAuJ/ap/epXvVzW8KGOeBpMtXIZXpZWCsTVoVMK1YscJQ9WjQ9u3bmz1m8eLFWLx4cb1yOzs7LFy4EAsXLmz2GmPGjGnxli0dldzGnAETERG1WtblAhSka/L5OfXphl4Dndu9Dt1crWFb0PDK9fbSqoApNDTUQNUgQ5PbmqO8sArK8hoIggCJpGPs3UNERMZ14ac7iSlDpvTtsp8fxuvbonZVt1JOVaOGqlrdzNFEZIoEQUDW5XwU3Cht/mAiPchNLcbthEIAQDc3a/QZ7mbkGhmPTgHT/v378eKLLyI/P7/B5/Pz8/Hiiy/i4MGDutyG9ODu1AJVTC1A1CGd+yEF+/99Bnv+fgJFN8uMXR3qAi7suTN3KfjhvlqZt7sanQKmAwcOwNzcHM7ODY9nOjs7Qy6X43//+58utyE9kNtwA16ijiz9TA7id2uGRlQ1alzen27cCnVBglowdhXaVVGWAhlncwAA1t3l8BvtbuQaGZdOAVN6enqzyR19fX2Rnp6uy21ID7g9ClHHVZylwJE1F7TKUo/dYm9xO0qOvolvZ/+GvUtOihvPdnYX78q7NGCyN2TmMiPWxvh0CpjKy8thZ9d0pk8bGxsoFApdbkN6wO1RiDqm6spaHPzsPGoqNR/S5laatTqqajWSo28as2pdglot4OR3iYhZdwnVFbXIuVqklcCxs1LkVyL12C0AmlXWAeM8jFwj49MpYHJyctLadLchqamp6N7dsAmuqHnsYSLqeARBQMyaiyi5VQ4A6O5hiwf/Plx8PuHgDai72DBRe6quqMHBj8/h8r50rfKLe6+jLK/SOJVqJ5f+lwZBpfndCoryhIVVqxbVd0o6BUxDhw7FmTNncObMmQafP336NE6fPo3hw4c3+Dy1H+3tUdiNT9QRXNx7HelnNHNILKzNcP8bg+Hcxx69QzTzRhV5lciMyzVmFTut0pwK7HnvJDLj8wAAEqkErv00X/5VNWqc3pJkzOoZVFVpNZIOZwIAZBZS9J/Qx7gVMhE6hYxPP/00fv/9d7z11luYMGEChg4dCmdnZ+Tn5+PMmTP49ddfYW1tjaefflpf9aU24pAcUcdy82Iezm5LFh9HvBoCezcbAED/KC/cvKBZnXzllwx4DXFt8BrUNrcTC/DbZ3Fib7zcxhzj5w+CU59u+OHNGFSVViPtVDZuJRTAPcjJyLXVvyu/pIvpZwIiPcT93Lo6nQImd3d3fPDBB1iyZAn279+PAwcOiM8JggAXFxcsWbIE7u5de2a9KeCQHFHHUZZbgcNfXoDwx2jb4Km+8BzUQ3y+d4gLurlaozSnArcuF6AoS4HuvRreKopaJ+n3TBzbeEUcjrJ3t0HUgiFisDr0iX6IXX8ZAHDym0Q88q9RRt2uQ9+qK2uR8OsNAIBEJsHAB72NXCPTofOgZHBwMLZu3YrY2FgkJiaivLwctra2CAwMRFhYGMzNzZu/CBmcpQ0DJqKOoFapwm+fnRffpx6DXDDoz75ax0ikEgRFeeLkt5phoYRfMxD2fP92r2tnolapcXrLVa10Db2DnRH5eqjWlIZ+4b2RePAGCtJLUXijDFcP30Tg/Z4NXLFjSvo9UxyF8A1zh62zlZFrZDr0MovL3NwckZGRiIyM1MflyADktnflYeKQHJFJEgQBsRsuoyBDk5Sym5s1IuaGQNJAskC/sb1xdnsKapUqpMRkYdgT/WBhzS+obVFdUYPfv4gXhzkBoP9EL9z3dEC93iOpVIKRM4Lw85KTAICz25PRd0RPrV78jkpVo8LlfWni4+CH22+T3Y6g8/QjUpNkFlLIzDUvN3uYiExTwq83kBqrWcptJpfh/jcGa/Vu3E1uYw7fPxIJ1ipVSI7Jard6diYl2eX46d0TYrAkkUkw+oX+GPlcUKNDbW7+3eEzqicAzd/TczubXi3eUaTE3kJFkRIA4DXUlcO899BLD1Nubi7i4uKQn5+Pmpr6H8YSiQQzZszQx62ojSQSCeQ25qgoVjJgIjJB2UmFOPldovh47MsD4ejRdJ67/hO8kHRIs5op4dcM9I/yarA3ihp260oBDq24a3K3rWZyd0smcg9/0h8Z53JRq1Qh8eANBIzzaPb1MmVqtaCVqDJkCnuX7qVzwLRq1Srs2LEDavWdDV0FQRB3M677mQGT8cntNAETswMTmZbyoiocWhkvTjQe+KA3+o7o2ex53Xvbwb2/E25dKUBpdgVuXsqHR4iLoavbKSQduoFjmxLEf3OHXprJ3d1cbVp0vo2TFUKm9MW5H1IgqAWc/CYRkxYPEz/7Opr009koza4AAPQMckQPXwfjVsgE6TQkt3fvXmzbtg2DBg3C0qVLIQgCJk6ciHfffRdTpkyBTCZDREQEPv/8cz1Vl3RR17WvqlajtrprpPanjqe6ogapsVkozSk3dlXahapWjUOfx6GyWDMU4t7fCcOm92vx+UFRXuLPCb9k6L1+nY1apcbxzQmI3XBnJVzvEBdMWTKyxcFSnYEPesPWRTMp+taVAnHftY5GEAStTXZD/uRjxNqYLp16mPbu3Qs3Nzd89NFHkEo1sZebmxvGjx+P8ePHY9y4cfjLX/7CyeAm4t6J32YWXXtfIDI9BRmlOPR5HEpzKiCzkCJqwRD0GtDw5t6dxclvE5GbUgwAsHW2ROTrIa1apu45pAdsna2gyK9E5oU8lGSXi0vgSZuyvAa/r4xH1qU7k7sHTOqD4U8HQNqGoUwzCxnuezoAhz6PAwCc+i4JvUNcOtzf1qxL+ShILwUAOPXphl4DOl9uKX3QqYcpIyMD9913nxgsAYBKdafnIjQ0FCNHjsTWrVt1uQ3pCXMxkSlLjrmJPe+eQGmOZlhAVa3Grx+dw80LeUaumeEkH7mJxIOanDcycynGzx8Mq27yVl1DKpUg8IE/lrULEK9H2kpul2PPuyfEYEkqk2DMSwMw4tnANgVLdfoMc4V7f02AUZZXWW8blY7g7t6l0D/17bDDioam8yo5W9s7s+gtLS1RUlKi9byHhwfS0tLuPY2MQM5cTGSCaqtViP36MmLWXIKqRjMXUtxgtkaNg5+e75Tbf+RfL8Gx/1wRH4c93x8ufe3bdC3/iN7iKtir0TdRU1Wrlzp2FreuFGDPuydQclszzCu3NcekxcPhH6n7hrISiQQjngsUJ9vH/3QN5YVVOl+3veSmFuN2QiEAwL6nDbyGuRm5RqZLp4DJxcUFeXl3vv316tULiYmJWsekpaXByoqJr0wBe5jI1JTlVmDvP04i6fdMsSxgvAee+ioSfYZrtvtQ1ahx8LPzyDjXMeeHNKSqtBq/fX5eDBADxnugX0TvNl/P0s4CPmGaFAM1lbViagICEg5mYP/yM2L+ue69bfHIslHoGeiot3s4etiJyStrlSqc/v6q3q5taHf3LgU/5K1Tb1tnp1PANGDAAFy5cucb0ujRo5GSkoKPPvoIJ06cwNq1a3Hq1CmEhIToXFHSnfZ+clwpR8aVGZeL3X87Ls6dkFlIEf5KMEa/MADmlmYY91qouFJMXSvg0OdxSD+Tbcwq64VapcbvX8RDka/phejh64CRM4J0vm7/uyd//5oBoW5flS5KrVLj+MYrOL4xAYJa82/hMcgFD/9jBOx6WOv9foMf8xX/xl47dgs5yUV6v4e+Fd0sEyeqW3eXi3m9qGE6BUwTJkxAr169kJ2t+SM2ffp0+Pr64ueff8aiRYuwZcsWuLq6Ys6cOXqpLOmGQ3JkCtRqAWe3J+OXj86J3/q7uVpjytKR8BvbSzxOaiZFxKvBYoJAtUrAoZXxSDt12yj11pez25Nx60oBAMDK3gLj3xgEmZnuOYSd+nSDq393AEDRTYU4zNIVKRU1OPDBWSTcNZ9r4IPeeODNIQbLhm5pa4Eh0/zExyc23wnUTNXFn+9Mlxk42Rsy8441Wb296bRKbtCgQRg0aJD42NraGmvWrEFsbCyysrLg5uaGUaNGcUjORHBIjoytslSJw19ewK3LBWKZ1zBXhL88sMEPMqlMivC5mlVjKUezIKgE/P7FBUSoAZ+RzecpMjXXT97Gxb2aDymJTILx8wbBprul3q7ff4IXcq5qejau/JIhTkbuSioLarBnw535SlKZBKNfGKDTkGdLBYzzQOJvmSjKLEN+WimSj9zUyzwpQ1DkVyL1mGboVm5jDv9xpllPU6KXTN8AUFJSgtTUVJSXl8POzg4PPfQQ7O3bNoGRDEN7SI4BE7Wv3JQiHFoRL06IlUglGDa9HwY+6N3kqhypVIIxLw+ERCZBcvRNCGoB0V/GQ1Cp4Tu6V6PnmZqim2WIWXtJfDzimQC4BehvHg0A9BnqCuvuclQUKXHjXA7K8iph59I1vrCqalS4eSEfFzdmQ1WlmRtmaWeO+98YrPd/58ZIZVKMnBGIfctOAwDObEuG931uJrnH36X/pYl5qIImeMHCSm/hQKel87/Q7du3sXLlSpw8eVJrzFwikWDkyJF4/fXX0bNnx/sm2BnJbe7Kw8QeJmongiAg4dcbOPVdItR//IG2srfAuP8LRc/AlvWASKUSjHlxAKRSCZJ+z4QgANGrL0KtFtBvrOF7DnRVXVGDg5+eR61Sk3bFd7S7VsJJfZGaSRE43hPndqRAEIDE3zIw/MkAvd/H2ARBQFluBXJTS5CbWoy81GIUZJRCXXvnM6i7hy2iFgyBnYv+5ys1xT3ICd7D3ZB2OhtVpdWI23UN9z1tWq9BZakSSYc1Cy3M5DKt+W/UOJ0CpqysLLz66qsoKipC7969MXDgQHTv3h1FRUW4fPkyjh07hoSEBKxatQru7pxMZmwckqP2VlNVi6PrL+P6iTvzjtwCumPc66GwbuVQlEQqQdis/pDIJJpcQwIQs/YSBJVgssMeADQ9YqsuittOOHnZYfQLAwyW68Z/vAfidqdCXSvg6uGbGDzVr/mTTJxSUYO8a8XIvVaMvNQS5F0rRlVZ43/DPAf3QMSrIUbrNRn+dABuxOVCVaPG5QPp8I/sDQd309nINuGXDKiqNb1w/pG9YdnNopkzCNAxYFqzZg2Ki4vx5ptv4uGHH9b6AyAIAvbs2YPPPvsMa9aswdKlS3WuLOnG3FIGqUwCtUqAkvvJGVVBeimun8qGR4hzuw0XtLeiLAUOfX4exVl3tjgZ+KA3hj3RD9I2TnKWSCUYNTMIUqkEV37JAATg6PrLUKsFBI731FfV9Sp+9zXcOK/JIyW30QwRmckNN7nW2l6OviN6IjX2FpSKGlw7fgvoYbDb6Z26Vo3CG2VicJSbWizOR2qKfU8bzf5njlUYM22wUZfH27lYIfjhvoj7MRWCSsDJb5MwceFQo9XnbtWVtZr3DjTz6AZO9jZyjToOnQKmc+fOISwsDFOmTKn3nEQiwZ/+9CecPHkSZ8+e1eU2pCcSiQRyW3NUllRzDpMRXTt+CzFrNUkaL/x0Db0GOmHItH6darPL6ydvI2btJXEIytxKhrEvB8N7uO5J8cREgTKJmFX52B/7ghlimEsXmXG5OLczRfNAAkS+FmKQJe33CoryEnMxJfySgX7PdDf4PdtCEAQo8qs0vUepmgApP61EzE/VGLmtOXr4OqCHrwNcfO3h0tdB7EFPSEgwiVxCwQ95Izn6JsoLq3DzQh5uxOXCc5DxI9ek3zNRXaFJbOob5g5b564xx00fdAqY1Go1+vTp0+Qxffv2RVxcXKuvXV1djQ0bNuDXX39FWVkZfHx88OKLL2LYsGHNnnvo0CFs2bIFGRkZsLKyQlhYGF555RU4ODhoHVdYWIi1a9fixIkTqKiogJeXF5555plOvfedGDBxSK7dCYKAuB9TcX5nqlZ51qUCZF06AY9BLhgyzQ/OfTruYglVrRqntyThyoE7m8B297DD/fMHwb6n/vY3k0gkuO/pAEhlEnHV2fFNCVCrBAyY1Edv99FFSXY5Dn91AfhjWs3Qx/uhd4hLu9y7h68DXHzskXetBAUZZSjLtAb6t8utm6RWqZGdVCTOO8q9ViJuOtwYqUwCpz7d4PJHgNTD1x52PaxNfvsOc0szDH/KH4e/vABAs2dgr4HOekkh0VaqGhUu7/sjlYAECH64r9Hq0hHpFDD169cP6enpTR6TlpYGf3//Vl97+fLliI6OxrRp09C7d2/s378fb731FlasWIHg4OBGz9u9ezc+/fRTDBkyBK+++iry8vKwY8cOXL16FWvWrIFcrtmnqby8XJx/9dhjj8HR0RGHDx/Ge++9h9raWjzwwAOtrnNHoJn4XY6aKhVUtWqjvnm7ktpqFY6uu4Rrx+/M5fEa5orCjFKU5VYCADLj8pAZl4c+w10x5DE/dO9tZ6zqtkl5YRUOrYxDbnKxWOY72h2jXxhgkCEoiUSCYdP9IZFKceGnawA0H0pqtYDgB407zFBTVYvfPosTv8l7DXNFyJT2/XAKmuCFI6suAgBuny0DJrbr7euprqjBvn+fQf71kiaPs+th9UfA54Aefg5w8rLrsPmB+o7sicTfbiA7qQil2RW4ciAdwQ8ZL0hJib2FiiJNgOo11BXde5nOvKqOQKeA6aWXXsIbb7yBn3/+GQ899FC95/fs2YPTp0/js88+a9V1ExIScOjQIcyZMwdPPvkkAE2SzJkzZ2L16tVYvXp1g+fV1NRg3bp1CAkJwaeffip+AxkwYADefvtt/Pzzz5g6dapYt6ysLHz22WcYMmQIAOCRRx7BK6+8gq+++goREREwNze9paC6uje1gLV96zb6pNarLFXi4Kfn7wQSEmD4k/4Y+KA3BJWA5JgsxP2YKi63Tz+dg/QzOfAZ5Y7Bj/rqtWfGULIu5+PwlxdQVaqZGyc1k2DkjCAEjPMwaE+ARCLB0Mf9IJVJEPejpufu9H+TIKjUCJniY7D7NkUQBMR+fRlFmWUAAHt3G4S/PLDde0T63ueGU98loaq0GgWJFSgvrIKNo/5yPrWGWi3g8JcX6gVLFtZmcPGx1wRHfwyvtXbzYVNWN3y8+2/HAQGI25UK39G9YO3Q/m1UqwVc3HtnG5QQ9i61WqsCpk2bNtUrGzRoED7++GNs3boVAwcOhKOjIwoLC3Hp0iXcvHkTw4YNw/nz5zFw4MAW3+fIkSOQyWRac6PkcjkefPBBrFu3Djk5OXB1da133vXr16FQKDBu3DitP051yTMPHTokBkwXLlyAg4ODGCwBgFQqRWRkJFavXo34+PgWDf91NPeulGPAZFhFN8vw60fnUJan6UUyk8sQMTcEfYZpfn8lZhIEjPOA72h3XD2cififrmuGKATN9grXT9yG39heGPRnn3ZfHt0SglrAhT3Xce6HZNRlFbF1tsL4+YPavJFsa0kkEgx5zA9SqQTndmjmC53Zmgy1SsCgP/u2Sx3qqGvVuPi/NLEn0dxKhgfeGGyUPDwycxkCxnkgfvc1QAASf7uBoY/3a/d6AMCZ768iM16z76jcxhzDn/aHq1932Pe0ETet7ayc+9gjINIDSb9noqZShbPbrmLsy42PkhhK+ulscaWme3+nTjVnsr20KmDauHFjo89lZmYiMzOzXvnp06dx5swZzJgxo8X3SUlJQe/evWFjo/3NOjAwEACQmpraYMBUU6OZl1M37HY3uVyOlJQUqNVqSKVS1NTUNHicpaXmG9jVq1cbDZjy8/NRUHAnU3FGRkaDx5kibo/Sfm5eysehz+NQU6kZlrHuLkfUgiFw9q4fSJhZyNB/Qh/4R3gg4WAGLu69jqqyGghqAcnRN5F6NAv+kR4IfcTHaL0E91IqahC9+gIy4+5swN07xBkRc0Ngadf+y5QHPeoLqZkEZ7YmAwDO/ZACtUrA4Km+Bu3dqa6oQeaFfNw4l4PM+DxxGA4Awl8JhoMRhz0C7/fEhb3XIagEJP2eiUF/9mn34a3k6Ju49L+7spvPH9TlMpAPedwP10/eRnVFLZKPZCHwfk+4+Di02/2LsxQ4X7f4AGj34eHOolUB04oVKwxVDy0FBQVwcqr/hqory8/Pb/C83r17QyKR4NKlS5g8ebJYfuPGDRQXFwMAysrKYG9vD09PT5w7dw7Z2dlwc7uzcufixYtN3gPQDOc11NuWlpYGlUrVbPuMqaSiWPw5NfEaClWt67VQKBRISEjQc61MV1vbm32uDNcPFIoTfm3cLBDwuDNyK7OQm5DV5LlmfYGQV9xw+0wZsk6WQlWlhlolIPG3G0g6fANuQ+3Qa5Q9LGz0+8HXmrYqbitxdWc+lMV3ggOPcHv0Hm2N65mpTZxpWOa+gNd4B2QcKgYAxP2YirycXHhEOGgFTbr+HitLalGYXIHC5EqUZlRBaGBRV++wbqiwKUSCkfd0c/S3QkFCBapKqxH74zm4DGy/AK70RhWufJcjPvaO6o5iSQ6KE3KaOEs3pvo3yj3MDukHNdvWHFpzDgNnuukcyDfXVmVpLTJjSpB7QXHnb1FPCxRLc1CSkKvTvY3BUK9tUFDLNr9uVcAUGhralrq0mlKpbHD+kIWFhfh8QxwcHBAZGYkDBw7Ay8sLY8eORV5eHlasWAEzMzPU1taK5z700EP46aef8N577+G1114TJ30fPXq0yXsAwJQpUxAWFiY+zsjIwLJly+Dt7d2mCe7tKisDmUc08wh6OLqhX1DrsiQnJCS0+JerM2hte9VqAaf/m4Tr++98SHoN0STRM7ds3ZTBgYMA5dM1uLwvDZf3p6OmSgVBBdw+VYa8+Ar0n+CFgQ95w9JWP705jbW1qqwa+WklyL9eqvl/WikU+ZXi83Jbc0S+FoLewe2zAqw5QUHAZfc0nPw2CQBw81gpHB2dMWx6P/EDqrWvqyAIKEgrRcb5XNw4l4OCjLIGj7OwNoNHqAv6jugJzyE9TGIll6O0ED8vPQUAKL5ci/An2uf9W5ZXgZ9WnhCDyaAHPDHqWcMv1TPVv1EB/dT4MSEWxVnlUGRVw6LQAX5jdNvap9H3rKIaF/ZcR8Ivt7VSNFg7yPHA60M67EpcY7+2Jrl5jFwuF4fX7lZdXS0+35gFCxZAqVRi1apVWLVqFQAgKioK7u7uiImJETcC9vHxwbvvvotPPvkEr776KgDA0dERr7/+Oj755JMmNwx2dnaGs7Nzm9tnTBySM5zqyloc/jJea4hq4IPeGPakf5vzwshtzDFkWj/0n9AHF36+joRfNRl6a5UqzR/EgzcwYFIfDJzcRy/zZJoLju7l4mOP8fMGmVwulwGTvCGRSnFis+bb6MW916FWqXHf0wEtDmJUNSrcSijEjXO5yDifg4rChr9E2TpbwWtID3gNdYWbf/c2J+U0FFf/7rBxNUd5Tg3yrmkSQRp6/kpNVS1+/fi8uAjAfYATRjwXaNB7mjqpmRQjng3Egfc1eQnPfH8VfYa5tvqLVFNqqjRJKS/uva41NGxhbYbgh/ui/wQvvd6vqzHJfzknJyfk5eXVK6+bN9RUsGJra4vly5cjJycHt2/fhpubG9zc3DBnzhw4ODjAzu7OUu2IiAiEhYUhNTUVarUa/fr1E3NGeXiY7lYLumjP7VFyU4qQfbUIPiN7wsbJtD5Q9U1RUIlfPz6Hwj96HiQyCcKe748APe0AbtnNAvc9FYCBk71x4adrSDx0A+paATWVtYj7MRUJv2Qg+GFvBEW1/A+iGByllSL/egluJ+fjeEnz8/HM5DI49ekGjxAXDHywj8ku+e4/wQtSmQTH/nMFAHB5XzoEldDkB3eVohqZcXm4cS4XNy/moaaq4SF2l7728BzSA55DesDRw84kepIaI5FI4DbUDtf+p+n1TPg1w6ABk6AWEP3VBXGVYDc3a4z/v0GQykwrkDSG3sEu8BzSAzfO5aKiWIn43dcwbLruoxLqWjWuRt/E+R9TtfJaycylCJrghZApffXWE92VmWTA5Ovri7i4OJSXl2tN/K4bu/T1bX7li6urqzgxvKysDMnJyQgPD693nLm5uTiZHNBkLweAoUNNI429vsnvetMYMtt3bmox9i45BUEtaDaffMof/pEenXJFTN71Ehz8+Bwq/vhDZWFthvHzB6HXAP33Qlo7yDFyRhAGPuSN+N3XcDX6JgSVAGV5Dc5sTcalfekImdIXgfd7wsziTiBzb3DUXM9RnbrgyNm7G5z72sPZ2x72PW1MIpNySwTe7wmJTILYry8DAnDllwyo1QIcht85piS7/I9epFzkXC2CoBbqXUdmLoV7fydNkDS4B2xauQ+esTkPsMHNI2VQKmpw/cRtDH86wGArZM9uT0bGOc38GAtrM0S9OUTri1pXN+KZANy8kAd1rYBL+9LgH9kb3VzbljpEEARcO3Eb57YnozSnQiyXSAC/8N4YMtW3039ZbU8mGTBFRERg69at2LNnj5iHqbq6Gvv27UNQUJAYCOXk5KCqqgpeXk1vh7Bu3TqoVCpMmzatyeMyMzPx008/YdSoUZ22h8ny7h6mJjav1EXd0FTdB09NZS1iN1zBtRO3MealAW3+42CK0k5nI3rVBXEjS7seVpjw16EGXxll62SF0S8MQPBDfRG3KxWpR7MgCEBVaTVOfZeES/9Lg+9od5TmVCD/esuCI6m5BC59HTTBkbc9nPt2rOCoMQGRHpBKJYhZd0mzvP7gDbjk2KDi0lVknMtFcZaiwfPktubwHKwJkHoHO3fooQyZuRT+kb1xcW8a1CoBVw9lYtCj+k+5kBKbhQt7NLl+JBJg3P+FGnWVoCnq5mqj6Snecx3qWgGnvkvCA28Oaf7Ee9y8lI+LG7NRnn1Dq7zPMFcMebwfk1IagEn+BQgKCkJkZCTWrVuH4uJi9OrVCwcOHEB2djYWLlwoHvevf/0L8fHxiImJEcu+++47pKWlISgoCDKZDEePHsWZM2fw4osvavUkAcCzzz6LyMhI9OjRA7dv38ZPP/2Ebt264c0332y3trY37cSVhtmA98TmBDF7tZW9BSpLNPe5nVCInQtjMXRaP/Sf1KdDfxALgiYJXN0SdkAzV+SBNwa3687f3VytEf5KMEIe7ovzP6bi+glN/p+KIqW4ZUhDtHqOvO3h7N0Nt4pvoP8AE9g/wwD6hfeGRCZBzOqLEAQg72I58i5er3dcNzdreA1xhdeQHujRr3uH/h29V+D9Xrj0cxoEAUg8dAMhU/rqdb5VbkoRYtdfFh/f92ygySwEMDUhf/JBSkwWKoqVyDiXi5uX8tF7YMt6pPOuFePM1mTculKgVd4zyBHDpvszv5IBmWTABACLFy+Gq6srfvnlFygUCvTt2xcffPBBsyv1fHx8cPToURw7dgxqtRo+Pj5YsmRJg/vD+fr6Yt++fSgqKoK9vT0iIyMxa9YsdO9umhtV6oO5lRkkUgkEtWCQOUzXjt9CSkzWH/eS4eF/jERZbgWOfn0ZirxKqKrVOPXfJFw/eRtjZg+Eo0fH2v4D0OyXduw/V5AcfVMs8x3tjjEvDTDafB6HXrYY93ooQv/kg3M7U5Bx5s6y7YaCI3t323rBwO3SzhMcNMRvdC9IpRJEf3VBTLIJCeDq1x2eQ3rAa3CPTt0bYudiBc8hrsg4m4OKIiXSzuTAZ2RPvVxbUVCJg5+eF1dkBYzzQP8JprURsimxsDLDsOn+OLJGk8bm5DcJeHT56CYD2OJbCpzbnoK009la5U5edhg23R+9gp1Nei5dZ2CyAZNcLsfcuXMxd+7cRo9ZuXJlvbKRI0di5MiRLbrHe++91+b6dVQSiQRyGzNUldXoPWAqy6tA7IYr4uNRz/dHN1drdHO1xtQPRuPs9mRc+SUDEIC8ayXYvfgYQh/xQciffDrMnnZVimoc+jwOt+/KrTNkmh9CH/ExiT9Wjp52eOCNwSi6WYbiW+VwcLdpMDjqqnxGucPSzgLnf0mE/1BveAxygVUXynbff4IXMs5qgumEXzP0EjDVVNXi4CfnxZ5kt0BHjJwZZBLvB1PmO9odCb9lIC+1BMVZ5Uj47QYGTOxT77jywiqc35mK5CM3tebX2fWwgtsoG4x9bGinnBtqikw2YCLDkdtaaAImPU76VqvUiP7qopjV2ifMHX6j7+QYMbc0w8jngtB3RE/ErLuEklvlUKsEnN+ZirTT2Rjz0kCT70ouuV2OXz46K24vIDOXInxOMPqO0M+3dH3q3tuuw23e2156DXRGicyp1TnIOoOeQY5w6GWL4iwFcq4WoSC9FE59urX5eoJawJE1F1GQXgpA8yF+//xBHeYLkDFJpBKMfC4Ie949AQA4vyMFPqN6invpKRU1uLD3Gq4cyNDKpWRlb4FBj/rCP9IDV5OTGCy1I/5Wd0F1uZiqK2qhVjWQorgN4ndfQ06yJoutrYsVwp5vOLmYa7/u+PO/wzQ9MjLNG70oU4G9753Aqf8moVZpmpnSbycWYM97J8RgybKbBR58Z7hJBktEjZFIJAiK8hQfX/lVt22dzv+YivTTmh4rcysZohYMMcq2OB1VD18H+I3VfLGsrqjFuR9S/sixdg3b5kfj4t40MVgytzLDkGl+ePyzcAQ94MWg1AjYw9QF3T3xu7q8VudJytlXi8Sd4iVSCSJfDWkyiaKZhQxDH+8H7+FuiFl3CQXppRAE4NL/0pBxNgejXxoA9yDT2Wsq+chNxH59GWqVpju8u4ctohYMMcnNcIma4zemF85uS0Z1RS2uHbuF4U/6tynIuXbitvi+hwQY91ooezXbYNh0f6SfyUZNpQpJv2eKOZrqSM0kCIryQugUn3ZdUEL1MUTtgrRXyuk2LFddUaM1iXbwo75w7deySfNOfbrhT/8ciWHT+0FmrvlVLM2pwL5lpxH79WVUVxg3E7mgFpDxexFi1l4Sg6XeIc54+L0RDJaowzK3NEO/cM1wpKpGjauH62+a3py86yWI+WPCMgAMfyoAHoN66K2OXYm1gxyDHvkjxYMAMViSSIB+4b3w+KfhGPFMIIMlE8CAqQvS3h6l7akFBEHAsf9cEXP8uPp3R8gjPq26hlQmRcgUHzz6/mi4+t8JtJJ+z8SOt47ixvn23yBSVatGbmoxDq2MQ9bxUrE8KMoLUQuG6GULEiJjCnzAE/hj6kvibzdaNTRfXlSFg5+cE4eK+oX3wsDJfQxQy66j/6Q+sO95Jz+d15AeePSD0Rj7crDJbTvUlXFIrgvS1/YoqbG3cO24Ju+PhbUZIuaGtHk1ln1PGzz09/uQeOgGznx/FTVVKlQUKvHrx+fgM6onRjwXKE6G1LeKYiVyU4qQk1KM3JRi5F8v0ZpkKZEAI54LRP8JfQxyf6L2Zu9mA48QF2TG50GRX4Ub53PRZ5hbs+fVVqvw2yfnUVGk6QVx9e+OsFn9uSJORzIzKR78+31IPXYLbv0c0MOv86a26cgYMHVBdwdMVW0ckivNKcfxjXdSCIS9MAB2Lrp9E5JIJQh6wAseoT1w7D+XcfNCPgDg2vHbyLqUj5EzgtB3ZE+d/jirVWoU3ihDbkoxcpKLkJtSjLK8xrNgSy0keGDeYA43UKcTFOWFzHjNnp0Jv95oNmASBAExay8h73oJAM2mw/fPH2Syewl2NNYOcgQ/6G3salATGDB1QdpDcq0PmNS1ahz+6oK4Manf2F56S4AHaBLsTXhrKFJjb+Hkt4lQKmpQVVaDw19ewLXjtxE2qz9sHFu2l1dVaTVyUjSBUc4fvUfNrcSz62GFHn7d4ernAGW3EgZL1Cn1DnZGNzdrlGZX4NaVAhTdLGty0nb87mtiJnkzuQwPLBjcpXJYETFg6oK0NuBtQ8B0/sdU5KVqvmV2c7XGyBkNpxDQhUQigd+YXugV7IwTmxKQdkqT3fbG+VzcTizEfU8HwD+yt1Zvk1otoChT03ukCZCKxDQAjZGZS+HiY48efg7o4dsdPfo5aG1KWrfhM1FnU9eje/LbRACajYlHvzCgwWPTTmfj3A8pf5wIRL4WAifPtudvIuqIGDB1QbrMYSrJqMKVnzR5VyQyCSJeDYGFleF+jazt5Rg/bxDSz2Tj2MYEVBYrNZv5fn0Z147fQlCUFwozSpGTXIy868WoqWy698jW2RI9/Lqjh58DXP0c4OjVjflMqMvqF94LZ7cno1apQmrsLQyb7q/VAw0A+eklOLL6zoq4YU/0g9cQ1/auKpHRMWDqgrQDppavklMqapCyOx/4I4XAkMf82i07d59hbugZ6IRT/01E8hHNXnW3Ewq1tii5l9RMAmdve7j20wRIPfwcYNO9ZUN5RF2BhbU5/Mb2QuLBG6hVqpB85CYGTr4zj6aiWImDn5wXh7F9R7sj+OG+xqoukVExYOqC2pKHSRAETW6kMs0fzp5Bju3+h1Nua46xLwej7yh3xP6xme/drB3lcP1jWM3VzwFOfbpxQipRM4KivJB48AYAIPGgZj8ziVSiWRH36XmUF1QB0GSlHv3iAK6Ioy6LAVMXZGFtrsnBIrR8SC75yE1xl2y5jTki5gQbbUPX3gOdMfWD0bh6OBPlhUpxDpKtE/OVELVW9162cO/vhFtXClCaU4HMC3nwCHVB7NeXkZtaDACwcbTE/X8ZDDMLfgGhrosBUxcklUogtzaHsrymRQFTye1ynNicKD4e/dIA2Bg5ODG3NMOASVyCS6QP/Sd44daVAgBAwq8ZKLqpQGrsLQB3VsRZO3BFHHVtDJi6KLntHwFTM0Nyqlo1Dn8ZL85hcB1kC+/hzSe4I6KOw2NwD9i6WEGRV4mbF/Jx82K++Fz4nGA497E3Yu2ITAOXB3VRdSthlOU1ENRCo8ed+yEZ+Wma7UHse9qgzwPMQEvU2UilEgTd73mn4K6FHfyCRKTBgKmLEid+C0B1RW2Dx2RdzsfFn9MAAFKZBJGvhUBmwV8Zos6oX2Rvrfd335E9Efrn1u0NSdSZ8dOvi9JeKVc/tUBVWbUm98of3zSHPtEPzt7slifqrCxtLRD8kGblq1ugI8a+PJAr4ojuwjlMXVS97VHuykMnCAKOrr8sbrDpPsBJKzcLEXVOg6f6InC8B6zs5ZAYaRUskaliwNRFNZXtO+n3TGSczRGPC58TzD+eRF2ARCKBNZO7EjWIQ3JdVGPJK4uyFOLeUgAw9uWBzI5NRERdHgOmLuruDXiryjQBk6pGhcNfxkNVrQYABD7gyT2jiIiIwICpy2po0veZrckozCgDADj0ssV9TwcYpW5ERESmhgFTF3XvpO+bF/JweX86AEBmLkXk6yHcBoGIiOgPnPTdRd3dw1RyqxzXT9wWHw+b7g8nz27GqBYREZFJYsDURd0dMN29DULvEBf0n+hljCoRERGZLA7JdVF3D8nVsexmgbGvMFkdERHRvRgwdVFSmRTmVtodjOEvD4S1PXckJyIiuhcDpi7s7mG5/hO84DGohxFrQ0REZLpMdg5TdXU1NmzYgF9//RVlZWXw8fHBiy++iGHDhjV77qFDh7BlyxZkZGTAysoKYWFheOWVV+Dg4KB1nEKhwLfffouYmBjk5eWhe/fuGDJkCJ5//nm4unb+/EMeIS5I/O0GXHzsMexJf2NXh4iIyGSZbMC0fPlyREdHY9q0aejduzf279+Pt956CytWrEBwcHCj5+3evRuffvophgwZgldffRV5eXnYsWMHrl69ijVr1kAu1ww5qdVq/OUvf0FGRgYeeeQReHh44ObNm9i9ezfOnDmDb7/9FtbW1u3VXKMYOSMQ/SJ6w8nTDlIzdjYSERE1xiQDpoSEBBw6dAhz5szBk08+CQCYMGECZs6cidWrV2P16tUNnldTU4N169YhJCQEn376qTh5ecCAAXj77bfx888/Y+rUqQCAK1euICkpCfPnz8ejjz4qXsPT0xPvv/8+zp49i7Fjxxq4pcYllUnh0tfe2NUgIiIyeSbZrXDkyBHIZDJMmTJFLJPL5XjwwQdx5coV5OTkNHje9evXoVAoMG7cOK2VXqNGjYKVlRUOHTokllVUVAAAHB0dta7h5OQk3o+IiIgIMNEeppSUFPTu3Rs2NjZa5YGBgQCA1NTUBucY1dRo9kRrKNiRy+VISUmBWq2GVCqFv78/rKys8PXXX8POzg6enp7IysrC6tWrERAQgCFDhjRav/z8fBQUFIiPMzIy2tROIiIi6hhMMmAqKCgQe3ruVleWn59f7zkA6N27NyQSCS5duoTJkyeL5Tdu3EBxcTEAoKysDPb29nBwcMA//vEPfPjhh3jjjTfEY4cPH46lS5fCzKzxf5o9e/Zg06ZN9crT0tKgUqla0sQOS6FQICEhwdjVaDddqb1sa+fVldrLtnZehmpvUFBQi44zyYBJqVTC3Lx+YkULCwvx+YY4ODggMjISBw4cgJeXF8aOHYu8vDysWLECZmZmqK2t1TrX3t4efn5+ePTRR9GnTx+kpqbi+++/x/vvv4+lS5c2Wr8pU6YgLCxMfJyRkYFly5bB29sb/v6de7VZQkJCi3+5OoOu1F62tfPqSu1lWzsvY7fXJAMmuVwuDq/drbq6Wny+MQsWLIBSqcSqVauwatUqAEBUVBTc3d0RExMDKysrAMCtW7cwf/58LF68GBEREQCAMWPGwM3NDcuXL8fJkycxYsSIBu/h7OwMZ2dnXZpIREREHYhJBkxOTk7Iy8urV143b6ipYMXW1hbLly9HTk4Obt++DTc3N7i5uWHOnDlwcHCAnZ0dAGD//v2orq7GqFGjtM4fPXo0AODSpUuNBkxERETUtZhkwOTr64u4uDiUl5drTfyuG7v09fVt9hqurq7ixPCysjIkJycjPDxcfL6wsBCCIECtVmudV1tbCwCdfi4SERERtZxJphWIiIiASqXCnj17xLLq6mrs27cPQUFBYiCUk5PTohVq69atg0qlwrRp08QyDw8PCIKAw4cPax3722+/AQD8/Pz00RQiIiLqBEyyhykoKAiRkZFYt24diouL0atXLxw4cADZ2dlYuHCheNy//vUvxMfHIyYmRiz77rvvkJaWhqCgIMhkMhw9ehRnzpzBiy++KKYlAIBJkyZh69at+Pjjj5GcnAxvb28kJyfjf//7H7y9vTt90koiIiJqOZMMmABg8eLFcHV1xS+//AKFQoG+ffvigw8+QGhoaJPn+fj44OjRozh27BjUajV8fHywZMkSREZGah1nb2+P9evXY8OGDTh+/Dj27NmDbt26YfLkyXjppZcaXKVHREREXZPJBkxyuRxz587F3LlzGz1m5cqV9cpGjhyJkSNHtugeLi4uePvtt9tcRyIiIuoaTHIOExEREZEpYcBERERE1AyTHZLrSOqyh3eFPeVu3LgBmUxm7Gq0m67UXra18+pK7WVbOy9DttfLywuWlpZNHsOASQ+ys7MBAMuWLTNyTYiIiKi11q9f3+zWZhJBEIR2qk+nVVxcjNOnT6Nnz57ifnedUd2eee+88w68vLyMXR2D60rtZVs7r67UXra18zJ0e9nD1E4cHBwQFRVl7Gq0Gy8vr06/yfDdulJ72dbOqyu1l23tvIzZXk76JiIiImoGAyYiIiKiZjBgohZzcnLCzJkz4eTkZOyqtIuu1F62tfPqSu1lWzsvU2gvJ30TERERNYM9TERERETNYMBERERE1AwGTERERETNYMBERERE1AwmruziEhMTceDAAcTFxSE7OxvdunVD//798eKLL8LDw6PJc/fv34/ly5c3+NyuXbtMcvVGXFwc5s2b1+Bzq1evRv/+/Zs8Py8vD19++SXOnDkDtVqNQYMG4fXXX4e7u7shqquTf//73zhw4ECjz+/cuRMuLi4NPvef//wHmzZtqlduYWGB3377TV9VbLOKigps3boVCQkJSExMRFlZGRYtWoRJkybVOzY9PR1ffvklLl26BDMzM4wcORKvvfYaHBwcWnSv2NhYbNy4ERkZGXBwcMDkyZPx3HPPwcysff58tqStarUav/zyC44cOYKUlBSUlZWhZ8+eGDduHKZPnw65XN7sff7v//4P8fHx9cqHDx+Ojz/+WJ9NalJLX9vGfr89PT3x3XffteheHeG1BYCxY8c2eo2hQ4fi008/bfI+jz/+uLiF192mTJmCBQsWtK3yrdSazxpTfc8yYOritmzZgkuXLiEyMhI+Pj4oKCjArl278OKLL2L16tXo27dvs9d44YUX0LNnT60yW1tbQ1VZL6ZOnYrAwECtsl69ejV5TkVFBebNm4fy8nI888wzMDMzw/bt2/H666/jP//5D+zt7Q1Z5VabMmUKhg4dqlUmCAI++eQTuLm5NRos3e3NN9+ElZWV+FgqNY1O6ZKSEmzatAmurq7w9fVFXFxcg8fl5ubi9ddfh62tLV566SVUVlZi69atuH79OtauXQtzc/Mm73Py5En87W9/Q2hoKObNm4fr16/jm2++QVFREd58801DNK2elrS1qqoKy5cvR//+/fGnP/0J3bt3x5UrV7Bx40acP38en3/+OSQSSbP3cnFxwcsvv6xV1t5ffFr62gKaAP6tt97SKrOxsWnRfTrKawsA77zzTr2ypKQk7NixA8OGDWvRvfz8/PDEE09olfXu3bv1lW6jln7WmPR7VqAu7eLFi0J1dbVW2Y0bN4Tx48cLS5cubfLcffv2CWPGjBESExMNWUW9On/+vDBmzBjh8OHDrT73v//9rzBmzBghISFBLEtPTxciIiKEtWvX6rGWhnPhwgVhzJgxwjfffNPkcRs2bBDGjBkjFBUVtU/FWkmpVAr5+fmCIAhCYmKiMGbMGGHfvn31jvvkk0+E+++/X8jOzhbLzpw5I4wZM0b46aefmr3Ps88+Kzz//PNCTU2NWLZu3Tph7NixQnp6uh5a0ryWtLW6ulq4ePFivXM3btwojBkzRjhz5kyz93n99deF5557Tj+V1kFLX9t//etfQlRUVJvv01Fe28a8//77wtixY4WcnJxmj502bZrw1ltv6VRXXbX0s8aU37Om8XWRjGbgwIH1InYPDw/06dMHGRkZLb5ORUUFVCqVvqtnUBUVFaitrW3x8dHR0QgICNDqmfLy8sLgwYNx+PBhQ1RR73777TdIJBLcf//9LT6nvLwcgomla7OwsGhRz8eRI0cwatQouLq6imVDhw6Fh4dHs69Zeno60tPT8fDDD2t15f/5z3+GIAiIjo5uc/1boyVtNTc3x8CBA+uVjxkzBgBa9V6ura1FRUVF6yqpRy19beuoVCqUl5e36h4d6bVtSHV1NY4cOYLQ0FD06NGjxefV1NSgsrKy1ffTh5Z+1pjye5ZDclSPIAgoKipCnz59WnT8vHnzUFlZCXNzcwwbNgyvvvpqs/OfjG358uWorKyETCZDcHAw5syZg4CAgEaPV6vVuH79OiZPnlzvucDAQJw5cwYVFRWwtrY2ZLV1Ultbi8OHD2PAgAH1hlAb88QTT6CyshJWVlYYPXo0Xn31VTg6Ohq4pvqRl5eHoqKiBjfqDAwMxMmTJ5s8Pzk5GQDqne/s7AwXFxekpKTor7IGUlhYCAAtHi7OzMzEhAkTUFNTA0dHRzz00EOYOXNmu83paa2qqipMmjQJVVVVsLOzw/jx4/HKK680+z7s6K/tyZMnoVAo8MADD7T4nPPnzyMqKgoqlQpubm6YNm0apk2bZsBaNu/ezxpTf8+a5ruAjOrgwYPIy8vDrFmzmjxOLpdj0qRJGDRoEGxsbHD16lVs374dc+fOxddff631DcFUmJmZITw8HCNGjIC9vT3S09Oxbds2vPbaa1i1ahX69evX4HmlpaWorq5u8NtgXVl+fj48PT0NWn9dnD59GiUlJS36I2tnZ4dHH30U/fv3h7m5OS5evIhdu3YhMTER69evb/E8EWMqKCgA0PAcHCcnJ/E1tbCwaNP5dc+bsu+//x42Nja47777mj3W3d0dgwYNQt++fVFVVYXo6Gh88803yMzMxJIlS9qhtq3j5OSEJ598Ev369YMgCDh16hR2796Na9euYcWKFU0GeR39tT148CAsLCwQHh7eouP79u2L4OBgeHh4oLS0FPv378cXX3yB/Px8zJkzx8C1bdy9nzWm/p5lwERaMjIy8Nlnn6F///6YOHFik8eOGzcO48aNEx+PGTMGw4cPx+uvv45vv/223VZftMbAgQO1hi5Gjx6NiIgIPP/881i3bl2jq4GUSiUANDjhsO7NW3eMqfrtt99gZmaGyMjIZo+995tnREQEAgMD8c9//hO7du3CM888Y6hq6k1LX7PG/vhWV1drHXvv+cYctmqJb7/9FmfPnsVf/vIX2NnZNXv822+/rfV4woQJ+Oijj7B37148/vjjza4gbW/3Tk4fP348PDw8sH79ehw5cgTjx49v9NyO/NqWl5fjxIkTuO+++1r0ugLA+++/r/V48uTJ+Otf/4rt27dj6tSprRrW05eGPmtM/T3LOUwkKigowMKFC2FjY4N//vOfkMlkrb5GcHAwgoKCcO7cOQPU0DB69+6N0aNHIy4urtF5WHXLsmtqauo9V/cmbcnSbWOpqKhAbGwshg8f3ubVfA888AAcHR07zGur62tW90e37th7zzfl1/vQoUP4+uuv8eCDD+KRRx5p83XqVlWdPXtWTzUzrMcffxxSqbTZ+nbk1/bIkSOorq5u1XDcvSQSCR5//HGoVKoGU0kYWmOfNab+nmXARAAAhUKBt956CwqFAh9//DGcnZ3bfK0ePXqgtLRUj7UzvB49eqCmpgZVVVUNPt+tWzdYWFg02KVbV6bLv5mhxcbGoqqqSqc/skDHem3ruuUbe83qXtO2nm+KecYA4MyZM/j3v/+NkSNH6ryMuq7noaysTB9VMzi5XI5u3bo1+zvaUV9bQDOMZWtri1GjRul0nbrXtr3fz0191pj6e5YBE0GpVOLtt99GZmYm3n///RZP9m7MrVu3WpxgzFTcunULFhYWWjmH7iaVStG3b18kJSXVey4hIQHu7u4mPeH74MGDsLKyQlhYWJuvIQgCsrOzO8xr6+LiAgcHB1y9erXec4mJifD19W3yfD8/PwCod35+fj7y8vLE501JQkIC3nnnHfj7+2PJkiU6T9a+desWAHSY17yiogIlJSXN1rcjvraApn5xcXEYO3Zsk4FDSxjjtW3us8bU37MMmLo4lUqFf/zjH7hy5QqWLFmCAQMGNHhcfn4+MjIytJbhFxcX1zvuxIkTuHr1KoYPH26oKuukoTqnpqbi2LFjGDZsmJiYMScnp95S7PDwcCQlJWkFTTdu3EBcXBwiIiIMWW2dFBcX4+zZsxg7diwsLS3rPd9QWxv6d9q9ezeKi4tbNIHYVISHh+P48ePIyckRy86dO4fMzEytuVy1tbXIyMhAfn6+WObt7Q1PT0/s3btXa6h29+7dkEgkLZ5w217S09OxcOFCuLm54YMPPmhy+CEjI0Pr36S8vLzeMIYgCPjmm28AoMXJEduLUqlscD7K5s2bIQiC1u9oZ3ht6/z+++9Qq9WN9hQ31NbS0tJ6Uw1qa2vx3//+F+bm5hg0aJBB61ynpZ81pvye5aTvLu6rr77CsWPHMGrUKJSVleHXX3/Vej4qKgoAsG7dOhw4cADbtm0Tl6TPmTMH/fr1g7+/P2xsbJCcnIx9+/ahR48eePbZZ9u9LS3x3nvvQS6XY8CAAejevTvS09Oxd+9eWFpaak0i/de//oX4+HjExMSIZX/+85/x888/Y+HChZg+fTpkMhm2b9+O7t27Y/r06cZoToscOnQIKpWq0T+yDbV12rRpGDduHPr27QsLCwtcunQJhw4dgp+fH6ZMmdJeVW/Szp07oVAoxO73Y8eOITc3F4Amk7utrS2eeeYZREdHY/78+XjsscdQWVmJ77//Hn379tXafiIvLw/PPvssJk6ciMWLF4vlc+fOxaJFi/Dmm29i/PjxuH79Onbt2oWHHnpI555YfbZVKpViwYIFKCsrw/Tp03HixAmt893d3bU+oJ599lmEhoZi5cqVADTLsZcsWYL7778fvXr1glKpxNGjR3Hp0iU8/PDDDS7zNqTm2ltWVoYXXngB999/v7gy9fTp0zh58iTuu+8+jB49WrxWR39t79414eDBg3B2dm40yGmorceOHcM333yD8PBw9OzZE2VlZTh48CDS0tIwe/bsdht+bOlnjSm/ZxkwdXGpqakAgOPHj+P48eP1nq/7JW7IuHHjcPLkSZw5cwZVVVVwcnLCww8/jJkzZ5psrp4xY8bg4MGD2L59O8rLy+Hg4ICxY8di5syZzW4TYG1tjRUrVuDLL7/EN998I+4l15o9jozht99+Q/fu3TFkyJAWn/PAAw/g8uXL4gRTV1dXPPnkk3juueca7KUyhm3btmntjxUTEyMGfVFRUbC1tYWrqytWrlyJL7/8EmvXrhX3pXr11VdbNKQxatQoLFu2DJs2bcKKFStgb2+PZ555BjNnzjRUsxrUXFsBiB+ya9eurXf+xIkTG/1GDwCurq4ICQlBTEwMCgsLIZVK4eXlhTfffNMoAXJLXttRo0bhzJkzOHDgANRqNXr16oXZs2dj+vTpLdrCp6O8tnUB040bN3D16lVxYntL9e3bF15eXjh48CCKi4thZmYGPz8/LFmypEUrZvWlpZ81pvyelQimlsKXiIiIyMRwDhMRERFRMxgwERERETWDARMRERFRMxgwERERETWDARMRERFRMxgwERERETWDARMRERFRMxgwERERETWDARMRERFRMxgwEZFJuH37NsaOHYt///vfxq6KXuzfvx9jx47F/v37jV0VItIDBkxEZLL+7//+D2PHjjV2NRrU2QI8ImoaN98lIpPg4uKCb7/9FjY2Nsauil6MGTMGQUFB7bYbPBEZFgMmIjIJZmZm8PLyMnY19MbW1lbcaZ6IOj6JIAiCsStBRHT79m088cQTmDhxIhYvXtzoUFzd83WuXbuGb7/9FvHx8SgtLYWTkxPCwsLw/PPPw97evsHrP/XUU1i/fj0uXLiA0tJSbNu2DT179kRMTAwOHz6MpKQk5Ofnw8zMDD4+PnjssccQEREhXmv//v1Yvnx5g/VbsWIFBg0aJB6zaNEiTJo0SeuYS5cu4dtvv8WVK1egVCrh5uaGcePG4amnnoKlpaXWsWPHjkVoaCj+8Y9/YPXq1Th58iQqKyvh6+uLl19+GYMGDWrtPzURtQF7mIjIJM2cORMHDhxAdnY2Zs6cKZb7+fmJP8fGxuIf//gHJBIJRo8ejR49eiA9PR0//vgjTp8+jbVr18LOzk7rullZWZgzZw769u2LiRMnorS0FObm5gCAdevWwczMDAMHDoSTkxOKi4tx7NgxvPvuu5g3bx6mTp0KAPD19cVjjz2GHTt2wNfXF6NHjxav7+bm1mS7Dh8+jKVLl8Lc3Bzjxo2Dg4MDzpw5g02bNuH06dNYsWIF5HK51jkKhQKvvvoqbG1tERUVhaKiIhw+fBgLFizA+vXr0bdv3zb9GxNRyzFgIiKTNGvWLMTHxyM7OxuzZs2q93xJSQn+9a9/wd7eHl999ZVWoHLo0CEsWbIEGzZswPz587XOu3TpEmbOnNngNT/88EO4u7trlVVUVGDu3LnYsGEDHnzwQVhaWsLPzw+2trZiwNTQtRpSXl6Ojz76CDKZDKtXr4aPjw8AYPbs2Vi6dCl+//13bN26FTNmzNA6LzU1FY888gjmz58PqVSzVmfw4MH48MMP8eOPP2LBggUtuj8RtR1XyRFRh/TLL7+gvLwcs2fPrterM378ePTr1w+HDh2qd56joyOeffbZBq95b7AEANbW1pg0aRIUCgWSkpJ0qnNsbCwUCgUmT54sBksAIJVKMWfOHMhksgbTEFhZWeGVV14RgyVAMzQpk8l0rhMRtQx7mIioQ7py5QoAICEhAVlZWfWer66uRklJCYqLi+Hg4CCW+/r6ikNw9yoqKsJ///tfnDx5Ejk5OVAqlVrP5+fn61TnlJQUAEBoaGi951xdXeHu7o7MzExUVFTA2tpafK53795ajwHNJHlHR0coFAqd6kRELcOAiYg6pLKyMgDArl27mjyuqqpK63H37t0bPK60tBSzZ89GTk4OBg4ciKFDh8LW1hZSqRSpqamIjY1FTU2NTnUuLy8HoOnlaoiTkxMyMzNRXl6uFSA1lmpBJpNBrVbrVCciahkGTETUIdUFFJs2bWrVpGeJRNJg+f/+9z/k5OTghRdeqDeH6LvvvkNsbGzbK/uHusCnsLCwwefryjtLLiqizoRzmIjIZNXN2VGpVPWeCwoKAnBnaE5XdcN6d694q3Px4sVG69aaHp66FX7x8fH1nsvJyUFWVhbc3d3rDb8RkfExYCIik9WtWzcAQG5ubr3nJk+eDGtra6xfvx5paWn1nq+qqmpVMFU3cfzSpUta5QcPHsTJkyfrHW9nZweJRNJg3RozevRo2NraYt++fVp1FgQBa9euhUqlqpeziYhMA4fkiMhkDR48GNHR0fj73/+O++67DxYWFvD19UVYWBgcHBzw3nvv4d1338WsWbMwfPhweHp6oqamBtnZ2YiPj8eAAQPw8ccft+heUVFR2LJlC1asWIG4uDi4uroiNTUV58+fx9ixYxETE6N1vLW1NQICAnDhwgUsW7YMvXv3hkQiwYQJExrNxWRjY4O//vWvWLp0KV555RVERkbCwcEB586dw9WrVxEYGIjp06fr/O9GRPrHgImITNZDDz2E27dv4/fff8eWLVugUqkwceJEhIWFAQBGjhyJDRs24Pvvv8e5c+dw9uxZWFpawsXFBZMmTUJUVFSL79WjRw+sXLkSq1evxtmzZ6FSqdCvXz988sknyM3NrRcwAcA777yDL774AsePH0d5eTkEQUBwcHCTySsjIyPh6OiI7777DjExMWKm7xkzZuCpp56ql7SSiEwDt0YhIiIiagbnMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTP+H1siAVLH1RX1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "2769b6e5", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC+CUlEQVR4nOzdd5gT1cIG8HdmkmyyvVKXXhX4FAUERUEEFVDBCooC9opi7703VOx6VUC5gMrFhoiAIChNVIpI7x22900yc74/Qobsbsqk7CbLvr/n2YdlM3PmbMnMvHOaJIQQICIiIiIiIgIgR7sCREREREREFDsYEomIiIiIiEjHkEhEREREREQ6hkQiIiIiIiLSMSQSERERERGRjiGRiIiIiIiIdAyJREREREREpGNIJCIiIiIiIh1DIhEREREREekYEomIiIiIiEjHkEhEREREREQ6hkQiIiIiIiLSMSQSERERERGRjiGRiIiIiIiIdBEJiTt37oQkSZAkCWPHjo1EkQ1S//799Z8jEZEvY8eO1c8VO3fujHZ1dJMmTdLrNWnSpGhXhyJM0zSceuqpkCQJ48aNi3Z1qBq+/4hqWrRokf6+eOqpp6JdnYgqKipCeno6JEnChx9+GPHy66wlcdKkSXjqqaeOu1+QP998843+PRcUFES7OnSU0+nE/Pnz8dBDD2HAgAFo2rQp4uLikJiYiHbt2mHkyJH45ptvoKpqUOX+888/GDduHDp37ozExESkpKSgW7dueOihh7Br165a+m6IqCFyOBz4+OOPcc455+jnsOzsbFx44YWYMWMGhBARP+ZHH32Ev/76C1arFQ8//LDP7Xbu3ImZM2fi4YcfxrnnnouMjAz9Jq1///4hHTuS59ddu3bhoYceQrdu3ZCSkoLExER07twZ48aNw/r160OqXyDLli3Dddddh3bt2iE+Ph7p6ek49dRT8dxzzyEnJ6dWjhkN3bp103/XCxYsCHr/3377Td//xBNPDKkOBw4cwPfff4+nnnoKF1xwAZo2baqX2bp1a8PleIYLIx9GgrnT6cS0adNwySWXoHXr1oiPj4fFYkHjxo3Rv39/PP/88zh48GBI33cwXnjhhSp1N9rAk5+fjwkTJmDgwIFo0qQJ4uLiEB8fj5YtW+LCCy/EJ598goqKCkNlFRYW4tVXX0X//v3RqFEjWCwWNG3aFP369cPEiRNRVlYWxncYWy688EL9Z/3JJ58Evf/u3buhKAokSUJ6err+M05OTsbdd98NAHj00UeRn58f0XpDRMCOHTsEAAFAjBkzxus2/fr107dpKMaMGaN/zzt27Ai4fUP8GdW1X375RaSnp+s/Z38fPXv2FFu3bjVU7quvvirMZrPPspKSksS0adNq+bujhiLYc0td+eyzz/R6ffbZZ9GuznFrx44donv37n7PXwMHDhT5+fkRO2Zpaalo0qSJACDuvPNOn9tNnDjRb7369esX9LEjeX794osvRGJios+yLBaLmDBhQtB19EXTNHH33XcLSZJ8HrNx48ZiwYIFYR8rFt5/r7/+ul6Hq6++Ouj9r7vuOn3/V155Jej9v/vuO79/f61atTJc1sKFCw3dKxj9mW/btk2cdNJJActJSkoSU6ZMCfp7N2rjxo0iLi6uyjF93bt7mjNnjsjKygpY/zZt2og///zTb1k//fSTyMjI8FtO27ZtxapVq8L+fj1/j08++WTY5YVi5syZeh369u0b9P7PPPOMvv9tt91W5bXCwkKRlpYmAIiHHnooUlUWQghhQgS0bt26Vp5aNjSLFi2KdhWOe/v27UNeXh4AID09HQMHDkTv3r3RtGlTOBwOrFy5ElOmTEFRURH++OMPnH322Vi5ciWaNGnis8wPPvgA999/PwDAbDbjmmuuQb9+/eBwODB37lx8/fXXKC4uxjXXXIPU1FScf/75dfK90vFr0qRJ7E7WQBUUFGDw4MHYuHEjAOCEE07Addddh+zsbGzduhUfffQR9uzZg/nz5+OSSy7Bzz//DJMp/Ev9e++9h4MHD0JRFDzwwAM+t6veA8Nms6FDhw5Yu3ZtSMeN5Pl19uzZGDNmDFRVhSRJuOyyy3DeeefBbDbj119/xeeffw673Y577rkHSUlJuOGGG0Kqs6eHH34Yb7zxBgAgISEB119/PXr16oWSkhLMnDkT8+bNw6FDhzBs2DAsWbIEJ598ctjHjKarr74aDz74IJxOJ/73v//hvffeQ1JSkqF9y8rK8NVXXwEAFEXBNddcE/Txq//9mc1mdO3aFX///XfQZXkaMWIERo4c6XebU045xedrRUVFOPvss7F7924AQEpKCq699lqccMIJSEhIwK5duzB9+nSsW7cOxcXFGDNmDNLT0zF06NCw6l2dEAI33ngjKisrkZCQgNLSUkP7rVy5EsOGDYPdbgcAtGvXDtdccw3atGkDp9OJLVu24NNPP8Xhw4exY8cODBw4EOvWrUPz5s1rlLVw4UJceOGFcDgcAIDevXtjxIgRaNasGQ4fPoxZs2bhl19+wfbt23H++edj6dKl6NChQ+R+CFFw4YUXIjMzEzk5Ofjtt9+wbds2tGvXzvD+kydP1j+/9tprq7yWnJyM22+/Hc899xzefvtt3HfffcjIyIhMxSMaOf1oiK1ksfq0vyH7/PPPRbdu3cR///tfUVFR4XWbvXv3ii5duui/u9GjR/ssb//+/SI+Pl4AECaTScybN6/GNp5Pd1u0aCHKy8sj9v0QxZJYaMk43o0fP17/GZ9//vk1zie5ublVWhnfeeedsI/pcDhEixYtBABx7rnn+t121qxZ4vbbbxeffvqpWLNmjXA6nVV6GwXTkhjJ82tpaalo1qyZvu2kSZNqbPPzzz8Lk8kkAIjExERx8OBBw3X15q+//tJbEFNSUsSaNWtqbPPkk0/qderZs6fQNC3k48XK+2/YsGF6PT755BPD+02ZMkXf74ILLgjp2L///ru48cYbxQcffCD++OMPUVlZKYQQYbckhtsC5dkSdPLJJ4vc3Nwa22iaJh599FF9u5NOOimsY3rz3nvvCQAiISFBPP3004ZbEgcMGKBve+211wqHw1Fjm9LSUjFw4EB9u7vuuqvGNhUVFaJly5b6Nr5avt544w19mwEDBoTyrepioSVRCCHuuusuvR6PP/644f0WL16s79e1a1ev22zevFnf5vnnn49UlQVDYi1iSIw9+fn5hi7C69at0393NptNlJaWet3O84bt/vvv91ne5ZdfHtGbNqJYFCs3qcerQ4cOCYvFot/kHTp0yOt269at08NJkyZNhNPpDOu4s2bN0n+voXSDCzUkRvL8+uabb+rbXH755T7Luv/++/Xt7rvvPsN19Wb48OF6We+++67XbTRNE7169dK3++GHH0I+Xqy8/7755hu9Hmeeeabh/TyDyMyZMyNap2iHxDPOOEMva/bs2T63czqdonHjxvq2RUVFYR3X0549e0RycrIAIF5//fUqfy/+QmJFRYVQFEV/WFNQUOBzW897p1NOOaXG69OnT9df79Gjh9/7sSFDhujbzp8/P6jv1VOshMTVq1dX+Ts0+kDIswv266+/7nO7nj176g/LwnnY5KnWZzd1z9j566+/6l/zNuDX14Q2mqbhyy+/xIgRI9CmTRvEx8cjKSkJnTt3xq233op169b5rdtTTz2lH8PdnXPBggW48sor0aZNG1it1hozBDqdTsydOxf33nsv+vbtqw+oTUpKQseOHTF27FgsXrzY5zHdMw96Ng+3adOmxvfs62dlZHbTFStW4KabbkKnTp2QlJSEhIQEtGvXDmPGjMEvv/wScP/qkwiUlpbitddeQ48ePZCWloaEhAR06dIFDz/8cOQHwkZRamqqoZ9v165d0blzZwBAeXk5tm7dWmMbIYTeNSbQbH933nmn/vmMGTOCrXZYli1bhltvvRUnnngiUlNTYbVa0bJlS4wYMQKzZ8/2u6+3WcF2796Ne++9F507d0ZCQgJSU1Nx+umn47333oPT6TRUp5KSErz55psYNGgQmjVrhri4OKSnp6Nnz5544okncOTIEb/7V3+vqKqKSZMmYdCgQWjevDlMJpPXCQoOHTqEBx54ACeeeCISEhKQnp6OXr164fXXX9cHybdu3drrBAc//fSTfkzP36c/d955p77PnDlzDO1jRKDZTWvr9/bDDz/gwgsvRJMmTWC1WtG6dWuMGjUKy5YtC/p7sNvt+OSTT3DRRRehRYsWsFqtSE1Nxf/93//h3nvv9Tlr66ZNm5CQkABJkpCSkoIdO3b4PEZ+fj5atmwJSZKgKIrf83Z98M033+jdva688ko0atTI63Zdu3bFgAEDAAAHDx6scv0Nxeeffw7A1XX04osvDqssoyJ9fvX8+l133eWzrHHjxunnlS+//DKoOnsqLi7W3/PJyck+Jwap/r3VxfXhjz/+QFZWFiRJQlxcnNfvM5x7r6FDh+p/m7/99hu2b98esE67d+/GwoULAQCZmZm48MILQ/zuYtPhw4f1z/11nVQUBW3bttX/b7Q7qBG33norioqK0L17d7/vgepyc3P1bryNGjVCSkqKz207duyof+6t7p73p1dffbXf+7HRo0frn//3v/81XN9QubuASpIEWZb1buLV/fTTTxg7diw6dOiApKQkxMfHo127dhg7dix+++03n+WfdNJJ6N69OwDX5Fnuv3d/PLtgm0wmXH311T63HTVqFABgz549kRu+Fomk6W/iGs8WRH8f3tL91q1bxcknn+x3P1mW/Tbbenbl+OWXX8Ttt9/utRzPlr7+/fsbqvOYMWP0rgyePFsQA+3v62fli8PhEDfeeGPAsq+44gpRVlbmsxz3dv369RPbtm0TJ554os+yWrVq1SBbQt1PZQCI5cuX13jd84mZry4Abqqq6k/wZFmO6NNBX0pKSsSIESMC/q0MHTrUZ32qP4GbM2eOSE1N9VnWoEGDfHbjdfvxxx9Fo0aN/NYpKSlJfPvttz7L8Hyv5Obmir59+3r9u/X0yy+/6IO7vX1069ZN7N69W7Rq1crr/qqqijZt2ggAIi0tLWC34fLycv14LVu2FKqq+t0+GIF6KUT69+Z0Ov2e12RZFi+//LLhlow//vhD/1n6+rBYLOKDDz7wuv9HH32kb9enTx+fLWWXXXaZvt2jjz7q92daH1x66aX69/P111/73fbVV1/Vt/XXChdIRUWF3uXzrLPOCqmMUFoSI3l+LSwsrNLtM9B70XO4wfr16w3Vt7rvv/9eLyNQ18nDhw/r22ZlZYV0PCGMtSTOnTtXn7gnMTHRaxfeSNx73XPPPfq2TzzxRMC6e3bH9NZNMVy+rgv+RLIFyvMaZbQlMSMjI2LXjWnTpgkAQlEUfTIYoy2J5eXlejdss9nstyXxn3/+0cscPnx4jdc9WwfnzJnjt85//fWXvm2TJk2MfaNeGPk9/vXXX/rP3WQyic8//7zGNocPH67S2u3r4/rrrxd2u93rcTwn9vI3lMnNswv2sGHD/G67Zs2aiL+Haj0kLlmyRMyaNavKSXfWrFk1PjZs2FBlv61bt4rMzEx9n759+4qXXnpJTJs2TXzxxRfi7rvvrnLD5+sX7xkSBw8erP+xPfTQQ+KLL74QkyZNErfddpvYv3+/vs9pp50mEhMTxbBhw8QzzzwjpkyZIr788kvx1ltviZtuukkkJCT4/UX8+eefYtasWeLss8/Wt/vwww9rfM/VZ38yEhJHjhypb2O1WsXNN98sJk+eLL744gsxfvx4kZSUpL9+3nnn+Wxydm/TvXt30blzZyFJkhg2bJh4//33xYwZM8SLL75Ypd94MF1GjgeVlZVVbqoPHDhQYxv3STfQCdbN8/e7YsWKWqj1MRUVFaJ379768dq1ayceeeQR8fnnn4vp06eL5557TnTs2FF/fcCAAV4vRp4n12HDhon4+Hhhs9nEzTffLCZNmiSmTZsm7r333irvCX83Dl9//bXebcVsNotLL71UvP322+LLL78U//nPf8SoUaP0WQxlWfY545/nz9L9vj7ppJPESy+9JKZPny4++ugjcccdd+jbr1+/Xr/Rdf/dv/7662LGjBli4sSJelegPn36iObNm/u8mXjhhRf0Mr744gu/v4PPP/9c3/bpp5/2u22wggmJkfi93Xbbbfp2FotF3HjjjWLy5Mni888/F+PGjdN/tp7d63zdpC5dulTfXpIkcf7554sJEyaIGTNmiEmTJombb765yu/KVzmegclb3f/zn//or/fu3dvrGJr6plOnTn5/7548/wYGDx4c8jEXLFiglxNq98tQQmIkz6/Lli0L6vie768ZM2YYqm91L774YlABw/1wCoDPbsSBBAqJ//3vf/Xza1ZWlvjjjz9qbBOpey/PkN+6deuA3d/atWunb7969epQvn2/3GWHGhK7du0qunXrJhITE4XVahXZ2dniggsuEO+//77fB/Jung9t/I1JfOyxx/TtnnrqqWC+RZ9ycnL0WUnHjx+vf91oSBRCiKFDh+rbXnfddT7HJA4aNEg/ty9cuLDGNu7rNRBcSAQgjhw5Yuj7rS5QSPzll1/0h0zx8fHixx9/rLFNbm5ulb/Rk046STz99NNi6tSpYtq0aeLRRx/V7x38/TxzcnKqDBkoLi72W3fPUPrNN9/43VZVVf0BUOfOnf1ua1RMLoGhqqo45ZRTBAARFxcnvvzyS6/bHTx4UH/aJcuy+Oeff2ps4xkS3Se8wsJCv8efP3++3zd9Tk6O/lRIlmWxfft2r9tFegkMz77cjRs39vqEc+fOnVWe0Psan+H5M7FYLOL777/3+n16lhVOsCktLfX6cCCUj0BTK0eC5w2+t371Qogqg76N3ASMHj1a397bU6pIqj6Wx9sJ3W63V6nT+++/X2Ob6lOAt2zZUmzevLnGditWrNCfNKalpXltldq9e7d+Im7ZsqVYu3at17qvWLFCpKSkCAAiOzvb6xO56j0Uxo8f7/eJq+dT3Ntuu83rttXPFd5uJg4ePKjfZAW62TzrrLME4Hpyu2fPHr/bBiuYkBju781z0HxqaqrXKck3btyoL4/g7ya1qKhInwAlNTVVLFq0yOv3t2XLFv0hVUJCgtebg7y8PJGdna3/jJcsWaK/tmnTJj0AJycni23btnk9jlEbNmyI2Pkr1BsdVVX135WiKAFD7/bt2/XfRbt27UI6phBVH4x89dVXIZURSkiM5Pl18uTJQQXOJ554Qt/+2WefNVTf6q699lq/74Xq3OcLAFX+loPhLyROnDhRb01t1aqV2LRpU439I3nvJYQQPXr00Ovzyy+/+Kz3r7/+qm/XvXt3499wEMINif4+mjZt6vf7E6Lmg9uUlBQxfvx48dFHH4mpU6eKF154QXTr1k1//dZbb43Yg61rrrlGAK6xap6hJJiQuHnz5io9gNq1ayeeeuopMWXKFPHpp5+Khx56SG+Ji4uLE59++qnXcjzfF2+99ZbfY3re8wIQv/32W9DfuxD+Q+LXX3+tLweSnp4uli5d6rUM9wNQSZLEm2++6XWb4uJice655+rH8hWCPXu4+Po5CeG6n3e/Zxs1amTo78HdE1KSJL8tvkbFZEj0XE9k4sSJfrfdtGmT3jJx44031njd88YvISFB7Nu3z9D3FMi2bdsCXkQiHRI9Z6zz9qTDbcWKFVUuBt66Ynm+8Z555hmfZX388ceGtgvE828k3A8jF/lw5OXliaZNmwa8Mbr77rv1bd5+++2A5Qa7faj279+vP6m65JJL/G5rt9tF27ZtBQDRoUOHGq9Xv0guXrzYZ1mjRo3yu924ceP0G9y///7bb70++eQTvaypU6fWeN3zvXLqqaf6DYh//PGHvm3Xrl39TuLhWa6vmwnPSTK8BS8hXOcl9zZDhw71+72GItiQGM7vzXOmQm8zQrr98MMPVY7p7cbYcw217777zu/36NmC5Wu2tkWLFglZlvXfV35+vrDb7eLUU0/V943EA5nqDxDC+fD2dN2IwsJCvYyMjIyIb+/LVVddpZfj68FOIKGExEieX9966y39tXvvvTdgWcFu783FF1+sl+HtIWy423vjKyR6zpjZpUsXsXfvXq/7R/LeSwgh3n33Xb08f13rPINDoOOGKtB53ZuFCxcKSZJEr169xIMPPig+/fRT8dVXX4mPP/5Y3HTTTfrDTMDVRfHnn3/2W15ZWZm46aabhNVq9Xl+OOecc/yer4P1008/6WVXH8IRTEgUwhVaBg4c6HfNz1tvvVVs2bLFZxmePTwCzebr2XoJhD6pk6+Q+MEHH+jXj+bNm/vsWv7nn3/q+99zzz1+j5WXl6f/XQwaNMjrNrNnz9bL89eF3/NBWaDjut166636PqE+bPIUkYlrIs09SD45ORk33nij3207duyIXr16AQB+/vlnv9teeumlaNasWUTq2LZtW33tvBUrVkSkTH927typr/PTrVs3DB482Oe2vXr10ict2LVrF/7880+f2yqKgjvuuMPn6+5yAODff/8Nttr1jqqqGDlyJA4cOADANQD/sssu87ptSUmJ/rnVag1Yts1m0z8vLi4Os6a+ffnll/rkFvfdd5/fbc1mM0aMGAEA2LJli8/JQgCge/fuOPPMM32+7u9vRQiBqVOnAgDOOeecgGuBjRgxQl/bLdD7+vbbb4cs+z6Vffvtt1W2VRTF57ZGBvPfcsst+uf/+c9/vG7j+fWbbropYJm1KZzfW2VlpT75RuPGjf0Omh86dChOOOEEv3Vxn9s7duwYcGKKAQMG6OdrX38D/fr1w0MPPQTAda675ZZb8Nhjj+nnvFGjRvmtc30SrfPNrl279M/T09NDLidYkfx+o/Gzi4Xrg6qquPHGG/H8888DAE4//XQsWbLE69p1QOTvva688kr9e585c2aVn4lbWVkZvv76awCAxWLBVVddZeA7qxudOnXCpk2bsGLFCrz00ku49tprcdlll+GGG27Ahx9+iB07dmDIkCEAXBMeXnnllSgqKvJZns1mw9NPP43x48f7vGYtXLgQL774or4OajhKS0tx8803AwAuueQSXHTRRWGV16pVK0yYMMFvOVOmTMErr7zi82/4sssuQ2pqKgDXBEpPPPGE1+3eeeedGhPr+fvZBuuZZ57BLbfcAk3T0KlTJyxduhQnnnii123d7wtJknDvvff6LTctLU3/m1i8eDEqKytrbHPeeefp17YlS5Z4nXxNCIEpU6bo/6++NqK/47t5nrtDFf4Ku7VgyZIlAICmTZvip59+Cri9+6Zv165dKC8vr3Ky9eTvRqm6oqIiTJ06FT/++CPWrVuHnJwcn7NM7d2713C5oVq5cqX++bnnnhtw+3PPPRcLFiwA4Aqx7pN5dR07dqzyR1Wd58UknFlOW7duDSFEyPvXlbvuuku/4LVs2bJeLljufv8Arr/Nb775xu/2nr/XDRs2eJ0VFHAteOuPv7+V9evXIy8vDwCQlJQUsE4AkJiYiIKCAmzYsMHvdoHe16tWrdI/P/vss/1u657t15+zzz4bHTt2xObNmzF58mQ899xzMJvN+usOh0Of2bhZs2YRXww5WOH83tasWaM/cOjXr5/fgA24HgD4+n0VFhbqC6o3btzY8N8AAL9/A08//TQWLFiAFStWVJkZsk2bNnjvvfcCHsOIp556yucM3Mc79/sWqNuQSOGpqKjA5ZdfjlmzZgEAhgwZgq+++grx8fE+94n0vVdaWhqGDx+O6dOno7S0FF9//XWNWV6//vprPVBcdNFFkVsEPAKaNm3q9/W0tDTMnDkTvXr1wrp165Cbm4v3338fDz74oNftJ02ahFtuuQWVlZW45JJLcPfdd+Pkk0+G2WzG1q1bMWXKFEyYMAFz5szB8uXLMXv2bPTp0yfk+j/yyCPYtWsXkpOT8fbbb4dcDuAKwePHj8e7774Lk8mEBx54AKNHj0b79u3hcDiwevVqTJgwAbNmzcLHH3+MlStX4ueff64xA3NKSgreeOMNPfQ899xz+OWXX3DFFVegWbNmOHLkCGbNmoX58+fDZrMhNTVVf2jv72GwUZqm4Y477sC7774LAOjZsyd+/PFHZGZm+tzH/b5ITU2tci/uizsYVlZWYvv27TUeniqKgtGjR+Oll16CEAKTJ0+ucX1ZsmQJtm3bBgDo0aMHunbtauj783z/RGJlgpgLiSUlJcjNzQXgmuo82Om28/PzfYZEX0/Pqlu4cCGuuuoqHDx40ND2kXy64Yv7TQJUnWLYF89tPPetzt8bAwDi4uL0zysqKgIetz579NFH9RNH48aNMW/ePL8/H/cNLGDsZ1NeXq5/npSUFEZN/fNsDbziiiuC2tffSSWcvxXPOs2cORMzZ86MSJ2AwO/r/fv36597Ti3uTVpaGlJTU1FQUOBzG0mScNNNN+G+++7DoUOH8P333+OSSy7RX//uu+/06c6vvfbagMGqtoXze/P82bVv3z7gsfxts2fPHmiaBsB1AfR8mBGIv78Bk8mE//73vzj55JP1m03315KTkw0fI9ZF63zjvuFRFMXntbU2RPL7jcbPLtrXh4ceegiFhYUAXEsNfPbZZ3rvDG9q697r2muvxfTp0wG4QlL1kOj5IPa6666rsb+/h0nx8fGGHprXJqvVikceeQRXXnklAGD27NleQ+LHH3+s9yq555578Prrr1d5vUuXLnj55Zdx+umnY/jw4cjPz8cVV1yBLVu2GGqJrm758uV45513AAAvvPBC2L3oxowZoy9DMXPmzCqtiXFxcejbty/69u2Le+65B2+88QbWrFmD22+/XV++wdPYsWNRUlKCe+65Bw6HA0uXLsXSpUurbJOUlISpU6fiySef1O9h/TVoGDVx4kT9fTFw4EDMmjWrynvVG/f9S35+fkjvC2/Gjh2Ll156CYCr9fXJJ5+sshxIoPeFL57XPM9zSqhiLiS6f3mhcj/19sbIBW7Lli0YOnSo/sPt1KkTBg8ejA4dOiA9Pb3Km/Wmm27CkSNH9PVjapNn031CQkLA7T3/6P11XYnEk5njwXPPPYcXXngBgOumev78+QHDuLvLBADk5OQEPIb7Alx930gL5z3k7/0Tzt9KbdUJCPy+dvcAMJlMVVr8fElISPAbEgHXCf7RRx9FZWUlPv744yoh8eOPPwbgCpPXX399wOPVtnB+b57dw/y1QLj5OzeF8zfgcDj8vp6ZmYn09HT9XNe2bVuceuqpIR8vFiUmJsJkMsHpdKKgoABOp9PvTX+kzjfuhwiqqqKsrMzQ30EkRPL8Go1zdbSvD55rn5aWlgbsyVNb914DBw5EdnY29u7di8WLF2Pnzp16b5Vdu3bp67k1a9bMa+Dzd1PeqlUrv0Mk6opnDxRv3UQrKir0bvHp6el47rnnfJY1bNgwnHfeeZg7d67eE2jkyJFB1cdut+P666+Hpmk47bTTcOuttwa1f3UrV67UA+L555/vt7vp888/j0mTJiE/Px8zZ87E/v37vQbUO+64A0OGDME777yD+fPnY+fOnXA4HMjOzsaQIUNw9913o3Xr1lWGQ7mHeIUj2PcFUDv3L506dcLpp5+OpUuXYseOHVi8eDH69esHoGoXbKvVqj+AMMKzrpF4qBdzIdEz3Jx11llhLwIcrBdffFEPiI8++iieffZZn4t9BuqzH0meTxaNLK7qeXNXm61WRpWVlQUcW2ZUy5Ytccopp0SkLAB45ZVX8PjjjwNwPamaN2+eoaZ9zxBp5ELl2T/cSGtwqNzvIUmS4HQ6Y+JBgOf7+oknnsDTTz9dZ8d2Bxen0wmHwxEwKBp5f2VkZOCyyy7D1KlT8fPPP2P37t1o2bIldu3ahXnz5gFw3Ry1adMm/G8gijx/b2VlZQG39/ez8yxr9OjRepfcSLjtttuqvL82b96Mxx57DC+//HJEyt+4cWNExggBQN++fQO27nojyzLatWuHTZs2QVVV7N2712fXcCBy5xvPLqZ5eXl1FhIjeX6Nxrk62teHF198EdOnT8fSpUsxa9YsjBgxAjNmzPB5/qutey9ZljFmzBg8//zzete6J598EgAwefJk/SZ99OjRUe91ESrPLn7eHjAuW7ZM77Z9+umnB7x5HzhwIObOnQvAFdCCDYnLli3Tx5e3a9dOfwBenXueCwBYu3atHl47deqEyy+/XH/Nc2zgwIED/R7bZrPh9NNPx+zZsyGEwKpVq3yGyrZt22LChAk+yyopKcGePXsAuB5S+hozGIy77roLGzZswKxZs7Bs2TI9kPu7T3YPfXFf4yPl2muv1VtQJ02apIdEzy7Yw4cPD+qhUaSHB8RcSExJSUFiYiJKSkrqZKxfdfPnzwcANGrUCM8884zPgFhcXFzll1HbPPvGb9myJeD2nttEarKecBw+fDjoZnpfxowZE7Gxgm+88YbeNSQlJQVz584NOKmKm2eQ9Dc5EODqB+8+IcuyHHCCj3A0b94cq1evhhAC+/btQ4sWLWrtWMHUya2u39fNmjXTx8Jt374dnTp18rltfn5+wFZEt1tuuQVTp06Fpmn49NNP8dRTT+HTTz/Vu1RGe8KaSPA8d2zdujXg9v62qa2/galTp+qTIp166qnIycnBrl278Nprr+G8886rMjFPqKZPnx6xBxsLFy40NPbVm65du2LTpk0AXOccfyHRcyyu0fEs3rRu3Rq///47ANcNSHZ2dshlBSOS59cTTzwRsixD0zSsXr0amqb5fXgWiZ9dMPU/cuSIfvOZlZVVYxxXKJKSkvDTTz/h/PPPNxQUa/Pea+zYsfrkOVOmTNEnK/F8UFS9G6pbfZjLIFArsGe3fSNd4FNSUvTPjTy0rM7zZ+ZuAQzk77//1t9Dw4YNqxIS67r+bosXL9a/lz59+vjtOWGU2WzGjBkzMHLkSPzvf/8zFBSbN2+OgoICHD582NCDZqOuuOIK3HXXXXrL4TvvvIOEhAR89tln+jZGJ6xx88wlrVq1CruOddbE4HlCDvSmP+usswC4buiM3JhE0qFDhwC4Jj3wdxGZP3++fjPoSzDfcyCeE8+4Wyr88Wy18zVpTUP37rvv4p577gHguqDOmTMHPXv2NLx/ly5d9Bum9evX+72wLl26VB+7esYZZ9Rq6677aRQQeGbQutK9e3f94rJgwYKA751I6tGjh/75woUL/W7r7vpkRN++fdGlSxcAwKeffgqHw4FPP/0UgOsh07Bhw4KvbIw56aSTYLFYAAC//vprwK717smyvMnMzNSfBC9fvjwiY7l37NiB2267DYCrxXjatGn44osvoCgKNE3D6NGjq9zA1XfnnXee/rm7pcEXz4lHzj///JCP6Rl23AG1LkTy/JqcnKxP4FRYWIjly5f7LGvPnj16K0zLli1Dbr3o37+/3lV38eLFfscHef4uw/ldVecOimeccQYAYNasWbjiiit8dt+urXuv9u3b6xOMbd++HUuWLMHixYuxfft2AK7WNX8P72KdZ6urt1Zgz2Dlbhnzx7O1KhYm8olW/T3DUiSHbriD4qWXXgoAelD0dU1y31NVVFRg8eLFEatHcnKyXoeSkhLMnDkTO3fu1P+esrOzA7bcVuee5E2SJHTr1i3sOtZZSPTsyhDoycKYMWP0z31Nj1tb3F1ptm/f7jPYqarqs/neUzDfcyCtW7fWu1iuWbPGb1BctWoVfvnlFwCuJwmxMDbHPbtpJD4i0Yr48ccfY9y4cQBcN5c//vhj0LOISZKkP20TQvidPWzixIn65+4lJ2rLyJEj9Rv7l19+Oey/vUhQFAWjRo0C4LqA+Fo6ojZ4hrV3333Xb9B56623girbPb34nj17MH78eP1GdsyYMRF72hhNcXFx+nTehw4d8vtUes6cOQFnonWf28vKyvRB+6FSVRWjRo3SL+wTJ05Ehw4d0LdvXzzyyCMAgH379uGGG24I6ziAa3bTSJ2/Qm1FBFxdj9zv7WnTpukTJFX3zz//6NeAJk2aVHlwFKzTTjtN/7wulntyi/T51fPr/t7nb7/9tn7tD3biL0+JiYn6e6eoqMjndUsIoU8wUr2ekeAOin379gXgmgjGV1CszXsvzxaRSZMmVfl5BNtaEksqKyur3A+6f+eePB+0LF++3G+XRVVV9fFoQNWHnEb179/f0LnIM4SNGTNG/3r1yYI86//VV1/5vYbu3LlTP0/Ishzy0KCFCxfqP4e2bdvqYSpSTCYTpk+fri9xtmzZMpx//vleg+Lo0aP1z59++umIzkNS/X3h2QV7zJgxQQ0XUlVV7wXRuXPnyEzcFt4yiy6eC+X6WpDzzjvv1Lf59ddf/Zanqqro2bOnvv1dd90lKisrfW5fVlYmPvvsMzFt2rQar3kugmxkEeNBgwbp20+YMKHG63a7vcrCr/CzOOuECRP0bSZPnhzw2J4LeXszY8YM/fWmTZuKDRs21Nhm165dol27dvp277zzjtey3K8bWdg4mG3rg8mTJ+uLwcbHx4e8uLUQQuzbt0/Ex8fri+nOnz+/xjaeC9a2aNFClJeXh1F7Y+699179mGeffbY4cOCAz21VVRXz5s0Tzz77bI3XfC1C602gbffs2SNSU1MFABEXFxfwPXHo0CHxzDPPiDVr1tR4LdB7pbq+ffvq2992221CVdUa21RfMN3IossFBQX679/zY/PmzYbqFaoxY8box9qxY0eN1yP5e1uyZIn+elpamvj7779rbLN582bRtGnTKj8Dz8W83UpKSkSrVq0EACFJknjllVe8/i7cCgoKxFtvvSXmzZtX47XHH39cP9Zll11W5TWHwyH69Omjv/7hhx/6/RnUJ+PHj9e/r8GDB9c4n+Tl5Ynu3bsHvAYYVVFRIRISEgQAceaZZ4ZUhuc9QjDXkUieX0tLS0WzZs30bSdNmlRjm3nz5gmTySQAiMTERHHw4MGA34+/c9Bff/2lX2tSUlK8nsueeuopvZyePXv6LMsIz59F9fdfcXFxlfPgsGHDhN1ur7JNJO+9qisuLtb/jhITE0ViYqJ+DS4sLAzp+w1GMOd1IYTYsmWLePXVV0VRUZHPbfLy8sSQIUOqnB/z8/O9bnvaaafp2/Xu3Vvk5ubW2MbpdIpbbrlF365Ro0aipKSkxnZG//4C8fx78XXvLoQQR44c0X93AMStt94qnE5nje1yc3OrfJ9DhgzxWt727dvFrl27fB7v559/1heklyQprHs0Ifxf4xwOh7jsssuq/G68/T1eeuml+jYjRozw+zfrcDjEzJkzDZ17NU0TrVu31r/Xxo0b68fZsmVLUN/nmjVr9H3Hjx8f1L6+1NmYxHPOOUd/2nf99dfj7rvvRqtWrfSByu3bt9enT5dlGTNnzkSfPn2wb98+vPXWW/jyyy9x+eWX46STTkJKSgpKSkqwe/durFq1CgsWLEBpaSmeffbZsOs5btw4vZXunnvuwaJFi3DeeechIyMDW7ZswZQpU7BlyxacffbZ2LJli98uMOecc47++QMPPIAjR46gU6dOer/q5s2bB9UcfMUVV2DWrFmYPn06Dhw4gFNOOQVjx45Fnz59oCgKVq1ahU8++UR/EnLuuefqXbHIZc6cObjuuuv0JzXXXXcdCgoKAq7Zdsopp6Bly5Y1vt6sWTO8/vrruPXWW+F0OjF48GCMHj0a/fr1g9PpxJw5c/SnYSaTCR999JHf6aw9x8Du2LHD75gjf1588UWsXr0aCxYswMKFC/UncX369EFWVhbsdjsOHjyot0ofPHgQ55xzDh577LGQjmdEdnY2pk+fjosuugiVlZUYM2aMvjBvhw4dYLPZUFhYiM2bN2P58uX4/fffoapqwLUNjfjwww/Rs2dPlJWV4b333sOyZctw9dVXIzs7G4cOHcKMGTPw+++/o0+fPti9ezf27dtn6AleSkoKRowYUeWJbP/+/dGhQ4ew6xwr+vbti9tuuw3vvfce8vPz0bt3b4wZMwZ9+/aFLMtYuXIlPvnkE5SWlmL48OF+30sJCQn45ptv0K9fPxQVFeGBBx7Ahx9+iEsvvRQnnngiEhMTUVRUhO3bt2PlypVYtGgR7Ha7vpix22+//aY/vc/OzsZHH31U5XWTyYSpU6fi5JNPRlFREe6++27069evXndpc3vyySfx008/YePGjZgzZw5OOeUU3HDDDWjevDm2bt2KDz/8UO8S1r9//7DHxsbFxeH888/HzJkzsWrVKpSUlAScMr76ecRzxr0dO3bUeP2UU06pMkOwWyTPr/Hx8fjoo48wbNgwqKqKa6+9FrNnz8bgwYNhMpnw66+/YsqUKfrsh2+88QYaN24c+AfkR/fu3fHAAw/g5ZdfRmFhIU4//XTccMMN6NWrl969zD0kIDExscbfcSQlJiZizpw5GDJkCJYsWYJvv/0Wl19+Ob766iu910Nt3nslJibi8ssvx6RJk6pMrHfppZdGfKma119/3efSAwUFBTX+/tq0aVOjO2NJSQnuv/9+PP744xg0aBB69uyJVq1a6bNf//HHH5g+fbr+t+1edsfXJCNvvfUW+vfvj4qKCixfvhydO3fGmDFjqqyTOHXqVL2rM+D6GzQym31ty8zMxPPPP4/x48cDAN5//30sXrwYV111VZV1EidPnowjR44AcF0bqy/z4fbnn39i5MiROPPMM9G/f3+0b98eJpMJe/fuxZw5c/RhC5Ik4Z133gmr90UgJpMJ06ZNgyRJ+Oqrr7B8+XJ9jKLn3+Wnn36KzZs3Y926dZgxYwbmzp2LK664Aj169EBaWhrKy8uxb98+/P3335g3bx7y8/MNdZGVJAljx47Ve6u4h7ydeeaZhpad8uQ5nGb48OFB7etTJJKmkZZEp9NZ5SlW9Q9vT7D3798vzjnnHJ/7eH4oiiI+/vjjGmUE25IohBAPP/yw32OdccYZ4vDhw/oTcX9Ppq688kqf5VT/WRlpHXE4HOKGG24I+PO47LLLRFlZmc9y3Ns1tJbE6q1FRj+8tYp4evXVV4XZbPa5f1JSkqGnrZ77eGshCkZlZaW44447hKIohr7H0aNH1ygjki1SbsuWLRNt27Y1VKfExESxdu3aGmUE25IohBC//PKL3pLp7aNr165i9+7donnz5gKA+L//+z9D5a5YsaJKOVOnTjVcp1DVZUuiEK7z9zXXXOPzZyfLsnjllVf8tmR42rhxY5XWLn8fcXFxYs6cOfq++fn5+rlXlmW/5/UvvvhCL6d79+5+W0Xqkx07dgT8+Q0cONBnq0awvvnmG73cKVOmBNw+2POrv1YMISJ3fhXC9TfhbsXy9mGxWLz2IvIUTEuOpmli/Pjxeouit49GjRqJBQsWGKq/P0befyUlJeKss87St7voootqtChG4t7Lm19//bXG/r/88ku433YN7vOD0Q9v9zZ///234f1btmxp6P7y559/Fk2aNAlYXkJCgvj00099llPXLYlur732mrBYLAHr37p1a7F8+XKf5Xz11VcBy2jcuLGYMWNGyN+bJyPXOIfDIa644gp9u9NOO61Ga2FhYaEYMWKE4b+Lxx9/3FD9duzYUeP84O/370uvXr30v0dN04Le35s6C4lCCFFeXi5eeukl0adPH5GWllbl5tXfjcyiRYvEzTffLLp06SJSU1OFoigiOTlZnHjiiWLEiBHi/fffF/v37/e6byghUQgh5syZI4YOHSoyMzOF2WwWTZs2FQMGDBAff/yxcDgcQghhKCQ6nU7x/vvvi/79+4vMzEy9K4u3n1UwN77Lli0T119/vWjfvr1ISEgQNptNtGnTRlx99dWGLjb+To7hbBvraiskCiHEunXrxO233y46duwoEhISRFJSkujatat48MEHxc6dOwPuX1paWuVGxVt3lFBs2bJFPPTQQ+K0004TWVlZwmQyifj4eNGmTRsxZMgQ8cILL3gNYkLUTkgUwnVC/uKLL8QVV1wh2rRpIxITE4XJZBLp6emiR48e4sYbbxQzZszw2tVGiNBCohBCHDx4UNx3332iU6dOwmazidTUVNGjRw/x2muvidLSUqFpmrDZbAKA6N+/v6EyNU3Tu8akp6eLioqKoOoUiroOiW7ff/+9GDp0qMjKyhJxcXGiZcuW4sorrxRLly4VQhi7SXXTNE18++23YsyYMaJjx44iOTlZKIoiUlNTxUknnSRGjx4tJk2aJPLy8qrs53mRfuihh/weQwghRo0apW9/7733Bty+vrDb7eKjjz4SAwYMEI0bNxYWi0U0a9ZMDB06VEyfPj1iNwlCuK5jLVu2FADEoEGDAm4f7PnVyA1quOdXTzt37hQPPPCA6NKli0hKShIJCQmiY8eO4vbbbxf//PNPwP1DuUlfunSpGDt2rGjbtq2wWq0iNTVVnHLKKeKZZ54RR44cCar+vhh9/3kLit4eoIRz7+WNpmlVhsO0bt06on+nbpEIiRUVFeKnn34STz75pDjvvPNE586d9Xu45ORk0b59ezFy5EgxderUoB4+FRYWinfffVcMGTJENG/eXFitVmE2m0VWVpbo16+feO655/wODxEieiFRCNd754knnhB9+/YVWVlZwmw2C6vVKrKzs8WFF14oPv74Y78NFEIIkZOTIz744AMxYsQIccIJJ4j09HRhsVhE8+bNxTnnnCMmTpwoCgoKQv6+qjN6jXM6nVWuL96CohCubuTjx48X3bt3FxkZGcJkMonExETRoUMHMXz4cDFhwgSxbdu2oOo4YMAA/bgJCQmiuLg4qP03b96s7//8888Hta8/khBhTrtJRBExd+5cfWa7O++8M+hJVCh869atw//93/8BMP47mD9/PgYNGgTAtQbTm2++WZtVJIqKN954A/fccw8URcHOnTvrbCkMIiLy74knnsCzzz6LhIQE7Nq1K2Kz4kZ/lW0iAnBsjc6kpKRaHRtIvnnOMmh0LOT777+vf348rI1I5M0tt9yCJk2aQFVVvPLKK9GuDhERwTV78rvvvgvANa9KJJdNYUgkihHukHjPPfcgKysryrU5/ixZssTv+ozvvvuuPnFE8+bNccEFFwQsc/Xq1fpELQMHDgx5TTWiWGez2fDUU08BAD766KMqC2wTEVF0TJw4EXl5ecjIyMADDzwQ0bLZ3ZQoBuTk5KBRo0bIzMzEtm3baiwGTeFr3749KioqMHjwYHTv3h1ZWVlwOBzYtm0bZs2ahb///lvf9vvvv/cZEn/66SdomobNmzfjlVdewYEDBwC4Ztx0L1pNdDzSNA09e/bEX3/9hTvuuMPv2oVERFS7ioqK0KZNG+Tl5eGDDz7Q126OFIZEImoQ2rdvj23btvndxmaz4eOPP8aoUaN8buO5TImb0fGLP//8M8rKygJX1ovMzEx9QWwiIiKi2sSQSEQNwvLlyzFz5kwsX74c+/btQ25uLsrKypCWloaOHTti4MCBuPXWWwOujeYOiYmJiejYsSNuvfVWXHfddYbWVWzdujV27doVUv379euHRYsWhbQvERERUTBM0a4AEVFd6N27N3r37h12OXyuRkRERMc7tiQSERERERGRjrObEhERERERkY4hkYiIiIiIiHQMiURERERERKTjxDVERBR1qqqivLwcZWVl+ofn/0tLS1FZWQm73Q673V7lc2//t9vtUFUVmqZV+df9oWlaldcA18y1vj7cs9fKsgxFUWAymWA2m/UPX/+3WCyIi4uDzWaD1WqF1WpFfHy8/rnn1202GxITExEfHw+TiZdnIiKKHl6FiIgoIoQQKC4uRlFREYqKimp8XlhYqH/N/W9paSnKyspQUVER7erHlPj4eCQmJlb5SEpKqvL/5ORkpKamIiUlBampqUhNTYXNZvO6licREVEwOLspERH5pGkaCgsLkZeXh/z8/Br/Vv9cVdWwjqcoCuLj46t82Gw2JCQkwGq1Yt6kxZAEAFUChARoEqABkub+3OP/AgCO/ivg2t59xRPHvi65v+bxMjxzloSjG3r8XxKuARuSgJDd/xdVXhPy0cIV18f5Nw5ARUUFysvLUV5ejoqKCv3/7n8rKyvD+vlZLBY9MHp+pKWlITMzE5mZmcjIyEBmZiYSEhIYKImIyCuGRCKiBkpVVeTn5+Pw4cM4cuQIjhw5UuPznJwcOJ3OoMqNj49HcnIykpKSkJycjOTkZPz63+WQnBLglCE5ZcAhuf5VJUiqBKiuz6EBEhpucBFHQ6UwaYBJAIoGYRKA6ei/isBFd52rt8wWFBTo/9rt9qCOZbVa9cDoDo8ZGRlo1KgRGjVqhCZNmiAjI0PvaktERA0HQyIR0XFKVVXk5OTgwIEDNT4OHjyI3Nxcwy1/KSkpSE9PR1paGlb/9C8khww4ZEj2Y//qXxMNN+RFi8DRlkyzgDBrEGYN8Ph34PVnIjc3Fzk5OcjJyUFJSYmhck0mExo1aoTGjRujSZMmNf5t1KgRzGZzLX93RERU1xgSiYjqscrKSuzbtw+7d+/G3r17qwTBQ4cOBWwFVBQFGRkZyMrKQqNGjbD4ixVApQzJrkA6+i/sDH7HGyELwKJCWLSjHyquePRCvQX50KFDyMnJCfgQQZZlNG7cGM2bN0d2djays7PRvHlzNG/eHE2bNkVcXFwdfUdERBRJDIlERDFO0zQcOnQIe/bsqfFx6NAh+DuNK4qCJk2aoGnTpvjrh/WQKpRjH3bZFQAbcPdO8k1AAHEaRJyqfwwZNwAHDx7EoUOHcPDgQb9dXCVJQqNGjfTg2KJFC7Rq1QqtW7dGo0aN2I2ViCiGMSQSEcUIVVWxf/9+7Nixo8rHvn37/N6MJyYmomXLlsjOzsaC//x+LARWKq5WQYZAqgUCwtWl1aZCWFVc+eww7N27F/v27cPevXtRVlbmc1+r1YqWLVuidevWenBs1aoVmjVrxuU/iIhiAEMiEVEdc7cM7ty5E9u3b9fD4K5du3yGQbPZrLfGLP3vn5AqTJDKFEjlJsApMQhSTHEFSAFhdULYVFz13HDs2bMHO3fuxJ49e3x2gzaZTGjRogXatm2Ldu3aoV27dmjfvj0yMzM5EysRUR1iSCQiqkVOpxM7d+7Eli1bsHnzZmzZsgVbt2712coSFxeH1q1bY8viXZDKTJDKTJDLFKBSYRCk44KAgLCqEPFOiHgV59x0Onbt2oXdu3ejvLzc6z4pKSlVQmO7du3QunVrWCyWOq49EVHDwJBIRBQh5eXl2Lp1K7Zs2aJ/7NixAw6Ho8a2JpMJLVu2xM7l+10tgmUmyGUmoIJhkBom9xhILd4JEe/E2Tf2xtatW7Fnzx6vE+goioKWLVuiU6dO6Ny5Mzp37ox27dpxshwioghgSCQiCoHT6cSOHTvw77//YsOGDdiwYQN27tzpdRKZxMREtG/fHutmb4ZUaoJUYoJUbuKMoUQGCEm4Wh0TnBj+yLnYtm0btm7diuLi4hrbKoqCtm3b6qGxU6dOaNu2Lcc5EhEFiSGRiCgAIQQOHz6Mf//9Vw+FmzZtQmVlZY1t09PT0bFjR/zx5TpIpSbIJSZ2FSWKMAEBWDRoiQ6Menk4Nm7ciI0bN6KwsLDGthaLBe3bt8cJJ5yArl27omvXrmjcuHEUak1EVH8wJBIRVeN0OrF582asXbsW69atw/r165GXl1dju4SEBHTu3Bmrv9kIqdgEudgMyaFEocZEpHdXTXTgimeHYtOmTdi0aRNKSkpqbJuVlYWuXbuiW7du6Nq1K9q3b8/WRiIiDwyJRNTglZWVYf369Vi3bh3WrFmDf//9t0Yrobsb27bFe11hsNgMqZwthESxTJ8kJ8mBYY8Mwrp167Bt27YaYxzj4uL0lsZu3bqhW7duSExMjFKtiYiijyGRiBqcwsJCrF69GmvXrsXatWuxdevWGjeNSUlJ6NatG1ZMXesKhSVmSBoDIVF9J2QNIsmJMW9din/++Qfr16+vMb5RlmV07NgRJ598Mrp3787QSEQNDkMiER33ysrKsHbtWvz555/466+/sHXr1hoTzDRu3BhH1hVCLjJDKrK4ZhxlKyHRcU9AQNhUiGQHzr2rL9asWYN9+/ZV2YahkYgaGoZEIjru2O12/Pvvv/jrr7/w559/4t9//63RUtiqVSvsWX4YcpEZcpEFUiXHEhKRi7Co0FLsOP/es/D333/7DI09e/ZEz5490aVLF5jN5ijVlogo8hgSiajeE0Jg165dWLFiBVauXIm1a9fWGFPYpEkTHF5dALnQArnAwglmiMiwQKHRZrOhe/fu6NmzJ3r16oXs7GxIEnsiEFH9xZBIRPVSWVkZ/vzzTz0YHjx4sMrraWlpKNxcBrngaCis5MyFRBQZwqJCS7Wj/229sGrVKhQUFFR5vUmTJnor46mnnoqkpKToVJSIKEQMiURULwghsGPHDqxYsQIrVqzA2rVr4XQ69dfNZjNOOukk/P3lRsgFcRxTSER1QkBAJDhx3QeX448//sC6devgcDj01xVFQdeuXXH66afjjDPOQIsWLdjKSEQxjyGRiGKW0+nE6tWrsWTJEvz+++84fPhwldebNWuGg6vyIefHQS60cPZRIoo6IQtoKXYMf3IgVq5cid27d1d5vXnz5jjjjDPQp08fnHTSSVyfkYhiEkMiEcWU0tJSrFixAr/99huWL19eZSFsi8WC7t27Y9W0fyHnWSBVsLWQiGKbiFNx6xej8Pvvv2P16tVVekAkJCSgV69eOOOMM9C7d28kJydHsaZERMcwJBJR1OXk5OD333/Hb7/9hr/++qtKV620tDQUbiiHnGd1jS1kayER1VNC0aCl2jHontOxbNmyKmMZFUVB9+7d0b9/f5x55plIS0uLXkWJqMFjSCSiqDh8+DAWLVqEhQsXYv369VVea9GiBfYvy4WcGwep2MzWQiI67ggIiCQHRr52AX7//Xds375df02WZfzf//0f+vXrh7POOgtZWVlRrCkRNUQMiURUZ3JycvRguG7duiqvdenSBRtn74KcGwe5nGN0iKhh0axOXPvRpVi8eDE2btxY5bUuXbqgf//+6NevH5o0aRKlGhJRQ8KQSES1Kjc3F7/++isWLlyItWvXwn3KkSQJ3bp1w7+zdrhaDO1ct5CICHCNY7xx0gj8+uuv+Oeff6q81qVLFwwaNAhnn302u6QSUa1hSCSiiCstLcWiRYvw888/Y82aNdA0TX+ta9eu2PDdLig5DIZERIEIi4pbp47C4sWLsXr1av1Bm6Io6NGjBwYNGoS+ffsiPj4+yjUlouMJQyIRRYTT6cQff/yBn3/+GUuWLIHdbtdfO/HEE7Hph91QcqwMhkREIRJmFTd9PhLz58+v0iU1Li4Offv2xcCBA9GrVy+YzeYo1pKIjgcMiUQUMiEENm/ejJ9//hkLFixAXl6e/lqrVq2w99dcKEeskCoZDImIIkmzOjHqnQsxf/587N27V/96cnIyzjnnHAwZMgQdO3aEJHHiLyIKHkMiEQUtJycHc+fOxdy5c7Fz507966mpqSj+txLyYRukEhNnJSUiqmUCAiLRieHPn1PjYV27du0wZMgQDBo0CKmpqdGrJBHVOwyJRGSIqqpYuXIlfvjhByxduhSqqgJwLXDv3CdBPmxzrWMoGAyJiKJBQECk2nHWXadW6fZvMplwxhlnYMiQIejZsydMJs4gTUT+MSQSkV+HDh3C7Nmz8eOPP+Lw4cP617t06YJN3+yGnGOFpMpRrCEREVUnTBpumz4Kc+bMwaZNm/SvZ2Zm4rzzzsMFF1yA5s2bR7GGRBTLGBKJqAan04mlS5fi+++/x8qVK/XZ9JKTk1G6wQn5kA1yGZ9EExHVB1qCA8OeH4B58+ahsLBQ//ppp52G4cOHo3fv3lAUjh0nomMYEolIl5OTg++++w7fffddlXEt3bt3x7rp21ythuxOSkRULwlJ4LEFd+CHH37AypUr9a83btwYF110EYYOHYr09PQo1pCIYgVDIlEDJ4TAv//+i5kzZ2LRokVwOp0AgLS0NBStrXS1Glaw1ZCI6HgirE5c8tog/PjjjygqKgLgGrvYv39/DB8+HN26dePMqEQNGEMiUQNlt9vxyy+/4H//+1+V9ba6deuGDV/thpwbx1ZDIqLjnJAF7vvhBnzzzTf4999/9a+3bdsWl112GQYNGoS4uLgo1pCIooEhkaiBOXLkCL755ht8//33KCgoAHB0htI9MpT98ZBLuQgzEVFDpCU4cN7jp2PevHmorKwE4OpVcvHFF2P48OFcRoOoAWFIJGogduzYgenTp2PevHl6l9KsrCzk/VEO5aANkpMzlBIRESAUDTd8fjm+/vprfVZri8WC8847D5dffjlat24d3QoSUa1jSCQ6jgkhsGbNGkybNg3Lli3Tv37SSSdh/fSdri6lXPCeiIi8EJLAwz/fihkzZlQZlnDaaadhxIgROPXUUzlukeg4xZBIdBxSVRW//fYbpk2bpo8xkSQJ0hELlL0JkEvYpZSIiIwREBDJDvS+vSt+++03fVmkDh06YNSoUejXrx+X0CA6zjAkEh1H7HY75syZg+nTp2Pfvn0Ajo433KVA2RfPWUqJiCgswurEhS/2x48//ojy8nIAQIsWLTBq1CgMGjQIZjMfQhIdDxgSiY4DlZWV+OGHH/Df//4XR44cAQAkJSWhbL0G5UA8JAfHGxIRUeQIk4ZRH16Ar7/+GsXFxQCARo0a4corr8QFF1zAGVGJ6jmGRKJ6rKKiAt999x2mTZuG3NxcAEcno1lRAeWgFZLGcEhERLVHKBqun3IZZsyYgby8PACuGVFHjhyJiy++GFarNco1JKJQMCQS1UPl5eX49ttvMX36dP2i3LhxY+T+Xgb5kI3rGxIRUZ0SksC4/12DqVOn4uDBgwCA9PR0XHXVVRg2bBhbFonqGYZEonrEbrfju+++w+eff478/HwAQJMmTZCzpBTyYYZDIiKKLiEJ3PvD9Zg8eTL2798PAMjIyMDVV1+NCy+8EBaLJco1JCIjGBKJ6gGn04m5c+di0qRJOHToEACgWbNmOLyoBPIRK8MhERHFFCEJjP92LCZPnqxft7KysjB69GgMHToUJhMnUiOKZQyJRDFM0zT8+uuv+OSTT7B7924Arots/tIKthwSEVHMc3dDnTJlij6xWnZ2Nm666Sb069eP6ywSxSiGRKIYtWrVKnzwwQfYvHkzACAlJQUlq1XXbKUaL6pERFR/CEnglhkjMWXKFBQUFAAATjzxRNxyyy04+eSTo1o3IqqJIZEoxuzcuRPvvfceli9fDgCIj49H5QYJyv54SCpnKyUiovpLKBqu+nAoZsyYoa+z2KdPH9x8881o27ZtlGtHRG4MiUQxIj8/H5999hm+//57qKoKRVGAPRYouxMhORkOiYjo+CHMKoa82Fe/5smyjCFDhuDGG29EWlpatKtH1OAxJBJFWWVlJb766it88cUXKCsrAwDIuXFQdiRCruDAfiIiOn5pVifOuK8bFi1aBABISEjAmDFjcOmll8JsNke3ckQNGEMiUZQIIfD777/j7bffxoEDBwAAHTt2xI6vj0Au4hThRETUcExY8wTefvttbNy4EYBrcps77rgDffr04eQ2RFHAkEgUBXv37sVbb72FFStWADg6Y+lvla7lLMCLIRERNTwCAvfOvh4ffvgh8vLyAAA9e/bEuHHj0Lp16+hWjqiBYUgkqkPl5eX44osvMH36dDgcDphMJogdFih7EiBpHHdIREQkFA2XvT0IX331lX6tHDlyJEaPHg2r1Rrt6hE1CAyJRHVk8eLFmDhxIg4fPgwAkPItMG1PglzOcYdERETVCasTPe7shKVLlwIAmjRpgrvvvht9+vSJcs2Ijn8MiUS17MiRI3jzzTexZMkSAK6LXM7Ccsi5cexaSkREFMATv96Jt956S3/IetZZZ+HOO+9Eo0aNolwzouMXQyJRLdE0Dd9++y0+/PBDlJWVuZa02Gk92rWU4ZCIiMgoIWu49O2B+PLLL6GqKmw2G66//npceumlrusrEUUUQyJRLdixYwdeffVV/PPPPwAAqcgM09YkyGWczpuIiChUWrwDncc0x7p16wAAXbp0wUMPPYRWrVpFuWZExxeGRKIIcjqd+Pzzz/H555/D6XTCZrPB8Y8J8gEbu5YSERFFgIDAuFnX4P3330dZWRksFgvGjh2LkSNHwmTiOH+iSGBIJIqQHTt24Pnnn8fmzZsBAHKuBaZtyZDs7AZDREQUacKiovu4dvpyUp06dcJDDz2Edu3aRblmRPUfQyJRmFRVxfTp0/Hpp5/C4XAgKSkJ5askrnlIRERUywQE7vvxBkycOBElJSVQFAXXXnstRo0axbGKRGFgSCQKw549e/DCCy9g/fr1AAA5zwLTVrYeEhER1SVhVnHafSfoM4l37doVjz32GJo1axblmhHVTwyJRCEQQuD777/H22+/jcrKSsTHx8O+2gT5MFsPiYiIosHdqvjmm2+irKwMNpsNd911FwYPHgxJ4rWZKBgMiURBKioqwiuvvILFixcDAKQCC8xbkiFVsvWQiIgo2kScis7XN8PatWsBuNZVvO+++5CamhrdihHVIwyJREFYs2YNnn32WRw+fNg11mGrDcq+eLYeEhERxRABgbFThuOTTz6BqqrIyMjAk08+iZNPPjnaVSOqFxgSiQxwOp2YMmUKpkyZAk3T0Lx5cxyeXQ65hOseEhERxap3NjyHZ599Frt374Ysy7juuutw9dVXQ5blaFeNKKYxJBIFkJeXh6effhp///03AEA+ZIVpexIklRcYIiKiWCdkDWc/fQrmzp0LAOjZsycee+wxpKWlRblmRLGLIZHIj3Xr1uHJJ59ETk4ObDYbHKvNUI7Yol0tIiIiCoKAwD0/XIc33ngDlZWVyMzMxBNPPMHup0Q+MCQSeSGEwMyZM/Huu+9CVVVIZQpMG1Ihl5vqtiKSBPAtSkREFBFavBPNLk7Erl27IMsybrvtNlx++eWc/ZSoGoZEomrKysrw6quvYsGCBQAA+UgcTFuSIWl12L3UfbHi25OIiCiihCxw9tPd9e6n5557Lu6//37ExcVFuWZEsYMhkcjDgQMH8PDDD2P79u2u2Uu3xEPZb6u72UurP8nk25OIiCjiBARu+XKk3mOoY8eOeP7559G4ceNoV40oJnDmDaKj1q5di5tvvhnbt29Heno65L+SYdpfR8tbSBIDIhERUR2RIOHDK2ZgwoQJSElJwebNm3HjjTdi9erV0a4aUUxgSyIRgDlz5uDVV1+F0+mEVGKC+d9USHal9g/sbwwE35pERES1TsSpaHVVGrZs2QJFUXDvvffiggsuiHa1iKKKIZEaNFVV8eGHH2L69OkAADknDqbNKZC0Omo99IdvTSIiojohZIGznvg/zJ8/HwBw9dVX44YbbuB6itRgMSRSg1VZWYlnnnkGS5YsAQAouxOg7E6o/e6lRmZQ49uSiIioTgkIXPnxYEyePBkAMGDAADz88MOc0IYaJIZEapCKiorw8MMPY926dTCbzRDrbFByann9w2Cm1+bbkoiIKCrumX0dXnnlFaiqim7duuH5559HampqtKtFVKcYEqnBOXToEO677z7s2rULiYmJqFxqhlxkqb0DhrL2Et+WREREUfPSHw/h8ccfR0lJCbKzszFhwgQ0adIk2tUiqjMMidSgbNu2Dffffz9ycnKAShnm9WmQy0y1d8BQF+fl25KIiCiqNJsTGUPNOHjwILKysvD666+jdevW0a4WUZ3gaFxqMNatW4dx48YhJycHUqkCy5r0mgFRkgA5zFlN3ctZhBoQJTn8OhAREZFxXq7ZcrkJed850bp1axw5cgTjxo3Dhg0bolA5orrHkEgNwt9//4377rsPJSUlkArNMK9Nr7nEhSS5AprQQjuIrEAymVxlhMq9r6aGuH+YAZWIiKghEsLrtVOyK9g/vRQnnHACCgsLMX78ePz1119RqCBR3WJIpOPeypUrcf/996O8vBxSvgXm9WmQVI8//aOth5JyNDSG0tVTViDJYQQzSYakhFsGgyEREVFYvDxolZwytn2ag1NOOQXl5eW4//77sWzZsihVkKhuMCTSce3333/Hww8/DLvdDjnPAvO/qcfWQPQIhyGHs6Oth+79hSaCb4mU5PDDIQMiERFR5FS7tkqqjH/e3oszzzwTDocDjz32GIMiHdcYEum4tXjxYjz22GNwOByQc+Jg2pAKSUi1Eg5DwtZDIiKi2OYRFiUhYcVLm9CvXz8GRTrucXZTOi4tX74cjzzyCJxOJ+TDVpg2J0OC60SvdyutRm8F9PeWCNCt1FBLYoCWQ6GJwGMSjYRDvrWJiIiC4+/6evS6KiSBPo+cgF9//RVmsxnPP/88evfuXUcVJKobbEmk485ff/2Fxx57zBUQj8S5AuLRGUN9BURdGAHRkHC7lgJsPSQiIoqGo62KkpCw7IUNOOuss/QWxZUrV0a7dkQRxZZEOq6sW7cO9913H8rLyyHnWmDalAYJxsKdzxa8IMKhz5bEIMKhz3oEGw751iYiIgpOENdaAQ2nPdQJS5YsgdVqxYQJE9C1a9darBxR3WFIpOPG5s2bMX78eNcyF/kWmDdmQA5iOYoa4SyElsMaITGElsMa9Qi15ZBvbSIiouAEec0VkkD3u1tjxYoVSEpKwjvvvIM2bdrUUuWI6g5DIh0XDhw4gFtvvRV5eXmQCs2wbMqEpAXXm7pKOAuxa2mVkBhi19Iq9Qinaynf2kRERMEJ4borZA0dbsjC+vXrkZmZiXfffRdNmzathcoR1R2GRKr3ioqKcNttt2H37t2QSk2w/JtVdR1Eg4TmeiuEM2YwYmUEu4yG14L41iYiIgpKiA9nhUlD85EJ2LFjB7Kzs/Huu+8iLS0twpUjqjucuIbqtcrKSjz88MPYvXs3UKnAsjEzpIAIuIJduJPKRKoMIiIiqj8kp4x9X5agSZMm2Lt3Lx555BFUVlZGu1pEIWNIpHpL0zQ8//zzWLduHeCUYNmYAckRYPZSLySTCZLNBsliCbkukSgDkgwoiutfIiIiCo7HmoYhF6EYmAnd1752BbmznUhKSsL69evx0ksvgR32qL7i3SjVW//5z3+waNEimM1mmDdnQC43B7W/O9jBbIYUxkVFMpkAc3DHrlmIDEmRw6pHzTLZIklERA1QBK5/oYZFucKE5557DoqiYMGCBZg0aVLYdSGKBoZEqpd++eUXfPHFF67/bEqGUhQX1P7uYCdJUsjBzDNkhuxo66Gk8K1IREQUMRFoVQQQUlB8oMeLuPfeewEAn332GebPnx92PYjqGieuoXpn69atuO2221BRUQHToRSYdqcAqpd1Bb3wbPWrHg6F0wlhtwdVRg2qaqgMV0Gyz3AoVA3C6TBWjj98exMRUUPhLxQavB5KJpPvIgzeawCAbLNh2CunYfr06bBYLHj33XfRqVMnw/sTRRubL6heKSgowCOPPIKKigrIRTaY9hmfOSxSrYeR6FrK1kMiIqI6FIVWxW8eWI7TTz8ddrsdjz/+OIqKisKuA1Fd4V0q1RuqquLpp5/GwYMHIVWYYNmRBQmS66Tt58QdibGHEelaCtTO2EMiIiIKrI4mtpHjXENgJEj46/29aNasGQ4ePIjnnnsOmhaBJa6I6gBDItUbX3zxBf7880/YbDZYtjeGpPo/SVcPh3XSeqgo3mc4jVbrIcMoERE1BMFc72p7Yhv52LVeUhU8++yzsFgsWL58+bH5FIhiHEMi1Qtr1qzBZ599BgBwbkiAXOF/qYmYmZgGYOshERFRrKnDiW3u6P4c7r77bgDAJ598gj///DPs4xLVNk5cQzGvsLAQ1113HY4cOQIlNxGWXVk1thGqCqiq34lpAvGcuCassYeek9f4mZzGb12EADTByWuIiIiMCCfweVwn/U1cE7CYoxPbyDab19cHPH4iZs+ejYyMDEyaNAkpKSkhH4uotrElkWKaEAIvvvgijhw5AqnCBPOeDJ/bht16qCiQbLaItR6G072U6yUSERHVkaOtiuEERCBwq+KC5/5By5YtkZubi9dffx1sp6FYxpBIMW327NlYunQpzGYzLDsaQdJq/slKNivk5OSwJqYBACnOAslqDae6rnIsZsg2a1h1EUIAIkKD23kRIiKi41mkHoZK4d8WS4oCyeb9XkISMh5//HEoioJFixZh7ty5YR+PqLYwJFLMOnToEN555x0AgNiRBLk8rsY2ks3qavlDGK1vFjOkpMSwA6KkyJAsZr8zrRqhP1k0MIOagcLC25+IiKihkCXXNTwSYdFHULzz1Bdw3XXXAQDefPNNHDhwIOxjEdUGhkSKSUIIvPrqqygrK4NUEgfT4eQqr0s2K+T0NFdADOcJosXsCodhT4kthx0OAUSu64kQDIhEREShkKWIBUVvYfHzW+ehW7duKCsrw0svvcRupxSTGBIpJv34449YuXIloEmw7MqEhGMhTm899JiZTIqzAHE1Wxp98tF6GGyX00i2HkY0IBIREZFhkqnaXAQhtirKSUk1y64WFCVI2DwtH3Fxcfj777/x008/BV1fotrGkEgxJycnR+9matqfBrnStdyF39bDYFoC66L10Gzyvl6iF37DYbBdThkQiYioIYnUeETZRznBtir6KKd6q6JsN+vdTt99910UFBQYPwZRHWBIpJjz/vvvo7S0FFLpsW6m3loPQ+IOiGGI2dZDBkQiIqLIi1D3U6Bqq+JnN85B+/btUVRUhHfffTci5RNFCkMixZTVq1dj3rx5kCQJlt0ZkG02w2MP/XY5jeDkNDE19tBVWOTKIiIioprcQdFPWPTW1dQbd6uiBAn33XcfJEnC3LlzsWrVqkjVlihsDIkUM5xOJ958800AgHw4EQpSgms99LVNkN1LfY1LDDog+uhyGnRA9NfllAGRiIgaqgh1Na0xHtEXWfLfquiry6qv49qsuLvXy7jkkksAAG+//TacTmdQZRDVFoZEihnffPMNtm/fDqgK4srbRGbm0hhb2oLdS4mIiGJMkOHOSKuiUZLNih9fWIeUlBTs2LEDs2fPDrtMokhgSKSYUFxcjE8//RQAYMlvBkmYQwqIepfTMCencbcmht299GhrYtjh0LM1keGQiIgaurpuRayuWqui0a6mXuugKRg7diwA4JNPPkFpaWnIZRFFCkMixYRp06ahpKQEkt0KU2lWyOWIBBuQmRp26yEQufGHEcWASEREFDnBtiJ6219RICXEh1XMR7fMRcuWLVFQUIAvvvgivDoRRQBDIkVdbm4uvv76awCApaB5lTURgyHirdCSwl/aAooMWMyAyRReOZoAVBUAIIVT1tFyhCYiN9U3ERFRfRWj10LJZgt9X0i49dZbAQBfffUVDh8+HKlqEYWEIZGibsqUKaioqICkJUNWmoRUhmdA1BLiIJJCfKLn2XoYznIZmgCE5vo8nKeUmoBwB0QgYlNwExERNXRG1zMORMnMOFZmGEHxqfE/46STToLdbsd///vfSFSNKGS846SoOnDgAL7//nsAgMnZHlKQIUjEW6E2Tq3ZghjsU0Z362H17qWhPK30DIjhOBoQa4jRJ6hEREQNUrXrsmSzhRQWJfnY2MQffvgBOTk5kagdUUgYEimqZsyYAafTCVlLhyLSg9q3SvfSaifooFoT/Y09DKY10d291EtAlBQluC6nvgIiwNZEIiJquCI1YU0ttCLWOEYIvZEeuu0HdOvWja2JFHW826SoKSgo0Kd6VpytAQBavAUiMfDTN0PjD41cSIxMTmOknECth7JkLCi6xx/6CojB1ImIiOh4EovXvgD3IUaDota6qWsXSHpr4nfffYfc3Nxwa0gUEoZEippZs2ahsrISkpYEWaS5vuilVdCTz+6lwfLVvdSbQK2JRruXBhqbWH38oT9sTSQiIgpJpFoRjR3MFRQDhkX52HX9kTt+RJcuXWC32/G///2vlitI5B3vNCkqKioq9BOfSW1dZUZTX62J/rqXeqPFW7x3OQ1laQtvx/PTvdRnMb5aE/11Lw2mTkRERMejGLzm+etqWsXR+xZfQdHdiqhvDgkjR44E4GpNrKysDKueRKFgSKSomDt3LgoLCyEJG2St2rqIXkJgSMtbeAuToa59WL01MdTJaby1JoYSEAG2JhIREQUpoq2IwQZXX0FRrnk9f+6BRWjSpAkKCwsxb968ECtIFDreZVKdE0Lgu+++AwAoajYkL3+G7tZEEW+F2igl5O6lVVoTQw2Ibu7jhzl7qd6aaHT8oZE6ERERHa9i8FpnuBWxumrdT6u3IuqbQcLFF18MAPj6668hhIGhKEQRxJBIdW7Dhg3YsmULIGQoajPvGx1d71BLsrqesIV6gZAkOFPjoWWmhBcQAVdrosUS/vIWsgSIIMYf+sPWRCIiIkMiNqNpk0bhBVfP7qdeWhHdPn3zX8TFxWH79u3YsGFD6McjCgHvMKnOuVsRZa0RJJi9blORZUX+CUmoaBz6orQAoJllCIsMoYT5FFLTgEq762RuDu8iIxxOCFWFFG5oBQAtjFZIIiKi+iACrWiSyezqwRPuw1ng6L1AEMta+VDUqwVKWvperkuCGf369QMA/Pjjj2EfjygYDIlUpyoqKrBw4UIAgEltXvP1LCvyOyeiLMsEzQSIQDOC+qGZZQiz609cjbdASza4bmKNgjTA4Qy5Hp6EwwnhPFrW0WUxQsaASEREDUUku1uGERSVJo2O/SfMoKiZJQhFQknLeJ9hceEPOQCABQsWoKKiIqzjEQWDIZHq1O+//47y8nJIwgpJpFZ5rSLL6hEOXV8rT1dQkRXcYrSaWYYab9IDIgBARmitiV4ComRSgm5NFA4ntPKKYwExXAyIRETU0AgRUliUTF56LYUaFKt3DzWbQgqLRT2z9c+Fciws1jicSEPTpk1RWlqKJUuWBH0colAxJFKdWrBgAQBAVptUWfbCHRBFtb9IEWS482w9rC7o1kRfLYh+xg94U6X1sEZZIbQmMiASEVFDFqlWxSCDYpVWxOqCDIqauea9jbegKEHCoEGDAACLFi0K6hhE4WBIpDpTXFyMFStWAAAUrYn+dV8B0c1oa6K/gAgAkAFnUpyxoBigi6nR1kS/AVGvVxBBkQGRiIjIcFD02oroyWBQVJo0CvyQ2GBQ9GxFrM5bUJz+n00AgBUrVqCsrMzQMYjCxZBIdWbFihVwOByQtATIIrHK+ENfARFwtSaWZZlQ0ch3UAwYEN0CtUy6J6gJNAZRlgMGRUMB0SihMSASERF5ChAUAwZENyMT2hjtRRQgKBb1zPbaiuip+jhFSSSiRYsWsNvtWLp0qbF6EIWJIZHqjPvEJmtZXscf+iNk35PYGA6IR6nxFqgpCV4KCnKCGj8XjKADor/WRE2N7IB9IiKi40UdTGjjt5upN36CYqCA6OY5TlGChP79+wMAxyVSnWFIpDrhdDr1rqZqcrOArYfelKcrVVoTNbMM1WoKKiACAGRATaw2PjHEGUyrtyaGNUGNt6DI1kMiIiL/vExoY7gVsbpqQdFQN1NvvExoU9yj5qzugbiD4oxPXOskrlq1CqrKewOqfQyJVCfWr1+P4uJiQDKjrElW0AERONrtNNPV7VRvPQz1L9iz22k4S1x4dDuNaPdSgAGRiIgoGEeDYsgB0c0zKIYSED0dDYrFPZpDtYRWllAklGU3QWJiIoqLi7Fx48bw6kRkAEMi1Ym///4bAOBMaBTWwvZCBlRLcN1LfVHjLdASreGvgSjLgKZGJiDKEiRZYkAkIiIKRQRnPg26m6kvZlPIAdFNmBT06NEDAPSeWUS1iSGR6oQ7JKq2zLDKESagrJGM8qzg1imsTq5UYSosh6QKIC68soTdAVFRCUkKPfzqVBVCVYFIlEVERNTASCaTa7K3MCmNMl0tis7wH9oeGtAM5enhX9d79uwJ4Ng9FVFtYkikWme327F+/XoAQHHb0EOiMAGaCdAUCeUZoQdFuVKFXGJ3BUT4nhDHUJ3sDoiKCtd/FCX0oKiqEHa7KyC6MSgSEREZJpk8xgCGGxQ9u5mGERQPn90MapwEIUthB8Xxm1YCADZu3AhnJIe3EHnBkEi1bvPmzbDb7VCtFpSeGIeSFsGdJIUJUK2ugCiOBidNkUIKd3pA9OyOYjGH1JqoB0TN40IUSlB0tx4SERFRSKoERLcQg6LSyMsD7RCDotN67J7AHRRDCYv7z1GhNrYhOTkZlZWV2Lp1a0j1ITKKIZFq3aZNrkVg7Y1SIJkFKlrbDQdFd+uhkCQ9ILpVpElBtSZ6DYgAIEkQVktQQdFrQHQLJigGCohsTSQiIvLLa0B0CzIoKo0yfU9WE2RQPHx2s5rVkYNvVdx/jgrJ5hqK0qVLFwDAunXrgqoLUbAYEqnWbdmyBQBgz0wBAEgmDcIUeGC5Z0D0Jphupz4DopvBoCjsDmhFxb4Don5AA28toy2IDIpEREShE5qhsOg3ILoZDIqHz25WpRWxRpWCCIqS7dgxTzjhBADH7q2IagtDItW6zZs3AwDsmcn61yqzHX5bEwMFRDcjQTFgQHST/HdhFZWVx8Khv4B4tCy/rYnBdjFlUCQiIqrBbytidYGCotHlLgIExUABUa+OgaC4f0DVOr+8xzVpzfbt2wOWTxQOhkSqVU6nEzt37gQA2DOOhUTJpPnsdmo0ILr5C4qGA6Kbj/GJwu6AqLQHDoeefHU7DXUMIoMiERGRLqiA6OYjKCqZ6cGV4yMoGg2IenX8BMX9AzRI8VUnqHGkJwEAdu7cyclrqFYxJFKtOnjwIJxOJzRFhpporfKat6AYbEB00xQJWrX1F4MOiIDXbqd+xx8GUj0ocpIaIiKisIUUEN2qBUUlMx0IpTwvQTGYgKhXx0tQ9BYQAcCZHA+r1Qq73Y79+/cHfSwioxgSqVbt3bsXgOuk5q0lzHN8YqgB0a0y1TWRjVypwpRfHnxA1Ct1LCiGFRDd3EExEgGRrYlERNTAhRUQ3Y4GxZADoptT1cOit4lqDFdHllCRduwa7y0gul6QkJ2dDQAMiVSrGBKpVukhMSXB5zaV2Q4UtwkvIAKu1kTV7BpXKKkitIDoJkmAEIAjyC6mPgghItOCGM73RERERDo5MSG8gOgh/7SmIbUietIUV4ti9XGI1TVp0gSAq7cWUW1hSKRadejQIQBHWxJ9iEushKlrEYrahnesuCINcQUqnPEmqElxYZUllVVAFJcAkgxJUcKrmKpCOCIwboABkYiIGjpZgdDCvx7KSUmALEGUl4ddVv4Z2XDGSTCVh1+vc25ajlvOWOh3G3dIPHDgQNjHI/KFIZFqVW5uLgBAjfce2ixWBxJslbBZHIjvUICS1qGdYOOKNFhzVUiagFAkOBLNIQdFPSCq4bcgQlWh2R1HCw7j7caASEREDZ187KFt2EHRPZu5EGEFxfzTXQERACQNYQXFAdcvR5f4fWhsLsQNJ//uc7uP9/4D4NiDeKLawJBItSovLw8AoNqqzhhqsTqQklKGBFulfp6OM6mwdQw+KHoGRLdQg6LXgKgoobUmegZE/QAhvOUYEImIqKGTa16HQw2KclJStYJCC4r5p2fX6GIaalAccP1ydEvYq/+/mSUfN5z8u9ew6L6nKiwsDPo4REYxJFKtOhYSj4U1d+uhSdFQfVnCOJMKa4dCw0HRW0B0E4r/dQ+r89uCGGxQ9BYQ9QMF8bZjQCQioobOS0B0CzYouruZ1iwo+KDoawxisEGxekB0a2bJ18OiJ83KkEi1jyGRalVpaSkAQLOaARwLiP6ym9XshLVDIYrb+D/B+guIbkbHJxrqYmo0KPoLiPoBDbz1GBCJiKih8xMQ3YwGRZ8BUS/IeFDMPz3b7+tGg6KvgOipelDU4lz3VAyJVJsYEqlWlR892QqTYiggulnNTgiz75OrkYAIGOt2GtQYxEBB0UhA1A/s5+3HgEhERA2dgYDoFigoBgyIekGBg6K3bqbeGAmKgQKim2dQdIfEkpISQ/sShYIhkWqVOySaEoXhgOgW36rIa7dTowHRzV9QDGmSGl9BMZiAqFfAy1uQAZGIiBq6IAKim6+gaDgg6gX5DopGA6Kbv6DY7/qVxuuEY0FRKK57B4cjyHsOoiAwJFKtcTqdUI+uDWhLcgZ1fgaOdTv1DIrBBkQ3b0ExrFlMqwfFUAKiXhGPtyEDIhERNXQhBES36kEx6ICoF1QzKAYbEN28BcV+16/EyQm7gy6rmSUfV520CoDrPkvwvoFqCUMi1RrPE5cshbbArGdQDDUg6vXxCIoRWebCHRTDCYhu4SyPQUREdLwIIyC6uYNiyAFRL+hYUAw1ILp5BsVQA6JbY9OxsYjFxcUhl0PkD+9MqdZIVYJh6E+6rGYnVKsGCIQcEPVaKBIkpwaUV0RkHUShqhBOZ9jlEBERUeRIcXHhBUQ3IeBokRFWQNTrpAEtRmwPKyACgOxx9+7usUUUaQyJVGuqhMQwsl3O3lQk7FZQmSqjMs0UVp0s+ZVQjhQCkgSYwitLOJ0Q4bYg6oVp7GpKREQNW4i9jqqTra6hJZG4Rjs7toAwy0jcZw+7rMyxu9Ah8TA2lzcJqxzPzkfx8fFh1orIO4ZEqjWyx6OugU02hlRGzt5UJG41QbEDQgHKM0IPipb8SpgOFQBOFZBlSCYl5KAonE6IikpXuAMghdWdhQGRiIgaOHdAFOH18pGtccfK0rSwgqKzYwsIi+teRnFoYQXFzLG7cELyQQBApWYKKygOtuwD4HoYb7FYQi6HyB+GRKo1kiTBZrMBAMbY1mJIi/VB7e8ZEN1CDYpVAqJbiEGxekB0CykoMiASEVFDV70FMcSgWCUguoUYFD0DoluoQdEzILqFGhQvS9wNqdIKwNWKKEWo9ZWoOoZEqlUJCQkAALnChvHpf+C87A2G95XsUpWA6BZsUPQaEN2CDIq+AqJe56Cm2GZAJCKiBs5XyAkyKHoNiG5BBkW1Q3aNgOgWbFBMH7O7RkB0q9SCe0h9WeJuJMpWlFW4vk92NaXaxJBItcodEkvLZKQp8bg3Y4WhFkX3OERfjAZFvwHRzWBQDBQQ3QwFRQZEIiJq6AK1ghkMin4DopuRoChJUDtkQ4vzP8OqoaAouQJil5QDfjcz2proDogAUFbuun1399Yiqg3hzdxBFEBSUhIAoLDEdUJLU+IxPv0PAMCPe7p43cdbN1Nv3EERMCEu3/sMo5Kq+Q+IbrIMyXR0fh0vs5UaDYj6cWXJ56K+DIhERNTgGe0mKTS/y0QZCohuR4OiZDF7rY/avnnAgOimOPzcD0hA+ujAARE41u20o+0grDl2dPrqMJr8UQhzqQpHgoIDvVLQfowdicmJ+j75hUfvqdLSDNWVKBQMiVSrsrKyAAA5ecdO8O6gODp1BaYUnFYlLBoNiG7+gqIlvxJKTpHxyvoIisEGRDevQZEBkYiIGrpgx9H5CIpBBUQ3b0ExyIDolrjPjpLm1SaOCSIg6lUqA7o8sx89vtsFxVn1HqH574UQ7wAYkQzxbCZglZGb56pnRkZGUPUlCgZDItUqd0g8klv1xJumxCNNAcan/wFVyJi794SgA6KbUIDy9KpB0VA3U2+8BUVNC3kQfZWgyIBIREQNXagTrVQLiiEFRDfN45oeYkAEjnU71YOiBKRdsyeogGiucOKmcUvQ/s8jPreRHAC+KAK22SGmNkNOvuvnkJmZGXSdiYzimESqVe4TWPWQ6OYep2gzO0IKiG7C5AqKlWmm0AOim8cYxUishaiPUWRAJCKihizcmTiPPrANKyC6i7I7wgqIbvr4xKMBsWvq/qD2v/jV1Wj/55GAy0kLANKyCkhP5CCnbBgAtiRS7WJIpFrVtGlTAMD+Q75PwBPzemDP3gw4E8I7ljABil1AyS8NPSC6yTKgqSF1MyUiIiIPkhR+QHQXZTZFrqzEhLACopvi0FDSXAo6ICbllKPn9ztcdQmwrf76jCLs2b4dAJCdnR1cRYmCwJBItapVq1YAgN37TT4b0g7ZkwG7jMpMFZVhjMFOOKAicVsRIEkQCTbA28B0g0RlJURpmes/fgbMGypLE4AWZmglIiKqjyK4jp/kXjheDf9BsJyeCsgyzAeLwyrqQG8bDvS2QbMA3yzuFdS+p32zAyZnkL2MHMCe3bsBAC1atAhuX6IgMCRSrWrevDkURUFZuaz3off09JET8dN618Q1wiTCCoqKXUCqcOhPLIXZFFJQFJWVECWlEKrnmIXQ3ioMiERE1GDVRkAEIIQIPSi6A6LiakGUHM6Qg+KB3jY44wHn0eUKzUXB3Su0/8v3OERfci0WlKsqFEVB8+bNg96fyCiGRKpVZrMZzZo1AwDs2lt1nqSnj5yIyat7Q5Qf6+oRalBMOKAiYWe1k3wIQdFrQNTLC+7twoBIREQNVi0FRLdQg6JnQNTLDyEoHjzNpodDT98sMd6aGFfqffkuf7bHuw7atGlTmM2h95giCoQhkWpd+/btAQCbth87mekBsazmBLvBBsWEAyqSNxe5WhGrCzYoqpr3gKiXZ+wtw4BIREQNVi0HRLeggqIsQ85MrxEQ9eM4jAe2g6fZ4PAxj4K5UDYcFCsTgl9kYHOia73ETp06Bb0vUTAYEqnWde7cGQCwaeuxoHbInuw1ILoZDYp+A6KbwaAoKishysv9HxBwBcUwxykSEREdl+ooILqJQDOHHw2H3loQqzPSmugvIOrlGAyKKX0N3HNUszEpCQBDItU+3ulSrTvhhBMAABu3uU72z+V0xk//nhhwv0BB0VBAdAsQFP12M/VZpve3D1sRiYioQarjgKjz1ZroOf4wQEAEAnc7NRIQ3QIFxesyfofpKitEkD1G3SHR/QCeqLYE385NFKSOHTtClmUczgUe3twZM3ad7rcV0ZM7KNpTJVgKZMTlH3tNn6jGqKNBUQIAj7UPQwqIeplylSUyGBCJiKhBilZAhKs1UVLVqkGw2gQ1ho99NCg6miRV+XowAdHNXFjzYfJ1Gb8DABorGrRGCiout8H233LXOoh+yhIADsXF4XBcHBRFQceOHYOrDFGQ2JJItS4+Pl4/mX0/v5XhgOgmTAKaVavSquh1ohojvLUoBhqHGLBM19uIAZGIiBqkSK1baLEEHRDdqoxPDDEg6vWoNj4xlIDo5tmaeF3G72isaGisHLvnKH46BfbeFkPrJK46JQOAq6tpfLyXWXOIIoghkerEKaecAgCw7s4PsKVv7lZFpVIY72bqzdGgKOKtgKYZG4doBAMiERE1NBEMiOFyB8VwAqKb+XAJDp5mCysgAse6nboDYg02CQWfp6N8VLzPrqfCDJSPisfawbcAALp37x56hYgMYkikOnHqqacCAKwHjwCBBpn7IUwCmiKFVQYAQJIgVdihlZQGHvRORERENUUqICoKoEXmWizZbGEHRABwZCQgbbMzrIDoJszCe0B0s0kofjkFOSsboeTBJNjPssBxihn2sywoeTAJOSsboeilFPy1Zg0AhkSqGxyTSHWiW7dusFgsQFkFzIUlcKQmBd7Ji8RtJmRsqICIcz1ukyqDX2NIp2mAqkJSFAiooV+ghAahqq6LJQMnERHFMnewC+d6Fcnxh4oSsRnD5fh4QJEhSssgJYTeHdPeLBWaRYG5SEW4t8r2TBXCpKHfypvwa6+P/G4rshSUjUtE2bjEGq+d/f0oZB5eAYvFgv/7v/8Lq05ERrAlkeqE1WrVWxNtew+EVEbiNhMa/1kBpdQBIQEizgwtMQ4iLvgTuFRWAa3o2JhGSVEAOYSLnjsg6gVF7sJJREQUUZ7XqFCvV7UZEEN8WCvHx+sBEQCgqhClZSGV5Q6Ibo3+Du1htD1T1QMiAJTlxKPfyptCKuvM5bfA9E8BAKBHjx6wWq0hlUMUDIZEqjN9+/YFAMTvPRTS/qZyQCn1mJVUAoQiQ8SZgwqKUlkFtILCGlNmhxwUaxxAYlgkIqLY4u26FOy1qi5aEIMMino4VKqV5WtZDD+qB0QAMBepQQdFdzh0B0S3spzgWzfPXH4LKnJs6G13/ezd91JEtY3dTanOnH766ZAkCXG5BVBKy6Em2Azvm7jNhIx/K7y+JiQAwXQ/PdrN1BvXRUtzjVMMdKGq3opYozB2PyUiohgQiXAXyfGHQES6mFZpPfTCaLdTe7NUAKgREN2C6Xbq2XrojZFup4ArHAJARY4NSmkZNm7cCADo3bu3oXoQhYstiVRnMjIy0K1bNwBAwq59hvdL3GZCo78qq7QiVufufhqoRbF6N1OvZDlwq2KggKgfkC2KREQURYGuQ0auU5EMiJIcOCAaaE0MFBABGOp26mjqaj30FRDdjLQmBgqIgKs1sf8f/rudulsPK3JcD9MTdu4HAJx88snIzMwMWA+iSGBIpDo1aNAgAEDCjr2G9zGVA6YSe8DtAgVFX91MfYlo91MiIqK6FMzQB3/bRTogGuUnKBoKiG5+rvmOpqlQ44zNhBqo26mRgOhWesR366Y7IHo6tagSAHDuuecaKp8oEhgSqU4NGDAAZrMZloJimPOLAm6fuM2E9A2Vhsv3O6GNn26mvngNikZbEasUxKBIRER1JJRrTiTGLPoqOkIzmNaYoMYgb62JwQREN1e306rsGSrsGcYDopu31sSzVtxcIyCa84uwfft2mM1m9OvXL6hjEIWDIZHqVFJSEvr06QMASNy+J+D2RlsRPXmb0MZQN1MfOKENERHVG5EafxgLAdGjNdHnBDVGVHuwG0pAdMtafawse4YKYdYgzMEFRKBqa+JZK27GWStuRrmXFsbEbbsBAH369EFSUmjLhxGFgiGR6tzQoUMBAAnb90By+u66EWwrYnVVup+G0IroSVIUSEcvTEG3ItYojEGRiIhqQbjXlwg/zIxIC6ImQmo9rE6UlsHRNDWsgAgAlkLXfYs7IIbj7FU36uHQW0CUnE4023cEAHDRRReFdSyiYDEkUp3r1asXmjZtCsXuQPyu/T63C6UVsTohAVKFA6K0NOwLnxAi/IBIREQERDaQRaosI5PKGClGUSLWxVQym8IOiAAgWeNgyikJKyACgBonI31DaK2H1cm/pnoNh27xu/ajpKQEzZo1Q48ePcI+HlEwGBKpzimKgmHDhgEAkjbv9LpMROI2E9I3Vrq6eYbR1VMpLAdy8yFUDZDl8C6imgBE+BcFLotBRNTARWJRe/e+EQuakbkl1Je4CLccs8kVECUJojK8B8aSzeaaudzue5Z0I9Q4GZABS7GKRr+Fvopc8gYzkjeYYS4RSN7ooxwhcEa+a+mviy66CLLMW3aqW/yLo6gYMmQILBYL4vIKEXc4t8brpjLA5LnkRahBUVUhPC8KIQZFoapsRSQiovBFsvUwUqoHxBADY42AGOKDVXc41L9HLfQHtJLNBpiO1SvuQOBJ87xxB0Q3W56BdZm9cIdDc4nrgbG51PuDY+uhXGzatAlxcXEYMmRISMciCgdDIkVFamoqBg8eDABIWb+1ymuJ20xI3+RlLGKQQVEpLAfyC72UE0JQZCsiERGFy9e1J9hrUiRbD2OwBdHb9xdsa6Jks9UIiAAgVQTfKlk9ILoF25roDog1vu6lNXFooesB99ChQ5GamhrUcYgigSGRoubKK6+EoiiwHTgCS26B/vUarYiegul+Wr0VsUo5MqAohi60bEUkIqKwRWJR+2C2C1hOgFtAg+FRH3/oSxAPWH0FRABBtSbq4dDkvV5GWxPVONlnQASMtyZ6di/1pnproiWvAKtWrYKiKBgxYoShYxBFGkMiRU2zZs0wYMAAAEDyv67WxMTtPloRq4vEkhSAsVZFtiISEVE4Yq2LqdHWwwDb1cb4Q3+MtCZ6az2ssY2B1kQ9HIZ5p1y9e6nP7TYda028qsL1+YABA9C0adPwKkAUIoZEiqpRo0YBAOJ3H4CpsBimUj+tiNX5CYo+u5p6Lcd3UIxYKyIDIhFRwxPsxDL+tq3PE9T4edBaY/yhP5rmMyj66l7qi7/WRH+th9U1+t13l9Pkjb5bD6vTxygWFOPXX38FAFx11VXGKkFUCxgSKaratm2LM888ExKAtNUbgy/AV/dTf11NvZbjo/tppFoRiYioYYm15S2A0AKil31qe/yhX166nQbqXur12F5aEwN1L/XGlluzy2nyRrMrIBYH/4D48gIHNE1Dv3790K5du6D3J4oUhkSKuhtvvBGyLCN+70GkbjwYWiEeQTGoVsQa5RxrVeRYRCIiCkm4y1pEopwqZUZ4/cNQVHvgGlJA9FanIFoPq/NsTQyne6lna6I7HIYSENNWFeL333+HLMu44YYbgq8IUQQxJFLUtW7d+tj0zpUbIBBi10x3UAy2FbFGOUdbFQG2IhIRUXAisqh9jK1/KMl1Pv7QH1FpD7p7qde6VNhDaj2szt2aGGrrIQBACPSNKwDgWiasVatWoVeIKAIYEikmXHvttYiLi4OQCqBJR0IvKFIT2gCQIrkGFRERxa76OrFMHZUjRWyyOCkiAVhS5KC7l/quE8K+G447UhFeQASglBzE2rVrYbFYcO2114ZXIaIIYEikmJCVlYXLL78cAKBKmyEQWjfPsLqaenI4oIXTGumJk9YQEcUud2AJN+BJUsRa7ar8G245YYpYQFQU18PXMIdxSGZX105RXBKJWsG2qzis/eOOVECudKLRH2WhF6KpaKvtBgBcdtllyMrKCqtORJHAkEgxY9SoUcjIyICQyyHs2yBXGFt/qAqHM7yupp7Y1ZSI6PgVqS6d7nLCDXeRWtg+UuMPZSkyAVFRjgXEcOrj7qbqpkbmGi2Xloe0X9yRCj0gAoCp2MDyXV5krC1Byr/rceDAAWRlZWH06NEhlUMUaQyJFDMSEhJwxx13AAActt0QlYWhBcVwORwQzggdl62IRESxx1dgCTbIuMNhbbX6BVtujLYe1giIQbYmVgmHbkKLWmuiOxy6A2KoMtaWQCrKhRK/FwBw++23Iz4+PqwyiSKFIZFiyoABA9CjRw9AErAnbgfKK6EUVRgKixHragpwVlMiouNVoCBoNCj6614aTFg7XscfRqD1EPAREN3quDWxeuthdWmbKgyVk7G2BBlrS6Dkl+KUi2yw2+3o0aMHzj77bMN1JqptDIkUUyRJwt133w2z2QwtrgCqOQdwOCGV2wMHxUh2NSUiouNPRNcujOD4w7rYxoCY7l4aZUZaD01FgUOiOxwq+aVwxuVi6dKlMJlMuOuuuzhhHsUUhkSKOS1atMBVV10FALAnb4eQHICmQSq3G25VjAnsakpEFDuCuQH3t63RgBhom+N0/KHX7qXe+OmxYzgcCg2iJIwJYwzy13polGfrIQAI2Q5bq0MAgKuvvppLXlDMYUikmHTNNdegXbt2gOx0BUUIQNN8tipGrKupqkZuPCIREcWGWGpBDCXYeds+lloPgei1Hkbomu1tXGKg7qXeeOty6tl6CAACAvakHSgsLET79u1xzTXXhF5xolrCkEgxyWKx4JFHHoGiKFCteVCtOcde9NaqGKmupprG8YhERMeTUIOL537VZzA1XIbs//+hiqWAGMHupdFUfVxiqJPTeHY5zfintErroZtqzYFqzYOiKHjkkUdgNptDrzhRLWFIpJjVoUMHjB07FgBgT9oBTfaYXtpPqyIREVFkl7gIo1tnpNc9rK/dS705+lA22gHRUyith95krC2BklszIGpyJeKyXd1Mx44di/bt24d1HKLawpBIMW3UqFHo3LkzIKuwp2x1dTv1dLRVUaqwu4JjrOB4RCKi6IlU91JZqbsJagIWEZnJcmKpeykQgYAYwaUwIrG0hXw4Hxn/lNYIh4Crm2nHc5woLi5Gp06dMGrUqHCqS1SrGBIppplMJjz22GOw2WzQLEVwJOytuZGmucYkCBFeUHSPR4zUgsZERFT3Ijb+MHauA+5gF27Ai0hAjKVrpCZcH2EONxFl5RBl5TDtyw2rHPlwPkRFJZRc76HVkbAHa9euRXx8PJ588kmYTLHTgkpUXYy8y4l8a9myJe69914AgDNhL1SLjwlqNM0VFFU1tLCoaRCaRwtgrFwEiYjImBgLiO5uneGEs0gEu4h1L/X8uWiR6TEjHCG22kXq+GXlrvsGVYWorAy8gxfy4Xw9IPqiWgqgJu0HANx///3Izs4O6VhEdYV3wVQvnHvuubjwwgsBCahM3gIh271vqGnHwmIkup/G0hNTIiLyLSLjDyN3zo9UuIuFMo4WFJlyqgtlsrgIBER362FIx/fgDof+AqKQ7UhodwhCCFx44YU455xzwjomUV3g3S/VG3feeSfatm0LKA5UpmyGgJ8QGG6rYnXBXBw5HpGIqG5FKiBGiLdgFkxY89fyF2w5YfMTnEVdX+/c3Uu91SWIcYmerYehMtJ6CAACGtoPsCMvLw9t2rTBuHHjQj4mUV2SRJ2/w4lCt2vXLtx8880oKyuDqawxLMVtIZVXQissAhw+xiTI7hnhpGOfe+NwQDMyrkEECJ18SxER1Z16EBDdhIEWMCPBLlA5ddl6KCkRmEzHGhd4IyM/u4w0v6+LsqPLXPgJh6J5I79lyIfzXdv5C4cWM5CceHQ9xO1Q4w8jMTERH3zwAVq2bOm3fKJYwZZEqldatWqFJ554ApIkwRl/CA7bQdekNb4CIlA7XVCJiCj66lFAjMTrkaiDwUJi51rnp/UwGJFqPQzUtRSAPpGO03YIavxhSJKEJ554ggGR6pUYOQMQGXf66afjpptuAgA4knZAtRnsYhLJLqixdAElImpoIrYGYmQnqKmr/SPRFdVP4eGXESSfk9fEyNhDOafQUNdST6q5EFrabgDAzTffjN69e4d8fKJo4F0u1UtXXXUVBg0aBEhARZNd0OIMTn/NiW2IiOq3GJzBNJr7u8uorwERQM0AF4HWwyrhMNzWw7LyoAKiZrHD2mYfVFXFwIEDceWVV4Z8fKJo4d0t1UuSJOGBBx5A586dAUWFvcNhCFMQF4FoTmxDREShOQ5mMPXc53joXhrxqS1ipWtpCK2HACBMTqSdVY7CwkJ07twZDz74IKRIPdggqkOcuIbqtdzcXNx22204cOAApFIL4jY1hqQFeaE7OpmNUNXQ12tyExonriEiqg0x1L3UVVR0b/yFJmKm9TAik9dYLOGXEW8DAAhn6NdyKc41iY4+yU0QhKyiovVuCFslmjdvjvfeew9paf4n0yGKVWz+oHotIyMDr732GlJSUiAS7LC3OwIhBRnS3F1QNRF45lIiIqp7MRIQ3d06ox0Q3XU5XkSivULY7RBOZ+gBUQi9i2pIARECldn7IWyVSE1NxauvvsqASPUaQyLVey1atMDLL78Mq9UKLaUC9lY5EAjjgiM0hkUiolgRQwGRqgnzWimEcAXEMLqYCrvd9RFq0HSHw/KKkHsTCQjYG++FllQKq9WKl156CdnZ2aHVhyhGMCTSceHEE0/EM888A0VRoGWWwdEiL7ygCDAoEhFFGwNi7IpAQAx3ghp3OAwrIB4Nh2EFxKx9UDNLoSgKnn76aZx44omh1YcohjAk0nGjd+/eeOihhyBJEtTGJXA0z4MWbtBjqyIRUXSEGxAjMEFNrHQtjTlhXBePl9ZDANDKy2DP3A+1UQkkScIjjzyCPn36hFweUSwxRbsCRJF03nnnweFw4JVXXoHatATQANPeVEiyHN7sYu4LImcxJSKqXWw9jF1hhkMAYYfDKmUFXwmI8grXp2GEQ1FeDgEBR9M8qI1dazU/+OCDrqW5iI4TDIl03LngggvgcDjwxhtvQG1eAggJ5r3JEJIMyFL4YZFBkYiodjAgxq5wA2K46x6G03LoqkTYLYei3DWhjXA64Wxe5LrHAHDPPfdgyJAhodeNKAYxJNJx6eKLL4bD4cA777wDNbsYAGDamwRJlSAUxWtQlBQZEApEoHWV2KpIRBR5DIjREejhZwNqPZRtVt/FlJe7Zk+FgLPFsYB4xx13YPjw4aHVjSiGMSTSceuKK66A0+nEBx984AqKigbTrhRIquq7VVGSARhcfJdhkYgoMmIgIDa4cGhEFFsPo9K1VFFqFuPReigg4GxVCLVpKQDgtttuwxVXXBFa/YhiHEMiHdeuuuoqxMXF4a233nKd1GUB045USEIDVESuCypw7AZFkoAIrPlERNQgMCDGnhhoPQw2HOqtgBEcdwhAX3dRQMDZpgBq4zIAwN13342LL7445PKJYh1DIh33Lr30UthsNtdkNo3LIBQB87Y0SEJyXQg9wmJY3F12OBsqEZExkZjBNNwqMCBWVV9bD02miI871L8mCTja5kPLKocsy3jwwQcxePDgkI9BVB9IIqxRwET1x8KFC/HMM89AVVXI+VaYt6RB0qrdYBwNeQHHJQbCtxURkX8MiLEj3Aec7m6aIQZEyWIGVDWsiWmko3UINSDKNqurBdNZdX8ha3B0yIOWVglFUfDYY4/hnHPOCbmeRPUFQyI1KMuWLcPjjz8Ou90OqcQMy8YMSM6qYxCEJsK7WPItRUQUWD0PiUITYe8fC3WIyPfgZSyf4TJUFbLFHHJAdIfCiNShekA0q7B3yoVIdCAuLg5PP/00Tj/99JCPQ1SfMCRSg/PPP//g4YcfRmFhIaQKBeaNmZArjvW8FpoAtKMtiaHexPBtRUTkXz0diyg8WstCDVjhlhHJOkTkewghoHn22JHMoY1+Eg4nIDTX8UP4W9Dr4C7Dg2Z1wtE5B8KqIiUlBS+99BK6dOkSUj2J6iNOy0gNTteuXfHee++hadOmEFYV9i5HoCXaq27kvnkRgoGPiKg21MNzqwh3rT9NRKSMaNYhIt9DmEM6hMOpB0QAQQdEoaquOgjN6xIgWqIdtn4VEFYVTZs2xXvvvceASA0OWxKpwcrLy8NDDz2EjRs3ApoE89Y0KHk2ANVaEz0ZffLNtxURUWBR7nIaTCuar2BktIz6vr+vMiRZMvx78BUOjbYk6uMNqw0JkUzm4I5ffX+PVkQ1owxSl1LY7XZ06tQJL7/8MtLT0w2VT3Q8YUsiNVjp6el466230KdPH0AWcHTMgyO7CAJ+Ap7RlsVIdKMiIqJaZbRFLBZa/6K9v88yDAREveXO2+4GuqpWaTn0E/ACHt/L/vo2EHBkF8HRIR92ux19+vTBW2+9xYBIDRZbEqnBczqd+OCDD/Dll18CAOQ8K0ybUyGp8B8IAwVBvrWIiAKL4dZEI+Gqwe/vJ6QZ6VYaqBWxSrdSb/sHaEXUw6HPAmTAJOBonw8t3bW+4pVXXombbroJShiT4RDVdwyJREfNmTMHr732GhwOB6RSE8wb0yGVG7h58XWDw7cWEVFgMRoSjba+Nfj9fQQpo+MOfYVEX11La+zvIyT66lpag024ZjBNcMJsNuP+++/H+eef738fogaAIZHIwz///IPHHnsMeXl5gEOGeVMK5AKLsZ293ejw7UVE5F8MhsRgumdW3z/Yrp3R3D8i33u1n38wk9JIigJUr7/BcKjv7+v4BvbX0uyI76OisLAQ6enpeO6559C1a1djlSc6zjEkElVz+PBhPProo9i0aRMgAGV3IpQ98ZBg8EbG84aHby8iIv9iKCSGMnYvmvtHPaB6tCKGMmOpZytiMOFQ39+jFTGYcCggoLYog9aqBEIIdOrUCc899xwaN25s+NhExzuGRCIvKisrMXHiRHz//fcAACnfAvOmFEjOIG5GPJfRICIi72IkJIY6uUs4+0fz2BHZ/2hIDCkgHm1FDCUc6vtLclDhEACESYOjYwFEmmvpq4suugjjxo1DXFxcUMcnOt4xJBL5MWfOHEyYMAGVlZVAxdHup8UGu58SEZEx4QTFCITEcGf/jNax63XdzaaAk9IEqIDr3yD21xLtcHQuAOI0xMXF4d577+X4QyIfGBKJAti2bRsef/xx7N27F9AAZVcilH1BdD8lIiL/otyaGBVeFnGv0/3DEc6x3aFOkkMPiMEeEgJq81KgXTlUVUV2djaeffZZtGvXrk6OT1QfMSQSGVBaWopXXnkFCxcuBHC0++mWZEh2To9NRBS2+hYSPYNOqPtGe/9wQp4QgBzk9S8SgdB9yxrE34uwqHB0KIRIdXUv7d+/Px544AEkJiaGXx+i4xhDIpFBQgh8//33ePvtt13dTx0STFuSoeRZo101IqL6L5Sg6Bka6iIoRjPgVQ9Zoe7v/pmFGvKECP7nXf3Y4fyug9hfTa9AQm+BwsJCWK1W3HnnnRg6dCikcB9KEDUADIlEQdq1axeeeeYZbNmyBQAgH7DBtCMJksaLDhFRyIK9ca8eGmozJEYqoIVaRjj7Vw9oQHA/L2/7Gw2YnvUOIeTV2M/g/kIWcLYuhta0DADQoUMHPPnkk2jZsqXx4xI1cAyJRCGw2+34z3/+g+nTpwMApDIFpi3JnNSGiCgc4YSH2giKvrpIBhuworm/t9u8YEJeqPt7C5duRn/Pvm5R/eyvJdnh7FAIYXPNejpixAjceOONsFh4fSYKBkMiURhWrVqF559/Hrm5ua41FffFQ9mVCEmwVZGIKCRGAoS/8BCJoOhv/JyR8gONvwtURqT29xXQwtkf8B8SfbUeVq+D3+MHuDX1sr+QBNRWxdCyyyGEQFZWFh588EH06tXLf1lE5BVDIlGYiouLMXHiRMydOxfA0VbFzSmQS8wB9iQiohrCDRDBjrXTyzU4sYq/gGWkjLrY39/PyEjA87e/r5BpJBy69/fHyG1ptTK0xKOth/Gu1sPzzz8f48aNQ1JSUuCyiMgrhkSiCPntt9/w2muvIS8vz9WquDceym62KhIRBc1XkDAaIMId7+ezbB/lhltGpPY38vPxFhLrcv9wfrfVyhCygNqiBKJlOTRNQ3p6Ou677z707dvXeFlE5BVDIlEEFRUV4a233sK8efMAHG1V3JYMuZBjIYiIDPMWJIINEeF26axRZpjhzlsZkdrf6M/G28/F17hDXzxDotHWw+p1qHL8EG5DJQlaSiUc7YqAo2MPBw4ciLvuugspKSnBl0dENTAkEtWCJUuWYMKECa6xigDkQ1bXDKjOerjgMxFRNHiGiVBuVXx1qwx1vT53uApnvb9wy6i+f7A/F28BL5TwHUo49Cwj1H0BCLOAs00RtEYVAIDMzEyMHz8eZ511VtBlEZFvDIlEtaSkpAQfffQRvv32WwghXOsq7kiCfNgKCeyCSkTkV7ghsXqrWbjhLtzF4MMtw3P/UG/dZCW8MsL9nbjLCCUcQkDLqoCzbTFgFpAkCcOHD8dNN92EhISE0OpCRD4xJBLVsn/++QevvvoqduzYAQCQCiwwbUuCXG6Kcs2IiGJciIGiyv7HA/cC9uHeskXi5xmF20bN5oSzXTFEqh0A0KZNGzzwwAPo0qVLndeFqKFgSCSqA06nE9OnT8ekSZNgt9uPLZexJwGSyi6oRES1IpyQ6A5m4Qi3jAZ+iyYUDWrLUqBlJVRVhcViwdixYzFy5EiYTHzQSlSbGBKJ6tD+/fsxceJELF261PUFuwzTzkR2QSUiirRQwln1W6JYKaOBERDQGlXA2boEsLi6x5555pm4/fbb0axZsyjXjqhhYEgkioLly5dj4sSJ2Lt3LwBAKjLDtD2JaysSEUVCsMEs1EXf66qMBkRLcLi6liY7AAAtWrTAXXfdhV69ekW5ZkQNC0MiUZQ4HA589dVXmDx5MsrLywEByIetMO1KhGQPcTFoIqKGLlKhzGg5tV1GAyEsKpytS/RZS202G8aOHYvLLrsMZjMfoBLVNYZEoijLycnBBx98gJ9//tn1BQ1Q9iVA2RvP8YpERMEwEsrCWfA9mHIiVZfjnFA0qNmlUNo5XWP2AZx77rm4+eabkZWVFeXaETVcDIlEMeLff//Fe++9h7Vr17q+YJdg2pMI+aANkuB4RSIivwKFslAXew+ljEiWc5wSkoDWuBzOliWAxfXzOPnkk3H77bejU6dOUa4dETEkEsUQIQR+++03fPDBB9izZw8AQCpToOxKhJwbx8ltiIi88RXIwl0LMNRyIlHGcUpAQMuohNqqBCJeBQC0bNkSt9xyC8444wxIx8uyJUT1HEMiUQxyOp34/vvv8dlnn6GgoAAAIBWbXOMVCywMi0REnqoHi3AWeo9kGeGUc5wRENDS7K5wmOgEAKSkpOC6667DhRdeyCUtiGIMQyJRDCstLcW0adPw1VdfuSa3ASAVmmHalQi5yBLl2hERxQB3KIvEQvOxVM5xREu2w9mqBCLFNWNpfHw8rrjiCowYMQIJCQlRrh0RecOQSFQPFBQUYOrUqZg1a5Y+sF/Kt7jCIpfNIKKGSpIYxmKYluhwhcM013XLYrHgkksuwVVXXYXU1NToVo6I/GJIJKpHjhw5gs8//xw//PADnE5Xdx05zwJlTwLkYrYsEhFR9GnJdjhblOrhUFEUXHDBBRg9ejRnLCWqJxgSieqh/fv3Y/Lkyfj555+hqq6B/1KBBaY9CZAKzRyzSEREdUpAQKTY4WxZqncrVRQFgwYNwtixY9GsWbMo15CIgsGQSFSP7du3D1OnTsWcOXOOhcVCsysscoIbIiKqZfqENC1KIZJd4dBkMmHw4MEYNWoUwyFRPcWQSHQcOHToEKZOnYrZs2fD4XBdpKViE5R9CZBzuHQGERFFlr6URYtSfbZSi8WCCy+8ECNHjkTjxo2jXEMiCgdDItFxJCcnB9OnT8e3336LyspK1xcrFJj2xUM+ZIWkydGtIBER1WtCFtAal8PZrAywuXqwWK1WDB8+HCNGjEBGRkaUa0hEkcCQSHQcys/Px6xZszBr1iwUFha6vuiQoByMh7LfBsmhRLeCRERUrwizCrVZOdQmZYDZdeuYnJyM4cOH47LLLuNspUTHGYZEouNYRUUFfvrpJ8yYMQP79u1zfVED5MNWV1fUci5eTEREvmnxTqjNSqE1qgCOdkZp3rw5Lr/8cgwePBg2my26FSSiWsGQSNQAqKqK3377DdOnT8f69ev1r0v5Fij74yHnc5IbIiJy0SejaVoGkW7Xv961a1eMHDkSZ5xxBhSFPVKIjmcMiUQNzLp16zB9+nT89ttv0N/+FTKUA/FQDtkgOTlukYioIRImDWrjcqhNyvXxhpIk4ayzzsKIESPQtWvXKNeQiOoKQyJRA7V//3588803mD17NoqLi11fdHdFPRAPudQc3QoSEVGd0BIcUJuVQcs61qU0MTERQ4YMwcUXX4zmzZtHt4JEVOcYEokauIqKCixYsAD/+9//sGXLFv3rUpEZygEb5BwrJMGuqERExxMhCWiZFVCblUEkOfWvd+jQARdffDEGDhwIq9UaxRoSUTQxJBIRAEAIgX/++QezZs3CokWL4HQevWlwSFCOWCEftEEuY+siEVF9psU7oDUph5pVoc9SajKZcPbZZ2P48OHo2rUrJIkPBokaOoZEIqohNzcXP/zwA3744QccOnRI/7pUbIJyyAb5iBWSyrGLRET1gVA0aFkVUBuXV2k1bNSoES666CJccMEFSE9Pj2INiSjWMCQSkU+qquLPP//E7NmzsWTJkmOti6oEOScOykEbpGIzZ0YlIooxAgIi2QG1cTm0zArg6GSkJpMJZ5xxBoYOHYqePXtyllIi8oohkYgMKSgowNy5c/HDDz9g165d+telMgXyESuUwzZIlbzZICKKJhGnQs2qgNa4HOLoDKUA0Lp1awwdOhTnnXceF74nooAYEokoKEIIrF+/Hj/88AN++eUXVFRU6K9JhWbX+MUcK5fSICKqI8KkuSahyaqASHHoX7fZbBgwYAAuuOACnHjiiRxrSESGMSQSUcjKysrw66+/Yt68efjzzz+PrbuoAXJ+HOTDVsh5cZwdlYgowoQkoKVXQmtUAS2tUl+6QpIkdO/eHeeeey769++P+Pj46FaUiOolhkQiiogjR45g/vz5mDdvHrZu3XrsBacEOccKJScOUoGF4xeJiEIkICBS7K7upJmVgOn/27vz6CjrQ//jn2cmmWRCAiEYITERWcJyCzQsBhWJKFtKS2sBe1x61XL9WT1aeo7Xc/SkKm1txSvHSm89V3s913pam9qrHqGeW8Uii1vYEVC2sEWBJM1CNjJZZub5/TEz30z2hazwfp0zZ555vs/3+3wzPGg+PN/n+238FW78+PFauHCh5s+fryuvvLIfewngUkBIBNDjTpw4oQ8++ECbNm1ScXFxY0GDJUdpMDBWuLjDCAAdsGXLjq+Xb0Sd/CNqJVfjr20jR47UggULtHDhQo0dO7YfewngUkNIBNBrfD6fPv/8c23evFkfffSRKioqGgsbLDlKo+QsiSYwAkAY2wreMbyiVv4RdWY9Q0kaNmyYMjMztXDhQk2bNk0OB89/A+h5hEQAfcLr9erzzz/Xli1b2gyMjtJoOcoJjAAuP7Zlyx9fL/8VtfInNA2G8fHxyszM1Lx585Senq6IiIh+7CmAywEhEUCf83q92r9/vwmM5eXljYW+4KQ3ZYEXs6QCuFTZEf7A5DMJdfLH1zd5xjAhIcEEw2nTphEMAfQpQiKAfhUKjNu2bdOnn37a9BlGW7IqI01gdHj4JQnA4GXLlu32mWBoD21Q+FxeV1xxhQmGU6dOZaF7AP2GkAhgwLBtW8eOHdOnn36qTz/9VHl5eU3KrRpnICyej5JVGcmwVAADnm3Zsoc2NAbDsAXuJSktLU1z5szRnDlzNGHCBNYyBDAgEBIBDFhFRUUmMO7bt09er7ex0GfJUR4ZGJp63iWrjruMAAYGO8or//D6wGtY02GkkZGRmj59uubMmaMbbrhBI0eO7MeeAkDrCIkABoXq6mrt3LlTubm52rlzp86fP9+k3PI4ZZ13BUJjhUuWn3+NB9A3bIdf/vgG+ePrZA+vb3G3MD4+XrNnz9acOXOUkZHBAvcABjxCIoBBx+/36/jx49q5c6d27NihL774Qj5f2C9lfsmqdMlR7pKjIlJWVaQsERoB9AxbtuxYb2A20vjgs4Vhc2w5nU5NmTJFGRkZysjIUFpaGktVABhUCIkABr0LFy5o79692rFjh3bu3KnCwsKmB3gtOSojZVUEgqN1IYLQCKDTbNmyhwRCoT2sXv6hDU2GkEpSUlKSCYUzZszQkCFD+qm3AHDxCIkALim2beurr77S7t27tXfvXn3++eeqqqpqepDXCgxJDd1prCE0Amhky5YdEwqFDS2eK5Sk2NhYpaena+bMmcrIyFBKSgqTzgC4ZBASAVzSQkNT9+3bp71792r//v2qqalpelDoTmOlK/BeHckzjcBlxLZs2XEN8g9tkD20Xv64hiaL2UtSTEyMvvnNb2r69OmaPn26xo8fzxIVAC5ZhEQAlxWv16tjx45p79692rt3r7744gvV1tY2PcgvWdWRweAYKUelS5aX54mAS4Ud6Zc/rj6wNMXQBtmxTZ8plCS3261p06Zp+vTpSk9P14QJE1jQHsBlg5AI4LLm9Xp1/PhxHThwQF988YUOHDigsrKyFsdZNU5ZVZFyVAXvNF6IYJ1GYBCwrcDQUTuuQf64BtlDG1rMPipJCQkJmjp1qqZOnaopU6YQCgFc1giJABDGtm0VFBTowIEDOnjwoA4ePKjTp0+3PNCvQFAMD44eJ882Av3Ili3b7QsEwtgG2XENsod4W9wllKQxY8ZoypQpJhgmJyfzTCEABBESAaADFRUVOnTokA4fPmxelZWVLQ/0WoHQWB0h60LwbiPBEegVtmzZ0T7ZsV7ZscFQGOttMcGMJMXFxWnSpEmaNGmSpkyZoilTpiguLq4feg0AgwMhEQC6yLZtnTt3TocPH9aRI0d0+PBhHT16VPX19S0P9skERhMeayKYGAfoAtsRHDIa2yD/EK/s4EvOlr/CREVFaeLEiSYUTp48mbuEANBFhEQA6AFer1enTp3S4cOHdezYMR0/flwnTpxQXV1dy4NtBe4wVgcDY41TjpoIqZa7jri82bKlaJ/8Mb5AKBwSGC5qu31q7a+Gy+XSuHHjlJaWZgLh6NGjeZYQAC4SIREAeonP59OZM2d0/Phx5eXlmffz58+3UUGyPBHB4Eh4xKXLDBWN8coOBcIYr2y3V2pjVYmEhASNHz9e48ePV1pamsaPH6+UlBSWoQCAXkBIBIA+ZNu2SktLdfz4cR0/flynTp3S6dOnlZ+f3/pwVakxPHqcgfdaZ+M2S3NgALMj/LLd3kAgdPsC2+5AKGxtMhkpcHfw6quv1jXXXGPuEo4bN04jRozo284DwGWMkAgAA4DP51NBQYFOnTql/Pz8zoVHSWqwWgbHWqesWmdgIh3uQKKX2U5/IPhFBwNgKAxG+1osSB/O5XJp9OjRuuaaazRmzBiznZSUxHBRAOhnhEQAGMBC4fH06dM6c+aMzpw5o6+//lpnzpxRcXFx+5W9lqw6p6xah6w6Z2DYap3ThEjLx11ItM+WLTmDQ0OjfbKjfFK0T3aUX3ZUYF9rs4mGS0xMVEpKinldffXVGjNmjEaOHMlQUQAYoAiJADBIeTwenTt3zoTG0PvZs2dVVlbWcQOhEFnnkOoD71Z9+DZ3Iy9ltmwpwpbtCoQ+ufyBbZdfimoMgh2FQCnwvGB4EExJSVFqaqqSk5Pldrv74KcBAPQkQiIAXILq6upUWFiowsJCFRQUqKCgoMnn8vLyzjXkUyA01juCL6fU4JDVYAXfg8GywcmyHgOALVty2FKkX3akHQh8kX7ZkcH3YAgMhEJfm88FNpeQkKBRo0aZV1JSkkaOHGk+R0dH9+4PBgDoU4REALgMeTweFRUVqbCwUCUlJSouLm7xXlFR0bVGfWoMjg0OyeuQ5Q2ESbPd2rtNuGyN7bClCL9sZ/A9IvCuCFt2+HswBIaCYFuzg7Zl2LBhSkxM1IgRI5SYmKgrrrhCiYmJSkxMNGGQEAgAlxdCIgCgVXV1dSotLTXBsaSkROXl5Tp//rx5P3/+vMrKytqfXKcjPkk+h+SzZPksKfiy/FazfY7Atl+S3wq8bEtWk8+BbcsfPM4O7lPz7cBbR0Np7cYDw97twLulwF07y5btCG0H3x227LBtORQIew5/4Bk/Z+BZPzntQBgM/xwMhZ29y9cal8ulhIQExcfHKz4+XsOHD1d8fLxGjBhhQmBo2+Vydf9EAIBLEiERAHBRbNuWx+NpEhzLy8tVVVVlXpWVlaqqqlJ1dbX5XF1drX7/X5CtpsGxSRhUqwu49yWHw6HY2FjFxsYqLi7OvEKfY2NjTQgMBcH4+Hi53W5ZFndoAQDdQ0gEAPQLv9+vCxcuqKqqSh6PRzU1Na2+N9+uq6tTfX29Ghoamry3ts/v9/fqz+B0OuVyuRQZGWle4Z9D2y6XSzExMXK73eYVHR0tt9vdYr/b7TYhMCYmRg4Hs9ACAPoWIREAcMny+XyybVs+n09+v7/V7fB3y7LkcDjMe+jVfL9lWYqIiGAJBwDAJYmQCAAAAAAwGMMCAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAi+rsDANAVtm2rtra2v7sBAF0SHR0ty7L6uxsA0CmERACDSm1trRYvXtzf3QCALtm4caPcbnd/dwMAOoXhpgAAAAAAgzuJAAYt184rZdnBf+uyHLIclmQ5JIclWZYsR6gsuN+yJIclK3SMKbNMHfOSwvY5mpYHKpp9tmU1/pNbWBtmv9V4rvB9thVoxpQ5Au0G9lumLFTHDu4z5VJjG47g8aFyNT1HkzrB7tuOVsqaHK8mfWzcZ7Uoa1FH4f1oVq429rfRXlv9aFGnvXbNfrtl/bA6pjysLTu4X2H1AmV2WH8C5VZ4mTk2VGabNq3w4y3blJlLLLQ/1FzwmMClYJvPoTqO4OdAWeBzqJ4ps2xZaqznCO4zL9mmnsNSk/2B+v7Gegod75czVCf4ubEtv2nPGda+U4H9zlB75li/nKE2FeqHv/F4NbYdaNMvhwLnD5QF2nMG91nyyxmqH1bHKQXqKXCe0PcR+hw4lx3cVrDMliP4vThlySHJGfzDdsgK7rPktCw55JAV/JNrqHdq+f8bJQAYbAiJAAYvnxX8dU2BkKhgoAv+9t1YZkmOxkRkBRJXsJFQWnCoRQpoTGBNk0mozRapQc32hZ9DrexrXk+N4TAsJLbYFxbqwj8372LT41up42inrK0fo0U/2vix2ytr66vqbnthbbYWIHs1JLZWruafbdN2eD/Cz9lamQmVCjsm/PgWdexWzmU3eYWHxMbgGXy1VaZQkAw0GR4oQ2FSCoU9mZAVXhYIif7GkGWFh6zAtsOyAgEu+C6zbZl6gXYUbDNUV8F6wf2tlYXVcQYDrtP0MxQS7Q5DYnh7ztD3oab7HArvY9ifIQAMIgw3BQAAAAAYhEQAAAAAgEFIBAAAAAAYhEQAAAAAgEFIBAAAAAAYhEQAAAAAgEFIBAAAAAAYrJMIYPBy2rLtwALagXX/rLB3q9kC96H3sG2F77PDtjtRFrZoXuOS523tb3y3m2yrST1bkuzQ/sY2bVmSLVM3vNy00WRxv/C+tPLZbtKlZt9HG6/mx3ZmLcT2yjp9rk6WhZ+y3Xp2B23abfSxjXUSm7VrhZeZY5utexjaDh1vha9PGNoX1r5pzw5rr3vrJNpqrGdbdtOXAu+BMjXZ77dsyfI3tqnQufxh6zkGjwmW25bftKcm7QffQ+cKfnYEjwm9S2qxzx/21zq07bckvxrXSfQH91lqa53E4ML3CqzHGPozC312BOs0X3vRYcoss7ajJNOWQ1ZgvUdZsoIXSUN9a38vAWDgIyQCGLTqM/7Z313oHaHfwbupecYBQsIvLX9/dqTbwlM6g6EAoLfwX1gAg0ptbW1/dwEAAOCSxp1EAINKVFSU2d6wYYOio6P7sTe4FNXW1up73/ueJK4x9ByuIwCDCSERwKBiWY0DKKOjo+V2u/uxN7jUcY0BAC5HDDcFAAAAABiERAAAAACAQUgEAAAAABiERAAAAACAYdm2fRGrcQEAAAAALiXcSQQAAAAAGIREAAAAAIBBSAQAAAAAGIREAAAAAIBBSAQAAAAAGIREAAAAAIBBSAQAAAAAGIREAAAAAIAR0d8dAHDpqqmp0RtvvKFt27apsLBQDodDqampuuWWW7R8+XJFRkZ2u+2ysjLl5OQoNzdXRUVFioqK0pgxY5SVlaVvf/vbsiyr3fpnz55VTk6Odu3apbKyMrndbk2YMEFLly7VvHnzut0v9J2BeH0988wzev/99ztsf/PmzYqI4H/BAICBybJt2+7vTgC49BQWFmrVqlUqLCyUJEVHR8vv96u+vl6SlJaWpnXr1ikuLq7LbR89elSPPvqoKioqJElut1v19fXy+XySpIyMDK1Zs6bNkJCbm6vVq1ertrZWkjRkyBB5PB75/X5J0pIlS/TYY491GDTRfwbq9RUKiS6XS7GxsW2e4+2335bT6exy3wAA6AuERAA9zuv16r777tPJkyc1YsQI/exnP9OsWbPk9/u1ZcsWrV27VjU1Nbruuuv03HPPdant6upq/fCHP1RZWZmuvvpqPfHEE5o0aZIaGhr07rvv6sUXX5TX69Wtt96qRx55pEX9c+fO6Uc/+pE8Ho+mTp2qxx9/XKmpqeau1GuvvSZJeuCBB3TnnXf2xNeBHjaQr69QSMzKylJ2dnZP/cgAAPQpnkkE0OPef/99nTx5UpL09NNPa9asWZIkh8Oh+fPn69FHH5Ukbd++XXv27OlS22+88YbKysoUFRWl5557TpMmTZIkRUZGatmyZVq5cqUk6d1339XXX3/dov6rr74qj8ejhIQEPfvss0pNTZUkxcTEaOXKlVq6dKkk6U9/+pOqqqq68dOjtw3k6wsAgEsBIRFAjws9kzV9+nRNmTKlRfn8+fOVlJTU5NjO2rhxo2kjOTm5RfmyZcvkdrvl8/n0j3/8o0mZx+PRtm3bJEm33nprq0MRf/jDH0qSLly4oI8//rhLfUPfGKjXFwAAlwpCIoAeVVtbqy+++EKSdN1117V6jGVZmj17tiRp165dnW77q6++UlFRkSSZ+s3FxMRo2rRprbZ98OBB1dXVtVs/KSlJo0eP7nLf0DcG8vUFAMClgpAIoEfl5+ebCWDGjBnT5nGhsrKyMlVWVnaq7dAQw47aHjt2rCTp9OnTbdYPHdNe/VOnTnWqX+g7A/n6Crdnzx7deeedWrBggbKysnTPPffoP//zPxmiCgAYFAiJAHpUSUmJ2U5MTGzzuCuuuKLVOu0pLS3tUtsXLlxQTU1Ni/PExcUpKiqqw/rh58PAMJCvr3DFxcUqKChQVFSU6urqdOrUKb311lu69957tX79+k71BwCA/sIiTQB6VPgvze0Fsejo6Fbr9EbbMTExkgLPJDYvb69+Z/uFvjOQry9JmjBhgiZNmqQbbrhBiYmJcjqdqq2t1Y4dO/Tyyy/r7Nmz+s1vfqP4+HjW4wQADFjcSQQAoIesWLFCy5Yt06hRo8w6iNHR0brpppv08ssvmwl1/uu//kusQAUAGKgIiQB6VPhdldAkMa0JLWTfvE5vtu12u1uUt1e/s/1C3xnI11dHhg0bpn/913+VJBUWFurYsWOdrgsAQF8iJALoUeHPghUXF7d5XPhzYuF12jNixIgutT1kyJAmv8SHzlNVVdVuCAjVDz8fBoaBfH11xje+8Q2zXVBQ0KW6AAD0FUIigB41evRoORyB/7S0NztoqCwhIUFDhw7tVNvhM5K213ZolsprrrmmzfrhM1m2Vb+9GS7RPwby9QUAwKWCkAigR0VHR5sFznfs2NHqMbZta+fOnZKka6+9ttNtp6amauTIke227fF4dODAgVbbnjp1qpmQJHT+5goLC5Wfn9/lvqFvDOTrqzO+/PJLsx16PhEAgIGGkAigx2VlZUmS9u3bp0OHDrUo37Jli86dO9fk2M6wLEuLFy+WJG3evLnV4XrvvPOOPB6PnE6nFi5c2KTM7XbrpptukiStX79e1dXVLern5ORICjxrNnfu3E73DX1noF5fHU1EU1lZqddff12SdOWVVyotLa3TfQMAoC8REgH0uKysLI0dO1a2bevJJ5/Unj17JEl+v19btmzR2rVrJUmzZ8/WzJkzm9R99dVXlZmZqczMzFZ/Sb/99tuVkJCg2tpaPfbYYzp69KgkqaGhQevXr9f//M//SJKWLl2q1NTUFvVXrlwpt9ut0tJSPf7442Zxc4/Ho9dee00bNmyQJN19992Ki4vroW8EPWmgXl8ffPCBfvazn2nr1q06f/682V9XV6ePP/5YDz74oAmvDz74oBk2CwDAQGPZzMENoBcUFBTopz/9qQoLCyUFhgn6/X7V19dLktLS0rRu3boWQezVV1/Va6+9Jkn661//2uqQvKNHj+rRRx9VRUWFpMBdv/r6enm9XkmBYYBr1qyRy+VqtW+5ublavXq1maUyNjZWHo9HPp9PkrRkyRI99thjsizrIr8F9JaBeH299957WrNmjfnsdrvlcrlUXV1tri2Xy6WHHnpI3//+93vgWwAAoHcQEgH0mpqaGr3xxhvatm2bCgsLZVmWUlNTNX/+fC1fvlyRkZEt6nTml3hJKisrU05Ojj777DP985//lMvl0tixY5WVlaUlS5Z0eJfm7NmzysnJ0a5du1RWVia32620tDR997vfZZHzQWKgXV+FhYX6xz/+oS+//FL5+fmqqKiQx+NRTEyMrrrqKs2YMUPf/e53lZyc3KPfAwAAPY2QCAAAAAAweCACAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAvea3v/2tMjMz9ZOf/KS/u4J+Vl1drW9/+9vKzMzURx991N/dAQC0I6K/OwAAaOnChQvKy8vTkSNHdPToUR09elRnz56VbduSpL/+9a9KSkrqlXPbtq0VK1aouLhYd911l3784x93q528vDytX79eknT//ff3YA/718mTJ7Vz504dPHhQJ0+eVGlpqXw+n+Li4jRu3Dhdf/31ysrKUmxsbH93dUCJjY3V7bffrldeeUW/+93vNHv2bEVFRfV3twAArSAkAsAAtGrVKuXl5fXLuY8cOaLi4mJJ0ty5c7vdzksvvSSfz6fZs2dr6tSpPdW9frVq1Sp9/vnnrZaVlZWprKxMu3bt0uuvv67s7GxlZGT0bQcHuBUrVujNN99UUVGR3nrrLd1111393SUAQCsYbgoAA1DojqEUuAMzffp0JSQk9Mm5P/74Y0lSYmKiJk+e3K02Dhw4oN27d0vSJRUEQuE5Li5OS5YsUXZ2tl588UW98sor+uUvf6nrr79eUiAwZmdna//+/f3Z3QHH7XZr+fLlkqScnBzV1NT0c48AAK3hTiIADEBLlixRfHy8Jk6cqJSUFFmWpVWrVqmsrKzXzx0KiXPmzJFlWd1q4y9/+YskKSkpSd/85jd7rG/9LSUlRXfffbfmz58vl8vVpGzixImaN2+e/vznP+v3v/+96uvr9fzzz+uPf/xjP/V2YFq0aJFeffVVVVVV6f/+7/9022239XeXAADNcCcRAAagFStWaMGCBUpNTe12UOuOr7/+Wvn5+ZK6P9S0uLhYubm5kqTFixf3af9729q1a/Wtb32rRUAMd9dddyktLU2SdPr0aZ04caKvujcoJCUladq0aZKkv/3tb/3cGwBAa7iTCAAwQrNOhoa4dsemTZvk9/slSbfcckun6ni9Xm3evFmffPKJjhw5ovLycvl8PsXHx2vs2LGaNWuWFixYoBEjRjSpl5mZKUnKyspSdna2vvrqK7311lvatWuXSkpKNGTIEE2YMEF33nmn0tPTTb26ujq999572rhxo86cOaPa2lolJydr4cKFuu222y56QpUZM2aYZ0q//vprjRs3rtttnT59Whs2bND+/ftVUFCg2tpaxcbGKi4uTklJSZo5c6ZuvPFGXX311d1q3+v16oMPPtCWLVt08uRJVVRUyLIsDR06VPHx8Zo8ebJmzZqlOXPmKDIysknd5t//6dOn9c4772j37t0qKSmRx+PRr3/96xb/4HDLLbdo//79ys/P15EjRzRp0qTufTkAgF5BSAQAGKGhptdff70iIrr3v4jPPvtMUuC5vdGjR3d4/PHjx/XUU0/pzJkzLcqKi4tVXFysHTt26MSJE8rOzm6zna1bt+qZZ55RbW2t2VdXV6ft27drx44devTRR7V06VKVlJQoOztbR44caVL/1KlT+u///m9t375dzz///EUFRa/Xa7Ydju4P2tmwYYPWrVsnn8/XZH9FRYUqKip05swZ7dq1SydOnNCTTz7Z5fbLy8v17//+761OkhT67vPy8vS3v/1NOTk5SklJabOt9957T88//7zq6+s7PG/4REafffYZIREABhhCIgBAklRSUqLDhw9L6v5Q0/r6en355ZeSpMmTJ3c41DQvL08PP/ywPB6PJGn69OlatGiRRo8ercjISJWWlurQoUMdrqt34sQJbd68WcOHD9f9999vzr1nzx796U9/Um1trV544QWlp6frV7/6lY4fP65bb71VN954o+Lj43X27Fn98Y9/1IkTJ3TgwAHl5OToRz/6Ube+A0nau3ev2R4zZky32jh58qQJiEOHDtXSpUuVnp6u+Ph4+Xw+lZaW6ujRo9q+fXu3h/SuW7fOBMSZM2dq0aJFSkpK0pAhQ3ThwgXl5+dr//79ZvhwW44ePapNmzZp6NChuu222zR16lRFRkbq9OnTGjVqVIvjx4wZI7fbLY/Ho71792rlypXd6j8AoHcQEgEAkqRPPvlEtm3L5XJp9uzZ3WrjxIkT5i7axIkT2z3W6/XqqaeeMgHxpz/9qZn5MtwNN9yg++67T0VFRW22lZeXp7S0NK1bt05xcXFm/7/8y78oJSVFq1evltfr1cMPP6zKykqtXbtWs2bNMsdNmDBB1157re6++26VlJRo/fr1uvvuu+V0Orv080uBIbunTp2SFAjKqampXW5DkrZs2WLuIL7wwgvmOcdwc+fO1X333aeKioout19XV2fC99y5c/WrX/2qRdhMT0/X9773PXk8nnbviJ46dUopKSl68cUXm8zC29bsuE6nUxMmTND+/ft17Ngx+f3+i7rjCgDoWfwXGQAgqXGo6axZs+R2u7vVRviQ0Y6W7Ni0aZPOnj0rKTCba2sBMdzIkSPbLX/88cebBMSQefPmKTExUZJ0/vx5LVu2rElADImNjdW3vvUtc9zp06fbPV9rSkpK9Jvf/EaSZFmWHnzwwS63ERKayTY2NrbVgBhu2LBhXW6/qqrKBPr09PR270a63e4Oh98+8sgjXVqmJXRsbW2tSkpKOl0PAND7CIkAAFVXV2vfvn2Suj/UVJJKS0vN9tChQ9s9NhRKJemOO+7o9jmlwPDFtoKUZVlNyhYtWtRmO+HHnTt3rkt9qK2tVXZ2tgl3zSfL6apQsK2urtaWLVu63U5bhg0bZmZp/fDDDy9qzcLExMRWg3d7wq+P8OsGAND/CIkAAOXm5srr9crpdGrOnDndbqeurs5st3ZXL9yxY8ckBe4odWaCm/Z0VD+8L+3NAhp+XFdCU0NDg5544gkzGc6NN96o++67r9P1W7No0SJz92716tV66KGH9Oc//1kHDhwwQ3QvRmRkpLKysiRJhw4d0g9+8AOtXbtWH374YZcDcndmbw0PieGTDQEA+h/PJAIAzF29KVOmKD4+vtvthD/D19Esl+Xl5ZIa75hdjOjo6HbLw4dStjeUNvy5uNAyHh3xer168skntXPnTklSRkaGfv7zn3frecZwycnJevbZZ/XMM8+ouLhYBw8e1MGDByUFvudJkyYpMzNT3/nOdzoM5G35yU9+ovr6em3cuFGVlZV699139e6770oKhPeMjAwtWbKkwzuiHd01bk34Pyh0dyZdAEDv4E4iAFzm6uvrtWPHDkkXN9RUCjw/F1JZWXlRbQ0GXq9Xq1evNst+zJo1S7/+9a/NMM6LNXPmTP3lL3/RL37xCy1ZssQsQeHz+fTll1/qpZde0h133GECaldFRUUpOztbr7/+uv7t3/5NM2bMMCG6rKxM77//vlatWqUnnniiSahrrjuTzoRPthN+3QAA+h//dAcAl7ndu3eb4YsXGxLDlzvoKCTGx8erqKho0E5aEgqIobuwM2bM0Jo1ay5qfcXWuFwu3Xzzzbr55pslBe7A7tmzRxs3btT27dtVWVmpJ598Ujk5ORoxYkS3zpGamqp77rlH99xzj3w+n/Ly8vTZZ59pw4YNOn/+vD766CO98sorevjhh3vs56qqqjLbHU1KBADoW9xJBIDLXCjkpKWlKSkp6aLaCl8T8Kuvvmr32NASGaWlpR0eO9A0D4jTp0/Xs88+2+MBsTXx8fGaP3++nnvuOd16662SJI/Ho08++aRH2g8NZV25cqVefvllM5R306ZNPdJ+SH5+viQpKSlJMTExPdo2AODiEBIB4DLm9/v16aefSgpMtnKxRo4cqSuuuEKSdPjw4XaPzczMNNs5OTkXfe6+4vV69fOf/9wExPT0dP3Hf/xHh89F9oaMjAyzHXrGsyclJSWZdR67sxZjW8rLy83yJ9/4xjd6rF0AQM8gJALAZezgwYMmXISHtosRCi75+fm6cOFCm8fdcsstJoD8/e9/19tvv91uu0VFRT3Sv4vh9Xr1y1/+0ixC35sBcdu2bR0Gv9CzpJJ01VVXdan9c+fOaffu3e0eU1BQYO74JScnd6n99hw6dMhsX3fddT3WLgCgZ/BMIgAMQGfOnDEzWYaE1t+TpK1btzaZhdTtdmvevHldPk/oblhycnK3ljFozc0336y///3v8vv92r17t2666aZWj4uIiNAvfvELPfTQQ/J4PPrtb3+rjz76SIsXL9bo0aMVGRmp0tJSHTlyRFu3btXEiROVnZ3dI33srqefflpbt26VFAhlDzzwgAoKCtqtM3z4cA0fPrzL53r77bf19NNPa+bMmZo5c6auueYaDRs2TA0NDSoqKtKmTZvMXeBRo0Z1eemSoqIiPfLII0pOTtacOXM0efJkjRw5UlFRUaqoqNChQ4e0fv16M0vt8uXLu/wztGXXrl2SAs9bXn/99T3WLgCgZxASAWAAOnjwoNasWdNm+UsvvdTk86hRoy4qJPbEUNOQWbNmKTExUcXFxdq4cWObIVGSxo8fr9/97nd66qmndO7cOe3bt0/79u1r9djQM4z9KXxR+7Nnz+qBBx7osM69996rlStXdut89fX1ys3NVW5ubpvHXHXVVVqzZk27S3u059y5c3rzzTfbLHc4HLrjjjv0/e9/v1vtN+f1evXhhx9KCty97u7yHQCA3kNIBIDL1PHjx81dsIud1TSc0+nUsmXL9Pvf/17bt29XeXl5u2svTpgwQa+//ro2btyojz/+WHl5eeb5t+HDh2vcuHG69tprtWDBgh7r42CwevVq7dy5U/v379fJkydVVlZmhp8OGzZM48eP19y5c7Vo0aJuLbkxbdo0vfjii9q9e7cOHTqkoqIinT9/XhcuXFB0dLSSk5M1bdo0fec73+mxu8ySzDUhSStWrOixdgEAPceybdvu704AAPreH/7wB/3hD3/Q8OHD9c4773Rrrbu2VFdX6/bbb1dlZaV+/OMf66677uqxtjG4PfbYY8rNzdXMmTP1wgsv9Hd3AACtYOIaALhMhYaa3nDDDT0aEKXA4uihYPjGG2+opqamR9vH4HTo0CHl5ubKsizdf//9/d0dAEAbCIkAcBlqaGjQ3Llzde+992rZsmW9co7ly5crJSVFFRUV+t///d9eOQcGl1deeUWStHjxYk2ePLmfewMAaAvDTQEAvebw4cPKzc1VbGysfvCDH/R3d9CPqqur9eabb8q2bS1btqzd51QBAP2LkAgAAAAAMBhuCgAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAw/j9bGbWbcOB2/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACox0lEQVR4nOzdd3hT1eMG8PfepOletKXslj0EWQIiKBtRVEQQByi4BQU3XxX3/Dlxb5EhAoqAIiJ7CTJF9l5ltXTvNuOe3x9pbpM2s02bpn0/z5Onae65956kTXLfe849RxJCCBARERERERHVcLKvK0BERERERETkDgZYIiIiIiIi8gsMsEREREREROQXGGCJiIiIiIjILzDAEhERERERkV9ggCUiIiIiIiK/wABLREREREREfoEBloiIiIiIiPwCAywRERERERH5BQZYIiIiIiIi8gsMsEREREREROQXGGCJiIiIiIjILzDAEhERERERkV9ggCUiIiIiIiK/4JUAe/r0aUiSBEmSMGHCBG9ssk7q37+/+joSETkyYcIE9bPi9OnTvq6OaubMmWq9Zs6c6evqkJcpioLu3btDkiRMnjzZ19UhP8HPBaLyanN2MplMaNu2LSRJwnPPPVcl+6i2FtiZM2filVdewSuvvFJdu/S5JUuWqM85KyvL19WhEkajEatXr8azzz6LgQMHomHDhggMDERYWBhatmyJ22+/HUuWLIHJZPJou/v378fkyZPRrl07hIWFITIyEp06dcKzzz6LM2fOVNGzIaK6RK/XY9euXfjmm2/w4IMPonv37tDpdNUSEL755hv8+++/CAoKcnpQcvr0afz666947rnnMHToUMTExKj169+/v9v7sw4+7tzWr1/vcpsFBQX49ttvMXz4cDRp0gRBQUEICgpCo0aNMHToUHz88cfV8n394IMP2tTd3WOjCxcu4LXXXsPVV1+NuLg4BAQEqN9dt956KxYsWOD2d1dycjJefvllXHnllYiJiUFgYCCaNGmCa6+9FjNmzIDRaKzEM6xZOnXqpL7Wa9as8Xj9v//+W12/Q4cOHq8vhMDmzZvx6quvYtiwYWjatCmCgoIQEhKChIQEjBw5EnPmzEFxcbHLba1fv96j94Wrz4ScnBysX78eH3zwAe644w60adMGsixX6UnSixcvYunSpXjllVdwww03oGHDhur+EhMTPd6eN9/XRUVF+PLLLzFs2DA0aNAAgYGBiIuLQ69evfDWW28hPT3d4/rVVJMnT1Zf9xdffNHj9QsKChAZGQlJkqDVanHhwgUAgEajwQsvvAAA+PDDD3H8+HGv1hsAILzg1KlTAoAAIMaPH2+3TL9+/dQydcX48ePV53zq1CmX5evia1Td1q5dK+rVq6e+zs5uPXr0EMePH3dru++9954ICAhwuK3w8HAxb968Kn52VFd4+tlSXX744Qe1Xj/88IOvq1MrdevWzennVlW97vn5+aJBgwYCgJgyZYrDcp988onT+vXr18/tfVr/P7lzW7dundPt7dixQzRv3tzldurXry9WrFjhdj09tW7dOiFJks0+X375ZZfrzZw5U4SFhbmsf+fOnV1+LsyePVuEhIQ43U7Xrl3FiRMnKv18a8LnwgcffKDWYdy4cR6vf++996rrv/vuux6te/DgQdGoUSO3/ofbtGkjdu7c6XR769at8+h94ew1z8rKKve/WPbm7e+Y33//3en+EhISPNqeN9/XO3fuFImJiS6389dff1XiFTBzJztVtV27dql1aNasmVAUxaP1Z8+era5//fXX2ywzGo2iTZs2AoC4/fbbvVltIYQQWnhBYmIihBDe2FSd5s7ZY6qc8+fPIyMjAwBQr149DB48GFdeeSUaNmwIg8GA7du3Y/bs2cjJycGOHTswYMAAbN++HQ0aNHC4za+++grPPPMMACAgIAB33XUX+vXrB4PBgBUrVmDhwoXIzc3FXXfdhaioKAwbNqxanivVXjNnzmRXvDqqbOuapYWgqnt5fPHFF0hOToZGo8HUqVPdrl9wcDBat26NvXv3Vmr/kydPxsCBA52W6dixo8NlZ86cweDBg5GdnQ3A/LpNmDABrVu3hlarxcmTJzF79mycOnUKly5dwo033oht27ahS5culap3WYWFhXjggQcghEBoaCjy8/PdWm/x4sW455571GOtLl26YMyYMWjWrBny8/Nx4MABzJw5Ezk5OdizZw8GDhyIvXv3IiwsrNy25syZg7vvvlv9fejQoRgxYgTi4uJw9uxZzJs3Dzt37sTu3bsxdOhQ/PPPP4iLi/POC+Aj48aNw//+9z8YjUYsWrQIX3zxBcLDw91at6CgAL/88gsAc8vSXXfd5dG+09PT1Zap0NBQDB48GFdddRWaNGkCANi7dy9mzpyJlJQUHD16FIMGDcLmzZtx2WWXudz2bbfdhttvv91pmW7dujlcJoSwOX6XJAmtWrVCWloaMjMz3Xl6Hiv7GREQEICOHTti9+7dHm/Lm+/rAwcOYODAgcjJyQEAXHbZZbjrrrvQvHlzZGVlYfny5fjtt99w6dIljBw5EqtXr8ZVV13l+QtQg3Tr1g2XX3459u7di6SkJKxduxaDBg1ye33r45B77rnHZpnlu+L+++/Hzz//jBdffLFCvRcc8nokdqAuti7W1FaSumzOnDmiU6dO4qeffhJFRUV2y5w7d05cdtll6t/u7rvvdri9CxcuqGextVqtWLVqVbky1mefmzZtKgoLC732fIhqkprQ0lLbPfHEE+Kll14Sv/32mzh//rwQQoiXX365Sl93g8EgmjZtKgCIoUOHOi27ePFi8cgjj4gZM2aIPXv2CKPRaNPSUNEW2Mo+L+sWtGuvvVYUFBSUK2MwGMTdd9+tlhsxYkSl9mnP1KlTBQDRuHFj8cQTT7jdAtuiRQu17EsvvWS3pSQtLU1cfvnlarnp06eXK3Pp0iWbVtwvv/yyXBlFUcTjjz+ulrnnnnsq+nSFEDXnc2HEiBFqPb7//nu317NuZbrhhhs83u+mTZtEYmKi+Oqrr0ROTo7dMpmZmTbHyddcc43D7Vm3wLrTcu9Mbm6uuP3228V7770n1q5dK7KysoQQtsfs3j5+3bx5s3jggQfEV199JXbs2CGKi4uFEKJCLbDefF/36tXLppXeYDCUK7Nw4UIhy7IAINq2bWu3jLtqQgusEEJMnz5drcddd93l9npnzpxRW+9jYmLUv6O17OxsERQUJACIBx54wJvVFgywVYgBtubJzMx0q4vEvn371L9dcHCwyM/Pt1vO+kv+mWeecbi9W2+9VS332WefVbj+RDVZTTlQrWuqOsAuXrxY3f7s2bM9Xr8mBNjGjRur2zpw4IDDcpmZmUKr1QoAol69epXaZ1m7du0SGo1GABC//vqrzd/NWRA5duyYWi4+Pl6YTCaHZZcuXaqWveWWW8ot/7//+z91+ahRoxxux2QyiU6dOgkAQpZlcfToUY+eq7Wa8rmwZMkStR5XX3212+sNHDhQXe/XX3/1eL+5ublCr9e7LJeSkmLTrfvkyZN2y3kzwDpSlQHWkYoEWG+9r7du3apup3Hjxk4bGiZNmqSW/e6779yua1k1JcBeunRJvQQuNDRU5ObmurXea6+9ptZ/8uTJDstZjn+Dg4MdnsCpiCofhdgysu6GDRvUx+xdZO5oAANFUfDzzz/jtttuQ/PmzRESEoLw8HC0a9cOEydOxL59+5zW7ZVXXik3wMOaNWtwxx13oHnz5ggKCip3kbrRaMSKFSvw1FNPoW/fvqhfvz50Oh3Cw8PRpk0bTJgwARs3bnS4T8sIobNmzVIfa968ebnn7Oi1cmcU4m3btuHBBx9E27ZtER4ejtDQULRs2RLjx4/H2rVrXa5fdkCN/Px8vP/++7jiiisQHR2N0NBQXHbZZXjuueeqrBuJL0RFRbn1+nbs2BHt2rUDYO7yZe8CdCGE2q3I1aicU6ZMUe8vWLDA02pXyj///IOJEyeiQ4cOiIqKQlBQEJo1a4bbbrsNy5Ytc7qu9WARlvdoUlISnnrqKbRr1w6hoaGIiorCVVddhS+++MLtQT/y8vLw0UcfYciQIWjUqBECAwNRr1499OjRAy+99BJSU1Odrl/2vWIymTBz5kwMGTIEjRs3hlartTsQREpKCqZOnYoOHTogNDQU9erVQ8+ePfHBBx+goKAAgPmSCHsDSfz111/qPq3/ns5MmTJFXWf58uVureMOV6MQV9Xf7Y8//sCNN96IBg0aICgoCImJiRg7diz++ecfj5+DXq/H999/j5tuukkd0CQqKgqXX345nnrqKYcDhxw5cgShoaGQJAmRkZE4deqUw31kZmaiWbNmkCQJGo3G6ec2OTZnzhwA5u7AI0eO9HFtKubSpUvq/datWzssFxUVpXaXdbd7rzuMRiPuv/9+mEwm3HTTTbjlllvcXte67i1btoQsOz50a9OmjXrfXv2tjw+cdYWVZRljx44FYD4Omz9/vtv1ragdO3YgLi4OkiQhMDAQP//8c7kylTkmHD58OOrXrw/APCjTyZMnXdYpKSkJ69atAwDExsbixhtv9Ph5hYWFISAgwGW5+vXr45prrlF/d3V8S957X1u/L2699VYEBQU53JZ19/uffvrJo/pWRGpqKnr06KF+pz/55JN2L9us6LFeXFwcbrjhBgDm18be+84e64xTtvuwNcvnSGFhIRYuXOjWtt3ijRTs7CyC9VkcZzd7Z5GOHz8uunTp4nQ9WZbFiy++6LBu1mc4165dKx555BG727E+w9S/f3+36jx+/Hi7TebWLa+u1nf0WjliMBjEAw884HLbY8aMsduVwsJSrl+/fuLEiROiQ4cODreVkJBQJ1uQe/Toob4GW7duLbfcupW2Y8eOTrdlMplERESE+j/rzbNQjuTl5YnbbrvN5f/K8OHDHdan7Jne5cuXi6ioKIfbGjJkiMOu2RZ//vmnqF+/vtM6hYeHi99++83hNqzfK+np6aJv3752/2+trV27VkRHRzvcZ6dOnURSUpJISEiwu77JZFIHioiOjnbZFbywsFDdX7NmzZy2mnjKVe8Ob//djEaj0881WZbFO++843ZLizuDbuh0OvHVV1/ZXf+bb75Ry/Xu3VsYjUa75UaPHq2WmzZtmtPX1J9VZQtsUVGR2irkrFujMzWhBbZJkybqttxtqenSpUul9mnt7bffFgBEWFiYSEpKEkIIt1tgjx8/rpZr0KCB08+SP/74Qy37+OOPl1tu/V1/6NAhp3VetGiRWvbKK69074na4c7fccWKFWrX5rCwMLuX43jjmPDJJ59Uy7700ksu627dyvTYY4+5+5QrzLq31vz58+2WYQtsKW+9r61bVe11q7eWkZGhltVoNA576LniTgvsqVOn1IGQAIi33367XBlvHOtZD6zlzuf8xo0b1fKdO3d2WtZ6oDBvXpZR5QF206ZNYvHixTbXFC5evLjcrewH6fHjx0VsbKy6Tt++fcX//d//iXnz5okff/xRPPHEEzYHo47exNZfENddd536BfDss8+KH3/8UcycOVNMmjRJXLhwQV2nV69eIiwsTIwYMUK89tprYvbs2eLnn38WH3/8sXjwwQdFaGio0w+0Xbt2icWLF4sBAwao5b7++utyz3nXrl0267kTYG+//Xa1TFBQkHjooYfErFmzxI8//igef/xxER4eri6/9tprHXaXtZTp2rWraNeunZAkSYwYMUJ8+eWXYsGCBeLtt98WzZo1U8t50t2mNiguLrY54L948WK5MvPmzXP54WPN+u+7bdu2Kqh1qaKiInHllVeq+2vZsqV4/vnnxZw5c8T8+fPFG2+8YfOhOHDgQLsHRdZflCNGjBAhISEiODhYPPTQQ2LmzJli3rx54qmnnrJ5Tzg7eFi4cKHahS4gIECMGjVKfPrpp+Lnn38W3333nRg7dqzalUWWZbFmzRq727F+LS3v686dO4v/+7//E/PnzxfffPONePTRR9XyBw4csOma1bVrV/HBBx+IBQsWiE8++UT06dNHDUOWLkn2vkTfeustdRs//vij07/BnDlz1LKvvvqq07Ke8iTAeuPvZv3lrtPpxAMPPCBmzZol5syZIyZPnqy+tjfffLPLA9UtW7ao5SVJEsOGDRMffvihWLBggZg5c6Z46KGHbP5WjrYzatQop3X/7rvvbA6+K3OtUk1XlQF2zZo16raffvrpCm3DGwG2R48eom3btiIkJESEhISIhIQEMXr0aPHjjz+69be1Pnnt7Fo56/fWzJkzPXmaDh09elS9Duyjjz5SH3c3wAohRMeOHW3KuroGNjAwUBw+fLhcmfbt26vb8STAhoeHezxCqYWrAPvTTz+pn/txcXFix44d5cp465jQ+sRzYmKiy+fUsmVLtfx///1XkafvEesTDP/884/dMtaf7x07dhSdOnUSYWFhIigoSDRp0kTccMMN4ssvv3TaiOGKvwRYb72vJ06cqC73JMACsPv/6g5XAXbv3r3q6NUajcbuddveOtYzGAwiPj5e/V52Nfq49bXH1p9pjlg+d8LCwhyecPZUjZxGx2QyqVMFBAYGip9//tluueTkZPVsnCzLYv/+/eXKWH9BWD70srOzne5/9erVTt/4aWlpaouPLMsOr1Pw9jQ68+fPV5fHx8fbPdt0+vRpm5YNR9dbWr8mOp1OLF261O7ztN5WZUJXfn6+3RMXFbmVDf5VwTp8dOvWzW6ZV1991e2DDyGEzSACc+bM8XKNbZW9NtfeAZ5er7epk70P7bLD9Tdr1szutVDbtm1Tz25GR0fbbc1LSkpSW6GbNWsm9u7da7fu27ZtE5GRkQKAaNKkid1rh8r27Hj88cedtkpYt9BOmjTJbtmynxX2vkSTk5PVAy1XB+LXXHON+sVz9uxZp2U95UmArezfzfpMa1RUlN0pHg4fPqxOseLsQDUnJ0cdDCgqKkqsX7/e7vM7duyYegItNDRUpKamliuTkZGhnn3XaDRi06ZN6rIjR46o4TwiIqLSU4EcOnTIa59f9p5LZVVlgLU+afPLL79UaBveCLDObm3bthV79uxxuq3U1FTRqlUrdZ0GDRqI5557TsyYMUPMnj1bvPzyy+r3nSzL4vXXX6/Qcy1LURT1s+CKK66wOXjzJMD+/fffNiecunTpIt566y0xd+5c8c0334jHHntM/XyNjIwUy5Yts7sd6xPrznq5CGF7vSwAce7cOY+fvxDOA+wnn3yits4kJCSII0eOlFvfm8eEQghxxRVXqPVZu3atw3pv2LBBLde1a1f3n3AFbdq0Sd1fXFycwwN9d6fRadiwodPn54y/BFhvva+tj+eeeOIJp/u0vl4WcH0y2xFXjX+WRpSgoCCxZMkSu9vw1rGeEEI8/fTTahlnvRPy8/PVxrKAgAC3vtMmTJigbtvVZ7W7amSA/fXXX9Wyn3zyidOyR44cUVt07I1wZf0FERoaqo7aWFknTpxQt+voDeHtANu1a1d1+Z9//ulwO9u2bbP5QrD3IWj95nvttdccbuvbb791q5wr1v8jlb1V9cXuGRkZomHDhi4P2qxHkPz0009dbtfT8hV14cIFodPpBGB/EA9rer1eHd2ydevW5ZaX/aLcuHGjw22NHTvWabnJkycLwBw2du/e7bRe33//vbqtuXPnlltu/V7p3r270/C6Y8cOtWzHjh2dnv2z3q6jL1HrLl6OBjY5cuSIWmb48OFOn2tFeBpgK/N3sx6501mLlHXXRXsHqkLYzsX4+++/O32O1i1/b775pt0y69evV0eETEhIEJmZmUKv14vu3bur63rjZFHZkxuVubmaq7Sy9fN2gL3zzjvVbTs66eRKZQKsVqsV/fr1Ey+++KKYNWuW+OWXX8QXX3whxo0bp7ZqAuYWQlcHRunp6WL06NHqMYO925gxY1x+Pnniq6++Uj/3/v33X5tlngRYIYT477//bC5tKXvTarVi2rRpTo9zXnjhBbX86NGjHZazHsTJcnMUCF1xFGCnTZumPn7ZZZc5DMjePCYUQojPP/9c3Z6zWQbuuecet/dbWcXFxTYjSL/33nsOy1rmEe7Zs6f43//+J2bMmCF++eUX8e2334oHH3xQPQFs+Z9YuXKlx/XxlwArhHfe16tXr1bLNm7c2OklNWUvRazowJyOstNvv/0mgoODBWA+GbVhwwa763vzWE8Ic081S32c9U6YNWuWWs7Vfi3eeecdr34nC1FDA6ylG1pERIRbU4707t3b4T+99ReEsw+qirC0ODgaVt2bAdb6Ne7UqZPLbQ0aNEgtb6/l1LJMo9GIjIwMh9uxDuqVmYjYXwKs0WgUQ4cOVfflLHxYX4v87bffutz2888/r5Z/6623vFltGx999JG6ny1btrgs/9xzzzn8P7UOQq7OQFuHzrLXLiqKIurVqycA19NwCGG+psPSMmjv7239XpkxY4bTbVkfsLnqGmTdZc7Rl6h1sJo6dardMs8884xaxlUrR0V4EmAr83crKipSvyDj4+Nddv2x7p5oL0hZWkfatGnj8jkKIdTuU85Cj/X76rbbblOnKQEgxo4d69Z+XKnLAdbSvR6oeAtcRQPssWPHnIaxpKQkm0DXrl07l/+jJ06cEPfff7/Dv49OpxNjxoyxuayoos6dO6e2ij755JPllnsaYIUwd8G3d82/5VavXj0xdepUh6PenjhxQv1sdfbdZd0a48n3iT1lA6zRaLT5G1x11VVOj0O8eUwohPkkteXkh6NRV61bmXQ6nUhLS3P7+VbEfffdZ/OZbW98FYsLFy44HRU6IyNDXH/99er2YmJiXPY8LMufAqwQlX9fG41Gm5bc8ePH2/0sWbJkSbmgXNHjOXvZ6fvvv1e336BBA6fd1r15rGfRs2dPl99V1r047PXetMd63Io33njDrXVc0aIG2rRpEwCgYcOG+Ouvv1yW12g0AMwTGhcWFiI4ONhuuauvvtrtOuTk5GDu3Ln4888/sW/fPqSlpTkckfDcuXNub7eitm/frt4fOnSoy/JDhw7FmjVrAJhHLO7Zs6fdcm3atEF0dLTD7TRu3Fi9X5nRiBMTE+2OmlbTPPbYY1i5ciUAoFmzZjaTNPsLy/sHMP9vLlmyxGl567/roUOH7I7eCwBXXnml0+04+185cOAAMjIyAADh4eEu6wSYR27MysrCoUOHnJZz9b7euXOnen/AgAFOy1pG5XZmwIABaNOmDY4ePYpZs2bhjTfesBlh0mAwqKPzNWrUCMOHD3e5zapUmb/bnj17oNfrAQD9+vVTP2sdGTRokMO/V3Z2Nvbu3QsAiI+Pd/t/AIDT/4FXX30Va9aswbZt22xG+G7evDm++OILl/twxyuvvOJwpPzazvK+BYB69epV675btWrldHnTpk2xfPlydOzYEcnJyTh8+DAWLlyI2267zW75t99+Gy+88AIURcH999+Phx9+GB06dAAAHDx4EF999RW+++47/Pzzz9i6dStWrVplM6qvpyZNmoScnBwkJCTgtddeq/B2APPooHfffTcWLVqE0NBQvP322xg9ejSaNWuGgoICbNu2DW+//TY2bNiAd999F7t27cLvv/+OkJAQm+20aNEC06ZNw6uvvgoAeOCBB/Drr7/ipptuQmxsLM6fP4958+Zh+/btiIuLQ1FREXJzcwHA6ejH7ioqKsKtt96KxYsXAwCuv/56/PLLL+Xqac3bx4TR0dG4+eabMX/+fOTn52PhwoXlZoVYuHCh+rxvuukmxMTEuP0cPfXee+/h+++/BwBERkZiwYIF0Ol0Dss3bNjQ6faio6Px66+/omfPnti3bx/S09Px5Zdf4n//+59X611TeON9rdFo8OWXX2LYsGEwmUyYNWsWdu3ahbvuugvNmzdHVlYW/vrrLyxevFidpcAyUr433hcA8M477+DZZ58FYB5tfOXKlWjRooXD8lVxrHfvvfeqeWPmzJnljonOnDmjzujSoEEDDBs2zOk+LazfP16b2cQbKdibLbC5ubmVOrtd9myt9RlOZ91ura1du7bc9VzObi1atLC7HW+2wFqfafn6669dbst63r7nnnuu3HLLMncGZ7KU9eTMuT+ybsmJj4+3ey2OtZrahdi6+6Snt7Ldda1b8pwN8lO2bNnWBOu5CT292evuYv1ecTVQhXW3LHfm4rNcd+LsLPD777+vbrPsvIALFy5Ul1XVyLeetMBW5u9m/Tny/PPPu6yX9edU2ZZA68FTPL0FBAQ43e+JEydsBrDTarUOB0CpjaqyBdbS7Uyj0VR4GxVtgXWXZYRfAOKuu+6yW8b6891Zd9CPP/5YLXfFFVdUuE4LFixQt/PHH3/YLeNuC6zRaBRXX321AMzXgG7fvt1uOZPJZDO4maNBtxRFEc8995x6qZG9W3x8vNi6davNwEiuvhMdsW6Bte7eOm7cOJcDcHn7mNBixYoVTv8nrVuZ7B07OrvOfcWKFW6/Nl9//bW6n9DQULF582a313XFeqBJTwfi9JcWWG+/rxcuXKiOhm3vptPpxNdffy1GjhypPubOMbk91p+L1u+Lzp07i+TkZJfre/NYzyIrK0vtvmyvd4L1tcKOeqDZs2rVKnW9SZMmub2eM945beBF2dnZlVrf0lpgj6OWWWvHjh3D8OHDkZycDABo27YtHn/8cXz++eeYN28eFi9erN4sc0qZTKZK1dkdljOBABAaGuqyvKXlouy6ZXnrzJG/e+ONN/DWW28BMM/1tnr1apdn3qOiotT7aWlpLveRnp5ud11vq8x7yNn7pzL/K1VVJ8D1+9rSc0Kr1bo1F587768JEyYgMDAQAPDtt9/aLLP8LkkS7rvvPpfbqmqV+bvl5eWp9521kFg4e+0q8z9gMBicLo+NjbVpHWzRogW6d+9e4f1RKcv/uclkUudKrmmsWwkOHz5cbvn58+fx3nvvAQDat2+PRx991OG2Jk+ejPbt2wMw997YunWrx/XJyMhQ5wW/9dZbK90L49dff1VbW+655x706NHDbjlZlvHJJ5+o7/mvv/7a7ntHkiS89dZb2L17Nx566CG0bdsWoaGhCAkJQYcOHfD8889j//796N69O3JyctR14uPjK/U8ANjMOZ2fn++yZ1ZVHRMOHjwYTZo0AQBs3LjRZt5p61amRo0a2e31NnLkSIe3Bx980K26zZ49Gw8//DAA8/fY0qVLcdVVV3nw7Jxz9b7wd1Xxvh41ahSOHz+OF198EVdccQWioqKg0+mQkJCAe++9Fzt37sSDDz5oczzXoEGDSj8X6/dFYWGhW7miKo6rIiMj1bm+8/Pz8euvv6rLhBCYPXu2+ruzuV/Lsq6rO1nMHTWuC7F18LrmmmuwYcOGat3/22+/jcLCQgDAtGnT8Prrr0OSJLtlH3jggWqrV3h4uHrfncnVrQ88rdf1lYKCArVrbmU1a9YM3bp188q2AODdd9/Fiy++CMDc9WbVqlXo2LGjy/WsA671l58jZ86csbuut1neQ5IkwWg01oiTFNbv65deekntvlYdLKHKaDTCYDC4DLHuvL9iYmIwevRozJ07FytXrkRSUhKaNWuGM2fOYNWqVQDMB0jNmzev/BPwIeu/mzvhxdlrZ72tu+++22YS9MqaNGmSzfvr6NGjeOGFF/DOO+94ZfuHDx/22gFg3759ERsb65VtVQfrEwMZGRlunciobtbd07KyssotX7lypRrkBg0a5PA7HTB/bg4cOFDttr59+3aX3fDLWrp0KS5dugQAiIuLwxtvvGG33MaNG23uW8r16tULQ4YMUZctW7ZMvT948GCn+27UqBHat2+PAwcOIDc3F4cOHcLll19ut2znzp3x1VdfOdzWgQMH1APp1q1bIzIy0um+3fH2229j/vz52LJlCxYvXozbbrsNCxYscPi5XFXHhLIsY/z48XjzzTchhMCsWbPw8ssvAwBmzZqlBuu7777b5aUTFTFv3jzcc889EEIgMDAQS5YscXmJi6dcvS/8XVW9r+Pj4/Haa6857fZ/8OBB9b6jE0qeGD16NCIiIvDpp5/i6NGjGDBgANatW4dGjRo5XKeqjvXuuece/PTTTwDM3YjHjx8PwNxl+cSJEwDMlya1a9fO7W1WxaUoNS7ARkZGIiwsDHl5edVybWlZq1evBgDUr18fr732msM3RG5urs0fpKpZX/Nw7Ngxl+Wtyzh7A1SXS5cuqWd1Kmv8+PFeuzZ1+vTp6nUhkZGRWLFiBbp06eLWutYhd9euXU7LKoqC3bt3AzB/cVrOBFaFxo0b47///oMQAufPn0fTpk2rbF+e1Mmiut/XjRo1Uq+9PHnyJNq2beuwbGZmpttf9A8//DDmzp0LRVEwY8YMvPLKK5gxYwYURQEAt8/C12TWnx3Hjx93Wd5Zmar6H5g7dy7mzp0LAOjevTvS0tJw5swZvP/++7j22msxcODASu9j/vz5Xjvpsm7dOreuta4pEhMTsXnzZgDmgxBLq1VN4qp3y4ULF9T7ERERLrdnHdTcOaFVlnWrorvXYa9btw7r1q0DYB6LwTrAVnf9LazDoidjiDgTHh6Ov/76C8OGDXMrxFblMeGECRPw5ptvAjC3hr700ksAYHNyrey1sRauWo6d+eWXX3DXXXdBURTodDosXLjQrbFNPFVdvb58xVfvi4MHD6q97lq2bOnymmR3ffLJJ5AkCZ988olbIbaqjvUGDhyIZs2aISkpCRs2bMDp06eRmJiIH374QS3jSesrYBtgExISvFLPamuasT4z4OqNf8011wAwH2y6c9DkTSkpKQDMA4A4O5uxevVq9UDVEU+esyvWgzBZWnicsW7tdDSAU133+eef48knnwRg/lJdvny5R2fSLrvsMvVg7sCBA06/XLds2aJ2xerTp0+Vtor369dPve+tVu/K6tq1q/oFs2bNGpfvHW+64oor1PuWA0RHLN3G3NG3b19cdtllAIAZM2bAYDBgxowZAMwnwEaMGOF5ZWuYzp07q4OJbNiwwWW3JsvAcfbExsaqA2ts3bpVfT9UxqlTpzBp0iQA5pb2efPm4ccff4RGo4GiKLj77rttDuLIc9Yn6o4cOeLDmjhmHbTs9W6xPrg9e/asy+1Zt+ZX5eA97vK0/klJSer9ytTf+kSxNy+HsITYPn36AAAWL16MMWPGOLxUoKqOCVu1aqUG85MnT2LTpk3YuHEjTp48CQC46qqrnJ7wrIglS5bgzjvvhMlkglarxYIFC3DDDTd4dR8Wrt4X/s5X72vrIOfty4Q+/vhjPPbYYwDMPYn69+9vE9StVdWxnqV3AlDabdgy2Blg7gLsaKA8R6wHYnTUI8TjenplK26w7gbi6syH5YUDoJ4Rqy6W7lEnT550GDpNJpN6vaQznjxnVxITE9Vus3v27HEaYnfu3Im1a9cCMJ/pqAnXgllGIfbGzRutr99++616jVJoaCj+/PNP9O7d26NtSJKEW2+9FYD5Tf7pp586LPvJJ5+o9z1943vq9ttvV0PHO++8U+n/PW/QaDQYO3YsAPOXyHfffVdt+7YOkp9//rnTEPbxxx97tO2HHnoIgPnL8/HHH1dPYowfP96t621rusDAQFx//fUAzCf3LN2K7Fm+fLnLEaMtn+0FBQX4v//7v0rVzWQyYezYsWoQ/uSTT9C6dWv07dsXzz//PADzNVL3339/pfYDmEch9tbnlz+1vgLm7qwW27Zt82FN7MvIyLB531r+X61Zh/Bly5Y5HRciJycHy5cvV3+3PgHmrgkTJrj1v2DpsgoAL7/8svr4Rx995LD+8+fPd7rvv//+W/0cio6ORsuWLT2uP2A+SN+xYwcA80lXT78fXbGE2L59+wIwBztHIbYqjwmtW5Jmzpxpc3zhaSuTK3/++Sduu+02GI1GaDQa/PTTT7j55pu9ug+L4uJim+NUe+8Lf1fd72vAfDmJ5VgvKirKK98vZX300Ud4/PHHAZh7UzoKsVV5rDdhwgS1B+rs2bPxyy+/qJcm3nLLLR5fTmD57ggPD1dPZFeaN0aCcmcU4ilTpqhlHE3Ka2EymWzmdnvssceczolVUFAgfvjhBzFv3rxyy6xH+XNn/r0hQ4ao5T/88MNyy/V6vc3k1nAyYtqHH36olpk1a5bLfbsaqdl6VMOGDRuKQ4cOlStz5swZ0bJlS7WcowmWLcvdGRHSk7L+YNasWeroiyEhIZWal/H8+fMiJCREAOaRT1evXl2ujPUIjE2bNnVrHrvKeuqpp9R9DhgwQFy8eNFhWZPJJFatWiVef/31csucjVDradmzZ8+qI/wGBga6fE+kpKSI1157TezZs6fcMk/mlRZC2MybOGnSJGEymcqVKTvXpzsjIWZlZal/f+ubszn6vMGTUYgr+3fbtGmTujw6OtruZPBHjx4VDRs2tHkN7I2Gm5eXJxISEgQAIUmSePfdd+3+LSyysrLExx9/LFatWlVu2Ysvvqjua/To0TbLDAaDOhckKjFKpL+oylGIi4qKRGhoqEAFRjK1qMgoxFu2bBHffvutKCoqcljm7NmzNvMWtm7d2u6otnq9XjRp0kQtN2LECLujlxcUFIibbrpJLdexY0ehKEq5ctbvmYrMWWnh7ijE+/fvF7Isq2UdzTt55swZm7ksHY32eeDAAXHp0iWH+/vxxx/V+Z+DgoLE4cOHPXpeZZWdB9Zabm6uzefziBEjyo0W781jwrJyc3PV/++wsDB1BNqQkBCP5051ZtWqVercsxqNRvz0008V2s6xY8fEe++9J3JychyWKTsPbHR0tMjMzPRoPxUdhdj6O8DT0Ys9fU95+32dkpIiDh486HB/u3btEk2bNlW3M3PmTLefmz2ustPjjz9u89lmbx5ubx3r2WP9P2D9/W7vONeZrKws9Zj75ptv9mhdZ6rtGthBgwaprVD33XcfnnjiCSQkJKgXx7dq1Uqd802WZfz666/o3bs3zp8/j48//hg///wzbr31VnTu3BmRkZHIy8tDUlISdu7ciTVr1iA/Px+vv/56pes5efJktXXzySefxPr163HttdciJiYGx44dw+zZs3Hs2DEMGDAAx44dc9ptdNCgQer9qVOnIjU1FW3btoVWa37ZGzdujE6dOrldtzFjxmDx4sWYP38+Ll68iG7dumHChAno3bs3NBoNdu7cie+//15tkRg6dKjavY7Mli9fjnvvvVdtXb/33nuRlZXlcv6sbt26oVmzZuUeb9SoET744ANMnDgRRqMR1113He6++27069cPRqMRy5cvV7tdaLVafPPNNwgKCnK4H+trrk+dOuVwTlZX3n77bfz3339Ys2YN1q1bhxYtWmDUqFHo3bs34uLioNfrkZycrLbmJycnY9CgQXjhhRcqtD93NGnSBPPnz8dNN92E4uJijB8/Hh9++CFuuukmtG7dGsHBwcjOzsbRo0exdetWbN68GSaTySsDW3z99dfo0aMHCgoK8MUXX+Cff/7BuHHj0KRJE6SkpGDBggXYvHkzevfujaSkJJw/f96tAREiIyNx22232XQp6t+/P1q3bl3pOtcUffv2xaRJk/DFF18gMzMTV155JcaPH4++fftClmVs374d33//PfLz83HzzTc7fS+FhoZiyZIl6NevH3JycjB16lR8/fXXGDVqFDp06ICwsDDk5OTg5MmT2L59O9avXw+9Xo85c+bYbOfvv/9WWxeaNGmCb775xma5VqvF3Llz0aVLF+Tk5OCJJ55Av379vN4d0Bd2795tMzIkYDsY0KJFi8p1s7zvvvsqPKBYYGAghg0bhl9//RU7d+5EXl6eTe8ie8p+jliPQHnq1Klyy7t164ZbbrnF5rGUlBQ88MADeOqpp3Dttdeie/fuaNy4MYKCgpCeno7Nmzdj4cKF6qCL4eHhWLBggfr9ai0gIACffPIJRo0aBSEEfvvtN7Rv3x533323Oh7BoUOHMHv2bLWbYUBAAD777DOnA8NUl8suuwxTpkxRW2aff/55/P777+o8sIWFhdi6dSt+/PFHtRWqadOmNi281v78809MmzYNgwcPRt++fdXvmdOnT2PJkiXqPJA6nQ7z5s2r0vdNWFgYli9fjuuvvx6bNm3Cb7/9hltvvRW//PKL2oulKo8Jw8LCcOutt2LmzJk2g1+OGjXKresq3fHff/9hxIgRKCoqUrcdHBzs8rijXbt25QbKycvLwzPPPIMXX3wRQ4YMQY8ePZCQkIDQ0FBkZWVhx44dmD9/vvqe02q1+Omnn5xeA7to0SL8+++/No+dOnVKvf/BBx+Ua3FzNDCZuz744AOH84FmZWWV+4xo3rx5ue663n5fJyUloUePHujZsycGDRqEdu3aITg4GMnJyVi9ejWWLVum9uCaOnWqTc+AqjB9+nRIkoTp06eruWPdunU240lU5bHePffco3ZDv3jxIgBzr05Px5VYv369eszt1R4H3kjB7rTAGo1Gm7NsZW/2zj5euHBBDBo0yOE61jeNRiO+/fbbctvwtAVWCCGee+45p/vq06ePuHTpktqS4Oxs0R133OFwO2VfK3dalQwGg7j//vtdvh6jR492Oj+mpVxda4Et28rm7s1Vq8Z7770nAgICHK4fHh7u1tlg63UqO/dacXGxePTRR4VGo3HrOd59993ltuHNljyLf/75R51b0tUtLCxM7N27t9w2PG2BFcI8v7OlBdjerWPHjiIpKUk0btxYABCXX365W9vdtm2bzXYcza/mTdXZAiuE+fP7rrvucvjaybIs3n33XactLdYOHz4sunbt6tb/QGBgoFi+fLm6bmZmpvrZK8uy08/1H3/8Ud1O165dnbba+Avr19jdW2V6mQghxJIlS9RtzZ4922V5T+tn77jBeg5iV7eOHTva7alR1o8//igiIiJcbi82NlYsW7bM4XaquwVWCHPryVNPPWXTEuvo1rlzZ6dztr733nsut9GiRQuxZs2aCj83a+58LuTl5YlrrrlGLXfTTTeVa4n1xjGhPRs2bCi3/tq1ayv7tFUVec86+p/YvXu32+s3a9bMrfe+9feJuzdHrMs4O4axfIa7e3N2/Omt9/WOHTtcbiM8PNzpfLOecCc7CSHEk08+qZZr1apVuZZYbxzr2ZOXl1duTtyXXnrJ4+c5ZswYAUAEBwc77TngqWprgdVoNFi1ahU+/vhj/Pbbbzh8+DBycnKcXo/WsGFDrF69Ghs2bMC8efPw999/4/z588jNzUVoaCiaNGmCTp06oX///hgxYoTXRgJ76623cM011+Czzz7Dtm3bkJ2djdjYWLRv3x533HEHJkyYYPcsrz1z5szBNddcgwULFmD//v3Iysqyme/JU1qtFt9++y3uu+8+fPfdd9iwYQMuXrwIRVHQoEED9OnTB/fcc49XRt4k9z399NMYNmwYvvrqK6xatUptwUtISMDw4cMxceJElyOvWU9TotPpKn32V6fT4dNPP8Vjjz2G77//HuvWrcPJkyeRmZkJnU6H+Ph4tG/fHn379sUNN9zgUW+Ayrjyyitx5MgRLFiwAL///jt27NiB1NRUFBUVISIiAi1atEDXrl0xePBgDB8+3K15Wd0xYMAAHD58GO+//z6WLl2KpKQkBAYGolWrVrj99tsxceJEBAcHq6PluTvUe48ePRAZGYns7GzUq1cPo0aN8kp9axKNRoPZs2djzJgx+Oqrr7B9+3bk5OQgPj4effr0weTJk9G7d2+3r09v27Ytdu3ahaVLl2LRokX4559/kJycjPz8fISHhyMhIQGdO3fGwIEDcdNNNyE6Olpd9+GHH1bPpk+dOtXpNaVjx47F8uXLMXfuXOzevRvPP/883n///cq8FHXSDTfcoI5KOWfOHNx1111Vvs/Bgwfjt99+wz///IPt27fj3LlzSEtLQ05ODsLCwtCwYUP07NkTo0aNwvDhw93qMTF27FgMGTIEM2fOxMqVK3HgwAG1FahevXro1KkTrrvuOkyYMKHGjdoqyzLef/993HvvvZgxYwY2bdqE48ePIycnR/08v+KKKzB69GjccsstTo9Rbr/9dgQEBGDdunU4dOgQUlJSUFxcjPr166NTp0645ZZbcOeddzrtLeRtlrEorr/+emzcuFFtYf7ll1/U6/yq6pjw6quvRsuWLdUpQhITE2vstert27fHX3/9hX/++Qdbt27FmTNnkJaWhqysLISEhKB+/fq44oorcOONN2L06NHqa1ebeet93b59e8ycORPr1q3Drl27kJycjOzsbMTExKBly5a48cYbMX78eK/M++qJDz74AJIk4YMPPsDx48fRv39/rF+/Xm2JrapjvdDQUIwZM0YdnFKSJIejcjuSk5ODpUuXAgDGjRvn1QFMJSEqOTwuEXnFihUrMGzYMADAlClTPB5QiCpv37596gh57v4NVq9erU558dhjj5UbgIWoNpg+fTqefPJJaDQanD59ukZOp0NERDXHjBkzcN9990GSJOzfv997AzihGkchJiLnLHMQh4eHV+m1qOTYZ599pt5399rbL7/8Ur1fG+Z+JbLn4YcfRoMGDWAymfDuu+/6ujpERFSDWX9X3HbbbV4NrwADLFGNYQmwTz75JOLi4nxcm9pn06ZNTuef/fzzz9XBgBo3buzW3Hz//fefOhDH4MGDvf4BTVRTBAcH45VXXgEAfPPNNw7nJiQiIpo3bx6OHDkCnU7nlUF2y2IXYqIaIC0tDfXr10dsbCxOnDjh1esEyKxVq1YoKirCddddh65duyIuLg4GgwEnTpzA4sWLsXv3brXs0qVLHQbYv/76C4qi4OjRo3j33XfV0fn+/vtv9OnTp1qeC5EvKIqCHj164N9//8Wjjz7qdO5rIiKqm0wmEy677DIcOXIEzz77LN5++22v74MBlojqhFatWqmDdDgSHByMb7/9FmPHjnVYxt7w++5eL7ty5Uqbwbo8ERsbi759+1ZoXSIiIqLaggGWiOqErVu34tdff8XWrVtx/vx5pKeno6CgANHR0WjTpg0GDx6MiRMnIj4+3ul2LAE2LCwMbdq0wcSJE3Hvvfe6NQpqYmKiOoKup/r164f169dXaF0iIiKi2qLaptEhIvKlK6+8EldeeWWlt8NzfkRERES+wxZYIiIiIiIi8gschZiIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILHMSJiIhqFUVRUFhYiIKCAoe3oqIi6PV66PV6FBcXq/ft/a7X62EymaAois1Pe48pigLAPFq1o5tlxGpJkqDRaBAQEKDetFqt3fuWW1BQEIKDgxEUFOTwfnBwMIKDgxEaGorQ0FBotfyqJyKi2oPfakREVOMIIZCXl4ecnBzk5OQgNzfX7n3rx/Ly8lBYWIjCwkJfV79GCQ4ORlhYGMLCwhAeHq7et75FREQgKirK5hYcHGx33mMiIiJf4ijERERULYQQyM7ORkZGBjIzM21+ZmVllfvdYDBUan8ajQbBwcEICQkpdwsODsaqmRshCQCKZHUDJHu/CwAo+SkACMtjVvcFzNuzKmq5D5v7ovQxCeaVZPNPUfLT+jHIgJBLHtMAkAWGPTgARUVFKCwsRFFRkcP7laHT6RAZGYmoqCj1Z1RUFOrVq4fY2FjExMQgNjYWsbGxCAsLY9glIqJqwQBLRESVpigKMjMzcenSJaSmpiI1NdXmfmpqKtLS0qDX6z3abnBwMCIiIhAREYHw8HBERERg47xtkIwSYJStfsqAUYJkkgCTBJhkc/hE3Q1VQhKARgBaBUIrAE3JT62A0CqARmDE49eqLdpZWVnqrbi42KN96XQ6NcxaB9vY2Fg0aNAA9evXR2xsLDQaTRU9WyIiqisYYImIyCVFUZCeno6LFy/iwoULuHjxonpLSUlBamoqTCaTW9uKiIhAdHQ06tWrhz0rD0IyyIBeU/JThmSQS++LuhtAfUnIAghQIEpulvvQKhjywDVIS0tDeno60tPTkZOT49Y2NRoN4uLi0KBBA8THx5f7GR8fD51OV8XPjIiI/B0DLBERAQD0ej0uXLiAs2fP4ty5czZBNSUlxWXrqSzLiImJQVxcHOLi4vD3TzvMIbRYA6nkJ0Np7aOGXZ0JQqdABCoYM+0GpKWlITU1FcnJyW6d4JAkCfHx8WjcuLF6a9KkCZo0aYJGjRohMDCwmp4RERHVZAywRER1iKIoSE1NxdmzZ3H27FkkJSXh3LlzOHv2LJKTk9VRdO3RaDSoX78+GjZsiP/+PAipSGO+FWtKw2kd7rJLjgkIQKdABJkgAk0QgQqGTxmIlJQUJCcnIyUlxeU1u3FxcWjSpAkaN26Mpk2bIjExEQkJCWjQoIE6sjMREdV+DLBERLWQoii4ePEiTp06pd5Onz6Ns2fPOr2+MSQkBM2aNUOTJk2wbsY/5nBaElRRzIBKVUNAAAECIsgIEWzCnW/cjPPnz+P8+fM4d+4c8vLyHK6r0+mQkJBgc0tMTESTJk04hRARUS3EAEtE5MeEELh06VK5oHr69GmHLVparRaNGjVC06ZNsXXBbkiFGkiFWkiFGsDAkEo1i0DJwFPBRoggE8a9fQuSkpJw5swZnD171mHXdo1Gg8aNG6Nly5Zo0aIFWrVqhVatWqF+/focMZmIyI8xwBIR+Qmj0YikpCQcO3bM5uaodcrSMnVi81lI+VpIBVrIhRqgSMOQSrWCgACCTFBCTBDBRgyZ2BdnzpzB6dOnHc4HHB4ejpYtW6q3Vq1aoXnz5rzGlojITzDAEhHVQMXFxThx4gSOHTuGo0eP4tixYzh58qTd1iaNRoOmTZsiacdFSAXmoCrla81dfxlUqQ5Sr7kNMUIJNWLQQ1fh+PHjOHPmjN3BpGRZRtOmTdG2bVu0a9cObdu2RevWrREUFOSD2hMRkTMMsEREPmYymXD69GkcOnQIhw4dwsGDB3H69Gm7B9rBwcFo3bo1Dvx1DFJegNqyypF9iVwTkoAIMUKEGnHLC8Nw4sQJHD9+HNnZ2eXKajQaJCYmom3btmjfvj3atm2LFi1acKofIiIfY4AlIqpmqampOHjwoBpYDx8+bLe7Y1RUFFq3bo1/Fx2AlB8AKY+tqkTeZmmtVUKNuPuDW3D48GEcPnwYGRkZ5coGBASgZcuWaNeuHTp16oSOHTuiQYMGvKaWiKgaMcASEVUho9GIEydOYM+ePdi3bx8OHjyI1NTUcuWCg4PRrl077F16BFJuAOTcAE5LQ+QjaqgNM+COt2/C4cOHceTIEeTk5JQrGxMTg44dO6q31q1bs5WWiKgKMcASEXlRUVERDh48iH379mHPnj04cOBAudZVWZbRvHlznNp8AXKuFlJugLkbMMMqUY0lIIBAE5RwI0a+OBT79+/H0aNHy3X11+l0aNu2rRpoO3fujIiICB/Vmoio9mGAJSKqhNzcXOzZswd79+7F3r17ceTIkXIHtKGhoejYsSN2LjgAOaekK7Ai+6jGROQtQhYQYQbc+/kY7N+/H/v37y93Pa0kSWjVqhW6dOmCLl26MNASEVUSAywRkQeKioqwb98+/Pvvv9i1axeOHj0KRVFsysTGxiLjUC7kHB2knJKBlti6SlTrCQiIIBNEhAHXPdUPe/bsQVJSkk2ZsoG2S5cuCA8P91GNiYj8DwMsEZETRqMRhw4dUgPrgQMHYDAYbMo0adIEF3amQ84OgJyjA4p57SoRmYkAE5RIA4b/rz92797tMNBeccUV6NmzJzp27Mg5aYmInGCAJSIq4+zZs9i+fTu2bduGPXv2lLuGNS4uDun7cyFn6yBn6SDpNT6qKRH5G1eBNjAwEF26dEGPHj3Qs2dPJCQkcJRjIiIrDLBEVOcVFRVh9+7d2LZtG7Zt24bz58/bLI+MjETuiSJzWM3ScSobIvIaEWCCEqXH4Meuwo4dO5Cenm6zPC4uDj169ECPHj3QvXt3REVF+aaiREQ1BAMsEdU5QgicPXsWW7duVVtZ9Xq9ulyr1aJTp07Yu+iYObTyGlYiqgYCAiLEiAe+ux07duwo99kkSRI6dOiAPn364KqrrkLz5s3ZOktEdQ4DLBHVCUajEfv378emTZuwefNmXLhwwWZ5/fr1kbYnF3KmDnK2DpKJowQTkW8JWUBE6DHqjWHYvn07Tp48abO8QYMGuOqqq3DVVVehS5cunH+WiOoEBlgiqrUKCwuxY8cObNq0Cf/88w9ycnLUZVqtFp07d8Z/C49AzgiEVMhuwURUswmdCZMXjMfmzZvx77//2rTOBgcHo0ePHmqgZVdjIqqtGGCJqFbJzMzE5s2b8ffff2Pnzp02B3gRERHIO6aHnBEIOVPHuViJyG8JWUCJKsZ1/7sGW7Zssbl2VpZldO7cGddccw369euH2NhYH9aUiMi7GGCJyO+lp6djw4YNWLduHfbu3Qvrj7WGDRvi0s5syOmB5jlZ2cpKRLWMgIAINWLsxzdhy5YtOHr0qM3yjh07ol+/fujXrx8aNGjgo1oSEXkHAywR+aXMzExs3LgRa9euxX///WcTWtu2bYvjK8+ZQ2sBB2AiorpFBJrwwMzbsH79ehw4cMBmWbt27XDNNdegf//+aNKkiY9qSERUcQywROQ3srKysHHjRqxbtw67d++Goijqsg4dOuDIH0nQpAdBKua8rEREgPm62Ylzx2LDhg3Yu3evzedmu3btMHjwYAwcOJDdjInIbzDAElGNVlhYiE2bNmHlypXYtWsXTCaTuqxdu3Y4tvwcNGkMrURErogAEyb/PB4bNmzA7t271c9TSZLQrVs3DB48GP369UNYWJiPa0pE5BgDLBHVOCaTCbt378aKFSuwceNGFBYWqsvatGmDEysuQJMWCKlY68NaEhH5L6FVMGn+WKxevRr79+9XH9fpdLjyyisxePBg9O7dG4GBgT6sJRFReQywRFRjnDx5EitWrMDq1auRmpqqPt64cWMkb8mCnBoEuYihlYjIm0SgCeO/GYlVq1bh9OnT6uOhoaEYMGAArr/+elx22WWQJI4nQES+xwBLRD6VlZWFlStXYsWKFTh27Jj6eHh4OPKPGqG5FAQpl6MHExFVNctoxqPfvbbcicRmzZph+PDhGDp0KGJiYnxYSyKq6xhgiajaKYqCf//9F0uXLsWmTZtgNBoBAFqtFkqKBvKlIMgZgZAEQysRkS8ICIhIAwY+3RPr169HcXExAECj0aBXr14YPnw4evfuDa2WvWKIqHoxwBJRtUlLS8Py5cuxbNkyXLhwQX28bdu2OPHnBcipQZCMsg9rSEREZQmNgscX34Nly5bZTMsTHR2NIUOG4MYbb0RCQoIPa0hEdQkDLBFVKZPJhO3bt2Pp0qX4559/1FEvQ0NDUXhcgSY5GHJ+gI9rSURE7lCCjRj9/lCsWLECGRkZ6uNdu3bFyJEj0bdvX7bKElGVYoAloiqRlZWFP/74A0uWLMGlS5fUxzt27IjDi5IgpwVBUthFmIjIHwlJ4NWNT+CPP/7AP//8o84vGxMTgxtvvBE33ngj4uLifFxLIqqNGGCJyKuOHDmCRYsWYc2aNdDr9QCAiIgI5B8yQk4JhlzAM/NERLWJCDThtk+uwx9//IHMzEwA5mtl+/Tpg5EjR6Jbt24cwZiIvIYBlogqzWg0YsOGDVi0aBH27dunPt6uXTsc/73k2lYOyEREVKsJSeC5lROxZMkS7NmzR328WbNmGDVqFIYNG4bg4GAf1pCIagMGWCKqsMzMTPz+++/47bffkJaWBsB81l1cDIDmYjCnvyEiqqOUECOGv3Y1Vq5ciYKCAgDm3jgjRozAyJEjERsb6+MaEpG/YoAlIo+dPXsWCxYswF9//aV2E65Xrx6y/ys2B1eDxsc1JCKimkBoFEycfyd++eUXdfR5rVaLQYMGYcyYMWjdurWPa0hE/oYBlojcdvDgQcybNw8bN26E5aOjffv2OLbkvHlQJnYTJiIiOwQEXlo/BT///DP27t2rPt6tWzfcdttt6NWrF2SZ06gRkWsMsETklKIo2LZtG3766Seba5rkDB0050Ih5bCbMBERuU8JM6Df092wbt06dWq1hIQEjBs3DoMGDeI0PETkFAMsEdllNBqxatUqzJ8/H6dOnQJg7valnNdCcy4UciEPMIiIqOJEoAm3fDAYS5cuRX5+PgCgQYMGuPPOO3HdddchMDDQxzUkopqIAZaIbBgMBqxYsQJz5szBxYsXAQAhISEoPgpoLoRA0vP6ViIi8h6hUTDhh5H4+eefkZWVBcA8rsJtt92GESNGICQkxLcVJKIahQGWiAAAer0ey5cvx48//oiUlBQAQHR0NHL+NUCTHAzJxGuTiIio6ghZYOKCOzBv3jxcunQJABAeHo4xY8Zg9OjRCA0N9XENiagmYIAlquOKi4uxbNkyzJ07F6mpqQBKRhTeqYcmOQSSwutbiYio+ghJ4Mml92Lu3Lk4e/YsAPMUPLfffjtuueUWtsgS1XEMsER1lNFoxJ9//olZs2apwTU2NhZZ24ohpwQzuBIRkU8JCDy3aiJ++OEHJCUlAQAiIyNx5513YuTIkQgKCvJxDYnIFxhgieoYRVGwdu1afP/99zh//jwAoH79+sjYUmgOrpwKh4iIahABgal/PYgffvhB/d6qV68e7rzzTowYMYKDPRHVMQywRHWEEAJbtmzBd999hxMnTgAAoqKikLvLZL7GlcGViIhqMAGBp5bdh5kzZ6qDDDZo0AD33XcfhgwZwnlkieoIBliiOmDfvn344osvcODAAQBAWFgYCvcL86jCCr/wiYjIfwhJYMriu20ugWnVqhUefvhh9OjRA5LEE7JEtRkDLFEtdv78eXz11VfYsGEDACAwMBDG4xpozodCMjK4EhGR/xKywD2zRmLu3LnIy8sDAHTr1g0TJ05E27ZtfVw7IqoqDLBEtVBubi5mzZqFRYsWwWg0mrtVXQiE9kwoJAPncSUiotpDaBXc/OEALF68GAaDAQAwZMgQPPTQQ6hfv76Pa0dE3sYAS1SLGAwGLFmyBLNmzUJOTg4AQMrUQXsqHHKB1se1IyIiqjoi0IQBL3THypUrIYRAUFAQxo4di9tvv50DPRHVIgywRLXEjh078PHHH6tTDTRv3hznlmZCzuKXNhER1R2fHXoDn376Kfbu3QvAPNDTxIkT0b9/f14fS1QLMMAS+bmUlBR89tln6nWuUVFRyNthMk+JA35RExFR3WOZQ/bLL7/EpUuXAACXX345HnvsMbRu3drHtSOiymCAJfJTer0e8+fPx5w5c1BcXAyNRgMkBUKTFArJxAGaiIiIhCww9tvh+Omnn1BcXAxZljFq1Cjcd999CAkJ8XX1iKgCGGCJ/ND27dsxffp0dUJ3KTsA2hPhkAsCfFwzIiKimkfoTOjzv05Yt24dACA2NhZTpkxBv3792K2YyM8wwBL5kczMTHz66adYvXo1ACAmJgbZWwyQU4PYXZiIiMiFN7c+Y3MCuFevXnj88cfRuHFjH9eMiNzFAEvkB4QQ+Ouvv/D5558jJycHsixDOhvE7sJEREQeEpLAnd9ej7lz58JgMECn02H8+PG44447oNVyxH6imo4BlqiGO3fuHD744APs2rULACDlaaE9HgE5j92FiYiIKkoJMqLzw82xc+dOAEDr1q3x7LPPcpAnohqOAZaohjKZTPj555/x/fffQ6/XQ6fTwXREB82FEEiC3YWJiIgqS0Bg6l8P4pNPPkFOTg40Gg3GjRuHu+66CzqdztfVIyI7GGCJaqBz587h7bffxr59+wAAUpYOAcfDIRWxaxMREZG3iQATek+9TJ2Srnnz5vjf//6HDh06+LhmRFQWAyxRDaIoChYvXoyvv/4aRUVFCA4OhmGvlnO6EhERVYNpax/B9OnTkZmZCVmWceedd+Kee+5BQAAv2yGqKRhgiWqI5ORk/N///R/+/fdfAICUFYCAY5GQijU+rhkREVHdIbQKrnmhszrif5s2bfDCCy8gMTHRtxUjIgAMsEQ1wsqVK/Hhhx+ioKAAgYGBMB3UQb7IVlciIiJfmbb2Ebz//vvIycmBTqfDxIkTccstt3DeWCIfY4Al8qGCggJMnz4dK1asAABIOQHQHo2AzGtdiYiIfE7oTOj8SHPs2LEDgHne2P/973+IjY31cc2I6i4GWCIfOXz4MF599VWcP3/ePK/r6WDzvK5sdSUiIqoxBAQm/nIHvvzyS+j1ekRGRmLatGm48sorfV01ojqJAZaomimKggULFuDbb7+F0WhE/fr1kbnaADmHw/UTERHVVN+efA+vv/46jh07BgAYO3Ys7rvvPmi17DVFVJ0YYImqUU5ODt544w1s3boVACCnBUJ7LAKSSfZxzYiIiMgVIQlc/95VWLJkCQDg8ssvx0svvYT69ev7tmJEdQgDLFE1OXr0KF544QUkJydDp9NBORgIOZkDNREREfmb51ZPxLvvvouCggJERkbihRdeQK9evXxdLaI6gQGWqBosW7YM06dPh16vB4o0CDgUCTmfc8oRERH5KxFkRMId9dQuxffeey/uvvtuyDJ7VRFVJQZYoipUXFyMjz/+GH/88QcAQM7QQXskkl2GiYiIaoGyXYqvvvpqTJs2DSEhIb6tGFEtxgBLVEXS0tIwbdo0HDp0CJIkQT4VAs05jjJMRERU2zzxxz344IMPYDAYkJiYiDfffBNNmzb1dbWIaiU2AxFVgSNHjuChhx7CoUOHEBERAe2+SGjPhTG8EhER1ULTb/gBn376KWJjY3H69Gk89NBD+Oeff3xdLaJaiS2wRF62fv16vPnmmyguLoZUoEHAwShIRRxin4iIqLYTASa0ua8B9u/fD0mS8Mgjj+DWW2+FJPEENpG3MMASeYkQArNmzcKMGTMAAFKGDgG83pWIiKhOEZLAtf/XC0uXLgUA3HLLLXj00Uc5XyyRlzDAEnmBwWDAu+++ixUrVgAANOdDoDnFLsNERER1kYDAfXNH4csvvwQA9O7dGy+//DIHdyLyAgZYokoqKCjAiy++iB07dkCj0UA6HAJNCr+giIiI6rppax/BG2+8Ab1ej9atW+Odd95BbGysr6tF5NcYYIkqISMjA1OnTsXRo0cRFBQE464gaDIDfV0tIiIiqiE+2vcKnnvuOWRlZaF+/fr48MMP0axZM19Xi8hvMcASVdDZs2fxzDPP4MKFC4BeRsDBKMh5Ab6uFhEREdUwItCEBqNCkJSUhMjISLz//vto27atr6tF5Jc4ugxRBRw/fhyPPPKIObwWaqDbG83wSkRERHZJxRok/1yItm3bIjs7G4899hj+++8/X1eLyC8xwBJ56NChQ5gyZQqysrIg5Wmh2xvNaXKIiIjIKcko49TMDHTt2hUFBQV4+umnsXnzZl9Xi8jvMMASeWDfvn144oknkJeXByknAAH7oiEZNL6uFhEREfkBySTjwGfn0adPH+j1erzwwgtYs2aNr6tF5FcYYInc9O+//+Lpp59GQUEBpOwABByI4hyvRERE5BFJSNjxzjFce+21MJlMeP311xliiTzAo28iN+zYsQNTp05FYWEhpEwdAg5EM7wSERFRhUiQsO7F3bj++uuhKAreeOMNrF271tfVIvILHIWYyIU9e/bg6aefRnFxMeQMHbSHoiAJydfVIiIiIj8nIDDoze5Yvnw5NBoNXnrpJQwYMMDX1SKq0diEROTEwYMH8b///Y/hlYiIiLxOgoQ103Zh2LBhMJlMeO2117B+/XpfV4uoRmMLLJEDx48fx5QpU8wDNmUFIOBgNCSF4ZWIiIi8S0Bg4Bvd8Ndff0Gr1eLdd9/FFVdc4etqEdVIDLBEdiQlJeHRRx81T5WTE4CA/VGQFHZYICIioqohINDnxcuwbt06BAcHY/r06ejQoYOvq0VU4zDAEpWRnp6OiRMnIjk5GVKe1jxVDgdsIiIioiomJIHLH2uGnTt3IjIyEp9++ikSExN9XS2iGoUBlshKQUEBpkyZgqNHj0Iq1CBgTz1IRoZXIiIiqh5CVtDyvlgcOnQIcXFx+OKLLxAfH+/rahHVGDwyJyphNBrx8ssv4+jRo4BeNs/zyvBKRERE1UhSZJz4IQ3NmjVDamoqpk6divz8fF9Xi6jG4NE5EQAhBD744ANs27YNMEkIOBgFqUjr62oRERFRHSQZZSQvLEBMTAxOnTqFV199FSaTydfVIqoRGGCJAMybNw/Lli2DLMvQHomEnBfg6yoRERFRHSbpNXjrrbeg0+mwdetWfPHFF76uElGNwABLdd62bdvw9ddfAwDkY6HQZAT6uEZEREREwJTLXsK0adMAAL/88gt+++03H9eIyPc4iBPVaWfPnsVDDz2EvLw8yMnB0B4PhwTO9UpEREQ1x10zb8R3330HjUaD6dOno0uXLr6uEpHPMMBSnZWfn4+HH34YZ86cMc/1ui8akmB4JSIioppFQKDfq52xatUq1KtXD9999x1iY2N9XS0in2AXYqqThBB46623cObMGaBYRsChSIZXIiIiqpEkSNjw6h60aNECGRkZeOWVV2A0Gn1dLSKfYIClOmnRokXYtGkTAgICEHAoCpJB4+sqERERETkkKRJef/11hISEYO/evfjmm298XSUin2CApTrn6NGj6kh+4nAQRxwmIiIiv3BvwpN47rnnAADz58/Hxo0bfVwjourHa2CpTikoKMD999+Pc+fOQU4PhPZQJAdtIiIiIr9y86f9sWDBAoSHh2PmzJmIi4vzdZWIqg1bYKlOmT59Os6dOwcUy9Aei2B4JSIiIr+zeMo6tG3bFrm5uXj77behKIqvq0RUbRhgqc5Yt24dVqxYAVmWEXAkEpKxiv/9JS+EY0nyznaIiIio1pCEhBdeeAGBgYHYuXMnFi1a5OsqEVUbBliqE7KysjB9+nQAgHQ6GHKOzn7BmhI6GVyJiIjIifubP41JkyYBAL766iucPn3atxUiqiYMsFQnfPTRR8jKyoKUr4XmbGj5At4KjDVlG0RERFTrfT5qLnr16gW9Xo8333yTU+tQncAAS7Xe+vXrsXbtWkAA2qMR5ed7LRsYKxIgHQVgT7bFVlciIiLygAQJuz85gbCwMBw5coRdialOYIClWi03N1ftOqw5Gwo532rKHH9qdWWwJSIiIjskgwYTJ04EAHz//fdISUnxcY2IqhYDLNVq3333HTIzMyHla2y7DnsrEPJaVyIiIvKxj0fMwuWXX47CwkJMnz4dnCWTajMGWKq1jh07ht9++w0AoD1Z0nXY3cDoTouoN8IrERERUSVJkPD0009Dq9Viy5Yt2LBhg6+rRFRlGGCpVhJCYPr06VAUBXJqIORsne9aXSt7bWxl1iEiIqI64YEWz2Ds2LEAgC+++ALFxcU+rhFR1WCApVppxYoV2L9/P2CSoD0dwelxiIiIqNab99ByxMXFITk5GQsXLvR1dYiqBAMs1TpFRUX45ptvAJgHbpL0moptyDpo1pTgyvBLREREDkiKhIceeggAMGfOHGRmZvq4RkTexwBLtc6iRYuQlpYGFMnQXLAz56snZA1DIxEREVWfSh53vDvsG7Rr1w4FBQWYMWOGlypFVHMwwFKtkpubi7lz5wIAtEnh5ed89YRUQ98eDNRERES1WyW+6yVImDRpEgBg6dKlOHPmjLdqRVQj1NAjdKKKmT9/PnJzcyEVaCGnhVR8Q9bhtbJBtqYGYSIiIqpZvHT50tSe76BPnz5QFAVz5szxQsWIag4eWVOtkZmZqQ5YoD0bAQkVGelX9m7gtGyLIZaIiIg8VYkxNCZMmAAAWL16Nc6ePevFShH5Fo+qqdb49ddfUVhYCCkvAHJmkGcruwqungZQbwfhcttnN2IiIqJaxdl3ewW+9yd3egW9e/dmKyzVOgywVCsUFBRg8eLFAADthXBIkCDJknsh0ttB09H2vL4fhlgiIqI6w83vfUmrVe+PHz8eALBq1SqcP3++SqpFVN0YYKlWWLZsmfna10IN5AwPWl+rK7wSERERVZaHXYof7/I6evXqBZPJhAULFlRhxYiqD4+2ye8ZjUb8/PPPAADNxXCba1+dtsJWpFuws2U+ae1lKywREZHf8/T73EF569ZXi9tvvx0AsGLFCuTm5npcNaKahgGW/N6GDRuQkpIC6GVoUt0YebiqBmoiIiIiqi5uht5ne7+H5s2bo7CwEMuWLaviShFVPR55k9/7/fffAQCaS6F2531VW2G9EVzLrl+R7bEVloiIiCwq8z1u1aXYXusrYJ4X9tZbbwUALFq0CCaTqeL7I6oBGGDJryUlJWH37t2AALSXHLe+SrJ3Qp5Nl+Sa0vIqhK9rQERERBXhrZPQLrbz8agfER4ejuTkZOzatcs7+yTykRpyBE5UMZbWVzkrCJLe/plHaDSQAgMhBThY7iabEFyZ8CqUStXDdlsMr0RERH7LSyfDNeHhkEOcnMgXEoYMGQIA+PPPP72yTyJfYYAlv2U0GrFy5UoAgCbFzoe2JbhqtYAsQ6rEWU7r8Fqp1lyGVyIiIgJKW029EWJlCZAlyCEhDoPsH69sAgBs2rQJOTk5ld8nkY8wwJLf+vfff5GVlQUYZMjZZabO0WjU4ApZLn3Mw1ZYSZa81v2Y4ZWIiIhU1sG1EiFWEx5e+otVkC1LLtChdevWMBgMWLNmTYX3R+RrDLDkt1avXg0A0KQH2w7eZB1erXnYCussuHocar0VXoVgeCUiIvJ39o5HKjrYpL1jEgch1tKNeP369Z7vh6iGYIAlv1RcXIxNm8xdYTTpwaULHIVX6+VutMK6E1DdDrHeDK9ERETk3yQnc9QDHoVYm9bXsuyE2O/v/xUAsGfPHmRkZLi9H6KahAGW/NLu3buRn58PFMuQcnXlrnd1SJYhabVOQ6xXuwwzvBIREZE1dwKqG2U04eH2W1+tlbkuVtJr0b59eyiKgo0bN7pTW6IahwGW/NKWLVsAAJqsYEgabfnrXZ1x0pXY0/DqsDyvdyUiIqKyPBlQ0lWIdfeYpcx1sf379wcABljyWwyw5HeEEGqAlbNDXLe62lOmK3FlBmsqtx6vdyUiIqKyXHUdtruO/fJOuw47UhJiv3/I3I147969KCoq8nw7RD7GAEt+5+TJk7h06RJgkqApCPU8vAI2XYm91mUYYJdhIiIisq+iIw2XGdzJra7DjsgSNHIE6tevD71ejz179lRsO0Q+xABLfmf37t0AADk/CJLk2bQ4Nio5N6w1r4ZgIiIiql28cbxhCbKVPOaQZBk9e/YEAGzbtq3y9SKqZgyw5HdKA6z9ibo9EhBg7oJcCUIREIoXW0zZ+kpERFR7WMKrF3ppaRs3hBQZUent9OjRA0DpMRWRP2GAJb+iKAr27t0LANDoGlR6e5IkVSrEejW4AgyvREREtVklQqy2cUNAIwOSVOkQ+8aLawEAp06dMs/qQORHGGDJryQlJSE7OxuABqaYRpDiYyu8LUv34Yp2I7YbXit6fQvA8EpERFTb2DvGqGiI1VgdY5SE2IoEWWOHRAhdCBo2bAhFUXDo0KGK1YfIRxhgya8cPXq05F4EoNXC0CDS4xArSVL50OphK6zTlteKhFiGVyIiotrF2QlyD0OstnFD+9v3sDXW2CERik4DAOjYsSMAYN++fR7VhcjXGGDJr1gCrCSZP6yFVgY0GrfXdzj/qwddid3qNuxuiOVUOURERLWPO7273AyxatdhJ/tyN8RawisAtG/fHgBw7Ngxt9YlqikYYMmvlA2wAGCIC3OrFdZVV2F3QiwHayIiIiKvcRFiXYZXCzdCrLFDos3vn322FYB5ekIif8IAS35DCIETJ04AsA2wQiu77Ers7nWuzkKsx+HVWSsswysREVHt5OnYGg5CrNvh1Wq/jkKsddfh0uLhAIALFy6goKDA/f0Q+RgDLPmN7Oxs5ObmlvwWarPMWYj1dJAme+Ur3PJqL8QyvBIREdVOFZ3v1V6I9SS8Wu2/bIi1F17NRXWIiYkBAJw+fdrzfRH5CAMs+Y1z586V3AuCJJX/ILZ3PWxFRxi2tMJ6ZY5X6xDL8EpERFQ7VfSYw0IoapDVNqrEVIFlQqy98GrRtGlTAOZWWCJ/UbHJL4l8wBJgJSnEYRlDXBgCFAUiObXi4RXm4CtkGZIsee+6V4ZXIiIickFTLwrQuj9ApV0lIdbQuJ7TYg0amINycnJy5fZHVI3YAkt+IyUlpeSe4wCr6DTQN4mC1Ci+UvsSRiOEwQhI5hBbuY0pDK9ERES1nRe+6zUx9cy9yYqKK72ti5+GIGua82tbLQH24sWLld4fUXVhgCW/kZ6eXnIv0O5yIUsQMqBoJOgbRQAN4iq0HzW8WlQmxDK8EhER1R2V+M5XwyvMA1dWJsRe+DgEbWJS0SIqHTnP5DosN3v2LgDWjQRENR8DLPmNjIwMAIAk2QZYIUsQGnN4tVA0EvSNIz0OseXCq0VFQizDKxERUd1Tge9+6/BaupmKhdgLH4egbewl9XdLiLUfZHUAzANlEvkLBljyG5YAa/mwBUpbXYWdbOlpiHUYXiuC4ZWIiKju8vQYQGP/mldPQ2zZ8GrRIiodLaLSkf10ns3jkhQAgAGW/AsDLPmN/Pz8knvmAGsJr86oIbZhfafl3Aqv7rbCMrwSERGRm8cCmhjnAy25G2IdhVdrLaPTyoRYtsCS/2GAJb9RWFgIAJAkjVvh1ULRSE5H8/Oo5dVViGV4JSIiIgsXxwT2ug7b34zrEOsqvFrYhlhzC2xhYSGMRi/1QiOqYgyw5DcsAVZIWrfDq4W+fqjdVtgKdRt2FGIZXomIiKgsB8cG7obX0s04DrHnPgr1qEqlIbb0gIoBlvwFAyz5jeJi84e2kD2fG00dmdgqxFbqmteyIZbhlYiIiBwpc4zgaXgt3Uz5EHvuo1C0j/N8FOGW0WnIebJ0mh2DweDxNoh8gQGW/IawfPhLFZvSxnp6Ha8M2GQJsQyvRERE5ErJsYKmXnSFwmvpZkpD7NkKhleLFjHp6n3OBUv+ggGW/IZkCa6VCIuKRoLQBVQ4BJclFAZXIiIico+kDQC02kpvRwiBI5MboUMlwitgdWwFdiEm/8EAS35D8kLo1KUXQU7LhBQUCEkXULmNCcV8IyIiInJBKgmuIjun0ts6+kwLmKKN2Hk6oVLbEVaNAvXrO5+xgaimYIAlv6Ep6W5z7tqKBVldehE0F9MgSq7xqFSIFQqEyVT6u5dadImIiKj2kbRaQDIfdguTUqkQe/SZFjDVM7eWmoo1lQqxr8T/od4PCgqq8HaIqhMDLPmN4OBgAMAHV8zFqVGeXTtSNrxaVCjElg2v6sYYYomIiMiWdXi1qGiItQ6vFhUNsW82+R2R+kD195CQEI+3QeQLDLDkN0JDzUPExxo0WDjsM5y6xf0QK5lM5cKrusyTEOsovKobY4glIiIiM3vh1cLTEHv06ZblwquFSe/ZIf2bTX5HQ40OhYXm9YKDgyHLjAXkH/ifSn7DEmALCiS0DwAWXveZWy2xuvQiyJcynZZxK8S6Cq/qxhhiiYiI6jpn4dXC3RB79OmWMMU4meZGSG63wlrCKwAUFJmPWSy93Ij8QeWHQSOqJuHh4QCAnDxzaG0fACwc9hlG41E0/9V+sHTUddgeKcjcjUbo7Zf1aMRhSeLUOkRERHWUO+HVQpgUODv1fewpF+G1hKlYg51nmuGKhCREZhRg4O+H0WH3RQQXGFAYEoCD3Rqh14OnUV9TGlazss3HVNHR0W7VlagmYIAlvxEXFwcASM8obXW1hNgDAxrh5XW32ARZT8KrhcMQW5ERhxliiYiI6hxPwquFyM6BFBlR7vFjT7WEMdb94xhtjsDIF/7FrRv/hdZoe9zSecd5iBmAcUwYil+LBoIkpGeaj6liYmI8qi+RL7ELMfkNS4BNy7DtNtw+ABgddgELhn2uXhdbkfBqUa47sbtdh+1ujN2JiYiI6oqKhFfAfldiT8NroN6AWR/OwB1rd5YLr2r9DEDA3DwEj7sEFCrIKAmwsbGxHteZyFcYYMlvWD5c09LtdxzoGCCw4LrPcW6wrsLh1UINsZUJr+rGGGKJiIhqu4qGVwvrEOtpeAWAV35ait5HTsFV3y8BQPNPMQJfzkJ20QQAbIEl/8IAS36jYcOGAICLKY57vk/cPxYN/jFBRIR5ZZ+VDq9ERERU+0lSpcKrhTApkEKCPQ6vcdm5GP33LnNVXJS1LNf+nIezJ04AAJo0aeJhTYl8hwGW/EZCgnl0veQULRw1rmZlhSIwywBjXDgQU/EBCYTeAFFcXOH1bTfG62CJiIhqrZKeVsJY8Z5fAKBpFA9No3gIjYxWP3h2Av22jTug8/Cku2QAzh4/DgBo2rSpR+sS+RIDLPmNmJgYhIaGQhESLiSXn/Lm6t3j0GixeVh4oZUqF2IVxTzqsCRX7owqwysREVHtVeYyoYqGWE2jeIgALUSAuZdZwMUsj9bvdeSUx/sslGWkFhUBAJo1a+bx+kS+wgBLfkOSJPUDNum8bYDt9984BM+MRlC6Xn2soiHWbutrRUIswysREVHt5WCMC09DrCW8luVJK2xYkee9xk6FhAAAoqKiEBFRfgRkopqKAZb8SqtWrQAAx0/q1Mf6/TcOgT9EIzhNX668pyFW6A0QhYX253z1wrUtREREVAt4aYBGR+EVMLfCuhti84J0rguVcTQ8HADQtm1bj9cl8iUekZNfad++PQDg6InSD+qMzFC74dXC3RDrNLxauBti2fpKRERU+0iSW+HVnVZYZ+HVIuBiFlrNchFiJYEW16W63F9Zh8PMA14ywJK/YYAlv9KuXTsAwLGTgVAUc+trwyWuzzq6CrFuhVcLVyGW4ZWIiKj28bDV1VmIdSe8WgScdxJiJYGF/b9Eo7uiIcoPD+LUYbbAkp9y751DVEMkJiYiKCgIBYVFGLB6JAKX2e86bI8lxEpRIdBkFQDpmaULLYM2uUuSAWFnknCGVyIiotqngl2GhdEASWubLD0JrxYB57MAWM3VWhJcAaB7oA6oD2BMBDA3BwLOp9IRAPK0WpwKDQVQ2ruNyF+wBZb8ilarRceOHQEAQb/o3Q6vFkIrQQnW2rTGVnjKHF4TS0REVPt56XpXoGLh1UJthS0Jr90DdebwWkK8HgvRO8iteWD/6xkLAfPow7GxsRWqD5Gv8Aic/E63bt0AANrcSxXehtoaGx7mftdhexhiiYiIai8vhFdhNJTO8VrB8AqUdiW2hNdygmWIuY0gxkU47E4sAgAxLgK7R08FAHTt2rXC9SHyFXYhJr/TvXt3AIBABoQQkCrarUcrQWg1FQ+vFpbuxOw+TERERGVIGg2UtAxIDetXflt6xX54tQiWId6rD0ytB/FTDqQthUC+AoTKEFcFA3dGAHFa/PvsHgAMsOSfJCF41E3+xWQy4cYbb0ReXh7kgCuhUaIqtJ2A1HyIM+fNXYhN7s+1ZhcDLBERUe1UiVZYSaMpuSNDTmhcqWoY4yIgtDLSLwvCvy99WeHtdH1jAiL3roAsy1iyZAmioqIqVS+i6sb+j+R3NBoNevfuDQBQcAmK1vN/Y+vwCpi/YCS5gl9QDK9ERES1VwW/49XwCgBCgbhYsUufjHERangFgJgDRej2+sQKbevy9ych8ug5AEDHjh0ZXskvMcCSX+rbt6/5jikZpgDJ8xCrN6jhVSXJtl827mB4JSIiojLsHU+I4mKPQ6wluIoyxzkx+4s8rtPl709CvcMGXNExGADQp08fj7dBVBMwwJJf6tWrFwICAgClABB5MOlkGIO1bgXZgEt5Tr9APA6xREREVLu5ebJa0micHkeUO3nuhHWrqz3utsJe/v4kNbxC6PHff/8BYIAl/8UAS34pJCQEPXr0MP9iOA9IgJABk052GmIDUvMhki64/AJxK8Sy9ZWIiKjucPGd7+6xgzutsKbYcKfhFTC3wnZ9Y5LTMpd/YA6u9Q6XHPcYLsJoNKJVq1Zo1qyZ6/oS1UAMsOS3hgwZYr5jOF/6pSK5CLH2ug474PSLiOGViIiISnjSe8tVV2JTbDiUAPe2F7uv0OGyyz+YhHqHbI95Lm9jHu9DPYYi8kMMsOS3+vbti9DQUEAUAqaM0gUOQmxAar7H155UanAnIiIiql3snLyuyKVH9k6mm2LDPQqvFl3fLN8K2+nD8uEVSgH27t0LSZIwePBgj/ZBVJMwwJLfCgwMRL9+/cy/GM7ZLiwJsTbXxXrQ+mq7LbncSIJsfSUiIqIKj5tRpiuxJbh6Gl4BIHZvaStspw8nodOHkxBz0M7xjv4sAPPcr3FxcZ7XmaiG0Pq6AkSVMXz4cPz555/mbsRB7QHJanJvCRAlQVaXVlDh4evVzckShMLgSkREVKcJAUlb+UNooTdAgmddhh3p+tYkGINhP7gCgFAQE56B9HTgxhtvrNS+iHyNLbDk1zp27IhWrVoBUAD9OfuFJEAyKhVrfbXZTsnbha2vREREdZowmSq/EVkCLqVXOrwCQKOlZxFzwMlxjjEF6enpiI6OxjXXXFPp/RH5EgMs+TVJknDzzTebf9Gfthsugy4WAGcvVnpfwmQCFC98YREREZH/krwwNkZJ12OluBgBh5IqvBldUhp0SWkQRcUIPZzqsFz3Duafw4cPN09DSOTHGGDJ7w0ZMgRhYWGAKACMKeWWy8UGKIWeT/hNREREZMMqvFa4FbbMdbNKbl6FNmMJrqKo2Fyf/AL7BU1Z2LVrFzQaDW666aYK7YuoJmGAJb8XHByMESNGmH8pPm7TCht0sQA4l1zpfbD1lYiIqI7zYstrWZ62wlrCa1n2WmEH9DS3uA4aNAgNGjTwaD9ENREDLNUKt956K3Q6HaBkAaZ09XG2vhIREVGlSJLD8Op2K6xG4zC8Au63wurOpkN3Nt1ueAXstMKa8rBhwwYAwB133OFeXYlqOAZYqhXq1auH4cOHm38pPg7Ae62vREREVEdVYaurp3Rn0yEKiyBcnJi3boW9cWA4FEVB79690bJlS6/Ug8jXGGCp1rj99tuh0WgAUxpgzPRa6yu7DxMREdVBboZXp62wHoTXgMMOZlNAaXh1qz6WVlilAH/99RcA4M4773S7HkQ1HQMs1RoNGzbE0KFDzb8UH4YAp7shIiIiDznpMuw2F12G7VFycso9pnYZrsAJ+Wv7BMBgMKB79+7o3Lmzx+sT1VQMsFSr3HvvveZrYU3pULJPVnp7bH0lIiKqQyoYXG1aYSvRZdi6FdbdLsP2BB8/g5UrVwIAHnzwwQrXh6gmYoClWiU+Ph633HILAEAfn8pWWCIiInKPD1pdy7K0wla01dWi683hEEKgf//+aN++faXqRFTTMMBSrTNu3DiEhYVBhBigxDqYE42IiIgI8E6XYW8xmSodXk1B+diyZQs0Gg0eeOABL1aOqGZggKVaJyIiAuPGjQMAGJpmQchKxTYkFPONiIiIai/hnd5awmCs3AZMJghFwHQxpeJ1gEDjfub7w4cPR9OmTStXJ6IaiAGWaqVRo0ahcePGgE6BsXFWhYKoUITXvtSIiIiolqvoSW+TSQ2vQMWDsJKVDUPgOZw8eRIRERG4//77K1YfohqOAZZqpcDAQDz++OMAAFPDfJiC9GxNJSIiIvt81QpbElwt4bWilKxsKChGYHsDAPPATVFRUZXaJlFNxQBLtVavXr3Qv39/QAKMLbKhKIp5lEB3giy7DxMREZGn3D12KNPqWpaSle3WZpSsbChZ2RAGI/pP64z8/Hy0a9cOw4cPd7fGRH6HAZZqtUcffRTBwcEQEXoo9c0DOpm7Bjv/gmH3YSIiIqoSbrS6utOSawmuwmCEElmElStXQpIkPPnkk9BUcjRkopqMAZZqtfr16+Pee+8FABib50AEmr8QhCLcb40lIiKi2q86Tlw7aXV1l3WrKwAIjYKo/ubAesstt6Bdu3aVriZRTcYAS7Xe6NGj0bFjR0AjYGiZZTM3rN3WWHYfJiIiogqy23rqosuwPfa6EVu3uloYE7ORmpqKxo0b48EHH6xQnYn8CQMs1XoajQbPPfccAgMDIaL0UBrYzg1btjWW3YeJiIiowsqeBK/gQE3WIbVsq6u66egiKPGFkCQJzz33HIKDgytcbSJ/wQBLdULTpk3x8MMPAwCMCTkQQeXPjrpzbSwRERGRWyrQ6mqPvVZXABBaEyL7SgCAW2+9FZdffnml9kPkLxhgqc4YOXIkunbtau5K3CYTQir/hcIQS0REVId5qweWN6bHEYrdVlcAEBDo/lgLpKeno1mzZnjggQcqUVki/yIJwb6SVHekpKTgvvvuQ05ODjQXQqE9HVm+kFDYhZiIiKiukqSKr2s5fpAkQKpEO5HlWES2P5qwsVEeTIk50Ol0+Oqrr9CqVauK74vIz7AFluqU+Ph4PP/88wAAU6N8mOoV+rhGREREVCtYn/yu6Ilwy0CSTtZXwvRAy3wAwOTJkxleqc5hgKU656qrrsIdd9wBADC2ylKn1iEiIiLymPDS4I+W4OpkW0KjIGaoFiaTCQMGDMBNN91U+f0S+RkGWKqTHnjgAVx22WWAVsDQNhNCZpdhIiIigmdh1GvB1fXlSwICXackIDk5GQ0bNsQzzzwDqTLdnYn8FK+BpTorJSUF999/P7KzsyGnBkN7LAqSt86iEhERkf9yFQzdOVZwcP1q6TYU97ZVsh1jQjZMjfMRGBiIzz//HG3atHFdB6JaiC2wVGfFx8fj9ddfh0ajgRJXCFPjPF9XiYiIiGq6auoubM0UWwBTY/N1r88++yzDK9VpDLBUp3Xp0gWPP/44AMDULBemekW+rRARERHVTN7opeVmd2FrSqgecscCAMC4ceMwaNCgytWByM8xwFKdN2LECNx8882ABBjbZEMJMfi6SkRERFRTVOMgTeVW0ZkQOQjQ6/W46qqrcP/991e+HkR+jgGWCMCUKVPQtWtXQCNguCwLItDk6yoRERGRr1XjIE3lVtMoaDQmDGlpaUhMTMQLL7wAWeahOxEHcSIqkZubi0cffRSnTp2CVKBBwN56kIz8oiAiIqIKsAwEVYFDbSEJGDpmQkQaEBcXhy+++ALx8fFeriCRf+LROVGJ8PBwvPvuu4iLi4MIMcHQIYvT6xAREVHFVLDrsYCAsW02RKQBoaGhePfddxleiawwwBJZiY+Px/vvv4+wsDCICIP5CwQMsURERFT1BASMLXKhxBZDq9XizTffRMuWLX1dLaIahQGWqIzmzZvj7bffhk6ngxJTDGObHIZYIiIiqlICAqbEPCiNCgEAzz//PLp16+bjWhHVPAywRHZ07twZL7/8snmO2PpFMLZiiCUiIqKqY2qaD1MT83Q5Tz31FAYPHuzjGhHVTAywRA5cffXVeOmllyDLMpQGRTC2zGWIJSIiIq8zNs6HKSEfAPDoo49ixIgRPq4RUc3FAEvkxIABA/D8889DkiQoDQthap7HEEtEREReY2xUAFPzPADAgw8+iDFjxvi4RkQ1GwMskQtDhw7F1KlTAQCmxgUwtWBLLBEREVWesXE+TC1yAQATJkzAuHHjfFwjopqPAZbIDcOHD8dTTz0FADA1KuQ1sURERFRhAgLGZnlqy+vdd9+Ne+65x8e1IvIPkhAVmKCKqI5avnw53nnnHSiKAjk1ENqjkZCE5OtqERERkZ+wjDZsGbDpwQcfZMsrkQcYYIk8tH79erz22mswGo2Q03XQHo5iiCUiIiKXBASMLXOhNDRPlTNlyhSMHj3ax7Ui8i8MsEQVsHXrVrzwwgvQ6/WQsgIQcCgKkok98omIiMg+IQkY22RDiSuGJEl45plncMMNN/i6WkR+hwGWqIJ2796N5557DgUFBZDytQg4EAVJr/F1tYiIiKiGERoFhg5ZEJEGaLVaTJs2DYMGDfJ1tYj8EgMsUSUcO3YMU6dORXp6OlAsI+BAFOSCAF9Xi4iIiGoIoTPBcFkmRKgJoaGheOONN9C9e3dfV4vIb7HPI1EltG7dGl999RUSExOBQAWGyzOhRBb7ulpERERUAyghBkRcD4hQE2JjY/HZZ58xvBJVEltgibwgNzcXzz//PPbs2QMogPZ4BDSXgn1dLSIiIvIRU71iBHQvRmFhIRITE/Hee+8hPj7e19Ui8nsMsEReotfr8dZbb2Ht2rUAAM35EGhOhUECRygmIiKqKwQETI0LoLTIhxACXbt2xRtvvIHw8HBfV42oVmCAJfIiRVEwc+ZMzJw5EwAgZeoQcDiSIxQTERHVAUISMLbOgVK/CAAwYsQIPPbYY9BqtT6uGVHtwQBLVAXWr1+Pt956C0VFRZAKNdAejIJcyC8vIiKi2koEmGBonw0RYYBGo8GUKVMwcuRIX1eLqNZhgCWqIseOHcPzzz+PlJQUwChBezQCmowgX1eLiIiIvEyJ0CNigIz09HSEh4fjtdde42BNRFWEAZaoCmVmZuLFF1/E3r17AQCacyHQnOZ1sURERLWB5XpXtCqEyWRCYmIi3nzzTTRt2tTXVSOqtRhgiaqY0WjEV199hZ9//hkAIGUHmK+LNWh8XDMiIiKqKKFRzNe7xpqnzxs8eDCefvpphISE+LhmRLUbAyxRNVm/fj3+7//+DwUFBYBeRsCRSMjZOl9Xi4iIiDykhBhgbJ8NEWyCVqvF5MmTcfPNN0OS2MOKqKoxwBJVo7Nnz+Kll17CiRMnAAFokkKhORvKLsVERER+QEBAaVgIuX0x9Ho96tevj9deew0dOnTwddWI6gwGWKJqVlRUhOnTp2P58uUASroUH42EVMwuxURERDWV0Cowts6GEqMHAPTq1QvTpk1DVFSUbytGVMcwwBL5yMqVK/Hhhx+auxQbJWiPh0OTFuzrahEREVEZSmQxIvprkJ6ejoCAAEycOBGjRo1il2EiH2CAJfKhCxcu4PXXX8eBAwcAAPKlIGhPhEMyyT6uGREREQlJwJSQB6VpIYQQSEhIwMsvv4xWrVr5umpEdRYDLJGPGY1GzJ49G7Nnz4aiKECRjIBjHOCJiIjIl5RQA4xtciBCjQCAESNG4JFHHkFQEOd0J/IlBliiGmLfvn14/fXXkZycDACQLwRDezoMksLWWCIiouoiJAFT03ygeRFMJhOioqLwzDPP4Oqrr/Z11YgIDLBENUpBQQG+/PJL/Pbbb+YHijQIOBoBOYetsURERFVNCSlpdQ0zt7r2798fTz75JAdqIqpBGGCJaqCdO3finXfeQUpKCgBAcyEYmtPhkBQOFkFERORtQhIwNcmH1LIYRqMREREReOKJJzBw4EAO1ERUwzDAEtVQ+fn5+OKLL7B06VLzA0UytCcioMkM9G3FiIiIahElXA9jqxyIUBMAoE+fPnj66acRExPj45oRkT0MsEQ13Pbt2/H++++XXhubGgjtyXBIBs4bS0REVFFCo8CYmAelYSEAICoqCo8++iiGDBnCVleiGowBlsgPFBYWYsaMGVi4cCFMJpN53tjTYZCTgyGBX7JERETuEhBQYophbJELBCoAgOuvvx4TJ05EZGSkj2tHRK4wwBL5kaNHj+L999/H4cOHAQBSTgC0J8Ih5wf4uGZEREQ1nwgywtgiF0o9PQCgSZMmePrpp9GtWzcf14yI3MUAS+RnTCYTFi9ejG+//RaFhYWAAOTkYGjPhEEycsodIiKisoRsHqRJbqmHwWCAVqvFnXfeibvuuguBgRxbgsifMMAS+alLly7h888/x7p168wPGCRoz7BbMRERkYXaXbh5LhBk7i7co0cPTJkyBQkJCT6uHRFVBAMskZ/bvXs3PvroI5w6dQoAIOVpoT0ZzrljiYioTlNCzN2FRZS5u3CDBg0wefJk9O3bl4M0EfkxBliiWsBoNOK3337D999/j7y8PAAloxWfDoNUrPVx7YiIiKqPCDDB2CwfaFwMRVGg0+kwduxY3HnnnewuTFQLMMAS1SJZWVn49ttv8ccff0AIASiA5mIINGdDeX0sERHVakIWMDXOh66dYh4jAkC/fv0wadIkNGzY0Me1IyJvYYAlqoWOHz+OL7/8Ejt27DA/YJSgORsKzYUQSILdpoiIqPYQEFDqF8GYkKdOi9OhQwc88sgj6NSpk49rR0TexgBLVItt374dX3zxBU6ePGl+oEg2D/SUGsSBnoiIyK8JCCjRepgS8yBCjQDM17k+9NBDGDhwIK9zJaqlGGCJajmTyYQVK1bgu+++Q1paGgBAytdCkxQKOT2QQZaIiPyOEqmHMSEPIsIAAAgLC8Pdd9+NW265BTodBzEkqs0YYInqiKKiIvzyyy+YN2+eOtCTlKs1zx+bpWOQJSKiGk8JM5iDa7R5ZOHAwECMGjUKd955JyIiInxcOyKqDgywRHVMbm4u5s+fj4ULF6qDXEjZAeauxZx6h4iIaiAl1ABTs3woMcUAAK1Wi5tuugnjxo1DbGysj2tHRNWJAZaojsrMzMTcuXOxZMkS6PXmM9lSVgC0Z8MgZQewRZaIiHxOCTPA1DQPSoz5e0qWZVx77bWYMGECRxYmqqMYYInquNTUVMyePRvLli2D0WgeBEPKDoD2bCi7FhMRkU8oEXoYm+arXYUlScKAAQMwYcIEJCYm+rZyRORTDLBEBABISUnBTz/9hGXLlpW2yOZqoTkbCjmDgz0REVHVEhAQkQYYm+ZBRJkHZ9JoNBg8eDDuuusuNGvWzMc1JKKagAGWiGykpaVh/vz5+P3331FUVASgZNTicyGQ04I4jywREXmVOh1O03x1VGGtVovrrrsOY8eORaNGjXxcQyKqSRhgiciurKwsLFiwAIsWLVIHe0KxDM2FEGiSgyGZZN9WkIiI/JqQBJT6hTA1LoAIMQEAdDodbrjhBtxxxx2Ij4/3cQ2JqCZigCUip3Jzc7FkyRL8+uuvyMjIMD9olKBJDobmQggkvca3FSQiIr8itApMDQtgalgI6BQAQGhoKG688UaMGTOGowoTkVMMsETkFr1ej1WrVmH+/Pk4c+aM+UEFkNOCoDkfAjk/wLcVJCKiGk0JMsLUuABK/SJAYz78jI+Px+jRo3HDDTcgNDTUxzUkIn/AAEtEHlEUBdu2bcP8+fOxe/du9XEpKwCaiyGQ0zngExERmZkHZtLD1KgQIlYPy2FnmzZtcPvtt6N///7QarU+riUR+RMGWCKqsMOHD2PBggVYv349TCbz9Usols3di5ODIRnYvZiIqC4SGgWm+kVQGpZe3woAV111FW677TZ06dIFksSTnUTkOQZYIqq0lJQU/P7771i6dCmysrLMD1q6F18MhpQbwFZZIqI6QAkxwNSw0KabcHBwMIYNG4aRI0dyDlciqjQGWCLyGr1ej/Xr12Px4sU4cOCA+riUqzV3L04LgqQwyBIR1SZCElBiimFqWAARaVAfT0xMxMiRI3HttdciJCTEhzUkotqEAZaIqsThw4exePFirFmzBnq93vygUYKcGgRNSjCkPC1bZYmI/JgSbIQSXwhT/SJ1NGGNRoOrr74aI0eOZDdhIqoSDLBEVKWysrLw559/YunSpTh//rz6uJSvhSY5GHJqECQj55QlIvIHQlagxBbD1KAQIqK0tbVevXq46aabcOONNyIuLs6HNSSi2o4BloiqhaIo2LNnD/744w9s2LChtFXWcq1sSjCkbF4rS0RU0wgIiHADTPFFUOJKr23VaDTo1asXhg8fjt69e3M0YSKqFgywRFTtcnNzsXLlSixbtgzHjx8vXVCkgeZSEORLQZCLeCBERORLQmeCKa4ISv1CiNDSkYQbN26M4cOHY9iwYYiNjfVhDYmoLmKAJSKfEULg6NGj+OOPP7B69Wrk5+ery6RcLTSXgs0DPxnYxZiIqDoIjWIekKl+EUSkHpZOMYGBgejfvz+GDx+Ozp0789pWIvIZBlgiqhGKiorw999/Y+XKldixY0fpvLICkDN15lbZDI5iTETkbUISUKKLocQVQYkpBqzOGV5++eUYMmQIBg0ahLCwMN9VkoioBAMsEdU4GRkZWLt2LVauXInDhw+XLjBJkNMCIacFQc7SQRIMs0REFSEgICIM5i7CsUVAQOnhYEJCAoYOHYrBgwejYcOGPqwlEVF5DLBEVKOdOXMGq1atwsqVK5GcnFy6wChBTmeYJSJyl4CAiDTAFFMEJbZYnfoGAGJiYjBo0CAMHToUrVu3ZhdhIqqxGGCJyC8IIbB//36sXr0aGzZsQEZGRulChlkiIrvU0Bpb0j3YKrSGhYXh6quvxpAhQ9C1a1doNBof1pSIyD0MsETkd0wmE/bt24f169djw4YNSE9PL11olCBnBJq7GmcF8ppZIqpzhCQgIvUwxRRDiSkCdKWHeuHh4bj66qvRv39/dO/eHQEBAT6sKRGR5xhgicivmUwm7N+/H+vWrSsfZk2AnK0zt85mBEIysHWBiGonoVGg1Cs236L1gLb08C4yMlINrd26deN8rUTk1xhgiajWUBRFbZndvHmz7TWzAKScAHPrbEYgpAINJLB1loj8lwgywlQSWkWkAdYfadHR0ejbty8GDBiALl26MLQSUa3BAEtEtZIQAidPnsTff/+NzZs3245mDACFGmgyAiFn6iBl87pZIqr5BAREuEFtaRWhJpvlzZs3R58+fdCnTx+0b98essw5tImo9mGAJaI6IS0tDVu2bMHmzZuxa9cu6PX60oUlXY2lzEDzIFCFbJ0loppBBJqgRJm7BStRtl2DNRoNOnfurIbWRo0a+bCmRETVgwGWiOqcgoIC7Ny5E1u2bMH27duRlpZmW6BIhpxpbp2Vs3WQTGzFIKLqIWQBEaE3B9boYogQ21bWiIgI9OzZE3369EHPnj0RHh7uo5oSEfkGAywR1WlCCJw6dQrbtm3D9u3bsXfvXhgMhtICCiDlBkDOKgmzuQHsbkxEXiMgIEKNUKLMLawiUg9YnTOTZRkdOnRAz5490bNnT7Rt25bT3RBRncYAS0RkpaCgAP/9958aaM+fP29bwARIOeYwK2fpIOVp2d2YiNymBtZIPUSkAUqkbbdgAIiLi0OvXr3Qs2dPdO/ena2sRERWGGCJiJw4d+4cdu7cid27d+Pff/9Fdna2bQGjBDknAJKlhTafgZaISgkIiGATRJQeSqT5hgDbQ6+QkBB07twZ3bt3R8+ePZGQkABJ4ucIEZE9DLBERG5SFAWnTp1Sw+x///2HvLw820JGydzlOCcAck5Jl2OFB6JEdYWQBESYAUqEASLCACVcD+hsD7WCg4PRqVMndO3aFV27dkWbNm04zQ0RkZsYYImIKshkMuH48eP4999/sXv3buzduxcFBQW2hRRAyteaw2yOOdhKBl6/RlRbCK1iDqvh+pKfBptrWAEgMDAQnTp1QpcuXdC1a1e0b9+egZWIqIIYYImIvMRkMuHkyZPYu3cv9u3bh3379iE1NbV8wUIN5NwAc0ttnhZSHgeGIvIHQhIQIUZzC2u4ESJCX26UYACIjIxEp06d0KlTJ3Ts2BFt27aFTqfzQY2JiGofBlgioioihEBKSooaZvft24eTJ0+i3MduSSutlBegBlvORUvkWwICIsgEEW6ACDNCCTdAhBoAOx0omjVrpgbWTp06oUmTJryGlYioijDAEhFVo9zcXBw8eBCHDh1Sb1lZWeULGiVIeVrIeQFquGWoJaoaAgIIMkEJNZrDalhJV2Bt+UOk0NBQtGvXDu3atcNll12Gjh07IioqqvorTURURzHAEhH5kKWV1jrQHj16FIWFheULmwCpoKSlNl9rDrb5WkiKXL4sEdkl5JJuwKEGc2AtudkLqzqdDq1bt0a7du3Qvn17tGvXDk2aNIEs8z1HROQrDLBERDWMyWTCmTNncPDgQRw9ehTHjx/HiRMn7IdaAXPLbL7WHG4tN7bWUh0nIIBABUqIsSSwmkOrCDHB3ltDp9OhefPmaNWqlRpWW7RowcGWiIhqGAZYIiI/oCgKzp8/j+PHj+P48eM4duwYjh07hvT0dAcrAFKhFlKBpjTU5mshFTHYUu1iDqomKKEmiOCSsFpys3e9KmAeZKl169Zo1aoVWrVqhdatW6Np06YMq0REfoABlojIj2VkZKih9tSpUzh9+jTOnDmDoqIi+ytYgm2hpuSmVX/CKDHcUo0lNApEcElIDTKZ74cYIYIdB1WtVoumTZsiMTHRJqzGxMRwkCUiIj/FAEtEVMsoioLk5GScPn1aDbWWW3FxseMVjVJpqC3S2NxnuKXqIDRKaTi1DqrBRiDA8eGKTqdDs2bNkJiYiISEBCQmJqJ58+Zo1KgRW1WJiGoZBlgiojrCEmzPnDmDs2fP4ty5czh37hzOnj2LS5culZ/ex5pJglQkQyrWAEUaSMUac8gtuc+AS+5QA2qgCSJIAQJNpb8HmpyGVACIiYlBkyZN1JsltDZs2JBBlYiojmCAJSIiFBcX4/z582qgtfw8f/684+tsrRklc5AtliHpZUh6DaRiGdBrzL8z5NZqAgLQCIhABdCZIAIVCJ0JQmf1e5DJ7ki/ZUVHR9uEVMutcePGCAkJqYZnQ0RENRkDLBEROVVcXIxLly7h4sWLSE5OVn9a7mdkZLi3IQXmQGsJuQYZMJjvw2D+3fIYTAy7NYGQBRCgQJTcLPehK3kssDSkOroOtayoqCg0aNAADRs2RIMGDWxu8fHxDKlEROQUAywREVVKUVERUlJSkJKSgtTUVKSlpdn8TE1NRVZWlmcbNcE21BplSEYJMNreL/dTYei1R0gC0CoQWtuf0AoI659lwqq7odQiIiICsbGxiIuLQ0xMDOLi4hAbG4v69eujYcOGiI+PR3BwcNU8SSIiqhMYYImIqMrp9Xqkp6fbhNusrCxkZmYiMzNTvZ+VlWV/vlt3mQCYJMBUEmaNEqBIkExSyeOW+yWtvAoAxVwGAuZ1rH6HIpkfK7kPyzemKAnKAupjrlqMRWlBq5/C/FMCIJvvC1mo91FyX1jdh1xSRiMAjWLuuqspWWa5X3ITcklQ9TCIWtPpdIiKikJ0dDSioqLUm3VAtQTWwMDAiu+IiIjIDQywRERUoxQWFtqE28zMTOTm5iIvLw+5ubnIyclBbm6uzS0vLw+Kovi24lZhFgJlgqrVTx+RJAlhYWEICwtDeHi4zc3ymHVAjY6ORnR0NIKDgznlDBER1RgMsERE5PcURUFBQQFyc3NRUFCAgoICFBYWqjfr3y33CwoKUFxcDIPBAL1er/603AwGg81jVR2QNRoNAgIC1JtOp3P4Mzg42O2bJZyGhoZCluUqfQ5ERERVjQGWiIjIDSaTCUII9aeiKHbvm0wmKIoCWZYhyzIkSXJ6X5IkaLVaaDSV6OdLRERURzDAEhERERERkV9gXyIiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyC1pfV4CIyFeEECgqKvJ1NYiIPBIUFARJknxdDSIin2CAJaI6q6ioCNdee62vq0FE5JEVK1YgODjY19UgIvIJdiEmIiIiIiIiv8AWWCIiALrt9SGJknN6kgxJlgBJBmQJkCRIsmVZyeOSBMgSJEsZdZmkrgPJ6nH1sdJtqstQulxIUumpRal0O+rjVutZPyZKNqMukwHA8rikLrOsI0oeE9brWLYhl5RX17Fdrm4TgEDJY7KdZTblYVPH0sfK1sPOOrBdx2Y5nKxntU176zrapg2n6wib9ctuT11utS1R8jjKrAdJWK1vXi5ZL1PLCnUdSS1nVb5kO5IkSv8FSx4v/VMLdbkMof5uXgbIJb+bl5l/t6ynLpMEJJSuJ5c8pt5g/ThsHi9dR1EfkyEgSwo0lmUlv6vLS+4DgEZ9TEAD8+MaSSmzngJNyX0A6n21PEq3J8O8vgzz/s3LLOuZH5OgQGNZH5Z6KNAA5vVg3p/luVl+N+9LlNxHaV1gfptpIKlvd40kQYZU8phU8rtc8q8jwaDXYNQDDUBEVNcxwBIRAYBJKj2UlGRIKAmbJcmgdJkEyKVpTTKnwZKNWNKOjDLpxCrZyOXTVWnKsHocZR6z3gfsPFZ2PZQGV6sAW+6xco/DTiAuuxxWQbr0aTlc5uhp2K2HO+u48VJ5YZuuQ6+XA6y95Sj7u7DzuLDZp71llmBVusx6ubBaz+oxCDvbLL1ZB9jSUFxyg+PH1eAowSqglgZdwBJEoQZA62XmAKuUBkDJHP7M65UEQUkyh8uSxy331fKQrMIyoJFKf2oAq7BpZ1nJy2j+XZQEYKEGVvN6wmWAtbc9GaWPmX+3rqPV35CIqA5jF2IiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/ALngSUiAgCNgBCK+b4E80SQ6k+p9HSfzTyqVvdh/ZgovW/zuINlVpOCCgeTm5Y+XvpT2NyHzXoCAIQ6G6e6REACBNR1Rdl1StYrr+xjlolPbapU5vVwcCtbtjJzvTpb5mybbuxPsrfc5jF787naWV6ujg7mgYXtcsl6mVq2dJuS9RyvlvI287Ja/3s5mAcWFZ8HVuD/27v3qKjr/I/jzwG5jIKi5iokmRaoW7oqpJlJpoVE2QW1U7lrrtt2OZWd03aO/kizsqLNU9nJs108a24Z2VYnzbOVZeJtRUUzdSWQvFBeIC4KIgwwML8/aKZBYYCZAb5fez3O8TTM9/t5fz+8/YS85/P5fr6/tnNYHI3/4P4+jd6vd8Wr//U6OMBS7/a8Wkej4w5LPQ63fjhw/PL1L/919uOXrwN+OSfA7X339xr60RAuAKi3/Prfen59Dmz9L+9ZaO45sBYCaHi+bCC//p05vw74pc25z5YNcB2zuMX7NVYAFtfXDX8tFmprmvr/UkTkt0cFrIgIUDP6587uQvtw1gc+OLd0FoHGQ6u+MzviNfeRrQVpIiJmoZ/YIvKbZbPZOrsLIiIiItIGmoEVkd+skJAQ1+s1a9YQGhraib0xF5vNxm233QYod95Q/ryn3PGb/J5FRJxUwIrIb5bF8uui2NDQUKxWayf2xryUO98of95T7kREfnu0hFhERERERERMQQWsiIiIiIiImIIKWBERERERETEFFbAiIiIiIiJiChaHw+HjEwJFRERERERE2p9mYEVERERERMQUVMCKiIiIiIiIKaiAFREREREREVNQASsiIiIiIiKmoAJWRERERERETEEFrIiIiIiIiJiCClgRERERERExBRWwIiIiIiIiYgpdOrsDIiKtUVlZyapVq9i0aRMFBQUEBAQQHR3NxIkTmTp1KkFBQV7HLi0tJT09nczMTAoLCwkJCWHgwIEkJSVx8803Y7FYPLY/fvw46enpZGVlUVpaitVqJTY2lilTpjBhwgSv++UvRszdCy+8wJdfftli/A0bNtClS+f9U9UeuTtz5gzfffcdBw8e5ODBg+Tm5lJaWgrA//3f/3HTTTe1Ko7Rxx0YM39mGXsiItI0/WQWEcMrKChgzpw5FBQUABAaGkptbS05OTnk5OTw9ddfs2TJEsLDw9scOzc3lyeeeIKysjIArFYrlZWV7Nu3j3379rFx40bS0tKa/UU7MzOThQsXYrPZAOjWrRtnzpwhKyuLrKwskpOTmTt3botFcHsxcu4AgoODCQsLa/Z4Z+UN2i93W7duJS0tzae+GX3cgbHzB8YeeyIi0jwVsCJiaHa7nXnz5lFQUEDv3r158skniY+Pp76+noyMDBYvXkxeXh6LFi3ipZdealPsiooK5s6dS1lZGZdccgnz589nyJAh1NbWsnbtWpYuXcrOnTt5/fXXefzxx89rf+LECZ5++mlsNhvDhg1j3rx5REdHu2adVqxYweeff84ll1zCPffc46+UtJqRc+c0ceJEUlNTff1W/a49cwfQq1cvYmJiiI2NZfDgwcyfP7/VbY0+7sDY+XMy6tgTERHPVMCKiKF9+eWXHD58GIBFixZx5ZVXAhAQEMCkSZNwOBw8++yzbN++nd27dxMXF9fq2KtWraK0tJSQkBBeeukloqKiAAgKCiIlJYXKykrefvtt1q5dy/Tp04mOjm7Ufvny5VRVVdGrVy9efPFF10xS165dmT17NiUlJaxdu5b33nuPKVOmeDXL6Qsj587o2jN3iYmJrV4m3BSjjzswdv5ERMTctImTiBia8161kSNHun4Jdjdp0iQiIyMbndta69atc8VwFmDuUlJSsFqt1NXV8fXXXzc6VlVVxaZNmwC4/fbbmywS/vjHPwJw9uxZtmzZ0qa++YNRc2cG7Zm7wMBAr/tlhnEHxs2fiIiYnwpYETEsm83G//73PwCuvvrqJs+xWCyMGTMGgKysrFbH/vHHHyksLARwtT9X165dGT58eJOx9+/fT3V1tcf2kZGRDBgwoM198wcj587o2jN3vjL6uANj509ERMxPS4hFxLDy8/Opr68HYODAgc2e5zxWWlpKeXk53bt3bzG2c3ljS7EHDRrEjh07OHr0aLPtBw0a5LF9fn4+R44cabFP/mTk3LnbvXs399xzDz///DNdunShb9++xMXFcccdd3TasuP2zJ2vjD7uwNj5c2fEsSciIi3TDKyIGFZxcbHrdZ8+fZo976KLLmqyjSclJSVtin327FkqKyvPu054eDghISEttne/Xkcwcu7cFRUVcfLkSUJCQqiurubIkSN8/PHHzJo1i9WrV7eqP/7WnrnzldHHHRg7f+6MOPZERKRlmoEVEcNyL3o8/bIeGhraZJv2iN21a1eg4V7Ec497at/afvmLkXMHEBsby5AhQ7jmmmvo06cPgYGB2Gw2duzYwZtvvsnx48d55ZVXiIiI6PBnmrZn7nxl9HF37jWNlj8w9tgTEZGWaQZWREQ63LRp00hJSaFfv36uTXlCQ0O57rrrePPNN10b/PzjH//A4XB0ZlflAqOxJyJibipgRcSw3GfsnBvXNMVmszXZpj1jW63W8457at/afvmLkXPXkh49evCnP/0JgIKCAg4ePNjqtv7Q3t+fL4w+7s69ptHy15LOHnsiItIyFbAiYlju98gVFRU1e577/XPubTzp3bt3m2J369at0S/ZzuucOXPG4y/pzvbu1+sIRs5da1xxxRWu1ydPnmxTW1+1Z+58ZfRxB8bOX2t05tgTEZGWqYAVEcMaMGAAAQENP6Y87abqPNarV69W72TqvoOrp9jOXV8vvfTSZtu77wzbXHtPu7G2ByPnzujaM3e+Mvq4A2PnT0REzE8FrIgYVmhoKFdeeSUAO3bsaPIch8PBzp07AbjqqqtaHTs6Opq+fft6jF1VVcW+ffuajD1s2DDXBjXO65+roKCA/Pz8NvfNH4ycu9Y4cOCA67XznsSO0p6585XRxx0YO3+t0ZljT0REWqYCVkQMLSkpCYA9e/aQnZ193vGMjAxOnDjR6NzWsFgsTJ48GYANGzY0uVTw008/paqqisDAQG688cZGx6xWK9dddx0Aq1evpqKi4rz26enpQMP9fePHj2913/zFqLlraWOc8vJyVq5cCcDvfvc7YmJiWt03f2mv3PnKDOMOjJs/M4w9ERHxTAWsiBhaUlISgwYNwuFwsGDBAnbv3g1AfX09GRkZLF68GIAxY8YQFxfXqO3y5ctJSEggISGhySLrrrvuolevXthsNubOnUtubi4AtbW1rF69mn/+858ATJkyhejo6PPaz549G6vVSklJCfPmzeOnn34CGmYfV6xYwZo1awCYOXMm4eHhfspI6xk1d1999RVPPvkkGzdu5NSpU673q6ur2bJlCw899JCruHnooYdcy1E7UnvmDuD06dON/jhVVlY2er+pzZqMPu7AuPkzw9gTERHPLA7tES8iBnfy5Ekee+wxCgoKgIYlivX19dTU1AAQExPDkiVLzvtlffny5axYsQKADz/8sMnlgLm5uTzxxBOUlZUBDbNWNTU12O12oGF5Y1paGsHBwU32LTMzk4ULF7p+UQ4LC6Oqqoq6ujoAkpOTmTt3LhaLxccseMeIufviiy9IS0tzfW21WgkODqaiosKVt+DgYB5++GHuuOMOP2TBO+2Zu4SEhFb1YdasWcyePfu8940+7sCY+TPL2BMRkeZ16ewOiIi0JDIykhUrVrBq1So2bdpEQUEBXbp0YeDAgUyaNImpU6cSFBTkVezBgwfzr3/9i/T0dLZt28bPP/9MaGgogwYNIikpieTkZI+zMGPHjuWdd94hPT2drKwsSktLCQsLIyYmhltvvZUJEyZ4+V37hxFzN3LkSP76179y4MAB8vPzKSsro6Kigq5du3LxxRczatQobr31VqKionz99n3SnrnzldHHHRgzf2YZeyIi0jzNwIqIiIiIiIgp6OYOERERERERMQUVsCIiIiIiImIKKmBFRERERETEFFTAioiIiIiIiCmogBURERERERFTUAErIiIiIiIipqACVkRERERERExBBayIiIiIiIiYggpYERERERERMQUVsCIiIiIiImIKKmBFRERERETEFFTAioiIiIiIiCmogBURERERERFTUAErIiKm8Nprr5GQkMCjjz7a2V2RTlZRUcHNN99MQkICmzdv7uzuiIhIB+rS2R0QEZH2dfbsWfLy8sjJySE3N5fc3FyOHz+Ow+EA4MMPPyQyMrJdru1wOJg2bRpFRUXMmDGDBx54wKs4eXl5rF69GoD777/fjz3sXIcPH2bnzp3s37+fw4cPU1JSQl1dHeHh4Vx22WWMHTuWpKQkwsLCOrurhhIWFsZdd93FsmXLeP311xkzZgwhISGd3S0REekAKmBFRC5wc+bMIS8vr1OunZOTQ1FREQDjx4/3Os4bb7xBXV0dY8aMYdiwYf7qXqeaM2cO3333XZPHSktLKS0tJSsri5UrV5Kamsro0aM7toMGN23aND766CMKCwv5+OOPmTFjRmd3SUREOoCWEIuIXOCcM63QMHM1cuRIevXq1SHX3rJlCwB9+vRh6NChXsXYt28fu3btArigihRnYR8eHk5ycjKpqaksXbqUZcuW8eyzzzJ27FigoZhNTU1l7969ndldw7FarUydOhWA9PR0KisrO7lHIiLSETQDKyJygUtOTiYiIoLBgwfTv39/LBYLc+bMobS0tN2v7Sxgx40bh8Vi8SrGBx98AEBkZCR/+MMf/Na3zta/f39mzpzJpEmTCA4ObnRs8ODBTJgwgffff5+33nqLmpoaXn75Zd59991O6q0xJSYmsnz5cs6cOcN//vMfpk+f3tldEhGRdqYZWBGRC9y0adO44YYbiI6O9rqI9MZPP/1Efn4+4P3y4aKiIjIzMwGYPHlyh/a/vS1evJibbrrpvOLV3YwZM4iJiQHg6NGjHDp0qKO6ZwqRkZEMHz4cgM8++6yTeyMiIh1BM7AiItIunLvDOpcte2P9+vXU19cDMHHixFa1sdvtbNiwga1bt5KTk8Pp06epq6sjIiKCQYMGER8fzw033EDv3r0btUtISAAgKSmJ1NRUfvzxRz7++GOysrIoLi6mW7duxMbGcs899zBixAhXu+rqar744gvWrVvHsWPHsNlsREVFceONNzJ9+nSfNxcaNWqU6x7mn376icsuu8zrWEePHmXNmjXs3buXkydPYrPZCAsLIzw8nMjISOLi4rj22mu55JJLvIpvt9v56quvyMjI4PDhw5SVlWGxWOjevTsREREMHTqU+Ph4xo0bR1BQUKO25+b/6NGjfPrpp+zatYvi4mKqqqp4/vnnz/swZOLEiezdu5f8/HxycnIYMmSId8kRERFTUAErIiLtwrl8eOzYsXTp4t0/N9u2bQMa7hMdMGBAi+f/8MMPPPXUUxw7duy8Y0VFRRQVFbFjxw4OHTpEampqs3E2btzICy+8gM1mc71XXV3N9u3b2bFjB0888QRTpkyhuLiY1NRUcnJyGrU/cuQIb7/9Ntu3b+fll1/2qYi12+2u1wEB3i+cWrNmDUuWLKGurq7R+2VlZZSVlXHs2DGysrI4dOgQCxYsaHP806dP87e//a3JDcOcuc/Ly+Ozzz4jPT2d/v37Nxvriy++4OWXX6ampqbF67pv6rVt2zYVsCIiFzgVsCIi4nfFxcV8//33gPfLh2tqajhw4AAAQ4cObXH5cF5eHo888ghVVVUAjBw5ksTERAYMGEBQUBAlJSVkZ2e3+NzQQ4cOsWHDBnr27Mn999/vuvbu3bt57733sNlsvPrqq4wYMYLnnnuOH374gdtvv51rr72WiIgIjh8/zrvvvsuhQ4fYt28f6enp/PnPf/YqBwDffvut6/XAgQO9inH48GFX8dq9e3emTJnCiBEjiIiIoK6ujpKSEnJzc9m+fbvXy7SXLFniKl7j4uJITEwkMjKSbt26cfbsWfLz89m7d69rSXhzcnNzWb9+Pd27d2f69OkMGzaMoKAgjh49Sr9+/c47f+DAgVitVqqqqvj222+ZPXu2V/0XERFzUAErIiJ+t3XrVhwOB8HBwYwZM8arGIcOHXLNPg4ePNjjuXa7naeeespVvD722GOuHWrdXXPNNdx3330UFhY2GysvL4+YmBiWLFlCeHi46/3f//739O/fn4ULF2K323nkkUcoLy9n8eLFxMfHu86LjY3lqquuYubMmRQXF7N69WpmzpxJYGBgm75/aFiGfeTIEaChiI+Ojm5zDICMjAzXzOurr77quq/W3fjx47nvvvsoKytrc/zq6mrXBwPjx4/nueeeO68QHjFiBLfddhtVVVUeZ5KPHDlC//79Wbp0aaPdspvbxTowMJDY2Fj27t3LwYMHqa+v92mmWkREjE0/4UVExO+cy4fj4+OxWq1exXBfBtzSY3/Wr1/P8ePHgYZdl5sqXt317dvX4/F58+Y1Kl6dJkyYQJ8+fQA4deoUKSkpjYpXp7CwMG666SbXeUePHvV4vaYUFxfzyiuvAGCxWHjooYfaHMPJueN0WFhYk8Wrux49erQ5/pkzZ1wfNowYMcLjLK7Vam1xSfXjjz/epkc9Oc+12WwUFxe3up2IiJiPClgREfGriooK9uzZA3i/fBigpKTE9bp79+4ez3UWzAB3332319eEhiWpzRV5Foul0bHExMRm47ifd+LEiTb1wWazkZqa6io8z904qq2cRXdFRQUZGRlex2lOjx49XLspf/PNNz49k7VPnz5Nfijgifv4cB83IiJy4VEBKyIifpWZmYndbicwMJBx48Z5Hae6utr1uqnZUHcHDx4EGmbiWrPZkycttXfvi6fdet3Pa0tBV1tby/z5810bQ1177bXcd999rW7flMTERNes58KFC3n44Yd5//332bdvn2vZtS+CgoJISkoCIDs7mzvvvJPFixfzzTfftLl492aXZfcC1n3jLRERufDoHlgREfEr52zolVdeSUREhNdx3O8ZbWk32tOnTwO/zjT6IjQ01ONx9+WxnpZHu9+H6XwUUEvsdjsLFixg586dAIwePZqnn37aq/tn3UVFRfHiiy/ywgsvUFRUxP79+9m/fz/QkOchQ4aQkJDALbfc0uKHBc159NFHqampYd26dZSXl7N27VrWrl0LNHywMHr0aJKTk1ucSW5ptr0p7h92eLvjtYiImINmYEVExG9qamrYsWMH4NvyYWi4X9OpvLzcp1hmYLfbWbhwoevRQfHx8Tz//POupbm+iouL44MPPuCZZ54hOTnZ9Riburo6Dhw4wBtvvMHdd9/tKp7bKiQkhNTUVFauXMlf/vIXRo0a5SrwS0tL+fLLL5kzZw7z589vVHCey5sNmNw3nnIfNyIicuHRx5QiIuI3u3btci1J9bWAdX9kSksFbEREBIWFhabdwMdZvDpnr0eNGkVaWppPz49tSnBwMNdffz3XX3890DBzvXv3btatW8f27dspLy9nwYIFpKen07t3b6+uER0dzb333su9995LXV0deXl5bNu2jTVr1nDq1Ck2b97MsmXLeOSRR/z2fZ05c8b1uqUNukRExNw0AysiIn7jLMBiYmKIjIz0KZb7M09//PFHj+c6H7NTUlLS4rlGc27xOnLkSF588UW/F69NiYiIYNKkSbz00kvcfvvtAFRVVbF161a/xHcuT549ezZvvvmma3n2+vXr/RLfKT8/H4DIyEi6du3q19giImIsKmBFRMQv6uvr+e9//ws0bDzkq759+3LRRRcB8P3333s8NyEhwfU6PT3d52t3FLvdztNPP+0qXkeMGMHf//73Fu/DbQ+jR492vXbeU+xPkZGRrufYevOs2eacPn3a9QilK664wm9xRUTEmFTAioiIX+zfv99V+LgXlL5wFlX5+fmcPXu22fMmTpzoKo4+//xzPvnkE49xCwsL/dI/X9jtdp599lk2b94MtG/xumnTphaLUue9ywAXX3xxm+KfOHGCXbt2eTzn5MmTrpnSqKioNsX3JDs72/X66quv9ltcERExJt0DKyJygTt27Jhrx1kn5/NFATZu3Nhot2Cr1cqECRPafB3nLGJUVJRXj0JpyvXXX8/nn39OfX09u3bt4rrrrmvyvC5duvDMM8/w8MMPU1VVxWuvvcbmzZuZPHkyAwYMICgoiJKSEnJycti4cSODBw8mNTXVL3301qJFi9i4cSPQUDA++OCDnDx50mObnj170rNnzzZf65NPPmHRokXExcURFxfHpZdeSo8ePaitraWwsJD169e7Zs/79evX5scfFRYW8vjjjxMVFcW4ceMYOnQoffv2JSQkhLKyMrKzs1m9erVrN+mpU6e2+XtoTlZWFtBwf+/YsWP9FldERIxJBayIyAVu//79pKWlNXv8jTfeaPR1v379fCpg/bF82Ck+Pp4+ffpQVFTEunXrmi1gAS6//HJef/11nnrqKU6cOMGePXvYs2dPk+c675ntTBkZGa7Xx48f58EHH2yxzaxZs5g9e7ZX16upqSEzM5PMzMxmz7n44otJS0vz+HggT06cOMFHH33U7PGAgADuvvtu7rjjDq/in8tut/PNN98ADbP+3j4CSEREzEMFrIiI+OyHH35wzR76uvuwu8DAQFJSUnjrrbfYvn07p0+f9vhs2djYWFauXMm6devYsmULeXl5rvste/bsyWWXXcZVV13FDTfc4Lc+msHChQvZuXMne/fu5fDhw5SWlrqWFPfo0YPLL7+c8ePHk5iY6NVje4YPH87SpUvZtWsX2dnZFBYWcurUKc6ePUtoaChRUVEMHz6cW265xW+z84BrTABMmzbNb3FFRMS4LA6Hw9HZnRAREXN75513eOedd+jZsyeffvqpV8/ybE5FRQV33XUX5eXlPPDAA8yYMcNvscXc5s6dS2ZmJnFxcbz66qud3R0REekA2sRJRER85lw+fM011/i1eAUICwtzFa2rVq2isrLSr/HFnLKzs8nMzMRisXD//fd3dndERKSDqIAVERGf1NbWMn78eGbNmkVKSkq7XGPq1Kn079+fsrIy/v3vf7fLNcRcli1bBsDkyZMZOnRoJ/dGREQ6ipYQi4iIKXz//fdkZmYSFhbGnXfe2dndkU5UUVHBRx99hMPhICUlxeN90SIicmFRASsiIiIiIiKmoCXEIiIiIiIiYgoqYEVERERERMQUVMCKiIiIiIiIKaiAFREREREREVNQASsiIiIiIiKmoAJWRERERERETEEFrIiIiIiIiJiCClgRERERERExBRWwIiIiIiIiYgoqYEVERERERMQUVMCKiIiIiIiIKaiAFREREREREVNQASsiIiIiIiKmoAJWRERERERETEEFrIiIiIiIiJjC/wO3tHJUsuDnJgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACoW0lEQVR4nOzdd3hT1eMG8PfeJN2li7IpZZSNijJkKMhGREQRUGQ5ARfKV4YTcYIKP/dAERBkiyiIspWNMgTZo2WVUuhu05Hknt8fIZeUZrZp07Tv53nyNE3OvTlZN/e959xzJCGEABEREREREVE5J3u7AkRERERERESuYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJDLBERERERETkExhgiYiIiIiIyCcwwBIREREREZFPYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJHgmwCQkJkCQJkiRh1KhRnlhlpdS1a1f1dSQismfUqFHqtiIhIcHb1VHNnTtXrdfcuXO9XR3yMEVRcNttt0GSJDz77LPerg75iC1btqjbhalTp3q7OkTlRmxsLCRJQmxsrLer4nGPP/44JElCx44dIYTw+PrLrAV27ty5mDp1aqXaeP3888/qc05PT/d2degao9GIDRs2YPLkyejWrRtq1qwJf39/hISEoGHDhhg6dCh+/vlnmEwmt9b733//4dlnn0XTpk0REhKCsLAwtGrVCpMnT8bZs2dL6dkQUWWSnJyM+fPn49FHH0Xr1q0RHh4OnU6HqKgotG3bFhMmTMDRo0dL5bG/+eYb7Nu3DwEBAZgyZYrNMp7cvlofEHHlsmXLFofrS0lJwbp16/Duu+/igQceQL169QotXxoSEhKwYsUKTJkyBb169UJUVJT6eF27dnV7fWlpaZg5cyZ69OiBGjVqwN/fH0FBQYiJiUH//v3x3XffIS8vz6V1ZWRk4IMPPkDXrl1RrVo1+Pn5oWbNmujSpQs++eQT6PV6t+tXXvXv31993b/77ju3lz937hw0Gg0kSUJkZKTLr7FFUlISli5dipdeegndunVDkyZNEBUVBZ1Oh4iICNxyyy0YO3Ystm/f7vI6TSYTFi5ciPvuuw916tSBv78/IiMjccstt+DVV1/FuXPnXF6XEAJr1qzBww8/jLi4OISEhECn06Fq1aro2LEjXn75ZZw+fdqt5+zIpUuX8Ouvv2Lq1Km45557ULNmTfX9KW6YO3v2LCZPnoxWrVohLCwMISEhaNq0KZ599lkcPnzY6fKWMOnuxdl2pzxbsWKF+jzuuOOOYq2jR48e6jqWLFmi3v7KK69Aq9Vi586dWLBggaeqfJ3wgPj4eAFAABAjR460WaZLly5qmcpi5MiR6nOOj493Wr4yvkZlbdOmTSIyMlJ9nR1d2rZtK06dOuXSej/44AOh0+nsris0NFQsWrSolJ8dVRbublvKyvfff6/W6/vvv/d2dSqcZ599Vmg0GqfbLlmWxYQJE4TRaPTYY+fk5IgaNWoIAOK5556zWcbT21frz5Mrl82bN9td18GDB50u72mffPKJw8fr0qWLW+tbu3atiI6Odvo86tevL/bu3etwXb///ruIiopyuJ4GDRqIf/75pwSvgNnmzZvVdb7xxhslXl9xrFixQq1D586d3V5+2rRp6vLjxo1ze/lJkya5/Dm+//77RVZWlsP1nTp1Stx8880O1xMSEiLmz5/vtG5XrlwRXbt2dVovPz8/MX36dLef+41++eUXh49Tr149t9e5YMECERIS4rDuM2fOdLiOevXqubW9ASAkSRIJCQnFfCWuP2ZxnrMn5OfnF9oOuLrPa3H27FkhSZIAICIiIkReXl6h+x999FH1+eXn53uy6kILD4iNjS2V5uHKxpeP4viKixcvIjU1FQAQGRmJHj164Pbbb0fNmjVhMBiwZ88ezJ8/H5mZmfj7779x1113Yc+ePahRo4bddX711Vd46aWXAAA6nQ7Dhw9Hly5dYDAY8Mcff2D58uXIysrC8OHDER4ejj59+pTJc6WKa+7cueyiWwkdOXJEbbls0aIFunXrhlatWiE8PBzJyclYs2YN1q5dC0VR8NFHHyEjIwOzZ8/2yGN/8cUXSEpKgkajwcSJE22WKY3tq8Wzzz6Lbt26OSzTsmVLu/fd2OKr0WjQtGlTnDlzBrm5uU4fvzhufMzAwEDExcXh4MGDbq9rz549GDBgAAoKCgAADRs2xPDhw1G/fn0YjUacPHkSc+bMQXJyMuLj49GjRw8cOnQItWvXLrKuzZs3o3///jAYDACA22+/HUOGDEGtWrWQnJyMlStXYtOmTThz5gz69OmDHTt2IC4urhivQPnRv39/VK1aFVevXsW2bdtw+vRpNGzY0OXl582bp14fPXp0seqg0+lw2223oU2bNoiLi0O1atWg0Whw+fJlbN26FT/99BOMRiN++uknpKSkYNOmTZDloh0lL126hK5du+LChQsAgJiYGDz66KNo2rQp9Ho9Nm/ejEWLFiE7OxujRo1CUFAQHnjgAZt1MhqN6Nu3L/755x8AQEBAAEaMGIGbb74ZEREROH/+PH799Vds27YNBQUFmDRpEkJCQjBu3LhivQZA0e+FTqdDy5YtsX///mKtb82aNRg5ciRMJhMkScKgQYPQu3dv6HQ6/Pnnn/jhhx9QUFCAF198EaGhoXj88cdtruebb75xqdfBypUrMX/+fADAXXfdhXr16hWr3uWBn58fhg0bhk8++QSAed/irbfecnn5efPmqfnv4Ycfhr+/f6H7p0yZgjlz5uDs2bOYM2cOxowZ47nKezQOO1AZWxfLaytJZfbDDz+IVq1aiR9//LHIkSKLCxcuiBYtWqjv3YgRI+yuLzExUQQFBQkAQqvVivXr1xcpY92KULduXZGbm+ux50NUnrAFtnT16tVLDBs2zGGr2LJly4RWq1Xfh40bN5b4cQ0Gg6hbt64AIHr16mW3nKe3r578PJ06dUqMGDFCfPzxx2L79u0iJydHCFG41cXTVq5cKZ5++mkxZ84c8e+//wqj0Viox5o7LbDdunVTlxs9erQwGAxFyuTk5IgePXqo5Z5//vkiZfLy8kRMTIxaZvLkyTYfb9asWWqZbt26uVxPW8pDC6wQQjz//PNqPV577TWXl/vrr7/U5Vq2bFmsx46Pj3faqnrgwAFRtWpV9bEWL15ss9zgwYPVMt27dxfZ2dlFymzbtk3dN4mKihJpaWk21zV//vxC+yf2WhO/+eYbtVzVqlVtfv5ctX37dvHEE0+Ir776Svz9999qy5xl/e60Rubk5IhatWqpy86dO7dImXXr1qnbxJCQEJGUlFTsugshRPv27dXHW7BgQYnW5e0WWCGE2L9/f6HXXlEUl5dt2LChuqy936WOHTsKAKJJkyZurdsZBthSxABb/qSlpbn0BTp06JD63gUGBqo7OzcaP368Wu6ll16yu74HH3xQLffZZ58Vu/5E5RkDbOlKTU11qdyECRNcCoiuWrlypbo+R10SPb19LYvPU2kGWFuKE2Dz8vLUruNarVakp6fbLWv92t56661F7l+8eLF6f5s2bRy+X3fffbdadsOGDS7V1ZbyEmAPHDhQrB11SzdIAOKjjz4q1TrOnDlTfazhw4cXuT8xMVHtshkYGCguX75sd10zZsxQ1/Xqq6/aLDNs2DC1zOeff+6wbrfddpta9uDBg+49MRcUJ8D+3//9n7rcgw8+aLfcSy+9pJb73//+V+w6Hj58WF1PWFiY0Ov1xV6XEOUjwAohxC233OL2QU/rAzutWrWyW+7zzz9Xy9lq5CmuUh+F2DKy7p9//qneZuskaHuDOymKgqVLl2LIkCGoX78+goKCEBoaiqZNm2Ls2LE4dOiQw7pNnTq1yInWGzduxEMPPYT69esjICCgyEieRqMRf/zxByZMmIDOnTurgxuEhoaicePGGDVqFP766y+7j2kZIdS6y0n9+vWLPGd7r5Urg0ns3r0bTz75JJo0aYLQ0FAEBwejYcOGGDlyJDZt2uR0+RsHkcjJycGHH36INm3aICIiAsHBwWjRogWmTJmCtLQ0p+vzFeHh4S69vi1btkTTpk0BALm5uTh16lSRMkIILFu2DACcjsr53HPPqdetT3IvCzt37sTYsWPRvHlzhIeHIyAgADExMRgyZAjWrFnjcFlbo0eeO3cOEyZMQNOmTREcHIzw8HB07NgRX3zxBYxGo0t1ys7Oxv/93/+hZ8+eqFWrljr4RNu2bfH666/jypUrDpe/8btiMpkwd+5c9OzZE7Vr14ZWq7U5EMTly5cxceJENG/eHMHBwYiMjES7du3w0UcfqV2H7I0K+Pvvv6uPaf1+OvLcc8+py6xdu9alZVzhbBTi0nrfVq9ejf79+6NGjRoICAhAbGwshg0bhp07d7r9HAoKCvDdd9/h3nvvRd26dREQEIDw8HDcdNNNmDBhgt3RlY8fP47g4GBIkoSwsDDEx8fbfYy0tDTExMRAkiRoNBqH221fEBER4VK5Bx98UL3u7DfSFT/88AMAcxfYgQMH2i3nye0rXZeSkqJ2u6xWrRrCwsLslm3cuLF6PScnp8j91vsHjzzyiMP3a8SIEer1H3/80a06F4elW68kSZBlGbNmzbJZ7vfff8eoUaMQFxeH0NBQBAUFoWHDhhg1ahS2bdtmd/0333wzWrduDcA84M/mzZud1kmv16u/81qtFo888kgxnpnrmjdvrl5PSkoqcv+WLVvULpu9e/dGtWrV7K7L+v1btGiRzTLJycnqdWfdxJ19trzBen/q+eeft1vu2WefVT/rS5cuLfbjff/99+r1oUOHIjAwsNjrcpXJZFJH9LXst2dkZBQpd+7cObzyyito164doqOj4efnhxo1aqBnz5748ssv1dMPbLHuFu/q6UnW5Rx1qx8yZAi0WvMZq5bfEo/wRAp2NIiTdcuro4uto3KnTp0qdFTA1kWWZYddQd544w217KZNm8TTTz9tcz3WLaSunMxuea62Tkq2bnl1try918oeg8EgnnjiCafrHjx4sMMjQ5ZyXbp0EadPnxbNmze3u6569epVyhbktm3bqq/Brl27itxvfaTbWbcik8kkqlSpon5mMzMzS6vaquzsbDFkyBCnn5V+/frZrc+NR87Xrl0rwsPD7a6rZ8+edrsOWvz222+iWrVqDusUGhoqVq1aZXcd1t+VlJQU0blzZ5ufW2ubNm0SERERdh+zVatW4ty5c3aPiJpMJlG/fn0BmAcrcNYVPDc3V328mJgYYTKZHJZ3h7PeHZ5+34xGo8PtmizLYvr06S63mP3999/qa2nv4ufnJ7766iuby1t3Z+vQoYPdwYoGDRqklnvllVccvqYViXUrQdOmTUu0rry8PLUr4p133umhGjrfvgrBFliL3NxctQukTqdz2AL733//qeu/7777itxv3aq6du1ah4+7b98+tWyNGjVcqqstrrTA7tu3T1SvXl0A5lbmH374oUiZ5OTkQl2p7V0ee+wxUVBQYPNxrAfWcqV3gnUX2wEDBrjztIvFurXKVgusdavqpEmTnK7Pst8BQBw7dqzI/Y888oh6v7MW2DZt2ggAQqPRiJSUFNeflIvs/Xbbk5GRobZGh4WFOf2NtT514fDhw27Xz2AwqJ9RAGL37t1ur+NGzlpgc3Nzxb333lvoO21r3+Pdd98V/v7+Dr8XcXFx4vjx4zYf5+rVq8LPz08AEMHBwU67u+fk5IjQ0FB1m5ScnOywfOvWrQUAERkZ6bF9oVIPsFu3bhUrV64s9MFZuXJlkcvRo0cLLXfq1KlC5wJ07txZvP/++2LRokViwYIF4oUXXii0M2pvo2gdYPv27atuiCdPniwWLFgg5s6dK8aNGycSExPVZdq3by9CQkLEgAEDxLRp08T8+fPF0qVLxccffyyefPJJERwcrK7T1jkme/fuFStXrhR33XWXWu7rr78u8pxvHCXQlQA7dOhQtUxAQIB46qmnxLx588SCBQvE+PHj1Q8UANG7d2+7XWQsZVq3bi2aNm0qJEkSAwYMEF9++aVYsmSJeO+99wqdJ3PHHXfYrVNFlJ+fX2iH/9KlS0XKLFq0yO7n3hbr99cTGz5H8vLyxO23364+XsOGDcXLL78sfvjhB7F48WLx9ttvi8aNG6v3d+vWzeZGxXrHY8CAASIoKEgEBgaKp556SsydO1csWrRITJgwodB3wtEBpeXLl6td4XQ6nXjggQfEp59+KpYuXSq+/fZbMWzYMHU0Z1mW7XZlsX4tLd/rm2++Wbz//vti8eLF4ptvvhHPPPOMWv7w4cPqTrjlc//RRx+JJUuWiE8++UR06tRJDUO1a9e2+4Py7rvvqutwdu7LDz/8oJZ98803HZZ1lzsB1hPv27hx4woFyyeeeELMmzdP/PDDD+LZZ59VX9v77rvPaeDYsWOHWl6SJNGnTx8xc+ZMsWTJEjF37lzx1FNPFXqv7K3ngQcecFj3b7/9Vr3/9ttvL9E5W75myZIlhX4HSmLjxo3qukrS9c6aK9tXIQoH2LZt24omTZqIoKAgERQUJOrVqycGDRokFixYUKL31hcCrBBC9OvXT13u0UcftXsObM+ePdXvlq1RmS3bS8C9AAtAXLlyxeX6WnMWYDdt2qQGraCgIPHbb78VKZOSklLofLubb75ZvPnmm2LhwoVi0aJF4pVXXlG33Y5+k93dUbcOzD///HNxnr7LTp06Veg5rFy5skiZ6dOnq/e7G2CXLVtW5P5ly5ap97t6DuyoUaPcfm6usKzf1QC7c+dOt75L1r+bS5Yscbt+q1atUpdv0aKF28vb4ijApqWliTvuuEN9zMcee8zmwVrrU9nCw8PFmDFjxHfffafmFussUqNGDbvbW+vf1Dlz5jist/WBHVsHym40duxYtby9A5buKpfT6JhMJnHrrbcKAMLf318sXbrUZrmkpCS1hVaWZfHff/8VKWMdYAFzEM7IyHD4+Bs2bHDYenn16lW1xUeWZXHmzBmb5Tw9jY71uSvVq1e3eQQpISGhUMuGvfMtrV8TPz8/8euvv9p8ntbrKknoysnJsXngojgXZ9MDeIJ1+LB1HpEQQrz55psOf5RvNGLECLW8raPLnnTjubm2dnYKCgoK1enLL78sUsZ6xwMwtySeOHGiSLndu3erLQS2hlIXQohz586pP6YxMTF2z6HZvXu3CAsLEwBEnTp1bB5Jv7Fnx/jx4x0e1bNuoR03bpzNsjduK2z9oCQlJakB29kP5p133ikA89Hq8+fPOyzrLncCbEnfN+vzXMLDw20O1HDs2DF1ihVHwTMzM1MdDCg8PFxs2bLF5vM7efKkegAtODjY5o5zamqqqFOnjvoab926Vb3v+PHjajivUqWKOH36tM3HcdXRo0c9tv0qbghwR/fu3dX34ZNPPinRuqwP2tjaAS4OV7avQrg+jU6TJk3Ev//+W6y6+EqAPXHiRKGeKw0bNhRTp04V8+fPF3PmzBGTJ09WW4f8/f3t7oCOHj1aXcfHH3/s8DGt9zkAiG3btrnzVFWOAuzy5cvVlqPIyEixY8cOm+uwHByTJEn83//9n80yWVlZolevXupj2Qvo1j0zHO2oJyQkqC181apV89hBsPj4eHV7sHz5cvHVV1+JUaNGicDAQLVeo0ePtrnsvHnz1DIDBw50+DhJSUmF3r+33367SBlFUcTAgQPVMgEBAeLJJ58UX3zxhVi0aJGYMWNGod/PgQMHOg39xeXot9cW69fClUaE119/XS3/1ltvuV2/AQMGqMt76lxoewE2MTFRtGrVSn08e4Ot/fzzz2qZHj16iKtXr9os99VXX6nlhgwZYrPM6tWr1TLOettYh2JHveUs5s6d6/J2x1XlMsBaz9fl7Mf3+PHjaovOE088UeR+653S4OBgcfHiRZeekzOnT592+kXwdIC1NMEDsHmE0mL37t3qRrdevXo2j9hYb9SmTZtmd12zZ892qZwz1p+Rkl5c2VCVRGpqqqhZs6bTnbYXXnhBLfPpp586Xa+75YsrMTFRPcJ8//33OyxbUFAgGjRoIABz95Ib3RiE/vrrL7vrsh4Mwla5Z599Vg0b+/fvd1iv7777Tl3XwoULi9xv/V257bbbHIbXv//+Wy3bsmVLh3NjWq/X3o+o9YBctkKhEObtkqVMv379HD7X4nA3wJbkfbP+0bY1wqOF9Y8fYDvAfvTRR+r9v/zyi8PnaN3y984779gss2XLFiHLsvp+paWliYKCgkKDjXjiYNGNBzdKcnE0V6knWPcMqV69us0RSt3x8MMPq+vzxMAtrm5fhTAHWK1WK7p06SJee+01MW/ePLFs2TLxxRdfiEceeUQEBASo6wkNDS1WiPWVACuEOVD16NFD/X23dRk7dqw4efKk3XVY90xo27atw4GMrFt9AYjVq1e7VV8LewH2q6++Ur+/tWvXttutc+/everyL774osPHSk1NVQ+A9uzZ02aZNWvWqOtztKNufZDa2eO648svv7T7/jVq1MhhV95Tp06pZYOCghx23fzggw8KrdteDwqj0ShefvnlQj34brzceuutYvXq1R4dRfZGzn57b/Txxx+ry0yYMMHj5a1dvny5UDd+Z11mXWUrwJ44cULExsYKwHzAZtasWXaXv+mmmwRgbj13tq0fPny4ug927ty5IvcbjUZ12yxJkt0Dv9YHdqpXr+7SgZ3du3err/1jjz3mtLwrPDKIk6dZTvKtUqUKnnjiCYdlGzdujHbt2gEA1q1b57DsAw88gFq1anmkjg0aNFDnrtu9e7dH1ulIQkKCOkdWq1at0LdvX7tl27Vrp86Xd/bsWezdu9duWY1Gg2eeecbu/dbz7h05csTdavsck8mEoUOH4tKlSwCAfv36YdCgQTbLZmdnq9cDAgKcrtv6ZP+srKwS1tS+pUuXqifr/+9//3NYVqfTYciQIQCAkydP2h04BwBat26NO+64w+79jj4rQggsXLgQANC9e3fccsstDutlfdK/s+/1008/bXOuPItVq1YVKqvRaOyWdTQIhIX1PGbffvutzTLWtz/55JNO11maSvK+5efnq4NPVa9e3eEAJv369UOzZs0c1sWybW/cuDH69+/vsGy3bt3U7bW9z0CXLl0wefJkAOZt3ZgxY/Dqq6+q27xhw4aV+qAr5cmRI0cKfd4+/fRTBAcHl2idZ8+eVa9HRkaWaF3ubF8BoHPnzjh79iy2bNmCadOmYcSIERg0aBDGjh2LH374ASdOnEDbtm0BmLepQ4YMKTLHZEVSr149zJw5E/fee6/dMvPnz8eMGTPs/sYMGjQI4eHhAIC///4br7/+us1yn332WZFB/jIzM4tXcRumTZuGMWPGQFEUNGnSBDt27Cg0gJE1y3ZDkiRMmDDB4XojIiJw9913AwD++usv5OfnFynTu3dvdduydetWmwPBCSHUuT6B4s/96g6dToeePXuiffv2dss0bNgQd911FwDzAFPDhg2zOXfprl27igyOau/902g0eOmll/D6668XmcfTYt++fXj//feLNWBfaSnLfbAffvhBHezwnnvuQXR0tFvLu2rv3r3o1KkTEhISoNVqMX/+fIwfP95m2X///VedU3rs2LFOt/WW30KTyYSNGzcWuV+j0WD48OEAin7+rVnP/frII4+o+2qOWA9AaP2bUhLOH9ULtm7dCgCoWbMmfv/9d6flLTukZ8+eRW5urt1RwRztxN0oMzMTCxcuxG+//YZDhw7h6tWrdkdds0wmXZr27NmjXu/Vq5fT8r169VI/oLt371ZD/o0aN27scGRL60nQSzIacWxsrPqBL8+ef/55dWc5JibG5dHYyhPL9wcwfzZ//vlnh+Wt39ejR4/aHL0XME9274ijz8rhw4eRmpoKAAgNDXVaJwAICQlBeno6jh496rCcs++1ZYJ2AOoPvz2WUbkdueuuu9C4cWOcOHEC8+bNw9tvvw2dTqfebzAY1BHIa9WqhX79+jldZ2kqyfv277//qgdDunTp4jD8A+aDE/ber4yMDPXHtnr16i5/BgA4/Ay8+eab2LhxI3bv3l1oRMr69evjiy++cPoYrpg6dardkfLLi6SkJPTv31/dMRs3blyh0YiLy/K9BUoeYN3dvjZq1Mjh/XXr1sXatWvRsmVLJCUl4dixY1i+fLl6UK4iMRqNGD9+PD7//HNotVpMnDgRI0aMQKNGjWAwGHDgwAHMnDkTK1euxOzZs7Fnzx6sW7euyCi1YWFhmDVrlhrI3n77bWzatAmDBw9GrVq1cOXKFaxcuRIbNmxAYGAgwsPD1QMOjg4UukpRFDzzzDP4/PPPAQBt27bFb7/9hqpVq9pdxvKbFh4eXmhfyB5LaM3Pz8eZM2eKHFjTaDQYMWIE3n//fQghMG/evCLf761bt+L06dMAgDZt2qBly5YuP0dnxowZox4ILSgowKVLl7B582bMmDEDX375Jb7++mu8/fbbmDJlis3lP/nkE9x+++3IycnB+vXr0aJFCzz66KNo0qQJ9Ho9tmzZgh9//BEGgwENGjTAmTNnANh//37//XcMHToUGRkZ6Nq1K6ZMmYL27dsjMDAQ586dw7Jly/DOO+9g27Zt6N69OxYvXowBAwZ47PXwBdajDz/66KOl8hgbNmzAwIEDkZ2djaCgICxfvtxhY5X1vl5+fr7T39SLFy+q1+39po4ePRozZswAYD4Y9sYbbxQaqby4B3aioqLU656a2aTcBdjs7GykpKQAME+X4GjIflvS0tLsBljrHTVHNm/ejIcfftjmEOa2ePKopD2WHxCg8FDm9liXsV72Ro5+NAAUOhqXl5fn9HF92SuvvKL+qFavXh3r1693+PpYdq4B116b3Nxc9XpoaGgJauqYdSvq4MGD3VrW0YalJJ8V6zqtWLECK1as8EidAOff68TERPV6gwYNHJaNiIhAeHg40tPT7ZaRJAlPPvkk/ve//+Hy5cv49ddfcf/996v3//LLL+rUBKNHj3Ya+kpbSd4369fOWZhwVub8+fNQFAWA+YfX+sfXGUefAa1Wix9//BG33HKLGt4st1WpUsXlx/Blqamp6NWrl7qjOmjQIHzyySceWbclDGg0mhJNGeHu9tVVUVFReP7559Wd/TVr1lTIADty5Eh1KpsVK1YUaoX19/dH586d0blzZ7z44ouYNWsW/v33Xzz99NPqFDDWRo0ahezsbLz44oswGAzYsWMHduzYUahMaGgoFi5ciDfeeEPdh3B1GidHPvnkE3UKkB49emDlypWFfkttsfx+pKWlFWuf0JZRo0bh/fffB2B7R9364IqtwLJu3TqbLZ8W9913n0v18/PzQ7169TBq1CgMHToU99xzDzZu3IiXX34ZYWFhGDduXJFlWrZsibVr12LQoEFITk5GQkJCkZZ0SZLw+uuvIysrS52OyNb79/vvv6Nfv35QFAWDBg3CkiVLCgXdRo0aYcqUKejevTvuvPNO5OXlYfjw4Thx4oTaC9FbymofbM+ePTh8+DAAc8Oao1BZXJcvX0a/fv1QUFCAiIgIrFmzBh06dHC4jPV+1ZtvvunW49n7XjRt2hQdOnTAzp07ER8fjz///LPQgX3rAzvt2rVDixYtXHo8699i6/ehJMpdF2Jbcxu5w9E8R678+J48eRL9+vVTw2uTJk3Uo56LFi3CypUr1YulC0FZdFmy7u7gSpcw6y+2o64SnjiiWhG8/fbbePfddwGYd/g3bNjg9ECBpRsWAFy9etXpY1gOzNy4rKeV5Dvk6PtTks9KadUJcP69tvSc0Gq1hVpK7XHl+zVq1Cg1+M2ePbvQfZb/JUnCY4895nRdpa0k75t1F62goCCn5R29diX5DBgMBof3V61atVDrYIMGDXDbbbcV+/F8SUZGBnr16qXO99q/f3/8+OOPHjtwYvmcm0wmhzvsjhRn++oO6x2sY8eOeWy95cWePXvU8NqnTx+HXYjfeecdNaisWLGi0EEoa8888wyOHTuGF154Aa1atUJoaCgCAgLQqFEjPPfcczh48CD69+9f6HfLE4HFes7pnJwcl3pmlcbvR5MmTdCxY0cAQHx8fKE5ovV6PZYvXw7A3DX1oYceKrL8k08+iYEDB9q9FEdAQADmzJmjbrPfeust9aDfje644w6cOHEC06dPR+fOnREZGQmdTodatWphyJAh2Lp1K958802n79+ECROgKApkWcbHH39s9/eiXbt2GDVqFADzPmV56J1WVvtg1q2vI0aMKJWD0kIINUsUFBQ43e8BSm+/yrpV1dKbzMLVuV9vZF1XT82dW+5aYK2D15133ok///yzTB//vffeU48OvPLKK3jrrbfsTvTt7PxcT7I+WuTKBNLWO56l2drnKr1e7/RcRlfFxMTg1ltv9ci6AGDGjBl47bXXAJiPUK5fv96l7kLWO2COzh21sO7378mdtxtZvkOSJMFoNJaLgxTW3+vXX3/d7aOFJWEJVUajEQaDwWmIdeX7FRUVhUGDBmHhwoVYt24dzp07h5iYGJw9exbr168HYG5dqF+/fsmfgBdZv2+uhBdHr531ukaMGFHkh7Ekxo0bV+j7deLECbz66quYPn26R9Z/7NgxjwWjzp07e6TlETDvSPbu3Vs957d3795YtmyZSwdqXGV9YCA1NdWlAxnWirt9dYd19zRHvSd8lfW5qD169HBYNjAwEB07dsSaNWsghMA///xjN/A2aNAAM2fOtLuu7OxsnD9/HoD5AJa9c1Td8fzzz+Po0aNYuXIldu7cid69e+OPP/5wuJ9iOZ3Eso31lNGjR6stz3PnzkWXLl0AAMuXL1cP/N93332lesD5RjExMWjWrBkOHz6MpKQkHD9+3O7YAmFhYZg4cSImTpxod33W4xpYzhe3iI+PV+9v3ry50zFievToga+//hoAXOrKXdrKYh8sLy8PixcvVv8vre7DNWrUwPTp0zFs2DDk5OSgX79+WLNmjfqZtMX6N3XTpk1OT5Fy1ZAhQ/D8888jNzcXy5cvx2effYbg4GDk5OSoPToCAgIwdOhQl9fpyVNRLMpdgA0LC0NISAiys7PL5NzSG23YsAEAUK1aNUybNs1ueM3Kyir0hpS2mjVrqtdPnjzptLx1GU8NXFUSycnJxT4qeaORI0d67OjfrFmzMGnSJADmz94ff/zhdIAhC+udMEcDZQHm834sg3DJsux0sJuSqF27Ng4cOAAhBC5evIi6deuW2mO5UyeLsv5e16pVSz338syZM2jSpIndsmlpaS7vAI8ZMwYLFy6EoiiYM2cOpk6dijlz5qhHzL09eJMnWG87Tp065bS8ozKl9RlYuHChOkDYbbfdhqtXr+Ls2bP48MMP0bt370KDVBXX4sWLPXbQZfPmzS6da+1MdnY2+vbtqw4i2K1bN/z88892B2EprtjYWGzfvh2AeSekTp06Li9bku2rO8qqd4u3WLeiutItPiwsTL3uygE5e/766y+1hbRDhw4uDdbijE6nw5IlSzB06FD89NNPLoXY2rVrIz09HcnJyS4dhHTV4MGD8fzzz6strpYddesWN3utTK4EpuKyfh1KckAmLS1N/e0LDg5G69atC93vrc+VpzRv3hyyLENRFBw4cEBtSbbHejwMVw+i/fTTT+p70KlTp1JtfBgyZAgkSXI5xJbWb2qVKlXwwAMPYMGCBcjOzsby5csxcuRILF++XG0cGzhwoFvbWuu8VK9ePY/Us8yaZqw/VM66jNx5550AzDubruw0edLly5cBmAcAcfRF2LBhg92uHRbuPGdnrAdhsrTwOGLd2mlvAKfK7vPPP8eLL74IwPyDsXbt2iJHKB1p0aKFujN3+PBhhxuQHTt2qOdKd+rUqVRbxa03dp5q9S6p1q1bqz+QGzdudPrd8aQ2bdqo1zdv3uyw7JYtW1xeb+fOndXzP+bMmQODwYA5c+YAMB8AqwiDXNx8883w8/MDAPz5559OT5ewNbKhRdWqVdUWnF27dnlk7ID4+Hj1HLHg4GAsWrQICxYsgEajgaIoGDFiRKFwU1Ho9Xrcc889arC888478euvv7o0Eqe7rHf0jh8/7vJyJd2+usO6p1Zp7mB6i3W4sLSIOmLd0mTdOu0u6yDnydMhLCH2gQceAAA1xNrbJlh+0/Ly8gp19S0py446YD4gtGLFCiQkJKifpzp16jht8fY0IYR6jiHgfAwDR3788Ue1q+iwYcOKbB+89bnylCpVqqiDFGZkZGDXrl12y54/f15tbY6JiXG5N4HlNx0ovdZXa4MHD8bChQuh1WqRk5ODu+++225P1NLc17PVjbi43YeBwoNG3XTTTSWr3DVlFmCtm7qdHbkZOXKket3eEO+lxdI96syZM3ZDp8lkUs/nccSd5+xMbGys2m3233//dRhi//nnH2zatAmA+UhHeTgXzDIKsScunmh9nT17Np599lkA5h3f3377zekJ8zeSJEkd5VMIgU8//dRuWesBVUp7gJGhQ4eqoWP69Onl4kipRqPBsGHDAJh/BO1NP1MarIPk559/7jCEffzxx26t+6mnngJg/nEcP368ehBj5MiRHu3G6S3+/v7qlBSXL19Wz8OzZe3atU5HjLZs2/V6vTqASnGZTCYMGzZM3en95JNPEBcXh86dO+Pll18GYB518fHHHy/R4wDmUYg9tf0qaetrXl4eBgwYoO7UdOrUCWvWrHG7a6+rrKf0cHXKOE9sX12Vmppa6Htr+bxWJNYHEZYtW+ZwG5aQkKC+T7IsF/t0m82bN6vngTZo0EANep6i1WqxePFidRqlnTt3ok+fPjZD7IgRI9Trb775pkfHHbHeEZ87d26hKUJGjhxZ5qfg/Pzzz7hy5QoA82BnDRs2LNZ6kpOT1V4jOp3O5lQsjRo1UkPt+fPniwzkdSPrrrTWB4a9yXp/ytHv96effqq+r64Obnn27Fl1XzokJMTtQTGLa/Dgwfjxxx+h1Wqh1+tx99132zy43qZNG/Ug+pIlS9SBpjzhrrvuUmek2LJlC7Zs2aL+5tStWxfdu3d3a33Wvx2Opolyiycmk7WemHvkyJE2yzz33HNqmT///NPh+kwmk2jbtq1a/vnnnxf5+fl2y+v1evH999+LRYsWFbnPegJ6VyaQ79mzp1p+5syZRe4vKCgQo0ePLjTBs71Jl2fOnKmWmTdvntPH7tKli8MJ1ZcsWaLeX7NmTXH06NEiZc6ePSsaNmyolvvss89srstyvysTqbtT1hfMmzdPnYQ5KCjIpc+FPRcvXhRBQUECgNBqtWLDhg1Fynz//ffqa1i3bl2Rm5tbgtq7ZsKECepj3nXXXeLSpUt2y5pMJrF+/Xrx1ltvFbnP3gT0tjgre/78eREeHi4ACH9/f6fficuXL4tp06aJf//9t8h9zr4rN+rcubNafty4ccJkMhUpY72tcPS9tpaenq6+/9aXEydOuFSv4ho5cqT6WPHx8UXu9+T7tnXrVvX+iIgIsX///iJlTpw4oU6Abrl8//33RcplZ2erE7dLkiRmzJhh872wSE9PFx9//LFYv359kftee+019bEGDRpU6D6DwSA6dOig3v/11187fA18RX5+vrj77rvV59W+fXuRkZFRqo+Zl5cngoODBQBxxx13OC3vqe3rjh07xOzZs0VeXp7dMufPnxft2rVTX4+4uDhhMBjcehzL59Gd3SHrfR53d6Osl3X1N/XKlSvqewBAjB07VhiNxiLlUlJSRPv27dVyd999t831nTlzRpw9e9bu461bt06EhYWp39OS/EYK4XgbYzAYxKBBg9T7b7/9dpuf6QceeEAtM2TIEIefe4PBIFasWGF3/8eaoigiNjZWfa7Vq1dXH+fkyZNuP1dbTp48KaZPn+70u7p+/Xr1N9LRtluv14vdu3fbXc+pU6fETTfdpK5n6tSpdssOGTJELdeoUSO7n4t33nlHLefv7y/Onz9vs5z198LWb5Mj7vz2WuTk5IhatWqpy86dO7dImfXr1wutVisAiJCQEJGUlOTSuqdOnaqud/To0S7XyR2W7Y+t57xs2TK13va2pb/88otax5iYGLFnzx6Hj3f48GExZswYl+pmvU9k/fv+6quvurS8tdatWwsAIioqyuFvvjvK7BzY7t27q61Qjz32GF544QXUq1dPHc2rUaNG6hQMsixjxYoV6NChAy5evIiPP/4YS5cuxYMPPoibb74ZYWFhyM7Oxrlz5/DPP/9g48aNyMnJwVtvvVXiej777LNq6+aLL76ILVu2oHfv3oiKisLJkycxf/58nDx5EnfddRdOnjzpsNuo9RGKiRMn4sqVK2jSpIl6Hknt2rXRqlUrl+s2ePBgrFy5EosXL8alS5dw6623YtSoUejQoQM0Gg3++ecffPfdd+oRzF69etkcgr0yW7t2LR599FH1SNyjjz6K9PR0p/Nn3XrrrYiJiSlye61atfDRRx9h7NixMBqN6Nu3L0aMGIEuXbrAaDRi7dq16lFsrVaLb775xmE3P+tzruPj4+3OyerMe++9hwMHDmDjxo3YvHmzegS9Q4cOiI6ORkFBAZKSktTW/KSkJHTv3h2vvvpqsR7PFXXq1MHixYtx7733Ij8/HyNHjsTMmTNx7733Ii4uDoGBgcjIyMCJEyewa9cubN++HSaTySMDE3z99ddo27Yt9Ho9vvjiC+zcuROPPPII6tSpg8uXL2PJkiXYvn07OnTogHPnzuHixYsuHXkPCwvDkCFDCnW169q1K+Li4kpc5/Kic+fOGDduHL744gukpaXh9ttvx8iRI9G5c2fIsow9e/bgu+++Q05ODu677z6H36Xg4GD8/PPP6NKlCzIzMzFx4kR8/fXXeOCBB9C8eXOEhIQgMzMTZ86cwZ49e7BlyxYUFBTghx9+KLSebdu2qb1g6tSpg2+++abQ/VqtFgsXLsQtt9yCzMxMvPDCC+jSpYvD8599wahRo/Dbb78BMHfLHTt2rNpC4IirU3rY4u/vjz59+mDFihX4559/kJ2dbXfaE09uXy9fvownnngCEyZMQO/evXHbbbehdu3aCAgIQEpKCrZv347ly5ergy6GhoZiyZIlDs/T/O677xAfH1/oNutzDG/c/kVERGDChAkO6+7Mjeu0Ho0zPj6+yP233nproWm5AHM30nfeeUdtRfvyyy/x119/4eGHHy40D+y8efPU1ruwsDB89NFHNuu0d+9eDB06FHfccQe6du2KRo0aQavV4sKFC1i7dq16KoAkSfjss888cs62PVqtFosWLYIkSVi2bBl27dqlnhNr3cV1zpw5OHHiBA4dOoQlS5bgjz/+wODBg9GmTRtEREQgNzcXFy9exP79+7F+/XqkpaW51O1ZkiSMGjVK7WVhOY3sjjvucGnqMFdkZ2dj0qRJeOONN9C9e3e0adMGsbGxCA0NhV6vx5kzZ7Bu3bpCLaCdOnXC5MmTba4vJycH7du3R4sWLdCnTx+0aNECoaGhuHr1Kv766y+sXLlSnVbmoYcecvi7/u6772L9+vVITU3FqVOn0LJlSzzyyCO4/fbbC80Da92C9sYbb7h1LrwtH330kd2pXNLT04vUuX79+jbfz6CgIHzzzTcYMGAATCYTRo8ejTVr1qBv377QarX4888/MX/+fHX061mzZqF69epO6yeuzQ9sURbdh280aNAgSJKEoUOHQq/Xo1+/fli9enWhfaL+/fvj9ddfx7Rp03Du3Dm0b98evXr1Qo8ePVCnTh1IkoSUlBQcPnwYW7ZswZEjR6DRaPDll186ffyRI0di2rRpEEIUmo7TMhq1q1JSUgqNku+xXg2eSMGutMAajcZCrSA3XmwdaUpMTBTdu3e3u4z1RaPRiNmzZxdZh7stsEIIMWXKFIeP1alTJ5GcnOzwyInFQw89ZHc9N75WrrQqGQwG8fjjjzt9PQYNGiT0er3d9VjKVbYW2Btb2Vy92GpNsvbBBx8InU5nd/nQ0FCbPQRuZL2Mu0cvb5Sfny+eeeYZodFoXHqOI0aMKLIOT7bkWezcuVM0aNDApTqFhISIgwcPFlmHuy2wQgixadOmQke3b7y0bNlSnDt3TtSuXVsAEDfddJNL6929e3eh9SxcuNDlOhVXWbbACmHefg8fPtzuayfLspgxY0ah3gaOvjPHjh1Tj8g6u/j7+4u1a9eqy6alpanbXlmWHW7XFyxYoK6ndevWDnvy+ALr1kJ3LiX1888/q+uaP3++3XKe3L6uXLnS5eVbtmxps6fGjay3G65c7P22u9MC6+5rYW8fSgghPvzwQ+Hn5+d0HbGxsWLXrl1217Ns2TKn66hevbpYsmSJ09fUFa5sYwwGgxg8eLBazlbvgoyMjEIths4ur732mkv1i4+PV3sNWC5z5swp6dNW7d+/3+U6y7IsnnzySZGdnW13fVeuXHG6Hj8/P/Hqq6+61Nq1d+9eERcX53SdWq1WvP322w7XZV3e0T6Mu9syZ/ufCxYsECEhIQ5fD1u9Ku3ZuHGjumzjxo1dXs5druSIFStWFGqJ3bRpU5Eys2fPFlWqVCnRds2Wu+66q9Cyd955p9vP8YsvvlCXt9VLsbjKLMAKIURubq54//33RYcOHUREREShHWtHO1lbtmwRTz31lGjRooUIDw8XGo1GVKlSRTRv3lwMGTJEfPnllyIxMdHmssUJsEIIsXbtWtGvXz9RtWpVodPpRM2aNUW3bt3E7Nmz1S5KrnzwjEaj+PLLL0XXrl1F1apV1Q+hrdfKnZ3ynTt3iscee0w0atRIBAcHi8DAQFG/fn3xyCOPiI0bNzpd3tWNgrtly7vSCrBCCHHo0CHx9NNPi8aNG4vg4GARGhoqWrZsKSZNmiQSEhKcLp+Tk1NoY5uSkuKBZ2zuvjR58mTRvn17ER0dLbRarQgKChL169cXd999t3j33XdthkQhSifACmHeWVmwYIEYPHiwqF+/vggJCRFarVZERkaKNm3aiCeeeEIsWbLE7o94cQKsEEIkJSWJ//3vf6JJkyYiMDBQhIeHizZt2ogPP/xQ5OTkCEVRRGBgoAAgunbt6tI6FUVRu9tFRkY67PLoKWUdYC1+/fVX0a9fPxEdHS38/f1FTEyMeOihh8SOHTuEEMLlACuE+XVbtWqVGDlypGjcuLGoUqWK0Gg0Ijw8XNx8881ixIgRYu7cuSI1NbXQctY7sJMnT3b4GEIIMWzYMLX8hAkTnJYvz7wVYI1Go4iJiREARM+ePe2W8+T2NSsrS6xatUpMnjxZdOvWTTRu3FhERkYKrVYrwsPDRbNmzcTIkSPFL7/84nKXNF8PsEIIkZCQIF5//XXRuXNnER0dLXQ6nQgICBB16tQR/fv3F7Nnz3Z48FoIIa5evSq++uorMWTIENGsWTMRGRkp/Pz8RO3atUX37t3FJ598ItLT0x2uwx2ubmOMRmOh77e9LvL79u0T48ePF61btxZRUVFCq9WKkJAQERcXJ+677z4xc+ZMcfr0abfq2K1bN/Vxg4ODRVZWlrtP0y5FUcTevXvF+++/LwYOHCiaNWsmQkNDhUajEUFBQaJ27dqiZ8+e4s033xSnTp1yuj6j0SiWLFkinnrqKXHLLbeI6tWrC51OJ6Kjo0WbNm3Ea6+95tJ6rOXm5op58+aJgQMHitjYWBEUFCS0Wq2IiooSt99+u5g8ebJLr6n1Z7ksA6wQ5u/GxIkTRYsWLURoaKgIDg4WjRs3Fk8//bT477//3Hg1hHjkkUfUx37vvffcWtYdruQIIcwh1tJIYi/EpqWliY8++kj06tVL1KpVS/j7+wt/f39Ro0YNceedd4qXXnpJbNy40a0uvPPnz3d7X/hGHTt2FABEkyZNhKIobi9vjyRECYfHJSKP+OOPP9CnTx8AwHPPPef2gEJUcocOHVJHyHP1PdiwYQN69uwJwDzH4f/93/+VZhWJvGLWrFl48cUXodFokJCQUOIuhEREVLGdPn1a7Yr/5ZdfYsyYMR5bd9kOr0ZEdlnmIA4NDS3Vc1HJvs8++0y97uq5t9bnklSEuV+JbBkzZgxq1KgBk8mEGTNmeLs6RERUzr333nsAzDOiePo8YgZYonLCEmBffPFFREdHe7k2Fc/WrVsdzj/7+eefq4MB1a5dG/fcc4/TdR44cEAdoKZHjx4uzy1H5GsCAwMxdepUAMA333yDxMRE71aIiIjKrfj4eMyfPx8A8NZbb6nTO3oKuxATlQNXr15FtWrVULVqVZw+fRqhoaHerlKF06hRI+Tl5aFv375o3bo1oqOjYTAYcPr0aaxcuRL79+9Xy/766692A+zvv/8ORVFw4sQJzJgxQx2db9u2bejUqVOZPBcib1AUBW3btsW+ffvwzDPPOJz7moiIKq/HH38c3333HTp06IDt27cXmmXDExhgiahSaNSoEU6fPu2wTGBgIGbPno1hw4bZLWNrI+zq+bLr1q2DXq93Xlkbqlatis6dOxdrWSIiIqKKggGWiCqFXbt2YcWKFdi1axcuXryIlJQU6PV6REREoHHjxujRowfGjh3rdI44S4ANCQlB48aNMXbsWDz66KMuzW0WGxuLs2fPFqv+Xbp0wZYtW4q1LBEREVFFYX/GbyKiCuT222/H7bffXuL18JgfERERkfewBZaIiIiIiIh8AkchJiIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIHcSIiogpFCIHc3Fzo9Xqbl9zcXOTm5iI/Px8FBQWFLrZuKygogMlkgslkgqIoRa7f+Bcwj1btykWj0UCn00Gr1UKn06kXe/8HBAQgICAAgYGBha7f+H9AQABCQkIQHBwMnU7n5XeEiIjIcxhgiYio3BFCQK/XIyMjA1lZWcjMzERmZqbN65a/2dnZakDl+ITXWcKsrUtoaKj6Nzw8HGFhYQgPD0d4eDhCQkI8Pvk8ERFRSXEUYiIiKhNCCGRnZyMlJQVpaWlITU1FWlpakeuW/wsKCkr0eJIkISgoyOYlMDAQG+ZvhaQAUCSrCyDd8D+EZC4HCRC4drl2HVbXBSBZbrO6G9YZUALUeyTLRZhP6JEEhARAFoVugwwIy/+yADQCd4/pjtzcXOTl5SEvL09tVb7x/5LQarWFAq31pWrVquolKioKYWFhDLtERFQmGGCJiKjEhBDIyMhAcnIyrly5ol5u/D8vL8+t9QYEBCA0NBShoaGoUqUKQkNDsX3Z35CMMmCUIRkk81+jDBglwCRBMkmASTaHUVTeUCUgAK0ANAqE1nxdaBVAc+2vVuC+F/ogOzsbGRkZSE9PV/+6G351Oh2ioqIQFRVVKNhWrVoVNWrUQPXq1REdHQ2tlh2/iIioZBhgiYjIKSEE0tLScOnSpUKXxMREJCUl4erVqy63mIaEhCAiIgIRERH4b9NxoECGZJAhFciAwXJdY76uVN4A6k1CFoBWgdApgM7813K991NdkZKSgpSUFFy9ehXp6ekurVOWZURFRamB1tbfgICA0n1iRETk8xhgiYgIAGA0GnHp0iWcP38eFy5cQGJiohpUk5KSnLaeSpKEiIgIVKtWDdHR0di+5B9I+RpIBbL6FwUahtIKRkgC8FMg/EwQfgrgp2DoGwOQkpKC5ORkJCUlITk5GQaDwem6qlatijp16qB27dqoXbt2oetBQUFl8GyIiKi8Y4AlIqpEhBBISUnBhQsXcP78eZw7dw7nz5/H+fPnkZiYqI6ia4skSYiOjkbNmjVxaN1xSHkaczC99hcFMiTBcEpFCQhzS26ACcJfgfA3of8LPXD58mX1kpOT43AdkZGRaqCtU6cO6tWrh9jYWNSqVYtdk4mIKhEGWCKiCkgIgeTkZMTHx6uXhIQEnDt3Dnq93u5y/v7+qFu3LurWrYu/5u8uFFKRr2FApVIjtNcCbqARI6YPwoULF3Dx4kVcuHABGRkZdpfTarWoW7euGmjr1auHevXqoW7duvD39y/DZ0BERGWBAZaIyIcJIZCamoqEhAScOXOm0F97LVqyLKNmzZqoU6cO/vnpEKRczbWL1tyKWokHPqLySWgs4daEkR+Yw63lgIy9Aacsn/P69eujUaNGaNCgARo1aoRatWpBluUyfgZEROQpDLBERD5CURRcvHgRJ06cwMmTJ9WLvUF0NBoNYmJicHZPIiS99voljy2pVDEICMBfgQg0Qgkyou9zXXH27FkkJCQgKyvL5jKBgYFo0KABGjZsiEaNGqFhw4Zo2LAhz7ElIvIRDLBEROWQwWBAfHx8oaB66tQpm61NkiShdu3aSPz3CqQcq6Cay6BKlZN6zm2QCUqQEb2fvQOnT59GfHy83dGya9eujcaNG6Np06Zo0qQJmjRpguDg4DKuOREROcMAS0TkZUIIXLhwAUePHsWRI0dw5MgRnD592uaorX5+fmjYsCGOb0qAnKOFlK0zh1WO7EvklICACDRBBBsx5K17cOrUKZw+fRpXr161WT4mJkYNtE2bNkVcXByn+iEi8jIGWCKiMpaenq6G1aNHj+Lo0aM2uzuGhIQgLi4OB1cfh5SthZSjg6TX8BxVIg8TWgUi2IDRnw7G8ePHcezYMVy+fLlIOVmWERsbi2bNmqFly5Zo2bIlYmJiIEn8ThIRlRUGWCKiUqQoChISEnDo0CH8+++/OHLkCBITE4uU8/PzQ1xcHI6ti4eUpYWcrQPyGFaJvEXoFCghBoz46H4cO3YMx44dQ2pqapFyVapUUcNsy5Yt0bRpU7bSEhGVIgZYIiIPMhgMOH78OA4ePIiDBw/iv//+Q2ZmZpFyMTExuPB3MuQsnbkbcI6W56sSlWMCAvAzh9rBb/fDf//9h2PHjhU5p1aj0SAuLg4tWrRAy5YtccsttyAqKspLtSYiqngYYImISiA3N1dtXT106BCOHDlSZIc2ICAAzZs3x78/H4ecqYOUpYNk4jQeRL5OSAIi2Iinvn0Yhw8fxqFDh2yeTxsTE4PWrVvjlltuYaAlIiohBlgiIjcYDAYcOXIE+/btw969e3HkyBEYjcZCZcLCwpB1Jg9Spg5yhh9bV4kqCcu0PkqoAQNe6YGDBw/i1KlTuHFXi4GWiKj4GGCJiBwwmUw4deoU9u3bh3379uHgwYNFprKpVq0arv6XCTlDBynTzzx9Dc9dJSKYB4hSqhRg4Bu9cODAAbuBtm3btmjbti1uueUWzklLROQAAywR0Q2Sk5OxZ88e7N69G/v27SsyQnBYWBiyTuVBTveDnOHHwZaIyGXOAq1Wq0WrVq3UQBsXFwdZ5ikHREQWDLBEVOkZDAYcOnQIu3fvxq5duxAfH1/o/qCgIORdMEJK94Oc7meed5WBlYg8QGgVKGEF6De5K/bs2YNLly4Vuj8sLAxt2rRRA210dLSXakpEVD4wwBJRpXT58mXs2rULu3fvxt69ewt1C5YkCc2bN8ex3xLMgTVLx8BKRKVOQAABJjy9cAT+/vtv7Nu3D3q9vlCZuLg4dOzYER06dEDTpk3ZOktElQ4DLBFVCoqi4NixY9i+fTu2bdtWpJU1PDwcmSfyIKf6QU73h2TkTiEReZeQBESoAQ992B9///03jh07Vqi7cWRkJG6//XZ06tQJbdq0QWBgoBdrS0RUNhhgiajCMhgM2L9/P7Zu3Yrt27cXmt5ClmU0b94cR9fEQ071N48UzFZWIirHhFbBhFWPY+fOndizZ0+h1lk/Pz+0bt0aHTt2RMeOHVG9enUv1pSIqPQwwBJRhZKdnY1du3Zh27Zt2LVrV6EdvMDAQOSfVyCn+ENOYysrEfkuIQmIKgW4d2p37Nixo8i5s82aNUOXLl3QpUsX1K5d20u1JCLyPAZYIvJ5WVlZ2LZtGzZt2oS9e/cWmpc1MjIS6YdzIaf6m89n5XysRFTBCAiIQBMem/0gduzYgUOHDhXqahwXF4c777wTXbp0QWxsrPcqSkTkAQywROSTsrOzsW3bNmzevBl///13odBar149XNh2BXJKAKRsdg0mospF6Ex4dulI/Pnnn9i/fz9MJpN6X2xsrNoy27BhQ0gSt49E5FsYYInIZ+j1ejW07tmzBwaDQb2vQYMGOLv5MuSrAZBztV6sJRFR+SG0Cl5Y+Si2bNlSpIdKTEwMevbsiR49erCbMRH5DAZYIirXDAYDdu3ahT/++AO7du1CQUGBel+9evVw4a+rDK1ERC4QGgUT1zyFLVu2YM+ePYW2py1atECPHj1w1113ITIy0ou1JCJyjAGWiModIQSOHDmCP/74A5s2bUJmZqZ6X926dZG4PdUcWvUMrURExSE0Cib88jjWr1+Pffv2QVEUAIBGo8Ftt92GHj164I477kBwcLCXa0pEVBgDLBGVG4mJiVi3bh3WrVuHCxcuqLdHRUUh/d9cyFcCON0NEZGHCZ0JTy14CBs2bMDRo0fV2/38/HDHHXfg7rvvxm233QZZ5sjtROR9DLBE5FV6vR4bN27EH3/8gYMHD6q3BwQEoOAcoEkOgJTux9BKRFQGRIARj3wxAOvXr8f58+fV26tXr44+ffqgb9++qFWrlhdrSESVHQMsEZU5IQSOHj2KX3/9FZs2bUJubi4AmEfDTNVBkxwAOcUfksKj/URE3iAgIEKM6Df1TmzYsAHZ2dnqfa1bt0a/fv1w5513IiAgwIu1JKLKiAGWiMpMVlYW1q1bh19//RVnzpxRb4+JicHFP1OhuRIAqUDjxRoSEdGNhCQwZd1YrFmzBnv37lXnmA0ODka3bt1wzz33oFmzZl6uJRFVFgywRFSqhBD4999/sXr1amzZskUd9dLPzw/GCzI0SYGQMnXsIkxE5AOEvwmPfHkv1q5di0uXLqm3N23aFPfddx+6devGVlkiKlUMsERUKvR6PX7//Xf89NNPOHfunHp7w4YNcXZdMuTkAEgmdhEmIvJFAgIz/nkZq1evxp9//qnOyx0aGoq+fftiwIABqFu3rpdrSUQVEQMsEXnU+fPn8dNPP2Ht2rXQ6/UAgMDAQOTHw9zams1RhImIKhKhVTD6+/uxatUqJCUlqbe3adMGAwcORIcOHaDVctozIvIMBlgiKjFFUbB792789NNP2L17t3p7TEwMEjensbWViKgSEBB4a/sE/Pzzz9i1a5d6rmx0dDQGDhyIe++9F1WqVPFyLYnI1zHAElGx5eTk4LfffsNPP/2EixcvAjCPJCyl6KBJDOL0N0RElZTwN+HB/+uN1atXIyMjA4B5erS+ffviwQcfRJ06dbxcQyLyVQywROS2q1evYtmyZfjll1+Qk5MDAAgJCUHucQWaS4GQ8thVjIiIzCMYT1j9GJYuXYrTp08DMB/o7Ny5Mx588EHcfPPN5inUiIhcxABLRC5LSEjA4sWLsW7dOhiNRgBAvXr1cHFjqrmbMOdtJSIiGwQEpv89BUuXLsXOnTvV25s2bYrBgweja9euPE+WiFzCAEtEDgkhcOjQIfz444/YsWOHeruUoYPmQjDkNHYTJiIi1ymBRvR9sxN+//13dWq1atWq4aGHHsI999wDf39/L9eQiMozBlgisklRFGzfvh0//vgjDh8+DODa+a1X/KC5GAQ5y8/LNSQiIl8mtAqGz74XK1euRGpqKgAgIiICDz74IO677z6EhIR4uYZEVB4xwBJRIYqi4K+//sK8efPU85X8/PxgPKsxB1ee30pERB4kJIFnfxqOhQsXqtPwhISE4P7778egQYMQHh7u3QoSUbnCAEtEAACTyYQtW7Zg3rx5SEhIAAAEBwcj7xigSQyEZNB4t4JERFShCUngpd+ewIIFC3D27FkA5pGL7733XgwbNgwRERFeriERlQcMsESVnNFoxKZNmzB//nycO3cOwLURhY8IaC4Gcf5WIiIqUwICr295Dj/88AOOHz8OwBxkBw4ciIceeogtskSVHAMsUSWlKAr+/PNPfPfdd2pwDQ0Nhf4/xTyHK4MrERF5kYDAOztfwpw5c3D06FEAQGBgIAYNGoQhQ4agSpUqXq4hEXkDAyxRJSOEwO7duzF79mycPHkSABAWFobsf03mOVwZXImIqBwREHhr+wR89913OHHiBADzKS4PPvgghgwZguDgYC/XkIjKEgMsUSVy8OBBfPPNNzh48CAAICgoCPlHJba4EhFRuScg8Mafz2POnDnqIINhYWEYOXIkBgwYAJ1O5+UaElFZYIAlqgTOnDmDr776Crt27QJgHlXYdEYLzYVgSEYGVyIi8h0CAq9sfLrQKTC1atXCE088gbvuuguyzN81ooqMAZaoAktJScGcOXOwZs0aKIoCjUYDccEP2vPBkAo4qjAREfkuAYHnfh6BOXPmqPPINmnSBGPGjMFtt93m5doRUWlhgCWqgPLy8rB06VIsXLgQubm5AAD5qj80CSGcx5WIiCoUIQsM/64/Fi1aBL1eDwBo3749nnnmGdSrV8/LtSMiT2OAJapAFEXB+vXr8c033+DKlSsAAClLC218KORMPy/XjoiIqPQIrYL+H9yJVatWwWg0QqPR4P7778eoUaMQGhrq7eoRkYcwwBJVEMeOHcOsWbPUqQaqV6+OlD9zIV8NgATJy7UjIiIqG9+fm4XPP/8c27dvB2Ae6Onxxx/HPffcA42Gp88Q+ToGWCIfl5GRgW+++QarV6+GEAKBgYEoOKoxjyysMLgSEVHl9O7uifj000+RkJAAAGjYsCGee+45tG7d2rsVI6ISYYAl8lEmkwmrV6/G7NmzkZmZCQCQkwOgjQ+BZOARZiIiIgGBscsewpw5c5CVlQUA6NWrF8aNG4fIyEgv146IioMBlsgHHTlyBDNnzlQndJdytNCe5nmuREREtgitgrvf74RVq1ZBCIGQkBA89dRT6N+/P6fdIfIxDLBEPkSv12P27Nn46aef1B/gvH8lyJcCeZ4rERGRE58cnoaPPvpIPQDcrFkzTJgwAY0bN/ZyzYjIVQywRD5ix44dmDlzJpKTkwGwuzAREVFxWLoVz549G3q9HrIs44EHHsDjjz+OwMBAb1ePiJxggCUq51JSUvDJJ59g8+bN5hvyNNCdCoWc7u/dihEREfkw4WdC58k3YdOmTQCAWrVqYeLEibj11lu9XDMicoQBlqicEkLgjz/+wCeffILs7GzIsgzpXAA050I4ujAREZGHvL3zf/jggw/UHk4DBgzAmDFjEBwc7OWaEZEtDLBE5VBKSgo+/PBDdQ47KVsL7ckqkHN0Xq4ZERFRxSM0Cu6e3gk///wzAKBatWp46aWX0L59e+9WjIiKYIAlKmc2bdqEWbNmISMjA1qtFuJUADQXgjhIExERUSmb/s8UzJgxA4mJiQCAfv364dlnn0VQUJCXa0ZEFgywROVERkYGZs2apZ6LI2VroT1RBbKera5ERERlRcgCA2Z1wfLlyyGEQK1atfDqq6+iZcuW3q4aEYEBlqhc+Pvvv/HOO+8gNTUVGo0GiA+A5nwwJMFWVyIiIm/4YN8reOedd3D58mXIsozhw4dj5MiR0Gq13q4aUaXGAEvkRQaDAd9++y0WLVoEAJD0GmhPhEHOZqsrERGRtwmNgq5vtMa6desAAE2bNsVrr72GunXrerlmRJUXAyyRl1y4cAHTpk3DsWPHAADypUBo40M5wjAREVE5M3n9GHz00UfIzs5GQEAAXnjhBfTt29fb1SKqlBhgibzgjz/+wMyZM5Gbm4vQ0FDk7pGhSQnwdrWIiIjIjoVJn+Pdd9/Fvn37AAB9+/bF+PHjERgY6OWaEVUuDLBEZSg/Px+zZs3Cb7/9BgCQMnTQHQ+DVKDxcs2IiIjIGQGB4d/3x/fffw9FURAbG4tp06YhNjbW21UjqjQYYInKSGJiIl577TWcPHkSsixDig80D9TE6XGIiIh8yvR/pmDatGlITU1FQEAAXnzxRfTp08fb1SKqFBhgicrAzp078dZbbyE7OxswSNAdC4Oc4e/tahEREVExCZ0JNz0di3/++QcAcO+99+L555+HTseBGIlKEwMsUSkymUyYO3cu5s2bBwCQMnXQHWOXYSIioorA0qV4zpw5EEKgVatWmDZtGqKiorxdNaIKiwGWqJTk5ORg2rRp2LlzJwBATrw2yjDndiUiIqpQpm1/Ue1pFR0djbfeegvNmzf3drWIKiQGWKJSkJiYiClTpiA+Ph5+fn5QDgVAc4WjFBIREVVUc87OxMsvv4yzZ89Cp9NhwoQJuPvuu71dLaIKhwGWyMMOHDiA1157DRkZGUC+DN3RcMjZPB+GiIioohMaBe0nNsXWrVsBAEOGDMHYsWMhy7KXa0ZUcTDAEnnQ6tWrMXPmTBiNRkhZWuiOhvN8VyIiokpEQGDYd/3w/fffAwDuvPNOvPrqqwgI4HzvRJ7AAEvkAUIIfPPNN1i4cCEAQL7iD+3JMEgKz3clIiKqjCatewrvvfceDAYDmjVrhvfeew+RkZHerhaRz2OAJSoho9GI6dOn448//gAAaM4FQ3OO87sSERFVdh/ufxWvvPIKMjMzUaNGDcyYMQOxsbHerhaRT2OAJSoBvV6P119/HXv27IFGo4F0LBiayxysiYiIiMzmnJ2JiRMn4uLFiwgJCcH06dPRqlUrb1eLyGcxwBIVU1paGiZNmoRjx44BJgnaY2HQpPl7u1pERERUzgitgsaPV8d///0Hf39/vP3222jfvr23q0XkkzgkGlExJCUlYdy4cebwapCgOxTB8EpEREQ2SUYZJ75JRvv27ZGfn48pU6Zg48aN3q4WkU9iCyyRmy5evIjx48fj8uXLQJ4M3X8RkPO03q4WERERlXNCErjj9VbYuHEjJEnChAkTcO+993q7WkQ+hQGWyA1nz57FCy+8gKtXr0LSa6D7L4LT5BAREZHLBAT6ftABq1atAgCMHTsWDz30kJdrReQ72IWYyEWnT5/Gc889Zw6vORroDjG8EhERkXskSFj70k4MHz4cAPDll19i8eLFXq4Vke9gCyyRC06dOoXx48cjMzMTUrbW3PJq5PEfIiIiKr6Hvu2LuXPnAgCefvppDBkyxLsVIvIBDLBETiQkJOC5555Deno6pKxr4dXE8EpEREQlZx1in3nmGQwePNi7FSIq57gXTuTAxYsX8eKLL5rDazbDKxEREXnWj4//hpEjRwIAPvvsMyxbtszLNSIq37gnTmTH5cuXrw/YlKNheCUiIiKPkyBh0RNr1RD76aef4vfff/dyrYjKL+6NE9mQmpqKF154AUlJSZByNTznlYiIiEqNJcRazoGdPn06tm/f7uVaEZVPPAeW6AZ6vR7PP/88jh8/DuTJ8DsYydGGiYiIqNQJCHR7+1b8/vvv8PPzw4cffohbbrnF29UiKlcYYImsGI1GTJkyBbt37wYMEvz+jYSUp/V2tYiIiKiSEBBoOykO27dvR3BwMD755BPExcV5u1pE5Qb7RBJdI4TAzJkzzeHVJEF3OILhlYiIiMqUBAl/f3ASN998M3JycjBp0iRcuXLF29UiKjcYYImumT9/PlavXg0IQHu8CuRsnberRERERJWQpEg4+lUi6tevj6tXr2LKlCnIzc31drWIygUGWCIAGzduxHfffQcA0J4OhSY1wMs1IiIiospMMsl47733EBYWhhMnTuDtt9+GoijerhaR1zHAUqV38uRJvP/++wAAzYUgaJKCvFwjIiIiImBknefx7rvvQqfTYevWrZg9e7a3q0TkdQywVKmlp6fjlVdeQX5+PqQ0P2gSQrxdJSIiIiLVizdPw6RJkwAACxcuxLp167xcIyLvYoClSstoNOKNN964PtfrsTBIkLxdLSIiIqJCPugzG8OHDwcAfPjhhzhz5oyXa0TkPQywVGl9+eWX2L9/P2CSoD0aDsnErwMRERGVT0ue+gNt2rRBXl4eXnvtNeTk5Hi7SkRewT12qpS2bduGZcuWAbg24rCe0+UQERFR+SVBwuuvv47o6GicP38e06dPhxDC29UiKnMMsFTpXL58+fqgTReDOOIwERER+YQHI5/AtGnToNVqsWXLFvVgPFFlwgBLlYrRaMRbb72FzMxMSFlaDtpEREREPmV8q6l4+umnAQBfffUVTp065eUaEZUtBliqVObNm4eDBw8CRgm642GQBAdtIiIiIt/y5YOL0KlTJ/XAfH5+vrerRFRmGGCp0jh8+DB++OEHAID2VCikPJ73SkRERL5HgoSJEyciIiIC8fHxnB+WKhUGWKoU8vPz8d5770FRFMjJAdBcDfR2lYiIiIiKbXDUk5g8eTIAYOnSpdi7d6+Xa0RUNhhgqVL4/vvvce7cOaBAhvZMqLerQ0RERFRir3eaiQEDBgAA3nvvPej1ei/XiKj0McBShXfkyBEsXrwYwLWuw0Z+7ImIiKhiWDtpJ2rVqoXk5GR8++233q4OUanjnjxVaAaDAe+///71rsOcMoeIiIgqEEmRMGHCBADATz/9hGPHjnm5RkSliwGWKrTly5cjISEBKJDYdZiIiIgqpJfbz0DPnj2hKAo++OADGI1Gb1eJqNQwwFKFdfXqVcydOxcAoE1g12EiIiKquJ555hlUqVIFJ0+exPLly71dHaJSwz16qrC++OIL5ObmQsrUQU5m12EiIiKquAZHPYmxY8cCAObOnYu0tDQv14iodDDAUoV04MABbNiwARCA9nQoJEjerhIRERFRqZrV/3s0bdoUer0ec+bM8XZ1iEoFAyxVOIqi4LPPPgMAyEmBkHN0Xq4RERERUemTIOHpp58GAPz666+Ij4/3co2IPI8BliqcLVu24MSJE4BRgvZsiLerQ0RERFRm/tf6bdx5551QFAVffPGFt6tD5HEMsFShGI1GfPfddwAAzcWgkg3cJLHbMREREfmeMWPGQKvVYvfu3fjnn3+8XR0ij2KApQrl999/x/nz5wGDBE1iUPFXZAmvDLFERETkY0bXexEDBgwAYB7QSQjh5RoReQ4DLFUYBQUF+P777wEAmgshkEzF+HhLEkMrERER+bxhw4bBz88PBw8exP79+71dHSKPYYClCmPdunW4cuUKkC9Dc6kYra/2gisDLREREfmYh6qPQ79+/QCYW2GJKgoGWKoQFEXB4sWLAQCaxGBIws2WVIZUIiIiqgis9mmGDRsGnU6HAwcO4MCBA96rE5EHMcBShbB9+3acO3cOMErQXA50fUF2GSYiIqIKaljNZ3D33XcDAH788Ucv14bIMxhgqUJYtGgRAEBzKajwua+OwilbaImIiKgisbG/MnjwYEiShF27dpkHuiTycQyw5POOHDmC//77D1Dg+rmvDKRERERUCTwaOwEdOnQAAKxYscLLtSEqOQZY8nmrVq0CAMhXAyAZNEULWIfVknQZZuglIiKi8srBfsqgQYMAAGvXrkV2dnZZ1YioVDDAkk/LysrCpk2bAACaJAetr54615XnzBIREZGPmdx+OurVq4fc3Fx1v4nIVzHAkk9bt24d8vPzIeVoIWXpbBeS5OsXIiIiogpG0mohae3sBwGQIKlT6vz2229lVS2iUsE9evJpa9euBQBoLgdCwg0to9dCqyRLkGQPt5qyFZaIiIjKi2sH6SWtzm6Q/XbUMmg0Ghw5cgQJCQllWDkiz2KAJZ917tw5nDhxAlAA+coNU+fYCK6SLLEVloiIiCoUSau1cVvRECsZNOjYsSOA6w0ARL6Ie/PkszZs2AAAkNP9IRmtp86RPd/iagtbYYmIiMjb7ByctxVie/bsCQDYvHkzhBClWi2i0sIASz5JCIGNGzcCMI8+rHISXj3eCssQS0RERF5iq/W18P2FQ+zbPT9HQEAAkpKScPz48dKsGlGpYYAln3T27FnzZNwKIKf6Fzrf1Rl2JSYiIiJfJ2m1Lu3PWJ8XKymSOifs5s2bS7V+RKWFe/Hkk3bu3AkAkDL8ICna0hmoyVVshSUiIqKy5ubBeEuI7dq1KwBg69atnq4RUZlggCWftH37dgCAJi2wWMGVXYmJiIjIVznrOmx/OR3e6f05NBoNLly4gMTERA/XjKj0McCSz8nKysJ///0HANCkBzgpbR+7EhMREZGvcbXrsD2y5I8WLVoAAP7++29PVYuozHDvnXzOv//+C0VRIOVqIRUU7whkqWArLBEREZU2Dxx8b9euHQBg9+7dJV4XUVljgCWfc+DAAQCAnOlX4nV5rBVWCPOFiIiIqJTIoaGQA4vf+8yibdu2AMz7VIqilHh9RGWJAZZ8jiXAagqqeGR9JQ6xDK5ERERUyuTQUEgaGZClEofYF3p/hYCAAGRnZ+PcuXMeqiFR2WCAJZ+i1+tx6tQpAIBGioYcEuzdCjG8EhERURmQNFa77ddCbHGCrKZ6NCStFs2aNQMAdVwRIl/BAEs+5dSpU+bzX406yAiAFBrqkRBbrFZYhlciIiIqA3JoqI0bJbdbYzXVowGtBgDQsmVLAMChQ4c8UkeissIASz7lxIkTAADZcC20amRAo/HIut0KsQyvREREVAbUrsN2C7gRYrXX95ksLbAnT54sSfWIyhwDLPkUNcAWBKm3SUFBHutK7FKIZXglIiKiMuA0vKoFnYdYTfXoQv+/NXoxAODs2bMwGo3FriNRWWOAJZ9y+vRpAIBsuB5goZE91pUYcBJiGV6JiIioDLgcXtUF7IdY667DFpLJD4GBgTAYDLhw4UJJqkpUphhgyWcIIdQNrGy8YQPt4RBrpwKlt24iIiIiK26FVwsbIdZWeAUACRIaNGgA4HoDAZEvYIAln5GSkoLc3FxAAJLRv2iB0joflnO8EhERURmyOWiTywvfEGJthFeLunXrAgAuXbpU/McjKmNab1eAyFWW1lfJ5A/JzrEXKSgIsiKgZGWVZdWIiIiIPELy9y9e66u1ayFWquI4CNeoUQMAAyz5FrbAks9ITk4GYKf11UIjQ6oSUrIjlwCEIgChmP+RpBKti4iIiMgVkr8/JEmCKDCUeF3HPonD0XerOyxTs2ZNAAyw5FsYYMlnpKSkAAAkk85xQUkqUYgtFF6t1klERERUWizhFQCgKCUKsUdnNUJEVBYiIrJx9M2qdsvNevEnANcbCYh8AQMs+QxLgJUVJwEWKHaItRlerdZJRERE5GmFwqtFMUPs0VmNEFn1+qlUEZHmEGsryFoaBTIyMtx+HCJvYYAln5GamgoAkEwunrrtZoh1GF6JiIiISkmR8GrhZoi9MbxaRERmm4Ps1MJzwUIx71NlZmbCZDK5/DhE3sQASz4jJyfHfEVxY+wxF0Osy+GVrbBERETkQZK/g7E9AJdDrL3wai0iKqtQiJUU8wjFQghkZ2c7ryxROcAASz4jNzcXACAJNz+2kgTI9oOn2y2vDLFERETkATa7DtviQoh1Fl4trEOsBBlQzPtVDLDkKxhgyWfk5eWZrwj353qVQoJttsIWu9swQywRERGVgMvh1cJBiD06M86txy7UEnutYcBgKPnIx0RlgQGWfIYlwLrdAgvY7Epc4nNeGWKJiIioGNwOrxY2QuzRmXGIjM50e1WWECvBXA8GWPIVDLDkM4QQ164UcwVWIdZjAzYxxBIREZEbih1eLaxC7NGPihdeLSKisiA05nXt37+/+HUiKkMMsOQz1I19STKjJAEaGZKDc2KJiIiISoUklSy8WigKLo5ugchqxQ+vNzIajR5bF1FpYoAln+GJDb7IzYPIzgEkGZLG/XNpi66wuM3BREREVKlc249RijG3640Sx9yKgipA1uGoEq8LknlfpkWLFiVfF1EZYIAln6G5FjgTe0cWa3mRmweRkQlhutZ1uKQhluGViIiIXGF9EF4oJQqxiWNuRUGY+bomVypRiJ3RfAWqhJrnfw0ODi72eojKEgMs+YygoCAAwPDbN+H0o7XdWrZIeLUobohleCUiIiJX2OpBVswQax1eLYobYmc0X4FYbQby8sxxwLKfRVTeMcCSz7BsWKMNmXhn6EL3QqzJVDS8WrgbYhleiYiIyBWOTn9yM8QmPlU0vFpoct07zcoSXk0moKCAAZZ8CwMs+YyQkBAAQG6ujFv8E/HO0IU49ZjzEKue9+qIqyGW4ZWIiIhc4crYHS6G2MSnbkVBuOMyrrbCWsIrAOTnXY8CDLDkK7TergCRqywBNjvLHDRv8U/Eu0MW4hUxDA3nXLS5jN2uw7ZIMiQNIEwmj9WZiIiIKiF3Bp50Mq2fK+EVuN6VOLRFCiLTsjFw3b+47b9zCNYXICfID/+0isFNT19ALe31g/qZGeZ9quDgYPj5+bleZyIvYoAlnxEdHQ0ASE+7/rG1tMQeHFAXS1bdWSjIuhVeLRyFWLa+EhERkTPFmDVBKTBA9tMVud3V8GoRlGnApGmb8MC+PdAZC+//dNgfD7EIyHwwEFemVoEIkNR9qqgoD4xmTFRGGGDJZ1gCbFpq4Y/tLf6JuMU/ES2GXsDreBgN51wsXni1sBViGV6JiIjImeJO+XetK7F1iL30pHvh1d9QgNkLZqP92dP2q2cAwn7Mhe6MEYnzI5GezgBLvofnwJLPsBdgLW7zv4hpQ39E/LA6xQ+vFtbnxDK8EhERkTMlna/e6nzYS0/eivwI9xZ/Ze3PaH/2NJzttQgAQbsMiJ6aCdn0BgCgatWq7teXyEsYYMln1KxZEwBw5YoWip1s+vLf96Pu+ixIwR4aiIDhlYiIiMqKUACdzu3wWjUrE/cf+BsA4CxGW+6vsiwX50+cAADUru3e9IRE3sQASz6jevXq8PPzg9Eg4+qVoueJAICS6gftlUxIIcGQq4QU/8GEwsGciIiIyHUlPOgtBwVBDgqCJEmo/2OSW8sO2r8bOsW9/RbJAFw4cAAAEBMT49ayRN7EAEs+Q6PRoG7dugCAS4lFA2zvbc+i0Y955n9kuUQhViiCra9ERETknmLuO8hBQZA0muunL12+6tbybRPsn/fqyLm0NABQ96+IfAEDLPkUyxHCSxcLD/Xee/szaPCZAl1S+vUbixtiheJ0SHsiIiIim9wMsZbweqP6iy67vI7ggny3HhMA0nQ6pAOQJIkBlnwKAyz5lLi4OABAQnyAelvv7c+gwaeicHi1cDfEWroOs/WViIiISpm98AoASLricojN8fN3+7GPh5j3jerWrYugIA+NHUJUBhhgyac0bdoUAJBw5vqGWknxtx1eLVwNsQyvRERE5Aku7Es4DK8WLobYGgNTXa2ZyhJgLftWRL6CAZZ8SpMmTQAAV5L9kJ0lo/f2Z9BoUZ7zBZ2FWIZXIiIi8iQH+xQuhVcLJyH2sxFfo8GIEAjb41vadbRKFQDX962IfIXtCTWJyqnQ0FDUrVsX58+fx7BVD6LBGgHdpXTXFr4WYjWBgRC5uVAys9W7OGgTEREReZwQReaHdSu8WiRdAVC90E2fjfgaANA90AQEaoHBVYCFmRBwPJWOuHb5LzoaMJnQvHlz9+pC5GVsgSWfc8sttwAAqv2W4np4tZBlQKct3BrLQZuIiIioDBQrvF5Tf3Gyev3j4bPRPdBkDq/XiLeqQnQIcGke2FMdIpBpMiEwMJAtsORzGGDJ59x6663mK4YrxV+JpUtxcCC7DhMREVHpEeL6HK/FDK8AgEvJqL84GR8Pn41eQYai9wfKEAtrQTxSxW53YqEDxCNVcOCZzwAAN910E7Radsgk38JPLPmc1q1bAwAUPz2EbICkuHnSh4UsAyX5ISEiIiJyRpKg5OZBExJc8lVlZtsOrxaBMsQH1YCJkRA/ZkLakQvkKECwDNExEHi4ChCtxb7/Owjg+j4VkS9hgCWfExkZiQYNGuDMmTMwBmVBlx1ZrPWIbD2UjEzzP5LEVlgiIiLyLMv5rx44VUkKDgI0GnR+9ils+/Rrx4WjtcDzkRDPF73r9v89gbDL6wEAbdu2LXG9iMoauxCTT+rUqRMAwBSYDqF1vxVVZOuhpKWZuw9bSFKRgRaIiIiIiuWGfQpTdk7xVhMcpIZXAAjbfQGdn3uqWOtqP2kswo7EIz8/H9WqVUOjRo2KtR4ib2KAJZ/UuXNnAIBJlwahk90PsYqpcHi1xhBLREREJWFrX0IobodYNbjecMpT2O6Lblep/aSxiNqXil4PNQBgbgyQuM9DPogBlnxSkyZNEB0dDUgmKLp0QKeFCPR3KcgW6jpsDzfoRERE5C5nvbnc6Eps3epadD3C5VbY9pPGquFVQGDbtm0ArvdmI/I1DLDkk2RZxh133AEAMPolX//B0GkdhlibXYftYYglIiIiV7m436Do9c5X5Si8XhO26wI6Pe84xLafbA6uUftSzY+tTUNaWhrCwsKuz+pA5GMYYMln9erVCwBg8kuBgNF8o7MQ66jrsC0MsUREROSMG/sLwmRyGGJdCa8W4Tsv2L2v/eSxiNqbWui2roNqAwC6devG6XPIZzHAks9q1qwZ6tSpA0gKTH4p1++wE2Jd6jpsCwd3IiIiInuKsY9g62D6jYM1uarT+DFFbms3pWh4FTDhr7/+AgD07NnTrccgKk8YYMlnSZKE3r17AwCMfkk33ln0vFh3W1+LPmDxlyUiIqKKpwT7BtatsPYGa3JF+I7z6vV2U8ai3ZSxqPpPapFyJr8ryM3NRa1atdCiRYviVZqoHGCAJZ/Wp08fyLIMRZcBRb6hO47VebEoMEDJzC75AzLEEhERkQd6Z1kOqhen1fVGHV8Yg7avmIOrrfAKAA1uM+/29+/fn6MPk09jgCWfVr16dXTs2BEAYPRPtF1IkgCTCcJoKMOaERERUYUlhEdWo+j1JQ6vABD222FE77EdXAFA0WTh2LFj0Gq16NevX4kfj8ibGGDJ5913330AAKP/ZQjYOKckIxumtHTPPJiHfrCIiIiIhMkE05WrxV5eycg0j+9hMAAXk+yW6/5QLQBA165dER4eXuzHIyoPGGDJ57Vp0+baYE4mGP1tbLyNRoiCgpI/EMMrERERWXhov6C4+yhqcDWYe5iJvHzb5aR8rFu3DgAwcODA4lWSqBxhgCWfJ8syhgwZAgAwBpyHwPVJwj3a+kpERERUCtxthVXD641stMIOHNsABoMBN910E1q1alXcKhKVGwywVCH06dMHUVFREHIBTH7J1+9g6ysRERGVljJuhS3UZdjWem5ohRWSEatWrQIAPPzwwyWrJFE5wQBLFYK/vz8GDx4MADAEnIeAYOsrERERVRg3dhm2K/H6gfzhE1tCr9ejfv36uP3220u5hkRlgwGWKowBAwYgNDQUQpMLk+6K51pfiYiIiOzx1IjEV1Ps3+eg1bVIdXJzzX9hxJIlSwCYW19lmbv9VDHwk0wVRlBQEAYNGgQAMASehYCHuv2y+zARERGVMiW/6CBMzroMOzLkhcbIyMhA3bp10b17d09UkahcYIClCmXIkCGIiIiA0OSiQHvB29UhIiKiyqAUWmFd7jJsqzqXE9XW1yeeeAJardYj9SMqDxhgqUIJCgrCyJEjAQDGWhkQsuJkCSfY+kpERERlxNIKW9xWV4u+L9+E3NxcNG3aFF26dPFU9YjKBQZYqnD69++P2rVrA34KTLX1JVuZJHmmUkREREQuKGl4VfwN+OWXXwAATz31FCTuy1AFwwBLFY5Op8MTTzwBADDVzoHwMxV/ZWyBJSIiIld4Yp9BCCg5xT/4LiBwy+N1YTQa0a5dO9x2220lrxNROcMASxXSXXfdhZtuugnQCBjrZ3q7OkRERESOWQKwUrwD70qBAcbgLOzevRtarRbPPfecBytHVH4wwFKFJEkSXnzxRWg0GihV82EKz/N2lYiIiKiiK04rrBAlbr1VCgwQMKLqXf4AgKFDhyImJqZE6yQqrxhgqcJq0KABHnzwQQCAsUEWhOTmgE7sPkxERESlyc6+hlLg2jmwSoHBXFYxYehXfZCUlITq1atj+PDhnqwlUbnCAEsV2qhRoxAdHQ0EmmCqk+ORo5xEREREJeJsf8SFbsSW4ArFBCXIgB9//BEA8OyzzyIwMNBTNSUqdxhgqUILCgpSzwEx1c2BEnLtiCZDLBEREXmDB7oLq+EVgJAEYodEwWg0olOnTrjjjjs8UUuicosBliq8Ll26oHv37oAEGBtnQEjXfjgcHf1kwCUiIqLicLQP4cb+ha1uxNatrhamOjk4efIkqlSpgv/973+cNocqPAZYqhTGjx+PyMhIiCATTPWyC9/JsEpERESlqTinMFmF1BtbXdXbgw1AA/NAlePHj0dUVFSJq0pU3jHAUqUQFhaGl156CQBgqq2HUqWgcAGeG0tERESlwQNdhm9sdQXMXYdjBkXAZDLhzjvvNPc2I6oEGGCp0ujUqRP69u0LSIChcQaE1saoxAyyRERE5Akemh7H3oBO/T7shNOnTyMsLAwvvvgiuw5TpSEJwb11qjxycnLw+OOP4+LFi5BT/KE9GgYJ3OATERGR7zBF5cHYLAMA8MEHH6B9+/ZerhFR2WELLFUqwcHBmDp1KnQ6HZSofJhq6b1dJSIiIiKXCX8j/NsYAQAPP/wwwytVOgywVOk0adIEzzzzDADAFJt9fWodIiIionJMSAINhkcjJycHLVq0wOOPP+7tKhGVOQZYqpTuu+8+dO3aFZABQ9N02+fDEhEREZUTAgK932+PY8eOITQ0FG+88Qa0Wq23q0VU5ngOLFVa2dnZeOKJJ3Dx4kVIGTro/ouAJHg+LBEREZU/php6GBtlQZIkvP/+++jQoYO3q0TkFWyBpUorJCQE7733HoKDgyHCDDA2zIIAj+cQERFR+aKEFUA0MY/b8dRTTzG8UqXGAEuVWmxsLF5//XVIkgSlRi6UmrnerhIRERGRSvibENRZgclkQo8ePfDQQw95u0pEXsUAS5Vehw4dMGbMGACAsUEWlPB8L9eIiIiICBAaBbUHhyIjIwONGzfGpEmTON8rVXoMsEQAhg4dit69ewMSYGiaASWYIxMTERGR9whJoMW4OoiPj0dkZCTeeecd+Pv7e7taRF7HQZyIrikoKMBLL72E/fv3AwUy/P6NhJSv8Xa1iIiIqJIREDA2yYASnY+goCB8+umniIuL83a1iMoFtsASXePn54d33nkHDRs2BPwUGFqmcXodIiIiKnOm2Gwo0fnQaDR4++23GV6JrDDAElkJCQnBBx98gOrVq0MEmmBokQYhs5MCERERlQ1j7RyY6phHHJ4yZQratGnj5RoRlS8MsEQ3qFq1Kj788ENUqVIFItQIQ/N0hlgiIiIqdaYaepjqZwMwT5fTq1cvL9eIqPxhgCWyoV69epg+fToCAwMhwgtgaJoOITHEEhERUekwVcuFsVEWAGDYsGF4+OGHvVwjovKJAZbIjhYtWmDGjBkICAiAiCyAkSGWiIiISoGpai5MTczh9cEHH8STTz7J6XKI7GCAJXLg5ptvxnvvvQc/Pz8oUQUwNsmAAEMsEREReYYpKg+iRQ6EEBgwYACeeeYZhlciBxhgiZy47bbb8M4770Cn00Gpmg9j0wy2xBIREVGJmaJzIVpmw2QyoW/fvnjhhRcYXomcYIAlckH79u0xbdq06yG2GQd2IiIiouIzVdfD1DQLJpMJffr0wcSJEyHL3DUnckYSQnAvnMhFe/bswSuvvIL8/HxIGTrojoRDMvHHhoiIiFxnrKmHqaH5nNf77rsP48ePZ3glchEDLJGbDh48iEmTJiEnJwdSpg66wwyxRERE5BpjnRyYYs1T5QwZMgTjxo1jt2EiNzDAEhXD8ePHMWHCBGRmZkLK0ZpDbIHG29UiIiKickpAwFQ/G6baegDAqFGjMHr0aIZXIjcxwBIV05kzZzBhwgSkpKQA+TJ0hyMg67XerhYRERGVM0ISMDbOgBKdDwAYO3YsHnroIS/Xisg3McASlUBSUhJeeuklnD17FjBK0B0Nh5zh5+1qERERUTkhNAoMzdMhwgzQarWYMmUKevbs6e1qEfksnrhHVAI1atTA559/jptuugnQChhapMEUnevtahEREVE5IPxNqPVQMESYAcHBwfjggw8YXolKiC2wRB6Qn5+Pd999F5s3bwYAaM4GQ3M+GBJ4XgsREVFlpIQWIPQuCampqahatSo++OADNGzY0NvVIvJ5DLBEHqIoCr744gssXboUACBf8Yf2ZBgkhSGWiIioMjFF50JulYeCggLUr18fM2bMQPXq1b1dLaIKgQGWyMN++eUXzJo1CyaTCVK21jxXLEcoJiIiqvAEBEz1smGqax5puHPnznj11VcRFBTk5ZoRVRwMsESl4MCBA3jttdeQkZEBFMjQHQ2DnMXBnYiIiCoqoVHMIw1HFQAAhg8fjsceewyyzCFniDyJAZaolFy6dAkvv/wyTp8+DSiA9nQo5MuBPC+WiIioglGCjKh5XzDOnTsHPz8/TJo0iYM1EZUSBliiUqTX6/Hee+/hzz//BADIyQHQnqrC82KJiIgqCFN0LrQ3FyAvLw/R0dF466230Lx5c29Xi6jCYoAlKmVCCCxatAizZ882nxebo4H2WDjkXK23q0ZERETFJCQBY/0sKLXM0+e1adMGr7/+OsLDw71bMaIKjgGWqIwcOHAAU6dORWpqKmCSoD1ZBZqrAd6uFhEREblJ+JtgaJoOEWoEAIwYMQKjR4+GRsNBG4lKGwMsURlKSUnBtGnTsH//fgCAfCkQ2vhQdikmIiLyEaaoPAS0NSE7OxuhoaF49dVX0aFDB29Xi6jSYIAlKmNGoxHff/89fvjhBwCApNdAezwMco7OyzUjIiIie4QsYGyQCaVGHgCgWbNmmDp1KmrWrOnlmhFVLgywRF6yZ88evPvuu+YuxQqgSQiBJjGIoxQTERGVM0qwATXuDcb58+chSRIeeeQRjB49Glotx7MgKmsMsERelJ6ejvfffx87duwAAEhpftCdqALJwHNoiIiIvE1AwFRLD6lxHoxGI6Kjo/HKK6/g1ltv9XbViCotBlgiLxNCYNWqVfjss89QUFAAGCRoT1WBJoUDPBEREXmLCDDCEJcJEWYAANxxxx2YOHEiwsLCvFwzosqNAZaonEhISMC0adNw6tQpAIB8xR/a01UgGWUv14yIiKjyEBBQauRC29KAvLw8BAYG4umnn0b//v0hSTzNh8jbGGCJyhGDwYD58+djwYIFMJlMQIEM7elQtsYSERGVAeFvMre6hhcAAFq3bo1JkyahVq1aXq4ZEVkwwBKVQ8ePH8e7776L+Ph4AGyNJSIiKk2WVlddKyNyc3Ph7++PMWPGYODAgZBl/vYSlScMsETlVEFBAebNm4cff/zR3BprkKCND4WcHMCRiomIiDxECTLC2CgToor5XNdWrVphypQpqFOnjpdrRkS2MMASlXPHjh3D+++/jzNnzgAApHQ/aE+FQs7j0P1ERETFJSQBU90cSA3yYTQaERgYiMcffxz3338/NBrOBkBUXjHAEvkAo9GIJUuW4PvvvzePVKwAmvPB0FwIhiTYGktEROQOJawAxoaZEEEmAEDHjh3xwgsvoHr16l6uGRE5wwBL5EMSExPx0Ucf4e+//wYASHoNtKerQM7w83LNiIiIyj+hM8EYmw2leh4AIDIyEuPHj0eXLl04wjCRj2CAJfIxQghs2LABn332GdLS0gBcG+QpPhRSAbs8ERER3UhIAqaaevi3VKDX6wEAAwYMwJNPPonQ0FAv146I3MEAS+SjMjMz8e233+KXX36BoiiASYLmfBA0F9mtmIiIyEIJy4exQRZEsLm7cNOmTTF+/Hg0b97cyzUjouJggCXycSdPnsTHH3+MgwcPmm/I00B7JgRyqj9HKyYiokpL+JtgjM2CEp0PAAgLC8NTTz2Fu+++m1PjEPkwBliiCkAIgY0bN+KLL77A1atXAQBSmh+0CSGQc3Rerh0REVHZERoFpjo50DQ0oqCgALIsY+DAgXj00UfZXZioAmCAJapA9Ho9FixYgCVLlsBgMAACkJMDoD0bwvNjiYioQhOSgFIjF8G3ysjIyAAAtG7dGs899xwaNmzo5doRkacwwBJVQImJifjmm2+wadMm8w0KoLkYDM2FIEgmdpsiIqKKQ0BAicyHKTZbnRYnJiYG48aNQ4cOHTi6MFEFwwBLVIEdOXIEX3zxxfXzYwskaM+HQE4K5EBPRETk85QqBTDWy4YIMwAAwsPD8dhjj6Ffv37QarVerh0RlQYGWKIKTgiBbdu24auvvsL58+fNN+bJ0J4LgZwcwIGeiIjI5yjBBpjqZUOJLAAA+Pn5YciQIXj44YcRHBzs5doRUWligCWqJIxGI1avXo158+YhJSUFACDpNdCcC4F8lSMWExFR+acEGs3Btap5ZGGNRoO7774bI0eORLVq1bxcOyIqCwywRJVMXl4efv75ZyxcuFAd5ELK0UJzNphT7xARUbkkAoww1s0BahZAURRIkoQePXpg9OjRqFOnjrerR0RliAGWqJLS6/VYtmwZFi9ejJycHACAlK2F5nww5BQGWSIi8j4l0AhT3RxINQ0wmcwDNHXu3BmPPfYYRxYmqqQYYIkquczMTCxevBgrVqxAbm4ugGstsueD2bWYiIi8QgkywFQ3B6JaASy7qu3atcOjjz6K5s2be7l2RORNDLBEBABIT0/HsmXL8NNPP11vkdVroLkQzMGeiIioTCjBBphicqBE5au3de7cGcOHD0ezZs28WDMiKi8YYImokKysLKxYsQLLli1DVlaW+cY8DbQXgyBfDoSkMMgSEZHnCAiIKgaY6uSoowpLkoSuXbti+PDhaNSokZdrSETlCQMsEdmk1+uxcuVKLFmyBOnp6eYbDRI0l4KguRQIyaDxav2IiMi3CQgoVfNhqp0DEWoEAMiyjB49euCRRx5BbGysdytIROUSAywROZSXl4fffvsNS5cuRWJiovlGBZCTA6G5GAQ5lxPFExGR64RGgal6Hky1coAABYB5HtfevXvjoYce4qjCROQQAywRucRkMmHr1q1YtGgRjh49qt4up/hBczEYUqaO58kSEZFdws8EU009TDVzAa159zMsLAwDBw7EwIEDERER4eUaEpEvYIAlIrcIIXDo0CEsXrwY27dvV0eHlLK10CQGQb4awPNkiYhIpYQYYKqlh1zLCKPR3FW4Tp06GDJkCPr06QN/f38v15CIfAkDLBEV27lz57B06VL8/vvvKCgwD7wBgwTN5UBoLgVByud5skRElZGQBZSqeTDV1KvntwLATTfdhKFDh6Jjx46QZdmLNSQiX8UAS0Qllp6ejjVr1mDVqlVISkoy3ygAOdXfPOBTuh+7FxMRVQLC/1o34eq5gM68i6nT6dCtWzcMHDiQc7gSUYkxwBKRx5hMJuzcuRM//fQT/vnnH/V2Sa+BnBQEzeUASCYecSciqkgEBJSIAig19RBRBvXUkho1auDee+/FPffcg/DwcO9WkogqDAZYIioV586dw8qVK7F27Vro9XrzjQogXw2A5nIgpAwO+kRE5MuEvwmmarnm1tZrowkDQNu2bTFw4EB06NABGg1PJSEiz2KAJaJSpdfrsW7dOqxatQqnT5++fkeuxnyubHIApALu4BAR+QIhCSiR+TDVyAUir7e2hoSEoG/fvrjvvvtQt25dL9eSiCoyBlgiKhNCCBw/fhyrV6/Ghg0brrfKCkBO9YN8ORByqj9bZYmIyiElyAilei5M1a6f2woArVu3Rr9+/dClSxeOJkxEZYIBlojKXG5uLrZs2YI1a9bg4MGD1+8okKG5EgA5OQBSjpZhlojIi4RWMY8kXC0PoopBvb1q1aro27cv7r77btSuXduLNSSiyogBloi86uzZs/jtt9+wdu1apKenq7dLORrIVwKhuRLA6XiIiMqIkM1dhJXoPCgR+cC1cfc0Gg06duyIe+65B23btoVWq/VuRYmo0mKAJaJywWAwYM+ePVi3bh22b99+fV5ZAFKGDprkAMhXOYoxEZGnCQiIsAKYquVBicoHtNd3DePi4tCzZ0/06tULkZGRXqwlEZEZAywRlTvZ2dn4888/sW7dOuzfv//6HYp5bln5SgDkNH9ICrsYExEVh4CACDZCic6DKToP8L8+inCNGjXQs2dP9OzZE7Gxsd6rJBGRDQywRFSuXb58GRs2bMC6desQHx9//Q6TBDnND/LVAPPgTwyzREQOCQiIEKP5vNaq+UCASb0vNDQUd911F3r27IlWrVpBltnbhYjKJwZYIvIJQgicOnUKGzZswObNm5GUlHT9ThMgp/lfC7N+kBTueBERATeG1rxC87X6+/ujQ4cO6NmzJ9q3bw8/Pz8v1pSIyDUMsETkcyxT8mzevBlbtmzBpUuXrt9pCbMp/uaWWZ4zS0SVjICACDVAqZoPU1Th0BoYGIgOHTqga9euaN++PQIDA71YUyIi9zHAEpFPE0LgxIkTaphNTEy8fqcCSJl+kFP8oUn152jGRFRhCVlACc+HEpUPJaIA8CscWjt16oSuXbuiXbt2CAgI8GJNiYhKhgGWiCoMS5jdsmULtm/fjoSEhEL3Szna6y2z2Zxnloh8m/Azmae8icyHEl6gTnkDACEhIejYsSO6dOmCdu3awd/f33sVJSLyIAZYIqqwzp8/jx07dmD79u04ePAgFOV6iwTyZfOIxml+kDP82NWYiMo9deTga6FVhBoL3V+zZk107twZHTt2xM0338y5WomoQmKAJaJKISMjA7t378a2bduwe/du5ObmXr9TAaRMnfnc2XQ/SDlsnSWi8kHoFHPX4IgCcyurVddgSZLQvHlzdOrUCZ06dUJsbCwkidsuIqrYGGCJqNIpKCjAgQMHsH37duzZswcXL168oYBsbpm1BFojW2eJqGwI6doATBHm0CpCCreyBgYG4rbbbkOnTp3QoUMHREZGeqmmRETewQBLRJXehQsXsGfPHuzZswf79u1DXl7e9TsFIGVrIadf62qc6cc5Z4nIYwQERJAJIszcwqqEFQDawrtmcXFxaNeuHdq1a4eWLVtCp9N5qbZERN7HAEtEZKWgoACHDh3C7t27sWfPHpw5c6ZwAQWQsnSQM/zMrbNZOkiCgZaIXCMgIAKvBdawAihhhkLdggEgLCxMDaxt27ZlKysRkRUGWCIiB5KTk/HPP/9g//792LdvH65cuVK4gOnaVD0ZfpAzdJCyGWiJ6DoBAfiboIQbrgXWAsC/cGD18/NDq1atcOutt6Jdu3aIi4uDLPPUBSIiWxhgiYhcJITAhQsX1DC7f/9+pKWlFS5kAqRscwutlKWDnKnjCMdElYhlpGBRxQClSgGUKoYigVWn06FFixZo3bo1WrdujebNm8PPz89LNSYi8i0MsERExSSEwNmzZ7F3717s378fBw4cQGZm5g2FAEmvNY9ynKmDnOkH5Msc5ZioghAaxTzoUhUDlFADRKihyDmsWq0WzZo1UwNry5YtOS8rEVExMcASEXmIoig4d+4c/vvvPxw8eBCHDh0qOsIxYJ6DNtPc3VjO0kHK1kJS2EpLVN6p56+GGqCEGCCqGCCCjbjxeFRwcDBatmyJli1bolWrVmjWrBkCAwO9U2kiogqGAZaIqBSlpKTg0KFDaqg9efIkTCZT4UKWVtosLeRsnXlgKL2W59ISeZH53FXFHFQtgTXEWKR1FQBq1KiBVq1aqZfY2FhoNBov1JqIqOJjgCUiKkO5ubk4evRooUuRgaEA87m0OTrI2VrzwFA5WoZaolIiIAA/BUqIESLYEliNRUYHBoCAgAA0btwYTZs2RYsWLdCqVStUrVrVC7UmIqqcGGCJiLzs6tWrOHbsmBpojx07huzs7KIFlWsttTna6+E2R8tBoojcICQBEWiECDFCBBuhBF/rBqwrujuk0WjQsGFDNG3aFE2bNkWzZs1Qr149aLVaL9SciIgABlgionJHURRcvHgRR48exfHjx3Hq1CmcPHnSdqgFgDwZco5VK61eCylXw9ZaqtQsraoiyAglyBxWRbARIsgI2Djmo9FoUK9ePcTFxamBtVGjRhxsiYionGGAJSLyAUIIXL58GSdPnsSpU6fUUJuUlGRnAZhDrF5b+MJgSxVMkaAaZIQIMpmDqo3zVQHzIEuNGjVCo0aNEBcXh0aNGiE2NpZT2RAR+QAGWCIiH5aVlaWG2fj4eCQkJCAhIQE5OTm2F1AAKU8DKfdamM29dj1PAxRweh8qv4SsmEcADjRBBBivX3cQVDUaDWrXro169eqhYcOGalitUaMGJImfdSIiX8QAS0RUwQghcOXKFTXMWoJtfHw89Hq9/QVNUpFQK+VqzOHWwHBLpU/I4no4DTCZz1W9FlRtDahkodFoUKdOHdSvXx+xsbGoV68eYmNjUbduXbaqEhFVMAywRESVhHWwPX/+PC5cuKBeLl26BEWxHxBgAqR8DZBvDrRSngZS/vW/MEgMuOSUkBWIAAXC3wQEmCD8rwVVf/MFfo53ScLCwlCnTh31EhMTg/r166N27drQ6XRl9CyIiMibGGCJiAgGgwGXLl1Sg611wL169arjcAsUDrgFMqQCDaR82dwt+dptbMWt2IRGgfBTAD8ThL/5uvAzAf7mvyLAZHOk3xuFhoYWCqnWl9DQ0DJ4JkREVJ4xwBIRkUMGgwFXrlzBpUuXkJSUpP61XL969Spc+ilRYA60BdcCbYEMyWC+wPL32m0wsUW3PBCSAHQKhO5aOL12HTqrgOp37T4756HeKDQ0FDVq1ECNGjVQs2ZN1KhRA9WrV0fNmjVRvXp1hlQiInKIAZaIiEqkoKAAycnJSEpKwpUrV3D16lX1r+V6amqqayHXQkHhUGuUAaPk5K9sHqSKwbcIIQlAKyC0CqBVILQC0CqAxnLbtb86YQ6r10Kqq6HUIiQkBFWrVlUv0dHR6vVatWqhevXqCAkJKaVnSURElQEDLBERlTqj0YiUlBQ10KakpCAtLQ1paWlIT08vdN3uCMquUACYJHMLrkm2ui4Vvq5YXRfX/lcASbH8j2u3SZAUXC9j+cUUAHDt/2u3OQvO4nrBG/4K83VJALJ5ICPI126TBSAJCPn6dcgwB0+NADQC0CjmZa79LzTXlrdc1yqApvgvqVarRUREBMLDwxEeHq5ej4yMLBJSAwMDi/9ARERELmCAJSKiciU/P79IqM3MzERWVpbDi8lk8m7FrcOt5bqEooHVi0JCQhASEoLQ0FD1r/X1sLAwREREFAqsISEhnHKGiIjKDQZYIiLyeUII5ObmIisrCzk5OcjNzUVubi70er3T6waDQb0UFBSolxtvK+2ALMsydDoddDod/Pz84OfnV+h/6+uBgYEuXyzhNDg4GBpNCZpiiYiIygEGWCIiIhcoiuLSxWQyQVEUyLIMSZIgy7J6sf7fcl2SJGg0Gmi1Wm8/RSIionKPAZaIiIiIiIh8guztChARERERERG5ggGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+QevtChAReYsQAnl5ed6uBhGRWwICAiBJkrerQUTkFQywRFRp5eXloXfv3t6uBhGRW/744w8EBgZ6uxpERF7BLsRERERERETkE9gCS0QEwG9PNcAkQZIlQJLVv5Al4FpXPUmWzdela39lCZL0/+3de1TUdf7H8eeA3BQUNVchWdPCy5auCmlmkqkhUXZB61Ru5rJdT2V7Ws+x5ZdRWdHmqWzrbBfPWltGttUJ66yGa15bUdFMXUkkL+QNlouCKBeB+f0xzJcBZgYYQOaLr8c5nPnO93P5fmY+89V5z/fz/Xzqfge056vbb2xDo30N67Q91qdb7ft9qK/Dvt/+k2PjfRYLVvtoQkvdcx/bE6sFh2NhlLFaLHXP6+u01jXF1hYcyjRMb1DGnsfHSZpj/gZpjvsat8NFGer3OaYDRhtcHatBfhftaFynwdnxjDLWhmUa1Wek0zjdWp+H+rz1dVuNNEuT/I5ptu36x/p6LBZr/UfQcb+RZkv3wbbtWManLt2WZjuWsc/xkfpyPo3/6tJsz2my31am1tjng+05gK+l/rmPpWGaj8XqkG7FF1seW7lah3K1+DrWWbdtz+9YzgdrXdlafOvSbMey5fe1WLFQi2/dc8cyvmArh+149tdmf247ltVI87HUtcXYthinta/Fgg+Wun0WfOvefB98sGDhfJUvMx8cgIjIxU4BrIgI2ILXWtsXRSz1j/WRAbavmhYL+NRHa8bXzwaRkA80jlDqo0OaRD0Wh7INIqiW7MdFOnWBLg0C2Ab7GlTh8LxJQNw43UmZJi+5UX5nzXXaDhd/rtJcvVWe1udQp8uAuXGA6qybHdNpnO4igG2c3iitcQBbv9/a4JjO0uxBan2aY7qzMlYnx2r45xjANvlzleYssMVqPDfSqE/3pWGaLYCtrQ8A69JsAWDdo8ViCy7rPvv2bXt+Xyz4GgEs+FrqH32xH8u27TTNeG6tC2Ydg9T6oNVdAGuvrz6AravXoX7bsez5HfpQROQipiHEIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFREREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiC1oEVEQHwtWKl1rZQo4VGj8aCjI3WUbU0WvfU/met325JmsMipFYXi5s621+/z766Jg2fW43VOI0UKxawYpS1Ni5TV64pF/usDkkN1ja1ODbfzfqrFjdpjQ7rSZq7tV7dpdk33ZZztp6rk/QmbXSxDixNy1ma5HdMc1jj1eKQF/v6q44fLxfrwOL5OrBW6stZG//VpVnr1sJtvL/WYgVLbf1xqHtuf100TLfWpVkdjm010hzaUffcp27bpy7Nvu34WOtwWtda6h9r616yT912bd1H1Pk6sBZ8sK0va0+z1O33xWEtWYc67eu8GuvY1qXZ1rG11NdZ92+EbVVqC+ernJ2DIiIXHwWwIiJA1bj/dXYTOoY9PmgDS6NHEaj/WFmpD/rMxfGTrQFpIiJmoX+xReSiVVFR0dlNEBEREZFW0BVYEbloBQQEGNsrV64kMDCwE1sjLVVRUcFtt90GqN/MRP3WfvTeicjFTAGsiFy0LJb6QbGBgYEEBQV1YmvEE+o3c1K/iYiIpzSEWERERERERExBAayIiIiIiIiYggJYERERERERMQUFsCIiIiIiImIKFqvV2sYVAkVEREREREQ6nq7AioiIiIiIiCkogBURERERERFTUAArIiIiIiIipqAAVkRERERERExBAayIiIiIiIiYggJYERERERERMQUFsCIiIiIiImIKCmBFRERERETEFLp1dgNERFri3LlzrFixgo0bN5KXl4ePjw8RERFMmTKFmTNn4ufn53HdxcXFpKamkpGRQX5+PgEBAQwePJi4uDhuvvlmLBaL2/LHjx8nNTWVzMxMiouLCQoKYujQocyYMYPJkyd73K6uwBv77eWXX+bbb79ttv5169bRrdvF+d9kR/TbmTNn+PHHHzlw4AAHDhwgOzub4uJiAP785z9z0003tagenW8iIhc3i9VqtXZ2I0RE3MnLy2PevHnk5eUBEBgYSG1tLVVVVQBERkayZMkSQkJCWl13dnY28+fPp6SkBICgoCCqqqqoqakBYNy4caSkpLj8wp6RkUFycjIVFRUA9OjRg/LycmprawGIj49nwYIFzQbBXZG39ps9gPX39yc4ONjlMb788kt8fX1b3Taz66h+W716NSkpKU7TWhrA6nwTERENIRYRr1ZdXc3TTz9NXl4effv25fXXX2fNmjWsWbOG5ORkunfvTk5ODosWLWp13WVlZSxYsICSkhJ+/etf8/7775Oens6aNWv44x//SLdu3di+fTtvvfWW0/InTpzgueeeo6KigpEjR/LJJ5+wevVqVq1axdy5cwFYtWoVn376aVveAlPy5n6zmzJlCmlpaS7/LsbgtSP7DaBPnz6MHz+e++67jxdffLFVZXW+iYgIKIAVES/37bffcujQIQAWLVpEdHQ0AD4+PkydOpX58+cDsHXrVnbu3NmqulesWEFxcTEBAQG8+uqrDB8+HAA/Pz8SEhJITEwE4JtvvuHo0aNNyi9btozy8nL69OnDK6+8QkREBADdu3cnMTGRGTNmAPDxxx9z5swZD169eXlzv4lrHdlvsbGxpKWlsXjxYh588EFiYmJaVV7nm4iIgAJYEfFy9nsVx4wZw1VXXdUkferUqYSFhTXI21Lp6elGHeHh4U3SExISCAoKoqamhn//+98N0srLy9m4cSMAt99+u9PhlL/73e8AOHv2LJs3b25V28zOW/tN3OvIfmvLFW2dbyIiYqcAVkS8VkVFBf/9738BuOaaa5zmsVgsjB8/HoDMzMwW1/3LL7+Qn58PYJRvrHv37owaNcpp3Xv37qWystJt+bCwMAYNGtTqtpmdN/ebuNaR/dZWOt9ERMROAayIeK3c3FxjcpbBgwe7zGdPKy4uprS0tEV124dJNlf3kCFDADhy5IjL8vY87sofPny4Re3qCry53xzt3LmTe++9l2nTphEXF8f999/PX//614t22HFH9ltb6XwTERE7BbAi4rUKCwuN7X79+rnMd8kllzgt405RUVGr6j579iznzp1rcpyQkBACAgKaLe94vK7Om/vNUUFBASdPniQgIIDKykoOHz7MF198wdy5c0lLS2tRe7qSjuy3ttL5JiIidhfnAnciYgqOgYe7L62BgYFOy3RE3d27dwds9+Q1TndXvqXt6gq8ud8Ahg4dyvDhw7n22mvp168fvr6+VFRUsG3bNt59912OHz/O66+/Tmho6EW1rmhH9ltb6XwTERE7XYEVEZGLyqxZs0hISGDAgAHGxEKBgYFcf/31vPvuu8YkRX/729/QUukiIiLeRQGsiHgtx6tm9glcnKmoqHBapiPrDgoKapLurnxL29UVeHO/NadXr17cd999AOTl5XHgwIEWlzW7jn5v20Lnm4iI2CmAFRGv5XivXUFBgct8jvfhOZZxp2/fvq2qu0ePHg2+FNuPc+bMGbdf9u3lHY/X1Xlzv7XElVdeaWyfPHmyVWXNrCP7ra10vomIiJ0CWBHxWoMGDcLHx/bPlLtZRe1pffr0oWfPni2q23EmU3d122c/veyyy1yWd5wh1VV5d7O6djXe3G/iWkf2W1vpfBMRETsFsCLitQIDA7nqqqsA2LZtm9M8VquV7du3A3D11Ve3uO6IiAj69+/vtu7y8nL27NnjtO6RI0caE93Yj99YXl4eubm5rW6b2Xlzv7XEvn37jG37/bAXg47st7bS+SYiInYKYEXEq8XFxQGwa9cusrKymqSvX7+eEydONMjbEhaLhenTpwOwbt06p0NFv/rqK8rLy/H19eXGG29skBYUFMT1118PQFpaGmVlZU3Kp6amArb78SZNmtTitnUF3tpvzU3KVFpayvLlywH41a9+RWRkZIvb1hV0VL+1lc43ERGxUwArIl4tLi6OIUOGYLVaWbhwITt37gSgtraW9evXs3jxYgDGjx9PVFRUg7LLli0jJiaGmJgYp4HO3XffTZ8+faioqGDBggVkZ2cDcP78edLS0vj73/8OwIwZM4iIiGhSPjExkaCgIIqKinj66ac5evQoYLsC+OGHH7Jy5UoA5syZQ0hISDu9I+bgrf22Zs0a/u///o8NGzZw6tQpY39lZSWbN2/m0UcfNQK0Rx991BhSe7HoyH4DOH36dIM/u3PnzjXY72yyJp1vIiICYLFqjQAR8XInT57kySefJC8vD7ANdaytraWqqgqAyMhIlixZ0uRL67Jly/jwww8B+Oyzz5wOB83Ozmb+/PmUlJQAtqs3VVVVVFdXA7ahiCkpKfj7+zttW0ZGBsnJycYX7uDgYMrLy6mpqQEgPj6eBQsWYLFY2vgumI839tvq1atJSUkxngcFBeHv709ZWZnRZ/7+/jz22GPccccd7fAumE9H9ltMTEyL2jB37lwSExOb7Nf5JiIi3Tq7ASIizQkLC+PDDz9kxYoVbNy4kby8PLp168bgwYOZOnUqM2fOxM/Pz6O6hw0bxj/+8Q9SU1PZsmUL//vf/wgMDGTIkCHExcURHx/v9irchAkT+OCDD0hNTSUzM5Pi4mKCg4OJjIzk1ltvZfLkyR6+avPzxn4bM2YMDz74IPv27SM3N5eSkhLKysro3r07l156KWPHjuXWW28lPDy8rS/ftDqy39pK55uIiOgKrIiIiIiIiJjCxXVzj4iIiIiIiJiWAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFREREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiCAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFRERU3jzzTeJiYnhiSee6OymSCcrKyvj5ptvJiYmhk2bNnV2c0RE5ALq1tkNEBGRjnX27FlycnLYv38/2dnZZGdnc/z4caxWKwCfffYZYWFhHXJsq9XKrFmzKCgoYPbs2Tz88MMe1ZOTk0NaWhoADz30UDu2sHMdOnSI7du3s3fvXg4dOkRRURE1NTWEhIRw+eWXM2HCBOLi4ggODu7spnqV4OBg7r77bpYuXcpbb73F+PHjCQgI6OxmiYjIBaAAVkSki5s3bx45OTmdcuz9+/dTUFAAwKRJkzyu55133qGmpobx48czcuTI9mpep5o3bx4//vij07Ti4mKKi4vJzMxk+fLlJCUlMW7cuAvbQC83a9YsPv/8c/Lz8/niiy+YPXt2ZzdJREQuAA0hFhHp4uxXWsF25WrMmDH06dPnghx78+bNAPTr148RI0Z4VMeePXvYsWMHQJcKUuyBfUhICPHx8SQlJfH222+zdOlSXnjhBSZMmADYgtmkpCR2797dmc31OkFBQcycOROA1NRUzp0718ktEhGRC0FXYEVEurj4+HhCQ0MZNmwYAwcOxGKxMG/ePIqLizv82PYAduLEiVgsFo/q+PTTTwEICwvjt7/9bbu1rbMNHDiQOXPmMHXqVPz9/RukDRs2jMmTJ/PJJ5/w3nvvUVVVxWuvvcZHH33USa31TrGxsSxbtowzZ87wr3/9izvvvLOzmyQiIh1MV2BFRLq4WbNmMW3aNCIiIjwOIj1x9OhRcnNzAc+HDxcUFJCRkQHA9OnTL2j7O9rixYu56aabmgSvjmbPnk1kZCQAR44c4eDBgxeqeaYQFhbGqFGjAPj66687uTUiInIh6AqsiIh0CPvssPZhy55Yu3YttbW1AEyZMqVFZaqrq1m3bh3ff/89+/fv5/Tp09TU1BAaGsqQIUOIjo5m2rRp9O3bt0G5mJgYAOLi4khKSuKXX37hiy++IDMzk8LCQnr06MHQoUO59957GT16tFGusrKS1atXk56ezrFjx6ioqCA8PJwbb7yRO++8s82TC40dO9a4h/no0aNcfvnlHtd15MgRVq5cye7duzl58iQVFRUEBwcTEhJCWFgYUVFRXHfddfz617/2qP7q6mrWrFnD+vXrOXToECUlJVgsFnr27EloaCgjRowgOjqaiRMn4ufn16Bs4/f/yJEjfPXVV+zYsYPCwkLKy8t56aWXmvwYMmXKFHbv3k1ubi779+9n+PDhnr05IiJiCgpgRUSkQ9iHD0+YMIFu3Tz772bLli2A7T7RQYMGNZv/559/5tlnn+XYsWNN0goKCigoKGDbtm0cPHiQpKQkl/Vs2LCBl19+mYqKCmNfZWUlW7duZdu2bcyfP58ZM2ZQWFhIUlIS+/fvb1D+8OHDvP/++2zdupXXXnutTUFsdXW1se3j4/nAqZUrV7JkyRJqamoa7C8pKaGkpIRjx46RmZnJwYMHWbhwYavrP336NH/605+cThhmf+9zcnL4+uuvSU1NZeDAgS7rWr16Na+99hpVVVXNHtdxUq8tW7YogBUR6eIUwIqISLsrLCzkp59+AjwfPlxVVcW+ffsAGDFiRLPDh3Nycnj88ccpLy8HYMyYMcTGxjJo0CD8/PwoKioiKyur2XVDDx48yLp16+jduzcPPfSQceydO3fy8ccfU1FRwRtvvMHo0aN58cUX+fnnn7n99tu57rrrCA0N5fjx43z00UccPHiQPXv2kJqayu9//3uP3gOAH374wdgePHiwR3UcOnTICF579uzJjBkzGD16NKGhodTU1FBUVER2djZbt271eJj2kiVLjOA1KiqK2NhYwsLC6NGjB2fPniU3N5fdu3cbQ8Jdyc7OZu3atfTs2ZM777yTkSNH4ufnx5EjRxgwYECT/IMHDyYoKIjy8nJ++OEHEhMTPWq/iIiYgwJYERFpd99//z1WqxV/f3/Gjx/vUR0HDx40rj4OGzbMbd7q6mqeffZZI3h98sknjRlqHV177bU88MAD5Ofnu6wrJyeHyMhIlixZQkhIiLH/N7/5DQMHDiQ5OZnq6moef/xxSktLWbx4MdHR0Ua+oUOHcvXVVzNnzhwKCwtJS0tjzpw5+Pr6tur1g20Y9uHDhwFbEB8REdHqOgDWr19vXHl94403jPtqHU2aNIkHHniAkpKSVtdfWVlp/DAwadIkXnzxxSaB8OjRo7ntttsoLy93eyX58OHDDBw4kLfffrvBbNmuZrH29fVl6NCh7N69mwMHDlBbW9umK9UiIuLd9C+8iIi0O/vw4ejoaIKCgjyqw3EYcHPL/qxdu5bjx48DtlmXnQWvjvr37+82/emnn24QvNpNnjyZfv36AXDq1CkSEhIaBK92wcHB3HTTTUa+I0eOuD2eM4WFhbz++usAWCwWHn300VbXYWefcTo4ONhp8OqoV69era7/zJkzxo8No0ePdnsVNygoqNkh1U899VSrlnqy562oqKCwsLDF5URExHwUwIqISLsqKytj165dgOfDhwGKioqM7Z49e7rNaw+YAe655x6Pjwm2IamugjyLxdIgLTY21mU9jvlOnDjRqjZUVFSQlJRkBJ6NJ45qLXvQXVZWxvr16z2ux5VevXoZsyl/9913bVqTtV+/fk5/FHDH8fPh+LkREZGuRwGsiIi0q4yMDKqrq/H19WXixIke11NZWWlsO7sa6ujAgQOA7UpcSyZ7cqe58o5tcTdbr2O+1gR058+f55lnnjEmhrruuut44IEHWlzemdjYWOOqZ3JyMo899hiffPIJe/bsMYZdt4Wfnx9xcXEAZGVlcdddd7F48WK+++67Vgfvnsyy7BjAOk68JSIiXY/ugRURkXZlvxp61VVXERoa6nE9jveMNjcb7enTp4H6K41tERgY6DbdcXisu+HRjvdh2pcCak51dTULFy5k+/btAIwbN47nnnvOo/tnHYWHh/PKK6/w8ssvU1BQwN69e9m7dy9ge5+HDx9OTEwMt9xyS7M/FrjyxBNPUFVVRXp6OqWlpXzzzTd88803gO2HhXHjxhEfH9/sleTmrrY74/hjh6czXouIiDnoCqyIiLSbqqoqtm3bBrRt+DDY7te0Ky0tbVNdZlBdXU1ycrKxdFB0dDQvvfSSMTS3raKiovj00095/vnniY+PN5axqampYd++fbzzzjvcc889RvDcWgEBASQlJbF8+XL+8Ic/MHbsWCPALy4u5ttvv2XevHk888wzDQLOxjyZgMlx4inHz42IiHQ9+plSRETazY4dO4whqW0NYB2XTGkugA0NDSU/P9+0E/jYg1f71euxY8eSkpLSpvVjnfH39+eGG27ghhtuAGxXrnfu3El6ejpbt26ltLSUhQsXkpqaSt++fT06RkREBPfffz/3338/NTU15OTksGXLFlauXMmpU6fYtGkTS5cu5fHHH2+313XmzBlju7kJukRExNx0BVZERNqNPQCLjIwkLCysTXU5rnn6yy+/uM1rX2anqKio2bzepnHwOmbMGF555ZV2D16dCQ0NZerUqbz66qvcfvvtAJSXl/P999+3S/324cmJiYm8++67xvDstWvXtkv9drm5uQCEhYXRvXv3dq1bRES8iwJYERFpF7W1tfznP/8BbBMPtVX//v255JJLAPjpp5/c5o2JiTG2U1NT23zsC6W6uprnnnvOCF5Hjx7NX/7yl2bvw+0I48aNM7bt9xS3p7CwMGMdW0/WmnXl9OnTxhJKV155ZbvVKyIi3kkBrIiItIu9e/cagY9jQNkW9qAqNzeXs2fPusw3ZcoUIzhatWoVX375pdt68/Pz26V9bVFdXc0LL7zApk2bgI4NXjdu3NhsUGq/dxng0ksvbVX9J06cYMeOHW7znDx50rhSGh4e3qr63cnKyjK2r7nmmnarV0REvJPugRUR6eKOHTtmzDhrZ19fFGDDhg0NZgsOCgpi8uTJrT6O/SpieHi4R0uhOHPDDTewatUqamtr2bFjB9dff73TfN26deP555/nscceo7y8nDfffJNNmzYxffp0Bg0ahJ+fH0VFRezfv58NGzYwbNgwkpKS2qWNnlq0aBEbNmwAbAHjI488wsmTJ92W6d27N7179271sb788ksWLVpEVFQUUVFRXHbZZfTq1Yvz58+Tn5/P2rVrjavnAwYMaPXyR/n5+Tz11FOEh4czceJERowYQf/+/QkICKCkpISsrCzS0tKM2aRnzpzZ6tfgSmZmJmC7v3fChAntVq+IiHgnBbAiIl3c3r17SUlJcZn+zjvvNHg+YMCANgWw7TF82C46Opp+/fpRUFBAenq6ywAW4IorruCtt97i2Wef5cSJE+zatYtdu3Y5zWu/Z7YzrV+/3tg+fvw4jzzySLNl5s6dS2JiokfHq6qqIiMjg4yMDJd5Lr30UlJSUtwuD+TOiRMn+Pzzz12m+/j4cM8993DHHXd4VH9j1dXVfPfdd4Dtqr+nSwCJiIh5KIAVEZE2+/nnn42rh22dfdiRr68vCQkJvPfee2zdupXTp0+7XVt26NChLF++nPT0dDZv3kxOTo5xv2Xv3r25/PLLufrqq5k2bVq7tdEMkpOT2b59O7t37+bQoUMUFxcbQ4p79erFFVdcwaRJk4iNjfVo2Z5Ro0bx9ttvs2PHDrKyssjPz+fUqVOcPXuWwMBAwsPDGTVqFLfccku7XZ0HjM8EwKxZs9qtXhER8V4Wq9Vq7exGiIiIuX3wwQd88MEH9O7dm6+++sqjtTxdKSsr4+6776a0tJSHH36Y2bNnt1vdYm4LFiwgIyODqKgo3njjjc5ujoiIXACaxElERNrMPnz42muvbdfgFSA4ONgIWlesWMG5c+fatX4xp6ysLDIyMrBYLDz00EOd3RwREblAFMCKiEibnD9/nkmTJjF37lwSEhI65BgzZ85k4MCBlJSU8M9//rNDjiHmsnTpUgCmT5/OiBEjOrk1IiJyoWgIsYiImMJPP/1ERkYGwcHB3HXXXZ3dHOlEZWVlfP7551itVhISEtzeFy0iIl2LAlgRERERERExBQ0hFhEREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiCAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFREREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiCAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQU/h84PrCbopSzMQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACq2ElEQVR4nOzdd3gU1cIG8HdmS3pPSIAAoXfpSLuCNBVEURH0qqBYrvopUhTRCyKiXhEVwY6NphRFUBQQEFB6V2qoCSWQAuk9u3u+P5YdNsn2bLLZ5P09zz7Z7J6ZObvJ7sw758w5khBCgIiIiIiIiKiakz1dASIiIiIiIiJHMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFtwTYxMRESJIESZLw6KOPumOVtVK/fv2U95GIyJpHH31U+a5ITEz0dHUUCxYsUOq1YMECT1eH3MxgMKBLly6QJAnPP/+8p6tDXoLHiESWVdd9uTssWbIEkiQhNDQUqampbl9/lbXALliwAK+//jpef/31qtqkx61evVp5zZmZmZ6uDl2n0+mwadMmTJkyBf3790fdunXh4+ODwMBANG3aFA888ABWr14NvV7v1HqPHj2K559/Hq1atUJgYCBCQkLQvn17TJkyBefPn6+kV0NEtUVJSQk2b96MWbNmYcSIEejQoQPq168PX19fBAQEIC4uDsOHD8e3336LgoICt29//vz5OHjwIHx9ffHKK69YLHPixAl8/fXXePrpp9GzZ080adIEwcHB0Gq1qFOnDv71r39h2rRpOHfunMPbzcrKwuzZs9GvXz/UqVMHWq0WdevWRd++fTFv3jzk5+c7vK78/Hx8+eWXGDp0KGJjY+Hr6wtfX1/Uq1cPgwcPxty5c922vxZC4NSpU/j+++8xadIk9OvXD8HBwRUOc7t27cLYsWPRtGlT+Pv7Izw8HF26dMGbb76Jq1ev2lzWPEw6e/Nmzz//vPI6pk2b5vTy+fn5CAkJgSRJUKvVuHz5coXqU1hYiG+//RZ33XUXGjduDH9/f4SGhqJVq1a455578NFHHyEpKclqXdavX4+ZM2firrvuQrt27RATEwOtVougoCA0b94co0aNwg8//ODUcUxJSQm+/PJLDBgwQDkuio2NxbBhw7B8+XIIISr0msvS6/X47rvvMHz4cMTGxsLHxwfh4eHo2LEjpk6digsXLji0Hmf+h2195szDpDM3b841KSkp0Gg0kCQJAQEByMnJcXodb775pvJePPPMM8rjDz74IFq0aIGsrCyr+4sKEW6QkJAgAAgAYsyYMRbL9O3bVylTW4wZM0Z5zQkJCXbL18b3qKpt3rxZhIeHK++zrVu3bt3EmTNnHFrv7NmzhUajsbquoKAgsXTp0kp+dVRbOPvdUlW+/fZbpV7ffvutp6tT45w4ccKh7y4AIi4uTuzYscNt287LyxMxMTECgBg3bpzVcjfffLND9dNoNGLGjBl2t7t+/XoRERFhc11NmjQR+/fvt7uuffv2icaNG9utW506dcTvv//u1PtjycSJE21ux9rxkjUGg0FMmDBBSJJkdZ3R0dHijz/+sLoO8+M1Z26NGzd2+X1w5Bixsh04cECpQ8OGDYXBYHBq+UWLFinLDxkypEJ12bRpk2jSpInd93zOnDkWl1+3bp3Df7ebbrpJnDhxwm6dEhISRKdOnWyua+DAgSIjI6NCr93kzJkzokOHDja3FxgYKBYtWmR3Xc78H9v6/zPfrzpzW7hwocvvQ3XYlw8bNkypw1dffeX08k2bNlWW37t3b6nnTJ8bWZbF8ePH3VVlIYQQarhBXFyc28/M1EZbt271dBVqvKSkJKSnpwMAwsPDMXDgQPTo0QN169ZFSUkJ9u7di0WLFiE7Oxv79u3Drbfeir179yImJsbqOj///HO89NJLAACNRoNHHnkEffv2RUlJCX7//Xf8+OOPyMnJwSOPPILQ0FDcfvvtVfJaqeZasGABu+jWYk2aNMHNN9+Mtm3bomHDhvD390dOTg6OHDmC5cuXIykpCYmJiRg0aBD27NmDdu3aVXibn376KZKTk6FSqTB58mSbZUNCQtC9e3d06tQJTZs2RVhYGPR6Pc6fP4+1a9fir7/+QklJCaZPnw6dToc33njD4nq2bNmCYcOGoaSkBADQo0cPjBo1CvXq1UNqaipWrVqFzZs349y5c7j99tuxc+dONG/e3OK6zp8/j4EDByIrKwsAEBMTg0cffRTNmzeHWq3GuXPnsGjRIiQkJCA1NRXDhg3Dnj170LFjR5ffs7KtX0FBQWjQoAGOHz/u0vpeeeUVzJkzBwAQEBCAxx9/HN27d0dubi5WrlyJjRs3IiUlBXfffTe2bdtmse516tTBqlWrHNrezJkzcfDgQQDAY4895lKdq4vOnTvjpptuwuHDh3HhwgVs3rwZAwYMcHh58+/birwXP/30Ex544AGUlJRAlmXccccd6N+/P+rVqwchBJKSkrBnzx6sX7/e7rratGmD7t27o1WrVkpvgszMTBw8eBDLli1Deno6Dh8+jL59++Kff/6xehyTmZmJO+64A/Hx8QCA1q1bY+zYsYiNjcWZM2cwf/58XLx4EZs2bcK9996LDRs2QK12PT5cuXIF/fr1w6VLlwAADRs2xNixY9GqVSvk5+djy5YtWLp0KXJzc/Hoo4/C398f9913n931tm3bFm+++abNMg0bNrT63Lhx4zB8+HC72zl9+rTyHRgUFIQRI0bYXaY6e+yxx7BmzRoAxv/zxx9/3OFlt23bhrNnzwIwvv/dunUr9fy///1vTJs2DefPn8eMGTOwbNky91XcrXHYhtrYulgdzqxQaYsXLxbt27cX33//vSgsLLRY5tKlS6Jt27bK32706NFW13f58mXh7+8vAAi1Wi02btxYrox5q1SDBg1EQUGB214PUXXCFtjKlZubK86dO2ezTH5+vrjrrruUv8Ptt99e4e2WlJSIBg0aCABi8ODBNsseP35clJSU2CyzZMkSpRVRrVaLS5culStTWFgoGjZsqLyOKVOmWFzXnDlzlDL9+/e3us2xY8cq5W677TaRn59v8XWOHj1aKXf33XfbfB32fPHFF2LChAniu+++E/Hx8cJgMIgtW7a41Bp58OBB5T0LCQkR//zzT7ky06dPV9bdrVs3p1sZzWVkZAhfX1+l9eTChQsur6s6tMAKUfp/5ZFHHnF4ufPnzyvvfUREhCgqKnJp+0ePHhU+Pj4CMPYasPQ3NCksLBQpKSkWn7t69aq4fPmyzW1du3atVG+Ip59+2mrZ8ePHl/q+KHuMcu3atVKtsx9//LHNbdszcuRIZV0DBgwQubm55cps375dObaKiIiw2fJrWlffvn0rVC9Hvfzyy8o2n3jiiQqtqzrkhOLiYhEZGanUw9Geh0KU/l597733LJZ59dVXBQChUqnE+fPn3VVtwQBbiarDPyaVlpGR4dBO/ciRI8rfzs/PT+Tl5VksZ/7F/9JLL1ld3/333++2L3+i6ooBtnpITU0VKpVKCYiuHnCbrFq1Svm7OtKlzxHmIfvrr78u9/yyZcuU57t27Wrze3vIkCFK2U2bNlksU79+faXMsWPHrK4rIyNDqNVqAUCEh4c7/8LscDXADh8+XFnuk08+sVjGYDCI7t27K+V+/fVXl+v5ySefKOsZNGiQy+sRovoE2NTUVOVSn4CAAJGTk+PQcm+88YZS/+eff97l7ffo0UMAEMHBwW49kLfm4MGDpU6eW5KSkiK0Wq3ynlgLzUeOHFFCfExMjNDpdC7V6fLly8p6/Pz8rG5PCCHeffddpf5Tp061Wq4qA6xOpxN169ZVtlnRyzSqS04wP5adNm2aQ8vk5eWJoKAgZT+TnJxssdyxY8eUdf/3v/91W50rfRRi08i6f/75p/KYMxdBGwwGrFixAqNGjVIudA8KCkKrVq3wzDPP4MiRIzbr9vrrryvbMHXR/eOPP/Dggw+icePG8PX1LTf6l06nw++//45JkyahT58+yqARQUFBaNGiBR599FH89ddfVrdpuhB84cKFymONGze2ezG5M6MQ79mzB0899RRatmyJoKAgBAQEoGnTphgzZgw2b95sd3nTdvr16wcAyMvLw3vvvYeuXbsiLCwMAQEBaNu2LV555RVkZGTYXZ+3CA0Ndej9bdeuHVq1agUAKCgowJkzZ8qVEULghx9+AAC7o3KOGzdOub98+XJnq10hu3btwjPPPIM2bdogNDQUvr6+aNiwIUaNGoXffvvN5rJbt24t9xm9cOECJk2ahFatWiEgIAChoaHo1asXPv30U+h0OofqlJubiw8//BCDBg1CvXr1lMEbunXrhtdeew1paWk2ly/7WdHr9ViwYAEGDRqE+vXrQ61WIy4urtxyKSkpmDx5Mtq0aYOAgACEh4eje/fueP/995WBYOLi4iBJUrnl169fr2zT/O9py7hx45Rl1q1b59AyjrA3cmFl/d1+/fVXDBs2DDExMfD19UVcXBweeugh7Nq1y+nXUFxcjK+//hp33XUXGjRoAF9fX4SGhuKmm27CpEmTrI7IePLkSQQEBECSJISEhCAhIcHqNjIyMtCwYUNIkgSVSmXze7smiYqKQlRUFADj/szewD72LF68GADg5+eHe+65p8L1A4zdH02Sk5PLPW++H3v44Ydtfm+PHj1auf/9999bLGM+Cqa1bsaAcR9heu/y8vKslqtKOTk5yvdHcHCw1YFoyu6HKrKv+fbbb5X7Y8eOdXk9zkhLS0O3bt2U766JEydavDzN1X1aVFQU7rzzTgDGv+2KFSscqpf5sZyr3Ye3bduG3bt3AwAmTZpksyuru9j7jAHGwUaLi4sBGAfdqVOnjsVy7dq1Q//+/ZV1mR/TO2Pr1q3K3/S2226zuj2g9Od66dKlLm3P3davX48rV64AAFq1aoVevXpVyXa/+uorqNVqSJKE2NhYHDt2rFyZihxXmf9fL1q0yKHLQleuXKkM+jRkyBBER0dbLNemTRvlcoYlS5a475JTd6RgW2fXzFtebd2mT59ebr1nzpwRHTt2tLmcLMs2zxaYd6nZvHmz+L//+z+L6zE/89GvXz+H6jxmzBiLZ7YdvRDc1ntlTUlJiXjyySftrnvkyJEWu0iZmMr17dtXnD17VrRp08bquho1alQrW5C7deumvAe7d+8u97x5K227du1srkuv14vg4GDlfzY7O7uyqq3Izc0Vo0aNsvu/MnToUKv1MW8tmD59uli3bp0IDQ21uq5BgwZZ7ZptsnbtWlGnTh2bdQoKChI///yz1XWYf1auXbsm+vTpY/H/1tzmzZtFWFiY1W22b99eXLhwQTRq1Mji8nq9XhkAJiwszG5X8IKCAmV7DRs2FHq93mZ5Z9g7a+vuv5tOp7P5vSbLspg1a5bDLbCODKaj1WrF559/bnH5+fPnK+V69uxptTVgxIgRSjl3nvmt7jIzM5WWJo1GU6HLFgoLC5WufLfccovb6mjeK8VSC6x5q+q6detsrsu8pSkmJsZimdjYWKWMoy2wHTt2dO5FOcCVFtg1a9Yoy9x55502y6ampiplo6KiXKqj+b4tLCzM7ne6PY60wCYkJIgWLVoo5f73v/+VK+OOfdovv/yilHPk//mvv/5Synfo0MGZl13KY489pqzn7NmzLq/HGeYtX9ZaYO+77z6lzI8//mhzfbNnz1bK2upxZot5q+rLL79st7zpuAmAiI+Pt1jG/Hi2st17773K9mbNmlXh9TnSAvvWW28pZVq2bGmx9d4dx1WdO3dWym7evNlu3fv376+UX7Vqlc2yEyZMUMoeOnTI7rod4ZZBnGwxDes+depU5YyBpQEETK1dJmfPnkWPHj2UM8d9+vTBnXfeiUaNGkGv1+PAgQNYsGABMjIyMHPmTMiybHco69mzZ2PdunXK4A3t2rWDTqfD3r174ePjo5QrKChAYGAgBgwYgC5duiAuLg6+vr64cuUKjh07hu+++w55eXlYuHAhQkND8eGHH5bajulC8Hnz5mHLli0AgC+++KLcmSZXzsA98sgjykXQvr6+GDNmDHr16gWVSoX9+/fj66+/Rk5ODlasWIGsrCysW7fO5pnr7OxsDB06FCdPnsTdd9+N22+/HeHh4Th37hw+++wzXLhwAefPn8fo0aNrTesFYGwdOn36tPJ7o0aNypU5evSocr9Lly421yfLMjp16oQ///wTBoMBJ06cQPfu3d1X4TKKioowcOBA5Yxv06ZNMWrUKLRu3RoajQZnzpzBokWLcOrUKfz2228YPnw4Nm7cCFm23inj77//xuzZsyGEwH/+8x/07NkTPj4+2L9/Pz7//HPk5eVh48aNeOutt6wOyrJy5UqMGjUKer0eGo0Gd911F/r164fo6GhkZ2djy5YtWLFiBXJycnDPPfdg48aNyllfax5++GFs374dHTp0wIMPPoi4uDhkZ2fj8OHDSpnjx4/jzjvvVFpZO3XqhIcffhixsbFISUnB8uXLsWPHDowaNcpqa6Qsy3jyySfx6quvIiMjAytXrsRDDz1ktV4//vij0nvh8ccft/neViZ3/N3GjRuntEJotVqMGTMGffr0gSzL2Lt3L77++mu8/PLLDg2AsWvXLgwcOBD5+fmQJAm33XYbBg8ejPr166OgoAC7du3C4sWLkZ+fj6effho+Pj7lWpyefPJJ/P7771i5ciV27dqFGTNmlKv7119/jR9//BGAcfAfb57qwBk6nQ7PPfecMvDRkCFD4Ovr6/L6duzYoXxu3PWd9dtvv+Gnn34CYNyPDRkypFwZ4eJZ+uTkZFy9ehWRkZGlHr/77rvxySefAAAmTpyIVatWwc/Pr1QZnU6H8ePHK98B48ePd6kO7ubMviYqKgqNGjXC+fPnkZaWhtTUVJutXJZ88803yv1///vfpY6PKsORI0dw++234/Lly1CpVJg/f365Vl937dPuuOMOREdHIyUlBdu2bcO5c+fQpEkTq3Vz1+BNpuOniIgINGnSBJcvX8bcuXPxyy+/4Pz589BqtYiLi8PgwYMxbtw4xMbGurwtwNjCbN5T6N5777VYzpn/ra5du1pczhmufq4B4/9Jy5YtrT5/8uRJ9OnTBydOnEBOTg7CwsLQsmVLDBgwAP/5z39sDsbpiKtXryqDHanV6lItxJVBCIHx48dj3rx5AIBu3bph7dq15b7b3HVc9dhjjymDti1YsAC33nqr1bqdP39eyTdRUVEYOnSozdfSo0cP5f7vv/9eocHxFO5Iwe6eRkev1ytnAnx8fMSKFSsslktOTlZaaGVZFkePHi1XxrwFFoDo06ePyMrKsrn9TZs22Wy9vHr1qtLiI8uy1UE13D2Njvk1QdHR0RbPIicmJpZq2bB2vaX5e6LVasWaNWssvk7zde3Zs8fua7AmLy9PrFq1yi23AwcOuFwPRy1evFh53Z07d7ZYZsaMGaVauewxHxxk8eLFbq5xaWWvzbU0qEpxcXGpOn322Wflypi3FgDGlsRTp06VK7dnzx6l1cLaGfsLFy4oZ1MbNmwoDh8+bLHue/bsESEhIQKAiI2NFcXFxeXKlO3ZMX78eJstnOYttM8++6zFsmW/K8q2wAph/M4xtWzZO9t7yy23CMA4cMHFixdtlnWWMy2wFf27mbdAhIaGWpyuJD4+XplixXSz1AKbnZ2tDAYUGhoqtm7davH1nT59WhnAJyAgQKSlpZUrk56errSqqVQqsW3bNuW5kydPioCAAAEYrzeraIvHiRMn3Pb9Zem1uEKv15da7+LFi8Wrr75aakqDuLg4kZiYWKHtvP3228r6fvjhB6eW3bdvn1K/5cuXiw8++EDccccdyvpUKpXF1lchSrdYzZ071+Z2zPeNAMT27dvLlUlLSxPNmjVTysTExIhXXnlFfPPNN2LRokVi+vTpyv5OlmUxc+ZMp16ro1xpgTV/Lxy5ttz03QOg1OfCEcXFxSIqKkpZ3h37W1vHiNu2bVN6h/j6+orVq1dbXIe79mlCCPHiiy8qZV577TWr9Ta/xk+j0bj82c3IyFC217FjR/H777/b7A3k6+vr8NQsOTk5ymfsp59+EgsWLBATJ04sdZ1mx44dLQ6CpNfrle9/lUpld/C1c+fOKets2rSpK2+FWLhwobKOe+65x2bZ5OTkUu/Lm2++abGctffR/Obj4yM+/PBDl+psYj4I2LBhwyq0LhNr+/Li4mLx4IMPKs8NGjTI4jXb7jyuunbtmjLImL1rxM2PfydMmGD3dSYmJjr8d3dUtQywK1euVMrOmzfPZtmTJ08qg1U8+eST5Z43PygNCAgQSUlJDr0me86ePaus19qOzt0B1nwUuLVr11pdz549e5SL5Bs1amSxe535B/uNN96wuq4vv/zSoXL2uDr3nKVbZQ8CkZ6eXurL39pBm3mXiI8++sjuep0t76rLly8rgzLce++9NssWFxcr89E1b9683PNlg9Bff/1ldV0PPfSQzXLPP/+8sqO014Xk66+/Vtb13XfflXve/LPSpUsXm+F13759Stl27drZHHzCfL2WAqwQpbs+WgqFQhi/l0xlhg4davO1usLZAFuRv9vdd9+tPL9gwQKr6/n1119LbdPSgfb777+vPP/LL7/YfI1//PGHUvatt96yWGbr1q1ClmXl75WRkSGKi4tFly5dlGXdcbKo7MmNity2bNlS4foIYeyibm0bgYGBYuzYsW4Jy//+97+V9Vo7OLLGVnfP3r1725yv9KuvvlLK2htRd+jQoaXWbW3womvXrokRI0YoxwyWbiNHjnRbFzdLXAmw99xzj7KMpZPNFS1v7qefflKWrUiXWXPWjhF//vln4efnJwDjyMp//vmnxeXduU8TonTX2ri4OKv/W+Zhy952bTGfv7l+/frKybXOnTuL999/Xyxfvlx8+OGHomfPnqX+F1euXOnUusvewsPDxYQJE6wOQpmVlaWUjYiIsLstZ8tbcubMGWUd/v7+IjU11WpZ8y7LAMSLL75osRxgDNTPPPOM+Oyzz8SKFSvEwoULxeTJk8vNt2vrhIU9N910k7Iee11mHWVpX56bmysGDx6sPD5q1CirA/G587hKiNLHN998843FMgaDodSJUkf3C6bPuqsnP8qqlgHWNNpecHCwQ9fumD70lg44zQ88bE2H4gpTi4O1a1LcGWDN3+P27dvbXdeAAQOU8pZaTk3PqVQqkZ6ebnU95kH9gQcesLtda7wlwOp0ulJfHLbCh/m1yF9++aXddZuGEgcg3n77bXdWu5QPP/xQ2c7OnTvtln/llVes/p+aH2x16tTJ5nrMvxzLXrtoMBhEeHi4AOxPwyGE8QvcdGbY0t/b/LNi7UvWZOrUqUpZa2fkTcwP3qwFWPNgNXnyZItlXnrpJaWMrWtOXOVMgK3I362wsFA5cIyOjrY78mTr1q2VdVkKsKYeMy1atLD7GoUQol69egKw3dpt/rkaNWqUmDx5svL7Qw895NB27PG2ANunTx+xZMkSi2fZndW7d29lvZamu7HFWoCNjo4WM2bMsNkzITMzs9R129ZGIf3oo4/Krf/777+3ut6zZ8+KJ554wup7p9VqxciRI+1OU+IqVwLsoEGDlGUsTdVWlvlJB1vvhSV33nmnsqy9lm9HWTpG/Prrr5UTCTExMeLvv/+2urw792km5qM1W/tM3nrrrUoZZ08EmNu1a1e5/zNrPYGmTJmilImIiLA4xYw5WwH2zjvvFKtXr7Ya0JOSkpSy9evXt/s6iouLS31OXGX+vg4aNMhiwN61a5cS9E23p556yuL6rJ34EMJ4TGd+DAA43ytBCCH279+vLF+nTh27rdWOKrsvT0tLK/W/+X//939WT9C7+7hKCOO1tKZtW9vv/vnnn0qZLl26OPpSlf25Vqut0BRfJpV+Dawrtm3bBgCoW7euQ5M5q1QqAMY+2QUFBeWuazH517/+5XAdsrOz8d1332Ht2rU4cuQIrl69anVEQtNkzJVp7969yv3BgwfbLT948GD88ccfAIwjFlu7dqlFixYICwuzup769esr9ysyGnFcXJz7Rh6rRC+88AI2bNgAwHiNsvn1L97C9PkBjP+bq1evtlne/O964sQJi6P3AqWvYbDE1v/KsWPHkJ6eDsA48be9OgFAYGAgMjMzceLECZvl7H2u9+/fr9y3dU0HAGVUbltuvfVWtGjRAqdOncLChQvx5ptvQqPRKM+XlJQo14vWq1fP7rUhla0if7d//vlHGaGyb9++ynetNQMGDLD698rKylKuS46Ojnb4fwCAzf+BGTNm4I8//sCePXtKjbrauHFjfPrpp3a34YjXX3+92l1D6+vrq3ynCiGQkZGBv//+G1999RWWLl2K7du3Y/78+fjxxx+VUXVdYfrcAkB4eLhTyy5btkwZsyE/Px8JCQlYs2YN3n33XUyfPh1z5szBsmXLcNttt5VbNiQkBHPmzFGuO3zzzTexefNmjBw5EvXq1UNaWhpWrVqFTZs2wc/PD6GhocrooNauN//f//6HqVOnwmAw4IknnsDTTz+tjNR6/PhxfP755/jqq6+wYsUK7N69Gxs3bkSLFi2ces3eLDk5WTnm0mq1Nq/xr4hZs2ZhypQpAIzXsm7YsMHmdaiVsU8bO3ascly1YMGCct/958+fV2auiImJwe23325zm7YYDIZSv7du3Rpz5861+H/69ttv448//sC+fftw7do1fPfdd3jqqaesrrtVq1bK94Ber8e1a9ewd+9efPzxx/j111/x66+/YsSIEViwYAECAgJcfg3uNG/ePPTo0UMZf6Ft27YYO3YsWrZsifz8fGzduhXff/89SkpK0KRJE5w7dw6A9c/1LbfcYnVbKpUKM2fOREpKCr788ksAwFtvveX0rADmo3I/8sgjUKvdH58uXLiAp556CidPngQATJ8+3eZ+pzKOq0zjUSQlJeGvv/5CQkICGjduXKqMq9eFR0RE4PLlyyguLkZeXp6yf3dZhSOwcG8LbE5OToXObpftImx+5txWt1tzmzdvLnc9l61bkyZNLK7HnS2w5mcgv/jiC7vrMp+375VXXin3vOm5f/3rX3bXZSpbVZNEe4p5S050dLQ4efKkzfLVtQuxefdJZ29lu5WYtxbYmxus7Mi35sxH0XT2ZqkbmPlnxdb16kKU7vbjSIuUqdXHWgusEEK89957yjrLdvP68ccflecqa+RbZ1pgK/J3M/8eefXVV+3Wy/x7qmwLrPnIps7eNBqNze2ePXtWuVYNMM5Jt2vXLrv1ranML/24+eabK3S229QFT6VSua1+iYmJyrysGo3GZuvbRx99pFx3bukWFBQkfvnll1KX2Pz+++/l1mP+/W7r0qS5c+cq5bp27eqW12uuOnchnjVrlrLc/fff7/By9pgfI5quwwOMXZStzR1pzp37NJPMzEylS6Ol6/3Mr/Gz1NNm27ZtNq91N29VPHz4cKk6vfvuuzZf7xdffKGUHTlypN33xxrzlkdLf09PdCE2+euvv2yOmitJknjttddKHTdZOpZ1VFJSknJpnY+Pj93jBnOFhYWlrlm2NYq5s8z35abPhiRJ4tNPP7W7rLuPq0zMezCUPSYwvy7cx8fHZg/Ossx789jqOu4ozwyLaUNWVlaFlje1FlhirWXW3OnTpzF06FBlzqyWLVti/Pjx+OSTT7B06VKsWrVKuZnOauv1+grV2RGmuZYAOHQWzfzMhvmyZXlqZNTq5s0338Tbb78NAIiMjMSmTZvsnnkPDQ1V7jsyz+K1a9csLutuFfkM2fr8VOR/pbLqBNj/XJt6TqjV6lItpdY48vl69NFHlZE5TWd1TUy/S5KExx9/3O66KltF/m65ubnKfX9/f7vlbb13FfkfMI2oa01kZGSp1sEmTZrYHVGzJnviiScwYMAAAMYeOI70ZLLG9H+u1+uV0YgrqlGjRnjnnXcAGP+2pu9eS5577jnEx8djwoQJaN++PYKCguDr64tmzZph3LhxOHz4MIYNG1bq+7XsaKNJSUmYPXs2AGPr13PPPWd1e88//zxat24NwNh7wzTqrSdV1b6mKuZ+NR/lvaCgwKHjp8rYf4SEhChzGufl5WHlypXKc0IILFq0SPndUivT1KlTcc8991i9mc87XPZvYO+7yfz5s2fP2ixry4wZM5TjmB9++AHHjx8v9XxgYKDSkpiZmWl3PnB3HsP861//wqlTpzBr1iz06dMH4eHh0Gg0qFevHkaNGoVt27ZhxowZNj/XzqhXr57yXhQVFdmcP7ys1atXK636N998c6n5dd3J9P4LIRyag7qyjqvMR/0vOyfsjz/+qGSK4cOH2+zBWZZ5fR3JY/ZUuy7E5sHrlltucXmyZFf973//Q0FBAQDgv//9L2bOnGl1Gponn3yyyuoVFBSk3HfkH9v8wNN8WU/Jz89XuuZWVMOGDdG5c2e3rAsA3n33XUybNg0AEBYWho0bN6Jdu3Z2lzMPuImJiXbLnz9/3uKy7mb6DEmSBJ1OVy1OUph/rl977TXMmDGjyrZtClU6nQ4lJSV2Q6wjn6+IiAiMGDEC3333HTZs2IALFy6gYcOGOH/+PDZu3AgAGDhwYLmuN97G/O/mSHix9d6Zr2v06NFKN2t3ePbZZ0t9vk6dOoWpU6di1qxZbll/fHw84uPj3bKuPn36lJsGoTLcfvvtymUkW7duxR133OHSesxPDKSnpzt0IsPR+pmYumpa06RJE3zwwQdWn8/NzcXFixcBGE+0lD3A3LBhg3ISZMCAATanlpMkCf3791e62O3du9duN/zKVhX7ml27din/47GxsQ5dquSKESNGIDg4GB999BFOnTqFW2+9FVu2bEG9evWsLlNZ+7THHnsM33//PQBjt8gxY8YAMHZZNgXHHj16lJvm0VmxsbEICAhQvh9DQkJsljd/viIhRZZlDBo0CKdOnQIA/Pnnn6U+G7Iso2nTpjh58iT0ej0uXbpk9RIiwP3HMCEhIZg8eTImT55stYx56O7WrVuFthcREaHcz8zMdHg582mlKuvEDgCsWLECjz32GFJTU/HSSy8BAF588UWr5SvruKpFixbo3bs3duzYgYSEBPz111/o27cvgIpNK2Xq7qzVat3Snb3aBdiQkBAEBgYiNze3Sq4tLWvTpk0AgDp16uCNN96wuqPLyckpdW1QZatbt65y33x+UmvMy9jaMVSV1NRU5WxnRY0ZM8Zt16bOmTMHL7/8MgDj/54z81OZh9wDBw7YLGswGHDo0CEAxp2G6Qx/Zahfvz7+/vtvCCGQlJSEBg0aVNq2nKmTSVV/ruvVq6dce3nu3Dmb88hlZGQ4vGN7+umn8d1338FgMOCbb77B66+/jm+++Ua53snWdUvewvy748yZM3bL2ypTWf8D3333Hb777jsAxpaLq1ev4vz583jvvfdw22232Z1H2BHLli1z28HBli1bHLrWuqLMT1w6c7BWVlxcHHbs2AHAeABS0fkpTdxVP8A4x6aplaBnz57lrk+7fPmycj84ONju+swDhCMntCqbM/uatLQ0JWhERUU5PAeseevrmDFjKvXE57x58yBJEubNm+dQiK2sfVr//v3RsGFDXLhwAX/++ScSExMRFxdX6r2wdpBu76SLOUmS0K5dO+zZsweA/VBq/ry9sGuPvc9Zu3btlGsuDxw4YDPAmo8n4chJ/orKyMhQ9t0BAQHo1KlThdbnSgvypUuXlFzg7++PBx54oEJ1sKVNmzbYsmUL+vfvj5SUFLshtjKPqx577DHle3/BggXo27cvEhMTlf/72NhYDBo0yKl1mjJTw4YNbZ5EdFSVNc2YfxkKO4P5mC7IPnfunEMHTe6UkpICwDgAiK0v8E2bNpW7ML8sZ16zPeaDMJlaeGwxb+101+TzNc0nn3yCiRMnAjB+ya9bt86pM3xt27ZVDuaOHTtm8wtk586dyM7OBgD07t27UlvFTWfKALit1buiOnXqpBw4/vHHH3Y/O+5kPvm6aeJta5w5KOnTpw/atm0LwHiGtqSkRDlTW6dOHdx9993OV7aa6dChA7RaLQDj2Xt73f1MLX6WREZGKmf/d+/erXweKiIhIQHPPvssAOMBztKlS7FkyRKoVCoYDAaMHj261EFLbWK+76xIi6/5garpQNcd3FU/oHT4stRt3zy0mlpqbTFvaTJvtfGUfv36KV25//rrL6WXmCW///67ct/RgYfy8/OVAdAkSXK6ZcUVc+fOxQsvvADA2GOiX79+pU40mKusfZosy0qrq6nbcF5eHn788UcAxm6Oo0aNcsu2zHtA2DsJYf58RVs67X3OzAdQM//fscT8UoSKDGrlqO+//17p6vrQQw/B19fX5XVduXJFaYnWarVo1KiRQ8stWLBAOV657777HDoBVhGmEBsdHQ0AeOmll5TLH8qqzOOqkSNHKr1tfvzxR+Tl5WHhwoVKlhk9erRTJ7kSExNRWFgIALjpppvcUscqC7DmTd32zmiavlAAY7N4VTL9wc6dO2c1dOr1epvX7Jg485rtiYuLU7rN/vPPPzZD7P79+7F582YAxmuNqsO1YKZRiN1xc0fr65dffonnn38egPHAd+3atejZs6dT65AkCffffz8A487vo48+slp23rx5yn137RCteeCBB5TQMWvWrGrRgqBSqZQRLc+fP4+vvvqqyrZtHiQ/+eQTmyFs7ty5Tq37P//5DwDjQfH48eOVkxhjxoxx6Hrb6s7HxwdDhgwBYDy5Z+puZ8m6devsjhht+m7Pz89XroF0lV6vx0MPPaQE4Xnz5qF58+bo06cPXn31VQDGax+feOKJCm0HMI5C7K7vr6pofc3NzS31t+rVq5fL67r55puV+6YWJHeYP3++cr8i9duyZYsSOJo0aYL77ruvXBnzEP7bb7/ZHBciOzu71Ail5ifAPCUwMFD5HGZnZ1vdBwoh8PHHHyu/O7qvWblypfI5uuWWW9C0adOKVdhBH374IcaPHw/A2GvMWoitzH3ao48+qrQGLVq0CD/88INyCda9995b4RZQkwceeEDZzrfffmv1elMhRKn9Y0WC4qVLl7B27Vrld0ufs+HDhyvv7dKlS0tdu2vu6NGjynFlTExMqZMKlSE1NVXp9aLRaJT/E1eZvsMB4wkRR7uwmn/WKrP7sLnWrVtjy5YtyjW/kydPthhiK/O4KigoCCNGjABg3J/8+OOPpa4LN79O1hHm+w7zfUqFVHgYKOHYKMTjxo1Tytias0kIIfR6vejWrZtS/oUXXrA6ia8QQuTn54tvv/1WLF26tNxz5qMQOzL/nvl8ax988EG554uLi8Vjjz1WajQva6OVfvDBB0qZhQsX2t22vZGaly9frjxft25dceLEiXJlzp8/X2qC4Y8//tjiukzPOzKysDNlvcHChQuV0ej8/f0rNC9jUlKS8Pf3F4Bx5NNNmzaVK/Ptt98q72GDBg0cmtu4oiZNmqRs89ZbbxVXrlyxWlav14uNGzeKmTNnlnvO1gi1zpa9ePGiMsKvj4+P3c9ESkqKeOONN8Q///xT7jln5pUWQog+ffoo5a3Nv1d2rk9boxCbZGZmKn9/89upU6ccqpernBmFuKJ/t23btinPh4WFWZws/dSpU6Ju3bql3gNL88Dm5uaKRo0aKSMtvvvuu1bnuBPC+P7OnTvX4tyX06ZNU7Y1YsSIUs+VlJQo84MDjo3c7g3eeOMNcfToUZtlkpOTS80D3rx5c5v7T3sKCwuV+RjtjVr/888/ixUrVticI1Gv14v33ntP+Q4GIDZv3myx7Llz58T58+etrmvDhg2lRu609l1eXFwsYmNjle3dfffdFkchzc/PF3fddZdSrl27dhZHcDb/zDjyPWFtWWfmND948KDynoWEhFj8Xnz99deVdXfr1s3hdffr18+pYxVn2TtGHD9+fKn/V0vzDbtrn2aJ+f7E/HvM0v68Ih555JFS+yFL/1vmI8A2aNDA4md38uTJIjEx0ea2zpw5Izp06ODQ8Zv5+3/HHXeUO0ZJT08vNcq3teNKIUq/l5b2AUIYP2d79uyxWXfz2QNef/11q2WnTJli8ztCp9OV2lcAEFu3brVa3tzWrVuVZZo2beqWuUvLsrUvP3HiRKkZUWbNmlVueXceV5Vl/l1l/rno06ePU69RiNKzcNgadd4ZVXYN7IABA5RWqMcffxwTJkxAo0aNlHkFmzVrhmbNmgEwdutYuXIlevbsiaSkJMydOxcrVqzA/fffjw4dOiAkJAS5ubm4cOEC9u/fjz/++AN5eXmYOXNmhev5/PPPK62bEydOxNatW3HbbbchIiICp0+fxqJFi3D69GnceuutOH36tM1uo6ZRIAHjGZS0tDS0bNlSuT6nfv36aN++vcN1GzlyJFatWoVly5bhypUr6Ny5Mx599FH07NkTKpUK+/fvx9dff62cSR08eLDSvY6M1q1bh7Fjxypn4saOHYvMzEy782d17twZDRs2LPd4vXr18P777+OZZ56BTqfDHXfcgdGjR6Nv377Q6XRYt26d0jqgVqsxf/58m91gzK8LSEhIsHk9ii3/+9//8Pfff+OPP/7Ali1blJaJnj17IioqCsXFxUhOTlZa85OTkzFgwABMnTrVpe05IjY2FsuWLcNdd92FoqIijBkzBh988AHuuusuNG/eHH5+fsjKysKpU6ewe/du7NixA3q93u7crY744osv0K1bN+Tn5+PTTz/Frl278PDDDyM2NhYpKSlYvnw5duzYgZ49e+LChQtISkpyqHtMSEgIRo0aVaoLY79+/dC8efMK17m66NOnD5599ll8+umnyMjIQI8ePTBmzBj06dMHsixj7969+Prrr5GXl4fhw4fb/CwFBARg9erV6Nu3L7KzszF58mR88cUXuO+++9CmTRsEBgYiOzsb586dw969e7F161YUFxdj8eLFpdazfft2pRdMbGxsqdY8wPhZ++6779CxY0dkZ2djwoQJ6Nu3r83rn73BypUr8dprr6FDhw645ZZb0KZNG4SHh0MIgZSUFOzZswc///yz0kIVGBiIhQsXKi0srvDx8cHtt9+OlStXYv/+/cjNzbU6f9+5c+cwYcIEREZGYvDgwejYsSPq1q2rfLaPHz+O1atXlxpZddKkSVY/4wcOHMADDzyAf/3rX+jXrx+aNWsGtVqNS5cuYd26dUqXdUmS8PHHH1tt3dZoNJg3bx7uu+8+CCHw888/o3Xr1hg9erQyHsGJEyewaNEipfuwRqPBxx9/XKFrtTIzM/Hee++Vesy8e/KhQ4fKfef279/f4nXbnTp1wuTJkzFr1ixkZWWhV69eeOKJJ9C9e3fk5uZi5cqVSvfawMDAcp8JaxISEpTBMoODg5VWl6o0Z84cSJKEOXPmKMdXW7ZsKXWNX2Xu0x577DHlPTDNJdyoUSO3XD9vbvbs2di+fTsSEhLw6aefYvfu3cp+KDk5GUuXLsWuXbsAGL/DFi9ebPGz+8UXX2D27Nno0aMHevXqhZYtWyI0NBQ6nQ6XL1/G9u3bsXbtWqX7bUxMjM3WuenTp2P9+vWIj4/HunXr0LlzZzzxxBOoX78+zpw5gy+++ELpet+vX78Kj++Ql5eHm2++GW3btsXtt9+Otm3bIigoCFevXsVff/2FVatWKd1NH3zwQZt/w88++wyzZs1Cr1690Lt3b7Ro0QIhISEoKCjA8ePHsWLFCmUeWcA4OKujrcfm+3Xzlvqq0qpVK2zduhW33norrly5oozXYj7oVWUeV/Xt2xeNGzdGQkKC8rkAnB+8Cbhx+VZcXBw6dOjg9PIWuSMFO9ICq9PpSrWClL1ZOvN/+fLlUmeSbd1UKpX48ssvy63D2RZYIUqfAbN06927t0hNTVVaEmydgX3wwQetrqfse+VIq1JJSYl44okn7L4fI0aMsDnPlalcbWuBLdvK5ujN2plEk9mzZ9udq9BSD4GyzJdxZO5gW4qKisRzzz0nVCqVQ69x9OjR5dbhzpY8k127dilzS9q7BQYGisOHD5dbh7MtsEIY53c2nam0dGvXrp24cOGCMj/lTTfd5NB69+zZU2o91uYddKeqbIEVwvj9bd56UPYmy7J49913S/U2sPWZiY+PL3VG39bNx8dHrFu3Tlk2IyND+e6VZdnm9/qSJUuU9XTq1KlCLZHVgXmLir1bx44dxYEDB9yy3dWrVyvrXbRokdVyc+bMcbh+QUFB4sMPP7S53R9++MHueqKjo8Xy5csdeh1LliwRwcHBdtcZGRkpfvvtN6vrcbQF1vzYyNGbrc+rwWAQ48ePL9V6XfZWp04d8ccffzj0fghRuifDk08+6fByznDkGFEIISZOnKiUa9asWbmWWHfs0yzJzc0VgYGBpZZ97bXXKvKSrTp9+rTdz3FYWJhYv3691XWYz6Vr79avXz9x5swZu/VKSEiw+508cOBAkZGRYXM9jrTApqWl2a23VqsVU6dOtdlDx5n3wt/fX3z00Ud23weT7OxspeeJLMvi4sWLDi/rDHv7ciGM+0vzFtB33nmnXBl3HFdZYj4fMmB5zmR7jh8/riw/depUp5a1pcoCrBBCFBQUiHfeeUf07NlThIWFlfoSsvWlvXXrVvGf//xHtG3bVoSGhgqVSiWCg4NFmzZtxKhRo8Rnn30mLl++bHFZVwKsEEKsW7dODB06VERGRgqNRiPq1q0r+vfvL7788kule5QjAVan04nPPvtM9OvXT0RGRgq1Wm31vXLmoHzXrl3i8ccfF82aNRMBAQHCz89PNG7cWDz88MMO7bxM22GAdexmL8AKIcSRI0fE//3f/4kWLVqIgIAAERQUJNq1aydefvllu919hDBOEG3+5X3t2jU3vGLjDnPKlCni5ptvFlFRUUKtVgt/f3/RuHFjMWTIEPH2229b/TKrjAArhPFEzJIlS8TIkSNF48aNRWBgoFCr1SI8PFx07dpVPPnkk2L58uUiNzfX4vKuBFghjN0rX3zxRdGyZUvh5+cnQkNDRdeuXcV7770n8vLyhMFgUCa379evn0PrNBgMyk40PDxcFBYWOlUnV1R1gDVZs2aNGDp0qIiKihI+Pj6iYcOG4sEHHxQ7d+4UQgiHA6wQxvft559/FmPGjBEtWrQQwcHBQqVSidDQUNGhQwcxevRosWDBgnITpY8aNUrZxpQpU2xuQwghHnroIaX8pEmT7Javzq5cuSIWLFggnnzySdG9e3cRFRUlNBqN0Gq1IjIyUnTp0kU89dRT4vfff7d74OcMnU4nGjZsKACIQYMGWS1XWFgoNm7cKF599VUxaNAgERcXJ/z9/ZV9dtOmTcU999wjPv30U4e+365evSo+//xzMWrUKNG6dWsRHh4utFqtqF+/vhgwYICYN2+eyMzMdOq1pKSkiFmzZokBAwaImJgY4ePjI3x8fETdunXF4MGDxZw5c+wepHsqwJrs3LlTPProo6JJkybC19dXhIaGis6dO4s33nhDpKWlOfxe6PV65e8KQOzatcvhZZ3h6DGiEKW7ClsKsUJUbJ9mzdixY5XtSpIkzp0759TyziguLhZfffWVGDRokKhXr57QaDQiPDxc9OzZU7z11lt2//8SEhLE559/LkaPHi06deokIiIihFqtFj4+PqJOnTqiZ8+eYty4cWL79u1O12v+/Pmif//+Ijo6Wmi1WlGvXj0xdOhQsWzZMoe60DoSYHU6nVi+fLn4z3/+Izp27Ciio6OFRqMRUVFRomvXrmLatGkOhW4hhNi9e7d4//33xYgRI8RNN90k6tatK7RarfDz8xOxsbFiyJAh4v3333f6eOqrr75SXsdtt93m1LLOcCTACiHEyZMnRb169WyG2IoeV1mSmJgoZFl2+PNryauvvioAY0Ojre7ezpKEqODwuETkFr///rsyYMO4ceOcHlCIKu7IkSPKCHmO/g02bdqkDCf/wgsv4MMPP6zMKhJ5xJw5czBx4kSoVCokJia6bTodIiKqmfR6PZo1a4bExESMGjUKy5Ytc9u6q2wUYiKyzTTXWFBQUKVei0rWmY/g6ei1t5999plyvybM/UpkydNPP42YmBjo9Xq8++67nq4OERFVc0uXLkViYiJkWcb06dPdum4GWKJqwhRgJ06ciKioKA/XpubZtm2bzXnSPvnkE2Xgk/r16+POO++0u86///5bGbRo4MCByjynRDWNn58fXn/9dQDGKXCszdlJRESk1+vx5ptvAjAOgmUaMM9d2IWYqBq4evUq6tSpg8jISJw9exZBQUGerlKN06xZMxQWFuKOO+5Ap06dEBUVhZKSEpw9exarVq3CoUOHlLJr1qyxGmDXr18Pg8GAU6dO4d1331VG59u+fTt69+5dJa+FyBMMBgO6deuGgwcP4rnnnrM59zUREdVeS5YswSOPPIKQkBCcOnUKderUcev6GWCJqFZo1qxZqek7LPHz88OXX36pTA5uiaWh9B29XnbDhg3Iz8+3X1kLIiMj0adPH5eWJSIiIqopGGCJqFbYvXs3Vq5cid27dyMpKQnXrl1Dfn4+wsLC0KJFCwwcOBDPPPMMoqOjba7HFGADAwPRokULPPPMMxg7dqxD88bGxcWVmgfSGX379sXWrVtdWpaIiIioplB7ugJERFWhR48e6NGjR4XXw3N+RERERJ7DFlgiIiIiIiLyChyFmIiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8gocxImIiGoUIQQKCwuRn5+v3AoKCsr9XlxcjKKiIhQXFyu3sr+bbjqdDgaDAXq9XrkZDAblMfPnTGRZhiRJNm+yLEOj0UCtVkOj0Sg3tVoNrVarPG763cfHB76+vvDz8yv109L9gIAABAYGQqvVevCvQURE5F4MsEREVC0VFBQgOzsbWVlZyMnJQXZ2NrKzs63ez83NVYKqwWDwdPWrDa1Wi8DAQAQGBiIoKEi5b34LCgpCaGhoqVtgYKBD00MRERFVJY5CTEREVSYvLw/p6elIT09HRkZGuZ/m9wsLCyu8PX9//1I3Pz8/5efmJTsAAyAZJEC5Xf9dSIAexp8GCZK4fl/g+s04H3Cp3wUgmR4ze9p0H8p9YXYfgHx9QVkYV2v2OyQByIC4/hOyAFQCQ54egMLCQhQWFqKgoKDcfVOQrwiVSoXg4OBSoTYkJARhYWGIjIxEZGQkIiIiEBkZidDQUIZdIiKqEgywRERUYUII5ObmIjU1FampqUhLS1Nu5r87G6o0Gg2Cg4MRHByMoKAgBAcHY+fK/ZBKZEAnQ9JJxp8lEqCXAb0ESS8B129SqfRYuwgYwy7UAkJtMP5UXf+pFoDKgHtfHILc3FxkZWUhKysLmZmZyMzMRF5enlPbUqlUCA8PLxVqIyIiEBUVhejoaERHR6NOnTrszkxERBXGAEtERHYJIZCdnY0rV65YvKWlpTncYurn54fw8HCEhYXh+NbTQIkMqUSGVCwb7xcbf0exbGz9rMUh1FOEJACNAUJjANTGn0JjfGzI//XHtWvXcPXqVVy9ehUZGRlw9FAiIiICMTExqFOnDmJiYhAdHa38rFu3Lvz9/Sv5lRERkbdjgCUiIgCAXq9HamoqLl68iIsXL+Ly5culQqojrachISGoU6cOoqKisHvlIUhFMqRiFaQiGbj+UzKwq2lNIiAArQFCa4DQ6gGtAQ/NvBdXr15FWloakpOTkZKSgqKiIrvrCgsLQ/369VG/fn3ExsYiNjZW+T0oKKgKXg0REVV3DLBERLVMZmamElLNb0lJSSguLra5bEREBOrWrYvjm89AKlRBKlJd/ykDRSpIgq2lVJ7A9a7MvnoIH+Nt+Eu3ISUlBSkpKUhOTkZOTo7NdYSEhJQKt40aNUJcXBxiY2PZNZmIqBZhgCUiqoGEEEhPT0diYiLOnTun/Lx48SKys7OtLqfRaJSWr51LD0AqVBmDqSmsGhhQqXIIlcEYcP30eOz9kUhKSsKlS5eQlJSEa9euWV1OpVKhXr16aNSokRJqGzVqhIYNG7JLMhFRDcQAS0Tk5bKzs0uF1MTERCQkJCArK8vqMtHR0WjQoAEO/nIMUoEacoEKUoEaKJJ5zSlVO0I2QPjpIXz1ePzDB3Dx4kWcP38e58+fR25urtXloqOjERcXh2bNmqFZs2Zo2rQpYmNjoVZzFkEiIm/FAEtE5CWEEEhOTsbp06dL3dLS0iyWl2UZ9erVw+W/0yDlq6/fVJAK1WxJpRpBuf7WTwfhr8edkwbg/PnzSExMREZGhsVltFotGjdujKZNm6Jp06ZKuOU1tkRE3oEBloioGtLr9bh48SJOnTqFU6dO4fTp0zhz5ozV6wRjYmKQejwdUp76RlgtYFCl2kuoDRD+Ogh/HYZO6o8zZ87g3LlzKCgosFi+Tp06aNGiBVq2bInWrVujZcuWCAkJqeJaExGRPQywREQeJoRASkoKjh8/jhMnTuDEiRM4efKkxVFb1Wo1GjdujLPbL0LO1RgDa54akp4j+xLZIyAAXz0MATo8POsenDlzBmfOnEFycrLF8nXr1kWrVq3QsmVLtGrVCi1atEBgYGAV15qIiMwxwBIRVbHc3FzEx8fj+PHjOH78OOLj45Genl6unJ+fH5o2bYrjG85CztNAyr3essqRfoncSqgMEAE6/Gf+Q4iPj0d8fDwuXbpksWzDhg3RqlUrtGvXDu3atUPjxo2hUqmquMZERLUXAywRUSUSQiApKQmHDx/G4cOHcfToUVy4cKFcOZVKhaZNm+LMnxch52gg5WggFag4oBKRhwiVASKwBGM/HoX4+HicPHnSYkutv78/2rRpowTaNm3asJWWiKgSMcASEbmRXq/HmTNncOTIESW0WmpdjYmJQeqRDEg5GmNgzdPwelWiak6oDTAEleDh2cNx9OhRHD9+HPn5+aXKSJKExo0bK4G2Y8eOiImJ8VCNiYhqHgZYIqIKKC4uxvHjx/HPP//g8OHDOHbsWLkDWrVajVatWuHEunOQcrSQc9SQStjlkMjbCQgIfx2eX/Iojh49iqNHj+Ly5cvlysXExKBTp07o2LEjOnXqxEBLRFQBDLBERE7Q6/U4ffo0Dhw4gIMHD+Lw4cPlBlsKCAhA/sUSyNlayNkaSLlsXSWqLYRGD0NwCUbMuAOHDx/GyZMnodfrS5VhoCUich0DLBGRDUIInD9/Xgmshw4dQm5ubqkyYWFhyDqVDzlbCyn7+sjAvHaViAAI2QARXIKR/xuKv//+G/Hx8RYDbdeuXdGtWzd06dIFwcHBHqotEVH1xwBLRFRGZmYm9u7di71792L//v3lrmENCAhAwQUdpCwt5EwtpHwOtkREjhEqA0SQ9UAryzJatWqFbt26oVu3bmjTpg3UarUHa0xEVL0wwBJRrafX6xEfH489e/Zg9+7dOHnyJMy/GrVaLUpSANkUWHPZwkpE7iFUBhiCS3DP64Owb98+JCYmlno+ICAAnTt3VgJt/fr1PVNRIqJqggGWiGql9PR07N27F3v27MG+ffuQnZ1d6vlmzZohYctlyJk+xm7BnHuViKqA0Oox8acnsG/fPuzfvx9ZWVmlnm/QoAF69eqF3r17o127dmydJaJahwGWiGoFIQQSEhKwfft2bN++HfHx8aWeDwwMRH5iCeQMH8gZWkjFHCWYiDxLQEAE6vDoJ/dh3759OHLkSKnuxoGBgejRowd69uyJHj16ICgoyIO1JSKqGgywRFRj6fV6HD16FNu2bcOOHTuQlJRU6vnmzZvj3ObLxsCarWG3YCKq1oTKgP9ueA47d+7E7t27S7XOqlQqtG/fHj179kSfPn3QoEEDD9aUiKjyMMASUY1SWFiIffv2YceOHdixY0epAzytVgtdMiBf84Gc7sO5WInIawkI42BQ7w7Bzp07kZCQUOr5xo0bo2/fvujbty+aNGkCSeIJOiKqGRhgicjrFRQUYPfu3di8eTN2795dal7WoKAg5J0tMYbWDC0kg+zBmhIRVQ7ho8czSx7Cjh078Pfff0On0ynPxcbGol+/fujbty9atGjBMEtEXo0Bloi8UmFhIXbv3o0tW7Zg165dKCwsVJ6LiYlB2sEsyNd8OQATEdU6QmXAi2uexJ9//ol9+/ahuLhYeS4mJkZpmW3Tpg1kmSf1iMi7MMASkdcoKirC3r17sWXLFuzYsQMFBQXKc/Xq1UPKnkzIV30h5XGaGyIiwBhmX1n/LP7880/s3r271Mm+6OhoDBgwAIMGDULTpk09WEsiIscxwBJRtabX63Hw4EFs2LAB27ZtQ35+vvJcTEwM0vZnQ05jaCUiskfIAtP+eB5//vkndu7cWer7tHHjxhg0aBAGDhyImJgYD9aSiMg2BlgiqpbOnj2LDRs2YOPGjbh69aryeJ06dXDtYK6xpTWXoZWIyBVCFpi66Tls3LgRu3fvRklJifJc+/btMWjQIPTr1w+hoaGeqyQRkQUMsERUbVy7dg2bNm3Chg0bcPr0aeXxoKAg5J3SQZXqCymH090QEbmTUBkwftVj2LhxI/7++2+YDg1VKhVuvvlmDBkyBD179oRGo/FwTYmIGGCJyMOKioqwbds2/P7779i3bx8MBgMAQK1Ww5Csgpzma5zyhgMxERFVOqHV44kFI7Fp0yacOnVKeTw0NBSDBw/GkCFD0KRJEw/WkIhqOwZYIvKIhIQErFmzBhs2bEB2drbyuJStgSrV19hFWMfRMYmIPMXgp8P979+G9evXIz09XXm8VatWGDJkCAYMGICgoCAP1pCIaiMGWCKqMgUFBdiyZQvWrFmDY8eOKY/XqVMH1/bnQU71hVyo9mANiYioLAGBN7ZPxG+//YadO3dCr9cDALRaLW655RYMHToUnTt35vyyRFQlGGCJqNKdOnUKv/76KzZu3Ii8vDwAxmurRKoacrIf5Awtr2slIvICQmPAU4tH4bfffkNCQoLyeMOGDTF8+HDcdtttbJUlokrFAEtElaK4uBibN2/GTz/9hPj4eOXxevXqIWVnNlQpvpBKVB6sIRERuUpA4KNjM/Hbb79h48aNyrzcvr6+GDhwIIYPH44WLVp4uJZEVBMxwBKRW6WlpeHnn3/GL7/8gszMTACARqOB/rIMVbIfpCy2thIR1SRCZcBzPzyCVatWlWqVbdu2LYYPH45+/frBx8fHgzUkopqEAZaIKkwIgSNHjmDlypX466+/lOujoqKikL6vwBhcOSATEVGNJiDw/qFpWL16Nf7880/odDoAQEhICIYNG4Z7770XkZGRHq4lEXk7BlgicllRURE2bdqEn376qdS8rVKWBqrL/pCv+bC1lYioFhIaPcZ8dQ9+/vlnpKamAjBOjzZgwACMHDkSzZs393ANichbMcASkdNycnKwevVqrFy5UplawcfHByXnZaiu+EHO42T3RERkbJV9bes4rFixAocPH1Ye79SpE0aNGoUePXpAltlDh4gcxwBLRA5LSUnBihUr8OuvvyoDdkRHR+Pq7jyoUthNmIiIrJt37A388MMP2LJli3KpSYMGDTBy5Ejcdttt8PX19XANicgbMMASkV1nz57F0qVL8ccffygHHVKuGqokf8hXfSEJdhMmIiLHCK0e980ZhDVr1iA3NxeA8TrZESNG4N577+U0PERkEwMsEVkkhMChQ4fw/fffY+/evcrjUqYW6kv+kDI5mjAREblOqAx4eumD+OGHH3DlyhUAgL+/P+655x7cf//9CA8P93ANiag6YoAlolKEENi/fz8WLlyoXK8kyzKQooHqUgCvbyUiIrcSEJiy4WksXrxYmYZHq9XizjvvxIMPPojo6GgP15CIqhMGWCICYAyue/fuxYIFC3Ds2DEAxgMIXaIK6qQASEUqD9eQiIhqMgGBGdsmYPHixTh+/DgAQKVS4bbbbsPo0aNRr149D9eQiKoDBliiWk4IgV27dmHBggWIj48HYAyu+gTjNa5SMYMrERFVHQGBWftewZIlS3DgwAEAxiA7ZMgQjB49mi2yRLUcAyxRLSWEwIEDBzB//nwluPr4+EB3VmUMriUMrkRE5FlzDk/Ht99+i3379gEANBoN7rzzTjz88MOIiorycO2IyBMYYIlqoWPHjmH+/Pk4dOgQAMDPzw/FpyWokgIglXAqHCIiql7e/3savvnmGxw8eBCAsafQXXfdhYcffpiDPRHVMgywRLXI2bNn8dVXX2HHjh0AjGeyDYkaqC6xxZWIiKq/dw+8iq+//loZZNDPzw8PPPAARo0aBX9/fw/XjoiqAgMsUS2QnJyML7/8Eps2bYIQwjiq8GUt1BcDOTgTERF5FQGBd/ZOKXUJTFhYGB599FEMGzYMarXawzUkosrEAEtUg+Xm5mLJkiX48ccfUVxcDACQ03yguhAIuYA7eCIi8l4CAv/94/8wf/58JCUlAQBiY2Px1FNPoW/fvpAkzlVOVBMxwBLVQDqdDmvWrME333yDrKwsAICUqYE6IYjzuBIRUY0iJIH/+/EhLFiwABkZGQCAtm3b4vnnn0ebNm08XDsicjcGWKIaRAiB3bt349NPP8X58+cBAFK+CqrEIMjpWkjg2WgiIqqZhMqAf38xFMuXL0dBQQEA4LbbbsN//vMfREZGerh2ROQuDLBENcTFixcxb9487NmzBwAQEhKCvIMGyMl+kASDKxER1Q5LUz/DV199hbVr1wIwDvT08MMPY+TIkfDx8fFw7YioohhgibxcQUEBFi9ejOXLl6OkpARqtRoiUQvVxQBIek6JQ0REtdO8Y29g3rx5OHbsGAAgJiYGzz77LK+PJfJyDLBEXkoIga1bt+Ljjz9GWloaAEBK10J9LghyIQdoIiIiEhB4+ff/4PPPP1f2lTfffDPGjx+P+vXre7h2ROQKBlgiL3ThwgXMmTMHBw4cMD5QKBuDa7oPr3MlIiIqQ8gCD35xB77//nuUlJRAq9XikUcewYMPPgitVuvp6hGRExhgibxISUkJvv/+eyxatEjZAevPaKC6FADJwOBKRERkyzfnP8CcOXOwf/9+AEDDhg0xceJEdO7c2cM1IyJHMcASeYmjR49i9uzZSEhIAGDsLqw5GwSpiN2FiYiIHCUgMGXD0/j444+Rnp4OABg8eDCee+45hIaGerZyRGQXAyxRNZeXl4f58+dj9erVEEIAxZKxu/BVX3YXJiIicpFQGTD03T7K/jU0NBQTJkzArbfe6umqEZENDLBE1dju3bsxe/ZsZeAJOcUX6oQgSDqOLkxEROQOc4/OwKxZs5QeTn379sX48eMRERHh4ZoRkSUMsETVUF5eHj755BP8+uuvxgcKVNCcCYKcxfnriIiI3E1IAv/+cggWL14MvV6P4OBgjBs3DoMGDeKUO0TVDAMsUTVz4MABvPPOO0hJSQEAqJL8oTofyEGaiIiIKtmnJ9/GO++8g9OnTwMAevXqhZdffhlhYWEerhkRmTDAElUTBQUF+OKLL/DTTz8ZHyhUQXMqGHI2h/cnIiKqKkISGLPgbixYsAAlJSUIDQ3Fyy+/jN69e3u6akQEBliiauHkyZN44403cPHiRQCAfMUP6sRASHpe60pEROQJn59+BzNnzsS5c+cAAMOGDcNzzz0HPz8/D9eMqHZjgCXyIIPBgBUrVmD+/PnQ6XRAkQzN6WDImbzWlYiIyNOEJDB8bj+sWLECABAbG4upU6eiTZs2nq0YUS3GAEvkIenp6Xj77bexd+9eAIB81QfqM8EcYZiIiKiaeWffFLz99ttIS0uDSqXCE088gQcffBCyzH02UVVjgCXygL179+Ktt95CRkYGtFotDMd9ICf7cV5XIiKiauqnrG/w/vvvY/PmzQCAm2++Gf/9738RGhrq2YoR1TIMsERVSK/X45tvvsHixYsBAFKeGuqTIZDz1R6uGREREdkjIPDCz2Mwd+5cFBcXIyoqCq+//jrat2/v6aoR1RoMsERVJDMzE2+88Qb2798P4PpATQlBnB6HiIjIy3x26n+YPn06Ll68CJVKhSeffBIPPPAAuxQTVQEGWKIqcPz4cbz22mtITU0F9BLUZ4KgSuMohkRERN5KqAy4ZVoHbNq0CQDQu3dvTJ06FQEBAR6uGVHNxgBLVImEEFi9ejU++ugj6HQ6SPkqqOND2WWYiIioBijbpbhRo0Z4++230aBBA09XjajGYoAlqiQlJSX44IMP8NtvvwG4Psrw6WDO7UpERFTDzD06A9OmTUNaWhoCAwMxbdo09OzZ09PVIqqRGGCJKkFmZiamTp2Kw4cPQ5ZlSGf9oUry5yjDRERENdSytM/x2muv4ciRI5AkCY8//jgeeeQRSBL3/UTuxABL5Gbnzp3DlClTkJycDOgkqE+GQJXh4+lqERERUSUTksAd7/bEzz//DAAYMGAApkyZAh8fHgcQuQsDLJEb7dq1CzNmzEB+fj5QoILmeCjkAl7vSkREVJuM+3k0PvjgA+j1etx000148803OV8skZswwBK5yapVq/Dhhx9CCAEpSwPNiVBIOl7vSkREVBu9s28Kpk2bhtzcXNSvXx/vvvsuB3cicgMGWKIKEkLgq6++wuLFiwEAcrIv1GeDIQle80JERFSbfXluNiZPnozk5GSEhITgrbfewk033eTpahF5NQZYogrQ6XSYPXs21q1bBwBQnQ+A6mIAB2siIiIiAMDyq19gypQpiI+Ph0ajwfTp03HLLbd4ulpEXosBlshFBQUFeO2117Bnzx5AAOozQVCl+Hu6WkRERFTNCFng5pdbYtu2bZBlGZMnT8aQIUM8XS0ir8QAS+SCnJwcvPTSSzh+/Digl6CO50jDREREZJ2AwMC3u2Lt2rUAgOeeew4jR470cK2IvA8DLJGTMjMzMWnSJJw+fRookYwjDedoPV0tIiIiquYEBO79uD+WLVsGAHjkkUfwxBNPcK5YIicwwBI54dq1a5gwYQISExOBYhmao2GQ8zlNDhERETlGQODRRcMxf/58AMC9996LF154gSGWyEGc44PIQampqRg3bpwxvBbJ0BxheCUiIiLnSJCwcPTPmDRpEiRJwk8//YS5c+eCbUpEjmELLJEDUlJSMG7cOFy5cgUolKE9GgapkOGViIiIXDd+zaN49913IYTAfffdh3HjxrEllsgOtsAS2WHqNnzlyhWgQAXtkXCGVyIiIqqwD4ctwOTJkwEAK1euxLx589gSS2QHAyyRDZmZmZg4cSIuXbpkbHk9EgapSOXpahEREVENUTbEfvzxxwyxRDYwwBJZkZOTg0mTJiEhIQEouh5eixleiYiIyL3m3rVQCbE//PADFi1a5OEaEVVfDLBEFhQUFGDy5MnGqXKujzYsFbHbMBEREVWOuXctxAsvvAAA+Prrr7F69WrPVoiommKAJSpDp9Ph9ddfx7Fjx4zzvB4NhVzA8EpERESV6/P7l+HRRx8FAMyZMwebN2/2bIWIqiEGWCIzQgjMmTMHu3btAvQSNMdDIedrPF0tIiIiqiW+f2Ithg8fDiEE3nzzTezdu9fTVSKqVhhgicwsXrwYa9asAQSgPhkMOUfr6SoRERFRLSJBwtoXd6J///7Q6XSYNm0azp496+lqEVUbDLBE161fvx5fffUVAEB9LgiqdF/XVuSO+ds4BxwREVGtJUHC9plH0alTJxQUFGDKlClIT0/3dLWIqgUGWCIAhw8fxrvvvgsAUF3yh+qKv/MrkSSGVyIiInILSUiYOXMmYmNjkZKSgv/+978oKirydLWIPI4Blmq9lJQUTJs2DTqdDnKaD1SJgc6vxF3BleGViIiIrrsv9HHMmjULQUFBOHbsGN555x3OEUu1HgMs1WpFRUWYOnUqMjIyIOWqoT4dAglOhEh3hE4GVyIiIrJibKOJmDlzJlQqFf744w8sXrzY01Ui8igGWKq1hBCYPXs2Tp48aZwu50QoJIOT4bWiGFyJiIjIjpe7/g8TJ04EAHzzzTfYv3+/h2tE5DkMsFRr/fjjj9iwYQMgAE18KKQilWMLstWViIiIqti8uxdh6NChMBgMmDFjBlJTUz1dJSKPYIClWik+Ph6fffYZAECVEAQ5y4Hpcqp6kCYGXCIiIjIzfvx4NG/eHFlZWZg+fTpKSko8XSWiKscAS7VOXl4eZsyYYRy06aoPVJf97C/EQZqIiIjIw+70exgzZ85EYGAgjh07ppyMJ6pNGGCpVhFC4P3330dSUhJQKEN9Otj2oE2cGoeIiIiqkTGxL+C///0vAOPlULt37/ZwjYiqFgMs1Spr167Fpk2bjNe9ngyBpLfxEahI6DQFX7a6EhERkZu9/q8Pcd999wEA3nnnHWRmZnq2QkRViAGWao3Lly9j3rx5AADV+UDIORaue61uobM61YWIiIiqlo1jgKeffhpxcXFIT0/H7NmzOT8s1RoMsFQrGAwGzJo1CwUFBZCyNFBd8i9fiEGRiIiIqhsrxyd3+j2MqVOnQq1WY9u2bVi3bl0VV4zIMxhgqVZYs2YNDh06BOglaMpe98pWTiIiIqrOrByr/F+r/+Lxxx8HAMydOxcpKSlVXTOiKscASzXelStX8OmnnwIwdh2WCtU3nmRwJSIiourI0jGKhce+fWQV2rVrh4KCAsydO7cKKkbkWQywVKMJITB79uwbXYdNU+Z4W6urN9WViIiIKk+ZYxgJEl566SWo1Wps374df/31lwcrR1T5GGCpRvvzzz+xf/9+wIAbU+YwDBIREZG3MzueearpZDz44IMAjF2J8/LyPFUrokrHAEs1VkFBAT7++GMAgOpSAOQiDcMrERERVX+OHq+YtcaOHj0a9evXR1paGr788stKrByRZzHAUo21ZMkSpKamAoUyVEmBnq5OxTF8ExERkSWShDv9HsaLL74IAFi9ejUSEhI8XCmiysEASzXSxYsXsWzZMgCAOiEYkoHhj4iIiGowScKU7rPQt29fGAwGZQBLopqGAZZqpM8//xwlJSWQMrSQ0308XR33YSssERFRzVbBff3TTz8NtVqNPXv2YM+ePW6qFFH1wQBLNc7x48exbds2QFxvfUUFdgRSNfuICOHpGhAREVE19mjDCbj33nsBAJ9++il0Op2Ha0TkXtXs6Jyo4ubPnw8AkFP9IBeo7ZS2obqFV4AtsERERGTXmDFjEBwcjISEBKxfv97T1SFyq2p4hE7kuv379+PgwYPGaXMuBbm+IvPwWh2DLBEREdU8bjpRfW/Ykxg9ejQAYNGiRWyFpRqFR+ZUYwghlNZXVXIApCIXWl8lmYGViIiIvN5dd92FsLAwJCcnY8OGDZ6uDpHb8EidaoyDBw8iPj4e0EuuTZtjK7hWp1DLbsREREQ1j5v378MCH8UDDzwAAFi8eDFbYanGqEZH5UQV8/333wMA5FR/SCUq44OOBs/qFFAdwRBLRERElpgd0wwfPhwhISFISkrCxo0bPVgpIvfxsqN2IstOnz6Nffv2GUcevhzg+ILsMkxEREQ11F1BjymtsMuWLYPgbAZUA/DInWqEpUuXAgDkq37lr321FlCdDa7VLeiyFZaIiKhmcNc+3cKxyt133w0/Pz8kJCTgwIED7tkOkQdVsyNyIuelpqZiy5YtAADVZQevfa1uYZSIiIioEtwT+gTuuOMOAMCPP/7o4doQVRyP4snr/fbbb9Dr9ZCytJDzNJYLmQJrRbsMV7fgy1ZYIiIi71aJra8m9913HwBg165duHTpknu2R+Qh1exonMg5Op0Ov/76KwBAleJvu7C7wmd1C7FERETknaroRPTYxi/h5ptvhhACa9eurZJtElUWHomTV9uzZw/S0tKAEhnyNT+LZSRZgqRRQ5JrYGslB2MgIiLyXm4aTFL28YGstdIL7bqhQ4cCANavX88pdcirMcCSV1u3bh0AQJXmB0mUDqim4AqVyv0brg6tsAyvRERE3su89bWixxWyDMgyZK3GapB9c9BnCAkJwdWrV40zNxB5qWpwFE7kmtzcXOzevRuAce5Xc5IslQ+uKlXNaIUVguGViIjI25UNrS62xso+Pma/3Aiy5TYnJAwePBiAsRWWyFsxwJLX2rZtG4qLiyHlqyHl35g6x2J4rQyeaIVlcCUiIvJ+tq59dfb4QrZQ3kqINQXYXbt2oaCgwLntEFUTDLDktTZt2gTg+tyvMO4I7IZXd7fCVmWIZXglIiLyfpJk//jBweOLUq2v5Z4sH2L/r+1rqFu3LgoLC7Fnzx6HtkFU3TDAklfKzc3FwYMHAVwPsM5c7+qNXYkZXomIiGoGR09+2ykn+/hYbn0tVaj0dbESJPTr1w8AsGXLFsfqQVTNMMCSV9q3b59x7td8NVTFmqrpMmxNZbfCMrwSERHVDM5Om2PrGMNeeDUvZ9Yaawqwu3fvRklJiXP1IaoGGGDJK+3cuRMAIGf6uhZevaErMQdrIiIiqjkc6TpscbnygzvZ7DpszfUQ+3z71xEeHo6CggIcOXLE+fUQeRgDLHkdg8GgjD6syvK3U9qG6tyVmMGViIioZqnoye7ryzvUddgaWYZKq0W3bt0AAHv37q1YnYg8gAGWvE5CQgKysrIAvQQpz4UzkObc2XJaHeaGJSIiourH2a7DVtcjux5eTWSZAZa8Go+4yescOnQIACDn+kASFdwhyBIkT14/awlbX4mIiGoOU3gVhgqvShUWAsnfr8LrMQXYM2fOIDs7u8LrI6pKDLDkdf7++28AgKo4xD0rrE4hluGViIio5qpAiFWFhQCyCpDkCofYf3d7Gw0aNAAAHDt2rELrIqpqDLDkVYQQyoADshwJOTjYwzUqoyLdiBleiYiIahZLXYddDbGy2cn26yHWlSArx9SBUMlo3749AODo0aOu1YfIQxhgyaukpaUhIyMDEICsCwRCAt0TYt3ZCutKiGV4JSIiqllsXffqZIhVhVnodXZ9dGJnQqwpvAJAu3btADDAkvdhgCWvcurUKQCApPOHBNm4c3DXSMKeCrEMr0RERDWLI4M2ORhila7DVrfleIg1hVcAaN26NQDg9OnTEDwWIS/CAEtexRRgZV3AjQeDAtzXlbgqr4flPK9ERES1m50Qaze8mjgQYuWYOqV+f3bI51CpVMjNzUVqaqr9bRBVEwyw5FXOnj0LAJBLzAKsJLmvKzHgvhDLaXWIiIhqH2enzLESYh0Or8p2rYdYOTqqVOsrAEiQ0bBhQwDAuXPnHN8OkYfxCJu8yqVLlwAAst639BPuDrHuYi3EsuWViIio5nF1vldLIdaZ8Kpsv3yIlaOjINSW19W0aVMADLDkXRhgyWsYDAYkJSUBACS9hTOM3nI9LMMrERFRzeNqeDURBiXIWhy0yeF6lA6x1sIrAMTGxgIALl++7Pr2iKqY2tMVIHJUWloaiouLASFB0vtYLhQUANkgYKiuk3IzvBIREZENsp+va62v5kzT7AQFwtaRR926dQEAycnJFdseURViCyx5jZSUFACApNdCgpWznO7qSmwQgDBAckeLrnm3oIqenSUiIqIaS/b3B2QZKCqq8LpOzmmI+JnhNsvExMQAAK5cuVLh7RFVFQZY8hrXrl0DAEgGre2CFQ2x18OrsrqKhFhXJysnIiIi71LBXlZKeAWM09pUIMTGv98AEeG5iAjLxcnp1rsjv/zvBQCA1NRUTqVDXoMBlrxGeno6AEAyaOwXdjXElgmvyupcCbHWwitbYYmIiGomF0OgeXi9sSrXQmz8+w0QGZGj/G4KsZaCrOmYqri4GAUFBU5vi8gTGGDJazgVYAHnQ6yV8OoSe+thiCUiIqqZXAmxsuVDcmdDbPx7pcOrSUTY9dbY18qGWBkQxmOSrKwsh7dD5EkMsOQ1cnNzjXcMTow95miIdSC8OtwK62gIZoglIiKqmZwIsbK/v51VORZi499rgMjI8uHVXER46RArQYJ0/bgqu7oOgElUBgMseQ1T1xZJODkyn73pdZxoebUbYp1twWWIJSIiqpkcCLGWug5bXpX9EGsvvJpEhOciflqo2cqNAVZpKCCq5hhgyWsUFhYa7zgbYAHj9DqWWmFd6DZsNcS62v2YIZaIiKhmshFiHQ2vN1ZlPcTGv9fAqWpFRuQoIVYSxjoUFxc7tQ4iT2GAJa9hCrCmL1qnWOpKXIFrXsuF2IpeO8sQS0REVDNZCLHOhtcbqyofYh3pOmyJEmKvXwOr0+mcXgeRJzDAkteo8PDukgTJ1BLrhgGblBDrroGfGGKJiIhqJrNjGFfD641V3Qix8bMbuhReTSIjcmDQGrsOr1+/3uX1EFUlBljyGpIbAp5QyZBUsu1rYj2F868RERHVXEIAklyh8HpjVQIXxzRHZJT7Bl5iF2LyFgyw5DVkN3zhS/mFMOTlQ1KpAJUL19KaEW6ddofhlYiIqEaTVZBkCaLQ+bldy0p6qj1KggUyjkVWeF3h0XoAwK233lrhdRFVBQZY8hqmAJvWM9Cl5aX8QhiycwC98Yu6IiGW4ZWIiIgcdj28AgCEoUIhNump9igOMR47qApRoRD7ZsvVCA4sAQAEBQW5vB6iqsQAS17D//o8aUPa7cXZMdFOLVs2vCqPuxBiGV6JiIjIYebh1cTFEGseXk1cDbFvtlyNBuosFBYY40BAQIDT6yDyBAZY8hqmABtSnIeZI7/H2dFOhFi9vlx4NXEmxDK8EhERkcMshVcTJ0OspfBqoip0rlqm8AoARYXGOGA6ziKq7hhgyWsEBhq7Dhfky2ivvYKZo753qCXWdN2rzTIOhFiGVyIiInKYrfBq4kCIlSTJZng1cbQV1jy8AkBhobGODLDkLdSergCRo0zXZuTlGoNme+0VzBz5Pabh32i6MMXiMta6Dlssq1JBAA6VrRCGVyIioprNkfBqYuPkuCRJuPREO7vhFbjRlTis7VWEZ+Rh+O9/o/ORC/AvKEa+nxYHbmqE1s9eRrQ6T1mmpFhCQb7xuCosLMyx+hJ5GAMseY3ISOOZxcyMG/+2phB7+M6G+OHXPqWCrDPhVVnGSoh1W+srwysREVHN5kx4vU4UFkHy9Sn1mBJeQx0/dvDPKcGLM7bgvgN7odGVPm7pcSgR4nsg435/JE8PgfCVkJVpDK9arVbp6UZU3THAkteIiooCAGSkl+7q2157Be21V9Du/kuYLh5A00UpLoVXk7Ih1q1dh4mIiKjmciG8AlC6EptCrCvh1aekBF8t+hI3J561WkYqAcK/z4fPOR3OL4xAVqYxCkRERECSXKg3kQfwGljyGqYAm5mhttiQ2cEnCTNGLkPiqBiXw6uJ6ZpYXvdKREREDnE1vJqYQqwL4RUApq5djZsTz8LeUgJAwO5ixMzIQoA0H8CNXm5E3oABlrxGnTp1oFKpUFIsK11eypp64G7EbsmH5O/nno2y5ZWIiIjskaSKhVcTYQA0aqfDa2RONu49uM9YFTtlTc+H/ZCPS/HxAID69es7WVEiz2GAJa+h0WhQt25dAEByktZiGUOGD9RXc4HgQEhBrl/LIfR6iBKdy8uXXyFbX4mIiGqk611vRQUHgZQDAyAHGudibbLsmlPLjjiwFxqDc9uXSoCL27YBABo2bOjUskSexABLXqVRo0YAgOQrmnLPDdv5LJouKzb+IssVC7GG64FTko23imB4JSIiqpnKXDfqaoiVAwOM0/mZpvRLuerU8t1tXPdqy4UrVwAADRo0cGl5Ik9ggCWvYjpDeKVMC+xdO59F4y8kaFJzbjzoYogVen35HZCrIZbhlYiIqGayMuiRsyFWCa9lONMKG1Bsey5ZS/QAzhuMl0qZGgiIvAEDLHmV5s2bAwAuJNwYav6unc8i7gsJmuSc8gs4GWJtdh2uaEssERER1QxuGrHXWngFAKRcdTjE5ml97Bcq46KfHwokCX5+fmyBJa/CI3LyKq1atQIAXLqghe56ztRn+FgOryYOhliHrnt1JsSy9ZWIiKhmkSSHwqsjrbA2w6tJylU0WZ5ud111hzt3zSwAnAwKAmBsHFDZqwdRNcIAS16lfv36CAoKgq5ExuWLWty181k0XVFsf0E7IdapQZscCbEMr0RERDWLk62utkKsQ+HVJDnNZoj9/KEv0Hh0EET54UFsig8OBgC0bNnSuQWJPEzt6QoQOUOSJLRq1Qr79u3D5A2DELfTStdhS66HWDnAHyIvHyIn98ZzBicDpyRbn2KH4ZWIiKhmcbHLsNDrjXPLm3EqvJokpwEIL/XQ5w99AQDo52cA/NTAyGDgu2wI2J5Kx/T84bg4oKgIbdq0ca4uRB7GFljyOh07dgQAhG/PcDy8msgyhEZdqjXW4qBNjuA1sURERDWfm653BVwMr9eZt8J+8tB89PMzGMPrdWJmJERPX4fmgc3o6Y8zxcYebB06dHCpPkSewiNw8jqdO3cGAAj9NQi42Npp6lLs71ex+V7Lhli2vhIREdUcbgivQq+/McdrRa41vd6V+JOH5mOAn4UT734yxHf1IB4OttqdWGgA8XAwjs78BUIINGzYEJGRka7XicgD2IWYvE7Lli3h7++P/Px8CHUeJJ2Lc73KcsV2JCam7sQMr0RERFSWJMOQVwA52MXjFfNV5RVYDq8mfjLE7DrA5HCI77Mh7SwA8gxAgAzRyw/4dzAQpcbB5UcB3GgUIPImbIElr6NWq5VuxDrfLJfXI+Xmw5CZBUl2X9cgIiIiqkEqenL6ek8tly5VKruqoEBAltFrwtP2C0epgRfCIZbXh/i1AcTy+sAL4UCUGt1efRo7d+4EAHTr1q3C9SKqagyw5JX69OkDAND7XDNe0+okKTcfhmvpwPUdiiRLrgdZtr4SERHVXK7u48tcZmTIzrVS0M5qggKV8AoAYfuS0WuiAyHWgq7TnkHYsWRcuXIFWq0WXbt2dWk9RJ7EAEteqVevXpAkCULOgcGnxOkQK3Q6CF35a1+dDrEMr0RERFSWhYEehV7vdIhVgqtcen2h+1OcrlLXac8g8p8cjHnuJgBAly5d4Ofn5/R6iDyNAZa8Unh4ONq2bQsA0KuvQvioYPD3cSjISrn5EFnZ1p9nl2IiIiIy5+jJakm2OUuBM12JzVtdyz1nEA63wnad9owSXgHgr7/+AmBsDCDyRgyw5LVuueUWAIBelWIcJVAlQfiobIZYU9dhS62vpco5EmLZ+kpERFR72NvnOzi9niOtsLbCq0nY3mT0nGQ7xHZ9zRhcTeHVIOXh5MmTUKlU6Nu3r0P1JapuGGDJaw0cOBCyLEPIWTBI+cYHJdsh1lrXYUtshliGVyIiIjJxYm54e12JHQmvJuF7kq0+1/W1ZxD5d06pxx58qiUAoHv37ggNDXVoG0TVDQMsea3IyEhl+HeDbPYFbiXE2us6bEmFBnciIiKimsXSyWsnwquyGgtdicsO1uSoni+Wb4XtOr18eBUQ2LRpEwBg0KBBTm2DqDrhPLDk1W677Tbs378felUyVPrGkHA9bCohVgWpRA+pROdU62tZkixBGK7vtNj6SkRERIBL4dXEkJsHOTDAuBoXgqtJ+O4bJ/G7Tn8GABB5KKdcOYOcgaSkJPj5+aF3794ubYuoOmALLHm1W265BYGBgRByAQxyeuknza6LlYqKnW59LYstsURERAQh7A7W5NBqSown1SsSXk16vPQ0urz+DCIP5VgMrwDQ57ZQAMDgwYM5+jB5NQZY8mp+fn64/fbbAQB61SXLhSQJ0Btcbn0th62vREREtZckGXtjVXQ1sgRDbl6FwysAhK8/haiDloMrAAgUKaMP33333RXeHpEnMcCS1xs+fDgAwKC6CoNUUO55VXouDNfSyz3uLGEQbtlhERERkZeS3NMbS+nVpdfDkJLm8npEVrbxVlwC+bz1uWEf/r+W0Ov1aNu2LZo1a+by9oiqAwZY8noNGzZE165dAQB61cXyBUp0EMXF7tkYW1+JiIhqp7Lh1cWT2mUvSRJFRS6txxRcRXGJ8ffCQsvloMfKlSsBAPfee69L2yKqThhgqUZ44IEHAAB6VRIEboRVtr4SERFRhUiS+1tey3C2FdYUXsuSL6aWe+zZVzohMzMTMTExuPXWW53aDlF1xABLNUK3bt3QokULQDJApzZrhWXrKxEREbnKXnB18OS2vWn5HG2FNe8ybPH5/NKXUgkYsGzZMgDAqFGjoFZzAhLyfgywVCNIkoSHH34YgHEwJwGd21pfiYiIqBaq5FZXZ5XtMmyNeSvsy2//C1euXEFISAiGDh3qlnoQeRoDLNUY//rXv9CgQQNA0hlHJHZT6yu7DxMREdUiznYZtnGM4Ex4tdWN2Fara7my11thBQQWLVoEABgxYgR8fX0drgtRdcYASzWGSqVSWmF16vMQspumzQHYfZiIiKg2cGOrq7Mtr5a6EdvrMmzLhNe7IzExEcHBwbjvvvucXp6oumKApRpl8ODBaNy4MSDpUKxJrPD62PpKRERUS1QkvJodK1Sky7B5K6yjXYYtkS4l45tvvgEAPPTQQwgMDHS5TkTVDQMs1SgqlQpPP/00AEBXJwtC64ZWWLa+EhER1VxuGmXYlVbXskytsK62upo89kFfpKamIioqilPnUI3DAEs1To8ePdChQwdABnSxOZ6uDhEREZFDhEFUOLwKlR5LliwBAIwdOxY+Pj7uqh5RtcAASzWOJEl45plnAAD6qHwYAlwbyIndh4mIiGoBN/W0Enp9xZY3GOthyMqu0Hpun9oB2dnZiIuLw2233VahdRFVRwywVCO1adMGgwYNAiSgpHEmBFzcObH7MBEREVUiYRBKeDX97tJ6Cgqgl7Pw888/AwDGjx/PeV+pRmKApRrr2WefRWBgIERgCfRReZ6uDhEREVVXHmqFdTWslltPQQEMeh2ajYqCEAIDBw5E586d3bJuouqGAZZqrIiICDzxxBMAAF2jbBhUOod3FOw+TERERJWlbKtruecLChxbT0GB8abXY/zPY3D8+HH4+/vj2WefdVdViaodBliq0e6++260aNECUAvoGmUBwuD42U52HyYiIiI3c+Q4xKEy14Or0OshNHp89tlnAIwDN0VGRla4nkTVFQMs1WgqlQqTJk2CLMsw1CmEPrxQCbHu6rZDRERENUAVnLh2x7GHeasrAAgIdB3fHDk5OWjRogWnzaEajwGWarzWrVvjwQcfBADommZDqA3G7sFWWmPZfZiIiIhcZek6WFdOnFvqRmze6mpiiCrEzp07oVar8eqrr3LgJqrxGGCpVnjsscfQuHFjQGuArmnWjVGJrbXGsvswERERuYHLowqbj0xcptVVeVyrh29n42Njx45FkyZNXK8okZdggKVaQavV4tVXX4VKpYIhsgiGyMIbT9pojSUiIiJyhbsuV7LU6goYuw53eq4JcnNz0apVKzzwwAMV3haRN2CApVqjZcuWGD16NIDrXYl9dKULmEIsuw8TERHVTu6aTscdJ8WFwWKrq8njS+7Fnj17lJP07DpMtQUDLNUqjzzyCNq2bQuoBUpaZkJIZbsOM7wSERGRi4S4fqvg8YQwAEJYDa+GwGLMnz8fADBu3DjExcVVbHtEXoQBlmoVtVqN119/HcHBwRBBOujjcjxdJSIiIqoJzFtvXW3JFQYlvFotojIgfLAGer0e/fv3x7Bhw1zbFpGXYoClWic6OhqvvvoqAEBfL984tQ4RERGRK0ytrhVej8HuugQEbn6pJVJSUlC/fn289NJLkCSp4tsm8iIMsFQr9erVSxnsQNc8CwZfnZ0liIiIqFZwJoy6LbjabnU1eXTh3di2bZvSoywgIKDi2yfyMpIQnC+EaiedTocXXngBR44cgZSvguZwBCS9zCl0iIiIajt7rZqOHCvIKjvrMNhfl1k99GGF0LfNghACkyZNwt13322/DkQ1EFtgqdZSq9V44403EBUVBeGvNw7qBIZXIiIisqGKugubb8vgp4O2azGEEBg+fDjDK9VqDLBUq0VERODtt9+Gj48PRFgxB3UiIiIiy9xxrasT3YWVRVQGRN/li/z8fHTo0AHPP/98xepA5OUYYKnWa9myJV555RUAgL5+PvR1CjxcIyIiIqo2qnCQpnKLSALt/68BLl26hOjoaMycORMajabidSHyYgywRAD69++PMWPGAAB0zbNhCC3ycI2IiIjI46p4kKZSi0Gg7+sdcODAAfj5+eHtt99GaGhoxetD5OU4iBPRdQaDAW+99RY2btwI6CVojoRBzuVZTiIiInKBaQAmFw+1dXE50MfmQ6VSYdasWejevbsbK0fkvdgCS3SdLMuYMmUKunbtCqgEStpkQnB6HSIiInJFBboe6+vmQx+bDwCYPHkywyuRGQZYIjMajQZvvvkmWrRoAWgNKG6bCaHRe7paREREVEvoIwuhb5YLAHjyySdxxx13eLhGRNULAyxRGf7+/pg1axbq1q0L+OlR0i4TQm3wdLWIiIiohtOHF0K0zYUQAnfffTcefvhhT1eJqNphgCWyICIiAu+//z4iIiIgAnQoaZcBoWKIJSIiosphCC2C1CEfer0eAwcOxPjx4yGZrqMlIgUDLJEVsbGxmDNnDsLCwiACGWKJiIiochhCiiF1zkdJSQn69u2LV199FSqVytPVIqqWGGCJbIiLi8MHH3yA4OBgiCAdStpmQsgMsUREROQehqBiqLsXori4GL169cJrr70GtVrt6WoRVVucRofIASdPnsSECROQm5sLKUsDzfFQSHqe/yEiIiLXGUKM4bWgoABdu3bF//73P/j4+Hi6WkTVGo/AiRzQsmVLvPfeewgMDIQIKTF2J+bATkREROQifVgRpC55KCgoQLdu3fD2228zvBI5gC2wRE44deoUJk2ahKysLEh5KmiOhkEq4TUqRERE5Dh9RCHQPg86nQ69e/fGjBkzoNVqPV0tIq/AAEvkpMTEREycOBFXr16FVHA9xBYxxBIREZF9+qgCiDZ50Ov16N+/P6ZOncprXomcwABL5ILLly9jwoQJuHLlClAkQ3MsDHI+dz5ERERkmYCAvn4+9I1zAQB33HEHJk+ezNGGiZzEAEvkorS0NEyYMAEXLlwAdBI0J0IhZ7H7DxEREZUmIKBvnAt9/XwAwH333Yfnn38esszhaIicxQBLVAHZ2dl45ZVXcOTIEcAAqE+FQHXV19PVIiIiompCSAK6FlkwRBUBAJ555hk88MADkCTJwzUj8k487UNUAcHBwfjggw/Qt29fQAZ0rbKgq58HAZ4XIiIiqu2EyoDWz9aFIaoIarUa06ZNw4MPPsjwSlQBbIElcgODwYBPPvkEP/zwAwBAvuIH9bkgSII7KCIiotrI4KtDzD3+uHjxIgICAvDmm2+iS5cunq4WkddjgCVyoxUrVuCTTz6BEAJSpgaa+FBIOnZ0ICIiqk0MoUXw6aFDbm4u6tSpg1mzZqFp06aerhZRjcAAS+Rm27dvx8yZM1FQUAAUqqA5HsoRiomIiGoBAQF93QKI5nkwGAxo27Yt3nrrLYSHh3u6akQ1BgMsUSVISEjAK6+8gsuXLwN6CeqTwVClc3AnIiKimkpIArqmOTDEFAAAbr/9drz44ovQajlDAZE7McASVZKsrCxMnz4dBw8eBACozgdAdTEAEnhdLBERUU0itHo0fywax44dgyRJeOaZZzBq1CgO1kRUCRhgiSqRTqfDxx9/jJ9++gkAIGVooTkZwutiiYiIaghDSBH8+whkZWUhMDAQ06ZNQ8+ePT1dLaIaiwGWqAqsX78e77//PoqKioAiGZr4EMg57FJERETkrQQE9A3yYIjLhxACzZs3x8yZM1GvXj1PV42oRmOAJaoiZ8+exWuvvYaLFy8CAlAlBEF12Y9diomIiLyMUBuga5EFQ3gxAGDo0KEYP348fHx8PFwzopqPAZaoCuXl5eHdd9/Fli1bAADyVR+ozwSzSzEREZGXMIQUI7S/GmlpadBqtZg4cSKGDBni6WoR1RoMsERVTAiBn376CZ988gl0Op2xS/GpEMhZ7FJMRERUXQlJQN8wD4aGxi7DsbGxmDFjBpo3b+7pqhHVKgywRB5y8uRJvPHGGze6FF/yh+pCICTBLsVERETVifDRodmYaBw/fhyAscvw888/D39/fw/XjKj2YYAl8qCCggJ89NFH+PXXXwEAUo4a6pMhkAvVHq4ZERERCQgYogqh7aRDfn4+AgMD8eKLL6J///6erhpRrcUAS1QNbN26FbNnz0ZOTg6gl6BOCISczAGeiIiIPEVoDNA1zYYhsggAcNNNN2Hq1KmIiYnxcM2IajcGWKJqIjU1FW+99RYOHToEAJAyNdCcDoFUpPJwzYiIiGoXfUQhAnoAWVlZUKlUePTRR/HQQw9BrWYPKSJPY4AlqkYMBgNWrVqFL774AoWFhWyNJSIiqkJCfb3VNcrY6tq0aVP897//RbNmzTxcMyIyYYAlqoaSkpLwv//9D4cPHwYASJlaaE4HszWWiIioEggIGCKKENRLRkZGBlQqFR5++GGMHj0aGo3G09UjIjMMsETVlMFgwE8//YQvvvgCRUVFgF6C6nwAVJf92RpLRETkJkKrN7a6RhQDAOLi4vDqq6+iVatWHq4ZEVnCAEtUzV28eBHvvvsu/vnnHwCAlKuG+kww5FyeESYiInKVgIC+bgG07XQoKCiAWq3Gv//9bzzyyCPw8fHxdPWIyAoGWCIvYDAYsHbtWnz22WfGkYoFoLrsD9WFAEh62dPVIyIi8iqGgBLommVDBOkAAO3atcNLL72Exo0be7hmRGQPAyyRF0lPT8fHH3+MTZs2GR8okqE+FwT5mg+7FRMREdkhVAboG+YBDYug1+sREBCAp59+GsOGDYMs84QwkTdggCXyQnv37sUHH3yAy5cvAwCkDK0xyBZweH8iIqKyBAQMdQoR3EON9PR0AEDfvn3xwgsvIDIy0sO1IyJnMMASeanCwkIsWbIEy5YtQ3FxMbsVExERWWAIKIGuaQ5EcAkAoEGDBnjhhRfQvXt3D9eMiFzBAEvk5S5fvoyPP/4Y27dvNz5QLEOdGAg51ZfdiomIqNYSagN0jXIh6hVCCAE/Pz+MGTMG999/P6fGIfJiDLBENcSePXvw0Ucf4cKFCwAAKUcNdWIQ5Cyth2tGRERUdYQkoK+XD992Anl5eQCAgQMH4plnnkFUVJSHa0dEFcUAS1SDlJSU4Mcff8TChQuRn58PAJCvaaFK5PWxRERUswkIGCILEdnPH8nJyQCA5s2b4/nnn0fHjh09WzkichsGWKIaKD09HQsWLMCaNWug1+sBAcjJflBfCIBUovJ09YiIiNzKEFwMXeMcZVqcqKgoPPXUUxg0aBBHFyaqYRhgiWqw8+fP44svvrhxfaxeguqSP1SX/TnQExEReT2Dfwn0jfJgiCgCAPj5+eHhhx/G/fffD19fXw/XjogqAwMsUS3w999/49NPP0V8fLzxgRIJqosBUCX7QzJwoCciIvIuwlcHXcM8iOgiCCGgUqlw55134rHHHkN4eLinq0dElYgBlqiWMBgM2LJlC77++mtcunTJ+GCRDPXFAMgpfpAEgywREVVvQquHrmEepPrFxktkANx6660YO3YsGjVq5OHaEVFVYIAlqmV0Oh3Wr1+PhQsXIiUlxfhgoQrqCwGceoeIiKolodFDH5sPVWOdce5zAD169MATTzyBFi1aeLh2RFSVGGCJaqni4mKsWbMGixcvRnp6OgBAKlBBdTEAcpovW2SJiMjjhFYPXWwe1HF6Jbh26NABTz31FNq3b+/h2hGRJzDAEtVyhYWFWLVqFb7//ntkZWVdf1CG+hK7FhMRkWcIH2NwlRuUQKczjizctm1bPPbYY+jWrRskifsmotqKAZaIAAD5+fn4+eefsXz5cqVFFkUyVJcCoErx42BPRERU6Qy+Ougb5EGqV6Jc49qxY0eMGTMGnTt3ZnAlIgZYIiqtqKgIa9aswdKlS5GWlmZ8sFiG6rI/VMl+kHScfoeIiNzLEFACfWweEF0Cg8EAAOjWrRtGjx6NDh06eLh2RFSdMMASkUXFxcVYt24dvvvuOyQnJxsf1EtQpfhClRQAqUjl2QoSEZFXExAQocXQ1c+HCCtWHu/VqxdGjx6NNm3aeLB2RFRdMcASkU06nQ6bN2/G0qVLcfbsWeODApCv+kCVFAA5V+PZChIRkVcRkoAhqhD6+vkQAcbrW1UqFfr27YuHHnoIzZs393ANiag6Y4AlIocIIbB//34sW7YM+/btUx6XsjRQXQqAnKHlFDxERGSVUBugjymAvl4+oDV2E/bz88Odd96JESNGoG7duh6uIRF5AwZYInLamTNnsHz5cmzatEkZZEPKV0G+4g9Vqi8kPa+TJSIiI4OfDvq6+dA2ESgsLAQAREVF4b777sOwYcMQFBTk4RoSkTdhgCUil6WmpmLlypX45ZdfkJeXZ3xQL0FO9YXqij/kfLVnK0hERB4hIGCIKIK+bj5EaInyeLNmzTBq1Cj0798fGg0vQSEi5zHAElGF5efnY8OGDfjpp5+QmJioPC5laoxB9poPuxcTEdUCQqM3dhOOKQB8jN2EZVlG7969ce+993IqHCKqMAZYInIbIQT+/vtv/PTTT9i+fbvSvRhFMlTJfsZpeEo4ejERUU0iICCCS6Cvmw+5rh46nXFgptDQUAwbNgx33XUXoqOjPVxLIqopGGCJqFKkpKTgl19+wZo1a5CZmWl8UAByug/kFD/I6Rz0iYjImwm1Afo6BTBEF0AE6JXH27Zti3vuuQf9+vWDVqv1YA2JqCZigCWiSlVcXIytW7fi559/xpEjR248USRDleoLVYofpEJeK0tE5A0EBAxhxTBEF0COudHa6uPjg4EDB+Kee+5BixYtPFxLIqrJGGCJqMqcP38ev/32G9avX3+jVRbXr5VN8YN8zReSga2yRETVjfDRQx9dAH30jWtbAaBVq1YYOnQoBgwYgMDAQA/WkIhqCwZYIqpyJSUl2LFjB3777Tfs3bsXyteQToKc5gtVmi+kbA27GBMReZCQDcaRhKMLIUKLlceDg4MxaNAg3HnnnWjatKkHa0hEtREDLBF5VEpKCtatW4e1a9ciOTn5xhOFMlSpfpDTfCEXsIsxEVFVEJKAIbQYhqhCGCKKANWNw8SuXbti6NCh6NOnD3x8fDxYSyKqzRhgiahaMBgMOHToEDZu3IitW7ciPz9feU7KUd9omeUoxkREbiUgIIJKoI8qhCGqENDcODSMjY3FoEGDcPvtt6Nu3boerCURkREDLBFVO4WFhdixYwc2btyIPXv23JiORwBSphaqNF/j3LJ62bMVJSLyYgY/HQxRhdBHFQJ+N0YRDgsLQ//+/TF48GC0atWK87YSUbXCAEtE1VpmZib++OMPbNy4EcePH7/xhAGQM7WQrzLMEhE5yuCngyGyEIbIwlJT3/j6+uKWW27BoEGD0KVLF6jVvHSDiKonBlgi8hoXL17Epk2bsHXrViQkJNx4wjzMpvtA0jHMEhEB17sH++tgiCwyhlb/G6FVrVajS5cuGDRoEPr06QN/f38P1pSIyDEMsETklRITE7F161Zs2bKlXJiVMrVQXfMxhlleM0tEtYyAgAjQwRBRPrRqNBp069YN/fr1Q+/evREUFOTBmhIROY8Bloi83vnz55Uwe+7cuRtPCEDK0UBO9zF2My5QcWoeIqqRhCQgQoqhDy+CIbwI8L0xV6tWq0X37t3Rr18/9OrVi/O1EpFXY4AlohrFFGa3b9+OkydPln6yQAWVKcxynlki8nJCbYAhrMjY0hpaDKhvHNL5+Pige/fuuPXWW9GzZ08EBAR4sKZERO7DAEtENVZqaip27dqF7du34+DBgygpKbnxZIkEOcPYzVjO1PK6WSKq9gQEhJ8ehuutrCK4BObn4SIiItCrVy/07t0bXbp04VytRFQjMcASUa2Qn5+PvXv3YseOHdi1axeys7NvPGnqapyphZyhhZTD1lkiqh6EygBDaDEMYcUwhJbuGgwAzZo1Q+/evdG7d2+0aNECssyTcURUszHAElGto9PpcOzYMezYsQN79uwpPQgUYGydzdQaW2gztZCKORAUEVUNAQERqDN2DQ4rhggq3cqq1WrRoUMH9O7dG7169UJMTIznKktE5AEMsERU66WmpmLfvn3Yu3cv9u3bh9zc3FLPS3lqY5DN0kLO0nDOWSJyGwEB+OphCCk2trSGFgOa0odmDRs2RPfu3dG9e3d07NgRvr6+HqotEZHnMcASEZnR6XQ4ceIE9u7di7179yI+Ph6lviYFIOUaA62cpYWUrYVkYHdjInKc8LkeWK/fynYLDggIQJcuXZTQylZWIqIbGGCJiGzIzMzEgQMHcPDgQRw8eBBJSUmlCxiuXz+bdT3Q5mgYaImoFKE1D6wlgJ++1PMqlQpt2rRBp06d0L17d7Rp0wZqtdpDtSUiqt4YYImInJCSkoJDhw7h0KFDOHjwIFJSUkoXMABSrgZytgZStgZyNkc4JqpNTCMFi+BiGIJLIIJLICwE1pYtW6JTp07o1KkT2rdvDz8/Pw/VmIjIuzDAEhG5SAiBK1euKK2zhw4dwrVr18qVk/JVxjCbo4WUpYFUqOIox0Q1hJAFRGDJ9bBaDENQSblrWGVZRvPmzZXAetNNN3FeViIiFzHAEhG5iSnQHjlyBIcPH8bRo0fLj3AMAMWSMczmqCHnaozdjjkwFFG1pwy4FKiDCCqBIagEIrAEKPPx9fHxQZs2bdCuXTu0b98ebdu2RVBQkGcqTURUwzDAEhFVouzsbBw7dgyHDx/GkSNHEB8fj+Li4nLlpAKVMcjmaCDnqiHlaiAJttISeZLQ6GEI0hlbWE1hVVP+sCkiIgLt27dXAmvz5s15DSsRUSVhgCUiqkLFxcU4efIkTpw4gfj4eJw4caL8wFCA8VraPGOQlXPVkPI0kPLVHCCKqJIIjR4iQGdsXb0eWOFjKFdOo9GgadOmaN26Ndq0aYP27dujbt26kCR+NomIqgIDLBGRh2VlZSE+Pl4JtMePH0dmZmb5guJ6S22uxjg37fWAy0GiiBynDLIUoIMIKDEG1gAdoC0fViVJQlxcHFq1aoXWrVujVatWaNKkCbRarQdqTkREAAMsEVG1I4RASkqK0kp75swZnD592nKoBYAi2Rhm89TGVtp8NaQCttYSCY0Bwl8H4a+Dwd/Ysir8dYCqfFlJktCgQQM0a9YMLVu2ROvWrdGiRQv4+/tXfcWJiMgqBlgiIi8ghMC1a9dw5swZJdCePn0aSUlJsPg1LgAUqiDnq42jIDPYUg0lIACNAcJffyOoXr9Zul4VAHx9fdG0aVM0a9YMzZo1Q/PmzdG4cWNOZUNE5AUYYImIvFh+fj7Onj2L06dPIzExEQkJCUhMTERWVpblBUzBtkBlDLMFKuOtUA0UyZzeh6otIQsIXz2En+76z+v3bQRVSZJQt25dNGrUSAmszZs3R7169aBSWWiGJSKiao8BloiohhFCICMjo1SgNf3Mzs62vqAexjlqC9Q3fhaoIBWqgGKGW6p8QjILqX76G0HVV2ccUMnKv6AkSahXrx7i4uLQuHFjxMXFoVGjRmjYsCFbVYmIahgGWCKiWsI82F68eBEXL17EpUuXcOnSJVy+fBk6nc76wgYARSpIRcZAKxXKN+4XMeCSY4QsIHz0gM/1cKr8NFx/vPxASuYCAwMRGxur3Bo0aIDGjRujQYMG8PHxqaJXQUREnsQAS0RE0Ol0SElJwaVLl5Rge/HiRSQlJSElJQV6vd72CgwwBtkiGVKxCtL1nyi+HnSLZYbcGk7IAkJrDKFCq4fQGoxBVWsw3nz1Fkf6Lcvf3x+xsbGoX79+ubAaEhLC6WqIiGo5BlgiIrJJp9Ph2rVruHLlCpKTk5WfpvtpaWn2Ay5gvP62WIZUbBZuS4w3032YftdJDLvVgJCuD5CkMSg/lfvXgym0xhZUqB07nPDz80PdunURExOj/IyOjlbuBwcHM6QSEZFVDLBERFQhOp0OaWlpSE5ORlpaGq5evYq0tLRS99PT0x0LuSYG3AizJTIknQToZOOctzrJ6k/oGXwtERCAWkCorwdNtQHC2k+NAdBe/+lgKDXx8/NDZGQkIiMjERUVhYiICERFRSEqKkoJrEFBQQyoRETkMgZYIiKqdHq9HhkZGUqgvXr1KjIyMpCZmYmMjIxSt9zcXNc3ZACgvx5k9RKgl433DVKZx83uCwkwSMZu0AbT77j+mARJ3LgP0x5TAMD1368/Zi84C5jtbiXcGJBIEtd/F4Bs7Ipruo/r94Vy//pPlTCWU12/rxKAymDlceF0EDWnUqkQEhKCsLAwhIaGlvppCqqmn/7+/gynRERUqRhgiYioWikpKVGCbWZmJtLT05GdnY3c3Fzk5OQgJycH2dnZyv3c3FxkZ2fbHoSqqgiUCrU3QiqsjqBblfz8/BAUFFTqFhgYqNwPDg4uF1SDgoIgy7Knq05ERASAAZaIiGoAIQQKCwuRk5OD/Px85Ofno6CgQPlpft/8sYKCApSUlKCkpATFxcUoLi5W7pd9rLIDsiRJ0Gg00Gq10Gq10Gg0ys38d61WCz8/P4duvr6+SkANDAyEWq2u1NdARERU2RhgiYiIHGAwGJy6SZIESZIgyzIkSYJKpSr1uyzLpZ4zPU9ERETWMcASERERERGRV+BFLUREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCX6//buPiqqOo/j+OfOiAKhYuYqBJmamlu5GKSZwZoWktWp1DqZZ6211moz220tW05qaWbqMXVzT1uera0tcrc6aW4lrqmZiQ+YokUaoVg+wPKgKMqIMLN/DHMZHgacAYWL79c5nLlzf/f3vT/m0sNn7sMPAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAltCmuQcAAM3F5XLJ4XA09zAAwC/BwcEyDKO5hwEAzYIAC+CC5XA4NGLEiOYeBgD4JTU1VSEhIc09DABoFlxCDAAAAACwBM7AAoCktlt/IVUYMmyGZNjMV9kqL9MzDBk2m2RUrjcMs83wbGcYVeuNqn7V1tWo6d6uqt3l6Wfzavex3mUYVe8luSpLyTDkskmS4V5n7ktmH1fl+6p+RlV/W1Wbu0/1du+aLs82NvmsZ9b1GmPVa81x1GyvOkZ1tUsyx+BrX9XW+xhH9d+rap91tVX1cVXbX639eNpVs91VrY9n26pxucw2w3t7w/xtK9tcNV49NV0yDFe1Py9PTfehqWq3Vdartq5yuarNa53Xq7te1XvvH8ld2/1eVW1e+7MZTnOde1unJMluVL337uN5X9Xukl3OyjaX7IbTq59Tdq9+9sr1djlr9bPJ09cpe7U29/Z2wyVDTtk945PT7GOX3P3kaXN/HnZ59ukyx+F+X/kqVS4blZ+VZDcM2WTIrspXw9NmkyFDZ8rsGv27bgKACx0BFgAkd3h1uv9HUUbVq5k0DEOGPMG1cn1lOjHciVBVacerX60EZauRlKqlDK9+qrHO13r5fvUKh+ZyzVeznOFV1qg1xOrtNWuqMkj7qlf746hVt862+vqdxUcVaL3KV1/h9pwFWKN2gPVuqxlgq9a7aozfVavN8NSsq73OPq469lXjRzIDbM0fn21mqPQKtl5B12xTVXtVEJVXgHVWD4CGJwBWvhqG7PLUcy+7X41q/dy1JLsh87Wqn3vZu01SZWj1bOsJwN4h1T3mhgJstX1570fV92czt/c6hgBwAeMSYgAAAACAJRBgAQAAAACWQIAFAAAAAFgCARYAAAAAYAkEWAAAAACAJRBgAQAAAACWQIAFAAAAAFgC88ACgCTZXXLJ6Z780VD1V8k9X6lNNeZR9bR5vTeMynkyvfo11OY1EanLx+Smda2vWud+dXm1uyTJZVRb597GkFyqVs/l3aeyX20+1rm8mqrNbWp4D7+e+VeNwOd6ra+toXoNtXle6u1Xc/5VH+21xuhjHljVXjZq7ce7zVXj1VPTM++q95+Xj3lgzXqBzQPrknvZVePH0+aqnAvXbKus6TRckuH02k/le1X+PqrZLrkMp7t2ZR1Xtbbq621e+/Is13x1j8P9j7X3q7PyY7JVLjsr/0TrngfWkE1G1byycn/mdnnmnq2a69X7vc1cdvcz56+trGWTIbvhaTNkyNCZsrr+GQSACw8BFgAklQ38X3MP4dxw1XgNQM18Cnh4IqSzoQ1bLE/C54I0ALAK/o0NAAAAALAEw+VyNeJ7eQCwLpfLJYfD0dzDQB0cDofuvPNOSdKKFSsUHBzczCOCB8em+QUHB8swuCYCwIWJS4gBXLAMw1BISEhzDwMNCA4O5ji1UBwbAMD5xiXEAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEngKMQAAAADAEjgDCwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALKFNcw8AAGBtp06d0rJly/Tll18qNzdXNptN0dHRGjZsmEaPHq2goKCAaxcVFSklJUVpaWnKy8tTu3bt1KNHDyUlJem2226TYRh19jt48KA2btyonTt3Kjs7W0VFRbLb7brkkkvUv39/3X333erbt2/A47KKlnhsfHn66ae1ZcsWSVJMTIz+8pe/BDw2AEDrZbhcLldzDwIAYE25ubmaPHmycnNzJUnBwcFyOp0qKyuTJPXu3VuLFi1S+/bt/a69d+9eTZkyRcXFxZKkkJAQlZWVqaKiQpI0cOBAzZkzp1YI2717tx5//PFq60JDQ3XmzBmdOXNGkmSz2fSb3/xGDz30kN/jsoqWeGx8+fzzzzVnzhzzPQEWAOALlxADAAJSXl6uZ599Vrm5uercubNeeeUVrV69WqtXr9aMGTMUGhqqrKwszZo1y+/aJSUlmjp1qoqLi3XZZZfpjTfeUGpqqlavXq0//OEPatOmjbZu3apXX321znHZ7XbFx8dr5syZWrlypVatWqXVq1fr9ddfV//+/eV0OvX222/rP//5T1N8FC1OSz02dSksLNSSJUsUFham7t27+z0eAMCFhQALAAjIqlWrtG/fPknSrFmzFBcXJ8l9dnP48OGaMmWKJGnz5s3avn27X7WXLVumoqIitWvXTvPmzdOVV14pSQoKCtKoUaM0YcIESdLKlSv1888/V+t76aWX6p133tHs2bM1dOhQdezYUZJkt9vVr18/LVy4UL169ZIkvffeewH+9i1bSz02dXnllVd04sQJ/f73v1enTp38GgsA4MJDgAUABGTVqlWSpAEDBujqq6+u1T58+HBFRERU2/ZspaammjUiIyNrtY8aNUohISGqqKjQf//732ptv/jFLxQdHe2zdlBQkBITEyVJhw4d0okTJ/wamxW01GNT09q1a/XVV18pJiZGt912m1/jAABcmAiwAAC/ORwOffvtt5Kk66+/vs5tDMPQoEGDJEnbtm0769o//fST8vLyJMnsX1NoaKj69+/vd22Ptm3bmsue+zZbC6scm+LiYi1evFht27bV008/7fdDnwAAFyYCLADAbwcOHJDT6ZQk9ejRw+d2nraioiIdP378rGp7Ln1tqHbPnj0lSTk5OWdV19uOHTskSZ07dzYvMW4trHJsFi9erKNHj2r8+PH1njEHAMAbARYA4LeCggJzuUuXLj63u+SSS+rsU5/CwkK/ap88eVKnTp06q9qS9O2332rjxo2SpNtvv73VnfmzwrH5+uuvtWbNGvXo0UP333//We0bAACJAAsACIB3KGnXrp3P7YKDg+vs01y1jx07ppkzZ8rpdCoqKkpjx449q35W0tKPTUlJiRYsWCCbzaZnnnlGbdowJT0A4OwRYAEAF4RTp07pz3/+s3JzcxUaGqqZM2cqNDS0uYd1wfnrX/+qgoIC3XXXXbrqqquaezgAAIshwAIA/OYd/E6fPu1zO4fDUWef8127tLRUU6dO1XfffaeQkBDNmzdPV1xxxVmNx2pa8rFJT0/Xp59+qi5dumjixIlntU8AALwRYAEAfvO+fzI/P9/ndt73Vnr3qU/nzp39qn3RRRfVG8A84TUjI0MhISGaO3eu+ZTc1qglH5t58+ZJkh577DFJ7rPi3j+eh085nU5zXWt7SjQAoHG48QQA4Lfu3bvLZrPJ6XRq//79Pqdr2b9/vyTp4osvVocOHc6qtucJtp7+l19+eZ3beZ6I66tdqgqvO3fuVHBwsObOnauYmJizGodVteRjk5ubK0maOXNmvfvZtWuXkpKSJEmzZ89WfHz8WY0PAND6cQYWAOC34OBgXX311ZKkLVu21LmNy+XS1q1bJUnXXXfdWdeOjo5W165d661dWlqqXbt21Vu7tLRUzzzzjHbu3GleNtzaw6tkjWMDAECgCLAAgIB4zpDt2LFDmZmZtdrXrVunw4cPV9v2bBiGoREjRkiS1q5dqyNHjtTa5uOPP1ZpaansdrtuueWWWu2e8Op92fCFEF49Wuqx2bBhQ70/nmMUExNjruPsKwDAGwEWABCQpKQk9ezZUy6XS9OmTdP27dslue9fXLdunebPny9JGjRokGJjY6v1ffPNN5WQkKCEhIQ6Q9B9992niy++WA6HQ1OnTtXevXslSWfOnNHy5cv197//XZJ0xx13KDo6ulpfh8OhZ5991gyvF8qZV28t9dgAANBY3AMLAAhImzZtNGfOHD355JPKzc3VH//4RwUHB8vpdKqsrEyS1Lt3b02fPt3v2mFhYZo7d66mTJminJwc/e53v1NoaKjKyspUXl4uyX156qRJk2r1Xb9+vXbs2CFJqqio0IwZM+rd16xZs3TNNdf4PcaWrKUeGwAAGosACwAIWEREhP7xj39o2bJl+vLLL5Wbm6s2bdqoR48eGj58uEaPHq2goKCAavft21dvv/22UlJStGnTJv3vf/9TcHCwevbsqaSkJI0cOVI2W+0LiVwul7lcVlamoqKievfjCV2tTUs8NgAANJbh8v4vPQAAAAAALRRfjwIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwCwhMWLFyshIUFPPPFEcw8FzaykpES33XabEhIStGHDhuYeDgDgPGrT3AMAAJxbJ0+eVFZWlvbs2aO9e/dq7969OnTokFwulyTpX//6lyIiIs7Jvl0ul8aMGaP8/HyNGzdOjzzySEB1srKytHz5cknSxIkTm3CEzWvfvn3aunWrdu/erX379qmwsFAVFRVq3769evXqpcGDByspKUlhYWHNPdQWJSwsTPfdd5+WLl2qV199VYMGDVK7du2ae1gAgPOAAAsArdzkyZOVlZXVLPves2eP8vPzJUnx8fEB13nttddUUVGhQYMG6Zprrmmq4TWryZMna+fOnXW2FRUVqaioSNu2bdO7776r5ORkDRw48PwOsIUbM2aMPvjgA+Xl5enDDz/UuHHjmntIAIDzgEuIAaCV85xpldxnrgYMGKCLL774vOz7q6++kiR16dJF/fr1C6jGrl27lJ6eLkmtKqR4gn379u01cuRIJScna8mSJVq6dKlmzpypwYMHS3KH2eTkZGVkZDTncFuckJAQjR49WpKUkpKiU6dONfOIAADnA2dgAaCVGzlypMLDw9W3b19FRUXJMAxNnjxZRUVF53zfngA7ZMgQGYYRUI33339fkhQREaFf/epXTTa25hYVFaXx48dr+PDhatu2bbW2vn37aujQoXrvvff0+uuvq6ysTAsWLNA777zTTKNtmRITE/Xmm2/qxIkT+vTTT3XPPfc095AAAOcYZ2ABoJUbM2aMbr75ZkVHRwccIgPx888/68CBA5ICv3w4Pz9faWlpkqQRI0ac1/Gfa/Pnz9ett95aK7x6GzdunHr37i1JysnJUXZ29vkaniVERESof//+kqRPPvmkmUcDADgfOAMLADgnPE+H9Vy2HIg1a9bI6XRKkoYNG3ZWfcrLy7V27Vpt3LhRe/bs0bFjx1RRUaHw8HD17NlTcXFxuvnmm9W5c+dq/RISEiRJSUlJSk5O1k8//aQPP/xQ27ZtU0FBgS666CL16dNH999/v2JiYsx+p0+f1ueff67U1FQdPHhQDodDkZGRuuWWW3TPPfc0+uFC1157rXkP888//6xevXoFXCsnJ0crVqxQRkaGjhw5IofDobCwMLVv314RERGKjY3VjTfeqMsuuyyg+uXl5Vq9erXWrVunffv2qbi4WIZhqEOHDgoPD1e/fv0UFxenIUOGKCgoqFrfmp9/Tk6OPv74Y6Wnp6ugoEClpaWaPXt2rS9Dhg0bpoyMDB04cEB79uzRlVdeGdiHAwCwBAIsAOCc8Fw+PHjwYLVpE9h/bjZt2iTJfZ9o9+7dG9z+xx9/1PTp03Xw4MFabfn5+crPz9eWLVuUnZ2t5ORkn3XWr1+vl156SQ6Hw1x3+vRpbd68WVu2bNGUKVN0xx13qKCgQMnJydqzZ0+1/vv379cbb7yhzZs3a8GCBY0KseXl5eayzRb4hVMrVqzQokWLVFFRUW19cXGxiouLdfDgQW3btk3Z2dmaNm2a3/WPHTumP/3pT3U+MMzz2WdlZemTTz5RSkqKoqKifNb6/PPPtWDBApWVlTW4X++Hem3atIkACwCtHAEWANDkCgoK9P3330sK/PLhsrIyfffdd5Kkfv36NXj5cFZWliZNmqTS0lJJ0oABA5SYmKju3bsrKChIhYWFyszMbHDe0OzsbK1du1adOnXSxIkTzX1v375d//znP+VwOLRw4ULFxMToxRdf1I8//qi77rpLN954o8LDw3Xo0CG98847ys7O1q5du5SSkqLf/va3AX0GkvTNN9+Yyz169Aioxr59+8zw2qFDB91xxx2KiYlReHi4KioqVFhYqL1792rz5s0BX6a9aNEiM7zGxsYqMTFRERERuuiii3Ty5EkdOHBAGRkZ5iXhvuzdu1dr1qxRhw4ddM899+iaa65RUFCQcnJy1K1bt1rb9+jRQyEhISotLdU333yjCRMmBDR+AIA1EGABAE1u48aNcrlcatu2rQYNGhRQjezsbPPsY9++fevdtry8XNOnTzfD65NPPmk+odbbDTfcoIcfflh5eXk+a2VlZal3795atGiR2rdvb67/5S9/qaioKM2YMUPl5eWaNGmSjh8/rvnz5ysuLs7crk+fPrruuus0fvx4FRQUaPny5Ro/frzsdrtfv7/kvgx7//79ktwhPjo62u8akrRu3TrzzOvChQvN+2q9xcfH6+GHH1ZxcbHf9U+fPm1+MRAfH68XX3yxVhCOiYnRnXfeqdLS0nrPJO/fv19RUVFasmRJtadl+3qKtd1uV58+fZSRkaEffvhBTqezUWeqAQAtG/+GBwA0Oc/lw3FxcQoJCQmohvdlwA1N+7NmzRodOnRIkvupy3WFV29du3att/3ZZ5+tFl49hg4dqi5dukiSjh49qlGjRlULrx5hYWG69dZbze1ycnLq3V9dCgoK9Morr0iSDMPQY4895ncND88Tp8PCwuoMr946duzod/0TJ06YXzbExMTUexY3JCSkwUuqn3rqKb+mevJs63A4VFBQcNb9AADWQ4AFADSpkpIS7dixQ1Lglw9LUmFhobncoUOHerf1BGZJGjt2bMD7lNyXpPoKeYZhVGtLTEz0Wcd7u8OHD/s1BofDoeTkZDN41nxwlL88obukpETr1q0LuI4vHTt2NJ+m/MUXXzRqTtYuXbrU+aVAfbz/Prz/bgAArQ8BFgDQpNLS0lReXi673a4hQ4YEXOf06dPmcl1nQ7398MMPktxn4s7mYU/1aai/91jqe1qv93b+BLozZ87oueeeMx8MdeONN+rhhx8+6/51SUxMNM96zpgxQ48//rjee+897dq1y7zsujGCgoKUlJQkScrMzNS9996r+fPn64svvvA7vAfylGXvAOv94C0AQOvDPbAAgCblORt69dVXKzw8POA63veMNvQ02mPHjkmqOtPYGMHBwfW2e18eW9/l0d73YXqmAmpIeXm5pk2bpq1bt0qSBg4cqOeffz6g+2e9RUZG6uWXX9ZLL72k/Px87d69W7t375bk/pyvvPJKJSQk6Pbbb2/wywJfnnjiCZWVlSk1NVXHjx/XypUrtXLlSknuLxYGDhyokSNHNngmuaGz7XXx/rIj0CdeAwCsgTOwAIAmU1ZWpi1btkhq3OXDkvt+TY/jx483qpYVlJeXa8aMGebUQXFxcZo9e7Z5aW5jxcbG6v3339cLL7ygkSNHmtPYVFRU6LvvvtNrr72msWPHmuHZX+3atVNycrLeffddPfTQQ7r22mvNgF9UVKRVq1Zp8uTJeu6556oFzpoCeQCT94OnvP9uAACtD19TAgCaTHp6unlJamMDrPeUKQ0F2PDwcOXl5Vn2AT6e8Oo5e33ttddqzpw5jZo/ti5t27bVTTfdpJtuukmS+8z19u3blZqaqs2bN+v48eOaNm2aUlJS1Llz54D2ER0drQceeEAPPPCAKioqlJWVpU2bNmnFihU6evSoNmzYoKVLl2rSpElN9nudOHHCXG7oAV0AAGvjDCwAoMl4Aljv3r0VERHRqFrec57+9NNP9W7rmWansLCwwW1bmprhdcCAAXr55ZebPLzWJTw8XMOHD9e8efN01113SZJKS0u1cePGJqnvuTx5woQJ+tvf/mZenr1mzZomqe9x4MABSVJERIRCQ0ObtDYAoGUhwAIAmoTT6dTXX38tyf3gocbq2rWrLrnkEknS999/X++2CQkJ5nJKSkqj932+lJeX6/nnnzfDa0xMjObOndvgfbjnwsCBA81lzz3FTSkiIsKcxzaQuWZ9OXbsmDmF0lVXXdVkdQEALRMBFgDQJHbv3m0GH+9A2RieUHXgwAGdPHnS53bDhg0zw9Fnn32mjz76qN66eXl5TTK+xigvL9fMmTO1YcMGSec2vH755ZcNhlLPvcuSdOmll/pV//Dhw0pPT693myNHjphnSiMjI/2qX5/MzExz+frrr2+yugCAlol7YAGglTt48KD5xFkPz/yikrR+/fpqTwsOCQnR0KFD/d6P5yxiZGRkQFOh1OWmm27SZ599JqfTqfT0dP3617+uc7s2bdrohRde0OOPP67S0lItXrxYGzZs0IgRI9S9e3cFBQWpsLBQe/bs0fr169W3b18lJyc3yRgDNWvWLK1fv16SOzA++uijOnLkSL19OnXqpE6dOvm9r48++kizZs1SbGysYmNjdfnll6tjx446c+aM8vLytGbNGvPsebdu3fye/igvL09PPfWUIiMjNWTIEPXr109du3ZVu3btVFxcrMzMTC1fvtx8mvTo0aP9/h182bZtmyT3/b2DBw9usroAgJaJAAsArdzu3bs1Z84cn+2vvfZatffdunVrVIBtisuHPeLi4tSlSxfl5+crNTXVZ4CVpCuuuEKvvvqqpk+frsOHD2vHjh3asWNHndt67pltTuvWrTOXDx06pEcffbTBPg8++KAmTJgQ0P7KysqUlpamtLQ0n9tceumlmjNnTr3TA9Xn8OHD+uCDD3y222w2jR07VnfffXdA9WsqLy/XF198Icl91j/QKYAAANZBgAUANNqPP/5onj1s7NOHvdntdo0aNUqvv/66Nm/erGPHjtU7t2yfPn307rvvKjU1VV999ZWysrLM+y07deqkXr166brrrtPNN9/cZGO0ghkzZmjr1q3KyMjQvn37VFRUZF5S3LFjR11xxRWKj49XYmJiQNP29O/fX0uWLFF6eroyMzOVl5eno0eP6uTJkwoODlZkZKT69++v22+/vcnOzksy/yYkacyYMU1WFwDQchkul8vV3IMAAFjbW2+9pbfeekudOnXSxx9/HNBcnr6UlJTovvvu0/Hjx/XII49o3LhxTVYb1jZ16lSlpaUpNjZWCxcubO7hAADOAx7iBABoNM/lwzfccEOThldJCgsLM0PrsmXLdOrUqSatD2vKzMxUWlqaDMPQxIkTm3s4AIDzhAALAGiUM2fOKD4+Xg8++KBGjRp1TvYxevRoRUVFqbi4WP/+97/PyT5gLUuXLpUkjRgxQv369Wvm0QAAzhcuIQYAWML333+vtLQ0hYWF6d57723u4aAZlZSU6IMPPpDL5dKoUaPqvS8aANC6EGABAAAAAJbAJcQAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwhP8DU8dVtjGtVoUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACpNElEQVR4nOzdd3xTVeMG8OfepEn3pBQoLXuDyBSRobIU3KKIIrh/4kBfxdeJouLeqOirgkwRAUEREUFAhshGkD0KlNGW0j0z7vn9keaSttlNm7R9vp9PPoTk5OQkTXLvc8+550hCCAEiIiIiIiKiaiD7uwFERERERERUdzF0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG5+EzhMnTkCSJEiShHvuuccXVdZLV155pfo+EhE5cs8996i/FSdOnPB3c1QzZ85U2zVz5kx/N4d8TFEU9OjRA5Ik4fHHH/d3c6gWsf4uXHnllf5uClGV1OV99SlTpkCSJLRs2RIlJSU+r7/GejpnzpyJyZMnY/LkyTX1lH63dOlS9TXn5OT4uzlUxmQyYfXq1Xjuuedw9dVXo3HjxtDr9QgPD0erVq1wxx13YOnSpTCbzR7V+++//+Lxxx9H+/btER4ejqioKHTp0gXPPfccTp48WU2vhogIMBgM6Ny5s7ozJEkS1q1b59Pn+Oqrr7Bz504EBwfj+eefd+sxx44dw+TJk3HZZZehUaNG0Ov1aNy4Mbp3747x48dj4cKFDn9rT5w4gblz5+KJJ57AgAED0KZNG8TExCAoKAhxcXHo3bs3nnrqKezZs8ej13Hy5Ek899xz6NKlC6KiohAeHo727dvj8ccfx759+zyqyx1paWl45ZVX0KdPH8TFxUGv16Np06YYNmwYZsyYAZPJ5LIO2wM67lyc/e09qcf2EkgHuDz1wQcfqK/j7rvv9qqONm3aqHVs2bLF48cXFRVh8+bN+PTTT3HPPfegc+fO0Gq1Vfq+Go1GfP311xg0aJC6L9O0aVNcf/31WLBgAYQQbtclhMCCBQtw3XXXoWnTpup3ddCgQfjmm2/c+pza+u233zBq1Cg0a9YMwcHBaNiwIa644gp89NFHKCws9PSluuTL9yKQ7dixQ/3MNGvWzKvX9cADD6h1vPPOO+rtEyZMQExMDFJSUvDee+/5stkWwgdSUlIEAAFAjBs3zm6ZgQMHqmXqi3HjxqmvOSUlxWX5+vge1bQ1a9aI2NhY9X12dunVq5c4evSoW/W+9957IigoyGFdERERYv78+dX86qi+8PS3paZ8++23aru+/fZbfzenXpk8eXKl3521a9f6rP7CwkLRqFEjAUBMmDDBZXmTySReeuklodPpXP7WZmdn261j1KhRbv1WS5Ikxo8fL4xGo8t2zZ07V4SHhzusS6fTiQ8//NDTt8eh2bNni9DQUKft79atmzh27JjTemy/W+5cnP3tPanHegkPDxeFhYVevw/WegYOHOh1HVWRlpYmtFqtACBCQ0NFXl6eR49fv369+ho6duzoVRtc7Xt4+n1NSUkR3bp1c1rn4MGDHX6/bGVlZYmrr77aaV3du3cXJ0+edFlXSUmJuOOOO5zW1apVK/HPP/949Hqd8eV74Uog7Kt36dJFbcPq1as9emxhYaGIiIgQAIRGoxFnz54td/9rr72m7reeP3/el80WWvhA8+bN68wRBH/y9VFpquzMmTPIysoCAMTGxmLw4MHo06cPGjduDKPRiK1bt2L27NnIy8vDtm3bcNVVV2Hr1q1o1KiRwzq//PJLPPPMMwCAoKAg3H333Rg4cCCMRiNWrlyJRYsWIT8/H3fffTeio6NxzTXX1Mhrpbpr5syZHL5Kqv379+PNN98EAISFhVVLL8K0adOQlpYGjUaD//73v07LmkwmjBkzBgsWLAAAxMfH49Zbb0X37t0RExODgoICHDlyBKtXr8a2bduc1hUaGoqePXuiR48eaNOmDWJjYyFJEs6cOYPVq1djxYoVEELgiy++QEFBAWbPnu2wruXLl2PcuHEwm82QJAkjR47EsGHDEBQUhD///BNz5syBwWDAU089hYiICDzwwAOev1E25syZg7Fjx6r/Hzp0KG688UbEx8cjNTUV8+fPx/bt27Fr1y4MHToUmzdvRnx8vMt6H3/8cVx99dVOy3Tu3NnhfUuWLHGr/f/73//w22+/AQBuv/12hIaGuvW4QJSQkIDhw4fj559/RlFREX744Qfcf//9bj/e9vf23nvv9aoNFXv0k5OTYTAYkJaW5nFdOTk5uPbaa3Hw4EEAQIcOHXDfffehadOmOHr0KL766iukpqZi9erVuOWWW/D7779Dq7W/y28wGHDjjTdiw4YNAICkpCQ89NBDaN26NU6fPo0ZM2bgwIED2LlzJ6699lps3rwZkZGRDts2btw49bsfFxeHhx56CF26dEFmZibmzp2LrVu34tixY7jmmmuwZcsWJCUlefz6q+u9qC3uvfdePPXUUwAsn81Bgwa5/djFixcjPz8fAHDNNdegcePG5e5/4okn8M477yA/Px/vv/8+3n77bd813KcR1olAODJQ0wK1N6I+mzNnjujSpYv47rvvRElJid0yp0+fFp06dVL/dmPHjnVY39mzZ9Wj2FqtVqxatapSGdsj1ElJSaK4uNhnr4cokLCns+aZzWbRp08fAUBcf/315ba1vurpNBqNIikpSQAQQ4cOdVn+xRdfVNtw7733ivz8fIdlz54967CH8vDhww5/p63++OMPodfr1ef7+++/7ZYrLCwUTZo0UcvNnDmzUpnff/9d7Q0LDw8XaWlpTp/bmYyMjHI9ql988UWlMoqiiCeffLLce+VITX+3TCZTufdr48aNVarPWo+/ejqFEGLJkiVqO/r37+/242x7hrRardefi7Fjx4o33nhD/Pbbb2oPku1+oiffV9vPzTXXXFNpv+LChQvlev4+++wzh3V9/PHH5Xozs7Kyyt1fXFwshg0bppaZOHGiw7qWLl2qlktOTq7UM2o2m8W9996rlhk5cqTbr9kRX74X7giEPJORkaGOrvO05962R3vRokV2y9x5550CgIiJiREFBQW+arZg6KxGDJ2BJzs7WyiK4rLc3r171b9dSEiIw2FFtj92zzzzjMP6brvtNp/94BEFKobOmvfJJ58IACIsLEycPHmyWkKn7c767NmznZbdu3evGtxuuukmnzy/KxMmTFDbN2nSJLtlbHesb7vtNod1PfPMM27tXLvy9ttvq/XceuutDsuZzWZ1qJwsy+Lw4cN2y9X0d2v58uXq87Vt27bK9QVC6DQYDCI+Pl4AliHZroY0W82ePVtt//XXX+/TNnkTOtPT09Vh62FhYSI9Pd1uub179wpJkgQA0ahRI2EymSqVMRqN5d6Tf//91+FzhoWFCQBCr9eLzMxMu+UuvfRS9fUsX77cbpmioiKRnJysltu7d69br9tRu3z1XrgrUPLMTTfdpLZj+vTpbj3m5MmT6vsQFxcnSktL7Zaz/f5//fXXPmtztc9ea53l6c8//1Rvs3eCuqMJhhRFwQ8//IBRo0ahRYsWCA0NRUREBNq3b4/x48dj7969Tts2efLkSidp//HHHxg9ejRatGiB4ODgSifIm0wmrFy5Ek8//TT69euHhg0bQqfTISIiAm3btsU999yD9evXO3xO68ySs2bNUm9r0aJFpdfs6L1yZ0asLVu24KGHHkK7du0QERGBsLAwtGrVCuPGjcOaNWtcPr7iTHKFhYV4//330bNnT8TExCAsLAydOnXC888/j+zsbJf11RbR0dFuvb+dO3dG+/btAQDFxcU4evRopTJCCCxcuBAAXM7mOGHCBPW6ddhJTdm8eTPGjx+Pjh07Ijo6GsHBwUhOTsaoUaOwfPlyp49dt25dpe/oqVOn8PTTT6N9+/YICwtDdHQ0+vbti2nTprk90UBBQQE+/vhjDBkyBE2aNIFer0dsbCx69eqFl19+GefPn3f6+IrfFbPZjJkzZ2LIkCFITEyEVqtF8+bNKz0uPT0d//3vf9GxY0eEhYUhNjYWvXv3xgcffICioiIAltMFJEmq9PjffvtNfU7bv6czEyZMUB+zYsUKtx7jDlez11bX3+2XX37B9ddfj0aNGiE4OBjNmzfHXXfdhc2bN3v8GgwGA6ZPn44bbrgBSUlJCA4ORnR0NC655BI8/fTTDictOXToEMLCwiBJEqKiopCSkuLwObKzs5GcnAxJkqDRaJz+btdGJ0+exIsvvggAeP3115GcnFwtzzNnzhwAQEhICG6++WanZT/66COYTCZIkoSPPvqoWtpTUceOHdXrjoYq2v7uPvHEEw7revzxx9XflR9++MHrNtluh51NXCPLMu666y4Alv2d77//3uvn9KVvv/1Wve7tcFJPFRUVYcSIEepv16hRo2AwGCqV27dvH5566ilceumliI2NhV6vR2JiIm644QbMmzcPiqLYrT8oKAhjxowBYNl+u3uKgi+G1vrS0qVL1fdl9OjRaNiwod1ynTt3Vodhp6WlldsPt1qzZo26vR00aBA6depkt66GDRvijjvuAACUlpbip59+qlTmyJEj2L17NwDLpEvDhw+3W1dISAgefPBB9f9V+Z758r3wNdv80blzZ5w5c6ZSmczMTLzxxhvo378/GjVqBJ1Oh/j4ePTv3x/vvvsuCgoKHNZv+1l097M8a9Ys9XTIu+66Czqdzm65oUOHqkP9rb//PuGL5OpsIiHbIwLOLq+88kqleo8ePVruqIm9iyzLDo9sCiHEK6+8opZds2aNePTRR+3WY9sTeeWVV7rV5nHjxtk9SmB75MrV4x29V44YjUbx4IMPuqz79ttvF0VFRQ7rsZYbOHCgOHbsmOjYsaPDupo1a1Yve2p79eqlvgf2hmzZ9oZ27tzZaV1ms1lERkaqn1lPJzHwRkFBgVsTcYwYMcJhe9auXVvuO7pixQoRHR3tsK4hQ4a4HA7366+/ioYNGzptU0REhPjpp58c1mH7Xblw4YLo16+f3c+trTVr1oiYmBiHz9mlSxdx6tQp0axZM7uPN5vNokWLFgKwDDlxNUy6uLhYfb7k5GRhNpudlveEq1EUvv67mUwmp79rsiyLd955x+3emG3btqnvpaOLTqcTX375pd3Hf/XVV2q5yy+/3OFR65EjR6rlXnzxRafvaW1kHfLWvXt39T3wdU9nSUmJegrBgAEDnJYtKipSy3oyfLGqbHsn7e0P5Obmqkf3o6KiXH4XbU+v2Ldvn1dtst2mHjhwwGnZH3/8US3bp08fu2VqsqczMzNT7T2yN9GIN2z3Oey5cOGCOkwcgHj00Ucr/Z2MRqOYMGGCkGXZ6W/HZZddJs6dO2f3efbs2aOWa968ucuRT7Y9Qw0aNBAGg8Gr1++INz2dt956q/oYR8Mjrd577z21rL3RWE8//bR6//vvv++0roULF6pl7Y0W+PTTT9X7H3vsMad1bdu2TS3bq1cvp2Wd8eV74S5X++pms1k8/PDDapm+fftWGrIshOU7bR227eiSkJAg/vrrL7vPYzQaRUJCggDc77lv1aqVWveuXbuclr355pvV7bujnm1PVfuZtFOmTEFmZiZeeukldSpyeyexW3uVrI4dO4Y+ffogMzMTANCvXz9cd911aNasGcxmM3bs2IGZM2ciOzsbr7/+OmRZdrkcy3vvvYcVK1agUaNG6nTVJpMJW7duhV6vV8sVFxcjPDwcgwYNQo8ePdC8eXMEBwfj3Llz2LdvH+bNm4fCwkLMmjUL0dHR+Pjjj8s9z4QJE3DTTTdh6tSpWLt2LQDLCfkVj8B4c1T67rvvVo+EBgcHY9y4cejbty80Gg22b9+O6dOnIz8/Hz/88ANyc3OxYsUKpz17eXl5GDFiBA4dOoQbb7wR11xzDWJjY3H8+HF88cUXOHXqFE6ePImxY8fWuV4CZwwGA44cOaL+v1mzZpXK/Pvvv+r1Hj16OK1PlmV069YNf/75JxRFwYEDB9C7d2/fNbiC0tJSDB48GH///TcAoFWrVhg1ahQ6dOiAoKAgHD16FLNnz8bhw4exfPly3HTTTVi1ahVk2fHgh927d+O9996DEAL/93//h8svvxx6vR7bt2/Hl19+icLCQqxatQpvvPEGXnvtNbt1LF68GKNGjYLZbEZQUBBuuOEGXHnllUhISEBeXh7Wrl2LH374Afn5+bj55puxatUqlxNmjBkzBhs3bkTXrl0xevRoNG/eHHl5eeWWUdi/fz+uu+46tTezW7duGDNmDJo2bYr09HQsWLAAmzZtwqhRoxz2+smyjAcffBAvvPACsrOzsXjxYrWHwp5FixapowTuv/9+p+9tdfLF323ChAnqyA2dTodx48ahX79+kGUZW7duxfTp0/Hss8/ipptuctmezZs3Y/DgwSgqKoIkSRg2bBiGDh2KxMREFBcXY/PmzZgzZw6Kiorw8MMPQ6/XVxoV8uCDD2LlypVYvHgxNm/ejFdffbVS26dPn45FixYBAPr06VPnluuaM2cOVq5cCY1Gg6+++goajaZanmfTpk3q98bVb9aOHTsqlV2zZg2mTZuGzZs3IzMzEzExMejatStuu+02jBs3DkFBQVVq3/bt2/HFF18AsIw4sdcTu3//fvXo/qWXXuryu9izZ091f+Xff/8t15PqLuvzeWrfvn0QQjjdbk+bNg1vv/02UlNTAVgmaurVqxduuukmjBo1qsqTpMybN0/tPbI30YivpaamYtiwYThw4AAA4JVXXqn0fRVC4Pbbb1f3Hxs3bow77rgDXbt2RWhoKE6ePInvv/8eO3bswJYtWzBo0CBs27at0uRHXbp0QY8ePbBjxw6cOHEC69atw1VXXeWwbbY9Q2PGjKny59UXPNn36Nmzp93H+buuSy+9FBqNBmazWf1+erPupS/b7wulpaW46667sHjxYgDA8OHDsXDhwkqfw08++QRPPvkkAMtkaSNHjkTfvn0RFxeHzMxM/Pbbb/j555+Rnp6OwYMHY9u2bZV+h7RaLcaMGYMPPvgAQgjMmjULr776qsO2bdiwAceOHQNgef8vvfRSp6+lT58+WLJkCRRFwerVqzFq1CgP3w07fJFcfb1kitlsFt27dxeAZez4Dz/8YLdcWlqa2hMqy7Ldsei2PZ0ARL9+/URubq7T51+9erXTXsLMzEy1Z0WWZXH8+HG75Xy9ZMr3339f7uiHvSOwJ06cKNeD4Oj8Qdv3RKfTiWXLltl9nbZ1bdmyxeVrcKSwsFAsWbLEJ5cdO3Z43Q53zZkzR33d3bt3t1vm1VdfLdeb5MrYsWPV8nPmzPFxi8ureK6pvYk6DAZDuTbZm+jCtscMsPTY2TvnaMuWLep5XDExMXZ7zU6dOqX29iYnJ4s9e/bYbfuWLVtEVFSUACCaNm1q98hyxREUTz75pNPeC9ue0EceecRu2Yq/FRV7OoWw/OZYT953dW7SgAED1J6C1NRUp2U95UlPZ1X/brZLBURHR4vt27dXKnPw4EF1OQ3rxV5vTF5enjohTXR0tFi3bp3d13fkyBH1nJ+wsDC707ZnZWWJpk2bqu/xhg0b1PsOHTqknn8UGRnp9rlbjhw4cMBnv1++mII+IyNDxMXFCQDiP//5T7n7fN3T+eabb6r1LVy40GnZjz76SC370Ucficcee8zpUfxOnTo53H5WtG/fPvU9XLhwofj000/Fbbfdpn5+AYjJkyfbfeysWbNc7qPYevnll9Xyr7/+ulvtq+iqq65S63A2akOI8ud/AhCnT5+uVMbdJVPatWtX5aUobEeYLV68uEp1WVnrq/i7uX//fvU3QZZlMW3aNLuPtz0nd8yYMXbnWVAURbzwwgtquWeffdZuXZ999plaxtlEgYqilOsZ8uUSH1ae9nSazWb1M6/RaFwuE3T8+HG1/latWlW633Yfz9V+qtFoFBqNRgCWCZUq9hLbfubdeS2253V6s4309XvhLkf76rm5ueXeg7vvvttum7Zt26a2+9JLL3W4DM2yZcvU/Y3LLrvMbpl///1XfT5XPfe2Ezh98sknLl/nunXr1PIVtzPeCsjQuXjxYrXs1KlTnZY9dOiQ+iV48MEHK91vuyMZFhYmzpw549ZrcuXYsWMuN0q+Dp22s2/9+uuvDuvZsmWLOhykWbNmdoee2W6kXnvtNYd1ff31126Vc8X2M1LVizs7DVWRlZUlGjdu7HJH6z//+Y9a5tNPP3VZr6flvXX27Fl1aNQtt9zitKzBYBAtW7YUAESbNm0q3V8xvKxfv95hXXfddZfTco8//ri6cXA1rGP69OlqXfPmzat0v+13pUePHk4Dp+0wns6dOzudQMC2XnuhU4jyk0I5mvTj0KFDapkRI0Y4fa3e8DR0VuXvduONN6r325vx0+qXX34p95z2QucHH3yg3v/zzz87fY1//PGHWvaNN96wW2bdunXqULtmzZqJ7OxsYTAYRI8ePdTH+uIAT8UDElW5+CIIWtfAS0pKqjQzrK9Dp3UWQwAODxRZPfvss2rZtm3bqt/3MWPGiBkzZojvvvtOPP/886JBgwblvmf2hp45q7vipWvXrmLBggUOH2udbAmAePrpp10+l6fl7XnppZfUOpzN0Gk7kZD1Yu8A+rfffiu0Wq0YOHCgmDRpkpg1a5ZYuHChmDZtmhgzZowIDg5WHx8REeF1QNq5c6daT3x8vM+Gk1rrtA2dmzdvVteu1Ol0DjsYiouL1VMyevXq5XJ4dP/+/QVgOeBk7zSIrKwsdcbjsLAwh7Mr//nnn2q7HR18ripPQ2dubq5aPi4ursrlbU85cTbLtDvlbfdR3ZkcyNPyFfn6vXCXvX319PT0cq/nqaeechgAr7/+evV7au8Ak61JkyapdW7atMluGdtTwdasWWO3jO0MzDqdzq3hsunp6Wq9gwYNclneHf4Z7+WC9aTVyMjIcicb29O2bVt1GM/vv//utOytt96KJk2a+KSNLVu2VNdu3LJli0/qdObEiRPYtWsXAMvwkGuvvdZh2d69e6tDEk+ePIkdO3Y4LKvRaPDYY485vN92aOP+/fs9bXatYzabcccdd+DcuXMAgBEjRmDkyJF2y9qe4B0cHOyy7pCQEPW6dY2k6vDDDz+oQ6MmTpzotGxQUJA6ZOLIkSMOJ28BLENS+/fv7/B+Z58VIQTmzZsHwDJZgathHbZDxFx9rx999FGnw+VsJzx49NFHnQ5DdDbBiNXDDz+sXv/mm2/slrG9/aGHHnJZZ3Wqyt+ttLRUnQApISFBnYTDnhEjRqBDhw5O22L9bW/bti2uv/56p2Wvvvpq9ffa0Wdg4MCBeO655wBYfusefvhhvPTSS+pv3l133eW0zbXRL7/8op5i8fnnnyM8PLxan+/kyZPq9djYWKdlc3Jy1OuHDx9GcHAwVq9ejTlz5uDee+/F6NGj8eabb2L//v3o0qWLWv8LL7zgdfsiIiIwdOhQdO3a1WEZf/xW33vvvepv2KJFixz+Vjz77LOVJkTMy8urVK5fv344efIk1q1bh9deew1jx47FyJEjMX78eMyZMweHDx9Gr1691DZbT2Pw1IwZM9Tr1Tmc9LfffsOgQYOQlZWF8PBwLF++HLfddpvdsitXrkRGRgYA4D//+Y/L4dHW73xeXp56iomtmJgY3HjjjQAskyhah+FXFGgTCAG+/yz7sr6a/p4Fyj7Y8ePHccUVV6j76G+99RY++OADu8OFs7Oz1QkcR48ejcTERKd1226/HG0HbT+bthOY2rKuFw8A119/PeLi4pw+L2D5nljZbgeqIiBXR7UuUNu4cWN1YWJnrDuRJ0+eRHFxcbkPli1nO14V5eXlYd68efj111+xd+9eZGZmOlxw+/Tp027X662tW7eq14cOHeqy/NChQ/HHH38AsIRiR+fitG3bttwHqyLbL0RVZrFt3ry51+e41KQnnnhC/WInJye7PSNYILF+fwDLZ3Pp0qVOy9v+XQ8cOGB31lfAMr7fGWeflX379iErKwuAZSfRVZsAIDw8HDk5Oep5Po64+l5v375dve7s3B0A6mzOzlx11VVo27YtDh8+jFmzZmHKlCnldsyMRqP6w9+kSROMGDHCZZ3VqSp/t3/++Uc9gDFw4ECX5w0OGjTI4d8rNzdXPc82ISHB7c8AAKefgVdffRV//PEHtmzZUm6G0hYtWmDatGkun8MdkydPDohzQvPz8zF+/HgAloOoroK7L1i/t4Dr0Flx1tCXXnrJ7ncqPj4e8+bNQ9euXSGEwLfffot33nnH6YLzb7/9trpIeWlpKU6dOoWVK1finXfewXvvvYepU6fif//7H8aNG+fBq6s+LVu2xIsvvqieY/Xggw9i8eLFuOGGG9CgQQOcOXMG8+fPx9atWxEfH4+SkhJ1p9BeqGrdurXT50tKSsKKFSvQuXNnpKWl4eDBg1i0aJFH52GVlpbiu+++U/9/3333uf1YT8ydOxf33XcfjEYj4uPj8euvv5Y7364i221adna2y98O21lCDxw4YPczeN9996mzps6cObPSeeNFRUVqGNXr9bjzzjtdvCqqj/755x9cc801SEtLU8+vd/a92bRpk/o7qdFoXH6WjUajet3RdnD06NF46qmnUFJSgkWLFuGzzz6rdDDSmwMoQUFBiIiIQH5+vs9WsQi40FlQUIALFy4AsEyN72p69oqys7Mdhk5XRxSs1q5dizvvvNPh1OsV2Tsq6WvWnjfAEhRdsS1j+9iKGjRo4LQe2wmWSkpKXD5vbfbiiy/i888/B2DZKV61apXT98f2S+3Oe1NcXKxej4iIqEJLnbPtrbz99ts9eqyzH5aqfFZs27R48WL1JPuqtglw/b0+e/aser1ly5ZOy8bExCA6Orpcj01FkiThoYcewsSJE5Geno5ly5bhlltuUe//+eef1aPy9957b7VN8OKuqvzdbN87Vzu9rsqkpqaqG9sNGzaU25F0xdlnQKvV4rvvvsOll16q7rRbb3MWYmqjZ599FqdPn0ZkZCSmTp1aI89ZWloKwLKD5GjbalXxd83ZSKUuXbqgT58+2Lx5M0pLS7Fp0yanI3hs6fV6tGnTBm3atMFdd92FgQMHYu/evbjnnnsQHx9faakGf/1Wv/LKKzAYDHj77bchhMBvv/1W6UB6QkICfvrpp3Kv3dmBYGfi4uLwxBNP4PnnnwcALF++3KPQ+dNPP6kHGXr16oXOnTt71Q5ndu7cibFjx0IIgeTkZKxatcrlPo3t9uPRRx/16Pkc/XYMGTIETZs2xenTp7F+/XqkpKSgRYsW6v22PUM33nhjpQMuO3fuxKlTpxw+b79+/Vz+9nrD15/l8PBw9T0qKSlxOXLCWX01/T0LhH2wgQMHIjc3F3q9HgsWLFB70B2x/Sx/8cUX6iRo7nD0WY6OjsbNN9+M+fPnqz33tgdRrCMkAEtn3jXXXOP2c0ZGRiI/P7/ce1cVATe8Njc3t0qPt7emk5WrDSZgGWI4YsQINXC2a9cOTz75JD7//HPMnz8fS5YsUS/WNWy8GcLiKduhAGFhYS7L234ZnQ0j8NeMmoFmypQpePPNNwFYdtJXr17tckMYHR2tXrfOsuyM9WBKxcf6WlW+Q86+P1X5rFRXmwDX32vrCAWtVuvWUDF3vl/33HOPGta+/vrrcvdZ/y9JEu6//36XdVW3qvzdbIcvVZx9zx5n711VPgO2R3vtadCgQbmdwpYtW7qcybC22bBhA7788ksAluFbvjpVxBXr59xsNqsz0zpi+7uWlJTkcM08K9u/kXVWRU/FxMSU69G2N3ujv36rJUnCm2++iV27duH//u//0K5dO4SFhSE0NBQdO3bECy+8gH///Rc9evRQD15LkoSEhASvn9O2V+/gwYMePdZ2bc7q6uU0m83qqKeSkhK31giuju2HLMsYO3YsAMvpH7Nnzy53v6ueoalTp+Lmm292eKmu2VHDw8PVYds5OTku3z9Xn2VPvhsmk0n9nAYFBVX6va/p75mv3wtvWJ/TZDK5FXyra1/I2RBb2xmYx44d69GBcGt73clP7gi4nk7bsDRgwIAaWcDV1ltvvaUm+hdffBGvv/66w2mcXZ1v6ku2R2UcDfO1ZbuzWJ29au4qKipyeW6eu5KTk9G9e3ef1AUA7777LiZNmgTAsgOzatUqt47w2oZSZ+dCWtmOiXent9pb1u+QJEkwmUwBcWDB9nv98ssvO53W29esG0aTyQSj0egyeLrz/YqLi8PIkSMxb948/P777zh16hSSk5Nx8uRJrFq1CgAwePDgckfOayPbv5urwAE4f+9s6xo7dqzDc0+88cgjj5T7fh0+fBgvvfQS3nnnHZ/Uf/DgQY934B3xtgdkxowZEEIgJCQEmZmZmDJlit1ytu/DnDlzsHHjRgCWUQ/e/O7YhvmsrCynBx/atWunXo+KinJZt22ZquyMXXHFFeowsG3btqGwsLDcDrG/f6u7du2qHjCwZ9++ferB6zZt2rj13jlie66WsxEbFZ05c0bdRoeEhGD06NFet8GZXr164brrrsMzzzyDjIwMXHXVVVi7dq3TZWlsfzuOHz/us9/Ve+65Rz3YPHv2bLz88suQJEldSgWwjKQZMmSIT57PF2RZRqtWrXDo0CGYzWacPn3a4SkxgOvPctu2bZGSkgLA8t1wVtfp06fVz2nr1q0r7Ru3bdtWXSbQ1ffMZDKpw6DDwsLcHoloy9fvhTeWL1+OESNGoLCwUF1CzdnoAtvP8owZM3x2rvCgQYOQlJSE1NRU/Pnnn+rfUpQtpWJVcRi5M0ajUc0Srk6tcFfAhc6oqCiEh4ejoKCgRs6VrGj16tUAgIYNG+K1115zGDjz8/PLnetS3WzXybJdP9IR2zI1dUTcmYyMDI+HSjsybtw4n51r+dFHH+HZZ58FYPnsrVy50uUkN1a2wdTZZE2A5Vwn60nmsiy7nHClKhITE7F7924IIXDmzBkkJSVV23N50iarmv5eN2nSRD2X8Pjx4+V2jCvKzs52e0ft4Ycfxrx586AoCmbMmIHJkydjxowZ6hBSf08g5Au2vx1Hjx51Wd5Zmer6DMybN0+dpKpHjx7IzMzEyZMn8f7772PYsGEu13l1x/fff++zAyVr165169zhiqxHqouLi/HKK6+49RjbSWE6d+7s1Y5W8+bNsWnTJgCW0Nm0aVOHZS+55BL1ujsh0rZMVYKWJEkICwtDfn4+hBDIy8srFzo7duwIWZahKAp2794NRVGcHoyzPQ+8OoaYVmR7cN2TuSfs8bY3Z9asWepv1y233FKlv4crEydOhCRJmDhxoho816xZg06dOtktX/G3w1ehs02bNujXrx82btyI48ePY/369Rg4cKBbPUMzZ87025wPnTt3xqFDhwBY9j2cBS1Xn+XOnTtj5cqVal3Ofpvcqctqx44dTgPO7t271QDbsWNHr9botD6nr94LbwwcOBC//vorhg8frgZPIQTuuOMOu+WrazsoyzLGjRuHKVOmqEHzlVdewfr163H8+HEAwOWXX4727du7XadtxrG3Vr1X7fRJLe48kc0PvKsJZQYMGADAsoPozo6OL6WnpwOwTELhbKO0evXqSpMmVOTJa3bFdiIga0+KM7a9iq4W9K6vPv/8czz11FMALL3BK1asUGf/c0enTp3UHbB9+/Y5/QH566+/1GEp1qPy1WXgwIHqdV/1LldVt27d1PPr/vjjD5ffHV+ynaDCehTWEevRbXf069dP3UmaMWMGjEajupPfsGFDl+d21AZdu3aFTqcDYNkxdnUqgXXyMnsaNGig9mb8/fffPjkXPiUlBY888ggAy9Hy+fPnY+7cudBoNFAUBWPHji23E06es905s+7cOdK+fXs1EKSmpqrnNjtie7CuKj0Pubm5OH/+PABLAK04M2NkZKQ6oVZubq7dGU2tUlNT1Vmck5OTnfbA+YpteKnqkHzbAOvJe2rbhuoaWmvr6aefxgcffADAclD66quvxr59++yWrc5tWsVhiRWH2nrSM1RThg0bpl63BkZHbM8htncuX6DW5S5/PGdFAwYMwIoVKxAeHg6z2YwxY8aoM4zbK2sN2L7+LNt+VmfPng0hRJVmYLaduMj2gGKV+GLdFXfW6bSuSwM31gJasGCBWnb06NFVapvt+mrurIEUHR2trk/laI0dk8kkevbsWW6dMXus6xLCzTWIXK3T2b17d/X+33//3WE927ZtK7d2nbN1Ol0tcO9p2driq6++UtcyDQsLK7ewvCds197873//67Cc7dqOn332mbfNdsupU6fUdTrbtGkjCgoKvK7Ldr3HV155pUplx48fr97/v//9z+s2CeHZur++XqfT1tSpU9XyjzzyiHr9mWee8eTleMyTdTqr+ne76aab1Ptnz57tsJ5ff/1VLQfYX6fznXfeUe9//vnnXbxK50wmk7j88svV+qZPn67eZ7u22U033VSl56ltfL1O55o1a9T63Fmz8vnnn1fLT5kyxWG5PXv2qL/B4eHhorCw0Os2fvjhh+pz9uzZ024Z27U3b7/9dod1PfPMM2q5iRMnet0md82YMUN9viuuuKJKdV24cKHcGtP21ji2Z/369epjWrRo4XSBeW852o+w/ds1bNjQ7hqlBQUF6tqusbGx4uzZsz5rV35+vggLCxMoWzfR9nesqn8Pd3i6TqcQQmRkZKjb+PDwcJGenm633N69e9XvWKNGjexu+4xGo4iPjxcAhCRJdt9/ISxrNlrfp+DgYIfrPLqznnxxcbFITk72aP/YEV++F+5ytP+xfv16ER4eLgDL+sTfffed3cdfe+216uNXrlzpdTvsGTBgQLn339qekJAQkZub61Fdb7/9tlqXs3WQPVFjoXPChAlqmT///NNpfWazudxip0888YQoLS11WL6oqEh8++23Yv78+ZXu8zR0DhkyRC3/4YcfVrrfYDCIe++9t9zOlaOdU9sf01mzZrl8blc70rZhvHHjxuLAgQOVypw8eVK0atXKZcCpz6Fz1qxZ6o9PaGholXbMzpw5I0JDQwUAodVqxerVqyuV+fbbb9X3MCkpye5i1b729NNPq8951VVXiXPnzjksazabxapVq8Trr79e6T5fhpfU1FT1oI5er3f5nUhPTxevvfaa3UXOPQmdQgjRr1+/cuHQ3uLitr8V7obOnJwc9e9vezl8+LBb7fJWTYbODRs2qPfHxMSIXbt2VSpz+PDhcju7jkJnQUGBaNasmbqD8+677zpd6D0nJ0d88sknYtWqVZXusw2WI0eOLHef0WgsF0irepCjNvF16CwpKVF3Nvv37++yfGZmpvo9Dw4OttuGjIwM0aVLF7Wd9g7Ybdq0SXz11Vcufy/nzZsn9Hq908+dEJbF0Zs0aaKWmzlzZqUyq1atElqtVt2BTUtLs1uX7T6Ps9+gffv2iYyMDIf3z507V91hDg4OFgcPHrRb7q+//hJff/21KCkpcVhXamqq6N27t9qmNm3aCKPR6LC8rXvuuUd93KuvvurWYzzlbD/io48+Uu+Pj4+3G3w+/fRTtcwll1zi8jf277//dvvgn+3vqe3v2DfffOPW46vCm9AphBBPPvmk+rhrr7220vckKyurXAB0drD7448/Vst1795dZGVllbu/uLhYXHPNNWoZZwdjli5dWm4bevLkyXL3m81mcd999zn87bZlu012lC18/V64w9n+x4YNG1wGzx07doigoCB1m7pixQqnz3fixAnx9NNPOwzUtmz3N20/y2PGjHH/BZa5+eabBQAhy7K4cOGCx4+3p8ZC508//aSWad26tfj888/FL7/8IlasWCFWrFghjhw5Uq78qVOnRGJiYrk3b8KECWL69Oli0aJFYubMmeK1114TN9xwg7pBtLfT7Gno/Pnnn8ttTG644Qbx+eefi++//168/vrrok2bNuqOfNOmTZ3unP7zzz9qPQkJCeL9998Xy5YtU1/znj17ypV3Z0f6jjvuUMuEhISI8ePHi9mzZ4t58+aJ//znPyIyMlK9f+jQoQ6PWNbX0Pnrr78KjUajvqbHHntMLFmyxOWl4g+nrS+++EKtLygoSNx///1i9uzZYsaMGeK2225TA65Wq3X542L72bMXJtxlMBjEoEGDyn1WxowZIz7//HPxww8/iLlz54r3339f3H333aJRo0YCgBg0aFClenwZXoQQ4rffflN3sgCIrl27ikmTJonZs2eLhQsXim+++Ub897//FQMGDFD/TvZ6oT0Nnfv27SsXDrt16yY++OADsWDBAjF16lRxxRVXCADi8ssvV393WrRo4VbdFQ9CXXnllW49ripqMnQKIcr14ur1evHQQw+J2bNni7lz54oJEyaov8G2vaKOdv537dpV7neqVatW4r///a+YOXOmWLRokZgxY4Z46aWXxNChQ9XPypw5c8rVsWHDBvXz0bRp00o7SUIIcfz4cfV5QkNDHe7Q1zW+Dp1CCHHrrbeqvyOuRioJIcT8+fPV3z2NRiPuvvtu9cDwCy+8oPasWH8DioqKKtWxZMkSAVh6n2699VbxxhtviFmzZqnb/xdeeEF07dq13Hdv5MiRTnvpfvnlF/VzI0mSuO2228SMGTPE7Nmzxf3336/uCAIQX3/9tcN63A2d7733ntDpdGL48OHizTffFN9995347rvvxJtvvlkuIOp0OrFkyRKH9Vjfi8jISHHbbbeJt99+W8yZM0csXLhQfPnll+Luu+8WISEhan0RERFi586dDuuzZdvTJ8uy021dVbjaj7ANPvHx8XZ7v8aOHauW0Wq14pZbbhEff/yxWLBggfjuu+/EJ598Ih544AHRokUL9bfFHevWrSv397T+ZuTl5VXlJVfyxx9/iBdffLHc5ZJLLikXDCren52dbbeu7Oxs0b59e/WxHTp0EB988IH4/vvvxZQpU0RSUlK5bZLBYHDYrtLSUtG/f3+1fFJSkpgyZYr4/vvvxfvvvy86dOig3texY0eRk5Pj9HWOGjVKLR8XFydeeOEFMX/+fPHZZ5+V+9w3btxYnDp1ymE97oZOX74X7nC1/7Fx40aXwfObb75RfyMBS6/6lClTxLx588QPP/wgvvzyS/Hkk0+WG1WZmprqsm0FBQXqc9te/vjjD49eo20PuC/3aWosdJpMpnK9DRUv9nZ2zp49W27H2dlFo9HY3Uh4GjqFKD88yN7liiuuEBkZGeoRe2c9IqNHj3ZYT8X3yp0daaPRKB544AGX78fIkSPtbsitXG0AvC0b6Cr2Zrl7cbQDbfXee++V22GpeImIiLDbE1+R7WOqEjqFsGxIHnvssXIh29ll7NixlerwdXgRQojNmzeLli1butWm8PDwSgdnhPA8dAphGSZo7YGxd+ncuXO5g12XXHKJW/Vu2bKlXD3uDmmripoOnSaTSdx9990O3ztZlsW7775b7iirs+/MwYMHyx15dnbR6/XlDtZkZ2erv72yLDv9XZ87d65aT7du3ZyOmKkrqiN02vZeOBtibevbb79Vw4yjy8CBA8X58+ftPt4atNy56HQ68eKLL7rVszd37ly7O2W2ddkb5WTLk9Dpqu0tW7Z0uUPoyXvRuXNnu6NDHJk+fbr62CFDhrj9OE/Z/s0dsR0CbS94KooiXn/99XI9264+X+5QFKXSNsne9rCqvNn/cLYfkJKS4vJ3dPDgwQ6Dq62srCxx9dVXO62re/fubh2UKCkpKddBYu/SqlUrl59Td0Onr98LV9zZ/9i4caOIiIgQgCWf2Nsv+Pnnn0VCQoJbn4O4uDiHv5UVVTwQ3rx5c4+HzNsOM/dlj3+NhU4hLF30b7/9trj88stFTExMuZ1hZztG69atE//3f/8nOnXqJKKjo4VGoxGRkZGiY8eOYtSoUeKLL75wOMbfm9AphBArVqwQI0aMEA0aNBBBQUGicePG4uqrrxZff/21umFzJ3SaTCbxxRdfiCuvvFI0aNBAHbpj773yZEd68+bN4v777xetW7cWYWFhIiQkRLRo0UKMGTPGrSManvwoe/oDHsiqK3QKYTln4NFHHxVt27YVYWFhIiIiQnTu3Fk8++yz4sSJEy4fX1hYWG7Hx1fDGY4cOSKee+45cdlll4n4+Hih1WpFaGioaNGihXoE3l6wE6J6QqcQloMnc+fOFbfffrto0aKFCA8PF1qtVsTGxoqePXuKBx98UCxYsMDh+ajehE4hhEhLSxMTJ04U7dq1EyEhISI6Olr07NlTvP/++6KwsFAoiqL2GLh7dE9RFBEVFSUAy/lGzobA+UpNh06rZcuWiREjRoj4+Hih1+tFcnKyGD16tPjrr7+EEMLt0CmE5X376aefxLhx40Tbtm1FZGSk0Gg0Ijo6WnTt2lWMHTtWzJw5s1Ivpu1R9Oeee87pcwghxF133aWWd+ecxNquOkKnyWRSz8HyJJicOHFCPP/88+KSSy4R0dHRQqfTicTERHHLLbeIH3/80emOkMlkEhs3bhSvvvqqGDFihGjdurUIDw8XsiyL8PBw0axZMzFixAjx3nvviTNnznj0ek6cOCH++9//ik6dOomIiAgRFhYm2rZtKx599FGH57TZcjd0pqamio8//ljceOONom3btiIqKkoEBweL5ORkMWLECDF9+nS3TrfIz88XP/30k3juuefE1VdfLdq2bStiY2OFVqsV0dHRokOHDmLcuHHi559/djpc3R7bzgB3Dox6y939CNvz5B31eJ49e1a89tprYuDAgaJRo0ZCp9OJ4OBg0bRpUzF48GAxadIksXnzZo/a99prr5X7m/rqu2PL16FTCMuopq+++kpcffXVIiEhQeh0OtGkSRMxYsQI8f3333sUNhRFEd9//70YMWKEaNKkidDpdCIhIUFcffXV4quvvnJ7uLbVihUrxG233SaSkpKEXq8XDRo0EJdffrn48MMP3ZprwpPQKYRv3wtn3N3/2LRpk8vgWVRUJL788ktxww03iKSkJBESEiJ0Op2Ij48Xl19+uXj88cfFsmXLPDpganuOtjvbdXvuvPNOAViG/1ZlXpCKJCGqOK0qEfnEypUr1RnVJkyYgE8++cTPLap/9u7dq87S5u7fYPXq1eo6bk888QQ+/vjj6mwikV989NFHeOqpp6DRaHDixAmnS6cQEVHtlJeXhyZNmqCwsBDPPvss3n77bZ/V7f9V44kIwMU1YiMiIvDSSy/5uTX102effaZev+qqq9x6zBdffKFerwtrcxLZ8/DDD6NRo0Ywm8149913/d0cIiKqBlOnTkVhYSEiIiIwceJEn9bN0EkUIKyh86mnnkJ8fLyfW1P3bNiwwen6oJ9//jm++uorAJYFnK+77jqXde7evRtLly4FAAwePLhG1vQj8oeQkBBMnjwZAPDVV1/h7Nmz/m0QERH5VF5eHj766CMAwDPPPIMGDRr4tH4OryUKAJmZmWjYsCEaNGiAY8eOISIiwt9NqnNat26NkpISXHvttejWrRvi4+NhNBpx7NgxLFmyBLt27VLLLlu2zGHo/O2336AoCg4fPox3330X586dAwBs3LgRV1xxRY28FiJ/UBQFvXr1ws6dO/HYY4/h008/9XeTiIjIR6ZMmYJJkyahRYsW2L9/P4KDg31aP0MnEdULrVu3xrFjx5yWCQkJwddff4277rrLYRlJkird5u75n7///juKiopcN9aOBg0aoF+/fl49loiIiMifGDqJqF74+++/sXjxYvz99984c+YMLly4gKKiIsTExKBt27YYPHgwxo8fj4SEBKf1WENneHg42rZti/Hjx+O+++6DLLs+W6F58+Y4efKkV+0fOHAg1q1b59VjiYiIiPxJ6+8GEBHVhD59+qBPnz5VrofH6YiIiIg8w55OIiIiIiIiqjacvZaIiIiIiIiqDUMnERERERERVRuGTiIiIiIiIqo2nEiIiIhqDZPJhKKiIqeX0tJSGAwGGAyGctft3WYymWAymaAoCsxmc6V/ba9bp0CQJEmdrdj2uizL6uzGsixDq9VCq9UiKCio3MV6m1arhU6nU/8NCQlBcHAwgoOD7V4PCQlRL+Hh4QgJCXFr1mQiIiJ/Y+gkIqIaZTKZkJeXh7y8POTn5zu9bv23sLAQxcXFMBgM/m5+wJBlGWFhYQgPDy93iYiIKPf/qKgoREdHIzo6Wr2u0+n83XwiIqpHOHstERFVmclkQlZWFrKzsyv9W/F6bm5ulZeesfYMhoaGIjQ0FGFhYer/g4ODsXLGOkiKBCgAFEm9SLb/F2X/FwCEpYdSvS7KrsNyXVL/r94ESDYNUq+Li9clALLl/0Iuq8R6mwxAEpanlYXlohEQssCw+69ESUkJiouLUVJSgpKSEhQVFZW7bjKZqvT+hYaGqkHUNpDGxcWhQYMGaNCggXpdr9dX6bmIiIgYOomIyCmDwYDMzEycP39evWRkZCAjI0P9f1ZWlkdBUpIkhIeHIzIyEhEREYiMjERkZCTWzN4EySQDJsnyr1GGZJIAswTJLAPmsutCcv0kdZRAWWjVKBBaAWgVS2Atuy60AtAoGPHoYOTn5yMnJwc5OTnIzc1Fbm4uzGazR88XHh5eKYg2aNAA8fHxSEhIQKNGjRAZGakOLSYiIqqIoZOIqJ4zGAxIT0/HuXPncO7cOZw9exZpaWk4d+4c0tPTkZ2d7VY9Go0G0dHRiI2NRUxMDLYv2wPJWBYcDbLlukGGZNQARgkSGFJqmkBZj2qQAgQpNv8KIEjBwLv7IDMzExcuXEBmZiZKS0vdqjckJAQJCQlqCK34b1xcHM8/JSKqxxg6iYjqgfz8fKSmpuL06dM4ffq0GjDPnTuHzMxMl72UOp0O8fHxaNiwIeLj4/HH9I2QDBqgVIZUqoFkKAuXDJJ1hhpQdQqgM0PoFAidgpsmDkNmZiYyMjKQnp6OrKwsl3XpdDo0adIEiYmJaNq0KZo2bYrExEQkJiaiYcOG0Gg0NfCKiIjIXxg6iYjqCIPBgLNnzyI1NRWpqak4deoUTp8+jdTUVJe9lSEhIWjUqBEaN26MLYt2ASUaSCUaS6As1ViGuzJQkh1CFhA6MxBshtCbIfQKBj/YD2lpaUhPT8f58+edDunVarVo0qSJGkSTk5PRrFkzNG/eHNHR0TX3QoiIqNowdBIR1TKlpaU4deoUUlJS1MuJEyeQlpYGRVEcPq5BgwZISkpCYmIiVny2zhIqy4Ilh7tSdREQgN4MEWKGCDbjlheuxenTp3HmzBmcPXsWRqPR4WOjoqLQrFkzNYRa/42Pj+c5pEREtQhDJxFRgDKZTEhNTS0XLlNSUnDmzBmH4TI0NBTJyclo2rQp1k7fDKlYC6m4LFyaeU4dBRZLIFUggk0QIWbc+uJwnDx5EidPnkRaWprDYd+hoaFo1qwZWrZsidatW6NVq1Zo1aoVIiIiavgVEBGROxg6iYgCQFFREY4dO4bDhw/jyJEjOHLkCFJSUhwujREZGYkWLVpg74rDkIu0lnBZpOF5lVRnCFlAhJggQi2B9IoxPXDy5EmcPn3a4XDdhIQEtGrVCq1bt1bDaGJiIicxIiLyM4ZOIqIalpOTUy5cHjlyBKdPn7bbqxMSEoKWLVviwB/HIRVpIBdqIRVpGS6p3hKSgAg2W8JomAmX3dEVx48fR1pamt3ywcHBaNWqFdq3b4927dqhffv2SEpK4uRFREQ1iKGTiKgaFRcX49ChQzhw4AAOHDiA/fv3IyMjw27ZBg0aoE2bNti6YA+kQi3kgiDL7LAMl0QuCY0CEWYJosMmDMCxY8dw/PhxGAyGSmVDQkLQtm1btG/fXg2jiYmJPE+UiKiaMHQSEfmI2WzGyZMnsX//fjVkpqSk2B0K2LRpU7Rp0wbrv90GuUALqTDIso4lEfmMgLBMYBRuxM0vDcOhQ4dw+PBhlJSUVCobHh6O9u3bo1OnTujcuTM6duzIc0SJiHyEoZOIyEtFRUX4999/sWfPHuzduxcHDx5EcXFxpXINGjRAhw4d8NfsXZALgiAVaDmpD5GfCAiIUEsQve6/V+PQoUM4evSo3Vl0W7Rogc6dO6uXpk2bsjeUiMgLDJ1ERG66cOEC9u7diz179mDPnj04evRopVlkQ0JC0K5dO+z95TCk/CDI+UGQDDx3jCiQCUlYzhGNMGLQo33x77//4syZM5XKRUVFqT2hXbt2Rfv27REUFOSHFhMR1S4MnUREDpw9exa7du3C3r178c8//9jdCW3UqBEuueQSrJm2GVJeEKQiLc/BJKoDRJACJcKA214fjn379uHgwYOVzg/V6/Xo0qULLr30UnTr1o0hlIjIAYZOIqIyFy5cwM6dO7Fz507s2LGj0myYkiShZcuWSNlwFnKeDnIeezGJ6gshCYgwE5RIA/rd2wO7d+9Gbm5uuTIMoURE9jF0ElG9lZ+fj927d6sh88SJE+Xu12g06NChAw6sOA7JGjJ5LiYRwebc0CgD+t3fA7t27bIbQi+55BL06tULvXr1QsuWLXlOKBHVSwydRFRvmEwmHDhwAH///Te2bduGw4cPlzsnU5IktG7dGsfXnoGUy5BJRO5zJ4TGxcWhZ8+e6N27N3r27ImYmBg/tZaIqGYxdBJRnZaZmYmtW7diy5Yt2LZtGwoKCsrdn5SUhDNbMyHn6CDn6iCZGDKJqOqsIVSJLkXP0Z2we/dulJaWlivTpk0btRe0S5cu0Ol0fmotEVH1YugkojrFZDLh33//xZYtW7BlyxYcPXq03P0RERHo3bs3/vxiG+QcHc/JJKIaISQBEWnEyDevwfbt23HkyJFy94eEhKBnz5644oorcPnll7MXlIjqFIZOIqr1CgoKsGXLFmzYsAFbt26t1JvZvn17HPk9FXK2DlJ+EGeXJSK/E0FmKNEGDJpwObZt24asrCz1PkmS0KFDB/Tt2xd9+/ZFq1ateC4oEdVqDJ1EVCtlZGRg06ZN2LhxI3bt2gWTyaTeFxUVhV69emHd51sh5+ghGTlklogCl4CACDfhro9vwF9//YXDhw+Xuz8hIQGXX345+vbti+7du3MYLhHVOgydRFQrCCGQkpKCDRs2YNOmTTh48GC5+5OTk3FmUybkLD17M4moVhM6M5SYUvQe1wU7duwody5oWFgYLr/8cgwcOBCXXXYZgoOD/dhSIiL3MHQSUcASQuDo0aNYu3Yt1q5dizNnzqj3SZKETp064cCyE5Cz9JCLtX5sKRFR9RCygBJlwPDnB+Cvv/5CZmamel9wcDD69OmDgQMH4vLLL0doaKgfW0pE5BhDJxEFFCEEjh8/rgbN1NRU9T6dToeePXti66y9lh5NIycBIqL6Q0BARBhx8xtDsH79eqSlpan36XQ69OrVCwMHDsQVV1yBiIgIP7aUiKg8hk4iCggnTpzAmjVrsGbNGpw6dUq9XafToU+fPvjrq38gZ+kgKTw/k4hIQECEmXD7+9fizz//xOnTp9X7goKC0KdPHwwePBh9+/aFXq/3Y0uJiBg6iciP0tPTsWrVKqxatQopKSnq7TqdDpdddhk2f/0P5Gw9JDODJhGRI5Y1QU24a+oNWLduHU6cOKHeFxoaigEDBmDw4MHo3r07tFqeikBENY+hk4hqVGFhIf7880+sXLkSu3fvhvUnSKvVonfv3tj67b+WobMMmkREXlFCjbj9g2uxevVqpKenq7fHxsbiqquuwpAhQ9ChQwcuw0JENYahk4iqnclkwvbt27Fy5Ups3Lix3EyM3bp1w94fjkHOZNAkIvIlAQERacSIlwdi7dq1yM3NVe9LTEzENddcg2uuuQYJCQl+bCUR1QcMnURUbY4dO4YVK1Zg9erV5RY+T05Oxpn1WdCcD4ZUysmAiIiqm5AElGgDrnyiJzZu3IiSkhIAlpnAe/bsieHDh6Nfv348/5OIqgVDJxH5VFFREdasWYNly5bhwIED6u1RUVEoOGCAnBECqUDLdTSJiPxEyAqUBqXoMqoVdu3apd4eERGBIUOGYPjw4Wjbtq0fW0hEdQ1DJxFVmRAChw4dwrJly7B69WoUFxcDADQaDa644gr89eUeyNk6SIJBk4gokIhgE+6YOgIrVqzA+fPn1dtbt26N4cOHY9iwYVx+hYiqjKGTiLxWUFCAVatW4ZdffsGRI0fU2xMTE5G2MReajGCupUlEVAsICIhoA/pP6I4NGzbAaDQCAPR6PQYPHoybbroJ7dq183Mriai2YugkIo8dO3YMixcvxqpVq9RJgXQ6HQYMGIA/P9oBKTeIw2eJiGopoVUwfv6dWLZsGY4fP67e3qFDB9x00024+uqree4nEXmEoZOI3GIymbBx40YsXrwY//zzj3p7ixYtcOqPTEuvpomzzxIR1RUCAiLCiIFP98C6detgMpkAAJGRkbj22mtx4403omnTpn5uJRHVBgydRORUTk4Oli1bhqVLl6rn+2g0GgwYMAAbP9kNKY+9mkREdZ0IUnDP9Jvx888/Iy0tTb39sssuw2233YZevXpx3U8icoihk4jsOnz4MBYvXow//vgDBoMBABAdHY38PUZo0kIgGXiuJhFRfSMgoMQY0OO+dti6dSusu5EtWrTA7bffjsGDB3PoLRFVwtBJRCohBLZt24bvvvsOO3fuVG9v3749jv58FvL5YM5AS0REACwz397w9lVYvny5Omt5TEwMbr75Ztx0002Ijo72bwOJKGAwdBIRTCYT1qxZg/nz5+PYsWMALENor7rqKvz5wQ5I+RxCS0RE9gmNgvtnj8SiRYvU0zB0Oh2GDRuG2267Dc2bN/dvA4nI7xg6ieqxoqIi/PLLL1i4cCHS09MBACEhITAclaA5GwqplENoiYjIPUISUOJK0fqmxjh48KB6e9++fTF27Fh07NjRj60jIn9i6CSqh3JycrBw4UIsXboU+fn5AIDY2Fjk7jRAcy4Ekpmz0BIRkXcEBESkEX0e7YyNGzeq5312794dd999N7p3785Jh4jqGYZOonokKysL8+fPx08//YSSkhIAQFJSEs6tyYGcEcLzNYmIyKeUEBOGTLoMK1euhNlsBgB07NgRY8aMQd++fSHLPMhJVB8wdBLVA5mZmWrYtM5E2759exxdcg7yBT3P1yQiomol9GZc//ZALFu2TN0OtWzZEvfccw8GDBjA8ElUxzF0EtVhGRkZ+O677/DLL7+oG/lOnTrh8IIzkHJ0DJtERFSjRJAZt00dhiVLlqCoqAgA0KpVK9x3333o168fh90S1VEMnUR1UHZ2NubMmYOffvoJRqMRANClSxccnJ/KsElERH4nNAru/N8ILFy4EIWFhQCAtm3b4v7770efPn0YPonqGIZOojokPz8fCxYswMKFC9U107p27Yr9c09ByuWyJ0REFFiEVsGoz6/BokWL1O1Whw4dcP/996NXr14Mn0R1BEMnUR1QUlKCxYsX47vvvlNno23fvj2OLUyDlMueTSIiCmxCq+DWTwZjyZIl6kR3PXr0wMMPP4x27dr5uXVEVFUMnUS1mMlkwvLly/Htt98iKysLANC8eXOcXpHNCYKIiKjWEUFm3Pj+VVi6dKl6esjgwYPxwAMPoEmTJn5uHRF5i6GTqBYSQuDvv//GF198gRMnTgAAGjVqhMz1RZAzghk2iYioVhN6M658sTtWrVoFIQS0Wi1uvPFGjBs3DtHR0f5uHhF5iKGTqJY5duwYPv/8c2zfvh0AEBUVhYKdCjRpXGeTiIjqFiXMiG7/1xpbt24FAISGhmLs2LEYOXIkdDqdn1tHRO5i6CSqJTIzMzF9+nSsWLECiqIgKCgISkoQNKlhkMxc34yIiOouJaoULW5tiMOHDwMAEhMT8cgjj3CZFaJagqGTKMAZjUYsWrQIM2fOVGf2u+qqq7Dp3T2QSrV+bh0REVHNEBB4ZsWD+PLLL3HhwgUAQM+ePfHYY4+hZcuWfm4dETnD0EkUwHbs2IGPPvoIp06dAmCZRv7o92mQ8zmkiIiI6ichKxj1xTVYsGABDAYDNBoNbrjhBtx///2IjIz0d/OIyA6GTqIAlJ6ejmnTpmHt2rUAgOjoaBRsVThJEBERURmhN6HP052wfv16AJZt5SOPPIJhw4ZxyC1RgGHoJAogRqMRCxYswOzZs1FSUgJZliGd1kNzMpznbRIREdmhRBmQeH2UOpv7pZdeiqeeegrNmzf3a7uI6CKGTqIAsW/fPrz77rtISUkBAFxyySU4MOs05MIgP7eMiIgosAlJ4N7ZN2PmzJkoLS2FVqvFHXfcgbFjxyI4ONjfzSOq9xg6ifysqKgIX331FZYsWQIhBKKiolC4VUA+z6G0REREnhB6M3o+0RZ//fUXAMsa1hMnTkTv3r393DKi+o2hk8iPNm3ahA8//BDnz58HAMjpwdCmREAycSgtERGRt8yxJYi9Uo+MjAwAwPDhw/Hoo48iIiLCzy0jqp8YOon8ICcnBx999JE6UVCTJk1w/vciyDl6P7eMiIiobhCyghs+HIjFixdDCIG4uDg8/fTT6Nevn7+bRlTvMHQS1bANGzbg/fffR3Z2NjQaDXBSD82pcEgKh9ISERH5mhJhQKPrwpGamgoAGDx4MCZMmIDo6Gj/NoyoHmHoJKoh+fn5mDp1KlauXAkAaNGiBU7/mMuJgoiIiKqZkAVGfjYY33//PRRFQXR0NJ555hn079/f300jqhcYOolqwNatW/HOO+/g/PnzlmVQTgVblkER7N0kIiKqKUq4EU1vjlJnir/uuuvw2GOPITQ01M8tI6rbGDqJqlFpaSmmTZuGJUuWAAASExOR8WsR5Hydn1tGRERUPwlJ4JZPr8aCBQsghEBiYiJeeukldOrUyd9NI6qzGDqJqklKSgomT56sHk3VnA2B5kQEz90kIiIKAEqUATGDgpCRkQGNRoO7774bY8eOhVar9XfTiOochk4iHxNC4Oeff8ann34Kg8GAmJgYFGwQnJmWiIgowAiNggGTumL16tUAgE6dOmHy5MlISEjwc8uI6haGTiIfysvLwzvvvIMNGzYAAHr37o3dnx6HZNT4uWVERETkyLO//x8+/PBDFBQUIDIyEi+88AL69u3r72YR1RkMnUQ+cuDAAbz88stIT0+HVquFOBwMzdlQSOBwWiIiokAn9Ca0vDseBw8eBADccccdeOihhzjclsgHGDqJqsg6nHbq1KkwGo2WyYJ+KeZSKERERLWMkASu/7A/Fi9eDIDDbYl8haGTqApKSkrw4Ycf4rfffgMAyBf00B6OhGSW/dwyIiIi8pY5rgTBvcwoKChAVFQUJk+ejB49evi7WUS1FkMnkZfOnDmDSZMm4ejRo5a1N4+FQnOGw2mJiIjqAqE3o8WYOBw6dAgajQbjx4/HbbfdBknidp7IUwydRF7Yvn07Xn75ZRQUFFhmp10PyLlce5OIiKguEbLAVa92w8qVKwEAw4YNw8SJE6HXc0Z6Ik8wdBJ5aMmSJZg6dSrMZjM6deqEI9+mQzJwdloiIqK6SEDg/xaMwrRp02A2m9GuXTtMmTKF53kSeYChk8hNJpMJU6dOxdKlSwEAckYwtEciIQkOsyEiIqrrlCgDQvspyM3NRUxMDN566y107NjR380iqhUYOonckJ+fj5dffhk7duyAJEmQU8KgOc3zN4mIiOoToTcjeXQ0jh49Cr1ej0mTJmHAgAH+bhZRwGPoJHLh3LlzeOaZZ3Dq1CmEhITAuEMHTVawv5tFREREfiA0Cro92RJbtmyBJEl45JFHcPvtt3OCISInGDqJnDhy5AieeeYZZGVlIT4+Hjm/m7n+JhERUT0nIDD8/b7qKTc33XQTJkyYAK1W69+GEQUoLiZI5MCOHTvw+OOPIysrCy1atEDucsHASURERJAg4deJf+HRRx+FJElYunQpJk2ahNLSUn83jSggsaeTyI4//vgDb7zxBkwmE6TcIATtj4Zk5jEaIiIiKs8cVwK5azEMBgO6deuGN998E2FhYf5uFlFAYegkquDHH3/Exx9/DACQz+uhPRzFGWqJiIjIISXSgKA+pSgqKkK7du3w3nvvITo62t/NIgoYDJ1ENubPn48vvvgCAKA5GwLN8QjOUEtEREQuKWFGhF2lICcnB8nJyfjggw+4lidRGYZOojKzZs3C9OnTAQCaU2HQnApj4CQiIiK3KSEmxFyrQUZGBhISEvDJJ5+gSZMm/m4Wkd8xdFK9J4TAN998gzlz5gAANCfDoE0N93OriIiIqDYSejMa3RqKU6dOoWHDhpg6dSqDJ9V7DJ1Urwkh8MUXX+D7778HAGhSwqE9w5P/iYiIyHsiyIxGt1mCJ3s8ibhkCtVzM2bMUAOn9lgEAycRERFVmWTUIG1hEZKTk5Geno4nnngCZ8+e9XeziPyGoZPqrblz52LWrFkALIFTcy7Uzy0iIiKiusIaPJOSkpCeno4nn3wSaWlp/m4WkV8wdFK9tGjRInz11VcALENqGTiJiIjI1ySjBumLi5GUlIS0tDQ8/fTTyMnJ8XeziGocQyfVO8uXL8fUqVMBWGap5ZBaIiIiqi6SwRI8ExISkJqaimeeeQZFRUX+bhZRjWLopHrlr7/+wnvvvQcA0JwOheYUAycRERFVL8mgQdZyE6KionDo0CG88MILKC0t9XeziGoMQyfVGwcOHMDkyZOhKArk9GBoToRzHU4iIiKqEXKJFkXrNAgJCcHOnTvx+uuvw2w2+7tZRDWCoZPqhbNnz+K5555DSUkJpGwdtEcjGTiJiIioRsmFQTBtDUZQUBDWr1+PadOm+btJRDWCoZPqvJycHEycOBHZ2dmQCrQIOhgFSXgZOCXJcqmKqj6eiIiIai05VwexxzKB4cKFC/HTTz/5uUVE1Y+hk+o0k8mESZMm4fTp00hISEDQvmhIZi8+9r4Im9Z6iIiIqF7TXAjGAw88AAD4+OOPsX37dj+3iKh6MXRSnTZ16lT8888/CA0NRdavJkhGjeeV+CpsMnASERFRmdn3/IyhQ4fCbDbj5ZdfxsmTJ/3dJKJqw9BJddYvv/yCpUuXQpIkGLbrIBdrPavAV0NpGTaJiIioAgkS1k3+B126dEFBQQGee+455Ofn+7tZRNWCoZPqpL179+LDDz8EAMgnwqDJDvasAg6lJSIiomomCQmHvklHo0aNcObMGbz11lsQQvi7WUQ+x9BJdc6FCxcwadIkmEwmyJl6aE6XrcXpTghk7yYRERHVhLJ9Bckk48JKI4KCgrBx40bMnz/fzw0j8j2GTqpTFEXBlClTkJWVhRYtWkB7JMq9pVFqeqIghlIiIiIqIxcEYcKECQCAr776Crt27fJzi4h8i6GT6pTvvvsOO3bsQHBwME4vzoekuPER50RBRERE5Gef3jIXw4YNg6IoePXVV5GZmenvJhH5DEMn1Rl79+7F9OnTAQCmvW5MHMRlUIiIiChASJCwdvJutGzZEllZWXjnnXd4fifVGQydVCfk5+fjtddeg9lshnw+GHJGiPMH+Oq8TQZOIiIi8hFJkZC6KA86nQ5btmzBkiVL/N0kIp9g6KQ64eOPP0Z6ejoSExOhPRbp+DzOQAqKgdIOIiIicl81b7/lYi0efvhhAMC0adO4fifVCQydVOtt2LABq1atgizLyPi1GJLZwcda4sediIiIfKCaD2J/OWoBevXqBYPBgClTpsBoNFbbcxHVBO6FU62Wl5eHDz74AAAgnQqBXKCrXEiSGTiJiIjI96opeEqQ8M+0E4iMjMShQ4cwd+7cankeoprCPXGq1T799FNkZWVBKtJAcyq8coGKYZPhk4iIiLxlL2R60+vpRnnJoEHRNku5uXPncpgt1WrcA6daa/PmzVi5ciVkWbasxylsfsBrS+8mz+skIiKqG6phmy5nBqNPnz4wGo344IMPOJst1Vq1YK+cqLLS0lJ88sknAAApNbj8sNraEDaJiIio7vFx8JQgYednRxEcHIzdu3fj119/9Wn9RDWFe+dUK33//fc4e/Ys4uPjLw6rdbd3k6GUiIiIqour4bYeBlOpVIv77rsPgGU22+zs7Kq0jsgvuPdNtc65c+cwZ84cAED2RgMkpZYMpXWEQ2yJiIgCXzWct+mub+5ajDZt2iA/Px8zZszwWb1ENaUW76lTffXZZ5/BYDBAytVBvhBauwMnERER1V0+WlpFgoQTP14AACxbtgwpKSlVrpOoJnFvnWqV3bt3Y8OGDdBoNNCmREGClz/kgRZU2dtJREQUuKq6nbY+vgr1yHk6DBw4EIqiYNq0aVVrD1ENC7A9byLHhBD43//+Z7l+Rg+5KKhqFQZa8CQiIqK6S5KqvO+x+cN90Gq12LJlC7Zs2eKjhhFVP+51U63x119/Yd++fdDr9dCmRvi7Ob4jhOVCREREdZokVy14SiVa3HLLLQCAL774Aoqi+KppRNWKoZNqBUVR8PXXXwMATMeDIBk1vqnY372dDJtERESBzVenwJTtc1Q1eP70zAaEhYXh+PHjWL9+vW/aRlTNGDqpVvjjjz9w/PhxhIeHQ3s2wvKDXdsxcBIREdUbtvsuavD0InxKZhkjR44EAMyaNYu9nVQrMHRSwBNCYO7cuQCAkgMSJLOPP7Y13dvJ4bRERES1g497OcvfJHnd6/n9Y78jNDQUx44dw6ZNm3zRQqJqxdBJAW/Lli1ISUlBSEgINGnh/m5O1TBsEhER1TvORmh5EjwljeX0Isks49ZbbwUAzJw5E4L7FxTgGDop4M2fPx8AYDimKdfLWeuG2HKDQEREVHvU4HJm3gy3/eGJVQgJCcGRI0ewffv2amwdUdUxdFJA279/P3bt2mVZl7M6ezmrc4gth9MSERHVX+72YroYbmvt5VT/b9Jg+PDhAIBFixZVrY1E1YyhkwLawoULAQAiTQ/JUHnG2oDv7WTYJCIiqn182Mvp6b6KJ8Ntl03aCEmSsHnzZqSmpnrTPKIawdBJASs7Oxt//vknAEB7Lqz6n9DXvZ0MnERERPWbl/sWFYfbVuzltJJLtOjTpw8A4Mcff/SujUQ1gKGTAtaKFStgMpkgFQRBLtI5LOfT3k5/r9tJRERE/uWjXk5Jo6nSPoq7s9tun3EYALBy5UqUlpZ6/XxE1Yl72BSQFEXBsmXLAACadCe9nBoNJK3W4RFAd6k/7L5UgxMQEBERUd0kh4VCCglxfH+uHgkJCSgoKMDGjRtrsGVE7mPopIC0d+9enDlzBjBL0Fyw80NrDZuSBMgyUMUjieWus7eTiIiofvJhL6evSJJkuYSE2A2fEiRk7igCACxfvtxnz0vkS9y7poC0evVqAIDmQggkpcLHVKOxCZtl5zpIksc/8NXSu1npSdjbSURERN6xDZm24bMizflQAMCOHTuQkZFRY+0jchdDJwUck8mEdevWAQDkir2ctoHTloe9nb5apJmIiIjqiADt5bR3W8XgKZdqcckll0AIoU7CSBRIuGdNAWf79u3Izc0FDDLkXP3FOxwFzjLu9na607vp0+DJ3k4iIqJ6waeB08l5nPaC5/6fTwKAeuCeKJAwdFLA2bBhAwBAkxUCCVLl8zcdkWVIGtnpD77f1vVk8CQiIgpcAbadlkJC7PZylitT4TxP6xwYe/fuxfnz56u9jUSeYOikgCKEwObNmwEAcnaw3fM3nXIyzLY6F2cmIiKiWqqWDKt1VE4Nn0YNOnfuDACcxZYCDveoKaAcPnwYmZmZgFmCXBjqunfTjorDbKsyYRCH2RIREZErNTWs1uFjyoLnwV9PAQC2bt3qs/YQ+QJDJwWUv//+GwAg5wVDhpu9mxXZDLP123BaRxg8iYiIAkeAbZfdGVbr8LGSBE1JJABg586dMBqNvmwaUZUwdFJA2blzJwBAkxviXeC0quLanbY4zJaIiKgOqsXDah2RS4IRHR2N4uJi/Pvvvz5qFVHVcU+aAobBYMC+ffsAAHKh50NLKpKkqodFoQgIRVS5LRcr9GFdRERE5D1fbJMl2Wf7Cpr4BpAiwqvWHEjo2bMnAGDXrl1VbhORrzB0UsA4cOAADAYDoARBExxXtcoUBQAgaWSvg6dPwybAwElERBRofLhtrsp+gya+AaDRAJJU5eD559IUAGBPJwUUhk4KGHv37gUAaExRQEwU5KhIzytRFDVwqrwYZmt3w1GVXlMGTiIiosDk7Tbazn6B18HTdohuWfD0KnwmJkCjRAEA9u/fD7PZ7F17iHyMoZMCxqFDhwAAsikSkCSImEjPgmfFsFnG02G2TjcY3gRPBk4iIqLA5um22sn+gKfBUxPfwE79kue9nokJlskUzWEIDQ1FUVERUlJSPGoLUXVh6KSAcfjwYQCAbC77gfVkuRQHgdPK3WG2bm0o3A2eQjBwEhER1Rbubrd9tT8Bm2G1Dp/Lg+BZts8kQUK7du0AAEeOHHHvsUTVjKGTAkJ+fj7OnTsHwCZ0AhBR4a57O10ETitXwZMTBhEREZGvtuGu9itcBk4rd4JnYkK5/+7dnA4AOHbsmOv6iWoAQycFBOuPomTWQxLai3e4GmbrZuBUq3MQPD0OnM6OcjJwEhER1W6OtuUenmbjaP/C7cCpPq+T4Nm4YaWRYbI5DABw/Phx95+DqBoxdFJAOH36NABAUkIr3+koeHoYOFUVJhbyuofT3oaHgZOIiKhuqLhN9+Vs+N6s7WkveDZuCGgr1yUxdFKAYeikgJCamgoAkM0O1ueseH6nt4ETFycW8sm6WrYbIAZOIiKiusW6bffhut92Jw5yV8XgaSdwAoBcdhA/KysLJSUl3j8fkY8wdFJAuNjT6SB0wub8zioETpUsQfJiKRUiIiIib8kREd71ctqyBs/GDR0XEVqEh1vCaVpaWtWej8gHGDopIGRkZAAAZCXYcSFJgoiOgBwTXaXnEkIAZUcbqxw8hU0AlhhiiYiI6hTrtl1U/YC3JioS0MgQpYYq13X4vYY4OjnMaZlGjRoBgDpRI5E/MXRSQLhw4QIAQFJ0zgvKcpWCpxo4bTYeXgdPH2yAiIiIqJaownbfGjit9VQleB56Nx4JsXloGJOPoy85Plifsj8bwMUD+0T+xNBJfqcoCrKzs8v+4yJ0Al4HT3uB08rj4Olow8PeTiIiorrB3jbdi+BZLnDa1ONN8Dz0bjwaxeap/7cGT7vhUwQBAHJycjx+HiJfY+gkv8vLy4PZbAYASGU/kC5Zg2d0lFvFnQVOj7mqg8GTiIiodnO2Lfd0X6Ji4LSpx5PgeeidhuUCp1XDmHw0jMnHkRfLz4th3afKzc11v61E1YShk/yuoKDAckVoIHnykZRly1IqLno83Q2cbvV2uruhYfAkIiKqndzZhru5P6BxtM64TT3uBM9D7zREozjn4TEhNq9c8JQUy7rneXmVgypRTWPoJL8rLi62XBFezOYmy5UWRLblaQ+n0+Dp6ZFNBk8iIqLaxZNtt4v9ArvDah3U4yp4ugqcVrbBUxKW0Kke3CfyI4ZO8jvr+lGS8HLR5cgwu72d3g6ptRs8vR2Wy+BJRERUO3izzXawf+B24LSpx1HwPPSO46VR7LkYPC3PbzBUfbZcoqpi6CS/Uxct9qanE7A7sVBVz+EsFzyreh4ogycREVFgq8q2usJ+gseB06aeisHTnWG19iTE5iHtZsvkQiaTyfO2EPkYQyf5nRCi6pXYBE9fTRokyZLvlkVh8CQiIgpMvthGl+0veB04beqxBs+Db3sXOK2iM9MAALt37/a+PUQ+wtBJfif5KpDJMqDVWurjGppERERUgySNpmqB00ooSLm3GRo3qOKsszzeTQGEoZP8Ti6bCMgQ4+Xw2jJSYTFEfj4QFARJq61yu4Tigx5YtTIf1kVERES+4aMD35I2CJAliILCKtd14uF2MEQpOHskvkr1iKQIAECTJk2q3CaiqmLoJL+zhs6G4Tk4OibWqzqkwmKInFwIc1kPZxWDp/DVmp4AAycREVEg8nHgBCynDFUleJ54uB0M0Zb9D7lUqlLwHNloBwAgISHB6zqIfIWhk/wuNDQUACBKFLx16zyPg2elwGnlZfBk4CQiIqrjqiFwWnkbPG0Dp5W3wfPVNj8hzFgK4OJ+FpE/MXSS31l/DEuKZXTRn7MEz7s8CJ5mpXLgtPIweDJwEhER1XHVGDitPA2eJ/6vcuC0kks9a++rbX5CkjYPJcWW3XyGTgoEDJ3kd+Hh4QCAkhIZigJL8BzpXo+neh6nM24GTwZOIiKiOq4GAqeVu8HzxP+1gyHG+f7H2aPu9XZaAydg2a8CGDopMFR9thWiKrKGTgAoLJQREaGoPZ7P4y60nptl93EOh9XaExQECYBwtlYVAycREVHdVYOB00oI4XQSWXcCJwDIJRLOHo1Hk9bnEZNdiBtW7EG3vakILTagKESHnZckocP4s0jQFqmPyc+1TNAYExPjVluJqhNDJ/ldUFAQoqOjkZOTg5wsLSIiLOtTWYPnv8ObYt6vA8uFT48C58Unchg8fTZTLQMnERFR4PFD4LQSBYWQwsMq3e5u4LQKyTfhsdf+xG1btiHIVP5xvXeegJgH5NwWiozJkRDBEnKyLaEzLi7Oo/YSVQcOr6WAEB9vGTaSnVX+OEgX/TmMjt6GKbd+p57n6VXgtLIz1Nanw2qJiIgosPgxcAL2h9mefMizwKk3GvHt11/jzk1bKgVOtX1GIOa7IiSNzYJUIpCTY9nfYeikQMDQSQHBUei0ulR/FlNGfoeUW+O8D5xWNsGT53ESERHVYX4OnFa2wfPkQ+1QGuvZvsfLS5eiz7HjcLWnIQCE/m1Aw8l5yM+xrM/ZoEEDL1pM5FsMnRQQGjduDAA4nx7ksMxLO25C4oYSSDbngFYFAycREVEd5qPACUmuUuC0EkJA0mo9DpwN8vJw67btlqa4KGu9P+jHUmRlWU5LSkxM9LClRL7H0EkBITk5GQCQdlbnsIwxV4+gC0UQUeGQoyK9fzKzGcJkgiRLlg2JxK8BERFRnePDA8LC6GQiQjfIkZGQIyMBSUKbuXkePfb2rVuhM5s9eswZbQgAyyRCERERHj2WqDpwb5sCQrNmzQAAaWft93Ret3k8Wi60/OAKjVS14KlcPMIoydLF8Okt9nISEREFpqpuo232D7wNnnJkJCStBpLWMrGPnG5/Vn5HLjt23OPnPBViCZ1JSUkeP5aoOjB0UkCw9nSezwiCwVB+8Mh1m8cj6esg6M5fPAnf6+BZ1stZkdfBk4GTiIgosHm7rbazX+Bp8LQGzopaz3OxxriNsNJSj54TAFLK1ua0HtQn8jeGTgoIcXFxiImJgRASTp+8OMTWXuC08jh4ms0QBoPDuz0OngycREREtYOn22wfnHrjKHACgCbtgtvBs1Cv9/i5D5UNqW3btq3HjyWqDgydFBAkSUL79u0BACeOB6u3G3OC7QZOK7eDp4vAqbajqkNtiYiIqHZzsR/gTm+ns8Bp5W7wTLr+vMsytgSAQ2WTLlr3rYj8jXvXFDAuhk7LEb3r/x6PFotcnzjvMni6GTit3Aqe7OUkIiKqXVxtuz2YXNBZ8HQncFq5Cp6zbpmG5LFREI4n96/kXHAw8oKCEBQUhBYtWrj/QKJqZH9RRCI/6NChAwDg2JFgXLd5PJp+EwR9huNeTltCIwFR4ZAiQiHlF0HJtZkZTvF8WRRJliAU2f6SKgycREREtZMQ9pdS8WKUkzCaIAWV35X2JHBaadIuACg/w+ysW6YBAK4IloFgGbg9EpiXBwHny6YIAHsiLQfh27RpA53O8aoARDWJPZ0UMLp06QKNRoPz6Tokfm1yO3BaCY0EEaQp3+vpYOIgd9jt8WTgJCIiqt0qbst9dFqNN4HTqvX8i72dM275ElcEy5bAWUa83gDi8mC31unc2SYWAHDppZd61Rai6sDQSQEjLCwM7dq1AwBoc856XY863DYs1KNhtfZwLU8iIqI6yBo8q7h9F0aTugant4ETADRnL6D1/HzMuOVLDAi2UyBEhpjXBGJMpMOhtiIIEGMisbtxZwBA9+7dvW4Pka9xeC0FlB49emD//v0wB+VCa2zkdT1CI0HSai0bE3tDZD2u0Ad1EBERUWCQfDNxoCRLEPn5kGOiq1yXnF9iP3BahcgQ7zUE/hsL8V0epL+KgUIFCJMh+oYAd0birKJH2uPp0Gg06Ny5c5XbROQr7L6hgGI9KqdosqAEef/xlPOKoGTnAL6ejdbeeSBERERUe1i35VU8oCzJlnq8PY3HlggPBTQyLp/4sOvC8VrgiViIBYkQvyRBLEgEnogF4rW4ZcogAJZTlkLL1uokCgQMnRRQunbtivDwcEAywKwvgAjyfKiKnFcE5fyFixuBKgyRFYqovFFi8CQiIqp9JKnyNtzL4GkNnFZKdo5X9YjwUEvgLBuaG7PrAvr8143gaUePV8cjJO0MAOCKK67wqg6i6sLQSQFFq9WiT58+AABFOg9Fr/U8eJrsTB4kSx73etoNnFYMnkRERLWHD7fbFQMnYOnt9DR4qmGzwrmgsTsueNymHq+OR+y/eZC1uQCAvn37elwHUXVi6KSA079/fwCAggwICVD0WpjD9G6FT3VYrcMCPhxua++IKREREQUWV9tqN3s7JVmyGzjVajwYZmvbu2lPn2fc6+3s8ep49Hh1POL+LYaC8zCbzUhOTkZSUpLbbSGqCQydFHAuu+wy6PV6QCqCQJ5lYyFLLns9Kw2rdVjQdfB02stZEYMnERFRYHJ3G+1im+8sbNpyp7fTVeAEgNidF3DZs+Odlun+miVsxv1bbHlunAMAXH311W61lagmMXRSwAkNDUW/fv0AAApslk6RXARPe8NqHXESPD0KnDZtIyIiogDio22zu4ETcD3M1p3AaRW3PdPhfd1fG48Ge4sv1otSyNpsAMCQIUPcayxRDWLopIA0dOhQAICCNAjYBEAHwdPlsFp7fL0GJ4MnERGR/3l7+oudA86eBE61GjsHwCtOGOSuy56r3NvZ/fXygROw7C+ZzWZ06NCBQ2spIHGdTgpIvXr1QkxMDLKzsyFEJiQ0vHhnWfCETgvZYIJkNHvWy2nLujFRLOt5etXLaUuSLi44TURERDWrmicMcpeSnaOu3elN2LSK23axt7P765YA2mBP+cApIKDgNICLB+2JAg1DJwUkrVaLa665BvPnz4cZpyDbhk6g7CimZZIhbV6x11OVq2TJEjxhrlo91rYxeBIREdUsXwROoUDSeBcQy1VTdiC8KoHTqvfz42EMkxC/p8j+cyEHQiqAXq9n6KSAxeG1FLBuuOEGSJIEIV2AQKH9QpIEyaz4ZGFmCKXKC0Vb6mHgJCIiqq2E4oPtuCRDyc2rcuAEgAa/HUP8P/YDJwC1l3PQoEGIiIio8vMRVQeGTgpYiYmJ6N27NwDAjFS7ZbSZBRCZWVV/MrMZwuyDXk4iIiLyD18d9K3qAeiyuSKE0QScSfe+nqxcy8VgRNCJDLtFBAzQ6i1DcG+44Qbvn4uomjF0UkC75ZZbAACKdAYCxkr3S0YTlNLSmm6WY+zlJCIiqvW87u2sMDmhUlziXT1lYRMGy76PKCq2W8yMkzAYDGjfvj06dOjg3XMR1QCGTgpol112GZo3bw7ABKVCb6c2q5C9nERERHSRP3s7Hc2G72lvpzVwVlCxt1PAhLDI8wCAO++8ExJn0acAxtBJAU2WZdx1110ALEfzhM1EP1Kpkb2cREREVC3c7u10sfya272dNsNp7banqOIyKaeRn5+Ppk2bon///u49B5GfMHRSwBs0aBAaNWoESAYoOAPAh72cREREVLfUZG+nr9b6rjCc1hFrb6eAgtiGlv2gO++8ExofzLhLVJ0YOingabVa3HHHHQAAM1IgoPiul9NXQ2vZy0lERBQ4fLRddtrb6UngdDbE1knvZqX2lPV2KjiD8+fPIy4ujsukUK3A0Em1wogRIxAXFwdIJZXO7SQiIiKqFvZ6O10Mp7XH7hBbF8NpHTYJJkTFpQEAxowZA51O59HjifyBoZNqBb1ej3vvvRcAYBZHoWSdr3ql7OUkIiIiF8r1dlZlOK1tb6ebw2ntyjmArKwsNG7cmMukUK3B0Em1xvDhw5GcnAzIJhhiM/3dnIs4WxwREVHg8eW5nV70blak9nZ60bupNkVjhq5pLgDg/vvvR1BQUJXaRFRTGDqp1tBqtXjooYcAAOZG+RBBJj+3iIiIiMhNQqlS4AQAY4NMFBYWonXr1hg8eLAPG0dUvRg6qVbp378/OnXqBMgCxsQc7ytShPcLP1fE4bVERER1WpVPxyk7N1TJyfW6CkVfCpGQBwD4v//7P8gyd+Op9uCnlWoVSZLw+OOPQ5IkKPFFUEKLAG/Co1C8W/iZiIiI6h9v9xkq7m94GV7NRYUwNDwLs9mMfv364bLLLvOuPUR+wtBJtU7Hjh3VE+eNLXIgYPYuePoCezmJiIgClw+30x73dvro4LZSVAQlugBKZCl0Oh0ef/xxn9RLVJMYOqlWeuihhxAdHQ0RaoK5UYHlh93sZvj05dBaIiIiqh/cDZEuRlMpRUVuVaMUFUEpKoKAEZF9LLvsd999Nxo3buxeO4gCCEMn1UoREREYP348AMDUNB+KvmxSIaG4Dp4cWktERETVwZ39Czd6TJWiIks5sxmmpDxcuHABiYmJGD16tA8aSVTzGDqp1rrmmmvQtWtXQCNgapkNgbKw6UmvJxEREdVtNXUqjA8OaFt7N63B1BxZAnOjQgDAxIkTodPpqvwcRP7A0Em1liRJeO655xAcHAwlygBzQmH5AvZ6PTlrLREREXnJ7nmdXoygsjfE1rZ3EwCERoGxVQ4A4KabbkKPHj08bi9RoGDopFotMTHx4jDbZnlQgius3Vmx15NDa4mIiMhbFfchvN2nsAmvFXs3rUzJuYDejMaNG+Phhx/27nmIAgRDJ9V6N954I3r27GlZu7OVzTBbW+6c60lERETkDh8dxK7Yu2llji6BOcHSG/r8888jNDS0ys9F5E8MnVTrybKMZ599FmFhYRARBpia5tsvKBTOWktERFQf+fKUGB+ETWE22+3dBAARZEboZZaRW7feeisuvfTSKj8fkb8xdFKdkJCQgKeeegoAYE7MhzmypHqfkOdzEhER1S4+2nZ7vF6no8fbC5wQMLTJQm5uLtq0acNhtVRnMHRSnTFkyBBcf/31gAQYW2dDBFVto0BERETkK8JsdhlYTU3zISINCAkJweTJk6HX62uodUTVi6GT6pQJEyagZcuWgE6BsXWW/fM7iYiIiGqQO72j5shSKEkFACzLoyQlJVV3s4hqDEMn1Sl6vR6vvfYaQkJCoEQZYErK83eTiIiIqJ5yp3cTAITOhNDLjRBCYMSIERgyZEgNtI6o5jB0Up2TnJyMiRMnAgDMiQUwx1lmfxOK4HIpRERE9VkNzcngTti03i9kBYZ2lvM427ZtiyeeeKImmkhUoxg6qU4aMmQIRo8eDQAwtsqBEmbwc4uIiIioPvBkoiEBAWOrHIgwI2JiYvDGG28gODi4GltH5B8MnVRnPfTQQ+jTpw8gCxjaXuDEQkRERFRt3B1Ka8vcpABKXDG0Wi1ef/11JCQkVFPriPyLoZPqLI1Gg5dffhnNmjUD9AqM7bMgZE4sRERERL7lzTIq5rgSmJtZ1hb/z3/+g0suucTXzSIKGAydVKeFh4fjrbfeQkREBESEEaa2OZzRloiIiHzCm95NAFAiDZAvKYIQArfccotlyTeiOoyhk+q8pk2b4o033oBOp4MSVwpTq7yqBc8amoSAiIiIApO3YRMAlBAjjB2yYTAY0L9/fzz++OM+bh1R4GHopHrh0ksvxaRJkyBJEpRGxTA3LfR3k4iIiKg2qsLBZ6Ezw9gpG9AKdO7cGS+//DI0Go0PG0cUmBg6qd4YOHAgnnzySQCAuVkBzA0ZPImIiMhNQlQtcGoVGDtmA3oFycnJeOutt6DX633YQKLAxdBJ9crNN9+Mu+++GwBgap0Pc1yxn1tEREREAa+Kp9YIjQJjxyyIMBNiY2Px3nvvISoqykeNIwp8DJ1U7zzwwAOWE/YlwNQuF+bYYp6nSURERJVVsXcTAIRkhrFDNkSECVFRUfjwww/RuHFjHzWQqHZg6KR6R5IkPP3007jmmmsswbN9LsyxpT7ZsBAREVEd4It9AiEgJAXGjjkQUUaEh4fjgw8+QMuWLX3TRqJahKGT6iVZlvHss89i0KBBZcEzB0p0qeVOhk8iIqL6ywdh0xI4BYztcyCijQgNDcX777+Ptm3b+qaNRLUMQyfVWxqNBi+++CIGDBgAyICxYw7MMaUXCzja6EhSzTSQiIiIao67B52d7QeUPV7IwtLDGWtAcHAw3n33XXTs2NFHDSWqfRg6qV7TarV45ZVX0K9fP0AGTB1zYI4ruViAvZ5ERER1m4+G0qqBU6PA2CkbIsaAkJAQvPPOO7jkkkt80FCi2ksSgnvURCaTCW+88Qb++OMPQADaI5HQZIRULmg9usmvDRERUe1j20vp7bbcSR1CWxY4I0wIDw/He++9h06dOnn3PER1CEMnURmz2YwPPvgAv/zyCwBAeywCmnOhfm4VERER+YwvDh5Lkt3HiyAzjJ1zIMIss9S+//77aNeunffPQ1SHMHQS2RBC4LPPPsPChQsBAJqTYdCkhkECz+MkIiKq9xwETiXYBGOnHCDEjNjYWHz00Udo0aJFzbePKEAxdBJVIITAjBkzMGvWLACAnBYC7dEIBk8iIiKqRAk3wtgpGwgSaNy4Md5//30kJSX5u1lEAYWhk8iBpUuX4uOPP4aiKJCzdNAejIKkcO4tIiIisjDHlMLUPhfQCLRr1w7vvPMOYmNj/d0sooDD0EnkxMaNG/Hqq6+itLQUUoEWQfuiIRk1/m4WERER+Zk5oQhKu0IoioLLLrsMr776KkJDORcEkT0MnUQu7N+/H88++yxyc3OBEhlB+2MgF2n93SwiIiLyAwEBc4sCmBOLAADDhw/HxIkTodVy34DIEYZOIjecPn0azzzzDM6cOQOYJWgPRUKTFezvZhEREVENEhoFpna5UGINAIB77rkH9957LySJ8z4QOcPQSeSm3NxcvPzyy9i1axcAQHMiDJrTnNmWiIioPhDBJhg75kCEmqHX6/H888/j6quv9neziGoFhk4iD5hMJnz22Wf48ccfAQDyeT20R6IgKQyeREREdZUSZYCxfQ4QJBAfH48333yTa3ASeYChk8gLP//8Mz766COYzWbLBEMHoiGVcoIhIiKiukRAWM7dbF0Ms9mMDh064I033kCDBg383TSiWoWhk8hL//zzDyZNmoScnBzAJEF7mOd5EhER1RVCo8DUNg9KXCkAYNiwYZg4cSL0er2fW0ZU+zB0ElVBeno6Jk+ejH379gEANKmh0JwM53meREREtZgSZoSxfS4QYkZQUBAmTJiAG264gRMGEXmJoZOoioxGI7744gssWrQIACDlBiHoYBTX8yQiIqqFzA2LYWqdB8hAo0aN8Nprr6F9+/b+bhZRrcbQSeQja9euxTvvvIOioiLAICPocCTkHA7BISIiqg2ERoGpVT6UhiUAgMsuuwwvvfQSoqKi/NwyotqPoZPIh1JTUzFp0iQcP34cAKA5EwrNiXBIgsNxiIiIApUSYYCxXR4QbIZGo8G9996LMWPGQJZlfzeNqE5g6CTysdLSUkybNg1LliwBAEgFWmgPRUEu1vq5ZURERGRLQMDctBBoVQKz2YxGjRph0qRJ6NKli7+bRlSnMHQSVZO//voLb731FnJzcwEF0B6PgJwWwkmGiIiIAoDQm2FsmwsRZQQADB48GE899RTCw8P93DKiuoehk6gaXbhwAW+99Ra2bt0KAJCzdNAejYRk4CRDRERE/iAgoCSUwNQiH9AKhISE4D//+Q+GDRvG2WmJqglDJ1E1UxQFixYtwv/+9z8YjUbLmp7HIyBnBLPXk4iIqAYJnRmm1nlQYg0AgE6dOuHFF19E06ZN/dwyorqNoZOohpw4cQJvvvkmDh48CIC9nkRERDVFQECJL4GplaV3U6fT4f7778ftt98OjYbbYaLqxtBJVINMJhO+//57fPvttxd7PY9FQD7PXk8iIqLqIHRmy1IocaUAgPbt2+OFF15A8+bN/dswonqEoZPID1JSUvDmm2/i0KFDAAApW4ego5GQSnm0lYiIyBcEBJTGxTA1KwC0AlqtFvfeey9Gjx4NrZYzyhPVJIZOIj8xmUyYP38+Zs2aBYPBAJglaE6FQXM2lOt6EhERVYESaoSpdT5EpGVm2o4dO+KZZ55Bq1at/NwyovqJoZPIz1JTU/H+++9j165dAACpUAvt0QjI+To/t4yIiKh2EbKAOakA5qZFgASEhobioYcewo033shzN4n8iKGTKAAIIfDbb79h2rRplnU9BSCnhUB7MhySSfZ384iIiAKeOaYUppb5QIgZANC/f3888cQTaNiwoZ9bRkQMnUQBJCcnB9OmTcNvv/1mucEoQXsyHHJaCCcaIiIiskMEm2Bqma8ug9KgQQM8+eSTGDBggJ9bRkRWDJ1EAWjnzp345JNPkJKSAgCQCrSWWW455JaIiAhA2VDapoUwNy0EZECr1eK2227DuHHjEBoa6u/mEZENhk6iAGUymbB06VLMmDEDBQUFAAA5IxjaE+Fc25OIiOotAQGlQSlMzfOBYAUA0KtXLzzxxBNITk72c+uIyB6GTqIAl52dja+//hrLly+HEMIyy+3pUGjOhEFSOOSWiIjqDyXCAFOLAnVW2kaNGuHxxx9Hv379IEncJhIFKoZOolriwIED+OSTT7B//37LDaUytKfCIacH83xPIiKq04TeBFPzAijxpQCA4OBgjB49GnfeeSf0er2fW0dErjB0EtUiiqJg7dq1+N///oe0tDQAZUuspIRDzuFGl4iI6hahVWBOKoS5cREgA5IkYfjw4bj//vvRoEEDfzePiNzE0ElUCxkMBvz444+YPXu2er6nlK2D9kQ45MIgP7eOiIioaoQsYG5cZJkkKMiyq9qrVy888sgjaNWqlZ9bR0SeYugkqsXy8vIwe/ZsLFmyBEaj5fwWOVMPzclwyMVaP7eOiIjIM0ISUBoVw5RUCOgskwS1aNECjz76KHr37u3n1hGRtxg6ieqAs2fPYvr06Vi9erVlsiEByOeDoT0VBqmE4ZOIiAKbgIDSsASm5AJ1RtpGjRrhvvvuw5AhQ6DRcNZ2otqMoZOoDjl+/DhmzJiB9evXW24QgJwWAm1qGJdZISKigGNd/sScXAARagYAxMXFYezYsbjuuusQFMRTRojqAoZOojro0KFD+Oabb7BlyxbLDQogp4dAezoMUinDJxER+ZeAgBJfAnNSoRo2IyMjcdddd+Hmm29GcHCwn1tIRL7E0ElUh+3ZswfffPMNdu/ebblBAHJGsKXnk8NuiYiohgmpbBht00IgxBI2w8PDMXLkSNx+++0IDw/3cwuJqDowdBLVA7t378bs2bOxfft2yw1l53xqUsM44RAREVU7IQkoCcWWsFl2zmZUVBRuv/123HzzzQybRHUcQydRPbJv3z7Mnj0bmzdvttwgAPmCHpozoZDzdf5tHBER1TlCo8CcUAxzYhGgt4TN2NhY3HHHHbjhhhsQGhrq5xYSUU1g6CSqhw4dOoTZs2djw4YN6m1SbpAlfGbpIUHyY+uIiKi2EzozzE2KYG5UDGgtu5rx8fG48847cd1110Gv1/u5hURUkxg6ieqxlJQULFiwAL///jtMJhMAQCrWWMJnRggkheGTiIjcp4QaYU4sghJfAsiW25KSknDHHXdg2LBh0Ok4qoaoPmLoJCJkZmbixx9/xNKlS1FQUGC50ShBczYUmnOhkEyyfxtIREQBS0BARBtgSiyCiDGot3ft2hWjRo1C3759IcvcjhDVZwydRKQqKirC8uXLsXDhQqSlpVluVCwz3mrOhUIu5HppRERkIWQBJb4Y5ibFEGGW0TKyLOPKK6/EqFGj0KFDBz+3kIgCBUMnEVViMpnw559/4vvvv8ehQ4fU26W8IGjOhUDODIYkOPSWiKg+UoJNUBoXw5xw8XzNkJAQXHfddRg5ciQaN27s5xYSUaBh6CQih4QQ+Pfff7FkyRKsW7dOPe8TBhmatBBo0kIgGTT+bSQREVU7AQElthTmxsXlhtAmJibixhtvxIgRIxAREeHHFhJRIGPoJCK3XLhwAb/88gt++uknZGZmWm60LrlyLhRSbhBnvSUiqmOEVoG5UTHMjYrU9TUlSUKfPn1w8803o3fv3jxfk4hcYugkIo+YTCZs2LABS5Yswe7duy/eUayBJj0Emoxg9n4SEdVi1omBzAnFUOJK1VloIyMjMWLECNx4441o0qSJfxtJRLUKQycRee3YsWNYsmQJVq9ejaKiIsuNApCzdJDTQ7jmJxFRLSL0ZpgTimFuWKz2agJA+/btcfPNN+Pqq6/m+ppE5BWGTiKqsuLiYqxbtw7Lly/Hnj17Lt5RKkOTEQxNegikEq3/GkhERHYJSUCJK4U5oRgi2gDrccLw8HAMHToUI0aMQJs2bfzbSCKq9Rg6icinTp48ieXLl+O3335DTk6OeruUGwRNRrBl5lszz/8hIvIXAQERboLSsBjm+BIg6OKuYPfu3XHdddehf//+7NUkIp9h6CSiamE0GvHXX3/hl19+wdatW6H+1CiAnKWHnBEMOVvPpVeIiGqICDbBHF8CJb4EItSs3h4fH49rr70Ww4cP57maRFQtGDqJqNplZGRg9erVWLlyJVJSUi7eYZQgZwZDcz4YUh5nvyUi8jWhVaDEl8AcXwIRaVRv1+v16N+/P4YOHYpevXpBo+EEcERUfRg6iahGHT16FL///jtWr159cekVACiRoTkfAjlTD6lQywBKROQlIStQYkuhNCyBEm1QZ5+VZRk9evTA0KFD0b9/f4SGhvq3oURUbzB0EpFfmM1m7N69GytXrsSff/6J4uJi9T6pWAM5U285/5MBlIjIJaEpC5oNSqFElwI2HZft2rXDkCFDMGjQIMTFxfmvkURUbzF0EpHflZSUYNOmTVizZg22bNkCg8Gg3scASkRkX7mgGXNxPU0ASExMxKBBgzBkyBA0a9bMf40kIgJDJxEFmKKiIvz1119Yu3ZtpQCKYg00mXrIF4IhFTCAElH9I7TWoFl+6CwAJCcn48orr8SVV16JVq1aQZL4G0lEgYGhk4gCVlFRETZv3oy1a9fi77//Lh9ADbJlFtwLesi5OkgKd66IqG5Sgk2WoBlXapkMyObnrnnz5mrQbNGiBYMmEQUkhk4iqhWsAXT9+vXYsmULioqKLt5pBuScsgCarYdk5DqgRFR7CQiISKMlaMaWllveBABatmypBs3mzZv7p5FERB5g6CSiWsdgMGD37t3YtGkTNm3ahIyMjIt3CkDKD7L0gmbreB4oEdUKQqNAiTaoQRNBF3fPNBoNunXrhiuuuAJ9+/ZF48aN/dhSIiLPMXQSUa0mhMDRo0exceNGbNq0CYcPHy5fwCBDztZBztZDztFBMrEXlIj8T0BAhJugRJdCiTFUGjYbHh6Oyy+/HFdccQV69+6N8PBw/zWWiKiKGDqJqE5JT0/HX3/9hS1btmDnzp0oKSm5eKcApAKtJYBm6yDlB7EXlIhqjAgyQ4kxWHo0Y8r3ZgJAUlKSGjS7dOkCrVbrp5YSEfkWQycR1VkGgwF79+7Fli1bsGXLFqSkpJQvYJQg5+osPaC5OkjFGoZQIvIZIQuIyLKQGW2ACDeVuz80NBQ9evRA79690atXLzRp0sRPLSUiql4MnURUb2RkZGDbtm3YunUrtm3bhoKCgvIFSmVLCM3VQc4JAkoZQonIfUIWEBEGKFHGspBpLLekCQC0a9dODZmdO3dmbyYR1QsMnURUL5lMJhw4cAA7d+7Ezp07sW/fvvJLsgBAiaz2hMq5OkgGjX8aS0QBSUgCIsISMJUoA0RE5ZCZkJCAbt26oWfPnujVqxdiYmL801giIj9i6CQiAlBaWop9+/Zh586d2LVrF/bv3w+zufwyBSiRIefpIOcFWc4H5cy4RPWK0CpQIoyWIbORRktPZoVjUfHx8ejWrZt6ady4MdfOJKJ6j6GTiMiOoqIi/Pvvv2pP6JEjRyqHUJMEKS8Icn4Q5LyyiYkU7lwS1QUCAgg2Q4k0WgJmhAEizFypXGxsbLmQ2bRpU4ZMIqIKGDqJiNxQVFSEAwcOYM+ePdi7dy/27duH4uLi8oUUWHo/8y1BVCoI4uRERLWE0CiWJUzCjZYhs5FGQKdUKpeUlIQuXbqol6SkJIZMIiIXGDqJiLxgMplw/Phx7N27F3v37sWePXuQmZlpp6BkCaEFQZDytZZ/eW4okV8JSUCEmSzhsixkihAzKh4fCgoKQrt27dClSxd07twZXbp0QXR0tF/aTERUmzF0EhH5gBACaWlp2LdvHw4cOICDBw/i0KFDlScnAiyz5OYHQSrQQioMglyoBQwye0SJqoGQBESo6WIvZrgRIsxUacIfwDLpT/v27dGhQwd06dIFbdu2hV6vr/lGExHVMQydRETVxGQyISUlBQcOHFAvJ06cgKJUHrIHowSpwBJApUIth+YSeUFoFYgwI5Rwk6UnM8wEEWI/YEZFRakBs0OHDmjXrh1iY2NrvtFERPUAQycRUQ0qLi7G4cOHceDAARw5cgRHjx7FqVOnKk9SBABmQCqy9IZKRVrIhRpIxewVJRKSgAgxQYSay3oxjVDCTIDezgEdAJGRkWjdujXatm2L9u3bo3379pxVloioBjF0EhH5WWlpKVJSUnD06FEcOXIER44cwbFjxypPVGRlkiy9oUVaSMVlYbRICxgZRqluUYfGhpogQszlrjv6qCcmJqJ169Zo3bo12rRpg1atWqFhw4YMmEREfsTQSUQUgBRFwZkzZ3D06FEcPXoUJ06cwIkTJ3DmzBn7w3MByxDdYq1lWK7135Ky61zKhQKUgAB0iiVUBpeFS2vADHYcLsPDw9GsWTO0aNFCDZgtW7ZEWFhYzb4AIiJyiaGTiKgWKS0tRWpqKk6cOIGUlBT137NnzzoOowBQKl8MoyWaskBadp2BlKqZgACClIuB0jZcBpsAJxM6R0REoEWLFmjWrBmaN2+OFi1aoHnz5oiLi2PvJRFRLcHQSURUB1jD6MmTJ3H69Gn1kpqairy8POcPNkiQSst6Rcv+he3/GUrJBTVUBpsh9GaIYKXsXzOgt9zmLFhqNBo0atQITZs2VS/NmzdH8+bNERsby3BJRFTLMXQSEdVxubm55UKo9d9z586hoKDAdQUGGVKpbFlftOxf9f/W+xQ704NSnaAOf9UpEDqz5brecl3oFKAsaNqbIdaWLMtISEgoFyytl8aNG0Or1dbMCyIiohrH0ElEVI/l5+cjLS0NaWlpOHfuHM6dO1fu/0VFRe5VZJIgGWRLD6lBhmSULRMbGWXL7Uab2wR7rfxNQAAaYQmNQQpE0MV/RZAC2IZKneLwvEpbsiyjYcOGaNSokd1Lw4YNGSyJiOophk4iIrJLCIH8/HycO3cOGRkZyMzMxPnz53H+/Hn1emZmpvvB1MoaUI0yJJNsmQDJJFtuL/dvhds4M28l1vAIrYDQKpYgqVUu/t/236DyAdNVz6QtWZYRGxuLBg0aID4+Hg0aNFAv1lAZHx/PUElERHYxdBIRUZUUFRWpYfT8+fPIzs5GVlYWcnJykJ2drf6bnZ1tfz1Sd5kkwCxBMkuAYnPdbL0u21yXACEBCixlFQmSgrLbLt4uWcsICbBuDctdt/zjKvCKiwVt/hWWfyUAsgBkASEDkETZ/y3XhSzKl9GUBUmNzfWKt8sCKAuZnoTHisLCwhAdHY2YmBjExMQgOjoa0dHR5UJlfHw8YmJioNE4OSmTiIjICYZOIiKqEUIIFBQUqAE0Ozsbubm5yM/PR35+PvLy8tTrthePe1KrpfEoH0Rtw2UAdMBqtVpERESol/Dw8HL/RkRElAuV1us6nc7fTScionqAoZOIiAKayWRCQUEB8vPzUVxcjOLiYhQVFbm8bjAYYDAYYDQaK123vc1gMFT7a9BqtQgKCoJOp4NOp0NQUJD6f+v1oKAgBAcHIyQkxO2LNVAGBwdzhlciIgpYDJ1ERFSvCSGgKIpHF1mWy10kSVL/1Wg05f6v1Wohy5zdl4iI6i+GTiIiIiIiIqo2PPRKRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Ubr7wYQEVUHIQRKSkr83QwiIo8EBwdDkiR/N4OIyKcYOomoTiopKcGwYcP83QwiIo+sXLkSISEh/m4GEZFPcXgtERERERERVRv2dBJRnafb2hCSkAFJhiSXDVuTZECWAEmCJMuAJFluAyzXZQmSTRnb2y1lpYv/t95nW16SAJTdV3abkCTLoT6pfJ0VbxfW+2Tr/WVVSRKEeqjQersESCj3GKHeZvN4lNUhS2V1XbwfgPoc6mOs5QHLc/5/e3cfFWWd/3/8dTGiYKiYmUKQqam5Wy6GaaaypYZkdSq1G9ez1VY/a09le9pOFieztLTymHrsbGvuWrlGtdVJqy1xLc1c8a4ULZIIb8obiJtAUQYYZn5/zFyXMzDczTAO+H0+zvFwcX0+n/f1mbmwfHFdc33q1jPbfMbJ51i+82hgjNf3p8d5vqqRcX6OV28efmr6aHSMq/5xfI7lqvNaT4+T1zgZLutwLuN0u+HdZtU221zWsYw6/Q3D5fPjaB7D8PQ1PDXdP1Iua5/7R9Vl1XS3ufcZhsu3zXDJkO/+CM92hGese1u+bdYY5+lxMvs7ZTNOb1vjdLq/2W622WTud3rtd7prmTW96ln9PV8j5B7rnof7+O42p2ye791vv1M2zz5zjM1zziLk6et5beb26Tm6PHPQ6f2S53tDEZJshqEIzwl17zM8+yJkyJDNiJC9ytDk/9dbAHC2InQCOPvVGu5//hnuf+RJ8gRMT+iUJ3RGmInOnSIMd4KTb3rxjPObeiJ8E5Hh3VYvtTSy7Z2O6rabm2Z49PpqdTe8Shl1yhu+IdBnnJ/xkif8NtBm+Pnjdx5NjGnJWxVkzeYF1VYMnd7H9Wn3Hzq9x9Tr76fNsOq46tR0+Y7x7udzLJdvm1foPB1ivQJsQ21eYdQndHrti5BvWDUD2+nQaQZST0AzzNDmZjMMRRiGbJLPV8mrvwxPLclmHsuzbbNqN9BmbZ+ev82a5+mQ6T1/f6Gzbj1r/j77zDme/sUEAJytuL0WAAAAABAyhE4AAAAAQMgQOgEAAAAAIUPoBAAAAACEDKETAAAAABAyhE4AAAAAQMgQOgEAAAAAIcM6nQDOfjaXXC6ne11Cc5FAc9vwLKLns56lUWcdTMNrv8urvYm2OgtFuhpYfLLu/tPfm+1+tl3mtruvNcZ1ettVb7y8FpQ8XbM+wz3YqNOt7tqbPvvrvSw1a51OBdjWWM0mjme9rEbH1F1vs249V/36fsd5vfte44xG1uk0vGobdfq718Q02+oco+46nQp8nU6XZ6zLs9/l2XZ52lxe65R673caLslwer1u81hOz7qennavebgMp/s45nE9NeU5Tt39EZ7vvb+6j3R6n9Pz19rptRan05Cccv+1d3q1GfK3TqfhGWe41/30vN/mtuS13qfXtnksa51RmeuMuuu59xnWPsOzba/y9/cQAM4ehE4AZ73q4b+Eewqh4fk3fKDqZkrAZP5oOcM9kYCZiZwbugCgLeC/xgAAAACAkDFcLlcQvycHgLbJ5XLJbreHexpoJXa7XTfddJMkac2aNYqKigrzjBAozmXjoqKiZBjcewDg7MLttQDOSoZhKDo6OtzTQAhERUVxbs8SnEsA+L+B22sBAAAAACFD6AQAAAAAhAyhEwAAAAAQMoROAAAAAEDI8PRaAAAAAEDIcKUTAAAAABAyhE4AAAAAQMgQOgEAAAAAIUPoBAAAAACEDKETAAAAABAyhE4AAAAAQMgQOgEAAAAAIUPoBAAAAACETIdwTwAAcPY4deqU3nnnHX355ZcqKChQRESEEhMTNXbsWE2ePFmRkZEB1y4tLVVGRoaysrJUWFioTp06qW/fvkpLS9P1118vwzD8jispKVF2drZ++OEH68/x48clSUuWLNHQoUMDntPZri2ez8OHD2vz5s3avXu38vPzVVpaKpvNpvPOO09DhgzRLbfcokGDBgU8LwBA6zNcLpcr3JMAALR/BQUFmjFjhgoKCiRJUVFRcjqdqq6uliQNGDBAixcvVpcuXVpcOzc3V4899pjKy8slSdHR0aqurlZtba0kafjw4Zo/f77fELRixQq98cYbfusSOhvWFs/n3r179eCDD/rs69y5s2pqalRTUyNJioiI0B//+Efde++9LZ4XACA0uL0WABA0h8OhJ554QgUFBerRo4defvllrVu3TuvWrdPs2bPVuXNn5eXlae7cuS2uXVFRoZkzZ6q8vFwXXnihXnvtNWVmZmrdunX6y1/+og4dOmj79u1aunSp3/GGYej888/X6NGjde+99+rxxx8P9uWe9drq+XQ4HLLZbBozZozmzJmjjz/+WGvXrtW6deu0bNkyDRkyRE6nU2+++aY++eST1ngrAACtgCudAICgffLJJ3rppZckSX/729906aWX+rSvX79ec+bMkSQtWrRIycnJza79j3/8QytXrlSnTp305ptvKj4+3qd91apVeu2112Sz2bRy5UolJib6tNfW1spms1nfHzt2TLfffrskrnQ2pK2ez19++UVVVVX1zrGppqZG06dPV35+vi644AK9/fbbzZ4XACB0uNIJAAja2rVrJUlDhw6tF1Akady4cYqLi/Pp21yZmZlWjboBRZImTZqk6Oho1dbW6r///W+9du/AieZpq+fz/PPPbzBwSlJkZKRSU1MlSUeOHNGJEydaNDcAQGgQOgEAQbHb7fr2228lSVdeeaXfPoZhaMSIEZKkHTt2NLv2Tz/9pMLCQkmyxtfVuXNnDRkypMW14V97P58dO3a0ts3PiAIAwovQCQAIyqFDh+R0OiVJffv2bbCf2VZaWmo9PbYp+/fvrzfen379+kmSDh482Ky6aFh7P5+7du2SJPXo0UPdunVr8XgAQOsjdAIAglJcXGxt9+zZs8F+5513nt8xjSkpKWlR7ZMnT+rUqVPNqg3/2vP5/Pbbb7V582ZJ0g033NDgsisAgDOL0AkACIp3KOjUqVOD/aKiovyOCVdt+Ndez2dZWZnmzJkjp9OphIQETZ06tVnjAAChR+gEAADt2qlTp/Tkk0+qoKBAnTt31pw5c9S5c+dwTwsA4EHoBAAExfsf91VVVQ32s9vtfseEqzb8a2/ns7KyUjNnztR3332n6OhovfTSS7r44oubNR8AwJlB6AQABMX7s31FRUUN9vP+3J/3mMb06NGjRbXPOeccQmeQ2tP5NANndna2oqOj9eKLL1pPvgUAtB2ETgBAUPr06aOICPf/Tg4cONBgP7Pt3HPPVdeuXZtV23yKaVO1zaeiXnTRRc2qi4a1l/NpBs7du3crKipKL774opKSkpo1DwDAmUXoBAAEJSoqSpdeeqkkadu2bX77uFwubd++XZJ0xRVXNLt2YmKievXq1WjtyspK7dmzp8W14V97OJ+VlZV6/PHHtXv3buuWWgInALRdhE4AQNDS0tIkuddIzMnJqde+YcMGHT161KdvcxiGoQkTJkiSvvjiCx07dqxenw8//FCVlZWy2Wy69tprA5k+6mjL59MMnN631BI4AaBtI3QCAIKWlpamfv36yeVyadasWfr6668lSU6nUxs2bNCCBQskSSNGjFBycrLP2BUrViglJUUpKSl+Q8gdd9yhc889V3a7XTNnzlRubq4kqaamRqtXr9Y///lPSdKNN96oxMTEeuOdTqfKysqsPydOnLDaKioqfNqqq6tb5w1p59rq+bTb7XriiSeswMkVTgBoHwyXy+UK9yQAAO3fsWPH9Mgjj6igoECS+zZNp9NpBbkBAwZo8eLF6tKli8+4FStW6I033pAkvfvuu4qLi6tXOzc3V4899pjKy8sluZ9oWl1dLYfDIcl9G+b8+fPVsWNHv/O6/fbbm/UannzySV133XXNe8FnubZ4PteuXat58+ZJkjp27KiYmJhGX8PcuXN12WWXtfCVAwBaW4dwTwAAcHaIi4vTG2+8oXfeeUdffvmlCgoK1KFDB/Xt21fjxo3T5MmTFRkZGVDtQYMG6c0331RGRoa2bNmiX375RVFRUerXr5/S0tI0ceJE6+E3aB1t8Xx6/568urpapaWljR7HDLEAgPDiSicAAAAAIGT4tTAAAAAAIGQInQAAAACAkCF0AgAAAABChtAJAAAAAAgZQicAAAAAIGQInQAAAACAkCF0AgAAAABChtAJAAAAAAgZQicAAAAAIGQInQAAAACAkCF0AgAAAABChtAJAAAAAAgZQicAAAAAIGQInQCAsFuyZIlSUlL08MMPh3sqCLOKigpdf/31SklJ0aZNm8I9HQBAK+gQ7gkAAAJ38uRJ5eXlad++fcrNzVVubq6OHDkil8slSXr33XcVFxcXkmO7XC5NmTJFRUVFmjZtmu6///6A6uTl5Wn16tWSpOnTp7fiDMNr//792r59u/bu3av9+/erpKREtbW16tKli/r376+RI0cqLS1NMTEx4Z5qmxITE6M77rhDy5cv19KlSzVixAh16tQp3NMCAASB0AkA7diMGTOUl5cXlmPv27dPRUVFkqQxY8YEXOfVV19VbW2tRowYocsuu6y1phdWM2bM0O7du/22lZaWqrS0VDt27NCqVauUnp6u4cOHn9kJtnFTpkzRe++9p8LCQr3//vuaNm1auKcEAAgCt9cCQDtmXtGU3FeIhg4dqnPPPfeMHPurr76SJPXs2VODBw8OqMaePXu0c+dOSTqrgoUZxrt06aKJEycqPT1dr7zyipYvX645c+Zo5MiRktwBND09XdnZ2eGcbpsTHR2tyZMnS5IyMjJ06tSpMM8IABAMrnQCQDs2ceJExcbGatCgQUpISJBhGJoxY4ZKS0tDfmwzdI4aNUqGYQRU4+2335YkxcXF6Xe/+12rzS3cEhISdOedd2rcuHHq2LGjT9ugQYN09dVX66233tKyZctUXV2thQsXauXKlWGabduUmpqqFStW6MSJE/rPf/6jW2+9NdxTAgAEiCudANCOTZkyRePHj1diYmLAwS8QP//8sw4dOiQp8Ftri4qKlJWVJUmaMGHCGZ1/qC1YsEDXXXddvcDpbdq0aRowYIAk6eDBg8rPzz9T02sX4uLiNGTIEEnSRx99FObZAACCwZVOAECLmU8VNW/pDcT69evldDolSWPHjm3WGIfDoS+++EKbN2/Wvn37VFZWptraWsXGxqpfv34aNmyYxo8frx49eviMS0lJkSSlpaUpPT1dP/30k95//33t2LFDxcXFOuecczRw4ED94Q9/UFJSkjWuqqpKn332mTIzM3X48GHZ7XbFx8fr2muv1a233hr0A24uv/xy6zO5P//8s/r37x9wrYMHD2rNmjXKzs7WsWPHZLfbFRMToy5duiguLk7JyckaPXq0LrzwwoDqOxwOrVu3Ths2bND+/ftVXl4uwzDUtWtXxcbGavDgwRo2bJhGjRqlyMhIn7F13/+DBw/qww8/1M6dO1VcXKzKyko9//zz9X6BMXbsWGVnZ+vQoUPat2+fLrnkksDeHABAWBE6AQAtZt5aO3LkSHXoENj/SrZs2SLJ/bnHPn36NNn/xx9/1NNPP63Dhw/XaysqKlJRUZG2bdum/Px8paenN1hn48aNmjdvnux2u7WvqqpKW7du1bZt2/TYY4/pxhtvVHFxsdLT07Vv3z6f8QcOHNBrr72mrVu3auHChUEFT4fDYW1HRAR+89GaNWu0ePFi1dbW+uwvLy9XeXm5Dh8+rB07dig/P1+zZs1qcf2ysjL99a9/9fvQKvO9z8vL00cffaSMjAwlJCQ0WOuzzz7TwoULVV1d3eRxvR8stWXLFkInALRThE4AQIsUFxfr+++/lxT4rbXV1dX67rvvJEmDBw9u8tbavLw8PfTQQ6qsrJQkDR06VKmpqerTp48iIyNVUlKinJycJtd1zM/P1xdffKHu3btr+vTp1rG//vpr/etf/5LdbteiRYuUlJSk5557Tj/++KNuvvlmjR49WrGxsTpy5IhWrlyp/Px87dmzRxkZGfrTn/4U0HsgSd9884213bdv34Bq7N+/3wqcXbt21Y033qikpCTFxsaqtrZWJSUlys3N1datWwO+hXnx4sVW4ExOTlZqaqri4uJ0zjnn6OTJkzp06JCys7Ot26Ubkpubq/Xr16tr16669dZbddlllykyMlIHDx5U79696/Xv27evoqOjVVlZqW+++Ub33HNPQPMHAIQXoRMA0CKbN2+Wy+VSx44dNWLEiIBq5OfnW1f5Bg0a1Ghfh8Ohp59+2gqcjzzyiPVkU29XXXWV7rvvPhUWFjZYKy8vTwMGDNDixYvVpUsXa/9vfvMbJSQkaPbs2XI4HHrooYd0/PhxLViwQMOGDbP6DRw4UFdccYXuvPNOFRcXa/Xq1brzzjtls9la9Pol9y3KBw4ckOQO3omJiS2uIUkbNmywrnAuWrTI+pyotzFjxui+++5TeXl5i+tXVVVZYX7MmDF67rnn6oXXpKQk3XTTTaqsrGz0iu2BAweUkJCgV155xecpyw09/dhms2ngwIHKzs7WDz/8IKfTGdQVYQBAePBfbgBAi5i31g4bNkzR0dEB1fC+RbapJV7Wr1+vI0eOSHI/rddf4PTWq1evRtufeOIJn8Bpuvrqq9WzZ09J0q+//qpJkyb5BE5TTEyMrrvuOqvfwYMHGz2eP8XFxXr55ZclSYZh6M9//nOLa5jMJxXHxMT4DZzeunXr1uL6J06csH5BkJSU1OjV0ujo6CZvN3700UdbtKyP2ddut6u4uLjZ4wAAbQehEwDQbBUVFdq1a5ekwG+tlaSSkhJru2vXro32NUOuJE2dOjXgY0ru2zUbCmaGYfi0paamNljHu9/Ro0dbNAe73a709HQrLNZ9eFFLmUG5oqJCGzZsCLhOQ7p162Y9hffzzz8Pas3Mnj17+g3yjfH++fD+uQEAtB+ETgBAs2VlZcnhcMhms2nUqFEB16mqqrK2/V119PbDDz9Icl/xas4DhxrT1HjvuTT2lFfvfi0JYTU1NXrqqaeshxONHj1a9913X7PH+5OammpdXZw9e7YefPBBvfXWW9qzZ491S3IwIiMjlZaWJknKycnRbbfdpgULFujzzz9vceAO5Om83qHT++FPAID2g890AgCazbzqeOmllyo2NjbgOt6fgWzqKaZlZWWSTl/RC0ZUVFSj7d63jjZ267D35wrNZV+a4nA4NGvWLG3fvl2SNHz4cD3zzDMBfR7UW3x8vF544QXNmzdPRUVF2rt3r/bu3SvJ/T5fcsklSklJ0Q033NBkwG/Iww8/rOrqamVmZur48eP6+OOP9fHHH0ty/zJg+PDhmjhxYpNXbJu6qu2P9y8oAn1SMgAgvLjSCQBolurqam3btk1ScLfWSu7PH5qOHz8eVK32wOFwaPbs2dYyMcOGDdPzzz9v3bYarOTkZL399tt69tlnNXHiRGvJktraWn333Xd69dVXNXXqVCvwtlSnTp2Unp6uVatW6d5779Xll19uhfLS0lKtXbtWM2bM0FNPPeUTEusK5CFA3g8/8v65AQC0H/zKEADQLDt37rRu1ww2dHovj9FU6IyNjVVhYWG7fYiMGTjNq8SXX3655s+fH9T6nv507NhR11xzja655hpJ7ivEX3/9tTIzM7V161YdP35cs2bNUkZGhnr06BHQMRITE3XXXXfprrvuUm1trfLy8rRlyxatWbNGv/76qzZt2qTly5froYcearXXdeLECWu7qYdEAQDaJq50AgCaxQxNAwYMUFxcXFC1vNek/Omnnxrtay6pUlJS0mTftqZu4Bw6dKheeOGFVg+c/sTGxmrcuHF66aWXdPPNN0uSKisrtXnz5lapb966e8899+jvf/+7devy+vXrW6W+6dChQ5KkuLg4de7cuVVrAwDODEInAKBJTqdT//vf/yS5H34TrF69eum8886TJH3//feN9k1JSbG2MzIygj72meJwOPTMM89YgTMpKUkvvvhik58rDYXhw4db2+ZnZFtTXFyctc5oIGuBNqSsrMxaLue3v/1tq9UFAJxZhE4AQJP27t1rhRXvEBgMMwgdOnRIJ0+ebLDf2LFjrUDz6aef6oMPPmi0bmFhYavMLxgOh0Nz5szRpk2bJIU2cH755ZdNBknzs7iSdMEFF7So/tGjR7Vz585G+xw7dsy6IhkfH9+i+o3Jycmxtq+88spWqwsAOLP4TCcAtGOHDx+2nlRqMtd/lKSNGzf6PGU2OjpaV199dYuPY16ti4+PD2jZC3+uueYaffrpp3I6ndq5c6d+//vf++3XoUMHPfvss3rwwQdVWVmpJUuWaNOmTZowYYL69OmjyMhIlZSUaN++fdq4caMGDRqk9PT0VpljoObOnauNGzdKcoe8Bx54QMeOHWt0TPfu3dW9e/cWH+uDDz7Q3LlzlZycrOTkZF100UXq1q2bampqVFhYqPXr11tXqXv37t3ipW4KCwv16KOPKj4+XqNGjdLgwYPVq1cvderUSeXl5crJydHq1autpxBPnjy5xa+hITt27JDk/rzqyJEjW60uAODMInQCQDu2d+9ezZ8/v8H2V1991ef73r17BxU6W+PWWtOwYcPUs2dPFRUVKTMzs8HQKUkXX3yxli5dqqefflpHjx7Vrl27tGvXLr99zc+AhtOGDRus7SNHjuiBBx5ocszdd9+te+65J6DjVVdXKysrS1lZWQ32ueCCCzR//vxGl4JpzNGjR/Xee+812B4REaGpU6fqlltuCah+XQ6HQ59//rkk99X1QJd7AQCEH6ETANCoH3/80bpKF+xTa73ZbDZNmjRJy5Yt09atW1VWVtbo2p8DBw7UqlWrlJmZqa+++kp5eXnW5we7d++u/v3764orrtD48eNbbY7twezZs7V9+3ZlZ2dr//79Ki0ttW637datmy6++GKNGTNGqampAS3RMmTIEL3yyivauXOncnJyVFhYqF9//VUnT55UVFSU4uPjNWTIEN1www2tdhVckvUzIUlTpkxptboAgDPPcLlcrnBPAgDQdr3++ut6/fXX1b17d3344YcBrbXYkIqKCt1xxx06fvy47r//fk2bNq3VaqN9mzlzprKyspScnKxFixaFezoAgCDwICEAQKPMW2uvuuqqVg2ckhQTE2MFzXfeeUenTp1q1fpon3JycpSVlSXDMDR9+vRwTwcAECRCJwCgQTU1NRozZozuvvtuTZo0KSTHmDx5shISElReXq5///vfITkG2pfly5dLkiZMmKDBgweHeTYAgGBxey0AIOy+//57ZWVlKSYmRrfddlu4p4Mwqqio0HvvvSeXy6VJkyY1+jlfAED7QOgEAAAAAIQMt9cCAAAAAEKG0AkAAAAACBlCJwAAAAAgZAidAAAAAICQIXQCAAAAAEKG0AkAAAAACBlCJwAAAAAgZAidAAAAAICQIXQCAAAAAEKG0AkAAAAACBlCJwAAAAAgZAidAAAAAICQIXQCAAAAAEKG0AkAAAAACBlCJwAAAAAgZP4/ChrM3TIQG1YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACqJ0lEQVR4nOzdd3xTVeMG8OfeJG3TPWmh7L03soeAOHgVEV7cgLgHPxXHixvUF+crigMnAg7EATgQ2SAoe0/ZLbtA98y45/dHmkvSJmnSJE3aPt/PJ5+mueeenI7ce597zj1XEkIIEBEREREREfmBHOgGEBERERERUc3F0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+45PQeeLECUiSBEmSMH78eF9UWSsNGjRI/T0SETkzfvx4dVtx4sSJQDdHNXv2bLVds2fPDnRzyMcURUG3bt0gSRImTpwY6OaQH61Zs0b9LE+ZMiXQzSEKCjU575jNZrRq1QqSJOGZZ57xy3tUWU/n7NmzMWXKlFq18Vq0aJH6M2dnZwe6OVTKZDJhxYoVmDx5MgYPHoy6desiNDQUkZGRaNasGW655RYsWrQIZrPZo3r37t2LiRMnonXr1oiMjERMTAw6dOiAyZMnIy0tzU8/DRHVJo0bN1YPeip6DBo0yKfv/emnn2L79u0ICwtzeVBy4sQJ/PTTT3jmmWcwbNgwJCQkeN0mX25f09LSMHnyZHTo0AExMTGIjIxE69atMXHiROzbt8+jui5cuIBXXnkF3bp1Q3x8PMLDw9GsWTNMmDABGzdu9Kgud9WWfc3111+v/t988cUXHq+fnp4OjUYDSZIQHx+P4uJij+u4dOkSli1bhmnTpmHUqFFo1KiR3WfMXbZhxZ2HO8fKQggsXrwYt912G1q0aIHIyEjodDokJiaiT58+ePbZZ3H06FGPf2arrKwspKSk2LXLlyc5CwsL8dlnn2H48OGoX78+wsLCEBYWhnr16mHYsGF477333D52Li4uxsyZM3HNNdcgJSUFoaGhSEpKQs+ePTFt2jRcunTJZ+0OtIkTJ6p/jxdeeMHj9QsLCxETEwNJkqDVanHmzBkAgEajwfPPPw8AeOedd3DkyBGfthsAIHzg+PHjAoAAIMaNG+ewzMCBA9UytcW4cePUn/n48eMVlq+Nv6OqtmrVKhEfH6/+nl09evToIY4cOeJWvW+99ZbQ6XRO64qKihLz5s3z809HtYWn25aq8uWXX6rt+vLLLwPdnBqpUaNGbm2/AIiBAwf67H0LCgpESkqKACD+7//+z2m5GTNm+LxNvty+fv311yIyMtJpXSEhIeKdd95xq67ly5eLOnXqOK1LkiTx5JNPevzzulJV+5rVq1erdb700kveN7wSfvrpJ7UN/fr183j9l19+WV3/oYce8nj93bt3V/gZc5ftcbI7j4p+5xcuXBCDBg2qsJ6QkBDxxhtvePyzCyHE+PHjy9Xnq/3Nli1bRJMmTSpsf506dcTSpUtd1rV161bRuHHjCuv5448/vG63O3nH37Zt26a2oWHDhkJRFI/Wnzt3rrr+ddddZ7fMZDKJli1bCgDilltu8WWzhRBCaOEDjRs3hhDCF1XVamvWrAl0E2q806dPIzMzEwAQHx+PoUOHolevXqhbty6MRiM2b96MuXPnIjc3F1u2bMGVV16JzZs3IyUlxWmdH3/8MZ566ikAgE6nw5133omBAwfCaDRi6dKl+PHHH5GXl4c777wTsbGxuOaaa6rkZ6Waa/bs2Ry+WsslJSXh008/dVkmMTHRZ+/30Ucf4dy5c9BoNHj66aedlis7QkSv16NFixbYvXt3pd7Xl9vXxYsXY9y4cTCbzZAkCaNHj8bVV18NnU6HtWvX4quvvoLBYMCkSZMQFRWFe+65x2ld27Ztw4gRI1BYWAgAuOqqqzBq1ChERkZi8+bN+OKLL1BQUIC3334boaGhePXVVyv18/vrd1EdXH/99UhMTMTFixexfv16HD16FM2aNXN7/Tlz5qjP77rrLo/fv+z/skajQevWrXHs2DEUFRV5XJ/VlVdeif/7v/9zWaZ169ZOl5lMJlx77bXYunUrACAsLAxjx45Fp06dEBcXh5MnT+LXX3/F+vXrYTAY8J///AeRkZF46KGH3G7j8uXLMXv2bMiyjJCQkEr1EjuTlpaGoUOHIicnBwCQkpKC8ePHo0WLFtBqtTh27Bjmzp2L48ePIyMjA9dffz02bdqEzp07l6tr3759GDx4MHJzcwEA7dq1w5133okmTZogOzsbS5Yswc8//4yMjAyMHDkSK1asQJ8+fXz2swRC165d0bFjR+zevRvp6elYtWoVhgwZ4vb6tscOZT8X1u37Pffcg++//x4vvPAC2rZt66umV12XWm3sxQvW3oja7KuvvhIdOnQQ3377rSguLnZY5tSpU6Jdu3bq327s2LFO6ztz5owIDw8XAIRWqxXLly8vV8a296dBgwaiqKjIZz8PUTBhT6f/WXs6GzVqVGXvaTQaRYMGDQQAMWzYMJdlFy5cKB5++GExa9YssWvXLmEymex6Bzzp6fTl9rWgoEDUq1dPLTt79uxyZZYtWya0Wq0AICIjI8W5c+cc1qUoiujatata15QpU8qV2blzp4iOjhYAhCzLYvfu3W7/3I5U9b4mGHo6hRDi0UcfVdvxwgsvuL3en3/+qa7Xvn37Sr33kSNHxNixY8V7770n/vrrL1FQUCCEsB9t4C5f9pDZ9lQ1aNBAnDhxwmG5Tz/9VC2XmJgojEajW/UXFBSovZATJ060+3l9cSw7YcIEtb6rr75aFBYWlitjNBrF2LFj1XIjRoxwWFfPnj3VMnfccYfDn/HHH38UsiwLAKJVq1Zu/x4cCYaeTiGEmD59utqOO++80+310tLShCRJAoBISEgQJSUl5crk5OSIsLAwAUDce++9vmy2YOj0I4bO4JOVleXWUIQ9e/aofzu9Xq/ubMp67LHH1HJPPfWU0/r+/e9/q+U++OCDSrefKJgxdPpfIELnwoUL1b/r3LlzPV6/sqHTl9vXd999Vy3z73//22ldTz31lFrO2dDYRYsWqWV69uzpdJ/y4YcfquVGjx7t4ietWFXva4IldO7cuVNtR6NGjdweSmgbbP73v//5tE2BDp233367WteHH37osmy3bt3Usu6e+Hj88ccFAJGamipyc3N9HjpTU1PV+vbt2+e0XFZWlnoSKD4+vtzyjRs3qvWkpqa6PMny0EMPqWU///zzSrc9WEJnRkaGOsw+IiJC5OXlubWe7ZDziRMnOi1n3Y7o9XqRm5vrq2b7JnS6+iPYhk1XD2cbNbPZLObPny/GjBkjGjduLPR6vYiMjBStWrUSDzzwQIUfopdeekl9j9WrVwshhFixYoW45ZZbROPGjUVoaGi5D5LRaBR//PGHmDRpkujbt69ISkoSOp1OREZGihYtWohx48aJtWvXOn1P27Dp6uHqd1WRjRs3invvvVe0bNlSREZGivDwcNG0aVMxduxYsXLlygrXL3sAkJ+fL9566y3RrVs3ERsbK8LDw0Xbtm3F5MmTRWZmZoX11UStW7dWf0+7du0qt1xRFHXjKUmSSE9Pd1rXunXr1Lr69+/vz2aX8/fff4sHHnhAtGnTRsTExIjQ0FDRoEEDMWbMGPHbb7+5XNfRgUdaWpqYNGmSaNWqlQgPDxcxMTGid+/e4sMPP3T7DGJeXp6YPn26GDp0qKhbt64ICQkRcXFxonv37uKFF14QGRkZLtcv+1kxmUziyy+/FEOHDhX16tUTGo3G4UH5uXPnxFNPPSXatGkjwsPDRVxcnOjRo4d4++23y53FLrv+kiVL3NpY25o4caK6zu+//+7WOu6o6ISWv/5uv/76q/jXv/4lkpOTRWhoqGjUqJG47bbbxN9//y2E8Cx0lpSUiM8//1xcf/31on79+iI0NFTExMSIDh06iEmTJjk9uDl48KDa4xMdHS2OHTvm9D0yMzPVHjpZll1ut6uLQITOm266ST0AcffgxlZlQqevt6+9e/dWy6xfv95pXenp6WpPQMOGDR2WufXWW9W6vv76a6d1FRQUqL2der1e5OfnOy3rSiD2Ne6GziNHjoimTZuqbXN2PeySJUvEuHHjRPPmzUVkZKTQ6/WiadOmYty4cWLdunUu29KlSxe1Le4c3xQUFIioqCgBWHqFz58/X+E6ngh06LzqqqvUupYtW+ayrO3/6oYNGyqse9OmTWqv4IIFC4QQwueh0/aaZIPB4LJs3bp1BQARGhpabtm0adPUeh577DGX9dgG1MGDB1e67e7+HTMyMkT37t3Vso8//rjDEybeHJ+NHDlSrf+LL75wq/3NmjVT19m+fbvTcrYn1mbNmuVW3e4I6tB55MgR0blzZ5frybLscsiFbehctWqVePjhhx3WY/tBcufibOvP6qhr2p+h02g0invvvbfCuseMGeNwyIKV7QHA0aNHRdu2bZ3W1ahRo1rZU9ujRw/1d7Bx48Zyy217QysavmM2m+2GWvnyzJEz+fn54uabb67wf2X48OFO21P2wGPJkiUiNjbWaV1XXXWV02HLVr///rvLyTcAy2QYP//8s9M6bD8rly5dEv369XP4f2tr1apVIi4uzul7dujQQaSnpzs9qDebzeqQo7i4uAqHrhUVFanv17BhQ2E2m12W94SnodPbv5vJZHK5XZNlWbzxxhtuh053JpEICQkRH3/8scP1bYeN9e7dW5hMJoflRo8erZZ77rnnXP5Oq4uqDp3FxcVqyB8wYECl6qhM6PTl9jUnJ0cNkjExMRV+Fm0vr3DUE5OQkKAuv3Dhgsu6hg8frpZdvHixy7LOBGJf407o3L59u0hOThaAJdx99dVX5cpkZGSIwYMHV7gfuvvuu50GENvJqVxd7mJlO/zU2bBMbwQ6dN5xxx1qXRX1dFqDj0ajEZcuXXJZ1mAwiA4dOpT7vfk6dNavX9/l58vKtqezc+fO5Zbb9l7OnDnT5XtmZmaqZTUajdPRaxVx5+94/PhxdTIeAOK1114rV8YXx2e//PKLWs6dbbPtkPNOnTq5LJudna1uM335GfJ76Fy3bp1YuHCh3UZ84cKF5R4HDhywW+/IkSMiMTFRXadfv37i9ddfF/PmzRNff/21ePzxx+0OIJ1tFG1D57XXXisAiJSUFDF58mTx9ddfi9mzZ4uHHnpInDlzRl2nZ8+eIjIyUowYMUK8/PLLYu7cueL7778X7733nrjvvvtERESEWuejjz5a7j23bdsmFi5cKK688kq13CeffFLuZ962bZvdeu6EzltuuUUtExYWJu6//34xZ84c8fXXX4vHHntMPbsHWMbKOxuKYi3TpUsX0bp1ayFJkhgxYoSYOXOmmD9/vnjttddEw4YN1XJV3TsXaCUlJXYH6WfPni1XZt68eR7tRGz/vps2bfJDqy8rLi4WvXr1Ut+vWbNm4tlnnxVfffWV+O6778Srr75qt1EcPHiwwwMx2wOPESNGiPDwcKHX68X9998vZs+eLebNmyeeeOIJu8+Eq5NAP/74o9BoNAKA0Ol0YtSoUeL9998X33//vfj888/F7bffrp4FlWXZ6Vlt29+l9XPdqVMn8frrr4vvvvtOfPrpp+KRRx5Ry+/bt089cLb+3//vf/8T8+fPFzNmzBB9+/ZVA4y1R8HRQb3tmVVXPRxCWK4ftpadOnWqy7Ke8iR0+uLvZrtzDwkJEffee6+YM2eO+Oqrr8TEiRPV3+2NN96olnMWOv/++2+1vCRJ4pprrhHvvPOOmD9/vpg9e7a4//777f5WzuoZNWqUy7Z//vnn6vJevXp5dR1PMLEeAEZGRoohQ4aoI3ESExNFjx49xNNPP+32rNvuWLlypfp7rOxMrJUJnb7cvm7YsMGj97f9fM2fP99u2dmzZ9Vl7gR/22OQys4iGoh9TUWhc9WqVWq4DQ8PdziS49KlS3Y9K506dRJTp04V33zzjZg3b5547rnn7IZaOvvZLl68KEJCQgTg3lBC25C7aNGiyvz4LnkbOps2bSq6d+8uYmJiREhIiKhbt6646qqrxFtvvSWys7MrrOuHH35Q63L3ms7x48dXWK916GVUVJQ4efKkw5/XF6HTtvPH1TWdtp9DR9dgP/jgg+pyT0InALFly5ZKtb2i0Ll792712nGNRuOwB9JXx2dGo1E96SNJkjh69KjLttsOOX/33Xcr/FnbtGmj7mucndj1VFDeMsVsNqsX6YeGhorvv//eYblz586pPaGyLIu9e/eWK2O7wQcs4TUnJ8fl+69YscJlL+HFixfVnhVZlp0O7/L1LVO+++47dXlycrLDM0QnTpyw60Fwdk2H7e8kJCRE/Prrrw5/Ttu6vAlKBQUFDk82VOZRNqz7g21g6Nq1q8MyU6dOdblTLsv2onhHZ4R9qez1P44OuA0Gg12bHG20bQ88AEuP3aFDh8qV27Rpk3pGMi4uzmGvWXp6unqQ0rBhQ6dD4zdt2iRiYmIEAFG/fn2HZ7/LjqB47LHHXPZe2PaEPvTQQw7Llt1WOBueaw3FFR28DhgwQN3x2O7AfcGT0Ont38327GhsbKzYunVruTIHDx5Ub6fhKizm5uaqw11jY2PFmjVrHP58hw8fVk96RUREOOxNyszMVM+YazQauyF6//zzjxqoo6OjK9wZV+TAgQM+235V1DNWEXdumaLRaMTkyZN9cqBge6Llhx9+qFQdlQmdvty+zpkzx6PQ9uKLL6rlX3nlFbtla9eu9ehnmTVrllr+7rvvrrC8I4HY17gKnT/++KN6aVJ8fLw6vL4s60koSZKcHuTm5eWJYcOGqe+1ZMkSh+VsRy24Gu534sQJtYemTp06fjnZ5G3odPWIiYkpd6KjLEVR7IZWhoWFifvuu0989NFHYt68eeLNN9+02+eNHDmywqC+f/9+9W/63nvvOf15fRE6L1y4IJo3b67WmZKSIp555hkxa9YsMXfuXPHSSy+px56yLJf7DFrZfi4ef/xxl+9pO7wWqPiksTMVdbJZOyvCwsKcnvDw1fGZEEI8+eSTapkXX3zRabtth5zrdDq39kO2t8xxdIlZZQRl6LS9N9OMGTNclv3nn3/UnhNHsyzZHkhGRESI06dPu/UzVeTo0aNOd0pWvg6dttc1uLo+bNOmTepGt1GjRg4PPGw/fC+//LLTuj777DO3ylXE03tUuXr4++LtzMxM9ToCVwda1ovtAYj333+/wno9LV9ZZ86cUc8K33TTTS7LGgwG9XqcFi1alFteNrz8+eefTuuyndzAUTnr9Y0ajUbs2LHDZbu++OILta5vvvmm3HLbz0q3bt1cBs4tW7aoZdu3b+/yQNy2Xme9GLYTdTgKckJYtkvWMsOHD3f5s1aGp6HTm7/biBEj1OWOzjZb/fbbb3bv6Sh0/u9//1OX//LLLy5/Rtsetv/+978Oy6xZs0a9/qhRo0YiKytLGAwGu8kzfHGCp+wJCW8e1rkFKqtRo0aiXr16YsKECWLGjBli/vz54quvvhIvvfSSOjTOl9vK2267Ta2vsjOwViZ0+nL7+t5776nLnnjiiQrrclX+559/VpeNGjWqwro8Le9IIPY1zkLnxx9/rH7mUlNTnQ6PtL2X4KRJk1y+V2Zmpnqi8aqrrnJYZvHixWp9roYS2gaRit63srwJne3btxePPfaY+Oyzz8QPP/wgZs2aJR599FG1x8r6qOg6OpPJJJ599lm70W1lH127dhW//fZbhZMvmc1m0adPHwFAdO/evdz+1NehUwhLL/jo0aPV43dHjzFjxrg8VlixYoVaNjU11eUlImUvravsJFvO8s7PP/8s9Hq9ACwnDpzNH+DL4zMhLKO4rO1p3Lix07+17Ym3it7X6o033vDpflQIIWQEoa+++goAEB0djXvvvddl2ZYtW+KKK64AACxbtsxl2VGjRqFevXo+aWPTpk3Vezdu2rTJJ3W6cuLECezYsQMA0KFDB1x77bVOy15xxRUYPHgwAMv9kLZt2+a0rEajwSOPPOJ0ubUeANi/f7+nza52zGYzbrnlFpw9exYAMHz4cIwePdph2fz8fPV5WFhYhXXr9Xr1eV5enpctde7777+HwWAAADz55JMuy+p0Otx8880AgMOHD+PEiRNOy3bp0gX9+/d3utzV/4oQAt988w0AYMiQIQ7vt2Xr5ptvhlZruY1wRZ/rhx9+GLLsfFP2888/25XVaDROyz766KMu3wsAHnjgAfX5559/7rCM7ev33XdfhXX6kzd/t5KSEixZsgQAkJycjDvuuMNpPcOHD0ebNm1ctsW6bW/ZsiWuv/56l2UHDx6sbq+d/Q8MHDgQkydPBmDZ1j3wwAN4/vnn1W3e7bff7rLN1dHXX3+NkydP4osvvsDEiRMxZswY3HHHHZgyZQp2796Njz76SP08zJkzR/3cVVZaWpr6PD4+3qu6POHL7Wuw1uWuYNnXvPzyy3jggQegKApatWqFv//+2+k9/KyfdUmS8MQTT7isNy4uDtdddx0A4M8//0RJSUm5MldffbW6PVi3bh2OHz9erowQAnPnzlW/r8y9Of0lISEB27dvx549ezB9+nTcc889GD16NO666y68++67OH78uF17H3jgAYc/o5VGo8FTTz2FF198EaGhoQ7LbN++Ha+//jo2bNjgsm0fffQR/v77b2g0Gnz66acu96e+Eh8fjzfeeMPl32jRokV47bXX1OOxsgYNGoTmzZsDsNyD/f777y93b1XAcgzw8ccf271mva+nL8yaNQs33XQTioqKkJKSgrVr12LAgAEOy/r6+Kxt27ZqBjpx4gTWrl3rsC5X9+Z0Ji4uTn1uux/whtYntfjYunXrAAB169bFH3/8UWF560FkWloaioqK7Da4tlwdeJWVm5uLb775Br///jv27NmDixcvoqCgwGHZU6dOuV1vZW3evFl9PmzYsArLDxs2DCtXrgRgCcXWf8qyWrZsafePVVZqaqr6PCsry93mltO4cWMIISq9flV59NFH1QPchg0b2n1Qqwvr5wew/G8uWrTIZXnbv+uBAwfQuHFjh+V69erlsh5X/yv79u1DZmYmACAqKqrCNgFAZGQksrOzceDAAZflKvpcW2+gDVhuyu3KoEGDKmzXlVdeiZYtW+LQoUOYM2cOXn31Veh0OnW50WhUb0per149DB8+vMI6/cmbv9uuXbvUHeTAgQNdBnbAckLB2d8rJycHu3fvBmAJsO7+DwBw+T8wdepUrFy5Eps2bcL8+fPV15s0aYKPPvqowvdwx5QpUzBlyhSf1OWtfv36uVz+4IMPIisrC8899xwA4NVXX8Xtt99e6fezfm6Bqg2dFDwURcEjjzyCDz/8EADQo0cP/P7770hMTHS6jnU/FBsba3f84ow1aJaUlODYsWPlTmBpNBqMHTsWr7/+OoQQmDNnTrnP5Lp163D06FEAQPfu3dG+fXu3f0Z/i4qKQpcuXZwu1+v1+OKLL3DmzBksXboUBoMBb775JmbOnOmw/B9//IFbbrkFOTk5GDRoEJ555hn07NkTer0e6enp+OGHH/Df//4X69evx5AhQ/Ddd99hxIgR5epJT0/HM888AwB47LHHXLbRl1577TU8//zzUBQF99xzDx544AH1BMb+/fvx8ccf4/PPP8f333+PjRs3Yvny5WjZsqVdHRqNBjNnzsQ111wDs9mMOXPmYNu2bbjzzjvRpEkTZGdn448//sDChQshSRIaN26sBjdfBes33nhDPfHZrFkzLFu2DE2bNnVa3h/HZxMmTFA/Y7Nnzy53HJOWloY1a9YAAFJSUnDNNde4fE+rhIQEh+3wRtCFzvz8fFy6dAkA8M8//2DkyJEerZ+VleU0dNoeXLmyevVq3HbbbTh37pxb5X15xsQZ2zM9ZT94jtiWcXaWCIDLnQYAuzNoxcXFFb5vdfbcc8+pO9Xk5GQsX77c5e/HekAMuPe7KSoqUp9HRUV50VLXbM+GjRkzxqN1XW1YvPlfsW3TTz/9hJ9++sknbQIq/lyfOXNGfe5qZwBYzuzFxsYiOzvbaRlJknDffffhySefxPnz5/Hrr7/ipptuUpf/8ssvyMjIAGA5o1hRUPM3b/5utr876xllV1yVOXnyJBRFAWDZ8drufCvi6n9Aq9Xi22+/RefOndVeHetr0dHRbr9HTTJp0iS8+eabyMnJwcGDB3Hs2LEK//edsYYBjUbjdN/qD77cvgZrXe4K9L5mxowZyMnJAQAMHToUCxcutGuTI9ZtflZWVqWO4xwZP348Xn/9dQDA3Llz8dJLL0GSJHW57UniCRMmlFt/2bJlKCwsdPq+N954o0ft9DVJkjBlyhQsXboUALB48WKH5f744w8MHz4ciqJg9OjRmD9/vl2Iat68OZ555hkMGTIEAwYMQHFxMe68804cOnRIHaFn9eCDDyI/Px+NGjXC1KlT/ffD2Xjuuecwbdo0AJb/rYkTJ9ot79atGz777DN06NABjz76KNLT03H77bdjy5Yt5eoaOnQo5s+fj/HjxyM/Px979+7Ff/7zH7syISEheP/99/HHH3+o/5euOlvctWjRIvUEc6dOnbB06VIkJye7XMcfx2e33HILHn/8cRQVFeHHH3/EBx98YPf5nDNnjtrpM3bsWHUUWUVs95+22xRvBN3wWuuGrbKsZ+UdcWeHefjwYQwfPlwNnK1atcJjjz2GDz/8EPPmzcPChQvVR1JSEgA47M73NdshMhERERWWt/2HczW8piqGUVQHr776qroRTExMxIoVKyoM97GxserzixcvVvge1pMpZdf1NW8+Q64+P978r/irTUDFn2vrCAWtVmvXI+mMO5+v8ePHq2Hts88+s1tm/V6SJNx9990V1uVv3vzdbIf1hYeHV1je1e/Om/8Bo9HocnliYqJdL1zTpk3RrVu3Sr9fdRcWFmbXw33w4MFK12X9PzebzS4P2H3Nl9vXYK3LXYHe15hMJvV5QUGBW6OW/LHNb9WqFfr06QMAOH78OP788091WWFhIX788UcAlv//W2+9tdz69913H0aOHOn0EQyuuOIKdZ928uRJh5+5J554AoqiQJZlvPfee0638VdccQXGjx8PwHIcWHbklnU0H2AZYuvOvs9bp0+fxltvvQUAaNOmjcvLuyZOnKj2eG/duhUbN250WG7UqFE4cuQIXnjhBXTv3h2xsbEICQlBo0aNMGHCBGzduhX33Xef3eeibPiuDNvPRVFRkVtZwB+fi5iYGPX/t6CgwO6kvjdDzm3b6qsTjkHX02kblgYMGOB0fLK/vPbaa2qif+655/DKK6/YnUmzVdH1pr5ke7bS2TBfW7YHi/7sVXNXYWFhhdfmuathw4bo2rWrT+oCgDfffBMvvPACAMvZr+XLl7s1LMc2lLq6FtLKdky8O73VlWX9DEmSBJPJFBQnFmw/1y+++GKVnVEFLgchk8kEo9FYYfB05/OVkJCA0aNH45tvvsGyZcuQnp6Ohg0bIi0tDcuXLwdgOQPbpEkT73+AALL9u7kTOFz97mzrGjt2rHqG2Bceeughu8/XoUOH8Pzzz+ONN97wSf0HDx70KrjZ6tevX4W9z75gOzTKVc99RWzDfGZmplsnH3zBl9vXYK3LXYHe1zz66KM4cOAAFi5ciA0bNuDqq6/G0qVLXR5bWC+PsG4XfeWuu+7C33//DcDSszlw4EAAwI8//qieYL/xxhv9emLXn2RZRlxcnHocmp2dbfeZO378uHrtfdu2bSucp2To0KH45JNPAKDcMGfr3AMpKSnYvn07tm/f7rAO2/DxwQcfqL/be++9t8KevbKWLVumnkQcMmSI0+NrwHIMM3jwYPXyis2bNzu9XCQ5ORkvv/wyXn75Zaf12c5Z0KNHD4/a7cjo0aMRHR2N999/H4cOHcKVV16J1atXu/yb+Ov47K677sK3334LwPK5GDduHAD7Iee9evVC69at3a7TH5dWBF3ojImJQWRkJPLz86vkWsmyVqxYAQCoU6cOXn75ZacfiLy8PLs/iL/VrVtXfX748OEKy9uW8dXkSd7IyMjw2ZnEcePG+exay+nTp6tDMWJiYrB06dIKJ7mxsg2mriZrAizXxFgngpJlucIJV7yRmpqKnTt3QgiB06dPo0GDBn57L0/aZFXVn+t69eqp1xIeO3YMrVq1clo2KyvL7QP0Bx54AN988w0URcGsWbMwZcoUzJo1Sx1CGugJhHzBdttx5MiRCsu7KuOv/4FvvvlGnSynW7duuHjxItLS0vD222/j6quvtpsoqbK+++47n50oWb16tVvXDnvLV71djRs3xl9//QXAchBSv359b5vmFl9uX9u2bQtZlqEoCnbu3Kn2Ejljex142ROQKSkpSEhIwKVLl5Ceno6LFy+6PIngqi53BXpfo9PpMH/+fNxyyy1YsGCBW8EzNTUV2dnZyMjIcOtkn7vGjBmDRx99VO3Z/OCDDxAREYEvv/xSLeOsN8edwB5oiqLYDaMs+9m1veTBncsHYmJi1OdlTwpae6zPnTunnnivyP/+9z/1+b/+9S+PQ6cv2++J/fv3q6MEmjVrZndM7Y0ZM2ZAkiTMmDHDreDpr+OzwYMHo2HDhkhPT8fatWtx4sQJNG7c2K3PhTO2GadRo0Y+aWeVdYHYbuArGpphnfXp2LFjbh3o+NL58+cBWCahcLVTWrFihXpw6YwnP3NFbCcCsvakuGLbq+hsEqHa7sMPP8SkSZMAWHqDlyxZ4tHZr3bt2qkHYPv27XN5IP3333+r1/727dvXr73P1jO/QMUzv1aVLl26qDuYlStXVvjZ8aXu3burz1evXu2yrPVie3f069cP7dq1A2CZvc5oNGLWrFkALCetHE3aUN106tQJISEhAIC1a9dWOHzIOnmZI4mJiepEERs3bvTJtfDHjx/HQw89BMDSoz1v3jx8/fXX0Gg0UBQFY8eOtQtftUVJSYndUDRvertsA88///zjVbs84cvta3R0tNpDkpOT43SYHmAZ0mjtEWnYsKHD2VmvvvpqAJb9uqttbGFhoXrtsl6vt9s2eyIY9jXW4Dlq1CgAUIOns8+x9WctLi62GwbrrejoaLUN+fn5+Omnn+xm7axfvz6GDh3qs/eralu2bFF7OVNTU8uNLLANaidPnqywPtteZtvRD4ESqPbbhi9fX/by3nvvqTPfHzp0CIMGDbIL17b8dXwmy7Lau2kdUltQUKAOOdfr9epMuO6yncCvY8eOvmmnT2pxg+3QqorOVlh/cYBlKF5Vsn7Ajx075jQoms1m9fo/Vzz5mSvSuHFjdUjprl27XAbPrVu3YtWqVQAsZyeC4dom6+y1vnj4opfzs88+Uy9ej4iIwO+//47evXt7VIckSfj3v/8NwPIhf//9952WnTFjhvrc0w++p2655RY1KLzxxhte/+/5gkajUWfQTEtLc3qrEX+wDX8ffvihy+D03nvveVT3/fffD8Cy83zsscfUg8Fx48b57Mx+IIWGhqq3Mjh//rw6fMeRJUuWVDjTsHXbXlhYqE4IUllmsxm33367etA7Y8YMtGjRAv369cOzzz4LwHL90D333OPV+wCW2Wt9tf2qil7Od955Rx0S16JFC7cmgXKmZ8+e6vOquD2Yla+3r7avu/qcv//+++q+39lEH7Z1zZgxw+mxwuzZs9X/z+HDh1f6mrlg2ddotVp899136m3ENmzYgGuuucZh8Bw7dqz6fOrUqT6d+8K2x2b27Nl2E6WMGzcuKC4pqQwhBF566SX1e+u211bz5s3V2+acPHlSHWrszHfffac+tz0BC1hOsrqzzbLt5Tp+/Lj6urujwmzZnsRavHixyzlHcnNz1Vt2OWq/uw4ePKh+ZmJjY32yTyjr3XffxWOPPQbAMtLQWfD05/HZ+PHj1dGZc+fOxQ8//KBeanfTTTfZ9Rq7w7q9j4qKcnprJI95dZfPUs5ulmrr//7v/9Qyzm6aamU2m0WPHj3U8o8++qgoKSlxWr6wsFB8+eWXYt68eeWW2d7U252bcl911VVq+XfeeafccoPBIO666y67m8w6u4n8O++8o5aZM2dOhe9te2N6R+bPn68ur1u3rjhw4EC5MmlpaaJZs2YV3gDXutydG3V7UrY6mDNnjpAkSQAQ4eHhXt2s/fTp0yI8PFwAEFqtVqxYsaJcmS+//FL9HTZo0EAUFRV50Xr3PPHEE+p7XnnlleLs2bNOy5rNZrF8+XLxyiuvlFvm7AbhjlRU9uTJkyI2NlYAEKGhoRV+Js6fPy9efvllsWvXrnLLKvqslNWvXz+1/EMPPVTu5tdC2G8rXH2ubWVnZ6t/f9vHoUOH3GpXZY0bN87lzbp9+Xdbt26dujwuLs7hzboPHTok6tata/c7+PLLL8uVy8/PV280LkmSePPNNx3+Layys7PFe++9J5YvX15u2QsvvKC+1+jRo+2WGY1G0bt3b3X5J5984vJ3UF28+uqrYv/+/S7LzJw50+6G67Nnz/bqPYuLi0VERIQAIPr371+pOmyPETzZj/hy+1pQUCDq1avn8veyfPlyodVqBQARGRkpzp0757AuRVFE165d1bqmTp1arsyuXbtETEyMACBkWRa7d+92+nPafm4cfZ59/btwh6vtgtFoFKNHj1aX9+rVS+Tk5JSrY9SoUWqZm2++2WEZ2zp/+uknp8csthRFEY0bN1a3I8nJyer7HD582OOf1VPWbZi7+5+8vDzx3HPPiQsXLjgtU1RUJCZMmKDWq9PpnP4sN998s1quefPmIi0tzWG5//73v2q50NBQcfLkSbfaW5btz+vs/9NRWUfHVgaDQdSvX18tM2LECFFYWFiuXGFhobjhhhvUcu3btxeKopQrd/78eZfbxG3btokGDRr4bHtYUd557LHH1OUtWrQQp06dKlfGV8dnjtgeG9nukx1tL1zJzs5Wj5NvvPFGj9Z1pcqu6RwyZIh6Bu7uu+/G448/jkaNGqm3E2jevLl6NlaWZfz000/o3bs3Tp8+jffeew/ff/89/v3vf6NTp06IiYlBfn4+0tPTsXXrVqxcuRIFBQV45ZVXvG7nxIkT1V7ESZMmYc2aNbj66quRkJCAw4cPY+7cuTh8+DCuvPJKHD582OUwlyFDhqjPn376aVy4cAGtWrVSpytOTU1Fhw4d3G7bmDFjsHDhQnz33Xc4e/YsunbtivHjx6N3797QaDTYunUrvvjiC/Ws47Bhw9ShZ2SxZMkSTJgwQT0rOmHCBGRnZ1d4r6SuXbuiYcOG5V6vV68e/ve//+HBBx+EyWTCtddei7Fjx2LgwIEwmUxYsmSJOrxBq9Xi008/dXlzb9triI8fP+70npkVee2117Bz506sXLkSq1evRtOmTTFq1Cj07t0bSUlJMBgMOHfunNprfu7cOQwZMgTPP/98pd7PHfXr18d3332HG264ASUlJRg3bhzeeecd3HDDDWjRogX0ej1ycnJw6NAhbNy4EX/99RfMZnOF99Z0xyeffIIePXqgsLAQH330ETZs2IA77rgD9evXx/nz5zF//nz89ddf6N27N9LT03H69Gm3zpbHxMTg5ptvthu6M2jQILRo0cLrNgeLfv364aGHHsJHH32ErKws9OrVC+PGjUO/fv0gyzI2b96ML774AgUFBbjxxhtdfpYiIiKwaNEiDBw4ELm5uXj66afxySefYNSoUWjbti0iIyORm5uLY8eOYfPmzVizZg0MBoN6o3mr9evXq6NN6tevj08//dRuuVarxTfffIPOnTsjNzcXjz/+OAYOHOjyet7q4IcffsDzzz+PLl26YODAgWjTpg3i4uJgMBhw5MgRLFiwQL1+GQDuuOMOu5FDlREaGoprrrkGP/30E7Zu3Yr8/PwKb5dRdjtiOxHJ8ePHyy3v2rWr3W2HrHy5fQ0PD8enn36KESNGwGw246677sLixYtx7bXXQqvVYu3atZg7d646I+X06dOdXq8mSRI+/fRTDBgwAIWFhXjppZfw119/YfTo0YiIiMDmzZvx+eefq70YzzzzjEf7ekd8va/xhlarxbx58yBJEn744Qds3LhRvcbTdvjkrFmzcOjQIezZswfz58/H0qVLMWbMGHTv3l2dLOf06dPYsWMHli9fjqysLLeGPkqShPHjx6sjEKyXRfXv39+rXn1HvvjiCxw/ftzuNdvr/sv+L8fFxeGJJ56we81kMuG///0v3njjDQwaNAi9evVC06ZNER0djby8POzatQvfffed3W36PvroI6c/y7Rp07B8+XJkZmbiyJEjaN++Pe644w706tXL7j6dtiMTXnrppSq7HtsVnU6HGTNmYNSoURBC4Oeff0abNm0wduxY9frjAwcOYO7cuerQWp1Ohw8++MDhHCvp6eno0aMHrrjiCgwZMgStW7eGXq/HuXPnsGLFCixevFjtZX/66ae93h5WZPr06ZAkCdOnT1ezwurVq+3mNPDn8dldd92lDjW33i6xUaNGHs9tYO0FB3x8KyFfJFd3ejpNJpNdb0PZh6Mz7GfOnBFDhgxxuo7tQ6PRiM8++6xcHZ72dAohxDPPPOPyvfr27SsyMjLUMzquekRuvfVWp/WU/V2503tjNBrFPffcU+HvY/To0Q7PHllZy9W2ns6yvVnuPhz12th66623hE6nc7p+VFSUw574smzXqeiMYkVKSkrEI488Ytfr4eoxduzYcnX4ssfMasOGDaJp06ZutSkyMtJhD4GnPZ1CCLFq1Sq1p9XRo3379iI9PV2kpqYKAKJjx45u1btp0ya7er755hu321RZVdnTKYRl+33nnXc6/d3JsizefPNNu54WV5+ZgwcPii5durj1PxAaGiqWLFmirpuVlaVue2VZdrld//rrr9V6unTp4nLETHXQqVMnt35nWq1WPP/888JoNPrkfRctWqTWPXfu3ArLe7p9dXbcYOWr7asQlv+JyMhIp3WFhIQ4HOXkyPLly0VSUpLTuiRJEk888YTDHhpnv6+Ktvu+/F244s52wWg0ijFjxqjlevbsWa43Mycnx65nrqLHCy+84Fb7jh8/rvbEWB+zZs3y9scux3Zf487D0fFgVlaW2+snJCSIH374ocJ2bdu2TbRo0cKtbcGrr77q1e/Alz2dVl9//bWIjo6usP2JiYli8eLFTuvZsmVLhXVERUWJGTNmVPKnt+dO3hFCiEmTJqnlmjdvXq7H0xfHZ47k5+eX2769+OKLHv+c1s+1Xq8Xubm5Hq/vTJWFTiEswwdef/110bt3bxEXF2f3y3Z1YLRmzRpx//33i3bt2onY2Fih0WhEdHS0aNu2rbj55pvFzJkzxZkzZxyuW5nQKYQQS5YsEcOHDxeJiYlCp9OJunXrisGDB4vPPvtM3ZG7EzpNJpOYOXOmGDRokEhMTFSH7jj6XXlyIL1hwwZx9913i+bNm4uIiAih1+tFkyZNxB133CFWrlxZ4frW92HodO9RUegUQog9e/aIhx9+WLRs2VJERESIqKgo0b59e/Gf//xHnDhxosL1CwoK7A58Ll265IOfWIjDhw+LyZMni549e4qkpCSh1WpFeHi4aNKkibjuuuvEtGnTnA798kfoFMJysPL111+LMWPGiCZNmojIyEih1WpFfHy86N69u7j33nvF/PnzRX5+vsP1KxM6hRDi3Llz4sknnxStWrUSer1exMbGiu7du4u3335bFBQUCEVRhF6vFwDEoEGD3KpTURR1GF18fLwoLi72qE2VUdWh0+rXX38Vw4cPF0lJSSI0NFQ0bNhQ3HrrreLvv/8WQgi3Q6cQlt/bzz//LMaNGydatmwpoqOjhUajEbGxsaJTp05i7NixYvbs2SIzM9NuPdsD2MmTJ7t8DyGEuP3229XyTzzxRIXlg9nu3bvFBx98IG6//XbRuXNnUb9+faHX60VoaKioW7euGDJkiHj55ZcdDunyhslkEg0bNhQAxFVXXVVheU+3rxWFTiG8377aOnHihHj66adFu3btRFRUlIiIiBAtW7YUDz/8sNi7d69HdWVkZIipU6eKrl27itjYWBEWFiaaNm0qxo8fr34uKmL7u3DnZKMvfxfOuLtdMJlMdp9JR8FTCCG2b98uHnvsMdGlSxeRkJAgtFqtiIyMFC1atBA33nijeOedd8TRo0c9auPgwYPV942IiBB5eXme/pgV8kXoNJvNYvXq1WLatGnihhtuEO3atRPJyclCp9OJyMhI0bhxYzFy5Ejx8ccfO93nOVJUVCTmzJkjRo4cKRo3bizCw8OFVqsVCQkJolevXmLy5Mke/04d8UfoFMIyNPaNN94QQ4YMESkpKSI0NFTdlg0bNkxMnz5dZGVluawjPz9fzJ49W4wbN060b99ePWZPSUkRffv2Fa+//rrL4auecjfvCGE/jNZR8BTCu+MzZ2yHaUuSJI4dO+bR+jk5Oepx0L333uvRuhWRhHByBTwRVamlS5fimmuuAQD83//9n8eT2pD39uzZo87S5u7fYMWKFbjqqqsAWO5n9+677/qziUQBMX36dEyaNAkajQYnTpwIiqF6RETkW7NmzcLdd98NSZKwd+9e300ihCqcvZaIXLPeIzYqKsqv11aScx988IH63N1rSWfOnKk+rwn35iRy5IEHHkBKSgrMZjPefPPNQDeHiIh8zHb7fvPNN/s0cAIMnURBwxo6J02ahKSkpAC3puZZt26dy/uDfvjhh+qENKmpqfjXv/5VYZ07d+5UJ84ZOnSozzfQRMFCr9djypQpAIBPP/3U6X3oiIioepo3bx7++ecfhISE+GRy1rI4vJYoCFy8eBF16tRBYmIijh496rMbetNlzZs3R3FxMa699lp06dIFSUlJMBqNOHr0KBYuXIgdO3aoZX/99VenofOPP/6Aoig4dOgQ3nzzTXWGuPXr16Nv375V8rMQBYKiKOjRowe2b9+ORx55xOX9IomIqPowm81o164d/vnnH0yePBmvvfaaz9+DoZOIaoXmzZvj6NGjLsvo9Xp89tlnuP32252WcTRtu7vXfy5btgyFhYUVN9aBxMRE9OvXr1LrEhEREQUSQycR1QobN27ETz/9hI0bN+L06dO4dOkSCgsLERcXh5YtW2Lo0KF48MEHnd6bz8oaOiMjI9GyZUs8+OCDmDBhglv39WzcuLF67zFPDRw4EGvWrKnUukRERESBpA10A4iIqkKvXr3Qq1cvr+vheToiIiIiz7Cnk4iIiIiIiPyGs9cSERERERGR3zB0EhERERERkd8wdBIREREREZHfcCIhIiKqNgwGAwoLC50+ioqKUFJSAoPBoH61fZR9zWQywWw2w2w2Q1EUh1+tz61TIEiSpM5WLMsyJEkq95BlGRqNBiEhIdBqtdDpdNBqtXbfWx9arRahoaEICwuDXq9HWFiYw+fW78PDwxEZGYmwsDCHt/AhIiIKNgydRERUpQwGA3Jzc9VHXl6ew+fW7/Py8tRQaTKZAt38oKHRaBAZGYnIyEhERUWpz20fUVFRiImJQWxsLGJjYxETE4OYmBhotdz9ExFR1eHstURE5LWSkhJkZmYiKyur3Neyr+Xn53v9fqGhoQgPD3f4CA0NxR+fr4YkJECRAAWAIkGyeW59SAKAkAABywNlvheWnkTJ+n1px6LA5edQnwub56VfZQFIAkIuraTMV/V1jQBkAaERuGr8ABQXF6O4uBhFRUXlvhYVFcFsNnv1+4uKilKDqO0jISEBCQkJSExMRGJiIuLj46HT6bx6LyIiIoZOIiJyqaioCBcvXkRGRgYyMjJw4cIFu0dGRgZycnI8qlOj0SAqKgrR0dHq1+joaKyYtQ4wSZBMMmCSAJMMyfrVLAGlDwm1d1ipgCWgQisgtALQKhAay1doBYTG8vXaBwYjNzcX2dnZyM7ORk5ODnJzcz2+12xsbCwSExPtwmhiYiLq1KmD5ORkpKSkIDw83E8/LRER1QQMnUREtVxRURHOnj3r8JGRkYG8vDy36gkJCUFcXBzi4uIQHx+PjQu2QzJqAIMMyWh5WJ/DVLuDY6AIlIZVnQLoFLuvQqeg3y09cOnSJVy6dAkXL150ezhzVFQUUlJSkJycrAZR6/O6desiJiaG158SEdViDJ1ERDWcEAJZWVk4efIkTp48idOnT9sFy+zs7Arr0Ov1qFOnDpKSklCnTh0s/XgtpBIZMGgglciQDBoGyRpGDaghZiBEgQhVIELMuP7Rq9Qe7nPnzrl1UiI8PBypqamoX78+UlNT7Z4nJCQwkBIR1XAMnURENURRUZEaLE+dOoX09HT1eUXXUUZFRaFu3bqoW7cu1n+zBVKxBijRQCopDZVm3mGLHBOa0kAaagZCzRBhZgwc2wvnz5/HuXPncOnSJZfrh4WFqUE0NTUVjRs3RqNGjdCoUSNERERU0U9BRET+xNBJRFTNFBQU4MSJEzh+/DiOHTuGEydOIC0tDRcuXHC6jiRJSElJQYMGDZCamopf3lkOqVhz+cFQSX4iJAERZobQmyHCTLh+0lCcPn0ap0+fxrlz56AoitN1k5KS1ABqDaONGzdGbGxs1f0ARETkNYZOIqIgVVxcjLS0NBw/ftwuYJ4/f97pOrGxsWjQoAEaNGiApR/+aQmURVpIRRrLbK5EQURIAiLUGkjNuOHJoUhPT8eJEydc9pDGxMSgcePGaNasGZo3b45mzZqhSZMmCAsLq8LWExGRuxg6iYiCQHZ2Ng4fPmz3OHnypNOZRhMTE9GkSRNsX7QPUqEWUmFpuDSxx5JqBqFRIMJNEOFmCL0JPUZ3RFpaGs6dO+fwcyHLMurXr28XRJs1a4Y6derwmlEiogBj6CQiqkJCCGRkZODQoUN2ATMjI8Nh+ZiYGDRt2hS7Fh+EXKi1BMwCLYfDUq0lZAGhN1kCaYQJXW5si6NHjyIrK8th+aioKLRo0QKtWrVCmzZt0KpVK6SkpDCIEhFVIYZOIiI/ys3NxYEDB7B//34cOHAABw4ccHpPy9TUVLRs2RJ/frkFcn5puDRqqrjFRNWT0JkhIkxQIky48t5eOHr0KNLT02E2m8uVjYmJQevWrdGqVSu0bt0arVu3RmJiYgBaTURUOzB0EhH5iMFgwJEjR9SQuX//fpw+fbpcOY1Gg8aNG6NFixZY/tFflwMmey+JfEpIwtIjGmnEtZMG4Z9//sHRo0cdBtHExES0atUK7dq1Q4cOHdC6dWuEhoYGoNVERDUPQycRUSVlZWVhz5492L17N/bs2YMjR47AaDSWK5eamoq2bdti9ccbIeXpLAGTk/oQBYSQBESEJYheNbEfDh48iLS0tHKz6Go0GrRs2RLt27dXH0lJSQFqNRFR9cbQSUTkBiEEzpw5g927d6shMz09vVw567C9rd/vhZyng5Sv4+Q+REFOyAIi0gglyoh+47thz549yMzMLFcuOTlZDaCdOnVC06ZNIcv8fBMRVYShk4jIAUVRcPz4cezcuVMNmo5u4dCkSRN06NABv7+1BnKeDijWQAJ7MYmqMwEBhCpQog24fvIQ7N27F0ePHi3XGxoVFYXOnTujc+fO6NKlC0MoEZETDJ1ERLD0ZJ4+fRrbt2/Htm3bsGPHDmRnZ9uV0Wq1aNWqFQ4uPQ4pNwRyLnsxiWoLISsQUSYo0QZ0+3c77NmzB0VFRXZlGEKJiBxj6CSiWuvixYvYvn27GjTPnz9vtzwsLAwdOnTA9h/3Q84JsQyVVdiLSUSXrw1VYgzofks77N69u1wIjY6ORpcuXdCjRw/06NEDdevWDVBriYgCi6GTiGqNkpIS7NixA5s2bcKWLVvKXZOp1WrRtm1b7Pv1qCVk5uk44Q8RucWdEFq/fn1cccUV6NGjB7p06YLw8PAAtZaIqGoxdBJRjSWEwKlTp7Bx40Zs2rQJO3fuhMFgUJdLkoSWLVviyMqTkLNDIOWGsCeTiHxCSKWTE8Ua0O76Zti3b5/drVo0Gg3at2+v9oK2atWKQ3GJqMZi6CSiGqWoqAg7duzAxo0bsXnzZpw5c8ZueVJSEnr16oUlb/5p6c3kNZlEVAWERoESY8C/nr0SW7ZsKXcP39jYWPTu3Ru9e/fGFVdcwV5QIqpRGDqJqNq7ePEi/vrrL6xfvx47duyw683UarXo2LEjdv10CHJWKKRCzi5LRIEnwkxQYg3ofVdnbN++HQUFBeoynU6Hzp07o0+fPujTpw+vBSWiao+hk4iqHSEE0tLSsH79eqxfvx779++3W56cnIyePXvi99fXWnozzezNJKLgJSQBEW3EyFeuwl9//VWuF7RJkyZqAG3Xrh2H4RJRtcPQSUTVgtlsxv79+7Fu3TqsX78ep06dslvetm1b/PN7OuRM9mYSUfUlICD0ZijxJWh/YzPs3bvX7lrQ+Ph4DBgwAAMHDkSnTp2g1WoD2FoiIvcwdBJR0DKbzdi9ezdWr16NtWvXIisrS12m0+nQtWtXbPtmvyVoGjQBbCkRkX8IrQIlrgSDHr4CGzduRH5+vrosJiYG/fv3x8CBA9G1a1fodLoAtpSIyDmGTiIKKoqiYM+ePVi9ejXWrFmDzMxMdVlkZCR69+6N1TM2W2ab5bBZIqpFhCSgxBpw9dN9sX79euTk5KjLIiMj0bdvXwwcOBA9evRAaGhoAFtKRGSPoZOIAk5RFOzbtw+rVq3C2rVrcfHiRXVZVFQU+vfvj+Vv/g0pJ4T3zSQiQukw3BgDhr8wCH/++afdCbqIiAgMHDgQQ4cORZcuXaDRcCQIEQUWQycRBczRo0exdOlSrFy5EhcuXFBfj4yMtATNtzdYejQZNImInBKwTEQ04uUhWLt2rd32ND4+HkOGDMHQoUPRunVrSBK3p0RU9Rg6iahKXbx4EStWrMCyZctw5MgR9fXw8HD0798fK9/ZxKBJRFRJ1gB67fP9sWbNGuTm5qrL6tevj6FDh+Kqq65CgwYNAthKIqptGDqJyO+Kioqwbt06LFu2DFu3boWiKAAs99Ds06cP/v5kl2UyIAZNIiKfEZKAEmfAwIndsH79epSUlKjLWrdujWuvvRZDhw5FVFRUAFtJRLUBQycR+YUQAjt37sSSJUuwdu1aFBUVqcvat2+Pg4vSIF8Mg2TiZEBERP4mNAqU+BJ0G9sGW7duVW/DEhISggEDBuDaa69Ft27deA9QIvILhk4i8qnMzEwsWbIEv/32m90NzuvWrYuMTbnQZIRBKuZ95YiIAkXoFJiTitBoaB0cO3ZMfT05ORnXXnstrrnmGtSrVy+ALSSimoahk4i8pigKtm7dil9//RXr169Xz6Dr9XoMHToUf7y6HlKeDhI4fJaIKFgICIhIE4ZPGYAVK1bY3QO0S5cuGD58OAYOHMjbrxCR1xg6iajSLly4gN9//x2LFy/GuXPn1Nfbtm2LQz+fgnwhFJLCoVpERMFOyAJKfDE639ES27Ztg/XwMCYmBtdddx1GjBjB3k8iqjSGTiLyiBAC27dvx4IFC/DXX3+pkwJFRkbi6quvxi/PrYZcqAtwK4mIqLJEqBm3f3Q9Fi9ejIyMDACAJEno2bMnRo4ciSuuuIL3/iQijzB0EpFbioqKsGzZMixYsADHjx9XX+/UqRP2fX8c8qUwSAqHzxIR1RQCAkp8CbqMa4ktW7aor6ekpOCGG27Av/71L8TGxgaugURUbTB0EpFLp0+fxsKFC/H777+r1/vo9XpcffXVWPzCOshFnBSIiKimU8JMuOmtofj999+Rl5cHANDpdLjyyisxZswYtGzZMsAtJKJgxtBJROUIIbBlyxb89NNP2Lhxo3ptT2pqKs6ty4XmfBgkM6/VJCKqbYQsoCQWo/kN9XDw4EH19S5duuDmm29Gr169eNsVIiqHoZOIVCaTCStXrsS8efPsptHv2bMnts36B3JWCGegJSIiAIASacTAJ7ti9erV6qzlDRo0wJgxY3D11VcjLCwswC0komDB0ElEKCwsxG+//Ybvv/9enTRCr9fjuuuuwy/PrIHM+2oSEZETIsSMUdOvwq+//qpehhEdHY0RI0Zg5MiRSExMDHALiSjQGDqJarFLly7hp59+wqJFi9QDhfj4eORsN0BzVs8htERE5DahUaDUKUad/lE4c+YMAECr1eKaa67Bbbfdhvr16we4hUQUKAydRLXQyZMn8d133+GPP/6A0WgEADRs2BBnVmZDzgiDJDiEloiIKkdAQEkoQZsxDbFnzx4AgCzLGDx4MG6//XY0a9YswC0koqrG0ElUi6SlpeGrr77CihUr1Ptrtm/fHge/Pwk5M5TXaxIRkU8pUQZ0u78VNm7cqL7Wt29f3HnnnWjbtm0AW0ZEVYmhk6gWOH78OObOnYtVq1apM9H26dMHW2YegJwXEuDWERFRTadEGNFvUiesWbNG3Q9169YNd911Fzp27Bjg1hGRvzF0EtVgR48exdy5c+128v3798fGGfsgF+gC3DoiIqptFL0JV73QE0uXLlVnvO3RowcmTJiAdu3aBbh1ROQvDJ1ENVB6ejq++OILrF69Wn1t4MCB+PvdPQybREQUcCLUjGte6YPFixer4bNXr16YMGECWrduHeDWEZGvMXQS1SDnz5/H7Nmz8ccff8BsNkOSJAwaNAjr/7cbciFve0JERMFFhJox9KUr7Ho++/bti7vvvhvNmzcPcOuIyFcYOolqgKysLHz11Vf4+eef1dlo+/bti83vH4BcyJ5NIiIKbiLMhCuf647ly5dDURRIkoRhw4bh7rvvRkpKSqCbR0ReYugkqsYKCwsxb948fP/99ygqKgIAdOnSBXtnn+AEQUREVO0oehP6P9UJq1atAgDodDrcdNNNuOOOOxATExPg1hFRZTF0ElVDZrMZS5Ysweeff47MzEwAQOvWrXH0h3OQckJ46xMiIqrWlEgjOkxojO3btwMAIiMjcfvtt2P06NEIDQ0NcOuIyFMMnUTVzObNm/HRRx/h2LFjAIDU1FScX5EP+RLvs0lERDWHgICINaDhiAQcPXoUAJCUlIQHHngAQ4cOhSRxn0dUXTB0ElUTx48fx0cffYRNmzYBAKKiolC4S0BzNhyS4I6XiIhqJgEBJakYCQP0OH/+PACgffv2mDhxItq0aRPg1hGROxg6iYJcXl4eZs2ahUWLFsFsNkOr1WLkyJH4+Yk1kExyoJtHRERUJYQkMH7Ojfjqq6/UeQyuvfZa3HvvvUhMTAxw64jIFYZOoiClKAqWLl2Kjz/+GFlZWQCA/v37Y+P0/ZCLefsTIiKqnUSIGVe+0A1Lly4FAOj1etx5550YM2YMQkI4iR5RMGLoJApC//zzD959913s27cPANCwYUOc/T0XcjYnTyAiIgIskw21uC0F+/fvB2DZV06aNAldu3YNcMuIqCyGTqIgkpeXh88++ww///wzhBDQ6/Uw7NdAc4bXbRIREZVlvd4zurdWnc192LBheOihhxAfHx/g1hGRFUMnURAQQmDt2rV499131Z3m0KFD8ee0nZAMmgC3joiIKLgJjYLhb/bDokWLIIRAZGQk7r//flx//fWQZc5/QBRoDJ1EAZaRkYHp06fjr7/+AgA0aNAA537Ph5zD61KIiIg8oUQa0WRMIg4dOgQAaNOmDZ5++mk0a9YswC0jqt0YOokCxGw2Y9GiRfjss89QWFgIrVYLcSwUmpMRHEpLRERUSQICSt0ihHQwq/vXO++8E3fccQd0Ol2gm0dUKzF0EgVAeno6XnvtNXWioHbt2uHQV+cgF3JWWiIiIl8QIWZcMak11q9fDwBo1qwZJk+ejFatWgW4ZUS1D0MnURVSFAU//vgjPv30UxgMBoSHh8OwRwP5rB4S2LtJRETkSwICSmIJInoCOTk50Gg0uPXWWzFu3DiEhnJGeKKqwtBJVEXOnDmD1157Dbt27QIAdO/eHbs/OsGJgoiIiPxMaBX0e7YDVq1aBQBo1KgRnn/+efZ6ElURhk4iPxNC4JdffsFHH32EoqIi6PV6GPdoIZ9j7yYREVFVMicUI7qvBpmZmdBoNLj77rtx6623QqPhCWAif2LoJPKjrKwsTJs2DZs2bQIAdOzYEQe/OA2phNduEhERBYLQKuj1dBv8+eefACz75meffRb16tULcMuIai6GTiI/2bx5M6ZNm4bMzEyEhITAfDAEmjPh7N0kIiIKMAEBpU4xdJ2MKCoqQnh4OB599FFcc801kCTup4l8jaGTyMeMRiM+//xzzJs3DwDQpEkTnPopB3Ihp2knIiIKJiLUhFYT6mHPnj0AgCFDhuCpp55CeHh4gFtGVLPIgW4AUU1y8uRJPPzww2rgvPHGG3H6mwIGTiIioiAklWjxz8zzuPfee6HRaLBy5Urcc889OHLkSKCbRlSjsKeTyEfWrFmD1157DUVFRYiKikLRJhmazLBAN4uIiIjcoEQZEDtUiwsXLiAkJAQTJ07EDTfcwOG2RD7A0EnkJZPJhE8++QTz588HUDpZ0OdneCsUIiKiakZoFXR7vDk2bNgAABg6dCiefPJJDrcl8hJDJ5EXLl26hClTpqj33tScCofmRCQnCyIiIqqmBATMqYVA8yKYzWY0bNgQ06ZNQ8OGDQPdNKJqi6GTqJJ27dqFl156CZmZmQgPD4dhmw6aSxxOS0REVBPYDreNiIjAiy++iN69ewe6WUTVEkMnUSX8/PPPePfdd2E2my2z0/6YC7mI994kIiKqSYTOjNb31sPu3bshSRImTJiAO++8E7LMuTiJPMHQSeQBk8mEDz/8ED/99BMAy9Tq617ZA0nhcFoiIqKaSEgC173VB4sWLQIADBgwAM8++yyv8yTyAEMnkZvy8vIwZcoUbNmyBQCgOREJzalwXr9JRERUC5iTCyG1LYbRaETTpk3xxhtvIDk5OdDNIqoWGDqJ3HDy5Ek888wzSE9PR1hYGEw7Qnn9JhERUS2jRBkQdaWEzMxMJCYm4vXXX0fLli0D3SyioMcB6UQV2LNnDx588EGkp6cjKSkJ5g3hDJxERES1kJwXgvylMpo0aYKLFy9i4sSJ+PvvvwPdLKKgx9BJ5MK6devw+OOPIzc3F23atEHObwJygS7QzSIiIqIAkUo0OP1tPrp3746ioiI8++yzWLBgQaCbRRTUOLyWyImff/4Z06dPh6Io6NOnD7a+fYQTBhEREREAywRDV03rgcWLFwMAbrvtNtx///2QJB4rEJXF0ElUhhACX375JWbPng0AkM+FQXskmhMGERERkR0BAXP9Qpgb5wMArr/+ekyaNAkajSbALSMKLgydRDYURcH06dPx888/AwA06RHQpEcwcBIREZFT5uRCKK0KoCgKrrzySjz33HMICQkJdLOIggZDJ1Eps9mMN954A3/88QckSYLmcCQ053gPLiIiIqqYOaEYUsdCGI1G9OjRA6+++ir0en2gm0UUFBg6iQCYTCa8+uqrWLVqFTQaDaR9EdBc5I6CiIiI3KfElkDbowRFRUVo164d3n77bURERAS6WUQBx9BJtZ7BYMDUqVOxbt06aLVaYE8Eb4lCRERElaJEGRDWz4S8vDwGT6JSDJ1UqxkMBjz//PPYuHEjQkJCoOwIhyYrNNDNIiIiompMiTAibIAReXl5aN++Pd5++22Eh/OSHaq9eJ9OqrVMJhOmTp2KjRs3IjQ0FGIbAycRERF5Ty7QofhPHSIjI7F37148+eSTKCwsDHSziAKGoZNqJbPZjGnTpmHdunWWHs6tesg5DJxERETkG3KBDiXrQtTg+dRTT6GoqCjQzSIKCIZOqnUURcHbb7+NFStWQKPRQNkRzsBJREREPicX6FCy3hI89+zZgxdeeAFGozHQzSKqcgydVKsIIfD+++9j8eLFkGUZ0t5IDqklIiIiv5HzdSj5S4ewsDBs3rwZ06ZNg6IogW4WUZVi6KRa5dtvv8VPP/0EAJAPRnKWWiIiIvI7OS8E5q1h0Gq1WLlyJd577z1wLk+qTRg6qdZYtmwZPvnkEwCA5mgUNBm8DycRERFVDTk7FNgbAUmSsHDhQsyePTvQTSKqMgydVCts27YNr7/+OgBAcyoc2rOctpyIiIiqluZiGDSHIwEAX375JZYsWRLgFhFVDYZOqvGOHj2K559/HiaTCfKFUGhORFa+MknyXcOIiIio1tGcC4cmPQIA8NZbb2Hnzp2BbRBRFWDopBotKysLkydPRkFBATp27AjtoRhIqERwlCQGTiIiIvIJTXoErrzySphMJjz//PM4depUoJtE5FeS4FXMVEOZTCY8/vjj2LVrF+rXr4+MH0sgmSpxnqVs2ORHhoiIiLwkZIGmE+Jx8OBBNGzYEDNnzkRUVFSgm0XkF+zppBrr/fffx65duxAeHo7zvxR7HjjZu0lERER+IikSjs29hKSkJKSnp2Pq1Kkwm82BbhaRXzB0Uo3022+/YeHChQAAw7YQyEVazypg2CQiIiI/k4waZC9XEBoais2bN2POnDmBbhKRXzB0Uo2zf/9+TJ8+HQCgSYuEJrP0XpzuBEn2bhIREVFVKD3ekAt0MO+xHKvMmTMHmzZtCmSriPyCoZNqlLy8PEyZMgVGoxH9+/eH5lSEeysybBIREVGAaC7oMWLECAgh8Morr+DcuXOBbhKRT3EiIaoxhBCYMmUKVq9ejbp16+LSQjMks1y2UPkVPQ2b/MgQERGRt8ocfwhJoOmEOBw8eBCtW7fGBx98gJCQkAA1jsi32NNJNcavv/6K1atXQ6PR4OIfJeUDZ1ns3SQiIqIgIQkJx76+iOjoaBw8eBCzZs0KdJOIfIahk2qEY8eOYcaMGZZvjoZDzq/gzKA3YZNBlYiIiPxAKtGicJPl8HzevHnYuXNnYBtE5CMMnVTtmUwmvPrqqzAYDLjiiiugOR3uvLCvejcZPImIiGonPx8DaDLDcN1110EIgWnTpiE/P9+v70dUFRg6qdr7+uuvceTIEURHR2PnB8chgYGQiIiI/MjPl+iseHEr6tWrh3PnzuG9997z2/sQVRWGTqrWjhw5ot7TqnCLBMmoCXCLiIiIqNbwU/CUzDIu/FEMWZaxdOlSrFu3zi/vQ1RVGDqp2jKZTHjttddgNpshXwqFfDGsahvAIbZERES1i6N9f2V6Pd0oL+eFQErXAwDeffddFBYWevYeREGEoZOqrXnz5uHw4cOIjo6G9mg0h9USERFR4PjhZLTmZCRSU1Nx4cIFfPbZZz6vn6iqMHRStXTu3DnMnTsXAFC4lcNqiYiIKAj4OHhKioSMpZYezgULFuDAgQM+rZ+oqjB0UrX0wQcfoKSkBJ07d4Z8oYqH1RIRERE5U9FwWw+DqZwTimHDhkEIgbfeegsmk8nLBhJVPYZOqnY2b96MP//8ExqNBvu+PBnYYbW8rpOIiKh28MN1m+5a88pOREdH48iRI1i8eLHP6iWqKgydVK0YjUbMmDHD8s3JUMiFusA2iIiIiMgZH91aRTLJKNwhAABffPEFCgoKvK6TqCoxdFK1smjRIqSnpyM+Ph6a9MhAN8eCvZ1EREQ1m7f7euv6XtQjnw9Hw4YNkZ2dja+//tq79hBVMYZOqjYKCwvx1VdfAQByN5sgmb3495X4r09ERERVSJK8Ov6QhIQzf+QCAH744QecPXvWVy0j8jseeVO18cMPPyA7OxupqamQM/SVr4iBk4iIiALFi+MQOSsUXbt2hcFgwOeff+7DRhH5F4++qVrIycnBd999BwDIWFMICZW8RYrtht6X4ZNDbImIiGomX+3jfXAMIkHC3tknAQArV67EyZMnfdEyIr9j6KRq4dtvv0VBQQFatGgB+VIlejklmT2cREREFDwqeWwiF4agT58+UBRFvWc5UbDjUTgFvby8PCxatAgAcOLXS57fIsXVBp29nUREROSMP3o5PVnmxNZPDgMAVqxYgVOnTlW2VURVhqGTgt7PP/+MoqIiNGnSBHJ2GABAkt28GJ+9m0RERBTs3DxekTSWy4vkghD06tULZrNZnWSRKJjxiJyCWklJCX788UcAwKnl2e73cgZqOC17O4mIiGqGqt6ne3jssv3zowCAZcuW4cKFC/5qFZFPMHRSUFu2bBkyMzNRp06dctdyOu3t9DRssjeUiIiI/MVHxyXWXk4rOT8EHTt2hNlsVi9DIgpWPNqmoCWEwPz58wEAmZtLIAk3zjgGQ4BkbycREVH1Fuh9uZvHMwd+tFzP+csvv6CkpMSfLSLyShAcoRM5tmvXLqSnp0Ov10NzIdxhGbW309vhtMEQVomIiKhm8fbYpHT9sr2cVnJmGJKTk5GTk4MVK1ZU/r2I/IxH2hS0fvnlFwCA4YQEyVwF/6qcyZaIiIh8tA93FhQ9r8j58YkECZe2FAEAfvvtN9+8H5EfMHRSUMrOzsbatWsBAJqMCOcFJRmSTmvp8SQiIiLyho9PGvvi+ETWh0EKDXW6XHMhHBqNBvv27cOJEye8fj8if2DopKC0cuVKGI1GSPk6yAUh5QtIMqDRANaNua96KTnMloiIiLxk28vpdfCUZUCWIYWGOgyfklEDcUEHAFiyZIl370XkJzzCpqBkvS5Bc9HBtZySfDlsWslS8PV2cogtERFR9eHH/bZUyeMUWR9m883l8FmWde6LpUuXwmw2V7qdRP7C0ElB58yZM9i3bx9kWYamzG1SHAZO22W+wN5OIiIiqiRX13J6HDxlB8ckDoKnnB2GqKgoZGZmYs+ePZ69B1EV4NE1BZ1Vq1ZZnmTpIBltNtyuAifg295OnwVY9nYSEREFvSqcPMjdYxW7Xs5yC+2DpyQkFB619HCuXr3arfqJqhJDJwWddevWAQBkay9n2es3XdFoOMyWiIiI3BeA/XRFxyqyPsxxL6ddIfvrPOVMy3HT2rVrOcSWgg5DJwWVzMxMHDhwAACgyQqruHfTEQ6zJSIioirm6S1SXAbPigKnbbnS8CnnhCIyMhKZmZnYv3+/R20h8jceVVNQ2bBhAwBAytdBMuk8D5wAh9kSERGRewJ8T05HEwy5HFbrjCxDDglDYZqlh3PLli2Vag+RvzB0UlCxhk5Ntr5ygdPKl8NsGTyJiIhqniDaL1uPWdwaVuuMLEOTb7m3+ebNm33VNCKfYOikoKEoCnbu3AkAkHP1rgu7g8NjiYiIyM8q28tZrh5ZqnzgLKUpiAQAHDhwADk5Ob5oFpFP8Kicgsbx48eRm5sLvV4PqTDE+wplyTc7AqF4XwcACOGbeoiIiMh7vtgv+/AEtyYxAXJkhFd1SEYtGjduDCEEdu3a5aOWEXmPoZOChrWXsyQ7BJqoGK/qkiQJkiR5HzwZOImIiGouH+yfhSIgFO/q0SQmlM7UL3sdPE/tLwQA7Nu3z6t6iHyJoZOCxu7duwEAGmMMEBsFOTra4zrUsGnzfaUxcBIREdV8ld1Pl+nl9Cp42p4gLw2elQmfUnIiZJPl+Gnv3r2Vbw+RjzF0UtA4dOgQAEA2Rlou7vcweDoNmJXp7WTgJCIiqj083V87GVZbmeCpSUwo/2LprVA8CZ5ScqJlHWMUAOCff/6BwWDwuD1E/sDQSUEhLy8Pp0+fBgDIptINrCRB0rj3L+qqR9PjYba+CJxCMHASERFVJ+7uuyu4jtOT4KkOq3XGk+BZOgmRZA5DVFQUDAYD0tLS3G4LkT8xdFJQOHLkCABAModCEjr1dREVUWFvpztDaN0Onr4KnERERFQ9+eg6z4pUGDit3AieUnLi5eeQUHDJcmx07NixiusnqgIMnRQUjh49CsCml9OqgmG2nlyzWWHwZOAkIiIiwPn+3IPZal0FT7cDp5WL4CknJZS71YpsCgfA0EnBg6GTgsLJkycBAJLJwf05nQTPykwS5HQdBk4iIiKyVXa/XonbozgNnpWZWd9B8JSTEiC05eti6KRgw9BJQeHUqVMAANkc5rhAmes7vZqVtmxvJwMnEREROWLdv3txP86ywdPhxEHuKhM8HQVOAJDMlpP4Z86cqfx7EfmQNtANIAIuh07JWegEICLDIZsViLw8r95LkiQIlO4AfDVLLREREZETQhGQZAlyVFTlejltWYOnPgzOTnlL5lAAwPnz56EoCmSZ/UwUWPwPpIBTFAUZGRkAXIdOaDRAXDSkGM/v32lLCAEIBZIseXXm0o43Pa9EREQUnKz7dy9PUl8OnDJESYnXzdr/3/rY/4LzHlNJCYVGo4HBYEBmZqbX70fkLYZOCrjc3FyYzWYAgKToHBeybvQlCYiJqnTwFEIApe8FwLfBk4iIiGquSgZP28CpVuVF8Nz/Sj1ExxcgOq4QB56JdfyekKAYLD2q58+fr/R7EfkKj7Yp4C5dumR5omghlf2XlKTyvYiVDJ5lA6dana+CJ3s7iYiIag5H+3UPg6ejwKlWVYngaQ2cVtbg6Sh8Wk/k5+TkePw+RL7G0EkBZx32Ua6X01WI8zB4OgucPsfgSUREVP252p972uPpIHCqVXkQPPe/bB84raLjCi3hc3Kc/QKGTgoiDJ0UcAUFlg2oXeh0J7y5GTzdCZy8vpOIiIgAuLcfdyN4qr2cFVXlRvDc/3I9RCeUD5y2ouML7IKnJCzzhTJ0UjBg6KSAKyoqsjwRpf+OnoQ2SYLkYkY2T3o4GTyJiIhqOU/23y6Cp6thtQ6rMhhdLq8ocKrlbIKnpFhCZ35+vlvrEvkTQycFnDV0SkJTqbAmoiIc9nZWZkgtgycREVEtVZn9toPg6WngtNbjLHjun1rPoyZdDp6W9zcaXQdaoqrA0EkBV6IOK6nkv6ODYbbeXMPJ4ElERFTLeLO/tgmelQqcNvWUDZ77p9ZDdKJ7vZy2ouMLcKmXHgBDJwUHhk4KOCGstzb2YoNvEzx9MWkQgycREVEt4Yv9dOn9vysdOG3qsQbPygZOq+j9xwEAP/74Y+XbQ+QjDJ0UcJK6sRcuy7lRESSt1qY+IiIioioiyd4FTiuh4MS4xl4FTqJgw9BJAWcNiflNwryrp7AYoqAA0OkgabVe1SUULwOwXWU+rIuIiIiCjqS1zMAv8r0Pimn3toIhWiD/eIxX9ZR0rAsAGDx4sNdtIvIWQycFnFw6+2yr+idx7LY6lapDKiyGyMuDMJdeV+FF8FQDp6f34XJYGQMnERFRUPNyX20NnAAgzIpXwTPt3lYwxFjaI5dIXgXPK+qkAwASEhIqXQeRrzB0UsCFh4cDAEINJXjs3z97HDzLBU6rSgRPBk4iIqJaqJL7bNvAqVZVyeBpGzitKhs8n26zDCEGy0SNERERHq9P5GsMnRRw1o1hSZGE1qFnMfHfv3oWPBWlfOC08iB4MnASERHVYh7uux0FTrUqD4Ono8BpJRs8m6vi6TbLkKrNgqHYsp5er/dofSJ/YOikgLMNnQDQLvS0JXjenlThuup1nK64ETwZOImIiMjdfbirwKlW5WbwdBU4LRXB7d5Oa+AEgJLS0GkdUUYUSN7NtkLkA1FRUQCAwvzL50DahZ7GxNG/4X1xPZp+m+FwPafDah3R6SABECaT8zIMnERERCSEy9uouBM41arMissbwlUYOEtZh9k2ijuNm5btQPd96YgoKkGBPhRb2jfCwqs6Y3yvDWrgBICCHMtxVVxcnNvtJfIXhk4KuKQkS49mfo4MsxnQaCyvW3s8D1xXDyt+72YXPj0KnFZOgqfPZqpl4CQiIqoZnARPTwKnWlV+AaTI8tdVuhs4ASDUaMSLPy3CTdu2IKTMvcj77DyGR75bg3P/jsbhF5OghFrCZl625YCKEwlRMODwWgq4uLg4aDQaCEVSz8pZtQs9jdHxW+yu86xU4LQqM9TWp8NqiYiIqOYoczK5MoETcDzMNv0ezwLnrFmf4ZbNG8sFTiuNSSB1Xg46jT8NuViBogB52ZZjqsTExEq1m8iXGDop4DQaDeLj4wEAuVmO/yWtvZ5po+pUPnBalQZPXsdJRERE7qhs4LSyDZ7p97RCSaz7xw0v/rIIvY4dRUVrCABxm4rQ4pULKMyToZglSJKkHmMRBRJDJwWFunUtNzDOzHA+4vt/W69Cvb+KIPly6m/2cBIREZEzPjypLMwKoNF4FDgT83Jx07YtAODy2lDb5XV/zEHOQcvz5ORk6HTeBWYiX2DopKDQqFEjAMDFMxrnhXJ00F4qgoiJhBwdVfk3M5shTCZIsgRIsuVBREREVFbpdZ3CybBWd8mxMZBjYyBJEprPy3Z7vTFbNjsdUuv0vYyAaYkRANCgQQOP1iXyFx5tU1BQQ+dZxz2dd/89Dk0XWDagQpa9C57K5d5NSZYuh8/K4tBaIiKimsd2IiGhVDp4yrExkDQyJI3lWEM+n+n2ulccO1qp98w6Znmvhg0bVmp9Il9j6KSgYN0oXjhdPnTe/fc4NP5Shu5CofpapYNnaS9nWZUOngycRERENY+jW6ZUInhaA2dZzb/LcWv9iJISj97P6qQ5DABDJwUPhk4KCs2bNwcAXDyrgcFm+2oNnCEZ5W+u7HHwNJshDAaniz0OngycRERENY+Le3R6MheEs8AJAPK5S24Fz4LQULffz0oAOKKxzH/RqlUrj9cn8geGTgoKiYmJSEpKghASzp64fMG7yA5xGDjV5e4GzwoCp5XXQ22JiIioepIk14GzlDu9na4Cp1rGjeC5uWmzCt+rrIyQEORIOmg0GjRr5vn6RP7Ao2sKGq1btwYAnD5uCZ13bxiHJgvLD4Utq8Lg6WbgtHIreLKXk4iIqOZwI2yqKhhm607gVMu6Cp4S0PuVAxAeTj57INZyPNS0aVOEVqKnlMgfnN+fgqiKtWnTBuvWrcPJwzrcHe18WK0jQpaBmEhIkeGQ8guh5OZdXqh4flsUSZYgFNnxMBoGTiIioprDk8BpJRQIMyBp7Gfd9yRwquucuwQgxqY9wBf/ngkA6BWmBcZEA9/kQsD1bVOsyzd2SwLyLcdVRMGCPZ0UNDp16gQA2Ls3Co1mSW4HTishyxA6rX2vp5OJg9xWtseTgZOIiKjmqEzgtCpzYlqOifI4cFo1m59b2h7gs9GfYEAYMCCs9G1eSYToHebWfTpF7zAcjI8GAHTp0qVSbSHyB4ZOChpt2rSBXq+HptgI3aWMStejDreNCPdoWG1ZdrdT4XWeRERENYs3gbOUMJshx0RZAqe28gMINWcvotn8XHw2+hMM0pcZZaWXIb6pB3FHtNOhtkIHiDuikfNpKo6ftKTVzp07V7o9RL7G4bUUNLRaLTp16oSNGzfCHJoDuSiy0nUJWS435MUrHsxWR0RERLWDJEsQ+QWQY2MqLlwBOb+ofOC00ssQb9UBno6H+DYX0t9FQIECRMgQffTAbdFAkhY7N4VBCIFGjRohISHB6zYR+Qq7byiodOvWDQBgDsmE0FU+NMp5BVCyc3zfQ+mDs6JERERU/VlPbnt1GU8pERUByDJ6P/mA64JJWuDReIj5qRC/NYCYnwo8Gm95HcAzn1suVerRo4fXbSLyJYZOCip9+vQBAAgpC+YwUangKecVQLmYadkJeDk8ViiifC8ngycREVH158U8DWVHUynZFd9z02EToiLUwAkAcdsuotdTFQRPJ7q99AB02WcBAH379q1UHUT+wtBJQaVBgwZo3LgxAAFFugglTOt58DSVmTxIli6HTw84DJxWDJ5ERES1kqPLd4TJ5HHwVMOmbH98Er/1osdt6jblQcTtOwtIRkRGRqqTMxIFC4ZOCjr9+/cHAChSBiABSpgWSmSIW+FTHVbrcKHnwdMlN28iTUREREHKg95OSaNxOV+EJ8NsbXs3HXG3t7PblAfRbcqDSNhbCEU6DwDo2bMntF5MakTkDwydFHQGDBgAABDSBQgYAQkQslRhr6fdsFqnhdwLni57Octi8CQiIqq+3Aie7k5O6E5vZ0WBE7D0dvZ62nXw7DbVEjYT9hZCQEDBOQDA4MGD3WorUVVi6KSg07JlSzRs2BCAAgU2t04p7fV0GjzLDqt1poLg6VHgVNvG4ElERFQTeTIbfkXDbN0JnFbxW5wPs+029UEk7Cm8XC8yAakEUVFR6Nmzp9vtJaoqDJ0UdCRJwtVXXw0AUKQzZRY6Dp4uh9U64o/7bzJ4EhERVU9Oejsrc/s1RyfAy04Y5K6e/3mw3GtdX7YPnACgSJZezkGDBiEkJMSj9yCqCgydFJSuuuoqAJZZbAXsN6zqdZ7husvh091eTlsOJhiqVC+nXdsYPImIiGoCb+73bXsi3NmEQe5I2HxBfd715QfR9eUHkbjb/rhIwKSGzmHDhlWyxUT+xauMKSilpKSge/fu2Lp1K8zSKWhFS/sCEiC0MoRGhjavsNJTlQOwBE9F9i5s2rVN8moadiIiIgoAIQBJ8ipsqlWVngivTO9mWT0nPwhDpISk3QUOlys4A8CMRo0aoWPHjl69F5G/sKeTgtbIkSMBAApOQ8DsuJAESIrw/sbMcmkPpa+CJxEREVVLwuzkmMMTkgwlN8/rwAkACUuPImmn48ApIKBIpwAAI0aMgMQRVxSkGDopaPXu3Rt16tQBJCMUnHdYRnupAMqFS96/mdnsm50MwF5OIiKi6shXga30sh1hNEGccXz84pbsXMvDYIQu7YLDIgLZEFI+QkND1fkwiIIRQycFLa1WixtuuAEAoEhpECgf5iSjCcJgqOqmERERUU1SJnBW+kR0mQkKRXFJ5eopDZswGC31FBY5LGaWTgCwXMsZFRVVufciqgIMnRTURowYAb1eDyHlQcC+R1N7qQDiYqb3b8JeTiIiotpJknzew1mWx72d1sBZRtneTgV5ENIFSJKEW265xbP3IKpiDJ0U1GJiYnD99dcDAMzSMbtlktEEpaSSZxCJiIiodqsgbLp9QrqCW7C53dtpM5zWYT1lejuV0l7OAQMGoEGDBu69B1GAMHRS0Lv55puh1WohpGwoyALgw15OX2IvJxERUfXg595Nj5UZTuuMtbdToAiSNgMAcNttt/mmDUR+xNBJQS8pKQnXXHMNgMu9nT7r5TSbLffmJCIioprPw+G0Lns7PQmcZzOcL3PRu1muPaW9nWbpOMxmM7p27Yo2bdq43w6iAGHopGrhtttug0ajgZAuQYGPezh9cZsU9nISEREFN1/2bnrYw6kUFZd/sYLhtM4IFEDSngUATJgwwaN1iQKFoZOqhfr166vXdirmg1Au+ug2KezlJCIiqvm8CJx2vZ3eDKe17e10czitI0rhPpjNZvTu3RsdO3asfHuIqhBDJ1Ub48aNg16vh6LLhyk82zeV+qKXk4iIiIKTr2anrUTvZllqb2clejetzGFFMEdmQ5Ik3HfffV61h6gqMXRStZGQkICbb74ZAGBKzYaQ2EtJRERE1YRQvAqcAgLGZMtEQsOGDUOzZs182Toiv2LopGrllltuQWxsLITeBHNSXuUrUoTvhtbyek4iIqLg5KN9tNf38y4dWaVk51S6CnN0HpTIQoSEhPBaTqp2GDqpWgkPD1eHk5jq50DIBqAy4VEoHFpLRERE7qnsMUPZ441KhldzcT4MyecBWCZXrFu3buXaQxQgDJ1U7Vx33XVo164doBEwNs6xbMwDNSEQezmJiIiCW6B6O310clspLISpbjYQYkbdunVx++23+6ReoqrE0EnVjizLeOKJJyDLMpSEIphjii0bdrPZvfDpy6G1REREVDu4GyIrGE2lFBa6VY1SWGh56IqBBpb7cz766KMIDQ11rx1EQYShk6ql5s2bY9SoUQAAU+NsCLl04+5OryeH1hIREZE/uHN84UaPqVJYaLm1m9kEY9NsmM1m9O3bF3369PFBI4mqHkMnVVsTJkxAUlIShN4MU4Pcyws86fUkIiKimq8qLofxwQlta++mNZiaU/Ihog3Q6/V49NFHva6fKFAYOqnaioiIwNNPPw0AMNctgBJVYl/AUa8nZ60lIiKiSnJ4XWclRlA5GmKrhs3S91DCjDA1tMzU/8gjjyAlJcXzBhMFCYZOqtZ69uyJ66+/HgBgbJZ1eZitVdleTw6tJSIiosoqewxR2WMKm/BatncTKL0nZ7MsQBbo0aMH/vWvf1XufYiCBEMnVXsPP/wwUlJSIMLMMDVycv+rQM5wS0RERDWLj05il+3dtDLXy4eIMqqjuiRJ8vq9iAKJoZOqvfDwcEyePBkAYE4uhDmuyHFBoXDWWiIiotrKV5fF+CBsCrO5XO+mlRJZAtGkAAAwceJEJCcne/1+RIHG0Ek1QteuXXHrrbcCsAyzVUJN/n1DXs9JRERUK3l8v05n6zuoR2gUGFpkwWw2Y+jQobj22mu9ei+iYMHQSTXGvffei3bt2gFaAWOLTAiJwZCIiIiCgzCbXQZW9TrOUDNSU1PxxBNPcFgt1RgMnVRjaLVaTJkyBdHR0RCRRpgaOrm+k4iIiKgKudM7ak4pgBJfDJ1OhylTpiAiIqIKWkZUNRg6qUZJTk7Gs88+C8ByGxVzfPkpyYmIiKiWquLLYyrq3bRSokogmuUDAB566CG0atXK300jqlIMnVTj9OnT5/L1nc2zoYQbAMAyiRBvl0JERER+5k7YtC5XQk0wtMyE2WzGkCFDcNNNN1VFE4mqFEMn1Uj33XcfevbsCcgChlaZEDrvLvonIiIicocnEw0JWYGxZSagU9CyZUv85z//4XWcVCNJQnAaTqqZ8vLy8OCDDyI9PR1SXgh0exMg+eqWKfzYEBERVU8+CHWSRlPuNU9ntRUQMLXOhZJQhLi4OHz66ae8PQrVWOzppBorKioKr732GiIjIyGiDDA1y4YAwyIRERH5VmVuo2JumA8loQharRavvPIKAyfVaAydVKM1aNAAU6ZMgSzLUOoUwdwwP9BNIiIiohrC3YmCyjInF8LcoAAAMGnSJHTs2NHXTSMKKgydVONdccUVmDRpEgDA3KAA5hQvZ7Tl0FoiIqJarbJhEwDMccUwNcsFAIwfPx7/+te/fNk0oqDE0Em1wg033IDx48cDAExNc2GOLw5sg4iIiKh68uLksxJpgKlVDiAB1113He666y4fNowoeDF0Uq1x11134frrrwckwNQqG0pUSaCbRERERNWFEN4FTr0JxrZZgEagZ8+eePLJJzlTLdUaDJ1Ua0iShMcffxx9+/YFZMDYNhtKhCHQzSIiIqJg5+WlNSLMBGO7TEAn0Lp1a0ydOhVardZHjSMKfrxlCtU6xcXFeOqpp7Br1y7AJEG3Jw5ygc79KdT5kSEiIqq+POlddLbP96AOEWKCoUMmEKagSZMmeO+99xAbG+t+G4hqAPZ0Uq0TFhaGN954A+3atQO0Asb2WVDCTV4PmyEiIqIawhfHBEJA6EwwtM8CwhQ0bNgQ06dPZ+CkWomhk2ql8PBwvPXWW2jdujWgKw2eepNlIcMnERFR7eWDsGkJnGYY22cBejPq1auH6dOnIz4+3jdtJKpmOLyWarXc3Fw8/vjjOHz4MGCQodsbB7nQ5hoLZ8Nn+LEhIiKqnrzdt7saWltahwixBE4RbkadOnXwwQcfICUlxcOGEtUc7OmkWi06Ohr/+9//0LRpUyBEgbFDJpQI4+UC7PUkIiKq2Xw0lFYNnKEmGDpmQoSbkZKSgvfee4+Bk2o9hk6q9WJjYzFjxgy0adPGMtS2QxaU6DKz2jJ8EhERVX+2vZQ+DpuA5bYoho6WazhTU1Px/vvvIzU11bv3IKoBGDqJYOnxnD59Ojp37myZXKhdNpQYB/fxZPgkIiKq/nwcNgFAiTDC2CELCFXQuHFjvP/++0hOTvbufYhqCIZOolLh4eF488030bNnT0BjCZ7mhOJAN4uIiIh8xduTx5LkcH0lxmAJnCEKWrRogRkzZiAxMdGLhhLVLJxIiKgMo9GIV155BWvWrAEEoDkeCe2ZiEA3i4iIiIKQObEYppY5gAx07NgRr732GqKiogLdLKKgwtBJ5IDZbMb777+PBQsWAAA0p8OhOR4JCR7cUJqIiIhqLAEBc2ohzE3yAQCDBg3Cc889h9DQ0AC3jCj4MHQSOSGEwHfffYeZM2cCAOSLodAeioGkMHgSERHVZgIC5ib5MKcWAgBGjRqFRx55BBqNJsAtIwpODJ1EFVi5ciWmTZsGo9EIKVcH3YEYSEbuVIiIiGojoVFgapkDJcEy0/1DDz2Em2++GZKr+3cS1XIMnURu2LFjB5577jnk5+cDxTJ0B2IhF+gC3SwiIiKqQiLUBGPbbIgIM0JCQvDMM89gyJAhgW4WUdBj6CRyU3p6Op555hmcPHkSMEvQHoqG5lJYoJtFREREVUCJNsDYJhvQCSQkJOC///0v2rZtG+hmEVULDJ1EHsjLy8PUqVOxefNmAIAmPQKa9AhOMERERFSDmZMLYWqeB0hAq1atMG3aNCQlJQW6WUTVBkMnkYdMJhM++eQTzJ8/HwAgXwqF9lA0JDNve0tERFSTCEnA1CwPSkoRAGDw4MGYPHkywsI40onIEwydRJW0ZMkSvP322zAajUCRBrqDMbzOk4iIqIYQoSYY2+RARJogSRLuvvtu3HnnnZwwiKgSGDqJvHDw4EG8+OKLOHfuHKAA2qPRkM+HcbgtERFRNWaOL4GpZQ6gFYiJicGLL76IHj16BLpZRNUWQyeRl3Jzc/Hf//4XGzZsAADI58OgPRrN+3kSERFVMwIC5kb5MDew3H+zbdu2mDp1KpKTkwPcMqLqjaGTyAcURcG3336Lzz//HIqiQCrQQvtPDORCbaCbRkRERG4QoWYYW+ZAxBgBAKNGjcJDDz0EnY6XzhB5i6GTyId27NiBqVOnIjMz0zLc9ngU5LN6DrclIiIKYubEYpia5wJagfDwcDz11FO8/yaRDzF0EvlYZmYmXnvtNWzatAkAIGeGQHs4BpKRs9sSEREFEyErltlpk4sBAO3atcMLL7yAevXqBbhlRDULQyeRHwghsGDBAsycORMGgwEwyNAdioacHRrophEREREAJdIIU6scCL0ZkiThzjvvxPjx46HV8tIYIl9j6CTyo6NHj+Lll1/G8ePHAQDyGT20JyIhKez1JCIiCgQhCZgbFMDcoACQgKSkJLzwwgvo3LlzoJtGVGMxdBL5WUlJCWbOnIkFCxZYXijWQHc4GnJOSGAbRkREVMsoEUaYWuZCRJgAAIMHD8akSZMQHR0d4JYR1WwMnURVZNu2bXj99ddx/vx5ANZezyjeWoWIiMjPhCRgrl8Ac0NL72ZMTAwmTZqEK6+8MtBNI6oVGDqJqlBhYSE++ugj/PLLL5YXikp7PXPZ60lEROQPSoQRpua5EFGW3s3+/fvjiSeeQHx8fIBbRlR7MHQSBcCWLVvwxhtvICMjAwAgn9NDezwSkpnXehIREfmCkAXMDfNhTi0EJCAqKgqPPfYYhg4dCkniKCOiqsTQSRQgBQUF+Oijj/Drr79aXjDI0B6LhHwxjPf1JCIi8oISWwJj8zwgzAwAGDhwIB599FEkJiYGuGVEtRNDJ1GA7dq1C2+//TbS0tIAAFJWCHRHoiCVcMp2IiIiTwidAlOTPCh1LPfdTEpKwuOPP45+/foFuGVEtRtDJ1EQMBgMmDdvHr766ivLfT0VQJMeCc3pcEiCvZ5ERESuCAgoKUUwNcoHdAKSJGHUqFG45557EB4eHujmEdV6DJ1EQeTkyZN4++23sWPHDgCAVKSB5lgUNFmhAW4ZERFRcFKiDDA1y4OItEwU1Lx5czz55JNo27ZtgFtGRFYMnURBRgiBZcuWYebMmcjMzAQAyJkh0B6LglTMIbdEREQAIHRmmBrnQ0m2DKWNjIzE3XffjREjRkCr5f6SKJgwdBIFqYKCAsyZMwc//PADzGazZcjt6XBoTkZAUjjLLRER1U5CEjDXLbTcc1NrGUp73XXX4b777kNcXFygm0dEDjB0EgW5tLQ0vP/++9i8ebPlhRIZ2vRIyOc5yy0REdUeAgJKQgnMjfMh9JZZaVu3bo3HHnuMQ2mJghxDJ1E1IITAX3/9hQ8++ABnzpwBAEgFWmiPR0LO5vWeRERUsymRRpia5EHEGAEA8fHxuOeee3DddddBljn6hyjYMXQSVSMGgwELFizA3LlzkZ+fD8ByixXtiUjIBboAt46IiMi3RKgZpsZ5UJJKAAChoaG49dZbccstt3BWWqJqhKGTqBrKzc3F3LlzsXDhQhiNRkAAckYYtOmRkEo0gW4eERGRV4ROgbl+Acx1CwEZkCQJ1157Le6++24kJSUFunlE5CGGTqJq7MyZM/j000+xatUqywsKIJ/TQ3syApKR4ZOIiKoXoVFgTi2EObUQ0FgOUbt3746HHnoIzZs3D3DriKiyGDqJaoD9+/fj008/xfbt2y0vmCVozuqhORUBycRrXYiIKLgJWcBcrxDm+pYZaQHLJEH33HMPevToAUnixHlE1RlDJ1ENsm3bNnz++efYt2+f5QWTBM2ZcGhOh0MyM3wSEVFwEbKAObkI5gYFQIgCAGjSpAnuvvtu9O/fn2GTqIZg6CSqYYQQ2LhxIz7//HMcPnzY8qKxNHyeYfgkIqLAE7ICc90iyzDa0rBZr149TJgwAUOGDIFGw0tEiGoShk6iGkpRFPz555/44osvkJaWZnnRVDrs9jSH3RIRUdUTGmvYLAB0lkPQ5ORk3HHHHbjuuuug03EmdqKaiKGTqIYzm834888/MXfuXBw9erT0RQmac3poToVzwiEiIvI7oVUs12zWK1Sv2UxNTcXtt9+Oq6++mmGTqIZj6CSqJRRFwV9//YW5c+fin3/+KX0RkM/roTkdDrlYG9gGEhFRjSN05tKwWaTORtuwYUOMHTsWgwcPhlbLfQ9RbcDQSVTLCCGwefNmzJkzB3v37i19EZAvhVrCZ15IYBtIRETVnhJugjm1AEpSMVB6NUezZs0wduxYDBgwgNdsEtUyDJ1EtZQQArt27cK8efOwYcMG9XUpV2cJn5dCIYGzBhIRkXsEBESMAabUQoh4g/p6+/btceutt6Jv376QZc4nQFQbMXQSEU6cOIH58+dj2bJlMBqNAACpSGMJnxl6SArDJxEROSYkASWxGObUQohIEwBAlmX0798fN998M9q3bx/gFhJRoDF0EpHq0qVLWLBgARYtWoS8vDzLi0YJmvN6aM6GQyrhcCgiIrIQWgXmlCKY6xYCoZbbnoSFhWH48OH497//jXr16gW4hUQULBg6iaicwsJCLFmyBN9//z3Onj1reVEAcmYoNGf1kLJDOPSWiKgWEhAQUUaY6xZBSbx8vWZ8fDxGjRqFESNGIDo6OrCNJKKgw9BJRE6ZzWZs2LABCxYswNatW9XXpUIN5LPh0GSEQTLz+hwioppOyAJKUjHMdS8PoQWA1q1bY+TIkRgyZAhCQjgRHRE5xtBJRG5JT0/HwoULsWTJEhQWFlpeNEuQM8KgOauHXMh7rBER1TQizGQZQptcBOgsh4whISEYPHgwRo4ciTZt2gS4hURUHTB0EpFHCgsLsWzZMixYsAAnTpxQX5fytNCc00O+yN5PIqLqTEgCSkIxzCnFELGXZ6FNSUnBjTfeiOuuuw6xsbGBayARVTsMnURUKUII7Ny5EwsXLsT69ethMpUOtzJLkC+GQnNODylPx2s/iYiqCSXCCHNykeXemqW9mpIk4YorrsDIkSPRs2dP3l+TiCqFoZOIvJadnY2lS5fit99+Q1pamvq6VKiBfF4PTYYekpG9n0REwUZoFMu1milFdtdq1qlTB9dddx2uvfZa1K1bN4AtJKKagKGTiHxGCIG9e/di8eLFWLVqFYqLiy0LFEDOCoWcEQY5MxSSYO8nEVGgCAiIWAPMdYrtZqDVarXo378/hg8fjm7durFXk4h8hqGTiPyioKAAq1atwm+//YYDBw5cXmCSIF8Ms8x8m8vht0REVUFAQESaLL2aScVAiKIua9KkCYYPH45hw4bxWk0i8guGTiLyu+PHj2PZsmVYvnw5MjIyLi8olqG5EAb5gh5yoTZwDSQiqqFEqMnSo5lUDBFuVl+PiYnBlVdeiWuuuQZt2rSBJPEEIBH5D0MnEVUZRVGwa9cuLFu2DGvWrEFBQYG6TMrXQr4QBs3FMEglHNJFRFRZQqdYZp+tUwwRbVRfDwkJQb9+/TBs2DD06NEDOh1vdUVEVYOhk4gCoqSkBH///TeWLVuGjRs3wmy+fAZeytNahuAygBIRuUXozFASSmBOLIaIMcJ65YIsy+jatSuuuuoqDBgwABEREYFtKBHVSgydRBRw2dnZWLNmDVavXo1du3ZBUS5fa3Q5gIZCKuEQXCIiKxFiEzSjLwdNAGjdujWGDBmCIUOGIDExMXCNJCICQycRBZnMzEz8+eefjgNoviWAypdCIRVpOAkREdU6IsQMc2IJlITyQbNt27YYOHAgBg0axNucEFFQYegkoqCVmZmJdevWYfXq1di5c6d9AC3SQL4UarkFC2fBJaIaSkBARJigJJRAiS+xu5cmALRv3x6DBg3CwIEDkZycHKBWEhG5xtBJRNVCVlYW/vzzT6xbtw7bt2+HyWRz4GWUIGdaAqicFQJJkQPXUCIiLwlJQIk1QIm3BE2EXj7hJsuyGjQHDBiAOnXqBLClRETuYegkomqnoKAAmzdvxl9//YUNGzYgLy/v8kIFkLNDLgdQXgdKRNWA0JmhxBksPZqxJYDNHGp6vR49evRA37590bt3b95Lk4iqHYZOIqrWTCYT9u7di/Xr1+Ovv/7C6dOn7ZZLRRpL+MwKhZwTAknhMFwiCjwhCYhoI5S4EiixhnLDZpOSktC3b1/07dsXnTt3RmhoaIBaSkTkPYZOIqoxhBBIS0vD+vXrsWnTJuzdu9fuVixQACknxNITmhUKqZCTERFR1RFhJktvZlwJlBgjoLE/BGvVqhX69OmDvn37okWLFpAkbp+IqGZg6CSiGqugoADbt2/Hpk2bsGnTJpw/f96+QIlsCaDZIZZeUAPvCUpEviO0CpQYg+X6zFgDoDfbLY+Pj0ePHj1wxRVXoEePHhw2S0Q1FkMnEdUKQgikp6dj06ZN2Lx5M3bu3AmDwWBXRirSQCoNoHKODpKRIZSI3Cc0lpApYoyWIbMR9kNmtVotOnTogB49eqBnz55o1qwZZJkTnxFRzcfQSUS1UklJCXbt2oVt27Zhx44dOHTokN0tWQBAKtBYekBzSntCTTw4JKLLhEaBEm2EKO3NFBEmlB2x36RJE3Tp0gXdu3dH165dER4eHpjGEhEFEEMnERGAvLw87Nq1Czt27MCOHTtw5MiRcmWkQg2k3BDIuTrIuTqgmNeEEtUmIsRsCZnRBstXByGzYcOG6NKli/qIi4sLTGOJiIIIQycRkQPZ2dnYuXMntm/fjh07diAtLa18IYMMOVcHKVcHOTcEUoEWkmAIJaoJBAREhAkiyggl2ggl2gCEKeXKpaam2oXMxMTEALSWiCi4MXQSEbkhOzsbe/fuxZ49e7Bnzx4cPHgQJpP99VowA1KeDnK+zvI1TwcYZPaGElUDQqdAiTRaQmaU5Su09odIsiyjWbNm6NixI9q3b48OHTqgTp06AWoxEVH1wdBJRFQJJSUl+Oeff7B7927s2bMHe/fuRV5eXvmCBhlyng5SnlYNo5KZ14YSBZLQKBCRpsshM9LosBczPDwcbdu2RYcOHdChQwe0bduW12QSEVUCQycRkQ8oioK0tDTs27cPBw4cwMGDB3Hs2DH7+4SWkoo0lvCZr4VcoLMMy+UkRUR+ITQKRLjpcsiMNEKEm8tdiylJEho0aIA2bdqgTZs26NChA5o2bQqNhrNYExF5i6GTiMhPiouLcfjwYTWEHjhwAKdPn3ZSWIZcoIVUGkLlfB1QwqG5RO4SEECIAiXCZAmWESbLQ1/+xA8AJCcno3Xr1mjdujXatGmDVq1aISIioopbTURUOzB0EhFVoZycHPzzzz84cOAADh8+jCNHjuDMmTOOC5skSwAt0EIqtHmwV5RqOSErEOFmSw9mhMkSNCOMgM7xIU1SUhKaNWumhszWrVsjPj6+iltNRFR7MXQSEQVYfn4+jh49iiNHjuDw4cM4fPgwTpw4AaPR6HgFgwypUAu5UHM5iBZoea0o1ThCo0DozaU9liaIcBOUcJPD6y8BQKPRoGHDhmjRogWaN2+OFi1aoFmzZoiNja3ahhMRkR2GTiKiIGQ0GpGeno5Dhw7h2LFjOHHiBE6cOIHz5887X6lEtlwvWqSFVFz6tUhjec5buVCQEhBAmBkizGwJmHoTFL2lFxOhjsMlAMTHx6NRo0Zo0qSJGjIbN26M0NDQKmw9ERG5g6GTiKgaKSwsVAPo8ePH1a8ZGRnOVxIAii3hUy66HEZRrIFUwkBK/icggFDF0ltpEy5FadiEi076hIQENGnSBI0aNULjxo3VR0xMTNX9AERE5BWGTiKiGqCgoABpaWlIT0/HqVOncPLkSZw6dQqnTp1CUVGR8xUFLMN1rQFU/Wp5DQaGUqqYGipDS3ss7b4qQIjrYBkSEoLU1FTUr18f9evXR4MGDdSQGRUVVXU/CBER+QVDJxFRDSaEwKVLl9QAag2jJ0+exNmzZ1FSUlJBBbAM2zVoIJV+hUG2BFODDKlEZjCt4YRkmRVWhJghQhSIUEuItDy3BEuEKuVuQVKWTqdD3bp17YKl9XlSUhJkmdckExHVVAydRES1lBAC2dnZOHv2LM6dO6d+tX1uMBjcq8woqcEUBhmSUQaMlq+S4fJzGHkbmGAgIACtgAhRAJ0Cobv8VegUILQ0VIYoQIjz6ypt6XQ6JCcnIyUlBXXr1kVKSgqSk5PV5wkJCQyWRES1FEMnERE5pCgKsrKycO7cOVy4cAEZGRm4ePEiLl68iAsXLqhf3Q6mgKXn1CRdDqImGTDJkExS+a/Gy9/DLDGsOiAgAE1pgNQqNl8VCK2w/6qzDZiiwp5JWzqdDgkJCUhMTERSUhISExPVhzVkxsfHM1QSEZFDDJ1ERFRpQgjk5eXhwoULahDNzMxEVlYWsrOzkZWVpT7PycmBorjXa1b+jQCYJUv4LP16+XlpKFXKvK5IgAJAWJ5LCiyvicvLJOv3ovQ9gMvfl76vO2FXWFewFpUASKWvyQKQS4epyqWvy5efC+tz2fK60JQGSdvnmtLnsgA0iuW5tnSZF1k8OjoasbGxiIuLQ1xcHGJjYxEbG2sXLJOSkhAdHc1ASURElcbQSUREVcJsNiMvLw9ZWVlqMM3NzUVeXl65R25uLvLz85GXl4fi4uJAN/1yKLXuMe3CZUBaZCckJARRUVHqIzIy0u77qKiocsEyJiYGWq020E0nIqJagKGTiIiCmsFgQF5eHvLz81FcXIzCwkIUFRWhqKjI5XODwQCj0Wj31dFrRqPR7z9DSEgIdDqd+rD93vZ5WFgYwsPDodfryz3CwsKg1+vV5eHh4WrA5L0piYgomDF0EhFRrSaEgNlshhACiqI4fG42m6EoCoQQEEJAlmXIsgxJktSvGo3G7ntrGa1WC0kKgu5QIiKiAGHoJCIiIiIiIr/hrABERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkN9pAN4CIyB+EECguLg50M4iIPBIWFgZJkgLdDCIin2LoJKIaqbi4GFdffXWgm0FE5JGlS5dCr9cHuhlERD7F4bVERERERETkN+zpJKIaL2RzHUhCBiQZkiwBUun5NlkCJAmSLANS6evWYW2yBEmS1TKQJMtz4PL31tes65QtD/t1hCRZTvXZrg+Ue139Xl3PUhUkCUJG6TcofV0CJNitI9TXyqyv/swovxxlXrN+LztYZru+3TLbr1K5ZQ7Xgf1y2++tbXD2XnbPnbSjbJ0ql+uIcu0qWx8k4aBN4nLdjuoqXQ/qv4ewrxPWZTZfS+uzlpckYfuvo76H5U9zeTkAyBB2r8mlzy8vu/ya3TJJQMLl12Wb12VJQIb1ddgvU9dR1O+t7yVLCjTqusrl9Wy+19jUDQAaWF9XbMoppctK61S/Kmo7rOvJsK5buo66zFJeIwlI6jLLa9Z1NMDl9WB5H6l0fY1dG0Xp96VtKv2zWL6XIAPQSBJkSNCU/qFlSKWvyZAgQSPJMJRoMPLeOiAiqqkYOomo5jNLlsM/yXKQp4bO0qN5yzIJkGXYphQJcpnkYbOew9RTprxku8zRc9vvHb3uaD3YhFyooVP9CtvXyjwvXWYXoOzWc7BOuR9ZKt9MydFDcr7M6Tpu/qq8rLPioOrj0CmVD522y8qGzsuvl61POFx2OZzaLLf7/v/bu/eoqOv8j+OvEVFQUJBMIdG08LKmYaBmhnkpRcqt0Mpy11y2LXcrO6f1HF1+mbZWtnksO3rWWk/mVpLdjppt6WbhpRUUzZAiCW+oICwXuQriMPP7A+frIMNlBqYB9/k4h8Mwn8/n/fnMfMfLm8/n+/lY67av15e1bpld0mn7knT554bKrkhGjaTziufsk1Uvu59rk06L8XsaL5lqkzeTXfJ26XPlJamDyWT33XSpr9p2tbEkL9Plj7CXydau9rvDMuPx5fHXJqvWSwmttVlJ55XxOlwas+o8Zxvj5b4A4GrF8loAAAAAgNuQdAIAAAAA3IakEwAAAADgNiSdAAAAAAC3IekEAAAAALgNSScAAAAAwG1IOgEAAAAAbsM5nQCufl5WWa2WS+dO2p1L2cFUe55kB9U971JX/Gx8We3KrviSLp11aP9c3QMhrQ0cPnnl85d/trW74rHV1s7W5lKMSxWtqlte5wRAq33sy+3rPWe9osj+/M1mnY9parhMjbRvblljMZvoz6Sm2jg6b/PKeFYHMRo4p1P125nqnMd5qUy2Mrvvl9ra6teejXn57a3bxxXndMr1czqtl9paL31JMh5bZXtedctklcVklUyWS7Hs+7Jcej325bVlVpOlNo5d7MtldZ+3nY9pvXRWpv13ScZjy6U/1rbvuvTYoto/9pZLP9veqvrndJrU4VKpl2rPAzWZLj++fJZo3bM/bX11MGLYzhm1O0tUJuM506XH1Rcc/TkEgKsHSSeAq171qP96egjuYf//eheYrvgO2Ng+WhZPD8RltmyeBV0A0BbwtzEAAAAAwG1MVqu1Bb8nB4C2yWq1qqqqytPDgIuqqqp07733SpK2bNkiHx8fD48IzuIausbHx0cmE+sPAFxdWF4L4KpkMpnk6+vr6WGgFfj4+HAt2zmuIQD8b2N5LQAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AAAAAgNuwey0AAAAAwG2Y6QQAAAAAuA1JJwAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AAAAAgNuQdAIAAAAA3IakEwAAAADgNiSdAAAAAAC36ejpAQAA2rbz589r48aN2rVrl3Jzc9WhQweFhoZq4sSJmj59ury9vV2OXVRUpISEBCUlJSkvL0+dO3dW//79FR0drbvvvlsmk6nR9tnZ2UpISFBKSoqKiork6+urgQMHatq0aRo/fnyD7ebNm6fvv/++0dg9e/bUp59+6sKranva4jUsLCxUamqqfv75Z+OrtLRUkvTGG29oxIgRzeo/IyNDH330kb7//nsVFxfL399fQ4cOVWxsrCIiIlx+XQCA1mOyWq1WTw8CANA25ebmat68ecrNzZUk+fj4yGKxqLq6WpIUFhamlStXyt/f3+nYGRkZmj9/vkpKSiRJvr6+qq6uVk1NjSRp1KhRWrZsWYMJUVJSkhYvXqyqqipJUteuXVVZWSmLxSJJiomJ0YIFCxwmPbak09fXV76+vg7jBwUF6e2333b6dbU1bfUarlu3TuvXr3cYt7lJ5+eff64VK1YY/fn5+amiokK2/9rMmTNHcXFxTr8uAEDrYqYTAOCQ2WzWwoULlZubq6CgIP3f//2fIiMjZbFYlJiYqOXLlyszM1NLly7Vq6++6lTs8vJyLViwQCUlJerbt6+ee+45DR48WBcvXtTWrVu1evVq7d+/X6tWrdKzzz5br31OTo6WLFmiqqoqDRs2TAsXLlRoaKgxo7d+/Xp98cUX6tu3rx555JEGx/HQQw9d1UlJW76GJpNJ1157rQYOHKhBgwYpKCjIqTH88MMPRsIZFRWlZ555Rtdee61KSkq0du1affbZZ1q/fr2uv/56TZw40anXBgBoXdzTCQBwaNu2bTp+/LgkaenSpYqMjJQkdejQQZMmTdL8+fMlScnJyTp48KBTsTdu3KiioiJ17txZr776qgYPHixJ8vb2VmxsrJEIbt26VadPn67Xft26daqsrFSPHj30yiuvKDQ0VJLUpUsXxcXFadq0aZKk9957T2VlZS68+qtDW76Gs2fP1ieffKKXX35Zjz76qNNLYd98803V1NRowIABeuGFF3TttddKkrp376758+dr1KhRdeoBADyHpBMA4NC2bdskSSNGjNBNN91Ur3zSpEkKDg6uU7e5tm/fbsQICQmpVx4bGytfX1/V1NToq6++qlNWWVmpXbt2SZLuu+8+h8tCf/Ob30iSKioqtGfPHqfGdjVpq9dQkry8vJzqz15OTo4OHz4sSZo5c6Y6dqy/cMv2GcjNzVVqaqrLfQEAWo6kEwBQT1VVlX744QdJ0q233uqwjslk0ujRoyVJKSkpzY596tQp5eXlSZLR/kpdunTR8OHDHcZOS0vThQsXGm0fHBysfv36OT22q0lbvoYtZR+vof6HDRumLl26uKV/AIBzSDoBAPVkZWUZG/L079+/wXq2sqKiImPn0abYlns2FXvAgAGSpJMnTzbY3lansfYnTpxosM5XX32lBx98UJMmTVJMTIz+8Ic/aO3atSooKGj0NbQHbfkatpTtmgYGBiowMNBhHS8vL/Xt27dOfQCAZ5B0AgDqsU+6evbs2WC9a665xmGbxhQWFjoVu6KiQufPn6/Xj7+/vzp37txke/v+rpSdna2CggL5+PiooqJCGRkZeu+99/Tb3/5Wu3fvbtbraava8jVsKds47cfuiG1sjX0GAADux+61AIB67BOExhI7Hx8fh23cEdu2VLKysrJeeWPtHY0rPDxcU6dO1ciRIxUUFCSTyaTy8nLt2bNHb775ps6dO6clS5Zo1apVGjp0aLNeV1vTlq9hS9n6b+ozYBtbaya8AADnMdMJAPifExcXp6lTp+qaa64xzvH08/PT1KlT9fe//11+fn4ym81as2aNh0cKAED7R9IJAKjHfkbKtmmPI1VVVQ7buDO2r69vvfLG2js7u3bdddfp/vvvl1S7aVFJSYlT7duKtnwNW8oWq6nPgG1srdk3AMB5JJ0AgHrs75XLz89vsJ79PYBN3V9nExQU5FTsrl271kkabP2UlZU1mvDY2tv311y240WsVqvOnj3rdPu2oC1fw5ayjbOpe1BtY3PlMwAAaD0knQCAevr166cOHWr/iWhs509bWY8ePdStW7dmxbbfcbax2LYdUq+//voG29vvotpQ+8Z2V72ateVr2FK2a3ru3DkVFxc7rFNTU6NTp07VqQ8A8AySTgBAPT4+PsZs3759+xzWsVqt2r9/vyRp5MiRzY4dGhqqXr16NRq7srJShw8fdhh72LBhxgYxtv6vlJubq6ysLKfHZvPjjz9Kqj3Hsnfv3k63bwva8jVsKft4DfWflpZmbCDU2v0DAJxD0gkAcCg6OlqSdOjQIaWnp9crT0xMVE5OTp26zWEymTRlyhRJ0jfffONw+eqmTZtUWVkpLy8v3XXXXXXKfH19dccdd0iSNm/erPLy8nrtExISJNXeyxcVFVWnzGq1Njq+nJwcbdq0SVLtMtuAgIDmvbA2qK1ew5YKCQnR8OHDJUkffvihzGZzvTobNmyQJPXu3Vs333xzq/YPAHAOSScAwKHo6GgNGDBAVqtVixYt0sGDByVJFotFiYmJWr58uSRp9OjRioiIqNN23bp1GjdunMaNG+cwIZk5c6Z69OihqqoqLViwQBkZGZKkixcvavPmzXr77bclSdOmTVNoaGi99nFxcfL19VVhYaEWLlyo06dPS6qdXVu/fr22bNkiSZo9e7b8/f3rtN2wYYNeeuklJScnq6yszHi+oqJC27Zt05/+9CeVlZWpY8eOmjt3rkvvXVvRlq+hxWJRcXGx8WV/LcrLy+uUVVdX12v/xBNPyMvLS0ePHtWSJUuM+zdLS0v12muvGTOgc+fOlZeXl9PvHQCg9ZisTf3KFwDwP+vs2bN65plnlJubK6l2yabFYjGSgLCwMK1cubJeYrdu3TqtX79eUu1MVHBwcL3YGRkZmj9/vrE7bJcuXVRdXW3MWo0cOVLLli1Tp06dHI4tKSlJixcvNnYw9fPzU2VlpWpqaiRJMTExWrBggXEkiqOx2frt2LGjysvLZbFYjFgLFiwwZlTbs7Z6Dc+ePauHHnqoWa/hL3/5i6ZOnVrv+c8//1wrVqwwrrmfn58qKiqM2ew5c+YoLi6uWX0AANyno6cHAABou4KDg7V+/Xpt3LhRu3btUm5urjp27Kj+/ftr0qRJmj59ury9vV2KPWjQIP3zn/9UQkKC9u7dq//+97/y8fHRgAEDFB0drZiYGGMjHEfGjBmjd955RwkJCUpJSVFRUZH8/PwUFhamX//61xo/frzDdhMmTJAk/fDDD8rOzlZpaakqKirk7++vfv36aeTIkZo2bZp69Ojh0utqa9ryNWype+65R2FhYfrwww+Vmpqq4uJiBQYGaujQoYqNja03ewsA8AxmOgEAAAAAbsM9nQAAAAAAtyHpBAAAAAC4DUknAAAAAMBtSDoBAAAAAG5D0gkAAAAAcBuSTgAAAACA25B0AgAAAADchqQTAAAAAOA2JJ0AAAAAALch6QQAAAAAuA1JJwAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AgMe98cYbGjdunJ5++mlPDwUeVl5errvvvlvjxo3T7t27PT0cAEAr6OjpAQAAXFdRUaHMzEwdOXJEGRkZysjIUHZ2tqxWqyTpww8/VHBwsFv6tlqtmjFjhvLz8zVr1iw98cQTLsXJzMzU5s2bJUmPP/54K47Qs44fP679+/crLS1Nx48fV2FhoWpqauTv768bbrhBY8aMUXR0tPz8/Dw91DbFz89PM2fO1Nq1a7Vq1SqNHj1anTt39vSwAAAtQNIJAO3YvHnzlJmZ6ZG+jxw5ovz8fElSVFSUy3HWrFmjmpoajR49WsOGDWut4XnUvHnz9P333zssKyoqUlFRkVJSUvT+++8rPj5eo0aN+mUH2MbNmDFDH3/8sfLy8vTJJ59o1qxZnh4SAKAFWF4LAO2YbUZTqp0hGjFihHr06PGL9L1nzx5JUs+ePTVkyBCXYhw+fFgHDhyQpKsqsbAl4/7+/oqJiVF8fLxWr16ttWvX6q9//avGjBkjqTYBjY+PV2pqqieH2+b4+vpq+vTpkqSEhASdP3/ewyMCALQEM50A0I7FxMQoICBAgwYNUp8+fWQymTRv3jwVFRW5vW9b0jl27FiZTCaXYnzwwQeSpODgYN18882tNjZP69Onj2bPnq1JkyapU6dOdcoGDRqk8ePHa8OGDXrrrbdUXV2tFStW6N133/XQaNumyZMna926dSorK9O//vUvPfDAA54eEgDARcx0AkA7NmPGDN15550KDQ11OfFzxenTp5WVlSXJ9aW1+fn5SkpKkiRNmTLlFx2/uy1fvlxTp06tl3DamzVrlsLCwiRJJ0+e1LFjx36p4bULwcHBGj58uCTps88+8/BoAAAtwUwnAMBptl1FbUt6XbFjxw5ZLBZJ0sSJE5vVxmw265tvvtG3336rI0eOqLi4WDU1NQoICNCAAQMUGRmpO++8U0FBQXXajRs3TpIUHR2t+Ph4nTp1Sp988olSUlJUUFCgrl27auDAgXrkkUcUHh5utLtw4YK+/PJLbd++XWfOnFFVVZVCQkJ011136YEHHmjxBje33HKLcU/u6dOndcMNN7gc6+TJk9qyZYtSU1N19uxZVVVVyc/PT/7+/goODlZERIRuv/129e3b16X4ZrNZ//73v5WYmKjjx4+rpKREJpNJ3bp1U0BAgIYMGaLIyEiNHTtW3t7eddpe+f6fPHlSmzZt0oEDB1RQUKDKykq99NJL9X6BMXHiRKWmpiorK0tHjhzR4MGDXXtzAAAeRdIJAHCabWntmDFj1LGja/+U7N27V1LtfY/9+vVrsv7Ro0f1/PPP68yZM/XK8vPzlZ+fr3379unYsWOKj49vMM7OnTv18ssvq6qqynjuwoULSk5O1r59+zR//nxNmzZNBQUFio+P15EjR+q0P3HihP7xj38oOTlZK1asaFHiaTabjccdOri++GjLli1auXKlampq6jxfUlKikpISnTlzRikpKTp27JgWLVrkdPzi4mL9+c9/drhple29z8zM1GeffaaEhAT16dOnwVhffvmlVqxYoerq6ib7td9Yau/evSSdANBOkXQCAJxSUFCgn376SZLrS2urq6v1448/SpKGDBnS5NLazMxMPfXUU6qsrJQkjRgxQpMnT1a/fv3k7e2twsJCpaenN3mu47Fjx/TNN98oMDBQjz/+uNH3wYMH9d5776mqqkqvv/66wsPD9eKLL+ro0aO67777dPvttysgIEDZ2dl69913dezYMR0+fFgJCQn63e9+59J7IEnfffed8bh///4uxTh+/LiRcHbr1k3Tpk1TeHi4AgICVFNTo8LCQmVkZCg5OdnlJcwrV640Es6IiAhNnjxZwcHB6tq1qyoqKpSVlaXU1FRjuXRDMjIytGPHDnXr1k0PPPCAhg0bJm9vb508eVK9e/euV79///7y9fVVZWWlvvvuO8XFxbk0fgCAZ5F0AgCc8u2338pqtapTp04aPXq0SzGOHTtmzPINGjSo0bpms1nPP/+8kXA+88wzxs6m9m677TY99thjysvLazBWZmamwsLCtHLlSvn7+xvP/+pXv1KfPn20ePFimc1mPfXUUyotLdXy5csVGRlp1Bs4cKBGjhyp2bNnq6CgQJs3b9bs2bPl5eXl1OuXapconzhxQlJt4h0aGup0DElKTEw0Zjhff/114z5Re1FRUXrsscdUUlLidPwLFy4YyXxUVJRefPHFeslreHi47r33XlVWVjY6Y3vixAn16dNHq1evrrPLckO7H3t5eWngwIFKTU3Vzz//LIvF0qIZYQCAZ/A3NwDAKbaltZGRkfL19XUphv0S2aaOeNmxY4eys7Ml1e7W6yjhtNerV69GyxcuXFgn4bQZP368evbsKUk6d+6cYmNj6yScNn5+fpo6dapR7+TJk43250hBQYFee+01SZLJZNIf//hHp2PY2HYq9vPzc5hw2uvevbvT8cvKyoxfEISHhzc6W+rr69vkcuNnn33WqWN9bHWrqqpUUFDQ7HYAgLaDpBMA0Gzl5eU6dOiQJNeX1kpSYWGh8bhbt26N1rUluZL08MMPu9ynVLtcs6HEzGQy1SmbPHlyg3Hs6+Xk5Dg1hqqqKsXHxxvJ4pWbFznLliiXl5crMTHR5TgN6d69u7EL79dff92iMzN79uzpMJFvjP3nw/5zAwBoP0g6AQDNlpSUJLPZLC8vL40dO9blOBcuXDAeO5p1tPfzzz9Lqp3xas6GQ41pqr39WBrb5dW+njNJ2MWLF/Xcc88ZmxPdfvvteuyxx5rd3pHJkycbs4uLFy/Wk08+qQ0bNujw4cPGkuSW8Pb2VnR0tCQpPT1dDz74oJYvX66vv/7a6YTbld157ZNO+82fAADtB/d0AgCazTbreNNNNykgIMDlOPb3QDa1i2lxcbGkyzN6LeHj49Nouf3S0caWDtvfV2g79qUpZrNZixYt0v79+yVJo0aN0pIlS1y6H9ReSEiIXnnlFb388svKz89XWlqa0tLSJNW+z4MHD9a4ceN0zz33NJngN+Tpp59WdXW1tm/frtLSUm3dulVbt26VVPvLgFGjRikmJqbJGdumZrUdsf8Fhas7JQMAPIuZTgBAs1RXV2vfvn2SWra0Vqq9/9CmtLS0RbHaA7PZrMWLFxvHxERGRuqll14ylq22VEREhD744AO98MILiomJMY4sqamp0Y8//qg1a9bo4YcfNhJeZ3Xu3Fnx8fF6//339fvf/1633HKLkZQXFRVp27Ztmjdvnp577rk6SeKVXNkEyH7zI/vPDQCg/eBXhgCAZjlw4ICxXLOlSaf98RhNJZ0BAQHKy8trt5vI2BJO2yzxLbfcomXLlrXofE9HOnXqpAkTJmjChAmSameIDx48qO3btys5OVmlpaVatGiREhISFBQU5FIfoaGhevTRR/Xoo4+qpqZGmZmZ2rt3r7Zs2aJz585p9+7dWrt2rZ566qlWe11lZWXG46Y2iQIAtE3MdAIAmsWWNIWFhSk4OLhFsezPpDx16lSjdW1HqhQWFjZZt625MuEcMWKEXnnllVZPOB0JCAjQpEmT9Oqrr+q+++6TJFVWVurbb79tlfi2pbtxcXF68803jaXLO3bsaJX4NllZWZKk4OBgdenSpVVjAwB+GSSdAIAmWSwW/ec//5FUu/lNS/Xq1UvXXHONJOmnn35qtO64ceOMxwkJCS3u+5diNpu1ZMkSI+EMDw/X3/72tybvK3WHUaNGGY9t98i2puDgYOOcUVfOAm1IcXGxcVzO0KFDWy0uAOCXRdIJAGhSWlqakazYJ4EtYUuEsrKyVFFR0WC9iRMnGgnNF198oU8//bTRuHl5ea0yvpYwm83661//qt27d0tyb8K5a9euJhNJ2724knTdddc5FT8nJ0cHDhxotM7Zs2eNGcmQkBCn4jcmPT3deHzrrbe2WlwAwC+LezoBoB07c+aMsVOpje38R0nauXNnnV1mfX19NX78eKf7sc3WhYSEuHTshSMTJkzQF198IYvFogMHDuiOO+5wWK9jx4564YUX9OSTT6qyslJvvPGGdu/erSlTpqhfv37y9vZWYWGhjhw5op07d2rQoEGKj49vlTG6aunSpdq5c6ek2iRv7ty5Onv2bKNtAgMDFRgY6HRfn376qZYuXaqIiAhFRETo+uuvV/fu3XXx4kXl5eVpx44dxix17969nT7qJi8vT88++6xCQkI0duxYDRkyRL169VLnzp1VUlKi9PR0bd682diFePr06U6/hoakpKRIqr1fdcyYMa0WFwDwyyLpBIB2LC0tTcuWLWuwfM2aNXV+7t27d4uSztZYWmsTGRmpnj17Kj8/X9u3b28w6ZSkG2+8UatWrdLzzz+vnJwcHTp0SIcOHXJY13YPqCclJiYaj7OzszV37twm28yZM0dxcXEu9VddXa2kpCQlJSU1WOe6667TsmXLGj0KpjE5OTn6+OOPGyzv0KGDHn74Yd1///0uxb+S2WzW119/Lal2dt3V414AAJ5H0gkAaNTRo0eNWbqW7lprz8vLS7GxsXrrrbeUnJys4uLiRs/+HDhwoN5//31t375de/bsUWZmpnH/YGBgoG644QaNHDlSd955Z6uNsT1YvHix9u/fr9TUVB0/flxFRUXGctvu3bvrxhtvVFRUlCZPnuzSES3Dhw/X6tWrdeDAAaWnpysvL0/nzp1TRUWFfHx8FBISouHDh+uee+5ptVlwScZnQpJmzJjRanEBAL88k9VqtXp6EACAtuudd97RO++8o8DAQG3atMmlsxYbUl5erpkzZ6q0tFRPPPGEZs2a1Wqx0b4tWLBASUlJioiI0Ouvv+7p4QAAWoCNhAAAjbItrb3ttttaNeGUJD8/PyPR3Lhxo86fP9+q8dE+paenKykpSSaTSY8//rinhwMAaCGSTgBAgy5evKioqCjNmTNHsbGxbulj+vTp6tOnj0pKSvTRRx+5pQ+0L2vXrpUkTZkyRUOGDPHwaAAALcXyWgCAx/30009KSkqSn5+fHnzwQU8PBx5UXl6ujz/+WFarVbGxsY3e5wsAaB9IOgEAAAAAbsPyWgAAAACA25B0AgAAAADchqQTAAAAAOA2JJ0AAAAAALch6QQAAAAAuA1JJwAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AAAAAgNuQdAIAAAAA3IakEwAAAADgNiSdAAAAAAC3IekEAAAAALgNSScAAAAAwG1IOgEAAAAAbvP/8eBpS/VUKbEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACsE0lEQVR4nOzdd3hT1eMG8PfepOletGVTyt6yBERQNvoVFRERFQXc4sCN4t64cfwUt4AioCgoInuJbBDZe68W6N4Z9/z+SHNJ2uykTdK+n+fJQ0juOGl7c897z7nnSEIIASIiIiIiIqIgJwe6AERERERERETuYIAlIiIiIiKikMAAS0RERERERCGBAZaIiIiIiIhCAgMsERERERERhQQGWCIiIiIiIgoJDLBEREREREQUEhhgiYiIiIiIKCQwwBIREREREVFIYIAlIiIiIiKikMAAS0RERERERCGBAZaIiIiIiIhCAgMsERERERERhQQGWCIiIiIiIgoJfgmwx44dgyRJkCQJY8eO9ccma6S+ffuqP0ciIkfGjh2rflccO3Ys0MVRTZ06VS3X1KlTA10c8jNFUdC1a1dIkoRHHnkk0MWhEMHvBaKKqnN2MplMaNWqFSRJwsSJEytlH1XWAjt16lS88soreOWVV6pqlwE3b9489TPn5OQEujhUxmg0YtmyZXj22WfRv39/1KtXD+Hh4YiJiUGzZs1wyy23YN68eTCZTB5td9euXXjkkUfQunVrxMTEID4+Hh06dMCzzz6L48ePV9KnIaKabOHChbjrrrvQunVrxMfHIzo6Gk2bNkX//v3x2muv4b///vPbvr766iv8+++/iIiIcFopOXbsGH799VdMnDgRgwcPRlJSklpR69u3r9v7sw4+7jxWrVrlcptFRUX4+uuvMWTIEDRs2BARERGIiIhA/fr1MXjwYHz88cc+na//+ecfyLKsliktLc3rbdlz5swZvPbaa7jiiiuQkpKCsLAw9dw1YsQIzJ492+1zV3p6Ol5++WVcdtllSEpKQnh4OBo2bIirrroK3333HYxGo1/LHkgdOnRQfyfLly/3eP1//vlHXb9t27Yery+EwNq1a/Hqq6/i6quvRqNGjRAREYGoqCg0btwYw4YNww8//IDS0lKX21q1apVHx4WriwZ5eXlYtWoVPvjgA9x6661o2bKlzd+wJxdJi4qKsH79enz66acYO3Ys2rdvD61W69Ex6g1/HtclJSWYMmUKrr76atStWxfh4eFISUlBjx498NZbbyEzM7NSPkMgPPLII+rv5sUXX/R4/aKiIsTHx0OSJGi1Wpw5cwYAoNFo8MILLwAAPvzwQxw6dMiv5QYACD84evSoACAAiDFjxthdpk+fPuoyNcWYMWPUz3z06FGXy9fEn1FVW7FihahVq5b6c3b26Natmzh06JBb233vvfdEWFiYw23FxsaKmTNnVvKno5rC0++WqvL999+r5fr+++8DXZxq7ciRI6Jfv34uv8eGDh3ql/0VFhaKunXrCgBi/PjxDpf75JNPnJanT58+bu/T+u/JncfKlSudbm/z5s2iSZMmLrdTu3ZtsXjxYrfLaVFSUiJat25ts63GjRt7vB1Hpk6dKmJiYlyWv2PHji6/F6ZPny6ioqKcbqdz587i8OHDPpc7GL4XPvjgA7UMt99+u8fr33XXXer67777rkfr7tmzR9SvX9+tv+GWLVuKLVu2ON3eypUrPTounP3Mc3JyhCRJTtf35Bzjqn7l6hj1hj+P6y1btoi0tDSX21m0aJHP5XYnO1W2rVu3qmVITU0ViqJ4tP706dPV9a+55hqb94xGo2jZsqUAIG655RZ/FlsIIYQWfpCWlgYhhD82VaNV1pUpuuj06dPIysoCANSqVQsDBw7EZZddhnr16sFgMGDTpk2YPn068vLysHnzZvTr1w+bNm1C3bp1HW7ziy++wNNPPw0ACAsLwx133IE+ffrAYDBg8eLFmDNnDvLz83HHHXcgISEBV199dZV8Vqq+pk6dyq54Ndj+/fvRv39/9Wr3pZdeiuuuuw5NmjRBREQEzp07h+3bt2PBggV+2+fnn3+O9PR0aDQaTJgwweFy5Vv/IiMj0aJFC+zYscOn/T/yyCPo37+/02Xat2/v8L3jx49j4MCByM3NBQDUrVsXY8eORYsWLaDVanHkyBFMnz4dR48exblz53Dddddh48aN6NSpk9tlfP3117Fv3z5ER0ejsLDQ7fXcMXfuXNx5551qXatTp064+eabkZqaisLCQuzevRtTp05FXl4etm/fjv79+2PHjh2IiYmpsK0ffvgBo0ePVv8/ePBgDB06FCkpKTh58iRmzpyJLVu2YNu2bRg8eDDWr1+PlJQUv36eqnb77bfjmWeegdFoxG+//YbPP/8csbGxbq1bVFSEX375BYC5ZemOO+7waN+ZmZnqsRodHY2BAwfi8ssvR8OGDQEAO3bswNSpU5GRkYEDBw5gwIABWLt2Ldq1a+dy2yNHjsQtt9zidJkuXbo4fE8IYVN/lyQJzZs3x4ULF5Cdne3Ox7NR/vhPTU2FXq9Henq6x9tyhz+P6927d6N///7Iy8sDALRr1w533HEHmjRpgpycHCxcuBC///47zp07h2HDhmHZsmW4/PLLK+VzVZUuXbrgkksuwY4dO3DixAmsWLECAwYMcHt963rInXfeafOe5Vxxzz334Oeff8aLL77oVe8Fh/weiR2oia2LwdpKUpP98MMPokOHDuKnn34SJSUldpc5deqUaNeunfq7Gz16tMPtnTlzRr2KrdVqxdKlSyssY331uVGjRqK4uNhvn4comARDS0t1V1RUJFq0aCEAiKioKPHzzz87XFZRFHHy5Emf92kwGESjRo0EADF48GCny86dO1c89NBD4rvvvhPbt28XRqPRpqXB2xZYX/+erFvQrrrqKlFUVFRhGYPBIEaPHq0u50nr9fbt29VeONatff5qgW3atKm6zZdeesluS8mFCxfEJZdcoi43efLkCsucO3fOphV3ypQpFZZRFEU89thj6jJ33nmnT2UPlu+FoUOHquX49ttv3V7PupXp2muv9Xi/a9asEWlpaeKLL74QeXl5dpfJzs62qSdfeeWVDrdn3QL78ssve1wea/n5+eKWW24R7733nlixYoXIyckRQtjW2T2pv44ePVq8+eabYtGiReL8+fNCCNu6sL9bYP15XPfo0cOmld5gMFRYZs6cOUKWZQFAtGrVyu4y7gqGFlghhJg8ebJajjvuuMPt9Y4fP6623iclJYnS0tIKy+Tm5oqIiAgBQNx7773+LLZggK1EDLDBJzs7260uEjt37lR/d5GRkaKwsNDuctYn+aefftrh9kaMGKEu93//939el58omAVLRbU6e+aZZ9Sf8dy5c6tkn3PnzlX3OX36dI/XD4YA26BBA3Vbu3fvdrhcdna20Gq1AoCoVauWW9s2Go3i0ksvFQDEddddZ/N5/RFgDx48qG6vTp06wmQyOVx2/vz56rI33nhjhffffvtt9f3hw4c73I7JZBIdOnQQAIQsy+LAgQNelz9YvhfmzZunluOKK65we73+/fur6/36668e7zc/P1/o9XqXy2VkZNh06z5y5Ijd5fwZYB3xNsDaU5kB1l/H9YYNG9TtNGjQwGlDw4MPPqgu+80333hd9mAJsOfOnVMvvkVHR4v8/Hy31nvttdfU8j/yyCMOl7PUfyMjIx1ewPFGpY9CbBlZd/Xq1epr9m4ydzS4k6Io+PnnnzFy5Eg0adIEUVFRiI2NRevWrTFu3Djs3LnTadleeeWVCjePL1++HLfeeqva3ar8TepGoxGLFy/Gk08+id69e6N27drQ6XSIjY1Fy5YtMXbsWPz9998O92kZIXTatGnqa02aNKnwmR39rNwZhXjjxo2477770KpVK8TGxiI6OhrNmjXDmDFjsGLFCpfrlx9Qo7CwEO+//z4uvfRSJCYmIjo6Gu3atcPEiRO96kYSrBISEtz6+bZv3x6tW7cGABQXF9u9AV0IoXYrcjUq5/jx49Xns2fP9rTYPlm/fj3GjRuHtm3bIiEhAREREUhNTcXIkSNddjG0HizCcoyeOHECTz75JFq3bo3o6GgkJCTg8ssvx+eff+72oB8FBQX46KOPMGjQINSvXx/h4eGoVasWunXrhpdeegnnz593un75Y8VkMmHq1KkYNGgQGjRoAK1Wa3fwlIyMDEyYMAFt27ZFdHQ0atWqhe7du+ODDz5AUVERAPMtEfYGX1m0aJG6T+vfpzPjx49X11m4cKFb67jD1SjElfV7+/PPP3Hdddehbt26iIiIQFpaGkaNGoX169d7/Bn0ej2+/fZbXH/99eqAJgkJCbjkkkvw5JNPOhw4ZP/+/YiOjoYkSYiPj8fRo0cd7iM7OxupqamQJAkajcbp93YoKCwsxJQpUwAA/fr1ww033FAl+/3hhx8AmLsDDxs2rEr26W/nzp1Tn7do0cLhcgkJCWp3WXe7AX/00UfYsmULYmJi8Nlnn/lWUDusy96sWTPIsuOqW8uWLdXn9spvXT9w1hVWlmWMGjUKgLkeNmvWLI/K7I3NmzcjJSUFkiQhPDwcP//8c4VlfKkTDhkyBLVr1wZgHpTpyJEjLst04sQJrFy5EgCQnJyM6667zuPPFRMTg7CwMJfL1a5dG1deeaX6f1f1W/LfcW19XIwYMQIREREOt2Xd/f6nn37yqLzeOH/+PLp166ae05944gm7t216W9dLSUnBtddeC8D8s7F33NljnXHKdx+2ZvkeKS4uxpw5c9zatlv8kYKdXUWwvorj7GHvKtKhQ4dEp06dnK4ny7J48cUXHZbt5ZdfVpddsWKFeOihh+xux/oKU9++fd0q85gxY+w2mVtfbXK1vqOflSMGg0Hce++9Lrd988032+1KYWFZrk+fPuLw4cOibdu2DrfVuHHjGtmC3K1bN/VnsGHDhgrvW7fStm/f3um2TCaTiIuLU/9m/XkVypGCggIxcuRIl38rQ4YMcVie8ld6Fy5cKBISEhxua9CgQQ67Zlv89ddfonbt2k7LFBsbK37//XeH27A+VjIzM0Xv3r3t/t1aW7FihUhMTHS4zw4dOogTJ06Ixo0b213fZDKpA0UkJia67ApeXFys7i81NdVpq4mnXPXu8PfvzWg0Ov1ek2VZvPPOO263tLgz6IZOpxNffPGF3fW/+uordbmePXsKo9Fod7mbbrpJXe755593+jMNBdOmTVM/jyddIH1RUlKitgo569boTDC0wDZs2FDdlrstNZ06dXK53cOHD6s/H0uXXX+3wB46dEjdXt26dZ1+l/z555/qso899liF963P9Xv37nW6399++01d9rLLLvO6/O78HhcvXqx2bY6JibF7O44/6oRPPPGEuuxLL73ksuzWrUyPPvqoux/Za9a9tWbNmmV3GbbAXuSv49q6VdVet3prWVlZ6rIajcZhDz1X3GmBPXr0qDoQEgAxadKkCsv4o673xx9/qMu58z3/999/q8t37NjR6bLWA4X5a1BBIfzUhdjZL2HNmjVi7ty5NvcUzp07t8Kj/BfpoUOHRHJysrpO7969xdtvvy1mzpwpfvzxR/H444/bVEYdHcTWAfZ///ufegJ49tlnxY8//iimTp0qHnzwQXHmzBl1nR49eoiYmBgxdOhQ8dprr4np06eLn3/+WXz88cfivvvuE9HR0U6/0LZu3Srmzp1rM0Lkl19+WeEzb9261WY9dwLsLbfcoi4TEREh7r//fjFt2jTx448/iscee0zExsaq71911VUOu8taluncubNo3bq1kCRJDB06VEyZMkXMnj1bTJo0SaSmpqrLedLdpjooLS21qfCfPXu2wjIzZ850+eVjzfr3u3Hjxkoo9UUlJSXisssuU/fXrFkz8dxzz4kffvhBzJo1S7zxxhs2X4r9+/e3WymyPlEOHTpUREVFicjISHH//feLqVOnipkzZ4onn3zS5phwVnmYM2eO0Gg0AoAICwsTw4cPF59++qn4+eefxTfffCNGjRqldmWRZVksX77c7nasf5aW47pjx47i7bffFrNmzRJfffWVePjhh9Xld+/ebdM1q3PnzuKDDz4Qs2fPFp988ono1auXGoYsXZLsVTzfeustdRs//vij09/BDz/8oC776quvOl3WU54EWH/83qxP7jqdTtx7771i2rRp4ocffhCPPPKI+rO94YYbXFZU161bpy4vSZK4+uqrxYcffihmz54tpk6dKu6//36b35Wj7QwfPtxp2b/55hubyrcv9yoFi7vvvlv9TDt37hQlJSXio48+Et27dxfx8fEiKipKNGvWTNx5551++45Zvny5us+nnnrKq234I8B269ZNtGrVSkRFRYmoqCjRuHFjcdNNN4kff/zRrd+t9cVrZ/fKWR9bU6dOdbndAQMGCACia9eu6oUUfwdYIYRo3769TX3H1T2w4eHhYt++fRWWadOmjbodTwJsbGysxyOUWrgKsD/99JP6vZ+SkiI2b95cYRl/1QmtLzynpaW5/EzNmjVTl//vv/+8+fgesb7AsH79ervLWH+/t2/fXnTo0EHExMSIiIgI0bBhQ3HttdeKKVOmOG3EcCVUAqy/jutx48ap73sSYAHY/Xt1h6sAu2PHDnX0ao1GY/eipb/qegaDQdSpU0c9L7safdz63uOPPvrI5We1fO/ExMQ4vODsqaCcRsdkMokuXbqoX8KOBqlIT09Xr8bJsix27dpVYRnrAGv50svNzXW6/2XLljk98C9cuKC2+Miy7PA+BX9PozNr1iz1/Tp16ti92nTs2DGblg1H91ta/0x0Op2YP3++3c9pvS1fKkSFhYV2L1x48ygf/CuDdfjo0qWL3WVeffVVlydLa9aDCPzwww9+LrGt8vfm2qvg6fV6mzLZ+9IuP1x/amqq3XuhNm7cqF7dTExMtNuad+LECbUVOjU1VezYscNu2Tdu3Cji4+MFANGwYUO79w6V79nx2GOPOW2VsG6hffDBB+0uW/67wl7FMz09Xa1ouaqIX3nlleqJxx8D6VjzJMD6+nuzvtKakJBgd4qHffv2qVOsOKuo5uXlqYMBJSQkiFWrVtn9fAcPHlQvoEVHR6uDgVjLyspSr75rNBqxZs0a9b39+/er4TwuLs7nqUD27t3rt+8ve5/FXR07drSpTFtfGLb3ePjhh32uLFhftPnll1+82oY/AqyzR6tWrcT27dudbuv8+fOiefPm6jp169YVEydOFN99952YPn26ePnll9XznSzL4vXXX3dZvm+//Vb9+7M+L1VGgP3nn39sLjh16tRJvPXWW2LGjBniq6++Eo8++qj6/RofHy8WLFhgdzvWF9ad9XIRwvZ+WQDi1KlTXpXdWYD95JNP1NaZxo0bi/3791dY3591QiGEer8yYO6Z58jq1avV5Tp37uz+B/bSmjVr1P2lpKQ4PHbdnUanXr16Tj+fM6ESYP11XFvX5x5//HGn+7S+XxZwfTHbEVeNf5ZGlIiICDFv3jy72/BXXU8IIZ566il1GWe9EwoLC9XGsrCwMLfOaWPHjlW37eq72l1BGWB//fVXddlPPvnE6bL79+9XW3TsjXBlXSmNjo4Wp0+fduszuXL48GF1u44OCH8H2M6dO6vv//XXXw63s3HjRpsTgr0vQeuD77XXXnO4ra+//tqt5Vyx/hvx9VHZN7tnZWWJevXquay0Pf744+oyn376qcvterq8t86cOSN0Op0A7A/iYU2v16ujW7Zo0aLC++VPlH///bfDbY0aNcrpco888oha2du2bZvTclkqhgDEjBkzKrxvfax07drVaXjdvHmzumz79u2dVuitt+uo4mndxcvRwCb79+9XlxkyZIjTz+oNTwOsL78365E7nbVIWXddtFdRFcJ2LsY//vjD6We0bvl788037S6zatUqdUTIxo0bi+zsbKHX60XXrl3Vdf1xsaj8xQ1fHr5U4CxXyAGoV9Xr168vXnzxRTFz5kzxzTffiBEjRtjM6+hscA133Hbbbeq2HF10csWXAKvVakWfPn3Eiy++KKZNmyZ++eUX8fnnn4vbb79dHd0SMLcQuqoYZWZmiptuukmtM9h73HzzzS6/n4QQ4uzZs2qLX/kKb2UEWCGE+O+//2xubSn/0Gq14vnnn3daz3nhhRfU5W+66SaHy1kP4mR5OAqErjgKsM8//7z6ert27RwGZH/WCYUQ4rPPPlO352yWgTvvvNPt/fqqtLTUZgTp9957z+GyK1euFJIkie7du4tnnnlGfPfdd+KXX34RX3/9tbjvvvvUC8CWv4klS5Z4XJ5QCbBC+Oe4XrZsmbpsgwYNnN5SU/5WRG8H5nSUnX7//XcRGRkpAPPFqNWrV9td3591PSHMPdUs5XHWO8H6VhZX+7V45513/HpOFiJIA6ylG1pcXJxbU4707NnT4YnCuuLh7IvKG5YWB0fDqvszwFr/jDt06OByW5ZuTYD9llPLexqNRmRlZTncjnVQ92Ui4lAJsEajUQwePFjdl7PwYX0v8tdff+1y288995y6/FtvveXPYtv46KOP1P2sW7fO5fITJ050+HdqHYRcXYG2Dp3l711UFEWd4NzVNBxCmO/psLQM2vt9Wx8r3333ndNtWVfYXHUNsu4y56jiaR2sJkyYYHeZp59+Wl3GVSuHNzwJsL783kpKStQTZJ06dVy25ll3T7QXYC2tIy1btnT5GYUQavcpZ6HH+rgaOXKkmDBhgvr/UaNGubUfV4IlwIaHh9tsq0ePHuq0F9bmz5+vHj+A466I7rB0rwe8b4HzNsAePHjQaRg7ceKETaBr3bq1y7/Rw4cPi3vuucfh70en04mbb77Z5rYieyxd2FNTU0VBQYHDz+vPACuEuQu+vXv+LY9atWqJCRMmOBz19vDhwzZ/G47OXdatMZ6cT+wpH2CNRqPN7+Dyyy93Wg/xZ51QCPNFasvFD0ejrlq3Mul0OnHhwgW3P683rG8P6Ny5s93xVSzOnDnjdFTorKwscc0116jbS0pKctnzsLxQCrBC+H5cG41Gm5bcMWPG2P0umTdvXoWg7G19zl52+vbbb9Xt161b12m3dX/W9Sy6d+/u8ndl3YvDXu9Ne6zHrXjjjTfcWscVLYLQmjVrAAD16tXDokWLXC6v0WgAmCc0Li4uRmRkpN3lrrjiCrfLkJeXhxkzZuCvv/7Czp07ceHCBYcjEp46dcrt7Xpr06ZN6vPBgwe7XH7w4MFYvnw5APOIxd27d7e7XMuWLZGYmOhwOw0aNFCf+zIacVpamt1R04LNo48+iiVLlgAwT8BtPUlzqLAcP4D5b3PevHlOl7f+ve7du9fu6L0AcNlllzndjrO/ld27dyMrKwsAEBsb67JMgHnkxpycHOzdu9fpcq6O6y1btqjP+/Xr53RZy6jczvTr1w8tW7bEgQMHMG3aNLzxxhs2I0waDAZ1dL769etjyJAhLrdZmXz5vW3fvh16vR4A0KdPH/W71pEBAwY4/H3l5uZix44dAIA6deq4/TcAwOnfwKuvvorly5dj48aNNiN8N2nSBJ9//rnLfbjjlVdecThSflVSFEV9HhYWhlmzZiE+Pr7Cctdeey0effRRfPDBBwCATz75xOXfgSOW4xYAatWq5dU2vNW8eXOn7zdq1AgLFy5E+/btkZ6ejn379mHOnDkYOXKk3eUnTZqEF154AYqi4J577sEDDzyAtm3bAgD27NmDL774At988w1+/vlnbNiwAUuXLrUZ1ddi7ty5+PXXXwEAn332GaKjo338pK4VFhZi9OjR+O233xAdHY1JkybhpptuQmpqKoqKirBx40ZMmjQJq1evxrvvvoutW7fijz/+QFRUlM12mjZtiueffx6vvvoqAODee+/Fr7/+iuuvvx7Jyck4ffo0Zs6ciU2bNiElJQUlJSXIz88HAKejH7urpKQEI0aMwNy5cwEA11xzDX755ZcK5bTm7zphYmIibrjhBsyaNQuFhYWYM2dOhVkh5syZo37u66+/HklJSW5/Rk+99957+PbbbwEA8fHxmD17NnQ6ncPl69Wr53R7iYmJ+PXXX9G9e3fs3LkTmZmZmDJlCp555hm/ljtY+OO41mg0mDJlCq6++mqYTCZMmzYNW7duxR133IEmTZogJycHixYtwty5c9VZCiwj5fvjuACAd955B88++ywA82jjS5YsQdOmTR0uXxl1vbvuukvNG1OnTq1QJzp+/Lg6o0vdunVx9dVXO92nhfXx47eZTfyRgv3ZApufn+/T1e3yV2utr5w763ZrbcWKFRXu53L2aNq0qd3t+LMF1vpKy5dffulyW9bz9k2cOLHC+5b33BmcybKsJ1fOQ5F1S06dOnXs3otjLVi7EFt3n/T0Ub67rnVLnrNBfsovW/6eYOu5CT192OvuYn2suBqowrpbljtz8VnuO3HWcvL++++r2yw/L+CcOXPU9ypr5FtPWmB9+b1Zf48899xzLstl/T1VvgXWevAUTx9hYWFO93v48GGbAey0Wq1PrY7BytKLAYC45pprnC5r3Y29Tp06Xu/T0u1Mo9F4vQ1vW2DdNWnSJHX7d9xxh91lrL/fnXUH/fjjj9XlLr300grvZ2dnq7eYOOqC6+8WWKPRKK644goBmO8B3bRpk93lTCaTzeBmjgbdUhRFTJw40aareflHnTp1xIYNG2wGRnJ1TnTEugXWunvr7bff7nIALn/XCS0WL17s9G/SupXJXt3R2X3uixcvdvtn8+WXX6r7iY6OFmvXrnV7XVesB5r0dCDOUGmB9ddxbTFnzhx1NGx7D51OJ7788ksxbNgw9TV36uT2WH9PWB8XHTt2FOnp6S7X92ddzyInJ0ftvmyvd4L1vcKOeqDZs3TpUnW9Bx980O31nPHPZQM/ys3N9Wl9S2uBPY5aZq0dPHgQQ4YMQXp6OgCgVatWeOyxx/DZZ59h5syZmDt3rvqwzCllMpl8KrM7LFcCAbh1tdfSclF+3fL8deUo1L3xxht46623AJjnelu2bJndK+/WEhIS1OcXLlxwuY/MzEy76/qbL8eQs+PHl7+VyioT4Pq4tvSc0Gq1bs3F587xNXbsWISHhwMAvv76a5v3LP+XJAl33323y21VNl9+bwUFBepzZy0kFs5+dr78DRgMBqfvJycn27QONm3aFF27dvV6f8HK+nvD1edr2bKleh7IyMiw+V16wvJ3bjKZ1LmSg411K8G+ffsqvH/69Gm89957AIA2bdrg4YcfdritRx55BG3atAFg7r2xYcMGm/effvppnD17FvHx8fjkk0/8UHrXfv31V7W15c4770S3bt3sLifLMj755BP1mP/yyy/tHjuSJOGtt97Ctm3bcP/996NVq1aIjo5GVFQU2rZti+eeew67du1C165dkZeXp65Tp04dnz+L9ZzThYWFLntmVVadcODAgWjYsCEA4O+//7aZd9q6lal+/fp2e70NGzbM4eO+++5zq2zTp0/HAw88AMB8Hps/fz4uv/xyDz6dc66Oi1Dnz+PaYvjw4Th06BBefPFFXHrppUhISIBOp0Pjxo1x1113YcuWLbjvvvts6nN169b1+bNYHxfFxcVu5YrKqFfFx8erc30XFhaqPU0AQAiB6dOnq/93NvdredZldSeLuSPouhBbB68rr7wSq1evrtL9T5o0CcXFxQCA559/Hq+//jokSbK77L333ltl5YqNjVWfuzO5unVlxXrdQCkqKlK75voqNTUVXbp08cu2AODdd9/Fiy++CMDc9Wbp0qVo3769y/WsA671yc+R48eP213X3yzHkCRJMBqNQXGRwvq4fumll9Tua1XBEqqMRiMMBoPLEOvO8ZWUlISbbroJM2bMwJIlS3DixAmkpqbi+PHjWLp0KQBzBalJkya+f4AAsv69uRNenP3srLc1evRom0nQffXggw/aHF8HDhzACy+8gHfeeccv29+3b5/fKoC9e/dGcnKyV+u2atUKR44cAQC7XYfLi4+PV88Fubm5Nr8Dd1lfGMjKynLrQkZVs+6elpOTU+H9JUuWqEFuwIABDs/pgPl7s3///mq39U2bNtl0v/7mm28AAG3btlW7fZZnXYbc3Fy88cYbAICIiAg89dRT7n0oKwsWLFCfDxw40Omy9evXR5s2bbB7927k5+dj7969uOSSS+wu27FjR3zxxRcOt7V79261It2iRQu3/uZcmTRpEmbNmoV169Zh7ty5GDlyJGbPnu3we7my6oSyLGPMmDF48803IYTAtGnT8PLLLwMApk2bpgbr0aNHu7x1whszZ87EnXfeCSEEwsPDMW/ePJe3uHjK1XER6vx5XFurU6cOXnvtNbz22msOt7dnzx71uaMLSp646aabEBcXh08//RQHDhxAv379sHLlStSvX9/hOpVV17vzzjvx008/ATB3Ix4zZgwAc5flw4cPAzDfmtS6dWu3t1kZt6IEXYCNj49HTEwMCgoKquTe0vKWLVsGAKhduzZee+01hwdEfn6+zS+kslnf83Dw4EGXy1sv4+wAqCrnzp1Tr+r4asyYMX67N3Xy5MnqfSHx8fFYvHgxOnXq5Na61iF369atTpdVFAXbtm0DYD5xWq4EVoYGDRrgv//+gxACp0+fRqNGjSptX56UyaKqj+v69eur914eOXIErVq1crhsdna22yf6Bx54ADNmzICiKPjuu+/wyiuv4LvvvlPvU3T3Knwws/7uOHTokMvlnS1TWX8DM2bMwIwZMwCYWyUvXLiA48eP4/3338dVV12F/v37+7yPWbNm+e2iy8qVK92619qeSy65BAsXLgTg3tV3S+sZ4F7gtSctLQ1r164FYK6EWFqtgomr3i1nzpxRn8fFxbncnvXPytFFmfXr12P9+vUut5WTk6NeII2Pj/cqwFZG+d1hHRY9GUPEmdjYWCxatAhXX321WyG2MuuEY8eOxZtvvgnA3Br60ksvAYDNxbXy98ZauGo5duaXX37BHXfcAUVRoNPpMGfOHLfGNvFUVfX6CpRAHRd79uxRe901a9bM5T3J7vrkk08gSRI++eQTt0JsZdX1+vfvj9TUVJw4cQKrV6/GsWPHkJaWhu+//15dxpPWV8A2wDZu3Ngv5ayyphnrKwOuDvwrr7wSgLmy6U6lyZ8yMjIAmAcAcXY1Y9myZTYDatjjyWd2xXoQJksLjzPWrZ2OBnCq6T777DM88cQTAMwn1YULF3p0Ja1du3ZqZW737t1OT67r1q1TK5O9evWq1FbxPn36qM/91ertq86dO6snmOXLl7s8dvzp0ksvVZ+vXLnS6bKWbmPu6N27N9q1awcA+O6772AwGPDdd98BMF8AGzp0qOeFDTIdO3ZUBxNZvXq1y25NloHj7ElOTlYH1tiwYYNNuPLW0aNH8eCDDwIwt7TPnDkTP/74IzQaDRRFwejRo20qcaHuf//7n/rc1UWzAwcOqLeP1KtXz6vWV8D2Qt3+/fu92kZlsw5a9nq3WFduT5486XJ71q35lTl4j7s8Lf+JEyfU576U3/pCsT9vh7CE2F69egEwD4p18803O7xVoLLqhM2bN1eD+ZEjR7BmzRr8/fffai+Hyy+/3OkFT2/MmzcPt912G0wmE7RaLWbPno1rr73Wr/uwcHVchLpAHdfWQc7ftwl9/PHHePTRRwGYv8P79u1rE9StVVZdz9I7AbjYbdgy2Blg7gLsaKA8R6wHYnTUI8TjcvplK26wPnm6uvJh+cEBUK+IVRVL96gjR444DJ0mk0m9X9IZTz6zK2lpaWq32e3btzsNsVu2bMGKFSsAmK90BMO9YJZRiP3x8Efr69dff41HHnkEgLni+9dff6Fnz54ebUOSJIwYMQKA+SD/9NNPHS5rfa+Upwe+p2655RY1dLzzzjs+/+35g0ajwahRowCYTyKWbnhVwTpIfvbZZ05D2Mcff+zRtu+//34A5pPnY489pl7EGDNmjFv32wa78PBwXHPNNQDMF/cs3YrsWbhwocsRoy3f7UVFRXj77bd9KpvJZMKoUaPUIPzJJ5+gRYsW6N27N5577jkA5nuk7rnnHp/2A5hHIfbX95e3ra+AuRXMctFs6dKlTm9d+Oqrr9Tn7o4UaU+PHj3U5xs3bvR6O5UlKyvL5ri1/L1asw7hCxYscDouRF5entrKDdheAAPg1u/46NGj6vKNGzdWX/e2G6d1+WfNmuV02X/++Uf9HkpMTESzZs282uf333+PzZs3AzBfdPX0/OiKJcT27t0bgDnYOQqxlVkntG5Jmjp1qk39wtNWJlf++usvjBw5EkajERqNBj/99BNuuOEGv+7DorS01Kaeau+4CHX+PK7dtW/fPrWul5CQ4JfzS3kfffQRHnvsMQDm3pSOQmxl1vXGjh2r9kCdPn06fvnlF/V2lBtvvNHjHj2Wc0dsbKx6Idtn/hgJyp1RiMePH68u42hSXguTyWQzt9ujjz7qdE6soqIi8f3334uZM2dWeM96FGJ3Rj8bNGiQuvyHH35Y4X29Xm8zuTWcjDL44YcfqstMmzbN5b5djdQ8e/Zs9f169eqJvXv3Vljm+PHjolmzZupyjiZYtrzvzoiQniwbCqZNm6aOvhgVFeXTqHinT58WUVFRAjCPfLps2bIKy1iPwNioUSO35rHz1ZNPPqnus1+/fuLs2bMOlzWZTGLp0qXi9ddfr/CesxFqPV325MmT6gi/4eHhLo+JjIwM8dprr4nt27dXeM+TeaWFEDbzJj744IPCZDJVWKb8XJ/ujB6ak5Oj/v6tH87m6PMHT0Yh9vX3tmbNGvX9xMREu5PBHzhwQB2Z1fKwNw9sQUGBaNy4sQAgJEkS7777rt3fhUVOTo74+OOPxdKlSyu89+KLL6r7Kj8arMFgUOeChA+jRAYj63l7L7vsMpfzwMqyLHbu3On1/kpKSkR0dLSAFyOZWngzCvG6devE119/LUpKShwuc/LkSZt5C1u0aGF3VFu9Xi8aNmyoLjd06FC7o5cXFRWJ66+/Xl2uffv2QlEUtz+nhSejEJefI92eXbt2CVmW1WUczTt5/Phxm7ksHY32uXv3bnHu3DmHZfrxxx/V+Z8jIiLEvn37nH4GV8rPA2stPz/f5vt56NChFUaL92edsLz8/Hz17zsmJkYdgTYqKsrjuVOdWbp0qTr3rEajET/99JNX2zl48KB47733RF5ensNlys8Dm5iYKLKzsz3aTzCMQmw5Vzhaz9/HdUZGhtizZ4/D8mzdulU0atRI3c7UqVPd/iz2uMpOjz32mM13m715uP1V17PH+m/A+vxur57rTE5OjlrnvuGGGzxa15kquwd2wIABaivU3XffjccffxyNGzdWb45v3ry5OuebLMv49ddf0bNnT5w+fRoff/wxfv75Z4wYMQIdO3ZUB6Y4ceIEtmzZguXLl6OwsBCvv/66z+V85JFH1NbNJ554AqtWrcJVV12FpKQkHDx4ENOnT8fBgwfRr18/HDx40Gm30QEDBqjPJ0yYgPPnz6NVq1bQas0/9gYNGqBDhw5ul+3mm2/G3LlzMWvWLJw9exZdunTB2LFj0bNnT2g0GmzZsgXffvut2iIxePBgtXsdmS1cuBB33XWX2rp+1113IScnx+X8WV26dEFqamqF1+vXr48PPvgA48aNg9FoxP/+9z+MHj0affr0gdFoxMKFC9VuF1qtFl999RUiIiIc7sf6nuujR486nJPVlUmTJuG///7D8uXLsXLlSjRt2hTDhw9Hz549kZKSAr1ej/T0dLU1Pz09HQMGDMALL7zg1f7c0bBhQ8yaNQvXX389SktLMWbMGHz44Ye4/vrr0aJFC0RGRiI3NxcHDhzAhg0bsHbtWphMJr8MbPHll1+iW7duKCoqwueff47169fj9ttvR8OGDZGRkYHZs2dj7dq16NmzJ06cOIHTp0+7NSBCfHw8Ro4cadOlqG/fvmjRooXPZQ4WvXv3xoMPPojPP/8c2dnZuOyyyzBmzBj07t0bsixj06ZN+Pbbb1FYWIgbbrjB6bEUHR2NefPmoU+fPsjLy8OECRPw5ZdfYvjw4Wjbti1iYmKQl5eHI0eOYNOmTVi1ahX0ej1++OEHm+38888/autCw4YNbVobAfOxNmPGDHTq1Al5eXl4/PHH0adPH793BwyEsWPHYu7cufjzzz+xYcMGtG3bFvfccw/atm2LwsJCLF68GL/88ov6Hff666+7NSidI+Hh4bj66qvx66+/YsuWLSgoKHDZHbn894j1/bpHjx6t8H6XLl1w44032ryWkZGBe++9F08++SSuuuoqdO3aFQ0aNEBERAQyMzOxdu1azJkzRx10MTY2FrNnz1bPr9bCwsLwySefYPjw4RBC4Pfff0ebNm0wevRodTyCvXv3Yvr06Wo3w7CwMPzf//2f04Fhqkq7du0wfvx4fPTRRwCA5557Dn/88Yc6D2xxcTE2bNiAH3/8UW2FatSokTooUXl//fUXnn/+eQwcOBC9e/dWzzPHjh3DvHnz1HkgdTodZs6cWanHTUxMDBYuXIhrrrkGa9aswe+//44RI0bgl19+UXuxVGadMCYmBiNGjMDUqVNtBr8cPny4W/dVuuO///7D0KFDUVJSom47MjLSZb2jdevWFQbKKSgowNNPP40XX3wRgwYNQrdu3dC4cWNER0cjJycHmzdvxqxZs9RjTqvV4qeffnJ6D+xvv/2Gf//91+Y1614EH3zwQYUWN8vAZOWtWLFC7QFoYRn/AwC+/fZbdawZi6eeesqre3T9fVyfOHEC3bp1Q/fu3TFgwAC0bt0akZGRSE9Px7Jly7BgwQK1B9eECRNsegZUhsmTJ0OSJEyePFnNHStXrrQZT6Iy63p33nmn2g397NmzAMw9SjwdV2LVqlXq+civPQ78kYLdaYE1Go02V9nKP+xd+T9z5owYMGCAw3WsHxqNRnz99dcVtuFpC6wQQkycONHpvnr16iXOnTunXh1ydoX11ltvdbid8j8rd1qVDAaDuOeee1z+PG666San82NalqtpLbDlW9ncfdhrTbL23nvvibCwMIfrx8bGunU12HodX696lpaWiocfflhoNBq3PuPo0aMrbMOfLXkW69evV+eWdPWIiYkRO3bsqLANT1tghTDP72xpAbb3aN++vThx4oRo0KCBACAuueQSt7a7ceNGm+04ml/Nn6qyBVYI8/f3HXfc4fBnJ8uyePfdd522tFjbt2+f6Ny5s1t/A+Hh4WLhwoXqutnZ2ep3ryzLTr/Xf/zxR3U7nTt3dtpqE0qKiorEiBEjXJ4THbXUeWrevHnqdqdPn+5yeU+/X+3VG6znIHb1aN++vd2eGuX9+OOPIi4uzuX2kpOTxYIFC7z5UQkh/N8CK4S59eTJJ5+0aYl19OjYsaPTOVvfe+89l9to2rSpWL58ubc/AhvufC8UFBSIK6+8Ul3u+uuvr9AS6486oT2rV6+usP6KFSt8/dgq68/vycPe9/G2bdvcXj81NdWteq/1+cTdhyPe1LEc1XVctcBa+Ou43rx5s8ttxMbGOp1v1hPuZCchhHjiiSfU5Zo3b16hJdYfdT17CgoKKsyJ+9JLL3n8OW+++WYBQERGRjrtOeCpKguwQghRXFws3n77bdGzZ0+RmJho88N2VslatWqVuP/++0W7du1EQkKC0Gg0Ii4uTrRt21aMHDlSTJkyRZw5c8buut4EWCGEWLhwoRgyZIhITk4WYWFhol69eqJ///7i66+/VrsouRNgjUajmDJliujbt69ITk5Wu3XZ+1l5Uilfv369uPvuu0Xz5s1FdHS0iIyMFE2aNBG33367Wycdy34YYN17uAqwQgixc+dO8dBDD4mWLVuK6OhoERsbK9q3by+eeeYZcezYMZfrFxYWqvvT6XQiMzPTD5/Y3OXo2WefFT169BApKSlCq9WKqKgo0aRJE3HNNdeIt956y25IFKJyAqwQ5gsxP/74o7j55ptFkyZNRExMjNBqtaJWrVri0ksvFffee6+YPXu2KCgosLu+NwFWCCHS09PFU089JVq1aiUiIyNFQkKCuPTSS8X7778vCgsLhaIo6iTeffv2dWubiqKok5DXqlXLaZdHf6nqAGsxf/58MWTIEJGSkiLCw8NFamqquPXWW8W6deuEEO5VVC0URRG///67GDNmjGjZsqWIi4sTGo1GJCQkiI4dO4rRo0eLqVOniqysLJv1Ro4cqe7j2WefdboPIYQYNWqUuvyTTz7pcvlQsmjRInHrrbeKtLQ0ERERIWJjY0W7du3E+PHj/dqN3Wg0itTUVAFADBo0yOXynn6/2qs35Ofni99//108++yzon///qJly5aiVq1aQqvVioSEBNGmTRsxZswY8ccffzjthl5eRkaGeOedd8SAAQNE3bp1RXh4uAgPDxf16tUTgwcPFpMnT/a4u2V5lRFgLXbv3i2efPJJ0b17d/XnYfk+HzFihJg9e7bdbtTWTp48KT766CMxdOhQ0bJlSxEfHy8iIiJEamqqGDJkiPj222/9equLu98L9kKsvYtOvtQJ7VEUxebWq7S0NK+6jjvizwBbUlIiFi1aJF5++WVx1VVXidatW6t1y7i4ONG8eXNxyy23iBkzZrh9wS7UA6wQ/jmuCwoKxNSpU8WYMWNE+/bt1fp/3bp1Ra9evcTbb7/ttIuup9zNTkLYdhW2F2KF8K2u58hdd92l7leSJHHkyBGP1s/NzVXrVPfee69H67oiCVHWrktEAbV48WJ1sJXx48d7PKAQ+W7nzp3qCHnu/g6WLVuGQYMGAQAeffRRtZsfUXUyefJkPPHEE9BoNDh27FhQTqdDRETB47vvvsPdd98NSZKwa9cu/w3ghCochZiInLPcFxIbG1up96KSY//3f/+nPnf33tspU6aoz6vD3K9E9jzwwAOoW7cuTCYT3n333UAXh4iIgpj1uWLkyJF+Da8AAyxR0LAE2CeeeAIpKSkBLk31s2bNGqfzz3722WfqYEANGjRwa26+//77Tx2IY+DAgX7/giYKFpGRkXjllVcAmKfocTQ3IRER0cyZM7F//37odDq/DLJbHrsQEwWBCxcuoHbt2khOTsbhw4cRGxsb6CJVO82bN0dJSQn+97//oXPnzkhJSYHBYMDhw4cxd+5cm5ES58+f7zDALlq0CIqi4MCBA3j33XfV0fn++ecf9OrVq0o+C1EgKIqCbt264d9//8XDDz/sdO5rIiKqmUwmE9q1a4f9+/fj2WefxaRJk/y+DwZYIqoRmjdvjsOHDztdJjIyEl9//TVGjRrlcBl7w++7e7/skiVLUFRU5LqwdiQnJ6N3795erUtERERUXTDAElGNsGHDBvz666/YsGEDTp8+jczMTBQVFSExMREtW7bEwIEDMW7cONSpU8fpdiwBNiYmBi1btsS4ceNw1113uTVvbFpamjofnaf69OmDVatWebUuERERUXVRccZvIqJq6LLLLsNll13m83Z4zY+IiIgocNgCS0RERERERCGBoxATERERERFRSGCAJSIiIiIiopDAAEtEREREREQhgYM4ERFRtaIoCoqLi1FUVOTwUVJSAr1eD71ej9LSUvW5vf/r9XqYTCYoimLzr73XFEUBYB6t2tHDMmK1JEnQaDQICwtTH1qt1u5zyyMiIgKRkZGIiIhw+DwyMhKRkZGIjo5GdHQ0tFqe6omIqPrgWY2IiIKOEAIFBQXIy8tDXl4e8vPz7T63fq2goADFxcUoLi4OdPGDSmRkJGJiYhATE4PY2Fj1ufUjLi4OCQkJNo/IyEi78x4TEREFEkchJiKiKiGEQG5uLrKyspCdnW3zb05OToX/GwwGn/an0WgQGRmJqKioCo/IyEgsnfo3JAFAkawegGTv/wIAyv4VAITlNavnAubtWS1qeQ6b5+LiaxLMK8nmf0XZv9avQQaEXPaaBoAscPV9/VBSUoLi4mKUlJQ4fO4LnU6H+Ph4JCQkqP8mJCSgVq1aSE5ORlJSEpKTk5GcnIyYmBiGXSIiqhIMsERE5DNFUZCdnY1z587h/PnzOH/+vM3z8+fP48KFC9Dr9R5tNzIyEnFxcYiLi0NsbCzi4uLw98yNkIwSYJSt/pUBowTJJAEmCTDJ5vCJmhuqhCQAjQC0CoRWAJqyf7UCQqsAGoGhj12ltmjn5OSoj9LSUo/2pdPp1DBrHWyTk5NRt25d1K5dG8nJydBoNJX0aYmIqKZggCUiIpcURUFmZibOnj2LM2fO4OzZs+ojIyMD58+fh8lkcmtbcXFxSExMRK1atbB9yR5IBhnQa8r+lSEZ5IvPRc0NoIEkZAGEKRBlD8tzaBUMuvdKXLhwAZmZmcjMzEReXp5b29RoNEhJSUHdunVRp06dCv/WqVMHOp2ukj8ZERGFOgZYIiICAOj1epw5cwYnT57EqVOnbIJqRkaGy9ZTWZaRlJSElJQUpKSk4J+fNptDaKkGUtm/DKXVjxp2dSYInQIRruDm56/FhQsXcP78eaSnp7t1gUOSJNSpUwcNGjRQHw0bNkTDhg1Rv359hIeHV9EnIiKiYMYAS0RUgyiKgvPnz+PkyZM4efIkTpw4gVOnTuHkyZNIT09XR9G1R6PRoHbt2qhXrx7++2sPpBKN+VGquRhOa3CXXXJMQAA6BSLCBBFugghXMGR8f2RkZCA9PR0ZGRku79lNSUlBw4YN0aBBAzRq1AhpaWlo3Lgx6tatq47sTERE1R8DLBFRNaQoCs6ePYujR4+qj2PHjuHkyZNO72+MiopCamoqGjZsiJXfrTeH07KgilIGVKocAgIIExARRohIE2574wacPn0ap0+fxqlTp1BQUOBwXZ1Oh8aNG9s80tLS0LBhQ04hRERUDTHAEhGFMCEEzp07VyGoHjt2zGGLllarRf369dGoUSNsmL0NUrEGUrEWUrEGMDCkUnARKBt4KtIIEWHC7ZNuxIkTJ3D8+HGcPHnSYdd2jUaDBg0aoFmzZmjatCmaN2+O5s2bo3bt2hwxmYgohDHAEhGFCKPRiBMnTuDgwYM2D0etU5aWqcNrT0Iq1EIq0kIu1gAlGoZUqhYEBBBhghJlgog0YtC43jh+/DiOHTvmcD7g2NhYNGvWTH00b94cTZo04T22REQhggGWiCgIlZaW4vDhwzh48CAOHDiAgwcP4siRI3ZbmzQaDRo1aoQTm89CKjIHValQa+76y6BKNZB6z22UEUq0EQPuvxyHDh3C8ePH7Q4mJcsyGjVqhFatWqF169Zo1aoVWrRogYiIiACUnoiInGGAJSIKMJPJhGPHjmHv3r3Yu3cv9uzZg2PHjtmtaEdGRqJFixbYveggpIIwtWWVI/sSuSYkARFlhIg24sYXrsbhw4dx6NAh5ObmVlhWo9EgLS0NrVq1Qps2bdCqVSs0bdqUU/0QEQUYAywRURU7f/489uzZowbWffv22e3umJCQgBYtWuDf33ZDKgyDVMBWVSJ/s7TWKtFGjP7gRuzbtw/79u1DVlZWhWXDwsLQrFkztG7dGh06dED79u1Rt25d3lNLRFSFGGCJiCqR0WjE4cOHsX37duzcuRN79uzB+fPnKywXGRmJ1q1bY8f8/ZDywyDnh3FaGqIAUUNtjAG3Troe+/btw/79+5GXl1dh2aSkJLRv3159tGjRgq20RESViAGWiMiPSkpKsGfPHuzcuRPbt2/H7t27K7SuyrKMJk2a4OjaM5DztZDyw8zdgBlWiYKWgADCTVBijRj24mDs2rULBw4cqNDVX6fToVWrVmqg7dixI+Li4gJUaiKi6ocBlojIB/n5+di+fTt27NiBHTt2YP/+/RUqtNHR0Wjfvj22zN4NOa+sK7AiB6jEROQvQhYQMQbc9dnN2LVrF3bt2lXhflpJktC8eXN06tQJnTp1YqAlIvIRAywRkQdKSkqwc+dO/Pvvv9i6dSsOHDgARVFslklOTkbW3nzIeTpIeWUDLbF1lajaExAQESaIOAP+92QfbN++HSdOnLBZpnyg7dSpE2JjYwNUYiKi0MMAS0TkhNFoxN69e9XAunv3bhgMBptlGjZsiDNbMiHnhkHO0wGlvHeViMxEmAlKvAFDnumLbdu2OQy0l156Kbp374727dtzTloiIicYYImIyjl58iQ2bdqEjRs3Yvv27RXuYU1JSUHmrnzIuTrIOTpIek2ASkpEocZVoA0PD0enTp3QrVs3dO/eHY0bN+Yox0REVhhgiajGKykpwbZt27Bx40Zs3LgRp0+ftnk/Pj4e+YdLzGE1R8epbIjIb0SYCUqCHgMfvRybN29GZmamzfspKSno1q0bunXrhq5duyIhISEwBSUiChIMsERU4wghcPLkSWzYsEFtZdXr9er7Wq0WHTp0wI7fDppDK+9hJaIqICAgooy495tbsHnz5grfTZIkoW3btujVqxcuv/xyNGnShK2zRFTjMMASUY1gNBqxa9curFmzBmvXrsWZM2ds3q9duzYubM+HnK2DnKuDZOIowUQUWEIWEHF6DH/jamzatAlHjhyxeb9u3bq4/PLLcfnll6NTp06cf5aIagQGWCKqtoqLi7F582asWbMG69evR15envqeVqtFx44d8d+c/ZCzwiEVs1swEQU3oTPhkdljsHbtWvz77782rbORkZHo1q2bGmjZ1ZiIqisGWCKqVrKzs7F27Vr8888/2LJli00FLy4uDgUH9ZCzwiFn6zgXKxGFLCELKAml+N8zV2LdunU2987KsoyOHTviyiuvRJ8+fZCcnBzAkhIR+RcDLBGFvMzMTKxevRorV67Ejh07YP21Vq9ePZzbkgs5M9w8JytbWYmomhEQENFGjPr4eqxbtw4HDhyweb99+/bo06cP+vTpg7p16waolERE/sEAS0QhKTs7G3///TdWrFiB//77zya0tmrVCoeWnDKH1iIOwERENYsIN+HeqSOxatUq7N692+a91q1b48orr0Tfvn3RsGHDAJWQiMh7DLBEFDJycnLw999/Y+XKldi2bRsURVHfa9u2Lfb/eQKazAhIpZyXlYgIMN83O27GKKxevRo7duyw+d5s3bo1Bg4ciP79+7ObMRGFDAZYIgpqxcXFWLNmDZYsWYKtW7fCZDKp77Vu3RoHF56C5gJDKxGRKyLMhEd+HoPVq1dj27Zt6vepJEno0qULBg4ciD59+iAmJibAJSUicowBloiCjslkwrZt27B48WL8/fffKC4uVt9r2bIlDi8+A82FcEil2gCWkogodAmtggdnjcKyZcuwa9cu9XWdTofLLrsMAwcORM+ePREeHh7AUhIRVcQAS0RB48iRI1i8eDGWLVuG8+fPq683aNAA6etyIJ+PgFzC0EpE5E8i3IQxXw3D0qVLcezYMfX16Oho9OvXD9dccw3atWsHSeJ4AkQUeAywRBRQOTk5WLJkCRYvXoyDBw+qr8fGxqLwgBGacxGQ8jl6MBFRZbOMZnzTu1dVuJCYmpqKIUOGYPDgwUhKSgpgKYmopmOAJaIqpygK/v33X8yfPx9r1qyB0WgEAGi1WigZGsjnIiBnhUMSDK1ERIEgICDiDej/VHesWrUKpaWlAACNRoMePXpgyJAh6NmzJ7Ra9oohoqrFAEtEVebChQtYuHAhFixYgDNnzqivt2rVCof/OgP5fAQkoxzAEhIRUXlCo+CxuXdiwYIFNtPyJCYmYtCgQbjuuuvQuHHjAJaQiGoSBlgiqlQmkwmbNm3C/PnzsX79enXUy+joaBQfUqBJj4RcGBbgUhIRkTuUSCNuen8wFi9ejKysLPX1zp07Y9iwYejduzdbZYmoUjHAElGlyMnJwZ9//ol58+bh3Llz6uvt27fHvt9OQL4QAUlhF2EiolAkJIFX/34cf/75J9avX6/OL5uUlITrrrsO1113HVJSUgJcSiKqjhhgiciv9u/fj99++w3Lly+HXq8HAMTFxaFwrxFyRiTkIl6ZJyKqTkS4CSM/+R/+/PNPZGdnAzDfK9urVy8MGzYMXbp04QjGROQ3DLBE5DOj0YjVq1fjt99+w86dO9XXW7dujUN/lN3bygGZiIiqNSEJTFwyDvPmzcP27dvV11NTUzF8+HBcffXViIyMDGAJiag6YIAlIq9lZ2fjjz/+wO+//44LFy4AMF91F2fDoDkbyelviIhqKCXKiCGvXYElS5agqKgIgLk3ztChQzFs2DAkJycHuIREFKoYYInIYydPnsTs2bOxaNEitZtwrVq1kPtfqTm4GjQBLiEREQUDoVEwbtZt+OWXX9TR57VaLQYMGICbb74ZLVq0CHAJiSjUMMASkdv27NmDmTNn4u+//4blq6NNmzY4OO+0eVAmdhMmIiI7BAReWjUeP//8M3bs2KG+3qVLF4wcORI9evSALHMaNSJyjQGWiJxSFAUbN27ETz/9ZHNPk5ylg+ZUNKQ8dhMmIiL3KTEG9HmqC1auXKlOrda4cWPcfvvtGDBgAKfhISKnGGCJyC6j0YilS5di1qxZOHr0KABzty/ltBaaU9GQi1nBICIi74lwE278YCDmz5+PwsJCAEDdunVx22234X//+x/Cw8MDXEIiCkYMsERkw2AwYPHixfjhhx9w9uxZAEBUVBRKDwCaM1GQ9Ly/lYiI/EdoFIz9fhh+/vln5OTkADCPqzBy5EgMHToUUVFRgS0gEQUVBlgiAgDo9XosXLgQP/74IzIyMgAAiYmJyPvXAE16JCQT700iIqLKI2SBcbNvxcyZM3Hu3DkAQGxsLG6++WbcdNNNiI6ODnAJiSgYMMAS1XClpaVYsGABZsyYgfPnzwMoG1F4ix6a9ChICu9vJSKiqiMkgSfm34UZM2bg5MmTAMxT8Nxyyy248cYb2SJLVMMxwBLVUEajEX/99RemTZumBtfk5GTkbCyFnBHJ4EpERAElIDBx6Th8//33OHHiBAAgPj4et912G4YNG4aIiIgAl5CIAoEBlqiGURQFK1aswLfffovTp08DAGrXro2sdcXm4MqpcIiIKIgICExYdB++//579bxVq1Yt3HbbbRg6dCgHeyKqYRhgiWoIIQTWrVuHb775BocPHwYAJCQkIH+ryXyPK4MrEREFMQGBJxfcjalTp6qDDNatWxd33303Bg0axHlkiWoIBliiGmDnzp34/PPPsXv3bgBATEwMincJ86jCCk/4REQUOoQkMH7uaJtbYJo3b44HHngA3bp1gyTxgixRdcYAS1SNnT59Gl988QVWr14NAAgPD4fxkAaa09GQjAyuREQUuoQscOe0YZgxYwYKCgoAAF26dMG4cePQqlWrAJeOiCoLAyxRNZSfn49p06bht99+g9FoNHerOhMO7fFoSAbO40pERNWH0Cq44cN+mDt3LgwGAwBg0KBBuP/++1G7du0Al46I/I0BlqgaMRgMmDdvHqZNm4a8vDwAgJStg/ZoLOQibYBLR0REVHlEuAn9XuiKJUuWQAiBiIgIjBo1CrfccgsHeiKqRhhgiaqJzZs34+OPP1anGmjSpAlOzc+GnMOTNhER1Rz/t/cNfPrpp9ixYwcA80BP48aNQ9++fXl/LFE1wABLFOIyMjLwf//3f+p9rgkJCSjYbDJPiQOeqImIqOaxzCE7ZcoUnDt3DgBwySWX4NFHH0WLFi0CXDoi8gUDLFGI0uv1mDVrFn744QeUlpZCo9EAJ8KhORENycQBmoiIiIQsMOrrIfjpp59QWloKWZYxfPhw3H333YiKigp08YjICwywRCFo06ZNmDx5sjqhu5QbBu3hWMhFYQEuGRERUfAROhN6PdMBK1euBAAkJydj/Pjx6NOnD7sVE4UYBliiEJKdnY1PP/0Uy5YtAwAkJSUhd50B8vkIdhcmIiJy4c0NT9tcAO7Rowcee+wxNGjQIMAlIyJ3McAShQAhBBYtWoTPPvsMeXl5kGUZ0skIdhcmIiLykJAEbvv6GsyYMQMGgwE6nQ5jxozBrbfeCq2WI/YTBTsGWKIgd+rUKXzwwQfYunUrAEAq0EJ7KA5yAbsLExEReUuJMKLjA02wZcsWAECLFi3w7LPPcpAnoiDHAEsUpEwmE37++Wd8++230Ov10Ol0MO3XQXMmCpJgd2EiIiJfCQhMWHQfPvnkE+Tl5UGj0eD222/HHXfcAZ1OF+jiEZEdDLBEQejUqVOYNGkSdu7cCQCQcnQIOxQLqYRdm4iIiPxNhJnQc0I7dUq6Jk2a4JlnnkHbtm0DXDIiKo8BliiIKIqCuXPn4ssvv0RJSQkiIyNh2KHlnK5ERERV4PkVD2Hy5MnIzs6GLMu47bbbcOeddyIsjLftEAULBliiIJGeno63334b//77LwBAyglD2MF4SKWaAJeMiIio5hBaBVe+0FEd8b9ly5Z44YUXkJaWFtiCEREABliioLBkyRJ8+OGHKCoqQnh4OEx7dJDPstWViIgoUJ5f8RDef/995OXlQafTYdy4cbjxxhs5byxRgDHAEgVQUVERJk+ejMWLFwMApLwwaA/EQea9rkRERAEndCZ0fKgJNm/eDMA8b+wzzzyD5OTkAJeMqOZigCUKkH379uHVV1/F6dOnzfO6Hos0z+vKVlciIqKgISAw7pdbMWXKFOj1esTHx+P555/HZZddFuiiEdVIDLBEVUxRFMyePRtff/01jEYjateujexlBsh5HK6fiIgoWH195D28/vrrOHjwIABg1KhRuPvuu6HVstcUUVVigCWqQnl5eXjjjTewYcMGAIB8IRzag3GQTHKAS0ZERESuCEngmvcux7x58wAAl1xyCV566SXUrl07sAUjqkEYYImqyIEDB/DCCy8gPT0dOp0Oyp5wyOkcqImIiCjUTFw2Du+++y6KiooQHx+PF154AT169Ah0sYhqBAZYoiqwYMECTJ48GXq9HijRIGxvPORCzilHREQUqkSEEY1vraV2Kb7rrrswevRoyDJ7VRFVJgZYokpUWlqKjz/+GH/++ScAQM7SQbs/nl2GiYiIqoHyXYqvuOIKPP/884iKigpswYiqMQZYokpy4cIFPP/889i7dy8kSYJ8NAqaUxxlmIiIqLp5/M878cEHH8BgMCAtLQ1vvvkmGjVqFOhiEVVLbAYiqgT79+/H/fffj7179yIuLg7anfHQnopheCUiIqqGJl/7PT799FMkJyfj2LFjuP/++7F+/fpAF4uoWmILLJGfrVq1Cm+++SZKS0shFWkQticBUgmH2CciIqruRJgJLe+ui127dkGSJDz00EMYMWIEJIkXsIn8hQGWyE+EEJg2bRq+++47AICUpUMY73clIiKqUYQkcNXbPTB//nwAwI033oiHH36Y88US+QkDLJEfGAwGvPvuu1i8eDEAQHM6Cpqj7DJMRERUEwkI3D1jOKZMmQIA6NmzJ15++WUO7kTkBwywRD4qKirCiy++iM2bN0Oj0UDaFwVNBk9QRERENd3zKx7CG2+8Ab1ejxYtWuCdd95BcnJyoItFFNIYYIl8kJWVhQkTJuDAgQOIiIiAcWsENNnhgS4WERERBYmPdr6CiRMnIicnB7Vr18aHH36I1NTUQBeLKGQxwBJ56eTJk3j66adx5swZQC8jbE8C5IKwQBeLiIiIgowIN6Hu8CicOHEC8fHxeP/999GqVatAF4soJHF0GSIvHDp0CA899JA5vBZroNuRyPBKREREdkmlGqT/XIxWrVohNzcXjz76KP77779AF4soJDHAEnlo7969GD9+PHJyciAVaKHbkchpcoiIiMgpySjj6NQsdO7cGUVFRXjqqaewdu3aQBeLKOQwwBJ5YOfOnXj88cdRUFAAKS8MYTsTIRk0gS4WERERhQDJJGP3/51Gr169oNfr8cILL2D58uWBLhZRSGGAJXLTv//+i6eeegpFRUWQcsMQtjuBc7wSERGRRyQhYfM7B3HVVVfBZDLh9ddfZ4gl8gBr30Ru2Lx5MyZMmIDi4mJI2TqE7U5keCUiIiKvSJCw8sVtuOaaa6AoCt544w2sWLEi0MUiCgkchZjIhe3bt+Opp55CaWkp5CwdtHsTIAkp0MUiIiKiECcgMODNrli4cCE0Gg1eeukl9OvXL9DFIgpqbEIicmLPnj145plnGF6JiIjI7yRIWP78Vlx99dUwmUx47bXXsGrVqkAXiyiosQWWyIFDhw5h/Pjx5gGbcsIQticRksLwSkRERP4lIND/jS5YtGgRtFot3n33XVx66aWBLhZRUGKAJbLjxIkTePjhh81T5eSFIWxXAiSFHRaIiIiocggI9HqxHVauXInIyEhMnjwZbdu2DXSxiIIOAyxROZmZmRg3bhzS09MhFWjNU+VwwCYiIiKqZEISuOTRVGzZsgXx8fH49NNPkZaWFuhiEQUVBlgiK0VFRRg/fjwOHDgAqViDsO21IBkZXomIiKhqCFlBs7uTsXfvXqSkpODzzz9HnTp1Al0soqDBmjlRGaPRiJdffhkHDhwA9LJ5nleGVyIiIqpCkiLj8PcXkJqaivPnz2PChAkoLCwMdLGIggZr50QAhBD44IMPsHHjRsAkIWxPAqQSrecbkqSLDyIiIqq5fKgPSEYZ6XOKkJSUhKNHj+LVV1+FyWTycwGJQhMDLBGAmTNnYsGCBZBlGdr98ZALwjzbAEMrERER2eNlHUHSa/DWW29Bp9Nhw4YN+PzzzyuhcEShhwGWaryNGzfiyy+/BADIB6OhyQr3bAMMrkREROSKF/WF8e1ewvPPPw8A+OWXX/D777/7u1REIYeDOFGNdvLkSdx///0oKCiAnB4J7eE4SO4eEa5ORDy0iIiIai5n9QRP6giShDu+vxbffPMNNBoNJk+ejE6dOvlcPKJQxQBLNVZhYSEeeOABHD9+vGyu11qQhOTeScWdq6g8tIiIiGouf13oliQICPR55RIsXboUtWrVwjfffIPk5GTfy0gUgtiFmGokIQTeeustHD9+HCiVEbYvwRxeAecnHN7rSkRERP7gTp2i7H0JEla/tgNNmzZFVlYWXnnlFRiNxiooJFHwYYClGum3337DmjVrEBYWZg6vBo3zFRhciYiIqDK4WceQFAmvv/46oqKisGPHDnz11VdVUDii4MMASzXOgQMH1JH8xP4IyAU65yswuBIREVFlc6O+cVfak5g4cSIAYNasWfj7778ru1REQYf3wFKNUlRUhHvuuQenTp2CnBkO7b4ESLBzwhDC9+DKQ4uIiKjm8qUeYalDONjGDZ/0wezZsxEbG4upU6ciJSXF+30RhRi2wFKNMnnyZJw6dQoolaE9FG8/vAL+aXVlyy0REVHN5GsdwMX6cx9dhVatWiE/Px+TJk2Coii+7Y8ohDDAUo2xcuVKLF68GLIsI+xAAiQj//yJiIjISjBdwJYkQLJfV5GEhBdeeAHh4eHYsmULfvvtN//skygEsAZPNUJOTg4mT54MAJCOR0LOc3Dfq4MTBREREdUQwTZwo4O6yT1Nn8aDDz4IAPjiiy9w7NixKiwUUeCwtk41wkcffYScnBxIhVpoTsZUXECSGV6JiIjoomALsXbqKZ/d9BN69OgBvV6PN998k1PrUI3AGjtVe6tWrcKKFSsAAWgPxl+c79Wi/AnBn0E2mE5+RERE5BlPW2P9ed63Vx8p95oECds+PYKYmBjs37+fXYmpRmCApWotPz9f7TqsORUNuTDs4ptsdSUiIiILZ+EzmC5Il6u/SAYNxo0bBwD49ttvkZGREaiSEVUJ1t6pWvvmm2+QnZ0Nqahc12EGVyIiIvJEEN8b+/EN03HJJZeguLgYkydPBmfJpOqMtXiqtg4ePIjff/8dAKA9HGvuOuxuqysDLhEREdlTFSHW3XpIWb1GgoSnnnoKWq0W69atw+rVqyu3fEQBxFo6VUtCCEyePBmKokA+HwE5LzxwoTSYrtYSERFRRZ6eq+0tH8jzvSTj3mYTMGrUKADA559/jtLS0sCVh6gSMcBStbR48WLs2rULMEnQHo9niyoRERH5VxB2KZ45bjFSUlKQnp6OOXPmBLpERJWCtXqqdkpKSvDVV18BADSnYiDpNd5tiKMRExERVX++nqP9HWR9qH9Iioz7778fAPDDDz8gOzvbX6UiChoMsFTt/Pbbb7hw4QJQooHmjJ05Xz3BllsiIiKqQpLGywvvZd695lu0bt0aRUVF+O677/xUKqLgwdo5VSv5+fmYMWMGAEB7MrbinK9ERERE1oQwP3zlx+n5fAmxEiQ8+OCDAID58+fj+PHjfikTUbBggKVqZdasWcjPzzdPm5MZ5Z+N+qsVlt2IiYiIgpcvIda6ruBLF2Cr4OpLiJ3Q4z306tULiqLghx9+8Ho7RMGIAZaqjezsbHXAAu2peEhgYCQiIiIP+Gv+VG9bY8utI2k0XgfZsWPHAgCWLVuGkydPerUNomDEAEvVxq+//ori4mJIBWGQsyP9u3G2whIREdUMnnYpdlZH8KD+4CyoehNiH7nkNfTs2ZOtsFTtMMBStVBUVIS5c+cCALRn4sytr5IMSWZgJCIiIi/4szXWD8u5G2KtlxszZgwAYOnSpTh9+rR75SAKcgywVC0sWLDAfO9rsdb/ra/+xlZYIiKi0OAqxHoSTv3Qm8vTLsWPdX4TPXr0gMlkwuzZs33eP1EwYIClkGc0GvHzzz8DADRnY23vffVnKyyn1CEiIqp5/DVKMeCwLuFpF2FHy9t7/ZZbbgEALF68GPn5+R7thygYsUZOIW/16tXIyMgADDI0F6IDXRz3sBWWiIgotJQPsd5e2La3nhfbcjf0Pnv5B2jSpAmKi4uxYMECj/dDFGwYYCnk/fHHHwAATUaM/Xlf2QpLRERE/lAJLbE+zflq1aXYYassJIwYMQIA8Ntvv8FkMnm9P6JgwNo4hbQTJ05g27ZtgAC056uo9ZUjEhMREdVcQvinLiDJkHQ6v90b68zHN81AbGws0tPTsXXrVp/3RxRIDLAU0iytr3JOBCS91u4yksZ8gpDC7L8fUAyxREREoUWSAKGYH/7gh15icnQk5GjHg1hKQsagQYMAAH/99ZfP+yMKJAZYCllGoxFLliwBAGjOxVR4X9LI5tAqV8KfObsSExERkQ8h1ubCuq8htmyUY2dB9s9X1wIA1qxZg7y8PN/2RxRArIVTyPr333+Rk5MDGGTIuRE270kauUJwlTQatsISERGR9+yds/3ZEutFkLUJrFZBtsJyRTq0aNECBoMBy5cv96WkRAHFAEsha9myZQAATVaUzeBN9sJrpWArLBEREQEeh1inF9Q9DbEORjW2F2It3YhXrVrl2T6Igghr4BSSSktLsWbNGgCA5kKU+rqr8Or3VlgO6ERERFQzuDpXuxli3aqHuBlind33ai/EfnvvXADA9u3bkZWV5dY+iIINAyyFpG3btqGwsBDQayAV6Dy635VdiYmIiMgj7p6jq3BwJzk60vWF9HL3xUp6Ldq0aQNFUfD333/7p5xEVYwBlkLSunXrAACa7AjIGk3VdBl2hF2JiYiIyJqDEOvxBXRnIdbd+ke5+2L79u0LAAywFLJY86aQI4S4GGDzor0Kr+xKTERERG7x9txcLsR6Xe+wM7iT067DjpSF2G8fMHcj3rFjB0pKSrwrE1EAMcBSyDly5AjOnTsHKBLkAi++wMuwKzERERE55es52V/diQE1xLrVddgRSYZGE4vatWtDr9dj+/bt/isfURVhgKWQs23bNgCAnB8BSQTRnzC7EhMREVF5QvHfBXNZ8rm+IUkadO/eHQCwceNGf5SKqEqxxk0hRw2wBREulnRN0mggaTQ+b8evhAh0CYiIiMhPPaIkbRigCPPDp+JI0DSoByQl+Fymbt26AbhYpyIKJQywFFIURcGOHTsAAFopxS/blMK0wRNiGV6JiIgCr7Ju5/EyxEqSBLl+XQiNDEgSpMR4n4rx9qN/AQCOHj1qntWBKIQwwFJIOXHiBHJzcwEhA1F1ICcm+GfDnk4a7ogv3XoYXomIiALPj+FV0oZVfNHLECs0ss1zKTHeuyBbvzagiUS9evWgKAr27t3rVXmIAoUBlkLKgQMHAACyKRaSRgMlMc4vIdavXYm9CbEMr0RERIFX2eHVwoMQa2l9LU9oZDXIuq1+bQituZ7Svn17AMDOnTvdX58oCDDAUkixBFhJiTG/oJH8NgesX7sSuxtihWB4JSIiqmachlcLN0KsTddhBzwJsZbwCgBt2rQBABw8eNCtdYmCBQMshRTrFlgLJT7Gb12Jq/R+WAZXIiKi4BGIaeychFh3wquFWyG2fm2b/37x9moA5ukJiUIJAyyFDCEEDh8+DACQLS2wAKCR/NaVGPBjiHXWCsvwSkREFDyqquuwu9vwILxaOA2xVl2HLWQlGgBw5swZFBUVeV1WoqrGAEshIzc3F/n5+QAASYm0fdPPIbZSB3VieCUiIgoegQ6vDlphPQmv1utUCLF2wisASEKHpKQkAMCxY8c83hdRoDDAUsg4deoUAEBSwiHBTgupP++HraxBnRheiYiIgkegw6uFVYiVJAlyvTpeb6p8iLUXXi0aNWoEwNwKSxQqtIEuAJG7LgbYSIfLKPExkBUFSnaO7zuUJUhCgvBx4nEiIiKq5nyZRs+irL4hJydCaH27iG4JsSIy3OlydeuaRzdOT0/3aX9EVYktsBQyMjIyAACSEuF4IX91JVYU84lEkiH5qzsxEJgBIoiIiMg+f/SMsoRXofi8KU1yLUCjgVSi93lbR9+NwfHXnLdVWQLs2bNnfd4fUVVhgKWQkZmZCQCQhPOriT6HWEWBMFmdhHwNsX44oREREVEl8dPtPUIRPp3zLeHVUiZfQuyxSVFIrZWNRok5OPGS4+r+jCnrAVxsJCAKBQywFDKysrIAmAcdcMnbEFs+vFp4G2LtncjYCktERBRcvA2x5boOextibcKrVZm8CbGW8GphCbH2gqylTpWbm+vxfogChQGWQsbFAOvmIAmehlhH4dVbzk5gDLFERETBxdMQ6+C+V69CrKOBIz0MsUffirYJrxaNEnPQKDEHx1+03Y8kzF2MGWAplDDAUsgoLCw0P3E3wALuh1h3wqsnrbDunLgYYomIiIKLuyHWxaBNnoRYTXItl2VyJ8QefSsajZOynC6TWivbNsSW1akYYCmUMMBSyCguLgYASMLDkflcTa/jScurOyHWk6uuDLFERETBxVWIdXPEYXdCrCYp0XHra7kyOQ2xkuQyvFqk1srGsRfMLa9S2YQkxcXFMBqNbq1PFGgMsBQyLAEW9uaAdUGJj7HfCutNt2FnIdabwRsYYomIiIKLoxDr4XQ5zkKsJikR0Howo6WTEHvkjSiPytU4KcscYsXFz8MAS6GCAZZCRmlpqfmJ8OLP1l5XYl/uebUXYn0ZbZghloiIKLiUD7FezvVqL8R6HF6tylQ+xB55Mxppye61vlprnJSF4xMvDoxpMBg8Lw9RADDAUsgQ6onEy7BnHWL9MWCTdYj1x1Q5DLFERETBxVL38DK8qpuxCrFeh1erMllCrLfh1SI15eKAT5wLlkIFAyyFDEkNeD7M16aRAF2Ye/ebEBEREfmJUASkMK1v4VXdmMChu+v4FF4B67oVuxBT6GCApZAh+aGFUiosgcgvgKTTQdJ5MJqxPUIxX1EFfL4ya96efyZSJyIiIj+R/NfTSi6rdyi5eT5v6+CDqTDEm7D/aD2ftiOs6h61a9f2tVhEVYIBlkKGpqzV9MS1MV6tLxWWADl55qAoS76FWOvwqu7Ah8OJ4ZWIiCi4lL9w7kOIlXVhF2dEMJl8CrEHH0yFIdFk/o9e9inETmzwp/o8IiLC6+0QVSUGWAoZkZGRAICn+szFoVsTPFrXJrxaeBti7YVXdUdeHFIMr0RERMHFUa8vL0KsTXi18DLE2oRXCy9D7Itp85GoL1X/HxXl2UjGRIHCAEshIzo6GgBQ15CHD4ZP8yjESibFflD0NMQ6C6/qzjw4rBheiYiIgourW5Y8CLF2w6uFhyHWbni10HtWpX8xbT7qa4pQUmJeLzIyErKjchIFGf6lUsiwBNjiIhkddOfMIfa2BJfrSYUlEAVFjhdwN8S6E17VnbpxaDG8EhERBRd3x9twI8Q6Da8WboZYp+G1jLutsJbwCgAlxebPa+nlRhQK/DAMGlHViI2NBQAUFJjvhe2gO4cPbpyGJ8UYNJ+ZY3cdqbAEyC0AFOdf+pYQCwBC76d50CTZ8QmO4ZWIiCi4eDpYpFAcXrB2K7xamJzXUQ6Ncx1eAahdiVs1OYuErEL876/duGT7aUQW6VEcpcP2jg3Q9v7TSNFcnEc2N88cBRITE90rK1EQYIClkJGSkgIAyM66+GdraYnddU0jfP9Xf5sg63Z4tXAWYj1pfbVmL8QyvBIREQUXb2c6sBNiPQqvZZTcPMjxcRVePzQuFfpabtZjAIQXmDD25fUYsW4Lwoy29Y+uW05ATAfyRkQi85U4iAgJOdnmOlVSUpJH5SUKJAZYChn2AixgDrEddOfQdvhpPI070Hxmjufh1cJeiPU2vFo4a4klIiKiwPLDNH0W3oRXAGpXYusQe+gBD8Or3oBpn36LngePOFxGMgDxPxVDd8SIs9NrISfb3KstOTnZ8zITBQjvgaWQYflyLR9gLTrq0vHe8B9w9MZE78KrhfU9sb6GVwvL1Vm2vhIREQUPf4TXsovUXodXC6v7YQ89kAp9kmf1mFd+/h09Dx6Bq5qGABC5wYCkV/Jg0t8NgC2wFFoYYClk1KtnHpzg3DnHgy09v2Mo6m40APHezRWrkiXfTkJERERUs/ij3mAyAZLkcXhNyc3HTeu3AgBcRXLL+3G/FOPk4cMAgIYNG3pYUKLAYQ2dQkbjxo0BAOcywmAw2P96LsqJhC5HD1OtGCAx3ut9Cb0BQq8HJBmSRgNJ9vEKraULsR+7KREREVEQKOtlJfR6Fws6JycmQE5MAAC0/L7Yo3VHrt0EnYvBoMqTDMDJQ4cAAI0aNfJoXaJAYoClkJGUlITo6GgIIeFcRsVW2Gu33I/UeWUnEa3sc4iFdddhSfY+xJa//5UhloiIKDj4emuP1QBOQhFeh1g5McHcglvWiqs9m+3R+j2c3PfqSLEs43xJCQAgNTXV4/WJAoUBlkKGJEnqF+yZ0zqb967dcj+SpkcjPLNUfc3bEKu2vlYogBch1tHgTQyxREREwcHbEGtnCh1vQqwaXstpOa3E7W3ElJS6Xqico1FRAICEhATExVUcAZkoWDHAUkhp3rw5AODY0XD1NUt4jThf8cvb0xCrhldHAzf50hJbYVsMsUREREHB0xDrYP5XAB4N/ugovAKA9nSW2yG2ICLc9ULlHIiNBQC0atXK43WJAokBlkJKmzZtAABHj0SorxXlRNoNrxbuhliX4dXC3RDrztQ5ksQgS0REFAzcCbGS7DS8qptyoxXWWXi1cDfEpg0573KZ8vbFmAe8ZIClUMMASyGldevWAIBjR8KhKMB1W+9Hoz/cOJG4CLFuh1cLVyHW03lfGWKJiIiCmxvB1cJVV2J3wquFqxA7++rP0PCOBAjHkzTYtY8tsBSi7E+oSRSk0tLSEBERgeLiEgxbMgq1/rLfddgeS4iV4qMg5xYB2bm2C3g636skQ5LtzBPraXhVtydxnlgiIqJAEsL+RWUPwqu6KUUAej0kne24HZ6EVwvt6SwA9W1em331ZwCA7uFhQG0AN8cBM/Ig4HwqHQGgQKvF0ehoABd7txGFCrbAUkjRarVo3749ACDh1yK3w6uF0MpQwrU2rbEOB21yhz/viQXYEktERBRo5S8mexFe1U2Vu8jtTXi1aDH9Yp1n5lVT0D08zBxeLft6PRmiZ4Rb88Bu654MAfPow8nJyV6VhyhQGGAp5HTp0gUAoCk85/U21NbY2BjPug7bYz1XrLetrzbbY4glIiIKKEuI9SG8qpvS6y/O8epleAWAsFOZaDG9FDOvmoLLIjQVF4iUIWbUh7g9zmF3YhEGiNvj8N9NEwAAnTt39ro8RIHCLsQUcrp27QoAEFIWhBCQXF5rtE9oZQitnROAVxuz05WYiIiISJKh5ORCrpXo86a0ucX2w6tFpAzxXm1gQi2In/IgrSsGChUgWoa4PBK4LQ5I0eLfZ7cDYICl0CQJwZvuKLSYTCZcd911KCgogAY9oFE8m+fVQptdBJw9Z+5CbDL51gorFPM2/IGHJBERUWBZ94byoRVW0lwMm5q6tX0pEURMJIRGg6zOidj4zhSvt9PllbGI27MYsixj3rx5SEhI8KlcRFWNXYgp5Gg0GvTs2RMAoMjnIDSe/xlbh1fAfIKRwrSAN/ez+rP1leGViIgocOxNb+fl7UHW4RUAlKxsr7YjYiLV8AoAtbZlo8ez47zaVqdJDyL+wEkAQPv27RleKSQxwFJI6t27NwBAiAyYtJLnIdZgVMOrNUmj8SzEWsKrP+59JSIiosDx4xgU5cMrYB400tMQawmuotz2av3reRjuNOlBJO0pRddOUQCAXr16ebwNomDAAEshqUePHggLCwNEEYACKGEylHCNW0FWm10EXMhy+L43IdYv2PpKREQUGK7Cq5vnekmjsRte1c3YuXjucFmrVld73G2F7TTpQTW8CqHHf//9B4ABlkIXAyyFpKioKHTr1g0AIJQzgAQIWYISJjsNseW7DjviVohl12EiIqLQ527Lq4sQ6yy4WnOnFdZVeAXMrbDdJzoPsZ3eNgfXpD3mKXiEkg6j0YjmzZsjNTXVrfISBRsGWApZgwYNAgAI02moY5FJcB5iHXQdtsdpiGXXYSIiotDnp27D7oZXwHVXYnfCq0XSVsfb6fT2g0jaXWrzWoe25vqRpQ5FFIoYYClk9e7dG9HR0QBKAGH1Be4gxLrqOmyP08Gd2HWYiIgoNNkbrMkdds79noRXdTN2LqaXH6zJXd2fq9gK2/GdiuFViGLs2LEDkiRh4MCBnhWYKIgwwFLICg8PR58+fQAAwnTK9s2yEGtzX6wHra/l2bTGcs5XIiKi0FXJgzW5y7oV1tFgTe5I2nJxOx3feRAd33kQybtKKywnTObRhzt37oyUlBQvSkwUHLSBLgCRL4YMGYK//voLQjkDIVpDknQX35QAIUkQYRJ02cUet76WJ2k0EDABJrD1lYiIKBT5I7wKBZI2zPfNlF1U96bVtbxuz4+DPl6yG1wBQAgFtRKykZkJXHfddT7tiyjQ2AJLIa19+/Zo3rw5AKViK6yFBEgmk9etr+UJRfg0qTkRERGFNmEy+b4RWYKSk+tzeAWA2ouOInmn/fAKAFDOITMzE4mJibjyyit93h9RILEWTiFNkiTccMMNAABhOnFxMCcrugtFQPoFn/clTCYIg9Fq5z4ePmx9JSIiqlr+Ovf62hOr7LYkoddDOnXW+81k5kDOzIEwGBBx6JzD5Tp3NO9vyJAh5mkIiUIYAyyFvEGDBiEmJgZAEaBU/PKW9EYIvd77ARucYUssERFRjeR1K2y5gSGV4hLvNlMWXIWhrCtyYZHd5YSSi61bt0Kj0eD666/3al9EwYS1bwp5kZGRGDp0KABAMR2yaYW12/rqRYit0Ppqsz0vDiO2vhIREQVGIFthHUzP52krrCW8lhdx+HyF1/r0No8PMmDAANStW9ej/RAFIwZYqhZGjBgBnU4HiFxAZKqvq62v5VVGSyxbY4mIiGoUt1thZcnx3PJwvxXWusuw3fIUFNr+XynE6tWrAQC33nqre2UlCnKscVO1UKtWLQwZMgQAoBgPAyhrfT2X6XilQHUpZusrERFRYFVlK6yT4OqJ8l2GHbFuhR1ydRwURUHPnj3RrFkzv5SDKNAYYKnauOWWW6DRaACRCaHkmFtfS5yMyGfhIsQ67T5sd3s8rIiIiGoKp62wHoRXZ92I5ew8l8FVLU9ZK6wQRVi0aBEA4LbbbnO7HETBjjVtqjbq1auHwYMHAwAU4z4IeHB1taq6FLP1lYiIKDhUZiusiy7D9tjrRixn55nDa6kbF+TLGdQvHAaDAV27dkXHjh09Xp8oWDHAUrVy1113ld0LmwWl8IRnK9vpUuxx62uFbfIQIyIiqu5sWmF96DJs3QprCa7ehFfd8eNYsmQJAOC+++7zujxEwYi1a6pW6tSpgxtvvBEAoE/J8KwV1qKy7otl6ysREVH1JBSvWl3Ls7TCetvqatH5xngIIdC3b1+0adPGpzIRBRsGWKp2br/9dsTExEBE6mGqVeDdRvwdYomIiKj68lePK0X4HF5NkYVYt24dNBoN7r33Xv+UiyiIMMBStRMXF4fbb78dAGColwUhezFPG/zQfVjdUNn+GYqJiIiCh7/Oy2Xh1ec6gyIAoUDJzPJ6EwICDfppAABDhgxBo0aNfCsTURBigKVqafjw4WjQoAGgM8FQJxNwd562ysYQS0REFFj+mkbPX3PAK0INrwAgjN4FYVFQCGNUOo4cOYK4uDjcc889vpeNKAgxwFK1FB4ejsceewwAYKqTD5OuJDAh1t7IhJUx/ywRERG55udW1/I8boW1BFd35pN1QhQUQpEN0LXRAzAP3JSQkODTNomCFQMsVVs9evRA3759AQkwNMmGYjKZr2q6EWSF0eif7sPOMMQSERFVnUoOrx4p1+panmUuV1dEQaH5YVLQ59n2KCwsROvWrTFkyBDfy0gUpBhgqVp7+OGHERkZCRGrhymlEFAEhElhl2IiIqKaIhi7DLtodXWnG7EluAqTAlN8CZYsWQJJkvDEE09Ao9H4Xk6iIMUAS9Va7dq1cddddwEAjI1zIHTmE4IwKW63xlY6dikmIiKqHMHU6go4bXV1lygqNj9MZffMahQkXGF+78Ybb0Tr1q19LSVRUGOApWrvpptuQvv27QGNgKFp1sW5YR20xvqt+7CnJyiGWCIiIv8IYKur3TqEiy7DdrdjpxuxKCqGMNjWU4ypOTh//jwaNGiA++67z6OyEoUiBliq9jQaDSZOnIjw8HAo8aUw1badG5atsURERNVIsLa6enhh27obsdrqWi4cmxKKYapdCEmSMHHiRERGRvqlyETBjAGWaoRGjRrhgQceAAAYU3OhhBtsF+C9sURERKEv2O519VeXYUPF3mFCa0Lc5eZeZSNGjMAll1zi036IQgUDLNUYw4YNQ+fOnc1diZtnQkiiwjJqiPXxZOMXDLFERETuC6bzph+mxxGKsNvqCgACAl0ebozMzEykpqbi3nvv9aW0RCFFEkJUrMUTVVMZGRm4++67kZeXB016DMKOJ1ZcSCgQlpZYb6/AWk5YlsPL25MqD08iIiL3BEPXYcv5X5Ihyd6XR5QFYEkbZvd9Y908GBvnQqfT4YsvvkDz5s293hdRqGELLNUoderUwXPPPQcAMNUtgCmxyPkKvlw9tQ6fDKJERESVK9DnWuv6gpd1B6EINbw6okSXQjQ1j+fxyCOPMLxSjcMASzXO5ZdfjltvvRUAYGiaBSXcjRGH/dGlWIjAn1yJiIjIv3zsKnxxM27MD6tRUGugDJPJhH79+uH666/3eb9EoYYBlmqke++9F+3atQO0AoYWFyAkN048fjpBuR1iGXaJiIiqnifnej8FV1etroD5vtdODzVEeno66tWrh6effhpSMN33S1RFeA8s1VgZGRm45557kJubC/lCFMIO14Ik3DuJAHB+j4xQ3Augzk48PDSJiIg8U1X3wbpRT5A0GhebEK63JcnqdgyNcmCqn4/w8HB89tlnaNmypcsyEFVHbIGlGqtOnTp4/fXXodFooCQXwVQ/3/yGu1dTq7I1loiIiIJDFXUXtt6XKalQrac8++yzDK9UozHAUo3WqVMnPPbYYwAAY8NcmBKLPduAP7oV895YIiIi/6jM86kfzvnudhe2pkTrIbU1D9p0++23Y8CAAT6VgSjUMcBSjTd06FDccMMNgAQYmmdDiTJ4vhEO8kRERFQ9VeEgTRXW0ZkQ19cEvV6Pyy+/HPfcc4/P5SAKdQywRADGjx+Pzp07AxoBQ9tsCJ3J841U9SBPREREVLmqcJCmCutpFNQfEY0LFy4gLS0NL7zwAmSZVXciDuJEVCY/Px8PP/wwjh49CqlIg7CdSZCMvkxmzkOLiIioygXLyLyWgaC8CMFCEjC0y4KINyAlJQWff/456tSp4+cCEoUmXsYhKhMbG4t3330XKSkpEFEmGNpkQ8gMoURERDWKvy5Ae9kzS0DA2DIHIt6A6OhovPvuuwyvRFYYYIms1KlTB++//z5iYmIg4gzmEwgYYomIiKo9f45F4eV2BASMTfKhJJdCq9XizTffRLNmzfxTJqJqggGWqJwmTZpg0qRJ0Ol0UJJKYWyRyxBLRERUnfkzuPoQXk2NC6DULwIAPPfcc+jSpYt/ykVUjTDAEtnRsWNHvPzyy+Y5YmuXwNg8jyGWiIiougmCVlcLU6NCmBoWAgCefPJJDBw40B+lIqp2GGCJHLjiiivw0ksvQZZlKHWKYWzKEEtERFQt+Du4+rgtY/0CmFLNc70+/PDDGDp0qD9KRlQtMcASOdGvXz8899xzkCQJSr1imNLyGWKJiIhCWRAFVwgBY71CmJqYw+t9992Hm2++2Q+FI6q+GGCJXBg8eDAmTJgAADA1KIKpSR6EO6MKBssw/kRERFS13YVd1QHKymJsUAhT03wAwNixY3H77bf7p3xE1RgDLJEbhgwZgieffBIAYKpfbL4n1g+TmxMREVElC7LuwhDCPNpwaoHa8jp69GjceeedfiggUfUnCeGvI5qo+lu4cCHeeecdKIoC+Xw4tAfiIQnJ8ZVWHl5ERERVy/qc7M152N453dPtONmGgIAprQCmhubRhu+77z62vBJ5gAGWyEOrVq3Ca6+9BqPRCDlTB+2+BHOIBSqesHh4ERERVS1J8u3862sAdrINAQFjs3wo9YoBAOPHj8dNN93k3T6IaigGWCIvbNiwAS+88AL0ej2knDCE7U2AZLLqke+Pkx8RERFVPcs53NfwWm59IQkYW+ZCSSmFJEl4+umnce211/pQUKKaiQGWyEvbtm3DxIkTUVRUBKlQi7DdCZD0mosL+HoFmIiIiEKPnfO/0CgwtM2BiDdAq9Xi+eefx4ABAwJUQKLQxgBL5IODBw9iwoQJyMzMBEplhO1OgFwUFuhiERERUZAQOhMM7bIhok2Ijo7GG2+8ga5duwa6WEQhi6MQE/mgRYsW+OKLL5CWlgaEKzBckg0lvjTQxSIiIqIgoEQZEHcNIKJNSE5Oxv/93/8xvBL5iC2wRH6Qn5+P5557Dtu3bwcUQHsoDppzkYEuFhEREQWIqVYpwrqWori4GGlpaXjvvfdQp06dQBeLKOQxwBL5iV6vx1tvvYUVK1YAADSno6A5GgMJLiYzJyIiompDQMDUoAhK00IIIdC5c2e88cYbiI2NDXTRiKoFBlgiP1IUBVOnTsXUqVMBAFK2DmH74m1HKCYiIqJqSUgCxhZ5UGqXAACGDh2KRx99FFqtNsAlI6o+GGCJKsGqVavw1ltvoaSkBFKxBto9CZCLefIiIiKqrkSYCYY2uRBxBmg0GowfPx7Dhg0LdLGIqh0GWKJKcvDgQTz33HPIyMgAjBK0B+KgyYoIdLGIiIjIz5Q4PeL6ycjMzERsbCxee+01DtZEVEkYYIkqUXZ2Nl588UXs2LEDAKA5FQXNMd4XS0REVB1Y7ndF82KYTCakpaXhzTffRKNGjQJdNKJqiwGWqJIZjUZ88cUX+PnnnwEAUm6Y+b5YgybAJSMiIiJvCY1ivt812Tx93sCBA/HUU08hKioqwCUjqt4YYImqyKpVq/D222+jqKgI0MsI2x8POVcX6GIRERGRh5QoA4xtciEiTdBqtXjkkUdwww03QJLYw4qosjHAElWhkydP4qWXXsLhw4cBAWhORENzMppdiomIiEKAgIBSrxhym1Lo9XrUrl0br732Gtq2bRvoohHVGAywRFWspKQEkydPxsKFCwGUdSk+EA+plF2KiYiIgpXQKjC2yIWSpAcA9OjRA88//zwSEhICWzCiGoYBlihAlixZgg8//NDcpdgoQXsoFpoLkYEuFhEREZWjxJcirq8GmZmZCAsLw7hx4zB8+HB2GSYKAAZYogA6c+YMXn/9dezevRsAIJ+LgPZwLCSTHOCSERERkZAETI0LoDQqhhACjRs3xssvv4zmzZsHumhENRYDLFGAGY1GTJ8+HdOnT4eiKECJjLCDHOCJiIgokJRoA4wt8yCijQCAoUOH4qGHHkJEBOd0JwokBliiILFz5068/vrrSE9PBwDIZyKhPRYDSWFrLBERUVURkoCpUSHQpAQmkwkJCQl4+umnccUVVwS6aEQEBliioFJUVIQpU6bg999/N79QokHYgTjIeWyNJSIiqmxKVFmra4y51bVv37544oknOFATURBhgCUKQlu2bME777yDjIwMAIDmTCQ0x2IhKRwsgoiIyN+EJGBqWAipWSmMRiPi4uLw+OOPo3///hyoiSjIMMASBanCwkJ8/vnnmD9/vvmFEhnaw3HQZIcHtmBERETViBKrh7F5HkS0CQDQq1cvPPXUU0hKSgpwyYjIHgZYoiC3adMmvP/++xfvjT0fDu2RWEgGzhtLRETkLaFRYEwrgFKvGACQkJCAhx9+GIMGDWKrK1EQY4AlCgHFxcX47rvvMGfOHJhMJvO8scdiIKdHQgJPskRERO4SEFCSSmFsmg+EKwCAa665BuPGjUN8fHyAS0dErjDAEoWQAwcO4P3338e+ffsAAFJeGLSHYyEXhgW4ZERERMFPRBhhbJoPpZYeANCwYUM89dRT6NKlS4BLRkTuYoAlCjEmkwlz587F119/jeLiYkAAcnoktMdjIBk55Q4REVF5QjYP0iQ308NgMECr1eK2227DHXfcgfBwji1BFEoYYIlC1Llz5/DZZ59h5cqV5hcMErTH2a2YiIjIQu0u3CQfiDB3F+7WrRvGjx+Pxo0bB7h0ROQNBliiELdt2zZ89NFHOHr0KABAKtBCeySWc8cSEVGNpkSZuwuLBHN34bp16+KRRx5B7969OUgTUQhjgCWqBoxGI37//Xd8++23KCgoAFA2WvGxGEil2gCXjoiIqOqIMBOMqYVAg1IoigKdTodRo0bhtttuY3dhomqAAZaoGsnJycHXX3+NP//8E0IIQAE0Z6OgORnN+2OJiKhaE7KAqUEhdK0V8xgRAPr06YMHH3wQ9erVC3DpiMhfGGCJqqFDhw5hypQp2Lx5s/kFowTNyWhozkRBEuw2RURE1YeAgFK7BMbGBeq0OG3btsVDDz2EDh06BLh0RORvDLBE1dimTZvw+eef48iRI+YXSmTzQE/nIzjQExERhTQBASVRD1NaAUS0EYD5Ptf7778f/fv3532uRNUUAyxRNWcymbB48WJ88803uHDhAgBAKtRCcyIacmY4gywREYUcJV4PY+MCiDgDACAmJgajR4/GjTfeCJ2OgxgSVWcMsEQ1RElJCX755RfMnDlTHehJytea54/N0THIEhFR0FNiDObgmmgeWTg8PBzDhw/Hbbfdhri4uACXjoiqAgMsUQ2Tn5+PWbNmYc6cOeogF1JumLlrMafeISKiIKREG2BKLYSSVAoA0Gq1uP7663H77bcjOTk5wKUjoqrEAEtUQ2VnZ2PGjBmYN28e9HrzlWwpJwzakzGQcsPYIktERAGnxBhgalQAJcl8npJlGVdddRXGjh3LkYWJaigGWKIa7vz585g+fToWLFgAo9E8CIaUGwbtyWh2LSYiooBQ4vQwNipUuwpLkoR+/fph7NixSEtLC2zhiCigGGCJCACQkZGBn376CQsWLLjYIpuvheZkNOQsDvZERESVS0BAxBtgbFQAkWAenEmj0WDgwIG44447kJqaGuASElEwYIAlIhsXLlzArFmz8Mcff6CkpARA2ajFp6IgX4jgPLJERORX6nQ4jQrVUYW1Wi3+97//YdSoUahfv36AS0hEwYQBlojsysnJwezZs/Hbb7+pgz2hVIbmTBQ06ZGQTHJgC0hERCFNSAJK7WKYGhRBRJkAADqdDtdeey1uvfVW1KlTJ8AlJKJgxABLRE7l5+dj3rx5+PXXX5GVlWV+0ShBkx4JzZkoSHpNYAtIREQhRWgVmOoVwVSvGNApAIDo6Ghcd911uPnmmzmqMBE5xQBLRG7R6/VYunQpZs2ahePHj5tfVAD5QgQ0p6MgF4YFtoBERBTUlAgjTA2KoNQuATTm6medOnVw00034dprr0V0dHSAS0hEoYABlog8oigKNm7ciFmzZmHbtm3q61JOGDRnoyBncsAnIiIyMw/MpIepfjFEsh6WamfLli1xyy23oG/fvtBqtQEuJRGFEgZYIvLavn37MHv2bKxatQomk/n+JZTK5u7F6ZGQDOxeTERUEwmNAlPtEij1Lt7fCgCXX345Ro4ciU6dOkGSeLGTiDzHAEtEPsvIyMAff/yB+fPnIycnx/yipXvx2UhI+WFslSUiqgGUKANM9YptuglHRkbi6quvxrBhwziHKxH5jAGWiPxGr9dj1apVmDt3Lnbv3q2+LuVrzd2LL0RAUhhkiYiqEyEJKEmlMNUrgog3qK+npaVh2LBhuOqqqxAVFRXAEhJRdcIAS0SVYt++fZg7dy6WL18OvV5vftEoQT4fAU1GJKQCLVtliYhCmBJphFKnGKbaJepowhqNBldccQWGDRvGbsJEVCkYYImoUuXk5OCvv/7C/Pnzcfr0afV1qVALTXok5PMRkIycU5aIKBQIWYGSXApT3WKIuIutrbVq1cL111+P6667DikpKQEsIRFVdwywRFQlFEXB9u3b8eeff2L16tUXW2Ut98pmRELK5b2yRETBRkBAxBpgqlMCJeXiva0ajQY9evTAkCFD0LNnT44mTERVggGWiKpcfn4+lixZggULFuDQoUMX3yjRQHMuAvK5CMglrAgREQWS0JlgSimBUrsYIvriSMINGjTAkCFDcPXVVyM5OTmAJSSimogBlogCRgiBAwcO4M8//8SyZctQWFiovifla6E5F2ke+MnALsZERFVBaBTzgEy1SyDi9bB0igkPD0ffvn0xZMgQdOzYkfe2ElHAMMASUVAoKSnBP//8gyVLlmDz5s0X55UVgJytM7fKZnEUYyIifxOSgJJYCiWlBEpSKWB1zfCSSy7BoEGDMGDAAMTExASukEREZRhgiSjoZGVlYcWKFViyZAn27dt38Q2TBPlCOOQLEZBzdJAEwywRkTcEBEScwdxFOLkECLtYHWzcuDEGDx6MgQMHol69egEsJRFRRQywRBTUjh8/jqVLl2LJkiVIT0+/+IZRgpzJMEtE5C4BARFvgCmpBEpyqTr1DQAkJSVhwIABGDx4MFq0aMEuwkQUtBhgiSgkCCGwa9cuLFu2DKtXr0ZWVtbFNxlmiYjsUkNrcln3YKvQGhMTgyuuuAKDBg1C586dodFoAlhSIiL3MMASUcgxmUzYuXMnVq1ahdWrVyMzM/Pim0YJcla4uatxTjjvmSWiGkdIAiJeD1NSKZSkEkB3saoXGxuLK664An379kXXrl0RFhYWwJISEXmOAZaIQprJZMKuXbuwcuXKimHWBMi5OnPrbFY4JANbF4ioehIaBUqtUvMjUQ9oL1bv4uPj1dDapUsXztdKRCGNAZaIqg1FUdSW2bVr19reMwtAygszt85mhUMq0kACW2eJKHSJCCNMZaFVxBtg/ZWWmJiI3r17o1+/fujUqRNDKxFVGwywRFQtCSFw5MgR/PPPP1i7dq3taMYAUKyBJisccrYOUi7vmyWi4CcgIGINakuriDbZvN+kSRP06tULvXr1Qps2bSDLnEObiKofBlgiqhEuXLiAdevWYe3atdi6dSv0ev3FN8u6GkvZ4eZBoIrZOktEwUGEm6AkmLsFKwm2XYM1Gg06duyohtb69esHsKRERFWDAZaIapyioiJs2bIF69atw6ZNm3DhwgXbBUpkyNnm1lk5VwfJxFYMIqoaQhYQcXpzYE0shYiybWWNi4tD9+7d0atXL3Tv3h2xsbEBKikRUWAwwBJRjSaEwNGjR7Fx40Zs2rQJO3bsgMFguLiAAkj5YZBzysJsfhi7GxOR3wgIiGgjlARzC6uI1wNW18xkWUbbtm3RvXt3dO/eHa1ateJ0N0RUozHAEhFZKSoqwn///acG2tOnT9suYAKkPHOYlXN0kAq07G5MRG5TA2u8HiLeACXetlswAKSkpKBHjx7o3r07unbtylZWIiIrDLBERE6cOnUKW7ZswbZt2/Dvv/8iNzfXdgGjBDkvDJKlhbaQgZaILhIQEJEmiAQ9lHjzA2G2Va+oqCh07NgRXbt2Rffu3dG4cWNIEr9HiIjsYYAlInKToig4evSoGmb/++8/FBQU2C5klMxdjvPCIOeVdTlWWBElqimEJCBiDFDiDBBxBiixekBnW9WKjIxEhw4d0LlzZ3Tu3BktW7bkNDdERG5igCUi8pLJZMKhQ4fw77//Ytu2bdixYweKiopsF1IAqVBrDrN55mArGXj/GlF1IbSKOazG6sv+NdjcwwoA4eHh6NChAzp16oTOnTujTZs2DKxERF5igCUi8hOTyYQjR45gx44d2LlzJ3bu3Inz589XXLBYAzk/zNxSW6CFVMCBoYhCgZAERJTR3MIaa4SI01cYJRgA4uPj0aFDB3To0AHt27dHq1atoNPpAlBiIqLqhwGWiKiSCCGQkZGhhtmdO3fiyJEjqPC1W9ZKKxWEqcGWc9ESBZaAgIgwQcQaIGKMUGINENEGwE4HitTUVDWwdujQAQ0bNuQ9rERElYQBloioCuXn52PPnj3Yu3ev+sjJyam4oFGCVKCFXBCmhluGWqLKISCACBOUaKM5rMaUdQXWVqwiRUdHo3Xr1mjdujXatWuH9u3bIyEhoeoLTURUQzHAEhEFkKWV1jrQHjhwAMXFxRUXNgFSUVlLbaHWHGwLtZAUueKyRGSXkMu6AUcbzIG17GEvrOp0OrRo0QKtW7dGmzZt0Lp1azRs2BCyzGOOiChQGGCJiIKMyWTC8ePHsWfPHhw4cACHDh3C4cOH7YdaAXPLbKHWHG4tD7bWUg0nIIBwBUqUsSywmkOriDLB3qGh0+nQpEkTNG/eXA2rTZs25WBLRERBhgGWiCgEKIqC06dP49ChQzh06BAOHjyIgwcPIjMz08EKgFSshVSkuRhqC7WQShhsqXoxB1UTlGgTRGRZWC172LtfFTAPstSiRQs0b94czZs3R4sWLdCoUSOGVSKiEMAAS0QUwrKystRQe/ToURw7dgzHjx9HSUmJ/RUswbZYU/bQqv/CKDHcUtASGgUisiykRpjMz6OMEJGOg6pWq0WjRo2QlpZmE1aTkpI4yBIRUYhigCUiqmYURUF6ejqOHTumhlrLo7S01PGKRuliqC3R2DxnuKWqIDTKxXBqHVQjjUCY4+qKTqdDamoq0tLS0LhxY6SlpaFJkyaoX78+W1WJiKoZBlgiohrCEmyPHz+OkydP4tSpUzh16hROnjyJc+fOVZzex5pJglQiQyrVACUaSKUac8gte86AS+5QA2q4CSJCAcJNF/8fbnIaUgEgKSkJDRs2VB+W0FqvXj0GVSKiGoIBloiIUFpaitOnT6uB1vLv6dOnHd9na80omYNsqQxJL0PSayCVyoBeY/4/Q261JiAAjYAIVwCdCSJcgdCZIHRW/48w2R3pt7zExESbkGp5NGjQAFFRUVXwaYiIKJgxwBIRkVOlpaU4d+4czp49i/T0dPVfy/OsrCz3NqTAHGgtIdcgAwbzcxjM/7e8BhPDbjAQsgDCFIiyh+U5dGWvhV8MqY7uQy0vISEBdevWRb169VC3bl2bR506dRhSiYjIKQZYIiLySUlJCTIyMpCRkYHz58/jwoULNv+eP38eOTk5nm3UBNtQa5QhGSXAaPu8wr8KQ689QhKAVoHQ2v4LrYCw/rdcWHU3lFrExcUhOTkZKSkpSEpKQkpKCpKTk1G7dm3Uq1cPderUQWRkZOV8SCIiqhEYYImIqNLp9XpkZmbahNucnBxkZ2cjOztbfZ6Tk2N/vlt3mQCYJMBUFmaNEqBIkExS2euW52WtvAoAxbwMBMzrWP0fimR+rew5LGdMURaUBdTXXLUYi4sLWv0rzP9KAGTzcyEL9TnKngur55DLltEIQKOYu+5qyt6zPC97CLksqHoYRK3pdDokJCQgMTERCQkJ6sM6oFoCa3h4uPc7IiIicgMDLBERBZXi4mKbcJudnY38/HwUFBQgPz8feXl5yM/Pt3kUFBRAUZTAFtwqzEKgXFC1+jdAJElCTEwMYmJiEBsba/OwvGYdUBMTE5GYmIjIyEhOOUNEREGDAZaIiEKeoigoKipCfn4+ioqKUFRUhOLiYvVh/X/L86KiIpSWlsJgMECv16v/Wh4Gg8HmtcoOyBqNBmFhYepDp9M5/DcyMtLthyWcRkdHQ5blSv0MRERElY0BloiIyA0mkwlCCPVfRVHsPjeZTFAUBbIsQ5ZlSJLk9LkkSdBqtdBofOjnS0REVEMwwBIREREREVFIYF8iIiIiIiIiCgkMsERERERERBQSGGCJiIiIiIgoJDDAEhERERERUUhggCUiIiIiIqKQwABLREREREREIYEBloiIiIiIiEICAywRERERERGFBAZYIiIiIiIiCgkMsERERERERBQSGGCJiIiIiIgoJDDAEhERERERUUhggCUiIiIiIqKQwABLREREREREIYEBloiIiIiIiEICAywRERERERGFBAZYIiIiIiIiCgkMsERERERERBQSGGCJiIiIiIgoJDDAEhERERERUUhggCUiIiIiIqKQwABLREREREREIYEBloiIiIiIiEICAywRERERERGFBAZYIiIiIiIiCgnaQBeAiChQhBAoKSkJdDGIiDwSEREBSZICXQwiooBggCWiGqukpARXXXVVoItBROSRxYsXIzIyMtDFICIKCHYhJiIiIiIiopDAFlgiIgC6TbUhibJrepIMSZYASQZkCZAkSLLlvbLXJQmQJUiWZdT3JHUdSFavq69d3Kb6Hi6+LyTp4qVF6eJ21Net1rN+TZRtRn1PBgDL65L6nmUdUfaasF7Hsg25bHl1Hdv31W0CECh7Tbbzns3ysCnjxdfKl8POOrBdx+Z9OFnPapv21nW0TRtO1xE265ffnvq+1bZE2esotx4kYbW++X3J+j11WaGuI6nLWS1fth1JEhf/BMtev/irFur7MoT6f/N7gFz2f/N75v9b1lPfkwQkXFxPLntNfcD6ddi8fnEd5f/bu/+oqOrE/+PPAVFQUMRchSTTQnNLVwU1M8m0kCi3FrVT6x5rWb/VntTa8nzscFJrrcw8pp0825YnckvJttq0di1M80clKpihm2HED/MXLD8ERQdxYL5/DHOZgWGAAYHB1+McDnfu+77f9z1c/PGa+77vt7HPBys+pmp87WU1r43ymm0AX2OfFV9s+31N1XXqVeNbsw0Y28bx1Lbng62+D7bz28rs9Wz7TFTja6+PvR/V+IKtHrbz2d+b/bXtXNaabWr7gu2PmS8m44+7r8mED6aafaaa1z41vzomLlX6Mv3/9UdE5EqnACsiAlBlqv2vpMkHEzVhsyYZ1JaZwKc2rZlsabCmEXva8aFOOnFINj7101VtynDYT519jufAxb669agNrg4Btt6+evtxEYjrluMQpGvfVoNlDb0Nl/1oSp0m/Khaoc3GQ28rB1hX5dR9bXWx3+p0Tldl9mBVW+ZYbnWo57APq4s2a78cA2xtKK75ouH9RnA04RBQa4Mu2IMoRgB0LLMF2OraAGiyhT9bvZogaDLZwmXNfvu2cTwmh7AMvqba777gEDZdlNX8GG2vrTUB2GoEVls9a6MB1lV7PtTus7127KPDNRQRuYJpCLGIiIiIiIh4BQVYERERERER8QoKsCIiIiIiIuIVFGBFRERERETEKyjAioiIiIiIiFdQgBURERERERGvoAArIiIiIiIiXkHrwIqIAPhasVqrbdsmbAtBGt9NtR/3Oa2j6rCN4z5r7bbT/gbKHBYFtTawuGnt/trvVqdtnOpZAazGapxGiRUTWDHqWuvWqalXX9199oVPnbpU5+fRwFfdY1uy1qu7MndtNuF8JlflTvtcrefqorxeHxtYBxbncpNjmXFsbZsmxzVe7cc7rcvq+OvVwDqweL4OrJXaelaT1fkLx/047a822quuPQ9WMFU7rFdrdSq3mqqxOvTDirXmdc13ez9qXvvUHOPjsN9xn60ftuZ8gGpT7fdqateBra7ZZ6KhdWBN+GBbX9aX2mtmf+1TU6fu2rI+RpnJob3atnwwGa9tl8XEpUpXfy5FRK48CrAiIkDl2P+1dxcuD3s+aIG60VkEnH+1qtuzIx5z/M3WgDQREW+hv7FFRERERETEK5isVmsLP5sXEfFOVquVioqK9u6G1FFRUcG9994LwObNm/H392/nHomuScfi7++PyaQxESJyZdIQYhG5YplMJgICAtq7G+KGv7+/rlEHo2siIiLtSUOIRURERERExCsowIqIiIiIiIhXUIAVERERERERr6AAKyIiIiIiIl5BsxCLiIiIiIiIV9AdWBEREREREfEKCrAiIiIiIiLiFRRgRURERERExCsowIqIiIiIiIhXUIAVERERERERr6AAKyIiIiIiIl5BAVZERERERES8ggKsiIiIiIiIeIUu7d0BERHpmC5cuMDGjRvZtWsX+fn5+Pj4EB4ezuTJk5k+fTp+fn4et11SUkJycjKpqakUFBTQrVs3Bg0aRGxsLHfffTcmk8lt/ZMnT5KcnExaWholJSUEBAQwZMgQpk2bxqRJkxqsl52dzbfffktGRga5ubmUlpbi5+dH//79GT16NPHx8YSHh3v8vtpCZ7wurlgsFubMmUNOTg4AsbGxJCYmevrWRESkkzBZrVZre3dCREQ6lvz8fObPn09+fj4A/v7+VFdXU1lZCUBERASrV68mKCio2W0fPXqUBQsWUFZWBkBAQACVlZVUVVUBMHbsWJYtW9ZgEEtNTWXJkiVUVFQA0KNHD8xmM9XV1QDExcWxcOHCemFr69atvPDCC077AgMDMZvNxrn9/PyYP38+9957b7PfV1vojNelIUlJSaxbt854rQArIiKgIcQiIlKHxWLhmWeeIT8/nz59+vDqq6+ydetWtm7dypIlS+jevTtZWVksXbq02W2Xl5ezcOFCysrKuOaaa3jrrbdISUlh69atPPnkk3Tp0oX9+/fz+uuvu6x/6tQpnnvuOSoqKhg+fDgbNmzg888/Z8uWLTz88MMAbNmyhffff79e3aqqKrp27UpMTAzLly836m3dupVVq1YxaNAgLl26xKuvvkp6enqz39vl1lmviyvZ2dmsX7+esLAwQkJCmv1+RESk81KAFRERJ1988YUxbHPp0qVERUUB4OPjw5QpU1iwYAEAe/fu5cCBA81qe+PGjZSUlNCtWzdeeeUVbrjhBsB25zM+Pp6EhAQAPvvsM44fP16vflJSEmazmZCQEF5++WVjuG/37t1JSEhg2rRpALz33nucO3fOqe6NN97Ixo0befbZZxk/fjw9evQwzh0ZGcmaNWsICQnBarWyYcOGZr2vttBZr0tdVVVVLF++HIvFwtNPP03Xrl2b9V5ERKRzU4AVEREnX3zxBQCjRo3ipptuqlc+ZcoUQkNDnY5tqpSUFKONsLCweuXx8fEEBARQVVXFl19+6VRmNpvZtWsXAPfdd5/LYbJ/+MMfADh//jxff/21U9k111zDVVdd1WDfgoKCiI6OBiAzM7MZ76ptdNbrUtcHH3xAZmYmU6dOZcyYMc16HyIi0vkpwIqIiKGiooL//ve/ANx8880ujzGZTIwbNw6AtLS0Jrf9yy+/UFBQAGDUr6t79+6MGDHCZduHDx/m4sWLbuuHhoYycODAZvfNzn63z/7cZkdxpVyX48ePk5SURHBwMHPnzm3yexARkSuHAqyIiBiOHTtmhLdBgwY1eJy9rKSkhLNnzzapbfvw18baHjx4MAB5eXkN1rcf465+bm5uk/rl6Pvvv2+0/fZwJVwXq9XK8uXLqaysZO7cufTq1avRvouIyJVHAVZERAxFRUXGdt++fRs8znEormMdd4qLi5vV9vnz57lw4UK98wQFBdGtW7dG6zuerym2b9/OTz/9BMA999zTrLqX25VwXf71r39x6NAhxo4dS0xMTJP6LiIiVx4FWBERMTgGE3dhxN/f32Wdy9m22WyuV+6uflP7BbahqytXrgRgxIgR3HXXXU2u2xY6+3U5ffo0b731Fv7+/jz11FNN6reIiFyZFGBFROSKVlxczP/93/9RXl7OVVddxeLFi/Hx0T+PbWnFihWYzWYSEhJcTiIlIiJip3+hRUTE0L17d2PbPjGPKxUVFS7rXM62AwIC6pW7q9+Ufp05c4a//OUvnDx5kpCQEFatWsWvfvWrRuu1tc58Xf7973+Tnp7OkCFDmDlzZpP6LCIiVy4FWBERMTg+Q1lYWNjgcY7PV7pbmsZRnz59mtV2jx49nMKO/Tznzp1zG7Ts9R3P58qZM2d48sknycvLo3fv3qxevdqYKbej6azXpby8nL/97W/4+Pgwb948Ll68yIULF5y+rFYrYFsf1r6vo80SLSIibadLe3dAREQ6joEDB+Lj40N1dTW5ubkNLtlin0k2JCSEnj17Nqltxxlqc3Nzufbaa10eZ5/Vtm65Y/2cnByGDRvmtr67GXXPnDnDE0884RReG+pPR9BZr8u5c+coLy8HYN68eW77+eWXXxpr0L799ttERES4PV5ERDon3YEVERGDv78/N910EwD79u1zeYzVamX//v0AjBkzpslth4eH069fP7dtm81mDh065LLt4cOHG5MM2c9fV35+PseOHXPbt5KSknrh1V3Y7QiuhOsiIiLSFAqwIiLiJDY2FoCDBw9y5MiReuU7duzg1KlTTsc2hclkYurUqQB89dVXnD59ut4xn3zyCWazGV9fX+68806nsoCAAG677TYANm3aZNy5c5ScnAzYnrOcOHFivXLHYcMhISG89tprHT682nXG6xIaGsru3bvdfvXv3994T/Z9uvsqInLlUoAVEREnsbGxDB48GKvVyqJFizhw4AAA1dXV7NixgxUrVgAwbtw4IiMjneomJSURHR1NdHS0yyD0wAMPEBISQkVFBQsXLuTo0aMAXLp0iU2bNvH2228DMG3aNMLDw+vVT0hIICAggOLiYp555hmOHz8O2O4Qrlu3js2bNwMwe/ZsgoKCnOqWlpY6hdeOPmy4rs56XURERJrDZLXPjiAiIlLj9OnTPPHEE+Tn5wO2IazV1dVUVlYCEBERwerVq+uFkaSkJNatWwfABx98QGhoaL22jx49yoIFCygrKwNsd+UqKyuxWCyAbYjpsmXL6Nq1q8u+paamsmTJEmNW28DAQMxmM1VVVQDExcWxcOFCTCaTU71169aRlJQE2O4a2mfPbcibb75pDK3tKDrjdWnM/fffT35+PrGxsSQmJjarroiIdD6axElEROoJDQ1l3bp1bNy4kV27dpGfn0+XLl0YNGgQU6ZMYfr06fj5+XnU9tChQ/nHP/5BcnIye/bs4X//+x/+/v4MHjyY2NhY4uLi3K7DOn78eN555x2Sk5NJS0ujpKSEwMBAIiIi+O1vf8ukSZNc1nOcudZsNmM2m932syPOdNsZr4uIiEhz6A6siIiIiIiIeAU9AysiIiIiIiJeQQFWREREREREvIICrIiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVERERERMQrKMCKiIiIiIiIV1CAFREREREREa+gACsiIiIiIiJeQQFWREREREREvIICrIiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVExCu89tprREdHM2/evPbuirSz8vJy7r77bqKjo9m9e3d7d0dERNpQl/bugIiIXF7nz58nKyuLzMxMjh49ytGjRzl58iRWqxWADz74gNDQ0MtybqvVyowZMygsLGTWrFk8+uijHrWTlZXFpk2bAHjkkUdasYftKycnh/3793P48GFycnIoLi6mqqqKoKAgrrvuOsaPH09sbCyBgYHt3dUOJTAwkAceeIC1a9fy+uuvM27cOLp169be3RIRkTagACsi0snNnz+frKysdjl3ZmYmhYWFAEycONHjdt544w2qqqoYN24cw4cPb63utav58+fz/fffuywrKSmhpKSEtLQ01q9fT2JiImPHjm3bDnZwM2bM4MMPP6SgoICPPvqIWbNmtXeXRESkDWgIsYhIJ2e/0wq2O1ejRo0iJCSkTc799ddfA9C3b1+GDRvmURuHDh0iPT0doFOFFHuwDwoKIi4ujsTERNasWcPatWv561//yvjx4wFbmE1MTCQjI6M9u9vhBAQEMH36dACSk5O5cOFCO/dIRETagu7Aioh0cnFxcQQHBzN06FAGDBiAyWRi/vz5lJSUXPZz2wPshAkTMJlMHrXx/vvvAxAaGspvfvObVutbexswYACzZ89mypQpdO3a1als6NChTJo0iQ0bNvDmm29SWVnJypUreffdd9uptx1TTEwMSUlJnDt3jv/85z/MnDmzvbskIiKXme7Aioh0cjNmzOCOO+4gPDzc4xDpiePHj3Ps2DHA8+HDhYWFpKamAjB16tQ27f/ltmLFCu6666564dXRrFmziIiIACAvL4/s7Oy26p5XCA0NZcSIEQB8+umn7dwbERFpC7oDKyIil4V9dlj7sGVPbNu2jerqagAmT57cpDoWi4WvvvqKb775hszMTEpLS6mqqiI4OJjBgwcTFRXFHXfcQZ8+fZzqRUdHAxAbG0tiYiK//PILH330EWlpaRQVFdGjRw+GDBnC73//e0aOHGnUu3jxIp9//jkpKSmcOHGCiooKwsLCuPPOO5k5c2aLJxcaPXq08Qzz8ePHue666zxuKy8vj82bN5ORkcHp06epqKggMDCQoKAgQkNDiYyM5NZbb+Waa67xqH2LxcLWrVvZsWMHOTk5lJWVYTKZ6NmzJ8HBwQwbNoyoqCgmTJiAn5+fU926P/+8vDw++eQT0tPTKSoqwmw28+KLL9b7MGTy5MlkZGRw7NgxMjMzueGGGzz74YiIiFdQgBURkcvCPnx4/PjxdOni2T83e/bsAWzPiQ4cOLDR43/++WcWL17MiRMn6pUVFhZSWFjIvn37yM7OJjExscF2du7cyUsvvURFRYWx7+LFi+zdu5d9+/axYMECpk2bRlFREYmJiWRmZjrVz83N5a233mLv3r2sXLmyRSHWYrEY2z4+ng+c2rx5M6tXr6aqqsppf1lZGWVlZZw4cYK0tDSys7NZtGhRs9svLS3l6aefdjlhmP1nn5WVxaeffkpycjIDBgxosK3PP/+clStXUllZ2eh5HSf12rNnjwKsiEgnpwArIiKtrqioiB9//BHwfPhwZWUlP/zwAwDDhg1rdPhwVlYWc+fOxWw2AzBq1ChiYmIYOHAgfn5+FBcXc+TIkUbXDc3Ozuarr76id+/ePPLII8a5Dxw4wHvvvUdFRQWrVq1i5MiRvPDCC/z888/cd9993HrrrQQHB3Py5EneffddsrOzOXToEMnJyfzxj3/06GcA8N133xnbgwYN8qiNnJwcI7z27NmTadOmMXLkSIKDg6mqqqK4uJijR4+yd+9ej4dpr1692givkZGRxMTEEBoaSo8ePTh//jzHjh0jIyPDGBLekKNHj7Jt2zZ69uzJzJkzGT58OH5+fuTl5dG/f/96xw8aNIiAgADMZjPfffcdCQkJHvVfRES8gwKsiIi0um+++Qar1UrXrl0ZN26cR21kZ2cbdx+HDh3q9liLxcLixYuN8PrEE08YM9Q6uuWWW5gzZw4FBQUNtpWVlUVERASrV68mKCjI2P/rX/+aAQMGsGTJEiwWC3PnzuXs2bOsWLGCqKgo47ghQ4YwZswYZs+eTVFREZs2bWL27Nn4+vo26/2DbRh2bm4uYAvx4eHhzW4DYMeOHcad11WrVhnP1TqaOHEic+bMoaysrNntX7x40fhgYOLEibzwwgv1gvDIkSO59957MZvNbu8k5+bmMmDAANasWeM0W3ZDs1j7+voyZMgQMjIy+Omnn6iurm7RnWoREenY9De8iIi0Ovvw4aioKAICAjxqw3EYcGPL/mzbto2TJ08CtlmXXYVXR/369XNb/swzzziFV7tJkybRt29fAM6cOUN8fLxTeLULDAzkrrvuMo7Ly8tzez5XioqKePXVVwEwmUz8+c9/bnYbdvYZpwMDA12GV0e9evVqdvvnzp0zPmwYOXKk27u4AQEBjQ6pfuqpp5q11JP92IqKCoqKippcT0REvI8CrIiItKry8nIOHjwIeD58GKC4uNjY7tmzp9tj7YEZ4MEHH/T4nGAbktpQyDOZTE5lMTExDbbjeNypU6ea1YeKigoSExON4Fl34qjmsofu8vJyduzY4XE7DenVq5cxm/L27dtbtCZr3759XX4o4I7j74fj742IiHQ+CrAiItKqUlNTsVgs+Pr6MmHCBI/buXjxorHt6m6oo59++gmw3YlrymRP7jRW37Ev7mbrdTyuOYHu0qVLPPvss8bEULfeeitz5sxpcn1XYmJijLueS5Ys4fHHH2fDhg0cOnTIGHbdEn5+fsTGxgJw5MgR7r//flasWMH27dubHd49mWXZMcA6TrwlIiKdj56BFRGRVmW/G3rTTTcRHBzscTuOz4w2NhttaWkpUHunsSX8/f3dljsOj3U3PNrxOUz7UkCNsVgsLFq0iP379wMwduxYnnvuOY+en3UUFhbGyy+/zEsvvURhYSGHDx/m8OHDgO3nfMMNNxAdHc0999zT6IcFDZk3bx6VlZWkpKRw9uxZPvvsMz777DPA9sHC2LFjiYuLa/ROcmN3211x/LDD0xmvRUTEO+gOrIiItJrKykr27dsHtGz4MNie17Q7e/Zsi9ryBhaLhSVLlhhLB0VFRfHiiy8aQ3NbKjIykvfff5/nn3+euLg4YxmbqqoqfvjhB9544w0efPBBIzw3V7du3UhMTGT9+vX86U9/YvTo0UbALykp4YsvvmD+/Pk8++yzToGzLk8mYHKceMrx90ZERDoffUwpIiKtJj093RiS2tIA67hkSmMBNjg4mIKCAq+dwMceXu13r0ePHs2yZctatH6sK127duX222/n9ttvB2x3rg8cOEBKSgp79+7l7NmzLFq0iOTkZPr06ePROcLDw3nooYd46KGHqKqqIisriz179rB582bOnDnD7t27Wbt2LXPnzm2193Xu3Dlju7EJukRExLvpDqyIiLQaewCLiIggNDS0RW05rnn6yy+/uD3WvsxOcXFxo8d2NHXD66hRo3j55ZdbPby6EhwczJQpU3jllVe47777ADCbzXzzzTet0r59eHJCQgJ///vfjeHZ27Zta5X27Y4dOwZAaGgo3bt3b9W2RUSkY1GAFRGRVlFdXc23334L2CYeaql+/fpx1VVXAfDjjz+6PTY6OtrYTk5ObvG524rFYuG5554zwuvIkSNZvnx5o8/hXg5jx441tu3PFLem0NBQYx1bT9aabUhpaamxhNKNN97Yau2KiEjHpAArIiKt4vDhw0bwcQyULWEPVceOHeP8+fMNHjd58mQjHG3ZsoWPP/7YbbsFBQWt0r+WsFgs/PWvf2X37t3A5Q2vu3btajSU2p9dBrj66qub1f6pU6dIT093e8zp06eNO6VhYWHNat+dI0eOGNs333xzq7UrIiIdk56BFRHp5E6cOGHMOGtnX18UYOfOnU6zBQcEBDBp0qRmn8d+FzEsLMyjpVBcuf3229myZQvV1dWkp6dz2223uTyuS5cuPP/88zz++OOYzWZee+01du/ezdSpUxk4cCB+fn4UFxeTmZnJzp07GTp0KImJia3SR08tXbqUnTt3ArbA+Nhjj3H69Gm3dXr37k3v3r2bfa6PP/6YpUuXEhkZSWRkJNdeey29evXi0qVLFBQUsG3bNuPuef/+/Zu9/FFBQQFPPfUUYWFhTJgwgWHDhtGvXz+6detGWVkZR44cYdOmTcZs0tOnT2/2e2hIWloaYHu+d/z48a3WroiIdEwKsCIindzhw4dZtmxZg+VvvPGG0+v+/fu3KMC2xvBhu6ioKPr27UthYSEpKSkNBliA66+/ntdff53Fixdz6tQpDh48yMGDB10ea39mtj3t2LHD2D558iSPPfZYo3UefvhhEhISPDpfZWUlqamppKamNnjM1VdfzbJly9wuD+TOqVOn+PDDDxss9/Hx4cEHH+R3v/udR+3XZbFY2L59O2C76+/pEkAiIuI9FGBFRKTFfv75Z+PuYUtnH3bk6+tLfHw8b775Jnv37qW0tNTt2rJDhgxh/fr1pKSk8PXXX5OVlWU8b9m7d2+uu+46xowZwx133NFqffQGS5YsYf/+/WRkZJCTk0NJSYkxpLhXr15cf/31TJw4kZiYGI+W7RkxYgRr1qwhPT2dI0eOUFBQwJkzZzh//jz+/v6EhYUxYsQI7rnnnla7Ow8YvxMAM2bMaLV2RUSk4zJZrVZre3dCRES82zvvvMM777xD7969+eSTTzxay7Mh5eXlPPDAA5w9e5ZHH32UWbNmtVrb4t0WLlxIamoqkZGRrFq1qr27IyIibUCTOImISIvZhw/fcsstrRpeAQIDA43QunHjRi5cuNCq7Yt3OnLkCKmpqZhMJh555JH27o6IiLQRBVgREWmRS5cuMXHiRB5++GHi4+MvyzmmT5/OgAEDKCsr45///OdlOYd4l7Vr1wIwdepUhg0b1s69ERGRtqIhxCIi4hV+/PFHUlNTCQwM5P7772/v7kg7Ki8v58MPP8RqtRIfH+/2uWgREelcFGBFRERERETEK2gIsYiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVERERERMQrKMCKiIiIiIiIV1CAFREREREREa+gACsiIiIiIiJeQQFWREREREREvIICrIiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVERERERMQrKMCKiIiIiIiIV1CAFREREREREa+gACsiIiIiIiJe4f8DB3BjF7UsG/4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACvcElEQVR4nOzdd3hT1eMG8PdmdU9aKKvsIUNAZcqXIUtBBQEFRZa4UJHh3oL4A9ziQAWVoQIKgguQvTcie+9ZuvdK7vn9keaatNlJm6Z9P8+Th5CcnHvaJrn3vefccyQhhAARERERERFROafydQOIiIiIiIiInMEAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILDLBERERERETkFxhgiYiIiIiIyC8wwBIREREREZFfYIAlIiIiIiIiv8AAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILDLBERERERETkF7wSYM+fPw9JkiBJEkaNGuWNKiulbt26Kb9HIiJbRo0apXxXnD9/3tfNUcydO1dp19y5c33dHCoFAwYMgCRJuOeee3zdFPITPEYksq4iH/dPnToVkiShfv36yMvL83r9ZdYDO3fuXLz99tt4++23y2qTPrd8+XLlZ05LS/N1c6iIXq/H2rVr8fLLL+OOO+5A9erVERAQgNDQUDRo0ABDhw7F8uXLYTAYXKr38OHDGDduHJo2bYrQ0FBERESgZcuWePnll3HhwoVS+mmIqLIwP3Hhys1b+92///4bv/32GwDYrFMIgW3btmHy5Mm48847Ubt2bQQGBiI4OBh16tTBfffdhwULFiA/P9/h9jZu3OjSz+nopElGRgY2btyIDz/8EA8++CAaN24MlUrl1smgnJwc7NixA5999hlGjRqFFi1aQKPRKHVt3LjR6bpckZOTg9mzZ6Nfv36oVasWAgMDERgYiBo1aqB379749NNPnT7eyMvLw6xZs3DnnXciLi4OAQEBiI2NRfv27fF///d/SE5OLpWfwRfGjRun/G3eeOMNl1+fk5ODiIgISJIEjUaDq1evuvT61NRU/Pbbb3j99ddx5513olmzZqhatSq0Wi0iIiLQvHlzjBo1CqtWrXKp3j///BNDhw5F3bp1ERQUhIiICDRr1gwTJ07E0aNHXapr8+bNGDNmDJo3b47w8HBotVpER0fjtttuw4QJE3Dw4EGHdRQUFGDfvn345ptv8Pjjj+PWW2+FTqcrkxObiYmJeOedd3DrrbciOjoawcHBaNCgAR555BHs3LnT4evNw6Q3v3fKs3379ik/R506dSCEcLmORx99VKljxowZyuPPPvssoqKicO7cObz//vvebLaR8IJz584JAAKAGDlypNUyXbt2VcpUFiNHjlR+5nPnzjksXxl/R2Vt/fr1Ijo6Wvk927u1bdtWnD592ql633//faHVam3WFRYWJhYuXFjKPx1VFq5+t5SV77//XmnX999/7+vmVDjmf3dXbvPmzfN427Isi1atWgkA4t5777Va5ujRo6JGjRpOtalx48Zi7969dre5YcMGl35Oe++5tLQ0IUmS3de78llytB/ZsGGD03U5a8+ePaJevXoOfw9Vq1YVf//9t9269u7dK+rWreuwnlWrVnncbmeOEUvbvn37lDbEx8cLWZZdev38+fOV1/ft29fl7c+aNcvp93GXLl3EtWvX7NaXkJAg7rjjDrv1aLVaMWPGDIdty8nJEQ888IDDdqlUKjF+/HhhMBhs1nXLLbe4/Rn1xJo1a0TVqlVtbleSJPH888/brcP8GNyV26ZNm9xud3k47m/ZsqXShrVr17r02uzsbBEWFiYACLVaLa5evWrx/JQpUwRgPAZOTEz0ZrOFBl5Qt25dt1I7WSqtM7b0nytXriAlJQUAEB0djZ49e6JDhw6oXr06CgsLsXv3bsyfPx8ZGRnYs2cPunfvjt27dyMuLs5mnV999RVeeOEFAIBWq8Xw4cPRtWtXFBYW4u+//8aSJUuQmZmJ4cOHIzIyEnfeeWeZ/KxUcc2dO9evz/qSe5599lkMGDDAYblTp07hxRdfBACEhYVh8ODBHm976dKlOHDgAADg1VdftVomOTlZ6ZkKCQlBz5490alTJ9SqVQsAcPDgQcydOxcJCQk4efIkevTogW3btqF58+YOtz9kyBAMHTrUbplbbrnF5nNCCIvjFEmS0LBhQyQlJSE1NdXh9osrPkInPj4eBQUFuH79ust1OePChQvo2bMn0tPTAQBxcXEYNWoUGjVqBI1Gg7Nnz2L+/Pk4d+4cbty4gXvuuQe7du1C69atS9R15MgR3HHHHcjIyAAANG/eHMOHD0e9evWQlpaGlStX4rfffsONGzdw3333Ye3atejUqVOp/Fxl5ZZbbsHNN9+MgwcP4uLFi1i/fj169Ojh9OvNv29Hjx7tVhtUKhVatWqFtm3bokmTJoiLi4NOp0NSUhJ2796NxYsXIycnB5s3b0b37t2xb98+BAcHl6gnKysLvXv3Vj6PMTExGDNmDFq1agW9Xo8dO3Zg7ty5yM3NxUsvvQStVouJEyfabNdDDz2E5cuXAwDUajWGDBmC9u3bo2rVqrh69SrWrVuHFStWQJZlfPrpp9DpdHjvvfes1lX8c2Hq2S/NUWj79u1D//79kZOTAwDo1asXBg0ahNDQUOzevRvffvstsrOz8cEHHyAgIABTp061Ws/UqVORlJTkcHvbtm3DBx98AABo0KAB/ve//3nvh/GB0aNHY9KkSQCM73NXPhdLly5FZmYmAODOO+9E9erVLZ4fP348ZsyYgczMTHzwwQeYPn269xru1ThsR3k4y1DWymsvSWW2YMEC0bJlS/HTTz+JvLw8q2UuX74smjdvrvztRowYYbO+q1eviuDgYAFAaDQasWbNmhJlzHulateuLXJzc7328xCVJ+yBLR9eeukl5e/w6KOPeqXODh06CACiSZMmNsts2bJF1K1bV3z11VciIyPDapnU1FSL44EuXbrYrM+8B/att97yqP2ZmZli6NCh4v333xfr168XaWlpQgjLYxNX9tMjRowQ7777rli1apXSs2C+z/d2D+wjjzyi1N2nTx+Rk5NTokxhYaEYMWKEUq5///5W62rfvr1S5uGHHxaFhYUlyixZskSoVCrlb26tjLPKQw+sEEJ8/PHHSjuGDx/u9OsuXLig9N5XqVJF5Ofnu7ztK1euiOTkZIfbadiwodLG6dOnWy334osvKmVuvvlmcePGjRJljh07JqpVqyYACJ1OJ06dOmW1rs2bNyt1hYeHi/3791stt3LlSqFWq5VjHVu9aRMnThRvvvmm+O2338SVK1eEEEK89dZbpbZfkGXZotf37bffLlHm33//FeHh4Uov8sGDBz3a5pAhQ5TtTZ061aO6ykM2unHjhjKCMDg42OZ3tzXmowCWLFlitcxDDz0kAIioqCiRlZXlrWYLBthSxABb/qSmpjo1dOjQoUPK3y4oKEhkZ2dbLTdhwgSl3AsvvGCzvvvvv18p9/nnn7vdfqLyjAHW9/R6vahevbryd9i2bZvHde7fv1+pb8qUKTbLZWZmioKCAof1JSQkKCf+AIizZ89aLefNAGuLuwHWmtIMsDVr1lTqPnLkiM1yqampQqPRCAAiOjq6xPM7d+5U6qlZs6bdE6pPPfWUUnbOnDlut728BFjzA/WQkBCRmZnp1OtMwyABiHHjxpVqG3/99VdlW//73/9KPF9QUKAM2ZQkyW4Y+/nnny1OVFjz2muvOXUMI4QQgwYNUsr+/vvvTv9MpRlgly9frtTdvn17m8d3X3zxhVJu8ODBbm8vJSVFBAQEKGH40qVLbtclRPnJRgMGDFDa8e233zr1GmdP7Pz1119K3bNnz/Zam0t9FmLTRdGbNm1SHnNlkglZlvHzzz9jyJAhqFevHoKDgxEWFoamTZti7NixOHTokN22vf322yUmVVi3bh0efPBB1KtXD4GBgSUmb9Dr9fj777/x3HPPoXPnzqhatSp0Oh3CwsLQuHFjjBo1Cps3b7a5TdNEG/PmzVMeq1evXomf2dbvypnZyHbt2oXHH38cTZo0QVhYGEJCQtCgQQOMHDkS69evd/h603a6desGAMrwittuuw1RUVEICQlB8+bN8corr7g1vKq8ioyMdOr326JFCzRt2hQAkJubi9OnT5coI4TAL7/8AsD4+xw3bpzN+p599lnl/uLFi11ttkd27NiBsWPHolmzZoiMjERgYCDi4+MxZMgQ/PXXX3Zfaz6JiukzevHiRTz33HNo2rQpQkJCEBkZiU6dOuHLL7+EXq93qk1ZWVn45JNP0KtXL9SoUQMBAQGIjo5G27Zt8eabbyIxMdHu64t/VgwGA+bOnYtevXqhZs2a0Gg0qFu3bonXJSQk4MUXX0SzZs0QEhKC6OhotGvXDh9++KEy/Khu3bqQJKnE61etWqVs0/zvac+zzz6rvGblypVOvcYZjmYhLq2/259//ol77rkHcXFxCAwMRN26dTFs2DDs2LHD5Z+hoKAA3377Le69915lop/IyEjcfPPNeO6552xOqHPixAmEhIRAkiRERETg3LlzNreRmpqK+Ph4SJIEtVpt93u7oli1ahWuXbsGAGjatKlXhn4uWLBAuT9s2DCb5UJDQ6HVah3WV7VqVXTp0kX5v6P9OAE3btxQ7jdq1MhmucjISMTGxgIw7teLMz8+uP/++xEYGGizrhEjRij3f/rpJ5fa647ExES0bdtW+e6aNGmS1cvT3N2nxcbG4u677wZg/N38/PPPTrXL/FjO3eHDzmrWrJly39pw9L179ypDNlu1aoWWLVvarGvgwIEIDQ0FYJxUNDc3t0QZZ99XANC4cWPlvrX3li+YH0+ZJuqyZtSoUQgPDwcA/PXXX263/6efflImoOvVq5dyeURpM88yLVq0wJUrV0qUSUpKwrvvvov//e9/yvD02NhY/O9//8N7772HrKwsm/Wbv6+dvTxp3rx5yudz2LBh0Ol0Vsv17t1b+U4y35d4zBsp2N7ZNWcvirZ2dvX06dOidevWdl+nUqnEG2+8YbNt5md+1q9fL55++mmr9Zifee3WrZtTbR45cqTVMw7OTrRh73dlS2FhoXjssccc1v3AAw9YHWJkYirXtWtXcebMGdGsWTObddWpU6dS9iC3bdtW+R3s3LmzxPPmvbQtWrSwW5fBYLAYwuLKEA13ZWVlWQx1sXXr16+fzfYU7wFZuXKliIyMtFlXr169bA7NNlmxYoXdyRYA4wX/v/32m806zD8rycnJonPnzlbft+bWr18voqKibG6zZcuW4uLFi6JOnTpWX28wGJQJVKKiohwOBc/NzVW2Fx8fb3fiC1c5Gt3h7b+bXq+3+72mUqnEjBkznO6BdWYyGp1OJ7766iurr//mm2+Uch07dhR6vd5qucGDByvlXnvtNbu/04pi4MCBys/szAQuzmjQoIHyPvYW81EpixYtslqGPbD/qVWrllK3sz2wrVu3LvG8ea/qrFmz7G4zJSVFKatWq22ORHLEmR7Yc+fOicaNGyvlpk2bVqKMN/Zpv//+u1LO3vB1E/Mhtq1atXLlx3aLeW+VtR5Y817VIUOGOKzv5ptvVspbm5Dr9ddfV5531ANr/n3677//Ov0zlWYPbJUqVZS6HU0S1K9fP6XsX3/95db2zIcrL1682K06zDk67jcYDOLJJ59UynTq1EmkpKSUKPf9998rPfO2btWqVRPbt2+3up3CwkJlyLkkSeLMmTMO227aLwCwOfTc5L777lOOFZKSkhzW7YxSD7BbtmwRy5Yts7imcNmyZSVux44ds3jd6dOnRUxMjPKazp07i+nTp4uFCxeKH374QUycONHiYNTWzs38g3PXXXcJACIuLk68/PLL4ocffhBz584VTz31lMXMWe3btxehoaGif//+YsqUKWL+/Pni559/Fp9++ql4/PHHRUhIiFLn+PHjS2xz3759YtmyZaJ79+5Kua+//rrEz7xv3z6L1zkTYIcOHaqUCQwMFE888YSYN2+e+OGHH8SECRMs3sB9+vSxOZzCVKZNmzaiadOmQpIk0b9/fzFr1iyxePFiMW3aNBEfH2/3i7Qiy8/PtzjgtzYj4MKFCx3ulM2Z/3137dpVCq3+T15ennLNGgDRoEED8eqrr4oFCxaIRYsWialTp1ocLNxxxx1WA5b5AWT//v1FcHCwCAoKEk888YSYO3euWLhwoXjuuecsPhP2TigtWbJEuY5Gq9WKQYMGic8++0z8/PPPYs6cOWLYsGHKEC+VSiXWrVtntR7z36Xpc92qVSsxffp0sWjRIvHNN9+IZ555Ril/5MgRiyGLbdq0ER9++KFYvHixmDlzprj99tuVMGQaqlc8wAohxP/93/8pdfzwww92/wYLFixQyk6ePNluWVe5EmC98XczP+jV6XTiscceE/PmzRMLFiwQ48aNU3635sOQbB2obN++XSkvSZK48847xUcffSQWL14s5s6dK5544gmLv5WtesyHs1lr+5w5c5TnO3To4NE1fP4iMTFR+fxoNBqHM5k648yZM8rv0ZOhd8WZnzTdsWOH1TLm7+MWLVqIli1bitDQUBEYGChq1aol7r77bjFr1iy7J2sd8ZcAa37y3d41sOZtmDt3bokyY8eOVZ53JcACEHv27HGr7Y4C7MGDB5XZq9VqtdUhjN7ap7l6oG5+7fEnn3zi1s/vrBs3bljMCPvxxx+XKLN48WLleVcD7Pvvv1/i+T179ijPO3sNbLdu3Vz6uUorwF67dk2p19r+2l473Dm5d+DAAeX10dHRDk/WO8PecX9eXp7Ffq5v375WTyJ98sknSpng4GAxYsQI8dVXX4lffvlFzJo1S/Tv318Z6hscHGzzBNhzzz2n1PPmm2/abbf5iR1rJ8qKmzFjhlLe1glLV5XLZXQMBoNyliMgIED8/PPPVstdv35d6aFVqVTi8OHDJcqYv2EBYxBOT0+3u/21a9fa3SEmJSUpPT4qlcrm9TveXkZn0aJFyvPVqlWz+iY8f/68Rc+GrestzX8nOp1O/PHHH1Z/TvO6PAld2dnZVk9cuHMrHvxLg3n4uOWWW6yWmTx5slLGmd4B88k1FixY4OUWWyp+ba61g/eCggKLNlk7mCm+jEV8fLw4efJkiXK7du1SzvpHRUVZ/WK/ePGi0gsdHx9v89qdXbt2iYiICAFA1KpVy+o1dcVHdkyYMMFuD6d5D+1TTz1ltWzx7wprO8Tr168rAaFr1642tyeEEF26dFEOyDy9TqY4VwKsp3838x1VZGSk1aVPjh8/LuLi4iy2ae1AJSMjQ9SuXVupa+PGjVZ/vlOnTikn0EJCQqyeWU9JSVF6pdRqtdiyZYvy3IkTJ5RwHh4e7tTZZHuOHTvmte8vby8lYM58kpp77rnHK3X+9NNPdg+A3bFlyxalztjYWJs96M4uo1O9enWxfv16t9riLwE2MTHRYoKfuLg48corr4jvvvtOzJ8/X7z11lvK/lqlUol33nnHaj3m+62JEyfa3ab59bKA45N2tjjq5DCdLA4MDBTLly+3Woe39mlCCPH88887daBuvkSIVqv12mc3ISFB+T5YunSpmDNnjhg7dqzFSfPevXtb3fdt2rRJKdOmTRu729Hr9SI0NFQpb2tCN/PfrVqtFg899JCYOXOmWLRokfjoo48sei47d+4sEhISXPp5SyvAmv8uHO2PhRDiu+++U8qPGTPG5e2NHz9eeb23roW2ddyfnp5u0Qk2fPhwq+/5PXv2WIy4uHDhgtXt/PHHH8qxS/v27a2WOXz4sLK9unXr2p0vZvTo0UrZTz/91OHPuXHjRqe/d5xVLgPs0qVLlbIzZ860W/bEiRPKWaHHHnusxPPmH5yQkBBlVjRPmZ+VtrWj8HaAbdOmjfL8ihUrbNaza9cu5WxLnTp1rB4cmO+U7E3KMXv2bKfKOWL+HvH0VtqTQKSkpFhMgvLLL79YLTdx4kSlzGeffeawXlfLu+vq1atCp9MJAGLgwIF2yxYUFIj69esLAKJRo0Ylni9+ALl582abdQ0bNsxuuXHjxik7SEfDTb799lulrh9//LHE8+aflVtvvdVueDU/w9yiRQubB8vF67V1Rtd86KO1UCiE8XvJVKZfv352f1Z3uBpgPfm79e/fX3neWo+OyZ9//mmxTWsHKh9++KHyvKNJQNatW6eUfffdd62W2bhxozJTap06dURqaqooKCgQt956q/Jab5wsKn5yw5NbaawPamLe27Js2TKv1Pnqq686/TdzRn5+vsNeIZMNGzYISZJEu3btxEsvvSS+++478csvv4jZs2eLxx9/XDnRBRh7nFevXu1ye/wlwAohRHJyshg8eLByzGPt9sADD9j9fl27dq1StmbNmnZ7kYpfcuXuBIS2jhF/++03ERQUJACIiIgIm+tpenOfJoRxRI6pPfYO1OfNm6eUc7RdV6xcudLm369mzZpiypQpNvdT2dnZyu9CkiRx6NAhm9v55ZdfLOq2N4Lik08+EbGxsTbbVb9+fbFw4UKnJmkrrrQC7G+//abUO2jQIK+XN1dQUGAxKtTRMYyzrB33JyQkWBzvT5o0yeZ79J577hGA8bKry5cv293WG2+8odRpa3I/80vnbJ0UND+xo9PpnBoSnJCQoNTbo0cPh+Wd4ZVJnLzNdJFveHg4HnvsMbtlGzdujHbt2gEAVq9ebbfsoEGDUKNGDa+0sX79+sraoLt27fJKnfacP38e+/fvBwC0bNkSd911l82y7dq1wx133AHAuHbcvn37bJZVq9V45plnbD5vqgcAjh496mqz/Y7BYMDQoUOVSVD69etncw1F8wvi7U2EYRIUFKTcN03CUBp+/vlnFBQUAACef/55u2W1Wi2GDBkCwLh2pK2JcwCgTZs2dtc7s/deEULgxx9/BAD06NHD6tqE5oYMGQKNxrhMtaPP9dNPPw2VyvZX2W+//WZRVq1W2yw7fvx4u9sCgCeffFK5P2fOHKtlzB9//PHHHdZZmjz5u+Xn5yuTT1WrVg0PP/ywzXr69euHm266yW5bTN/tjRs3xj333GO37B133KF8X9t6D3Tt2hUvv/wyAON33ZNPPonXX39d+c4bNmyY3TZXJPv27cPBgwcBGCdJMk1W4ynz9Rujo6M9ru+pp55S2tmmTRu7E6I1adIEJ06cwK5duzB9+nSMHj0agwcPxqOPPoqvv/4a586dQ9++fQEYJ1988MEHlbVNK6Lo6GjMmDHD7kRCy5cvx7Rp05R9WHHdunVDw4YNARjXRX/iiSdKrN0JGL83v/rqK4vHvPm7/e677zBw4EDk5uYiLi4OmzZtspjYy5y392nNmjVTjhvPnz9vMcmoOW+s/eoK08SanTt3trmfCg4OViZSE0Jg+PDhVtcuPXnyZInPlr2/32OPPYZp06YhMjLS6vNnz57F9OnTsWrVKid/mtJXlsdgv//+u/J7btOmjcNjGHedPXsWt99+u3K8P23aNHz44YdWJ6dKTU1VJi178MEHUbNmTbt1m+8Lbe1Tzd/n5pOXmVuyZIny+7vnnntQpUoVu9sFgKioKOW+t9YE1nilFi/bsmULAKB69epOfVhMH/QLFy4gNzfX4k1qzpXFhjMyMvDjjz9ixYoVOHToEJKSkmzOWnb58mWn63XX7t27lfu9e/d2WL53795Yt24dAGPANn1ZF9e4cWOLN1Zx5h8IT2Yjrlu3rtXZBMub8ePHKx/s+Ph4p2djK09Mnx/A+N40LVBui/nf9dixY1Zn7wWADh062K3H3nvlyJEjSElJAQCEhYU5bBNgnNE0LS0Nx44ds1vO0ed67969yv3u3bvbLWualdue7t27o3Hjxjh58iTmzZuHqVOnWsy8WlhYqHzx16hRA/369XNYZ2ny5O924MAB5cCxa9eudsM/YDw5YevvlZ6ergSXatWqOf0eAGD3PTB58mSsW7cOu3btspiRsl69evjyyy8dbsMZb7/9ts2Z8suL77//Xrk/fPhw5QSQp0yfW8DzAPv+++/j22+/BQBERERg8eLFNmeuBIzHAPZERUVh6dKlaNeuHQ4dOoTk5GTMmjULL730kkftLK+mTZuG119/HbIs49FHH8WTTz6pzFp79OhRfPXVV5gzZw5+/vln7Ny5E2vWrLGYORYwHi/NmjULd955JwwGA+bNm4d9+/Zh+PDhqFevHtLS0rBq1SosW7ZMmY3dFALtnSh0xYwZM5QTTw0aNMDq1atRv359m+VLY5/2yCOPKMdVc+fOLfHdf+HCBWXliri4ONx55512t+mKO++8Uzke0uv1uHHjBrZu3YqPPvoIP/74I3788Uc888wz+Pjjj61+jt99911ltvF///0XzZo1w5gxY9CqVSvo9Xrs3LkT33//PXJyclC/fn2cPXsWgO2/3969ezFgwABcuXIFrVu3xptvvon//e9/iIiIwLVr1/Dnn3/i7bffxoEDBzBgwAB8/vnnGDt2rNd+H/7A/Pv1kUceKZVtHDhwAHfeeSeuX78OtVqNb775xu62tm3bBlmWARg/144+F4WFhcp9W/vUBx98EJMmTUJeXh6WLFmCzz//XNkPm7hzYker1SIsLAyZmZleW9mk3AXYrKwsJCcnAzAul3Dfffe59PrU1FSbAdbR2QmTDRs24KGHHrI6hbk1ZXHG1/xsavEdkjXmZWydiQWAmJgYu/UEBAQo9/Py8hxu15+99tpr+OKLLwAYD7DXrFlj9/dj/qF25ndjPoV9WFiYBy21z/yM8wMPPODSa+19sXjyXjFv09KlS7F06VKvtAlw/Lm+evWqct/eQRJgPCCOjIxEWlqazTKSJOHxxx/H888/j4SEBPzxxx8YOHCg8vzvv/+uLE0wevRoh6GvtHnydzP/3Zl6beyxV+bSpUvKznbLli0WB6WO2HsPaDQa/PTTT2jdurVyVtj0mGnZhIouPz/fYpkTbx5gmZaMADz73vrmm2/w4osvAgBCQkKwYsUKh8t2OCMwMBCvvvoqHnzwQQDGJTIqYoB97bXX8H//938AgJkzZ5ZYtu3WW2/F7Nmz0bJlS4wfPx4XL17EsGHDsGfPnhJ19ezZE4sXL8aoUaOQlZWFw4cPl/id6XQ6fPbZZ1i1apXy/W3vZLezli9frpzga9WqFf7++29Uq1bN7mtKY582dOhQTJw4Ebm5uVYP1M2XCBkxYkSJILl161arPZ8mvXv3RnBwsMP2aTQa1KhRAw888AAGDx6M0aNHY/78+fj8888RFBSE9957r8RrqlevjjVr1mDAgAE4ffo0EhMTMX369BLlRo8ejZtvvhkTJ04EYP3vd/DgQXTp0gW5ubno1KkT1q1bZ9GbGR8fj6eeegp33nkn2rVrh+TkZIwbNw6dOnVCq1atHP58pamsjsGuXbumdKYFBATYXUrME127dkV6ejoCAgKwePFi9O/f325588/FrFmzMGvWLKe3ZetzERkZifvuuw8LFy5EdnY2lixZYrHkp/mJnerVq7t0Yic8PByZmZlWl3NyR7kbQpyenu7R6029BdbYCrbmTp06hX79+inhtUmTJpgwYQK++OILLFy4EMuWLVNupnWNrA2/8Tbz4Q4hISEOy5t/sO0NlfDWGVV/N3XqVOXgICYmBmvXrnV4osB8qI29HZmJ6cRM8dd6myefIXufH0/eK6XVJsDx59o0ckKj0Ti1RqUzn69Ro0YpwW/27NkWz5n+L0kSxowZ47Cu0ubJ3818iJYzB2P2fneevAfMzxxbExMTY9E7WL9+fdx6661ub8/fLF++XDkgad++vcVakp4yP8Hh7sna+fPnK0Pvg4KC8Mcff3hlfVoT896z48ePe63e8uLKlSt4//33AQA33XST3ct+xo0bpwzl37t3L3bu3Gm13KBBg3D69Gm88cYbuO222xAZGQmdToc6dergkUcewd69e/H4449b7LdMl015wnzN6dzcXKeOn0pj/xEREaF0kGRnZ1ucVBVCYP78+cr/rfUyvf7667jvvvts3szXV3WWSqXCF198gYiICADGExW2gkbz5s1x6NAhfPnll+jRowdiY2Oh1WpRrVo13H333fjzzz/x3XffWbze2t/v5ZdfVgLFRx99ZHMobv369ZXh2waDwaWwVFrK6hhs/vz5yvt0wIABXjmRY43ps6HX650K5KV1XGVvGHHxEzuunKA3tdeZLOaMctcDax68unTpYvPahNIybdo05cP82muv4Z133rG5MLKj63O9yfxskTMLMJsfeJZmb5+zcnJyHF7L6Kz4+HjccsstXqkLAN577z288cYbAIxnKNesWYMWLVo4fJ15wLV37aiJ+bh/Z3rR3WX6DEmSBL1eXy5OUph/rt98801Mnjy5zLZtClV6vR6FhYUOQ6wzn68qVapg8ODB+PHHH7F69WpcvHgR8fHxuHDhAtasWQPA2MtRr149z38AHzL/u+Xk5Dgsb+93Z17XiBEjbF5f446nnnrK4vN18uRJvP7665gxY4ZX6j9+/LjXglHnzp0d9oq76rvvvlPue3t4m/mJAfPhxM5auHAhRo8eDSEEAgICsHz5codD+V1lfg2WvdET/mr16tXKSZwePXrYPCYBjN/7d9xxhzJEcPfu3TYvI6hWrRqmTJmCKVOm2KzP/Lr4tm3butN8C4MHD0Z4eDg+++wznDx5Et27d8eGDRvszk9SWvu00aNHKyMX5s6di5EjRwIwjhA5c+YMAOMlGE2bNvXK9pwRGhqKzp0746+//kJ+fj527txpc86TwMBAjB071u5wXnt/v/z8fKxduxaA8TjR1qVmJj179sQrr7wCwPKyNl8pq2Owshg+DBhHj/Tr1w/Z2dlKL6/pem5rzPep3333ndeu0+7Rowdq166NS5cuYdOmTTh//rxyGaD5ftu8Z9aRwsJCJZd4Yy4FoBwG2IiICISGhiIrK6tMri0tzvRhrlq1KqZMmWJzR5GZmenWztxd5tcCnTp1ymF58zLemrjKEzdu3HB5OLgtI0eO9Nq1qR9//LEydCoiIgJ///230xfnm4dcexNlAYAsy8pF+SqVyuFkN56oWbMm/v33XwghcOXKFdSuXbvUtuVKm0zK+nNdo0YN5drLs2fPokmTJjbLpqamOn0A/OSTT+LHH3+ELMv47rvv8Pbbb+O7775Thsn6evImbzD/7jh9+rTD8vbKlNZ7wHTNGGAcRpmUlIQLFy7ggw8+QJ8+fSwmqXLXokWLvHbSZcOGDU5da+2sy5cvK/ut4OBgDB061Gt1A7C4ftDVfd4vv/yC4cOHQ5Zl6HQ6LFmyxKk5HFxVVqNbfMV8KL8zw+JNPXiAcyfkbDl69KjSs9WgQQOH1yQ7a+bMmZAkCTNnznQqxJbWPu2OO+5AfHw8Ll68aHGgbh5YbIUC0zDK0mDe6eDJCRlZlrF161YAxvB/++23WzyflJSknBgJCwuze2IE8N77ylvi4uJQpUoVJCcn4+LFi0hKSrJ7ctB8PgxnOikAYPv27Thx4gQAY+dJz549PWu0HV27dsWKFSvQt29fJcQKIWx+p5fWPlWlUmHkyJGYOnWqElrfeustbN68WbmeumPHji6d2DHfd9SpU8c77fRKLc5syOyMmaPJfEwz0Z09e9apgyZvSkhIAGCcAMTeWb61a9cqB6q2uPIzO2J+ZszUw2OPeW+no7NqldUXX3yBSZMmATB+ea9cudKlM8zNmzdHrVq1ABgnKbL3BbJ9+3Zl+N3tt99eqr3iXbt2Ve57q9fbU23atFEOvNatW+fws+NNt912m3J/w4YNdsu6clDSuXNnNG/eHIDx7GdhYaHSE1a1alWH16/4g1atWimT7GzatMnhcD/TxHHWxMTEKENbd+7c6ZW5A86dO4ennnoKgLGnfeHChfjhhx+gVqshyzJGjBhhEW4qorlz5yqfp0GDBnn9ul/zAz3TgZwzli9fjoceeggGgwEajQaLFy/22szIxZmP1CrN0S2+Yv43vXTpksPy5j1NzswQaot5kPP25RCffvqpMuv7yZMn0a1bN4ugbq609mmmA3Xgv2HDpuv+AONQR3s9YKXF/LjXk9EaK1euVC6H69WrF+Lj4y2eN39fJSUlORy26q33lTf16dMHgPHvZ++9kZOTo8y7EBQUZPGessd8dMvIkSNLfURbly5dsHLlSoSGhsJgMODhhx/GokWLbJY1nXTw9rGeee/q/PnzIYTwaFZu80mjbr75Zk+bB6AMA6x5V7ejMzemLxTAONywLJmu8zp79qzN0GkwGJTrJe1x5Wd2pG7dusqw2QMHDtgNsXv37sX69esBGM90lIdrwUzDD7xx80bv6+zZs5VJMEwTinTs2NGlOiRJwv333w/A+OX52Wef2Sw7c+ZM5X5p7xCHDh2qhI4ZM2aUizOlarVaGRJz4cIFm8vPlAbzIPnFF1/YDWGffvqpS3U/8cQTAIwHlRMmTFBOYowcOdKp623Lu4CAAGWZkoSEBIuJgopbuXKlwxmjTd/tOTk5VicdcYXBYMCwYcOUIDxz5kw0atQInTt3xquvvgrAeO3go48+6tF2AOMsxN76/vJm7ytgOSNkaQxva9++vXLf2SXjVqxYgSFDhkCv10OtVuOnn37CgAEDvN42wDgM0nx/bHq/ViTmJxH++usvu/NaZGRkKEtfAZYn8Fxx/PhxZZ8WGRnplc9RcZ988gkmTJgAwDhqzFaILc192qhRo5QQMH/+fPzyyy/KUMeBAwda9DqWhX/++UcZ0aXVat0etp2Tk4MXXnhB+b/5fZOwsDAl1BYUFODXX3+1W6d5kHL3feVt5sdTM2fOtHncPnfuXGVf0a9fP6fmusjJycHPP/8MwHi8VxZLKQHGlRVWrFhhEWIXLlxYolzVqlWVSZS2bt3q1RDboEEDi87EVatWeXRix3zfYb5P8Yg3FpO1tUi1uWeffVYpY2uxahODwWCxmO748eNFfn6+zfI5OTni+++/FwsXLizxnPkCys4sLN6rVy+l/EcffVTi+YKCAjF69GiLBZ7r1Kljta6PPvpIKTNv3jyH27a2oLG5xYsXK89Xr15dHDt2rESZCxcuiAYNGjhceNz0fNeuXR22y5Wy/mDevHlCkiQBQAQHB3u04PyVK1dEcHCwACA0Go1Yu3ZtiTLff/+98jusXbu2yM3N9aD1znnuueeUbXbv3l1cu3bNZlmDwSDWrFkj3nnnnRLPbdiwQannrbfesrtNR2UvXbokIiMjBQAREBDg8DORkJAgpkyZIg4cOFDiOUefleI6d+6slH/qqaeEwWAoUcb8u8Le59pcWlqa8vc3v508edKpdrlr5MiRyrbOnTtX4nlv/t22bNmiPB8VFWV1AfeTJ0+K6tWrW/wOrC1Yn5WVJerUqSMACEmSxHvvvWf1b2GSlpYmPv30U7FmzZoSz5kvyj548GCL5woLC0XHjh2V57/++mu7vwN/tXHjRuVnbNCggc3F7j1l2qfUrl3bYdk1a9aIwMBAAUCo1Wrx008/ubXNU6dOiffff19kZGTYLJOSkiL69u1r8f5MTU11aTvm3yXWPkuuMP9curJfMX0mbL2uoKBA1KpVSynTv39/kZOTU6JcTk6OuPfee5VyLVq0sPqeSEhIEEePHrXZnn379onatWsr9cydO9fpn8UaR8eIEyZMUJ5v1KiRuHz5coky3tqnWWP+HjD/HrO2P3dHZmameOWVV8SNGzfsltu3b5+Ij493eDwthLB7HH39+nVxxx13KPWMGjXKZtmXXnpJKRcTE2N1fyuEEAsWLFCOmwCI3bt32/1ZzJnvW63tF2wx/7vYep0sy+KWW25Ryk2ePLlEmQMHDoiIiAgBQKhUKnHw4EGntj937lyL91xpsHcss2XLFhEaGmr3u3Tfvn1Cq9Uq338rV660u73z58+L5557TiQkJDhsm/mxq/nn4uGHH3b+Byxy3333Kb//5ORkl19vTZldA9ujRw+lF2rMmDGYOHEi6tSpo8xg1bBhQ2UJBpVKhaVLl6Jjx464cuUKPv30U/z888+4//770apVK0RERCArKwsXL17E3r17sW7dOmRnZ+Odd97xuJ3jxo1TejcnTZqEjRs3ok+fPqhSpQpOnTqF+fPn49SpU+jevTtOnTpld9hojx49lPsvvvgiEhMT0aRJE2U69po1a6Jly5ZOt+2BBx7AsmXLsGjRIly7dg233HILRo0ahY4dO0KtVmPv3r349ttvlbNMvXv3VobXkdHKlSvxyCOPKGfpHnnkEaSlpTlcP+uWW24pMfwGMF4j+OGHH2Ls2LHQ6/W46667MGLECHTt2hV6vR4rV65UzlppNBp88803dhfcNr8G5dy5czbXZHVk2rRp+Pfff7Fu3Tps2LAB9evXx6BBg9CxY0fExsaioKAA169fV3rzr1+/jh49euD11193a3vOqFWrFhYtWoR7770X+fn5GDlyJD766CPce++9aNSoEYKCgpCeno6TJ09i586d2LZtGwwGg1cmfPn666/Rtm1b5OTk4Msvv8SOHTvw8MMPo1atWkhISMDixYuxbds2dOzYERcvXsSVK1ecGioUERGBIUOGWAy169atm1eWBykvOnfujKeeegpffvklUlNT0aFDB4wcORKdO3eGSqXC7t278e233yI7OxsDBgyw+1kKCQnB8uXL0bVrV2RkZODFF1/E119/jUGDBqFZs2YIDQ1FRkYGzp49i927d2Pjxo0oKCjAggULLOrZunWr0utWq1YtfPPNNxbPazQa/Pjjj2jdujUyMjIwceJEdO3a1e71z/7I/H1n3pPkbQMGDMCHH36IS5cu4ezZszaXo/r333/Rv39/ZSjioEGDEBQU5PD7tWnTpiWup8rKysILL7yAN954A7169ULbtm1Rp04dhISEIC0tDXv27MGiRYuUmS1NSyfZuwb2119/xT///GPx2Llz55T7H374YYket6lTp1qta/369cpIJxPTPAcA8O233yrXJps8//zzbl2jq9VqMXPmTAwaNAhCCPz222+46aabMGLECGU+hWPHjmH+/PnKME+tVovPP//c6nvi4sWLaNu2Ldq1a4cePXqgadOmCAoKwvXr17F27Vr89ddfykiVF1980WJUXGn4+OOPIUkSPv74Y+X4asOGDRbX+JXmPm306NHKMHTTsoN16tTxyvXzgHECwWnTpuH9999Hly5d0L59ezRs2BDh4eHIz8/HxYsXsXHjRotL05o2bYoPPvjAZp19+/ZFtWrV0LdvX9x8882IiopCamoqdu3ahV9++UU5DuzevTs+//xzm/W89NJL+Pnnn3Hu3DkkJSWhXbt2GDJkCLp27Yrw8HBlHVjz3r3HH3/cZs/w/v37SyyTt3nzZuX+r7/+WuLSwDFjxrg94aEkSfjmm2/QpUsX5OTk4K233sK2bdswePBghISEYPfu3ZgzZ47Sa//KK684fdxdVpM32dK5c2esWrUKd955J7KysjB8+HAAUJYMA4zHprNmzcJjjz2G1NRU3HXXXbj99ttx1113oV69etBqtUhJScHx48exdetW5Tpg08gHe+6//36MGzcOWVlZFstxutoTrdfrlWuxu3Tp4rVJnMqsB1av11v0ghS/WTvzf/XqVdGjRw+brzG/qdVqMXv27BJ1uNoDK4QQr7zyit1t3X777eLGjRvKWVN7PTUPPvigzXqK/66c6VUqLCwUjz76qMPfx+DBg62eoTUxlatsPbDFe9mcvTk6a/j+++8rZ8Gs3cLCwqyOECjO/DWe9gbk5+eLZ555RqjVaqd+xhEjRpSow5s9eSY7duwQ9evXd6pNoaGhVs+WutoDK4QQ69evV3qArd1atGghLl68KGrWrCkAiJtvvtmpenft2mVRz48//uh0m9xVlj2wQhi/v4cPH27zd6dSqcR7771nccbW3mfm+PHjok2bNk69BwICAizOKqempirfvSqVyu73+g8//KDU06ZNG7sjefxNRkaGCAkJUX4Ply5dKrVt/fvvv8rvccqUKTbLmf/9XblZe9/t37/f6dfHx8c7tX83/9w4e7PFnX2Jre90Rz2wJj/88IMIDw93uJ2YmBjx119/2axnz549DusICwsTM2fOdPg7dYYzx4hCCDFp0iSlXMOGDUv0xHpjn2ZNVlaW0tNlur355pue/MgWUlNTXXqfDBo0yGEPmemzb+87+cknn7R7HGhy9uxZcdtttznVtmeeeUYUFhbarMud7wBb73lnemBN1qxZI2JjY21uQ5Ik8dxzzzk9SuX06dNKj3NERIRTv0d3OHMss3XrVhEWFiYAY9axdozx+++/i2rVqjn1+65SpYpITEx0qn3FR5zWrVvX5ZE+K1asUF4/Z84cl15rT5kFWCGEyM3NFdOnTxcdO3YUUVFRFl9C9g6yNm7cKJ544gnRvHlzERkZKdRqtQgPDxfNmjUTQ4YMEbNmzRJXr161+lp3AqwQQqxcuVL069dPxMTECK1WK6pXry7uuOMOMXv2bOXD60yA1ev1YtasWaJbt24iJiZGaDQam78rVw7Kd+zYIcaMGSMaNmwoQkJCRFBQkKhXr554+OGHxbp16xy+3rQdBljnbs4Mezl06JB4+umnRePGjUVISIgICwsTLVq0EC+99JI4f/68w9dnZ2cr29PpdF4bZnHq1Cnx8ssvi/bt24vY2Fih0WhEcHCwqFevnujbt6/4v//7P5tDakojwAphPBHzww8/iAceeEDUq1dPhIaGCo1GI6Kjo8Vtt90mHnvsMbF48WKRlZVl9fXuBFghjEOrnn/+edGkSRMRFBQkIiMjxW233SY++OADkZ2dLWRZFkFBQQKA6Natm1N1yrKsDE+Kjo4WeXl5LrXJHWUdYE3++OMP0a9fPxEbGysCAgJEfHy8ePDBB8X27duFEMLpACuE8ff222+/iZEjR4rGjRuL8PBwoVarRWRkpGjVqpUYMWKEmDt3rkhJSbF43ZAhQ5RtvPzyy3a3IYQQw4YNU8o/99xzDsv7izlz5ig/V58+fUp9e506dRIAROPGjW2W8WaAzcvLE6tWrRJvvfWW6NOnj2jatKmyDw0PDxcNGzYUQ4cOFT/++KPTJyb8PcAKYRz+O2PGDNGjRw8RFxcnAgICREBAgKhevbro3bu3+Pjjjx0Oo87KyhJz584VI0eOFC1atFCOc+Li4sTtt98upk+fbneIrqucPUYUwnKosLUQK4Rn+zRbHnnkEYuwc/bsWZde78jRo0fFJ598IoYOHSpatmypHMsGBgaKuLg40bVrV/HSSy/ZHMJb3J9//inGjx8v2rZtK2rUqCF0Op2Ijo4WN998s3juueecrsdEr9eLX3/9VQwdOlQ0bNhQhIaGKt/Ht9xyi3j22WedqtNXAVYIIW7cuCEmT54sbrnlFhEZGSkCAwNF/fr1xahRo5R9lLNef/11ZdtPPPGES691hbPHMtu2bXMYYnNycsRXX30l7r33XlG7dm0RFBQkdDqdiI2NFR07dhTjxo0Tf/zxh0sncjdv3uzwu9qRhx56SADGIc62juncIQnh4fS4ROQVf//9t3JB/rPPPuvyhELkuUOHDikz5Dn7N1i7di169eoFABg/fjw++eST0mwikU8sW7YMAwcOBGCcVd3VSe+IiKhyycjIQI0aNZCdnY2XXnrJ48kbzZXZLMREZJ/5guKleS0q2WZ+rZCz197OmjVLuV8R1n4lsmbAgAHKGtnTpk3zbWOIiKjcmzlzJrKzsxEWFobnn3/eq3UzwBKVE6YAO2nSJMTGxvq4NRXPli1b7K4/+8UXXyiTAdWsWdOpNSv//fdfZYKanj17KuucElU0kiQpZ8//+OMPZakPIiKi4jIyMvDxxx8DMC7j5MmaxtZwCDFROZCUlISqVasiJiYGZ86cQVhYmK+bVOE0bNgQeXl5uOuuu9CmTRvExsaisLAQZ86cwbJlyyxmEP3jjz9sBthVq1ZBlmWcPHkS7733njI739atW3H77beXyc9C5CsDBgzAb7/9hrvvvht//PGHr5tDRETl0NSpU/HGG2+gXr16OHr0qN0VONzBAEtElULDhg1x5swZu2WCgoIwe/ZsDBs2zGYZa8tSOHu97OrVq5GTk+O4sVbExMSgc+fObr2WiIiIqKJggCWiSmHnzp1YunQpdu7ciStXriA5ORk5OTmIiopC48aN0bNnT4wdOxbVqlWzW48pwIaGhqJx48YYO3YsHnnkEafWja1bt66yTqOrunbtio0bN7r1WiIiIqKKQuPrBhARlYUOHTqgQ4cOHtfDc35EREREvsMeWCIiIiIiIvILnIWYiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyC5zEiYiIKhQhBPLy8pCdnY3c3Fzk5OSUuOXm5qKgoEC55efn2/2/wWCALMswGAzKzfT/4v+aqFQqSJJk96ZSqaDVapWbRqOx+/+AgAAEBQUhKCgIgYGBCAwMtHk/NDQUoaGh0Gq1PvxrEBEReRcDLBERlTtCCOTm5iI9PR0ZGRnIzMy0+Nfa/aysLCWcyrLs6x+h3AgICFDCrOkWFhZW4v+RkZEWt9DQUKvrHhMREfkSZyEmIqIyIYRAVlYWUlNTkZKSYvGvtcfy8/M92p4kSQgKCkJISAiCgoIQHBys3IKCgrBuwVZABiRZApSb+f8BCON9SRTdFyi6Fd2H5eMSip4vyn0C/92Hcl+Y3QegKnqhSkBIlv+HJAAVIIr+hUoAaoG+T/ZAbm4u8vLykJeXV+K+6eYJtVqNiIgIJdCa7kdHR6NKlSqIiYlR/o2IiHBqLWQiIiJPMcASEZHHhBDIyMhAYmIiEhMTcePGDdy4cUP5v+nmaqjS6XQIDw9HWFgYwsPDER4ejm2/7IGkVwF6FSS9BBQW/WtQAXoJkkECDEXBE5W3B1HAGHahERAa2fivWrb4/32T7kJmZiYyMzORlpam3HJyclzallqtLhFqTbdq1aohLi4OsbGxHM5MREQeY4AlIiKHhBBIT0/H1atXce3aNYvb9evXcePGDRQUFDhVV0hICKKiohAdHY3D608ABSpIhcabcr9ABRSqjb2hVOaEJACtDKGVlX+FVgAaGXeO7Ybk5GQkJycjKSkJaWlpcOZQQpIkxMTEoGrVqoiLi1OCrenfuLg4BAUFlcFPR0RE/owBloiIAAAGgwHXr1/HpUuXcOnSJYuwev36dad6T6OiohAbG4vY2Fjs+OUfSAVqSPkqSAVqoOhfhtKKRQm7OhlCZwB0Mh6cPADJycm4ceMGEhISkJCQ4NQJjujoaNSqVQs1a9ZU/jXdDwkJKYOfhoiIyjsGWCKiSkQIgbS0NFy8eFEJquaBtbCw0OZrTT1o1atXx+G1JyHlqf+75auNvaeC4ZRKEigKuQEyRIABItCA/s/1xvXr15WAm5WVZbeOyMhIJczWqlULderUQd26dVGzZk0OTSYiqkQYYImIKiAhBJKTk3H27FmcO3cO586dw/nz53Hx4kW7QUGn0ykBYdtPe5WAiqKQyoBKpUWoZYggY7gd+f5gXLlyBVeuXMHly5eRmppq83VqtRo1a9ZE3bp1UadOHSXYxsfHIzAwsAx/AiIiKgsMsEREfi4tLQ3nzp1Twur58+dx9uxZm0FVkiTExcWhdu3a2Lf8EKRcDaRcNaRcjXGYbyWe+IjKJ6GWIQKN4faRj4fg4sWLuHDhAs6fP29zaLvpfV6vXj00aNAADRo0QMOGDVGzZk2o1eoy/gmIiMhbGGCJiPyEEAJXr17FqVOncOrUKZw8eRKnTp1CSkqK1fKmnqnL/yRAytFAytb8F1bZk0oVgIAAdDJEsB5ysAH9JnTH+fPnceHCBaSnp1t9TWBgIOrVq4eGDRuifv36aNiwIRo0aIDQ0NAybj0REbmDAZaIqBzS6/W4cOGCElJPnTqF06dPIzs722r5GjVq4PqhZEg5asuwyqBKlZTQGIOtCNHjrgndcPr0aZw9e9bm+sJxcXFo3LgxmjZtiqZNm6JJkyYICwsr41YTEZEjDLBERD4mhMC1a9dw9OhRHD16FMeOHcOpU6esztqq1WpRv359nNp0EaqsoqCarYEkq3zQciL/IiCM19mG6PHgu/fizJkzOH36NG7cuGG1fM2aNS0CbePGjREcHFzGrSYiInMMsEREZSwjIwPHjx+3CKzWhjsGBwejYcOGOLLqFKQsLaQs9qoSlQahkSFC9Hj0y6E4fvw4Tpw4gatXr5YoJ0kS6tSpg5tuugktWrRAixYtUKdOHahUPIFERFRWGGCJiEqREAIXL17EoUOHcODAARw5cgSXL18uUU6j0aBhw4Y4uf4CVJlaSJla4wzAnFCJyCeERoYILcTITwbjxIkTOH78OBITE0uUCw0NRfPmzZVAe9NNN7GXloioFDHAEhF5kV6vx8mTJ3Ho0CEcPHgQBw8etNq7WrNmTVzbnwwpU2sMrNnsWSUq74TWADlMjwen3YPDhw/j2LFjyMvLsyijUqnQoEEDJdS2bt0aVatW9VGLiYgqHgZYIiIP5Ofn4/Dhwzhw4AAOHTqEI0eOlDig1el0uOmmm3D4z9OQMooCq55DDon8nYCACNHjqbnDceTIERw+fBjXr18vUa5mzZpo06YNWrdujTZt2iA2NtYHrSUiqhgYYImIXKDX63HixAns27cP//zzDw4fPlxisqXQ0FDkXCyAlK6DKkNrvH6VvatElYLQGSCHFWLgW31w8OBBnDx5ErIsW5RhoCUich8DLBGRHbIs49y5c0pg/ffff5GTk2NRpkqVKkg9lm0Mqxk641I2vHaViAAItQw5vBCD37kT//77r81A27ZtW7Rt2xZt2rThmrRERHYwwBIRFZOcnIzdu3dj165d+Oeff5CWlmbxfFhYGLLPFUCVroOUpoOUy8BKRM5xFGjVajWaNWuGtm3bol27dmjSpAnUarUPW0xEVL4wwBJRpafX63HkyBHs2rULu3btwqlTpyyeDwwMRP5VGap0HVRpOuOESwysROQFQi1DjijAva/3wJ49e3Dp0iWL50NDQ3HbbbcpPbRxcXE+aikRUfnAAEtElVJiYqLSy7p3715kZWVZPN+kSROcXnPZGFgzeQ0rEZUNEWDAs4tHYc+ePdi3b1+J76Z69eqhU6dO6NSpE5o1a8beWSKqdBhgiahSEELg1KlT2Lp1K7Zt21ailzU8PBxZpwugSi3qZS3kQSER+ZaAgAgrxPBP78OePXtw9OhRGAwG5fmIiAh06NABnTp1Qrt27RASEuLD1hIRlQ0GWCKqsPR6PQ4cOICtW7di69atSEhIUJ6TJAlNmjTBqdWXoEot6mXlsGAiKseERsZLfz2JHTt2YOfOnRa9sxqNBq1atUKnTp1w++23o0aNGj5sKRFR6WGAJaIKJScnB7t378bWrVuxfft2iwO8gIAAFF4FVMkBUKUEcC1WIvJbQjL2zg58tze2b99e4trZRo0aoWvXrujatSvq1Knjo1YSEXkfAywR+b3s7Gxs27YNGzZswJ49eyzWZY2IiEDmyXxjaE0LgCSzl5WIKh45UI/Hvx+K7du34+DBgxZDjevWrYtu3bqha9euqF+/PiSJ34NE5L8YYInIL+Xk5GDHjh1Yv349du3aZRFaa9asieu7Uo29rBkcGkxElYvQyJjw62hs2rQJ+/btg16vV56rVauW0jPbpEkThlki8jsMsETkN3Jzc7Fz506sX78eO3bssAittWvXxtVtKVAlBULK4bqsRESAcZmeF/58HJs2bcLu3btLnOzr2bMnevbsyWHGROQ3GGCJqFzT6/XYs2cPVq9ejW3btiEvL095rmbNmri+Iw2qpABIOVyblYjIHqGW8cqqp7B582bs2LHD4vu0cePG6NmzJ3r06IHY2FgftpKIyD4GWCIqd4QQOHnyJP7++2+sW7cOqampynM1atRAwq40Y09rNkMrEZE7hErgpZVPYO3atdi9e7dyzawkSWjdujV69eqFrl27IiwszMctJSKyxABLROVGQkIC1qxZg9WrV+P8+fPK45GRkcg8UgBVYiCkLIZWIiJvEhoZz/w8HGvXrsXBgweVx7VaLTp27Ih+/fqhbdu20Gg0PmwlEZERAywR+VReXh42bNiAv//+G/v374fpK0mn00F/RYLqRhBUaTpIgqGViKi0iQADRs0eiDVr1uDcuXPK41WqVEGfPn3Qt29fxMfH+7CFRFTZMcASkU+cPHkSf/75J9asWYPs7GzlcSldC/WNION1rQau00pE5CtycCHum94Tf//9N9LT05XHW7Zsib59+6J79+4IDg72YQuJqDJigCWiMpOdnY21a9fizz//xIkTJ5THq1evjhs7M6C+EQQpX+3DFhIRUXFCEnhj/TisWLECu3btgizLAICgoCB069YNd999N1q0aMEleYioTDDAElGpEkLg2LFj+P3337Fhwwbk5uYCADQaDeRraqivB0FK1/G6ViIiPyB0Boz+dhBWrFiBS5cuKY83aNAAAwYMQK9evdgrS0SligGWiEpFXl4e1qxZg19//RVnzpxRHo+Pj8eVTSlQJwRB0nOIMBGRPxIQ+PjAW/jrr7+wbt065OfnAwCCg4PRp08fDBgwAPXq1fNxK4moImKAJSKvunbtGpYvX44///wTmZmZAIomZLqsMva2ZmjZ20pEVIEItYzHfxyC5cuX4/Lly8rjrVu3Rv/+/dGlSxdotVoftpCIKhIGWCLymBAC//zzD5YuXYrt27cr10dVr14dN7ZnGoMrJ2QiIqrQBASm734Zy5cvx7Zt25S1ZaOjo9G/f38MGDAAUVFRPm4lEfk7Blgicltubi5Wr16NpUuXWqzbKqXqoL4WDFUKr20lIqqMhM6Ah768G7///jtSUlIAGEfj9O7dGw888ADq1q3r2wYSkd9igCUil6WmpuLXX3/FsmXLkJGRAcA4G2X+GRiDay4XuyciIuMMxq+sHovFixfj+PHjyuPt27fHAw88gNtuu42zFxORSxhgichply9fxs8//4wVK1agoKAAAFCzZk1c35wB9Y1ADhMmIiKrTJM+LV68GFu2bIHp8LN+/foYMmQIevToAZ1O5+NWEpE/YIAlIoeOHTuGhQsXYvPmzcr1rVKmBurLIVAlB3CYMBEROU0E6nHPtG5YsWKFsrRadHQ0hgwZgv79+3MZHiKyiwGWiKwSQmD37t346aefsH//fuVxVYoO6sshnE2YiIg8ItQyxswfjCVLliAxMREAEBYWhkGDBmHw4MEIDw/3cQuJqDxigCUiC0IIbN++HfPmzVOuV1Kr1RBXtVBfCYEqh9e3EhGR9whJYNIfj+DHH3/EpUuXABjnVejfvz8eeOABxMTE+LiFRFSeMMASEQBAlmVs27YNc+fOxalTpwAAgYGBKDyjgvpKMKQCtY9bSEREFZmAwGvrnsYPP/yg7Id0Oh369u2L4cOHIzY21sctJKLygAGWqJKTZRmbN2/GvHnzcObMGQDGM98FJyWor4RA0nNiJiIiKjsCAu9sew4LFizA4cOHARiD7D333IOHH34YVapU8XELiciXGGCJKikhBHbs2IHZs2crwTU4OBj5xyWorwYzuBIRkU8JCLy/7zV8++23OHjwIAAgICAAAwYMwEMPPYSoqCgft5CIfIEBlqgS2r9/P7755hscOXIEABASEoK8Y2BwJSKickdAYMaeVzBnzhxlvxUYGIiBAwfioYce4mRPRJUMAyxRJXLs2DHMnj0be/fuBWA8k60/reZQYSIiKvcEBN7d8QK+/fZbZZLB0NBQDBs2DIMHD0ZAQICPW0hEZYEBlqgSuHTpEr7++mts3rwZAKDRaCBf1EJzKQRSISdnIiIi/yEgMGXrJItLYGJjYzFmzBj06dMHajX3a0QVGQMsUQWWnp6OuXPnYvny5TAYDJAkCdL1AGguhkLK5w6eiIj8l4DACysfw5w5c5CQkAAAqFevHp544gl07NgRksS1yokqIgZYogqooKAAv/76K+bPn4+srCwAgCpFB/X5MK7jSkREFYqQBB79cTAWLFiAzMxMAECbNm0wbtw4NGzY0MetIyJvY4AlqkCEENi0aRO++uorXL16FQAgZWugORsKVTqvDSIioopLqGUM/qwXlixZgoKCAqhUKtx999149NFHERkZ6evmEZGXMMASVRBnz57FJ598gn///RcAUKVKFaTvLIQqIRASOIyKiIgqhx+ufY6vvvoK69atA2Cc6GnUqFG47777oNVqfdw6IvIUAyyRn8vKysJ3332HZcuWwWAwGGcWPqWB+nIwJJkzCxMRUeX0wf7XMXPmTJw6dQoAULt2bYwbNw4dOnTwccuIyBMMsER+SpZlrF69Gl999RVSUlIAAKqkAGjOhXGCJiIiIhgneprw+yjMnj0bqampAIAuXbrg2WefRdWqVX3cOiJyBwMskR86c+YMPvzwQxw+fBgAIOWooTkbBlUar3MlIiIqTqhl3PfJHViyZAkMBgOCgoLwyCOPYNCgQdBoOLkhkT9hgCXyI/n5+Zg7dy4WLVqk7IALjqqhvhoMSfA6VyIiInu+OjUdH330EQ4dOgQAaNiwISZNmoQWLVr4uGVE5CwGWCI/sW/fPnzwwQe4cuUKgKLhwmfDIBVwuDAREZGzTMOKv/rqK2RkZAAA7rnnHowdOxahoaE+bh0ROcIAS1TOpaenY9asWVixYoXxgXwVNGfCoE4J9G3DiIiI/JjQyOg5pa2yf42NjcXzzz+Pjh07+rhlRGQPAyxRObZx40Z89NFHSEtLgyRJkK4EQnMhFJKBswsTERF5w/v/vIYZM2YoI5z69OmDcePGITw83MctIyJrGGCJyqGMjAx88sknWLt2LQBAylZDczocqkydj1tGRERU8QiVwH2fdscvv/wCWZYRHR2NiRMnomvXrr5uGhEVwwBLVM5s374d7733HlJSUqBSqSCdD4L6UggnaSIiIiplnxx6G9OnT8eFCxcAAD169MCkSZMQFhbm45YRkQkDLFE5kZWVhc8//1y5FkfKUUNzMgKqLK2PW0ZERFR5CElgyFd98NNPP8FgMCA2Nhavvvoqbr31Vl83jYjAAEtULhw6dAhTpkxBQkICJEmC6nIQ1BdCIcnsdSUiIvKFTw9PxtSpU3H58mUAwAMPPIDHHnsMAQFcc53IlxhgiXzIYDBgwYIFmDt3LmRZBvLU0J4MhyqD17oSERH5mlAJ3Dm9A37//XcAQL169fDmm2+iQYMGPm4ZUeXFAEvkIwkJCZg6dSoOHDgAAFDdCITmTBhnGCYiIipn3t4yATNmzEBaWhq0Wi2efvpp3HfffZAkjpQiKmsMsEQ+sGnTJrz33nvIzMxEUFAQCv/VQp0Y5OtmERERkQ0/J3+DGTNmYPv27QCAbt264cUXX0RoaKiPW0ZUuTDAEpWhwsJCfPnll1i6dCkAQMrUQHsiAlKexsctIyIiIkcEBB5f9ABmzZoFg8GAGjVqYPLkyWjSpImvm0ZUaTDAEpWRxMREvPXWWzh8+DAAQH052DhRE5fHISIi8iufHp6Mt99+G9evX4dWq8UzzzyDAQMGcEgxURlggCUqA//88w8mT56M1NRUQC9BczIc6pRAXzeLiIiI3CTUMtq90ARbt24FAPTs2RMvvvgiAgO5fycqTQywRKVICIGFCxfim2++gSzLkLI10B7jkGEiIqKKoPiQ4kaNGuHdd99FXFycr5tGVGExwBKVkry8PEybNg0bNmwAAKgSAqE5E861XYmIiCqY9/a9ijfffBPp6emIiIjAlClT0KZNG183i6hCYoAlKgWJiYl47bXXcPz4cWg0GuB4EFTXgyCB4ZWIiKgi+uHa53j11Vdx6tQpqNVqPP300xg0aBCviyXyMgZYIi87fvw4XnnlFSQnJwOFErTHIqHK0Pm6WURERFTKhEqg29utsXr1agDAPffcg4kTJxpPZhORVzDAEnnRunXrMG3aNBQUFEDKVkN7NBJSPndaRERElYWAwGML78esWbMgyzLatm2LKVOmICQkxNdNI6oQGGCJvEAIgR9//BHffPMNAECVooPmRAQkg8rHLSMiIiJfeGvzeEyZMgV5eXmoX78+ZsyYgWrVqvm6WUR+jwGWyEMGgwEzZ87EsmXLAADqK8FQnwvl9a5ERESV3OfHpuKll15CSkoKqlSpgunTp6NJkya+bhaRX2OAJfJAfn4+pk6dik2bNkGSJKjOhEBzlUOEiIiIyOiHa5/jxRdfxLlz5xAUFISpU6eibdu2vm4Wkd9igCVyU2ZmJl599VUcOHAAkAHNyQiok7h4OREREVkSahk3j6uDvXv3QqPR4M0330S3bt183Swiv8QAS+SGlJQUTJo0CWfPngX0RTMNp3OmYSIiIrJOSAK3v94cGzZsgEqlwvPPP4+7777b180i8jsMsEQuSkxMxMSJE3Hx4kUgXwXtkUiocrS+bhYRERGVcwICfWa0xx9//AEAGDt2LB588EEft4rIvzDAErng+vXrmDBhAq5evQrkqaA7HAUpj8vkEBERkXMEBAZ/2RM//fQTAGDEiBEYM2YMJImTPxI5g2t8EDnp8uXLeOaZZ4zhNVcN3aFohlciIiJyiQQJS59ahyeffBIAMH/+fHz77bdgnxKRcxhgiZxw6dIljBs3Djdu3ICUo4buUBSkfLWvm0VERER+6vuHl+GZZ54BYAyx3333HUMskRMYYIkcuHbtGiZMmIDk5GRI2RpoD0VBKmB4JSIiIs/MHvqLEmLnzZuH77//3sctIir/GGCJ7DBN2JSYmAgpRw3t4ShIhQyvRERE5B2zh/6Cp59+GgAwd+5chlgiBxhgiWxITU3FxIkTlWtejeGVHxkiIiLyrjkPLsFTTz0FAPj++++xZMkSH7eIqPzi0TiRFZmZmZg0aZJxqRzTbMMcNkxERESl5NuHlmLMmDEAgJkzZ2L16tU+bhFR+cQAS1RMQUEBXn31VZw5cwYoUBl7XjlhExEREZWyBaP/wKBBgwAA06ZNw86dO33cIqLyhwGWyIwsy/i///s/HDhwANBL0B6OhIpL5RAREVEZkCDhj4lb0KtXLxgMBrzxxhs4dOiQr5tFVK4wwBKZ+eqrr7B+/XpABrTHIqHK0fq6SURERFSJSJCw6e0D6NChA/Lz8/HKK6/g8uXLvm4WUbnBAEtUZOnSpVi0aBEAQHMqHKp0nXsVSZIXW0VERER+SZLcPiaQhIR/PjqLm266CRkZGXj55ZeRmZnp5QYS+ScGWCIAO3fuxMyZMwEA6vOhUCcGuV6JBzsqIiIiKke8uU93sy5JlvDuu+8iNjYWFy9exFtvvQW9Xu+dNhH5MQZYqvQuXbqEKVOmQAgB1fUgqC8Hu14JgysREVHF4839uxt1PVh1LKZPn46goCDs3bsXn3zyCYQQ3msTkR9igKVKLTs7G6+++iqysrIgZWihORMGCS7sYNjrSkREVLH5uDf2qaav4Y033oAkSfj999+xbNky77SFyE8xwFKlJcsy3nnnHVy4cAHIV0F7PBKScDG8EhERUeXg7SDrgsldZ+LJJ58EAHz++ec4evSod9pB5IcYYKnSmjdvHrZv326ccfh4FKRCtXM7FPa6EhERVV5l2Rtr9vy3D/+Krl27Qq/X480330RaWpp32kHkZxhgqVL6559/MHfuXACA5nQEVFlOLJfD4EpERESAT4YVS5Dw8ssvo3bt2rhx4wbeeecdGAwG77SByI8wwFKlk5aWhqlTpxonbUoIcm7GYQZXIiKiysGVfX4ZT/I0IHw0pkyZgoCAAOzZswfz5s3z3vaJ/AQDLFUqsizj//7v/5CUlAQpRw3N2TD7L2CvKxEREdlTxr2xTzZ+BS+88AIAYP78+Th06JB3tk3kJxhgqVL55ZdfsHPnTkAGNCciIcl2PgKe7IwYeomIiCoX832/p8cBDl7//l1z0KdPH8iyjKlTpyI7O9uz7RH5EQZYqjTOnj2Lr7/+GgCgORcOVY6N6169dSaVIZaIiMi/eCN4ltFMxePHj0dcXByuXbuGzz77zDvbJPIDDLBUKej1ekyfPh16vR6qlACorjtx3SsRERGRL0m2D9Xvi3gEr732GiRJwooVK7Bp06YybBiR7zDAUqWwaNEiHD9+HNBL0JwJhwT2jhIREZEfsBNin7/lXTz00EMAgA8++IBL61ClwABLFd758+fx/fffAwA0Z8MhFajLbuMcRkxERESeklQ2g+wvT69F/fr1kZ6eji+//LKMG0ZU9hhgqUKTZRnTp09HYWGhcehwYqCvm0RERETlUXk76WwtsFp5TBISXnzxRUiShFWrVmHfvn1l0Dgi32GApQptxYoVOHr0KIcOExERUcVgpTd2fMu3MWDAAADAhx9+iPz8fB80jKhsMMBShZWRkaHMOqy+GFq2Q4eJiIiISlOxEPv4448jJiYGly9fxoIFC3zUKKLSxwBLFdacOXOQnp4OKVsD9bVg3zWkvA1JIiIiIkvlbV9tZ+KmEuWKyg4IH43x48cDME5eee3atdJqHZFPMcBShXTy5En8/vvvAADN2TAOHSYiIqKKqyjEvnPH57j11ltRUFCAb775xseNIiodDLBU4Qgh8MUXX0CWZagSA6HKCPB1k8rfmV0iIiIyqij7aEkFSVLj6aefhiRJWLduHQ4fPuzrVhF5HQMsVTh79uzB/v37ARnQnA9zvyI7U9YTERERlQZJ7dmcHWObvo677roLAPDFF19ACOGNZhGVGzw6pwpFCIHZs2cDANTXg92fuInBlYiIqHIQwnjzlLdOfEsqSCrPeoUfffRRBAUF4ciRI9i0aZPnbSIqR3iUThXKpk2bcOLECcAgQX3Zzd7X4jsfhlkiIqKKz5MQa36s4MFxg9L76mGIfajGOAwZMgQAMHfuXMiy7HZdROUNj8ypwjAYDJgzZw4AQH0tDCpZ41oFpT1kuKJcY0NERFRReWu4rbvHFMWCsKSS3Auykgr3338/goODcfbsWWzdutX1OojKKQZYqjC2bNmCixcvAnoVNNdd7H11tJNhLywREVHl4OqQYnvHCC4cP1i99rUoCLsTYgfFPIlBgwYBAObNm8drYanC4FE5VQhCCPz0008AAHVCKCSDyvmzn2UZTtkLS0RE5B+82RvraTkXQqx5uQceeABBQUE4deoUe2GpwmCApQrhwIEDOH78OCBL0FwPVR63+2XPWYaJiIjIHkch1pVw6ukxh7NDis22c3/VpzBw4EAAwMKFCz3bPlE5waN3qhCU3tfEYEh6syE4tnYYnl6X4gn2whIREfkPb81SDNg8lnB66RwHQ4qtPT5o0CBoNBocPnzYeLKfyM8xwJLfO3/+PHbu3AkI4+RNxZX4MmevKxEREbmqeIh193jCGyfWbYVYK/U8VHM87rjjDgDAkiVLXNsOUTnEI3nye3/88QcAQJUWCFW+tmQBSWV58wR7YYmIiCqvUuiJdbr31Uod5kOK7Q0tHjx4MABg/fr1SE5Odm97ROUEAyz5tfz8fKxatQqAcfImWzxdEJyIiIgIgDHEeuOEtqSCpNN5Vpf5kGI79Tzb6h00b94cer0ef//9t/vbIyoHGGDJr23cuBGZmZlAvhqq9EDrhVQSJJ0OktbFdWFt8cZOi1PZExER+SdJAoRsvHmDF06yq0JDoAoJslumX79+AIAVK1ZwSR3yawyw5NdWrlwJANDcCIGEYjsAlQRJq3F/aE5p4U6DiIioYvAgxFqcWPc0xBb1xKpCgmwG2U/v/xGBgYG4ePEiDh8+7Nn2iHyIAZb8VlJSEvbv3w8AUCWHWD6pkkoEV0mt9n0vLMMrERGR/7I2h4U3e2LdCLIWgdUsyBYnySp0794dAJTLr4j8EQMs+a3169dDCAEpUwdVvuVZzHLX6wowvBIREVVULoZYuyfUXQ2xNmY1thZie/fuDQDYvHkz9Hq9a9shKicYYMlvrVu3DgCgTg7+70EH4dVnvbAMr0RERP7N0QoCToZYp45DnAyxdq97tRJiX+70ISIiIpCeno5///3XqW0QlTcMsOSXEhMTcezYMePar8nBLl3vWqYh1puLnxMREZFvOLv8XRlO7qQKCXJ8HFLsulgJErp06QIA2LBhg1eaSVTWGGDJL+3cuRMAIGXpIMnlcKImgMGViIiosrIRYl0+gW4vxDo7EqzYdbHdunUDAGzduhWy7KWwTVSGGGDJL23btg0AoE4Pciu8lnovLMMrERFRxeBs72txxUKs28cdViZ3crRkjlVFIfbV/32MoKAgpKam4vTp0+61iciHGGDJ7+Tn52Pfvn0AAHVmqNv1lFqIZXglIiKqGNwNrybeGk4MKCHWqaHDtkgqqIOD0aZNGwDA7t27vdU6ojLDAEt+59ixY8jPzwcK1ZBytb5ujiWGVyIiIjInZO+dMFdJ7odXE0mFdu3aAWCAJf/EAEt+xzRrnjozEBI8OzMqqdXeuX7WdIbV0zO1REREVKFIGi0gC+PNQ+oacZCiIjyup23btgCAI0eOGDsFiPwIAyz5HSXAylFeqc/Z2Ytt8ubwICIiIio/vD2yyoMQq64RB6FRQ6hVHofYMf2+RlRUFAoLC3Hy5EmP6iIqawyw5Ff0ej2OHDkCAJAC46CK9k6IdXnRcBNr4ZW9sERERBWHByFW0li51MnNECs0/51sN4VYd4KsqFkNklqFFi1aAAAOHz7sVnuIfIUBlvzKxYsXjUNdhBqSCIEcHeaVEOvWUGJ7Pa8MsURERBWHGyHWang1cTHEqmvElXhMqFUu98aKmtUAtfEYhQGW/BUDLPkV0zAXlSHUeP2rJHktLLo0lNiZYcMMsURERBWHCyHWqeMJJ0OsaeiwLS6FWPV/xyY33XQTAODUqVPOvZaonGCAJb9iCrCSHKY8JkeFem0osVMhlte8EhERVU5COBdknZ0p2EGIdRRelWY5E2JrVLX474ujFwMArl+/juzsbIfbICovGGDJr5w5cwaAsQdWIUleG0oMOAixroZX9sISERFVPHZCrMuXJNkIsc6GV6VJ9kJsjaoQGsvDfglaxMbGAgDOnj3r9HaIfI0BlvzK5cuXAQAqOcjyCS+HWKuTOrnb88oQS0REVPFYCbGSWu3eOq1WQqwr4VV5jbUQayW8mtSvXx8AAyz5FwZY8ht5eXlITEwEAEhycMkC3rwe1nxSJyF7PmyYIZaIiKjiMQuxbodXE7O1Yq1N2uR0k4qFWFvhFQBq164NALh69arb2yMqaxpfN4DIWVeuXDHeERpIsD6znxwRCpUQkFNSPd6epFYBQoYweFwVERERVVRCACoPw6sZdXSUW72vFk0qCrEiKMBuubg4Y1C+fv26R9sjKkvsgSW/kZCQAACQ5EDbhTQq7wwllmUIgwxIKtevZbGFvbBEREQVj8p4nCAMnp/xVsdEA2o1pLwCj+s69W4EzrxpP8BWr14dAHDt2jWPt0dUVhhgyW8kJycDACRh48vYFBBVHoZYU3hV6vViiCUiIqIKy5MQawqvxoqERyH29JQwxEVnoFpkJs68Yns92ikTfgUA3Lhxw+1tEZU1BljyGykpKQAASdZZPmHt2ld3Q2zx8Kpsw0shlr2wREREFYeq5LGBOyHWIrwqFbkXYk3h1SQuyhhirQVZSRiPqdLT0yFcWOeWyJcYYMlv/NcDa/YFbC8QuhpibYVXb2OIJSIi8n9WwquJyyHW5vJ9roXYU5PDLcKrSVxUpjHIvlysE0AYp8MxGAzIyspyejtEvsQAS35DWWTbFGCdCYLOhlhnwiuvhyUiIiLAbng1cTbEqqs4OEZxMsSemhyO6lXS7ZaJi86wCLES1IAwxoGMjJLBl6g8YoAlv5Gbmwug6MvWlQCoUgFqO291V3peGWKJiIgqNyfCq4mjEKuuEgVonFgUxIkQ6yi8mhQPsaZeWPbAkr9ggCW/kZeXV3TP9QApR4RY74V1Z9gwQywREVHl5EJ4NbEVYp0Or0pFtkPsqcnhLrXJPMRKRXGgoMDzmY+JygIDLPkNU4CVhBvh0dpQYk+ueWWIJSIiqlzcCK8mxUOsy+FVqahkiHVm6LA1SogtGkKs1+tdbw+RDzDAkt/weHY88xDrjQmbGGKJiIgqBw/Cq4kpxLodXpWK/guxJ90MryZx0RkQ6hwAwNatW91vE1EZYoAlvyF5I+SpVIBOa3u2PyIiIiJzXjzJLKlVnoVXEyFw/JmqqOFBeC2usLDQa3URlSYGWPIbKpXnb1cpOw8iMxtSYAAkne2FvZ0iZAhZAJIXPkZce42IiKj8MYVX4fkye6qi4w45Nc3juo4/XxtSdD6uJUd4XFdAqPEYpG3bth7XRVQWGGDJb5gCbEL7QLdeL2XnAWmZgGwcwuNRiDWFV6VyDz5KDK9ERETlT/GeVw9CrMr8eMNg8CjEHn++NlAlHwAgGySPQuzI+B0IDjX+XGFhYW7XQ1SWGGDJbwQHBwMAutx8EGcHufZlXTy8Ko+7E2KLh1elMjc+TgyvRERE5Y+tYcNuhFiVteMMN0OseXg1cTfEjozfgVhNBgryjD+r6TiLqLxjgCW/Yfpijdan49H7VrsUYiWDXCK8Ks+5EmJthVelMhc+UgyvRERE5Y+ja15dCLFWw6uJiyH2+HMlw6uJbHDtOl1TeAXAAEt+hwGW/EZoaCgAID9HQpOAa8YQO9hxiDVd92q3jDMh1lF4VSpz4mPF8EpERFT+ODthkxMh1m54NXEyxB5/rjYQYz28mjjbC2seXoUMFBZVywBL/sIL06ARlQ3TtRm5WcadS5OAa3h0wGrMEb1Rf6n1WfhsDR22WjYwAAAgCrwwC5+ksr1zY3glIiIqf1ydbVjINk9aS1oXDrEN9o9Rjk9yHF6B/4YSV6+SjqjUbNyz8iBaH7yE4NwC5ATpsL9VPELG5CNUk6e8JidTAoQESZIQHh7ufJuJfIgBlvxGTEwMACAr7b+dhakn9mTvOGxefbNFkHUlvCqvsRVine19tajMSohleCUiIip/3F0qx0qIlbQal5f+k1PToIqKLPH48Um1gVjH4dVEm6vHM9M3YNDmf6DVWx6DtPvnAuQFEi4MjsKhN2pADlAhO83YzqioKGi8sbwPURngO5X8RmxsLAAgK8Vyp9Ak4BqaBFxDwwE38B16ov7SdLfCq0mJEOtOeFUqs9MTS0RERL7nzXVe3QivAIxDidMzoIr4rxfU1fAaUFCIue/NQ4fj52yWUekF6i1KQdjZfGz/rh6y0oxRoEqVKq63mchHeA0s+Q0lwKZaf9veFHgFjwxYi4t9I90OrybKNbGehFelsqL2sveViIiofPFGeC06Ue12eDUpLIScbrw21dXwCgBvLfgTHY6fg6OjDQEgZnc2Wk69igbqNwH8N8qNyB8wwJLfqF69OgAgO12FgjzrZb450Bmx+wuBiFDPN6jix4OIiIic41F4NSksBLQal8NrTFomBm3eb2yHg7Km5+ssScWlEycAADVr1nSxoUS+wyN08hvh4eGIjIwEAKRet/7WFek66NILYIgOBaLcX9gbhXqIggJAUkFSqyGpPNgpmYYQe3GIEhEREXmBN0ZHFY20Enq9R9WoYmOgijX2hNb/2rV2Ddm0FzoHk0GV2J5e4PKuXQCA+Ph4l15L5EsMsORX6tSpAwBIuaYu8dzEXUMQv8IYFoVG5VGIFUIA5kOHJZV7Ibb49a8MsUREROWLJyHWbAInIQu3Q6wqNgbQqI03ALorqS69vv2x825t92JSEgCgdu3abr2eyBcYYMmvmM4QJl+1fOtO3DUEtRZpoUstUB5zO8Sael+LczXE2pq8iSGWiIiofHEnxFpZQsedEKuE12Jc6YUNyXNtyDEA5KlUuCYbj1VMHQRE/oABlvxKo0aNAAAJ5//7ojeF14CUkl/eLofYQj3k/HzL3ldz7vbElqiHIZaIiKhccSXE2lj/FYBLkz/aCq+AsRfW2RCbXbSCgitOh4TAIEmIjo7mJE7kVxhgya80bdoUAJBwTq3sZ0S6zmp4NXE6xDoKrybOhFhnls6RJAZZIiIifyKp7IZXE2d6Ye2FVxPdlVTU/8Zxsxrcmei4UDEnwsIA/HdsReQvGGDJrzRo0ABarRZ52SqkJ0qYtHsIaq90fHbSYYh1Nrya2Auxrq77yhBLRERUPtjrhXUiuCrVOBhK7Ex4NdFdTrEbYpd2/gpxw6MgtE43DwBwPNy45myTJk1ceyGRj2l83QAiV2i1WjRs2BDHjh3D+393Rs1/rA8dtsYUYqWIYKjSc4DU9P+eKz5pkzMkFSRVsXViXQ2vSl0S14klIiIqD4QoeXLZhfCqVCMLQK+HpLE83HYlvJroLqcAiLZ4bGnnrwAArQMCgKoAHggHfsyAgP2ldEzPH6xRAygsRLNmzVxqC5GvsQeW/E7r1q0BANFbU50OryZCo4IcoLHsjbU1aZMzvHVNLMCeWCIiovJCWK5E4HY1xU6OuxNeTerP+e/+z52/RuuAAGN4NW3rnRiIjoFOrQN7uWMorhUWQq1Wo2XLlm61h8hXGGDJ79xyyy0AACnf9es9TJTe2NAQ14YOW1O0VqxXMMQSERGVD0J4FF6VavT6/9Z4dTO8AoDuYgrqzzGG11sDdCULBKkgfqwB8XC4zeHEQguIh8Nx6OUfARivfw0ODna7TUS+wCHE5HduvvlmqNVqGAx5ECIHEtz74hUaFYTWSx8Bd4cOExERUfnkrZPKkgpySipUVT2f6VeTlmc9vJoEqSDerwq8GA3xUwak7blAtgyEqCA6BQEPhQOxGvzz7SEAQJs2bTxuE1FZYw8s+Z2goCA0b94cAGBQJbtdjyY5G0hKMfaeemMYsDdCLK+DJSIi8j1TePVw324aoSUKCj1tEeTwYAiVCu1eHeu4cKwGGB8NsbgmxJ+1IRbXBMZHA7EatP6/sdi5cycAoG3bth63i6isMcCSX7r99tsBALJ0A0Lt+ttYk5oDJCQqOxRJrYak1bgXZIXs0ppvtutheCUiIvIpa0vcuRlii19eJN9IcqseOTxYCa8AEH0gA21fcyLEWtF6+lOIOnod6enpCAsL4/Wv5JcYYMkvde7c2XhHpMCgNbgeYgv1Vs+GutwbawqvHEJMRETk37w4D4W1uTFEQaHLIdYUXE3h1aTKvxkut6n19KcQfTQfQwfVAwB06NABGg2vJiT/wwBLfql27dqoW7cuAAEhbkDWqWAI1DgVZE1Dh21xJ8R6jL2vREREvuMovDq5r5fUarsTO7oylNi819UaZ3thW09/SgmvQghs3rwZANCpUyen20JUnjDAkt/q0qULAEAYrkJIgFABsk5lN8RqkrMthg7b4lSI5dBhIiKiysNBiHV2RQJnemEdhVfA2Avb9nX7IbbVDGNwjT5atOygSMeVK1cQGBiIjh07OtVeovKGAZb8Vu/evY135CQIYfxiFpKDEGswOH32026I5dBhIiKiisELQ4ddWU7P0VBiZ8KrSZX9tocSt5rxFKocybd4bOA91QEA//vf/7h8DvktBljyW/Hx8WjatCkAARiuKY/bCrGa1By7Q4etsTu5E4cOExER+TdXw6uVfb87a8FbO5kuhwVBDgtyOrya3PZmyV7YVu+VDK9CyFi/fj0AoFevXi5tg6g84ZXb5Nf69OmD48ePQxguA+o6kIp2RKYQC6GCqlCGZJBtTtzkDEmthoABKOp19crQYSIiIvINL03Y5E54NZFvJClrw8phQRBu1hWz779e2FbvPQUAqHI4v2RB+QZSU1MRFRWF2267za1tEZUH7IElv9azZ0/odDpAZAAizeI58+ti1Rn5Lve+FmcxpJhDh4mIiPyTp+FVyA4na3KqmqKT6p6EV5Pb3hyLVu8/hSqH862HVwC3tjIe9vft25ezD5NfY4AlvxYREYE77rgDACD0F62WERIgyTJEod4r2xSyACQvfHQ4fJiIiKhseannVRgMnleikiAnpXgcXgGg2t+XUOWQ9eAKAELOxt69eyFJEu655x6Pt0fkSwyw5PcGDBhgvCNfUyZzMheQlAskFE2WYG2BcicJgwEw32F5I8QSERFR2fHWyWNPR2IVjegSBQVQnb/qdjXqpHSok9IhCgoQdMb2xFAP3BcHAGjXrh1q1Kjh9vaIygMegZPfa9asWdFkTjJgKNkLKxXoIfKKBVt3Q2zxa18ZYomIiColt3thi00MKefkuFWNKbiKggJje3JyrZYTohC///47AGDgwIFubYuoPOHRN1UIQ4YMAQAI/XkI8d9QYYve1+JcCLElel8t6nHjY8Thw0RERL7hy15YG8vzudoLawqvxVnrhX10RF3k5uaiXr166NChg0vbISqPGGCpQujWrRtq1qwJoNCiF9Zq76s5F4YU2515WFKxN5aIiKiScboXViXZXlsezvfCmg8ZttqeYr2wQhiwZMkSAMCwYcOU1RqI/BmPuKlCUKvVGDZsGABA6M9BCIP93tfivPWF7kyIZe8rERGRb5VlL6yd4OqK4kOGbQk6m6zcn/h0c6SmpiIuLk6Z9JLI3zHAUoXRu3dvxMTEAMgHDFcc974WZyPE2h0+bLUefqyIiIjKPS+FWLu9sC6EV9XFazafs9frWqI92cbeXCEM+PHHHwEYL7Xi0jlUUfBImyoMnU6HBx98EAAg9Kcg4MbkCjaGFNsdPmy1HhtDitn7SkREVLFY64V1MGTYGjkru8RjjoYM2/P0Y42QkJCA2NhY3H333S6/nqi8YoClCqV///6Ii4sDkA+9/pT7FRWFWJd7X0vUw48YERFRRWfRC+vBkGHzXlhnhwxbE3guAQsWLAAAjB49GgEBAW63iai84dE1VSg6nQ6PPvooAKCwSjKE2pPwWRRiXe19LVFP0ceMva9ERETlizevhXWj17U4Uy+su72uJoNfao709HTEx8fjzjvv9KhNROUNAyxVOD179kSjRo0AtYzCuFRfN4eIiIjIObLwOLzK6kL8/PPPAIDHHnuM175ShcMASxWOSqXCE088AQAwxGZADnBzJ+Dp8GET07UxnLqeiIiowhKFeseF7Cka8SUnp3hUTefHayEvLw/NmzdHly5dPGsTUTnEAEsVUtu2bdGxY0dAAgprJUG4sdi4EMLz4cPFubDuLBEREZWBslxSxxpZKOEVcD8Ii6xs6JGEtWvXQpIkTJgwgeu+UoXEAEsVkiRJGD9+PHQ6HeTwPBgiMn1zDaqtnRl3KERERBWOy+HTSyfKRVY2ZEMhavQyTtbUv39/NGnSxCt1E5U3DLBUYdWoUQMjRowAABTWToWMQuOQYGeCrLeGD9vDEEtERFQ+lHUvbLFe1xLVZGY5t7msbONNr8eY7+7B+fPnERERoUxoSVQRMcBShTZ06FDUrl0b0MnQ10wzDgt2IsSWyvBhazikmIiIqHJx4vjCmZ5cU3AVej3kAD2+//57AMDYsWMRHh7ucTOJyisGWKrQdDodJk2aBAAwVMuCISwPgNn6ruVlaRuGWCIioorPCyfHzXtdAUBAoNmIqsjNzUXr1q25bA5VeAywVOHdeuut6N+/PwCgsF4yhMo4vMdmb6y3Zx92FntjiYiIfMdLJ7Wt9p46GDJstR4rw4jNe11NDFWz8O+//yIoKAgvv/wyVCoe3lPFxnc4VQpjx45F9erVgQAD9LUt14Yt3htbZsOHbWGIJSIi8l/FT2C7eUxhHoSL97oqVQcUQt04B4DxWKdGjRpubYvInzDAUqUQHByMV155BZIkwVA1G4aIXIvnnb02tsywN5aIiMi/udHrao21XlfAOHS48UNVkJ+fj1tvvRX33nuvx9si8gcMsFRptG7dGoMHDwZQNJRYW3KYsDAYvDalPREREVVS3giuBoPVXleTB2Z2w+HDhxEcHIyXXnqJQ4ep0uA7nSqVxx9/HA0aNAC0MgrrJ0HAyg7G3YXIiYiIyL956zpYD+fSML3eVng1hOfihx9+AAC8+OKLiIuL82h7RP6EAZYqlYCAAEyePBlBQUGQw/Ohr5FeOhtiCCYiIqq83DwOEAaDw/ArtAaEdtBDCIF7770Xd9xxh1vbIvJXDLBU6cTHx+O5554DABhqZChL6xARERH5ijO9tgICzR+phtTUVNSvXx/jxo0rg5YRlS8MsFQp9e7dG3fffTcgAYUNkiB0jhcML3PlZUIpIiIiKjXO9LqaDPyoM/755x8EBgZi8uTJCAgIKOXWEZU/khA8SqbKKT8/H2PHjsXp06chZWuhO14Nkl7y+LoVAN4ZQsyPJhERkW94YSUASaO1+7wzxxuSSgLUagCAITobhQ2SAQBvvfUWevTo4XEbifwRe2Cp0goICMC7776LiIgIiJBCFNZLgRBeCK9EREREdjh7sty0Lr0cnA/ppkwAwMMPP8zwSpUaAyxVatWrV8fUqVOhVqshR+fAUDPT100iIiKiCsqV4cLKazQGRHSTUVBQgI4dO2LMmDGl1Doi/8AAS5Veq1atMGnSJACAvnYmDNG5Pm4RERERVTTuXKIkVDIaDItAYmIi4uPj8cYbb0BdNKSYqLJigCUCcM8992DQoEEAAH3jNMhh+T5uEREREVUE7vS6AsYZh2+bVB9Hjx5FWFgYpk2bhtDQ0FJoIZF/4SROREX0ej1ef/11bN++HdBL0B6KgSrX/gQMNnESJyIiIv/lhUmcILnfTyQgoK+fDjkuBzqdDh9//DFatmzpeZuIKgD2wBIV0Wg0ePvtt9G8eXNAI1DYLAVCx0mdiIiIqGwZamVBjsuBJEl48803GV6JzDDAEpkJDAzE9OnTER8fDwQYUHhTMoTazd5UIdiLSkRERC4xVM2CId44qeT48ePRpUsXH7eIqHxhgCUqJiIiAh988AGqVKkCEaJHYTMPQizAEEtEREROMcRkw9DIGF6HDRuGgQMH+rhFROUPAyyRFXFxcfjggw8QHh4OEVaIwqbJEJLe/QrZG0tERES2CBmG6ByIm7IghMCAAQPw+OOP+7pVROUSAyyRDQ0aNMCHH36I0NBQiIhCFN6UBiEZPJugiUGWiIiITIRsDK9ReRDNM2EwGNC3b19MmDABkjcmkiKqgBhgiexo0qQJPvjgAwQFBUFEFqCwaSqEJJQdjtsYYomIiCovs+MIOTIfUqtsGAwG9OzZEy+88AJUKh6iE9nCTweRA82aNcP777+PwMBAiKgCFN6UCqEqCqD2QqyjM6fsjSUiIqqY7C2hY3bsYIjKA1pnobCwEF26dMGrr74KtVpdBg0k8l8MsEROuPnmmzF9+vT/QmyzlP8mdrLWG+vK2m8MskRERBVfseMFQ0wuRMtMJby+9dZb0Gg0PmwgkX+QhOCRM5GzDh06hBdffBHZ2dmQMrXQHo2CpC8WVk3hVcjuBVPznlt+PImIiMqWN649NT+RbWW0liE2F3LTTMiyjF69euGVV15heCVyEgMskYtOnDiB559/Hunp6ZCyNdAeiYJUaGO4j7sfL9POkx9PIiKisuWtAGvjMiNDXA70DTIAAHfffTeee+45DhsmcgEDLJEbzp8/j4kTJyI5ORlSrtrYE5tn48wpP2JERET+w9MAayO8CggYamfBEJ8NABg8eDDGjRvH2YaJXMQAS+SmK1euYOLEibh+/TpQqIL2aBRUWdqSBfkRIyIi8h+eBEohrL5eSAL6BhmQq+UCAEaOHIlHHnmE4ZXIDQywRB5ITk7GSy+9hJMnTwIGCZoTEVCnBloW4keMiIjIf7gTKs339cVeL1Qy9E3SIEcXQKVSYeLEiejfv7+HjSSqvDgLMZEHqlSpgpkzZ6J9+/aAWkB/UxoM1XJ83SwiIiJyh6vhtfhKAsXDq9aAeqOiIEcXICAgAO+++y7DK5GH2ANL5AV6vR4ffPABVqxYAQBQXw6B+kIoJHAyJiIiIr/hbIC1tV83e70cXIjoOzVISEhAREQEZsyYgWbNmnmhkUSVGwMskZcIITB37lx8//33AABVSgA0JyMgGVQMsERERP7AUYB1tD8ver0hOg/aW/KRm5uLmjVr4r333kPt2rW91Eiiyo0BlsjL1q5di+nTp6OgoABSjhraY1GQcjk9PhERUbnmhfAqIGColQ1DnSwAwG233Ya3334b4eHhXmokETHAEpWC48eP47XXXkNiYiKgl6A9HglVms7XzSIiIiJbbAVYJw+VhRrQN0yHHJsHABg0aBCefvppaDQ2ltkjIrcwwBKVkqSkJLzxxhs4cuQIIAD1+VCorwT/d10sERERlR/FA6wLh8giyID4IZE4ffo01Go1JkyYwMmaiEoJAyxRKcrPz8eHH36IVatWAQBUSQHQnAo3XhdLRERE5YN5eHXx0NhQJR+BbfXIyspCZGQkJk+ejDZt2ni5gURkwgBLVMqEEPjtt9/w2WefobCwEMhVQ3s8Aqpsra+bRkRERIAxwLp4SCwgYKibBUMt4/J5LVq0wOTJkxEbG1saLSSiIgywRGXk2LFjePPNN5GQkADIgOZMONQJQb5uFhEREblIaA0obJoOEVEIALj//vsxduxYXu9KVAYYYInKUHp6Ot59913s3LkTAKC6EQjNmTAOKSYiIvIThqh8hHWWkJqaiqCgILz88svo3r27r5tFVGkwwBKVMVmW8dNPP2HOnDmQZdk4pPhEBFRZHFJMRERUXgmpaMhwTeOQ4fr162PKlCmIj4/3ccuIKhcGWCIfOXjwIN555x3jkGIBqC+EQH05hLMUExERlTNykB51hkTh9OnTAIxL5Dz55JMICAjwccuIKh8GWCIfyszMxEcffYR169YBAKR0LbQnIyDlq33cMiIiIhIQkONyoW5egPz8fERGRuKVV15Bx44dfd00okqLAZbIx4QQ+Pvvv/Hxxx8jNzcX0EvQnA2D6kYge2OJiIh8ROgMKGyUARFVAABo27YtXnnlFcTExPi4ZUSVGwMsUTlx5coVTJ06FUeOHAEAqFJ00JwOh1TA3lgiIqKyIiAgV81D4C0ysrKyoNPp8Pjjj2Pw4MFQqTjpIpGvMcASlSN6vR6LFy/Gd999Z1wzVi9BcyYMqkT2xhIREZU2oTVA3ygDcrSx17VZs2Z45ZVXUKdOHR+3jIhMGGCJyqFz585h2rRpOH78OABAlVzUG1vI3lgiIiJvExCQY/MQdJtAZmYmtFotRo8ejaFDh3JtV6JyhgGWqJzS6/VYtGgRvvvuO+j1emNv7PlQqK4HsTeWiIjIS0SgHoUNMyEijb2ujRs3xquvvor69ev7uGVEZA0DLFE5d/bsWUyfPl3pjZUytNCcDocqh2eEiYiI3CUkAUPNHKgbF6CgoAA6nQ6jRo1irytROccAS+QHDAYDli9fjm+++cY4U7EA1JeDob4UCklmbywREZEr5LAC6BtmQoToAQC33nornnvuOdSqVcvHLSMiRxhgifzIjRs38Omnn2LLli3GB3LV0JwNgzqVC6kTERE5IjQy9HWyIGrkQQiBiIgIPP300+jTpw8kiSeEifwBAyyRH9qyZQs++eQTJCYmAiia5OlcGKQ8DnkiIiIqTkBAjstF8C0SMjIyAAB9+vTB008/jcjISN82johcwgBL5KdycnLw3XffYenSpTAYDIAMqK+EQH0phMOKiYiIishhBdA3yIQINQ4Xrl+/PiZMmIDWrVv7tmFE5BYGWCI/d/78ecycORN79+41PpCvguZcGFRJAZytmIiIKi2hNUBfNwtytTwAQGhoKMaMGYP+/ftzkiYiP8YAS1QBCCGwdetWfPbZZ7h+/ToAQErXGoNsltbHrSMiIio7QiVgqJkNXVMZubm5kCQJ/fr1w+OPP87hwkQVAAMsUQWSn5+PRYsW4YcffkB+fj4AQJUYAM35UEj5PNtMREQVl4CAXC0PER20SE5OBgA0b94c48aNQ7NmzXzcOiLyFgZYogroxo0b+Pbbb7Fq1SoIIYzXx14LNl4fq1f5unlEREReJUfmQ18vS1kWp0aNGnjiiSfQrVs3zi5MVMEwwBJVYKdPn8asWbOwZ88e4wN6CepLIVBfC+ZET0RE5Pfk0ELjsjhRBQCAsLAwjBw5EgMGDIBOp/Nx64ioNDDAElUCu3fvxpdffomzZ88aH8hXQXMpBKqEIEiCQZaIiPyLHKyHIT4LcozxchmNRoOBAwdixIgRCA8P93HriKg0McASVRIGgwF///03vv/+eyQkJBgfzFNBczEUqhuBnLGYiIjKPRGgh75ONkS1fAghIEkSevfujdGjR6NGjRq+bh4RlQEGWKJKpqCgAH/++Sfmz5+PlJQUAICUo4b6YiiX3iEionJJ6AzQ186GVKvAuPY5gC5dumDMmDGoV6+ej1tHRGWJAZaoksrLy8OyZcvw008/IT09HQAgZWugvhTCIEtEROWCCNBDXzsHqlqF0OuNEzS1a9cOjz76KJo2berj1hGRLzDAElVy2dnZWLJkCRYvXoysrCwART2yl0OgSgzkNbJERFTm5CA9DLWyIdUoVHpc27Rpg9GjR6N169a+bRwR+RQDLBEBADIzM/Hrr7/il19+QUZGhvHBPDU0l4KhusHJnoiIqPTJwYUw1M6GqFoA0yFqu3btMGLECNx8880+bh0RlQcMsERkIScnB8uXL8fixYuRmppqfDBfBfXVYKivB0EycB1ZIiLyLjm0EIZa2cqswgBw++23Y/jw4WjWrJkPW0ZE5Q0DLBFZlZeXhz/++AMLFy5EUlKS8UG9BPX1IKivBkMqUPu2gURE5NcEBOTofBhq5kBEFAIAJElC165dMXz4cDRq1MjHLSSi8ogBlojsys/Px5o1a7Bo0SJcvHjR+KAMqJICob4SDFW21rcNJCIivyJUAnLVXBhq5EAEG69v1Wg06NGjB4YNG4a6dev6toFEVK4xwBKRU2RZxs6dO7Fw4UIcOHBAeVxK1UFzJRhSmo4zFxMRkU1CK8NQPQeG6jmA1nj4GRoaiv79+2PgwIGIjY31cQuJyB8wwBKRy44ePYrFixdj06ZNkGUZQNESPNeCoLoRCEnmdbJERGQkhxTCUD0XmngDCgoKAABxcXF44IEH0LdvXwQHB/u4hUTkTxhgichtV69exS+//IK//voLeXl5xgf1EtQJQVBdC4IqT+PbBhIRkU8ISUCOyYOhei5EeKHyeNOmTfHggw/if//7HzQa7iOIyHUMsETksczMTKxcuRLLli3DlStXlMelVB3UV4OhSuXwYiKiykDoDDDE5cIQlwvojCN01Go1unbtioEDB6Jly5aQJO4PiMh9DLBE5DWyLGPv3r349ddfsWPHDmUNP+SpoL4WDHVCECQ9hxcTEVUkAgIiogCG6rmQqulhMBgnZoqJicG9996Lu+++GzExMT5uJRFVFAywRFQqrl69iuXLl+Ovv/5CZmam8UEZUKUEGNeT5aRPRER+TWgNMFTLg1wtFyLIoDzepk0b3HfffejcuTOHCROR1zHAElGpysvLw7p16/Dbb7/h+PHjZk+ooL4RZOyVzeeaskRE/kBIAnJUPuRquZCqGpTe1qCgIPTp0wf33Xcf6tWr5+NWElFFxgBLRGXmzJkz+PPPP7F69er/emUFIKXpoL4eBFVKACTBXlkiovJGDtRDrpYLQ7U85dpWAGjRogX69euH7t27czZhIioTDLBEVOby8/OxZcsW/Pnnn/jnn3/+e6JQgioxEOobQZCyNBxiTETkQ0ItQ47Jh6FqLkTEfzMJR0VFoU+fPujbty/q1q3ruwYSUaXEAEtEPnX16lX89ddfWLlyJZKSkpTHpVw1VDcCoU4MhMTleIiIyoQyRLhqHuTofKBo3j2VSoX27dujX79+6NSpE69tJSKfYYAlonJBr9dj3759WL16NbZs2fLfurIApAwt1DcCoUoK5CzGREReJiAgwgthiM2DHJMHaP87NKxbty569+6NPn36IDY21oetJCIyYoAlonInJycHW7ZswerVq7Fv3z7IctH1VjKgStVBlRRovF7WwDBLROQOAQERrIccmwdDbB4Q+N91rTExMejZsyd69eqFhg0bct1WIipXGGCJqFxLSkrCunXrsHr1apw6deq/J2RAlRoAVVIAwywRkRMEBESIHnKVfMgxeRDB/y19ExISgq5du6JXr15o3bo11GrODk9E5RMDLBH5jXPnzmHt2rXYuHEjLl269N8TDLNERFYpoTUmD3JMvsV6rTqdDu3atUOvXr3QqVMnBAQE+LClRETOYYAlIr8jhMDZs2exYcMGbNy4ERcvXvzvSdMw4+SiYca8ZpaIKhkBARFqDK2GKvlAsdDavn17dO/eHR07dkRISIgPW0pE5DoGWCLya3bDrDBOAKVKCYAqOQAqzmZMRBWUUAnIEQWQo/ONswcH/HdNa0BAADp27Ihu3bqhQ4cOXK+ViPwaAywRVRimMLtx40Zs3boVZ86csXheylEbg2xKAKRMLdeZJSK/JrQGyNFFoTWyAFD/d0gXFBSEDh06oHv37mjfvj2CgoJ82FIiIu9hgCWiCuvatWvYvn07tm3bhv3798Ng+G8YHQok43WzKQFQpel43SwRlXvKzMFFoVWEFcL8PFzVqlVx++234/bbb0fr1q2h0+l811giolLCAEtElUJWVhZ27dqFbdu2YefOncjKyvrvSdNQ4zQdVKkBkLI07J0lonJBaGTIkQWQo4p6Wc2GBgNA06ZNcfvtt6NTp05c8oaIKgUGWCKqdPR6PQ4cOIBt27Zh9+7dltfNAkBhUe9sqs7YO1vI5SSIqGwICIiwQshRxtAqQvUWvawBAQFo06aNElpjY2N911giIh9ggCWiSu/atWvYvXs3du/ejX379iEnJ8fieSlLYwyy6Tqo0rWQZA43JiLvEBAQQQaIiAJjT2tkAaCxPDSrV68e2rdvj3bt2qFly5Zc7oaIKjUGWCIiM3q9HocPH8bu3buxa9cunDp1yrKADEhZRcON07WQMnWQZA7ZIyLnCAgg0GCcMTiiEHJEyWHBYWFhuO2229C+fXu0bduWvaxERGYYYImI7EhOTsa+ffvwzz//4J9//sH169ctC8hF18+m66BK1xlnNxYMtET0HxFgCqzGGwItA6tWq0Xz5s3Rpk0btG/fHk2aNIFazUsXiIisYYAlInLB1atXsX//fuzfvx///PMPkpKSLAvIgJSphSpDCylDB1WmFpKeQ46JKgvTTMEivBByeCHk8JKBVa1Wo1mzZmjTpg3atGmDFi1acFgwEZGTGGCJiNwkhMDly5eV3tl///0XqampJcpJ2WpImTqoMrRQpWuBfDVnOSaqIISqaNKl8ALI4YXGpW2KXcOqVqvRpEkTJbC2bNmS67ISEbmJAZaIyEtMgfbQoUPKrcQMxwBQoDL20GZpjT20WRquQ0vkBwQERKABIswYVOWwwhKzBANAUFAQmjdvjhYtWqBly5Zo3rw5goODfdNoIqIKhgGWiKgUpaWlWQTaEydOQK/XWxYSgJSrNg49zjQGWylbw2tpiXxM6AxFIbUQcqjeau8qAMTGxqJly5bKrX79+tBoND5oMRFRxccAS0RUhvLz83H8+HEcPXoUx48fx7Fjx0pODAUYr6XN1hhDbXZRL20OQy1RaRAQgE6GHKKHCCmECNNDDi0sMTswAOh0OjRq1AhNmzZF8+bN0bJlS1SrVs0HrSYiqpwYYImIfCw1NVUJs8eOHcPx48eRnp5esqCAMcRma4xr02YX9dRykigipxknWTIYg2qIXgmt0JU8HFKr1ahbty5uuukmNG3aFE2bNmXvKhGRjzHAEhGVM0IIXLt2TQmzp0+fxunTp62HWgDIU0GVrYGUo4WUozaGXPbWUiUnIACtDBGsh2wWWEWIHrByzkelUiE+Ph4NGzZE06ZNcdNNN6FRo0YIDAws+8YTEZFNDLBERH5ACIHExEScPn0ap06dUv69evWqjRcUXVebW9Rjawq2uQy2VLGYhv8qQTVIb1zGJlgPaK0f4gQFBaFhw4Zo2LAhGjVqhIYNG6JevXpcyoaIyA8wwBIR+bGsrCycOXMGp0+fxtmzZ3H+/HmcO3cOWVlZ1l+gBFs1pDzNfyE3Vw0UqLi8D5VbQiUgAvUQQQbjLVBvHAocrLc6sRIASJKEGjVqoG7dumjQoIESWKtXrw6VikPviYj8EQMsEVEFI4RAcnKyEmbPnz/vONgCgAFmobYo2OapIeUx3FLZMIZUQ8mgGmSwOqGSiVqtRs2aNVGnTh3UrVsXdevWRb169VC7dm32qhIRVTAMsERElYR5sL18+TIuXbqk/Hvt2jUYDAbbL5YBKV8NFAVaKV8NKU9V9K8aKGTAJceESkAEGCACDUDRv0L5VwZ0tkMqAISHh6NWrVrKrXbt2qhbty5q164NnU5XRj8FERH5EgMsERFBr9fj2rVrFsHWdEtMTLQfbgFj722+GihQQ8pXQSpQQSpQA/nGf6UCFXtxKzihkpUQKnQGCJ1sDKk62RhSAwxWZ/otLjQ01CKkmt/Cw8PL4CchIqLyjAGWiIjs0uv1SExMxPXr13H9+nVcu3YN165dU+4nJSVBlu33nAEABIwhNr8o0BaqIBWqLO7D9H+DxLBbDgipaCZfraz8K3Rm9wNkwBRWbVyHWlxISAiqV6+OuLi4Erfq1asjNDQUksS/PRERWccAS0REHiksLERiYqISZhMTE0v8m5KS4lzINZFhGWoLVYBeMq55a5As/2/2L2QGX2uEJAC1gNAUBU2NDFHiXxnQCouw6mwoNQkODkZMTAxiY2MRExOj3KpWraqE1LCwsFL6KYmIqDJggCUiolKn1+uRmpqqhNqkpCSkpaUhJSUFqampSEtLU/61O9GUIzIAg2QMuQaV2X1juIVegiRLlo+LoudkGJ8TxvvGxyRI4r/7MO0xBQAU/b/oMUfBWcBsdysV3QBAEkX/F4DKeJ2o6T6K7guz+1DBGEbVwviYWkCoZUBddL/oMaWMpuj/blKr1YiMjERUVBQiIyOV+1FRUUpQNf0bHBzs9naIiIicwQBLRETlSkFBgUWgTUlJQWZmpsUtIyMDWVlZFv93eJ1uWRCwCLWWQdUnLbIQHByMsLAw5RYaGmrxrymgmodUDuklIqLyhAGWiIj8nhACubm5yMzMRE5ODnJzc5V/TTdbjxcWFqKwsBAFBQXKzfR/88dLOyCrVCpotVpotVrodDrlfvH/63Q6BAcHIygoyOIWGBio3Dc9HxgYqITTkJAQaDSaUv0ZiIiIShsDLBERkRNkWXbpJkkSJEmCSqVSbqb/mz8uSRLUajXDJRERkRMYYIno/9u7+6iqqsT/458DgpCgqJlimqmJWen4gJoZZmpKlun4UJktK8dfNavSpnGNfZnUSksnl6OWazXlGrNSqrFWmmsqSvOhEp/KkAlRUsRn4kFAFITLPb8/LvdweRZELwfer7Vc99yzz95n3y0Wn3v2ORsAAACwBR9vdwAAAAAAgEtBgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALbQxNsdAABvMU1T+fn53u4GANRIQECADMPwdjcAwCsIsAAarfz8fI0aNcrb3QCAGomJiVFgYKC3uwEAXsEUYgAAAACALXAFFgAk+e++TioyZPgYkuFjvcrHkIqn6hk+Pq5to/jVx5BhFH8P6D6ueL+7Trl97jY9y1RSbrrr+XiUu/e7v3Isu88wZLpnExrF731cb0r2G5Ihq45Z/F6S6xh3G4b7s5S0V7bcs03TfYxPBWWex5cq89xXth+V1KmkXJLVh8rOVer4SvpRro4qqF+ujlmqH2Xbs8pVttwsOUYlx5Z8RtMqM8odb1p1jOL9Ja/u9kwZhlnqx8vdvuuvsqTcR65tWfsln+JyV5mrSWufx6urvZL3nn8kV9uu9yopU8m5fAyntc91rFOS5GuUvPcxSpf5GKZHuSlfOa3z+RpOj3pO+Rafy73tenVa9dzt+cgsruuUb6ky1/G+hilDTvkWv3d/Ntd7ueqp5HxGcRu+Vh+L+yfXWPjKlI9UvG0Utyf5GoZ8ZMhXxa+Gu8xHhgwVFvhqwv9rJwBo7AiwACC5wqvT9YuijJJXz2RgyB1cS9Ka4U6VpZJQcXlxrdLJxqd8ujI86laUnqrcr0rKZYXWUttlX63qhkezZQNx2fKybao4SFdSVll3K+zHpdS5hKGqbZsew1d96K3jAFu2vExZ2QBbsr9se2a5MndIrbjc9Njvuc+soE2zVB13gC37p9IyK1R6BFuPoGuVqaTcHfzcZa4A67QCoLvMFQCLXw1DvnLXcW27Xo1SwdHVluRryHotqefarrDMeu8OwKZHYHZtVxdgK2rPRyoOxa73rjL38R5/hwDQiDGFGAAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALbAOrAAIEm+pkw5XYs/Girzai3IWGYd1bLrrLr/mCV1Su2vpMxjIVKzksVNK9pfss+9uqZKvzc997uONWVIpkq1Z3rWKa5XXiX7TI+iUmuRGp7dr2L9VaOS/WXqVFZeXVlVbVa13/1SZZ2K1nOtoLxcHytZB1bl6xnlji85zvBc49Xjx1TWuqueP16VrAOry1sH1iyub5b54y4zi9fCtcqK++80TMlwlpxHxe9V/HlUutwsLjOLz+1uWyo5n+d+H49zubfLvrr64fpn7fnqLP7IPsXbzuIf0YrXgTXkI9f6su4yo3i/r0rWkpVU6r2PtW14tFfSlo8M+RruMkOGDBUWVPRvEAAaHwIsAEgqGPC7t7twZZhlXmuhTK4DLO746azuwHrLnfCZkAYAdsF/sQEAAAAAtmCYpnkZ38sDgH2Zpqn8/Hxvd6PRys/P19ixYyVJGzZsUEBAgJd71Hgw9t5TF2MfEBAgw2BOBIDGiSnEABotwzAUGBjo7W5Arl/I+bvwDsbeexh7AKg5phADAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABb4CnEAAAAAABb4AosAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwhSbe7gAAwLsuXLigjz/+WNu2bdOZM2fk4+Ojjh07atiwYZowYYL8/Pxq3XZmZqaio6MVGxur1NRUNW3aVJ07d1ZkZKTuu+8+GYZRZf2TJ08qOjpae/bsUWZmpgIDAxUWFqYxY8Zo6NChldY7ffq04uPjdfDgQR06dEhJSUm6cOGCJOmTTz5RaGhorT9TXWuI43/48GH9+OOPiouLU3JysrKysuTn56d27dqpb9++Gj9+vDp27Fjrz1VXGuLYf/PNNzpw4IAOHTqktLQ0ZWVlyel0KiQkRN27d9c999xTZX0AqO8M0zRNb3cCAOAdZ86c0YwZM3TmzBlJUkBAgJxOpwoKCiRJ3bp107JlyxQcHFzjtg8ePKhZs2YpOztbkhQYGKiCggIVFRVJkgYMGKCFCxdWGhJiY2M1b9485efnS5KaNWumvLw8OZ1OSdLo0aM1e/bsCoPA66+/rq+//rrCdutTgG2I4//NN99owYIFpfYFBQUpLy/POrefn59mzJihsWPH1vhz1ZWGOPaSNGrUKOXl5Vnvg4KCdPHiRRUWFlr7+vfvrwULFigwMLDGnw0AvI0ACwCNlMPh0PTp03XkyBG1bt1af//73xUeHi6n06ktW7Zo8eLFunDhgm6//Xa98cYbNWo7NzdXjz76qDIzM3XDDTfopZde0s0336zCwkJt3LhRK1askMPh0Lhx4/TCCy+Uq3/q1Ck98cQTysvLU8+ePfXiiy+qY8eO1hWz1atXS5KefvppPfLII+XqL1q0SHFxcQoLC1NYWJhM09S7774rqf4E2IY6/l999ZWWLFmioUOHavjw4erVq5eaNWumwsJC7d+/X2+++aaSk5NlGIaWLFmi8PDwWo9hbTXUsZekN998U2FhYbrtttt03XXXyd/fX6Zp6vTp01q3bp0+++wzSdIDDzygWbNm1XzwAMDbTABAo7Rx40YzIiLCjIiIMOPj48uVf/vtt1b53r17a9T2ypUrzYiICHPEiBHmyZMny5V/+OGHZkREhDl06FDz2LFj5crnz59vRkREmGPHjjVzcnLKlb/xxhtmRESEGRkZWWG5w+Eo9f7nn3+2PsupU6dq9FmulIY6/ikpKWZaWlqlfcvJyTHHjh1rRkREmM8//3yNPlddaahjfyleeeUVq3+FhYU1rg8A3sZDnACgkXJPse3Tp49uu+22cuXDhw+3rlRWNh23MjExMVYb7du3L1c+fvx4BQYGqqioSN9++22psry8PG3btk2SNG7cuAqncD766KOSpPPnz+v7778vV+7r61uj/npDQx3/G264Qddee22lfQsODtaQIUMkSYmJiTX4VHWnoY79pbjlllskSRcvXlROTk6N6wOAtxFgAaARys/P1//+9z9J0u23317hMYZhaODAgZKkPXv2XHLbx44dU2pqqiRZ9cu65ppr1KtXrwrbjo+P18WLF6usHxoaqk6dOtW4b/VFYx9/f39/SbLu6byaGvvY79+/X5LrvtyWLVvWuD4AeBsBFgAaoZSUFCs8dO7cudLj3GWZmZmXfLXmyJEj5epXpEuXLpKko0ePVlrffUxV9ZOTky+pX/VJYx//X375pdr2r5TGOPa5ublKTEzUokWLtHXrVknSQw89VO2TkAGgPmIZHQBohNLT063tNm3aVHqc51TQ9PR0NW/evNq2MzIyatT2+fPndeHCBV1zzTWl+hYcHKymTZtWW9/zfHbRmMd/8+bNOnTokCTp/vvvr1HdutBYxn7z5s165ZVXyu339/fXpEmT9Nhjj1XxSQCg/uIKLAA0Qu41USVV+YtyQEBAhXWuZNvuJUA8y6uqf6n9qk8a6/gfP35cS5YskST16tVL99577yXXrSuNZez9/f3VqlUrtWrVyron3NfXV5MnT9ZDDz1ki/vEAaAiXIEFAABXXEZGhv72t78pNzdX1157rebOnSsfH75Hv1IiIiIUEREhybVsUEpKitauXav3339fGzdu1IIFCyp8gBUA1Hf8nwMAGiH3lEVJ1kNjKpKfn19hnSvZdmBgYLnyqupfar/qk8Y2/mfPntVf/vIXnTx5Uq1atdLSpUt13XXXVVvvSmhsYy9JTZo0UdeuXTV37lxNmDBBmZmZevnll6vsIwDUVwRYAGiEPO/vS0tLq/Q4z/sFq1oaxVPr1q1r1HazZs1K/SLuPs+5c+eq/AXbXd/zfHbRmMb/7Nmzev7553X06FG1bNlSy5Yts56i6w2NaewrMmnSJEnS77//rp07d9a4PgB4GwEWABqhTp06WdM3q3qSqbusVatWl/QQG6n001Oratv9xNUbb7yx0vqeT2WtrH5VT3utrxrL+J89e1YzZ85UcnKyFV7Lnu9qayxjXxnPh0udPHmyxvUBwNsIsADQCAUEBFj3v+3atavCY0zT1O7duyVJ/fv3v+S2O3bsqLZt21bZdl5enrUeZdm2e/bsaT0Ax33+ss6cOaOUlJQa962+aAzjn5mZqZkzZ5a68lofvmxoDGNflVOnTlnbdpx+DwAEWABopCIjIyVJ+/btU0JCQrnyLVu2WL/suo+9FIZhaNSoUZKk7777TqdPny53zOeff668vDz5+vrqnnvuKVUWGBiou+66S5K0fv165ebmlqsfHR0tyfULuPtBNXbTkMffc9pwq1attHz58noRXt0a6tg7HI5q+7hmzRpru3fv3tUeDwD1DQEWABqpyMhIdenSRaZpas6cOfrpp58kSU6nU1u2bNHixYslSQMHDlS/fv1K1V21apWGDBmiIUOGVPhL+sMPP6xWrVopPz9fs2fP1sGDByVJhYWFWr9+vf79739LksaMGaOOHTuWqz9t2jQFBgYqIyNDL774oo4fPy7JdfVq9erV2rBhgyRp6tSpCg4OLlff4XAoKyvL+uMZBM6dO1eq7FJ+6b8SGur4Z2VllQqv9WHacFkNdezXrl2r+fPna+fOnTp37py13+FwKCEhQX//+98VExMjSRoxYkS9+3sBgEthmKZpersTAADvOH36tGbOnKkzZ85Ick2vdDqdKigokCR169ZNy5YtK/eL8qpVq7R69WpJ0ieffKLQ0NBybR88eFCzZs1Sdna2JNcVo4KCAisw9u/fXwsXLpS/v3+FfYuNjdW8efOsJ64GBQUpLy9PRUVFkqTRo0dr9uzZMgyjXN19+/Zp5syZlzQGy5cvV58+fS7p2LrWEMd/9erVWrVqlSTXFUX3k3Ur884771jTbq+mhjj2nn2TXOPv7++v3Nxcq64kDRs2TP/3f/9X5Vq1AFBfsQ4sADRioaGhWr16tT7++GNt27ZNZ86cUZMmTdS5c2cNHz5cEyZMkJ+fX63a7t69u95//31FR0drx44d+v333xUQEKAuXbooMjJSo0ePrnId0EGDBum9995TdHS09uzZo8zMTAUFBalbt2564IEHNHTo0Fp+6vqjIY6/0+m0tvPy8pSXl1dlPz2Pv5oa4tjfd999atGihX755RclJydbsw8CAwN13XXX6dZbb9WoUaPUq1evWn0uAKgPuAILAAAAALAF7oEFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAYAvLly/XkCFD9Nxzz3m7K/Cy3Nxc3XfffRoyZIi2b9/u7e4AAK6iJt7uAADgyjp//rySkpKUmJiogwcP6uDBgzp58qRM05QkffLJJwoNDb0i5zZNUxMnTlRaWpqmTJmip556qlbtJCUlaf369ZKkJ598sg576F1HjhzR7t27FR8fryNHjigjI0NFRUUKDg5W165dNWjQIEVGRiooKMjbXa1XgoKC9PDDD2vlypV66623NHDgQDVt2tTb3QIAXAUEWABo4GbMmKGkpCSvnDsxMVFpaWmSpIiIiFq38/bbb6uoqEgDBw5Uz54966p7XjVjxgz98ssvFZZlZmYqMzNTe/bs0Zo1axQVFaUBAwZc3Q7WcxMnTtS6deuUmpqqTz/9VFOmTPF2lwAAVwFTiAGggXNfaZVcV6769OmjVq1aXZVzf//995KkNm3aqEePHrVqY//+/dq7d68kNaiQ4g72wcHBGj16tKKiorRixQqtXLlSr776qgYNGiTJFWajoqIUFxfnze7WO4GBgZowYYIkKTo6WhcuXPByjwAAVwNXYAGggRs9erRCQkLUvXt3dejQQYZhaMaMGcrMzLzi53YH2MGDB8swjFq18dFHH0mSQkND9Yc//KHO+uZtHTp00NSpUzV8+HD5+/uXKuvevbuGDh2qtWvX6p133lFBQYGWLFmiDz74wEu9rZ9GjhypVatW6dy5c/rvf/+rSZMmebtLAIArjCuwANDATZw4USNGjFDHjh1rHSJr4/jx40pJSZFU++nDaWlpio2NlSSNGjXqqvb/Slu8eLHuvffecuHV05QpU9StWzdJ0tGjR3X48OGr1T1bCA0NVa9evSRJX3zxhZd7AwC4GrgCCwC4ItxPh3VPW66NTZs2yel0SpKGDRt2SXUcDoe+++47/fDDD0pMTFRWVpaKiooUEhKiLl26KDw8XCNGjFDr1q1L1RsyZIgkKTIyUlFRUTp27Jg+/fRT7dmzR+np6WrWrJnCwsL0yCOPqHfv3la9ixcv6quvvlJMTIxOnDih/Px8tW/fXvfcc48mTZp02Q8X6tu3r3UP8/Hjx9W1a9dat3X06FFt2LBBcXFxOn36tPLz8xUUFKTg4GCFhoaqX79+uvPOO3XDDTfUqn2Hw6FvvvlGW7Zs0ZEjR5SdnS3DMNS8eXOFhISoR48eCg8P1+DBg+Xn51eqbtnxP3r0qD7//HPt3btX6enpysvL02uvvVbuy5Bhw4YpLi5OKSkpSkxM1M0331y7wQEA2AIBFgBwRbinDw8aNEhNmtTufzc7duyQ5LpPtFOnTtUe/9tvv2nu3Lk6ceJEubK0tDSlpaVp165dOnz4sKKioiptZ+vWrXr99deVn59v7bt48aJ27typXbt2adasWRozZozS09MVFRWlxMTEUvWTk5P17rvvaufOnVqyZMllhViHw2Ft+/jUfuLUhg0btGzZMhUVFZXan52drezsbJ04cUJ79uzR4cOHNWfOnBq3n5WVpb/+9a8VPjDMPfZJSUn64osvFB0drQ4dOlTa1ldffaUlS5aooKCg2vN6PtRrx44dBFgAaOAIsACAOpeenq4DBw5Iqv304YKCAv3666+SpB49elQ7fTgpKUnPPvus8vLyJEl9+vTRyJEj1alTJ/n5+SkjI0MJCQnVrht6+PBhfffdd2rZsqWefPJJ69w//fSTPvzwQ+Xn52vp0qXq3bu3FixYoN9++03jxo3TnXfeqZCQEJ08eVIffPCBDh8+rP379ys6OlpPPPFErcZAkn7++Wdru3PnzrVq48iRI1Z4bd68ucaMGaPevXsrJCRERUVFysjI0MGDB7Vz585aT9NetmyZFV779eunkSNHKjQ0VM2aNdP58+eVkpKiuLg4a0p4ZQ4ePKhNmzapefPmmjRpknr27Ck/Pz8dPXpU7dq1K3d8586dFRgYqLy8PP3888+aNm1arfoPALAHAiwAoM798MMPMk1T/v7+GjhwYK3aOHz4sHX1sXv37lUe63A4NHfuXCu8zpw503pCrac77rhD06dPV2pqaqVtJSUlqVu3blq2bJmCg4Ot/bfccos6dOigefPmyeFw6Nlnn1VOTo4WL16s8PBw67iwsDD1799fU6dOVXp6utavX6+pU6fK19e3Rp9fck3DTk5OluQK8R07dqxxG5K0ZcsW68rr0qVLrftqPUVERGj69OnKzs6ucfsXL160vhiIiIjQggULygXh3r17a+zYscrLy6vySnJycrI6dOigFStWlHpadmVPsfb19VVYWJji4uJ06NAhOZ3Oy7pSDQCo3/gvPACgzrmnD4eHhyswMLBWbXhOA65u2Z9Nmzbp5MmTklxPXa4ovHpq27ZtleUvvvhiqfDqNnToULVp00aSdPbsWY0fP75UeHULCgrSvffeax139OjRKs9XkfT0dP3zn/+UJBmGoT//+c81bsPN/cTpoKCgCsOrpxYtWtS4/XPnzllfNvTu3bvKq7iBgYHVTql+4YUXarTUk/vY/Px8paenX3I9AID9EGABAHUqNzdX+/btk1T76cOSlJGRYW03b968ymPdgVmSJk+eXOtzSq4pqZWFPMMwSpWNHDmy0nY8jzt16lSN+pCfn6+oqCgreJZ9cFRNuUN3bm6utmzZUut2KtOiRQvracqbN2++rDVZ27RpU+GXAlXx/Pnw/LkBADQ8BFgAQJ2KjY2Vw+GQr6+vBg8eXOt2Ll68aG1XdDXU06FDhyS5rsRdysOeqlJdfc++VPW0Xs/jahLoCgsL9dJLL1kPhrrzzjs1ffr0S65fkZEjR1pXPefNm6dnnnlGa9eu1f79+61p15fDz89PkZGRkqSEhAQ9+OCDWrx4sTZv3lzj8F6bpyx7BljPB28BABoe7oEFANQp99XQ2267TSEhIbVux/Oe0eqeRpuVlSWp5Erj5QgICKiy3HN6bFXToz3vw3QvBVQdh8OhOXPmaPfu3ZKkAQMG6OWXX67V/bOe2rdvr0WLFun1119XWlqa4uPjFR8fL8k1zjfffLOGDBmi+++/v9ovCyrz3HPPqaCgQDExMcrJydHGjRu1ceNGSa4vFgYMGKDRo0dXeyW5uqvtFfH8sqO2T7wGANgDV2ABAHWmoKBAu3btknR504cl1/2abjk5OZfVlh04HA7NmzfPWjooPDxcr732mjU193L169dPH330kV555RWNHj3aWsamqKhIv/76q95++21NnjzZCs811bRpU0VFRWnNmjX605/+pL59+1oBPzMzU19//bVmzJihl156qVTgLKs2D2DyfPCU588NAKDh4WtKAECd2bt3rzUl9XIDrOeSKdUF2JCQEKWmptr2AT7u8Oq+et23b18tXLjwstaPrYi/v7/uvvtu3X333ZJcV65/+uknxcTEaOfOncrJydGcOXMUHR2t1q1b1+ocHTt21GOPPabHHntMRUVFSkpK0o4dO7RhwwadPXtW27dv18qVK/Xss8/W2ec6d+6ctV3dA7oAAPbGFVgAQJ1xB7Bu3bopNDT0stryXPP02LFjVR7rXmYnIyOj2mPrm7LhtU+fPlq0aFGdh9eKhISEaPjw4XrjjTc0btw4SVJeXp5++OGHOmnfPT152rRp+te//mVNz960aVOdtO+WkpIiSQoNDdU111xTp20DAOoXAiwAoE44nU79+OOPklwPHrpcbdu21bXXXitJOnDgQJXHDhkyxNqOjo6+7HNfLQ6HQy+//LIVXnv37q1//OMf1d6HeyUMGDDA2nbfU1yXQkNDrXVsa7PWbGWysrKsJZRuvfXWOmsXAFA/EWABAHUiPj7eCj6egfJyuENVSkqKzp8/X+lxw4YNs8LRl19+qc8++6zKdlNTU+ukf5fD4XDo1Vdf1fbt2yVd2fC6bdu2akOp+95lSbr++utr1P6pU6e0d+/eKo85ffq0daW0ffv2NWq/KgkJCdb27bffXmftAgDqJ+6BBYAG7sSJE9YTZ93c64tK0tatW0s9LTgwMFBDhw6t8XncVxHbt29fq6VQKnL33Xfryy+/lNPp1N69e3XXXXdVeFyTJk30yiuv6JlnnlFeXp6WL1+u7du3a9SoUerUqZP8/PyUkZGhxMREbd26Vd27d1dUVFSd9LG25s+fr61bt0pyBcann35ap0+frrJOy5Yt1bJlyxqf67PPPtP8+fPVr18/9evXTzfeeKNatGihwsJCpaamatOmTdbV83bt2tV4+aPU1FS98MILat++vQYPHqwePXqobdu2atq0qbKzs5WQkKD169dbT5OeMGFCjT9DZfbs2SPJdX/voEGD6qxdAED9RIAFgAYuPj5eCxcurLT87bffLvW+Xbt2lxVg62L6sFt4eLjatGmjtLQ0xcTEVBpgJemmm27SW2+9pblz5+rUqVPat2+f9u3bV+Gx7ntmvWnLli3W9smTJ/X0009XW+fxxx/XtGnTanW+goICxcbGKjY2ttJjrr/+ei1cuLDK5YGqcurUKa1bt67Sch8fH02ePFl//OMfa9V+WQ6HQ5s3b5bkuupf2yWAAAD2QYAFAFy23377zbp6eLlPH/bk6+ur8ePH65133tHOnTuVlZVV5dqyYWFhWrNmjWJiYvT9998rKSnJut+yZcuW6tq1q/r3768RI0bUWR/tYN68edq9e7fi4uJ05MgRZWZmWlOKW7RooZtuukkREREaOXJkrZbt6dWrl1asWKG9e/cqISFBqampOnv2rM6fP6+AgAC1b99evXr10v33319nV+clWT8TkjRx4sQ6axcAUH8Zpmma3u4EAMDe3nvvPb333ntq2bKlPv/881qt5VmZ3NxcPfzww8rJydFTTz2lKVOm1FnbsLfZs2crNjZW/fr109KlS73dHQDAVcBDnAAAl809ffiOO+6o0/AqSUFBQVZo/fjjj3XhwoU6bR/2lJCQoNjYWBmGoSeffNLb3QEAXCUEWADAZSksLFRERIQef/xxjR8//oqcY8KECerQoYOys7P1n//854qcA/aycuVKSdKoUaPUo0cPL/cGAHC1MIUYAGALBw4cUGxsrIKCgvTggw96uzvwotzcXK1bt06maWr8+PFV3hcNAGhYCLAAAAAAAFtgCjEAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABs4f8DXvdiF6mzDk0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC5jklEQVR4nOzdd3hT1eMG8PdmdU9aNoWyZSgoU5AhU1FBQVBRcKKgCMLXgXugoiIqDlRkCQooCD8HS0D2ngKyN4W2dO824/z+CLkkbXbSJmnfz/PkITQ3556kTe5971mSEEKAiIiIiIiIyM8pfF0BIiIiIiIiImcwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQSvBNhz585BkiRIkoRHH33UG0VWST169JDfRyIiWx599FH5u+LcuXO+ro5s7ty5cr3mzp3r6+qQl+Xl5aFu3bqQJAmffvqpr6tDAWLDhg3y98Lbb7/t6+oQ+Y3KfN4/efJkSJKEhg0boqioyOvlV1gL7Ny5c/H2229XqS+v5cuXy685KyvL19Wha3Q6HdauXYtXXnkFt99+O2rVqoWgoCCEh4ejUaNGeOCBB7B8+XLo9XqXyj18+DDGjh2L5s2bIzw8HFFRUWjdujVeeeUVnD9/vpxeDRFVRZs2bcITTzyBli1bIjIyEmq1GrGxsWjXrh3Gjx+Pf//91+v7nDx5MpKSklCjRg2MHj3a6jb79u3DN998g8cffxzt27dHgwYNEB4ejuDgYNSqVQu9evXClClTkJyc7PR+k5OT8dZbb6FTp06oVq0agoKCULduXfTr1w+zZ8+GTqdzuqzMzExMmzYNvXv3Rs2aNREUFITQ0FAkJCTg7rvvxqxZs5w62bpy5Qr++OMPvP3227jrrrtQq1Yt+US0QYMGTtfHHatWrcKwYcNQv359BAcHo3r16ujSpQs+++wz5Ofn232ueZh05Vber6m83X333fJrmTVrlsvPv3DhApRKJSRJQmxsrMcn5NnZ2fj666/Rt29fJCQkIDg4GNWqVUOLFi3w4IMPYubMmcjIyLD63MzMTPzf//0fXn/9dfTv3x8tWrRA9erVoVarERUVhZYtW+LRRx/FqlWrXKpTfn4+pk2bhi5duqB69eoIDg5G/fr1MWzYMKxevdqlsjZv3oxHH30UTZo0QXh4OMLDw9G0aVOMGjUKO3fudKkse8wb0Jy52csg5mHSlVsgX6zdu3ev/Drq168PIYTLZTz55JNyGR999JH88+effx4xMTE4e/YsPvnkE29W20h4wdmzZwUAAUCMHDnS6jbdu3eXt6kqRo4cKb/ms2fPOty+Kr5HFW39+vUiNjZWfp/t3dq3by9OnTrlVLmffPKJUKvVNsuKiIgQCxcuLOdXR1WFq98tFWXOnDlyvebMmePr6lRKBQUFYujQoQ6/vxQKhRg3bpzQ6/Ve2e+lS5dEcHCwACCmTZtmc7saNWo49f0aHh4uvvvuO4f7/fHHH0VoaKjdstq2bStOnz7tsKyVK1eK+Ph4h3VLTEwUe/futVnO77//bvf59evXd1gXdxQVFYkHHnjA7r4bNWokDh48aLOMf/75x6nfT+lbz5493a63+T7feustt8vxxNKlS+U6dO3a1eXnv/vuu/Lzx4wZ41FdFi1a5NTnZNmyZVafP2PGDKd/b926dRNXrlxxWKd9+/aJhg0b2i1r+PDhori42G45eXl5Dv9GJUny2neTef5w5mbv78/8HNyV28aNG92uvz+c97du3Vquw9q1a116bn5+voiIiBAAhFKpFJcvX7Z43PS5iYiIEFevXvVmtYUKXtCgQQO3UjtZ2rBhg6+rUOklJSXJVzVjY2PRu3dvdOrUCbVq1YJWq8WuXbvw448/IicnB7t370bPnj2xa9cu1KxZ02aZ3377LV588UUAgFqtxiOPPILu3btDq9Vi9erVWLJkCXJzc/HII48gOjoa/fv3r5DXSpXX3LlzA/qqL7nvoYcewvLlywEASqUSw4YNQ8eOHVG9enVcvnwZ69atw4oVK2AwGPDFF19Ao9Hg448/9ni/H374IYqKihATE4NnnnnG7rZxcXHo1KkTbrrpJiQmJiIqKgolJSU4deoUli9fjv379yMvLw9PP/00VCoVHn/8cavlzJ8/HyNGjJD/37dvXwwcOBDx8fG4ePEiFi5ciD179mD//v3o27cvtm/fjvj4eKtl7dq1CwMHDkRJSQkAoFGjRnjkkUeQmJgInU6HkydPYvbs2UhNTcXZs2fRu3dvHDp0CHXq1ClTVuneOWq1Gq1atcL+/fvtvi+eGjlyJBYvXgwAqFatGkaNGoXWrVsjLS0NCxYswK5du3D69Gn0798fO3fuRL169cqU0apVKyxbtsyp/Y0dOxaXLl0CADz22GPeeyE+cPfddyMuLg5paWnYsmULTp8+jUaNGjn9/Hnz5sn3PXkvvvzySzz//PMAAI1Gg0GDBqFr166oUaMGdDodzp07h61bt2LdunV2y1EoFLjpppvQvn17NGvWDDVr1oRGo0FaWhp27dqFxYsXo6CgAJs2bULPnj2xd+9ehIaGWi3r/PnzuOOOO5CSkgIA6NChAx5++GHExcXh0KFD+P7775Geno6ffvoJkiRh/vz5VsvR6/UYPHiw3FobFhaGxx57DB07doRCocD+/fsxa9YsZGZm4osvvoAQAl988YW7b2UZPXv2lN9bW5o3b27zscmTJyMtLc3hfrZu3YqpU6cCMH6P3Hbbba5V1M889thjmDBhAgDjuUWvXr2cfu7SpUuRm5sLAOjfvz9q1apl8fi4cePw0UcfITc3F1OnTsWUKVO8V3GvxmE7/OEqQ0Xz11aSqmz+/PmidevW4ueffxZFRUVWt7l06ZJo2bKl/LsbMWKEzfIuX74stw6oVCrx999/l9nGvFWqXr16orCw0Guvh8ifsAW2fG3atEl+fyMjI8X+/futbrdy5UqhVCrl7yVPr3ynp6fL33OjRo2yu+3hw4eFwWCwu80HH3wgv47o6Gir38WpqakiPDxc3m7GjBlltjEYDGL8+PHyNo899pjNfd5+++0W22m12jLb5Ofni969e8vbjRs3zmpZW7duFU899ZT49ttvxe7du+VWKdPzyqMFdvny5XL5CQkJ4vz58xaP6/V68dhjj8nbDBkyxKP9HT161OJvLT8/3+2y/KEFVgghxo0bJ9fjjTfecPp55p+7Vq1aub3/v//+Wy6nXbt2ds8Lc3NzRUZGhtXHkpKSRHp6ut19nT9/XjRu3Fje35QpU2xuO2jQIHm7xx9/vEzL6Llz50RCQoK8zZ9//mm1nG+++Ubepm7duuLkyZNltrl8+bJo3ry5V1ovhXCuB6i3DRs2TN7n5MmTPSrLH7JRamqq3IMwNDRU5OTkOP1c8+/VJUuWWN3moYceEgBETEyMyMvL81a1BQNsOWKA9T+ZmZkOT66EEOLQoUPy7y4kJMTmwdv85OnFF1+0Wd79998vb/fVV1+5XX8if8YAW75ee+01p75vhBBi8ODB8ra///67R/v97LPP5LI2bdrkUVkmN954o1zmunXryjw+ZcoU+fHBgwfbLEev18td4BQKhThx4kSZbYqKiiwCfVZWls3yzL/7b775ZpdeU3kG2DZt2sjl//XXX1a3KSgosAgahw4dcnt/L774olzOU0895XY5QvhPgD1w4IDF78iZcwEhhHj88cfl53366adu7buoqEjUr19fvgCRnZ3tVjmu+O233+R633bbbVa3MX9PEhISbF5g/+uvvyzCtzXmwfSPP/6wWa+dO3fK27nTndtcRQfYjIwMERQUJH/fXLx40aPy/CUbmV/EmDVrllPPOX/+vJAkSQAQ1apVs9m93PxvZ+bMmV6rc7nPQmwaFL1x40b5Z64MrDYYDPjll18wbNgwJCYmIjQ0FBEREWjevDlGjx6NQ4cO2a3b22+/Le/D1EV33bp1ePDBB5GYmIjg4OAyM3nqdDqsXr0aEydORNeuXVG9enVoNBpERESgadOmePTRR7Fp0yab+zTNEGre5SQxMbHMa7b1XjkzG9nOnTsxatQoNGvWDBEREQgLC0OjRo0wcuRIrF+/3uHzTfvp0aMHAOPg/alTp6Jdu3aIiYlBWFgYWrZsiUmTJiEzM9NheYEiOjraqfe3VatWcleTwsJCnDp1qsw2Qgj8+uuvAIzv59ixY22WZ96txdQFrKJs374do0ePRosWLRAdHY3g4GAkJCRg2LBh+Ouvv+w+19rskRcuXMDEiRPRvHlzhIWFITo6Grfeeiu++eYbpydTycvLw+eff44+ffqgdu3aCAoKQmxsLNq3b48333wTV69etfv80p8VvV6PuXPnok+fPqhTpw5UKpXVSUdSUlLw0ksvoUWLFggLC0NsbCw6dOiATz/9FAUFBQCMQyKsTVqyatUqeZ+OuimZPP/88/JzVq5c6dRznOFoFuLy+r39+eefuPvuu1GzZk0EBwejQYMGGD58OLZv3+7yaygpKcGsWbNwzz33oF69eggODkZ0dDRuvPFGTJw40ebsysePH0dYWBgkSUJUVBTOnj1rcx+ZmZlISEiAJElQKpV2v7cDQWpqqny/SZMmdrdt2rSpfN/RxD6OmLoMJiQkoGvXrh6VZdKiRQv5vrUJncyPY4888ojNchQKBYYPHw7AeL6waNGiMtukp6fL3X6rV6+OqKgom+V5833zlpMnT+LAgQMAjL/3O++80+p2ISEheOqpp+T///LLL27tT6/XW3QTtdXF29tM3XolSYJCocBnn31mdbtVq1bJEwRFREQgNDQUjRo1wqOPPootW7bYLP+mm25C27ZtARi7zf7zzz8O61RQUCAf51UqFR5++GE3Xpnxd2GazPG9995DZGSkW+W4wtFnDLA8Hxk1ahSCg4OtbnfHHXegcePGAIA9e/bgzJkzFo9fuXIFx44dA2AcnjVgwACb9erQoYN8frV161ZcuHDBiVfjH37++WcUFxcDAPr06YO6detWyH7Ns0yrVq2QlJRUZpu0tDS8//77uO222+Qu5fHx8bjtttvw8ccfIy8vz2b55t3inR2eNG/ePHn46PDhw6HRaKxu17dvX3loh63u527xRgq2dwXE2UHR1q7KnTp1yuKqo7WbQqGw2xXkrbfekrddv369ePbZZ62WY95C2qNHD6fqPHLkSKtXHMxbXh0939Z7ZYtWqxVPPfWUw7KHDh0qCgoKbJZj2q579+7i9OnTokWLFjbLql+/fpVsQW7fvr38HuzYsaPM4+ZX6h11K9Lr9SIyMlL+m3Wli4a78vLyLLq62LoNGDDAZn1KXzlfuXKliI6OtllWnz59bHbNNlmxYoWoXr263TpFRESI//u//7NZhvlnJT09XXTt2tXq36259evXi5iYGJv7bN26tbhw4YJ8lbz08/V6vUhMTBSAsSuMo67ghYWF8v4SEhK8NpmOEI57d3j796bT6ex+rykUCvHRRx853QK7e/du+b20ddNoNOLbb7+1+vzvv/9e3q5z585Cp9NZ3W7IkCHydq+99prd9zQQvP766/LrcdQCa/7aDxw44PY+L1y4IJdjbziFq8y/X621wJofk44ePWq3LPOWpk6dOpV5vLCwUKhUKgFAqNVquy2whw8flssaNGiQS6/J1nePp7788ku57Oeee87utrt375a3bd++vVv7M5+kqkWLFm6VYc6ZFth9+/bJExupVCoxf/78MtukpqZadFm0dXviiSdESUmJ1f1Mnz7dpb/nH3/8Ud5+4MCBrrxsCz179hQARFBQkN1zM28yb/my1QJ7yy23yNvs2bPHbnnm589ff/21xWO7du2SH+vYsaPDut1zzz3y9ra+551R0S2wN998s7y/xYsXe1yeo/N+vV4vnnnmGXmbW2+91WrX8jlz5siTKdm61ahRQ2zbts3qfrRarfz5kyTJqUnxGjVqJJdtaziLyb333iufK6SlpTks2xnlHmA3b94sli1bZjGmcNmyZWVupQ9Qp06dEnFxcfJzunbtKqZMmSIWLlwoFixYIF544QWLk1FbX4rmAfaOO+4QAETNmjXFK6+8IhYsWCDmzp0rxowZYzFzVseOHUV4eLgYOHCgePfdd8WPP/4ofvnlF/HFF1+IUaNGibCwMLlMa2Nk9u7dK5YtWyZ/YQEQ3333XZnXXHqWQ2cCrPnsbsHBweLpp58W8+bNEwsWLBDjx4+3+APu16+fzS4ypm3atm0rmjdvLiRJEgMHDhQzZswQixcvFh9++KFFVyRbX36VVXFxscUJv7VZ/BYuXOjSF6f573fnzp3lUOvrioqKRKdOneT9NWrUSLz66qti/vz5YtGiRWLy5MmiadOm8uO333671YBlfuIxcOBAERoaKkJCQsTTTz8t5s6dKxYuXCgmTpxo8Zmwd0FpyZIlclc+tVotBg8eLL788kvxyy+/iB9++EEMHz5cHouhUCisntgKYflemj7XN910k5gyZYpYtGiR+P777y1O9I4cOWIxk2nbtm3Fp59+KhYvXiymT58uunTpIoehOnXq2DwJNR+7t2DBAru/g/nz58vbvvPOO3a3dZUrAdYbv7cxY8bI22k0GvHUU0+JefPmifnz54uxY8fK7615NyRbAXbbtm3y9pIkif79+4tp06aJxYsXi7lz54qnn37a4ndlqxzzLrLW6v7DDz9YhBprYx4DjXk4cXYMbI8ePTza56xZs+R9emv4g/ksqjVq1LB68eSGG26Qt3ElwEZERFg97g0YMEDe5vHHH7c5BrZPnz7y3+Y///zj0usyle/tAPv00087/DyYaLVa+XcfFhbmdDdZc6aTTQDik08+cbPW1zkKsOvXr5cv8IaGhooVK1aU2SY9Pd3ihPmmm24S77zzjvjpp5/EwoULxWuvvSZ/d9s7JqelpQmNRiO/P7m5uXbrbh6Yly9f7s7LFyUlJSIkJEQAELfccosQQojjx4+LMWPGiEaNGomgoCARGxsrOnToIN5++22H41udkZqaajG77GeffVZmG71eL9dLpVI5/I40v0A5evRoi8fMuwW7GmCfffZZl16bOfP80bBhQ9GuXTsRFRUlNBqNqFWrlujTp4/45JNP7F60ctbBgwflfcXGxjq8WO8Me+f9RUVFFse5O++80+pwts8//1zeJjQ0VIwYMUJ8++234tdffxUzZswQAwcOlLv6hoaGiiNHjlity8SJE+Vy3nzzTbv1Nh8X3qZNG4ev86OPPpK3X7RokcPtneGXy+jo9Xr5KkdQUJD45ZdfrG6XnJwst9AqFApx+PDhMtuYB1jAGIQdjT1Yu3at3StkaWlpcouPQqEQZ86csbqdt5fRWbRokcVB39of4blz5yxaNmydcJi/JxqNxup4hbS0NIuyPAld+fn5Vi9cuHOzt7yBt5iHD1vjoN555x27B+XSRowYIW9v7eqyN5Uem2vtwFRSUmJRJ2uTpJReciEhIcHqGLOdO3fKLRwxMTFWv9gvXLggn6QkJCSIf//912rdd+7cKaKiogRgnAjC2pX00j07xo8fb7eF07yFdsyYMVa3Lf1dYe0kNDk5WQ7Y3bt3t7k/IYTo1q2bAIxTy3s6TqY0VwKsp7838wNVdHS01av0x44dEzVr1rTYp7UT7ZycHFGvXj25rA0bNlh9fSdPnpQvoIWFhVmdhCgjI0PUrVtXfo83b94sP3b8+HE5nEdGRjp1Ndmeo0ePeu37y9MJlcw/20qlUjz00ENi+vTpYtGiRWLatGkWQa1r164iJSXFo/2NGjVKLm/37t0uPXfjxo3y6160aJGYMmWKxWcxJCTEalgRQlhcALbXG0MIy/GyAMSlS5fKbHPixAmLnh+NGjUSb7/9tvjxxx/F7NmzxSuvvCK3QAQFBYnZs2e79FqFKL8Aa/5eOBOqzS8+u/rdYz6hi0qlEsnJyW7W+jp7AXbJkiXymMLY2FibLUSmi2OSJInPP//c6ja5ubmib9++8r5WrlxpdTvz3gn2fs/nzp2TT/yrV6/u9kWw/fv3y/sbNGiQ+PHHH+XgaO0WHR0tVq9e7VTZKSkp8mds6dKl4ocffhCjR4+2uADft29fq8fR8+fPu/Q3u379enn7Xr162SwrNjbW4YUT8/GyvXv3duq1WuPsMjpRUVEet5iaTwI2duxYj8oysXXen52dbfG5f+SRR6z+/e3evVs+hrdp06bM5G4mf/zxh/y5tnWBwbz3SYMGDez+Ds0njPviiy8cvs4NGzbI27/wwgsOt3eGXwZY8/W6pk+fbnfb48ePy1cbrU00YH5SGhYWJpKSkpx6TY6cPn1aLve9996zuo23A2zbtm3lx20d9IUwnpSavnTr169vtXud+Qf73XfftVnWzJkzndrOEVfX6rJ3K+9uIhkZGaJWrVry/n799Ver273wwgvyNl9++aXDcl3d3l2XL1+WrzDfd999drctKSmR135r0qRJmcdLByF7E7gMHz7c7nZjx46VT7oddTcxb/X56aefyjxu/lm55ZZb7IZX81arVq1a2exuWrpcWwd08wm5rIVCIYzfS6ZtBgwYYPe1usPVAOvJ723gwIHy43PnzrVZzp9//mmxT2sB9tNPP5UfdzSx0Lp16+Rt33//favbbNiwQSgUCvn3lZmZKUpKSiy6xXnjYlHpixue3Fxt1bPm888/t7ueacOGDcXChQttdqN0xa233iqX6+rQh44dO1qtn1KpFP369RP79u2z+Vzz7tL2ZtQ1n8TJdLN2MVsIYyDp3bu3fHy0dhs9erTV2VOd4ei7w13mx35nJmZydXtz06ZNk5/rSZdZc7YC7Lfffit/fuvUqWOzZWjv3r3y8ydMmGB3XxkZGfIF0D59+ljdxrxrbbdu3WyWZX6R2tF+7Vm5cqVcTqNGjSx6R3z11Vdi8eLF4qOPPrLoqahWq60OXbJXdulbnTp1xLvvvmvzmGfeomhqGbbH0famC4qA7ZmKhbA8JgO2J4VyhuncslWrVmL8+PFi5syZ4tdffxWzZ88W48aNK7PerjsXpoQwniuZ9wp1dA7jLGvn/SkpKRaf4QkTJtgMk3fffbcAjD1PrF24M/fGG2/IZW7dutXqNuZDO9avX291G/O1XzUajVNdglNSUuRyS1/8cJdfBljTlbbIyEinlhzp3LmzzYOG+YmHN8fvCCHkFoe77rrL6uPeDLDm73Hr1q0dltWrVy95e2stp+YnEramahfCMqg/8MADDvdrS6AEWJ1OZ3EF1174MB+L7MzMaq+++qq8/QcffODNalsw705i62q2uUmTJtn8OzU/8Wjbtq3dcsxDZ+kxLQaDQcTGxgrAeDXYkby8PPmqorXft/lnxdEByfxE2Forsznzroi2TkLNg9VLL71kdRvzGTwdtR65w5UA68nvraioSL4YUqNGDbvhXwjLbp/WAqypx0zTpk0dvkYhhKhdu7YA7Ld2m3+uhg0bJl566SX5/8OHD3dqP474W4DNz88XP/zwg91xzTfddJPHsw8LIeRumWq12uXn2gqwDRs2FJ9++qndE5/Tp0/L3wH2vmP/97//lSnf3vfev//+a3FRpvQtLCxMPPXUU27NU+Dou8NdTZo0kct2JlybX3Rw5hhgzvxigLe+u6wFWPNw2KxZM5stR0Jc73UgSZJTjRAPPvigAIwt6dZ6leh0Ovm7RZIkq73oDAaDRZdlT2Z0Nh9uZLpZW9ZGq9VaXFC84YYbHLZk2gqwkiSJ4cOH2wwhQhiXgzJt36VLF4ev48SJE/L21r7DzX+n9erVs9rzJTk5ucycK84eD6zJycmxeyGsoKDAorVQo9HY7DVpz5IlS5w+prqi9Hn/6dOnLZY/+vDDD20+NyMjQ74A5Gh5MyEsL6zb6jVovhSSrXPtefPmydvYmyHeXElJifycxo0bO/UcR1TwQ5s3bwYA1KpVC6tWrXK4vVKpBGCcVa6wsBAhISFWt3NlseGcnBz89NNPWLFiBQ4dOoS0tDSbMxKaFvouT7t27ZLv9+3b1+H2ffv2lRfC3rlzJzp06GB1u6ZNmyImJsZmOeaLuHsyG3GDBg3k2cr82bhx47BmzRoAxhk3nZ2NzZ+YPj+A8W9z+fLldrc3/70ePXrU6uy9ANCpUye75dj7Wzly5AgyMjIAABEREQ7rBADh4eHIysrC0aNH7W7n6HO9Z88e+X7Pnj3tbmualduenj17omnTpjhx4gTmzZuHyZMnQ61Wy49rtVp5BvLatWvbnY2xInjyezt48CBKSkoAAN27d5e/a23p1auXzd9XdnY2/v33XwBAjRo1nP4bAGD3b+Cdd97BunXrsHPnTosZNRMTE/HNN9843Icz3n77bZsz5Ve0PXv2YNCgQUhKSkKbNm3w5ptv4rbbbkNUVBSuXLmCP//8E2+//TYOHjyIQYMG4auvvsLo0aPd3p/pc2vvOGHLjh075Pv5+fk4fvw4fv31V3zxxReYOHEiPvvsMyxfvhy33HJLmec2bNgQr732Gt555x0AwFNPPYWlS5finnvuQVxcHJKSkrBw4ULs2rUL8fHxKCoqQm5uLgDjzMSl6XQ6jB8/Hl9//TVUKhVeeukljBgxAo0bN4ZWq8WBAwcwbdo0LFu2DDNnzsSuXbuwZs0aVK9e3eXXHaj27Nkjr+xQs2ZNm7Mde8JgMOC5557D119/DQBo3749VqxYgbi4OJvPMR3ToqOjLc6FbDHNEltcXIwzZ87ghhtusHhcqVRixIgRmDJlCoQQmDdvXpnP9+bNm3H69GkAQLt27dCqVSunX2NpBoPB4v+9e/fGyy+/XGY7lUqFmTNnYuPGjbh06RKOHj2Kv//+2+45X//+/eVzK51Oh9TUVGzZsgXTpk3DTz/9hJ9++gnPPfccPvvsM6hU5XvKP2HCBPzyyy84cuQILl68iDZt2uCxxx5Dhw4doFAocODAAfzwww/IyMhAw4YN5ZmMrX1enRURESHPLG1NSEgIZs2ahcuXL2P16tUoKSnBxx9/jBkzZri0nzlz5sj3y2tW7oMHD6J///5ITk6GUqnE999/b3dfW7dulf+2lEqlw2OqVquV79s6pj744IOYMGECioqKsGTJEnz11VfycdjE/LzYfPZie9RqNSIiIpCbm+u9lU28kYK92QKbm5vr0dXt0lfnzK+c2+t2a279+vVlxnPZuzVs2NBqOd5sgTVvVfvuu+8clrVs2TJ5+0mTJpV53PSYM5MzmbZ1NOYv0Jm35NSoUUMcP37c7vb+2oXYvPukq7fS3XXNr5w7Wvjd3jinP/74w+06WevabP5ZcTSjo/l6k850qTS1atlrRZk6dapc5tKlSy0eM79SW14z37rSAuvJ7838e+TVV191WC/z76nSLbDms3a7enPU+nf69GmLCexUKpXYvn27w/oGmoMHD8pj52699VabPZROnz4tqlWrJgBjLxtPZiE2XeFv1KiR22WUtm/fPvn3FR0dbbNVzWAwiEmTJtnt8lujRg2xY8cOi0kdrX13P/TQQ/Lj9loWzb+n7XVdtsb0vEDtQjx69Gj5eY5muXaF+XeMqXsvYBz76GgSJSGE/Lfszs1WV8ljx47J2yQmJpZp6TRvtfvmm2/KPH/16tV2x7qbM5/VGYDNeV1MzHtF2erl44her7eY48La79PbXYiFEOLixYuiXbt2dn8n/fv3t5jTpXPnzm69Rlds375d3l+9evVceu7ly5flbt9BQUF2ey26yvxcxvTZCAoKcmrCMPPZyV292epeL8T1HgzWjuPm48Jr1arlsFeWOVNvntDQUKefY49X1oH1puzsbI+eb2otsMZWy6y5kydPYsCAAfKaWc2aNZOv2i5cuBDLli2Tb6Z1jUzry5Un05VlAAgLC3O4vfkVE/PnlubJla/KZPLkyfjggw8AAHFxcVi7dq3FeoDWREdHy/fT0tIc7iM9Pd3qc73Nk8+Qvc+PJ38r5VUnwPHn2tRzQqVSWbSU2uLM5+vRRx9FUFAQAGDmzJkWj5n+L0kSnnjiCYdllTdPfm/m68aFhoY63N7ee+fJ34D5lWNr4uLiEBsbK/+/YcOGVlv1At0rr7yCwsJCAMC0adNsrtnYsGFD/O9//wNgPD652tpgzvR3npOT43YZpbVt2xYvvfQSACArKwtffPGF1e0kScIHH3yA/fv34+mnn0azZs0QFhaG0NBQtGjRAq+++ioOHz6MW265Ra6fJEmoUaOGRTm7du3Czz//DMDYYnXPPffYrNv7778vtzYvXboUly9f9vj1eqoijjVFRUVYuHCh/P/yamUyX3M6Pz/fqZ5Z5XH8aNasGW699VYAwNmzZy3WiC4oKMCSJUsAAMHBwXjwwQfLPH/UqFG49957bd7Mlf4dOPpuMn/c1ArsKoVCga+//lpe83j69OllWr7K4++qbt262LFjBxYsWIC77rpLXo+0WrVquP3227FgwQKsWLFCXncdMLb2l7cOHTrI5woXL1602L8jP/74o3yeP2jQILd6ozjD9NnQ6XQoKipyuH15nVeZt6qaepOZ/9/0mR0xYoTDXlnmTPV1Jos5w++6EJsHr27dumHjxo0Vuv8PP/xQPkF47bXX8N5770GSJKvbmi8YXt4iIiLk+84srm5+4mn+XF8pKCiQu+Z6KiEhATfffLNXygKAjz/+GG+88QYAYze5v//+26nuQuYB99y5cw63Ny1iXvq53mb6DEmSBJ1O5xcXKcw/12+++abcLbAimEKVTqeDVqt1GGKd+XxVq1YNQ4YMwU8//YQ1a9bgwoULSEhIwPnz5/H3338DMHYTS0xM9PwF+JD5782ZA7699868rBEjRpQ5MHpizJgxFp+vEydO4PXXX8dHH33klfKPHTuGY8eOeaWsrl272u0uaUtxcTHWrl0LwPidbmtYiEnv3r0xadIkAHCq26UtsbGxSEpK8l63r2v69+8vf+9u2LDB7rY33XQTvv32W5uPHzlyRD7BbNKkiXzSbvLXX3/J93v37m13XyEhIbj11lvx119/QQiBPXv22A28FaFp06b4559/ADg+1uh0OiQlJQEwfveZDxGwZ9myZcjKygIAdO7cGc2bN3e7vvaMGzcOR48exbJly7B9+3b069cPq1evtnueYhpOYvqO9ZbHHnsM27ZtA2DsFtm9e3cAwJIlS+QL/4MGDfL4gnOzZs0s/l/677M088c9CSnh4eHo2rUr/vrrLxQXF2PHjh2444475Mfr1q2LkJAQFBYWIikpCTqdzm43Y2fPYZRKJYYPH47hw4fb3Oa///6T77dv397Zl+Q2hUKBmJgY+fw+KyvLqYuyQMV0HwaM31MDBgxAfn6+/N4NGzbM5vbmx9TZs2c73Z3XkV69eqFevXq4ePEiNm7ciHPnzsnDAM2P248++qjTZWq1WjmXmF9s9oTfBdioqCiEh4cjLy+vQsaWlmY6QahevTreffddm+E1NzdXHhtUEWrVqiXfP3nypMPtzbepXbt2udTJFampqWWuSrpr5MiRXhub+tlnn8ljUaKiorB69Wq0adPGqeeah9y9e/fa3dZgMGD//v0AjF+kpcfkeFOdOnVw4MABCCGQlJSEevXqldu+XKmTSUV/rmvXri2PvTxz5kyZkwlzmZmZ8kmcI8888wx++uknGAwGzJ49G2+//TZmz54tj0kZNWqUx3X3NfPvjlOnTjnc3t425fU3YBrnBRhbLtLS0nD+/HlMnToV/fr1w+233+7xPhYtWuS1iy7//POPU2OtS0tLS5NboiMiImwem0zMT4KduShjS4MGDeST25ycHERGRrpdljnzwOLsZ84W8wvd1sbEm7eiOlN/b7133lL6WGPvxPHAgQNymG/RooXDvxOTijpJV6vVWLx4MR544AH89ttvToXYOnXqICsrC6mpqU5dhHTW0KFDMW7cOLnF9auvvkJYWJjFe2ErFDhz0dqkevXqqFGjBlJSUgAYQ2m1atVsbm8eWh2FXUfsfc4UCgVatGiBvXv3QqfT4eDBg3Zbh83nk/BkTDDg+DPrbQaDweIinLMXJbZt24bjx48DMDaeOLoA5onu3btjxYoVuPPOO+UQK4TAAw88YHX78jqmKhQKjBw5EpMnT5ZD61tvvYVNmzbJ45Zdvchlnpfq16/vnXp6pRRndmTWCuSoy0i3bt0AGE82nTlp8ibTF0xiYqLdlqu1a9eWGZhfmiuv2RHzq+2mFh57zFs7HV2pr6q+/vprTJgwAYDxS37lypUuXQls2bIl6tatC8DYAmDvC2Tbtm1yF7cuXbqUa6u46SoyAK+1enuqbdu28onjunXrHH52vKldu3byfVMrhi2OWoLMde3aFS1btgRgvPqp1Woxe/ZsAMYTloEDB7peWT9z0003QaPRADCecDgaLmGaOM6auLg4tGjRAoBxch9vdEk9e/YsxowZA8DY2rRw4UIsWLAASqUSBoMBI0aMsOj2FsjMg1daWprDLmbmrSX2TpYdMT9RNZ3IeYP5sd2dFmlz5hc0rXXbN3/vLl686LA8b7133tKvXz/5/urVq+1uaz7xZf/+/Z0q/8KFC/JnNywszG6rjzeYQuzgwYMBQA6xtr4TTMe0oqIii66+noqMjJTrkJeXh6VLl+LcuXNyuKpbt67XAot5y6ejC97mj3vaW8vR58zZvy0hhMXjzv5tWXPkyBHs3r0bgLF1umvXrm6X5azdu3fLra916tRxuvXVdEwHjI0n5d2jrVu3bli5ciXCw8Oh1+vx8MMPY9GiRTa3NV2g8va5nvlFsh9//BFCCLcmbzIxnzTqxhtv9LR6ACowwJo3dTu6ojly5Ej5/ptvvlludbLG9Ed95swZm6FTr9fL4yXtceU1O9KgQQO52+zBgwfthtg9e/Zg/fr1AIxXOvxhLJip+4E3bt5ofZ05cybGjh0LwHjAXrFiBTp37uxSGZIk4f777wdg/HL/8ssvbW47ffp0+X55nxw88MADcuj46KOP/KIFwdSlCDCeHP7www8Vtm/zIPn111/bDWG2xuLZ8vTTTwMwnhSPHz9evogxcuRIr7US+FJQUJA8E2lKSoo8jtCalStXOpwx2vTdXlBQgClTpnhUN71ej+HDh8snvdOnT0eTJk3QtWtXvPrqqwCApKQkPPnkkx7tBzDOQuyt7y93Wl8B40W2hIQEAMbxS7/99pvd7c1Peswv4riqY8eO8v2dO3e6XU5p33//vXzfNBbRHXPmzJFPhrt06WL1e9w8hP/66692vwPOnTsnv06FQuHV4SruatKkiTzT6smTJ7Fy5Uqr2xUVFVmMyR86dKhT5c+bN0++qDhkyJAKGXakUqmwaNEiDBkyBIAxxPbv399qiB0xYoR8/5133vHqvCPmJ+Jz5861GOPnzcBiPo7W/G+/tMLCQsyfP1/+vydBcd++fXIYVqvVVi/Qm/+NfPfddzYvjK1cuVIOw+3atUPDhg3dqpNer8fzzz8v/980Vr88CSHw1ltvyf93dnbtgoIC/PLLLwCM53ve6qLryG233YYVK1ZYhFjz8ekm1atXl/8+tmzZ4tUQ26hRI4vGxFWrVsnjwkNCQlw+jzU/dpgfUzzijZmgnJmF+Pnnn5e32bhxo93y9Hq9xWK648aNE8XFxTa3LygoEHPmzBELFy4s85j5LMTOrL/Xp08feftp06aVebykpMRidjrYmXHQfEHwefPmOdy3o5maFy9eLD9eq1YtcfTo0TLbnD9/3mLtsq+++spqWabHnZlZ2JVtA8G8efPkWdRCQ0M9WpcxKSlJhIaGClyb+XTt2rVltpkzZ47F7HfOrG3sqYkTJ8r77Nmzp7hy5YrNbfV6vfj777/Fe++9V+YxezPUurrtxYsX5Rl+g4KCHH4mUlJSxLvvvisOHjxY5jFX1pUWQoiuXbvK248ZM0bo9foy25Re69OZmUSzsrLk37/57cSJE07Vy12uzELs6e9t8+bN8uMxMTFWF3A/ceKEqFWrlsV7YG0d2Ly8PFG/fn0BGNcp/Pjjj63+LkyysrLEF198If7+++8yj5kvyl56tlitViuvDw44N3N7IHj55Zfl1xQXF2f1syGEEPPnz7eYuXfXrl1u7/PixYtyOY888ojdbefMmSNWr15td+3K4uJii+8njUYjjh07ZnXbI0eOiNTUVJtlLViwQF6nODg42GY5V69eFWFhYfI+R48ebXX2zPT0dIu1a++88067r7c0V747TMw/f/aet3z5covtSq+bqtfrxeOPP27zM2GLwWAQDRs2dPr8zB32vmO0Wq0YMmSI/HinTp1EdnZ2mTIGDx4sbzNs2DCr25iXuXTpUpvnP+YMBoNo0KCB/J1Uo0YNeT/OrLnrittuu00u29o6sDqdTjz88MPyNh06dCizTW5urpg0aZLdz4UQQuzdu1ckJCQ4PDcXQohBgwbJ2z3xxBNlvpPPnz9vUdaff/5ps6zNmzfbnJk2OztbPPDAAxbnJva+K8yP89aOJ7m5ueK1114TV69etVlGYWGhxedCrVY7/XudO3euRV3Lg71zmc2bN4vw8HABGGeT//nnn8tss3fvXqFWq+Xj88qVK+3u79y5c2LixIkiJSXFYd3Mz13Nj+8PP/yw8y/wmnvvvVcAEAqFQqSnp7v8fGsqbAxsr1695FaoJ554Ai+88ALq168vz2DVuHFjNG7cGIDxqufSpUvRuXNnJCUl4YsvvsAvv/yC+++/HzfddBOioqKQl5eHCxcuYM+ePVi3bh3y8/Px3nvveVzPsWPHyq2bEyZMwIYNG9CvXz9Uq1YNJ0+exI8//oiTJ0+iZ8+eOHnypN1uo7169ZLvv/TSS7h69SqaNWsmD5KvU6cOWrdu7XTdhg4dimXLlmHRokW4cuUKbr75Zjz66KPo3LkzlEol9uzZg1mzZslXMPv27St3ryOjlStX4vHHH5evsD7++OPIyspyuH7WzTffLLd+mKtduzY+/fRTjB49GjqdDnfccQdGjBiB7t27Q6fTYeXKlfJVK5VKhe+//97mzKEALMYrnT171uaarI58+OGHOHDgANatW4d//vkHDRs2xODBg9G5c2fEx8ejpKQEycnJcmt+cnIyevXqhddff92t/Tmjbt26WLRoEe655x4UFxdj5MiRmDZtGu655x40adIEISEhyM7OxokTJ7Bjxw5s3boVer3e4dqtzvjuu+/Qvn17FBQU4JtvvsH27dvx8MMPo27dukhJScHixYuxdetWdO7cGRcuXEBSUpJTV96joqIwbNgwizFTPXr0QJMmTTyus7/o2rUrxowZg2+++QaZmZno1KkTRo4cia5du0KhUGDXrl2YNWsW8vPzMWjQILufpbCwMCxfvhzdu3dHTk4OXnrpJXz33XcYPHgwWrRogfDwcOTk5ODMmTPYtWsXNmzYgJKSEosWCcB4tdnUC6Zu3bplWjRUKhV++ukntGnTBjk5OXjhhRfQvXt3u+OfA8HLL7+MX375BWfPnkVaWho6dOiAYcOGoXv37oiMjJTXgTW/Ej9q1CiPJkmpW7cubrnlFuzduxcbN26EEMLmuMoDBw7gscceQ926ddGnTx/ceOONqF69OjQaDTIyMvDvv/9i2bJlFmNSp06davP3smLFCrz22mvo3bs3unbtKn8fnjt3DsuXL5cnp9JoNFi4cKHNcuLi4vD+++9j/PjxAIAZM2Zg06ZNeOihhyzWgZ03bx6uXr0KwPjZ/vTTT22+L59++qnNia2ysrLKfJcmJiZ6NCv5wIEDMWzYMCxevBjnz5/HzTffjKeffhqtW7dGeno6fvzxR/n9qFWrFqZNm+ZUuRs3bpTHtTVu3FhudakoKpUKCxcuhCRJ+PXXX7Fjxw55TKx51+/Zs2fjxIkTOHToEBYvXozVq1dj6NChaNeunTw5T1JSEvbv34+///4bmZmZTr3fkiTh0UcflXtZmIaR3XbbbfI5qbd8//336NKlCzIyMvDKK69g1apVuP/++xEfH4/z589j3rx5OHz4MABjjwtrE93pdDp8+OGH+OSTT9CtWzd07NgRjRs3RmRkJIqLi3HhwgVs2LDBYphb8+bNMXXqVJv1+vzzz7F9+3akpKRg1qxZOHz4MB555BFUq1YNhw4dwnfffScPxRg+fLjdtc2feeYZZGRkYMCAAbj55psRHx+PnJwcHDhwAIsXL0ZqaioAY6+IRYsWOT1G2xqdTof3338fH330EXr06IFOnTqhYcOGiIyMRG5uLg4ePIhFixbJq4oAwDfffOP077WixoXb0rVrV6xatQr9+/dHXl4eHnnkEQCWrfk333wzZsyYgaeeegqZmZm444470KVLF9xxxx1ITEyEWq1GRkYGjh07hi1btsjjmE3fhfbcf//9GDt2LPLy8nDlyhX55662ROt0OmzZsgWAsduztyZxqrAWWJ1OZ9EKUvpm7cr/5cuXRa9evWw+x/ymVCrFzJkzy5ThagusEJZrcFm7denSRaSmpsotCfaumpqvp1T6Vvq9cqZVSavViieffNLh+zFkyBC762OatqtqLbClW9mcvVm7+mfuk08+ka+CWbtFRERY7SFQmvlznFk72J7i4mLx3HPPyeuXObqNGDGiTBnebMkz2b59u8UVf3u38PBw8e+//5Ypw9UWWCGM6zubWoCt3Vq1aiUuXLggr1V24403OlXuzp07LcopvZZueajIFlghjN/fjzzyiM33TqFQiI8//tjiiq29z8yxY8cs1qq0dwsKCrK4qpyZmSl/9yoUCrvf6wsWLJDLadu2rd2ePIHizJkzDtdZNN2ee+45odVqPd6n+fq+mzZtsrnduHHjnP5OrV69usPvxE8++cRhOQ0bNhTr1q1z6nVMnTpVbrG1d2vQoIHYsWOH3bJMf4PO3mwdP51tgRVCiKKiIosWLGu3Ro0a2WyZt8b8c/3+++87/TxXOPMdo9VqxdChQ+XtOnbsWKaVNTs7WwwbNszp99zRGtgmZ8+eLbPW8OzZsz192Vbt2rVLJCYm2q13vXr1xJ49e6w+PzMz06W/u8GDBzvV2rZv3z6Hx+WHHnrI4Xdoy5YtnaqTvVZTE0ctsK68F9WqVRO//vqrw32anDp1Sv6biIqKcrjevLucOZfZsmWLvG62Uqm0eo7x+++/W/QecPReOPP+CyHK9Dht0KCB3VZza1asWCE//4cffnDpufZUWIAVwtiUP2XKFNG5c2cRExNjcWJt7yRrw4YN4umnnxYtW7YU0dHRQqlUisjISNGiRQsxbNgwMWPGDHH58mWrz3UnwAohxMqVK8WAAQNEXFycUKvVolatWuL2228XM2fOlE8InAmwOp1OzJgxQ/To0UPExcUJlUpl871y5aR8+/bt4oknnhCNGzcWYWFhIiQkRCQmJoqHH37YqYO5o4Oqu9v6u/IKsEIIcejQIfHss8+Kpk2birCwMBERESFatWolXn75ZXHu3DmHz8/Pz5f3p9FovNbN4uTJk+KVV14RHTt2FPHx8UKlUonQ0FCRmJgo7rzzTvHBBx9YDYlClE+AFcJ4srJgwQIxdOhQkZiYKMLDw4VKpRKxsbGiXbt24qmnnhKLFy8WeXl5Vp/vToAVQojk5GTxv//9TzRr1kyEhISI6Oho0a5dOzF16lSRn58vDAaDCAkJEQBEjx49nCrTYDDIC5DHxsaKoqIil+rkjooOsCZ//PGHGDBggIiPjxdBQUEiISFBPPjgg2Lbtm1CCOF0gBXC+L793//9nxg5cqRo2rSpiIyMFEqlUkRHR4ubbrpJjBgxQsydO7fMovHmJ7CvvPKK3X0IIcTw4cPl7SdOnOhw+0Cg0+nEb7/9Jh544AHRuHFjER4eLr93N998s3j++eddCjGOZGZmyl1wn3rqKZvb5eXlid9//11MmDBB9OjRQ9StW1cEBwcLpVIpoqKiRPPmzcUDDzwg5s2bZ/Ozbe7ixYvi888/FwMHDhRNmzYVUVFRIjg4WCQkJIgBAwaIWbNmuTwk49y5c+LNN98UXbt2FfHx8UKtVovg4GBRt25dcffdd4uZM2c6dbLqiwBrsnLlSnH//feLevXqiaCgIBEXFyc6d+4spk2b5tT7apKTkyMPgVAoFOLSpUtOP9cVzn7H6HQ6i8+3tRArhDFsjR8/XrRt21ZUq1ZNqFQqER4eLpo0aSIGDRokpk2bJk6fPu1SHW+//XZ5v2FhYSI3N9fVl+m0vLw88fnnn4vbbrtN1KhRQ6jVahEXFyd69uwpvvjiC4d/f//995/4/PPPxQMPPCBat24tnxcHBweLmjVriu7du4uXX37Z5e+AvLw88emnn4rOnTuLuLg4ERQUJOrVqyfuv/9+h11TTTZu3Chefvll0aVLF/nvMyoqStxwww1i9OjRYsuWLU7Xx1GA1ev14p9//hEffPCBuOeee0TLli3l9zM8PFw0aNBA3HvvveLbb7916XMhhBCvv/66vO+nn37apee6wtlzma1btzoMsQUFBeLbb78V99xzj6hXr54ICQkRGo1GxMfHi86dO4uxY8eKP/74w6ULuZs2bbL4HnN0jmDNQw89JABjF2dXfw/2SEJ4OD0uEXnF6tWr5QH5zz//vMsTCpHnDh06JM+Q5+zvYO3atejTpw8A4xqHn3/+eXlWkcgnxo0bh+nTpyM6OhqXL1/22mL0RERUOeXk5KB27drIz8/Hyy+/7PHkjeYqbBZiIrLPtAZxREREuY5FJdu++uor+b6zY29nzJgh368Ma78SWfPyyy8jJCQEWVlZFn/zRERE1kyfPh35+fmIiIjw+ozTDLBEfsIUYCdMmID4+Hgf16by2bx5s931Z7/++mt5MqA6dergrrvucljmgQMH5EmLevfuLa9zSlTZ1K5dG+PGjQMAfPzxxygoKPBxjYiIyF/l5OTgs88+AwC8+OKLHq/3XRq7EBP5gbS0NFSvXh1xcXE4ffp0hazDV9U0btwYRUVFuOOOO9C2bVvEx8dDq9Xi9OnTWLZsGfbv3y9v+8cff9gMsKtWrYLBYMCJEyfw8ccfy7PzbdmyBV26dKmQ10LkC/n5+WjWrBmSkpIwdepUTJw40ddVIiIiPzR58mS88cYbSExMxH///Wd3BQ53MMASUZXQuHFjnD592u42ISEhmDlzJoYPH25zG2vT/js7XnbNmjVut1zFxcWha9eubj2XiIiIqLJggCWiKmHHjh1YunQpduzYgaSkJKSnp6OgoAAxMTFo2rQpevfujdGjR6NGjRp2yzEF2PDwcDRt2hSjR4/G448/7tS6sQ0aNMD58+fdqn/37t2xYcMGt55LREREVFmofF0BIqKK0KlTJ3Tq1MnjcnjNj4iIiMh32AJLREREREREAYGzEBMREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBkzgREVGlIoRAUVER8vPzUVhYiIKCgjK3wsJClJSUyLfi4mK7/9fr9TAYDNDr9fLN9P/S/5ooFApIkmT3plAooFar5ZtKpbL7/6CgIISEhCAkJATBwcEIDg62eT88PBzh4eFQq9U+/G0QERF5FwMsERH5HSEECgsLkZ2djZycHOTm5lr8a+1+Xl6eHE4NBoOvX4LfCAoKksOs6RYREVHm/9HR0Ra38PBwq+seExER+RJnISYiogohhEBeXh4yMzORkZFh8a+1nxUXF3u0P0mSEBISgrCwMISEhCA0NFS+hYSEYN38LYABkAwSIN/M/w9AGO9L4tp9gWu3a/dh+XMJ1x6/lvsErt+HfF+Y3QeguPZEhYCQLP8PSQAKQFz7FwoBKAXufKYXCgsLUVRUhKKiojL3TTdPKJVKREVFyYHWdD82NhbVqlVDXFyc/G9UVJRTayETERF5igGWiIg8JoRATk4Orl69iqtXryI1NRWpqany/003V0OVRqNBZGQkIiIiEBkZicjISGz9dTcknQLQKSDpJEB77V+9AtBJkPQSoL8WPFF1WxAFjGEXKgGhMhj/VRos/n/vhDuQm5uL3NxcZGVlybeCggKX9qVUKsuEWtOtRo0aqFmzJuLj49mdmYiIPMYAS0REDgkhkJ2djcuXL+PKlSsWt+TkZKSmpqKkpMSpssLCwhATE4PY2FgcXn8cKFFA0hpv8v0SBaBVGltDqcIJSQBqA4TaIP8r1AJQGdB/dA+kp6cjPT0daWlpyMrKgjOnEpIkIS4uDtWrV0fNmjXlYGv6t2bNmggJCamAV0dERIGMAZaIiAAAer0eycnJuHjxIi5evGgRVpOTk51qPY2JiUF8fDzi4+Ox/dd9kEqUkIoVkEqUwLV/GUorFznsagwQGj2gMeDBdwYhPT0dqampSElJQUpKilMXOGJjY1G3bl3UqVNH/td0PywsrAJeDRER+TsGWCKiKkQIgaysLFy4cEEOquaBVavV2nyuqQWtVq1aOLz2BKQi5fVbsdLYeioYTqksgWshN8gAEaSHCNZj4MS+SE5OlgNuXl6e3TKio6PlMFu3bl3Ur18fDRo0QJ06ddg1mYioCmGAJSKqhIQQSE9Px5kzZ3D27FmcPXsW586dw4ULF+wGBY1GIweErT/vkQMqroVUBlQqL0JpgAgxhtuRnwxBUlISkpKScOnSJWRmZtp8nlKpRJ06ddCgQQPUr19fDrYJCQkIDg6uwFdAREQVgQGWiCjAZWVl4ezZs3JYPXfuHM6cOWMzqEqShJo1a6JevXrYu/wQpEIVpEIlpEKVsZtvFZ74iPyTUBoggo3h9vHPhuHChQs4f/48zp07Z7Nru+nvPDExEY0aNUKjRo3QuHFj1KlTB0qlsoJfAREReQsDLBFRgBBC4PLlyzh58iROnjyJEydO4OTJk8jIyLC6vall6tK+FEgFKkj5quthlS2pVAkICEBjgAjVwRCqx4DxPXHu3DmcP38e2dnZVp8THByMxMRENG7cGA0bNkTjxo3RqFEjhIeHV3DtiYjIHQywRER+SKfT4fz583JIPXnyJE6dOoX8/Hyr29euXRvJh9IhFSgtwyqDKlVRQmUMtiJMhzvG98CpU6dw5swZm+sL16xZE02bNkXz5s3RvHlzNGvWDBERERVcayIicoQBlojIx4QQuHLlCv777z/8999/OHr0KE6ePGl11la1Wo2GDRvi5MYLUORdC6r5KkgGhQ9qThRYBIRxnG2YDg++fw9Onz6NU6dOITU11er2derUsQi0TZs2RWhoaAXXmoiIzDHAEhFVsJycHBw7dswisFrr7hgaGorGjRvjyKqTkPLUkPLYqkpUHoTKABGmw5PfPIBjx47h+PHjuHz5cpntJElC/fr1ccMNN6BVq1Zo1aoV6tevD4WCF5CIiCoKAywRUTkSQuDChQs4dOgQDh48iCNHjuDSpUtltlOpVGjcuDFOrD8PRa4aUq7aOAMwJ1Qi8gmhMkCEazHy8yE4fvw4jh07hqtXr5bZLjw8HC1btpQD7Q033MBWWiKicsQAS0TkRTqdDidOnMChQ4fw77//4t9//7XaulqnTh1c2Z8OKVdtDKz5bFkl8ndCrYchQocHP7wbhw8fxtGjR1FUVGSxjUKhQKNGjeRQ26ZNG1SvXt1HNSYiqnwYYImIPFBcXIzDhw/j4MGDOHToEI4cOVLmhFaj0eCGG27A4T9PQcq5Flh17HJIFOgEBESYDmPmPoIjR47g8OHDSE5OLrNdnTp10LZtW7Rp0wZt27ZFfHy8D2pLRFQ5MMASEblAp9Ph+PHj2Lt3L/bt24fDhw+XmWwpPDwcBRdKIGVroMhRG8evsnWVqEoQGj0MEVrc91Y//Pvvvzhx4gQMBoPFNgy0RETuY4AlIrLDYDDg7NmzcmA9cOAACgoKLLapVq0aMo/mG8Nqjsa4lA3HrhIRAKE0wBCpxZD3+uPAgQM2A2379u3Rvn17tG3blmvSEhHZwQBLRFRKeno6du3ahZ07d2Lfvn3IysqyeDwiIgL5Z0ugyNZAytJAKmRgJSLnOAq0SqUSLVq0QPv27dGhQwc0a9YMSqXShzUmIvIvDLBEVOXpdDocOXIEO3fuxM6dO3Hy5EmLx4ODg1F82QBFtgaKLI1xwiUGViLyAqE0wBBVgnte74Xdu3fj4sWLFo+Hh4ejXbt2cgttzZo1fVRTIiL/wABLRFXS1atX5VbWPXv2IC8vz+LxZs2a4dTfl4yBNZdjWImoYoggPZ5f/Ch2796NvXv3lvluSkxMxK233opbb70VLVq0YOssEVU5DLBEVCUIIXDy5Els2bIFW7duLdPKGhkZibxTJVBkXmtl1fKkkIh8S0BARGjxyBf3Yvfu3fjvv/+g1+vlx6OiotCpUyfceuut6NChA8LCwnxYWyKiisEAS0SVlk6nw8GDB7FlyxZs2bIFKSkp8mOSJKFZs2Y4ueYiFJnXWlnZLZiI/JhQGfDyX89g+/bt2LFjh0XrrEqlwk033YRbb70VXbp0Qe3atX1YUyKi8sMAS0SVSkFBAXbt2oUtW7Zg27ZtFid4QUFB0F4GFOlBUGQEcS1WIgpYQjK2zt73fl9s27atzNjZJk2aoHv37ujevTvq16/vo1oSEXkfAywRBbz8/Hxs3boV//zzD3bv3m2xLmtUVBRyTxQbQ2tWECQDW1mJqPIxBOswas4D2LZtG/7991+LrsYNGjRAjx490L17dzRs2BCSxO9BIgpcDLBEFJAKCgqwfft2rF+/Hjt37rQIrXXq1EHyzkxjK2sOuwYTUdUiVAaM/+0xbNy4EXv37oVOp5Mfq1u3rtwy26xZM4ZZIgo4DLBEFDAKCwuxY8cOrF+/Htu3b7cIrfXq1cPlrRlQpAVDKuC6rEREgHGZnhf/HIWNGzdi165dZS729e7dG71792Y3YyIKGAywROTXdDoddu/ejTVr1mDr1q0oKiqSH6tTpw6St2dBkRYEqYBrsxIR2SOUBkxaNQabNm3C9u3bLb5PmzZtit69e6NXr16Ij4/3YS2JiOxjgCUivyOEwIkTJ7B69WqsW7cOmZmZ8mO1a9dGys4sY0trPkMrEZE7hELg5ZVPY+3atdi1a5c8ZlaSJLRp0wZ9+vRB9+7dERER4eOaEhFZYoAlIr+RkpKCv//+G2vWrMG5c+fkn0dHRyP3SAkUV4Mh5TG0EhF5k1AZ8Nwvj2Dt2rX4999/5Z+r1Wp07twZAwYMQPv27aFSqXxYSyIiIwZYIvKpoqIi/PPPP1i9ejX2798P01eSRqOBLkmCIjUEiiwNJMHQSkRU3kSQHo/OvA9///03zp49K/+8WrVq6NevH+68804kJCT4sIZEVNUxwBKRT5w4cQJ//vkn/v77b+Tn58s/l7LVUKaGGMe16rlOKxGRrxhCtbh3Sm+sXr0a2dnZ8s9bt26NO++8Ez179kRoaKgPa0hEVREDLBFVmPz8fKxduxZ//vknjh8/Lv+8Vq1aSN2RA2VqCKRipQ9rSEREpQlJ4I31Y7FixQrs3LkTBoMBABASEoIePXrgrrvuQqtWrbgkDxFVCAZYIipXQggcPXoUv//+O/755x8UFhYCAFQqFQxXlFAmh0DK1nBcKxFRABAaPR6bNRgrVqzAxYsX5Z83atQIgwYNQp8+fdgqS0TligGWiMpFUVER/v77b/z22284ffq0/POEhAQkbcyAMiUEko5dhImIApGAwGcH38Jff/2FdevWobi4GAAQGhqKfv36YdCgQUhMTPRxLYmoMmKAJSKvunLlCpYvX44///wTubm5AK5NyHRJYWxtzVGztZWIqBIRSgNG/TQMy5cvx6VLl+Sft2nTBgMHDkS3bt2gVqt9WEMiqkwYYInIY0II7Nu3D0uXLsW2bdvk8VG1atVC6rZcY3DlhExERJWagMCUXa9g+fLl2Lp1q7y2bGxsLAYOHIhBgwYhJibGx7UkokDHAEtEbissLMSaNWuwdOlSi3VbpUwNlFdCocjg2FYioqpIaPR46Ju78PvvvyMjIwOAsTdO3759MXToUDRo0MC3FSSigMUAS0Quy8zMxG+//YZly5YhJycHgHE2yuLTMAbXQi52T0RExhmMJ60ZjcWLF+PYsWPyzzt27IihQ4eiXbt2nL2YiFzCAEtETrt06RJ++eUXrFixAiUlJQCAOnXqIHlTDpSpwewmTEREVpkmfVq8eDE2b94M0+lnw4YNMWzYMPTq1QsajcbHtSSiQMAAS0QOHT16FAsXLsSmTZvk8a1SrgrKS2FQpAexmzARETlNBOtw94c9sGLFCnlptdjYWAwbNgwDBw7kMjxEZBcDLBFZJYTArl278PPPP2P//v3yzxUZGigvhXE2YSIi8ohQGvDEj0OwZMkSXL16FQAQERGBwYMHY8iQIYiMjPRxDYnIHzHAEpEFIQS2bduGefPmyeOVlEolxGU1lElhUBRwfCsREXmPkAQm/PE4fvrpJ1y8eBGAcV6FgQMHYujQoYiLi/NxDYnInzDAEhEAwGAwYOvWrZg7dy5OnjwJAAgODob2tALKpFBIJUof15CIiCozAYHX1j2LBQsWyMchjUaDO++8E4888gji4+N9XEMi8gcMsERVnMFgwKZNmzBv3jycPn0agPHKd8kJCcqkMEg6TsxEREQVR0Dgva0TMX/+fBw+fBiAMcjefffdePjhh1GtWjUf15CIfIkBlqiKEkJg+/btmDlzphxcQ0NDUXxMgvJyKIMrERH5lIDAJ3tfw6xZs/Dvv/8CAIKCgjBo0CA89NBDiImJ8XENicgXGGCJqqD9+/fj+++/x5EjRwAAYWFhKDoKBlciIvI7AgIf7Z6EH374QT5uBQcH47777sNDDz3EyZ6IqhgGWKIq5OjRo5g5cyb27NkDwHglW3dKya7CRETk9wQE3t/+ImbNmiVPMhgeHo7hw4djyJAhCAoK8nENiagiMMASVQEXL17Ed999h02bNgEAVCoVDBfUUF0Mg6Tl5ExERBQ4BATe3TLBYghMfHw8nnjiCfTr1w9KJY9rRJUZAyxRJZadnY25c+di+fLl0Ov1kCQJUnIQVBfCIRXzAE9ERIFLQODFlU/hhx9+QEpKCgAgMTERTz/9NDp37gxJ4lrlRJURAyxRJVRSUoLffvsNP/74I/Ly8gAAigwNlOciuI4rERFVKkISePKnIZg/fz5yc3MBAG3btsXYsWPRuHFjH9eOiLyNAZaoEhFCYOPGjfj2229x+fJlAICUr4LqTDgU2RwbRERElZdQGjDkyz5YsmQJSkpKoFAocNddd+HJJ59EdHS0r6tHRF7CAEtUSZw5cwaff/45Dhw4AACoVq0asndooUgJhgR2oyIioqphwZWv8O2332LdunUAjBM9Pfroo7j33nuhVqt9XDsi8hQDLFGAy8vLw+zZs7Fs2TLo9XrjzMInVVBeCoVk4MzCRERUNU3d/zqmT5+OkydPAgDq1auHsWPHolOnTj6uGRF5ggGWKEAZDAasWbMG3377LTIyMgAAirQgqM5GcIImIiIiGCd6Gv/7o5g5cyYyMzMBAN26dcPzzz+P6tWr+7h2ROQOBliiAHT69Gl8+umnOHz4MABAKlBCdSYCiiyOcyUiIipNKA249/PbsWTJEuj1eoSEhODxxx/H4MGDoVJxckOiQMIASxRAiouLMXfuXCxatEg+AJf8p4TycigkwXGuRERE9nx7cgqmTZuGQ4cOAQAaN26MCRMmoFWrVj6uGRE5iwGWKEDs3bsXU6dORVJSEoBr3YXPREAqYXdhIiIiZ5m6FX/77bfIyckBANx9990YPXo0wsPDfVw7InKEAZbIz2VnZ2PGjBlYsWKF8QfFCqhOR0CZEezbihEREQUwoTKg97vt5eNrfHw8/ve//6Fz584+rhkR2cMAS+THNmzYgGnTpiErKwuSJEFKCobqfDgkPWcXJiIi8oZP9r2Gjz76SO7h1K9fP4wdOxaRkZE+rhkRWcMAS+SHcnJy8Pnnn2Pt2rUAAClfCdWpSChyNT6uGRERUeUjFAL3ftETv/76KwwGA2JjY/HCCy+ge/fuvq4aEZXCAEvkZ7Zt24aPP/4YGRkZUCgUkM6FQHkxjJM0ERERlbPPD72NKVOm4Pz58wCAXr16YcKECYiIiPBxzYjIhAGWyE/k5eXhq6++ksfiSAVKqE5EQZGn9nHNiIiIqg4hCQz7th9+/vln6PV6xMfH49VXX8Utt9zi66oRERhgifzCoUOH8O677yIlJQWSJEFxKQTK8+GQDGx1JSIi8oUvDr+DyZMn49KlSwCAoUOH4qmnnkJQENdcJ/IlBlgiH9Lr9Zg/fz7mzp0Lg8EAFCmhPhEJRQ7HuhIREfmaUAj0n9IJv//+OwAgMTERb775Jho1auTjmhFVXQywRD6SkpKCyZMn4+DBgwAARWowVKcjOMMwERGRn3l783h89NFHyMrKglqtxrPPPot7770XksSeUkQVjQGWyAc2btyIjz/+GLm5uQgJCYH2gBrKqyG+rhYRERHZ8Ev69/joo4+wbds2AECPHj3w0ksvITw83Mc1I6paGGCJKpBWq8U333yDpUuXAgCkXBXUx6MgFal8XDMiIiJyREBg1KKhmDFjBvR6PWrXro133nkHzZo183XViKoMBliiCnL16lW89dZbOHz4MABAeSnUOFETl8chIiIKKF8cfgdvv/02kpOToVar8dxzz2HQoEHsUkxUARhgiSrAvn378M477yAzMxPQSVCdiIQyI9jX1SIiIiI3CaUBHV5shi1btgAAevfujZdeegnBwTy+E5UnBliiciSEwMKFC/H999/DYDBAyldBfZRdhomIiCqD0l2KmzRpgvfffx81a9b0ddWIKi0GWKJyUlRUhA8//BD//PMPAECREgzV6Uiu7UpERFTJfLz3Vbz55pvIzs5GVFQU3n33XbRt29bX1SKqlBhgicrB1atX8dprr+HYsWNQqVTAsRAokkMggeGViIioMlpw5Su8+uqrOHnyJJRKJZ599lkMHjyY42KJvIwBlsjLjh07hkmTJiE9PR3QSlAfjYYiR+PrahEREVE5EwqBHm+3wZo1awAAd999N1544QXjxWwi8goGWCIvWrduHT788EOUlJRAyldC/V80pGIetIiIiKoKAYGnFt6PGTNmwGAwoH379nj33XcRFhbm66oRVQoMsEReIITATz/9hO+//x4AoMjQQHU8CpJe4eOaERERkS+8tWkc3n33XRQVFaFhw4b46KOPUKNGDV9XiyjgMcASeUiv12P69OlYtmwZAECZFArl2XCOdyUiIqrivjo6GS+//DIyMjJQrVo1TJkyBc2aNfN1tYgCGgMskQeKi4sxefJkbNy4EZIkQXE6DKrL7CJERERERguufIWXXnoJZ8+eRUhICCZPnoz27dv7ulpEAYsBlshNubm5ePXVV3Hw4EHAAKhOREGZxsXLiYiIyJJQGnDj2PrYs2cPVCoV3nzzTfTo0cPX1SIKSAywRG7IyMjAhAkTcObMGUB3babhbM40TERE5FOSBPj61NZGHYQk0OX1lvjnn3+gUCjwv//9D3fddZcPKkgU2BhgiVx09epVvPDCC7hw4QJQrID6SDQUBWpfV4uIiIgAz0Osad1WT8uwFmIh0O+jjvjjjz8AAKNHj8aDDz7o/n6IqiAGWCIXJCcnY/z48bh8+TJQpIDmcAykolLL5HjjwEdERETukcwmUXTnWOzp8x2UISAw5Jve+PnnnwEAI0aMwBNPPAFJ4uSPRM7gGh9ETrp06RKee+45Y3gtVEJzKNYyvEqS5QGLiIiIfMud47J54PTGsb1UGRIkLB2zDs888wwA4Mcff8SsWbPANiUi5zDAEjnh4sWLGDt2LFJTUyEVKKE5FAOpWGl8kMGViIjIf5VDCPVGGXMeXobnnnsOgDHEzp49myGWyAkMsEQOXLlyBePHj0d6ejqkfBXUh2IglZiFV2t4ACIiIvIvFRlk7Z0HmD1/5gO/yiF23rx5mDNnjmf1I6oCGGCJ7DBN2HT16lVIBUqoD8dA0irZ6kpERBSovHH89mIQnvnAr3j22WcBAHPnzmWIJXKAAZbIhszMTLzwwgvymFf14RhIOiWDKxERUaDzs27FPzy4BGPGjAEAzJkzB0uWLPGsXKJKjAGWyIrc3FxMmDDBuFROkQKaIzGQtCrHTyQiIqLA4UdBdtbw3/DEE08AAKZPn441a9Z4ViZRJcUAS1RKSUkJXn31VZw+fRooUUB9JBZSMcMrERFRpeUP3YoBzH/8TwwePBgA8OGHH2LHjh0el0lU2TDAEpkxGAz44IMPcPDgQUAnQX0kBorS67wSERFR5eMHrbESJPwxYQv69OkDvV6PN954A4cOHfKsTkSVDAMskZlvv/0W69evBwyA+lg0FAVq9wriOFkiIqLA5OPWWAkSNr7zLzp16oTi4mJMmjQJly5d8rxORJUEAyzRNUuXLsWiRYsAAKpTUVBkB/mmIpzhmIiIyLckhfHmozIkIWHfZ2dxww03ICcnB6+88gpyc3M9qw9RJcEASwRgx44dmD59OgBAeS4cyqshvqkIgysREZH/8DTEmspwoxzJIOH9999HfHw8Lly4gLfeegs6nc7z+hAFOAZYqvIuXryId999F0IIKJJDoEwKq/hKsNWViIjIP3mjNdZUjoserDEGU6ZMQUhICPbs2YPPP/8cQgjP60IUwBhgqUrLz8/Hq6++iry8PEg5aqjOREJCBQZJBlciIiLvKc9jqo+6FY+54Q288cYbkCQJv//+O5YtW+ZZHYgCHAMsVVkGgwHvvfcezp8/DxQroD4eC0lUcHglIiKiwOKD1th3enyFZ555BgDw1Vdf4b///vO8DkQBigGWqqx58+Zh27ZtxhmHj8dC0iq9c1ByhK2uREREga2iWmPNHp/1yHJ0794dOp0Ob775JrKysjzbP1GAYoClKmnfvn2YO3cuAEB1OhqKPE3F7NiV4MqQS0REVPFcCaYVOMmTBAmvvPIK6tWrh9TUVLz33nvQ6/We758owDDAUpWTlZWFyZMnGydtSgmF8mpo+e+Ura5ERESVUwVO8jQo6gm8++67CAoKwu7duzFv3jzP90sUYBhgqUoxGAz44IMPkJaWBqlABdXZyPLfKYMrERFR+fP18baCWmOfafYaXnzxRQDAjz/+iEOHDnm+X6IAwgBLVcqvv/6KHTt2AAZAdSIGkqEcPwJsdSUiIqpaTAHUG+Nj7fjkztno168fDAYDJk+ejPz8fM/2RxRAGGCpyjhz5gy+++47AIDqbBQUBWrrG/porTfr5TAAExERVRgvHb8lpdILhSjsljNu3DjUrFkTV65cwZdffun5/ogCBAMsVQk6nQ5TpkyBTqeDIiMIihTr414lhYeB0VvjYIiIiCigSUqlV4KsrTLujX4Sr732GiRJwooVK7Bx40aP90UUCHimTVXCokWLcOzYMUAnQXU6GhIsg6qkkLwTXomIiKji+XGPJW+FWGvl/O+WD/HQQw8BAKZOncqldahK4Bk3VXrnzp3DnDlzABi7DktaywNA6eAqKSTXp9C3tj0DLRERUZVjLWi60xprq5zSfn1uPRo2bIjs7Gx88803Lu2DKBDxDJsqNYPBgClTpkCr1Rq7Dl8NkR8LmFZXP76qTEREVGlUwDG9PFpjJSHhpZdegiRJWLVqFfbu3evxPoj8GQMsVWorVqzAf//9Z+w6fOZ612GPg6uxEM/LICIiIs8E2IVer0zwVKqccTe+i0GDBgEAPv30UxQXF3tlH0T+iGfgVGnl5OTIsw4rL0ZAKlE63epqtxsxJ2oiIiIiDzjqUuxsyDUvZ9SoUYiLi8OlS5cwf/58r9STyB/xLJwqrR9++AHZ2dmQ8lVQXgnzTasrl9MhIiLyfz5aPsebrbGDop7AuHHjABgnr7xy5YpXyibyNwywVCmdOHECv//+OwBAdT4aCoUXFhRnqysREZF/qQQXeL253M7kvt/hlltuQUlJCb7//nsv1I7I//CMnCodIQS+/vprGAwGKNJCoMwJcqscuRuxp8GVrbBERET+y0etr7ae70k5EiQ8++yzkCQJ69atw+HDhz2qE5E/YoClSmf37t3Yv38/YADUFyI9Kssr3Y6JiIjI+yrhhV1JqYSkUXtUxpiWb+GOO+4AAHz99dcQQnijakR+gwGWKhUhBGbOnAkAUKaEQSpRuV+Yv3UZ5gGIiIjoOiG8c2wUBuPNUwrJePO4HIXHIfbJJ59ESEgIjhw5go0bN3peJyI/4mdn6ESe2bhxI44fPw7oJaiSo90vyBReJYV/LLnD8EpERGSdt46RHoRYi26/Hpw3yMHVwxA7vMFEDBs2DAAwd+5cGAxeCOhEfoIBlioNvV6PH374AQCgSo2CpHNjDIk/TtbE8EpERGSfr0Ns6dDqbmus+aST10KsW0FWknD//fcjNDQUZ86cwZYtW1wvg8hP+dmZOpH7Nm/ejAsXLgA6BVSp0a4XYGfdV5+0wnqraxQREVFV4M0Q60KQtTvpkgvnD1aDqkLhdmvskNpjMXjwYADAvHnzOBaWKg0GWKoUhBD4+eefAQCqtEhIBgUklQpwdiY/troSEREFPm9e/HU2xDoKqc6GWHtL/rkQYiX19fk/hg4dipCQEJw8eZKtsFRp+NlZO5F7Dh48iGPHjgEGCaqrUc4/saK7DDuzL4ZXIiIiz1RQiHV6yRtvTPDkbJdis9mZh9Ydh/vuuw8AsHDhQs/2T+QnGGCpUjC1virTIyzGvtpthXUluHqrG7E97DJMRETkPRXRpdjVcwMb2zvdRdhBl2Lz1leTwYMHQ6VS4fDhw8aL/UQBjgGWAt65c+ewY8cOQBgnb3KKL7sMW9s3gysREZH3efP4WirEOt36Wpq1EGuv+7DVMmyEWCtr4w5P/B9uv/12AMCSJUtc2w+RH2KApYD3xx9/AAAU2aFQlJT9MrdohfWky3B5tcIyvBIREZWf8hoX68k5gdlz3V4up1SXYmutryZDhgwBAKxfvx7p6enu7Y/ITzDAUkArLi7GqlWrAACq9Eib20mS5J1WV2/PSMzwSkREVDG8GGLdbn01p5CgCA9zvfXVogyzLsVWWl9NxrWfgpYtW0Kn02H16tXu74/IDzDAUkDbsGEDcnNzIZWooMgJsbqNpFRCCgnxaEFwrzIfS2PnYENERERe5KVjrhxeDV4IxArJK+cnivhqUMRXs7vNgAEDAAArVqzgkjoU0BhgKaCtXLkSAKBMi4AEywOTpFRC0miM3Ye92fXXk1ZYdxdIJyIiIvd5+4Kx6WK0ByFWERoq3/c4xF5ribUXZKcP/wXBwcG4cOECDh8+7Nn+iHyIAZYCVlpaGvbv3w8AUGaGWzwmKZXXg+u1sClpNL5thbUVXtkKS0REFBDKdB32JMSWuhju1BI51oqpFmP2n+tBtjTJoEDPnj0BQB5+RRSIGGApYK1fvx5CCCjygiwmb7IIr+Z82QrLllciIiLfKO8LxW6EWPPW19JcDrHWxtDaCLF9+/YFAGzatAk6nc61/RD5CQZYCljr1q0DYNn6ajO8mh73ZiussyHWmfDKVlgiIiLv8+Lx1e7ETS6EWEVoqMOL6s6eq1i0vpZ5sGyIndRjOqKiopCdnY0DBw44tQ8if8MASwHp6tWrOHr0KCAAZVaY8+NdFVLFdSW2t/C5NQyxREREfsmpWYdNIdZRkHWyB5ejcxVFtRjHMxiXGhcrQUK3bt0AAP/8849T9SDyNwywFJB27NgBAJAKgqAQQWXGu9qlkDybst6crVZYdhkmIiLyLV9cGHYwuZO9rsPW2A2xzp7LlBoX26NHDwDAli1bYDDwfIUCDwMsBaStW7cCAFQ54W7NMiypVOXXldiT8MpWWCIiIs9VVNdhW6yEWGe6Dlvdv5XJnex2HbblWoh9rddXCAkJQWZmJk6dOuV6OUQ+xgBLAae4uBh79+4FACjzI9ybnKm8uhJ7o+WVIZaIiMgvuBVeTUqHWA8nkzSdszjVddgWhQLKuDi0bdsWALBr1y6P6kTkCwywFHCOHj2K4uJiQKuEpA12vyB/WRuWiIiIvMefLgRfC7Gudh22RdKoPR8GpVCgQ4cOABhgKTAxwFLAMc2apywIgwRPr2Z6oRXWfLImiR8pIiKiSkFSQLi7xqt5MRo1oNcDWs+XrdE1T0BJ7WiPy2nfvj0A4MiRI8ZGAaIAwrNtCjimAKtQVfesoGsHJY9CbHlN1uRPV4+JiIgChbeOn2YXpD0OsQoFhBAQQngUYnXNE2BQKyBUCo9D7MNP/oSYmBhotVqcOHHCo7KIKhoDLAUUnU6HI0eOAAC0cbWBmvGuF+LMFPfOsBJeJYXkvVZYhlgiIiLnlUN4NXE3xEpBQZbleBBiDWqzUH0txLoTZAsbx0GoFWjVqhUA4PDhw27Vh8hXGGApoFy4cOFaVxcVoIpAYd0I10KsjQOQy62wdlpeGWKJiIgClJ3jt6shVgoKsjpe1Z0Qq2ueULYcleutsYWN42BQGc8tGGApUDHAUkCRu7koIwFJglBKECon/4wdHHicDrFOdBv2aoglIiIi+yrogq8wCKeCrK3wKpfjQog1dR22WZYLIdYUXgHghhtuAACcPHnSqecS+QueYVNAuR5go+SfFdUMc9wK6+RVU4chtrzGvNrDVlgiIiLbyrHrsC0OQ6wTMwU7E2IdhVe5LCdCbGHjOIv/P//anwCA5ORk5OfnO9wHkb9ggKWAcvr0aeMdRaT8M6GU7HcldrXLj60Q62J4ZVdiIiKicuaD8GpiK8SWHvdqtww7IVbXrJ5T4VUuy06ILWxYzaL1FQAgaRAfbzx3OnPmjNP7IfI1BlgKKJcuXTLeUYRb/NxmiPXGZE2A2y2vDLFERETlxIfh1aR0iHXUddhqGTZCrEGjdL0+VkJsYcNqMGis16lhw4YAGGApsDDAUsAoKirC1atXjf9RhJV5vMx4WA/Cq9wKa77Gq7tlMcQSERH5Jy8cn00h1p3wKpdhCrHXgqyuWT3361MqxNoKrwBQr55xP5cvX3Z7f0QVTeXrChA5Kykp6do9NaDQWN2mqGYYQnTxwOVUj/cnKZUQSqVx8XEiIiLyH/52QVdSuB1eTYS4duG9VnW3Wl8tyroWYvXB9supWbMmAOM4WKJAwRZYChgpKSnGO4pQm9uYuhKLOjU825kwQOj1kFQqQOnhQcTUEsxZiYmIiLxD+HaIkDnp2nmCKCnxuCzUrwOoFFDlFntclOKdNGhetR9Ma9WqBQC4cuWKx/sjqig8o6aAkZ6ebryjsD85glBJKKoTDtSu7t6OhAHCbCyKJyHW3YXPbRfo5fKIiIgClR+FWACAQXgWYq+FVwCQ9MKjECu9cRU3RCejeVQKgv9nu3vwax+sAgCkpnrec42oojDAUsDIyMgw3pHsBNhrPYqE6tqkTq6G2FLhVS7WjRBrNbx60grL8EpERGTJxyFWKn1u4G6INQuvctluhljpjatoGX29RdUUYq0GWck4JCs7O/t6F2YiP8cASwFDboG1FmAlyOHVxOUQayO8yrtwYbyN3ZZXd0IsDypERETW+SjElgmvJu6EWJX1cwNXQ2zp8GrSPCoFzaNSEDSx1GPXAqxer0deXp7z9SXyIQZYChjyIttSqQmc7ORKU4h1OCbWQXgFYGyBdaIV1qluw66EWIZXIiIi+yo4xNoMryYuhFgpobb9x50MsbbCq7kbopMtQ6ykBGB8LTk5OQ73QeQPGGApYBQWFhrvSGYHDScaRYVKsnll07iBE+HVtDsHXYldGvPqTIhleCUiInJOBYVYh+HVxIkQKyXUhlA7Ls+ZEOsovJrcEJ0M9USzyZ0kNQCwBZYCBgMsBYyioiLjHVOAdWEG/aIaodZbYV0Irya2QqxbEzbZC7EMr0RERK4p5xDrdHg1sRNinQ2v8vZ2Qqx4Pc2larWMvmIWYo3nIiXemEWZqAIwwFLAkAMslC6FV+D6zMQWIdaN8GpSOsR6NNuwtRDL8EpEROSecgqxLodXEysh1tXwKj/PSogVr6ehdYztmYZtkUPstfMQnc69cyKiisYASwFDnh3PzcXLLZbX8SC8mphCrFeWyjEPsQyvREREnvFyiHU7vJqYhVh3w6uJeYh1N7yatIy+AhiMXYe3bNnidjlEFYkBlgLG9VmA3T8oCZUEfZgGCLK/lqwrdZIU7gVqIiIiqkIMApJG7VF4NZH0AqdHKDwKr6VptVqvlUVUnhhgKWAoFJ7/uWoyS6DMzIcUEgwpNNSzwoQwtgpLCs9DrHk3JTdbmImIiMjLrvWQEnq9x0UpwsOM/yane1zWsWfDEBpViE1JjTwuKzzc+Nrat2/vcVlEFYEBlgKGKcBevdm9FlhNZglUV3Mh6fSAJEEKC3E/xAphPJiZug97EmKtTRTBEEtEROQZT7sRl5qjwpMQqwgPA66dJwit1qMQe+zZMITGFgAAirUqj0LsuLgNiIowvq6IiAi3yyGqSAywFDBCr4XNMc3+xvm7XQt4FuHVxN0QWzq8yuW5EWLtTdXPEEtEROQZd0OsjVUC3Amx5uFVLsfNEGseXk3cDbHj4jYgXqlCYZHxtYZ62jONqIIwwFLAMH2xRpYAi/t97VKIlQzCMrzKD7gYYm2FV7k8F0KsM4ulM8QSERF5xtUQ62CddldCrLXwKpfjYog9NqZseDUp1qqcLge4Hl4BoLCQAZYCCwMsBYzw8HAAQEGBAi3UemOIvcfx8zSZJVCm21mc29kQ6yi8yuU5EWKdCa9m9SMiIiIPOBtiHYRXuTgnQqy98CqX42SIPTYmDKHVrIdXE2dbYc3Dq8EAFBUb68gAS4HCtcs1RD5kGpuRk2ucva+FWo/Ffb/BMPEs6v9h/cBkteuwNddCLACIAhsHCIPBcXiVy1NAUhisL7HjSng1qx+X1yEiIvKAEPYvCjsZXuXi9Hqby+s4E17lchzM/utMeAWMrbCbLzfEbbXPICK9CJ2XnUbjfakIytehOEyFk7dUR8vHkxGnvL4SQ3aOAkJIkCQJkZGRTtWXyNcYYClgxMXFAQDSM68fLEwtsf/1qIN3NgyyCLJOh1cTeyHWNOOwK6yFWHfCq1n9GGKJiIg8YCvEuhhe5eKshFhXwqv8nOR0GGpWK/NzZ8OrXJ9coPukYxi47iBUOstzhuY7UiC+B7RDw1D0bjQQLCEj0xgFYmJioFIxFlBgYBdiChjx8fEAgPR0yy/YFmo9hoRfsBgXq8nSuhZeTax1J3a267DV8rywxE6p+hEREZEHSl8MdjO8WuNOeAWsdyU+Ntq18BpUrMX3k3/C4NUHyoRXE0kLaH7KR+jDV4FCgYxrjQLVqpUNz0T+igGWAoYpwKZlWO+uY2qNvdRTCVVqjuvh1cQ8xHoSXuXyroVYT1pfiYiIyHvE9WXwPC7q2nhYd8OrXI5ZiD02Ogyhcc6HVwB4dfYqdDhyHo7OWAQA1fYSBL+VhTz9JwCu93IjCgQMsBQwatWqBQDIzFKhsMj6AeKF48NQ7V8J+pgwz3YmSZCU1z4enoTX8sBWWCIiIv+ikDwKryZCq4VQSi6H17jMPNy7/gAAwFEtTI+rf8nHxePHAQB16tRxraJEPsQASwEjMjIS0dHRAICky2qr26TnhEGTa0BRjRDo4j2YjKCoGKKgEFAqIWnU18OsO8S1cbDe6qLEcbBERESeMV0M9kLvKNMYWJHvWugsTdSqDlGrOgAgfrZrMwIPXrcPar1rr0XSApd27gQAJCQkuPRcIl9igKWAUr9+fQDARSsBtv/hhxCx0rjUjkEleRZizSdtUigAtZshVpSaxMnTEMvwSkRE5JnSPZk8CLGSUim3vAoh3A6xolZ1CLUSQq0EDEBwsmvltD9y3q39XkhLAwDUq1fPrecT+QIDLAUU0xXCi5c0Fj/vf/ghFP9SA8FZ1w9CbodYU+traa6G2NLh1cTdEMvwSkRE5Blbw3DcCLHm4VUuxo0QawqvpcXNcX44VFhhiUv7BIAihQJXDMbXbWogIAoEDLAUUJo0aQIAOHX2eoCVw2tm2YOPyyG2qBgiv8D2kjnutsSW5mqIZXglIiLyjKM5JFwIsdbCq1yMC8dsW+EVBiDkSr7TITY/RON4o1JOhYVBL0mIjY3lJE4UUBhgKaA0b94cAHDydJCc6dJywqyGVxODSkJRdSdCrKPwauJMiLXV+mpOUnh16n4iIiKywUsTIEpKpd3wauJMK6zN8GriQoht1CfN4TalHY+IAHD93IooUPDsmQJKo0aNoFarkZunREqqCnceeRARq8IdPs+gdhBinQ2vJvZCrDPh1ZyjEMvWVyIiIve5El7ttMLKwdWJ2YYddSV2GF5NnAixv9zyA6o/EgthfX5Lm45FGs+JmjVr5toTiXxM5esKELlCrVajcePGOHr0KB5b3xNFR2vabX01ZwqxUrVgBKUXQXU15/qD5pM2OV8ZSNBCmM/652p4NZEU1g+aDK9ERETuc6flVRjKXFx2ptW1TDFCAPkFkMIsZxR2OryaXAuxpf1yyw8AgJaaEKA6gKGRwE85ELC/lI7p8X9r1wa0WrRo0cL5uhD5AbbAUsBp06YNAMDwT4nT4dXEoJagD1ZYtsbamrTJGd4aEwuUbYlleCUiInKPJHnWbdjsorI74VUuptSx3OXwaiZu7vVW2F9u+QEtNSHG8Goq+704iM7BTq0De7lzJK5otVAqlWjdurVb9SHyFQZYCjg333wzAECV5/p4DxNTa6whMtS1rsPWqNWQNGpAIbnX+mrOFGIZXomIiNzjpfGuEAaPwqtcTH6BvMaru+EVBiDkcj7i5obJ4bWMEAXET7UhHo602Z1YqAHxcCQOvjIfgHH8a2ioa2vOEvkauxBTwLnxxhuhVCqh1xcA+nxA6fw08+YMaglCo4KkkAC9h4FRCMDT8EpERET+Q1J4HF4BAEolpOSrMNSr6XFRqny99fBqEqKA+KQ68FIsxM85kLYVAvkGIEwBcWsI8FAkEK/CvlmHAABt27b1uE5EFY0tsBRwQkJC0LJlS+N/tKnul5NaDOXldECl8rwbsMFgvFLr6YHO1GXJW1ePiYiIqhpv9GK61iNKaHWeFaNSAQoFRLHr67RaUADaqGAIlYQ2U8Y43j5eBYyLhVhcB+LPehCL6wDjYoF4FVp8PRo7duwAALRv396zehH5AAMsBaQuXboAAKSSZAg3euOEpBZDfS4VorjY+AOVCpLGzfGser3FRE5uh9jSkzh5On6HiIiIXGNliTt3Q6wpvJooLrlx0V0BaGOC5fAKALHHSnDTR06EWCtafDMG0UfTkJ2djYiICI5/pYDEAEsBqWvXrgAAqTgNBoXO5RCrKNFfD68mkuR6a6xebzywlQqfHrfElq4XEREROc+dVlgvrs1eOrwCgCgqci3EmrW6msKrSewx11t0W3wzBlGnDRjZqx4AoFOnTlCpOJqQAg8DLAWkevXqoUGDBpAgIBUlw6CSoA+SnAqyctdhW1wJsde6DlsjKSTng6yddeeMhTHEEhERucSVEOsgvDrbCiupVFbDq1xOUZFz9TELr1b3I+B0K2yLb8bI4RVCYNOmTQCAW2+91bm6EPkZBlgKWN26dQMAKAqSICRASIBBZT/Eluk6bIszIbZU12FbHIZYR+FVLoghloiIyOucbHl1FGLl4GojvJo4bIV1EF5Nqh0twU0f2w+xLWYYg2vUaeO5hlSSiaSkJAQHB6Nz587260HkpxhgKWD17dsXAKAoSgX0xiuajkKs1a7DttgLsTa6DtvitS7FDLFERETOc9QK66Vuw/ZaXUuz25XYyfBqEnvUdlfiFjPGIOqU5XnKg7dVBwDcdtttXD6HAhYDLAWshIQENG/eHBIElAVJ8s9thdiQ1GIor2S4thNbkzvZ6Tpsi9UQ62IZxoI4uRMREZHTrIVYK5M1OVWUlVZYV8KrXE7prsRWJmtyhiSAmz4p2wp7w7dlwyuEAevXrwcA9OnTx6X6EvkTjtymgNavXz8cO3YMivyL0Ic3lIOdKcRCBSh0ApL+Wuurs2NPzJkmd4LO2GXYya7DVotSSBDeWi9WkryzVAAREVFVUs6TNTlLcSkVhrrVXW51LS32v+utsDd8awyz0SfLnqcoCpORmZmJmJgYtGvXzq19EfkDtsBSQOvduzc0Gg0U2mxIJZkWj5mPiw3OKHG99bU0U5diN1pfzbk0uZPDwtgSS0RE5JDpgq8XwqvQ6hxO1uRUOUVFHodXwNgKe+PUMbjhuzGIPmmwGl4BoHOi8T248847OfswBTQGWApoUVFRuP322wEAyryzVrcREiBpDe61vpZmEBBCeOfqrQchmIiIiHxDUkgQJVqPwisASEoFlElpHoVXkzprMhB9ws55hTYPe/bsgSRJuPvuuz3eH5EvMcBSwBs0aBAAQFFwGdCXnaApLLkE6ovpnodOnQ6G4mLA4PlVXK91IyYiIiL7zOeO8PDisdyDytNyrs2tIYqKEPLfFbfLCbqch6DLeZCKSxB1LNfmdiO6xwEAOnTogNq1a7u9PyJ/wABLAa9FixbXJnMyWG2FVRTrIYquBVs3J20AYAyupYOnu2Wx9ZWIiKj8eXGoTenhP/K5havllJoYUuTluVWOKbhKxcYxsIq8QusbGkrw+++/AwDuu+8+t/ZF5E8YYKlSGDZsGABAmXcGMFyfIVBufS3N1eBpan21xsWyvNr6ykmciIiIrLMVXt1YRcBbKwnYWp4v5GiyS+WYwmtp1lphn7uzLgoLC5GYmIhOnTq5tB8if8QAS5VCjx49UKdOHUgGLZT55+SfW7S+luZK8LTW+lq6LGfLY+srERFR+fJSy6ujSRedbYWVlArba8sDELm2u/+aM+8ybE2ZVliDHkuWLAEADB8+HBInf6RKgAGWKgWlUonhw4cb7+eeBoTeduurOU+6FNsqzw62vhIREZUjZ9dKd+JislMrBjhTjp3g6orSXYZtMW+FnTSsKTIzM1GzZk150kuiQMcAS5VG3759ERcXB0lfBEX+Rfutr6XZC572ug+7Wpa3Wl8ZXomIiCy52rpo45js6nJ39s41XAmv9roR22t1LU1uhRV6/PTTTwCMQ624dA5VFgywVGloNBo8+OCDAABVznEI6F0rwFbwdNR92FZZpcrjzMNERETlpIK6DFtlJQg76jJstRgr3YgddRm2Z+KgBkhJSUF8fDzuuusul59P5K8YYKlSGThwIGrWrAlJXwRkH3W9gNLB09XWV2vlmXDsKxERkff5MrxeY94K60mXYfNWWGe7DFsTeSwT8+fPBwA89thjCAoKcrtORP6GAZYqFY1GgyeffBIAoI1MhlDqHDzDBlPwdKf11VZZ3sLuw0RERM6Pd7VHGFzuMmyzHDdaXcsUc60V1t1WV5NhoxsgOzsbCQkJ6N+/v0d1IvI3DLBU6fTu3RtNmjQBlAZoY6+6X5C3gycRERFVTl46ZxB6g8fh1aAowS+//AIAeOqppzj2lSodnqFTpaNQKPD0008DAHQxGTBo3OwCrC3xrPuwiTB4b/wrW1+JiIi8yuNj9LXwaigs8qweWh1gMEBKSvGonK4PxqCoqAgtW7ZEt27dPCqLyB8xwFKl1L59e3Tu3BmQBEriLkHotC6XIfQGz7sPy4Vx/CsREZFXeeuirrvH6NLzZrh5ziC0OmN4Nf2/xM3W17RM6AsuYe3atZAkCePHj+e6r1QpMcBSpSRJEsaNGweNRgNDRCF0YZmAzs3xsJ5g6ysREZHfc/lYbaPLsKutsELvpQvcaZkwlBSjVk8lAOOkls2aNfNO2UR+hgGWKq3atWtjxIgRAABtnXQYdEUQRUXOBVltiftXQEtj6ysREVH58EUrrL3xrk4GYaE3XOvpZWO/aZnO1SUtE0jLhCgpweMz78C5c+cQFRUlT2hJVBkxwFKl9sADD6BevXqAWg9t7QzAYDAGUwch1qvdh4mIiCjwWVnj3R1ycLUVXuFkN+JrwVWUlMCg0WLOnDkAgNGjRyMyMtLjehL5KwZYqtQ0Gg0mTJgAANDH50AfXgjAeGBwujXWH7D7MBERUbmy243Yi7MM2wuuTjFrdQUAAYEbhldDYWEh2rRpw2VzqNJjgKVK75ZbbsHAgQMBANqEqxCKawcOW62x3uo+7M3xr0RERGRdeXYjdqPVVRSVXcHAYZdha6x1IzZrdTXRx+fgwIEDCAkJwSuvvAKFgqf3VLnxL5yqhNGjR6NWrVoQQTpo66RbPFa6NZazDxMREZG7ra6lJ2Zypsuw1XLML6ZnZAEZWWUusBuCtFA0ygNgPNepXbu2W3UmCiQMsFQlhIaGYtKkSZAkCfq4XOgjCyw3cHJsLBEREVVyXhzr6pUuwxlZEEXFZVp2BQSaDI1CcXExbrnlFtxzzz2e7YcoQDDAUpXRpk0bDBkyBABQknAVQlU2rIqSEkCrZcspERFRFeStoT/utrpalKHTyeHVmvundcXhw4cRGhqKl19+mV2HqcrgXzpVKaNGjUKjRo0AtR4lDVIhUPZAJUxjaTwJsd4e/8qFyImIiKzz5jHS0wvYwmA8B7AROp0uRqcD9Hqb5egjCrBgwQIAwEsvvYSaNWt6tD+iQMIAS1VKUFAQ3nnnHYSEhMAQUQRdTQfrrF07ELnF2624DLFERETXSZJ/HRvNj/tungMInU4Orza3UekQ1r4YQgjcc889uP32293aF1GgYoClKichIQETJ04EAOhqZslL69jlL12K/elATURE5Cv+dDz05GK3eTGm4GovvEKgxcg4ZGZmomHDhhg7dqzH+yUKNAywVCX17dsXd911FyABJQ1SYVA7MXmTlw5QHvO3K85EREQVqZyPgcJOgCy7sXeCq6NWV5N7P+6Effv2ITg4GO+88w6CgoI83j9RoJGE8NbiWUSBpbi4GKNHj8apU6cgFWgQdKI2JJ0wHkScYW+GQmFw7QDoLn58iYioqqjAi7eSSm1/AyeCq+QgXMrnG/bOF5RKSCoVAEAXkwttg6sAgLfeegu9evVyWAeiyogtsFRlBQUF4f3330dUVBREaAm09a/C4MqVVLbGEhERVQx/OtZVUHdhAPLjhpBiSE2zAQAPP/wwwytVaQywVKXVqlULkydPhlKphD4mH/paOa4V4E/diomIiCobf7pQ64VjvivdheXnqHSIvK0EJSUl6Ny5M5544gmP6kAU6Bhgqcq76aabMGHCBACArm429DFOTOpUmr+EWH85yBMREXnKX45pFThJU5nnKAxoOCwcV69eRUJCAt544w0olUqP60IUyBhgiQDcfffdGDx4MABA2yQThnA31m9jaywREZHn/OmCbAVP0mTxPAjcMj4R//33HyIiIvDhhx8iPDzc4/oQBTpO4kR0jU6nw+uvv45t27YBOgmaI/FQFDqYxMEGYRD+EWb58SYiokDiJ8FV8kYrp6kMNyZ1FBDQJWZBX6MAGo0Gn332GVq3bu15nYgqAbbAEl2jUqnw9ttvo2XLloBKoKR5OoSmAmYSJiIiokpFGITL3YXN6evkQl+jAJIk4c0332R4JTLDAEtkJjg4GFOmTEFCQgIQpEdJszQIpR+0pBIREZHfEwZhDK8e0MXlQVcvFwAwbtw4dOvWzRtVI6o0GGCJSomKisLUqVNRrVo1iDAdSpozxBIREZF9ngZXANDF5kPfxLgiwvDhw3Hfffd5XCZRZcMAS2RFzZo1MXXqVERGRkJEaFHSLB0GsDsxERERWfJGq6swCOiiCyBuyIUQAoMGDcKoUaO8VEOiyoUBlsiGRo0a4dNPP0V4eDhEZAm0N2TAAL1XrrASERFRYPNWcBUGAX1MEUTLHOj1etx5550YP348JD+Z0IrI3zDAEtnRrFkzTJ06FSEhIRBRJdA2y4SQhFcOWkRERBSYvBVcAcAQVQTpxlzo9Xr07t0bL774IhQKnqIT2cJPB5EDLVq0wCeffILg4GCImGJom2dAKIxjYu0ewCR+vIiIiCoTZy9gSwrbrafmz9fHFAFtcqHVatGtWze8+uqrUHpjCR+iSoxn2EROuPHGGzFlypTrIfaGDHliJ2sHM3sHLiIiIgos3uwubKKvVgjRKlsOr2+99RZUKpWnVSWq9CQhBPtBEjnp0KFDeOmll5Cfnw8pVw310WqQdJbXgUzhVRgEIHw8ezE/3kREFEj8YNynZNYC6m5oNb+Qba0MfXwBDM1yYDAY0KdPH0yaNInhlchJDLBELjp+/Dj+97//ITs7G1K+Cur/qkHS2ujuwwBLRETkPD8KsJ60uEoKyebz9TXyoWuUDQC46667MHHiRHYbJnIBAyyRG86dO4cXXngB6enpkAqVxhBbbOPKKUMsERGRc/wgwHo6h4Wt8CogoK+XC329PADAkCFDMHbsWM42TOQiBlgiNyUlJeGFF15AcnIyoFVAfTQWijyN5UbeCK+mj6i7Bzh+xImIKFD4Q5jzJMAKg9XnC0lA1zALhhqFAICRI0fi8ccfZ3glcgMDLJEH0tPT8fLLL+PEiROAXoLqRAyUmcHXN/BW66snIZYfcSIiChS+DnTuhlfz432pMoTCAF2zTBhiiqFQKPDCCy9g4MCBHlSSqGrjLMREHqhWrRqmT5+Ojh07AkoBXfMM6Gvkl98OhWAgJSIi8hfCYPditVDrkTgyCoaYYgQFBeH9999neCXyEFtgibxAp9Nh6tSpWLFiBQBAmRQO5fkISJC82424NGeuVPMjTkREgSJQWmBtHdvNnm8I1SK2nwIpKSmIiorCRx99hBYtWnihkkRVGwMskZcIITB37lzMmTMHAKDICILqZAwkndd2YPsxewd8fsSJiCgQBEJ4dXRR+loZ+thCqNsWobCwEHXq1MHHH3+MevXqeaGSRMQAS+Rla9euxZQpU1BSUgKpQAX10WhIRV5Y283RR5UhloiIApm/B1gnelQJSYK+Th709XMBAO3atcPbb7+NyMhIb9SQiMAAS1Qujh07htdeew1Xr14FdBLUx6KhyA7yrFBnP6rWTgD4MSciIn/nrwHWyaFAQilB1ygLhnjjTMODBw/Gs88+C5XKCxexiUjGAEtUTtLS0vDGG2/gyJEjgACU5yKgvBxqHBfrLlc+ruYnAvyYExGRv/NlgLUWXl2Yw0IE65AwLBqnTp2CUqnE+PHjOVkTUTlhgCUqR8XFxfj000+xatUqAIAiPQiqk1GQ9O5O0+/Gx9V0QsCPOhER+St/an11cfJFfWwRgtvrkJeXh+joaLzzzjto27atlytIRCYMsETlTAiB//u//8OXX34JrVYLFCqhPh4NRb7a3QK9W0EiIiJf84fWVxeDq4CAvn4e9HWNy+e1atUK77zzDuLj471dQyIywwBLVEGOHj2KN998EykpKYBBgup0BJSpoa4XxI8sERFVNr5ugXWRUOuhbZYFEaUFANx///0YPXo0x7sSVQAGWKIKlJ2djffffx87duwAAChSg6E6E+lal2J+ZImIqDIJsPCqjylGRBcgMzMTISEheOWVV9CzZ09fV4uoymCAJapgBoMBP//8M3744QcYDAZjl+ITUVDkaZwvhB9bIiKqLAIkwApJQN8gF/raBQCAhg0b4t1330VCQoKPa0ZUtTDAEvnIv//+i/fee8/YpVgAygvhUF4Kc26WYn5siYiosgiAAGsI0aH+UOMsw4BxiZxnnnkGQUEeLpFHRC5jgCXyodzcXEybNg3r1q0DAEjZaqhPREMqUdp/Ij+2RERUGfh5eBUQMNQohLJlMYqLixEdHY1Jkyahc+fOvq4aUZXFAEvkY0IIrF69Gp999hkKCwsBnQTVmUgorgbbbo3lx5aIiCoDPw6wQqOHtnE2REwJAKB9+/aYNGkS4uLifFwzoqqNAZbITyQlJWHy5Mk4cuQIAECREQTV6UjrrbH82BIRUWXghwFWQMBQvRDBbQ3Iy8uDRqPBqFGjMGTIECgUbq7jTkRewwBL5Ed0Oh0WL16M2bNnG9eMtdUay48tERFVBn4WYIVaD13jHBhiiwEALVq0wKRJk1C/fn0f14yITBhgifzQ2bNn8eGHH+LYsWMArrXGnoqEpL3WGsuPLRERBTo/Cq8CAob4IoTcYkBubi7UajUee+wxPPDAA1zblcjPMMAS+SmdTodFixZh9uzZ0Ol0xtbY8xFQJIdA4qeWiIgCnZ8EWBGsg7ZRDkS0caxr06ZN8eqrr6Jhw4Y+rhkRWcMAS+Tnzpw5gylTpsitsVKOGqrTkVDk84owEREFMB8HWCEJ6GvnQ9m0BCUlJdBoNHj00UfZ6krk5xhgiQKAXq/H8uXL8f333xtnKhaA8lIolBfDIRn84wo2ERGR03wcXg3hJdA1zoEI0wEAbrnlFkycOBF169b1ab2IyDEGWKIAkpqaii+++AKbN282/qBQCdWZCCgzuZA6EREFEB8FWKEyQJeQC1G7CEIIREVF4dlnn0W/fv0g+UmXZiKyjwGWKABt3rwZn3/+Oa5evQoAUKRroDobAamIXZ6IiCgAeBIWhXD5+QIChpqFCG0L5OTkAAD69euHZ599FtHR0e7XhYgqHAMsUYAqKCjA7NmzsXTpUuj1esAAKJPCoLwYxm7FRETkv9wNr+anrC6UYYgoga5hDkS4sbtww4YNMX78eLRp08a9ehCRTzHAEgW4c+fOYfr06dizZ4/xB8UKqM5GQJEWZLl2LBERkT9wNcBaO1V1ogyh1kPXIBeG6kUAgPDwcDzxxBMYOHAgJ2kiCmAMsESVgBACW7ZswZdffonk5GQAgJStNgbZPLWPa0dERGTG2QBr7xTVThlCYYC+TgE0zfQoLCyEJEkYMGAARo0axe7CRJUAAyxRJVJcXIxFixZhwYIFKC4uBgAorgZBdS4cUjGvNhMRkY85E16dOTW1Uo6AgKF6IaI6qZGeng4AaNmyJcaOHYsWLVq4WlMi8lMMsESVUGpqKmbNmoVVq1ZBCGEcH3sl1Dg+VqfwdfWIiKiqshdgnT0ltVKGIboYuga58rI4tWvXxtNPP40ePXpwdmGiSoYBlqgSO3XqFGbMmIHdu3cbf6CToLwYBuWVUE70REREFc9amHT1VNSsDEO41rgsTkwJACAiIgIjR47EoEGDoNFoPKkpEfkpBliiKmDXrl345ptvcObMGeMPihVQXQyDIiUEkmCQJSKiCuCN8HqtHEOIFvqEPBjijMNlVCoV7rvvPowYMQKRkZEeVpSI/BkDLFEVodfrsXr1asyZMwcpKSnGHxYpoLoQDkVqMGcsJiKi8mUeYN08/RRBOujq50PUKIYQApIkoW/fvnjsscdQu3ZtL1WUiPwZAyxRFVNSUoI///wTP/74IzIyMgAAUoESygvhXHqHiIj8ktDooauXD6luiXHtcwDdunXDE088gcTERB/XjogqEgMsURVVVFSEZcuW4eeff0Z2djYAQMpXQXkxjEGWiIj8ggjSQVevAIq6Wuh0xgmaOnTogCeffBLNmzf3ce2IyBcYYImquPz8fCxZsgSLFy9GXl4egGstspfCoLgazDGyRERU4QwhOujr5kOqrZVbXNu2bYvHHnsMbdq08W3liMinGGCJCACQm5uL3377Db/++itycnKMPyxSQnUxFIpUTvZERETlzxCqhb5ePkT1EphOUTt06IARI0bgxhtv9HHtiMgfMMASkYWCggIsX74cixcvRmZmpvGHxQooL4dCmRwCSc91ZImIyLsM4Vro6+bLswoDQJcuXfDII4+gRYsWPqwZEfkbBlgisqqoqAh//PEHFi5ciLS0NOMPdRKUySFQXg6FVKL0bQWJiCigCQgYYouhr1MAEaUFAEiShO7du+ORRx5BkyZNfFxDIvJHDLBEZFdxcTH+/vtvLFq0CBcuXDD+0AAo0oKhTAqFIl/t2woSEVFAEQoBQ/VC6GsXQIQax7eqVCr06tULw4cPR4MGDXxbQSLyawywROQUg8GAHTt2YOHChTh48KD8cylTA1VSKKQsDWcuJiIim4TaAH2tAuhrFQBq4+lneHg4Bg4ciPvuuw/x8fE+riERBQIGWCJy2X///YfFixdj48aNMBgMAK4twXMlBIrUYEgGjpMlIiIjQ5gW+lqFUCXoUVJSAgCoWbMmhg4dijvvvBOhoaE+riERBRIGWCJy2+XLl/Hrr7/ir7/+QlFRkfGHOgnKlBAoroRAUaTybQWJiMgnhCRgiCuCvlYhRKRW/nnz5s3x4IMP4rbbboNKxWMEEbmOAZaIPJabm4uVK1di2bJlSEpKkn8uZWqgvBwKRSa7FxMRVQVCo4e+ZiH0NQsBjbGHjlKpRPfu3XHfffehdevWkCQeD4jIfQywROQ1BoMBe/bswW+//Ybt27fLa/ihSAHllVAoU0Ig6di9mIioMhEQEFEl0NcqhFRDB73eODFTXFwc7rnnHtx1112Ii4vzcS2JqLJggCWicnH58mUsX74cf/31F3Jzc40/NACKjCDjerKc9ImIKKAJtR76GkUw1CiECNHLP2/bti3uvfdedO3ald2EicjrGGCJqFwVFRVh3bp1+L//+z8cO3bM7AEFlKkhxlbZYq4pS0QUCIQkYIgphqFGIaTqerm1NSQkBP369cO9996LxMREH9eSiCozBlgiqjCnT5/Gn3/+iTVr1lxvlRWAlKWBMjkEiowgSIKtskRE/sYQrIOhRiH0NYrksa0A0KpVKwwYMAA9e/bkbMJEVCEYYImowhUXF2Pz5s34888/sW/fvusPaCUorgZDmRoCKU/FLsZERD4klAYY4oqhr14IEXV9JuGYmBj069cPd955Jxo0aOC7ChJRlcQAS0Q+dfnyZfz1119YuXIl0tLS5J9LhUooUoOhvBoMicvxEBFVCLmLcPUiGGKLgWvz7ikUCnTs2BEDBgzArbfeyrGtROQzDLBE5Bd0Oh327t2LNWvWYPPmzdfXlQUg5aihTA2GIi2YsxgTEXmZgICI1EIfXwRDXBGgvn5q2KBBA/Tt2xf9+vVDfHy8D2tJRGTEAEtEfqegoACbN2/GmjVrsHfvXhgM18ZbGQBFpgaKtGDjeFk9wywRkTsEBESoDob4Iujji4Dg6+Na4+Li0Lt3b/Tp0weNGzfmuq1E5FcYYInIr6WlpWHdunVYs2YNTp48ef0BA6DIDIIiLYhhlojICQICIkwHQ7ViGOKKIEKvL30TFhaG7t27o0+fPmjTpg2USs4OT0T+iQGWiALG2bNnsXbtWmzYsAEXL168/gDDLBGRVXJojSuCIa7YYr1WjUaDDh06oE+fPrj11lsRFBTkw5oSETmHAZaIAo4QAmfOnME///yDDRs24MKFC9cfNHUzTr/WzZhjZomoihEQEOHG0KqvVgyUCq0dO3ZEz5490blzZ4SFhfmwpkRErmOAJaKAZjfMCuMEUIqMICjSg6DgbMZEVEkJhYAhqgSG2GLj7MFB18e0BgUFoXPnzujRowc6derE9VqJKKAxwBJRpWEKsxs2bMCWLVtw+vRpi8elAqUxyGYEQcpVc51ZIgpoQq2HIfZaaI0uAZTXT+lCQkLQqVMn9OzZEx07dkRISIgPa0pE5D0MsERUaV25cgXbtm3D1q1bsX//fuj117vRoUQyjpvNCIIiS8Nxs0Tk9+SZg6+FVhGhhfl1uOrVq6NLly7o0qUL2rRpA41G47vKEhGVEwZYIqoS8vLysHPnTmzduhU7duxAXl7e9QdNXY2zNFBkBkHKU7F1loj8glAZYIgugSHmWiurWddgAGjevDm6dOmCW2+9lUveEFGVwABLRFWOTqfDwYMHsXXrVuzatcty3CwAaK+1zmZqjK2zWi4nQUQVQ0BARGhhiDGGVhGus2hlDQoKQtu2beXQGh8f77vKEhH5AAMsEVV5V65cwa5du7Br1y7s3bsXBQUFFo9LeSpjkM3WQJGthmRgd2Mi8g4BARGih4gqMba0RpcAKstTs8TERHTs2BEdOnRA69atudwNEVVpDLBERGZ0Oh0OHz6MXbt2YefOnTh58qTlBgZAyrvW3ThbDSlXA8nALntE5BwBAQTrjTMGR2lhiCrbLTgiIgLt2rVDx44d0b59e7ayEhGZYYAlIrIjPT0de/fuxb59+7Bv3z4kJydbbmC4Nn42WwNFtsY4u7FgoCWi60SQKbAabwi2DKxqtRotW7ZE27Zt0bFjRzRr1gxKJYcuEBFZwwBLROSCy5cvY//+/di/fz/27duHtLQ0yw0MgJSrhiJHDSlHA0WuGpKOXY6JqgrTTMEiUgtDpBaGyLKBValUokWLFmjbti3atm2LVq1asVswEZGTGGCJiNwkhMClS5fk1tkDBw4gMzOzzHZSvhJSrgaKHDUU2WqgWMlZjokqCaG4NulSZAkMkVrj0jalxrAqlUo0a9ZMDqytW7fmuqxERG5igCUi8hJToD106JB8KzPDMQCUKIwttHlqYwttnorr0BIFAAEBEayHiDAGVUOEtswswQAQEhKCli1bolWrVmjdujVatmyJ0NBQ31SaiKiSYYAlIipHWVlZFoH2+PHj0Ol0lhsJQCpUGrse5xqDrZSv4lhaIh8TGv21kKqFIVxntXUVAOLj49G6dWv51rDh/7d37+FRlQcex39nJgm5QgIiBIlcJFyKIEgEEaEIFhChuqAslq5V1ir7qPA8yj64rArUVlx5EHh0H61s0W01QtUVtNtKF8FbDQqKkArEcJVLiAkhVxKSmTn7x+SczCQzuZNw4vfzPPOcy3ve97xzafGX95z39FdEREQ79BgAOj4CLAC0oQsXLujgwYPav3+/Dh48qAMHDtSdGEry30tbFuEPtWXVo7TnCbXAxWDKlKJ88sV5ZMZVyUzwyBdfVWd2YEmKiopSamqqBg8erKFDh2rYsGHq0aNHO/QaAH6YCLAA0M7OnTtnh9kDBw7o4MGDKioqqnugKX+ILYvwP5u2rHqklkmigEbzT7Lk9QfVOI8dWhVV9z+H3G63+vbtqyFDhmjw4MEaPHgwo6sA0M4IsABwiTFNUzk5OXaYPXTokA4dOhQ61EpShUuusggZ5yNlnHf7Qy6jtfiBM2VKkT6ZsR75AgKrGeeRQvzNx+Vy6corr9SAAQM0ePBgDRkyRKmpqYqOjm77zgMAwiLAAoADmKapvLw8HTp0SNnZ2fby9OnTYSpU31dbXj1iawXbcoItOhbr8l87qMZ4/I+xifVIkaH/EycmJkYDBgzQgAEDlJqaqgEDBqhfv348ygYAHIAACwAOVlpaqsOHD+vQoUM6cuSIjh07pqNHj6q0tDR0BTvYumVURNSE3HK3VOni8T64ZJkuU2a0R2aM1/+K9vgvBY71hJxYSZIMw1CvXr3Ut29fXXXVVXZgTU5OlsvFpfcA4EQEWADoYEzT1NmzZ+0we+zYsYaDrSR5FRBqq4NthVtGBeEWbcMfUr11g2qMN+SESha3260rrrhCffr0Ud++fdW3b1/169dPKSkpjKoCQAdDgAWAH4jAYHvy5EmdOHHCXubk5Mjr9Yav7JOMC26pOtAaF9wyKlzVS7dURcBFw0yXKbOTV2a0V6pemvbSJ0WFD6mS1LlzZ/Xu3dt+paSkqG/fvkpJSVFUVFQbvQsAQHsiwAIA5PF4lJOTExRsrVdeXl794Vbyj95ecEuVbhkXXDIqXTIq3dIF/9KodDGK28GZLp8dQs0or8wonz+kRvn8IbWTN+RMv7XFx8cHhdTAV+fOndvgnQAALmUEWABAvTwej/Ly8nTmzBmdOXNGOTk5ysnJsdfz8/Pl89U/ciZJMuUPsReqA22VS0aVK2hd1rbXIOxeAkyjeibfSJ+9NKMC1jv5JCushrkPtba4uDglJyerZ8+edV7JycmKj4+XYfDdAwBCI8ACAFqkqqpKeXl5dpjNy8ursywoKGhcyLX4FBxqq1ySx/A/89ZrBG8HLOUj+IZiGqbkNmVGVAfNCJ/MOkufFGkGhdXGhlJLbGysLrvsMnXv3l2XXXaZ/br88svtkJqQkHCR3iUA4IeAAAsAuOg8Ho/OnTtnh9r8/HwVFhaqoKBA586dU2Fhob2sd6KphvgkeQ1/yPW6Atb94VYeQ4bPCN5vVpf55C8z/ev+fYYMs2Zd1r+YpiRVb1fvayg4mwr459aofkmSYVZvm5LLf5+ota7qdTNgXS75w6jb9O9zmzLdPsldvV69zz4monq7mdxutxITE5WUlKTExER7PSkpyQ6q1jI2NrbZ5wEAoDEIsACAS0plZWVQoC0oKFBJSUnQq7i4WKWlpUHbDd6n2xZMBYXa4KDaLj0KEhsbq4SEBPsVHx8ftLQCamBI5ZJeAMClhAALAHA80zRVXl6ukpISnT9/XuXl5fbSeoXbX1VVpaqqKlVWVtovaztw/8UOyC6XS5GRkYqMjFRUVJS9Xns7KipKsbGxiomJCXpFR0fb61Z5dHS0HU7j4uIUERFxUd8DAAAXGwEWAIBG8Pl8TXoZhiHDMORyueyXtR243zAMud1uwiUAAI1AgAUAAAAAOIKrvTsAAAAAAEBjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjRLR3BwCgvZimqYqKivbuBgA0SXR0tAzDaO9uAEC7IMAC+MGqqKjQ1KlT27sbANAkW7duVUxMTHt3AwDaBZcQAwAAAAAcgRFYAJAU9cXlkteQ4TIkw2Uv5TKk6kv1DJfLv25UL12GDKP674DWcdX7rTp19lltBpappty06rkCyq391p8ca+8zDJnW1YRG9bbLv1Gz35AM2XXM6m1J/mOsNgzrvdS0V7s8sE3TOsYVoizw+KCywH21+xGmTphySXYfwp0r6Pgw/ahTRyHq16ljBvWjdnt2uWqXmzXHqObYmvdo2mVGneNNu45Rvb9mabVnyjDMoJ+X1b7/q6wpd8m/Lnu/5Kou95f5m7T3BSz97dVsB74kf9v+bdWUqeZcLsNn7/Mf65MkuY2abZcRXOYyzIByU2757PO5DV9APZ/c1eey1v1Ln13Pas8ls7quT+6gMv/xbsOUIZ/c1dvWe/Nvy19PNeczqttw232s7p/8n4VbplxS9bpR3Z7kNgy5ZMit6qVhlblkyFBVpVuzf9lTAPBDR4AFAMkfXn3+/1CUUbMMTAaGrOBak9YMK1UGJaHq8upawcnGVTddGQF1Q6WnevcrTLns0Bq0XntpVzcCmq0diGuX125T1UE6TFm47obsR2PqNOKjam6bAR9fw6G3lQNs7fJaZbUDbM3+2u2ZdcqskBq63AzYH7jPDNGmGVTHCrC1X2HL7FAZEGwDgq5dpppyK/hZZf4A67MDoFXmD4DVS8OQW1Yd/7p/aQQFR39bktuQvayp518PWWZvWwHYDAjM/vWGAmyo9lxSdSj2b/vLrOMDvkMA+AHjEmIAAAAAgCMQYAEAAAAAjkCABQAAAAA4AgEWAAAAAOAIBFgAAAAAgCMQYAEAAAAAjkCABQAAAAA4As+BBQBJcpsy5fM//NFQraX9QMZaz1Gt/ZxV62XW1AnaH6Ys4EGkZpiHm4baX7PPerqmgrfNwP3+Y00Zkqmg9szAOtX16gqzzwwoCnoWqRHY/Xqev2qE2V+rTrjyhsrqa7O+/dai3jqhnucaorxOH8M8B1Z16xl1jq85zgh8xmvAz1T2c1cDf15hngOrlj0H1qyub9Z6WWVm9bNw7bLq/vsMUzJ8NedR9baq34+Cy83qMrP63FbbUs35Ave7As5lrdde+vvh/5914NJX/ZZd1eu+6p9o6OfAGnLJ/3xZq8yo3u9WzbNkJQVtu+x1I6C9mrZcMuQ2rDJDhgxVVYb63yAA/PAQYAFAUuXo79u7CxeHWWvZDLVyHWCz4qevoQMvWVbC54I0AHAK/h8bAAAAAOAIhmmaLfi7PAA4l2maqqioaO9uoBVUVFTotttukyRt2bJF0dHR7dwjNBffZcOio6NlGFwTAeCHiUuIAfxgGYahmJiY9u4GWll0dDTfawfBdwkAqI1LiAEAAAAAjkCABQAAAAA4AgEWAAAAAOAIBFgAAAAAgCMwCzEAAAAAwBEYgQUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI4Q0d4dAAA4y/nz57Vx40Z99NFHOnPmjFwul1JSUjRp0iTNnj1bkZGRzW67oKBA6enpysjIUG5urjp16qR+/fpp2rRpuvXWW2UYRr31T506pfT0dO3atUsFBQWKiYnRwIEDNXPmTE2cOLHB82dlZemPf/yjvv76axUWFiohIUFDhw7VrFmzNGrUqLD15syZozNnztTb9rBhw/Sf//mfDfahLXXE7zInJ0eZmZnKysrSt99+q+zsbJ0/f16StGnTJiUnJzeq/1999ZXefvttffPNNyopKVFiYqJGjBihOXPmaNCgQY3+HAAArcswTdNs704AAJzhzJkzWrhwoR3WoqOj5fP5VFlZKUlKTU3V2rVrlZCQ0OS2s7KytHjxYhUVFUmSYmJiVFlZKa/XK0kaPXq0Vq5cGTZUZWRkaNmyZaqoqJAkxcXFqby8XD6fT5I0ffp0LVmyJGxw+tOf/qTVq1fb54uPj1dZWZmsfybvuecezZ8/P2RdK8DGxcWpU6dOIY8ZMmSIVq5c2ZiPok101O/y6aef1vvvvx+y3cYG2A0bNujVV1+VJBmGobi4OJWWlkqS3G63Hn30Uc2YMaPBdgAArY8ACwBoFI/Ho/vuu09HjhxRt27d9O///u9KS0uTz+fTjh07tGrVKp0/f17XX3+9nn322Sa1XVpaqp///OcqKCjQlVdeqccff1yDBw9WVVWV3nvvPb3wwgvyeDy6/fbb9cgjj9Spf/r0ad17770qLy/XsGHD9NhjjyklJcUeYbTCyIIFC/Szn/2sTv2///3vevjhh+X1ejV+/HgtWrRIl19+uYqKirR+/Xq9++67kqTly5dr0qRJdepbAfbf/u3fdMsttzTpvbeHjvxdPvPMM9q7d68GDhyogQMHyjRNvfzyy5IaF2C3b9+u5cuXS5J++tOf6pe//KW6dOmi77//XuvWrdMnn3wit9ut559/XldffXWTPhsAQMtxDywAoFHef/99HTlyRJL01FNPKS0tTZLkcrk0efJkLV68WJK0c+dOffnll01qe+PGjSooKFCnTp307LPPavDgwZKkyMhIzZo1yx75fO+993TixIk69Tds2KDy8nJ17dpVzzzzjFJSUiRJsbGxmj9/vmbOnClJ+sMf/qCSkpI69V966SV5vV71799fK1as0OWXXy5J6tKlixYvXqzRo0cHHed0Hfm7/Nd//Ve98cYbWrFihebNm6ehQ4c2uu9er1cvvfSSJGnMmDFavHixunTpIkm6/PLLtXz5cvXr1y/oOABA2yLAAgAaxbosc+TIkSFHniZPnmyPboW7hDOcrVu32m306tWrTvmsWbMUExMjr9er//u//wsqKy8v10cffSRJuv3220Ne8vrzn/9cklRWVqZPPvkkqOz06dPat2+fJGnu3LmKiKg7PYRV/8yZM9q7d2+T3tulqKN+l5L/Et/m+vrrr+1LqufNm1enPDIyUnPnzpUk7du3T6dPn272uQAAzUOABQA0qKKiQn//+98lSddff33IYwzD0JgxYyRJu3btanTb3333nXJzcyXJrl9bbGyshg8fHrLtzMxMXbhwod76ycnJ6tOnT8j6gdvh6g8bNkyxsbEh6ztNR/4uW2r37t12H4cNGxbymMDPzOm/BQBwIgIsAKBBx48ftyfQ6devX9jjrLKCggIVFxc3qm3rUtaG2u7fv78k6dixY2HrW8fUV//o0aNB+63tpKQkJSUlhazrdrt15ZVXhqwfaOPGjZo1a5YmTZqkW2+9VQ8++KBee+21kJe6tpeO/F22lNVenz59wo7kJiUlKTExUVLd/gMALj4CLACgQfn5+fZ69+7dwx532WWXhaxTn7Nnzzap7bKyMvuxKIHnSUhICDsDcGD9wPMF1g/seyhW32rXD3T06FEVFxcrOjpaJSUlyszM1Msvv6x/+qd/UmZmZr3tt5WO/F22VFN/C439XAAArYfnwAIAGhQYMuoLFtHR0SHrXIy2rUt6y8vL65TXV792v6zthupbfQv1vsaNG6fhw4dr5MiR9uhcYWGh/vrXv+p3v/udCgoKtGTJEv3Xf/1XyPtC21JH/i5bqjV+CwCAi4sRWAAAWmjRokW66aab7PAqSYmJiZozZ47WrFkjt9ut0tJSvfLKK+3XSQAAOgACLACgQdYImSR7kp1QKioqQta5mG3HxMTUKa+vfu1+WdsN1bf61tj3ZfnRj35kPzv2b3/7m9r78esd+btsqYv9WwAAtBwBFgDQoMB7AvPy8sIeF3hPYEP3EVq6devWpLbj4uKCgoN1npKSknpDk1U/8HyB9Ru6n9HqW+36jWE9i7S0tFRFRUVNrt+aOvJ32VJN/S009nMBALQeAiwAoEF9+vSRy+X/J6O+mV+tsq5du6pz586Najtwttn62rZmqO3bt2/Y+oGz2IarX3t2XGv73LlzKiwsDFnX6/Xqu+++C1nfaTryd9lSVnvHjx+X1+sNeUzg76R2/wEAFx8BFgDQoOjoaF199dWSpM8//zzkMaZp6osvvpAkXXfddY1uOyUlRT169Ki37fLycu3bty9k28OGDbMn1bHOX9uZM2d0/PjxkPUDt8OdPzMz056wpynvzbJ//35J/hHHLl26NLl+a+rI32VLpaWlSfJPzmQ9K7e2wPfV2ucHADSMAAsAaJRp06ZJkvbs2WMHskA7duzQ6dOng45tDMMwNHXqVEnS9u3blZOTU+eYd955R+Xl5XK73frJT34SVBYTE6Mf//jHkqTNmzertLS0Tv309HRJ/nsWx48fH1TWq1cvDR8+XJK0adMmeTyeOvVff/11SVLPnj11zTXXBJU1dE/rgQMHtH37dknSDTfcIMMw6j2+LXTU77KlRowYoZ49e0qq+c4DeTwebdq0SZI0fPjwdp9RGgB+iAiwAIBGmTZtmvr37y/TNPXEE0/oyy+/lCT5fD7t2LFDq1atkiSNGTNGo0aNCqq7YcMGTZgwQRMmTAgZaubOnauuXbuqoqJCS5YsUVZWliSpqqpKmzdv1u9+9ztJ0syZM5WSklKn/vz58xUTE6OzZ8/qscce04kTJyT5R/teffVVbdmyRZJ09913KyEhoU79Bx54QG63W4cOHdLy5cvtexyLi4v13HPP2aNuCxYskNvtDqq7bt06rVmzRnv27Al6rEpRUZHeeustPfLII/J4PIqNjdW9997b0MfcJjryd+nxeFRYWGi/AkNwSUlJUFntP1a43W4tWLBAkrRz504999xzKi4uluS/73X58uU6fPhw0HEAgLZlmO09HSIAwDFycnK0aNEinTlzRpL/clSfz6fKykpJUmpqqtauXVsnWGzYsEGvvvqqJP8oZ3Jycp22s7KytHjxYnuSo9jYWFVWVtoh47rrrtPKlSsVFRUVsm8ZGRlatmyZPYNsfHy8ysvL7XsZp0+friVLloQdAf3Tn/6k1atX28fHx8errKzMHmG95557NH/+/Dr1nn76ab3//vuS/COQcXFxMgxDJSUl9jHdunXTihUr7JHeS0FH/S737NmjRYsWNeozWLdunUaOHFlnf+B7tL5TKwi73W49+uijmjFjRqPOAQBoXRHt3QEAgHMkJyfr1Vdf1caNG/XRRx/pzJkzioiIUL9+/TR58mTNnj1bkZGRzWp70KBB+u///m+lp6frs88+0/fff6/o6Gj1799f06ZN0/Tp0+3Jh0IZO3asXnnlFaWnp2vXrl0qKChQfHy8UlNT9dOf/lQTJ06s9/wzZsxQamqqNm3apL1796qwsFBJSUkaOnSoZs2aVWck0nLbbbepa9eu2r9/v3JyclRcXKyqqiolJSWpf//+Gjt2rKZPn674+PhmfS4XS0f+Lltq/vz5uuaaa/Q///M/+uabb1RSUqLu3bvrmmuu0T/+4z9q0KBBF/X8AIDwGIEFAAAAADgC98ACAAAAAByBAAsAAAAAcAQCLAAAAADAEQiwAAAAAABHIMACAAAAAByBAAsAAAAAcAQCLAAAAADAEQiwAAAAAABHIMACAAAAAByBAAsAAAAAcAQCLAAAAADAEQiwAAAAAABHIMACAAAAAByBAAsAcIR169ZpwoQJevjhh9u7K2hnpaWluvXWWzVhwgR9/PHH7d0dAEAbimjvDgAALq6ysjJlZ2fr4MGDysrKUlZWlk6dOiXTNCVJmzZtUnJy8kU5t2mauuOOO5SXl6d58+bpgQceaFY72dnZ2rx5syTp/vvvb8Uetq8jR47oiy++UGZmpo4cOaKzZ8/K6/UqISFBV111lcaOHatp06YpPj6+vbt6SYmPj9fcuXO1fv16Pf/88xozZow6derU3t0CALQBAiwAdHALFy5UdnZ2u5z74MGDysvLkySNHz++2e28+OKL8nq9GjNmjIYNG9Za3WtXCxcu1Ndffx2yrKCgQAUFBdq1a5dee+01LV26VKNHj27bDl7i7rjjDr355pvKzc3VW2+9pXnz5rV3lwAAbYBLiAGgg7NGWiX/yNXIkSPVtWvXNjn3J598Iknq3r27hgwZ0qw29u3bp927d0tShwopVrBPSEjQ9OnTtXTpUr3wwgtav369fvWrX2ns2LGS/GF26dKl2rt3b3t295ITExOj2bNnS5LS09N1/vz5du4RAKAtMAILAB3c9OnTlZiYqEGDBql3794yDEMLFy5UQUHBRT+3FWDHjRsnwzCa1cYbb7whSUpOTtY111zTan1rb71799bdd9+tyZMnKyoqKqhs0KBBmjhxol5//XX99re/VWVlpVavXq3f//737dTbS9OUKVO0YcMGlZSU6H//93915513tneXAAAXGSOwANDB3XHHHbr55puVkpLS7BDZHCdOnNDx48clNf/y4by8PGVkZEiSpk6d2qb9v9hWrVqlW265pU54DTRv3jylpqZKko4dO6bDhw+3VfccITk5WcOHD5ckvfvuu+3cGwBAW2AEFgBwUVizw1qXLTfHtm3b5PP5JEmTJk1qVB2Px6Pt27fr008/1cGDB1VYWCiv16vExET1799faWlpuvnmm9WtW7egehMmTJAkTZs2TUuXLtV3332nt956S7t27VJ+fr7i4uI0cOBA/exnP9OIESPsehcuXNBf/vIXbd26VSdPnlRFRYV69eqln/zkJ7rzzjtbPLnQtddea9/DfOLECV111VXNbuvYsWPasmWL9u7dq5ycHFVUVCg+Pl4JCQlKTk7WqFGjdOONN+rKK69sVvsej0d//etftWPHDh05ckRFRUUyDEOdO3dWYmKihgwZorS0NI0bN06RkZFBdWt//seOHdM777yj3bt3Kz8/X+Xl5frNb35T548hkyZN0t69e3X8+HEdPHhQgwcPbt6HAwBwBAIsAOCisC4fHjt2rCIimvfPzWeffSbJf59onz59Gjz+0KFDevLJJ3Xy5Mk6ZXl5ecrLy9Pnn3+uw4cPa+nSpWHb+fDDD/X000+roqLC3nfhwgXt3LlTn3/+uRYvXqyZM2cqPz9fS5cu1cGDB4PqHz16VC+//LJ27typ1atXtyjEejwee93lav6FU1u2bNHatWvl9XqD9hcVFamoqEgnT57Url27dPjwYT3xxBNNbr+wsFCPPvpoyAnDrM8+Oztb7777rtLT09W7d++wbf3lL3/R6tWrVVlZ2eB5Ayf1+uyzzwiwANDBEWABAK0uPz9fBw4ckNT8y4crKyv1zTffSJKGDBnS4OXD2dnZeuihh1ReXi5JGjlypKZMmaI+ffooMjJSZ8+e1f79+xt8bujhw4e1fft2JSUl6f7777fP/eWXX+oPf/iDKioqtGbNGo0YMUK//vWvdejQId1+++268cYblZiYqFOnTun3v/+9Dh8+rH379ik9PV333ntvsz4DSfrqq6/s9X79+jWrjSNHjtjhtXPnzpo5c6ZGjBihxMREeb1enT17VllZWdq5c2ezL9Neu3atHV5HjRqlKVOmKDk5WXFxcSorK9Px48e1d+9e+5LwcLKysrRt2zZ17txZd955p4YNG6bIyEgdO3ZMPXv2rHN8v379FBMTo/Lycn311VeaP39+s/oPAHAGAiwAoNV9+umnMk1TUVFRGjNmTLPaOHz4sD36OGjQoHqP9Xg8evLJJ+3wumjRInuG2kA33HCD7rvvPuXm5oZtKzs7W6mpqVq7dq0SEhLs/T/60Y/Uu3dvLVu2TB6PRw899JCKi4u1atUqpaWl2ccNHDhQ1113ne6++27l5+dr8+bNuvvuu+V2u5v0/iX/ZdhHjx6V5A/xKSkpTW5Dknbs2GGPvK5Zs8a+rzbQ+PHjdd9996moqKjJ7V+4cMH+w8D48eP161//uk4QHjFihG677TaVl5fXO5J89OhR9e7dWy+88ELQbNnhZrF2u90aOHCg9u7dq2+//VY+n69FI9UAgEsb/w8PAGh11uXDaWlpiomJaVYbgZcBN/TYn23btunUqVOS/LMuhwqvgXr06FFv+WOPPRYUXi0TJ05U9+7dJUnnzp3TrFmzgsKrJT4+Xrfccot93LFjx+o9Xyj5+fl67rnnJEmGYehf/uVfmtyGxZpxOj4+PmR4DdSlS5cmt19SUmL/sWHEiBH1juLGxMQ0eEn1I4880qRHPVnHVlRUKD8/v9H1AADOQ4AFALSq0tJS7dmzR1LzLx+WpLNnz9rrnTt3rvdYKzBL0l133dXsc0r+S1LDhTzDMILKpkyZEradwONOnz7dpD5UVFRo6dKldvCsPXFUU1mhu7S0VDt27Gh2O+F06dLFnk35gw8+aNEzWbt37x7yjwL1Cfx9BP5uAAAdDwEWANCqMjIy5PF45Ha7NW7cuGa3c+HCBXs91GhooG+//VaSfySuMZM91aeh+oF9qW+23sDjmhLoqqqq9Pjjj9sTQ91444267777Gl0/lClTptijnsuWLdODDz6o119/Xfv27bMvu26JyMhITZs2TZK0f/9+zZkzR6tWrdIHH3zQ5PDenFmWAwNs4MRbAICOh3tgAQCtyhoNvfrqq5WYmNjsdgLvGW1oNtrCwkJJNSONLREdHV1veeDlsfVdHh14H6b1KKCGeDwePfHEE/riiy8kSaNHj9by5cubdf9soF69eumZZ57R008/rby8PGVmZiozM1OS/3MePHiwJkyYoBkzZjT4x4JwHn74YVVWVmrr1q0qLi7We++9p/fee0+S/w8Lo0eP1vTp0xscSW5otD2UwD92NHfGawCAMzACCwBoNZWVlfr8888ltezyYcl/v6aluLi4RW05gcfj0bJly+xHB6Wlpek3v/mNfWluS40aNUpvvPGGVqxYoenTp9uPsfF6vfrmm2/04osv6q677rLDc1N16tRJS5cu1WuvvaZ//ud/1rXXXmsH/IKCAr3//vtauHChHn/88aDAWVtzJmAKnHgq8HcDAOh4+DMlAKDV7N69274ktaUBNvCRKQ0F2MTEROXm5jp2Ah8rvFqj19dee61WrlzZoufHhhIVFaWbbrpJN910kyT/yPWXX36prVu3aufOnSouLtYTTzyh9PR0devWrVnnSElJ0S9+8Qv94he/kNfrVXZ2tj777DNt2bJF586d08cff6z169froYcearX3VVJSYq83NEEXAMDZGIEFALQaK4ClpqYqOTm5RW0FPvP0u+++q/dY6zE7Z8+ebfDYS03t8Dpy5Eg988wzrR5eQ0lMTNTkyZP17LPP6vbbb5cklZeX69NPP22V9q3Lk+fPn6+XXnrJvjx727ZtrdK+5fjx45Kk5ORkxcbGtmrbAIBLCwEWANAqfD6f/va3v0nyTzzUUj169NBll10mSTpw4EC9x06YMMFeT09Pb/G524rH49Hy5cvt8DpixAj9x3/8R4P34V4Mo0ePttete4pbU3Jysv0c2+Y8azacwsJC+xFKQ4cObbV2AQCXJgIsAKBVZGZm2sEnMFC2hBWqjh8/rrKysrDHTZo0yQ5Hf/7zn/X222/X225ubm6r9K8lPB6PfvWrX+njjz+WdHHD60cffdRgKLXuXZakK664okntnz59Wrt37673mJycHHuktFevXk1qvz779++316+//vpWaxcAcGniHlgA6OBOnjxpzzhrsZ4vKkkffvhh0GzBMTExmjhxYpPPY40i9urVq1mPQgnlpptu0p///Gf5fD7t3r1bP/7xj0MeFxERoRUrVujBBx9UeXm51q1bp48//lhTp05Vnz59FBkZqbNnz+rgwYP68MMPNWjQIC1durRV+thcTz31lD788ENJ/sC4YMEC5eTk1FsnKSlJSUlJTT7X22+/raeeekqjRo3SqFGj1LdvX3Xp0kVVVVXKzc3Vtm3b7NHznj17NvnxR7m5uXrkkUfUq1cvjRs3TkOGDFGPHj3UqVMnFRUVaf/+/dq8ebM9m/Ts2bOb/B7C2bVrlyT//b1jx45ttXYBAJcmAiwAdHCZmZlauXJl2PIXX3wxaLtnz54tCrCtcfmwJS0tTd27d1deXp62bt0aNsBK0oABA/T888/rySef1OnTp7Vnzx7t2bMn5LHWPbPtaceOHfb6qVOntGDBggbr3HPPPZo/f36zzldZWamMjAxlZGSEPeaKK67QypUr6308UH1Onz6tN998M2y5y+XSXXfdpX/4h39oVvu1eTweffDBB5L8o/7NfQQQAMA5CLAAgBY7dOiQPXrY0tmHA7ndbs2aNUu//e1vtXPnThUWFtb7bNmBAwfqtdde09atW/XJJ58oOzvbvt8yKSlJV111la677jrdfPPNrdZHJ1i2bJm++OIL7d27V0eOHFFBQYF9SXGXLl00YMAAjR8/XlOmTGnWY3uGDx+uF154Qbt379b+/fuVm5urc+fOqaysTNHR0erVq5eGDx+uGTNmtNrovCT7NyFJd9xxR6u1CwC4dBmmaZrt3QkAgLO98soreuWVV5SUlKR33nmnWc/yDKe0tFRz585VcXGxHnjgAc2bN6/V2oazLVmyRBkZGRo1apTWrFnT3t0BALQBJnECALSYdfnwDTfc0KrhVZLi4+Pt0Lpx40adP3++VduHM+3fv18ZGRkyDEP3339/e3cHANBGCLAAgBapqqrS+PHjdc8992jWrFkX5RyzZ89W7969VVRUpD/+8Y8X5RxwlvXr10uSpk6dqiFDhrRzbwAAbYVLiAEAjnDgwAFlZGQoPj5ec+bMae/uoB2VlpbqzTfflGmamjVrVr33RQMAOhYCLAAAAADAEbiEGAAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI7w/xAKP/4MehW5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADgm0lEQVR4nOydd3gU1frHvzNb0gsl1NAEQhdBULigKM2CBRvIlWb9iQU7NlAB9aroxQLoRUUELKDYUEFBEVHpqDTpEEogAQLpyZY5vz82M8xuZmanJdlN3s/z7EPIzpw5u9k953zmfc85HGOMgSAIgiAIgiAIgiAiHL66K0AQBEEQBEEQBEEQeiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICWwT24MGD4DgOHMdh7NixdhRZK7nkkkuk95EgCEKNsWPHSm3FwYMHq7s6EnPnzpXqNXfu3OquDmEzgiDg/PPPB8dxuP/++6u7OkQUIbYLl1xySXVXhSAihkjty+1gwYIF4DgOqampyMnJsb38KovAzp07F8899xyee+65qrpktfPVV19Jr/nMmTPVXR2iHJ/PhxUrVuCJJ55A//790bhxY8TExCAxMRGtW7fGzTffjK+++gp+v99Qudu2bcP999+P9u3bIzExESkpKejSpQueeOIJZGZmVtKrIQiiNrJ69WqMHTsWbdu2RWJiIhITE5GRkYG77roL69atq5Rrzp49G5s3b0ZsbCyefPJJXefs27cPzz33HC688EI0atQIMTExaNy4Mbp3745x48bhs88+U21rDx48iAULFuCBBx7AxRdfjLZt26JOnTpwuVyoV68eLrjgAjz88MPYsmWLodeRmZmJJ554Al26dEFKSgoSExPRvn173H///di+fbvucvx+Pz766CMMHToU6enpiImJQd26dXHeeedh4sSJOHTokKF6aSG/OaTn8csvv6iWZaQc+SOaB9ivvfaa9DpGjRplqoy2bdtKZZj5jhUXF2PNmjV46623MHbsWHTu3BlOp1PX30wNr9eLd999FwMGDJDGMunp6bj66quxcOFCMMZ0l8UYw8KFC3HVVVdJn+fGjRtjwIABeO+99+Dz+QzVbdmyZRg+fDhatGiB2NhYNGjQAH369MH06dNRVFRkqKw1a9bgtttuQ+vWrREfH4+6devi/PPPx/PPP4+TJ08aKksPdr8XkUp2djZcLhc4jkNCQgIKCgoMl/H8889Ln+Fx48ZJvx8xYgQyMjKQl5enu78wBLOBAwcOMAAMABszZoziMf369ZOOqS2MGTNGes0HDhwIe3xtfI+qmp9//pnVrVtXep+1Hj179mR79+7VVe60adOYy+VSLSspKYl98sknlfzqiNqC0balqvjggw+ken3wwQfVXZ0aSWFhIbv55ps12y6O49gDDzzA/H6/bdctKipijRo1YgDY+PHjwx7v8/nYxIkTmdvtDtvWnj59WrGM4cOH62qrOY5j48aNY16vN2y9FixYwBITE1XLcrvd7L///W/Ycvbu3cu6du2qWa/ExEQ2b968sGXpQf7d0vNYuXKlallGypG/lqKiItP1F8vp16+f6TKscPz4ceZ0OhkAFh8fz/Lz8w2d/+uvv0qvoWPHjqbqEG7sofU3U+LAgQOsW7dummUOHDhQ9fslJzc3l/Xv31+zrO7du7PMzMywZZWWloZto1q3bs3+/vvvsGUJgsAeeughxnGcalkNGzZkP/30k563TBd2vhfhiIS+/Oqrr5bq8N577xk+v3Xr1tL569evD3pu3rx5DADjeZ7t2LHDriozxhhzwgZatmxp6C4PoYyZu2+EMY4ePYrc3FwAQN26dTFw4ED06tULjRs3htfrxfr16zFv3jzk5+djw4YNuPTSS7F+/Xo0atRItcx33nkHjz32GADA5XJh1KhR6NevH7xeL3744Qd8/vnnKCgowKhRo5CamorLL7+8Sl4rUXOZO3cupejWQvx+P2644Qb88MMPAICEhATceuutuPDCC8HzPP7880+8//77OH36NN544w0wxvDGG2/Ycu1Zs2bh+PHjcDgcmDBhguaxPp8PI0eOxMKFCwEAaWlpuOGGG9C9e3fUqVMHhYWF2LNnD1asWIENGzZolhUfH48ePXrg/PPPR9u2bVG3bl1wHIejR49ixYoVWLp0KRhjePvtt1FYWIh58+aplvXdd99hzJgx8Pv94DgON954Iy677DK4XC6sWrUK8+fPh8fjwcMPP4ykpCTccccdiuUcO3YMl1xyCY4cOQIAaN68OW677Ta0b98excXFWLlyJT755BMUFhZi7NixiI+Pxw033KD5Oo1w//33o3///prHdO7cWfW5L7/8Utd1/ve//2HZsmUAgGHDhiE+Pl5/JSOMhg0b4sorr8Q333yD4uJiLFq0CLfffrvu8+Xt7a233mqqDqGZBs2bN4fH48Hx48cNl3XmzBlcccUV2LlzJwCgQ4cOuO2225Ceno69e/di9uzZOHz4MFasWIHrr78eP/74I5xO5SG/x+PBtddei9WrVwMAmjVrhrvuugtt2rTBkSNHMGfOHPzzzz/YvHkzrrjiCqxZswbJycmqdRszZoz03a9Xrx7uuusudOnSBSdPnsSCBQuwfv167Nu3D5dffjnWrVuHZs2aqZb15JNPYvr06QAC7d3tt9+OCy64AIWFhVi8eDGWL1+O7Oxsqf7nnXee4feyMt+LaODWW2/FkiVLAAQ+50a+F6tXr8a+ffsAAJ06dULPnj2Dnv/3v/+NSZMmITMzE5MnT8ann35qX8Vt1WENamN0MRLurBDBzJ8/n3Xp0oV9/PHHrLS0VPGYI0eOsE6dOkl/u9GjR6uWl5WVxeLj4xkA5nQ62fLlyyscI79z3qxZM1ZSUmLb6yGISIIisJXLrFmzpPc3PT2d7dmzp8IxWVlZrH379tJxq1atsnxdr9fLmjVrxgCwwYMHhz3+6aeflq5/6623soKCAtVjs7KyVCOnu3fvVm2nRX766ScWExMjXW/t2rWKxxUVFbEmTZpIx82dO7fCMT/++KMUpUtMTGTHjx9XLGvYsGFSOQMGDGCFhYUVjvntt9+kvqFevXq6omBaVPV3y+fzBb1fv/32m6XyxHKqKwLLGGNffvmlVI+LLrpI93lFRUUsKSlJ6ufVPhfhGD16NHvhhRfYsmXL2IkTJxhjweNEIxHYBx98UDrv8ssvrzCuOHXqVFB0dsaMGaplvf7660GRxdzc3KDnS0pK2GWXXSYd8+ijj6qW9dVXX0nHNW/evEKU0u/3s1tvvVU65sYbb1Qta/PmzVLkNSUlRTFi++yzz0pl9ezZkwmCoFqeHux8L/QQCZ7g8XhY/fr1pXrozTxkjLHbbrtNOu/VV19VPOapp55iAJjD4bAlai1CAluJRMIHkwjm9OnTuhq4rVu3Sn+7uLg41dQpeSfy2GOPqZZ300036epICCKaIYGtXORiumTJEtXj1q1bJx3Xt29fy9eVD/zDpcRu3bpVksChQ4davrYexo8fL9Vv0qRJisfIB6Y33XSTalmPPfaY5uA0KytLGlTHxcWx7Oxs1bJeeeUVqayJEycaf2Eyqvq79d1330nXy8jIsFxeJAisx+NhaWlpDAikne/bt0/XeWIaJAB29dVX21onMwKbnZ0tpeYnJCSofga3bt0qfVYbNWrEfD5fhWO8Xm/Qe7Jt2zbVayYkJDAALCYmhp08eVLxuPPOO096Pd99953iMcXFxax58+bScVu3blU8bujQodIxM2fOVDxGEAR2wQUXSMd9++23isfpwe73Qg+R4gnysaxaGxqK3hs727dvl8p++umnbatzpc+BlYur1uPZZ59VLNvv97OFCxeyYcOGsZYtW7K4uDiWmJjI2rVrx+6++262ZcsWzbrJ786IjcOKFSvYzTffzFq2bCnduZV/cLxeL1u2bBl7+OGHWZ8+fVhaWhpzuVwsMTGRtW3blo0ZM0bzrrb8A6n10HqvwrF27Vp25513soyMDJaYmMji4+PZOeecw0aPHq1rLkBoZ1JYWMimTZvGzj//fJaamsri4+NZx44d2RNPPFHhDlRtQT5YVLrzJwgCa9q0qdTYHTp0SLWs1atXm7rzawd//PEHu/vuu1mHDh1YSkoKi4mJYc2aNWPDhg0L29ivXLmywnc0MzOTPfzww6xdu3YsPj6epaSksN69e7OZM2fqmoPGGGMFBQVs+vTpbODAgaxx48bM7XazOnXqsB49erBJkyaxnJwczfNDvys+n4998MEHbODAgaxJkybM4XCwFi1aVDjv+PHj7LHHHmMdOnRg8fHxrE6dOqxnz57s1VdflW5StGjRggGocP7SpUula95///26Xuf9998vnfP999/rOkcP4Tq9yvq7LVmyhF111VWsYcOGLCYmhrVo0YL9+9//Zn/88QdjzNggu6ysjL333nvs6quvZunp6SwmJoalpKSwLl26sIcffli1M9+5c6cU2UpOTmb79+9XvUZubq4UOeR53pZoZHWRlZUlvbd169YNeyNObL84jrN81/v666+XhE0rmsrY2TvyHMdV2YDsnXfekd6bO++8U/GY3r17S8doRRMPHTokDfqbN29e4fmPP/5YKiecoB8/flw6tnXr1sZeVAhVLbA33nijdL3//Oc/lsvTI7BFRUXsyiuvlI4dNmwYKysrq3Dctm3b2EMPPcS6du3K6tSpw9xuN2vSpAm7+uqr2YIFCzTnfj/00EOGB+ry+ZBffPGFrnP0YkZg//e//0nn3HHHHZrHDhgwQDpWaWz4ww8/SM8PHDhQs6zbb79dOvb999+v8Pzu3bul59u2batZ1tSpUzX/Dvn5+dL4PDk5WXP+9fz586WyRo0apXldLex8L/SiV2Dfffdd5nA4GADWtGlTRbm2Mq76+++/pXq0aNFCV6BHfmPnmmuu0TxWvLGht2w9RLTA7t27N+hujtKD53nNRkgusD///DO79957FcuRf3AuueQS3QKq1LhWpsB6vV525513hi172LBhrLi4WLUceWeyb98+1rFjR9WyWrRoUSsjyD179pTeA6W0NHmUtnPnzppl+f1+lpycLH1mjS4gYYbCwkJdi6AMGTJEtT6hIrR06VKWmpqqWtagQYPCpvx9//33rEGDBpp1SkpKYl9//bVqGfLvyqlTp1jfvn0VP7dyfv75Z1anTh3Va3bp0oUdOnRIVWD9fj9r1aoVA8Dq1KkTNhW8pKREul7z5s1tXVDHqMBa/bv5fD7Ndo3nefbyyy/rHmRv2LBBei/VHm63m73zzjuK58+ePVs6rnfv3oqRBcaCB+F23vmtDtavXy+9lgsvvDDs8ddcc410vNr7qIfS0lLphsHFF1+seWxxcbF0bFXeqJNHTZXGA3l5eUGpiOG+i/IpJNu3bw96Th5Vffzxx8PWTWz3AbCdO3cae2EyqlJgT548KUX4HA4Hy8rKslymfMyhxKlTp1ivXr2k4+69994Kfyev18vGjx/PeJ7XbDsuvPBCduzYMcXrbNmyRTquZcuWYQfTmZmZ0menfv36zOPxmHr9apgR2BtuuEE65/PPP9c8dtq0adKxSllijzzyiPS8WgqoyGeffSYdq5TF8NZbb0nP33fffZplbdiwQTq2Z8+eFZ5fsmSJ9PxVV12lWVZOTo50bFpamuaxWtj5XuhFj8C+8MIL0jHt2rVTvCFpx7iqe/fu0rE///xz2LrLb+x8+eWXmsfKbxz9+eefYcvWgy2LOGkhLnE9ceJEaXl6pQUE2rdvH/T/ffv2oVevXtLy2H379sVVV12FFi1awO/3Y9OmTZg7dy5Onz6NqVOnguf5sFv0TJs2DUuXLkWjRo2kJcx9Ph/Wr1+PmJgY6biSkhIkJiZiwIABOP/889GyZUvExsbi2LFj2L59Oz766CMUFRXhww8/RGpqKl5//fWg64wfPx5Dhw7Fm2++iZUrVwIILIbQoEGDoOOaN2+u6z2UM2rUKGkSdGxsLMaMGYN//etfcDgc2LhxI95//30UFBRg0aJFyMvLw9KlSzX3lc3Pz8eQIUOwa9cuXHvttbj88stRt25d7N+/H2+//TYOHTqEzMxMjB49Gr/++qvh+kYrHo8He/bskf7fokWLCsds27ZN+vn888/XLI/neXTr1g2rVq2CIAj4559/cMEFF9hX4RDKysowcOBArF27FgDQunVrDB8+HB06dIDL5cLevXsxb9487N69G9999x2GDh2K5cuXg+fVd9b666+/MG3aNDDG8H//93/o3bs3YmJisHHjRrzzzjsoKirC8uXL8cILL2DKlCmKZSxevBjDhw+H3++Hy+XCNddcg0suuQQNGzZEfn4+Vq5ciUWLFqGgoADXXXcdli9fHnaxkpEjR+K3335D165dMWLECLRs2RL5+flBW2vs2LEDV111FYqLiwEA3bp1w8iRI5Geno7s7GwsXLgQv//+O4YPH666PD7P87jzzjvx1FNP4fTp01i8eDFuueUW1Xp9/vnnOH36NADg9ttv13xvKxM7/m7jx4/Hhx9+CABwu90YM2YM+vbtC57nsX79erz//vt4/PHHMXTo0LD1WbNmDQYOHIji4mJwHIfLLrsMgwcPRtOmTVFSUoI1a9Zg/vz5KC4uxt13342YmJgK+4vfeeed+OGHH7B48WKsWbMGkydPrlD3999/H59//jkAoFevXlG/hRuzsFDi1q1bTZ/7+++/S9+bcG3Wpk2bKhz7888/Y9asWVizZg1OnjyJOnXqoGvXrrjpppswZswYuFwu03UDgI0bN+Ltt98GENge5rrrrqtwzI4dO6T377zzzgv7XezRo4c0Xtm2bRs6duwoPWf179CuXTvT54vMmjULL730Eg4fPgwgsEhWz549MXToUAwfPlx1sR69fPTRR/B4PACAyy+/HI0bN7ZcZy0OHz6Myy67DP/88w8A4Nlnn63wfWWMYdiwYdL4sXHjxrj55pvRtWtXxMfHIzMzE59++ik2bdqEdevWYcCAAdiwYUOFhae6dOmC888/H5s2bcLBgwfxyy+/4NJLL1Wt24cffij9zUeOHGn582oHRsYePXr0UDyvuss677zz4HA44Pf7pe+nfKxqpKy0tDS0aNECmZmZOHHiBHJyciqMt/Vg53thB4wxPPjgg3jzzTcBAD179sT333+P+vXrBx1n17jq1ltvxebNmwEEFnPS+l5kZmZKfpOWloYhQ4ZovpZevXpJP//www+WF9sCgIjcRsfv90t3AmJiYtiiRYsUjzt+/LgUoeV5XjGkLo/AAoH5QHl5eZrXX7FihWb08uTJk1LEh+d51RQ2u7fR+fTTT6XnGzZsWOHOMGOMHTx4MCiyoTbfUv6euN1uxflUJ0+eDCpr3bp1YV+DGkVFRezLL7+05bFp0ybT9dCLPCWle/fuisdMnjxZOkYtBV7O6NGjpePnz59vc42DCZ2bq5Qi6vF4gur09ttvVzhGHskDApHE3bt3Vzhu3bp10ry3OnXqKEbzDh06JEUjmjdvrpr+v27dOpaSksKAwEI1Sne8QzM7HnzwQc2oijxCe8899ygeG9pWqKUgi9slhZvLdfHFF0sRjMOHD2seaxQjEVirfzf59hGpqals48aNFY7ZuXOntMWK+FCKEuXn50spvampqeyXX35RfH179uyR5kglJCRIC57Iyc3NZenp6dJ7vHr1aum5Xbt2SXOUkpOTdc91U+Off/6xrf1Sei16yMzMlN5bIynEQPh0OC1efPFFqZzPPvtM89jp06dLx06fPp3dd999mhGBTp06aaaAy9m+fbv0Hn722WfsrbfeYjfddJP0+QXAnnvuOcVzP/zww7BjFDnPPPOMdPzUqVNVy7ruuus0y5GnEANgzz//vK7XqoTebXTatWuna3sSLeSZb4sXL7ZUlohYXmi7uWPHjqA0/1mzZimeL5/DPHLkSMWUUkEQpAVjAPUI+YwZM6RjtBZpFAQhaIsQq++rEkYjsH6/X/rMOxyOsNM/9u/fL5WvlMYuH+OFG6d6vV4pjdXpdFZogy699FJDr0U+Dza0j5Qv9KQn40DsbwEE9QVGsPO90ItaX+7xeNiIESOk5wYNGqQ4fcPOcdWpU6ektO2EhATN6SLy8e9DDz0U9nUePHhQd7upl4gU2MWLF0vHvvnmm5rH7tq1S/oQKc19kQ9KExIS2NGjR3W9pnDs27dPtYMTsVtg5SvKac2nW7dunZTy0qJFC8X0OnmHN2XKFNWy3n33XV3HhUP+GbH60DMAsUJubi5r3Lhx2EGbPCXirbfeCluu0ePNkpWVJaV/XX/99ZrHejweds455zBAec5KqAj9+uuvqmXdcsstmseJ80EdDkfYFJL3339fKuujjz6q8Lz8u3L++edryqs8Valz586q6aah5SoJLGPBC3IpSSFjgXZJPGbIkCGar9UMRgXWyt/t2muvlZ5XWrlV5Ntvvw26ptKg47XXXpOe/+abbzRf408//SQd+8ILLyge88svv0jphC1atGCnT59mHo+HnX/++dK5dtwsCr25YeVhdK9HOaKwA9qLlcg/8wBYjx49TF/z3//+t1ROuDUnHn/8cenYjIwM6fs+cuRINmfOHPbxxx+zJ598MmjFyxYtWuhaZ0Feduija9eubOHCharnvvHGG9KxjzzySNhraR2/d+9e6bn4+HjNeWXy9E3A2oqlH3zwAXM6naxfv35s0qRJ7MMPP2SfffYZmzVrFhs5ciSLjY2VrpOUlGRatjZv3iyVk5aWZlvKrFimXGDXrFkj7Y3qdrtVgxUlJSVSemTPnj3DpoBfdNFFDAjcvFKa6pGbm6troL5q1Sqp3mo3sq1iVGDz8vKk4+vVq2f5ePm0mnDz28MdLx+jqi3MpPf46667TnpOa8E6s8crYed7oRelvrywsJANHjxY+v3w4cMVpysyZu+4irHg8c2cOXMUjwm9sROuXxCJi4tjgPX1AESqJ6ctDPPnzwcAJCcn484779Q8NiMjQ0pV+vHHHzWPveGGG9CkSRNb6njOOedIe4OuW7fOljK1OHjwIP78808AgRSYK664QvXYCy64QEoPyMzMxKZNm1SPdTgcuO+++1Sfl6cZ7Nixw2i1ow6/34+bb74Zx44dAwAMGTIEN954o+KxhYWF0s+xsbFhy46Li5N+LigosFhTdRYtWiSlfz366KOax7pcLgwfPhwAsGfPHhw8eFD12G7duuGiiy5SfV7rs8IYw0cffQQAGDBgQNj0EXkaXLjv9b333quZEvj1118HHetwOFSPfeCBBzSvBQB333239PN7772neIz893fddVfYMisTK3+3srIyLF26FEBgH8WRI0eqljNkyBB06NBBsy5i256RkYGrr75a89j+/ftL7bXaZ6Bfv3544oknAATaurvvvhsTJ06U2rxbbrlFs87Rhrw/HDduHPbv31/hmOzsbIwZMybod/n5+aavmZmZKf1ct25dzWPPnDkj/bx7927ExsZixYoVmD9/Pm699VaMGDECL774Inbs2IEuXbpI5T/11FOm65eUlITBgweja9euqsfY2Va3bt1aSq0rLi7GLbfcIqVNy1m7dm2FNFgrf4e+ffsiMzMTv/zyC6ZMmYLRo0fjxhtvxLhx4zB//nzs3r1b2oOxoKBASik0ypw5c6SfKzNldtmyZRgwYAByc3ORmJiI7777DjfddJPisT/88ANycnIAAA899FDYFHDxO5+fny9No5FTp04dXHvttQCAoqIiaapBKHbs/Wo3do877CwvUsvSSySM6U6ePIn+/ftLfd69996Ljz/+GG63u8KxlTGukn/OxWlDocj3fj3//POltjwcderUARCYMsAsTMUQqfQ5sGYQNxBu3LixtIm2FuKANDMzEyUlJUEfKjlag7hQ8vPz8dFHH+H777/H1q1bcfLkSRQVFSkeK25mXpmsX79e+nnw4MFhjx88eDB++uknAAHBVpu7lJGRIX2olGjatKn0szifzwwtW7a05QNb2TzwwAPSF7t58+ZBHVi0IH5/gMBn86uvvtI8Xv53/eeff9CyZUvF4+RzGJTQ+qxs374dubm5AAIDznB1AoDExEScOXNGmhelRrjv9caNG6WfteZ0AMAll1wStl6XXnopMjIysHv3bnz44Yd4/vnngwZ5Xq9XavibNGkSdm5IZWPl7/b3339LN0P69eunKf9AoBNV+3vl5eVJ85IbNmyo+zMAQPMzMHnyZPz0009Yt24dFi5cKP2+VatWmDVrVthr6OG5556LiDm0Dz/8MBYtWoTt27fj8OHDOO+883DrrbfiggsuAM/z+Ouvv/Dee+8hNzcX55xzjiS4VuZfi99bILzACoIQ9P+JEycqfqfS0tLw0UcfoWvXrmCM4YMPPsDLL7+M5ORk1bJfeuklvPTSSwACN1YOHTqEH374AS+//DKmTZuGN998E//73/8qyHtl8Oabb6JXr17S/PFOnTrhtttuQ7t27VBcXIxffvkFH3/8Mbxer21/hzZt2mg+36xZMyxduhSdO3fG8ePHsXPnTnz++efSDUo9lJWV4eOPP5b+f9ttt5murxYLFizAbbfdBq/Xi7S0NHz//fdBcwpDkfdpp0+fDtt2HD16VPr5n3/+UfwM3nbbbVi0aBGAgKiGzrMvLi6WxDYmJgb//ve/w7wqgrDGoUOHcNddd2HXrl0AlOeCy6mMcZW4HsXRo0fx66+/4sCBA2jVqlXQMWZv7NSrVw9ZWVnweDwoKiqS+nezRJzAFhYW4tSpUwCAXbt2KS7IoMXp06dVBVY+UNNi5cqV+Pe//43jx4/rOt7KXVW9iBFBICCd4ZAfIz83lNDJ4KHIF7cqLS0Ne91o5umnn8bMmTMBBAbYy5cv13x/5F8+Pe9NSUmJ9HNSUpKFmmojj6IOGzbM0LlaNymsfFbkdVq8eDEWL15sS52A8N/rrKws6edzzjlH89g6deogNTU1KJIUCsdxuOuuu/Doo48iOzsbS5YswfXXXy89/80330jRgltvvTWs9FU2Vv5u8vcu3AA63DGHDx+WBGf16tVBg9JwaH0GnE4nPv74Y5x33nnSXXDxd1pCFI0kJiZi2bJluO6667Bx40YUFBRIC3zIufzyyzF27FjcfPPNAKB5kzIcZWVlAAI3itX6VpHQdk0rg6pLly7o1asX1qxZg7KyMvz++++amUVyYmJi0LZtW7Rt2xa33HIL+vXrh61bt2Ls2LFIS0vDlVdeGXS83W11586dsXTpUtx4443IycnBwYMH8cwzzwQdw3EcnnnmGRQUFGD69OkArP0d9FCvXj088MADePLJJwEA3333nSGB/frrr6UBcc+ePdG5c2fb67h582aMHj0ajDE0b94cy5cvDzumkfcf9957r6HrqbUdgwYNQnp6Oo4cOaI4UP/888+l9uTaa6+tcPNm8+bNOHTokOp1+/btG7btNYPdn+XExETpPSotLQ0rFVrl2Vm36hhf2flemOGaa65BXl4eOI7DzJkzMW7cOM3jK2Nc5XA4MHr0aPznP/8BYwwffvhhkERbubEj74/FxXKtEHEpxHl5eZbOF6MFSoTrfIFAGuWQIUMkeW3Xrh0efPBBzJw5E5988gm+/PJL6ZGWlgYAptJ0jCJPT0hISAh7vPyDoZXaUF0ro0Yazz//PF588UUAgQH/ihUrwnaqqamp0s/iatlaiDdmQs+1GyvfIa3vj5XPSmXVCQj/vRYzJ5xOp650OD3fr7Fjx0ri9+677wY9J/6f4zjcfvvtYcuqbKz83eQpVaGreSqh9d5Z+Qx4vV7N5+vXrx80wDznnHPCriIZraSnp2Pt2rVYsGABrrrqKjRq1Ahutxv16tVD//79sWDBAnz//fdBaa3idBcziJ9zv9+vmCorR96uNWvWLOxKoPK/kZiSZpQ6deoERdonT56sWS+72uqLLroIu3fvxssvv4y+ffuibt26cLlcaNKkCYYPH47Vq1dj8uTJQWVZ+TvoRR5t3Llzp6FzP/jgA+nnyoq++v1+KRurtLRUddV3OZXRf/A8j9GjRwMIpGLOmzcv6PlwUaY333wT1113neqjslamTUxMlNJAz5w5E/b9C/dZNvLd8Pl8UsDG5XJVaO/t/J5Vx/jKzvfCDOLfkjGmmvEpp7LGVfJshHnz5gVlT8pv7AwdOtTQTTl5ffX4WDgiLgIrF6+LL74Yq1atqtLr/+c//5Huqjz99NOYOnWq6jY04ebn2on87o6eD7Z84FmZ0T69FBcXh53LqJfmzZuje/futpQFAK+88gomTZoEIDAYWr58ua47z3LB1Zo7KiKfS6Ynim4W8TvEcRx8Pl9E3KSQf6+feeYZxUFmZSF2LD6fD16vN6zE6vl+1atXDzfeeCM++ugj/Pjjjzh06BCaN2+OzMxMLF++HAAwcODACqk30Yb87xZOXgDt905e1ujRo1Xn15jhnnvuCfp+7d69GxMnTsTLL79sS/k7d+40LANq2BGZcTgcuOWWWzS3cZLPZxbnRppBfmMgNzdX80aGfIuYlJSUsGXLj7EyGOvTpw+SkpJQUFCADRs2oKioKGhAWVltdUpKCiZMmIAJEyaoHmPX30Ev9erVk37WyiQJ5ejRo1IfHRcXhxEjRthdNQCB9+Cqq67CY489hpycHFx66aVYuXJl0FZFocjbjv3799vWro4dO1a6cT1v3jw888wz4DhO2l4HCGT4DBo0yJbr2QHP82jdujV27doFv9+PI0eOqE77AcJ/ljMyMnDgwAEAge+GVllHjhyRAjZt2rSpMDbOyMiQtlYJ9z3z+XxSqndCQkKFTKrqGF/Z+V6YYdGiRbj11luRk5ODxx57DID2OiaVNa7KyMhAnz598Pvvv+PAgQP49ddf0a9fPwDW5oWL2R1ut9sW4Y84gU1JSUFiYiIKCwurZG5pKCtWrAAANGjQAFOmTFH9UBYUFATNDaps5PuwyfcnVUN+jF0LV1khJyfHcDq4GmPGjLFtbur06dPx+OOPAwh89ozsTyWXXK2FsoDA3DBxES6e58MudmOFpk2b4q+//gJjDEePHkWzZs0q7VpG6iRS1d/rJk2aSHMv9+/fr7kP4+nTp3UP+u6++2589NFHEAQBc+bMwXPPPYc5c+ZIabLVvXiTHcjbjr1794Y9XuuYyvoMfPTRR9JCFueffz5OnjyJzMxMvPrqq7jsssvC7iOsh08//dS2wcHKlSt1zbW2ivzmr5H1H0Jp2bIlfv/9dwCBAUh6errqseeee670sx4hlR+jR3jV4DgOCQkJKCgoAGMM+fn5QQOkjh07gud5CIKAv/76C4IgaN7Yk8+bt5JGe/r0aantSUhIQLdu3UyXpRezkagPP/xQaruuv/56S3+PcDz66KPgOA6PPvqoJLE///wzOnXqpHh8aNthl8C2bdsWffv2xW+//Yb9+/dLA3X53q+jR49WnAYyd+7calsjo3PnztI8yU2bNmmKVrjPcufOnfHDDz9IZWm1TXrKEtm0aVOFecVy/vrrL0kAO3bsWGGsbWR8deLECUlg09LSTO0BK17TrvfCDB07dsTKlSvRv39/ZGdnh5XYyhxX3XrrrVK7P3fuXPTr1y/oxk56errhGzuiMzVv3twW4a+y0Iy8swi3mM/FF18MIDDY1DNospPs7GwAgQVAtDq4FStWVFiwIhQjrzkc8kWYxAiPFvJoZ7jN52srM2fOxMMPPwwgEKVeunSpoTvknTp1kgZz27dv12xA/vjjDyndRIwWVBbinTIg/Aq+VUW3bt2k+Q8//fRT2O+OncgXBxHvDqshNs566Nu3rzTgmjNnDrxer7SCZ4MGDaRVLqOZrl27Sqsfrlq1Kux0CXHhOCXq168vRVnWrl1ry9oBBw4cwD333AMgIAiffPIJFixYAIfDAUEQMHr06KABfW1h+/bt2LBhA4BAVLRv376my5IPzsRBsxrt27eX5OLw4cPSXHA15ANTK1kpeXl5OHHiBICAzMqjkEBg7pW4mFleXp7iyrQihw8flqKmzZs314wMhuPjjz+WUvVuueUWXSubWkV+48LIeyqXscpKH5bzyCOP4LXXXgMQuMHdv39/bN++XfHYyuzTQlddDU0n1pKw6uKyyy6TfhaFSw35QqiXX3551JR1ySWXSNMXfv3116D5pqHIr6VUll7srL9ZRIlt2LAhAOCxxx7DtGnTFI+tzHHVsGHDpGybzz//HEVFRRVu7BjJ7jt48KA0l1l+o9MSduzFo2cf2Kuvvlr3fkkLFy6Ujh0xYoSlusn379Ozx1Zqaqq0/5naxsQ+n4/16NEjaB87JcT9maBzT6xw+8B2795dev7HH39ULWfDhg1BeyNq7QMbuqm4EkaOjRZmz54t7ZWbkJBgeuNr+d6uEyZMUD1OvrfWjBkzzFZbF4cOHZL2gW3bti0rLCw0XZZ8P9Fnn33W0rHjxo2Tnv/f//5nuk6MGdtX2u59YOW8+eab0vH33HOP9PNjjz1m5OUYxsg+sFb/bkOHDpWenzdvnmo533//vXQcoLwP7Msvvyw9/+STT4Z5ldr4fD7Wu3dvqbz3339fem7SpEnS74cOHWrpOtGGz+dj/fv3l17/u+++a6m8n3/+WSpLzx6qTz75pHT8888/r3rcli1bpDY4MTGRFRUVma7jf//7X+maanveyvd2HTZsmGpZjz32mHSclX1bs7OzWVpaGgPAXC4X27Fjh+my9HLq1KmgPczV9noM5ddff5XOadWqlerYxwpq4wj5365BgwZs27ZtFc4tLCyU9g6uW7cuy8rKsq1eBQUFLCEhgQGB/XPl7VifPn1su44aRveBZYyxnJwcqY9PTExk2dnZisdt3bpV+o41atRIse/zer3S55TjOMX3n7HA51l8n2JjY9nJkycVj5Pv7fr9998rHlNSUsKaN28ednws39t11qxZiscIgsAuvPBC6Tit/bHDYfd7oQe1vnzHjh2sUaNG0nOvvPKK4vl2jqtCGT16tFT23Llz2TnnnCP9f/fu3YbK+vTTT6VzX375ZVvqV2UCO378eOmYVatWaZbn9/tZz549peMfeOAB1U18GWOsuLiYffDBB+yTTz6p8JxRgR00aJB0/H//+98Kz3s8HnbrrbcGDdTUBrryhvnDDz8Me+1wg3K52Ddu3Jj9888/FY7JzMwM2mBYTZZqs8B++OGHUqMeHx+vu9NQ4ujRoyw+Pp4BYE6nk61YsaLCMR988IH0HjZr1kxxY3W7eeSRR6RrXnrppezYsWOqx/r9frZ8+XI2derUCs/ZKUKHDx+WbhDFxMSE/U5kZ2ezKVOmsL///rvCc0YEljHG+vbtGySafr+/wjHytkKvwJ45c0b6+8sfRht3o1SlwK5evVp6vk6dOoqbpe/evTto4KwmsIWFhaxFixbSAOGVV15R/FuInDlzhr3xxhts+fLlFZ6TS+qNN94Y9JzX6w2SW7s79upk9erVqjdh8vLy2M033xz03bcqI6WlpdJg7aKLLgp7/MmTJ6XveWxsrGL7mpOTw7p06SLVU+nm3++//85mz54dtr386KOPWExMjObnjjHGioqKWJMmTYIGZKEsX76cOZ1OSQyOHz+uWFZxcTFbt26dap327t3Lzj33XOlazz33nOZrkH9vlL7Pf/zxB3v33XdZaWmpahmHDx9mF1xwgVRO27Ztmdfr1byuyNixY6XzJk+erOsco2iNI6ZPny49n5aWpigOb731lnTMueeeG7aNXbt2re4bifL2VN6Ovffee7rOt4IZgWWMsQcffFA674orrqjwPcnNzQ2SSa0b56+//rp0XPfu3Vlubm7Q8yUlJezyyy+XjtG6sfPVV18F9aGZmZlBz/v9fnbbbbeptt1yNm/eLI3VUlJSFMcCzz33nFRWz549VcuSj8O0xrJ2vhd60OrL//nnnyCJVRI/O8dVocjHBvLvRd++fQ29RsaCgz1//fWX4fOVqDKB/frrr6Vj2rRpw2bOnMm+/fZbtnTpUrZ06VK2Z8+eoOMPHTrEmjZtGvTmjR8/nr3//vvs888/Z3PnzmVTpkxh11xzjdS5Kg3AjQrsN998E9SZXHPNNWzmzJns008/ZVOnTmVt27aVBgbp6emaA92///5bKqdhw4bs1VdfZUuWLJFe85YtW4KO1zMolw9O4uLi2Lhx49i8efPYRx99xB566CGWnJwsPT948GDVwUttFdjvv/+eORwO6TXdd9997Msvvwz7CG2E5bz99ttSeS6Xi91+++1s3rx5bM6cOeymm26SGmCn08mWLl2qWb9wAxm9eDweNmDAgKDPysiRI9nMmTPZokWL2IIFC9irr77KRo0aJTWQAwYMqFCOnSLEGGPLli2T7hwDYF27dmWTJk1i8+bNY5999hl777332IQJE9jFF18s/Z2UouNGBXb79u1BotmtWzf22muvsYULF7I333yT9enThwFgvXv3ltqdVq1a6So79IbWJZdcous8K1SlwDLGgqLLMTEx7K677mLz5s1jCxYsYOPHj5faYHm0Vk0k/vzzz6B2qnXr1mzChAls7ty57PPPP2dz5sxhEydOZIMHD5Y+K/Pnzw8qY/Xq1dLnIz09vcIggzHG9u/fL10nPj6e7dy5U/N9iBY6derEGjduzO644w42a9Ys9tlnn7H333+f3X///axBgwbS+9q5c2fVyIxRbrjhBqkdCZdBxRhjn3zyidTuORwONmrUKOkm81NPPSVFOcQ2oLi4uEIZX375JQMCUbEbbriBvfDCC+zDDz+U+v+nnnqKde3aNei7d+ONN2oK+7fffit9bjiOYzfddBObM2cOmzdvHrv99tuZy+WSytKKXJ84cYIBYJ06dWKPPPIImzNnDvvss8/Y22+/zUaMGMFiY2OlckaMGKGZ9cFY+HZffC+Sk5PZTTfdxF566SU2f/589tlnn7F33nmHjRo1isXFxUllJCUlsc2bN2teU0QegeR5XrOvs0K4cYRcHNLS0hSjcvKIkNPpZNdffz17/fXX2cKFC9nHH3/M3njjDXbHHXewVq1aSW2LHn755Zegv4HYZuTn51t5yRX46aef2NNPPx30kN/oGDlyZIXnT58+rVjW6dOnWfv27aVzO3TowF577TX26aefsueff541a9YsqE/yeDyq9SorK2MXXXSRdHyzZs3Y888/zz799FP26quvsg4dOkjPdezYkZ05c0bzdQ4fPlw6vl69euypp55in3zyCZsxY0bQTZbGjRuzQ4cOaZb1+OOPS8cnJCSwBx54gH300Ufsf//7Hxs8eLD0XGJiouLNVRG9Amv3exGOcH35zp07g+RRSWLtGleFIgiC9F2SP+TZTno577zzGADWsmVLw+eqUWUC6/P5gqIgoQ+lgVNWVlbQIFzr4XA4FDscowLLWHAKlNKjT58+LCcnR4okaEVqRowYoVpO6HulZ1Du9XrZHXfcEfb9uPHGGxUHBSJ6vshmjo10QqNseh9qg3GRadOmBQ1+Qh9JSUmKGQKhhBvIGKGsrIzdd999QcKu9Rg9enSFMuwWIcYYW7NmTVAqitYjMTGxwo0exowLLGOBVEjxTqXSo3PnzkE3zs4991xd5a5bty6oHL1pe1aoaoH1+Xxs1KhRqu8dz/PslVdeCRokaH1ndu7cGRQd0HrExMQE3fg5ffq01PbyPK/Zri9YsEAqp1u3bpqZPNFCp06dwr5nN9xwAztx4oRt15RHVbTSyOV88MEHkhipPfr166daT1Ha9Dzcbjd7+umndUUcFyxYwBITEzXLUsq+kiMKbLg6TZw4UTPDQCRcu2/kvejcubOu6IrI+++/L507aNAg3ecZRf43V0Oe5q0ksYIgsKlTpwZF3MN9vvQgCEKFPkmpP7SKmfGH1jjgwIEDYdvRgQMHqkqwnNzc3KCpB0qP7t2767rBUVpaGhRsUXq0bt1a1+dUEAT24IMPSjfElB4NGjRgP/30k2Y5egXW7vciHOH6csYqSuxLL71U4Rg7xlVKTJ48OejchIQEXTcx5ezYsUM6f+LEiYbO1aLKBJaxQOj9pZdeYr1792Z16tQJGlhrDbJ++eUX9n//93+sU6dOLDU1lTkcDpacnMw6duzIhg8fzt5++23VORFmBJYxxpYuXcqGDBnC6tevz1wuF2vcuDHr378/e/fdd6VOUo/A+nw+9vbbb7NLLrmE1a9fX0pPUnqvjAzK16xZw26//XbWpk0blpCQwOLi4lirVq3YyJEjw36RGSOBNfoIJ7CMBeab3HvvvSwjI4MlJCSwpKQk1rlzZ/b444+zgwcPhj2/qKgoaPBz6tQpG14xY3v27GFPPPEEu/DCC1laWhpzOp0sPj6etWrVil155ZXsxRdfVG3MKkNgGQvciFmwYAEbNmwYa9WqFUtMTGROp5PVrVuX9ejRg915551s4cKFqvN3zQgsY4wdP36cPfroo6xdu3YsLi6Opaamsh49erBXX32VFRUVMUEQpEiG3kiqIAgsJSWFAYH5WVppfnZR1QIrsmTJEjZkyBCWlpbGYmJiWPPmzdmIESPYH3/8wRhjugWWscD79vXXX7MxY8awjIwMlpyczBwOB0tNTWVdu3Zlo0ePZnPnzq0QXZXf3X/iiSc0r8EYY7fccot0vJ45nJHOqlWr2OOPP8769OnDmjVrxmJiYlhKSgrr0KEDGzduHPvtt99sv6bP55PmrBmRnIMHD7Inn3ySnXvuuSw1NZW53W7WtGlTdv3117MvvvhCM1rq8/nYb7/9xiZPnsyGDBnC2rRpwxITExnP8ywxMZG1aNGCDRkyhE2bNo0dPXrU0Os5ePAgmzBhAuvUqRNLSkpiCQkJLCMjg917772q895C67Zw4UL2f//3f+y8885jDRs2ZC6Xi6WlpbEePXqwSZMmsb179+quTzhhKSgoYF9//TV74oknWP/+/VlGRgarW7cuczqdLDU1lXXo0IGNGTOGffPNN7qEWY48sKDnJqtZ9I4j5OsKqEVis7Ky2JQpU1i/fv1Yo0aNmNvtZrGxsSw9PZ0NHDiQTZo0ia1Zs8ZQ/aZMmRL0d7AytUgNuwWWsUC21ezZs1n//v1Zw4YNmdvtZk2aNGFDhgxhn376qaEpBIIgsE8//ZQNGTKENWnShLndbtawYUPWv39/Nnv2bN0p6SJLly5lN910k9RO1a9fn/Xu3Zv997//Nbw2xx9//MHGjh3LzjnnHBYbG8tSU1NZ9+7d2ZQpU3TdrDMisIzZ/16ooUdgGWNs165dQVMglCTW6rhKiYMHD0pr6oRzPDWeeuopBgQCjXZmeHCMWVwelyAIW/jhhx+k1ezGjx+PN954o5prVPvYunWrtEKe3r/BihUrpOXkH3jgAbz++uuVWUWCqBamT5+Ohx9+GA6HAwcPHtTcTocgCIIg/H4/2rRpg4MHD2L48OH49NNPbSu7yrbRIQhCG3EP4qSkJEycOLGaa1M7mTFjhvTzpZdequuct99+W/q5Juz9ShBK3H333WjUqBH8fj9eeeWV6q4OQRAEEeF88sknOHjwIHiex7PPPmtr2SSwBBEhiAL78MMPIy0trZprU/NYvXq15j5pM2fOxOzZswEENgi/6qqrwpb5119/4auvvgIADBw40NKekQQRycTFxeG5554DAMyePRtZWVnVWyGCIAgiYvH7/Xj++ecBBPZT7tChg63lUwoxQUQAJ0+eRIMGDVC/fn3s27cPSUlJ1V2lGkebNm1QWlqKK664At26dUNaWhq8Xi/27duHL7/8En/++ad07JIlS1QFdtmyZRAEAbt378Yrr7yCY8eOAQB+++039OnTp0peC0FUB4IgoGfPnti8eTPuu+8+vPXWW9VdJYIgCCICWbBgAUaNGoWUlBTs3r0bDRo0sLV8EliCIGoFbdq0wb59+zSPiYuLw7vvvotbbrlF9RiO4yr8Tu982R9//BHFxcXhK6tA/fr10bdvX1PnEgRBEARB1BRIYAmCqBWsXbsWixcvxtq1a3H06FGcOnUKxcXFqFOnDjIyMjBw4ECMGzcODRs21CxHFNjExERkZGRg3LhxuO2228Dz4WdktGzZEpmZmabq369fP/zyyy+mziUIgiAIgqgpOKu7AgRBEFVBr1690KtXL8vl0D0/giAIgiCI6oMisARBEARBEARBEERUQKsQEwRBEARBEARBEFEBCSxBEARBEARBEAQRFZDAEgRBEARBEARBEFEBLeJEEARB1CgYYygtLUVxcbH0KCkpqfB/j8eDsrIyeDwe6RH6f/Hh8/kgCAL8fr/0EARB+p38ORGe58FxnOaD53m4XC44nU64XC7p4XQ64Xa7pd+L/4+JiUFsbCzi4uKC/lX6OSEhAYmJiXC73dX41yAIgiAIeyGBJQiCICKSkpIS5OfnIy8vDwUFBcjPz0d+fr7qz4WFhZKoCoJQ3dWPGNxuNxITE5GYmIikpCTpZ/kjKSkJqampQY/ExERd20MRBEEQRFVCqxATBEEQVUZRURFyc3ORm5uL06dPV/hX/nNpaanl68XHxwc94uLipH9/XvA7IACcwAHSo/z/jAP8CPwrcOBY+c8M5Y/AfsBB/2cAJ/5O9rT4M6SfmexnAHz5iTwLFCv7PzgG8AAr/xc8AxwMV949AKWlpSgtLUVJSUmFn0WRt4LD4UBycnKQ1KakpKBOnTqoX78+6tevj3r16qF+/fpITU0l2SUIgiCqBBJYgiAIwjKMMRQWFiInJwc5OTk4ceKE9JD/36hUuVwuJCcnIzk5GUlJSUhOTsYfizeC8/KAjwfn4wL/ejnAzwN+DpyfA8ofXJA91i4YArILJwNzCoF/HeX/OhngEHD9o1eisLAQeXl5yMvLw5kzZ3DmzBkUFRUZupbD4UDdunWDpLZevXpIS0tDw4YN0bBhQzRo0IDSmQmCIAjLkMASBEEQYWGMIT8/H8eOHVN8nDhxQnfENC4uDnXr1kWdOnWw45c9gJcH5+XBefjAz57A/+HhA9HPWiyh1QXjGOASwFwC4Az8y1yB3115b3+cOnUKJ0+exMmTJ3H69GnoHUrUq1cPjRo1QoMGDdCoUSM0bNhQ+rdx48aIj4+v5FdGEARBRDsksARBEAQAwO/3IycnB4cPH8bhw4eRlZUVJKl6oqcpKSlo0KAB0tLSsHbxn+DKeHAeB7gyHij/lxMo1bQmwcAAtwDmFsDcfsAt4Jap1+PkyZM4ceIEjh8/juzsbJSVlYUtq06dOmjatCmaNm2K9PR0pKenS/9PSkqqgldDEARBRDoksARBELWMM2fOSJIqfxw9ehQej0fz3Hr16qFx48bY8fNecKUOcGWO8n95oMwBjlG0lKgIQ3kqc6wfLCbwGPrYZcjOzkZ2djaOHz+OgoICzTJSUlKC5LZFixZo2bIl0tPTKTWZIAiiFkECSxAEUQNhjCE3NxcHDx7E/v37pX8PHz6M/Px81fNcLpcU+frjk03gSh0BMRVlVSBBJSoH5hACghvnx62vDcPRo0dx5MgRHD16FKdOnVI9z+FwoEmTJmjRooUktS1atEDz5s0pJZkgCKIGQgJLEAQR5eTn5wdJ6sGDB3HgwAHk5eWpntOwYUM0a9YMm7/ZDq7ECb7EAa7ECZTxNOeUiDgYL4DF+cFi/bj99Ztx+PBhZGZmIjMzE4WFharnNWzYEC1btkSbNm3Qpk0btG7dGunp6XA6aRdBgiCIaIUEliAIIkpgjOH48ePYs2dP0OPEiROKx/M8jyZNmiDrrxPgip3lDwe4UidFUokagTT/Ns4HFu/HVY8MQGZmJg4ePIjTp08rnuN2u9GqVSu0bt0arVu3luSW5tgSBEFEBySwBEEQEYjf78fhw4exe/du7N69G3v27MHevXtV5wk2atQIOTtywRU5z8pqCYkqUXthTgEs3gcW78OQR/pj79692L9/P0pKShSPb9CgATIyMtCuXTt06NAB7dq1Q0pKShXXmiAIgggHCSxBEEQ1wxhDdnY2duzYgX/++Qf//PMPdu3apbhqq9PpRKtWrbDvt8PgC10BYS1ygvPTyr4EEQ4GBsT6IST4MPLl67B3717s3bsXx48fVzy+cePGaN++Pdq1a4f27dsjIyMDiYmJVVxrgiAIQg4JLEEQRBVTWFiInTt3YseOHdixYwd27tyJ3NzcCsfFxcWhdevW2PHjPvBFLnCF5ZFVWumXIGyFOQSwBB/+b/Yt2LlzJ3bu3IkjR44oHtu8eXO0b98enTt3RufOndGqVSs4HI4qrjFBEETthQSWIAiiEmGM4ejRo9iyZQu2bNmCbdu24dChQxWOczgcaN26NfauOgy+wAWuwAWuxEELKhFENcEcAliiF7fNGI6dO3di165dipHa+Ph4dOzYURLajh07UpSWIAiiEiGBJQiCsBG/34+9e/di69atkrQqRVcbNWqEnK2nwRW4AsJa5KL5qgQR4TCnACHJi5HThmLbtm3YsWMHiouLg47hOA6tWrWShPa8885Do0aNqqnGBEEQNQ8SWIIgCAt4PB7s2LEDf//9N7Zs2YLt27dXGNA6nU60b98e/yzdD67ADb7ACc5LKYcEEe0wMLB4H+5fMBbbtm3Dtm3bkJWVVeG4Ro0aoVu3bjjvvPPQrVs3ElqCIAgLkMASBEEYwO/3Y8+ePdi0aRM2b96MLVu2VFhsKSEhAcWHveDz3eDzXeAKKbpKELUF5vJDSPbixslXYMuWLdi1axf8fn/QMSS0BEEQ5iGBJQiC0IAxhszMTElY//zzTxQWFgYdU6dOHeTtLgaf7waXX74yMM1dJQgCAOMFsGQvhv1nCP766y/s3LlTUWh79OiBnj174vzzz0dycnI11ZYgCCLyIYElCIII4cyZM1i/fj3Wr1+PjRs3VpjDmpCQgJJDPnB5bvBn3OCKabElgiD0wRwCWJK60PI8j/bt26Nnz57o2bMnOnbsCKfTWY01JgiCiCxIYAmCqPX4/X7s3LkT69atw9q1a7Fr1y7Im0a32w1vNsCLwlpIEVaCqLVw5d99m4ZPzCFASPbiuucGYcOGDTh48GDQ8wkJCejevbsktE2bNrXlugRBENEKCSxBELWS3NxcrF+/HuvWrcOGDRuQn58f9HybNm1wYGUW+DMxgbRg2nuVIAgRTqE9sEto3X48/MUd2LBhAzZu3Ii8vLyg55s1a4Z//etf6NOnDzp37kzRWYIgah0ksARB1AoYYzhw4AB+++03/Pbbb9i5c2fQ84mJiSg+6AV/Ogb8aTc4D60STBBEGJREVo7FIRYDA0v0YezMG7BhwwZs3bo1KN04MTERvXr1Qu/evdGrVy8kJSVZuh5BEEQ0QAJLEESNxe/3Y9u2bVi9ejV+//13HD16NOj5tm3bYv/PWQFhzXdRWjBBEMYJJ7FyrAqtQ8DTP96HP/74A2vXrg2KzjocDnTp0gW9e/dG37590axZM0vXIgiCiFRIYAmCqFGUlpZiw4YN+P333/H7778HDfDcbjd8xwH+VAz43Bjai5UgCHswIrEidkRnk7wY9sqV+OOPP3DgwIGg51u1aoV+/fqhX79+OOecc8CZqSNBEEQEQgJLEETUU1JSgrVr1+Lnn3/G2rVrg/ZlTUpKQtE+b0BaT7vBCXw11pQgiBqLVUG0KrQxfoxbcAt+//13/PXXX/D5fNJz6enpuOSSS9CvXz9kZGSQzBIEEdWQwBIEEZWUlpZi7dq1WLlyJdasWYPS0lLpuUaNGuHE5jzwp2JpASaCIKoOu8TQhlTjR5fciVWrVmHDhg3weDzSc40aNZIisx07dgTP0009giCiCxJYgiCihrKyMqxfvx4rV67E77//jpKSEum5Jk2aIHvdGfAnY8EV0TY3BEFUE3ZHN22Q2SeX3YNVq1Zh7dq1QTf7GjZsiAEDBmDQoEFo3bq11ZoSBEFUCSSwBEFENH6/H5s3b8aPP/6I1atXo7i4WHquUaNGOLExH/wJklaCICKIykrRtSqzPMOkn+7HqlWr8McffwS1p61atcKgQYMwcOBANGrUyGpNCYIgKg0SWIIgIpJ9+/bhxx9/xPLly3Hy5Enp9w0aNMCpPwsD0lpoUVrlg0xqCgmCsJPKnmdqg8xOXHEfli9fjrVr18Lr9UrPdenSBYMGDcIll1yC1NRUixUlCIKwFxJYgiAihlOnTmHFihX48ccfsWfPHun3SUlJKNrtg+NEHLgCFzgrrZbSoJKaQYIgKoOqWizJbBtWXj/mEPDgF2OxfPly/PXXXxCHhg6HAxdeeCGuvPJK9O7dGy6Xy64aEwRBmIYEliCIaqWsrAyrV6/GDz/8gA0bNkAQBACA0+mEkO0AnxMH/nRM8EJMRpstrUEkNYEEQVQmVb3ir8X2kbn9uOODm7BixQrs3r1b+n1qaioGDx6MK6+8Euecc44dNSUIgjAFCSxBENXCgQMHsGTJEvz444/Iz8+Xfs/lu+A4ERdYjMmnsDqm3iZLz6CRmj+CIKqC6tq2Rk8bp1E3Ic6Hm14djGXLliE3N1f6ffv27XHllVdiwIABSEpKsqOmBEEQuiGBJQiiyigpKcHKlSuxZMkSbN++Xfp9gwYNcGpTUSDaWurULkSryTIySKSmjyCIqqS691610HYyMExZ/RC+++47/PHHH/D7/QAAt9uNiy++GEOGDEH37t1pf1mCIKoEEliCICqd3bt349tvv8Xy5ctRVFQEIDC3iuU4wWfHgz/t1rcYk1JzZXbARE0fQRBVTaQIXmj7Z6BezOXHXfOG47vvvsOBAwek3zdv3hxDhw7FZZddRlFZgiAqFRJYgiAqBY/Hg59//hlffPEFdu7cKf2+SZMmyP4jH46cOHBeh7FC5c2VlYEgNXsEQVQHkSKwIhbaVAaGt7ZNwXfffYfly5dL+3LHxsZi4MCBGDp0KDIyMuysLUEQBAASWIIgbObEiRP4+uuv8c033+DMmTMAAJfLBX+WA47sOHB5OqOtoTBmz+CPmjyCIKqTSJNYG2AOAfctGokvv/wyKCrbqVMnDB06FJdccgliYmKqsYYEQdQkSGAJgrAMYwxbt27F4sWL8euvv0rzo9LS0pC7sQSO4/HKCzJVF9TsEQRhFI6zr+2wU2I5HmBCRJTHwPDa5on46quvsGrVKvh8PgBASkoKrr76alx//fWoX7++fXUlCKJWQgJLEIRpysrKsGLFCnzxxRdB+7ZyeS44jiWAPxVjLtoKBAZRgL0DM8D6AFQceFLTSRC1D87Cdl5aZVmFk90gtNpm2lQWc/kx5t2h+Prrr5GTkwMgsD3agAEDMGzYMLRt29ZaPQmCqLWQwBIEYZiCggJ89dVXWLx4sbS1QkxMDLyHHAFxLTI4t1WEC4nSRoq8hg40qdkkiNqLknja1bZYIbT9BMy3oXaVxfFgYHjm53uxaNEibNmyRXqqW7duGD58OHr16gWej6AMHYIgIh4SWIIgdJOdnY1Fixbh22+/lRbsaNiwIU6uK4EjpzxN2OQgR5HqFFi1gSU1mQRBaImn0TbCLolVa0cB421pJZX15tZn8dlnn2HlypXSVJNmzZph2LBhuOyyyxAbG2usbIIgaiUksARBhGXfvn345JNP8NNPP0mDDq7ICcfRRPCn4sAxeVqdgcGNnYOkcOht6uwcmBIEUXPRI552tDtG0GpTRfS2reHKslAOc/txw2v9sWTJEhQWFgIIzJO98cYbcf3119M2PARBaEICSxCEIowx/Pnnn/j444+xfv166ffcGTecRxPB5SnMb9UzoNEzwNJbll7CNXN6B4/UXBIEIceutqOyU4mVCNfG6i3HQlmMF3D3x8Pw2Wef4dixYwCA+Ph4XHfddbjppptQt25d/XUgCKLWQAJLEEQQjDFs3LgRH374oTRfied5IDsGjqwE8EVujZM1BjF2DoaMotbMGRk0UlNJEIQSRuXTjvZICyNtrYham2u0LJPlMDA8sexOzJ8/X9qGx+1246qrrsKIESPQsGFDY/UgCKJGQwJLEASAgLiuX78ec+fOxfbt2wEEBhC+TCecWYngypw6ClEYvNg5mDJDaBNnZpBIzSRBEFqYlU872iclzLS7QMW2t4rLYWCYvGo85s+fjx07dgAAHA4HLrvsMowePRpNmjQxVx+CIGoUJLAEUcthjGHNmjWYO3cudu7cCSAgrv6DLjiOJoLz6lxRuLIGPlaQN292DTAJgiCUsCKfdrRVoZhtg4HgdrgaymFgeHndBCxYsACbNm0CEBDZK6+8EqNHj6aILEHUckhgCaKWwhjDpk2bMHv2bElcY2Ji4NvvhCPLgLhKBZYPVKwMduTlRArURBIEoRc757JaxWpbDATa42ouZ/pfE/HBBx9gw4YNAACXy4WrrroKI0eORFpamvW6EQQRdZDAEkQtZPv27Zg9ezb+/PNPAEBcXBw8ex1wZCUYF9dyOJ4DE2xoTkhgCYKIViJJYAF75BP2tO9Wy3ht81OYM2cONm/eDCCQKXTNNddg5MiRtNgTQdQySGAJohaxb98+vPfee/j9998BBO5kC4fccBwxEXFFYEAiYmVgIpbDBGZNYMXBml0STM0jQRBGiSSJtVFgRexo662U88qGx/H+++9LiwzGxcXh5ptvxvDhwxEfH2+6bgRBRA8ksARRCzh+/DjeffddrFixAowx8DwP7ngsnEeSgFJr4ipiZjBSYTBjVjzlgzSSV4IgqpsaLrGA9TbfSjnggf/88WjQFJg6depg7NixuPrqq+F06lh0kCCIqIUEliBqMIWFhViwYAE+//xzeDweAAB/Kg7Ow0ngS10AjA8elAYgRstRHcQYkU+lQVlV7h1LEAShRQ2T2Mpq+42WIS+HgeGpH/4Ps2fPxtGjRwEA6enpuOuuu9CvXz9wkfQ3IAjCNkhgCaIG4vP5sGTJEsyZMwd5eXkAAD7PDWdmCvji4H1c9Q4c1AYedpRhSF61BmIUfSUIIpKIFIGqpCisnOrsSxjHcM+nwzF37lycPn0aANCpUyfcf//96Nixo64yCYKIHkhgCaIGwRjD2rVrMWvWLGRmZgIAuBInnJnJ4M/EgoPx9C2twYZdZegS2HADMJJXgiAijUgRWKBSo7ByqrNPYbyAEbMuw8KFC1FSUgIAuOyyy/B///d/qF+/ftjrEgQRHZDAEkQN4fDhw3jzzTexbt06AEBKSgqK/gIcOQngmPG0LT2DjHDl6C1DU2D1DrrsEFhqDgmCsJtIkdgqElgRq/2CVhnhyvk46y289957+P777wEEFnoaOXIkhg0bhpiYGN3XJwgiMiGBJYgop6SkBPPnz8fChQvh9XrhdDrBDsXCeTQJnF97wKI0ODAyuLCjDFV5NTLYougrQRCRTC2VWKB6+5k3/n4Gb775JrZv3w4AaNSoEe655x6aH0sQUQ4JLEFEKYwx/PLLL5gxYwZOnDgBAODPxMB5MEVaoClsGbJBgdEBhV1lVBBYMwMsir4SBBHpRIIwVYPAilRXf8PAMOG72/HOO+9IfeWFF16IBx98EE2bNjVVD4IgqhcSWIKIQg4dOoTp06dj06ZNAACu1BFYoOm08jxXNZjATA8k7CgjSF7NDqxIXgmCiAYiQWCBapVYoPr6HcYLuHnmYHz88cfwer1wu90YNWoURowYAbfbHb4AgiAiBhJYgogivF4vPv74Y8ybN0/qgP37YwLpwirzXCMZsxvZhxRiQxnUDBIEUQVUt8RWwWrEkc77+17B9OnTsXHjRgBA8+bN8fDDD6N79+7VXDOCIPRCAksQUcK2bdswbdo0HDhwAEB5uvCBVPBlBjds53iA5wC/33xlxEGQRXkkgSUIotZhVWKttr8cD47nLLW/HM8F6mGl/XU4rPVDFspgYHj8+zswY8YM5ObmAgAGDx6M++67D6mpqdbqRBBEpUMCSxARTlFREWbPno2vvvoKjDHAy8N1qA74EzGG0oXB8eAcgYEPY8zcwEGUXwAwsndraBkAwITIEFhqAgmCqGrskljAeBtYLrBnTzfXBnIOh/k6AAH5FDErshbLYG4OV07tKfWvqampeOihh3DppZeaqw9BEFUCCSxBRDBr167FtGnTpIUnHCcT4DpcB/DxxjprmbwCJgRWLq6AOXkNTV2zQ2BJXgmCiEbsSCVWaFONnBuaBmy0PQ4SWDN1AIIFFDAuoTad//qmp/Dyyy9LGU79+vXDgw8+iHr16hkrjyCIKoEEliAikKKiIsycORPffvstAIArdcKVWReOgjhj8hkiriK6ywgVVxGjAlsZ8lpejrXzqfkjCKKasDMKK0dPu6ggsGdP19cuSmnEZq4voiTBgP4+zur5sjIYxzBixgDMnz8ffr8fycnJGD9+PAYNGkRb7hBEhEECSxARxqZNm/DSSy8hOzsbAODIToLraCo4wUD6r4q4iugtQ1FeAf0CqzHAougrQRC1nsqSWCB8G6khsYHTw7eRilFYvdcH1AUU0CehWuebLGPmlmfx0ksvYc+ePQCAf/3rX3j88cdRp06d8GURBFElkMASRIRQUlKC//3vf/jiiy8AAFyZE64D9eAojA06Lqx8WpVXLXEF9MlruJUuSWAJgiAqV2BF1NrKMAJ79nT1tlJTYMNdX8SqhFbC+YxjGP2/yzF37lx4vV6kpqbi8ccfR58+fbTLIgiiSiCBJYgIYNeuXZgyZQoOHz4MAHDkJMJ1pI4UdZWjKqBhxFXP+ZriKqIlsDoHUySvBEEQ5VSFxALK7aZOiQ2cXrHdVE0j1nt9ILyAiqiJaCWe//a2yZg6dSr2798PALj66qtx3333IS4uTt81CYKoFEhgCaIaEQQBixYtwuzZs+Hz+QCPA+6D9eDIV+8cFQVUp7xqna9LXgF1gTUwiCGBJQiCKKeqBFZE3n4aENjAqQoSq1cgQ68tYuR8JQmt5PMZx3DtK72xaNEiAEB6ejomTpyIjh076r8uQRC2QgJLENVEbm4uXnzxRaxfvx4AwJ+Og/tgPXD+MJ2pXEANiKva+brFVSRUYI0MnkheCYIgKhJFEhs4/Ww7aigKq3R9IwIqIhfRKjr/P789hBdffBEnTpyAw+HAHXfcgREjRoDnDb52giAsQwJLENXA+vXr8cILL+D06dNwu91gexLhOJGoa19XSUBNyGvo+Zbk1eiABSCBJQiCUMOKxJppj4FAe2pCYM+eHmhPDUVhQ68PWJNQs9c2cf7inLfx2muv4eeffwYAXHjhhXj66aeRmppqrg4EQZiCBJYgqhC/3485c+Zg/vz5AACu2AX3/vrgS91Vcn3GWEBCTQ5WJIG1MFiyJLAkrwRB1FSqOgpb4fRqEGgg0K6blVAgIKJWzjcIA8P4RTfjjTfegMfjQVpaGp577jl06dKlyupAELUdEliCqCLOnDmDKVOmYOPGjQDKF2o6XAccq6L0o/I0J2Z0o/dQzAooRV8JgiC0qaUSy7mclvomzukE8/lMn2+GWVufw7PPPovDhw/D4XDgzjvvxM0330wpxQRRBZDAEkQVsGPHDjzzzDPIyckBBA6ug/XgzE3QXwDPB+4wC4KxDdrl53McwJipQQLHcWejt2YhgSUIgtDGqsAC1SexVq/rcgIwd5OVc5afa1JizZ7PeAEXPd4eK1asAAD06dMHEydOREKCgf6dIAjDkMASRCXCGMNXX32Ft956Cz6fD1ypC+69BlKGRXEFzMmrKK6BypiW18DpUS6w1NQRBBHp2CGwUllVLLI2CSxgTWIBcyJr9vzQlOIWLVrgxRdfRLNmzQzXgSAIfZDAEkQl4fV68d///hffffcdAIA/Ew/3/nqKe7tWQC6uIkYEVi6uIgYFlgs5v9oFlqKvBEHUdOwUWKBqJdZGgRUx1Gc5Fc43IKJWz39901OYNGkSTpw4gcTEREyaNAm9e/fWfT5BEPohgSWISuDMmTOYOHEitmzZAp7nwR9OhfOYjlWGlcQV0C+vSuIKGJLXUHENnB7l0VeABJYgiMjHboGVyq0ika0EiQX0i6yShAL6RdTK+RzH4ePDr+OZZ57B1q1bwXEcbr/9dowaNUqxXyUIwjwksARhM/v378cTTzyB48ePA34eMYcagT8Tqy2gauIqEk5g1cRVRKfAqnWyJLAEQRBVQGWKTlVIbCUJLKBPYtUEVCojjIhaPZ+PiQHjGAZP7ISvv/4aADBgwAA88cQTiImJ0TyXIAj90FJpBGEja9aswT333IPjx4+DK3Mhdm+6dXkNRzh51QHHcXSHmCAIoibDBEs3ApnArN+ItADncJjfb1YsI4ygWj2feTzgGIflU3fgscceg8PhwE8//YRHHnkEZ86csXRtgiDOQhFYgrCJL7/8Eq+//joYY+AL4xCT2Ric3xG4a6wksHrFVS36qldcNaKveqWVIrAEQRBVQFXdSKysaGwlRmBDUe3XdEqqWjTV6vm8LNL6wk/3YNKkSSgsLETTpk3xyiuv0OJOBGEDJLAEYRHGGN577z3Mnz8fAODITYb7aANwrHz13lCBNRpxDRVYoxFXBYE1Em21LK8ACSxBEEQ4qiMLxm6RtVgeYExigYoiazTKGiqiVs/nQ1KF3/lrEiZMmIDjx48jJSUFL7zwAs4991xD1yAIIhgSWIKwgM/nw7Rp07B06VIAgOt4XThz6kqLNQXJq9lUYVFgzaYKhwis0VRhEliCIIgqoLqmcdghnaLIVoPAAsESazZNWBRRy+dzHDh38FZ5H++fhieeeAI7d+6Ey+XCs88+i4svvtjUdQiCIIElCNOUlJTgmWeewbp16wAGuI82gDM3JegY5vcHxMnsvB2r8gpIAmt2jisJLEEQRBVQ3esQ2BGNrSaBFWF+v6V5rlYlViwjNAoLAIwT0OOeJli9ejV4nseECRNw5ZVXmr4OQdRmSGAJwgQFBQV47LHHsGPHDkDgEJPZCI6CxOCDyqXVzIbqQQgWxI3nje0fq0BEzH8tL8fa+dTUEQQRwVS3wAIRIbFWBBYIyKeR/WMrAy4uFvB4K/yegeHSJzLw/fffAwDuu+8+DBs2rKqrRxBRD61CTBAGOXPmDB588MGAvPp4xOxvaru8cg4enNNpbWVgu+TVClalkyAIgogaqnOVYqkOPp/11YpdTmuR4DIP4HZVLBccVr60GzfffDMAYMaMGXj33Xet97UEUcsggSUIA5w6dQrjx4/Hnj17AK8DsfvS4SiOO3uAwwHExAAW0o84Bx+4g81zgYdReD7wsIjUoZoZkFjcroEgCIIgrGDLtjtmJVbMnHK7KogsBw5fP7URd911FwBg/vz5eOONN0hiCcIAJLAEoZOcnByMHz8eBw8eBOd1IHZ/Oviy8nkuNokr53SelVe/H8xrMIJbLq5W9nVljFnrSElcCYIgiAjBjMTK+16r0VgAFUSWA4cF963EI488Ao7j8MUXX5DEEoQBSGAJQgfZ2dm4//77cfjwYXAeJ2L2pYMvc1eOuFqMulpJO7YsriSvBEEQxomE+a81GLuisXaL7NtjvsGECRMkiX3zzTdJYglCBySwBBGGU6dO4aGHHsKxY8fAlbkC8uopl1c1cfX5ws5/rQxxjdSoq+qm9wRBEESNwaokVjZVKbKszKP+pExi37rlC0yYMAEAsHjxYpJYgtABCSxBaHDmzBk8/PDDOHLkSCDyur8peCG2+ue5AraIK0BRV4IgCKJ2YYdoh5XYcDsIyKKxoRI7Y8YMkliC0IAEliBUKCgowCOPPIIDBw6A8zoQc7A5eD7R3nRhM9iYLhxVc12t7i9IKXoEQUQikdI22bCHazQRaWnFM0Z+KUnsZ599hnnz5lkrlyBqMLWrtSIInZSUlGDChAmB1YZ9DsQcOQc8izddXo1LF6aoK0EQBFEDiCSRnXHbt3jggQcAAO+//z6++uora2USRA2FBJYgQvD5fHjuueewfft2wM8j9kgr8J4Y0+XVmHRhgMSVIAiCqJFUSVqxDt4dtxxjx44FAEyfPh0///yz5TIJoqZBAksQMhhjmD59OtasWQMIHGKOtARfFmuqrBqVLgyQvBIEQRA1mkiJxi58Yh2GDh0Kxhief/55rF+/3lJ5BFHTIIElCBnz58/HkiVLAAa4jzWDo9Rk2rAdUddyqj3qCliWVyZEyGIUkTLXjCAIAoicNqmWzX8NR3VHYzlw+OGlXejfvz98Ph8mTZqEffv2Wa4TQdQUqMUiiHKWLVuG9957DwDgymkMZ2Gy4TI4Bw8uxh2IvJoVV44DeAfgcFif5xoB8grYtI2O1XrY9X4QBEEQFbBtC51wq/fqwJasI6fT0qKNAMC5XOBcrvAHKp0LDmtmHUO3bt1QUlKCJ554Arm5uZbqQxA1BRJYggCwZcsWvPLKKwAA56n6cJ2pZ+h8UVzhclm7o85x1lKOYVPEFQAEFnhEwp15O+SVIAgikoiU6GsEwTnK+xtBsE1kLWNRYgHzIsuBw9SpU5Geno7s7Gw8/fTTKCsrs1wfgoh2ImBkShDVS3Z2NiZNmgSfzwdHYSpcJxsaOp9z8PaIK++wJK+23HEWiZSUXztWPCZ5JQiCiE5qUDQWgCmJHdZmAl5++WUkJSVh+/bteOmll2iPWKLWQwJL1GrKysowceJEnD59GrwnDjEnm4ODPoEMirqaJVRcLcirIkYXpBCjrpEApQwTBEFUPpGQZaOF0WisSp9nWzS2GtKK7+r3OqZOnQqHw4GffvoJ8+fPt1QHgoh2IrzVIojKgzGGadOmYdeuXYDfiZhTbcExfbJnW9TVBnGNlqiroXmwFHUlCKImU8PSh22b/6pFpERjgWqJxj5940d4+OGHAQBz5szBxo0bLdeBIKIVElii1vL555/jxx9/BBgQm9savD8GcDnBudU7lUqJuprE9rmukQClDBMEQRBqRNrc2CqIxnIJZ3dDmPXALxgyZAgEQcDkyZORk5Nj6foEEa2QwBK1kp07d+Ltt98GALjzmsFRpr3icKUs0hROXnkHoLAMf7VEXasixYxShgmCqA1EUvQ1gtKHpQWc9FDZ0ViNG9kVqOxFnkI+Lw8++CDatm2LvLw8PPvss/B6vZavTxDRRuS0XARRRRQVFWHy5MmBRZuK68BZqL1oU7Ut0qRwnK0LN1RD1FU1jZiirgRBEFFJlaQPK2GDxAKRE40F9KUVD+3wFKZOnYrExERs375duhlPELUJEliiVsEYw2uvvYajR4+C87kRc7ql6qJNnNNhPV0YsGWuK2Chkw1dyIlShgmCIKqHSIq+1gRCU4pNyrRtN4eraMud2/u+hqeffhpAYDrU2rVrLV+XIKIJEliiVvH9999jxYoVAANics8Bx5Q7G87pCHREZgcbLhc4t9u2ua4RsVCT3almVsUVIHklCIIwS7SmDysRaQs8OZ3gYmMtFRNOYp8f9QVuuOEGAMBLL72EM2fOWLoeQUQTkdN6EUQlk5WVhTfffBMA4MpvCocnqcIxzOUEi4uxfhfVwQfKsBh1Be8AZ7Uu4h1qq1FXO4TTTkheCYKIJmpg9LXa0oeVsGmBJ0PzX9XgeCDGbb0YlyswJlHh7rvvRsuWLZGbm4tp06bR/rBErYEElqgVCIKAl19+GSUlJeDLEuEqaFzhGOZyBjouK4MMBx9YeIm3ejfZpjRfQTgrelZE2gZ5ZQIDszN1uQYOBgmCIKqECIq+Ajal8IoybVViOf7sw1I5XGBMYVWIOU5VYod2eAoTJ06E0+nE6tWrsXTpUmvXIogoIbJaMIKoJJYsWYI///wTYDxiclsFzXtlLidYQpz1TsbBAzwPxnNgVmTRLskT5dVKZ27HHFXAXnElCIKINuiGmzrl/aW9ixTalDFkh8SKImuxHBYXoyiyD1z+P9x+++0AgDfeeAPZ2dnWrkUQUQAJLFHjOXbsGGbNmgUAcOc1Be8/Oy9FirrKcbvAYgx0NrKoa5C4upyBebB6sTPq6vfbI682oCqvdkQAaFBIEARhDJuir5WRPmzvmg82pRQbjcZyPLj4kPmvJqOxLFU21alchpUkdv6kTejcuTNKSkrwxhtvGLoGQUQjJLBEjYYxhmnTpkmpw+KWOczlBIuPVe9M9IqRRtTVUBRWS1ydTv3zYOVR15COm+MMzMeNxJRhgiCIaIRutBnGsMRqybQBieW05q0akliFv7mZaKxKOaHRWA4cHnvsMTidTvz222/49ddf9V+DIKIQEliiRrNq1Sps3LgRYBxiTgdSh22Z6woEyatpIjHqWpUpwxSFJQiCqDoiLfqq0X/anlKsp28M9/7YOTfWahkh0dh7BszAiBEjAARSiYuKiqxdgyAiGBJYosZSUlKCGTNmAABcBY3BcYnaUVc5WmnEainDRqmMua6RnDJMEARR26AbbJawNaUYiKy5sWFSioPShzXKkUdjR48ejaZNm+LEiRN49913rdWRICIYEliixrJgwQLk5OSA87nhLEk3HnVVOtboQk1q82CNSp5aGrHBhZpU04irU14pCksQRE0k0tqlKIq+hqIpsUbro9JfaqYPK56g8H4qzX9VPT9MSrHez48sGju0w1N49NFHAQBfffUVDhw4oK8MgogySGCJGsnhw4fx6aefAgBcJW3Aua1tKG426lrh2BqcMkyRV4IgCKKyqPSUYjOCr5RSbPTGhc3b7Tw9ejH69esHQRCkBSwJoqZBAkvUSN555x14vV7w3jpw+OqZK0RMI7a6PY4YhbUqeGIU1mLKsBSFjaSUYYrCEgRRk4i09iiKo69yKqQUW61PeR9qOPoaSrnI6o6+Vjg/OBqrK31Yo5y7774bTqcT69atw7p168yVRRARDAksUePYsWMHVq9eDTDAXXxO0J6vRmAuB1hsjOW5rpbmySoWaDHqShAEQVQOoogQlYrt0VibBN/y375cYv0pcZaKuf2yWbj++usBALNmzYLP57NWL4KIMEhgiRrH7NmzAQAOT0PwQoKpMpjLAeYK3Nm1XUDNwARA7IAs3nGWOn67Omw7sCMabOeAhiAIoqZQQ6KvcjhRFBmz3PZzLmegf7VD8uy4gcFxYBwHf7K1qU9jxoxBcnIyDhw4gGXLllmrE0FEGBE0giUI62zcuBGbN28GwMPBtTFVRpC8xjoDUViruJzmU5SYAPjPCh5noXO09a61Hdg0B5fklSCIaicSI6+RdKPSbnjZa7PSB8jfIwsSyyXGnxVYC58FX4MUALAssddeOwOjR48GAMybN4+isESNoga3bERtgzEmRV85vhk4GEvBYS4HhDiXJK+BguwZkDDeZIcWIq+W6hDawfOcLYMbzuzddLvEleSVIIjqJhLl1UYiMvoail19gVnRk9fLgsgyx9l+WZRYUyLLAddccw3q1KmD48eP48cffzReBkFEKCSwRI1h8+bN2LlzJwAePN/a0LlS1FWhs6mWKKyYMqwkrw4H4DK2WmFERl4tlxFhr4kgCCKSiLTUYTvhVV6bwX6BcylsTwcYTinmEuMVfmlcYsXoqxwmphQnGh+HXDlkOm6++WYAwPz58ykKS9QYSGCJGsPHH38MoDz6ysXAn+CCPyG8MMpThhWp6iisjqgr53Tqktiwm8BXRxSW5JUgiJpEDY++2kZlRl/l6MzM4VzO8P2fXuHTqpcBiZVHX5We0yuxngaJ0s9Dhw5FSkoKjh49iuXLl+s6nyAiHRJYokawZ88ebNiwAQAHnm+p6xzFlOHKJlwU1kDKcLiOvKqjrrokluSVIIiaRKTKa6RFX+1cDFEt+hpKuL5C73sURmIVo68VDrI+NxY4K7FhRVZ2mSFXvS5FYT/99NPIy8giCBOQwBI1gk8++QQAwHGNwHFnOxO1KKxWyrASdqURq0ZhtVKG1dBIJTbUQdkUhdWEFmsiCIKoGiJNXm3C1AKGKn2GauqwGlopxXrrFUZildKHlWAOXjMaK4++ilx77bWIi4vDgQMHsGnTJn31JYgIhgSWiHpycnKwcuVKAADvaBX2+LApw0rYeZc9NAprYaEmpQ69Ou+uKkZh7RBXgOSVIIjIIlKjr5FGdURf5Sj1HWYlP0RidUVfK1xbWWK10oeVUJVYhbf7mmvfwhVXXAEA+Pzzzw1dhyAiERJYIur57rvv4Pf7Aa4OOK7iHUwxCms1ZbhSorBWVxmWRWHDznfVorKisLTSMEEQNZFIlVeKvioj60cMR19DkUus2XqFSKze6GsooSnFStFXkRtuuAEAsGbNGhw5csTU9QgiUiCBJaIan8+Hb7/9FgDA881VjzOaMqwIx0GId4HF27QisdtVeVvkmMHuBZ3sirwSBEFEEjVcXm2luqOvoTBmz/vk85mLvsrhOIDn4WuUajj6KicopVjj7R4zdgEuvPBCMMbw/fffm74eQUQCEdjaEYR+1q1bhxMnTgBwgeMaKh7ji3eguFEMPCk6t7BRgXHlKT4WBy+czw94vIFy3Ma2w6lYqYAkRtLdciaUy7QdgwSKvBIEUdOxo620UV4jcuEmABBsuCnqcIDZsJUMFxsT6MfLPJbLCowrLBeDvIwEFKRr32AfMmQIAGDZsmW0pQ4R1ZDAElHN0qVLAQAc3xQcF9zp+uIdKK3ngjeeB3NwYA7zPYQkr0AgDdlkFJbz+QGf33Q9gislgPmFQKfOcfYNOkwOhJjAzsqrHZC8EgQRadgdfRXb2wiJnkbSzVCRoPRhKxIre22WJVYeDbYgsd6G5anDHGdZYgUnB+YACtJjVEV28pTfkZKSgpMnT5bv3EAQ0UlktJgEYYLCwkKsXbsWAMDzTYOe88U7AuIqm2/qTXIYjsIyDhCcfFB6DzO5FL6SvHJOp/EoLBPAfL6z8mon4h1zg4MpVXE1OygjeSUIItKoLHlV+7/Zckxiq7zaFH1VnPtqU7/HfD5TIssprYVhVmLl75MosSbeuvzWcdLPzAFJZEPhOB6DBw8GEIjCEkS0QgJLRC2rV6+Gx+MBkAggSfq9KK+hgw3GG4vCyqOuoRiNwqpGXo0OiORR19BO3K4orMGBR9ioq9HBFckrQRCRRlXNezXaXkZI5DYIu1OHlTAqsRp9o2GJVZuLa1BifQ2SK/5S2mrHWJUEp9KqxsoSKwrsmjVrUFJSYuxCBBEhRGDLRxD6WLFiBQCA5xtLd2nV5FVEbxRWS14Dz3MQ4t26JDZc2rDuKKxcXlULq9pUYt0pw3oHWSSvBEFEGpUhr1ptIsfrazNr+LzXsCsP65VYHa9Nr8QqRl/l6JRYX4Nk7YWbDEisPPoaipLE3j1uMRo3bozS0lKsW7dO30UIIsIggSWiksLCQmzevBkAwPGNg+a7ag02GM/Bk+rUlNhw8nr2OO1UYs7nB1fqCT/nlePCS6weebUTHanEts93JXklCKI2oFc8qyi6GvHzXrVQykYySTiJ5WJj9K2EXOYJK7K6Vh3WIbH5reMUo6/B1wqeF8txHC655BIAwMqVK8PXgyAiEBJYIirZsGFDYO9XJMCfkFxhvqsWWqnEeuVVRC2V2PBiTVr1NiqvVZBKbEpe1QZjJK4EQUQqlT3v1ezxNXjeqynU+keDr09TYo1u46MisYqpw2qEkdhw8ioSOi9WFNi1a9fC6/Xqrw9BRAgksERU8scffwR+cDcMG3VVIjSVWGmxJj0opRKbXWm4QhTWymJNlZhKbCnyGjroInklCCJSqW55VTuvhs971R19DSW0nzTZByot7hQ2dVgNT7Achk0dVkJlcSet1GE1mAMobOrGPfd+ibp166KkpARbt241XA5BVDcR2AoShDaCIEirD/sSG5saZMhTiY1GXSuUJUsltrRNjjyVWGuxpqpElkps2zY54uCL5JUgiEilqhZt0kslbLcTlfNew2FjfylKrO7UYcVCWJDEmh5rhCzupCd1WA3ByaEoPQY9e/YEAKxfv95cnQiiGiGBJaKOAwcOIC8vD4xzgMXUNV0O4zkwE1FXJYQ4FxDjtr7HK8cBArNnvqvNqcScXYMUJpC8EgRRu7BDPCNRXm3EsryKCILp6GsozOczL69SIQGJNZQ6rEa5xJqVVxHByZHAElENCSwRdfz5558AAOauZ6lDZxxQluKA1+DesKHwPgF8qS8gw3Em04xEfD5A8IOzQapFrN/RZgHptJNIi24QBEGI2Nk+6V1RWFdRnC03EmvMvFc1HA7bIrGc2wVWVma5HCE1CXypD44ik/vFyjjeOwHFDa2/76LA7t27F/n5+ZbLI4iqhASWiDr++usvAEBpWn3TZTAOYHzgYUVieZ8Azus/G1G0MvDx+cDExRQcDnAup/my5Kv68ryFOUXB8mp58CQXYZJYgiBqMnZGTGVtr23ZMFaJpNRhEbmcW5yCw4lrUjBmXWL5s/WxIrHHe8XD7w6MXaxKbLcFc9CsWTMAwPbt2y2VRRBVDQksEVUwxqQFB/Lb10V+c6OLLgGCI9D4S7/jg/+vlwryCoDFusxFYeXyKmJWYu1Kz1WJvJoePClFcUliCYKIJOxqkypJXrV+p6usmjjvNRwmJJYL3dbOgsSy1KQK9TErsX7ZvXZRYs2I7MluDCxGQJcuXQAA27ZtM1UfgqguSGCJqOLEiRM4ffo0GMehLC0ZRS39uiVWjLoq4UkyFoVVklcAAMeBxbmNSaySvIoYlVg1eTUahQ2TNmx48GR3CjJBEITdROANNa221mg7XKPnvQLa814NSGwFeRUxIbEsNUl52z4TEnu8V3zF8nnj0VhRXgGgc+fOAEhgieiDBJaIKnbv3g0A8KYkAQ4HmJOB6fA7LXkFjKUSq8qriF6J9fnASkvV5dUo4SKveiVW55xXXYMnJoQvKwIHjQRB1DLsnvdqSzHh66RXYiNx3muVyauIHfNiyyVWj8iqyqusPnolVkwdVr2WAYkV5RUAOnToAADYs2cPGC2uSEQRJLBEVCEKrKduivS74nTtKGw4eZWO0yGxYeVVRLa1jiJi1FVPh6EnCqu34wknsXYu2GSkHJJYgiCqiwiUV2OX1K5/JMqrrRh5fWEkVjX6Kqd8jYlwEqspr7L6hJPYcPIqXU+HxJ7sFjxW6P/j53A4HCgsLEROTk74ixBEhEACS0QV+/btAwB46p5djp45GYpa+lHQrOLHWa+8SsdrSKxueRXLUpsPq5UyrIaWxBq9a6omsSbkVXXgZEaCSWIJgqhqIlReDacHqxwfqfJaKYs26UVFYnXJqxwNia0w7zVMfdQk9viF+uRVuq6GxJ46jwVFXwEADh7NmzcHAOzfv1//hQiimiGBJaKKI0eOAAC8yYlBv2dOhsJWwRJrVF6l8xQWdTIqrwCUU4nNyKuIksRW8oJNeqgwcLISwSWJJQiiqqgh8qp2Xo2XVyuESKxheRVRkNiwqcMq9VGSWL+JNSGVJPbUeQxCrHLf3Lp1awAksER0QQJLRA2CIODo0aMAAF9SQoXnmZNBEFe9NymvIuKiTrxPgKPEa1xeReQSa0VeReQSa0Ve5VFYG9KGpYGTHenHkTC4IQiiZlPD5NWu8xWJVHm1KujlEmtaXkVkEmtKXmX1cRR5JJE9fmHFRZt0VylEYtXkFQDS09MBAFlZWaavRxBVjYWNJgmiajlx4gQ8Hg8Yx8GXEKd4THFTPzi/A4lHrIkU4wFfPA9noQNOj89SWeA4gLfxXpHA7Iu8ArRCMEEQhFkiSF6DyrGrXjVVXkXsWNgJCPTJLqd5eQ2pT2GzWFPR16AqlUtsSWPt19i4cWMAwPHjx61dkCCqEIrAElFDdnY2AATkVUUImYuh8BwfCgzuDxuKw8vAexi8SS74kqz1IpzHB660DHC5wLks3ukVysXV6kBAEM6uOGjDQIcJtHohQRBRQpTs9WqhMPvKsomIlFcgkNFkQ//FJQaywvjCUstl5bdPheAEEo5Zr9f4sV9hyhWfaR7TqFEjAMCxY8csX48gqorIa+UIQoVTp04BAPxxseoH8QxwMBS1NC+xDi+Do5SBYwzgYUliOY8PXHGpLR0kBAb4/YFyHQ7zgzC5vAKBO+wWBjxB8mrHwImW8icIorKIwCkKESuv0bpdjk7OTscRrPfR0pQcwZLE5rdPlRZt4n3MksTeP+prnBtzGK1dOXj+0sWqx9248hsAQE5ODm2lQ0QNJLBE1JCbmwsA8Cut7MuzwEPEpMQGyatUtjmJVZRXs1FYmbxK5ZuR2FB5FTEpsYqRVysDKOo8CYKoLCJw3mtNl1dbqQx5FbEgsWL0VcKkxMrlVcSsxN4/6mucF3tI+r8osUoi648NXNTj8aCkpMTwtQiiOiCBJaIGSWBjQ0SSV2ncDUqsorxK1wBgYG6LZuTVqMQqyKt0HSMSqyavIgYl1va0YZJXgiAqC5JX/UTivNfKlFcRExLLJSYof7ZMSKzadjlGJTZUXkVau3LQ2pWDyZd8EfR75nCAlU/LysvL019hgqhGSGCJqKGwsBAAIMTI5E9NXkV0SqymvJbjjXfqisLqShvWK7Ea8ipdT4/EhpNXEZ0SG1ZejQ6mSF4JgqgsSF71U1vlVcSAxKrKq4gBic1vn6r5vF6JVZNXORnu7GCJ5Tj4YwL2nJ+fH/YaBBEJkMASUYOY2sKc5R1QOHkVcTAIGn2WHnkNXC98KrGhOa/hJFaHvErX1ZJYvfIqEmYAozvyqndQRfJKEERlEYHyais1XV5tJKy8iuiQ2LDyKqJDYpVSh5XQI7Hh5FUkVGKF8q2ExEABQUQ6EdgaE4QypaWBTkBwOvTLazkl6cpRWN3yKqIhsaYWbFKTWAPyKl1fSWKNyqtUmMoqz0bThsMNrkheCYKoLCJUXm2LvtYGebUp+qpbXkU0JFa3vIpoSKxeeRXRkth7Ri3RXxCCJZY5Ap8lj8djqAyCqC5IYImoQRRY5jLRoSmkEhuWVxEFibW02nCoxJqQV6kecok1K6+AYiqx6TmvaoMskleCICoLklf9kLwqoyCxhuVVREFijcqriJLE3jNqCc6PPWi4LFFixTmwPp/Ffe8JoooggSWihrP7lposwMFQ1CIgsablVUQmsbZslSNKrAV5FREl1vJy+DKJtbxgU+hgi+SVIIjKguRVPySv2sgk1rS8isgk1qy8isgl1qy8imS4sxF78jQAYNmyZeYrRRBVCAksETVInaMV93Ey+BIY/G7OvLyKiN8en9+efV4jkcpYaITklSCIyqKmy6udRGKdAFsXbbIFJgRuMNvx2RIECPFuS/IqwvsYki7KsSSvoVAKMREtkMASUQPPWxcg1yknYk9yKEvmUJZsrZN0FfrgzC8FXE6wGBN7u8rx+cB8vsCAwuKggjEGMGbP3fDyaLAtgy8mBP6NwMU9CIKoAdQGebWrXpUgr5azfgB7Vxx2OGy5uczFxgY+W17r6bW+BilgPIfEI9ZFseymM6gfX4QZxwdYLqtpYy8A4NJLL7VcFkFUBSSwRNQgCuw5jXJMne865UT8MQ6cD2A8h7IU8xLrKvTBeboEnK9cytwu8xLr84F5vWfF3OEwPbhgTJaCzPPWJDYkldnSIEyUV6kwkliCIGyE5FU/lRh5tSSxdsuriAWJleQVAATBksT6GqSAOQN/Q97jtySxZTedQePkfAiMwxlPnCWJ7RYjIDkh8B4lJSWZLocgqhISWCJqiI+PBwBcE78NF3baZ+hcubyKmJXYCvIqYkZiQ+VVxITEBsmriFmJVZmHa2owFiqvUmEksQRB2ADJq36qIG3YlMRWlryKmJDYIHmVyjEnsXJ5FTErsaK8SlWyILHdYgTEcC4UlwReZ0JCguEyCKI6IIElogZRYPnSGLzZfIkhieV8CJJXEaMSqyqvIkYkVk1eRQxIrKK8iliNxIZgaFCmJq9SYSSxBEFYgORVP1U459WQxFa2vIoYkFhFeZXKMSaxSvIqYlRiS27MC5JXqUrlEmsEUV4BoLg0UD9xnEUQkQ4JLBE1JCYmAgCKink0cCTgzeZL0LvT3rDnuU45EXdCvePWK7Fh5VVEj8SGk1cRHRKrKa8iRiRWRyeva3AWTl6lwkhiCYIwAcmrfqphwSZdEltV8iqip3/TklepHH0SqyWvInoltuTGPDRNydM8Rm8UVi6vAKQILAksES2QwBJRgzg3I68g8LFt4EjA682/1YzEKqUOK6FLYv0svLyKaEmsXnkV0ZBYXfIqokdiBaZbPDUHaXrlVSqMJJYgCAOQvOqnGlcb1pTYqpZXEQ2J1SWvUjnaEutPCy+vIrxHux/XI6+hqcSuE340nXEGHUcdQ5frs9Bx1DE0nXkG3fK9QfJa5gkEBgCgTp06uupLENWNxQ2yCKLqqF+/PgDg5OmzHYIYiT3e1IEXj16JddtbS8/plVeRgMQCgAMx+cGdibTisBHcLjAAXJn37O+MyquIwwEgeLseQ/IqwvPgBEF5UGFAXkU4nrO+R6xUGEdb7BAEER6SV/3Ugq1yDMmriMAqvDeG5FUqp1xiQ/ab9aelQHAZ+xsmHvGgML3i/jp65FWqDuNQXOBC6Utu9Pp+F3hv8POpv5WCvXEaGJ4MNrU+EMsj90zg/XO73VKmG0FEOhSBJaKGtLQ0AMCJU8GdVQNHAs51xwbNizUqryJKkVjdqcNKhEZiy7e4MYUsEmtKXkWUIrEm5FWkwqDNZDmBwiJ0sEUQRGRA8qqfCJHXCjdMq1teRWQ3X03Jq1ROcJ9nRl4B5VRiI/IKAO4yH6Y89g36f11RXkU4L8AtyAf37yygRMDJ3EBd69WrZ+t6GQRRmZDAElGDKLAncx2KDihGY+s3yTMlryJyibUkryKixIp7vVpB7KzNyquIXGItyKuINHizWE6gMOpACYKoZEheqxQm3ybOJizJq7wcK/IqUp5KbFZeReQSa1ReAeDut1bh3L+PItxtcgaAW1MK7pmTOOl/C8DZLDeCiAZIYImooUGDBnA4HCjzcDh1WvmjOzP3ApzMSoEn2dq1GM+B9zE4irzW5FVepiDYkyLLcyR5BEHUPuxq92yU14gkwuRVgrfnfeccDtvkFQ6HPZ8rQQBzOS3Jqwjv8YPxnGF5rXOqCIOW/QMACPeKpOcX5uPIzp0AgKZNmxqrKEFUIzW8FSdqEi6XC40bNwYAZB5Vnr6dVZoKzsOjrL6AMgtrEcTlCog/7gFz8vAnxoC5LUwX9/rAlZSB43mAt9jpCgzMLwQGAlY6Xfk8WJ6zPKCT5sHaNTAkQScIQk4Ey6tt6wDYQYTKq5TxY/Emrm3iCgTmrXJcYF0Ki7CEwBY2ztPFlsopaBGHghZxYBxw9JuWhs697PsdcBm84c55gcOrVwMAmjdvbuhcgqhOSGCJqKJFixYAgEMKAvvsiU5Ysb0DAIA5GcrSzEss7wusOMw4DszBQ4h1mpNYrw9ccak0R4ZzOsxLrMCCU5CtSqwcCxJbYfBGEksQhJ1EsLyK2CaxVqZhRLK8yqOvJiW2MuRVxIrEsoS4s2X5/KYltqBFHPxuDn53oKyYXGPvU5e/j5i67qFjxwAAzZo1M3U+QVQHJLBEVCHeIcw8EiyTz57ohHmbeoMrPtvBmZXYuFwBcdnBCykwjjMusSHyKmJKYkPlVcSMxKqtQmxCYlUHbSSxBEHYQRTIq0i1Smy0yKuIQYmtTHkVMSOxQfIqYkJiRXkNxUgUNr7YeP39ADLLxyhigIAgogESWCKqaNu2LQBg14GzK/sqyauIJLF19ZUflysg4WiZ4rxXoxLL+YUK8io9Z0Ri1eRVxIjEqsmrVJb1dGIJkliCIKwQRfIqUi0SG23yarScKpBXESMSqyivIj79Cy2qySsQiMLqldiSeJW95zU4HBeHEo5DXFwcRWCJqIIElogq2rdvDwDYe9Al7R+eVZqqKK8izMl0zYnVklepLL0S6/UBHu2OkHM6wLlc4UVWz0BGj8SGk1epLH0Sq2ugxvH2DB5JYgmidhGF8ipSpXNiI1BeOY7TJ686+qOqlFe9sIQ4bXktR08UVkteRWJyGY4saal5DM8xpPQznrq8KykJQCA44LDzvSaISoYElogqmjZtiqSkJHi9HA4ccgbNe9UiXDqxHnmVygonseWLNuna6objtKOx4qJNetCSWL3yKpWlLbGGB2gksQRB6CWK5dVWwt28jFB5Bc/rj7xq9EvVJa9MI3oqiauessKkEuuRV5HYU+oSy3MMjzb7AdwIHsxgEHZncmDLhnbt2hk7kSCqmShv3YnaBsdxUhT2lU0tVFOHlRAltuCciinF4qJNelGVWCPyKkNRYsOlDitRBQs7mY4ukMQSBBGOGiKvlZ5KHMnyahQFia3WyCsTFCVWT9S1AioSa0ReRWJPBb9PPMcwofkyPNrsBzRz5sPfwIH8GwOrIevZBxYAtrRsCQDo2LGjoboQRHVDAktEHeeddx4A4O/1ybrlVYQ5GYTY8pTicolVWrRJV1kKEsv5BcPyKp0rl1gz8irC88F72xmNvgaVFSyxlgdlJLEEQahRQ+RVpNIktibJq4isj7JNXl1O82nDoRIbF2v+8xkiw4XNjcuriBiFFaOuzZz5aObMl54/MTkZxb1cuvaBzekVi72ewNina9eupupDENVFZLTyBGGA7t27AwBij50yvRy/OC8WgO7UYcVyyiXWnxgT+EWYea/h4JwB8TQtr3LKBxOm5VUqx8aFnexCbwoXQRDRQQ2TVxHbJbYmyqu8LDvl1Wo/US6xLCEOzGHt9TlPF6OweRwKm8fBF2O+TmIqsSivobBYDlnz6iLv33Gq6cTMBeT9Ow67nv8WjDE0b94c9evXN10ngqgOTGxsSRDVS7t27RAfH4/i4mK4TufBWzfVVDnMySC4Yfk2DuM4OMq8gdRhO+B4cA5e/9xXNcS9ZznOusTaCcdb2+tQJJJeE0EQ5qmh8goAXKQKJ2y4uQl75dW+cjhAYIDD+nvPOXgwOxZ+inEh8XApzrSJs1wWOCjKq3StWA45L6Xg1COJSF5Ygrg1HvBFDEICh5LebuQPj4M/zYHNX2wDcDYoQBDRROS19gQRBqfTKaURxx3NMV1O/BEHUg764I9xgLktfhX8LCCMHBdI3zUJEwRA8EsSaws8Lw1YTCEwSTg5nrM+ICN5JQhChORVb2G2RF/lfYGlfkF+vsp2cQYKkj4HtmQMAbb0M5wzEMW1enOaxceAcRz4UmsZWgBQWp+D4AQGf/lo2GP9aQ6cvi8RWR/VxZGv6iHro7o4fV8i/GkODPp5PP744w8AQM+ePS3XiyCqmshr8QlCB3379gUAxB89Ds5nvBOOP+JAnV1+OEoZGM/BH+OAL8FpSmQdxR7wRSWB//CcaYllggCIqcPlabuc02lOZAUhWPLMSqxMXuWYHpjZIa8EQdQMSF71Fma7vNpellmJVVi12NKaDXJMZjFxTqckr4Fy/KYllsXHgImvTQBS9pWYKqe0PifJKwDEHeMx6KvwEqvEoF/Gw72/DMeOHYPb7UaPHj1MlUMQ1UnktfoEoYN//etf4DgO7jNn4CwoMSyxjjLAWXK2c2M8B+bkDUdjHcUe8PnFwZ23BYkNgufOiqwRiQ2VV6k8i5HYEAwP0OySV4q+EkT0Q/Kqt7BKlVczfYLqOUYl1tb0Y4U6McGwxEriGvoaTSzOGCSv5TiKvIYlVhRXIWTSX/wx4+/doF/Gg8+JwaQ2rQEA559/PuLibEhrJogqJvJafoLQQd26ddGpUycAQGzWcXA+gC/jdIls/BEHkg8qd0ZiNFa3xIqpw6GIEut06hLZoOirYlk2pRSXS6yuQYtK9FVOlc/vInkliOiH5FVvYVUSeTUisbbdBA0jr7qjsOKNXtWC9AtsUNRV6XmdUVgWH6MoryKOEv2pxPKoa8ULQXcUdtAv4yV5BYBff/0VQCAYQBDRSOS1/gShk4svvhgAEH/0CMA4QODA+aApsWLqsDz6GopeiQ1KHVZCiqBqR2M15VVelh6JVYu+BpXFh4/G6pBXEV0DNpr3ShAEQPKqr6AqTxvWI7n6bnzqaOt1Rl7DSqze90dHFDacvAbKCZ9KLIqrmrwC0J1KXFpPQ17Lic8Kn0o8aFVAXEV5dRYUYNeuXXA4HOjXr1/YehBEJBJ5PQBB6GTgwIHgeR4xublwFBUFfsm0JdZRCk15FQknsYqpw2rYmVKsJbF65DWoPPtSijUHbjTvlSAIO7e+qunyGi6qqLcou9p3o+Vo9Yt2pQ0beX/CpBLrklcRjVRirahrKOFSiUvrcRBUtsEJJT5L/ZqDVo0Hnx0T9LvHm6UDAC644AKkpqbquwhBRBiR1wsQhE7q168vLf8ef+Tw2SdUJDb+iAPJmfrnsWgu7qSWOqyGisTqir5WKMfC4k4VylOQWAPRVzmKAzia90oQhJ17NtcGebWjKJvmtpqWYKX+0YS8KkZhzbxHSosRhi7WpBOlKKwReRVRSiUurccZkleRQV8/UvF3CvIKxrBixYrA84MGGbsIQUQQkdcTEIQBLrvsMgBAwqFDwZJTLrHyebF6o69ylBZ3Cps6rEZlLu5kNPoaVJ5MYk3Kq4gt2+yEQvJKENELyavegqpVXpXOtXW+q4XIa5DEWnmPZFFY1cWadJUTfCPcjLwCqJBKLIqrUXkFgPijZ8cVg1aNV5ZXADEnT+Lo0aOIi4tDnz59jF+IICKEyOsNCMIAF198MRITE+EsLkZMTsiesLJ5sQmZxqKvoQSlFBuNvsqRL+4EGIu+KpZVLp+W986zd4ViAJQ6TBC1HZJXvQXZljJsRztuVznS3ugh2+SYxo49yP2CqahrKFxJWdjFmvQgRmHNRF1DGfTNIxj86/3gs2MU5RUAhsW4AQCDBw+m1YeJqCbyegSCMEBcXBwuv/xyAEDiwQPKBzEOjlLAUWpNqBjPgfMI4ErLrHV+PAcIApjPvFAHlcWbvIusVp5dA8UIHHASBFFF1HB5tQ275NXhsHFLmsgqx/abq3aU5+DBFZVaklcAEGKcSDrisSyvAFD3bx7c8VjV5/nSUmn14Wuvvdb6BQmiGqnBvQJRWxg6dCgAIPb4cTiKiyo8H3+cQ9JRP8ABjA8EZs3gyvfAeaoQnF+wb0ESq2UILPDg+UBqsoX5SlKaVqRJrJ2LvxAEUfnUEnllgsXMF/G1WSyHk09LsSJU8kipVfnkeVs+B/alMZ9d2Zl59W9jo4jbBXAcOIs3oYXYQCTYUepH/S3m6xR7iiH2FIPDAyTvUz9uUnpT+P1+dOrUCW3atDF9PYKIBCK3ZyAInTRv3hw9evQAByBx3/4KzzvKQqKvnDmJ5XwCOK8s5desWPn8YJ7yzoqz2MkzIWR+kD2DBisSW2FQZ5sMk8QSRMRTS+RVxLTEhr42k+VwVtdUELEr6iqWJf8cmJxyo7jAoKmCQlZ2tjLlplxeRfiCYlPFCLHOoMi7O9+cwIri6vAE/u9Sq47fj8WLFwMArr/+elPXIohIIvJ7B4LQwc033wwASMg8CL7s7AqB8cc5JGYp3CU1KLGufA8cZxR6Bjuig6LEGt6qgCl36EYlVhDUV3q0MxJrVzSWIIjIpJbJq2nUXptBQVOVV6Myqna8mXIiMfKqkKJtOArrdlWQVwCmorCh8ipSf6uxOonyGopSFPa1tm1w5swZNGrUCJdeeqmh6xBEJFKDewiiNtGzZ09kZGSA9/uRuP9sFLZC9FWOgZTiCtHXoCc5/Z22PPoaVAZvPBobGn2VY2ck1uHQPZgMG40giSWImkktllfLqcQmCBt51Suf4Y4zUo7WjVidUdiwC0gZea+15hcbicKK4qpSL71RWCHWqSqvAODO0yew8pRhJSpEYQUBn376KQBg+PDhcIqLSBJEFBNdvQRBqMBxHEaOHAkASDywH5zXi7hslehrhZPNz4sNqYR90dhwqEVf5eiZF6sWfa1QVvhorO5BHEksQdQsarG8iuhq//RkougoJ+LShvXeMA0jsZUx31ULXVFYhahrhcvpiMJK4mpxwa7QlGE1kmWzqWZ3Ow/Hjh1DSkoKhgwZYun6BBEpRGdPQRAKXHTRRWjWrBl4rxeJBw/AaWTlYQ2JVU0fVixHQ2LVoq8Vygh3J5sBfr8+8QQiYl5sBUhiCaJmQPKqDyOvTUViDW9voyWoRuQ1XDlVnTKsJfmh8121YExdYlVShtXQisJqRV1D0Uoj1oq6huIS17NkDPPmzQMA3HjjjYiNVV+lmCCiiRrcWxC1DYfDIUVhk/bsAXw6W3oRlZRizfRhxXIMpBSrlqGRUqyVOqyGUn30Rl+DylGWWFMpdLRCMUFENySvQai2gza8Ns6u/VTNlqF0jpl+TiEKW9nzXTVR6gPDpAwrXlohChsuZVgJpTTicCnDWszo2AEHDx5EcnIybrjhBuMFEESEEv09BkHIGDx4MFq1agXe60XS/l3mCpFFYw1FXyuUI+sA9UZfK5RhU/QUqLZ5sZrQ4k4EEZ2QvCpi2yrssnIkeTWD/Dw7U4Zt6E8MR5TlKL3PNuynayTqGoo8CmslZVgehdWbMqxE8l4/5syZAwC45ZZbkJiYaLwQgohQak6vQRAIRGHvvvtuAABfvB8QSswVVC6xhqOvFcqxKxpbLsN65r5qIc6LBYxHXyuUFYjG2rKACUksQUQPJK/6sDPyagU7IrfycqxmvghClc931YJ5vYZThhWr4vObirqGIkZhzUZdRZ7o1ww5OTlIS0ujrXOIGkcN7jmI2kqvXr3QtWtXAAJQZjIKCwQk1mFjBJSZ2wsvUBfrnXRweRbufIcWZVedCIKIDqze/BIhedUuwg55DRRkvQyxHFuyeOzcc9b6wkimt7KrUBcD82+1quMXLMsr/B4sWLAAAHDbbbchJibGUp0IItKowb0HUVvhOA7jxo0L/Md7BPCfMVWOq8AHZ16JdYn1+c8uFGFFYgV/IPrKW5RPQQgMQHneHonleOsSa+V9IQii6rFLYm0gkm6iSXWx2qaJ5ejcfka9Qlzwv1bLsYpd/Y74/viN78MaXI4jUFZpWfhjNcvhwXgOztyi8MdqwHn94PwMqXut1WdENzfy8/PRsmVLXHbZZZbKIohIhASWqJF07NgRgwYNAgBwRVvAlRnv5DifAJSnDzMHb15kGQvuZJlgfnAjnsdz4Bw2DATKBxOWyymX2EgaSBIEEcHYFH2NlDbHtvavPIJnvU22KVpqZ9TVDnm1I+IKlIurQyrL9JSa8tfFxDqZnHLEef2BR3k1nEUm1swAkJDlQfyRE/j6668BAA8++CDt+0rUSEhgiRrLPffcg8TERDDkgyvLBO+xfifbsMTKo6+hGJFYMfoaipmBTmhHbXZgobSIhplorF3R1wiKCBFErcDMd86mhdtChbE6RVb12kbbtvL2vEJbbDQKq9aWG23jbY662iKvShiNworiGlqe0ShsubiykHKMRmFFceUsdmEJWR44Snzo0OY0GGMYOHAgunfvbq1QgohQSGCJGku9evVwxx13AAAE7AZfWgJXkU+XyIrpw0oYisaGRl8rPG9gYKJ2rBGJ1RoIRVJKMUEQ0YERia3kqGt1tDthr6m3jbcj6grYO9/VDuxOGbZcjkO1LENRWHnUNRSdUdjQqGsoSYf0CXVClgcJWR44S/x46PHzsGPHDsTHx+Oee+7RdT5BRCMksESN5tprr0VGRgYAHwS2E5yPwVEmhJVYefqw8gEmorFqWEkpFqnqlOJwKw/rlViKvhJE9KPn+1fDUoYBG+uiR171RGH1tP92HaOHCE4ZNl8Ory2vOtETddWTRiyKq7PED4YyvP322wACCzfVr1/fUh0JIpIhgSVqNA6HA4888gh4nofAHYOAbHBCQGL1RmO1qJJVitXSh5UINxDSM9C0a64SzYslCAKoUnmtqvbG0HW0btRFUuQ1Eue76kUr00ktZVgJrTRilZRho2hFXfUij7oCAANDzz4eFBQUICMjg7bNIWo8JLBEjadDhw4YMWIEAMCHHWDwgBOYajRWK31YCdWUYq35r6qFqURjjUQq1aKxRudR2SSxqtFYir4SRM1B7XtYDZHXypbYKo28ylFqw81Ip9Lx0TLf1VAZxqOuimnEJqKuSvNgOb9gWF6TDlcUannUVURAFv744w84nU489dRTtHATUeMhgSVqBbfeeitatWoFcJ5yiQ30IErR2LDpw0oopRSHm/+qhR1yZ8edfaXBiN5osByaF0sQNZ/QwT+lDZ9F3qZbWWlYLrE1cb6rrSnDNpRlNuoaMobg/AI4PzMceXUWnr0JHhp1FWEoRVzSQQCB1OFzzjnH2EUIIgohgSVqBW63G0899RQcDgcYlw0Bx6XntKKxRrG03U6FwmyaGyvWxeI2ARGZUkzRV4KITKpZXu2WXju3ybFn6zKbzo/WlGElxBvGkTTX1S9I8moFpagrEEgd7t6rFIWFhWjfvj1uvvlmS9chiGiBBJaoNbRr1w6jR48GAPi5HWAoDnpejMbyHp81MbJ1gSdmLuIpx7Z0NxuaC5sGtWfLi5zIDEEQ5URI5NUuia22lGE1IizyGjEpwxxvj7x6ffbMdRWjrhbklS9WjrqK3HFPa6xbt066SU+pw0RtgQSWqFWMGjUKnTp1AuCDD3+DITjCyQmyzsaCxHJeH+D12rPnoQ3pxJwdi3MYnUMbDrtkliSWICIDKdvD5rbCApEiwXA4rJdRHhWskVi9USv2Jxb+XpKIW+zrxKirw+B+sKHwxR7AVzHqKiLgDGbPng0AGD9+PFq2bGnpegQRTdTQlpAglHE6nXjuueeQnJwMxuXDj12Kx3GCTGLNiCxjYH75XKVq/KoJDExMrbJDZO2aowTYI/gASSxBVDeh30EbJJZZlRqLVIa8GtprVA7P27dKcE0itA/xGVy/QixGfG8tvr+crN/njK6lUQ5f7JHkVQ0GL+o1Ogi/34/+/fvj6quvNnUtgohWSGCJWkfDhg3x1FNPAQAE7hAEZCsexwksWGStYpes2UF1bSyvNqgliSWI6KUSv3t2SKwZEbVFXh0O+yKvEdy+mZZyqyj1GyY+L3ZkKIlRV6tI4qoprwy9LvYiOzsbTZs2xWOPPWZPajpBRBERMpomiKrlX//6l7TYgY/bBgb1VB/L0dgKBer82tkx/1WzHsa2b1DeXsB4p6k6ILVLYqkjJ4iqQ3Pf6chJJTaCbfKqgiHhi3B5BWDf9BIj/Z0N/YWUMqzw/nKlHv3l2CSu4aKuIrf+X0usXr1ayihLSEiwfH2CiDZIYIlay1133YUuXboA8MGLP8HgBV/qBVdccd+1CtFYqyKrNxpb2QNASikmCMIser5nEZJKrFdKK1teDREN8lrV2NRHhE0Z1rEFnh1R1yBxVZFXR16p9LOAHLz77rsAgAceeADt2rWzdH2CiFZIYIlai9PpxJQpU5CWlgZwRfBhC+AXwGncAa2UtOJIoCpSio0MZEliCSKyqeLvV1XMh61KedWMwoqLNUVRG1YlacSVHHU1VE4VpQsDZ+fSMhTCnbALjDEMHToU1157reU6EES0EiGjZ4KoHurVq4cXX3wRMTExYNxJ+Nz7dJ1XLdFYM8gXcApbj8qPxhoahFJKMUFEJka/UxGSSqwmqLbt8WrnfNdoa7fsXqVejtE+UmUhJzsWarI96qoTBi8aNstEcXExunbtivvvv99SHQgi2iGBJWo97dq1w5NPPgkA8LkPwxt3Qtd5NXaRp+pa4EkJSikmiMiiGr9LlRGFjbhtcqitCsZM+x/yObEj6lqVizSFwiDg3B55OHLkCBo2bIipU6fC5XJZrgtBRDMRMFomiOqnf//+GDNmDADAk3oAvpgzus+ttkWeKhN5Z6+2gFM47BoYAiSxBBHtRGAUtrpXGg5qV0leA4j9aVXNddVTRhUv0iSHgaHvvxOxadMmxMXF4cUXX0Rqaqrl+hBEtMOxalv/nCAiC0EQ8MILL2D58uUA4xF7sgMc3kRDZbDyARFX5gUrrbgYlLEK+XUtJKFdhoEUYjWYDWUIDGCC9QiKHYNgavIIwhx2CJYdUmLnzTEr2BB15cQyaoK88rw927nY8b7GuMt/sFCf2BjL9WDxsYEfDIqriCfhIHzxR+FwOPDyyy/jggsusFwngqgJRECohyAiA57n8cQTT6BHjx4AJ6Cs7i4IjtLwJ8qQ0opJkhSJmIEnQRDGIHkNxo7X4nRan+9qR+aPHWXwETSc5K1HXZkdc3o9XsPpwnK8sVnwxR8FAEyYMIHklSBkRFCLQxDVj8vlwvPPP4+MjAwwhw+l9XaC8V5zhTHBesRQqOS9YKuBiBmAEgRRddREebXQNnNO59nVhs1ix41SO8qwS16tbslmw5ZuTBCsy6vHG3hYKMePLPiSDwIA7rzzTlxxxRXW6kQQNQwSWIIIIT4+Hi+//DIaN24M5ixDSd1/wDiTEgvYk/ZKEksQRHVhNfpaE+XVShGivFqhJsprdZ4PG6OugmBNXtlx+BodAmMM1157LUaOHGm9XgRRwyCBJQgF6tWrh9deew316tUDc5egtO4/YMxjvkCKxlbAtq0rCIKoPEhexUoovxYDbTLndFqX10hJGQYiQ15rUNSVKy6FX8iG0PQQ/H4/Bg4ciAcffNCeecUEUcMggSUIFdLT0zF9+nTUqVMHQkwJSuvtAvOWWtvvjkS2AlU6OKW5yQShH5JXsRLWi6jslGG9bZtd4mqHvFqRz0gUV5NlccWlAXl1ngFrdgherxf9+vXDU089BYcd2zMRRA2EBJYgNGjZsiX++9//Ijk5GUJsMUob7AHzlVm+00ppxcHoisZGyDYcBFErqGZ5jZgMjapIGdYjg1URddVzjUiJulokEtKFRXGFzwe/Mw9cmyx4PB7861//wjPPPAOn02m9jgRRQyGBJYgwtG7dGq+99hoSExMhxBWjtOHeQDqx16fecbmc4MJtNF5borHlW+joISIGrARR24kAeY0I9L4OjTY4YlKG7UDH6wi7M2NNi7pqERer+pQorvD54I8rANfmKEpKStCjRw9MnjwZrnDjB4Ko5ZDAEoQO2rVrh1dfffWsxDbeB4ZyiVXqyDhO/152tUVkdRIxkReCqI2QvAaw+jrsmu9qlSqU1/BlVF/UtTrShZmrYgRVHnUFAF98PoSWR1BSUoKePXvixRdfREyM9f1nCaKmQwJLEDrp2LEjXn/9daSkpECILUFJ030QuDLA71cXWSOEiqwRCRapIRILRNBAliBqCySvAWyQV8PzREOPjaSFmqzKawREXY3Cud1n/2PjPFcx6goAvoQz8Dc7DI/Hgz59+uA///kPYmPVo7YEQZyFBJYgDJCRkYG33noL9evXB3OXorTJXghOT6BTs1NkgcAgykzHXcOisQRBVAEkr+orDRspopalDIcvI0qjrs7ym8eVIK4A4Es8DV/TI/D5fOjfvz+mTp0Kt1yaCYLQhGNhJywQBBFKVlYWHnroIRw7dgycz4XYrHPAe2V3TsW71j4fmNfCHrL+cjG2AGPMolAzMCt1MDAHVrUKNpRBKxAThAokr9YXa+I56/Jqsa23BfGzYOF1cJzFqKnVlXdtWPxIWsPC7N8kLjZwQ1smrQDAwOBLOQFP/WMAgCuuuAITJkyg1YYJwiAUgSUIEzRp0gQzZsxA8+bNwZxelKTvhT+28OwB5XdsmSBYFifm94dfGCNsIdUobzxnzwDX6gCT46wP1AmCsB0W5RkjnIMvl7ZqHFJZiBIGYSVlWBCsyasd2UNWzxcjpX6/aXllXq+qvHrqZUnyesMNN+Dxxx8neSUIE5DAEoRJ0tLSMGvWLHTp0gXg/Shtsh++xNNnDxCEQGfq9wciqWYkkufAORwBGTYroeLAxmxqmvg6ImGQaUOKH0ksQdhMtG9xZaFN4Ry8LfNEOSvtkh3iahWxDlbk1QqicFr5LPp8gXqYjOAyrzcgr36horxyAsoaZsKXehIAMG7cOIwfPx58dd70IIgohr45BGGB5ORk/Pe//0W/fv0AjqGs4SF4UnPAEOiMOQcf6AyZYE5k5XezBcFaNFYusmaJBIkFKBpLEHZSm9Pr7ZBXK5fnOPPyalfU1Uo5Vutgx81Rq6nXYtS1vB6cwb9pkLj6BcAdvAUO431oex0Pf2IenE4nJk2ahBEjRli7aUEQtRyaA0sQNiAIAmbOnInPPvsMAODMqwf3yabgwIH5/IDXE3yCuECTng7M5wPz+ir+nud1dYBMKRVK7KD1XL98Di3zhwxSjNxpt2serPITlsqt1YN3ghCxYzAdbXNh7ZZXg6mgoe03Y0y/jKlJo1GhlpfD8/pfg8r1OYWtY9TLUGh7HQ79fYtav6J3GxoxShpSDy5W3/nS+hYhfaP8fMFVhvp9inD48GEkJCTg+eefx/nnn6+vfgRBqEICSxA2smjRIsycOROMMfAlCYg93hLwcBUFVkSPyDIGeH3qCymFEVlpESel8/WKrN9fUWAB6wMNA2jOkyOJJQjr1JbFnKyKK6AuijoFUK3NZj6Fm5WhaEU89QqsUhl6BVbj+roEVqstN3K+UrvvdIZ/DSriCgBwu8JGYNXEVUQUWF9cAVwZOSgsLESDBg3w8ssvo3Xr1tp1IwhCFySwBGEzv/32G6ZOnYqSkhJwXjdij7UEV+ysMCcmCIdDe/CoFoUVCSex4RakCCeyagIrnR9m4FnZAnv2IEvXIJElajW1QWArO2VYhwBqttVa/YSeVF09AqsVvdWqv47rawqsnjZcz/la7Xy46KssVViJcNFXKVVYDbcL4Dn4Uk7C1+A4BEFAp06d8MILL6Bu3bradSMIQjc0B5YgbKZv375455130KRJEzCXByXpe+FLKtQ+ycpCT0D1z4+NpEWeLJ1Pc5KIWozl1c6r4CaVFaJ9vqtVrM51tXRtG1YXZoL5z1jIPFejBM1z1YIHPGlH4KmfBUEQcPnll+ONN94geSUIm6EILEFUEnl5eXj22WexefNmAIDrRBqc2angEGYAo5RWHC6NOJSQiKxmGrHCuYF6hFxfaR6s4vkqr89iFNbw4JaisQRhnJoaha0qeVWJYOoV1woRWKPiqFZPvdHb0PobuD6nNH/VSLutdb6e9lwpfVgrXTgUhfThcOnCcoR4oPVVDmzfvh0cx2HcuHEYPnw4LdZEEJUACSxBVCI+nw8zZszAF198AQDgCxMQc7gROL+OeUahIhsujVgJmciGTSNWODdQj/Lrh0sjrnC+wkCkKgU2cJLp6wXOp+aRqIVUo8RWisCarE/Y+a5KKAisEYEJElgzUc/Quhopw+EIPt/g9SukDxtts+XnGxFXEXn6sBFxLUeePmxEXAHAn1KG2E65yMvLQ2JiIiZNmoTevXvrvjZBEMYggSWIKmDZsmV47bXXUFZWBs7rhPtQYzhK4vSdLIosYCwKKxI6IDFzPscZF1ggWGKrah6s8okWLkpNJFHLqElRWCvyaiZlWCawZiJvksBWtbzKo68m04UlgTXbTsvPN9pmi9FXE+IKQIq+GhVXBgZf2in4Gp4CYwxt27bF1KlT0aRJE2PXJwjCECSwBFFF7Nu3D8888wwOHz4MMMB1PA3OUzpSikU4vlwiTe55x/PmBFY8F9CfRlzhfK56BTZwsoVzqZkkahlWJDYSBLa65ruWS6DZtFHmUVmxXg+ydtrUuQ6HpbmunMFthIKQn2umrY6JsTTHFWK03UD/xhx+lDXNgpBUBAAYMmQIHnzwQcTo3caHIAjTkMASRBVSVFSEV155BStXrgQAOPIS4c5qqC+lGAAEdnY+qxmsnCsWYUZggwqo4jRiG64bOJ+aSqIWEc0Ca+X6PGdZxEzLq89nun1mjAXqbaV9t/K6de5LrgTz+8G53abbaOYXwLldVbqQoD++CMkXlOLEiRNwu914+OGHceWVV1bZ9QmitkMCSxBVDGMMX3zxBWbOnAmfzxdIKT7SCI6ieH3n+2VRVKMDBosCG5Dn6lup1PIqpSSxBBEeOxadqa55sBblFbAQSTQpr1bShsUhnGl5ZCxwrjhVxHgBges7dezfqnS63w8wFhBQw+cG3i/OwZv7u4v9qIG/NwODt8FJ+BvkgjGG9PR0TJ48GW3btjV+fYIgTEMCSxDVxK5duzBlyhQppdh5sg5c2fXDphQHCSxgSmLFNGRTgy2rEhutacQACSxRO6hmgQ2cbqIONsgrgLNCZwQT8mppvisQtG2a4WuHtGWGBVQ8v7zunNtt7HSxD2MscG2Df295JpApeZZNx9Fbd8HlwTlDY7Fjxw4AgZTh+++/H/Hx+m4+EwRhHySwBFGNlJSU4K233sK3334LAOCLY+A+0hi8R71DrSCwInoHMDKBDZxmYuATrQJrw/VJYolaQTQu5GSTwALGo7BGJEqMOtohroAN8upwGOo/AATX3eHQ/X7JxVW6voHoq9IUFkMCW379oD4wjMAyMPhT8uHMyENxcTESExPx6KOPon///vqvSxCErZDAEkQE8Msvv2DatGkoKCgABC6wwFNuimI0VlVgAX2DkBCBPXuqzn0KqzmNOHB6NUZhAZJYouYTbVFYG+UVMBiF1Rl9/f/27jw8qvrQ//j7zGSbbKwRgqxCWFQQZHFBEBeQInTB5drai5brz9qnFvu03sc+VIuttXjr1eLV51rrrbVWUVtbRVoUREGLIosioAhlEWRLyEISskwmM3N+f0zmZCaZmcxMJslM8nk9T56ZOWe+3/OdycnM+eR7zveb6ODqF9Nnd6jy0QbAMG2PtgfTev2tykcXYMONvxB1+8MMghip/abdjWtQMZ78GgAmTJjAvffey8CBA6Pbpoh0CAVYkSRx6tQpHnzwQXbs2AGArcZBxvGB2BqDv9wjBli/SAc0YQKsr1gUB2GpHmATsH0FWOn2UinAJji8WtVGE2KjCK8dFVwhhs/scOWj6X0N1evqF0Xva6he16A2tBFg2xo4sM0AG6LXNXj7oQOsO78ax/m1VFVVYbfbufXWW7n55ptJi/N6XxFJHAVYkSTi9Xp59dVXeeqpp3A6neCxkV7cn7TTzb2xUQVYCH9Q0nQg1Z6DopQPseqFFWlbKpxG3EHh1ao+UjiLEF6DQlsHBFe/SJ/VUZWPFMYiBVd/+Ui9l20EV2v7YX4P0Yx43+YATlFMPdfyNZh2N67CEjy9zgAwcuRIfvrTnzJq1Kg22yMinUMBViQJHT9+nOXLl7Nr1y4AbDXZZBwfgK0xPfoA6xfqACdCL2xw0TAHFqkeYBOwfQVY6faSvRe2g8MrRO6FDRX+2tvbCtEFT6tt7Skfrvc1iuBq1REiwEYTXJvLh+59jXa6trABvI1e1+A2+F6DiYkn7ww5F9Rz+vRp7HY73/72t1m0aBHp6bGPkiwiHUcBViRJeb1e/va3v/HUU0/R0NDguza2pD9ppb18k63H+qcbeKASZYD1FQtxHW4SBFhfFeqFFekwyRxgOyG8WpsKFWJb9L52ZnANald7yrcMfzEEVyDk6cPhrnMN24aMEJfIxKDVa4ghuAIY6Wlg2PCmNdJYWGJd6zp8+HCWLl3K2LFjY2qPiHQOBViRJHf06FF+/etfs3PnTgCM+kwyjhZgq4njP8L+A54YAmxz0RAHSz29FxYUYqX7SoIA66vCaLmgfRXGMcJxUFALCK8deX1rxPYEhuc46gjqfY01uPrrCOh9jaXX1WK3+04BJvbgarUhMMBGcbpwKxnpuPueJu2cM9TX15OWlsa3vvUt/v3f/53MzMy42iQiHU8BViQFeL1e1qxZw5NPPukbqdgEe2k+6Sf6YHjjO5iL+Yu+iXXglgQB1leFTiUW6TBJEGKDAmwXhFcI6IVtCq9dFVyttrSzHiMtLe7gatWRkRFfcLXKp8cdXK060tJi7nX18zoaaBxajjfbCcD555/Pf/7nfzJixIh2tUlEOp4CrEgKqaio4IknnmD9+vUAGC476cf6YavMDjnlTkRtDOQUXR0KsL469DEq3VQSBFhfFUaXhVerDf5eyy4KrlY7DKP9Adhma9fpzthsze9FvGKca7cVrxfDbo85uJo2L42Fp6GwBo/HQ05ODnfccQcLFizAFu3USSLSpRRgRVLQ1q1befTRRzlx4gQAtuosX5B1RjcfH6AAm+B2KMRKt5QEAdbqgY23Hv/ft2FrV4iNdr7VkE3weNsdoPGa7auj6bPSf9puPPzfGW1NnRO5HV5feI03LHqbxoCI8fdhYuLpW0PeJA8VFRUAXH755dx11130798/vraISJdQgBVJUU6nk+eff56XXnoJl8vlO634VD7pJ6M8rTgRARZ8p2+15wDV9GJ6zejnfAxZRdcHaV89+jiVbiIRwdWqK/7Ph3afPtzybzvO4BVPeA06Pdb0xrftlp9t8XxOBtZhM+J7LQGfbVHNjxuyHV6rrkjT70QsH3jacwzvp9fRQOPgMry5DQAMGTKEu+66i2nTpsXeDhHpcgqwIinuxIkTPPHEE2zatMm3oNFG+vG+2CtyI59WnMgA6xfnAWZgAI0nyCZNLywoxErqS2R4hbgDbMjPgljqCvU3HUcvbKyBzwqugduPdbv+z7TA3mOIr44Asfa+hvqOiLn3NSC4WnXEEmBbBle/KNph2j00FlbgPasG0zRxOBzccsst3HDDDZoaRySFKcCKdBNbtmzh8ccf58svvwTAqM3wBdkaR+gCiQqwXrP1gWKsB6wtQqyvihgPGhViRdov0eHVqje2z4R2T58T6W85hgAWS3gNGVwhtvDaMrj6y0PsdbQUQ+9ruO+GmHpfQwRXaArA0fwOwgVXvwh1mIYXd0E1maMbqK2tBeDqq6/me9/7HgUFBdG1X0SSlgKsSDfS2NjIK6+8wh//+Efq6uoAsFVmk36iT8jrY+MdibiVcPXEcLAZLoBGG2STKsCCQqykno4KrxBTgG3zb76tutr6O44yUEYT9lqdJhzntkIG13jrCCOa3te2Dgmj6n0NE1ytOtrqfW0ruELzIFItmJh4+tTS72IbxcXFABQVFfGDH/yAiRMntt12EUkJCrAi3VBFRQXPPvssq1evxuPx+K6PLcvzXR/rDjgA6YjTiEOJ4oCzrQAaTZBNqhCrj1ZJFR0ZXIO203aAiuofVpHqifbvt41Q2FZ4Ddvb2lKkwBf4eRWunmh6X6P53Guj9zXa74GIAbaN4GrVES7ARhNc/UK0w5NTT+PZFZg5vutcCwoKuP3225k9e7ZGFxbpZhRgRbqxI0eO8NRTTzVfH+sxSCvpRdqpXr6BnjryNOJQ2jjwjCaARjrATUiAbWpLYurRx6skuc4Kr9BmgI3psoFQdcX6dxsmjIULem32traqKExIjtTb2rI8RK4jSuF6X2P5/A97+nCUwdXXjhCnD8cSXP0C6vBmuXzXufb2nXXkcDj49re/zQ033EBWVlZ09YlISlGAFekBPvnkE/73f/+XvXv3+hY02kgr6U1aSQ54E3QAG8vpyGEOPmMJoOEOdpOqFxYUYiU5dWZwDdpu67/9uEcgD6wrnr/ZMAGzZYCNurc1Ut3R9LZG0754Pt9a9L7Ge9jXqvc1huBq1dGy99UfXmOdk9Zux5vRiLvwNN5+tZimid1uZ/78+XznO9+hb9++sdUnIilFAVakh/B6vWzYsIHf//73HDt2zLfQZSftRD72slwMs50HtPFcT9vyYDbGENtcTYsDToVYkfC6KrxCq7/59kyfZdXVnr/VFiHRH/Ri7m0NV2e0va2h6oDW9cQqILy253AvqPc1juBq1eMPsPH0ujbxZnpxF1bCgDrfJTLAFVdcweLFixk2bFjMbRKR1KMAK9LDuN1u3nzzTf74xz9SUlICgOG0k3aiF7bynMhT70QS7WnEoQQciLYnfPoPhpPuVGJQiJXk0JXh1WqDrekmCdoCVuA0DCO+3taWdQWKt2c4QQy7LSGXiRh2e7uCq1VHoBiDq5nmobGwCvuQBt/c58DFF1/MbbfdxujRo+Nqk4ikJgVYkR7K5XKxevVq/vSnP1FRUQGA4UzDfiIfe0VO7D2y7QmwLSQsgCaCroeV7iIZwiskX4CFxPTm+utJRB2J0t732Gs2h/v2fIZ5TYz0tNhPFQa86W7cA6uDgusFF1zA7bffzvjx4+Nvk4ikLAVYkR7O6XTy6quvsnLlSqqqqgAwGuzYT8Z4arECbBR1JdHrkp5HATY1tCfA+j+vYpl7NpTAU59jmDc3bD1EN41PUNGMRtyF1RiFTtxuNwDnnXce3/nOd5g6dWpMc/SKSPeiACsiANTV1bFq1Spefvllq0cWl520k/nYS3MwzDYOPuK91isMhViRBOvqA/5EDuDUncUTYFt+RsUbYFt+jscbXlt+frcxjU9Q0cxG3IVVMMBpXeM6ceJEbrnlFi688EIFVxFRgBWRYA0NDaxevZoXX3yR0tJS38JGG2kledhP5WJ42pjXsDsGWFCIle4hiUYf9i1WGAkSS3iNNHdsrO9ruH9Axhpgw3xuR9P76nW4cA+swixw4m061Xjq1KksWrSICy64ILZ2iEi3pgArIiG5XC7eeOMNXnjhBYqLi30LPQb2shzsxfnYXGmtCyUwwIJCrEjCdUWATeT8r91ZtOG1rc+haENnW1P7xBJe2/isDjsPLSbefCfugdV4853W8ksvvZRFixZx7rnnRt8GEekxFGBFJCK3280777zDiy++yMGDB30LTbCdziatOA9bbWbzk7vzacSQ2AALCrHS+TozwEYZyBRgafu9as/csS1F+zndVoCN9vM5xOnDpmHi6VuLe0A1ZnZj0+bsXH755dx8880UFRVFV7eI9EgKsCISFdM02b59Oy+99BLbtm2zlhvVmaQV52OryvJNwaNe2BjrS7LXJ91bZwXYGK/j7PEhNtz7FcvnTaTw2lZva0uRwmuMn8mBva+m3YO7oAb3WWcgw3d9q8PhYP78+Vx//fUUFhbGVLeI9EwKsCISswMHDvDyyy+zfv16a5ANoz4N+6k87KXZGJ4ETCXRJOkCLCjESmrr6BAbxyBEPTrAJmLuWAgdOuM9KyZSXbFo6n31Zrlwn1VD+tBGnE7fqcIFBQVcd911LFiwgLy8vNjrFpEeSwFWROJ26tQp/vrXv/L6669TW1vrW+gxsJdlYy/OwVafnpDtKMSKJFBHBdh2zl/aI0NsIuef9b9/sfa2thQYXtvx2WtiYvZz4j7rDN78Bmv5qFGj+Ld/+zeuvPJK0tMT8x0hIj2LAqyItFtdXR3r1q3jb3/7G4cPH7aW26oysJfkYqtoOr04TkkZYEEhVlJTRwTYdobX5mp6YIhtr0T14PrZ7e0LrukePAU1uAfUWqcJ22w2pk+fzsKFCzUVjoi0mwKsiCSMaZp88skn/O1vf2PTpk3W6cU02Ek7lY39VA5GY3zzCvaYEAsKstKxEh0eEhRefVUlX7AxvWZStstiJO6SDau+GJmYmLku3ANqsA104Xa7AejduzcLFizgq1/9KgMGDEhcG0WkR1OAFZEOUVJSwuuvv87q1auprKz0LTTBdjoL+6lsbJWx98r2qBBr1Z2kr1lSVxIHWF91XR8WAz9rkqE9nSbG36WZ5sHTvw5PQQ1mtttaft555/GNb3yDWbNmkZGRkehWikgPpwArIh3K5XKxceNGVq1axe7duwNW2LCX+nplbQ0h5pQNoUcG2KDtJOnrl9TQkadtdoMQG+rzReG1NRMTby8nnrNqsZ3VaPW2ZmZmcvXVV/ONb3yD0aNHd2RLRaSHU4AVkU5z5MgR/vGPf/Dmm28298rSdK3sqRxsFQ4MM/IBY48Psdb2kvR9kOSTpFPnRK6qc9oc6fOkR4VXaPP358104+lfi6egFjI91vKxY8dy7bXXctVVV5Gbm9vRrRQRUYAVkc7X2NjI+++/zz/+8Q+2bt2K9THkNrCXO7CXZWOcyQh5inHSBljo/BAbtO0kfl+ka3T2QDkp0Asb7eeHwquPafPi7VuPp38t3l7NIwnn5+cze/Zs5s+fz8iRIzurlSIigAKsiHSxkpIS3njjDdasWUNxcbG13HDasZVlYy9zYHMGT7WgENtWG5L4/ZHO0VWjvCZhiI3186LHhVcI+r2Zhok334mnfx3ePvVgb37/pkyZwrXXXstll11GZmZmV7RUREQBVkSSg9frZceOHbz11lts3LiRuro6a51Rk+6bW7bcgdFoT+4AC8kRYgPpY77n6OrpSRIcYH1Vds5gbz0yuAIYNmsUYU+/Ojz96iC9+TNs8ODBzJ49m7lz51JYWNiFDRUR8VGAFZGk43Q6ef/993nrrbfYsmVL83Q8JtiqMrGVO7CVZWF4En+wnDDJFmL99JHfPXV1cA3UBSG2vf/U6qnh1ZvViKe/E2//Osys5lGE+/Tpw5VXXsmcOXMYO3as5m0VkaSiACsiSa2yspK3336bt956iz179jSv8DaF2TIHtookDbPJGmID6SsgtSVrsOjgU4kTeRZGTwuvXkej77rWfvVBU99kZWUxc+ZMZs+ezeTJk0lLi250eBGRzqYAKyIp4+jRo6xfv56NGzfyxRdfNK/wBvTMVmRhuJMozKZCiAUF2VSTrMHVrwN6YTtKdw+wJiamw42nXz3evsGhNS0tjcmTJzN79mwuu+wysrOzu7ClIiLRUYAVkZR0+PBhNm7cyIYNG1qFWaMqE3t5FrbTWRiN9q5rpJ9CrCRKsgdXvxQJsN01vJqYmNmNePo68farx3Q0h9b09HSmTp3KrFmzmD59Onl5eV3YUhGR2CnAikjKO3LkiBVmDx061LzC9A0AZavI8vXM1qeFnJqnU6RKiAUF2WSXzCG2BwZX02smRRD2jR7cgLePE08fZ9BcrRkZGUybNo1Zs2Zx6aWXar5WEUlpCrAi0q34w+ymTZvYt29f8Mp6O/bTTWG2OvQ8sx1KIVYSIRkDbIoEV2h/eG15/W1XhlczzYO3dwOePvV4ezcETXmTmZnJtGnTuOKKK7jkkkvIycnpsnaKiCSSAqyIdFunTp1i8+bNbNq0iY8//pjGxsbmlY0GttO+04xtVZmdd91sKoVYUJBNRskUYFMouEJ8YTPSgFGdHV5NTMwst9XLaua5CPw/XL9+/bj00kuZPn06kydP1lytItItKcCKSI9QV1fH1q1bef/999m8eTPV1dXNK/2nGldm+q6brUnv2N7ZVAuxoCCbTJIhwKZYcIXYwmY0oxx3Vng17V68vRrw9nLi6d0QdGowwKhRo5g+fTrTp09n9OjR2Gyp97sREYmFAqyI9Dhut5vPPvuM999/ny1btgQPAgW+3tmqTGyVWdhOZ3bMQFAKsdIeXRViu2lwjWVano4OriYmZk4j3t6+wGrmBveyZmRkcMEFFzB9+nQuvfRSBg4c2KHtERFJNgqwItLjnTp1im3btrF161a2bdtGTU1N0HqjNs13mnFVJrbqjMTOOasgK/Ho7ACbgsEVQofN9swh2xHh1cTEzPT4BmBq6mklPbiNQ4cOZdq0aUybNo2JEyeSlZWV8HaIiKQKBVgRkQBut5vPP/+crVu3snXrVvbu3UvQx6T/dGN/mK3OwPAm4OA+FYOsn75GOl9nBdhuEFzbE1gj1dseZoYbb34Dnl4uvPmtTwvOyclh8uTJVmhVL6uISDMFWBGRCCorK/noo4/4+OOP+fjjjzl+/HjwE7xg1GRgq8rw9dLWZGB4E3CQm4qBVl8nHa8ze15TNLx2lPaEVzM9oIc1vwEzKziw2u12zj33XCZNmsS0adM499xzSUtLa2+TRUS6JQVYEZEYlJSUsGPHDnbs2MHHH39MSUlJ8BO8YNSm+3pnz2T4bt0JuIY2lQJtor5WAsNaT/6q0vWuSSHaAGtiYjrcePNcePNcmLkNmI7WgXXMmDFMmjSJSZMmMX78eBwOR0c0W0Sk21GAFRGJk2manDx50uqd3bFjB+Xl5a2eZ9TbMaozsZ1pOuXYaU/MKMfJHmrb8/USKbT1hK+tZBhpGBRim0QKr6ZhYua6mgJrA948F6QF76M2m42ioiIrsE6YMEHzsoqIxEkBVkQkQfyBdvfu3ezatYtPP/209QjHAI02X5g9k46tJt132nGiBoZKxlAb69dMtOGtu319JUtobamHh9ig62mbBlwyc114cxrx5jVg5jRCi7coMzOTc889l/PPP5/x48dz3nnnkZeX18ktFxHpnhRgRUQ6UHV1NZ999hm7du1i9+7d7N27F5fL1ep5Rr3dF2TPpGOrycCoTccwExRokiXURvN1E2+IS9WvsmQNrS31wBBr2Azftas5Lry5jU2h1dVqhGCAfv36MX78eCuwFhUV6RpWEZEOogArItKJXC4X+/bt4/PPP2fv3r18/vnnrQeGAt+1tHXpvhGPa9N9gbYuLTEjHkPXhtpwXzuJCnPJ/LWWKoE1lG4eYs10j2/+1ZxGzNxGvLmNrUYHBkhPT2fkyJGMGzeOc889l/Hjx1NYWIiRyr9bEZEUogArItLFqqqq2Lt3rxVo9+zZQ2VlZesnmmDUp/nCbG06ttqm+4kYJAq6JtSaZseGuq7+iuuOoSbFg6x/kCUz290cWHMaIaP1/m8YBsOHD2fs2LGMGzeOsWPHcs4555CRkdEFLRcREVCAFRFJOqZpUlJSYvXSHjhwgP3794cOtQANNmx1Ab209WkY9entm84nWU477iid8dWn8NrlzHSPFVa92b6gama7wd76928YBkOGDGHUqFGMGTOGcePGMXr0aLKzs7ug5SIiEo4CrIhICjBNk/Lycg4cOGAF2v3793P8+HFCfoybgNOOrb4p1NY1hdr6tNiDbXcPs5D4QNudwmuSh1YTE9K9wUG16T7poffdrKwsRo4cyahRoxg1ahRFRUWMGDFCU9mIiKQABVgRkRRWV1fHwYMH2b9/P4cPH+aLL77g8OHDVFVVhS5gBds0DGfTT30ahtMODXFM79Mdw20ivhZTPcAmYWg1bSZmlrv5x9HUu+poDDmwEvh6VQsLCxk2bJgVWIuKihg0aBB2e4JOvRcRkU6lACsi0s2Ypsnp06eDAq3/trq6OnxBDxgN/kCb5hsZuSnk4rL17HDbUVMBJZMkCK2m4Q+pTeE0IKyS4SHcLmgYBoMGDWL48OGMGDGC4cOHM2zYMIYOHapeVRGRbkYBVkSkhwgMtkePHuXo0aMcO3aMY8eOceLECdxud/jCXnw9tA12X8h1+u/7Qi6NMQbcVA+3bX11pkKA7YLAatpMzAwPZLl986n6f5oehxpIKVBubi6DBw+2foYMGcKIESMYMmQImZmZnfQqRESkKynAiogIbrebkpISjh07ZgXbo0ePcvz4cUpKSvB4Wk8nEsQLRoMdXE2h1mXHcNl8j5t+YurFTdWA6/9KTcYA28GB1bR5MTO8kOHBbPohw+u73xRU2wqoANnZ2QwePJizzz67VVjt1auXpqsREenhFGBFRCQit9tNeXk5J0+epLi42Lr13y8tLW074ILv+luXrTnQNtowGm0Yjc338T92G22H3VQNuZ2pnaHVNJoGSErzQroHM92Lme71LWsRUkmL7nDC4XBQWFjIwIEDrdsBAwZY9/Pz8xVSRUQkLAVYERFpF7fbTWlpKcXFxZSWllJWVkZpaWnQ/YqKiuhCrp8XcPtDrd136zEw3DbfcrfRdBv8GG9T8O3p4bZFcDUxIc2Lmea7Jc2Lafcv8wat8wVUX1iNNpT6ORwO+vfvT//+/SkoKKBfv34UFBRQUFBgBda8vDwFVBERiZsCrIiIdDiPx8Pp06etQFtWVsbp06eprKzk9OnTQT81NTXxb8gLeAzw2HzTBXl8P4bHBh4C7hu+sNt0i4nvccB9/48R+Nj/jWkCND32nzXcRo+xScDXrdH0g9l83zDBZmLa/PdDLWv+Me2mbz5TO777NhPs3ublNhPT3hRCQ8x7Gi273U6vXr3o06cPvXv3Drr1B1X/bXZ2tsKpiIh0KAVYERFJKo2NjVawrayspKKigurqampqajhz5gxnzpyhurraul9TU0N1dXXkQag6i0lQqLUyrUHYEXQ7k8PhIC8vL+gnNzfXup+fn98qqObl5WGzdf0IxSIiIqAAKyIi3YBpmjidTs6cOUNdXR11dXXU19dbt4H3A5fV19fT2NhIY2MjLpcLl8tl3W+5rKMDsmEYpKenk5GRQUZGBunp6dZP4OOMjAwcDkdUP1lZWVZAzc3NJS0trUNfg4iISEdTgBUREYmC1+uN6ccwDAzDwGazYRgGdrs96LHNZgta518vIiIi4SnAioiIiIiISErQRS0iIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEtK6ugEiIl3FNE2cTmdXN0NEJCZZWVkYhtHVzRAR6RIKsCLSYzmdTq655pquboaISEzWrl2Lw+Ho6maIiHQJnUIsIiIiIiIiKUE9sCIiQMbWs8BjYNgMMGzWLbam0/QMA8NmA6NpuWFY6wz/8wyjebnRXC5oWYs6fc9rXm/6y9kC1odZbhpG82PAbKoKw8C0ARi+Zda2sMqYTY+byxnN5W3N63xlgtcH1mn6n2MjbH1WvQFtbL5t2Y6W65t/R6HWA1Ybwm0raHmYdgS/ruZthlrXXMYM2l6r7fjX03K9GVTG/9zmdpnWOiPw+Yb1apvWmS1u/XWaGIYZtHv56/T9aprX25rqC1rWdL95XcCygFtffc2PA3/AV7fvMc3rArZnM7zWMt9zvQDYjebHgWX8j5vXm9jxNq0zsRvegHJe7AHl7E3L7XhblbPhL+vFHrTO93y7YWLgxe5vH16rjB185fCv870fdvzbNK12+B433ULTfaPpvQK7YWDDwE7TreFfZ8PAoNFl57r/NxARkZ5OAVZEBHzh1es7UMRovrWShmFg4A+uTcub0onhS4Q0p52Acq0SlK1FUgpKGQHlaLEs3HLC3waEQ+t+y1urOiOgWqNVE4PXt6yTpiAdrr7Wb0erekOui1Quircq3vqabsOF2w4LsEbrABu4rmWAbV5utmi/2Wqd4a8z1PqQZcwQ22rxA1aAbfkTdp0VKgOCbUDQtdbRvL45iBIQYL3BAdDwB8CmW8PAjr8+333frRFUzlcX2A2s2+ZyvvuB64Cm0Op/rj8AB4ZUX5vbCrBB2wrcDsHbs1nPD/gdioj0YDqFWERERERERFKCAqyIiIiIiIikBAVYERERERERSQkKsCIiIiIiIpISFGBFREREREQkJSjAioiIiIiISEpQgBUREREREZGUoHlgRUQA7CYmXt/kjwbBt+Cbr9RGi3lU/esCHhtG0zyZAeXaWhcwEakZZnLTUMubl/luzYD1JoBpBC3zPccAk6D6zMAyTeVaC7PMDFgVNLepEdj8CPOvGvHP9RppXVv1tbXOfxOxXMv5V8Osb9XGMPPA0vq+0Wo7gevMFrf+Ov3zrgbuXmHmgbXqi28eWBPffbPFj3+d2TQXrrWuqU6vYYLhDdhO02OaXg8t14NpeH11N9VjBq0LXm4L2Jb/fstbXzt8f9aBt96mt8nWdN/btIuGngfWwIbRPK8svvfcjn/u2ea5XgMf26z7vnLW/LVNddkwsBv+dQYGBo2uUH+DIiI9jwKsiAjgmnaqq5vQMcwWt3FomU9F/PwR0tvWE5OWP+HrhDQRkVShT2wRERERERFJCYZpmu34v7yISOoyTROn09nVzZAU53Q6+drXvgbAqlWryMrK6uIWSSqKZT/KysrCMHROhIj0TDqFWER6LMMwcDgcXd0M6UaysrK0T0m7aT8SEQlPpxCLiIiIiIhISlCAFRERERERkZSgACsiIiIiIiIpQQFWREREREREUoJGIRYREREREZGUoB5YERERERERSQkKsCIiIiIiIpISFGBFREREREQkJSjAioiIiIiISEpQgBUREREREZGUoAArIiIiIiIiKUEBVkRERERERFKCAqyIiIiIiIikhLSuboCIiEi06urqeOmll3j33XcpLi7GZrMxZMgQrrzySq677jrS09PjrruiooKVK1eyefNmSkpKyMzMZMSIEcydO5drr70WwzAilj9+/DgrV65k27ZtVFRU4HA4GD16NAsWLGDWrFltbn/fvn38+c9/5pNPPqGyspK8vDzOO+88Fi5cyOTJk8OWO3LkCJ9++in79u1j//79HDhwgIaGBgDee++9mN6DnkD7UDDTNPnss8/YvHkzu3fv5siRI1RXV5OVlcXZZ5/N1KlTWbhwIQUFBfG8JSIiCWeYpml2dSNERETaUlxczJIlSyguLgYgKysLr9eLy+UCoKioiBUrVpCXlxdz3fv27ePuu++mqqoKAIfDgcvlwuPxADBt2jSWL18eNtxs3ryZZcuW4XQ6AcjJyaG+vh6v1wvAvHnzuOeee8IGmL///e888sgj1vZyc3Opra3F/xV96623snjx4pBllyxZwieffBJynQJsMO1Drfeh5557jv/7v/+zHhuGQU5OTlDZnJwcfvrTn3LZZZfF/L6IiCSaTiEWEZGk53a7+clPfkJxcTH9+vXj0UcfZd26daxbt45ly5aRnZ3N/v37eeCBB2Kuu6amhnvuuYeqqiqGDh3K7373O9auXcu6dev44Q9/SFpaGlu3buXxxx8PWf7EiRPcf//9OJ1Oxo8fzwsvvMAbb7zBmjVruPXWWwFYs2YNL774Ysjyn376qRU8ZsyYwSuvvMKaNWt4/fXX+epXvwrAs88+yzvvvBOyvN1uZ/jw4cyZM4c777yTG2+8Meb3oCfQPhR6H3K73eTk5PC1r32NFStWsG7dOtasWcO6det44IEHGDBgALW1tSxbtozDhw/H/N6IiCSaAqyIiCS9N998k0OHDgHwwAMPMGXKFABsNhtXXXUVd999NwAffvghH330UUx1v/TSS1RUVJCZmcmvf/1rxo4dC0B6ejoLFy60eq1Wr17N0aNHW5V/5plnqK+vp2/fvjz00EMMGTIEgOzsbBYvXsyCBQsA+NOf/sSZM2dalf/tb3+Lx+PhnHPO4ec//zlnnXUWAL169eLuu+9m2rRpQc9r6b//+7957rnnuPfee7nxxhsZOXJkTK+/p9A+FHofmjFjBn/+85/58Y9/zIUXXkhmZiYAmZmZXH755Tz22GNkZmbS2NjIyy+/HNP7IiLSERRgRUQk6b355psATJo0ifPPP7/V+quuuorCwsKg50Zr7dq1Vh2DBg1qtX7hwoU4HA48Hg9vvfVW0Lr6+nreffddAL7+9a+HPPX029/+NgC1tbX885//DFp34sQJdu3aBcBNN91EWlrroSn85YuLi9m5c2er9Xa7vc3XKNqHIPQ+VFRUFPGU6UGDBjFp0iQA9u7dG/Z5IiKdRQFWRESSmtPp5NNPPwXg4osvDvkcwzC46KKLANi2bVvUdX/55ZeUlJQAWOVbys7OZsKECSHr3r17tzVgUrjyhYWFDBs2LGT5wMfhyo8fP57s7OyQ5SU62ofatw9lZGQAWNfjioh0JQVYERFJakeOHLEOnEeMGBH2ef51FRUVVFdXR1W3/5TStuo+55xzAFpdAxhY3v+cSOW/+OKLoOX+x3369KFPnz4hy9rtdoYOHRqyvERH+1D8+5Db7bbCf6T2iYh0FgVYERFJamVlZdb9SFN59O/fP2SZSMrLy2Oqu7a2lrq6ulbbycvLs64djFQ+cHuB5QPbHoq/bS3LS3S0D8W/D7388stUVFQAMH/+/JjKioh0BAVYERFJaoEH+5EO8LOyskKW6ci66+vrW62PVL5lu/yP2yrvb1u0r0uCaR+Kbx/atWsXzzzzDABXX311xPmIRUQ6iwKsiIiIiAQ5cuQI9957L42NjYwYMcIapVlEpKspwIqISFLzDz4DWIPdhOJ0OkOW6ci6HQ5Hq/WRyrdsl/9xW+X9bYv2dUkw7UOx7UNHjx7lhz/8IZWVlQwdOpRHH31U+56IJA0FWBERSWqB1/aVlpaGfV7gNYttXQ/o169fv5jqzsnJCTqQ92/nzJkzEcOLv3zg9gLLt3W9pb9tLctLdLQPRb8PHT16lLvuuovy8nKGDBnCihUrtN+JSFJRgBURkaQ2bNgwbDbf11WkEVT96/r27Ut+fn5UdQeOqhqpbv9IscOHDw9bPnA02XDlW45S6398+vRpKisrQ5b1eDx8+eWXIctLdLQPRbcP+cNrWVkZgwcP5rHHHos6yIuIdBYFWBERSWpZWVmcf/75AGzZsiXkc0zTZOvWrQBMnTo16rqHDBnCgAEDItZdX1/Prl27QtY9fvx4a3Ac//ZbKi4u5siRIyHLBz4Ot/3du3dbA+/E8tqkmfahtveho0ePsmTJEsrKyhgyZAj/8z//o/AqIklJAVZERJLe3LlzAdixYwd79uxptX7Dhg2cOHEi6LnRMAyDa665BoB33nmHkydPtnrOq6++Sn19PXa7ndmzZwetczgcXH755QC89tpr1NTUtCq/cuVKwHft4YwZM4LWDRo0iAkTJgC+6Urcbner8i+88AIAAwcO5IILLoj6tUkw7UPh9yF/ePWfNqyeVxFJZgqwIiKS9ObOncs555yDaZrcd999fPTRRwB4vV42bNjAww8/DMBFF13UaqqPZ555hpkzZzJz5syQ4eKmm26ib9++OJ1O7rnnHvbt2wdAY2Mjr732Gr///e8BWLBgAUOGDGlVfvHixTgcDsrLy/nJT37C0aNHAV+v27PPPsuqVasAWLRoEXl5ea3Kf/e738Vut3PgwAHuv/9+61rF6upqHn30UatX7Y477sBut7cq73K5qKystH4Cp0kJXF5ZWYnX6430Nndr2odC70PHjh2zrnkdOnSowquIJD3DNE2zqxshIiLSlpMnT3LXXXdRXFwM+E4L9Xq9uFwuAIqKilixYkWrA/xnnnmGZ599FvD1UBUWFraqe9++fdx9991UVVUBvp4ul8tl9WZNnTqV5cuXk5GREbJtmzdvZtmyZdZIsLm5udTX1+PxeACYN28e99xzD4ZhhCz/97//nUceecR6fm5uLrW1tfi/om+99VYWL14csuwbb7zB8uXLQ65rKdzr7ym0D7Xehx566CHWrFkD+AaYijSXLfh6iUVEulJaVzdAREQkGoWFhTz77LO89NJLvPvuuxQXF5OWlsaIESO46qqruO6660hPT4+r7jFjxvDHP/6RlStX8sEHH3Dq1CmysrI455xzmDt3LvPmzbMGAQrlkksu4Q9/+AMrV65k27ZtVFRUkJubS1FREV/96leZNWtWxO3Pnz+foqIiXn75ZXbu3EllZSV9+vThvPPOY+HCha16BCU+2odaC+yVr62tpba2Nq7XLyLSWdQDKyIiIiIiIilB18CKiIiIiIhISlCAFRERERERkZSgACsiIiIiIiIpQQFWREREREREUoICrIiIiIiIiKQEBVgRERERERFJCQqwIiIiIiIikhIUYEVERERERCQlKMCKiIiIiIhISlCAFRERERERkZSgACsiIiIiIiIpQQFWREREREREUoICrIiIiIiIiKQEBVgREUkJjz32GDNnzuQHP/hBVzdFulhNTQ3XXnstM2fO5L333uvq5oiISCdK6+oGiIhIx6qtrWX//v3s3buXffv2sW/fPo4fP45pmgC8/PLLFBYWdsi2TdPk+uuvp7S0lJtvvpnvfve7cdWzf/9+XnvtNQBuv/32BLawax06dIitW7eye/duDh06RHl5OR6Ph7y8PEaOHMkll1zC3Llzyc3N7eqmJpXc3Fxuuukmnn76aR5//HEuuugiMjMzu7pZIiLSCRRgRUS6uSVLlrB///4u2fbevXspLS0FYMaMGXHX8+STT+LxeLjooosYP358oprXpZYsWcInn3wScl1FRQUVFRVs27aN559/nqVLlzJt2rTObWCSu/766/nLX/5CSUkJr7zyCjfffHNXN0lERDqBTiEWEenm/D2t4Ou5mjRpEn379u2Ubf/zn/8EoKCggHHjxsVVx65du9i+fTtAtwop/mCfl5fHvHnzWLp0KU888QRPP/00v/jFL7jkkksAX5hdunQpO3fu7MrmJh2Hw8F1110HwMqVK6mrq+viFomISGdQD6yISDc3b948evfuzZgxYxg8eDCGYbBkyRIqKio6fNv+ADt9+nQMw4irjhdffBGAwsJCLrjggoS1rasNHjyYRYsWcdVVV5GRkRG0bsyYMcyaNYsXXniBp556CpfLxSOPPMJzzz3XRa1NTnPmzOGZZ57hzJkz/OMf/+CGG27o6iaJiEgHUw+siEg3d/3113P11VczZMiQuENkPI4ePcqRI0eA+E8fLi0tZfPmzQBcc801ndr+jvbwww/zla98pVV4DXTzzTdTVFQEwOHDhzl48GBnNS8lFBYWMmHCBABef/31Lm6NiIh0BvXAiohIh/CPDus/bTke69evx+v1AnDllVdGVcbtdvPOO++wadMm9u7dS2VlJR6Ph969e3POOecwZcoUrr76avr16xdUbubMmQDMnTuXpUuX8uWXX/LKK6+wbds2ysrKyMnJYfTo0XzrW99i4sSJVrmGhgbeeOMN1q5dy7Fjx3A6nQwaNIjZs2dzww03tHtwoQsvvNC6hvno0aOMHDky7roOHz7MqlWr2LlzJydPnsTpdJKbm0teXh6FhYVMnjyZyy67jKFDh8ZVv9vtZt26dWzYsIFDhw5RVVWFYRjk5+fTu3dvxo0bx5QpU5g+fTrp6elBZVu+/4cPH+bVV19l+/btlJWVUV9fz4MPPtjqnyFXXnklO3fu5MiRI+zdu5exY8fG9+aIiEhKUIAVEZEO4T99+JJLLiEtLb6vmw8++ADwXSc6bNiwNp9/4MABfvazn3Hs2LFW60pLSyktLWXLli0cPHiQpUuXhq1n48aN/OpXv8LpdFrLGhoa+PDDD9myZQt33303CxYsoKysjKVLl7J3796g8l988QW/+93v+PDDD3nkkUfaFWLdbrd132aL/8SpVatWsWLFCjweT9DyqqoqqqqqOHbsGNu2bePgwYPcd999MddfWVnJj3/845ADhvnf+/379/P666+zcuVKBg8eHLauN954g0ceeQSXy9XmdgMH9frggw8UYEVEujkFWBERSbiysjI+//xzIP7Th10uF5999hkA48aNa/P04f3793PnnXdSX18PwKRJk5gzZw7Dhg0jPT2d8vJy9uzZ0+a8oQcPHuSdd96hT58+3H777da2P/roI/70pz/hdDr5zW9+w8SJE/nlL3/JgQMH+PrXv85ll11G7969OX78OM899xwHDx5k165drFy5ku985ztxvQcAH3/8sXV/xIgRcdVx6NAhK7zm5+ezYMECJk6cSO/evfF4PJSXl7Nv3z4+/PDDuE/TXrFihRVeJ0+ezJw5cygsLCQnJ4fa2lqOHDnCzp07rVPCw9m3bx/r168nPz+fG264gfHjx5Oens7hw4cZOHBgq+ePGDECh8NBfX09H3/8MYsXL46r/SIikhoUYEVEJOE2bdqEaZpkZGRw0UUXxVXHwYMHrd7HMWPGRHyu2+3mZz/7mRVe77rrLmuE2kCXXnopt912GyUlJWHr2r9/P0VFRaxYsYK8vDxr+bnnnsvgwYNZtmwZbrebO++8k+rqah5++GGmTJliPW/06NFMnTqVRYsWUVZWxmuvvcaiRYuw2+0xvX7wnYb9xRdfAL4QP2TIkJjrANiwYYPV8/qb3/zGuq420IwZM7jtttuoqqqKuf6GhgbrHwMzZszgl7/8ZasgPHHiRL72ta9RX18fsSf5iy++YPDgwTzxxBNBo2WHG8XabrczevRodu7cyb/+9S+8Xm+7eqpFRCS56RNeREQSzn/68JQpU3A4HHHVEXgacFvT/qxfv57jx48DvlGXQ4XXQAMGDIi4/ic/+UlQePWbNWsWBQUFAJw+fZqFCxcGhVe/3NxcvvKVr1jPO3z4cMTthVJWVsajjz4KgGEYfO9734u5Dj//iNO5ubkhw2ugXr16xVz/mTNnrH82TJw4MWIvrsPhaPOU6h/96EcxTfXkf67T6aSsrCzqciIiknoUYEVEJKFqamrYsWMHEP/pwwDl5eXW/fz8/IjP9QdmgG9+85txbxN8p6SGC3mGYQStmzNnTth6Ap934sSJmNrgdDpZunSpFTxbDhwVK3/orqmpYcOGDXHXE06vXr2s0ZTffvvtds3JWlBQEPKfApEE7h+B+42IiHQ/CrAiIpJQmzdvxu12Y7fbmT59etz1NDQ0WPdD9YYG+te//gX4euKiGewpkrbKB7Yl0mi9gc+LJdA1NjZy7733WgNDXXbZZdx2221Rlw9lzpw5Vq/nsmXL+P73v88LL7zArl27rNOu2yM9PZ25c+cCsGfPHm688UYefvhh3n777ZjDezyjLAcG2MCBt0REpPvRNbAiIpJQ/t7Q888/n969e8ddT+A1o22NRltZWQk09zS2R1ZWVsT1gafHRjo9OvA6TP9UQG1xu93cd999bN26FYBp06Zx//33x3X9bKBBgwbx0EMP8atf/YrS0lJ2797N7t27Ad/7PHbsWGbOnMn8+fPb/GdBOD/4wQ9wuVysXbuW6upqVq9ezerVqwHfPxamTZvGvHnz2uxJbqu3PZTAf3bEO+K1iIikBvXAiohIwrhcLrZs2QK07/Rh8F2v6VddXd2uulKB2+1m2bJl1tRBU6ZM4cEHH7ROzW2vyZMn8+KLL/Lzn/+cefPmWdPYeDwePvvsM5588km++c1vWuE5VpmZmSxdupTnn3+e//iP/+DCCy+0An5FRQVvvvkmS5Ys4d577w0KnC3FMwBT4MBTgfuNiIh0P/o3pYiIJMz27dutU1LbG2ADp0xpK8D27t2bkpKSlB3Axx9e/b3XF154IcuXL2/X/LGhZGRkcMUVV3DFFVcAvp7rjz76iLVr1/Lhhx9SXV3Nfffdx8qVK+nXr19c2xgyZAi33HILt9xyCx6Ph/379/PBBx+watUqTp8+zXvvvcfTTz/NnXfembDXdebMGet+WwN0iYhIalMPrIiIJIw/gBUVFVFYWNiuugLnPP3yyy8jPtc/zU55eXmbz002LcPrpEmTeOihhxIeXkPp3bs3V111Fb/+9a/5+te/DkB9fT2bNm1KSP3+05MXL17Mb3/7W+v07PXr1yekfr8jR44AUFhYSHZ2dkLrFhGR5KIAKyIiCeH1enn//fcB38BD7TVgwAD69+8PwOeffx7xuTNnzrTur1y5st3b7ixut5v777/fCq8TJ07kv/7rv9q8DrcjTJs2zbrvv6Y4kQoLC615bOOZazacyspKawql8847L2H1iohIclKAFRGRhNi9e7cVfAIDZXv4Q9WRI0eora0N+7wrr7zSCkdr1qzhr3/9a8R6S0pKEtK+9nC73fziF7/gvffeAzo2vL777rtthlL/tcsAZ599dkz1nzhxgu3bt0d8zsmTJ62e0kGDBsVUfyR79uyx7l988cUJq1dERJKTroEVEenmjh07Zo046+efXxRg48aNQaMFOxwOZs2aFfN2/L2IgwYNimsqlFCuuOIK1qxZg9frZfv27Vx++eUhn5eWlsbPf/5zvv/971NfX89jjz3Ge++9xzXXXMOwYcNIT0+nvLycvXv3snHjRsaMGcPSpUsT0sZ4PfDAA2zcuBHwBcY77riDkydPRizTp08f+vTpE/O2/vrXv/LAAw8wefJkJk+ezPDhw+nVqxeNjY2UlJSwfv16q/d84MCBMU9/VFJSwo9+9CMGDRrE9OnTGTduHAMGDCAzM5Oqqir27NnDa6+9Zo0mfd1118X8GsLZtm0b4Lu+95JLLklYvSIikpwUYEVEurndu3ezfPnysOuffPLJoMcDBw5sV4BNxOnDflOmTKGgoIDS0lLWrl0bNsACjBo1iscff5yf/exnnDhxgh07drBjx46Qz/VfM9uVNmzYYN0/fvw4d9xxR5tlbr31VhYvXhzX9lwuF5s3b2bz5s1hn3P22WezfPnyiNMDRXLixAn+8pe/hF1vs9n45je/yTe+8Y246m/J7Xbz9ttvA75e/3inABIRkdShACsiIu124MABq/ewvaMPB7Lb7SxcuJCnnnqKDz/8kMrKyohzy44ePZrnn3+etWvX8s9//pP9+/db11v26dOHkSNHMnXqVK6++uqEtTEVLFu2jK1bt7Jz504OHTpERUWFdUpxr169GDVqFDNmzGDOnDlxTdszYcIEnnjiCbZv386ePXsoKSnh9OnT1NbWkpWVxaBBg5gwYQLz589PWO88YO0TANdff33C6hURkeRlmKZpdnUjREQktf3hD3/gD3/4A3369OHVV1+Nay7PcGpqarjpppuorq7mu9/9LjfffHPC6pbUds8997B582YmT57Mb37zm65ujoiIdAIN4iQiIu3mP3340ksvTWh4BcjNzbVC60svvURdXV1C65fUtGfPHjZv3oxhGNx+++1d3RwREekkCrAiItIujY2NzJgxg1tvvZWFCxd2yDauu+46Bg8eTFVVFX/+8587ZBuSWp5++mkArrnmGsaNG9fFrRERkc6iU4hFRCQlfP7552zevJnc3FxuvPHGrm6OdKGamhr+8pe/YJomCxcujHhdtIiIdC8KsCIiIiIiIpISdAqxiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIinh/wPF0q2qw++UAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "5053ccef", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21f81d22", + "metadata": {}, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_reconstructed_image(result, source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "dc5d9f13", + "metadata": {}, + "source": [ + "## Delta image\n", + "checking the difference between images before/after each iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "924732e5", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_delta_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['delta_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "39e0754a", + "metadata": {}, + "source": [ + "Plotting the difference between 19th and 20th reconstructed images." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "cd0ce733", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACzSUlEQVR4nOzdd3gUxeMG8Hev5dIbCS2EXqQIKCAICiKogApWUBSwYEFR7Nh7V1QUewGEL6DyQ0VEeq8ivfdOQnpPruz8/rjcckmul9wleT/Pk4eQm5udS+52992ZnZGEEAJEREREREREAFTBbgARERERERGFDoZEIiIiIiIiUjAkEhERERERkYIhkYiIiIiIiBQMiURERERERKRgSCQiIiIiIiIFQyIREREREREpGBKJiIiIiIhIwZBIRERERERECoZEIiIiIiIiUjAkEhERERERkYIhkYiIiIiIiBQMiURERERERKRgSCQiIiIiIiKFX0Li8ePHIUkSJEnCmDFj/FFlndSvXz/l90hE5MiYMWOUfcXx48eD3RzF1KlTlXZNnTo12M0hP5NlGZdeeikkScL48eOD3RyqhJ8/oqpWrlypfC5ee+21YDfHr/Lz85GQkABJkvDNN9/4vf5q60mcOnUqXnvttVr3B3Lm999/V15zbm5usJtD5UwmE5YuXYqJEyeif//+aNiwIcLCwhAVFYWWLVtixIgR+P3332E2mz2qd/fu3Rg/fjzatWuHqKgoxMbGolOnTpg4cSJOnDgRoFdDRHWR0WjEd999h6uvvlrZh6WkpOCGG27AnDlzIITw+za//fZbbN26FXq9Hs8//7zDcsePH8fcuXPx/PPP45prrkFiYqJyktavXz+vtu3P/euJEycwceJEdOrUCbGxsYiKikK7du0wfvx47Nmzx6v2ubJhwwbce++9aNmyJSIiIpCQkIBLL70Ub731FjIzMwOyzWDo1KmT8rdetmyZx89fu3at8vz27dt71YZz585h/vz5eO2113D99dejYcOGSp3NmjVzux7bcOHOlzvB3GQyYdasWbj55pvRrFkzREREQKfToX79+ujXrx/efvttpKWlefW6PfHOO+9UaLu7HTw5OTmYNGkSBgwYgAYNGiAsLAwRERFITU3FDTfcgB9++AGlpaVu1ZWXl4cPP/wQ/fr1Q3JyMnQ6HRo2bIi+ffti8uTJKC4u9uEVhpYbbrhB+V3/8MMPHj//5MmTUKvVkCQJCQkJyu84JiYGTzzxBADgxRdfRE5Ojl/bDeEHx44dEwAEADF69Gi7Zfr27auUqStGjx6tvOZjx465LF8Xf0fVbfny5SIhIUH5PTv76t69uzh8+LBb9X744YdCq9U6rCs6OlrMmjUrwK+O6gpP9y3V5aefflLa9dNPPwW7ObXWsWPHRNeuXZ3uvwYMGCBycnL8ts2ioiLRoEEDAUA89thjDstNnjzZabv69u3r8bb9uX+dMWOGiIqKcliXTqcTkyZN8riNjsiyLJ544gkhSZLDbdavX18sW7bM522Fwufv448/Vtpw1113efz8e++9V3n+Bx984PHz//zzT6fvv6ZNm7pd14oVK9w6V3D3d37kyBHRuXNnl/VER0eL6dOne/za3bV//34RFhZWYZuOzt1tLVy4UCQlJblsf/PmzcV///3ntK5//vlHJCYmOq2nRYsWYsuWLT6/Xtu/46uvvupzfd6YO3eu0oY+ffp4/Pw33nhDef64ceMqPJaXlyfi4+MFADFx4kR/NVkIIYQGftCsWbOAXLWsa1auXBnsJtR6Z86cQXZ2NgAgISEBAwYMQM+ePdGwYUMYjUZs3rwZ06dPR35+Pv79919cddVV2Lx5Mxo0aOCwzq+//hrPPPMMAECr1eLuu+9G3759YTQasWjRIvz2228oKCjA3Xffjbi4OFx33XXV8lqp9po6dSqHk9VRubm5GDRoEPbv3w8AuOiii3DvvfciJSUFhw8fxrfffotTp05h6dKluPnmm7F48WJoNL4f6r/88kukpaVBrVbj2WefdViu8giM8PBwtG7dGjt37vRqu/7cvy5YsACjR4+G2WyGJEm49dZbce2110Kr1WLVqlX4+eefYTAY8OSTTyI6Ohr333+/V2229fzzz+OTTz4BAERGRuK+++5Djx49UFhYiLlz52LJkiVIT0/H0KFDsWbNGnTp0sXnbQbTXXfdheeeew4mkwn/93//hy+//BLR0dFuPbe4uBi//vorAECtVuPuu+/2ePuV339arRYdO3bEtm3bPK7L1vDhwzFixAinZS655BKHj+Xn5+Oqq67CyZMnAQCxsbG45557cNFFFyEyMhInTpzA7NmzsWvXLhQUFGD06NFISEjAkCFDfGp3ZUIIjB07FmVlZYiMjERRUZFbz9u8eTOGDh0Kg8EAAGjZsiXuvvtuNG/eHCaTCYcOHcKPP/6I8+fP49ixYxgwYAB27dqFxo0bV6lrxYoVuOGGG2A0GgEAPXv2xPDhw9GoUSOcP38e8+bNw/Lly3H06FFcd911WL9+PVq3bu2/X0IQ3HDDDahXrx4yMzOxdu1aHDlyBC1btnT7+dOmTVO+v+eeeyo8FhMTg0ceeQRvvfUWPv/8czz99NNITEz0T8P9GjmdqIu9ZKF6tb8u+/nnn0WnTp3E//73P1FaWmq3zOnTp0WHDh2Uv92oUaMc1nf27FkREREhAAiNRiOWLFlSpYzt1d0mTZqIkpISv70eolASCj0Ztd2ECROU3/F1111XZX+SlZVVoZfxiy++8HmbRqNRNGnSRAAQ11xzjdOy8+bNE4888oj48ccfxY4dO4TJZKow2siTnkR/7l+LiopEo0aNlLJTp06tUmbx4sVCo9EIACIqKkqkpaW53VZ7tm7dqvQgxsbGih07dlQp8+qrrypt6t69u5Bl2evthcrnb+jQoUo7fvjhB7efN336dOV5119/vVfbXrdunRg7dqz4+uuvxb///ivKysqEEMLnnkRfe6Bse4K6dOkisrKyqpSRZVm8+OKLSrnOnTv7tE17vvzySwFAREZGitdff93tnsT+/fsrZe+55x5hNBqrlCkqKhIDBgxQyj3++ONVypSWlorU1FSljKOer08++UQp079/f29eqiIUehKFEOLxxx9X2vHyyy+7/bzVq1crz+vYsaPdMgcPHlTKvP322/5qsmBIDCCGxNCTk5Pj1kF4165dyt8uPDxcFBUV2S1ne8L2zDPPOKzvtttu8+tJG1EoCpWT1NoqPT1d6HQ65SQvPT3dbrldu3Yp4aRBgwbCZDL5tN158+Ypf1dvhsF5GxL9uX/99NNPlTK33Xabw7qeeeYZpdzTTz/tdlvtGTZsmFLXlClT7JaRZVn06NFDKffXX395vb1Q+fz9/vvvSjuuuOIKt59nG0Tmzp3r1zYFOyT27t1bqWvBggUOy5lMJlG/fn2lbH5+vk/btXXq1CkRExMjAIiPP/64wvvFWUgsLS0VarVauViTm5vrsKztudMll1xS5fHZs2crj3fr1s3p+djgwYOVskuXLvXotdoKlZC4ffv2Cu9Ddy8I2Q7B/vjjjx2W6969u3KxzJeLTbYCPrupdcbOVatWKT+zd8OvowltZFnGL7/8guHDh6N58+aIiIhAdHQ02rVrh4cffhi7du1y2rbXXntN2YZ1OOeyZctwxx13oHnz5tDr9VVmCDSZTFi0aBGeeuop9OnTR7mhNjo6Gm3atMGYMWOwevVqh9u0zjxo2z3cvHnzKq/Z0e/KndlNN23ahAceeABt27ZFdHQ0IiMj0bJlS4wePRrLly93+fzKkwgUFRXho48+Qrdu3RAfH4/IyEh06NABzz//vP9vhA2iuLg4t36/HTt2RLt27QAAJSUlOHz4cJUyQghlaIyr2f4ee+wx5fs5c+Z42myfbNiwAQ8//DDat2+PuLg46PV6pKamYvjw4ViwYIHT59qbFezkyZN46qmn0K5dO0RGRiIuLg6XX345vvzyS5hMJrfaVFhYiE8//RQDBw5Eo0aNEBYWhoSEBHTv3h2vvPIKMjIynD6/8mfFbDZj6tSpGDhwIBo3bgyNRmN3goL09HQ8++yzaN++PSIjI5GQkIAePXrg448/Vm6Sb9asmd0JDv755x9lm7Z/T2cee+wx5TkLFy506znucDW7aaD+bn/99RduuOEGNGjQAHq9Hs2aNcPIkSOxYcMGj1+DwWDADz/8gBtvvBFNmjSBXq9HXFwcLr74Yjz11FMOZ209cOAAIiMjIUkSYmNjcezYMYfbyMnJQWpqKiRJglqtdrrfrgl+//13ZbjXHXfcgeTkZLvlOnbsiP79+wMA0tLSKhx/vfHzzz8DsAwdvemmm3yqy13+3r/a/vzxxx93WNf48eOV/covv/ziUZttFRQUKJ/5mJgYhxODVH5t1XF8+Pfff5GUlARJkhAWFmb3dfpy7jVkyBDlvbl27VocPXrUZZtOnjyJFStWAADq1auHG264wctXF5rOnz+vfO9s6KRarUaLFi2U/7s7HNQdDz/8MPLz89G1a1enn4HKsrKylGG8ycnJiI2NdVi2TZs2yvf22m57fnrXXXc5PR8bNWqU8v3//vc/t9vrLesQUEmSoFKplGHilf3zzz8YM2YMWrdujejoaERERKBly5YYM2YM1q5d67D+zp07o2vXrgAsk2dZ3+/O2A7B1mg0uOuuuxyWHTlyJADg1KlT/rt9zR9J09nENbY9iM6+7KX7w4cPiy5dujh9nkqlctptazuUY/ny5eKRRx6xW49tT1+/fv3cavPo0aOVoQy2bHsQXT3f0e/KEaPRKMaOHeuy7ttvv10UFxc7rMdarm/fvuLIkSOiffv2Dutq2rRpnewJtV6VASA2btxY5XHbK2aOhgBYmc1m5QqeSqXy69VBRwoLC8Xw4cNdvleGDBnisD2Vr8AtXLhQxMXFOaxr4MCBDofxWv39998iOTnZaZuio6PFH3/84bAO289KVlaW6NOnj933ra3ly5crN3fb++rUqZM4efKkaNq0qd3nm81m0bx5cwFAxMfHuxw2XFJSomwvNTVVmM1mp+U94WqUgr//biaTyel+TaVSiffff9/tnox///1X+V06+tLpdOLrr7+2+/xvv/1WKderVy+HPWW33nqrUu7FF190+jutCW655Rbl9fz2229Oy3744YdKWWe9cK6UlpYqQz6vvPJKr+rwpifRn/vXvLy8CsM+XX0WbW832LNnj1vtrWz+/PlKHa6GTp4/f14pm5SU5NX2hHCvJ3HRokXKxD1RUVF2h/D649zrySefVMq+8sorLttuOxzT3jBFXzk6Ljjjzx4o22OUuz2JiYmJfjtuzJo1SwAQarVamQzG3Z7EkpISZRi2Vqt12pO4e/dupc5hw4ZVedy2d3DhwoVO27x161albIMGDdx7oXa483fcunWr8nvXaDTi559/rlLm/PnzFXq7HX3dd999wmAw2N2O7cRezm5lsrIdgj106FCnZXfs2OH3z1DAQ+KaNWvEvHnzKux0582bV+Vr3759FZ53+PBhUa9ePeU5ffr0Ee+9956YNWuWmDFjhnjiiScqnPA5+sPbhsRBgwYpb7aJEyeKGTNmiKlTp4px48aJs2fPKs+57LLLRFRUlBg6dKh44403xPTp08Uvv/wiPvvsM/HAAw+IyMhIp3+I//77T8ybN09cddVVSrlvvvmmymuuPPuTOyFxxIgRShm9Xi8efPBBMW3aNDFjxgwxYcIEER0drTx+7bXXOuxytpbp2rWraNeunZAkSQwdOlR89dVXYs6cOeLdd9+tMG7ckyEjtUFZWVmFk+pz585VKWPd6brawVrZ/n03bdoUgFZfUFpaKnr27Klsr2XLluKFF14QP//8s5g9e7Z46623RJs2bZTH+/fvb/dgZLtzHTp0qIiIiBDh4eHiwQcfFFOnThWzZs0STz31VIXPhLMTh99++00ZtqLVasUtt9wiPv/8c/HLL7+I77//XowcOVKZxVClUjmc8c/2d2n9XHfu3Fm89957Yvbs2eLbb78Vjz76qFJ+z549yomu9X3/8ccfizlz5ojJkycrQ4F69eolGjdu7PBk4p133lHqmDFjhtO/wc8//6yUff31152W9ZQnIdEff7dx48Yp5XQ6nRg7dqyYNm2a+Pnnn8X48eOV363t8DpHJ6nr169XykuSJK677joxadIkMWfOHDF16lTx4IMPVvhbOarHNjDZa/v333+vPN6zZ0+799DUNG3btnX6d7dl+x4YNGiQ19tctmyZUo+3wy+9CYn+3L9u2LDBo+3bfr7mzJnjVnsre/fddz0KGNaLUwAcDiN2xVVI/N///qfsX5OSksS///5bpYy/zr1sQ36zZs1cDn9r2bKlUn779u3evHynrHV7GxI7duwoOnXqJKKiooRerxcpKSni+uuvF1999ZXTC/JWthdtnN2T+NJLLynlXnvtNU9eokOZmZnKrKQTJkxQfu5uSBRCiCFDhihl7733Xof3JA4cOFDZt69YsaJKGevxGvAsJAIQGRkZbr3eylyFxOXLlysXmSIiIsTff/9dpUxWVlaF92jnzp3F66+/LmbOnClmzZolXnzxReXcwdnvMzMzs8ItAwUFBU7bbhtKf//9d6dlzWazcgGoXbt2Tsu6KySXwDCbzeKSSy4RAERYWJj45Zdf7JZLS0tTrnapVCqxe/fuKmVsQ6J1h5eXl+d0+0uXLnX6oc/MzFSuCqlUKnH06FG75fy9BIbtWO769evbvcJ5/PjxClfoHd2fYfs70el0Yv78+XZfp21dvgSboqIiuxcHvPlyNbWyP9ie4NsbVy+EqHDTtzsnAaNGjVLK27tK5U+V7+Wxt0M3GAwV2vTVV19VKVN5CvDU1FRx8ODBKuU2bdqkXGmMj4+32yt18uRJZUecmpoqdu7cabftmzZtErGxsQKASElJsXtFrvIIhQkTJji94mp7FXfcuHF2y1beV9g7mUhLS1NOslydbF555ZUCsFy5PXXqlNOynvIkJPr6d7O9aT4uLs7ulOT79+9XlkdwdpKan5+vTIASFxcnVq5caff1HTp0SLlIFRkZaffkIDs7W6SkpCi/4zVr1iiPHThwQAnAMTEx4siRI3a34659+/b5bf/l7YmO2WxW/lZqtdpl6D169Kjyt2jZsqVX2xSi4oWRX3/91as6vAmJ/ty/Tps2zaPA+corryjl33zzTbfaW9k999zj9LNQmXV/AaDCe9kTzkLi5MmTld7Upk2bigMHDlR5vj/PvYQQolu3bkp7li9f7rDdq1atUsp17drV/RfsAV9DorOvhg0bOn19QlS9cBsbGysmTJggvv32WzFz5kzxzjvviE6dOimPP/zww367sHX33XcLwHKvmm0o8SQkHjx4sMIIoJYtW4rXXntNTJ8+Xfz4449i4sSJSk9cWFiY+PHHH+3WY/u5+Oyzz5xu0/acF4BYu3atx69dCOch8bffflOWA0lISBDr16+3W4f1AqgkSeLTTz+1W6agoEBcc801yrYchWDbES6Ofk9CWM7nrZ/Z5ORkt94P1pGQkiQ57fF1V0iGRNv1RCZPnuy07IEDB5SeibFjx1Z53PbELzIyUpw5c8at1+TKkSNHXB5E/B0SbWess3elw2rTpk0VDgb2hmLZfvDeeOMNh3V99913bpVzxfY94uuXOwd5X2RnZ4uGDRu6PDF64oknlDKff/65y3o9Le+ts2fPKleqbr75ZqdlDQaDaNGihQAgWrduXeXxygfJ1atXO6xr5MiRTsuNHz9eOcHdtm2b03b98MMPSl0zZ86s8rjtZ+XSSy91GhD//fdfpWzHjh2dTuJhW6+jkwnbSTLsBS8hLPsla5khQ4Y4fa3e8DQk+vJ3s52p0N6MkFZ//fVXhW3aOzG2XUPtzz//dPoabXuwHM3WtnLlSqFSqZS/V05OjjAYDOLSSy9VnuuPCzKVLyD48mXv6ro78vLylDoSExP9Xt6RO++8U6nH0YUdV7wJif7cv3722WfKY0899ZTLujwtb89NN92k1GHvIqyv5e1xFBJtZ8zs0KGDOH36tN3n+/PcSwghpkyZotTnbGidbXBwtV1vudqv27NixQohSZLo0aOHeO6558SPP/4ofv31V/Hdd9+JBx54QLmYCViGKC5evNhpfcXFxeKBBx4Qer3e4f7h6quvdrq/9tQ///yj1F35Fg5PQqIQltAyYMAAp2t+Pvzww+LQoUMO67Ad4eFqNl/b3kvA+0mdHIXEr7/+Wjl+NG7c2OHQ8v/++095/pNPPul0W9nZ2cr7YuDAgXbLLFiwQKnP2RB+2wtlrrZr9fDDDyvP8fZiky2/TFzjb9ab5GNiYjB27FinZdu0aYMePXoAABYvXuy07C233IJGjRr5pY0tWrRQ1s7btGmTX+p05vjx48o6P506dcKgQYMclu3Ro4cyacGJEyfw33//OSyrVqvx6KOPOnzcWg8A7N2719Nm1zhmsxkjRozAuXPnAFhuwL/11lvtli0sLFS+1+v1LusODw9Xvi8oKPCxpY798ssvyuQWTz/9tNOyWq0Ww4cPBwAcOnTI4WQhANC1a1dcccUVDh939l4RQmDmzJkAgKuvvtrlWmDDhw9X1nZz9bl+5JFHoFI53pX98ccfFcqq1WqHZd25mf+hhx5Svv/+++/tlrH9+QMPPOCyzkDy5e9WVlamTL5Rv359pzfNDxkyBBdddJHTtlj37W3atHE5MUX//v2V/bWj90Dfvn0xceJEAJZ93UMPPYSXXnpJ2eeNHDnSaZtrkmDtb06cOKF8n5CQ4HU9nvLn6w3G7y4Ujg9msxljx47F22+/DQC4/PLLsWbNGrtr1wH+P/e64447lNc+d+7cCr8Tq+LiYvz2228AAJ1OhzvvvNONV1Y92rZtiwMHDmDTpk147733cM899+DWW2/F/fffj2+++QbHjh3D4MGDAVgmPLzjjjuQn5/vsL7w8HC8/vrrmDBhgsNj1ooVK/Duu+8q66D6oqioCA8++CAA4Oabb8aNN97oU31NmzbFpEmTnNYzffp0fPDBBw7fw7feeivi4uIAWCZQeuWVV+yW++KLL6pMrOfsd+upN954Aw899BBkWUbbtm2xfv16tG/f3m5Z6+dCkiQ89dRTTuuNj49X3hOrV69GWVlZlTLXXnutcmxbs2aN3cnXhBCYPn268v/KayM6276V7b7bW76vsBsAa9asAQA0bNgQ//zzj8vy1pO+EydOoKSkpMLO1pazE6XK8vPzMXPmTPz999/YtWsXMjMzHc4ydfr0abfr9dbmzZuV76+55hqX5a+55hosW7YMgCXEWnfmlbVp06bCm6oy24OJL7OcNmvWDEIIr59fXR5//HHlgJeamlojFyy3fn4Ay3vz999/d1re9u+6b98+u7OCApYFb51x9l7Zs2cPsrOzAQDR0dEu2wQAUVFRyM3Nxb59+5yWc/W53rJli/L9VVdd5bSsdbZfZ6666iq0adMGBw8exLRp0/DWW29Bq9UqjxuNRmVm40aNGvl9MWRP+fJ327Fjh3LBoW/fvk4DNmC5AODo75WXl6csqF6/fn233wMAnL4HXn/9dSxbtgybNm2qMDNk8+bN8eWXX7rchjtee+01hzNw13bWzy1QvSGRfFNaWorbbrsN8+bNAwAMHjwYv/76KyIiIhw+x9/nXvHx8Rg2bBhmz56NoqIi/Pbbb1Vmef3tt9+UQHHjjTf6bxFwP2jYsKHTx+Pj4zF37lz06NEDu3btQlZWFr766is899xzdstPnToVDz30EMrKynDzzTfjiSeeQJcuXaDVanH48GFMnz4dkyZNwsKFC7Fx40YsWLAAvXr18rr9L7zwAk6cOIGYmBh8/vnnXtcDWELwhAkTMGXKFGg0Gjz77LMYNWoUWrVqBaPRiO3bt2PSpEmYN28evvvuO2zevBmLFy+uMgNzbGwsPvnkEyX0vPXWW1i+fDluv/12NGrUCBkZGZg3bx6WLl2K8PBwxMXFKRftnV0Mdpcsy3j00UcxZcoUAED37t3x999/o169eg6fY/1cxMXFVTgXd8QaDMvKynD06NEqF0/VajVGjRqF9957D0IITJs2rcrxZc2aNThy5AgAoFu3bujYsaNbr8/28+OPlQlCLiQWFhYiKysLgGWqc0+n287JyXEYEh1dPatsxYoVuPPOO5GWluZWeX9e3XDE+iEBKk4x7IhtGdvnVubsgwEAYWFhyvelpaUut1uTvfjii8qOo379+liyZInT34/1BBZw73dTUlKifB8dHe1DS52z7Q28/fbbPXqus52KL+8V2zbNnTsXc+fO9UubANef67Nnzyrf204tbk98fDzi4uKQm5vrsIwkSXjggQfw9NNPIz09HfPnz8fNN9+sPP7nn38q053fc889LoNVoPnyd7P93bVq1crltpyVOXXqFGRZBmA5ANpezHDF2XtAo9Hgf//7H7p06aKcbFp/FhMT4/Y2Ql2w9jfWEx61Wu3w2BoI/ny9wfjdBfv4MHHiROTl5QGwLDXw008/KaMz7AnUudc999yD2bNnA7CEpMoh0fZC7L333lvl+c4uJkVERLh10TyQ9Ho9XnjhBdxxxx0AgAULFtgNid99950yquTJJ5/Exx9/XOHxDh064P3338fll1+OYcOGIScnB7fffjsOHTrkVk90ZRs3bsQXX3wBAHjnnXd8HkU3evRoZRmKuXPnVuhNDAsLQ58+fdCnTx88+eST+OSTT7Bjxw488sgjyvINtsaMGYPCwkI8+eSTMBqNWL9+PdavX1+hTHR0NGbOnIlXX31VOYd11qHhrsmTJyufiwEDBmDevHkVPqv2WM9fcnJyvPpc2DNmzBi89957ACy9r6+++mqF5UBcfS4csT3m2e5TvBVyIdH6x/OW9aq3Pe4c4A4dOoQhQ4Yov9y2bdti0KBBaN26NRISEip8WB944AFkZGQo68cEkm3XfWRkpMvytm96Z0NX/HFlpjZ466238M477wCwnFQvXbrUZRi3DpkAgMzMTJfbsB6AKz/X33z5DDn7/PjyXglUmwDXn2vrCACNRlOhx8+RyMhIpyERsOzgX3zxRZSVleG7776rEBK/++47AJYwed9997ncXqD58nezHR7mrAfCytm+yZf3gNFodPp4vXr1kJCQoOzrWrRogUsvvdTr7YWiqKgoaDQamEwm5ObmwmQyOT3p99f+xnoRwWw2o7i42K33gT/4c/8ajH11sI8PtmufFhUVuRzJE6hzrwEDBiAlJQWnT5/G6tWrcfz4cWW0yokTJ5T13Bo1amQ38Dk7KW/atKnTWySqi+0IFHvDREtLS5Vh8QkJCXjrrbcc1jV06FBce+21WLRokTISaMSIER61x2Aw4L777oMsy7jsssvw8MMPe/T8yjZv3qwExOuuu87pcNO3334bU6dORU5ODubOnYuzZ8/aDaiPPvooBg8ejC+++AJLly7F8ePHYTQakZKSgsGDB+OJJ55As2bNKtwOZb3Fyxeefi6AwJy/tG3bFpdffjnWr1+PY8eOYfXq1ejbty+AikOw9Xq9cgHCHbZt9cdFvZALibbh5sorr/R5EWBPvfvuu0pAfPHFF/Hmm286XOzT1Zh9f7K9sujO4qq2J3eB7LVyV3Fxsct7y9yVmpqKSy65xC91AcAHH3yAl19+GYDlStWSJUvc6tq3DZHuHKhsx4e70xvsLetnSJIkmEymkLgQYPu5fuWVV/D6669X27atwcVkMsFoNLoMiu58vhITE3Hrrbdi5syZWLx4MU6ePInU1FScOHECS5YsAWA5OWrevLnvLyCIbP9uxcXFLss7+93Z1jVq1ChlSK4/jBs3rsLn6+DBg3jppZfw/vvv+6X+/fv3++UeIQDo06ePy95de1QqFVq2bIkDBw7AbDbj9OnTDoeGA/7b39gOMc3Ozq62kOjP/Wsw9tXBPj68++67mD17NtavX4958+Zh+PDhmDNnjsP9X6DOvVQqFUaPHo23335bGVr36quvAgCmTZumnKSPGjUq6KMuvGU7xM/eBcYNGzYow7Yvv/xylyfvAwYMwKJFiwBYApqnIXHDhg3K/eUtW7ZULoBXZp3nAgB27typhNe2bdvitttuUx6zvTdwwIABTrcdHh6Oyy+/HAsWLIAQAlu2bHEYKlu0aIFJkyY5rKuwsBCnTp0CYLlI6eieQU88/vjj2LdvH+bNm4cNGzYogdzZebL11hfrMd5f7rnnHqUHderUqUpItB2CPWzYMI8uGvn79oCQC4mxsbGIiopCYWFhtdzrV9nSpUsBAMnJyXjjjTccBsSCgoIKf4xAsx0bf+jQIZflbcv4a7IeX5w/f97jbnpHRo8e7bd7BT/55BNlaEhsbCwWLVrkclIVK9sg6WxyIMAyDt66Q1apVC4n+PBF48aNsX37dgghcObMGTRp0iRg2/KkTVbV/blu1KiRci/c0aNH0bZtW4dlc3JyXPYiWj300EOYOXMmZFnGjz/+iNdeew0//vijMqQy2BPW+IPtvuPw4cMuyzsrE6j3wMyZM5VJkS699FJkZmbixIkT+Oijj3DttddWmJjHW7Nnz/bbhY0VK1a4de+rPR07dsSBAwcAWPY5zkKi7b247t7PYk+zZs2wbt06AJYTkJSUFK/r8oQ/96/t27eHSqWCLMvYvn07ZFl2evHMH787T9qfkZGhnHwmJSVVuY/LG9HR0fjnn39w3XXXuRUUA3nuNWbMGGXynOnTpyuTldheKKo8DNWqJsxl4KoX2HbYvjtD4GNjY5Xv3bloWZnt78zaA+jKtm3blM/Q0KFDK4TE6m6/1erVq5XX0qtXL6cjJ9yl1WoxZ84cjBgxAv/3f//nVlBs3LgxcnNzcf78ebcuNLvr9ttvx+OPP670HH7xxReIjIzETz/9pJRxd8IaK9tc0rRpU5/bWG1dDLY7ZFcf+iuvvBKA5YTOnRMTf0pPTwdgmfTA2UFk6dKlysmgI568ZldsJ56x9lQ4Y9tr52jSmrpuypQpePLJJwFYDqgLFy5E9+7d3X5+hw4dlBOmPXv2OD2wrl+/Xrl3tXfv3gHt3bVejQJczwxaXbp27aocXJYtW+bys+NP3bp1U75fsWKF07LWoU/u6NOnDzp06AAA+PHHH2E0GvHjjz8CsFxkGjp0qOeNDTGdO3eGTqcDAKxatcrl0HrrZFn21KtXT7kSvHHjRr/cy33s2DGMGzcOgKXHeNasWZgxYwbUajVkWcaoUaMqnMDVdNdee63yvbWnwRHbiUeuu+46r7dpG3asAbU6+HP/GhMTo0zglJeXh40bNzqs69SpU0ovTGpqqte9F/369VOG6q5evdrp/UG2f0tf/laVWYNi7969AQDz5s3D7bff7nD4dqDOvVq1aqVMMHb06FGsWbMGq1evxtGjRwFYetecXbwLdba9rvZ6gW2DlbVnzBnb3qpQmMgnWO23DUv+vHXDGhRvueUWAFCCoqNjkvWcqrS0FKtXr/ZbO2JiYpQ2FBYWYu7cuTh+/LjyfkpJSXHZc1uZdZI3SZLQqVMnn9tYbSHRdiiDqysLo0ePVr53ND1uoFiH0hw9etRhsDObzQ6772158ppdadasmTLEcseOHU6D4pYtW7B8+XIAlisJoXBvjnV2U398+aMX8bvvvsP48eMBWE4u//77b49nEZMkSbnaJoRwOnvY5MmTle+tS04EyogRI5QT+/fff9/n954/qNVqjBw5EoDlAOJo6YhAsA1rU6ZMcRp0PvvsM4/qtk4vfurUKUyYMEE5kR09erTfrjYGU1hYmDKdd3p6utOr0gsXLnQ5E611315cXKzctO8ts9mMkSNHKgf2yZMno3Xr1ujTpw9eeOEFAMCZM2dw//33+7QdwDK7qb/2X972IgKWoUfWz/asWbOUCZIq2717t3IMaNCgQYULR5667LLLlO+rY7knK3/vX21/7uxz/vnnnyvHfk8n/rIVFRWlfHby8/MdHreEEMoEI5Xb6Q/WoNinTx8AlolgHAXFQJ572faITJ06tcLvw9PeklBSVlZW4XzQ+je3ZXuhZePGjU6HLJrNZuV+NKDiRU539evXz619kW0IGz16tPLzypMF2bb/119/dXoMPX78uLKfUKlUXt8atGLFCuX30KJFCyVM+YtGo8Hs2bOVJc42bNiA6667zm5QHDVqlPL966+/7td5SCp/LmyHYI8ePdqj24XMZrMyCqJdu3b+mbjNt2UWLWwXynW0IOdjjz2mlFm1apXT+sxms+jevbtS/vHHHxdlZWUOyxcXF4uffvpJzJo1q8pjtosgu7OI8cCBA5XykyZNqvK4wWCosPArnCzOOmnSJKXMtGnTXG7bdiFve+bMmaM83rBhQ7Fv374qZU6cOCFatmyplPviiy/s1mV93J2FjT0pWxNMmzZNWQw2IiLC68WthRDizJkzIiIiQllMd+nSpVXK2C5Y26RJE1FSUuJD693z1FNPKdu86qqrxLlz5xyWNZvNYsmSJeLNN9+s8pijRWjtcVX21KlTIi4uTgAQYWFhLj8T6enp4o033hA7duyo8pirz0plffr0UcqPGzdOmM3mKmUqL5juzqLLubm5yt/f9uvgwYNutctbo0ePVrZ17NixKo/78++2Zs0a5fH4+Hixbdu2KmUOHjwoGjZsWOF3YLuYt1VhYaFo2rSpACAkSRIffPCB3b+FVW5urvjss8/EkiVLqjz28ssvK9u69dZbKzxmNBpFr169lMe/+eYbp7+DmmTChAnK6xo0aFCV/Ul2drbo2rWry2OAu0pLS0VkZKQAIK644gqv6rA9R/DkOOLP/WtRUZFo1KiRUnbq1KlVyixZskRoNBoBQERFRYm0tDSXr8fZPmjr1q3KsSY2Ntbuvuy1115T6unevbvDutxh+7uo/PkrKCiosB8cOnSoMBgMFcr489yrsoKCAuV9FBUVJaKiopRjcF5enlev1xOe7NeFEOLQoUPiww8/FPn5+Q7LZGdni8GDB1fYP+bk5Ngte9lllynlevbsKbKysqqUMZlM4qGHHlLKJScni8LCwirl3H3/uWL7fnF07i6EEBkZGcrfDoB4+OGHhclkqlIuKyurwuscPHiw3fqOHj0qTpw44XB7ixcvVhaklyTJp3M0IZwf44xGo7j11lsr/G3svR9vueUWpczw4cOdvmeNRqOYO3euW/teWZZFs2bNlNdav359ZTuHDh3y6HXu2LFDee6ECRM8eq4j1XZP4tVXX61c7bvvvvvwxBNPoGnTpsqNyq1atVKmT1epVJg7dy569eqFM2fO4LPPPsMvv/yC2267DZ07d0ZsbCwKCwtx8uRJbNmyBcuWLUNRURHefPNNn9s5fvx4pZfuySefxMqVK3HttdciMTERhw4dwvTp03Ho0CFcddVVOHTokNMhMFdffbXy/bPPPouMjAy0bdtWGVfduHFjj7qDb7/9dsybNw+zZ8/GuXPncMkll2DMmDHo1asX1Go1tmzZgh9++EG5EnLNNdcoQ7HIYuHChbj33nuVKzX33nsvcnNzXa7ZdskllyA1NbXKzxs1aoSPP/4YDz/8MEwmEwYNGoRRo0ahb9++MJlMWLhwoXI1TKPR4Ntvv3U6nbXtPbDHjh1zes+RM++++y62b9+OZcuWYcWKFcqVuF69eiEpKQkGgwFpaWlKr3RaWhquvvpqvPTSS15tzx0pKSmYPXs2brzxRpSVlWH06NHKwrytW7dGeHg48vLycPDgQWzcuBHr1q2D2Wx2ubahO7755ht0794dxcXF+PLLL7FhwwbcddddSElJQXp6OubMmYN169ahV69eOHnyJM6cOePWFbzY2FgMHz68whXZfv36oXXr1j63OVT06dMH48aNw5dffomcnBz07NkTo0ePRp8+faBSqbB582b88MMPKCoqwrBhw5x+liIjI/H777+jb9++yM/Px7PPPotvvvkGt9xyC9q3b4+oqCjk5+fj6NGj2Lx5M1auXAmDwaAsZmy1du1a5ep9SkoKvv322wqPazQazJw5E126dEF+fj6eeOIJ9O3bt0YPabN69dVX8c8//2D//v1YuHAhLrnkEtx///1o3LgxDh8+jG+++UYZEtavXz+f740NCwvDddddh7lz52LLli0oLCx0OWV85f2I7Yx7x44dq/L4JZdcUmGGYCt/7l8jIiLw7bffYujQoTCbzbjnnnuwYMECDBo0CBqNBqtWrcL06dOV2Q8/+eQT1K9f3/UvyImuXbvi2Wefxfvvv4+8vDxcfvnluP/++9GjRw9leJn1loCoqKgq72N/ioqKwsKFCzF48GCsWbMGf/zxB2677Tb8+uuvyqiHQJ57RUVF4bbbbsPUqVMrTKx3yy23+H2pmo8//tjh0gO5ublV3n/NmzevMpyxsLAQzzzzDF5++WUMHDgQ3bt3R9OmTZXZr//991/Mnj1beW9bl91xNMnIZ599hn79+qG0tBQbN25Eu3btMHr06ArrJM6cOVMZ6gxY3oPuzGYfaPXq1cPbb7+NCRMmAAC++uorrF69GnfeeWeFdRKnTZuGjIwMAJZjY+VlPqz+++8/jBgxAldccQX69euHVq1aQaPR4PTp01i4cKFy24IkSfjiiy98Gn3hikajwaxZsyBJEn799Vds3LhRuUfR9n35448/4uDBg9i1axfmzJmDRYsW4fbbb0e3bt0QHx+PkpISnDlzBtu2bcOSJUuQk5Pj1hBZSZIwZswYZbSK9Za3K664wq1lp2zZ3k4zbNgwj57rkD+Spjs9iSaTqcJVrMpf9q5gnz17Vlx99dUOn2P7pVarxXfffVelDk97EoUQ4vnnn3e6rd69e4vz588rV8SdXZm64447HNZT+XflTu+I0WgU999/v8vfx6233iqKi4sd1mMtV9d6Eiv3Frn7Za9XxNaHH34otFqtw+dHR0e7dbXV9jn2eog8UVZWJh599FGhVqvdeo2jRo2qUoc/e6SsNmzYIFq0aOFWm6KiosTOnTur1OFpT6IQQixfvlzpybT31bFjR3Hy5EnRuHFjAUBcfPHFbtW7adOmCvXMnDnT7TZ5qzp7EoWw7L/vvvtuh787lUolPvjgA6c9Gbb2799fobfL2VdYWJhYuHCh8tycnBxl36tSqZzu12fMmKHU07VrV6e9IjXJsWPHXP7+BgwY4LBXw1O///67Uu/06dNdlvd0/+qsF0MI/+1fhbC8J6y9WPa+dDqd3VFEtjzpyZFlWUyYMEHpUbT3lZycLJYtW+ZW+51x5/NXWFgorrzySqXcjTfeWKVH0R/nXvasWrWqyvOXL1/u68uuwrp/cPfL3rnNtm3b3H5+amqqW+eXixcvFg0aNHBZX2RkpPjxxx8d1lPdPYlWH330kdDpdC7b36xZM7Fx40aH9fz6668u66hfv76YM2eO16/NljvHOKPRKG6//Xal3GWXXValtzAvL08MHz7c7ffFyy+/7Fb7jh07VmX/4Ozv70iPHj2U96Msyx4/355qC4lCCFFSUiLee+890atXLxEfH1/h5NXZiczKlSvFgw8+KDp06CDi4uKEWq0WMTExon379mL48OHiq6++EmfPnrX7XG9CohBCLFy4UAwZMkTUq1dPaLVa0bBhQ9G/f3/x3XffCaPRKIQQboVEk8kkvvrqK9GvXz9Rr149ZSiLvd+VJye+GzZsEPfdd59o1aqViIyMFOHh4aJ58+birrvucutg42zn6EvZUBeokCiEELt27RKPPPKIaNOmjYiMjBTR0dGiY8eO4rnnnhPHjx93+fyioqIKJyr2hqN449ChQ2LixInisssuE0lJSUKj0YiIiAjRvHlzMXjwYPHOO+/YDWJCBCYkCmHZIc+YMUPcfvvtonnz5iIqKkpoNBqRkJAgunXrJsaOHSvmzJljd6iNEN6FRCGESEtLE08//bRo27atCA8PF3FxcaJbt27io48+EkVFRUKWZREeHi4AiH79+rlVpyzLytCYhIQEUVpa6lGbvFHdIdFq/vz5YsiQISIpKUmEhYWJ1NRUcccdd4j169cLIdw7SbWSZVn88ccfYvTo0aJNmzYiJiZGqNVqERcXJzp37ixGjRolpk6dKrKzsys8z/YgPXHiRKfbEEKIkSNHKuWfeuopl+VrCoPBIL799lvRv39/Ub9+faHT6USjRo3EkCFDxOzZs/12kiCE5TiWmpoqAIiBAwe6LO/p/tWdE1Rf96+2jh8/Lp599lnRoUMHER0dLSIjI0WbNm3EI488Inbv3u3y+d6cpK9fv16MGTNGtGjRQuj1ehEXFycuueQS8cYbb4iMjAyP2u+Iu58/e0HR3gUUX8697JFlucLtMM2aNfPr+9TKHyGxtLRU/PPPP+LVV18V1157rWjXrp1yDhcTEyNatWolRowYIWbOnOnRxae8vDwxZcoUMXjwYNG4cWOh1+uFVqsVSUlJom/fvuKtt95yenuIEMELiUJYPjuvvPKK6NOnj0hKShJarVbo9XqRkpIibrjhBvHdd9857aAQQojMzEzx9ddfi+HDh4uLLrpIJCQkCJ1OJxo3biyuvvpqMXnyZJGbm+v166rM3WOcyWSqcHyxFxSFsAwjnzBhgujatatITEwUGo1GREVFidatW4thw4aJSZMmiSNHjnjUxv79+yvbjYyMFAUFBR49/+DBg8rz3377bY+e64wkhI/TbhKRXyxatEiZ2e6xxx7zeBIV8t2uXbtw8cUXA3D/b7B06VIMHDgQgGUNpk8//TSQTSQKik8++QRPPvkk1Go1jh8/Xm1LYRARkXOvvPIK3nzzTURGRuLEiRN+mxU3+KtsExGAC2t0RkdHB/TeQHLMdpZBd++F/Oqrr5Tva8PaiET2PPTQQ2jQoAHMZjM++OCDYDeHiIhgmT15ypQpACzzqvhz2RSGRKIQYQ2JTz75JJKSkoLcmtpnzZo1TtdnnDJlijJxROPGjXH99de7rHP79u3KRC0DBgzwek01olAXHh6O1157DQDw7bffVlhgm4iIgmPy5MnIzs5GYmIinn32Wb/WzeGmRCEgMzMTycnJqFevHo4cOVJlMWjyXatWrVBaWopBgwaha9euSEpKgtFoxJEjRzBv3jxs27ZNKTt//nyHIfGff/6BLMs4ePAgPvjgA5w7dw6AZcZN66LVRLWRLMvo3r07tm7dikcffdTp2oVERBRY+fn5aN68ObKzs/H1118razf7C0MiEdUJrVq1wpEjR5yWCQ8Px3fffYeRI0c6LGO7TImVu/cvLl68GMXFxa4ba0e9evWUBbGJiIiIAokhkYjqhI0bN2Lu3LnYuHEjzpw5g6ysLBQXFyM+Ph5t2rTBgAED8PDDD7tcG80aEqOiotCmTRs8/PDDuPfee91aV7FZs2Y4ceKEV+3v27cvVq5c6dVziYiIiDyhCXYDiIiqQ8+ePdGzZ0+f6+F1NSIiIqrt2JNIRERERERECs5uSkRERERERAqGRCIiIiIiIlIwJBIREREREZGCE9cQEVHQmc1mlJSUoLi4WPmy/X9RURHKyspgMBhgMBgqfG/v/waDAWazGbIsV/jX+iXLcoXHAMvMtY6+rLPXqlQqqNVqaDQaaLVa5cvR/3U6HcLCwhAeHg69Xg+9Xo+IiAjle9ufh4eHIyoqChEREdBoeHgmIqLg4VGIiIj8QgiBgoIC5OfnIz8/v8r3eXl5ys+s/xYVFaG4uBilpaXBbn5IiYiIQFRUVIWv6OjoCv+PiYlBXFwcYmNjERcXh7i4OISHh9tdy5OIiMgTnN2UiIgckmUZeXl5yM7ORk5OTpV/K39vNpt92p5arUZERESFr/DwcERGRkKv12PJtNWQZAmQJUBG+b/ShZ8JXPi/gOULNt+L8u9x4XvJ+n+bh2CbsySbw6Rk/RKASlieIwnLzRs2P4NKQJT/C5UA1ALXjb0KpaWlKCkpQUlJCUpLS5X/W/8tKyvz6fen0+mUwGj7FR8fj3r16qFevXpITExEvXr1EBkZyUBJRER2MSQSEdVRZrMZOTk5OH/+PDIyMpCRkVHl+8zMTJhMJo/qjYiIQExMDKKjoxETE4OYmBismrURklEFmFSQTFL5vyrALEEyS4BZAswqQAYk1N3gIiRLoBQaGdAIQC1DaASgkSHUln9vfOwapWc2NzdX+ddgMHi0Lb1erwRGa3hMTExEcnIykpOT0aBBAyQmJipDbYmIqO5gSCQiqqXMZjMyMzNx7ty5Kl9paWnIyspyu+cvNjYWCQkJiI+Px/ZFey2Bz6Cy/GtUQ1K+V0ESdTfkBYtAeY+lVoYo/7J8bwmWA+7rg6ysLGRmZiIzMxOFhYVu1avRaJCcnIz69eujQYMGVf5NTk6GVqsN8KsjIqLqxpBIRFSDlZWV4cyZMzh58iROnz5dIQimp6e77AVUq9VITExEUlISkpOTsXrGJsCghlSmgmRQQypTM/jVQkIlAJ0ZQidDlP97+wvXKz3I6enpyMzMdHkRQaVSoX79+mjcuDFSUlKQkpKCxo0bo3HjxmjYsCHCwsKq6RUREZE/MSQSEYU4WZaRnp6OU6dOVflKT0+Hs924Wq1GgwYN0LBhQ2z9aw+kUkvwk0rVkAxqS29gHR7eSY4JCEAnQ+jNEGGWr8GPXoW0tDSkp6cjLS3N6RBXSZKQnJysBMcmTZqgadOmaNasGZKTkzmMlYgohDEkEhGFCLPZjLNnz+LYsWMVvs6cOeP0ZDwqKgqpqalISUnBsu/XlYdADaRShkAKHIHy4a3hZgi9CXe8MRSnT5/GmTNncPr0aRQXFzt8rl6vR2pqKpo1a6YEx6ZNm6JRo0Zc/oOIKAQwJBIRVTNrz+Dx48dx9OhRJQyeOHHCYRjUarVKb8z6WVshlaghlWgglWgAk8QgSCFFCZB6M4TejDvfGopTp07h+PHjOHXqlMNh0BqNBk2aNEGLFi3QsmVLtGzZEq1atUK9evU4EysRUTViSCQiCiCTyYTjx4/j0KFDOHjwIA4dOoTDhw877GUJCwtDs2bNcGj1CUglWkjFGqiK1UCZmkGQagUBYQmPESaIcBOufuBynDhxAidPnkRJSYnd58TGxlYIjS1btkSzZs2g0+mqufVERHUDQyIRkZ+UlJTg8OHDOHTokPJ17NgxGI3GKmU1Gg1SU1NxfNNZSMWa8jCoAUoZBqluEhBAmAw53AQRacRV9/fE4cOHcerUKbsT6KjVaqSmpqJt27Zo164d2rVrh5YtW3KyHCIiP2BIJCLygslkwrFjx7B3717s27cP+/btw/Hjx+1OIhMVFYVWrVph198HIRVqIRVZholyxlAi14QkLL2OkUYMe/4aHDlyBIcPH0ZBQUGVsmq1Gi1atFBCY9u2bdGiRQve50hE5CGGRCIiF4QQOH/+PPbu3auEwgMHDqCsrKxK2YSEBLRp0wb//roLUpEWqkINh4oS+Zl15lU5yoiR7w3F/v37sX//fuTl5VUpq9Pp0KpVK1x00UXo2LEjOnbsiPr16weh1URENQdDIhFRJSaTCQcPHsTOnTuxa9cu7NmzB9nZ2VXKRUZGol27dtj++35IhVqoCrSQjOogtJiIlOGqUUbc/sZgHDhwAAcOHEBhYWGVsklJSejYsSM6deqEjh07olWrVuxtJCKywZBIRHVecXEx9uzZg127dmHHjh3Yu3dvlV5C6zC2I6tPQ1WohVSgs8wwyh5CopClTJITZcTQFwZg165dOHLkSJV7HMPCwpSexk6dOqFTp06IiooKUquJiIKPIZGI6py8vDxs374dO3fuxM6dO3H48OEqJ43R0dHo1KkTNv1vF1T5WkhFWkgyAyFRTSdUMkS0EaM/vQW7d+/Gnj17qtzfqFKp0KZNG3Tp0gVdu3ZlaCSiOochkYhqveLiYuzcuRP//fcftm7disOHD1eZYKZ+/frI2JUHVYEOUp7WMrEMewmJaj0BARFuhog24JrH+2DHjh04c+ZMhTIMjURU1zAkElGtYzAYsHfvXmzduhX//fcf9u7dW6WnsGnTpji18TxU+Tqo8nWQDLyXkIgshM4MOdaA6568Atu2bXMYGrt3747u3bujQ4cO0Gq1QWotEZH/MSQSUY0nhMCJEyewadMmbN68GTt37qxyT2GDBg1wfkceVLk6qPJ0nGCGiNzmKjSGh4eja9eu6N69O3r06IGUlBRIEkciEFHNxZBIRDVScXEx/vvvPyUYpqWlVXg8Pj4eeQdLoMrTQZWrg1TGmQuJyD+sobHfuO7YsmULcnNzKzzeoEEDpZfx0ksvRXR0dHAaSkTkJYZEIqoRhBA4duwYNm3ahE2bNmHnzp0wmUzK41qtFp07d8a2Xw9YQmEx7ykkosATEBCRJtz71a34999/sWvXLhiNRuVxtVqNjh074vLLL0fv3r3RpEkT9jISUchjSCSikGUymbB9+3asWbMG69atw/nz5ys83qhRI6T9lwtVTvkQUlkVpJYSEVkIlQw51ohhr1yNzZs34+TJkxUeb9y4MXr37o1evXqhc+fOXJ+RiEISQyIRhZSioiJs2rQJa9euxcaNGysshK3T6dC1a1dsmbUXqpwwSKVcp5CIQpsIM+Hhn0di3bp12L59e4UREJGRkejRowd69+6Nnj17IiYmJogtJSK6gCGRiIIuMzMT69atw9q1a7F169YKQ7Xi4+ORt78UqqwwqPLCuFYhEdVYQi1DjjNg4BO9sGHDhgr3MqrVanTt2hX9+vXDFVdcgfj4+OA1lIjqPIZEIgqK8+fPY+XKlVixYgX27NlT4bEmTZrg7IZsqLLDIBVo2VtIRLWOgICIMmLER0Owbt06HD16VHlMpVLh4osvRt++fXHllVciKSkpiC0lorqIIZGIqk1mZqYSDHft2lXhsQ4dOmD/ghNQZeuhKuE9OkRUt8h6E+755masXr0a+/fvr/BYhw4d0K9fP/Tt2xcNGjQIUguJqC5hSCSigMrKysKqVauwYsUK7Ny5E9ZdjiRJ6NSpE/bOOwZVtp6L2RMRlRNhJoz9aThWrVqF3bt3V3isQ4cOGDhwIK666ioOSSWigGFIJCK/KyoqwsqVK7F48WLs2LEDsiwrj3Xs2BH7/jwBdRaDIRGRK0JnxsMz7sTq1auxfft25UKbWq1Gt27dMHDgQPTp0wcRERFBbikR1SYMiUTkFyaTCf/++y8WL16MNWvWwGAwKI+1b98eBxacgjqTwZCIyFtCa8YD04dj6dKlFYakhoWFoU+fPhgwYAB69OgBrVYbxFYSUW3AkEhEXhNC4ODBg1i8eDGWLVuG7Oxs5bGmTZvi9KosSzAs4z2GRET+JOtNGPn59Vi6dClOnz6t/DwmJgZXX301Bg8ejDZt2kCSOPEXEXmOIZGIPJaZmYlFixZh0aJFOH78uPLzuLg4FOw1QJURDqlQw1lJiYgCzDJLqgnD3upf5WJdy5YtMXjwYAwcOBBxcXHBayQR1TgMiUTkFrPZjM2bN+Ovv/7C+vXrYTabAVgWuDedVUF1Xg9VbhgkwWBIRBQMAgIizoArH7ukwrB/jUaD3r17Y/DgwejevTs0Go7uICLnGBKJyKn09HQsWLAAf//9N86fP6/8vEOHDjjwxymoMvWQzKogtpCIiCoTGhnjZt2JhQsX4sCBA8rP69Wrh2uvvRbXX389GjduHMQWElEoY0gkoipMJhPWr1+P+fPnY/PmzcpsejExMSjab4IqLRyqEk6MQERUE8gRRgx9+yosWbIEeXl5ys8vu+wyDBs2DD179oRazUnFiOgChkQiUmRmZuLPP//En3/+WeG+lq5du2LX7KNQZek5nJSIqIYSksBLSx/BX3/9hc2bNys/r1+/Pm688UYMGTIECQkJQWwhEYUKhkSiOk4Igb1792Lu3LlYuXIlTCYTACA+Ph75uwxQpYdDVcr7V4iIahOhN+HmDwfg77//Rn5+PgDLvYv9+vXDsGHD0KlTJ86MSlSHMSQS1VEGgwHLly/H//3f/1VYb6tTp07Y99tJ9hoSEdUBQiXw9Pz78Pvvv2Pv3r3Kz1u0aIFbb70VAwcORFhYWBBbSETBwJBIVMdkZGTg999/x/z585GbmwugfIbSU2qoz0VAVcR7DYmI6iI50ohrX+qFJUuWoKysDIBlVMlNN92EYcOGcRkNojqEIZGojjh27Bhmz56NJUuWKENKk5KSkP1vCdTpEZBMnKGUiIgAoZZx//Rb8dtvvymzWut0Olx77bW47bbb0KxZs+A2kIgCjiGRqBYTQmDHjh2YNWsWNmzYoPy8c+fO2DPnBFRZYVzwnoiI7BKSwPOLHsKcOXMq3JZw2WWXYfjw4bj00kt53yJRLcWQSFQLmc1mrF27FrNmzVLuMZEkCVKGDuozkVAV6oLcQiIiqikEBES0ET0f6YC1a9cqyyK1bt0aI0eORN++fbmEBlEtw5BIVIsYDAYsXLgQs2fPxpkzZwCU3294Qg312UjOUkpERD4RehNueKcv/v77b5SUlAAAmjRpgpEjR2LgwIHQanlfO1FtwJBIVAuUlZXhr7/+wv/+9z9kZGQAAKKjo1G8V4b6XAQkI6/wEhGR/wiNjJFfD8Fvv/2GgoICAEBycjLuuOMOXH/99ZwRlaiGY0gkqsFKS0vx559/YtasWcjKygJQPhnNplKo08MhyZyMhoiIAkeoZdw37RbMmTMH2dnZACwzoo4YMQI33XQT9Hp9kFtIRN5gSCSqgUpKSvDHH39g9uzZykG5fv36yFpfAlV6ONc3JCKiaiUkgfFz78LMmTORlpYGAEhISMCdd96JoUOHsmeRqIZhSCSqQQwGA/7880/8/PPPyMnJAQA0aNAAmWuLoTrPcEhERMElJIGn5t+LadOm4ezZswCAxMRE3HXXXbjhhhug03HiNKKagCGRqAYwmUxYtGgRpk6divT0dABAo0aNcH5VIVQZDIdERBRahCQw4ffRmDZtmnLcSkpKwqhRozBkyBBoNJxIjSiUMSQShTBZlrFq1Sr88MMPOHnyJADLQTZnQxl7DomIKORZh6FOnz5dmVgtJSUFDzzwAPr27ct1FolCFEMiUYjasmULvv76axw8eBAAEBsbi8LtMtRpEZBkHlSJiKjmEJLAQ7OHY/r06cjNzQUAtG/fHg899BC6dOkS1LYRUVUMiUQh5vjx4/jyyy+xceNGAEBERATK9qugPhsByczZSomIqOYSahl3fj0Yc+bMUdZZ7NWrFx588EG0aNEiyK0jIiuGRKIQkZOTg59++gnz58+H2WyGWq0GToVBfSoKkonhkIiIag+hNWPwO72VY55KpcLgwYMxduxYxMfHB7t5RHUeQyJRkJWVleHXX3/FjBkzUFxcDABQZYVBfTwaqlLe2E9ERLWXrDeh91MdsXLlSgBAZGQkRo8ejVtuuQVarTa4jSOqwxgSiYJECIF169bh888/x7lz5wAAbdq0wbG5mVDlc4pwIiKqOyZtfxmff/459u/fD8Ayuc2jjz6KXr16cXIboiBgSCQKgtOnT+Ozzz7Dpk2bAJTPWLrOAFWGHhJ4MCQiorpHQOCpv+7FN998g+zsbABA9+7dMX78eDRr1iy4jSOqYxgSiapRSUkJZsyYgdmzZ8NoNEKj0UAcD4P6VCQkmfcdEhERCbWMWycPwK+//qocK0eMGIFRo0ZBr9cHu3lEdQJDIlE1Wb16NSZPnozz588DAKQcHTTHYqAq4X2HRERElQm9Cd3Gt8H69esBAA0aNMATTzyBXr16BbllRLUfQyJRgGVkZODTTz/FmjVrAFgOcpkrSqHKDuPQUiIiIhdeWTken332mXKR9corr8Rjjz2G5OTkILeMqPZiSCQKEFmW8ccff+Cbb75BcXGxZUmL43qoT0dBkhkOiYiI3CVUMm6ZfDV++eUXmM1mhIeH47777sMtt9xiOb4SkV8xJBIFwLFjx/Dhhx9i9+7dAACpQAvN4RioijmdNxERkbfkCCPajWqEXbt2AQA6dOiAiRMnomnTpkFuGVHtwpBI5Ecmkwk///wzfv75Z5hMJoSHh8O4WwNVWgSHlhIREfmBgMD4/7sLX331FYqLi6HT6TBmzBiMGDECGg3v8yfyB4ZEIj85duwY3n77bRw8eBAAoMoOg+ZIDCQDh8EQERH5m9CZ0fXRFspyUm3btsXEiRPRsmXLILeMqOZjSCTykdlsxuzZs/Hjjz/CaDQiOjoaJVtUUGVyzUMiIqJAEhB4esF9mDx5MgoLC6FWq3HPPfdg5MiRvFeRyAcMiUQ+OHXqFN555x3s2bMHAHsPiYiIgkFozbjsqXbKTOIdO3bESy+9hEaNGgW5ZUQ1E0MikReEEJg/fz4+//xzlJWVISIiAoYdGqjOh7P3kIiIKAisvYqffvopiouLER4ejscffxyDBg2CJPHYTOQJhkQiD+Xn5+ODDz7A6tWrAQBSrg7aw7GQyth7SEREFGwizIR29zbCzp07AVjWVXz66acRFxcX3IYR1SAMiUQe2LFjB958802cP3/ecq/D4Qioz3LmUiIiolAiIDBm2lD88MMPMJvNSExMxKuvvoouXboEu2lENQJDIpEbTCYTpk+fjunTp0OWZTRu3Bjn/y6FqpDrHhIREYWqL/a+iTfffBMnT56ESqXCvffei7vuugsqlSrYTSMKaQyJRC5kZ2fj9ddfx7Zt2wAAqvN6aI7GQDLzAENERBTqhErGVa91xaJFiwAA3bt3x0svvYT4+Pggt4wodDEkEjmxa9cuvPrqq8jMzER4eDiMO3RQZ4QHu1lERETkAQGBJ+ffg08++QRlZWWoV68eXnnlFQ4/JXKAIZHIDiEE5s6diylTpsBsNkMqVkOzPx6qEk2wm0ZEREReksONaHRTFE6cOAGVSoVx48bhtttu4+ynRJUwJBJVUlxcjA8//BDLli0DAKgy9NAcjoEkc3gpERFRTVd5+Ok111yDZ555BmFhYUFuGVHoYEgksnHu3Dk8//zzOHr0qGX20kMRUJ/j7KVERES1iYDAQ3OGKyOG2rRpg7fffhv169cPdtOIQgK7RojK7dy5Ew8++CCOHj2KhIQEqLbFQnMukgGRiIiolpEg4Zvhv2DSpEmIjY3FwYMHMXbsWGzfvj3YTSMKCexJJAKwcOFCfPjhhzCZTJAKNdDui4dkUAe7WURERBRgIsyMpnfE4dChQ1Cr1Xjqqadw/fXXB7tZREHFkEh1mtlsxjfffIPZs2cDAFSZYdAciuX9h0RERHWIUAlc+XInLF26FABw11134f777+d6ilRnMSRSnVVWVoY33ngDa9asAQCoT0VCfTKKw0uJiIjqIAGBO769DtOmTQMA9O/fH88//zwntKE6iSGR6qT8/Hw8//zz2LVrF7RaLcTuCKgzuf4hERFRXffkX/fggw8+gNlsRqdOnfD2228jLi4u2M0iqlYMiVTnpKen4+mnn8aJEycQFRWFsg06qPJ1wW4WERERhYj3Nj+Hl19+GYWFhUhJScGkSZPQoEGDYDeLqNowJFKdcuTIETzzzDPIzMwEylTQ7o2Hqlgb7GYRERFRiJHDTUgcrEFaWhqSkpLw8ccfo1mzZsFuFlG14N24VGfs2rUL48ePR2ZmJqRiDXQ7E6sGRCEsX0RERFR32Dn2q0o0yJ5vRrNmzZCRkYHx48dj3759QWgcUfVjSKQ6Ydu2bXj66adRWFgIKV8L7c6EqktcWA8Qkg8T1zBgEhER1TySZPcYLhnUODunGBdddBHy8vIwYcIEbN26NQgNJKpeDIlU623evBnPPPMMSkpKIOXqoN2TAMls89b3V+8hAyIREVHNZuecQDKpcOSnLFxyySUoKSnBM888gw0bNgSpgUTVgyGRarV169bh+eefh8FggCo7DNq98ZDk8p5Cf4ZDf/RCEhERUWiodI4gmVXY/cUZXHHFFTAajXjppZcYFKlWY0ikWmv16tV46aWXYDQaocoMg2Z/HCQhBSYcEhERUe1jc6yXhIRN7x9E3759GRSp1uPsplQrbdy4ES+88AJMJhNUGXpoDsZCgv37DSpwpyfQWR3sSSQiIqq53DjGC0mg1/PtsGrVKmi1Wrz99tvo2bNnNTWQqHowJFKts3XrVjz77LOWIaaZemgOxEJy913uKuT5I2QSERFRaHLntFiSICSBnhPbYvXq1dDpdHjnnXfQo0ePwLePqJowJFKtsmvXLjz99NMoKSmBKjsMmn2xliGm7nIU8tz9mDAkEhER1VwenBYLFXDZc22wZs0a6PV6TJo0CR07dgxg44iqD0Mi1RoHDx7EhAkTLMtc5Oig3RvnWUAEqoY8Tz8eDIlEREQ1l4fHfSEJdH2yOTZt2oTo6Gh88cUXaN68eYAaR1R9GBKpVjh37hwefvhhZGdnQ8rTQrvHZhZTT9iGPG8+GgyJRERENZcXx36hEmg9Ngl79uxBvXr1MGXKFDRs2DAAjSOqPgyJVOPl5+dj3LhxOHnyJKQiDbQ74yuug+gJB4vpevR8IiIiqpm8PAcQGhmN74jCsWPHkJKSgilTpiA+Pt7PjSOqPlwCg2q0srIyPP/88zh58iRQqoJ2T5z3ARHgkhZERETkMcmkwpk5BWjQoAFOnz6NF154AWVlZcFuFpHXGBKpxpJlGW+//TZ27doFmCRo98ZDMqi9q0ySfOsFlCRApQYkHz9Sksr3OoiIiKjaSQY1sv4yIjo6Gnv27MF7770HDtijmopno1Rjff/991i5ciW0Wi20++KgKtZ4Xomv4VCpww8fJYZDIiKiGk1VqsFbb70FtVqNZcuWYerUqcFuEpFXeFZKNdLy5csxY8YMAIDYHQ5Vns7zSvwRDtl7SERERDaevfQdPPXUUwCAn376CUuXLg1yi4g8x4lrqMY5fPgwxo0bh9LSUqhPR0BzPNqzCpyFQzcX0XUa6oTsQVv8VA8RERH5zo+nxTd9cRVmz54NnU6HKVOmoG3btn6rmyjQGBKpRsnNzcUDDzyAtLQ0y1qIe+IgwYMeQVe9h64+Du4MLXUn3LnTc8iQSEREVL38eFosINDt2VZYv349GjRogO+//x4xMTF+q58okDjGjWoMs9mM119/HWlpaUCJGtr9se4HxFCZmAbg0FIiIqI6QIKELR8fQqNGjZCWloa33noLsswLwFQz8GyVaowZM2bgv//+Q3h4OLT73FzqIhgT0zgqy3sPiYiI6hTJrMKbb74JnU6HjRs3KvMpEIU6nrFSjbBjxw789NNPAADjdq17M5mGysQ0AMMhERFRHTWu7Qt44oknAAA//PAD/vvvvyC3iMg13pNIIS8vLw/33nsvMjIyoErXQ3so1vkTfAmH1o+Dr8ta2N5P6K96iIiIKLACeFo84N1uWLBgARITEzF16lTExro4nyEKInZvUEgTQuDdd99FRkYGpBI1NEdczGQaar2H7EEkIiKqGQLcb7LkxX+RmpqKrKwsfPzxx2A/DYUynsFSSFuwYAHWr18PrVYLzf5YSLKdt6xKDUmj8TkgSmo1JI3WpzoAQFJJkNRqn+shIiKiGsjB+YgkS3j55ZehVquxcuVKLFq0qJobRuQ+hkQKWenp6fjiiy8AAPLBMKiK7AQ4lRqS1o37E52Q1GpIOp0laPpSjzUcsveQiIio+ghx4SsUSCqHQfHRi17CvffeCwD49NNPce7cuepsGZHbeDZLIUkIgQ8//BDFxcWQ8rVQn4moWEClhhQW5p+AqNFA8rUXUuXjPYyOK/Z/nURERLVVqAVFO+cX00b/gU6dOqG4uBjvvfceh51SSOIZKIWkv//+G5s3bwZkQHMopuJ6iPZ6D9Vqj4Z4Ouo9lNQqz+ph7yEREVFo8aZX0V9BzTYUWucmqBQUJUg48ONZhIWFYdu2bfjnn3/8s20iP+KZLYWczMxMZZip+kQUVCXlQc6PvYdQqwPbeyipLI8TERFRcASjh87eeYGdXkWpTKMMO50yZQpyc3OrqYFE7mFIpJDz1VdfoaioCFKB5sIwUz/cewj4JyBWe+8heymJiIjscxUEQ+VeRTu9ij/cNRetWrVCfn4+pkyZEsTGEVXFs08KKdu3b8eSJUsgSRI0h2MgqTTu9x46GXJqHV7qj4DI0EZERFTDVEdQdOf8wqZXURISnn76aUiShEWLFmHLli2BbyORm3i2SyHDZDLh008/BQBIZ/VQlej93nvoTkB0dF+ixwGRQ06JiIhCh6Og6Lf7Ed08R7DpVXy846u4+eabAQCff/45TCaTf9pC5COGRAoZv//+O44ePQoYJWjPJfhtaYsaN7zUfiOCt20iIqJQ5E24C5Xhp4ASFOc/swaxsbE4duwYFixYEOxWEQFgSKQQUVBQgB9//BEAoDkTB8ns5WL05UNOPe09rMzam+jz8FL2JhIREYUea1AMxKymHj1PBUnWYMyYMQCAH374AUVFRf5pE5EPGBIpJMyaNQuFhYWQirVQZ0R5XY8qLAyqqEi/zF4K3n9IREQUmvwR7vzYoyjpdD49/6sRvyA1NRW5ubmYMWOGn1pF5D2eAVPQZWVl4bfffgMAaM7EVlwT0QOqsDAgXG+5KudLQFSpAK3Wo/USHRKyf+rwRz1ERES1hYOF6oPJl9tkJCHh4YcfBgD8+uuvOH/+vL+aReQVhkQKuunTp6O0tBSqknBoSuK8qsMaECVJAnRaSPow7xqjUgHWcKj2cdkNfwVEIiIisi8EgqKk1dl87/15wxs3z0Dnzp1hMBjwv//9zx9NI/IaQyIF1blz5zB//nwAgDarASSVZ29JVVgYVHGxFwIiYPnX02Gi5b2H8EfvIcCASEREVF2CHRQrzT0gaTVehUVJpVLuTfzrr7+QmZnpj9YReYUhkYJqzpw5MJlMUBVHQl3i2b2Itr2HVYaXetKbaNt7WJmnvYkOhoZ6PHkNAyIREZH7gjT81LYXsepjngfFF67/AZ06dWJvIgUdQyIFTW5urjLVszY72fLDsDBL+HOhwvBSO9zuTXQWED3lIti5FRR5/yEREZH3qjsouji2uxsU1YkJlvKQlN7EP//8E1lZWT41j8hbDIkUNPPmzUNZWRmkUj1UJZEXHnCyw7U3vNQrngwvdac3kcNLiYiIQkOwh59W4tbwU5tzn5du/AkdOnSAwWDA//3f/wW4dUT2MSRSUJSWlio7Pm1OUsUZTR30JjodXmqPoyGn/u499CDcOexNZEAkIiLyn2oYfupsqKn98vaDorUXUSkHCSNGjABg6U0sKyvzroFEPmBIpKBYtGgR8vLyIBl0UBfGVi1QKUy5Gl5qj90hp94GRHu9if4KdgyIREREgRHIoOjpfANwEBTt1PPOiDlo0KAB8vLysGTJEm9aR+QThkSqdkII/PnnnwAATV6i/XURy3sTfR5eatubWI33Hzqj9Cby/kMiIqLAC0BQ9LQXseJzLww/rdyLqJSBhJtuugkA8Ntvv0EI4fX2iLzBkEjVbt++fTh06BAgS9DkxzkuGK73bHipHZIkQYqMhBQb43tAVKshqVUMdkRERDWNH4OiKiLCq17EyiStxmk9U59ehbCwMBw9ehT79u3zeXtEnmBIpGpn7UVUF8ZCkh3cyJ0YB1OrRkBinG8b02gArca3SW4AQJYBo9HyvadrMFYiZMGgSUREVJ382RMnSZD8MTKpfSvIKUmONyOr0bdvXwDA33//7fv2iDzAkEjVqrS0FCtWrAAAaPLsDLEoD4fGxEjIWhWEyoe3qEYDaMp34vowSBHh3tUjy4DZ7H07bDAgEhER1VyqiAjLN34IikKrglCrIKckOQyLq348BABYtmwZSktLfdoekScYEqlarVu3DiUlJZCMWqhKIyo+mBh3IRyqLT1/pvhwiAQ7E9s4o9EA+rALAbGcV72J9gKiys01GG0IWUCYzQyIRERE1c3PvYi230tqtXdhsX0r5VuhvhAWK1OVRKJhw4YoKirCmjVrvGkxkVcYEqlaLVu2DACgLoirOGFNeUC0hkMroZY860207T2szNPeRAc9iJ6GTfYeEhER1XxKL6Kt8qU2PA2KQlv13MZeUJQgYeDAgQCAlStXerQNIl8wJFK1KSgowKZNmwAAmoK4Cw84CIhWbvcmOguI5aRwvXtB0dUQUzd7ExkQiYiIgshPvYiqiAjnk994EhRtehErsxcUf3lzPQBg06ZNKC4udm8bRD5iSKRqs2nTJhiNRkhlYVAZ9BXuP3QUEAFLb6IxMRLC2SQ2bgREK6c9gdYJalzcgyhJksugyIBIREQURIEaZuqkjMug2L6V3V5EW5XvU5QMejRp0gQGgwHr1693t8VEPmFIpGpj3bGpi2Ls3n/ojFBLEI520B4ERACOh516OEGNs7DJgEhERFQ72B1m6oiLoOgqICrlbO5TlCChX79+AMD7EqnaMCRStTCZTMpQU7XGde+h3ToqDzt1MEGNO6oMO/V2BtNKvYmcoIaIiCgEVNcwU3scTWjjZJipI9ag+Ms76wAAW7ZsgdlPM64TOcOQSNViz549KCgoAGQNzDENPA6IgM2w04RYz3sP7VB6An1Y4sJ22Cl7D4mIiEJAdQ8zdfQ8215FN4aZOiLUKqBeKqKiolBQUID9+/d71yYiDzAkUrXYtm0bAEBS1QM03r/thFqC0PkeEAFYhp2G6XxeA1EJmwyIREREtYZHw0wdKQ+K3gZEhVqDbt26AYAyMosokBgSqVpcCImJPtUj1BLKkiNgToz2rUFGE0RBIWCWAa3WtzaZZQiT0bf2EBERke/8NcxUr/dbfaVXdkBpsgdLcDnQvXt3ABfOqYgCiSGRAs5gMGDPnj0AgMImDbyuR6gly0Q3KgmGxHDvg6LRBFFaCsi+7/gZEImIiEKEP4eZ2q7R7EO9pVe0hzlMglDD56D43JqtAID9+/fDZDL5VBeRKwyJFHAHDx6EwWCAWadDXrso5DUP8+j5Qi3BHKaCbDNUQ6ikijtwd9kJiJJG41VvIgMiERFRiPBjQFR6Ef1Qvznswj2N1qDoTVg8OSgaZYlRiImJQVlZGQ4fPuxVe4jcxZBIAXfgwAEAgCEuHrJWQn5LuB0Urb2H9m4cN8SHwVwvxv2GOOlB9DQoMiASERGFCH8HREcXoT3cTukV7atWoYbHvYonB0XDFC4ASUKHDh0AALt27fKoLUSeYkikgDt06BAAwBgbBwCQNYDsRh5TAqKjx1USDAl694adujHE1J2gKMwyZIORAZGIiKiWcRoQrdwMitZhpg6r8SAomsIvbPOiiy4CcOHciihQGBIp4A4ePAjgQkgEgMJU572JrgKiUs6d+xP9dA+i0nvIWUyJiIhCQ6DuQ/Rhm64ColKNG0Hx5KCK5zcf7tgNADh69KjL+ol8wZBIAWUymXD8+HEAgDEmVvm5rIHDYafuBkSlvLOg6GFAdNSbyOGlREREISbQ9yF6se3SPhe5FRCVapwExZPXRVfoRQQAY4zlNpvjx49z8hoKKIZECqi0tDSYTCYIlQrm8Io7QXtB0dOAqDxPJVkWm7XlZQ9i5aDIgEhERBRiqus+RA/bYNZ7cQ5jJyievC4apgg79UdEQq/Xw2Aw4OzZsx5vi8hdDIkUUKdPnwYAmCKj7E4+Y3t/orcB0coYF2bpTSxfA9GXIaaSWgVotQyIREREoSYUAqJtW8rbU9rnIu+rqRQU7QVEAIAkISUlBQAYEimgGBIpoC6ExEiHZQpTgdzWYT4FRKC8N1GrtoRRWfh2D6KkAsxmCLPZpzYRERFRaJI0Gt8Cog1j97Ze9SLasgbFk9c5n5CvQQPLmtNpaWk+bY/IGYZECqj09HQAgCnCcUg0RgtkdTUju63naxXa0uYboM4phtDrIEX4tmCtMBggl5b5b5Iaf95YT0REVFf56XgqaTSW6oy+39dn6t4W5jAV1GU+tk0CmrxwEANv/NdpMWtIPHfunG/bI3KCIZECKisrCwAgh9mfydQcLiDCzYBORn47k9dBUZtvgCarCJBlQJIgwsO8DorCYIBcUur/gMigSERE5L1AHEeF7FNQNHVvC5NeXV6X8D4oSkDqswfROeYUmuizMWjAFodFv9+7H8CFC/FEgcCQSAGVnZ0NADCHVZw1zBwuYIo3WQKiqnyHqvUuKFYIiFZeBsWABURH/yciIiLX/Hj8tPYiXqjbu6BYISAqdXkRFG0CopU1KNoLi7LOcuE9Ly/P4zYTuYshkQLKGhJtexKV3kO1uBAQrcqDYk4b94Ki3YBoJUl2J8txJOAB0dXPiYiIqKpABkRlG54HxSoBUanLg6AoASnPHKoQEK2a6LPRRJ+Na6/eWuHnsk4HgCGRAoshkQKqqKgIwIUdmhIQK4dDW1oZeRe57lF0GhDLuXt/YrUFRHcfJyIiouoJiMq23A+Kpu5tXdTlRlAsD4hdY086LdY0PLNCUGRIpOrAkEgBVVJSAgAQarV7AdFKK0PWOXnYjYAIwK1hp9UeED0tR0REVBdVZ0BUtuk6KNodZmq3LtdB0VVAtLINinL5Ws6FhYVuPZfIGwyJFFDWkGiKUrsfEMsVtrDfm+h2QLRyEhSDFhC9LU9ERFQXBCMgKtt2HBTdDohKXQ6CYnkvoiesQVGoLNs3GrmOMwUOQyIFjMlkgrl8nUE5Eh4FRAB2J7LxOCBa2QmKQQ+Ivj6PiIioNgpmQFTaUDUoehwQlboqBUU3h5na0zQ8E1f13W1pj8kEwXMIChCGRAoY2x2X8GKfCsASFNtagqLXAdHKJiiGTED01/OJiIhqg1AIiFY2QdHrgKjUVR4UJaDRM4e9CohWjcOyle8LCgq8bxOREwyJFDCSzcyiki/7fJ0Ms3UFDW8DotIQCTCbIcrKQicgEhERkX+pfAh0toQMVYNk3wKiUpcAHs7ApbEnfKpGsjl7t47YIvI3hkQKGKnC8hPeB6nw4zrEHTHDEKeDOT7StzYVFsOck1v+Hz+8/f0VED1YqoOIiKjW8sfxsDwgCtn3Y7S6SWMIjRrhp33vsTM+kY22cedxoqSeT/WobE5fIiIifGwVkX0MiRQwKpu9WLeWx7yqI/y4Dgn7zVCXCgiVhLJ6eq+DolRYDHN2DlB+1U1SSb4FRQZEIiIi//PluFipB9GXoKhu0hhCWz5k1WjyKSgan8jGRfHpAIAyWeNTUBwevg+A5WK8TudkKngiHzAkUsBIkoTwcMtEMS8lLkOvi4549HzbgGjlbVCsHBCVn3sbFBkQiYiIAseb46ODIabeBMUKAdHKy6BoGxCtvA2K98fugs5g6T2MiIioNGqLyH8YEimgIiMtYS6sLAKfpv7lUVBUGVEhIFp5GhQdBUTlcU+DIgMiERFR4HlynHRxD6InQdFuQLQymqA/4/76hAY7AdGqTPZsYp37Y3chXh2B4lLL74VDTSmQGBIpoKwhsahYhWR1JD5N/Qu92x92+TzrfYiOuBsUXQVEpZy7QZEBkYiIqPq4c7x0c5Iad4Ki04BobZLB6FZQNDyRjfYOAqKVu72J1oAIAMUllvMV62gtokDwcW5gIueio6MBAHmFlh1asjoSk5oswARxPTbsa2n3OfaGmdojVBLKEvUIA6DOKbJfRpZdBkQrSSVByCrHs54yIBIREVU/SXJ8DPZwFlMhC8uFYTvcCYhKkwzOF7IvnZCDji4CInBh2GnT8ExEZJah89zTaLIlB7oiEwyRGpzsnoBOY/IRp45WnpOTZzmnio+Pd6utRN5gSKSASkpKAgBkZl/opbP2KKY1VuO9M4MqhEV3A6KVUDsOilJhMcy5eR6112FQZEAkIiIKHntB0ctlLuwFRU8CopX+TCFKG0dV+XnphBx0TEhzux65GOj99hH0mn8EalPF19h8fRbElwCGl0C8WQ/Qq5CVbXndiYmJHrWXyBMcbkoBZQ2JGVkVd+TJ6khcrNNXuE/R04BoZQ2KtkNP3R1mao/Ps546rJgBkYiIyGu2x1F/rYMI7wIiYH/YqacBUVtqwoQJS9Fn3uEqAVHZjhGQZuRDuvMsUCIjM8dyjlKvnm9LaRA5w5BIAWXdgVUOiVbWXkVdtMGrgGhlGxR9CYhWFYKiv3oRiYiIyDeS5JeAaL0/0duAqDTHJih6GhAB4I5Jm9Fua7rL1aQFAGlDKaRXMpFZPBQAexIpsBgSKaAaNmwIADib7niH/uLZa4DDkSiL9u3tKNQSJKMMOb/Ap4BYsVIGRCIiotpIFRHhU0C0kgxG5LXQehwQYzJL0Psvy2gqV2ONlMfn5OPU0aMAgJSUFM8aSuQBhkQKqKZNmwIATp7VOMxb50pioC6RUNxAQnGS91cHw9NLoDp5DgAghYVB0ni/4xeyAGQ/BU2AQ02JiIj8xdEEcx5QR0UCKgnIzvWpnvNXJuP8lckw6ySsXdjZo+de8echaEwevhYjcOrkSQBAkyZNPHsukQcYEimgGjduDLVajeISlTKG3taDp3vhwMZmAAChhk9BUTKaIUrLLvxArfYqKDIgEhERhTgfgqISEAHAZPI6KJ6/MhnGSAnGSEtduhzPnt92m2c9jwCQpdOhxGyGWq1G48aNPX4+kbsYEimgtFotGjVqBAA4cbpiYHvwdC8sX94F2sILIcrboBieXgLplJ2drYdBkQGRiIiohvAiKKoiIy4ERCsvguL5K5KVcGjLk95EfZHJo20CwNEIy1qJDRs2hFar9fj5RO5iSKSAa9WqFQDgwNELOzN7AdHK06AYnl4C1dEzFXsRbXnZo+gzBkQiIqLA8iAoqiIjIKkdnPqa3A9s569IhjHK/jFel+N+UCyN9Pzc5GCUZcmNtm3bevxcIk8wJFLAtWvXDgBw4PCFkHimOM5uQLRyNyi6DIhWbgRFv/ciEhERUdCpIiOcB0QrN3oTnQVEK10OsOYf10GxwZUFLstUtj86GgBDIgUeQyIF3EUXXQQA2H9EB6D8PsRNzVw+z1VQdDsgWjkJihxmSkREVEM56U20hkOXARFwOezUnYBoFZbtvEfxhQaLEDUyHsLDEaPWkGi9AE8UKEEYg0d1TZs2baBSqXA+C7h3d3es2dYF2gL3drLWoFiaqIE+SyAi40KQkwwm9wOilVoNCYCwGVbCgEhERFTDCfnC+sbl3Oo9rMwaFBPiKvzYk4BoZW8imxcaLAIApGjCgWRAvj0a6pkFlnUQndQlAKSHheF8WBjUajXatGnjUVuIPMWeRAq4iIgIZWe25c9ktwOilVADZn3FXsXw9BJIp9O9a1Ag71FkQCQiIgoOmx5FrwKiVaX7E70JiFa2w05faLAIKZpwS0C0buqNBMi99G6tk7j10noALENNI8onsCEKFIZEqhaXXHIJACA8LdPrOqy9igA8G2Zqj1oNSaezXHX0Vy8iAyIREVFwCdm3gGiVk4/zVyT7FBABy7DTNf90VgJiFeEqGGfUh/muaIdDT4UWMN8Vje3XPQgA6Nq1q9ftIXIXQyJVi0svvRQAoMvJAITwuh6hBoQGgOx9HUpdZjOE0eBzPURERBQaJI3W94AIAPExSNhX7FNAtBIaYT8gWoWrYPqgHgxbUmGaGA/5Sj3kS8MgX6mHaWI8DFtSYXy/Hrbu2AGAIZGqB+9JpGrRqVMn6HQ6GMpKoCopgBwR41U9sUdkRO3OAHRay72FBh9Cnh+CZgVCsDeRiIgoSCSNFlBJEKVlkPRh3leUXA/QaqDJKwUQ6VObSpMEZA3QdulYHBjwnfPCSWqYH4uD+bG4Kg91/PlONDq/GjqdDhdffLFPbSJyB3sSqVro9XqlN1GfdQ7Ci3de7FEZ8f+mAwVFlh/otJAiIizDRj0kTKbA9CL60EtKREREnpM0WiUgAoAQwvtbUsoDolX9f4u8qqY0SVgCYvkQUnVaGNouG+tVXW0WPISYvRkAgG7dukGv13tVD5EnGBKp2vTp0wcAEJZxDlDB46CoKREXAqKVSrKERQ+CojCZIMp8uJ/R5QYEwyIREVE1UMKhquJIHuHNcbhSQAQATV6px0HRGg7lSvcYqs953rvZZsFD0J/VopvO8nqs51JEgcbhplRtLr/8ckiSBG1+DlSlxZD1ERASAAFIjpc4AmAZZhq967zjAp4MP/X3MFNHOPyUiIgoYGx7D+1xe9hpsmXW0MoB0cqTYae2vYf2tF02FgeudjHsFJZwCAD6s1qoSouxf/9+AEDPnj3dageRr9iTSNUmMTERnTp1AgDo005bfijBZa9i7JFKw0wdcaNHMWDDTB1ukD2KRERE/uYqIAJuDjtNSrSEQwcB0cqd3kRXARGw9Ca6Gnba5m9L76H+rKUy6zlTly5dUK9ePZftIPIHhkSqVgMHDgQA6NNOVXzASVDUlsiuA6KVk6AY8GGmjjAoEhER+Y07AdHK6bDTpERA5yLVlXM17NSdgGjlbNhpm78fgv5MxYo6yyUAgGuuuca9DRD5AUMiVav+/ftDq9VCW5gPTUFexQftBMXYo+WzmXrC0YQ21TXM1B4GRSIiIp9UnqDGXXZ7Ez0IiFaWYacVVZ6gxl3tlt9f5Wf2AqKmMA9Hjx6FVqtF3759PdsIkQ8YEqlaRUdHo1evXgAA/bkTVQuoytdCLH9naos96EWsUE/FCW2qfZipPZzQhoiIyCuOJqhxR5XeRC8ColX9LcXK944mqHGH6uyFGUrb/P2Q3YAIAOFnLOdKvXr1QnR0tOcbIvISQyJVuyFDhgAAws+eBMymqgXK71OMOe5FL2Jl1qAYzF7EyhgUiYiI3OZN72FlorTMEg59CIgAoMm1DP30pvewsnYr7kebhQ9Cf0ZrNyDCbEJyTjoA4MYbb/RtY0QeYkikatejRw80bNgQKpPxwgQ2dmhKBKTCYoePu81shjAZfa+HiIiIqpek8jkgAgC0WiC3wKeACACyToN6u8p8DogAkLwgDPrTjifc06edRmFhIRo1aoRu3br5vkEiDzAkUrVTq9UYOnQoACDi9DG7PWsxRwRidmcBajUklQqSt0tJlJTCXFgUWr13XBaDiIjIOUll+QIAs9m3qnQ6SGoV4ONtJ7JOA6glaPPLkLLCzkgoN9XbLlBvu0BYvhnx+xysASYEesiWC+U33ngjVCqeslP14juOgmLw4MHQ6XTQFuRCm5tV5XFtsXyhF1GlsoRFL8KVEAKQfTu4EBERUTWSKp6eCh9uGVECotX5bK/qsQZEq7DMEq/qsYbDsHzLuYmu0P45ijYnEwcOHEBYWBgGDx7s1baIfMGQSEERFxeHQYMGAQAijx+o8JjSi1iZp0GxpBRykR+Gq/oTexGJiIgckxycmnrYmyjpdFUDIuBVb2LlgGjVeKVnvYnWgFiZvd7Ea1SWmVSHDBmCuLg4j7ZD5A8MiRQ0d9xxB9RqNcKyzkOTn6P8vEIvYmUeDD9lLyIREVEN4iggwrPeRGs4rBIQrdzsTZR1GocBEQD0Ge71JtbbIVBvh/2ACFTtTdTk52LLli1Qq9UYPny4W9sg8jeGRAqaRo0aoX///gCAyOMHATjpRbTlw/DToKpp7SUiIqoOtvcfOuNGb6Ld3sPK3OhNVMKhg4Dorno7BMLyzAjLc972+P0XehNvjbT8279/fzRs2NCn7RN5iyGRgmrkyJEAgLDzZ6Euynfei1iZs6AYakNNGRCJiIiqcicclhOycBgUHQ4vdSQzx+FDznoPK2u8yvGQU2tAdIeuwFJOXZiPVatWAQDuvPNOt55LFAgMiRRULVq0wBVXXAEJQNThvZ5X4GD4KYeaEhERhTgPAqKVvWGnLoeX2lNWVuVHroaX2qM/X3XIqTK81M2AaGuouhSyLKNv375o2bKlx88n8heGRAq6sWPHQqVSQZ9xDpEHj3teQeXhp6HWi0hEREQVeREQ7VbjSe9hZTa9ib4ML7XtTXR3eKk9CTsysG7dOqhUKtx///0eP5/InxgSKeiaNWumTO9sDDsCAS+nui4PiiHXi8ihpkRERBbu3n/ojNns+fBSe8rKvOo9rMzam+ht7yEAQAhc2jAfgGWZsKZNm3rdHiJ/YEikkHDPPfcgLCwMsr4I5og87yuqiRPaEBER1QV+6j2EpPJ8eKkjfpicRp2R51tABABTOnbu3AmdTod77rnHp/YQ+QNDIoWEpKQk3HbbbQAAQ/wZCKnqmkHuEMUlkIs51JSIiMhv/BHu/DW8VK0GAIjSqvcUekN9OsO352fkAWUGxP973vtKhBkNY88AAG699VYkJSX51CYif2BIpJAxcuRIJCYmQugMMEacgTAYPa/EbIYweba4bUCxV5OIiGoya7jzNuT5Y3gpLOHQGhABQJi9u5hcmSgt9ep56ow8JSACgFRQ5FU9kbvToD21A+fOnUNSUhJGjRrlVT1E/saQSCEjMjISjz76KADAWC8LslToXVAkIiIi3/gj3Pm597Ayv/Umnsn0rLw1HJa5Xm/RmcjdaTAXZUJKsmz/kUceQUREhE91EvkLQyKFlP79+6Nbt26ASsDQ4DyEsQyiuMStsBhyQ03Zi0hERDWRo3DnSegLcEAE/NibWFJ1GQt7KvceVhZxMMuteiJ3pyFydxpETh4uubcRDAYDunXrhquuusrtNhMFGkMihRRJkvDEE09Aq9VCjimGObrAsnCu0eA6KIbaUFMiIqKaxh+9hwEYXhps7vQeujPk1BoORU4eTLEFWL9+PTQaDR5//HFOvEchhSGRQk6TJk1w5513AgAMjTMg1CZAFpag6GavIhEREXnInXDnrEw19B5W5q8hp443IJz2HrrLtvcQAITGhPCLLT2Yd911F5e8oJDDkEgh6e6770bLli0BjRmGlPOWtRNl4bBXkUNNiYiIvBQi9x9603voryGnVe5LLA+H6sx8jwKivSGntr2HACAgYGh8Hnl5eWjVqhXuvvtun9pOFAgMiRSSdDodXnjhBajVaphji2COK7jwoL1eRQ41JSIi8lwIDS8Npsr3JSrh0MMeRNshp5V7D63McQUwxxZBrVbjhRdegFar9b7hRAHCkEghq3Xr1hgzZgwAy7BTWWMTAp30KhIREZEbfFnWwpfnV64uVO49tPYe+ml4qW3voZWsMSGsg2Xk05gxY9CqVSuftkMUKAyJFNJGjhyJdu3aAWoZhtQ0y7BTW9ZeRYNvO3MiIqIq/BSC/MJfbbH2/IXA8FJLNb7fniGXeLfWYWXe9h5WaEtuHiL3pFcJh4BlmGmbEdEoKChA27ZtMXLkSF+aSxRQkhBCuC5GFDwnT57E2LFjUVJSAk16AnTpiVXKyGVlEGUBvnndE7wnkYioZrOGIOHDPW+2QSrU6gkRPvUi2vwuVFGRXldjDZmSWg1VTLT39eTmQTYYoXbQFkP9LJjqZyMiIgLff/89UlJSvN4WUaCF3t6CqJLU1FQ89dRTAABTcjbMUSE0QQ0REdU+tmHK1yGZ/myLL3WEYEAEAGE2e/lE/0xYI5eUWkYlyQLC6N3cBnJunhIQHTFHFcPcIAcA8MwzzzAgUsgLzT0GUSXXXHMNbrjhBkACypqkQWg4SQ0REfmZv8KUvTq8qTdQbanp/BAQ5ZLSCwHRl3rKw6GzgCg0JkR2K4EQAjfccAOuvvpqn7ZJVB1q4Z6DaqvHHnsMLVq0ALRmlNm7PzFUcKgpEVHN46/1/wLd81fdbQklQnYYED25L9G299Bb7vQeAoCQBFoNj0J2djaaN2+O8ePHe71NourEexKpRjlx4gQefPBBFBcXQ5MVC92ZZAiTCXJJCRAqb2WGRCKimsWdMOVO75U/6qmuOkKIW/cluvH7d3VfohIknYRDdWK88zpyLRPSOAuHkloNVbheWQ/RnJiPqKgofP3110hNTXVaP1GoqFl7EarzmjZtildeeQWSJMGUmAdjQq7lfoZQCYhERFSzuBuoXPU0hsrQ0BoWEF1y0nvoCb/1HroYWgpcuM/SlJgHc2I+JEnCK6+8woBINUot25NQXXD55ZfjgQceAAAYG2fAHO2fqa+JiKiOCZVQ5mnI9MdQ1BDicPKaELn30N2hpbbMkcWQU7MBAA8++CB69uzp9faJgqFm7k2ozrvzzjsxcOBAQAKMrTIh9JzIhoiIPBCsgFj5ObV89lKv+KH3sEI4rIbewwrP0Zugv6QQZrMZAwYMwB133OH19omCpRbtUagukSQJzz77LNq1awdoZBg65EJo/TMdNhER1WK+BCp/LI3hqL5g1hFKQmloqYe9hwAgtGbUG6JGXl4e2rVrh+eeew4S5yqgGogT11CNlpWVhXHjxuHcuXOQCjTQ7oqHJAf5gMmDARFRaKpNgUrIter1SCrfj52SRgMAEGbvg6aktvxOPQ2HACBUMowdsyCijGjcuDG+/PJLxMc7nwiHKFQxJFKNd+rUKYwbNw55eXmQcnTQ7o2DJIIY1BgSiYhCTy0KVCHD2uvn6+9WyO7NcOqsCrMZkkbrUxuE2ez1axGSgLFdNkR8GeLi4vDll18iJSXF+/YQBRn3mFTjNWnSBO+//z70ej1EvAGm1vmhu4YiERFVPwbEqny9788Pw0L9ce+hMJsdT3zjZhuEyejTTOkCAqaWORDxZdDr9XjvvfcYEKnG416TaoX27dvjjTfegFqthpxcClOLAgZFIiJiQLTH14Dnr4DoaxW+hMPyNijh0JeA2CIXcnIp1Go1Xn/9dbRv3963dhGFAO45qdbo2bMnJk6cCEmSIDcqgbl5IYMiEVFdVdtm/PQXX3sP/REwa0HvIQAIYYa5WR7kBiWQJAkvvPACevXq5X27iEKIJtgNIPKna6+9FkajER988AHMjYsBGVCfiIIE3idIRFRnMBxWFezew1DqOQR8CocQMgQEzKkFMDcqBgA899xzlqW5iGoJ7kWp1rn++uvxxBNPAADMTYphTi0KcouIiKjaMCBWFQq9hz4KhaGlyu9CCJhTCmFuYgmITz75JAYPHuxb+4hCDHsSqVa66aabYDQa8cUXXyghUX0ykj2KRES1GQNiRcEOd6EUDgHX4VDlZIbV8nAoIGBueiEgPvrooxg2bJhvbSQKQQyJVGvdfvvtMJlM+Prrry1BUS2gPsahp0REtRIDYkXuBjR76y2GwMQ0oTS01FqHgIC5RQHMjUoAAOPGjcPtt9/uWzuJQhTXSaRab+7cufjss88AAKq0cGgORwc2KHKdRCKi6sWAeIE34cz29xeM5wMV1kn0JiBKarWlHb6EQ9ueRJtwCJTPYtqqAHIDS0B84okncNNNN3ncTqKagiGR6oS///4bH3zwAWRZhuq8HppDMZAEgyIRUY3GcFiRt7135eHKa9a/gw91SGq1T72HkkZb8b5Db6jUVcIhAAhJwNQ6H3JyKVQqFZ577jkMGjTI67YS1QQMiVRnrFixAm+88QbMZjNU2Tpo9sdBkgMQ5hgQiYgCjwGxIn8MEQ0WX0OqLV8DYqXnC5UMU7s8yAkGqNVqvPTSS7j66qv90FCi0MaQSHXKhg0b8PLLL8NgMEAq0EC7Nx6S0c6JhiR5f6BhSCQiCjxfQqI1kAQzaPqjDTU5GPqLv05j7Rz3hdYMY/tciGgTwsLC8Prrr+Pyyy/3z/aIQhxDItU5u3fvxvPPP4+8vDygRA3tnjioSivN4WQb9Lz5iDAoEhEFnjcByzZY+RrQvH2+r21gOLQIYECU9SYYO+QC4WbExsbivffeQ4cOHfyzPaIagCGR6qRTp07h6aefxrlz5wCjBO3eOKgKdBcK2At5nnxUGBKJiALP04BVOVxVd8i0F+78UUdd489waKc+OcqIiL5m5OXloWHDhvjoo4/QpEkT/2yTqIZgSKQ6Kzs7GxMnTsT+/fsBGdAciIU6S3+hgKOg585HhiGRiCjwPAlYgQhovm7fkzoYDv0fDu3Ua65XAtXFpTAYDGjbti3ef/99JCQk+Ge7RDUI7/qmOishIQGfffYZevXqBagA00V5MKUWQsDFQUiSXIdAXnshIgoNQg7cun+erEXo723XJUL457jq5PgtIGBKLYSpXT4MBgN69eqFzz77jAGR6iz2JFKdZzKZ8PXXX+OXX34BAKgyw6A5GANJqF08E84PWuxNJCIKPGc9ce6EK3d68pzVE8jt1/VwCPgvHDqpX6hkmNrmQ04sAwDccccdeOCBB6BWu3EeQFRLMSQSlVu4cCE++ugjGI1GSEUaaPfGQTJoXD8RsH8QY0gkIgo8RyHL3YAVqJDn6/brekAM1NDSypvRmSwzmEaaoNVq8cwzz+C6667zz7aJajCGRCIbu3fvxksvvYTs7GzLhDYH4qDKC3O/gsofJwZFIqLAsheyPAlY/g55noY7X59f21RTOAQAObYUEb0F8vLykJCQgLfeegsdO3b0z/aJajiGRKJKzp8/jxdffBEHDhwABKA+GQX16UhI8CDwWT9WDIlERIFlG7K8CVj+DJm+br8uB8RqDIcCAuaUQsjNiiGEQNu2bfHWW2+hfv36/mkDUS3AkEhkR1lZGSZPnoz58+cDAKQcHbQH4yCZPJ0JTzAoEhEFkjVkeRuw/BXyqvu5tUU1hkMAEBoZxja5EPEGAMCNN96I8ePHIyzMg1FDRHUAQyKREwsXLsSkSZNQVlYGlKmg3R8HVaHO9ROJiKh6SCrfQlYwg5qvba/pAj0pTSVylAHGdrlAmIywsDA89dRTvP+QyAGGRCIXjhw5gpdffhmnT58GZEB9IhrqsxGeDT8lIqLQVNeDWrD4evrpQTgUEDA3LgJalsBsNiMlJQVvvvkmWrZs6VsbiGoxhkQiNxQVFeGDDz7AihUrAJQPPz0cC8nA6bGJiIg85s3ppxe3bwidGcbWeRBxluGl/fr1w7PPPouoqCjPt09UhzAkErlJCIH58+fj888/tww/NUrQHI6FOlsf7KYRERHVHNUUEM0JpYjsaZm9VK/X47HHHsOQIUMgca4AIpcYEok8dOLECbzxxhs4dOgQAEB1Lhya4zGQZB50iIiIXPLk1NOb3kOVgKlZAeSGxQCA1q1b49VXX0VqaqrHdRHVVQyJRF4wGAz4/vvvMXv2bACAVKyG5lAsJ7UhIiJyxd1TTy8CohxtgKl1HkS4GQAwfPhwjB07Fjodj89EnmBIJPLBli1b8PbbbyMrK8uypuKZSKhPRkES7FUkIiKyy9Wppze9h5KAuWkB5JQSCCGQlJSE5557Dj169PCykUR1G0MikY8KCgowefJkLFq0CAB7FYmIiJxydurpTe9hVHnvYYSl9/C6667D+PHjER0d7W0Lieo8hkQiP1m7di0++ugjZGdns1eRiIjIHkennV7ee2huUgiRWgJZlpGQkICnn34affr08bGRRMSQSORH+fn5+Oyzz7BkyRIAgFSihuZIDFR5YUFuGRERUQiofNrp5UyjcmwZjC3zgfJ7DwcMGIDHH38csbGxvraQiMCQSBQQa9aswaRJkyz3KgJQpYdDczwakkkV5JYREREFke1ppze9hxoZpub5kJNLAQD16tXDhAkTcOWVV/qrhUQEhkSigCksLMS3336LP/74A0IIy7qKx2KgytBDAoegEhFRHSSEd+EQAnJSKUzN8wGtgCRJGDZsGB544AFERkYGoKFEdRtDIlGA7d69Gx9++CGOHTsGAJByddAcjYGqRBPklhEREYU+OdwEU4t8iDgDAKB58+Z49tln0aFDhyC3jKj2YkgkqgYmkwmzZ8/G1KlTYTAYLBPbnI2A+lQUJDOHoBIREVUm1DLMTQqB1DKYzWbodDqMGTMGI0aMgEbDC61EgcSQSFSNzp49i8mTJ2P9+vWWHxhU0ByP5hBUIiKicsrQ0mYFgE4GAFxxxRV45JFH0KhRoyC3jqhuYEgkCoKNGzdi8uTJOH36NABAytda7lcs1Aa5ZURERMEjRxotQ0tjjACAJk2a4PHHH0ePHj2C3DKiuoUhkShIjEYjfv31V0ybNg0lJSWAAFQZemhOREMyqIPdPCIiomojdGaYmhYos5aGh4djzJgxuPXWW6HV8gIqUXVjSCQKsszMTHz99ddYvHix5QcyoD4TCfWZSN6vSEREtZpQyzA3LoK6pdFyzz6Aa665Bg8++CCSkpKC3DqiuoshkShE7N27F19++SV27txp+YFBBc2pSKjSIyAJ3q9IRES1h5AE5PolMDUpVO477NKlCx555BG0bds2yK0jIoZEohAihMDatWvx9ddf49SpUwAAqUQN9fFoqLLDOLkNERHVaAICcmIZzKkFEBFmAEBqaioeeugh9O7dG5IXaygSkf8xJBKFIJPJhPnz5+Onn35Cbm4uAEAq1FjuV8zVMSwSEVGNIiAgxxlgbloAEWUCAMTGxuLee+/FDTfcwCUtiEIMQyJRCCsqKsKsWbPw66+/Wia3ASDlaaE5GQ1Vvi7IrSMiInJNjjHA1LRAmbE0IiICt99+O4YPH47IyMggt46I7GFIJKoBcnNzMXPmTMybN0+5sV/K0UFzMgqqQoZFIiIKPXKUAabUQoh4y3FLp9Ph5ptvxp133om4uLjgNo6InGJIJKpBMjIy8PPPP+Ovv/6CyWQZrqPK1kF9OgqqAoZFIiIKPjnGAFPKhXCoVqtx/fXXY9SoUZyxlKiGYEgkqoHOnj2LadOmYfHixTCbLTf+S7k6aE5FQsrnPYtERFS9BARErAGmJoUQsZZhpWq1GgMHDsSYMWPQqFGjILeQiDzBkEhUg505cwYzZ87EwoULL4TFPC00p6M4wQ0REQWcgIAcb4A5pVC551Cj0WDQoEEYOXIkwyFRDcWQSFQLpKenY+bMmViwYAGMRstBWirQQH0mEqosPcMiERH5lbKURUqhMlupTqfDDTfcgBEjRqB+/fpBbiER+YIhkagWyczMxOzZs/HHH3+grKzM8sNSNTRnI6BKD4ckq4LbQCIiqtGESoacXAJTo2Ig3DKCRa/XY9iwYRg+fDgSExOD3EIi8geGRKJaKCcnB/PmzcO8efOQl5dn+aFRgjotAupzEZCM6uA2kIiIahShNcPcsBjmBsWA1nLqGBMTg2HDhuHWW2/lbKVEtQxDIlEtVlpain/++Qdz5szBmTNnLD+UAVVGuGUoagkXLyYiIsfkcCPMjYshJ5UA5YNRGjdujNtuuw2DBg1CeHh4cBtIRAHBkEhUB5jNZqxduxazZ8/Gnj17lJ9LOTqoz0VAlRPG+xaJiAiAzWQ0DYuUZSwAoGPHjhgxYgR69+4NtZojUohqM4ZEojpm165dmD17NtauXQvl41+qtgxFTQ+HZOJ9i0REdZHQyDAnl1iGlJbfbyhJEq688koMHz4cHTt2DHILiai6MCQS1VFnz57F77//jgULFqCgoMDyQ+tQ1HMRUBVpg9tAIiKqFnKkEeaGFYeURkVFYfDgwbjpppvQuHHj4DaQiKodQyJRHVdaWoply5bh//7v/3Do0CHl51K+Fuq0CKgy9ZAEh6ISEdUmQhKQ65XC3LAYItqo/Lx169a46aabMGDAAOj1+iC2kIiCiSGRiAAAQgjs3r0b8+bNw8qVK2EyWda9glGCOiMcqvRwqIrZu0hEVJPJEUbI9UtgTipRZinVaDS46qqrMGzYMHTs2BGSxAuDRHUdQyIRVZGVlYW//voLf/31F9LT05WfSwVaqNPDLb2LZt67SERUEwi1DDmpFObkYohok/Lz5ORk3Hjjjbj++uuRkJAQxBYSUahhSCQih8xmM/777z8sWLAAa9asudC7aJagytRbJrop0HJmVCKiECMgIGKMMNcvhpxYCpRPRqrRaNC7d28MGTIE3bt35yylRGQXQyIRuSU3NxeLFi3CX3/9hRMnTig/l4rVlsluMvSQyrjuIhFRMIkwE8xJpZCTSyDKZygFgGbNmmHIkCG49tprufA9EbnEkEhEHhFCYM+ePfjrr7+wfPlylJaWKo9JeVrL/YtZei6lQURUTYRGhpxYCnNSCUTshUlowsPD0b9/f1x//fVo37497zUkIrcxJBKR14qLi7Fq1SosWbIE//3334V1F2VAlRMGVUY4VNlhnB2ViMjPhCQgJ5RBTiqBHF+mLF0hSRK6du2Ka665Bv369UNERERwG0pENRJDIhH5RUZGBpYuXYolS5bg8OHDFx4wld+/mKmHlKfj/YtERF4SEBCxBstw0sRSQHPhFK5Vq1YYOHAgrr76aiQnJwexlURUGzAkEpHfHTlyBIsXL8bSpUuRkZFx4QGjBFWWHuqs8sDIHkYiIqeUYFivFHJCGaCTlcfq16+PAQMGYODAgWjRokUQW0lEtQ1DIhEFjNlsxvbt27F8+XKsXr0aeXl5Fx40SlBl2/QwMjASEQGwDCW9EAxLlfUMASA2NhZXXnklBg4ciIsvvhgqFe//JiL/Y0gkomphMpmwfft2rFixwmFgVGWFQZXLexiJqO4RkoAcZ4CcWDUYxsXF4corr0S/fv3QpUsXaDScSZqIAoshkYiqnclkwo4dO5TAmJube+FBswRVrg6q7DCosjlLKhHVXkIjQ44vg5xQCjneAKgvnJIlJCQowfDiiy9mMCSiasWQSERBZQ2Mq1atwrp16yrewygAKV8LVY7eEhpLeJJERDWXgIAIN5eHwjKIGCNs5/KqV6+eEgw7derEhe6JKGgYEokoZAghcPDgQaxbtw7r1q3DoUOHKjwuFastS2vkhEHK532MRBT6hCQgog2W5SoSyioscA8ArVu3Ru/evdG7d2+0adOGaxkSUUhgSCSikJWenq4Exm3btsFkMl140CxBlacrD406SGXsZSSi0CDCTJDjDZDjyiDHVRxGqtVq0bVrV/Tu3RuXX3456tevH8SWEhHZx5BIRDVCYWEhNm/ejA0bNmDz5s3Iycmp8LhUooaUE2a5nzFPB0nmvYxEVD2ESoYca4Acb4CIq9pbGBcXh8suuwy9e/dGjx49uMA9EYU8hkQiqnFkWcbhw4exefNmbNq0Cbt374bZbHNSJgNSviUsqnJ1kAq1kMAhXETkHwICIspoCYZxBogYA2BzXUqtVqNjx47o0aMHevTogdatW3OpCiKqURgSiajGKyoqwtatW7Fp0yZs3rwZaWlpFQuUD02V8sp7GYs0DI1E5DYBARFpghxrgIg1QI4xAJqKp08NGzZUQuEll1yCyMjIILWWiMh3DIlEVKsIIXDy5Els2bIFW7duxfbt21FQUFCxkKlSaCxmaCSiCwQERIRNKIytGgqjoqLQpUsXXHrppejRowdSUlI46QwR1RoMiURUq1mHpm7btg1bt27Fjh07UFxcXLGQSYIqX2dZbqOgfHiqzJM9orrCMgOpEXK0ASLG8q/tYvYAEBERgc6dO6Nr167o2rUrWrVqxSUqiKjWYkgkojrFZDLh4MGD2Lp1K7Zu3Yrdu3ejtLS0YiEZkAq1UBVoLfc25usgmXg/EVFtIbRmyNFGiBiD5d8oY4V7CgEgPDwcF198Mbp27YouXbqgTZs2XNCeiOoMhkQiqtNMJhMOHz6MnTt3Yvfu3di5cyeys7OrlJOK1ZAKtFAVlvc0Fmm4TiNRDSAky9BREW2EHGUJhpVnHwWAhIQEdOrUCZ06dULHjh0ZComoTmNIJCKyIYTAuXPnsHPnTuzatQu7du3C8ePHqxaUAalIWx4ctZbgWKLmvY1EQSQgIMLNlplHo4wQ0UaIyKq9hADQvHlzdOzYUQmGjRo14j2FRETlGBKJiFzIy8vD3r17sW/fPuUrPz+/akGTZBmmau1pLGJwJAoUAQGhN0NEGiGiTJZQGGWsMsEMAERHR6Ndu3Zo164dOnbsiI4dOyI6OjoIrSYiqhkYEomIPCSEwNmzZ7Fv3z7s378f+/btw4EDB2AwGKoWNkvlgVEDVVF5eCzmxDhEnhAqARFhtCxDEWn5V0SaAHXVU5iwsDC0bdtWCYUXXXQRewmJiDzEkEhE5AcmkwnHjh3Dvn37cPDgQRw+fBhHjhxBWVlZ1cIClh7GIq1l+Y1iDVTFGqCUvY5UtwkIQG+GHG6y3EcYabL0FIabYe+jodPp0LJlS7Ru3VoJhE2bNuW9hEREPmJIJCIKELPZjNOnT+Pw4cM4dOiQ8m9OTo6DJwBSiUYJjlIJwyPVTspQ0YjyMBh+4V84WFUiISEBrVq1QqtWrdC6dWu0atUKKSkpXIaCiCgAGBKJiKqREAJZWVk4fPgwDh8+jGPHjuH48eM4ceKE/eGqwIXwWKqx9ECWlP9bquHSHBTShEaG0Jssk8mEmyzBsDwQ2ptMBrD0DqampqJZs2ZKL2HLli2RmJhYvY0nIqrDGBLp/9u78+Ao6vz/46+eISGDCSRgFhI5BAVkFQW5RAVBFBBFXVBLly1lWX/qlopbLt/CSqmAqLhaKJZWedUqqxLvEtRFcVG81iCHCCgSI/eRZHOQkIRJQmb698dMf9JJJtcQGMDno2pqevrTn3d/JrSYF318ABwHAoGAcnNztWPHDu3atatl4VGSDlt1w2NlODxWekMP0uEMJI4y2xsMhUAnDLre609I7xYfH69evXrp9NNPV+/evc1yWloal4sCQIwREgHgOOaEx507d2rv3r3au3ev9uzZo71796qgoKDpzjWWrCpv6FXplcLvzmcrwFlINM2WLXnDl4a2D8hOCEjtw8vO5whPE3VLTU1V9+7dzatnz57q3bu3unbtyqWiAHCcIiQCwAnK7/dr//79JjQ67/v27VNxcXHzBUyI9EjVXlnVXlnVnlCYrPbIquZs5MnMli21s2XHB2THB6X4gOz2QdnxASk+aIJgcyFQCt0v6A6C3bt3V48ePZSeni6fz3cMvg0AoC0REgHgJFRVVaW8vDzl5eUpNzdXubm5dT6XlJS0rFBA4QAZCo3WYY902FP7Xu1aDnJmMtZs2ZLHluKCssMvud/jQyHQbh8KhY3dF1hf586d1a1bN/NKS0tT165dzeeEhISj+8UAAMcUIREAfoP8fr/y8/OVl5enwsJCFRQUNHgvLS1tXdGAZQKkddgTOgtZ45Fq3Mu166waK/Ruc6YyEttjS+2Csr3h93bB0Fm9dkHZzrs3KMXZsuMCJgg29nTQxnTq1Empqanq0qWLUlNTdeqppyo1NVWpqakmDBICAeC3hZAIAIioqqpKRUVFJjgWFhaqpKREBw4cMO8HDhxQcXFx0w/XaU5AUsAjBSxZAUsKWrXLAU/4PbTetJuXQiEzvKzwshVUaJ1tSc7/5exwu7MsNXsprV27oevdDr1bCp21s2zZntpleRReF152tvGG7u+TN9zmtSVvOAR6XG3hUNjSs3yRxMfHq3PnzkpOTlZycrJSUlKUnJysLl26mBDoLMfHx0e/IwDASYmQCAA4IrZty+/31wmOJSUlKisrM6+DBw+qrKxM5eXl5nN5ebli/r8gW3VDZJ0wqIgTuB9LHo9HiYmJSkxMVFJSknk5nxMTE00IdIJgcnKyfD6fLIsztACA6BASAQAxEQwGVVFRobKyMvn9fh06dCjie/3lqqoqVVdX6/Dhw3XeI60LBoNH9Tt4vV7Fx8crLi7OvNyfneX4+Hh16NBBPp/PvBISEuTz+Rqs9/l8JgR26NBBHg/3egIAji1CIgDgpBUIBGTbtgKBgILBYMRl97tlWfJ4PObdedVfb1mW2rVrxxQOAICTEiERAAAAAGBwDQsAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwGgX6wEAQGvYtq3KyspYDwMAWiUhIUGWZcV6GADQIoREACeUyspKTZgwIdbDAIBWWbFihXw+X6yHAQAtwuWmAAAAAACDM4kATljxa34nyw7/W5flkeWxJMsjeSzJsmR5nLbwesuSPJYsZxvTZpk+5iW51nnqtoc6mnW2ZdX+k5urhllv1e7Lvc62QmVMmydUN7TeMm1OHzu8zrRLtTU84e2ddtXdR50+4eHbnghtdbZXnTHWrrMatDXoI/c46rWrkfWN1GtsHA36NFXXrLcb9nf1Me2uWnZ4vVz9Qm22azyhdsvdZrZ12mxT03Jvb9mmzRxiznqnXHib0KFgm89OH0/4c6gt9NnpZ9osW5Zq+3nC68xLtunnsVRnfah/sLafnO2D8jp9wp9rawVNPa+rvleh9V6nntk2KK9TU844grXbq7Z2qGZQHoX2H2oL1fOG11kKyuv0d/XxSqF+Cu3H+Xk4n0P7ssPLCrfZ8oR/Ll5Z8kjyhv+wPbLC6yx5LUseeWSF/+QOV3s19f91EwCcaAiJAE5cASv865pCIVHhQBf+7bu2zZI8tYnICiWucBEnLXjUIAXUJrC6ycSp2SA1qN469z4UYV39fqoNh66Q2GCdK9S5P9cfYt3tI/TxNNHW2NdoMI5GvnZTbY39qKKt56oZKUAe1ZAYqV31P9umtnsc7n1GajOhUq5t3Ns36GNH2Jdd5+UOibXBM/xqrE1OkAyVdAdKJ0xKTtiTCVnutlBIDNaGLMsdskLLHssKBbjwu8yyZfqF6ihc0+mrcL/w+khtrj7ecMD1mnE6IdFuNiS663mdn4fqrvPIPUbXnyEAnEC43BQAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYDBPIoATl9eWbYcm0A7N+2e53q16E9w7765ludfZruUWtLkmzaud8ryx9bXvdp1l1elnS5LtrK+tacuSbJm+7nZTo87kfu6xRPhs1xlSvZ9HI6/627ZkLsSm2lq8rxa2uXfZZD+7mZp2I2NsZJ7EenUtd5vZtt68h86ys73lnp/QWeeqb+rZrnrRzZNoq7afbdl1Xwq9h9pUZ33QsiUrWFtTzr6Crvkcw9uE220raOqpTv3wu7Ov8GdPeBvnXVKDdUHXf9bOctCSgqqdJzEYXmepsXkSwxPfKzQfo/Nn5nz2hPvUn3vRY9osM7ejJFPLIys036MsWeGD5HB1pP8uAeD4R0gEcMKqHv6/WA/h6HB+B49S/YwDONyHVjCWA4maO6VzMRQAHC38DQsAAAAAMCzbto/g36sB4NiybVuVlZWqrKzUNddcI0latmyZEhISYjwy/BZxHKKlEhISZFmc2wdwYuByUwAnFMuy5PP56qxLSEhosA441jgOAQAnCy43BQAAAAAYhEQAAAAAgEFIBAAAAAAYhEQAAAAAgMHTTQEAAAAABmcSAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYLSL9QAAnPgOHTqkN998U19++aXy8vLk8XjUo0cPXXrppZo6dari4uKirl1cXKzMzExlZWUpPz9f7du3V+/evTVx4kRdeeWVsiyryf779u1TZmam1q5dq+LiYvl8PvXr10+TJ0/WmDFjmt1/dna23n77bf3www8qKSlRUlKSzj77bE2ZMkVDhgyJ+nuhbZ2Mx2Bubq42b96s7Oxs/fLLL8rJydGhQ4ckSW+99ZbS0tKi/k4AADTFsm3bjvUgAJy48vLyNHPmTOXl5UmSEhISFAwGVV1dLUnq27evFi1apKSkpFbXzs7O1qxZs1RaWipJ8vl8qq6uViAQkCQNHz5cCxYsaDQAZGVlac6cOaqsrJQknXLKKfL7/QoGg5KkSZMmafbs2Y3+kv/RRx9p4cKFZn+JiYmqqKiQ89fm9OnTNWPGjFZ/L7Stk/UYfPTRR/XJJ59ErEtIBAAcTVxuCiBqNTU1uu+++5SXl6cuXbroySef1KeffqpPP/1Uc+bMUYcOHZSTk6P58+e3unZ5eblmz56t0tJS9ezZUy+++KJWrFihTz/9VH/729/Url07rVmzRs8880zE/vv379fcuXNVWVmpgQMHasmSJfr444+1fPlyTZ8+XZK0fPlyvfHGGxH7//jjjyYgjho1Su+++66WL1+uDz74QFdffbUkafHixfr8889b/d3Qdk7mY9Dj8ei0007T2LFjdfvtt+u2225r9XcAACAahEQAUfvkk0+0fft2SdL8+fM1dOhQSaFfbseNG6dZs2ZJklavXq3169e3qvabb76p4uJitW/fXo8//rjOOussSVJcXJymTJlizuB9+OGH2rNnT4P+L7/8svx+vzp37qzHHntMPXr0kCR16NBBM2bM0OTJkyVJr732msrKyhr0f/755xUIBNSnTx/NmzdPv/vd7yRJnTp10qxZszR8+PA62yE2TuZj8P/+7//0xhtvaN68eZo2bZrOPvvsVo0fAIBoERIBRM25FG7w4ME655xzGrSPGzfOXBLX2GVzjVmxYoWpkZ6e3qB9ypQp8vl8CgQC+s9//lOnze/368svv5QkXXvttREvM/zTn/4kSaqoqNDXX39dp23//v3atGmTJOnGG29Uu3YNb992+ufl5Wnjxo2t+m5oOyfrMShJXq+3VeMFAKCtEBIBRKWyslI//vijJOmCCy6IuI1lWRoxYoQkae3atS2uvXv3buXn50uS6V9fhw4ddO6550asvXnzZlVVVTXZPy0tTb169YrY3/25sf4DBw5Uhw4dIvbHsXEyH4MAAMQSIRFAVHbt2mUevtG7d+9Gt3PaiouLdfDgwRbVdi4fbK52nz59JEk7d+5stL+zTVP9d+zYUWe98zklJUUpKSkR+3q9XvXs2TNifxwbJ/MxCABALBESAUSlsLDQLKempja63amnnhqxT1OKiopaVbuiosJMDeDeT1JSktq3b99sf/f+3P3dY4/EGVv9/jg2TuZjEACAWCIkAoiK+xfipn4JTkhIiNjnaNb2+/0N2pvqX39czufm+jtja+n3Qts6mY9BAABiiZAIAAAAADAIiQCi4jy0RZJ5QEckziTi9fsczdo+n69Be1P964/L+dxcf2dsLf1eaFsn8zEIAEAsERIBRMV9n1dBQUGj27nvAWvuHj9Hly5dWlX7lFNOqfNLtrOfsrKyJn/Bd/q79+fu39z9a87Y6vfHsXEyH4MAAMQSIRFAVHr16iWPJ/RXSFNPZnTaOnfurI4dO7aotvtpkE3Vdp4gefrppzfa3/2Uycb61396pfP5wIEDKikpidg3EAho9+7dEfvj2DiZj0EAAGKJkAggKgkJCWby8u+++y7iNrZta82aNZKkYcOGtbh2jx491LVr1yZr+/1+M+F9/doDBw40Dxtx9l9fXl6edu3aFbG/+3Nj+9+8ebN52Ehrvhvazsl8DAIAEEuERABRmzhxoiRpw4YN2rJlS4P2VatWaf/+/XW2bQnLsjRhwgRJ0ueff67c3NwG27z//vvy+/3yer26/PLL67T5fD5dcsklkqSlS5eqvLy8Qf/MzExJoXvBRo0aVactPT3dTJL+1ltvqaampkH/JUuWSJK6deum8847r8XfDW3rZD0GAQCIJUIigKhNnDhRffr0kW3beuCBB7R+/XpJUjAY1KpVq/TEE09IkkaMGKEhQ4bU6fvyyy9r9OjRGj16dMRfwG+88UZ17txZlZWVmj17trKzsyVJhw8f1tKlS/XPf/5TkjR58mT16NGjQf8ZM2bI5/OpqKhI9913n/bs2SMpdPZn8eLFWrZsmSTp5ptvVlJSUoP+t99+u7xer3799VfNnTvX3Jd28OBBPfnkk+bs0h133CGv19v6Hx7axMl8DNbU1KikpMS83EGzrKysTlukf8gAACBalm3bdqwHAeDElZubq3vuuUd5eXmSQpcABoNBVVdXS5L69u2rRYsWNfgl+OWXX9bixYslhc7WpaWlNaidnZ2tWbNmqbS0VFLojEt1dbX5hXjYsGFasGCB4uPjI44tKytLc+bMMU+QTExMlN/vVyAQkCRNmjRJs2fPlmVZEft/9NFHWrhwodk+MTFRFRUVcv7anD59umbMmNGyHxSOmpP1GNywYYPuueeeFv0Mnn76aQ0ePLhF2wIA0Jx2sR4AgBNbWlqaFi9erDfffFNffvml8vLy1K5dO/Xu3Vvjxo3T1KlTFRcXF1Xt/v3761//+pcyMzP17bff6n//+58SEhLUp08fTZw4UZMmTTIPLolk5MiReuWVV5SZmam1a9equLhYiYmJ6tu3r66++mqNGTOmyf1fddVV6tu3r9566y1t3LhRJSUlSklJ0dlnn60pU6Y0ODOF2DiZj0EAAGKBM4kAAAAAAIN7EgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAHDUPP300xo9erTuvvvuWA8FMVZeXq4rr7xSo0eP1ldffRXr4QAAmtAu1gMAADRUUVGhnJwcbd26VdnZ2crOzta+fftk27Yk6a233lJaWtpR2bdt27ruuutUUFCgadOm6fbbb4+qTk5OjpYuXSpJuu2229pwhLG1fft2rVmzRps3b9b27dtVVFSkQCCgpKQknXHGGRo5cqQmTpyoxMTEWA/1uJKYmKgbb7xRL730kp555hmNGDFC7du3j/WwAAAREBIB4Dg0c+ZM5eTkxGTfW7duVUFBgSRp1KhRUdd57rnnFAgENGLECA0cOLCthhdTM2fO1A8//BCxrbi4WMXFxVq7dq1ef/11ZWRkaPjw4cd2gMe56667Tu+8847y8/P17rvvatq0abEeEgAgAi43BYDjkHPGUAqdgRk8eLA6d+58TPb99ddfS5JSU1M1YMCAqGps2rRJ69atk6STKgg44TkpKUmTJk1SRkaGnn32Wb300kt66KGHNHLkSEmhwJiRkaGNGzfGcrjHHZ/Pp6lTp0qSMjMzdejQoRiPCAAQCWcSAeA4NGnSJCUnJ6t///7q3r27LMvSzJkzVVxcfNT37YTEiy66SJZlRVXjjTfekCSlpaXpvPPOa7OxxVr37t118803a9y4cYqPj6/T1r9/f40ZM0ZLlizRCy+8oOrqai1cuFCvvvpqjEZ7fBo/frxefvlllZWV6d///reuv/76WA8JAFAPZxIB4Dh03XXX6bLLLlOPHj2iDmrR2LNnj3bt2iUp+ktNCwoKlJWVJUmaMGHCMR3/0fbEE0/oiiuuaBAQ3aZNm6a+fftKknbu3Klt27Ydq+GdENLS0nTuuedKkj744IMYjwYAEAlnEgEAhvPUSecS12isXLlSwWBQknTppZe2qE9NTY0+//xzffPNN9q6datKSkoUCASUnJysPn36aOjQobrsssvUpUuXOv1Gjx4tSZo4caIyMjK0e/duvfvuu1q7dq0KCwt1yimnqF+/fvrjH/+oQYMGmX5VVVX6+OOPtWLFCu3du1eVlZVKT0/X5Zdfruuvv/6IH6hy/vnnm3tK9+zZozPOOCPqWjt37tSyZcu0ceNG5ebmqrKyUomJiUpKSlJaWpqGDBmiiy++WD179oyqfk1NjT799FOtWrVK27dvV2lpqSzLUseOHZWcnKwBAwZo6NChuuiiixQXF1enb/2f/86dO/X+++9r3bp1KiwslN/v1yOPPNLgHxwuvfRSbdy4Ubt27dLWrVt11llnRffDAQAcFYREAIDhXGo6cuRItWsX3f8ivv32W0mh+/Z69erV7Pa//vqrHnzwQe3du7dBW0FBgQoKCvTdd99p27ZtysjIaLTOF198oUcffVSVlZVmXVVVlVavXq3vvvtOs2bN0uTJk1VYWKiMjAxt3bq1Tv8dO3boxRdf1OrVq7Vw4cIjCoo1NTVm2eOJ/qKdZcuWadGiRQoEAnXWl5aWqrS0VHv37tXatWu1bds2PfDAA62uX1JSor///e8RH5Lk/OxzcnL0wQcfKDMzU927d2+01scff6yFCxequrq62f26H2T07bffEhIB4DhDSAQASJIKCwv1888/S4r+UtPq6mr99NNPkqQBAwY0e6lpTk6O7rrrLvn9fknS4MGDNX78ePXq1UtxcXEqKirSli1bmp1Xb9u2bfr888+VkpKi2267zex7/fr1eu2111RZWamnnnpKgwYN0sMPP6xff/1V1157rS6++GIlJydr3759evXVV7Vt2zZt2rRJmZmZ+vOf/xzVz0CSvv/+e7Pcu3fvqGps377dBMSOHTtq8uTJGjRokJKTkxUIBFRUVKTs7GytXr066kt6Fy1aZALikCFDNH78eKWlpemUU05RRUWFdu3apY0bN5rLhxuTnZ2tlStXqmPHjrr++us1cOBAxcXFaefOnerWrVuD7Xv37i2fzye/36/vv/9eM2bMiGr8AICjg5AIAJAkffPNN7JtW/Hx8RoxYkRUNbZt22bOovXv37/JbWtqavTggw+agHjPPfeYJ1+6XXjhhbr11luVn5/faK2cnBz17dtXixYtUlJSkln/+9//Xt27d9ecOXNUU1Oju+66SwcPHtQTTzyhoUOHmu369eunYcOG6eabb1ZhYaGWLl2qm2++WV6vt1XfXwpdsrtjxw5JoaDco0ePVteQpFWrVpkziE899ZS5z9Ft1KhRuvXWW1VaWtrq+lVVVSZ8jxo1Sg8//HCDsDlo0CBdc8018vv9TZ4R3bFjh7p3765nn322zlN4G3s6rtfrVb9+/bRx40b98ssvCgaDR3TGFQDQtvgbGQAgqfZS06FDh8rn80VVw33JaHNTdqxcuVL79u2TFHqaa6SA6Na1a9cm2++77746AdExZswYpaamSpIOHDigKVOm1AmIjsTERF1xxRVmu507dza5v0gKCwv15JNPSpIsy9Jf//rXVtdwOE+yTUxMjBgQ3Tp16tTq+mVlZSbQDxo0qMmzkT6fr9nLb++9995WTdPibFtZWanCwsIW9wMAHH2ERACAysvLtWHDBknRX2oqSUVFRWa5Y8eOTW7rhFJJuummm6LepxS6fLGxIGVZVp228ePHN1rHvd3+/ftbNYbKykplZGSYcFf/YTmt5QTb8vJyrVq1Kuo6jenUqZN5Sutnn312RHMWpqamRgzeTXEfH+7jBgAQe4REAICysrJUU1Mjr9eriy66KOo6VVVVZjnSWT23X375RVLojFJLHnDTlOb6u8fS1FNA3du1JjQdPnxY999/v3kYzsUXX6xbb721xf0jGT9+vDl7N2fOHN15551asmSJNm3aZC7RPRJxcXGaOHGiJGnLli264YYb9MQTT+izzz5rdUCO5umt7pDoftgQACD2uCcRAGDO6p1zzjlKTk6Ouo77Hr7mnnJZUlIiqfaM2ZFISEhost19KWVTl9K674tzpvFoTk1NjR544AGtWbNGkjR8+HDNnTs3qvsZ3dLT0/XYY4/p0UcfVUFBgTZv3qzNmzdLCv2czzrrLI0ePVpXXXVVs4G8MXfffbeqq6u1YsUKHTx4UB9++KE+/PBDSaHwPnz4cE2aNKnZM6LNnTWOxP0PCtE+SRcAcHRwJhEAfuOqq6v13XffSTqyS02l0P1zjoMHDx5RrRNBTU2N5syZY6b9GDp0qB555BFzGeeRGjJkiN544w3NmzdPkyZNMlNQBAIB/fTTT3ruued00003mYDaWu3bt1dGRoZef/11/eUvf9H5559vQnRxcbE++eQTzZw5U/fff3+dUFdfNA+dcT9sx33cAABij3+6A4DfuHXr1pnLF480JLqnO2guJCYnJys/P/+EfWiJExCds7Dnn3++FixYcETzK0YSHx+vsWPHauzYsZJCZ2DXr1+vFStWaPXq1Tp48KAeeOABZWZmqkuXLlHto0ePHrrlllt0yy23KBAIKCcnR99++62WLVumAwcO6KuvvtJLL72ku+66q82+V1lZmVlu7qFEAIBjizOJAPAb54Scvn37Ki0t7YhquecE3L17d5PbOlNkFBUVNbvt8aZ+QBw8eLAee+yxNg+IkSQnJ2vcuHF6/PHHde2110qS/H6/vvnmmzap71zKOmPGDD3//PPmUt6VK1e2SX3Hrl27JElpaWnq0KFDm9YGABwZQiIA/IYFg0H997//lRR62MqR6tq1q0499VRJ0s8//9zktqNHjzbLmZmZR7zvY6WmpkZz5841AXHQoEH6xz/+0ex9kUfD8OHDzbJzj2dbSktLM/M8RjMXY2NKSkrM9Cdnn312m9UFALQNQiIA/IZt3rzZhAt3aDsSTnDZtWuXKioqGt3u0ksvNQFk+fLleu+995qsm5+f3ybjOxI1NTV66KGHzCT0RzMgfvnll80GP+deUkk67bTTWlV///79WrduXZPb5ObmmjN+6enprarflC1btpjlCy64oM3qAgDaBvckAsBxaO/eveZJlg5n/j1J+uKLL+o8hdTn82nMmDGt3o9zNiw9PT2qaQwiGTt2rJYvX65gMKh169bpkksuibhdu3btNG/ePN15553y+/16+umn9dVXX2nChAnq1auX4uLiVFRUpK1bt+qLL75Q//79lZGR0SZjjNb8+fP1xRdfSAqFsjvuuEO5ublN9klJSVFKSkqr9/Xee+9p/vz5GjJkiIYMGaLTTz9dnTp10uHDh5Wfn6+VK1eas8DdunVr9dQl+fn5uvfee5Wenq6LLrpIAwYMUNeuXdW+fXuVlpZqy5YtWrp0qXlK7dSpU1v9HRqzdu1aSaH7LUeOHNlmdQEAbYOQCADHoc2bN2vBggWNtj/33HN1Pnfr1u2IQmJbXGrqGDp0qFJTU1VQUKAVK1Y0GhIl6cwzz9QzzzyjBx98UPv379eGDRu0YcOGiNs69zDGkntS+3379umOO+5ots/06dM1Y8aMqPZXXV2trKwsZWVlNbrNaaedpgULFjQ5tUdT9u/fr3feeafRdo/Ho5tuukl/+MMfoqpfX01NjT777DNJobPX0U7fAQA4egiJAPAb9euvv5qzYEf6VFM3r9erKVOm6IUXXtDq1atVUlLS5NyL/fr10+uvv64VK1bo66+/Vk5Ojrn/LSUlRWeccYaGDRumyy67rM3GeCKYM2eO1qxZo40bN2r79u0qLi42l5926tRJZ555pkaNGqXx48dHNeXGueeeq2effVbr1q3Tli1blJ+frwMHDqiiokIJCQlKT0/Xueeeq6uuuqrNzjJLMseEJF133XVtVhcA0HYs27btWA8CAHDsvfLKK3rllVeUkpKi999/P6q57hpTXl6uG2+8UQcPHtTtt9+uadOmtVltnNhmz56trKwsDRkyRE899VSshwMAiIAH1wDAb5RzqemFF17YpgFRCk2O7gTDN998U4cOHWrT+jgxbdmyRVlZWbIsS7fddlushwMAaAQhEQB+gw4fPqxRo0Zp+vTpmjJlylHZx9SpU9W9e3eVlpbq7bffPir7wInlpZdekiRNmDBBAwYMiPFoAACN4XJTAMBR8/PPPysrK0uJiYm64YYbYj0cxFB5ebneeecd2batKVOmNHmfKgAgtgiJAAAAAACDy00BAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAMb/Byu41BM5SuR9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACtXElEQVR4nOzdd3wT5QMG8OcuaboXXcy27C1LQARlI4qCCOJABbc4cKO4N24cPxFFkSEyREARkQ0iyBTZe6+WTrqbce/vjzTXpE3SpE2bpn2+n08+Te/eu3s7ktxz73vvKwkhBIiIiIiIiIiqOdnbFSAiIiIiIiJyBQMsERERERER+QQGWCIiIiIiIvIJDLBERERERETkExhgiYiIiIiIyCcwwBIREREREZFPYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJDLBERERERETkExhgiYiIiIiIyCcwwBIREREREZFP8EiAPXXqFCRJgiRJGDt2rCd2WSv16dNH/T0SETkyduxY9b3i1KlT3q6OasaMGWq9ZsyY4e3qkIcpioIuXbpAkiQ88cQT3q4O+Qi+LxCVVpOzk8lkQsuWLSFJEiZOnFgpx6iyFtgZM2bgjTfewBtvvFFVh/S6JUuWqD9zZmamt6tDRYxGI1avXo0XX3wR/fr1Q7169eDv74+QkBA0bdoUt99+O5YsWQKTyeTWfvft24cnnngCrVq1QkhICMLDw9G+fXu8+OKLOH36dCX9NERUm+j1euzcuRPffvstHnroIXTp0gU6na5KAsK3336Lf//9FwEBAU5PSk6dOoVffvkFEydOxKBBgxAVFaXWr0+fPi4fzzr4uPJYv359mfvMy8vDtGnTMGTIEDRs2BABAQEICAhA/fr1MWjQIHz++edV8nn90EMP2dTd1XOjCxcu4K233sI111yDmJgY+Pn5qZ9dt956K+bPn+/yZ1dSUhJef/11XHXVVYiKioK/vz8aNmyI6667DtOnT4fRaKzAT1i9tG/fXv1dr1mzxu3t//77b3X7Nm3auL29EAKbNm3Cm2++icGDB6NRo0YICAhAUFAQEhISMHz4cMyePRuFhYVl7mv9+vVuvS7Kek/IysrC+vXr8cknn+COO+5AixYtIMtypV4kvXjxIpYuXYo33ngDN954I+rVq6ceLzEx0e39efJ1XVBQgK+//hqDBw9G3bp14e/vj5iYGHTv3h3vvfce0tLS3K5fdfXEE0+ov/dXX33V7e3z8vIQHh4OSZKg1Wpx4cIFAIBGo8Err7wCAPj0009x7Ngxj9YbACA84OTJkwKAACDGjBljt0zv3r3VMrXFmDFj1J/55MmTZZavjb+jqrZ27VpRp04d9ffs7NG1a1dx7Ngxl/b70UcfCT8/P4f7Cg0NFXPnzq3kn45qC3ffW6rKDz/8oNbrhx9+8HZ1aqTOnTs7fd+qrN97bm6uqFu3rgAgxo8f77DcF1984bR+vXv3dvmY1v9PrjzWrVvndH/bt28XjRs3LnM/sbGxYsWKFS7X013r1q0TkiTZHPP1118vc7sZM2aIkJCQMuvfoUOHMt8XZs2aJYKCgpzup1OnTuL48eMV/nmrw/vCJ598otbhrrvucnv7++67T93+ww8/dGvbAwcOiPr167v0P9yiRQuxY8cOp/tbt26dW68LZ7/zzMzMUv+LJR+e/oz57bffnB4vISHBrf158nW9Y8cOkZiYWOZ+/vzzzwr8BsxcyU6VbefOnWod4uPjhaIobm0/a9YsdfsbbrjBZp3RaBQtWrQQAMTtt9/uyWoLIYTQwgMSExMhhPDErmo1V64eU8WcP38e6enpAIA6depgwIABuOqqq1CvXj0YDAZs27YNs2bNQlZWFrZv346+ffti27ZtqFu3rsN9Tp06Fc8//zwAwM/PD3fffTd69+4Ng8GAFStWYOHChcjOzsbdd9+NiIgIDB48uEp+Vqq5ZsyYwa54tVTJ1jVLC0Fl9/KYMmUKkpKSoNFoMGHCBJfrFxgYiObNm2PPnj0VOv4TTzyBfv36OS3Trl07h+tOnz6NAQMG4PLlywDMv7exY8eiefPm0Gq1OHHiBGbNmoWTJ0/i0qVLuOmmm7B161Z07NixQvUuKT8/Hw8++CCEEAgODkZubq5L2y1evBj33nuveq7VsWNHjBo1CvHx8cjNzcX+/fsxY8YMZGVlYffu3ejXrx/27NmDkJCQUvuaPXs27rnnHvX7QYMGYdiwYYiJicHZs2cxd+5c7NixA7t27cKgQYPwzz//ICYmxjO/AC+566678MILL8BoNGLRokWYMmUKQkNDXdo2Ly8PP//8MwBzy9Ldd9/t1rHT0tLUlqng4GAMGDAAV199NRo2bAgA2LNnD2bMmIHk5GQcOXIE/fv3x6ZNm9C2bdsy933bbbfh9ttvd1qmc+fODtcJIWzO3yVJQrNmzZCamoqMjAxXfjy3lXyP8PPzQ7t27bBr1y639+XJ1/X+/fvRr18/ZGVlAQDatm2Lu+++G40bN0ZmZiaWL1+OX3/9FZcuXcLw4cOxevVqXH311e7/AqqRzp0744orrsCePXtw5swZrF27Fv3793d5e+vzkHvvvddmneWz4oEHHsCCBQvw6quvlqv3gkMej8QO1MbWxeraSlKbzZ49W7Rv31789NNPoqCgwG6Zc+fOibZt26p/u3vuucfh/i5cuKBexdZqtWLVqlWlylhffW7UqJHIz8/32M9DVJ1Uh5aWmu7pp58Wr732mvj111/F+fPnhRBCvP7665X6ezcYDKJRo0YCgBg0aJDTsosXLxaPPfaYmD59uti9e7cwGo02LQ3lbYGt6M9l3YJ23XXXiby8vFJlDAaDuOeee9Ryw4YNq9Ax7ZkwYYIAIBo0aCCefvppl1tgmzRpopZ97bXX7LaUpKamiiuuuEItN3ny5FJlLl26ZNOK+/XXX5cqoyiKeOqpp9Qy9957b3l/XCFE9XlfGDZsmFqP77//3uXtrFuZbrzxRrePu3HjRpGYmCimTp0qsrKy7JbJyMiwOU++9tprHe7PugXWlZZ7Z7Kzs8Xtt98uPvroI7F27VqRmZkphLA9Z/f0+eumTZvEgw8+KKZOnSq2b98uCgsLhRCiXC2wnnxdd+/e3aaV3mAwlCqzcOFCIcuyACBatmxpt4yrqkMLrBBCTJ48Wa3H3Xff7fJ2p0+fVlvvo6Ki1L+jtcuXL4uAgAABQDz44IOerLZggK1EDLDVT0ZGhktdJPbu3av+7QIDA0Vubq7dctYf8s8//7zD/d16661quf/973/lrj9RdVZdTlRrm8oOsIsXL1b3P2vWLLe3rw4BtkGDBuq+9u/f77BcRkaG0Gq1AoCoU6dOhY5Z0s6dO4VGoxEAxC+//GLzd3MWRI4ePaqWi4uLEyaTyWHZpUuXqmVvueWWUuvff/99df2IESMc7sdkMon27dsLAEKWZXHkyBG3flZr1eV9YcmSJWo9rrnmGpe369evn7rdL7/84vZxs7OzhV6vL7NccnKyTbfuEydO2C3nyQDrSGUGWEfKE2A99bresmWLup8GDRo4bWh49NFH1bLfffedy3UtqboE2EuXLqm3wAUHB4vs7GyXtnvrrbfU+j/xxBMOy1nOfwMDAx1ewCmPSh+F2DKy7oYNG9Rl9m4ydzSAgaIoWLBgAW677TY0btwYQUFBCA0NRatWrTBu3Djs3bvXad3eeOONUgM8rFmzBnfccQcaN26MgICAUjepG41GrFixAs8++yx69eqF2NhY6HQ6hIaGokWLFhg7diz++usvh8e0jBA6c+ZMdVnjxo1L/cyOfleujEK8detWPPTQQ2jZsiVCQ0MRHByMpk2bYsyYMVi7dm2Z25ccUCM3Nxcff/wxrrzySkRGRiI4OBht27bFxIkTK60biTdERES49Ptt164dWrVqBcDc5cveDehCCLVbUVmjco4fP159Pn/+fHerXSH//PMPxo0bhzZt2iAiIgIBAQGIj4/HbbfdhmXLljnd1nqwCMtr9MyZM3j22WfRqlUrBAcHIyIiAldffTWmTJni8qAfOTk5+OyzzzBw4EDUr18f/v7+qFOnDrp27YrXXnsNKSkpTrcv+VoxmUyYMWMGBg4ciAYNGkCr1dodCCI5ORkTJkxAmzZtEBwcjDp16qBbt2745JNPkJeXB8B8S4S9gST+/PNP9ZjWf09nxo8fr26zfPlyl7ZxRVmjEFfW3+3333/HTTfdhLp16yIgIACJiYkYPXo0/vnnH7d/Br1ej++//x5Dhw5VBzSJiIjAFVdcgWeffdbhwCGHDx9GcHAwJElCeHg4Tp486fAYGRkZiI+PhyRJ0Gg0Tt+3ybHZs2cDMHcHHj58uJdrUz6XLl1Snzdv3txhuYiICLW7rKvde11hNBrxwAMPwGQyYejQobjllltc3ta67k2bNoUsOz51a9GihfrcXv2tzw+cdYWVZRmjR48GYD4Pmzdvnsv1La/t27cjJiYGkiTB398fCxYsKFWmIueEQ4YMQWxsLADzoEwnTpwos05nzpzBunXrAADR0dG46aab3P65QkJC4OfnV2a52NhYXHvtter3ZZ3fkude19avi1tvvRUBAQEO92Xd/f6nn35yq77lkZKSgq5du6qf6c8884zd2zbLe64XExODG2+8EYD5d2PvdWePdcYp2X3YmuV9JD8/HwsXLnRp3y7xRAp2dhXB+iqOs4e9q0jHjh0THTt2dLqdLMvi1VdfdVg36yuca9euFY899pjd/VhfYerTp49LdR4zZozdJnPrlteytnf0u3LEYDCIBx98sMx9jxo1ym5XCgtLud69e4vjx4+LNm3aONxXQkJCrWxB7tq1q/o72LJlS6n11q207dq1c7ovk8kkwsLC1P9ZT16FciQnJ0fcdtttZf6vDBkyxGF9Sl7pXb58uYiIiHC4r4EDBzrsmm3xxx9/iNjYWKd1Cg0NFb/++qvDfVi/VtLS0kSvXr3s/t9aW7t2rYiMjHR4zPbt24szZ86IhIQEu9ubTCZ1oIjIyMgyu4Ln5+erx4uPj3faauKusnp3ePrvZjQanb6vybIsPvjgA5dbWlwZdEOn04mpU6fa3f7bb79Vy/Xo0UMYjUa75UaOHKmWe/nll53+Tn1ZZbbAFhQUqK1Czro1OlMdWmAbNmyo7svVlpqOHTtW6JjWJk2aJACIkJAQcebMGSGEcLkF9tixY2q5unXrOn0v+f3339WyTz31VKn11p/1Bw8edFrnRYsWqWWvuuoq135QO1z5O65YsULt2hwSEmL3dhxPnBM+88wzatnXXnutzLpbtzI9+eSTrv7I5WbdW2vevHl2y7AFtpinXtfWrar2utVbS09PV8tqNBqHPfTK4koL7MmTJ9WBkACISZMmlSrjiXM964G1XHmf/+uvv9TyHTp0cFrWeqAwT96WUekBduPGjWLx4sU29xQuXry41KPkG+mxY8dEdHS0uk2vXr3E+++/L+bOnSt+/PFH8fTTT9ucjDp6EVt/QFx//fXqB8CLL74ofvzxRzFjxgzx6KOPigsXLqjbdO/eXYSEhIhhw4aJt956S8yaNUssWLBAfP755+Khhx4SwcHBTt/Qdu7cKRYvXiz69u2rlvvmm29K/cw7d+602c6VAHv77berZQICAsTDDz8sZs6cKX788Ufx1FNPidDQUHX9dddd57C7rKVMp06dRKtWrYQkSWLYsGHi66+/FvPnzxeTJk0S8fHxajl3utvUBIWFhTYn/BcvXixVZu7cuWW++Viz/vtu3bq1EmpdrKCgQFx11VXq8Zo2bSpeeuklMXv2bDFv3jzxzjvv2Lwp9uvXz+5JkfUH5bBhw0RQUJAIDAwUDz/8sJgxY4aYO3euePbZZ21eE85OHhYuXKh2ofPz8xMjRowQX375pViwYIH47rvvxOjRo9WuLLIsizVr1tjdj/Xv0vK67tChg3j//ffFvHnzxLfffisef/xxtfz+/fttumZ16tRJfPLJJ2L+/Pniiy++ED179lTDkKVLkr0P0ffee0/dx48//uj0bzB79my17Jtvvum0rLvcCbCe+LtZf7jrdDrx4IMPipkzZ4rZs2eLJ554Qv3d3nzzzWWeqG7evFktL0mSGDx4sPj000/F/PnzxYwZM8TDDz9s87dytJ8RI0Y4rft3331nc/JdkXuVqrvKDLBr1qxR9/3cc8+Vax+eCLBdu3YVLVu2FEFBQSIoKEgkJCSIkSNHih9//NGlv631xWtn98pZv7ZmzJjhzo/p0JEjR9T7wD777DN1uasBVggh2rVrZ1O2rHtg/f39xaFDh0qVad26tbofdwJsaGio2yOUWpQVYH/66Sf1fT8mJkZs3769VBlPnRNaX3hOTEws82dq2rSpWv6///4rz4/vFusLDP/884/dMtbv7+3atRPt27cXISEhIiAgQDRs2FDceOON4uuvv3baiFEWXwmwnnpdjxs3Tl3vToAFYPf/1RVlBdg9e/aoo1drNBq792176lzPYDCIuLg49XO5rNHHre89tn5Pc8TyvhMSEuLwgrO7quU0OiaTSZ0qwN/fXyxYsMBuuaSkJPVqnCzLYt++faXKWH9AWN70Ll++7PT4q1evdvrCT01NVVt8ZFl2eJ+Cp6fRmTdvnro+Li7O7tWmU6dO2bRsOLrf0vp3otPpxNKlS+3+nNb7qkjoys3NtXvhojyPksG/MliHj86dO9st8+abb7p88iGEsBlEYPbs2R6usa2S9+baO8HT6/U2dbL3pl1yuP74+Hi790Jt3bpVvboZGRlptzXvzJkzait0fHy82LNnj926b926VYSHhwsAomHDhnbvHSrZs+Opp55y2iph3UL76KOP2i1b8r3C3odoUlKSeqJV1on4tddeq37wnD171mlZd7kTYCv6d7O+0hoREWF3iodDhw6pU6w4O1HNyspSBwOKiIgQ69evt/vzHT16VL2AFhwcLFJSUkqVSU9PV6++azQasXHjRnXd4cOH1XAeFhZW4alADh486LH3L3s/S0VVZoC1vmjz888/l2sfngiwzh4tW7YUu3fvdrqvlJQU0axZM3WbunXriokTJ4rp06eLWbNmiddff139vJNlWbz99tvl+llLUhRFfS+48sorbU7e3Amwf//9t80Fp44dO4r33ntPzJkzR3z77bfiySefVN9fw8PDxbJly+zux/rCurNeLkLY3i8LQJw7d87tn18I5wH2iy++UFtnEhISxOHDh0tt78lzQiGEuPLKK9X6rF271mG9N2zYoJbr1KmT6z9wOW3cuFE9XkxMjMMTfVen0alXr57Tn88ZXwmwnnpdW5/PPf30006PaX2/LFD2xWxHymr8szSiBAQEiCVLltjdh6fO9YQQ4rnnnlPLOOudkJubqzaW+fn5ufSZNnbsWHXfZb1Xu6paBthffvlFLfvFF184LXv48GG1RcfeCFfWHxDBwcHqqI0Vdfz4cXW/jl4Qng6wnTp1Utf/8ccfDvezdetWmw8Ee2+C1i++t956y+G+pk2b5lK5slj/j1T0Udk3u6enp4t69eqVedJmPYLkl19+WeZ+3S1fXhcuXBA6nU4A9gfxsKbX69XRLZs3b15qfckPyr/++svhvkaPHu203BNPPCEAc9jYtWuX03p9//336r7mzJlTar31a6VLly5Ow+v27dvVsu3atXN69c96v44+RK27eDka2OTw4cNqmSFDhjj9WcvD3QBbkb+b9cidzlqkrLsu2jtRFcJ2LsbffvvN6c9o3fL37rvv2i2zfv16dUTIhIQEkZGRIfR6vejSpYu6rScuFpW8uFGRR1lzlVa0fp4OsHfeeae6b0cXncpSkQCr1WpF7969xauvvipmzpwpfv75ZzFlyhRx1113qa2agLmFsKwTo7S0NDFy5Ej1nMHeY9SoUWW+P7lj6tSp6vvev//+a7POnQArhBD//fefza0tJR9arVa8/PLLTs9zXnnlFbX8yJEjHZazHsTJ8nAUCMviKMC+/PLL6vK2bds6DMiePCcUQoivvvpK3Z+zWQbuvfdel49bUYWFhTYjSH/00UcOy1rmEe7WrZt44YUXxPTp08XPP/8spk2bJh566CH1ArDlf2LlypVu18dXAqwQnnldr169Wi3boEEDp7fUlLwVsbwDczrKTr/++qsIDAwUgPli1IYNG+xu78lzPSHMPdUs9XHWO2HmzJlqubKOa/HBBx949DNZiGoaYC3d0MLCwlyacqRHjx4O/+mtPyCcvVGVh6XFwdGw6p4MsNa/4/bt25e5r/79+6vl7bWcWtZpNBqRnp7ucD/WQb0iExH7SoA1Go1i0KBB6rGchQ/re5GnTZtW5r5feukltfx7773nyWrb+Oyzz9TjbN68uczyEydOdPh/ah2EyroCbR06S967qCiKqFOnjgDKnoZDCPM9HZaWQXt/b+vXyvTp053uy/qErayuQdZd5hx9iFoHqwkTJtgt8/zzz6tlymrlKA93AmxF/m4FBQXqB2RcXFyZXX+suyfaC1KW1pEWLVqU+TMKIdTuU85Cj/Xr6rbbblOnKQEgRo8e7dJxylKbA6ylez1Q/ha48gbYo0ePOg1jZ86csQl0rVq1KvN/9Pjx4+KBBx5w+PfR6XRi1KhRNrcVlde5c+fUVtFnnnmm1Hp3A6wQ5i749u75tzzq1KkjJkyY4HDU2+PHj6vvrc4+u6xbY9z5PLGnZIA1Go02f4Orr77a6XmIJ88JhTBfpLZc/HA06qp1K5NOpxOpqaku/7zlcf/999u8Z9sbX8XiwoULTkeFTk9PFzfccIO6v6ioqDJ7HpbkSwFWiIq/ro1Go01L7pgxY+y+lyxZsqRUUC7v+Zy97PT999+r+69bt67TbuuePNez6NatW5mfVda9OOz13rTHetyKd955x6VtyqJFNbRx40YAQL169fDnn3+WWV6j0QAwT2icn5+PwMBAu+WuueYal+uQlZWFOXPm4I8//sDevXuRmprqcETCc+fOubzf8tq2bZv6fNCgQWWWHzRoENasWQPAPGJxt27d7JZr0aIFIiMjHe6nQYMG6vOKjEacmJhod9S06ubJJ5/EypUrAQDx8fE2kzT7CsvrBzD/by5ZssRpeeu/68GDB+2O3gsAV111ldP9OPtf2b9/P9LT0wEAoaGhZdYJMI/cmJmZiYMHDzotV9breseOHerzvn37Oi1rGZXbmb59+6JFixY4cuQIZs6ciXfeecdmhEmDwaCOzle/fn0MGTKkzH1Wpor83Xbv3g29Xg8A6N27t/pe60j//v0d/r0uX76MPXv2AADi4uJc/h8A4PR/4M0338SaNWuwdetWmxG+GzdujClTppR5DFe88cYbDkfKr+ksr1sAqFOnTpUeu1mzZk7XN2rUCMuXL0e7du2QlJSEQ4cOYeHChbjtttvslp80aRJeeeUVKIqCBx54AI888gjatGkDADhw4ACmTp2K7777DgsWLMCWLVuwatUqm1F93fXoo48iKysLCQkJeOutt8q9H8A8Oug999yDRYsWITg4GJMmTcLIkSMRHx+PvLw8bN26FZMmTcKGDRvw4YcfYufOnfjtt98QFBRks58mTZrg5ZdfxptvvgkAePDBB/HLL79g6NChiI6Oxvnz5zF37lxs27YNMTExKCgoQHZ2NgA4Hf3YVQUFBbj11luxePFiAMANN9yAn3/+uVQ9rXn6nDAyMhI333wz5s2bh9zcXCxcuLDUrBALFy5Uf+6hQ4ciKirK5Z/RXR999BG+//57AEB4eDjmz58PnU7nsHy9evWc7i8yMhK//PILunXrhr179yItLQ1ff/01XnjhBY/Wu7rwxOtao9Hg66+/xuDBg2EymTBz5kzs3LkTd999Nxo3bozMzEz8+eefWLx4sTpLgWWkfE+8LgDggw8+wIsvvgjAPNr4ypUr0aRJE4flK+Nc77777lPzxowZM0qdE50+fVqd0aVu3boYPHiw02NaWL9+PDaziSdSsCdbYLOzsyt0dbvk1VrrK5zOut1aW7t2ban7uZw9mjRpYnc/nmyBtb7S8s0335S5L+t5+yZOnFhqvWWdK4MzWcq6c+XcF1m35MTFxdm9F8dade1CbN190t1Hye661i15zgb5KVm2ZGuC9dyE7j7sdXexfq2UNVCFdbcsV+bis9x34uwq8Mcff6zus+S8gAsXLlTXVdbIt+60wFbk72b9PvLSSy+VWS/r96mSLYHWg6e4+/Dz83N63OPHj9sMYKfVah0OgFITVWYLrKXbmUajKfc+ytsC6yrLCL8AxN133223jPX7u7PuoJ9//rla7sorryx3nebPn6/u5/fff7dbxtUWWKPRKK655hoBmO8B3bZtm91yJpPJZnAzR4NuKYoiJk6cqN5qZO8RFxcntmzZYjMwUlmfiY5Yt8Bad2+96667yhyAy9PnhBYrVqxw+j9p3cpk79zR2X3uK1ascPl3880336jHCQ4OFps2bXJ527JYDzTp7kCcvtIC6+nX9cKFC9XRsO09dDqd+Oabb8Tw4cPVZa6ck9tj/b5o/bro0KGDSEpKKnN7T57rWWRmZqrdl+31TrC+V9hRDzR7Vq1apW736KOPurydM565bOBBly9frtD2ltYCexy1zFo7evQohgwZgqSkJABAy5Yt8dRTT+Grr77C3LlzsXjxYvVhmVPKZDJVqM6usFwJBIDg4OAyy1taLkpuW5Knrhz5unfeeQfvvfceAPNcb6tXry7zyntERIT6PDU1tcxjpKWl2d3W0yryGnL2+qnI/0pl1Qko+3Vt6Tmh1WpdmovPldfX2LFj4e/vDwCYNm2azTrL95Ik4f777y9zX5WtIn+3nJwc9bmzFhILZ7+7ivwPGAwGp+ujo6NtWgebNGmCLl26lPt4VMzyf24ymdS5kqsb61aCQ4cOlVp//vx5fPTRRwCA1q1b4/HHH3e4ryeeeAKtW7cGYO69sWXLFrfrk56ers4Lfuutt1a4F8Yvv/yitrbce++96Nq1q91ysizjiy++UF/z33zzjd3XjiRJeO+997Br1y48/PDDaNmyJYKDgxEUFIQ2bdrgpZdewr59+9ClSxdkZWWp28TFxVXo5wBgM+d0bm5umT2zKuuccMCAAWjYsCEA4K+//rKZd9q6lal+/fp2e70NHz7c4eOhhx5yqW6zZs3CI488AsD8ObZ06VJcffXVbvx0zpX1uvB1lfG6HjFiBI4dO4ZXX30VV155JSIiIqDT6ZCQkID77rsPO3bswEMPPWRzPle3bt0K/yzWr4v8/HyXckVlnFeFh4erc33n5ubil19+UdcJITBr1iz1e2dzv5ZkXVdXspgrql0XYuvgde2112LDhg1VevxJkyYhPz8fAPDyyy/j7bffhiRJdss++OCDVVav0NBQ9bkrk6tbn3hab+steXl5atfcioqPj0fnzp09si8A+PDDD/Hqq68CMHe9WbVqFdq1a1fmdtYB1/rDz5HTp0/b3dbTLK8hSZJgNBqrxUUK69f1a6+9pnZfqwqWUGU0GmEwGMoMsa68vqKiojBy5EjMmTMHK1euxJkzZxAfH4/Tp09j1apVAMwnSI0bN674D+BF1n83V8KLs9+d9b7uuecem0nQK+rRRx+1eX0dOXIEr7zyCj744AOP7P/QoUMeOwHs1asXoqOjPbKvqmB9YSA9Pd2lCxlVzbp7WmZmZqn1K1euVINc//79HX6mA+b3zX79+qnd1rdt21ZmN/ySli5dikuXLgEAYmJi8M4779gt99dff9k8t5Tr3r07Bg4cqK5btmyZ+nzAgAFOj12/fn20bt0a+/fvR3Z2Ng4ePIgrrrjCbtkOHTpg6tSpDve1f/9+9US6efPmCA8Pd3psV0yaNAnz5s3D5s2bsXjxYtx2222YP3++w/flyjonlGUZY8aMwbvvvgshBGbOnInXX38dADBz5kw1WN9zzz1l3jpRHnPnzsW9994LIQT8/f2xZMmSMm9xcVdZrwtfV1mv67i4OLz11ltOu/0fOHBAfe7ogpI7Ro4cibCwMHz55Zc4cuQI+vbti3Xr1qF+/foOt6msc717770XP/30EwBzN+IxY8YAMHdZPn78OADzrUmtWrVyeZ+VcStKtQuw4eHhCAkJQU5OTpXcW1rS6tWrAQCxsbF46623HL4gsrOzbf4glc36noejR4+WWd66jLMXQFW5dOmSelWnosaMGeOxe1MnT56s3hcSHh6OFStWoGPHji5tax1yd+7c6bSsoijYtWsXAPMHp+VKYGVo0KAB/vvvPwghcP78eTRq1KjSjuVOnSyq+nVdv3599d7LEydOoGXLlg7LZmRkuPxB/8gjj2DOnDlQFAXTp0/HG2+8genTp0NRFABw+Sp8dWb93nHs2LEyyzsrU1n/A3PmzMGcOXMAAF26dEFqaipOnz6Njz/+GNdddx369etX4WPMmzfPYxdd1q1b59K91tVFYmIiNm3aBMB8EmJptapOyurdcuHCBfV5WFhYmfuzDmquXNAqybpV0dX7sNetW4d169YBMI/FYB1gq7r+FtZh0Z0xRJwJDQ3Fn3/+icGDB7sUYivznHDs2LF49913AZhbQ1977TUAsLm4VvLeWIuyWo6d+fnnn3H33XdDURTodDosXLjQpbFN3FVVvb68xVuviwMHDqi97po2bVrmPcmu+uKLLyBJEr744guXQmxlnev169cP8fHxOHPmDDZs2IBTp04hMTERP/zwg1rGndZXwDbAJiQkeKSeVdY0Y31loKwX/rXXXgvAfLLpykmTJyUnJwMwDwDi7GrG6tWr1RNVR9z5mctiPQiTpYXHGevWTkcDONV2X331FZ555hkA5g/V5cuXu3UlrW3bturJ3P79+51+uG7evFntitWzZ89KbRXv3bu3+txTrd4V1alTJ/UDZs2aNWW+djzpyiuvVJ9bThAdsXQbc0WvXr3Qtm1bAMD06dNhMBgwffp0AOYLYMOGDXO/stVMhw4d1MFENmzYUGa3JsvAcfZER0erA2ts2bJFfT1UxMmTJ/Hoo48CMLe0z507Fz/++CM0Gg0URcE999xjcxJH7rO+UHf48GEv1sQx66Blr3eL9cnt2bNny9yfdWt+ZQ7e4yp363/mzBn1eUXqb32h2JO3Q1hCbM+ePQEAixcvxqhRoxzeKlBZ54TNmjVTg/mJEyewceNG/PXXXzhx4gQA4Oqrr3Z6wbM8lixZgjvvvBMmkwlarRbz58/HjTfe6NFjWJT1uvB13npdWwc5T98m9Pnnn+PJJ58EYO5J1KdPH5ugbq2yzvUsvROA4m7DlsHOAHMXYEcD5TliPRCjox4hbtfTI3txgXU3kLKufFh+cQDUK2JVxdI96sSJEw5Dp8lkUu+XdMadn7ksiYmJarfZ3bt3Ow2xO3bswNq1awGYr3RUh3vBLKMQe+LhidbXadOmqfcoBQcH448//kCPHj3c2ockSbj11lsBmF/kX375pcOyX3zxhfrc3Re+u26//XY1dHzwwQcV/t/zBI1Gg9GjRwMwf4h89913VXZs6yD51VdfOQ1hn3/+uVv7fvjhhwGYPzyfeuop9SLGmDFjXLrftrrz9/fHDTfcAMB8cc/Srcie5cuXlzlitOW9PS8vD++//36F6mYymTB69Gg1CH/xxRdo3rw5evXqhZdeegmA+R6pBx54oELHAcyjEHvq/cuXWl8Bc3dWi61bt3qxJvalp6fbvG4t/6/WrEP4smXLnI4LkZWVheXLl6vfW18Ac9XYsWNd+l+wdFkFgNdff11d/tlnnzms/7x585we+++//1bfhyIjI9G0aVO36w+YT9K3b98OwHzR1d3Px7JYQmyvXr0AmIOdoxBbmeeE1i1JM2bMsDm/cLeVqSx//PEHbrvtNhiNRmg0Gvz000+4+eabPXoMi8LCQpvzVHuvC19X1a9rwHw7ieVcLyIiwiOfLyV99tlneOqppwCYe1M6CrGVea43duxYtQfqrFmz8PPPP6u3Jt5yyy1u305g+ewIDQ1VL2RXmCdGgnJlFOLx48erZRxNymthMpls5nZ78sknnc6JlZeXJ3744Qcxd+7cUuusR/lzZf69gQMHquU//fTTUuv1er3N5NZwMmLap59+qpaZOXNmmccua6Rm61EN69WrJw4ePFiqzOnTp0XTpk3Vco4mWLasd2VESHfK+oKZM2eqoy8GBQVVaF7G8+fPi6CgIAGYRz5dvXp1qTLWIzA2atTIpXnsKurZZ59Vj9m3b19x8eJFh2VNJpNYtWqVePvtt0utczZCrbtlz549q47w6+/vX+ZrIjk5Wbz11lti9+7dpda5M6+0EMJm3sRHH31UmEymUmVKzvXpykiImZmZ6t/f+uFsjj5PcGcU4or+3TZu3Kiuj4yMtDsZ/JEjR0S9evVsfgf2RsPNyckRCQkJAoCQJEl8+OGHdv8WFpmZmeLzzz8Xq1atKrXu1VdfVY81cuRIm3UGg0GdCxIVGCXSV1TmKMQFBQUiODhYoBwjmVqUZxTizZs3i2nTpomCggKHZc6ePWszb2Hz5s3tjmqr1+tFw4YN1XLDhg2zO3p5Xl6eGDp0qFquXbt2QlGUUuWsXzPlmbPSwtVRiPft2ydkWVbLOpp38vTp0zZzWToa7XP//v3i0qVLDo/3448/qvM/BwQEiEOHDrn1c5VUch5Ya9nZ2Tbvz8OGDSs1WrwnzwlLys7OVv+/Q0JC1BFog4KC3J471ZlVq1apc89qNBrx008/lWs/R48eFR999JHIyspyWKbkPLCRkZEiIyPDreOUdxRi688Ad0cvdvc15enXdXJysjhw4IDD4+3cuVM0atRI3c+MGTNc/tnsKSs7PfXUUzbvbfbm4fbUuZ491v8D1p/v9s5zncnMzFTPuW+++Wa3tnWmyu6B7d+/v9oKdf/99+Ppp59GQkKCenN8s2bN1DnfZFnGL7/8gh49euD8+fP4/PPPsWDBAtx6663o0KEDwsPDkZOTgzNnzmDHjh1Ys2YNcnNz8fbbb1e4nk888YTauvnMM89g/fr1uO666xAVFYWjR49i1qxZOHr0KPr27YujR4867Tbav39/9fmECROQkpKCli1bQqs1/9obNGiA9u3bu1y3UaNGYfHixZg3bx4uXryIzp07Y+zYsejRowc0Gg127NiB77//Xm2RGDRokNq9jsyWL1+O++67T21dv++++5CZmVnm/FmdO3dGfHx8qeX169fHJ598gnHjxsFoNOL666/HPffcg969e8NoNGL58uVqtwutVotvv/0WAQEBDo9jfc/1yZMnHc7JWpZJkybhv//+w5o1a7Bu3To0adIEI0aMQI8ePRATEwO9Xo+kpCS1NT8pKQn9+/fHK6+8Uq7juaJhw4aYN28ehg4disLCQowZMwaffvophg4diubNmyMwMBCXL1/GkSNHsGXLFmzatAkmk8kjA1t888036Nq1K/Ly8jBlyhT8888/uOuuu9CwYUMkJydj/vz52LRpE3r06IEzZ87g/PnzLg2IEB4ejttuu82mS1GfPn3QvHnzCte5uujVqxceffRRTJkyBRkZGbjqqqswZswY9OrVC7IsY9u2bfj++++Rm5uLm2++2elrKTg4GEuWLEHv3r2RlZWFCRMm4JtvvsGIESPQpk0bhISEICsrCydOnMC2bduwfv166PV6zJ4922Y/f//9t9q60LBhQ3z77bc267VaLebMmYOOHTsiKysLTz/9NHr37u3x7oDesGvXLpuRIQHbwYAWLVpUqpvl/fffX+4Bxfz9/TF48GD88ssv2LFjB3Jycmx6F9lT8n3EegTKkydPllrfuXNn3HLLLTbLkpOT8eCDD+LZZ5/Fddddhy5duqBBgwYICAhAWloaNm3ahIULF6qDLoaGhmL+/Pnq56s1Pz8/fPHFFxgxYgSEEPj111/RunVr3HPPPep4BAcPHsSsWbPUboZ+fn743//+53RgmKrStm1bjB8/Xm2Zfemll/Dbb7+p88Dm5+djy5Yt+PHHH9VWqEaNGtm08Fr7448/8PLLL2PAgAHo1auX+jlz6tQpLFmyRJ0HUqfTYe7cuZX6ugkJCcHy5ctxww03YOPGjfj1119x66234ueff1Z7sVTmOWFISAhuvfVWzJgxw2bwyxEjRrh0X6Ur/vvvPwwbNgwFBQXqvgMDA8s872jVqlWpgXJycnLw/PPP49VXX8XAgQPRtWtXJCQkIDg4GJmZmdi+fTvmzZunvua0Wi1++uknp/fALlq0CP/++6/NspMnT6rPP/nkk1Itbo4GJnPVJ5984nA+0MzMzFLvEY0bNy7VXdfTr+szZ86ga9eu6NatG/r3749WrVohMDAQSUlJWL16NZYtW6b24JowYYJNz4DKMHnyZEiShMmTJ6u5Y926dTbjSVTmud69996rdkO/ePEiAHOvTnfHlVi/fr16zu3RHgeeSMGutMAajUabq2wlH/auPl64cEH079/f4TbWD41GI6ZNm1ZqH+62wAohxMSJE50eq2fPnuLSpUtqS4Kzq0V33HGHw/2U/F250qpkMBjEAw88UObvY+TIkU7nx7SUq20tsCVb2Vx9lNWq8dFHHwk/Pz+H24eGhrp0Ndh6m4rOvVZYWCgef/xxodFoXPoZ77nnnlL78GRLnsU///yjzi1Z1iMkJETs2bOn1D7cbYEVwjy/s6UF2N6jXbt24syZM6JBgwYCgLjiiitc2u/WrVtt9uNofjVPqsoWWCHM79933323w9+dLMviww8/dNrSYu3QoUOiU6dOLv0P+Pv7i+XLl6vbZmRkqO+9siw7fV//8ccf1f106tTJaauNr7D+Hbv6qEgvEyGEWLJkibqvWbNmlVne3frZO2+wnoO4rEe7du3s9tQo6ccffxRhYWFl7i86OlosW7bM4X6qugVWCHPrybPPPmvTEuvo0aFDB6dztn700Udl7qNJkyZizZo15f7ZrLnyvpCTkyOuvfZatdzQoUNLtcR64pzQng0bNpTafu3atRX9sVXlec06+p/YtWuXy9vHx8e79Nq3/jxx9eGIdRln5zCW93BXH87OPz31ut6+fXuZ+wgNDXU636w7XMlOQgjxzDPPqOWaNWtWqiXWE+d69uTk5JSaE/e1115z++ccNWqUACACAwOd9hxwV5W1wGo0GqxatQqff/45fv31Vxw6dAhZWVlO70erV68eVq9ejQ0bNmDu3Ln4+++/cf78eWRnZyM4OBgNGzZE+/bt0adPHwwbNsxjI4G99957uPbaa/G///0PW7duxeXLlxEdHY3WrVvjjjvuwNixY+1e5bVn9uzZuPbaazF//nzs27cPmZmZNvM9uUur1WLatGm4//778d1332HDhg24ePEiFEVB3bp10bNnT9x7770eGXmTXPfcc89h8ODBmDp1KlatWqW24CUkJGDIkCEYN25cmSOvWU9TotPpKnz1V6fT4csvv8STTz6J77//HuvWrcOJEyeQkZEBnU6HuLg4tG7dGr169cKNN97oVm+Airjqqqtw+PBhzJ8/H7/99hu2b9+OlJQUFBQUICwsDE2aNEGnTp0wYMAADBkyxKV5WV3Rt29fHDp0CB9//DGWLl2KM2fOwN/fH82aNcPtt9+OcePGITAwUB0tz9Wh3rt27Yrw8HBcvnwZderUwYgRIzxS3+pEo9Fg1qxZGDVqFKZOnYpt27YhKysLcXFx6NmzJ5544gn06NHD5fvTW7ZsiZ07d2Lp0qVYtGgR/vnnHyQlJSE3NxehoaFISEhAhw4d0K9fPwwdOhSRkZHqto888oh6NX3ChAlO7ykdPXo0li9fjjlz5mDXrl146aWX8PHHH1fkV1Er3XjjjeqolLNnz8bdd99d6cccMGAAfv31V/zzzz/Ytm0bzp07h9TUVGRlZSEkJAT16tVDt27dMGLECAwZMsSlHhOjR4/GwIEDMWPGDKxcuRL79+9XW4Hq1KmD9u3b4/rrr8fYsWOr3aitsizj448/xn333Yfp06dj48aNOHbsGLKystT38yuvvBIjR47ELbfc4vQc5fbbb4efnx/WrVuHgwcPIjk5GYWFhYiNjUX79u1xyy234M4773TaW8jTLGNR3HDDDfjrr7/UFuaff/5Zvc+vss4Jr7nmGjRt2lSdIiQxMbHa3qveunVr/Pnnn/jnn3+wZcsWnD59GqmpqcjMzERQUBBiY2Nx5ZVX4qabbsLIkSPV311N5qnXdevWrTFjxgysW7cOO3fuRFJSEi5fvoyoqCg0bdoUN910E8aMGeOReV/d8cknn0CSJHzyySc4duwY+vTpg/Xr16stsZV1rhccHIxRo0apg1NKkuRwVG5HsrKysHTpUgDAXXfd5dEBTCUhKjg8LhF5xIoVKzB48GAAwPjx490eUIgqbu/eveoIea7+DVavXq1OefHkk0+WGoCFqCaYPHkynnnmGWg0Gpw6dapaTqdDRETVx/Tp03H//fdDkiTs27fPcwM4oQpHISYi5yxzEIeGhlbqvajk2P/+9z/1uav33n799dfq85ow9yuRPY888gjq1q0Lk8mEDz/80NvVISKiasz6s+K2227zaHgFGGCJqg1LgH3mmWcQExPj5drUPBs3bnQ6/+xXX32lDgbUoEEDl+bm+++//9SBOAYMGODxN2ii6iIwMBBvvPEGAODbb791ODchERHR3LlzcfjwYeh0Oo8MslsSuxATVQOpqamIjY1FdHQ0jh8/7tH7BMisWbNmKCgowPXXX49OnTohJiYGBoMBx48fx+LFi7Fr1y617NKlSx0G2D///BOKouDIkSP48MMP1dH5/v77b/Ts2bNKfhYib1AUBV27dsW///6Lxx9/3Onc10REVDuZTCa0bdsWhw8fxosvvohJkyZ5/BgMsERUKzRr1kwdpMORwMBATJs2DaNHj3ZYxt7w+67eL7ty5UqbwbrcER0djV69epVrWyIiIqKaggGWiGqFLVu24JdffsGWLVtw/vx5pKWlIS8vD5GRkWjRogUGDBiAcePGIS4uzul+LAE2JCQELVq0wLhx43Dfffe5NApqYmKiOoKuu3r37o3169eXa1siIiKimqLKptEhIvKmq666CldddVWF98NrfkRERETewxZYIiIiIiIi8gkchZiIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJHMSJiIhqFEVRkJ+fj7y8PIePgoIC6PV66PV6FBYWqs/tfa/X62EymaAois1Xe8sURQFgHq3a0cMyYrUkSdBoNPDz81MfWq3W7nPLIyAgAIGBgQgICHD4PDAwEIGBgQgODkZwcDC0Wn7UExFRzcFPNSIiqnaEEMjJyUFWVhaysrKQnZ1t97n1spycHOTn5yM/P9/b1a9WAgMDERISgpCQEISGhqrPrR9hYWGIiIiweQQGBtqd95iIiMibOAoxERFVCSEELl++jPT0dGRkZNh8zczMLPW9wWCo0PE0Gg0CAwMRFBRU6hEYGIhVM/6CJAAoktUDkOx9LwCg6KsAICzLrJ4LmPdnVdTyHDbPRfEyCeaNZPNXUfTVehlkQMhFyzQAZIHBD/VFQUEB8vPzUVBQ4PB5Reh0OoSHhyMiIkL9GhERgTp16iA6OhpRUVGIjo5GdHQ0QkJCGHaJiKhKMMASEVGFKYqCjIwMXLp0CSkpKUhJSbF5npKSgtTUVOj1erf2GxgYiLCwMISFhSE0NBRhYWH4a+5WSEYJMMpWX2XAKEEySYBJAkyyOXyi9oYqIQlAIwCtAqEVgKboq1ZAaBVAIzDsqevUFu3MzEz1UVhY6NaxdDqdGmatg210dDTq1q2L2NhYREdHQ6PRVNJPS0REtQUDLBERlUlRFKSlpeHixYu4cOECLl68qD6Sk5ORkpICk8nk0r7CwsIQGRmJOnXqYPfKA5AMMqDXFH2VIRnk4uei9gZQbxKyAPwUiKKH5Tm0CgY+eC1SU1ORlpaGtLQ0ZGVlubRPjUaDmJgY1K1bF3FxcaW+xsXFQafTVfJPRkREvo4BloiIAAB6vR4XLlzA2bNnce7cOZugmpycXGbrqSzLiIqKQkxMDGJiYvD3T9vNIbRQA6noK0NpzaOGXZ0JQqdA+CsY9fKNSE1NRUpKCpKSkly6wCFJEuLi4tCgQQP10bBhQzRs2BD169eHv79/Ff1ERERUnTHAEhHVIoqiICUlBWfPnsXZs2dx5swZnDt3DmfPnkVSUpI6iq49Go0GsbGxqFevHv774wCkAo35UagpDqe1uMsuOSYgAJ0CEWCC8DdB+CsYMr4fkpOTkZSUhOTk5DLv2Y2JiUHDhg3RoEEDNGrUCImJiUhISEDdunXVkZ2JiKjmY4AlIqqBFEXBxYsXcfLkSfVx6tQpnD171un9jUFBQYiPj0fDhg2xbvo/5nBaFFRRyIBKlUNAAH4CIsAIEWjCne/cjPPnz+P8+fM4d+4ccnJyHG6r0+mQkJBg80hMTETDhg05hRARUQ3EAEtE5MOEELh06VKpoHrq1CmHLVparRb169dHo0aNsGX+Lkj5Gkj5Wkj5GsDAkErVi0DRwFOBRogAE+6adAvOnDmD06dP4+zZsw67tms0GjRo0ABNmzZFkyZN0KxZMzRr1gyxsbEcMZmIyIcxwBIR+Qij0YgzZ87g6NGjNg9HrVOWlqnjm85CytVCytNCztcABRqGVKoRBAQQYIISZIIINGLguF44ffo0Tp065XA+4NDQUDRt2lR9NGvWDI0bN+Y9tkREPoIBloioGiosLMTx48dx9OhRHDlyBEePHsWJEyfstjZpNBo0atQIZ7ZfhJRnDqpSrtbc9ZdBlWoh9Z7bICOUYCP6P3w1jh07htOnT9sdTEqWZTRq1AgtW7ZEq1at0LJlSzRv3hwBAQFeqD0RETnDAEtE5GUmkwmnTp3CwYMHcfDgQRw4cACnTp2ye6IdGBiI5s2bY/+fRyHl+KktqxzZl6hsQhIQQUaIYCNueWUwjh8/jmPHjuHy5culymo0GiQmJqJly5Zo3bo1WrZsiSZNmnCqHyIiL2OAJSKqYikpKThw4IAaWA8dOmS3u2NERASaN2+Ofxfth5TrBymHrapEnmZprVWCjbjnk1tw6NAhHDp0COnp6aXK+vn5oWnTpmjVqhXat2+Pdu3aoW7durynloioCjHAEhFVIqPRiOPHj2P37t3Yu3cvDhw4gJSUlFLlAgMD0apVK+xZehhSth/kbD9OS0PkJWqoDTHgjklDcejQIRw+fBhZWVmlykZFRaFdu3bqo3nz5mylJSKqRAywREQeVFBQgAMHDmDv3r3YvXs39u/fX6p1VZZlNG7cGCc3XYCcrYWU7WfuBsywSlRtCQjA3wQl1Ijhrw7Cvn37cOTIkVJd/XU6HVq2bKkG2g4dOiAsLMxLtSYiqnkYYImIKiA7Oxu7d+/Gnj17sGfPHhw+fLjUCW1wcDDatWuHHfP3Q84q6gqsyF6qMRF5ipAFRIgB9301Cvv27cO+fftK3U8rSRKaNWuGjh07omPHjgy0REQVxABLROSGgoIC7N27F//++y927tyJI0eOQFEUmzLR0dFIP5gNOUsHKatooCW2rhLVeAICIsAEEWbA9c/2xu7du3HmzBmbMiUDbceOHREaGuqlGhMR+R4GWCIiJ4xGIw4ePKgG1v3798NgMNiUadiwIS7sSIN82Q9ylg4o5L2rRGQm/ExQwg0Y8kIf7Nq1y2GgvfLKK9GtWze0a9eOc9ISETnBAEtEVMLZs2exbds2bN26Fbt37y51D2tMTAzS9mVDvqyDnKmDpNd4qaZE5GvKCrT+/v7o2LEjunbtim7duiEhIYGjHBMRWWGAJaJar6CgALt27cLWrVuxdetWnD9/3mZ9eHg4so8XmMNqpo5T2RCRxwg/E5QIPQY8eTW2b9+OtLQ0m/UxMTHo2rUrunbtii5duiAiIsI7FSUiqiYYYImo1hFC4OzZs9iyZYvayqrX69X1Wq0W7du3x55FR82hlfewElEVEBAQQUY8+N3t2L59e6n3JkmS0KZNG/Ts2RNXX301GjduzNZZIqp1GGCJqFYwGo3Yt28fNm7ciE2bNuHChQs262NjY5G6Oxtyhg7yZR0kE0cJJiLvErKACNNjxDuDsW3bNpw4ccJmfd26dXH11Vfj6quvRseOHTn/LBHVCgywRFRj5efnY/v27di4cSP++ecfZGVlqeu0Wi06dOiA/xYehpzuDymf3YKJqHoTOhOemD8GmzZtwr///mvTOhsYGIiuXbuqgZZdjYmopmKAJaIaJSMjA5s2bcLff/+NHTt22JzghYWFIeeoHnK6P+QMHediJSKfJWQBJaIQ179wLTZv3mxz76wsy+jQoQOuvfZa9O7dG9HR0V6sKRGRZzHAEpHPS0tLw4YNG7Bu3Trs2bMH1m9r9erVw6UdlyGn+ZvnZGUrKxHVMAICItiI0Z8PxebNm3HkyBGb9e3atUPv3r3Ru3dv1K1b10u1JCLyDAZYIvJJGRkZ+Ouvv7B27Vr8999/NqG1ZcuWOLbynDm05nEAJiKqXYS/CQ/OuA3r16/H/v37bda1atUK1157Lfr06YOGDRt6qYZEROXHAEtEPiMzMxN//fUX1q1bh127dkFRFHVdmzZtcPj3M9CkBUAq5LysRESA+b7ZcXNGY8OGDdizZ4/N+2arVq0wYMAA9OvXj92MichnMMASUbWWn5+PjRs3YuXKldi5cydMJpO6rlWrVji6/Bw0qQytRERlEX4mPLFgDDZs2IBdu3ap76eSJKFz584YMGAAevfujZCQEC/XlIjIMQZYIqp2TCYTdu3ahRUrVuCvv/5Cfn6+uq5FixY4vuICNKn+kAq1XqwlEZHvEloFj84bjdWrV2Pfvn3qcp1Oh6uuugoDBgxAjx494O/v78VaEhGVxgBLRNXGiRMnsGLFCqxevRopKSnq8gYNGiBpcybklADIBQytRESeJPxNGPPtcKxatQqnTp1SlwcHB6Nv37644YYb0LZtW0gSxxMgIu9jgCUir8rMzMTKlSuxYsUKHD16VF0eGhqK3CNGaC4FQMrm6MFERJXNMprxyA+vK3UhMT4+HkOGDMGgQYMQFRXlxVoSUW3HAEtEVU5RFPz7779YunQpNm7cCKPRCADQarVQkjWQLwVATveHJBhaiYi8QUBAhBvQ77luWL9+PQoLCwEAGo0G3bt3x5AhQ9CjRw9otewVQ0RViwGWiKpMamoqli9fjmXLluHChQvq8pYtW+L4HxcgpwRAMsperCEREZUkNAqeWnwvli1bZjMtT2RkJAYOHIibbroJCQkJXqwhEdUmDLBEVKlMJhO2bduGpUuX4p9//lFHvQwODkb+MQWapEDIuX5eriUREblCCTRi5MeDsGLFCqSnp6vLO3XqhOHDh6NXr15slSWiSsUAS0SVIjMzE7///juWLFmCS5cuqcvbtWuHQ4vOQE4NgKSwizARkS8SksCbfz2N33//Hf/88486v2xUVBRuuukm3HTTTYiJifFyLYmoJmKAJSKPOnz4MBYtWoQ1a9ZAr9cDAMLCwpB70Ag5ORByHq/MExHVJMLfhNu+uB6///47MjIyAJjvle3ZsyeGDx+Ozp07cwRjIvIYBlgiqjCj0YgNGzZg0aJF2Lt3r7q8VatWOPZb0b2tHJCJiKhGE5LAxJXjsGTJEuzevVtdHh8fjxEjRmDw4MEIDAz0Yg2JqCZggCWicsvIyMBvv/2GX3/9FampqQDMV93FRT9oLgZy+hsiolpKCTJiyFvXYOXKlcjLywNg7o0zbNgwDB8+HNHR0V6uIRH5KgZYInLb2bNnMX/+fPz5559qN+E6derg8n+F5uBq0Hi5hkREVB0IjYJx8+7Ezz//rI4+r9Vq0b9/f4waNQrNmzf3cg2JyNcwwBKRyw4cOIC5c+fir7/+guWto3Xr1ji65Lx5UCZ2EyYiIjsEBF5bPx4LFizAnj171OWdO3fGbbfdhu7du0OWOY0aEZWNAZaInFIUBVu3bsVPP/1kc0+TnK6D5lwwpCx2EyYiItcpIQb0fq4z1q1bp06tlpCQgLvuugv9+/fnNDxE5BQDLBHZZTQasWrVKsybNw8nT54EYO72pZzXQnMuGHI+TzCIiKj8hL8Jt3wyAEuXLkVubi4AoG7durjzzjtx/fXXw9/f38s1JKLqiAGWiGwYDAasWLECs2fPxsWLFwEAQUFBKDwCaC4EQdLz/lYiIvIcoVEw9ofhWLBgATIzMwGYx1W47bbbMGzYMAQFBXm3gkRUrTDAEhEAQK/XY/ny5fjxxx+RnJwMAIiMjETWvwZokgIhmXhvEhERVR4hC4ybfwfmzp2LS5cuAQBCQ0MxatQojBw5EsHBwV6uIRFVBwywRLVcYWEhli1bhjlz5iAlJQVA0YjCO/TQJAVBUnh/KxERVR0hCTyz9D7MmTMHZ8+eBWCeguf222/HLbfcwhZZolqOAZaoljIajfjjjz8wc+ZMNbhGR0cjc2sh5ORABlciIvIqAYGJq8bhhx9+wJkzZwAA4eHhuPPOOzF8+HAEBAR4uYZE5A0MsES1jKIoWLt2Lb7//nucP38eABAbG4v0zfnm4MqpcIiIqBoREJjw50P44Ycf1M+tOnXq4M4778SwYcM42BNRLcMAS1RLCCGwefNmfPfddzh+/DgAICIiAtk7TeZ7XBlciYioGhMQeHbZ/ZgxY4Y6yGDdunVx//33Y+DAgZxHlqiWYIAlqgX27t2LKVOmYP/+/QCAkJAQ5O8T5lGFFX7gExGR7xCSwPjF99jcAtOsWTM88sgj6Nq1KySJF2SJajIGWKIa7Pz585g6dSo2bNgAAPD394fxmAaa88GQjAyuRETku4QscO/M4ZgzZw5ycnIAAJ07d8a4cePQsmVLL9eOiCoLAyxRDZSdnY2ZM2di0aJFMBqN5m5VF/yhPR0MycB5XImIqOYQWgU3f9oXixcvhsFgAAAMHDgQDz/8MGJjY71cOyLyNAZYohrEYDBgyZIlmDlzJrKysgAAUoYO2pOhkPO0Xq4dERFR5RH+JvR9pQtWrlwJIQQCAgIwevRo3H777RzoiagGYYAlqiG2b9+Ozz//XJ1qoHHjxji3NANyJj+0iYio9vjfwXfw5ZdfYs+ePQDMAz2NGzcOffr04f2xRDUAAyyRj0tOTsb//vc/9T7XiIgI5Gw3mafEAT+oiYio9rHMIfv111/j0qVLAIArrrgCTz75JJo3b+7l2hFRRTDAEvkovV6PefPmYfbs2SgsLIRGowHO+ENzJhiSiQM0ERERCVlg9LQh+Omnn1BYWAhZljFixAjcf//9CAoK8nb1iKgcGGCJfNC2bdswefJkdUJ36bIftMdDIef5eblmRERE1Y/QmdDzhfZYt24dACA6Ohrjx49H79692a2YyMcwwBL5kIyMDHz55ZdYvXo1ACAqKgqXNxsgpwSwuzAREVEZ3t3yvM0F4O7du+Opp55CgwYNvFwzInIVAyyRDxBC4M8//8RXX32FrKwsyLIM6WwAuwsTERG5SUgCd067AXPmzIHBYIBOp8OYMWNwxx13QKvliP1E1R0DLFE1d+7cOXzyySfYuXMnAEDK0UJ7LAxyDrsLExERlZcSYESHRxpjx44dAIDmzZvjxRdf5CBPRNUcAyxRNWUymbBgwQJ8//330Ov10Ol0MB3WQXMhCJJgd2EiIqKKEhCY8OdD+OKLL5CVlQWNRoO77roLd999N3Q6nberR0R2MMASVUPnzp3DpEmTsHfvXgCAlKmD37FQSAXs2kRERORpws+EHhPaqlPSNW7cGC+88ALatGnj5ZoRUUkMsETViKIoWLx4Mb755hsUFBQgMDAQhj1azulKRERUBV5e+xgmT56MjIwMyLKMO++8E/feey/8/HjbDlF1wQBLVE0kJSXh/fffx7///gsAkDL94Hc0HFKhxss1IyIiqj2EVsG1r3RQR/xv0aIFXnnlFSQmJnq3YkQEgAGWqFpYuXIlPv30U+Tl5cHf3x+mAzrIF9nqSkRE5C0vr30MH3/8MbKysqDT6TBu3DjccsstnDeWyMsYYIm8KC8vD5MnT8aKFSsAAFKWH7RHwiDzXlciIiKvEzoTOjzWGNu3bwdgnjf2hRdeQHR0tJdrRlR7McASecmhQ4fw5ptv4vz58+Z5XU8Fmud1ZasrERFRtSEgMO7nO/D1119Dr9cjPDwcL7/8Mq666ipvV42oVmKAJapiiqJg/vz5mDZtGoxGI2JjY5Gx2gA5i8P1ExERVVfTTnyEt99+G0ePHgUAjB49Gvfffz+0WvaaIqpKDLBEVSgrKwvvvPMOtmzZAgCQU/2hPRoGySR7uWZERERUFiEJ3PDR1ViyZAkA4IorrsBrr72G2NhY71aMqBZhgCWqIkeOHMErr7yCpKQk6HQ6KAf8ISdxoCYiIiJfM3H1OHz44YfIy8tDeHg4XnnlFXTv3t3b1SKqFRhgiarAsmXLMHnyZOj1eqBAA7+D4ZBzOaccERGRrxIBRiTcUUftUnzffffhnnvugSyzVxVRZWKAJapEhYWF+Pzzz/H7778DAOR0HbSHw9llmIiIqAYo2aX4mmuuwcsvv4ygoCDvVoyoBmOAJaokqampePnll3Hw4EFIkgT5ZBA05zjKMBERUU3z9O/34pNPPoHBYEBiYiLeffddNGrUyNvVIqqR2AxEVAkOHz6Mhx9+GAcPHkRYWBi0e8OhPRfC8EpERFQDTb7xB3z55ZeIjo7GqVOn8PDDD+Off/7xdrWIaiS2wBJ52Pr16/Huu++isLAQUp4GfgciIBVwiH0iIqKaTviZ0OL+uti3bx8kScJjjz2GW2+9FZLEC9hEnsIAS+QhQgjMnDkT06dPBwBI6Tr48X5XIiKiWkVIAte93x1Lly4FANxyyy14/PHHOV8skYcwwBJ5gMFgwIcffogVK1YAADTng6A5yS7DREREtZGAwP1zRuDrr78GAPTo0QOvv/46B3ci8gAGWKIKysvLw6uvvort27dDo9FAOhQETTI/oIiIiGq7l9c+hnfeeQd6vR7NmzfHBx98gOjoaG9Xi8inMcASVUB6ejomTJiAI0eOICAgAMadAdBk+Hu7WkRERFRNfLb3DUycOBGZmZmIjY3Fp59+ivj4eG9Xi8hnMcASldPZs2fx/PPP48KFC4Beht+BCMg5ft6uFhEREVUzwt+EuiOCcObMGYSHh+Pjjz9Gy5YtvV0tIp/E0WWIyuHYsWN47LHHzOE1XwPdnkiGVyIiIrJLKtQgaUE+WrZsicuXL+PJJ5/Ef//95+1qEfkkBlgiNx08eBDjx49HZmYmpBwtdHsiOU0OEREROSUZZZyckY5OnTohLy8Pzz33HDZt2uTtahH5HAZYIjfs3bsXTz/9NHJyciBl+cFvbyQkg8bb1SIiIiIfIJlk7P/fefTs2RN6vR6vvPIK1qxZ4+1qEfkUBlgiF/3777947rnnkJeXB+myH/z2R3COVyIiInKLJCRs/+AorrvuOphMJrz99tsMsURu4Nk3kQu2b9+OCRMmID8/H1KGDn77IxleiYiIqFwkSFj36i7ccMMNUBQF77zzDtauXevtahH5BI5CTFSG3bt347nnnkNhYSHkdB20ByMgCcnb1SIiIiIfJyDQ/90uWL58OTQaDV577TX07dvX29UiqtbYhETkxIEDB/DCCy8wvBIREZHHSZCw5uWdGDx4MEwmE9566y2sX7/e29UiqtbYAkvkwLFjxzB+/HjzgE2ZfvA7EAlJYXglIiIizxIQ6PdOZ/z555/QarX48MMPceWVV3q7WkTVEgMskR1nzpzB448/bp4qJ8sPfvsiICnssEBERESVQ0Cg56ttsW7dOgQGBmLy5Mlo06aNt6tFVO0wwBKVkJaWhnHjxiEpKQlSjtY8VQ4HbCIiIqJKJiSBK56Mx44dOxAeHo4vv/wSiYmJ3q4WUbXCAEtkJS8vD+PHj8eRI0cg5Wvgt7sOJCPDKxEREVUNIStoen80Dh48iJiYGEyZMgVxcXHerhZRtcEzc6IiRqMRr7/+Oo4cOQLoZfM8rwyvREREVIUkRcbxH1IRHx+PlJQUTJgwAbm5ud6uFlG1wbNzIgBCCHzyySfYunUrYJLgdyACUoHW29UiIiKiWkgyykhamIeoqCicPHkSb775Jkwmk7erRVQtMMASAZg7dy6WLVsGWZahPRwOOcfP21UiIiKiWkzSa/Dee+9Bp9Nhy5YtmDJlirerRFQtMMBSrbd161Z88803AAD5aDA06f5erhERERERML7ta3j55ZcBAD///DN+/fVXL9eIyPs4iBPVamfPnsXDDz+MnJwcyEmB0B4LhQTO9UpERETVx90zbsJ3330HjUaDyZMno2PHjt6uEpHXMMBSrZWbm4tHHnkEp0+fNs/1ujcSkmB4JSIioupFQKD3mx2watUq1KlTB9999x2io6O9XS0ir2AXYqqVhBB47733cPr0aaBQht/BcIZXIiIiqpYkSNjw5m40adIE6enpeOONN2A0Gr1dLSKvYIClWmnRokXYuHEj/Pz84HcwApJB4+0qERERETkkKRLefvttBAUFYc+ePfj222+9XSUir2CApVrnyJEj6kh+4lAARxwmIiIin3BfwjOYOHEiAGDevHn466+/vFwjoqrHe2CpVsnLy8MDDzyAc+fOQU7zh/ZgOAdtIiIiIp9y85d9MH/+fISGhmLGjBmIiYnxdpWIqgxbYKlWmTx5Ms6dOwcUytAeDWN4JSIiIp+zePw6tGzZEtnZ2Zg0aRIURfF2lYiqDAMs1Rrr1q3DihUrIMsy/A6HQzLy35+IiIh8jyQkvPLKK/D398eOHTuwaNEib1eJqMrwDJ5qhczMTEyePBkAIJ0KhJyl83KNiIiIiMrvgcbP4dFHHwUATJ06FadOnfJuhYiqCAMs1QqfffYZMjMzIeVqoTkb7O3qEBEREVXYVyPmoHv37tDr9Xj33Xc5tQ7VCgywVOOtX78ea9euBQSgPRLG+V6JiIioRpAgYdcXxxESEoLDhw+zKzHVCgywVKNlZ2erXYc1Z4Mh53LKHCIiIqo5JIMG48aNAwB8//33SE5O9nKNiCoXAyzVaN999x0yMjIg5WrYdZiIiIhqpM+HzcQVV1yB/Px8TJ48GZwlk2oyBliqsY4ePYpff/0VAKA9wa7DREREVDNJkPDcc89Bq9Vi8+bN2LBhg7erRFRpGGCpRhJCYPLkyVAUBXKKP+TLHHWYiIiIaq4HmzyP0aNHAwCmTJmCwsJCL9eIqHIwwFKNtGLFCuzbtw8wSdCeDPV2dYiIiIgq3dyHlyMmJgZJSUlYuHCht6tDVCkYYKnGKSgowLfffgsA0JwJhqTXeLlGRERERJVPUiQ8/PDDAIDZs2cjIyPDyzUi8jwGWKpxFi1ahNTUVKBAhuZCUPl3JEnmBxEREZGP+HDwt2jVqhXy8vIwffp0b1eHyOMYYKlGyc7Oxpw5cwAA2jMh5R+4icGViIiIfJAECY8++igAYOnSpTh9+rSXa0TkWQywVKPMmzcP2dnZkPK0kFMCy7eTkuGVYZaIiIh8yPNd3kPPnj2hKApmz57t7eoQeRQDLNUYGRkZ6oAFmtMhkOBm8GSXYSIiIqohxo4dCwBYvXo1zp49693KEHkQAyzVGL/88gvy8/MhZWshp/u7t3FZwZXBloiIiHzI421eRY8ePdgKSzUOAyzVCHl5eVi8eDEAQHPeqvXVleDJcEpEREQ1hdV5zZgxYwAAq1atwvnz571VIyKPYoClGmHZsmXme1/zNZDTXGx9ZZdhIiIiqsGebP8GunfvDpPJhPnz53u7OkQewQBLPs9oNGLBggUAAM354NL3vtoLqeUJrgy7REREVJ3ZOVe5/fbbAQArVqxAdnZ2VdeIyOMYYMnnbdiwAcnJyYBehnzJhZGHGUSJiIiolnih2/to3Lgx8vPzsWzZMm9Xh6jCGGDJ5/32228AAE1SoON5Xy3dhSsaXhl+iYiIqDpycI4iQcKtt94KAFi0aBFMJlNV1orI4xhgyaedOXMGu3btAgSgSQ6qmoMyxBIREZEnVNE5xWfDZyI0NBRJSUnYuXNnlRyTqLIwwJJPs7S+yhn+kPQau2UkjQaSTgdJY389ERERkdd4IMTKQUGQAx3fRiUpEgYOHAgA+OOPPyp8PCJvYoAln2U0GrFy5UoAgJxU+k3bElyh0UDy9BVOtsISERFRRVifS3jovEIODHQYZJe+tgEAsHHjRmRlZXnkeETewABLPuvff/9FZmYmYJAgZ9pOnSNpNGpwVcOrRsNWWCIiIqqeyjlWhxxU+hYqeyFWzvVD8+bNYTAYsGbNmnJVkag6YIAln7V69WoAgJxqO3iTdXi1xlZYIiIiqhacnUN4sDW2JEs34vXr13vkGETewABLPqmwsBAbN24EAGhSAtTljsKrytOtsAyxRERE5A5Xzh1cPL+w1/pqs75EiP3uvp8BALt370Z6erpLxyCqbhhgySft2rULubm5QKEMKdvP5ftdJUliV2IiIiKq/soIsWWFV7Wc1X2xUqEGrVu3hqIo+OuvvypcRSJvYIAln7R582YAgJzuD1mjLX2/qxPsSkxERERe4e45gwfPMSwhtk+fPgDAAEs+iwGWfI4QQg2wmstB5RtlmF2JiYiIqCqV91zBzuBOrra+liQHBuK7B83diPfs2YOCgoLy1YnIixhgyeecOHECly5dAkwS5JzAcrWosisxERER+ZSi853yhlcLDUIQGxsLvV6P3bt3e6JmRFWKAZZ8zq5duwAAcrY/ZJQ/gEqSBEgefAmwFZaIiIjs8dQ5ggf2I0FCt27dAABbt26t8P6IqhoDLPkcNcDmBJRRsmySRoak9avwfoiIiIgcEsL8qCBNbAzksNAK76dr164Ais+piHwJAyz5FEVRsGfPHgCAVhPnkX1KGpldiYmIiKjyVSDEamJjIMkyIEkVDrGTnlsBADh58qR5VgciH8IASz7lzJkzuHz5MiBkiIh6kGOiPbNjT3UlZjdiIiIicqacIVaSrc5VikJsuYJsi0RAG4R69epBURQcPHiwXPUh8hYGWPIpR44cAQBIIgySrIUpNtwjIdajXYkZYomIiMgZN0OsJjam9MKi0YndCrEtEiH8zL3O2rVrBwDYu3evW3Uh8jYGWPIplgArK0Vv1rIMaDzzb8wQS0RERFXGxRCrdh12xI0QawmvANC6dWsAwNGjR13alqi6YIAln6IGWFH8Rm2KCvVYV2IO6kRERERVpowQW2Z4tXAlxLZItPn264//BmCenpDIlzDAks8QQuD48eMAAMkqwEKWPdaVGPDgoE5shSUiIqKyOAixLodXC2ch1qrrsIUsQgAAFy5cQF5enuvHIfIyBljyGZcvX0Z2djYAQBIlJvH2cIjloE5ERERUZeyEWLfCq7qRnRBrJ7wCgAQdoqKiAACnTp1y/1hEXsIASz7j3Llz5ifCHxLstJB6+n5YT02twxBLREREZbGaK9buoE2uKhFi7YVXi0aNGgEwt8IS+QqttytA5CpLgJVLtr5aMUWFQmNSoKSkVvyAkgzAVPH9EBEREblIEx5WvtZXa0UhVqkb5bRY3bp1AQBJSUkVOx5RFWILLPmM5ORkAIAkAh2WEX4aGOtFQo6rwJVLAMKkQJhMnulKXIFJy4mIiKj20ESEA5IModdXbEeyjJP/i8G5150XswTYixcvVux4RFWIAZZ8RlpamvmJ8Le7XmgkCEmC0MowxkWUO8Sq4dWiIiGW4ZWIiIhcYAmvAABFlD/EyjJOfBaFxKh0NIrIxLmJisOiP07bBqC4kYDIFzDAks9IT08HAEhCZ7NcaCQoWhlCkoCi203LG2JLhVeL8oRYhlciIiJygU14tShPiC0Kr42j09RF8ZEZODdRsRtkJZjPqS5fvux2nYm8hQGWfIYaYFEcYC2trpCghld1nZsh1mF4LQ+GVyIiInKVowvl7oRYO+HVIj4yQw2yNocVfgAYYMm3MMCSz8jNzTU/KXqztQmvDrgaYl0Kr662wjK8EhERkYs0EeHOC7gSYp2EV2ulQywDLPkeBljyGfn5+QAACRqXwquF0MqAkylx3Gp5LSvEMrwSERGRizRhYa5dIHchxJYVXi3iIzNw9kVziJWEeUKS/Px8GI1Gl7Yn8jYGWPIZlgArZK3L4dXCGB1qtxW2XN2GHX3QMLwSERGRizRhYU4vsJfiKMTKMo5Pdj5dTkkJdSwhtvichgGWfAUDLPmMwsJC8xNJ41Z4Bex3Ja7QPa8lQyzDKxEREbnI7fBqUTLEFoXXJjGutb5aS6iTgXPPF39vMBjcrw+RFzDAks8QlpAouZleLdtbhViPDNhkCbEMr0REROSicodXC0uIlWUc+zS6XOHVIj46U33OuWDJVzDAks+Q1OBa/sAotDKEzg+QyxeCiYiIiMpN1lQsvFooAkeeSEDT2NQK7UayahRgF2LyFQyw5DOkcra8WtOm5QKpGZB0Okh+2ortTChsfSUiIiLXyBpIsgQlJ7fCuzo2oRWMkUYcPFWvQvsRVucxsbGxFa0WUZVggCWfoSm6YnlmsK6MkvZp03KBS2kQRVcYKxRiGV6JiIjIVUXhFQAglAqF2GMTWsFQp6i1VC9XKMS+2eBX9XlAQEC590NUlRhgyWcEBgYCAF67+mccvzXQrW1LhleLcoVYhlciIiJylXV4tShniLUJrxblDLHvJS5GpKF4TtigoCC390HkDQyw5DOCg4MBAPUMBfh26DQcH+lGiFWUUuHVwq0Qy/BKRERErrIXXi3cDLF2w6uF3r1T+rcTl6C+1oj8AnPdAgMDIcuMBeQb+J9KPsMSYPPyZbTXZeHbYdNcaom13PfqjEshluGViIiIXOUsvFq4GGKdhtcirrbCvp24BI205ilzCvLNUcDSy43IF1RwFBuiqhMaGgoAyM423wvbXpeFb4dOw0N4EE1/zre7jaOuw/ZIOvO9tcLAUfiIiIioAlwJrxZCcbr62PNlh1cAgF7GodP10CrhIiLS8zB42X60330OQXkG5AX5YU/Hhuj48BnU0xYfL/OyOQpERka6VleiaoABlnxGTEwMACA9vXj4eUuIPTCoIT5beb1NkHUnvFo4DLFsfSUiIiJXuBNeiyg5uZBDgkstP/Z8KxiiXD+P0WWbcM/r/+DWTTvhZ7QNxl12nIWYCeSPCkLWm2FAgISMDPM5VVRUlFv1JfImBljyGZYAm5Zu+2/bXpeF9roDaDP0nNoaW57walEqxDK8EhERkSvKEV4BqF2JrUPs8efcC6/+egNmfjEdPY6ccFhGMgBBc/KgPW5E+uw6yMgwn1NFR0e7X2ciL+E9sOQzLG+u6en2r7tYWmNPXx9U7vBqod4Ty/BKRERErihveLWwuh/2+HOtoI927zzmjfm/oceREyjrrEUA0G3RI+yNLOQX3geALbDkWxhgyWfUq2cenCA52c9hmfH/3Y76fxsghYV45qAMr0REROSCCoVXC6FACg5yO7zGXM7GyM07zfUoo6xlfeCCPJw9fhwA0LBhQzcrSuQ9DLDkMxISEgAAScl+MBjsl8nLDIR/eiFMdcIg14ko/8EMBgi9HpA88GFERERENZ4wmSq0vSYmGpqYaEAjo8UPhW5te9vf26Fz8/iSATh77BgAoFGjRm5tS+RNDLDkM6KiohAcHAwhJCQl6Uqt77f9IST8UhQ4tXKFQqywbnmVJAZZIiIick6IcodYTUw0oPMzPwBoLzqf/q+k7k7ue3UkX5aRUlAAAIiPj3d7eyJvYYAlnyFJkvoGe+68bTfiftsfQvR3QQhIKSheWN4Qa2l9LV0BN2tMREREtUo5QqwaXktoPsPOuYgDIYXutdgCwMmgIABAREQEwsLC3N6eyFsYYMmnNGvWDABw4mSAusxueLVwN8QaDFCcfQgwxBIREZEzboyf4Si8AoDfhXSXQ2yOv7/Lx7Q4EhoKAGjZsqXb2xJ5EwMs+ZTWrVsDAI4fL36jzs0ItB9eLVwNsWWFVwuGWCIiInLClVZYZ+HVwtUQmzgkxeW6WRwKMQ94yQBLvoYBlnxKq1atAADHT/hDUYD+Ox5EwiIXAmVZIdbV8GrBEEtERESOlNGV2JXwalFWiJ0/aAoa3h0B4druVIfYAks+yv6EmkTVVGJiIgICApCfX4DrVtyJqF+DEXDJSeurtaIQK4UHQ76cCyU9U10lyjNdjiRxmh0iIiKyryjEShqNzWJ3wquF34V0AHVtls0fNAUA0M3fD4gFMCoMmJMFAedT6QgAOVotTgYHAyju3UbkK9gCSz5Fq9WiXbt2AIDIBbmuh1d1BzKEv59ta6yjQZtcwZZYIiIicqTEhe7yhFeL5jOLz1XmD5qCbv5+5vBqOdTb0RA9AlyaB3ZXt2gImEcfjo6OLld9iLyFAZZ8TufOnQEAcu6l8u/E0qU4LNS9rsP2MMQSERGRA8JkKp7jtZzhFQD8zqej+Uy9Gl5LCZQh5tSHuCvMYXdi4QeIu8Lw38gJAIBOnTqVuz5E3sIuxORzunTpAgBQ5AwICEhlXmt0QCsDMq/hEBERUSWSZCgZmZDjYiq8K7nQaD+8WgTKEB/FAhPqQPyUBWlzPpCrAMEyxNWBwJ1hQIwW/764GwADLPkmSZTr5j8i7zGZTLjpppuQk5MDrdIVWkN4ufajScuGciEJit4ACKVileLLiIiIiEqSi+9/1TaqX6FdmeqEQfjJSLsiBDve+rrc++n8+liEHVwBWZaxZMkSREREVKheRFWNzU/kczQaDXr06AEAMGlSofi5/29sE14BQJLNj/JgeCUiIqKSZNvBm5Rk96e6AczB1RJeASBqTw6ufH1cufbV6b1HEX7kLACgXbt2DK/kkxhgySf16tULACBEMkx+svsh1mQqDq/W3A2xDK9ERERUUonwCgCK3uB2iLUEV1HiPCdqd47bVer03qOoc6AQXToFAQB69uzp9j6IqgMGWPJJ3bt3h5+fH4A8CCkXik4DU5DWpSCrSct2/gFS3pZYIiIiqt1kjd3wamH34rkD1q2u9rjaCtvpvUfV8CqEHv/99x8ABljyXTxTJ58UFBSErl27AgCEcgFClqBoZCg6jdMQW6rrsCOuhFi2vhIREZGFk+BqzZVW2LLCK2Buhe3yhvMQ23GSObjWOWCecUEoSTAajWjWrBni4+Ndqi9RdcMASz5r4MCBAAChnIdlLDIhS85DrMHo+tVPZyGW4ZWIiIgsXAyvQNldiV0JrxbR/znuStxx0qOI2m87VWD7tub9Ws6hiHwRAyz5rF69eiE4OBhAASAy1OWOQqwmLRtKSqp7B6nI4E5ERERU87kRXi3sXUwvOViTq7q8WboVtuP7pcOrEPnYs2cPJEnCgAED3KswUTXCM3PyWf7+/ujduzcAQCjnbNZZQqzNfbHutL6WZB1i2fpKREREQLnCq4V1K6yjwZpcEb2ruBW24/uPmsPrvsJS5YTJPPpwp06dEBNT8TlpibxF6+0KEFXEkCFD8Mcff5jvgxWtIEk6dZ2QJQhIkCQJ2ow891tfS5Lkis8XS0RERL6vAsHVQtEbIMO9LsOOdH5rHEz+EqLtBFcAEEJBncgMpKUBN910U4WOReRtbIEln9auXTs0a9YMgFKqFdZCyBJgdDBtDhEREZG7PHBBW5IlKClpFQ6vAFDv15OI3ms/vAIAxCWkpaUhMjIS1157bYWPR+RNDLDk0yRJws033wwAEKYz6mBO1vyTcyAuJEOSJUiyVP6DCYXdh4mIiKjC5wOSLAGSDGEwQnPU/gV4V2jPpkB7NgWioBABR5IcluvUwXz+M2TIkKJpCIl8FwMs+byBAwciJCQEQB4gLpUuoDdAFBZflaxQiCUiIiICyt0KawmvFkpObrn2oz2fBlFQCFFQNEVObp7dckK5jJ07d0Kj0WDo0KHlOhZRdcIASz4vMDAQw4YNAwAopmM2rbCW1teS3A6xbH0lIiIia+U4LygZXi3cbYXVnk+DyMsvtTzgaOlznt7XmMcH6d+/P+rWrevWcYiqIwZYqhFuvfVW6HQ6QFwGRFrxihKtr9Yq3KWYiIiIajcXW2HVcw4HU/O52gqrPZ/mMLwCgCixHyFysWHDBgDAHXfc4dIxiKo7BliqEerUqYMhQ4YAABTTcQCOW19LYoglIiKicnGhFVYNrhWcV94SXB2FVwvrVtghg8OgKAp69OiBpk2bVuj4RNUFAyzVGLfffjs0Gg0g0iCUTKetryU5DbHsPkxERESOOGmFddbqWpKzbsTOWl1LVaeoFVaIPPz5558AgDvvvNOlbYl8AQMs1Rj16tXDoEGDAACK6RAE3Aud7FJMREREbrNzkbusLsP22OtGXFaXYWcG9vOHwWBAly5d0KFDB7e3J6quGGCpRrnvvvuK7oVNhynnVLn2YRNi2fpKREREZbFqha1Il2HrVlhXuwzbozt1CitXrgQAPPTQQ25vT1SdMcBSjRIXF4dbbrkFAGCom+p2K6wFW2KJiIjIZUKUq9W1JEsrbHlbXS06jYyAEAJ9+vRB69aty70fouqIAZZqnLvuugshISEQwUYo0fbnRHMFQywRERG5zAMDNQmTqcLh1RSUh82bN0Oj0eDBBx+sUH2IqiMGWKpxwsLCcNdddwEADI2yIOTyTTQuFMHuw0REROQSYTRUbHuTCRAKTJdSy78PCDTorwUADBkyBI0aNapQnYiqIwZYqpFGjBiBBg0aAP4KjA0um8Oou1yc242IiIiovBe9hcmkhleg/EFYycmFITgZJ06cQFhYGB544IFy7YeoumOApRrJ398fTz31FADAVD8PSmBh+UIsERERkYvcDZ9qcK3gRXMlJxeKVAD/tubjP/TQQ4iIiKjQPomqKwZYqrG6d++OPn36ABJgbJoFIcxXOF0Jsuw+TERERG5z8dyhZKtrSfam1HFUTsnJhTAa0OeVTsjNzUWrVq0wZMgQl6tM5GsYYKlGe/zxxxEYGAgRZoASVzQgglDKDrHsPkxERESVwJVWV1daci3BVRgNUCIKsXLlSkiShGeeeQYajcaTVSaqVhhgqUaLjY3FfffdBwAwJmZD+JvMK4TicmssERERkSc4a3V1lXWrKwAIjYKIPuaBm2655Ra0atWqwvUkqs4YYKnGGzlyJNq1awdoBQzNLtvODWunNZbdh4mIiKi87LWeltVl2B573YitW10tjI2zkZKSggYNGuChhx4qX6WJfAgDLNV4Go0GEydOhL+/P0SEHkrdEnOrlWyNZfdhIiIiKq8SF8HLO1CTdUgt2epqYYosgBKXD0mSMHHiRAQGBpa/3kQ+ggGWaoVGjRrhkUceAVDUlTjAWLqQK/fGEhEREbmgPK2u9thrdQUAoVUQfo35Xtdbb70VV1xxRYWOQ+QrGGCp1hg+fDg6deoEaAQMLTIhJDthla2vREREVEEemR5HCLutrgAgINDlqaZIS0tDfHw8HnzwwQrUlsi3SELwZj+qPZKTk3H//fcjKysLmgtB0J4MK12ILwkiIiKqKEkq/7aWcxEH+zDWz4WpcTZ0Oh2mTp2KZs2alf9YRD6GLbBUq8TFxeGll14CAJjq58FUp8DLNSIiIiIqIsoeSFIJ0QPN8gAATzzxBMMr1ToMsFTrXH311bjjjjsAAMbmlyH87dwPS0RERFSVXOgBJjQKoq7TwWQyoW/fvhg6dGgVVIyoemGApVrpwQcfRNu2bc1T67TKhJDZbZiIiIi8wIVWV8B832unJxsjKSkJ9erVw/PPPw+pIt2UiXwU74GlWis5ORkPPPAALl++DDklANoj4bA3rhMRERGR28oKl66eghftx5iQDVPDXPj7++Orr75CixYtKlhBIt/EFliqteLi4vD2229Do9FAiSmAqUHpCcOJiIiIPM7N9iNTTD5MDc3nKS+++CLDK9VqDLBUq3Xs2BFPPfUUAMCUkMNBnYiIiKjyuNhd2JoSYoDcLh8AcNddd6F///6VUTMin8EAS7XesGHDcPPNNwMSYGyZBSWo9HxrRERERBVSjrv2hM6E8P4S9Ho9rr76ajzwwAOVUDEi38IASwRg/Pjx6NSpE6ARMLTNhPA3ebtKREREVBOUo9UVMI84XH9UCFJTU5GYmIhXXnkFssxTdyIO4kRUJDs7G48//jhOnjwJKU8Dvz11IBn5QUFERERVS0gChnYZEOEGxMTEYMqUKYiLi/N2tYiqBZ6dExUJDQ3Fhx9+iJiYGIggEwxtOL0OERERVS0BAWPLyxDhBgQHB+PDDz9keCWywgBLZCUuLg4ff/wxQkJCIMIM5g8QMMQSERFR5RMQMDbJhhJdCK1Wi3fffRdNmzb1drWIqhUGWKISGjdujEmTJkGn00GJKoSxRRZDLBEREVUqAQFTYg6U+uYRh1966SV07tzZy7Uiqn4YYIns6NChA15//XXzHLGxBTA2Y4glIiKiymNqlAtTwzwAwLPPPosBAwZ4uUZE1RMDLJED11xzDV577TXIsgylbgGMTbMZYomIiMjjjA1yYUrIBQA8/vjjGDZsmJdrRFR9McASOdG3b1+89NJLkCQJSr18mBrnMMQSERGRxxjr58HUOAcA8NBDD2HUqFFerhFR9cYAS1SGQYMGYcKECQAAU4M8mJqwJZaIiIgqztggF6Ym2QCAsWPH4q677vJyjYiqPwZYIhcMGTIEzz77LADAVD+f98QSERFRuQkIGONz1JbXe+65B/fee6+Xa0XkGyQhBM/CiVy0fPlyfPDBB1AUBXKKP7RHwiEJydvVIiIiIh9hGW3YMmDTQw89xJZXIjcwwBK5af369XjrrbdgNBohp+mgPRTBEEtERERlEhAwNs2GUs88Vc748eMxcuRIL9eKyLcwwBKVw5YtW/DKK69Ar9dDyvSD38EISCb2yCciIiL7hCRgbHEZSkwhJEnC888/jxtvvNHb1SLyOQywROW0a9cuTJw4EXl5eZBytfDbHwFJr/F2tYiIiKiaERoFhjaZEOEGaLVavPzyy+jfv7+3q0XkkxhgiSrg6NGjmDBhAtLS0oBCGX77IyDn+Xm7WkRERFRNCJ0JhrYZEMEmBAcH45133kGXLl28XS0in8U+j0QV0Lx5c0ydOhWJiYmAvwLDFRlQwgu9XS0iIiKqBpQgA8JuAESwCdHR0fjf//7H8EpUQWyBJfKA7OxsvPTSS9i9ezegANpjYdBcCvR2tYiIiMhLTHUK4delEPn5+UhMTMRHH32EuLg4b1eLyOcxwBJ5iF6vx3vvvYe1a9cCADTng6A5GQIJHKGYiIiothAQMDXIg9IkF0IIdOrUCe+88w5CQ0O9XTWiGoEBlsiDFEXBjBkzMGPGDACAlKGD36FwjlBMRERUCwhJwNg8C0psAQBg2LBhePLJJ6HVar1cM6KagwGWqBKsX78e7733HgoKCiDla6A9EAE5nx9eRERENZXwM8HQ+jJEmAEajQbjx4/H8OHDvV0tohqHAZaokhw9ehQvvfQSkpOTAaME7ZEwaNIDvF0tIiIi8jAlTI+wvjLS0tIQGhqKt956i4M1EVUSBliiSpSRkYFXX30Ve/bsAQBozgVBc4r3xRIREdUElvtd0SwfJpMJiYmJePfdd9GoUSNvV42oxmKAJapkRqMRU6dOxYIFCwAA0mU/832xBo2Xa0ZERETlJTSK+X7XaPP0eQMGDMBzzz2HoKAgL9eMqGZjgCWqIuvXr8f777+PvLw8QC/D73A45Ms6b1eLiIiI3KQEGWBsfRki0AStVosnnngCN998MySJPayIKhsDLFEVOnv2LF577TUcP34cEIDmTDA0Z4PZpZiIiMgHCAgo9fIhty6EXq9HbGws3nrrLbRp08bbVSOqNRhgiapYQUEBJk+ejOXLlwMo6lJ8JBxSIbsUExERVVdCq8DY/DKUKD0AoHv37nj55ZcRERHh3YoR1TIMsEResnLlSnz66afmLsVGCdpjodCkBnq7WkRERFSCEl6IsD4apKWlwc/PD+PGjcOIESPYZZjICxhgibzowoULePvtt7F//34AgHwpANrjoZBMspdrRkREREISMCXkQGmUDyEEEhIS8Prrr6NZs2berhpRrcUAS+RlRqMRs2bNwqxZs6AoClAgw+8oB3giIiLyJiXYAGOLLIhgIwBg2LBheOyxxxAQwDndibyJAZaomti7dy/efvttJCUlAQDkC4HQngqBpLA1loiIqKoIScDUKBdoXACTyYSIiAg8//zzuOaaa7xdNSICAyxRtZKXl4evv/4av/76q3lBgQZ+R8IgZ7E1loiIqLIpQUWtriHmVtc+ffrgmWee4UBNRNUIAyxRNbRjxw588MEHSE5OBgBoLgRCcyoUksLBIoiIiDxNSAKmhrmQmhbCaDQiLCwMTz/9NPr168eBmoiqGQZYomoqNzcXU6ZMwdKlS80LCmRoj4dBk+Hv3YoRERHVIEqoHsZmWRDBJgBAz5498dxzzyEqKsrLNSMiexhgiaq5bdu24eOPPy6+NzbFH9oToZAMnDeWiIiovIRGgTExB0q9fABAREQEHn/8cQwcOJCtrkTVGAMskQ/Iz8/H9OnTsXDhQphMJvO8sadCICcFQgI/ZImIiFwlIKBEFcLYJBvwVwAAN9xwA8aNG4fw8HAv146IysIAS+RDjhw5go8//hiHDh0CAEhZftAeD4Wc6+flmhEREVV/IsAIY5NsKHX0AICGDRviueeeQ+fOnb1cMyJyFQMskY8xmUxYvHgxpk2bhvz8fEAAclIgtKdDIBk55Q4REVFJQjYP0iQ31cNgMECr1eLOO+/E3XffDX9/ji1B5EsYYIl81KVLl/DVV19h3bp15gUGCdrT7FZMRERkoXYXbpwNBJi7C3ft2hXjx49HQkKCl2tHROXBAEvk43bt2oXPPvsMJ0+eBABIOVpoT4Ry7lgiIqrVlCBzd2ERYe4uXLduXTzxxBPo1asXB2ki8mEMsEQ1gNFoxK+//orvv/8eOTk5AIpGKz4VAqlQ6+XaERERVR3hZ4IxPhdoUAhFUaDT6TB69Gjceeed7C5MVAMwwBLVIJmZmZg2bRp+//13CCEABdBcDILmbDDvjyUiohpNyAKmBrnQtVLMY0QA6N27Nx599FHUq1fPy7UjIk9hgCWqgY4dO4avv/4a27dvNy8wStCcDYbmQhAkwW5TRERUcwgIKLEFMCbkqNPitGnTBo899hjat2/v5doRkacxwBLVYNu2bcOUKVNw4sQJ84IC2TzQU0oAB3oiIiKfJiCgROphSsyBCDYCMN/n+vDDD6Nfv368z5WohmKAJarhTCYTVqxYge+++w6pqakAAClXC82ZYMhp/gyyRETkc5RwPYwJORBhBgBASEgI7rnnHtxyyy3Q6TiIIVFNxgBLVEsUFBTg559/xty5c9WBnqRsrXn+2EwdgywREVV7SojBHFwjzSML+/v7Y8SIEbjzzjsRFhbm5doRUVVggCWqZbKzszFv3jwsXLhQHeRCuuxn7lrMqXeIiKgaUoINMMXnQokqBABotVoMHToUd911F6Kjo71cOyKqSgywRLVURkYG5syZgyVLlkCvN1/JljL9oD0bAumyH1tkiYjI65QQA0yNcqBEmT+nZFnGddddh7Fjx3JkYaJaigGWqJZLSUnBrFmzsGzZMhiN5kEwpMt+0J4NZtdiIiLyCiVMD2OjXLWrsCRJ6Nu3L8aOHYvExETvVo6IvIoBlogAAMnJyfjpp5+wbNmy4hbZbC00Z4Mhp3OwJyIiqlwCAiLcAGOjHIgI8+BMGo0GAwYMwN133434+Hgv15CIqgMGWCKykZqainnz5uG3335DQUEBgKJRi88FQU4N4DyyRETkUep0OI1y1VGFtVotrr/+eowePRr169f3cg2JqDphgCUiuzIzMzF//nwsWrRIHewJhTI0F4KgSQqEZJK9W0EiIvJpQhJQYvNhapAHEWQCAOh0Otx444244447EBcX5+UaElF1xABLRE5lZ2djyZIl+OWXX5Cenm5eaJSgSQqE5kIQJL3GuxUkIiKfIrQKTPXyYKqXD+gUAEBwcDBuuukmjBo1iqMKE5FTDLBE5BK9Xo9Vq1Zh3rx5OH36tHmhAsipAdCcD4Kc6+fdChIRUbWmBBhhapAHJbYA0JhPP+Pi4jBy5EjceOONCA4O9nINicgXMMASkVsURcHWrVsxb9487Nq1S10uZfpBczEIchoHfCIiIjPzwEx6mOrnQ0TrYTntbNGiBW6//Xb06dMHWq3Wy7UkIl/CAEtE5Xbo0CHMnz8f69evh8lkvn8JhbK5e3FSICQDuxcTEdVGQqPAFFsApV7x/a0AcPXVV+O2225Dx44dIUm82ElE7mOAJaIKS05Oxm+//YalS5ciMzPTvNDSvfhiIKRsP7bKEhHVAkqQAaZ6+TbdhAMDAzF48GAMHz6cc7gSUYUxwBKRx+j1eqxfvx6LFy/G/v371eVSttbcvTg1AJLCIEtEVJMISUCJKoSpXh5EuEFdnpiYiOHDh+O6665DUFCQF2tIRDUJAywRVYpDhw5h8eLFWLNmDfR6vXmhUYKcEgBNciCkHC1bZYmIfJgSaIQSlw9TbIE6mrBGo8E111yD4cOHs5swEVUKBlgiqlSZmZn4448/sHTpUpw/f15dLuVqoUkKhJwSAMnIOWWJiHyBkBUo0YUw1c2HCCtuba1Tpw6GDh2Km266CTExMV6sIRHVdAywRFQlFEXB7t278fvvv2PDhg3FrbKWe2WTAyFd5r2yRETVjYCACDXAFFcAJab43laNRoPu3btjyJAh6NGjB0cTJqIqwQBLRFUuOzsbK1euxLJly3Ds2LHiFQUaaC4FQL4UALmAJ0JERN4kdCaYYgqgxOZDBBePJNygQQMMGTIEgwcPRnR0tBdrSES1EQMsEXmNEAJHjhzB77//jtWrVyM3N1ddJ2VrobkUaB74ycAuxkREVUFoFPOATLEFEOF6WDrF+Pv7o0+fPhgyZAg6dOjAe1uJyGsYYImoWigoKMDff/+NlStXYvv27cXzygpAztCZW2XTOYoxEZGnCUlAiSyEElMAJaoQsLpmeMUVV2DgwIHo378/QkJCvFdJIqIiDLBEVO2kp6dj7dq1WLlyJQ4dOlS8wiRBTvWHnBoAOVMHSTDMEhGVh4CACDOYuwhHFwB+xaeDCQkJGDRoEAYMGIB69ep5sZZERKUxwBJRtXb69GmsWrUKK1euRFJSUvEKowQ5jWGWiMhVAgIi3ABTVAGU6EJ16hsAiIqKQv/+/TFo0CA0b96cXYSJqNpigCUinyCEwL59+7B69Wps2LAB6enpxSsZZomI7FJDa3RR92Cr0BoSEoJrrrkGAwcORKdOnaDRaLxYUyIi1zDAEpHPMZlM2Lt3L9avX48NGzYgLS2teKVRgpzub+5qnOnPe2aJqNYRkoAI18MUVQglqgDQFZ/qhYaG4pprrkGfPn3QpUsX+Pn5ebGmRETuY4AlIp9mMpmwb98+rFu3rnSYNQHyZZ25dTbdH5KBrQtEVDMJjQKlTqH5EakHtMWnd+Hh4Wpo7dy5M+drJSKfxgBLRDWGoihqy+ymTZts75kFIGX5mVtn0/0h5Wkgga2zROS7RIARpqLQKsINsH5Li4yMRK9evdC3b1907NiRoZWIagwGWCKqkYQQOHHiBP7++29s2rTJdjRjAMjXQJPuDzlDB+ky75sloupPQECEGtSWVhFsslnfuHFj9OzZEz179kTr1q0hy5xDm4hqHgZYIqoVUlNTsXnzZmzatAk7d+6EXq8vXlnU1VjK8DcPApXP1lkiqh6EvwlKhLlbsBJh2zVYo9GgQ4cOamitX7++F2tKRFQ1GGCJqNbJy8vDjh07sHnzZmzbtg2pqam2BQpkyBnm1ln5sg6Sia0YRFQ1hCwgwvTmwBpZCBFk28oaFhaGbt26oWfPnujWrRtCQ0O9VFMiIu9ggCWiWk0IgZMnT2Lr1q3Ytm0b9uzZA4PBUFxAAaRsP8iZRWE224/djYnIYwQERLARSoS5hVWE6wGra2ayLKNNmzbo1q0bunXrhpYtW3K6GyKq1RhgiYis5OXl4b///lMD7fnz520LmAApyxxm5UwdpBwtuxsTkcvUwBquhwg3QAm37RYMADExMejevTu6deuGLl26sJWViMgKAywRkRPnzp3Djh07sGvXLvz777+4fPmybQGjBDnLD5KlhTaXgZaIigkIiEATRIQeSrj5AT/bU6+goCB06NABXbp0Qbdu3ZCQkABJ4vsIEZE9DLBERC5SFAUnT55Uw+x///2HnJwc20JGydzlOMsPclZRl2OFJ6JEtYWQBESIAUqYASLMACVUD+hsT7UCAwPRvn17dOrUCZ06dUKLFi04zQ0RkYsYYImIyslkMuHYsWP4999/sWvXLuzZswd5eXm2hRRAytWaw2yWOdhKBt6/RlRTCK1iDquh+qKvBpt7WAHA398f7du3R8eOHdGpUye0bt2agZWIqJwYYImIPMRkMuHEiRPYs2cP9u7di7179yIlJaV0wXwN5Gw/c0ttjhZSDgeGIvIFQhIQQUZzC2uoESJMX2qUYAAIDw9H+/bt0b59e7Rr1w4tW7aETqfzQo2JiGoeBlgiokoihEBycrIaZvfu3YsTJ06g1NtuUSutlOOnBlvORUvkXQICIsAEEWqACDFCCTVABBsAOx0o4uPj1cDavn17NGzYkPewEhFVEgZYIqIqlJ2djQMHDuDgwYPqIzMzs3RBowQpRws5x08Ntwy1RJVDQAABJijBRnNYDSnqCqwtfYoUHByMVq1aoVWrVmjbti3atWuHiIiIqq80EVEtxQBLRORFllZa60B75MgR5Ofnly5sAqS8opbaXK052OZqISly6bJEZJeQi7oBBxvMgbXoYS+s6nQ6NG/eHK1atULr1q3RqlUrNGzYELLM1xwRkbcwwBIRVTMmkwmnT5/GgQMHcOTIERw7dgzHjx+3H2oFzC2zuVpzuLU82FpLtZyAAPwVKEHGosBqDq0iyAR7Lw2dTofGjRujWbNmalht0qQJB1siIqpmGGCJiHyAoig4f/48jh07hmPHjuHo0aM4evQo0tLSHGwASPlaSHma4lCbq4VUwGBLNYs5qJqgBJsgAovCatHD3v2qgHmQpebNm6NZs2Zo1qwZmjdvjkaNGjGsEhH5AAZYIiIflp6erobakydP4tSpUzh9+jQKCgrsb2AJtvmaoodW/QqjxHBL1ZbQKBCBRSE1wGR+HmSECHQcVLVaLRo1aoTExESbsBoVFcVBloiIfBQDLBFRDaMoCpKSknDq1Ck11FoehYWFjjc0SsWhtkBj85zhlqqC0CjF4dQ6qAYaAT/Hpys6nQ7x8fFITExEQkICEhMT0bhxY9SvX5+tqkRENQwDLBFRLWEJtqdPn8bZs2dx7tw5nDt3DmfPnsWlS5dKT+9jzSRBKpAhFWqAAg2kQo055BY9Z8AlV6gB1d8EEaAA/qbi7/1NTkMqAERFRaFhw4bqwxJa69Wrx6BKRFRLMMASEREKCwtx/vx5NdBavp4/f97xfbbWjJI5yBbKkPQyJL0GUqEM6DXm7xlyazQBAWgEhL8C6EwQ/gqEzgShs/o+wGR3pN+SIiMjbUKq5dGgQQMEBQVVwU9DRETVGQMsERE5VVhYiEuXLuHixYtISkpSv1qep6enu7YjBeZAawm5BhkwmJ/DYP7esgwmht3qQMgC8FMgih6W59AVLfMvDqmO7kMtKSIiAnXr1kW9evVQt25dm0dcXBxDKhEROcUAS0REFVJQUIDk5GQkJycjJSUFqampNl9TUlKQmZnp3k5NsA21RhmSUQKMts9LfVUYeu0RkgC0CoTW9iu0AsL6a4mw6mootQgLC0N0dDRiYmIQFRWFmJgYREdHIzY2FvXq1UNcXBwCAwMr54ckIqJagQGWiIgqnV6vR1pamk24zczMREZGBjIyMtTnmZmZ9ue7dZUJgEkCTEVh1igBigTJJBUttzwvauVVACjmMhAwb2P1PRTJvKzoOSyfmKIoKAuoy8pqMRbFBa2+CvNXCYBsfi5koT5H0XNh9RxyURmNADSKueuupmid5XnRQ8hFQdXNIGpNp9MhIiICkZGRiIiIUB/WAdUSWP39/ct/ICIiIhcwwBIRUbWSn59vE24zMjKQnZ2NnJwcZGdnIysrC9nZ2TaPnJwcKIri3YpbhVkIlAiqVl+9RJIkhISEICQkBKGhoTYPyzLrgBoZGYnIyEgEBgZyyhkiIqo2GGCJiMjnKYqCvLw8ZGdnIy8vD3l5ecjPz1cf1t9bnufl5aGwsBAGgwF6vV79ankYDAabZZUdkDUaDfz8/NSHTqdz+DUwMNDlhyWcBgcHQ5blSv0ZiIiIKhsDLBERkQtMJhOEEOpXRVHsPjeZTFAUBbIsQ5ZlSJLk9LkkSdBqtdBoKtDPl4iIqJZggCUiIiIiIiKfwL5ERERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BO03q4AEZG3CCFQUFDg7WoQEbklICAAkiR5uxpERF7BAEtEtVZBQQGuu+46b1eDiMgtK1asQGBgoLerQUTkFexCTERERERERD6BLbBERAB022IhiaJrepIMSZYASQZkCZAkSLJlXdFySQJkCZKljLpOUreBZLVcXVa8T3UditcLSSq+tCgV70ddbrWd9TJRtBt1nQwAluWSus6yjShaJqy3sexDLiqvbmO7Xt0nAIGiZbKddTblYVPH4mUl62FnG9huY7MeTraz2qe9bR3t04bTbYTN9iX3p6632pcoWo4S20ESVtub10vW69SyQt1GUstZlS/ajySJ4n/BouXFf2qhrpch1O/N6wC56HvzOvP3lu3UdZKAhOLt5KJl6gPWy2GzvHgbRV0mQ0CWFGgs64q+V9cXPQcAjbpMQAPzco2klNhOgaboOQD1uVoexfuTYd5ehvn45nWW7czLJCjQWLaHpR4KNIB5O5iPZ/nZLN+bjyWKnqO4LjC/zDSQ1Je7RpIgQypaJhV9Lxf960gw6DUY8WBdEBHVdgywREQAYJKKTyUlGRKKwmZRMiheJwFycVqTzGmwaCeWtCOjRDqxSjZy6XRVnDKslqPEMutjwM6yktuhOLhaBdhSy0oth51AXHI9rIJ08Y/lcJ2jH8NuPVzZxoVflQf2WXbo9XCAtbceJb8XdpYLm2PaW2cJVsXrrNcLq+2slkHY2WfxwzrAFofiogccL1eDowSrgFocdAFLEIUaAK3XmQOsUhwAJXP4M29XFAQlyRwui5ZbnqvlIVmFZUAjFX/VAFZh0866ol+j+XtRFICFGljN24kyA6y9/ckoXmb+3rqOVn9DIqJajF2IiYiIiIiIyCcwwBIREREREZFPYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJnAeWiAgANAJCKObnEswTQapfpeLLfTbzqFo9h/UyUfzcZrmDdVaTggoHk5sWLy/+Kmyew2Y7AQBCnY1TXSMgAQLqtqLkNkXblVZymWXiU5sqlfh9OHiULFuRuV6drXO2TxeOJ9lbb7PM3nyudtaXqqODeWBhu16yXqeWLd6nZD3Hq6W8zbys1v9eDuaBRfnngRUo3k5IwvYB6+WwWa6o+1OKjwMBSIrVfLXCZr2QFAiregiIou+LvlrqUfS9XFRGtlpuvcxcD/PuZACKVPxVQfE8sErRMgmO5oGVIMM8v6wGxX8zy/dy0TYl55aV1XWS1f6K9yVDUr83/1kkGPT2XpdERLUPAywREQB9t0verkLlsOSDCigZnYkA238txZsVKTfr/2x2SCMi8hV8xyaiWqugoMDbVSAiIqL/t3fnUVHW+x/A3+OIMDLIoqYguFBqZhoKaKSDqIVImYbL1evNjNsp2/RW3p/FyS0tMw+pR+/V8koeS9LS61K5lIhLCgqmSCKECKigxDbA4CDO8Pz+4DzPHWCYgWEQZ3i//hp4vtt8oprPfDeiZuAMLBG1W46OjtLr/fv3w8nJqQ1HY/uqqqowefJkAIyntTCm1mUv8bTVcRMRWQMTWCJqt2Sy/y2KdXJygkKhaMPR2BfG0/oYU+tiPImIbBOXEBMREREREZFNYAJLRERERERENoEJLBEREREREdkEJrBERERERERkE2SCILTwhkAiIiIiIiKi1scZWCIiIiIiIrIJTGCJiIiIiIjIJjCBJSIiIiIiIpvABJaIiIiIiIhsAhNYIiIiIiIisglMYImIiIiIiMgmMIElIiIiIiIim8AEloiIiIiIiGxCx7YeABG1D3fu3MHOnTtx4sQJ3L59Gx06dICPjw/GjRuHqVOnwsHBweK2S0pKEBsbi4SEBBQUFMDR0RH9+vVDWFgYnn32WchkMpP18/LyEBsbi6SkJJSUlEChUGDAgAGYNGkSQkJCzPafkZGB7777DhcvXoRarYaLiwsGDx6MiIgI+Pv7m63/22+/Yc+ePbh8+TIqKirg5uYGPz8/zJgxAwMHDjRaxx7jmZWVhdOnTyMlJQXZ2dlQq9VwcHBAz549MXz4cERERMDHx6fR+vPnz8fFixdNjq179+7Ys2eP0Wf2GNOWxkR04sQJHDhwAJmZmbhz5w48PDwQGBiIWbNmwdvb22gde4vnoUOHsGrVqiaP8YMPPsDEiRPr/G7GjBm4ffu2yXpDhgzBv/71ryb3Q0TU3sgEQRDaehBEZN9u376N+fPnSx/cnJycUFNTg+rqagBA//79sW7dOri4uDS77YyMDCxcuBBlZWUAAIVCgerqauj1egDAiBEjsGrVqkY/LCckJGDp0qWoqqoCADg7O0Or1aKmpgYAEB4ejkWLFjX6gfjHH39EdHS01J9SqURlZSXE/7TOnTsXkZGRjY4/JiYG27ZtAwDIZDI4OztDo9EAAORyOd577z0899xzderYYzx//vlnrFy5ss7vlEoltFqt1LeDgwPmz5+PyZMnG+1bTNYUCgUUCoXRMl27dsXWrVsb/N4eYwq0LCYAIAgCVq9ejYMHDwIAOnToAIVCgcrKSgC1cVq+fDmCgoLq1LPHeMbFxWHDhg0mx1ZZWYm7d+8CALZv346+ffvWeS4msM7OznB0dDTaxqBBg5qVKBMRtTsCEVErunfvnvDSSy8JKpVKmDJlipCUlCQIgiDo9Xrh6NGjwoQJEwSVSiX885//bHbbFRUVwuTJkwWVSiXMnj1buHLliiAIglBdXS3s2bNHGDt2rKBSqYTo6Gij9fPy8oTQ0FBBpVIJb7zxhnD9+nVBEAShsrJS2Lp1q6BSqQSVSiXs2LHDaP3U1FQhJCREUKlUQlRUlFBQUCAIgiCo1WphzZo1Uv24uDij9ePi4qQya9asEdRqtSAIglBQUCBERUUJKpVKCAkJEVJTU+0+ngcPHhTGjx8vrFixQjhz5oyg0WikvpOTk4U5c+YIKpVKCA4Olt5zfW+//bagUqmErVu3Nut922tMBcHymIh27Ngh9bF161ahsrJSEARByM3NFV5//XVBpVIJoaGhQl5enlTHnuNpjvh3Om/ePKPPp0+fLqhUKuHgwYMWtU9ERILAPbBE1KoOHz6Ma9euAQBWrFiBgIAAALUzOePHj8fChQsBAImJiTh//nyz2t65cydKSkrg6OiIzz77DI8++iiA2pm6iIgIaebzhx9+wI0bNxrUj4mJgVarhYeHBz799FNpeWrnzp0RGRmJSZMmAQC+/vprVFRUNKi/efNm6PV6+Pr6Yvny5XjooYcAAK6urli4cCFGjBhRp5whvV6PzZs3AwBGjhyJhQsXwtXVFQDw0EMPYdmyZejXr1+dcvYcz8GDB2Pnzp348MMPERQUBGdnZ6lvf39/bNy4ER4eHhAEATt27GjW+zLHXmPaUhUVFdi+fTsA4Pnnn0dkZCQ6d+4MAOjduzdWr14NDw8PaLVaxMTESPXaazzT0tKQnZ0NAHj22WebVZeIiJqOCSwRtarDhw8DAIYNG4bHH3+8wfPx48fD09OzTtmmOnLkiNSGl5dXg+cRERFQKBTQ6/X45Zdf6jzTarU4ceIEAGDKlClGlzL+7W9/A1C7LPDUqVN1nuXn5+PSpUsAgJkzZ6Jjx4ZHCoj1b9++jZSUlDrPLl68KC2vnD17doO6Dg4OmDlzJgDg0qVLyM/PB2C/8ezduze6devW6NhcXFwQHBwMAEhPT2/GuzLPXmPaUidPnsSdO3fq9GPIxcVFWs594sQJaLVaAO03nj/99BOA2iXN48aNa1ZdIiJqOiawRNRqqqqq8PvvvwMAnnzySaNlZDIZRo4cCQBISkpqctvXr19HQUEBAEj16+vcuTOGDh1qtO3U1FRpr1pj9T09PdGnTx+j9Q1/bqz+kCFDpBmr+vWTk5OlMQ4ZMsRofcOYJSUl2XU8m6JTp04AIO1VtIb2HlNTxL/Rvn37omfPnkbLiOO6e/cuUlNT2208tVot4uLiANQm1+K/90REZH08hZiIWk1ubq6UbPTr16/RcuKzkpISlJeXo0uXLmbbFpcommvb19cXZ8+eRU5OTqP1fX19TdbPzc2VlgaKxJ/d3d3h7u5utK5cLkfv3r2Rnp7eaP0+ffpALpcbre/u7g43Nzeo1Wrk5OTYdTybQjxN11T7APDLL7/g8OHDKC4uhqOjI3r16oURI0bghRdeaDDL215i2pyY1O/f3NhF2dnZcHV1bRfxrC8+Pl6ara5/6JoxO3fuxJYtW6BWq6FQKNC3b18EBQVh8uTJFh1sRUTUnnAGlohaTVFRkfS6e/fujZYz/ABtWMeU4uLiZrVdWVkpfcA07MfFxaXR00AN6xv2Z1jf1LJXw7G1tH5RUZFdx9OcuLg4/PHHHwDMJwh5eXkoKiqCk5MTKisrkZGRga+//hovvvgiTp48Wadse4lpc2JSf/ymxu7k5ASlUimNt73Esz5x+XC/fv3w2GOPmS2fnZ2N8vJyODk5oaKiAqmpqfjyyy/x4osvIjU1tcn9EhG1R5yBJaJWY/jh0dQHRicnJ6N1WqNtcWmfuF/P8Lmp+vXHJf5srr44NmvUt+d4mnLjxg1ER0cDAIYOHdrgbk2Rn58fJk6ciMDAQHTt2hUymQwajQanTp3C5s2bUVpaimXLlmHDhg0YPHhwg3HYY0wtiUn98Zsau9i/RqNpt3+jubm5UtJp7vCmUaNGYejQoRg2bBjc3NwAAGq1Gj///DO2bt2KkpISLFq0CP/5z3+M7vElIiLOwBIR0QOsuLgY//d//weNRoNu3bphyZIl6NDB+P+6IiMjMXHiRHTr1k26w1OpVGLixIn497//DaVSCZ1Oh02bNt3Pt9CmGJPWJ86+durUCRMmTDBZdsGCBRg7dqyUvAKAm5sbZsyYgbVr10Iul0Oj0eCrr75qzSETEdk0JrBE1GoMDzIRD08xpqqqymid1mxboVA0eG6qfv1xiT+bqy+OzRr17TmexpSWluKdd95BXl4ePDw8sHbtWumqoubq1asXXnjhBQC1h/mUlZU1GEd7iKmhxmJSfyymxl6///YWT51OJ52MPHr0aOkqLEs89thj0unFp0+fhiAIFrdFRGTPmMASUasx3OdWWFjYaDnDPXDm9oSKunbt2qy2nZ2d63wgFfupqKgw+WFYrG/Yn2F9c/v3xLG1tH63bt3sOp71lZaW4h//+AdycnLg7u6OdevWSafDWkq80kUQBNy6davOuAH7j6kxxmIiEtszNfaqqipoNBppvO0tnqdPn0ZpaSmAph3eZI64jFuj0TT4QoGIiGoxgSWiVtOnTx9puaepEz3FZx4eHk06jRRoePppY8STR/v27dtofcPTSRurX//UU/Hn0tJSqNVqo3X1ej2uX79usn5ubi70er3R+oZt9+3b167jaai0tBQLFixAdna2lLzW789a2ktMLSH235Sxi/23t3iKy4c9PT3h7+9vtjwREbUcE1giajVOTk7SDM/Zs2eNlhEEAefOnQMABAYGNrltHx8f9OjRw2TbWq0Wly5dMtr2kCFDpINgxP7ru337NnJzc43WN/y5sf5TU1Olg2Dq1w8ICABQe1CMeG9mfYbtBgYG2nU8RSUlJViwYEGdmVdrJWaXL18GUHsPqXivaXuIqSnGYiIS/0Zzc3Ol+1frE8fl6OiIIUOGtKt4/vnnn9JdseHh4dIe45ZIS0sDUDt73JLlyERE9owJLBG1qrCwMADAhQsXpA9nhuLj45Gfn1+nbFPIZDLpwJRjx441WP4IAHv37oVWq4VcLsczzzxT55lCocCYMWMAAPv27ZOWQRqKjY0FULsXTqVS1Xnm5eWFoUOHAgB27doFnU7XoP6OHTsAAD179sQTTzxR55mfn5+UMIjlDOl0OuzatQtA7cm74omk9hpPoO6yYQ8PD6xfv77Jyau5/YL5+fnYu3cvgNpls4aH6NhrTFsSEwAIDg5G586dIQiC0b/RiooK7N+/HwAwZswYaY+pvcazvkOHDkGv10Mulzd6MrYhc/88rly5gmPHjgEAnnrqKaskxERE9ogJLBG1qrCwMPj6+kIQBCxevBjnz58HANTU1CA+Ph5r1qwBAIwcObLBEryYmBgEBwcjODjY6IfVmTNnwsPDA1VVVVi0aBEyMjIAAPfu3cO+ffuwdetWAMCkSZPg4+PToH5kZCQUCgWKi4vx/vvv48aNGwBqZ3G2bdsmfTifM2cOXFxcGtR/7bXXIJfLcfXqVSxbtkzal1deXo7PP/9cmiWaN28e5HJ5nbpyuRzz5s0DACQmJuLzzz9HeXk5gNr9fcuWLUNWVladcvYcT7VaXSd5be6y4R07duDjjz9GYmIiKioqpN9XVlbi8OHDeOONN1BRUYGOHTvWiac9x7QlMQFq70udM2cOAGD//v3Ytm2bdBXNjRs38MEHH6C4uBgKhQKRkZF2H09DgiDg4MGDAGpnaptyuNj69euxdu1aXLhwoc4VPWVlZdi9ezfeffdd6HQ6dO7cGS+//LLZ9oiI2iuZwGPuiKiV3bp1CwsWLMDt27cB1C7brKmpQXV1NQCgf//+WLduXYMPjDExMdi2bRuA2llOT0/PBm1nZGRg4cKFdU6Vra6ulmZEAwMDsWrVKnTq1Mno2BISErB06VLp5FGlUgmtVivtSw0PD8eiRYsanQ358ccfER0dLZVXKpWorKyUZlvmzp1b58N9fYbvUSaTwdnZWZoZksvleO+99xocDmOP8dy2bRtiYmIA1M6UibN5jfniiy+k5aT135s47o4dO0Kj0aCmpkYay6JFi6RZOEP2GNOWxgSoTdRWr14tJWtyuRwKhUL6G3VycsLy5csRFBRk9/E0dP78ebzzzjsAgJUrVyI4OLjRsqJPPvkEhw8fBvC/f9dlMlmdLxe6du2K5cuXS6s7iIioISawRHRf3LlzBzt37sSJEydw+/ZtyGQy+Pj4YPz48Zg6dSocHBwa1GnKh1mgdt9kbGwszpw5gz///BOdOnWCr68vwsLCEB4e3ui9oaK8vDzExsYiKSkJJSUlUCgU6N+/P55//nmEhISYfW8ZGRnYtWsXUlJSoFar4eLigsGDByMiIqJJB7ucP38e//3vf3H58mVUVFTAzc0NTzzxBP7yl79g4MCBRuvYWzzrJ1vm1B9/dnY24uPj8fvvvyMvLw/l5eWoqqqCUqlEnz59EBgYiEmTJsHDw6PRNu0tptaIiej48eM4cOAAMjMzodVq4eHhgcDAQMyaNQve3t5G69hbPA199NFHOHr0KDw8PLB792507NjRbJ3Lly/j1KlTSEtLw61bt1BeXo579+7BxcUFvr6+CAoKQnh4OJRKpdm2iIjaMyawREREREREZBO4B5aIiIiIiIhsAhNYIiIiIiIisglMYImIiIiIiMgmMIElIiIiIiIim8AEloiIiIiIiGwCE1giIiIiIiKyCUxgiYiIiIiIyCYwgSUiIiIiIiKbwASWiIiIiIiIbAITWCIiIiIiIrIJTGCJiIiIiIjIJjCBJSIiIiIiIpvABJaIiIiIiIhsAhNYIiKyCevXr0dwcDDefvvtth4KtTGNRoNnn30WwcHBOHnyZFsPh4iI7qOObT0AIiJqXZWVlcjMzER6ejoyMjKQkZGBvLw8CIIAANi1axc8PT1bpW9BEDBt2jQUFhZi9uzZeO211yxqJzMzE/v27QMAvPrqq1YcYdu6du0azp07h9TUVFy7dg3FxcXQ6/VwcXHBww8/jKCgIISFhUGpVLb1UB8oSqUSM2fOxJYtW7BhwwaMHDkSjo6ObT0sIiK6D5jAEhHZufnz5yMzM7NN+k5PT0dhYSEAQKVSWdzOpk2boNfrMXLkSAwZMsRaw2tT8+fPx8WLF40+KykpQUlJCZKSkvDNN98gKioKI0aMuL8DfMBNmzYN33//PQoKCrB7927Mnj27rYdERET3AZcQExHZOXGmFaiduRo2bBg8PDzuS9+nTp0CAHTv3h2DBg2yqI1Lly4hOTkZAOwqSRETexcXF4SHhyMqKgobN27Eli1b8NFHHyEoKAhAbTIbFRWFlJSUthzuA0ehUGDq1KkAgNjYWNy5c6eNR0RERPcDZ2CJiOxceHg43NzcMHDgQHh7e0Mmk2H+/PkoKSlp9b7FBHbUqFGQyWQWtfHtt98CADw9PfHEE09YbWxtzdvbG3PmzMH48ePRqVOnOs8GDhyIkJAQ7NixA1988QWqq6sRHR2N7du3t9FoH0yhoaGIiYlBRUUFfvrpJ0yfPr2th0RERK2MM7BERHZu2rRpePrpp+Hj42NxEmmJGzduIDc3F4Dly4cLCwuRkJAAAJgwYcJ9HX9rW7NmDSZOnNggeTU0e/Zs9O/fHwCQk5ODrKys+zU8m+Dp6YmhQ4cCAA4cONDGoyEiovuBM7BERNQqxNNhxWXLljh69ChqamoAAOPGjWtSHZ1Oh2PHjuHXX39Feno61Go19Ho93Nzc4Ovri4CAADz99NPo2rVrnXrBwcEAgLCwMERFReH69evYvXs3kpKSUFRUBGdnZwwYMAB//etf4efnJ9W7e/cuDh06hCNHjuDmzZuoqqqCl5cXnnnmGUyfPr3FhwsNHz5c2sN848YNPPzwwxa3lZOTg/379yMlJQW3bt1CVVUVlEolXFxc4OnpCX9/f4wePRq9e/e2qH2dToeff/4Z8fHxuHbtGsrKyiCTydClSxe4ublh0KBBCAgIwKhRo+Dg4FCnbv345+TkYO/evUhOTkZRURG0Wi0+/vjjBl+GjBs3DikpKcjNzUV6ejoeffRRy4JDREQ2gQksERG1CnH5cFBQEDp2tOx/N2fOnAFQu0+0T58+ZstfvXoVS5Yswc2bNxs8KywsRGFhIc6ePYusrCxERUU12s7x48fxySefoKqqSvrd3bt3kZiYiLNnz2LhwoWYNGkSioqKEBUVhfT09Dr1s7Oz8eWXXyIxMRHR0dEtSmJ1Op30ukMHyxdO7d+/H+vWrYNer6/z+7KyMpSVleHmzZtISkpCVlYWFi9e3Oz21Wo13nvvPaMHhomxz8zMxIEDBxAbGwtvb+9G2zp06BCio6NRXV1ttl/DQ73OnDnDBJaIyM4xgSUiIqsrKirClStXAFi+fLi6uhqXL18GAAwaNMjs8uHMzEy89dZb0Gq1AIBhw4YhNDQUffr0gYODA4qLi5GWlmb23tCsrCwcO3YM7u7uePXVV6W+z58/j6+//hpVVVVYu3Yt/Pz8sHLlSly9ehVTpkzB6NGj4ebmhry8PGzfvh1ZWVm4dOkSYmNj8fLLL1sUAwD47bffpNf9+vWzqI1r165JyWuXLl0wadIk+Pn5wc3NDXq9HsXFxcjIyEBiYqLFy7TXrVsnJa/+/v4IDQ2Fp6cnnJ2dUVlZidzcXKSkpEhLwhuTkZGBo0ePokuXLpg+fTqGDBkCBwcH5OTkoGfPng3K9+vXDwqFAlqtFr/99hsiIyMtGj8REdkGJrBERGR1v/76KwRBQKdOnTBy5EiL2sjKypJmHwcOHGiyrE6nw5IlS6TkdcGCBdIJtYaeeuopvPLKKygoKGi0rczMTPTv3x/r1q2Di4uL9PvHHnsM3t7eWLp0KXQ6Hd566y2Ul5djzZo1CAgIkMoNGDAAgYGBmDNnDoqKirBv3z7MmTMHcrm8We8fqF2GnZ2dDaA2iffx8Wl2GwAQHx8vzbyuXbtW2ldrSKVS4ZVXXkFZWVmz27979670xYBKpcLKlSsbJMJ+fn6YPHkytFqtyZnk7OxseHt7Y+PGjXVOy27sFGu5XI4BAwYgJSUFf/zxB2pqalo0U01ERA82/heeiIisTlw+HBAQAIVCYVEbhsuAzV37c/ToUeTl5QGoPXXZWPJqqEePHiafv//++3WSV1FISAi6d+8OACgtLUVERESd5FWkVCoxceJEqVxOTo7J/owpKirC559/DgCQyWR4/fXXm92GSDxxWqlUGk1eDbm6uja7/YqKCunLBj8/P5OzuAqFwuyS6nfffbdZVz2JZauqqlBUVNTkekREZHuYwBIRkVVpNBpcuHABgOXLhwGguLhYet2lSxeTZcWEGQBmzZplcZ9A7ZLUxpI8mUxW51loaGij7RiWy8/Pb9YYqqqqEBUVJSWe9Q+Oai4x6dZoNIiPj7e4nca4urpKpynHxcW16E7W7t27G/1SwBTDvw/DvxsiIrI/TGCJiMiqEhISoNPpIJfLMWrUKIvbuXv3rvTa2GyooT/++ANA7UxcUw57MsVcfcOxmDqt17BccxK6e/fu4cMPP5QOhho9ejReeeWVJtc3JjQ0VJr1XLp0Kd58803s2LEDly5dkpZdt4SDgwPCwsIAAGlpaZgxYwbWrFmDuLi4ZifvlpyybJjAGh68RURE9od7YImIyKrE2dDHH38cbm5uFrdjuGfU3Gm0arUawP9mGlvCycnJ5HPD5bGmlkcb7sMUrwIyR6fTYfHixTh37hwAYMSIEVi2bJlF+2cNeXl54dNPP8Unn3yCwsJCpKamIjU1FUBtnB999FEEBwfjueeeM/tlQWPefvttVFdX48iRIygvL8cPP/yAH374AUDtFwsjRoxAeHi42Zlkc7Ptxhh+2WHpiddERGQbOANLRERWU11djbNnzwJo2fJhoHa/pqi8vLxFbdkCnU6HpUuXSlcHBQQE4OOPP5aW5raUv78/vv32Wyxfvhzh4eHSNTZ6vR6XL1/Gpk2bMGvWLCl5bi5HR0dERUXhm2++wd///ncMHz5cSvBLSkpw+PBhzJ8/Hx9++GGdhLM+Sw5gMjx4yvDvhoiI7A+/piQiIqtJTk6WlqS2NIE1vDLFXALr5uaGgoICmz3AR0xexdnr4cOHY9WqVS26P9aYTp06YezYsRg7diyA2pnr8+fP48iRI0hMTER5eTkWL16M2NhYdO3a1aI+fHx88NJLL+Gll16CXq9HZmYmzpw5g/3796O0tBQnT57Eli1b8NZbb1ntfVVUVEivzR3QRUREto0zsEREZDViAta/f394enq2qC3DO0+vX79usqx4zU5xcbHZsg+a+snrsGHD8Omnn1o9eTXGzc0N48ePx2effYYpU6YAALRaLX799VertC8uT46MjMTmzZul5dlHjx61Svui3NxcAICnpyc6d+5s1baJiOjBwgSWiIisoqamBqdPnwZQe/BQS/Xo0QPdunUDAFy5csVk2eDgYOl1bGxsi/u+X3Q6HZYtWyYlr35+fli9erXZfbitYcSIEdJrcU+xNXl6ekr32Fpy12xj1Gq1dIXS4MGDrdYuERE9mJjAEhGRVaSmpkqJj2FC2RJiUpWbm4vKyspGy40bN05Kjg4ePIg9e/aYbLegoMAq42sJnU6Hjz76CCdPngTQusnriRMnzCal4t5lAOjVq1ez2s/Pz0dycrLJMrdu3ZJmSr28vJrVvilpaWnS6yeffNJq7RIR0YOJe2CJiOzczZs3pRNnReL9ogBw/PjxOqcFKxQKhISENLsfcRbRy8vLoqtQjBk7diwOHjyImpoaJCcnY8yYMUbLdezYEcuXL8ebb74JrVaL9evX4+TJk5gwYQL69OkDBwcHFBcXIz09HcePH8fAgQMRFRVllTFaasWKFTh+/DiA2oRx3rx5uHXrlsk67u7ucHd3b3Zfe/bswYoVK+Dv7w9/f3/07dsXrq6uuHfvHgoKCnD06FFp9rxnz57Nvv6ooKAA7777Lry8vDBq1CgMGjQIPXr0gKOjI8rKypCWloZ9+/ZJp0lPnTq12e+hMUlJSQBq9/cGBQVZrV0iInowMYElIrJzqampWLVqVaPPN23aVOfnnj17tiiBtcbyYVFAQAC6d++OwsJCHDlypNEEFgAeeeQRbNiwAUuWLEF+fj4uXLiACxcuGC0r7pltS/Hx8dLrvLw8zJs3z2yduXPnIjIy0qL+qqurkZCQgISEhEbL9OrVC6tWrTJ5PZAp+fn5+P777xt93qFDB8yaNQsvvPCCRe3Xp9PpEBcXB6B21t/SK4CIiMh2MIElIqIWu3r1qjR72NLThw3J5XJERETgiy++QGJiItRqtcm7ZQcMGIBvvvkGR44cwalTp5CZmSntt3R3d8fDDz+MwMBAPP3001Yboy1YunQpzp07h5SUFFy7dg0lJSXSkmJXV1c88sgjUKlUCA0NtejanqFDh2Ljxo1ITk5GWloaCgoKUFpaisrKSjg5OcHLywtDhw7Fc889Z7XZeQDS3wQATJs2zWrtEhHRg0smCILQ1oMgIiLb9tVXX+Grr76Cu7s79u7da9Fdno3RaDSYOXMmysvL8dprr2H27NlWa5ts26JFi5CQkAB/f3+sXbu2rYdDRET3AQ9xIiKiFhOXDz/11FNWTV4BQKlUSknrzp07cefOHau2T7YpLS0NCQkJkMlkePXVV9t6OEREdJ8wgSUioha5d+8eVCoV5s6di4iIiFbpY+rUqfD29kZZWRm+++67VumDbMuWLVsAABMmTMCgQYPaeDRERHS/cAkxERHZhCtXriAhIQFKpRIzZsxo6+FQG9JoNPj+++8hCAIiIiJM7osmIiL7wgSWiIiIiIiIbAKXEBMREREREZFNYAJLRERERERENoEJLBEREREREdkEJrBERERERERkE5jAEhERERERkU1gAktEREREREQ2gQksERERERER2QQmsERERERERGQTmMASERERERGRTWACS0RERERERDaBCSwRERERERHZBCawREREREREZBOYwBIREREREZFNYAJLRERERERENoEJLBEREREREdmE/we/ROUXCwBDSQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAColklEQVR4nOzdd3xTVeMG8OfeJG266KJsShlloyJLliCyEQFFQJHlBFworwhucYKKP7evvCAgyBZREGUrG2UIskdLWaXQ3aYjyT2/P9Jc0jZJ0zZtmvb5fj75NM099+akTW7uc8+550hCCAEiIiIiIiKiCk72dAWIiIiIiIiIXMEAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCswwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFdwSYGNjYyFJEiRJwvjx492xySqpZ8+e6t+RiMiR8ePHq/uK2NhYT1dHtWDBArVeCxYs8HR1yM0URUG7du0gSRKeeeYZT1eHvMT27dvV/cKbb77p6eoQVRhRUVGQJAlRUVGerorbPfbYY5AkCV26dIEQwu3bL7cW2AULFuDNN9+sUjuvn376SX3NKSkpnq4O5TGZTNi8eTOmT5+OXr16oXbt2vD19UVgYCAaN26MUaNG4aeffoLZbC7Wdv/9918888wzaN68OQIDAxEcHIw2bdpg+vTpuHDhQhm9GiKqShISErBo0SI88sgjaNu2LUJCQqDT6RAeHo4OHTpg6tSpOHHiRJk897fffouDBw9Cr9djxowZdsu4c/9qe0LEldv27dudbi8xMREbN27Ee++9h/vvvx8NGjTIt35ZiI2NxerVqzFjxgz07dsX4eHh6vP17Nmz2NtLTk7GnDlz0Lt3b9SqVQu+vr7w9/dHZGQkBg8ejHnz5iE7O9ulbaWmpuLDDz9Ez549UaNGDfj4+KB27dro0aMHPvvsMxgMhmLXr6IaPHiw+nefN29esdePi4uDRqOBJEkICwtz+W9sFR8fjxUrVuDFF19Er1690KxZM4SHh0On0yE0NBS33XYbJk2ahF27drm8TbPZjCVLlmDo0KGoV68efH19ERYWhttuuw2vvvoq4uLiXN6WEALr16/HQw89hOjoaAQGBkKn06F69ero0qULXn75ZZw7d65Yr9mZq1ev4pdffsGbb76Je+65B7Vr11b/PyUNcxcuXMD06dPRpk0bBAcHIzAwEM2bN8czzzyDY8eOFbm+NUwW91bUfqciW716tfo6unfvXqJt9O7dW93G8uXL1cdfeeUVaLVa7NmzB4sXL3ZXlW8SbhATEyMACABi3Lhxdsv06NFDLVNVjBs3Tn3NMTExRZavin+j8rZ161YRFham/p2d3Tp06CDOnj3r0nY//PBDodPpHG4rKChILF26tIxfHVUVxd23lJfvvvtOrdd3333n6epUOs8884zQaDRF7rtkWRZTp04VJpPJbc+dmZkpatWqJQCIZ5991m4Zd+9fbd9Prty2bdvmcFtHjhwpcn13++yzz5w+X48ePYq1vQ0bNoiIiIgiX0fDhg3FgQMHnG7rt99+E+Hh4U6306hRI/H333+X4i9gsW3bNnWbb7zxRqm3VxKrV69W69CtW7dirz9z5kx1/cmTJxd7/Zdeesnl9/F9990n0tPTnW7v7Nmz4tZbb3W6ncDAQLFo0aIi63b9+nXRs2fPIuvl4+MjZs2aVezXXtDPP//s9HkaNGhQ7G0uXrxYBAYGOq37nDlznG6jQYMGxdrfABCSJInY2NgS/iVuPmdJXrM75OTk5NsPuHrMa3XhwgUhSZIAIEJDQ0V2dna+5Y888oj6+nJyctxZdaGFG0RFRZVJ83BV481ncbzF5cuXkZSUBAAICwtD7969cccdd6B27dowGo3Yv38/Fi1ahLS0NPz111+46667sH//ftSqVcvhNr/55hu8+OKLAACdTocxY8agR48eMBqN+P3337Fq1Sqkp6djzJgxCAkJQf/+/cvltVLltWDBAnbRrYKOHz+utly2atUKvXr1Qps2bRASEoKEhASsX78eGzZsgKIo+Pjjj5Gamoq5c+e65bm/+uorxMfHQ6PRYNq0aXbLlMX+1eqZZ55Br169nJZp3bq1w2UFW3w1Gg2aN2+O8+fPIysrq8jnL4mCz+nn54fo6GgcOXKk2Nvav38/hgwZgtzcXABA48aNMWbMGDRs2BAmkwlnzpzB/PnzkZCQgJiYGPTu3RtHjx5F3bp1C21r27ZtGDx4MIxGIwDgjjvuwMiRI1GnTh0kJCRgzZo12Lp1K86fP4/+/ftj9+7diI6OLsFfoOIYPHgwqlevjhs3bmDnzp04d+4cGjdu7PL6CxcuVO9PmDChRHXQ6XRo164d2rdvj+joaNSoUQMajQbXrl3Djh078OOPP8JkMuHHH39EYmIitm7dClku3FHy6tWr6NmzJy5dugQAiIyMxCOPPILmzZvDYDBg27ZtWLp0KTIyMjB+/Hj4+/vj/vvvt1snk8mEAQMG4O+//wYA6PV6jB07FrfeeitCQ0Nx8eJF/PLLL9i5cydyc3Px0ksvITAwEJMnTy7R3wAo/LnQ6XRo3bo1Dh06VKLtrV+/HuPGjYPZbIYkSRg+fDj69esHnU6HP/74A99//z1yc3PxwgsvICgoCI899pjd7Xz77bcu9TpYs2YNFi1aBAC466670KBBgxLVuyLw8fHB6NGj8dlnnwGwHFu8/fbbLq+/cOFCNf899NBD8PX1zbd8xowZmD9/Pi5cuID58+dj4sSJ7qu8W+OwE1WxdbGitpJUZd9//71o06aN+OGHHwqdKbK6dOmSaNWqlfq/Gzt2rMPtXblyRfj7+wsAQqvVik2bNhUqY9uKUL9+fZGVleW210NUkbAFtmz17dtXjB492mmr2MqVK4VWq1X/D1u2bCn18xqNRlG/fn0BQPTt29dhOXfvX935fjp79qwYO3as+PTTT8WuXbtEZmamECJ/q4u7rVmzRjz11FNi/vz54p9//hEmkylfj7XitMD26tVLXW/ChAnCaDQWKpOZmSl69+6tlnvuuecKlcnOzhaRkZFqmenTp9t9vk8++UQt06tXL5fraU9FaIEVQojnnntOrcdrr73m8np//vmnul7r1q1L9NwxMTFFtqoePnxYVK9eXX2uZcuW2S03YsQItczdd98tMjIyCpXZuXOnemwSHh4ukpOT7W5r0aJF+Y5PHLUmfvvtt2q56tWr233/uWrXrl3i8ccfF998843466+/1JY56/aL0xqZmZkp6tSpo667YMGCQmU2btyo7hMDAwNFfHx8iesuhBCdOnVSn2/x4sWl2panW2CFEOLQoUP5/vaKori8buPGjdV1HX0vdenSRQAQzZo1K9a2i8IAW4YYYCue5ORklz5AR48eVf93fn5+6sFOQVOmTFHLvfjiiw6398ADD6jlvvjiixLXn6giY4AtW0lJSS6Vmzp1qksB0VVr1qxRt+esS6K796/l8X4qywBrT0kCbHZ2ttp1XKvVipSUFIdlbf+2t99+e6Hly5YtU5e3b9/e6f9r4MCBatnNmze7VFd7KkqAPXz4cIkO1K3dIAGIjz/+uEzrOGfOHPW5xowZU2j5lStX1C6bfn5+4tq1aw63NXv2bHVbr776qt0yo0ePVst8+eWXTuvWrl07teyRI0eK98JcUJIA+3//93/qeg888IDDci+++KJa7j//+U+J63js2DF1O8HBwcJgMJR4W0JUjAArhBC33XZbsU962p7YadOmjcNyX375pVrOXiNPSZX5KMTWkXX/+OMP9TF7F0E7GtxJURSsWLECI0eORMOGDeHv74+goCA0b94ckyZNwtGjR53W7c033yx0ofWWLVvw4IMPomHDhtDr9YVG8jSZTPj9998xdepUdOvWTR3cICgoCE2bNsX48ePx559/OnxO6wihtl1OGjZsWOg1O/pbuTKYxL59+/DEE0+gWbNmCAoKQkBAABo3boxx48Zh69atRa5fcBCJzMxMfPTRR2jfvj1CQ0MREBCAVq1aYcaMGUhOTi5ye94iJCTEpb9v69at0bx5cwBAVlYWzp49W6iMEAIrV64EgCJH5Xz22WfV+7YXuZeHPXv2YNKkSWjZsiVCQkKg1+sRGRmJkSNHYv369U7XtTd6ZFxcHKZOnYrmzZsjICAAISEh6NKlC7766iuYTCaX6pSRkYH/+7//Q58+fVCnTh118IkOHTrg9ddfx/Xr152uX/CzYjabsWDBAvTp0wd169aFVqu1OxDEtWvXMG3aNLRs2RIBAQEICwtDx44d8fHHH6tdhxyNCvjbb7+pz2n7/3Tm2WefVdfZsGGDS+u4oqhRiMvq/7Zu3ToMHjwYtWrVgl6vR1RUFEaPHo09e/YU+zXk5uZi3rx5uPfee1G/fn3o9XqEhITglltuwdSpUx2Ornzq1CkEBARAkiQEBwcjJibG4XMkJycjMjISkiRBo9E43W97g9DQUJfKPfDAA+r9or4jXfH9998DsHSBHTZsmMNy7ty/0k2JiYlqt8saNWogODjYYdmmTZuq9zMzMwsttz0+ePjhh53+v8aOHave/+GHH4pV55KwduuVJAmyLOOTTz6xW+63337D+PHjER0djaCgIPj7+6Nx48YYP348du7c6XD7t956K9q2bQvAMuDPtm3biqyTwWBQv+e1Wi0efvjhErwy17Vs2VK9Hx8fX2j59u3b1S6b/fr1Q40aNRxuy/b/t3TpUrtlEhIS1PtFdRMv6r3lCbbHU88995zDcs8884z6Xl+xYkWJn++7775T748aNQp+fn4l3parzGazOqKv9bg9NTW1ULm4uDi88sor6NixIyIiIuDj44NatWqhT58++Prrr9XLD+yx7Rbv6uVJtuWcdasfOXIktFrLFavW7xK3cEcKdjaIk23Lq7ObvbNyZ8+ezXdWwN5NlmWnXUHeeOMNtezWrVvFU089ZXc7ti2krlzMbn2t9i5Ktm15LWp9R38rR4xGo3j88ceL3PaIESOcnhmyluvRo4c4d+6caNmypcNtNWjQoEq2IHfo0EH9G+zdu7fQctsz3UV1KzKbzaJatWrqezYtLa2sqq3KyMgQI0eOLPK9MmjQIIf1KXjmfMOGDSIkJMThtvr06eOw66DVr7/+KmrUqOG0TkFBQWLt2rUOt2H7WUlMTBTdunWz+761tXXrVhEaGurwOdu0aSPi4uIcnhE1m82iYcOGArAMVlBUV/CsrCz1+SIjI4XZbHZavjiK6t3h7v+byWRyul+TZVnMmjXL5Razv/76S/1bOrr5+PiIb775xu76tt3ZOnfu7HCwouHDh6vlXnnlFad/08rEtpWgefPmpdpWdna22hXxzjvvdFMNi96/CsEWWKusrCy1C6ROp3PaAvvvv/+q2x86dGih5batqhs2bHD6vAcPHlTL1qpVy6W62uNKC+zBgwdFzZo1BWBpZf7+++8LlUlISMjXldrR7dFHHxW5ubl2n8d2YC1XeifYdrEdMmRIcV52idi2VtlrgbVtVX3ppZeK3J71uAOAOHnyZKHlDz/8sLq8qBbY9u3bCwBCo9GIxMRE11+Uixx9dzuSmpqqtkYHBwcX+R1re+nCsWPHil0/o9GovkcBiH379hV7GwUV1QKblZUl7r333nyfaXvHHu+9957w9fV1+rmIjo4Wp06dsvs8N27cED4+PgKACAgIKLK7e2ZmpggKClL3SQkJCU7Lt23bVgAQYWFhbjsWKvMAu2PHDrFmzZp8b5w1a9YUup04cSLfemfPns13LUC3bt3EBx98IJYuXSoWL14snn/++XwHo452irYBdsCAAeqOePr06WLx4sViwYIFYvLkyeLKlSvqOp06dRKBgYFiyJAhYubMmWLRokVixYoV4tNPPxVPPPGECAgIULdp7xqTAwcOiDVr1oi77rpLLfff//630GsuOEqgKwF21KhRahm9Xi+efPJJsXDhQrF48WIxZcoU9Q0FQPTr189hFxlrmbZt24rmzZsLSZLEkCFDxNdffy2WL18u3n///XzXyXTv3t1hnSqjnJycfAf8V69eLVRm6dKlDt/39tj+f92x43MmOztb3HHHHerzNW7cWLz88svi+++/F8uWLRPvvPOOaNq0qbq8V69edncqtgceQ4YMEf7+/sLPz088+eSTYsGCBWLp0qVi6tSp+T4Tzk4orVq1Su0Kp9PpxP333y8+//xzsWLFCvG///1PjB49Wh3NWZZlh11ZbP+W1s/1rbfeKj744AOxbNky8e2334qnn35aLX/s2DH1INz6vv/444/F8uXLxWeffSa6du2qhqG6des6/EJ577331G0Ude3L999/r5Z96623nJYtruIEWHf83yZPnpwvWD7++ONi4cKF4vvvvxfPPPOM+rcdOnRokYFj9+7danlJkkT//v3FnDlzxPLly8WCBQvEk08+me9/5Wg7999/v9O6/+9//1OX33HHHaW6ZsvbLF++PN/3QGls2bJF3VZput7ZcmX/KkT+ANuhQwfRrFkz4e/vL/z9/UWDBg3E8OHDxeLFi0v1v/WGACuEEIMGDVLXe+SRRxxeA9unTx/1s2VvVGbr/hIoXoAFIK5fv+5yfW0VFWC3bt2qBi1/f3/x66+/FiqTmJiY73q7W2+9Vbz11ltiyZIlYunSpeKVV15R993OvpOLe6BuG5h/+umnkrx8l509ezbfa1izZk2hMrNmzVKXFzfArly5stDylStXqstdvQZ2/PjxxX5trrBu39UAu2fPnmJ9lmy/N5cvX17s+q1du1Zdv1WrVsVe3x5nATY5OVl0795dfc5HH33U7sla20vZQkJCxMSJE8W8efPU3GKbRWrVquVwf2v7nTp//nyn9bY9sWPvRFlBkyZNUss7OmFZXBVyGh2z2Sxuv/12AUD4+vqKFStW2C0XHx+vttDKsiz+/fffQmVsAyxgCcKpqalOn3/z5s1OWy9v3LihtvjIsizOnz9vt5y7p9GxvXalZs2ads8gxcbG5mvZcHS9pe3fxMfHR/zyyy92X6fttkoTujIzM+2euCjJrajpAdzBNnzYu45ICCHeeustp1/KBY0dO1Ytb+/ssjsVvDbX3sFObm5uvjp9/fXXhcrYHngAlpbE06dPFyq3b98+tYXA3lDqQggRFxenfplGRkY6vIZm3759Ijg4WAAQ9erVs3smvWDPjilTpjg9q2fbQjt58mS7ZQvuK+x9ocTHx6sBu6gvzDvvvFMAlrPVFy9edFq2uIoTYEv7f7O9ziUkJMTuQA0nT55Up1hxFjzT0tLUwYBCQkLE9u3b7b6+M2fOqCfQAgIC7B44JyUliXr16ql/4x07dqjLTp06pYbzatWqiXPnztl9HledOHHCbfuvkoaA4rj77rvV/8Nnn31Wqm3ZnrSxdwBcEq7sX4VwfRqdZs2aiX/++adEdfGWAHv69Ol8PVcaN24s3nzzTbFo0SIxf/58MX36dLV1yNfX1+EB6IQJE9RtfPrpp06f0/aYA4DYuXNncV6qylmAXbVqldpyFBYWJnbv3m13G9aTY5Ikif/7v/+zWyY9PV307dtXfS5HAd22Z4azA/XY2Fi1ha9GjRpuOwkWExOj7g9WrVolvvnmGzF+/Hjh5+en1mvChAl21124cKFaZtiwYU6fJz4+Pt//75133ilURlEUMWzYMLWMXq8XTzzxhPjqq6/E0qVLxezZs/N9fw4bNqzI0F9Szr577bH9W7jSiPD666+r5d9+++1i12/IkCHq+u66FtpRgL1y5Ypo06aN+nyOBlv76aef1DK9e/cWN27csFvum2++UcuNHDnSbpl169apZYrqbWMbip31lrNasGCBy/sdV1XIAGs7X1dRX76nTp1SW3Qef/zxQsttD0oDAgLE5cuXXXpNRTl37lyRHwR3B1hrEzwAu2corfbt26fudBs0aGD3jI3tTm3mzJkOtzV37lyXyhXF9j1S2psrO6rSSEpKErVr1y7yoO35559Xy3z++edFbre45UvqypUr6hnm++67z2nZ3Nxc0ahRIwFYupcUVDAI/fnnnw63ZTsYhL1yzzzzjBo2Dh065LRe8+bNU7e1ZMmSQsttPyvt2rVzGl7/+usvtWzr1q2dzo1pu11HX6K2A3LZC4VCWPZL1jKDBg1y+lpLorgBtjT/N9svbXsjPFrZfvkB9gPsxx9/rC7/+eefnb5G25a/d999126Z7du3C1mW1f9XcnKyyM3NzTfYiDtOFhU8uVGam7O5St3BtmdIzZo17Y5QWhwPPfSQuj13DNzi6v5VCEuA1Wq1okePHuK1114TCxcuFCtXrhRfffWVePjhh4Ver1e3ExQUVKIQ6y0BVghLoOrdu7f6/W7vNmnSJHHmzBmH27DtmdChQwenAxnZtvoCEOvWrStWfa0cBdhvvvlG/fzWrVvXYbfOAwcOqOu/8MILTp8rKSlJPQHap08fu2XWr1+vbs/ZgbrtSeqinrc4vv76a4f/vyZNmjjtynv27Fm1rL+/v9Oumx9++GG+bTvqQWEymcTLL7+crwdfwdvtt98u1q1b59ZRZAsq6ru3oE8//VRdZ+rUqW4vb+vatWv5uvEX1WXWVfYC7OnTp0VUVJQALCdsPvnkE4fr33LLLQKwtJ4Xta8fM2aMegwWFxdXaLnJZFL3zZIkOTzxa3tip2bNmi6d2Nm3b5/6t3/00UeLLO8Ktwzi5G7Wi3yrVauGxx9/3GnZpk2bomPHjgCAjRs3Oi17//33o06dOm6pY6NGjdS56/bt2+eWbToTGxurzpHVpk0bDBgwwGHZjh07qvPlXbhwAQcOHHBYVqPR4Omnn3a43HbevePHjxe32l7HbDZj1KhRuHr1KgBg0KBBGD58uN2yGRkZ6n29Xl/ktm0v9k9PTy9lTR1bsWKFerH+f/7zH6dldTodRo4cCQA4c+aMw4FzAKBt27bo3r27w+XO3itCCCxZsgQAcPfdd+O2225zWi/bi/6L+lw/9dRTdufKs1q7dm2+shqNxmFZZ4NAWNnOY/a///3Pbhnbx5944okit1mWSvN/y8nJUQefqlmzptMBTAYNGoQWLVo4rYt13960aVMMHjzYadlevXqp+2tH74EePXpg+vTpACz7uokTJ+LVV19V93mjR48u80FXKpLjx4/ne799/vnnCAgIKNU2L1y4oN4PCwsr1baKs38FgG7duuHChQvYvn07Zs6cibFjx2L48OGYNGkSvv/+e5w+fRodOnQAYNmnjhw5stAck5VJgwYNMGfOHNx7770OyyxatAizZ892+B0zfPhwhISEAAD++usvvP7663bLffHFF4UG+UtLSytZxe2YOXMmJk6cCEVR0KxZM+zevTvfAEa2rPsNSZIwdepUp9sNDQ3FwIEDAQB//vkncnJyCpXp16+fum/ZsWOH3YHghBDqXJ9Ayed+LQ6dToc+ffqgU6dODss0btwYd911FwDLAFOjR4+2O3fp3r17Cw2O6uj/p9Fo8OKLL+L1118vNI+n1cGDB/HBBx+UaMC+slKex2Dff/+9OtjhPffcg4iIiGKt76oDBw6ga9euiI2NhVarxaJFizBlyhS7Zf/55x91TulJkyYVua+3fheazWZs2bKl0HKNRoMxY8YAKPz+t2U79+vDDz+sHqs5YzsAoe13SmkU/awesGPHDgBA7dq18dtvvxVZ3npAeuHCBWRlZTkcFczZQVxBaWlpWLJkCX799VccPXoUN27ccDjqmnUy6bK0f/9+9X7fvn2LLN+3b1/1Dbpv3z415BfUtGlTpyNb2k6CXprRiKOiotQ3fEX23HPPqQfLkZGRLo/GVpFYPz+A5b35008/OS1v+389ceKE3dF7Actk9844e68cO3YMSUlJAICgoKAi6wQAgYGBSElJwYkTJ5yWK+pzbZ2gHYD6xe+IdVRuZ+666y40bdoUp0+fxsKFC/HOO+9Ap9Opy41GozoCeZ06dTBo0KAit1mWSvN/++eff9STIT169HAa/gHLyQlH/6/U1FT1y7ZmzZouvwcAOH0PvPXWW9iyZQv27duXb0TKhg0b4quvviryOVzx5ptvOhwpv6KIj4/H4MGD1QOzyZMn5xuNuKSsn1ug9AG2uPvXJk2aOF1ev359bNiwAa1bt0Z8fDxOnjyJVatWqSflKhOTyYQpU6bgyy+/hFarxbRp0zB27Fg0adIERqMRhw8fxpw5c7BmzRrMnTsX+/fvx8aNGwuNUhscHIxPPvlEDWTvvPMOtm7dihEjRqBOnTq4fv061qxZg82bN8PPzw8hISHqCQdnJwpdpSgKnn76aXz55ZcAgA4dOuDXX39F9erVHa5j/U4LCQnJdyzkiDW05uTk4Pz584VOrGk0GowdOxYffPABhBBYuHBhoc/3jh07cO7cOQBA+/bt0bp1a5dfY1EmTpyongjNzc3F1atXsW3bNsyePRtff/01/vvf/+Kdd97BjBkz7K7/2Wef4Y477kBmZiY2bdqEVq1a4ZFHHkGzZs1gMBiwfft2/PDDDzAajWjUqBHOnz8PwPH/77fffsOoUaOQmpqKnj17YsaMGejUqRP8/PwQFxeHlStX4t1338XOnTtx9913Y9myZRgyZIjb/h7ewHb04UceeaRMnmPz5s0YNmwYMjIy4O/vj1WrVjltrLI91svJySnyO/Xy5cvqfUffqRMmTMDs2bMBWE6GvfHGG/lGKi/piZ3w8HD1vrtmNqlwATYjIwOJiYkALNMlOBuy357k5GSHAdb2QM2Zbdu24aGHHrI7hLk97jwr6Yj1CwTIP5S5I7ZlbNctyNmXBoB8Z+Oys7OLfF5v9sorr6hfqjVr1sSmTZuc/n2sB9eAa3+brKws9X5QUFApauqcbSvqiBEjirWusx1Lad4rtnVavXo1Vq9e7ZY6AUV/rq9cuaLeb9SokdOyoaGhCAkJQUpKisMykiThiSeewH/+8x9cu3YNv/zyC+677z51+c8//6xOTTBhwoQiQ19ZK83/zfZvV1SYKKrMxYsXoSgKAMsXr+2Xb1GcvQe0Wi1++OEH3HbbbWp4sz5WrVo1l5/DmyUlJaFv377qgerw4cPx2WefuWXb1jCg0WhKNWVEcfevrgoPD8dzzz2nHuyvX7++UgbYcePGqVPZrF69Ol8rrK+vL7p164Zu3brhhRdewCeffIJ//vkHTz31lDoFjK3x48cjIyMDL7zwAoxGI3bv3o3du3fnKxMUFIQlS5bgjTfeUI8hXJ3GyZnPPvtMnQKkd+/eWLNmTb7vUnus3x/JycklOia0Z/z48fjggw8A2D9Qtz25Yi+wbNy40W7Lp9XQoUNdqp+Pjw8aNGiA8ePHY9SoUbjnnnuwZcsWvPzyywgODsbkyZMLrdO6dWts2LABw4cPR0JCAmJjYwu1pEuShNdffx3p6enqdET2/n+//fYbBg0aBEVRMHz4cCxfvjxf0G3SpAlmzJiBu+++G3feeSeys7MxZswYnD59Wu2F6CnldQy2f/9+HDt2DIClYc1ZqCypa9euYdCgQcjNzUVoaCjWr1+Pzp07O13H9rjqrbfeKtbzOfpcNG/eHJ07d8aePXsQExODP/74I9+JfdsTOx07dkSrVq1cej7b72Lb/0NpVLguxPbmNioOZ/McufLle+bMGQwaNEgNr82aNVPPei5duhRr1qxRb9YuBOXRZcm2u4MrXcJsP9jOukq444xqZfDOO+/gvffeA2A54N+8eXORJwqs3bAA4MaNG0U+h/XETMF13a00nyFnn5/SvFfKqk5A0Z9ra88JrVabr6XUEVc+X+PHj1eD39y5c/Mts/4uSRIeffTRIrdV1krzf7PtouXv719keWd/u9K8B4xGo9Pl1atXz9c62KhRI7Rr167Ez+dNUlNT0bdvX3W+18GDB+OHH35w24kT6/vcbDY7PWB3piT71+KwPcA6efKk27ZbUezfv18Nr/3793fahfjdd99Vg8rq1avznYSy9fTTT+PkyZN4/vnn0aZNGwQFBUGv16NJkyZ49tlnceTIEQwePDjf95Y7AovtnNOZmZku9cwqi++PZs2aoUuXLgCAmJiYfHNEGwwGrFq1CoCla+qDDz5YaP0nnngCw4YNc3grCb1ej/nz56v77Lfffls96VdQ9+7dcfr0acyaNQvdunVDWFgYdDod6tSpg5EjR2LHjh146623ivz/TZ06FYqiQJZlfPrppw6/Lzp27Ijx48cDsBxTVoTeaeV1DGbb+jp27NgyOSkthFCzRG5ubpHHPUDZHVfZtqpae5NZuTr3a0G2dXXX3LkVrgXWNnjdeeed+OOPP8r1+d9//3317MArr7yCt99+2+FE30Vdn+tOtmeLXJlA2vbAsyxb+1xlMBiKvJbRVZGRkbj99tvdsi0AmD17Nl577TUAljOUmzZtcqm7kO0BmLNrR61s+/278+CtIOtnSJIkmEymCnGSwvZz/frrrxf7bGFpWEOVyWSC0WgsMsS68vkKDw/H8OHDsWTJEmzcuBFxcXGIjIzEhQsXsGnTJgCW1oWGDRuW/gV4kO3/zZXw4uxvZ7utsWPHFvpiLI3Jkyfn+3ydPn0ar776KmbNmuWW7Z88edJtwahbt25uaXkELAeS/fr1U6/57devH1auXOnSiRpX2Z4YSEpKculEhq2S7l+Lw7Z7mrPeE97K9lrU3r17Oy3r5+eHLl26YP369RBC4O+//3YYeBs1aoQ5c+Y43FZGRgYuXrwIwHICy9E1qsXx3HPP4cSJE1izZg327NmDfv364ffff3d6nGK9nMS6j3WXCRMmqC3PCxYsQI8ePQAAq1atUk/8Dx06tExPOBcUGRmJFi1a4NixY4iPj8epU6ccji0QHByMadOmYdq0aQ63ZzuugfV6cauYmBh1ecuWLYscI6Z3797473//CwAudeUua+VxDJadnY1ly5apv5dV9+FatWph1qxZGD16NDIzMzFo0CCsX79efU/aY/udunXr1iIvkXLVyJEj8dxzzyErKwurVq3CF198gYCAAGRmZqo9OvR6PUaNGuXyNt15KYpVhQuwwcHBCAwMREZGRrlcW1rQ5s2bAQA1atTAzJkzHYbX9PT0fP+Qsla7dm31/pkzZ4osb1vGXQNXlUZCQkKJz0oWNG7cOLed/fvkk0/w0ksvAbC8937//fciBxiysj0IczZQFmC57sc6CJcsy0UOdlMadevWxeHDhyGEwOXLl1G/fv0ye67i1MmqvD/XderUUa+9PH/+PJo1a+awbHJysssHwBMnTsSSJUugKArmz5+PN998E/Pnz1fPmHt68CZ3sN13nD17tsjyzsqU1XtgyZIl6gBh7dq1w40bN3DhwgV89NFH6NevX75Bqkpq2bJlbjvpsm3bNpeutS5KRkYGBgwYoA4i2KtXL/z0008OB2EpqaioKOzatQuA5SCkXr16Lq9bmv1rcZRX7xZPsW1FdaVbfHBwsHrflRNyjvz5559qC2nnzp1dGqylKDqdDsuXL8eoUaPw448/uhRi69ati5SUFCQkJLh0EtJVI0aMwHPPPae2uFoP1G1b3By1MrkSmErK9u9QmhMyycnJ6ndfQEAA2rZtm2+5p95X7tKyZUvIsgxFUXD48GG1JdkR2/EwXD2J9uOPP6r/g65du5Zp48PIkSMhSZLLIbasvlOrVauG+++/H4sXL0ZGRgZWrVqFcePGYdWqVWrj2LBhw4q1r7XNSw0aNHBLPcutacb2TVVUl5E777wTgOVg05WDJne6du0aAMsAIM4+CJs3b3bYtcOqOK+5KLaDMFlbeJyxbe10NIBTVffll1/ihRdeAGD5wtiwYUOhM5TOtGrVSj2YO3bsmNMdyO7du9Vrpbt27VqmreK2Ozt3tXqXVtu2bdUvyC1bthT52XGn9u3bq/e3bdvmtOz27dtd3m63bt3U6z/mz58Po9GI+fPnA7CcAKsMg1zceuut8PHxAQD88ccfRV4uYW9kQ6vq1aurLTh79+51y9gBMTEx6jViAQEBWLp0KRYvXgyNRgNFUTB27Nh84aayMBgMuOeee9Rgeeedd+KXX35xaSTO4rI90Dt16pTL65V2/1octj21yvIA01Nsw4W1RdQZ25Ym29bp4rINcu68HMIaYu+//34AUEOso32C9TstOzs7X1ff0rIeqAOWE0KrV69GbGys+n6qV69ekS3e7iaEUK8xBIoew8CZH374Qe0qOnr06EL7B0+9r9ylWrVq6iCFqamp2Lt3r8OyFy9eVFubIyMjXe5NYP1OB8qu9dXWiBEjsGTJEmi1WmRmZmLgwIEOe6KW5bGevW7EJe0+DOQfNOqWW24pXeXylFuAtW3qLurMzbhx49T7joZ4LyvW7lHnz593GDrNZrN6PY8zxXnNRYmKilK7zf7zzz9OQ+zff/+NrVu3ArCc6agI14JZRyF2x80dra9z587FM888A8By4Pvrr78WecF8QZIkqaN8CiHw+eefOyxrO6BKWQ8wMmrUKDV0zJo1q0KcKdVoNBg9ejQAy5ego+lnyoJtkPzyyy+dhrBPP/20WNt+8sknAVi+HKdMmaKexBg3bpxbu3F6iq+vrzolxbVr19Tr8OzZsGFDkSNGW/ftBoNBHUClpMxmM0aPHq0e9H722WeIjo5Gt27d8PLLLwOwjLr42GOPlep5AMsoxO7af5W29TU7OxtDhgxRD2q6du2K9evXF7trr6tsp/Rwdco4d+xfXZWUlJTvc2t9v1YmticRVq5c6XQfFhsbq/6fZFku8eU227ZtU68DbdSokRr03EWr1WLZsmXqNEp79uxB//797YbYsWPHqvffeustt447YnsgvmDBgnxThIwbN67cL8H56aefcP36dQCWwc4aN25cou0kJCSovUZ0Op3dqViaNGmihtqLFy8WGsirINuutLYnhj3J9njK2ff3559/rv5fXR3c8sKFC+qxdGBgYLEHxSypESNG4IcffoBWq4XBYMDAgQPtnlxv3769ehJ9+fLl6kBT7nDXXXepM1Js374d27dvV79z6tevj7vvvrtY27P97nA2TVSxuGMyWduJuceNG2e3zLPPPquW+eOPP5xuz2w2iw4dOqjln3vuOZGTk+OwvMFgEN99951YunRpoWW2E9C7MoF8nz591PJz5swptDw3N1dMmDAh3wTPjiZdnjNnjlpm4cKFRT53jx49nE6ovnz5cnV57dq1xYkTJwqVuXDhgmjcuLFa7osvvrC7LetyVyZSL05Zb7Bw4UJ1EmZ/f3+X3heOXL58Wfj7+wsAQqvVis2bNxcq891336l/w/r164usrKxS1N41U6dOVZ/zrrvuElevXnVY1mw2i02bNom333670DJHE9DbU1TZixcvipCQEAFA+Pr6FvmZuHbtmpg5c6b4559/Ci0r6rNSULdu3dTykydPFmazuVAZ232Fs8+1rZSUFPX/b3s7ffq0S/UqqXHjxqnPFRMTU2i5O/9vO3bsUJeHhoaKQ4cOFSpz+vRpdQJ06+27774rVC4jI0OduF2SJDF79my7/wurlJQU8emnn4pNmzYVWvbaa6+pzzV8+PB8y4xGo+jcubO6/L///a/Tv4G3yMnJEQMHDlRfV6dOnURqamqZPmd2drYICAgQAET37t2LLO+u/evu3bvF3LlzRXZ2tsMyFy9eFB07dlT/HtHR0cJoNBbreazvx+IcDtke8xT3MMp2XVe/U69fv67+DwCISZMmCZPJVKhcYmKi6NSpk1pu4MCBdrd3/vx5ceHCBYfPt3HjRhEcHKx+TkvzHSmE832M0WgUw4cPV5ffcccddt/T999/v1pm5MiRTt/3RqNRrF692uHxjy1FUURUVJT6WmvWrKk+z5kzZ4r9Wu05c+aMmDVrVpGf1U2bNqnfkc723QaDQezbt8/hds6ePStuueUWdTtvvvmmw7IjR45UyzVp0sTh++Ldd99Vy/n6+oqLFy/aLWf7ubD33eRMcb57rTIzM0WdOnXUdRcsWFCozKZNm4RWqxUARGBgoIiPj3dp22+++aa63QkTJrhcp+Kw7n/sveaVK1eq9Xa0L/3555/VOkZGRor9+/c7fb5jx46JiRMnulQ322Mi2+/3V1991aX1bbVt21YAEOHh4U6/84uj3K6Bvfvuu9VWqEcffRTPP/88GjRooI7m1aRJE3UKBlmWsXr1anTu3BmXL1/Gp59+ihUrVuCBBx7ArbfeiuDgYGRkZCAuLg5///03tmzZgszMTLz99tulruczzzyjtm6+8MIL2L59O/r164fw8HCcOXMGixYtwpkzZ3DXXXfhzJkzTruN2p6hmDZtGq5fv45mzZqp15HUrVsXbdq0cbluI0aMwJo1a7Bs2TJcvXoVt99+O8aPH4/OnTtDo9Hg77//xrx589QzmH379rU7BHtVtmHDBjzyyCPqmbhHHnkEKSkpRc6fdfvttyMyMrLQ43Xq1MHHH3+MSZMmwWQyYcCAARg7dix69OgBk8mEDRs2qGextVotvv32W6fd/GyvuY6JiXE4J2tR3n//fRw+fBhbtmzBtm3b1DPonTt3RkREBHJzcxEfH6+25sfHx+Puu+/Gq6++WqLnc0W9evWwbNky3HvvvcjJycG4ceMwZ84c3HvvvYiOjoafnx9SU1Nx+vRp7N27F7t27YLZbHbLwAT//e9/0aFDBxgMBnz11VfYs2cPHn74YdSrVw/Xrl3D8uXLsWvXLnTu3BlxcXG4fPmyS2feg4ODMXLkyHxd7Xr27Ino6OhS17mi6NatGyZPnoyvvvoKycnJuOOOOzBu3Dh069YNsixj//79mDdvHjIzMzF06FCnn6WAgAD89NNP6NGjB9LS0jBt2jT897//xf3334+WLVsiMDAQaWlpOH/+PPbv34/t27cjNzcX33//fb7t7Ny5U+0FU69ePXz77bf5lmu1WixZsgS33XYb0tLS8Pzzz6NHjx5Or3/2BuPHj8evv/4KwNItd9KkSWoLgTOuTulhj6+vL/r374/Vq1fj77//RkZGhsNpT9y5f7127Roef/xxTJ06Ff369UO7du1Qt25d6PV6JCYmYteuXVi1apU66GJQUBCWL1/u9DrNefPmISYmJt9jttcYFtz/hYaGYurUqU7rXpSC27QdjTMmJqbQ8ttvvz3ftFyApRvpu+++q7aiff311/jzzz/x0EMP5ZsHduHChWrrXXBwMD7++GO7dTpw4ABGjRqF7t27o2fPnmjSpAm0Wi0uXbqEDRs2qJcCSJKEL774wi3XbDui1WqxdOlSSJKElStXYu/eveo1sbZdXOfPn4/Tp0/j6NGjWL58OX7//XeMGDEC7du3R2hoKLKysnD58mUcOnQImzZtQnJyskvdniVJwvjx49VeFtbLyLp37+7S1GGuyMjIwEsvvYQ33ngDd999N9q3b4+oqCgEBQXBYDDg/Pnz2LhxY74W0K5du2L69Ol2t5eZmYlOnTqhVatW6N+/P1q1aoWgoCDcuHEDf/75J9asWaNOK/Pggw86/V5/7733sGnTJiQlJeHs2bNo3bo1Hn74Ydxxxx355oG1bUF74403inUtvD0ff/yxw6lcUlJSCtW5YcOGdv+f/v7++PbbbzFkyBCYzWZMmDAB69evx4ABA6DVavHHH39g0aJF6ujXn3zyCWrWrFlk/UTe/MBW5dF9uKDhw4dDkiSMGjUKBoMBgwYNwrp16/IdEw0ePBivv/46Zs6cibi4OHTq1Al9+/ZF7969Ua9ePUiShMTERBw7dgzbt2/H8ePHodFo8PXXXxf5/OPGjcPMmTMhhMg3Had1NGpXJSYm5hsl3229GtyRgl1pgTWZTPlaQQre7J1punLlirj77rsdrmN702g0Yu7cuYW2UdwWWCGEmDFjhtPn6tq1q0hISHB65sTqwQcfdLidgn8rV1qVjEajeOyxx4r8ewwfPlwYDAaH27GWq2otsAVb2Vy92WtNsvXhhx8KnU7ncP2goCC7PQQKsl2nuGcvC8rJyRFPP/200Gg0Lr3GsWPHFtqGO1vyrPbs2SMaNWrkUp0CAwPFkSNHCm2juC2wQgixdevWfGe3C95at24t4uLiRN26dQUAccstt7i03X379uXbzpIlS1yuU0mVZwusEJb995gxYxz+7WRZFrNnz87X28DZZ+bkyZPqGdmibr6+vmLDhg3qusnJyeq+V5Zlp/v1xYsXq9tp27at05483sC2tbA4t9L66aef1G0tWrTIYTl37l/XrFnj8vqtW7e221OjINv9his3R9/txWmBLe7fwtExlBBCfPTRR8LHx6fIbURFRYm9e/c63M7KlSuL3EbNmjXF8uXLi/ybusKVfYzRaBQjRoxQy9nrXZCampqvxbCo22uvveZS/WJiYtReA9bb/PnzS/uyVYcOHXK5zrIsiyeeeEJkZGQ43N7169eL3I6Pj4949dVXXWrtOnDggIiOji5ym1qtVrzzzjtOt2Vb3tkxTHH3ZUUdfy5evFgEBgY6/XvY61XpyJYtW9R1mzZt6vJ6xeVKjli9enW+ltitW7cWKjN37lxRrVq1Uu3X7LnrrrvyrXvnnXcW+zV+9dVX6vr2eimWVLkFWCGEyMrKEh988IHo3LmzCA0NzXdg7ewga/v27eLJJ58UrVq1EiEhIUKj0Yhq1aqJli1bipEjR4qvv/5aXLlyxe66JQmwQgixYcMGMWjQIFG9enWh0+lE7dq1Ra9evcTcuXPVLkquvPFMJpP4+uuvRc+ePUX16tXVN6G9v1VxDsr37NkjHn30UdGkSRMREBAg/Pz8RMOGDcXDDz8stmzZUuT6ru4Uilu2oiurACuEEEePHhVPPfWUaNq0qQgICBBBQUGidevW4qWXXhKxsbFFrp+ZmZlvZ5uYmOiGV2zpvjR9+nTRqVMnERERIbRarfD39xcNGzYUAwcOFO+9957dkChE2QRYISwHK4sXLxYjRowQDRs2FIGBgUKr1YqwsDDRvn178fjjj4vly5c7/BIvSYAVQoj4+Hjxn//8RzRr1kz4+fmJkJAQ0b59e/HRRx+JzMxMoSiK8PPzEwBEz549Xdqmoihqd7uwsDCnXR7dpbwDrNUvv/wiBg0aJCIiIoSvr6+IjIwUDz74oNi9e7cQQrgcYIWw/N3Wrl0rxo0bJ5o2bSqqVasmNBqNCAkJEbfeeqsYO3asWLBggUhKSsq3nu0B7PTp050+hxBCjB49Wi0/derUIstXZJ4KsCaTSURGRgoAok+fPg7LuXP/mp6eLtauXSumT58uevXqJZo2bSrCwsKEVqsVISEhokWLFmLcuHHi559/drlLmrcHWCGEiI2NFa+//rro1q2biIiIEDqdTuj1elGvXj0xePBgMXfuXKcnr4UQ4saNG+Kbb74RI0eOFC1atBBhYWHCx8dH1K1bV9x9993is88+EykpKU63URyu7mNMJlO+z7ejLvIHDx4UU6ZMEW3bthXh4eFCq9WKwMBAER0dLYYOHSrmzJkjzp07V6w69urVS33egIAAkZ6eXtyX6ZCiKOLAgQPigw8+EMOGDRMtWrQQQUFBQqPRCH9/f1G3bl3Rp08f8dZbb4mzZ88WuT2TySSWL18unnzySXHbbbeJmjVrCp1OJyIiIkT79u3Fa6+95tJ2bGVlZYmFCxeKYcOGiaioKOHv7y+0Wq0IDw8Xd9xxh5g+fbpLf1Pb93J5BlghLJ+NadOmiVatWomgoCAREBAgmjZtKp566inx77//FuOvIcTDDz+sPvf7779frHWLw5UcIYQlxFobSRyF2OTkZPHxxx+Lvn37ijp16ghfX1/h6+sratWqJe68807x4osvii1bthSrC++iRYuKfSxcUJcuXQQA0axZM6EoSrHXd0QSopTD4xKRW/z+++/o378/AODZZ58t9oBCVHpHjx5VR8hz9X+wefNm9OnTB4BljsP/+7//K8sqEnnEJ598ghdeeAEajQaxsbGl7kJIRESV27lz59Su+F9//TUmTpzotm2X7/BqROSQdQ7ioKCgMr0WlRz74osv1PuuXntrey1JZZj7lcieiRMnolatWjCbzZg9e7anq0NERBXc+++/D8AyI4q7ryNmgCWqIKwB9oUXXkBERISHa1P57Nixw+n8s19++aU6GFDdunVxzz33FLnNw4cPqwPU9O7d2+W55Yi8jZ+fH958800AwLfffosrV654tkJERFRhxcTEYNGiRQCAt99+W53e0V3YhZioArhx4wZq1KiB6tWr49y5cwgKCvJ0lSqdJk2aIDs7GwMGDEDbtm0REREBo9GIc+fOYc2aNTh06JBa9pdffnEYYH/77TcoioLTp09j9uzZ6uh8O3fuRNeuXcvltRB5gqIo6NChAw4ePIinn37a6dzXRERUdT322GOYN28eOnfujF27duWbZcMdGGCJqEpo0qQJzp0757SMn58f5s6di9GjRzssY28n7Or1shs3boTBYCi6snZUr14d3bp1K9G6RERERJUFAywRVQl79+7F6tWrsXfvXly+fBmJiYkwGAwIDQ1F06ZN0bt3b0yaNKnIOeKsATYwMBBNmzbFpEmT8Mgjj7g0t1lUVBQuXLhQovr36NED27dvL9G6RERERJWF4xm/iYgqkTvuuAN33HFHqbfDc35EREREnsMWWCIiIiIiIvIKHIWYiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyChzEiYiIKhUhBLKysmAwGOzesrKykJWVhZycHOTm5ua72XssNzcXZrMZZrMZiqIUul/wJ2AZrdqVm0ajgU6ng1arhU6nU2+Oftfr9dDr9fDz88t3v+Dver0egYGBCAgIgE6n8/B/hIiIyH0YYImIqMIRQsBgMCA1NRXp6elIS0tDWlqa3fvWnxkZGWpA5fiEN1nDrL1bUFCQ+jMkJATBwcEICQlBSEgIAgMD3T75PBERUWlxFGIiIioXQghkZGQgMTERycnJSEpKQnJycqH71t9zc3NL9XySJMHf39/uzc/PD5sX7YCkAFAkmxsgFfgdQrKUgwQI5N3y7sPmvgAk62M2i2GbASVAXSJZb8JyQY8kICQAssj3GGRAWH+XBaARGDjxbmRlZSE7OxvZ2dlqq3LB30tDq9XmC7S2t+rVq6u38PBwBAcHM+wSEVG5YIAlIqJSE0IgNTUVCQkJuH79unor+Ht2dnaxtqvX6xEUFISgoCBUq1YNQUFB2LXyL0gmGTDJkIyS5adJBkwSYJYgmSXALFvCKKpuqBIQgFYAGgVCa7kvtAqgyfupFRj6fH9kZGQgNTUVKSkp6s/ihl+dTofw8HCEh4fnC7bVq1dHrVq1ULNmTURERECrZccvIiIqHQZYIiIqkhACycnJuHr1ar7blStXEB8fjxs3brjcYhoYGIjQ0FCEhobi362ngFwZklGGlCsDRut9jeW+UnUDqCcJWQBaBUKnADrLT+v9fk/2RGJiIhITE3Hjxg2kpKS4tE1ZlhEeHq4GWns/9Xp92b4wIiLyegywREQEADCZTLh69SouXryIS5cu4cqVK2pQjY+PL7L1VJIkhIaGokaNGoiIiMCu5X9DytFAypXVn8jVMJRWMkISgI8C4WOG8FEAHwWj3hiCxMREJCQkID4+HgkJCTAajUVuq3r16qhXrx7q1q2LunXr5rvv7+9fDq+GiIgqOgZYIqIqRAiBxMREXLp0CRcvXkRcXBwuXryIixcv4sqVK+oouvZIkoSIiAjUrl0bRzeegpStsQTTvJ/IlSEJhlMqTEBYWnL1ZghfBcLXjMHP98a1a9fUW2ZmptNthIWFqYG2Xr16aNCgAaKiolCnTh12TSYiqkIYYImIKiEhBBISEhATE6PeYmNjERcXB4PB4HA9X19f1K9fH/Xr18efi/blC6nI0TCgUpkR2ryA62fC2FnDcenSJVy+fBmXLl1Camqqw/W0Wi3q16+vBtoGDRqgQYMGqF+/Pnx9fcvxFRARUXlggCUi8mJCCCQlJSE2Nhbnz5/P99NRi5Ysy6hduzbq1auHv388CilLk3fTWlpRq/DAR1QxCY013Jox7kNLuLWekHE04JT1fd6wYUM0adIEjRo1QpMmTVCnTh3IslzOr4CIiNyFAZaIyEsoioLLly/j9OnTOHPmjHpzNIiORqNBZGQkLuy/AsmgvXnLZksqVQ4CAvBVIPxMUPxNGPBsT1y4cAGxsbFIT0+3u46fnx8aNWqExo0bo0mTJmjcuDEaN27Ma2yJiLwEAywRUQVkNBoRExOTL6iePXvWbmuTJEmoW7curvxzHVKmTVDNYlClqkm95tbfDMXfhH7PdMe5c+cQExPjcLTsunXromnTpmjevDmaNWuGZs2aISAgoJxrTkRERWGAJSLyMCEELl26hBMnTuD48eM4fvw4zp07Z3fUVh8fHzRu3BintsZCztRCytBZwipH9iUqkoCA8DNDBJgw8u17cPbsWZw7dw43btywWz4yMlINtM2bN0d0dDSn+iEi8jAGWCKicpaSkqKG1RMnTuDEiRN2uzsGBgYiOjoaR9adgpShhZSpg2TQ8BpVIjcTWgUiwIgJn4/AqVOncPLkSVy7dq1QOVmWERUVhRYtWqB169Zo3bo1IiMjIUn8TBIRlRcGWCKiMqQoCmJjY3H06FH8888/OH78OK5cuVKonI+PD6Kjo3FyYwykdC3kDB2QzbBK5ClCp0AJNGLsx/fh5MmTOHnyJJKSkgqVq1atmhpmW7dujebNm7OVloioDDHAEhG5kdFoxKlTp3DkyBEcOXIE//77L9LS0gqVi4yMxKW/EiCn6yzdgDO1vF6VqAITEICPJdSOeGcQ/v33X5w8ebLQNbUajQbR0dFo1aoVWrdujdtuuw3h4eEeqjURUeXDAEtEVApZWVlq6+rRo0dx/PjxQge0er0eLVu2xD8/nYKcpoOUroNk5jQeRN5OSAIiwIQn//cQjh07hqNHj9q9njYyMhJt27bFbbfdxkBLRFRKDLBERMVgNBpx/PhxHDx4EAcOHMDx48dhMpnylQkODkb6+WxIaTrIqT5sXSWqIqzT+ihBRgx5pTeOHDmCs2fPouChFgMtEVHJMcASETlhNptx9uxZHDx4EAcPHsSRI0cKTWVTo0YN3Pg3DXKqDlKaj2X6Gl67SkSwDBClVMvFsDf64vDhww4DbYcOHdChQwfcdtttnJOWiMgJBlgiogISEhKwf/9+7Nu3DwcPHiw0QnBwcDDSz2ZDTvGBnOrDwZaIyGVFBVqtVos2bdqogTY6OhqyzEsOiIisGGCJqMozGo04evQo9u3bh7179yImJibfcn9/f2RfMkFK8YGc4mOZd5WBlYjcQGgVKMG5GDS9J/bv34+rV6/mWx4cHIz27durgTYiIsJDNSUiqhgYYImoSrp27Rr27t2Lffv24cCBA/m6BUuShJYtW+Lkr7GWwJquY2AlojInIAC9GU8tGYu//voLBw8ehMFgyFcmOjoaXbp0QefOndG8eXO2zhJRlcMAS0RVgqIoOHnyJHbt2oWdO3cWamUNCQlB2ulsyEk+kFN8IZl4UEhEniUkARFkxIMfDcZff/2FkydP5utuHBYWhjvuuANdu3ZF+/bt4efn58HaEhGVDwZYIqq0jEYjDh06hB07dmDXrl35preQZRktW7bEifUxkJN8LSMFs5WViCowoVUwde1j2LNnD/bv35+vddbHxwdt27ZFly5d0KVLF9SsWdODNSUiKjsMsERUqWRkZGDv3r3YuXMn9u7dm+8Az8/PDzkXFciJvpCT2cpKRN5LSAKiWi7uffNu7N69u9C1sy1atECPHj3Qo0cP1K1b10O1JCJyPwZYIvJ66enp2LlzJ7Zu3YoDBw7km5c1LCwMKceyICf5Wq5n5XysRFTJCAgIPzMenfsAdu/ejaNHj+brahwdHY0777wTPXr0QFRUlOcqSkTkBgywROSVMjIysHPnTmzbtg1//fVXvtDaoEEDXNp5HXKiHlIGuwYTUdUidGY8s2Ic/vjjDxw6dAhms1ldFhUVpbbMNm7cGJLE/SMReRcGWCLyGgaDQQ2t+/fvh9FoVJc1atQIF7Zdg3xDDzlL68FaEhFVHEKr4Pk1j2D79u2FeqhERkaiT58+6N27N7sZE5HXYIAlogrNaDRi7969+P3337F3717k5uaqyxo0aIBLf95gaCUicoHQKJi2/kls374d+/fvz7c/bdWqFXr37o277roLYWFhHqwlEZFzDLBEVOEIIXD8+HH8/vvv2Lp1K9LS0tRl9evXx5VdSZbQamBoJSIqCaFRMPXnx7Bp0yYcPHgQiqIAADQaDdq1a4fevXuje/fuCAgI8HBNiYjyY4AlogrjypUr2LhxIzZu3IhLly6pj4eHhyPlnyzI1/Wc7oaIyM2EzownFz+IzZs348SJE+rjPj4+6N69OwYOHIh27dpBljlyOxF5HgMsEXmUwWDAli1b8Pvvv+PIkSPq43q9HrlxgCZBDynFh6GViKgcCL0JD381BJs2bcLFixfVx2vWrIn+/ftjwIABqFOnjgdrSERVHQMsEZU7IQROnDiBX375BVu3bkVWVhYAWEbDTNJBk6CHnOgLSeHZfiIiTxAQEIEmDHrzTmzevBkZGRnqsrZt22LQoEG48847odfrPVhLIqqKGGCJqNykp6dj48aN+OWXX3D+/Hn18cjISFz+Iwma63pIuRoP1pCIiAoSksCMjZOwfv16HDhwQJ1jNiAgAL169cI999yDFi1aeLiWRFRVMMASUZkSQuCff/7BunXrsH37dnXUSx8fH5guydDE+0FK07GLMBGRFxC+Zjz89b3YsGEDrl69qj7evHlzDB06FL169WKrLBGVKQZYIioTBoMBv/32G3788UfExcWpjzdu3BgXNiZATtBDMrOLMBGRNxIQmP33y1i3bh3++OMPdV7uoKAgDBgwAEOGDEH9+vU9XEsiqowYYInIrS5evIgff/wRGzZsgMFgAAD4+fkhJwaW1tYMjiJMRFSZCK2CCd/dh7Vr1yI+Pl59vH379hg2bBg6d+4MrZbTnhGRezDAElGpKYqCffv24ccff8S+ffvUxyMjI3FlWzJbW4mIqgABgbd3TcVPP/2EvXv3qtfKRkREYNiwYbj33ntRrVo1D9eSiLwdAywRlVhmZiZ+/fVX/Pjjj7h8+TIAy0jCUqIOmiv+nP6GiKiKEr5mPPB//bBu3TqkpqYCsEyPNmDAADzwwAOoV6+eh2tIRN6KAZaIiu3GjRtYuXIlfv75Z2RmZgIAAgMDkXVKgeaqH6RsdhUjIiLLCMZT1z2KFStW4Ny5cwAsJzq7deuGBx54ALfeeqtlCjUiIhcxwBKRy2JjY7Fs2TJs3LgRJpMJANCgQQNc3pJk6SbMeVuJiMgOAYFZf83AihUrsGfPHvXx5s2bY8SIEejZsyevkyUilzDAEpFTQggcPXoUP/zwA3bv3q0+LqXqoLkUADmZ3YSJiMh1ip8JA97qit9++02dWq1GjRp48MEHcc8998DX19fDNSSiiowBlojsUhQFu3btwg8//IBjx44ByLu+9boPNJf9Iaf7eLiGRETkzYRWwZi592LNmjVISkoCAISGhuKBBx7A0KFDERgY6OEaElFFxABLRPkoioI///wTCxcuVK9X8vHxgemCxhJceX0rERG5kZAEnvlxDJYsWaJOwxMYGIj77rsPw4cPR0hIiGcrSEQVCgMsEQEAzGYztm/fjoULFyI2NhYAEBAQgOyTgOaKHySjxrMVJCKiSk1IAi/++jgWL16MCxcuALCMXHzvvfdi9OjRCA0N9XANiagiYIAlquJMJhO2bt2KRYsWIS4uDkDeiMLHBTSX/Tl/KxERlSsBgde3P4vvv/8ep06dAmAJssOGDcODDz7IFlmiKo4BlqiKUhQFf/zxB+bNm6cG16CgIBj+VSxzuDK4EhGRBwkIvLvnRcyfPx8nTpwAAPj5+WH48OEYOXIkqlWr5uEaEpEnMMASVTFCCOzbtw9z587FmTNnAADBwcHI+MdsmcOVwZWIiCoQAYG3d03FvHnzcPr0aQCWS1weeOABjBw5EgEBAR6uIRGVJwZYoirkyJEj+Pbbb3HkyBEAgL+/P3JOSGxxJSKiCk9A4I0/nsP8+fPVQQaDg4Mxbtw4DBkyBDqdzsM1JKLywABLVAWcP38e33zzDfbu3QvAMqqw+bwWmksBkEwMrkRE5D0EBF7Z8lS+S2Dq1KmDxx9/HHfddRdkmd9rRJUZAyxRJZaYmIj58+dj/fr1UBQFGo0G4pIPtBcDIOVyVGEiIvJeAgLP/jQW8+fPV+eRbdasGSZOnIh27dp5uHZEVFYYYIkqoezsbKxYsQJLlixBVlYWAEC+4QtNbCDncSUiokpFyAJj5g3G0qVLYTAYAACdOnXC008/jQYNGni4dkTkbgywRJWIoijYtGkTvv32W1y/fh0AIKVroY0Jgpzm4+HaERERlR2hVTD4wzuxdu1amEwmaDQa3HfffRg/fjyCgoI8XT0ichMGWKJK4uTJk/jkk0/UqQZq1qyJxD+yIN/QQ4Lk4doRERGVj+/iPsGXX36JXbt2AbAM9PTYY4/hnnvugUbDy2eIvB0DLJGXS01Nxbfffot169ZBCAE/Pz/kntBYRhZWGFyJiKhqem/fNHz++eeIjY0FADRu3BjPPvss2rZt69mKEVGpMMASeSmz2Yx169Zh7ty5SEtLAwDICXpoYwIhGXmGmYiISEBg0soHMX/+fKSnpwMA+vbti8mTJyMsLMzDtSOikmCAJfJCx48fx5w5c9QJ3aVMLbTneJ0rERGRPUKrYOAHXbF27VoIIRAYGIgnn3wSgwcP5rQ7RF6GAZbIixgMBsydOxc//vij+gWc/Y8E+aofr3MlIiIqwmfHZuLjjz9WTwC3aNECU6dORdOmTT1cMyJyFQMskZfYvXs35syZg4SEBADsLkxERFQS1m7Fc+fOhcFggCzLuP/++/HYY4/Bz8/P09UjoiIwwBJVcImJifjss8+wbds2ywPZGujOBkFO8fVsxYiIiLyY8DGj2/RbsHXrVgBAnTp1MG3aNNx+++0erhkROcMAS1RBCSHw+++/47PPPkNGRgZkWYYUp4cmLpCjCxMREbnJO3v+gw8//FDt4TRkyBBMnDgRAQEBHq4ZEdnDAEtUASUmJuKjjz5S57CTMrTQnqkGOVPn4ZoRERFVPkKjYOCsrvjpp58AADVq1MCLL76ITp06ebZiRFQIAyxRBbN161Z88sknSE1NhVarhTirh+aSPwdpIiIiKmOz/p6B2bNn48qVKwCAQYMG4ZlnnoG/v7+Ha0ZEVgywRBVEamoqPvnkE/VaHClDC+3papANbHUlIiIqL0IWGPJJD6xatQpCCNSpUwevvvoqWrdu7emqEREYYIkqhL/++gvvvvsukpKSoNFogBg9NBcDIAm2uhIREXnChwdfwbvvvotr165BlmWMGTMG48aNg1ar9XTViKo0BlgiDzIajfjf//6HpUuXAgAkgwba08GQM9jqSkRE5GlCo6DnG22xceNGAEDz5s3x2muvoX79+h6uGVHVxQBL5CGXLl3CzJkzcfLkSQCAfNUP2pggjjBMRERUwUzfNBEff/wxMjIyoNfr8fzzz2PAgAGerhZRlcQAS+QBv//+O+bMmYOsrCwEBQUha78MTaLe09UiIiIiB5bEf4n33nsPBw8eBAAMGDAAU6ZMgZ+fn4drRlS1MMASlaOcnBx88skn+PXXXwEAUqoOulPBkHI1Hq4ZERERFUVAYMx3g/Hdd99BURRERUVh5syZiIqK8nTViKoMBliicnLlyhW89tprOHPmDGRZhhTjZxmoidPjEBEReZVZf8/AzJkzkZSUBL1ejxdeeAH9+/f3dLWIqgQGWKJysGfPHrz99tvIyMgAjBJ0J4Mhp/p6ulpERERUQkJnxi1PReHvv/8GANx777147rnnoNNxIEaissQAS1SGzGYzFixYgIULFwIApDQddCfZZZiIiKgysHYpnj9/PoQQaNOmDWbOnInw8HBPV42o0mKAJSojmZmZmDlzJvbs2QMAkK/kjTLMuV2JiIgqlZm7XlB7WkVERODtt99Gy5YtPV0tokqJAZaoDFy5cgUzZsxATEwMfHx8oBzVQ3OdoxQSERFVVvMvzMHLL7+MCxcuQKfTYerUqRg4cKCnq0VU6TDAErnZ4cOH8dprryE1NRXIkaE7EQI5g9fDEBERVXZCo6DTtObYsWMHAGDkyJGYNGkSZFn2cM2IKg8GWCI3WrduHebMmQOTyQQpXQvdiRBe70pERFSFCAiMnjcI3333HQDgzjvvxKuvvgq9nvO9E7kDAyyRGwgh8O2332LJkiUAAPm6L7RngiEpvN6ViIioKnpp45N4//33YTQa0aJFC7z//vsICwvzdLWIvB4DLFEpmUwmzJo1C7///jsAQBMXAE0c53clIiKq6j469CpeeeUVpKWloVatWpg9ezaioqI8XS0ir8YAS1QKBoMBr7/+Ovbv3w+NRgPpZAA01zhYExEREVnMvzAH06ZNw+XLlxEYGIhZs2ahTZs2nq4WkddigCUqoeTkZLz00ks4efIkYJagPRkMTbKvp6tFREREFYzQKmj6WE38+++/8PX1xTvvvINOnTp5ulpEXolDohGVQHx8PCZPnmwJr0YJuqOhDK9ERERkl2SScfrbBHTq1Ak5OTmYMWMGtmzZ4ulqEXkltsASFdPly5cxZcoUXLt2DciWofs3FHK21tPVIiIiogpOSALdX2+DLVu2QJIkTJ06Fffee6+nq0XkVRhgiYrhwoULeP7553Hjxg1IBg10/4ZymhwiIiJymYDAgA87Y+3atQCASZMm4cEHH/RwrYi8B7sQE7no3LlzePbZZy3hNVMD3VGGVyIiIioeCRI2vLgHY8aMAQB8/fXXWLZsmYdrReQ92AJL5IKzZ89iypQpSEtLg5ShtbS8mnj+h4iIiEruwf8NwIIFCwAATz31FEaOHOnZChF5AQZYoiLExsbi2WefRUpKCqT0vPBqZnglIiKi0rMNsU8//TRGjBjh2QoRVXA8Cidy4vLly3jhhRcs4TWD4ZWIiIjc64fHfsW4ceMAAF988QVWrlzp4RoRVWw8Eidy4Nq1azcHbMrUMLwSERGR20mQsPTxDWqI/fzzz/Hbb795uFZEFRePxonsSEpKwvPPP4/4+HhIWRpe80pERERlxhpirdfAzpo1C7t27fJwrYgqJl4DS1SAwWDAc889h1OnTgHZMnyOhHG0YSIiIipzAgK93rkdv/32G3x8fPDRRx/htttu83S1iCoUBlgiGyaTCTNmzMC+ffsAowSff8IgZWs9XS0iIiKqIgQEOrwUjV27diEgIACfffYZoqOjPV0togqDfSKJ8gghMGfOHEt4NUvQHQtleCUiIqJyJUHCXx+ewa233orMzEy89NJLuH79uqerRVRhMMAS5Vm0aBHWrVsHCEB7qhrkDJ2nq0RERERVkKRIOPHNFTRs2BA3btzAjBkzkJWV5elqEVUIDLBEALZs2YJ58+YBALTngqBJ0nu4RkRERFSVSWYZ77//PoKDg3H69Gm88847UBTF09Ui8jgGWKryzpw5gw8++AAAoLnkD028v4drRERERASMq/cc3nvvPeh0OuzYsQNz5871dJWIPI4Blqq0lJQUvPLKK8jJyYGU7ANNbKCnq0RERESkeuHWmXjppZcAAEuWLMHGjRs9XCMiz2KApSrLZDLhjTfeuDnX68lgSJA8XS0iIiKifD7sPxdjxowBAHz00Uc4f/68h2tE5DkMsFRlff311zh06BBglqA9EQLJzI8DERERVUzLn/wd7du3R3Z2Nl577TVkZmZ6ukpEHsEjdqqSdu7ciZUrVwLIG3HYwOlyiIiIqOKSIOH1119HREQELl68iFmzZkEI4elqEZU7Bliqcq5du3Zz0KbL/hxxmIiIiLzCA2GPY+bMmdBqtdi+fbt6Mp6oKmGApSrFZDLh7bffRlpaGqR0LQdtIiIiIq8ypc2beOqppwAA33zzDc6ePevhGhGVLwZYqlIWLlyII0eOACYJulPBkAQHbSIiIiLv8vUDS9G1a1f1xHxOTo6nq0RUbhhgqco4duwYvv/+ewCA9mwQpGxe90pERETeR4KEadOmITQ0FDExMZwflqoUBliqEnJycvD+++9DURTICXpobvh5ukpEREREJTYi/AlMnz4dALBixQocOHDAwzUiKh8MsFQlfPfdd4iLiwNyZWjPB3m6OkRERESl9nrXORgyZAgA4P3334fBYPBwjYjKHgMsVXrHjx/HsmXLAOR1HTbxbU9ERESVw4aX9qBOnTpISEjA//73P09Xh6jM8UieKjWj0YgPPvjgZtdhTplDRERElYikSJg6dSoA4Mcff8TJkyc9XCOissUAS5XaqlWrEBsbC+RK7DpMREREldLLnWajT58+UBQFH374IUwmk6erRFRmGGCp0rpx4wYWLFgAANDGsuswERERVV5PP/00qlWrhjNnzmDVqlWerg5RmeERPVVaX331FbKysiCl6SAnsOswERERVV4jwp/ApEmTAAALFixAcnKyh2tEVDYYYKlSOnz4MDZv3gwIQHsuCBIkT1eJiIiIqEx9Mvg7NG/eHAaDAfPnz/d0dYjKBAMsVTqKouCLL74AAMjxfpAzdR6uEREREVHZkyDhqaeeAgD88ssviImJ8XCNiNyPAZYqne3bt+P06dOASYL2QqCnq0NERERUbv7T9h3ceeedUBQFX331laerQ+R2DLBUqZhMJsybNw8AoLnsz4GbiIiIqMqZOHEitFot9u3bh7///tvT1SFyKx7dU6Xy22+/4eLFi4BRguaKv6erQ0RERFTuJkQ+jyFDhgCwDOgkhPBwjYjchwGWKo3c3Fx89913AADNxQBIZr69iYiIqGoaPXo0fHx8cOTIERw6dMjT1SFyGx7hU6WxceNGXL9+HciRobnK1lciIiKquh6sMQmDBg0CYGmFJaosGGCpUlAUBcuWLQMAaK74QxKcNoeIiIiqttGjR0On0+Hw4cM4fPiwp6tD5BYMsFQp7Nq1C3FxcYBJgibez9PVISIiIvK40bWewsCBAwEAP/zwg4drQ+QeDLBUKSxduhQAoLnqx2tfiYiIiPKMGDECkiRh7969loEuibwcj/TJ6x0/fhz//vsvoIAjDxMRERHZeKTBC+jcuTMAYPXq1R6uDVHpMcCS11u7di0AQL6uh2TUeLg2RERERBXL8OHDAQAbNmxARkaGh2tDVDoMsOTV0tPTsXXrVgDgta9EREREdkzv+AEaNGiArKws9biJyFsxwJJX27hxI3JyciBlaiGl6xwXlDgqMREREVVSssZyc0CCpE6p8+uvv5ZXrYjKBAMsebUNGzYAsLS+SrATUiWJ4ZWIiIiqBidB9n/jVkCj0eD48eOIjY0t33oRuREDLHmtuLg4nD59GlAs178WUjC4MsgSERFRZWMvsNp5TDJq0KVLFwA3GwCIvBEDLHmtzZs3AwDkFB9IpgJvZYZVIiIiqsrshNg+ffoAALZt2wYhRHnXiMgtGGDJKwkhsGXLFgB2Wl+dhVcGWyIiIqosnFz3am/5O72/gF6vR3x8PE6dOlWGFSMqOwyw5JUuXLhgmYxbAeQkX8uDrl7vyhBLRERE3q6o8GpbLq+spEjqnLDbtm0rq5oRlSkGWPJKe/bsAQBIKT6QzDJDKREREZEzeSG2Z8+eAIAdO3Z4sDJEJccAS15p165dAABNkm/JwisDLxEREXkrV1tf7az3bt8voNFocOnSJVy5csW99SIqBwyw5HXS09Px77//AgDkFDujD7uKIZaIiIi8TUnDax5J6NCqVSsAwF9//eWOGhGVKwZY8jr//PMPFEWBZNBAyindTpyIiIioqunYsSMAYN++fR6uCVHxMcCS1zl8+DAAQErzKf3G2ApLREREXkLW6yH76Eq9nQ4dOgCwHFMpilLq7RGVJwZY8jrWAKvJCnTPBhliiYiIqIKT9XpAlgFZLnWIndLj/6DX65GRkYG4uDg31ZCofDDAklcxGAw4e/YsAECjhEH283PPhhliiYiIqCKT5Xz3ZR9diYKsJiwEkkaLFi1aAIA6rgiRt2CAJa9y9uxZy/WvRh1kxQdSQID7QiwRERFRBSTr7QxaWYLWWE1YCKCxjB/SunVrAMDRo0fdUUWicsMAS17l9OnTAAA5J29HLkvuaz1lKywRERFVMGrXYYcFihFiNTcHv7S2wJ45c6Y01SMqdwyw5FVuBtibra6Svz+7EhMREVGlU2R4VQsWHWI1YSH5fp/54EIAwIULF2AymUpaRaJyxwBLXuXcuXMAAMkmwEKW3NuVmCGWiIiIPMzl8Kqu4DjE2nYdtpJMOvj5+cFoNOLSpUulqClR+WKAJa8hhFB3sHJugSl0GGKJiIioMilOeLVZp2CItRdeAUCChEaNGgG42UBA5A0YYMlrJCYmIisrCxCAZLQzB6w7r4clIiIi8hC7gza5vHKBEGsnvFrVr18fAHD16tWSPx9ROdN6ugJErrK2vkomHSQH514kf3/IQkDJyir9E0oSIETpt0NERETkIkmrLVnrq628ECsFBjgtVqtWLQAMsORd2AJLXiMhIQGAg9ZXK2tXYn//0j8hwysRERGVI0mrBSQZwlj6QZVO/t8tOPFuI6dlateuDYABlrwLAyx5jcTERACWFlinZMnSEluaEMvwSkREROXIGl6tShNiT85pDX14FvRh2TjxVpTDcnOeWgbgZiMBkTdggCWvoQZYsws930sTYhleiYiIqBwVDK9WJQmx1vBqpQ/Pwom3ouwGWesxVWpqarGfh8hTGGDJayQlJQEAJJOLl26XJMQyvBIREVF5sxNerYoTYk9+nD+8WunDs9Qgm+9pzZYBntLS0mA2m11+HiJPYoAlr5GZmQkAkBTHo+kVUpwQy/BKRERE5UzSFn1i3pUQe/Lj1tBXdz6IZaEQmxdghRDIyMgo8jmIKgIGWPIaWdaRhZVivm1lqejR/BheiYiIqJw56jpsT1EhtqjwqpazCbESZPW4igGWvAUDLHmN7OxsAIBU3AALQNLrHbfCMrwSERFROStOeLVyFGJPfty6WNvJ1xIrJACA0Wgs1jaIPIUBlryGNcBClOBt66grMcMrERERlbOShFergiHWla7D9lhDrMQAS16GAZa8hiht2CwYYhleiYiIqJyVJrxaWUPsyY9KFl6t9OFZEFrLtg4dOlSqOhGVFwZY8hqSJJV+I65cD0tERERUVkoZXq2ujbsV+oiSh9eCTKaSzztLVJ54JE9ewy0BNisbIivL8uXhju0RERERFYMwlb6rbsKj7ZBbTQL+DSp9hSRLj7RWrVqVfltE5YABlryGRmMZ6v3agNol20BWNhSDAULJ6zrMEEtERETlTYhShdiER9shN9hy/KLJRqlC7Du3rkVgkAIACAgIKPF2iMoTAyx5Df+8a1eHdt2B2MeaFG/lguHViiGWiIiIylsJQ6xteLUqaYh959a1iNLdQE62ZXv+jmZrIKpgGGDJa1h3rDVMyZj68I/FCrFCiMLh1YohloiIiMpbMUPs9UcKh1crTXbxntoaXs1mwJhriQMMsOQtGGDJawQGBgIAsg0ybtPHWULs4y6EWOt1r84wxBIREVF5czHEXn+kHXJCijhOcbEV1hpeASA3++Y2GWDJW2g9XQEiV1kDrCHDci3sbfo4TB39Iz7GfYiae9b+So66DtsjyQAUTq9DRERE5aeI4w6XwissrbDmf4OA1ukIT8nAA1sOoMOxCwjIzkGm3hf7W0Wh4bPXUU+Xoq6TnmY5pgoICICPj0+pXgZReWGAJa8REREBAEhN1qiPWUPs0WH1sHFNx/xBtjjh1YohloiIiMqZMBkhaXWFHnc1vFr5p+di+nsbcN8/+6EzK/mWdTtyDsoq4MbwQMS9EQqhl5CWd0wVHh5euhdAVI4YYMlrWANsSpIm3+O36eNwmz4ObUZfwsfiPkT972zJwqsVQywRERGVp7yuxLYh9vqE4oVXX2Mu/rtiLjpePOewjGwEaizNgP68EacXRiA12RIFGGDJm/AaWPIaN1tg7Z93sV4XGze+ScnDqxWviSUiIqLyZHM97PUJ7ZATWrzjkBmbf0LHi+dQ1NGPAFBtXw4i30pBkHgFAFC9evUSVJjIMxhgyWvUrm2Z/zXpuhaKYr/MO3vuQf0NSZB8fcuxZkRERERuIAQkjVzs8Fo9Iw3Djv4FAChqTevy6qsycPH0aQBA3bp1i1lRIs9hgCWvUbNmTfj4+MBklJB03X4rrCZZCzkhGVJgAGQ/fcmfTLALMREREZUfyddXPQHfYPmlYq17/5F90CnmYq0jG4FLhw8DACIjI4u1LpEnMcCS19BoNKhfvz4AIOFq4YEOhm+fhOjv0wAAkiSVPsQSERERlQPJ19dy7JJ3+ZISn1Cs9dvHOb7u1Zm45GQAUI+viLwBAyx5FesZwmuX8wfY4dsnofmnWZDjE9XHShxi2fpKRERE5cQaXgsqTitsQG5OsZ83WadDCizHSwyw5E0YYMmrREdHAwAuxdycq8xeeLUqdohleCUiIqJy4ii8ApZWWFdDbKZP8cf+OBUYCMDS+urv71/s9Yk8hQGWvErz5s0BABdtAqwmSWc3vFq5HGIZXomIiKicOAuvVkp8AhqsuFzktqrfl1Ls57cGWOuxFZG3YIAlr9KsWTMAQGKCDpnpMh74YxKaLE4vcr0iQyzDKxEREZUTV8KrlXL1mtMQ+9Hj8xA9zh+i8PAgTp2oVg3AzWMrIm9hfyhXogoqKCgI9evXx8WLFzFxzVA0/Skbmqs3XFpXkiQgMAAaPz1EVjaUrOwyri0RERFRfsUJr1bK1WsA8k9189Hj8wAA/f1zAH8tMKIasCQNAs6n0hF5t38jIgCzGS1btixWXYg8jS2w5HVuu+02AEDtXxNcDq9WkiRB0mrzt8ay9ZWIiIjKQUnCq5VtK+xHj89Df/8cS3jNI96uDtFZ79I8sGc6hyDNbIafnx9bYMnrMMCS17n99tsBAEK5XuJtqF2K9b4Mr0RERFSmrHO8ljS8Aje7ElvDayF+MsSSOhAPV3PYnVjoAPFwNfzz9JcAgFtuuQVaLTtkknfhO5a8Ttu2bQEAim82hGyCpJTsbSxJEoRG486qERERERUicnMh+xZ/pOBC20lLtx9erfxkiA9rANPCIH5Ig7Q7C8hUgAAZoosf8FA1IEKLg/93BMDNYyoib8IAS14nLCwMjRo1wvnz52EOMkCbWq1E2xGGLCiZBjfXjoiIiKgAN/T2kgL8AVmDHk8+gT/++63zwhFa4LkwiOcKL+r63OMITNoEAOjQoUOp60VU3tiFmLxS165dAQCmwFSgBF1fhCEL5oxMQDG7u2pEREREhSg5TlpOnZAC/NXwCgABe2Nw56QnSrStLs9PROC/p5GTk4MaNWqgSZMmJdoOkScxwJJX6tatGwDA7JsKoZOLHWKFEAyvREREVH6EKHaIVYOrnP+Sp8DdMcV++i7PT0ToX/HoO94yaFPXrl1LdU0ukacwwJJXatasGSIiIgBZgVmfBui0gN7XpSDLrsNERETkEcXoSmzb6mqPq62wXZ6fqIZXAYGdO3cCuNmbjcjbMMCSV5JlGd27dwcAmPwSAUkCZNkSZJ2EWHYdJiIiIk9ypRW2qPAKWFphuz/1pNMyXV6wBNfQv+IBWHquJScnIzg4WJ3VgcjbMMCS1+rbty8AwOyXDCHlBVJJchpi2XWYiIiIPKqIrsSuhFeroJ3nHS7r8sJEhO6Pz/dYz4eiAAC9evXi9DnktRhgyWu1aNEC9erVAyQFJn3SzQUOQiy7DhMREVGFYKcrccHBmlzV/enCrbCdpxYOr0Iy488//wQA9OnTp1jPQVSRMMCS15IkCf369QMAmPxvFFxY6LpYtr4SERFRRWHbCutosCZXBO242QrbeepEdJ46EWH74guVM+mTkJWVhTp16qBVq1YlqzRRBcAAS16tf//+kGUZim8aFG1W/oU218UKk4mtr0RERFRx5LXClqTVtaBuzzyJO160BFd74RUAGnX2AQAMHjyYow+TV2OAJa9Ws2ZNdOnSBQBg9L9mv5AkWb4k2PpKREREFYiSayx1eAWAoPX/IHyP/eAKAGZdJk6ePAmtVotBgwaV+vmIPIkBlrze0KFDAVi6EauDOdkQ6ZlQUtPKuVZERERERVDMUJKTS7y6SE+33EwmKNeuOyx39/gGAICePXsiJCSkxM9HVBEwwJLXa9++vWUwJ9kMk7+dnbdihjCZyr9iREREREUo6TGKNbha1xcORjZW5Fxs3LgRADBs2LCSVZKoAmGAJa8nyzJGjhwJADAGXoWAoi5j6ysRERFVdMVthbWG10LbsdMKO/T55jAajbjlllvQpk2bEteRqKJggKVKoX///ggPD4fQ5MLkZzMiMVtfiYiIqIJz9VjFtsuw3eUFWmGFZMLatWsBAA899FDpKklUQTDAUqXg6+uLESNGAACMQVchINj6SkRERJVGwS7Djti2wj78RjsYDAY0bNgQd9xxR1lXkahcMMBSpTFkyBAEBQVBaLNh1iex9ZWIiIi8hpKS6nCZs1bXQmXzWmGFZMLy5csBWFpfZZmH/VQ58J1MlYa/vz+GDx8OAMitdgkCwsM1IiIiInKNMOYWfqyILsPOjJjRBqmpqahfvz7uvvtud1SRqEJggKVKZeTIkQgNDYXQZsOov+rp6hARERG5zLYV1tUuw/aYE6+qra+PP/44tFqt2+pI5GkMsFSp+Pv7Y9y4cQAAU910CFkpYg0iIiKiisHaClvSVlergW+0R1ZWFpo3b44ePXq4q3pEFQIDLFU6gwcPRt26dQEfBea6Bk9Xh4iIiMhlpQ2viq8JP//8MwDgySefhCRJ7qoaUYXAAEuVjk6nw+OPPw4AMNczQPiaPVwjIiIiItcoBabCKQ4BgbYTo2AymdCxY0e0a9fOjTUjqhgYYKlSuuuuu3DLLbcAGgFTw3RPV4eIiIjINaJkg1AKsxnmYAP27dsHrVaLZ5991s0VI6oYGGCpUpIkCS+88AI0Gg2U6jkwh5b8bCYRERFRRSbMZghJQfW79ACAUaNGITIy0sO1IiobDLBUaTVq1AgPPPAAAMDUKB1C5rQ6REREVPEJs2uXPwmz2VJWCIz6pj/i4+NRs2ZNjBkzpoxrSOQ5DLBUqY0fPx4RERGAnxnmepmerg4RERFR0VzoRmwNrhACir8RP/zwAwDgmWeegZ+fX1nXkMhjGGCpUvP391evATHXz4QSaPRwjYiIiIhKzrbVFQCEJBA1Mhwmkwldu3ZF9+7dPVxDorLFAEuVXo8ePXD33XcDEmBqmgohsSsxERERVWz2uhHbtrpametl4syZM6hWrRr+85//cNocqvQYYKlKmDJlCsLCwiD8zTA3yPB0dYiIiIicswmpBVtdrZQAI9AoG4DlWCc8PLxcq0jkCQywVCUEBwfjxRdfBACY6xqgVMv1cI2IiIiIimav1RWwdB2OHB4Ks9mMO++809LbjKgKYIClKqNr164YMGAAIAHGpqkQWsXTVSIiIiJyyF6rq9Wgj7ri3LlzCA4OxgsvvMCuw1RlSEKUcLZkIi+UmZmJxx57DJcvX4ac6AvtiWBI4A6fiIiIvIc5PBumFqkAgA8//BCdOnXycI2Iyg9bYKlKCQgIwJtvvgmdTgclPAfmOgZPV4mIiIjIZcLXBN/2JgDAQw89xPBKVQ4DLFU5zZo1w9NPPw0AMEdlcGodIiIi8gpCEmg0JgKZmZlo1aoVHnvsMU9XiajcMcBSlTR06FD07NkTkAFj8xReD0tEREQVmoBAvw864eTJkwgKCsIbb7wBrVbr6WoRlTteA0tVVkZGBh5//HFcvnwZUqoOun9DIQleD0tEREQVj7mWAaYm6ZAkCR988AE6d+7s6SoReQRbYKnKCgwMxPvvv4+AgACIYCNMjdMhwPM5REREVLEowbkQzSzjdjz55JMMr1SlMcBSlRYVFYXXX38dkiRBqZUFpXaWp6tEREREpBK+Zvh3U2A2m9G7d288+OCDnq4SkUcxwFKV17lzZ0ycOBEAYGqUDiUkx8M1IiIiIgKERkHdEUFITU1F06ZN8dJLL3G+V6ryGGCJAIwaNQr9+vUDJMDYPBVKAEcmJiIiIs8RkkCryfUQExODsLAwvPvuu/D19fV0tYg8joM4EeXJzc3Fiy++iEOHDgG5Mnz+CYOUo/F0tYiIiKiKERAwNUuFEpEDf39/fP7554iOjvZ0tYgqBLbAEuXx8fHBu+++i8aNGwM+Coytkzm9DhEREZU7c1QGlIgcaDQavPPOOwyvRDYYYIlsBAYG4sMPP0TNmjUh/MwwtkqGkNlJgYiIiMqHqW4mzPUsIw7PmDED7du393CNiCoWBliiAqpXr46PPvoI1apVgwgywdgyhSGWiIiIypy5lgHmhhkALNPl9O3b18M1Iqp4GGCJ7GjQoAFmzZoFPz8/iJBcGJunQEgMsURERFQ2zDWyYGqSDgAYPXo0HnroIQ/XiKhiYoAlcqBVq1aYPXs29Ho9RFguTAyxREREVAbM1bNgbmYJrw888ACeeOIJTpdD5AADLJETt956K95//334+PhACc+FqVkqBBhiiYiIyD3M4dkQrTIhhMCQIUPw9NNPM7wSOcEAS1SEdu3a4d1334VOp4NSPQem5qlsiSUiIqJSM0dkQbTOgNlsxoABA/D8888zvBIVgQGWyAWdOnXCzJkzb4bYFhzYiYiIiErOXNMAc/N0mM1m9O/fH9OmTYMs89CcqCiSEIJH4UQu2r9/P1555RXk5ORAStVBdzwEkplfNkREROQ6U20DzI0t17wOHToUU6ZMYXglchEDLFExHTlyBC+99BIyMzMhpemgO8YQS0RERK4x1cuEOcoyVc7IkSMxefJkdhsmKgYGWKISOHXqFKZOnYq0tDRImVpLiM3VeLpaREREVEEJCJgbZsBc1wAAGD9+PCZMmMDwSlRMDLBEJXT+/HlMnToViYmJQI4M3bFQyAatp6tFREREFYyQBExNU6FE5AAAJk2ahAcffNDDtSLyTgywRKUQHx+PF198ERcuXABMEnQnQiCn+ni6WkRERFRBCI0CY8sUiGAjtFotZsyYgT59+ni6WkReixfuEZVCrVq18OWXX+KWW24BtALGVskwR2R5ulpERERUAQhfM+o8GAARbERAQAA+/PBDhleiUmILLJEb5OTk4L333sO2bdsAAJoLAdBcDIAEXtdCRERUFSlBuQi6S0JSUhKqV6+ODz/8EI0bN/Z0tYi8HgMskZsoioKvvvoKK1asAADI132hPRMMSWGIJSIiqkrMEVmQ22QjNzcXDRs2xOzZs1GzZk1PV4uoUmCAJXKzn3/+GZ988gnMZjOkDK1lrliOUExERFTpCQiYG2TAXN8y0nC3bt3w6quvwt/f38M1I6o8GGCJysDhw4fx2muvITU1FciVoTsRDDmdgzsRERFVVkKjWEYaDs8FAIwZMwaPPvooZJlDzhC5EwMsURm5evUqXn75ZZw7dw5QAO25IMjX/HhdLBERUSWj+JtQe2gA4uLi4OPjg5deeomDNRGVEQZYojJkMBjw/vvv448//gAAyAl6aM9W43WxRERElYQ5IgvaW3ORnZ2NiIgIvP3222jZsqWnq0VUaTHAEpUxIQSWLl2KuXPnWq6LzdRAezIEcpbW01UjIiKiEhKSgKlhOpQ6lunz2rdvj9dffx0hISGerRhRJccAS1RODh8+jDfffBNJSUmAWYL2TDVobug9XS0iIiIqJuFrhrF5CkSQCQAwduxYTJgwARoNB20kKmsMsETlKDExETNnzsShQ4cAAPJVP2hjgtilmIiIyEuYw7Oh72BGRkYGgoKC8Oqrr6Jz586erhZRlcEAS1TOTCYTvvvuO3z//fcAAMmggfZUMORMnYdrRkRERI4IWcDUKA1KrWwAQIsWLfDmm2+idu3aHq4ZUdXCAEvkIfv378d7771n6VKsAJrYQGiu+HOUYiIiogpGCTCi1r0BuHjxIiRJwsMPP4wJEyZAq+V4FkTljQGWyINSUlLwwQcfYPfu3QAAKdkHutPVIBl5DQ0REZGnCQiY6xggNc2GyWRCREQEXnnlFdx+++2erhpRlcUAS+RhQgisXbsWX3zxBXJzcwGjBO3ZatAkcoAnIiIiTxF6E4zRaRDBRgBA9+7dMW3aNAQHB3u4ZkRVGwMsUQURGxuLmTNn4uzZswAA+bovtOeqQTLJHq4ZERFR1SEgoNTKgra1EdnZ2fDz88NTTz2FwYMHQ5J4mQ+RpzHAElUgRqMRixYtwuLFi2E2m4FcGdpzQWyNJSIiKgfC12xpdQ3JBQC0bdsWL730EurUqePhmhGRFQMsUQV06tQpvPfee4iJiQHA1lgiIqKyZG111bUxISsrC76+vpg4cSKGDRsGWeZ3L1FFwgBLVEHl5uZi4cKF+OGHHyytsUYJ2pggyAl6jlRMRETkJoq/CaYmaRDVLNe6tmnTBjNmzEC9evU8XDMisocBlqiCO3nyJD744AOcP38eACCl+EB7NghyNofuJyIiKikhCZjrZ0JqlAOTyQQ/Pz889thjuO+++6DRcDYAooqKAZbIC5hMJixfvhzfffedZaRiBdBcDIDmUgAkwdZYIiKi4lCCc2FqnAbhbwYAdOnSBc8//zxq1qzp4ZoRUVEYYIm8yJUrV/Dxxx/jr7/+AgBIBg2056pBTvXxcM2IiIgqPqEzwxSVAaVmNgAgLCwMU6ZMQY8ePTjCMJGXYIAl8jJCCGzevBlffPEFkpOTAeQN8hQTBCmXXZ6IiIgKEpKAubYBvq0VGAwGAMCQIUPwxBNPICgoyMO1I6LiYIAl8lJpaWn43//+h59//hmKogBmCZqL/tBcZrdiIiIiKyU4B6ZG6RABlu7CzZs3x5QpU9CyZUsP14yISoIBlsjLnTlzBp9++imOHDlieSBbA+35QMhJvhytmIiIqizha4YpKh1KRA4AIDg4GE8++SQGDhzIqXGIvBgDLFElIITAli1b8NVXX+HGjRsAACnZB9rYQMiZOg/XjoiIqPwIjQJzvUxoGpuQm5sLWZYxbNgwPPLII+wuTFQJMMASVSIGgwGLFy/G8uXLYTQaAQHICXpoLwTy+lgiIqrUhCSg1MpCwO0yUlNTAQBt27bFs88+i8aNG3u4dkTkLgywRJXQlStX8O2332Lr1q2WBxRAczkAmkv+kMzsNkVERJWHgIASlgNzVIY6LU5kZCQmT56Mzp07c3RhokqGAZaoEjt+/Di++uqrm9fH5krQXgyEHO/HgZ6IiMjrKdVyYWqQARFsBACEhITg0UcfxaBBg6DVaj1cOyIqCwywRJWcEAI7d+7EN998g4sXL1oezJahjQuEnKDnQE9EROR1lAAjzA0yoITlAgB8fHwwcuRIPPTQQwgICPBw7YioLDHAElURJpMJ69atw8KFC5GYmAgAkAwaaOICId/giMVERFTxKX4mS3CtbhlZWKPRYODAgRg3bhxq1Kjh4doRUXlggCWqYrKzs/HTTz9hyZIl6iAXUqYWmgsBnHqHiIgqJKE3wVQ/E6idC0VRIEkSevfujQkTJqBevXqerh4RlSMGWKIqymAwYOXKlVi2bBkyMzMBAFKGFpqLAZATGWSJiMjzFD8TzPUzIdU2wmy2DNDUrVs3PProoxxZmKiKYoAlquLS0tKwbNkyrF69GllZWQDyWmQvBrBrMREReYTib4S5fiZEjVxYD1U7duyIRx55BC1btvRw7YjIkxhgiQgAkJKSgpUrV+LHH3+82SJr0EBzKYCDPRERUblQAowwR2ZCCc9RH+vWrRvGjBmDFi1aeLBmRFRRMMASUT7p6elYvXo1Vq5cifT0dMuD2RpoL/tDvuYHSWGQJSIi9xEQENWMMNfLVEcVliQJPXv2xJgxY9CkSRMP15CIKhIGWCKyy2AwYM2aNVi+fDlSUlIsDxolaK76Q3PVD5JR49H6ERGRdxMQUKrnwFw3EyLIBACQZRm9e/fGww8/jKioKM9WkIgqJAZYInIqOzsbv/76K1asWIErV65YHlQAOcEPmsv+kLM4UTwREblOaBSYa2bDXCcT0CsALPO49uvXDw8++CBHFSYipxhgicglZrMZO3bswNKlS3HixAn1cTnRB5rLAZDSdLxOloiIHBI+ZphrG2CunQVoLYefwcHBGDZsGIYNG4bQ0FAP15CIvAEDLBEVixACR48exbJly7Br1y51dEgpQwvNFX/IN/S8TpaIiFRKoBHmOgbIdUwwmSxdhevVq4eRI0eif//+8PX19XANicibMMASUYnFxcVhxYoV+O2335Cbaxl4A0YJmmt+0Fz1h5TD62SJiKoiIQso1bNhrm1Qr28FgFtuuQWjRo1Cly5dIMuyB2tIRN6KAZaISi0lJQXr16/H2rVrER8fb3lQAHKSr2XApxQfdi8mIqoChG9eN+GaWYDOcoip0+nQq1cvDBs2jHO4ElGpMcASkduYzWbs2bMHP/74I/7++2/1ccmggRzvD801PSQzz7gTEVUmAgJKaC6U2gaIcKN6aUmtWrVw77334p577kFISIhnK0lElQYDLBGVibi4OKxZswYbNmyAwWCwPKgA8g09NNf8IKVy0CciIm8mfM0w18iytLbmjSYMAB06dMCwYcPQuXNnaDS8lISI3IsBlojKlMFgwMaNG7F27VqcO3fu5oIsjeVa2QQ9pFwe4BAReQMhCShhOTDXygLCbra2BgYGYsCAARg6dCjq16/v4VoSUWXGAEtE5UIIgVOnTmHdunXYvHnzzVZZAchJPpCv+UFO8mWrLBFRBaT4m6DUzIK5xs1rWwGgbdu2GDRoEHr06MHRhImoXDDAElG5y8rKwvbt27F+/XocOXLk5oJcGZrresgJekiZWoZZIiIPElrFMpJwjWyIakb18erVq2PAgAEYOHAg6tat68EaElFVxABLRB514cIF/Prrr9iwYQNSUlLUx6VMDeTrftBc13M6HiKiciJkSxdhJSIbSmgOkDfunkajQZcuXXDPPfegQ4cO0Gq1nq0oEVVZDLBEVCEYjUbs378fGzduxK5du27OKwtAStVBk6CHfIOjGBMRuZuAgAjOhblGNpTwHEB789AwOjoaffr0Qd++fREWFubBWhIRWTDAElGFk5GRgT/++AMbN27EoUOHbi5QLHPLytf1kJN9ISnsYkxEVBICAiLABCUiG+aIbMD35ijCtWrVQp8+fdCnTx9ERUV5rpJERHYwwBJRhXbt2jVs3rwZGzduRExMzM0FZglysg/kG3rL4E8Ms0RETgkIiECT5brW6jmA3qwuCwoKwl133YU+ffqgTZs2kGX2diGiiokBloi8ghACZ8+exebNm7Ft2zbEx8ffXGgG5GTfvDDrA0nhgRcREVAwtGbnm6/V19cXnTt3Rp8+fdCpUyf4+Ph4sKZERK5hgCUir2Odkmfbtm3Yvn07rl69enOhNcwm+lpaZnnNLBFVMQICIsgIpXoOzOH5Q6ufnx86d+6Mnj17olOnTvDz8/NgTYmIio8Bloi8mhACp0+fVsPslStXbi5UACnNB3KiLzRJvhzNmIgqLSELKCE5UMJzoITmAj75Q2vXrl3Rs2dPdOzYEXq93oM1JSIqHQZYIqo0rGF2+/bt2LVrF2JjY/MtlzK1N1tmMzjPLBF5N+Fjtkx5E5YDJSRXnfIGAAIDA9GlSxf06NEDHTt2hK+vr+cqSkTkRgywRFRpXbx4Ebt378auXbtw5MgRKMrNFgnkyJYRjZN9IKf6sKsxEVV46sjBeaFVBJnyLa9duza6deuGLl264NZbb+VcrURUKTHAElGVkJqain379mHnzp3Yt28fsrKybi5UAClNZ7l2NsUHUiZbZ4moYhA6xdI1ODTX0spq0zVYkiS0bNkSXbt2RdeuXREVFQVJ4r6LiCo3BlgiqnJyc3Nx+PBh7Nq1C/v378fly5cLFJAtLbPWQGti6ywRlQ8h5Q3AFGoJrSIwfyurn58f2rVrh65du6Jz584ICwvzUE2JiDyDAZaIqrxLly5h//792L9/Pw4ePIjs7OybCwUgZWghp+R1NU7z4ZyzROQ2AgLC3wwRbGlhVYJzAW3+Q7Po6Gh07NgRHTt2ROvWraHT6TxUWyIiz2OAJSKykZubi6NHj2Lfvn3Yv38/zp8/n7+AAkjpOsipPpbW2XQdJMFAS0SuERAQfnmBNTgXSrAxX7dgAAgODlYDa4cOHdjKSkRkgwGWiMiJhIQE/P333zh06BAOHjyI69ev5y9gzpuqJ9UHcqoOUgYDLRHdJCAAXzOUEGNeYM0FfPMHVh8fH7Rp0wa33347OnbsiOjoaMgyL10gIrKHAZaIyEVCCFy6dEkNs4cOHUJycnL+QmZAyrC00ErpOshpOo5wTFSFWEcKFtWMUKrlQqlmLBRYdTodWrVqhbZt26Jt27Zo2bIlfHx8PFRjIiLvwgBLRFRCQghcuHABBw4cwKFDh3D48GGkpaUVKARIBq1llOM0HeQ0HyBH5ijHRJWE0CiWQZeqGaEEGSGCjIWuYdVqtWjRooUaWFu3bs15WYmISogBlojITRRFQVxcHP79918cOXIER48eLTzCMWCZgzbN0t1YTtdBytBCUthKS1TRqdevBhmhBBohqhkhAkwoeD4qICAArVu3RuvWrdGmTRu0aNECfn5+nqk0EVElwwBLRFSGEhMTcfToUTXUnjlzBmazOX8hayttuhZyhs4yMJRBy2tpiTzIcu2qYgmq1sAaaCrUugoAtWrVQps2bdRbVFQUNBqNB2pNRFT5McASEZWjrKwsnDhxIt+t0MBQgOVa2kwd5AytZWCoTC1DLVEZERCAjwIl0AQRYA2spkKjAwOAXq9H06ZN0bx5c7Rq1Qpt2rRB9erVPVBrIqKqiQGWiMjDbty4gZMnT6qB9uTJk8jIyChcUMlrqc3U3gy3mVoOEkVUDEISEH4miEATRIAJSkBeN2Bd4cMhjUaDxo0bo3nz5mjevDlatGiBBg0aQKvVeqDmREQEMMASEVU4iqLg8uXLOHHiBE6dOoWzZ8/izJkz9kMtAGTLkDNtWmkNWkhZGrbWUpVmbVUV/iYo/pawKgJMEP4mwM45H41GgwYNGiA6OloNrE2aNOFgS0REFQwDLBGRFxBC4Nq1azhz5gzOnj2rhtr4+HgHK8ASYg3a/DcGW6pkCgVVfxOEv9kSVO1crwpYBllq0qQJmjRpgujoaDRp0gRRUVGcyoaIyAswwBIRebH09HQ1zMbExCA2NhaxsbHIzMy0v4ICSNkaSFl5YTYr7362Bsjl9D5UcQlZsYwA7GeG0Jtu3ncSVDUaDerWrYsGDRqgcePGalitVasWJInvdSIib8QAS0RUyQghcP36dTXMWoNtTEwMDAaD4xXNUqFQK2VpLOHWyHBLZU/I4mY41Zst16rmBVV7AypZaTQa1KtXDw0bNkRUVBQaNGiAqKgo1K9fn62qRESVDAMsEVEVYRtsL168iEuXLqm3q1evQlEcBwSYASlHA+RYAq2UrYGUc/MnjBIDLhVJyAqEXoHwNQN6M4RvXlD1tdzg4/yQJDg4GPXq1VNvkZGRaNiwIerWrQudTldOr4KIiDyJAZaIiGA0GnH16lU12NoG3Bs3bjgPt0D+gJsrQ8rVQMqRLd2S8x5jK27lJjQKhI8C+JghfC33hY8Z8LX8FHqz3ZF+CwoKCsoXUm1vQUFB5fBKiIioImOAJSIip4xGI65fv46rV68iPj5e/Wm9f+PGDbj0VaLAEmhz8wJtrgzJaLnB+jPvMZjZolsRCEkAOgVClxdO8+5DZxNQffKWObgOtaCgoCDUqlULtWrVQu3atVGrVi3UrFkTtWvXRs2aNRlSiYjIKQZYIiIqldzcXCQkJCA+Ph7Xr1/HjRs31J/W+0lJSa6FXCsF+UOtSQZMUhE/ZcsgVQy+hQhJAFoBoVUArQKhFYBWATTWx/J+6oQlrOaFVFdDqVVgYCCqV6+u3iIiItT7derUQc2aNREYGFhGr5KIiKoCBlgiIipzJpMJiYmJaqBNTExEcnIykpOTkZKSku++wxGUXaEAMEuWFlyzbHNfyn9fsbkv8n5XAEmx/o68xyRICm6WsX5jCgDI+z3vsaKCs7hZsMBPYbkvCUC2DGQEOe8xWQCSgJBv3ocMS/DUCEAjAI1iWSfvd6HJW996X6sAmpL/SbVaLUJDQxESEoKQkBD1flhYWKGQ6ufnV/InIiIicgEDLBERVSg5OTmFQm1aWhrS09Od3sxms2crbhturfclFA6sHhQYGIjAwEAEBQWpP23vBwcHIzQ0NF9gDQwM5JQzRERUYTDAEhGR1xNCICsrC+np6cjMzERWVhaysrJgMBiKvG80GtVbbm6ueiv4WFkHZFmWodPpoNPp4OPjAx8fn3y/29738/Nz+WYNpwEBAdBoStEUS0REVAEwwBIREblAURSXbmazGYqiQJZlSJIEWZbVm+3v1vuSJEGj0UCr1Xr6JRIREVV4DLBERERERETkFWRPV4CIiIiIiIjIFQywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyClpPV4CIyFOEEMjOzvZ0NYiIikWv10OSJE9Xg4jIIxhgiajKys7ORr9+/TxdDSKiYvn999/h5+fn6WoQEXkEuxATERERERGRV2ALLBERAJ/9NQCzBEmWAElWf0KWgLyuepIsW+5LeT9lCZKUdx7QWi7vcfU+UOCx/Nu0/Ly5XFgfl3FzG9bHraccCz4mSRDW3oRS3u+y5Rchwea5oK4jJCnv95vbFHlVsdQFNuvkX55vHWsZ2c4y2/L5ltk+VrAeDtbBzcdslwNQ6+DoufKVd1CPgttU2Xs+dR2Rf50C21OXo+BycbMMbpa9uW2hLpMKlbddZrl/8+fN7UiSuPkWtH1cXWZZLsNy33YdOW+5ZZnludTHbH/i5npywVveMsvvKPS4ZR1FfUyG5XcA0Eg3f5el/MtkSdgsF9DAUsaynmKzngKN7Tbz7lvL264nQ+Stq0CTt8zyXJbyGklAggJN3u+262gAy3qwPJ/1tVl/tzyXUJfJUl5d1PuS+rHWSBJkSHmPSdDk/fFlyJAgwZirwf2P1wIRUVXHAEtEBFjCq2I5UIR08+fNZADLoaYkAfLNtKYefuZLQjJQMKHcTIcolHokm3XzJShXHoeD5cgLusgXYPM9lm8TNr8XCsQFl9tZp9BLLlDeXnXt1sPBzdEyR3+qkm7PZpsOA3PBgGrv32y7HAWXOwiw/9/evUdFXed/HH+OiIKCAuYq5CUtNNc0FcXMJNNCMq0WtWPrHnNZT7UnL215fnY4eSkrNY+XTp7t4llzS0m7bFqtpXmvxAtmaBmEeL/AcldwEAfm9wfO1wGGAQZ0mPH1OIfDd+bz/Vy+8xlx3vP5fD+fyumV0ioHsNeet1ao01GaLUi9lmaf7iiP1UFdFX/sA9gqP9WlOQpssRqPjTSupftQMa08gC27FgBeTSsPAK/+NpnKg8ur733bse18H0z4GAEs+Jiu/fbBVlf5scM047H1ajBrH6ReC1qdBbC28q4FsFfLtSu/vC7b+XZ9KCJyE9MUYhEREREREfEICmBFRERERETEIyiAFREREREREY+gAFZEREREREQ8ggJYERERERER8QgKYEVERERERMQjKIAVERERERERj6B9YEVEAHysWCkr36jRRKXfxoaMlfZRNVXa99T2Y712XJs0u01IrdVsburo+WvP2XbXpOJjq7Ebp5FixQRWjLzWynmu5quqmuesdkkV9jY12Tffyf6rJidplap1Jc3ZXq/O0myHTvM52s/VQXqVNlazDyxV85mqnG+fZrfHq8nuXGz7r9q/varZBxbX94G1ci2ftfLP1TTr1b1wKz9fZrKCqexaPVx9bLsuKqZbr6ZZ7eq2Gml27bj6uMnV4yZX02zH9r/L7P5Zl5mu/S67eslNrh6XXX2LOt4H1kQTyveXtaWZrj7vg91esnZl2vZ5NfaxvZpWvo+t6VqZV/9GlO9KbeJKiaN/gyIiNx8FsCIiQEnk/9zdhOvDFh/Ug6nSbxG49rayci3o8yz272xNSBMR8RT6iy0iN63i4mJ3N0FERERE6kAjsCJy02revLlxvGHDBvz8/NzYGnGmuLiYxx57DFBfNXbqq+tPr6mI3MwUwIrITctkujYp1s/PD39/fze2RmpLfeU51FciItLQNIVYREREREREPIICWBEREREREfEICmBFRERERETEIyiAFREREREREY9gslqt9dwhUEREREREROT60wisiIiIiIiIeAQFsCIiIiIiIuIRFMCKiIiIiIiIR1AAKyIiIiIiIh5BAayIiIiIiIh4BAWwIiIiIiIi4hEUwIqIiIiIiIhHUAArIiIiIiIiHqGpuxsgIgJw6dIl1q5dy86dO8nIyKBJkyZ07NiRYcOGMWbMGHx9fV0uOzc3l4SEBBITE8nMzKR58+Z06dKFmJgYHnnkEUwmk9P8Z8+eJSEhgf3795Obm4u/vz/dunVj9OjRDB06tMb6U1NT+eSTT/j555/Jz88nMDCQnj17EhsbS0REhMvX5S7e2Ffp6en8+OOPJCcnc/z4cfLz8/H19aV9+/b069eP2NhYOnbs6PJ1uYs39pUjFouFyZMnc+zYMQBiYmKIj4939dJERKQRM1mtVqu7GyEiN7eMjAymTZtGRkYGAH5+fpSVlVFSUgJAeHg4y5YtIzAwsM5lp6amMmPGDAoKCgDw9/enpKSE0tJSACIjI5k/f361H+QTExOZM2cOxcXFALRs2RKz2UxZWRkAI0eOZObMmdV+WP/6669ZvHixUV9AQABFRUXY/vROmjSJuLi4Ol+Xu3hjX23evJnXXnutwnMBAQGYzWajbl9fX6ZNm8Zjjz1W5+tyF2/sq+qsXLmSVatWGY8VwIqIeC9NIRYRt7JYLLz00ktkZGTQpk0blixZwubNm9m8eTNz5syhRYsWpKWlMW/evDqXXVhYyMyZMykoKKBTp068//77bNq0ic2bN/P888/TtGlT9u3bx9tvv+0w/7lz55g7dy7FxcX06tWLNWvW8M0337Bx40YmTZoEwMaNG/n4448d5v/ll1+M4HXIkCF89tlnbNy4kS+//JJHH30UgFWrVrFt27Y6X5s7eGtflZaW0qxZM6Kjo1m4cKGRb/PmzSxdupQuXbpw5coVlixZQlJSUp2vzR28ta8cSU9PZ/Xq1YSFhRESElLn6xEREc+iAFZE3Orbb781pv3NmzeP/v37A9CkSROGDx/OjBkzANizZw8HDhyoU9lr164lNzeX5s2b8+abb3LnnXcC5aNpsbGxxsjnV199xenTp6vkX7lyJWazmZCQEBYsWGBMIW3RogVxcXGMHj0agI8++oiLFy9Wyf/uu+9SWlpK165deeWVV/jDH/4AQOvWrZkxYwaRkZEVzmvsvLWvevbsydq1a3n55ZcZNGgQLVu2NOqOiIhg+fLlhISEYLVaWbNmTZ2uy128ta8qKy0tZeHChVgsFl588UWaNWtWp2sRERHPowBWRNzq22+/BaBv377cddddVdKHDx9OaGhohXNra9OmTUYZYWFhVdJjY2Px9/entLSU7777rkKa2Wxm586dADz++OMOp1n+5S9/AaCoqIjvv/++Qtq5c+c4dOgQAOPHj6dp06pLDtjyZ2RkkJycXKdrcwdv7atOnTpxyy23VNu2wMBAoqKiAEhJSanDVbmPt/ZVZevWrSMlJYURI0YwYMCAOl2HiIh4JgWwIuI2xcXF/PLLLwDcc889Ds8xmUwMHDgQgP3799e67FOnTpGZmQlg5K+sRYsW9O7d22HZhw8f5vLly07zh4aG0rlzZ4f57R9Xl79Xr160aNHCYf7Gxpv7qjZsI3u2ezQbs5ulr06fPs3KlSsJCgpiypQptb4GERHxbApgRcRtTp48aQQEXbp0qfY8W1pubi4XLlyoVdm26ZM1ld21a1cATpw4UW1+2znO8h8/frzC87bHwcHBBAcHO8zr4+NDp06dHOZvbLy5r2rj559/rrH8xuJm6Cur1crChQspKSlhypQptG7dusa2i4iId1AAKyJuk52dbRy3bdu22vPsp3fa53EmJyenTmUXFRVx6dKlKvUEBgbSvHnzGvPb12ef39nUVPu2Vc7f2HhzX9Vk69at/P777wCMGjWqTnnd4Wboq//85z8cOnSIyMhIoqOja9V2ERHxDgpgRcRt7D/YOvsw6+fn5zDP9SzbbDZXSXeWv3K7bI9rym9rW22vy128ua+cOX36NIsXLwagd+/ePPzww7XO6y7e3lfnz5/n/fffx8/PjxdeeKFW7RYREe+hAFZERMSBnJwc/u///o/CwkJuueUWZs+eTZMm+m/T3RYtWoTZbCYuLs7hIlIiIuLd9D+xiLiNbQEjwFjYxZHi4mKHea5n2f7+/lXSneWv3C7b45ry29pW2+tyF2/uK0fy8vL4xz/+wdmzZwkJCWHp0qXGNkiNnTf31ddff01SUhLdunVj3LhxtWqziIh4FwWwIuI29vfgZWVlVXue/f15Nd1TatOmTZs6ld2yZcsKH5Zt9Vy8eNHpB3Vbfvv67PPXdG+hrW2V8zc23txXleXl5fH8889z4sQJgoODWbZsmbEqrifw1r4qLCzkn//8J02aNGHq1KlcvnyZS5cuVfixWq1A+f6wtuc8YeVoERGpPQWwIuI2nTt3NqZkOlsZ1pYWEhJCq1atalW2/Qqnzsq2rYp62223VZvffuXU6vJXXpHV9jgvL4/8/HyHeUtLSzl16pTD/I2NN/eVvby8PKZPn87x48eN4LVyfY2dt/bVxYsXKSwspKysjKlTpxITE1Plx7bFz3fffWc8l56eXqtrExERz6AAVkTcxs/Pj7vuuguAvXv3OjzHarWyb98+AAYMGFDrsjt27Ei7du2clm02mzl06JDDsnv16mUsUmOrv7KMjAxOnjzpML/94+rqP3z4sLFITV2uzR28ua9scnNzmT59eoWR18b+xYIjN0NfiYjIzUsBrIi4VUxMDAAHDx7kyJEjVdK3b9/OuXPnKpxbGyaTiREjRgCwbds2zp8/X+WcL774ArPZjI+PDw899FCFNH9/f+6//34A1q9fT2FhYZX8CQkJQPl9ekOGDKmQFhYWRu/evQFYt24dFoulSv41a9YA0L59e+6+++5aX5u7eGtfQcVpwyEhIbz11lseGbzaeGNfhYaGsmvXLqc/7du3N67J9lx4eHitr09ERBo/BbAi4lYxMTF07doVq9XKrFmzOHDgAABlZWVs376dRYsWATBw4EAiIiIq5F25ciVRUVFERUU5/CA9fvx4QkJCKC4uZubMmaSmpgJw5coV1q9fz7/+9S8ARo8eTceOHavkj4uLw9/fn5ycHF566SVOnz4NlI8wrVq1ig0bNgAwceJEAgMDq+R/5pln8PHx4ejRo8ydO9e4Z/DChQssWbLEGMF69tln8fHxqfuLd4N5a1/l5+dXCF49cdpwZd7aVyIiIiarbcUDERE3OX/+PNOnTycjIwMonwJZVlZGSUkJAOHh4SxbtqzKh9mVK1eyatUqoHyUMzQ0tErZqampzJgxg4KCAqB8VKekpMQYER0wYADz58+nWbNmDtuWmJjInDlzjFVRAwICMJvNlJaWAjBy5EhmzpyJyWRymP/rr79m8eLFxvkBAQEUFRUZi81MmjSJuLi42r1QjYA39tWqVatYuXIlUD5CaFsptzrvvfeeMY22MfPGvqrJE088QUZGBjExMcTHx9cpr4iIeIam7m6AiEhoaCirVq1i7dq17Ny5k4yMDJo2bUqXLl0YPnw4Y8aMwdfX16Wyu3fvzr///W8SEhLYvXs3//vf//Dz86Nr167ExMQwcuRIp3t7Dho0iA8++ICEhAT2799Pbm4uAQEBhIeH8+ijjzJ06FCn9Y8aNYrw8HDWrVtHcnIy+fn5BAcH07NnT2JjY6uMfjV23thX9qvUms1mzGaz03Z6yqq23thXIiIiGoEVERERERERj6B7YEVERERERMQjKIAVERERERERj6AAVkRERERERDyCAlgRERERERHxCApgRURERERExCMogBURERERERGPoABWREREREREPIICWBEREREREfEICmBFRERERETEIyiAFREREREREY+gAFZEREREREQ8ggJYERERERER8QgKYEVERERERMQjKIAVERGP8NZbbxEVFcXUqVPd3RRxs8LCQh555BGioqLYtWuXu5sjIiI3UFN3N0BERK6voqIi0tLSSElJITU1ldTUVM6ePYvVagVg3bp1hIaGXpe6rVYrY8eOJSsriwkTJvDMM8+4VE5aWhrr168H4Omnn27AFrrXsWPH2LdvH4cPH+bYsWPk5ORQWlpKYGAgt99+O4MGDSImJoaAgAB3N7VRCQgIYPz48axYsYK3336bgQMH0rx5c3c3S0REbgAFsCIiXm7atGmkpaW5pe6UlBSysrIAGDJkiMvlvPPOO5SWljJw4EB69erVUM1zq2nTpvHzzz87TMvNzSU3N5f9+/ezevVq4uPjiYyMvLENbOTGjh3Lp59+SmZmJp999hkTJkxwd5NEROQG0BRiEREvZxtphfKRq759+xISEnJD6v7+++8BaNu2LT169HCpjEOHDpGUlATgVUGKLbAPDAxk5MiRxMfHs3z5clasWMGrr77KoEGDgPJgNj4+nuTkZHc2t9Hx9/dnzJgxACQkJHDp0iU3t0hERG4EjcCKiHi5kSNHEhQURPfu3enQoQMmk4lp06aRm5t73eu2BbCDBw/GZDK5VMbHH38MQGhoKHfffXeDtc3dOnTowMSJExk+fDjNmjWrkNa9e3eGDh3KmjVreO+99ygpKWHx4sV8+OGHbmpt4xQdHc3KlSu5ePEi//3vfxk3bpy7myQiIteZRmBFRLzc2LFjefDBB+nYsaPLQaQrTp8+zcmTJwHXpw9nZWWRmJgIwIgRI25o+6+3RYsW8fDDD1cJXu1NmDCB8PBwAE6cOEF6evqNap5HCA0NpXfv3gB8+eWXbm6NiIjcCBqBFRGR68K2Oqxt2rIrtmzZQllZGQDDhg2rVR6LxcK2bdv44YcfSElJIT8/n9LSUoKCgujatSv9+/fnwQcfpE2bNhXyRUVFARATE0N8fDynTp3is88+Y//+/WRnZ9OyZUu6devGn//8Z/r06WPku3z5Mt988w2bNm3izJkzFBcXExYWxkMPPcS4cePqvbhQv379jHuYT58+ze233+5yWSdOnGDDhg0kJydz/vx5iouLCQgIIDAwkNDQUCIiIrjvvvvo1KmTS+VbLBY2b97M9u3bOXbsGAUFBZhMJlq1akVQUBA9evSgf//+DB48GF9f3wp5K7/+J06c4IsvviApKYns7GzMZjOvv/56lS9Dhg0bRnJyMidPniQlJYU777zTtRdHREQ8ggJYERG5LmzThwcNGkTTpq79d7N7926g/D7Rzp0713j+0aNHmT17NmfOnKmSlpWVRVZWFnv37iU9PZ34+Phqy9mxYwdvvPEGxcXFxnOXL19mz5497N27lxkzZjB69Giys7OJj48nJSWlQv7jx4/z/vvvs2fPHhYvXlyvINZisRjHTZq4PnFqw4YNLFu2jNLS0grPFxQUUFBQwJkzZ9i/fz/p6enMmjWrzuXn5+fz4osvOlwwzPbap6Wl8eWXX5KQkECHDh2qLeubb75h8eLFlJSU1Fiv/aJeu3fvVgArIuLlFMCKiEiDy87O5rfffgNcnz5cUlLCr7/+CkCPHj1qnD6clpbGlClTMJvNAPTt25fo6Gg6d+6Mr68vOTk5HDlypMZ9Q9PT09m2bRvBwcE8/fTTRt0HDhzgo48+ori4mKVLl9KnTx9ee+01jh49yuOPP859991HUFAQZ8+e5cMPPyQ9PZ1Dhw6RkJDAX//6V5deA4CffvrJOO7SpYtLZRw7dswIXlu1asXo0aPp06cPQUFBlJaWkpOTQ2pqKnv27HF5mvayZcuM4DUiIoLo6GhCQ0Np2bIlRUVFnDx5kuTkZGNKeHVSU1PZsmULrVq1Yty4cfTq1QtfX19OnDhB+/btq5zfpUsX/P39MZvN/PTTT8TFxbnUfhER8QwKYEVEpMH98MMPWK1WmjVrxsCBA10qIz093Rh97N69u9NzLRYLs2fPNoLX6dOnGyvU2rv33nuZPHkymZmZ1ZaVlpZGeHg4y5YtIzAw0Hj+j3/8Ix06dGDOnDlYLBamTJnChQsXWLRoEf379zfO69atGwMGDGDixIlkZ2ezfv16Jk6ciI+PT52uH8qnYR8/fhwoD+I7duxY5zIAtm/fboy8Ll261Liv1t6QIUOYPHkyBQUFdS7/8uXLxhcDQ4YM4bXXXqsSCPfp04fHHnsMs9nsdCT5+PHjdOjQgeXLl1dYLbu6Vax9fHzo1q0bycnJ/P7775SVldVrpFpERBo3/YUXEZEGZ5s+3L9/f/z9/V0qw34acE3b/mzZsoWzZ88C5asuOwpe7bVr185p+ksvvVQheLUZOnQobdu2BSAvL4/Y2NgKwatNQEAADz/8sHHeiRMnnNbnSHZ2NkuWLAHAZDLx97//vc5l2NhWnA4ICHAYvNpr3bp1ncu/ePGi8WVDnz59nI7i+vv71zil+oUXXqjTVk+2c4uLi8nOzq51PhER8TwKYEVEpEEVFhZy8OBBwPXpwwA5OTnGcatWrZyeawuYAZ588kmX64TyKanVBXkmk6lCWnR0dLXl2J937ty5OrWhuLiY+Ph4I/CsvHBUXdmC7sLCQrZv3+5yOdVp3bq1sZry1q1b67Una9u2bR1+KeCM/fvD/n0jIiLeRwGsiIg0qMTERCwWCz4+PgwePNjlci5fvmwcOxoNtff7778D5SNxtVnsyZma8tu3xdlqvfbn1SWgu3LlCi+//LKxMNR9993H5MmTa53fkejoaGPUc86cOTz33HOsWbOGQ4cOGdOu68PX15eYmBgAjhw5whNPPMGiRYvYunVrnYN3V1ZZtg9g7RfeEhER76N7YEVEpEHZRkPvuusugoKCXC7H/p7Rmlajzc/PB66NNNaHn5+f03T76bHOpkfb34dp2wqoJhaLhVmzZrFv3z4AIiMjmTt3rkv3z9oLCwtjwYIFvPHGG2RlZXH48GEOHz4MlL/Od955J1FRUYwaNarGLwuqM3XqVEpKSti0aRMXLlzgq6++4quvvgLKv1iIjIxk5MiRNY4k1zTa7oj9lx2urngtIiKeQSOwIiLSYEpKSti7dy9Qv+nDUH6/ps2FCxfqVZYnsFgszJkzx9g6qH///rz++uvG1Nz6ioiI4OOPP+aVV15h5MiRxjY2paWl/Prrr7zzzjs8+eSTRvBcV82bNyc+Pp7Vq1fzt7/9jX79+hkBfm5uLt9++y3Tpk3j5ZdfrhBwVubKAkz2C0/Zv29ERMT76GtKERFpMElJScaU1PoGsPZbptQUwAYFBZGZmemxC/jYglfb6HW/fv2YP39+vfaPdaRZs2Y88MADPPDAA0D5yPWBAwfYtGkTe/bs4cKFC8yaNYuEhATatGnjUh0dO3bkqaee4qmnnqK0tJS0tDR2797Nhg0byMvLY9euXaxYsYIpU6Y02HVdvHjROK5pgS4REfFsGoEVEZEGYwvAwsPDCQ0NrVdZ9nuenjp1yum5tm12cnJyajy3sakcvPbt25cFCxY0ePDqSFBQEMOHD+fNN9/k8ccfB8BsNvPDDz80SPm26clxcXG8++67xvTsLVu2NEj5NidPngQgNDSUFi1aNGjZIiLSuCiAFRGRBlFWVsaPP/4IlC88VF/t2rXjlltuAeC3335zem5UVJRxnJCQUO+6bxSLxcLcuXON4LVPnz4sXLiwxvtwr4fIyEjj2HZPcUMKDQ019rF1Za/Z6uTn5xtbKPXs2bPByhURkcZJAayIiDSIw4cPG4GPfUBZH7ag6uTJkxQVFVV73rBhw4zgaOPGjXz++edOy83MzGyQ9tWHxWLh1VdfZdeuXcD1DV537txZY1Bqu3cZ4NZbb61T+efOnSMpKcnpOefPnzdGSsPCwupUvjNHjhwxju+5554GK1dERBon3QMrIuLlzpw5Y6w4a2PbXxRgx44dFVYL9vf3Z+jQoXWuxzaKGBYW5tJWKI488MADbNy4kbKyMpKSkrj//vsdnte0aVNeeeUVnnvuOcxmM2+99Ra7du1ixIgRdO7cGV9fX3JyckhJSWHHjh10796d+Pj4Bmmjq+bNm8eOHTuA8oDx2Wef5fz5807zBAcHExwcXOe6Pv/8c+bNm0dERAQRERHcdttttG7dmitXrpCZmcmWLVuM0fP27dvXefujzMxMXnjhBcLCwhg8eDA9evSgXbt2NG/enIKCAo4cOcL69euN1aTHjBlT52uozv79+4Hy+3sHDRrUYOWKiEjjpABWRMTLHT58mPnz51eb/s4771R43L59+3oFsA0xfdimf//+tG3blqysLDZt2lRtAAtwxx138PbbbzN79mzOnTvHwYMHOXjwoMNzbffMutP27duN47Nnz/Lss8/WmGfSpEnExcW5VF9JSQmJiYkkJiZWe86tt97K/PnznW4P5My5c+f49NNPq01v0qQJTz75JH/6059cKr8yi8XC1q1bgfJRf1e3ABIREc+hAFZEROrt6NGjxuhhfVcftufj40NsbCzvvfcee/bsIT8/3+nest26dWP16tVs2rSJ77//nrS0NON+y+DgYG6//XYGDBjAgw8+2GBt9ARz5sxh3759JCcnc+zYMXJzc40pxa1bt+aOO+5gyJAhREdHu7RtT+/evVm+fDlJSUkcOXKEzMxM8vLyKCoqws/Pj7CwMHr37s2oUaMabHQeMN4TAGPHjm2wckVEpPEyWa1Wq7sbISIinu2DDz7ggw8+IDg4mC+++MKlvTyrU1hYyPjx47lw4QLPPPMMEyZMaLCyxbPNnDmTxMREIiIiWLp0qbubIyIiN4AWcRIRkXqzTR++9957GzR4BQgICDCC1rVr13Lp0qUGLV8805EjR0hMTMRkMvH000+7uzkiInKDKIAVEZF6uXLlCkOGDGHSpEnExsZelzrGjBlDhw4dKCgo4JNPPrkudYhnWbFiBQAjRoygR48ebm6NiIjcKJpCLCIiHuG3334jMTGRgIAAnnjiCXc3R9yosLCQTz/9FKvVSmxsrNP7okVExLsogBURERERERGPoCnEIiIiIiIi4hEUwIqIiIiIiIhHUAArIiIiIiIiHkEBrIiIiIiIiHgEBbAiIiIiIiLiERTAioiIiIiIiEdQACsiIiIiIiIeQQGsiIiIiIiIeAQFsCIiIiIiIuIRFMCKiIiIiIiIR1AAKyIiIiIiIh5BAayIiIiIiIh4BAWwIiIiIiIi4hEUwIqIiIiIiIhHUAArIiIiIiIiHuH/AZnAerEMSwLkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACpmklEQVR4nOzdd3gUxeMG8Hf3SnqhhAQIIfQuHWkKUhVEURH0KwJi9ydIUUQFFbEhKoIdG00pgqAoICCg9K7UUJMAgRRIr9fm98dxyx25lnq55P08zz253M3uzl1yt/vuzM5IQggBIiIiIiIiogpO9nQFiIiIiIiIiNzBAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BVKJcDGxcVBkiRIkoQxY8aUxiqrpN69eyvvIxGRI2PGjFG+K+Li4jxdHcWCBQuUei1YsMDT1aFSZjKZ0LFjR0iShHHjxnm6OuQleIxIZF9F3ZeXhiVLlkCSJISGhiI5ObnU119uLbALFizAm2++iTfffLO8Nulxa9asUV5zenq6p6tD1xkMBmzevBlTp05Fnz59ULt2bfj4+CAwMBCNGjXCQw89hDVr1sBoNBZpvceOHcO4cePQvHlzBAYGIiQkBG3atMHUqVMRHx9fRq+GiKoKvV6PLVu2YNasWRg2bBjatm2LunXrwtfXFwEBAYiOjsbQoUPxww8/IC8vr9S3P3/+fBw6dAi+vr545ZVX7JY5efIkvvvuOzzzzDPo1q0bGjZsiODgYGi1WtSqVQu33XYbpk+fjvPnz7u93YyMDMyePRu9e/dGrVq1oNVqUbt2bfTq1Qvz5s1Dbm6u2+vKzc3FN998g8GDByMyMhK+vr7w9fVFnTp1MGDAAMydO7fU9tdCCJw+fRo//fQTJk+ejN69eyM4OLjEYW737t0YO3YsGjVqBH9/f1SvXh0dO3bE22+/jatXrzpd1jpMFvXmzcaNG6e8junTpxd5+dzcXISEhECSJKjValy+fLlE9cnPz8cPP/yAe+65Bw0aNIC/vz9CQ0PRvHlz3Hffffj000+RkJDgsC4bNmzAzJkzcc8996B169aIiIiAVqtFUFAQmjRpghEjRuDnn38u0nGMXq/HN998g759+yrHRZGRkRgyZAiWL18OIUSJXvPNjEYjfvzxRwwdOhSRkZHw8fFB9erV0a5dO0ybNg0XLlxwaz1F+R929pmzDpNFuXlzrklKSoJGo4EkSQgICEBWVlaR1/H2228r78Wzzz6rPP7www+jadOmyMjIcLi/KBFRCmJjYwUAAUCMHj3abplevXopZaqK0aNHK685NjbWZfmq+B6Vty1btojq1asr77OzW+fOncXZs2fdWu/s2bOFRqNxuK6goCCxdOnSMn51VFUU9bulvPzwww9KvX744QdPV6fSOXnypFvfXQBEdHS02LlzZ6ltOycnR0RERAgAYvz48Q7L3XrrrW7VT6PRiBkzZrjc7oYNG0SNGjWcrqthw4biwIEDLte1f/9+0aBBA5d1q1Wrlvjzzz+L9P7YM2nSJKfbcXS85IjJZBITJ04UkiQ5XGd4eLj466+/HK7D+nitKLcGDRoU+31w5xixrB08eFCpQ1RUlDCZTEVaftGiRcrygwYNKlFdNm/eLBo2bOjyPZ8zZ47d5devX+/23+2WW24RJ0+edFmn2NhY0b59e6fr6tevn0hLSyvRa7c4e/asaNu2rdPtBQYGikWLFrlcV1H+j539/1nvV4tyW7hwYbHfh4qwLx8yZIhSh2+//bbIyzdq1EhZft++fTbPWT43siyLEydOlFaVhRBCqFEKoqOjS/3MTFW0bds2T1eh0ktISEBqaioAoHr16ujXrx+6du2K2rVrQ6/XY9++fVi0aBEyMzOxf/9+3HHHHdi3bx8iIiIcrvOrr77CSy+9BADQaDR49NFH0atXL+j1evz5559YuXIlsrKy8OijjyI0NBR33nlnubxWqrwWLFjALrpVWMOGDXHrrbeiVatWiIqKgr+/P7KysnD06FEsX74cCQkJiIuLQ//+/bF37160bt26xNv84osvkJiYCJVKhSlTpjgtGxISgi5duqB9+/Zo1KgRqlWrBqPRiPj4eKxbtw7//PMP9Ho93njjDRgMBrz11lt217N161YMGTIEer0eANC1a1eMGDECderUQXJyMlavXo0tW7bg/PnzuPPOO7Fr1y40adLE7rri4+PRr18/ZGRkAAAiIiIwZswYNGnSBGq1GufPn8eiRYsQGxuL5ORkDBkyBHv37kW7du2K/Z7d3PoVFBSEevXq4cSJE8Va3yuvvII5c+YAAAICAvD444+jS5cuyM7OxqpVq7Bp0yYkJSXh3nvvxfbt2+3WvVatWli9erVb25s5cyYOHToEAHjssceKVeeKokOHDrjllltw5MgRXLhwAVu2bEHfvn3dXt76+7Yk78Uvv/yChx56CHq9HrIs46677kKfPn1Qp04dCCGQkJCAvXv3YsOGDS7X1bJlS3Tp0gXNmzdXehOkp6fj0KFDWLZsGVJTU3HkyBH06tUL//33n8PjmPT0dNx1112IiYkBALRo0QJjx45FZGQkzp49i/nz5+PixYvYvHkz7r//fmzcuBFqdfHjw5UrV9C7d29cunQJABAVFYWxY8eiefPmyM3NxdatW7F06VJkZ2djzJgx8Pf3xwMPPOByva1atcLbb7/ttExUVJTD58aPH4+hQ4e63M6ZM2eU78CgoCAMGzbM5TIV2WOPPYa1a9cCMP+fP/74424vu337dpw7dw6A+f3v3LmzzfP/+9//MH36dMTHx2PGjBlYtmxZ6VW8VOOwE1WxdbEinFkhW4sXLxZt2rQRP/30k8jPz7db5tKlS6JVq1bK327UqFEO13f58mXh7+8vAAi1Wi02bdpUqIx1q1S9evVEXl5eqb0eooqELbBlKzs7W5w/f95pmdzcXHHPPfcof4c777yzxNvV6/WiXr16AoAYMGCA07InTpwQer3eaZklS5YorYhqtVpcunSpUJn8/HwRFRWlvI6pU6faXdecOXOUMn369HG4zbFjxyrlBg4cKHJzc+2+zlGjRinl7r33Xqevw5Wvv/5aTJw4Ufz4448iJiZGmEwmsXXr1mK1Rh46dEh5z0JCQsR///1XqMwbb7yhrLtz585FbmW0lpaWJnx9fZXWkwsXLhR7XRWhBVYI2/+VRx991O3l4uPjlfe+Ro0aoqCgoFjbP3bsmPDx8RGAudeAvb+hRX5+vkhKSrL73NWrV8Xly5edbuvatWs2vSGeeeYZh2UnTJhg831x8zHKtWvXbFpnP/vsM6fbdmX48OHKuvr27Suys7MLldmxY4dybFWjRg2nLb+WdfXq1atE9XLXyy+/rGzziSeeKNG6KkJO0Ol0ombNmko93O15KITt9+qHH35ot8yrr74qAAiVSiXi4+NLq9qCAbYMVYR/TLKVlpbm1k796NGjyt/Oz89P5OTk2C1n/cX/0ksvOVzfgw8+WGpf/kQVFQNsxZCcnCxUKpUSEIt7wG2xevVq5e/qTpc+d1iH7O+++67Q88uWLVOe79Spk9Pv7UGDBillN2/ebLdM3bp1lTLHjx93uK60tDShVqsFAFG9evWivzAXihtghw4dqiz3+eef2y1jMplEly5dlHK///57sev5+eefK+vp379/sdcjRMUJsMnJycqlPgEBASIrK8ut5d566y2l/uPGjSv29rt27SoAiODg4FI9kHfk0KFDNifP7UlKShJarVZ5TxyF5qNHjyohPiIiQhgMhmLV6fLly8p6/Pz8HG5PCCE++OADpf7Tpk1zWK48A6zBYBC1a9dWtlnSyzQqSk6wPpadPn26W8vk5OSIoKAgZT+TmJhot9zx48eVdb/22mulVucyH4XYMrLu33//rTxWlIugTSYTVqxYgREjRigXugcFBaF58+Z49tlncfToUad1e/PNN5VtWLro/vXXX3j44YfRoEED+Pr6Fhr9y2Aw4M8//8TkyZPRs2dPZdCIoKAgNG3aFGPGjME///zjcJuWC8EXLlyoPNagQQOXF5MXZRTivXv34qmnnkKzZs0QFBSEgIAANGrUCKNHj8aWLVtcLm/ZTu/evQEAOTk5+PDDD9GpUydUq1YNAQEBaNWqFV555RWkpaW5XJ+3CA0Ndev9bd26NZo3bw4AyMvLw9mzZwuVEULg559/BgCXo3KOHz9eub98+fKiVrtEdu/ejWeffRYtW7ZEaGgofH19ERUVhREjRuCPP/5wuuy2bdsKfUYvXLiAyZMno3nz5ggICEBoaCi6d++OL774AgaDwa06ZWdn45NPPkH//v1Rp04dZfCGzp074/XXX0dKSorT5W/+rBiNRixYsAD9+/dH3bp1oVarER0dXWi5pKQkTJkyBS1btkRAQACqV6+OLl264KOPPlIGgomOjoYkSYWW37Bhg7JN67+nM+PHj1eWWb9+vVvLuMPVyIVl9Xf7/fffMWTIEERERMDX1xfR0dF45JFHsHv37iK/Bp1Oh++++w733HMP6tWrB19fX4SGhuKWW27B5MmTHY7IeOrUKQQEBECSJISEhCA2NtbhNtLS0hAVFQVJkqBSqZx+b1cmYWFhCAsLA2Den7ka2MeVxYsXAwD8/Pxw3333lbh+gLn7o0ViYmKh5633YyNHjnT6vT1q1Cjl/k8//WS3jPUomI66GQPmfYTlvcvJyXFYrjxlZWUp3x/BwcEOB6K5eT9Ukn3NDz/8oNwfO3ZssddTFCkpKejcubPy3TVp0iS7l6cVd58WFhaGu+++G4D5b7tixQq36mV9LFfc7sPbt2/Hnj17AACTJ0922pW1tLj6jAHmwUZ1Oh0A86A7tWrVsluudevW6NOnj7Iu62P6oti2bZvyNx04cKDD7QG2n+ulS5cWa3ulbcOGDbhy5QoAoHnz5ujevXu5bPfbb7+FWq2GJEmIjIzE8ePHC5UpyXGV9f/1okWL3LosdNWqVcqgT4MGDUJ4eLjdci1btlQuZ1iyZEnpXXJaGinY2dk165ZXZ7c33nij0HrPnj0r2rVr53Q5WZadni2w7lKzZcsW8X//939212N95qN3795u1Xn06NF2z2y7eyG4s/fKEb1eL5588kmX6x4+fLjdLlIWlnK9evUS586dEy1btnS4rvr161fJFuTOnTsr78GePXsKPW/dStu6dWun6zIajSI4OFj5n83MzCyraiuys7PFiBEjXP6vDB482GF9rFsL3njjDbF+/XoRGhrqcF39+/d32DXbYt26daJWrVpO6xQUFCR+/fVXh+uw/qxcu3ZN9OzZ0+7/rbUtW7aIatWqOdxmmzZtxIULF0T9+vXtLm80GpUBYKpVq+ayK3heXp6yvaioKGE0Gp2WLwpXZ21L++9mMBicfq/JsixmzZrldgusO4PpaLVa8dVXX9ldfv78+Uq5bt26OWwNGDZsmFKuNM/8VnTp6elKS5NGoynRZQv5+flKV77bb7+91Opo3SvFXgusdavq+vXrna7LuqUpIiLCbpnIyEiljLstsO3atSvai3JDcVpg165dqyxz9913Oy2bnJyslA0LCytWHa33bdWqVXP5ne6KOy2wsbGxomnTpkq59957r1CZ0tin/fbbb0o5d/6f//nnH6V827Zti/KybTz22GPKes6dO1fs9RSFdcuXoxbYBx54QCmzcuVKp+ubPXu2UtZZjzNnrFtVX375ZZflLcdNAERMTIzdMtbHs2Xt/vvvV7Y3a9asEq/PnRbYd955RynTrFkzu633pXFc1aFDB6Xsli1bXNa9T58+SvnVq1c7LTtx4kSl7OHDh12u2x2lMoiTM5Zh3adNm6acMbA3gICltcvi3Llz6Nq1q3LmuGfPnrj77rtRv359GI1GHDx4EAsWLEBaWhpmzpwJWZZdDmU9e/ZsrF+/Xhm8oXXr1jAYDNi3bx98fHyUcnl5eQgMDETfvn3RsWNHREdHw9fXF1euXMHx48fx448/IicnBwsXLkRoaCg++eQTm+1YLgSfN28etm7dCgD4+uuvC51pKs4ZuEcffVS5CNrX1xejR49G9+7doVKpcODAAXz33XfIysrCihUrkJGRgfXr1zs9c52ZmYnBgwfj1KlTuPfee3HnnXeievXqOH/+PL788ktcuHAB8fHxGDVqVJVpvQDMrUNnzpxRfq9fv36hMseOHVPud+zY0en6ZFlG+/bt8ffff8NkMuHkyZPo0qVL6VX4JgUFBejXr59yxrdRo0YYMWIEWrRoAY1Gg7Nnz2LRokU4ffo0/vjjDwwdOhSbNm2CLDvulPHvv/9i9uzZEELg6aefRrdu3eDj44MDBw7gq6++Qk5ODjZt2oR33nnH4aAsq1atwogRI2A0GqHRaHDPPfegd+/eCA8PR2ZmJrZu3YoVK1YgKysL9913HzZt2qSc9XVk5MiR2LFjB9q2bYuHH34Y0dHRyMzMxJEjR5QyJ06cwN133620srZv3x4jR45EZGQkkpKSsHz5cuzcuRMjRoxw2BopyzKefPJJvPrqq0hLS8OqVavwyCOPOKzXypUrld4Ljz/+uNP3tiyVxt9t/PjxSiuEVqvF6NGj0bNnT8iyjH379uG7777Dyy+/7NYAGLt370a/fv2Qm5sLSZIwcOBADBgwAHXr1kVeXh52796NxYsXIzc3F8888wx8fHwKtTg9+eST+PPPP7Fq1Srs3r0bM2bMKFT37777DitXrgRgHvzHm6c6KAqDwYDnn39eGfho0KBB8PX1Lfb6du7cqXxuSus7648//sAvv/wCwLwfGzRoUKEyophn6RMTE3H16lXUrFnT5vF7770Xn3/+OQBg0qRJWL16Nfz8/GzKGAwGTJgwQfkOmDBhQrHqUNqKsq8JCwtD/fr1ER8fj5SUFCQnJztt5bLn+++/V+7/73//szk+KgtHjx7FnXfeicuXL0OlUmH+/PmFWn1La5921113ITw8HElJSdi+fTvOnz+Phg0bOqxbaQ3eZDl+qlGjBho2bIjLly9j7ty5+O233xAfHw+tVovo6GgMGDAA48ePR2RkZLG3BZhbmK17Ct1///12yxXlf6tTp052lyuK4n6uAfP/SbNmzRw+f+rUKfTs2RMnT55EVlYWqlWrhmbNmqFv3754+umnnQ7G6Y6rV68qgx2p1WqbFuKyIITAhAkTMG/ePABA586dsW7dukLfbaV1XPXYY48pg7YtWLAAd9xxh8O6xcfHK/kmLCwMgwcPdvpaunbtqtz/888/SzQ4nqI0UnBpT6NjNBqVMwE+Pj5ixYoVdsslJiYqLbSyLItjx44VKmPdAgtA9OzZU2RkZDjd/ubNm522Xl69elVp8ZFl2eGgGqU9jY71NUHh4eF2zyLHxcXZtGw4ut7S+j3RarVi7dq1dl+n9br27t3r8jU4kpOTI1avXl0qt4MHDxa7Hu5avHix8ro7dOhgt8yMGTNsWrlcsR4cZPHixaVcY1s3X5trb1AVnU5nU6cvv/yyUBnr1gLA3JJ4+vTpQuX27t2rtFo4OmN/4cIF5WxqVFSUOHLkiN267927V4SEhAgAIjIyUuh0ukJlbu7ZMWHCBKctnNYttM8995zdsjd/V9zcAiuE+TvH0rLl6mzv7bffLgDzwAUXL150WraoitICW9K/m3ULRGhoqN3pSmJiYpQpViw3ey2wmZmZymBAoaGhYtu2bXZf35kzZ5QBfAICAkRKSkqhMqmpqUqrmkqlEtu3b1eeO3XqlAgICBCA+XqzkrZ4nDx5stS+v+y9luIwGo026128eLF49dVXbaY0iI6OFnFxcSXazrvvvqus7+effy7Ssvv371fqt3z5cvHxxx+Lu+66S1mfSqWy2/oqhG2L1dy5c51ux3rfCEDs2LGjUJmUlBTRuHFjpUxERIR45ZVXxPfffy8WLVok3njjDWV/J8uymDlzZpFeq7uK0wJr/V64c2255bsHgM3nwh06nU6EhYUpy5fG/tbZMeL27duV3iG+vr5izZo1dtdRWvs0IYR48cUXlTKvv/66w3pbX+On0WiK/dlNS0tTtteuXTvx559/Ou0N5Ovr6/bULFlZWcpn7JdffhELFiwQkyZNsrlOs127dnYHQTIajcr3v0qlcjn42vnz55V1NmrUqDhvhVi4cKGyjvvuu89p2cTERJv35e2337ZbztH7aH3z8fERn3zySbHqbGE9CNiQIUNKtC4LR/tynU4nHn74YeW5/v37271muzSPq65du6YMMubqGnHr49+JEye6fJ1xcXFu/93dVSED7KpVq5Sy8+bNc1r21KlTymAVTz75ZKHnrQ9KAwICREJCgluvyZVz584p63W0oyvtAGs9Cty6descrmfv3r3KRfL169e3273O+oP91ltvOVzXN99841Y5V4o795y9W1kPApGammrz5e/ooM26S8Snn37qcr1FLV9cly9fVgZluP/++52W1el0ynx0TZo0KfT8zUHon3/+cbiuRx55xGm5cePGKTtKV11IvvvuO2VdP/74Y6HnrT8rHTt2dBpe9+/fr5Rt3bq108EnrNdrL8AKYdv10V4oFML8vWQpM3jwYKevtTiKGmBL8ne79957lecXLFjgcD2///67zTbtHWh/9NFHyvO//fab09f4119/KWXfeecdu2W2bdsmZFlW/l5paWlCp9OJjh07KsuWxsmim09ulOS2devWEtdHCHMXdUfbCAwMFGPHji2VsPy///1PWa+jgyNHnHX37NGjh9P5Sr/99lulrKsRdQcPHmyzbkeDF127dk0MGzZMOWawdxs+fHipdXGzpzgB9r777lOWsXeyuaTlrf3yyy/KsiXpMmvN0THir7/+Kvz8/ARgHln577//trt8ae7ThLDtWhsdHe3wf8s6bLnarjPW8zfXrVtXObnWoUMH8dFHH4nly5eLTz75RHTr1s3mf3HVqlVFWvfNt+rVq4uJEyc6HIQyIyNDKVujRg2X2ypqeXvOnj2rrMPf318kJyc7LGvdZRmAePHFF+2WA8yB+tlnnxVffvmlWLFihVi4cKGYMmVKofl2nZ2wcOWWW25R1uOqy6y77O3Ls7OzxYABA5THR4wY4XAgvtI8rhLC9vjm+++/t1vGZDLZnCh1d79g+awX9+THzSpkgLWMthccHOzWtTuWD729A07rAw9n06EUh6XFwdE1KaUZYK3f4zZt2rhcV9++fZXy9lpOLc+pVCqRmprqcD3WQf2hhx5yuV1HvCXAGgwGmy8OZ+HD+lrkb775xuW6LUOJAxDvvvtuaVbbxieffKJsZ9euXS7Lv/LKKw7/T60Pttq3b+90PdZfjjdfu2gymUT16tUF4HoaDiHMX+CWM8P2/t7WnxVHX7IW06ZNU8o6OiNvYX3w5ijAWgerKVOm2C3z0ksvKWWcXXNSXEUJsCX5u+Xn5ysHjuHh4S5HnmzRooWyLnsB1tJjpmnTpi5foxBC1KlTRwDOW7utP1cjRowQU6ZMUX5/5JFH3NqOK94WYHv27CmWLFli9yx7UfXo0UNZr73pbpxxFGDDw8PFjBkznPZMSE9Pt7lu29EopJ9++mmh9f/0008O13vu3DnxxBNPOHzvtFqtGD58uMtpSoqrOAG2f//+yjL2pmq7mfVJB2fvhT133323sqyrlm932TtG/O6775QTCREREeLff/91uHxp7tMsrEdrdvSZvOOOO5QyRT0RYG337t2F/s8c9QSaOnWqUqZGjRp2p5ix5izA3n333WLNmjUOA3pCQoJStm7dui5fh06ns/mcFJf1+9q/f3+7AXv37t1K0LfcnnrqKbvrc3TiQwjzMZ31MQBQ9F4JQghx4MABZflatWq5bK1218378pSUFJv/zf/7v/9zeIK+tI+rhDBfS2vZtqP97t9//62U6dixo7svVdmfa7XaEk3xZVHm18AWx/bt2wEAtWvXdmsyZ5VKBcDcJzsvL6/QdS0Wt912m9t1yMzMxI8//oh169bh6NGjuHr1qsMRCS2TMZelffv2KfcHDBjgsvyAAQPw119/ATCPWOzo2qWmTZuiWrVqDtdTt25d5X5JRiOOjo4uvZHHytALL7yAjRs3AjBfo2x9/Yu3sHx+APP/5po1a5yWt/67njx50u7ovYDtNQz2OPtfOX78OFJTUwGYJ/52VScACAwMRHp6Ok6ePOm0nKvP9YEDB5T7zq7pAKCMyu3MHXfcgaZNm+L06dNYuHAh3n77bWg0GuV5vV6vXC9ap04dl9eGlLWS/N3+++8/ZYTKXr16Kd+1jvTt29fh3ysjI0O5Ljk8PNzt/wEATv8HZsyYgb/++gt79+61GXW1QYMG+OKLL1xuwx1vvvlmhbuG1tfXV/lOFUIgLS0N//77L7799lssXboUO3bswPz587Fy5UplVN3isHxuAaB69epFWnbZsmXKmA25ubmIjY3F2rVr8cEHH+CNN97AnDlzsGzZMgwcOLDQsiEhIZgzZ45y3eHbb7+NLVu2YPjw4ahTpw5SUlKwevVqbN68GX5+fggNDVVGB3V0vfl7772HadOmwWQy4YknnsAzzzyjjNR64sQJfPXVV/j222+xYsUK7NmzB5s2bULTpk2L9Jq9WWJionLMpdVqnV7jXxKzZs3C1KlTAZivZd24caPT61DLYp82duxY5bhqwYIFhb774+PjlZkrIiIicOeddzrdpjMmk8nm9xYtWmDu3Ll2/0/fffdd/PXXX9i/fz+uXbuGH3/8EU899ZTDdTdv3lz5HjAajbh27Rr27duHzz77DL///jt+//13DBs2DAsWLEBAQECxX0NpmjdvHrp27aqMv9CqVSuMHTsWzZo1Q25uLrZt24affvoJer0eDRs2xPnz5wE4/lzffvvtDrelUqkwc+ZMJCUl4ZtvvgEAvPPOO0WeFcB6VO5HH30UanXpx6cLFy7gqaeewqlTpwAAb7zxhtP9TlkcV1nGo0hISMA///yD2NhYNGjQwKZMca8Lr1GjBi5fvgydToecnBxl/15sJY7AonRbYLOyskp0dvvmLsLWZ86ddbu1tmXLlkLXczm7NWzY0O56SrMF1voM5Ndff+1yXdbz9r3yyiuFnrc8d9ttt7lcl6VseU0S7SnWLTnh4eHi1KlTTstX1C7E1t0ni3q7uVuJdWuBq7nBbh751pr1KJpFvdnrBmb9WXF2vboQtt1+3GmRsrT6OGqBFUKIDz/8UFnnzd28Vq5cqTxXViPfFqUFtiR/N+vvkVdffdVlvay/p25ugbUe2bSoN41G43S7586dU65VA8xz0u3evdtlfSsr60s/br311hKd7bZ0wVOpVKVWv7i4OGVeVo1G47T17dNPP1WuO7d3CwoKEr/99pvNJTZ//vlnofVYf787uzRp7ty5SrlOnTqVyuu1VpG7EM+aNUtZ7sEHH3R7OVesjxEt1+EB5i7KjuaOtFaa+zSL9PR0pUujvev9rK/xs9fTZvv27U6vdbduVTxy5IhNnT744AOnr/frr79Wyg4fPtzl++OIdcujvb+nJ7oQW/zzzz9OR82VJEm8/vrrNsdN9o5l3ZWQkKBcWufj4+PyuMFafn6+zTXLzkYxLyrrfbnlsyFJkvjiiy9cLlvax1UW1j0Ybj4msL4u3MfHx2kPzptZ9+Zx1nXcXZ4ZFtOJjIyMEi1vaS2wx1HLrLUzZ85g8ODBypxZzZo1w4QJE/D5559j6dKlWL16tXKznNU2Go0lqrM7LHMtAXDrLJr1mQ3rZW/mqZFRK5q3334b7777LgCgZs2a2Lx5s8sz76Ghocp9d+ZZvHbtmt1lS1tJPkPOPj8l+V8pqzoBrj/Xlp4TarXapqXUEXc+X2PGjFFG5rSc1bWw/C5JEh5//HGX6yprJfm7ZWdnK/f9/f1dlnf23pXkf8Ayoq4jNWvWtGkdbNiwocsRNSuzJ554An379gVg7oHjTk8mRyz/50ajURmNuKTq16+P999/H4D5b2v57rXn+eefR0xMDCZOnIg2bdogKCgIvr6+aNy4McaPH48jR45gyJAhNt+vN482mpCQgNmzZwMwt349//zzDrc3btw4tGjRAoC594Zl1FtPKq99TXnM/Wo9ynteXp5bx09lsf8ICQlR5jTOycnBqlWrlOeEEFi0aJHyu71WpmnTpuG+++5zeLOed/jmv4Gr7ybr58+dO+e0rDMzZsxQjmN+/vlnnDhxwub5wMBApSUxPT3d5XzgpXkMc9ttt+H06dOYNWsWevbsierVq0Oj0aBOnToYMWIEtm/fjhkzZjj9XBdFnTp1lPeioKDA6fzhN1uzZo3Sqn/rrbfazK9bmizvvxDCrTmoy+q4ynrU/5vnhF25cqWSKYYOHeq0B+fNrOvrTh5zpcJ1IbYOXrfffnuxJ0survfeew95eXkAgNdeew0zZ850OA3Nk08+WW71CgoKUu67849tfeBpvayn5ObmKl1zSyoqKgodOnQolXUBwAcffIDp06cDAKpVq4ZNmzahdevWLpezDrhxcXEuy8fHx9tdtrRZPkOSJMFgMFSIkxTWn+vXX38dM2bMKLdtW0KVwWCAXq93GWLd+XzVqFEDw4YNw48//oiNGzfiwoULiIqKQnx8PDZt2gQA6NevX6GuN97G+u/mTnhx9t5Zr2vUqFFKN+vS8Nxzz9l8vk6fPo1p06Zh1qxZpbL+mJgYxMTElMq6evbsWWgahLJw5513KpeRbNu2DXfddVex1mN9YiA1NdWtExnu1s/C0lXTkYYNG+Ljjz92+Hx2djYuXrwIwHyi5eYDzI0bNyonQfr27et0ajlJktCnTx+li92+fftcdsMva+Wxr9m9e7fyPx4ZGenWpUrFMWzYMAQHB+PTTz/F6dOncccdd2Dr1q2oU6eOw2XKap/22GOP4aeffgJg7hY5evRoAOYuy5bg2LVr10LTPBZVZGQkAgIClO/HkJAQp+Wtny9JSJFlGf3798fp06cBAH///bfNZ0OWZTRq1AinTp2C0WjEpUuXHF5CBJT+MUxISAimTJmCKVOmOCxjHbo7d+5cou3VqFFDuZ+enu72ctbTSpXViR0AWLFiBR577DEkJyfjpZdeAgC8+OKLDsuX1XFV06ZN0aNHD+zcuROxsbH4559/0KtXLwAlm1bK0t1Zq9WWSnf2ChdgQ0JCEBgYiOzs7HK5tvRmmzdvBgDUqlULb731lsMdXVZWls21QWWtdu3ayn3r+UkdsS7jbMdQXpKTk5WznSU1evToUrs2dc6cOXj55ZcBmP/3ijI/lXXIPXjwoNOyJpMJhw8fBmDeaVjO8JeFunXr4t9//4UQAgkJCahXr16ZbasodbIo7891nTp1lGsvz58/73QeubS0NLd3bM888wx+/PFHmEwmfP/993jzzTfx/fffK9c7ObtuyVtYf3ecPXvWZXlnZcrqf+DHH3/Ejz/+CMDccnH16lXEx8fjww8/xMCBA13OI+yOZcuWldrBwdatW9261rqkrE9cFuVg7WbR0dHYuXMnAPMBSEnnp7QorfoB5jk2La0E3bp1K3R92uXLl5X7wcHBLtdnHSDcOaFV1oqyr0lJSVGCRlhYmNtzwFq3vo4ePbpMT3zOmzcPkiRh3rx5boXYstqn9enTB1FRUbhw4QL+/vtvxMXFITo62ua9cHSQ7uqkizVJktC6dWvs3bsXgOtQav28q7DriqvPWevWrZVrLg8ePOg0wFqPJ+HOSf6SSktLU/bdAQEBaN++fYnWV5wW5EuXLim5wN/fHw899FCJ6uBMy5YtsXXrVvTp0wdJSUkuQ2xZHlc99thjyvf+ggUL0KtXL8TFxSn/95GRkejfv3+R1mnJTFFRUU5PIrqr3JpmrL8MhYvBfCwXZJ8/f96tg6bSlJSUBMA8AIizL/DNmzcXujD/ZkV5za5YD8JkaeFxxrq1s7Qmn69sPv/8c0yaNAmA+Ut+/fr1RTrD16pVK+Vg7vjx406/QHbt2oXMzEwAQI8ePcq0VdxypgxAqbV6l1T79u2VA8e//vrL5WenNFlPvm6ZeNuRohyU9OzZE61atQJgPkOr1+uVM7W1atXCvffeW/TKVjBt27aFVqsFYD5776q7n6XFz56aNWsqZ//37NmjfB5KIjY2Fs899xwA8wHO0qVLsWTJEqhUKphMJowaNcrmoKUqsd53lqTF1/pA1XKgWxpKq36Abfiy123fOrRaWmqdsW5psm618ZTevXsrXbn/+ecfpZeYPX/++ady392Bh3Jzc5UB0CRJKnLLSnHMnTsXL7zwAgBzj4nevXvbnGiwVlb7NFmWlVZXS7fhnJwcrFy5EoC5m+OIESNKZVvWPSBcnYSwfr6kLZ2uPmfWA6hZ/+/YY30pQkkGtXLXTz/9pHR1feSRR+Dr61vsdV25ckVpidZqtahfv75byy1YsEA5XnnggQfcOgFWEpYQGx4eDgB46aWXlMsfblaWx1XDhw9XetusXLkSOTk5WLhwoZJlRo0aVaSTXHFxccjPzwcA3HLLLaVSx3ILsNZN3a7OaFq+UABzs3h5svzBzp8/7zB0Go1Gp9fsWBTlNbsSHR2tdJv977//nIbYAwcOYMuWLQDM1xpVhGvBLKMQl8atNFpfv/nmG4wbNw6A+cB33bp16NatW5HWIUkSHnzwQQDmnd+nn37qsOy8efOU+6W1Q3TkoYceUkLHrFmzKkQLgkqlUka0jI+Px7fffltu27YOkp9//rnTEDZ37twirfvpp58GYD4onjBhgnISY/To0W5db1vR+fj4YNCgQQDMJ/cs3e3sWb9+vcsRoy3f7bm5uco1kMVlNBrxyCOPKEF43rx5aNKkCXr27IlXX30VgPnaxyeeeKJE2wHMoxCX1vdXebS+Zmdn2/ytunfvXux13Xrrrcp9SwtSaZg/f75yvyT127p1qxI4GjZsiAceeKBQGesQ/scffzgdFyIzM9NmhFLrE2CeEhgYqHwOMzMzHe4DhRD47LPPlN/d3desWrVK+RzdfvvtaNSoUckq7KZPPvkEEyZMAGDuNeYoxJblPm3MmDFKa9CiRYvw888/K5dg3X///SVuAbV46KGHlO388MMPDq83FULY7B9LEhQvXbqEdevWKb/b+5wNHTpUeW+XLl1qc+2utWPHjinHlRERETYnFcpCcnKy0utFo9Eo/yfFZfkOB8wnRNztwmr9WSvL7sPWWrRoga1btyrX/E6ZMsVuiC3L46qgoCAMGzYMgHl/snLlSpvrwq2vk3WH9b7Dep9SIiUeBkq4Nwrx+PHjlTLO5mwSQgij0Sg6d+6slH/hhRccTuIrhBC5ubnihx9+EEuXLi30nPUoxO7Mv2c939rHH39c6HmdTicee+wxm9G8HI1W+vHHHytlFi5c6HLbrkZqXr58ufJ87dq1xcmTJwuViY+Pt5lg+LPPPrO7Lsvz7owsXJSy3mDhwoXKaHT+/v4lmpcxISFB+Pv7C8A88unmzZsLlfnhhx+U97BevXpuzW1cUpMnT1a2eccdd4grV644LGs0GsWmTZvEzJkzCz3nbITaopa9ePGiMsKvj4+Py89EUlKSeOutt8R///1X6LmizCsthBA9e/ZUyjuaf+/muT6djUJskZ6ervz9rW+nT592q17FVZRRiEv6d9u+fbvyfLVq1exOln769GlRu3Ztm/fA3jyw2dnZon79+spIix988IHDOe6EML+/c+fOtTv35fTp05VtDRs2zOY5vV6vzA8OuDdyuzd46623xLFjx5yWSUxMtJkHvEmTJk73n67k5+cr8zG6GrX+119/FStWrHA6R6LRaBQffvih8h0MQGzZssVu2fPnz4v4+HiH69q4caPNyJ2Ovst1Op2IjIxUtnfvvffaHYU0NzdX3HPPPUq51q1b2x3B2foz4873hKNlizKn+aFDh5T3LCQkxO734ptvvqmsu3Pnzm6vu3fv3kU6VikqV8eIEyZMsPl/tTffcGnt0+yx3p9Yf4/Z25+XxKOPPmqzH7L3v2U9Amy9evXsfnanTJki4uLinG7r7Nmzom3btm4dv1m//3fddVehY5TU1FSbUb4dHVcKYfte2tsHCGH+nO3du9dp3a1nD3jzzTcdlp06darT7wiDwWCzrwAgtm3b5rC8tW3btinLNGrUqFTmLr2Zs335yZMnbWZEmTVrVqHlS/O46mbW31XWn4uePXsW6TUKYTsLh7NR54ui3K6B7du3r9IK9fjjj2PixImoX7++Mq9g48aN0bhxYwDmbh2rVq1Ct27dkJCQgLlz52LFihV48MEH0bZtW4SEhCA7OxsXLlzAgQMH8NdffyEnJwczZ84scT3HjRuntG5OmjQJ27Ztw8CBA1GjRg2cOXMGixYtwpkzZ3DHHXfgzJkzTruNWkaBBMxnUFJSUtCsWTPl+py6deuiTZs2btdt+PDhWL16NZYtW4YrV66gQ4cOGDNmDLp16waVSoUDBw7gu+++U86kDhgwQOleR2br16/H2LFjlTNxY8eORXp6usv5szp06ICoqKhCj9epUwcfffQRnn32WRgMBtx1110YNWoUevXqBYPBgPXr1yutA2q1GvPnz3faDcb6uoDY2Fin16M489577+Hff//FX3/9ha1btyotE926dUNYWBh0Oh0SExOV1vzExET07dsX06ZNK9b23BEZGYlly5bhnnvuQUFBAUaPHo2PP/4Y99xzD5o0aQI/Pz9kZGTg9OnT2LNnD3bu3Amj0ehy7lZ3fP311+jcuTNyc3PxxRdfYPfu3Rg5ciQiIyORlJSE5cuXY+fOnejWrRsuXLiAhIQEt7rHhISEYMSIETZdGHv37o0mTZqUuM4VRc+ePfHcc8/hiy++QFpaGrp27YrRo0ejZ8+ekGUZ+/btw3fffYecnBwMHTrU6WcpICAAa9asQa9evZCZmYkpU6bg66+/xgMPPICWLVsiMDAQmZmZOH/+PPbt24dt27ZBp9Nh8eLFNuvZsWOH0gsmMjLSpjUPMH/WfvzxR7Rr1w6ZmZmYOHEievXq5fT6Z2+watUqvP7662jbti1uv/12tGzZEtWrV4cQAklJSdi7dy9+/fVXpYUqMDAQCxcuVFpYisPHxwd33nknVq1ahQMHDiA7O9vh/H3nz5/HxIkTUbNmTQwYMADt2rVD7dq1lc/2iRMnsGbNGpuRVSdPnuzwM37w4EE89NBDuO2229C7d280btwYarUaly5dwvr165Uu65Ik4bPPPnPYuq3RaDBv3jw88MADEELg119/RYsWLTBq1ChlPIKTJ09i0aJFSvdhjUaDzz77rETXaqWnp+PDDz+0ecy6e/Lhw4cLfef26dPH7nXb7du3x5QpUzBr1ixkZGSge/fueOKJJ9ClSxdkZ2dj1apVSvfawMDAQp8JR2JjY5XBMoODg5VWl/I0Z84cSJKEOXPmKMdXW7dutbnGryz3aY899pjyHljmEq5fv36pXD9vbfbs2dixYwdiY2PxxRdfYM+ePcp+KDExEUuXLsXu3bsBmL/DFi9ebPez+/XXX2P27Nno2rUrunfvjmbNmiE0NBQGgwGXL1/Gjh07sG7dOqX7bUREhNPWuTfeeAMbNmxATEwM1q9fjw4dOuCJJ55A3bp1cfbsWXz99ddK1/vevXuXeHyHnJwc3HrrrWjVqhXuvPNOtGrVCkFBQbh69Sr++ecfrF69Wulu+vDDDzv9G3755ZeYNWsWunfvjh49eqBp06YICQlBXl4eTpw4gRUrVijzyALmwVndbT223q9bt9SXl+bNm2Pbtm244447cOXKFWW8FutBr8ryuKpXr15o0KABYmNjlc8FUPTBm4Abl29FR0ejbdu2RV7ertJIwe60wBoMBptWkJtv9s78X7582eZMsrObSqUS33zzTaF1FLUFVgjbM2D2bj169BDJyclKS4KzM7APP/yww/Xc/F6506qk1+vFE0884fL9GDZsmNN5rizlqloL7M2tbO7eHJ1JtJg9e7bLuQrt9RC4mfUy7swd7ExBQYF4/vnnhUqlcus1jho1qtA6SrMlz2L37t3K3JKuboGBgeLIkSOF1lHUFlghzPM7W85U2ru1bt1aXLhwQZmf8pZbbnFrvXv37rVZj6N5B0tTebbACmH+/rZuPbj5Jsuy+OCDD2x6Gzj7zMTExNic0Xd28/HxEevXr1eWTUtLU757ZVl2+r2+ZMkSZT3t27cvUUtkRWDdouLq1q5dO3Hw4MFS2e6aNWuU9S5atMhhuTlz5rhdv6CgIPHJJ5843e7PP//scj3h4eFi+fLlbr2OJUuWiODgYJfrrFmzpvjjjz8crsfdFljrYyN3b84+ryaTSUyYMMGm9frmW61atcRff/3l1vshhG1PhieffNLt5YrCnWNEIYSYNGmSUq5x48aFWmJLY59mT3Z2tggMDLRZ9vXXXy/JS3bozJkzLj/H1apVExs2bHC4Duu5dF3devfuLc6ePeuyXrGxsS6/k/v16yfS0tKcrsedFtiUlBSX9dZqtWLatGlOe+gU5b3w9/cXn376qcv3wSIzM1PpeSLLsrh48aLbyxaFq325EOb9pXUL6Pvvv1+oTGkcV9ljPR8yYH/OZFdOnDihLD9t2rQiLetMuQVYIYTIy8sT77//vujWrZuoVq2azZeQsy/tbdu2iaefflq0atVKhIaGCpVKJYKDg0XLli3FiBEjxJdffikuX75sd9niBFghhFi/fr0YPHiwqFmzptBoNKJ27dqiT58+4ptvvlG6R7kTYA0Gg/jyyy9F7969Rc2aNYVarXb4XhXloHz37t3i8ccfF40bNxYBAQHCz89PNGjQQIwcOdKtnZdlOwyw7t1cBVghhDh69Kj4v//7P9G0aVMREBAggoKCROvWrcXLL7/ssruPEOYJoq2/vK9du1YKr9i8w5w6daq49dZbRVhYmFCr1cLf3180aNBADBo0SLz77rsOv8zKIsAKYT4Rs2TJEjF8+HDRoEEDERgYKNRqtahevbro1KmTePLJJ8Xy5ctFdna23eWLE2CFMHevfPHFF0WzZs2En5+fCA0NFZ06dRIffvihyMnJESaTSZncvnfv3m6t02QyKTvR6tWri/z8/CLVqTjKO8BarF27VgwePFiEhYUJHx8fERUVJR5++GGxa9cuIYRwO8AKYX7ffv31VzF69GjRtGlTERwcLFQqlQgNDRVt27YVo0aNEgsWLCg0UfqIESOUbUydOtXpNoQQ4pFHHlHKT5482WX5iuzKlStiwYIF4sknnxRdunQRYWFhQqPRCK1WK2rWrCk6duwonnrqKfHnn3+6PPArCoPBIKKiogQA0b9/f4fl8vPzxaZNm8Srr74q+vfvL6Kjo4W/v7+yz27UqJG47777xBdffOHW99vVq1fFV199JUaMGCFatGghqlevLrRarahbt67o27evmDdvnkhPTy/Sa0lKShKzZs0Sffv2FREREcLHx0f4+PiI2rVriwEDBog5c+a4PEj3VIC12LVrlxgzZoxo2LCh8PX1FaGhoaJDhw7irbfeEikpKW6/F0ajUfm7AhC7d+92e9micPcYUQjbrsL2QqwQJdunOTJ27Fhlu5IkifPnzxdp+aLQ6XTi22+/Ff379xd16tQRGo1GVK9eXXTr1k288847Lv//YmNjxVdffSVGjRol2rdvL2rUqCHUarXw8fERtWrVEt26dRPjx48XO3bsKHK95s+fL/r06SPCw8OFVqsVderUEYMHDxbLli1zqwutOwHWYDCI5cuXi6efflq0a9dOhIeHC41GI8LCwkSnTp3E9OnT3QrdQgixZ88e8dFHH4lhw4aJW265RdSuXVtotVrh5+cnIiMjxaBBg8RHH31U5OOpb7/9VnkdAwcOLNKyReFOgBVCiFOnTok6deo4DbElPa6yJy4uTsiy7Pbn155XX31VAOaGRmfdvYtKEqKEw+MSUan4888/lQEbxo8fX+QBhajkjh49qoyQ5+7fYPPmzcpw8i+88AI++eSTsqwikUfMmTMHkyZNgkqlQlxcXKlNp0NERJWT0WhE48aNERcXhxEjRmDZsmWltu5yG4WYiJyzzDUWFBRUpteikmPWI3i6e+3tl19+qdyvDHO/EtnzzDPPICIiAkajER988IGnq0NERBXc0qVLERcXB1mW8cYbb5TquhlgiSoIS4CdNGkSwsLCPFybymf79u1O50n7/PPPlYFP6tati7vvvtvlOv/9919l0KJ+/fop85wSVTZ+fn548803AZinwHE0ZycREZHRaMTbb78NwDwIlmXAvNLCLsREFcDVq1dRq1Yt1KxZE+fOnUNQUJCnq1TpNG7cGPn5+bjrrrvQvn17hIWFQa/X49y5c1i9ejUOHz6slF27dq3DALthwwaYTCacPn0aH3zwgTI6344dO9CjR49yeS1EnmAymdC5c2ccOnQIzz//vNO5r4mIqOpasmQJHn30UYSEhOD06dOoVatWqa6fAZaIqoTGjRvbTN9hj5+fH7755htlcnB77A2l7+71shs3bkRubq7rytpRs2ZN9OzZs1jLEhEREVUWDLBEVCXs2bMHq1atwp49e5CQkIBr164hNzcX1apVQ9OmTdGvXz88++yzCA8Pd7oeS4ANDAxE06ZN8eyzz2Ls2LFuzRsbHR1tMw9kUfTq1Qvbtm0r1rJERERElYXa0xUgIioPXbt2RdeuXUu8Hp7zIyIiIvIctsASERERERGRV+AoxEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVfgIE5ERFSpCCGQn5+P3Nxc5ZaXl1fod51Oh4KCAuh0OuV28++Wm8FggMlkgtFoVG4mk0l5zPo5C1mWIUmS05ssy9BoNFCr1dBoNMpNrVZDq9Uqj1t+9/Hxga+vL/z8/Gx+2rsfEBCAwMBAaLVaD/41iIiIShcDLBERVUh5eXnIzMxERkYGsrKykJmZiczMTIf3s7OzlaBqMpk8Xf0KQ6vVIjAwEIGBgQgKClLuW9+CgoIQGhpqcwsMDHRreigiIqLyxFGIiYio3OTk5CA1NRWpqalIS0sr9NP6fn5+fom35+/vb3Pz8/NTfm5ZshMwAZJJApTb9d+FBBhh/mmSIInr9wWu38zzAdv8LgDJ8pjV05b7UO4Lq/sA5OsLysK8WqvfIQlABsT1n5AFoBIY9Exf5OfnIz8/H3l5eYXuW4J8SahUKgQHB9uE2pCQEFSrVg01a9ZEzZo1UaNGDdSsWROhoaEMu0REVC4YYImIqMSEEMjOzkZycjKSk5ORkpKi3Kx/L2qo0mg0CA4ORnBwMIKCghAcHIxdqw5A0suAQYZkkMw/9RJglAGjBMkoAddvkk16rFoEzGEXagGhNpl/qq7/VAtAZcL9Lw5CdnY2MjIykJGRgfT0dKSnpyMnJ6dI21KpVKhevbpNqK1RowbCwsIQHh6O8PBw1KpVi92ZiYioxBhgiYjIJSEEMjMzceXKFbu3lJQUt1tM/fz8UL16dVSrVg0ntp0B9DIkvQxJJ5vv68y/QyebWz+rcAj1FCEJQGOC0JgAtfmn0JgfG/R/fXDt2jVcvXoVV69eRVpaGtw9lKhRowYiIiJQq1YtREREIDw8XPlZu3Zt+Pv7l/ErIyIib8cAS0REAACj0Yjk5GRcvHgRFy9exOXLl21CqjutpyEhIahVqxbCwsKwZ9VhSAUyJJ0KUoEMXP8pmdjVtDIREIDWBKE1QWiNgNaER2bej6tXryIlJQWJiYlISkpCQUGBy3VVq1YNdevWRd26dREZGYnIyEjl96CgoHJ4NUREVNExwBIRVTHp6elKSLW+JSQkQKfTOV22Ro0aqF27Nk5sOQspXwWpQHX9pwwUqCAJtpZSYQLXuzL7GiF8zLehLw1EUlISkpKSkJiYiKysLKfrCAkJsQm39evXR3R0NCIjI9k1mYioCmGAJSKqhIQQSE1NRVxcHM6fP6/8vHjxIjIzMx0up9FolJavXUsPQspXmYOpJayaGFCpbAiVyRxw/Yx47KPhSEhIwKVLl5CQkIBr1645XE6lUqFOnTqoX7++Emrr16+PqKgodkkmIqqEGGCJiLxcZmamTUiNi4tDbGwsMjIyHC4THh6OevXq4dBvxyHlqSHnqSDlqYECmdecUoUjZBOEnxHC14jHP3kIFy9eRHx8POLj45Gdne1wufDwcERHR6Nx48Zo3LgxGjVqhMjISKjVnEWQiMhbMcASEXkJIQQSExNx5swZm1tKSord8rIso06dOrj8bwqkXPX1mwpSvpotqVQpKNff+hkg/I24e3JfxMfHIy4uDmlpaXaX0Wq1aNCgARo1aoRGjRop4ZbX2BIReQcGWCKiCshoNOLixYs4ffo0Tp8+jTNnzuDs2bMOrxOMiIhA8olUSDnqG2E1j0GVqi6hNkH4GyD8DRg8uQ/Onj2L8+fPIy8vz275WrVqoWnTpmjWrBlatGiBZs2aISQkpJxrTURErjDAEhF5mBACSUlJOHHiBE6ePImTJ0/i1KlTdkdtVavVaNCgAc7tuAg5W2MOrDlqSEaO7EvkioAAfI0wBRgwctZ9OHv2LM6ePYvExES75WvXro3mzZujWbNmaN68OZo2bYrAwMByrjUREVljgCUiKmfZ2dmIiYnBiRMncOLECcTExCA1NbVQOT8/PzRq1AgnNp6DnKOBlH29ZZUj/RKVKqEyQQQY8PT8RxATE4OYmBhcunTJbtmoqCg0b94crVu3RuvWrdGgQQOoVKpyrjERUdXFAEtEVIaEEEhISMCRI0dw5MgRHDt2DBcuXChUTqVSoVGjRjj790XIWRpIWRpIeSoOqETkIUJlggjUY+xnIxATE4NTp07Zban19/dHy5YtlUDbsmVLttISEZUhBlgiolJkNBpx9uxZHD16VAmt9lpXIyIikHw0DVKWxhxYczS8XpWoghNqE0xBeoycPRTHjh3DiRMnkJuba1NGkiQ0aNBACbTt2rVDRESEh2pMRFT5MMASEZWATqfDiRMn8N9//+HIkSM4fvx4oQNatVqN5s2b4+T685CytJCz1JD07HJI5O0EBIS/AeOWjMGxY8dw7NgxXL58uVC5iIgItG/fHu3atUP79u0ZaImISoABloioCIxGI86cOYODBw/i0KFDOHLkSKHBlgICApB7UQ85Uws5UwMpm62rRFWF0BhhCtZj2Iy7cOTIEZw6dQpGo9GmDAMtEVHxMcASETkhhEB8fLwSWA8fPozs7GybMtWqVUPG6VzImVpImddHBua1q0QEQMgmiGA9hr83GP/++y9iYmLsBtpOnTqhc+fO6NixI4KDgz1UWyKiio8BlojoJunp6di3bx/27duHAwcOFLqGNSAgAHkXDJAytJDTtZByOdgSEblHqEwQQY4DrSzLaN68OTp37ozOnTujZcuWUKvVHqwxEVHFwgBLRFWe0WhETEwM9u7diz179uDUqVOw/mrUarXQJwGyJbBms4WViEqHUJlgCtbjvjf7Y//+/YiLi7N5PiAgAB06dFACbd26dT1TUSKiCoIBloiqpNTUVOzbtw979+7F/v37kZmZafN848aNEbv1MuR0H3O3YM69SkTlQGiNmPTLE9i/fz8OHDiAjIwMm+fr1auH7t27o0ePHmjdujVbZ4moymGAJaIqQQiB2NhY7NixAzt27EBMTIzN84GBgciN00NO84GcpoWk4yjBRORZAgIi0IAxnz+A/fv34+jRozbdjQMDA9G1a1d069YNXbt2RVBQkAdrS0RUPhhgiajSMhqNOHbsGLZv346dO3ciISHB5vkmTZrg/JbL5sCaqWG3YCKq0ITKhNc2Po9du3Zhz549Nq2zKpUKbdq0Qbdu3dCzZ0/Uq1fPgzUlIio7DLBEVKnk5+dj//792LlzJ3bu3GlzgKfVamFIBORrPpBTfTgXKxF5LQFhHgzqg0HYtWsXYmNjbZ5v0KABevXqhV69eqFhw4aQJJ6gI6LKgQGWiLxeXl4e9uzZgy1btmDPnj0287IGBQUh55zeHFrTtJBMsgdrSkRUNoSPEc8ueQQ7d+7Ev//+C4PBoDwXGRmJ3r17o1evXmjatCnDLBF5NQZYIvJK+fn52LNnD7Zu3Yrdu3cjPz9feS4iIgIphzIgX/PlAExEVOUIlQkvrn0Sf//9N/bv3w+dTqc8FxERobTMtmzZErLMk3pE5F0YYInIaxQUFGDfvn3YunUrdu7ciby8POW5OnXqIGlvOuSrvpByOM0NERFgDrOvbHgOf//9N/bs2WNzsi88PBx9+/ZF//790ahRIw/WkojIfQywRFShGY1GHDp0CBs3bsT27duRm5urPBcREYGUA5mQUxhaiYhcEbLA9L/G4e+//8auXbtsvk8bNGiA/v37o1+/foiIiPBgLYmInGOAJaIK6dy5c9i4cSM2bdqEq1evKo/XqlUL1w5lm1tasxlaiYiKQ8gC0zY/j02bNmHPnj3Q6/XKc23atEH//v3Ru3dvhIaGeq6SRER2MMASUYVx7do1bN68GRs3bsSZM2eUx4OCgpBz2gBVsi+kLE53Q0RUmoTKhAmrH8OmTZvw77//wnJoqFKpcOutt2LQoEHo1q0bNBqNh2tKRMQAS0QeVlBQgO3bt+PPP//E/v37YTKZAABqtRqmRBXkFF/zlDcciImIqMwJrRFPLBiOzZs34/Tp08rjoaGhGDBgAAYNGoSGDRt6sIZEVNUxwBKRR8TGxmLt2rXYuHEjMjMzlcelTA1Uyb7mLsIGjo5JROQpJj8DHvxoIDZs2IDU1FTl8ebNm2PQoEHo27cvgoKCPFhDIqqKGGCJqNzk5eVh69atWLt2LY4fP648XqtWLVw7kAM52RdyvtqDNSQiopsJCLy1YxL++OMP7Nq1C0ajEQCg1Wpx++23Y/DgwejQoQPnlyWicsEAS0Rl7vTp0/j999+xadMm5OTkADBfWyWS1ZAT/SCnaXldKxGRFxAaE55aPAJ//PEHYmNjlcejoqIwdOhQDBw4kK2yRFSmGGCJqEzodDps2bIFv/zyC2JiYpTH69Spg6RdmVAl+ULSqzxYQyIiKi4BgU+Pz8Qff/yBTZs2KfNy+/r6ol+/fhg6dCiaNm3q4VoSUWXEAEtEpSolJQW//vorfvvtN6SnpwMANBoNjJdlqBL9IGWwtZWIqDIRKhOe//lRrF692qZVtlWrVhg6dCh69+4NHx8fD9aQiCoTBlgiKjEhBI4ePYpVq1bhn3/+Ua6PCgsLQ+r+PHNw5YBMRESVmoDAR4enY82aNfj7779hMBgAACEhIRgyZAjuv/9+1KxZ08O1JCJvxwBLRMVWUFCAzZs345dffrGZt1XK0EB12R/yNR+2thIRVUFCY8Tob+/Dr7/+iuTkZADm6dH69u2L4cOHo0mTJh6uIRF5KwZYIiqyrKwsrFmzBqtWrVKmVvDx8YE+Xobqih/kHE52T0RE5lbZ17eNx4oVK3DkyBHl8fbt22PEiBHo2rUrZJk9dIjIfQywROS2pKQkrFixAr///rsyYEd4eDiu7smBKondhImIyLF5x9/Czz//jK1btyqXmtSrVw/Dhw/HwIED4evr6+EaEpE3YIAlIpfOnTuHpUuX4q+//lIOOqRsNVQJ/pCv+kIS7CZMRETuEVojHpjTH2vXrkV2djYA83Wyw4YNw/33389peIjIKQZYIrJLCIHDhw/jp59+wr59+5THpXQt1Jf8IaVzNGEiIio+oTLhmaUP4+eff8aVK1cAAP7+/rjvvvvw4IMPonr16h6uIRFVRAywRGRDCIEDBw5g4cKFyvVKsiwDSRqoLgXw+lYiIipVAgJTNz6DxYsXK9PwaLVa3H333Xj44YcRHh7u4RoSUUXCAEtEAMzBdd++fViwYAGOHz8OwHwAYYhTQZ0QAKlA5eEaEhFRZSYgMGP7RCxevBgnTpwAAKhUKgwcOBCjRo1CnTp1PFxDIqoIGGCJqjghBHbv3o0FCxYgJiYGgDm4GmPN17hKOgZXIiIqPwICs/a/giVLluDgwYMAzEF20KBBGDVqFFtkiao4BliiKkoIgYMHD2L+/PlKcPXx8YHhnMocXPUMrkRE5FlzjryBH374Afv37wcAaDQa3H333Rg5ciTCwsI8XDsi8gQGWKIq6Pjx45g/fz4OHz4MAPDz84PujARVQgAkPafCISKiiuWjf6fj+++/x6FDhwCYewrdc889GDlyJAd7IqpiGGCJqpBz587h22+/xc6dOwGYz2Sb4jRQXWKLKxERVXwfHHwV3333nTLIoJ+fHx566CGMGDEC/v7+Hq4dEZUHBliiKiAxMRHffPMNNm/eDCGEeVThy1qoLwZycCYiIvIqAgLv75tqcwlMtWrVMGbMGAwZMgRqtdrDNSSissQAS1SJZWdnY8mSJVi5ciV0Oh0AQE7xgepCIOQ87uCJiMh7CQi89tf/Yf78+UhISAAAREZG4qmnnkKvXr0gSZyrnKgyYoAlqoQMBgPWrl2L77//HhkZGQAAKV0DdWwQ53ElIqJKRUgC/7fyESxYsABpaWkAgFatWmHcuHFo2bKlh2tHRKWNAZaoEhFCYM+ePfjiiy8QHx8PAJByVVDFBUFO1UICz0YTEVHlJFQm/O/rwVi+fDny8vIAAAMHDsTTTz+NmjVrerh2RFRaGGCJKomLFy9i3rx52Lt3LwAgJCQEOYdMkBP9IAkGVyIiqhqWJn+Jb7/9FuvWrQNgHuhp5MiRGD58OHx8fDxcOyIqKQZYIi+Xl5eHxYsXY/ny5dDr9VCr1RBxWqguBkAyckocIiKqmuYdfwvz5s3D8ePHAQARERF47rnneH0skZdjgCXyUkIIbNu2DZ999hlSUlIAAFKqFurzQZDzOUATERGRgMDLfz6Nr776StlX3nrrrZgwYQLq1q3r4doRUXEwwBJ5oQsXLmDOnDk4ePCg+YF82RxcU314nSsREdFNhCzw8Nd34aeffoJer4dWq8Wjjz6Khx9+GFqt1tPVI6IiYIAl8iJ6vR4//fQTFi1apOyAjWc1UF0KgGRicCUiInLm+/iPMWfOHBw4cAAAEBUVhUmTJqFDhw4erhkRuYsBlshLHDt2DLNnz0ZsbCwAc3dhzbkgSAXsLkxEROQuAYGpG5/BZ599htTUVADAgAED8PzzzyM0NNSzlSMilxhgiSq4nJwczJ8/H2vWrIEQAtBJ5u7CV33ZXZiIiKiYhMqEwR/0VPavoaGhmDhxIu644w5PV42InGCAJarA9uzZg9mzZysDT8hJvlDHBkEycHRhIiKi0jD32AzMmjVL6eHUq1cvTJgwATVq1PBwzYjIHgZYogooJycHn3/+OX7//XfzA3kqaM4GQc7g/HVERESlTUgC//tmEBYvXgyj0Yjg4GCMHz8e/fv355Q7RBUMAyxRBXPw4EG8//77SEpKAgCoEvyhig/kIE1ERERl7ItT7+L999/HmTNnAADdu3fHyy+/jGrVqnm4ZkRkwQBLVEHk5eXh66+/xi+//GJ+IF8FzelgyJkc3p+IiKi8CElg9IJ7sWDBAuj1eoSGhuLll19Gjx49PF01IgIDLFGFcOrUKbz11lu4ePEiAEC+4gd1XCAkI691JSIi8oSvzryPmTNn4vz58wCAIUOG4Pnnn4efn5+Ha0ZUtTHAEnmQyWTCihUrMH/+fBgMBqBAhuZMMOR0XutKRETkaUISGDq3N1asWAEAiIyMxLRp09CyZUvPVoyoCmOAJfKQ1NRUvPvuu9i3bx8AQL7qA/XZYI4wTEREVMG8v38q3n33XaSkpEClUuGJJ57Aww8/DFnmPpuovDHAEnnAvn378M477yAtLQ1arRamEz6QE/04rysREVEF9UvG9/joo4+wZcsWAMCtt96K1157DaGhoZ6tGFEVwwBLVI6MRiO+//57LF68GAAg5aihPhUCOVft4ZoRERGRKwICL/w6GnPnzoVOp0NYWBjefPNNtGnTxtNVI6oyGGCJykl6ejreeustHDhwAMD1gZpigzg9DhERkZf58vR7eOONN3Dx4kWoVCo8+eSTeOihh9ilmKgcMMASlYMTJ07g9ddfR3JyMmCUoD4bBFUKRzEkIiLyVkJlwu3T22Lz5s0AgB49emDatGkICAjwcM2IKjcGWKIyJITAmjVr8Omnn8JgMEDKVUEdE8ouw0RERJXAzV2K69evj3fffRf16tXzdNWIKi0GWKIyotfr8fHHH+OPP/4AcH2U4TPBnNuViIiokpl7bAamT5+OlJQUBAYGYvr06ejWrZunq0VUKTHAEpWB9PR0TJs2DUeOHIEsy5DO+UOV4M9RhomIiCqpZSlf4fXXX8fRo0chSRIef/xxPProo5Ak7vuJShMDLFEpO3/+PKZOnYrExETAIEF9KgSqNB9PV4uIiIjKmJAE7vqgG3799VcAQN++fTF16lT4+PA4gKi0MMASlaLdu3djxowZyM3NBfJU0JwIhZzH612JiIiqkvG/jsLHH38Mo9GIW265BW+//TbniyUqJQywRKVk9erV+OSTTyCEgJShgeZkKCQDr3clIiKqit7fPxXTp09HdnY26tatiw8++ICDOxGVAgZYohISQuDbb7/F4sWLAQByoi/U54IhCV7zQkREVJV9c342pkyZgsTERISEhOCdd97BLbfc4ulqEXk1BliiEjAYDJg9ezbWr18PAFDFB0B1MYCDNREREREAYPnVrzF16lTExMRAo9HgjTfewO233+7pahF5LQZYomLKy8vD66+/jr179wICUJ8NgirJ39PVIiIiogpGyAK3vtwM27dvhyzLmDJlCgYNGuTpahF5JQZYomLIysrCSy+9hBMnTgBGCeoYjjRMREREjgkI9Hu3E9atWwcAeP755zF8+HAP14rI+zDAEhVReno6Jk+ejDNnzgB6yTzScJbW09UiIiKiCk5A4P7P+mDZsmUAgEcffRRPPPEE54olKgIGWKIiuHbtGiZOnIi4uDhAJ0NzrBrkXE6TQ0RERO4REBizaCjmz58PALj//vvxwgsvMMQSuYlzfBC5KTk5GePHjzeH1wIZmqMMr0RERFQ0EiQsHPUrJk+eDEmS8Msvv2Du3LlgmxKRe9gCS+SGpKQkjB8/HleuXAHyZWiPVYOUz/BKRERExTdh7Rh88MEHEELggQcewPjx49kSS+QCW2CJXLB0G75y5QqQp4L2aHWGVyIiIiqxT4YswJQpUwAAq1atwrx589gSS+QCAyyRE+np6Zg0aRIuXbpkbnk9Wg1SgcrT1SIiIqJK4uYQ+9lnnzHEEjnBAEvkQFZWFiZPnozY2Fig4Hp41TG8EhERUemae89CJcT+/PPPWLRokYdrRFRxMcAS2ZGXl4cpU6aYp8q5PtqwVMBuw0RERFQ25t6zEC+88AIA4LvvvsOaNWs8WyGiCooBlugmBoMBb775Jo4fP26e5/VYKOQ8hlciIiIqW189uAxjxowBAMyZMwdbtmzxbIWIKiAGWCIrQgjMmTMHu3fvBowSNCdCIedqPF0tIiIiqiJ+emIdhg4dCiEE3n77bezbt8/TVSKqUBhgiawsXrwYa9euBQSgPhUMOUvr6SoRERFRFSJBwroXd6FPnz4wGAyYPn06zp075+lqEVUYDLBE123YsAHffvstAEB9PgiqVF8P14iIiIiqIgkSdsw8hvbt2yMvLw9Tp05Famqqp6tFVCEwwBIBOHLkCD744AMAgOqSP1RX/D1cIyIiIqrKJCFh5syZiIyMRFJSEl577TUUFBR4ulpEHscAS1VeUlISpk+fDoPBADnFB6q4QE9XiYiIiAgPhD6OWbNmISgoCMePH8f777/POWKpymOApSqtoKAA06ZNQ1paGqRsNdRnQiBB8nS1iIiIiAAAY+tPwsyZM6FSqfDXX39h8eLFnq4SkUcxwFKVJYTA7NmzcerUKfN0OSdDIZkYXomIiKhiebnTe5g0aRIA4Pvvv8eBAwc8XCMiz2GApSpr5cqV2LhxIyAATUwopAKVp6tEREREZNe8exdh8ODBMJlMmDFjBpKTkz1dJSKPYIClKikmJgZffvklAEAVGwQ5g9PlEBERUcU2YcIENGnSBBkZGXjjjTeg1+s9XSWicscAS1VOTk4OZsyYYR606aoPVJf9PF0lIiIiIpfu9huJmTNnIjAwEMePH1dOxhNVJQywVKUIIfDRRx8hISEByJehPhPMQZuIiIjIa4yOfAGvvfYaAPPlUHv27PFwjYjKFwMsVSnr1q3D5s2bzde9ngqBZORHgIiIiLzLm7d9ggceeAAA8P777yM9Pd2zFSIqRzx6pyrj8uXLmDdvHgBAFR8IOYvXvRIREZF3euaZZxAdHY3U1FTMnj2b88NSlcEAS1WCyWTCrFmzkJeXBylDA9Ulf09XiYiIiKjY7vYbiWnTpkGtVmP79u1Yv369p6tEVC4YYKlKWLt2LQ4fPgwYJWh43SsRERFVAv/X/DU8/vjjAIC5c+ciKSnJwzUiKnsMsFTpXblyBV988QUAc9dhKV/t4RoRERERlY4fHl2N1q1bIy8vD3PnzvV0dYjKHAMsVWpCCMyePftG12FOmUNERESViAQJL730EtRqNXbs2IF//vnH01UiKlMMsFSp/f333zhw4ABgAqfMISIiokrpqUZT8PDDDwMwdyXOycnxcI2Iyg4DLFVaeXl5+OyzzwAAqksBkNl1mIiIiCqpUaNGoW7dukhJScE333zj6eoQlRkGWKq0lixZguTkZCBfhupSgKerQ0RERFRm7vYbiRdffBEAsGbNGsTGxnq4RkRlgwGWKqWLFy9i2bJlAAD1+SBIJnYdJiIiosptauf30atXL5hMJmUAS6LKhgGWKqWvvvoKer0eUqoWcqqPp6tDREREVC6eeeYZqNVq7N27F3v37vV0dYhKHQMsVTonTpzA9u3bAQGoY4M4cBMRERFVGWPqTcD9998PAPjiiy9gMBg8XCOi0sUAS5XO/PnzAQBysi/kPA7cRERERFXL6NGjERwcjNjYWGzYsMHT1SEqVQywVKkcOHAAhw4dMk+bcyHQ09UhIiIiKnf3h4zFqFGjAACLFi1iKyxVKgywVGkIIZTWV1WiH6QClYdrREREROQZ99xzD6pVq4bExERs3LjR09UhKjUMsFRpHDp0CDExMYBRguoip80hIiKiqmuI/6N46KGHAACLFy9mKyxVGgywVGn89NNPAAA5yReSnq2vREREVLUNHToUISEhSEhIwKZNmzxdHaJSwQBLlcKZM2ewf/9+88jDCWx9JSIiIronYJTSCrts2TIIITxcI6KSY4ClSmHp0qUAADnFl9e+EhEREV137733ws/PD7GxsTh48KCnq0NUYgyw5PWSk5OxdetWAIAqwd/DtSEiIiKqOO4Lfgx33XUXAGDlypUerg1RyTHAktf7448/YDQaIWVoIOdoPF0dIiIiogrlgQceAADs3r0bly5d8nBtiEqGAZa8msFgwO+//w7APHUOEREREdkaW38Sbr31VgghsG7dOk9Xh6hEGGDJq+3duxcpKSmAXoJ81dfT1SEiIiKqkAYPHgwA2LBhA6fUIa/GAEtebf369QAAVbIfJCF5uDZEREREFdPbfT9DSEgIrl69ap65gchLMcCS18rOzsaePXsAAHIyW1+JiIiIHJGEhAEDBgAwt8ISeSsGWPJa27dvh06ng5SjgpSj9nR1iIiIiCo0S4DdvXs38vLyPFwbouJhgCWvtXnzZgCAfNUXEth9mIiIiMiZ/2vxGmrXro38/Hzs3bvX09UhKhYGWPJK2dnZOHToEABATmH3YSIiIiJXJEjo3bs3AGDr1q2erQxRMTHAklfav3+/ee7XXBXkfHYfJiIiInKHJcDu2bMHer3es5UhKgYGWPJKu3btAgDIqT4ergkRERGR9xjXajqqV6+OvLw8HD161NPVISoyBljyOiaT6cbowwywRERERG6TIKFz584AgH379nm4NkRFxwBLXic2NhYZGRmAQYKUpfF0dYiIiIi8CgMseTMGWPI6hw8fBgBIWRpIgqMPExERUdUgqdWQ1CUf+8MSYM+ePYvMzMwSr4+oPDHAktf5999/AQCqbD/PVoSIiIionEhqNSDJgCSXOMQ+FD0Z9erVAwAcP368NKpHVG4YYMmrCCGUAQfk/EBIGq2Ha0RERERUDiTZ5n5xW2PloCBIkoQ2bdoAAI4dO1ZaNSQqFwyw5FVSUlKQlpYGCECV7wvJ14chloiIiCo1u0G1GK2xlvAKAK1btwbAAEvehwGWvMrp06cBAFK+FpKQzV/CMq+DJSIiospJ6TrssID7IdYSXgGgRYsWAIAzZ85ACFGiOhKVJwZY8iqWACvn3Zg+R9Jq2QpLRERElY7L8KoUdB1i5aAgm9+f6/QOVCoVsrOzkZycXJJqEpUrBljyKufOnQNwU4CVJHYlJiIiokrF7fCqLOA4xFp3HVaKCwlRUVEAgPPnzxe7nkTljQGWvMqlS5cAAHKBbVhliCUiIqJKpSjh1WqZm0OsvfBq0ahRIwAMsORdGGDJa5hMJiQkJAAAJJ2m0PO8HpaIiIgqgxJNk3NTiHUUXgEgMjISAHD58uXib4+onJV8JmSicpKSkgKdTgcI+wEWMF8PC5OA0OvKuXZEREREpUCSitf6arOO69Ps+Pk5LVa7dm0AQGJiYsm2R1SO2AJLXiMpKQmAObxKsH82kV2JiYiIyGtdby0VRmOJV3X644449W5Lp2UiIiIAAFeuXCnx9ojKCwMseY1r164BACSDymk5hlgiIiLyOtZdfYWpRCH29EftIdfQQa6uQ8w7LRyWe3nAHABAcnIyp9Ihr8EAS14jNTUVACDpXfd8Z4glIiIir2HvOtVihlhLeLWwhFh7QdbSKKDT6ZCXl1fkbRF5AgMseQ0lwLpogbVgiCUiIiKvVsQQe/rDDjbh1UKufr019u2bQqyQAJM5PGdkZJSoqkTlhQGWvEZ2drb5jtG9AAswxBIREVEF52SUYABuh9jTH3aAXLPAaRm5hm2IlSBBMprjQGZmpuu6ElUADLDkNSxdWyRT0abK4fQ6REREVCG5Cq8WboRYV+FVKVdDh5iZVoM7XW8YUBoKiCo4BljyGvn5+eY7pqL/20paLVthiYiIqOJwN7xaOAmxZ2Z3KNKq5JoFSoi1NAzodJyCkLwDAyx5DUuALWoLLMCuxERERFSBFDW8WtgJsWdmd4AU5l7rqzUlxApzXQwGQ/HqRFTOGGDJa9wY3r14X/oMsURERORxxQ2vFlYhtrjh1UKuWQBTgLmBYMOGDSWrF1E5YYAlryEpX/jFn6eM18MSERGR1xMmpP6vY4nC683YhZi8BQMseQ1ZLvm/q9DpIPgFTURERJ4iin8i3iL90a7QB0nw+8+vxOsKDjfX54477ijxuojKAwMseQ1LgE3tXadYywudDqaCglLZcRAREREVWwmORdIf7QpdsLk3mToXJQqxMzr9huAAPQAgKCio2OshKk8MsOQ1/P39AQA92/+HC8+1LtKyDK9ERERUoRTjmMQ6vFoUN8TO6PQbojUpKMg3ry8gIKDI6yDyBAZY8hqWAFtNn4FnR63FhWfdD7FCCIZXIiIiqliKcGxiL7xaqHOLttnXO65FtCYFAKC7HmAtx1lEFR0DLHmNwMBAAEB+nox2vvF4dvRat1pied0rERERVViuQqwkOw2vFu62wr7ecS0aaZOV3wvyzXGAAZa8hdrTFSByl+XajNxs8xdtO994PDtqLb7EEER9cczuMuw6TERERF5LkpE+sovL8Arc6Eqc1zYPNTOyMXzrftx6Mg4BeQXI8fPB3hYNEPnCNdTVpivL6HVAfq75uKpatWpl9SqIShUDLHmNmjVrAgAy01TKY5YQe/yBuvhnVQebIMvwSkRERF5BiMLzwxYhvFoEZOrw5qy1uPfYfmivzxVrcdvRszCtBpKGBeHcGzUgfGRkZZiPqbRardLTjaiiY4AlrxEWFgYAyExV2Tzezjce7Xzj0eLRK/haDEbUl8cYXomIiMi7WIdYSUb6I0ULrz4GHT7/7Rt0TjjnsIysB2ovzYLfeT2OL4hAVpoWAFCjRg1INwdoogqK18CS11ACbJpsN5d28IvF06P+wMWnWjO8EhERkfcR4kZ4DSlaoJzyzxp0TjgHV0c/AkDo3nw0fOsaaqs+A3CjlxuRN2CAJa9Rq1YtqFQq6HUystLt/+t+vHMA6q1NhqTVlnPtiIiIiEpOkqUih9caOZm49+R+8/Ku1n/9Z/jKLFyKiQEA1K1bt4i1JPIcBljyGhqNBrVr1wYApFzW2C2jTlMDSSmQ/Xwh+fiUZ/WIiIiIik9WmW8A6qw6X6RF7zuxFxqT0XVB683pgYvbtwMAoqKiirQskScxwJJXqV+/PgAg5Urhy7dH/vU0miy8pvzOEEtEREReQVZBkiVIsrl91JhytUiLd3Jy3aszF65cAQDUq1evWMsTeQIDLHkVyxnC5ATbADtyy1NoMScDuJxk87js48MQS0RERBXX9fB6szqr49xehb++oMibNQKIN5kA3GggIPIGDLDkVZo0aQIAuBx34xrXkVueQouPMwuFVwCALDHEEhERUcXkILwCgDEp2e0Qm6sp+nHORT8/5EkS/Pz82AJLXoUBlrxK8+bNAQBXLmhgMJgfU1/T2A+vFgyxREREVNE4Ca8W7obYag+mF3nzp4KCAJgbB1QqlYvSRBUHAyx5lbp16yIoKAgGvYSkSxqM3PIUmixKdb0gQywRERFVFG6EVwtXIfbtCd+j6Wh/CPvjWzoUExwMAGjWrFnRFiTysMIj4RBVYJIkoXnz5ti/fz/e/v0OtPgzC0hIdG/h6yFWaLUQOh1EQdGvFyEiIiIqkSKEVwtjUjKAaJvHZrywACrJhMH++YC/GhgeDPyYCQHnU+lYnj8SHQ0UFKBly5ZFqguRp7EFlrxOu3btAABhO5LcD68WsgRJJbM1loiIiMpfMcKrRZ018cr9GS8swD0Buebwep2YWROim69b88CmdfPHWZ0OANC2bdti1YfIUxhgyet06NABAGCUUyEgircSdikmIiKi8nJ9jtfihlcAMCYmoc6aeCW8FuInQ/xYB2JksMPuxEIDiJHBODbzNwghEBUVhZo1axa7TkSewC7E5HWaNWsGf39/5ObmQvgWQMr3Ld6KZAmSJBU3AhMRERG5x2SEpC75YbcpI9N+eLXwkyFm1wKmVIf4KRPSrjwgxwQEyBDd/YD/BQNhahxafgzAjUYBIm/CAEteR61Wo127dti1axeMIfmQixlghU4PE6+DJSIiIi8g+fhAkiT0fvxJbPvuG+eFw9TAC9UhXij81G3/9xQi1bsAAJ07dy6DmhKVLXYhJq/Us2dPAIAxKAvQaF2ULkzo9DDl5QGC7a9ERERU9oRl/r8ikq5f8iRdn+rGf+cp9H7iyWKtq+e4pxF4+AyuXLkCrVaLTp06FWs9RJ7EAEteqXv37pAkCSbfPAgfY9FDrMnE8EpERETlqqgh1hJcpZvmafXfcarI2+457mmE7LmIkTNuAwB07NgRfn5+RV4PkacxwJJXql69Olq1agUAMAZmQVKrIPn5uRVk2XWYiIiIKjrrVld73G2F7TnuaSW8AsA///wDwNwYQOSNGGDJa91+++0AAENgGiDLgCxDUquchlh2HSYiIiJPcqcV1lV4BcytsL2fdB5ie443B1dLeDVp8nHq1CmoVCr06tXL/UoTVSAMsOS1+vXrB1mWYfLNgUl9vUXVVYhl12EiIiLyMGch1p3wauG/3XFX4p7jn0bI7os2jw1/rQsAoEuXLggNDXVrG0QVDQMsea2aNWsqw78bAlNvPOEgxLLrMBEREVVUNw/W5K5eTz9V6LEeLxQOrwICmzdvBgD079+/+BUl8jBOo0NebeDAgThw4AAMganQpEdAwvUJwmUZkhqAyhfCaAL0Ora+EhERUYUhDAZlbtjiBFeLgL9jlPs9XngaABC662KhcibfbCQkJMDPzw89evQo1raIKgK2wJJXu/322xEYGAih0cHol2X7pCwDKpW5NdYk2PpKREREFU5JwqvF7c8+hR4TnkHorot2wysAdPtfPQDAgAEDOPoweTUGWPJqfn5+uPPOOwEAhqAU+4Xk6//mbH0lIiKiCkQYDCUOrwDg/8chhO684PB5k0qvjD587733lnh7RJ7EAEteb+jQoQAAo3/mjcGcrIicHBizc8q5VkRERESuleQYxZSbC1NuLoTRCOPVaw7L/W/GrTAajWjVqhUaN25c7O0RVQQMsOT1oqKi0KlTJ0AC9MGFW2GF0QSYjB6oGREREZELxTxGsQRXYTQvL3Q6u+WEZMKqVasAAPfff3/x6khUgTDAUqXw0EMPAQAMQdcg5BtD04vcPJhycj1VLSIiIiKXitoKawmvhdZjpxX26bl9kJ6ejoiICNxxxx3FriNRRcEAS5VC586d0bRpU0A22bTCCoOBra9ERERUsbl5rGLdZdiem1thBQSWLVsGABgxYgTUak5AQt6PAZYqBUmSMHLkSADmbsRCMrL1lYiIiCqNm7sMO2LdCvviD/fgypUrCAkJweDBg8u6ikTlggGWKo3bbrsN9erVA1RG6IOvsvWViIiIvIazbsTOWl1vZmmFFRBYtGgRAGDYsGHw9fUteSWJKgAGWKo0VCrVjVbYkCQIFcMrEREReQk7J91ddRl2ZvzXdyIuLg7BwcF44IEHSqOGRBUCAyxVKgMGDECDBg3MrbDVHMwLS0RERFQBWbfCuttl2B7Dtav4/vvvAQCPPPIIAgMDS62ORJ7GAEuVikqlwjPPPAMAMNbOhtCyFZaIiIi8xPVW2OK2ulo8/v0QJCcnIywsjFPnUKXDAEuVTteuXdG2bVtABgz1sz1dHSIiIiK3lTS8CpUJS5YsAQCMHTsWPj4+pVU1ogqBAZYqHUmS8OyzzwIATLXyYQrUe7hGRERERO4RBoPrQk4Mer87MjMzER0djYEDB5ZSrYgqDgZYqpRatmyJ/v37AxJgaJQJAeHpKhERERGVHSFg8tfh119/BQBMmDCB875SpcQAS5XWc889h8DAQIggA0wReZ6uDhEREVHZEAICAk0eiYAQAv369UOHDh08XSuiMsEAS5VWjRo18MQTTwAADNHZEBqTh2tERERE5AbhZs8xIZSyE34bgxMnTsDf3x/PPfdcGVaOyLMYYKlSu/fee9G0aVNALWBokOXp6hARERGVDquQKzRGfPnllwDMAzfVrFnTU7UiKnMMsFSpqVQqTJ48GbIsw1QrH8bq+Z6uEhEREVHxWbW6AoCAQKeJTZGVlYWmTZty2hyq9BhgqdJr0aIFHn74YQCAoXEWhJpdiYmIiKiCs9eN2M5jplr52LVrF9RqNV599VUO3ESVHgMsVQmPPfYYGjRoAGhNMDTmqMRERETkRW5qdVUe1hrh28F8Yn7s2LFo2LBhedeMqNwxwFKVoNVq8eqrr0KlUsFUswCmmuxKTERERF7AwYBOAgLtxzVCdnY2mjdvjoceeqicK0bkGQywVGU0a9YMo0aNAnC9K7FPySYKJyIiIipTTkYjfvzHB7B3717lJD27DlNVwQBLVcqjjz6KVq1aAWoBffMMCIldiYmIiMi7mIJ0mD9/PgBg/PjxiI6O9myFiMoRAyxVKWq1Gm+++SaCg4MhggwwRmd7ukpEREREbhMqE6oP0MJoNKJPnz4YMmSIp6tEVK4YYKnKCQ8Px6uvvgoAMNbNhbEGr4clIiKiik9A4NYpzZGUlIS6devipZdegiRJnq4WUbligKUqqXv37spgB4YmmTD58npYIiIiqtjGLBqK7du3Kz3KAgICPF0lonInCeHk6nCiSsxgMOCFF17A0aNHIeWqoPmvOiQjz+kQERFRxWOsXgBjqwwIITB58mTce++9nq4SkUfwaJ2qLLVajbfeegthYWEQ/kbom2VwflgiIiKqcEx+Bmg76SCEwNChQxleqUpjgKUqrUaNGnj33Xfh4+MDUV3HQZ2IiIioQhEqE8Lv9UNubi7atm2LcePGebpKRB7FAEtVXrNmzfDKK68AAIyRuTDWyvNwjYiIiIgAIQm0eT4Kly5dQnh4OGbOnAmNRuPpahF5FAMsEYA+ffpg9OjRAK4P6hRa4OEaERERUVUmINDrzbY4ePAg/Pz88O677yI0NNTT1SLyOA7iRHSdyWTCO++8g02bNgFGCZqj1SBn8ywnERERlT9DdBaMkblQqVSYNWsWunTp4ukqEVUIbIEluk6WZUydOhWdOnUCVAL6lukQnF6HiIiIypmxdi6MkbkAgClTpjC8EllhgCWyotFo8Pbbb6Np06aA1gRdq3QIjdHT1SIiIqIqwlgzH8bG5kEln3zySdx1110erhFRxcIAS3QTf39/zJo1C7Vr1wb8jNC3TodQmzxdLSIiIqrkjNXzIVplQwiBe++9FyNHjvR0lYgqHAZYIjtq1KiBjz76CDVq1IAIMEDfOg1CxRBLREREZcMUWgCpbS6MRiP69euHCRMmQJIkT1eLqMJhgCVyIDIyEnPmzEG1atUgAhliiYiIqGyYQnSQOuRCr9ejV69eePXVV6FSqTxdLaIKiQGWyIno6Gh8/PHHCA4OhggyQN8qHUJmiCUiIqLSYQrSQd0lHzqdDt27d8frr78OtVrt6WoRVVicRofIDadOncLEiRORnZ0NKUMDzYlQSEae/yEiIqLiM4WYw2teXh46deqE9957Dz4+Pp6uFlGFxiNwIjc0a9YMH374IQIDAyFC9ObuxBzYiYiIiIrJWK0AUscc5OXloXPnznj33XcZXoncwBZYoiI4ffo0Jk+ejIyMDEg5KmiOVYOk5zUqRERE5D5jjXygTQ4MBgN69OiBGTNmQKvVerpaRF6BAZaoiOLi4jBp0iRcvXoVUt71EFvAEEtERESuGcPyIFrmwGg0ok+fPpg2bRqveSUqAgZYomK4fPkyJk6ciCtXrgAFMjTHq0HO5c6HiIiI7BMQMNbNhbFBNgDgrrvuwpQpUzjaMFERMcASFVNKSgomTpyICxcuAAYJmpOhkDPY/YeIiIhsCQgYG2TDWDcXAPDAAw9g3LhxkGUOR0NUVAywRCWQmZmJV155BUePHgVMgPp0CFRXfT1dLSIiIqoghCRgaJoBU1gBAODZZ5/FQw89BEmSPFwzIu/E0z5EJRAcHIyPP/4YvXr1AmTA0DwDhro5EOB5ISIioqpOqExo8VxtmMIKoFarMX36dDz88MMMr0QlwBZYolJgMpnw+eef4+effwYAyFf8oD4fBElwB0VERFQVmXwNiLjPHxcvXkRAQADefvttdOzY0dPVIvJ6DLBEpWjFihX4/PPPIYSAlK6BJiYUkoEdHYiIiKoSU2gBfLoakJ2djVq1amHWrFlo1KiRp6tFVCkwwBKVsh07dmDmzJnIy8sD8lXQnAjlCMVERERVgICAsXYeRJMcmEwmtGrVCu+88w6qV6/u6aoRVRoMsERlIDY2Fq+88gouX74MGCWoTwVDlcrBnYiIiCorIQkYGmXBFJEHALjzzjvx4osvQqvlDAVEpYkBlqiMZGRk4I033sChQ4cAAKr4AKguBkACr4slIiKqTITWiCaPheP48eOQJAnPPvssRowYwcGaiMoAAyxRGTIYDPjss8/wyy+/AACkNC00p0J4XSwREVElYQopgH9PgYyMDAQGBmL69Ono1q2bp6tFVGkxwBKVgw0bNuCjjz5CQUEBUCBDExMCOYtdioiIiLyVgICxXg5M0bkQQqBJkyaYOXMm6tSp4+mqEVVqDLBE5eTcuXN4/fXXcfHiRUAAqtggqC77sUsxERGRlxFqEwxNM2CqrgMADB48GBMmTICPj4+Ha0ZU+THAEpWjnJwcfPDBB9i6dSsAQL7qA/XZYHYpJiIi8hKmEB1C+6iRkpICrVaLSZMmYdCgQZ6uFlGVwQBLVM6EEPjll1/w+eefw2AwmLsUnw6BnMEuxURERBWVkASMUTkwRZm7DEdGRmLGjBlo0qSJp6tGVKUwwBJ5yKlTp/DWW2/d6FJ8yR+qC4GQBLsUExERVSTCx4DGo8Nx4sQJAOYuw+PGjYO/v7+Ha0ZU9TDAEnlQXl4ePv30U/z+++8AAClLDfWpEMj5ag/XjIiIiAQETGH50LY3IDc3F4GBgXjxxRfRp08fT1eNqMpigCWqALZt24bZs2cjKysLMEpQxwZCTuQAT0RERJ4iNCYYGmXCVLMAAHDLLbdg2rRpiIiI8HDNiKo2BliiCiI5ORnvvPMODh8+DACQ0jXQnAmBVKDycM2IiIiqFmONfAR0BTIyMqBSqTBmzBg88sgjUKvZQ4rI0xhgiSoQk8mE1atX4+uvv0Z+fj5bY4mIiMqRUF9vdQ0zt7o2atQIr732Gho3buzhmhGRBQMsUQWUkJCA9957D0eOHAEASOlaaM4EszWWiIioDAgImGoUIKi7jLS0NKhUKowcORKjRo2CRqPxdPWIyAoDLFEFZTKZ8Msvv+Drr79GQUEBYJSgig+A6rI/W2OJiIhKidAaza2uNXQAgOjoaLz66qto3ry5h2tGRPYwwBJVcBcvXsQHH3yA//77DwAgZauhPhsMOZtnhImIiIpLQMBYOw/a1gbk5eVBrVbjf//7Hx599FH4+Ph4unpE5AADLJEXMJlMWLduHb788kvzSMUCUF32h+pCACSj7OnqEREReRVTgB6GxpkQQQYAQOvWrfHSSy+hQYMGHq4ZEbnCAEvkRVJTU/HZZ59h8+bN5gcKZKjPB0G+5sNuxURERC4IlQnGqBwgqgBGoxEBAQF45plnMGTIEMgyTwgTeQMGWCIvtG/fPnz88ce4fPkyAEBK05qDbB6H9yciIrqZgICpVj6Cu6qRmpoKAOjVqxdeeOEF1KxZ08O1I6KiYIAl8lL5+flYsmQJli1bBp1Ox27FREREdpgC9DA0yoII1gMA6tWrhxdeeAFdunTxcM2IqDgYYIm83OXLl/HZZ59hx44d5gd0MtRxgZCTfdmtmIiIqiyhNsFQPxuiTj6EEPDz88Po0aPx4IMPcmocIi/GAEtUSezduxeffvopLly4AACQstRQxwVBztB6uGZERETlR0gCxjq58G0tkJOTAwDo168fnn32WYSFhXm4dkRUUgywRJWIXq/HypUrsXDhQuTm5gIA5GtaqOJ4fSwREVVuAgKmmvmo2dsfiYmJAIAmTZpg3LhxaNeunWcrR0SlhgGWqBJKTU3FggULsHbtWhiNRkAAcqIf1BcCIOlVnq4eERFRqTIF62BokKVMixMWFoannnoK/fv35+jCRJUMAyxRJRYfH4+vv/76xvWxRgmqS/5QXfbnQE9EROT1TP56GOvnwFSjAADg5+eHkSNH4sEHH4Svr6+Ha0dEZYEBlqgK+Pfff/HFF18gJibG/IBegupiAFSJ/pBMHOiJiIi8i/A1wBCVAxFeACEEVCoV7r77bjz22GOoXr26p6tHRGWIAZaoijCZTNi6dSu+++47XLp0yfxggQz1xQDISX6QBIMsERFVbEJrhCEqB1JdnfkSGQB33HEHxo4di/r163u4dkRUHhhgiaoYg8GADRs2YOHChUhKSjI/mK+C+kIAp94hIqIKSWiMMEbmQtXAYJ77HEDXrl3xxBNPoGnTph6uHRGVJwZYoipKp9Nh7dq1WLx4MVJTUwEAUp4KqosBkFN82SJLREQeJ7RGGCJzoI42KsG1bdu2eOqpp9CmTRsP146IPIEBlqiKy8/Px+rVq/HTTz8hIyPj+oMy1JfYtZiIiDxD+JiDq1xPD4PBPLJwq1at8Nhjj6Fz586QJO6biKoqBlgiAgDk5ubi119/xfLly5UWWRTIUF0KgCrJj4M9ERFRmTP5GmCslwOpjl65xrVdu3YYPXo0OnTowOBKRAywRGSroKAAa9euxdKlS5GSkmJ+UCdDddkfqkQ/SAZOv0NERKXLFKCHMTIHCNfDZDIBADp37oxRo0ahbdu2Hq4dEVUkDLBEZJdOp8P69evx448/IjEx0fygUYIqyReqhABIBSrPVpCIiLyagIAI1cFQNxeimk55vHv37hg1ahRatmzpwdoRUUXFAEtEThkMBmzZsgVLly7FuXPnzA8KQL7qA1VCAORsjWcrSEREXkVIAqawfBjr5kIEmK9vValU6NWrFx555BE0adLEwzUkooqMAZaI3CKEwIEDB7Bs2TLs379feVzK0EB1KQBympZT8BARkUNCbYIxIg/GOrmA1txN2M/PD3fffTeGDRuG2rVre7iGROQNGGCJqMjOnj2L5cuXY/PmzcogG1KuCvIVf6iSfSEZeZ0sERGZmfwMMNbOhbahQH5+PgAgLCwMDzzwAIYMGYKgoCAP15CIvAkDLBEVW3JyMlatWoXffvsNOTk55geNEuRkX6iu+EPOVXu2gkRE5BECAqYaBTDWzoUI1SuPN27cGCNGjECfPn2g0fASFCIqOgZYIiqx3NxcbNy4Eb/88gvi4uKUx6V0jTnIXvNh92IioipAaIzmbsIReYCPuZuwLMvo0aMH7r//fk6FQ0QlxgBLRKVGCIF///0Xv/zyC3bs2KF0L0aBDFWin3kaHj1HLyYiqkwEBESwHsbauZBrG2EwmAdmCg0NxZAhQ3DPPfcgPDzcw7UkosqCAZaIykRSUhJ+++03rF27Funp6eYHBSCn+kBO8oOcykGfiIi8mVCbYKyVB1N4HkSAUXm8VatWuO+++9C7d29otVoP1pCIKiMGWCIqUzqdDtu2bcOvv/6Ko0eP3niiQIYq2ReqJD9I+bxWlojIGwgImKrpYArPgxxxo7XVx8cH/fr1w3333YemTZt6uJZEVJkxwBJRuYmPj8cff/yBDRs23GiVxfVrZZP8IF/zhWRiqywRUUUjfIwwhufBGH7j2lYAaN68OQYPHoy+ffsiMDDQgzUkoqqCAZaIyp1er8fOnTvxxx9/YN++fVC+hgwS5BRfqFJ8IWVq2MWYiMiDhGwyjyQcng8RqlMeDw4ORv/+/XH33XejUaNGHqwhEVVFDLBE5FFJSUlYv3491q1bh8TExBtP5MtQJftBTvGFnMcuxkRE5UFIAqZQHUxh+TDVKABUNw4TO3XqhMGDB6Nnz57w8fHxYC2JqCpjgCWiCsFkMuHw4cPYtGkTtm3bhtzcXOU5KUt9o2WWoxgTEZUqAQERpIcxLB+msHxAc+PQMDIyEv3798edd96J2rVre7CWRERmDLBEVOHk5+dj586d2LRpE/bu3XtjOh4BSOlaqFJ8zXPLGmXPVpSIyIuZ/AwwheXDGJYP+N0YRbhatWro06cPBgwYgObNm3PeViKqUBhgiahCS09Px19//YVNmzbhxIkTN54wAXK6FvJVhlkiIneZ/Aww1cyHqWa+zdQ3vr6+uP3229G/f3907NgRajUv3SCiiokBloi8xsWLF7F582Zs27YNsbGxN56wDrOpPpAMDLNERMD17sH+BphqFphDq/+N0KpWq9GxY0f0798fPXv2hL+/vwdrSkTkHgZYIvJKcXFx2LZtG7Zu3VoozErpWqiu+ZjDLK+ZJaIqRkBABBhgqlE4tGo0GnTu3Bm9e/dGjx49EBQU5MGaEhEVHQMsEXm9+Ph4JcyeP3/+xhMCkLI0kFN9zN2M81ScmoeIKiUhCYgQHYzVC2CqXgD43pirVavVokuXLujduze6d+/O+VqJyKsxwBJRpWIJszt27MCpU6dsn8xTQWUJs5xnloi8nFCbYKpWYG5pDdUB6huHdD4+PujSpQvuuOMOdOvWDQEBAR6sKRFR6WGAJaJKKzk5Gbt378aOHTtw6NAh6PX6G0/qJchp5m7GcrqW180SUYUnICD8jDBdb2UVwXpYn4erUaMGunfvjh49eqBjx46cq5WIKiUGWCKqEnJzc7Fv3z7s3LkTu3fvRmZm5o0nLV2N07WQ07SQstg6S0QVg1CZYArVwVRNB1OobddgAGjcuDF69OiBHj16oGnTppBlnowjosqNAZaIqhyDwYDjx49j586d2Lt3r+0gUIC5dTZda26hTddC0nEgKCIqHwICItBg7hpcTQcRZNvKqtVq0bZtW/To0QPdu3dHRESE5ypLROQBDLBEVOUlJydj//792LdvH/bv34/s7Gyb56UctTnIZmghZ2g45ywRlRoBAfgaYQrRmVtaQ3WAxvbQLCoqCl26dEGXLl3Qrl07+Pr6eqi2RESexwBLRGTFYDDg5MmT2LdvH/bt24eYmBjYfE0KQMo2B1o5QwspUwvJxO7GROQ+4XM9sF6/3dwtOCAgAB07dlRCK1tZiYhuYIAlInIiPT0dBw8exKFDh3Do0CEkJCTYFjBdv34243qgzdIw0BKRDaG1Dqx6wM9o87xKpULLli3Rvn17dOnSBS1btoRarfZQbYmIKjYGWCKiIkhKSsLhw4dx+PBhHDp0CElJSbYFTICUrYGcqYGUqYGcyRGOiaoSy0jBIlgHU7AeIlgPYSewNmvWDO3bt0f79u3Rpk0b+Pn5eajGRETehQGWiKiYhBC4cuWK0jp7+PBhXLt2rVA5KVdlDrNZWkgZGkj5Ko5yTFRJCFlABOqvh1UdTEH6QtewyrKMJk2aKIH1lltu4bysRETFxABLRFRKLIH26NGjOHLkCI4dO1Z4hGMA0EnmMJulhpytMXc75sBQRBWeMuBSoAEiSA9TkB4iUA/c9PH18fFBy5Yt0bp1a7Rp0watWrVCUFCQZypNRFTJMMASEZWhzMxMHD9+HEeOHMHRo0cRExMDnU5XqJyUpzIH2SwN5Gw1pGwNJMFWWiJPEhojTEEGcwurJaxqCh821ahRA23atFECa5MmTXgNKxFRGWGAJSIqRzqdDqdOncLJkycRExODkydPFh4YCjBfS5tjDrJythpSjgZSrpoDRBGVEaExQgQYzK2r1wMrfEyFymk0GjRq1AgtWrRAy5Yt0aZNG9SuXRuSxM8mEVF5YIAlIvKwjIwMxMTEKIH2xIkTSE9PL1xQXG+pzdaY56a9HnA5SBSR+5RBlgIMEAF6c2ANMADawmFVkiRER0ejefPmaNGiBZo3b46GDRtCq9V6oOZERAQwwBIRVThCCCQlJSmttGfPnsWZM2fsh1oAKJDNYTZHbW6lzVVDymNrLZHQmCD8DRD+Bpj8zS2rwt8AqAqXlSQJ9erVQ+PGjdGsWTO0aNECTZs2hb+/f/lXnIiIHGKAJSLyAkIIXLt2DWfPnlUC7ZkzZ5CQkAC7X+MCQL4Kcq7aPAoygy1VUgIC0Jgg/I03gur1m73rVQHA19cXjRo1QuPGjdG4cWM0adIEDRo04FQ2RERegAGWiMiL5ebm4ty5czhz5gzi4uIQGxuLuLg4ZGRk2F/AEmzzVOYwm6cy3/LVQIHM6X2owhKygPA1QvgZrv+8ft9JUJUkCbVr10b9+vWVwNqkSRPUqVMHKpWdZlgiIqrwGGCJiCoZIQTS0tJsAq3lZ2ZmpuMFjTDPUZunvvEzTwUpXwXoGG6p7AnJKqT6GW8EVV+DeUAlB/+CkiShTp06iI6ORoMGDRAdHY369esjKiqKrapERJUMAywRURVhHWwvXryIixcv4tKlS7h06RIuX74Mg8HgeGETgAIVpAJzoJXy5Rv3CxhwyT1CFhA+RsDnejhVfpquP154ICVrgYGBiIyMVG716tVDgwYNUK9ePfj4+JTTqyAiIk9igCUiIhgMBiQlJeHSpUtKsL148SISEhKQlJQEo9HofAUmmINsgQxJp4J0/Sd014OuTmbIreSELCC05hAqtEYIrckcVLUm883XaHek35v5+/sjMjISdevWLRRWQ0JCOF0NEVEVxwBLREROGQwGXLt2DVeuXEFiYqLy03I/JSXFdcAFzNff6mRIOqtwqzffLPdh+d0gMexWAEK6PkCSxqT8VO5fD6bQmltQoXbvcMLPzw+1a9dGRESE8jM8PFy5HxwczJBKREQOMcASEVGJGAwGpKSkIDExESkpKbh69SpSUlJs7qemproXci1MuBFm9TIkgwQYZPOctwbJ4U8YGXztERCAWkCorwdNtQnC0U+NCdBe/+lmKLXw8/NDzZo1UbNmTYSFhaFGjRoICwtDWFiYEliDgoIYUImIqNgYYImIqMwZjUakpaUpgfbq1atIS0tDeno60tLSbG7Z2dnF35AJgPF6kDVKgFE23zdJNz1udV9IgEkyd4M2WX7H9cckSOLGfVj2mAIArv9+/TFXwVnAancr4caARJK4/rsAZHNXXMt9XL8vlPvXf6qEuZzq+n2VAFQmB4+LIgdRayqVCiEhIahWrRpCQ0NtflqCquWnv78/wykREZUpBlgiIqpQ9Hq9EmzT09ORmpqKzMxMZGdnIysrC1lZWcjMzFTuZ2dnIzMz0/kgVOVFwCbU3gipcDiCbnny8/NDUFCQzS0wMFC5HxwcXCioBgUFQZZlT1ediIgIAAMsERFVAkII5OfnIysrC7m5ucjNzUVeXp7y0/q+9WN5eXnQ6/XQ6/XQ6XTQ6XTK/ZsfK+uALEkSNBoNtFottFotNBqNcrP+XavVws/Pz62br6+vElADAwOhVqvL9DUQERGVNQZYIiIiN5hMpiLdJEmCJEmQZRmSJEGlUtn8LsuyzXOW54mIiMgxBlgiIiIiIiLyCryohYiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiIiIiKvwABLREREREREXoEBloiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiIiIiKvwABLREREREREXoEBloiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiIiIiKvwABLREREREREXoEBloiIiIiIiLyC2tMVICLyFCEE8vPzPV0NIqIi8fX1hSRJnq4GEZFHMMASUZWVn5+PgQMHeroaRERF8ueff8LPz8/T1SAi8gh2ISYiIiIiIiKvwBZYIiIA2n21AKMESZYASVZ+Qr7eTU+SIMkyIF1/XJKU5yRLOUm68bh0Yzmbx25ap7ncjeeFZTnZ6nkHjwtJuvE7AHF9VZAkCBkAJPNjyragLCOu/35jOenG8vKN58zL2D5vvU5hKSPD4fqU9VrV8cbPm+tx8/M3/kb2ngeg1MHRtmwed1AP29d1Y5v2nruxjLDZXqHtWJ7Hzc8Lm2UsZW/USyjPSdblJeXVXn9O3PTTsk4BSRI2/16WdZr/NDeel6+vz+ax6/dvPGf1mNVP8/pu/G59A8zrNv+OG89ZbU+WTMpj5rImAIBKuvG79TKW3288L6CC6fpzAirJZLWcCSqr5VTXH1fBVGg5GZZlTVDZPGcur5L+v717j6qyyv84/n48oaAgoJlCkml5yzQM1Mw0L6VGWg6aY9mYOU45q9K1zFk2/DJ1KnVymbpyVhcna5WRdpk0m9LGvJZ4zZBECW94QYmLXAXxwPn9gefpAOdwOYBw6PNaq3Uu+9nfZ/Nsjp0vez972zAoxmJvH8VmHQuU1MNeVnI9LNjPaTPbUfL66iNcfW5cvVZgMQyaYGDh6qNhL2uCgcGVQgtj/9IOEZHfOyWwIiJQkrwWl3xRxPjt0cw0DAMDe+J69f2r2YlRkhHyW7bjUK9cBtWkTKZUKstwqEeZ91y9j+tHh+TQfF720QxnOIQ1yjWxdHnZmFxNpF3FK385ysV1WlZRvSpcKnfjXX10ldzWWQJrlE9gHcvKJrC/vW8r035buTLDHtNZudM6NifnKvMfmAls2f9clplJpUNi65DommX8Vv5bIopDAltcOgE07Ang1UfDwII9XsnzkkejVL2SWGAxMB9/q1fy3LEMuJq02o+1J8COSWpJmytLYEudy/E8lD5fE/N4hz4UEfkd0xRiERERERER8QhKYEVERERERMQjKIEVERERERERj6AEVkRERERERDyCElgRERERERHxCEpgRURERERExCMogRURERERERGPoH1gRUQALDZsFJds/mhQ+hFK9ittQpl9VO1lDq8N4+o+mQ71Kitz2IjU5mJzU2fv//ZeyaPNodwGYDNKvVdyjAE2SsWzOda5Wq88F+/ZHIpK7W1qODa/gv1XDff3eq2orLJ4lZXZHyqsV3b/VRfl5droYh9Yyj83yp3HscxW5tEe077vquOvl4t9YM147u0Da6Pkua3Mf/Yy29W9cM2yqzGLDRsYxQ7nufqaqz8PZcvBZhSXxL4ax1aqrPT7TRzOZX9e9rGkHSUfa8fH4quXqcnV58VXf0Wd7wNr0ATjt31lKbnmFux7z/6216vj6ybm85J65v61V2M1wcBi2MsMDAyuFDr7DIqI/P4ogRURAQr7/lrfTagbtjKPbiibn4rY2VPI4soObLDsGb4mpImIeAr9iy0iIiIiIiIewbDZbDX4u7yIiOey2WxkZmby8MMPA7B+/Xq8vb3ruVVSmYKCAvWZh1Gf1S5vb28MQ3MiROT3SVOIReR3yzCMUl+kvb298fHxqccWSXWpzzyP+kxERGpCU4hFRERERETEIyiBFREREREREY+gBFZEREREREQ8ghJYERERERER8QhahVhEREREREQ8gkZgRURERERExCMogRURERERERGPoARWREREREREPIISWBEREREREfEISmBFRERERETEIyiBFREREREREY+gBFZEREREREQ8ghJYERERERER8QjX1XcDROT349KlS6xZs4bt27dz4cIFmjRpQkhICEOHDmXs2LF4eXm5HTsjI4Po6GhiYmJISUmhWbNmdOzYkZEjR/Lggw9iGEaF9c+dO0d0dDT79u0jIyMDHx8funTpwujRoxk8eHCl509ISOCTTz7hp59+IjMzEz8/P3r06EFkZCRhYWGV1v/xxx/5/PPPOXz4MDk5OQQEBBAaGsr48ePp2rVrVS9DrVOflTd+/HguXLhQYeyePXvyr3/9q9I21IXG2Gfnz58nLi6OhIQEfvnlFxITE7l06RIAa9euJSgoqErtb6ifMxERqTrDZrPZ6rsRItL4XbhwgenTp5tf/L29vSkuLqawsBCAzp07s2zZMvz8/KodOyEhgVmzZpGVlQWAj48PhYWFFBUVAdC3b18WLlzo8ot7TEwMc+fOpaCgAIAWLVqQn59PcXExABEREcyePdvll/OvvvqKJUuWmOfz9fUlLy8P+z+vkydPZsqUKS7bv2rVKt5//30ADMOgRYsW5ObmAmCxWHj++ecZNWpUdS5JrVCfOe8zewLbokULmjVr5vSY7t27s3DhwqpcilrVWPtswYIFbNy40WncqiawDfVzJiIi1aMEVkTqnNVqZerUqZw4cYLWrVvzf//3f4SHh1NcXMzWrVtZvHgxly5d4q677uK1116rVuzc3Fwef/xxMjIyuOmmm3jxxRfp1q0bV65cYcOGDaxYsQKr1cqYMWOYOXNmufrJyck8+eST5Ofn07NnT1544QVCQkLMUSz7F95p06bx2GOPlav/888/89xzz1FUVMTAgQOZMWMGN9xwA1lZWaxcuZIvv/wSgHnz5jF06NBy9bds2cK8efMAeOihh/jLX/6Cv78/v/76K8uXL2fnzp1YLBbeeOMNbr/99mpdm5pQn7nuM3sC+/e//50HHnigWj97XWrMfbZo0SJiY2Pp0qULXbp0wWaz8c477wBVS2Ab6udMRESqT/fAikid27hxIydOnADg5ZdfJjw8HIAmTZowbNgwZs2aBcDu3bs5cOBAtWKvWbOGjIwMmjVrxmuvvUa3bt0A8PLyIjIy0hxF27BhA2fOnClXf9WqVeTn59OqVSsWLVpESEgIAM2bN2fKlCmMHj0agA8//JCcnJxy9d966y2Kioro1KkT8+fP54YbbgDA39+fWbNm0bdv31LHOSoqKuKtt94CoF+/fsyaNQt/f38AbrjhBubNm0fHjh1LHXetqM+c91lD1pj77G9/+xsff/wx8+fPZ+LEifTo0aPKbW/InzMREak+JbAiUufsU/969+7tdHRj2LBh5giKq2mCrmzatMmMERwcXK48MjISHx8fioqK+N///leqLD8/n+3btwMwZswYp9MqH3/8cQDy8vLYuXNnqbLk5GQOHToEwIQJE7juuvLLCtjrX7hwgdjY2FJlP/30kznVc+LEieXqenl5MWHCBAAOHTpEcnJyuWPqivrMeZ81ZI21z6Bkiq+7GvLnTEREqk8JrIjUqYKCAn7++WcA7rrrLqfHGIZBv379ANi3b1+VY58+fZqUlBQAs35ZzZs3p1evXk5jx8XFcfny5QrrBwUF0aFDB6f1HV+7qt+zZ0+aN2/utP7+/fvNNvbs2dNpfcdrVp1rUxPqM9d91lA15j6rqYb6ORMREfcogRWROpWUlGQu0tKxY0eXx9nLMjIyyM7OrlJs+3TJymJ36tQJgFOnTrmsbz+movonT54s9b79dWBgIIGBgU7rWiwWbrrppgrrd+jQweUIU2BgIAEBAU7bX1fUZ677zNGaNWuIjIxk6NChPPjggzzzzDOsXr3a6RTYutaY+6ymGurnTERE3KMEVkTqVFpamvm8TZs2Lo+7/vrrndapSHp6erVi5+XlmVtvOJ7Hz8/P5WqyjvUdz+dY37HtztjbVtP6Vb0uNaU+c91njk6ePEl2djbe3t7k5OQQFxfHO++8w5/+9Cfi4uIqjF/bGnOf1VRD/ZyJiIh7tA+siNQpxy+yFX159fb2dlqnLmLbp4fm5+eXK6+oftl22V9XVt/ettquX1fUZxVf8wEDBtCrVy969+5tjtplZmby7bff8u6775KRkcHs2bP597//7fR+0brQmPusphrq50xERNyjEVgREZFqmDFjBkOGDDGTV4CAgADGjx/P0qVLsVgs5Obm8t5779VfI0VERBopJbAiUqfsozCAuZCLMwUFBU7r1GVsHx+fcuUV1S/bLvvryurb21bb9euK+sz9a37bbbeZe8f+8MMPXKut1htzn9VUQ/2ciYiIe5TAikidcrzvLDU11eVxjvedVXavml3r1q2rFbtFixalvpzaz5OTk1PhF3N7fcfzOdav7J45e9tqWr+q16Wm1Geu+6wq7HuU5ubmkpWVVe367mjMfVZTDfVzJiIi7lECKyJ1qkOHDjRpUvJPTUWri9rLWrVqRcuWLasU23FF04pi21dBvfnmm13Wd1wp1VX9siuw2l9fvHiRzMxMp3WLioo4ffp0hfWTkpIoKipyWt8xdtn21xX1mes+a6gac5/VVEP9nImIiHuUwIpInfL29ub2228HYM+ePU6Psdls7N27F4A+ffpUOXZISAht27atMHZ+fj6HDh1yGrtnz57mwi3285d14cIFkpKSnNZ3fO3q/HFxceaiMGXrh4eHAyWLxtj38CzLMW51rk1NqM9c91lVxMfHAyUjkf7+/tWu747G3Gc11VA/ZyIi4h4lsCJS50aOHAnAwYMHzS/3jrZu3UpycnKpY6vCMAxGjBgBwJYtWzh//ny5Y7744gvy8/OxWCzcf//9pcp8fHy49957AVi3bh25ubnl6kdHRwMl98UNHDiwVFlwcDC9evUCYO3atVit1nL1P/roIwDatWvHHXfcUaosNDSUdu3alTrOkdVqZe3atQD06tXrmq1oC+ozcN5nld3TeuTIEbZs2QLA3XffjWEYFR5fmxprn9VUQ/6ciYhI9SmBFZE6N3LkSDp16oTNZmPOnDkcOHAAgOLiYrZu3crixYsB6NevH2FhYaXqrlq1ikGDBjFo0CCnX5wnTJhAq1atKCgoYPbs2SQkJABw5coV1q1bx7vvvgvA6NGjCQkJKVd/ypQp+Pj4kJ6ezgsvvMCZM2eAkhGl999/n/Xr1wMwadIk/Pz8ytV/+umnsVgsHDt2jHnz5pn30WVnZ/P666+bIzvTpk3DYrGUqmuxWJg2bRoAu3fv5vXXXyc7OxsouR9v3rx5HD9+vNRx14r6zHmfLV++nKVLl3Lw4MFS261kZWXx2WefMXPmTKxWK82bN+fJJ5+s7DLXqsbcZ1arlczMTPM/xyQ4JyenVFnZP0o05M+ZiIhUn2G7Vkskisjv2vnz55kxYwYXLlwASqY8FhcXU1hYCEDnzp1ZtmxZuS+vq1at4v333wdKRsyCgoLKxU5ISGDWrFnmgjnNmzensLDQ/CLbp08fFi5cSNOmTZ22LSYmhrlz55qrlPr6+pKfn2/eLxcREcHs2bNdjqZ99dVXLFmyxDze19eXvLw8c7Ru8uTJTJkyxeW1cfwZDcOgRYsW5hd0i8XC888/z6hRo1zWryvqs/J9tmDBAjZu3Aj81leGYZCTk2Me07p1a+bPn2+O9F5LjbXPDh48yIwZM6p0DZYvX07v3r3Lvd9QP2ciIlI9SmBF5Jq5dOkSa9asYfv27Vy4cAHDMAgJCWHYsGGMHTsWLy+vcnWq8sUaICMjg+joaHbt2sWvv/5K06ZN6dSpEyNHjiQiIsJc4MaVc+fOER0dzb59+8jIyMDHx4fOnTvz0EMPMXjw4Ep/toSEBNauXUtsbCyZmZn4+fnRo0cPIiMjy412OXPgwAH+85//cPjwYXJycggICOCOO+7gj3/8I127dq20fl1Rn5V2+PBhdu7cSXx8POfPnyc7O5srV67g5+dHp06d6N+/PxEREfj6+lZ6/rrSGPusNhJYaLifMxERqTolsCIiIiIiIuIRdA+siIiIiIiIeAQlsCIiIiIiIuIRlMCKiIiIiIiIR1ACKyIiIiIiIh5BCayIiIiIiIh4BCWwIiIiIiIi4hGUwIqIiIiIiIhHUAIrIiIiIiIiHkEJrIiIiIiIiHgEJbAiIiIiIiLiEZTAioiIiIiIiEdQAisiIiIiIiIeQQmsiIiIiIiIeAQlsCIi4hGWL1/OoEGDeO655+q7KVLPcnNzefDBBxk0aBA7duyo7+aIiMg1dF19N0BEROpWXl4eiYmJHD16lISEBBISEjh37hw2mw2AtWvXEhQUVCfnttlsjBs3jtTUVCZOnMjTTz/tVpzExETWrVsHwFNPPVWLLaxfJ06cYO/evcTFxXHixAnS09MpKirCz8+PW265hf79+zNy5Eh8fX3ru6kNiq+vLxMmTGDlypW88cYb9OvXj2bNmtV3s0RE5BpQAisi0shNnz6dxMTEejn30aNHSU1NBWDgwIFux3nzzTcpKiqiX79+9OzZs7aaV6+mT5/OTz/95LQsIyODjIwM9u3bx+rVq4mKiqJv377XtoEN3Lhx4/j0009JSUnhs88+Y+LEifXdJBERuQY0hVhEpJGzj7RCychV7969adWq1TU5986dOwFo06YN3bt3dyvGoUOH2L9/P0CjSlLsib2fnx8RERFERUWxYsUKVq5cyT/+8Q/69+8PlCSzUVFRxMbG1mdzGxwfHx/Gjh0LQHR0NJcuXarnFomIyLWgEVgRkUYuIiKCgIAAunbtSvv27TEMg+nTp5ORkVHn57YnsAMGDMAwDLdifPzxxwAEBQVxxx131Frb6lv79u2ZNGkSw4YNo2nTpqXKunbtyuDBg/noo494++23KSwsZMmSJXzwwQf11NqGafjw4axatYqcnBz++9//8sgjj9R3k0REpI5pBFZEpJEbN24c9913HyEhIW4nke44c+YMSUlJgPvTh1NTU4mJiQFgxIgR17T9dW3x4sU88MAD5ZJXRxMnTqRz584AnDp1iuPHj1+r5nmEoKAgevXqBcCXX35Zz60REZFrQSOwIiJSJ+yrw9qnLbtj8+bNFBcXAzB06NAq1bFarWzZsoXvv/+eo0ePkpmZSVFREQEBAXTq1Inw8HDuu+8+WrduXareoEGDABg5ciRRUVGcPn2azz77jH379pGWlkaLFi3o0qULjz32GKGhoWa9y5cv880337Bp0ybOnj1LQUEBwcHB3H///TzyyCM1XlzozjvvNO9hPnPmDLfccovbsU6dOsX69euJjY3l/PnzFBQU4Ovri5+fH0FBQYSFhXHPPfdw0003uRXfarXy7bffsnXrVk6cOEFWVhaGYdCyZUsCAgLo3r074eHhDBgwAC8vr1J1y17/U6dO8cUXX7B//37S0tLIz8/n1VdfLffHkKFDhxIbG0tSUhJHjx6lW7du7l0cERHxCEpgRUSkTtinD/fv35/rrnPvfze7du0CSu4T7dChQ6XHHzt2jJdeeomzZ8+WK0tNTSU1NZU9e/Zw/PhxoqKiXMbZtm0bCxYsoKCgwHzv8uXL7N69mz179jBr1ixGjx5NWloaUVFRHD16tFT9kydP8s4777B7926WLFlSoyTWarWaz5s0cX/i1Pr161m2bBlFRUWl3s/KyiIrK4uzZ8+yb98+jh8/zpw5c6odPzMzk+eff97pgmH2a5+YmMiXX35JdHQ07du3dxnrm2++YcmSJRQWFlZ6XsdFvXbt2qUEVkSkkVMCKyIitS4tLY0jR44A7k8fLiws5PDhwwB079690unDiYmJPPvss+Tn5wPQu3dvhg8fTocOHfDy8iI9PZ34+PhK9w09fvw4W7ZsITAwkKeeeso894EDB/jwww8pKChg6dKlhIaG8sorr3Ds2DHGjBnDPffcQ0BAAOfOneODDz7g+PHjHDp0iOjoaJ588km3rgHAjz/+aD7v2LGjWzFOnDhhJq8tW7Zk9OjRhIaGEhAQQFFREenp6SQkJLB79263p2kvW7bMTF7DwsIYPnw4QUFBtGjRgry8PJKSkoiNjTWnhLuSkJDA5s2badmyJY888gg9e/bEy8uLU6dO0a5du3LHd+zYER8fH/Lz8/nxxx+ZMmWKW+0XERHPoARWRERq3ffff4/NZqNp06b069fPrRjHjx83Rx+7du1a4bFWq5WXXnrJTF5nzJhhrlDr6O6772bq1KmkpKS4jJWYmEjnzp1ZtmwZfn5+5vu33XYb7du3Z+7cuVitVp599lmys7NZvHgx4eHh5nFdunShT58+TJo0ibS0NNatW8ekSZOwWCzV+vmhZBr2yZMngZIkPiQkpNoxALZu3WqOvC5dutS8r9bRwIEDmTp1KllZWdWOf/nyZfMPAwMHDuSVV14plwiHhoby8MMPk5+fX+FI8smTJ2nfvj0rVqwotVq2q1WsLRYLXbp0ITY2ll9++YXi4uIajVSLiEjDpn/hRUSk1tmnD4eHh+Pj4+NWDMdpwJVt+7N582bOnTsHlKy67Cx5ddS2bdsKy1944YVSyavd4MGDadOmDQAXL14kMjKyVPJq5+vrywMPPGAed+rUqQrP50xaWhqvv/46AIZh8Ne//rXaMezsK077+vo6TV4d+fv7Vzt+Tk6O+ceG0NDQCkdxfXx8Kp1SPXPmzGpt9WQ/tqCggLS0tCrXExERz6MEVkREalVubi4HDx4E3J8+DJCenm4+b9myZYXH2hNmgEcffdTtc0LJlFRXSZ5hGKXKhg8f7jKO43HJycnVakNBQQFRUVFm4ll24ajqsifdubm5bN261e04rvj7+5urKX/33Xc12pO1TZs2Tv8oUBHH3w/H3xsREWl8lMCKiEitiomJwWq1YrFYGDBggNtxLl++bD53Nhrq6JdffgFKRuKqsthTRSqr79iWilbrdTyuOgndlStXePHFF82Foe655x6mTp1a5frODB8+3Bz1nDt3Ls888wwfffQRhw4dMqdd14SXlxcjR44EID4+nvHjx7N48WK+++67aifv7qyy7JjAOi68JSIijY/ugRURkVplHw29/fbbCQgIcDuO4z2jla1Gm5mZCfw20lgT3t7eFZY7To+taHq0432Y9q2AKmO1WpkzZw579+4FoG/fvsybN8+t+2cdBQcHs2jRIhYsWEBqaipxcXHExcUBJde5W7duDBo0iFGjRlX6xwJXnnvuOQoLC9m0aRPZ2dls2LCBDRs2ACV/WOjbty8RERGVjiRXNtrujOMfO9xd8VpERDyDRmBFRKTWFBYWsmfPHqBm04eh5H5Nu+zs7BrF8gRWq5W5c+eaWweFh4fz6quvmlNzayosLIyPP/6Y+fPnExERYW5jU1RUxOHDh3nzzTd59NFHzeS5upo1a0ZUVBSrV6/mz3/+M3feeaeZ4GdkZLBx40amT5/Oiy++WCrhLMudBZgcF55y/L0REZHGR3+mFBGRWrN//35zSmpNE1jHLVMqS2ADAgJISUnx2AV87MmrffT6zjvvZOHChTXaP9aZpk2bMmTIEIYMGQKUjFwfOHCATZs2sXv3brKzs5kzZw7R0dG0bt3arXOEhITwxBNP8MQTT1BUVERiYiK7du1i/fr1XLx4kR07drBy5UqeffbZWvu5cnJyzOeVLdAlIiKeTSOwIiJSa+wJWOfOnQkKCqpRLMc9T0+fPl3hsfZtdtLT0ys9tqEpm7z27t2bRYsW1Xry6kxAQADDhg3jtddeY8yYMQDk5+fz/fff10p8+/TkKVOm8NZbb5nTszdv3lwr8e2SkpIACAoKonnz5rUaW0REGhYlsCIiUiuKi4v54YcfgJKFh2qqbdu2XH/99QAcOXKkwmMHDRpkPo+Ojq7xua8Vq9XKvHnzzOQ1NDSUf/7zn5Xeh1sX+vbtaz6331Ncm4KCgsx9bN3Za9aVzMxMcwulHj161FpcERFpmJTAiohIrYiLizMTH8eEsibsSVVSUhJ5eXkujxs6dKiZHH399dd8/vnnFcZNSUmplfbVhNVq5R//+Ac7duwA6jZ53b59e6VJqf3eZYAbb7yxWvGTk5PZv39/hcecP3/eHCkNDg6uVvyKxMfHm8/vuuuuWosrIiINk+6BFRFp5M6ePWuuOGtn318UYNu2baVWC/bx8WHw4MHVPo99FDE4ONitrVCcGTJkCF9//TXFxcXs37+fe++91+lx1113HfPnz+eZZ54hPz+f5cuXs2PHDkaMGEGHDh3w8vIiPT2do0ePsm3bNrp27UpUVFSttNFdL7/8Mtu2bQNKEsZp06Zx/vz5CusEBgYSGBhY7XN9/vnnvPzyy4SFhREWFsbNN9+Mv78/V65cISUlhc2bN5uj5+3atav29kcpKSnMnDmT4OBgBgwYQPfu3Wnbti3NmjUjKyuL+Ph41q1bZ64mPXbs2Gr/DK7s27cPKLm/t3///rUWV0REGiYlsCIijVxcXBwLFy50Wf7mm2+Wet2uXbsaJbC1MX3YLjw8nDZt2pCamsqmTZtcJrAAt956K2+88QYvvfQSycnJHDx4kIMHDzo91n7PbH3aunWr+fzcuXNMmzat0jqTJ09mypQpbp2vsLCQmJgYYmJiXB5z4403snDhwgq3B6pIcnIyn376qcvyJk2a8Oijj/KHP/zBrfhlWa1WvvvuO6Bk1N/dLYBERMRzKIEVEZEaO3bsmDl6WNPVhx1ZLBYiIyN5++232b17N5mZmRXuLdulSxdWr17Npk2b2LlzJ4mJieb9loGBgdxyyy306dOH++67r9ba6Anmzp3L3r17iY2N5cSJE2RkZJhTiv39/bn11lsZOHAgw4cPd2vbnl69erFixQr2799PfHw8KSkpXLx4kby8PLy9vQkODqZXr16MGjWq1kbnAfN3AmDcuHG1FldERBouw2az2eq7ESIi4tnee+893nvvPQIDA/niiy/c2svTldzcXCZMmEB2djZPP/00EydOrLXY4tlmz55NTEwMYWFhLF26tL6bIyIi14AWcRIRkRqzTx++++67azV5BfD19TWT1jVr1nDp0qVajS+eKT4+npiYGAzD4Kmnnqrv5oiIyDWiBFZERGrkypUrDBw4kMmTJxMZGVkn5xg7dizt27cnKyuLTz75pE7OIZ5l5cqVAIwYMYLu3bvXc2tERORa0RRiERHxCEeOHCEmJgZfX1/Gjx9f382RepSbm8unn36KzWYjMjKywvuiRUSkcVECKyIiIiIiIh5BU4hFRERERETEIyiBFREREREREY+gBFZEREREREQ8ghJYERERERER8QhKYEVERERERMQjKIEVERERERERj6AEVkRERERERDyCElgRERERERHxCEpgRURERERExCMogRURERERERGPoARWREREREREPIISWBEREREREfEISmBFRERERETEIyiBFREREREREY+gBFZEREREREQ8wv8D3mi+HUkibUgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC1sklEQVR4nOzdd3xTVeMG8Odmdu/SQmnZG0SmyFSmilvcCO6f4xV9FV8ninsvVPR1IEsRgRcciAgCMkQ2iuxRNm0p3TPr/P4IuaRtdm6apH2+n08+Hbk5OU2Te85zz7nnSkIIASIiIiIiIqIAUAW7AkRERERERNRwMXQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwCgSOg8fPgxJkiBJEm6//XYlimyULrroIvl1JCJy5vbbb5f3FYcPHw52dWTTp0+X6zV9+vRgV4cUZrFY0KtXL0iShIceeijY1aEwYtsvXHTRRcGuCpFfGnJf/eWXX4YkSWjdujWqqqoUL7/eRjqnT5+OyZMnY/LkyfX1lEG3aNEi+W8uKioKdnXoLJPJhOXLl+PJJ5/E0KFD0bRpU+j1esTExKBNmza46aabsGjRIpjNZq/K/eeff/DQQw+hY8eOiImJQXx8PLp164Ynn3wSR44cCdBfQ0QEGAwGdO3aVe4MSZKEVatWKfocn332GbZu3YqIiAg89dRTHj3m4MGDmDx5Mi644AKkp6dDr9ejadOm6NmzJ+6//37MmzfP6b728OHDmD17Nh5++GEMHjwY7dq1Q2JiIrRaLZKTk9G3b188+uij+Pvvv736O44cOYInn3wS3bp1Q3x8PGJiYtCxY0c89NBD2Llzp1dleSInJwfPP/88+vXrh+TkZOj1ejRv3hyjRo3CtGnTYDKZ3JZhf0DHk5ur/7035djfQukAl7feeecd+e+47bbbfCqjXbt2chkbNmzw+vEVFRVYv349PvzwQ9x+++3o2rUrNBqNX59Xo9GIzz//HMOGDZP7Ms2bN8cVV1yBuXPnQgjhcVlCCMydOxeXX345mjdvLn9Whw0bhi+++MKj96m9X375BTfeeCNatGiBiIgINGnSBAMGDMB7772H8vJyb/9Ut5R8LULZli1b5PdMixYtfPq77r77brmMN954Q/79hAkTkJiYiOzsbLz11ltKVttKKCA7O1sAEADE+PHjHW4zZMgQeZvGYvz48fLfnJ2d7Xb7xvga1bcVK1aIpKQk+XV2devTp484cOCAR+W+9dZbQqvVOi0rNjZWzJkzJ8B/HTUW3u5b6stXX30l1+urr74KdnUalcmTJ9fZ76xcuVKx8svLy0V6eroAICZMmOB2e5PJJJ599lmh0+nc7msLCwsdlnHjjTd6tK+WJEncf//9wmg0uq3X7NmzRUxMjNOydDqdePfdd719eZyaOXOmiIqKcln/Hj16iIMHD7osx/6z5cnN1f/em3Jst5iYGFFeXu7z62ArZ8iQIT6X4Y+cnByh0WgEABEVFSVKSkq8evzq1avlv6Fz584+1cFd38Pbz2t2drbo0aOHyzKHDx/u9PNlr6CgQAwdOtRlWT179hRHjhxxW1ZVVZW46aabXJbVpk0b8ddff3n197qi5GvhTij01bt16ybXYfny5V49try8XMTGxgoAQq1Wi5MnT9a4/8UXX5T7radPn1ay2kIDBbRs2bLBHEEIJqWPSlNdJ06cQEFBAQAgKSkJw4cPR79+/dC0aVMYjUZs3LgRM2fORElJCTZt2oSLL74YGzduRHp6utMyP/30Uzz++OMAAK1Wi9tuuw1DhgyB0WjE0qVLMX/+fJSWluK2225DQkICLrnkknr5W6nhmj59OqevkmzXrl149dVXAQDR0dEBGUWYOnUqcnJyoFar8Z///MfltiaTCWPHjsXcuXMBAKmpqbjuuuvQs2dPJCYmoqysDPv378fy5cuxadMml2VFRUWhd+/e6NWrF9q1a4ekpCRIkoQTJ05g+fLlWLJkCYQQ+OSTT1BWVoaZM2c6LWvx4sUYP348zGYzJEnCmDFjMGrUKGi1Wvz++++YNWsWDAYDHn30UcTGxuLuu+/2/oWyM2vWLIwbN07+eeTIkbjqqquQmpqKY8eOYc6cOdi8eTO2bduGkSNHYv369UhNTXVb7kMPPYShQ4e63KZr165O71u4cKFH9f/vf/+LX375BQBwww03ICoqyqPHhaK0tDRcdtll+OGHH1BRUYHvvvsOd911l8ePt9/f3nHHHT7VofaIflZWFgwGA3Jycrwuq6ioCJdeein27NkDAOjUqRPuvPNONG/eHAcOHMBnn32GY8eOYfny5bj22mvx66+/QqNx3OU3GAy46qqrsGbNGgBAZmYm7r33XrRt2xbHjx/HtGnTsHv3bmzduhWXXnop1q9fj7i4OKd1Gz9+vPzZT05Oxr333otu3bohPz8fs2fPxsaNG3Hw4EFccskl2LBhAzIzM73++wP1WoSLO+64A48++igA63tz2LBhHj92wYIFKC0tBQBccsklaNq0aY37H374YbzxxhsoLS3F22+/jddff125iisaYV0IhSMD9S1URyMas1mzZolu3bqJb775RlRVVTnc5vjx46JLly7y/27cuHFOyzt58qR8FFuj0Yhly5bV2cb+CHVmZqaorKxU7O8hCiUc6ax/ZrNZ9OvXTwAQV1xxRY22VqmRTqPRKDIzMwUAMXLkSLfbP/PMM3Id7rjjDlFaWup025MnTzodody3b5/T/bTNb7/9JvR6vfx8f/75p8PtysvLRbNmzeTtpk+fXmebX3/9VR4Ni4mJETk5OS6f25W8vLwaI6qffPJJnW0sFot45JFHarxWztT3Z8tkMtV4vdauXetXebZygjXSKYQQCxculOsxaNAgjx9nPzKk0Wh8fl+MGzdOvPLKK+KXX36RR5Ds+4nefF7t3zeXXHJJnX7FmTNnaoz8ffTRR07Lev/992uMZhYUFNS4v7KyUowaNUreZuLEiU7LWrRokbxdVlZWnZFRs9ks7rjjDnmbMWPGePw3O6Pka+GJUMgzeXl58uw6b0fu7Ue058+f73CbW265RQAQiYmJoqysTKlqC4bOAGLoDD2FhYXCYrG43W7Hjh3y/y4yMtLptCL7nd3jjz/utLzrr79esR0eUahi6Kx/H3zwgQAgoqOjxZEjRwISOu076zNnznS57Y4dO+TgdvXVVyvy/O5MmDBBrt+kSZMcbmPfsb7++uudlvX444971Ll25/XXX5fLue6665xuZzab5alyKpVK7Nu3z+F29f3ZWrx4sfx87du397u8UAidBoNBpKamCsA6JdvdlGabmTNnyvW/4oorFK2TL6EzNzdXnrYeHR0tcnNzHW63Y8cOIUmSACDS09OFyWSqs43RaKzxmvzzzz9OnzM6OloAEHq9XuTn5zvc7vzzz5f/nsWLFzvcpqKiQmRlZcnb7dixw6O/21m9lHotPBUqeebqq6+W6/Hll1969JgjR47Ir0NycrKorq52uJ395//zzz9XrM4BX73WtsrT77//Lv/O0QnqzhYYslgs+O6773DjjTeiVatWiIqKQmxsLDp27Ij7778fO3bscFm3yZMn1zlJ+7fffsPNN9+MVq1aISIios4J8iaTCUuXLsVjjz2GgQMHokmTJtDpdIiNjUX79u1x++23Y/Xq1U6f07ay5IwZM+TftWrVqs7f7Oy18mRFrA0bNuDee+9Fhw4dEBsbi+joaLRp0wbjx4/HihUr3D6+9kpy5eXlePvtt9G7d28kJiYiOjoaXbp0wVNPPYXCwkK35YWLhIQEj17frl27omPHjgCAyspKHDhwoM42QgjMmzcPANyu5jhhwgT5e9u0k/qyfv163H///ejcuTMSEhIQERGBrKws3HjjjVi8eLHLx65atarOZ/To0aN47LHH0LFjR0RHRyMhIQH9+/fH1KlTPV5ooKysDO+//z5GjBiBZs2aQa/XIykpCX369MFzzz2H06dPu3x87c+K2WzG9OnTMWLECGRkZECj0aBly5Z1Hpebm4v//Oc/6Ny5M6Kjo5GUlIS+ffvinXfeQUVFBQDr6QKSJNV5/C+//CI/p/3/05UJEybIj1myZIlHj/GEu9VrA/V/++mnn3DFFVcgPT0dERERaNmyJW699VasX7/e67/BYDDgyy+/xJVXXonMzExEREQgISEB5513Hh577DGni5bs3bsX0dHRkCQJ8fHxyM7OdvochYWFyMrKgiRJUKvVLvfb4ejIkSN45plnAAAvvfQSsrKyAvI8s2bNAgBERkbimmuucbnte++9B5PJBEmS8N577wWkPrV17txZ/t7ZVEX7/e7DDz/stKyHHnpI3q989913PtfJvh12tXCNSqXCrbfeCsDa3/n22299fk4lffXVV/L3vk4n9VZFRQVGjx4t77tuvPFGGAyGOtvt3LkTjz76KM4//3wkJSVBr9cjIyMDV155Jb7++mtYLBaH5Wu1WowdOxaAtf329BQFJabWKmnRokXy63LzzTejSZMmDrfr2rWrPA07JyenRj/cZsWKFXJ7O2zYMHTp0sVhWU2aNMFNN90EAKiursb3339fZ5v9+/dj+/btAKyLLl122WUOy4qMjMQ999wj/+zP50zJ10Jp9vmja9euOHHiRJ1t8vPz8corr2DQoEFIT0+HTqdDamoqBg0ahDfffBNlZWVOy7d/L3r6Xp4xY4Z8OuStt94KnU7ncLuRI0fKU/1t+39FKJFcXS0kZH9EwNXt+eefr1PugQMHahw1cXRTqVROj2wKIcTzzz8vb7tixQrx4IMPOizHfiTyoosu8qjO48ePd3iUwP7IlbvHO3utnDEajeKee+5xW/YNN9wgKioqnJZj227IkCHi4MGDonPnzk7LatGiRaMcqe3Tp4/8GjiasmU/Gtq1a1eXZZnNZhEXFye/Z71dxMAXZWVlHi3EMXr0aKf1WblyZY3P6JIlS0RCQoLTskaMGOF2OtzPP/8smjRp4rJOsbGx4vvvv3dahv1n5cyZM2LgwIEO37f2VqxYIRITE50+Z7du3cTRo0dFixYtHD7ebDaLVq1aCcA65cTdNOnKykr5+bKysoTZbHa5vTfczaJQ+v9mMplc7tdUKpV44403PB6N2bRpk/xaOrvpdDrx6aefOnz8Z599Jm934YUXOj1qPWbMGHm7Z555xuVrGo5sU9569uwpvwZKj3RWVVXJpxAMHjzY5bYVFRXytt5MX/SX/eiko/5AcXGxfHQ/Pj7e7WfR/vSKnTt3+lQn+zZ19+7dLrf93//+J2/br18/h9vU50hnfn6+PHrkaKERX9j3ORw5c+aMPE0cgHjwwQfr/J+MRqOYMGGCUKlULvcdF1xwgTh16pTD5/n777/l7Vq2bOl25pP9yFBKSoowGAw+/f3O+DLSed1118mPcTY90uatt96St3U0G+uxxx6T73/77bddljVv3jx5W0ezBT788EP5/n/9618uy9q0aZO8bZ8+fVxu64qSr4Wn3PXVzWazuO++++Rt+vfvX2fKshDWz7Rt2razW1pamvjjjz8cPo/RaBRpaWkC8Hzkvk2bNnLZ27Ztc7ntNddcI7fvzka2vRXwM2lffvll5Ofn49lnn5WXInd0ErttVMnm4MGD6NevH/Lz8wEAAwcOxOWXX44WLVrAbDZjy5YtmD59OgoLC/HSSy9BpVK5vRzLW2+9hSVLliA9PV1ertpkMmHjxo3Q6/XydpWVlYiJicGwYcPQq1cvtGzZEhERETh16hR27tyJr7/+GuXl5ZgxYwYSEhLw/vvv13ieCRMm4Oqrr8aUKVOwcuVKANYT8msfgfHlqPRtt90mHwmNiIjA+PHj0b9/f6jVamzevBlffvklSktL8d1336G4uBhLlixxObJXUlKC0aNHY+/evbjqqqtwySWXICkpCYcOHcInn3yCo0eP4siRIxg3blyDGyVwxWAwYP/+/fLPLVq0qLPNP//8I3/fq1cvl+WpVCr06NEDv//+OywWC3bv3o2+ffsqV+FaqqurMXz4cPz5558AgDZt2uDGG29Ep06doNVqceDAAcycORP79u3D4sWLcfXVV2PZsmVQqZxPfti+fTveeustCCHwf//3f7jwwguh1+uxefNmfPrppygvL8eyZcvwyiuv4MUXX3RYxoIFC3DjjTfCbDZDq9XiyiuvxEUXXYS0tDSUlJRg5cqV+O6771BaWoprrrkGy5Ytc7tgxtixY7F27Vp0794dN998M1q2bImSkpIal1HYtWsXLr/8cnk0s0ePHhg7diyaN2+O3NxczJ07F+vWrcONN97odNRPpVLhnnvuwdNPP43CwkIsWLBAHqFwZP78+fIsgbvuusvlaxtISvzfJkyYIM/c0Ol0GD9+PAYOHAiVSoWNGzfiyy+/xBNPPIGrr77abX3Wr1+P4cOHo6KiApIkYdSoURg5ciQyMjJQWVmJ9evXY9asWaioqMB9990HvV5fZ1bIPffcg6VLl2LBggVYv349XnjhhTp1//LLLzF//nwAQL9+/Rrc5bpmzZqFpUuXQq1W47PPPoNarQ7I86xbt07+3LjbZ23ZsqXOtitWrMDUqVOxfv165OfnIzExEd27d8f111+P8ePHQ6vV+lW/zZs345NPPgFgnXHiaCR2165d8tH9888/3+1nsXfv3nJ/5Z9//qkxkuop2/N5a+fOnRBCuGy3p06ditdffx3Hjh0DYF2oqU+fPrj66qtx4403+r1Iytdffy2PHjlaaERpx44dw6hRo7B7924AwPPPP1/n8yqEwA033CD3H5s2bYqbbroJ3bt3R1RUFI4cOYJvv/0WW7ZswYYNGzBs2DBs2rSpzuJH3bp1Q69evbBlyxYcPnwYq1atwsUXX+y0bvYjQ2PHjvX7/aoEb/oevXv3dvi4YJd1/vnnQ61Ww2w2y59PX657qWT9lVBdXY1bb70VCxYsAABcdtllmDdvXp334QcffIBHHnkEgHWxtDFjxqB///5ITk5Gfn4+fvnlF/zwww/Izc3F8OHDsWnTpjr7IY1Gg7Fjx+Kdd96BEAIzZszACy+84LRua9aswcGDBwFYX//zzz/f5d/Sr18/LFy4EBaLBcuXL8eNN97o5avhgBLJVelLppjNZtGzZ08BWOeOf/fddw63y8nJkUdCVSqVw7no9iOdAMTAgQNFcXGxy+dfvny5y1HC/Px8eWRFpVKJQ4cOOdxO6UumfPvttzWOfjg6Anv48OEaIwjOzh+0f010Op348ccfHf6d9mVt2LDB7d/gTHl5uVi4cKEity1btvhcD0/NmjVL/rt79uzpcJsXXnihxmiSO+PGjZO3nzVrlsI1rqn2uaaOFuowGAw16uRooQv7ETPAOmLn6JyjDRs2yOdxJSYmOhw1O3r0qDzam5WVJf7++2+Hdd+wYYOIj48XAETz5s0dHlmuPYPikUcecTl6YT8S+sADDzjctva+ovZIpxDWfY7t5H135yYNHjxYHik4duyYy2295c1Ip7//N/tLBSQkJIjNmzfX2WbPnj3y5TRsN0ejMSUlJfKCNAkJCWLVqlUO/779+/fL5/xER0c7XLa9oKBANG/eXH6N16xZI9+3d+9e+fyjuLg4j8/dcmb37t2K7b+UWII+Ly9PJCcnCwDi3//+d437lB7pfPXVV+Xy5s2b53Lb9957T972vffeE//6179cHsXv0qWL0/aztp07d8qv4bx588SHH34orr/+evn9C0BMnjzZ4WNnzJjhto9i77nnnpO3f+mllzyqX20XX3yxXIarWRtC1Dz/E4A4fvx4nW08vWRKhw4d/L4Uhf0MswULFvhVlo2tvNr7zV27dsn7BJVKJaZOnerw8fbn5I4dO9bhOgsWi0U8/fTT8nZPPPGEw7I++ugjeRtXCwVaLJYaI0NKXuLDxtuRTrPZLL/n1Wq128sEHTp0SC6/TZs2de637+O566cajUahVqsFYF1QqfYosf173pO/xf68Tl/aSKVfC08566sXFxfXeA1uu+02h3XatGmTXO/zzz/f6WVofvzxR7m/ccEFFzjc5p9//pGfz93Ivf0CTh988IHbv3PVqlXy9rXbGV+FZOhcsGCBvO2UKVNcbrt37175Q3DPPffUud++IxkdHS1OnDjh0d/kzsGDB902SkqHTvvVt37++Wen5WzYsEGeDtKiRQuHU8/sG6kXX3zRaVmff/65R9u5Y/8e8ffmSafBHwUFBaJp06ZuO1r//ve/5W0+/PBDt+V6u72vTp48KU+Nuvbaa11uazAYROvWrQUA0a5duzr31w4vq1evdlrWrbfe6nK7hx56SG4c3E3r+PLLL+Wyvv766zr3239WevXq5TJw2k/j6dq1q8sFBOzLdRQ6hai5KJSzRT/27t0rbzN69GiXf6svvA2d/vzfrrrqKvl+Ryt+2vz00081ntNR6HznnXfk+3/44QeXf+Nvv/0mb/vKK6843GbVqlXyVLsWLVqIwsJCYTAYRK9eveTHKnGAp/YBCX9uSgRB2zXwMjMz66wMq3TotK1iCMDpgSKbJ554Qt62ffv28ud97NixYtq0aeKbb74RTz31lEhJSanxOXM09cxV2bVv3bt3F3PnznX6WNtiSwDEY4895va5vN3ekWeffVYuw9UKnfYLCdlujg6gf/XVV0Kj0YghQ4aISZMmiRkzZoh58+aJqVOnirFjx4qIiAj58bGxsT4HpK1bt8rlpKamKjad1Famfehcv369fO1KnU7ndIChsrJSPiWjT58+bqdHDxo0SADWA06OToMoKCiQVzyOjo52urry77//Ltfb2cFnf3kbOouLi+Xtk5OT/d7e/pQTV6tMe7K9fR/Vk8WBvN2+NqVfC0856qvn5ubW+HseffRRpwHwiiuukD+njg4w2Zs0aZJc5rp16xxuY38q2IoVKxxuY78Cs06n82i6bG5urlzusGHD3G7vieDM93LDdtJqXFxcjZONHWnfvr08jefXX391ue11112HZs2aKVLH1q1by9du3LBhgyJlunL48GFs27YNgHV6yKWXXup02759+8pTEo8cOYItW7Y43VatVuNf//qX0/vtpzbu2rXL22qHHbPZjJtuugmnTp0CAIwePRpjxoxxuK39Cd4RERFuy46MjJS/t10jKRC+++47eWrUxIkTXW6r1WrlKRP79+93ungLYJ2SOmjQIKf3u3qvCCHw9ddfA7AuVuBuWof9FDF3n+sHH3zQ5XQ5+wUPHnzwQZfTEF0tMGJz3333yd9/8cUXDrex//29997rtsxA8uf/Vl1dLS+AlJaWJi/C4cjo0aPRqVMnl3Wx7dvbt2+PK664wuW2Q4cOlffXzt4DQ4YMwZNPPgnAuq+777778Oyzz8r7vFtvvdVlncPRTz/9JJ9i8fHHHyMmJiagz3fkyBH5+6SkJJfbFhUVyd/v27cPERERWL58OWbNmoU77rgDN998M1599VXs2rUL3bp1k8t/+umnfa5fbGwsRo4cie7duzvdJhj76jvuuEPeh82fP9/pvuKJJ56osyBiSUlJne0GDhyII0eOYNWqVXjxxRcxbtw4jBkzBvfffz9mzZqFffv2oU+fPnKdbacxeGvatGny94GcTvrLL79g2LBhKCgoQExMDBYvXozrr7/e4bZLly5FXl4eAODf//632+nRts98SUmJfIqJvcTERFx11VUArIso2qbh1xZqCwgByr+XlSyvvj9nodIHO3ToEAYMGCD30V977TW88847DqcLFxYWygs43nzzzcjIyHBZtn375awdtH9v2i9gas92vXgAuOKKK5CcnOzyeQHr58TGvh3wR0heHdV2gdqmTZvKFyZ2xdaJPHLkCCorK2u8sey56njVVlJSgq+//ho///wzduzYgfz8fKcX3D5+/LjH5fpq48aN8vcjR450u/3IkSPx22+/AbCGYmfn4rRv377GG6s2+w+EP6vYtmzZ0udzXOrTww8/LH+ws7KyPF4RLJTYPj+A9b25aNEil9vb/193797tcNVXwDq/3xVX75WdO3eioKAAgLWT6K5OABATE4OioiL5PB9n3H2uN2/eLH/v6twdAPJqzq5cfPHFaN++Pfbt24cZM2bg5ZdfrtExMxqN8o6/WbNmGD16tNsyA8mf/9tff/0lH8AYMmSI2/MGhw0b5vT/VVxcLJ9nm5aW5vF7AIDL98ALL7yA3377DRs2bKixQmmrVq0wdepUt8/hicmTJ4fEOaGlpaW4//77AVgPoroL7kqwfW4B96Gz9qqhzz77rMPPVGpqKr7++mt0794dQgh89dVXeOONN1xecP7111+XL1JeXV2No0ePYunSpXjjjTfw1ltvYcqUKfjvf/+L8ePHe/HXBU7r1q3xzDPPyOdY3XPPPViwYAGuvPJKpKSk4MSJE5gzZw42btyI1NRUVFVVyZ1CR6Gqbdu2Lp8vMzMTS5YsQdeuXZGTk4M9e/Zg/vz5Xp2HVV1djW+++Ub++c477/T4sd6YPXs27rzzThiNRqSmpuLnn3+ucb5dbfZtWmFhodt9h/0qobt373b4HrzzzjvlVVOnT59e57zxiooKOYzq9Xrccsstbv4qaoz++usvXHLJJcjJyZHPr3f1uVm3bp28n1Sr1W7fy0ajUf7eWTt4880349FHH0VVVRXmz5+Pjz76qM7BSF8OoGi1WsTGxqK0tFSxq1iEXOgsKyvDmTNnAFiXxne3PHtthYWFTkOnuyMKNitXrsQtt9zidOn12hwdlVSabeQNsAZFd+y3sX9sbSkpKS7LsV9gqaqqyu3zhrNnnnkGH3/8MQBrp3jZsmUuXx/7D7Unr01lZaX8fWxsrB81dc1+tPKGG27w6rGudiz+vFfs67RgwQL5JHt/6wS4/1yfPHlS/r5169Yut01MTERCQkKNEZvaJEnCvffei4kTJyI3Nxc//vgjrr32Wvn+H374QT4qf8cddwRsgRdP+fN/s3/t3HV63W1z7NgxubFds2ZNjY6kO67eAxqNBt988w3OP/98udNu+52rEBOOnnjiCRw/fhxxcXGYMmVKvTxndXU1AGsHyVnbalN7v+ZqplK3bt3Qr18/rF+/HtXV1Vi3bp3LGTz29Ho92rVrh3bt2uHWW2/FkCFDsGPHDtx+++1ITU2tc6mGYO2rn3/+eRgMBrz++usQQuCXX36pcyA9LS0N33//fY2/3dWBYFeSk5Px8MMP46mnngIALF682KvQ+f3338sHGfr06YOuXbv6VA9Xtm7dinHjxkEIgaysLCxbtsxtn8a+/XjwwQe9ej5n+44RI0agefPmOH78OFavXo3s7Gy0atVKvt9+ZOiqq66qc8Bl69atOHr0qNPnHThwoNt9ry+Ufi/HxMTIr1FVVZXbmROuyqvvz1ko9MGGDBmC4uJi6PV6zJ07Vx5Bd8b+vfzJJ5/Ii6B5wtl7OSEhAddccw3mzJkjj9zbH0SxzZAArIN5l1xyicfPGRcXh9LS0hqvnT9CbnptcXGxX493dE0nG3cNJmCdYjh69Gg5cHbo0AGPPPIIPv74Y8yZMwcLFy6Ub7Zr2PgyhcVb9lMBoqOj3W5v/2F0NY0gWCtqhpqXX34Zr776KgBrJ3358uVuG8KEhAT5e9sqy67YDqbUfqzS/PkMufr8+PNeCVSdAPefa9sMBY1G49FUMU8+X7fffrsc1j7//PMa99l+liQJd911l9uyAs2f/5v99KXaq+854uq18+c9YH+015GUlJQancLWrVu7Xckw3KxZswaffvopAOv0LaVOFXHH9j43m83yyrTO2O/XMjMznV4zz8b+f2RbVdFbiYmJNUa0Ha3eGKx9tSRJePXVV7Ft2zb83//9Hzp06IDo6GhERUWhc+fOePrpp/HPP/+gV69e8sFrSZKQlpbm83Paj+rt2bPHq8faX5szUKOcZrNZnvVUVVXl0TWCA9F+qFQqjBs3DoD19I+ZM2fWuN/dyNCUKVNwzTXXOL0FanXUmJgYedp2UVGR29fP3XvZm8+GyWSS36darbbO/r6+P2dKvxa+sD2nyWTyKPgGqi/kaoqt/QrM48aN8+pAuK2+nuQnT4TcSKd9WBo8eHC9XMDV3muvvSYn+meeeQYvvfSS02Wc3Z1vqiT7ozLOpvnas+8sBnJUzVMVFRVuz83zVFZWFnr27KlIWQDw5ptvYtKkSQCsHZhly5Z5dITXPpS6OhfSxn5OvCej1b6yfYYkSYLJZAqJAwv2n+vnnnvO5bLeSrM1jCaTCUaj0W3w9OTzlZycjDFjxuDrr7/Gr7/+iqNHjyIrKwtHjhzBsmXLAADDhw+vceQ8HNn/39wFDsD1a2df1rhx45yee+KLBx54oMbna9++fXj22WfxxhtvKFL+nj17vO7AO+PrCMi0adMghEBkZCTy8/Px8ssvO9zO/nWYNWsW1q5dC8A668GX/Y59mC8oKHB58KFDhw7y9/Hx8W7Ltt/Gn87YgAED5GlgmzZtQnl5eY0OcbD31d27d5cPGDiyc+dO+eB1u3btPHrtnLE/V8vVjI3aTpw4IbfRkZGRuPnmm32ugyt9+vTB5Zdfjscffxx5eXm4+OKLsXLlSpeXpbHfdxw6dEix/ertt98uH2yeOXMmnnvuOUiSJF9KBbDOpBkxYoQiz6cElUqFNm3aYO/evTCbzTh+/LjTU2IA9+/l9u3bIzs7G4D1s+GqrOPHj8vv07Zt29bpG7dv316+TKC7z5nJZJKnQUdHR3s8E9Ge0q+FLxYvXozRo0ejvLxcvoSaq9kF9u/ladOmKXau8LBhw5CZmYljx47h999/l/+X4uylVGxqTyN3xWg0ylnC3akVngq50BkfH4+YmBiUlZXVy7mStS1fvhwA0KRJE7z44otOA2dpaWmNc10Czf46WfbXj3TGfpv6OiLuSl5entdTpZ0ZP368Yudavvfee3jiiScAWN97S5cudbvIjY19MHW1WBNgPdfJdpK5SqVyu+CKPzIyMrB9+3YIIXDixAlkZmYG7Lm8qZNNfX+umzVrJp9LeOjQoRod49oKCws97qjdd999+Prrr2GxWDBt2jRMnjwZ06ZNk6eQBnsBISXY7zsOHDjgdntX2wTqPfD111/Li1T16tUL+fn5OHLkCN5++22MGjXK7XVePfHtt98qdqBk5cqVHp07XJvtSHVlZSWef/55jx5jvyhM165dfepotWzZEuvWrQNgDZ3Nmzd3uu15550nf+9JiLTfxp+gJUkSoqOjUVpaCiEESkpKaoTOzp07Q6VSwWKxYPv27bBYLC4PxtmfBx6IKaa12R9c92btCUd8Hc2ZMWOGvO+69tpr/fp/uDNx4kRIkoSJEyfKwXPFihXo0qWLw+1r7zuUCp3t2rXDwIEDsXbtWhw6dAirV6/GkCFDPBoZmj59etDWfOjatSv27t0LwNr3cBW03L2Xu3btiqVLl8pludo3eVKWzZYtW1wGnO3bt8sBtnPnzj5do9P2nEq9Fr4YMmQIfv75Z1x22WVy8BRC4KabbnK4faDaQZVKhfHjx+Pll1+Wg+bzzz+P1atX49ChQwCACy+8EB07dvS4TPuM4+ha9T7VU5FSPHkiux28uwVlBg8eDMDaQfSko6Ok3NxcANZFKFw1SsuXL6+zaEJt3vzN7tgvBGQbSXHFflTR3QW9G6uPP/4Yjz76KADraPCSJUvk1f880aVLF7kDtnPnTpc7kD/++EOelmI7Kh8oQ4YMkb9XanTZXz169JDPr/vtt9/cfnaUZL9Ahe0orDO2o9ueGDhwoNxJmjZtGoxGo9zJb9KkidtzO8JB9+7dodPpAFg7xu5OJbAtXuZISkqKPJrx559/KnIufHZ2Nh544AEA1qPlc+bMwezZs6FWq2GxWDBu3LganXDynn3nzNa5c6Zjx45yIDh27Jh8brMz9gfr/Bl5KC4uxunTpwFYA2jtlRnj4uLkBbWKi4sdrmhqc+zYMXkV56ysLJcjcEqxDy/+Tsm3D7DevKb2dQjU1Fp7jz32GN555x0A1oPSQ4cOxc6dOx1uG8g2rfa0xNpTbb0ZGaovo0aNkr+3BUZn7M8hdnQuX6iW5algPGdtgwcPxpIlSxATEwOz2YyxY8fKK4w72tYWsJV+L9u/V2fOnAkhhF8rMNsvXGR/QNEvSlx3xZPrdNquSwMPrgU0d+5cedubb77Zr7rZX1/Nk2sgJSQkyNencnaNHZPJJHr37l3jOmOO2K5LCA+vQeTuOp09e/aU7//111+dlrNp06Ya165zdZ1Odxe493bbcPHZZ5/J1zKNjo6ucWF5b9hfe/M///mP0+3sr+340Ucf+Vptjxw9elS+Tme7du1EWVmZz2XZX+/x+eef92vb+++/X77/v//9r891EsK76/4qfZ1Oe1OmTJG3f+CBB+TvH3/8cW/+HK95c51Of/9vV199tXz/zJkznZbz888/y9sBjq/T+cYbb8j3P/XUU27+StdMJpO48MIL5fK+/PJL+T77a5tdffXVfj1PuFH6Op0rVqyQy/PkmpVPPfWUvP3LL7/sdLu///5b3gfHxMSI8vJyn+v47rvvys/Zu3dvh9vYX3vzhhtucFrW448/Lm83ceJEn+vkqWnTpsnPN2DAAL/KOnPmTI1rTDu6xrEjq1evlh/TqlUrlxeY95WzfoT9/65JkyYOr1FaVlYmX9s1KSlJnDx5UrF6lZaWiujoaIGz102034/5+//whLfX6RRCiLy8PLmNj4mJEbm5uQ6327Fjh/wZS09Pd9j2GY1GkZqaKgAISZIcvv5CWK/ZaHudIiIinF7n0ZPryVdWVoqsrCyv+sfOKPlaeMpZ/2P16tUiJiZGANbrE3/zzTcOH3/ppZfKj1+6dKnP9XBk8ODBNV5/W30iIyNFcXGxV2W9/vrrclmuroPsjXoLnRMmTJC3+f33312WZzaba1zs9OGHHxbV1dVOt6+oqBBfffWVmDNnTp37vA2dI0aMkLd/991369xvMBjEHXfcUaNz5axzar8znTFjhtvndteRtg/jTZs2Fbt3766zzZEjR0SbNm3cBpzGHDpnzJgh73yioqL86pidOHFCREVFCQBCo9GI5cuX19nmq6++kl/DzMxMhxerVtpjjz0mP+fFF18sTp065XRbs9ksli1bJl566aU69ykZXo4dOyYf1NHr9W4/E7m5ueLFF190eJFzb0KnEEIMHDiwRjh0dHFx+32Fp6GzqKhI/v/b3/bt2+dRvXxVn6FzzZo18v2JiYli27ZtdbbZt29fjc6us9BZVlYmWrRoIXdw3nzzTZcXei8qKhIffPCBWLZsWZ377IPlmDFjatxnNBprBFJ/D3KEE6VDZ1VVldzZHDRokNvt8/Pz5c95RESEwzrk5eWJbt26yfV0dMBu3bp14rPPPnO7v/z666+FXq93+b4Twnpx9GbNmsnbTZ8+vc42y5YtExqNRu7A5uTkOCzLvs/jah+0c+dOkZeX5/T+2bNnyx3miIgIsWfPHofb/fHHH+Lzzz8XVVVVTss6duyY6Nu3r1yndu3aCaPR6HR7e7fffrv8uBdeeMGjx3jLVT/ivffek+9PTU11GHw+/PBDeZvzzjvP7T72zz//9Pjgn/3+1H4/9sUXX3j0eH/4EjqFEOKRRx6RH3fppZfW+ZwUFBTUCICuDna///778nY9e/YUBQUFNe6vrKwUl1xyibyNq4MxixYtqtGGHjlypMb9ZrNZ3HnnnU733fbs22Rn2ULp18ITrvofa9ascRs8t2zZIrRardymLlmyxOXzHT58WDz22GNOA7U9+/6m/Xt57Nixnv+BZ11zzTUCgFCpVOLMmTNeP96Regud33//vbxN27Ztxccffyx++uknsWTJErFkyRKxf//+GtsfPXpUZGRk1HjxJkyYIL788ksxf/58MX36dPHiiy+KK6+8Um4QHXWavQ2dP/zwQ43G5MorrxQff/yx+Pbbb8VLL70k2rVrJ3fkmzdv7rJz+tdff8nlpKWlibffflv8+OOP8t/8999/19jek470TTfdJG8TGRkp7r//fjFz5kzx9ddfi3//+98iLi5Ovn/kyJFOj1g21tD5888/C7VaLf9N//rXv8TChQvd3mrvOO198skncnlarVbcddddYubMmWLatGni+uuvlwOuRqNxu3Oxf+85ChOeMhgMYtiwYTXeK2PHjhUff/yx+O6778Ts2bPF22+/LW677TaRnp4uAIhhw4bVKUfJ8CKEEL/88ovcyQIgunfvLiZNmiRmzpwp5s2bJ7744gvxn//8RwwePFj+PzkahfY2dO7cubNGOOzRo4d45513xNy5c8WUKVPEgAEDBABx4YUXyvudVq1aeVR27YNQF110kUeP80d9hk4hRI1RXL1eL+69914xc+ZMMXv2bDFhwgR5H2w/Kuqs879t27Ya+6k2bdqI//znP2L69Oli/vz5Ytq0aeLZZ58VI0eOlN8rs2bNqlHGmjVr5PdH8+bN63SShBDi0KFD8vNERUU57dA3NEqHTiGEuO666+T9iLuZSkIIMWfOHHm/p1arxW233SYfGH766aflkRXbPqCioqJOGQsXLhSAdfTpuuuuE6+88oqYMWOG3P4//fTTonv37jU+e2PGjHE5SvfTTz/J7xtJksT1118vpk2bJmbOnCnuuusuuSMIQHz++edOy/E0dL711ltCp9OJyy67TLz66qvim2++Ed9884149dVXawREnU4nFi5c6LQc22sRFxcnrr/+evH666+LWbNmiXnz5olPP/1U3HbbbSIyMlIuLzY2VmzdutVpefbsR/pUKpXLts4f7voR9sEnNTXV4ejXuHHj5G00Go249tprxfvvvy/mzp0rvvnmG/HBBx+Iu+++W7Rq1Uret3hi1apVNf6ftn1GSUmJP39yHb/99pt45plnatzOO++8GsGg9v2FhYUOyyosLBQdO3aUH9upUyfxzjvviG+//Va8/PLLIjMzs0abZDAYnNarurpaDBo0SN4+MzNTvPzyy+Lbb78Vb7/9tujUqZN8X+fOnUVRUZHLv/PGG2+Ut09OThZPP/20mDNnjvjoo49qvO+bNm0qjh496rQcT0Onkq+FJ9z1P9auXes2eH7xxRfyPhKwjqq//PLL4uuvvxbfffed+PTTT8UjjzxSY1blsWPH3NatrKxMfm7722+//ebV32g/Aq5kn6beQqfJZKox2lD75qizc/LkyRodZ1c3tVrtsJHwNnQKUXN6kKPbgAEDRF5ennzE3tWIyM033+y0nNqvlScdaaPRKO6++263r8eYMWMcNuQ27hoAX7cNdbVHszy9OetA27z11ls1Oiy1b7GxsQ5H4muzf4w/oVMIa0Pyr3/9q0bIdnUbN25cnTKUDi9CCLF+/XrRunVrj+oUExNT5+CMEN6HTiGs0wRtIzCObl27dq1xsOu8887zqNwNGzbUKMfTKW3+qO/QaTKZxG233eb0tVOpVOLNN9+scZTV1Wdmz549NY48u7rp9foaB2sKCwvlfa9KpXK5X589e7ZcTo8ePVzOmGkoAhE67UcvXE2xtvfVV1/JYcbZbciQIeL06dMOH28LWp7cdDqdeOaZZzwa2Zs9e7bDTpl9WY5mOdnzJnS6q3vr1q3ddgi9eS26du3qcHaIM19++aX82BEjRnj8OG/Z/8+dsZ8C7Sh4WiwW8dJLL9UY2Xb3/vKExWKp0yY5ag/95Uv/w1U/IDs72+1+dPjw4U6Dq72CggIxdOhQl2X17NnTo4MSVVVVNQZIHN3atGnj9n3qaehU+rVwx5P+x9q1a0VsbKwArPnEUb/ghx9+EGlpaR69D5KTk53uK2urfSC8ZcuWXk+Zt59mruSIf72FTiGsQ/Svv/66uPDCC0ViYmKNzrCrjtGqVavE//3f/4kuXbqIhIQEoVarRVxcnOjcubO48cYbxSeffOJ0jr8voVMIIZYsWSJGjx4tUlJShFarFU2bNhVDhw4Vn3/+udyweRI6TSaT+OSTT8RFF10kUlJS5Kk7jl4rbzrS69evF3fddZdo27atiI6OFpGRkaJVq1Zi7NixHh3R8Gan7O0OPJQFKnQKYT1n4MEHHxTt27cX0dHRIjY2VnTt2lU88cQT4vDhw24fX15eXqPjo9R0hv3794snn3xSXHDBBSI1NVVoNBoRFRUlWrVqJR+BdxTshAhM6BTCevBk9uzZ4oYbbhCtWrUSMTExQqPRiKSkJNG7d29xzz33iLlz5zo9H9WX0CmEEDk5OWLixImiQ4cOIjIyUiQkJIjevXuLt99+W5SXlwuLxSKPGHh6dM9isYj4+HgBWM83cjUFTin1HTptfvzxRzF69GiRmpoq9Hq9yMrKEjfffLP4448/hBDC49AphPV1+/7778X48eNF+/btRVxcnFCr1SIhIUF0795djBs3TkyfPr3OKKb9UfQnn3zS5XMIIcStt94qb+/JOYnhLhCh02QyyedgeRNMDh8+LJ566ilx3nnniYSEBKHT6URGRoa49tprxf/+9z+XHSGTySTWrl0rXnjhBTF69GjRtm1bERMTI1QqlYiJiREtWrQQo0ePFm+99ZY4ceKEV3/P4cOHxX/+8x/RpUsXERsbK6Kjo0X79u3Fgw8+6PScNnuehs5jx46J999/X1x11VWiffv2Ij4+XkRERIisrCwxevRo8eWXX3p0ukVpaan4/vvvxZNPPimGDh0q2rdvL5KSkoRGoxEJCQmiU6dOYvz48eKHH35wOV3dEfvBAE8OjPrK036E/XnyzkY8T548KV588UUxZMgQkZ6eLnQ6nYiIiBDNmzcXw4cPF5MmTRLr16/3qn4vvvhijf+pUp8de0qHTiGss5o+++wzMXToUJGWliZ0Op1o1qyZGD16tPj222+9ChsWi0V8++23YvTo0aJZs2ZCp9OJtLQ0MXToUPHZZ595PF3bZsmSJeL6668XmZmZQq/Xi5SUFHHhhReKd99916O1JrwJnUIo+1q44mn/Y926dW6DZ0VFhfj000/FlVdeKTIzM0VkZKTQ6XQiNTVVXHjhheKhhx4SP/74o1cHTO3P0fakXXfklltuEYB1+q8/64LUJgnh57KqRKSIpUuXyiuqTZgwAR988EGQa9T47NixQ16lzdP/wfLly+XruD388MN4//33A1lFoqB477338Oijj0KtVuPw4cMuL51CREThqaSkBM2aNUN5eTmeeOIJvP7664qVHfyrxhMRgHPXiI2NjcWzzz4b5No0Th999JH8/cUXX+zRYz755BP5+4ZwbU4iR+677z6kp6fDbDbjzTffDHZ1iIgoAKZMmYLy8nLExsZi4sSJipbN0EkUImyh89FHH0VqamqQa9PwrFmzxuX1QT/++GN89tlnAKwXcL788svdlrl9+3YsWrQIADB8+PB6uaYfUTBERkZi8uTJAIDPPvsMJ0+eDG6FiIhIUSUlJXjvvfcAAI8//jhSUlIULZ/Ta4lCQH5+Ppo0aYKUlBQcPHgQsbGxwa5Sg9O2bVtUVVXh0ksvRY8ePZCamgqj0YiDBw9i4cKF2LZtm7ztjz/+6DR0/vLLL7BYLNi3bx/efPNNnDp1CgCwdu1aDBgwoF7+FqJgsFgs6NOnD7Zu3Yp//etf+PDDD4NdJSIiUsjLL7+MSZMmoVWrVti1axciIiIULZ+hk4gahbZt2+LgwYMut4mMjMTnn3+OW2+91ek2kiTV+Z2n53/++uuvqKiocF9ZB1JSUjBw4ECfHktEREQUTAydRNQo/Pnnn1iwYAH+/PNPnDhxAmfOnEFFRQUSExPRvn17DB8+HPfffz/S0tJclmMLnTExMWjfvj3uv/9+3HnnnVCp3J+t0LJlSxw5csSn+g8ZMgSrVq3y6bFEREREwaQJdgWIiOpDv3790K9fP7/L4XE6IiIiIu9wpJOIiIiIiIgChqvXEhERERERUcAwdBIREREREVHAMHQSERERERFRwHAhISIiChsmkwkVFRUub9XV1TAYDDAYDDW+d/Q7k8kEk8kEi8UCs9lc56v997YlECRJklcrtv9epVLJqxurVCpoNBpoNBpotdoaN9vvNBoNdDqd/DUyMhIRERGIiIhw+H1kZKR8i4mJQWRkpEerJhMREQUbQycREdUrk8mEkpISlJSUoLS01OX3tq/l5eWorKyEwWAIdvVDhkqlQnR0NGJiYmrcYmNja/wcHx+PhIQEJCQkyN/rdLpgV5+IiBoRrl5LRER+M5lMKCgoQGFhYZ2vtb8vLi72+9IztpHBqKgoREVFITo6Wv45IiICy775ExASYJEgCZX1eyFBsti+t36VhAQIWH+Hs99DgnT2K+SvUq0aCECq9fPZTW0/W4sUZ28WBz8Lu58FhMoCqCwYcUs/VFVVobKyElVVVaiqqkJFRUWN700mk1+vX1RUlBxE7QNpcnIyUlJSkJKSIn+v1+v9ei4iIiKGTiIicslgMCA/Px+nT5+Wb3l5ecjLy5N/Ligo8CpISpKEmJgYxMXFITY2FnFxcYiLi8OqeVsAsxqS3Q0WtTUsWlRnf1ZBQu0Q2HgInA2qKjOE2gKhMgNnvwq1GVBZINRmXHbHAJSWlqKoqAhFRUUoLi5GcXExzGazV88XExNTJ4impKQgNTUVaWlpSE9PR1xcnDy1mIiIqDaGTiKiRs5gMCA3NxenTp3CqVOncPLkSeTk5ODUqVPIzc1FYWGhR+Wo1WokJCQgKSkJiYmJ2LJsLySTBpJZA8mktvteYw2WjTg4BouAOBtKTRAaM4TaBKjNEBoThNqMwWPOR35+Ps6cOYP8/HxUV1d7VG5kZCTS0tLkEFr7a3JyMs8/JSJqxBg6iYgagdLSUhw7dgzHjx/H8ePH5YB56tQp5Ofnux2l1Ol0SE1NRZMmTZCamooVc7ZAMmohmbRQGTWQTFoGyQZGDqgaE4TGeParCVfePwj5+fnIy8tDbm4uCgoK3Jal0+nQrFkzZGRkoHnz5mjevDkyMjKQkZGBJk2aQK1W18NfREREwcLQSUTUQBgMBpw8eRLHjh3DsWPHcPToURw/fhzHjh1zO1oZGRmJ9PR0NG3aFBt/2mMNlEYdVEYtJKPGOsWVgZIcEJLFGkq11ptFa8SwW3shJycHubm5OH36tMspvRqNBs2aNZODaFZWFlq0aIGWLVsiISGh/v4QIiIKGIZOIqIwU11djaNHjyI7O1u+HT58GDk5ObBYLE4fl5KSgszMTGRkZGDptI1ng6UWKqOOo5QUMALibCA1wKIz4JoJg3H8+HGcOHECJ0+ehNFodPrY+Ph4tGjRQg6htq+pqak8h5SIKIwwdBIRhSiTyYRjx47VCJfZ2dk4ceKE03AZFRWFrKwsNG/eHL/P+QuSQQeVQQfJqINk4RRGCi0CwjpKqjPAojPi2ocH48iRIzhy5AhycnKcTvuOiopCixYt0Lp1a7Rt2xZt2rRBmzZtEBsbW89/AREReYKhk4goBFRUVODgwYPYt28f9u/fj/379yM7O9vppTHi4uLQqlUr7Fx1FFK1HiqDHqpqPUcsqcEQkgVCVw2L3gCLrhr9r+2MI0eO4Pjx406n66alpaFNmzZo27atHEYzMjK4iBERUZAxdBIR1bOioqIa4XL//v04fvy4w1GdyMhItG7dGnvWnYCqWn/2FsFwSY2WgLCOjOqrYdFXoe+V7XHo0CHk5OQ43D4iIgJt2rRBx44d0aFDB3Ts2BGZmZlcvIiIqB4xdBIRBVBlZSX27t2L3bt3Y/fu3di1axfy8vIcbpuSkoJ27dph04/7oaqKgKo6wnreJcMlNVRCAAqdmylUZlj0VbBEVGPknb1w8OBBHDp0CAaDoc62kZGRaN++PTp27CiH0YyMDJ4nSkQUIAydREQKMZvNOHLkCHbt2iWHzOzsbIdTAZs3b4527dph7dydUFVHQFUVAcmsCUKtiUKAo66IAgFQHhWNqMJVD/fH3r17sW/fPlRVVdXZNiYmBh07dkSXLl3QtWtXdO7cmeeIEhEphKGTiMhHFRUV+Oeff/D3339jx44d2LNnDyorK+tsl5KSgk6dOuHPBXugqoy0BkyLWrERHqIGw12XRIkgKiwQ+mpYIqpw2QMXYO/evThw4IDDVXRbtWqFrl27yrfmzZtzNJSIyAcMnUREHjpz5gx27NiBv//+G3///TcOHDhQZxXZyMhIdOjQAf8sP2adIlsZCZVJW7cwdlyJHPO2W+LLZ6nWcwgIiIgqmCOqMPT27vjnn39w4sSJOg+Lj4+XR0K7d++Ojh07Qqt18PkmIqIaGDqJiJw4efIktm3bhh07duCvv/5y2AlNT0/Heeedh5Uz/oa6MhJStd71OZgMm0Se8ad74unnzMVzCLUJ5shKXPefQdi5cyf27NlT5/xQvV6Pbt264fzzz0ePHj0YQomInGDoJCI668yZM9i6dSu2bt2KLVu21FkNU5IktG7dGkc2FVhHMCuiHI9iOsPASeQ9pbopzj5/HpYvIGCJqIIlqgL9b+iE7du3o7i4uMY2DKFERI4xdBJRo1VaWort27fLIfPw4cM17ler1ejUqRP2rDoFdUUUVJWR1nMxfcHASeS7QHRV7D+TPpRvW6TIHF2OATd1wrZt2xyG0PPOOw99+vRBnz590Lp1a54TSkSNEkMnETUaJpMJu3fvxp9//olNmzZh3759Nc7JlCQJbdu2RfafZ6Auj/YvZNpjJ5NIGSHcZfEkhCYnJ6N3797o27cvevfujcTExCDVloiofjF0ElGDlp+fj40bN2LDhg3YtGkTysrKatyfmZmJU3+XQlUeDXVFlPKXLWHgJFJWmHRbBASEvhrmqAr0vKoltm/fjurq6hrbtGvXTh4F7datG3Q6XZBqS0QUWAydRNSgmEwm/PPPP9iwYQM2bNiAAwcO1Lg/NjYWffv2xZpZu6Aqj/bunExvMXASBU6YdV+EZIElshLXPjkAmzdvxv79+2vcHxkZid69e2PAgAG48MILOQpKRA0KQycRhb2ysjJs2LABa9aswcaNG+uMZnbs2BEH1uSfmzLranVZJTBsEtWPMO7CCLUJ5uhyXHxnN2zatAkFBQXyfZIkoVOnTujfvz/69++PNm3a8FxQIgprDJ1EFJby8vKwbt06rF27Ftu2bYPJZJLvi4+PR58+fbB6xi6oy6OVnzLrCjuGRPUvzLsytpVxb37hIvzxxx/Yt29fjfvT0tJw4YUXon///ujZsyen4RJR2GHoJKKwIIRAdnY21qxZg3Xr1mHPnj017s/KysLJreVQl8XUz2imIwycRMHTgLozFo0Rlpgy9L6uNbZs2VLjXNDo6GhceOGFGDJkCC644AJEREQEsaZERJ5h6CSikCWEwIEDB7By5UqsXLkSJ06ckO+TJAldunTB3t/yrEHToA9iTcHASRQKGmCXRkgWWKLLMerBnvjjjz+Qn58v3xcREYF+/fphyJAhuPDCCxEVFRXEmhIROcfQSUQhRQiBQ4cOyUHz2LFj8n06nQ69e/fG5gWHoC6Nrd9ps64wcBKFjgbcrREQsERW4qr/XIDVq1cjJydHvk+n06FPnz4YMmQIBgwYgNjY2CDWlIioJoZOIgoJhw8fxooVK7BixQocPXpU/r1Op0O/fv3w5zcHoS6LgSRUQaylAwycRKGpgXdvBARERBWue3YAfv/9dxw/fly+T6vVol+/fhg+fDj69+8PvT7IM0GIqNFj6CSioMnNzcWyZcuwbNkyZGdny7/X6XS44IILsOHbs0HTog5iLV1QMnAKwQBLpLRG0sWxXRP0pheHYNWqVTh8+LB8X1RUFAYPHozhw4ejZ8+e0GhCZIYIETUqDJ1EVK/Ky8vx+++/Y+nSpdi+fTtsuyCNRoO+ffti87zDoR00bZQIiPa7XwZOosBohN0ci74K103qj+XLlyM3N1f+fVJSEi6++GKMGDECnTp14mVYiKjeMHQSUcCZTCZs3rwZS5cuxdq1a2usxNijRw/sXJxjPUcz1IOmja8dNWe7W3b8iAKrkXZ1bOeAXvpID6xcuRLFxcXyfRkZGbjkkktwySWXIC0tLYi1JKLGgKGTiALm4MGDWLJkCZYvX17jwudZWVk4tbkS6uJ4qEzaINbQB94GRFe7WIZNovrViLs8AgKWmDIMuqMj1q5di6qqKgDWlcB79+6Nyy67DAMHDuT5n0QUEAydRKSoiooKrFixAj/++CN2794t/z4+Ph7l2Spr0KyKCM51NP3laUj0ZLfKwEkUHOz2QEgWmONK0GV0OrZt2yb/PjY2FiNGjMBll12G9u3bB7GGRNTQMHQSkd+EENi7dy9+/PFHLF++HJWVlQAAtVqNAQMG4M+vD1nP0wzHoGnjLiR6sytl4CQKLnZ9ZBatATe8OABLlizB6dOn5d+3bdsWl112GUaNGsXLrxCR3xg6ichnZWVlWLZsGX766Sfs379f/n1GRgbythqhKY4PnWtp+sNZSPRl98nASRQa2P2pQUDAEl2OAbe3w5o1a2A0GgEAer0ew4cPx9VXX40OHToEuZZEFK4YOonIawcPHsSCBQuwbNkyeVEgnU6HwYMHY82X+6CqiArvUc3a7IOiP7tMBk6i0MIukENCZca9Uy/Fjz/+iEOHDsm/79SpE66++moMHTqU534SkVcYOonIIyaTCWvXrsWCBQvw119/yb9v1aoVjq+vgKYkrmGMatYmScp0TBk4iUITu0FO2Va/HXR3O6xatQomkwkAEBcXh0svvRRXXXUVmjdvHuRaElE4YOgkIpeKiorw448/YtGiRfL5Pmq1GoMHD8YfXx2CqjKyYY1qBgpDJ5GyhFD+ernklFCbcNvbF+OHH35ATk6O/PsLLrgA119/Pfr06cPrfhKRUwydROTQvn37sGDBAvz2228wGAwAgISEBJQdUENTmBh+lzoJJnbEiALDvgvjz+eMXSGP2S69cv6YDGzcuBG2bmSrVq1www03YPjw4Zx6S0R1MHQSkUwIgU2bNuGbb77B1q1b5d937NgRh1YUQ10SB0mogljDMMTASRRYjroxvnzu2B3ymkVrwOVP9sDixYvlVcsTExNxzTXX4Oqrr0ZCQkJwK0hEIYOhk4hgMpmwYsUKzJkzBwcPHgRgnUJ78cUXY83nB8L3uprBxsBJVD9cdWW8+RyyS+QToTLj9veHYf78+fJpGDqdDqNGjcL111+Pli1bBreCRBR0DJ1EjVhFRQV++uknzJs3D7m5uQCAyMhIGI9HQlOQxCm0/mDgJKpfnnRnPPlcslvkMwEBc1wJWg+Lw549e+Tf9+/fH+PGjUPnzp2DWDsiCiaGTqJGqKioCPPmzcOiRYtQWloKAEhKSkLpHuv5mpJFHeQahjkGTqLg8bRb4+pzyq6RX2yr3va9LQtr166Vz/vs2bMnbrvtNvTs2ZOLDhE1MgydRI1IQUEB5syZg++//x5VVVUAgMzMTORuNEJdHM/zNZXAjhRR8HnbtXH0uWX3SBEWXTWGPtQRS5cuhdlsBgB07twZY8eORf/+/aFSsd0hagwYOokagfz8fDls2lai7dixIw4tL4W6NJbnayqFgZModPjavbH/HLOLpBiLxojRT3bHjz/+KLdDrVu3xu23347BgwczfBI1cAydRA1YXl4evvnmG/z0009yI9+lSxccWFICVXk0w6aSGDiJQo8/XRzbZ5rdJEUJtQnXvtAXCxcuREVFBQCgTZs2uPPOOzFw4EBOuyVqoBg6iRqgwsJCzJo1C99//z2MRiMAoFu3bti3uIhhMxDYSSIKXezmhCShMuPG1/pj3rx5KC8vBwC0b98ed911F/r168fwSdTAMHQSNSClpaWYO3cu5s2bJ18zrXv37tjzQyFUFVEMm4HCzhFRaGNXJ2QJlRljXr4A8+fPl9utTp064a677kKfPn0YPokaCIZOogagqqoKCxYswDfffCOvRtuxY0dkL61g2Aw0doiIwgO7OyFNqE24+vneWLhwobzQXa9evXDfffehQ4cOQa4dEfmLoZMojJlMJixevBhfffUVCgoKAAAtW7bEybVGLhBUHxg4icILuzwhT6hNuPyZ87Fo0SL59JDhw4fj7rvvRrNmzYJcOyLyFUMnURgSQuDPP//EJ598gsOHDwMA0tPTUbBVsl76hGEz8Bg4icIPuzxhw6I1YPADbbBs2TIIIaDRaHDVVVdh/PjxSEhICHb1iMhLDJ1EYebgwYP4+OOPsXnzZgBAfHw8KvZGQFOYyLBZXxg4icIXuz1hxaKvwnk3pWLjxo0AgKioKIwbNw5jxoyBTqcLcu2IyFMMnURhIj8/H19++SWWLFkCi8UCrVYLkRMLbX4KJIs62NVrXBg6icIbuz5hxxxVjhYjIrBv3z4AQEZGBh544AFeZoUoTDB0EoU4o9GI+fPnY/r06fLKfhdffDHWf34UKiOP8tY7dm6IGgZ2f8KOgMCjs6/Dp59+ijNnzgAAevfujX/9619o3bp1kGtHRK4wdBKFsC1btuC9997D0aNHAViXkT+0pALqyqgg16yRYuAkaljYBQpLQrJgzCt9MXfuXBgMBqjValx55ZW46667EBcXF+zqEZEDDJ1EISg3NxdTp07FypUrAQAJCQmo2BXJRYKCiYGTqGFiNyhsWbQG9L0zA6tXrwZgbSsfeOABjBo1ilNuiUIMQydRCDEajZg7dy5mzpyJqqoqqFQqqPLjoT2dyvM2g40dGKKGi12hsGaOKkfTISp5Nffzzz8fjz76KFq2bBnUehHROQydRCFi586dePPNN5GdnQ0AOO+887BvUSlU1RFBrhkxcBI1cOwKhT0BgXHvD8H06dNRXV0NjUaDm266CePGjUNEBNtRomBj6CQKsoqKCnz22WdYuHAhhBCIj49H5a5oqEviOJU2FDBwEjV87Ao1GBatAT3HpeGPP/4AYL2G9cSJE9G3b98g14yocWPoJAqidevW4d1338Xp06cBAOqieOjymkAya4JcMwLAwEnUGLAb1CCZYkqR0MuAvLw8AMBll12GBx98ELGxsUGuGVHjxNBJFARFRUV477335IWCmjVrhjN/qqEujwlyzagGhk6iho/doAZLSBaMfrYbFixYACEEkpOT8dhjj2HgwIHBrhpRo8PQSVTP1qxZg7fffhuFhYVQq9WQchOgzU+BJFTBrhrZY+AkavjYBWoUzJEVaDLIgmPHjgEAhg8fjgkTJiAhISG4FSNqRBg6iepJaWkppkyZgqVLlwIAWrVqhVMrBFRVkUGuGdXBwEnU8LH706gIyYJrXuyFb7/9FhaLBQkJCXj88ccxaNCgYFeNqFFg6CSqBxs3bsQbb7yB06dPWy+DkpfI0c1QxtBJ1PCx+9MomSMq0WyoJK8Uf/nll+Nf//oXoqKiglwzooaNoZMogKqrqzF16lQsXLgQAJCRkYH8dRqoK9m4hSwGTqKGj12fRk1IFlw1uQfmzp0LIQQyMjLw7LPPokuXLsGuGlGDxdBJFCDZ2dmYPHmyfDRVU5AIbV4Tjm6GOoZOooaN3R46yxxVjvg+VcjLy4NarcZtt92GcePGQaPhCvJESmPoJFKYEAI//PADPvzwQxgMBiQmJqLirxiuTBsOGDiJGj52e8iOUJkx4MEsLF++HADQpUsXTJ48GWlpaUGuGVHDwtBJpKCSkhK88cYbWLNmDQCgb9++2DG7kNfdDAcMnEQNH7s85MTEOdfj3XffRVlZGeLi4vD000+jf//+wa4WUYPB0EmkkN27d+O5555Dbm4uNBoNpBNJ0BQkQQLDTFhg6CRq+NjlIRcsWgNaXq7Fnj17AAA33XQT7r33Xk63JVIAQyeRn2zTaadMmQKj0YiMjAycWavlpVDCCQMnUePALg+5ISQLLnumKxYsWACA022JlMLQSeSHqqoqvPvuu/jll18AAOrSGOhONoNkUQe5ZuQVhk6ixoPdHvKAKbYEuo7FKCsrQ3x8PCZPnoxevXoFu1pEYYuhk8hHJ06cwKRJk3DgwAGoVCqoT6VwOm24YugkalzY9SEPWLQGtBitwd69e6FWq3H//ffj+uuvh8Q2g8hrDJ1EPti8eTOee+45lJWVWVen3R4LdUV0sKtFvmIHgqhxYheI3BCSBYMfbomlS5cCAEaNGoWJEydCr9cHuWZE4YWhk8hLCxcuxJQpU2A2m9GlSxccXFQNlUkb7GqRPxg6iRovdoPIDQGBu6eOwNSpU2E2m9GhQwe8/PLLPM+TyAsMnUQeMplMmDJlChYtWgQAUBfFQ5eTDkmoglsx8h9DJ1Hjxq4QecAcVY6I84pRXFyMxMREvPbaa+jcuXOwq0UUFhg6iTxQWlqK5557Dlu2bIEkSdDkpkBzJpnnbzYUDJ1ExO4QecCiNaD5JRIOHDgAvV6PSZMmYfDgwcGuFlHIY+gkcuPUqVN4/PHHcfToUURGRsK8LxmasthgV4uUxNBJRDbsFpEbQmXGeeMSsWHDBkiShAceeAA33HADFxgicoGhk8iF/fv34/HHH0dBQQFSU1NRuiEGquqIYFeLAoGdBSKyYdeI3BAQGPVUR/mUm6uvvhoTJkyARqMJbsWIQhRPRiNyYsuWLXjooYdQUFCAVq1aofSPeAZOIqLGgAehyA0JEpa+tgcPPvggJEnCokWLMGnSJFRXVwe7akQhiSOdRA789ttveOWVV2AymaAqj4L+eHNIFnWwq0WBxE4mEdXGLhJ5wBRbArQ+DYPBgB49euDVV19FdDQvo0Zkj6GTqJb//e9/eP/99wEA6pJY6E42c7xCrUUAKgaVBoOhk4gcYTeJ7Dlp+81R5VB3ykdFRQU6dOiAt956CwkJCfVfP6IQxdBJZGfOnDn45JNPAACagkRoc9Mcr1Drb+BkYA09DJ1EVBu7SOSIkzbcElGJiB5FKCoqQlZWFt555x1ey5PoLIZOorNmzJiBL7/8EgCgyU+G9nRq3cBpsfu4+BoabWUwdIYWhk4iqo1dJHLERV/AoqtG3IVlyMvLQ1paGj744AM0a9asnitIFHoYOqnRE0Lgiy++wKxZswAA2rxUaM+k1NzI4uBj4m1oVCKwUuAwdBJRbewikSNu+gQWjRFNhhlw9OhRNGnSBFOmTGHwpEaPoZMaNSEEPvnkE3z77bcAAG1uE2gLks9t4KhhsfE0OCoRWKl+MHgSkT12kcgRD/oGQmNE6tngyRFPIl4yhRq5adOmnQucOWnKBk6LcF0GERGFLgZOcsZVH+Bsuy+ZtDj9mw5ZWVnIzc3Fww8/jJMnT9ZTBYlCD0MnNVqzZ8/GjBkzAJwNnIVJ1juUCIsMm0RERI3T2X6ELXhmZmYiNzcXjzzyCHJycoJdO6KgYOikRmn+/Pn47LPPAJw9h7MwSbmwycAZvjiyQURESrEISAYNTq/QIzMzEzk5OXjsscdQVFQU7JoR1TuGTmp0Fi9ejClTpgAANKdToD2dzLBJRETn8AAUKUhl0OD0ch3S0tJw7NgxPP7446ioqAh2tYjqFUMnNSp//PEH3nrrLQCA5kwStHnJbh7hAYZNIiIickFl0qJ4bTTi4+Oxd+9ePP3006iurg52tYjqDUMnNRq7d+/G5MmTYbFYoC6MhzbHwXU4vcHRTSKihoejnBQgKoMO1VsTERkZia1bt+Kll16C2WwOdrWI6gVDJzUKJ0+exJNPPomqqiqoSqOhO5nuf+D0B8Nq6GKHk6hx46WTKIBUVRGw7EqBVqvF6tWrMXXq1GBXiaheMHRSg1dUVISJEyeisLAQUqUe+uPN/Auc1HBJEjucREQNXZBnKqkroiEdSgUAzJs3D99//33Q6kJUXxg6qUEzmUyYNGkSjh8/jrS0NEQczYRkUQe7WhSKGDaJCOBsh8YkiMFTUxKHu+++GwDw/vvvY/PmzUGrC1F9YOikBm3KlCn466+/EBUVheJ1UZBMmmBXiUIRAycRUeMUxFHPr/+9BiNHjoTZbMZzzz2HI0eOBKUeRPWBoZMarJ9++gmLFi2CJEkw7U6Eqlof7CpRKGLgJCIbjnI2XkEInxIkrHn/MLp164aysjI8+eSTKC0trdc6ENUXhk5qkHbs2IF3330XAKDJSYamLDbINaKQw/M3iYiotvoOnkKFA/MqkZ6ejhMnTuC1116D4MEPaoAYOqnBOXPmDCZNmgSTyQR1cSw0+Qpci5MaFoZNIqqNHX2yqedRT8msQeE6PbRaLdauXYs5c+bU23MT1ReGTmpQLBYLXn75ZRQUFKBVq1bQnWwauivV8rIpwcHASUTUeHnT9tZjO62uisSECRMAAJ999hm2bdtWb89NVB8YOqlB+eabb7BlyxZERETg1K+AZOFbnOwwcBKRIxzlJGfqcdRz6p0/YdSoUbBYLHjhhReQn59fL89LVB/YI6cGY8eOHfjyyy8BAJaDCVAZuHAQ2WHgJCIiX9VD8JQgYfV72WjdujUKCgrwxhtv8PxOajAYOqlBKC0txYsvvgiz2Qx1URzURfHBrhKFCi4YRESusFNPnrKNegYwgEpChZO/Cuh0OmzYsAELFy4M2HMR1SeGTmoQ3n//feTm5iIjIwO6U2mOz+MUFuvNX0qUYcPzOomIiOqHUm2uUv0AJ+WoqvW47777AABTp07l9TupQWDopLC3Zs0aLFu2DCqVCvlrNJAs6robCYv/jY1SoZWIiEIDRznJV0r0CSzCaRmf/99S9OnTBwaDAS+//DKMRqN/z0UUZAydFNZKSkrwzjvvAABUeQlQV0bW3EBYALNZmcBJ4YmdSiJyhPsGUoJSwbNWORIk7JhdgLi4OOzduxezZ8/273mIgoyhk8Lahx9+iIKCAkjVOmjzUmre6Wh008VRRYecHclkCA0v7FwSEZESnPUJvO0X2G9vO0+0VhkqkxZVO2MAALNnz+Y0WwprDJ0UttavX4+lS5dCpVJBd6IpJHH27Rxuo5s8r5OIqH7xQFTjUx9trTf9Bkf1cTDqqS6JRb9+/WA0GvHOO+9wNVsKWwydFJaqq6vxwQcfAKg1rVaJczdt5VDDwoaaiIgCTYnptnajnhIkbJ+Zh4iICGzfvh0///yzApUkqn8MnRSWvv32W5w8eRKpqanQnk7xbnTT1RRbLhZERNSw8QAUBZq7voQn/Qy7UU+VUYc777wTgHU128LCQoUqSlR/GDop7Jw6dQqzZs0CABRv1UIyIzijm7x0SvhhZ5OoceM+oHEK1qVSnG3vaX3sRj2/evA3tGvXDqWlpZg2bZp39SAKAQydFHY++ugjGAwGqMoioS6M4qVQiIiIKDQpdGkVSQgcXVoJAPjxxx+RnZ2tQOWI6g9DJ4WV7du3Y82aNVCr1dCdSIUEybeCnCxR7jWOdoYfjnQQNU787DdOwRrldPZ4X8uxCKjLIjFkyBBYLBZMnTrVv/oQ1TOGTgobQgj897//BQBIuTFQVev9K5Ahj4iocWDgpFAgLBBm/8Lrhv8ehkajwYYNG7BhwwaFKkYUeAydFDb++OMP7Ny5E3q9Htq8pGBXh4iIiMhr/lz2RGXQ4dprrwUAfPLJJ7BYeHoQhQeGTgoLFosFn3/+OQDAfDQCMKoVKpiXV2mUOOpB1Hjw8964qSTrzR8KtfP2o5z+BM8fnt2A6OhoHDp0CKtXr1aiakQBx9BJYeG3337DoUOHEBMTA01uQrCrQ0RE4YCBk2z8DZ4BIITwKXxKZjXGjBkDAJgxYwZHOyksMHRSyBNCYPbs2QCAqn1aSGaFRjltQmm0k+eZ1h92RokaNn7GqTZfgmcARjnr3OfDe3XuY6sQFRWFgwcPYt26dX7UjKh+MHRSyNuwYQOys7MRGRkJTX6c9ZcWi19TU0Iag2f9aajvISIickyJ6bYB4GmfRpjNAKyjnddddx0AYPr06Q23T0QNBkMnhbw5c+YAAIxHdMqPciqJ53YSEYUGdsDJHU+CZz23695Ot533+GpERkZi//792Lx5cwBrRuQ/hk4Kabt27cK2bdugVquhyYuveaeSo52hNroYavVpyNg5JWpY+JkmT9XTiKe3l0lx1rexjXLaSGY1LrvsMgDA/PnzfascUT1h6KSQNm/ePOs3eZGQjJrgVsYTHO0MT+ykEhE1Ts6m2wa5Pff0oPpPL22EJElYv349jh07FuBaEfmOoZNCVmFhIX7//XcAgOZ0vOONONpJSmHwJAp//ByTrwI06untKGeNx9pNt609ymmjqtaiX79+AID//e9/Pj8XUaAxdFLIWrJkCUwmE6RyPVSV+vp50lBayZaIiDzHwEn+sgVPpVasNZqUKcfNe3vLrGwAwNKlS1FdXa3IcxIpjaGTQpLFYsGPP/4IANDkxzrfUAjAaHR6BDAoJH6swpIUeqsZEpGHGDhJCbYDz5JKubZcgWtoiqpqCIPR6f2q0kikpaWhrKwMa9eu9fv5iAKBvWMKSTt27MCJEycAswR1UUzdDYQAzOZzO3MlOxz+jHYqGThDcEn3BouBkyh8MXBSoPjRptcY5fQ3eAoLICwQBqPD8ClBwpnt1hHOxYsX+/dcRAHC0Ekhafny5QAAdVE0JEutt6kQdXfgFkvwRzuVCpwheg2xBouBk4iInB1wVnLE04fwKarspsvahc/a1AXWWWFbtmxBXl6ez9UkChSGTgo5JpMJq1atAgCoC2uNcjoKnPb3KcXb0U4lAyfVHwZOovDGUU6qD1628S7P5fQ2eDo6v9RB8FQZtDjvvPMghJAXYSQKJQydFHI2b96M4uJiwKiGqjTy3B2uAieg/Ginp8GTgTP8SBIDJ1G4Y+AkpXjS3nvY1nu0eJCHwbPGKGedO+sGz90/nwAA+cA9UShh6KSQs2bNGgBnp9ZCqnv+pitmc/1Ns1VyoQEGzvrDsEkU/hg4SSnezGyqxwWGRFW1+1V0a53nqS6KBmBdF+P06dOKVJNIKQydFFKEEFi/fj0AQF0c5X5003EhylUo0Od4AAyc9YmBkyj8MXBSsDnpA3h9iRRX/RtPL9tid56nZNSga9euAMBVbCnkMHRSSNm3bx/y8/MBswRVaYRvK74FepotFwwKTwycROGPgZOUpMS1uc/y+ZqcDhYYcjmt1mkFrMFzz6/WKbYbN270rT5EAcLQSSHlzz//BGC95pRk9qMxCNQ0W06nDU8MnEREZM/fwKn0NbnPBk+PptU6IyxQndEBALZu3Qqj0fm1PYnqG0MnhZStW7cCANRFEf4XpvQRcQZOIqLg4SgnKUmJtvhsv8DnUc7aLBbfA+dZUrkaCQkJqKysxD///KNMvYgUwNBJIcNgMGDnzp0AAFWZAqFT6Wm2fjYEMgWn85AHOMpJFP4YOElpCrXFwmwBVCrrzU+WyioIP+slQULv3r0BANu2bfO7TkRKYeikkLF7924YDAbAoAIq1coUqsQ020CMTDJ41g8GTqLwx8BJSgtUG+xH8LRUVsnf+xs8V32+CQA40kkhhaGTQsaOHTsAAKpSPSSzBSIUOhq1A6dSo50Ag2egMXAShb9QaAeoYVFy8SCTg2m1Cox4Atbg6Wv4VJXqAQC7du2Cub4uI0fkBkMnhYy9e/cCAFRlWusvzGZlgqevo53ORjgZPEMfAydR+GPgJKUFOnDaeBk87Uc56zyPD3WWKjSIiopCRUUFsrOzvX48USAwdFLI2LdvHwBAKted+6VSDYS3wdPdlFolgycREdXEwEkhzGXgtPEweLoKnPLzedkXkiChQ4cOAID9+/d79ViiQGHopJBQWlqKU6dOAQBU5dpzdwgFp9l6Gjzre3VZjnYqi6OcRERUWzDaWjfB05PAaeNt8Pz7Z+uB/IMHD3r1OKJAYeikkGDbKUpVakjmWm9LpabZ2spyFTy9CZycZht6GDiJwh9HOUlp9TWt1hEnwdObwCk/txd/h1RhPYB/6NAhr5+HKBAYOikkHD9+HAAgVWkcb6Bk8HTGlxFOBs/QwcBJFP4YOElpwQycNgotLgR4HjxVDJ0UYhg6KSQcO3YMgIvQCQT2/E5/ptQyeAYfAydR+GPgJKWFQuC0sbuWpy+jnDXq4sHfZetPFRQUoKrKv+cjUgJDJ4UEtyOdgLLndwphLUsl1f85nKQsBk6i8MfASaFMwYPLorpamXLcBE/JrEJMTAwAICcnR5HnJPIHQyeFhLy8PADWczpdUmKarUplDSoWC4Q5xFahZQAmosaGgZMCQalRTmEBLAKSAgc4RWWlz9ferO3gG31x4LU+LrdJT08HAHmhRqJgYuikkHDmzBkAgGR0EzoB/4KnLXDaKBE8JYU+RgycvmGHlSh88fNLgaDkqSp2ZfkTPJUMnIde7wtzohHmRCMOvuo8eB7aaJ1FZjuwTxRMDJ0UdBaLBYWFhQAAyeBB6AR8C561A+e5CvgePBk4QwM7rkThh59bCgQlA6eDabW+BE+lA6cpySj/bEqyBk9H4VMyWvsoRUVFijw3kT8YOinoSkpKYLYt7GPy4i3pTfB0Fjj9wcAZWtiBJQof/LxSICgdOJ2U523wVCxwvlYzcNqYkoxy+Kx5h7WfUlxcrMjzE/mDoZOCrqyszPqNSYIkvAxgZrP7UUpPAqe3o50MnKGJHVmi0MfPKQVCPQVOG0+Dp6isVKJG1sCZXDdw2qsdPKWzobOkpESROhD5g6GTgq7StkO2BCCAeTPC6WnwZOAMbezQEoUufj4pEOo5cNq4C55KTqt1Fzjl7ZKMOPjK2eB5NnTKB/eJgoihk4LOdv0oyexjCHN2KRVfptS6C54MnOGBHVui0MPPJQVCkAKnjbPgqeh5nK/19Wp7U7I1eNpmjxkMBkXqQeQPhk4KOvmixf6MdNY+v9OfczidBU8GzvDCDi5R6ODnkQIhyIHTpnbwVDpwejrKac+UbETujW2t35tMitSFyB8MnRR058Kin2HMFjyVWDSodvBk4AxP7OgSBR8/hxQIIRI4bWzBU9HA+apvgdNGW5YLANi+fbsi9SHyB0MnBd25I4QK7KTNZsDi53U3a1MqcBIREVFoUSBwysxmxQJn+bW9YUrxPXACUH7VfiI/sDdNQadSWd+GxtQoRcoTZos1fPpDpToXhh1cp8tnSh6ZJffY4BIFF0c5KVCUnDmkQFnCZAIsFkhajd9llV/TG4ZoFRK3aP0qp6pJIgCgWbNmfteJyF8MnRR0ttCZFFeCE494d7K8Q8LiX/C0BU77RojBM/wwcBIFFwMnBZq/YdG+bfejLFvgBKyzt/wJnuXX9IYhxtov0lTAr+B5Q8fNAIC0tDSfyyBSCkMnBV1UlHWEU6o24aG7FgU3eDoKnHZlKobBM7AYOImCi4GT6ouvYdFRm+5DWfaB08bX4GkfOG18DZ4vD1qIZGMxgHP9LKJgYuikoLPtDKsqVegVcTh4wdNV4LQrUzEMnoHBwEkUXAycVN+8DYuu2nIvynIUOG28DZ6OAqeNpsLjYgBYA2dH3SlUV1n/FoZOCgUMnRR0MTExAIDqKhUsFpwLnv+ux+DpSeC0K1MxDJ7KYuAkCi4GTgoWT8OiJ224B2W5Cpw2ngZPV4HTxtPRTlvgBKz9KoChk0KD/2c7E/nJFjoBoKJchZhYizV43rkIH+JqZLy30b8nEBYI89kLsqjVzrfz5kipsCi3qq1F8FIqSmDgJAouBk4KNpXk+mCuNweNXZTlSeC0kSTJ5dr8FVe7D5yAdbQzYasORT0NSCkuxU1rNuGCvdmIqapGWYQef3ZsjazHTqONLl9+TGmxtc+TmJjoUV2JAomhk4JOq9UiISEBRUVFKClQIybWuiO3Bc+/b8jE79/18i98ugqe9ivVelkmg2eIYOAkCi4GTgoVzsKiL7OUHJTlTeC0kbQaCKOpzu8rru6N6ljP+xExxQZMemcRrty7CbpaM7gG79oPy49A/pgYHH0+ESJCQkmRtb+TnJzsVX2JAoHTaykkpKamAgCKCmseB+kVcRh3pKzBg3d87/95no6m2nozrdZJmYrhVFvfMHASBRcDJ4Wa2m26Qm21L4ETcDzN1tvAqTcZMWXZ5xiz6886gdNGZQSazClD+/F5kKosKClk6KTQwdBJIcEWOosLHE9/7ROZjQfv/N7/8zztg6e/gdOuTAoSBk6i4GLgpFBla9v9baPPluNr4LSxD57eBk4AeGzjIvTKPehyqi4ACABxG6qR9UIRyoubAgBSUlJ8qDGRshg6KSQ0bWrdMebnOp/x/cbq0cj67pj/TybOXUuLU1rDHDu8RMHDzx+FMotQeDaS/2VJkgRYzF4HzuSKElxxYJO1DHfPcfZr5MJKFBQUAAAyMjK8rCmR8hg6KSRkZWUBAPJOOl+dTVughunYSQh/p6Gq1YBaDSGEddTT3/KUOq+TAdg37PgS1T9+7iiU2dp1JdpnW1la76+VWaOY6mpYqqsBACk/7fXqsVft3witxbvrjp/URAKwLiIUGxvr1WOJAoGhk0JCixYtAAB5pxzv1Mf8+iDa/fe4/LM/wdM6wnnurS+E8D14MnCGBnaAieoPP28Uymq35/6003ZlSZLkc/C0VFdbPzdnPzvmMwVePb5n7kGvn/NopDV0ZmZmev1YokBg6KSQYBvpPJOngdFQM4CN+fVBdH4tF6ZjJ2v83qfgeXaUszafgicDZ2hhR5go8Pg5o1DmrB33pb12UJYvwVMOnLWkLN7ncRlRxmqvnhMAss9em9N2UJ8o2Bg6KSQkJycjMTERQkg4efTcDl0OnEdPOHycV8FTrYak0dQY5axRlj8jnr5i4FQWO8REgcPPF4Uyd+23N8HTRVneXGLNWeAEAHP+GY+DZ4VW7/Fz2uw9O6W2ffv2Xj+WKBAYOikkSJKEjh07AgCOHjq3c9We0TgNnDYeBU83gVMuy9PgqdQoJymPHWMi5fFzRaFMqQPGFg/7AB6MdroKnDaeBs/oG0vd18mOALA3JgYA5L4VUbCx50whw7ZjPHZIBwAYs+xBtPv8pKuHyFwGTw8Dp1yWu+DJabWhjx1kIuXw80ShzJvA6ar99qIcd9NsPQmcNu6C5xPPfI0ut+shvJjVeyoiAiVaLbRaLVq1auX5A4kCyPn1KYjqWadOnQAAh/frrdNqX8+D6chxN486xxY8pVphrvbCQR6VJQQkC+oGQwbO8CEEr+NJ5C8GTgplvoxwSqq6l1LxoRxJkiC0WsBorFmUF4HTxpx/ps7vnnjmawDAdTElQIwGuCEO+LoEAq4vmyIA/B0XBwBo164ddDqdV3UhChSOdFLI6NatG9RqNc7kadHxrWNeBU57NUY9nSwc5FE5gTrHk4Gz/rDDTOQ7fn4oVHk6DdYZ+wPI/q6Gb8eXwGmT8vMB+fuJz3yD62JKrIHzLPFSCsSFER5dp3NruyQAwPnnn+9TXYgCgaGTQkZ0dDQ6dOgAADCWHvGrLGERXk+rdViO/bU8eR4nETUWDJwUqpQ6GCyplClLqz13DU4/Pjfm06eR8vMBTHzmG9wQU1x3g0gVxNfNIMbGOZ1qK7SAGBuH7U27AgB69uzpc32IlMbptRRSevXqhV27dsGSYID6dJR/hSnUMFmn53J0Mmxxmi2Rdxg4KVQpOfuo9hRbX1ksUOn1sFRV+V2U+fRpx4HTJlIF8VYT4D9JEN+UQPqjEii3ANEqiP6RwC1xOGnRI+ehXKjVanTt2tXvOhEphUM3FFJsR+UsCVWA2ve3p6RWQ1KrrJ0ni0INixINFMNr/WPgJPIcAyeFqkAETj/bZGE2Wz8zfsyoqm34LXe63yhVAzycBDE3A+KnTIi5GcDDSUCqBrc+ehEA6ylLUVF+HrwnUhBDJ4WU7t27IyYmBtBaIOKNkHw4H1MOnIA1cAoBmM0+hc86o5z+BE8GzvrHwEnkOQZOClVKBU5hqduO+9g2y4HTVkxEhD81k6lXbcXwWz0Ing5cfMfdkM4cAgAMGDBAkfoQKYWhk0KKRqNBv379AACWhEpIapVPwbMGi+Vc+PQieDqdVqvUlBwKLAZOIs8xcFKoUjJwKqR24AQAqFTKBc+VW71+zMV33A392r8hJVpX0+3fv78idSFSCkMnhZxBgwYBAMwJFRAQ1uCp1XgUPmuMctbmQ/B0ytHRUlc4yklEoYqBk0KRvyvU2nPXXnvYRguz2XHglMtRcJqth6OdF99xNy6+425E/P4PzPEVMJvNyMrKQmZmpmJ1IVICQyeFnAsuuAB6vR4iwgQRZQBgHXV0N+rpMnDaeBg8PV48yJPgycBZ/zjKSeQZBk4KRcFYMMhNWy2HTTefGSVHO4eNvcvlNhfddQ8ifv8HEb//AwAwJ5cDAIYOHapIHYiUxNBJIScqKgoDBw4EAJjO7kBtFJtu6yJ4er1aLafbhhYGTiLPMHBSKArBFWpdjm7WpuA0W82KLU7vu+iuexC5cof8s9CYISVZp9aOGDFCkecnUhJDJ4WkkSNHAgDMSeUQUs0dvaPg6dEopz0/Fxiqw1nDxlHO+sXASeQZBk4KRYFcMMgTDtpsrwKnXI5y3euh4+qOdl50d83ACVj7S2azGZ06deLUWgpJvE4nhaQ+ffogMTERhYWFsMRVQl1cc9lvSa2yNg4WYW0QfGELmyqV9XuVyr9rcgqL9WLTREShjIGTQlG4LBjkIVVEhCLX7tQuPzfaedHd9wAAIlfUDJwCAqaUMgDnDtoThRqGTgpJGo0Gl1xyCebMmQNTk9I6oRM4Ow1WbQ2Jkj8jXGcDJywWwN+pu7bGTlJxlLO+cZSTyD0GTgpFoRQ4VRKE0XS2PD/qpeRo5+13w6KV6oRNG0t0NUSUEXq9nqGTQhaHZShkXXnllZAkCZb4Klj0Rqfb+RU4beRRTwXK4mgnEYUqHpyhUKLkCrUKktRq/w/QWCyQ9HpF6qNdtgWRvzkOnABgTrWOcg4bNgyxsbGKPCeR0tg7ppCVkZGBvn37AgDMqaWBfTK12v8FimoLwYa0QeMIDpFnGDwpFASijVTioK8S9Tp7IFuSJP+CpyTJn1eLwfHBd6ExQ93Met+VV17p+3MRBRhDJ4W0a6+9FgBgSi2DUAd4ldhAjHIyeNYvBk8iotAXqm2jXb0kjY9noNVanNDn2Vi1H+dk6rCpSSkMBgM6duyITp06+fZcRPWAoZNC2gUXXICWLVsCagFToEY7AzHKaS9Epw81WAyeRO5xtJOCJdDtoa+jnQqOcNbm9Wink89n7dFOobIgsoP1OW+55RZlTjciChCGTgppKpUKt956KwDAlFYCIQVotLM+zuVk8Kw/DJ5E7rGDSvUpVA/AuqiXx6OdFovLy695HAbtptM6VGu005xahtLSUjRv3hyDBg3y7DmIgoShk0LesGHDkJ6eDmgtMKeUB7s6/gnFBrehYvAkco/Bk+pDfbd9no52BnB002sefhZto51CEkjoaQ3Ft9xyC9SBnLFFpACGTgp5Go0GN910EwDAlF4MISnYeCk1tdab6TyherS3IWLwJHKPwZMCKVjtnUKzj1yOdnoROF1OsfXmM3h2tNOcUobTp08jOTmZl0mhsMDQSWFh9OjRSE5OhtCblV/JNljX02TwrB9CMHwSEQVDKLZzShz4dTOd1hGHU2zdTad1QqgsiO1h/X7s2LHQ6XRel0FU3xg6KSzo9XrccccdAABj02JlVrINxihnbaHYIDdUDJ5EznG0k5QUqjN6fKxTjdFOP6bT1hjt9OMzZ0wuQkFBAZo2bcrLpFDYYOiksHHZZZchKysL0FpgSitWptBgjXLaC9XGuSFi8CQiCqxQas/sDwoHYXSzTnVsQdOPwCk0FkR0ttbjrrvuglar9atORPWFoZPChkajwb333gsAMKWXQmhNQa7RWU6unUVEFDZ4QIYaqlA6sKtW+z2rwNy8DOXl5Wjbti2GDx+uUMWIAo+hk8LKoEGD0KVLF0AlYGzux2inSqXctTn9mV5rEwojro0BpxAS1cXASUoJlXBnT6n21d8RxbN9DpW31+y0Y4k0AlnVAID/+7//g0rFbjyFD75bKaxIkoSHHnoIkiTBnFwGc1w14MtOV5IY9IiIiJQSioETUObAMLy41mZtarUcOOWffXl+vQ7mtmUwm80YOHAgLrjgAt/qQxQkDJ0Udjp37iyfOG/MPAMhwbfgqQSOcoYPjnIS1cVRTvJXKE1fdSZYo50KzahS6fUwp1TBElcNnU6Hhx56SJFyieoTQyeFpXvvvRcJCQkQkUaYmhSfHblUeRY+lZxaS0QUrhg4yV+hHjZt6nu0s/boZi2eTrFV6fVQ6fUQWglxvcwAgNtuuw1Nmzb1rB5EIYShk8JSbGws7r//fgCAKb0QFp3x3PWu3AVPTq1tfDjKSVQTAyf5K1wCZ33z5KC2B9uo9Ho5vBqbFeDMmTPIyMjAzTffrEAlieofQyeFrUsuuQTdu3cH1ALGrNMQONsAejPqGWwMv0RU3xg4yV/hGDjro71VYBaVbXTTVpY5phLm1BIAwMSJE6HT6fx+DqJgCINeOZFjkiThySefREREBCyxVTCnlNjf6XjUM9RWraXA4ygn0TkMnOSPcDh/0xml2mxH53W6mU7riKMptvajmwAgVBYYW5wGAFx99dXo1auX9/UlChHsNVNYy8jIkKfZGjMKYNEba25Qe9STU2sbFwZOonMYOMkf4Ro2FVbnvE5fD2TbPa726KaNMeMMhM6Epk2b4r777vPteYhCBEMnhb2rrroKvXv3tl67Myvv3DRbG0/P9SQiaqgYOMkfDJx1+TC66Ujt0U0bc1wFzCmlAICnnnoKUVFRfj8XUTCxF05hT6VS4YknnkB0dDQsMdUwpRc63pDBs/FhR5uIyHfhPJ3WEaVmOikQNiW12uHoJgAIjQmRPSsBANdddx3OP/98v5+PKNjYA6cGIS0tDY8++igAwJReBHNshcPtfL64c52CeH3OsMHgSY0dPwNEVv623SrrKTr+rg0hqdXWshwFTggYWuahuLgY7dq147RaajAYOqnBGDFiBK644gpAAgwtTkNoTMGuEoUKdrqpseJ7n0gZ9geKfTxoLKnV5wKnE6b0QlhiqxAZGYnJkydD7+E1PYlCHUMnNSgTJkxA69atAa0ZhpYOzu+kxoudb2ps+J4nf3FGjjy66S85bLooyxxTCXOzYgDWy6NkZmb6/bxEoYKhkxoUvV6PF198EZGRkbDEVsHU1Mn5ndQ4sRNOjQXf60SOeRMgFQqb7kY3AcCiNSKydwWEEBg9ejRGjBjh93MThRKGTmpwsrKyMHHiRADW8ztNCWXWO1Sq0DlqGyr1aIzYGaeGju9xIuc8Oa9TgdHNGmHTSVmS3fU4Da1zUVxcjPbt2+Phhx/267mJQhFDJzVII0aMwM033wwAMLY4DUtktXKLCFH4E4Idc2qY+L4mpTW2g6T1NJXW9lwCAsas0xBRBiQmJuKVV15BRESE33UgCjUMndRg3XvvvejXrx+gEqhuncOFhagudtCpIeH7mch3So9uesiUVgRzYjk0Gg1eeuklpKWl+VUHolDF0EkNllqtxnPPPYcWLVoAOjOqW5yCkCzBrhaFGnbUqSHg+5jIN/W4UFBtprhSmDOKAAD//ve/cd555/ldD6JQxdBJDVpMTAxee+01xMbGwhJdBUPmKa5oS3Wxw07hjO9fIt/U40JBtZmjKoC2ZyCEwLXXXmu95BtRA8bQSQ1e8+bN8corr0Cn08EcVw5jMz8vpeLvxaUpNPE8TwpHfM9SfWho53XW00JBzlj01ahucRIGgwGDBg3CQw895FddiMIBe8/UKJx//vmYNGkSJEmCKakYptSCYFeJiMg/DJxEwSGpfA6uFo0R1S1OAGoLunbtiueeew7qs6vYEjVkDJ3UaAwZMgSPPPIIAMCYdgamxJLgVoiIiIjCh6Tya7aTUJtR3fIkhM6ErKwsvPbaa9Dr9QpWkCh0MXRSo3LNNdfgtttuAwAYmuXAFF8W5BoRERFRyPPz1BqhMqO65QmIiGokJSXhrbfeQnx8vEKVIwp9DJ3U6Nx9993WE/YlwND8JExxZTxPk4jCC6fWEtUPP0c3AUCogeoWJ2GJrEJ8fDzeffddNG3aVKEKEoUH9rSp0ZEkCY899hguueQSa/DMPAlTTKkiDQuFOamBLZZBDRMDJ1HgKdEnkFQQKqA68zgs0ZWIiYnBO++8g9atWytTR6Iwwh42NUoqlQpPPPEEhg0bZg2eWSdhjjk71Zbhk4hCFQMnUeApEDYhqSAkC6ozT8ASU4GoqCi8/fbbaN++vTJ1JAoz7FlTo6VWq/HMM89g8ODBgCRQnXniXPAEnDc6wlI/FSQissfAScHU0C6b4oinB51d9QPOPl5IFlRnHYclthwRERF488030blzZ4UqShR+GDqpUdNoNHj++ecxcOBAQCVQnXUcpji7VW056tl4cGothTIGTqLAUWgqrRw4VWZUtzgGS0wFIiMj8cYbb+C8885ToKJE4UsSgi0ZkclkwiuvvILffvsNEIDuZDo0RQl1N7Qd3VQiiDaGo8bhhKGTQhWbaQoVlgbwXrQfpfS1LXdRhlCfDZyRVYiJicFbb72FLl26+PY8RA0IQyfRWWazGe+88w5++uknAID2VBq0BYmBe0KGztDC0EmhiE00hZKGFDr9OXgsLA4fL9QmVLU8BhFRjfj4eLz99tvo0KGD789D1IAwdBLZEULgo48+wrx58wAA2rwUaE4nQ0IAAglDZ2hh6KRQxCaaQklDCJ3+chI4LToDqlscg9AZkZSUhPfeew+tWrUKQgWJQhNDJ1EtQghMmzYNM2bMAACoC+OhO5nuOHiqJN8bYYbO0MPgSaGEzTOFEn8Cp62987eMEA295shKVGcdBzRmNG3aFG+//TYyMzODXS2ikMLQSeTEokWL8P7778NisUBVGg398QxIllpHN+2Do7eNIUNn6GL4pFDBJppChRIHWH0pw9/H25fjb2h1UIY5pgzVmScAlUCHDh3wxhtvICkpyb/nIWqAGDqJXFi7di1eeOEFVFdXQ6rUI+JoJiST5twGjoKjN40ag2foYvCkUMFmmkKBEgdW/S3D3+Cr8ONNiUUwNc+DxWLBBRdcgBdeeAFRUVG+PQdRA8fQSeTGrl278MQTT6C4uBiSQQv90eZQVevPbeAsOHrSuDF0hjYGTwoFbKYpFPh7QFWJA7L1HVqdPF5AwJiWB1NKIQDgsssuw8SJE6HRaGqXQERnMXQSeeD48eN4/PHHceLECcCigu54U2hKY613uguOrho5hs7Qx+BJoYBNNQWbvwdS6+PxrspRKPQKlRnVzU/CElsOALj99ttxxx13QGJbQeQSQyeRh4qLi/Hcc89h27ZtAABtbgo0+cmQVB4su87gGf7YoaBgYlNNweZvOxbIx3tSjgKPt+gMqM46DqE3QK/X46mnnsLQoUPdl0tEDJ1E3jCZTPjoo4/wv//9DwCgLo6F7kRTSJLaswIcNXoMneGDwZOCic01BZOz0OZpGxaox3tajp+PN0eeXTBIbUFqaipeffVVXoOTyAsMnUQ++OGHH/Dee+/BbDZDqtRDf6I5VEad5wXYN34MneGFwZOChc01BVPt0OZN2+XvAdcgjrIKCJgSz8CSUQCz2YxOnTrhlVdeQUpKivvnJSIZQyeRj/766y9MmjQJRUVFgFkF3clm0JTFeleIrSFk8Aw/DJ8UDGyyKRj8CZy1H+9LexeI0OrB44XKDEPTkzDHlQEARo0ahYkTJ0Kv17t5JBHVxtBJ5Ifc3FxMnjwZO3fuBABo8pOhPZ0KCQwkjQKDJ9U3NtkUDP4eIPXn8UoGXi8eb9FXobr5cQidEVqtFhMmTMCVV17JBYOIfMTQSeQno9GITz75BPPnzwcAqMqjoD/ZDJJJG+SaUb1gB4TqG5ttCicW4d9sniAEXlN8EQzpOYBKID09HS+++CI6duzo2/MTEQCGTiLFrFy5Em+88QYqKioAkxr6k82gLo8JdrWoPjB4Un1is02Nib+h1QtCZYYhPQfm+BIAwAUXXIBnn30W8fHx9fL8RA0ZQyeRgo4dO4ZJkybh0KFDAADNmSTrdFvhwWVVKLwxeFJ9YJNNFBDmiEoYMk5A6IxQq9W44447MHbsWKg8uSwaEbnF0EmksOrqakydOhULFy4EAEhVeuhPZEBl4MIDDR6DJwUSm2sixQkImJLPwNLUujpteno6Jk2ahG7dugW7akQNCkMnUYD88ccfeO2111BcXAxYJGhz06ApSuAiQw0ZQycFCptqIsVZNEYYmp2EJboCADB8+HA8+uijiInhqTFESmPoJAqgM2fO4LXXXsPGjRsBAKqyaOhONYWKiww1XAyepDQ200SKEhAwxxfDkJYLqC2IjIzEv//9b4waNYqr0xIFCEMnUYBZLBbMnz8f//3vf2E0Gq3X9MxNg7o4nqOeDRU7LaQUNtFEirJojDA0PQVLTDkAoEuXLnjmmWfQvHnzINeMqGFj6CSqJ4cPH8arr76KPXv2AABUpTHQ5aRz1LOhYvAkf7F5JlKMgIA5rsR6KRS1BTqdDnfddRduuOEGqNXqYFePqMFj6CSqRyaTCd9++y2++uqrc6OeOelQl8Rx1LOhYegkX7FZJlKURWOEMT0H5tgyAEDHjh3x9NNPo2XLlsGtGFEjwtBJFATZ2dl49dVXsXfvXgBnz/XMSYfKqAtyzUhRDJ7kLTbJRIoREDAlFsKYehpQW6DRaHDHHXfg5ptvhkajCXb1iBoVhk6iIDGZTJgzZw5mzJgBg8FgXeE2PwWaM8kc9WxIGDzJU2yOiRRj0VfBkJ4DS1QlAKBz5854/PHH0aZNmyDXjKhxYugkCrJjx47h7bffxrZt2wBYr+upO9UU6qrIINeMFMPgSa6wGSZSjJAsMKbkw5R8BpCAqKgo3Hvvvbjqqqt47iZREDF0EoUAIQR++eUXTJ061XpdTwFoihKgzWsCycJGskFg8CRH2AQTKcYcUwpDWi6EzggAGDRoEB5++GE0adIkyDUjIoZOohBSVFSEqVOn4pdffrH+wqSG9nQqNEUJnHIb7hg6qTY2v0SKsGgNMKTlwnJ2oaCUlBQ88sgjGDx4cJBrRkQ2DJ1EIWjr1q344IMPkJ2dDeDslNucdKgro4JcM/KLr8HTtptmcG1Y2PwS+eXcVNoCQBLQaDS4/vrrMX78eERFsb0kCiUMnUQhymQyYdGiRZg2bRrKyqxHb9XFcdDmNeG1PcOZt8Gx9i6awbPhYPNL5BMBAXNsKYxpuRBaEwCgT58+ePjhh5GVlRXk2hGRIwydRCGusLAQn3/+ORYvXgwhBGBRQXsmybrKrVAFu3rkC2+Co6NdNINnw8Dml8hr5sgKGJvkyavSpqen46GHHsLAgQMhcd9IFLIYOonCxO7du/HBBx9g165dAADJqIH2dCrUxfE83zMcedI5crV7Zucq/LH5JfKYRWuAsUkezHGlAICIiAjcfPPNuOWWW6DX64NcOyJyh6GTKIxYLBasXLkS//3vf5GTkwPg7PmeeU2gLo8Jcu3Ia66Coye7ZgbP8Mbml8gtoTJbz9tMKgQkAUmScNlll+Guu+5CSkpKsKtHRB5i6CQKQwaDAf/73/8wc+ZM+XxPVVk0dKdToeL1PcOLs+Do6a6ZwTN8sfklckpIFpgSC2FMyQfUFgDW8zYfeOABtGnTJsi1IyJvMXQShbGSkhLMnDkTCxcuhNFovS6ZuiQW2tOpUBk43SgsOAqN3u6WGTzDF5tgohoExLmwqTEDAFq1aoUHH3wQffv2DXLtiMhXDJ1EDcDJkyfx5ZdfYvny5dbFhgSgLo6HNj8FKqMu2NUjd+xDo6+7ZAbP8MQmmAjA2RVp44thTMmH0FkPoqanp+POO+/EiBEjoFarg1xDIvIHQydRA3Lo0CFMmzYNq1evtv5CAJqiBGjyU3iZlVAnSf4HEAbP8MMmmBo5+fInqach9AYAQHJyMsaNG4fLL78cWi3bLqKGgKGTqAHau3cvvvjiC2zYsMH6CyFBUxTP8NkYMHiGFzbB1EgJCJjjSqwjm2fDZlxcHG699VZcc801iIiICHINiUhJDJ1EDdjff/+NL774Atu3b7f+gtNuGwcGz/DBJpgaGUfTaGNiYjBmzBjccMMNiInhSuxEDRFDJ1EjsH37dsycORObN2+2/kIA6pI4a/jkgkMNF8Nn6GMTTI2EkCwwxRfDlJIPoTUBAOLj43HDDTfgmmuuYdgkauAYOokakZ07d2LmzJlYv3699RcCUJfGQnMmGWpeaqVhYvAMbWyCqYETKjNMCUUwJRXIYTMpKQk33XQTrrzySkRFRQW5hkRUHxg6iRqhvXv3YubMmVizZo38O1VFpDV8lsVAAoNKg8LgGbrYBFMDZdEYYUoshCmxUL7OZmpqKm655RZcfvnl0Os5y4aoMWHoJGrEsrOzMXfuXPz6668wmaxHoKVqHTQFSdAUx0MSqiDXkBTD4Bma2ARTA2PRV8GYVABzfDFsxy8zMzNx0003YdSoUdDpuJ4AUWPE0ElEyM/Px//+9z8sWrQIZWVl1l+a1NAWJkJTmAjJrAluBUkZDJ6hic0whTkBAUt0OYxJBbDElMu/7969O2688Ub0798fKhUPYhI1ZgydRCSrqKjA4sWLMW/ePOTk5Fh/aZGsiw4VJkLF8z4bBobP0MJmmMKUkCzWlWgTCyEiqgEAKpUKF110EW688UZ06tQpyDUkolDB0ElEdZhMJvz+++/49ttvsXfvXvn3qopIaAoToS6J43mf4Y7BM3SwGaYwY9EarOdrJhTJ52tGRkbi8ssvx5gxY9C0adPgVpCIQg5DJxE5JYTAP//8g4ULF2LVqlXyeZ8wqaEpTISmKAEqkza4lSTfMXiGBjbDFAYEBMwxZTAlFtaYQpuRkYGrrroKo0ePRmxsbBBrSEShjKGTiDxy5swZ/PTTT/j++++Rn59v/aXtkiuFiVBVRHH0M5wxgAYHm2AKcUJtsl7yJKEIQmcEAEiShH79+uGaa65B3759eb4mEbnF0ElEXjGZTFizZg0WLlyI7du3y7+XDFpoihKgLo7n6Ge4YvCsX2x+KUTZFgYyJRTBHFsGSNb3alxcHEaPHo2rrroKzZo1C3ItiSicMHQSkc8OHjyIhQsXYvny5aioqLD+UgDqshioixJ4zc9w5G/wtDUpDLDOsdmlEGXRGK1BM6EIQmuSf9+xY0dcc801GDp0KK+vSUQ+YegkIr9VVlZi1apVWLx4Mf7++2/595JRA3VxvPXcTyOvzRZWfAmNtZsTBs+a2NxSCBKSxXquZkIRLNHl8rU1Y2JiMHLkSIwePRrt2rULbiWJKOwxdBKRoo4cOYLFixfjl19+QVFRkfx7VXkUNCVx1pVvLergVZA8501odNWUNPbwyWaWQoyAgCWiCub4YpjiSgCNWb6vZ8+euPzyyzFo0CCOahKRYhg6iSggjEYj/vjjD/z000/YuHEj5F2NRbJOvy2Oh7o8GpLgAhQhz5PQ6K4paWzBk00rhSCL1iAHTaE3yL9PTU3FpZdeissuu4znahJRQDB0ElHA5eXlYfny5Vi6dCmys7PP3WFWWUc/i+Ohqozk+Z+hzFVo9KYZaejhk00qhRihNsEUVwJzXAksUZXy7/V6PQYNGoSRI0eiT58+UKs5A4WIAoehk4jq1YEDB/Drr79i+fLl5y69Auvqt+qSOGhK4iBV6xlAQ5Wj0OhLM9LQwiebUgohQrLAHFsKU1wJLDFl8nmaKpUKvXr1wsiRIzFo0CBERUUFt6JE1GgwdBJRUJjNZmzfvh1Lly7F77//jsrKc0fgGUDDgC00+tuEhHv4ZBNKIUKozDDHlMEcVwJzdDmgOvfe7NChA0aMGIFhw4YhOTk5iLUkosaKoZOIgq6qqgrr1q3DihUrsGHDBhgM5841YgBtJOxDrNJBNFBlEgWZq6CZkZGBYcOGYcSIEWjRokUQa0lExNBJRCGmoqICf/zxB1auXOk0gKpLY6GqimAAbeiUCor2zVwgyiSqR0Jltk6djS21XuLELmhmZWXhoosuwkUXXYQ2bdpACveZBETUYDB0ElHIqqiowPr167Fy5Ur8+eefNQIoTGqoS2OhKYuBiqvgNmz+dJydNXH+dsbZdFI9smgNMMeWwhxTBktUBeyPt7Vs2VIOmq1atWLQJKKQxNBJRGHBFkBXr16NDRs2oKKi4tydFgnq8mioS2OhLouBZNYEr6IUOL50pj1p4gJVLpGPBAQskZXWqbOxpTUubwIArVu3loNmy5Ytg1NJIiIvMHQSUdgxGAzYvn071q1bh3Xr1iEvL+/cnQJQVUZarwVaFsPzQBsib0JioC7nwqaTFCZUZpijy61BM6YM0Jjl+9RqNXr06IEBAwagf//+aNq0aRBrSkTkPYZOIgprQggcOHAAa9euxbp167Bv376aG5jU1gBaHg11eTRHQRsST0Kir02cu7LZdJKfBAQsEVWwnA2alsjKGtNmY2JicOGFF2LAgAHo27cvYmJigldZIiI/MXQSUYOSm5uLP/74Axs2bMDWrVtRVVV17k4BqKoioDobQlWVkRwFbQicBUQlmrdAlk2NjlCbrCOZ0eXW1WbtRjMBIDMzUw6a3bp1g0bDg2RE1DAwdBJRg2UwGLBjxw5s2LABGzZsQHZ2ds0NzCpr+CyPhroiCpJBxxAa7uxDotLNWyDLpgZJSBZYoipgjqqAOaYMIqK6xv1RUVHo1asX+vbtiz59+qBZs2ZBqikRUWAxdBJRo5GXl4dNmzZh48aN2LRpE8rKymrcLxk1UFVEWYNoRRQko5YhlIg8JiSLdQGg6HJYoirqTJkFgA4dOsghs2vXrhzNJKJGgaGTiBolk8mE3bt3Y+vWrdi6dSt27txZ85IssF4X1D6EqkzaINWWiEKRHDKjKs6FTFXNblVaWhp69OiB3r17o0+fPkhMTAxSbYmIgoehk4gIQHV1NXbu3ImtW7di27Zt2LVrF8zmmudb2UZCVZWR1um4XBmXqFERKrN1umxkpTVkRlTVCZmpqano0aOHfGvatCmvnUlEjR5DJxGRAxUVFfjnn3/kkdD9+/fXCaEwq+QAqqqMtC5MJFTBqTARKUpAQGiNNUJm7etlAkBSUlKNkNm8eXOGTCKiWhg6iYg8UFFRgd27d+Pvv//Gjh07sHPnTlRWVtbcyLY67tkAqqqK4OJERGFCqMzWS5hEVMlTZmuvLgtYV5jt1q2bfMvMzGTIJCJyg6GTiMgHJpMJhw4dwo4dO7Bjxw78/fffyM/Pr7vh2dFQOYxWRfDcUKIgE5IFFn01LJGVcsgUOkOdRX+0Wi06dOiAbt26oWvXrujWrRsSEhKCUmcionDG0ElEpAAhBHJycrBz507s3r0be/bswd69e+ssTgScPTfUFkCr9ZCqIiCZNBwRJQoAIVkg9NU1Q2ZEVZ2ACVgX/enYsSM6deqEbt26oX379tDr9fVfaSKiBoahk4goQEwmE7Kzs7F79275dvjwYVgsFgcbq+UQqqqK4NRcIh8ItckaLm3TZPXVEPpqhwEzPj5eDpidOnVChw4dkJSUVP+VJiJqBBg6iYjqUWVlJfbt24fdu3dj//79OHDgAI4ePVp3kSIAsEjySKiqWm/93qDjqCg1ekKyQOgM1oB59iYiqiC0Jofbx8XFoW3btmjfvj06duyIjh07clVZIqJ6xNBJRBRk1dXVyM7OxoEDB7B//37s378fBw8erLtQkY1ZdS6Env2qMugAhlFqYGqHS9v3js6/tMnIyEDbtm3Rtm1btGvXDm3atEGTJk0YMImIgoihk4goBFksFpw4cQIHDhzAgQMHcPjwYRw+fBgnTpxwPD0XkMOoZNBBZdDV+MpLuVCoEhAQGhOEzmANlbav+moIrdFpuIyJiUGLFi3QqlUrOWC2bt0a0dHR9fsHEBGRWwydRERhpLq6GseOHcPhw4eRnZ0tfz158qTzMArr4kU1Qqjte6OWgZQCTkAAGhMsWmPNYHn2K1TOuyKxsbFo1aoVWrRogZYtW6JVq1Zo2bIlkpOTOXpJRBQmGDqJiBoAWxg9cuQIjh8/Lt+OHTuGkpIS1w82qaEyaq0B9GwQlX9mKCUP1AiVdjf7n10FS7VajfT0dDRv3ly+tWzZEi1btkRSUhLDJRFRmGPoJCJq4IqLi2uEUNvXU6dOoayszH0BtlBq0lhDqP1X2/cMpg2WPP3VdtMa6/7sJlQCgEqlQlpaWo1gabs1bdoUGo2mnv4iIiKqbwydRESNWGlpKXJycpCTk4NTp07h1KlTNX6uqKjwrCCzqmYYNavrfIXtZwbUoBMQgMpiDY1qs/wVtp9rBUtP1qdSqVRo0qQJ0tPTHd6aNGnCYElE1EgxdBIRkUNCCJSWluLUqVPIy8tDfn4+Tp8+jdOnT8vf5+fnex5MbWwB1ay2htGzXyWzGrCo6v7eorJ+z5V565DDo8oCqM3WwOjs+7PhEravXrycKpUKSUlJSElJQWpqKlJSUuSbLVSmpqYyVBIRkUMMnURE5JeKigo5jJ4+fRqFhYUoKChAUVERCgsL5a+FhYWOr0fqKbPKGkDP3iT7r0KyBlX7r2d/DyFBEpL1cfY/n/2d/L2N7Xu737kLvAJ2TalU63tJQJz9CulsSLT7uc59KkvNr85+fzZQ+pPFo6OjkZCQgMTERCQmJiIhIQEJCQk1QmVqaioSExOhVqt9fyIiImrUGDqJiKheCCFQVlYmB9DCwkIUFxejtLQUpaWlKCkpkb+3v3k9khqQytu+2iU8W7gMgQFYjUaD2NhY+RYTE1Pja2xsbI1Qaftep9MFu+pERNQIMHQSEVFIM5lMKCsrQ2lpKSorK1FZWYmKigq33xsMBhgMBhiNxjrf2//OYDAE/G/QaDTQarXQ6XTQ6XTQarXyz7bvtVotIiIiEBkZ6fHNFigjIiK4wisREYUshk4iImrUhBCwWCxe3VQqVY2bJEnyV7VaXeNnjUYDlYqLJxERUePF0ElEREREREQBw0OvREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDCaYFeAiCgQhBCoqqoKdjWIiLwSEREBSZKCXQ0iIkUxdBJRg1RVVYVRo0YFuxpERF5ZunQpIiMjg10NIiJFcXotERERERERBQxHOomowdNtbAJJqABJBUl1dtqapAJUEiBJkFQqQJKsv/v/9u4+Kqo6/wP4+zKiIKCQeRQCH0NyS8VAzXTIp5BI08WHtXWPuWy/dI9GnfQcO2yGZaWbR6Wtc9pyV11TytT1oRbDzKdaUaEUSYQQFRWE5UFAkHGcmfv7Y+Ze7jwzA+OIvV/ndLxzv9/v537nI9J85j58AeO2jwBB0Ue539hXaHkttSn7CwIAU5tpnygIxq/6BPOYlvtFqc1HajeFEgSI8leF0n4BEGA2RpT3KcbDFMNHMMVqaQcgH0MeI/UHjMe0jCe1mY2D2bHM52FnjOJ1yzjTn3AwzsbxrOZhI6YZh2NE6+OYHUu0eK8t46AYB0GUDycKLe2Csk2OLbWJ8rEEi/6CIJr9OErHEEx9BVNM44+UKO8z/qiKckxjm3GfIIjmbYIIAeb7fUzbPqaxxm2Yt8ljDC3jIPU3QCW0bMvj0NJfapfaVJD2GxT7DcZYUkxFPLm/6U8fGMca52E8vrHNAJXptTH9BqhM+6QxKtPfmQ9MfU3vTdpumaNomgNa9gOm1wJ8AKgEAT6mv1DjPsG0zwcCBKgEH2huC5jxf71BRHS/YtFJRPc/vWD8+CcYP+QBMBWYpqITpqLTR6rojFWEYKzgYF69mMbZrHp8zCsiQdlmVbU42FZWR5bt0qZUPCr+lLsLilCCRXjBvAg0G2djPGAqfu20CTb+szkPJ2NcSVUbY7auUG3HolN5XLN220WncoxVfxttghxHtIgpmo9R9jM7lmjepig6W4pYRQFrr01RjJoVnYp9PjAvVqWCraXolApSU4EmSEWbkUoQ4CMIUAFmfwKK/hBMsQCVdCzTtkqObadN3m6Zv0qeZ0uRqZy/raLTMp48f7N90hxbvpggIrpf8fJaIiIiIiIi8hgWnUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJREREREREHsOik4iIiIiIiDyG63QS0f1PJUIUDcZ1CaVFAqVtwbSIntl6loLFOpiCYr+oaHfSZrFQpGhn8UnL/S2vpXYb26K0bewrjxFbtkWr8VAsKNkS05pgHCxYdLNce9Nsv9XbQqvW6YSbbY5iOjme/LYcjrFcb9Mynmgd3+Y4RfYV4wQH63QKitiCRX/jmphSm8UxLNfphPvrdIqmsaJpv2jaFk1tomKdUuV+gyACgkHxvqVjGUzrepraFfMQBYPxONJxTTFhOo7lfh/Ta+WfxiO17DOY/lkbFGtxGgTAAOM/e4OiTYCtdToF0zjBuO6nKd/SNqBY71OxLR1LXmcU0jqjxnjGfYK8TzBta27b+ndIRHT/YNFJRPc97cj/eXsKnmH6DO8uy5qSSCL9aBm8PRG3SRU5L+giIroX8LcxEREREREReYwgimIbvicnIro3iaIIjUbj9niNRoNp06YBAPbu3Qs/P7/2mho5wdx7D3PvfX5+fhAEXntARPcXXl5LRPclQRDg7+/fLrH8/PzaLRa5hrn3HuaeiIjaCy+vJSIiIiIiIo9h0UlEREREREQew6KTiIiIiIiIPIZFJxEREREREXkMn15LREREREREHsMznUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJREREREREHsOik4iIiIiIiDyGRScRERERERF5DItOIiIiIiIi8phO3p4AEdGtW7fwxRdf4OjRo6ioqICPjw8iIiIwYcIEzJgxA76+vm7Hrq2tRUZGBrKzs1FZWYkuXbqgf//+SEhIwLPPPgtBEByOLysrQ0ZGBnJyclBbWwt/f38MGjQIU6dOxbhx45wev6ioCF9++SXOnDmDuro6BAUF4dFHH0VSUhJiYmKcjv/pp5+wa9cunDt3Djdv3kRwcDCio6Mxe/ZsREVFtTYNdjH31kpLS/Hzzz+jqKgIxcXFuHDhAm7fvg0AOHbsmEs5cIS5NyeKIs6dO4fs7Gzk5+ejtLQUDQ0N8PPzw0MPPYQRI0YgKSkJPXv2dCclRETkRYIoiqK3J0FEv14VFRVISUlBRUUFAMDPzw8GgwFarRYAEBkZifT0dAQFBbkcu6ioCEuXLkV9fT0AwN/fH1qtFnq9HgAwcuRIrFq1yu6H++zsbKSlpUGj0QAAAgIC0NzcDIPBAABITEzEsmXL7H6A//rrr7F27Vr5eIGBgWhqaoL0a3f+/PlITk62O/+NGzdi8+bNAABBEBAQEIDGxkYAgEqlwpIlSzBlyhRXUmKGubed+5SUFJw5c8ZmW3sVncy9de63bNmCf/zjH/Jr6WdeOTYgIAB/+ctfMHbsWJfzQkRE3sPLa4nIa3Q6HV5//XVUVFSgR48eWLduHQ4cOIADBw4gLS0NXbt2RXFxMVauXOly7MbGRixbtgz19fXo06cPPv30U2RlZeHAgQN49dVX0alTJ5w6dQoffvihzfHl5eVYsWIFNBoNhgwZgm3btmH//v3IzMzE/PnzAQCZmZn4/PPPbY7/+eef5Q/earUaO3fuRGZmJvbt24fnnnsOALB582YcOnTI5vhDhw7JBedzzz2Hffv2ITMzEzt37oRarYZer8fatWvx888/u5wbgLl3lHuVSoV+/fohPj4eixcvxuzZs13OgSPMve3c63Q6BAQEYNq0aUhPT8eBAweQmZmJAwcOYOXKlejVqxeampqQlpaGy5cvu5wbIiLyIpGIyEu++uorUa1Wi2q1WszPz7dq//bbb+X23Nxcl2Jv2LBBVKvV4qRJk8SysjKr9s8++0xUq9XiuHHjxCtXrli1r1y5UlSr1eK0adPEhoYGq/b3339fVKvVYkJCgs32RYsWiWq1WnzhhRfEO3fuWLUvWbJEVKvV4qxZs0SdTmfWptPpxFmzZolqtVpcunSp1VitVivOmzdPVKvV4qJFixzmwR7m3nbuRVG02peZmSnnoj0w97Zz/8svv9iMKSkrKxMnTZokqtVqcfXq1Xb7ERHRvYdnOonIa7755hsAwPDhw/HYY49ZtU+cOBGhoaFmfVsrKytLjhEWFmbVnpSUBH9/f+j1enz77bdmbc3NzTh69CgAYPr06TYvcfzDH/4AAGhqasL3339v1lZeXo6zZ88CAObMmYNOnaxvn5fGV1RUIC8vz6ztzJkz8mWXc+fOtRrr6+uLOXPmAADOnj2L8vJyqz7OMPe2cw8Yz3R6EnNvO/eRkZEOLycOCwvD8OHDAQCFhYV2+xER0b2HRScReYVGo5EvDX3iiSds9hEEAaNGjQIA5OTktDr2lStXUFlZCQDyeEtdu3bF0KFDbcbOz8+XHxxjb3xoaCj69u1rc7zytb3xQ4YMQdeuXW2Oz83Nlec4ZMgQm+OVOXMlNwBz7yj3nsbcty33nTt3BgD5/lIiIuoYWHQSkVeUlpbKHxz79+9vt5/UVltbi4aGhlbFvnjxotV4WwYMGAAAVveHKcdLfRyNv3Tpktl+6XVISAhCQkJsjlWpVOjTp4/D8X379rV71i0kJATBwcE25+8Mc28/957G3Lufe51OJxfsjuZHRET3HhadROQV1dXV8rajJRAefPBBm2McqampcSl2U1MTbt26ZXWcoKAgdOnSxel45fGU45Vzt0WaW1vHtzYvlvGVMWz5Nebe05h793O/fft21NbWAkCbntpMRER3H4tOIvIK5YddRx9w/fz8bI7xZOzm5mardkfjLeclvXY2Xppbe493hrl3P3dtxdy7l/uzZ89i48aNAIBJkya1ao1bIiK6d7DoJCIiontWaWkp3njjDdy5cwf9+/fH0qVLvT0lIiJyEYtOIvIK6WEiAOSHl9giLVBvOcaTsf39/a3aHY23nJf02tl4aW7tPd4Z5t793LUVc+9a7q9evYpXX30VdXV16NOnD9atW3fX/86IiKjtWHQSkVco7/uqqqqy2095P5uze8UkPXr0cCl2QECA2QdZ6Tg3b950+OFdGq88nnK8s3vxpLm1dXxr82IZXxnDll9j7j2NuW997q9evYpXXnkFNTU1iIiIQHp6+l3/+yIiovbBopOIvKJv377w8TH+CnL0FEup7YEHHkC3bt1aFVv5ZEtHsaWndfbr18/ueOUTPe2Nt3xSqPT6xo0bqKurszlWr9fjypUrDseXlpZCr9fbHK+MbTl/Z5h7+7n3NOa+dbmXCs7q6mqEh4fjgw8+cPnLFSIiunew6CQir/Dz88Njjz0GADh58qTNPqIo4tSpUwCAESNGtDp2REQEevXq5TB2c3OzvJC9ZewhQ4bIDzuRjm+poqICpaWlNscrX9s7fn5+vvwgFcvxsbGxAIwPWpGWiLCkjOtKbgDm3lHuPY25d577q1evIiUlBdXV1YiIiMDf/vY3FpxERB0ci04i8pqEhAQAwOnTp1FQUGDVfvjwYZSXl5v1bQ1BEDB58mQAwKFDh3D9+nWrPrt370ZzczNUKhWefvppszZ/f3889dRTAIA9e/agsbHRanxGRgYA431parXarC0sLAxDhw4FYFzmQafTWY3ftm0bAKB3794YNmyYWVt0dDR69+5t1k9Jp9Nh+/btAIChQ4ciLCzMqo8zzL3t3N8NzL393EsFp3RJLc9wEhHdH1h0EpHXJCQkYMCAARBFEcuXL8ePP/4IADAYDDh8+DDWrFkDABg1apTVEgkbN25EXFwc4uLibH64njNnDh544AFoNBosW7YMRUVFAIA7d+5gz549+Oc//wkAmDp1KiIiIqzGJycnw9/fHzU1NXj99ddx9epVAMYzRZs3b8bevXsBAPPmzUNQUJDV+AULFkClUuHChQtYsWKFfB9bQ0MD1q1bJ58JWrhwIVQqldlYlUqFhQsXAgBOnDiBdevWoaGhAYDxfrgVK1agpKTErJ+rmHvbuQcArVaLuro6+T/l0h7K/XV1dTAYDI7SbBNzbzv3165dk+/h7NOnDwtOIqL7iCCKoujtSRDRr9f169fxyiuvoKKiAoDx8kODwQCtVgsAiIyMRHp6utUH3I0bN2Lz5s0AjGdVQkNDrWIXFRVh6dKlqK+vB2A8O6PVauUzMCNGjMCqVavQuXNnm3PLzs5GWlqa/DTOwMBANDc3y/dZJiYmYtmyZRAEweb4r7/+GmvXrpX7BwYGoqmpCdKv3fnz5yM5OdlubpTvURAEBAQEyGefVCoVlixZgilTptgd7wxzbzv3+/fvx6pVq2y2WbL3/p1h7q1zv3r1amRmZgIwPuTI0VqjgPFsLBERdQydvD0BIvp1Cw0NxebNm/HFF1/g6NGjqKioQKdOndC/f39MnDgRM2bMgK+vr1uxo6Ki8K9//QsZGRk4fvw4/ve//8HPzw8DBgxAQkICEhMT5Ye62DJ69Ghs2rQJGRkZyMnJQW1tLQIDAxEZGYnnnnsO48aNc3j8KVOmIDIyEtu3b0deXh7q6uoQEhKCRx99FElJSU4XuE9OTsawYcPw73//G+fOncPNmzfRs2dPDBs2DL/73e8QFRXlTlpkzL33MPfWlGeNm5qa0NTU5Nb7JyKiew/PdBIREREREZHH8J5OIiIiIiIi8hgWnUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJREREREREHsOik4iIiIiIiDyGRScRERERERF5DItOIiIiIiIi8hgWnUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJRERe98EHHyAuLg4vv/yyt6dCXtbY2Ihnn30WcXFxOHbsmLenQ0RE7aCTtydARETua2pqQnFxMQoLC1FUVISioiKUlZVBFEUAwPbt2xEaGuqRY4uiiJkzZ6Kqqgpz587FggUL3IpTXFyMPXv2AABeeumldpyhd128eBGnTp1Cfn4+Ll68iJqaGuj1egQFBWHgwIEYPXo0EhISEBgY6O2p3lMCAwMxZ84cbNiwAR9++CFGjRqFLl26eHtaRETUBiw6iYg6sJSUFBQXF3vl2IWFhaiqqgIAqNVqt+N8/PHH0Ov1GDVqFIYMGdJe0/OqlJQUnDlzxmZbbW0tamtrkZOTg61btyI1NRUjR468uxO8x82cORM7duxAZWUldu7ciblz53p7SkRE1Aa8vJaIqAOTzmgCxjNEw4cPxwMPPHBXjv39998DAHr27InBgwe7FePs2bPIzc0FgPuqsJCK8aCgICQmJiI1NRUfffQRNmzYgLfffhujR48GYCxAU1NTkZeX583p3nP8/f0xY8YMAEBGRgZu3brl5RkREVFb8EwnEVEHlpiYiODgYERFRSE8PByCICAlJQW1tbUeP7ZUdI4ZMwaCILgV4/PPPwcAhIaGYtiwYe02N28LDw/HvHnzMHHiRHTu3NmsLSoqCuPGjcO2bdvwySefQKvVYu3atdiyZYuXZntvio+Px8aNG3Hz5k385z//waxZs7w9JSIichPPdBIRdWAzZ87EpEmTEBER4Xbh546rV6+itLQUgPuX1lZVVSE7OxsAMHny5Ls6f09bs2YNnnnmGauCU2nu3LmIjIwEAFy+fBklJSV3a3odQmhoKIYOHQoA2Ldvn5dnQ0REbcEznURE5DLpqaLSJb3uOHjwIAwGAwBgwoQJrRqj0+lw6NAh/PDDDygsLERdXR30ej2Cg4MxYMAAxMbGYtKkSejRo4fZuLi4OABAQkICUlNTceXKFezcuRM5OTmorq5GQEAABg0ahN///veIjo6Wx92+fRv79+9HVlYWrl27Bo1Gg7CwMDz99NOYNWtWmx9w8/jjj8v35F69ehUDBw50O9bly5exd+9e5OXl4fr169BoNAgMDERQUBBCQ0MRExODsWPHok+fPm7F1+l0OHDgAA4fPoyLFy+ivr4egiCgW7duCA4OxuDBgxEbG4sxY8bA19fXbKxl/i9fvozdu3cjNzcX1dXVaG5uxrvvvmv1BcaECROQl5eH0tJSFBYW4pFHHnEvOURE5FUsOomIyGXSpbWjR49Gp07u/a/k+PHjAIz3Pfbt29dp/wsXLuDNN9/EtWvXrNqqqqpQVVWFkydPoqSkBKmpqXbjHDlyBO+99x40Go287/bt2zhx4gROnjyJpUuXYurUqaiurkZqaioKCwvNxl+6dAmffvopTpw4gbVr17ap8NTpdPK2j4/7Fx/t3bsX6enp0Ov1Zvvr6+tRX1+Pa9euIScnByUlJVi+fLnL8evq6rBkyRKbD62Scl9cXIx9+/YhIyMD4eHhdmPt378fa9euhVardXpc5YOljh8/zqKTiKiDYtFJREQuqa6uxvnz5wG4f2mtVqvFuXPnAACDBw92emltcXExFi9ejObmZgDA8OHDER8fj759+8LX1xc1NTUoKChwuq5jSUkJDh06hJCQELz00kvysX/88Ud89tln0Gg0WL9+PaKjo/HOO+/gwoULmD59OsaOHYvg4GCUlZVhy5YtKCkpwdmzZ5GRkYE//vGPbuUAAH766Sd5u3///m7FuHjxolxwduvWDVOnTkV0dDSCg4Oh1+tRU1ODoqIinDhxwu1LmNPT0+WCMyYmBvHx8QgNDUVAQACamppQWlqKvLw8+XJpe4qKinDw4EF069YNs2bNwpAhQ+Dr64vLly+jd+/eVv379+8Pf39/NDc346effkJycrJb8yciIu9i0UlERC754YcfIIoiOnfujFGjRrkVo6SkRD7LFxUV5bCvTqfDm2++KRecr7zyivxkU6Unn3wSL774IiorK+3GKi4uRmRkJNLT0xEUFCTv/81vfoPw8HCkpaVBp9Nh8eLFaGhowJo1axAbGyv3GzRoEEaMGIF58+ahuroae/bswbx586BSqVx6/4DxEuVLly4BMBbeERERLscAgMOHD8tnONevXy/fJ6qkVqvx4osvor6+3uX4t2/flot5tVqNd955x6p4jY6OxrRp09Dc3OzwjO2lS5cQHh6Ojz76yOwpy/aefqxSqTBo0CDk5eXhl19+gcFgaNMZYSIi8g7+5iYiIpdIl9bGxsbC39/frRjKS2SdLfFy8OBBlJWVATA+rddWwanUq1cvh+2vv/66WcEpGTduHHr27AkAuHHjBpKSkswKTklgYCCeeeYZud/ly5cdHs+W6upqrFu3DgAgCAL+/Oc/uxxDIj2pODAw0GbBqdS9e3eX49+8eVP+giA6Otrh2VJ/f3+nlxu/9tprLi3rI/XVaDSorq5u9TgiIrp3sOgkIqJWa2xsxOnTpwG4f2ktANTU1Mjb3bp1c9hXKnIB4Pnnn3f7mIDxck17hZkgCGZt8fHxduMo+5WXl7s0B41Gg9TUVLlYtHx4kaukQrmxsRGHDx92O4493bt3l5/C+91337VpzcyePXvaLOQdUf58KH9uiIio42DRSURErZadnQ2dTgeVSoUxY8a4Hef27dvytq2zjkq//PILAOMZr9Y8cMgRZ+OVc3H0lFdlP1eKsDt37uCNN96QH040duxYvPjii60eb0t8fLx8djEtLQ2LFi3Ctm3bcPbsWfmS5Lbw9fVFQkICAKCgoACzZ8/GmjVr8N1337lccLvzdF5l0al8+BMREXUcvKeTiIhaTTrr+NhjjyE4ONjtOMp7IJ09xbSurg5Ayxm9tvDz83PYrrx01NGlw8r7CqVlX5zR6XRYvnw5Tp06BQAYOXIkVqxY4db9oEphYWFYvXo13nvvPVRVVSE/Px/5+fkAjHl+5JFHEBcXhylTpjgt8O15+eWXodVqkZWVhYaGBnz11Vf46quvABi/DBg5ciQSExOdnrF1dlbbFuUXFO4+KZmIiLyLZzqJiKhVtFotTp48CaBtl9YCxvsPJQ0NDW2K1RHodDqkpaXJy8TExsbi3XfflS9bbauYmBh8/vnneOutt5CYmCgvWaLX63Hu3Dl8/PHHeP755+WC11VdunRBamoqtm7dij/96U94/PHH5aK8trYW33zzDVJSUvDGG2+YFYmW3HkIkPLhR8qfGyIi6jj4lSEREbVKbm6ufLlmW4tO5fIYzorO4OBgVFZWdtiHyEgFp3SW+PHHH8eqVavatL6nLZ07d8b48eMxfvx4AMYzxD/++COysrJw4sQJNDQ0YPny5cjIyECPHj3cOkZERAReeOEFvPDCC9Dr9SguLsbx48exd+9e3LhxA8eOHcOGDRuwePHidntfN2/elLedPSSKiIjuTTzTSURErSIVTZGRkQgNDW1TLOWalFeuXHHYV1pSpaamxmnfe41lwTl8+HCsXr263QtOW4KDgzFx4kS8//77mD59OgCgubkZP/zwQ7vEly7dTU5Oxt///nf50uWDBw+2S3xJaWkpACA0NBRdu3Zt19hERHR3sOgkIiKnDAYD/vvf/wIwPvymrXr16oUHH3wQAHD+/HmHfePi4uTtjIyMNh/7btHpdFixYoVccEZHR+Ovf/2r0/tKPWHkyJHytnSPbHsKDQ2V1xl1Zy1Qe+rq6uTlch599NF2i0tERHcXi04iInIqPz9fLlaURWBbSIVQaWkpmpqa7PabMGGCXNBkZmZi165dDuNWVla2y/zaQqfT4e2338axY8cAeLbgPHr0qNNCUroXFwAeeughl+KXl5cjNzfXYZ/r16/LZyTDwsJciu9IQUGBvP3EE0+0W1wiIrq7eE8nEVEHdu3aNflJpRJp/UcAOHLkiNlTZv39/TFu3DiXjyOdrQsLC3Nr2Qtbxo8fj8zMTBgMBuTm5uKpp56y2a9Tp0546623sGjRIjQ3N+ODDz7AsWPHMHnyZPTt2xe+vr6oqalBYWEhjhw5gqioKKSmprbLHN21cuVKHDlyBICxyFu4cCGuX7/ucExISAhCQkJcPtauXbuwcuVKxMTEICYmBv369UP37t1x584dVFZW4uDBg/JZ6t69e7u81E1lZSVee+01hIWFYcyYMRg8eDB69eqFLl26oL6+HgUFBdizZ4/8FOIZM2a4/B7sycnJAWC8X3X06NHtFpeIiO4uFp1ERB1Yfn4+Vq1aZbf9448/Nnvdu3fvNhWd7XFprSQ2NhY9e/ZEVVUVsrKy7BadAPDwww/jww8/xJtvvony8nKcPn0ap0+fttlXugfUmw4fPixvl5WVYeHChU7HzJ8/H8nJyW4dT6vVIjs7G9nZ2Xb7PPTQQ1i1apXDpWAcKS8vx44dO+y2+/j44Pnnn8dvf/tbt+Jb0ul0+O677wAYz667u9wLERF5H4tOIiJy6MKFC/JZurY+tVZJpVIhKSkJn3zyCU6cOIG6ujqHa38OGjQIW7duRVZWFr7//nsUFxfL9w+GhIRg4MCBGDFiBCZNmtRuc+wI0tLScOrUKeTl5eHixYuora2VL7ft3r07Hn74YajVasTHx7u1RMvQoUPx0UcfITc3FwUFBaisrMSNGzfQ1NQEPz8/hIWFYejQoZgyZUq7nQUHIP9MAMDMmTPbLS4REd19giiKorcnQURE965NmzZh06ZNCAkJwe7du91aa9GexsZGzJkzBw0NDViwYAHmzp3bbrGpY1u2bBmys7MRExOD9evXe3s6RETUBnyQEBEROSRdWvvkk0+2a8EJAIGBgXKh+cUXX+DWrVvtGp86poKCAmRnZ0MQBLz00kveng4REbURi04iIrLrzp07UKvVmD9/PpKSkjxyjBkzZiA8PBz19fX48ssvPXIM6lg2bNgAAJg8eTIGDx7s5dkQEVFb8fJaIiLyuvPnzyM7OxuBgYGYPXu2t6dDXtTY2IgdO3ZAFEUkJSU5vM+XiIg6BhadRERERERE5DG8vJaIiIiIiIg8hkUnEREREREReQyLTiIiIiIiIvIYFp1ERERERETkMSw6iYiIiIiIyGNYdBIREREREZHHsOgkIiIiIiIij2HRSURERERERB7DopOIiIiIiIg8hkUnEREREREReQyLTiIiIiIiIvIYFp1ERERERETkMSw6iYiIiIiIyGNYdBIREREREZHHsOgkIiIiIiIij/l/ouIi+WzjC+0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC1t0lEQVR4nOzdd3gU1cIG8Hdmd9M7CQmE3qsIijQpAmJBRcVrp4j1ei9XxfLhtaJe7GL32gH1IjawINJBUHrvnYTekpCeLXO+PzY7bpLtO5udbN7f8+QhZGfOnJ1k55x3zpkZSQghQERERERERBQCcrgrQERERERERJGLoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhCRpPQeejQIUiSBEmSMHbsWC2KrJcGDRqk7kciInfGjh2rHisOHToU7uqopk6dqtZr6tSp4a4OaUxRFFxwwQWQJAnjx48Pd3UohJYuXap+lp999tlwV4dIFyI579hsNrRv3x6SJOHxxx8PyTZqbaRz6tSpePbZZ+vVwWv27Nnqey4oKAh3daiS1WrFwoULMXHiRAwePBiNGjVCdHQ0EhIS0Lp1a9x8882YPXs2bDabX+Vu27YN48ePR4cOHZCQkIDk5GR07doVEydORE5OTojeDRHVJy1atFA7Pd6+Bg0apOm2P/roI2zYsAExMTEeOyWHDh3C999/j8cffxzDhg1DgwYNgq6TlsfXnJwcTJw4EV27dkVycjISEhLQoUMHjB8/Htu3b/errNOnT+P555/HBRdcgLS0NMTFxaF169YYN24cVq1a5VdZvqovbc3VV1+t/t18+umnfq+fm5sLg8EASZKQlpaG8vJyv8s4e/Ys5s+fj8mTJ2PkyJFo3rx5lc+Yr5zDii9fvvSVhRCYM2cObr31VrRt2xYJCQkwmUxIT09H37598e9//xv79+/3+z075OfnIysrq0q9tDzJWVpaio8//hjDhw9HkyZNEBMTg5iYGDRu3BjDhg3DW2+95XPfuby8HB988AEuv/xyZGVlITo6GhkZGejVqxcmT56Ms2fPalbvcBs/frz6+3jqqaf8Xr+0tBTJycmQJAlGoxHHjh0DABgMBjz55JMAgDfeeAP79u3TtN4AAKGBgwcPCgACgBgzZozLZQYOHKguU1+MGTNGfc8HDx70unx93Ee1bfHixSItLU3dz56+evbsKfbt2+dTua+++qowmUxuy0pMTBQzZswI8buj+sLfY0tt+fzzz9V6ff755+GuTkRq3ry5T8cvAGLgwIGabbekpERkZWUJAOJf//qX2+Xefvttzeuk5fH1yy+/FAkJCW7LioqKEm+88YZPZS1YsEA0bNjQbVmSJIlHHnnE7/frSW21NUuWLFHLfOaZZ4KveAC+//57tQ4XX3yx3+s/99xz6vr333+/3+tv2bLF62fMV879ZF++vO3z06dPi0GDBnktJyoqSrz88st+v3chhBg7dmyN8rRqb9auXStatmzptf4NGzYU8+bN81jWunXrRIsWLbyW89tvvwVdb1/yTqitX79erUOzZs2Eoih+rT99+nR1/SuvvLLKa1arVbRr104AEDfffLOW1RZCCGGEBlq0aAEhhBZF1WtLly4NdxUi3tGjR5GXlwcASEtLw9ChQ9G7d280atQIFosFa9aswfTp01FYWIi1a9fikksuwZo1a5CVleW2zP/+97949NFHAQAmkwmjRo3CwIEDYbFYMG/ePHz33XcoKirCqFGjkJKSgssvv7xW3itFrqlTp3L6aj2XkZGBjz76yOMy6enpmm3v/fffx4kTJ2AwGPDYY4+5Xa76DJHY2Fi0bdsWW7ZsCWi7Wh5f58yZgzFjxsBms0GSJNxwww247LLLYDKZsGzZMnzxxRcwm82YMGECEhMTcdddd7kta/369RgxYgRKS0sBAJdeeilGjhyJhIQErFmzBp9++ilKSkrw2muvITo6Gi+88EJA7z9U+6IuuPrqq5Geno4zZ85gxYoV2L9/P1q3bu3z+tOmTVO/v+OOO/zefvW/ZYPBgA4dOuDAgQMoKyvzuzyHSy65BP/61788LtOhQwe3r1mtVlxxxRVYt24dACAmJgajR49Gt27dkJqaisOHD+Pnn3/GihUrYDab8X//939ISEjA/fff73MdFyxYgKlTp0KWZURFRQU0SuxOTk4Ohg4dinPnzgEAsrKyMHbsWLRt2xZGoxEHDhzA9OnTcfDgQZw6dQpXX301Vq9ejfPPP79GWdu3b8fgwYNRWFgIAOjcuTNGjRqFli1boqCgAHPnzsWPP/6IU6dO4brrrsPChQvRt29fzd5LOPTo0QPnnXcetmzZgtzcXCxevBhDhgzxeX3nvkP1z4Xj+H7XXXfhm2++wVNPPYVOnTppVfXaG1Krj6N4eh2NqM+++OIL0bVrV/G///1PlJeXu1zmyJEjonPnzurvbvTo0W7LO3bsmIiLixMAhNFoFAsWLKixjPPoT9OmTUVZWZlm74dITzjSGXqOkc7mzZvX2jYtFoto2rSpACCGDRvmcdlZs2aJf/zjH+Kzzz4TmzdvFlartcrogD8jnVoeX0tKSkTjxo3VZadOnVpjmfnz5wuj0SgAiISEBHHixAmXZSmKInr06KGW9eyzz9ZYZtOmTSIpKUkAELIsiy1btvj8vl2p7bZGDyOdQgjxwAMPqPV46qmnfF7v999/V9fr0qVLQNvet2+fGD16tHjrrbfEH3/8IUpKSoQQVWcb+ErLETLnkaqmTZuKQ4cOuVzuo48+UpdLT08XFovFp/JLSkrUUcjx48dXeb9a9GXHjRunlnfZZZeJ0tLSGstYLBYxevRodbkRI0a4LKtXr17qMrfffrvL9/jdd98JWZYFANG+fXuf94MrehjpFEKIKVOmqPUYNWqUz+vl5OQISZIEANGgQQNRUVFRY5lz586JmJgYAUDcfffdWlZbMHSGEEOn/uTn5/s0FWHr1q3q7y42NlZtbKp78MEH1eUeffRRt+X97W9/U5d79913A64/kZ4xdIZeOELnrFmz1N/r9OnT/V4/0NCp5fH1zTffVJf529/+5rasRx99VF3O3dTY2bNnq8v06tXLbZvy3nvvqcvdcMMNHt6pd7Xd1ugldG7atEmtR/PmzX2eSugcbF5//XVN6xTu0HnbbbepZb333nsel73gggvUZX098fHQQw8JACI7O1sUFhZqHjqzs7PV8rZv3+52ufz8fPUkUFpaWo3XV61apZaTnZ3t8STL/fffry77ySefBFx3vYTOU6dOqdPs4+PjRVFRkU/rOU85Hz9+vNvlHMeR2NhYUVhYqFW1tQmdnn4JzmHT05e7g5rNZhMzZ84UN954o2jRooWIjY0VCQkJon379uK+++7z+iF65pln1G0sWbJECCHEwoULxc033yxatGghoqOja3yQLBaL+O2338SECRNEv379REZGhjCZTCIhIUG0bdtWjBkzRixbtsztNp3DpqcvT/vKm1WrVom7775btGvXTiQkJIi4uDjRqlUrMXr0aLFo0SKv61fvABQXF4tXX31VXHDBBSIlJUXExcWJTp06iYkTJ4q8vDyv5UWiDh06qPtp8+bNNV5XFEU9eEqSJHJzc92WtXz5crWs/v37h7LaNfz555/ivvvuEx07dhTJyckiOjpaNG3aVNx4443il19+8biuq45HTk6OmDBhgmjfvr2Ii4sTycnJok+fPuK9997z+QxiUVGRmDJlihg6dKho1KiRiIqKEqmpqeLCCy8UTz31lDh16pTH9at/VqxWq/j888/F0KFDRePGjYXBYHDZKT9x4oR49NFHRceOHUVcXJxITU0VPXv2FK+99lqNs9jV1587d65PB2tn48ePV9f59ddffVrHF95OaIXq9/bzzz+Lq666SmRmZoro6GjRvHlzceutt4o///xTCOFf6KyoqBCffPKJuPrqq0WTJk1EdHS0SE5OFl27dhUTJkxw27nZtWuXOuKTlJQkDhw44HYbeXl56gidLMsej9t1RThC5/XXX692QHzt3DgLJHRqfXzt06ePusyKFSvclpWbm6uOBDRr1szlMrfccota1pdffum2rJKSEnW0MzY2VhQXF7td1pNwtDW+hs59+/aJVq1aqXVzdz3s3LlzxZgxY0SbNm1EQkKCiI2NFa1atRJjxowRy5cv91iX7t27q3XxpX9TUlIiEhMTBWAfFT558qTXdfwR7tB56aWXqmXNnz/f47LOf6srV670Wvbq1avVUcEffvhBCCE0D53O1ySbzWaPyzZq1EgAENHR0TVemzx5slrOgw8+6LEc54A6ePDggOvu6+/x1KlT4sILL1SXfeihh1yeMAmmf3bdddep5X/66ac+1b9169bqOhs2bHC7nPOJtc8++8ynsn2h69C5b98+cf7553tcT5Zlj1MunEPn4sWLxT/+8Q+X5Th/kHy5ONvxXl0NTYcydFosFnH33Xd7LfvGG290OWXBwbkDsH//ftGpUye3ZTVv3rxejtT27NlT3QerVq2q8brzaKi36Ts2m63KVCstzxy5U1xcLG666SavfyvDhw93W5/qHY+5c+eKlJQUt2VdeumlbqctO/z6668eb74B2G+G8eOPP7otw/mzcvbsWXHxxRe7/Lt1tnjxYpGamup2m127dhW5ubluO/U2m02dcpSamup16lpZWZm6vWbNmgmbzeZxeX/4GzqD/b1ZrVaPxzVZlsXLL7/sc+j05SYSUVFR4r///a/L9Z2njfXp00dYrVaXy91www3qck888YTHfVpX1HboLC8vV0P+gAEDAiojkNCp5fH13LlzapBMTk72+ll0vrzC1UhMgwYN1NdPnz7tsazhw4ery86ZM8fjsu6Eo63xJXRu2LBBZGZmCsAe7r744osay5w6dUoMHjzYazt05513ug0gzjen8nS5i4Pz9FN30zKDEe7Qefvtt6tleRvpdAQfg8Egzp4963FZs9ksunbtWmO/aR06mzRp4vHz5eA80nn++efXeN159PKDDz7wuM28vDx1WYPB4Hb2mje+/B4PHjyo3owHgHjxxRdrLKNF/+ynn35Sl/Pl2Ow85bxbt24ely0oKFCPmVp+hkIeOpcvXy5mzZpV5SA+a9asGl87d+6sst6+fftEenq6us7FF18sXnrpJTFjxgzx5ZdfioceeqhKB9LdQdE5dF5xxRUCgMjKyhITJ04UX375pZg6daq4//77xbFjx9R1evXqJRISEsSIESPEc889J6ZPny6++eYb8dZbb4l77rlHxMfHq2U+8MADNba5fv16MWvWLHHJJZeoy3344Yc13vP69eurrOdL6Lz55pvVZWJiYsS9994rpk2bJr788kvx4IMPqmf3APtceXdTURzLdO/eXXTo0EFIkiRGjBghPvjgAzFz5kzx4osvimbNmqnL1fboXLhVVFRU6aQfP368xjIzZszwqxFx/v2uXr06BLX+S3l5uejdu7e6vdatW4t///vf4osvvhBff/21eOGFF6ocFAcPHuyyI+bc8RgxYoSIi4sTsbGx4t577xVTp04VM2bMEA8//HCVz4Snk0DfffedMBgMAoAwmUxi5MiR4p133hHffPON+OSTT8Rtt92mngWVZdntWW3nfen4XHfr1k289NJL4uuvvxYfffSR+Oc//6kuv337drXj7Pi7f/3118XMmTPF22+/Lfr166cGGMeIgqtOvfOZVU8jHELYrx92LDtp0iSPy/rLn9Cpxe/NuXGPiooSd999t5g2bZr44osvxPjx49V9e+2116rLuQudf/75p7q8JEni8ssvF2+88YaYOXOmmDp1qrj33nur/K7clTNy5EiPdf/kk0/U13v37h3UdTx64ugAJiQkiCFDhqgzcdLT00XPnj3FY4895vNdt32xaNEidT8GeifWQEKnlsfXlStX+rV958/XzJkzq7x2/Phx9TVfgr9zHyTQu4iGo63xFjoXL16shtu4uDiXMznOnj1bZWSlW7duYtKkSeKrr74SM2bMEE888USVqZbu3tuZM2dEVFSUAHybSugccmfPnh3I2/co2NDZqlUrceGFF4rk5GQRFRUlGjVqJC699FLx6quvioKCAq9lffvtt2pZvl7TOXbsWK/lOqZeJiYmisOHD7t8v1qETufBH0/XdDp/Dl1dg/33v/9dfd2f0AlArF27NqC6ewudW7ZsUa8dNxgMLkcgteqfWSwW9aSPJEli//79HuvuPOX8zTff9PpeO3bsqLY17k7s+kuXj0yx2WzqRfrR0dHim2++cbnciRMn1JFQWZbFtm3baizjfMAH7OH13LlzHre/cOFCj6OEZ86cUUdWZFl2O71L60emfP311+rrmZmZLs8QHTp0qMoIgrtrOpz3SVRUlPj5559dvk/nsoIJSiUlJS5PNgTyVT2sh4JzYOjRo4fLZSZNmuSxUa7O+aJ4V2eEtVT9+h9XHW6z2VylTq4O2s4dD8A+Yrdnz54ay61evVo9I5mamupy1Cw3N1ftpDRr1szt1PjVq1eL5ORkAUA0adLE5dnv6jMoHnzwQY+jF84joffff7/LZasfK9xNz3WEYm+d1wEDBqgNj3MDrgV/Qmewvzfns6MpKSli3bp1NZbZtWuX+jgNT2GxsLBQne6akpIili5d6vL97d27Vz3pFR8f73I0KS8vTz1jbjAYqkzR2717txqok5KSvDbG3uzcuVOz45e3kTFvfHlkisFgEBMnTtSko+B8ouXbb78NqIxAQqeWx9dp06b5Fdqefvppdfnnn3++ymvLli3z67189tln6vJ33nmn1+VdCUdb4yl0fvfdd+qlSWlpaer0+uocJ6EkSXLbyS0qKhLDhg1TtzV37lyXyznPWvA03e/QoUPqCE3Dhg1DcrIp2NDp6Ss5ObnGiY7qFEWpMrUyJiZG3HPPPeL9998XM2bMEK+88kqVNu+6667zGtR37Nih/k7feustt+9Xi9B5+vRp0aZNG7XMrKws8fjjj4vPPvtMTJ8+XTzzzDNq31OW5RqfQQfnz8VDDz3kcZvO02sB7yeN3fE2yOYYrIiJiXF7wkOr/pkQQjzyyCPqMk8//bTbejtPOTeZTD61Q86PzHF1iVkgdBk6nZ/N9Pbbb3tcdvfu3erIiau7LDl3JOPj48XRo0d9ek/e7N+/322j5KB16HS+rsHT9WGrV69WD7rNmzd32fFw/vA999xzbsv6+OOPfVrOG3+fUeXpK9QXb+fl5anXEXjqaDkutgcg3nnnHa/l+rt8oI4dO6aeFb7++us9Lms2m9Xrcdq2bVvj9erh5ffff3dblvPNDVwt57i+0WAwiI0bN3qs16effqqW9dVXX9V43fmzcsEFF3gMnGvXrlWX7dKli8eOuHO57kYxnG/U4SrICWE/LjmWGT58uMf3Ggh/Q2cwv7cRI0aor7s62+zwyy+/VNmmq9D5+uuvq6//9NNPHt+j8wjbf/7zH5fLLF26VL3+qHnz5iI/P1+YzeYqN8/Q4gRP9RMSwXw57i0QqObNm4vGjRuLcePGibffflvMnDlTfPHFF+KZZ55Rp8Zpeay89dZb1fICvQNrIKFTy+PrW2+9pb728MMPey3L0/I//vij+trIkSO9luXv8q6Eo61xFzr/+9//qp+57Oxst9MjnZ8lOGHCBI/bysvLU080XnrppS6XmTNnjlqep6mEzkHE23YDFUzo7NKli3jwwQfFxx9/LL799lvx2WefiQceeEAdsXJ8ebuOzmq1in//+99VZrdV/+rRo4f45ZdfvN58yWazib59+woA4sILL6zRnmodOoWwj4LfcMMNav/d1deNN97osa+wcOFCddns7GyPl4hUv7Qu0Jtsucs7P/74o4iNjRWA/cSBu/sHaNk/E8I+i8tRnxYtWrj9XTufePO2XYeXX35Z03ZUCCFk6NAXX3wBAEhKSsLdd9/tcdl27drhoosuAgDMnz/f47IjR45E48aNNaljq1at1Gc3rl69WpMyPTl06BA2btwIAOjatSuuuOIKt8tedNFFGDx4MAD785DWr1/vdlmDwYB//vOfbl93lAMAO3bs8LfadY7NZsPNN9+M48ePAwCGDx+OG264weWyxcXF6vcxMTFey46NjVW/LyoqCrKm7n3zzTcwm80AgEceecTjsiaTCTfddBMAYO/evTh06JDbZbt3747+/fu7fd3T34oQAl999RUAYMiQIS6ft+XspptugtFof4ywt8/1P/7xD8iy+0PZjz/+WGVZg8HgdtkHHnjA47YA4L777lO//+STT1wu4/zze+65x2uZoRTM762iogJz584FAGRmZuL22293W87w4cPRsWNHj3VxHNvbtWuHq6++2uOygwcPVo/X7v4GBg4ciIkTJwKwH+vuu+8+PPnkk+ox77bbbvNY57royy+/xOHDh/Hpp59i/PjxuPHGG3H77bfj2WefxZYtW/D++++rn4dp06apn7tA5eTkqN+npaUFVZY/tDy+6rUsX+mlrXnuuedw3333QVEUtG/fHn/++afbZ/g5PuuSJOHhhx/2WG5qaiquvPJKAMDvv/+OioqKGstcdtll6vFg+fLlOHjwYI1lhBCYPn26+v9Ans0ZKg0aNMCGDRuwdetWTJkyBXfddRduuOEG3HHHHXjzzTdx8ODBKvW97777XL5HB4PBgEcffRRPP/00oqOjXS6zYcMGvPTSS1i5cqXHur3//vv4888/YTAY8NFHH3lsT7WSlpaGl19+2ePvaPbs2XjxxRfV/lh1gwYNQps2bQDYn8F+77331ni2KmDvA/z3v/+t8jPHcz218Nlnn+H6669HWVkZsrKysGzZMgwYMMDlslr3zzp16qRmoEOHDmHZsmUuy/L0bE53UlNT1e+d24FgGDUpRWPLly8HADRq1Ai//fab1+UdncicnByUlZVVOeA689Txqq6wsBBfffUVfv31V2zduhVnzpxBSUmJy2WPHDnic7mBWrNmjfr9sGHDvC4/bNgwLFq0CIA9FDv+KKtr165dlT+s6rKzs9Xv8/Pzfa1uDS1atIAQIuD1a8sDDzygdnCbNWtW5YNaVzg+P4D9b3P27Nkel3f+ve7cuRMtWrRwuVzv3r09luPpb2X79u3Iy8sDACQmJnqtEwAkJCSgoKAAO3fu9Lict8+14wHagP2h3J4MGjTIa70uueQStGvXDnv27MG0adPwwgsvwGQyqa9bLBb1oeSNGzfG8OHDvZYZSsH83jZv3qw2kAMHDvQY2AH7CQV3v69z585hy5YtAOwB1te/AQAe/wYmTZqERYsWYfXq1Zg5c6b685YtW+L999/3ug1fPPvss3j22Wc1KStYF198scfX//73vyM/Px9PPPEEAOCFF17AbbfdFvD2HJ9boHZDJ+mHoij45z//iffeew8A0LNnT/z6669IT093u46jHUpJSanSf3HHETQrKipw4MCBGiewDAYDRo8ejZdeeglCCEybNq3GZ3L58uXYv38/AODCCy9Ely5dfH6PoZaYmIju3bu7fT02Nhaffvopjh07hnnz5sFsNuOVV17BBx984HL53377DTfffDPOnTuHQYMG4fHHH0evXr0QGxuL3NxcfPvtt/jPf/6DFStWYMiQIfj6668xYsSIGuXk5ubi8ccfBwA8+OCDHuuopRdffBFPPvkkFEXBXXfdhfvuu089gbFjxw7897//xSeffIJvvvkGq1atwoIFC9CuXbsqZRgMBnzwwQe4/PLLYbPZMG3aNKxfvx6jRo1Cy5YtUVBQgN9++w2zZs2CJElo0aKFGty0CtYvv/yyeuKzdevWmD9/Plq1auV2+VD0z8aNG6d+xqZOnVqjH5OTk4OlS5cCALKysnD55Zd73KZDgwYNXNYjGLoLncXFxTh79iwAYPfu3bjuuuv8Wj8/P99t6HTuXHmyZMkS3HrrrThx4oRPy2t5xsQd5zM91T94rjgv4+4sEQCPjQaAKmfQysvLvW63LnviiSfURjUzMxMLFizwuH8cHWLAt31TVlamfp+YmBhETT1zPht24403+rWupwNLMH8rznX6/vvv8f3332tSJ8D75/rYsWPq954aA8B+Zi8lJQUFBQVul5EkCffccw8eeeQRnDx5Ej///DOuv/569fWffvoJp06dAmA/o+gtqIVaML83533nOKPsiadlDh8+DEVRANgbXufG1xtPfwNGoxH/+9//cP7556ujOo6fJSUl+byNSDJhwgS88sorOHfuHHbt2oUDBw54/dt3xxEGDAaD27Y1FLQ8vuq1LF+Fu615++23ce7cOQDA0KFDMWvWrCp1csVxzM/Pzw+oH+fK2LFj8dJLLwEApk+fjmeeeQaSJKmvO58kHjduXI3158+fj9LSUrfbvfbaa/2qp9YkScKzzz6LefPmAQDmzJnjcrnffvsNw4cPh6IouOGGGzBz5swqIapNmzZ4/PHHMWTIEAwYMADl5eUYNWoU9uzZo87Qc/j73/+O4uJiNG/eHJMmTQrdm3PyxBNPYPLkyQDsf1vjx4+v8voFF1yAjz/+GF27dsUDDzyA3Nxc3HbbbVi7dm2NsoYOHYqZM2di7NixKC4uxrZt2/B///d/VZaJiorCO++8g99++039u/Q02OKr2bNnqyeYu3Xrhnnz5iEzM9PjOqHon91888146KGHUFZWhu+++w7vvvtulc/ntGnT1EGf0aNHq7PIvHFuP52PKcHQ3fRax4EtUI6z8q740mDu3bsXw4cPVwNn+/bt8eCDD+K9997DjBkzMGvWLPUrIyMDAFwO52vNeYpMfHy81+Wd/+A8Ta+pjWkUdcELL7ygHgTT09OxcOFCr+E+JSVF/f7MmTNet+E4mVJ9Xa0F8xny9PkJ5m8lVHUCvH+uHTMUjEZjlRFJd3z5fI0dO1YNax9//HGV1xz/lyQJd955p9eyQi2Y35vztL64uDivy3vad8H8DVgsFo+vp6enVxmFa9WqFS644IKAt1fXxcTEVBnh3rVrV8BlOf7ObTabxw671rQ8vuq1LF+Fu62xWq3q9yUlJT7NWgrFMb99+/bo27cvAODgwYP4/fff1ddKS0vx3XffAbD//d9yyy011r/nnntw3XXXuf3Sg4suukht0w4fPuzyM/fwww9DURTIsoy33nrL7TH+oosuwtixYwHY+4HVZ245ZvMB9im2vrR9wTp69CheffVVAEDHjh09Xt41fvx4dcR73bp1WLVqlcvlRo4ciX379uGpp57ChRdeiJSUFERFRaF58+YYN24c1q1bh3vuuafK56J6+A6E8+eirKzMpywQis9FcnKy+vdbUlJS5aR+MFPOneuq1QlH3Y10OoelAQMGuJ2fHCovvviimuifeOIJPP/881XOpDnzdr2plpzPVrqb5uvMubMYylE1X5WWlnq9Ns9XzZo1Q48ePTQpCwBeeeUVPPXUUwDsZ78WLFjg07Qc51Dq6VpIB+c58b6MVgfK8RmSJAlWq1UXJxacP9dPP/10rZ1RBf4KQlarFRaLxWvw9OXz1aBBA9xwww346quvMH/+fOTm5qJZs2bIycnBggULANjPwLZs2TL4NxBGzr83XwKHp33nXNbo0aPVM8RauP/++6t8vvbs2YMnn3wSL7/8sibl79q1K6jg5uziiy/2OvqsBeepUZ5G7r1xDvN5eXk+nXzQgpbHV72W5atwtzUPPPAAdu7ciVmzZmHlypW47LLLMG/ePI99C8flEY7jolbuuOMO/PnnnwDsI5sDBw4EAHz33XfqCfZrr702pCd2Q0mWZaSmpqr90IKCgiqfuYMHD6rX3nfq1MnrfUqGDh2KDz/8EABqTHN23HsgKysLGzZswIYNG1yW4Rw+3n33XXXf3n333V5H9qqbP3++ehJxyJAhbvvXgL0PM3jwYPXyijVr1ri9XCQzMxPPPfccnnvuObflOd+zoGfPnn7V25UbbrgBSUlJeOedd7Bnzx5ccsklWLJkicffSaj6Z3fccQf+97//AbB/LsaMGQOg6pTz3r17o0OHDj6XGYpLK3QXOpOTk5GQkIDi4uJauVayuoULFwIAGjZsiOeee87tB6KoqKjKLyTUGjVqpH6/d+9er8s7L6PVzZOCcerUKc3OJI4ZM0azay2nTJmiTsVITk7GvHnzvN7kxsE5mHq6WRNgvybGcSMoWZa93nAlGNnZ2di0aROEEDh69CiaNm0asm35UyeH2v5cN27cWL2W8MCBA2jfvr3bZfPz833uoN9333346quvoCgKPvvsMzz77LP47LPP1Cmk4b6BkBacjx379u3zurynZUL1N/DVV1+pN8u54IILcObMGeTk5OC1117DZZddVuVGSYH6+uuvNTtRsmTJEp+uHQ6WVqNdLVq0wB9//AHA3glp0qRJsFXziZbH106dOkGWZSiKgk2bNqmjRO44Xwde/QRkVlYWGjRogLNnzyI3NxdnzpzxeBLBU1m+CndbYzKZMHPmTNx888344YcffAqe2dnZKCgowKlTp3w62eerG2+8EQ888IA6svnuu+8iPj4en3/+ubqMu9EcXwJ7uCmKUmUaZfXPrvMlD75cPpCcnKx+X/2koGPE+sSJE+qJd29ef/119furrrrK79CpZf39sWPHDnWWQOvWrav0qYPx9ttvQ5IkvP322z4Fz1D1zwYPHoxmzZohNzcXy5Ytw6FDh9CiRQufPhfuOGec5s2ba1LPWhsCcT7Ae5ua4bjr04EDB3zq6Gjp5MmTAOw3ofDUKC1cuFDtXLrjz3v2xvlGQI6RFE+cRxXd3USovnvvvfcwYcIEAPbR4Llz5/p19qtz585qB2z79u0eO9J//vmneu1vv379Qjr67DjzC3i/82tt6d69u9rALFq0yOtnR0sXXnih+v2SJUs8Luu42N4XF198MTp37gzAfvc6i8WCzz77DID9pJWrmzbUNd26dUNUVBQAYNmyZV6nDzluXuZKenq6eqOIVatWaXIt/MGDB3H//fcDsI9oz5gxA19++SUMBgMURcHo0aOrhK/6oqKiospUtGBGu5wDz+7du4Oqlz+0PL4mJSWpIyTnzp1zO00PsE9pdIyINGvWzOXdWS+77DIA9nbd0zG2tLRUvXY5Nja2yrHZH3poaxzBc+TIkQCgBk93n2PHey0vL68yDTZYSUlJah2Ki4vx/fffV7lrZ5MmTTB06FDNtlfb1q5dq45yZmdn15hZ4BzUDh8+7LU851Fm59kP4RKu+juHL60ve3nrrbfUO9/v2bMHgwYNqhKunYWqfybLsjq66ZhSW1JSok45j42NVe+E6yvnG/idd9552tRTk1J84Dy1ytvZCseOA+xT8WqT4wN+4MABt0HRZrOp1/954s979qZFixbqlNLNmzd7DJ7r1q3D4sWLAdjPTujh2ibH3Wu1+NJilPPjjz9WL16Pj4/Hr7/+ij59+vhVhiRJ+Nvf/gbA/iF/55133C779ttvq9/7+8H3180336wGhZdffjnovz0tGAwG9Q6aOTk5bh81EgrO4e+9997zGJzeeustv8q+9957AdgbzwcffFDtDI4ZM0azM/vhFB0drT7K4OTJk+r0HVfmzp3r9U7DjmN7aWmpekOQQNlsNtx2221qp/ftt99G27ZtcfHFF+Pf//43APv1Q3fddVdQ2wHsd6/V6vhVG6Ocb7zxhjolrm3btj7dBMqdXr16qd/XxuPBHLQ+vjr/3NPn/J133lHbfnc3+nAu6+2333bbV5g6dar69zl8+PCAr5nTS1tjNBrx9ddfq48RW7lyJS6//HKXwXP06NHq95MmTdL03hfOIzZTp06tcqOUMWPG6OKSkkAIIfDMM8+o/3cce521adNGfWzO4cOH1anG7nz99dfq984nYAH7SVZfjlnOo1wHDx5Uf+7rrDBnziex5syZ4/GeI4WFheoju1zV31e7du1SPzMpKSmatAnVvfnmm3jwwQcB2GcaugueoeyfjR07Vp2dOX36dHz77bfqpXbXX399lVFjXziO94mJiW4fjeS3oJ7yWcndw1Kd/etf/1KXcffQVAebzSZ69uypLv/AAw+IiooKt8uXlpaKzz//XMyYMaPGa84P9fblodyXXnqpuvwbb7xR43Wz2SzuuOOOKg+ZdfcQ+TfeeENdZtq0aV637fxgeldmzpypvt6oUSOxc+fOGsvk5OSI1q1be30AruN1Xx7U7c+ydcG0adOEJEkCgIiLiwvqYe1Hjx4VcXFxAoAwGo1i4cKFNZb5/PPP1X3YtGlTUVZWFkTtffPwww+r27zkkkvE8ePH3S5rs9nEggULxPPPP1/jNXcPCHfF27KHDx8WKSkpAoCIjo72+pk4efKkeO6558TmzZtrvObts1LdxRdfrC5///3313j4tRBVjxWePtfOCgoK1N+/89eePXt8qlegxowZ4/Fh3Vr+3pYvX66+npqa6vJh3Xv27BGNGjWqsg8+//zzGssVFxerDxqXJEm88sorLn8XDgUFBeKtt94SCxYsqPHaU089pW7rhhtuqPKaxWIRffr0UV//8MMPPe6DuuKFF14QO3bs8LjMBx98UOWB61OnTg1qm+Xl5SI+Pl4AEP379w+oDOc+gj/tiJbH15KSEtG4cWOP+2XBggXCaDQKACIhIUGcOHHCZVmKoogePXqoZU2aNKnGMps3bxbJyckCgJBlWWzZssXt+3T+3Lj6PGu9L3zh6bhgsVjEDTfcoL7eu3dvce7cuRpljBw5Ul3mpptucrmMc5nff/+92z6LM0VRRIsWLdTjSGZmprqdvXv3+v1e/eU4hvna/hQVFYknnnhCnD592u0yZWVlYty4cWq5JpPJ7Xu56aab1OXatGkjcnJyXC73n//8R10uOjpaHD582Kf6Vuf8ft39fbpa1lXfymw2iyZNmqjLjBgxQpSWltZYrrS0VFxzzTXqcl26dBGKotRY7uTJkx6PievXrxdNmzbV7HjoLe88+OCD6utt27YVR44cqbGMVv0zV5z7Rs5tsqvjhScFBQVqP/naa6/1a11Pau2aziFDhqhn4O6880489NBDaN68ufo4gTZt2qhnY2VZxvfff48+ffrg6NGjeOutt/DNN9/gb3/7G7p164bk5GQUFxcjNzcX69atw6JFi1BSUoLnn38+6HqOHz9eHUWcMGECli5dissuuwwNGjTA3r17MX36dOzduxeXXHIJ9u7d63Gay5AhQ9TvH3vsMZw+fRrt27dXb1ecnZ2Nrl27+ly3G2+8EbNmzcLXX3+N48ePo0ePHhg7diz69OkDg8GAdevW4dNPP1XPOg4bNkydekZ2c+fOxbhx49SzouPGjUNBQYHXZyX16NEDzZo1q/Hzxo0b4/XXX8ff//53WK1WXHHFFRg9ejQGDhwIq9WKuXPnqtMbjEYjPvroI48P93a+hvjgwYNun5npzYsvvohNmzZh0aJFWLJkCVq1aoWRI0eiT58+yMjIgNlsxokTJ9RR8xMnTmDIkCF48sknA9qeL5o0aYKvv/4a11xzDSoqKjBmzBi88cYbuOaaa9C2bVvExsbi3Llz2LNnD1atWoU//vgDNpvN67M1ffHhhx+iZ8+eKC0txfvvv4+VK1fi9ttvR5MmTXDy5EnMnDkTf/zxB/r06YPc3FwcPXrUp7PlycnJuOmmm6pM3Rk0aBDatm0bdJ314uKLL8b999+P999/H/n5+ejduzfGjBmDiy++GLIsY82aNfj0009RUlKCa6+91uNnKT4+HrNnz8bAgQNRWFiIxx57DB9++CFGjhyJTp06ISEhAYWFhThw4ADWrFmDpUuXwmw2qw+ad1ixYoU626RJkyb46KOPqrxuNBrx1Vdf4fzzz0dhYSEeeughDBw40OP1vHXBt99+iyeffBLdu3fHwIED0bFjR6SmpsJsNmPfvn344Ycf1OuXAeD222+vMnMoENHR0bj88svx/fffY926dSguLvb6uIzqxxHnG5EcPHiwxus9evSo8tghBy2Pr3Fxcfjoo48wYsQI2Gw23HHHHZgzZw6uuOIKGI1GLFu2DNOnT1fvSDllyhS316tJkoSPPvoIAwYMQGlpKZ555hn88ccfuOGGGxAfH481a9bgk08+UUcxHn/8cb/aele0bmuCYTQaMWPGDEiShG+//RarVq1Sr/F0nj752WefYc+ePdi6dStmzpyJefPm4cYbb8SFF16o3izn6NGj2LhxIxYsWID8/Hyfpj5KkoSxY8eqMxAcl0X1798/qFF9Vz799FMcPHiwys+cr/uv/recmpqKhx9+uMrPrFYr/vOf/+Dll1/GoEGD0Lt3b7Rq1QpJSUkoKirC5s2b8fXXX1d5TN/777/v9r1MnjwZCxYsQF5eHvbt24cuXbrg9ttvR+/evas8p9N5ZsIzzzxTa9dje2IymfD2229j5MiREELgxx9/RMeOHTF69Gj1+uOdO3di+vTp6tRak8mEd9991+U9VnJzc9GzZ09cdNFFGDJkCDp06IDY2FicOHECCxcuxJw5c9RR9sceeyzo46E3U6ZMgSRJmDJlipoVlixZUuWeBqHsn91xxx3qVHPH4xKbN2/u970NHKPggMaPEtIiufoy0mm1WquMNlT/cnWG/dixY2LIkCFu13H+MhgM4uOPP65Rhr8jnUII8fjjj3vcVr9+/cSpU6fUMzqeRkRuueUWt+VU31e+jN5YLBZx1113ed0fN9xwg8uzRw6O5erbSGf10Sxfv1yN2jh79dVXhclkcrt+YmKiy5H46pzX8XZG0ZuKigrxz3/+s8qoh6ev0aNH1yhDyxEzh5UrV4pWrVr5VKeEhASXIwT+jnQKIcTixYvVkVZXX126dBG5ubkiOztbABDnnXeeT+WuXr26SjlfffWVz3UKVG2OdAphP36PGjXK7b6TZVm88sorVUZaPH1mdu3aJbp37+7T30B0dLSYO3euum5+fr567JVl2eNx/csvv1TL6d69u8cZM3VBt27dfNpnRqNRPPnkk8JisWiy3dmzZ6tlT58+3evy/h5f3fUbHLQ6vgph/5tISEhwW1ZUVJTLWU6uLFiwQGRkZLgtS5Ik8fDDD7scoXG3v7wd97XcF574clywWCzixhtvVJfr1atXjdHMc+fOVRmZ8/b11FNP+VS/gwcPqiMxjq/PPvss2Lddg3Nb48uXq/5gfn6+z+s3aNBAfPvtt17rtX79etG2bVufjgUvvPBCUPtAy5FOhy+//FIkJSV5rX96erqYM2eO23LWrl3rtYzExETx9ttvB/juq/Il7wghxIQJE9Tl2rRpU2PEU4v+mSvFxcU1jm9PP/203+/T8bmOjY0VhYWFfq/vTq2FTiHs0wdeeukl0adPH5GamlplZ3vqGC1dulTce++9onPnziIlJUUYDAaRlJQkOnXqJG666SbxwQcfiGPHjrlcN5DQKYQQc+fOFcOHDxfp6enCZDKJRo0aicGDB4uPP/5Ybch9CZ1Wq1V88MEHYtCgQSI9PV2duuNqX/nTkV65cqW48847RZs2bUR8fLyIjY0VLVu2FLfffrtYtGiR1/Ud22Ho9O3LW+gUQoitW7eKf/zjH6Jdu3YiPj5eJCYmii5duoj/+7//E4cOHfK6fklJSZWOz9mzZzV4x0Ls3btXTJw4UfTq1UtkZGQIo9Eo4uLiRMuWLcWVV14pJk+e7HbqVyhCpxD2zsqXX34pbrzxRtGyZUuRkJAgjEajSEtLExdeeKG4++67xcyZM0VxcbHL9QMJnUIIceLECfHII4+I9u3bi9jYWJGSkiIuvPBC8dprr4mSkhKhKIqIjY0VAMSgQYN8KlNRFHUaXVpamigvL/erToGo7dDp8PPPP4vhw4eLjIwMER0dLZo1ayZuueUW8eeffwohhM+hUwj7fvvxxx/FmDFjRLt27URSUpIwGAwiJSVFdOvWTYwePVpMnTpV5OXlVVnPuQM7ceJEj9sQQojbbrtNXf7hhx/2uryebdmyRbz77rvitttuE+eff75o0qSJiI2NFdHR0aJRo0ZiyJAh4rnnnnM5pSsYVqtVNGvWTAAQl156qdfl/T2+egudQgR/fHV26NAh8dhjj4nOnTuLxMREER8fL9q1ayf+8Y9/iG3btvlV1qlTp8SkSZNEjx49REpKioiJiRGtWrUSY8eOVT8X3jjvC19ONmq5L9zx9bhgtVqrfCZdBU8hhNiwYYN48MEHRffu3UWDBg2E0WgUCQkJom3btuLaa68Vb7zxhti/f79fdRw8eLC63fj4eFFUVOTv2/RKi9Bps9nEkiVLxOTJk8U111wjOnfuLDIzM4XJZBIJCQmiRYsW4rrrrhP//e9/3bZ5rpSVlYlp06aJ6667TrRo0ULExcUJo9EoGjRoIHr37i0mTpzo9z51JRShUwj71NiXX35ZDBkyRGRlZYno6Gj1WDZs2DAxZcoUkZ+f77GM4uJiMXXqVDFmzBjRpUsXtc+elZUl+vXrJ1566SWP01f95WveEaLqNFpXwVOI4Ppn7jhP05YkSRw4cMCv9c+dO6f2g+6++26/1vVGEsLNFfBEVKvmzZuHyy+/HADwr3/9y++b2lDwtm7dqt6lzdffwcKFC3HppZcCsD/P7s033wxlFYnCYsqUKZgwYQIMBgMOHTqki6l6RESkrc8++wx33nknJEnCtm3btLuJEGrx7rVE5JnjGbGJiYkhvbaS3Hv33XfV7329lvSDDz5Qv4+EZ3MSuXLfffchKysLNpsNr7zySrirQ0REGnM+vt90002aBk6AoZNINxyhc8KECcjIyAhzbSLP8uXLPT4f9L333lNvSJOdnY2rrrrKa5mbNm1Sb5wzdOhQzQ/QRHoRGxuLZ599FgDw0UcfuX0OHRER1U0zZszA7t27ERUVpcnNWavj9FoiHThz5gwaNmyI9PR07N+/X7MHetNf2rRpg/LyclxxxRXo3r07MjIyYLFYsH//fsyaNQsbN25Ul/3555/dhs7ffvsNiqJgz549eOWVV9Q7xK1YsQL9+vWrlfdCFA6KoqBnz57YsGED/vnPf3p8XiQREdUdNpsNnTt3xu7duzFx4kS8+OKLmm+DoZOI6oU2bdpg//79HpeJjY3Fxx9/jNtuu83tMq5u2+7r9Z/z589HaWmp98q6kJ6ejosvvjigdYmIiIjCiaGTiOqFVatW4fvvv8eqVatw9OhRnD17FqWlpUhNTUW7du0wdOhQ/P3vf3f7bD4HR+hMSEhAu3bt8Pe//x3jxo3z6bmeLVq0UJ895q+BAwdi6dKlAa1LREREFE7GcFeAiKg29O7dG7179w66HJ6nIyIiIvIPRzqJiIiIiIgoZHj3WiIiIiIiIgoZhk4iIiIiIiIKGYZOIiIiIiIiChneSIiIiOoMs9mM0tJSt19lZWWoqKiA2WxW/3X+qv4zq9UKm80Gm80GRVFc/uv43nELBEmS1LsVy7IMSZJqfMmyDIPBgKioKBiNRphMJhiNxir/d3wZjUZER0cjJiYGsbGxiImJcfm94/9xcXFISEhATEyMy0f4EBER6Q1DJxER1Sqz2YzCwkL1q6ioyOX3jv8XFRWpodJqtYa7+rphMBiQkJCAhIQEJCYmqt87fyUmJiI5ORkpKSlISUlBcnIykpOTYTSy+SciotrDu9cSEVHQKioqkJeXh/z8/Br/Vv9ZcXFx0NuLjo5GXFycy6/o6GjMm70ZEmQAMiDs/0rO31f+a/+SAAEAEiRI9v87voTz/x1Eze8lVz9XICAASfnr/5L9X/uX/TUBpXIZG4Rkw9CruqK8vBzl5eUoKyur8W9ZWRlsNltQ+y8xMVENos5fDRo0QIMGDZCeno709HSkpaXBZDIFtS0iIiKGTiIi8qisrAxnzpzBqVOncOrUKZw+fbrK16lTp3Du3Dm/yjQYDEhMTERSUpL6b1JSEhb+vB2SMEKCCRBGSMIESRgBYQRggCQM9n/r8S0JBAQAGyBZISQrBKzq93D6/+XXd0NhYSEKCgpQUFCAc+fOobCw0O9nzaakpCA9Pb1KGE1PT0fDhg2RmZmJrKwsxMXFhebNEhFRRGDoJCKq58rKynD8+HGXX6dOnUJRUZFP5URFRSE1NRWpqalIS0vD6mUHIYkoSCIKECb790rl/2GsHFWk2mQPrBYIyQIhmQHpr++FZEG/oa1x9uxZnD17FmfOnPF5OnNiYiKysrKQmZmpBlHH940aNUJycjKvPyUiqscYOomIIpwQAvn5+Th8+DAOHz6Mo0ePVgmWBQUFXsuIjY1Fw4YNkZGRgYYNG2L+7O2QlBhIItr+pUSDQTKyqAFVNkNIFZXBtAJX3dRNHeE+ceKETycl4uLikJ2djSZNmiA7O7vK9w0aNGAgJSKKcAydREQRoqysTA2WR44cQW5urvq9t+soExMT0ahRIzRq1Ah/LDgASYmFJGLsX0o0JN53jtwQsELI5RBSuT2cyuUYcHkbnDx5EidOnMDZs2c9rh8TE6MG0ezsbLRo0QLNmzdH8+bNER8fX0vvgoiIQomhk4iojikpKcGhQ4dw8OBBHDhwAIcOHUJOTg5Onz7tdh1JkpCVlYWmTZsiOzsbP3+9BbIjWCqxDJUUMgI2eyCVyyDkMgy/qQuOHj2Ko0eP4sSJE1AUxe26GRkZagB1hNEWLVogJSWl9t4AEREFjaGTiEinysvLkZOTg4MHD1YJmCdPnnS7TkpKCpo2bYqmTZti/qxdkJU4SCLOPhUWhlqsPZF3AkqVQHrVzV2Qm5uLQ4cOeRwhTU5ORosWLdC6dWu0adMGrVu3RsuWLRETE1OLtSciIl8xdBIR6UBBQQH27t1b5evw4cNu7zSanp6Oli1bYuMfJyAp8fZwqcTZ7/pKFAEELFDkUgi5FEIuwYUDspGTk4MTJ064/FzIsowmTZpUCaKtW7dGw4YNec0oEVGYMXQSEdUiIQROnTqFPXv2VAmYp06dcrl8cnIyWrVqhS2rT0FW4isDZjzDJdVbAjYIuRSKXAIhF+P8vpnYv38/8vPzXS6fmJiItm3bon379ujYsSPat2+PrKwsBlEiolrE0ElEFEKFhYXYuXMnduzYgZ07d2Lnzp1un2mZnZ2Ndu3aYflvOZCVBMhKAiQRXcs1JqqbhFQBRS6GIhdj0PBW2L9/P3Jzc2Gz2Wosm5ycjA4dOqB9+/bo0KEDOnTogPT09DDUmoiofmDoJCLSiNlsxr59+9SQuWPHDhw9erTGcgaDAS1atEDbtm2x6Md9kGyJ9oDJm/kQaUpAgZBLoMhFuPxv7bB7927s37/fZRBNT09H+/bt0blzZ3Tt2hUdOnRAdDRP+hARaYGhk4goQPn5+di6dSu2bNmCrVu3Yt++fbBYLDWWy87ORqdOnbD0l0OQbUmQlHje1IcoTOzTc+1BdOh1rbFr1y7k5OTUuIuuwWBAu3bt0KVLF/UrIyMjTLUmIqrbGDqJiHwghMCxY8ewZcsWNWTm5ubWWM4xbW/97ychK0n2kMnrL4l0TcAGRS6CYihEv2FNsHXrVuTl5dVYLjMzUw2g3bp1Q6tWrSDLchhqTERUtzB0EhG5oCgKDh48iE2bNqlB09UjHFq2bImuXbti7jd7IduS7c+9BG9QQlSXCQgIqRyKoRBX3dIe27Ztw/79+2uMhiYmJuL888/H+eefj+7duzOEEhG5wdBJRAT7SObRo0exYcMGrF+/Hhs3bkRBQUGVZYxGI9q3b4/dGwsh21LsIZOjmET1goAViqEIinwOPfpnYOvWrSgrK6uyDEMoEZFrDJ1EVG+dOXMGGzZsUIPmyZMnq7weExODrl27YuOKM5BtyZCVJF6LSUQAHDcpKoLNUIALBmRgy5YtNUJoUlISunfvjp49e6Jnz55o1KhRmGpLRBReDJ1EVG9UVFRg48aNWL16NdauXVvjmkyj0YhOnTphx9pCyLbUypDJUQoi8s6XENqkSRNcdNFF6NmzJ7p37464uLgw1ZaIqHYxdBJRxBJC4MiRI1i1ahVWr16NTZs2wWw2q69LkoR27dph/9ZSe8i0pXAkk4g08VcIzUennonYvn17lUe1GAwGdOnSRR0Fbd++PafiElHEYugkoohSVlaGjRs3YtWqVVizZg2OHTtW5fWMjAz07t0b8745WBkyeU0mEYWe/ZrQfFx5SxusXbu2xjN8U1JS0KdPH/Tp0wcXXXQRR0GJKKIwdBJRnXfmzBn88ccfWLFiBTZu3FhlNNNoNOK8887DlpXnYLA1gKTE8e6yRBR2ilQGxZCH3pdmYsOGDSgpKVFfM5lMOP/889G3b1/07duX14ISUZ3H0ElEdY4QAjk5OVixYgVWrFiBHTt2VHk9MzMTvXr1wm8zD0C2pUKCMUw1JSLyTkCBYjiHa8e0wx9//FFjFLRly5ZqAO3cuTOn4RJRncPQSUR1gs1mw44dO7B8+XKsWLECR44cqfJ6p06dsGdjOQy2dI5mElGdZX9GaClsxrPofFECtm3bVuVa0LS0NAwYMAADBw5Et27dYDTypBoR6R9DJxHpls1mw5YtW7BkyRIsW7YM+fn56msmkwk9evTAhmX59qAposNYUyKi0BCwwGbMw8CrGmPVqlUoLi5WX0tOTkb//v0xcOBA9OjRAyYTr1EnIn1i6CQiXVEUBVu3bsWSJUuwdOlS5OXlqa8lJCSgT58+WPbTMci2NE6bJaJ6xT4NNx+X3tAUK1aswLlz59TXEhIS0K9fPwwcOBA9e/ZEdDRPxBGRfjB0ElHYKYqC7du3Y/HixVi2bBnOnDmjvpaYmIj+/ftj4fdHK+82y2uZiIjsAbQAV97SEr///nuVE3Tx8fEYOHAghg4diu7du8Ng4KOgiCi8GDqJKGz279+PefPmYdGiRTh9+rT684SEBPTv3x+LfjhaeSMgBk0iIncEBBT5HK4Z3RrLli2rcjxNS0vDkCFDMHToUHTo0AGSxOvdiaj2MXQSUa06c+YMFi5ciPnz52Pfvn3qz+Pi4tC/f38sme2YOsugSUTkL0cAvfzmpli6dCkKCwvV15o0aYKhQ4fi0ksvRdOmTcNYSyKqbxg6iSjkysrKsHz5csyfPx/r1q2DoigA7M/Q7Nu3L1bNy6sMmpwCRkSkFfsU3Dz0v6ohVqxYgYqKCvW1Dh064IorrsDQoUORmJgYxloSUX3A0ElEISGEwKZNmzB37lwsW7YMZWVl6mtdunTB7nVmGKwNIYF3WyQiCjUBK2zGM+gxMAnr1q1TH8MSFRWFAQMG4IorrsAFF1zAZ4ASUUgwdBKRpvLy8jB37lz88ssvVR5w3qhRI5zOiYbBkglZxIWxhkRE9ZuQzLAZT6JpRwUHDhxQf56ZmYkrrrgCl19+ORo3bhzGGhJRpGHoJKKgKYqCdevW4eeff8aKFSvUM+ixsbEYOnQo5s08AllJhgTewIKISC8EBIRchCtubYqFCxdWeQZo9+7dMXz4cAwcOJCPXyGioDF0ElHATp8+jV9//RVz5szBiRMn1J936tQJezfYKqfP8lmaRER6J2CDzXgG3S6Ow/r16+HoHiYnJ+PKK6/EiBEjOPpJRAFj6CQivwghsGHDBvzwww/4448/1JsCJSQk4LLLLsMvX+RCVhLCXEsiIgqUIpXj1n92wJw5c3Dq1CkAgCRJ6NWrF6677jpcdNFFfPYnEfmFoZOIfFJWVob58+fjhx9+wMGDB9Wfd+vWDTtWm2GwZvDus0REEcR+99uz6DYgFmvXrlV/npWVhWuuuQZXXXUVUlJSwldBIqozGDqJyKOjR49i1qxZ+PXXX9XrfWJjY3HZZZdh7lfHIIv4MNeQiIhCTZFKce24Fvj1119RVFQEADCZTLjkkktw4403ol27dmGuIRHpGUMnEdUghMDatWvx/fffY9WqVeq1PdnZ2Th1IBYGSyNeq0lEVA/Zr/08hdbnA7t27VJ/3r17d9x0003o3bs3H7tCRDUwdBKRymq1YtGiRZgxY0aV2+j36tULG5eWQbal8Q60REQEAFDkQvS/JhVLlixR71retGlT3HjjjbjssssQExMT5hoSkV4wdBIRSktL8csvv+Cbb75RbxoRGxuLK6+8Er9MP8LnahIRkVuKVI7r72qBn3/+Wb0MIykpCSNGjMB1112H9PT0MNeQiMKNoZOoHjt79iy+//57zJ49W+0opKWlofB4CoyWxpBgCnMNiYiorhCwwmY6gYyWJTh27BgAwGg04vLLL8ett96KJk2ahLmGRBQuDJ1E9dDhw4fx9ddf47fffoPFYgEANGvWDMf3xMJgzYIEXo9DRESBERBQDGfQ/iIJW7duBQDIsozBgwfjtttuQ+vWrcNcQyKqbQydRPVITk4OvvjiCyxcuFB9vmaXLl2wZy0g29J5vSYREWnKJhegx+BorFq1Sv1Zv379MGrUKHTq1CmMNSOi2sTQSVQPHDx4ENOnT8fixYvVO9H27dsX6xaWwaCkhLdyREQU8RS5CH2HJ2Lp0qVqO3TBBRfgjjvuwHnnnRfm2hFRqDF0EkWw/fv3Y/r06VUa+f79+2PNvDLISmKYa0dERPWNIpViyN8aYN68eeodb3v27Ilx48ahc+fOYa4dEYUKQydRBMrNzcWnn36KJUuWqD8bOHAgVs0tYdgkIqKwU6RyXHZLBubMmaOGz969e2PcuHHo0KFDmGtHRFpj6CSKICdPnsTUqVPx22+/wWazQZIkDBo0CH/OKYasJARWqOMQIQVxvacWZRARkfaECP7YHEQZilSGIX9LqzLy2a9fP9x5551o06ZNcPUiIt1g6CSKAPn5+fjiiy/w448/qnej7devH9bNr4AsAhjZrH5YCLRDolU5zmUxuBIRacf5OK3FMTrAchSpFIOuT8GCBQugKAokScKwYcNw5513IisrK/B6EZEuMHQS1WGlpaWYMWMGvvnmG5SVlQEAunfvju0rAIOS7H/D7+5woEU5WgRXBk4iIu1pcYJQo+O+ghL0uyYBixcvBgCYTCZcf/31uP3225GcnOx/vYhIFxg6ieogm82GuXPn4pNPPkFeXh4AoEOHDjiwIQqyLfWvR5/40+B7OhT4Wo4WZbgrh4GTiCg0tDjhqPFJS0UuROf+wIYNGwAACQkJuO2223DDDTcgOjravzKJKOwYOonqmDVr1uD999/HgQMHAADZ2dk4vS8FstXFczZ9aey9HQJqqwxv5TB0EhGFjl5OPDqVISCgGPLQtGsp9u/fDwDIyMjAfffdh6FDh0Jiu0BUZzB0EtURBw8exPvvv4/Vq1cDABITE1F+uiEMlmxIkF2v5KlB9vWjH+oyfCmHHQsiotDy5Xge7LE8wDIEBGzGk0hrkY+TJ08CALp06YLx48ejY8eO3rdJRGHH0Emkc0VFRfjss88we/Zs2Gw2GI1GXHfddfj5s2OQYHK/oruG3d+PvKtytCjDn3IYOomIQsuf47oW7UsAJzQFbBj9cEd88cUX6n0MrrjiCtx9991IT0/3fdtEVOsYOol0SlEUzJs3D//973+Rn58PAOjfvz/WzK2ALOK8F1C9QQ/kox6KMvwth4GTiKh26OWkpJcyhFSBgSOTMG/ePABAbGwsRo0ahRtvvBFRUVH+bZ+IagVDJ5EO7d69G2+++Sa2b98OAGjWrBlO7EqBwZbmeyGOhjyYj7iWZQRaDkMnEVHtCPRYH+xxPsAyFLkQrXuWY8eOHQDsbeWECRPQo0ePwOpARCHD0EmkI0VFRfj444/x448/QgiB2NhYWPIbwWhp4v66TT0LNrQycBIR1a5gTzIG2630swzH9Z6J2afUu7kPGzYM999/P9LS/DhRS0QhxdBJpANCCCxbtgxvvvmm2mgOHToUK2aXQBL1+NbwDJ1ERLWrjnYLBSy4YnRDzJ49G0IIJCQk4N5778XVV18NWa6DJ22JIgxDJ1GYnTp1ClOmTMEff/wBAGjatClO7k6DwZYa5prpAEMnEVHtq8NdQ0UuRPPuxdizZw8AoGPHjnjsscfQunXrMNeMqH5j6CQKE5vNhtmzZ+Pjjz9GaWkpjEYjUJINo7kZJBjCXT19YOgkIqp9dbxrKCBgMx2FKe2Y2r6OGjUKt99+O0wmD3d9J6KQYegkCoPc3Fy8+OKL6o2COnfujH1r4iAr8WGumY4wcBIRhUeEdA2FVIELLzdgxYoVAIDWrVtj4sSJaN++fZhrRlT/MHQS1SJFUfDdd9/ho48+gtlsRlxcHCx52TBYGkMCQ1YVDJ1EROETId1D+42GTiMu6yjOnTsHg8GAW265BWPGjEF0dD2+ZwJRLWPoJKolx44dw4svvojNmzcDAC688EJsXWqELGLCXDMdYuAkIgqvCOseCsmMvtfEYPHixQCA5s2b48knn+SoJ1EtYegkCjEhBH766Se8//77KCsrQ2xsLKz5TTi66QlDJxFReEVo99BmPI2E7OPIy8uDwWDAnXfeiVtuuQUGA++lQBRKDJ1EIZSfn4/Jkydj9erVAIDzzjsPu/+MhSxiw1wzHWPgJCLShwjtIgpYcNFwA37//XcA9rb53//+Nxo3bhzmmhFFLoZOohBZs2YNJk+ejLy8PERFRUEUNoXB0oSjm94wdBIR6UMEdxHt13qegDEtF2VlZYiLi8MDDzyAyy+/HBLbISLNMXQSacxiseCTTz7BjBkzAAAtW7bEsW0NICsJYa5ZHcCGnohIXyK8m6hIZWjXpxRbt24FAAwZMgSPPvoo4uLiwlwzosgih7sCRJHk8OHD+Mc//qEGzmuvvRbHtzRh4CQiItIhWcRi759puPvuu2EwGLBo0SLcdddd2LdvX7irRhRRONJJpJGlS5fixRdfRFlZGRITE1FxqhkM1oxwV6vu4CgnEZH+1KNuok0+h+QWR3D69GlERUVh/PjxuOaaazjdlkgDDJ1EQbJarfjwww8xc+ZMAI6bBcXxUSj+YqNORKRP9airKGBB92EKVq5cCQAYOnQoHnnkEU63JQoSQydREM6ePYtnn31Wffam0dwUxoqWkPyduS4EQ1d9f/9ERHpVz7qKAgJW02GI+BzYbDY0a9YMkydPRrNmzcJdNaI6i6GTKECbN2/GM888g7y8PMTFxcF6tqX/02kdHz8GLu4DIiK9qqddRefptvHx8Xj66afRp0+fcFeLqE5i6CQKwI8//og333wTNpvNfnfarRmQhR9Tb6p/7Op74Krv75+ISM/qcVdRSGa061uMLVu2QJIkjBs3DqNGjYIs816cRP5g6CTyg9VqxXvvvYfvv/8egP3W6n/MNkOCwbcCXH3cGLi4D4iI9K4edxcFFFw+Kg2zZ88GAAwYMAD//ve/eZ0nkR8YOol8VFRUhGeffRZr164FABjLW8BobgZJ8uFsp6ePGQMX9wERkd7V9+6iELCajgNJB2GxWNCqVSu8/PLLyMzMDHfNiOoEhk4iHxw+fBiPP/44cnNzERMTAyWvlf36TV/CkrePGAMX9wERkd6xuwgIAcVQiPimOcjLy0N6ejpeeukltGvXLtw1I9I9Tkgn8mLr1q34+9//jtzcXGRkZECc6eTbDYOEYOAkIiKKILItCSU5bdGyZUucOXMG48ePx59//hnuahHpHkc6iTxYvnw5Jk2aBLPZjI4dO+LgmhRIIuqvBVyFRn8+UgyddtwPRET6xu5ilX0gYEWXwRVYt24dZFnGv/71L1x//fVhrByRvjF0Ernx448/YsqUKVAUBX379sWG3+SqNwyqHpQC+SgxbNlxPxAR6Ru7i3ZVgqeCIbckYc6cOQCAW2+9Fffeey8ktmlENTB0ElUjhMDnn3+OqVOnAgAM5iyYyttBQrVGxNGoBPoRYqP0F+4LIiJ9Y3fRrtp+EBCwRh2GNeYgAODqq6/GhAkTYDD4eFd7onqCoZPIiaIomDJlCn788UcAgLGiOYwVzWsGTi0EG7SEiJywFinvg4gokrHL6HYfWE3HYYvfB0VRcMkll+CJJ55AVFSUy2WJ6iOGTqJKNpsNL7/8Mn777TdIkgRjaRsYLY1Du9FAw1YkBU4gst4LEVGkioQuo+M9BNPuuNkPNuNpiOS9sFgs6NmzJ1544QXExsYGvh2iCMLQSQTAarXihRdewOLFi2EwGCAXtYPR2jD0G/a30XP+uEZSUIuk90JEFKkiocuoRTvqYT/YDHkwpO9DWVkZOnfujNdeew3x8fGBbYcogjB0Ur1nNpsxadIkLF++HEajEXJhO98eiRKsYAJnIOvrWSS9FyKiSBUpXcZg21Mv+0ExFCIqax+KiooYPIkqMXRSvWY2m/Hkk09i1apV9msvCtrBYG1QOxv3tZFz9xGNpKAWSe+FiChSRUqXMdh21Yf9oMhFiGq0F0VFRejSpQtee+01xMXF+VFJosgih7sCROFitVoxadIkrFq1CtHR0UB+h9oLnL4QInIaeCIiqtvqQ3vka7vrQziVlUSYj7dFQkICtm3bhkceeQSlpaUaVJKobmLopHrJZrNh8uTJWL58OaKioiDy2sNgSw13tf5SHxp3IiIiPdKoDZaVRFhOtFOD56OPPoqysjJNyiaqaxg6qd5RFAWvvfYaFi5caH+OVkE7/QTO+jq6WR/fMxER6ZdG7bFz8Ny6dSueeuopWCwWDSpIVLcwdFK9IoTAO++8gzlz5kCWZRiK2utjSm19DZtERER6pkH7LCuJsJxsi5iYGKxZswaTJ0+GoigaVZCobmDopHrlf//7H77//nsAgKGkbe3cpdYbhk0iIiJ9CzZ42pKgnG0Lo9GIRYsW4a233gLv5Un1CUMn1Rvz58/Hhx9+CAAwlbeG0ZIV3gpxdJOIiKjuCLLdNtjSIBW2hSRJmDVrFqZOnapd3Yh0jqGT6oX169fjpZdeAgAYK5rAaG4S5hoRERFRnRRE8DRaG8JY2hoA8Pnnn2Pu3Lla1YpI1xg6KeLt378fTz75JKxWKwyWDBgrWgVWkOL0RUREVF/oaVaOXmYJBdEfMFqyYaxoBgB49dVXsWnTJs2qRaRXDJ0U0fLz8zFx4kSUlJTgvPPOg6msAyT4+PBnBwZNIiIifdFD8AQC7iMYK1rgkksugdVqxZNPPokjR45oXjUiPWHopIhltVrx9NNP4+TJk2jSpAn2LE+A5O+fPMMmERGRPull1BPwu78gQcLKHy3o0KEDCgsLMXHiRBQVFYWmbkQ6wNBJEeudd97B5s2bERcXhzPbsyAJk+8r14XRTb00tFqJtPdDRES1Qy/th599BwkG5KxKRkZGBnJzczFp0iTYbLaQVY8onBg6KSL98ssvmDVrFgDAeqolZCXO95X1HjaJiIhqi14CHeC5LnV01FMS0Sja3xTR0dFYs2YNpk2bFrp6EYURQydFnB07dmDKlCkAAFNZcxgtDQAAkhCeG4K6MLpJRERE7ukpeHrrU1S+LtsSIPJaAACmTZuG1atXh7JmRGHB0EkRpaioCM8++ywsFgv69+8PY3kz7ysxbOqHXjoLRERUd3ka9aztdsZDH0NyqovRnIkRI0ZACIHnn38eJ06cqJ36EdUShk6KGEIIvPbaazhx4gQaNWqEdT/ZvN+plmGTiIjItbp+IlBP9fehvzF/6ln1xkJPP/00zGZz6OtFVEsYOili/Pzzz1iyZAkMBgPydmdCgtH9wpEyuqmnBpWIiEhv9NROeul7SJBxaHUSkpKSsGvXLnz22We1VjWiUGPopIhw4MABvP322wAAuagZDLYk9wtrETYjIbDqlZ46CEREpA/BtA1a32Qo2D6Ah/VlJQblx5oAAGbMmIFNmzYFuTEifWDopDrParXihRdegNlsxkUXXQRjRRO3y0oMNPoneZkSTUREoae39lKLtkGj96RJX0KB2/oYLem48sorIYTA5MmTUVxcHPz2iMKMoZPqvC+//BL79u1DUlISts6X3V/HqUEjIQmhr+AaaQEt0t4PERFpJ9g2QsNZSpr1B9yUseSrAjRu3BgnTpzAW2+9Ffx2iMKMoZPqtH379qnPtCo/1hiSiKq5kEbTanQVNoHIC2iR9n6IiEh7WgRPjcNn0Fz0UyQYcXZXBmRZxrx587B8+fLgt0MURgydVGdZrVa8+OKLsNlsMJgbwGDJqLlQ9cYggDOTrs5men3mZyhJUuQFtEh7P0REdZneTrJWp0U7GGAbLtlq7ptARj0lxUUFqpVhsCVDLskGALz55psoLS31axtEesLQSXXWjBkzsHfvXiQlJSGqtG3VabUc3awbIjFAExFR7agHo56m8mbIzs7G6dOn8fHHHwdfPlGYMHRSnXTixAlMnz4dAFB+vFHVabV6ulGAViIxnEXa+yEiigR6avt84Wv76Clc6i14AurvQYIBZ3alAQB++OEH7Ny5U5vyiWoZQyfVSe+++y4qKipw/vnnw2BuaP+hr6ObXqbB8GZBtSAS3xMREYWPjkY9vfUjXE6tdaWyX2OwpmLYsGEQQuDVV1+F1WrVpqJEtYihk+qcNWvW4Pfff4fBYMCuZQb7tNowjG7WynWdkRjOIvE9ERFFAj2dcA2EFu2Lh3bd1fWcnmg56rn8m0IkJSVh3759mDNnjjblEtUihk6qUywWC95++20AgFSSBdkWF7mPQom0cBaJ74mIiPTFVVvj7wliHT5aRVJMKDtuv2Hip59+ipKSkqDLJKpNDJ1Up8yePRu5ublIS0uDqaxZ4AU5NQLBNAYhGe2MxGAWie+JiCiS6OnEqxY0nm7r7yhnjeo4+hy+Tq11wViRhWbNmqGgoABffvllUPUhqm0MnVRnlJaW4osvvgAAFB9OgySMgRdWeZ2ErkY3AYYzIiIirUhS8CeGtb7JkNUW+PqQcWJ7AgDg22+/xfHjx7WqGlHIMXRSnfHtt9+ioKAA2dnZMFRkBl6Q3oKmMz3XjYiIIlOktj1C2Hu6wfZ2tZ7RFETwNFjS0KNHD5jNZnzyyScaVoootBg6qU44d+4cvv76awDA6e1xkAI9Xjs3rFo+yzPUNxQiIiKiwAXR45Uc/YVg+wwWp7vOBhg8JUjYscACAFi0aBEOHz4cXJ2IaglDJ9UJ//vf/1BSUoK2bdvCUNHA/wI0CpgUIO57IiJ9qk/H50B7vdVPWGvFagsofMrWBPTt2xeKoqjPLCfSO4ZO0r2ioiLMnj0bAJC7pvIRKf7w1EDocbQzUjsAkfq+iIjqqkg+Lrt7b35Ot3V574dA+g4WD8/WDCB4rv+5CACwcOFCHDlyxO/1iWobQyfp3o8//oiysjK0bNkSsjnF/kNFAWw+pLy62qDW1XoTERGFmy9tqK89YG8nrrXia/CsDK8GawJ69+4Nm82m3mSRSM8YOknXKioq8N133wEAjm7yY5QzDNNpeW2nDximiYj0gcdjr71gn+5wH8bpthvnFAMA5s+fj9OnT2tXD6IQYOgkXZs/fz7y8vLQsGFDGMqrXcvpbrTT3wZAr9d76rFOWojU90VEVFdE8nHY3/fmabqtr2V560d4mlrrirvgWa0cgzUR5513Hmw2m3oZEpFeMXSSbgkhMHPmTABA/v44SL78uYa5IeVoJxERUR1UrYsR0HO8wzDddtfv5QCAn376CRUVFdptn0hjDJ2kW5s3b0Zubi5iY2NhLMtwvZBjtDPY0UqOdtauSH1fRER6F8nH32Dfm3OvONCyqq/n7yinM+fptm7KMVSkITMzE+fOncPChQsD3xZRiDF0km799NNPAADz2URIwuh+Qa0aUD3eyZaIiIhqjxzgKKczx/oV5uDrA3gc9ZQgIW9fNADgl19+0WZ7RCHA0Em6VFBQgGXLlgEATGWZbpeTbAoksyW4M4kAoAj7lwaEVHmzIwZP9yQ/H3tDRETB4yinV5Ktspxg2ylHfZTgOwNSUQmk4lK3rxvLM2AwGLB9+3YcOnQo6O0RhQJDJ+nSokWLYLFYIFniIVsTarwu2RRIFqv9YB5sQ+McNoMc7RShCFOR1klg4CQiqn2R1pY4C9V7C6a9Mlv++j7Y4FnZN5GKS12GT0mJAkqSAABz584NbltEIcLQSbrkuC7B1bWckk35K2xWNjSS1eb/aKer0c0gRjtdBk6tRjsjpbPAwElEVPsipQ0JMXWUs8oPNWq3FCWg8CkVlfz1H6fwWZ2hvCEAYN68ebDZfH/sClFtYegk3Tl27Bi2b98OWZZhrKj6mJQqgdOZvw2qp3AZwGhnSEY4Iw33ERERaa02ArW/7ZfzKGd1/gZPV+/PRfA0VKQgMTEReXl52Lp1q3/bIKoFDJ2kO4sXL7Z/U5ZonzJSyW3gdLzu62int9FMRfgVPL0Gzvo+2ilJDJxEROFSV9sOX2j43lyOclZZwMd2zFPgdPAxeFYZ5ayuWvCUIKP0VAwAYMmSJT6VT1SbGDpJd5YvXw4A6iinz9dvCuE9ePo6fdaH5YQk+T7CWV+DJ8MmEVH41LU2I0y8Bk51QQ1PonoJnlJRifffX7XrPI3l9n7TsmXLOMWWdIehk3QlLy8PO3fuBAAYKlJdXr/pkadl/L1e08M2OZ3WB9xHREThE+mBM5zvz1375ssopzNPwdPX9+d0nadsTkZCQgLy8vKwY8cO/+pCFGIMnaQrK1euBADIlnjIFmNAd6etMdoZ6ONQ3EyzDThw1qfRTgZOIiIKldqcVut2xWrtnL+B08HFDYY8Tqt1RwjIxeUoO2N/ZufatWsDqw9RiDB0kq44QqehLCXwx6E4T7MN9tmbikaBUy0vuNVVeg6eDJxEROGl5zZCRwIOnGoBGrZ3lcHTp2m17ggBQ2EsAGDNmjVa1YxIEwydpBuKomDTpk0AAEN5UnCNppYNbuVoJ6fUEhGR7kV64NTb+5OkwEc5q9Pg2eOGEvuzzXfu3Ilz585pUSsiTTB0km4cPHgQhYWFiI2NhVwRG3R5ktUGBHshvfzXTQMkLRq6SP/EMZgTEYWP3gKZ1rR8f4pG92ewWLW7wdCZPIjSsqCKkG1RaNGiBYQQ2Lx5c/B1ItJIpHeBqQ5xjHJWnARQag6+QMc020CDp6zxoz60+rTp9REkeqwTERFFBo0Dp1pssG2Xc72CKetMHoRNgRAi6OB5eO1ZAMD27duDKodISwydpBtbtmwBAMiF0RAlJRCl5cEXGmgj5SpwChH4aKeWgVOP9FovIqL6ItJHObXi4t4KAQdPV49oC7AsYfurYo7gGUj4VAqLIBfbn3G+bdu2gOpCFAoMnaQbe/bsAQDIJVGAomgWPP0e7fQ0whlI8GTgJCKiUIr0wKnV+/P0hBJ/2zKL1X29/C3rTF7N+gjh96inUlgEKArkYvsdbHfv3g2zWYOZY0QaYOgkXSgqKsLRo0cBAHKp/Qyd/YJ6DW736s80W1+m1PoTPCM5cOp1mi8RUX3CwKndpiTJt/DpKXA6+No+Vk6rdVsnf4Kn4w64FUYkJibCbDYjJyfHt3WJQoyhk3Rh3759AACpwgDJZlB/bp9eos00W6/BU8trOGVEfuAkIqLwYuD0nR/nsL0GT1/r5a0cL4Hzr815D55KYdFfm4WEkmP2Ec4DBw54rydRLWDoJF3Yv38/AEByjHI6aDjN1mPw9Ddwehrt1PJTpcdwp8c6ERHVNwycvgtg0pTb4OnqOk5P3JXjY+BU6+MheDqm1VbZbJm9P8XQSXrB0Em6cPjwYQCAXG6q+aLGwbOGQEc4XQVPBk4iIgq1SA+cWgriKp0awdOXabWuuGg7/Qmc6jougqerwAkAcqm9P8XQSXrB0Em6cOTIEQD26xBc0ur6TjjdWEiWAIMcXJByDp4MnERERMGrhRsH+UoNnoEGTgfn+yC4uHGQz/WpHjxdBE4AkCrsofPYsWMBb4tIS256+ES1Sw2drkY6K4nSMkCSIcXFBLcxISApAkIRgEGHQYrhjoiI3OEoZ+1TFO32e/65gEY5nQkhgNIyCKv7qb6Ok/gnT56EoiiQZY4zUXjxL5DCTlEUnDp1CgAguxvptC+ozTRbWYaQJXsjEuSBvwoNiyIioggihDahpb4ETi1v6hckyXEfCKPB84K+yCsAbDZIhuArdvChLjj06PluX5fMBhgMBpjNZuTlBT6ySqQVhk4Ku8LCQtgcB3Wrl4N6sMFTliGcp9QGGzwry/H72Z2e6LVTodd6ERHpmfOxM5jjaH07BusoeKqCCZ6VgdMhmOB5aEJXmJMVmJMVHHqsh8tlJEhQSu3fnzx5MuBtEWmFoZPC7uzZs/ZvLDIk4UMjE2jwrB44ncoLKHi6ahC1Gu2sb50LIqJI5OpYHsjxvb62CWEOnpKru90HEjyrBU61/ACCpyNwOphT7MHTZfisPJF/7tw5v7dDpDWGTgo7x7QPydsopzN/g6e7wBkoF+Woo52RHDz1WCciIj3ydLz051ha34+7YQqeLgOng7/B00NZ/gTPQw9VDZwO5hRFDZ9Vyrbay2boJD1g6KSwKykpAfDXwdFnvgZPXwKnP6OdHsph8CQiIp+Ok1otUx/UcvD0GDgdfA2e+d4Dny/B89BDXWFO8dy5qB48GTpJTxg6KezKyipv/a0E0Kh4e5SKPyOcvgRPH8ph8CQiqse0GsXkcbaqWgqePgVOB2/BM/8c4OEOs1W26yV4eguczsvlPFoZPG32+hUXF/u0LlEoMXRS2Kmh0xbYn6MoLXM92hnIlFpPwdOPchg8iYjIJ1pd91kfhDh4+hU4HdwFTz8Cp7p9N8Hz0ENd/SqnItUePKXKk/kWi8Wv9YlCgaGTwq6iogIA1IOj31xNsw3mGk5XwTOAchg8iYjqmUCPiVrd4bY+CFHwDChwOlQPngEETrUe1YKnL9NqXalIVXDuoiwADJ2kDwydFHZCiwbWOXhqcdMg5+AZRDkMnkRE9USwx0KtnuVZH2gcPIMKnA6O4BlE4HRwBM+cBwMLnA6xR/cDAL777rug6kOkBYZOCjtJq8ZDUQCL2f6vVmVqQNNneBIRkb4wLNZpWrbRksUadOB0KO/XARWpWp2xJgo/hk4KO0foLG2fFlw5UVFAdDRQYYZkDnIqiSQBsjbBVUiSdp80HYVplR7rRERUGxg2w0Oj/S7ZKsuRg2+kpXIzIASkxMSgyyrr3Q7WWBkZ64Mrp6RFcwDA4MGDg64TUbAYOins5MqDffOWx3H0fhcPN/aBFBUFxMb8NWoaTPCUJMB5em4QjRsDJxFRhGLgDA+tA6dDEMFTKq+cZQUAshRU8HQETgAwlYqggme31rkAgAYNGgReCJFGGDop7OLi4gAAsZYy3Dx2kd/Bs0bgdAgkeFYPnA4BNHIMnEREEYqBMzxCFTgdAgieVQKnWk5gwdM5cDoEGjzvG7YAiRb7c9Dj4+P9L4BIYwydFHaOg6G5TEKX2MO4cexi/4KnLLm/LtSf4OkucDr40dgxcBIRRSgGzvAIdeB08CN4ugycajn+Bc+yXm1rBE4HU6l/7/2+YQvQPvo4zOX2tjo2Ntav9YlCgaGTws4ROivK7AfH82Jz7cHzH96Dp3odpye+BE9vgdPBh0aPgZOIKEIxcIZHbQVOBx+Cp8fAqZbjW/As69UW1jg3z/us5OtopyNwAlBDp2NGGVE4GcNdAaLEygNyefFfYea82FxgzGJ8IwYj+/0NLtdzO63WlQozJAAiyuT6dUnyPUwJ4XZZBk4iogjFwBketR04HWTZbaj0KXCq5XhuN30JnIBjmq0E0a4IN61ajV77DiC+ogIl0dFY1aY1vul9Ea6/fo0aOAGgtNC+7dTUVN/qShRCDJ0UdhkZGQCAknMSFBsgVx57z4vNBcYuxo6RjbDt+45VwqdfgdPBXfAM5E61LoJnxAdOIqL6ioEzPMIVOB1cBE+/AqdjnYQEiOLiGj/3NXACQJTNgsdW/Igr/7cOJqXqc0X779mDCfN/Q+6OVGx9qjGUaHtnpLjA/i9vJER6wOm1FHapqakwGAwQioSSwqph67zYXNzccHWV6zwDCpwO1afa+jqt1pVQdUL0Gjj1Wi8iolBi4AyPcAdOV2UFEDgBAAYZUkJClR/5Gzhf/+MTjDi0ukbgVDdhFWj5dR763nEQcrkCoQAlBfZ2Oz093f86E2mMoZPCzmAwIC3N/ozO4jzXf5KO6zwPP9gj8MDp4AiewQROh8pGUdNRTj1i4CSi+oiBMzz0FDgrr+8MOHA6OAVPfwInADy4+Uf0OHMA3t6NAJC+pgRdXziG0iIJis1+o0VHH4sonCK5m0x1SKNGjQAABafc/0l+9vtANP/6CFBRoc1G/bmOk4iI6hcGztonhHb7PYh8WLMsEVzgdDDIEGaLX4EzrbwQV+asAwB467E4Xm/+XT5Kdtvrm5mZCZPJzf0siGoRQyfpQvPmzQEAecfd/0lG5cmwHTkGpaQMorw88I2ZTBAmo71hs9oAW3ANiXAEVy0bOD1hMCei+oaBs/Zpuc8r22OhRftVGTZFdFRwxeQVQMkrAAAkrTzk83pXHVoLk3A9pdYd2SogzbWfoG/atKlf6xKFCkMn6cJfodP12b8H541C60+P2P8jlOCCp1w5wuk4oypEwMFTVL+terDBU28BT2/1ISIKNQbO2heCwKkWHUw7pij2UU4AkKSAg6eSVwDYbPYvAEphkc/rdj+zP6BtFh60/9usWbOA1ifSGkMn6YLjoJh3rOaf5IPzR6Hja8dhO/rXbcADDp6OUU5nAQbPGoHTIdDgqbeAp7f6EBGFGgNn7Qth4FQ3EUh75hw4HQIInmrgrMbX0c44a2CXFB22xQBg6CT9YOgkXWjTpg0A+/Rai9Px9cH5o9Dx1eOwHTlWcyV/g6fJBBFtch2m/A2e3howf4MnAx4RUXgxcNa+Wgic6qb8aWddBU4HP8pxFzgB+2inL8Gz1Bjt8/YcBID9hjgAQPv27f1enygUGDpJF9LT05GRkQEhJJzM+WuKbdRZ2XXgdPA1eHoKnGpZvgdPnxovBb6FTz0GTj3WiYgoVBg4a18tBk7fy1E8B85Kvox2egqc6jI+BM+N6a29bqu6U1FROCeZYDAY0Lq1/+sThQJDJ+lGhw4dAAAnD9pD5wMLbkfrzz0ETgdvwdOXwKmW5T14up1W605du8EQAycR1ScMnLUvTIHT4wljR9j0EjgBeJ1m60vgVJf1EjzTPj4J4efNZ3emJAEAWrVqheho/0dKiULB6H0RotrRsWNHLF++HMf2GfEFbkKn10/AdviobytXBk+pvAJSTDSkmJi/XpP9fDSKozG0KfbneDq/5G/gdFDg+hSP3gKe3upDRBRKDJy1L8wjnEKSIFWvgw+jmzVUBk+pwly1KD8Cp7qOixsL3ffSdwCAkYlFwI1JwFeFEPD82BTH63/0yABK7P0qIr1g6CTd6NatGwBg15Z4dPjxOGyHfRjldCYUCKsCUaJABuzB09WNg3wqy0XwDDaQVQ+eegt4eqsPEVEoMXDWPp08g7NK8AwkcDpUazdF/jm/A6dD0spDKOzTAoA9cN6WePavcp9PBw6YIa30fCmRBED0icHeBolACdC9e/eA6kIUCpxeS7rRsWNHxMbGwmA2w3o2J/CCHNNtbYrv02pdliP+epanENo878uBAY+IKHwYOGufTgKng5Ck4AKno5zoKIj8c1DyCiCs1oDLUQqLkLQqp0bgBADEyhBfNYa4PcntVFthAsTtSTj3UTYOHrbP9jr//PMDrg+R1jjSSbphNBrRrVs3rFq1CkpSOeRSPy9icCYUQLFBUgSEIYiAJwQgy0DlWdGgg6e7abZERFQ7GDhrn5b7XIYmwVMSPl6/6Y2iQEpOgjibF3RR1hMnawZOh1gZ4tWGwGNpEP8rhPRnGVCiAPEyRN9Y4NYkIMOITatjIIRA8+bN0aBBg6DrRKQVdn9JVy644AIAgC3Fz+dvViMnxEOKi7M3Bn4+f9OlyrBZ4zoQvytW+a8eOz2OkV0iokjFY1zt0mm7orblhiC7wTb7yW0EchlPNUpZGSAEht46zvOCGUbggTSImdkQvzSFmJkNPJBm/zmAZ97oAgDo2bNn0HUi0hJDJ+lK3759AQAiyQxFCuy6CDkhHlJi4l+NiaJAstoCC5+yXKNRCjh4Vv+06bQx1mWdiIiCxWNb7Qrl/g6w9yoJUbUNl6TAg6cjcDqq1CAtoGKUsjI1cAKAYekGDL3NS/B0Y/Dt4yDMxwEA/fr1C6gMolBh6CRdadq0KVq0aAHIgJJaDhHI1BeDoWYjIoT/o56OwOliSm3QI57V66Y3eqwTEVGgeEyrXbWxv/3swbpttwO5bKZa4AQAmIx+B081bFarm2HJBr+rNGTUnTCsXwuYFCQkJKg3ZyTSC4ZO0p3+/fsDAJQ0+xRboQifw6c6rdYdf4Onh8aoxhlTjxXz8roeO0R6rBMRkb94LKtdOtzfXttqX0c7bTbXgdPBj2m2zqObrvg62jlk1J0YMupOGJdsgpJWBgDo1asXjEbetoX0haGTdGfAgAEA7KFTGP4KiN6CZ41pte74EjxdTKt1x2tj5uunTIcNtS7rRETkKx7Daldt728f2lefTg77Ms22Mmy6DZyOKvkw2uktcAL20c4ht9/pcZnBo+1h07hkEwQEbOn20Dl48GCvdSCqbQydpDvt2rVDs2bN7FNsG1S9oZDH4OlqWq07noKnh2m17mg23VaPHSQ91omIyBO9XjMfycK1vz00+361zZ7afE+jm9V5mWbrS+B0MC5e7/a1waPvhGnxJvX/IskMRCtITExEr169fKsrUS1i6CTdkSQJl112GQDAllFa43VXwdPrtFpXPN1gKIBrPFw2boF8wvTYWdJbfYiISD901kb4dfmLM1cnrv0JnA4uptlWv2GQrwaPrjnaOXjsXVUCJwDYMuyjnIMGDUJUVJRf2yCqDQydpEuXXnopAPuZOxFd82HLNa7z9GeUs0pB1W4w5Me0Wlci+gZDegzDRETV8ThVe/TSLjg120G1w9VPOAcSOB1VchrtdHfDIF+YFv412jl47F32wLlwY5VlhEGBUjm1dtiwYQHVlyjUeJUx6VJWVhYuvPBCrFu3DrbMUhhzk1wuJxQBQ0I8pNjY4DaoKJAACNm/abWuSEJASBJP6RAR1TY9BKD6Qm/7WgYkmwZ1MsiA2QIAAQdOAOpoZyCjm9UNHnsXhAREVQubDkpGGWAQaN68Oc4777ygtkUUKuwWk25dd911AABbZimE5OGALQfxnC0nQpbsZWnRkGr1ydJbo05EpFc8XtYePe7rAB7F7ZbBEFzgBABFgZyaosm+iv5jJ6IWuA6cAgK2zBIAwIgRIyAFeeKcKFQYOkm3+vTpg4YNGwKmv6aNVCfHx0GKjwcUAdiUgA/uwmiwn5V0HKyDaCSElgd8Nh5ERN7pMQRFKr3tawVq4Ay6/XW8t2BPZCuVFTIZYWyUFXAxcnw85Ph4SAYD5NgYl8uIRDNEvBXR0dHq/TCI9Iihk3TLaDTimmuuAQDYGhVDoGZDJxlk+3WYDkoQ15dUb6z01rDqAUMwEekNj9W1R2/7WsvRzWrvTfjxzM0qlGqVig7spj6OsCkZDACg/ludLbsYgP1azsTExIC2RVQbGDpJ10aMGIHY2FiIBCtESkWV19RRzur8DJ7qKKfLF/1rYDW9lpMBj4jIM72FoEillxsGOXMTOP0e7XT33gIZ7aweOCv5O9rpCJw1fl5ttFOJs0BJq4AkSbj55pv92gZRbWPoJF1LTk7G1VdfDQCwVp7Nc6gxyunM3+m2nhopPTa24cAQTER6wuNy7dDjftZqhNPLe/N5tFNR3AZOAD6PdjpPp3Wl+s9tje39ogEDBqBp06a+1ZUoTBg6SfduuukmGI1GiGQzlET7aKfbUc7qgpluW523ximSRzn1Vh8iqt/0GIQikd72s9P1m574NNrpy3vzZbTTU9j0Q/XptG6XqxztFFFWSI3MAIBbb71VkzoQhRJDJ+leRkYGLr/8cgCAtYn9rJ7HUc7qPARPj1NrXa5QCw2w3gKe3upDRPWb3oJQpNLbfvYz27kNnn7OXvI42ulH4DRmZbp9zdPoZnWO5axNimGz2dCjRw907NjR53oQhQtDJ9UJt956KwwGA0RqBZSkCu8rVOdpuq0G13/wuZxERLVAb0EoUultP9fSdFqXXI12eptO60pMdI0feZtO644SY4WUbe8LjRs3zr96EIUJu8lUJzRp0uSvaztbFgPxcYEV5DTq6fcoZ3V6a5RDgaOcRKQX9eGYG256vIdBOAOnY1XnvkIQ02mdRzt9nU7ritKyBDabDX369MF5550XcH2IahNDJ9UZY8aMsd/JNr4CtoTCwAtynm6r1TO9IvVaTiIiPdBbEIpEetvHPl6/6YmQJG2CtEEObHSzusrRzkBGNx1sseWwpZZAkiTcc889wdWHqBYxdFKd0aBBA9x0000AAHPKUZfP7fSZorPGlYiIatLjyFsk4j72TKv9I8tBBU4BAUvWGQD253K2bt1am3oR1QKGTqpTbr75ZqSkpECYKmBNPh14QUYDEOBBvwpJsp9J1WL6D0c5iYj+wiBUOyJ9P2s0o0lEmYIrR5YhZAlyelrARdiSi6EkliEqKorXclKdw9BJdUpcXJw6ncScdBRKlC2wBzhLUmDreaLBVCBdYQgmonDg6Gbt0Pt+1qiJ9unxKS5XrLZ/Au0zyLIaOAE/nv1ZXVoCLNlnAdhvrtioUaPAyiEKE4ZOqnOuvPJKdO7cGZAVmFNy7Qd0rQOkLxyjnNUFEjwZ8IiI9B2CIkl928+B3KXe1Y/9He2sDJuOwBkoKTUZ5pQTEEYLGjVqhNtuuy2o8ojCgaGT6hxZlvHwww9DlmXYYvNgjTlnD55Gg2/h02gI/Eyjr+r6iCdDMBHVtvoWhMKlLu3ncIx2eto/vp7grja6WZ2UmuxTMVJqMqTUZNhiLBDJpwAADzzwAKKjaz5+hUjvGDqpTmrTpg1GjhwJADAnHYIiKxAG2bdRz1BMrXUl0qbbEhGFSl0KQnUZ97N7Wk039mF005cT31JqMoTJCMVkgDn5AGw2G/r164e+ffsGX0eiMGDopDpr3LhxyMjIgDCWw5J4GADsB3l/Rj1rg7fgqbdRRb3Vh4giG4NQ6On9+s3a4Klt0/DutFpMpXUETgCwxp2AElWE2NhYPPDAA1rUkigsdNIrJ/JffHw8HnvsMQCANf4EbCb7szuFLLkf9dRqaq276znd4agnEVFN9T0I1Ya6vo9DOcU2gDDu8rpOL9NpXXE1xdYRNh39FMVQpp5U/+c//4msrCy/6kqkJwydVKf16tULV199NQDAnLwfQrKpr7kc9aytqbXuMHgSEdnV9TBUF3AfuxfovqnehwjwZkHOJ8Crj24C9mdympP3A5KCnj174qqrrgqsvkQ6wdBJdd4//vEPZGVlQRgrYEnMqfKax1HPcNHzqCen1hJRbWAYCj3uY9c0vHZTq+m0zqObDtb4Y1CiitVZXRLbZ6rjdNILJwpcXFwcJk6cCACwxp2CNTqvxjKOUU9hNNR29YiIiGpPJF6/qVVvVavgpsWjUAyGGqObDjZTEZSUYwCA8ePHIzMzM/DtEOkEQydFhB49euCWW24BYJ9mqxjKayyjNg4aNDoBP2y6Or2duYzEzgoRUX3B47dHQbfdkmS/p0O0n8/rrM5gAGTJZeAUkhXmlL2w2WwYOnQorrjiiuC2RaQTDJ0UMe6++2507twZkG0wJ++F8DSHNZiGR29BMRTYcSEiqlt43A4t57Y/0H6AwaAGTlcc13EKgxnZ2dl4+OGHOa2WIgZDJ0UMo9GIZ599FklJSVCiSmBJzPW8QuUZS3KDHRgiChUee7VVH47X4eqxatVXcIRND1NyrXEnYIvJh8lkwrPPPov4+Pjgt0ukEwydFFEyMzPx73//G4D9MSrWmLPeVwpH56eufPI43ZaIQoXBM3g8RvtP9qMB1ipsehjddLCZCqGkHgEA3H///Wjfvn3w2ybSkbrS9SXyWd++fate32kssb/geHyKK+EY9axLHS52aoiI9IXH5YD4dF2nFn0C57DpLnAa7H0SxVCOitQ9sNlsGDJkCK6//vrgtk2kQwydFJHuuece9OrVC5AUVKTuhpDN9he8NSKccusez6gTkdZ4vA0Mj8WhU0tTaQHYbyYk2VCRsgeQrWjXrh3+7//+j9dxUkRi6KSIZDAY8PTTT6NZs2YQBjMqUvZ4vrFQdTzgu8fODhFpicdb3/HkX+hoPbrpAwEBc9J+CFMpUlNT8Z///AcxMTHB1YFIpxg6KWIlJibixRdfREJCApSoYpgT90PAj8aao57usdNDRFS7eNwNTa+1Fm8UVJ0lNhe22DwYjUY8//zzfB4nRTSGTopoTZs2xbPPPgtZlmGLPQ1LTI7/hTB4usYz7kSkFR5nPeOxNjRq8UZB1VmjT8AadxgAMGHCBJx33nnB14VIxxg6KeJddNFFmDBhAgDAGpsLS9Qx/wvhqCcREdU2ntwLjdq6UZAbVtNZmOP3AQDGjh2Lq666Kri6ENUBDJ1UL1xzzTUYO3YsAMAStw9W05nACpIk+53v+Mn5CztERETa47FVvyQpoLAJADZjEcyJuwEJuPLKK3HHHXeEoIJE+sOuM9Ubd9xxB66++mpAAszxu2AznAuuQBn8BBERaYEBqyruD32qHCH16bErLihyKSoSdwCSgl69euGRRx7hnWqp3mCXmeoNSZLw0EMPoV+/fvZHqSRug81QFHzB/BQREQWOAasq7g99qgybgQfOMlQkbwNkCzp06IBJkybBaDRqXEki/WJ3meoVo9GIZ555Bt26dQMkGyoSt8JmLAm+YI56EhH5jwHrL7x+U5+CHN0EAMVoRkXSNgjZjJYtW+KVV15BXFychpUk0j92k6neiYmJwcsvv4zOnTsDkhUV8ZthM5QG1aCoGD6JiHzDgPUX7gv9cQqbAfcPZBmKwYKKhC0Qhgo0a9YMU6ZMQUpKiqZVJaoL2D2meikuLg6vvvoqOnToAMhWVCRshiKXBte4OOMni4jINY7oVcV9oT8ahE3IMhTZgorErRCGcjRu3BhTpkxBWlqatnUlqiPYNaZ6KyEhAa+99hratm0LyJbK4GmfauupoZGEABQfNlBfRj15EwQi8hUD1l8YvvXHx6m0kuKhEyDLEJIEm1yBioRNEIZSNGzYEG+++SYyMjI0rjBR3VEfusREbiUlJeH1119Hq1atANmMioRNUCpvLqTpqCc/aURU3zFg/YX7Ql/8nUrr6vdXObopJAmKXAZz4iYIQxmysrLw1ltvISsrS/t6E9Uh7ApTvZeSkoK3334bHTt2VKfaOj9OJWThk50OIqoveLz7C/dFWEnO+1+j6zYdYdMeOEvtI5xyBbKzs/HOO+8gOztbm8oT1WEMnUSwj3hOmTIF559/PiDZYE7YApsxv8oymoZPX6bnEhFFAoYsO06n1QfH70DjsAkAilyMioRNgGxGixYt8M477yAzM1ObehPVcZIQPAISOZSXl+Opp57C6tWrASEhqrQjDBYP12AEe9omEq6HjIT3QEShwS6GHfeDNjQ4YesY6Qw0bEqK4vK6T5sxH+b47YBkQ9u2bfH666/zLrVETjjSSeQkJiYGkydPxqBBgwBJwBy/A9boI+Gulr6xM0VEFDo8saeNyktcghvdhMvAaTWdgjl+KyDZcN555+HNN99k4CSqhiOdRC7YbDa88847+OGHHwAAhvJsmMpbQ4JTQ6PVKZtI6FBEwnsgotBgNyPwfeB8bOV+DHyk09FeB7t+tTIEBKzRR2CNPQAAGDRoEJ544glER0cHuCGiyMXQSeSGEAJff/01PvjgAwCAbE5HVGkHSDD8tZAWwTMSAlskvAciCg12M/zfB66OqdyP/ofG6m20husLCFhi98MWfRQAMHLkSPzzn/+EwWAAEdXE0EnkxaJFizB58mRYLBbI1iRElXSGJKLsLzJ02kXCeyCi0GA3w87X/eDueMr96HtodNc2a7S+gBXm+F1QTGcBAPfffz9uuukmSGwLidxi6CTywcaNG/HEE0+guLgYkhKNqJIukG0JnGLrUNfrT0Shxa6Gb/vA07GU+9B7aPTUJvsSOL216Qrsz+CM3wZhKEVUVBQef/xxDBkyxIfCieo3hk4iH+Xm5uLxxx/H4cOHASEjqrSD/c62HO2s+/UnotBiV8PzPvDlGFrf92EwgVOL9QHYpAL7HWplKxo0aID//Oc/6NSpk/cViYihk8gfRUVFmDRpEtasWQMAMJY3h9HcvOoNhgJR10NbXa8/EYUWuxru94Gvx8/6vg/dhUZfT/wGub7VeByW2L2AJNC+fXtMnjwZGRkeHqlGRFUwdBL5yWq14sMPP8TMmTMBALKlAaLKOkCCMbiC63pwq+v1J6LQqu/djerv399jZn3ff9VDoz+zjFwFTh/XF1BgidkLW9QJAMDgwYMxceJExMTE+FEBImLoJArQ3Llz8dprr8FisUCyxSCqrDNkJSHwAut6aKvr9Sei0Krv3Q3n9x/I8bI+7z/n0BjIJS0Brq9IZTDH7YAwFEOSJNx5550YNWoUbxhEFACGTqIg7Nq1C08//TROnDgBCBmm8jYwWLICn25blxuyulx3Igq9+t7dcLx/Bk7/KQj8/gmOwOnn+jbjGZhjdwOSFcnJyXj66afRs2fPACtBRAydREEqLCzEf/7zH6xcuRIAYDBnwlTeturzPH1R10NbXa8/EYUeuxyBqc/7LZjAGQABAWv0QVijDwMAOnXqhEmTJiEzM7P2KkEUgRg6iTSgKAr+97//4ZNPPoGiKJBs8Ygq6whZife9kEgIbZHwHogodNjlCEww+02Swrffg912Ldddkcphid0JxVgIABg5ciTuv/9+mEymWqsDUaRi6CTS0MaNGzFp0iTk5eVVTrdtBYOlse/Tbet6aKvr9Sei0GF3I3CB7DvH8TjQ/R7O9cOwbavxVOXdaa2Ii4vDo48+yudvEmmIoZNIY3l5eXjxxRexevVqAIBsSUNUeXtIIsr7ynU9tNX1+hNRaLCrETh/913143A41w8mcNbS+gI2WGL2qXen7dy5M5566ik0btzY/20TkVsMnUQhIITADz/8gA8++ABmsxlQTIgq6wCDLc3zipEQ2iLhPRCRdtjNCI4/+y+YwOjq2B3h6ytyEcyxOyEMZZAkCaNGjcLYsWNhNAb5CDQiqoGhkyiE9u/fj+eeew4HDx4EABjMjWEqb+X+JkORENgi4T0QkTbYxQiOr/vP3XGX67v+MRRYo3NgjToMSAIZGRl46qmncP755/u2PSLyG0MnUYhVVFTggw8+wA8//AAAkJQYmMraw2BLqblwpAS2SHkfRBQ4di+C520fejrW+rL/Q7m+L2WEYX1FLoY5dheEoQQAMHjwYEyYMAFJSUmeyyKioDB0EtWS9evX46WXXsLJkycBuBn1jJSwFinvg4gCw65F8DztQ1+OsZG8fgBlCCiwRh2GNToHkASSk5MxYcIEXHLJJd7LIaKgMXQS1aLS0lK8//77+OmnnwC4GPWMlLAWKe+DiPzHboU2XO1HX4+t7n4H/hybg9m+FnXQ8D3YRzd3QxiKAQD9+/fHww8/jLQ0L/dZICLNMHQShcHatWvx8ssv49SpUwAAg7kRTOUtIUk+3OG2rmDwJKp/2KXQRvX96O/xVOv19VCHANYXsFVeu3kEkAQSExPx4IMPYujQoZDYRhHVKoZOojApKSnB+++/j59//tn+A8UEU3kbGGwNfX+up56xQSeqX9id0I5jXwZyHHX+PQR6HA62DB3UwSafhSV2L4RcDgAYOHAgHnjgAaSnpwdWHyIKCkMnUZht3rwZr732GnJycgAAsjUVpvJ2kEVsmGsWJIZOovqDXQntCBHc8TPY9et4HYRkhiV6H2wm+0yijIwMPPTQQ7j44ouDqw8RBYWhk0gHzGYzZsyYgS+++ML+XE8hw2huDqO5KSTI4a5e4Bg8iSIfuxGkAwICNtMxWKIPApIVkiRh5MiRuOuuuxAXFxfu6hHVewydRDpy+PBhvPbaa9i4cSMAQFJiK6fcNghzzQLE0EkU+diNoDCzyedgidmr3iioTZs2eOSRR9CpU6cw14yIHBg6iXRGCIH58+fjgw8+QF5eHgBAtqbBVN4GsqiDZ2sZPIkiG7sRFCZCqoAl+gBsJvujyBISEnDnnXdixIgRMBqNYa4dETlj6CTSqZKSEkybNg3ffvstbDYbICQYzU1hNDeDhDrUmDJ0EkU2diOolgkosJqOwhp9CJBskCQJV155Je655x6kpqaGu3pE5AJDJ5HO5eTk4J133sGaNWvsP1CiYDK3hMGSVXfucsvgSRTZ2JWgWiAgoBjPwBJ9AEIuAwB06NABDz74IKfSEukcQydRHSCEwB9//IF3330Xx44dAwBItniYKlrDYKsDD7dm6CSKbOxKUIgpciEs0fugGAsBAGlpabjrrrtw5ZVXQpbr8A33iOoJhk6iOsRsNuOHH37A9OnTUVxsv2GCbE2FqaI1ZCUhzLXzgKGTKPKxO0EhoEhlsEYfgM10GgAQHR2NW265BTfffDPvSktUhzB0EtVBhYWFmD59OmbNmgWLxQIIwGDNhLGiJWQRE+7qucbgSRTZ2J0gDQnJDEtULmymo4AkIEkSrrjiCtx5553IyMgId/WIyE8MnUR12LFjx/DRRx9h8eLF9h8ICQZLY5jMzSCJ6PBWrjqGTqLIxy4FBUnAAmvUYVijjgKSDQBw4YUX4v7770ebNm3CXDsiChRDJ1EE2LFjBz766CNs2LDB/gMhw2jJhrGiGSSYwls5ZwyeRJGNXQoKkIAN1qgjsEYdBiQrAPtNgu666y707NkTEtsPojqNoZMogqxfvx6ffPIJtm/fbv+BMMBobgKjuak+HrPCTgNR5GO3gvwgYIPNdByWqBxAtgAAWrZsiTvvvBP9+/dn2CSKEAydRBFGCIFVq1bhk08+wd69eyt/aKwMn9nhH/lkB4IosrFbQT4QsMJqOmYf2awMm40bN8a4ceMwZMgQGAyGMNeQiLTE0EkUoRRFwe+//45PP/0UOTk59h8KA4zmbBgtTSCJqPBUjKGTKLKxW0EeCFhhjToKq+kwINun0WZmZuL222/HlVdeCZNJR5eEEJFmGDqJIpzNZsPvv/+O6dOnY//+/fYfChlGS2P7tNtw3HCIwZMoMrFLQW7YbxB0pPIGQfawmZ2djdtuuw2XXXYZwyZRhGPoJKonFEXBH3/8genTp2P37t32HwoZBksWjOYmkEUtPu+MoZMosrArQW4IqQJW09Eqd6Nt1qwZRo8ejcGDB8No1MH9Bogo5Bg6ieoZIQTWrFmDadOmYdu2bZU/BGRrOozmpjAoybVTEQZPosjAbgS5oMjFsEYdgc14EpDsfyOtW7fG6NGjMWDAAF6zSVTPMHQS1VNCCGzevBkzZszAypUr1Z/LtiQYzU0hW9MhIYTBkKGTqO5jF4KcCAgohnxYo45AMeapP+/SpQtuueUW9OvXD7Ish7GGRBQuDJ1EhEOHDmHmzJmYP38+LBb7XQQlJRZGcxMYLFmQEKIz0gyeRHUTuw7kRECBzXgK1qjDEIYSAIAsy+jfvz9uuukmdOnSJcw1JKJwY+gkItXZs2fxww8/YPbs2SgqKrL/UBhhNDeCwdIYsojVdoMMnUR1D7sNVElIZlhNx2E1HQVkMwAgJiYGw4cPx9/+9jc0btw4zDUkIr1g6CSiGkpLSzF37lx88803OH78uP2HApCtDWC0ZEO2pWo39ZbBk6juYJeh3hMQEHIhrFHHYDOeUq/XTEtLw8iRIzFixAgkJSWFuZZEpDcMnUTkls1mw8qVK/HDDz9g3bp16s/tU2+zK6feBnnnQYZOIv1jV6HeE7BVTqE9CmEoVn/eoUMHXHfddRgyZAiiosL0/Gci0j2GTiLySW5uLmbNmoW5c+eitLTU/kNhgMGSCaOlMWQlIfDCGTyJ9IvdhHpNkcpgizoKq+mE+nzNqKgoDB48GNdddx06duwY5hoSUV3A0ElEfiktLcX8+fPxww8/4NChQ+rPJVsijJZGMFgaBjb6yeBJpD/sItRL9lHNM7CZjkMxFqg/z8rKwrXXXosrr7wSKSkpYasfEdU9DJ1EFBAhBDZt2oRZs2ZhxYoVsFqtlS/IMFgbwmBpBNmW5Pu1nwydRPrEbkK9ochFsJpOwGY6qY5qSpKEiy66CNdddx169erF52sSUUAYOokoaAUFBZg3bx5++eUX5OTkqD+XbHEwWLJgtGZBEj5c68PgSaRP7CpELAELbKZTsJqOV7lWs2HDhrjyyitxxRVXoFGjRmGsIRFFAoZOItKMEALbtm3DnDlzsHjxYpSXl1e+IEG2psFozYJsTXP/3E+GTiJ9YlchoggoUAwFsJlOwmY8DUgKAMBoNKJ///4YPnw4LrjgAo5qEpFmGDqJKCRKSkqwePFi/PLLL9i5c+dfLwgDDJaGMFgzIduSa06/ZfAk0id2F+o0+6NOimA1nYLNeBKQLeprLVu2xPDhwzFs2DBeq0lEIcHQSUQhd/DgQcyfPx8LFizAqVOn1J9LSjQMlkx7AFXiK3/I0EmkS+wu1EmKVFY5onkSwlCm/jw5ORmXXHIJLr/8cnTs2BESj71EFEIMnURUaxRFwebNmzF//nwsXboUJSUl6muSLaFyBDQDMuLCWEsicotdhjpBSGbYjKdhM52EYihUfx4VFYWLL74Yw4YNQ8+ePWEymcJYSyKqTxg6iSgsKioq8Oeff2L+/PlYtWoVbDab+ppkS4TBmgGDtSFkERvGWhJRDew26JKQKuyPOTGehmIogOPKBVmW0aNHD1x66aUYMGAA4uPjw1pPIqqfGDqJKOwKCgqwdOlSLFmyBJs3b4aiKOprDKBEOsNug27Yg+bpyqB5Ds6XyHfo0AFDhgzBkCFDkJ6eHr5KEhGBoZOIdCYvLw+///67mwCaYH8GqDUdkojz/RmgRKQtdh3CRpHKoagjmlWDZqdOnTBw4EAMGjSIjzkhIl1h6CQi3crLy8Py5cuxZMkSbNq0qWoAVWJhsKZDtqZDVpIgQQ5jTYnqIXYfAuO4YY+P+89+19niyqmzZ6s8SxMAunTpgkGDBmHgwIHIzMzUurZERJpg6CSiOiE/Px+///47li9fjg0bNsBqtf71ojDBYG0Ag7UBZFsaJBjDV1Gi+oRdCN+4ujOsh30nYLM/R7MyaEI2q6/JsqwGzQEDBqBhw4ahqDERkaYYOomozikpKcGaNWvwxx9/YOXKlSgqKvrrRSFBtqXaR0FtabwOlCiU2IVwzdvjR1zsNyFVwGbIg814FooxD5D+mtkRGxuLnj17ol+/fujTpw+fpUlEdQ5DJxHVaVarFdu2bcOKFSvwxx9/4OjRo1Vel5RYyNY0GGxpkG2pkGAIU02JIhS7EXa+Pueycn8JKFAM56AY8mAz5kEYSqoslpGRgX79+qFfv344//zzER0drXWNiYhqDUMnEUUMIQRycnKwYsUKrF69Gtu2bavyKBb7KGgKZJs9hEpKPG9GRKSF+tiV8DVkOlFQAsWYB5sxH4ohv8poJgC0b98effv2Rb9+/dC2bVtIAWyDiEiPGDqJKGKVlJRgw4YNWL16NVavXo2TJ09WXUCJhsGWap+Oa0uBJGLCU1GiSBDp3YkAAqCAufLazHwohjwIubzK62lpaejZsycuuugi9OzZk9NmiShiMXQSUb0ghEBubi5Wr16NNWvWYNOmTTCbzVWWkZRYyLZUyLYUGGypkERUmGpLVEdFUpcioJBpsYdMQwEUQ36NKbNGoxFdu3ZFz5490atXL7Ru3RqyzDtvE1HkY+gkonqpoqICmzdvxvr167Fx40bs2bOnyiNZAECyxasBVLalQIIpTLUlqiO07FI4h75QdFWqlx9QyLRCMRRUBs18CLkY1Wfst2zZEt27d8eFF16IHj16IC4uLsiKExHVPQydREQAioqKsHnzZmzcuBEbN27Evn37aiwjKXGQbcmVX/bpuLwmlAjBh8IA7vaq+TZ8IKRy2AznoMjnoBjOQcglgFS1bs2aNUP37t3Vr9TU1KC3S0RU1zF0EhG5UFBQgE2bNmHDhg3YuHEjcnJyai6kREFWkmGoDKKSkgAJnCpH9UggXQh/w19tbMPVZiEg5BI1YNpDZnmN5bKzs6uEzPT09KC3TUQUaRg6iYh8UFBQgG3btmHr1q3YunUrdu3aBavVWnUhIUO2JUFWkiDbEiEpSZBENEdDKfL42nUIJvzVxjacNyeZociFUAxFlUGzEJBsVZaRZRmtW7fGeeedhy5duqBr165o2LChJtsnIopkDJ1ERAGoqKjA7t27sWXLFmzduhXbtm1DUVFRzQWVKDWEqmGU14ZSXeWpy6DV4z1qYRv2azGLoMhFUAyFEHKRy1HMuLg4dOrUCV27dkXXrl3RqVMnXpNJRBQAhk4iIg0oioKcnBxs374dO3fuxK5du3DgwIGqzwmtZL9LbhIkJQGykgjZlsAgSvrm3FUI5bMjQ7AdASsUuRjCUGwPmXIhhFxa44Y/kiShadOm6NixIzp27IiuXbuiVatWMBgMmtSDiKg+Y+gkIgqR8vJy7N27Vw2hO3fuxNGjR10uKynRVUOoksAbFRH5QUAAUgUUudj+ZSiGkIsh5DKXy2dmZqJDhw7o0KEDOnbsiPbt2yM+Pr6Wa01EVD8wdBIR1aJz585h9+7d2LlzJ/bu3Yt9+/bh2LFjrhcWRshKPCRbgv1fJd7+L0dFqZ4TsELIpVDkksqb/RRBMRQDktXl8hkZGWjdurUaMjt06IC0tLRarjURUf3F0ElEFGbFxcXYv38/9u3bh71792Lv3r04dOgQLBaL6xWUKKcQGscwShHLHi5LoMillf/aQ6aQK1wubzAY0KxZM7Rt2xZt2rRB27Zt0bp1a6SkpNRuxYmIqAqGTiIiHbJYLMjNzcWePXtw4MABHDp0CIcOHcLJkyfdr6RE2UOoiLNfN6rY/5VELB/lQroloEBIFRByKYRcBkWy/+spXAJAWloamjdvjpYtW6ohs0WLFoiOjq7F2hMRkS8YOomI6pDS0lI1gB48eFD999SpU+5XErBfH1oZQuXKUGoPpDEMpBRyAgJCKreHSamscuSyzB40pXJAct8VadCgAVq2bInmzZujRYsW6ldycnItvgMiIgoGQycRUQQoKSlBTk4OcnNzceTIERw+fBhHjhzBkSNHUFbm+kYqAAABQERDFjGQlJjKcOr4N7byOaMMpeSZfbTSDCGVQcjllQHT+d8Kj8EyKioK2dnZaNKkCZo0aYKmTZuqITMxMbEW3wkREYUCQycRUQQTQuDs2bNqAHWE0cOHD+P48eOoqHA/fdFeAOzBU0RDUqIBx/eV/7d/HwUJfKxEpPorUFYAUgWEXGGfDiuZ1UDpLVQCgMlkQqNGjaoES8f3GRkZkGWe3CAiilQMnURE9ZQQAgUFBTh+/DhOnDih/uv8vdls9rEwEyQl6q9AKkyQRBQgotTvJWGyL8eR07ATEAAsELKlMlBaAMmsfu8IkkKqAGQ3N7SqxmQyITMzE1lZWWjUqBGysrKQmZmpft+gQQMGSyKieoqhk4iIXFIUBfn5+Thx4gROnz6NU6dO4cyZMzhz5gxOnz6t/utzMAXs03lhgqRUhlKYIAljZSA1QhJGNz8z8pmlLtjDoxVCsgJS5b+wQDi+lyyVP7M6BUozIFngz+40mUxo0KAB0tPTkZGRgfT0dPXLETL/v707j46qPNw4/tzJQgIJBGLEsBQVSUBBQQIom0gsm1qsgFapiJSidcEeaqulP5AWFS2iWLeq9XiOC65UUGSpIJuSAAEUSggEwk6SJoRsJEOYzP39MZmbmWyQSSbD8v2ckzP33ne5b5KBk2fue+/bpk0bQiUAoEaETgCAz0zTVFFRkXJycqwgmpeXpxMnTig/P18nTpywtgsKCuR0On08kSQFyzCDJAVJZpC17XqtqcwmySbDtFVsG5Jpq7jSapMqjhuySaahyhTmvX02YdcV/kxrr/LVlAxTppySnJLhrKjt3nZ9mRXHpXKZRrlklFdu1/Aqo9wKkw3J4i1btlRUVJRat26t1q1bKyoqSlFRUV7BMiYmRi1btiRQAgB8RugEADSJ8vJyFRUV6cSJE1YwLSwsVFFRUbWvwsJCFRcXq6ioSHa7PdBDr8iRnmHUI1ieAxdgQ0NDFRkZaX1FRER47UdGRlYLlq1atVJwcHCghw4AuAgQOgEA57SysjIVFRWpuLhYdrtdJSUlKi0tVWlpaZ3bZWVlOn36tNdrTcdOnz67exYbIjQ0VCEhIdaX577ndlhYmJo3b67w8PBqX2FhYQoPD7fKmzdvbgVM1qYEAJzLCJ0AgIuaaZoqLy+XaZpyOp01bpeXl8vpdMo0TZmmKZvNJpvNJsMwrNegoCCvfXed4OBgGcY5cDkUAIAAIXQCAAAAAPyGpwIAAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPwmONADAAB/ME1Tdrs90MMAgHoJCwuTYRiBHgYANCpCJ4ALkt1u1/DhwwM9DAColxUrVig8PDzQwwCARsX0WgAAAACA33ClE8AFL3TTpTJMm2TYZNgMyaj4vM1mSIYhw2aTjIrj7mltNkOGYbPqyDBc21LlvvuYu03V+vJuYxqG66M+z/ZStePWvtXO1ZUMQ6ZNFTuqOG5IhrzamNaxKu2t71nVy1XlmHvfVkOZZ3uvMs9Xo1pZjW3kXe657x5Dbefy2q5lHFX7tNTZxqw2rqr9yTBrGJNZ2XdNfVW0k/X2ML37lLvM47WiP3d9wzA93zrWOVy/mspySbLJ9Dpmq9iuLKs85lVmmDJUedzmcdxmmLLJfVzeZVYbp7XvPpfNcCrIauusbOexH+TRtyQFyX3c6VHPWVFW0af16rTG4W5nk7ttRRurzFU/yDBlWGWuY+42QVJlO7nOY1S0D/Iao1mxXzGmil+La9+QTVKQYcgmQ0EVv2ibjIpjNhkyFGTYVHYqSL/87aUCgAsVoRPAha/ccP35Z7j+yLNCZ8Vf864yQ7LZ5JlSDNmqJA+PdjWmnir1Dc+ymrY992s6XlM7eYRcWaHTepXnsSrbFWVeAcqrXQ1tqn3LRvVhGjV9GbWX1drmLH9UDezzzEG1kUOnUT10epZVDZ2Vx6v2Z9ZYVhlOPcq99k3v9tXOZXqXeYRO95ekyv3ayqqEUSt0VjnmGVaDPPZdodNpfU4TJMMV3gyP8FbxvgqSZDMMj1ej4lyudq6+pCCj8i0cZLjbuV5rLLO2K8fvCqtmRaA1zyp0Vu3PVjFmeR1zj7HyXABwoWJ6LQAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyGdToBXPiCTJmms2LdSY91KW2Gaz1Jm7zXu1SVfevL9Cir8iVVrHXoecx7QUizlsUnqx6v3He3q7Jtutu521T0UVHRlHe51wqApmffle2rHTOrFHmuv3lW62MatZepjvZnW1ZXn2c4n6Eztalpvc2q/Zk19FHLOp2q3s7wWo+zokzuMo/Xirbu+q61MSt/vN7nqLJOp3xfp9OsaGtWfEmytk25j8u7TKachikZzoq+PM/lrPh+PMtdZabhdPXj0Xdlmfdx9/qYZsVamZ6vkqxtZ8U/a/erKradcv2zd1bsu39U1dfpNGSrKA2Saz1Qw6jcrlxL1HvtT/e5bFYf7nVGPdYSlWEdMyq2y07V9O8QAC4chE4AF7yyvv8L9BD8w/Pveh8YVV4BN/dbyxnogfjMneaZ0AUA5wL+NwYAAAAA+I1hmmYDPicHgHOTaZqy2+2BHsYZ2e12jR49WpK0ePFihYWFBXhECCTeDwgLC5NhMP8AwIWF6bUALkiGYSg8PDzQw6iXsLCw827M8B/eDwCACwXTawEAAAAAfkPoBAAAAAD4DaETAAAAAOA3hE4AAAAAgN/w9FoAAAAAgN9wpRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPgNoRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPhNcKAHAAAXq5KSEn3yySdau3atsrKyZLPZ1LFjRw0dOlRjxoxRSEhIoIeIJrBs2TLNmTPnjPVeeuklJSQkNMGIAABoXIROAAiArKwsTZ06VVlZWZKksLAwnT59WmlpaUpLS9O3336r+fPnKzIyMsAjRVOx2WyKioqqtZwPIQAA5ytCJwA0MYfDoaeeekpZWVmKjo7WX/7yFyUkJMjpdGr16tWaO3eu0tPTNXv2bP39738P9HDRRC699FJ99tlngR4GAACNjns6AaCJLV++XBkZGZKk2bNnW1MmbTabEhMT9cQTT0iSkpOTtWXLloCNEwAAoDEQOgGgiS1fvlyS1KtXL3Xv3r1aeWJiomJjY73qAgAAnK8InQDQhOx2u/773/9Kkm644YYa6xiGoX79+kmSNm/e3GRjAwAA8Afu6QSAJnTw4EE5nU5J0hVXXFFrPXdZXl6eCgsL1bJlyyYZHwInPz9fkydP1uHDh1VeXq7o6Gh1795dt912m3r16hXo4QEA4DOudAJAE8rNzbW2Y2Jiaq13ySWX1NgGFy673a49e/YoODhYpmkqMzNT3377rR5//HE9//zzcjgcgR4iAAA+4UonADShkpISa7tZs2a11gsLC6uxDS480dHRmjhxom666SZ17NhRoaGhKi8vV2pqqt577z2lpKRo6dKlCgsL0+9///tADxcAgHrjSicAAAHUt29fTZo0SZ07d1ZoaKgkKSgoSD169NCLL76ogQMHSpIWLVqkw4cPB3KoAAD4hNAJAE2oefPm1vapU6dqrWe322tsg4uLzWbTww8/LElyOp3asGFDgEcEAED9EToBoAl53quZk5NTaz3P+zg92+Di06FDB7Vq1UqSdOzYsQCPBgCA+iN0AkAT6tSpk2w213+9+/fvr7Weu6xNmzY8uRYAAJzXCJ0A0ITCwsLUvXt3SdLGjRtrrGOapjZt2iRJ6tOnT5ONDeemo0ePqqCgQJIUGxsb4NEAAFB/hE4AaGIjRoyQJG3btk2pqanVylevXm1No3TXxYXJNM0zlr/xxhuSXPd39u/fvymGBQBAoyJ0AkATGzFihK688kqZpqkZM2Zoy5YtklwPilm9erXmzp0rSerXr5969+4dyKHCz7KysjRlyhQtXrxYx44ds0Ko0+nUzp079cc//lHr16+XJP3iF7/Qz372s0AOFwAAnxjmmT5mBQA0uszMTD3++OPKysqS5Jp263Q6VVZWJknq0qWL5s+fr8jIyEAOE36WmZmpu+++29oPDQ1VeHi4SktLrfeCJI0aNUpPPPGEgoNZXhsAcP4hdAJAgJSUlOiTTz7R2rVrlZWVJcMw1LFjRyUmJmrMmDEKCQkJ9BDhZ6dOndKSJUu0c+dO7d27V/n5+SoqKlJoaKhiYmLUvXt33XrrrerRo0eghwoAgM8InQAAAAAAv+GeTgAAAACA3xA6AQAAAAB+Q+gEAAAAAPgNoRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPgNoRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPhNcKAHAAAALm52u10//vijdu/erT179mjPnj3Kzs6WJE2cOFGTJk0K8AjPXmZmpu6+++4z1rvvvvv029/+tglGBACBR+gEAAABtWvXLv3pT38K9DAaXatWrRQUFFRjWfPmzZt4NAAQOIROAEDAvfLKK1q4cKGuu+46vfrqq4EeDgIgMjJScXFxuvzyy/XNN9/IbrcHekgN9vbbbys2NjbQwwCAgCN0AsB57OTJk0pPT1daWpp2796t3bt36+jRozJNU5L06aef+u2PXtM0NXbsWOXk5Gj8+PF68MEHfeonPT1dixYtkiRNmTKlEUcYWBkZGdq0aZN27NihjIwMHT9+XOXl5YqMjFTnzp114403asSIEYqIiAj0UAPu2muv1TfffGPtt2nTRu+8844kqby8PFDDAgA0EkInAJzHpk6dqvT09ICcOy0tTTk5OZKkQYMG+dzPm2++qfLycvXr1089evRorOEF1NSpU/Xjjz/WWJaXl6e8vDxt3rxZH374oaZPn66+ffs27QDPMVWnoI4dO1b/+te/ZJqmUlNTz6qPjIwMLVy4UFu3blVubq5sNptiY2M1YMAAjRs3TlFRUX4YOQDgbBA6AeA85r6iKUkRERHq0qWLDh48qLy8PL+fe/369ZKkmJgYdevWzac+tm/frpSUFEnS+PHjG21sgeYO45GRkRo0aJB69uypdu3aqVmzZsrMzNSyZcuUlJSkvLw8TZ8+XfPmzdN1110X4FGfO8LDw9WiRQsVFxdrx44dKikpqfMeyAULFujtt9+W0+mUJIWFhcnhcCgjI0MZGRlaunSpXnjhBcXFxTXVtwAA8EDoBIDz2KhRoxQVFaX4+Hh16NBBhmFo6tSpTRo6BwwYIMMwfOrj448/liTFxsZeUKGrQ4cOmjBhghITExUaGupVFh8fryFDhuijjz7SW2+9pbKyMs2bN0/vv/9+gEZ7bgoPD1dxcbHKysr0zTffaNy4cTXWW7Jkif75z38qPDxcv/71rzVq1ChFR0ervLxce/fu1ZtvvqmtW7fqz3/+sz744IMmfYDPrFmzdOTIEZWWlqply5aKi4tTYmKiEhMTFRzMn2AALh6s0wkA57GxY8fqlltuUceOHX0Ofr44fPiwDh48KMn3qbU5OTlKSkqSJA0fPrxJx+9vc+fO1ciRI6sFTk/jx49Xly5dJEkHDhzQvn37mmp45wXPKbdfffVVjXVKSkr0xhtvSJJmz56t++67T9HR0Vb7+Ph4vfjii4qPj1dOTo6WLFni/4F72LVrl8rLyxUcHKy8vDwlJyfr2Wef1SOPPKLc3NwmHQsABBIfswEA6m3dunWSXFN6e/Xq5VMfK1eutKZDDh069KzaOBwOfffdd/r++++Vlpam/Px8lZeXKyoqSldeeaUSEhJ0yy23WMHDbfDgwZKkESNGaPr06Tp06JC++OILbd68Wbm5uWrRooXi4uJ07733qmfPnla7U6dOadmyZVqxYoWOHDkiu92udu3a6ec//7nGjRunZs2a+fS9u11//fXWPbmHDx9W586dfe7rwIEDWrx4sX766SdlZmbKbrcrIiJCkZGRio2NVe/evTVw4ED97Gc/86l/h8Oh//znP1q9erUyMjJUUFAgwzDUsmVLRUVFqVu3bkpISNCAAQMUEhLi1bbqz//AgQP68ssvlZKSotzcXJWWlurZZ5+t9QOMgwcPKi0tTV27dvU6vnbtWhUXF6tLly613hcbHBysxMRE7d69W5s3b9Zdd93l0/d/tkJDQ3XHHXdo6NChiouLs66sHj58WJ9//rkWL16sXbt26cknn9Rbb73FFU8AFwX+pwMA1Jt7au2NN97o8x/NGzZskOS677FTp05nrL93717NnDlTR44cqVaWk5OjnJwcbdy4Ufv27dP06dNr7WfNmjV67rnnvJbkOHXqlJKTk7Vx40Y98cQTuv3225Wbm6vp06crLS3Nq/3+/fv19ttvKzk5WfPmzWtQ8HQ4HNa2zeb75KPFixdr/vz51Z70WlBQoIKCAh05ckSbN2/Wvn37NGPGjHr3n5+frz/84Q81PrTK/bNPT0/XV199pQULFqhDhw619rVs2TLNmzdPZWVl9RrDhg0bqoXOHTt2SHKF0jvuuKPWtqdOnZIkZWVleR3PzMzU3XffXa9xeLr33nv10EMPeR2Ljo7WtGnTqtXt2LGjpk2bpvbt2+v1119Xenq6VqxYoVtvvdXn8wPA+YLQCQCol9zcXO3atUuS71Nry8rKtHPnTklSt27dzji1Nj09XY8++qhKS0slSb169dKwYcPUqVMnhYSE6Pjx40pNTbWuwNZm3759+u6779S6dWtNmTLFOveWLVv0wQcfyG636+WXX1bPnj31zDPPaO/evbrjjjs0cOBARUVF6ejRo3r//fe1b98+bd++XQsWLNADDzzg089AkrZu3WptX3HFFT71kZGRYQXOli1b6vbbb1fPnj0VFRWl8vJyHT9+XLt371ZycrLPU5jnz59vBc7evXtr2LBhio2NVYsWLXTy5EkdPHhQP/30kzVduja7d+/WypUr1bJlS40bN049evRQSEiIDhw4oMsuu6zGNsHBwXI4HNq6dasmTZrkVeaeolpWVnZW9zG7w2cgjRs3Tl988YWys7O1fv16QieAiwKhEwBQL99//71M01RoaKj69evnUx/79u2zrvLFx8fXWdfhcGjmzJlW4Hz88cc1ZsyYavX69++vyZMnKzs7u9a+0tPT1aVLF82fP1+RkZHW8auvvlodOnTQ008/LYfDoUcffVSFhYWaO3euEhISrHpxcXHq06ePJkyYoNzcXC1atEgTJkyotuTH2Vi3bp32798vyRW8O3bsWO8+JGn16tXWFc6XX37Zuk/U06BBgzR58mQVFBTUu/9Tp05ZYX7QoEF65plnqoXXnj17avTo0SotLa3ziu3+/fvVoUMHvfbaa2rTpo11vK6nH0dHRys7O1t79uyR0+n06t9zevasWbPq/b21bdu21vtFz0ZYWFi929hsNnXr1k3Z2dnKzMz0+dwAcD4hdAIA6sU9tTYhIUHh4eE+9eE5RdYzfNRk5cqVOnr0qCTX03prCpye2rZtW2f5U0895RU43YYMGaKYmBjl5OToxIkTGjdunFfgdIuIiNDIkSP1wQcf6MSJEzpw4EC978XMzc3VSy+9JEkyDEO/+93v6tXek/sKn3vJnLq0atWq3v0XFRVZHxD07NmzzqulZ/N+mDZt2hl/5zX1abfblZubq0svvdQqc/dT1wcNdbHZbKzfCQBNgKfXAgDOWnFxsbZt2ybJ96m1knT8+HFru2XLlnXWdYdcSbrnnnt8PqfkmsJaWzAzDMOrbNiwYbX241nv2LFj9RqD3W7X9OnTrbBY9eFF9RUTEyPJ9btZvXq1z/3UplWrVtZTeFetWqWSkhKf+4qJiakxyNfF855Zz/eNJPXo0UOSa9ru+fI0WKfTaU1Pj42NDfBoAKBpEDoBAGctKSlJDodDQUFBGjBggM/9eN5bV9NVR0979uyR5LqqdTYPHKrLmdp7jqWup7x61qtPCDt9+rT+7//+z3o40cCBAzV58uSzbl+TYcOGWcHs6aef1iOPPKKPPvpI27dvt6YkN0RISIhGjBghSUpNTdVdd92luXPnatWqVfUO3L48ndczdHo+/ElyXZ2OiIiQw+HQ66+/LtM0a+3H6XSqqKio3uevr7rGIMm6n1Ny/f4B4GLA9FoAwFlzX3Xs3r17g6Ylet4DeaanmObn50uqvKLXEGe6B89z6mhdU0Vruq/wTBwOh2bMmKFNmzZJkvr27atZs2b5dD+op3bt2un555/Xc889p5ycHO3YscN6qmtQUJC6du2qwYMH67bbbjtjwK/NY489prKyMq1YsUKFhYX6+uuv9fXXX0tyfRjQt29fjRo16oxXbOu6ql1UVOT19F33z9XzAwq73a6SkhJrGZLIyEg99thjmjNnjlatWqXi4mI98MAD6tq1q2w2m5xOpw4dOqTk5GQtWbJEEyZMqPMKdmN47LHH1KdPH/Xv319XXHGF9XTno0eP6osvvtC///1vSa4A7g7zAHChI3QCAM5KWVmZNm7cKKlhU2sl1/2HboWFhQ3q63zgcDj09NNPW8vEJCQk6Nlnn7WmrTZU79699fHHH+uHH37Qxo0btX37dh05ckTl5eXauXOndu7cqY8++kgzZ86sdT3LujRr1kzTp0/Xfffdp++++07btm3Trl27VFpaqry8PC1fvlzLly/X4MGDNWPGjFqXkanrIUO/+c1vqi1pIrmmzro9+eST1lqfbiNHjlRZWZn+8Y9/aOPGjdq4caNCQ0MVHh6ukydPei1L0xT+97//6d1339W7776roKAgtWjRQqdPn/a66nz11VfrmWeeYY1OABcN/rcDAJyVlJQU6w/nhoZOz+UxzhQ6o6KilJ2dfd7cs1eVO3C6rxJff/31mjNnToPW96xJaGiobr75Zt18882SXFeIt2zZohUrVig5OVmFhYWaMWOGFixYoOjoaJ/O0bFjR91///26//77VV5ervT0dG3YsEGLFy/WiRMntG7dOr3zzjt69NFHG/NbO6PRo0erb9+++vLLL5WSkqLMzEwVFxerefPmat++va655hoNGDBA119/vd/H8vDDD2vLli1KS0vT8ePHrfd327ZtFRcXp6FDh2rIkCENvsINAOcTQicA4Ky4Q1OXLl0a/AAUzzUpDx06VGfd+Ph4ZWdn6/jx4zp06FCd91qea6oGzl69eun5559v9MBZk6ioKCUmJioxMVEvvfSSFi1apNLSUn3//fcaPXp0g/t3T93t2rWrRo4cqfvvv192u10rV670KXR+9tlnNR6/5557dPToUcXGxurTTz+ttX1sbKwefvjhep+3sQ0ZMkRDhgwJ9DAA4JzCg4QAAGfkdDr1ww8/SGqch5+0bdtWl1xyiSRZT/KszeDBg63tBQsWNPjcTcXhcGjWrFlW4OzZs6deeOEFn9Z2bCjPKbXue2QbU2xsrLXOqC9rgdYmPz/fWi7nmmuuabR+AQBNi9AJADijHTt2WGHFMwQ2hDsIHTx4UCdPnqy13tChQ61As3TpUi1cuLDOfn1ds7ExORwO/e1vf9O6desk+Tdwrl279oxB0n0vriS1b9++Xv0fO3ZMKSkpddbJzMzUwYMHJbkebNRYUlNTre0bbrih0foFADQtptcCwHnsyJEj1pNK3dzrP0rSmjVrvJ4yGx4e7tPUP/fVunbt2vm07EVNbr75Zi1dulROp1MpKSm66aabaqwXHBysv/71r3rkkUdUWlqqV155RevWrdPw4cPVqVMnhYSE6Pjx40pLS9OaNWsUHx/v9aCZQJg9e7bWrFkjyRXyHnroIWVmZtbZpnXr1mrdunW9z7Vw4ULNnj1bvXv3Vu/evXX55ZerVatWOn36tLKzs7Vy5UrrKvVll11W76VusrOzNW3aNLVr104DBgxQt27d1LZtWzVr1kwFBQVKTU3VokWLrKcQjxkzpt7fQ202b94syXW/6o033tho/QIAmhahEwDOYzt27NCcOXNqLX/zzTe99i+77LIGhc7GXFcwISFBMTExysnJ0YoVK2oNnZJ01VVX6dVXX9XMmTN17Ngxbdu2Tdu2bauxbnx8fKON0VerV6+2to8ePaqHHnrojG0mTpyoSZMm+XS+srIyJSUlKSkpqdY67du315w5c+pcCqYux44d0+eff15ruc1m0z333KNf/vKXPvVflcPh0KpVqyS5rq77utwLACDwCJ0AgDrt3bvXukrX0KfWegoKCtKdd96pt956S8nJycrPz69z7c+4uDh9+OGHWrFihdavX6/09HTr/sHWrVurc+fO6tOnj2655ZZGG+P54Omnn9amTZv0008/KSMjQ3l5edZ021atWumqq67SoEGDNGzYMJ+WaLn22mv12muvKSUlRampqcrOztaJEyd08uRJhYWFqV27drr22mt12223NdpVcEnWe0KSxo4d22j9AgCanmGaphnoQQAAzl3vvfee3nvvPbVu3VpffvllnWst1ldxcbF+9atfqbCwUA8++KDGjx/faH3j/Pbkk08qKSlJvXv31ssvvxzo4QAAGoAHCQEA6uSeWtu/f/9GDZySFBERYQXNTz75RCUlJY3aP85PqampSkpKkmEYmjJlSqCHAwBoIEInAKBWp0+f1qBBgzRx4kTdeeedfjnHmDFj1KFDBxUUFNS6ViMuLu+8844kafjw4erWrVuARwMAaCim1wIAAm7Xrl1KSkpSRESE7rrrrkAPBwFUXFyszz//XKZp6s4776zzPl8AwPmB0AkAAAAA8Bum1wIAAAAA/IbQCQAAAADwG0InAAAAAMBvCJ0AAAAAAL8hdAIAAAAA/IbQCQAAAADwG0InAAAAAMBvCJ0AAAAAAL8hdAIAAAAA/IbQCQAAAADwG0InAAAAAMBvCJ0AAAAAAL8hdAIAAAAA/IbQCQAAAADwG0InAAAAAMBv/h8nPgrLTOm90wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC4gUlEQVR4nOzdd3wT5eMH8M9d0nQPoIWyStkFiiwBEZSNAxURERUE3F8HuPfeWxw/xS2gCLjAgciQIYJMkb33kAKlpbtpcs/vjzRH0mZckmuTtJ/36xUtzd1zT9omz33uee55JCGEABEREREREVGIk4NdASIiIiIiIiItGGCJiIiIiIgoLDDAEhERERERUVhggCUiIiIiIqKwwABLREREREREYYEBloiIiIiIiMICAywRERERERGFBQZYIiIiIiIiCgsMsERERERERBQWGGCJiIiIiIgoLDDAEhERERERUVhggCUiIiIiIqKwwABLREREREREYYEBloiIiIiIiMKCLgH2wIEDkCQJkiRh/PjxehRZK/Xr10/9ORIRuTN+/Hj1s+LAgQPBro5qypQpar2mTJkS7OqQzhRFQbdu3SBJEiZMmBDs6lCY4OcCUWU1OTtZrVa0bdsWkiThscceq5JjVFsP7JQpU/Dss8/i2Wefra5DBt2cOXPU15ybmxvs6lA5i8WCRYsW4dFHH8WAAQPQsGFDREZGIi4uDi1btsS1116LOXPmwGq1+lTuli1bMGHCBGRkZCAuLg6JiYno2LEjHn30URw8eLCKXg0R1Wbz5s3DTTfdhIyMDCQmJiI2NhYtWrTAgAED8Pzzz+Pff//V7ViffPIJ/vnnH0RFRXk8KTlw4AB++OEHPPbYYxgyZAjq1aunnqj169dP8/Ecg4+Wx9KlS72WWVRUhE8//RRDhw5FkyZNEBUVhaioKDRq1AhDhgzBu+++G1B7/ddff0GWZbVO6enpfpflyrFjx/D888/jggsuQEpKCiIiItS2a+TIkZg1a5bmtuv48eN45plncN5556FevXqIjIxEkyZNcNFFF+GLL76AxWLRte7B1LFjR/V38scff/i8/19//aXu3759e5/3F0JgxYoVeO6553DxxRejadOmiIqKQkxMDJo1a4bhw4fjq6++Qmlpqdeyli5d6tP7wttFg7y8PCxduhRvvfUWrrvuOrRp08bpb9iXi6RFRUX4+++/8f7772P8+PHIzMyE0Wj06T3qDz3f1yUlJZg8eTIuvvhipKamIjIyEikpKejZsydefvllZGdnV8lrCIYJEyaov5unnnrK5/2LioqQmJgISZJgNBpx7NgxAIDBYMCTTz4JAHj77bexZ88eXesNABA62L9/vwAgAIhx48a53KZv377qNrXFuHHj1Ne8f/9+r9vXxp9RdVu8eLGoW7eu+nP29OjevbvYs2ePpnLfeOMNERER4bas+Ph4MWPGjCp+dVRb+PrZUl2+/PJLtV5ffvllsKtTo+3bt0/079/f6+fYsGHDdDleYWGhSE1NFQDExIkT3W733nvveaxP3759NR/T8e9Jy2PJkiUey1u7dq1o3ry513Lq168v5s+fr7mediUlJSIjI8OprGbNmvlcjjtTpkwRcXFxXuvfqVMnr58L06ZNEzExMR7L6dKli9i7d2/A9Q6Fz4W33npLrcOYMWN83v+mm25S93/99dd92nfbtm2iUaNGmv6G27RpI9atW+exvCVLlvj0vvD0M8/NzRWSJHnc35c2xtv5lbf3qD/0fF+vW7dOpKeney3n999/D7jeWrJTVVu/fr1ah7S0NKEoik/7T5s2Td3/0ksvdXrOYrGINm3aCADi2muv1bPaQgghjNBBeno6hBB6FFWrVdWVKTrr6NGjOH36NACgbt26GDRoEM477zw0bNgQZWVlWLNmDaZNm4a8vDysXbsW/fv3x5o1a5Camuq2zI8++ggPPfQQACAiIgI33HAD+vbti7KyMsyfPx/ff/898vPzccMNNyApKQkXX3xxtbxWqrmmTJnCoXi12M6dOzFgwAD1ave5556Lyy+/HM2bN0dUVBROnDiBjRs3Yu7cubod88MPP8Tx48dhMBjw8MMPu92uYu9fdHQ0WrdujU2bNgV0/AkTJmDAgAEet8nMzHT73MGDBzFo0CCcOXMGAJCamorx48ejdevWMBqN2LdvH6ZNm4b9+/fjxIkTuPzyy7F69Wp07txZcx1feOEF7NixA7GxsSgsLNS8nxazZ8/GjTfeqJ5rde7cGddccw3S0tJQWFiIrVu3YsqUKcjLy8PGjRsxYMAAbNq0CXFxcZXK+uqrrzB27Fj130OGDMGwYcOQkpKCw4cPY8aMGVi3bh02bNiAIUOG4O+//0ZKSoqur6e6jRkzBo888ggsFgt+/PFHfPjhh4iPj9e0b1FREb777jsAtp6lG264wadjZ2dnq+/V2NhYDBo0COeffz6aNGkCANi0aROmTJmCrKws7Nq1CwMHDsSKFSvQoUMHr2WPGjUK1157rcdtunbt6vY5IYTT+bskSWjVqhVOnTqFnJwcLS/PScX3f1paGsxmM44fP+5zWVro+b7eunUrBgwYgLy8PABAhw4dcMMNN6B58+bIzc3FvHnz8NNPP+HEiRMYPnw4Fi1ahPPPP79KXld16dq1K8455xxs2rQJhw4dwuLFizFw4EDN+zueh9x4441Oz9nbiltuuQXffvstnnrqKb9GL7ileyR2ozb2LoZqL0lt9tVXX4mOHTuKb775RpSUlLjc5siRI6JDhw7q727s2LFuyzt27Jh6FdtoNIqFCxdW2sbx6nPTpk1FcXGxbq+HKJSEQk9LTVdUVCRat24tAIiYmBjx7bffut1WURRx+PDhgI9ZVlYmmjZtKgCIIUOGeNx29uzZ4q677hJffPGF2Lhxo7BYLE49Df72wAb69+TYg3bRRReJoqKiStuUlZWJsWPHqtv50nu9ceNGdRSOY2+fXj2wLVq0UMt8+umnXfaUnDp1SpxzzjnqdpMmTaq0zYkTJ5x6cSdPnlxpG0VRxL333qtuc+ONNwZU91D5XBg2bJhaj88//1zzfo69TJdddpnPx12+fLlIT08XH330kcjLy3O5TU5OjtN58oUXXui2PMce2Geeecbn+jjKz88X1157rXjjjTfE4sWLRW5urhDC+Zzdl/PXsWPHipdeekn8/vvv4uTJk0II53NhvXtg9Xxf9+zZ06mXvqysrNI233//vZBlWQAQbdu2dbmNVqHQAyuEEJMmTVLrccMNN2je7+DBg2rvfb169URpaWmlbc6cOSOioqIEAHHrrbfqWW3BAFuFGGBDT05OjqYhEps3b1Z/d9HR0aKwsNDldo6N/EMPPeS2vJEjR6rb/d///Z/f9ScKZaFyolqTPfLII+rPePbs2dVyzNmzZ6vHnDZtms/7h0KAbdy4sVrW1q1b3W6Xk5MjjEajACDq1q2rqWyLxSLOPfdcAUBcfvnlTq9XjwC7e/dutbwGDRoIq9XqdttffvlF3faqq66q9Pyrr76qPj9ixAi35VitVtGxY0cBQMiyLHbt2uV3/UPlc2HOnDlqPS644ALN+w0YMEDd74cffvD5uPn5+cJsNnvdLisry2lY9759+1xup2eAdcffAOtKVQZYvd7Xq1atUstp3Lixx46GO++8U932s88+87vuoRJgT5w4oV58i42NFfn5+Zr2e/7559X6T5gwwe129vPf6Ohotxdw/FHlsxDbZ9ZdtmyZ+j1XN5m7m9xJURR8++23GDVqFJo3b46YmBjEx8cjIyMDd9xxBzZv3uyxbs8++2ylm8f/+OMPXHfddepwq4o3qVssFsyfPx8PPPAA+vTpg/r168NkMiE+Ph5t2rTB+PHj8eeff7o9pn2G0KlTp6rfa968eaXX7O5npWUW4tWrV+O2225D27ZtER8fj9jYWLRs2RLjxo3D4sWLve5fcUKNwsJCvPnmmzj33HNRp04dxMbGokOHDnjsscf8GkYSqpKSkjT9fDMzM5GRkQEAKC4udnkDuhBCHVbkbVbOiRMnql/PmjXL12oH5O+//8Ydd9yB9u3bIykpCVFRUUhLS8OoUaO8DjF0nCzC/h49dOgQHnjgAWRkZCA2NhZJSUk4//zz8eGHH2qe9KOgoADvvPMOBg8ejEaNGiEyMhJ169ZF9+7d8fTTT+PkyZMe96/4XrFarZgyZQoGDx6Mxo0bw2g0upw8JSsrCw8//DDat2+P2NhY1K1bFz169MBbb72FoqIiALZbIlxNvvL777+rx3T8fXoyceJEdZ958+Zp2kcLb7MQV9Xv7ddff8Xll1+O1NRUREVFIT09HaNHj8bff//t82swm834/PPPccUVV6gTmiQlJeGcc87BAw884HbikJ07dyI2NhaSJCExMRH79+93e4ycnBykpaVBkiQYDAaPn9vhoLCwEJMnTwYA9O/fH1deeWW1HPerr74CYBsOPHz48Go5pt5OnDihft26dWu32yUlJanDZbUOA37nnXewbt06xMXF4YMPPgisoi441r1ly5aQZfenbm3atFG/dlV/x/MDT0NhZVnG6NGjAdjOw2bOnOlTnf2xdu1apKSkQJIkREZG4ttvv620TSDnhEOHDkX9+vUB2CZl2rdvn9c6HTp0CEuWLAEAJCcn4/LLL/f5dcXFxSEiIsLrdvXr18eFF16o/tvb+S3p9752fF+MHDkSUVFRbstyHH7/zTff+FRff5w8eRLdu3dX2/T777/f5W2b/p7rpaSk4LLLLgNg+9m4et+54phxKg4fdmT/HCkuLsb333+vqWxN9EjBnq4iOF7F8fRwdRVpz549onPnzh73k2VZPPXUU27r9swzz6jbLl68WNx1110uy3G8wtSvXz9NdR43bpzLLnPHq03e9nf3s3KnrKxM3HrrrV7Lvuaaa1wOpbCzb9e3b1+xd+9e0b59e7dlNWvWrFb2IHfv3l39GaxatarS8469tJmZmR7LslqtIiEhQf2b1fMqlDsFBQVi1KhRXv9Whg4d6rY+Fa/0zps3TyQlJbkta/DgwW6HZtv99ttvon79+h7rFB8fL3766Se3ZTi+V7Kzs0WfPn1c/t06Wrx4sahTp47bY3bs2FEcOnRINGvWzOX+VqtVnSiiTp06XoeCFxcXq8dLS0vz2GviK2+jO/T+vVksFo+fa7Isi9dee01zT4uWSTdMJpP46KOPXO7/ySefqNv16tVLWCwWl9tdffXV6nZPPPGEx59pOJg6dar6enwZAhmIkpIStVfI07BGT0KhB7ZJkyZqWVp7ajp37uy13L1796o/H/uQXb17YPfs2aOWl5qa6vGz5Ndff1W3vffeeys979jWb9++3eNxf/zxR3Xb8847z+/6a/k9zp8/Xx3aHBcX5/J2HD3OCe+//35126efftpr3R17me655x6tL9lvjqO1Zs6c6XIb9sCepdf72rFX1dWwekenT59WtzUYDG5H6HmjpQd2//796kRIAMQrr7xSaRs9zvV+/vlndTstn/N//vmnun2nTp08bus4UZhekwoKodMQYk+/hOXLl4vZs2c73VM4e/bsSo+KH6R79uwRycnJ6j59+vQRr776qpgxY4b4+uuvxX333ed0MuruTewYYC+55BK1AXj00UfF119/LaZMmSLuvPNOcezYMXWfnj17iri4ODFs2DDx/PPPi2nTpolvv/1WvPvuu+K2224TsbGxHj/Q1q9fL2bPnu00Q+THH39c6TWvX7/eaT8tAfbaa69Vt4mKihK33367mDp1qvj666/FvffeK+Lj49XnL7roIrfDZe3bdOnSRWRkZAhJksSwYcPE5MmTxaxZs8Qrr7wi0tLS1O18GW5TE5SWljqd8P/333+VtpkxY4bXDx9Hjr/f1atXV0GtzyopKRHnnXeeeryWLVuKxx9/XHz11Vdi5syZ4sUXX3T6UBwwYIDLkyLHhnLYsGEiJiZGREdHi9tvv11MmTJFzJgxQzzwwANO7wlPJw/ff/+9MBgMAoCIiIgQI0aMEO+//7749ttvxWeffSZGjx6tDmWRZVn88ccfLstx/Fna39edOnUSr776qpg5c6b45JNPxN13361uv3XrVqehWV26dBFvvfWWmDVrlnjvvfdE79691TBkH5Lk6sTz5ZdfVsv4+uuvPf4OvvrqK3Xb5557zuO2vvIlwOrxe3Ns3E0mk7j11lvF1KlTxVdffSUmTJig/myvvPJKryeqK1euVLeXJElcfPHF4u233xazZs0SU6ZMEbfffrvT78pdOSNGjPBY988++8zp5DuQe5VCxc0336y+ps2bN4uSkhLxzjvviB49eojExEQRExMjWrZsKW688UbdPmP++OMP9ZgPPvigX2XoEWC7d+8u2rZtK2JiYkRMTIxo1qyZuPrqq8XXX3+t6XfrePHa071yju+tKVOmeC134MCBAoDo1q2beiFF7wArhBCZmZlO5zve7oGNjIwUO3bsqLRNu3bt1HJ8CbDx8fE+z1Bq5y3AfvPNN+rnfkpKili7dm2lbfQ6J3S88Jyenu71NbVs2VLd/t9///Xn5fvE8QLD33//7XIbx8/3zMxM0bFjRxEXFyeioqJEkyZNxGWXXSYmT57ssRPDm3AJsHq9r++44w71eV8CLACXf69aeAuwmzZtUmevNhgMLi9a6nWuV1ZWJho0aKC2y95mH3e89/idd97x+lrtnztxcXFuLzj7KiSX0bFaraJr167qh7C7SSqOHz+uXo2TZVls2bKl0jaOAdb+oXfmzBmPx1+0aJHHN/6pU6fUHh9Zlt3ep6D3MjozZ85Un2/QoIHLq00HDhxw6tlwd7+l48/EZDKJX375xeXrdCwrkBOiwsJClxcu/HlUDP5VwTF8dO3a1eU2zz33nNfG0pHjJAJfffWVzjV2VvHeXFcneGaz2alOrj60K07Xn5aW5vJeqNWrV6tXN+vUqeOyN+/QoUNqL3RaWprYtGmTy7qvXr1aJCYmCgCiSZMmLu8dqjiy49577/XYK+HYQ3vnnXe63LbiZ4WrE8/jx4+rJ1reTsQvvPBCteHRYyIdR74E2EB/b45XWpOSklwu8bBjxw51iRVPJ6p5eXnqZEBJSUli6dKlLl/f7t271QtosbGx6mQgjk6fPq1efTcYDGL58uXqczt37lTDeUJCQsBLgWzfvl23zy9Xr0WrTp06OZ1MO14YdvW4++67Az5ZcLxo89133/lVhh4B1tOjbdu2YuPGjR7LOnnypGjVqpW6T2pqqnjsscfEF198IaZNmyaeeeYZtb2TZVm88MILXuv3+eefq39/ju1SVQTYv/76y+mCU+fOncXLL78spk+fLj755BNxzz33qJ+viYmJYu7cuS7Lcbyw7mmUixDO98sCEEeOHPGr7p4C7Hvvvaf2zjRr1kzs3Lmz0v56nhMKIdT7lQHbyDx3li1bpm7XpUsX7S/YT8uXL1ePl5KS4va9q3UZnYYNG3p8fZ6ES4DV633teD533333eTym4/2ygPeL2e546/yzd6JERUWJOXPmuCxDr3M9IYR48MEH1W08jU4oLCxUO8siIiI0tWnjx49Xy/b2Wa1VSAbYH374Qd32vffe87jtzp071R4dVzNcOZ6UxsbGiqNHj2p6Td7s3btXLdfdG0LvANulSxf1+d9++81tOatXr3ZqEFx9CDq++Z5//nm3ZX366aeatvPG8W8k0EdV3+x++vRp0bBhQ68nbffdd5+6zfvvv++1XF+399exY8eEyWQSgOtJPByZzWZ1dsvWrVtXer5iQ/nnn3+6LWv06NEet5swYYJ6srdhwwaP9bKfGAIQ06dPr/S843ulW7duHsPr2rVr1W0zMzM9ntA7luvuxNNxiJe7iU127typbjN06FCPr9UfvgbYQH5vjjN3euqRchy66OpEVQjntRh//vlnj6/RsefvpZdecrnN0qVL1RkhmzVrJnJycoTZbBbdunVT99XjYlHFixuBPAI5gbNfIQegXlVv1KiReOqpp8SMGTPEZ599JkaOHOm0rqOnyTW0uP7669Wy3F108iaQAGs0GkXfvn3FU089JaZOnSq+++478eGHH4oxY8aos1sCth5CbydG2dnZ4uqrr1bPGVw9rrnmGq+fT0II8d9//6k9fhVPeKsiwAohxL///ut0a0vFh9FoFE888YTH85wnn3xS3f7qq692u53jJE72h7tA6I27APvEE0+o3+/QoYPbgKznOaEQQnzwwQdqeZ5WGbjxxhs1HzdQpaWlTjNIv/HGG263XbJkiZAkSfTo0UM88sgj4osvvhDfffed+PTTT8Vtt92mXgC2/00sWLDA5/qES4AVQp/39aJFi9RtGzdu7PGWmoq3Ivo7Mae77PTTTz+J6OhoAdguRi1btszl/nqe6wlhG6lmr4+n0QmOt7J4O67da6+9pmubLESIBlj7MLSEhARNS4706tXLbUPheOLh6YPKH/YeB3fTqusZYB1/xh07dvRaln1YE+C659T+nMFgEKdPn3ZbjmNQD2Qh4nAJsBaLRQwZMkQ9lqfw4Xgv8qeffuq17Mcff1zd/uWXX9az2k7eeecd9TgrV670uv1jjz3m9u/UMQh5uwLtGDor3ruoKIq6wLm3ZTiEsN3TYe8ZdPX7dnyvfPHFFx7Lcjxh8zY0yHHInLsTT8dg9fDDD7vc5qGHHlK38dbL4Q9fAmwgv7eSkhK1gWzQoIHX3jzH4YmuAqy9d6RNmzZeX6MQQh0+5Sn0OL6vRo0aJR5++GH136NHj9Z0HG9CJcBGRkY6ldWzZ0912QtHv/zyi/r+AdwPRdTCPrwe8L8Hzt8Au3v3bo9h7NChQ06BLiMjw+vf6N69e8Utt9zi9vdjMpnENddc43RbkSv2IexpaWmioKDA7evVM8AKYRuC7+qef/ujbt264uGHH3Y76+3evXud/jbctV2OvTG+tCeuVAywFovF6Xdw/vnnezwP0fOcUAjbRWr7xQ93s6469jKZTCZx6tQpza/XH463B3Tp0sXl/Cp2x44d8zgr9OnTp8Wll16qllevXj2vIw8rCqcAK0Tg72uLxeLUkztu3DiXnyVz5sypFJT9PZ9zlZ0+//xztfzU1FSPw9b1PNez69Gjh9ffleMoDlejN11xnLfixRdf1LSPN0aEoOXLlwMAGjZsiN9//93r9gaDAYBtQePi4mJER0e73O6CCy7QXIe8vDxMnz4dv/32GzZv3oxTp065nZHwyJEjmsv115o1a9SvhwwZ4nX7IUOG4I8//gBgm7G4R48eLrdr06YN6tSp47acxo0bq18HMhtxenq6y1nTQs0999yDBQsWALAtwO24SHO4sL9/ANvf5pw5czxu7/h73b59u8vZewHgvPPO81iOp7+VrVu34vTp0wCA+Ph4r3UCbDM35ubmYvv27R638/a+Xrdunfp1//79PW5rn5Xbk/79+6NNmzbYtWsXpk6dihdffNFphsmysjJ1dr5GjRph6NChXsusSoH83jZu3Aiz2QwA6Nu3r/pZ687AgQPd/r7OnDmDTZs2AQAaNGig+W8AgMe/geeeew5//PEHVq9e7TTDd/PmzfHhhx96PYYWzz77rNuZ8quToijq1xEREZg5cyYSExMrbXfZZZfhnnvuwVtvvQUAeO+997z+Hbhjf98CQN26df0qw1+tWrXy+HzTpk0xb948ZGZm4vjx49ixYwe+//57jBo1yuX2r7zyCp588kkoioJbbrkF//vf/9C+fXsAwLZt2/DRRx/hs88+w7fffotVq1Zh4cKFTrP62s2ePRs//PADAOCDDz5AbGxsgK/Uu8LCQowdOxY//vgjYmNj8corr+Dqq69GWloaioqKsHr1arzyyitYtmwZXn/9daxfvx4///wzYmJinMpp0aIFnnjiCTz33HMAgFtvvRU//PADrrjiCiQnJ+Po0aOYMWMG1qxZg5SUFJSUlCA/Px8APM5+rFVJSQlGjhyJ2bNnAwAuvfRSfPfdd5Xq6Ujvc8I6dergyiuvxMyZM1FYWIjvv/++0qoQ33//vfq6r7jiCtSrV0/za/TVG2+8gc8//xwAkJiYiFmzZsFkMrndvmHDhh7Lq1OnDn744Qf06NEDmzdvRnZ2NiZPnoxHHnlE13qHCj3e1waDAZMnT8bFF18Mq9WKqVOnYv369bjhhhvQvHlz5Obm4vfff8fs2bPVVQrsM+Xr8b4AgNdeew2PPvooANts4wsWLECLFi3cbl8V53o33XSTmjemTJlS6Zzo4MGD6oouqampuPjiiz0e087x/aPbyiZ6pGA9e2Dz8/MDurpd8Wqt45VzT8NuHS1evLjS/VyeHi1atHBZjp49sI5XWj7++GOvZTmu2/fYY49Vet7+nJbJmezb+nLlPBw59uQ0aNDA5b04jkJ1CLHj8ElfHxWH6zr25Hma5KfithXvCXZcm9DXh6vhLo7vFW8TVTgOy9KyFp/9vhNPPSdvvvmmWmbFdQG///579bmqmvnWlx7YQH5vjp8jjz/+uNd6OX5OVeyBdZw8xddHRESEx+Pu3bvXaQI7o9EYUK9jqLKPYgAgLr30Uo/bOg5jb9Cggd/HtA87MxgMfpfhbw+sVq+88opa/g033OByG8fPd0/DQd999111u3PPPbfS8zk5OeotJu6G4OrdA2uxWMQFF1wgANs9oGvWrHG5ndVqdZrczN2kW4qiiMcee8xpqHnFR4MGDcSqVaucJkby1ia649gD6zi8dcyYMV4n4NL7nNBu/vz5Hv8mHXuZXJ07errPff78+Zp/Nh9//LF6nNjYWLFixQrN+3rjONGkrxNxhksPrF7va7vvv/9enQ3b1cNkMomPP/5YDB8+XP2elnNyVxw/JxzfF506dRLHjx/3ur+e53p2ubm56vBlV6MTHO8VdjcCzZWFCxeq+915552a9/NEn8sGOjpz5kxA+9t7C1xx1zPraPfu3Rg6dCiOHz8OAGjbti3uvfdefPDBB5gxYwZmz56tPuxrSlmt1oDqrIX9SiAATVd77T0XFfetSK8rR+HuxRdfxMsvvwzAttbbokWLXF55d5SUlKR+ferUKa/HyM7Odrmv3gJ5D3l6/wTyt1JVdQK8v6/tIyeMRqOmtfi0vL/Gjx+PyMhIAMCnn37q9Jz935Ik4eabb/ZaVlUL5PdWUFCgfu2ph8TO088ukL+BsrIyj88nJyc79Q62aNEC3bp18/t4ocrxc8Pb62vTpo3aDmRlZTn9Ln1h/zu3Wq3qWsmhxrGXYMeOHZWeP3r0KN544w0AQLt27XD33Xe7LWvChAlo164dANvojVWrVjk9/9BDD+G///5DYmIi3nvvPR1q790PP/yg9rbceOON6N69u8vtZFnGe++9p77nP/74Y5fvHUmS8PLLL2PDhg24/fbb0bZtW8TGxiImJgbt27fH448/ji1btqBbt27Iy8tT92nQoEHAr8VxzenCwkKvI7Oq6pxw0KBBaNKkCQDgzz//dFp32rGXqVGjRi5HvQ0fPtzt47bbbtNUt2nTpuF///sfAFs79ssvv+D888/34dV55u19Ee70fF/bjRgxAnv27MFTTz2Fc889F0lJSTCZTGjWrBluuukmrFu3DrfddpvT+VxqamrAr8XxfVFcXKwpV1TFeVViYqK61ndhYaE60gQAhBCYNm2a+m9Pa79W5FhXLVlMi5AbQuwYvC688EIsW7asWo//yiuvoLi4GADwxBNP4IUXXoAkSS63vfXWW6utXvHx8erXWhZXdzxZcdw3WIqKitShuYFKS0tD165ddSkLAF5//XU89dRTAGxDbxYuXIjMzEyv+zkGXMfGz52DBw+63Fdv9veQJEmwWCwhcZHC8X399NNPq8PXqoM9VFksFpSVlXkNsVreX/Xq1cPVV1+N6dOnY8GCBTh06BDS0tJw8OBBLFy4EIDtBKl58+aBv4Agcvy9aQkvnn52jmWNHTvWaRH0QN15551O769du3bhySefxGuvvaZL+Tt27NDtBLBPnz5ITk72a9+2bdti3759AOBy6HBFiYmJaltw5swZp9+BVo4XBk6fPq3pQkZ1cxyelpubW+n5BQsWqEFu4MCBbtt0wPa5OWDAAHXY+po1a5yGX3/22WcAgPbt26vDPityrMOZM2fw4osvAgCioqLw4IMPantRDubOnat+PWjQII/bNmrUCO3atcPWrVuRn5+P7du345xzznG5badOnfDRRx+5LWvr1q3qiXTr1q01/c1588orr2DmzJlYuXIlZs+ejVGjRmHWrFluP5er6pxQlmWMGzcOL730EoQQmDp1Kp555hkAwNSpU9VgPXbsWK+3TvhjxowZuPHGGyGEQGRkJObMmeP1FhdfeXtfhDs939eOGjRogOeffx7PP/+82/K2bdumfu3ugpIvrr76aiQkJOD999/Hrl270L9/fyxZsgSNGjVyu09VnevdeOON+OabbwDYhhGPGzcOgG3I8t69ewHYbk3KyMjQXGZV3IoScgE2MTERcXFxKCgoqJZ7SytatGgRAKB+/fp4/vnn3b4h8vPznX4hVc3xnofdu3d73d5xG09vgOpy4sQJ9apOoMaNG6fbvamTJk1S7wtJTEzE/Pnz0blzZ037Oobc9evXe9xWURRs2LABgK3htF8JrAqNGzfGv//+CyEEjh49iqZNm1bZsXypk111v68bNWqk3nu5b98+tG3b1u22OTk5mhv6//3vf5g+fToURcEXX3yBZ599Fl988YV6n6LWq/ChzPGzY8+ePV6397RNVf0NTJ8+HdOnTwdg65U8deoUDh48iDfffBMXXXQRBgwYEPAxZs6cqdtFlyVLlmi619qVc845B/PmzQOg7eq7vfcM0BZ4XUlPT8eKFSsA2E5C7L1WocTb6JZjx46pXyckJHgtz/Fn5e6izN9//42///7ba1m5ubnqBdLExES/AmxV1F8Lx7DoyxwinsTHx+P333/HxRdfrCnEVuU54fjx4/HSSy8BsPWGPv300wDgdHGt4r2xdt56jj357rvvcMMNN0BRFJhMJnz//fea5jbxVXWN+gqWYL0vtm3bpo66a9mypdd7krV67733IEkS3nvvPU0htqrO9QYMGIC0tDQcOnQIy5Ytw4EDB5Ceno4vv/xS3caX3lfAOcA2a9ZMl3pWW9eM45UBb2/8Cy+8EIDtZFPLSZOesrKyANgmAPF0NWPRokVOE2q44str9sZxEiZ7D48njr2d7iZwqu0++OAD3H///QBsjeq8efN8upLWoUMH9WRu69atHhvXlStXqieTvXv3rtJe8b59+6pf69XrHaguXbqoDcwff/zh9b2jp3PPPVf9esmSJR63tQ8b06JPnz7o0KEDAOCLL75AWVkZvvjiCwC2C2DDhg3zvbIhplOnTupkIsuWLfM6rMk+cZwrycnJ6sQaq1atcgpX/tq/fz/uvPNOALae9hkzZuDrr7+GwWCAoigYO3as00lcuLvkkkvUr71dNNu1a5d6+0jDhg396n0FnC/U7dy5068yqppj0HI1usXx5Pbw4cNey3Psza/KyXu08rX+hw4dUr8OpP6OF4r1vB3CHmJ79+4NwDYp1jXXXOP2VoGqOids1aqVGsz37duH5cuX488//1RHOZx//vkeL3j6Y86cObj++uthtVphNBoxa9YsXHbZZboew87b+yLcBet97Rjk9L5N6N1338U999wDwPYZ3q9fP6eg7qiqzvXsoxOAs8OG7ZOdAbYhwO4mynPHcSJGdyNCfK6nLqVo4Nh4ervyYf/BAVCviFUX+/Coffv2uQ2dVqtVvV/SE19eszfp6enqsNmNGzd6DLHr1q3D4sWLAdiudITCvWD2WYj1eOjR+/rpp59iwoQJAGwnvr/99ht69erlUxmSJGHkyJEAbG/y999/3+22jvdK+frG99W1116rho7XXnst4L89PRgMBowePRqArRGxD8OrDo5B8oMPPvAYwt59912fyr799tsB2BrPe++9V72IMW7cOE3324a6yMhIXHrppQBsF/fsw4pcmTdvntcZo+2f7UVFRXj11VcDqpvVasXo0aPVIPzee++hdevW6NOnDx5//HEAtnukbrnlloCOA9hmIdbr88vf3lfA1gtmv2i2cOFCj7cufPLJJ+rXWmeKdKVnz57q16tXr/a7nKpy+vRpp/et/e/VkWMInzt3rsd5IfLy8tRebsD5AhgATb/j/fv3q9s3a9ZM/b6/wzgd6z9z5kyP2/7111/q51CdOnXQsmVLv4755ZdfYu3atQBsF119bR+9sYfYPn36ALAFO3chtirPCR17kqZMmeJ0fuFrL5M3v/32G0aNGgWLxQKDwYBvvvkGV155pa7HsCstLXU6T3X1vgh3er6vtdqxY4d6rpeUlKRL+1LRO++8g3vvvReAbTSluxBbled648ePV0egTps2Dd999516O8pVV13l84gee9sRHx+vXsgOmB4zQWmZhXjixInqNu4W5bWzWq1Oa7vdc889HtfEKioqEl9++aWYMWNGpeccZyHWMvvZ4MGD1e3ffvvtSs+bzWanxa3hYZbBt99+W91m6tSpXo/tbabmWbNmqc83bNhQbN++vdI2Bw8eFC1btlS3c7fAsv15LTNC+rJtOJg6dao6+2JMTExAs+IdPXpUxMTECMA28+miRYsqbeM4A2PTpk01rWMXqAceeEA9Zv/+/cV///3ndlur1SoWLlwoXnjhhUrPeZqh1tdtDx8+rM7wGxkZ6fU9kZWVJZ5//nmxcePGSs/5sq60EMJp3cQ777xTWK3WSttUXOtTy+yhubm56u/f8eFpjT49+DILcaC/t+XLl6vP16lTx+Vi8Lt27VJnZrU/XK0DW1BQIJo1ayYACEmSxOuvv+7yd2GXm5sr3n33XbFw4cJKzz311FPqsSrOBltWVqauBYkAZokMRY7r9p533nle14GVZVls3rzZ7+OVlJSI2NhYAT9mMrXzZxbilStXik8//VSUlJS43ebw4cNO6xa2bt3a5ay2ZrNZNGnSRN1u2LBhLmcvLyoqEldccYW6XWZmplAURfPrtPNlFuKKa6S7smXLFiHLsrqNu3UnDx486LSWpbvZPrdu3SpOnDjhtk5ff/21uv5zVFSU2LFjh8fX4E3FdWAd5efnO30+Dxs2rNJs8XqeE1aUn5+v/n3HxcWpM9DGxMT4vHaqJwsXLlTXnjUYDOKbb77xq5zdu3eLN954Q+Tl5bndpuI6sHXq1BE5OTk+HScUZiG2txXu9tP7fZ2VlSW2bdvmtj7r168XTZs2VcuZMmWK5tfiirfsdO+99zp9trlah1uvcz1XHP8GHNt3V+e5nuTm5qrn3FdeeaVP+3pSbffADhw4UO2Fuvnmm3HfffehWbNm6s3xrVq1Utd8k2UZP/zwA3r16oWjR4/i3XffxbfffouRI0eiU6dO6sQUhw4dwrp16/DHH3+gsLAQL7zwQsD1nDBhgtq7ef/992Pp0qW46KKLUK9ePezevRvTpk3D7t270b9/f+zevdvjsNGBAweqXz/88MM4efIk2rZtC6PR9mNv3LgxOnbsqLlu11xzDWbPno2ZM2fiv//+Q9euXTF+/Hj06tULBoMB69atw+eff672SAwZMkQdXkc28+bNw0033aT2rt90003Izc31un5W165dkZaWVun7jRo1wltvvYU77rgDFosFl1xyCcaOHYu+ffvCYrFg3rx56rALo9GITz75BFFRUW6P43jP9f79+92uyerNK6+8gn///Rd//PEHlixZghYtWmDEiBHo1asXUlJSYDabcfz4cbU3//jx4xg4cCCefPJJv46nRZMmTTBz5kxcccUVKC0txbhx4/D222/jiiuuQOvWrREdHY0zZ85g165dWLVqFVasWAGr1arLxBYff/wxunfvjqKiInz44Yf4+++/MWbMGDRp0gRZWVmYNWsWVqxYgV69euHQoUM4evSopgkREhMTMWrUKKchRf369UPr1q0DrnOo6NOnD+688058+OGHyMnJwXnnnYdx48ahT58+kGUZa9asweeff47CwkJceeWVHt9LsbGxmDNnDvr27Yu8vDw8/PDD+PjjjzFixAi0b98ecXFxyMvLw759+7BmzRosXboUZrMZX331lVM5f/31l9q70KRJE6feRsD2Xps+fTo6d+6MvLw83Hfffejbt6/uwwGDYfz48Zg9ezZ+/fVXrFq1Cu3bt8ctt9yC9u3bo7CwEPPnz8d3332nfsa98MILmialcycyMhIXX3wxfvjhB6xbtw4FBQVehyNX/BxxvF93//79lZ7v2rUrrrrqKqfvZWVl4dZbb8UDDzyAiy66CN26dUPjxo0RFRWF7OxsrFixAt9//7066WJ8fDxmzZqltq+OIiIi8N5772HEiBEQQuCnn35Cu3btMHbsWHU+gu3bt2PatGnqMMOIiAj83//9n8eJYapLhw4dMHHiRLzzzjsAgMcffxw///yzug5scXExVq1aha+//lrthWratKk6KVFFv/32G5544gkMGjQIffr0UduZAwcOYM6cOeo6kCaTCTNmzKjS901cXBzmzZuHSy+9FMuXL8dPP/2EkSNH4rvvvlNHsVTlOWFcXBxGjhyJKVOmOE1+OWLECE33VWrx77//YtiwYSgpKVHLjo6O9nrekZGRUWminIKCAjz00EN46qmnMHjwYHTv3h3NmjVDbGwscnNzsXbtWsycOVN9zxmNRnzzzTce74H98ccf8c8//zh9z3EUwVtvvVWpx80+MVlFixcvVkcA2tnn/wCAzz//XJ1rxu7BBx/06x5dvd/Xhw4dQvfu3dGjRw8MHDgQGRkZiI6OxvHjx7Fo0SLMnTtXHcH18MMPO40MqAqTJk2CJEmYNGmSmjuWLFniNJ9EVZ7r3Xjjjeow9P/++w+AbUSJr/NKLF26VG2PdB1xoEcK1tIDa7FYnK6yVXy4uvJ/7NgxMXDgQLf7OD4MBoP49NNPK5Xhaw+sEEI89thjHo/Vu3dvceLECfXqkKcrrNddd53bcir+rLT0KpWVlYlbbrnF68/j6quv9rg+pn272tYDW7GXTevDVW+SozfeeENERES43T8+Pl7T1WDHfQK96llaWiruvvtuYTAYNL3GsWPHVipDz548u7///ltdW9LbIy4uTmzatKlSGb72wAphW9/Z3gPs6pGZmSkOHTokGjduLACIc845R1O5q1evdirH3fpqeqrOHlghbJ/fN9xwg9ufnSzL4vXXX/fY0+Jox44dokuXLpr+BiIjI8W8efPUfXNyctTPXlmWPX6uf/3112o5Xbp08dhrE06KiorEyJEjvbaJ7nrqfDVnzhy13GnTpnnd3tfPV1fnDY5rEHt7ZGZmuhypUdHXX38tEhISvJaXnJws5s6d68+PSgihfw+sELbekwceeMCpJ9bdo1OnTh7XbH3jjTe8ltGiRQvxxx9/+PsjcKLlc6GgoEBceOGF6nZXXHFFpZ5YPc4JXVm2bFml/RcvXhzoy1Y5vn5fHq4+jzds2KB5/7S0NE3nvY7tidaHO/6cY7k71/HWA2un1/t67dq1XsuIj4/3uN6sL7RkJyGEuP/++9XtWrVqVaknVo9zPVcKCgoqrYn79NNP+/w6r7nmGgFAREdHexw54KtqC7BCCFFcXCxeffVV0atXL1GnTh2nH7ank6ylS5eK22+/XXTo0EEkJSUJg8EgEhISRPv27cWoUaPE5MmTxbFjx1zu60+AFUKIefPmiaFDh4rk5GQREREhGjZsKAYMGCA+/fRTdYiSlgBrsVjE5MmTRb9+/URycrI6rMvVz8qXk/K///5b3HzzzaJVq1YiNjZWREdHi+bNm4sxY8ZoanTsx2GA1fbwFmCFEGLz5s3irrvuEm3atBGxsbEiPj5eZGZmikceeUQcOHDA6/6FhYXq8Uwmk8jOztbhFduGHD366KOiZ8+eIiUlRRiNRhETEyOaN28uLr30UvHyyy+7DIlCVE2AFcJ2Iebrr78W11xzjWjevLmIi4sTRqNR1K1bV5x77rni1ltvFbNmzRIFBQUu9/cnwAohxPHjx8WDDz4o2rZtK6Kjo0VSUpI499xzxZtvvikKCwuFoijqIt79+vXTVKaiKOoi5HXr1vU45FEv1R1g7X755RcxdOhQkZKSIiIjI0VaWpq47rrrxMqVK4UQ2k5U7RRFET/99JMYN26caNOmjUhISBAGg0EkJSWJTp06ibFjx4opU6aI06dPO+03atQo9RiPPvqox2MIIcTo0aPV7R944AGv24eT33//XVx33XUiPT1dREVFifj4eNGhQwcxceJEXYexWywWkZaWJgCIwYMHe93e189XV+cN+fn54qeffhKPPvqoGDBggGjTpo2oW7euMBqNIikpSbRr106MGzdO/Pzzzx6HoVeUlZUlXnvtNTFw4ECRmpoqIiMjRWRkpGjYsKEYMmSImDRpks/DLSuqigBrt3XrVvHAAw+IHj16qD8P++f5yJEjxaxZs1wOo3Z0+PBh8c4774hhw4aJNm3aiMTERBEVFSXS0tLE0KFDxeeff67rrS5aPxdchVhXF50COSd0RVEUp1uv0tPT/Ro67o6eAbakpET8/vvv4plnnhEXXXSRyMjIUM8tExISRKtWrcS1114rpk+frvmCXbgHWCH0eV8XFBSIKVOmiHHjxonMzEz1/D81NVX07t1bvPrqqx6H6PpKa3YSwnmosKsQK0Rg53ru3HTTTepxJUkS+/bt82n/M2fOqOdUt956q0/7eiMJUd6vS0RBNX/+fHWylYkTJ/o8oRAFbvPmzeoMeVp/B4sWLcLgwYMBAPfcc486zI+oJpk0aRLuv/9+GAwGHDhwICSX0yEiotDxxRdf4Oabb4YkSdiyZYt+EzihGmchJiLP7PeFxMfHV+m9qOTe//3f/6lfa733dvLkyerXNWHtVyJX/ve//yE1NRVWqxWvv/56sKtDREQhzLGtGDVqlK7hFWCAJQoZ9gB7//33IyUlJci1qXmWL1/ucf3ZDz74QJ0MqHHjxprW5vv333/ViTgGDRqk+wc0UaiIjo7Gs88+C8C2RI+7tQmJiIhmzJiBnTt3wmQy6TLJbkUcQkwUAk6dOoX69esjOTkZe/fuRXx8fLCrVOO0atUKJSUluOSSS9ClSxekpKSgrKwMe/fuxezZs51mSvzll1/cBtjff/8diqJg165deP3119XZ+f766y/07t27Wl4LUTAoioLu3bvjn3/+wd133+1x7WsiIqqdrFYrOnTogJ07d+LRRx/FK6+8ovsxGGCJqFZo1aoV9u7d63Gb6OhofPrppxg9erTbbVxNv6/1ftkFCxagqKjIe2VdSE5ORp8+ffzal4iIiKimYIAlolph1apV+OGHH7Bq1SocPXoU2dnZKCoqQp06ddCmTRsMGjQId9xxBxo0aOCxHHuAjYuLQ5s2bXDHHXfgpptu0rRubHp6uroena/69u2LpUuX+rUvERERUU1RecVvIqIa6LzzzsN5550XcDm85kdEREQUPOyBJSIiIiIiorDAWYiJiIiIiIgoLDDAEhERERERUVhggCUiIiIiIqKwwEmciIioRlEUBcXFxSgqKnL7KCkpgdlshtlsRmlpqfq1q3+bzWZYrVYoiuL0f1ffUxQFgG22ancP+4zVkiTBYDAgIiJCfRiNRpdf2x9RUVGIjo5GVFSU26+jo6MRHR2N2NhYxMbGwmhkU09ERDUHWzUiIgo5QggUFBQgLy8PeXl5yM/Pd/m14/cKCgpQXFyM4uLiYFc/pERHRyMuLg5xcXGIj49Xv3Z8JCQkICkpyekRHR3tct1jIiKiYOIsxEREVC2EEDhz5gxOnz6NnJwcp//n5uZW+ndZWVlAxzMYDIiOjkZMTEylR3R0NBbO2wIJMgADABkQMgDZ+XvqvyXbQ0hnv670ACScDXwCjs2ru68V278lBYBSvo9y9vuwf7/8e5ICwIqLL++IkpISFBcXo6SkxO3XgTCZTEhMTERSUpL6/6SkJNStWxfJycmoV68ekpOTkZycjLi4OIZdIiKqFgywREQUMEVRkJOTgxMnTuDkyZM4efKk09cnT57EqVOnYDabfSo3OjoaCQkJSEhIQHx8PBISEvDn4t2QEAGICEgwAogo/7ex/N8G2AYYyU6BsraxhV4LAAsEygDJAlHh38Ou7qL2aOfm5qqP0tJSn45lMpnUMOsYbJOTk5Gamor69esjOTkZBoOhKl4qERHVIgywRETklaIoyM7Oxn///Ydjx47hv//+Ux9ZWVk4efIkrFarprISEhJQp04d1K1bFxvXH4MEEyAibf+HCZIwnf0aDDzBIGAFYIaAGUIyAyiDgBmQyjD40gycOnUK2dnZyM7ORl5enqYyDQYDUlJSkJqaigYNGlT6f4MGDWAymar0dRERUfhjgCUiIgCA2WzGsWPHcPjwYRw5csQpqGZlZXntPZVlGfXq1UNKSgpSUlLw15L95cE0ClL5/4HI8iG5VFOcDbulEFIpBEpxzZiuOHXqFE6ePInjx49rusAhSRIaNGiAxo0bq48mTZqgSZMmaNSoESIjI6vnBRERUUhjgCUiqkUURcHJkydx+PBhHD58GIcOHcKRI0dw+PBhHD9+XJ1F1xWDwYD69eujYcOG+HfdcUgiGhKiy/8fBVuPKcMpVWa7t7cUAsUQUgkESjB0eHtkZWXh+PHjyMrK8nrPbkpKCpo0aYLGjRujadOmSE9PR7NmzZCamqrO7ExERDUfAywRUQ2kKAr+++8/7N+/X30cOHAAhw8f9nh/Y0xMDNLS0tCkSRMsWbDXKaSy95Sqii3glkGgCEIqwvU3dsPRo0dx9OhRHDlyBAUFBW73NZlMaNasmdMjPT0dTZo04RJCREQ1EAMsEVEYE0LgxIkTlYLqgQMH3PZoGY1GNGrUCE2bNsWq5UcgiRhIIhYSYmDrRa29Ex9R6HEOt8UYc/O5OHToEA4ePIjDhw+7HdpuMBjQuHFjtGzZEi1atECrVq3QqlUr1K9fnzMmExGFMQZYIqIwYbFYcOjQIezevdvp4a53yt4ztXdnQXlAjYMsYgFEsSeVagRbuC2GIhVCoACDh7bCwYMHceDAAbfrAcfHx6Nly5bqo1WrVmjevDnvsSUiChMMsEREIai0tBR79+7F7t27sWvXLuzevRv79u1z2dtkMBjQtGlTHNpXDEnEQUJs+f+jGVSpVlLvuZUKoKAAAy9pjj179uDgwYMuJ5OSZRlNmzZF27ZtkZGRgbZt26J169aIioqq/soTEZFHDLBEREFmtVpx4MABbN++Hdu3b8e2bdtw4MABlyfa0dHRaN26Nbb+mwNJxEMSCbbAyqBK5JWAAoFCCCkfV13XAXv37sWePXtw5syZStsaDAakp6ejbdu2aNeuHdq2bYsWLVpwqR8ioiBjgCUiqmYnT57Etm3b1MC6Y8cOl8Mdk5KS0Lp1a/yz+mR5WI2HhBjeo0qkI3tvrSLlY+ytXbFjxw7s2LEDp0+frrRtREQEWrZsiYyMDHTs2BGZmZlITU3lPbVERNWIAZaIqApZLBbs3bsXGzduxObNm7Ft2zacPHmy0nbR0dHIyMjApvU5kEQCZJEI26y/PDEmqm5nQ20erht/Dnbs2IGdO3ciLy+v0rb16tVDZmam+mjdujV7aYmIqhADLBGRjkpKSrBt2zZs3rwZGzduxNatWyv1rsqyjObNm2P/7hLIIgGSSISEOIZVohB2dsKoPAy/NgNbtmzBrl27Kg31N5lMaNu2rRpoO3XqhISEhOBUmoioBmKAJSIKQH5+PjZu3IhNmzZh06ZN2LlzZ6UT2tjYWGRmZmLdymzIIhESEiCB61MShTsBKwTycNNd3bBlyxZs2bKl0v20kiShVatW6Ny5Mzp37sxAS0QUIAZYIiIflJSUYPPmzfjnn3+wfv167Nq1C4qiOG2TnJyM0ycMkEUdSCKJvatEtYSAKF+v9gwuubIFNm7ciEOHDjltUzHQdu7cGfHx8UGqMRFR+GGAJSLywGKxYPv27Wpg3bp1K8rKypy2adKkCY4dEpBFEmRRB7Z1VhlYiQgQKIUi5WDoVS2wYcMGt4H23HPPRY8ePZCZmck1aYmIPGCAJSKq4PDhw1izZg1Wr16NjRs3VrqHNSUlBdlZRsiiLmRRFxK4ViQRaeMt0EZGRqJz587o3r07evTogWbNmnGWYyIiBwywRFTrlZSUYMOGDVi9ejVWr16No0ePOj2fmJiI/JxIW1gVdbmUDRHpxhZoT2PQ0CZYu3YtsrOznZ5PSUlB9+7d0b17d3Tr1g1JSUnBqSgRUYhggCWiWkcIgcOHD2PVqlVqL6vZbFafNxqN6NixIzatK4As6vEeViKqFrZ7aAtw68SuWLt2baXPJkmS0L59e/Tu3Rvnn38+mjdvzt5ZIqp1GGCJqFawWCzYsmULli9fjhUrVuDYsWNOz9evXx+njkdAFsnlw4I5SzARBZeAFULKxYjRbbBmzRrs27fP6fnU1FScf/75OP/889G5c2euP0tEtQIDLBHVWMXFxVi7di2WL1+Ov//+G3l5eepzRqMRnTp1wr9r8iCLZEiIZS8rEYU0gRJMeKQHVqxYgX/++cepdzY6Ohrdu3dXAy2HGhNRTcUAS0Q1Sk5ODlasWIG//voL69atczrBS0hIQEFuLGSRUj40mL2sRBSeBKxQpGxccmUaVq5c6XTvrCzL6NSpEy688EL07dsXycnJQawpEZG+GGCJKOxlZ2dj2bJlWLJkCTZt2gTHj7WGDRvixNEIyEoKJCRBghzEmhIR6c9272w+Rt/SDitXrsSuXbucns/MzETfvn3Rt29fpKamBqmWRET6YIAlorCUk5ODP//8E4sXL8a///7rFFrbtm2LPdsskEUKJ2AiolpHoBi33tMJS5cuxdatW52ey8jIwIUXXoh+/fqhSZMmQaohEZH/GGCJKGzk5ubizz//xJIlS7BhwwYoiqI+1759e+zcbIFB1IeE6CDWkogodAiU4I4HumLZsmXYtGmT0+dmRkYGBg0ahAEDBnCYMRGFDQZYIgppxcXFWL58ORYsWID169fDarWqz2VkZGD3VisMogFDKxGRFwKlmPBIdyxbtgwbNmxQP08lSULXrl0xaNAg9O3bF3FxcUGuKRGRewywRBRyrFYrNmzYgPnz5+PPP/9EcXGx+lybNm2wd7tSHlpjglhLIqLwJWDGnQ92waJFi7Blyxb1+yaTCeeddx4GDRqEXr16ITIyMoi1JCKqjAGWiELGvn37MH/+fCxatAgnT55Uv9+4cWMcPxQJWaRCRmwQa0hEVPMIFGPcHe2wcOFCHDhwQP1+bGws+vfvj0svvRQdOnSAJHE+ASIKPgZYIgqq3NxcLFiwAPPnz8fu3bvV78fHx6PwTCIMSkNISORETEREVcw2m3EBrr6heaULiWlpaRg6dCiGDBmCevXqBbGWRFTbMcASUbVTFAX//PMPfvnlFyxfvhwWiwUAYDQaoZjrQBYNy2cQ5pI3RETBICAgpBwMuDQZS5cuRWlpKQDAYDCgZ8+eGDp0KHr16gWjketpE1H1YoAlompz6tQpzJs3D3PnzsWxY8fU77dt2xZ7t0mQRQNIMAWxhkREVJGABfc+3h1z5851WpanTp06GDx4MC6//HI0a9YsiDUkotqEAZaIqpTVasWaNWvwyy+/4O+//1ZnvYyNjUVxfh0YlMaQkRDkWhIRkRYKCnD1DemYP38+Tp8+rX6/S5cuGD58OPr06cNeWSKqUgywRFQlcnNz8euvv2LOnDk4ceKE+v3MzEzs2CjKe1sNQawhERH5S0DBc28Mwq+//oq///5bXV+2Xr16uPzyy3H55ZcjJSUlyLUkopqIAZaIdLVz5078+OOP+OOPP2A2mwEACQkJKMxNgqw0hgyuL0hEVJMIFGPUjc3x66+/IicnB4DtXtnevXtj+PDh6Nq1K2cwJiLdMMASUcAsFguWLVuGH3/8EZs3b1a/n5GRgT1bDextJSKqBQQUPPZCH8yZMwcbN25Uv5+WloYRI0bg4osvRnR0dBBrSEQ1AQMsEfktJycHP//8M3766SecOnUKgO2quyhLgUFpyuVviIhqKQUFGHp1AyxYsABFRUUAbKNxhg0bhuHDhyM5OTnINSSicMUAS0Q+O3z4MGbNmoXff/9dHSZct25dnDmVBIPSBBIig1xDIiIKBQIW3PHAOfjuu+/U2eeNRiMGDhyIa665Bq1btw5yDYko3DDAEpFm27Ztw4wZM/Dnn3/C/tHRrl077N5iHybMdVuJiKgyAYGnX+2Hb7/9Fps2bVK/37VrV4waNQo9e/aELLMNISLvGGCJyCNFUbB69Wp88803Tvc0yUoyDEo6JCRxmDAREWmm4Az6XpyAJUuWqEurNWvWDGPGjMHAgQO5DA8RecQAS0QuWSwWLFy4EDNnzsT+/fsB2IZ9Keb6MCjNOJswEREFRKAYV41pgl9++QWFhYUAgNTUVFx//fW45JJLEBnJ21GIqDIGWCJyUlZWhvnz5+Orr77Cf//9BwCIiYlBaUEKDEoaJEQFuYZERFSTCFgw/s7W+Pbbb5GbmwvANq/CqFGjMGzYMMTExAS3gkQUUhhgiQgAYDabMW/ePHz99dfIysoCANSpUwd5p5JhEI0hISLINSQioppMwIo7HuiIGTNm4MSJEwCA+Ph4XHPNNbj66qsRGxsb5BoSUShggCWq5UpLSzF37lxMnz4dJ0+eBFA+o/DJZBhEE67fSkRE1UpAwf1Pdsf06dNx+PBhALYleK699lpcddVV7JElquUYYIlqKYvFgt9++w1Tp05Vg2tycjJys+pBFo0ZXImIKKgEBB57oTe+/PJLHDp0CACQmJiI66+/HsOHD0dUFG9pIaqNGGCJahlFUbB48WJ8/vnnOHr0KACgfv36OP1fXciiEYMrERGFFAGBh589D19++aXabtWtWxfXX389hg0bxsmeiGoZBliiWkIIgZUrV+Kzzz7D3r17AQBJSUnIz25QPlSY6+8REVHoElDwwFM9MGXKFHWSwdTUVNx8880YPHgw15ElqiUYYIlqgc2bN+PDDz/E1q1bAQBxcXEoPtMABpEGCVxvj4iIwoeAgomPdnG6BaZVq1b43//+h+7du0OSuDY5UU3GAEtUgx09ehQfffQRli1bBgCIjIyEpbghDEo6ZxUmIqKwJmDFjXe1xvTp01FQUAAA6Nq1K+644w60bds2yLUjoqrCAEtUA+Xn52Pq1Kn48ccfYbFYbMOqLA1hVFpCAu8VIiKimkPAjCuvb4DZs2ejrKwMADB48GDcfvvtqF+/fpBrR0R6Y4AlqkHKysowZ84cTJ06FXl5eQAASakHo9IGMuKCXDsiIqKqI1CM/kNjsWDBAgghEBUVhdGjR+Paa6/lRE9ENQgDLFENsXbtWrz77rvqUgPNmzfHkT1JkEVykGtGRERUff7vy2vw/vvvY9OmTQBsEz3dcccd6NevH++PJaoBGGCJwlxWVhb+7//+T73PNSkpCQXZDcuXxOGMjEREVPvY15CdPHkyTpw4AQA455xzcM8996B169ZBrh0RBYIBlihMmc1mzJw5E1999RVKS0thMBiAssYwKC04QRMRERFsEz2NvrUZvvnmG5SWlkKWZYwYMQI333wzYmJigl09IvIDAyxRGFqzZg0mTZqkLuguiSQYrRmQER/kmhEREYUegRL0HmzEkiVLAADJycmYOHEi+vbty2HFRGGGAZYojOTk5OD999/HokWLAAD16tXDmRMNIYtUSGADTERE5MlL71zkdAG4Z8+euPfee9G4ceMg14yItGKAJQoDQgj8/vvv+OCDD5CXlwdZliFZmsCgtIQEo2+FKeVveTmAwKtHGUREVHspIvA2xM8yBKy4/pY0TJ8+HWVlZTCZTBg3bhyuu+46GI0+tqlEVO0YYIlC3JEjR/DWW29h/fr1AABJiYPR2g6ylORbQUqFt7o/Jw56lsHwS0RUezm2J/62BwGWoSgF6HR+GdatWwcAaN26NR599FFO8kQU4hhgiUKU1WrFt99+i88//xxmsxkmkwnWojQYlDTb7MK+NNYVgydQvfu7KoMBloiodgu0XdBhfwGBh5/vhffeew95eXkwGAwYM2YMbrjhBphMJt/KI6JqwQBLFIKOHDmCV155BZs3bwYASEpdRFgyIKF8xkStjbSr4GmnpYxA93dXDsMrERG5a2MCbeP8aJ8EStFrsKwuSde8eXM88sgjaN++vfayiKhaMMAShRBFUTB79mx8/PHHKCkpQXR0NMry0yErjZwnafLWOHsKnnqVEUgAZoAlIqKqvMjqZxlPvHohJk2ahJycHMiyjOuvvx433ngjIiK4PB1RqGCAJQoRx48fx6uvvop//vkHACApdRBhaQ8J0ZU39tQoBxpeQyX8EhFRzRdoe1EF+wuYceGlJnXG/zZt2uDJJ59Eenq657KIqFowwBKFgAULFuDtt99GUVERIiMjYS1Mh6w0cb80jqsGWUvwrMr9tZbB8EpERHZa255A2h0/93/i1Qvx5ptvIi8vDyaTCXfccQeuuuoqrhtLFGQMsERBVFRUhEmTJmH+/PkAAElJhNHSAbL9Xld3KjbEvoTPqtjflzIYYImIyC7YF1+97C9Qik69S7B27VoAtnVjH3nkESQnJ2s/LhHpSg52BYhqqx07duDmm2/G/PnzIcsyDNbmiLB08x5eHSnC9/Cp5/6+lsHwSkRE/gpCmychEhtXJOCee+6ByWTC6tWrceONN2LVqlX+14OIAsIeWKJqpigKZs2ahU8//RQWiwX169dHztGmkEUd7YXIUmCNeCD720OoP/szwBIRUUWBtCfV2JZ9OnMsXnjhBezevRsAMHr0aNx8880wGo3+1YGI/MIAS1SN8vLy8OKLL6pXbmWlPoyWdpAQRrMb6hF+iYiI7IJ1QdYPAlZcek0i5syZAwA455xz8PTTT6N+/frVVgei2o5DiImqya5du3DLLbdg1apVMJlMMFoyYLR0DK/wCjC8EhFR6KjG8AoAEgyY920Bnn32WcTExGDTpk24+eabsXr16mqtB1Ftxh5Yomowd+5cTJo0CWazGRDRiLB0hCwSfCpDEoAIIAMGun/AGGCJiMidag6iehAoQrMOJ9UhxTfddBPGjh0LWWb/EFFVYoAlqkKlpaV499138euvvwIAZCUZRksHn3pdpfJ3aFiHV4ABloiI3AvDAAtUHlJ8wQUX4IknnkBMjA8TMhKRTxhgiarIqVOn8MQTT2D79u2QJAlyWQsYlHT3a7tWIFV4Z/oTQB3LYIAlIqKQFaYB1u6+p8/FW2+9hbKyMqSnp+Oll15C06ZNg10tohqJYxyIqsDOnTtx++23Y/v27UhISIDR3BlGpbmm8CqJwMNrxTIYXomIKKSFeTsx6fl1eP/995GcnIwDBw7g9ttvx99//x3sahHVSOyBJdLZ0qVL8dJLL6G0tBSSEoOIss6QJO9DiSqGVkdaA6i7MhhgiYgo5IV5L6wkAIFStO6Wgy1btkCSJNx1110YOXIkJIntIJFeGGCJdCKEwNSpU/HFF18AAGSlHiLKOgKS9/XhPIVXwHsADXT/KscAS0RE3oR5gAXsIVbBkKtj8csvvwAArrrqKtx9991cL5ZIJwywRDooKyvD66+/jvnz5wMADJamMFpbQ4LsMTx6C55ADQivAAMsERF5V0MCLAAICNx0bxtMnjwZANCrVy8888wznNyJSAcMsEQBKioqwlNPPYW1a9fCYDBAKmkNo9JEfd5VgNQSXD3t70sZDLBERBQ2wjzEVmybH3/tQrz44oswm81o3bo1XnvtNSQnJwenckQ1BAMsUQBOnz6Nhx9+GLt27UJUVBSs+RkwKGcbporh0ZfgqlcZDLBERBQ2wjzAApXb6UlfjMBjjz2G3Nxc1K9fH2+//TbS0tKCUzmiGoABlshPhw8fxkMPPYRjx44BIgKmss6QRaLTNvbw6E9wddxfrzKChgGWiIi0qIEBFgAUFCO19WEcOnQIiYmJePPNN9G2bdvqrxxRDcBldIj8sGfPHtx11104duwYJBENk7l7pfAKuF4Sxxf2ffUoI2gYXomIqJoEvc0DABd9QzKikbU7HW3btsWZM2dwzz334N9//63+uhHVAAywRD7avn07Jk6ciNzcXEhKPEzmcyGjCiZlKG8AA22MQ6IHloiIqBoIKfB2M9CLz5AklyFWggkHNjVEly5dUFRUhAcffBArVqwI4EBEtRMDLJEPNm/ejPvuuw8FBQWQlESYyrpBQqTzRkK4bLh8wpH9REREfgs4hEKHW3dcnA9IMGLbqiT07t0bZrMZTz75JP7444/AKkpUyzDAEmn0zz//4MEHH0RRUREkJQmmsi6Q4LCmm17B1V4GFz0nIiIKSKCTJ+oRhCueH0gwYN3iSFx00UWwWq144YUXGGKJfMAAS6TB2rVr8fDDD6O4uBiyUtc5vOodXImIiEg3evXG6hlkJchY+rMFl156KRRFwYsvvojFixcHeACi2oGzEBN5sXHjRjz44IMoLS2FbE1GhKUjJBhsT7p7+2jtPfX09tOpBzYk7oHlRE5ERKSFDrMQewuaWtrFQMuQBDS18QICA640Yd68eTAYDHj66afRv39/7xUkqsXYA0vkwbZt2/DII4+Uh9d6iLCcYwuvvM+ViIgoLOkxU3HAIbn8PEKChMVzzLj44othtVrx/PPPY+nSpYFXkKgGYw8skRt79uzBxIkTUVBQAFmpg4iyzpCExms+nnpPtb7l2ANLRES1TTX0wDpy10bqUoYPr0VIQP9hEfj9999hNBrx+uuv49xzz9VeCaJahAGWyIVDhw7h7rvvLl8qJxEmc2fnCZu8cRU+fX2rMcASEVFtU80B1q5iW6lLGT6+FgGB8y8RWLJkCaKjozFp0iS0b9/e94oQ1XAMsEQVZGdn44477sDx48fL13nt6lt4BSqHT3/eZgywRERU2wQpwAKVZx8OuAw/XouAgo598rFu3TokJibi/fffR3p6un+VIaqheA8skYOioiI88sgj5eE12vee14o4uzAREVFYCIXZiiXI2PxXLNq1a4czZ87ggQceQFZWVmCVIqphGGCJylksFjzzzDPYtWsXICJs97zC5F9hDK5ERERhqTomefK4L4zYtyEZaWlpOHnyJB5++GEUFhYGXimiGoIBlgiAEAJvvfUWVq9eDQgZJnMnyCLGn4L0C641JQBz+DAREYWbIK/xLsGErF1NUa9ePezfvx/PPfccrFZrYPUhqiEYYIkAzJgxA3PnzoUsy4goy4QsEn0rgD2ulckSwysREWmnw/2vutOjbffzHEFCFF5++WWYTCasWrUKH374YeB1IaoBGGCp1lu9ejU+/vhjAIBc0goGJcW3AhhcK2NwJSKimkKvi9R+lHHPuG/xxBNPAAC+++47/PTTT4HXgyjMcRZiqtUOHz6M22+/HQUFBTCUNYTRkgFJ0nhdx9NbR6cZhPUop9pnIWZ4JSIifwRxBuJK9GjjFSXwMgDAKjDmnhb47LPPYDAYMGnSJHTu3Fn7/kQ1DAMs1VqFhYX43//+h4MHD0KyJsBU0hWSLGtrVLy9bUIowALVFGIZXImIKBDhEmABbe2zpwCrtQwAsAoICFx4pRELFy5E3bp18dlnnyE5OVnb/kQ1DIcQU60khMDLL7+MgwcPAooJptKOkCADCjw3WrzX1TWGVyIiqk2qa5Inq+15CRL+nGNGixYtcPr0aTz77LOwWCyBHZ8oTDHAUq30448/Yvny5YiIiICp9BxIItLzDgyurnGiJiIi0kMoTeDkS3tfjZM8STDghRdeQExMDDZt2oRPPvkk8GMThSEGWKp1du3apc7kJwrSISsJnncIZnAN5dDM4EpERFStkzzdfOXneOyxxwAAM2fOxJ9//hn4cYnCDO+BpVqlqKgIt9xyC44cOQLZkoyI0o6QUCGIybDdlxLIW0Ove2B1Kkv3e2AZXomISE/hdP+rx0o4tI/e7oHVUo7VdV2G3ZSCWbNmIT4+HlOmTEFKio8rKBCFMfbAUq0yadIkHDlyBFAiEVHarnJ4tQvi4uVVQbdGHWB4JSIifYXS8OFA2dv/QMKrvRwP5nyRhbZt2yI/Px+vvPIKlECPRxRGGGCp1liyZAnmz58PWZZhKu0ACRGVtpGEgOTmamc4q/aldIiIiMKRThefdTmXEAKSm2AqQcaTTz6JyMhIrFu3Dj/++GPgxyMKEwywVCvk5uZi0qRJAACppClkJanSNpJevaZK+SNEMLwSEVFNp+tII51IVh0uinsIsbde9SXuvPNOAMBHH32EAwcOBHYsojDBAEu1wjvvvIPc3FxISiyMZc2dnpPsjYNe4TWEMLwSEVFIq0nDh93QK8S6CrIfvvgvevbsCbPZjJdeeolL61CtwABLNd7SpUuxePFiAFL5fa9n/+xd9rr6M4zYVa+rtzVlq5CQqjC81oKTDSIiIn9JlspB05/eWKdyys9XKoZYCRL+XWJEXFwcdu7cyaHEVCswwFKNlp+frw4dNpjT1CVzwqrX1cc6steViIhqk5CYfVgjn0Ksq/q46I2VRCTuuOMOAMDnn3+OrKysQKtJFNIYYKlG++yzz5CTk+M0dFi3e12BkBoyXKW9rkRERHqrpSN69BhSXLE39r1n1+Gcc85BcXExJk2aBK6SSTUZAyzVWLt378ZPP/0EADCWtoEsJO29rt6GEdf2iZpq6UkHERGRHrwNKXY1DLkSh95YCRIefPBBGI1GrFy5EsuWLdOxtkShhQGWaiQhBCZNmgRFUSBb6sNoTQpOr6te98F6KIO9rkREFHZ0uhAaasOHNQVPx+3dhVit9XHojb1txBSMHj0aAPDhhx+itLTUp7oQhQsGWKqR5s+fjy1btgDCAFNJixq7PE5Qwyt7YYmIiAKm53I7s/5vH1JSUnD8+HF8//33+lSQKMQwwFKNU1JSgk8++QQAYDQ3gySi/CvIcRhxIMG1Cnph2etKRERhi72vrvcvP+fwuxwhIAkZt99+OwDgq6++Qk5OTkB1IgpFDLBU4/z44484deoUJCUSRnMT/wuyT/YUQr2uAMMrERFRTSVZBaQya0BlvPnwn8jIyEBRURG++OILnWpGFDoYYKlGyc/Px/Tp0wEAxtLmTmu++iQEgyskW3LV7YozERFRddPx9hNdbqXRc7ZevVY5ECKg3lwJEu68804AwC+//IKDBw8GXieiEMIASzXKzJkzkZ+fD8kSDWNJin+FOIZXa+VFw/0S6DBiKcS6XWXJ9iAiIgqyUBiZ5NRrGkB7L5ktahmBhNhHr5uF3r17Q1EUfPXVV36XQxSKGGCpxsjJyVEnLIgobAYJPrZoQgDW0O15DRkMrkRE5I8qnPwvFEKsE397Yx33KQ+x/gbZ8ePHAwAWLVqEw4cP+1UGUShigKUa44cffkBxcTHksjgYzHV929nTkOFg9cJKktvwGrRhxAyvREQUonwOsXpN3uTpnlUfjqH2vlbc38/e2HuunIJevXqxF5ZqHAZYqhGKioowe/ZsAICxqLGt99Vi1bwQeDj2ulZ7iGV4JSIif1XT0mua74vV895XvY7laTsfQqxUejYIjxs3DgCwcOFCHD16VFs9iEIcAyzVCHPnzi2/9zUKBnM9bTsFY8iwll7YUBwyzPBKRET+CsK64dU1pFjzjMF6TPDkx5Di+0d8hZ49e8JqtWLWrFmBHZ8oRDDAUtizWCz49ttvAQARxY2d73111wvra6+rXsOIPfEwZNjtLlV9TsDgSkREYcptiK3O3leNx3Y5fNjd/h56Yx17X+2uvfZaAMD8+fORn5+v7ThEIYwBlsLesmXLkJWVBSgRMJTU975DsIcMu+qFDbVeV4DhlYiIAheE3ldHVdkT6/d6ra5CrK+h2ochxY+P+Q7NmzdHcXEx5s6d69txiEIQAyyFvZ9//hkAYCxOdb3uq70XNtAhw1XVCxtgeK2SXliGVyIiqiGc7osNZu+rI4d6aO59dVGG45BiV72vgG1d2JEjRwIAfvzxR1itfgZvohDBAEth7dChQ9iwYQMgAGNJA/cb6tXrKgQkPRo/ey8se16JiKimCnLva0V69sb63fvqSAhIRaWBhWqNsxS//9CfiI+Px/Hjx7F+/Xr/j0cUAhhgKazZe19lcx3ISqTrjRQFUokZUpmfVzjt7O+WQAOsrGNZREREoSjEwiug34glyaL4NW+FS0IAlsDDsJSTBymvwP3zMGDw4MEAgN9++y3g4xEFEwMshS2LxYIFCxYAAIwlqZU3UBRI5jJIFqs+odMukF7YKnrH6TqMOARPOoiIiAIhCVTNReMAQqxUbD77j0BDrL0nNq/AbZD97fO9AIDly5cjLy8vsOMRBREDLIWtf/75B7m5uYBihMGc5PykotiCqwPJXOZ7L6xjb6kjfxpBd+WEYi8sQywREfkrFNsQndpal0N1/Q2xFetksfoVZKVch5mFHYJsRbIlDq1bt0ZZWRn++OMPn49DFCoYYClsLVq0CABgLE12nrzJRXj1i6d3h6+9sNXwTqvyJXWIiIi8CcHwWi3to6/L4Dn2vlbk6zmMm1mNXYVY+zDipUuX+nYMohDCAEthqbS0FMuXLwcAGEpSzj7hJbxq7oXV8s5QFG0h1ltZOvbCcigxEREFTQi2G3oOHfa6bI3GECsVm73XSWOIdep9rchFiP3ihdUAgI0bN+L06dOajkEUahhgKSxt2LABhYWFkKwmyJZ45/tdvfAaYn15V3hqgNwNP3ZXDocSExER6au6wqu6oYbJnbTWycs5jZSb772sCvfFykoU2rVrB0VR8Oeff2qrB1GIYYClsLRy5UoAgMFcF5IifB8y7O4D39d3hLuhxEF8Z3EoMRERVbsQvOAZ1PbQTYj1OHTYFU/nN1qDcIX7Yvv16wcADLAUthhgKewIIc4G2JIkv+53lcoszr2wvvSWVlRxKLG/5XAoMRERhaMQbCeqdeiw2x2dQ6ymocOuuJjcyePQYXfKQ+yXL60CAGzatAklJSW+l0MUZAywFHb27duHEydOAEKGoSjO73LUocR6vAvsDVKgZXEoMRERhZNQbR+CHV7VAhxCbKB1Kg+xmoYOuyME5Bwr6tevD7PZjI0bNwZWJ6IgYIClsLNhwwYAgKE03nn24WAKZG3YKsKhxEREVBuFXPsnSb4PHXZHh7XtJQH06NEDALB69Wo9akVUrULk7J9IO3uAlUvjAy7LNpRYhyV3JMnWoAR4oTZkyf4v1E5ERDVYiLUPuoZXISD8XePVgVRaZjtPkHU47c46BaWwKOBiunfvDuDsORVROGGApbCiKAo2bdoEAJDzTIEVVt4oSaVlgYVYHRq3SmUFeHVVSLaHLkLs5ISIiEJMiLQTTuFVy2zAnjhclA44xDoOsw4kxGadgrBaAUUJOMS+MvwzAMD+/ftRWFgYUFlE1Y0BlsLKoUOHcObMGcAqQTqpQBQV+1dQxcbI33t4Kk7QEEgvbMU6+RlidQuuQMiclBARUYgL1fbCn/Dpoi33N8RKpWWVv+lniBVWh4vt5SHWnyCr5OUDpRIaNmwIRVGwfft2v+pDFCwMsBRWdu3aBQCQikyAVYHIL/AtxLq5IuvXUGJXjZn9XlhfQ6y7htHHEMvwSkREQRPEdsPj0GFfwqeHNtzXECuVlrm/QO5riM06Vfl7iuJzb6ySl68G4czMTADA5s2bfasLUZAxwFJYsQdYuSgCQPnVSK29p14aHp+GEnsqy5cQG+gQJ8fDMrwSEVGwyVK1tyGa7nvV2tZ6abuFJGkKsh7Dq53WEGsfOuyODyHWsZx27doBAHbv3q2tHkQhggGWwooaYAvP3v8qCgu998JqbLg0hVgtZWnpOdXamGooi+GViIhCSjW1JT5N2uSt3fVh1JPXEKv14rq3EOstvKrH8x5ilTzntWMn3zkTgG15QqJwwgBLYUMIgb179wIoH0Js/77V6nkosR9DftyGWB/K8tgL62uvq4dGleGViIhqI79mHPZ0y46Pt/+4C7Eu73v1xF2I1Rpe7TyEWMehw+phi22j2Y4dO4aiosBnNiaqLgywFDbOnDmD/Hzb1UOp1Oj0nNsQ6+/wXFdXTv0InS5DrL91chFiGV6JiChkhWq74mrSRD8nYKwYYjUNHXbFRYj1KbzauQixrsIrAEgWA+rVqwcAOHDggO/HIgoSBlgKG0eOHLF9YTZAUtx80Ds2GgHcW+o0qVMg96lWDLGB3u/qEGIZXomIKORVUfsS8HqvjsvWBbiGuz3E+h1e7WT5bJB1NWmTVhVCrKcg3LRpUwC2XliicGH0vglRaLAHWLnE/Z+tKCwEZAlSbEzgB7RYAYMBMARYjhCQANj+qw+GVyIiChuyFFiwqyqSBFh1qpdF0e81ns71r/fVkT3EeiknNTUVAHD8+PHAjkdUjdgDS2EjKysLQOXhw46E1QpxJg8iwAW+hcF2FVSyWgNv3BxnLPRzbddKRep5HhCKJxVERBR8itCnjaiCdkaXC7lC6HImLJWHRBGhQ7/QqdNAmQWSIdCr58DuZzpg93OdPG5jD7D//fdfwMcjqi4MsBQ2srOzbV+Uef5QF0IEFGLt4dXeMxlQiHUMrwEOUbKXp37JEEtERNUhkDaiCtuXgEKs/YKyJAV+NuzQvgcUYsvDq10gIXb3s+fAWscCa90y7Hmxq9vtvn7mZwBnOwmIwgEDLIWN06dPAwAkLwEW8D/EVgyvdn6FWHdrxfnbC+uiLIZYIiKqEhXbhBBtI/wKsRXb4QBCrORiiK5fIbZCeFXL9yPE7n72HFjrnp0J2R5iXQVZ+znVmTNnfD4OUbAwwFLY8CXAAr6HWHfh1U7yJXi6C6/2q7S+hlgPkz8xxBIRka7ctQW+thHV1Kb4FGLdtb9+hFjJanU7usrnEOsivKrH8SHEVgyvdta6ZbDWLcPeF5xDrGSxvWgGWAonDLAUNgoLC21fWLT/2WoNsd7CKwBAUbT1wroLr2o5auW8l1VentdNGGKJiEgP3toArW1ENbclmkKst3bXhxDrKbyqh9MaYk+d9n48DSHWXXh1ZKlXIcQywFIYYoClsFFcbFvjVVJ8Gy8khOdJKDSF13JehxJ7C692WkOsD8vu6BpiiYio9tErnAbpQqjHEOvLRWMvZ8dawqvK6CV4uhk67PK4XkKst/Bq5xhiJavtxRYXF8Ni0VYPomBjgKWwYQ+wsPp+w4vIz3fZC+tLeLVzG2K1hlc7byHWjzVjdQux7IUlIqpd9BoeHOT2w2WI9ee2HTdnyD6FV5SvEesuxPoQXtXjuwmxe545x6dy1BDr0CnAAEvhggGWwkZpaantC8X3P1tXQ4n9Ca92lUKsr+HVzl2I9acs+64MsURE5At/P+9DdKInpxAbyMSJFU43fA2vZ+vjIsT6EV7VelQIsXueOQeWetp6Xx1Z6pVh3zNnhxOXlfleBlEwMMBS2BDljZC/0U4IAZFfAFFYFFB4tVNDrL/h1a5iiA2kLL2FyMkIERFVkUA/5+37h2J7Eeja6w4h1t/wqlbFMcQGEF7VqpWH2D1P+xde7SzJZ+vBtWApXDDAUtiQyoNdIM2RsFqB0lJIZZaAwqtap0AbRzt7oxhK4ZWIiGo2vUJnCIbXgNaIdaTjWu5CkiCZywIOr3Z5l2bCkhxgr6nEIcQUfhhgKWzYA6zfXbAA5MhIIMIElJRCKjEHViFZhjBIgBCBB1kZtkZEr0CsFx1CPhERhaAQDJ160u12Gmt5G28M/JRZLiy2nTMkJgRc1pmL2qEsVkbSelNgBTmcd9SvXz/AWhFVDwZYChuG8uEyWePa+7W/HBkJREYCsmQbjlxc4n+ItYdXwPbhH0iItYdXuwBDrG5XnRleiYhqptoSXgMd1WSt0LYHEGLt4RUAYJADCrH28AoAEUUioBD7bM856tdRUVF+l0NUnRhgKWxER0cDAK69dBGO3tPNp30dw6ud3yHWMbyeLcy/EFsxvDqW5weGVyIi8qi2hFf1G362ZxXDq50fIdYpvNr5GWIdw6udvyH2xT6z0dR6Qv13TEyMz2UQBQMDLIWN2NhYAEAzaxYm3DgHRyf6FmJdhTKfQ6yr8Hq2MN9CrLvw6lieD3QLr0REVDPVtvCqPuFjA+kuvNr5EGJdhlc7H0Osq/BqF1Hk2+/2xT6z0dp0HKUltvKio6Mhy4wFFB74l0phwx5gS4pldI46iAk3zdHUE6v2vrqhOcR6Cq9nC9MWYr2FV8fyNNA1vLL3lYio5qmt4VXdQGPb5i282mkIsR7Dq53GEOspvNpp7YW1h1cAKC2x/Vzso9yIwoEx2BUg0io+Ph4AUFhg+wDvHHUQE26cg/dxJRq/u97lPq6GDrsihIBUXAIJgIjSZ0IECXC9vI7W8OpYnoftGV6JiMij2h5e1Q29TJaoNbzaGWXA4np6Yk3h1c7gOZhqCa/A2aHEud3MSD6Tj2v/XIueu/YjrqQUBVGRWNW2BdIeOIl0U7a6T/4Z2/widerU0VZXohDAAEthIyUlBQCQd/rsAt72ELtpZFMs+66bU5DVGl7tPIZYLb2vzoUBcBFifQ2vjuW52I/hlYiIPGJ4rbCDmxDra3i1cxFifQqv9molJkCcyav0fa3h1S4uz4yn3pyDK3auhclqdXruwq27ofwCnLw6DgeeqQsRJSEv13ZOVa9ePZ/qSxRMDLAUNuwB9kyO859t56iD6Bx1EJnjj+ADMQyN31vvc3i1cxlifQ2vZwsD4KEn1p/yHMpheCUiIo8YXt3sWCHE+hteXZCLSvybiLF8KLFjiM0b4lt4jbSU4b2Fn6Lb8b3u61cGNJhRgOh9Zdg+tT7ycmwBNjk52fc6EwUJ74GlsGH/cD3j0APrqGv0Adx14084/EA3v8KrndM9sf6G17OFnb0n1t/e14rlgeGViIi8YHj1UkB526dHeC2/H1YuKgEU10OKNXG4HzZvSDuY43w7TX9g9Rx0O74X3l6NAJCwuhTpz+UgqmwcAPbAUnhhgKWw0bBhQwBA9gn3Awde+3Mo0r85ApSWBnQsIURgjZBzYfqUQ0RE5I0ianR4lYQO4dWpPH0Kk/Q6bzDIEBaLz+G1XlEeLt+z1lYXL9van0/5vgCH99p6a5s0aeJjRYmChwGWwkazZs0AANlZRljKXG8TcdoA65FjUIpLgOISv48lmUwQkSZAUSCVWSFZA2jgZPnsEOJAG8rycvRsvGvyiQ4RUa1Swz/PdW37ykdIBTTKyq78HlgRExVQMUp2DpTsHEBRkLLwoE/7Dtu9BhGK1fuGDuQy4PCePQCApk2b+rQvUTAxwFLYqFevHmJjYyGEhFNZEZWeH7XgTrT+5KjtH0IJLMTKki0s2q9kK4p/IdYeXh3faf6G2ArDjxliiYhIVcM/x6sivKr/DCTEWpSzvbiS5HeIVbJzgLIy2wOAkn3ap/27erjv1Z1iWcbJEtt5Ulpams/7EwULAyyFDUmS1A/YE0edhxGPWnAn2r+SBeuRY2e/6WeIVXtfHfkTYl2FV7VuPrbEbu6dZYglIqKa/vldleFV/bY/IdYxvNr5EWLV8FqBL72wMWW+3zq1PyYGAJCUlISEBO9r0RKFCgZYCiutWrUCABw5cDZgugyvdj6GWMlkgoiOdB0Y/QqxHp7TGmK9TPzEEEtEVIvV8M/t6giv6tO+hFhX4dXOhwkb3YVX23OnNYfYoohIzce02xUfDwBo27atz/sSBRMDLIWVdu3aAQCO7Dv7QR2RbXQdXu00hliP4dVOa4h1vO/VEy+NqVYMsUREtVAN/7yuzvCqmUXxHF7th9PQC+spvJ7dRluIjR2V73WbinbExQFggKXwwwBLYSUjIwMAcGS/CYoCjFp4J1p/6iG82nkJsZrCq523EOtp6LDb+gV+FZchloioFqnhn9PBCq8ee2HLg6ummYu9DCXWEl7Pbus5xD7y+HR0GB8JUXl6EI92sAeWwpT79UiIQlB6ejqioqJQUlyCsd/dgPYfn4D18FFtO9tDbGkp5MhIINqhYbFP2qSVIgAokFBhnVh/wqtaP+FcBz/WjJWEjmvEKoJrxBIRhSKGV+386HkVBqnyRWoNva6VlIdYqcj54rkv4fXsPqcBNHP63iOPTwcAjIjLA+KMwDUJwPQ8CHheSkcAKDAasT82FsDZ0W1E4YI9sBRWjEYjMjMzAQDpX+/XHl7thAJYrU69sS4nbdLCXU9sIO8qh5kM/aXrGnk1/CSJiCjs1PDPZd3aL3tw9XPYsNPFaX/Cq12F9tyf8GqXsuiQ+vWDj3+DEXF5tvBaTryQDNErStM6sP/0qAcB2+zDycnJftWHKFgYYCnsdO3aFQBgUU74X4i9NxbQPnTYFXuILbMCCrTd91pNGGKJiGqYGv55HCrhVS3GIAUWXu3lREeeXePVz/AKAMqpbKQsOoQHH/8G18SdqbxBtAwxvRHEmAS3w4lFBCDGJGDj1Y8AALp06eJ3fYiChUOIKex069YNAKAklEJAQPJ6rdENoQAWC6AogMHgf4UUARgNgB6LoetIt6HEREQUfAyv1U9BwOEVAGBVINerA+V4ABfey1mOHnMdXu2iZYg36gMP14X4Jg/SymKgUAFiZYjzo4HrE4AUI/55dCMABlgKT5IQerwziaqP1WrF5ZdfjoKCAkRsrgdDoX+LhssxMZAS4gGjAcJoCCzEGg0QEbb9/b4H1k7y8X5cN3QLsLwPlogouGpweNU9uNpPawM9vVVs/5OEsI2y8leZRa2LOKxh0klPVSotBYSAtV9XLPrmC7/LGXj9dbBalkKWZcyZMwdJSUkB1YuounEIMYUdg8GAXr16AQCUusUQfjTsang1yIAQkCxWSOYywOpHI2U0QBjPvpUkIdSGz2cMr0RE5IjhVTvH0Or3rUFwasOFJKkXqH3mEF4BQE6t71+VSkvV8AoAhqX/YNDom/wqa+CYmyHtXA8AyMzMZHilsMQAS2GpT58+AAClbimEsPoeYg0GW3i1E+X3slqsvoVYe3it0FD6FWJDLbwSEVFwMbxq56rH1dc21U277df8FhXCKwCICKPPIVYNrhXKMiz5x+cqDRxzM4xL/kHnUbZlc3r37u1zGUShgAGWwlLPnj0REREBEW2FiLYAQoFQhKYgK8fEQIqNcf1keW+sTyHWTcMmCWGbodjf3thgY+8rEVHwMLxqp8fdcF7aas29sGUWl+H1bDnap59x7HV1RWsv7MAxN6vhVRgV/PvvvwAYYCl8McBSWIqJiUH37t0BAEpK+fpqQlGDrDtOQ4fd0RpiKwwddkdTb2yo9b4yvBIRBYciGF610jLTsJa2VcOFZk1Die3B1UudtPTCeguvgK0XduCYmz1uM2CsLbgay3tslXolsFgsaNWqFdLS0rzWgygUMcBS2Bo8eDAAwJpSDAGHD3lPIbbi0GF3vIVYN0OH3fEYYkMtvBIRUXDU4OAKVEF41XxgDw2kD6OkPA4l9tDrWqkcL0OJtYRXO+Pi9W6fGzD2ZkT84TzUuP1V6QDOnkMRhSMGWApbffr0QWxsLBClQCRUWFfNRYj1OHTYFW+TO/kYOgOa3Kk6sfeViKj6Mbxqp9eQYT/aZJe9sD6E17PlVB5KXHGyJq0GjK3cCztg/C2VwquItGLTpk2QJAmDBg3y6RhEoYQBlsJWZGQk+vbtCwCw1i+uvEHF+2K19r46leFicieNQ4ddqRRiQ633leGViKj61eDwKokQCa+ObW0AF5Mr9cL6EV7tHHth3U3WpEXEorO9sAPG32ILrwsr98xa6xcBsK39mpKS4keNiUKD9jvJiULQ0KFD8dtvv0FJKYY4EA/JUiFYClsrJcfE+9b7WlF5b6wAAKMhoNApCQFYAWFgWCQiqvVqeHjVVaA9r5IEWAOvlIgwQCoqDbhO9l5Yf3pdKxow/hYICTC5CK4AICSBpC5RyM4uxOWXXx7QsYiCjT2wFNYyMzPRqlUrQHbTC2snS773vlYkBCBJtuAZYEMjdOp5JSKiMFaDw6vu9Bg2rBchIEwRAddJsiqQU5J1eW2RK7bDtMD9/bBKnVJkZ2ejTp06uPDCCwM+HlEwMcBSWJMkCVdeeSUAwJpa5DyZUzk5Lg5SbGzAMzsKUwREpKn8H/4N83FdcAg1ykREVD1qQXjVdXJBPS76ChHwma+klI8/DnAUlWQtLyfCCGPjRn6XI8fGQo6NhRRhhBwX53a7TmNaArCNXIuIiPD7eEShgAGWwt7gwYMRFxcHRFuh1C2t9LxkkAHZ4U/d35MGSXJ+x/gZYkXFcuxl+Yn3vxIRhZlaEF5Dik4XndXwai/WflHb13KsFW7C9bMce3CVyociS25GmimxZVi/fj0MBgOuuOIKv45FFEoYYCnsRUdHY9iwYQAAa5NCp15Ytfe1Ih9PHoQpwjZcqNITfjaKrq4k69mrS0REoamWhdeg98K6ald9PPuVFKVSeAXgVy9spfBaztdeWHt4rfR9F72wfe47BwAwcOBApKam+nQcolDEAEs1wsiRI2EymSDiyyASzer3K/W+OvJlSLGrXlM7e/DUED5d9r66Kk8j9r4SEYWJAG9jIT9UQa9rpUNo7D2VrIrb8ApAcy+s45Bhl8ep0AurRFmwbNkyAMB1112n6RhEoY4BlmqEunXrYujQoQAAS5NCAB56XyvS44TChxCr6Qoye2KJiGqOWh5cg9IL660d1XAG7C28AtDUC+sxuPqg4pBht9s59MJe/GwvKIqCXr16oWXLlrrUgyjYGGCpxrj22mthMBggksxQ4syee18r8nBy4Xb4sMuN3YdYTb2vGsuyledDWZ6w95WIqOrU8vBqp2uI9XggH27HcdMmux0y7O6QHnpPfQmvnoYRe+p1rXTM8l5YEWnB77//DgC4/vrrNdeDKNQxwFKN0bBhQwwZMgQAYEkvcDkjsUfuhnf5GzxdNaA63b9TbScCRETkP4bXquGuLa2GIcMuueiF9Tpk2BUXQdjbkGFP+j/RDWVlZejWrRs6derk8/5EoYoBlmqUm266yXYvbKIZSrLVv0IcTjh86n11VCHE+tz76qq8qsDeVyKiqsHwWkmVXnwNVni1H94hfAYyZNixF1brkGGXkiOwYMECAMBtt93md32IQhEDLNUoDRo0wFVXXQUAMNf9z/deWDv7iYcewVMISEIEvoYd74slIgoPDK9Vz7FNDaR9lH0fMuySQfKv17Wi8iDsb6+rXbcbm0IIgX79+qFdu3aB1YkoxDDAUo0zZswYxMXFQZiKYYk97X9Bik7L2ugZPBliiYhCG8Nr9Qml5ed0qocwGgIOr9aYIqxcuRIGgwG33nqrLvUiCiUMsFTjJCQkYMyYMQCAsjpHIST/hhKLyAi/Fyl3IssQBkmfxq38irOkV3vNEy0iIqomurVdgK1NDXRkk70orRM+eqoLABEdGVgxRgMgSZAbpPhfBgQaD7KduwwdOhRNmzYNqE5EoYgBlmqkESNGoHHjxhCGMpjrZQFGg++FBDp82BUdrxZLQqeTAa5NSESkD36WuqRbe2Wnd6+rv219hTZdaFhSx2UxRoMaXgFA+Nn7KtVJgrVJKfbt24eEhATccsstfpVDFOoYYKlGioyMxL333gsAsMT8B2tUiX8hNlD23teK/Gl83VxpZm8sEVGQ8UKgW7oH14rtZ7B6Yd0tmedjL6waXAN8HVKdJCiRCiIaZwOwTdyUlJQUUJlEoYoBlmqsnj17ol+/foAEmOP3QzHKEJERmoKsbsOHPR5Ev1adIZaIKEj4uelWSPe6VuTrcnnuntLYC1ux17UiqW4dTeVIdZIg1UmCiDDiguvrorCwEBkZGRg6dKim/YnCEQMs1Wh33303oqOjoZjyYY0+aesRNRq8h9iqGD7sCocUExGFL35WuhVW4VUrndpsLb2uWoYR24OriDDCasrFggULIEkS7r//fhgMQRh1RlRNGGCpRqtfvz5uuukmAIA57gAUuQSQJNuVT429sdXCW4Pow9Ai9sYSEVUDfka6pOv9rloDY3UMI9ZxlmE9hgvbwysACMmChNYnAQBXXXUVMjIyAq4nUShjgKUa7+qrr0ZmZiYgW2FO2GtbG1aS3PbG6j77sFah2htLRETO+NnoUtj3uro6K/ajbXZ1H6y3IcOuSHWSXH7P3utqZ447gJMnT6Jx48a47bbbfKorUThigKUaz2Aw4LHHHkNkZCQU0xlYoo+ffdJVb2x1DR92J9TujeWQYiKis/h56FLYh1dX/KxHxYvX/k7UJEwR6tcVe13trKbTsEafgCRJeOyxxxAdHe1XnYnCCQMs1QpNmzbF//73PwBAWdxBKIbis0966I0NGp17Y3XBkzYiqu34OVhJUIYMu6yIPsOIA66HYzF+9Lq64qrXFQCEVIa4lrahwyNHjsQ555wT0HGIwgUDLNUaw4cPR5cuXQBJgTlhFwQU5w3Ke2MRYdS3IQxUKNWFiKg24kiUqhciva4+L6fjrhwdlscREUaXva4AICDQ+QojsrOzkZaWhltvvTWQ6hKFFUmIEPnEIKoGWVlZuPnmm5GXlwdjUUOYCppX3ijCCBFhCOwKrK/3v7qjw9pwACD0ysAywzQR1TIMrh7p2vsaCmUAkMqsAewsqXWRSi1+FyMijIBBglRsdvl8WfRRlMUfhMlkwkcffYRWrVr5fSyicMMeWKpVGjRogMcffxwAYIn5DxZTtvuN7eExzHtAdQuvRES1DcNreAl2e+143uBnT646VNjDRXCrMR9K0hEAwIQJExheqdZhgKVa5/zzz8d1110HADAn7LEtreNODQmxRETkI4ZX0kqncwU1uHoIr0KyoE77k7Barejfvz+uuOKKgI5JFI4YYKlWuvXWW9GhQwdAtqI0cScEvAwXCkaQDbXgzOHDRFRbMLxqptsonxBq74TBhwkddTg/0NLrCtjuez3nMgnHjx9Hw4YN8dBDD0EKoZ8bUXXhPbBUa2VlZeGWW27BmTNnYChJhimvNSRj+f2vnhoE+1vG01tHj3tgef8rEVH1Y3j1Wa28D9bePntop93dv2qnTs7k6XzBKiCZywAA5tgDsMQeQ2RkJD744AO0adPGcx2Jaij2wFKt1aBBA7zwwgswGAywRp2CJeaottDIYcVERDUTwytpoVOvq7fhwgDU5y2RJ2GJPQYAePTRRxleqVZjgKVarXPnzrj33nsBAGWxh2CJ8DCpU0VhEGQ5gRMRkUYMr34LqbamKtvkahwu7MhqLABSDgIAxowZg4EDB/p9fKKagAGWar1hw4bhyiuvBCTAHLsDilygfecwCLFEROQB13glbxzb+urodXWgSCWIb3MMZrMZ559/Pm655Ra/j09UUzDAEgGYOHEiunTpAkhWlEZthCJ5mJnYlZoeZHn/KxHVRAyuoSUU29Ag9boCgEAZGmYex6lTp5Ceno4nn3wSsp/L8xDVJJzEiahcfn4+7r77buzfvx+SEoPIoq6QEOF7QUJAyHLgl4f0mJKfEzgREbnG8KqrmjaRk2RRyr8IoP2zl+HHpI4CVpijN0ExnkFKSgo+/PBDNGjQwP+6ENUgvIxDVC4+Ph6vv/46UlJSIOQimKM3eV9exxUNMxNWF91OKIiIahKGV92F1H2wegi011WSfB4urO4LAXPUDijGM4iNjcXrr7/O8ErkgAGWyEGDBg3w5ptvIi4uDoohD+aobRBQ/C+wJg8rJiIKVxxVUnPp0eYGGFyFJPl9hi0gUBa1F0rESRiNRrz00kto2bKl3/UhqokYYIkqaN68OV555RWYTCYoxlMwR+2AQIBX6xliiYiIqo4eF4z16HWVEVh4jdwPa8QRAMDjjz+Orl27+l0fopqKAZbIhU6dOuGZZ56BwWCAYsxCWdROKIFmUPbGEhGFDvbC1hxh3usKAEKWYYk8BKvpEADggQcewKBBg/wvkKgGY4AlcuOCCy7A008/DVmWYTX+B0vkLiiG8iusgWCQJSIiClyQe12dgqu/va6ybAuvpoOwmPYDAO6++24MGzbMvwKJagFjsCtAFMr69++PsrIyvPTSS7AajwKQYCxrDUACFEAKZKZDSdJntkUiIqLaJMg9rgB06XEFAMiAxXAYloi9AIDbbrsN11xzTUB1I6rp2ANL5MWQIUPw8MMPAwCsxiOwROy23RMru++NlYTQFk7ZG0tEFDwcRhx+wmS4sGR1fw6gLrUnAxbjQVhMuwEA48ePx5gxY/yuG1FtwR5YIg2GDh0Ki8WCt956C1bjEQBWGMsyIMkShLveWAWAQeMB7I0pe2SJiChMCakKl28LgeAKQHvXj4v23LHXVUDAYtwPa8QBAMDYsWNx4403+l0/otpEEoJnzERazZs3D6+99hoURYFsqY+IsvaQ7K2Zfc3z8reUugacP4TQbT1ZXdbmYy8FEdVUXBNWVwEHWFenpb62g0qF5e983d8qnNtywOcxi5LlbB0cgytgD697YI04DMA2bJg9r0TaMcAS+Wjp0qV4/vnnYbFYIFuTEWHuAMmxq9Wx3fQ3wAJnQywDLBFR1WKI1Y2uAdbf9s8xwPpRhj18BnKfq2RRKgVXoDy8Ruwqn1cDmDhxIq6++mr/DkJUSzHAEvlh1apVePLJJ2E2myFbkxBh7ggJEc4bKbA1WnrMkBgABlgiIi8YYHWjW4ANNLwG0nba71/1N7xahcvwK2BFWcR2KMYTkCQJDz30EC677DL/60lUSzHAEvlpw4YNeOyxx1BUVARJiYXJ3AmSiHLeKMjhFWCAJSLyiOFVN1V2/6svFCXwtjPQFQaswkV4LYPZtBnCkAuj0YgnnngCAwcODKyeRLUUAyxRAHbv3o2HH34Y2dnZgIiEqbQTZBF3dgPHIcD+vtXYA0tEVDUYXnUVSIDVbQIoPZa386cMx3krKtyDK6QSmE0bIeRCxMbG4sUXX0S3bt38rydRLcdldIgC0Lp1a3z00UdIT08HpFKYI9fDKp8+u4FjQxjQYumB15WIiBwwvIaMkGjj/L3YbG/b7Y8K+ytSAeKb7IKQC5GcnIz/+7//Y3glChB7YIl0kJ+fj8cffxwbN24EIMFobgujtZHtSXfBVetbT5KcGndfr1DrdmLAXlgiqgkYXKtMoO1TUHpgK7bPFWcw9rafh/2t8ikYk3ajuLgY6enpeOONN9CgQQPf6kdElTDAEunEbDbj5ZdfxuLFiwEABktTGMtaQpIMnntetbwFK4RYwLeGnsOIiYjA8FrFAmmXqj28uruw7K0Mb0vcKQoEBKzGQ7Ca9kEIgS5duuDFF19EfHy89voRkVsMsEQ6UhQFU6ZMwZQpUwAAsrWubZkdyRRYiHURYNWnNLyDGWCJqNZjeK1ygbRH1RZgPbXF3npfvd0KJASEsKAsYgcUYxYAYNiwYbjnnntgNBq9142INGGAJaoCS5cuxcsvv4ySkhJISjQiyjpBRpz3Hd29HT0EWMB7w88AS0S1GsNrtfDUFnlrh6olwHqbh8JdgPXW62o/vFIMc+RmCDkPBoMBEydOxPDhwz0fk4h8xgBLVEV2796Nxx9/HFlZWYAwIKKsAwyivradXb0tvYRYILCTB00YYoko3DC8VotA2x/d1o91WbiGCrgaPqwxuAKAgtOIb3QQ2dnZiI+Px/PPP8/JmoiqCAMsURXKycnBU089hU2bNgEADJZmMFpbQtI6Abjj21NDgFU3dfGuZoAlolqH4bXaBNLuVFnvqy8z/zv2vvoQXAUErPJBiKj9sFqtSE9Px0svvYSmTZtqPzYR+YQBlqiKWSwWfPTRR/j2228BAJKSBFNZR0iI1F6Iw1I8vgTRiicFAYdYBlgiCgcMrtUukPZG995XX5ess/e++hBcAUDAgjLjViiGkwCAQYMG4cEHH0RMTIxvxycinzDAElWTpUuX4tVXX0VRUREgTIgoy4RB1PW5HH9CqP3kgL2wRFTjMbwGRSDtjG4B1s+11v3ZX5HyUWbcBCEXw2g0YsKECbjyyish+VsHItKMAZaoGh0+fBhPP/009u7dCwAwWlrAYE3XPqS4nL8nCAywRFTjMcCGHV0CbDUFR9uQ4SOQY/fDbDajfv36eP7559G+fftqOT4RMcASVbuSkhJMmjQJ8+bNAwBISiIiyjIhI1pzGboEUX8xwBJRKGOADTu63ANbDQTMKDNug2I4BQDo2bMnnnjiCSQlJQW3YkS1DAMsUZAsWLAAb7/9dvmQYiMiLBkwKKma9g1qgAUYYokotDHEhg1/w6u9Hayu/a1SNhIaHkJ2djYiIiJwxx13YMSIERwyTBQEDLBEQXTs2DG88MIL2Lp1KwBAtqYiwpIBCZ4XPGeAJSLygAE2bPgTQB3bwKreX0CBxbAXSsQhCCHQrFkzPPPMM2jVqpXvByYiXTDAEgWZxWLBtGnTMG3aNCiKAklEwVjW3uMETwywREReMMSGBV8CqKu2ryr3V6Q8lBm3QsiFAIBhw4bhrrvuQlRUlPaDEpHuGGCJQsTmzZvxwgsv4Pjx4wAAg7UJjJZWLntjGWCJiDRgiA15WgOou3avKva39bruByIPwWq1IikpCQ899BAuuOACbQcjoirFAEsUQoqKijB58mT89NNPAABJRCOirD1kUcdpu6AHWIAhlohCHwNsSNMSPj21d4Hu76oM2/I4WyHkAgBAv379cP/993OiJqIQwgBLFILWrVuH1157DVlZWQAAg6UpjNZWkGAAwABLRKQZQ2zI8hRAtbRzXu9f9aEMAQVWwwEg6hAsFgsSEhJw3333YcCAAZyoiSjEMMAShajCwkJ8+OGH+OWXX2zfEFHlMxUnM8ASEWnFABuy3AVQrW2cXvsrUi7KjNvVe1179+6NBx98EPXq1dNWEBFVKwZYohC3Zs0avPnmm+q9sbK1ASIsbQApMsg1A0MsEYUHhtiQ4/LeUx+blIpl+HxxV1hgMe6B1XAEAJCUlIS7774bgwcPZq8rUQhjgCUKA8XFxfjiiy/w/fffw2q1AsIIo7UVZKUxJASxkWWAJaJwwAAbchzDp7+jivwtQ0BAkU7AYtwJSGYAwKWXXoo77rgDiYmJ/lWGiKoNAyxRGNm1axfefPNN7NixAwAgKYkwWjMgi/jgVIgBlojCAQNsyJFE4PM5+FOGQBEsxl1Q5FMAgCZNmuDBBx9E165dA6sMEVUbBliiMGO1WjF79mx8+umnKC4uBgDI1iYwWltAgqn6K8QQS0ThgkG21hKwwmrYDznqKMrKymA0GnH99dfjhhtuQGRkCNySQ0SaMcAShakTJ07ggw8+wJIlS2zfEBEwWltW/7BiBlgiChfBCrCyFPix9SijFjo7XHgXIJUCALp3746JEyeiWbNmQa4dEfmDAZYozG3YsAHvvPMO9u/fDwCQlDgYrW0rrR1bZRhgiSicVFcIdPxs9PeYepRRiylSASyGnRByDgAgNTUVEyZMQJ8+fThJE1EYY4AlqgEsFgt++uknfP755ygosC2+LlsbwGhtCQkxVV8BhlgiChdVHQQrfh76czw9yqjFBEphMewDIv6DoigwmUwYPXo0rr/+eg4XJqoBGGCJapDc3Fx8+umn+PXXX2F7a0swWJvCYG0OCRFVd2AGWCIKJ1URCF19Dvp6HHefpQywmghYYZUPwhT/nzpHRN++fXHnnXeiYcOGQa4dEemFAZaoBtqzZw8mT56MtWvX2r4hjDBYm8OgNIEEg/4HZIAlonCjRyj09tmn9RieymF49UpAQJH/g8WwV73PtX379rjrrrvQsWPHINeOiPTGAEtUg61ZswYffvgh9u3bZ/uGiCpfP7aB/hM9McQSUTgJJBhq+bzzVr4eZdRytgmaTsFq2Ash226fSU1Nxe23344BAwbwPleiGooBlqiGs1qtmD9/Pj777DOcOmVb905SYmGwtoQsUvQLsgywRBRufAmIvnzGeSpXr3JqOUU6DYthL4R8BgAQFxeHsWPH4qqrroLJFIQl5Yio2jDAEtUSJSUl+O677zBjxgx1oidJSbBN9CTqBh5kGWCJKBzp0VPqrTx/Ph8ZXl1SpDPlwfU0ACAyMhIjRozA9ddfj4SEhCDXjoiqAwMsUS2Tn5+PmTNn4vvvv1cnuZCUJNsasoEuvcMQS0ThqGJY9PezrKrKIShSPqyGfVDkkwAAo9GIK664AmPGjEFycnKQa0dE1YkBlqiWysnJwfTp0zFnzhyYzWYAgKTUgdHaHJKo41+PLAMsEYUje2AM9DNMEfqUQSpFOgOrYT8U2XYLjCzLuOiiizB+/HjOLExUSzHAEtVyJ0+exLRp0zB37lxYLBYAgKQklgfZetqDLMMrEVHg9JpcSq9ZloNUjiLlwmLYDyFnAwAkSUL//v0xfvx4pKenB14nIgpbDLBEBADIysrCN998g7lz5zr0yCbAYE3XPtkTQywRUWD8CYwVP3sDDZ328qq5HAEBIeWUB9ccAIDBYMCgQYNwww03IC0tLbD6EFGNwABLRE5OnTqFmTNn4ueff0ZJSQkAQFLiYFCalS+/I7vfmQGWiMh/esyKrOfyQP6W5WM5Z5fDOaDOKmw0GnHJJZdg9OjRaNSokX/1IKIaiQGWiFzKzc3FrFmz8OOPP6qTPUFEwmBNg0FpDAnGyjsxwBIR+UdrWPT2OatHD66e5XgoS8AKRT4Oq+EghFQEADCZTLjssstw3XXXoUGDBr7XgYhqPAZYIvIoPz8fc+bMwQ8//IDTp23LFkAYYFAaw2BNg4Qo5x0YYomIfKPXUj56rmurV1kuyhEwwyofgdVwBJBst6zExsbi8ssvxzXXXMNZhYnIIwZYItLEbDZj4cKFmDlzJg4ePFj+XQmytYFteLGIt32LAZaIyDfuwqIvn6d69eBqLcuPUK2gCFbDISjyMUBSAAANGjTA1VdfjcsuuwyxsbHayiSiWo0Bloh8oigKVq9ejZkzZ2LDhg3q9yWlDgzWJrYJn2RDEGtIRBRGqmPtWF/L1KssRZRPzHQaVsMRCMMp2E8727Rpg2uvvRb9+vWD0ejilhQiIjcYYInIbzt27MCsWbOwdOlSWK1W2zdFJAxKExhEY0iIDG4FiYhCmZ7rz7riT7k6lSVQBiuOQTEcUe9vBYDzzz8fo0aNQufOnSFJHLFDRL5jgCWigGVlZeHnn3/GL7/8gtzc3PLvSpCVBjAoTSEhUft6skREpJ1ePbiuyvOjLAX5sMqHoUjHAcl2YTM6OhoXX3wxhg8fzjVciShgDLBEpBuz2YylS5di9uzZ2Lp1q/p9ScTDoDSFLFIhgcOLiYh0owh95x7wozwBBYp0Alb5MISUq34/PT0dw4cPx0UXXYSYmBj96khEtRoDLBFViR07dmD27Nn4448/YDbbZpmEMEAWqeXL8CSwV5aIKIwpKIQiH4VV+k+dTdhgMOCCCy7A8OHDOUyYiKoEAywRVanc3Fz89ttv+OWXX3D06FH1+5KIg0FpDFk0hISIINaQiIi0ErBAkbJglY9CSGfU79etWxdXXHEFLr/8cqSkpASxhkRU0zHAElG1UBQFGzduxK+//oply5Y59MrKkEV926RPog57ZYmIQoxtLuEzsMrHnO5tNRgM6NmzJ4YOHYpevXpxNmEiqhYMsERU7fLz87FgwQLMnTsXe/bsOfuEiIZBpEJWGkIG1wMkIgomgRJYpeNQ5GMQUqH6/caNG2Po0KG4+OKLkZycHMQaElFtxABLREEjhMCuXbvw66+/YtGiRSgsPHuCJIkEGJSG5RM/mYJYSyKi2kOgzDYhk3QcQj6tfj8yMhL9+vXD0KFD0alTJ97bSkRBwwBLRCGhpKQEf/31FxYsWIC1a9eeXVcWEmSlHmSRClnU5yzGREQ6s80ifAqKdByKdBKQFPW5c845B4MHD8bAgQMRFxcXxFoSEdkwwBJRyDl9+jQWL16MBQsWYMeOHWefEAbIoj5k0QCyqAcJcvAqSUQUxmz3tebCKh+HImUBUpn6XLNmzTBkyBAMGjQIDRs2DGItiYgqY4AlopB28OBBLFy4EAsWLMDx48fPPiGMkEUKwywRkUYCAkLKgVU6UR5azepz9erVw8CBAzFkyBC0bt2aQ4SJKGQxwBJRWBBCYMuWLVi0aBGWLVuG06dPOzzJMEtE5IqAAiHlwiplQZFOOIXWuLg4XHDBBRg8eDC6dOkCg4G3aBBR6GOAJaKwY7VasXnzZixduhTLli1Ddnb22SfVMFu/PMzyhIyIahdbaM1xCK1nhwfHx8fjggsuQL9+/dCtWzdERHAdbiIKLwywRBTWrFYrtmzZgiVLlrgIszJkUbc80KZAQmTwKkpEVIVsswefgiKdhCJlA5JFfS4xMVENrV27duV6rUQU1hhgiajGUBRF7ZldsWKF8z2zACSRCFmxh9lYSOA9XkQUvgSKYJVOQpFOQsi5AM6e0tWpUwd9+vRB//790blzZ4ZWIqoxGGCJqEYSQmDfvn3466+/sGLFCufZjAFARMMgUiCLZEgiiUONiSjkCSgQyIMil4dWqdDp+ebNm6N3797o3bs32rVrB1nmfABEVPMwwBJRrXDq1CmsXLkSK1aswPr162E2n53IxDbUuA4kkVx+32wMe2eJKCQIFEORsssfp52GBhsMBnTq1EkNrY0aNQpiTYmIqgcDLBHVOkVFRVi3bh1WrlyJNWvW4NSpU84biCjI5WFWFnUhgUPviKh6CFghpBw1tFbsZU1ISECPHj3Qu3dv9OjRA/Hx8UGqKRFRcDDAElGtJoTA/v37sXr1aqxZswabNm1CWVmZwwYSJCRCVuqWh9lELtNDRLoREBDIhyKdLg+suYCkqM/Lsoz27dujR48e6NGjB9q2bcvlboioVmOAJSJyUFRUhH///VcNtEePHnXeQMiQRB3Iok55oI1noCUizWyBtQCKdLq8pzXHaVgwAKSkpKBnz57o0aMHunXrxl5WIiIHDLBERB4cOXIE69atw4YNG/DPP//gzJkzzhsII2SRBEnUtd1Hi3jeP0tEKltgLSwPq6fLA2uZ0zYxMTHo1KkTunXrhh49eqBZs2aQJH6OEBG5wgBLRKSRoijYv3+/Gmb//fdfFBQUOG8kjLblekQSZCRBEomc4ZioFlFnCpZyIaRcKFJupcAaHR2Njh07okuXLujSpQvatGnDZW6IiDRigCUi8pPVasWePXvwzz//YMOGDdi0aROKioqcNxISJMSX99Im2f6PyOBUmIh0J2CGIp1Rw6pAntM9rAAQGRmJjh07onPnzujSpQvatWvHwEpE5CcGWCIinVitVuzbtw+bNm3C5s2bsXnzZpw8ebLyhiIaskgs76lNKB92zF5aolBn610thJDOQJHyIKTcSrMEA0BiYiI6duyIjh07IjMzE23btoXJZApCjYmIah4GWCKiKiKEQFZWlhpmN2/ejH379qHSx66QICGuPNAmQhIJkBDLe2mJgsh272oRhJQHIeXZelmRX6l3FQDS0tLUwNqxY0c0adKE97ASEVURBlgiomqUn5+Pbdu2Yfv27eojNze38obCAEkkQEYCJBFveyCGMx4TVQEBAaAYipQPIeVDwRkIKa/S7MAAEBsbi4yMDGRkZKBDhw7IzMxEUlJStdeZiKi2YoAlIgoiey+tY6DdtWsXiouLXWwsl/fUxkNWQ20cJPBeOiKtBKwQKLAFVcn2f1vPqrXStiaTCa1bt0ZGRgbatWuHjIwMNGnSBLLMC0lERMHCAEtEFGKsVisOHjyIbdu2YdeuXdizZw/27t3rJtTC1jMr4iGJONvQYxEHCdHsraVazdarWmILqSi0BVUpHwKFcDU632QyoXnz5mjVqpUaVlu0aMHJloiIQgwDLBFRGFAUBUePHsWePXuwZ88e7N69G7t370Z2drbrHYRUHmbtgTbO9jWDLdUwZ4f/Fpb3rBZClIdWV/erArZJllq3bo1WrVqhVatWaN26NZo2bcqwSkQUBhhgiYjC2OnTp9VQu3//fhw4cAAHDx5ESUmJ6x2EXN5jG1P+/1j1ayCCE0dRyBL4//buPDiKMnHj+NOTGxJIBAzhEBAh4IHcqAgLxOXwKFw5FFnxWNYTsWS31l12AX8ioosIHsiqZbkliriIguLBFsihch8KyxkINyHmIIGQTK7p3x8z05mBHCSZMHT4fqqmpud9+337nWSg8ky/3W+R56ZKeaXPxtkKg2poaKhatmyp1q1b+4XVRo0acZMlALApAiwA1DEul0snT57UoUOHrFDrfRQUFJTf0Aw9J9x6t6NEuMXFYKq4jJDq3pZRVG678PBwXXXVVWrdurVatWql1q1bq02bNmrWrBlnVQGgjiHAAsBlwhtsDx8+rKNHj+rYsWM6duyYjh49ql9//fX85X18mSEyFCnDjJIUJcOMdE9HNqM8ATeUgItKuc+iOmUa+TLllIx8mcqXaThlKr/Mu/76atSokVq0aGE9vKE1ISGBoAoAlwkCLABABQUFOn78uBVovc/Hjx8v/zpbX2aIO8iaETIU4Qm7EZIiPGE3QpzFrbvc16EWy1SBZDhlqsD9MAokOT0B1VlpQJWkuLg4v5DqfTRv3lz16tWr9fcCALi0EWABABUqKCjQr7/+qtTUVJ08edJ69m5nZWVdWEemQ5In4JoRMhQumeHuZ4XL8NmWQgi7lwBTJZIKZapQplFobcvwlrnDqlRQ7nWo54qNjVXTpk2VkJCgpk2b+j3i4+MJqQCAChFgAQA14nQ6lZaWprS0NKWnpysjI8PvOT09XdnZ2VXr1HRIcgdawwyX++xtqKQwySzdNsxQvzpDIQF+d3WDO4gWy1SR+9lwP0tFMlUsGZ5nT1A15Q6rFxpKvRo0aKDGjRurSZMmatSokZo0aaLGjRvryiuvVEJCguLj4xUVFRXw9wcAuHwQYAEAta6wsFCZmZl+4TY7O1unTp3SqVOnrO3s7Oyy17u9UKZDUojc1+S6n93Tmz3b8myb3m2HJG8bw1NneF47SstkWK9LH/LbruyMsXuarXur9Nm77fI8TE/YNEvLDJdMq979cO9T4pmSW1L6WsUyDe92iSeUFlc5iPoKDw9XbGys4uLiFBsbaz18A6o3sEZERFT7OAAAXAgCLADgkpKfn+8Xbk+dOqUzZ84oNzdXZ86c0enTp3XmzBm/R25urlyu6oe0gDAl/2BrFbqfgzwj2jAMRUdHKzo6WjExMX4Pb5lvQI2Li1NcXJyioqJYcgYAcMkgwAIAbM/lcikvL09nzpxRXl6e8vLylJ+fbz18X3u38/LyVFBQoKKiIhUWFlrP3kdRUZFfWW0H5JCQEIWFhVmP8PDwcp+joqIu+OENp/Xr15fD4ajV9wAAQG0jwAIAcAFKSkpkmqb17HK5ytwuKSmRy+WSw+GQw+GQYRgVbhuGodDQUIWEcP0uAACVIcACAAAAAGyBuUQAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsIDfYAACBYTNOU0+kM9jAAoEoiIyNlGEawhwEAQUGABXDZcjqdGjRoULCHAQBVsmzZMkVFRQV7GAAQFEwhBgAAAADYAmdgAUBS+MYrZZie7/QMhwyHIRkOyWFIhiHD4a3zlBuG5DBkePex6gyrjQyfcqustE+rTqX1pmGUfrVolPZjlfu08y0zPd1YdQ5J8pYbVp23jekpM33bePtwePa32vjXW31KMuUpc5RR57e//MZYWnbuOMpoI/82fvWqoJ1Pn2W1La9PPxW2Mf3an9ufVe/Tl+kp1zntZJg+7d31hm+dta9ptTGs/Xz29/RjGGbpR9BTXvqrNq16h0zrtbtOcnheu+vcr73trDrDlKHSdg5PmfWQb7n8ykvbuKwyh0w5DJdCvHWe11a9Z1uSQqwyUyFyl4cYrnPauRTi2ZZkbVv7q7Q/h9ztHXIf313nbecuM+RSiLe9vONwKURyt5P7eN735n3tPpbp2VbpWOT+ZxYiw/rnHmIYcsjwlBme1w7PR8dQUWGIhv2xqQDgckeABQBJKjFK/5Q0HDLkCZueZFBaZ0iO0rRmuNOgpxNv2nHonHTik2wc56er0pThU65zynyPoTLKzm2n0uDqE2DPKzuvXGUE4nPr5ROkS99WuXXlvY0yx3EhbS7gRxWAPisPvQEOsGXV69zXZhnlpt8xy6rzBqvSOt9606edT5nMMvosffgG2NJQ7Hmo/HIrOBryCailQVfyBlFZAdC3zh1gXaUB0HCHP3c7TxA0DHe49JR7t639ZfiEZSnEKH0OkXzCZhl1nh+j+7XpCcCmFVjd7cxKA2xZ/TlUWuZ+7TtGn98hAFzGmEIMAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAW2AdWACQpBBTpulybxtyLwRpPRulX/f5raPqsy3fMrN026+8nDqfRUHNchY3LS0vfTb9tuXXzpQk01qN06oxZUimrLbmuW087c53bpl34VO/IZ3z8yjnce6+NVnrtaK6ivq8gOMZZdX7lZW1nmsZ9eeNsZx1YOVfb/jWWfuW9mn4rvHq3d9vXVbfj1c568Cq+uvAmiptZxqm/0O+5fIrd1n9uUqPI1MyXD7r1Zp+9abhkukzDlOm57Xn2TsOz2uHZx+HT7lvmXsc7u4cklxG6bNLpevAujxlhspbB9aQQ+71ZUNU+jvzvnZ42py7tqzDqjN8+ivtyyHDeu3+tRgqKizr3yUAXH4IsAAgqbDnr8EeQu3w5oMaODc6A5L/R8sVzIFUm+8nmwlpAGAX/I8NAAAAALAFwzTNGn43DwD2ZJqmnE5nsIdRY06nU0OHDpUkLVmyRJGRkUEeEYKBz8HlIzIyUobBnAgAlyemEAO4bBmGoaioqGAPI6AiIyPr3HtC1fE5AADUVUwhBgAAAADYAgEWAAAAAGALBFgAAAAAgC0QYAEAAAAAtsBdiAEAAAAAtsAZWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAuhwR4AAKD68vLytGDBAq1evVonT56Uw+FQy5YtNWDAAA0bNkxhYWHBHiJqUU5Ojn766Sdt2bJF+/btU1pamkpKShQbG6vExEQNHjxYffv2DfYwAQAIGMM0TTPYgwAAVN3Jkyc1fvx4nTx5UpIUGRkpl8ulwsJCSVK7du00e/ZsxcTEBHOYqEX9+/dXSUmJ9To8PFwhISHKz8+3ynr16qWpU6cqMjIyGEMEACCgCLAAYEPFxcUaO3asUlJS1KhRI/39739X9+7d5XK5tHLlSs2YMUN5eXm66aab9M9//jPYw0Ut6du3rzp27KghQ4aoZ8+eatasmSQpNTVVH374ob7++mtJ0sCBA/WPf/wjmEMFACAgCLAAYENLly61gunbb7+t66+/3q9++fLleuGFFyRJs2bNUrdu3S76GFH7tm7dqq5du5Zb/+qrr+rLL7+UJC1cuFDx8fEXa2gAANQKbuIEADb03XffSZK6dOlyXniVpKSkJCUkJPjti7qnovAqSXfccYe1vXfv3toeDgAAtY4ACwA243Q69b///U+SdNNNN5W5j2EY6tWrlyRp06ZNF21suLSEh4db2y6XK4gjAQAgMAiwAGAzhw8ftsJImzZtyt3PW5eVlaXTp09flLHh0vLzzz9b21dffXXwBgIAQIAQYAHAZjIyMqztJk2alLtf48aNy2yDy8OZM2f00UcfSZI6deqkq666KsgjAgCg5giwAGAzeXl51nZERES5+/kum+LbBnWfy+XStGnTlJmZqfDwcD377LPBHhIAAAFBgAUAoI554403tHbtWknSs88+q7Zt2wZ5RAAABAYBFgBspl69etZ2QUFBufs5nc4y26BumzNnjj7//HNJ0rhx4/zuRAwAgN0RYAHAZnyvbU1PTy93P9/rXn3boO6aO3euPv30U0nSk08+qZEjRwZ5RAAABBYBFgBsplWrVnI43P99Hzx4sNz9vHVXXHGFGjRocFHGhuB5++239cknn0iSnnjiCd13331BHhEAAIFHgAUAm4mMjNT1118vSdqwYUOZ+5imqY0bN0qSevTocdHGhuCYM2eOFixYIMkdXkeNGhXkEQEAUDsIsABgQ4MHD5Ykbdu2Tbt27TqvfuXKlTpx4oTfvqib5syZ4zdtmPAKAKjLCLAAYEODBw/W1VdfLdM0NWnSJG3ZskWSe/mUlStXasaMGZKkXr16qVu3bsEcKmqR7zWv48aNY9owAKDOM0zTNIM9CABA1aWmpuqZZ57RyZMnJbmnFrtcLhUWFkqS2rVrp9mzZysmJiaYw0QtSUtL04gRIyRJDodDsbGxFe5/7733cnYWAGB7ocEeAACgehISEvTvf/9bCxYs0OrVq3Xy5EmFhoaqTZs2SkpK0rBhwxQWFhbsYaKWuFwuv+2srKwK98/Pz6/tIQEAUOs4AwsAAAAAsAWugQUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAthAZ7AAAAABfC6XTq559/1t69e7Vv3z7t27dPaWlpkqSHHnpIjzzySJBHeOFSU1N17733VrrfAw88oD/+8Y8XYUQAYA8EWAAAYAu7d+/WX/7yl2API+AaNmyokJCQMuvq1at3kUcDAJc2AiwAwBZef/11LVq0SDfeeKPefPPNYA8HQRITE6O2bdtq586dKioqUnR0tHJzc4M9rBp59913lZCQEOxhAIAtEGABoI47e/askpOTtWfPHu3du1d79+7V8ePHZZqmJOnTTz+ttT+eTdPU8OHDlZ6ertGjR+uxxx6rVj/JyclavHixJOnRRx8N4AiDKyUlRRs3btSOHTuUkpKizMxMlZSUWCHt5ptv1uDBgxUdHR3soV4SOnXqpK+//lqSNG/ePL333nvKy8sL8qgAABcTARYA6rjx48crOTk5KMfes2eP0tPTJUl9+vSpdj9z585VSUmJevXqpRtuuCFQwwuq8ePH6+effy6zLisrS1lZWdq0aZM++ugjTZw4UT179ry4A7wE+U6zHT58uBYuXKjs7Owq9ZGSkqJFixZp69atysjIkMPhUEJCgnr37q0RI0YoNjY2sIMGAAQUARYA6jjvmVZJio6OVrt27XT48GFlZWXV+rF/+OEHSVKTJk3UsWPHavWxfft2bd68WZI0evTogI0t2LzBPiYmRn369FHnzp3VrFkzRUREKDU1Vd9++63WrVunrKwsTZw4UTNnztSNN94Y5FFfOqKiojRs2DC9//77kqSioqJK28yfP1/vvvuuXC6XJCkyMlLFxcVKSUlRSkqKvvnmG73yyitq3759rY4dAFB9BFgAqONuv/12xcbGKjExUS1atJBhGBo/fvxFDbC9e/eWYRjV6uOTTz6RJCUkJNSpANeiRQuNGTNGSUlJCg8P96tLTExUv3799PHHH+udd95RYWGhZs6cqQ8//DBIo700DRw40Aqwlc0yWLp0qf71r38pKipKv//973X77berUaNGKikp0f79+zV37lxt3bpVf/vb3zRv3ryLevOk559/XseOHVN+fr4aNGig9u3bKykpSUlJSQoN5U81APDFOrAAUMcNHz5ct912m1q2bFntEFkdR48e1eHDhyVVf/pwenq61q1bJ0kaNGjQRR1/bZsxY4aGDBlyXnj1NXr0aLVr106SdOjQIR04cOBiDc8WEhISFBYWJknau3dvufvl5eXp7bffliRNnTpVDzzwgBo1aiTJPS05MTFRr776qhITE5Wenq6lS5fW/uB97N69WyUlJQoNDVVWVpbWr1+vadOm6amnnlJGRsZFHQsAXOr4Wg8AUCvWrFkjyT1tuUuXLtXqY/ny5dZ0zwEDBlxQm+LiYn3//ff68ccftWfPHmVnZ6ukpESxsbG6+uqr1b17d912221WgPHq27evJGnw4MGaOHGijhw5os8++0ybNm1SRkaG6tevr/bt2+v+++9X586drXYFBQX69ttvtWzZMh07dkxOp1PNmjXTb3/7W40YMUIRERHVeu9eXbt2tc4uHj16VG3btq12X4cOHdKSJUv0yy+/KDU1VU6nU9HR0YqJiVFCQoK6deumW2+9VVdddVW1+i8uLtZ///tfrVy5UikpKcrJyZFhGGrQoIFiY2PVsWNHde/eXb1797aCp9e5P/9Dhw7piy++0ObNm5WRkaH8/HxNmzbtvC9DoqKiVFRUpJycHO3Zs0cdOnQ4b1yrV69Wbm6u2rVrV+61xKGhoUpKStLevXu1adMmjRw5slo/gwsVHh6uu+++WwMGDFD79u2tM75Hjx7VwoULtWTJEu3evVvPPfec3nnnHc7EAoAH/xsCAGqFd/rwzTffXO0/vteuXSvJfZ1oq1atKt1///79mjx5so4dO3ZeXXp6utLT07VhwwYdOHBAEydOLLefVatW6aWXXpLT6bTKCgoKtH79em3YsEF//vOfdddddykjI0MTJ07Unj17/NofPHhQ7777rtavX6+ZM2fWKMQWFxdb2w5H9SdOLVmyRLNnz1ZJSYlfeU5OjnJycnTs2DFt2rRJBw4c0KRJk6rcf3Z2tv70pz+VOZXX+7NPTk7Wl19+qfnz56tFixbl9vXtt99q5syZKiwsrPS4vkF47dq1ZQbYHTt2SJIOHz6su+++u9y+CgoKJEknT570K09NTdW9995b6VjKc//99+vxxx/3K2vUqJEmTJhw3r4tW7bUhAkT1Lx5c82ZM0fJyclatmyZ7rjjjmofHwDqEgIsACDgMjIytHv3bknVnz5cWFionTt3SpI6duxY6fTh5ORkjRs3Tvn5+ZKkLl26aODAgWrVqpXCwsKUmZmpXbt2WWeGy3PgwAF9//33iouL06OPPmode8uWLZo3b56cTqdmzZqlzp0768UXX9T+/ft1991369Zbb1VsbKyOHz+uDz/8UAcOHND27ds1f/58Pfzww9X6GUjS1q1bre02bdpUq4+UlBQrvDZo0EB33XWXOnfurNjYWJWUlCgzM1N79+7V+vXrqz1Ne/bs2VZ47datmwYOHKiEhATVr19fZ8+e1eHDh/XLL79YU8LLs3fvXi1fvlwNGjTQiBEjdMMNNygsLEyHDh1S06ZNz9vf98uRrVu36pFHHjlvH+803MLCwgu69tsbZINpxIgR+uyzz5SWlqYffviBAAsAHgRYAEDA/fjjjzJNU+Hh4erVq1e1+jhw4IB19jExMbHCfYuLizV58mQrvD7zzDMaNmzYefvdcsstGjt2rNLS0srtKzk5We3atdPs2bMVExNjlV977bVq0aKFpkyZouLiYo0bN06nT5/WjBkz1L17d2u/9u3bq0ePHhozZowyMjK0ePFijRkzxm8JmAu1Zs0aHTx4UJI7xLds2bLKfUjSypUrrTOvs2bNsq6r9dWnTx+NHTtWOTk5Ve6/oKDA+mKgT58+evHFF88Lwp07d9bQoUOVn59f4ZnkgwcPqkWLFnrrrbd0xRVXWOXl3cXa9zj79u2Ty+U6r3/faejPP/98ld6bJMXHx+vLL7+scjuvyMjIKrdxOBzq2LGj0tLSlJqaWu1jA0BdQ4AFAAScd/pw9+7dFRUVVa0+fKcB+waZsixfvlzHjx+X5L7rclnh1Vd8fHyF9X/961/9wqtXv3791KRJE6Wnp+vUqVMaMWKEX3j1io6O1pAhQzRv3jydOnVKhw4dqvK1qxkZGXrttdckuUPaE088UaX2vrxnHb3LKFWkYcOGVe7/zJkz1pcNnTt3rvAs7oV8HiZMmFDp77wsTqdTGRkZuvLKK/3KvX1V9MVFRRwOB+vDAsAlgrsQAwACKjc3V9u2bZNU/enDkpSZmWltN2jQoMJ9vYFZkkaNGlXtY0ruabrlhTzDMPzqBg4cWG4/vvudOHGiSmNwOp2aOHGiFTzPvXFUVTVp0kSS+3ezcuXKavdTnoYNG1p3U16xYoXy8vKq3VeTJk3K/FLgQvl+brxuuOEGSe7pyXa5q6/L5bKm4SckJAR5NABw6SDAAgACat26dSouLlZISIh69+5d7X58r0Ms62yor3379klyn2m7kJs9VaSy9r5jqehuvb77VSXQFRUV6R//+Id1Y6hbb71VY8eOveD2ZRk4cKB1I6kpU6boqaee0scff6zt27db065rIiwsTIMHD5Yk7dq1SyNHjtSMGTO0YsWKKof3mtxlWZLfjbe8+vXrp+joaBUXF2vOnDkyTbPc9i6XS2fOnKnRGC5ERWOQZF3/Krk/AwAAN6YQAwACyns29Prrr6/RtEvfa0Yruxttdna2pNIzjTVR2fWKvtNjK5oO63sdpvcazMoUFxdr0qRJ2rhxoySpZ8+eev7556t1/ayvZs2a6eWXX9ZLL72k9PR07dixw7ozb0hIiDp06KC+ffvqzjvvrPTLgvI8/fTTKiws1LJly3T69Gl99dVX+uqrryS5v1jo2bOnbr/99krPJFd2tv3MmTN+d1I+92frdDqVnZ2t8PBwa2mamJgYPf3005o+fbpWrFih3NxcPfzww+rQoYMcDodcLpeOHDmi9evXa+nSpRozZkyFZ9cD4emnn1aPHj10yy23qE2bNtbNqI4fP67PPvtMn3/+uSR3oPd+OQAAIMACAAKosLBQGzZskFSz6cOS+3pNr9OnT9eoLzsoLi7WlClTrKWDunfvrmnTpllTc2uqW7du+uSTT/TTTz9pw4YN2r59u44dO6aSkhLt3LlTO3fu1Mcff6zJkyeXu1ZqRSIiIjRx4kQ98MAD+v7777Vt2zbt3r1b+fn5ysrK0nfffafvvvtOffv21aRJk8pdWqiypYL+8Ic/nLfMja/nnntOUul6sl5DhgxRYWGh3njjDW3YsEEbNmxQeHi4oqKidPbsWb/lii6GX3/9Ve+//77ef/99hYSEqH79+ioqKvI7I37ttdfqxRdfZA1YAPDB/4gAgIDZvHmz9Qd4TQOs75IplQXY2NhYpaWl2eb6xnN5w6v37HXXrl01ffr0Gq0fW5bw8HD1799f/fv3l+Q+c71lyxYtW7ZM69ev1+nTpzVp0iTNnz9fjRo1qtYxWrZsqQcffFAPPvigSkpKlJycrLVr12rJkiU6deqU1qxZo/fee0/jxo0L5Fu7IEOHDlXPnj31xRdfaPPmzUpNTVVubq7q1aun5s2b67rrrlPv3r3VtWvXWh/Lk08+qS1btmjPnj3KzMy0PuPx8fFq3769BgwYoH79+tX47DsA1DUEWABAwHgDWLt27Wp84xnfNU+PHDlS4b6JiYlKS0tTZmamjhw5UuG1qZeac8Nrly5d9PLLLwc8vJYlNjZWSUlJSkpK0muvvabFixcrPz9fP/74o4YOHVrj/r3Tkzt06KAhQ4bowQcflNPp1PLly6sdYP/zn/+cVzZq1CgdP35cCQkJ+vTTTytsn5CQoCeffLJaxw6kfv36qV+/fsEeBgDYDjdxAgAEhMvl0k8//SQpMDediY+PV+PGjSXJuhtrefr27Wttz58/v8bHvliKi4v1/PPPW+G1c+fOeuWVV6q1bmhN+U4b9l5THEgJCQnWOrbVWWu2PNnZ2dYSStddd13A+gUAXJoIsACAgNixY4cVfHwDZU14Q9Xhw4d19uzZcvcbMGCAFY6++eYbLVq0qMJ+q7seaCAVFxfrhRde0Jo1ayTVbnhdvXp1paHUe+2yJDVv3rxK/Z84cUKbN2+ucJ/U1FQdPnxYkvumUoGya9cua/umm24KWL8AgEsTU4gBoI47duyYdcdZL+/6opK0atUqv7sFR0VFVWtqo/csYrNmzWq8FIpX//799c0338jlcmnz5s36zW9+U+Z+oaGh+r//+z899dRTys/P1+uvv641a9Zo0KBBatWqlcLCwpSZmak9e/Zo1apVSkxM9LvBTzBMnTpVq1atkuQOjI8//rhSU1MrbBMXF6e4uLgqH2vRokWaOnWqunXrpm7duql169Zq2LChioqKlJaWpuXLl1tnz5s2bVrl5Y/S0tI0YcIENWvWTL1791bHjh0VHx+viIgI5eTkaNeuXVq8eLF1N+lhw4ZV+T2UZ9OmTZLc1/fefPPNAesXAHBpIsACQB23Y8cOTZ8+vdz6uXPn+r1u2rRpjQJsINes7N69u5o0aaL09HQtW7as3AArSddcc43efPNNTZ48WSdOnNC2bdu0bdu2MvdNTEwM2Bira+XKldb28ePH9fjjj1fa5qGHHtIjjzxSreMVFhZq3bp1WrduXbn7NG/eXNOnT69weaCKnDhxQgsXLiy33uFwaNSoUfrd735Xrf7PVVxcrBUrVkhyn/Wv7hJAAAD7IMACAGps//791tnDmt592FdISIjuuecevfPOO1q/fr2ys7MrXFu2ffv2+uijj7Rs2TL98MMPSk5Otq63jIuLU9u2bdWjRw/ddtttARujHUyZMkUbN27UL7/8opSUFGVlZVlTihs2bKhrrrlGffr00cCBA6u1bE+nTp301ltvafPmzdq1a5fS0tJ06tQpnT17VpGRkWrWrJk6deqkO++8M2Bn5yVZnwlJGj58eMD6BQBcugzTNM1gDwIAYG8ffPCBPvjgA8XFxemLL76odC3PqsjNzdV9992n06dP67HHHtPo0aMD1jfs7bnnntO6devUrVs3zZo1K9jDAQBcBNzECQBQY97pw7fccktAw6skRUdHW6F1wYIFysvLC2j/sKddu3Zp3bp1MgxDjz76aLCHAwC4SAiwAIAaKSoqUp8+ffTQQw/pnnvuqZVjDBs2TC1atFBOTk6Z64Di8vPee+9JkgYNGqSOHTsGeTQAgIuFKcQAAFvYvXu31q1bp+joaI0cOTLYw0EQ5ebmauHChTJNU/fcc0+F10UDAOoWAiwAAAAAwBaYQgwAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABb+H9QOrYGDQ6bPgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC6ZklEQVR4nOzdd3gUxeMG8HfvLr0CCYQWqoAUAZWO9KKggoCCIs2Oigj6xd4Qf4BdLKggUkRAQcACSO9SVTrSCTWEkJBe7nZ+f1xuuUuu7JXkSt7P8+Qh5HZn55K7m3l3ZmclIYQAERERERERkY/TeLsCRERERERERGowwBIREREREZFfYIAlIiIiIiIiv8AAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILDLBERERERETkFxhgiYiIiIiIyC8wwBIREREREZFfYIAlIiIiIiIiv8AAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QWPBNgzZ85AkiRIkoSRI0d6oshyqUuXLsrvkYjIlpEjRyqfFWfOnPF2dRSzZ89W6jV79mxvV4dKQf/+/SFJEu655x5vV4X8BPuIRNYFcr9/0qRJkCQJdevWRV5ensfLL7MR2NmzZ+Ptt9/G22+/XVaH9Lply5Ypzzk9Pd3b1aEier0ea9euxcsvv4xu3bqhatWqCAkJQWRkJOrVq4chQ4Zg2bJlMBgMTpV78OBBjBkzBo0aNUJkZCRiYmLQrFkzvPzyyzh79mwpPRsiKi/MT1w48+WpdvfPP//E8uXLAcBmmUIIbNu2De+88w7uvPNO1KxZE6GhoQgPD0etWrVw3333Yd68ecjPz3d4vI0bNzr1PB2dNMnIyMDGjRvx0Ucf4cEHH0SDBg2g0WhcOhmUk5ODv/76C59//jlGjhyJpk2bQqfTKWVt3LhRdVnOyMnJwYwZM9C3b1/UqFEDoaGhCA0NRbVq1dCrVy989tlnqvsbeXl5mD59Ou68804kJCQgJCQE8fHxaNOmDf7v//4PqamppfIcvGHMmDHK3+aNN95wev+cnBzExMRAkiTodDpcvHjRqf3T0tKwfPlyvP7667jzzjvRuHFjVK5cGUFBQYiJiUGTJk0wcuRIrFq1yqlyf//9dwwZMgS1a9dGWFgYYmJi0LhxY4wbNw6HDx92qqzNmzfj0UcfRZMmTRAdHY2goCBUrFgRt99+O55//nns37/fYRkFBQXYu3cvvv32WzzxxBO47bbbEBwcXCYnNlNSUvDuu+/itttuQ8WKFREeHo569erhkUcewY4dOxzubx4mPfm548v27t2rPI9atWpBCOF0GY899phSxtSpU5WfP/fcc6hQoQJOnz6NDz74wJPVNhIecPr0aQFAABAjRoywuk3nzp2VbcqLESNGKM/59OnTDrcvj7+jsrZ+/XpRsWJF5fds76tVq1bixIkTqsr94IMPRFBQkM2yoqKixIIFC0r52VF54exnS1n5/vvvlXp9//333q5OwDH/uzvzNWfOHLePLcuyaN68uQAg7r33XqvbHD58WFSrVk1VnRo0aCD27Nlj95gbNmxw6nnae82lp6cLSZLs7u/Me8lRO7JhwwbVZam1e/duUadOHYe/h8qVK4s///zTbll79uwRtWvXdljOqlWr3K63mj5iadu7d69Sh8TERCHLslP7z507V9m/T58+Th9/+vTpql/HnTp1EpcuXbJbXnJysujWrZvdcoKCgsTUqVMd1i0nJ0c88MADDuul0WjE2LFjhcFgsFnWrbfe6vJ71B1r1qwRlStXtnlcSZLEiy++aLcM8z64M1+bNm1yud6+0O9v1qyZUoe1a9c6tW92draIiooSAIRWqxUXL160eHzixIkCMPaBU1JSPFltoYMH1K5d26XUTpZK64wt3XDhwgVcu3YNAFCxYkX06NEDbdu2RdWqVVFYWIhdu3Zh7ty5yMjIwO7du9G1a1fs2rULCQkJNsv8+uuv8b///Q8AEBQUhGHDhqFz584oLCzEn3/+icWLFyMzMxPDhg1DbGws7rzzzjJ5rhS4Zs+e7ddnfck1zz33HPr37+9wu+PHj2PChAkAgKioKAwaNMjtYy9ZsgT79u0DALz66qtWt0lNTVVGpiIiItCjRw+0b98eNWrUAADs378fs2fPRnJyMo4dO4bu3btj27ZtaNKkicPjDx48GEOGDLG7za233mrzMSGERT9FkiTUr18fV69eRVpamsPjF1d8hk5iYiIKCgpw+fJlp8tS4+zZs+jRoweuX78OAEhISMDIkSNx0003QafT4dSpU5g7dy5Onz6NK1eu4J577sHOnTvRokWLEmUdOnQI3bp1Q0ZGBgCgSZMmGDZsGOrUqYP09HSsXLkSy5cvx5UrV3Dfffdh7dq1aN++fak8r7Jy66234pZbbsH+/fuRlJSE9evXo3v37qr3N/+8HTVqlEt10Gg0aN68OVq1aoWGDRsiISEBwcHBuHr1Knbt2oVFixYhJycHmzdvRteuXbF3716Eh4eXKCcrKwu9evVS3o9xcXF49NFH0bx5c+j1evz111+YPXs2cnNz8dJLLyEoKAjjxo2zWa+HHnoIy5YtAwBotVoMHjwYbdq0QeXKlXHx4kWsW7cOK1asgCzL+OyzzxAcHIz333/falnF3xemkf3SnIW2d+9e9OvXDzk5OQCAnj17YuDAgYiMjMSuXbvw3XffITs7Gx9++CFCQkIwadIkq+VMmjQJV69edXi8bdu24cMPPwQA1KtXD3fccYfnnowXjBo1CuPHjwdgfJ07875YsmQJMjMzAQB33nknqlatavH42LFjMXXqVGRmZuLDDz/ElClTPFdxj8ZhO3zhLENZ89VRkvJs3rx5olmzZuLHH38UeXl5Vrc5f/68aNKkifK3Gz58uM3yLl68KMLDwwUAodPpxJo1a0psYz4qVbNmTZGbm+ux50PkSzgC6xteeukl5e/w2GOPeaTMtm3bCgCiYcOGNrfZsmWLqF27tvj6669FRkaG1W3S0tIs+gOdOnWyWZ75COxbb73lVv0zMzPFkCFDxAcffCDWr18v0tPThRCWfRNn2unhw4eL9957T6xatUoZWTBv8z09AvvII48oZffu3Vvk5OSU2KawsFAMHz5c2a5fv35Wy2rTpo2yzcMPPywKCwtLbLN48WKh0WiUv7m1bdTyhRFYIYT45JNPlHoMGzZM9X5nz55VRu8rVaok8vPznT72hQsXRGpqqsPj1K9fX6njlClTrG43YcIEZZtbbrlFXLlypcQ2R44cEVWqVBEARHBwsDh+/LjVsjZv3qyUFR0dLf755x+r261cuVJotVqlr2NrNG3cuHHizTffFMuXLxcXLlwQQgjx1ltvlVq7IMuyxajv22+/XWKbf//9V0RHRyujyPv373frmIMHD1aON2nSJLfK8oVsdOXKFWUGYXh4uM3PbmvMZwEsXrzY6jYPPfSQACAqVKggsrKyPFVtwQBbihhgfU9aWpqqqUMHDhxQ/nZhYWEiOzvb6nbPP/+8st3//vc/m+Xdf//9ynZffPGFy/Un8mUMsN6n1+tF1apVlb/Dtm3b3C7zn3/+UcqbOHGize0yMzNFQUGBw/KSk5OVE38AxKlTp6xu58kAa4urAdaa0gyw1atXV8o+dOiQze3S0tKETqcTAETFihVLPL5jxw6lnOrVq9s9ofr0008r286cOdPluvtKgDXvqEdERIjMzExV+5mmQQIQY8aMKdU6/vLLL8qx7rjjjhKPFxQUKFM2JUmyG8Z++uknixMV1rz22muq+jBCCDFw4EBl219//VX1cyrNALts2TKl7DZt2tjs33355ZfKdoMGDXL5eNeuXRMhISFKGD537pzLZQnhO9mof//+Sj2+++47VfuoPbHzxx9/KGXPmDHDY3Uu9VWITRdFb9q0SfmZM4tMyLKMn376CYMHD0adOnUQHh6OqKgoNGrUCKNHj8aBAwfs1u3tt98usajCunXr8OCDD6JOnToIDQ0tsXiDXq/Hn3/+iRdeeAEdO3ZE5cqVERwcjKioKDRo0AAjR47E5s2bbR7TtNDGnDlzlJ/VqVOnxHO29btSsxrZzp078cQTT6Bhw4aIiopCREQE6tWrhxEjRmD9+vUO9zcdp0uXLgCgTK+4/fbbUaFCBURERKBJkyZ45ZVXXJpe5atiY2NV/X6bNm2KRo0aAQByc3Nx4sSJEtsIIfDzzz8DMP4+x4wZY7O85557Tvl+0aJFzlbbLX/99RdGjx6Nxo0bIzY2FqGhoUhMTMTgwYPxxx9/2N3XfBEV03s0KSkJL7zwAho1aoSIiAjExsaiffv2+Oqrr6DX61XVKSsrC59++il69uyJatWqISQkBBUrVkSrVq3w5ptvIiUlxe7+xd8rBoMBs2fPRs+ePVG9enXodDrUrl27xH7JycmYMGECGjdujIiICFSsWBGtW7fGRx99pEw/ql27NiRJKrH/qlWrlGOa/z3tee6555R9Vq5cqWofNRytQlxaf7fff/8d99xzDxISEhAaGoratWtj6NCh+Ouvv5x+DgUFBfjuu+9w7733Kgv9xMbG4pZbbsELL7xgc0Gd//77DxEREZAkCTExMTh9+rTNY6SlpSExMRGSJEGr1dr93A4Uq1atwqVLlwAAjRo18sjUz3nz5infDx061OZ2kZGRCAoKclhe5cqV0alTJ+X/jtpxAq5cuaJ8f9NNN9ncLjY2FvHx8QCM7Xpx5v2D+++/H6GhoTbLGj58uPL9jz/+6FR9XZGSkoJWrVopn13jx4+3enmaq21afHw87r77bgDG381PP/2kql7mfTlXpw+r1bhxY+V7a9PR9+zZo0zZbN68OZo1a2azrAEDBiAyMhKAcVHR3NzcEtuofV0BQIMGDZTvrb22vMG8P2VaqMuakSNHIjo6GgDwxx9/uFz/H3/8UVmArmfPnsrlEaXNPMs0bdoUFy5cKLHN1atX8d577+GOO+5QpqfHx8fjjjvuwPvvv4+srCyb5Zu/rtVenjRnzhzl/Tl06FAEBwdb3a5Xr17KZ5J5W+I2T6Rge2fX1F4Ube3s6okTJ0SLFi3s7qfRaMQbb7xhs27mZ37Wr18vnnnmGavlmJ957dKli6o6jxgxwuoZB7ULbdj7XdlSWFgoHn/8cYdlP/DAA1anGJmYtuvcubM4efKkaNy4sc2yatWqVS5HkFu1aqX8Dnbs2FHicfNR2qZNm9oty2AwWExhcWaKhquysrIsprrY+urbt6/N+hQfAVm5cqWIjY21WVbPnj1tTs02WbFihd3FFgDjBf/Lly+3WYb5eyU1NVV07NjR6uvW3Pr160WFChVsHrNZs2YiKSlJ1KpVy+r+BoNBWUClQoUKDqeC5+bmKsdLTEy0u/CFsxzN7vD0302v19v9XNNoNGLq1KmqR2DVLEYTHBwsvv76a6v7f/vtt8p27dq1E3q93up2gwYNUrZ77bXX7P5OA8WAAQOU56xmARc16tWrp7yOPcV8VsrChQutbsMR2Btq1KihlK12BLZFixYlHjcfVZ0+fbrdY167dk3ZVqvV2pyJ5IiaEdjTp0+LBg0aKNtNnjy5xDaeaNN+/fVXZTt709dNzKfYNm/e3Jmn7RLz0SprI7Dmo6qDBw92WN4tt9yibG9tQa7XX39dedzRCKz55+m///6r+jmV5ghspUqVlLIdLRLUt29fZds//vjDpeOZT1detGiRS2WYc9TvNxgM4qmnnlK2ad++vbh27VqJ7b7//ntlZN7WV5UqVcT27dutHqewsFCZci5Jkjh58qTDupvaBQA2p56b3HfffUpf4erVqw7LVqPUA+yWLVvE0qVLLa4pXLp0aYmvI0eOWOx34sQJERcXp+zTsWNHMWXKFLFgwQLxww8/iHHjxll0Rm01buZvnLvuuksAEAkJCeLll18WP/zwg5g9e7Z4+umnLVbOatOmjYiMjBT9+vUTEydOFHPnzhU//fST+Oyzz8QTTzwhIiIilDLHjh1b4ph79+4VS5cuFV27dlW2++abb0o8571791rspybADhkyRNkmNDRUPPnkk2LOnDnihx9+EM8//7zFC7h37942p1OYtmnZsqVo1KiRkCRJ9OvXT0yfPl0sWrRITJ48WSQmJtr9IA1k+fn5Fh1+aysCLliwwGGjbM7877tz585SqPUNeXl5yjVrAES9evXEq6++KubNmycWLlwoJk2aZNFZ6Natm9WAZd6B7NevnwgPDxdhYWHiySefFLNnzxYLFiwQL7zwgsV7wt4JpcWLFyvX0QQFBYmBAweKzz//XPz0009i5syZYujQocoUL41GI9atW2e1HPPfpel93bx5czFlyhSxcOFC8e2334pnn31W2f7QoUMWUxZbtmwpPvroI7Fo0SIxbdo00aFDByUMmabqFQ+wQgjxf//3f0oZP/zwg92/wbx585Rt33nnHbvbOsuZAOuJv5t5pzc4OFg8/vjjYs6cOWLevHlizJgxyu/WfBqSrY7K9u3ble0lSRJ33nmn+Pjjj8WiRYvE7NmzxZNPPmnxt7JVjvl0Nmt1nzlzpvJ427Zt3bqGz1+kpKQo7x+dTudwJVM1Tp48qfwe3Zl6V5z5SdO//vrL6jbmr+OmTZuKZs2aicjISBEaGipq1Kgh7r77bjF9+nS7J2sd8ZcAa37y3d41sOZ1mD17doltRo8erTzuTIAFIHbv3u1S3R0F2P379yurV2u1WqtTGD3VpjnbUTe/9vjTTz916fmrdeXKFYsVYT/55JMS2yxatEh53NkA+8EHH5R4fPfu3crjaq+B7dKli1PPq7QC7KVLl5RyrbXX9urhysm9ffv2KftXrFjR4cl6Nez1+/Py8izauT59+lg9ifTpp58q24SHh4vhw4eLr7/+Wvz8889i+vTpol+/fspU3/DwcJsnwF544QWlnDfffNNuvc1P7Fg7UVbc1KlTle1tnbB0lk/eRsdgMChnOUJCQsRPP/1kdbvLly8rI7QajUYcPHiwxDbmL1jAGISvX79u9/hr16612yBevXpVGfHRaDQ2r9/x9G10Fi5cqDxepUoVqy/CM2fOWIxs2Lre0vx3EhwcLH777Terz9O8LHdCV3Z2ttUTF658FQ/+pcE8fNx6661Wt3nnnXeUbdSMDpgvrjFv3jwP19hS8WtzrXXeCwoKLOpkrTNT/DYWiYmJ4tixYyW227lzp3LWv0KFClY/2JOSkpRR6MTERJvX7uzcuVPExMQIAKJGjRpWr6krPrPj+eeftzvCaT5C+/TTT1vdtvhnhbUG8fLly0pA6Ny5s83jCSFEp06dlA6Zu9fJFOdMgHX372beUMXGxlq99cnRo0dFQkKCxTGtdVQyMjJEzZo1lbI2btxo9fkdP35cOYEWERFh9cz6tWvXlFEprVYrtmzZojz233//KeE8Ojpa1dlke44cOeKxzy9P30rAnPkiNffcc49Hyvzxxx/tdoBdsWXLFqXM+Ph4myPoam+jU7VqVbF+/XqX6uIvATYlJcVigZ+EhATxyiuviFmzZom5c+eKt956S2mvNRqNePfdd62WY95ujRs3zu4xza+XBRyftLPF0SCH6WRxaGioWLZsmdUyPNWmCSHEiy++qKqjbn6LkKCgII+9d5OTk5XPgyVLloiZM2eK0aNHW5w079Wrl9W2b9OmTco2LVu2tHscvV4vIiMjle1tLehm/rvVarXioYceEtOmTRMLFy4UH3/8scXIZceOHUVycrJTz7e0Aqz578JReyyEELNmzVK2f/TRR50+3tixY5X9PXUttK1+//Xr1y0GwYYNG2b1Nb97926LGRdnz561epzffvtN6bu0adPG6jYHDx5Ujle7dm2768WMGjVK2fazzz5z+Dw3btyo+nNHLZ8MsEuWLFG2nTZtmt1t//vvP+Ws0OOPP17icfM3TkREhLIqmrvMz0rbaig8HWBbtmypPL5ixQqb5ezcuVM521KrVi2rnQPzRsneohwzZsxQtZ0j5q8Rd79KexGIa9euWSyC8vPPP1vdbty4cco2n3/+ucNynd3eVRcvXhTBwcECgBgwYIDdbQsKCkTdunUFAHHTTTeVeLx4B3Lz5s02yxo6dKjd7caMGaM0kI6mm3z33XdKWfPnzy/xuPl75bbbbrMbXs3PMDdt2tRmZ7l4ubbO6JpPfbQWCoUwfi6Ztunbt6/d5+oKZwOsO3+3fv36KY9bG9Ex+f333y2Oaa2j8tFHHymPO1oEZN26dcq27733ntVtNm7cqKyUWqtWLZGWliYKCgrEbbfdpuzriZNFxU9uuPNVGvcHNTEfbVm6dKlHynz11VdV/83UyM/PdzgqZLJhwwYhSZJo3bq1eOmll8SsWbPEzz//LGbMmCGeeOIJ5UQXYBxxXr16tdP18ZcAK4QQqampYtCgQUqfx9rXAw88YPfzde3atcq21atXtzuKVPySK1cXILTVR1y+fLkICwsTAERMTIzN+2l6sk0Twjgjx1Qfex31OXPmKNs5Oq4zVq5cafPvV716dTFx4kSb7VR2drbyu5AkSRw4cMDmcX7++WeLsu3NoPj0009FfHy8zXrVrVtXLFiwQNUibcWVVoBdvny5Uu7AgQM9vr25goICi1mhjvowalnr9ycnJ1v098ePH2/zNXrPPfcIwHjZ1fnz5+0e64033lDKtLW4n/mlc7ZOCpqf2AkODlY1JTg5OVkpt3v37g63V8Mjizh5muki3+joaDz++ON2t23QoAFat24NAFi9erXdbQcOHIhq1ap5pI5169ZV7g26c+dOj5Rpz5kzZ/DPP/8AAJo1a4a77rrL5ratW7dGt27dABjvHbd3716b22q1Wjz77LM2HzeVAwCHDx92ttp+x2AwYMiQIcoiKH379rV5D0XzC+LtLYRhEhYWpnxvWoShNPz0008oKCgAALz44ot2tw0KCsLgwYMBGO8daWvhHABo2bKl3fud2XutCCEwf/58AED37t2t3pvQ3ODBg6HTGW9T7eh9/cwzz0Cjsf1Rtnz5cotttVqtzW3Hjh1r91gA8NRTTynfz5w50+o25j9/4oknHJZZmtz5u+Xn5yuLT1WpUgUPP/ywzXL69u2Lm2++2W5dTJ/tDRo0wD333GN3227duimf17ZeA507d8bLL78MwPhZ99RTT+H1119XPvOGDh1qt86BZO/evdi/fz8A4yJJpsVq3GV+/8aKFSu6Xd7TTz+t1LNly5Z2F0Rr2LAh/vvvP+zcuRNTpkzBqFGjMGjQIDz22GP45ptvcPr0afTp0weAcfHFBx98ULm3aSCqWLEipk6danchoWXLlmHy5MlKG1Zcly5dUL9+fQDG+6I/+eSTJe7dCRg/N7/++muLn3nydztr1iwMGDAAubm5SEhIwKZNmywW9jLn6TatcePGSr/xzJkzFouMmvPEvV+dYVpYs2PHjjbbqfDwcGUhNSEEhg0bZvXepceOHSvx3rL393v88ccxefJkxMbGWn381KlTmDJlClatWqXy2ZS+suyD/frrr8rvuWXLlg77MK46deoUOnTooPT3J0+ejI8++sjq4lRpaWnKomUPPvggqlevbrds87bQVptq/jo3X7zM3OLFi5Xf3z333INKlSrZPS4AVKhQQfneU/cE1nmkFA/bsmULAKBq1aqq3iymN/rZs2eRm5tr8SI158zNhjMyMjB//nysWLECBw4cwNWrV22uWnb+/HnV5bpq165dyve9evVyuH2vXr2wbt06AMaAbfqwLq5BgwYWL6zizN8Q7qxGXLt2baurCfqasWPHKm/sxMRE1aux+RLT+wcwvjZNNyi3xfzveuTIEaur9wJA27Zt7ZZj77Vy6NAhXLt2DQAQFRXlsE6AcUXT9PR0HDlyxO52jt7Xe/bsUb7v2rWr3W1Nq3Lb07VrVzRo0ADHjh3DnDlzMGnSJIuVVwsLC5UP/mrVqqFv374OyyxN7vzd9u3bp3QcO3fubDf8A8aTE7b+XtevX1eCS5UqVVS/BgDYfQ288847WLduHXbu3GmxImWdOnXw1VdfOTyGGm+//bbNlfJ9xffff698P2zYMOUEkLtM71vA/QD7wQcf4LvvvgMAxMTEYNGiRTZXrgSMfQB7KlSogCVLlqB169Y4cOAAUlNTMX36dLz00ktu1dNXTZ48Ga+//jpkWcZjjz2Gp556Slm19vDhw/j6668xc+ZM/PTTT9ixYwfWrFljsXIsYOwvTZ8+HXfeeScMBgPmzJmDvXv3YtiwYahTpw7S09OxatUqLF26VFmN3RQC7Z0odMbUqVOVE0/16tXD6tWrUbduXZvbl0ab9sgjjyj9qtmzZ5f47D979qxy54qEhATceeeddo/pjDvvvFPpD+n1ely5cgVbt27Fxx9/jPnz52P+/Pl49tln8cknn1h9H7/33nvKauP//vsvGjdujEcffRTNmzeHXq/Hjh078P333yMnJwd169bFqVOnANj+++3Zswf9+/fHhQsX0KJFC7z55pu44447EBMTg0uXLuH333/H22+/jX379qF///744osvMHr0aI/9PvyB+efrI488UirH2LdvH+68805cvnwZWq0W3377rd1jbdu2DbIsAzC+rx29LwoLC5XvbbWpDz74IMaPH4+8vDwsXrwYX3zxhdIOm7hyYicoKAhRUVHIzMz02J1NfC7AZmVlITU1FYDxdgn33XefU/unpaXZDLCOzk6YbNiwAQ899JDVJcytKYszvuZnU4s3SNaYb2PrTCwAxMXF2S0nJCRE+T4vL8/hcf3Za6+9hi+//BKAsYO9Zs0au78f8ze1mt+N+RL2UVFRbtTUPvMzzg888IBT+9r7YHHntWJepyVLlmDJkiUeqRPg+H198eJF5Xt7nSTA2CGOjY1Fenq6zW0kScITTzyBF198EcnJyfjtt98wYMAA5fFff/1VuTXBqFGjHIa+0ubO3838d2catbHH3jbnzp1TGtstW7ZYdEodsfca0Ol0+PHHH9GiRQvlrLDpZ6bbJgS6/Px8i9uceLKDZbplBODe59a3336LCRMmAAAiIiKwYsUKh7ftUCM0NBSvvvoqHnzwQQDGW2QEYoB97bXX8H//938AgGnTppW4bdttt92GGTNmoFmzZhg7diySkpIwdOhQ7N69u0RZPXr0wKJFizBy5EhkZWXh4MGDJX5nwcHB+Pzzz7Fq1Srl89veyW61li1bppzga968Of78809UqVLF7j6l0aYNGTIE48aNQ25urtWOuvktQoYPH14iSG7dutXqyKdJr169EB4e7rB+Op0O1apVwwMPPIBBgwZh1KhRmDt3Lr744guEhYXh/fffL7FP1apVsWbNGvTv3x8nTpxASkoKpkyZUmK7UaNG4ZZbbsG4ceMAWP/77d+/H506dUJubi7at2+PdevWWYxmJiYm4umnn8add96J1q1bIzU1FWPGjEH79u3RvHlzh8+vNJVVH+zSpUvKYFpISIjdW4m5o3Pnzrh+/TpCQkKwaNEi9OvXz+725u+L6dOnY/r06aqPZet9ERsbi/vuuw8LFixAdnY2Fi9ebHHLT/MTO1WrVnXqxE50dDQyMzOt3s7JFT43hfj69etu7W8aLbDGVrA1d/z4cfTt21cJrw0bNsTzzz+PL7/8EgsWLMDSpUuVL9N9jaxNv/E08+kOERERDrc3f2PbmyrhqTOq/m7SpElK5yAuLg5r1651eKLAfKqNvYbMxHRipvi+nubOe8je+8ed10pp1Qlw/L42zZzQ6XSq7lGp5v01cuRIJfjNmDHD4jHT/yVJwqOPPuqwrNLmzt/NfIqWms6Yvd+dO68B8zPH1sTFxVmMDtatWxe33Xaby8fzN8uWLVM6JG3atLG4l6S7zE9wuHqydu7cucrU+7CwMPz2228euT+tifno2dGjRz1Wrq+4cOECPvjgAwDAzTffbPeynzFjxihT+ffs2YMdO3ZY3W7gwIE4ceIE3njjDdx+++2IjY1FcHAwatWqhUceeQR79uzBE088YdFumS6bcof5Padzc3NV9Z9Ko/2IiYlRBkiys7MtTqoKITB37lzl/9ZGmV5//XXcd999Nr/M76+qlkajwZdffomYmBgAxhMVtoJGkyZNcODAAXz11Vfo3r074uPjERQUhCpVquDuu+/G77//jlmzZlnsb+3v9/LLLyuB4uOPP7Y5Fbdu3brK9G2DweBUWCotZdUHmzt3rvI67d+/v0dO5Fhjem/o9XpVgby0+lX2phEXP7HjzAl6U33VZDE1fG4E1jx4derUyea1CaVl8uTJypv5tddew7vvvmvzxsiOrs/1JPOzRWpuwGze8SzN0T61cnJyHF7LqFZiYiJuvfVWj5QFAO+//z7eeOMNAMYzlGvWrEHTpk0d7mcecO1dO2piPu9fzSi6q0zvIUmSoNfrfeIkhfn7+s0338Q777xTZsc2hSq9Xo/CwkKHIVbN+6tSpUoYNGgQ5s+fj9WrVyMpKQmJiYk4e/Ys1qxZA8A4ylGnTh33n4AXmf/dcnJyHG5v73dnXtbw4cNtXl/jiqefftri/XXs2DG8/vrrmDp1qkfKP3r0qMeCUceOHR2Oijtr1qxZyveent5mfmLAfDqxWgsWLMCoUaMghEBISAiWLVvmcCq/s8yvwbI3e8JfrV69WjmJ0717d5t9EsD4ud+tWzdliuCuXbtsXkZQpUoVTJw4ERMnTrRZnvl18a1atXKl+hYGDRqE6OhofP755zh27Bi6du2KDRs22F2fpLTatFGjRikzF2bPno0RI0YAMM4QOXnyJADjJRiNGjXyyPHUiIyMRMeOHfHHH38gPz8fO3bssLnmSWhoKEaPHm13Oq+9v19+fj7Wrl0LwNhPtHWpmUmPHj3wyiuvALC8rM1byqoPVhbThwHj7JG+ffsiOztbGeU1Xc9tjXmbOmvWLI9dp929e3fUrFkT586dw6ZNm3DmzBnlMkDzdtt8ZNaRwsJCJZd4Yi0FwAcDbExMDCIjI5GVlVUm15YWZ3ozV65cGRMnTrTZUGRmZrrUmLvK/Fqg48ePO9zefBtPLVzljitXrjg9HdyWESNGeOza1E8++USZOhUTE4M///xT9cX55iHX3kJZACDLsnJRvkajcbjYjTuqV6+Of//9F0IIXLhwATVr1iy1YzlTJ5Oyfl9Xq1ZNufby1KlTaNiwoc1t09LSVHeAn3rqKcyfPx+yLGPWrFl4++23MWvWLGWarLcXb/IE88+OEydOONze3jal9RowXTMGGKdRXr16FWfPnsWHH36I3r17WyxS5aqFCxd67KTLhg0bVF1rrdb58+eVdis8PBxDhgzxWNkALK4fdLbN+/nnnzFs2DDIsozg4GAsXrxY1RoOziqr2S3eYj6VX820eNMIHqDuhJwthw8fVka26tWr5/CaZLWmTZsGSZIwbdo0VSG2tNq0bt26ITExEUlJSRYddfPAYisUmKZRlgbzQQd3TsjIsoytW7cCMIb/Dh06WDx+9epV5cRIVFSU3RMjgOdeV56SkJCASpUqITU1FUlJSbh69ardk4Pm62GoGaQAgO3bt+O///4DYBw86dGjh3uVtqNz585YsWIF+vTpo4RYIYTNz/TSalM1Gg1GjBiBSZMmKaH1rbfewubNm5Xrqdu1a+fUiR3ztqNWrVqeqadHSlFzILMzZo4W8zGtRHfq1ClVnSZPSk5OBmBcAMTeWb61a9cqHVVbnHnOjpifGTON8NhjPtrp6KxaefXll19i/PjxAIwf3itXrnTqDHOTJk1Qo0YNAMZFiux9gGzfvl2ZftehQ4dSHRXv3Lmz8r2nRr3d1bJlS6XjtW7dOofvHU+6/fbble83bNhgd1tnOiUdO3ZEkyZNABjPfhYWFiojYZUrV3Z4/Yo/aN68ubLIzqZNmxxO9zMtHGdNXFycMrV1x44dHlk74PTp03j66acBGEfaFyxYgB9++AFarRayLGP48OEW4SYQzZ49W3k/DRw40OPX/Zp39EwdOTWWLVuGhx56CAaDATqdDosWLfLYysjFmc/UKs3ZLd5i/jc9d+6cw+3NR5rUrBBqi3mQ8/TlEJ999pmy6vuxY8fQpUsXi6BurrTaNFNHHbgxbdh03R9gnOpobwSstJj3e92ZrbFy5UrlcriePXsiMTHR4nHz19XVq1cdTlv11OvKk3r37g3A+Pez99rIyclR1l0ICwuzeE3ZYz67ZcSIEaU+o61Tp05YuXIlIiMjYTAY8PDDD2PhwoU2tzWddPB0X898dHXu3LkQQri1Krf5olG33HKLu9UDUIYB1nyo29GZG9MHCmCcbliWTNd5nTp1ymboNBgMyvWS9jjznB2pXbu2Mm123759dkPsnj17sH79egDGMx2+cC2YafqBJ748Mfo6Y8YMZREM04Ii7dq1c6oMSZJw//33AzB+eH7++ec2t502bZryfWk3iEOGDFFCx9SpU33iTKlWq1WmxJw9e9bm7WdKg3mQ/PLLL+2GsM8++8ypsp988kkAxk7l888/r5zEGDFihKrrbX1dSEiIcpuS5ORki4WCilu5cqXDFaNNn+05OTlWFx1xhsFgwNChQ5UgPG3aNNx0003o2LEjXn31VQDGawcfe+wxt44DGFch9tTnlydHXwHLFSFLY3pbmzZtlO/V3jJuxYoVGDx4MPR6PbRaLX788Uf079/f43UDjNMgzdtj0+s1kJifRPjjjz/srmuRkZGh3PoKsDyB54yjR48qbVpsbKxH3kfFffrpp3j++ecBGGeN2QqxpdmmjRw5UgkBc+fOxc8//6xMdRwwYIDFqGNZ+Pvvv5UZXUFBQS5P287JycH//vc/5f/m35tERUUpobagoAC//PKL3TLNg5SrrytPM+9PTZs2zWa/ffbs2Upb0bdvX1VrXeTk5OCnn34CYOzvlcWtlADjnRVWrFhhEWIXLFhQYrvKlSsriyht3brVoyG2Xr16FoOJq1atcuvEjnnbYd6muMUTN5O1dZNqc88995yyja2bVZsYDAaLm+mOHTtW5Ofn29w+JydHfP/992LBggUlHjO/gbKaG4v37NlT2f7jjz8u8XhBQYEYNWqUxQ2ea9WqZbWsjz/+WNlmzpw5Do9t7YbG5hYtWqQ8XrVqVXHkyJES25w9e1bUq1fP4Y3HTY937tzZYb2c2dYfzJkzR0iSJACI8PBwt244f+HCBREeHi4ACJ1OJ9auXVtim++//175HdasWVPk5ua6UXt1XnjhBeWYXbt2FZcuXbK5rcFgEGvWrBHvvvtuicc2bNiglPPWW2/ZPaajbc+dOydiY2MFABESEuLwPZGcnCwmTpwo9u3bV+IxR++V4jp27Khs//TTTwuDwVBiG/PPCnvva3Pp6enK39/869ixY6rq5aoRI0Yoxzp9+nSJxz35d9uyZYvyeIUKFazewP3YsWOiatWqFr8Dazesz8rKErVq1RIAhCRJ4v3337f6tzBJT08Xn332mVizZk2Jx8xvyj5o0CCLxwoLC0W7du2Ux7/55hu7vwN/tXHjRuU51qtXz+bN7t1lalNq1qzpcNs1a9aI0NBQAUBotVrx448/unTM48ePiw8++EBkZGTY3ObatWuiT58+Fq/PtLQ0p45j/lli7b3kDPP3pTPtiuk9YWu/goICUaNGDWWbfv36iZycnBLb5eTkiHvvvVfZrmnTplZfE8nJyeLw4cM267N3715Rs2ZNpZzZs2erfi7WOOojPv/888rjN910kzh//nyJbTzVpllj/how/xyz1p67IjMzU7zyyiviypUrdrfbu3evSExMdNifFkLY7UdfvnxZdOvWTSln5MiRNrd96aWXlO3i4uKstrdCCDFv3jyl3wRA7Nq1y+5zMWfetlprF2wx/7vY2k+WZXHrrbcq273zzjslttm3b5+IiYkRAIRGoxH79+9XdfzZs2dbvOZKg72+zJYtW0RkZKTdz9K9e/eKoKAg5fNv5cqVdo935swZ8cILL4jk5GSHdTPvu5q/Lx5++GH1T7DIfffdp/z+U1NTnd7fmjK7BrZ79+7KKNSjjz6KcePGoVatWsoKVvXr11duwaDRaLBkyRK0a9cOFy5cwGeffYaffvoJ999/P5o3b46YmBhkZWUhKSkJe/bswbp165CdnY13333X7XqOGTNGGd0cP348Nm7ciN69e6NSpUo4fvw45s6di+PHj6Nr1644fvy43Wmj3bt3V76fMGECUlJS0LBhQ2U59urVq6NZs2aq6/bAAw9g6dKlWLhwIS5duoRbb70VI0eORLt27aDVarFnzx589913ylmmXr16KdPryGjlypV45JFHlLN0jzzyCNLT0x3eP+vWW28tMf0GMF4j+NFHH2H06NHQ6/W46667MHz4cHTu3Bl6vR4rV65UzlrpdDp8++23dm+4bX4NyunTp23ek9WRyZMn499//8W6deuwYcMG1K1bFwMHDkS7du0QHx+PgoICXL58WRnNv3z5Mrp3747XX3/dpeOpUaNGDSxcuBD33nsv8vPzMWLECHz88ce49957cdNNNyEsLAzXr1/HsWPHsGPHDmzbtg0Gg8EjC7588803aNWqFXJycvDVV1/hr7/+wsMPP4waNWogOTkZixYtwrZt29CuXTskJSXhwoULqqYKxcTEYPDgwRZT7bp06eKR24P4io4dO+Lpp5/GV199hbS0NLRt2xYjRoxAx44dodFosGvXLnz33XfIzs5G//797b6XIiIisGzZMnTu3BkZGRmYMGECvvnmGwwcOBCNGzdGZGQkMjIycOrUKezatQsbN25EQUEB5s2bZ1HO1q1blVG3GjVq4Ntvv7V4XKfTYf78+WjRogUyMjIwbtw4dO7c2e71z/7I/HVnPpLkaf3798dHH32Ec+fO4dSpUzZvR/Xvv/+iX79+ylTEgQMHIiwszOHna6NGjUpcT5WVlYX//e9/eOONN9CzZ0+0atUKtWrVQkREBNLT07F7924sXLhQWdnSdOske9fA/vLLL/j7778tfnb69Gnl+48++qjEiNukSZOslrV+/XplppOJaZ0DAPjuu++Ua5NNXnzxRZeu0Q0KCsK0adMwcOBACCGwfPly3HzzzRg+fLiynsKRI0cwd+5cZZpnUFAQvvjiC6uviaSkJLRq1QqtW7dG9+7d0ahRI4SFheHy5ctYu3Yt/vjjD2WmyoQJEyxmxZWGTz75BJIk4ZNPPlH6Vxs2bLC4xq8027RRo0Yp09BNtx2sVauWR66fB4wLCE6ePBkffPABOnXqhDZt2qB+/fqIjo5Gfn4+kpKSsHHjRotL0xo1aoQPP/zQZpl9+vRBlSpV0KdPH9xyyy2oUKEC0tLSsHPnTvz8889KP7Br16744osvbJbz0ksv4aeffsLp06dx9epVtG7dGoMHD0bnzp0RHR2t3AfWfHTviSeesDky/M8//5S4Td7mzZuV73/55ZcSlwY++uijLi94KEkSvv32W3Tq1Ak5OTl46623sG3bNgwaNAgRERHYtWsXZs6cqYzav/LKK6r73WW1eJMtHTt2xKpVq3DnnXciKysLw4YNAwDllmGAsW86ffp0PP7440hLS8Ndd92FDh064K677kKdOnUQFBSEa9eu4ejRo9i6datyHbBp5oM9999/P8aMGYOsrCyL23E6OxKt1+uVa7E7derksUWcymwEVq/XW4yCFP+ydub/4sWLonv37jb3Mf/SarVixowZJcpwdgRWCCFeeeUVu8fq0KGDuHLlinLW1N5IzYMPPmiznOK/KzWjSoWFheKxxx5z+PsYNGiQ1TO0JqbtytsIbPFRNrVfjs4afvDBB8pZMGtfUVFRVmcIFGe+j7ujAfn5+eLZZ58VWq1W1XMcPnx4iTI8OZJn8tdff4m6deuqqlNkZKTVs6XOjsAKIcT69euVEWBrX02bNhVJSUmievXqAoC45ZZbVJW7c+dOi3Lmz5+vuk6uKssRWCGMn9/Dhg2z+bvTaDTi/ffftzhja+89c/ToUdGyZUtVr4GQkBCLs8ppaWnKZ69Go7H7uf7DDz8o5bRs2dLuTB5/k5GRISIiIpTfw7lz50rtWP/++6/ye5w4caLN7cz//s58WXvd/fPPP6r3T0xMVNW+m79v1H7Z4kpbYusz3dEIrMkPP/wgoqOjHR4nLi5O/PHHHzbL2b17t8MyoqKixLRp0xz+TtVQ00cUQojx48cr29WvX7/ESKwn2jRrsrKylJEu09ebb77pzlO2kJaW5tTrZODAgQ5HyEzvfXufyU899ZTdfqDJqVOnxO23366qbs8++6woLCy0WZYrnwG2XvNqRmBN1qxZI+Lj420eQ5Ik8cILL6iepXLixAllxDkmJkbV79EVavoyW7duFVFRUQIwZh1rfYxff/1VVKlSRdXvu1KlSiIlJUVV/YrPOK1du7bTM31WrFih7D9z5kyn9rWnzAKsEELk5uaKKVOmiHbt2okKFSpYfAjZ62Rt3LhRPPnkk6JJkyYiNjZWaLVaER0dLRo3biwGDx4spk+fLi5evGh1X1cCrBBCrFy5UvTt21fExcWJoKAgUbVqVdGtWzcxY8YM5c2rJsDq9Xoxffp00aVLFxEXFyd0Op3N35UznfK//vpLPProo6J+/foiIiJChIWFiTp16oiHH35YrFu3zuH+puMwwKr7UjPt5cCBA+KZZ54RDRo0EBERESIqKko0bdpUvPTSS+LMmTMO98/OzlaOFxwc7LFpFsePHxcvv/yyaNOmjYiPjxc6nU6Eh4eLOnXqiD59+oj/+7//szmlpjQCrBDGEzE//PCDeOCBB0SdOnVEZGSk0Ol0omLFiuL2228Xjz/+uFi0aJHIysqyur8rAVYI49SqF198UTRs2FCEhYWJ2NhYcfvtt4sPP/xQZGdnC1mWRVhYmAAgunTpoqpMWZaV6UkVK1YUeXl5TtXJFWUdYE1+++030bdvXxEfHy9CQkJEYmKiePDBB8X27duFEEJ1gBXC+Htbvny5GDFihGjQoIGIjo4WWq1WxMbGiubNm4vhw4eL2bNni2vXrlnsN3jwYOUYL7/8st1jCCHE0KFDle1feOEFh9v7i5kzZyrPq3fv3qV+vPbt2wsAokGDBja38WSAzcvLE6tWrRJvvfWW6N27t2jUqJHShkZHR4v69euLIUOGiPnz56s+MeHvAVYI4/TfqVOniu7du4uEhAQREhIiQkJCRNWqVUWvXr3EJ5984nAadVZWlpg9e7YYMWKEaNq0qdLPSUhIEB06dBBTpkyxO0XXWWr7iEJYThW2FmKFcK9Ns+WRRx6xCDunTp1yan9HDh8+LD799FMxZMgQ0axZM6UvGxoaKhISEkTnzp3FSy+9ZHMKb3G///67GDt2rGjVqpWoVq2aCA4OFhUrVhS33HKLeOGFF1SXY6LX68Uvv/wihgwZIurXry8iIyOVz+Nbb71VPPfcc6rK9FaAFUKIK1euiHfeeUfceuutIjY2VoSGhoq6deuKkSNHKm2UWq+//rpy7CeffNKpfZ2hti+zbds2hyE2JydHfP311+Lee+8VNWvWFGFhYSI4OFjEx8eLdu3aiTFjxojffvvNqRO5mzdvdvhZ7chDDz0kAOMUZ1t9OldIQri5PC4RecSff/6pXJD/3HPPOb2gELnvwIEDygp5av8Ga9euRc+ePQEAY8eOxaefflqaVSTyiqVLl2LAgAEAjKuqO7voHRERlS8ZGRmoVq0asrOz8dJLL7m9eKO5MluFmIjsM7+heGlei0q2mV8rpPba2+nTpyvfB8K9X4ms6d+/v3KP7MmTJ3u3MkRE5POmTZuG7OxsREVF4cUXX/Ro2QywRD7CFGDHjx+P+Ph4L9cm8GzZssXu/We//PJLZTGg6tWrq7pn5b///qssUNOjRw/lPqdEgUaSJOXs+W+//abc6oOIiKi4jIwMfPLJJwCMt3Fy557G1nAKMZEPuHr1KipXroy4uDicPHkSUVFR3q5SwKlfvz7y8vJw1113oWXLloiPj0dhYSFOnjyJpUuXWqwg+ttvv9kMsKtWrYIsyzh27Bjef/99ZXW+rVu3okOHDmXyXIi8pX///li+fDnuvvtu/Pbbb96uDhER+aBJkybhjTfeQJ06dXD48GG7d+BwBQMsEZUL9evXx8mTJ+1uExYWhhkzZmDo0KE2t7F2Wwq118uuXr0aOTk5jitrRVxcHDp27OjSvkRERESBggGWiMqFHTt2YMmSJdixYwcuXLiA1NRU5OTkoEKFCmjQoAF69OiB0aNHo0qVKnbLMQXYyMhINGjQAKNHj8Yjjzyi6r6xtWvXVu7T6KzOnTtj48aNLu1LREREFCh03q4AEVFZaNu2Ldq2bet2OTznR0REROQ9HIElIiIiIiIiv8BViImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/ARZyIiCigCCGQl5eH7Oxs5ObmIicnp8RXbm4uCgoKlK/8/Hy7/zcYDJBlGQaDQfky/b/4vyYajQaSJNn90mg0CAoKUr50Op3d/4eEhCAsLAxhYWEIDQ1FaGioze8jIyMRGRmJoKAgL/41iIiIPIsBloiIfI4QArm5ubh+/ToyMjKQmZlp8a+177OyspRwKsuyt5+CzwgJCVHCrOkrKiqqxP9jY2MtviIjI63e95iIiMibuAoxERGVCSEEsrKykJaWhmvXrln8a+1n+fn5bh1PkiSEhYUhIiICYWFhCA8PV77CwsKwbvVhGK+k0QLQQBIai/8DGkjQKN8DpjCnKfavBAlS0ePFA5+w+FdAWHlMLvoSyveixM8EAAOEJAMwoO+9tyA3Nxd5eXnIy8sr8b3pyx1arRYxMTFKoDV9X7FiRVSqVAlxcXHKvzExMaruhUxEROQuBlgiInKbEAIZGRlISUlBSkoKrly5gitXrij/N305G6qCg4MRHR2NqKgoREdHIzo6Gts2nwKggySCAARBgvFfQAcJOhgnF2kBaIuCZflkDMt6AIUQ0Bd9r4dAofFfqRAD7r8VmZmZyMzMRHp6uvKVk5Pj1LG0Wm2JUGv6qlKlChISEhAfH8/pzERE5DYGWCIickgIgevXr+PixYu4dOmSxdfly5dx5coVFBQUqCorIiICFSpUQMWKFXFg32VICIEkggEEQ0JI0b+m//NKF28QMMAYfAsAFBSF3gIIqQB33d0YqampSE1NxdWrV5Geng41XQlJkhAXF4fKlSsjISFBCbamfxMSEhAWFlbaT42IiPwcAywREQEADAYDLl++jHPnzuHcuXMWYfXy5cuqRk8rVKiA+Ph4xMfH46+tSZBECIBQSAgtCqehkKAt9edCZcc43bkAAvkA8iGQh4dGtEJqaiquXLmC5ORkJCcnqzrBUbFiRdSoUQPVq1dX/jV9HxERUerPhYiIfB8DLBFROSKEQHp6OpKSkpSgah5YCwsLbe5rGkGrWrUqDu5LARAGSYRBQhgkhMIYTnkdJJVknM5cAIE8ALkQyEO/QU1x+fJlJeBmZWXZLSM2NlYJszVq1ECtWrVQu3ZtVK9enVOTiYjKEQZYIqIAJIRAamoqTp06hdOnT+P06dM4c+YMkpKS7AaF4OBgJSBs3ZRkFlDDAIQxoFKpESiEQA4EcjDy8da4cOECLly4gPPnzyMtLc3mflqtFtWrV0ft2rVRq1YtJdgmJiYiNDS0DJ8BERGVBQZYIiI/l56ejtOnTyth9cyZMzh16pTNoCpJEhISElCzZk3s2XkZkgiHhAhICIdxFLX8LnxEvklAD4EcADl45Km2SEpKwtmzZ3HmzBmbU9tNr/M6deqgXr16qFevHurXr4/q1atDq+U0diIif8UAS0TkJ4QQuHjxIo4fP47jx4/j2LFjOH78OK5du2Z1e9PI1Lmz+ZAQAY2IBBBZNKLKDjz5P+PU5HwIZEEgG337N8SZM2dw9uxZXL9+3eo+oaGhqFOnDurXr4+6deuifv36qFevHiIjI8u28kRE5BIGWCIiH6TX63H27FklpB4/fhwnTpxAdna21e2rVauGSxcKISESkog0/osITvmlckugoCjYZqFPv5tw4sQJnDp1yub9hRMSEtCgQQM0atQIjRo1QsOGDREVFVXGtSYiIkcYYImIvEwIgUuXLuHw4cM4fPgwjhw5guPHj1tdtTUoKAh169bF8aNZkEQUJEQXhVXebobIEeOIbQ5kZOKhEc1x8uRJnDhxAleuXLG6ffXq1S0CbYMGDRAeHl62lSYiIgsMsEREZSwjIwNHjx61CKzWpjuGh4ejfv36OLgv3SysclSVyNOMC0hl4vFnWuHo0aP477//cPHixRLbSZKEWrVq4eabb0bTpk3RtGlT1KpVCxoN35NERGWFAZaIqBQJIZCUlIQDBw5g3759OHToEM6fP19iO51Oh/r16+PYkWxIIgYaxAAI54JKRF5inIKcgZFP3Ir//vsPR48eRUpKSontIiMj0aRJEyXQ3nzzzRylJSIqRQywREQepNfrcezYMRw4cAD79+/H/v37rY6uVq9eHZfOGyCJGEiIKRpd5SgOkS8TyIfAdTw4ohkOHjyII0eOIC8vz2IbjUaDevXqKaG2RYsWqFy5spdqTEQUeBhgiYjckJ+fj4MHD2Lfvn04cOAADh06VKJDGxwcjJtvvhkH/s2ARsQWBdZgL9WYiDxFQIZAFp4Z1waHDh3CwYMHcfny5RLbVa9eHS1btkSLFi3QsmVLxMfHe6G2RESBgQGWiMgJer0e//33H/bu3Yu///4bBw8eLLHYUmRkJLIzQ6ERFSChAkdXicoRgTwIpGPAkEbYv38/jh07BlmWLbZhoCUich0DLBGRHbIs4/Tp00pg/ffff5GTk2OxTaVKlZB2NQiSqAAJsUWrAvPaVSIyLRCVjkEPNcS///5rM9C2atUKrVq1QsuWLXlPWiIiOxhgiYiKSU1Nxa5du7Bz5078/fffSE9Pt3g8KioKWRlh0IiK0KASuNgSEanlKNBqtVo0btwYrVq1QuvWrdGwYUNotVov1piIyLcwwBJRuafX63Ho0CHs3LkTO3fuxPHjxy0eDw0NRX5uBDSiIiRUgoQoBlYi8ghjoE3DvYPqYvfu3Th37pzF45GRkbj99tuVEdqEhAQv1ZSIyDcwwBJRuZSSkqKMsu7ZswdZWVkWjzds2BDHjxZCIyoVLbrEa1iJqPQJ5GLshDbYvXs39u7dW+KzqU6dOmjfvj3at2+Pxo0bc3SWiModBlgiKheEEDh+/Di2bt2Kbdu2lRhljY6ORtb1cEgiDhpUgoQQL9WUiMjIuMpxBoY/1hS7d+/G4cOHYTAYlMdjYmLQtm1btG/fHq1bt0ZERIQXa0tEVDYYYIkoYOn1euzbtw9bt27F1q1bkZycrDwmSRIaNmyIY0cKoBFxRaOsnBZMRL5LoBAvv9URf/31F3bs2GExOqvT6dC8eXO0b98eHTp0QLVq1bxYUyKi0sMAS0QBJScnB7t27cLWrVuxfft2iw5eSEgICvKioRGVoUE878VKRH7LODqbjoEP1sP27dtLXDt70003oXPnzujcuTNq1arlpVoSEXkeAywR+b3s7Gxs27YNGzZswO7duy3uyxoTE4PM9AhoROWiBZh4vRgRBR6BbDwxpgW2b9+O/fv3W0w1rl27Nrp06YLOnTujbt26kCTONiEi/8UAS0R+KScnB3/99RfWr1+PnTt3WoTW6tWr49J5XVFojeXUYCIqVwQKMO7l1ti0aRP27t0LvV6vPFajRg1lZLZhw4YMs0Tkdxhgichv5ObmYseOHVi/fj3++usvi9Bas2ZNXEgKgkZUgYRIhlYiIhivm53wRnts2rQJu3btKnGyr0ePHujRowenGROR32CAJSKfptfrsXv3bqxevRrbtm1DXl6e8phxpDUYGpHA0EpE5ICAHq++cwc2b96Mv/76y+LztEGDBujRowe6d++O+Ph4L9aSiMg+Blgi8jlCCBw7dgx//vkn1q1bh7S0NOWxatWq4fKFkKKR1iiGViIiFwjo8fJbHbB27Vrs2rVLuWZWkiS0aNECPXv2ROfOnREVFeXlmhIRWWKAJSKfkZycjDVr1mD16tU4c+aM8vPY2FhkpEVDI6pCQjRDKxGRBwkUYMyLt2Lt2rXYv3+/8vOgoCC0a9cOffv2RatWraDT6bxYSyIiIwZYIvKqvLw8bNiwAX/++Sf++ecfmD6SgoODoc+vWBRaK0GCxss1JSIKfAK5GPXUzVizZg1Onz6t/LxSpUro3bs3+vTpg8TERC/WkIjKOwZYIvKKY8eO4ffff8eaNWuQnZ2t/FwSFaARVaFBFUgI8mINiYjKNxmZGDCkJv78809cv35d+XmzZs3Qp08fdO3aFeHh4V6sIRGVRwywRFRmsrOzsXbtWvz+++/477//lJ9XrVoVVy6EQ4NqkBDmxRoSEVFxAjLefK8zVqxYgZ07d0KWZQBAWFgYunTpgrvvvhtNmzblLXmIqEwwwBJRqRJC4MiRI/j111+xYcMG5ObmAgB0Oh3kwkrQiBqQUJHXtRIR+QGBPDwy+masWLEC586dU35er1499O/fHz179uSoLBGVKgZYIioVeXl5WLNmDX755RecPHlS+XliYiIunAktGm0N9mINiYjIVQICn07vjz/++APr1q1Dfn4+ACA8PBy9e/dG//79UadOHS/XkogCEQMsEXnUpUuXsGzZMvz+++/IzMwEYFqQyTTaGsvRViKiACJQiCefa4Jly5bh/Pnzys9btGiBfv36oVOnTggK4poGROQZDLBE5DYhBP7++28sWbIE27dvV66PMl7bGgUNqnNBJiKiACcgMPXTu7Bs2TJs27ZNubdsxYoV0a9fP/Tv3x8VKlTwci2JyN8xwBKRy3Jzc7F69WosWbLE4r6tkqgEragJCfEcbSUiKocE8jD0kbr49ddfce3aNQDG2Ti9evXCAw88gNq1a3u3gkTktxhgichpaWlp+OWXX7B06VJkZGQAMK5GmZ8TB61IhIQIL9eQiIh8gYCMV9/pgEWLFuHo0aPKz9u0aYMHHngAt99+O1cvJiKnMMASkWrnz5/HTz/9hBUrVqCgoAAAUL16dVw+F1m0KBOnCRMRUUmmRZ8WLVqELVu2wNT9rFu3LgYPHozu3bsjOJgL+xGRYwywROTQkSNHsGDBAmzevFm5vlUS0dCKOpBQmdOEiYhINYEc3Ht/FaxYsUK5tVrFihUxePBg9OvXj7fhISK7GGCJyCohBHbt2oUff/wR//zzj/JzScRBK2pDQgUGVyIicplAIR57phEWL16MlJQUAEBUVBQGDhyIQYMGITo62ss1JCJfxABLRBaEENi+fTvmzJmjXK+k1Woh9FWgEbWgQZSXa0hERIFEQMYLr96O+fPn49y5cwCM6yr069cPDzzwAOLi4rxcQyLyJQywRAQAkGUZ27Ztw+zZs3H8+HEAQGhoKApyq0ArakFCqJdrSEREgUxA4PV3O+KHH35Q2qHg4GD06dMHw4YNQ3x8vJdrSES+gAGWqJyTZRmbN2/GnDlzcPLkSQCmFYWrFE0V5qIaRERUdgQEJn3QA/PmzcPBgwcBGIPsPffcg4cffhiVKlXycg2JyJsYYInKKSEE/vrrL8yYMUMJruHh4cjLNo24MrgSEZH3CAh8+Pnd+O6777B//34AQEhICPr374+HHnoIFSpU8HINicgbGGCJyqF//vkH3377LQ4dOgQAiIiIQG6WKbjyVjhEROQ7BATe/6wPZs6cqbRboaGhGDBgAB566CEu9kRUzjDAEpUjR44cwYwZM7Bnzx4AxjPZhXlVi26Hw+BKRES+S0Dg/z7qhe+++05ZZDAyMhJDhw7FoEGDEBIS4uUaElFZYIAlKgfOnTuHb775Bps3bwYA6HQ6yIVVoRV1IYENPhER+Q8BgXff725xCUx8fDweffRR9O7dG1qt1ss1JKLSxABLFMCuX7+O2bNnY9myZTAYDJAkCZKcAK2oBwm8UTwREfkvAYEJb7TGzJkzkZycDACoU6cOnnzySbRr1w6SxHuVEwUiBliiAFRQUIBffvkFc+fORVZWFgBAEnHQigbQINLLtSMiIvIcAQMef7Yh5s2bh8zMTABAy5YtMWbMGNSvX9/LtSMiT2OAJQogQghs2rQJX3/9NS5evAgAkEQktKIhNOBtB4iIKHAJFOL+h6ti8eLFKCgogEajwd13343HHnsMsbGx3q4eEXkIAyxRgDh16hQ+/fRT/PvvvwCASpUqIT0lARpUgwROoyIiovJh/pLH8fXXX2PdunUAjAs9jRw5Evfddx+CgrhgIZG/Y4Al8nNZWVmYNWsWli5dCoPBULSycHVoRW1I0Hm7ekRERF7x0Zf3YNq0aTh+/DgAoGbNmhgzZgzatm3r5ZoRkTsYYIn8lCzLWL16Nb7++mtcu3YNACCJytCJhpAQ5uXaEREReZ+AwLiXW2LGjBlIS0sDAHTq1AnPPfccKleu7OXaEZErGGCJ/NDJkyfx0Ucf4eDBg8YfiHDoRCNoEOfdihEREfkgAT0GPBiPxYsXw2AwICwsDI888ggGDhwInY6zlYj8CQMskR/Jz8/H7NmzsXDhQqUBLsiuAQ1qQYLG29UjIiLyad/MeRAff/wxDhw4AACoX78+xo8fj6ZNm3q5ZkSkFgMskZ/Yu3cvPvzwQ1y4cAGAabpwI0gI9XLNiIiInCQAt9cXdLEM07Tir7/+GhkZGQCAe+65B6NHj0ZkJG81R+TrGGCJfNz169cxffp0rFixwvgDEQKdfDM0kgvX7pje7e50GjxRBhERlW/mvU9X2xM3yxCiAD3vCVfa1/j4eLz44oto166dixUiorLAAEvkwzZu3IiPP/4Y6enpkCQJkqEGtOIm4+rCzjbW7nYWPNHZICIiMineA3WnXXNj/w+/vBtTp05VZjj17t0bY8aMQXR0tJMFElFZYIAl8kEZGRn49NNPsXbtWgCAJCKglZtAg1jjBs400tbe4WW5PxERkTW2eqBq2xh39zcrQ8CAAQ/F4eeff4Ysy6hYsSLGjRuHzp07O1EYEZUFBlgiH7N9+3a8//77uHbtGjQaDaCvBa2oZ7lIk5rG2d47uyw7B0RERNa420456sG6UMZn396HKVOm4OzZswCA7t27Y/z48YiKilJRGBGVBQZYIh+RlZWFL774wuxa1wjo5KbQIKbkxo4a5dLsFDC8EhGRp7gbQkthfwEZQ0ZWxY8//giDwYD4+Hi8+uqruO222xwURkRlgQGWyAccOHAAEydORHJyctG1ronQivqQoLW+g60GWc272V5j7u7+REREzlDbC3Wn3XNx/2kzBmDSpEk4f/48AOCBBx7A448/jpCQEJUHJaLSwABL5EUGgwHz5s3D7NmzIcsyIMKKRl0r2N/RWkPs7U4AERGRs5zphbrT9rm4v4Aed90XiV9//RUAUKdOHbz55puoV6+eEwcmIk9igCXykuTkZEyaNAn79u0DAGjkqtCKm40rDDti3gg7+w4u3oC7uz8REZGrXOmFutMGurj/O+93xdSpU5Geno6goCA888wzuO+++yBJbBSJyhoDLJEXbNq0Ce+//z4yMzMRFhaGgux60Ipq6gswtZdl3fCznSYiIk9zpy1ztRfrwv4///4Mpk6diu3btwMAunTpggkTJiAyMtLFShCRKxhgicpQYWEhvvrqKyxZsgQAIIlo6ORbICG8bCrgqQafiIjIU9zpiUpu7u8kAYEnxzbE9OnTYTAYUK1aNbzzzjto2LBh2VWCqJxjgCUqIykpKXjrrbdw8OBBAIBGrl20UJPGwZ4+hiGWiIg8yQ97otNmDMDbb7+Ny5cvIygoCM8++yz69+/PKcVEZYABlqgM/P3333jnnXeQlpYGQAedoSk0qOztajmP7TIREZUGP+yNChSiTedCbN26FQDQo0cPTJgwAaGhoV6uGVFgY4AlKkVCCCxYsADffvstZFmGJCKhk1uU3ZRhT2OAJSKi0uCnvdHiU4pvuukmvPfee0hISPB21YgCFgMsUSnJy8vD5MmTsWHDBgCmVYYb2763qz9ggCUiotLg573RD77oizfffBPXr19HTEwMJk6ciJYtW3q7WkQBiQGWqBSkpKTgtddew9GjR6HT6SAKboJG1IDkzwnQj6tORER+wM97pPN/eRyvvvoqjh8/Dq1Wi2eeeQYDBw7kdbFEHsYAS+RhR48exSuvvILU1FRABEEnN4cGFb1dLfex/SUiotIUAD1SAQO63qXF6tWrAQD33HMPxo0bB51OxT3eiUgVP1v+lMi3rVu3Ds8++yxSU1MhiQgEyW0CI7wSERGRQxK02LBS4JlnnoFGo8Fvv/2Gl156CdnZ2d6uGlHA4AgskQcIITB//nx8++23AABJxBXd3zWAzrhyBJaIiEpTgPVI357aBRMnTkReXh7q1q2LqVOnokqVKt6uFpHfY4AlcpPBYMC0adOwdOlSAIBGrgWtaODf17sWF0BPhYiIfFiA9Uq/nHU/XnrpJVy7dg2VKlXClClT0LBhQ29Xi8ivMcASuSE/Px+TJk3Cpk2bIEkSNIYG0Ipa3q6W5zHAEhFRWQjAXun8Xx7HhAkTcPr0aYSFhWHSpElo1aqVt6tF5LcYYIlclJmZiVdffRX79u0DoIFWbgqtCND7vjHAEhFRWQjQXqlAIZq3ycSePXug0+nw5ptvokuXLt6uFpFfYoAlcsG1a9cwfvx4nDp1CoAOOkOLEos1SUVvLREIy+cHwFMgIiI/4GavVBLC6+2urToIyOjYw4ANGzZAo9HgxRdfxN133+2FGhL5NwZYIielpKRg3LhxSEpKAkQIdPKt0CDKYht3w6tk9rb0dkMMgAGWiIjKhgd6pe6GWE+cgLYdYgXu7B+K3377DQAwevRoPPjggy4fh6g84m10iJxw+fJljBkzpii8hiJIbmURXiUhLMKnK9zd39PlEBER+RtfaI+t1UGChFXL8vDQQw8BAKZPn46ZM2eC40lE6jHAEql0/vx5PPvss7h48SIgwhAkt4KEcACeayiLl+HK2V9P1IWIiCgQuNIemre9pdG+S5CweN5VPPXUUwCAuXPn4rvvvmOIJVKJAZZIhXPnzmHMmDG4cuUKIMKLwmtYqQVXd8oiIiKiG3ylrS5exqwvT+HZZ58FYAyxs2bNYoglUoEBlsiBS5cu4fnnn0dqaiokEVkUXkMdNmSORk89PVLK8EpERGRbWQZZe30A8/2//eyYEmLnzJmD77//3q36EZUHDLBEdpgWbEpJSQFEBHTybdCIYK9fV1O8LIZXIiIidTzRZnoyCH/72TE888wzAIDZs2czxBI5wABLZENaWhrGjRunXPMabLgVGhHsVpkcdSUiIvI+X5tWPGPacTz99NMAgO+//x6LFy92q1yiQMYAS2RFZmYmxo8fr6w2HGy4DRJCXS6vNIIrwysREZF7fCnIfjftOB599FEAwLRp07B69Wq3yiQKVAywRMUUFBTg1VdfxcmTJwERjCDDrZAQ5nJ5DK5ERES+zRemFQPAvG/OYuDAgQCAyZMnY8eOHW6XSRRoGGCJzMiyjP/7v//Dvn37AKFDkOFWaBDhUlmcLkxEROQ/fGE0VoKE3xZdR8+ePWEwGPDGG2/gwIEDbtWJKNAwwBKZ+frrr7F+/XoAEoLk5tAgyttV4qgrERFRGfL2aKwECZtWymjbti3y8/Pxyiuv4Pz5827XiShQMMASFVmyZAkWLlwIANAZmkAjKjpfiCwgGQQgu9n4Fe3vagMoJMnhbXxU81AxREREfkN2vy2XDEV9Alf2hQZ/bw3HzTffjIyMDLz88svIzMx0qz5EgYIBlgjAjh07MG3aNACA1lAfWlHVuQKKgqvkiYFSNxtMjwVXpUDPFkdERGSVL7Y37p6QhutBVoIW7733HuLj45GUlIS33noLer3e7foQ+TsGWCr3zp07h4kTJ0IIAY2hGrSitnMFyB4Mrm40lB4ddSUiIiIjD4zGAnApxD5473RMmTIFYWFh2LNnDz799FMIXlZE5RwDLJVr2dnZePXVV5GVlQVJjoHO0AiS2jmznhp19UDDyOBKRERUygseemla8TMPL8Abb7wBSZLw66+/YunSpW7VgcjfMcBSuSXLMt59912cPXsWECEILrwFktq3hCdHXd3AUVciIqIy5oXR2IkvrMdTTz0FAPjiiy9w+PBht+tA5K8YYKncmjNnDrZv3w5AUxReQ4yh1F7DxFFXIiIiKqPRWPPHZ316DJ07d4Zer8ebb76J9PR0t45P5K8YYKlc+vvvvzF79mwAQFBhI2hEjP0dvLFIk43tvDLqysttiIioNPlSO+NMMC3DRZ4kSHj55ZdRs2ZNXLlyBe+++y4MBoPbxyfyNwywVO6kp6dj0qRJEEJAa6gGrVzN/g4+skgTwFFXIiIin1OGizzd1+0jTJw4ESEhIdi9ezfmzJnj9nGJ/A0DLJUrsizj//7v/3D16lVIcjh0+oZ2NvadW+MADK9ERET2lOoCTmqU0Wjs6Ifm43//+x8AYO7cuThw4IDbxyXyJwywVK78/PPP2LFjBwANgvTNIEFrfUM3R12Va2k9NOrqE+HVl6Z3ERFR4Aik9qWo3XflljnmHO3/4Rs70Lt3b8iyjEmTJiE7O9ut4xH5EwZYKjdOnTqFb775BgCgK2wAjYgquZEQkDw0ZdhTI7deP6Ns4gMZmoiIqDS5GzwVsux2EZJBAHrb5YwdOxYJCQm4dOkSPv/8c7ePR+QvGGCpXNDr9ZgyZQr0ej00hjho5eolNxIC8ETDJYTxK5AwvBIRkQ/z5MleSXjqJLTskSBrK8QO6P4xXnvtNUiShBUrVmDTpk3uH4vIDzDAUrmwcOFCHD16FBA6BOlvhmSeyETRGU5PhddAIoHhlYiISo8PN5seCbGA50KslSD7vyeW46GHHgIAfPjhh7y1DpULDLAU8M6cOYPvv/8eABCkbwAJITcetDbqanBhBNXaqKvw0AJQ3sLgSkRE5Zwro7GSwUpgdWU01trIq5WfLZ51CXXr1sX169fx1VdfOXcMIj/EAEsBTZZlTJkyBYWFhdAY4qCRqxof8LNR1zK/DpbhlYiI/ISn2kh717/68misBA0mTJgASZKwatUq7N271/1jEPkwBlgKaCtWrMDhw4eLpg43Mk4d9tS1rkDZTBn2wLL8qnHKMBERlRU/m6Xk0WtjPcEsxD4/ajH69+8PAPjoo4+Qn5/vmWMQ+SAGWApYGRkZN1YdNtSFJELUj7o6mkbMhZqIiIjKpTJZ4MnO6sMltiva9oknnkBcXBzOnz+PefPmeaCSRL6JAZYC1syZM3H9+nVIcgS0+ureGXX14HWwpTqNmOGViIjKko+1jc7ePsdW2271+ld7PDgae1+3jzB27FgAxsUrL1265JmyiXwMAywFpGPHjuHXX38FAOjyG0AyeCCheXPUtbSmEXPKMBERkUt88XY7k8avx2233YaCggJ8++237pdJ5IMYYCngCCHw5ZdfQpZlaPSVoZUruFaQ+TRid4Krr47CMrgSEZE3+Fib6Ozoa8l6mMpxM4SaQqza6cPW6gIJzzzzDCRJwrp163Dw4EH36kTkgxhgKeDs3r0b//zzDyAkBBXUd7kcybTYk69c61qWizkRERGRap5cpVhToHeriKcH/4C77roLAPDll19C+Eo/hshDGGApoAghMGPGDACAVl8Dkgh1qRzJ1xZp0kjGL3hwFNaHnh4REZGzhCRBSG5OJ5IFhAQIT8xKkou+PMDdEPvYY48hLCwMhw4dwqZNmzxTKSIfwQBLAWXTpk3477//AKFFUF4Nl8owD6+S7Ll7xbp8dlbDub5ERBQgSuHkqdshVinHjZ3Np/26EWI1eTeCqzsh9uEun2Dw4MEAgNmzZ0P21GJRRD6AAZYChsFgwMyZMwEAurzqkESwU/tLQhgDq6+NvJYmH3qqRERErvKJEGvOQ6OxmgK9y0H2/vvvR3h4OE6dOoWtW7e6XxkiH8EASwFjy5YtSEpKAmQdgnKrO7WvvSnDXhmFNZsybLVOvhSyiYiI1CjlpsvpEGtjbQmnpxTbW3TJiRBrPvpa4jEXQuz97aZg4MCBAIA5c+bwWlgKGAywFBCEEPjxxx8BALr8qpCgg6SXIRkMDvf1yetdVeC1sERERJZUXxerYmFEj47GeoDaEKvJL1S+f+CBBxAWFobjx49zFJYCBgMsBYR9+/bh6NGjgNAgKK+aqn28MmXY0Sgsr3clIqJAVMYnS8tsSrHaW954aUrx4A7vY8CAAQCABQsWuF8BIh/AAEsB4cboaxWLa19tjcI6O+rqsWnEtjiYMmwLR2GJiMjneamNsRlinbwtncdWKQZshlh704etbm8jxJqPvpoMHDgQOp0OBw8eNJ7sJ/JzDLDk986cOYMdO3YAwrh4kyNenzJcfBSWo65ERESlwlMjscayiv1A7ehrcWU8pfjhLp+gW7duAIDFixd75uBEXsQAS37vt99+AwBoCytCI4eVeNw0CuvulOFSGYX1QHjlKCwREfksH2hbLK6LdXL0tWRZHqgQYBFinR19NWc+pdja6KvJoEGDAADr169Hamqqy8cj8gUMsOTX8vPzsWrVKgDGxZtskuGRUVdPrkjsKZ48u0xERBSoPHpdrKujr+ZkQJOV7345cDwa+/ygeWjSpAn0ej3+/PNPjxyTyFsYYMmvbdy4EZmZmZAMIdAUVrC+kd4ATU4eJDduCO5RkgRIknEasZtngomIiEgdSQjPzHwyyMYetCd60UIAhe73T6Rr1yGlZdjdpm/fvgCAFStW8JY65NcYYMmvrVy5EgCgy0+AhGKNkt4AKa8AUqHe2EB4KCy6NQrr4dFSj46+ciCXiIg8TYJPtC8Wl9t4cu0JN3rSmhyz0Vd3Q2zR+h5SWobNIPv5y1sQGhqKpKQkHDx40L3jEXkRAyz5ratXr+Kff/4BAGgLKls+qDfcCK5FpEK9d0dhPbQaIuDEfe7U8oHOBRERBTBfa2dcXf3fYGXqsKu96eKjoIV6l4KslJ5pWWZRkC2xHXTo2rUrACiXXxH5IwZY8lvr16+HEAKawmho5NAbD5jCa3HeHIW1ETbt3hPWBo9f8+prnQoiIgpMXmpv7C526KnRWCd71Bajr8U5G2Kt3C7QVojt1asXAGDz5s3Q633k0ioiJzHAkt9at24dAEBbEH/jh3oDJL2VD/IinhyFVR1i1QROlcGa4ZWIiPxaGbc7qlbqVxlirY6+WpSjqhhjeHVUL5Uh1mL0tTghIF3PsvjRqyOWICYmBtevX8e///6r6hhEvoYBlvxSSkoKjhw5Yrz3a0Hcjetd9Qb7jYIQkPILy2YqcdFiTQ43M1XXQYhleCUiooDgi+2PgxDrMLwq5cBx71rtAkoOQqyUnml99NWcwQDpepYSZCVI6NSpEwBgw4YN6upB5GMYYMkv7dixAwCgMURBKtTeCK5qGoWymErsZNh0NJXY49e7+mLngYiIyo8yaIecvk96GSzuZHfqsDX2Qqyj8Gq+XVGQBYAuXboAALZu3QpZ9sDtgIjKGAMs+aVt27YBALR5FRyPulpRqlOJ3QmbxYI1F2siIqKAVYptktPh1cTK4k6qR19LlFXsv2qmDltjZXEnu1OHbSkKsa+P+gVhYWFIS0vDiRMnnC+HyMsYYMnv5OfnY+/evQAAXU6Ma41BaU0ldiNsFp9KzCnDREQU8Hx1VlBRiHU5vCrlmH3v7r1Xi0KsqqnDthgM0FzPQcuWLQEAu3btcq9ORF7AAEt+58iRI8jPz4dkCIJUGOp4B1s8OZVY7fRlh+UY/2V4JSIico3Lo6/FeXCFYqenDttSqHc9vJoYDGjdujUABljyTwyw5HdMq+Zp8qMguZnMPDKV2Hyar5uNppAAaCTPNb5ERETkEskgAI37XWVNnt4YhrXulyUuXYGcmeV4QwdatWoFADh06BDy8z0UronKCAMs+R0lwGaGuFdQUeh0ayqxKbx64J0kimVxj4ZY5mEiIvJVHmyjPNV2SuZrW7gbYoW4cWcCN0KsuHTFOPoqhNsh9pEGL6NChQooLCzEsWPH3CqLqKwxwJJf0ev1OHToEABAugKIrBznC1F5exs15ZQIry5OJVbCa/GFIzgSS0REgczXw6uJiyFWk1fsBLk7IdZ86nBRiHUlyBrS0iEZZDRt2hQAcPDgQdfqQ+QlDLDkV5KSkoxTXfQSpGwJckaGcyHWRnB1ehTW3sirkyHWVnhVDuWpEMssTEREvsQH2yWr4dXEyRCrydNb7w+4EGLFpStWfiicHo01pKUrQZgBlvwVAyz5FdM0FyknyHj9q8EACJUrBDoYdVUdYtVMG1YRYoXkOLx6nA92FoiIqBzycHtUZjOWNBpVQdZmeDVxIsQqU4dtbuBEiDUr5+abbwYAHD9+XN2+RD6CAZb8iinAarKDlJ/JmVmOR2FVThl2GGI9dM2rRXBVEV55PSwREZF1pTp12BZHIVZNnVSEWIfh1ex4jkKsIS3d4v//azcZAHD58mVkZ2c7PgaRj2CAJb9y8uRJAJYBFgaD/anETl7vajPEOhtebYzCujrqyhBLREQBwV+ue3XERogtcd2r3QPbDrGqw6uyg+0Qaz51WDm0QYP4+HgAwKlTp9Qfh8jLGGDJr5w/fx4AIOUFWT5gK8R66n6qro68Fgux7k4Z5qJORETk1wIlvJoUC7EOpw5brYCNEOvK/V6thFhr4dWkbt26ABhgyb8wwJLfyMvLQ0pKCgBAytOW3KD49bBuhFdlFFaSIDQa96YNF4VYT13vykWdiIjIL/lgu+NWeDUpCrEuhVelIkUhtijIWl20Sa3iIdZOEK5ZsyYA4OLFi64fj6iM6bxdASK1Lly4YPxGL0HSWwmwMF4Pq5E0kKIi3D+gQQZkGQiyfiyXlNViTURERL7EXxdtUkkyuHYbPctCivoIV666NvpqrijECr396cwJCQkAjNfBEvkLjsCS30hOTgYASHl2zrvIwjiVONuF+8OaEVoNoNNC0suQ9CpXObZHkiAJY/18io9Vh4iIAlAptDXCE5cIyWazo9wgFRrDpvDECe9LKRAGGdC6X9bZcc2R9L/b7G5TtWpV42EvXXL7eERlhQGW/EZqaioAQCq08aEuFb2cZQE5/brLIVZoNUDQjZAsFRrcC7Eu3vy8zDDEEhFRaSnFNsatECtbWZ/CXZLkXoi9lGI5YupGiD07vgUKYgQKYgSSXmptc7t37vkUAHDlihtTlonKmI/3rIluuHbtGgBAKij2spU0N8KriYshtnh4VQ7haogtFl49NQrr8alTDLFEROSHXAqxVtphV0OsafT1xg9cDLHFw6uJCyHWFF5NCmKNIdZakDUNCly/fh3Cx6ZlE9nCAEt+wzQCC/MR2OLB1ZyTIdY0bdj2Bk5+sNsYeWWIJSKicqGM2hWnQqyd9tfZEFsivCoPOB9i7V6r6kSIPTvOMryaFMQKJcha0Bv7KgaDAVlZ9u8jS+QrGGDJb5husi3pi1oYe+HVRGWIVcKrnUbQqethHUwbZoglIqKAVsbtiaoQq6LdVRtibYZXZQMnQuylFMfbqAixZ8e1QEGs/edYPMRKQgIMxiedkZHhuB5EPoABlvxGbm6u8RvZypRhe2RhdzU/NeHVRNVUYpXXvPpsiCUiInKHl5oluyHWifbWUYh1GF6VDVWEWFtTh61xEGIdhVfz7c5NMBuJLRoY4Ags+QsGWPIbeXl5AABJdv5lK2dmWR2FdSa8mtgNsU4u2OSTIZZ5mIiIXOXlNsRqiHWhnbUVYlWHV2UHOyHWmfBqYiPEnh3Xwqli8ivcCLFS0ZMtKChwri5EXsIAS37DFGAhu7ZgQ/GpxK6EVxOrIdbF1YYZYomIKCD4SNthEWLdaF+Lh1inw6uyo5UQ60p4NSkWYtVMHbZGCbFF/Sq9q/UhKmMMsOQ3bqyO5+JSgWYh1p3wamIRYt28VQ5DLBER+TUfazOEJHmkXTWFWJfDq4l5iHUnvJqVBwBJz7sWXk3yKwiIcGNdtm7d6l6diMoIAyz5DUkJm240SLIA8vMh6Q1uhVeFD15/ymtiiYioTAV6s+OpdlWSIOUVuB9eAUCjQdp9tyC/gud++YWFhR4ri6g0McCS39C4OcoJAFJoCBAUDOTmQcpz71oPodEYR15lALIL94gtJW7d2N2cp27sTkREgctHw6skBKBxvyGTikZxhc4DfZCsXEAIaCrGul1W2r1NUBgpITLJ/eeoCTc+t1atWrldFlFZYIAlv2EKsNe713Fpfyk0BFJoKKCRjNORc3JdDrFCowGKGjNJCLdDrJDgkYaW4ZWIiMqML4dXEzfaVqnYFGR3QqyUlQvJcOOyI3dCrCm8AoC2QLgVYtt3PISQorKioqJcLoeoLDHAkt8IDw8HACS0Po8rj97m1L7m4dXE1RBrHl6V8t0IsQyvRETkd/whvJq40MYWD68mroRYi/Cq1Mm1EGseXk1cDbHtOx5CYlgaDHnG52rqZxH5OgZY8humD9ZKciYaDPvPqRArSZLVBkwI4dR0YmvhVTmGCyHW58IrERGRI/4UXk2caGtthVcTZ0Ks1fCq1Mm5EGstvJpoC5z7o5jCKwAY8hlgyb8wwJLfiIyMBADo82TUj0gxhtjHHIdYKTQECAmx+biQZVUh1l54VY7lRIj1yfDKHExERPb4Y3g1UdHmOgqvJmpCrN3wqtRJXYi1F15N1I7CmodXIQsYChhgyb/ovF0BIrVM12bos40ftPUjUoCHgWPiNlT+bq/VfaxNHbZGyDKk3DxIAERosPWNVJ7ukYSAkCUAss3b6zC8EhGR3/Hn8GqisX17HbXh1UToNCXvCW8qS014Vepkv4ORfo/j8ArcmEqclSgQl5mJB3buRJtTJxGRn4/skBDsrFcPp56NRWxYnrJPYZYAhHGmWnR0tLr6EnkZAyz5jbi4OABAfvqNBqF+RAowDDjbrybyl1e2CLJqw6uJvRCrrDiskr0Qy/BKRER+JxDCq4mVEOtseDWxFmKdCq+mKlWMhXwtvcTP0+9pgoIo9Y10eE4B3vx+Ge49uhvBBst7195x7Bj0ayT83a8Wfn/pFuhDtCi4bqxnhQoVoNMxFpB/4BRi8hvx8fEAgIJ0y0ahfkQKulc9hvoPH1Oui3U2vJpYm06sZuqwNdamEzO8EhGR3wmk8Gpi1ha7Gl6tcSW8GutTciqxs+E1RF+IL/6YgUGHdpQIryY6vUDrJWcw8unt0OUZlABbqVIl5+tM5CUMsOQ3TAE2P936h3KDyCuo//AxXB59u0vh1cQ8xLoaXk08cYudUsXwSkRE9gRieDXRSB4Jr6brYV0Or0p9boRYZ8MrAPxv2zLcfumkwz+ZAFB3z1Xc/f5+3BXxOIAbs9yI/AEDLPmNqlWrAgAKM4SyYl5x/2xtgOrLzwGFrt3f1UTIsjF0euAdYmpkPTX6SkREVCZ8NLx6jAdHXiGEe+HVRKOBKChwOrxWysnAvf/tBuD43LTp8VuXn8W5//4DAFSvXt3JihJ5DwMs+Y3o6GjExsYCAHKTrY/CBl+XYLiYDDk3D8jPd/lYUmgIRFgIJL0MqdDg1giq0EqARgNJwLONpSf4WHWIiMhHBHr7UNQeCw+cWJYKjX0SOSLMvSolp0BOTgFkgYRfTzu1b/8juxAkW+8b2aLTC5zfuRMAkJiY6NS+RN7EAEt+pVatWgCAnGR9iccWreqI2j8kGf8jC/dCrCQZvwDjWVW97FKINYVXpVgPhFiP3/M10DspRETkHD9oF9xqC4u1w+6EWFN4BQBoJZdDrJycAlGohyg09m8MV685tf9tl066dNykq1cBADVr1nRpfyJvYIAlv2I6Q5hzyfIs46I/O6LBl+dguHzlxg9dDLGm0dcSP3cyxBYPr0o5boRYj4dXpeDSKZaIiPxMoLcHNtpfV0KsRXg1cSHEmsJrcc6MwkYUOn/CPk+jwaWifo1pgIDIHzDAkl+56aabAABZ52580C/6syMafFEsvJo4GWKl0BCI8NAbo6/FH3dxJLZEOS6E2FILr8oBSrd4IiLycX7WDjjdLjpod50JsVbDq4lWfTm2witgHIVVG2Kzg0qeeHfkREQEDJKEihUrchEn8isMsORXGjVqBADIOquHKFocKThdsh5eTVSGWEfhVdlORYi1NfpqUY4AJINQFWRLPbwqByqbwxARkY/x089/1e2jh9agkAoN9sOr6XAqRmHthVcTw9VrSPj9rMOyYh647nCb4v6LigJwo29F5C8YYMmv1KtXD0FBQdDnCOSnylj0Z0fU/vGc4x0dhFi14VXZ3k6IVRNeLcrytcWdfKgqRERUBvz8c99hiHWijbU3CqsmuCocTCVWE15NDFeu2g2xb704B41GhEEEqa8eAByNjgYANGzY0LkdibxM5+0KEDkjKCgI9evXx5EjR7B6WV00+O08DBeT1e1cFGKlvHxIoSFAiNl0G/NFm1SS9DKEDhZh1dnwqpQlACELq7fZKbPRV4uDgveIJSIqD/w8vJoISbJ+b1gXThALK/eHdSq8mhSFWE12rmWVnAivJoYrVwFYXqf61otzAAD3RuQAETrggWhgfobDJtz0+P5q1YDCQjRu3NipuhB5G0dgye+0aNECAFB561n14dVEFhAG2WI0VgoNgQgJdqkunromFrA+EuuV8Koc3HuHJiKiMhDIn/Oyukt0bDEfiXUpvJoUux7WlfBqYj4K+8aL83BvRI4xvBYR78ZBtAtVdR/Yc20jcamwEFqtFs2aNXOpPkTewgBLfufWW28FABh0aa4XYhqNlSSI0BBA6/pbQblXrBAujb5alGUWYr0aXk0CuXNDRFReCQTk57vSbnroshyhkdwLr0XkiDDlHq+uhlfgxlTiN16ch/4RWSU3CNNAzK8G8XC0zenEIggQD0fj4CvzARivfw0PD3e5TkTewCnE5HduueUWaLVaGEINkEP00OS7+DKWBYRebwyebhJaCUKjMZblC8HTkzidmIgocARgcC1BI3kkxBafRuxyOYV6SJXjYLhw2e2y9BcvWQ+vJmEaiA8qAxMqQvyYAWl7LpAtAxEaiPZhwEPRQLwOf393AADQsmVLt+tEVNYYYMnvhIWFoUmTJti/fz/k2FxokqNcKkcTGQEpIhzQG4ztuU7rXsU0uBGGXQyxQoJyHawkhG+MwvpAFYiIyAMCPLxavQbW1bJMs6F0GuPlQq6WU2A8US6CnVxhyQpRWAAA6PHQI1j74yz7G8frgLEVIcaWfKjrsEcQHbodANCqVSu360VU1jiFmPxShw4dAAByhVwHW1qniQiDFB1pnPIrBCS9AVJeAaB3fqqQ0GggtGbhVwiXRnXNw6uJJIRHG2SnMbwSEQWG8hZenbinq0U5srAceZUkCJ1r3WWpQA8YboRfbfUEl8oRhQVKeAUA7ca/0WPoIy6V1W3kYwj6ey+uX7+OqKgoXv9KfokBlvxSx44dAQBydD6E1oUzo1qt5fWqRaFT0hucCrFCp4EI0pZ8J7kYYm3xaoglIiL/FuBNiM020skQa3PKsAuzoYqHVwAQwUFOh1jz4GpOu+Fvp+vUbeRjCN6wHwMndQcAtG3bFjodJ2OS/2GAJb9Us2ZN1K5dG5AAOda5UVhNZASkyAjrD7oQYm2+i4QwrlCsInxaG30trsxDLEdfiYj8XwCHV0/OUnJ0vavaUVipQG81vCrlODGV2FZ4NVE7Cttt5GNKeBUQ2Lx5MwCgffv2qutC5EsYYMlvderUCQBgqJTjYMsbNJERN6YO26IyxApdsanDdsqzF2LVhFeTMguxDK9ERP4vwMOrKiraV1WLNamYSqwEVxvh1UTNKKyj8AoYR2G7P/yo3W26jjIG1+AN+43lRhTgwoULCA0NRbt27Rweg8gXMcCS3+rVqxcAQI7Ng9CpHDHVatTd6sZBiFXCq9p3kAenFHM6MRERORTATYXT7aCdEOvUSsN2phLbG3UtztFUYjXh1US3fq/Nx7qOegwh6/db/Oyet+4AANxxxx28fQ75LQZY8luJiYlo1KgRIKkbhdVEhBlXHVbL0eJOzr57rIRYZ0ZfzZXq4k4cfSUi8m8MryrKKbr3upOsjcI6E16VcqxMJS6+WJNa3YaXHIXt+sjjJcKrgMD69esBAD179nT6OES+glduk1/r3bs3jh49CkN8NrTJkZDspS+dTt3oq7mihlIyu9VOiVWHXSjPU/eK9fitdhheiYj8G8OrdWb3hpUEXJ8VVazNdSW8mmirJyj3hnUluJoErb0xCtv1kccBACHr9pXYTq6Qi7S0NFSoUAG33367y8cj8jaOwJJf69GjB4KDgyEiCiEibX/4K/d8dZX5lGIN3HvnmBZ3Alxe5t8cpxQTEREEGF4d0UjuhdciQqdxuFiTqnKKRmHdCa8m3UY+hi6PPo6QdfushlcAaP5QHQBAnz59uPow+TUGWPJrMTEx6NatGwBAXznL9oYayf1RTyGMZWg0gOvtlZEkGacPO3PtDRERkTUB3pR47ESt7KH1KGRABOvcCq/GcmRoEyq7Xx8AIduOIHSt9eAKAHJIIfbs2QNJknDPPfd45JhE3sIAS36vf//+AAC5Uo7VxZw0EWGQwsJuXIPqYuMlgnQQocazpZIQ7odYEzdDrMemEHP6MBGR/2F4dUwWSlsr3J35ZDCV42YXumgmlggJgq5GdZeL0UREQBMRAUmrhRQaYnO7+yZ3BgC0bt0a1apVc/l4RL6AAZb8XuPGjY2LOWkAQxUro7BarXH1YcC9EKvVWIziuhxiJSujwRyJJSIiZwV40+Gx8OophmILMYYFu1aObNl5EKGulaME16J1OSQbJ7SFVsavv/4KABgwYIBLxyLyJQywFBAGDx4MANBXyYLQ3GgYlNHX4pwMsSJIZ5wuVIyrIVZYa2PMzhCrL4ejr0RE5RLDq2M22lSnR2ENokR4NZbjQjdatt5pcHYU1hRei7M2Cjv8mz7Izc1FnTp10LZtW6eOQ+SLGGApIHTp0gXVq1cHgmQYKmffeMB89LU4Z0Zji42+mpOEgGRQGWStjb4Wx9FYIiKyJ8CbCZ8aebUSXM2pHoWVZZvhFVA/Cms+Zdia4qOwQpKxePFiAMDQoUNtjtIS+RMGWAoIWq0WQ4cOBQDoq2ZCSML26Ks5N6+LNad2NNbq6GtxKhpejr4SEZVDARxePXKPc5WzmVSNwjoIr8ZyVHSl7QRXZxSfMmyL+SjsMwsHIy0tDQkJCcqil0T+jgGWAkavXr0QFxcHBBtgiM+2P/panJ0Qa2v6sDV2Q6ya0Vdzdhphj977lYiIfB9vk+OYs5fh2AqxNqYM2yzH3iisE+HV3jRie6OuxZlGWYUkMH/+fADGS6146xwKFAywFDCCg4Px4IMPAgD01TMgJCfPeNoajbUzfdgae1OKVY2+FleaU4qZg4mIfF8AB1fAv6YMW2N1FNbBlGGr5ViZRuxoyrA9j8/tj+TkZMTHx+Puu+92en8iX8UASwGlX79+SEhIAIIN0FfJdL6AYiHWmdHX4ixGY50dfS2O18USEZVPAf7x7+/h1cRiFNaNKcPmo7BqpwxbFa7DvHnzAACjRo1CSIjtW+wQ+RsGWAoowcHBeOyxxwAAhTHJEJpC1woyhVgnR1+LU0ZjhXBt9NWc6R52vPaViKh8CODwWpbXu9ojNJLTU4atl6NxadS1RDlFo7CujrqaPPDBHbh+/ToSExNx5513ulUnIl/DAEsBp0ePHrjpppsAjQEF0ZdcL0i43zD6tAB+akREfi+AP6M9MurqIZKHquKx56TVuh1eZZ0eP/30EwDg8ccf57WvFHAYYCngaDQaPPnkkwAAfWQKZF2uS+WI4CCIEPc/9IUkARqN7zWSQEB3kIiI/FaAfzZ7bCaRs/dzLUZpl7XullM0QyrczWm6Wi2gkaCpEu9WMR2fq4e8vDw0adIEnTp1cq9ORD6IAZYCUqtWrdCuXTtAEsiveA5C7WrE5jQa45e7zIqQhGfO9npk6pVJgK9sSUTkN/h5XCZKtMUuBuoSbbGrfQatVgmvACBCglyrT6UKkKtqsXbtWkiShOeff573faWAxABLAUmSJIwdOxbBwcGQQzKgj0gzNg5lzDT6WqJ+rnRQrJxp5mgsEVGAKGefwd4ahbXZ/jo5Cmur/XV6FNYUXN0dTa5UAXKQBgmt8gAYF7Vs2LChW2US+SoGWApY1apVw/DhwwEABZFnIAcJiOAgVUHWU9OH7b3DOKWYiIgA8LO3jNhtd528XZ5Nakdhi426ljhGXEV1dalUAVKlChBBOox6+1acOXMGMTExyoKWRIGIAZYC2pAhQ1CzZk1AW4jCiCRAkiB0Wsch1lPThx3glGIionKuHH/eemwU1gGfa2tVjLqqmUZsCq4iSAdZk4fvv/8eADB69GhER0e7X08iH8UASwEtODgY48ePBwDowy/DEHQdACB0WtWjsWXBYcOqcmoRR2OJiPwIP2c9w04b6VRwtTON2JOrDHtiurApvAKAgECjHjJyc3PRokUL3jaHAh4DLAW82267Df369QMAFESfgJD0xgdsjMZ6evVhtXzuDDHAzhURUWnh52upcqlNtTIi7EqbavU6WAdThq1Wx8o0YvNRVxN92GX8+++/CAsLw8svvwxNGcwgI/ImvsKpXBg9ejSqVq0Koc1HQeRZi8dKjMaWwurDzvC5a2M5pZiIyHP4mWqhNKYRe70dLd6HcHGhJvNpxMVHXU1kbS40cRcBGPs61apVc63ORH6EAZbKhfDwcLzyyiuQJAmGsGQYgtMsN1B7bWwZ8eRorMeww0VE5B5+jpaeonDoUzOZXBh1tVofK6OugHHqcP3OhcjPz8dtt92Ge++9163jEPkLBlgqN1q0aIFBgwYBAPKjT0BoCkpsI3RaQOcbIVbh9o3a2WMiIvI6fhSXOo+MvDp5Ox3b5bh/exwRpLU66moy6IX6OHjwIMLDw/HSSy9x6jCVG3ylU7nyxBNPoF69eoCmEPnRxyCs9CiEJLk9pcnZ61+JiCiAMbxa5dE1GzzFA+2/kCSIsGD3ygnSAhqNzfBqCErHDz/8AACYMGECEhIS3DoekT9hD5vKlZCQELzzzjsICwuDHJyBwohzNrd1K8j60DurrG5TQEREVvhYPvMVpRFchZebO+PJawAaQLg4kiuCtEp4tbmNpgDhdS9BCIF7770X3bp1c7HGRP7Jh7rZRGUjMTERL7zwAgBAH34ehqB0u9szABIRkdO4WJNNpTbq6uYlN65STni72atWgqu98AqBm3vJSEtLQ926dTFmzBj3DkrkhxhgqVzq1asX7r77bkAC8mOOQ9bk293eE9OKnSUkeK0xtsqHqkJE5NMYXK3yySnDVgid+u6x+airy8dTMepq0n9sbfz9998IDQ3FO++8g5AQK7fsIQpwkhB+8ElCVAry8/MxevRonDhxAlJhBELTmkLSBUME6xyGVUcNsNC6fw2spwKsx4I3AywRkWPsVVlVVsFVMnjmOFKhwe7jSttqp6nX5JRcLNKijCCz2/fZIsuQ8goBAPqQFBTEHAcAvPXWW+jevbvd8okCFUdgqdwKCQnBe++9h5iYGIigbBREn4CsUTfSymnFRERUAsNrCf4y6uoMT426qrrvfNHjBl0WEG+8j/3DDz/M8ErlGgMslWtVq1bFpEmToNVqYQhNhT4kSfW+3phW7Cxfrx8RUcAIrIzmEd4IrqW5kJMnrnV1Zrqwso+mANENL6GgoADt2rXDo48+6noFiAIAAyyVe82bN8f48eMBAPqwMzBorzi1P0MiEVE5x/BagtdGXUth7QiL4FoWo67m+8CAOp1ykJKSgsTERLzxxhvQan3sfvVEZYwBlgjAPffcg4EDBwIACkMOQ9akO7W/P4zGuiWAnxoRkcu40nAJgTZluKwXabLYDzJu7aXH4cOHERUVhcmTJyMyMtL1ihAFCC7iRFREr9fj9ddfx/bt2wGhQ3DubdCICNcK08AnFnHiAk5ERKWEvacSfCW4emQhJ71s/NeNplxZCMqF/oCAQGHIMRiCLiI4OBiffPIJmjVr5npliAIIR2CJiuh0Orz99tto0qQJIOlREPovhJTnWmGBPBpLREQU6NwcdYUkOT1d2Jw+6CwMQRchSRLefPNNhlciMwywRGZCQ0MxZcoUJCYmApp8FITug0ChS2UJqXQXkyAiIi/xjYFG8jBTu+1W2y1JN75cVBh8CfqQ0wCAsWPHolOnTm5UiCjwMMASFRMTE4MPP/wQlSpVgtBkoyBsHwT0LpfHEEtEFEAYXgOSR9pqD4RXfXAyDCH/AQCGDh2KAQMGeKBiRIGFAZbIioSEBHz44YeIjo6G0GQYQ6zGvRDLIEtE5OcYXgOOR9pnDwRXoZWgD0qBHPYfhBDo378/nnjiCTcrRhSYGGCJbKhXrx4++ugjREZGQmiuozD4AIRWdm8lQgZZIiL/w9WGA47Hg6uL4VVoJQitBIM2FXL4ERgMBvTp0wfPP/88JK6nQWQVAyyRHQ0bNsSHH36IsLAwyNo0FAbth5BkQOvmjczZJhER+QcG14DjC9OFTcEVkgSD9hoQcRgGgwE9evTA//73P2jcvJMBUSDju4PIgcaNG+ODDz5AaGgoZO01Y4iFoWiFQRs7CQFJtt/r4WgsEZGPY3h1iq/fD71MpwubbsNjrR7aG2UYNClAxCEUFhaiU6dOePXVV6HVat2sJFFgY4AlUuGWW27BlClTlBBbEPyvcWEnSbI+Gmu73SqBQZaIyAcxvAYMb0wXtnZPXPNRVwAwaJIhh90Ir2+99RZ0Op2bFSUKfJIQPnLXaSI/cODAAUyYMAHZ2dmQ5GgEF7SAhKAbGwhxI7xqJQiN8y2mVPSOVBpbF8pQquOps+EM2ERUnrBn5DJrwa3M62C4UQdXgqskC2N7DtwIq062p1Kh4UYdtCXLMGguwRB6FLIso2fPnnjllVcYXolUYoAlctJ///2HF198EdevX4ckRxaF2BDLjYQAJNcCLFAsxDLAEhGVHfaK3OJLAdbVUVfJUHQm2o1rXKVCg9XgCgB67Xnog4y3yrn77rvxwgsvcNowkRMYYIlccObMGYwbNw6pqamQ5DAEFbaARoRb3dbVEKtwc3+PhFgGWCIKdOwNeYS3A6y74RXAjTUsXG0/9UV3LCi2v4CAXncaBt1pAMCgQYMwZswYrjZM5CQGWCIXXbhwAePGjcPly5cBEYTgghbQiGjLjSTJ/etufCHAAgyxRBS42BPyCG+HV8AYYN1tdyU3noaQikZwS4RXGXrdURh0lwAAI0aMwCOPPMLwSuQCBlgiN6SmpuKll17CsWPHAKFBUGEzaOW4GxtIRQs2OFiR2C5fCbAAQywRBS72htzmCwHW3fbW/PpZZ5iH5uJ3IRDQozDoIGRtKjQaDcaNG4d+/fq5Xk+ico6rEBO5oVKlSpg2bRratGkDSDIKg/dBrz1vuZEsjCHUF65ldZcAO3lERBR4XGyji69wXHz0ViAftZtfhqxNRUhICN577z2GVyI3cQSWyAP0ej0+/PBDrFixAgCg1deCTl8PEqQbo7DmnDlDrJEsAqyzZ7hLLfz6SKYmIvII9obc5pcjsMWCq9oRWFvTlM1HX2UpExUSzyI5ORkxMTGYOnUqGjdu7Fz9iKgEBlgiDxFCYPbs2fj+++8BABpDJQQVNoUkBZUMsCZqG9piIRZwrqNQqiO4DLJEFAjYG3Kb1wOskyeHi1MTXh1dX2sKsAbNFehiTiA3NxfVq1fH+++/j5o1a6qvHxHZxABL5GFr167FlClTUFBQAEkOR1BhC0hSuP3pSY4aXSsB1kRNh6FMpiAzyBKRv2OPyC1+EWDttMWOAqzD8CoAIWQYtGegDzoFALj99tvx9ttvIzo62v7ORKQaAyxRKTh69Chee+01pKSkAEKHoMJm0Gji7O9kr+G1E2ABx52GMruGliGWiPwZe0Ru8fkA6+A6V1sBVvWqxrIehUFHIGuTAQADBw7EM888A51Op7IAIlKDAZaolFy9ehVvvPEGDh06BECCVl8fWtQyXhdrj60G2EGIBex3Hsp0ISgGWSLyR+wRucynw6uKBZqshVdnbscjRA4Sm1zBiRMnoNVq8fzzz3OxJqJSwgBLVIry8/Px0UcfYdWqVQAAjRwPndwEEoIc71y8MVYRYE2sdSTKfCVjhlgi8jfsEbnMJwOsEysLmwdYZ+8jK0tXEFLhFLKyshAbG4t33nkHLVu2dK4QIlKNAZaolAkhsHz5cnz++ecoLCwERBiCDM2hQZS6AswbZSdCLFCyQ+GV2/EwyBKRv2CPyGVeDbBWTvg6wxRenQ2uAjIM2pMwaM8CAJo2bYp33nkH8fHxzhVERE5hgCUqI0eOHMGbb76J5ORkABroDI2gFdXVF1B0P1lXQqipY+HV+8kyyBKRr2OPyGU+EWBdvd+6s7fegfH+roW6AxCadADA/fffj9GjR/N6V6IywABLVIauX7+O9957Dzt27AAAaOSq0MmNIMG5Bs/VEMsAS0TkAHtFLnE1wApJcj/8Fp3gdWt/Jxikq4iqfBZpaWkICwvDyy+/jK5du7p+fCJyCgMsURmTZRk//vgjZs6cCVmWi6YUN4MGMarL8HoQdfVTgyGWiHwde0VOcye8urO/RzgRXgUMMGhPwKA9BwCoW7cuJk6ciMTExNKqHRFZwQBL5CX79+/Hu+++WzSlWILWUBdaUcfxKsXwcoAFbgRRZz89GGCJyNexV+Q0ZwOoeRvmrfCr7G+QVW0vIxu1GqfgxIkTAIy3yHnqqacQEhLi0vGJyHUMsERelJmZiY8//hjr1q0DAEgiFkGGppAQZnc/nwmwJmo/RRhgicgfsGfkFLUh0lrb5UoAdTcAW+zvIMAKCMiaC9BGnEZ+fj5iY2PxyiuvoF27dk4fl4g8gwGWyMuEEPjzzz/xySefIDc3FxA66OSG0IiqNkdjfS7AAgyxRBQ42DNSzZ3w6sz+tspwe387AVYgD4W6IxCaVABAq1at8MorryAuLk71MYnI8xhgiXzEhQsXMGnSJBw6dAgAoJHjoJNvhoTQEtv6ZIAF1HX6GGCJyB+wd6SKowDpqL0qqwBsc38rAdY46noJobFJyMrKQnBwMJ544gkMGjQIGo1G1fGIqPQwwBL5EL1ej0WLFmHWrFlF94y1Phrr9QAL2A+ijj5VfKD6REQOsYdkl73wqKadUhM+7ZXj7v5AyQArkA+97ghkzVUAQOPGjfHKK6+gVq1aDo9FRGWDAZbIB50+fRqTJ0/G0aNHAZhGYxtDgnGxCJ8PsCa2Pl18oPpERA6xh2SXtQDpTPtU2gFYVRlFAdY46noZYRWSkJmZiaCgIIwaNQpDhgzhvV2JfAwDLJGP0uv1WLhwIWbNmgW9Xl80GlsfGlEDEiTvh1hnDl/8U4YBloj8BXtJNhUPkM62S7YCqNpyPLK/LCCQg0LdUQjNNQBAgwYN8Oqrr6Ju3bqqyiGissUAS+TjTp06hSlTpiijsZKIgc7QGJIU5eWagSGWiMoH9pRKMA+PrpxQdXf01loZTtfDoIdBkwRteBIKCgoQHByMkSNHctSVyMcxwBL5AYPBgGXLluHbb781rlQMCRq5NrSiLiRovVcxV0Ko6ROHAZaI/AV7SiVIQrg1E8jdAOxuGTLSYZAOQ2iyAAC33XYbXnjhBdSoUcOluhBR2WGAJfIjV65cwWeffYYtW7YYfyDCoJMbQYN471SIIZSIygv2ljzK3QDsahkCBTBIJyC0FyCEQExMDJ555hn07t0bkrcvzSEiVRhgifzQli1b8OmnnyIlJQUAIIl46OSGkBBe9pVhe09E5YE7vSXJzf09VUY5JiAgS+cREXsBGRkZAIDevXvjmWeeQWxsrHcrR0ROYYAl8lM5OTmYNWsWlixZAoPBgBvTiutAQhleu8MAS0TlgbO9peKfja70tjxRBhmnC2uOQEiZAIC6devi+eefR4sWLbxbMSJyCQMskZ87c+YMpk2bhj179hh/IEKgFQ2gEQkW944tNQywRBTonOkp2fpMdLcM9tacJpAPg3QMsuYSACAyMhKPPvoo+vXrx0WaiPwYAyxRABBCYOvWrfj8889x+fJlAIAkYqGVG0CD2NKvAEMsEQUqtb0ke5+D7pbBnppTBPSQpbMIjriI3NxcSJKEvn374oknnuB0YaIAwABLFEDy8/OxcOFC/PDDD8jPzwcAaOQq0IqbSvf6WAZYIgpEjnpIaj771PSyHJXDnpoqxutcLyI2/jJSU1MBAE2aNMGYMWPQuHFjL9eOiDyFAZYoAF25cgXfffcdVq1aBeNbXIJGTiy67U6Q5w/IAEtEgcZe70jtZ15pl0EKGVdh0ByDkIy3xalWrRqefPJJdOnShasLEwUYBliiAHbixAlMnz4du3fvNv5A6KAVdaERNT1//1j2D4goUFjrGblz32tXy2EPzSEZ12HQnICQjCOuUVFRGDFiBPr374/g4GAv146ISgMDLFE5sGvXLnz11Vc4deqU8QciBFpRBxpRAxI0njkIAywRBYLivSJXP9vMy/FEGWRBRlZRcL0CANDpdBgwYACGDx+O6OhoL9eOiEoTAyxROWEwGPDnn3/i+++/R3JysvGHIhRaUQ8aUdX9IMsAS0SBwHjVhftlwM1y2DuzSiAHBukkhPYyhBCQJAm9evXCqFGjUK1aNW9Xj4jKAAMsUTlTUFCA33//HXPnzsW1a9eMPxTh0Ir60Igq7t16hyGWiMh97JmVIJAHg3QKUtClonufA506dcKjjz6KOnXqeLl2RFSWGGCJyqm8vDwsXboUP/74I65fvw4AkEQkNKKO6/eQZYAlInIfe2YK44jraWiCk6HX6wEArVu3xmOPPYZGjRp5uXZE5A0MsETlXHZ2NhYvXoxFixYhK8u4eqNxRLaO81OLGWCJiNzjTq/M/DPYz3t3AtlFI65XlBHXli1bYtSoUWjRooV3K0dEXsUAS0QAgMzMTPzyyy/4+eefkZGRYfyhCCsKstXUB1mGWCIi17nSKyv+uevHPTsZmZCl0xDaZJi6qK1bt8bw4cNxyy23eLl2ROQLGGCJyEJOTg6WLVuGRYsWIS0tzfhDEQKtqFW0arHOfgEMsERErnGmR2brs9ZPe3XG2+GcVlYVBoAOHTpg2LBhaNy4sRdrRkS+hgGWiKzKy8vDb7/9hgULFuDq1avGHwodNKIGtCIREkKt78gAS0TkPLW9MUefsX7UqxMQEEiBQXMGQkoHAEiShM6dO2PYsGG46aabvFtBIvJJDLBEZFd+fj7WrFmDhQsXIikpqeinEjRyAjSiNjSIKrkTQywRkXqOemJqP1P9pEcnYIAsXYRBOgtIOQCM93Ht3r07hg4ditq1a3u3gkTk0xhgiUgVWZaxY8cOLFiwAPv27VN+LolK0Mq1IaHijZWLGWCJiNSz1RNz5rPUD3pzAvkwSOcgS+cAqRAAEBkZiX79+mHAgAGIj4/3cg2JyB8wwBKR0w4fPoxFixZh06ZNkGUZgOkWPDWLVi7WMcQSEalRvBfm6menD/fmZGRAls5BF5qCgoICAEBCQgIeeOAB9OnTB+Hh4V6uIRH5EwZYInLZxYsX8fPPP+OPP/5AXl6e8YdCB42oBi1qQkKEdytIROTLTD0wd0/4+WBPTkCGLCVDls4p17cCQKNGjfDggw/ijjvugE7nYFFAIiIrGGCJyG2ZmZlYuXIlli5digsXLig/l0SlogWf4m5MLyYiIs/xsV6cQF7RNOELgGQcbdVqtejcuTMGDBiAZs2aQZLYHhCR6xhgichjZFnGnj178Msvv+Cvv/5S7uEHEQqtqAkNqkNCsHcrSUQUSDzVi5NcL8u4mvA1GDTnoNGlwmAwAADi4uJw77334u6770ZcXJyHKkpE5R0DLBGViosXL2LZsmX4448/kJmZWfRTCZKoDK2oDgmVOCpLROQud3pxxT+CnSxLIL9oNeELymrCANCyZUvcd9996NixI6cJE5HHMcASUanKy8vDunXrsHz5chw9evTGAyIUGlQrCrNh3qsgEZG/crUHZ+3cocqyBGQIXIVBcwEa3TVltDUsLAy9e/fGfffdhzp16rhYMSIixxhgiajMnDx5Er///jtWr15tNiprula2OiRUhgSNF2tIROQnnO29OZrw4qA8gWwYpAuQpYvKta0A0LRpU/Tt2xddu3blasJEVCYYYImozOXn52PLli34/fff8ffff994QARBg4SiW/HEcIoxEZEtanpvaj9CbZQlUFi0kvBFi5WEK1SogN69e6NPnz6oXbu2yoMQEXkGAywRedXFixfxxx9/YOXKlbh69eqNB0Q4tKIqNKgKCTyrT0SksNdzc+W8nzD/1jRF+CKEdBWA8V7fGo0Gbdq0Qd++fdG+fXte20pEXsMAS0Q+Qa/XY+/evVi9ejW2bNly476yACQRA42oCg0SuIoxEZVv1npt7kxWEaZVhNMgS5chS5cBSa88XLt2bfTq1Qu9e/dGfHy8GwciIvIMBlgi8jk5OTnYsmULVq9ejb1790KW5aJHJEgiDhqRAA3iIYEjAERUjpj32Ny8wsIYWrMg4zJk6RIg3ThpGBcXhx49eqBnz56oX78+79tKRD6FAZaIfNrVq1exbt06rF69GsePHzd7RANJVGKYJaLyQcBDoTXTeF0rki1ufRMREYHOnTujZ8+eaNGiBbRarXsHIyIqJQywROQ3Tp8+jbVr12Ljxo04d+6c2SOmMFsFGlRmmCUiKmIvtAYHB6N169bo2bMn2rdvj5CQEC/WlIhIHQZYIvI7QgicOnUKGzZswMaNG5GUlGT2qGmaceWikVleM0tE5YsxtGaYhdZc5bHg4GC0adMGXbt2Rbt27RAREeHFmhIROY8Bloj8mv0wC0gi1izMsqNGRIFJwACBa5ClFMhIAaR85bGQkBC0a9cOXbp0Qdu2bXm/ViLyawywRBQwTGF248aN2Lp1K06ePFlsgwhoEA+NqMz7zBKR3xPIh4yrkKUrEEgFJFl5LCwsDG3btkXXrl3Rpk0bhIWFebGmRESewwBLRAHr0qVL2L59O7Zt24Z//vkHBoPhxoMiqCjMxkNCRUgI8l5FiYhUMK0cLJACWUqBkK5bPF65cmV06NABHTp0QIsWLRAczEsoiCjwMMASUbmQlZWFnTt3Ytu2bdixYweysrLMHpWK7jUbBwmVICGao7NE5BMECiAjFUJKhYxUi6nBANCoUSN06NAB7du35y1viKhcYIAlonJHr9dj37592LZtG3bt2lXiulnj6Gwl42JQqAQJXJmTiMqGgAyB65ClVAhchZAyLB4PCQlBy5YtldAaHx/vpZoSEXkHAywRlXuXLl3Crl27sGvXLuzduxc5OTkWj0siChIqQSMqQEIF3qaHiDxGQADIgYxrRaH1GiDpLbapU6cO2rRpg9atW6NZs2a83Q0RlWsMsEREZvR6PQ4ePIhdu3Zh586dOH78eLEtJEgiGhIqQiMqQkIsJGi9Ulci8j/GwJoLGdcgpGuQkVZiWnBUVBRuv/12tGnTBq1ateIoKxGRGQZYIiI7UlNTsXfvXvz999/4+++/cfnyZcsNhAQJsUVhtmLR6sYa71SWiHySUAJrGmRcA6Q8i8eDgoLQpEkTtGzZEm3atEHDhg2h1fLEGBGRNQywREROuHjxIv755x/8888/+Pvvv3H16lXLDYSmaBGo2KIpx7Fc4ZioHLmxUnA6hJReNMJqGVi1Wi0aN26Mli1bomXLlmjatCmnBRMRqcQAS0TkIiEEzp8/r4zO/n97dx4cRZm4cfzpmSQkIYEgIoRDQAghAooGQUVYBBfxKl05FFkVWdcTtWS3VpdaxN/iuV54oKuW5ZYH4uIB6qpYIIgH96GskBAIoECSzUESQjIkM9O/P2amM5NkEsg1afh+qrq6p9+333lzQOWZ9+1+t27dqkOHDtWqZ5jtfUHW7CSHkiTF8ZRj4ARhyi1TJTJVLK9RLFMlte5hdTqdSk1NtQLrkCFDWJcVABqJAAsAzSQQaLdt22ZttZ5wLElmjH+EtqN/tLYjD4YCbKD6gUulMo0S/yjrYUmhf0rFxcVp0KBBGjx4sIYMGaJBgwYpPj4+In0GgBMNARYAWlBxcXFIoM3MzJTb7a5d0Wwvhzr6HxDVUYYSuZcWiDBTLv+SNqX+UdbSWqOrktSlSxcNGTLE2s444wxFRfGhFAC0BAIsALSio0ePKiMjQ9u3b1dGRoZ27NhR+8FQkv/hUIm+MGsm+kdq2/PEY6AF+EZWj8rUYZk6LK8RCKtHa9WNiYlRSkqKBg4cqEGDBmnIkCHq2rVr63caAE5SBFgAiLBDhw5ZYXbHjh3KyMhQSUlJ7Yqm4Q+xif5QG9hiWr/TgE2Z8spUuS+sGqVWaJVRVauu0+lUnz59lJaWpoEDB2rgwIGMrgJAhBFgAaCNMU1TOTk5VpjdtWuXdu3aVXeolSQz1h9kE2SYCb694hmtxUnNN6pa6X8icJlMo8wfVsskw1urvsPh0Omnn67+/ftr4MCBSktLU0pKimJjY1u/8wCAsAiwAGADpmkqPz9fu3btUlZWlrU/ePBgmAskKd4fZtsTbHHCqp7+e8QfVI9YobWu+1Ul30OW+vfvr/79+yslJUX9+/dX3759WcoGAGyAAAsANlZWVqbdu3dr165dys7O1t69e7Vnzx6VlZXVfYEVbNv7wqwZ7w+17SW1Y3kftFmmPDJVLqncNwXYKPcH1SNhg6phGOrevbv69Omjfv36WYE1OTlZDgcPSQMAOyLAAsAJxjRNFRYWWmF27969DQdbSTIdMhQvK+Ba4TZOhFu0Bl9IrZAvpB7xh1TfVtcDlQKcTqd69Oih3r17q0+fPurTp4/69u2rXr16MaoKACcYAiwAnCSCg+3+/fv166+/WvucnBx5PJ56LjYkxckIbGZsyGsphoCLBpnySKqQqQrfEjVGRchrGZX1Xt+hQwf17NnT2nr16qU+ffqoV69eionhYWYAcDIgwAIA5Ha7lZOTExJsA1t+fn794VaSTIekWBmKlaF2vmOznQzFyjd6206M4p7YTLnluxfVJVNHfceG77Xk8o2s1vGk35oSEhJCQmrw1qFDh5b+MgAAbRwBFgBQL7fbrfz8fOXm5io3N1c5OTnKycmxjgsKCuT11n6qay2mId9IbSDUxvhemzH+gBtjnZOiCLttgCmvfE/yrQzdG5XyhdWj/rDqkowGPuTwa9++vZKTk9WtW7daW3JyshISEmQY/OwBAHUjwAIAmqSqqkr5+flWmM3Pz6+1LyoqOraQG2CFXX/IVbSkaElRMkzfseF/HXrsJPjWwRdE3ZKqZKpKktvaS1UyjeBz1UE13MORwomPj9epp56qLl266NRTT7W20047zQqpiYmJzfzVAQBOJgRYAECLc7vdOnTokBVqCwoKVFxcrKKiIh06dEjFxcXWvt4HTTXENFQdZH376tdBx2b1seSQ5JDh3wdvtc8Z/k21jhsKzr7lXnxH1fvgY6+1mUHHdZ/3SPLINNzWseTxT+MNHHvkC6juYx4drYvT6VRSUpI6deqkpKQk67hTp05WUA3s4+PjG/0+AAAcCwIsAKBNqaysDAm0RUVFOnz4cMhWWlqqsrKykNcN3qfbGszgcCuFBNQ2MDAcHx+vxMREa0tISAjZBwJqcEhlSi8AoC0hwAIAbM80TVVUVOjw4cMqLy9XRUWFtQ9s4c5XVVWpqqpKlZWV1hZ4HXy+pQOyw+FQdHS0oqOjFRMTYx3XfB0TE6P4+HjFxcWFbLGxsdZxoDw2NtYKp+3bt1dUVFSLfg0AALQ0AiwAAMfA6/Ue12YYhgzDkMPhsLbA6+DzhmHI6XQSLgEAOAYEWAAAAACALTgi3QEAAAAAAI4FARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANhCVKQ7AACRYpqmXC5XpLsBAMclNjZWhmFEuhsAEBEEWAAnLZfLpUsvvTTS3QCA47Js2TLFxcVFuhsAEBFMIQYAAAAA2AIjsAAgKWb9aZLHkOEwJMNh7eUwJP9UPcPh8B0b/r3DkGH4PwcM1POfD1xT61ygzeAyVZebgescQeWB84GPHGueMwyZgdmEhv+1w/ei+rwhGbKuMf2vJfnqBNowAl9LdXs1y4PbNAN1HHWUBdcPKQs+V7MfYa4JUy7J6kO49wqpH6Yfta5RHdfXusYM6UfN9qxy1Sw3q+uoum7112haZUat+qZ1jeE/X70PtGfKMMyQX69A+74fZXW5Q75jWeclh7/cV+Zr0joXtPe1V/06eJN8bfteq7pM1e/lMLzWOV9dryTJaVS/dhihZQ7DDCo35ZTXej+n4Q26ziun/70Cx76917ou0J5Dpv9ar5whZb76TsOUIa+c/teBr833Wr7rVP1+hr8Np9VHf//k+144Zcoh+Y8Nf3uS0zDkkCGn/HsjUOaQIUNVlU5N/GM3AcDJjgALAJIvvHp9fyjKqN4HJwNDgeBandaMQKoMSUL+cv9VocnGUTtdGUHX1pWe6j2vMOWyQmvIcc29dbkR1GzNQFyzvGab8gfpMGXhultnP47lmmP4VjW2zaBvX8Oht5kDbM3yGmU1A2z1+ZrtmbXKAiG17nIz6HzwObOONs2QawIBtuYWtswKlUHBNijoWmWqLg8Ev0CZL8B6rQAYKPMFQP/eMORU4BrfsW9vhARHX1uS05C1r77Od1xnmfU6EIDNoMDsO24owNbVnkPyh2Lfa19ZoH7QzxAATmJMIQYAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtsA4sAEiS05Qpr2/xR0M19taCjDXWUa25zmpgM6uvCTkfpixoIVIzzOKmdZ2vPhdYXVOhr83g8766pgzJVEh7ZvA1/utqC3PODCoKWYvUCO5+PeuvGmHO17gmXHlDZfW1Wd/5wK7ea+paz7WO8lp9DLMOrGpfZ9SqX13PCF7jNejXVNa6q8G/XmHWgVXT1oE1/debNbZAmelfC9cq8/ffa5iS4a1+H/lfy//1KLTc9JeZ/vcOtC1Vv1/weUfQewWOa+59/fD9sw7ee/1fssN/7PX/ita9Dqwhh3zrywbKDP95p6rXkpUU8tphHRtB7VW35ZAhpxEoM2TIUFVlXf8GAeDkQ4AFAEmVw/8X6S60DLPGvhFq5DrAEoif3oYqtlmBhM+ENACwC/7HBgAAAADYgmGaZhM+lwcA+zJNUy6XK9LdaFYul0tXX321JGnp0qWKjY2NcI/QEvg5nzzq+lnHxsbKMJgTAeDkxBRiACctwzAUFxcX6W60mNjY2BP664MPP+eTBz9rAGAKMQAAAADAJgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAWeQgwAAAAAsAVGYAEAAAAAtkCABQAAAADYAgEWAAAAAGALBFgAAAAAgC0QYAEAAAAAtkCABQAAAADYAgEWAAAAAGALBFgAAAAAgC1ERboDAIDmUV5erkWLFumbb75Rbm6uHA6HevXqpbFjx2rixImKjo6OdBfRBC6XS1u3blVmZqZ27typnTt3Ki8vT5I0ffp0zZgxI8I9RHMpKSnR999/r02bNlk/Z4/Ho6SkJKWmpmrChAkaPXp0pLsJABFhmKZpRroTAICmyc3N1b333qvc3FxJUmxsrLxeryorKyVJKSkpmj9/vhITEyPZTTTBli1bdN9999VZRoA9sVx88cXyeDzW65iYGDmdTlVUVFjnRowYoXnz5ik2NjYSXQSAiGEKMQDYnNvt1oMPPqjc3Fx17txZzz77rL766it99dVXmjt3ruLj45WVlaV58+ZFuqtoosTERKWnp2vq1KmaO3euTjnllEh3CS3A4/EoLS1Ns2bN0qJFi7R8+XItW7ZM77//vq644gpJ0rp16/T0009HuKcA0PoYgQUAm/vss8/0j3/8Q5L08ssva/DgwSHly5cv19///ndJ0nPPPaf09PRW7yOazuPxyOl0hpybMmWKcnNzGYE9wWzevFnnnntu2PKnn35an3zyiSRp8eLF6tq1a2t1DQAijhFYALC5L7/8UpJ0zjnn1AqvkjRu3DglJyeH1IX91AyvOHHVF14lWaOwkpSZmdnS3QGANoUACwA25nK59N///leSdP7559dZxzAMjRgxQpK0YcOGVusbgJYRExNjHXu93gj2BABaHwEWAGxs37591h+wffv2DVsvUFZUVKTS0tJW6RuAlrF161br+IwzzohcRwAgAgiwAGBjBQUF1nGXLl3C1jv11FPrvAaAvRw+fFjvvPOOJOmss87S6aefHuEeAUDrIsACgI2Vl5dbx+3atQtbL3ipjeBrANiH1+vVo48+qsLCQsXExOj++++PdJcAoNURYAEAAGzghRde0A8//CBJuv/++9WvX78I9wgAWh8BFgBsLD4+3jo+evRo2Houl6vOawDYw4IFC/TRRx9JkmbOnBnyJGIAOJkQYAHAxoLvbc3Pzw9bL/i+1+BrALR9r7zyit5//31J0l133aUpU6ZEuEcAEDkEWACwsd69e8vh8P1XvmfPnrD1AmWnnHKKOnTo0Cp9A9B0L7/8st577z1J0p133qnrr78+wj0CgMgiwAKAjcXGxmrw4MGSpHXr1tVZxzRNrV+/XpJ03nnntVrfADTNggULtGjRIkm+8Dp16tQI9wgAIo8ACwA2N2HCBEnSli1btH379lrlK1eu1MGDB0PqAmjbFixYEDJtmPAKAD4EWACwuQkTJuiMM86QaZqaM2eONm3aJMm35MbKlSv11FNPSZJGjBih9PT0SHYVTXT48GEVFxdbm9frleR7gFfweZZKsrfge15nzpzJtGEACGKYpmlGuhMAgKbJycnRfffdp9zcXEm+qcVer1eVlZWSpJSUFM2fP1+JiYmR7CaaaMqUKdbPuD4TJkzQ7NmzW6FHaG55eXmaPHmyJMnhcCgpKane+tdddx2jswBOKlGR7gAAoOmSk5P1r3/9S4sWLdI333yj3NxcRUVFqW/fvho3bpwmTpyo6OjoSHcTQAMCo+qB46KionrrV1RUtHSXAKBNYQQWAAAAAGAL3AMLAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAW4iKdAcAAACOhcvl0tatW5WZmamdO3dq586dysvLkyRNnz5dM2bMiHAPj11OTo6uu+66BuvdeOON+uMf/9gKPQIAeyDAAgAAW9ixY4f+8pe/RLobza5jx45yOp11lsXHx7dybwCgbSPAAgBs4fnnn9eHH36os88+Wy+++GKku4MISUxMVL9+/fTzzz+rqqpKCQkJKisri3S3muS1115TcnJypLsBALZAgAWAE9yRI0eUlZWljIwMZWZmKjMzUwcOHJBpmpKk999/v8X+eDZNU5MmTVJ+fr6mTZum22+/vVHtZGVlacmSJZKk2267rRl7GFnZ2dlav369tm3bpuzsbBUWFsrj8Vgh7YILLtCECROUkJAQ6a62CWeddZb+85//SJLefvttvf766yovL49wrwAArYkACwAnuHvvvVdZWVkRee+MjAzl5+dLkkaNGtXodl555RV5PB6NGDFCQ4YMaa7uRdS9996rrVu31llWVFSkoqIibdiwQe+8845mz56t4cOHt24H26DgabaTJk3S4sWLVVxcfFxtZGdn68MPP9TmzZtVUFAgh8Oh5ORkjRw5UpMnT1ZSUlLzdhoA0KwIsABwgguMtEpSQkKCUlJStG/fPhUVFbX4e3/77beSpC5duigtLa1Rbfz000/auHGjJGnatGnN1rdICwT7xMREjRo1SkOHDlX37t3Vrl075eTk6IsvvtCaNWtUVFSk2bNn65lnntHZZ58d4V63HXFxcZo4caLeeOMNSVJVVVWD1yxcuFCvvfaavF6vJCk2NlZut1vZ2dnKzs7W559/rieffFIDBgxo0b4DABqPAAsAJ7jLL79cSUlJSk1NVc+ePWUYhu69995WDbAjR46UYRiNauO9996TJCUnJ59QAa5nz5666aabNG7cOMXExISUpaamasyYMXr33Xf16quvqrKyUs8884zeeuutCPW2bRo/frwVYBuaZfDZZ5/pn//8p+Li4vT73/9el19+uTp37iyPx6Ndu3bplVde0ebNm/XXv/5Vb7/9dqs+POnhhx/W/v37VVFRoQ4dOmjAgAEaN26cxo0bp6go/lQDgGCsAwsAJ7hJkybpkksuUa9evRodIhvj119/1b59+yQ1fvpwfn6+1qxZI0m69NJLW7X/Le2pp57SZZddViu8Bps2bZpSUlIkSXv37tXu3btbq3u2kJycrOjoaElSZmZm2Hrl5eV6+eWXJUnz5s3TjTfeqM6dO0vyTUtOTU3V008/rdTUVOXn5+uzzz5r+c4H2bFjhzwej6KiolRUVKS1a9fq0Ucf1d13362CgoJW7QsAtHV8rAcAaBGrV6+W5Ju2fM455zSqjeXLl1vTPceOHXtM17jdbn399df67rvvlJGRoeLiYnk8HiUlJemMM87QsGHDdMkll1gBJmD06NGSpAkTJmj27Nn65Zdf9MEHH2jDhg0qKChQ+/btNWDAAN1www0aOnSodd3Ro0f1xRdfaNmyZdq/f79cLpe6d++u3/72t5o8ebLatWvXqK894Nxzz7VGF3/99Vf169ev0W3t3btXS5cu1Y8//qicnBy5XC4lJCQoMTFRycnJSk9P10UXXaTTTz+9Ue273W599dVXWrlypbKzs1VSUiLDMNShQwclJSUpLS1Nw4YN08iRI63gGVDz+7937159/PHH2rhxowoKClRRUaFHH3201ochcXFxqqqqUklJiTIyMjRw4MBa/frmm29UVlamlJSUsPcSR0VFady4ccrMzNSGDRs0ZcqURn0PjlVMTIyuueYajR07VgMGDLBGfH/99VctXrxYS5cu1Y4dO/TAAw/o1VdfZSQWAPz43xAA0CIC04cvuOCCRv/x/cMPP0jy3Sfau3fvBuvv2rVLDz30kPbv31+rLD8/X/n5+Vq3bp12796t2bNnh21n1apVeuyxx+RyuaxzR48e1dq1a7Vu3Tr9+c9/1lVXXaWCggLNnj1bGRkZIdfv2bNHr732mtauXatnnnmmSSHW7XZbxw5H4ydOLV26VPPnz5fH4wk5X1JSopKSEu3fv18bNmzQ7t27NWfOnONuv7i4WH/605/qnMob+N5nZWXpk08+0cKFC9WzZ8+wbX3xxRd65plnVFlZ2eD7BgfhH374oc4Au23bNknSvn37dM0114Rt6+jRo5Kk3NzckPM5OTm67rrrGuxLODfccIPuuOOOkHOdO3fWrFmzatXt1auXZs2apR49emjBggXKysrSsmXLdMUVVzT6/QHgREKABQA0u4KCAu3YsUNS46cPV1ZW6ueff5YkpaWlNTh9OCsrSzNnzlRFRYUk6ZxzztH48ePVu3dvRUdHq7CwUNu3b7dGhsPZvXu3vv76a3Xq1Em33Xab9d6bNm3S22+/LZfLpeeee05Dhw7VI488ol27dumaa67RRRddpKSkJB04cEBvvfWWdu/erZ9++kkLFy7ULbfc0qjvgSRt3rzZOu7bt2+j2sjOzrbCa4cOHXTVVVdp6NChSkpKksfjUWFhoTIzM7V27dpGT9OeP3++FV7T09M1fvx4JScnq3379jpy5Ij27dunH3/80ZoSHk5mZqaWL1+uDh06aPLkyRoyZIiio6O1d+9edevWrVb94A9HNm/erBkzZtSqE5iGW1lZeUz3fgeCbCRNnjxZH3zwgfLy8vTtt98SYAHAjwALAGh23333nUzTVExMjEaMGNGoNnbv3m2NPqamptZb1+1266GHHrLC63333aeJEyfWqnfhhRfq1ltvVV5eXti2srKylJKSovnz5ysxMdE6f+aZZ6pnz56aO3eu3G63Zs6cqdLSUj311FMaNmyYVW/AgAE677zzdNNNN6mgoEBLlizRTTfdFLIEzLFavXq19uzZI8kX4nv16nXcbUjSypUrrZHX5557zrqvNtioUaN06623qqSk5LjbP3r0qPXBwKhRo/TII4/UCsJDhw7V1VdfrYqKinpHkvfs2aOePXvqpZde0imnnGKdD/cU6+D32blzp7xeb632g6ehP/zww8f1tUlS165d9cknnxz3dQGxsbHHfY3D4VBaWpry8vKUk5PT6PcGgBMNARYA0OwC04eHDRumuLi4RrURPA04OMjUZfny5Tpw4IAk31OX6wqvwbp27Vpv+YMPPhgSXgPGjBmjLl26KD8/X4cOHdLkyZNDwmtAQkKCLrvsMr399ts6dOiQ9u7de9z3rhYUFOjZZ5+V5Atpd95553FdHyww6hhYRqk+HTt2PO72Dx8+bH3YMHTo0HpHcY/l92HWrFkN/szr4nK5VFBQoNNOOy3kfKCt+j64qI/D4WB9WABoI3gKMQCgWZWVlWnLli2SGj99WJIKCwut4w4dOtRbNxCYJWnq1KmNfk/JN003XMgzDCOkbPz48WHbCa538ODB4+qDy+XS7NmzreBZ88FRx6tLly6SfD+blStXNrqdcDp27Gg9TXnFihUqLy9vdFtdunSp80OBYxX8exMwZMgQSb7pyXZ5qq/X67Wm4ScnJ0e4NwDQdhBgAQDNas2aNXK73XI6nRo5cmSj2wm+D7Gu0dBgO3fulOQbaTuWhz3Vp6Hrg/tS39N6g+sdT6CrqqrS3/72N+vBUBdddJFuvfXWY76+LuPHj7ceJDV37lzdfffdevfdd/XTTz9Z066bIjo6WhMmTJAkbd++XVOmTNFTTz2lFStWHHd4b8pTliWFPHgrYMyYMUpISJDb7daCBQtkmmbY671erw4fPtykPhyL+vogybr/VfL9DgAAfJhCDABoVoHR0MGDBzdp2mXwPaMNPY22uLhYUvVIY1M0dL9i8PTY+qbDBt+HGbgHsyFut1tz5szR+vXrJUnDhw/Xww8/3Kj7Z4N1795dTzzxhB577DHl5+dr27Zt1pN5nU6nBg4cqNGjR+vKK69s8MOCcO655x5VVlZq2bJlKi0t1aeffqpPP/1Uku+DheHDh+vyyy9vcCS5odH2w4cPhzxJueb31uVyqbi4WDExMdbSNImJibrnnnv0+OOPa8WKFSorK9Mtt9yigQMHyuFwyOv16pdfftHatWv12Wef6aabbqp3dL053HPPPTrvvPN04YUXqm/fvtbDqA4cOKAPPvhAH330kSRfoA98OAAAIMACAJpRZWWl1q1bJ6lp04cl3/2aAaWlpU1qyw7cbrfmzp1rLR00bNgwPfroo9bU3KZKT0/Xe++9p++//17r1q3TTz/9pP3798vj8ejnn3/Wzz//rHfffVcPPfRQ2LVS69OuXTvNnj1bN954o77++mtt2bJFO3bsUEVFhYqKivTll1/qyy+/1OjRozVnzpywSws1tFTQH/7wh1rL3AR74IEHJFWvJxtw2WWXqbKyUi+88ILWrVundevWKSYmRnFxcTpy5EjIckWt4X//+5/eeOMNvfHGG3I6nWrfvr2qqqpCRsTPPPNMPfLII6wBCwBB+B8RANBsNm7caP0B3tQAG7xkSkMBNikpSXl5eba5v7GmQHgNjF6fe+65evzxx5u0fmxdYmJidPHFF+viiy+W5Bu53rRpk5YtW6a1a9eqtLRUc+bM0cKFC9W5c+dGvUevXr1088036+abb5bH41FWVpZ++OEHLV26VIcOHdLq1av1+uuva+bMmc35pR2Tq6++WsOHD9fHH3+sjRs3KicnR2VlZYqPj1ePHj00aNAgjRw5Uueee26L9+Wuu+7Spk2blJGRocLCQut3vGvXrhowYIDGjh2rMWPGNHn0HQBONARYAECzCQSwlJSUJj94JnjN019++aXeuqmpqcrLy1NhYaF++eWXeu9NbWtqhtdzzjlHTzzxRLOH17okJSVp3LhxGjdunJ599lktWbJEFRUV+u6773T11Vc3uf3A9OSBAwfqsssu08033yyXy6Xly5c3OsD++9//rnVu6tSpOnDggJKTk/X+++/Xe31ycrLuuuuuRr13cxozZozGjBkT6W4AgO3wECcAQLPwer36/vvvJTXPQ2e6du2qU089VZKsp7GGM3r0aOt44cKFTX7v1uJ2u/Xwww9b4XXo0KF68sknG7VuaFMFTxsO3FPcnJKTk611bBuz1mw4xcXF1hJKgwYNarZ2AQBtEwEWANAstm3bZgWf4EDZFIFQtW/fPh05ciRsvbFjx1rh6PPPP9eHH35Yb7uNXQ+0Obndbv3973/X6tWrJbVseP3mm28aDKWBe5clqUePHsfV/sGDB7Vx48Z66+Tk5Gjfvn2SfA+Vai7bt2+3js8///xmaxcA0DYxhRgATnD79++3njgbEFhfVJJWrVoV8rTguLi4Rk1tDIwidu/evclLoQRcfPHF+vzzz+X1erVx40b95je/qbNeVFSU/u///k933323Kioq9Pzzz2v16tW69NJL1bt3b0VHR6uwsFAZGRlatWqVUlNTQx7wEwnz5s3TqlWrJPkC4x133KGcnJx6r+nUqZM6dep03O/14Ycfat68eUpPT1d6err69Omjjh07qqqqSnl5eVq+fLk1et6tW7fjXv4oLy9Ps2bNUvfu3TVy5EilpaWpa9euateunUpKSrR9+3YtWbLEepr0xIkTj/trCGfDhg2SfPf3XnDBBc3WLgCgbSLAAsAJbtu2bXr88cfDlr/yyishr7t169akANuca1YOGzZMXbp0UX5+vpYtWxY2wEpS//799eKLL+qhhx7SwYMHtWXLFm3ZsqXOuqmpqc3Wx8ZauXKldXzgwAHdcccdDV4zffp0zZgxo1HvV1lZqTVr1mjNmjVh6/To0UOPP/54vcsD1efgwYNavHhx2HKHw6GpU6fqd7/7XaPar8ntdmvFihWSfKP+jV0CCABgHwRYAECT7dq1yxo9bOrTh4M5nU5de+21evXVV7V27VoVFxfXu7bsgAED9M4772jZsmX69ttvlZWVZd1v2alTJ/Xr10/nnXeeLrnkkmbrox3MnTtX69ev148//qjs7GwVFRVZU4o7duyo/v37a9SoURo/fnyjlu0566yz9NJLL2njxo3avn278vLydOjQIR05ckSxsbHq3r27zjrrLF155ZXNNjovyfqdkKRJkyY1W7sAgLbLME3TjHQnAAD29uabb+rNN99Up06d9PHHHze4lufxKCsr0/XXX6/S0lLdfvvtmjZtWrO1DXt74IEHtGbNGqWnp+u5556LdHcAAK2AhzgBAJosMH34wgsvbNbwKkkJCQlWaF20aJHKy8ubtX3Y0/bt27VmzRoZhqHbbrst0t0BALQSAiwAoEmqqqo0atQoTZ8+Xddee22LvMfEiRPVs2dPlZSU1LkOKE4+r7/+uiTp0ksvVVpaWoR7AwBoLUwhBgDYwo4dO7RmzRolJCRoypQpke4OIqisrEyLFy+WaZq69tpr670vGgBwYiHAAgAAAABsgSnEAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsIX/B/pP1gUy27J2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADHAklEQVR4nOzdd5gT1cIG8HeSbLYXYJdelyqgggKCIkWaigoKgoqCyhUvKoJ4r/XaUVERFbsI0hRQED4LiAJK701AemeBpW2vKef7I2SY7KZMMrO7Sfb9Pc8+LJvJmZPsZs5555w5IwkhBIiIiIiIiIiCnKGiK0BERERERESkBgMsERERERERhQQGWCIiIiIiIgoJDLBEREREREQUEhhgiYiIiIiIKCQwwBIREREREVFIYIAlIiIiIiKikMAAS0RERERERCGBAZaIiIiIiIhCAgMsERERERERhQQGWCIiIiIiIgoJDLBEREREREQUEhhgiYiIiIiIKCQwwBIREREREVFI0CXAHj16FJIkQZIkPPjgg3oUWSl169ZNfh+JiDx58MEH5WPF0aNHK7o6smnTpsn1mjZtWkVXh3SWm5uLunXrQpIkvP/++xVdHQoRf/31l3xcePXVVyu6OkRBI5z7/ePGjYMkSUhNTUVhYaHu5ZfbCOy0adPw6quvVqqD18KFC+XXnJmZWdHVoUusViuWLl2K5557DjfddBNq1aqFyMhIxMXFoXHjxrjnnnuwcOFC2Gw2v8rdtWsXRo0ahRYtWiAuLg6JiYm48sor8dxzz+HYsWNl9GqIqDJauXIlhg8fjlatWiEhIQERERGoWrUq2rVrhzFjxuDvv//WfZ/jxo1DWloaatSogZEjR7rdZuvWrfjss8/w8MMPo3379mjYsCHi4uIQFRWFWrVqoUePHhg/fjzOnDmjer9nzpzBK6+8go4dO6JatWqIjIxE3bp10adPH0ydOhVWq1V1WRkZGZg4cSJ69uyJmjVrIjIyEjExMahfvz5uv/12TJkyRVVn6/Tp0/j555/x6quv4rbbbkOtWrXkjmjDhg1V1ycQv/32GwYPHowGDRogKioK1atXxw033IAPPvgAeXl5Xp+rDJP+fJX1ayprt99+u/xapkyZ4vfzjx8/DqPRCEmSULVqVc0d8qysLHz66afo3bs36tevj6ioKFSrVg0tW7bEvffei8mTJ+PixYtun5uRkYH/+7//w//+9z/cfPPNaNmyJapXr46IiAgkJiaiVatWePDBB/Hbb7/5Vae8vDxMnDgRN9xwA6pXr46oqCg0aNAAgwcPxpIlS/wqa9WqVXjwwQfRtGlTxMXFIS4uDs2aNcOIESOwYcMGv8ryRjmApubLWwZRhkl/vkL5ZO2WLVvk19GgQQMIIfwu41//+pdcxjvvvCP//Mknn0SVKlVw5MgRvPfee3pW20Ho4MiRIwKAACCGDRvmdpuuXbvK21QWw4YNk1/zkSNHfG5fGd+j8rZ8+XJRtWpV+X329tW+fXtx8OBBVeW+9957IiIiwmNZ8fHxYvbs2WX86qiy8PfYUl6++eYbuV7ffPNNRVcnLOXn54tBgwb5PH4ZDAYxevRoYbPZdNnvyZMnRVRUlAAgJk6c6HG7GjVqqDq+xsXFiS+//NLnfmfMmCFiYmK8ltW2bVtx6NAhn2UtXrxYpKSk+Kxbo0aNxJYtWzyW89NPP3l9foMGDXzWJRCFhYXinnvu8brvxo0bix07dngs488//1T1+yn51b1794DrrdznK6+8EnA5WsyfP1+uQ+fOnf1+/uuvvy4//7HHHtNUlzlz5qj6nCxYsMDt8z///HPVv7cuXbqI06dP+6zT1q1bRWpqqteyhgwZIoqKiryWk5ub6/NvVJIk3Y5Nyvyh5svb35+yD+7P14oVKwKufzD0+6+88kq5DkuXLvXruXl5eSI+Pl4AEEajUZw6dcrlcefnJj4+Xpw7d07PagsTdNCwYcOAUju5+uuvvyq6CmEvLS1NPqtZtWpV9OzZEx07dkStWrVgsViwceNGzJgxA9nZ2di0aRO6d++OjRs3ombNmh7L/OKLL/Df//4XABAREYEHHngAXbt2hcViwZIlSzBv3jzk5OTggQceQFJSEm6++eZyea0UvqZNmxbSZ30pcPfddx8WLlwIADAajRg8eDCuu+46VK9eHadOncKyZcuwaNEi2O12fPTRRzCbzXj33Xc17/ftt99GYWEhqlSpgn//+99et01OTkbHjh1x9dVXo1GjRkhMTERxcTEOHjyIhQsXYtu2bcjNzcWjjz4Kk8mEhx9+2G05M2fOxNChQ+X/9+7dG/369UNKSgpOnDiB2bNnY/Pmzdi2bRt69+6NdevWISUlxW1ZGzduRL9+/VBcXAwAaNy4MR544AE0atQIVqsVBw4cwNSpU3H27FkcOXIEPXv2xM6dO1GnTp1SZZWcnRMREYHWrVtj27ZtXt8XrYYNG4a5c+cCAKpVq4YRI0bgyiuvxPnz5zFr1ixs3LgRhw4dws0334wNGzagXr16pcpo3bo1FixYoGp/o0aNwsmTJwEADz30kH4vpALcfvvtSE5Oxvnz57F69WocOnQIjRs3Vv386dOny99reS8+/vhjPPnkkwAAs9mM/v37o3PnzqhRowasViuOHj2KNWvWYNmyZV7LMRgMuPrqq9G+fXs0b94cNWvWhNlsxvnz57Fx40bMnTsX+fn5WLlyJbp3744tW7YgJibGbVnHjh3DLbfcgvT0dABAhw4dcP/99yM5ORk7d+7EV199hQsXLuDbb7+FJEmYOXOm23JsNhsGDBggj9bGxsbioYcewnXXXQeDwYBt27ZhypQpyMjIwEcffQQhBD766KNA38pSunfvLr+3nrRo0cLjY+PGjcP58+d97mfNmjWYMGECAMdx5MYbb/SvokHmoYcewtixYwE4+hY9evRQ/dz58+cjJycHAHDzzTejVq1aLo+PHj0a77zzDnJycjBhwgSMHz9ev4rrGoe9CIazDOUtWEdJKrOZM2eKK6+8Unz33XeisLDQ7TYnT54UrVq1kn93Q4cO9VjeqVOn5NEBk8kk/vjjj1LbKEel6tWrJwoKCnR7PUTBhCOwZWvlypXy+5uQkCC2bdvmdrvFixcLo9EoH5e0nvm+cOGCfJwbMWKE12137dol7Ha7123eeust+XUkJSW5PRafPXtWxMXFydt9/vnnpbax2+1izJgx8jYPPfSQx33edNNNLttZLJZS2+Tl5YmePXvK240ePdptWWvWrBGPPPKI+OKLL8SmTZvkUSnn88piBHbhwoVy+fXr1xfHjh1zedxms4mHHnpI3mbgwIGa9rdnzx6Xv7W8vLyAywqGEVghhBg9erRcj5deekn185Sfu9atWwe8/z/++EMup127dl77hTk5OeLixYtuH0tLSxMXLlzwuq9jx46JJk2ayPsbP368x2379+8vb/fwww+XGhk9evSoqF+/vrzNL7/84raczz77TN6mbt264sCBA6W2OXXqlGjRooUuo5dCqJsBqrfBgwfL+xw3bpymsoIhG509e1aeQRgTEyOys7NVP1d5XJ03b57bbe677z4BQFSpUkXk5ubqVW3BAFuGGGCDT0ZGhs/OlRBC7Ny5U/7dRUdHe2y8lZ2n//73vx7Lu/vuu+XtPvnkk4DrTxTMGGDL1osvvqjqeCOEEAMGDJC3/emnnzTt94MPPpDLWrlypaaynK666iq5zGXLlpV6fPz48fLjAwYM8FiOzWaTp8AZDAaxf//+UtsUFha6BPrMzEyP5SmP/ddcc41fr6ksA2ybNm3k8n/99Ve32+Tn57sEjZ07dwa8v//+979yOY888kjA5QgRPAF2+/btLr8jNX0BIYR4+OGH5ee9//77Ae27sLBQNGjQQD4BkZWVFVA5/vjxxx/let94441ut1G+J/Xr1/d4gv3XX391Cd/uKIPpzz//7LFeGzZskLcLZDq3UnkH2IsXL4rIyEj5eHPixAlN5QVLNlKexJgyZYqq5xw7dkxIkiQAiGrVqnmcXq7825k8ebJudS7zVYidF0WvWLFC/pk/F1bb7XZ8//33GDx4MBo1aoSYmBjEx8ejRYsWGDlyJHbu3Om1bq+++qq8D+cU3WXLluHee+9Fo0aNEBUVVWolT6vViiVLluDpp59G586dUb16dZjNZsTHx6NZs2Z48MEHsXLlSo/7dK4Qqpxy0qhRo1Kv2dN7pWY1sg0bNmDEiBFo3rw54uPjERsbi8aNG2PYsGFYvny5z+c799OtWzcAjov3J0yYgHbt2qFKlSqIjY1Fq1at8PzzzyMjI8NneaEiKSlJ1fvbunVreapJQUEBDh48WGobIQR++OEHAI73c9SoUR7LU05rcU4BKy/r1q3DyJEj0bJlSyQlJSEqKgr169fH4MGD8euvv3p9rrvVI48fP46nn34aLVq0QGxsLJKSknD99dfjs88+U72YSm5uLj788EP06tULtWvXRmRkJKpWrYr27dvj5Zdfxrlz57w+v+RnxWazYdq0aejVqxfq1KkDk8nkdtGR9PR0PPPMM2jZsiViY2NRtWpVdOjQAe+//z7y8/MBOC6JcLdoyW+//Sbv09c0Jacnn3xSfs7ixYtVPUcNX6sQl9Xv7ZdffsHtt9+OmjVrIioqCg0bNsSQIUOwbt06v19DcXExpkyZgjvuuAP16tVDVFQUkpKScNVVV+Hpp5/2uLryvn37EBsbC0mSkJiYiCNHjnjcR0ZGBurXrw9JkmA0Gr0et0PB2bNn5e+bNm3qddtmzZrJ3/ta2McX55TB+vXro3PnzprKcmrZsqX8vbsFnZTt2AMPPOCxHIPBgCFDhgBw9BfmzJlTapsLFy7I036rV6+OxMREj+Xp+b7p5cCBA9i+fTsAx+/91ltvdbtddHQ0HnnkEfn/33//fUD7s9lsLtNEPU3x1ptzWq8kSTAYDPjggw/cbvfbb7/JCwTFx8cjJiYGjRs3xoMPPojVq1d7LP/qq69G27ZtATimzf75558+65Sfny+38yaTCffff38Ar8zxu3Au5vjGG28gISEhoHL84eszBrj2R0aMGIGoqCi3291yyy1o0qQJAGDz5s04fPiwy+OnT5/G3r17ATguz+rbt6/HenXo0EHuX61ZswbHjx9X8WqCw3fffYeioiIAQK9evVC3bt1y2a8yy7Ru3RppaWmltjl//jzefPNN3HjjjfKU8pSUFNx444149913kZub67F85bR4tZcnTZ8+Xb58dMiQITCbzW636927t3xph6fp5wHRIwV7OwOi9qJod2flDh486HLW0d2XwWDwOhXklVdekbddvny5ePzxx92Woxwh7datm6o6Dxs2zO0ZB+XIq6/ne3qvPLFYLOKRRx7xWfagQYNEfn6+x3Kc23Xt2lUcOnRItGzZ0mNZDRo0qJQjyO3bt5ffg/Xr15d6XHmm3te0IpvNJhISEuS/WX+maAQqNzfXZaqLp6++fft6rE/JM+eLFy8WSUlJHsvq1auXx6nZTosWLRLVq1f3Wqf4+Hjxf//3fx7LUH5WLly4IDp37uz271Zp+fLlokqVKh73eeWVV4rjx4/LZ8lLPt9ms4lGjRoJwDEVxtdU8IKCAnl/9evX120xHSF8z+7Q+/dmtVq9HtcMBoN45513VI/Abtq0SX4vPX2ZzWbxxRdfuH3+V199JW/XqVMnYbVa3W43cOBAebsXX3zR63saCv73v//Jr8fXCKzytW/fvj3gfR4/flwux9vlFP5SHl/djcAq26Q9e/Z4LUs50tSxY8dSjxcUFAiTySQAiIiICK8jsLt27ZLL6t+/v1+vydOxR6uPP/5YLvuJJ57wuu2mTZvkbdu3bx/Q/pSLVLVs2TKgMpTUjMBu3bpVXtjIZDKJmTNnltrm7NmzLlMWPX0NHz5cFBcXu93PpEmT/Pp7njFjhrx9v379/HnZLrp37y4AiMjISK99Mz0pR748jcBee+218jabN2/2Wp6y//zpp5+6PLZx40b5seuuu85n3e644w55e0/HeTXKewT2mmuukfc3d+5czeX56vfbbDbx73//W97m+uuvdzu1/JtvvpEXU/L0VaNGDbF27Vq3+7FYLPLnT5IkVYviNW7cWC7b0+UsTnfeeafcVzh//rzPstUo8wC7atUqsWDBApdrChcsWFDqq2QDdfDgQZGcnCw/p3PnzmL8+PFi9uzZYtasWeKpp55y6Yx6OigqA+wtt9wiAIiaNWuK5557TsyaNUtMmzZNPPbYYy4rZ1133XUiLi5O9OvXT7z++utixowZ4vvvvxcfffSRGDFihIiNjZXLdHeNzJYtW8SCBQvkAxYA8eWXX5Z6zSVXOVQTYJWru0VFRYlHH31UTJ8+XcyaNUuMGTPG5Q+4T58+HqfIOLdp27ataNGihZAkSfTr1098/vnnYu7cueLtt992mYrk6eAXroqKilw6/O5W8Zs9e7ZfB07l73fDhg1lUOvLCgsLRceOHeX9NW7cWLzwwgti5syZYs6cOWLcuHGiWbNm8uM33XST24Cl7Hj069dPxMTEiOjoaPHoo4+KadOmidmzZ4unn37a5TPh7YTSvHnz5Kl8ERERYsCAAeLjjz8W33//vfj666/FkCFD5GsxDAaD246tEK7vpfNzffXVV4vx48eLOXPmiK+++sqlo7d7926XlUzbtm0r3n//fTF37lwxadIkccMNN8hhqE6dOh47ocpr92bNmuX1dzBz5kx529dee83rtv7yJ8Dq8Xt77LHH5O3MZrN45JFHxPTp08XMmTPFqFGj5PdWOQ3JU4Bdu3atvL0kSeLmm28WEydOFHPnzhXTpk0Tjz76qMvvylM5yimy7ur+9ddfu4Qad9c8hhplOFF7DWy3bt007XPKlCnyPvW6/EG5imqNGjXcnjy54oor5G38CbDx8fFu272+ffvK2zz88MMer4Ht1auX/Lf5559/+vW6nOXrHWAfffRRn58HJ4vFIv/uY2NjVU+TVXJ2NgGI9957L8BaX+YrwC5fvlw+wRsTEyMWLVpUapsLFy64dJivvvpq8dprr4lvv/1WzJ49W7z44ovysdtbm3z+/HlhNpvl9ycnJ8dr3ZWBeeHChYG8fFFcXCyio6MFAHHttdcKIYTYt2+feOyxx0Tjxo1FZGSkqFq1qujQoYN49dVXfV7fqsbZs2ddVpf94IMPSm1js9nkeplMJp/HSOUJypEjR7o8ppwW7G+Affzxx/16bUrK/JGamiratWsnEhMThdlsFrVq1RK9evUS7733nteTVmrt2LFD3lfVqlV9nqxXw1u/v7Cw0KWdu/XWW91ezvbhhx/K28TExIihQ4eKL774Qvzwww/i888/F/369ZOn+sbExIjdu3e7rcvTTz8tl/Pyyy97rbfyuvA2bdr4fJ3vvPOOvP2cOXN8bq9GUN5Gx2azyWc5IiMjxffff+92uzNnzsgjtAaDQezatavUNsoACziCsK9rD5YuXer1DNn58+flER+DwSAOHz7sdju9b6MzZ84cl0bf3R/h0aNHXUY2PHU4lO+J2Wx2e73C+fPnXcrSErry8vLcnrgI5Mvb7Q30ogwfnq6Deu2117w2yiUNHTpU3t7d2WU9lbw2113DVFxc7FInd4uklLzlQv369d1eY7ZhwwZ5hKNKlSpuD+zHjx+XOyn169cXf//9t9u6b9iwQSQmJgrAsRCEuzPpJWd2jBkzxusIp3KE9rHHHnO7bcljhbtO6JkzZ+SA3bVrV4/7E0KILl26CMCxtLzW62RK8ifAav29KRuqpKQkt2fp9+7dK2rWrOmyT3cd7ezsbFGvXj25rL/++svt6ztw4IB8Ai02NtbtIkQXL14UdevWld/jVatWyY/t27dPDucJCQmqziZ7s2fPHt2OX1oXVFJ+to1Go7jvvvvEpEmTxJw5c8TEiRNdglrnzp1Fenq6pv2NGDFCLm/Tpk1+PXfFihXy654zZ44YP368y2cxOjrabVgRQricAPY2G0MI1+tlAYiTJ0+W2mb//v0uMz8aN24sXn31VTFjxgwxdepU8dxzz8kjEJGRkWLq1Kl+vVYhyi7AKt8LNaFaefLZ32OPckEXk8kkzpw5E2CtL/MWYOfNmydfU1i1alWPI0TOk2OSJIkPP/zQ7TY5OTmid+/e8r4WL17sdjvl7ARvv+ejR4/KHf/q1asHfBJs27Zt8v769+8vZsyYIQdHd19JSUliyZIlqspOT0+XP2Pz588XX3/9tRg5cqTLCfjevXu7bUePHTvm19/s8uXL5e179OjhsayqVav6PHGivF62Z8+eql6rO2pvo5OYmKh5xFS5CNioUaM0leXkqd+flZXl8rl/4IEH3P79bdq0SW7D27RpU2pxN6eff/5Z/lx7OsGgnH3SsGFDr79D5YJxH330kc/X+ddff8nbP/XUUz63VyMoA6zyfl2TJk3yuu2+ffvks43uFhpQdkpjY2NFWlqaqtfky6FDh+Ry33jjDbfb6B1g27ZtKz/uqdEXwtEpdR50GzRo4HZ6nfKD/frrr3ssa/Lkyaq288Xfe3V5+yrraSIXL14UtWrVkvf3ww8/uN3uqaeekrf5+OOPfZbr7/aBOnXqlHyG+a677vK6bXFxsXzvt6ZNm5Z6vGQQ8raAy5AhQ7xuN2rUKLnT7Wu6iXLU59tvvy31uPKzcu2113oNr8pRq9atW3ucblqyXE8NunJBLnehUAjHccm5Td++fb2+1kD4G2C1/N769esnPz5t2jSP5fzyyy8u+3QXYN9//335cV8LCy1btkze9s0333S7zV9//SUMBoP8+8rIyBDFxcUu0+L0OFlU8uSGli9/R/Xc+fDDD73ezzQ1NVXMnj3b4zRKf1x//fVyuf5e+nDddde5rZ/RaBR9+vQRW7du9fhc5XRpbyvqKhdxcn65O5kthCOQ9OzZU24f3X2NHDnS7eqpavg6dgRK2farWZjJ3+2VJk6cKD9Xy5RZJU8B9osvvpA/v3Xq1PE4MrRlyxb5+WPHjvW6r4sXL8onQHv16uV2G+XU2i5dungsS3mS2td+vVm8eLFcTuPGjV1mR3zyySdi7ty54p133nGZqRgREeH20iVvZZf8qlOnjnj99dc9tnnKEUXnyLA3vrZ3nlAEPK9ULIRrmwx4XhRKDWffsnXr1mLMmDFi8uTJ4ocffhBTp04Vo0ePLnW/3UBOTAnh6CspZ4X66sOo5a7fn56e7vIZHjt2rMcwefvttwvAMfPE3Yk7pZdeekkuc82aNW63UV7asXz5crfbKO/9ajabVU0JTk9Pl8stefIjUEEZYJ1n2hISElTdcqRTp04eGw1lx0PP63eEEPKIw2233eb2cT0DrPI9vvLKK32W1aNHD3l7dyOnyo6Ep6XahXAN6vfcc4/P/XoSKgHWarW6nMH1Fj6U1yKrWVnthRdekLd/66239Ky2C+V0Ek9ns5Wef/55j3+nyo5H27ZtvZajDJ0lr2mx2+2iatWqAnCcDfYlNzdXPqvo7vet/Kz4apCUHWF3o8xKyqmInjqhymD1zDPPuN1GuYKnr9GjQPgTYLX83goLC+WTITVq1PAa/oVwnfbpLsA6Z8w0a9bM52sUQojatWsLwPtot/JzNXjwYPHMM8/I/x8yZIiq/fgSbAE2Ly9PfP31116va7766qs1rz4shJCnZUZERPj9XE8BNjU1Vbz//vteOz6HDh2SjwHejrH/+c9/SpXv7bj3999/u5yUKfkVGxsrHnnkkYDWKfB17AhU06ZN5bLVhGvlSQc1bYCS8mSAXscudwFWGQ6bN2/uceRIiMuzDiRJUjUIce+99wrAMZLublaJ1WqVjy2SJLmdRWe3212mLGtZ0Vl5uZHzy91tbSwWi8sJxSuuuMLnSKanACtJkhgyZIjHECKE43ZQzu1vuOEGn69j//798vbujuHK32m9evXcznw5c+ZMqTVX1LYH7mRnZ3s9EZafn+8yWmg2mz3OmvRm3rx5qttUf5Ts9x86dMjl9kdvv/22x+devHhRPgHk6/ZmQrieWPc0a1B5KyRPfe3p06fL23hbIV6puLhYfk6TJk1UPccXE4LQqlWrAAC1atXCb7/95nN7o9EIwLGqXEFBAaKjo91u58/NhrOzs/Htt99i0aJF2LlzJ86fP+9xRULnjb7L0saNG+Xve/fu7XP73r17yzfC3rBhAzp06OB2u2bNmqFKlSoey1HexF3LasQNGzaUVysLZqNHj8bvv/8OwLHiptrV2IKJ8/MDOP42Fy5c6HV75e91z549blfvBYCOHTt6Lcfb38ru3btx8eJFAEB8fLzPOgFAXFwcMjMzsWfPHq/b+fpcb968Wf6+e/fuXrd1rsrtTffu3dGsWTPs378f06dPx7hx4xARESE/brFY5BXIa9eu7XU1xvKg5fe2Y8cOFBcXAwC6du0qH2s96dGjh8ffV1ZWFv7++28AQI0aNVT/DQDw+jfw2muvYdmyZdiwYYPLipqNGjXCZ5995nMfarz66qseV8ovb5s3b0b//v2RlpaGNm3a4OWXX8aNN96IxMREnD59Gr/88gteffVV7NixA/3798cnn3yCkSNHBrw/5+fWWzvhyfr16+Xv8/LysG/fPvzwww/46KOP8PTTT+ODDz7AwoULce2115Z6bmpqKl588UW89tprAIBHHnkE8+fPxx133IHk5GSkpaVh9uzZ2LhxI1JSUlBYWIicnBwAjpWJS7JarRgzZgw+/fRTmEwmPPPMMxg6dCiaNGkCi8WC7du3Y+LEiViwYAEmT56MjRs34vfff0f16tX9ft2havPmzfKdHWrWrOlxtWMt7HY7nnjiCXz66acAgPbt22PRokVITk72+Bxnm5aUlOTSF/LEuUpsUVERDh8+jCuuuMLlcaPRiKFDh2L8+PEQQmD69OmlPt+rVq3CoUOHAADt2rVD69atVb/Gkux2u8v/e/bsiWeffbbUdiaTCZMnT8aKFStw8uRJ7NmzB3/88YfXPt/NN98s962sVivOnj2L1atXY+LEifj222/x7bff4oknnsAHH3wAk6lsu/xjx47F999/j927d+PEiRNo06YNHnroIXTo0AEGgwHbt2/H119/jYsXLyI1NVVeydjd51Wt+Ph4eWVpd6KjozFlyhScOnUKS5YsQXFxMd599118/vnnfu3nm2++kb8vq1W5d+zYgZtvvhlnzpyB0WjEV1995XVfa9askf+2jEajzzbVYrHI33tqU++9916MHTsWhYWFmDdvHj755BO5HXZS9ouVqxd7ExERgfj4eOTk5Oh3ZxM9UrCeI7A5OTmazm6XPDunPHPubdqt0vLly0tdz+XtKzU11W05eo7AKkfVvvzyS59lLViwQN7++eefL/W48zE1izM5t/V1zV+oU47k1KhRQ+zbt8/r9sE6hVg5fdLfr5LTdZVnzn3d+N3bdU4///xzwHVyN7VZ+VnxtaKj8n6TaqZUOke1vI2iTJgwQS5z/vz5Lo8pz9SW1cq3/ozAavm9KY8jL7zwgs96KY9TJUdglat2+/vla/Tv0KFDLgvYmUwmsW7dOp/1DTU7duyQr527/vrrPc5QOnTokKhWrZoAHLNstKxC7DzD37hx44DLKGnr1q3y7yspKcnjqJrdbhfPP/+81ym/NWrUEOvXr3dZ1NHdsfu+++6TH/c2sqg8TnubuuyO83mhOoV45MiR8vN8rXLtD+Uxxjm9F3Bc++hrESUhhPy3HMiXp6mSe/fulbdp1KhRqZFO5ajdZ599Vur5S5Ys8Xqtu5JyVWcAHtd1cVLOivI0y8cXm83mssaFu9+n3lOIhRDixIkTol27dl5/JzfffLPLmi6dOnUK6DX6Y926dfL+6tWr59dzT506JU/7joyM9Dpr0V/KvozzsxEZGalqwTDl6uT+fnmaXi/E5RkM7tpx5XXhtWrV8jkrS8k5mycmJkb1c7zR5T6wesrKytL0fOdogTueRmaVDhw4gL59+8r3zGrevLl81nb27NlYsGCB/OW8r5Hz/nJlyXlmGQBiY2N9bq88Y6J8bklaznyFk3HjxuGtt94CACQnJ2Pp0qUu9wN0JykpSf7+/PnzPvdx4cIFt8/Vm5bPkLfPj5a/lbKqE+D7c+2cOWEymVxGSj1R8/l68MEHERkZCQCYPHmyy2PO/0uShOHDh/ssq6xp+b0p7xsXExPjc3tv752WvwHlmWN3kpOTUbVqVfn/qampbkf1Qt1zzz2HgoICAMDEiRM93rMxNTUV//nPfwA42id/RxuUnH/n2dnZAZdRUtu2bfHMM88AADIzM/HRRx+53U6SJLz11lvYtm0bHn30UTRv3hyxsbGIiYlBy5Yt8cILL2DXrl249tpr5fpJkoQaNWq4lLNx40Z89913ABwjVnfccYfHur355pvyaPP8+fNx6tQpza9Xq/JoawoLCzF79mz5/2U1yqS853ReXp6qmVll0X40b94c119/PQDgyJEjLveIzs/Px7x58wAAUVFRuPfee0s9f8SIEbjzzjs9fimV/B34OjYpH3eOAvvLYDDg008/le95PGnSpFIjX2Xxd1W3bl2sX78es2bNwm233Sbfj7RatWq46aabMGvWLCxatEi+7zrgGO0vax06dJD7CidOnHDZvy8zZsyQ+/n9+/cPaDaKGs7PhtVqRWFhoc/ty6pfpRxVdc4mU/7f+ZkdOnSoz1lZSs76qsliagTdFGJl8OrSpQtWrFhRrvt/++235Q7Ciy++iDfeeAOSJLndVnnD8LIWHx8vf6/m5urKjqfyuRUlPz9fnpqrVf369XHNNdfoUhYAvPvuu3jppZcAOKbJ/fHHH6qmCykD7tGjR31u77yJecnn6s35GZIkCVarNShOUig/1y+//LI8LbA8OEOV1WqFxWLxGWLVfL6qVauGgQMH4ttvv8Xvv/+O48ePo379+jh27Bj++OMPAI5pYo0aNdL+AiqQ8vempsH39t4pyxo6dGiphlGLxx57zOXztX//fvzvf//DO++8o0v5e/fuxd69e3Upq3Pnzl6nS3pSVFSEpUuXAnAc0z1dFuLUs2dPPP/88wCgatqlJ1WrVkVaWpp+074uufnmm+Xj7l9//eV126uvvhpffPGFx8d3794tdzCbNm0qd9qdfv31V/n7nj17et1XdHQ0rr/+evz6668QQmDz5s1eA295aNasGf78808Avtsaq9WKtLQ0AI5jn/ISAW8WLFiAzMxMAECnTp3QokWLgOvrzejRo7Fnzx4sWLAA69atQ58+fbBkyRKv/RTn5STOY6xeHnroIaxduxaAY1pk165dAQDz5s2TT/z3799f8wnn5s2bu/y/5N9nScrHtYSUuLg4dO7cGb/++iuKioqwfv163HLLLfLjdevWRXR0NAoKCpCWlgar1ep1mrHaPozRaMSQIUMwZMgQj9v8888/8vft27dX+5ICZjAYUKVKFbl/n5mZqeqkLFA+04cBx3Gqb9++yMvLk9+7wYMHe9xe2aZOnTpV9XReX3r06IF69erhxIkTWLFiBY4ePSpfBqhstx988EHVZVosFjmXKE82axF0ATYxMRFxcXHIzc0tl2tLS3J2EKpXr47XX3/dY3jNycmRrw0qD7Vq1ZK/P3DggM/tldvUrl27TOrkj7Nnz5Y6KxmoYcOG6XZt6gcffCBfi5KYmIglS5agTZs2qp6rDLlbtmzxuq3dbse2bdsAOA6kJa/J0VOdOnWwfft2CCGQlpaGevXqldm+/KmTU3l/rmvXri1fe3n48OFSnQmljIwMuRPny7///W98++23sNvtmDp1Kl599VVMnTpVviZlxIgRmute0ZTHjoMHD/rc3ts2ZfU34LzOC3CMXJw/fx7Hjh3DhAkT0KdPH9x0002a9zFnzhzdTrr8+eefqq61Lun8+fPySHR8fLzHtslJ2QlWc1LGk4YNG8qd2+zsbCQkJARclpIysKj9zHmiPNHt7pp45Siqmvrr9d7ppWRb463juH37djnMt2zZ0uffiVN5ddIjIiIwd+5c3HPPPfjxxx9Vhdg6deogMzMTZ8+eVXUSUq1BgwZh9OjR8ojrJ598gtjYWJf3wlMoUHPS2ql69eqoUaMG0tPTAThCabVq1TxurwytvsKuL94+ZwaDAS1btsSWLVtgtVqxY8cOr6PDyvUktFwTDPj+zOrNbre7nIRTe1Ji7dq12LdvHwDH4ImvE2BadO3aFYsWLcKtt94qh1ghBO655x6325dVm2owGDBs2DCMGzdODq2vvPIKVq5cKV+37O9JLmVeatCggT711KUUNTtSjAL5mjLSpUsXAI7OpppOk56cB5hGjRp5HblaunRpqQvzS/LnNfuiPNvuHOHxRjna6etMfWX16aefYuzYsQAcB/nFixf7dSawVatWqFu3LgDHCIC3A8jatWvlKW433HBDmY6KO88iA9Bt1Furtm3byh3HZcuW+fzs6Kldu3by985RDE98jQQpde7cGa1atQLgOPtpsVgwdepUAI4OS79+/fyvbJC5+uqrYTabATg6HL4ul3AuHOdOcnIyWrZsCcCxuI8eU1KPHDmCxx57DIBjtGn27NmYNWsWjEYj7HY7hg4d6jLtLZQpg9f58+d9TjFTjpZ46yz7ouyoOjtyelC27YGMSCspT2i6m7avfO9OnDjhszy93ju99OnTR/5+yZIlXrdVLnx58803qyr/+PHj8mc3NjbW66iPHpwhdsCAAQAgh1hPxwRnm1ZYWOgy1VerhIQEuQ65ubmYP38+jh49KoerunXr6hZYlCOfvk54Kx/XOlvL1+dM7d+WEMLlcbV/W+7s3r0bmzZtAuAYne7cuXPAZam1adMmefS1Tp06qkdfnW064Bg8KesZbV26dMHixYsRFxcHm82G+++/H3PmzPG4rfMEld59PeVJshkzZkAIEdDiTU7KRaOuuuoqrdUDUI4BVjnU7euM5rBhw+TvX3755TKrkzvOP+rDhw97DJ02m02+XtIbf16zLw0bNpSnze7YscNriN28eTOWL18OwHGmIxiuBXNOP9DjS4/R18mTJ2PUqFEAHA32okWL0KlTJ7/KkCQJd999NwDHwf3jjz/2uO2kSZPk78u6c3DPPffIoeOdd94JihEE55QiwNE5/Prrr8tt38og+emnn3oNYZ6uxfPk0UcfBeDoFI8ZM0Y+iTFs2DDdRgkqUmRkpLwSaXp6unwdoTuLFy/2uWK089ien5+P8ePHa6qbzWbDkCFD5E7vpEmT0LRpU3Tu3BkvvPACACAtLQ3/+te/NO0HcKxCrNfxK5DRV8Bxkq1+/foAHNcv/fjjj163V3Z6lCdx/HXdddfJ32/YsCHgckr66quv5O+d1yIG4ptvvpE7wzfccIPb47gyhP/www9ejwFHjx6VX6fBYND1cpVANW3aVF5p9cCBA1i8eLHb7QoLC12uyR80aJCq8qdPny6fVBw4cGC5XHZkMpkwZ84cDBw4EIAjxN58881uQ+zQoUPl71977TVd1x1RdsSnTZvmco2fnoFFeR2t8m+/pIKCAsycOVP+v5aguHXrVjkMR0REuD1Br/wb+fLLLz2eGFu8eLEchtu1a4fU1NSA6mSz2fDkk0/K/3deq1+WhBB45ZVX5P+rXV07Pz8f33//PQBHf0+vKbq+3HjjjVi0aJFLiFVen+5UvXp1+e9j9erVuobYxo0buwwm/vbbb/J14dHR0X73Y5Vth7JN0USPlaDUrEL85JNPytusWLHCa3k2m83lZrqjR48WRUVFHrfPz88X33zzjZg9e3apx5SrEKu5/16vXr3k7SdOnFjq8eLiYpfV6eBlxUHlDcGnT5/uc9++VmqeO3eu/HitWrXEnj17Sm1z7Ngxl3uXffLJJ27Lcj6uZmVhf7YNBdOnT5dXUYuJidF0X8a0tDQRExMjcGnl06VLl5ba5ptvvnFZ/U7NvY21evrpp+V9du/eXZw+fdrjtjabTfzxxx/ijTfeKPWYtxVq/d32xIkT8gq/kZGRPj8T6enp4vXXXxc7duwo9Zg/95UWQojOnTvL2z/22GPCZrOV2qbkvT7VrCSamZkp//6VX/v371dVr0D5swqx1t/bqlWr5MerVKni9gbu+/fvF7Vq1XJ5D9zdBzY3N1c0aNBAAI77FL777rtufxdOmZmZ4qOPPhJ//PFHqceUN2UvuVqsxWKR7w8OqFu5PRQ8++yz8mtKTk52+9kQQoiZM2e6rNy7cePGgPd54sQJuZwHHnjA67bffPONWLJkidd7VxYVFbkcn8xms9i7d6/bbXfv3i3Onj3rsaxZs2bJ9ymOioryWM65c+dEbGysvM+RI0e6XT3zwoULLveuvfXWW72+3pL8OXY4KT9/3p63cOFCl+1K3jfVZrOJhx9+2ONnwhO73S5SU1NV988C4e0YY7FYxMCBA+XHO3bsKLKyskqVMWDAAHmbwYMHu91GWeb8+fM99n+U7Ha7aNiwoXxMqlGjhrwfNffc9ceNN94ol+3uPrBWq1Xcf//98jYdOnQotU1OTo54/vnnvX4uhBBiy5Yton79+j775kII0b9/f3m74cOHlzomHzt2zKWsX375xWNZq1at8rgybVZWlrjnnntc+ibejhXKdt5de5KTkyNefPFFce7cOY9lFBQUuHwuIiIiVP9ep02b5lLXsuCtL7Nq1SoRFxcnAMdq8t99912pbbZs2SIiIiLk9nnx4sVe93f06FHx9NNPi/T0dJ91U/Zdle37/fffr/4FXnLnnXcKAMJgMIgLFy74/Xx3yu0a2B49esijUMOHD8dTTz2FBg0ayCtYNWnSBE2aNAHgOOs5f/58dOrUCWlpafjoo4/w/fff4+6778bVV1+NxMRE5Obm4vjx49i8eTOWLVuGvLw8vPHGG5rrOWrUKHl0c+zYsfjrr7/Qp08fVKtWDQcOHMCMGTNw4MABdO/eHQcOHPA6bbRHjx7y98888wzOnTuH5s2byxfJ16lTB1deeaXqug0aNAgLFizAnDlzcPr0aVxzzTV48MEH0alTJxiNRmzevBlTpkyRz2D27t1bnl5HDosXL8bDDz8sn2F9+OGHkZmZ6fP+Wddcc408+qFUu3ZtvP/++xg5ciSsVituueUWDB06FF27doXVasXixYvls1YmkwlfffWVx5VDAbhcr3TkyBGP92T15e2338b27duxbNky/Pnnn0hNTcWAAQPQqVMnpKSkoLi4GGfOnJFH88+cOYMePXrgf//7X0D7U6Nu3bqYM2cO7rjjDhQVFWHYsGGYOHEi7rjjDjRt2hTR0dHIysrC/v37sX79eqxZswY2m83nvVvV+PLLL9G+fXvk5+fjs88+w7p163D//fejbt26SE9Px9y5c7FmzRp06tQJx48fR1pamqoz74mJiRg8eLDLNVPdunVD06ZNNdc5WHTu3BmPPfYYPvvsM2RkZKBjx44YNmwYOnfuDIPBgI0bN2LKlCnIy8tD//79vX6WYmNjsXDhQnTt2hXZ2dl45pln8OWXX2LAgAFo2bIl4uLikJ2djcOHD2Pjxo3466+/UFxc7DIiATjONjtnwdStW7fUiIbJZMK3336LNm3aIDs7G0899RS6du3q9frnUPDss8/i+++/x5EjR3D+/Hl06NABgwcPRteuXZGQkCDfB1Z5Jn7EiBGaFkmpW7curr32WmzZsgUrVqyAEMLjdZXbt2/HQw89hLp166JXr1646qqrUL16dZjNZly8eBF///03FixY4HJN6oQJEzz+XhYtWoQXX3wRPXv2ROfOneXj4dGjR7Fw4UJ5cSqz2YzZs2d7LCc5ORlvvvkmxowZAwD4/PPPsXLlStx3330u94GdPn06zp07B8Dx2X7//fc9vi/vv/++x4WtMjMzSx1LGzVqpGlV8n79+mHw4MGYO3cujh07hmuuuQaPPvoorrzySly4cAEzZsyQ349atWph4sSJqspdsWKFfF1bkyZN5FGX8mIymTB79mxIkoQffvgB69evl6+JVU79njp1Kvbv34+dO3di7ty5WLJkCQYNGoR27drJi/OkpaVh27Zt+OOPP5CRkaHq/ZYkCQ8++KA8y8J5GdmNN94o90n18tVXX+GGG27AxYsX8dxzz+G3337D3XffjZSUFBw7dgzTp0/Hrl27ADhmXLhb6M5qteLtt9/Ge++9hy5duuC6665DkyZNkJCQgKKiIhw/fhx//fWXy2VuLVq0wIQJEzzW68MPP8S6deuQnp6OKVOmYNeuXXjggQdQrVo17Ny5E19++aV8KcaQIUO83tv83//+Ny5evIi+ffvimmuuQUpKCrKzs7F9+3bMnTsXZ8+eBeCYFTFnzhzV12i7Y7Va8eabb+Kdd95Bt27d0LFjR6SmpiIhIQE5OTnYsWMH5syZI99VBAA+++wz1b/X8rou3JPOnTvjt99+w80334zc3Fw88MADAFxH86+55hp8/vnneOSRR5CRkYFbbrkFN9xwA2655RY0atQIERERuHjxIvbu3YvVq1fL1zE7j4Xe3H333Rg1ahRyc3Nx+vRp+ef+jkRbrVasXr0agGPas16LOJXbCKzVanUZBSn55e7M/6lTp0SPHj08Pkf5ZTQaxeTJk0uV4e8IrBCu9+By93XDDTeIs2fPyiMJ3s6aKu+nVPKr5HulZlTJYrGIf/3rXz7fj4EDB3q9P6Zzu8o2AltylE3tl7uzf0rvvfeefBbM3Vd8fLzbGQIlKZ+j5t7B3hQVFYknnnhCvn+Zr6+hQ4eWKkPPkTyndevWuZzx9/YVFxcn/v7771Jl+DsCK4Tj/s7OEWB3X61btxbHjx+X71V21VVXqSp3w4YNLuWUvJduWSjPEVghHMfvBx54wON7ZzAYxLvvvutyxtbbZ2bv3r0u96r09hUZGelyVjkjI0M+9hoMBq/H9VmzZsnltG3b1utMnlBx+PBhn/dZdH498cQTwmKxaN6n8v6+K1eu9Ljd6NGjVR9Tq1ev7vOY+N577/ksJzU1VSxbtkzV65gwYYI8Yuvtq2HDhmL9+vVey3L+Dar98tR+qh2BFUKIwsJClxEsd1+NGzf2ODLvjvJz/eabb6p+nj/UHGMsFosYNGiQvN11111XapQ1KytLDB48WPV77use2E5Hjhwpda/hqVOnan3Zbm3cuFE0atTIa73r1asnNm/e7Pb5GRkZfv3dDRgwQNVo29atW322y/fdd5/PY2irVq1U1cnbqKmTrxFYf96LatWqiR9++MHnPp0OHjwo/00kJib6vN98oNT0ZVavXi3fN9toNLrtY/z0008uswd8vRdq3n8hRKkZpw0bNvQ6au7OokWL5Od//fXXfj3Xm3ILsEI4hvLHjx8vOnXqJKpUqeLSsfbWyfrrr7/Eo48+Klq1aiWSkpKE0WgUCQkJomXLlmLw4MHi888/F6dOnXL73EACrBBCLF68WPTt21ckJyeLiIgIUatWLXHTTTeJyZMnyx0CNQHWarWKzz//XHTr1k0kJycLk8nk8b3yp1O+bt06MXz4cNGkSRMRGxsroqOjRaNGjcT999+vqjH31agGum2wK6sAK4QQO3fuFI8//rho1qyZiI2NFfHx8aJ169bi2WefFUePHvX5/Ly8PHl/ZrNZt2kWBw4cEM8995y47rrrREpKijCZTCImJkY0atRI3HrrreKtt95yGxKFKJsAK4SjszJr1iwxaNAg0ahRIxEXFydMJpOoWrWqaNeunXjkkUfE3LlzRW5urtvnBxJghRDizJkz4j//+Y9o3ry5iI6OFklJSaJdu3ZiwoQJIi8vT9jtdhEdHS0AiG7duqkq0263yzcgr1q1qigsLPSrToEo7wDr9PPPP4u+ffuKlJQUERkZKerXry/uvfdesXbtWiGEUB1ghXC8b//3f/8nhg0bJpo1ayYSEhKE0WgUSUlJ4uqrrxZDhw4V06ZNK3XTeGUH9rnnnvO6DyGEGDJkiLz9008/7XP7UGC1WsWPP/4o7rnnHtGkSRMRFxcnv3fXXHONePLJJ/0KMb5kZGTIU3AfeeQRj9vl5uaKn376SYwdO1Z069ZN1K1bV0RFRQmj0SgSExNFixYtxD333COmT5/u8bOtdOLECfHhhx+Kfv36iWbNmonExEQRFRUl6tevL/r27SumTJni9yUZR48eFS+//LLo3LmzSElJERERESIqKkrUrVtX3H777WLy5MmqOqsVEWCdFi9eLO6++25Rr149ERkZKZKTk0WnTp3ExIkTVb2vTtnZ2fIlEAaDQZw8eVL1c/2h9hhjtVpdPt/uQqwQjrA1ZswY0bZtW1GtWjVhMplEXFycaNq0qejfv7+YOHGiOHTokF91vOmmm+T9xsbGipycHH9fpmq5ubniww8/FDfeeKOoUaOGiIiIEMnJyaJ79+7io48+8vn3988//4gPP/xQ3HPPPeLKK6+U+8VRUVGiZs2aomvXruLZZ5/1+xiQm5sr3n//fdGpUyeRnJwsIiMjRb169cTdd9/tc2qq04oVK8Szzz4rbrjhBvnvMzExUVxxxRVi5MiRYvXq1arr4yvA2mw28eeff4q33npL3HHHHaJVq1by+xkXFycaNmwo7rzzTvHFF1/49bkQQoj//e9/8r4fffRRv57rD7V9mTVr1vgMsfn5+eKLL74Qd9xxh6hXr56Ijo4WZrNZpKSkiE6dOolRo0aJn3/+2a8TuStXrnQ5jvnqI7hz3333CcAxxdnf34M3khAal8clIl0sWbJEviD/ySef9HtBIdJu586d8gp5an8HS5cuRa9evQA47nH44YcflmUViSrE6NGjMWnSJCQlJeHUqVO63YyeiIjCU3Z2NmrXro28vDw8++yzmhdvVCq3VYiJyDvnPYjj4+PL9FpU8uyTTz6Rv1d77e3nn38ufx8O934lcufZZ59FdHQ0MjMzXf7miYiI3Jk0aRLy8vIQHx+v+4rTDLBEQcIZYMeOHYuUlJQKrk34WbVqldf7z3766afyYkB16tTBbbfd5rPM7du3y4sW9ezZU77PKVG4qV27NkaPHg0AePfdd5Gfn1/BNSIiomCVnZ2NDz74AADw3//+V/P9vkviFGKiIHD+/HlUr14dycnJOHToULnch6+yadKkCQoLC3HLLbegbdu2SElJgcViwaFDh7BgwQJs27ZN3vbnn3/2GGB/++032O127N+/H++++668Ot/q1atxww03lMtrIaoIeXl5aN68OdLS0jBhwgQ8/fTTFV0lIiIKQuPGjcNLL72ERo0a4Z9//vF6B45AMMASUaXQpEkTHDp0yOs20dHRmDx5MoYMGeJxG3fL/qu9Xvb3338PeOQqOTkZnTt3Dui5REREROGCAZaIKoX169dj/vz5WL9+PdLS0nDhwgXk5+ejSpUqaNasGXr27ImRI0eiRo0aXstxBti4uDg0a9YMI0eOxMMPP6zqvrENGzbEsWPHAqp/165d8ddffwX0XCIiIqJwYaroChARlYeOHTuiY8eOmsvhOT8iIiKiisMRWCIiIiIiIgoJXIWYiIiIiIiIQgIDLBEREREREYUEBlgiIiIiIiIKCVzEiYiIwooQAoWFhcjLy0NBQQHy8/NLfRUUFKC4uFj+Kioq8vp/m80Gu90Om80mfzn/X/JfJ4PBAEmSvH4ZDAZERETIXyaTyev/IyMjER0djejoaERFRSEqKsrj93FxcYiLi0NEREQF/jaIiIj0xQBLRERBRwiBgoICZGVlITs7Gzk5OS7/uvs+NzdXDqd2u72iX0LQiIyMlMOs8ys+Pr7U/5OSkly+4uLi3N73mIiIqCJxFWIiIioXQgjk5uYiIyMDFy9edPnX3c+Kioo07U+SJERHRyM2NhbR0dGIiYmRv6Kjo7H8552QIAHCCECCJAwADIAwuH4PAyAkAIovAcdz5f87g17JwCdcv5dKPiYgJAHAfulxO8Slf13+7/xesgGSHbfcfQ0KCgpQWFiIwsLCUt87v7QwGo1ITEyUA63z+6pVq6JatWpITk6W/01MTFR1L2QiIiKtGGCJiEgzIQSys7Nx7tw5nDt3DmfPnsXZs2fl/zu//A1VZrMZCQkJiI+PR0JCAhISErB26X5IdhMkEQEI06XvTY7vhfHS90YAhkshs3JyBGHrpdBrhbj0Bcnm+N5gRf8HOiAnJwc5OTnIzMyUv/Lz8/3al9FoLBVqnV81atRAzZo1kZKSwunMRESkGQMsERH5JIRAVlYWTp06hdOnT7t8nTlzBmfPnkVxcbGqsmJjY1GlShVUrVoVuzenQbKbIdkjAOH4V3L+azdDgrGMXxm5I2CHkCyAwQIhWSAU//YZeBUuXLiACxcu4Pz588jMzISaroQkSUhOTkb16tVRs2ZNOdg6/61Zsyaio6PL4dUREVEoY4AlIiIAgM1mw5kzZ3DixAmcOHHCJayeOXNG1ehplSpVkJKSgpSUFGxYdhiSPfJSQI28/D1DaVhxhl1hKIYwFEEYinHPv6/HhQsXcPbsWaSnpyM9PV3VCY6qVauibt26qFOnjvyv8/vY2NhyeDVERBTsGGCJiCoRIQQyMzNx/PhxOagqA6vFYvH4XOcIWq1atbB70xlI9igYbFGXgmnUpXDK6yCpNMd0ZgvshiIIQyGEsQi3398WZ86ckQNubm6u1zKSkpLkMFu3bl00aNAADRs2RJ06dTg1mYioEmGAJSIKQ0IIXLhwAYcPH8aRI0dw5MgRHD16FMePH/caFMxmsxwQ1i457Aip9ihItkshlQGVyoiQLLAbCiGMBXhgdGekpaUhLS0NJ0+eREZGhsfnGY1G1KlTBw0bNkSDBg3kYFu/fn1ERUWV4ysgIqLywABLRBTiMjMzceTIETmsHj16FIcPH/YYVCVJQs2aNVGvXj1sXXkSki0aBls0JHu0YzS1Ei98RMFJwAphLITdUIAHn+6C48eP49ixYzh69KjHqe3Ov/NGjRqhcePGaNy4MZo0aYI6derAaOQ0diKiUMUAS0QUIoQQOHXqFA4cOIADBw5g//79OHDgAC5evOh2e+fIVNrBfEi2GBisMTDYYyDZojmSSmFBQEBIxRDGfNiN+bjl3tY4evQojh07hqysLLfPiYqKQqNGjdCkSROkpqaiSZMmaNy4MeLi4sq59kREFAgGWCKiIGS1WnHs2DE5pB44cAAHDx5EXl6e2+1r166N9KOFkGyxMNhiYLDFMqhSpSakYtiNBbAb83DzPS1x8OBBHD582OP9hWvWrIlmzZqhRYsWaNGiBZo3b474+PhyrjUREfnCAEtEVMGEEDh9+jT++ecf/PPPP9izZw8OHDjgdtXWiIgIpKam4uCOLBhssTDY4mCwxnJlXyIVBASEoQB2Ux4Gj2yPQ4cO4eDBgzh79qzb7evUqeMSaJs1a4aYmJhyrjURESkxwBIRlbPs7Gzs3bvXJbC6m+4YExODJk2a4J+N52GwxsFgi+OoKlEZEJIFdmMeHn62M/bu3Yt9+/bh1KlTpbaTJAkNGjTAFVdcgdatW6N169Zo0KABDAZ+JomIygsDLBFRGRJC4Pjx49i5cyd27NiB3bt34+TJk6W2M5lMaNKkCQ5uz4LBmgCDNc6xqBIXVCKqEI5Qm4sHxnbEvn37sHfvXpw7d67UdnFxcWjVqpUcaK+44gqO0hIRlSEGWCIiHVmtVuzfvx87d+7E33//jb///tvt6GqdOnVw5nAxDNZ4x5ctjiOrREFOSMWwmXIw+LFrsWvXLuzZsweFhYUu2xgMBjRu3FgOtW3atEH16tUrqMZEROGHAZaISIOioiLs2rULO3bswM6dO7F79+5SHVqz2YwrrrgCu9dfhNGaAIM1HpKIqKAaE5FeBASEMQ+PvtwFu3fvxq5du3DmzJlS29WpUwdt27ZFmzZt0LZtW6SkpFRAbYmIwgMDLBGRH6xWK/bt24ctW7Zg69at2LVrV6nFluLi4pB/0XwprCY6pgNzdJWoUrBLRbCbstF/+FX4+++/sX//ftjtdpdtGGiJiALHAEtE5IXdbseRI0fkwLp9+3bk5+e7bFOtWjVknjLAYE2A0ZoIyRbDa1eJCAAgJCvspmzc+ciV2L59u8dA2759e7Rv3x5t27blPWmJiLxggCUiKuHChQvYuHEjNmzYgK1btyIzM9Pl8fj4eORfMMNgSYLRksTFlohINV+B1mg0omXLlmjfvj06dOiA5s2bw2jkbbKIiJwYYImo0rNardi9ezc2bNiADRs24MCBAy6PR0VFoTg7GkbrpcBqi2VgJSJdCMkKmykLtw1rgU2bNuHEiRMuj8fFxaFdu3byCG3NmjUrqKZERMGBAZaIKqVz587Jo6ybN29Gbm6uy+PNmzfHoe35MFqqOBZd4jWsRFQO7IZCPDGuKzZt2oQtW7aUOjY1atQI119/Pa6//nq0bNmSo7NEVOkwwBJRpSCEwIEDB7B69WqsWbOm1ChrQkIC8s5FwmipAqOlCiRhrqCaEhE5CAjYjTkY8tS12LRpE/755x/YbDb58cTERHTs2BHXX389OnTogNjY2AqsLRFR+WCAJaKwZbVasWPHDqxevRqrV69Genq6/JgkSWjevDkObsuHsbgKDLZ4TgsmoqAmJAv+M7EX1q1bh/Xr17uMzppMJlx99dW4/vrrccMNN6B27doVWFMiorLDAEtEYSU/Px8bN27E6tWrsXbtWpcOXmRkJKw5cTAWV+MoKxGFNAG743Y9j7TE2rVrS10727RpU3Tt2hVdu3ZFgwYNKqiWRET6Y4AlopCXl5eHNWvW4M8//8SmTZtc7suamJiI3LNRl0JrEiTwejEiCj92Qz6Gv9gRa9euxd9//+0y1bhhw4bo1q0bunbtitTUVEgSZ5sQUehigCWikJSfn49169Zh+fLl2LBhg0torVOnDtIPAkZLNRisCZwaTESVipAsGPV2F6xYsQJbtmyB1WqVH6tbt648Mtu8eXOGWSIKOQywRBQyCgoKsH79eixfvhzr1q1zCa316tXD6f2AqTgFki2GoZWICI7b9IydcBNWrFiBjRs3ljrZ17NnT/Ts2ZPTjIkoZDDAElFQs1qt2LRpE37//XesWbMGhYWF8mOOkVYDQysRkQoCVjzzUW+sXLkS69atczmeNmvWDD179kSPHj2QkpJSgbUkIvKOAZaIgo4QAvv378eSJUuwbNkyZGRkyI/Vrl0bZw85Q2ssQysRUQAEbPjPBz2wdOlSbNy4Ub5mVpIktGnTBr169ULXrl0RHx9fwTUlInLFAEtEQSM9PR1//PEHfv/9dxw9elT+eVJSEnLPxMBYVB0GWxxDKxGRjoRkwcg3rsfSpUvx999/yz+PiIhAp06d0LdvX7Rv3x4mk6kCa0lE5MAAS0QVqrCwEH/++SeWLFmCbdu2wXlIMpvNsOUkwFRcAwZLEiQYKrimREThz24oxNBn2uKPP/7AkSNH5J9Xq1YNffr0wa233or69etXYA2JqLJjgCWiCrF//3788ssv+OOPP5CXlyf/3GBJgKmoBoyWZEiCZ/uJiCqK3ZiHOx5pgiVLliArK0v++ZVXXolbb70V3bt3R0xMTAXWkIgqIwZYIio3eXl5WLp0KX755Rfs27dP/nmtWrVw/pAZxuLqMNijKrCGRERUkoAdL3x6MxYtWoQNGzbAbrcDAKKjo9GtWzfcdtttaN26NW/JQ0TlggGWiMqUEAJ79uzBTz/9hD///BMFBQUAAJPJBJGXBFNRTRisSbyulYgoBNilIgx7ri0WLVqEEydOyD9v3Lgx+vfvj169enFUlojKFAMsEZWJwsJC/PHHH/jxxx9x6NAh+ef169fH6b1GmIqqQxLmCqwhEREFSkBgwux78euvv2LZsmUoKioCAMTExKBPnz7o378/GjVqVMG1JKJwxABLRLo6ffo0Fi5ciF9++QU5OTkAnAsyOUdbEzjaSkQURoRkwfCX2mHhwoU4efKk/PM2bdqgX79+6NKlCyIiIiqwhkQUThhgiUgzIQS2bt2K+fPnY+3atfL1UY5rW6NgKqoBSbDzQkQUzgQE3px2FxYuXIg1a9bI95atWrUq+vXrh/79+6NKlSoVXEsiCnUMsEQUsIKCAvz++++YP3++y31bDZYkmAprw2ipytFWIqJKyC4V4Z6nWuKnn37CxYsXAThm4/Tu3RuDBg1Cw4YNK7aCRBSyGGCJyG8ZGRn48ccfsWDBAmRnZwNwrEZpyXAEV4OdC3gQEZFjBeNnPuqJuXPnYu/evfLPr7vuOgwaNAjt2rXj6sVE5BcGWCJS7eTJk/j++++xaNEiFBcXAwDq1KmDs/sjYSquwfu2EhGRW85Fn+bOnYtVq1bB2f1MTU3F4MGD0aNHD5jNXNiPiHxjgCUin/bs2YPZs2dj5cqV8vWtBmscTAX1YLRU4zRhIiJSzW4oQN/hDbBo0SL51mpVq1bF4MGD0a9fP96Gh4i8YoAlIreEENi4cSO+++47bNu2Tf65obgqIgrrwGBNZHAlIqKACcmKB19og3nz5uHcuXMAgPj4eAwYMAADBw5EQkJCBdeQiIIRAywRuRBCYO3atZg+fbp8vZLRaATyqyGisC4MttgKriEREYUTATtGv3sjvv32W5w4cQKAY12Ffv36YdCgQUhOTq7gGhJRMGGAJSIAgN1ux5o1azBt2jQcOHAAABAVFQVrRjWYCuvAICIruIZERBTOBASe+7gXZs2aJbdDZrMZt956Kx544AGkpKRUcA2JKBgwwBJVcna7HStXrsT06dNx6NAhAJdWFL5YDRGFdSAJLqpBRETlR0Dg1cm3Y+bMmdi1axcAR5C9/fbbcf/996NatWoVXEMiqkgMsESVlBAC69atw+TJk+XgGhMTg+ILzuAaUcE1JCKiykxAYPzMuzFlyhT8/fffAIDIyEj0798f9913H6pUqVLBNSSiisAAS1QJbdu2DV999RV2794NAIiNjUXR+WqIKKwdWHB1HkZ4Lz8iovAjhPbju4YyBATemj4AX3/9tdxuRUVF4a677sJ9993HxZ6IKhkGWKJKZM+ePZg8eTI2b94MwHEm25aZgojCuv4H15KHDi2dGwZgIqLgpTze63GsD7AcAYHXp/TDlClT5EUG4+LiMGTIEAwcOBCRkVyrgagyYIAlqgROnDiBL7/8EitXrgQAmEwmIDcFEfn1IMHPBt/TISOQTo1enSIiIipbepy0dNd+BBJkhR2vTL7d5RKYlJQUDB8+HH369HGsnE9EYYsBliiMZWVlYdq0aVi4cCFsNhskSYKhIAURBfVhsEc5NvKn8+DtcKG1HAZYIqLgpcfJS71OgF4qR0Bg7MRu+Prrr5Geng4AaNSoER599FF06tQJEtsVorDEAEsUhoqLi/Hjjz9ixowZyM3NBQAYiqvAnN+w9H1c1TTwvg4TajsJeo7eEhFR+dLjJGYZlCFgx0MvtcHMmTORk5MDAGjbti1GjRqFJk2aqCuTiEIGAyxRGBFCYMWKFfjiiy9w6tQpAIBkjYE5PxVGS5L7J3nrMKg9PPjqdOgVgImIqOKoaRO0tgcayhCSFXc+kYp58+ahuLgYBoMBt912G/71r38hKSnJ936JKCQwwBKFicOHD+PDDz/E9u3bAQDVqlVDzrEqMBbVgAQPnQFPnQR/Dwtay2GAJSIKfv60DXq0LwGeYJ2+fDS++OILLFu2DIBjoacHH3wQd955JyIieIs4olDHAEsU4nJzczF16lQsWLAANpvNsbJwRnVEFNSFBB8LWZTsHARyOHDXwdCrg0JERMFFjxOc5VTGO98NxqRJk3DgwAEAQL169TBq1Ch07NjRv/0TUVBhgCUKUXa7Hb///ju++OILXLx4EQBgLKqGiPxGlxdo8sXZKdByGFB2LPQKwEREFJwCbS+0thUBliEgMOqdGzB58mRkZGQAALp06YInn3wS1atXD6weRFShGGCJQtChQ4fw/vvvY9euXQAAyRYNc14qjJYq5V8ZSdKnM0JERKFB60lPrV3PAMoQkhV3jGyAefPmwWazITo6Gg8//DAGDBjguLUcEYUMBliiEFJUVIRp06Zhzpw5cgNsPV8DpsLakGCo6Or5jwGWiCj0hHDX8dOfhmPixInYuXMnAKBJkyYYO3YsWrduXcE1IyK1GGCJQsSWLVswYcIEpKWlAXBOF06FwR5ZwTXTgAGWiCg0hXD30Tmt+IsvvkB2djYA4Pbbb8fIkSMRFxdXwbUjIl8YYImCXFZWFj7//HMsWrQIACDZzIjIawyTpVoF10wHDLBERKEpGLqPdgEYAm9HhGRB9/urye1rSkoK/vOf/6BTp0561ZCIygADLFEQ++uvvzBx4kRkZmZCkiQY82sgIq8BJClMbgPAAEtEFJqCoftoV9RBQ5Ad/+0gvPPOO/IMpz59+mDUqFFISEjQWkMiKgMMsERBKDs7Gx9++CGWLl0KAJCs0TDnNIHRmqCpkQ4qDK9ERKGtoruQ9hL71zIaCxvueKw+fvjhB9jtdlStWhVPPfUUunbtqrGSRKQ3BliiILN27Vq8++67uHjxIgwGAww5tRGRX+/yIk0MsEREFAwqugtZMsA6aWgn3/9+CMaPH49jx44BAHr06IGxY8ciPj4+4DKJSF8MsERBIjc3F5988snla12t0TDnNIXRWqLRZIAlIqJgEAxdSE8hFgi4vRSwY+CYxvjuu+9gs9mQkpKCF154Addee22AlSQiPTHAEgWBnTt34vXXX0d6errjWte8WojIqw8JxtIbh0OAZXglIgoPFd2N9BZgAU1t5sQf7se4ceNw8uRJAMCgQYPwyCOPIDIyhFf/JwoDDLBEFchms2HmzJmYNm0a7HY7JFukY9TVkuj5SQywREQULCq6G+krwDoFPBprQ6+HUvDTTz8BABo1aoSXX34ZjRs3Dqg8ItKOAZaogqSnp2PcuHHYsWMHAMBYmAJzbiokYfL+xFAPsAyvREThpSK7kmoDLKCp/Xzpq7545513kJmZiYiICDz++OO48847IbFNIyp3DLBEFWDFihV49913kZOTg+joaNjS68JUVF3dkxlgiYgomIRKgHUKsB2dvfq/eOedd7B27VoAQLdu3fDMM88gLi4uoPKIKDAMsETlyGKx4LPPPsP8+fMBAAZLHMzZzWCwR6svhAGWiIiCSUV3JcsxxAoIDH+lLT7//HPYbDbUrl0br732Gpo3bx5QeUTkPwZYonJy7tw5vPLKK9i1axcAwJRf59JCTQb1hWgJr84GviIDMMMrEVF40tKdtAt92rdABbDviT/cj1dffRVnzpxBREQEnnjiCfTv359TionKAQMsUTnYunUrXnvtNWRkZAB2I8w5TWEqrhZYYYE08srGnQGWiIj0prU7qeUkq82urX1x1t3oxwllAEKy4to7TFi9ejUAoGfPnnjmmWcQFRUVeF2IyCcGWKIyJITA7Nmz8dVXXzlWGbbGIDKrhX9ThpX8bdhLnpXWEn71CL4MsERE4UmvAAsEHmKBwNsZZf39CLLCbsfw166RpxQ3bdoUb775JmrWrBlYPYjIJwZYojJSWFiIt99+G3/++SeAS6sM5zR2f29XtdQ26p6mU2kJwAywRETkiZ4B1smfdscZYJ38bW/c1V9tkLULvP3dILz88svIyspCYmIiXn/9dbRt29a/OhCRKgywRGXg3LlzePHFF7F3716YTCZIGfVhKqwJCRoCnJqG3Nt1QP50BPQYuS2J4ZWIKLyVRYgF1LdBJUMs4F/b46n+aoKsXWD6X2Pwwgsv4MCBAzAajXj88ccxYMAAXhdLpDMGWCKd7d27F88//zwuXLgA2E2IzGoOozVJe8HeGnA1C1hoCcAMsERE5EtZBVhAXTvkLsA6qWmDfNXfW5C1C0AICNhw4/2J+P333wEAt99+O5566imYTD7u8U5Eqvl3tToRebVs2TI88cQTuHDhAiRrNKIuXqVPePVG6+qLepdDRESkN7vQ1k7pMV7jLSAbJECSIMGIVbNy8Pjjj8NgMODnn3/Gs88+i7y8PO37JyIAHIEl0oUQAt9++y2++uorAIChKAmR2c0gCZM+I4/uzjz705CXx+itLxyBJSIKb2U5AluSp3bJW8gEfLdFal+Du9HYS6OwTv/7+ja8/vrrKCwsRGpqKt555x3UqFFDXflE5BEDLJFGNpsNkyZNwoIFCwAApvxaiMhtePl6V70DrF43bFdbjl633WGAJSIKb3p0Kf1t40q2Ub4CrJOnNsnf16AMsiUCLAB89H8P4dlnn8XFixdRrVo1jB8/Hs2bN/dvH0TkggGWSIOioiKMGzcOK1asgCRJMGU3QERB7csb6BXaDJK2qVNaAjADLBERqVERARZwbafUBlinkm1ToK/BGWTdhNjpK57CM888gyNHjiA6Ohrjxo1D+/btA9sPETHAEgUqJycHL7zwAnbs2AEICebspjAVJbtupNfoq9brU52Nu16jt4FggCUiCm8VFWCdDJL/AdZJ2UZpeR2S5Pb5QrKi1S12bN68GSaTCS+//DK6desW+H6IKjEGWKIAXLx4EWPHjsXhw4cBuxGRWS1gtCS63zjUgxuvfyUiIrXK8zpYvffvbKu0vgYh3LZ7AnZ0HByNP//8EwaDAf/5z39w2223adsXUSXEAEvkp3PnzuGpp57C8ePHIdkiEJnZEgZbrPuNAw1uyo9lRYU/vUZeAQZYIqLKoqIDrB51cD5fS9vlMcQK9ByejJ9//hkAMHLkSNx7772B74eoEuJtdIj8cObMGYwaNepSeDUjMrN16fAqSl//4pdgOKekZ3glIiIKRXoE4RJlSJCwdMp53HfffQCAzz//HF9//TU4nkSkHgMskUonT57EE088gVOnTkGyRSIyozUMtujLG+gRXEs+v7xHLg0SwysREVVuJa+H1TnISpCw8MOj+Pe//w0AmDFjBqZMmcIQS6QSAyyRCidOnMCoUaNw9uxZSNZoR3i1RzkeLIvgWhEYXImIiNwrgyA74/W/8cQTTzi+nzEDU6dOZYglUoEBlsiH06dPY8yYMbhw4QIkawyiMlrBYI90POipoZEkdTdLD4aGqjxGXYPhdRIRUdmqDMd6tW23tz6A4vlTX94qh9jp06fjm2++0VpDorDHAEvkhXPBpnPnzkGyRiMqoyUkYQ6P61wBjroSEREFQsfR2Kkvb8Xjjz8OAJg2bRpDLJEPDLBEHmRkZOCpp566fM1rZktI9ojwmS7M8EpERBQ4HacVf/PKNjz22GMAgG+++Qbz5s3ToYJE4YkBlsiNnJwcjB079vJqwxdbwmAzB14ggysREVF40inITntlG4YPHw4AmDRpEn7//XcdKkcUfhhgiUooLi7GCy+8gEOHDgG2CERmtLy8YFMggiG4AgyuREREZUmH9v67t3ZjwIABAIC3334b69ev11wmUbhhgCVSsNvteOutt7Bjxw7AbkRU5hWut8rxB0ddiYiIKheNbb8ECYs+S0OvXr1gs9nw0ksvYefOnTpWkCj0McASKXzxxRdYvnw5ICREZjaHwRobWEHBEFyJiIioYmgMsatnZaNjx44oKirC888/j5MnT+pYOaLQxgBLdMn8+fMxZ84cAIA5uzGMlkT/CxECks0eHgs9ERERqRVM7ZYO7ahkszvacy1lWG2QrLbAngsDdvyfHVdccQWys7Px3HPPIScnR1N9iMIFAywRgPXr12PSpEkAgIic+jAVpvhXwKXgKtl1WI2QiIioMtLahpakQ5uqNcQCgQdZCUa8+eabSElJwfHjx/HKK6/AarVqrg9RqGOApUrvxIkTeP311yGEgDG/Okz5tf0rQAh9givDKxERkb6CZDQWQEAh9v4b3sP48eMRHR2NzZs348MPP4Rgf4EqOQZYqtTy8vLwwgsvIDc3F4aiOJizG0KCygWP9Bh1LY/gqvcZbSIiomDlqU3VaTS2IqYVP3nzl3jppZcgSRJ++uknLFiwQFMdiEIdAyxVWna7HW+88QaOHTsGyRaByItNIKn9SOg16lqZVLbXS0RUWQTT8d1bXXQ6aVwRo7FvDluIf//73wCATz75BP/884/mOhCFKgZYqrSmT5+OtWvXOlYcvtAUBrvZ9wJMoTLqSkRERO6F0Gis8vHp/9uMrl27wmq14uWXX0ZmZqam/ROFKgZYqpS2bt2KadOmAQDMmQ1htMR5f0JFLNLEoEtERJVFeV/u4qWN9Wd0tDwXeZIg4bnnnkO9evVw9uxZvPHGG7DZAlvlmCiUMcBSpZOZmYlx48ZBCAFTXjIi8n2sOMxFmvTD94CIKLyE+nE9SEZjAXXBeeBVr+D1119HZGQkNm3ahOnTp2veL1GoYYClSsVut+Ott97C+fPnIVmiYM5q4HnjcLo1DhdyIiKicBdoe6tTO11eo7FP9P4c//3vfwEAM2bMwM6dOzXvlyiUMMBSpfLDDz9g/fr1gJAQdbEJJGF0v6HGUVfJLgC7j+tpiYiISL+TrFraXB0XeJJs9oBumeNSjo/nfzDyd/Tp0wd2ux3jxo1DXl6epv0RhRIGWKo0Dh8+jC+//BIAYM6qD4M1pvRGQjjOfurQmOpRhm5Tjw0qbw1ERESkll4nafVqoyTt5WgNnjIdypGsNsBi9fj46NGjUbNmTZw+fRoff/yx5v0RhQoGWKoUrFYrxo8fD6vVCmNhIkx51UtvJASgw/SfoLzeNRimEEuSLp0LIiIKQ1pDrLPdDaZ2xmrTHmSF8Bhi7776Vbz44ouQJAmLFi3CihUrtO2LKEQwwFKlMGfOHOzduxewG2HOaAQJigZOCEcDo1d4pdKCqUNBRETBySDpMxobbG2OXiHWTZB97q6ZuO+++wAAEyZM4K11qFJggKWwd/ToUXzzzTcALk0dtpsvP+hu1NVmd1y/6g93o67BOBJbEYKtI0FERNqVZfumV4itqPbH3YhpIKOxynKcfQo3ZS94dx9SU1ORlZWFzz77zM/KEoUeBlgKa3a7HePHj4fFYnFMHc5PdjxQTqOuQXUdbHlPI+aUYSIiCpQ/IdZbG+lHO6THKsI++RNi3b0uN6OxEgx45plnIEkSfvvtN2zZskWHihIFLwZYCmuLFi3CP//84zp1WK9rXQGOsHrC4EpEFL7Kq+3Tc0pxMLVLekwpLjEa+/TtU9G/f38AwPvvv4+ioiJt+yAKYgywFLays7MvrzqcXQcGW4T6UVdf04g5PdizYOokEBFR6AuiVYp142tKsZfVh2UlRmNHjBiB5ORknDx5EjNnztSpokTBhwGWwtbXX3+NrKwsSJZomHKrV8yoq15BN1SmEQdT54CIiPRXUSdvPYVYf+vjoZ3SbfqwmuCp5CnEqn1ditHYgVe9gtGjRwNwLF55+vRp/+pCFCIYYCks7d+/Hz/99BMAIPJCPUi2iguRulwHG+yCbXoWERGFn3CeUqzTSsVvP/Ajrr32WhQXF+Orr77Sp35EQYYBlsKOEAKffvop7HY7jHlVYCyKD6wg5TRiLWecw30UNpg6AUREVHaC5dIZZ4jVWp9L7Zduo682jSHUGWL9HcV1EgKSAB5//HFIkoRly5Zh165d2upEFIQYYCnsbNq0Cdu2bQOEBHNG3cALci72FCwNNhERETkE43WxepwgttogCgs1FTGq+8e45ZZbAACffvopBPsxFGYYYCmsCCEwefJkAIApJwUGm9nHMzwWFFzBVa/pTnpNvyIiosonmGbc2IU+baPdDmGQIPRoG3WccSU0riL8r3/9C9HR0di9ezdWrFihvU5EQYQBlsLKihUrsG/fPsBugPl8cmCFKBsgu4/ViFWS7BoaNb06DAyuRESkVbBdPwroVh9NIVY57VdDiBUFBXIZWkLs/Ve8iMGDBwMApk2bBrsOfRmiYMEAS2HDZrPh66+/BgCYLlSFZDf5V4AQjrBasuHRY0pQOIfXYBqpJiKi8lGRIdZdu1zRIbZkWxjoaKzyOZdCbKBB9u6770ZMTAwOHz6M1atXB1QGUTBigKWwsWrVKhw/fhywGRBxsap/T/bW0FTEKKy3M9z+NogceSUiorIQ6iOxHtp2v6cUe1t0yY82Wx59Lfn8AEdj7079DwYMGAAAmD59Oq+FpbDBAEthQQiB7777DgBgyqgCyW6EsFgAi0XNk303MOU5CqumAVZTVnle78pGkYiocirvEOurPVY7xVnFiWnVIdZXG+jPPV29PKY2xCoXgRo0aBCio6Nx4MABjsJS2GCApbCwY8cO7N27F7BL6kdfPU0ZLkM+R2FDYcqwJwyxRESVU7CNxALlN6VY7S1v9FjgKYApxYObPIO77roLADB79mxt+ycKEgywFBbk0desREi2y9e+ehyF9bch0Wkascd9BrIohqeyOGWYiIjKW3ks7uTvbChP9fGzPfc6pdjfUOphe7fThz0938torLtb8AwYMAAmkwm7du1ynOwnCnEMsBTyjh49ivXr1wMCMF2o5vsJgZ4F1WMaMdyMwurZ4Fd0eOUoLBFR5RZso7E61qdUiFU7+lqqIDdtZQBBWO1I7P1XvIibbroJADBv3jz/9kMUhBhgKeT9/PPPAABjbhwMltL3fZVHYbVOGS6LUVitDauzLN7flYiIgkVZhFgtJ5GVo8Ma23GXEKvlpK3iuapHX92UoZxS7G701WngwIEAgOXLl+PChQuB7Y8oSDDAUkgrKirCb7/9BsCxeJMnQq+bi1ttFX9f2GAXrq+LiIjU0zPE6jQDStfrYgMdfXUpSEDk5mkPwipGY8fc+AFatWoFq9WKJUuWBL4/oiDAAEsh7a+//kJOTg4kiwmGvFj3G1msELl5Xs9MlitJcS2NXmFPr8ZdD8E2fYyIiMpfMJ7MtNt1aaMkZ3jVo70TdsBm01yMPTML9qxsr9v07dsXALBo0SLeUodCGgMshbTFixcDAEyZSZBQ+toUUVgEYbPp25BqGYWV/Ly3nIryZBUdYstjAQ8iIqpc9GrblO22Hm2V89IdDWWJvPzL/9EYYoVdQNgF7FnZHoPsx8MXIioqCsePH8euXbs07Y+oIjHAUsg6f/48tm3bBgAwZiW6PmixXg6ul8KrKPRv6XnduQuvgU5tDrawGEx1ISKiihUKs4sCbEelklOHtYRYUeJkuM0WUJBVBlZlkC1JshvRvXt3AJAvvyIKRQywFLKWL18OIQQM+dGuizcpw6uSXtfBAv6Pwuo58uqtoayIUViGVyIicgrGqane2mu9RmP9LMdl9LUkP0OscNP2ewqxvXv3BgCsXLkSVqsO1/ESVQAGWApZy5YtAwAYsxMu/9BTeL1E11FYtSHWV3j1J1iraSDLM8QyvBIRkZOe4bUspg57orItKzX6quRHiBV5+aVHX0tSGWK9XffqLsS+cPOXSExMRFZWFrZv365qH0TBhgGWQtK5c+ewZ88ex71fsxPUX+8qBERBYfks6CRJEEaDupFXNSE22MJisNWHiIjCQxDOJvIaXp2cIdZX++grvDr5CLH2rGy3o6+uu3K9LlaChC5dugAA/vzzT3X1IAoyDLAUktavXw8AMBREQypEqetdvSqPBZ3KcrEmNcq68Wd4JSIipVCbOuxOOSzu5HXqsDteQqyv8KrcTjka261bNwDA6tWrYdfj/vZE5YwBlkLSmjVrAADGrJiAVhkWhUX6jcKWDLGBhld3AVzLYk1lFWIZXomISClUpw6746bdVTX6WpKbEKtq6rA7bhZ38nXLHHecIfZ/t05GdHQ0MjIycPDgQf/rQ1TBGGAp5BQVFWHLli0AAENmVGANpxD6hlgnrSOvyhAbbEEx2FY+JiKiiheM4VUPl9q7gMKrU8kQG0h4VboUYtVMHfZE2AVEVg7atm0LANi4caO2OhFVAAZYCjl79uxBUVERYDFCKogIvKAymEpcLisN+yOYOgNERESe6Nle6TUtVscViv2eOuyJzRZweHUSdoEOHToAYICl0MQASyHHuWqeMScKEjQ0LpKkz6rEkgQYHB8lyaZToxmM1xIREREpBWNbJYRuJ4Elq01u3wNmFxAFBY4gazRqrpMotsBg1nDy/pL27dsDAHbv3u0YFCAKIQywFHKcAdaQExl4IYrGTRQVBx5ildNq7TrcZ9ZZlp73rNXrrHYwdlSIiKhiBOPUYWWdNF724nJCWmuIVdZLQ4gVxRa5PlpD7MPNnkOVKlVgsViwf/9+TWURlTcGWAopVqsVu3fvBgBI2ZGBrTBYskGz2wNriN2VJUTgo7Buygq60Bhs9SEiovIXjOHVkwBCrGRz0y8IJMQ6R19L0mEk1hliAwmyUoQJEiS0bt0aALBr1y7t9SEqRwywFFKOHz/umOpikyAVmiCEUB9ivTRiotji3yispzO7dkd9/A6xnuqmV4jVs4PAEEtERHoor7bJjxDrNrw6+RNineHVU1l+hlh59LVkffwcjZUiTPL3DLAUqhhgKaQ4p7lIeWb/rn/11XjZ7eqnEvualuRPiC3PlX0ZYomISKtgu7wFUFcntW2tr7IuhUavfIVXJ5Uh1m14LVGnQEZir7jiCgDAgQMH/H4uUUVigKWQ4gywhnyz/DOfo7BqGy01IVZt4FRzPaw/jWkwdhiIiKhyCcaTl/7UyUe769fsKV8hVm29fIRYn+FVUR9fIVY5+goA/+38LgDgzJkzyMvLU7cfoiDAAEsh5dChQwAAQ77rQdpjiPV3dNNbiPV3tNTb9bD+1isYQ2wwdmSIiKhsBON1r4GuX+Hux96mDnviLsR6uu7VGw8hVvh7D1ovIbZkeAUAyWZASkoKAODw4cP+7YuoAjHAUkg5efIkAEAqLH2ALhViA52a625Rp0Cm+nqaShxovbioExERVYRgDK9alGiHAwqvTsoQq3bqsDvuQmwg5bgJse7Cq1NqaioABlgKLQywFDIKCwtx7tw5AIBU6Plg7NhA23Wl8qJOznu8BhyGS4RYrde7clEnIiIqT8EaXnW6bZ2m8OpkMGgLr05GIyA5uuZ+j76WqI/aa2Lr1asHADh16lTg+yMqZwywFDLS0tIc31gNkGweptvoNs3WDlitgM2mQ1lBOHJKRETkS7C2XXrVS5J0vDxHhyAMAAYJ9jyNQRiQQ6y30VcAqFmzJgDHdbBEoYIBlkJGeno6AEAq8nwwlnRa0VcyGgGjEcJicQRZLYyOEVxJjyCr14rFhnJa+ZiIiMgp2Noeux3CqENXuNjimG0V4f9KwKWqlJ0LCDtEcbHmsvZ+1hr7Pr/S6za1atUCAJw+fVrz/ojKCwMshYwLFy4AACSL+z9byTndF9AUFCWjEXCesRRCW4g1KqYf6xletZSldweivG4DRERE5aesRl+1tkF6jpg6i9QaYu2XLxPSEmKd4VWul4YQu/fjlkiqloukarnY95nnEPta/48BAGfPng14X0TljQGWQsbFixcBAJLFdfqwJEmO0FlyNcAAGjmX8KooJ6AQayx97WzAo7DuQmJAizswvBIRkQ9lPXU40LaoDMKrXHSgIbbkbW4CDLElw6tcrwBC7N6PWyIpOVf+f1KyI8S6C7LOQYGsrCz9LsMiKmMMsBQynCOwUARYl1FXd/w4GLsNr8py/DmwuwmvznL8DrHeQqI/5TC8EhGRL+UVYvxtk8owvMq78DfEXpo6XEogIdZNeJUf8iPElgyvTknJuY4g+2mJEGt19KlsNhtyc0s/jygYMcBSyHDeZFuyOv5sfYZXJxWNntfw6izGalU3CuspvCrqozrEqgmJaspheCUiIl/KewRObdtUDuFV3pXaEOspvDr5EWLt2b6Do5oQ6ym8KiWluIZYSUiAzfF7yM7O9rkPomDAAEsho8B5Y3C7pD68Onlp/NSEV2cZPqcS+wqvirJ8hlh/QqK3chheiYjIl4qaPuqrjdKrXn6U4zPE+gqvTipCrKepw27r5SPE+gqv8nYlQixsjtfLEVgKFQywFDIKCwsBAJLd4F949UJ1eHXyFmLVhldFWR5DbCAh0V05DK9ERORLRV/7WNarEwdwD3WPIVZteHXyEmL9Ca9yvTyE2L2TWvpVjjLESnbH+1+sw8rHROWBAZZChhxghft7wPpUovHyO7wqyikVYv0Nr4qySoVYLSFRWQ7DKxER+VLR4dXJXZulR90CCK/yU0uGWH/Dq5ObEBtIeJXrVSJo7p3UEkkp/o+eyiH20ttj1XrbQKJywgBLIUOX1fEulRFweFWUI4fYQMOroiw5xOoREsuiM8LwSkQUfoIlvDopQ2wFh1e5CGeIDTS8OilCrJbwKtfrUojd+1GrgMKrU1JKLkS0I7iuXr1aU52IygsDLIUMSacQJaxWCJtNh4IEhN2uWyMr2YOsI+HE8EpEFH6CLbwqVcB1rz7L0RJenSQJorBIc3h1OvVIGyRVz9GlLACwWCy+NyIKAgywFDIMzutetQx22myAzQZRbIEoee82f5lMkEwmwGbX3rBJkuMsrx6Nrd6BM5g7OURE5L9gPa47T+Tq1Y7pUI5kvXTC2+z/vV1LsmfnOE5YmzTMALvkzGMdUJwI5O2uorms6DhHH6Z9+/aayyIqDwywFDKcAfb8rQ0Cer4zvDr+Y4coLAo8xDrDK+DoCGgJsc7wKldUQ8dC2VjrOaIbrJ0dIiLyT7Aez0u2WXqEWEnSVI4cXp1laQixzvAKADAYNIXYM491QFGS43tjoaQpxH7Q+nskxjumEMfHxwdcDlF5YoClkBETEwMAuKvjKhwf3cav57qEV/mHAYZYZXiVywowxJYMr8ry/OWukWaIJSIip2A9jntqqyowxLqEV2VZAYRYl/DqFGCIVYZXp0BD7Aetv0cDUzYKCxz9EGc/iyjYMcBSyHAeWJMtOXj9oVl+h1i3/A2x7sKrXJafIdZTeFWWp5a3xpkhloiIgvX4XR7rP/gZYt2GV2VZfoRYe26e5/fezxDrLrw6GQv9C+nO8AoAhYUMsBRaGGApZMTFxQEA8vMNuCbylCPEjmnj83luR19dNlAZYr2FV7kslSHWV3hVlueLmkaZIZaIqPIK1uO2mrZJz+thVZTlNbwqy1IRYu25ed77H4DqEOstvDrl/aNuFFYZXu12oKjI8b4wwFKo0H4VOVE5cV6bkZvruA/sNZGn8PqDs/CyuB/1P9ru9jk+w6u8oSPEAoCkdaEGZ4gFAIObkKo2vCrL89To+tOw24V+94bV65Y/RERUtkI5vDpJkr6LHHooS7L5cRmQM8R6OPmtKrw6uesrKJwZ6Tu8AoCxQELeP1UQ2zIDVTNycdcf29Fu1zHEFBQjP9qMTa0boO2o46htypefk5NjhBASJElCQkKCuvoSVTAGWAoZycnJAIDMjMt/ts6R2G2DG2DB3Btdgqzq8Co/wUuIVTP66lKWhxDrb3hVllcyMAYSIBliiYgqj3AIr05lHGIlWwC3xfMQYv0Kr86iTCYIq7XUz8+M7IAiPy5vjcm24PlxSzFg60ZEWF0DeaftRyDmAtl3R+PCqwkQUZLcp6pSpQpMOqyOTFQe+JdKISMlJQUAcPGi65/tNZGncE3kKbR96BhehmM01u/w6uQuxPobXuWyfIzEBlKes+HVEhwZYomIwl84hVenMgqxAYXXkmVdEkh4BSBPJVaGWH/Da6SlGJO/nYzrjh3yuI1kARK/K4D5sBWnZ1RFZoZjVlu1atX8rzNRBeE1sBQynAE246L7MClfFzu6TWCNh5PymthAw6tcluKa2EBHX0uWpwdeE0tEFL6C9bisR9uj8zWxmsKr06UT3gGHVyfF9bD+hlcAePG3hbju2CH4ejUCQPR6C6q9mg2jmAjg8iw3olDAAEsho1atWgCArEwTCj2stvfftXejwcJz2m8SLjTc17VUWY6mROg16klERORJOIdXvQmh34iuENrCq5PBAGG1+h1ek3Ozcdf2TY7q+NjW+XjCDwU4sW8fAKBOnTr+7ZCoAjHAUshISEhAUlISAODMabPbbaSLEcDps5CiIjWFWMlshhQVCdhsjpFYjWdUYTBAsuvUUOpBzzDNKcRERMEhWNqYkoJx1o9dx0t8iooBAFJsrKZi7AUFsBcUAABSpxz167kDt25AhN3P624twMkNGwAA9evX9+u5RBWJAZZCSoMGDQAAp0+VDrA9/noSzb++KP9fU4hVLrcv7I5rUgK8pgUmo1yW5hAb4A3Zy0ww1YWIqDJjeFVPMcNKGCRtIbao+PK1tEZDwCHWXlDgMiJsTTvl1/Pbe7nu1Zvj588DAOrVqxfQ84kqAgMshRTnGcJTaa4BtsdfT6LFu3nAqXSXn0tms98hVh59LcHvEFsivMrlBxpi9Qqveo2+MrwSEQUHhlf13FweFHCIVYRXp0BCrBxeS/BnFDa2uMivfQJAocGA05feD+cAAVEoYIClkNK0aVMAwNEjlwOmHF7TzpR+gkHyK8RKZjOk6CiP4cyvEGvwHDj9DrHBFl6JiCg4MLyq52VtC79DrJvw6iT5sWCjp/AKOEZh1YbYPHPpE+++HIyNhU2SULVqVS7iRCGFAZZCSosWLQAARw5Hycd76YLZfXh1UhlifYVXJ1Uh9tJ1r173ZxfqVj8MxvDK0VcioooXjOHVLkIuvMq7UtNOFhV7Da9OakZhvYVXJ2vaKaROPeazrJp3XvS5TUn74uMBXO5bEYUKBlgKKY0bN0ZERATyco04d86EHiueRPMpGb6f6CPEqg2vTl5DrIepw56Uy+JODK9EROElWMOrnsoxvMq8nXx2BlcV9fI1lVhNeHWynkzzGmI/GfYlUofGQUSoKk62NyEBANC8eXP/nkhUwTTea4SofEVERKBJkybYs2cPhv9fP7RY4GHqsDvOEGs2QxQXu9wsPJBRTmG1OpaiNxoV+/AvvMq7twsIA0o/j4s2ERFRSQyv6vl5SzxhkCDBUPp5KkZdS5KMBiA2FiIvz7VKfoRXJ+vJNACu16l+MuxLAECPaBsQbQIGJQDfZkPA+610nI//Xbs2YLGgZcuWftWFqKJxBJZCTps2bQAANZacVR9enQxSqdFYT4s2qVFqJNbLda++lBqJDbapwwyvREQVLxjDq970eI32wO/nXup62ADCq1PJ62EDCa9OylHYj4ZORo9omyO8XiLeSIboFKXqPrCnOiXgtMUCo9GIK6+8MqD6EFUUBlgKOddccw0AwC6dD7yQSyHWEBfr19Rhd4TV6rhXLKD5fnJyiA22kVciIqp4wRheg/Ga1wCDq0s1nCFWQ3h1kmJjL9/jVUNZzqnEHw2djN4xltIbRBsgvq0NcX+Cx+nEIgIQ9ydgx3MzATiuf42JiQm4TkQVgVOIKeRcddVVMBqNsJmtsEcUw2ApfU9YVZwjk3YBGLWFRcl4adEmZ/gMFlx1mIgoPARjeNWbXq9RkvQpS+X1rj5ZrTDExMBeYipxIGxn0t2HV6doA8R71YFnqkJ8lw1pbQGQZwdiDRDXRwP3JQApJmydshMA0LZtW811IipvDLAUcqKjo9GqVSv8/fffsCUWwHA+wABrFxBCQJIuNU5+LHtfiuSYmgwhHGd+AxyJFcopyMEWhomIqGIEc3g1SPqNwOoRPHV6r+S7BESaHaOwgVanqBgQdkgROnS5DY41N3o8MBzLZk7xvm2KCRhdFWJ06Ye6jngESWIVAKB9+/ba60VUzjiFmELSDTfcAACwxee6LqKk1qXwCsDxr80GFFsAm//TjiSTCVCubuwMsX6Sw6sytOp19lcrBmkioooRDG2AL8Gy0n3JdSQC2b3N7nqLO0lyhNhAqnMpvDoZVNxaxy2DETAYIV16nyNW7MBNQ4cHVFSXkSMQ9fduZGVlIT4+nte/UkhigKWQ1LlzZwCAPSYPwmgPLMQqCCEuB1k/QqxkMgEREaUb7wBDrMcGN5AODBdvIiIKbaEQXp0q+pIVd++Vv3cEcAbXkmUF0A6WDK8AIEWY/A+xl4KrVOL9Nf+1w+86dRk5AnFrj+CuZzsCADp27AiTh9sLEgUzBlgKSfXq1UPDhg0BCbDF5TkaF5NJXZBVjL6W5HeIdU4ddl+Yoyy1N0/31UD605Gp6I4EERFpE0rhVW/+BkYd3iuXUVd3VI7CiqJit+FV3o8/U4kVo67uqB2F7TJyhBxeBQRWrlwJALj++uvV14UoiDDAUsjq0qULAMCakAlIhktfkvcQ6yW8OqkNsaWmDnsu0GuIdTt12FtZ5Ymjr0RE5StYLh0JRHlPJVbzXqkox2d4dZbjI8TKwdVDeHVSNQrrI7wCjlHYmx78l9dtujzmCK5xa48AAOxRBUhLS0NUVBQ6derkux5EQYgBlkJW7969AQD22FwIo9XxQzUhVgVfIdbj1GHPBXofifUnKPpqZDl1mIgoNIVqcFUqrxlA/rxXXtozVeFVRTneRl1LFeNrKrGK8OpkXr7d42NdHhuBuDVHXH5221jHqsM33ngjb59DIYsBlkJW/fr10aJFC0ACrPFZlx/wFGJVjL4qeV3cydvUYc8FlgqxqqYOeyrL3Wvh1GEiotAUDuHVqaxPpOo0Zdiv8OrkZhTWn/Aq79/dVOISizWp1f3hR0r97MYnHi0VXgUEli9fDgDo1auXX/sgCia8cptCWp8+fbB3715YEzNgyqwKCZcO+pIBgN0xxdcZRAPgDLyS8/lGg/qpw+4LLH2bHa0rLpbFSClHX4mIyk84hVe9lby1TqDvlaKcgIKrshyFQMKrkyE29vK9YQMIrk6RS7fJ39/4xKMAgPhVh0ttZ4vLQUZGBqpUqYJ27doFtC+iYMARWAppPXv2hNlshogqhD2qwPVB5XWxksGv0deSXKYUBzL66lqYI8TqFT6dr4tTh4mIQk+4hteymBGk9b2SJG3h1SnS7HOxJlXVcY7CagivTt2GP4LOox5F/KrDbsMrAFzVrzoA4NZbb+XqwxTSGGAppCUmJuKmm24CAFiTLrrfSDI4GphAbmujIIQAjAbH6KkON20XxiD9+IVrZ4qIKNiE8/FWh3YSwOX3SI/3Sq8FsuwCUlSkpvAKAMJmhyEqSnN4BYDI3zYjYaX74AoA9ogibN68GZIk4fbbb9e8P6KKFKQ9aCL1+vfvDwCwJWRdXsxJyWqFsFz6uT3wICuZIyBFRl6ehqSlcXaOcurRmDrLsmusk1I4d6qIiKhslUVbpPVyG3m2ksaur3MEV+tikbZL/RGjEZJZ3S163Jdjg7DZACFgz8jwuF2/568BAHTo0AG1a9cOeH9EwYABlkJey5YtLy3mJNyPwgrFjcmdDVggIbbkrW4CDbGS5Dr6qvctExhiiYiCX7geY4OtDSpRjtAy2lli+rEUHR1YlWwlTqYHGM6dwdVZJ2F1cxIfgDDY8NNPPwEA7rrrroD2RRRMGGApLAwePBgAYKlyAUJSLNikHH11CiDEyqOvJQUSYt01VCUDtpaygODrQBAR0WXheGwtj1lA/gY9T+X4Owprs5cKrwACGoUtFV4v8XcUVg6vJbgbhb3/3c4oKChAo0aN0LFjR7/2QxSMGGApLHTr1g116tQBjDZYkxQHb+FhsQZliFUTZEuOvpYsy2ZX13CXHH0tWY6eo7F6diTCsbNFRFQRwvF4GoztjZdy/BqFtdm91kvtKKyw2T2GV0dB6uqknDLs9vESo7BCsmPevHkAgCFDhkDiQo0UBhhgKSwYjUYMGTIEAGCtch5CsrsffVXSOqXYXXm+GnE1DYfaBlxNWbwulogoOITrycDybmN8tX1q32c1o7BqVixWMQorB1eti0mWmDLsiXIUduQXNyMjIwM1a9aUF70kCnUMsBQ2evfujeTkZIgIK6wJmZ5HX0vyEWI9Th/2VJanxtzb6Ku7crw1Uv6eQWWIJSKqOOF67Ay2tsWPcoRB8hxiPU0Z9sDbKKzXUdeS5XiZRuxt1LXUtpdGYYVkx7fffgvAcakVb51D4YIBlsKG2WzGvffeCwCwVjvrGIVVy9uUYm/Thz2V5W5KcSDX7gTrlGIiIlInXI+ZFdmmeFpLwt9du5tK7GPKsFtuRmF9Thl2x83r8jVl2Jvhk25Ceno6UlJScNttt/n9fKJgxQBLYaVfv36oWbMmRIQVlioX/HuymynFfo2+uivP2cD7M/rqrV5aBeN1SkRE4Socj5N6XZpSTte7+sWPUdeSlKOwWqYMK0dh1U4ZdseWk4GZM2cCAB566CFEBtqXIQpCDLAUVsxmM/71r38BAKw1MiGMNh/PcEMZYv0dfXVXlk2n62udX1oXYOB1sUREZS8cj4/B1HY478mutSyDwe8pw24ZjYGNupZ0qY0PdNTVafCkHsjKykL9+vVx8803B14foiDEAEthp2fPnmjatClgFLDUzAysEGejEUxnh8OxM0REFI7C8XitV3gNRnoEYSF0WahJMps1h1dhtuH7778HADzyyCO89pXCDgMshR2DwYBHH30UAGCrngN7ZHFA5Uhms9/3ZXPLaACMRkhaG3/naLAeHSMtN3InIiLPGF590+NWLjrMSJLb5Qh9Ap4hPk7T8yWzGTBIMMbHayqnywttUFhYiFatWqFLly6ayiIKRgywFJbat2+PTp06AZKApUEGYPL/ZuMwSAHdpNwbzSHWKViuQeX95IiILguG47Ke9LzkRE8a32fJLlzbY61tmbM+AfYZ5BPmzpPLAQZqY0ICUMuEpUuXQpIkjBkzhvd9pbDEAEthSZIkjB49GmazGfa4fNiq5EOqiCk0l0ZfXepWsuFUw9O1uIE04hx9JSLSV7CcVNRTWQfXQIKVu/fZz3I8tr+BhEY39fF3FFYOrhrbZmNCAkSEEbV6RABwLGrZvHlzTWUSBSsGWApbtWvXxtChQwEAxbXSISIAKTJSVZCVIiP1mT7sbR/BtBhGIHhWl4go/IIrEJajroCPdjeQW925o3IUttSoa8liEhJUlWNMSHBsG2HCQx/fhKNHjyIxMVFe0JIoHDHAUli75557UK9ePcBkg6XGeXlasM8QWwbTh90JuynFRESVSTged8szvKoNjXpPGdZKa33UjLqqGBF2BldEmGCPKMY333wDABg5ciQSVAZgolDEAEthzWw2Y+zYsQAAa9UM2GLyLodYlaOxZc1nw+rPrXx8Nap6TR/m6CsRVXbhFl6D8XpXtSdnvbRJfgVXX6FRh5PF3kZd1VKOugKAgECLgfEoKChAmzZteNscCnsMsBT2rr32WvTr1w8AUFzrNITBdvnMp5vRWN2mD7u5/tWbkJ9STERUWYTbcTbYgitQMaOu3k7O+lEfd9fB+poy7I67acTKUVcna5UMbN++HdHR0XjuuedgMLB7T+GNf+FUKYwcORK1atWCMFtQXP3s5QfcjcaW0/Rhd3Sb5sQpxUREZSPcjq0VHV71WqBQWaTe04X9rU/JxRsDXahJEVJLjro62SOKYWiQCcDR16ldu7Z/+yAKQQywVCnExMTg+eefhyRJsFXJhC029/KDXkZjK0qZjMZy+jARkTYMr2VLy8nXS21TsF3rqteU4ZKjroBj6nCT/tEoKirCtddeizvuuEPTfohCBQMsVRpt2rTBwIEDAQBFtU9BmCyuGzhHXk2moAhpciOs1/3pgq2jQkQUKsJxVkuwtQllvcqwWiajvte6agivktnsdtTVaeBb7bFr1y7ExMTg2Wef5dRhqjT4l06VyogRI9C4cWPAZHOEWJRooAyS46bfBj8WTnLn0vWvItjuucrpyURE/guCk5q6C4b2KRjbE60h0GAADAZIMdGaipHMZsdJdQ/h1Rabi1mzZgEAnnnmGdSsWVPT/ohCCQMsVSqRkZF47bXXEB0dDXtsPizJ5z1vbJAcQTTAjoszvFZ4iC1Zf71Wmgy2TgcREYWOMmhDKry9VYbfAIOwPO3Yy1ocwmRBzNW5EELgjjvuwE033RTQvohCFQMsVTr169fH008/DQCwJp933FrHG62jsXA0qhXesJbEEEtEpF44jsJWlLJqOyrqd3Rp1FUrObh6C68QuGJwAjIyMpCamopRo0Zp3i9RqGGApUqpd+/euO222wAJKKqTBnvJ62FL0jga6+RPiBUGSZcG0StOKSYiqrzK+8Sqt/YimE4Q+LofrJJOwdXXqKtT/9fbYuvWrYiKisJrr72GyMhIzfsnCjWSEOx5UuVUVFSEkSNH4uDBg5AKohB1rAEko8oVA+0+QpvRAOGjAfS12IRuAVZtp0CPjkwwdUCIiMpCuHWbymsxJzXvmx4LOdnsmssAABQVe39cRfss8vO9Pi7fc95bcLXZIIoddbEmZKG4zikAwCuvvIIePXr4rANROOIILFVakZGRePPNN5GYmAgRXYji2qcACeqCnE7TioMKR2OJiEhv4dgulNN0YQDy47aoAqCRY92O+++/n+GVKjUGWKrUatWqhXHjxsFoNMKWkANLlbPqn6zDtOIyvzbW37pxgSciIu/CbaZJWbZBFdAWlGmbqsO1rv5MF3YSRisSOuShuLgYnTp1wvDhwzXVgSjUMcBSpXf11Vdj7NixAABLtXRYozP8KyAcF3liiCUiIi0qqg0oixMM5bhIU0lCsqNR/wicO3cO9evXx0svvQSjH88nCkcMsEQAbr/9dgwYMAAAUFTtMGzmHP8KqIBFnsqcHqOx4Th1jIgo3EZh9aTluB+M72s5L9KkJCDQ5t4Y/PPPP4iPj8fbb7+NuLg4zfUhCnVcxInoEqvViv/9739Yu3YtYDciOr0FDNYAbkRuF45FnEwaz5BK2kd2dekM6BWqg7FjQkQUiHDrOum1kJMe70uwLORksWovw3qpjABGTAUEiqudgDX+PMxmMz744ANceeWV2utEFAY4Akt0iclkwquvvopWrVoBBhsKUw7AbvSxCqE7Okwp1k24dbKIiCpauB1Xy2sV4srGaPB7urCSJfEMrPHnIUkSXn75ZYZXIgUGWCKFqKgojB8/HvXr14cwFaMw5QCEpMNZWCIiCg5aprgyvJIvRoPmS4osiRdhqXIaADB69Gh06dJFr9oRhQUGWKISEhMTMWHCBFSrVg0iouBSiLX5X5AeU4CJiEg/WgIowyv54gyuGtp+a0ImLFWPAQCGDBmCu+66S6/aEYUNBlgiN2rWrIkJEyYgISEB9sg8R4g1BHhNDUMsEVHFKxlA1QbScFyMjuFVXzqMuiLCBGt8NqwpxyCEQP/+/TFixAj96kgURhhgiTxo3Lgx3n//fcTFxcEemYvC5IMQRhFYA8XRWCKiisMpww563eubHJTBNdA2PsLkCK9RmbBWPwKbzYZbb70VY8aMgcR+A5FbDLBEXjRv3hwTJkxAdHQ07JHZKKp6EMIAx7L6DLJERMGN17texuCqL52CKyQJ1qgs2Gs6wmvPnj3x3//+FwYdbt9DFK746SDyoWXLlnjvvfcQFRUFW1QWiqrud0wn9hZihfC+jH9lC7GV7fUSUcVTE0A9bRNO4bU8R10rw7Fe7XRhq5e1My4FV0gSrJEZsNc8DIvFgi5duuCFF16AMcCVi4kqCwZYIhWuuuoqjB8/Xg6xhVX3OVYnNhjcB1k1Z/05GktEVDa4WJMDR1314+90YXd/R4pRVwCwRl2AtfohOby+8sorMJlMOlecKPxIQoTTkZqobO3cuRPPPPMM8vLyYCiORdSFFpDEpcbGGVqdHymDAcLkx1lUdx9FPUKu1ucbdAjZDOpEVF787dYoj0/h1iWqiACr9T3U4XfgdQaUGjbb5ffOeGmsx992zKK4BZ+zL6CYFmyJPgdrtaOw2+3o1asXnn/+eYZXIpUYYIn8tG/fPvznP/9BVlYWJEs0oi9cAckecXkDZ4iVJP8CrPL5TgywRETqsUvjUJEjr+EQYJ3hU8vKwhar2+AKAJaYdBQnHQUA3HbbbXj66ac5bZjIDwywRAE4evQonnrqKVy4cAGSNRJRF1rAYIty3cgZYo0BzNR3fiyDIcAC2kMsAywRlTV2ZxwqetpwBQdYzeEVAOyXygi07bLbHc8tEVwFBCzxabDEpwEABg4ciFGjRnG1YSI/McASBSgtLQ1PPfUUzpw5A8lmQuTF5jBa4ly2EYYgCKDBEGD1qgcRkTvsyjhoCa8GSXv41eP3oKUMSYLkbfEkX7u+1NZpCcHCaHDUoVR4taM46SisMecAAMOGDcPDDz/M8EoUAAZYIg0uXLiAZ599Fvv37weEAZEXm8BUVEV+XBgunYHV2CBDkgIvgwGWiMIduzIOgQRQ5fG9IgOss50LpAxF+xJogHWecJZs9oDqIBTXypYMwEKyoajKAdiismAwGPDUU0+hX79+AdWTiLgKMZEm1apVw6RJk3DdddcBkh1FVffDEpMuPy7ZL18PG3CAU04nJiKi0nh8DIweJyf1oOX3p/F3LwyS62wpP8OrMBoc4dXDyWZhsKBetxzYorIQGRmJN998k+GVSCOOwBLpwGq1YsKECVi0aBEAICKnFiJy6kGCdHkUVsnfj52W53MElogqA3Zn1I+gejqml/cIbCC3oPP0XOePVY7AOqcLlyxH9fM9rE6sHH21mfKQeOU5pKenIzExEe+88w5atmypqnwi8owBlkgnQghMmzYN33zzDQDAWJiEyIzGgBRROoBefpK6wj2N4Gps6P3ChZyIKJixO6MugHo7lpdngA00vHprS+x2x8wnLzwFVwCqpg97Cq4uZQCwRl2Eoc5JFBQUoE6dOnj33XdRr149r2UTkToMsEQ6W7p0KcaPH4/i4mJIlihEXWwOCTHeG101H0NPIVjN8xlgiagyqOxdGm/hTc0xvDwCrKe2wFeAVdGG+Bo99bWwos/n+7qtjhCA3Q5L3ClYEk4CANq1a4dXX30VCQkJXssmIvUYYInKwN69e/Hiiy/i3LlzgN2IyMxmMFqreH+Sr4+itwDr6/kMsERUGVT2Lo2nAKr2+F2WAdZXG+AtwKpsPzwFUG+jrqqe72PUVWazoijpMGwxFwAAAwYMwOOPPw6TyeT9eUTkFwZYojJy/vx5vPTSS9i9ezcggIjcBjAV1IYEFY24O2oXgtLYAfCI18ESUbCr7F2akgHU3+O2lgCr9SSquwDrT5vhZvqw2uAKuJ8+rDq4ArAbClC3Uy4OHjwIo9GIMWPGcLEmojLCAEtUhoqKivD+++/jt99+AwAYC6vCnNMEklBxNtbdR9PXKKy353MUlojCXWXv0igDXHmGV8D9e6/2mF8yvAbQVihHT/0Jrm6f70dwBQCr+QLM9U4hNzcXSUlJeO2119C2bVvV+yYi/zDAEpUxIQT+7//+Dx9//DEsFgskaxQis5vDYI1VW8Dl7wO5HY/GToELBlgiCmaVvUtjF4Efp/UOsP4c75UBNpB24tLoayDBFbg8+upvcBUQsMQdhzX2FACgdevWeO2115CSkuLX/onIPwywROVkz549ePnll5Geng4IA8w5jWAqrKG+AD3uJ8sAS0ThrDJ3abSEV+fztdASQDX+3iSrzecCTar278fzhaEYRYkHYDdnAwDuvvtujBw5kte7EpUDBliicpSVlYU333wT69evBwAYC1Jgzk2FJIz+FVRRQZDXwRJRsGJ3RhutAVYLrb87u71c2xabOQMxqenIyMhAdHQ0nnvuOXTv3r3c9k9U2THAEpUzu92O7777Dl9//TXsdjskWyTMWc1gtMarL4QBlojoMnZltKnI8Apo+/0F+lxnW+TH8wXssMQdgzX2DAAgNTUVr7/+OurXrx9YHYgoIAywRBXk77//xhtvvHFpSrGEiLx6MOXX8b1KMaDfVOBAOi2cRkxEwYZdGW1CefQ1kOcr2yGVz7cb81G3Yx4OHjwIwHGLnH//+9+IjIz0f/9EpAkDLFEFysnJwcSJE7Fs2TIAgKE4AebspjDYfTSIel7L6m/HhaOwRBRM2I3RJpRHX/19vru2x8fzBQSs0WdhSElDUVERkpKS8Pzzz6NTp05+VpSI9MIAS1TBhBBYsmQJPvjgAxQUFAB2I8y5jWAsTPE8GlsWizGp7cQwwBJRsGAXRrvKEmA9tTtenm83FKE44RDskVkAgPbt2+P5559HcnKyv7UkIh0xwBIFibS0NIwbNw67d+8GABiKqsCc0xgGu7n0xmW1mrCajoweARZgiCUibdh90a6iwytQ9gHWV1vj5vkCAraoczDXSUdubi7MZjNGjBiBgQMHwuDP/diJqEwwwBIFEavVirlz52Lq1KmwWCyeR2P1CH/egqivTg1HYYmoIrHroo+KDrAVHV7dlCEMxShKOAx7ZAYAoGXLlnj++efRoEGDQGtJRDpjgCUKQkeOHMHbb7+NvXv3AgCMl0ZjJedobFkHWCdPnRsGWCKqKOy26KOiwytQdgHWn/blUhmOUdfziKybjpycHEREROChhx7CPffcw3u7EgUZBliiIGW1WjFnzhxMnToVVqsVsBsRkdsApsIajtHYsppGXJK7Tg6nERNRRWCXRT/hGGD9bVMuPd9uLEBx/BH5WtdmzZrhhRdeQGpqqrb6EVGZYIAlCnKHDx/G+PHj5dFYgyUe5uxUGOxx2gr2N4SW7OxwFJaIyhO7K/oJh/BasowA2hMhbLDGnIZU7QyKi4thNpvx4IMPctSVKMgxwBKFAJvNhoULF+Krr75yrFQsJJgK6iAiry4kGAMrNNAA6uz4MMASUXlhV0Vf4RRgA2xHbKYcFMcfgojIBwBce+21ePrpp1G3bl3t9SKiMsUASxRCzp49i48++girVq0CAEi2KJhzU2EsrhJYgXpNBdaCIZaIfGFXRV/hEmAD2a1kgSX2OGyxZyGEQGJiIh5//HH06dMHEtsjopDAAEsUglatWoUPP/wQ586dA+BY5CkitxEM9mj/CmKAJaJQwK6KfrSEV2eboUcA1vI7lSS/ny8gYI1KR3Td88jOzgYA9OnTB48//jiSkpICrwsRlTsGWKIQlZ+fj6lTp2L+/Pmw2WyOacX5dRCR78e04mAIsE4MskTkDbsr+ggkfCrbiooMr8p2wo8ybKZsFMcfgYjIAwCkpqZizJgxaNOmTWD1IKIKxQBLFOKOHj2KSZMmYfPmzQAAyWZGRF5DGIuSXe8d604wBVgnBlkicofdFe38DZ/u2oiKCLDu2gUVZQhDMYpjj8EW7ZitFBcXh+HDh6Nfv35cpIkohDHAEoUBIQRWr16Njz/+GGfOnAHgWK04IrcRjNZ4z08MxgDrxCBLRCWxy6KN2vDpqW3Q69pZtb9Hb+2AlzIEbLDGnIIp5TwKCgogSRL69u2LESNGcLowURhggCUKI0VFRZgzZw5mzZqFoqIiAICxsBoi8hrCYI9y/6RgDrEAgywRXcYuS+DUhE9f7UF5jb6qOe67KUdAwBZ1FvGNMnHhwgUAQKtWrTBq1Ci0bNnS35oSUZBigCUKQ2fPnsWUKVPw22+/QQhx6bY7tRzXx4oI142DPcA6McgSEcAQGyhv4VNtO1DWAVbtcd5NGTZzJorjjkKYHLfFqV27Nh599FF069aNqwsThRkGWKIwdvDgQXz++efYtGmT4wd2IyLy68FUUPPyQk+hEmCd2BEhqtzYbfGfp+Dpz/G/LKcP+3tcV5RhM+XCEnsc9shMAEB8fDyGDRuG/v37w2w2a6goEQUrBliiSmDjxo347LPPcPjwYQCAZIuAKb8eTIU1IBlUrlgcbBhkiSovdl38owyfgZ60LKvR10CO5ULAbsx33M816iIAwGQy4a677sLQoUORkJCgsaJEFMwYYIkqCZvNhiVLluCbb75Beno6AECyRSIirx6Mlhq+VywOZgyzRJUPuy/qOIOnltk2ZTH6GuBx224ohCXmOOwx5yGEgCRJ6N27Nx566CHUrl1bn3oSUVBjgCWqZIqLi/HLL79gxowZuHjRceZaskUjIr8+jMUqbr0TzBhkiSoPdl98swt9LhPRK8BqqYKhCNaYkxBx5xz3PgfQpUsXDB8+HI0aNarg2hFReWKAJaqkCgsLsWDBAnz33XfIysoCAEjWGEQU1Kv4ICtJ2jqnDLJElQO7MGVPj/BqkAIuxzHiehJS/AVYrVYAQIcOHfCvf/0LLVq00F43Igo5DLBElVxeXh7mzZuHuXPnIjc3F8ClEdmCujAWpUCCofwrpQyggR6iGGKJKgd2Y8qWlgCrHP31sxy7MR+WmJNA7EV5xLVt27Z46KGH0KZNm8DrREQhjwGWiAAAOTk5+PHHH/HDDz8gOzsbwKVrZAvqwVhUvfyDbMkA6u+higGWqPKoqK6M8zgTzl2pQAKsu2nLKsuxG/NgiTkJe/QFOLuoHTp0wNChQ3HVVVf5XxciCjsMsETkIj8/HwsXLsTcuXORkZEBAJBsZpgKa8NUVBOSMJVPRTwFUH8OWQyxRJVDeXdl9JglEgr8Da+errdVUY7NlANrzEnYIi/KP7vhhhvwwAMPoGXLlv7Vg4jCGgMsEblVWFiIn3/+GbNnz8b58+cdP7QbYSqqCVNhbRjskWVfCV8BVM3hiyGWqHIo6+6Mu2NJuHeh1AZYXwtFeShHQMBmvghr9CnYzZdm/kgSunbtigceeABNmzb1p7ZEVEkwwBKRV0VFRfjjjz8wZ84cHD9+3PFDIcFYnIyIgjow2OLKbudqw6e3wxgDLFHloXeXxtvxI9y7T77Cqz+rG5coS8AGa9RZWKNPQZgKATju49qjRw8MGTIEDRs29LOyRFSZMMASkSp2ux3r16/H7NmzsWPHDvnnhuIkRBTWgcGSVDYrF/sbQN0d0hhiiSoPrd0aNceLytB18hRg/b0tj6IcIRXDEn0G1ujTgMGxonBcXBz69euHu+66CykpKYHWlogqEQZYIvLbP//8g7lz52LFihWw2+0AHLfgMRXWgqmoOiQY9dtZoOGz5KGNIZaocgikW+PP8aEydJvchddA7ydrF7Abc2GJPgNjYgaKi4sBADVr1sSgQYNw6623IiYmRkNliaiyYYAlooCdOnUKP/zwA3799VcUFjqmgTmuk60BU2EtGOzR+uxIa/gUggGWqDIpq+vjK0uXyRlgAw2tAATssEWchzX6NOwROfLPW7RogXvvvRc33ngjTKZyWhSQiMIKAywRaZaTk4PFixdjwYIFSEtLk3/umF5cGwZLFW3Tixk+ichfel9OUFm6S3ahKbjaDUWwRp6BNeoMYLAAAIxGI7p27Yq77roLV155JSQe04lIAwZYItKN3W7H5s2b8eOPP2LdunXyPfwkW+Sl6cU1IImIwHfATg8RqeXs3uhx3GBXySsBAbspC9ao00BMJmw2GwAgOTkZd9xxB2677TYkJydXcC2JKFwwwBJRmTh16hQWLlyIX3/9FTk5l6aPCQnG4qowFdXUvugTwywRlRd2ldwSUjGskemwRqVDGAvln7dt2xZ33nknOnfuzGnCRKQ7BlgiKlOFhYVYtmwZ/u///g979+6Vfy7ZImEsqg5TUQ0Y7FGB74BBlojKkp6rGodBl8txbWsGbFHpQHSWPNoaHR2NPn364M4770SjRo0quJZEFM4YYImo3Bw6dAi//PILfv/9d8WoLGCwJMFUVBPG4qqQYAh8BwyzRKSnQLtI7o5FId7dshsKYI1KhzUyXb62FQBat26Nvn37onv37lxNmIjKBQMsEZW7oqIirFq1Cr/88gu2bt16+QG7CaaiFBiLq8NgjeMUYyKqOP52j7wdc0K0qyUkK2zm87BGnoU9Ilv+eZUqVdCnTx/ceuutaNiwYcVVkIgqJQZYIqpQp06dwq+//orFixfj/Pnz8s8lWxRMRdVhLErRfjsehlki8ofarpGaY0uIdbPkKcKRZ2EzXwQkR/0NBgOuu+469O3bF9dffz2vbSWiCsMAS0RBwWq1YsuWLfj999+xatWqy/eVBWCwxDuuly1O1raKMcAwS//f3r2HR1UeeBz/nZncSSAIEQNE7iTIRZCbgFAgctHWRwtitaxiXbXefZb1KV22XnbR0pa10mrXVR4vLZXqqitUq2JBEOUSbhEokBAId5KYCwmEJCQzc/aPmTmZyT2TCcmQ7+d55jlnznvOO++Q4Tzzm/Oe9wUa1tjXouacQ0LkK5Z7FOFzckbmyxFRINkcVlnfvn01c+ZMzZo1SwkJCW3YSgBwI8ACaHfKysr09ddf64svvtCuXbvkcrncBaYhe1VX2S9299wv28IrAIRZAF4NfR0K5FzRzr9emTJl2svkiMiXMzJfpv2iVda9e3fdeOONmjFjhgYOHMi8rQDaFQIsgHatoKBA69ev1xdffKGsrKzqAt8wW3WFDJMwCyBANb8KtfR80E6/WrlD6wU5IgrljCyQaS+3yjp16qTvfe97mjFjhkaOHCm73d6GLQWA+hFgAYSMo0ePat26ddq4caNOnjxZXRCMMEuABTom79egYJ0D2tnXKiu0RhbIGVHgN19rRESExo0bpxkzZmjixImKjIxsw5YCQNMQYAGEHNM0lZ2drQ0bNmjjxo06ceKET6EnzFZ2c3czbs49s4RYAC3RTr5SmTLlspfKGVkgZ0RhrdA6fvx4TZs2TRMmTFCnTp3asKUA0HwEWAAhreEwK9kcnWWvvEL2ym5NG82YEAsgEMH8OuU9DzWjTlNOucJL5IwokjOiSKat0iqLjIzUhAkTNHXqVF1//fXM1wogpBFgAVw2vGF248aN+uabb3TkyBG/csMRLXuV+8qszRFX/zyzhFgAzRGMr1J1nXcaqdc0Kq3A6gwvlgyXVRYdHa3rr79e06ZN0/jx4xUd3cLpyACgnSDAArhs5eTkaMuWLdq8ebPS09PldDqrC13hsld2lb3qCtmr4v3vmyXAAmiqQL9GNXaeqaNe78jBznB3aHWFnZfv73BXXnmlJk2apEmTJmnkyJGKiIgIrG0A0I4RYAF0CKWlpUpLS9PmzZu1bds2lZaWVhd6uxpXxctW2VU2Z6wMw9Z2jQUQGpr7FaqpP4751GsaVXKGF8sZflauiGK/rsGSlJKSokmTJmnixIlMeQOgQyDAAuhwHA6H9uzZo82bN2v79u3+981KkivMPRCU52GYXMUA4KOpX50CCJOm6ZIr7Lw7sIaflSus1O8qa2RkpEaNGmWF1oSEhGa/BgCEMgIsgA4vJydH27dv1/bt27Vr1y6VlZX5lRuOTu4w6+giW1UXGWJ+RKDDauhrUyCBVaZMW7mc4SVyhZ1138tqc/rt069fP40fP17jxo3T8OHDme4GQIdGgAUAHw6HQ//4xz+0fft2paWlKSsry38H05DNESubI172qi6yOToTaIGOxPdrU8CBtcI9YnBYsVzhJbW6BcfFxWnMmDEaP368xo4dy1VWAPBBgAWABhQWFmrXrl3avXu3du/erdzcXP8dTMNz/2wX2RzxntGNuX8WQDWXrUKusBI5w4vlCiuRab/oVx4eHq6hQ4dq1KhRGj9+vJKTk2W388MYANSFAAsAzXDmzBmlp6crPT1du3fvVkFBgf8OpiGbI84dah2d3VdozfC2aSyAS84aKTisRK6wc3KFnasVWO12u6655hqNGjVKo0aN0rBhw+gWDABNRIAFgACZpqlTp05ZV2e//fZbnT17ttZ+hiPGP9C6ouqfgxZASDHllCvsvFxh5+T0BNaa97Da7XYlJydbgXX48OHMywoAASLAAkCQeAPtvn37rEetEY4l9xy0js6eK7VxsjliZSis9n4A2hXvgEuusFIrtLrs/qMES1J0dLSGDh2qYcOGafjw4Ro6dKhiYmLaptEAcJkhwAJAKyouLvYLtJmZmXI4HP47mZLhivYJtHGyOTtxLy3QxlzGRU9Q9QRW+/laV1clKSEhQcOHD7ce/fv3V1gYP0oBQGsgwALAJXTx4kVlZGTowIEDysjI0MGDB2sPDCW576V1xnpGPI51B1pCLdAqTJkyjUqZYRfkspdaobXm6MCSFBERoUGDBiklJUVDhw7V8OHD1aNHjzZoNQB0TARYAGhjZ8+etcLswYMHlZGRoZKSkto7mpLhjHEHW2en6mDLIFFAk3kHWXLZvWH1glz2C5Ktqta+drtdffv21ZAhQ5SSkqKUlBSurgJAGyPAAkA7Y5qmcnJyrDB7+PBhHT58uO5QK8lwRlpXaG3OGNmcMTKcMVytRYdmypSMKk9QdQdW0xtWjdpffWw2m66++moNHDhQKSkpGjJkiAYNGqSoqKg2aD0AoD4EWAAIAaZpKj8/X4cPH1ZWVpa1PHPmTD0HeO6r9YRZd7DtJMMZTbDFZcXq/msvk8teZi1d9jLJ5qjzmOjoaA0cOFADBw7UoEGDNHDgQPXr14+pbAAgBBBgASCElZaW6siRIzp8+LCys7N17NgxHT16VKWlpXUfYAXbaHeY9V03I5jeB+2WKadMe4VctnKZ9nK57OUybd6gWntgJUkyDEM9e/ZU3759NWDAACuwJiYmymbjhxwACEUEWAC4zJimqcLCQivMHjt2rPFgK0mmTYYzWjZXlHvpCbiGM4pwi0vCP6RWh1XTXl7ngEpedrtdvXr1Up8+fdS3b1/17dtX/fr1U1JSEldVAeAyQ4AFgA7CN9ieOnVKJ0+etJY5OTlyOuu+iuU+2JDhipLhipTNGWWtG64o2ZxRkhlOwEWjTDll2i56wmmFe91WIdN+US5bRZ0DKfnq3LmzevfubT2SkpLUt29fJSUlKSIi4hK9CwBAWyLAAgDkcDiUk5PjF2y9j/z8/IbDreS+euuK9DwifJY+61zFvaxZ4dRW6bP0rl+Uy3ax0YAqSbGxsX4h1ffRuXPnS/BOAADtGQEWANAgh8Oh/Px85ebmKjc3Vzk5OcrJybHWCwoK5HK5Gq/IlCfIVodbmeEyXOGe7Z51M1wywwi77YApl0yjSrJVucOoUSXTVuVZVvqFVRmN/Mjh0alTJyUmJuqqq66q9UhMTFRsbKwMg789AKBuBFgAQItUVVUpPz/fCrP5+fm1lkVFRU0LuV6m4Q6yVrgNk2GGuYOtGSbD5bPuDbyuMEk2gm8dTLkkwyHT85DNZ73W9uqwWt/gSPWJiYlR9+7dlZCQoO7du1uPK6+80gqpcXFxrfQuAQAdAQEWANDqHA6Hzp49a4XagoICFRcXq6ioSGfPnlVxcbG1bHCgqcaYhmTaZZh291J2/+c1l7JJpk3yLA0Z1nPDtLnrs8ps1a9hheTq9caCsynT75ms56ZnXlJTpuGS5JIM0xM6635uGi7JcMo0nO6lPEvPdr8yw+E5LjB2u13x8fHq2rWr4uPjrfWuXbtaQdW7jImJCfh1AABoCgIsAKBdqays9Au0RUVFOn/+vN/j3LlzKi0t9Xve6H26l4Ip+YZav6DaDi4Mx8TEKC4uznrExsb6Lb0B1Tek0qUXANCeEGABACHPNE2Vl5fr/PnzKisrU3l5ubX0PurbXlVVpaqqKlVWVloP73Pf7a0dkG02m8LDwxUeHq6IiAhrvebziIgIxcTEKDo62u8RFRVlrXvLo6KirHDaqVMnhYWFtep7AACgtRFgAQBoApfL1ayHYRgyDEM2m816eJ/7bjcMQ3a7nXAJAEATEGABAAAAACHB1tYNAAAAAACgKQiwAAAAAICQQIAFAAAAAIQEAiwAAAAAICQQYAEAAAAAIYEACwAAAAAICQRYAAAAAEBIIMACAAAAAEICARYAAAAAEBIIsAAAAACAkECABQAAAACEBAIsAAAAACAkEGABAAAAACGBAAsAAAAACAkEWAAAAABASCDAAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEggwAIAAAAAQgIBFgAAAAAQEsLaugEA0FZM01RFRUVbNwMAmiUqKkqGYbR1MwCgTRBgAXRYFRUVmjVrVls3AwCaZe3atYqOjm7rZgBAm6ALMQAAAAAgJHAFFgAkRWy/UnIaMmyGZNispWyG5OmqZ9hs7nXDs7QZMgzP74De/TzbvcfU2uat07dM1eWm9zibT7l3u/cnx5rbDEOmtzeh4Xlucz+p3m5IhqxjTM9zSe59vHUY3vdSXV/Nct86Te8+tjrKfPf3K/PdVrMd9RxTT7kkqw31vZbf/vW0o9YxquP4WseYfu2oWZ9VrprlZvU+qt63+j2aVplRa3/TOsbwbK9eeuszZRim38fLW7/7T1ldbpN7XdZ2yeYpd5e5q7S2+Szd9VU/931I7rrdz1VdpurXshkua5t7X5ckyW5UP7cZ/mU2w/QpN2WXy3o9u+HyOc4lu+e1vOvupcs6zlufTabnWJfsfmXu/e2GKUMu2T3Pve/N/Vzu41T9eoanDrvVRk/75P63sMuUTfKsG576JLthyCZDdnmWhrfMJkOGqirtmvvAVQKAjo4ACwCSO7y63F8UZVQvfZOBIW9wrU5rhjdV+iUhT7nnKP9kY6udrgyfY+tKTw1uVz3lskKr33rNpXW44VNtzUBcs7xmnfIE6XrK6mtune1oyjFN+KcKtE6ff77GQ2+QA2zN8hplNQNs9faa9Zm1yrwhte5y02e77zazjjpNv2O8Abbmo94yK1T6BFufoGuVqbrcG/y8Ze4A67ICoLfMHQA9S8OQXd5j3OvupeEXHN11SXZD1rL6OPd6nWXWc28ANn0Cs3u9sQBbV302yROK3c/dZd79ff6GANCB0YUYAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEhgHlgAkCS7KVMu9+SPhmosrQkZa8yjWnOeVe/DrD7Gb3s9ZT4TkZr1TG5a1/bqbd7ZNeX/3PTd7t7XlCGZ8qvP9D3Gc1xt9WwzfYr85iI1fJvfwPyrRj3baxxTX3ljZQ3V2dB276LBY+qaz7WO8lptrGceWNU+zqi1f/V+hu8crz4fU1nzrvp+vOqZB1YtmwfW9Bxv1nh4y0zPXLhWmaf9LsOUDFf168jzXJ73I/9y01Nmel7bW7dU/Xq+220+r+Vdr7l0t8P939p36fK8ZZtn3eX5iNY9D6whm9zzy3rLDM92u6rnkpXk99xmrRs+9VXXZZMhu+EtM2TIUFVlXf8HAaDjIcACgKTKcd+1dRNah1ljGYAauQ6weOOnq7Ed2y1vwqdDGgCECs7YAAAAAICQYJim2YLf5QEgdJmmqYqKirZuRi0VFRW69dZbJUlr1qxRVFRUG7cIlxJ/fzT2GYiKipJh0CcCQMdEF2IAHZZhGIqOjm7rZjQoKiqq3bcRrYe/P/gMAIA/uhADAAAAAEICARYAAAAAEBIIsAAAAACAkECABQAAAACEBEYhBgAAAACEBK7AAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEgIa+sGAMDlqqysTO+++66++uor5ebmymazKSkpSdOnT9fcuXMVHh4ecN1FRUVatWqVtm7dqry8PEVGRqpfv36aPXu2vv/978swjCC+EwSqNT4Db775pt5+++1G91u1apV69+4dQKsRDBUVFfr222+VmZmpQ4cO6dChQ8rLy5Mk3Xvvvbrvvvta/BqcBwB0RARYAGgFubm5euKJJ5SbmytJioqKUlVVlTIyMpSRkaG///3vWr58ueLi4ppdd2Zmpp566imVlJRIkqKjo1VWVqa9e/dq79692rhxo5YuXdqigIyWa83PgCSFhYWpc+fO9Zbb7faA6kVwHDx4UD/72c9arX7OAwA6KgIsAASZw+HQz3/+c+Xm5qpbt27693//d40ZM0Yul0sbNmzQsmXLlJWVpSVLlug3v/lNs+ouLS3VokWLVFJSoquvvlq/+MUvlJKSoqqqKn388cd65ZVXtH37dr388stauHBhK71DNKY1PwNew4YN0+9///sgtxzBFBcXp8GDB1uPl19+WUVFRS2ul/MAgI6Me2ABIMg+//xzZWdnS5KWLFmiMWPGSJJsNptSU1P11FNPSZK2bdumXbt2Navud999V0VFRYqMjNRvfvMbpaSkSJLCw8M1Z84cq1vixx9/rJMnTwbrLaGZWvMzgNAwYsQI/e1vf9NLL72khx9+WKmpqYqIiAhK3ZwHAHRkBFgACLLPP/9ckjRq1CgNGzasVnlqaqoSExP99m2qtWvXWnX07NmzVvmcOXMUHR0tp9Opv//9781tOoKkNT8DCA2t2YWb8wCAjowACwBBVFFRoX/84x+SpOuvv77OfQzD0Pjx4yVJO3bsaHLdJ06csAaB8R5fU0xMjEaMGNHsuhE8rfkZADgPAOjouAcWAILo+PHjcrlckqR+/frVu5+3rKioSOfOnWtwMB4vb5fUxuru37+/0tLSdOzYsSa2GsHUmp8BX0ePHtWCBQt05swZ2Ww2de/eXddee61uu+02DR48OPA3gHaN8wCAjo4rsAAQRAUFBdZ6QkJCvft17969zmMaUlhY2Ky6L1y4oLKysibVjeBpzc+Ar5KSEh0/flyRkZGqrKzUyZMn9cknn+iBBx7QihUrml0fQgPnAQAdHVdgASCIfL8oRkZG1rtfVFRUnce0Rt0xMTFNqh/B0ZqfAUnq3bu3Hn74Yd1www1KTExUWFiYqqqqlJ6erhUrVigzM1MrV65UXFyc7rzzzsDeBNotzgMAOjquwAIAEEJmzpypu+66S0lJSQoLc/8OHR4ernHjxumVV16xRqR96623VFpa2pZNBQAg6AiwABBEvlc5Ll68WO9+FRUVdR7TVnUjeNry7xQZGakHH3xQklReXs4UPZchzgMAOjoCLAAEke99jfn5+fXu53vPo+8xDenWrVuz6u7UqRNfXNtAa34GmmLo0KHW+pkzZ4JWL9oHzgMAOjoCLAAEUZ8+fWSzuU+tR48erXc/b9kVV1zR5NFn+/fvX+v4unhHKe3bt2+T6kVwteZnAOA8AKCjI8ACQBBFRUVp2LBhkqS0tLQ69zFNU9u3b5ckjR07tsl1JyUlqUePHg3WXV5err179za7bgRPa34GmuLAgQPWemJiYlDrRtvjPACgoyPAAkCQzZ49W5KUnp7uFya8NmzYYHXt9O7bFIZhaNasWZKkL7/8Ujk5ObX2+eijj1ReXi673a4ZM2YE0nwEQWt9BkzTbLC8srLSmkInOjpao0ePbnLdCA2cBwB0dARYAAiy2bNnq3///jJNU08//bQ1kI7L5dKGDRu0bNkySdL48eNrBYw333xTU6ZM0ZQpU+r8YnrnnXfqiiuuUEVFhRYtWqTMzExJUlVVlVavXq033nhDknTLLbcoKSmpNd8mGtBan4E9e/boX/7lX7R27Vp999131naHw6Fdu3bpscceswLzggULFBcX15pvE404f/68iouLrYfL5ZLkHnzJd3vNaZQ4DwBA/QyzsZ9zAQDNlpOToyeffFK5ubmS3N1KXS6XKisrJUmDBg3S8uXLawWMN998U2+//bYk6b333quzC2hmZqaeeuoplZSUSHKPMFpZWSmHwyHJ3WVw6dKlioiIaK23hyZojc9Aenq6nnzySet5ZGSkoqKidOHCBevvb7PZNH/+fD3wwAOt+fbQBHfccYf192/I7NmztXjxYus55wEAqF9YWzcAAC5HiYmJevvtt/Xuu+/qq6++Um5ursLCwtSvXz+lpqZq7ty5Cg8PD6ju5ORk/fGPf9SqVau0ZcsWfffdd4qKilL//v01e/Zs3XzzzdYgQmg7rfEZ6N+/vx555BHt379f2dnZKikpUWlpqaKiotS3b1+NGDFCt9xyiwYMGNBK7wrtBecBAB0VV2ABAAAAACGBn+YAAAAAACGBAAsAAAAACAkEWAAAAABASCDAAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEgIa+sGAAAANEVFRYW+/fZbZWZm6tChQzp06JDy8vIkSffee6/uu+++Nm5h0+Xk5OhHP/pRo/vdfffdeuCBBy5BiwAgNBBgAQBASDh48KB+9rOftXUzgq5Lly6y2+11lsXExFzi1gBA+0aABQCEhN/97nf68MMPde211+rll19u6+agjcTFxWnAgAHav3+/qqqqFBsbq9LS0rZuVou8/vrrSkxMbOtmAEBIIMACwGXuwoULysrKUkZGhjIzM5WZmanTp0/LNE1J0nvvvddqX55N09Ttt9+u/Px8zZ8/Xz/96U8DqicrK0urV6+WJD344INBbGHbys7O1vbt27Vv3z5lZ2ersLBQTqfTCmkTJkzQ7NmzFRsb29ZNbRdGjBihv/3tb5KklStXasWKFSorK2vjVgEALiUCLABc5p544gllZWW1yWtnZGQoPz9fkjR58uSA63n11VfldDo1fvx4DR8+PFjNa1NPPPGEvv322zrLioqKVFRUpB07dujPf/6zFi9erHHjxl3aBrZDvt1sb7/9dr3//vsqLi5uVh3Z2dn68MMPtXv3bhUUFMhmsykxMVGTJk3SvHnzFB8fH9xGAwCCigALAJc575VWSYqNjdWgQYN0/PhxFRUVtfprf/3115KkhIQEDRkyJKA69u7dq507d0qS5s+fH7S2tTVvsI+Li9PkyZM1cuRI9ezZU5GRkcrJydFnn32mrVu3qqioSIsXL9aLL76oa6+9to1b3X5ER0dr7ty5euONNyRJVVVVjR6zatUqvf7663K5XJKkqKgoORwOZWdnKzs7W59++ql+/etfa/Dgwa3adgBA4AiwAHCZu/nmmxUfH6/k5GT17t1bhmHoiSeeuKQBdtKkSTIMI6A6/vKXv0iSEhMTL6sA17t3b91zzz1KTU1VRESEX1lycrKmTp2qd955R6+99poqKyv14osv6k9/+lMbtbZ9mjlzphVgG+tl8Mknn+h//ud/FB0drX/6p3/SzTffrG7dusnpdOrw4cN69dVXtXv3bv3bv/2bVq5ceUkHT3ruued06tQplZeXq3Pnzho8eLBSU1OVmpqqsDC+qgGAL+aBBYDL3O23364bb7xRSUlJAYfIQJw8eVLHjx+XFHj34fz8fG3dulWSNGvWrEva/ta2bNky3XTTTbXCq6/58+dr0KBBkqRjx47pyJEjl6p5ISExMVHh4eGSpMzMzHr3Kysr03//939LkpYsWaK7775b3bp1k+TulpycnKz/+q//UnJysvLz8/XJJ5+0fuN9HDx4UE6nU2FhYSoqKtK2bdv0wgsv6NFHH1VBQcElbQsAtHf8rAcAaBWbNm2S5O62PGrUqIDqWLdundXdc/r06U06xuFw6Msvv9Q333yjjIwMFRcXy+l0Kj4+Xv3799eYMWN04403WgHGa8qUKZKk2bNna/HixTpx4oQ++OAD7dixQwUFBerUqZMGDx6sH//4xxo5cqR13MWLF/XZZ59p7dq1OnXqlCoqKtSzZ0/NmDFD8+bNU2RkZEDv3eu6666zri6ePHlSAwYMCLiuY8eOac2aNdqzZ49ycnJUUVGh2NhYxcXFKTExUaNHj9YNN9ygq6++OqD6HQ6HvvjiC23YsEHZ2dkqKSmRYRjq3Lmz4uPjNWTIEI0ZM0aTJk2ygqdXzX//Y8eO6aOPPtLOnTtVUFCg8vJyvfDCC7V+DImOjlZVVZVKSkqUkZGhlJSUWu366quvVFpaqkGDBtV7L3FYWJhSU1OVmZmpHTt26I477gjo36CpIiIidNttt2n69OkaPHiwdcX35MmTev/997VmzRodPHhQixYt0muvvcaVWADw4GwIAGgV3u7DEyZMCPjL95YtWyS57xPt06dPo/sfPnxYzzzzjE6dOlWrLD8/X/n5+UpLS9ORI0e0ePHieuvZuHGjfvnLX6qiosLadvHiRW3btk1paWl66qmndMstt6igoECLFy9WRkaG3/FHjx7V66+/rm3btunFF19sUYh1OBzWus0WeMepNWvWaPny5XI6nX7bS0pKVFJSolOnTmnHjh06cuSInn766WbXX1xcrH/913+tsyuv998+KytLf/3rX7Vq1Sr17t273ro+++wzvfjii6qsrGz0dX2D8JYtW+oMsPv27ZMkHT9+XLfddlu9dV28eFGSlJub67c9JydHP/rRjxptS31+/OMf66GHHvLb1q1bNy1cuLDWvklJSVq4cKF69eqlP/zhD8rKytLatWv1/e9/P+DXB4DLCQEWABB0BQUFOnjwoKTAuw9XVlZq//79kqQhQ4Y02n04KytLjz32mMrLyyVJo0aN0syZM9WnTx+Fh4ersLBQBw4csK4M1+fIkSP68ssv1bVrVz344IPWa+/atUsrV65URUWFXnrpJY0cOVLPP/+8Dh8+rNtuu0033HCD4uPjdfr0af3pT3/SkSNHtHfvXq1atUo/+clPAvo3kKTdu3db6/369QuojuzsbCu8du7cWbfccotGjhyp+Ph4OZ1OFRYWKjMzU9u2bQu4m/by5cut8Dp69GjNnDlTiYmJ6tSpky5cuKDjx49rz549Vpfw+mRmZmrdunXq3Lmz5s2bp+HDhys8PFzHjh3TVVddVWt/3x9Hdu/erfvuu6/WPt5uuJWVlU2699sbZNvSvHnz9MEHHygvL09ff/01ARYAPAiwAICg++abb2SapiIiIjR+/PiA6jhy5Ih19TE5ObnBfR0Oh5555hkrvD755JOaO3durf0mTpyo+++/X3l5efXWlZWVpUGDBmn58uWKi4uztl9zzTXq3bu3nn32WTkcDj322GM6d+6cli1bpjFjxlj7DR48WGPHjtU999yjgoICrV69Wvfcc4/fFDBNtWnTJh09elSSO8QnJSU1uw5J2rBhg3Xl9aWXXrLuq/U1efJk3X///SopKWl2/RcvXrR+GJg8ebKef/75WkF45MiRuvXWW1VeXt7gleSjR4+qd+/eeuWVV3TFFVdY2+sbxdr3dQ4dOiSXy1Wrft9u6M8991yz3psk9ejRQ3/961+bfZxXVFRUs4+x2WwaMmSI8vLylJOTE/BrA8DlhgALAAg6b/fhMWPGKDo6OqA6fLsB+waZuqxbt06nT5+W5B51ua7w6qtHjx4Nlv/85z/3C69eU6dOVUJCgvLz83X27FnNmzfPL7x6xcbG6qabbtLKlSt19uxZHTt2rNn3rhYUFOi3v/2tJHdIe/jhh5t1vC/vVUfvNEoN6dKlS7PrP3/+vPVjw8iRIxu8ituUz8PChQsb/ZvXpaKiQgUFBbryyiv9tnvrauiHi4bYbDbmhwWAdoJRiAEAQVVaWqr09HRJgXcflqTCwkJrvXPnzg3u6w3MknTXXXcF/JqSu5tufSHPMAy/spkzZ9Zbj+9+Z86caVYbKioqtHjxYit41hw4qrkSEhIkuf82GzZsCLie+nTp0sUaTXn9+vUqKysLuK6EhIQ6fxRoKt/Pjdfw4cMlubsnh8qovi6Xy+qGn5iY2MatAYD2gwALAAiqrVu3yuFwyG63a9KkSQHX43sfYl1XQ30dOnRIkvtKW1MGe2pIY8f7tqWh0Xp992tOoKuqqtIvfvELa2CoG264Qffff3+Tj6/LzJkzrYGknn32WT366KN65513tHfvXqvbdUuEh4dr9uzZkqQDBw7ojjvu0LJly7R+/fpmh/eWjLIsyW/gLa+pU6cqNjZWDodDf/jDH2SaZr3Hu1wunT9/vkVtaIqG2iDJuv9Vcn8GAABudCEGAASV92rosGHDWtTt0vee0cZGoy0uLpZUfaWxJRq7X9G3e2xD3WF978P03oPZGIfDoaefflrbt2+XJI0bN07PPfdcQPfP+urZs6d+9atf6Ze//KXy8/O1b98+a2Reu92ulJQUTZkyRT/4wQ8a/bGgPo8//rgqKyu1du1anTt3Th9//LE+/vhjSe4fFsaNG6ebb7650SvJjV1tP3/+vN9IyjX/bSsqKlRcXKyIiAhrapq4uDg9/vjjWrp0qdavX6/S0lL95Cc/UUpKimw2m1wul06cOKFt27bpk08+0T333NPg1fVgePzxxzV27FhNnDhR/fr1swajOn36tD744AP93//9nyR3oPf+OAAAIMACAIKosrJSaWlpklrWfVhy36/pde7cuRbVFQocDoeeffZZa+qgMWPG6IUXXrC65rbU6NGj9Ze//EWbN29WWlqa9u7dq1OnTsnpdGr//v3av3+/3nnnHT3zzDP1zpXakMjISC1evFh33323vvzyS6Wnp+vgwYMqLy9XUVGRPv/8c33++eeaMmWKnn766XqnFmpsqqB//ud/rjXNja9FixZJqp5P1uumm25SZWWlfv/73ystLU1paWmKiIhQdHS0Lly44Ddd0aXw3Xff6Y033tAbb7whu92uTp06qaqqyu+K+DXXXKPnn3+eOWABwAdnRABA0OzcudP6At7SAOs7ZUpjATY+Pl55eXkhc39jTd7w6r16fd1112np0qUtmj+2LhEREZo2bZqmTZsmyX3leteuXVq7dq22bdumc+fO6emnn9aqVavUrVu3gF4jKSlJCxYs0IIFC+R0OpWVlaUtW7ZozZo1Onv2rDZt2qQVK1boscceC+Zba5Jbb71V48aN00cffaSdO3cqJydHpaWliomJUa9evTR06FBNmjRJ1113Xau35ZFHHtGuXbuUkZGhwsJC6zPeo0cPDR48WNOnT9fUqVNbfPUdAC43BFgAQNB4A9igQYNaPPCM75ynJ06caHDf5ORk5eXlqbCwUCdOnGjw3tT2pmZ4HTVqlH71q18FPbzWJT4+XqmpqUpNTdVvf/tbrV69WuXl5frmm2906623trh+b/fklJQU3XTTTVqwYIEqKiq0bt26gAPs//7v/9badtddd+n06dNKTEzUe++91+DxiYmJeuSRRwJ67WCaOnWqpk6d2tbNAICQwyBOAICgcLlc2rx5s6TgDDrTo0cPde/eXZKs0VjrM2XKFGt91apVLX7tS8XhcOi5556zwuvIkSP161//OqB5Q1vKt9uw957iYEpMTLTmsQ1krtn6FBcXW1MoDR06NGj1AgDaJwIsACAo9u3bZwUf30DZEt5Qdfz4cV24cKHe/aZPn26Fo08//VQffvhhg/UGOh9oMDkcDv3nf/6nNm3aJKl1w+tXX33VaCj13rssSb169WpW/WfOnNHOnTsb3CcnJ0fHjx+X5B5UKlgOHDhgrV9//fVBqxcA0D7RhRgALnOnTp2yRpz18s4vKkkbN270Gy04Ojo6oK6N3quIPXv2bPFUKF7Tpk3Tp59+KpfLpZ07d+p73/tenfuFhYXpP/7jP/Too4+qvLxcv/vd77Rp0ybNmjVLffr0UXh4uAoLC5WRkaGNGzcqOTnZb4CftrBkyRJt3LhRkjswPvTQQ8rJyWnwmK5du6pr167Nfq0PP/xQS5Ys0ejRozV69Gj17dtXXbp0UVVVlfLy8rRu3Trr6vlVV13V7OmP8vLytHDhQvXs2VOTJk3SkCFD1KNHD0VGRqqkpEQHDhzQ6tWrrdGk586d2+z3UJ8dO3ZIct/fO2HChKDVCwBonwiwAHCZ27dvn5YuXVpv+auvvur3/KqrrmpRgA3mnJVjxoxRQkKC8vPztXbt2noDrCQNHDhQL7/8sp555hmdOXNG6enpSk9Pr3Pf5OTkoLUxUBs2bLDWT58+rYceeqjRY+69917dd999Ab1eZWWltm7dqq1bt9a7T69evbR06dIGpwdqyJkzZ/T+++/XW26z2XTXXXfphz/8YUD11+RwOLR+/XpJ7qv+gU4BBAAIHQRYAECLHT582Lp62NLRh33Z7XbNmTNHr732mrZt26bi4uIG55YdPHiw/vznP2vt2rX6+uuvlZWVZd1v2bVrVw0YMEBjx47VjTfeGLQ2hoJnn31W27dv1549e5Sdna2ioiKrS3GXLl00cOBATZ48WTNnzgxo2p4RI0bolVde0c6dO3XgwAHl5eXp7NmzunDhgqKiotSzZ0+NGDFCP/jBD4J2dV6S9ZmQpNtvvz1o9QIA2i/DNE2zrRsBAAhtb731lt566y117dpVH330UaNzeTZHaWmp7rzzTp07d04//elPNX/+/KDVjdC2aNEibd26VaNHj9ZLL73U1s0BAFwCDOIEAGgxb/fhiRMnBjW8SlJsbKwVWt99912VlZUFtX6EpgMHDmjr1q0yDEMPPvhgWzcHAHCJEGABAC1SVVWlyZMn695779WcOXNa5TXmzp2r3r17q6SkpM55QNHxrFixQpI0a9YsDRkypI1bAwC4VOhCDAAICQcPHtTWrVsVGxurO+64o62bgzZUWlqq999/X6Zpas6cOQ3eFw0AuLwQYAEAAAAAIYEuxAAAAACAkECABQAAAACEBAIsAAAAACAkEGABAAAAACGBAAsAAAAACAkEWAAAAABASCDAAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEggwAIAAAAAQsL/A6mjhas+cilOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADX1UlEQVR4nOydd5wTRf/HP7tJrlfg6FWqgKIUhQcUBcSCBRtFKWL7iYodbKAi6qOiYi+oSFXALioqKCIqHX1AkA5HvwOu90syvz9yu2xym2TLJNnkvu/X614cl9nZyWYzM+/9ThEYYwwEQRAEQRAEQRAEYXHESBeAIAiCIAiCIAiCILRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBVwEdv/+/RAEAYIg4KabbuKRZZ3kggsukK8jQRCEP2666Sa5rti/f3+kiyMze/ZsuVyzZ8+OdHEIzrjdbvTo0QOCIGDChAmRLg4RRUj1wgUXXBDpohCEZbBqW86D+fPnQxAEZGRkIDc3l3v+YYvAzp49G0899RSeeuqpcJ0y4nz11Vfyey4oKIh0cYganE4nli9fjkceeQQDBgxAkyZNEB8fj5SUFLRt2xYjRozAV199BZfLpSvff/75BxMmTECnTp2QkpKC9PR0nHHGGXjkkUeQnZ0dondDEERdZNWqVbjpppvQvn17pKSkICUlBR06dMDtt9+OtWvXhuScM2fOxKZNm5CQkIBHH31U0zF79uzBU089hXPPPReNGzdGfHw8mjRpgu7du2P8+PH49NNP/da1+/fvx/z583Hvvffi/PPPR/v27ZGZmQmHw4H69evjnHPOwQMPPIDNmzfreh/Z2dl45JFHcMYZZyA9PR0pKSno1KkTJkyYgK1bt2rOx+VyYcGCBRg6dCiaN2+O+Ph41KtXD2eddRYmT56MAwcO6CpXIJQPh7T8/Prrr37z0pOP8ieaO9gvv/yy/D5Gjx5tKI/27dvLeRj5jpWVlWH16tV44403cNNNN6Fr166w2+2aPjN/VFdX4/3338fAgQPlvkzz5s1xxRVXYNGiRWCMac6LMYZFixbh8ssvl+/nJk2aYODAgfjggw/gdDp1le2HH37A8OHD0apVKyQkJKBhw4bo27cvZsyYgdLSUl15rV69GjfffDPatm2LpKQk1KtXDz169MAzzzyDEydO6MpLC7yvhVXJycmBw+GAIAhITk5GcXGx7jyeeeYZ+R4eP368/PeRI0eiQ4cOKCws1Nxe6IJxYN++fQwAA8DGjh2rmqZ///5ymrrC2LFj5fe8b9++oOnr4jUKN7/88gurV6+efJ0D/fTq1Yvt3r1bU77Tp09nDofDb16pqansk08+CfG7I+oKeuuWcPHRRx/J5froo48iXZyYpKSkhI0YMSJg3SUIArv33nuZy+Xidt7S0lLWuHFjBoDdc889QdM7nU42efJkFhcXF7Suzc/PV81j+PDhmupqQRDY+PHjWXV1ddByzZ8/n6WkpPjNKy4ujr3yyitB89m9ezfr1q1bwHKlpKSwuXPnBs1LC8rvlpafFStW+M1LTz7K91JaWmq4/FI+/fv3N5yHGY4dO8bsdjsDwJKSklhRUZGu43/77Tf5PXTu3NlQGYL1PQJ9Zmrs27ePnX322QHzHDRokN/vl5K8vDw2YMCAgHl1796dZWdnB82roqIiaB3Vtm1b9r///S9oXm63m91///1MEAS/eTVq1Ij9/PPPWi6ZJnhei2BYoS2/4oor5DJ88MEHuo9v27atfPy6deu8Xps7dy4DwERRZNu2beNVZMYYY3ZwoHXr1rqe8hDqGHn6Rujj8OHDyMvLAwDUq1cPgwYNQu/evdGkSRNUV1dj3bp1mDt3LoqKirB+/XpceOGFWLduHRo3buw3z3fffRcTJ04EADgcDowePRr9+/dHdXU1fvzxR3z22WcoLi7G6NGjkZGRgUsuuSQs75WIXWbPnk1DdOsgLpcL1157LX788UcAQHJyMsaNG4dzzz0Xoijir7/+wocffoj8/Hy89tprYIzhtdde43Lut99+G8eOHYPNZsOkSZMCpnU6nRg1ahQWLVoEAMjKysK1116L7t27IzMzEyUlJdi1axeWL1+O9evXB8wrKSkJPXv2RI8ePdC+fXvUq1cPgiDg8OHDWL58OZYuXQrGGN555x2UlJRg7ty5fvP67rvvMHbsWLhcLgiCgOuuuw4XX3wxHA4HVq5ciXnz5qGqqgoPPPAAUlNTceutt6rmc/ToUVxwwQU4dOgQAKBly5a4+eab0alTJ5SVlWHFihX45JNPUFJSgptuuglJSUm49tprA75PPUyYMAEDBgwImKZr165+X/vyyy81nee9997DDz/8AAAYNmwYkpKStBfSYjRq1AiXXXYZvvnmG5SVlWHx4sW45ZZbNB+vrG/HjRtnqAy+Iw1atmyJqqoqHDt2THdeBQUFuPTSS7F9+3YAwOmnn46bb74ZzZs3x+7duzFz5kwcPHgQy5cvxzXXXIOffvoJdrt6l7+qqgpXXXUVVq1aBQBo0aIFbr/9drRr1w6HDh3CrFmz8O+//2LTpk249NJLsXr1aqSlpfkt29ixY+Xvfv369XH77bfjjDPOwIkTJzB//nysW7cOe/bswSWXXIK1a9eiRYsWfvN69NFHMWPGDACe+u6WW27BOeecg5KSEnz++edYtmwZcnJy5PKfddZZuq9lKK9FNDBu3DgsWbIEgOc+1/O9WLVqFfbs2QMA6NKlC3r16uX1+g033IApU6YgOzsbU6dOxcKFC/kVnKsOB6AuRhet8GSF8GbevHnsjDPOYB9//DGrqKhQTXPo0CHWpUsX+bMbM2aM3/yOHDnCkpKSGABmt9vZsmXLaqVRPjlv0aIFKy8v5/Z+CMJKUAQ2tLz99tvy9W3evDnbtWtXrTRHjhxhnTp1ktOtXLnS9Hmrq6tZixYtGAA2ePDgoOkff/xx+fzjxo1jxcXFftMeOXLEb+R0586dfutpiZ9//pnFx8fL51uzZo1qutLSUta0aVM53ezZs2ul+emnn+QoXUpKCjt27JhqXsOGDZPzGThwICspKamV5vfff5fbhvr162uKggUi3N8tp9Ppdb1+//13U/lJ+UQqAssYY19++aVcjvPOO0/zcaWlpSw1NVVu5/3dF8EYM2YMe/bZZ9kPP/zAjh8/zhjz7ifqicDed9998nGXXHJJrX7FyZMnvaKzb775pt+8Xn31Va/IYl5entfr5eXl7OKLL5bTPPTQQ37z+uqrr+R0LVu2rBWldLlcbNy4cXKa6667zm9emzZtkiOv6enpqhHbJ598Us6rV69ezO12+81PCzyvhRas4AlVVVWsQYMGcjm0jjxkjLGbb75ZPu6ll15STfPYY48xAMxms3GJWkuQwIYQK9yYhDf5+fmaKrgtW7bIn11iYqLfoVPKRmTixIl+87v++us1NSQEEc2QwIYWpZguWbLEb7q1a9fK6fr162f6vMqOf7AhsVu2bJElcOjQoabPrYV77rlHLt+UKVNU0yg7ptdff73fvCZOnBiwc3rkyBG5U52YmMhycnL85vXiiy/KeU2ePFn/G1MQ7u/Wd999J5+vQ4cOpvOzgsBWVVWxrKwsBniGne/Zs0fTcdIwSADsiiuu4FomIwKbk5MjD81PTk72ew9u2bJFvlcbN27MnE5nrTTV1dVe1+Sff/7xe87k5GQGgMXHx7MTJ06opjvrrLPk9/Pdd9+ppikrK2MtW7aU023ZskU13dChQ+U0b731lmoat9vNzjnnHDndt99+q5pOC7yvhRas4gnKvqy/OtQXrQ92tm7dKuf9+OOPcytzyOfAKsU10M+TTz6pmrfL5WKLFi1iw4YNY61bt2aJiYksJSWFdezYkd1xxx1s8+bNAcumfDojVQ7Lly9nI0aMYK1bt5af3CpvnOrqavbDDz+wBx54gPXt25dlZWUxh8PBUlJSWPv27dnYsWMDPtVW3pCBfgJdq2CsWbOG3XbbbaxDhw4sJSWFJSUlsdNOO42NGTNG01wA38akpKSETZ8+nfXo0YNlZGSwpKQk1rlzZ/bII4/UegJVV1B2FtWe/LndbtasWTO5sjtw4IDfvFatWmXoyS8P/vzzT3bHHXew008/naWnp7P4+HjWokULNmzYsKCV/YoVK2p9R7Ozs9kDDzzAOnbsyJKSklh6ejrr06cPe+uttzTNQWOMseLiYjZjxgw2aNAg1qRJExYXF8cyMzNZz5492ZQpU1hubm7A432/K06nk3300Uds0KBBrGnTpsxms7FWrVrVOu7YsWNs4sSJ7PTTT2dJSUksMzOT9erVi7300kvyQ4pWrVoxALWOX7p0qXzOCRMmaHqfEyZMkI/5/vvvNR2jhWCNXqg+tyVLlrDLL7+cNWrUiMXHx7NWrVqxG264gf3555+MMX2d7MrKSvbBBx+wK664gjVv3pzFx8ez9PR0dsYZZ7AHHnjAb2O+fft2ObKVlpbG9u7d6/cceXl5cuRQFEUu0chIceTIEfna1qtXL+iDOKn+EgTB9FPva665Rha2QNFUxk49kRcEIWwdsnfffVe+Nrfddptqmj59+shpAkUTDxw4IHf6W7ZsWev1jz/+WM4nmKAfO3ZMTtu2bVt9b8qHcAvsddddJ5/vv//9r+n8tAhsaWkpu+yyy+S0w4YNY5WVlbXS/fPPP+z+++9n3bp1Y5mZmSwuLo41bdqUXXHFFWz+/PkB537ff//9ujvqyvmQX3zxhaZjtGJEYN977z35mFtvvTVg2oEDB8pp1fqGP/74o/z6oEGDAuZ1yy23yGk//PDDWq/v3LlTfr19+/YB85o2bVrAz6GoqEjun6elpQWcfz1v3jw5r9GjRwc8byB4XgutaBXY999/n9lsNgaANWvWTFWuzfSr/ve//8nlaNWqlaZAj/LBzpVXXhkwrfRgQ2veWrC0wO7evdvraY7ajyiKASshpcD+8ssv7K677lLNR3njXHDBBZoFVK1yDaXAVldXs9tuuy1o3sOGDWNlZWV+81E2Jnv27GGdO3f2m1erVq3qZAS5V69e8jVQG5amjNJ27do1YF4ul4ulpaXJ96zeBSSMUFJSomkRlCFDhvgtj68ILV26lGVkZPjN66KLLgo65O/7779nDRs2DFim1NRU9vXXX/vNQ/ldOXnyJOvXr5/qfavkl19+YZmZmX7PecYZZ7ADBw74FViXy8XatGnDALDMzMygQ8HLy8vl87Vs2ZLrgjp6Bdbs5+Z0OgPWa6IoshdeeEFzJ3v9+vXytfT3ExcXx959913V42fOnCmn69Onj2pkgTHvTjjPJ7+RYN26dfJ7Offcc4Omv/LKK+X0/q6jFioqKuQHBueff37AtGVlZXLacD6oU0ZN1foDhYWFXkMRg30XlVNItm7d6vWaMqr68MMPBy2bVO8DYNu3b9f3xhSEU2BPnDghR/hsNhs7cuSI6TyVfQ41Tp48yXr37i2nu+uuu2p9TtXV1eyee+5hoigGrDvOPfdcdvToUdXzbN68WU7XunXroJ3p7Oxs+d5p0KABq6qqMvT+/WFEYK+99lr5mM8++yxg2unTp8tp1UaJPfjgg/Lr/oaASnz66adyWrVRDG+88Yb8+t133x0wr/Xr18tpe/XqVev1JUuWyK9ffvnlAfPKzc2V02ZlZQVMGwie10IrWgT22WefldN07NhR9YEkj35V9+7d5bS//PJL0LIrH+x8+eWXAdMqHxz99ddfQfPWApdFnAIhLXE9efJkeXl6tQUEOnXq5PX/PXv2oHfv3vLy2P369cPll1+OVq1aweVyYePGjZg9ezby8/Mxbdo0iKIYdIue6dOnY+nSpWjcuLG8hLnT6cS6desQHx8vpysvL0dKSgoGDhyIHj16oHXr1khISMDRo0exdetWLFiwAKWlpZgzZw4yMjLw6quvep3nnnvuwdChQ/H6669jxYoVADyLITRs2NArXcuWLTVdQyWjR4+WJ0EnJCRg7Nix+M9//gObzYYNGzbgww8/RHFxMRYvXozCwkIsXbo04L6yRUVFGDJkCHbs2IGrrroKl1xyCerVq4e9e/finXfewYEDB5CdnY0xY8bgt99+013eaKWqqgq7du2S/9+qVataaf755x/59x49egTMTxRFnH322Vi5ciXcbjf+/fdfnHPOOfwK7ENlZSUGDRqENWvWAADatm2L4cOH4/TTT4fD4cDu3bsxd+5c7Ny5E9999x2GDh2KZcuWQRT976z1999/Y/r06WCM4f/+7//Qp08fxMfHY8OGDXj33XdRWlqKZcuW4dlnn8XTTz+tmsfnn3+O4cOHw+VyweFw4Morr8QFF1yARo0aoaioCCtWrMDixYtRXFyMq6++GsuWLQu6WMmoUaPw+++/o1u3bhg5ciRat26NoqIir601tm3bhssvvxxlZWUAgLPPPhujRo1C8+bNkZOTg0WLFuGPP/7A8OHD/S6PL4oibrvtNjz22GPIz8/H559/jhtvvNFvuT777DPk5+cDAG655ZaA1zaU8Pjc7rnnHsyZMwcAEBcXh7Fjx6Jfv34QRRHr1q3Dhx9+iIcffhhDhw4NWp7Vq1dj0KBBKCsrgyAIuPjiizF48GA0a9YM5eXlWL16NebNm4eysjLccccdiI+Pr7W/+G233YYff/wRn3/+OVavXo2pU6fWKvuHH36Izz77DADQu3fvqN/CjZlYKHHLli2Gj/3jjz/k702wOmvjxo210v7yyy94++23sXr1apw4cQKZmZno1q0brr/+eowdOxYOh8Nw2QBgw4YNeOeddwB4toe5+uqra6XZtm2bfP3OOuusoN/Fnj17yv2Vf/75B507d5ZfM/s5dOzY0fDxEm+//Taef/55HDx4EIBnkaxevXph6NChGD58uN/FerSyYMECVFVVAQAuueQSNGnSxHSZA3Hw4EFcfPHF+PfffwEATz75ZK3vK2MMw4YNk/uPTZo0wYgRI9CtWzckJSUhOzsbCxcuxMaNG7F27VoMHDgQ69evr7Xw1BlnnIEePXpg48aN2L9/P3799VdceOGFfss2Z84c+TMfNWqU6fuVB3r6Hj179lQ9LtJ5nXXWWbDZbHC5XPL3U9lX1ZNXVlYWWrVqhezsbBw/fhy5ubm1+tta4HkteMAYw3333YfXX38dANCrVy98//33aNCggVc6Xv2qcePGYdOmTQA8izkF+l5kZ2fLfpOVlYUhQ4YEfC+9e/eWf//xxx9NL7YFAJbcRsflcslPAuLj49nixYtV0x07dkyO0IqiqBpSV0ZgAc98oMLCwoDnX758ecDo5YkTJ+SIjyiKfoew8d5GZ+HChfLrjRo1qvVkmDHG9u/f7xXZ8DffUnlN4uLiVOdTnThxwiuvtWvXBn0P/igtLWVffvkll5+NGzcaLodWlENSunfvrppm6tSpchp/Q+CVjBkzRk4/b948ziX2xndurtoQ0aqqKq8yvfPOO7XSKCN5gCeSuHPnzlrp1q5dK897y8zMVI3mHThwQI5GtGzZ0u/w/7Vr17L09HQGeBaqUXvi7Tuy47777gsYVVFGaO+8807VtL51hb8hyNJ2ScHmcp1//vlyBOPgwYMB0+pFTwTW7Oem3D4iIyODbdiwoVaa7du3y1usSD9qUaKioiJ5SG9GRgb79ddfVd/frl275DlSycnJ8oInSvLy8ljz5s3la7xq1Sr5tR07dshzlNLS0jTPdfPHv//+y63+UnsvWsjOzpavrZ4hxEDw4XCBeO655+R8Pv3004BpZ8yYIaedMWMGu/vuuwNGBLp06RJwCLiSrVu3ytfw008/ZW+88Qa7/vrr5fsXAHvqqadUj50zZ07QPoqSJ554Qk4/bdo0v3ldffXVAfNRDiEGwJ555hlN71UNrdvodOzYUdP2JIFQjnz7/PPPTeUlIeXnW29u27bNa5j/22+/rXq8cg7zqFGjVIeUut1uecEYwH+E/M0335TTBFqk0e12e20RYva6qqE3AutyueR73mazBZ3+sXfvXjl/tWHsyj5esH5qdXW1PIzVbrfXqoMuvPBCXe9FOQ/Wt41ULvSkZcSB1N4C8GoL9MDzWmjFX1teVVXFRo4cKb920UUXqU7f4NmvOnnypDxsOzk5OeB0EWX/9/777w/6Pvfv36+53tSKJQX2888/l9O+/vrrAdPu2LFDvonU5r4oO6XJycns8OHDmt5TMPbs2eO3gZPgLbDKFeUCzadbu3atPOSlVatWqsPrlA3e008/7Tev999/X1O6YCjvEbM/WjogZsjLy2NNmjQJ2mlTDol44403guarN71Rjhw5Ig//uuaaawKmraqqYqeddhoD1Oes+IrQb7/95jevG2+8MWA6aT6ozWYLOoTkww8/lPNasGBBrdeV35UePXoElFflUKWuXbv6HW7qm6+awDLmvSCXmhQy5qmXpDRDhgwJ+F6NoFdgzXxuV111lfy62sqtEt9++63XOdU6HS+//LL8+jfffBPwPf78889y2meffVY1za+//ioPJ2zVqhXLz89nVVVVrEePHvKxPB4W+T7cMPOjd69HJZKwA4EXK1He8wBYz549DZ/zhhtukPMJtubEww8/LKft0KGD/H0fNWoUmzVrFvv444/Zo48+6rXiZatWrTSts6DM2/enW7dubNGiRX6Pfe211+S0Dz74YNBzBUq/e/du+bWkpKSA88qUwzcBcyuWfvTRR8xut7P+/fuzKVOmsDlz5rBPP/2Uvf3222zUqFEsISFBPk9qaqph2dq0aZOcT1ZWFrchs1KeSoFdvXq1vDdqXFyc32BFeXm5PDyyV69eQYeAn3feeQzwPLxSm+qRl5enqaO+cuVKudz+HmSbRa/AFhYWyunr169vOr1yWk2w+e3B0iv7qP4WZtKa/uqrr5ZfC7RgndH0avC8FlpRa8tLSkrY4MGD5b8PHz5cdboiY3z7VYx5929mzZqlmsb3wU6wdkEiMTGRAebXA5CIzJi2IMybNw8AkJaWhttuuy1g2g4dOshDlX766aeAaa+99lo0bdqUSxlPO+00eW/QtWvXcskzEPv378dff/0FwDME5tJLL/Wb9pxzzpGHB2RnZ2Pjxo1+09psNtx9991+X1cOM9i2bZveYkcdLpcLI0aMwNGjRwEAQ4YMwXXXXaeatqSkRP49ISEhaN6JiYny78XFxSZL6p/FixfLw78eeuihgGkdDgeGDx8OANi1axf279/vN+3ZZ5+N8847z+/rge4VxhgWLFgAABg4cGDQ4SPKYXDBvtd33XVXwCGBX3/9tVdam83mN+29994b8FwAcMcdd8i/f/DBB6pplH+//fbbg+YZSsx8bpWVlVi6dCkAzz6Ko0aN8pvPkCFDcPrppwcsi1S3d+jQAVdccUXAtAMGDJDra3/3QP/+/fHII48A8NR1d9xxByZPnizXeTfeeGPAMkcbyvZw/Pjx2Lt3b600OTk5GDt2rNffioqKDJ8zOztb/r1evXoB0xYUFMi/79y5EwkJCVi+fDnmzZuHcePGYeTIkXjuueewbds2nHHGGXL+jz32mOHypaamYvDgwejWrZvfNDzr6rZt28pD68rKynDjjTfKw6aVrFmzptYwWDOfQ79+/ZCdnY1ff/0VTz/9NMaMGYPrrrsO48ePx7x587Bz5055D8bi4mJ5SKFeZs2aJf8eyiGzP/zwAwYOHIi8vDykpKTgu+++w/XXX6+a9scff0Rubi4A4P777w86BFz6zhcVFcnTaJRkZmbiqquuAgCUlpbKUw184bH3K2949zt45mfVvLRihT7diRMnMGDAALnNu+uuu/Dxxx8jLi6uVtpQ9KuU97k0bcgX5d6vPXr0kOvyYGRmZgLwTBlgJqZiSIR8DqwRpA2EmzRpIm+iHQipQ5qdnY3y8nKvm0pJoE6cL0VFRViwYAG+//57bNmyBSdOnEBpaalqWmkz81Cybt06+ffBgwcHTT948GD8/PPPADyC7W/uUocOHeSbSo1mzZrJv0vz+YzQunVrLjdsqLn33nvlL3bLli29GrBoQfr+AJ5786uvvgqYXvm5/vvvv2jdurVqOuUcBjUC3Stbt25FXl4eAE+HM1iZACAlJQUFBQXyvCh/BPteb9iwQf490JwOALjggguCluvCCy9Ehw4dsHPnTsyZMwfPPPOMVyevurparvibNm0adG5IqDHzuf3vf/+TH4b0798/oPwDnkbU3+dVWFgoz0tu1KiR5nsAQMB7YOrUqfj555+xdu1aLFq0SP57mzZt8Pbbbwc9hxaeeuopS8yhfeCBB7B48WJs3boVBw8exFlnnYVx48bhnHPOgSiK+Pvvv/HBBx8gLy8Pp512miy4ZuZfS99bILjAut1ur/9PnjxZ9TuVlZWFBQsWoFu3bmCM4aOPPsILL7yAtLQ0v3k///zzeP755wF4HqwcOHAAP/74I1544QVMnz4dr7/+Ot57771a8h4KXn/9dfTu3VueP96lSxfcfPPN6NixI8rKyvDrr7/i448/RnV1NbfPoV27dgFfb9GiBZYuXYquXbvi2LFj2L59Oz777DP5AaUWKisr8fHHH8v/v/nmmw2XNxDz58/HzTffjOrqamRlZeH777/3mlPoi7JNy8/PD1p3HD58WP7933//Vb0Hb775ZixevBiAR1R959mXlZXJYhsfH48bbrghyLsiCHMcOHAAt99+O3bs2AFAfS64klD0q6T1KA4fPozffvsN+/btQ5s2bbzSGH2wU79+fRw5cgRVVVUoLS2V23ejWE5gS0pKcPLkSQDAjh07VBdkCER+fr5fgVV21AKxYsUK3HDDDTh27Jim9GaeqmpFiggCHukMhjKN8lhffCeD+6Jc3KqioiLoeaOZxx9/HG+99RYATwd72bJlAa+P8sun5dqUl5fLv6emppooaWCUUdRhw4bpOjbQQwoz94qyTJ9//jk+//xzLmUCgn+vjxw5Iv9+2mmnBUybmZmJjIwMr0iSL4Ig4Pbbb8dDDz2EnJwcLFmyBNdcc438+jfffCNHC8aNGxdU+kKNmc9Nee2CdaCDpTl48KAsOKtWrfLqlAYj0D1gt9vx8ccf46yzzpKfgkt/CyRE0UhKSgp++OEHXH311diwYQOKi4vlBT6UXHLJJbjpppswYsQIAAj4kDIYlZWVADwPiv21rRK+9VqgEVRnnHEGevfujdWrV6OyshJ//PFHwJFFSuLj49G+fXu0b98eN954I/r3748tW7bgpptuQlZWFi677DKv9Lzr6q5du2Lp0qW47rrrkJubi/379+OJJ57wSiMIAp544gkUFxdjxowZAMx9DlqoX78+7r33Xjz66KMAgO+++06XwH799ddyh7hXr17o2rUr9zJu2rQJY8aMAWMMLVu2xLJly4L2aZTtx1133aXrfP7qjosuugjNmzfHoUOHVDvqn332mVyfXHXVVbUe3mzatAkHDhzwe95+/foFrXuNwPteTklJka9RRUVFUKkIlB/PskWif8XzWhjhyiuvRGFhIQRBwFtvvYXx48cHTB+KfpXNZsOYMWPw3//+F4wxzJkzx0uizTzYUbbH0mK5ZrDcEOLCwkJTx0vRAjWCNb6AZxjlkCFDZHnt2LEj7rvvPrz11lv45JNP8OWXX8o/WVlZAGBomI5elMMTkpOTg6ZX3hiBhjZEamVUq/HMM8/gueeeA+Dp8C9fvjxoo5qRkSH/Lq2WHQjpwYzvsbwx8x0K9P0xc6+EqkxA8O+1NHLCbrdrGg6n5ft10003yeL3/vvve70m/V8QBNxyyy1B8wo1Zj435ZAq39U81Qh07czcA9XV1QFfb9CggVcH87TTTgu6imS00rx5c6xZswbz58/H5ZdfjsaNGyMuLg7169fHgAEDMH/+fHz//fdew1ql6S5GkO5zl8ulOlRWibJea9GiRdCVQJWfkTQkTS+ZmZlekfapU6cGLBevuvq8887Dzp078cILL6Bfv36oV68eHA4HmjZtiuHDh2PVqlWYOnWqV15mPgetKKON27dv13XsRx99JP8equiry+WSR2NVVFT4XfVdSSjaD1EUMWbMGACeoZhz5871ej1YlOn111/H1Vdf7fcnVCvTpqSkyMNACwoKgl6/YPeynu+G0+mUAzYOh6NWfc/zexaJ/hXPa2EE6bNkjPkd8akkVP0q5WiEuXPneo2eVD7YGTp0qK6HcsryavGxYFguAqsUr/PPPx8rV64M6/n/+9//yk9VHn/8cUybNs3vNjTB5ufyRPl0R8uNrex4hjLap5WysrKgcxm10rJlS3Tv3p1LXgDw4osvYsqUKQA8naFly5ZpevKsFNxAc0cllHPJtETRjSJ9hwRBgNPptMRDCuX3+oknnlDtZIYKqWFxOp2orq4OKrFavl/169fHddddhwULFuCnn37CgQMH0LJlS2RnZ2PZsmUAgEGDBtUaehNtKD+3YPICBL52yrzGjBnjd36NEe68806v79fOnTsxefJkvPDCC1zy3759u24Z8AePyIzNZsONN94YcBsn5XxmaW6kEZQPBvLy8gI+yFBuEZOenh40b2UaM52xvn37IjU1FcXFxVi/fj1KS0u9OpShqqvT09MxadIkTJo0yW8aXp+DVurXry//HmgkiS+HDx+W2+jExESMHDmSd9EAeK7B5ZdfjokTJyI3NxcXXnghVqxY4bVVkS/KumPv3r3c6tWbbrpJfnA9d+5cPPHEExAEQd5eB/CM8Lnooou4nI8Hoiiibdu22LFjB1wuFw4dOuR32g8Q/F7u0KED9u3bB8Dz3QiU16FDh+SATbt27Wr1jTt06CBvrRLse+Z0OuWh3snJybVGUkWif8XzWhhh8eLFGDduHHJzczFx4kQAgdcxCVW/qkOHDujbty/++OMP7Nu3D7/99hv69+8PwNy8cGl0R1xcHBfht5zApqenIyUlBSUlJWGZW+rL8uXLAQANGzbE008/7femLC4u9pobFGqU+7Ap9yf1hzINr4WrzJCbm6t7OLg/xo4dy21u6owZM/Dwww8D8Nx7evanUkpuoIWyAM/cMGkRLlEUgy52Y4ZmzZrh77//BmMMhw8fRosWLUJ2Lj1lkgj397pp06by3Mu9e/cG3IcxPz9fc6fvjjvuwIIFC+B2uzFr1iw89dRTmDVrljxMNtKLN/FAWXfs3r07aPpAaUJ1DyxYsEBeyKJHjx44ceIEsrOz8dJLL+Hiiy8Ouo+wFhYuXMitc7BixQpNc63Nonz4q2f9B19at26NP/74A4CnA9K8eXO/ac8880z5dy1CqkyjRXj9IQgCkpOTUVxcDMYYioqKvDpInTt3hiiKcLvd+Pvvv+F2uwM+2FPOmzczjDY/P1+ue5KTk3H22WcbzksrRiNRc+bMkeuua665xtTnEYyHHnoIgiDgoYcekiX2l19+QZcuXVTT+9YdvAS2ffv26NevH37//Xfs3btX7qgr934dM2aM6jSQ2bNnR2yNjK5du8rzJDdu3BhQtILdy127dsWPP/4o5xWobtKSl8TGjRtrzStW8vfff8sC2Llz51p9bT39q+PHj8sCm5WVZWgPWOmcvK6FETp37owVK1ZgwIAByMnJCSqxoexXjRs3Tq73Z8+ejf79+3s92GnevLnuBzuSM7Vs2ZKL8IctNKNsLIIt5nP++ecD8HQ2tXSaeJKTkwPAswBIoAZu+fLltRas8EXPew6GchEmKcITCGW0M9jm83WVt956Cw888AAAT5R66dKlup6Qd+nSRe7Mbd26NWAF8ueff8rDTaRoQaiQnpQBwVfwDRdnn322PP/h559/Dvrd4YlycRDp6bA/pMpZC/369ZM7XLNmzUJ1dbW8gmfDhg3lVS6jmW7dusmrH65cuTLodAlp4Tg1GjRoIEdZ1qxZw2XtgH379uHOO+8E4BGETz75BPPnz4fNZoPb7caYMWO8OvR1ha1bt2L9+vUAPFHRfv36Gc5L2TmTOs3+6NSpkywXBw8elOeC+0PZMTUzKqWwsBDHjx8H4JFZZRQS8My9khYzKywsVF2ZVuLgwYNy1LRly5YBI4PB+Pjjj+WhejfeeKOmlU3NonxwoeeaKmUsVMOHlTz44IN4+eWXAXgecA8YMABbt25VTRvKNs131VXf4cSBJCxSXHzxxfLvknD5Q7kQ6iWXXBI1eV1wwQXy9IXffvvNa76pL8pzqeWlFZ7lN4oksY0aNQIATJw4EdOnT1dNG8p+1bBhw+TRNp999hlKS0trPdjRM7pv//798lxm5YNOU/DYi0fLPrBXXHGF5v2SFi1aJKcdOXKkqbIp9+/TssdWRkaGvP+Zv42JnU4n69mzp9c+dmpI+zNB455YwfaB7d69u/z6Tz/95Def9evXe+2NGGgfWN9NxdXQkzZamDlzprxXbnJysuGNr5V7u06aNMlvOuXeWm+++abRYmviwIED8j6w7du3ZyUlJYbzUu4n+uSTT5pKO378ePn19957z3CZGNO3rzTvfWCVvP7663L6O++8U/594sSJet6ObvTsA2v2cxs6dKj8+ty5c/3m8/3338vpAPV9YF944QX59UcffTTIuwyM0+lkffr0kfP78MMP5demTJki/33o0KGmzhNtOJ1ONmDAAPn9v//++6by++WXX+S8tOyh+uijj8rpn3nmGb/pNm/eLNfBKSkprLS01HAZX3nlFfmc/va8Ve7tOmzYML95TZw4UU5nZt/WnJwclpWVxQAwh8PBtm3bZjgvrZw8edJrD3N/ez368ttvv8nHtGnTxm/fxwz++hHKz65hw4bsn3/+qXVsSUmJvHdwvXr12JEjR7iVq7i4mCUnJzPAs3+ush7r27cvt/P4Q+8+sIwxlpubK7fxKSkpLCcnRzXdli1b5O9Y48aNVdu+6upq+T4VBEH1+jPmuZ+l65SQkMBOnDihmk65t+v333+vmqa8vJy1bNkyaP9Yubfr22+/rZrG7Xazc889V04XaH/sYPC+Flrw15Zv27aNNW7cWH7txRdfVD2eZ7/KlzFjxsh5z549m5122mny/3fu3Kkrr4ULF8rHvvDCC1zKFzaBveeee+Q0K1euDJify+VivXr1ktPfe++9fjfxZYyxsrIy9tFHH7FPPvmk1mt6Bfaiiy6S07/yyiu1Xq+qqmLjxo3z6qj56+gqK+Y5c+YEPXewTrlS7Js0acL+/fffWmmys7O9Nhj2J0t1WWDnzJkjV+pJSUmaGw01Dh8+zJKSkhgAZrfb2fLly2ul+eijj+Rr2KJFC9WN1Xnz4IMPyue88MIL2dGjR/2mdblcbNmyZWzatGm1XuMpQgcPHpQfEMXHxwf9TuTk5LCnn36a/e9//6v1mh6BZYyxfv36eYmmy+WqlUZZV2gV2IKCAvnzV/7ordz1Ek6BXbVqlfx6Zmam6mbpO3fu9Oo4+xPYkpIS1qpVK7mD8OKLL6p+FhIFBQXstddeY8uWLav1mlJSr7vuOq/XqqurveSWd8MeSVatWuX3IUxhYSEbMWKE13ffrIxUVFTInbXzzjsvaPoTJ07I3/OEhATV+jU3N5edccYZcjnVHv798ccfbObMmUHrywULFrD4+PiA9x1jjJWWlrKmTZt6dch8WbZsGbPb7bIYHDt2TDWvsrIytnbtWr9l2r17NzvzzDPlcz311FMB34Pye6P2ff7zzz/Z+++/zyoqKvzmcfDgQXbOOefI+bRv355VV1cHPK/ETTfdJB83depUTcfoJVA/YsaMGfLrWVlZquLwxhtvyGnOPPPMoHXsmjVrND9IVNanynrsgw8+0HS8GYwILGOM3XffffJxl156aa3vSV5enpdMBnpw/uqrr8rpunfvzvLy8rxeLy8vZ5dccomcJtCDna+++sqrDc3OzvZ63eVysZtvvtlv3a1k06ZNcl8tPT1dtS/w1FNPyXn16tXLb17KfligvizPa6GFQG35v//+6yWxauLHs1/li7JvoPxe9OvXT9d7ZMw72PP333/rPl6NsAns119/Ladp164de+utt9i3337Lli5dypYuXcp27drllf7AgQOsWbNmXhfvnnvuYR9++CH77LPP2OzZs9nTTz/NrrzySrlxVeuA6xXYb775xqsxufLKK9lbb73FFi5cyKZNm8bat28vdwyaN28esKP7v//9T86nUaNG7KWXXmJLliyR3/PmzZu90mvplCs7J4mJiWz8+PFs7ty5bMGCBez+++9naWlp8uuDBw/223mpqwL7/fffM5vNJr+nu+++m3355ZdBf3wrYSXvvPOOnJ/D4WC33HILmzt3Lps1axa7/vrr5QrYbrezpUuXBixfsI6MVqqqqtjAgQO97pVRo0axt956iy1evJjNnz+fvfTSS2z06NFyBTlw4MBa+fAUIcYY++GHH+QnxwBYt27d2JQpU9jcuXPZp59+yj744AM2adIkdv7558ufk1p0XK/Abt261Us0zz77bPbyyy+zRYsWsddff5317duXAWB9+vSR6502bdpoytv3gdYFF1yg6TgzhFNgGWNe0eX4+Hh2++23s7lz57L58+eze+65R66DldFafyLx119/edVTbdu2ZZMmTWKzZ89mn332GZs1axabPHkyGzx4sHyvzJs3zyuPVatWyfdH8+bNa3UyGGNs79698nmSkpLY9u3bA16HaKFLly6sSZMm7NZbb2Vvv/02+/TTT9mHH37IJkyYwBo2bChf165du/qNzOjl2muvleuRYCOoGGPsk08+kes9m83GRo8eLT9kfuyxx+Qoh1QHlJWV1crjyy+/ZIAnKnbttdeyZ599ls2ZM0du/x977DHWrVs3r+/eddddF1DYv/32W/m+EQSBXX/99WzWrFls7ty57JZbbmEOh0POK1Dk+vjx4wwA69KlC3vwwQfZrFmz2KeffsreeecdNnLkSJaQkCDnM3LkyICjPhgLXu9L1yItLY1df/317Pnnn2fz5s1jn376KXv33XfZ6NGjWWJiopxHamoq27RpU8BzSigjkKIoBmzrzBCsH6EUh6ysLNWonDIiZLfb2TXXXMNeffVVtmjRIvbxxx+z1157jd16662sTZs2ct2ihV9//dXrM5DqjKKiIjNvuRY///wze/zxx71+lA86Ro0aVev1/Px81bzy8/NZp06d5GNPP/109vLLL7OFCxeyZ555hrVo0cKrTaqqqvJbrsrKSnbeeefJ6Vu0aMGeeeYZtnDhQvbSSy+x008/XX6tc+fOrKCgIOD7HD58uJy+fv367LHHHmOffPIJe/PNN70esjRp0oQdOHAgYF4PP/ywnD45OZnde++9bMGCBey9995jgwcPll9LSUlRfbgqoVVgeV+LYARry7dv3+4lj2oSy6tf5Yvb7Za/S8of5WgnrZx11lkMAGvdurXuY/0RNoF1Op1eURDfH7WO05EjR7w64YF+bDabaoOjV2AZ8x4CpfbTt29flpubK0cSAkVqRo4c6Tcf32ulpVNeXV3Nbr311qDX47rrrlPtFEho+SIbSWt1fKNsWn/8dcYlpk+f7tX58f1JTU1VHSHgS7COjB4qKyvZ3Xff7SXsgX7GjBlTKw/eIsQYY6tXr/YaihLoJyUlpdaDHsb0CyxjnqGQ0pNKtZ+uXbt6PTg788wzNeW7du1ar3y0DtszQ7gF1ul0stGjR/u9dqIoshdffNGrkxDoO7N9+3av6ECgn/j4eK8HP/n5+XLdK4piwHp9/vz5cj5nn312wJE80UKXLl2CXrNrr72WHT9+nNs5lVGVQMPIlXz00UeyGPn76d+/v99yStKm5ScuLo49/vjjmiKO8+fPZykpKQHzUht9pUQS2GBlmjx5csARBhLB6n0916Jr166aoisSH374oXzsRRddpPk4vSg/c38oh3mrSazb7WbTpk3zirgHu7+04Ha7a7VJau2hWYz0PwL1A/bt2xe0Hh00aJBfCVaSl5fnNfVA7ad79+6aHnBUVFR4BVvUftq2bavpPnW73ey+++6TH4ip/TRs2JD9/PPPAfPRKrC8r0UwgrXljNWW2Oeff75WGh79KjWmTp3qdWxycrKmh5hKtm3bJh8/efJkXccGImwCy5gn9P7888+zPn36sMzMTK+OdaBO1q+//sr+7//+j3Xp0oVlZGQwm83G0tLSWOfOndnw4cPZO++843dOhBGBZYyxpUuXsiFDhrAGDRowh8PBmjRpwgYMGMDef/99uZHUIrBOp5O988477IILLmANGjSQhyepXSs9nfLVq1ezW265hbVr144lJyezxMRE1qZNGzZq1KigX2TGSGD1/gQTWMY8803uuusu1qFDB5acnMxSU1NZ165d2cMPP8z2798f9PjS0lKvzs/Jkyc5vGPGdu3axR555BF27rnnsqysLGa321lSUhJr06YNu+yyy9hzzz3ntzILhcAy5nkQM3/+fDZs2DDWpk0blpKSwux2O6tXrx7r2bMnu+2229iiRYv8zt81IrCMMXbs2DH20EMPsY4dO7LExESWkZHBevbsyV566SVWWlrK3G63HMnQGkl1u90sPT2dAZ75WYGG+fEi3AIrsWTJEjZkyBCWlZXF4uPjWcuWLdnIkSPZn3/+yRhjmgWWMc91+/rrr9nYsWNZhw4dWFpaGrPZbCwjI4N169aNjRkzhs2ePbtWdFX5dP+RRx4JeA7GGLvxxhvl9FrmcFqdlStXsocffpj17duXtWjRgsXHx7P09HR2+umns/Hjx7Pff/+d+zmdTqc8Z02P5Ozfv589+uij7Mwzz2QZGRksLi6ONWvWjF1zzTXsiy++CBgtdTqd7Pfff2dTp05lQ4YMYe3atWMpKSlMFEWWkpLCWrVqxYYMGcKmT5/ODh8+rOv97N+/n02aNIl16dKFpaamsuTkZNahQwd21113+Z335lu2RYsWsf/7v/9jZ511FmvUqBFzOBwsKyuL9ezZk02ZMoXt3r1bc3mCCUtxcTH7+uuv2SOPPMIGDBjAOnTowOrVq8fsdjvLyMhgp59+Ohs7diz75ptvNAmzEmVgQctDVqNo7Uco1xXwF4k9cuQIe/rpp1n//v1Z48aNWVxcHEtISGDNmzdngwYNYlOmTGGrV6/WVb6nn37a63MwM7XIH7wFljHPaKuZM2eyAQMGsEaNGrG4uDjWtGlTNmTIELZw4UJdUwjcbjdbuHAhGzJkCGvatCmLi4tjjRo1YgMGDGAzZ87UPCRdYunSpez666+X66kGDRqwPn36sFdeeUX32hx//vknu+mmm9hpp53GEhISWEZGBuvevTt7+umnNT2s0yOwjPG/Fv7QIrCMMbZjxw6vKRBqEmu2X6XG/v375TV1gjmePx577DEGeAKNPEd4CIyZXB6XIAgu/Pjjj/Jqdvfccw9ee+21CJeo7rFlyxZ5hTytn8Hy5cvl5eTvvfdevPrqq6EsIkFEhBkzZuCBBx6AzWbD/v37A26nQxAEQRAulwvt2rXD/v37MXz4cCxcuJBb3mHbRocgiMBIexCnpqZi8uTJES5N3eTNN9+Uf7/wwgs1HfPOO+/Iv8fC3q8EocYdd9yBxo0bw+Vy4cUXX4x0cQiCIAiL88knn2D//v0QRRFPPvkk17xJYAnCIkgC+8ADDyArKyvCpYk9Vq1aFXCftLfeegszZ84E4Nkg/PLLLw+a599//42vvvoKADBo0CBTe0YShJVJTEzEU089BQCYOXMmjhw5EtkCEQRBEJbF5XLhmWeeAeDZT/n000/nmj8NISYIC3DixAk0bNgQDRo0wJ49e5CamhrpIsUc7dq1Q0VFBS699FKcffbZyMrKQnV1Nfbs2YMvv/wSf/31l5x2yZIlfgX2hx9+gNvtxs6dO/Hiiy/i6NGjAIDff/8dffv2Dct7IYhI4Ha70atXL2zatAl333033njjjUgXiSAIgrAg8+fPx+jRo5Geno6dO3eiYcOGXPMngSUIok7Qrl077NmzJ2CaxMREvP/++7jxxhv9phEEodbftM6X/emnn1BWVha8sCo0aNAA/fr1M3QsQRAEQRBErEACSxBEnWDNmjX4/PPPsWbNGhw+fBgnT55EWVkZMjMz0aFDBwwaNAjjx49Ho0aNAuYjCWxKSgo6dOiA8ePH4+abb4YoBp+R0bp1a2RnZxsqf//+/fHrr78aOpYgCIIgCCJWsEe6AARBEOGgd+/e6N27t+l86JkfQRAEQRBE5KAILEEQBEEQBEEQBBEV0CrEBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAizgRBEEQMQVjDBUVFSgrK5N/ysvLa/2/qqoKlZWVqKqqkn98/y/9OJ1OuN1uuFwu+cftdst/U74mIYoiBEEI+COKIhwOB+x2OxwOh/xjt9sRFxcn/136f3x8PBISEpCYmOj1r9rvycnJSElJQVxcXAQ/DYIgCILgCwksQRAEYUnKy8tRVFSEwsJCFBcXo6ioCEVFRX5/LykpkUXV7XZHuviWIS4uDikpKUhJSUFqaqr8u/InNTUVGRkZXj8pKSmatociCIIgiHBCqxATBEEQYaO0tBR5eXnIy8tDfn5+rX+Vv1dUVJg+X1JSktdPYmKi/O+KT9dDcAsAEwEmnPrdLUBgAuCu+TsTACYADAC8/xWk/zNB8VoNgvQLC/h/JjBA8VPr/6LyNRcgunHpuPNQUVGBiooKlJeX1/pdEnkz2Gw2pKWleUlteno6MjMz0aBBAzRo0AD169dHgwYNkJGRQbJLEARBhAUSWIIgCMI0jDGUlJQgNzcXubm5OH78uPyj/L9eqXI4HEhLS0NaWhpSU1ORlpaG1Uu2QHDZILhEwGWr+d0GuEQIbhFwK/49ZY2xDasdcWZggOgGs7kBmwvM5gYTT/0O0Y2hdw9ASUkJCgsLUVhYiIKCAhQUFKC0tFTX6W02G+rVq+cltfXr10dWVhYaNWqERo0aoWHDhjScmSAIgjANCSxBEAQRFMYYioqKcPToUdWf48ePa46YJiYmol69esjMzMS/f+6H4LQDThsEp73mp+Z3l90TDa0rEsobFanVfKjgBrO5ALsbzOYEs7vAbC4wuwuX3tIXJ0+exIkTJ3DixAnk5+dDa1eifv36aNy4MRo2bIjGjRujUaNG8r9NmjRBUlKS4TITBEEQdQMSWIIgCAIA4HK5kJubi4MHD+LgwYM4cuSIl6RqiZ6mp6ejYcOGyMrKwrpvt0GotkOodniEtNoOwenwREeJ8GNCaANmCwZmd4I5XJ5/7U7c8NilOHHiBI4fP45jx44hJycHlZWVQfPKzMxEs2bN0KxZMzRv3hzNmzeX/5+amhqS8hMEQRDRBQksQRBEHaOgoECWVOXP4cOHUVVVFfDY+vXro0mTJvj392wI1XEQqxwQqhynJJWRnEYNIRJa1VOBATYX3A4nWFw1mMOJK+8+Hzk5OcjJycGxY8dQXFwcMI/09HQvuW3VqhVat26N5s2b09BkgiCIOgQJLEEQRAzCGENeXh7279+PvXv3yv8ePHgQRUVFfo9zOBxy5Gv1F/9AqHYoJLVGUAWS1JgkjEKrenrRBRZXDXdcNcZOuxyHDx/GoUOHcPjwYZw8edLvcTabDU2bNkWrVq1kqW3VqhVatmxJQ5IJgiBiEBJYgiCIKKeoqMhLUvfv3499+/ahsLDQ7zGNGjVCixYt8PePuyBUxkGsioNQGeeRVH9zTklc6w4RlllfmOiukdsqjHv2Shw8eBDZ2dnIzs5GSUmJ3+MaNWqE1q1bo127dmjXrh3atm2L5s2bw26nXQQJgiCiFRJYgiCIKIExhmPHjmHXrl1eP8ePH1dNL4oimjZtiqNbCzySWhEPsTLOE03VM9SXxLVuYzGZVeKZf+sCi6+CO74SQ+7si+zsbOzfvx/5+fmqx8TFxaFNmzZo27Yt2rZtK8stzbElCIKIDkhgCYIgLIjL5cLBgwexc+dO7Ny5E7t27cLu3bv9zhNs3LgxcncWQ6yMg1gZD7GiJqJqZk4qiSvhi4Vl1hdmc8FdI7aX3dkHu3fvxt69e1FeXq6avmHDhujQoQM6duyI008/HR07dkR6enqYS00QBEEEgwSWIAgiwjDGkJOTg23btuHff//Fv//+ix07dqiu2mq329GmTRvsXZcDsTweYkWCR1bdNn4FInElghFFIquEgXmGIidU4oYnLsbu3buxe/duHDt2TDV9kyZN0KlTJ3Ts2BGdOnVChw4dkJKSEuZSEwRBEEpIYAmCIMJMSUkJtm/fjm3btmHbtm3Yvn078vLyaqVLTExE27ZtsX3lQY+olsebj6oGgsSVMEKUyqwSJrrgTqjEba8Mxfbt27F9+3YcOnRINW3Lli3RqVMndO3aFV27dkWbNm1gs3F8gEQQBEEEhASWIAgihDDGcPjwYWzevBmbN2/GP//8gwMHDtRKZ7PZ0LZtW+xdnQOxPAFieYJHVv0tqMQTEleCBzEgskqY6II7sRI3PT8E27dvx44dO1QjtUlJSejcubMstJ07d6YoLUEQRAghgSUIguCIy+XC7t27sWXLFlla1aKrjRs3xvHtpbKsiuXxkdlDleSV4E2MiawSZnPCnViJkU9dhH/++Qfbtm1DWVmZVxpBENCmTRtZaM866yw0btw4QiUmCIKIPUhgCYIgTFBVVYVt27bhf//7HzZv3oytW7fW6tDa7XZ06tQJ21cchliWCFtZAgRXhLfxIHElQk0Mi6wEAwOLr8Kd71yLf/75B//88w+OHDlSK13jxo1x9tln46yzzsLZZ59NQksQBGECEliCIAgduFwu7Nq1Cxs3bsSmTZuwefPmWostJScno/wYg60sEWJpomc4cCSiq2qQuBLhpg6IrBJmd8KVWI5rHu6PzZs3Y8eOHXC5XF5pSGgJgiCMQwJLEAQRAMYYsrOzZWH966+/UFJS4pUmMzMTRfurIZYmwlaWCKEiPjxzV/VC8kpEkjomshJMdMOdVI7rHr8Af//9N7Zv364qtD179kSvXr3Qo0cPpKWlRai0BEEQ1ocEliAIwoeCggKsW7cO69atw4YNG2rNYU1OTkbFUUAsTYKtJCl8iy0ZhcSVsBJ1VGQlggmtKIro1KkTevXqhV69eqFz586w2yM85YAgCMJCkMASBFHncblc2L59O9auXYs1a9Zgx44dUFaNcXFxcObZYStJOjUk2MrCqoTklbASsSCvbkW3STRfD0hCe+XE/2D9+vXYv3+/1+vJycno3r27LLTNmjUzfU6CIIhohgSWIIg6SV5eHtatW4e1a9di/fr1KCoq8nq9Xbt22P/nSdhKkyGWWWgOq1ZIXAmrEQvyKuH203XiILRuWxXumzMC69evx4YNG1BYWOj1eosWLfCf//wHffv2RdeuXSk6SxBEnYMEliCIOgFjDPv27cPvv/+O33//Hdu3b/d6PSUlBeWHAFtxEsTiZIhOO5fOaEQgeSWsRizJqxJ/IithtA6pyZeBwZ1YiTEvXoL169djy5YtXsONU1JS0Lt3b/Tp0we9e/dGamqqsfMRBEFEESSwBEHELC6XC//88w9WrVqFP/74A4cPH/Z6vX379tj3+wnYimuirMphwdEorySuhBWJVXmVCCaxSvTUKyr5MtGFRz4fiz///BNr1qzxis7abDacccYZ6NOnD/r164cWLVpoPxdBEEQUQQJLEERMUVFRgfXr1+OPP/7AH3/84dXBi4uLg/OEHfaiFNiKkiE4/Qy9I3klCH7EusAC+iRWQks9EyBfBgZ3UgWue7I//vzzT+zbt8/r9TZt2qB///7o378/TjvtNAhCFNZrBEEQKpDAEgQR9ZSXl2PNmjX45ZdfsGbNGq99WVNTU1F2ALAVJsNWkgzBrUH0ok1gSV4Jq1IX5FXCiMQqUat3dOTpdlTj/969Cn/88Qf+/vtvOJ1O+bXmzZvjggsuQP/+/dGhQweSWYIgohoSWIIgopKKigqsWbMGK1aswOrVq1FRUSG/1rhxY5z4pwK2wmSIpYn6VgwmeSUIPtQleZUwK7ESynrIQJ7M5sL9C0Zg5cqVWL9+PaqqquTXGjduLEdmO3fuDFGkOoQgiOiCBJYgiKihsrIS69atw4oVK/DHH3+gvLxcfq1p06bI/bsc9sIUCOXxxra5iSZ5JXElrExdlFcJXhIrIQqm8mSiG5M+HYWVK1dizZo1Xg/7GjVqhIEDB+Kiiy5C27ZteZSWIAgi5JDAEgRhaVwuFzZt2oSffvoJq1atQllZmfxa48aNcWJzpTlpVcJTYN0sdEJM8kpEAySxloMJbjz21U1YuXIl/vzzT6/6tE2bNrjoooswaNAgNG7cOIKlJAiCCAwJLEEQlmTPnj346aefsGzZMpw4cUL+e8OGDZG3tQq2glSIPKRViVnhVHZaSV4JwkNdFVmLSqwEE9x49MuxWLZsGdasWYPq6mr5tTPOOAMXXXQRLrjgAmRkZESukARBECqQwBIEYRlOnjyJ5cuX46effsKuXbvkv6empqJ8n+iRVt/tbnhhcr9GLnkFg+SViGbqoshaXGIlmM2FCXOuw7Jly/D3339D6hrabDace+65uOyyy9CnTx84HI4Il5QgCIIEliCICFNZWYlVq1bhxx9/xPr16+F2ezq5drsd7GQ8bPlpsBUnQWAhlDe9whmoUxoKeSVxJWIFkljL47Y7cfObl2L58uXYuXOn/PeMjAwMHjwYl112GU477bQIlpAgiLoOCSxBEBFh3759WLJkCX766ScUFRXJfxdLE2DLT4W9MBWCyxb6gmgVTi2dUJJXgtBGXRPZKJNYCXd8Fa6Z2hc//PAD8vLy5L936tQJl112GQYOHIjU1NQIlpAgiLoICSxBEGGjvLwcK1aswJIlS7B161b57w0bNkTeFifs+akQq+LCV6Bgwqmn00nyShD6IImNGhgYnvz+Vnz33Xf4888/4XK5AABxcXE4//zzMWTIEHTv3p32lyUIIiyQwBIEEXJ27tyJb7/9FsuWLUNpaSkAz9wq5CXAnpcOsTgpNPNag6EmnUY6mSSvBGGcuiSyUSyxEszmxC3vDMF3332Hffv2yX9v2bIlhg4diosvvpiisgRBhBQSWIIgQkJVVRV++eUXfPHFF9i+fbv896ZNm+L4xkrY89MgOO2RK6BSOs12KnkLLMkrUdeoKxIbAwIrwcDw6uqJ+O6777Bs2TJ5X+6EhAQMGjQIQ4cORYcOHSJcSoIgYhESWIIguHL8+HF8/fXX+Oabb1BQUAAAcDgccB+P90RbSxIjE21VIgr8OpIkrwTBB5LYqIWJboyfdRW+/PJLr6hsly5dMHToUFxwwQWIj4+PYAkJgoglSGAJgjANYwxbtmzB559/jt9++02eH5WVlYWCzW7Y89IguPRHW6Xqiee8KsYY33laPAWW5JWo61hZYt2Mz/eds8DyrtPM5MfA8OLKe/HVV19h5cqVcDqdAID09HRcccUVuOaaa9CgQQNuZSUIom5CAksQhGEqKyuxfPlyfPHFF177toolCbCfzICtMMVQtNW3WjLbOVPmR/JKEBbFyvIqoZRPM9//EEishFXqS2Z3YtSMQfj666+Rm5sLwLM92sCBAzFs2DC0b9/eVDkJgqi7kMASBKGb4uJifPXVV/j888/lrRXi4+PhPBIP+4l0iBXxujs+/qoiw5EAlfxIXgnCokSDvEqoyaeR+iCEEisR6fqTMQYGhslLxmHx4sXYvHmz/NrZZ5+N4cOHo3fv3hBFqgMJgtAOCSxBEJrJycnB4sWL8e2338oLdjRq1Agn/3LWDBP27Nuqp6MTrAriJcJG8vILyStB8CWaBBYILJ966geOEsuz7gtVXq+umYhPP/0UK1askKeatGjRAsOGDcPFF1+MhIQEXXkTBFE3IYElCCIoe/bswSeffIKff/5Z7nQI5XGw52bCVlB7mLCWDo6WqkdrR4lnXkEheSUIvkSbvEpokU8t9UWYJFaCV71qJh+3oxrXTPsPlixZgpKSEgCeebLXXXcdrrnmGtqGhyCIgJDAEgShCmMMf/31Fz7++GOsW7dO/rtYnAh7bqbf1YQDdWr0VjfBOkha87Pk0GGSV4LwEK0CC2iXz0D1RhiGEqvBq341kxcT3bj9/cvx6aef4ujRowCApKQkXH311bj++utRr149zWUgCKLuQAJLEIQXjDFs2LABc+bMkecriaII4WQS7MczIJYHHuKl1pExUs346xDxzEs3JK8EwZdollcJvQKqVo+EOQrrC6/61mg+DAyTPr8R8+bNk7fhiYuLw+WXX46RI0eiUaNGuspBEERsQwJLEAQATwdj3bp1mD17NrZu3QrA04FwHUn0iGuVQ1M+yg6MmerFtyNkNC+SV4KwMLEgsIBxAVXWKxGWWCB09a7WfBgYnvz+VsybNw/btm0DANhsNlx88cUYM2YMmjZtaqg8BEHEFiSwBFHHYYxh9erVmD17NrZv3w6gRlwPJ8KRmwnBqX3/VqnTYrZa4Z2PaUheCYI/sSKvEmYEVKpjLCCxQGgeROrJh4Hhv7/cjfnz52Pjxo0APCJ72WWXYcyYMRSRJYg6DgksQdRRGGPYuHEjZs6cKYtrfHw8XAc9EVc94mpVLCWwJK8E4U2sCSzAfT6rGXh07wRBiHg+L//xAD766COsX78eAOBwOHD55Zdj1KhRyMrKMl02giCiDxJYgqiDbN26FTNnzsRff/0FAEhMTER1drxxcXXXdETN7OXHIw9FXoLNZj4fgKKvBBEqSGBDDrcuntttvm42mcf0Vfdh1qxZ2LRpEwDPSKErr7wSo0aNosWeCKKOQQJLEHWIPXv24IMPPsAff/wBwPMk2304EY7j9fSLq9sNSNWHFOk00jnxzYeHBAOGBVaqEgVBIHkliFBDEhtSuAqsBKc62mg+z/86AR9++KG8yGBiYiJGjBiB4cOHIykpyXjZCIKIGkhgCaIOcOzYMbz//vtYvnw5GGOeVYVzk2A/Vg+iK05fZkrhVKJXGH3zMSOvbu9OsBF5VVaFJK8EEUZIYkNKSCQWMP7A0hcD+TCXE8/9eo/XFJjMzEzcdNNNuOKKK2C3R/8UGIIg/EMCSxAxTElJCebPn4/PPvsMVVVVAABbfjLsRzIgVsbpl0Z/8gpoF1h/eRgpiwp65VWtCuQmsCSvBKGdWBPZWJNYP3Uuj3pbt8S6XAA8iz09umQcZs6cicOHDwMAmjdvjttvvx39+/fnuwc4QRCWgQSWIGIQp9OJJUuWYNasWSgsLAQAiMUJcByqB7E8/lRCrdIYSFy15hMoDz3y6q8DJGWlQWADVXskrwQRQUhiQ0LIorBKeNThWvOoEVgJBobx867G7NmzkZ+fDwDo0qULJkyYgM6dO2vLkyCIqIEEliBiCMYY1qxZg7fffhvZ2dkAAKHCAcfhehALEyHAR8yCiWMwcZUIJI1a8tAqwEEIJq/BqjsaOkwQFiCWJNYiAguEOAqrhENdHjQPH4GVYKIbI169EIsWLUJ5eTkA4OKLL8b//d//oUGDBsHPSxBEVEACSxAxwsGDB/H6669j7dq1AID09HSUbbHDdiK1trgCgaVRq7hKqImjnjyClUUj/gRWazVH0VeCsAgksdwJm8BKcKjTA4qsH4kFgAX7X8YHH3yA77//HoBnoadRo0Zh2LBhiI+P93scQRDRAQksQUQ55eXlmDdvHhYtWoTq6mrP4hWHk2E/lg7BFSAiqSaNesVVLR+9efiTVz2dHKjLq57qjeSVICwGSSx3wi6xAJf6XTWPAAIr8er6R/D6669j69atAIDGjRvjzjvvpPmxBBHlkMASRJTCGMOvv/6KN998E8ePHwcAiIWJcByqD7HSETwDpTgaEVcJSRyN5qEmwAZQCqzeao3klSAsCkksVyIisBIc6nmvPDQILOCZHzvxy9F499135bby3HPPxX333YdmzZoZKwdBEBGFBJYgopADBw5gxowZ2LhxIwBAqLR7FmgqTFIfLqyG9PTZbBUgCMbz8JVoo0WokVej1RkJLEFYmFiRWAsILBBhiQU8db6Z46U8NAqsBBPdGD7jAnz88ceorq5GXFwcRo8ejZEjRyIuTud2cgRBRBQSWIKIIqqrq/Hxxx9j7ty5cgPszk7yDBdmUSpPPIZxGd0/FrRwE0FEBSSx3Ii4wPLC4Pv44N9nMGPGDGzYsAEA0LJlSzzwwAPo3r07z9IRBBFCSGAJIkr4559/MH36dOzbtw9AzXDhg/UhVmkYLqxE6niYkD5ueejcs9ULqeoyk4fbDYgiBJvB9yF1RkXBmLxKnXISX4IITKwILEASe6oQ5h9gulyG2iEGhklfjcGbb76JvLw8AMDgwYNx9913IyMjw1yZCIIIOSSwBGFxSktLMXPmTHz11VeeTke1CMfBerAVpGgfLgwAbrfcaRH07LsagjxkjMinb5VlJA+FgBuSV2UH1Ii8KjvjJK8EEZhYkleJCEusZQRWwqjIKocRGxFZwYlLn+4pt68ZGRm4//77ceGFFxorD0EQYYEEliAszJo1azB9+nR54Qnb8WTYD2ZAdNv1NdYK8QQMyKfZ42vyqIUe+VSrqvTKq7IMeuXVX4dT13vwuQYkrwQRHBLYkGC6+8djGLFvGfSKrO88WIPt0owNj+KFF16QRzj1798f9913H+rXr68vP4IgwgIJLEFYkNLSUrz11lv49ttvAQBChR32/fVgK07QJ48+4imhOQ+zxyvyqYVW8QtURWnNQ+38WgU2UEdTa/RVrQNO8koQwYlFeZWgKKz/+l2ryPpbyMlA+8QEhhFvDMC8efPgcrmQlpaGe+65BxdddBFtuUMQFoMEliAsxsaNG/H8888jJycHAGA7lgr74XQIbk+DrEke/YinhNk89AiwX4LJZ7CqSYu8+ju/FnkN1rnUIq+BOt8ksAQRnFgWWCD6JTZUAgtok9hgKxEbaKfe/N8TeP7557Fr1y4AwH/+8x88/PDDyMzMDJ4XQRBhgQSWICxCeXk53nvvPXzxxRcAAKHCBsf++hCLE7zSBZVHs/LKSX6D4k9AtVZJgQQ22PkDCayWDmUgedXS4SZ5JYjgxLq8AiSwnkIEfj2YyJqVWJX3wASG0e9ejNmzZ6O6uhoZGRl4+OGH0bdv38B5EQQRFkhgCcIC7NixA08//TQOHjwIALDlpsB+MEOOuirxK5BBxDPkx9fkoQk1+dRTFfmTVy3n9yevejqSagKrtbNN8koQ2qgLAguQxGo9vz+R1bofrIF26+0tT2HatGnYu3cvAOCKK67A3XffjcTERG3nJAgiJJDAEkQEcbvdWLx4MWbOnAmn0wlU2eDYVw+2Iv+No6pAapTPUB6vC18B1VsN+R6v5/y+Aqu38+grr3o62SSvBKEdEtiwEDUCC6hLrFaBBfw+vA0EExiufKE3Fi9eDABo3rw5Jk+ejM6dO2s/L0EQXCGBJYgIkZeXh+eeew7r1q0DAIj5iXDsqwfBFXhup5dA6hDPUB2vG6V8Gql+eMmr0U6jJLBGOtcksAShjboirxJ1WWKNnFspsnoEVkIpshrL/tyq+/Dcc8/h+PHjsNlsuPXWWzFy5EiIZvZDJwjCECSwBBEB1q1bh2effRb5+fmIi4uDe2cybMe17esqC6QB+TR7vPJYw9hsxjosyuMBY2WQBNaMvBqF5JUgtFPXBBaIqMRGVRRWQpJYIwILGHoQ+1nO23j55Zfxyy+/AADOPfdcPP7448jIyDBWBoIgDEECSxBhxOVyYdasWZg3bx4AQChzwLGnPsSKuLCcX9oKwOjXnstWAmaeVttsxjtKomi+/EYFluSVILRTF+UViO4obCQEVkIQjEusARgYJiwajtdeew1VVVXIysrCU089hTPOOCNsZSCIug4JLEGEiYKCAjz99NPYsGEDgJqFmg5kQGBhkhupc2RUwmqO17R3qj/MDrUyI6BmBZairwQRHuqqwAJ1NwrrcplqH5jLFfa9Wt/a/CSefPJJHDx4EDabDbfddhtGjBhBQ4oJIgyQwBJEGNi2bRueeOIJ5ObmAi4Bjv31YMtL1p6Bm3k6dYJoTKTMHO9zrN5OglTFaN47VrUMbs+xkRJYkleCCB8ksBEh4sOIpSiqgXaC1RxrtI5nLk/Z9T6gZaIb/SZ1xPLlywEAffv2xeTJk5GcrKN9JwhCNySwBBFCGGP46quv8MYbb8DpdEIot8OxpwHEco1DhiV5BMzJJ6fj9TTualWLEGjvVtXzKzpEZgQ2UtFXkleC0EddlleABFbChMQCxkRWklhAn8j6Dilu1aoVnnvuObRo0UJ3GQiC0AYJLEGEiOrqarzyyiv47rvvAABiXiIc++qr7u1aC6U4SugR0BAdr7VR91et6BJYXvJac3xYBZbElSCMQQIb0dNHdB6s2jxWHSLLVI7XU+8rBVY+XofIztjwKKZMmYLjx48jJSUFU6ZMQZ8+fTQfTxCEdkhgCSIEFBQUYPLkydi8eTNEUYS4PxW2nLTgqwyriSOgXT5DfHywzkCg6kSzvKp1gqJJYEleCcI4JLARPb2lorBKNIqsmsQC2kVWTWIB7SL78cFX8cQTT2DLli0QBAG33HILRo8eHfb5uQQR65DAEgRn9u7di0ceeQTHjh3zzHfdVR+2wsTAEuRPHCWCCajZ44PloSH6Gqwq0SSw/jo/0SKwJK8EYZy6Lq8ACWyg1YQ1SKw/gZUI+hDWj8DKxwdrB11uMIHhkmd74OuvvwYADBw4EI888gji4+MDHksQhHaot0UQHFm9ejXuvPNOHDt2DEKFDXFbG5mX12DwON7lMpwHY4xPp8dsxyeSCCLJK0EQRCjh0E6Ybau0CK7ABPz42CZMnDgRNpsNP//8Mx588EEUFBSYOjdBEKegCCxBcOLLL7/Eq6++CsYYhKJ4xO2qD8FZE3VUE1it4ukvehqu42vy8H3yrLfq8BuB1dIhsXIElsSVIPhAEViKwOrZz9VPRDZYFFbCX5sQTFLl4/1EY5XH//fPBzBlyhSUlJSgWbNmePHFF2lxJ4LgAAksQZiEMYYPPvgA8+bNAwDYcpNh358JgSkaR6UA6Y2Y+gpohI5XNvZGqo1aAqunoxNpgQXUJZbklSD4QPIacXkFLCCwgD6JBWqJrFaBlfBtG7QKrHy878Ndn+Nn7ngWkyZNwrFjx5Ceno5nn30WZ555pq5zEAThDQksQZjA6XRi+vTpWLp0KQDAfjANtiM+izVJ4mN0qK8koGaPN1oGRfTVTHUhC6yRDo4VBZbklSD4QQJLAiuhV2ABL4nVK7ASUhuhV2Dl423KMnjnsfDoG3jkkUewfft2OBwOPPnkkzj//PMNnYcgCBJYgjBMeXk5nnjiCaxduxZggH1fJuzHU9QTG+2cmZVXKQ+TZRBsoumOjWCzGe/cWElgSVwJgj8ksCSwEgYFFAAgioYFFjAvsYBHZNWOZ6Ib5zxwGlatWgVRFDFp0iRcdtllhs9DEHUZEliCMEBxcTEmTpyIbdu2Ae6alYYLEr0TMTeYm0HQu4coR1hNh8hUGfTsH+svC9PyaBGBJXklCL6QuJ4iFgQWCO88WBX4vAeTeTC3anvBwDBw6pn4/vvvAQB33303hg0bZu5cBFEHIYElCJ0UFBTgwQcfxK5duwCniLgdDSCW+CyPb1JemRRxFURzecCkvHoyiAmBNVUOir4SROggifVAAuvBpMACHN6HVAYzdX4Aib16Rj8sXLgQADB69GjceuuttFcsQeiAemMEoYOTJ0/innvu8chrtYi4bVne8srcYC6XLI9GYCa3xWFu5hlCZZFOYcQbZQ17B/o/VjAt7wRBBMAi9RRBqGKyLQZz18pDgIAv7/8dt99+OwBg3rx5eO211/g8PCCIOgIJLEFoJDc3F/fccw/2798PVNkQt60hxPI4z4ucxNVLPA1EX83Kb0whiubllSAIgqh7KFfNV5FQrTA3UxVZAQLm3rIUDz74IARBwBdffEESSxA6IIElCA3k5ORgwoQJOHjwIFBZI68VjtCIa4TyiCnMiCvgX17p+hIEP+j7dAoLDB8mghACkX1r2GJMmjRJltjXX3+dJJYgNEACSxBBOHnyJO6//34cPXoUQoUd8dsaQqy0y/Nc/REselpXxDXsjTENGSYIgogMPFYhtjoaRbbW3ufwEdkaXrvmY0yaNAkA8Pnnn5PEEoQGSGAJIgAFBQV44IEHcOjQIU/k9d8sCJVixOe58sojpqAhwwQRPVDdRUQ7HOfH+krsm2++SRJLEAEggSUIPxQXF+PBBx/Evn37aua8NgDKBRouHAncbiBQY65RXP12CPTIa1267gRBhB6LDB8mYTIAx2HFr1/7iSyxn376KebOncuzpAQRU5DAEoQK5eXlmDRpkrzasGNrPQjltYcDaYXENUTwiLpS5JUgwgvVYUSswUlkX79mAe69914AwIcffoivvvqKYyEJInYggSUIH5xOJ5566ils3boVcApwbK0PsdxhOD8aLhwiQrVQE0EQoYPqMSKWMfuQ2s3w3sjPcNNNNwEAZsyYgV9++YVT4QgidiCBJQgFjDHMmDEDq1evBtwCHNvqQywzJq8UdQ0hJK8EQRCEFTERjfUczvDJHT9h6NChYIzhmWeewbp16zgWkCCiHxJYglAwb948LFmyBGCAfUcGxJI445mZlU6TjWDMYlZeeUCfC0EQPKD5r7GLmXbCDXw/aS0GDBgAp9OJKVOmYM+ePfzKRhBRjgV6ggRhDX744Qd88MEHAAD7vnTY8hP1ZyJJp2l5ja3OhOnOESdpFQROkVeBqk6C0A09+IlteG2hY4WHlBZAgIDfn/0XZ599NsrLy/HII48gLy8v0sUiCEtAtQRBANi8eTNefPFFAIDtcApsx5L1ZcAzWmoVeRXEU6IWySgByStBRD8kr7WxSPTVUkjtn9kF+mIEgQmYNm0amjdvjpycHDz++OOorKyMdLEIIuJQ7UDUeXJycjBlyhQ4nU6IJxJgy07VlwFPcbWSvEYajh2YWvJqtONohetCEARRVyCJxbX1bscLL7yA1NRUbN26Fc8//zwN+SbqPFQzEHWayspKTJ48Gfn5+RBK7bDvzoAAjZE6XlHXUIorc+vbt1YZdY0k/jotjOkapiYIAkVeCSLSUPTV0lhehnQ+zLT8+zHAzW0mYtq0abDZbPj5558xb968SBeJICIK9ciIOgtjDNOnT8eOHTs8e71urwfBrfErEWvDhYGQC5rmToXVhgwDJK8EQfAl1oYP85r/Gog6Ho19+JwX8cADDwAAZs2ahQ0bNkS4RAQROep2bUDUaT777DP89NNPAAMcOzIhVNqDHxQNUVe9WCnqGk551dKBtMq1IYhohaKvBE/q+NzY169egCFDhsDtdmPq1KnIzc2NdJEIIiLU3VqAqNNs374d77zzDgDAtj8NYlF84AMisUhTOARXj5yFMmKgp0MSYBgxDRkmCAtB8qqOhaKvlhpuq6csoZZYlyu0+ZvgvvvuQ/v27VFYWIgnn3wS1dXVkS4SQYQd6qERdY7S0lJMnTrVs2jTyQTYjgZZcTiSizSFsnMRAUFT7SxFcsiwv44kyStBEIQ2wjF8WI06Gom9PHkspk2bhpSUFGzdulV+GE8QdYm6+e0n6iyMMbz88ss4fPgwUGkLvGhTrGyN47uQk1WGxYZ7yLDmzCxwbQgi2qHoqzoWir7GBD7tiKUiyiFkbMsH8PjjjwPwTIdas2ZNhEtEEOGFempEneL777/H8uXLPfNed2ZCcPlb7TYGt8YBzMsZr86XWXFVDCMmeSUIi0HyGhVYSvbMlsWC0VhdOwAY4Kn+b+Daa68FADz//PMoKCgI6fkIwkpY7xtPECHiyJEjeP311wEAtgOpEIvjaqURRI4yxAsOnQxBFPjImVWujyAAosh3vivJK0EQoSQWo6+RGj6sBi+Jtdj810D9kjvuuAOtW7dGXl4epk+fbq2HEgQRQqjHRtQJ3G43XnjhBZSXl0MojIPtcEqtNJaUVx4IoudJsNmoiMnrw22BpRp5BThEEGL1MyeISEIPgyxPLIoOs5h48sRf/+Ty5LGYPHky7HY7Vq1ahaVLl4a5ZAQRGaiVIeoES5YswV9//QW4BDj2eM97FUQhpuXVNKLARV65oJBX0yjfEw15JAi+kMR6E4vRV17EoEyHAn99lbs6P4FbbrkFAPDaa68hJycn3EUjiLBDLQwR8xw9ehRvv/02AM/QYaHi1H6vao0Bt+G2gEe4IgGvIbEcxF5VXo0MO/Mjr7ojCf6EnCSWIPhCEmtJYjH6ajV4zX/120fx4aOx36Br164oLy/Ha6+9xuXcBGFlqHUhYhrGGKZPn35q6HDNljlRF3XV0+Hw02nUPYzYSkOGbTY+kddo+swJIhYgiY3d6KuF5r9yGz4cJcOQffswAgRMnDgRdrsdv//+O3777bcIlo4gQg+1LERMs3LlSmzYsAFwA/aaocNRJa564Bl1DceQYS2dH41DhjVFFLS8J4rCEgR/SGItg+Wir1YrT5Sh7M/c3v5RjBw5EoBnKHFpaWmkikUQIYdaFSJmKS8vx5tvvgkAsB1Oga3KoVleuQ4jDge8yhqqIcPGMgrNfFeCIMJPNNWnPKHoK2EQPf0VKe2YMWPQrFkzHD9+HO+//34oi0cQEaWOtihEXWD+/PnIzc0FKmywH0mLXEF4CZ2/J9U6OoYBhxFHQl79dYIMyKvfyILe90VRWIIIDXVNYi0mr7EafbXa8OFQ7//qD0EUcHnyWDz00EMAgK+++gr79u2LSFkIItTUsdaEqCscPHgQCxcuBAA4stMhsBiMwFlsyLAl57tS5JUgrAXtuRz9UPTVsgiigEf7vIT+/fvD7XbLC1gSRKxBrQgRk7z77ruorq6GWBAPMT/BUB6WXI1YemJtolxeUVgrDBmWOkMchgzLEQaz74uisAQRWmJdYin6GhiKvgbE7Fodd9xxB+x2O9auXYu1a9dyKRNBWIkYb0GIusi2bduwatUqgAH27HSvPV91IYj8Fnzi1XkQOEq11aKTHKKugkBRV4IgIozF5JUrFH0NC0J8vKnjx7V5CNdccw0A4O2334bT6eRRLIKwDCSwRMwxc+ZMAIDteBLEcoexTAQRgo3TUDeeT76Zzq1wfPBaep9DJ4vLsGFR9Ig5dYwIou5gxVEObhaT8sk1+spjekeMRl8Bvlv0mZXYsWPHIi0tDfv27cMPP/zApUwEYRVIYImYYsOGDdi0aRPgFmDPrWcsE0leAUAUINhsxgtkoWFbPLcP4jLnVRQ98105Da+Wy8OrA2rFDjZBEKHHTB1iMQEOydBhUeS3QnyMYqa9FRNPTXsyI7HXt7ofY8aMAQDMnTuXorBETEE1EBEzMMbk6Ks9Lx1ilc7oq+ARKlleUSNFRqKwjFlfXpnbUGeLa9TVFwNRWG4LSBEEER6s+HDIty40IqIWk9eQY0RirRZ9DSG8orFCfLxhkb3yyiuRmZmJY8eO4aeffjJdFoKwCiSwRMywadMmbN++HXALcBzXGX2tibqqipDeKGyoxVXnMGLekVfT+JNXCR0S67c8FIUlCGtixe+Uv/oiyoU0LAs3RXskNgwirKcNVkZfa+VjQGKHNr0bI0aMAADMmzePorBEzBDlNQ9BnOLjjz8GANjz0yG47BDiHBDi4oIfqBwyrPaynihsuKKuGiRW09NfHVHYsMirDsIWdbVih5sgohErfpeC1X9aJTbKZdcUWiXWatHXMEZxwz0vVkxJln8fOnQo0tPTcfjwYSxbtoxLOQgi0pDAEjHBrl27sH79es/KwycytR2kMmTYMNEwZNhoXryG6OqR1yBRWE3lqcsdSoKwGlaUV63wktwwEvZtc6I9EhsGIjWk+OpmE+Qo7MKFC623pRJBGIBqHCIm+OSTTwAAtsJUiNWn5r76jcIGGjKsRqBhxJFqDPxEYXU3kAGisNzE1chiTX4kVleZaCgxQRD+0FM/WFBS/RExQQm0uFMdjr764q+NDjR8WDUfPxIrJiXV+ttVV12FxMRE7Nu3Dxs3btR1HoKwIiSwRNSTm5uLFStWAAAcWqKvQYYMqx7ibxixxZ5kRt18V51EdLEmkliCMIYVvzu8FmmKIrENGxSNDUpIhxSr5H1dy/tw6aWXAgA+++wzLucmiEhCtQwR9Xz33XdwuVwQSxMhVtR+gilHYc0OGfaNwlpBXmuisKaHJvlEYS0jrzVRWFPDmHl2MK3YEScIKxNr3xnlXrEWlFfLDA9VSixFX1VRttl6o69e+SiGFKtFXyWuvfZaAMDq1atx6NAhw+cjCCtAAktENU6nE99++y0Az9Y5fhEEfUOGVbMQINjtEOwOa8hriLCMvNbkw6U8FuxoEkTMY1V55VEfWLBOsYy8hgIDW6xFA4IoQEz2L5268oqPV42+StzWbSrOPfdcMMbw/fffczknQUQKElgiqlm7di2OHz8OOEXYilLUE8XHQ6yXCUGxKp9hrDY0qkbumNnOlJG9boNhpc4Ux6HVBEFowIryqoyeWgTGGBfx5CqvbrclhdFKDzOZm8k/XODQtxCaNwEaZQVMM2TIEADADz/8QFvqEFGNxXrjBKGPpUuXAgDsBekQmM/tHB8PIT0NQkI8wGOl4ZoGRnDYITg0bM8Tanwac8MNqVJe3SY7U4EW8TCSF5d8OMprKESfIIjQYzFxBbyl0zLRU6W48pJYQTA3IkdRDlMS69a3h3pAmFv+MSOxQmLiqf+YbfNsouenUZZfkf3vtfOQnp6OEydOeHZuIIgohXpjRNRSUlKCNWvWAADsBWneL8bHe8RV0XAKyUnGorA8pYwHap0Bo42ympAZlVi1a2S0U6bIy5xQk7wSRNixYvQ1CjBa13GTXzVhNSqxascZkU+VfAxLLKf7spawmpRYLwz2N4TmTU79RymyvumYgMGDBwPwRGEJIlqhHhkRtaxatQpVVVUQKuIgVCgiokp5VWKk0fPTkEQsChvkPehqRHkKWaAGV2/nSiUvY0JN8koQYceK8mrx6KuWv+vNhyt6JTZQek4ryeuW2FAv5mdAYr2ir77olVi1UWZ+JFYS2NWrV6O8vFzfeQjCIlCvjIhali9fDgCwF6ZCQE1j5k9ea9AVhQ3SgIRdYoM12DWNqqZGNJiQ6YnCamloteTFdfgxJ3kVRJJXgtAKyasmgtWtWufFcp/3Gux1LSKrJY1W+QySl2aJ5Th0OGD7qkNiA8qrhMb20Cv66ouKxN7T50U0adIEFRUVWLt2raZzEITVoJ4ZEZWUlJRg06ZNAABbYar3fNdAjZogaJNYKw0ZBrQ3+MEaaT1CpkViwzjfVbtQc5RXgiC0QfKqCT3SGbZ5sXoirDznxXI4j6Yt1njKa7C8aiQ2XIs7Cc2bBF/jw2derAABF1xwAQBgxYoVPEpJEGGHemhEVLJ+/Xq4XC4IFXEQhdRa810DIgiB5USHlIUlCmtgyJVq48lbyPTKq7/OmI58ggs1yStBhB2SV00YEVJeQ439YkRI/R2jNy9Ow4k9WfnJKxL7gAdZ3ElT9FVJoDZS6wKVPvNiJYFds2YNqqur9ZWHICwA9dKIqOTPP/8EANjKNERdVRCSEmpHYY0unhAqiTW6cqPaUGKjQuYvCms08uqbl4F8/HbcSF4JIvyQvIYc3zrPEisW+8qq0cisWhtnMK9aEhuuocP+D6p1nG55lVDpnwQcOuyPGom9r+9LqFevHsrLy7FlyxZjZSKICEI9NSLqcLvdp1YfdtY3Jnm+Q4mjdciwP5SNtlkhU0osj3mqyrx4QfJKEOHHivJqUcxKp3R8WOe9aj3ebD7Kh7Um8/KS2HAOHfZ/ML/hxMCp7fy0DB32h02E0KghevXqBQBYt24dr9IRRNig3hoRdezbtw+FhYWAW4RYlWI8I2koMY8NxB12CHa76XzqBIJg+pp7deJIXgmCkLBg9JWXdFpKXnnnwzEvQRAiM3Q4wPHMzYxHX30RRfN729tEElgiqqEeGxF1/PXXXwAAW1UKBDO3sCBASEmCkGxgb1glbjdYtbNGhm3m8rIiooZFMrTCQV492XDcIkeCokkEEd3EsLxyhad0WhDm4vf+eEVPBZsNrKoKrKrKXD6CgMo+HVHeMt10mSSB3b17N4qKikznRxDhhASWiDr+/vtvAIA7ubHxTGqGLDGbCCE12bjEut1cG0sZM50eQYRgs0GQIpNmxMxXXs10fKwsrxIksQShDat9V0heoxuXi0s2Xu2xyW3QTA0dVsPNPFNyDEqsIAio6N0BrjgRbrtgTmIFAQMf+QgtWrQAAGzdutV4XgQRAUhgiaiCMSYvOFDSqhHK29XepDsgkkQJAliN4DFRgGBkOI6KvAo2G78orJHOjyCeElez+Iu8GpHYUMor746r1TrmBGE1rPYdIXnVjhWjr5zk1S8GJJanvAp2h/cfTEisK+7Ue5EkVrfICgJy/1MPrngBZ5xxBgDgn3/+MVQegogUJLBEVHH8+HHk5+eDQYAzJRMF7eK0S6wUdRVPyatMUiKEVB3zaQNEXiMmsYHkVW9DHGzYsJ5OUDgirySxBBEerPbdsKC8WpYYl9eAo6F0SGxI5VVCp8RK0dda2dgFfdFYhbwCQNeuXQGQwBLRBwksEVXs3LkTAOBOSAVEG5hdgNuh4TZWyKsaTKxZlViLxGoYNsxVYrWgJfKqtUHWOuc1WGdIWlkyXMOGSWIJIrRY7TthUXm1ZPS1LsurhFaJDbW8SmiUWEEQUHFOe6/oa62sdEisJK8AcPrppwMAdu3aZc37liD8QAJLRBWSwLqSMuS/FbWyB47CBpFXCU0SG6o5r4EI1qjoGTYcrGHmtWCTJK7hnvNq0Q4tQUQ9VpNXi2JJCbCivHJEV5scRGK5bnmjhSASK8trQvAH4kEltib6quSaGV/BZrOhpKQEubm5motNEJGGBJaIKvbs2QMAcCWeqqSZXfA/lFijvMp5iQKEpET1RZ10ymtYhhIbmfPqryNqRF7VOkacoq6erAzItJW2TyCIWMCK3wMLPqwiedVBKBZt0oofiQ3L0GE1/EisHnmVs/InsYKA3D71vKKvAABRRMuWLQEAe/fu1V5mgogwJLBEVHHo0CEAgDs+1evvqhKrU17lvGxi7UWdDEZeQyqx4ViwSQvKDlKk5VWCJJYg+GDF+5/kVRsxLq+m8JHYiMmrhB+J1SOvcla+EivJa4J6m9q2bVsAJLBEdEECS0QNbrcbhw8f9vweXztC6jUf1qC8yiQmeKKwNXu8mhk2LIgCf4k1K6/KhprHsGG32zryGgqs2IkniFBjxfue5DW6Cfe810DUSGzE5VWiRmJZVZUcfTWclY/E+pNXAGjevDkA4MiRI4bPRxDhxh7pAhCEVo4fP46qqiowCHDHJammKWplh+hqiMTdJ4zLK2qisAnxQGUlWHmF4XwA1DSSfJ84WyLyanXcDOB1nQiiLmFFcQVIXvXAK/rKmOfhJK+8OMHtugsiwKr55MUD6R5vnGUo+uqVVY3EFjcP3NVv0qQJAODYsWOmzkcQ4YQisETUkJOTAwAeefUzh8UdJyC/fRzKOujcH9YHodoJOJ1AYgLExARTeYG5PT+8FkcysTH7qXxO5cGlIyBFXjl0mrgJNU955XHNCYIwDsmrdngPHebxPhnjVi7GGLf7gblcXOt35jQvw2Lr5oBNRNKBItN5nfPf9bhiwsqAaRo3bgwAOHr0qOnzEUS4oF4ZETWcPHkSAMAc6kLJRIAJgNsBFLR1oLxdA0PnEaqdQFU1wJhHpsxILHN7GkgeKOTV1EqJUmOtEDxTHTFR9JZzE50UkleCiDBWjL5aUF4tC095VbYLZtoIK8urhEUkVmzdHLB7Iq9CtcuUxJ7z9Hr0SdmNbkkHcOVt/iV23LvfAQByc3Ot+1CGIHygnhkRNeTl5QEAmD3e6+9MBNw2j7yixluMSqxSXuW/GZVYNXk1KmgqkVdDEqsir3J+RhouX3k1AckrQUQYklfNWLKjHyp5DfQ3LVhdXiUiLLFKeZUwKrHnPL0efVN3yf8/OykbV962UlVkpT5VVVUVysvLdZ+LICIB9c6IqEESWLciAitFXaGQVwm9Eqsmr/JrgqBPjAJFXvWKWoBhw7okNoC8yvnp6aAEkledHRaSV4KIMCSvmqmT8qrlNR7p/WYTYnmViKTE2tXnvArVLiQdLNacTc+pG7zkVeLspGxZZL0QbWA177uwsFB7eQkiglAPjYgaSkpKAADM5lnlz0te/aBVYgPJq0x8vLYorJZhw1qFTcOcV00Sq0Fe5fy0dDi0RF41dqhIXgkiwpC8aqZOy6ueNFI6DmULm7xKREBixdbNA74uVDk1SWzPqRtwXtrOgGlqSawggNnjAABFRebn3RJEOKBeGhE1SENbmGjXJK8SbgfgdvhPqEleoXEosZ45r8HETceCTQElVoe8akLPsOEgnReSV4KIMCSvmiF51ZGW47zXsMqrRBglVmzVzG/0VYkWiQ0mrxJnJ2VjyK2rTpWxJjAgBQoIwupQT42IGioqPNvZMLtds7xKFLW0q0ZhtcqrnD6QxBpZsMmfwBlYbVhVYg3Kq9+OmpE5r346MSSvBBFhSF41Q/Kq4xjeizbxyMfIYophkFixVTPAoX1Hy0AS23PqBl1l6pm8T5ZYJngEuqqqSlceBBEpqLdGRA2ywIo2XfIKqA8l1iuv8nFqEmtmtWFfkTOxVY6XxJqMvNbqOJhZsMmnM0PyShARhuRVMySvOo614IrDpnYCCKHE6pVXCTWJ1TJ0WA1ZYmvep9Pp1J0HQUQC6rERUYPciTDqUAqJNSqvEl4Sy2OrHEnoOOzz6iWxJgVPvuY8Vhuu6dSQvBJEhCF51QzJq448Yk1eJUIgsUblVUIpsWdP3WRIXiV6Ju+DvcyzSOYPP/xgOB+CCCfUayOiBh7i43YA1SkiWHyc6YZbKo+pPVm9M+QrUpGY80oQhLWxorxaFK7yym0+qMXkVZmXxeTVqghxDlPyKudT5cSBKxguSNvOoVQeaAgxES2QwBJRgyhKt6vxhi0px42ko5VwpyWCpSabKg+rqIC7vAKCyFk8TSKXh0MHQH5owKOjU/P5cesU8uzgUKeeqAtY9T7n+F1mjHGpY0Iir2YFz6ry6nbzn/PK4wEsr/ud4/dGTEz0tIXHTpjOa/vd9WBPrcaTW68wnVfTxp7I8IUXXmg6L4IIB9bpdRNEECSBZe1KDR2flONG6oEKCNUuMFGAOz3JsMSyigq4S8vlho2bxJpsKGuVw0THUJZXqWNipsMjel8bkliCCDNWvb85y6va72byMY2v2BkVPSvLKydqr7tgQmKVbbMZeMurzbNYEnM6TUns9rvrwZZZCQAoK4s3JbGDE/OQnuK59qmpqYbzIYhwQgJLRA1JSUkAgFsb/gF3/wJ9xyrkVcKoxPrKq0SkJdbv+Q10EGsN1zYjsaL6NSGJJYgwYdX7OkTyGuhvRvIxjD+50yt9dVFeJYwIqFrbbIQQyaucvUGJVcqrhFGJHZyYhyQxDmXlnmuUnGxuZBpBhAsSWCJqkAQ2rjIB33SfCdf5hZqPFZ3MS14l9EqsP3mViJTEBj0vj46iEYn1I68SJLEEEWKsej+HWF61vGYmbVBifc5rOOTVUGYB2mYO+RhBTV7l0+iUWDV5lSgri9dVrkGJJ5AkxnmOrfC01VI/iyCsDgksETWkpKQAAErLRLRxpGBJj/c0RWKTctxIPqJe4QPaJTaYvEqEW2I1n09jhzHgYll6JDaIvEqQxBJEiLDqfRwmeeWdRjNa5I5XGq1Es7xqlU8tbTOHfPQQSF7l02mU2EDyKjF12+WayjUo8QRSxFNbAUoRWBJYIlowvwwaQYQJaW5GYbFHjNo4UvBN95m4ErdDXJmheoza0GE1JIkVAQjFfubYupkuqWRu0XxDyNwB5VS3LLtZwM6AppWe3W6PnDLmf3VijfIqwRjjs71OkPeniyDXniAsDclrrbT+6piIRV6lutRsPsGIZnmVEIXA946uttl8PlrQIq/yaZ3OgDsEbr8ruLwCQElpAqZuuxxPdv4W8Seq0XrxSTRYWwp7qQvOZBtOnJuClmO8hwpXVnkCAwCQmZmpqbwEEWlIYImooUGDBgCAE/mnGnxJYveemY77Ng/3Elmt8ioRSGKlFYf1EGqJNRzp9SN5ugRSi8TqhCSWIDhB8ur3GN86JuLDhtUkluRVHX8Sa2DKjarERkheZY6dABo3qPXn7XfVg61ecHmVqM63wX2ngEt/2QbR6f0+G/1RDPYGgOFpYNMaAAki8go85YyLi5NHuhGE1aGeGRE1ZGVlAQCOn/RuFNo4UjAw0YVvus+UhxQn5eqTVwm14cRahw6rEarhxKbz9Wm8DYmjv+HEOqOvSmg4MUGYxKr3a4TlVe3YiMur2rEkr4HxfThpZtFDDvmoYUheoT6UWK+8xldVY9bzc3DdT3/VklcJoRoQ5hdBuOEIUO7GiTxPm12/fn0+D5EJIgyQwBJRgySwJ/Jsqu2yFI0t6lyN1Gz98iqhlFgz8ioREonlkV9Nh9JUg+UrsSbkVYIkliAMYtX71CLyqszDMvKqzIPkVRuSfPLYdo5DPkqMyquEUmL1yisAPDHnO/T+dz+CXWUGQFhdAeGJEzjhegPAqVFuBBENkMASUUPDhg1hs9lQWSXgZL76rfvwwauQssuBynpxps7FRAFgDKyi0lqdQp5lEQVOQ3YtdH1CiZXuA4JQw4rD3S0mr9yxYv0Xy/IKcLunmI51LTQhiKbkVYI5nWA2m255bVBQjGtWbvIUJUha+fVFRTi0fTsAoFmzZvoKShARxIKtHUGo43A40KRJEwBA9mH16dtHStJhLwNKmthQ0SjR8LlsBWXAiTxAFCHExZl7oio1toJovoMpiJ6nxlaSKVE8NQ+WQ2eH2xAmXvNgCSKasJLEkrxqh7FTP2bz4YVV5ZW5TbeBIZFXAKy83Fw2TRtBaNoIANBitr5laoat2Ig4l875wNXAwVWrAAAtW7bUdSxBRBILtXQEEZxWrVoBAA6oCOywvQORv7IxAMDtEExJrOB0gVU7PWImCBBsNmNzWtQ6cEY7mJK8nsrcWD4Av+irUl4lTHR6LD//xkoPDgjCH1aQWJJX7fi+P6Pvt67Iq0lCJa9S3kYlVmjaCMxhB3N4+jfxR0p0HX/Ov/sMnffA0aMAgBYtWhg6niAigQVaOYLQjvSEMPuQt8AO2zsQW7/riLiiU38zKrG2gjKwvHzvPxqQ2IBL9evtYPrK66mT6MuHJ2ryKmGg88NVXkMZfSWJJYjAkLxqx9/70/u+SV41EUp5VZ5Dr8RK8upL8znao7DJFVW6zgkALgDZNZ+3FCAgiGiABJaIKtq3bw8A2LHPIf9NTV4l9EqsraAMyD3hib76YiISq4pWifUnrxJ6G2Ne0ddg6OgERY28SpDEElYnUlFYklft8Hp/JK+aCIe8ep1LazZ+5BUAEg6XaJbY0gT9a38cTExEuSAgMTGRIrBEVEECS0QVnTp1AgDs3u+A5JhHStJV5VVCq8QGlFcJjRKrufHiMS/Wc0Jt6UI5dFgNDStrRp28SpDEElYn3BJL8qodLe+PVxqtcHp/XFd5tqK8amy3tURhA8mrhFaJrX+RviHHALAjNRWAJzhg4/VwniDCAAksEVU0a9YMqampqK4WsO+AHSP2DZDnvQYimMRqkleJIBKr58nrqTz9fBWDRV+9Txz49XDLq5JwrNQZiUWbOCwmQhAhJVwSS/KqDb0LNQVKa1F55YZV5VXHeQNJrBZ5lQgmsS/3WoyEG9xgDr9JVNmelgYA6Nixo74DCSLCkMASUYUgCHIU9oE/z8CWbzsFjL4qkSQ2r2tKLZGVF23SXhBViTUkr3KeYq3/a5bXUwVQ/3sk5VVCpYMUMysOk8QSVibUEkvyqg2eizORvGoiUvKqPL+axOqRV4mEw7UjrC/3WoyXey1Gl7hcuBraUHSdp2+jZR9YANjcujUAoHPnzrrKQhCRhgSWiDrOOussAMDJP0TN8irhdghwJnpHY1UXbdIC7zmxwKkG0oi8SoQqKmhGXiUUHaWYkVcJkljCyoRKYkletcFzexyS16AwNwNzuSIqr8qyeGXVpKFueZVoPvdUiHV6r8/QJS4XXeJy5b8dn5qGst4OTfvA5vZOwO4qz8JP3bp1M1QegogUJLBE1NG9e3cAgKPguOGGXIrGuhPt2ocOq1EjsWb3ivXO04S8KpEa7nAt2qQDq5WHGySxRF2C5FUbPBdr4ja3NPj6BFqxmrwCCNtiTVph5eUQmjT0yGucznG+ChIOFaP5XAem9/oMZ8Qdq32eBAFH5tZD4Q2JfocTMwdQeEMidjzzLRhjaNmyJRo0aGC4TAQRCYw9AiKICNKxY0ckJSWhrKwMYnkh3EkZhvJxOwS44m1wmG2cBAFw6RyCHA4E0TrRSSVuN5goxq7EEkRdwIryKgmZyOHZvNXklSdWXGkY4DtsWBA5iTBD0HCmFmw2z8Py5k1MZyU43aryKsESBOQ+n46TD6YgbVE5EldXQSxlcCcLKO8Th6LhiXBl2bDpi38AnAoKEEQ0QRFYIuqw2+3yMOK4Qv+VeDDSDjiRuOs4EOfwRFBNwLMR5xJ99cF0+aQOIY/3WZMX11UqrUKkti4hiGDwjEhZWV6tlBdveeURNbWivLrZqXvKZB1qah2KWpnV5OV2mcpGqBmd5S6vMFsiVDZOhjtOxLUvTwqa1pVlQ/7dKTiyoB4OfVUfRxbUQ/7dKXBl2XD5rIn4888/AQC9evUyXS6CCDfU2yKikn79+gEA7EVHITr1N1hpB5xI+ScHKK/wRALjHBCSkoyJLMfoKzd5VYm+Gu5s+EYzzHRafPKKSYklCKtR1+TVjKRZWV7Vfjeah0lCWncblNha8mpUhtWGahuUWMFm82qLhUNHDeVT2ThZllcAyNhdjWteCS6xagyZPQmpu4tw9OhRxMXFoWfPnobyIYhIQgJLRCX/+c9/IAgCbBUFEMvLdUusrdINKJ6GCoIAwSbqj8a6XHBXVes6d8gJMHSYW6fDSD5+hvXFjMRS9JWwInVNXoP93UheegmlvAb6m948DGLFOttv5FVvvcxzNJWPvAKeKKxeiZXEVZJXicxd+vseQ2ZPQmo2w72D2wIAevTogcRE9e0FCcLKUI+LiErq1auHLl26AADsJUchOAFbJdMksvLQYRXkaKxGibX60GE1dG0yH2guGcf3bsUOkS5IXolYJ5rkVevrRtMGIhzyGok8aghbXa2xTmVuxm/YcLD3pjEKK9hsqvIqZ6NjKLEy6qqG1ijskNmTZHkFgN9++w2AJxhAENEI9bqIqOX8888HANiLDkFggOAGBCcCSqxy6LA/NEtslAwd9kfQjoiWhVB4iLCiPFw6R+GWWJJXwqrwir5Go7xqTcdxNd6wy6uWcnNcaTjsDxqD1K2axVVLHa31vQWRWFlcg7TDWqKwweQV8ERhr5kRWGKHzJmI1Gwmy6tQVYwdO3bAZrOhf//+QctBEFaEel5E1DJo0CCIoghbRR6EqlIA8IhsAIn1HTrsj6ASG2VDh/3BpUPCQ4S9sosiiSV5JayKxeSVrwBxGj7Lc+En3nuz8hB0q26TwwHdUddAdTWn9xco6upLsKHEWuRVInOn/77IkDkTkbrf+2/j+zcHAJxzzjnIyMjQdA6CsBrU+yKilgYNGsjLv9uLD8p/9yexgYYOqxFocadoHDrsD9X3oncbCn/Xw+B2FlElsQRhNSwor9zgJZ1Wllcex8SKvKqIJ9chw0ben0oUVo+8ytmoPEz3XaxJK9e8WjsKqyavYAzLly8HAFx00UW6zkEQVoL2gSWimosvvhgbNmyAvegAqut19OzJCo/EwgnYXAzMBrjtguboqxJBEACbACY6IABgVVWAy+X5sRIm93xljJ3al9XoHopSR4DT/q5eZTKKm4VuL1yKvhJWhOTV/7FS3RZL8hrCfCyzNoFiT1dT8qrcGzbEizVpPvbQUXlvWCPiKpG541QUdsiciQBQW14BiOUncPjwYSQmJqJv376GzkUQVoB6YERUc/755yMlJQVidRlsZblerynnxabvq0bi7hOGz6McUswYv0UjuERfTcqrBPcVio2KMG+UewzyguSVsCIkr8HziFV5ld5brMmrAi7triDy+dyYO+hiTVqQorBm5FXi6tcm4bK5nqirmrwCwGXtPaPJBg8eTKsPE1EN9cKIqCYxMRGXXHIJAMBesE81jcAAW4X+6GutfASBa/Q10kOHfTEd7TyVEZ98wLETxfta89yahCB4wPOetNIDMYCvdPKC53xei70/y8krz3ubY17M5TL9XRHi4iDknDQtrwDQdFUx0tS7QZ5zOSvk1Yevuuoq0+cjiEhCAktEPUOHDgUA2EqPQagurfV68lEn4g/keSKCNpthwWIVFXCXV/Cbf8MDTtFXGZ5RUw6dMi5SHaoHBSSxhFUIxb1ockoCN3hHTM2WjUceEhYU15iVV+au+eERxRVO5Wkmm7g4TxtXWYnkzUcM55NwvAIJxysgVDmRuaPcb7oJFzaDy+VCly5d0K5dO8PnIwgrQAJLRD0tW7ZEz549IQBw5O+t9bqt0g2hvPLUH0TRmMS6meeJKwcsGX3lIa++19ViHTTukMQSkcZi96Cl5VXtd6N5mMVidWPEF2tSw+feNtxuSuLKU16lrA1upSfLq5RPUbGhfCRxFao85bCVVqkndLvw+eefAwCuueYaQ+ciCCtBAkvEBCNGjAAA2Av3A65TsipHX33RKbFS9NVS8I6+hgqDHTVLR1+VWEwgiDpEqO+9SGzLJWG1uapWfW8c4Bp1tWTklZO4qrVJBsrpK68SeqOwkrx6l4epRmEnX9EOBQUFaNy4MS688EJd5yEIK0ICS8QEvXr1QocOHSAwl1cUtlb0VYmeIcUUfdWSkf/XdM7zihp5lZCGpxFEuAjX/abxexR18qqnvDTfNTg8xTXAva2r/eQ9ZNjfaTRGYYW4OL/yCmiPwiqHDKtRKwrL3Fi4cCEAYPjw4bDbaQMSIvohgSViAkEQMGrUKACAo2Av4K72H331xeiQ4khiteir1utnsc4bd0hiiXAQ7vssSF0TdfKq9XWtabRgwbrPkvLKK58wyat8vmDZ1Iir2YezvkOG1cvDkLHzVBT2hZFn4ejRo0hPT8eQIUNMnZ8grAIJLBEznHfeeWjRogUEdzUcBfsCR199CSCxPIcPW2nbHIBj9FUPQTpyURd99YUklgglkbq//HynolZew5UHQPKqBR33dcB2lNd8V39Dhv2dNkAUNlDU1ZfkLUf9vhZ/wn/U1Rd7SU0UljHMnTsXAHDdddchISFB0/EEYXVIYImYwWaznYrC5u0CY9VBjvDB35BijsOHYxJDC2Kpd1a4beUTaUhiiVBgsfsqJuSVxxDjQFhMXmN/peEwRV3Vzu2bTZAhw6rZFBbV+lv8iQrEn6iAWKl/wahp156O/fv3Iy0tDddee63u4wnCqpDAEjHF4MGD0aZNGwjuaoj5/xjLRBGNtVz0lSMRib4qCVXHzirX2WKyQUQ5VrifFN+tmJBXf8fEsLxygddiTSbWDqjVnkZSXqUiKKKwZoYMK6OwkrjqllfGkL6zBLNmzQIA3HjjjUhJSdFdFoKwKiSwRExhs9lwxx13AACcycfgtvlZUj4YksRaLfpqtbmvZlEsahIz0VclVpAOIvqx0n0kCrElr77HkrwGxpJRVw7yqnPIsL+yGIm61sqmJgprNOoqcfudHZCbm4usrCzaOoeIOUhgiZijd+/e6NatGyAwVGf6n08SFNEji1aLnPIgJmXRqlhJPojoRLBQU+1m/OoPXpLHa49Pktfog9d8Vx4IIpeFmhhjpuWVoRrz588HANx8882Ij483VSaCsBoWahUJgg+CIGD8+PEAAGdKHlxxpYbysdzw4VBEX812tLgsuOSphiwXIeAJSSxhFitIrOK7ZVpiecqrleAorzzqRO7yyqMN4lAfMuleNHsfcpRXAKb7DNLnZdt3zFQ+l4zOQlFREVq3bo2LL77YVF4EYUUs0CISBH86d+6Miy66CBCAqnoHwFwGnmS6GVAzfFioicTGQjS2VsfTQnsTcltghNccLZ7QXrEEwa++4RV15QXnelSqB43Wh1wXa+KJyTqQudkpeQWMP9jhMWRYOr+iDEanHPl+XqzCmAiLuflgBYfx9ddfAwDuu+8+2veViElIYImY5c4770RKSgrciRWoTj4uy2i4sWz01Re9nS+O0VdfKBpLECpEMgqr8l3SHYWlqGtQeIhnyMXVSFvE4QEe81ef670POUddfdEbheX1eYm5+XBXVeK0ix1gjGHQoEHo3r07l7wJwmqQwBIxS/369XHrrbcCAKob5sLtLgerrNQksqyyEu6yMtXXojkSG7TDaZFILEASSxCqREJiA3yHNEssyWtQ/NV5eurCWIy6erII8L70fCdCLK+A9ihssIcVwpETmvIRc/M9kdeqKkz46Eps27YNSUlJuPPOOzUdTxDRCAksEdNcddVV6NChA2Bzo6pRDsAYWHV1cIl1uYOmiVaJDYqWoXAhjL4qIYklCBXCKbEavjthezBmNTmL9fmugdDa/vEeMmyUEA0ZNoqWz0rLMGJJXFlVFZi9Gu+88w4Az8JNDRo0MF1OgrAqJLBETGOz2fDggw9CFEW40ovgTCkGALDqas3R2ECEJRobqa1zLBKN5Tov1mqQxBJGCYfE8vjOkLwGRZPMBEkTi5FXXeIaSE7DEHXVA4/PShl1BQAGhrPHNkRxcTE6dOhA2+YQMQ8JLBHznH766Rg5ciQAoKrJUTBbzYJOfqKxgYYP+8OfyFopSmto1dBQSayG6KsvMb24E0EYIZQSq/N7olq/kLwGhcd814jJq7/2LZTzXf2h9l2IYNRVbR6skc9KOHay1t+UUVcJV3oh/vzzT9jtdjz22GO0cBMR85DAEnWCcePGoU2bNoDdharGx8CgWO3PNxqrYfhwncJ3SHEE95CN2SHFJLGElTD4/fCSWJLXoOitz3zTx2rUlduQYR4YfEjkOw/W8GrSZeXy775RVwm3vRpxHTyjy26++Wacdtpphs5FENEECSxRJ4iLi8Njjz0Gm80GV1oxXGlF3gm0zo0NQixtt1MLCw0p5oIVJZZEltAL7ygsDRtWh+M2OWaipma31wkp4Y66+iJJq8XmuvIaMuwbdQU8Q4e7jaqPkpISdOrUCSNGjDB9LoKIBkhgiTpDx44dMWbMGABAVeNjcDuqaqWRJZZDw8VNYjnkY2j4sIWJWYkliEhipe+DlQTNAuLqm4+liMSQYTUEkZ+8coDL5+RyqUZdJW56/UKsXbtWfkhPQ4eJugIJLFGnGD16NLp06eJZlbjZYTChdqPLGPNIYyT3XJTgWQYD8065Hk9og6KwhB4sdL9wEytuD6g4RE05ymvMwfGBhyVGLXGKukqjsPxJp2ZcLsDt9puPK6EcM2fOBADcc889aN26tbnzEUQUQT1Sok5ht9vx1FNPIS0tDe7EClQ3zPWfWJJYK4isCbyir6JoTkRjLJJrWSwkJYSF4XmfmJQRL0EzU8fwlFcr5IEYlFcrLoYnYbS95tTOe4m40SlJLpcsr/5gogsZvcvhcrkwYMAAXHHFFcbORRBRSnT3zAnCAI0aNcJjjz0GAHDWy4cztch/YlGwTjTWDL4dykhGU60UybXCU39/kMQSgbCqvEoY+Z5zWWlcJepqREQ5yGtEVwgOFWr3SrS3jxyjrqaRxDWQvIKh562NkJOTg2bNmmHixIkxN02IIIIR5bUOQRjjP//5j7zYQVWTo3DHVQY+IFLR2FAKlp4OppWkE7E3p9cvJLGEGlaXV2MZmc+D1+JRnOQ15ghx1DXsw4g5Dhk2jYaoq8ToGedj1apV8oiy5ORk8+cniChDYDFZyxJEcJxOJ+69915s2bIFQmUcEva3hlDJPCv9BfpaSI14qOVCEPkt4BRMQIM1miKnxTGkvEzCRWCtHH31JdojHARfeNU94ZBXLTIYLnnVUveQvNZGy33C6Z7kspiTlrKESVyFxMTACaRhxoHuO5sNQkI8AMCZUozqlofBGMODDz6Iq666SmtxCSKmoF4RUWex2+14+umnkZWVBRZfhcpmh+Fm7uCdj1gZVqwkXBFWi0VyowaKxBIS0SSvQPDvPEVerY3W+yRa2kOrRV21LDRWI7nuuErYO+aBMYahQ4eSvBJ1miipcQgiNNSvXx/PPfcc4uPj4U4phbPJSe0HR8EiT7oilWYXeAoTdWb4sC8ksUS0yWvwjMznoUc6/aXltMdrnZVXq+GvTbbKXFcdw4UlmOhCg/5VKCsrQ7du3TBhwgRzZSCIKMf6vVWCCDEdO3bEo48+CgBwNiyAs0GJ9oOjIRqrV0qjQGJNE03Dh5Vw2G+RiFKiWV7V6hSrRF5ppeHaWHmVYSNweNAczkWafGECQ+cbUnHo0CE0atQI06ZNg8PhMF8Wgohi6kBPlSCCM2DAAIwdOxYA4GydB1daub4MoiAaqwtlNLYuCG20QRJbt7CIvHIjkvKqPI5WGq5NhO8R7gs5WWm4sM6oK+BZcfi8Rzpi48aNSExMxHPPPYeMjAzz5SGIKIcWcSKIGtxuN5599lksW7YMcAmI294QYlm8gYw4LfLEYREnTQs4acvIfB6cRLjOLeAUiFh5YEL4x0Lyarq74HZbI/IqijRkWI1wLaAUNAtrXFce4irExXl+MXi/VTfLh7NJEWw2G1544QWcc845pstEELEA9X4IogZRFPHII4+gZ8+egI2hqsNxuOOrDWRU0+hZRS54LXBCWA+KxMY29PmGBovUiYIg1N05/SGEi3jyeMgpiKbmVzsbFsHZxLNP/aRJk0heCUKBRXrYBGENHA4HnnnmGXTo0AFwuFHd4TiY3WU8Q6sMK+a0SEnMYJEn/Kaxwr1FRAeRHnUg1T8WGs1hBrPRV3l0jAXei2Uw2V7ymKfKZa4rh3bfmVECZ6sCAMBtt92GSy+91FyZCCLGoJqTIHxISkrCCy+8gCZNmoAlOFHVMRfMZkJiAeuIRgxILLdhe7EisURsYsHoq+FoYQzUO0q4yStxCg6LLJkvAqeoq0mc6aVwdywAYwxXXXUVRo0aZb5cBBFjUA1KECrUr18fL7/8MurXrw+WVF0jsRzmtFpBZGMgGstVYqNVZK1wLxGhIVTyGokorFpdE8VRWDN1jzxkmOTVG4q6AvDcW87UMqBzIVwuFwYNGoT77ruPhpkThApUixKEH5o3b44ZM2YgMzMTLLkaVR1ywQSTkViARJYTXFf/jFaJJWKPUEdeeSwMp5Uorl98MVvfBBoyXGcFxURbGGviyhiDK7kcwhmFqK6uRv/+/fHYY4/BZrOZKx9BxCgW6EUThHVp3bo1XnnlFaSlpYGlVKGq43EwuPgIjxUkFoj6TiZJLBEzWHDYsGGC1StRFIUN+ZBhq0RkwxmhNxl1NX/6yA8Xlh+KuBncSRWw9yhBVVUV/vOf/+CJJ56A3W43X0aCiFEsUmsShHVp27YtXn75ZaSkpIClVqGq03HPcOJAwqO1caRoLBe4RWOjZUixFe4Zgi/hlNdQR2GjuC7xhea76iRY3VSXoq4BziOJK9wMrrQK2HoWo7y8HD179sTUqVPhcDjMlZEgYpw6VKsShHE6duyIl156SSGxuZ7ViXkJj5VENhRESaREJhokliAiiF+J1VOHWHzobDjnu9aJYcQRjLpGYriw2meqjLoCgCu9HEK3QpSXl6NXr1547rnnEB9vYP95gqhjWKDHTBDRQefOnfHqq68iPT0dLKUaVafngjlq5sSGQmRZkChvqIiBaCwXSGKJcBGJocOhGC4aiXojRA/HQjXf1S+xHKW1QNTVZAZchwvL8ppZBta1AFVVVejbty/++9//IiEhwVxZCaKOEMM1JkHwp0OHDnjjjTfQoEEDsCQnqjrngsU5TyXgKbKRJsolNmaHFFvh3iD4Ecl5rzyHEhutLywYeeQir4SHWIi6mkBNXAHAVb8U7tML4HQ6MWDAAEybNg1xcXHmykoQdQiBcQtXEETd4ciRI7j//vtx9OhRoNKGuB1ZEMtDNGclnKuGqp5fNN/JjGCHjtvQvEhsQaIGCWzsYIVFm0w+oPF0zk2+Dy4Pm8xfy0jPd2UuDqvcm4XHAzvmNldPWeF7YbaeldoLn+vJwOBqXAxnq0IAwKWXXopJkybRasMEoRMSWIIwyPHjx3H//ffjwIEDgFOAY2cD2Ip9hv+IgrkOAY/VFq0gsFI+EYIklrAcVuikc5CVWBFY01FXwFwdJwhgTmfwdKHGCiNOzHw3BNH88TxQafsZGJwtC+BqUgIAuPbaazFhwgSIFLEnCN2QwBKECYqKivDoo49iy5YtgBtw7KkPW17SqQRK4THaMRA9i4EY/arKUQGjHTwS2FNYRWAB4x0ts9ERwoPUSTbzOUQSXvIq5xdhiY1QBNb0kGGF/LKqKuP58MJEO2XqeCVGvhvK76HR71Yo5VVgqG57Eu765QCA8ePHY8SIEXVj8S6CCAHUiyEIE6SlpeGVV15B//79ARGobn8SziZFYKhpvJSNmCiYEiAukVR60hs7GOmkSccwd+QFKpoxe+1i4Npb7tl3BOo2LvIa7fWyyXaNC2bFk9cuANK18JVXmxudbqsPd/1y2O12TJkyBSNHjiR5JQgTUASWIDjgdrvx1ltv4dNPPwUA2HKSYc/OhMACNO5an1TXRGCV6Pnaqnay9EQrpGPr+jzYSHfSAqG186UmThSN1Y/vddRzDa0grzzmvarma+K9RdkwYm7yqsTtjvwwYh3tkqnjA6H1O+Lve2f2eL34XgvFNXAnVKPR5Q4cPHgQycnJeOaZZ9CjRw8+5yWIOgwJLEFwZPHixXjrrbfAGINYFA/HrvoQ3PbAB2lp8FUkFtDe4fLb2dLa4aOFnKwtsIC2zpi/jh1JrHbMXsNIC2yo5BWI+mHEWupTXvNd/R0f8WHEGtsjU8cHQsv3I9B3zezxeggi8a70CsT3LEdJSQkaNmyIF154AW3btuVzboKo45DAEgRnfv/9d0ybNg3l5eUQKmxw7GwAsTLIxuTBGn0/AisR7GscNFoQrONHAmt9gQXMdexIYoMT6BqaeYAQLkIpr0DkBZZDGQK9R57zXf2e38oCq6UODKXA8viO8Roq7A8386w03KgE7tOK4Ha70aVLFzz77LOoV6+e+XMTBAGABJYgQsK+ffvw6KOP4siRI4BLgGNvfdgKkoIf6K/xDyKwAKeOl7/OHwlsdAgsYG5YHUlsYMx0jmNdXuXzxOYw4pAMGVY7v1UFVmv9FyqBNTvCIdRRV+n0zA1n63y4GpYCAC655BI89NBDtMcrQXCGBJYgQkRhYSGefPJJbNq0CQBgP5wO25E0CDD4FFuDxAIcOmBqHcAonwdbpwQWUO+shXteWKxh5vrVFXkFIh+FDYHAhkteAYsKbLjkFeA/vzxM4goAzF6NdqPqYevWrRAEAePHj8fw4cNpsSaCCAEksAQRQpxOJ95880188cUXAACxMAGOvfUhODVuWu6zirGehtD3q627E+bbEYziKGydE1igdsdNj0SRxHqjV0DNXHvehFNe5XNGMArLUWBNz3c1cHxEBdb3XtFb5/GMvhqpg8wer4bGa+BKKUdS7yoUFhYiJSUFU6ZMQZ8+ffiUgSCIWpDAEkQY+OGHH/Dyyy+jsrISqLIhbncDiKVB5sUqkToGOiUWUOmQ6e2MSR1CEljzeUQCqSNnVsLqMmauXV2TVyAmBDacUVev85PAmpPXMIsrA4OrSRFcLYrAGEP79u0xbdo0NG3alE85CIJQhQSWIMLEnj178MQTT+DgwYMAA+wHM2DLSdU2pFiBURljjBnvlLndfIYRR/M82GgVWDOQxBoXUEGM6qHDproGUTyM2FQ9KWHieEsIrNG6jscQYqMwd+gXaPI9pc2F6tNOwp1RAQAYMmQI7rvvPsTH63g4TRCEIUhgCSKMlJaW4sUXX8SKFSsAAGJeIhz760FwaRxSXIMpGTMrkRSFrVtEWmJ5dUzNnD8aiVT0VT5/9EZhIyWvqK42fN0FQTD1mQmCAOZym6vjjN5zomDufjV7vJSHDlypFcg4j+H48eOIi4vDAw88gMsuu8xcGQiC0AwJLEGEGcYYvvjiC7z11ltwOp1Alc2zSnFxguY8zEcTOWwFEYlzm4SisCYwKpFmBZT30EAj545GSGD1w+PhntERLgCY02nglJ46yYz4mjlexoy8Gj3ezLHK43XABAZn00K4mxWDMYbmzZtj6tSpaN++vbEyEARhCBJYgogQO3bswNNPPy0PKbYdS4P9cDoEFrhR5RNJjGAU1uS5zXS4KAprkkgsrMLreLPnjkYiNYQYiL5hxJGQV6mMjAFut+5rrqzPzBxr5HhlPowx/feash41I68mjtfblrjjnWg3IgPbtm0D4BkyPGHCBCQladgijyAIrpDAEkQEKS8vxxtvvIFvv/0WACCUxsGxpz7ESoffY6JeYDmcn2fHzRAksdowsyWG2vFWOH80EckobF0TWJuOaSBKca35v55rbVY+echrrTpY672mVnfquU85Ha+nDWFgcNcvg6NrOcrKypCSkoKHHnoIAwYM0H5egiC4QgJLEBbg119/xfTp01FcXAy4BM8CT8dTVBd4IoE11wEjgeWAVhHkLaBWOX+0EM3DiD0FCM/5wxV99RXXGpjLpfE06vWO1s/J7PFqeZiWVyCsx6tdg0Dvn9ldqG6dB3dmOQDgzDPPxOTJk9G4cWNt5yQIIiSQwBKERcjNzcWzzz6Lv/76CwAgFsXDvq8+xCq7V7qYEFgOZdDbEQl2rG5IYoOnCYWAWuX80UBdF1gtZQiHvPoRV+m1YNc5UH2l5TMye3ygfDQJbLC6MkzH6xV4V2YZknpUo7CwEDabDTfddBNuvPFG2O121fQEQYQPEliCsBButxtffvkl3nvvPVRUVKhGY7nIFxB5iQ2BwEqY6RBqpq4LLBBYBIPJXzCJ1CqPRstgRoCjBQ7bmkT1MOJgZQilvCrPGyjCFyD6qqWeCvT5mD0+WD5B5VVLHRnK42vyCHYdfK8Bs7tQ3TIf7vplAIC2bdvi8ccfR7t27YKXhyCIsEACSxAW5PDhw/jvf/+LzZs3AwDEwng49teHUGUngfUqgr6OiZ5jNUES618EtcifGQG2WhmsCkVh1cvAYzV0tXmvgaKtKmnVrq/WusnfZ2P2eK35+BVYPfWiv/tTax5Bjtcj8QwM7sxypPRyIT8/HzabDaNGjcKYMWPgcPhfl4IgiPBDAksQFsXtduOLL77Ae++9h8rKSk809nA6bDmpELls2B6bw4jVMNNJDApJrLoEmhVQvfLom0e4BNjqkMDWLgMPefWNvuoR15r0vtdWb53E+3i9+agKrN76METH620bWJzTE3WtmevaunVrPPbYY+jUqZO+8hAEERZIYAnC4hw8eBAvvvgi/ve//wEAhFIH4rLrQyyLN5cxr05chMugp9NmtsOnCgmsB6UEGhE/MwLKoww8JNqKRLvAegphPg9lOXgOHdYrrjVIQ4eN1kHKz8VIHmYf6tWSVyP1oNnjVfLQey3czA1XwxI4OlWgvLwcdrsdN9xwA0aPHo34eJNtLEEQIYMEliCiALfbje+//x7vvPOOZ6ViBthyU+E4nAHBbbAzVgcFVsJs568WJLEeJAk0Kn5mj1fmE+kyWIVIz4MFrBWF5SWvBsXVqywGkT4PM3UXFwF2M3N1n9njffLQLa+JVahqdRIspQoA0LVrV0ycOBFt2rQxVyaCIEIOCSxBRBF5eXl48803sXz5cgCAUGWD40A9iAWJqlvuBMQKAsupHGaiGDSUmKiFGQG2GrEgsJ5CmM+DB1J9YbQ8PK4FB8zWfVbqOuoeOm1zo7pJAdCsDC6XC8nJybjjjjtwxRVXQOTRLhIEEXJIYAkiClm3bh1eeeUVHDlyBAAgFiXAcSATYkWc9kxIYPlDEktYDSsILGCNKGykMXsNlJHfCGPmnhAEwfQ9ZShqDAZX/VKk9mDIy8sDAPTv3x/33nsvGjRoYKo8BEGEFxJYgohSKioqMH/+fCxcuBBVVVWeYcU5qXAczYDg0iCFvJ40k8SeggSWsCKRngcLxFYU1ihGroFv3WjmOvIQ4Jo8jNwTyjra6D0l56HzvbiTKj2LNKVUAgBatGiBe++9F+ecc46hchAEEVlIYAkiyjly5AjefPNN/P77754/VItwHMqE7WRy4GHFJLChgSSWsBpWiMLWdYHV+/7V6kSj11BttWQTeQTau1YNtbpZ7/3kJa4SGt4Ls7tQ3bQA7kalYIwhMTERY8eOxfXXX09b4xBEFEMCSxAxwtq1a/HGG2/gwIEDAAChNM4jssUJ6gdYSWABkliCCBVWEFig7kqsnvftrx6MVPRWJQ+t90Kg+lh3HjqFngkMzkZFiO9YjdLSUgDAoEGDMH78eGRlZWk6N0EQ1oUEliBiiOrqanz22WeYM2cOysrKAABiQSIchzIhVvg8bea5WAVFYWtDEktYBRLYyKH1PQer/8ItwX7y0BJ9DVYPa7mXAoor4Pe9MDC46pWh/n/sOHbsGACgffv2mDBhAs4666yg5yUIIjoggSWIGCQvLw+zZ8/GkiVL4HK5PPNjj6fAcSQDgtN2KqGVorCcymIZiSWBJawCB4EFSGINEej9aq3zeEgwJ5EOJLBa695A91FQcZVQeT+ulApUt8gHS/Zsi5OVlYXbb78dF110Ea0uTBAxBgksQcQw2dnZeO+9907Nj3UJsB9Lgz0nzbN/rJUEFqAoLEGECorChh9/71VPPaflemnJL1g+GvNQuwd0b2MTKA8DUu9OrPLMc80sBwAkJiZi1KhRuP7665GQ4GcKDUEQUQ0JLEHUAf7++2+8/fbb2L59u+cP1SLsx9JhP5EGgVlIYmMtCguQxBLWwCoCC9QNifV9j0brtlBLsI58fKOvhray8Seveq+P2w13fDWcTQvgblAOxhhsNhsuv/xyjBs3DvXq1dNdNoIgogcSWIKoI7jdbqxYsQIffvghDh065PljlQ2OYxmwnUyFwEyKloWisABJLEF4EWvDiAHrSqzy/Zmpz9SukwHRM51HTT7SZ2+mblXeP7qjrlJRbFVwNi0EGpd7psgAuPDCC3HzzTejVatWhstGEET0QAJLEHUMp9OJH374AXPmzEFOTg4AQKi0w340A7a8lMBb7wSCBDYwJLFEJLGSwAKxG4V1u/nUYaGI4JooF3O5+NepOsvD7E5UNyqErUWFZ+/z/2/vzsOjKg89jv/OTDLZQxAQgiAihE1RMCxKhKIo4lYroFa9F5dyrbZon3r73N5L63JrXXqplS7qbX3u9T4uoLWiuKMIaMGwCQplCWGVJcQsZCOZTGbm3D8mczKTZLJMJplM8v08zzznzHnPec+bTBjmN+97zivp4osv1sKFCzVq1KjItg1At0aABXopl8uld999Vy+//LJKS0slSYYzTnEnwwyy3SzASt0sxBJgEW09bRix1L1CrGFErj2RDMIdrScSr5XNFnZbvPFuuQeWyz6kIbheeOGFuueeezR+/PiOtw1AzCHAAr2c0+nUW2+9pWXLlqm8vFxSfY9sYZ/2DS2OZFikFxaIrAj1wEqE2CCB7zE99eNUR14n/3t5GOHe66iTe2C5jMwaud1uSdJ5552nu+66S5MnT+5+7+8AugwBFoAkqbq6WitXrtTrr79u9cjKZVd8YR/Zi9Nav9lTNwywEiEWkNSzA6zU9eGx8ftKR8/vr6+71BMonNcpMLi2sz3ehDq5B5VJZzZc4zphwgTdcccduuiii7rfezqALkeABRCktrZW7777rpYvX66ioiLfxjq74r5NV1xxmgyPPfTBhNi2IcSiq3XHACvFVi9sqPeRjpw7Uj24ndUT3N7Xp3Fw9WtDm7xJtXIPLJfZv0be+vNOnjxZCxYs0IUXXti+dgDo0QiwAJrlcrn04Ycf6tVXX9XJkyd9Gz2G7CVpivs2XTZXfNODCLBtR4hFV+uOIba798K29t4RzjmbqzNS9YRbVyhtfX1CBVe/EG0yZcqbXiP3meXypjut7dOmTdOCBQs0bty49rQWQC9BgAXQIrfbrTVr1mj58uU6cOCAb6Mp2ctSFFfYR7bqhIado3yXypYQYtHrdccAK3W/ENvW94r2nCuSQbilurrydQl8f25nm0zDlKdvla/HNalOkmS32/Wd73xHt99+u7KyssJpMYBeggALoE1M09TWrVv12muvacuWLdZ2W2WiL8hWJPnuXNxNe2ElQix6uQgGWKmb9sJKke3N7Og52lJvW+qKVD3tEep1aa23tbGAdpl2j9z9K+U+s0KK913fmpSUpOuuu07z589XZmZmR1oMoJcgwAJot/379+v111/X6tWrrZtsGM54xRWlyV6aLsMbweDZ03thJUIsukZ3DbBSdHphw30/aK3+9tTblXW1R3OvR3uDq2S1yZvokrt/heLPrpPT6RsqPGDAAM2bN0/XX3+90tLSOtpiAL0IARZA2L799lu9+eabeuedd3T69GnfRo8he2ma4orTZXM6On6S3tALKxFi0TW6a4jtql7Yjv77j2S9XVFXuPyvR1uHCTfDlClvn9NyD6iQN63h+taRI0fqlltu0eWXX674+GbupQAArSDAAuiw6upqffzxx1qxYoUOHz5sbbdVJiquKF228hTf8OJwEWKByOiuAVbqvBAbqX/vjX/WjtTbmXV1lNcbXm+rvzlxbrn7Vcrdv0Jy+Ebo2Gw25eTkaO7cuUyFA6DDCLAAIsY0TX311VdasWKF1q9f3zC82GWXvThdcSVpMtxx7a+4twRYiRCLztWdA6wU+RAbSaYZ2TDcWcE6HI2n4QmntzWlVp4B5TIG1MrtdkuSMjIydP311+u73/2uBg4c2PF2AoAIsAA6SWFhod555x29++67Kisr8200JVt5suJK0mSrSG5frywhFghfhIOrX68KsN1VuK9BBN4DzTiP3H0r5elXad1NWJLOO+883XjjjZo5c6YcjghcSgIAAQiwADqVy+XSunXrtHLlSu3cubOhoM6uuJI02UvSmp9TtjmEWKB9YiW4BiLEtl1X3HG58Sn9c7eeUSlbQG9rQkKCrrjiCt14440aNWpUh84BAC0hwALoMkeOHNH777+vjz76qKFXVr5rZe0labKXpcgwWwipvSnASoRYhK+TgqvUyeHVjxDbukjOQ9sGXkedPGfU97bWX9sqSWPGjNG1116rWbNmKTU1tcPnAYDWEGABdLm6ujpt2LBB77//vjZv3tzwgdhtk70sRfbSNNlOJzQ/xJgQC7QsFntdGyPAti6SU/CEOoXNK0+f0/L0q5I3rcbanp6eriuvvFLXXXedRowY0eHzAEB7EGABRFVhYaE+/PBDffDBBzp58qS13aiNk/1UquylqbLVBlxDFeEAKxFi0UPEeq9rY4TY0DprmiA1DBH29K2Up0+1ZG8416RJk3Tttdfq0ksvVUJCQofPBQDhIMAC6Ba8Xq+2b9+uTz75ROvWrVN1dbVVZlQ7FFeaJvupFN9djHtjiJUIsmheTwuugQixTUVyCh5/lTJlJtfKfUaVPBlVUnzD733IkCG68sorNWfOHGVmZnb4XADQUQRYAN2O0+nUhg0b9Mknn2jTpk3WdDwyJVtlkuxlabJXpMjw2CN6XkIsYkpPDq6BCLENIjy3rTfBJU/fKnnOqJKZ4La29+3bV5dffrlmz56tMWPGxMZ7I4BegwALoFsrKyvTp59+qk8++US7d+9uKPBKtqpk2ctSIxZmY+ZDGiG2d+stwTUQITZivIkueTJOy5NRFTT1TWJiombMmKErr7xS2dnZiosLY85uAOgCBFgAMePo0aNavXq11q1bp0OHDjUURDjMEmTRbfWEGzSFozMCrM0WG8G4g+00ZcpMrJMno0qejNNBoTUuLk7Z2dm68sordemllyo5OTkSLQaATkWABRCTDh8+rHXr1mnt2rXBYdaUbJXJspen+MKsu2O9CDETZiUCbU/XG3teA3U0bAZeO9/dg2vj6/zb2V5Tpswkf0/raZmJDaE1Pj5ekydP1syZM5WTk6O0tLRItBgAugwBFkDMO3LkiBVmDx482FBgSkZ1guwVqbKXp8iojW9+ap42iqkwKxFoe5reGmDDDZuhbvYW6fDqP08kA3agNtZrGqa8qTXy9KmWt8/poLlaHQ6HpkyZopkzZ2ratGnM1wogphFgAfQo/jC7fv165eXlBZUZtfGyl6fIVpEi2+nEDoVZKcYCLWG2Z+htIba9obC1O5RHIrw2d45w6m3L3dRbqde0e+RJr/aF1vTgKW8SEhI0ZcoUXXbZZbrkkkuUkpLS/jYCQDdEgAXQY3377bfKzc3V+vXrtW3bNtXVNQyjk9sme0WKb7hxZXLvuW42EKE29vSWANuWQNje6bQi3ZMbTr0dbLMpU2ZCXX0va7W8KU4Ffg/Xr18/TZs2TTk5OcrOzmauVgA9EgEWQK9QXV2tzZs3a8OGDcrNzVVFRUVDoX+ocWWybJXJslX3st5ZPwJt99eJAVbqBiG2pTAY7vzPndU72pa6OzJndX3dpt3jGxqcXiNvenXQ0GBJGjlypHJycpSTk6NRo0bJ1gnzZANAd0KABdDruN1u7dq1Sxs2bNCmTZuCbwIl+Xpnq5Jlq6jvne3gjaAkAi0ipCcH2MZhMBJBrK3hNVK9uRFos++uwfWBNa1a3pTaoF5Wh8OhCy+8UDk5OZo2bZoGDRrU4XMCQCwhwALo9b799ltt2bJFmzdv1pYtW1RVVRVUbtQ4ZKtK8oXaqkQZ3l4052xjhNro62kh1uuNTFhtXGcoHT1XYN2RCqwOt7yp1b6e1rRqKS64/WeffbamTJmiKVOmaMKECUpMTOzweQEgVhFgASCA2+3Wnj17tHnzZm3evFl79+4N/kBvSkZNguxVSbJVJcl2OkmGt2MfYmMyzBJko6eTA6zUDYYSd1SEQ2akeePr5E2tsR6mwx1UnpKSouzsbCu00ssKAA0IsADQgrKyMn355Zfatm2btm3bpuPHjwfv4JVsNYmyVdYH2upEGWb7PzDHZIj1I8x2jS4Irn58NIgsM84tjxVYq2UmBAdWu92ucePGaeLEiZoyZYrGjRunuLiOX7oAAD0RARYA2qGwsFDbt2/X9u3btW3bNhUWFgbv4K3voT2dJNvpRF8PbTvucEyQRZAuDK2B+GgQPv+dgr0pNfKmOOVNccpMqAvax263a/To0Zo4caImTpyo8ePHKykpKUotBoDYQoAFgDCZpqmCggKrd3b79u0qKSlpsp/hjPeF2eok3zW0rvgW73Ic0yFWIsh2VJRCa2N8PGgb0/DKm1zbEFiTnU2uYbXZbMrKyrIC6wUXXMC8rAAQJgIsAESIP9Du3LlTO3bs0D/+8Y+mdziWpDq7bNWJslUn+JY1Cc320hJke5FuElob4yNCMOuGS8lOmUm18qTUyEyqlRpdNZCQkKBx48bp/PPP1/jx43XeeecpLS0tOo0GgB6GAAsAnaiiokK7du3Sjh07tHPnTu3du1cul6vJfkZtfEOgrU6UUeOQYdpiP8RKBNlQumlobaw3f0ww49y+3tVkp7xJtc32rkpSv379NH78eCuwZmVlcQ0rAHQSAiwAdCGXy6W8vDzt2bNHe/fu1Z49e5reGEqy7nZsq06Q3ZnoW3c6wrpBVLfR24NsjATW5vSGjwpmnNsXUpNc8iY5ZSbXNrk7sCTFx8drxIgRGjt2rMaNG6fx48crMzOzZ3zZBAAxgAALAFFWXl6uvXv3WoF29+7dKisra7qjKRm1DtlqHLI5E33LmgQZnhjs6ekNYTaGA2tzesrHBesmS0m1MpNq5U10yZtUK8V7muxrGIbOOeccjRkzRmPHjtWYMWN07rnnyuFwRKHlAACJAAsA3Y5pmiosLLR6affv36/8/PzmQ60ko85e30Pr66W11TpkxFpvbVcFWn+o7IrzEWCjzoxzy5vgkpno8vWsJtbKTHJJtqY/i2EYGjp0qEaOHKnRo0dr7NixGjVqlJKTk6PQcgBAKARYAIgBpmmqpKRE+/fvtwJtfn6+jh8/3nywMCXDFe8bdlzr8AXb+vVuH2w7I1y2FiYjfc4eEl5j4SOCKVOK88ib6JKZ4PItE33L5q5XlaTExESNGDFCI0eO1MiRI5WVlaXhw4czlQ0AxAACLADEsOrqah04cED5+fk6fPiwDh06pMOHD6u8vLz5A+qDrVEb7+upddUva+Nl1MW1OL1PVEQiWLY3TEbjnN1Id/1YYBpemQl1Mh118ibU+dYTWg6qhmEoMzNTw4YNswJrVlaWBg8eLLu97fMzAwC6DwIsAPQwpmnq1KlTQYHWv6yoqAh9oNeoD7Txvl7b2ngZLocMV1z3CLfhBMtIBcn2njvGAmx3+ShgGl6ZDrfvGtUEl0yHP6jWyYx3K9SfoGEYGjx4sM455xwNHz5c55xzjoYNG6azzz6bXlUA6GEIsADQSwQG26NHj+ro0aM6duyYjh07phMnTsjtbnrHVYtXMurifWHWFS9bwLrhipfhtnd9wG0pVHZ2gGwt0HbzABut//qtgOrwBVLTUeebV7V+2dyNlAKlpqZqyJAh1mPo0KEaPny4hg4dqoSEhC76KQAA0USABQDI7XarsLBQx44ds4Lt0aNHdfz4cRUWFsrjaTlYyGv4emlbenR2yPWHymiGx+7QhmZ0xX/1ps0rM87tC6bxnvplwKMNAVWSkpOTNWTIEJ111llNwmqfPn2YrgYAejkCLACgRW63WyUlJSooKNDJkyetpX+9qKio9YAr+a6/ddsDAm2c5Lb7tlkPX9CVxxb9Ics9QEf/izcNU7J7ZMYFPtxSnCcgpPqWsjd/HWpjSUlJyszM1KBBg6zlwIEDrfX09HRCKgAgJAIsAKBD3G63ioqKdPLkSRUVFam4uFhFRUVB66WlpW0LuX71YVf+UOuxNQRbj12GxybVLw1Pw3Z5DYJvvcD/3k2Zkt0r0+7xLeM8Mu3e4G3+9fj6oGr3hLw5UihJSUnq37+/+vfvrwEDBqhfv34aMGCABgwYYAXWtLQ0AioAIGwEWABAp/N4PDp16pQVaIuLi3Xq1CmVlZXp1KlTQY+qqqrwT2TKF2a9Nslr8wVdr9HouU2G16hf2iTTkLyGZBq+7Wb9esB2q0yG7xzWUr5yqdXgbCrgv1sjcL3+uWH6ejxtAeshnps2r2TzyrSZ9Utvw9LeUC6bWR9Qw/+v3m63q0+fPurbt68yMjKClv6g6l8mJycTTgEAnYoACwDoVurq6qxgW1ZWptLSUlVUVKiqqkqVlZWqrKxURUWFtV5VVaWKioqWb0LVVUxZgdbiD6vdINclJSUpLS0t6JGammqtp6enNwmqaWlpstm6+dzBAIBegwALAIh5pmnK6XSqsrJS1dXVqq6uVk1NjbUMXA/cVlNTo7q6OtXV1cnlcsnlclnrjbd1dkA2DEPx8fFyOBxyOByKj4+3HoHPHQ6HkpKS2vRITEy0Ampqaqri4uI69WcAAKCzEWABAGgDr9fbrodhGDIMQzabTYZhyG63Bz232WxBZf5yAAAQGgEWAAAAABATuKgFAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATCDAAgAAAABiAgEWAAAAABAT4qLdAACIFtM05XQ6o90MAGiXxMREGYYR7WYAQFQQYAH0Wk6nU1dddVW0mwEA7bJq1SolJSVFuxkAEBUMIQYAAAAAxAR6YAFAkmPzmZLHkGEzJMNmLWWrH6ZnGDJsNsmo324YVpnh388wGrYbDccFbWtUp2+/hnLTf5wtoDzEdtMwGp5LMuurkmHItEmS4dtmnUvWMWb984bjjIbjbQ1lvmOCywPrNP372BSyPqvegDY2LBu3o3F5w2vUXLkkqw2hzhW0PUQ7gn+uhnM2V9ZwjBl0vibn8ZercbkZdIx/34Z2mVaZEbi/Yf209WVmo6W/TlOGYQb9efnr9L00DeW2+vqCttWvN5QFbAtY+upreB74kHx1+56roSzgfDbDa23z7euVJNmNhueBx/ifN5SbsstbX2bKbngDjvPKHnCcvX67Xd4mx9nkP9Yre1CZb3+7YcqQV3Z/++S1jrFLvuPkL/P9Puzyn9O02uF7Xr+U6teN+t+VZDcM2WTIrvql4S+zyZChOpdd8/5lkACgtyPAAoDkC69e3wdFGQ1LK2kYhgz5g2v99vp0YvgSoRrSTsBxTRKUrVFSCkoZAcep0bZQ2xV6GRAOrfXGS6s6I6Bao0kTg8sb16n6IB2qvqa/jib1NlvW0nFt+FWFW1/9MlS47bQAazQNsIFljQNsw3azUfvNJmWGv87myps9xmzmXI0ekhVgGz9CllmhMiDYBgRdq0wN5Q1BVAEB1hscAA1/AKxfGobs8tfnW/ctjaDjfHVJdkPWsuE433pgmaT60Orf1x+AA0Oqr82tBdigcwWeR8Hns1n7B7yGANCLMYQYAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQExgHlgAkCS7KVNe3+SPhoKXkm++UpsazaPqLwt4bhj182QGHNdaWcBEpGaIyU2b296wzbc0A8pNSTKNoG2+fQzJVFB9ZuAx9cc1FWKbGVAUNLepEdj8FuZfNcKf67Wlstbqa63Mv2jxuMbzr4Yob9LGEPPAqum60eQ8gWVmo6W/Tv+8q4F/XiHmgbXqC28eWFO+dbPRw19m1s+Fa5XV1+k1TMnwBpyn/rnqfx41LpdMw+uru74eM6gseLst4Fz+9cZLXzt8/6wDl976X5Otft1b/yfa/DywhmwyGuaVle93bpd/7tmGuV4Dn9usdd9x1vy19XXZZMhu+MsMGTJU52ru3yAA9D4EWACQ5JrybbSb0DnMRsswNM6ngJ8/Qnpb27Hb8id8BqQBQKzgHRsAAAAAEBMM0zQ78L08AMQu0zTldDrDOtbpdOqGG26QJK1cuVKJiYmRbBrQbfG3H32JiYkyDMZEAOidGEIMoNcyDENJSUkdricxMTEi9QCxhr99AEBXYwgxAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATOAuxAAAAACAmEAPLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMSEuGg3AABiTXV1tV577TV99tlnOnnypGw2m4YOHarLL79c8+bNU3x8fLSbCERUeXm5NmzYoC+//FL79u1TYWGhPB6PMjIyNHr0aM2ZM0czZsyIdjMBAL2AYZqmGe1GAECsOHnypB544AGdPHlSkpSYmCiv1yuXyyVJysrK0tKlS5WWlhbNZgIRddlll8nj8VjPHQ6H7Ha7ampqrG1Tp07VY489psTExGg0EQDQSxBgAaCN3G63Fi5cqIMHD6pfv376xS9+oUmTJsnr9Wrt2rVasmSJqqurdfHFF+u//uu/ot1cIGJmzJihsWPH6uqrr9aUKVM0ePBgSVJBQYFeeuklvf/++5Kk2bNn65e//GU0mwoA6OEIsADQRu+9954VTJ977jmdf/75QeWrV6/Wr371K0nSM888o+zs7C5vI9AZtm3bposuuihk+W9/+1u98847kqQ33nhDAwcO7KqmAQB6GW7iBABt9NFHH0mSJk6c2CS8StKsWbOUmZkZtC/QE7QUXiXp2muvtdbz8vI6uzkAgF6MAAsAbeB0OvWPf/xDknTxxRc3u49hGJo6daokacuWLV3WNiDaHA6Hte71eqPYEgBAT0eABYA2OHLkiPXBfPjw4SH385eVlpaqoqKiS9oGRNtXX31lrZ977rnRawgAoMcjwAJAGxQXF1vrAwYMCLlf//79mz0G6KkqKyv1yiuvSJIuuOACnX322VFuEQCgJyPAAkAbVFdXW+sJCQkh9wucQiTwGKAn8nq9evzxx1VSUiKHw6Gf/vSn0W4SAKCHI8ACAICw/OEPf9AXX3whSfrpT3+qESNGRLlFAICejgALAG2QnJxsrdfW1obcz+l0NnsM0NM8++yzWrFihSRp0aJFQXciBgCgsxBgAaANAq9tLSoqCrlf4HWvgccAPcnzzz+v119/XZL0ox/9SDfffHOUWwQA6C0IsADQBsOGDZPN5nvLPHToUMj9/GVnnHGG0tPTu6RtQFd67rnntHz5cknSfffdp+9///tRbhEAoDchwAJAGyQmJur888+XJG3atKnZfUzT1ObNmyVJkydP7rK2AV3l2Wef1WuvvSbJF15vvfXWKLcIANDbEGABoI3mzJkjSdq+fbt2797dpHzt2rU6ceJE0L5AT/Hss88GDRsmvAIAooEACwBtNGfOHJ177rkyTVMPPfSQvvzyS0m+qUTWrl2rJUuWSJKmTp2q7OzsaDYViKjAa14XLVrEsGEAQNQYpmma0W4EAMSKgoIC/eQnP9HJkycl+YYWe71euVwuSVJWVpaWLl2qtLS0aDYTiJjCwkLddNNNkiSbzaaMjIwW97/lllvonQUAdJq4aDcAAGJJZmam/u///k+vvfaaPvvsM508eVJxcXEaPny4Zs2apXnz5ik+Pj7azQQixuv1Bq2Xlpa2uH9NTU1nNwkA0IvRAwsAAAAAiAlcAwsAAAAAiAkEWAAAAABATCDAAgAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYkJctBsAAADQFk6nU1999ZXy8vK0b98+7du3T4WFhZKkO++8U3fffXeUWxger9erjz/+WGvWrNH+/ftVXl6ulJQUDRw4UOPHj9d3v/tdnXPOOdFuJgB0CwRYAAAQE/bs2aN/+7d/i3YzIurbb7/VL37xC+Xl5UmSbDabUlJSVFFRobKyMuXl5WnQoEEEWACoR4AFAMSE3//+93rzzTd14YUX6o9//GO0m4MoSUtL04gRI7Rr1y7V1dUpNTVVVVVV0W5WWMrLy3X//feroKBAWVlZWrhwobKzs+VwOOR2u1VQUKDc3FwNHTo02k0FgG6DAAsAPdzp06eVn5+vvXv3Ki8vT3l5eTp+/LhM05Qkvf7668rMzOyUc5umqfnz56uoqEi33367fvjDH4ZVT35+vt5++21J0j333BPBFkbXwYMHtXnzZu3cuVMHDx5USUmJPB6PFdIuueQSzZkzR6mpqdFuardwwQUX6P3335ckvfzyy3rhhRdUXV0d5VaF75lnnlFBQYHGjRunpUuXKjEx0SqLi4vT0KFDCa8A0AgBFgB6uAceeED5+flROffevXtVVFQkSZo+fXrY9Tz//PPyeDyaOnWqxo8fH6nmRdUDDzygr776qtmy0tJSlZaWasuWLXrllVe0ePFiTZkypWsb2A3Z7XZrff78+XrjjTdUVlbWrjoOHjyoN998U9u2bVNxcbFsNpsyMzOVk5Ojm266SRkZGZFtdAhHjhzRmjVrJEk/+9nPgsIrACA0AiwA9HD+nlZJSk1NVVZWlo4cOaLS0tJOP/ff//53SdKAAQM0duzYsOrYsWOHtm7dKkm6/fbbI9a2aPMH+7S0NE2fPl0TJkzQ4MGDlZCQoIKCAn344YfKzc1VaWmpFi9erKeffloXXnhhlFvdfSQlJWnevHn6n//5H0lSXV1dq8csW7ZMf/nLX+T1eiVJiYmJcrvdOnjwoA4ePKgPPvhAv/nNbzRq1KhObbskffzxx5Kkc889VyNHjuz08wFAT0GABYAe7pprrlFGRoZGjx6tIUOGyDAMPfDAA10aYHNycmQYRlh1LF++XJKUmZnZowLckCFDtGDBAs2aNUsOhyOobPTo0Zo5c6ZeffVV/fnPf5bL5dLTTz+tl156KUqt7Z5mz55tBdjWRhm89957+u///m8lJSXpn/7pn3TNNdeoX79+8ng82r9/v55//nlt27ZN//Ef/6GXX35ZycnJndr2HTt2SPK91k6nU8uXL9eaNWtUUFAgh8Oh4cOHa9asWbr++usVHx/fqW0BgFhCgAWAHm7+/PlROe/Ro0d15MgRSeEPHy4qKlJubq4k6aqrrgo7BHdHS5YsaXWf22+/XWvWrFF+fr4OHz6sAwcOaMSIEV3QutiQmZmp+Ph41dXVWXfxbU51dbWee+45SdJjjz0WNBzbbrdr9OjR+u1vf6v77rtPeXl5eu+993TzzTd3atuPHj0qSTIMQ//yL/+iI0eOWHcgPn36tHbu3KmdO3dq1apVWrJkidLT0zu1PQAQKwiwAIBO8fnnn0vyDVueOHFiWHWsXr3aGu55+eWXt+kYt9utNWvWaP369dq7d6/Kysrk8XiUkZGhc889V5MmTdIVV1yhfv36BR03Y8YMSdKcOXO0ePFiffPNN/rb3/6mLVu2qLi4WCkpKRo1apRuu+02TZgwwTqutrZWH374oVatWqVjx47J6XRq8ODBuvLKK3XTTTcpISEhrJ/d76KLLrJ6F48ePdqhAHv48GGtXLlSX3/9tQoKCuR0OpWamqq0tDRlZmYqOztbl156qc4+++yw6ne73fr444+1du1aHTx4UOXl5TIMQ+np6crIyNDYsWM1adIk5eTkNOlVbPz7P3z4sN566y1t3bpVxcXFqqmp0eOPP97ky5CkpCTV1dWpvLxce/fu1ZgxY5q067PPPlNVVZWysrJCXkscFxenWbNmKS8vT1u2bOn0AOu/c/JHH30kSVq4cKHmzZtnBdi//e1vevHFF7Vnzx498cQTeuqppzq1PQAQKwiwAIBO4R8+fMkllyguLrz/br744gtJvutEhw0b1ur++/fv18MPP6xjx441KSsqKlJRUZE2bdqkAwcOaPHixSHrWbdunZ544gk5nU5rW21trTZu3KhNmzbpZz/7ma6//noVFxdr8eLF2rt3b9Dxhw4d0l/+8hdt3LhRTz/9dIdCrNvtttZtNlvY9axcuVJLly6Vx+MJ2l5eXq7y8nIdO3ZMW7Zs0YEDB/TQQw+1u/6ysjL967/+a7NDef2/+/z8fL3zzjtatmyZhgwZErKuDz/8UE8//bRcLler5w0Mwl988UWzAXbnzp2SfDdO+t73vheyrtraWknSyZMng7YXFBTolltuabUtodx222269957g7b5v5jxer2aP3++FixYYJWlpKTojjvu0KlTp7RixQp98cUX2rdvX5dcmwsA3R0BFgAQccXFxdqzZ4+k8IcPu1wu7dq1S5I0duzYVocP5+fna9GiRaqpqZEkTZw4UbNnz9awYcMUHx+vkpIS7d692+oZDuXAgQNas2aN+vbtq3vuucc695dffqmXX35ZTqdTzzzzjCZMmKBf//rX2r9/v773ve/p0ksvVUZGho4fP66XXnpJBw4c0I4dO7Rs2TLdddddYf0OJGnbtm3W+vDhw8Oq4+DBg1Z4TU9P1/XXX68JEyYoIyNDHo9HJSUlysvL08aNG8Mepr106VIrvGZnZ2v27NnKzMy0ehSPHDmir7/+2hoSHkpeXp5Wr16t9PR03XTTTRo/frzi4+N1+PBhDRo0qMn+gV+ObNu2TXfffXeTfYqLiyX5/qbacu23P8h2puTkZFVUVEiSbr311mb3ue2227RixQpJ0pYtWwiwACACLACgE6xfv16macrhcGjq1Klh1XHgwAGr93H06NEt7ut2u/Xwww9b4fUnP/mJ5s2b12S/adOmaeHChSosLAxZV35+vrKysrR06VKlpaVZ28eNG6chQ4bokUcekdvt1qJFi1RRUaElS5Zo0qRJ1n6jRo3S5MmTtWDBAhUXF+vtt9/WggULgqaAaavPP/9chw4dkuQL8eHOCbp27Vqr5/WZZ55RVlZWk32mT5+uhQsXqry8vN3119bWWl8MTJ8+Xb/+9a+bBOEJEybohhtuUE1NTYs9yYcOHdKQIUP0pz/9SWeccYa1PdRdrAPPs2/fPnm93ib1Bw5Df/TRR9v1s0nSwIED9c4777T7OL/mpsjp37+/KioqlJKSogEDBjR73Jlnnqnk5GRVV1e3+DcLAL0JARYAEHH+4cOTJk1SUlJSWHUEDgMODDLNWb16tY4fPy7Jd9fl5sJroIEDB7ZY/u///u9B4dVv5syZGjBggIqKinTq1CnddNNNQeHVLzU1VVdffbVefvllnTp1SocPH273tavFxcX63e9+J8kX0u677752HR/I3+von0apJX369Gl3/ZWVldaXDRMmTGixF7ctfw8PPvhgq695c5xOp4qLi3XmmWcGbffXFW4ItNlsEZ8fdsSIETp48GBE6wSA3iD8i2kAAGhGVVWVtm/fLin84cOSVFJSYq23dgdWf2CWQg/HbKvhw4eHDHmGYQSVzZ49O2Q9gfudOHGiXW1wOp1avHixFTwb3ziqvfw9fFVVVVq7dm3Y9YTSp08fayqgTz/9VNXV1WHXNWDAgGa/FGirwL8bv/Hjx0vyDU/2DyeOtsmTJ0uSTp8+bc0J3FhhYaH1u8zMzOyytgFAd0aABQBEVG5urtxut+x2u3JycsKuJ/A6xOZ6QwPt27dPkq+nrS03e2pJa8cHtqWlu/UG7teeQFdXV6df/vKX1o2hLr30Ui1cuLDNxzdn9uzZ1o2kHnnkEf34xz/Wq6++qh07dljDrjsiPj5ec+bMkSTt3r1bN998s5YsWaJPP/203eG9o9MEBd54y2/mzJlKTU2V2+3Ws88+K9M0Qx7v9XpVWVnZoTa0xfTp062/Ef9cx40tW7ZMku+Lk2nTpnV6mwAgFjCEGAAQUf7e0PPPP79Dwy4Drxlt7W60ZWVlkhTyWsL2aO56xUCBw2NbGg4beB2m/xrM1rjdbj300EPavHmzJGnKlCl69NFHw7p+NtDgwYP11FNP6YknnlBRUZE1x6jk+z2PGTNGM2bM0HXXXdfqlwWh3H///XK5XFq1apUqKir07rvv6t1335Xk+2JhypQpuuaaa1rtSW6tt72ysjLoTsqNf7dOp1NlZWVyOBxKTk6W5Psy4f7779eTTz6pTz/9VFVVVbrrrrs0ZswY2Ww2eb1effPNN9q4caPee+89LViwoMXe9UhISUnRD37wAy1dulQrVqxQ3759NXfu3KBpdFauXCnJN7VQR7+YAYCeggALAIgYl8ulTZs2SerY8GHJd72mn/9urT2Z2+3WI488Yk0dNGnSJD3++OPW0NyOys7O1vLly7VhwwZt2rRJO3bs0LFjx+TxeLRr1y7t2rVLr776qh5++OGQc6W2JCEhQYsXL9Y///M/a82aNdq+fbv27NmjmpoalZaW6qOPPtJHH32kGTNm6KGHHgo5tVBrUwX94Ac/aDLNTaCf//znkhrmk/W7+uqr5XK59Ic//EGbNm3Spk2b5HA4lJSUpNOnTwdNV9RV5s6dqxMnTuivf/2rXnjhBf3v//6vFWD9IX3q1Kl68MEHu7xtANBdEWABABGzdetWa0hqRwNs4JQprQXYjIwMFRYWdpvrG9vLH179vdcXXXSRnnzyyQ7NH9sch8Ohyy67TJdddpkkX8/1l19+qVWrVmnjxo2qqKjQQw89pGXLlqlfv35hnWPo0KG64447dMcdd8jj8Sg/P19ffPGFVq5cqVOnTunzzz/XCy+8oEWLFkXyR2uTG264QVOmTNFbb72lrVu3qqCgQFVVVUpOTtZZZ52l8847Tzk5Obrooou6rE2LFi3SJZdcohUrVmj37t0qLy+3brZ19dVXa9asWR2a/xcAehoCLAAgYvwBLCsrq8M3nQmc8/Sbb75pcd/Ro0ersLBQJSUl+uabb1q8NrW7aRxeJ06cqKeeeiri4bU5GRkZmjVrlmbNmqXf/e53evvtt1VTU6P169frhhtu6HD9/uHJY8aM0dVXX6077rhDTqdTq1evDjvA/vWvf22y7dZbb9Xx48eVmZmp119/vcXjMzMz9aMf/Sisc3eW7OxsZWdnR7sZABAT+EoPABARXq9XGzZskOS78VBHDRw4UP3795ck7dmzp8V9Z8yYYa37b3wTC9xutx599FErvE6YMEG/+c1vWr0OtzMEDhv2X1McSZmZmdY8tuHMNRtKWVmZNYXSeeedF7F6AQDdEwEWABARO3futIJPYKDsCH+oOnLkiE6fPh1yv8svv9wKRx988IHefPPNFusNdz7QSHK73frVr36lzz//XFLnhtfPPvus1VDqv3ZZks4666x21X/ixAlt3bq1xX0KCgp05MgRSb6bSkXK7t27rfWLL744YvUCALonhhADQA937Ngx646zfv75RSVp3bp1QXcLTkpK0syZM9t9Hn8v4uDBgzs8FYrfZZddpg8++EBer1dbt27Vd77znWb3i4uL03/+53/qxz/+sWpqavT73/9en3/+ua666ioNGzZM8fHxKikp0d69e7Vu3TqNHj066AY/0fDYY49p3bp1knyB8d5771VBQUGLx/Tt21d9+/Zt97nefPNNPfbYY9ZQ1XPOOUd9+vRRXV2dCgsLtXr1aqv3fNCgQe2e/qiwsFAPPvigBg8erJycHI0dO1YDBw5UQkKCysvLtXv3br399tvW3aTnzZvX7p8hlC1btkjyXd97ySWXRKxeAED3RIAFgB5u586devLJJ0OWP//880HPBw0a1KEAG4nhw36TJk3SgAEDVFRUpFWrVoUMsJI0cuRI/fGPf9TDDz+sEydOaPv27dq+fXuz+44ePTpibQzX2rVrrfXjx4/r3nvvbfWYO++8U3fffXdY53O5XMrNzVVubm7Ifc466yw9+eSTLU4P1JITJ07ojTfeCFlus9l066236sYbbwyr/sbcbrc+/fRTSb5e/3CnAAIAxA4CLACgw/bv32/1Hnb07sOB7Ha75s6dqz//+c/auHGjysrKWpxbdtSoUXrllVe0atUq/f3vf1d+fr51vWXfvn01YsQITZ48WVdccUXE2hgLHnnkEW3evFlff/21Dh48qNLSUmtIcZ8+fTRy5EhNnz5ds2fPDmvangsuuEB/+tOftHXrVu3evVuFhYU6deqUTp8+rcTERA0ePFgXXHCBrrvuuoj1zkuy/iYkaf78+RGrFwDQfRmmaZrRbgQAILa9+OKLevHFF9W3b1+99dZbEZ32o6qqSt///vdVUVGhH/7wh7r99tsjVjdi289//nPl5uYqOztbzzzzTLSbAwDoAtzECQDQYf7hw9OmTYv4nJWpqalWaH3ttddUXV0d0foRm3bv3q3c3FwZhqF77rkn2s0BAHQRAiwAoEPq6uo0ffp03XnnnZo7d26nnGPevHkaMmSIysvLm50HFL3PCy+8IEm66qqrNHbs2Ci3BgDQVRhCDACICXv27FFubq5SU1N18803R7s5iKKqqiq98cYbMk1Tc+fObfG6aABAz0KABQAAAADEBIYQAwAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICf8P1N7XzAOFVWQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_delta_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "e3fa00fd", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c4e36532", + "metadata": {}, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_delta_image(result, source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f11790eb", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "6175189d", + "metadata": {}, + "source": [ + "## Integrated flux over the sky\n", + "\n", + "Define the Crab spectral model" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d9bca0f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG5CAYAAACTEQDKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADFG0lEQVR4nOzdd1hTZxsH4F/YsqciICCoCKiAotaBe9e6J1orzjqxy12travr01q3FrWOuuq2deCmONCKGxwMZQmyNyR5vz/eEogMY0hIgOe+rnOZnJzxJIac57xTwBhjIIQQQgghFdJQdQCEEEIIIdUBJU2EEEIIITKgpIkQQgghRAaUNBFCCCGEyICSJkIIIYQQGVDSRAghhBAiA0qaCCGEEEJkQEmTAuXl5SE8PBx5eXmqDoUQQgghCkZJkwJFR0dj8uTJiI6OVnUohBBCCFEwSpoIIYQQQmRASRMhhBBCiAwoaSKEEEIIkQElTYQQQgghMtBSdQCEEEJIVWCMQSgUQiQSqToUoiLa2trQ1NSUe39KmgghhNR4BQUFiI+PR05OjqpDISokEAhgZ2cHQ0NDufanpIkQQkiNJhaLERkZCU1NTdjY2EBHRwcCgUDVYZEqxhhDUlISYmJi0LhxY7lKnChpIoQQUqMVFBRALBajQYMG0NfXV3U4RIWsrKwQFRWFwsJCuZImaghOCCGkVtDQoEtebVfZEkb6BhFCCCGEyICSJgUIDAzE/Pnz8euvv6o6FEIIIdXEN998I9NcpWvXrkVCQoJMxxw/fjzWrl1bychIeShpUoAePXpg9erVmDVrlqpDIYQQUk0sW7ZM4UkTUS5qCE4IIaTW8fb2VmoiYm1tjdu3b5f7+qeffgoA8PHxgaamJs6dO4dPP/0Uz549A2MMs2bNwtSpU/Htt98iLi4OI0eORJ06dbBz504kJydj8eLFyMvLQ0FBAT7//HNMnDhRae+FFKOkiRBCSK2TkJCA2NhYlZ1/8+bN2LJlC65duwZTU1OMHDkSLi4uOHLkCBITE9GqVSt4eHhgyZIlCAgIwIEDB+Dp6QkASE1NRVBQEDQ1NZGSkgIvLy/07t0bdnZ2Kns/tQUlTYQQUs3cunULjx8/xuDBg2FiYqLqcKola2trtTp+YGAg7ty5AwCoW7cuhgwZgsDAQHzwwQeltk1OTsbEiRPx9OlTaGlpITk5GQ8fPqSkqQpQ0kQIIdXI+vXrMXv2bDDGMGfOHMyePRv+/v6wsLBQdWjVSkVVZ+qgoq7xn376Kfr164c///wTAoEALVu2lKltVHWXnJyMvLw82NraqiwGaghOCCHVgFgsxrx58zBr1iwwxgAA6enp+O677+Dg4IC5c+dSY+FqxsjICOnp6QB4h6Jt27YBAJKSknDkyBH07NkTAGBsbCzZDuDVcw4ODhAIBLh69Sru3btX9cFXscTERERGRiI+Ph7x8fEqi4OSJqJ0aWlpyM3NVXUYhFRbBQUFGDduHH744QfJuq5du0JLi1cWZGdn48cff0TDhg3h7++PmJgYVYVK3sMXX3yBnj17wtPTE+vWrcOTJ0/QvHlzdO3aFYsWLULbtm0BALNnz8bkyZPh6emJ0NBQrF69GvPnz4enpycCAgIk29VUCQkJePnypeR5QUGB5MahqgmYqs5cA4WHh2Py5MnYtm0bXFxcVB2OysTGxuLSpUu4fPkyLl26hIiICACAgYEBrKysYGlpCSsrK8lS8nnJxyYmJjQ/FKn1MjIyMGTIEFy4cAEAH9V6w4YN+PTTTxEdHY0ffvgBv/32G/Lz8yX7aGtrw8/PD/Pnz0fDhg1VFbrayMvLQ2RkJBo2bAg9PT1Vh0NkxBhDXFycVMmStbU1bG1t5b42VPa7QEmTAtXWpCkuLg6XL1+WJEnPnz9XyHG1tLRkSrDq16+PJk2a0BQJpMaJi4tDv379JNUvenp62L9/PwYOHFhqu59//hmbN29GTk6OZL2mpibGjh2LBQsW1KrfpLcpKmkSi8V48+YN8vLyoK+vD0NDQ+jq6tLNnRIwxvDq1SskJiZK1tna2qJ+/fqVOi4lTWqktiRNCQkJUknS06dPy91WR0cHrVu3hoaGBt68eYOkpCQkJycrvGjVwsICXbt2Rbdu3dCtWzc0adKEfshItfbkyRP06dNHUi1hYWGBkydPol27duXuk5SUhDVr1mD9+vXIzMyUrBcIBBg5ciQWLlyI5s2bKz12daOIpCk7OxtRUVGlmhpoaWnB0NAQRkZGMDQ0RJ06degGrpIYY4iOjsabN28k6+zt7VG3bt1KH5uSJjVSU5OmxMREqSQpLCys3G21tbXRtm1bdO3aFV26dEG7du1Qp04dqW1EIhFSUlIkSVRSUlK5j4uWgoKC94rZ1tZWkkB169YN9vb2cr13ZcnPz8fjx4/x6NEjAJCUmllaWsLS0hL6+vq1OulLSEjA0aNHkZqaCkdHRzg5OaFhw4aoW7durfhcgoKCMGDAAKSmpgIAHB0dcebMGZl/V1JTU/Hrr79i7dq1kmMUGTRoEBYvXoxWrVopPG51VZkLpVgsRlxcnMyN7DU0NGBgYCBJpAwMDKCpqSlP2LWSWCxGZGSk1PfW0dERlpaWCjk+JU1qpKYkTUlJSbhy5YokSXr8+HG522ppaaFNmzbo0qULunbtinbt2sHAwECh8TDGkJWVVW5yFR4ejitXriAtLa3cYzg7O6N79+7o1q0bunbtqpA7FlklJibi3r17CA0Nxb1793Dv3j2EhYVBKBSWu4+enp5UElXycVnPLSwsoK2tXWXvSRkyMzNx9OhR7N27F4GBgRCLxaW20dfXh6OjIxo2bFjmUhPGLDpy5Ah8fX0lbZS8vLzw119/yTWuUEZGBjZt2oSff/4ZSUlJUq/17dsXixcvRvv27RUStzqT90KZnZ2NyMhIqe78+vr6qF+/PvLy8pCVlYWsrCyIRKIKj1NUlVe06OjoyP1eajKxWIwXL15IegoKBAI0bNgQ5ubmCjsHJU1qpDomTYwxJCYm4p9//pEkSQ8fPix3e01NTbRu3VqSJLVv3x6GhoZVGHHZRCIR7t69i4sXL+LixYu4du2aVNuOtzVr1kySRHXq1AmmpqaVjkEoFCI8PFySGBUtVdUN3NTUtFRSVbduXbRp0wbdunVTyHtUtMLCQpw7dw579uzB8ePHK93L0szMTJJAFZVOFS0ODg5q3wi45BhMANCrVy8cPnwYRkZGlTpuTk4Otm7dih9//BFxcXFSr3Xr1g2LFy9Gly5damwp3vteKMsqXRIIBKhfvz6sra2lqt8YY8jNzZUkUFlZWe8sGdfV1ZVKovT09GrsZy8rkUiE58+fS6qVBQIBGjVqpPAbIUqa1Ii6Jk0ikQgxMTF48eKFZHn+/Lnkccm2D2/T0NCAt7e3JEnq0KFDpX/Aq0JBQQFu3bqFCxcu4OLFi7h+/ToKCwvL3FZDQwOtWrVCt27d0L17d3To0AH6+voVHj8tLa1UcvTw4UOpHkzl0dLSgqurKzw8PNCiRQvo6upKSs3evHkjWYqev+suVhYaGhpo06YNevXqhV69eqFNmzYqK5lijOHGjRvYs2cPDh48KNVuoYijoyPGjBkDDw8PREdHIzIyUrJERUXJPZCfjY2NVCLVo0cP+Pj4qPyCJRaLsWDBAqkhBcaNG4ft27cr9P8pLy8PO3fuxOrVqxEdHS31WocOHbB48WL07t1b5Z+Hor3PhTIrK6vUd6yohPNdvwtF8vPzpZKod90MFLWLKlr09fVrVbsooVCIZ8+eITs7GwD/vWrcuLFSrjWUNKkRVSZNeXl5iIiIkEqMipaoqCiZ2wRpaGigZcuWkiSpY8eOMDY2VnL0ypeTk4N//vlHkkTduXOnzOofgLfLateunaQ9lLW1Ne7fvy9VxVZyzJCKmJubw8PDQ2pxc3ODrq6uTPszxpCenl4qkaroeUXVlEWMjY3RrVs3SRLl7OwsUzyVER4ejr1792Lv3r2SYShKMjc3x8iRIzFmzBi0b9++3Au3WCxGQkKCVCJVcnn16lW5/7dladOmDebPn4+BAweq5EJVUFCACRMmYO/evZJ1ixYtwnfffae05KWwsBB79uzBypUrS/V29fb2xuLFi/HRRx/VmAu3LBdKsViM2NhYvH79WrJOIBDAxsYG9erVq9RnIRQKkZ2djczMTGRlZSE7O7vCzjA6OjpwdnZWeFMHdVRYWIinT59KEkstLS00btxYae+dkiY1ouykKTU1tcyk6Pnz53JNPKmpqQkHBwc4OzujefPm6NKlC3x8fNSyGkfR0tLScPXqVVy8eBEXLlyosEpSFgKBAI0bN4aHhwc8PT0lCVJlxhORV2FhoaShfWRkJC5cuIBz585V2DatYcOGkgRKkVV5CQkJ2L9/P/bs2SOZV6skPT09DBgwAGPHjkXv3r0V0tajsLAQr169kkqkIiIiJI9LdmEuycXFBXPnzsXYsWOrrM1JRWMwVQWhUIhDhw5hxYoVkk4JRczNzWFhYQFTU9NSi4mJSYXrDAwM1Kq06l0XyvJKlxo2bFiqI4siiMVi5OTkICsrS5JIvV2iLBAI4ODgoLAG0O9LIBAgNTVVqdcDS0tL7NmzR/IetbW10aRJE7k/8+XLl2PHjh0AgFGjRmHFihWltqGkSY0oI2m6ePEi5s2bhxcvXpTqBSMLfX19ODk5wdnZGc7OzmjUqJHksb29fbVvPKwor1+/xuXLlyVJ1IsXL8rd1sjICC1atJAqPWrWrJna3xXGxMTg/PnzOHfuHAIDA8usFgP4hbtt27bo2bMnevXqhbZt20pGnpbFuxp0CwQCdO/eHWPGjMGQIUOqvCSzqOv4nTt38L///a/UFBS2trb47LPPMGXKFKVWRcs6BlNVEIvFOHbsGJYvX467d+9W+niamprlJldFS+vWrdGtW7cqSVDLu1CKRCLExcWVWbpkbW1dZYkfY0zSsPzNmzeSaioAqFevHuzs7OSKRSgUvtffbknKTpry8vJQv3597Nq1CzY2NtDR0UGTJk3kbnd49epVTJs2Dbdu3YKWlhY6dOiAZcuW4cMPPyx13koNP8FIpZ0/f57NmzePzZgxg/n4+LCwsDCFHfvixYsMQIWLpaUla9u2LfP19WVff/0127lzJ7t27RqLi4tjYrFYYbHUJlFRUWzHjh1s3LhxbMiQIWzJkiXszz//ZM+fP2cikUjV4VWaSCRid+7cYatWrWJdu3Zl2tra5X6/jI2N2aBBg9jGjRvZ8+fPyzxeQUEBO3XqFBs1ahSrU6dOmcdp2bIl+/nnn1lsbGwVv9vyicVi9vfff7POnTuXitfU1JQtWrSIvX79WuHnffToEbO3t5ecy8LCggUHByv8PO9LLBaz06dPs549ezJHR0dmamrKBALBO3+D5F2MjY2Zr68vO3z4MMvKylLa+8rNzWWPHz9mubm5knVeXkJWt24Bq1s3X7LUq1fAbGzEzNaWVXpp1erdcd26dYt17dqVtWrVinl6erKDBw8ykUjErl27xgwNDdmkSZNY06ZNmb29PTtx4kSF+zHGWGRkJDMxMWFz585lXl5ebM2aNezJkyfsgw8+YG5ubmzw4MGsZ8+ebMeOHSw2NpbVrVuXZWdnS447evRotnHjRsYYYwDYokWLmKenJ2vcuDHbs2ePZDtfX1/WqlUr1rx5c9avXz8WHx8vdf4lS5awli1bMmdnZ3b69GnJfsePH2dNmzZl7u7u7JNPPmEmJibs+PHj7MGDByw/P1++/9z/TJ8+na1atUryfMOGDWzMmDGltivru/A+KGlSoLCwMIUnTdHR0UwgEDB7e3vWtWtXNmnSJLZq1Sp28OBBdufOHZaWlqawc5HaKysri50+fZr5+/szNze3Ci90DRs2ZFOnTmV//vknu3r1Kps+fTqztLQsc1tHR0e2aNEi9vjxY1W/xXe6fv06GzRoUKn3oKenx2bMmMEiIiIUcp6rV68yU1NTqc9Ikb8ZiiYSiVh6ejqLjo5m9+7dY1euXGHHjx9nu3btYuvWrWPffvst+/zzz9mECRPYkCFDWPfu3VmrVq2Ys7Mzs7CwYJqamjIlUHp6emzgwIFs165dLCUlRaHvoeSFUigUspcvX7K6dfMZwJS22NpWHFNqairz9PRkcXFxjDHGkpKSWIMGDVhMTAyLjIxkANj333/PQkJC2C+//MIcHBxYdna2TPvt2rVLch5vb28WEBDAGGPs8ePHTFdXl+3YsYMxxpOfLVu2MMYYS0hIYFZWViwzM5MxxpOmxYsXM8YYe/HiBTMzM2ORkZGMMcYSExMlx1+1ahWbOnUqY4xJzn/48GHGGGN///03a9KkCWOMsdevXzNzc3MWEhLC/v33X7ZgwQIGgJ09e5YVFBRIfTZhYWHMw8OjzGX8+PFlfp79+/dn+/btkzw/ffo08/HxKbUdJU1qRBlJk1gsZnl5eQo7HiGyePXqFQsICGCjRo1iFhYW71V6YG5uzqZNm8aCgoKqZUnn48ePmZ+fX6nSN01NTebr68vu3bsn97EPHz7MdHV1Jcf08vKS3KXXVGKxmGVmZrKYmBj28OFDFhQUxPbv388+/vhjZmJiUuZ3SEtLi/Xs2ZNt3LhRkhxURtGF8s2bN+z+/fssJCSEubpmKbx06X1Kmk6fPs2MjY2lEoIGDRqwCxcusMjISKanp8fS09PZ3bt32aVLl5impia7c+cOO3DgQIX7aWtrS0rD09PTmZaWFhMKhZLzdu/eXZI03bx5k7Vo0YIxxth3333HZs+eLdkOAIuKipI8L0poGWNs7dq1rFWrVszd3Z05Ozuztm3bMsaYJO6iv/u0tDSmqanJGOOlTD4+PuzOnTssJCSE3bhxg2lra7Nnz55V4n+2WFUlTfJVdpIqIxAIZO5pRYii2NnZwc/PD35+fhCLxbh7966kPVRQUFCp4RuU0aBbVVxdXREQEIBvv/0Wa9aswZYtW5CdnQ2RSIR9+/Zh37596Nu3L+bPn/9ewxX8+uuv8Pf3V/gYTOpOIBBIutLb2tpK1o8cORIFBQW4fPkyjhw5gmPHjknaFgmFQpw/fx7nz5/HjBkz0K5dOwwZMgSDBw+Gk5PTe8eQk5ODlJQUqbZCu3eHwdbWFvXq1VNJo3XGGNzd3REcHFzqtaioKOjq6sLY2Bhubm64d+8eRCKRZPyoxo0bIyQkpFTcUVFR7xyuoOQ+bdq0gb6+Pi5duoStW7ciMDCwwpgFAgGCgoKwbt06XL9+HXXr1sWJEyewZMkSyTYl5+LT1NSUNHDPyspCTk6OpI2jsbExBAJBmW2uwsPDMXLkyDJj8PLykjT2Lsne3l5qGI2oqCjlzAQhZ1JHyqCMkiZC1E1mZqakKs/X15ft2LGDpaenqzospUlOTmbfffddmVWQH3zwATt27FiF7dxEIhH76quvpPYbN25cqSqJ2k4oFLKgoCD2+eefM0dHx3JLMj08PNiyZcvYgwcPZCrJvHLlCvPx8WF///03CwkJYSEhIZUqaVCUlJQUZm1tzc6fPy9Zd/fuXZafny9pG1QkPT2dAWAhISHswoULzMLCgu3YsUNSglTefowx1qpVK7Zz507GGL9G6enpSUqaGGPsjz/+YHZ2dqxXr15S+wFgS5cuZYzxEiRzc3MWGRnJTpw4wTw8PJhQKGT5+fmsX79+zMPDQ7JdyfNnZmYyACw5OZmdP3+emZiYsEOHDrGnT5+yLVu2MACSKr/KunTpEnNzc2NZWVksLy+PtWrVip08ebLUdlQ9p0YoaSKk5srOzma//vorc3BwKHUhd3V1ZTt27CjVmDU/P5/5+vpKbbto0aJqWW1ZlcRiMbt79y77+uuvmbu7e7kJVKNGjdjcuXPZjRs3SiWumZmZbObMmQwAc3BwYH///Te7ffs2i4+PV5vP/86dO6xr166sRYsWzNXVlfXu3Zvl5uaWm3zEx8ezkJAQtnv3bubt7c2aNGnCmjZtWu5+jPFOB23btmXu7u5s4MCBzMfHhx09elTyemFhITM1NZVqaM5YcZumtxuCFxQUsBEjRjBnZ2fWpk0btnDhwncmTUXJ6k8//cScnZ1ZixYt2Ny5c5mFhYXCkibGGFu2bBlr2LAha9iwIZs/f36Z21Q2aaIhBxRIXUcEJ4QoTmFhIQ4ePIjvv/8eDx48kHrNzs4On3/+OSZPngyRSIShQ4eqbAymmuTp06c4evQojhw5glu3bpW5jY2NDQYPHowhQ4aAMYbJkycjMjISAODg4IAdO3agZcuW1X5+woyMDLx48UJS7aWpqQknJ6dy31dWVpZk3KzIyEi0a9cOISEhaNCgAQDg9u3b8PX1RVhYmMIHM339+jVevXoleW5paQkHBweVjuFF4zSpEUqaCKk9GGP4+++/sXr1aly7dk3qNTMzM1haWuLZs2cAVDsGU00TExODY8eO4ciRI7hy5co7R3+vU6cO1qxZAx8fHzg5Oan9/IOyyMvLw4sXL6SmZ7G1tS1zbKlz587hq6++AsDHpVq0aBFGjx4NAJg0aRLOnTuH7du3o1evXgqLjzGG+Ph4qXkOKzPelCJR0qRGKGkipHYKDg7G999/jxMnTpR6zcLCAidPnkS7du1UEFnN9ubNG5w4cQJHjx7FuXPnSk0X5ePjg4CAANjZ2VVuQEM1JBKJEBkZKTVtkrm5ORwcHKCpqamyuBhjiImJkRow1MbGBvXr11d5wgRUPmmqGRMLEUKICrVv3x7Hjx/Ho0eP8Mknn0h6BDk6OuKff/6hhElJLC0tMWHCBJw8eRJJSUnYv38/RowYgebNm2PdunW4fPkyGjVqpOowlUJTUxPOzs6wsbGRrEtJSUF4eLhME4crA2MML1++lEqY7OzsYGNjoxYJkyJQSZMCUUkTIQQAXr16hRs3bqBnz561Yi5HdVfpqTPUXFpaGiIiIiRVlVpaWnB2dq6S4SzEYrFkMuL09HSpYR0cHBxgZWWl9BjeR2W/CzROEyGEKFiDBg0kDW0JUTZTU1O4urri+fPnyM/Ph1AoRHh4OOzt7WFlZaXQUp6iyYYzMzMlkw2X1a6sYcOGsLCwUNh51QUlTYQQQkg1V6dOHbi6uiIiIgIZGRkAgJcvXyInJwf29vZy94xjjCEnJwcZGRkVJklFdHV1YW9vX+17KZaH2jQRQgghNYCWlhYaN24Ma2trybo3b94gPDy8VCP58jDGkJ2dDYFAgDt37uDu3bt48uQJYmNjkZGRUSph0tHRgYWFBRwdHdG8eXM0b95c5oTJ0tISUVFRMr+/ioSEhKB9+/bQ19fHoEGDFHLMslBJEyGEEFJDCAQC2NnZoU6dOnj+/Dk0NTWRnZ2NJ0+ewNnZGYaGhlLbM8aQm5srqW7LzMyUjAGVkZFRql2UtrY2jIyMYGRkBGNjY+jo6KhFI+/69etj7dq1uHv3Lv7++2+lnYeSJkIIIbWO91ZvJGQlKO341obWuD3ldoXbhISEYN68ecjIyIBIJMLChQsxfPhwREVFwdPTE/7+/jh16hTS09Oxbt069OvXT6b9pk6divPnz2PUqFFwcXHB119/jaysLDg6OoIxhtGjR6Nt27bo3r07Tp48CW1tbQDA4sWL4enpiWHDhgEA9uzZg3/++Qf5+fmYO3cu/Pz8oKuri7Fjx0pKrxo0aIDffvsN1tbW74z7xIkTmDdvHrS1tdGnTx+Fft52dnaws7PD48ePFXrct1HSRAghpNZJyEpAbGasys6flpaGKVOm4K+//kL9+vXx5s0btGzZEu3btwcApKeno0WLFli2bBnOnDkDf39/9OvXT6b93N3d8f333wMAvL29MWrUKPTq1QuRkZEYO3YsOnXqhMLCQnh7e+PkyZMYMmQIkpOTcevWLSxZsgRmZmYAACsrKzx58gSRkZHw9vZG37594ejoiLVr10p6xa1evRrffPMNNm/eXGHciYmJ8PPzw7Vr1+Dm5oatW7ciOTm5zM9Gngl7qwolTYQQQmoda0Prd2+kxOMHBwcjIiICffv2lVofHh4uGbl8yJAhAIB27drhxYsXMu2nra2NsWPHAuDVa/fu3cP169clo3N7eHhI9hk9ejRWrFiBCRMm4PDhwxg1ahTatWsnqW6bNm0aBAIBnJyc0KlTJ1y9ehWOjo7Yt28fdu/ejby8POTl5cHS0lJyzPLivnHjBlq0aAE3NzcAwMSJEzFr1qwyPxsXFxeEhoZW+PmpCiVNhBBCap13VZ0pG2MM7u7uCA4OLvVaVFQUdHV1JcmLpqampJ3Ru/bT19cv1VNOQ0MDDg4OMDAwgKamJvT19WFnZwc3Nzds3rwZr169wr59+xAYGFhh+ySBQICgoCCsW7cO169fR926dXHixAksWbJEsk15cZd1rPLUuJKmuLg4/Pvvv3jw4AGSkpKQnp4OXV1dmJqawsnJCZ6envDw8JDUkxJCCCGkWPv27REZGYnAwED06NEDABAaGiopiVHEfsbGxvDw8MCePXvwySefIDk5GaGhoZg6daqkh52/vz/GjRsHNzc3NGnSRGr/HTt24JtvvkFUVBSuXbuGtWvX4sGDBzAyMoKFhQUKCgqwZcsWmd5vu3bt4Ofnh7CwMDRt2hQBAQHl9uirESVNjDFcuHABx48fl8zsXdZg4v/88w/27NkDIyMj9OnTB4MHD5Ya5p0QQgip7czMzHD69Gl8+eWX+OKLL1BYWAh7e3scO3ZMofv9/vvvmDBhAn788Uc0atQIrVu3lhqlftiwYZg2bRpmzpxZal+RSAQvLy9kZ2dj3bp1cHR0hK2tLfbs2QMXFxdYWFigR48eiI19d9swKysrBAQEYPDgwdDR0UGfPn0UOvhleHg4unfvjpycHOTm5sLOzg4LFy7E9OnTFXYOQMZpVG7evIlNmzYhMjISJiYm8PHxgbu7O1xcXGBubg4jIyMUFBQgIyMDL1++xJMnTxASEoKHDx9CS0sLgwYNwieffFIlQ7qrEk2jQggh6qemT6NSkaysLBgYGEAgECAyMhLt2rVDSEiIZMT627dvw9fXF2FhYXIPgFmdVMk0KnPnzkXz5s2xatUqtGnTRjIZpdSBtLSgr68Pa2trtGnTBp988gkSEhJw8uRJHD16FIaGhhg/fvx7B1gdBAYGIjAwEFlZWaoOhRBCCJEIDg7GV199BYCXHK1Zs0aSME2aNAnnzp3D9u3ba0XCpAgylTTduXMHrVq1kvskmZmZiI+PL1VfWtNQSRMhhKif2lzSRKRVSUlTZRImAJLRQwkhhBBCqisqjyOEEEIIkYHSkqaMjAy8fv1aWYcnhBBCCKlSSkuaNmzYgFGjRinr8IQQQgghVUqp1XMytDEnhBBCCKkWqE0TIYQQQqQIBAKkpaUp9RyWlpaIiopSyLH2798PT09PNGvWDM2aNcPPP/+skOO+TeYRwcubB6Y86enp7x0MIYQQQhRDKBSWOa5iTdSgQQOcOXMG1tbWSE9PR6tWrdCqVSt06dJFoeeRuaQpISEBiYmJSE5OlmnJz89XaKCEEEKIwnh7A3Z2ylu8vd8ZQkhICLp16wZvb294eXnh0KFDAPjEu6ampli6dClatWqFRo0a4a+//pJ5v3nz5qFly5ZYv349wsLC0K5dO7i7u2PIkCHo1asXdu7cibi4ONSrVw85OTmS4/r6+mLTpk2S5z/99BO8vLzQpEkT7N27V7J+zJgx8Pb2RosWLfDhhx8iISFBprhPnDgBV1dXtGjRAnPnzpXzP65sHTp0kMynZ2JigqZNmyqsFEsKk9GQIUPY+PHjZd2crVixgnXu3Fnm7WuCsLAw5uPjw8LCwlQdCiGEkP/k5uayx48fs9zc3OKVtraMAcpbbG0rjCk1NZV5enqyuLg4xhhjSUlJrEGDBiwmJoZFRkYyAOzw4cOMMcb+/vtv1qRJE5n327Vrl+Q83t7eLCAggDHG2OPHj5muri7bsWMHY4wxX19ftmXLFsYYYwkJCczKyoplZmYyxhgDwBYvXswYY+zFixfMzMyMRUZGMsYYS0xMlBx/1apVbOrUqYwxVmHcr1+/Zubm5uzRo0eMMca2bNnCAEiOWVJYWBjz8PAoc5ElD3n06BEzNzdnr169KvVamd+F9yBzuV2TJk1w8+ZNFBQUQEdH553bCwQCefM4QgghRLn+K5VQ1fGDg4MRERGBvn37Sq0PDw+Hk5MT9PT0MGTIEABAu3bt8OLFC5n209bWxtixYwHwoX9CQ0Mxbtw4AICrqys6duwo2cff3x+TJ0/GlClTsG3bNowePRqGhoaS1ydNmgQAcHJyQqdOnXD16lU4Ojpi37592L17N/Ly8pCXlwdLS0vJPuXFfePGDbRo0QJubm4AgIkTJ2LWrFllfjYuLi4IDQ2t8PMrT0xMDAYOHIjNmzfDzs5OrmNUROakqXHjxggODsbz588lb7oijDHqPUcIIUQ93b6t0tMzxuDu7o7g4OBSr0VFRUFXV1dS+KCpqQmRSCTTfvr6+hXOI1eyQKNNmzbQ19fHpUuXsHXrVgQGBlYYs0AgQFBQENatW4fr16+jbt26OHHiBJYsWSLZpry4K4rjbeHh4eW2o/by8sKOHTvKfC0uLg49evTA4sWLMXz48Arfi7xkbtPUp08fzJ8/H2ZmZjJtP2PGDBw4cEDuwAghhJCaqn379oiMjJRKVEJDQ1FQUKCw/YyNjeHh4YE9e/YA4MlIUFCQ1Db+/v4YN24cXF1dS80PW5ScREVF4dq1a/Dx8UFqaiqMjIxgYWGBgoICbNmyRab3265dO9y/fx9hYWEAgICAgHLfa1FJU1lLeQlTfHw8unfvjnnz5uGTTz6RKSZ5yJw02djYoG/fvqhfv75M25uYmEgaZRFCCCGkmJmZGU6fPo2VK1fCw8MDbm5umD9/PsRisUL3+/3337Fp0yY0a9YM8+bNQ+vWrWFqaip5fdiwYcjKysLMmTNL7SsSieDl5YVevXph3bp1cHR0RJ8+feDi4gIXFxf4+PjA09NTpvdrZWWFgIAADB48GB4eHnj27BksLCxk2lcWS5YswcuXL/HLL7/A09MTnp6e5SZYlSFgVIemMOHh4Zg8eTK2bdsGFxcXVYdDCCEElZ/ZvjrLysqCgYEBBAIBIiMj0a5dO4SEhKBBgwYAgNu3b8PX1xdhYWEVVuvVFJX9LihkAIeiYrPx48cr4nCEEEIIUYDg4GB89dVXAHjJ0Zo1ayQJ06RJk3Du3Dls3769ViRMiqCQpOnu3bvYtWsXJU2EEEKIGunVqxd69epV5mvbt2+v4miqP0otCSGEEEJkQEkTIYQQQogMKGkihBBCCJGBQpKmRo0aoXfv3oo4FCGEEEKIWlJI0uTj44MFCxYo4lCEEEIIUTGBQIC0tDSlnsPS0lJhk+oePXoULVq0gKenJ9zc3LBo0SKlzEqikN5zReLj43H79m3o6OjAx8cH+vr6ijw8IYQQQmQkFAqhpaXQy7za6tGjBwYOHAgNDQ0UFBSgY8eO8Pb2xuDBgxV6Hrk+zd27d+PkyZP47bffYGRkBIAPOzB//nzk5+cDAHbt2oXNmzfD2NhYcdESQgghCuB9+zYS3jFlSWVY6+jgtrd3hduEhIRg3rx5yMjIgEgkwsKFCzF8+HBERUXB09MT/v7+OHXqFNLT07Fu3Tr069dPpv2mTp2K8+fPY9y4cejTpw/8/PyQkZEBFxcXZGVlwdfXF7169YKXlxciIyMlBRy+vr7w8fHBtGnTAAA//fQTTp8+jezsbCxduhRjxowBAIwZMwbh4eEoKChAgwYN8Ntvv8Ha2vqdcZ84cQLz5s2DtrY2+vTpo9DPuygXAfgAlvn5+RXObycvuZKma9euoX79+lJBbt68GWKxGH5+fkhJScGxY8dw6NAhTJw4UWHBEkIIIYqQUFCAWCUmTe+SlpaGKVOm4K+//kL9+vXx5s0btGzZEu3btwcApKeno0WLFli2bBnOnDkDf39/9OvXT6b93N3d8f333wMAWrdujenTp8PPzw9PnjyBl5cXfH19YWNjgx49emDPnj2YMmUKXr9+jcDAQGzdulUSo0AgwN27dxEREQFvb2906NABjo6OWLt2LaysrAAAq1evxjfffIPNmzdXGHdiYiL8/Pxw7do1uLm5YevWrUhOTi7zs5F3wt7g4GBMnToVz549w7Rp0zBw4EA5/mcqJlfSlJCQgC5dukiev3nzBmFhYRg5cqRkorxXr17h6tWrlDQRQghRO9Y6Oio9fnBwMCIiItC3b1+p9eHh4XBycoKenh6GDBkCgE92++LFC5n209bWxtixYwEAGRkZCA0Nxbhx4wAArq6u6Nixo2Qff39/TJ48GVOmTMG2bdswevRoGBoaSl6fNGkSAMDJyQmdOnXC1atX4ejoiH379mH37t3Iy8tDXl4eLC0tJfuUF/eNGzfQokULuLm5AQAmTpyIWbNmlfnZFE3Y+77at2+PBw8eICkpCUOHDsW1a9fQqVOn9z5OReRKmnJycqRKme7duweBQCDJdAGgcePGePLkSeUjJIQQQhTsXVVnysYYg7u7O4KDg0u9FhUVBV1dXUn1kqamJkQikUz76evrVzglSskqqzZt2kBfXx+XLl3C1q1bERgYWGHMAoEAQUFBWLduHa5fv466devixIkTWLJkiWSb8uKuKI63yVvSVMTKygr9+vXDoUOHFJ40ydV7zszMDAkJCZLnISEh0NbWlmSQAFBQUKCU+kRCCCGkumvfvj0iIyOlEpXQ0FAUvKPK8H32MzY2hoeHB/bs2QOAJyNBQUFS2/j7+2PcuHFwdXVFkyZNpF4rSk6ioqJw7do1+Pj4IDU1FUZGRrCwsEBBQQG2bNki0/tt164d7t+/j7CwMABAQEBAue+1qKSprKW8hCksLAxisRgAkJmZidOnT6NFixYyxfY+5Cppatq0KYKCghAcHAwdHR1cunQJXl5e0ClRHBkfHw8LCwuFBarOAgMDERgYiKysLFWHQgghpBowMzPD6dOn8eWXX+KLL75AYWEh7O3tcezYMYXu9/vvv2PChAn48ccf0ahRI7Ru3RqmpqaS14cNG4Zp06Zh5syZpfYViUTw8vJCdnY21q1bB0dHR9ja2mLPnj1wcXGBhYUFevTogdjY2He+XysrKwQEBGDw4MHQ0dFBnz59FJojHDhwAAcOHIC2tjZEIhGGDRsmqV5UJAGTYyCD8PBwzJgxA0KhkB9EIMC6devQvHlzALyUadCgQbVu/Kbw8HBMnjwZ27Ztg4uLi6rDIYQQAt6bKjIyEg0bNoSenp6qw6lSWVlZMDAwgEAgQGRkJNq1a4eQkBA0aNAAAHD79m34+voiLCyswmq9mqKy3wW5SppcXFywefNmnD17FgDQtWtXqaq5Z8+ewcvLCz169JDn8IQQQghRgODgYHz11VcAeMnRmjVrJAnTpEmTcO7cOWzfvr1WJEyKIFdJEykblTQRQoj6qc0lTURaZb8LlFoSQgghhMiAkiZCCCGEEBlQ0kQIIYQQIgNKmgghhBBCZEBJEyGEEEKIDChpIoQQQogUgUCAtLQ0pZ7D0tISUVFRCj1mbm4u3Nzc4OnpqdDjFqGkiRBCCKmBigagrk3mzZuHDh06KO34cg1uSQghhFRnt71voyCh4nneKkPHWgfetyueFDgkJATz5s1DRkYGRCIRFi5ciOHDhyMqKgqenp7w9/fHqVOnkJ6ejnXr1qFfv34y7Td16lScP38e48aNQ58+feDn54eMjAy4uLggKysLvr6+6NWrF7y8vBAZGQl9fX0AgK+vL3x8fDBt2jQAwE8//YTTp08jOzsbS5cuxZgxYwAAY8aMQXh4OAoKCtCgQQP89ttvsLa2fmfcJ06cwLx586CtrY0+ffoo/DMPDAxEbGwsZs2ahZCQEIUfH3jPpCktLQ07d+5EaGgoNDU10aZNG4wePRrGxsaltt2xYwd+//13XLp0SWHBEkIIIYpQkFCAgljlJU3vkpaWhilTpuCvv/5C/fr18ebNG7Rs2RLt27cHAKSnp6NFixZYtmwZzpw5A39/f/Tr10+m/dzd3fH9998DAFq3bo3p06fDz88PT548gZeXF3x9fWFjY4MePXpgz549mDJlCl6/fo3AwEBs3bpVEqNAIMDdu3cREREBb29vdOjQAY6Ojli7di2srKwAAKtXr8Y333yDzZs3Vxh3YmIi/Pz8cO3aNbi5uWHr1q1ITk4u87MJDw/HyJEjy3zNy8urzEl709LSMHfuXJw5cwaPHz+W83/l3WROmrKysjBt2jTEx8ejaBDx58+f48yZM1i6dGmZ9Yc02DghhBB1pGOt8+6NlHj84OBgREREoG/fvlLrw8PD4eTkBD09PQwZMgQA0K5dO7x48UKm/bS1tTF27FgAQEZGBkJDQzFu3DgAgKurKzp27CjZx9/fH5MnT8aUKVOwbds2jB49GoaGhpLXiya8dXJyQqdOnXD16lU4Ojpi37592L17N/Ly8pCXlwdLS0vJPuXFfePGDbRo0UIy5drEiRMxa9asMj8bFxcXhIaGVvj5vW3mzJlYuHAh6tatqx5J0549exAXF4eBAwfik08+gZaWFk6fPo1du3bhq6++wnfffYcPPvhAaYESQgghivKuqjNlY4zB3d0dwcHBpV6LioqCrq4uBAIBAEBTUxMikUim/fT19SucR67omADQpk0b6Ovr49KlS9i6dSsCAwMrjFkgECAoKAjr1q3D9evXUbduXZw4cQJLliyRbFNe3BXF8TZ5SpqCgoIQFBSEL7/8Enl5eUhJSYGLiwvCw8MrfE/vS+aG4EFBQWjSpAk+//xzWFhYwMTEBL6+vli/fj2MjIywePHiMv8TCSGEECKtffv2iIyMlEpUQkNDUVBQcZXh++xnbGwMDw8P7NmzBwBPRoKCgqS28ff3x7hx4+Dq6oomTZpIvVaUnERFReHatWvw8fFBamoqjIyMYGFhgYKCAmzZskWm99uuXTvcv38fYWFhAICAgIBy32tRSVNZS1kJU1GMRcv+/fvh5uam8IQJeI+kKSEhocwquMaNG2P9+vUwMzPDkiVLSv2HEEIIIUSamZkZTp8+jZUrV8LDwwNubm6YP38+xGKxQvf7/fffsWnTJjRr1gzz5s1D69atYWpqKnl92LBhyMrKwsyZM0vtKxKJ4OXlhV69emHdunVwdHREnz594OLiAhcXF/j4+Mjctd/KygoBAQEYPHgwPDw88OzZM1hYWMi0rzoRMBkbHn300Ufo3bt3mR8sAMTFxcHf3x+pqalYunQpnj9/jl27duHy5cuKjFethYeHY/Lkydi2bRtcXFxUHQ4hhBBUfmb76iwrKwsGBgYQCASIjIxEu3btEBISggYNGgAAbt++DV9fX4SFhVVYrVdTVPa7IPMnZG1tjWfPnpX7uo2NDX755ReYmZnhm2++UVp3P0IIIYTIJjg4GJ6envDw8MBHH32ENWvWSBKmSZMmYciQIVi/fn2tSJgUQeaG4B4eHjhy5AhSUlJgbm5e5jZFiZO/vz8ePXpUYUMvQgghhChXr1690KtXrzJf2759exVHU/3JnFp27twZxsbGOHv2bIXbFSVO9erVq3RwhBBCiKK8q70QqfkqOxSSzCVNzZs3x7Fjx2Ta1sbGBgcPHpQ3JkIIIURhdHR0oKGhgbi4OFhZWUFHR4dqQmohxhiSkpIgEAigra0t1zFoGhVCCCE1moaGBho2bIj4+HjExcWpOhyiQgKBAHZ2dtDU1JRrf4UkTdeuXcM///yD+fPnK+JwhBBCiELp6OjA3t4eQqGw3AEXSc2nra0td8IEKChpKppOhZImQggh6qqoWkbeqhlCqHqOEEKqicJC4PhxYNs2ICoKaN4caNuWL61aAQYGqo6QEOXKywNUOdQWJU2EEKLmYmJ4orRtGxAfX7z+6VPgzz/5Y01NoFmz4iSqbVugaVO+npDqLiwM+OUX4MAB4MkTQFUd9ClpIkqTmQmcOwcEBQGMAfr6QJ06fCl6LOu/NO4aqW0YAy5cADZt4qVLbzfD0dIChMLi5yIRcO8eX7Zu5euMjIDWrXkC1aYN/7d+/ap7DzUNY/zzjY3ln6OdHWBpSb9PysIYcP48sGYNcOZM8frNm4GlS1UTk0KSJi8vL0UchtQAL18CJ0/y5dIl4B1zT8pMR6f8hMrICLC1BeztgQYN+L/29nydjo5izq9IeXm8tKBoEYuLk8mKFq1acIuTng48fly8ZGcDJibFi7Gx9POS62vK55OaCuzaxZOlp0+lX9PUBAYOBKZNA7p04XffN28WLw8f8u9TkcxM4OJFvhRp0EC6NKpVK/63RMomFvPP9vBh4MgRXi1akrY2YGPDEyhbW76UfGxry1/X1VVJ+NVSTg6wZw8vWXr8WPo1Q0NAlaNFyDz3HHm32jj3nFgM3L5dnCjdu6fqiIoJBIC1tXQyVTKpatAAqFtXcX+A+fnFiVBcXPFS8nl8PJCSIt/xtbRkS65KLvr6/AfbwaF4MTZWzPutjJLJ0aNHfHn8mFdDyUtfv+xkqrwky9QUaNKEX+DUwe3bPFH64w8gN1f6tfr1gcmT+VJRvFlZwJ070olUbGzF59XUlG4bVVStV5tLT0Qi4No1XvV55Aj/260sK6vSCdXbj42NVZsQqFpsLLBhA7BlS+nfSUdHYPZsYMIE/jesKpQ0KVBtSZpycoDAQJ4knToFJCSUvV2DBsBHHwEffghYWPD9cnPf/9+KXqvst1dXl/9YlUykSj5u0ICXViUklJ0AlXycnFy5WKqKqSl/fyUTKQeH4nX16inuh1sZyZGi2dgUJwsffMBLXgwNq+bcubm8jcbGjUBZ03V27QpMn85Ll+Tt8BUby5OnW7f4vyEhvASvIsbGgLNz+Yl4RUm6LK+pY+e1wkJeOn74MHDsGJCUVHobTU2gWzde1ZmYyD/bmBj+ryL+/g0MeALl7Q2MHw907147ktdbt4C1a4FDh6SrnAHAxweYM4f/DahD+zy5k6a4uDgcPnwYL168wJs3byB8+52Cd+/cv39/pYOsLmpy0hQbyxOkkyd5O4u8vLK3a92aJ0oDBgAtWij3rokxXrqTng68esWrBov+Lfk4IaHyyZUi6OnxEgMbG77Ur88XLa3i5LBoycsrva68pbBQsXHq6hYnUGUlV3Z2pS96ikiOTE0Bd3e+uLnxf83NgYwMfvyi5e3nby8ZGbxaSl4aGqUbVLu6KvYH+9kz3i5jxw5eHVeSsTG/YH76KT+voolE/P+mZGnUo0fS1XrKpqUFNGwIeHhILw0aVG1JS14ebzPz55/AiROl/y8AftPUqxcwdCj/XStn6lXk5vIbqNhY6WSq5PP4+NJJQUUcHAA/P/59cHCQ6y2qLaGQl+KtXQtcvy79mrY2MGoU4O/Pb2LUiVxJ082bN7Fo0SIUFhZCS0sLpqam5Q4WVZumU6lJSRNjwN27xdVud+6UvV2dOkCPHvzH5MMP1bORaUEB/9EqL6l6+ZJfaOWlq1ucBJVMiN5+bGqqnAuCSFR+QpWVxd9ndDR/n9HRfHn1Sv5kSyAorvLT1+ftaiqbHLm786pURX0+IhFPnMpLqtLTecnA3bv8LvddSVbJBtVFi7X1+8UkFPIbj40b+YX6bV5evFRp9OiqHzogM1O6Wu/WLeD16/e7wCuCmRm/2SqZSLm7K7aLeXY2b1R8+DBw+nTZ//d16gB9+/JEqX9/xVVpi8W8hKpkQvV2cvXyJS9JL0kg4L+zEyfyEhdVdrmvrNRUYPt24Ndf+e9QSZaWvL3etGnqeS0B5Eya/Pz8EBsbiwULFqBz587QqA3lhzKo7klTXh5vMFpU7VbehdDGhv+QfPQRLz6uU6dq41SG8kqrXr7kyUVRAlRWQmRmVv3aIYhEvATu7WSq5JKVVblzVEVypAgiUekG1Q8evLvkxd6eV+cVJVEtW5b9txAfzy8SW7eW/pvS1QVGjuTJUps26vW5ADxpKi8hL1l9/r6vZWYC4eG8pPhdNDUBF5fSpVLv8z3KyOC/aX/+Cfz9d+k2YwBPjPv354lSnz6qG/OqoID/Bv/2G3D2bOnvobk5MGYMT6A8PFQTozzCw4F164CdO0snhc2b8yo4X1/1TwjlSpp69OiBXr16Ye7cucqIqdqqjkmTWAwcPMjbVZw7V/rLXMTLq7jazcurdtSz12aMAWlpZSdTRUlWYiLftrokR+8jO5uXvNy4IXuDai0tXkpS1DbK0pJfII4eLV1i4+TEq9/8/Ph2tZFQyHsHFg2TULSUHIeqIlZWpROppk2Le8ympPAqt8OHecleWT15zcz4b9rQoUDPnup3wY6J4T0pAwKAiIjSr7dqxRtG+/ryv0N1wxhv/7p2LfDXX9KvCQQ8SZ0zh7fdqy6/FXIlTSNGjED79u0xZ84cJYRUfVW3pIkxXgy6ZUvp13R1eYPHjz7iX+wGDao+PqLeiqr/LC2rzw9eZRQ1qC5KpG7fLv8moywaGvxvado03kaGbjzKlpTEk6f794sTqcePZatO1tbmibupKfDPP2VXL1pZAYMH80Spa1f1bJT+NrEYuHKFJ0+HD5duU6qnx9/PhAl8KApVf7dyc/mQAWvXlh4ywMCA3yzMng00bqyS8CpFrqRp27ZtuHjxInbu3AldGnxCorolTfPnA99/X/y8bt3iarcePaquBxEh1ZFQyBtQl0yknjwp3emgbl1g0iRgypSa15i3qhQU8CrUt0ulyurhVhYbG55UDB0KdOyoHr2w5JWWxoelCAjgifvbnJx4UvLJJ1V3s1tYyBvBv3rFqz+3bCndm9DBAZg1i1crqmOpmKzkSpqEQiEWLVqEnJwcTJkyBc7OztCn0dGqVdK0ejWwYAF/LBDw+vNPPlH9HQoh1Vl6Or+Q3bzJqzE7d+YXanUcZLW6Y4y3y3s7kQoP5+3UHB2LE6W2bWvmb9u9ezx52rOn9LhGGhq8RHPiRF4FKe93UCTiVaavXvHqwlevipei5/Hx5fdQ7tixeMiAmjAArdxDDty6dQvLli1DdgUDfggEAly6dEnu4Kqb6pI0bdrEG56WfP7pp6qLhxBCFCUvj5dy2NjUjmpjgL/n48d5AnX+fOkExtISGDuWJ1DNmhWvF4t5L8myEqKidXFxpafweRctLd7BYc4cPuZUTSJX3nfhwgUsX74cYrEYNjY2sLCwKHfIAaJe9u0DZswofr56NSVMhJCaQ0+PDxBZm+jp8SRl5EjeSWPnTj4GWHQ0f/3NG96+aO1a3ni8Tp3ioQ4qO86btTUfu61oMGAnJ2D4cJ601kRyJU27du2CgYEBfvzxR7gqY/Q1ohQnTwLjxhXfhcybxxdCCCE1g4MDn8z266/5EDK//cZ7cBYN71DemHtlsbIqToZKJkZFj9V1fk9lkitpio+PR9++fSlh+k9gYCACAwORVdmBbZTo8mWe/RcVs06dCqxapdKQCCGEKImGBu/Q06MHb++0bx9PoEJD+evm5sVJ0NtJUVFCpG5DMKgDuZKmunXrQlyVY+6ruR49eqBHjx6SNk3qJiSE94grutMYPZpPilhb6vsJIaQ2MzcHZs7kS1IS7/ZPfbfkI1d/gv79+yM4OBgZlZl7glSJR4/46LZFhWAffsgHS6MmaIQQUvtYWVHCVBlylTR16dIFDx8+xPTp0zFu3Dg0atQIBuWMOV+vXr1KBUjkFxHBR7kt6orauTOfRbo6DOZGCCGEqBu5kqZRo0ZBIBCAMYaVK1eWu11tG3JAncTF8YSpaEoCb28+pUBNmCeOEEIIUQW5kqbevXtDQA1i1FZyMh/UrGiuIldXPkqrombqJoQQQmojuZKmhQsXKjoOoiCZmUDfvrwtE8BHxT1/vvZOCkoIIYQoSg0cWL72ysvjQ9WHhPDn1tZ8hunaNtAbIYQQogxyJU1RUVE4fPgw0tLSynw9NTUVhw8fRlRUVCVCI++jsJCPBlvUhMzMjJcwOTurNi5CCCGkppAradq7dy/27dsH43IayRgbG+OPP/7AH3/8UangiGzEYj6r9YkT/LmBAW/DVHKOIUIIIYRUjlxJ071799CqVStolDNttKamJlq1aoV79+5VKjjybowBs2YBe/fy57q6PHlq21a1cRFCCCE1jVxJU0pKCurWrVvhNlZWVkhOTpYrKCK7r78GNm7kjzU1gQMHgG7dVBsTIYQQUhPJlTTVqVMHqampFW6TmpoKndo2k18V+/FHYMWK4uc7d/KG4IQQQghRPLmSpsaNG+PatWvIzMws8/XMzExcu3YNTZo0qVRwpHzbtgFz5xY/X78eGDtWdfEQQgghNZ1cSdPgwYORkZGBOXPmILRoyuT/hIaGwt/fH5mZmRgyZIgiYiRvOXAAmDq1+Pny5cCMGaqLhxBCCKkN5Brc0sfHB8OHD8ehQ4cwZ84caGtrw9zcHCkpKSgsLARjDKNGjYKPj4+i4631/vqLlygxxp9/+SVAY40SQgghyidX0gQAM2fORMuWLXH06FGEhYUhKSkJhoaGaNmyJQYPHowPPvhAkXESAFevAkOHAkIhfz5pEvDDDwDNaEMIIYQon9xJEwC0b98e7du3V1QspAJ37gD9+/NRvwFgxAhg82ZKmAghhJCqQtOoVANPngB9+vB55QA+t9zu3XyIAUIIIYRUDUqa1FxUFNCzJ/DmDX/esSNw+DBAozkQQgghVYuSJjW3eTMQG8sfe3kBp04B+vqqjYkQQgipasfCjiExO1GlMVDSpOZWrgSmTweaNgXOngVMTFQdESGEEFK1Xqa/xMjDI+G8zhnfB32vsjgq1RCcKJ+GBh+4Mi0NMDNTdTSEEHUQmRqJ6PRodHLoBA0B3fuSmm/p5aUoEBWgQFSAlNwUlcVBf23VgEBACRMhhItIjYDnFk903dUVQw8ORXZBtqpDIkSpHiU+wu/3fgcAmOqZYn7H+SqLhZImQgipJhhjmPX3LGTkZwDgbTw67eyEuMw4FUdGiPIsvLgQYiYGAMzvMB9mdVRXikBJEyGEVBPHwo7hr2d/Sa37N/5ftNnWBnfj76ooKkKU55+X/+BE+AkAgI2RDWa1naXSeORu03T79m0cOHAAYWFhyMrKAiua16MEgUCAS5cuVSpAQgghQFZBFvzP+Euer+i2Atv+3YaotCjEZsai446O+GPoHxjgMkCFURKiOIwxzL9QXBX3TedvoK+t2u7jciVNly9fxrJlyyAWi1GvXj04ODhAk0ZaJIQQpfn2yrd4lfEKANDbuTcWdFyASS0nYdD+Qbgecx05hTkYtH8Qfuz5Iz5v9zkENF0AqeZOPzuNoJdBAAAXCxf4efmpOCI5k6Zdu3ZBR0cHK1euRKtWrRQdEyGEkBIeJj7EmhtrAAC6mrpY3289BAIB6hrUxcVPLmLC8Qn44+EfYGD48vyXCE8Ox4Z+G6Ctqa3iyAmRj0gswoILCyTPV3RbAS0N1Xf4l6tN06tXr9C9e3dKmAghRMkYY5h+ejqEYj5T9/yO89HIvJHkdT0tPewdshdLOy+VrNv27zb03dsXqbmpVR4vIYqw98FePEx8CABoY9sGQ1yHqDgiTq6kydjYGLq6uoqOhRBCyFt239+Nay+vAQCczZzL7G4tEAjwTZdvsHfIXuho8jmWLkReQLvf2uFFyosqjbcme5PzBh0DOsLmZxvMOTMHYW/CVB1SjZQvzMeSS0skz1d3X6021c1yJU2dO3fGnTt3IBQKFR0PqWFEYhHiMuOQU5ij6lAIqXZSc1Px5bkvJc/X91sPPS29crf3be6LS59cgpW+FQAgPDkcbbe3xbXoa0qPtaYrEBVg2MFh+OfVP4jPiscvN3+B6wZXdNvVDYceHUKBqEDVIdYYm25vQnR6NADefq9rw64qjqiYgJXV7e0dcnNz8cUXX8Dc3ByzZs1CvXr1lBFbtRMeHo7Jkydj27ZtcHFxUXU4VSo5JxnhyeF4mvwUT5OfSh4/S36GfFE+AMBK3woOpg6wN7GHg4kDHEz+e2zKH5vXMVebuwlC1MH009Ox6fYmAMAwt2E4NPyQTPtFpkai/x/98TjpMQBAW0Mbvw34DR97fKy0WGsyxhg+PfUptv67tdxt6hnUw6SWkzCl1RTYm9hXYXQ1S0Z+BpzXOeNNDp+l/t8p/8KrvpeKoyomU9I0cuTIUuuEQiGSk5MBAIaGhjAwMCh9cIEA+/fvV0CY1UNNT5pyC3PxPOW5VFJU9FgRw9obaBtIkih74+JkqmidjZGNWjQEJKQq3Iq9hQ+2fwAGBgNtA4TNDIOdsZ3M+6fnpWPE4RE49+KcZN0in0X4tuu3NPXKe1p/az1m/c3HB9LV1MWxUcfwJOkJNt/ZjKfJT6W21RBooF/jfpjmPQ29nXtDU4N6lr+PJZeW4Lur3wEARjcbjX1D96k4ImkyJU0jRoyQ+wQHDx6Ue9/qpiYkTWImxsv0lzwZevNfYpTCH79MfwkG2QsmtTW00ci8EZzMnJCWl4bo9GjEZcZJRnZ9X5oCTdga2/JSqhKJlbOZM3wcfCRtOQip7kRiEdpsb4N/4/8FAPzU8yd80f6L9z6OUCzE7L9nS0qrAGCE+wjsHLgTdbTrKCzemiwwIhB99vSBiIkAALsH78bYFmMB8BKoi5EXsfnOZhwLOyZprF/E0dQRU1pOwcSWE1HXoG6Vx17dvM56Ded1zsguzIaWhhbCZoTB2dxZ1WFJkat6jpStOiZNuYW52BiyEddjriM8ORzPU54jT5j3XsdoYNwATSyaoIlFE7hYuPB/LV1gb2JfqmSoUFSI2MxYRKdFIzo9Gi/TX0o/To9+7/MDgKW+JcY2H4sJXhPQvF7z996fqJeI1AisuLoCsZmxaG3TGu0btMcHdh+odPqEqrTh1gbM/HsmAKB53ea4M+WO3MMHMMaw7uY6fH7uc8kNSxvbNjg+6jisDa0VFnNN9Cz5Gdpsb4O0vDQAwLwO87C6x+oyt43PjMf2f7dj679bEZMRI/WatoY2hroNxaetPkUnh07UDKEcM/+aiQ0hGwAAM1rPwPp+61UcUWmUNClQdUuaUnJT8NEfHyH4VfA7tzXRNYGLpYt0YmThgkbmjWCgU7pqVl6MMSTlJJWZTEWn8cfJuckVHqO1TWtM8JqA0c1Gw0TPRGGxKVJidiJOhJ/A2RdnoSHQgJOpE5zMnOBs7gwnMyc0MG5QK4v1xUyMDbc2YP6F+WV2HnCzckN7u/Zo34AvTSya1LgLUEJWApqub4r0/HQAwDW/a+ho37HSxz319BRGHR6F7EI+wa+9iT1OjT5FNxnlSMtLwwfbP0B4cjgAoH+T/jg28tg7/y6FYiH+evYXNt3ehLPPz5YqnXezcsOnrT7Fxx4fw1TPVFnhVzsvUl6g6YamEIqFMNA2wIvZL1DPUP3aS1c6aUpPT8fz58+RnZ0NAwMDNGrUCCYm6nmhUrbqlDRFp0Wjz94+Ul1mi6rT3i4xamLRBFb6VmpzccoqyMLL9JeSxOpy9GUcfXJU0uC8iJ6WHoa5DcMEzwno7NhZ5e04Xqa/xNEnR3E07CiuvbxWYTWlloYWHE0d4WzGkygnMyepx0a6RlUYedV4lvwME09MlHSvl4V5HXOeQP2XSLW2ba3yaRYq6+OjH2PP/T0AAD9PPwQMDFDYse8l3EP/P/pLSkIMdQxxYNgB9GvcT2HnqAmEYiH67+uPsy/OAgDcrdwRPDEYxrrG73WciNQIbL2zFb/d/U3SsLmIvrY+RjcbjWne09DKhsY89P3TF388/AMAsKTTEizrukzFEZVN7qQpPj4e69atw40bN6TmnRMIBGjXrh1mzZqF+vXrKyzQ6qC6JE33Eu6h796+iM+KB8B7ffw54k+0tWtbbRtap+SmYN+DfQi4G4C7CaUnLnUyc4Kfpx/Ge45/r8a0lRX2JgxHnxzFkbAjuB13W2HHtdK3kpRKOZkWl1A5mzmjvlF9lSeI70MkFuGXm79g0cVFUlWz072nY3bb2QhNCEXwq2AExwTjbvxdSduSsmgKNOFp7SkpiWrfoD0aGDdQm4T/XS5HXUbXXbx7tZmeGcJnhsPKwEqh54jPjMeA/QMk30cNgQbW9l6r8olQ1cnnZz+XjMBuUccCtybfgpOZk9zHyxfm488nf2LT7U2SaUFKam3TGp96f4pRzUZV+6RfHnfj76Ll1pYAeFOLF7NfvHeCWlXkSppiY2MxY8YMpKamws7ODs2bN4eZmRlSU1Px8OFDvHr1CmZmZti4cSNsbGyUEbdaqg5J08XIixh8YDAy8jMAAI3NG+Ps2LNoaNZQxZEpzt34uwi4G4C9D/YiNU96RGQNgQZ6OffCRK+J+KjJR9DVUuwgrYwx3E24iyNPjuDIkyN48uZJmds1sWiCIU2HYLDrYJjpmSEiNQIvUl9I/5vyQlKV8j70tPTQ0LQhnMyc0Mi8EYa6DoWPg09l35pShL0Jw4TjE3A95rpknZOZE34b8Bu6OHYptX12QTZux91G8KtgXI+5juBXwe+srrU1spVKojytPdWy00CBqACemz0l35kt/bdgSqspSjlXTmEOxh0dhz+f/ClZN6P1DKzts7ba3jgpSsDdAEw8MREAL/EN/DgQnR07K+z4DxMfYvPtzfj93u/ILMiUes1UzxSfeHyC2W1nVypJq2767OkjKdVb23st/D/wf8ceqiNX0vT111/j2rVr+Pzzz/HRRx9J3cUxxnDixAmsWbMGnTp1wrfffqvQgNWZuidN+x/ux7ij41AoLgQAtLVti1O+p2Cpb6niyJQjT5iHY2HHEHA3AIERgaXaFljUscDHLT6udONxkViE4FfBOPLkCI6GHZUMyvY2L2svDHEdgiGuQ+Bq6frO0o+i9l1FCVREagQi0oofx2bGyhxjR/uOWOSzCL2de6tFqYtQLMT/rv8PSy4tkVSrCiDArDazsLL7SpnbyTHG8CzlGS+J+m95lPSown30tPQkjct9m/uiRb0WlX4/irA6aLVkrq22tm0RPDFYqSWGYibG4ouLsSpolWRdn0Z9sH/ofrVtC6hsQS+D0G1XN8lvpDIT16yCLOx7sA+bbm9CaEKo1GvGusa4MfEGXK1clXJudXIp8hK6/d4NAO9tGDYjTOE3s4okV9LUr18/eHl5YcWKFeVus2DBAty7dw9//fVXpQKsTtQ5aVpzfQ0+P/e55Hn/Jv2xf+h+hTbiVmfRadHYGboTO0J3lJnUeNt4Y6LXRIxqNkqmxpkFogJcjLyII0+O4Hj4cSRmJ5baRgABOth3wJCmQzCo6SCFl+blFuYiKi2qzFKqiNSIMnshtqrfCot8FmFg04Eqq8J7lPgIfsf9EBIXIlnX2LwxAgYGKKTBc1peGm7G3JRU6d2IuYGsgqwyt9XS0MKOgTskXchVJTotGq4bXJErzIWGQAO3J9+usgH9dobuxJSTUySJgruVO075noKjqWOVnF9dRKdFo/W21kjKSQIAzGozC+v6rlP6eRljuBV7C5tub8KBRwckf7c+9j64PP5ytapqf1+MMbTd3lbyW/D7oN/VfgBWuZKmPn36YOjQoZg8eXK522zbtg1//vknzpw5U6kAqxN1TJrETIyvzn2F/934n2TdJK9J2NR/U60shhczMS5GXkTA3QAceXLkvRqPZxdk48zzMzgadhSnnp6S9G4qSUtDC90bdscQ1yEY4DJAZV26xUyMhKwEBEYEYnXQ6lLVhO5W7ljosxAj3EdU2fdAKBbih39+wLIryyRTTgggwOftPse3Xb9VWlsOkViEh4kPJUlU8KtgRKRGSG2zsttKzO84X2WlcIP2D8Lx8OMAgNltZuOXvr9U6fmvRF3BkINDJIPU1jWoi92Dd6OtbdtaUeqUVZCFDgEdcP/1fQBAD6ce+HvM31X+G5mck4y229viRSqfL/C3Ab9hgteEKo2hKh1+fBjDDw0HwIfWuDv1rtr3GpYraZo9ezaMjIwqLGlauHAhsrOz8csvVfvHr0rqljTlC/Phd9xP0iMBAJZ2XoqlnZeqRRWNqqXmpvLG46EBkkEESypqPN7AuAGOhR/Dmednyiy9qaNVB30b98XgpoPRv0l/tetGLGZiHH1yFCuurSjVSL5oAthxHuOU2s7n/uv78DvuJ/U5N7VsioABAWjXoJ3Szlue11mv8c3lb7D5zmbJumne0/Br31+r/Ef7ZPhJDNg/AABgbWiNsBlhKklUniU/Q/8/+pca4dpIxwj2JvZSSwPjBpLHtsa2atlGTFZiJsbQg0NxLOwYAF7qeXPSTZWNCXbuxTn03tMbAO8dGjYjTOGdAdSBUCyE+0Z3yfft1OhT+LDJhyqO6t3kSpoePHiAzz77DHPmzEH//v1LvX7ixAmsW7cOa9asQfPmtWcMEHVKmjLyMzD4wGBcjLwIgDeA3vzhZkxuVX7pYG0WmhCKgLsB2HN/T6nG42Ux0TXBAJcBGNx0MHo36l0terwwxvD387+x4tqKUmNzNTBugK/af4VJLScpdKToQlEhVgWtwvKryyXVPxoCDXzV/it80+WbCiefVTbGGL7/53tJOyIAGOAyAH8M/aPK/j9zCnPgvtEdUWlRAIB9Q/ZhdPPRVXLusqTkpmDYwWG4FHVJ5n0EEMDa0LrcpMrexB6W+pZqe6O2+OJirLjGCwBMdE1wY9INNLVsqtKYRv85Gvsf8inIPvH4BDsH7VRpPMqw9c5WTD01FQCvirwy/orafkdKkitp2rlzJx49eoSQkBBJ7zlzc3OkpKTgwYMHiImJQevWreHu7i59MoEAn3zyicKCVzfqkjTFZcah395+uPf6HgBeEnJg2AF85PKRymKqLvKEeTgedhwBoQE4/+K8VOPxegb1MKjpIAxxHYIujl2q7d01YwxXoq9g+dXluBB5Qeq1ugZ18UW7LzDNe1qlx4K6G38Xfsf9JN9DgFcL7hi4A61tW1fq2Iq0+95uTDgxQTIFRlvbtjg5+mSV3N0vurAIK4NWAgC6NeyGwI8DVX7hKBAVYPu/2xESFyIZD+1V+qtSVdnvQ09Lr1Qi1b9Jf3jbeCsw8vf3x4M/4HvEFwBP5k/7nkafRn1UGhNQeoDTS59cKrM3aXWVU5iDRusaSYa9CZ4QrJISZ3nIlTR17ixf90uBQIDLly/LtW91oA5JU9ibMPTZ00fS2NmijgVOjj5Zbb6Q6uRl+kvsf7gfWQVZ6O3cGx/YfaD29e3v62bMTay4tgInn56UWm+mZ4bZbWdjdtvZMK9j/l7HLBAVYPnV5VgVtEqSiGgKNLGg4wIs7rRYLXvGBEYEYsiBIZIu4I3MG+HMmDNKnfcq7E0YWmxqgUJxIbQ1tHF/2n2Vl3CUp+RI/UVJ1Mv0l3iZUfy86AL4Pka6j8Sq7qtUMuRJSGwIOu3sJKlyX9N7DeZ8MKfK4yjP5tubMe30NAB8iJL7n95Xy78deZTsKTrQZSCOjTqm2oDeg1xJU2hoqNwn9PT0lHtfdafqpCn4VTA++uMjSWNOR1NHnBlzBi6Wqm9fRdTbvYR7WBm0EoceHZIqXTPUMcR07+n4vN3nMk1pcDvuNvyO++Fh4kPJuhb1WmDHwB1oWb+lUmJXlHsJ99BvXz/EZcYB4AOInvY9rZRSMcYYeuzuIak+X+SzCMu7LVf4eapSvjAfsZmx0knVf4nVq/RXiE6PLrMXo46mDma3mY2FPgurrB1RXGYcWm9rLfm/nuA5AdsHbFd5KV9JYiZGh4AOuBFzAwCwrMsyLOm8RMVRVV5KbgqcfnFCen46NAQaeDDtAdys3FQdlsxo7jkFUmXSdCL8BEYeHim5a/K09sRfvn+hvlHtGpWdVE74m3Cs/mc1dt/bLTXytp6WHiZ5TcJXHb6CvYl9qf3yhHn49sq3+OGfHyT7aWloYbHPYizwWVBtqjJfpr9E37198TjpMQA+1cWBYQfQv0nptpuVUbJayNHUEY+mP6oW7eIqgzGG9Px0vEx/iStRV/Dd1e8k3fsB3uh5SaclmNZ6mlK/L7mFuei8s7Okm3tH+44I/DhQLUtx7r++j5ZbWkLERNDV1MX9affRxKKJqsOqlLnn5+LH4B8BKH6aoKpQcweAqEW23N6CwQcGSxKmHk49cGX8FUqYyHtzsXTBjoE78Hz2c0zzngZdTX4hyRPmYX3IejRa1wiTTkzC85Tnkn1uxtxEyy0tsSpolSRh8rL2wu3Jt7G0y9JqkzABfBLbIL8gdHbgTRByCnMwcP9AbL2zVWHnSM9Llxoz7de+v9b4hAngzTNM9UzRol4LzGo7C89nP8fCjgslnQFSclMw5+wcuG1ww5+P/4Qy7ucZY5h4YqIkYXIwccCfI/5Uy4QJ4KW0n7fj35V8UT6mnZ6mlM+lqsRkxODXW78CAHQ1dbGsi3rOL1cRmZKmR48qHmH3XXJzcxEZGVmpY5DSGGNYcmkJPj39qWTyV9/mvjjte1pt5+0h1YOjqSM2frgREf4R+PyDzyUX9UJxIX67+xtc1rvA909ffHbmM7QPaC8ZB0pbQxvLuy7HzUk34WHtocq3IDezOmY4O/YsRrqPBMCrSaaemoqvL36tkAvW15e+RkJWAgDenkPRpVjVhbGuMVZ0X4HwmeH4uEXxgIYvUl9g2KFh6Lijo6RqSlFWB62WDMFioG2AE6NPoK5BXYWeQ9GWdl4KBxMHAHwarL0P9qo4Ivl9c/kbyc39zDYz0cCkgYojen8yVc917twZbdu2ha+v73u1SUpJScFff/2FgwcPYsiQIRg/fnwlQlV/VVk9JxQL8empT/Hb3d8k675q/xVW91hdo0eQJarxJucNfrnxC3699WuZg3oCfFT1HQN3oFndZlUcnXKImRhzz8/Fz9d/lqz7xOMTbPtoG7Q1teU65r/x/6L1ttYQMzHqaNXBkxlP4GDqoKiQq7V/4//FF+e+wOWoy1LrR7iPwKruqyo9F9vxsOMYdGCQ5PnRkUcxqOmgcrdXJ6eensJHf/Dez1b6VgibGfbeHTRU7UnSEzTb1AxiJoaxrjEiZkfAQt9C1WG9N5mursuXL0dsbCzmzJmDESNGYMOGDbh06RLi4uKQm5sLABCJREhLS8P9+/exf/9+fPnllxg2bBgCAgLQpUsXDBo0SJnvo1bJLsjGoP2DJAmTAAKs7b0WP/T8gRImohSW+pb4rtt3iJ4TjRXdVkjNV6irqYvV3Vfj+sTrNSZhAngX9J96/YS1vddCAN5AeNe9Xej/R39k5me+Y+/SxEyMaaenSUqFl3ReQglTCS3rt8TFcRdxcvRJqV6EBx8dRNP1TfHF2S+QmvvuMdTKcv/1fYw5MkbyfHnX5dUmYQL4tFdDXYcCAJJykjDv/DwVR/T+Fl1cJPnuz+swr1omTMB7NAQXCoU4e/Ysjh8/jvDwcKleBhoaGhCLxZLnjDHo6+ujZ8+eGD58OBo0qH5FcPKoipKmpOwk9P+jP27F3gLAe57sHrwbI9xHKOV8hJQluyAbAXcDEJ4cjhmtZ9T4iUUPPz6MsUfGSsYqkqejRcnB/FwtXRH6aWi1au9VlYRiIbbd2Yall5dKNRY30zPDks5LML31dJk/u6TsJLTe1loyDMuoZqOwb8g+teopJ4vYjFi4bnCVDItxze+aQuZqrAo3Ym6g3W982BtrQ2s8n/W82s57KlfvucjISNy5cwcPHjxAUlISMjIyoKurCxMTEzg5OcHT0xOtWrVCnTqKG1m4OlB20hSRGoE+e/rgWcozALxNwPFRx2vUoGeEqKugl0EY8McAyYjxDiYO+HvM3zIljEnZSXBZ7yLZt6YNVqgsGfkZ+D7oe/zvxv+kpjByNnPG6h6rMdR1aIXJT4GoAD1+74FrL68B4FXIV8dfVeio91Xp15u/YvaZ2QD4QLH/Tv1X7RNvxhi67uqKK9FXAACbPtyET70/VXFU8qMhBxRImUnTv/H/ot/efnid/RoAYGNkgzNjzqB5vdozTQ0hqvYk6Qn67u0rKbUw0zPDidEn3nnHP+H4BOwI3QEAGNtiLHYP3q30WGuSV+mvsPjSYvx+73ep9e3s2uHnXj+XOXgvYwyTT06WNGOob1gfIZNDYGtsWyUxK4NILMIHv32A23G3AfCJphf4LHjHXqr197O/0W9fPwB8Xr9H0x/J3SZQHVADmGrg3Itz6LyzsyRhcrV0xfWJ1ylhIqSKuVrxvz0vay8AQGpeKnr83gOHHx8ud5+gl0GShMlE1wQ/9vyxSmKtSRqYNMCuQbtwZ8oddHXsKll/PeY62ge0x8jDIxGRGiG1z7qb6yQJk56WHo6NOlatEyYA0NTQxJb+WyRtV7+9+m2p961OxEwsNbfj8m7Lq3XCBFDSpPb23t+LD/d9KBlJt0ODDgiaEFTmAIOEEOWrb1QfV8ZfQW9nPhN9vigfIw6NwNoba0ttWygqlEyFAQAruq2AtaF1VYVa47Ss3xIXxl2osLF4Sm4Kzr04JzUWVsCAALSxbaOKkBWuZf2WmN2GV9HlCfMw/fR0tR276Y8Hf0jmnmxVvxWGuQ1TcUSVR0mTmjPUMZT0OBjcdDDOf3y+2nU1JaSmMdI1wsnRJzHeczwAgIHhs7Of4YuzX0j+XgFe2lE0pUyr+q2qdVsOdSEQCNC/SX88mPYAmz7cBCt9PrFyobgQ/7vxPzRa1wjDDw2X/D8s7LgQo5uPVmXICvdt129hZ2wHADj74iwOPjqo4ohKKxAV4OtLX0ue15ThcKr/O6jhBjYdiI39NmK693QcGn6o2jZgJKSm0dbURsCAACzpVDwf2P9u/A+j/xyNPGEeYjJisPTyUgB8WJBNH26qcRM+q5KWhhY+9f4Uz2c/xyKfRZKRxVPzUpGRnwGADx76XbfvVBmmUhjpGmFdn3WS53POzkFaXprqAirDlttbEJnGB7Xu6dQTPZx6qDgixaCG4Aqk6gl7CSGqse3ONkw7PU0yjUwnh04w1jXGqaenAADTvKdh44cbVRlijVfUWHz3vd1gYGhetzmCJwbDUMdQ1aEpBWMMgw4MwonwEwCA6d7TseHDDSqOisvMz4TzOmfJcBF3ptxR+wm7ZUVJUwkFBQX43//+h9u3byMrKwuOjo6YOXMmmjWTbcA+SpoIqb1OPz2NEYdHIKcwR2q9lb4VwmeGw6yOmYoiq13uv76PW7G3MMJ9RI2fTupl+ku4bXBDdmE2BBDg+sTraGvXVtVhYdnlZfjmyjcAgJHuI7F/2H7VBqRAVD1XgkgkgrW1NTZs2IC//voLw4cPx4IFC5CTk/PunQkhtdqHTT7E5U8uS9rYFPmp10+UMFWhFvVaYFLLSTU+YQL4BNNFk94yMEw9NRVCsVClMSVmJ+Kn6z8B4FWoy7stV2k8iiZX0hQXFyfTdtevX5fn8CpTp04djB8/HvXq1YOGhga6d+8OLS0tvHr1StWhEUKqgda2rXF94nU0Nm8MgLflKDkZLSGK5v+BPzzq8cmx772+h19u/KLSeFZcXSHp7T255WQ0Mm+k0ngUTa6kaeLEiTh37ly5rxcWFuKXX37BggXyDbqVk5ODgIAAfPnll/jwww/RqVMn/P3332VuW1BQgE2bNmHw4MHo0aMHpk6dipCQELnO+7ZXr14hMzMTtrbVe2wPQkjVcTZ3Ruinobg47iKOjzpe7abrINWLloYWtn60VTI/4pLLSxCdFq2SWCJTI7Hp9iYAgL62PpZ0XvKOPaofuZImfX19rFy5EsuXLy9VdRUVFYWpU6fiyJEjaNGihVxBpaenY+fOnYiOjkajRhVnqatWrcLBgwfRs2dPzJ49GxoaGpg7dy7u378v17mL5OfnY/ny5RgzZgwMDWtmQ0JCiHLoa+uja8Ou1NuVVIk2tm0wzZuPB5ZTmINZf8+q8rGbMvMzMefsHBSKCwEAn33wWY0ck0xLnp127NiB1atX4/z583j06BG+/vpruLm54fjx49i4cSMKCwsxceJEfPyxfMXSFhYWOHr0KCwsLBAWFoYpU6aUud3jx49x4cIFTJs2DaNH83E4evfujfHjx2PTpk3YtGmTZNsZM2bgwYMHZR7n448/xuTJkyXPhUIhlixZAltbW4wfP16u90AIIYRUlZXdV+JI2BEkZCXg5NOTOBZ2DINdByv9vPnCfGy+vRkrrq2Q9JazqGOBr9p/pfRzq4JcSZOxsTFWrlyJo0ePYtOmTZg5cyZcXFzw5MkTWFtbY8mSJXBzc5M7KB0dHVhYWLxzuytXrkBTUxMDBgyQrNPV1cWHH36IrVu34vXr16hXrx4AYMMG2bpiisViLF++HAKBAAsXLqSidUIIIWrPRM8Ev/T5BSMPjwQAzPp7Fno49YCRrpFSzicSi7D7/m4svbwUL9NfStZraWhhfb/1MNEzUcp5Va1SvecGDx6MqVOnQiQS4fHjxzA2NsbGjRsrlTC9j2fPnsHOzg4GBgZS611d+azjz58/f+9j/vTTT0hOTsayZcugpVVxTvnmzRuEh4dLluho1dQjE0IIIcPdhqNPoz4AgNjMWKkRuRWFMYZjYcfQYnML+B33k0qYRjcbjScznmBUs1EKP6+6kKukCeDd87dv3479+/ejTp06aNSoER48eIA5c+Zg6dKlcHZ2VmScZUpOTi6zRKpo3Zs3b97reAkJCTh16hR0dHSkSq9++OEHeHh4lNr+xIkT2Llz5/sFTQghhCiBQCDAxn4b4b7RHbnCXPx661d83OJjtLJppZDjX4q8hAUXFuBm7E2p9f0a98OKbivgae2pkPOoM7mSpri4OHz77bd48uQJmjZtiqVLl8LGxgb79+/H9u3bMXXqVEyZMgUjRoxQdLxS8vPzoa1desZkHR0dyevvw9raGlevXpV5+wEDBqBDhw6S59HR0Vi+vGaNSUEIIaT6aGjWEEs6L8GCCwsgZmJMPTUVNyfdrNQUPnfi7mDhxYU490K613z7Bu2xqvsqdHLoVNmwqw25qucmTJiA8PBwjBkzBhs2bICNjQ0AYNSoUdi4cSOsra2xceNGfPWVchuC6erqorCwsNT6goICyevKZGlpCRcXF8ni4OCg1PMRQggh7/JFuy/gbuUOALgTfwcbQuSbXiX8TThGHBoB723eUglTs7rNcGLUCQT5BdWqhAmQM2kyMDDA//73P0yZMqVUu58mTZpg+/bt6Nu3r8LGSyqPhYUFkpOTS60vWmdpaanU8xNCCCHqRltTG1v6b5E8X3xxMWIyYmTePyYjBlNOToH7RnccenxIst7R1BG7B+9G6NRQfOTyUa3sKCX3kAPGxuUPUa+np4d58+bhgw8+kDswWTRq1Ah3795Fdna2VGPwx48fS14nhBBCapsO9h0wueVkbPt3GzILMuF/xh9/jvizwn2Sc5KxOmg1fr31K/JFxc1b6hnUw9edvsbkVpOho6mj7NDVmlwlTRUlTCV17txZnsPLrEuXLhCJRDhx4oRkXUFBAf766y+4ublJhhsghBBCapvVPVZL5kI88uQITj09VeZ2WQVZWH51OZzWOeGn6z9JEiZjXWMs77ocz2c/x4w2M2p9wgRUovecsv3555/IysqSVLX9888/SExMBAAMHToUhoaGcHNzQ9euXbF161akpaXB1tYWZ86cQUJCAubNm6fK8AkhhBCVMq9jjjW912Ds0bEAgBl/zUBXx64w0OE1MwWiAmy9sxXfXf0OidmJkv30tPQwq80szOswDxb67x4zsTaRK2nq3LmzTHWZAoEAly5dkucUOHDgABISEiTPr169KunZ1qtXL8nUJgsXLkS9evVw9uxZZGVlwcnJCd9//z08PT3lOi8hhBBSU/g298XOezsRGBGIl+kv8c3lb7C6x2rse7APSy4vQVRalGRbTYEmJnhNwJLOS2BnbKe6oNWYgMkxQc3s2bPLTJqysrIQExODvLw8NGrUCIaGhvjlF9XOuFyVwsPDMXnyZGzbtg0uLi6qDocQQgjBs+RnaL6pOfJF+dAUaMLF0gWPkx5LbTPCfQS+6/odmlg0UVGU1YNcJU3r1q0r97W8vDxs2bIFN2/exM8//yx3YIQQQgipvMYWjbHIZxGWXF4CERNJJUy9nHthZbeVChsAs6ar1DQqZdHT04O/vz8MDQ2lJswlhBBCiGrM7TAXTS2bSp63tW2Li+Mu4uzYs5QwvQelNQRv0aIFzp079+4Na4DAwEAEBgYiKytL1aEQQmqDqCggOhrw8QE0FH7vS2ogXS1dXBh3AZtvb0Zrm9bo36R/9RtniTFAxTErLWlKS0tDbm6usg6vVnr06IEePXpI2jQRQojShIcDrVsDmZlA//7A7t2AqamqoyLVgI2RDb7t+q2qw5APY8CgQUCLFsDixYCSZ/woj8JvUcRiMc6ePYuLFy/S4JKEEKJIhYXAxx/zhAkATp0C2rQBHj1SbVyEKNvevcCJE8Dy5fxmQUXkKmkaOXJkmetFIhHS0tIgFAqhpaWFqVOnVio4UgNkZgIXLwJ6ekDjxoC9PaCltsODEaLeVq4E3p6e6tkzoG1bYOdOYNgwlYRFiFIlJgL+/sXPZ81SWShyXb3KG6VAS0sLDRs2RNOmTTFkyBA0bNiwUsGRakwoBLZtA5YuBZKSitdraQENGwKNGvEkqlGj4scODoC2tupiJkSd3b4NfPcdf6ypCfzxB0+iQkOB7Gxg+HBg/nx+J64p/4z2hKgdf38gJYU/HjECGDBAZaHINU4TKRuN0wRe73zqFDB3LhAW9n77amoCjo5lJ1SOjoAODeFPaqncXKBly+K/qSVLgGXLgJwcYOpUYM+e4m179QL27QMsaCRnUgOcOgV89BF/bG4OPH4MqHCKNKonIYpz5w7w5ZfA5cvS60eM4KVLz5/zqoTnz/mP/dtEIuDFC76cPSv9moYGL4kqK6Fq2FBljQIJqRLz5xcnTN7evCEsAOjrA7//zhuGf/45/xs6d45vc/QoQDMjkOosIwOYNq34+Zo1Kk2YAEqaiCK8fAksWiR9twsAHTsCP/3E21uUxBiQkFCcQBUtRc/LGrpBLAYiI/ly/rz0azo6wKhR/MLi6qrY90aIqgUGAkUDCuvp8d5yJauxBQJg9mzAw4NX0SUl8SEJ2rcHtm8HfH1VEnaNlZMD5OXxUg+iXPPnAzEx/HGvXrwThIrJVD23evVquU8wf/58ufetbmpd9Vx6OrBqFbB2LZCfX7y+USPghx9499D3HVODMd7or6yE6tmz4l5DZREI+DkXLOB33oRUd2lpQPPmxReOX37hCVJ5Xr0Chg6Vbiz+2Wf875E6YFTegwdA795AfDzQuTPg58c/7//mQiUKdO0a0KkTf2xgADx8yJtpqJhMSVPnzp3lO7hAgMtvV9XUYLUmaSosBLZs4W0q3rwpXm9hwRt+T52qnPZHjPHzlUyonj3jVXmpqdLbdu/Ok6du3VQ+GBohcvv44+IS3O7dedXbuwazzMsDZswAAgKK13XpAhw4ANStq7RQa7ynT/lgoomJ0usNDXkJn58fL12n35vKy8vjJadPn/Lna9dK955TIZmSpoSEBLlPYG1tLfe+1U2NT5oYA44f5428nz0rXq+rC8yZw4tSVTHIXmYmsHUr8PPP/A6wpNatefI0cKD6jZwcF8erGjU0ACcnvlhb048u4Q4f5hdjADAx4aUcDRrIti9j/MZm9mx+kwPwff/8k0ph5REVxROmohK/OnV44/y3NWoEjB8PjBsn+/8VKW3hQl6LAfDmHf/8ozY9QmVKmoKCguDg4IAG9CUoU8lpVO7fv18zk6Zbt4AvvgCCgqTX+/rybs8ODqqJq6T8fGDXLl4V8eKF9GuursC8eTxeVQ5rEBkJHDnCl+vX+cWtpDp1eMN2Z+fiRMrJiT93dOSv1wb//AOsWMHv6lu25AM4tm0LuLmpzY+nUsXHA82aFXez3r0bGDv2/Y8THMzHbiq6mdDVBTZt4qUiRDaxsbyaKCKCP/fw4GPPhYcDO3YA+/eXbjYgEAA9evDPedCg2vN3qwihobwjg0jEf6vv3gXc3VUdVTEmg86dO7MdO3ZIno8YMYIdOnRIll1rlbCwMObj48PCwsJUHYriREQwNmoUY/zyXrx06sRYSIiqoytbYSFjf/zBWIsWpeO2t2fs118Zy86uungeP2Zs+XLGvLxKx/O+i40NYx07MjZuHGPLljG2ezdj//zDWHw8Y2Jx1b0nZYmNZWzs2PLfv6EhY126MDZ3LmN//snYq1eqjljxxGLG+vYtfs/DhlXu/zYujrH27aU/x+nTGcvPV1zMNVViImNNmxZ/bk2bMvb6tfQ22dn877Bbt7K/syYmjH36KWM3btSMv1FlKixkrGXL4s/um29UHVEpMiVN3bt3Z9u2bZM879Spk1QSRbgalTSlpDD25ZeM6ehI/wC4uDB2/Hj1+OMXixk7fZonGW//kFlZMbZiBWOpqco577//MrZoEWOuruUnAO7ujH39NWNr1jA2axZjH37If5R1deVLqPT1GWvWjLEBAxibM4exdesY++svxrKyFP8eFS0/n7Hvv+dJkTyJ5ODBjK1axdjFi4xlZKj63VTOli3F761ePcaSkip/zPx8niiV/Nw6dOAJFSlbSgpjnp7Fn1fDhozFxFS8T1QUv5lp2LDs76qbG2M//MBvckhpP/wg/fuohom9TEnT6NGj2ezZs5lQKGSM8aRp586dSg2sOqoRSVN+Pr+Im5tL/7FbWjK2YQNjBQWqjlA+164x1q9f6R8xY2PG5s1jLCGhcscXiXiJzxdflP+DCTDm7c3YypWMVfQdEYn4j/PVq4zt2METqzFjGGvXjrG6dd8/qbCwYOzbb/lFQB399RdjTZpIx2xuztjGjYylp/PP4ccfeYmLvf27369AwH9wJ0zgCcjdu/wOtjp4/pwxA4Pi93LqlGKPHxAgnZTXr89YcLBiz1ETZGQw1rZt8edka8tL3WUlEjF2+TJjn3zCb2be/o5qajLWvz9jhw+rZWKgEs+eMaanV/w3fP26qiMqk0xtmgICArBr1y7o6+vD2NgYCQkJMDQ0hOE7ulkKBALs379fYVWJ6q5aNwRnjDcSnT9fuj2Qnh7vsjxvHm+MWt3duwesXg0cPMjHfiqiqwtMmAB89RVvUyQLoRC4epW3Tzp6lDfsfptAAHTowLslDx6smLZfWVm8bdSLF7ydRdHy4gVvsFpQUPZ+RkbA9On8/1PFA8QB4L0fP/uMj/hbREOD97787rvyR7SOj+dt7G7dAm7e5N3rMzIqPpe+PtCqVXHbqLZteUNddWp0LxLxtjPBwfz5lCm8MbeihYQAQ4YUN2rW1gZ+/ZWfT50+D1XJyQH69QOuXOHP69blf+fy/qZnZgKHDvH2T2+3CQX493zMGN6A3MtL7rCrNcZ4T+ei3vb+/rzHnBqSKWkSCoXYv38/bty4gTdv3iAhIQH6+vrvTJoA4ODBgwoJtDpQ+6RJLOY9PoqWnBz+b3w8v0hdvy69/bhxfB6rmtgB4Plz3mB81y7pJENTExg9miePZTU+zM8HLlzgCebx40BycultNDX5D8CQIbwRaFX2IBWJePJWlERduMC7motExdvo6QGTJvHR21XRgD87m3ce+Okn6c++Y0c+iOP7XjjEYt4o9+ZNvty6Bdy/z5PaitSrxxtXr1ihHiPKr1rFew0BvOF/aKjyxv9JTARGjpQevX/iRGD9ev79qK3y8/nf7Jkz/LmZGf+MWrRQzPGfP+cTK+/aVZy0luThwRuPf/xx7Ro8c9s2nrQD/Dfp4UO1HftKrrnnOnfuDD8/P4wfP14JIVVfSkma4uP5iMBvJzpvL+WtL/laeSUQb+valV/QWrZUzHtQZ3FxwP/+B2zezC/mJQ0YwIcraN6c/4j++ScvFSlrgE1dXT5i7ZAhfD91+sGLiOAJ4o4d0t8BLS2eNMyfL/9d9PtgjCdwX37JeyQVsbEBfvyRJ6uKKunIzQX+/be4NOrmTV4KV5Y2bfj/rZ2dYs4tj9BQHkdhIS9tu3qVl1Aqk1DIhw9Zs6Z4XevW/LOoiTdK7yIU8kTyyBH+3MiI33QoY4gGkYgfe+dOfr6SgwMDPKEPCuJDGNR0cXG8V2x6On9+9iz/LVVX8tTpBQQEsLt37yqsjrCmUEqbpgsX5GsULM/i6srbUFSHRt6KlpzMG3C+3ZYLKN0YvmgxMGBs+HDG9u+vHo2PY2MZ+/zz0m0sBAL+PpT5N33vHu9xWfK82tq8PVlVfXavXzN28iRjixcz1quXdNueunUZu3KlauJ4W24ub8BfFMv8+VV7/r17GatTp/j8Vla8PU5tIhLxdoNFn0GdOrwtXVVITWVs0ybG2rSR/vto1YqxvLyqiUFVxGLGBg0qfs+ffKLqiN5JrqSJlE0pSVNw8PsnPxoa/IJuZcUbzrq48F4g7drxbrEffsgvkuPGMTZ1Ku9ptXt39Wksq0xZWbwhvK1t2Z+tqSn/3I4dYywnR9XRyicpiTcuNzUt/f769WMsKEhx50pOZmzGDP6dfPs8T58q7jzy+PdfxhwcimPS0mLsl1+q/qbhyy+LY/DwUE3D4Lt3GXN0lG6oPH8+/104d44nvQkJjP3XGahGEYsZmzJF+ibp7FnVxPLoEWONGxfHMmeOauKoKocOSd+4JCerOqJ3kqt6jpRNKdVziYm8EWGdOrwxa506pZe312trU4POyioo4NNXrF/Pp2jp1Ys35u7SRTlTxKhCRgavlvz559JTQ3TqxCdh7tlTvu+SSMQni120SLrdl7Mzb+DZv3+lQleY5GQ+2XNgYPG6sWN5A2x9feWf/8oVXh3OGP9e3bnDB7VUheRkXkX69oTYJWloAJaWvPrI2pr/W95iZaX+890xxgftLaqi1NTk1ZMDB6ouptBQ4IMPiqvsjh/nVf41TUoKr5Z7/Zo/P3AAGDFCtTHJQtVZW01SI4YcILVPTg5j69eX3Z3f25uxI0d49YWsgoJKD+Spr8+HWlDH6gahkFcTlozX05OxyEjlnjc9Xbqk68cflXs+WQiFvIRJEdX9AgEv7W7WjLHu3Rnz9WXss88YW72asZ07GYuOVvW75SWuJeP94w9VR8Rt2FAcl5mZenxWiubnV/weBwyoNs1CKGlSIEqaSLVWUMDHhXp7zKSi9m6//17xOF3ljeY9enT1GLn74EHpMZLMzXnVlLJMmFB8Lh8f9ar6evKEJxBr1zK2YAGP9cMPeRJtZ8fbo1U2qdLU5InUvXuqeY+rV0vH89tvqomjLGIxY0OHFsfWvn31HSOvLOfOFb83Y+N3DxqqRihpUiBKmkiNIBTyBKLkaMhFi6Mjb7Sam1u8fXmjeXt4VF1jWkV58ICxRo2k2wd+/73i74KPHSs+h6Hh+w2cqA7EYj5Y6pMnvNH4gQN8BPpFixibNIkP3Ni6NS+9lGWE+759+XGqqrTh11+lz79uXdWc932kpkq3M6vqDgLKkpUl/b42b1Z1RO+FkiYFoqSJ1ChiMR+tu0OH0he5+vUZ++knfvF/u2TKzIxXL1TXjgWpqbxUpeR7Gj6cscxMxRz/9WtebaWOJRzKIBYzlpbGWHg4T6IPHeI9GC0sSn+v2rZ9/+rg9xUQIH3OVauUd67KunmTd1AoivXMGVVHVHmffVb8fjp3Vu7/tRJQ0qQA58+fZ/PmzWMzZsygpInUPGIx747fu/e727B8+iljb96oOuLKE4kYW7JE+v25u1e+x59YzNjAgdWyLYfCZWXxEp6S7bqKFhcXxrZvV3wbuP37pXtyLlqk2OMrw88/F8drZcWrwaurmzeLP389PdX3oJUDJU0KRCVNpMYLCWFsyJDSF7kOHXgX/prm+HHe5qLofZqYVG4+uB07pC+AlZ3zsCYoKGBszx7Gmjcv/b2yseEN5NPTK3+eEyekS23mzKkeCatYLF3y2bWrerV/k1V+vvR4ZKtXqzoiucg05EDnzp0hkKPbsUAgwKVLl+Tq1Vcdqf00KoQoyuPHfBTvsDBg5kzA17fmDnMRHs7nDXzyhD8XCIBvvgEWL+Zd8GUVFcWn4ygaUf7oUT5lB+EY4yPvf/998bxvRUxM+LyJ/v7yzZsYGAh8+GHxiPiTJgFbt1af7+ybN4CnZ/FI+suWAUuWqDSk9/bdd8Uxe3nx0frVfUiKMsiUNM2ePbtU0pSZmYkXL15AQ0MDdevWhbm5OVJSUpCYmAixWAxnZ2cYGRnhl19+UVrw6oaSJkJqqMxMPqFq0RQbAB875/ffZZvIWizm8xEWJQPjx/NpbUjZbt7kydOxYzyZKqKryz+7L7+UfYqRoCCgd28+nRTAE/zff+djMlUn167xceLEYp6sX7jAn1cHjx/zpK+wkH/uISHVd3JieYqnXr9+zYYNG8a+/fZblvBW8XJCQgJbtmwZGz58OHv9+nWli8KqE6qeI6QGE4v5WFMCQXEVQ5MmfBTnd/npp+J9HBwUU91UGzx5woc7eHuIAw0NxkaMYOzOnYr3DwlhzMioeL/Bg6tvBwXGGFu+XLozRmKiqiN6N6GQz0ZRFPe8eaqOqFLeo2y52MaNG2FhYYGvv/4a9d4qKq1Xrx6WLFkCc3NzbNq0SSGJHSGEqJxAwCdw/vtvwMyMr3v6FGjblo8iXZ6HD4GFC4uPsWsXYGys/HhrgqZNgd9+AyIjeelS0cz3YjFw8CDQqhUftT4wULpECgAePOAlTEXVob17A3/8US2rhCTmzwd69OCP4+OBceP4Z6HONm4Erl/njxs3BpYuVW08lSRX0nTnzh20atWqwm1atmyJ27dvyxUUIYSord69gdu3efskAMjKAoYN44mRSCS9bUEB8PHHxW1pPvsM6Ny5auOtCWxteRu6V6+AlSuBunWLXwsM5IlT69Y8kRKJeDLbsyefqgPg0wIdOcKr96ozTU1g9+7idl1nzgA//aTamCoSHc1vNIps386n+qrG5EqaCgoKkFxyPqkyvHnzBgVFPxSEEFKTODkBwcF8rrYiq1bxxsZFF2qAN9gNDeWP3d2BFSuqNMwax9SUX4SjooBNm/hchkXu3AFGjgRcXHj7saI5zdq2BU6dqpq5BKuCtTWfF7OonfGiRcUlOeqEMeDTT4HsbP586lSevFZzciVNTZo0wYULF/Dw4cMyX3/w4AEuXryIpk2bVio4QghRWwYGwN69wP/+V9yo+OxZwNsbuHePJ1WrV/P12tq8hEBPT3Xx1iR16vALcng4n+i1Zcvi1168KO5l5uHBq1ONjFQTp7L06FFc5SsU8kmnU1NVG9Pb9u7lJWEAYGPDG/bXADL1nnvb/fv38dlnn0EsFqN9+/Zo3rw5zMzMkJqaivv37+P69evQ1NTEmjVr0Lx5c2XErZao9xwhtdSlS7yUIymJP69TBzA3L754r1hRfJEjiscY7022ejX/F+Dtoa5cka7Kq0mEQqBrV947EODDVxw5oh7DKCQmAq6uxaWux4/z3qY1gFxJE8DbNf3444+Ij4/nBxIIUHSo+vXr46uvvnpnu6eahpImQmqxV6+AIUN4e6eSPviAdxevzg2Qq5N//+XL0KHFDfZrqpgY3pW/qLnMunXArFkqDQkAr7bev58/HjGClwbWEHInTQDAGMP9+/fx/PlzZGdnw8DAAI0aNUKLFi3kGgyzuqOkiZBaLi+PD8JYNAaTvj6vqpN1TCFC3tfp00D//vyxjg6vFlZlgcWpU8BHH/HH5uZ8jCZ5BiRVU5W69REIBPDw8ICHh4ei4iGEkOpLT493ke/YkXdvnzOHEiaiXB9+CHzxBfDzz7yX5siRvKRNFcNaZGQA06YVP1+zpkYlTICcDcFLioqKwpUrV3D27FlFxEMIIdWbQABMmACcP88vaIQo28qVQJs2/PGLF7ynmvyVSPJ5/RqYPJlXGQJAr158uI0aRu6k6cmTJ5gwYQLGjx+PpUuXYtWqVZLXQkND0bNnTwQVNVAjhBBCiHLo6PA2REVT+uzfz0s8q8KDB/wmwd6ej5MF8J6lW7aoR6N0BZOrei4yMhJz5syBhoYGhg8fjpcvX+LmzZuS1z08PGBiYoLLly+jY8eOCgtWXQUGBiIwMBBZWVmqDoUQQkht1LAhT5SGDePPZ83inRCaNVP8ucRiPrzGmjW8RLUkLS1g82bA0VHx51UDcpU0BQQEAAC2bduGGTNmlBqPSSAQwN3dHWFhYZWPsBro0aMHVq9ejVnq0GuBEEJI7TR0KO+IAPBOCSNGFA8uqQi5ucC2bTwR69dPOmEyMQHmzgUiIoCxYxV3TjUjV9IUGhqKzp07w87Ortxt6tWr985RwwkhhBCiQD//zAf1BIAnTxQzBMHr13zOOHt7YMoUftwizs58qIOYGD6AZYMGlT+fGpMracrNzYXZO8a/yM/Ph1jdJxIkhBBCahI9Pd62yMCAP9+xg49GL4+S7ZW+/RZ486b4NR8f4OhRPir7rFnFkynXcHIlTVZWVoiIiKhwm6dPn8LGxkauoAghhBAipyZNeEPsItOm8eRGFmIxn3qmVy8+KfWOHcUTTmtqAr6+QEgIcPUqH4W8aAqhWkKupKl9+/YICQnB7bdHvv3PxYsX8fjxY/j4+FQqOEIIIYTIYcwYXkoE8HZNI0fydk7lkaW9UmQkn1PO21u5sasxuXrPffzxx7h8+TLmzp2LPn36IOW/+WWOHj2KR48e4cKFC7C2tsaIESMUGiwhhBBCZLRuHXDjBh+V+949Pgjmhg3S27x+DWzcyJeS1W8Ab6/k7w/4+dWa6rd3kXsalbi4OCxfvhyPHj0q9ZqbmxuWLFmC+vXrVzrA6oSmUSGEEKJWHj4EWrcuLmU6dIgPS/DwIR8yYM+e4uq3Ij4+wOef8+lQaln127vIPY2KjY0NNm7ciGfPnuHx48fIyMiAvr4+3Nzc4OrqqsgYCSGEECKPZs2AX3/lo3UDwMSJvL1TYKD0dpqavArvs89qdfXbu1R62u3GjRujcePGioiFEEIIIYo2cSJw8SKfDzEjQzphMjHh067MnFnjhwtQBLkago8cORKHDx+ucJsjR45g5MiRcgVFCCGEEAURCPgo3SUnj65l4yspilwlTQkJCe+cMiQrKwuvX7+WKyhCCCGEKJCxMXD5MrB9Ox/8ktoryaXS1XPlyc7Ohra2trIOTwghhJD3YWvLR/YmcpM5aQoNDZV6npCQUGodAIjFYiQmJuL8+fNoQMV9hBBCCKkhZE6a/P39IRAIAPAJec+cOYMzZ86UuS1jDAKBAFOnTlVMlIQQQgghKiZz0vTJJ59AIBCAMYZdu3bB09MTnp6epbbT0NCAsbExvLy84OjoqMBQCSGEEEJUR+akaULRcOwA7t27h759+6JPnz5KCYoQQgghRN3I1RD8l19+UXQchBBCCCFqTa5xmgghhBBCahu5hxx4/fo1fv/9d9y5cwdv3ryBUCgstY1AIMClS5cqFWB1EBgYiMDAwHeOXUUIIYSQ6kuupCkuLg5Tp05FVlYWHB0dUVhYiHr16kFHRwfx8fEQCoVo1KgRDGvJrMg9evRAjx49JBP2EkIIIaTmkat6bseOHcjOzsaaNWuwY8cOAEC/fv2wZ88eHDhwAB06dEBubi6+/fZbhQZLCCGEEKIqciVNd+7cwQcffCA15ABjDABgaWmJb775BgCwdevWSgdICCGEEKIO5Eqa0tPTYW9vL3muqamJvLw8yXMdHR14e3vj+vXrlY+Q4EBiIr6NipIkpoQQQgipenK1aTIxMZFKkkxMTJCQkCC1jaamJjWMVoCraWkY9+QJChhDdF4eNjdpAm0N6vRICCGEVDW5rr52dnaIjY2VPHd1dUVISAji4uIAAGlpabhy5QpsbGwUE2Ut9iA7GwX/lTAFJCTgowcPkFlGT0VCCCGEKJdcSVPbtm1x9+5dZGZmAgCGDx+OnJwc+Pn5YcqUKfD19UVKSgqGDh2q0GBroxm2tjjg5gad/+b9O5uaik6hoYjLz1dxZIQQQkjtIlfSNGjQIKxbtw6ampoAAC8vLyxduhT16tVDREQEzM3NMXv2bHz00UcKDba2GlG3LgI9PGCmxWtTQ7Oy8MG//+JRdraKIyOEEEJqDwGj1sUKUzRO07Zt2+Di4qLw44dlZ6PvgweI+q89mYmmJo42a4auZmYKPxchhBBCpMlV0uTv74/t27crOhbyDk0NDHDdywut/hs0NF0kQu/797Hv9WsVR0YIqUoPs7JwJCkJOSKRqkMhpFaRq/fckydP4O7uruhYiAysdXVx2dMTox4/xumUFBQyhjFPniA6Lw/z7e0h+K/tk7p4mpODPxITIWIMZlpaMC2xlHxurKUFDTWLnRB1IxSLsTw6Gt9FR0MMwFxLC5Pr18cMW1s00NNTdXiE1HhyJU329valhhggVcdQSwvHmjXDzGfPsCU+HgCwMDIS0Xl5WN+4MbTUYEiCLKEQy6Oj8b+YGBTKUAMsAGBSQVJVUcJlrq0N/f/a1xFSU0Xn5WHM48f4JyNDsi5FKMT3r17hp1evMNTKCv52dmhnbKx2N0+E1BRyJU1Dhw7F2rVrERUVBUdHRwWHRGShpaGBTU2awFFPDwsiIwEAW+LjEZOfj/1ubjDUknsu5kphjGF/YiK+fPECcQUFsu8HIE0oRJqcwynY6+rC3cCAL/r6cDcwgJuBAQzUOJnKEgoRnZ8PTQCW2tow09aGJl3sSBkOJiZiSng40v+rjtME0MvcHBdSU1HAGEQADiYl4WBSElobGcHfzg7DraygowY3UITUJHI1BA8NDcUff/yBe/fuYcCAAWjatCnMzc3L3LbkVCs1nbIbgpdn7+vX8AsLk5TotDI0xKnmzWGtq1tlMQDA/awszHr2DFfT0yXrdAQCfNmgATqZmiK1sFCSGKUJhUgt8bjk81ShEEIF9U9oqKcnlUi5GxjAVV8fdaogmRIxhrj8fETk5SEiN7fUv4mFhVLbC8CrWyy1tWGhrQ3LdywW2towpWrNGi1LKIT/8+cIKFGy76inh32urmhnYoLXBQXYHBeHjbGxpb5P9XV0MN3GBlNtbGClo1PVoRNSI8mVNHXu3BkCgUAyrUdFRcGXL1+WO7jqRlVJEwBcSk3F4IcPJXeijnp6+Lt5czQ1MFD6uVMLC7E0KgobYmMhLrG+v4UF1jg7o5G+/nsdjzGGXLG47MTqrcQrTShEXEEBHmdnS977uwgAOOnpoVlRydR/i0udOtB7z2QqQyhEZDlJUVRenmRgUmXRACpMsKy0tdHayAgu+vrVpspGzBhCs7JwITUVWSIR7PX0YK+rC4f//n3f/6Pq6t/MTIx+/BhPc3Ml60bXrYtNTZrA5K2S5HyxGAcSE7E2JgZ335qJQVcgwJh69eBvZ4cW/3UiIfLLFonwuqAADnp6VDKsAgVisUpLUOVKmgICAmT+Afbz83vvoKorVSZNAO9R0+/BA7z6b+BLMy0tnGjWDB1NTZVyPjFj2JGQgPkREXhT4i7XWU8PvzRujA8tLJRy3rIwxhCbn49HOTl4lJ1dvOTkIEvGZEoDQKM6daSTKX19GGpq8sSojOTozVt397Ky1dGBU506cNTTgwDAm8JCqSVDwb2ibHV00N3MDD3MzNDdzAw2VVwK+S4xeXk4n5qKc6mpCExNrfBzrautDQc9PUkS9fZjMy2tapMglkXMGNbExGBBRISk9NhAQwMbmjTBuHr1KnxvjDFcS0/HLzExOPbmjdRNDAB0NTWFv50d+ltY0AX/PeWIRPjx1Sv88PIlcsRiGGlqwtvICG2MjNDW2BhtjI1hq2Z/VzVJrkiElS9f4lBiIv719lZZO1Yap0mBVJ00AUBcfj4+fPAAof/dbeoKBPjd1RUj6tZV6HluZWRg5rNnCPlvVHgA0NfQwCIHB3xuZ6c2pQGMMbzMzy+VSD3OzkaO+O1LiuLoa2jAuU4dOOnpwemtfx309N5ZPVggFiP5rUTqTWFhmeuKluz3eD+u+vqSJKqLqWmpkgtlyxaJcCUtDedSUnAuNRVPcnIUdmxDTU2pkqm3kyobXV21TRgS8vPxSVgYzqWmStZ5Gxlhn6srGr9niW1Ubi7Wx8Zie3x8qVJYJz09zLK1xYT69WGsovaP1YWYMex9/RoLIiIQ+452mjY6OmhjbIy2RkZoY2wMbyMj+nwV4FxKCqY/fYoX/41RuMDeHiudnFQSCyVNCqQOSRMAZAqFGPbokdQP70/Ozvjczq7Sd+CJBQVYGBGB397qPTnCygo/OTtXm27P4v8mQH5YIpF6lJ2NJzk5yJMh+RAAsNPVLTMpcqpTB1ba2lVe2pErEkmSqmShEG8KCxGVl4dLqam4mp6O3HLelwaA1kZGklKo9iYm0FVw8beYMdzNypIkSf+kp5fbq9JYUxPdzMzQy8wMDXR18So/H9F5eYjOz8fLvDxE5+UhrqAA8v5waYL/3zno6cHHxAQT69dHwzp15H5vinI6ORl+YWFIKlHKNrdBA3zXsGGlqiOyhELsev0a62JipKr6AMBIUxN+1taYZWv73tXotUFQWho+e/ECt0vcHGoJBOhiaoon2dnvTKIEAJrq60uVRjU3MKAG+jKKz8/HZ8+f40BSkmSdlkCAhfb2WNawoUpioqRJgdQlaQKAQrEYU58+xY4Syc0sW1usadRIrrtsoViMTXFx+DoyUuqu1V1fH782blxjRiUXMYbI3Fw8ysmRJFR5YjEa6ulJlRw56OkpPLFQpnyxGDcyMhCYmooLqam4lZGB8ioA62howMfERFIS5WloKFdj81dFVW4pKQhMTUVyOT0jNQC0NTZGLzMz9DI3Rxsjo3cOm1EoFiPmv2TqZVFSVeLxy/x8mZLfIj3NzDClfn0MsLSs8gtankiEeRERWFdiEvT6Ojr4vWlT9Cing408xIzhTEoKfomJkbqhAvjFvb+FBfzt7NDN1LRaV28qQmRuLuZFROBQiYs1wD+jn5yd4fJfghmbn4+QjAzcyszEzYwMhGRmIvMdVeu6AgG8jIwkpVFtjIzgXKdOrf/MSxIxhs1xcVgYESHVVMHHxASbmjSBexW01S1PpRqCV3hggQD6+vqwt7eHj48Phg4dCt0aXt+rTkkTwKumvouOxtKoKMm6QZaW2Ovq+l71wVfT0jDz2TM8KDHXnbGmJr5t2BDTbWygXY2SB8KlC4W4kpaGC/+1IXpcQfWYhZYWuha1hzI1LfcHPksoxJX0dElpUlgFx3TS00Mvc3P0MjNDV1NTmGprK+R9FWGMIamwUDqR+q+0quhxWUmclbY2/KytMal+/feuDpPHk+xsjHr8GPdL/G19ZGGB31xclNrj7VF2NtbFxGD369elSiCbGRjA39YWw6ysYKSlpbZVmcqQIRRiZXQ01sTESHXiaG5ggP85O78ziRUzhvCcHEkSdSsjA/eys9/ZG9hcSwutS5RG+ZiY1NpqvX8zM/Hp06dSTT8stLTwo7Mzxltbqzy5lCtpmj17NrKzs/H8+XNoaGigXr16MDMzQ2pqKl6/fg2xWIxGjRpBJBIhLi4OBQUFaNiwIdavXw8DFWaIyqZuSVORnfHxmPz0qeQPt62REU42b/7OH+XY/Hx89eIF/khMlFrvZ22NVU5OqEfdmGuMuPx8XPwvgbqQloaY/zoTlMVBV1dSleegp4fL/7VNCs7IKLfKzaRElVtPc3M4q0F1WHx+PnYlJGBbfDwi/msrUVI3U1NMrl8fg62sFF6qyBjDtvh4zHn+XJK06AoE+LlRI0y3samyC0NyYSG2xcVhQ1xcuf/nehoaMNTUhIGGBgw0NWGgqcmfl1gnef7fOqnnRa+X2N9IU7NKhv2QlVAsxm8JCfg6MlKqerSutja+a9gQE+vXlzt5zBOJEJqVhZuZmbj1X6nU87eqSd9moqmJH52dMbF+/VozpEimUIglUVFYFxMj1YHBz9oaPzg5wVJNrjdyJU2JiYmYOXMmPD09MWnSJNQt0cg4KSkJ27dvx927d7FhwwYYGBhg48aNOHnyJEaPHo1PP/1UoW9AHQQGBiIwMBBZWVm4f/++2iVNAG9IN+zRI0nRsbOeHv5u0aLMu+l8sRhrY2LwXVSUVOPiVoaGWN+4MT4wMamyuEnVY4zhaW6upBTqYmqqzMM5FNHEf1Vu/5UmtZahyk1VxIzhUloatsbF4eibN6USPwstLYy3tsZkm/+3d+dxUZX7H8A/Z1ZgVpZxAEEQQcUVS7FUcE3Rm3a7pVlpmqVlZXrTbLNS0+yW3bIsf2qLV9v0Vta11K67Vw3FhSRBXFlc2Blg9mHm/P4YGBkZYBgGZga+79eLFzNnmfmeOQzzmec85znhtsMyLVFmMmF2djZ+LCmxTesdEIBve/VCXw8NCWCyWLC9pAQfXruG3+uMON6aegYEYFJwMCaFhOAuqdRjLVp7ysrwwuXL+LNOa5+QYfD3yEi80qVLq7T4lJpMtsN6JyorcbyqyuEZoyPkcmzo3r1NWj09hWVZ/FhSgvkXL9r1EYsPCMD/de+O5FY6+9tVLoWmpUuXorCwEOvWrWtwmWeeeQZKpRJvvvkmLBYLHn/8cVRXV+Prr79uUcHezFtbmmr9oVZjwtmztpG6Q/h8/KdPH9xdJwTtLi3F/EuX7DqMBvN4WBUTg1kt+LZFfJeZZXG6qgp7a0LU0YoKGBz824j198c9Na1JIwMD2/yMPHcoMhqxuaAAG27exEUHrQHJMhnmhIfjgZAQl84QPVhejmlZWXYfDs+Eh2N1t25e0/JyorISG2/exFWdDhqLBRqzGRqzGeqa3805S9NZIXw+7g0Oxn3BwbgnKKhNRvI/r9Fg0eXL+LWszG76FIUC78TEtOnJAWzNiSnHq6rwU0kJvqvTuu/H4WBpdDQWRkR47RcPV+XodHju4kW7feDH4eCNqCgsjIz0yg7zLoWmiRMnYtKkSZg9e3aDy2zYsAE7duzAjh07AADvv/8+du3ahb1797perZfz9tAEWDvnTsjIsH2r8uNw8E18PPqLxXjh0iX8XFpqW5YDYG54OJZ37YogN/c5Ib5LZzbjaEUF9qlUKDAacZdUinsCAxHjBYfc3IVlWRxSqbDh5k38UFxcb5DSQB4PjymVmB0e7lSnVJPFgmU5OXg7L8921l8Qj4cvevbEfSEhrbAFrad28FlbiKoJUnbBqolphUYjTlZV1RtHCrC28owJDMSkkBBMDA5GmJv7wpaaTFiWk4N1N27Y9TUaJJHgg9hYDPWClvT/lpXhqQsXkFPnsPEAsRif9+iBARKJBytzD5PFgn9eu4ZlOTl2ferGBwVhbVycV/8vcemroNFoRGmdD1dHSktLYazzbSogIABcL/km1ZFF+vnhfwkJeODcOexXqaC3WPDAuXMQMIxd68EwmQxr4+LQn0YQJrfx53IxJijIrWd2eRuGYTAiMBAjAgNRYjRiS2EhNty8aevcXl5djTXXr2PN9esYKpVidng4JisUDk+wuKLT4dGsLKTWOew1Si7H5vh4nxwMkWEYBHC5LR5csMRoxM6yMvxcUoLfyspsLVgGlsWvZWX4tawMTwFIlEgwKSQEk4KD0Uckcrm/l9FiwSfXr2N5bq7dNS4jhEKs6toVjyiVXtN/aGxQEDIGDsTrOTlYc+0aWABn1GoMOnUKCyMjsTQ62mtaJpvriEqFpy9cwLk6J4qECwRYExuLBxQKj3f0bopLbV9xcXHYt28f/vzzT4fzMzMzsX//fnTv3t027caNGw1en460LTmfj139+mG6UgnAerHc2sAUJhDgq/h4HE5IoMBECIAQgQB/j4xE5qBBOJyQgOlKJYR1/rEfrazEzPPnEX7sGOZdvIizdS5j8k1hIRJOnrQFJh7DYFXXrvhv//4+GZjcKUQgwGOhofihTx+UDB2KnX374qmwMITd1uH3RFUVlly9in4nT6Lb8eNYcPEi9peXw+TkYUKWZfFzSQn6pKXhhcuXbYEpgMPBsuhoZCcmYlpoqNcEplpiHg8fxMbi9zvuQJ+a1kwzgHfz89Hv5EkcvG3YCG9XajLhyfPnkZSebgtMHADPd+6MrMREPNipk9cHJqAFF+x94YUXwLIshgwZgr59+9rOnsvIyMCxY8fA4XDw/vvvIyEhAVqtFvfffz9GjhyJl19+uTW2wyv4wuG5uliWxetXr2JlXh54DIO/R0Tg9agoSHywLwohbanMZMJXhYXYcOOG3TfmWoMlEnQWCu06e3fz88M3vXohUSpty1J9jqWmD91/Skvxc0mJ3XAMdcm4XEwIDsZ9ISFICQpy2IcuvaoKCy9fxn6Vym76DKUSK2NifCa4Gi0W/CMvDytyc+0OFT8ZFob3YmLcPmSHO7Esi82FhVh0+bJdZ/eBEgn+r3t33OljhxtdHtzyxIkTWL16NQoLC60PVOcCvkqlEgsXLsTgwYMBAHq9HteuXUNISAjkXtYT3p18LTTVuqTVQszlItRH/oEQ4i1YlkVqZSU23LyJrUVFDY66/phSibVxcfSFxAU5Oh12lJbiP6WlOKhSORzzqHaU7vuCgzExJARChsGSq1fxRUGB3cjxyTIZ/hkb63Mf1LWyNBrMzs7G0TqHesMEAnwSF4f7FQoPVuZYlkaDuRcu4FBFhW2ahMvF2127Ym7nzj55YlGLRgS3WCw4e/YsLl++DI1GA5FIhG7duqFfv37geGGv99bmq6GJENJyKpMJXxcVYcONG7bWEQmXi//r3h2P1BwKJy2jMpmwu6wM/yktxc7S0gaHwhAwjF2LTIyfH97r1g33h4T4xCGgxlhYFutu3MDLV67YXYz8gZAQrI2L84ovvzqzGStzc/Fufr7dEB5TFAp8EBvrdRcMbw66jIobUWgihLAsi7SqKqRWVuK+kBBE+cj1GH2NyWLB4YoK/KekBD+XlCDXweCcUi4Xr0dFYV5EhE9d9sgZeXo95l64gJ11TteX83hY3a0bZnlw5Ozfai6uW3fA2Bg/P3wSF4eU4GCP1OROLQ5NOTk5yM3NhV6vx7hx49xVl0+i0EQIIW2PZVn8qdHg55IS/FxaikKjEfcGB2NZdHSrXo7G01iWxXdFRXj+0iW7/kKj5HJs6NGj1Ufet7AsLul0tpHOU2uuv1eLzzBYHBmJ16KifPZsv9u5fIA9KysL7733Hq5cuWKbVhua0tPT8eKLL+LNN9/EsGHDWl4lIYQQ0gCGYdBXLEZfsRhLoqM9XU6bYRgGDyuVuCcwEH+/fBlf1fQx3q9SoW9aGpZFR+PvbhwUs9BotAWk2gsUqxq4EPfwmovrxrezS6e5FJquXr2KBQsWgMPhYPLkycjLy8Px48dt8/v37w+ZTIaDBw9SaCKEEEJaUYhAgC3x8Xi0Uyc8deEC8gwG6CwWLL5yBVuLivBZjx5IaGbnd3V1NU6p1baQdKKyEnmNXJOyVnxAABZHRmKGF1xctzW4FJq++OILAMDGjRsRERGBL7/80i40MQyD3r174/z58+6pkhBCCCGNSgkOxrlBg/Da1av4+Pp1sABOqdUYeOoUFnfpgjeiohxe/sdkseCcRmNrQTpRVYVMjcbhiO11Kfl8DJZKkSiVIlEiwUCJBIFePPyBO7gUmtLT0zF8+HBEREQ0uIxSqcSJEydcLowQQgghzSPm8bAmLg4Pd+qEJ7OzcU6rhRnAqrw8/FBcjA09eiBSKLRrQTqtVjc4XEYtEYeDgRIJEqVSa1CSSBAhFLbL1qTGuBSadDodAgMDG13GYDDA0goXdiSEEEJI4+6SyXB64ECsysvDytxcmFgWF3Q6jEhPb3JdLoB+YjESa0JSokSCeJHIJ8dVcjeXQpNCobDrAO7IhQsXEB4e7lJRhBBCCGkZAYeDN6OjMVmhwJPZ2fi9zqCYdcX4+dnCUaJUigFicYuvLdheuRSahgwZgh9++AEnT57EwIED683fv38/MjMzMWPGjBYXSAghhBDX9RKJ8L8BA7Du+nV8V1QEGY9nC0mDJBKEtONhGdzNpdA0ffp0HDx4EIsXL0ZKSgrKagbX2r59O86dO4d9+/YhNDQUU6ZMcWuxhBBCCGk+LsPguYgIPNdIX2TSNJdCk1wux8cff4wVK1bg119/tU3/8MMPAQC9evXCG2+8AbFY7JYiCSGEEEI8zeXBLcPDw/Hpp5/i4sWLyMzMRGVlJQICAtCrVy/Ex8e7s0ZCCCGEEI9r8SW34+LiEBcX545aSAOqK6pRsKUAnZ/t3OFO7ySEEEK8hUtjqz/00EP4/vvvG13mxx9/xEMPPeRSUeSWwm8KkRqTikvzLqH4h2JPl0MIIYR0WC6FpoKCAqjV6kaXUavVKKy5Dg5xHS+Qh+oy67V9rr52FZZqGvuKEEII8QT3XMXPAY1GA347H069LQSlBEGWLAMA6C7oULCpwMMVEUIIIR2T032a0m8bRbSgoKDeNACwWCwoKirCnj17EBkZ2dL6OjyGYRCzKgZnhp4BAOQuy4XyUSW4/jTwGCGEENKWnA5N8+fPt3VCZhgGu3fvxu7dux0uy7IsGIbBU0895Z4qOzjZEBmCJwajdEcpDNcMuPHpDUQupEBKCCGEtCWnQ9OMGTPAMAxYlsW//vUvJCQkICEhod5yHA4HUqkUAwYMQHR0tBtL7di6ruyK0l9KARbIfTsXYU+GgSdr8cmPhBBCCHGS05+6s2bNst3+448/MH78eKSkpLRKUaQ+cV8xlNOUKNxSiOqyauSvzkfXt7p6uixCCCGkw3CpI/iaNWsoMHlA9LJoMHzrIdL8D/JhLDR6uCJCCCGk42jx8R2dTge1Wg2LxfGp8EqlsqVP4fX27t2LvXv3NjkMQ0v5d/VH+FPhuL72OiwaC3JX5iLuIxpYlBBCCGkLDMuyrCsr/vLLL9i6dSvy8/MbfnCGwYEDB1wuztdkZ2dj9uzZ2LhxI3r06NEqz2EsNCK1WyosGgsYPoPE7ET4d/VvlecihBBCyC0utTT99NNP+OCDD8DlctG/f38oFApwuXQKfFsQKAWI/HskclfkgjWxyHkzB/Gb6Vp/hBBCSGtzKTT9+9//hkwmwyeffEJjMXlA5KJIXP/0OqrLqlH4VSEiX4yEuK/Y02URQggh7ZpLHcELCwsxcuRICkwewpPxEPVqlPUOa728CiGEEEJal0uhKSgoqMGO36RthD8TDkFnAQCgdEcpKo5VeLgiQgghpH1zKTSlpKTg+PHj0Ol07q6HOInrz0X00mjb/SsvX4GLffoJIYQQ4gSXQtNjjz2Gnj174oUXXkB6ejq0Wq276yJOCJ0ZCv/u1jPnKv5XgbLdZR6uiBBCCGm/XOoIPmbMGADWa8wtWLCgweU62pADbY3D46Dryq7InJwJALjyyhUEjQsCw2E8XBkhhBDS/rgUmvr162e7eC/xLMUDCojvFEN9Sg3NHxoUbS2C8uH2P6AoIYQQ0tZcCk0fffSRu+sgLmIYBjGrYnB27FkAwNXXr0LxoAIcvktHXgkhhBDSAPpkbQcCxwRCPkoOANBf1uPm5zc9WxAhhBDSDlFoagdqW5tq5S7LhVlr9mBFhBBCSPvj1OG5d955BwAwZ84cBAUF2e474+WXX3atMtIs0kQpQv4WgpIfS2AsMOLaR9cQ9XKUp8sihBBC2g2nQtOuXbvAMAweffRRBAUFYdeuXU49OMMwFJraUNcVXVHyUwlgAfL/kY/wp8LBD+R7uixCCCGkXXAqNG3duhUAEBISYnefeBdRvAihM0JR8GUBqlXVyH833+6wHSGEEEJc51RoCg0NbfQ+8R7RS6NR+HUhWCOLa2uuofO8zhCGCz1dFiGEEOLzqCN4O+PXxQ+dn+0MALDoLMh9K9fDFRFCCCHtA4WmdqjLK13AlXABADc23oD2Il3mhhBCCGkpCk3tkEAhQOSiSOsdM5DzRo5H6yGEEELaAwpN7VTE3yPAV1jPnCv6rghV6VUerogQQgjxbRSa2imehIeo126N03T11aserIYQQgjxfRSa2rHwp8Mh7GI9c65sVxlUh1SeLYgQQgjxYRSa2jGOkIOuy7va7l955QpYlvVgRYQQQojvotDUzimnKRHQKwAAUPl7JUp3lHq4IkIIIcQ3UWhq5xgug64rb7U2XX3tKlgztTYRQgghzUWhqQMIuS8EksESAIDmTw0Kvyn0cEWEEEKI76HQ1AEwDIOYd25dgy7njRxYDBYPVkQIIYT4HgpNHUTgiEAEjgsEAOhz9Lix4YaHKyKEuMJisqBsTxkKNhdAnaEGa6HD7YS0Facu2Evah5i3Y3Dqt1MAgNy3chH6eCh4YvoTIMTbWYwWlO8rR/G/i1HyUwmqy6tt87gyLqR3SSEbKoNsiAySwRJ6XxPSSuid1YFI7pBAMUWB4m3FMBWbcO3Da4heEu3psgghDlgM1hal4u+LUfpzKapV1Q6XM1eYUf5bOcp/K7dO4ADi/mLIhsogHSqFbIgMfl382rByQtovCk0dTNe3uqL4h2LADOS/l4/wp8MhCBG0ynOxLAv9FT3UGWowDAOOPwccfw64AVzbbbv7/PZ7tNisNcOQb4A+Xw9DngH6PD0M+QYY8g1gzeyt1yDg1uthN82fC06A/evFDXA8jREwYBjG05vsFJZlYSwwQndZB/1lPXSXdNBdvvXDGljw5DzwAnnW33Vv15nGD+TXm8aVcH3mdahl1ptR/t+aFqX/lMBcaa63DFfMRfDEYIj6iVCVVoWKoxUwFZpuLWAB1GfUUJ9R4/ra6wAAYYTQFqBkQ2UQ9ReBw2u/7zdCWguFpg4moHsAwp4Iw80NN2GuNCPvnTzEro51y2MbbhpQlVaFyhOVqEqrQtXJKlSXOf527BAX9uHg9tt1A0TdwBXAufWBKueBJ+PZ3ef4c1r1w5M1szDctAaguoFIn2cNSIZ8A0wlpqYfyF0Y3HqdRBzwQ/gQhAogUApu/a65zVfyIVAKwJPzWu01slRbYMgz3ApDl2oCUs19i7bxkxLMajMM1wzNf2IOGg5XNdP9ov0QEB+AgB4B4AZwXdzCljHrzCjbXdOitKMU5ioHQUnCRfCkYHSa3AmB4wLB9btVK8uy0F/Vo+JoBSqPVaLiaAU0f2qAOl2dDNcMKN5ajOKtxQCsfx/SwVJIh1gP60nvloIv57f6tvoqi9GCytRKlO8vh2q/CqZiEwSdBRBGCCGMEMIv0s96O9J6nxfYeu8n4lkMS0NEu012djZmz56NjRs3okePHp4up0GG6wYcjz0Oi94CRshg8MXB8ItsXvO9SWVC1ckqVJ2osgaltEoYrxtbqeKWYfiMfai6/UfWyDw5DxaTxb516LZgZLxuBFvt228jRsDYhSq+suGgxZXWb8Ex68zQX9HbBaPa1iN9jt6l10cYIQRXzEV1RTWqy6th0bfiGZ8M4NfVGqBEvUR2v3lS93+3NGvNKNtVhqJ/F6H0l1JYNPW3jSvlIuS+ECgmKxA0NggcofMtQ9UV1ahMtQaoimMVqEytdPgcNgwQ0CvA1i9KOlQK/27+HfaDnzWzqDpTBdV+Fcr3laPiSEWT4b4uTgDHFqjqhqm6AYsXRMHKF1FociNfCU0AcPmly8h/Nx8AEPpEKHp+1rPBZc06M9Rn1LdakNKqoLuoa/I5+J34kAySQHKnBBw/Diw6Cyw6C8xas+PbOjMs2jq3dRZYtBbfDiRcQNhZCL8ufhB2qfkdKbS7zfAZ27bavQZas+NpdV+3JtYxq80wlZoAN+YNRngrYHGEHOiu6FwKzAyfgV9XP/h384d/N3/4dfODf2zN7a5+dq0pgPXQVbWq+tZP+W2/69w2lZvqTXP1NRB0FlgDVK8AiOKtvwPiA5p9WNusMaN0ZymK/12M0l9LHX4I8+Q8hPw1BIoHFQgcE9isoNQYS7UFmgyNtTXqaCUqjlXAkOdE6x3HOkAuw2Xsb3NrbnPq3G7OcjwGwi5CiPqIIOotgqiPCMIIocdCBMuy0GZprS1J+1RQHVQ12IcMgPX/WQtDPMef4zBUCSOFEPUSwa+rH4UqL0ShyY18KTSZykxIjUmFucIMcIBB5wZB1FMEi8kCzTmNNRydsLYgaf7UAPWPGNjhSriQDJRAMkgCaaIUkkESayBww5veUm1xGLJq75s1ZpgrbvtAdfRTUfPh6ca/eF4wzxZ+HAUjYZjQ+uHhQayZhanEBGOh0fpTcOu3qdBkN81UbHLr68MRcWxByPYTaw1IfpF+bfbasCwLc5XZLkiZSk3QXdRBk6WBNlMLbZYWZnUTf+h18BV8uyBV2zIlCBPY/u6r1dUo/aUUxd8Xo2xnGSw6B0EpqCYoTVYgcFQgOIK26Wukv6a3BaiKoxVQp6ubfJ+3Jq6Uaw1QNSEqoHcARH1EECgFrRIe9Ll6lO8rR/k+6yE3Y0HDwV/QWYDA0YEIHBUI+Sg5hBFCVFdUw3DNYP3Jv+13ze3m/D05ek55shzy4XLIkmUI6BlAIcoLUGhyI18KTQCQ+3Yurr52FQAg6icCV8yF+rS6yW9QjJCBOEEM6SBrOJIkShDQPcD6bdLLsRYWZrUTAavOhyu4cByMIoTgijzTD6a1WKotMJWYrGGqNlzVDVV1pptKrAGLr+DfaimqCUW1AYnfie8z/+hZloXhmgHaTC00mRpos2p+Z2rtTvFvClfGhSheBJ6cB9VBlcP3Ey+YB8X9CigmKyAfKfeKkyDMGjMqT1gP6VX+XmndvxZr6K79qXsf5prbljq3G1nO1TDOC+JZW6TqtEqJeovAD25eHyxjkdHWJ6l8Xzn0V/SNPqd8pNwalEYHwj+u+YcqWZaFudJsPfmjoXDVjGDFV/AhS5ZBnmwNUeK+Yo9/IWsNtV9wTCUmmIpN1i98xdb/N7XTQmeEQp4s90h9FJrcyNdCk1ljRmq3VPszb27HAUS9RdZwNEgC6SApRH1FbfZtmHgvS7UFrIFtd8HxdizLwlRkqhektFnaRlsnbsdX8BHyN+uhN/kIeYc7e41lb4Upi8FibeX7UwPNOY3ttyHX+Q7/glCBrTWqbpiq7YNWXVEN1SGV7ZCb5k9Ng4/FEXEgT7aGJPkoOcT9xW32JbBui5U+Xw9DrgGVx63htbF+VDw5D7JhMmuQGi6HeIDYK8L37SxGy63AUycI2YWhOtNMJSawxsZjSeyaWEQ8H9FGW2CPzp7rwLgiLmLejkH2E9m2aX4xfrbDa5JBEkjukLT7D0XiGg6P0yH+gzAMY+sIHzgy0G6eqdxUL0hpMjW2/kJ8JR+KvymgeFABWbKswwWluhjmVr8mjoADyR3W/y91VVdVW1v6/tTYBSrjzfrh1FhgbQFV7VPZTRdGCsEP5kN9Vt1gPzZGwEB6t9R2yE2SKPFY4ODJrCejiHqL7KZbTBaoT6uhOqyC6pAKFUcqrN0palSrrId+S38pBWANfrIhMtvhPGmi1G194upiWWtrfe3rX++n0L5VyNGwGS1lKm7Ds5FvQy1NbuRrLU21VEdUsGgtkNwpaXaTNyGkvmp1NUyFJvhFt12/rfbMVGayBqiaEKU9Zw1WTg/lwQEkd0psLUmyoTKPDTHhKtbMQp2hRsWhCqgOq1BxuKLR7WeEDKR3SW39oqR3SRv9AmwxWG4dim8gDNXebs6ZhM5iBAz4Cj74IdYfgUJgu113Ol/BhzBCCH6gZz6rKDS5wd69e7F3716o1WqcPXvW50ITIYT4ImORsd4hPs2fGpgrzAjoHYDAUdY+SbLhsnY3DlXtGX+1AUp1SAXjjYYPFzM8BpKBEkiHSgEz6gWh5vTbcwYviFcv8NiC0G0hiB/CB1fsG4PRUmhyI19taSKEkPaCZa19pm4fsqK9q70Cg+1w3uEK6K823NndFbxg3q2x2xr6UQrAC+K120PRHaBHAiGEkI6CYZgOF5gA63bXnrUa9ngYAECfr7e2QtW0RmnPa+utxxVzb10doLEw1ElAJwCBQhMhhBDSLvlF+sHvUT8oH1UCAIyFRqjT1XZBiSemGNAc9GoRQgghHYBAKUDQuCBPl+HTqK2NEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnEChiRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnEChiRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJPE8X0J4YDAYAQG5urocrIYQQQkhzRUVFwc/Pr8H5FJrcqKCgAACwYsUKD1dCCCGEkObauHEjevTo0eB8hmVZtg3raddUKhVOnDiBsLAwCAQCT5fTanJzc7FixQosWbIEUVFRni6nVdG2tl8daXtpW9uvjrS9bbGt1NLUhuRyOcaOHevpMtpMVFRUo4m8PaFtbb860vbStrZfHWl7Pbmt1BGcEEIIIcQJFJoIIYQQQpxAoYk0W3BwMGbOnIng4GBPl9LqaFvbr460vbSt7VdH2l5v2FbqCE4IIYQQ4gRqaSKEEEIIcQKFJkIIIYQQJ1BoIoQQQghxAoUmQgghhBAn0OCWBACQlZWF3bt348yZMygoKIBUKkXv3r3x5JNPIjIystF1d+3ahVWrVjmct337dq87q+PMmTOYP3++w3nr1q1D7969G12/uLgYa9euRVpaGiwWCwYMGIB58+YhPDy8Ncptsbfffhu7d+9ucP4PP/wAhULhcN4XX3yBTZs21ZsuEAiwd+9ed5XoEq1Wi++++w6ZmZnIyspCVVUVXnnlFYwfP77esjk5OVi7di0yMjLA4/Fw991347nnnoNcLnfquY4cOYIvv/wSubm5kMvlmDBhAh577DHweG3zL9SZbbVYLPjtt99w6NAhXLx4EVVVVQgLC8OoUaMwdepUCIXCJp/n+eefR3p6er3piYmJWL16tTs3qVHO7tuG/ra7dOmCr776yqnn8oV9CwDJyckNPsbAgQPxz3/+s9HnmTJliu1SX3VNmjQJixYtcq34ZmrO54y3vmcpNBEAwDfffIOMjAyMHDkS3bp1Q2lpKbZv344nn3wS69atQ0xMTJOP8cQTTyAsLMxumlgsbq2SW+yBBx5AfHy83bTOnTs3uo5Wq8X8+fOh0Wgwbdo08Hg8bNu2DfPmzcMXX3wBmUzWmiW7ZNKkSRg4cKDdNJZl8f777yM0NLTBwFTXwoUL4e/vb7vP4Xi+kbqiogKbNm2CUqlEbGwszpw543C5oqIizJs3D2KxGLNnz4ZOp8N3332HK1euYP369eDz+Y0+T2pqKl577TUkJCRg/vz5uHLlCjZv3ozy8nIsXLiwNTatHme2Va/XY9WqVejduzfuu+8+BAYG4ty5c/jyyy9x+vRpfPjhh2AYpsnnUigUeOqpp+ymtfUXH2f3LWAN8IsXL7abJhKJnHoeX9m3ALBkyZJ6086fP4/vv/8egwYNcuq54uLi8NBDD9lNi4iIaH7RLnL2c8ar37MsISzLnj17ljUajXbT8vLy2NGjR7PLly9vdN2dO3eySUlJbFZWVmuW6DanT59mk5KS2AMHDjR73a+//ppNSkpiMzMzbdNycnLYESNGsOvXr3djla3rjz/+YJOSktjNmzc3utznn3/OJiUlseXl5W1TWDMYDAa2pKSEZVmWzcrKYpOSktidO3fWW+79999nx4wZwxYUFNimpaWlsUlJSezPP//c5PNMnz6dffzxx1mTyWSbtmHDBjY5OZnNyclxw5Y0zZltNRqN7NmzZ+ut++WXX7JJSUlsWlpak88zb9489rHHHnNP0S3g7L5duXIlO3bsWJefx1f2bUPeeecdNjk5mS0sLGxy2cmTJ7OLFy9uUa0t5eznjDe/Zz3/dZF4hb59+9ZL75GRkYiOjkZubq7Tj6PVamE2m91dXqvRarWorq52evmDBw+iZ8+edi1UUVFRuOOOO3DgwIHWKLFV7N27FwzDYMyYMU6vo9FowHrRsG4CgcCpFpBDhw5hyJAhUCqVtmkDBw5EZGRkk/ssJycHOTk5mDhxol2z/v333w+WZXHw4EGX628OZ7aVz+ejb9++9aYnJSUBQLPex9XV1dBqtc0r0o2c3be1zGYzNBpNs57Dl/atI0ajEYcOHUJCQgI6derk9Homkwk6na7Zz+cOzn7OePN7lg7PkQaxLIvy8nJER0c7tfz8+fOh0+nA5/MxaNAgPPvss032h/KkVatWQafTgcvlol+/fpg7dy569uzZ4PIWiwVXrlzBhAkT6s2Lj49HWloatFotAgICWrPsFquursaBAwfQp0+feodTG/LQQw9Bp9PB398fw4YNw7PPPougoKBWrrTliouLUV5e7vDinvHx8UhNTW10/QsXLgBAvfVDQkKgUChw8eJF9xXbSsrKygDA6UPH+fn5GDduHEwmE4KCgnDvvfdi5syZbdbHp7n0ej3Gjx8PvV4PiUSC0aNH4+mnn27yfejr+zY1NRVqtRr33HOP0+ucPn0aY8eOhdlsRmhoKCZPnozJkye3YpVNu/1zxtvfs975LiBeYc+ePSguLsasWbMaXU4oFGL8+PEYMGAARCIRsrOzsW3bNjzzzDP47LPP7L4teAMej4fhw4fjrrvugkwmQ05ODrZu3YrnnnsOn376Kbp37+5wvcrKShiNRoffCmunlZSUoEuXLq1af0udOHECFRUVTv2zlUgk+Nvf/obevXuDz+fj7Nmz2L59O7KysrBx40an+454SmlpKQDHfXKCg4Nt+1QgELi0fu18b/btt99CJBJh8ODBTS4bHh6OAQMGICYmBnq9HgcPHsTmzZuRn5+PZcuWtUG1zRMcHIyHH34Y3bt3B8uyOH78OH766SdcvnwZa9asaTTo+fq+3bNnDwQCAYYPH+7U8jExMejXrx8iIyNRWVmJXbt24eOPP0ZJSQnmzp3bytU27PbPGW9/z1JoIg7l5ubigw8+QO/evZGSktLosqNGjcKoUaNs95OSkpCYmIh58+Zhy5YtbXZmhrP69u1rdxhj2LBhGDFiBB5//HFs2LChwbOEDAYDADjshFj7Bq5dxpvt3bsXPB4PI0eObHLZ27+FjhgxAvHx8Xjrrbewfft2TJs2rbXKdAtn91lD/4CNRqPdsrev78lDWM7YsmULTp48iRdeeAESiaTJ5V9++WW7++PGjcN7772HHTt2YMqUKU2eWdrWbu+wPnr0aERGRmLjxo04dOgQRo8e3eC6vrxvNRoNfv/9dwwePNip/QoA77zzjt39CRMm4MUXX8S2bdvwwAMPNOsQn7s4+pzx9vcs9Wki9ZSWluKll16CSCTCW2+9BS6X2+zH6NevH3r16oVTp061QoXuFxERgWHDhuHMmTMN9smqPWXbZDLVm1f7RnXmtG5P0mq1OHLkCBITE10+0++ee+5BUFCQT+zblu6z2n+8tcvevr437+99+/bhs88+w1/+8hf89a9/dflxas+2OnnypJsqa11TpkwBh8Npsl5f3reHDh2C0Whs1qG52zEMgylTpsBsNjscZqK1NfQ54+3vWQpNxI5arcbixYuhVquxevVqhISEuPxYnTp1QmVlpRura12dOnWCyWSCXq93OF8qlUIgEDhs3q2d1pLXqy0cOXIEer2+Rf9sAd/Zt7VN9A3ts9p96ur63jYGWa20tDS8/fbbuPvuu1t8inVtC0RVVZU7Smt1QqEQUqm0yb9PX923gPWQllgsxpAhQ1r0OLX7tq3fy419znj7e5ZCE7ExGAx4+eWXkZ+fj3feecfpDuANuXHjhtMDkXmDGzduQCAQ2I1HVBeHw0FMTAzOnz9fb15mZibCw8O9vhP4nj174O/vj6FDh7r8GCzLoqCgwCf2rUKhgFwuR3Z2dr15WVlZiI2NbXT9uLg4AKi3fklJCYqLi23zvUlmZiaWLFmCHj16YNmyZS3uwH3jxg0A8In9DVhbUysqKpqs1xf3LWCt78yZM0hOTm40PDjDE/u2qc8Zb3/PUmgiAKyn7C5duhTnzp3DsmXL0KdPH4fLlZSUIDc31+40fZVKVW+533//HdnZ2UhMTGytkl3mqN5Lly7h6NGjGDRokG3gxsLCwnqnaQ8fPhznz5+3C055eXk4c+YMRowY0Zplt5hKpcLJkyeRnJwMPz+/evMdba+j1+qnn36CSqVyqmOxNxg+fDiOHTuGwsJC27RTp04hPz/frl9XdXU1cnNzUVJSYpvWtWtXdOnSBTt27LA7bPvTTz+BYRinO+G2lZycHLz00ksIDQ3FP/7xj0YPReTm5tq9JhqNpt4hDZZlsXnzZgBwegDFtmIwGBz2T/nXv/4FlmXt/j7bw76ttX//flgslgZbix1ta2VlZb1uB9XV1fj666/B5/MxYMCAVq25lrOfM978nqWO4AQA8Mknn+Do0aMYMmQIqqqq8N///tdu/tixYwEAGzZswO7du7F161bb6epz585F9+7d0aNHD4hEIly4cAE7d+5Ep06dMH369Dbflqa8+eabEAqF6NOnDwIDA5GTk4MdO3bAz8/PrmPpypUrkZ6ejsOHD9um3X///fjll1/w0ksvYerUqeByudi2bRsCAwMxdepUT2yO0/bt2wez2dzgP1tH2zt58mSMGjUKMTExEAgEyMjIwL59+xAXF4dJkya1VekN+uGHH6BWq21N8UePHkVRUREA64jvYrEY06ZNw8GDB7FgwQI8+OCD0Ol0+PbbbxETE2N3qYri4mJMnz4dKSkpePXVV23Tn3nmGbzyyitYuHAhRo8ejStXrmD79u249957W9wa685t5XA4WLRoEaqqqjB16lT8/vvvduuHh4fbfUhNnz4dCQkJ+OijjwBYT9VetmwZxowZg86dO8NgMOB///sfMjIyMHHiRIengLempra3qqoKTzzxBMaMGWM7Y/XEiRNITU3F4MGDMWzYMNtj+fq+rXtlhT179iAkJKTBoONoW48ePYrNmzdj+PDhCAsLQ1VVFfbs2YOrV69izpw5bXYo0tnPGW9+z1JoIgCsLS0AcOzYMRw7dqze/No/ZkdGjRqF1NRUpKWlQa/XIzg4GBMnTsTMmTO9ciyfpKQk7NmzB9u2bYNGo4FcLkdycjJmzpzZ5CUFAgICsGbNGqxduxabN2+2XXuuOddE8pS9e/ciMDAQd955p9Pr3HPPPfjzzz9tHU+VSiUefvhhPPbYYw5bq9ra1q1b7a6ndfjwYVvoGzt2LMRiMZRKJT766COsXbsW69evt13H6tlnn3Xq8MaQIUOwYsUKbNq0CWvWrIFMJsO0adMwc+bM1tosh5raVgC2D9r169fXWz8lJaXBb/YAoFQq0b9/fxw+fBhlZWXgcDiIiorCwoULPRKQndm3Q4YMQVpaGnbv3g2LxYLOnTtjzpw5mDp1qlOX+vGVfVsbmvLy8pCdnW3r7O6smJgYREVFYc+ePVCpVODxeIiLi8OyZcucOovWXZz9nPHm9yzDetMQv4QQQgghXor6NBFCCCGEOIFCEyGEEEKIEyg0EUIIIYQ4gUITIYQQQogTKDQRQgghhDiBQhMhhBBCiBMoNBFCCCGEOIFCEyGEEEKIEyg0EUIIIYQ4gUITIcRr3Lx5E8nJyXj77bc9XYpb7Nq1C8nJydi1a5enSyGEuAGFJkKIV3v++eeRnJzs6TIcam8hjxDSOLpgLyHEaygUCmzZsgUikcjTpbhFUlISevXq1WZXkSeEtC4KTYQQr8Hj8RAVFeXpMtxGLBbbrlBPCPF9DMuyrKeLIIQQwHq466GHHkJKSgpeffXVBg/L1c6vdfnyZWzZsgXp6emorKxEcHAwhg4discffxwymczh4z/yyCPYuHEj/vjjD1RWVmLr1q0ICwvD4cOHceDAAZw/fx4lJSXg8Xjo1q0bHnzwQYwYMcL2WLt27cKqVasc1rdmzRoMGDDAtswrr7yC8ePH2y2TkZGBLVu24Ny5czAYDAgNDcWoUaPwyCOPwM/Pz27Z5ORkJCQkYOnSpVi3bh1SU1Oh0+kQGxuLp556CgMGDGjuS00IcQG1NBFCvNbMmTOxe/duFBQUYObMmbbpcXFxtttHjhzB0qVLwTAMhg0bhk6dOiEnJwc//vgjTpw4gfXr10Mikdg97vXr1zF37lzExMQgJSUFlZWV4PP5AIANGzaAx+Ohb9++CA4OhkqlwtGjR/HGG29g/vz5eOCBBwAAsbGxePDBB/H9998jNjYWw4YNsz1+aGhoo9t14MABLF++HHw+H6NGjYJcLkdaWho2bdqEEydOYM2aNRAKhXbrqNVqPPvssxCLxRg7dizKy8tx4MABLFq0CBs3bkRMTIxLrzEhxHkUmgghXmvWrFlIT09HQUEBZs2aVW9+RUUFVq5cCZlMhk8++cQurOzbtw/Lli3D559/jgULFtitl5GRgZkzZzp8zHfffRfh4eF207RaLZ555hl8/vnn+Mtf/gI/Pz/ExcVBLBbbQpOjx3JEo9HgvffeA5fLxbp169CtWzcAwJw5c7B8+XLs378f3333HWbMmGG33qVLl/DXv/4VCxYsAIdjPYfnjjvuwLvvvosff/wRixYtcur5CSGuo7PnCCE+67fffoNGo8GcOXPqte6MHj0a3bt3x759++qtFxQUhOnTpzt8zNsDEwAEBARg/PjxUKvVOH/+fItqPnLkCNRqNSZMmGALTADA4XAwd+5ccLlch0MU+Pv74+mnn7YFJsB6mJLL5ba4JkKIc6iliRDis86dOwcAyMzMxPXr1+vNNxqNqKiogEqlglwut02PjY21HY67XXl5Ob7++mukpqaisLAQBoPBbn5JSUmLar548SIAICEhod48pVKJ8PBw5OfnQ6vVIiAgwDYvIiLC7j5g7TgfFBQEtVrdopoIIc6h0EQI8VlVVVUAgO3btze6nF6vt7sfGBjocLnKykrMmTMHhYWF6Nu3LwYOHAixWAwOh4NLly7hyJEjMJlMLapZo9EAsLZ2ORIcHIz8/HxoNBq7kNTQMAxcLhcWi6VFNRFCnEOhiRDis2pDxaZNm5rVEZphGIfTf/31VxQWFuKJJ56o16foq6++wpEjR1wvtkZt+CkrK3M4v3Z6exmripD2hPo0EUK8Wm0fHrPZXG9er169ANw6TNdStYf46p4JV+vs2bMN1taclp7aM//S09PrzSssLMT169cRHh5e71AcIcTzKDQRQryaVCoFABQVFdWbN2HCBAQEBGDjxo24evVqvfl6vb5Zgaq2M3lGRobd9D179iA1NbXe8hKJBAzDOKytIcOGDYNYLMbOnTvtamZZFuvXr4fZbK43phMhxDvQ4TlCiFe74447cPDgQbz++usYPHgwBAIBYmNjMXToUMjlcrz55pt44403MGvWLCQmJqJLly4wmUwoKChAeno6+vTpg9WrVzv1XGPHjsU333yDNWvW4MyZM1Aqlbh06RJOnz6N5ORkHD582G75gIAA9OzZE3/88QdWrFiBiIgIMAyDcePGNThWk0gkwosvvojly5fj6aefxsiRIyGXy3Hq1ClkZ2cjPj4eU6dObfHrRghxPwpNhBCvdu+99+LmzZvYv38/vvnmG5jNZqSkpGDo0KEAgLvvvhuff/45vv32W5w6dQonT56En58fFAoFxo8fj7Fjxzr9XJ06dcJHH32EdevW4eTJkzCbzejevTvef/99FBUV1QtNALBkyRJ8/PHHOHbsGDQaDViWRb9+/Rod4HLkyJEICgrCV199hcOHD9tGBJ8xYwYeeeSRegNbEkK8A11GhRBCCCHECdSniRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnEChiRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnPD/cQZY/p3w2WEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = []\n", + "integrated_flux = []\n", + "integrated_flux_each_band = [[],[],[],[],[]]\n", + "\n", + "for _ in all_results:\n", + " iteration.append(_['iteration'])\n", + " image = _['model_map']\n", + " pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr\n", + "\n", + " integrated_flux.append(np.sum(image) * pixelarea)\n", + "\n", + " for energy_band in range(5):\n", + " integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)\n", + " \n", + "plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"integrated flux (ph cm-2 s-1)\")\n", + "plt.yscale(\"log\")\n", + "\n", + "colors = ['b', 'g', 'r', 'c', 'm']\n", + "for energy_band in range(5):\n", + " plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = \"energyband = {}\".format(energy_band))\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "718b60f4", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at 11th interation. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all of the pixels at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "338e0993", + "metadata": {}, + "outputs": [], + "source": [ + "energy_truth = []\n", + "flux_truth = []\n", + "\n", + "with open(\"crab_spec.dat\", \"r\") as f:\n", + " for line in f:\n", + " data = line.split('\\t')\n", + " if data[0] == 'DP':\n", + " energy_truth.append(float(data[1]))# * u.keV)\n", + " flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "b05459a3", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "81f5ab8c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACIZklEQVR4nOzdeVxU1fsH8M+dYV8EQQUVZVUEU9HUNBU3XJByydTMNdfU3Nd2LfupmbtlaSZppZiaWuKGC26ZS5oLiwuIuLDLMmwDM/f3BzFfCRAYLgwDn3cvXznnnnvOMwxXHs4591xBFEURRERERFRmMl0HQERERKSvmEgRERERaYmJFBEREZGWmEgRERERaYmJFBEREZGWmEgRERERaYmJFBEREZGWmEgRERERaYmJFBEREZGWmEgREdUAgiCgW7duug6DqNphIkVUAVQqFbZs2YKuXbvCxsYGhoaGqFevHlq2bIkJEybg4MGDug7xhU6fPg1BELB48WJdh1KpunXrBkEQcPr06QLlTk5OcHJy0klMpaUPMVam48ePY+7cuejZsydsbW0hCAI6d+78wnO2bt2KyZMn45VXXoGZmRkEQcBHH31USRGTvjLQdQBE1Y1KpcJrr72GI0eOwNraGn5+fnBwcIBSqcTt27fxyy+/ICwsDP3799d1qFSDhIaGwszMTNdhVJqvv/4aBw4cgImJCdzc3JCUlFTiOXPnzkVKSgpq166NBg0a4P79+5UQKek7JlJEEtu5cyeOHDmCVq1aITg4GFZWVgWOZ2Rk4K+//tJRdFRTNWvWTNchVKqFCxfiiy++QLNmzRAdHQ1nZ+cSz9m1axc8PDzg6OgIf39/vPPOO5UQKek7Tu0RSezChQsAgLFjxxZKogDAzMwM3bt3L1Dm7+8PQRDg7++PQ4cO4dVXX4W5uTlq166NN998E3fv3i2yr4yMDCxbtgxeXl4wNzeHhYUFOnbsiJ07dxYb37Fjx/D666+jXr16MDY2RqNGjTBgwAAEBQVp4s6Pb8mSJRAEQfMnf8rr+XiPHDmCbt26wcrKCoIgAAAePHgAQRAwduzYImPIn0J73vPTiVeuXEHfvn1hZWWF2rVrY/DgwYiOjgYARERE4K233kLdunVhamqK7t27459//in2/ZZHfkxRUVGIiooq8LX473sLCwvD2LFj0ahRIxgZGcHOzg5vv/02wsPDC7U7duxYCIKAiIgIbNiwAS1btoSpqalmDZNSqcTGjRvRr18/ODo6wtjYGDY2NvDx8cHhw4e1irG4NVIpKSl4//334e7uDhMTE9SuXRt9+vTRfD8U1dfixYtx/fp1+Pn5wdraGmZmZujatavme78q6NixI5o3bw65XF7qc/r27QtHR8cKjIqqI45IEUnM1tYWAHDnzp0yn7tv3z4cPnwYgwYNQrdu3XD9+nXs3bsXp06dwoULF+Du7q6pm5ycjB49euDatWto06YNxo0bB7VajaNHj+Ltt9/G7du3sXTp0gLtf/rpp/jss89gYWGBgQMHolGjRnjy5AkuXLiAn376CT4+Phg4cCAA4Mcff0TXrl0L/PD97xqcPXv24MiRI/D19cW7776LqKioMr/n/7p8+TJWrFiBrl27YuLEibh58yb27duHW7du4cCBA+jcuTOaNWuG0aNHIyoqCvv27UOvXr0QEREBCwuLcvf/PCcnJ3z66adYu3YtAGDWrFmaY15eXpq/HzlyBG+88QZycnLw+uuvw83NDY8ePcK+fftw6NAhnDp1Cm3atCnU/syZM3H27Fn4+fmhX79+mh/6SUlJmDlzJl599VX06tULdevWxdOnT/H777+jX79+2LJlCyZMmFCmGIuSnJyMTp06ISQkBO3atcOsWbOQkJCA3bt3o3fv3ti0aRMmT55c6LwrV67gyy+/RMeOHTFhwgQ8fPgQe/fuRc+ePXH9+vUC36dE1Z5IRJL6+++/RUNDQ1EQBHHkyJHi3r17xQcPHrzwnG3btokARADi77//XuDY2rVrRQBijx49CpSPGTNGBCCuWLGiQHlmZqbYp08fURAE8dq1a5ryo0ePigBEZ2dn8dGjR4ViiI6O1vz91KlTIgDx008/fWG8giCIhw8fLnQ8MjJSBCCOGTOmyPO7du0q/vefn/w+AYg//fRTgWPjxo0TAYi1a9cWly5dWuDYZ599JgIQ165dW2RfZZEf16lTpwqUOzo6io6OjkWek5SUJFpbW4u2trbi7du3Cxy7efOmaG5uLrZu3bpAef5n16BBAzEiIqJQm1lZWQU+j3zJycli8+bNxdq1a4sZGRmljlEURRGA2LVr1wJlkyZNEgGIkyZNEtVqtab8zp07Yq1atUQjIyMxMjJSU/78Z7Rt27YCbX377bciAHHKlCnFxvBfa9asET/99NNS//ntt99K3fbz8r8fO3XqVOpz8r/HP/zwQ636pJqDiRRRBQgICBDt7e01P3QAiDY2NuLAgQPFgwcPFqqf/4/2f5MlURTF3Nxc0dXVVQSgScgSEhJEuVwutm3btsj+r1+/LgIQ58+fryl77bXXRADivn37Soy/tInUwIEDizxenkSqc+fOheoHBweLAEQnJycxNze3wLEHDx6IAMSxY8eW+L5Kok0ilZ/obty4scjjs2bNEgEUSLLyEyltkr9Vq1aJAMTg4OBSxyiKhROp7Oxs0czMTLSwsBATExML1f/oo49EAOKSJUs0ZfmfUVEJiVKpFA0MDMSXX3651O/F0dGxwDVS0p/ivp9KwkSKKhKn9ogqwNChQzFo0CCcOnUK586dw7Vr13Du3Dns378f+/fvx+jRozXrjJ7XtWvXQm3J5XJ07twZ9+/fx7Vr1+Do6IjLly9DpVIVu0VBTk4OgLw7tfJdvHgRgiCgb9++kr3P9u3bS9ZWvrZt2xYqa9CgAYC8qar/rnlp2LAhAODRo0eSx1Iaf/75JwDgn3/+KfKzyJ/iDQ0NhaenZ4FjL/r63b59GytXrsSZM2fw9OlTZGVlFTj++PHjcsUdHh6OjIwMdOrUCTY2NoWO9+jRA0uXLsW1a9cKHSvqMzI0NISdnR2ePXtW6hgePHhQppiJqiImUkQVxNDQEL1790bv3r0B5G2LsHfvXowbNw7bt2/HoEGDNOuR8tnZ2RXZlr29PYC8hcEAkJiYCCBvPdHly5eLjUGhUGj+npycjNq1a8PU1FTr91RcXFIqaoG+gYFBicfyk8fKlv9ZbNmy5YX1nv8s8hX39bt48SJ69OiB3Nxc9OzZE/3790etWrUgk8lw/fp1HDhwANnZ2eWKO/97qX79+kUezy9PTk4udMza2rrIcwwMDKBSqcoVF5G+YSJFVEnkcjmGDh2KmzdvYunSpTh58mShRCo2NrbIc2NiYgD8L5HI///s2bOxevXqUvVvbW2NxMREZGZmSpZM/XdELZ9MlndDcG5ubpHHi/rhrK/yP4t//vkHLVu2LNO5xX39li5diszMTJw6darQnXbLli3DgQMHtIr1eflx539v/dfTp08L1KsIa9euLdP3gpeXV6FrhkjXmEgRVTJLS0sAgCiKhY4FBwcXKlOpVDh37hwAoHXr1gDypoRkMhnOnj1b6n47dOiAP/74A0eOHMGgQYNeWDd/+kzb0YXatWsDgGbLguelpqZqdUejLsnlciiVyiKPdejQAXv37sXZs2fLnEgV5969e7CxsSlyu4KivkdKirEo7u7uMDMzwz///IPk5ORCo0ynTp0CgCLvNpTK2rVry3Sn55gxY5hIUZXDfaSIJLZz504cP34carW60LGYmBjNFJC3t3eh4ydPnsQff/xRoGzjxo24f/8+unfvrtnjpl69ehgxYgSuXLmCzz//vMiE5/79+4iMjNS8nj59OoC83ZuLWl/zfFn+Fg4PHz4s8f0WxdLSEs2aNcP58+cREhKiKVepVJgzZw4yMzO1arcs8veykuKxKba2toiPjy8y7nfeeQfW1tZYsmQJLl26VOi4Wq0u9MiZkjg5OSEpKQk3btwoUL5161YcPXq0zDEWxcjICCNGjEBaWho+/vjjAsfu37+P9evXw9DQEKNGjSpT7GXx4MEDiHk3PZXqj7+/f4XFQqQtjkgRSeyvv/7CunXrYG9vj86dO2t2VI6MjMShQ4eQmZmJAQMG4M033yx07uuvv45BgwZh0KBBcHNzw/Xr13H48GHY2Njgm2++KVB348aNuHv3Lj755BPs2LEDnTt3hp2dHZ48eYLQ0FBcvnwZO3fu1PTfu3dvfPTRR1i6dCk8PDw0+0jFxsbi3Llz6NChg+YHlbu7Oxo2bIhdu3bB0NAQjo6OEAQBo0aNKvWGhfPnz8f48ePRqVMnDBkyBCYmJjh16hRycnLQqlWrCttEM19+Ipu/hqo8evbsicuXL6Nv377w9vaGsbExWrVqhddffx22trbYs2cPBg0ahA4dOqBnz55o3rw5BEFAdHQ0/vzzTyQmJhZaLP4is2bNwtGjR9G5c2cMHToUVlZWuHLlCs6dO4c333wTe/bsKVOMxVm+fDnOnj2LjRs34vLly+jevbtmH6m0tDRs3LixVDuCV0Xnzp3D999/D+B/69Pu3r1bYJPS/yZm33//vWb09969ewCA33//XXMjQ7NmzbBo0aIKjpz0jm5uFiSqvh4+fChu3LhRHDhwoNi0aVPR0tJSNDQ0FO3t7UVfX19xx44dokqlKnBO/q3W27ZtE3///XexQ4cOopmZmWhlZSW+8cYbYnh4eJF9ZWdnixs2bBA7duyo2fenUaNGYo8ePcQ1a9aICQkJhc45dOiQ2KdPH7F27dqikZGR6ODgIA4cOFA8ceJEgXqXLl0Se/ToIdaqVUsUBKHAtgDPx/si33//vejp6SkaGRmJdnZ24qRJk8SEhIQXbn9Q1JYLJW2ngCL2SNq/f3+Zb18vbvsDhUIhvvvuu2LDhg1FuVxeZCyRkZHitGnTRDc3N9HY2Fi0tLQU3d3dxZEjRxba/yh/+4Pn92j6r99//1185ZVXRAsLC9HKykrs1auXGBwcXOzXvqQYi/oaiaIoPnv2TFywYIHo5uYmGhkZiVZWVqKPj4949OjRQnVL2hajpC0YKtPze7MV9+e/8j+X4v4U9fUjEkSxiIUaRFSp8p/rtW3btmIfq0JlM2fOHHz33XeIiopCnTp1dB0OEVVTnNorhZUrV+L8+fPIysqCnZ0dJk2ahE6dOuk6LCJ6geDgYEycOJFJFBFVKCZSpTB06FDMnDkTRkZGCA0NxZw5c7Br164KvS2YiMrn6tWrug6BiGoA3rVXCo6OjjAyMgKQt+9LTk4OEhISdBwVERER6ZrerJHKyMjArl27EBISgtDQUKSlpeH999+Hr69vobpKpRJbt27FsWPHkJaWBldXV0yYMAHt2rXTuv/Vq1cjMDAQSqUSHTp0wIoVK4rdTI+IiIhqBr0ZkUpJSYG/vz+ioqLg5ub2wrrLli3D7t270atXL8yYMQMymQwLFiwotCdLWcyZMwdHjx7FmjVr0K5dOyZRREREpD9rpGxtbfHbb7/B1tYWYWFhmDRpUpH1QkJCcOLECUyZMgXDhw8HAPTp0wdjx47Fpk2bsGnTJk3dadOm4ebNm0W2M2rUKEycOLFAmVwux8svv4xff/0VDg4O6Nixo0TvjoiIiPSR3iRSRkZGmt2WXyQ4OBhyuRz9+/fXlBkbG8PPzw+bN29GbGys5sGwX3/9tVaxqFSqUj95PSsrC1FRUXB0dISJiYlW/REREVHVpDdTe6V19+5dODg4wNzcvEC5h4cHgP/tVltaCoUCx48fR0ZGBnJzc3Hq1Clcu3YNrVq1KtX5UVFRmDhxYpmeJ1Va9+/fl7xNIiobXodEuqXra1BvRqRKKzExsciRq/yyst5tJwgC/vjjD6xZswaiKKJhw4b4+OOP0aRJkyLrJyQkIDExUfO6IhKofNnZ2RXWNhGVDq9DIt3S9TVY7RKp7OxsGBoaFirP376grF9wc3NzrFu3rtT1Dx48WOSDNSMjI4t8sGx5KBSKAg+EJaLKx+uQSLcq8hr09PQssU61S6SMjY2Rk5NTqFypVGqOV6T+/fsX2PU8KioKS5cuhbOzM9zd3SXtKyQkpFQfMhFVHF6HRLql62uw2iVStra2iI+PL1SeP91W0Y+LqFOnDh9JQUREVENUu0TKzc0N165dQ3p6eoEF5/nDfiXtQSWVoKAgBAUFQaFQVEp/RERUeVQqVZGzH1T51Go1srKytD7f0NAQcrlc6/OrXSLVrVs37Nq1CwcPHtTsI6VUKhEYGAhPT0/N1gcVzcfHBz4+PggPDy+0HxUREekvhUKBR48eQU8eDFLtqdVqREZGan2+IAhwcHCAhYWFVufrVSK1d+9eKBQKzTTd+fPnERcXBwAYPHgwLCws4Onpie7du2Pz5s1ITk5Gw4YNceTIEcTExGDhwoW6DJ+IiPScSqXCo0ePYGZmhrp16/IpF1VAVlaW1vs0iqKI+Ph4PHr0CE2aNNFqZEqvEqmAgADExMRoXp85cwZnzpwBAPTu3VuTTX7wwQews7PD0aNHoVAo4OLighUrVsDLy0sXYRMRUTWRk5MDURRRt25dmJqa6jocQl4yVJ4Nr+vWrYsHDx4gJyen+idSu3fvLlU9Y2NjTJ06FVOnTq3giIrHNVJERNUXR6Kqj/J+ltVuZ/OqwsfHB8uXL8f06dN1HQoREVVzixcv1nrB9dq1awvM9ixevBizZs2SKLLqj4kUERGRnluyZEmRiVRubm6J5/43kaKy0aupPSIiIiro3XffBQB06dIFcrkcDRo0gL29Pe7du4e4uDiEhYVBEAQ8e/YM1tbWAPL2PLxy5Qq2b9+OJ0+eYNiwYTA1NdU8mePp06d4/fXXcf/+fdjb22PPnj2wsbHR0Tus2phIVRCukSIiqv6Gh65GQk5ahbVfx9ASOz3mvLDOt99+i++++w5nz56FtbU1xo4di6tXr+LcuXOwtLR84bmffPIJfvjhBwQEBGhuyNq/fz/++usvXL16Fba2tnjrrbfw3Xff4f3335fqbVUrTKQqSGXsI6US1RXSLhERlU5CThriclJ0HUYhQ4YMKTGJepG+ffvC1tYWANCxY0fcvHlTqtCqHSZSeupcSij+L3sfVmVYw8PMQdfhEBHVSHUMtU9WKrL9/24uKZfLoVKpNK9LWpj+/HYCcrm8VGutaiomUnooKUeBTx7sQqKYhpFh6zCtQV+MsesOucB7B4iIKlNJ026VxdLSEikpKZo1UP/l5uaGv/76C/369cO+ffuQnp6uOVarVi2kpFS9UTV9wZ+8eihDnY16RlYAgFxRhXWPD2HSnU14qnym48iIiEgX5s6di169esHLy0vzxI/nrVmzBjNnzkSbNm1w7do1zbQdAMyYMQMTJ06El5cXrl+/XolRVw+CyIcFVYjnF5vfuHEDW7Zsgbu7u2Tt56hz8dnNn/F77g2IyPsILeUm+LDxEPjatJasHyJ6sZCQEHh6euo6DKokWVlZiIyMhLOzc7l20ybpZGZmlmuX+fJ+phyRqiAVvSGnocwAww3b4fumU1DfqDYAIE2VhUWRO/B+5E9IU2VWSL9ERET0P0yk9FxbSzfs9piHfjZtNGWBSX9jSMhXuJp2X4eRERERVX9MpKqBWgamWOY8EsucR8BSnjcs+VT5DOPvfIP1jw8hR827LYiIiCoCE6lqpJ/Ny9jtMQ8vW7gAAESI2BpzAqPD1+NBVuHFh0RERFQ+TKSqmQbGNtjSdCpmNvSDgSAHAIRkPMKw0NXYG/8neG8BERGRdLiPVAXR5SNi5IIM4+x7omMtd7wf+RMis+KQpVbis4e/4mxqKD51HIraBhYlN0REREQvxBGpClLRd+2VhoeZA3Z6zMGQOq9qyk4l38KQkK9wMfWOzuIiIqpp1GoRT0IScf/CEzwJSYRazdmB6oKJVDVnKjPCR45vYq3rOFjLzQEA8TmpmHz3W6x6dBBKLkQnIqpQkZdiEDDjNAKXXsKpjf8gcOklBMw4jchLMboOrcIsXry4xMfQaMPf3x9hYWFanbtx40aMHTtW2oDARKrG6G79EvY0n4+Otf63Kej22NMYGbYOEZmxOoyMiKj6irwUgxNrryE9qWBSkZ6UhRNrr0meTFWVZ+ItWbKk2ESqPDGWJ5GqKEykapC6hrXwjdtEzHcYAMN/F6KHZz7GW6GrsDv+PBeiExFJSK0WcXF76AvrXNwRWu5pPkEQ8Omnn6Jdu3Z4//33kZaWhokTJ6J9+/Zo2bIlJk2aBKVSCQB4/Pgx3nzzTbRo0QItW7bExx9/DACIi4vDG2+8gRYtWuCll17Cd999p2nfyckJn3zyCTp27AhnZ2csXbpUc2zp0qXw8PCAl5cXvLy8EBUVhXfffRcA0KVLF80ja8aOHYtx48bB29sbL730kibu5ORkTVt16tTBgwcPAAChoaHo06cPWrZsiZYtW+Lbb7/F999/jytXrmD27Nnw8vJCYGAgAGDt2rVo37492rRpg759+yIqKgoAkJaWhmHDhsHd3R2dO3fGzZs3y/V1Lg4Xm9cwMkGGkXZd0c7SDYsif0JEViyyxVx88XAvzqeE4dPGQ5F1T4nM5GyYWhvDvpkNZDJB12ETEemdP/1vFxqJ+q/0xCz8POUEvPq7ooWfs9Z9yeVyXL58GQAwadIkdOnSBVu2bIEoipg4cSLWrVuH+fPnY+TIkejduzf27NkDAIiPjwcATJ8+He7u7ti3bx/i4uLw8ssvo1WrVujQoQMAIDk5GX/++ScSEhLg6uqKd955B2ZmZvjqq6/w9OlTmJqaIiMjAzKZDN9++y2+++47nD17tsBDlK9evYpz587B0tLyhe8lNzcXAwYMwJIlSzB8+HAAQEJCAurUqYOffvoJs2bNwsCBAwEAv/zyC+7cuYM///wTcrkcO3bswNSpU3Ho0CF89tlnMDY2RlhYGFJTU9GhQwe88sorWn+Ni8NEqoZyN2uInR6zsebRH9gVfw4AEH0lHj+tPAGzNGNNPXMbE3QY7QHn9va6CpWISC9lpChLVS87LQfKzPJNyY0bN07z9/379+PPP//E6tWrAeQ9i04ul0OhUODcuXM4evSopm7dunUB5N1pfvXqVQBAvXr18MYbbyAoKEiTSL399tsA8kaNXFxcEBkZiY4dO6JJkyaa5MzPzw8ODg7FxjhkyJASkygACA8PR1ZWliaJyu+3KPv378elS5fw8ssvAwBUKpXm2IkTJ7BmzRoIggArKyu8/fbbuH9f+id+MJGqILrc/qC0TGRGeL/xG3i1lju+P3YM3gcLP1Q5fx6/56zWTKaIiMrAzMqoVPWMLQ1hZFq+H8cWFv/b0kYURezduxdNmzYtUKcsP48EoeBMxPMP85XL5cjNzYVcLsfFixdx4cIFnD59Gh06dMDOnTvRpUuXEmPMb+f5xEebxemiKGLevHl47733Sqz73/ckFa6RqiBVYfuD0upSyxN9glsCAAQU/Y0mxTw+EVFN0nFsc5jbmLywjrmtCUZs6lmuab3/GjhwIFasWKFZ1P3s2TPcu3cPFhYW8Pb2xqpVqzR186f2fHx8sGXLFk3Zvn370KtXrxf2k5aWhtjYWHTp0gUff/wxOnfujGvXrgEALC0tkZKS8sLz3dzc8NdffwEA9u3bh/T0dACAu7s7zMzMsHPnTk3dhIQEAECtWrUKtDtw4EB8//33SEpKAgDk5ORoYvDx8cG2bdsgiiJSU1MLtCcljkjpsScXU3H9m5PlbkeVo0Z2Wk6xSRTwv3l8uWH5c+8Wvs6S/qNBRFQVyWQCOoz2wIm114qt02GUh+TrUNesWYNFixbBy8sLMpkMBgYG+PLLL+Hm5oYdO3Zg+vTpaN68OQwNDTVrkdavX48pU6agRYsWEEURH374YYnriVJSUvDmm28iPT0dgiCgSZMmGDNmDABg7ty56NWrF8zMzHDs2LFi45wxYwY++ugj+Pn5wdbWFgBgYGCAAwcOYPr06fi///s/yGQyTJ06FZMnT8akSZMwd+5crFmzBv/3f/+HESNGICYmBt27dweQt75q3LhxaN26NT7++GNMmDABzZo1Q926ddG5c2dkZ2dL+JXOI4i8VatChYeHY+LEidiyZQvc3QtPnZXHkU0X8OjsizN+KSkNcmGUW/7cu/Ubbnj5zSYSRESkeyEhIfD09NR1GFRJsrKyEBkZCWdn5wLTXS8SeSkGF7eHFlh4bm5rgg6juP5UCpmZmTA1NdX6fG0+0+dxREqPGRjLYGZjXHLFEuSPSJXkpG8I2t1zQaNY23L1V961AERE+sS5vT0c29ohJiyJd0RXQ/yJpscadKgFn3Edyt2OWi0iYMbpYm/TFSFCYZmFe26xuN80DpPr98aE+j6ahyITEdGLyWQCGniW75dQqpq42Jw08/jFESDgiW8KRBmghohNT49i4p1NiFE+q8QoiYiIqh4mUgQgb+i556zWhe4wMbc1Qc9ZrbF8wBhMa+AL+b/fMn8rIjAk5CsEPbuhi3CJiHSKy4urj/J+lpzaI42S5vEn1e+FdpZueD/yJzxVPkOqKhNzI/zxZp2OmNdoAExlpdszhYhIXxkaGkIQBMTHx6Nu3boVtjcRlV52drbWn4MoioiPj4cgCDA0NNSqDSZSFUQfNuQsSknz+K0tnLHbYx4+f7gbx579AwDYk/AnrikiscJlFJqY1q+sUImIKp1cLoeDgwMePXqkeS4c6VZOTo7WSRCQt1Gng4MD5HLt1v1y+4MKVpHbH+jytmtRFPFb4l9Y8fA3ZIl5d/wZCwaY6zAAQ+u+yt/SqMbg9gc1k0qlQk5OyXc7U8W7d+8e3NzctD7f0NBQ6yQK4IgUaUkQBLxRpwO8zJ2xMHI77mQ+RbaYi/+L3os/08KxxHEYrAzMdR0mEVGFkMvl5frhS9KRyWRa7f8kFUkSqb///htXr17FrVu3EBcXh5SUFJiYmMDa2houLi7w8vJCx44dNbuWUvXhYmqHn5rNwppHv2Pnvw8/PpV8C6Hpj7DcZRRaW3AHcyIiqr60TqQyMzOxd+9e/P7774iNjdWsejcyMkKtWrWQnZ2NyMhI3L9/H8ePH4eBgQFeffVVDB06FC1atJDsDZDuGcsMsajxG+hQyx2fPNiJFFUGYnKSMT78a0xp0Afj7HtCLvAGUSIiqn60SqQOHDiAbdu24dmzZ3B1dcX48ePRvHlzNGvWDGZmZpp6oiji0aNHCAkJweXLl3Hu3DmcPXsWnTp1wrRp09CgQQPJ3gjpXjfr5vjVcx7ej/wJVxURUEGNjU8O41LaPfyf8wjUNayl6xCJiIgkpVUitXbtWvj4+GD48OFwcXEptp4gCGjUqBEaNWqEPn36IDs7G8ePH8dPP/2EY8eOYezYsdrGTVWUnZE1tjSdis1Pj2Hz0+NQQ8SltLsYEvIVljoNR2er4jf+JCIi0jdaJVLbt29Ho0aNynyesbExXnvtNfj6+iI2NlabrkkPyAUZpjToi7b/7jkVn5OKZ7kKTLu3BWPsumF6g34wlPE+ByIi0n9aLVzRJol6nlwu57ReDdDO0g2/es5DF6v/3Rr+Y+xpjAnfgEfZiTqMjIiISBpcAUwVqraBBTa4jsd8hwGahxzfzojGsJBVOP7vhp5ERET6iokUVThBEDDSrit2uM9AI+O8LTAU6izMi/gRXzzcg2w1N7UjIiL9JGkilZaWhiNHjkjZJFUjnuaNsMtjLnxrt9aU7Y6/gFFh6/AgK06HkREREWlH0kQqNjYWy5cvl7JJqmYs5CZY5jwSnzoOhbGQt+A8PPMJ3gpdjUOJV3UcHRERUdmU6dapku60S0hIKFcw1Ym+PrS4MuQ/XqaFeWPMj9iOyKw4ZKqV+ODBz7icdg8LGw+CqcxI12ESERGVqEyJ1NChQ1/4MFpRFPmw2n/5+PjAx8dH89BiKqyJaQP80mw2lkXvw8HEywCA3xL/wo30KKx0GQ1XU3sdR0hERPRiZUqkLC0tMX78eHh5eRV5PCoqCosXL5YgLKopzOTG+NxpONpbumHpw73IUitxPysGb4euwfuNB2OAbTsm50REVGWVKZFq2rQp0tLS4Oxc9INoVSqV5pl7RGXxum07vPTvVN/dzKfIEnPwadQuXE67hw8bD4aZ3FjXIRIRERVSpsXmAwcOhL198dMtdnZ2WLRoUbmDoprJ2cQOPzWbicF1OmjK/ki6grfD1uBu5lMdRkZERFS0MiVS3t7e6N27d7HHLS0t4evrW+6gqOYykRnhE8ehWO48EmayvFGoyKw4jAxdi30JFzniSUREVQo35KQqydemDXZ6zIa7ad6jhLLEHCyJ2o0PH/yCDFW2jqMjIiLKU+5Eqlu3boiOjpYiFqICnEzqYUezmRha91VN2aGkqxgeugZ3M5/oMDIiIqI85U6kONVCFclYZogPG7+JL51Hw/zfqb4H2XEYwak+IiKqAji1R3qhj40XdnnMQTPThgCAbDEXS6J244MHPyNdlaXj6IiIqKZiIkV6o7FJXWxvNgPD6nbSlAUm/Y3hoWsQnvFYh5EREVFNxUSK9IqxzBAfNB6MlS6jYSEzAQBEZcdjZNg67In/k1N9RERUqZhIkV7qXdsLOz1mw8PMAYIaqPvQEruOnsWSEwFIzcnUdXhERFRDlGln85rs1q1bmDZtGsaNG4cxY8boOhxC3lTf56nDcNL/OuQp//ud4Mdfj6H1SDd07tJch9EREVFNwBGpUlCr1di4cSOaNWum61DoOZGXYhC87kaBJAoATNIMEbopCj8HneZUHxERVahyJ1Jvv/02atWqJUUsVdbvv/8ODw8PODo66joU+pdaLeLi9tAijwnIe8hx3K9JWHB/BxS8q4+IiCpIuaf2Jk+eLEUcL5SRkYFdu3YhJCQEoaGhSEtLw/vvv1/k42iUSiW2bt2KY8eOIS0tDa6urpgwYQLatWunVd8pKSn49ddfsWnTJmzYsKG8b4UA3DwUiZuHI8vVhipHjey0nGKPCxBgmWaK27duwy96KQacfhn2iVZa99fC1xkt/Ip+WDcREdVcWidSSqUSRkZGUsZSrJSUFPj7+8POzg5ubm64du1asXWXLVuG06dPY8iQIXBwcMDhw4exYMECrFu3Di1btixz31u2bMGQIUNgaWlZnrdAz1Fm5iIjqXIe82KmMMbjRs+wo985dAl2R4vrDpoRq7JQZuZWQHRERKTvtE6kBg0aBB8fH/Tr1w/u7u5SxlSIra0tfvvtN9ja2iIsLAyTJk0qsl5ISAhOnDiBKVOmYPjw4QCAPn36YOzYsdi0aRM2bdqkqTtt2jTcvHmzyHZGjRqFiRMn4s6dOwgLC8Ps2bOlf1M1mJGpAcxsjMvVRkkjUvlMc/O+xdUGIoJ7hiHGJQW+51vCOMewTP0ZmfK+DCIiKqxcI1L79+/HgQMH4OrqCj8/P/Tq1atCRm6MjIxga2tbYr3g4GDI5XL0799fU2ZsbAw/Pz9s3rwZsbGxsLOzAwB8/fXXJbZ3/fp1REdHY/DgwQAAhUIBuVyOJ0+e4P3339fy3VALv/JPk6nVIgJmnEZ6UvHrn8xtTfD9yOlY//QQfoo7AwAId36KdHclVrqMhqd5o3LFQEREpHUideDAARw/fhyBgYEICwvD+vXrsWnTJnTp0gV+fn54+eWXpYyzVO7evQsHBweYm5sXKPfw8AAA3Lt3T5NIlUb//v3Rs2dPzev169ejfv36GDFihDQBk9ZkMgEdRnvgxNrip3k7jPKAsYEh5jcaiJctXfHJg11IU2XikTIRo8PXY65Df7xVtzMEoexTfUREREA5EikzMzMMGDAAAwYMwIMHD3Do0CEcP34cJ06cwMmTJ1GvXj34+fmhb9++ZUpeyiMxMbHIkav8soSEhDK1Z2JiAhMTE81rY2NjmJqavnDULSEhAYmJiZrXUVFRZeqTSs+5vT16zmqNi9tDC4xMmduaoMMoDzi3t9eU9bBuAXePhlgQsR23Mh4iR1RhefRvuJx2D4sd30ItA1NdvAUiItJzkiz8cHJywrRp0/Duu+/iwoULOHToEC5duoQffvgB/v7+aNu2Lfz8/NC5c2cYGFTcWpPs7GwYGhZe+5K/KD47u3wLnD/44IMS6xw8eBD+/v6FyiMjI6FSqcrV/38pFAqEhIRI2qbesQBavlsPqQ+zoVSoYGQhR63GxsiUJSEkJKlQ9YViT+w0uIzA3FsAgBPJN3Ez5QFmGPWAq6xuZUdP1QCvQyLdqshr0NPTs8Q6kmY1crkcXbp0QZcuXZCUlISjR48iMDAQly5dwuXLl1GrVi0cPHhQyi4LMDY2Rk5O4QXISqVSc7yi9e/fH506/e+hulFRUVi6dCmcnZ0lX5QfEhJSqg+5Rnip9FVbogX6JN/Cxw92IlWViTgxDYuVf2COw+t4u24XTvVRmfA6JNItXV+DFbazuY2NDYYPH47FixejRYsWEEURqampFdUdgLwpvOen1fLll9WpU6dC+8/vw93dXfOHm3hWTd2sX0KAx1y0NM/7fHJFFb6M3o85Ef5IzeWz+oiIqHQqZJ4tIyMDx48fx6FDh3Dnzh2IoggTExN07969IrrTyN9jKj09vcCC8/whPzc3twrt/3lBQUEICgqCQqGotD6pbBoY2+AH9/ew4fEh/Bh7GgBwMvkmwjIe40uXUWhhziSYiIheTNJE6u+//0ZgYCDOnj2L7OxsiKIIT09P+Pn5oUePHjAzM5Oyu0K6deuGXbt24eDBg5p9pJRKJQIDA+Hp6Vlpi94BwMfHBz4+PggPD8fEiRMrrV8qG0NBjjkO/fGyhSs+frATKaoMPFEmYWz4Rsxu+BpG1PPmVB8RERWr3IlUXFwcDh8+jMOHDyMmJgaiKMLa2hr9+/eHn58fnJycJAgT2Lt3LxQKhWaa7vz584iLiwMADB48GBYWFvD09ET37t2xefNmJCcno2HDhjhy5AhiYmKwcOFCSeKg6qmrdXMEeM7Fwogd+Cf9AXJFFVY+OoAraffxmdNbqGVQsb8EEBGRftI6kTpx4gQCAwPx999/Q61WQyaToV27dhV2d15AQABiYmI0r8+cOYMzZ/I2WezduzcsLCwA5N1ZZ2dnh6NHj0KhUMDFxQUrVqyAl5eXpPFQ9VPfqDa2uk/DxseB8I89BQA4lXILw0JXYYXLaM16KiIionyCKIqiNid27doVAFC/fn34+vrC19cX9erVkzQ4ffb8GqkbN25gy5YtvGtPj5xJCcFHkb8gRZUBADCADDMdXsOoel051UcF8Dok0i1dX4NaDxv17NlTZzuY6wOukdJv3lae2P3vVN/19AfIhRqrHh3E1X+n+qwMzEtuhIiIqj2ttz/45JNPmERRtWZvVBvfu0/DO3Y9NGWnU25jWOhq3FA80F1gRERUZUi2j1Rubi52796NSZMmoW/fvgW2Orh79y5Wr16N6OhoqbojqhSGghyzHF7DRrcJsJbnjUI9VT7DO+Eb8WPsaWg5M05ERNWEJCvCs7OzMXfuXNy6dQtWVlYwNzdHVtb/nn1Wv359BAYGwtLSssZMc3Efqeqly79TfQsiduB6eiRyocbqRwdxJe0ePncaDmtO9RER1UiSjEjt2LEDN2/exKRJk7B//374+fkVOG5hYQEvLy9cvnxZiu70go+PD5YvX47p06frOhSSiJ2RNba6T8V4+56asjMpIRgWsgrXFZE6jIyIiHRFkkTq5MmTaN26Nd5++20IglDkXU0NGjRAbGysFN0R6YyBIMeMhn74xm0iav87ChWTk4xx4V/DP+Yk1KJaxxESEVFlkiSRiouLK/HWflNTU6Snp0vRHZHOdbLyQIDHXLSxcAEAqKDGmsd/YMa9rXiWy+lcIqKaQpJEytTUFMnJyS+s8+TJE1hZWUnRHVGVYGdkjS1Np2CCvY+m7GxqKIaFrMY1TvUREdUIkiw2b968OS5cuIC0tDRYWloWOh4bG4uLFy+iS5cuUnSnF7jYvGYwEOSY3rAf2li44MMHv+BZrgKxOckYH/413mvoi7F23SETJLs5loiIqhhJ/oV/6623kJaWhtmzZ+PmzZtQqVQAgKysLFy9ehXz5s2DSqXCsGHDpOhOL3Cxec3SyaoZdnvMRVsLVwB5U33rHh/C9Hvfc6qPiKgak2REysvLC7NmzcL69esLJA59+/YFAMhkMsyZM0fyR6QQVSX1jKzwXdN38e2TY/g+JggiRJxLDcPQkFVY4TwKbSxddB0iERFJTLInCw8cOBBeXl44cOAAQkNDkZqaCnNzc3h4eGDQoEFwdnaWqiuiKstAkOO9hr542dIF70f+jGe5CsTlpGDCnW8wrUFfvGPfg1N9RETViGSJFAA4OTlh5syZxR5XqVSQy+VSdklUJXWs5Y5fPedhUcQOXFHchwpqrH8SiCuK+/jCaQRsDC10HSIREUlAkl+N9+3bV2IdlUqFJUuWSNGdXggKCsKiRYuwYcMGXYdCOlLXsBY2N52Cd+v3hoC8vdUupIZjaOhXuJp2X8fRERGRFCRJpNavX4/Tp08Xe1ytVmPJkiU4c+aMFN3pBS42JwCQCzJMadAX3zWZDFuDvDta43NSMTHsG2w5exR3zz/Gk5BEqNV8Zh8RkT6SZGqvRYsWWLp0KWrVqoU2bdoUOJafRAUHB+ONN96QojsivfNKrabY7TkX70f+jMS/U9DlpDsEhRrBuAEAMLcxQYfRHnBub6/jSImIqCwkGZFavnw5GjVqhI8++gh3797VlKvVanz++ec4ffo0Bg4c+ML1U0TVXR3DWliUPBC+B1vBQmFc4Fh6UhZOrL2GyEsxOoqOiIi0IUkiZW5ujq+++goWFhaYP38+njx5AlEU8dlnn+HkyZMYMGAAZs+eLUVXRHpLrRZxaXsYBECzZup5IoCL20M5zUdEpEcku2vP1tYWq1atwrRp0zB37lw0adIEwcHBeO211zBnzhypuiHSiZuHInHzcPke+6LKUSM7LafY4wLyRqa2zjwCc9G42Hql1cLXGS38uO0IEVFFknT7g0aNGuHLL7/ErFmzcObMGbz22muYP3++lF0Q6YQyMxcZSdmV0tdprxC43bFHo2ibcrWjzMyVKCIiIiqOVomUv7//C497eHjg3r17sLW1LVBXEASMGTNGmy6JdMrI1ABmNuUbJSppRCrfM9sM7B9yFZ2uN8Wr/zSBTCw8DVgaRqaS/p5ERERF0Opf2m3btpWq3o8//ljgdU1KpPjQ4uqlhV/5p8nUahEBM04jPSmr2DrZtXLxpOEzQADOt76DHG8Ry5xHoI5hrXL1TUREFUOrRGrdunVSx1Ht+Pj4wMfHB+Hh4Zg4caKuw6EqQCYT0GG0B06svVZsHd9xbWHkYIJvnhyBGiIupd3F0JBVWOY8Aq/UalqJ0RIRUWlolUh5eXlJHAZRzeDc3h49Z7XGxe2hBUamzG1N0GFU3j5SLqiP1hbOWBT5E+JzUpGYm4bJd7/DpPq9MLl+b8j5rD4ioiqDiyiIKplze3s4trVDTFgSMpOzYWptDPtmNpDJ/rcWqq2lG3Z7zMOHD37GhdRwiBDx3dNj+FsRgWXOI1GXU31ERFUCf7Ul0gGZTEADT1u4vtoADTxtCyRR+WwMLfC120TMaNAPsn/3nbqcdg9DQ77CxdQ7lR0yEREVgYkUURUmE2QYX98HW5tOQz1DKwBAUq4C7979DhsfH0auqNJxhERENRsTKSI90MbSBbs956JzrWYAABEitsQcx+Q73yJOmaLj6IiIai4mUkR6oraBBTa4TcDMhn6Q/3vpXlHcx9DQVbiQGq7j6IiIaiYmUkR6RCbIMM6+J7a6T4OdoTUA4FmuAlPvbsbGx4Gc6iMiqmS8a6+CcENOqkitLZyx23MuPor8BWdTQ/+d6gvCVUUEljuPhJ2Rta5DJCKqEco8IqVWqxEREYGEhIRCx3Jzc3H9+nUp4tJ7Pj4+WL58OaZPn67rUKiasjYwx3q38Zjd8DXNVN/figgMC12F8ylhOo6OiKhmKFMiFRMTg7Fjx+Kdd97Bm2++iUWLFiEl5X8LXVNTUzFr1iypYySiYsgEGcba98AP7tNgr5nqS8fUe5uxgVN9REQVrkyJ1KZNm1CnTh3s2rULW7ZsQXZ2NqZNm1ZgdEoURcmDJKIX87JwRoDnXHSx8tSUfR8ThIl3NiFWmay7wIiIqrkyJVL//PMPpk6divr166NJkyZYtWoVWrZsiffeew+xsbEA8h5MTESVz9rAHOtdx2FOw9dhUGiqL1TH0RERVU9lSqSysrJgaGj4v5NlMixYsADt2rXD9OnT8fjxY8kDJKLSkwkyjLHvjh/c3/vPVN8WrHv8B6f6iIgkVqZEqnHjxggPL7xfzdy5c9GhQwcsWrRIssCISHutLJyw23Muulo115T9EHMS48O/QYzymQ4jIyKqXsqUSHl7e+P48eNFHpszZw569uzJNVJEVYSVgTnWuY7DXIf+mqm+6+mRGBayGmdTQnQcHRFR9VCmRGrkyJFYuXJlscfnzJmD4ODgcgdFRNIQBAGj7bphm/t7aGBUGwCQrErHe/e+x5pHvyOHU31EROXCnc2JaoCWFk4I8JiL7lYvacr8Y09hfPjXeMqpPiIirTGRIqohahmYYY3rO5jvMAAGghwA8E/6AwwLWYXg5Ns6jo6ISD+VO5Hq1q0boqOjpYiFiCqYIAgYadcV/u7voYGRDQAgRZWBGfe3YtWjg5zqIyIqo3I/a4+Ly4vGZ+1RVdbC3BEBHnPwSdQunEq+BQDYHnsa1xWRWOE8Cg2MbXQcIRGRfuDUXgXhs/aoqqtlYIY1Lu9ggcNAzVTfjfQoDAtdhdP/JldERPRiTKSIajBBEDDCzhs/uk/XTPWlqjIx8/4P+Cr6AHLUuZq6arWIJyGJuH/hCZ6EJEKt5mg0EVG5p/aISP+9ZN4YAR5zsThqF04k3wQA7IgLxjVFJL50GQ3lP0pc3B6K9KQszTnmNiboMNoDzu3tdRU2EZHOcUSKiAAAtQxMscplLBY1GgTDf6f6bmU8xPwD/jix9lqBJAoA0pOycGLtNUReitFFuEREVQITKSLSEAQBw+t1wXb3GXAwsoWgBtoFOUNE8dN4F3eEcpqPiGosTu0RVVM3D0Xi5uFIrc9/07AtLja9D0uFyQvrpSdm4ecpJyA3LP/vZS18ndHCz7nc7RARVZZyJ1Jvv/02atWqJUUsRCQhZWYuMpKyy9VG21inUtXLTsspVz/5lJm5JVciIqpCyp1ITZ48WYo4iEhiRqYGMLMxLlcbqhx1qZIkY0tDSUakjEw5SE5E+oX/ahFVUy38yj9NplaLCJhxutBC83wiRJjaGOPt9T0gkwnl6ouISB9JmkipVCrEx8cjISEBublFD9F7eXlJ2SURVSCZTECH0R44sfZaoWP5C9ADu1yHfUod+NRuVdnhERHpnCSJlFqtxo4dO7Bnzx6kpaW9sO7p06el6JKIKolze3v0nNW60D5SmbVycLpbKO67xWFuxI94q25nzHXoDyMZB7qJqOaQ5F+87777Drt27ULt2rXh6+sLW1tbyOVyKZomoirAub09HNvaISYsCZnJ2TC1NoZFEzM8jk7F/WdxAIBd8efwT/oDrHQZjUbGdXQcMRFR5ZAkkTp69CgaNWqEzZs3w8zMTIomiaiKkckENPC0LVC23Hkk2lm6YUX0b1CKuQjNeIS3QlbjU6eh6F3bSzeBEhFVIkkSqczMTPTq1avaJlEzZsxASEiIZpStZcuWWLlypY6jItI9QRDwZt2OaGHeGPMjtiMqOx4KdRbmR2zHlbr3MdehP4xlhroOk4iowkiSSLm4uCAxMVGKpqqsBQsWoHfv3roOg6hKcjdriJ0es/F51K84/CxvYXpA/Hn8o8ib6mtsUlfHERIRVQxJHhEzevRonD17FuHh4VI0R0R6yFxugmXOI/FJ4yEwFvJ+RwvLfIy3QlfjSFLhu/6IiKoDSUakOnbsiPfffx8LFixAp06d4OrqCnNz8yLr9u3bV6s+MjIysGvXLoSEhCA0NBRpaWl4//334evrW6iuUqnE1q1bcezYMaSlpcHV1RUTJkxAu3bttOobADZs2IANGzagSZMmmDZtGlxdXbVui6i6EgQBg+t2RAtzR8yL+BFR2fFIV2djYeQOXFXcxzyHAZzqI6JqRZJESqlU4sKFC0hJScGhQ4cA5P2D+jxRFCEIgtaJVEpKCvz9/WFnZwc3Nzdcu1b8b7jLli3D6dOnMWTIEDg4OODw4cNYsGAB1q1bh5YtW5a573fffRdOTk6Qy+XYu3cv5s+fj59++qnargkjKq+mZg2w02M2lj7cg8CkvwEAu+Mv4B9FFFa6jIYjp/qIqJqQJJHauHEjjh8/DldXV3Tt2rVCtj+wtbXFb7/9BltbW4SFhWHSpElF1gsJCcGJEycwZcoUDB8+HADQp08fjB07Fps2bcKmTZs0dadNm4abN28W2c6oUaMwceJEAICnp6em/O2330ZgYCBu375drhEuourOXG6C/3MagXaWblj+cB+yxVyE/zvV94njUPjatNZ1iERE5SZJInX69Gm4u7vjm2++gYFBxWzGZ2RkBFtb2xLrBQcHQy6Xo3///poyY2Nj+Pn5YfPmzYiNjYWdnR0A4Ouvv9YqFkEQIIqiVucS1SSCIOCNOh00d/VFZsUhQ52NRZE7cCXtHuY3GgATmZGuwyQi0poki82VSiVat25dYUlUWdy9excODg6F1mh5eHgAAO7du1em9tLS0nD58mUolUrk5ORg9+7dSEtLKzBK9byEhASEh4dr/kRFRWn3RoiqkSamDfBLs9l4zaatpmxPwp8YHbYeD7LidBgZEVH5SJL5uLu749GjR1I0VW6JiYlFjlzllyUkJJSpPZVKhc2bN+Phw4cwMDCAm5sbVqxYAQsLiyLrHzx4EP7+/oXKIyMjoVKpytR3SRQKBUJCQiRtk6givS22QkNDM2zLOQ8lVAjPfIJht1dhgmFndDLQzxs4eB0S6VZFXoPFDZo8T5JEauLEiZg9ezYuXLiAV199VYomtZadnQ1Dw8J3BRkZGWmOl4W1tTW2bNlS6vr9+/dHp06dNK+joqKwdOlSODs7w93dvUx9lyQkJKRUHzJRVdIczdE7swPmR/yIiKxYZCEHG3NO4alVJhY0Gqh3U328Dol0S9fXoCSJ1JUrV+Dl5YUPPvgAbdq0KXb7A0EQMGbMGCm6LJaxsTFycnIKlSuVSs3xilSnTh3UqcPnjBG9iJupPX5uNgvLovfhYOJlAMDehIu4mR6FlS5j4GRST8cREhGVjiSJ1LZt2zR/v3r1Kq5evVpkvcpIpGxtbREfH1+oPH/ndSY5RFWDmdwYnzsNR1sLV/zfw73IEnNwJ/Mp3gpdjY8bD4Gf7cu6DpGIqESSJFLr1q2TohlJ5O8xlZ6eXmBULH/+1M3NrVLiCAoKQlBQEBQKRaX0R6SvBtRpj+bmjTVTfZlqJT548DMup93DwsaDYKpnU31EVLNIkkh5eXlJ0YwkunXrhl27duHgwYOafaSUSiUCAwPh6emp2fqgovn4+MDHxwfh4eGa/aiIqGj5U33Lo3/DgcRLAIDfEv/CzfQofOU6Bs4mlXPdEhGVle73KyiDvXv3QqFQaKbpzp8/j7i4vFunBw8eDAsLC3h6eqJ79+7YvHkzkpOT0bBhQxw5cgQxMTFYuHChLsMnohcwkxvjM6e30M7SFUsf7kWWWol7WTEYHroGHzZ+E6/bti25ESKiSiZJInXz5k0EBwdj+PDhRW49kJCQgF27dqF79+5o3ry51v0EBAQgJiZG8/rMmTM4c+YMAKB3796aLQk++OAD2NnZ4ejRo1AoFHBxccGKFSsqdeSMU3tE2nndth2am+VN9d3LikGmWomPHvyCy2n38H7jNzjVR0RViiBKsEX3Rx99hPv372Pnzp3F1nn77bfRpEkTLFmypLzd6ZX8qb0tW7Zw+wOiMshUK7Hi4W/4LfEvTZmriT1WuoyGq6m9DiMriNchkW7p+hqUZGfzsLCwEh8G3KpVK25aR0SlZiozwmKnYfjC6W3NKNT9rBi8HbZWs2UCEZGuSZJIJScnl7itgI2NDZ49eyZFd0RUg7xm2xY7PWbDzSRvFCpLrcTHD3bi4wc7kaEq2wa7RERSkySRsrCw0Cz6Lk5sbCxMTU2l6I6IahhnEzv85DELb9R5RVN2MPEyRoStxd3MpzqMjIhqOkkSKU9PT5w5cwaxsbFFHo+NjcXZs2fx0ksvSdGdXggKCsKiRYuwYcMGXYdCVC2YyozwqeMw/J/TCM1UX0RWLEaGrsX+hEuQYLknEVGZSZJIDR06FNnZ2Zg2bRqOHDmieTBwQkICDh8+jKlTp0KpVGLYsGFSdKcXfHx8sHz5ckyfPl3XoRBVK362L2OXxxw0Ma0PAMgSc/Bp1C58xKk+ItIByTbknDZtGr755hssX74cQN7jYPJ/QxQEAdOnT69SG3cSkf5yMqmHn5rNxMroA9iT8CcA4I+kK7id8RArXcZokiy1WkRMWBIyk7Nham0M+2Y2kMkEXYZORNWMZBtyDhkyBG3atMGBAwcQFhYGhUIBCwsLeHh4YMCAAXBxcZGqKyIimMiM8LHjELS1dMVnUb8iQ52NyKw4jAxdi4WNB6F1hCMubg9DelKW5hxzGxN0GO0B5/ZVZ/sEItJvku5s7urqijlz5kjZpN7ihpxElcPXpg08zBywIGI7wjOfIEvMwU9Bp5F4sCUEFBx9Sk/Kwom119BzVmsmU0QkCUnWSFFhXCNFVHmcTOphR7OZGFLnVQhqoMvJF29+e3FHKNRqLk4novLTq2ftEVH1dvNQJG4ejtT6fBfY4E3b9rBUmLywXnpiFn6ecgJyw/L/LlmvjRm4sTlRzcVEioiqDGVmLjKSynfnnX2SVanqZafllKuffLnZL07aiKh6YyJFRFWGkakBzGyMy9WGKkddqiTJ2NJQkhEpA2OukCCqyZhIEVGV0cLPGS38nMvVhlotImDG6QJ36z1PhAiZtQxvb+gBubz8SRCfIUpUszGRqiC8a49IN2QyAR1Ge+DE2muFjonIW2B+yPs67kTF42PHIbCQc2qOiLTHMekKwrv2iHTHub09es5qDXObgkmS2krE4f43cL9JHI48u4bhoWsQlvFYR1ESUXUg6YhUWloazp8/j759+0rZLBFRmTm3t4djW7tCO5u7pDhg8YMAKNRZeJgdj1Fh6zC/0YC8rRME7npORGUj6YhUbGys5hExRES6JpMJaOBpC9dXG6CBpy1kMgG9arfCLs858DRzAAAoxVx88XAvFkTugEJV9LoqIqLilGlEKjY29oXH8x9WTERUlTUyroMf3Wdg9aOD2Bl/DgBw7Nl1hGZEY6XLGHj8m2QREZWkTInU0KFDXzj0LYoih8aJSC8YyQywqPEbaGvphsVRu5CmykJ0dmLeVJ/DQAyty6k+IipZmRIpS0tLjB8/Hl5eXkUej4qKwuLFiyUIi4iocvjUbolmZg2xIGI7bmdEI0dU4f+i9+Jy2j186jQUlnJTXYdIRFVYmRKppk2bIi0tDc7ORe/zolKpIIp8fhXA7Q+I9ImDsS1+dJ+OtY//wE9xZwAAx5P/QWjII6x0GQ1P80Y6jpCIqqoyLTYfOHAg7O2Lf2K6nZ0dFi1aVO6gqgNuf0CkXwxlBpjfaCDWuL6jGYV6pEzE6PD12Bl3lr8kElGRypRIeXt7o3fv3sUet7S0hK+vb7mDIiLSlR7WLRDgMRcvmTUGAOSIKiyP/g3zIn5EmipTx9ERUVXDDTmJiP6jobEN/N3fw8h6XTVlQck3MCxkFW6nR+swMiKqaphIEREVIW+qbwDWuY5DrX+n+h4rkzA6fD1+jjvDqT4iAiBBItWtWzdER/M3NCKqnrpZv4QAj7loae4IAMgVVfgyej/mRPgjNZdTfUQ1XbkTKf5WRkTVXQNjG/zQdBpG23XTlJ1MvolhoatwTx2nu8CISOc4tUdEVAqGMgPMdeiPda7jYSU3AwA8USZhcfYf+DmWU31ENRUTKSKiMuhm3RwBnnPRytwJAKCCGl8+2o/ZEduQmpuh2+CIqNKVaUNOKj1uyElUfdU3qo2t7tOw8XEg/GNPAQBOJd/CsIxV+NJlNFr8u56KiKo/jkhVEG7ISVS9GQpyzHZ4HfONej831fcMY8M2YEdsMKf6iGoIJlJEROXQRt4Yuz3nwuvfqb5cqPHVowOYdf8HpOSm6zY4IqpwTKSIiMrJ3qg2vnefhnfsemjKTqfcxrDQ1biheKC7wIiowpU7kXr77bdRq1YtKWIhItJbhoIcsxxew0a3CbCWmwMAniqf4Z3wjfgx9jSn+oiqqXInUpMnT4aVlZUUsRAR6b0uVp7/TvU5A8ib6lv96CBm3N+KZE71EVU7FTq1J4oioqOjERsbW5HdEBFVKXZG1tjqPhXj7Xtqys6khGBYyCpcV0TqMDIikpokiVRwcDC++OILpKWlacqePn2KsWPHYtSoURg2bBgWL14MlUolRXdERFWegSDHjIZ++MZtImob5E31xeQkY1z41/CPOQm1qNZxhEQkBUkSqQMHDuDu3buwtLTUlG3cuBEPHjxA69at4erqitOnTyMwMFCK7oiI9EYnKw8EeMxFGwsXAHkbeK55/Adm3NuKZ7ncZ45I30mSSD148AAeHh6a1xkZGfjzzz/Ro0cPrFmzBt999x0cHR2ZSBFRjWRnZI0tTadgor0PBAgAgLOpoRgWshrXONVHpNckSaRSU1NhY2OjeX3jxg2oVCr07Jm3PsDAwABt27bF48ePpeiOiEjvGAhyvNewH75pMgm1DSwAALE5yRgf/jW2xpzgVB+RnpIkkTI3N0dqaqrm9bVr1yCTydCqVStNmYGBAbKysqTojohIb71ayx27PeairYUrgLypvvWPD+G9e98jKYdTfUT6RpJEqnHjxrhw4QJSUlKQlpaGoKAgNG3atMCaqZiYGNSuXVuK7oiI9Fo9Iyt81/RdTLTvpZnqO58ahmGhq3A15T6ehCTi/oUneBKSCLWa+08RVWWSPLR48ODB+PTTTzF48GDNyNOECRMK1AkJCUHTpk2l6E4v8KHFRPQieVN9vmhr6Yr3I39CUq4CliHGOLvxBiwUJpp65jYm6DDaA87t7XUYLREVR5IRqW7dumH27NlwdnZGo0aNMHnyZPj6+mqOX79+Henp6Wjfvr0U3ekFPrSYiEqjQ62m2O05D72jW8D3YEuYK4wLHE9PysKJtdcQeSlGRxES0YtIMiIFAAMHDsTAgQOLPObl5cU79oiIimErt0TrIEekI/vfib7CLu4IhWNbO8hkxdUgIl2QLJEiIqqJnlxMxfVvTparDVWOGtlpOcUmUQCQnpiFn6ecgNyw/BMJLXyd0cLPudztEBETKSKicsnNViMjKbtS+krNyoRxWvn/2VZm5koQDREBWiZS8+bNw/jx4wtswllamZmZ2Lt3L8zMzPDGG29o0z0RUZVhYCyDmY1xyRVfIH9EqiQnfW+j3T0XNI6pU67+jEz5OzSRVLS6mpKTkzFlyhS0atUKffr0gbe3NywsLF54zu3bt3Hs2DGcPHkS2dnZ+OCDD7QKmIioKmnQoRZ8xnUoVxtqtYiAGaeRnlT0XnsiRCgss3DfNQ4RTeLxboM+mGDvA7lQoc+dJ6JS0CqR+v7773H48GH4+/tjxYoVWLlyJRo1agR3d3fUrl0bFhYWUCqVSE1NRXR0NMLDw5GRkQGZTIaePXtiwoQJsLOzk/q9EBHpJZlMQIfRHjix9lqRxwUIiPVNgyjLS6q+eXIEf6dF4P+cR8DW0LLIc4iocmg9vuvr64u+ffvi4sWLCAwMxPXr13Hs2LFC9WQyGVxcXODt7Q0/Pz/UqVO+IWkiourIub09es5qjYvbQwuMTJnbmqDDKA+8064enGPq49snR6GGiItpdzA05CsscxmJ9pZNdBg5Uc1WrolyQRDQsWNHdOzYEUDew4vj4+ORmpoKIyMjWFtbw9nZucRpPyIiykumHNvaISYsCZnJ2TC1NoZ9MxvNlgeT6/dGGwsXLIrYgYTcNCTkpmHynW8xuX5vTKzfi1N9RDog6YpDJycnODk5SdkkEVGNIpMJaOBpW+zxdpZu2O05Dx9E/oyLaXeghohNT4/iqiICy5xHoI5hrUqMloj46wsRkZ6xNbTEpiaTMK2BL2T/7j51Ke0uhoaswl+pd3UcHVHNwkSKiEgPyQQZJtXvhS1Np6Duv6NQiblpmHz3W3zz5AhUolrHERLVDEykSumXX37B4MGD0adPH4wfPx4ZGRm6DomICG0t3RDgMRcda7kDyLur77unxzD57reIz0nVcXRE1R8TqVLYt28f/vrrL3zzzTc4cuQIPvjgAxgYcEM7IqoabA0t8Y3bRExv0E8z1Xc57R6GhnyFi6l3dBwdUfXGRKoEKpUKO3bswIIFC2BnZwdBEODq6gojIyNdh0ZEpCETZJhQ3wdbm05DPUMrAEBSrgLv3v0OXz85zKk+ogqiN4lURkYGfvjhB8ybNw9+fn7w9vbG4cOHi6yrVCqxadMmDBo0CD4+Ppg8eTIuX76sVb/x8fHIzs7G6dOnMWDAAIwYMQK///57ed4KEVGFaWPpggCPuehUqxmAvKm+zU+PY9KdTYhTpug4OqLqR5JE6tSpUyXWUalU2LRpk9Z9pKSkwN/fH1FRUXBzc3th3WXLlmH37t3o1asXZsyYAZlMhgULFuDGjRtl7jc+Ph4KhQLR0dHYvXs3PvvsM2zevBn//POPtm+FiKhC2RhaYKPbBMxs6Af5v//MX1Hcx9DQVbiQGq7j6IiqF0kSqcWLF2PFihXIyir6OVGPHj3ClClTEBAQoHUftra2+O233/Drr79iypQpxdYLCQnBiRMnMGnSJEydOhX9+/fH2rVrYW9vXyiRmzZtGry9vYv8s2XLFgCAsXHew0jHjh0LY2NjuLq6omfPnrh48aLW74WIqKLJBBnG2ffEVvdpsDO0BgA8y1Vg6t3N2Pg4ELmiSrcBElUTkqyYbt++PQIDA3Hz5k18+umnaNLkf48rOHz4MNatW4fs7GyMHDlS6z6MjIxga1v8JnX5goODIZfL0b9/f02ZsbEx/Pz8sHnzZsTGxmqe8/f111+X2F6jRo1gaGgIQRA0Zc//nYioKmtt4YwAzzn4OHInzqaGQoSILTFB+FsRgeXOo1DPyErXIRLpNUlGpFauXIlp06YhJiYGU6ZMwa5du5CWloYlS5ZgxYoVsLS0xNq1azFhwgQpunuhu3fvwsHBAebm5gXKPTw8AAD37t0rU3umpqbo2rUrtm/fDqVSiQcPHuDkyZPo0KF8T3snIqostQ0ssN5tPGY3fE0z1XdVEYGhoatwPiVMx9ER6TfJ7uEfOnQoWrdujc8++wzffvstfvjhByiVSnh7e2P+/PmwtKycJ5QnJiYWOXKVX5aQkFDmNmfPno0VK1bg9ddfh5WVFcaPH49WrVoVWTchIQGJiYma11FRUWXuj4hIajJBhrH2PeBl4YyFETsQk5OcN9V3bzMm2PtgSoM+MBDkug6TSO9IuhmSm5sbXn31VezatQvZ2dmwsrLCuHHjKi2JAoDs7GwYGhoWKs/friA7O7vMbVpaWmLp0qWlqnvw4EH4+/sXKo+MjIRKJe2aBIVCgZCQEEnbJKKy0bfr0AjAZ/LXsEkVjGvqaADA9zFBOBd3C+8ZdYetYP7iBoiqmIq8Bj09PUusI1kiFRsbi88//xy3bt2Cm5sbOnTogJ07d2LSpEmYNm0aBgwYIFVXL2RsbIycnJxC5UqlUnO8IvXv3x+dOnXSvI6KisLSpUvh7OwMd3d3SfsKCQkp1YdMRBVHX6/DdqIXdsQGY/3jQ8iFGmHqGHyUcxBfOL+NzlYeug6PqNR0fQ1KkkidOnUKX331FdLT0/Hmm29i8uTJMDQ0RKdOnfDZZ59hzZo1uHTpEhYuXIhatSr2yeS2traIj48vVJ4/3VanTp0K7b9OnToV3gcRUXnJBBnG2HeHl4UzFkRsR0xOMpJV6Zh2bwvG2ffAtAa+nOojKgXJtj8wNDTEl19+iffee08ztebp6YkffvgBPj4+OHfuHN555x0punshNzc3PHr0COnp6QXK84f9StqDSipBQUFYtGgRNmzYUCn9ERFpo5WFE3Z7zkVXq+aash9iTmJ8+DeIUT7TYWRE+kGSROqVV17Btm3b0L59+0LHzMzM8NFHH+HDDz9EZmamFN29ULdu3aBSqXDw4EFNmVKpRGBgIDw9PTVbH1Q0Hx8fLF++HNOnT6+U/oiItGVlYI51ruMwz2EADP79sXA9PRJDQ1bhTIr+rP8i0gVJpva+/PLLEuv07t0bLVq0KFc/e/fuhUKh0EzTnT9/HnFxcQCAwYMHw8LCAp6enujevTs2b96M5ORkNGzYEEeOHEFMTAwWLlxYrv6JiKorQRAwyq4rWlk4YWHEdjxRPkOKKgPT732PsXbd8V7DfjDkVB9RIZLetVeS+vXrl+v8gIAAxMTEaF6fOXMGZ86cAZCXqFlYWAAAPvjgA9jZ2eHo0aNQKBRwcXHBihUr4OXlVa7+iYiqu5bmjgjwmItPHuzCqZRbAAD/2FO4pojECpdRqG9UW8cRElUtgiiKoq6DqI6CgoIQFBQEhUKBGzduYMuWLbxrj6gaqq7XoSiK+CXuLFY//l3zOBkruRk+cxqObtbNSzibqPLo+hqUZESqqH2TiiIIAsaMGSNFl1Wej48PfHx8EB4ejokTJ+o6HCKiMhEEASPsvNHKwgnzI7bjiTIJKaoMzLy/FaPtumFGQz9O9RFBokRq27ZtLzwuCAJEUaxRiRQRUXXwknljBHjMxadRu3Ay+SYAYHvsaVxXRGKF8yg0MLbRcYREuiVJIrVu3boiyxUKBe7cuYO9e/eibdu2GDRokBTdERFRJaplYIrVLmOxM/4cVj06iFxRhRvpURgWugqfOw1HN+uXdB0ikc5Ikki9aBF3586d0atXL0yYMAHe3t5SdKcXnl8jRUSk7wRBwNv1uqCluSMWRGzHY2USUlWZmHn/B4yq1xUzG/rBUFap9y8RVQmS7CNVkkaNGsHb2xu//PJLZXRXJXAfKSKqjl4yb4xdHnPR0/p/29nsiAvGO3c24kl2kg4jI9KNSkmkAMDa2hoPHz6srO6IiKiC1DIwxSqXsVjUaJBmwfmttIeYcfR7HDz+F56EJEKt5g3hVDNUyjisUqnEpUuXNPs8ERGRfhMEAcPrdUErcyesOXwQnscawFJhgjgkIRCXYGZjjI6jPeHc3l7XoRJVKEkSqSNHjhRZrlKpkJCQgBMnTuDhw4cYPHiwFN0REVEVYXrbEK/sc4GIgiNQ6UlZOLH2GnrOas1kiqo1SRKpZcuWQRCEQuX5e30KgoCePXti8uTJUnSnF7jYnIiqO7VaxMXtoQAAAQV/BggQIELE6R9vwLGtHWSywj8jiKoDSRKpRYsWFVkuk8lgaWmJpk2bok6dOlJ0pTe4IScRVVU3D0Xi5uHIcrejylEjOy2n2OMCBKieqTBn3Va8HOkEuVr7ZbktfJ3Rws9Z6/OJKookiZSvr68UzRARUSVQZuYiIym70vp7VDcJt5s+Qt8/WsAqxUyrNpSZuRJHRSQNbvpBRFTDGJkawMzGuNztlDQilS/DIhtx9qnYNfov9DvXCu5RZX+AvZEpf1xR1aTVd+by5cu17rC4aUAiIqocLfykmSZTq0UEzDiN9KSsYusY1TaE3EUO5ABKo1zs73EVb9XtjLkO/WHEDTypGtDqu/jw4cNadSYIAhMpIqJqQiYT0GG0B06svVZsnS5jXsIbzTvjs6jdOPrsOgBgV/w5/JP+ACtdRqORcc1aP0vVj1aJVEBAgNRxVDu8a4+IagLn9vboOas1Lm4PLTAyZW5rgg6jPDRbH6xwHoV2lm74Mno/lGIuQjMe4a2Q1fjUaSh61/bSUfRE5adVImVvzz1BSsK79oiopnBubw/HtnaICUtCZnI2TK2NYd/MpsCWB4IgYEjdV9HC3BHzI7bjYXY8FOoszI/Yjit172OuQ38Yywx1+C6ItKP1vajp6enIySl5kSEREVV/MpmABp62cH21ARp42ha7b1Qzs4bY5TEbvrVba8oC4s9jdNh6PMyKr6xwiSSjdSLl5+dX6CHEISEh2LNnT7mDIiKi6stcboJlziPxSeMhMBbyJkbCMh/jrdDVOJJU/HoroqpI60RKFEXNzuX5/vrrL2zcuLHcQRERUfUmCAIG1+2In5rNgqNxXQBAujobCyN34IuHe5Ct5owH6Qftt5klIiIqp6ZmDbDTYzb62bTRlO2Ov4BRYesRxak+0gNMpIiISKfM5Sb4P6cR+NRxqGaqL/zfqb7DnOqjKo67oVUQbn9ARFR6giDgjTod0MK8MeZHbEdkVhwy1NlYFLkDV9LuYX6jATCRGek6TKJCOCJVQXx8fLB8+XJMnz5d16EQEemNJqYN8Euz2XjNpq2mbE/CnxgVtg4PsuJ0GBlR0co1InXs2DHcvn1b8/rx48cAgPnz5xdZXxAEfPnll+XpkoiIqjkzuTGWOg1HO0s3LHu4F1liDu5kPsXw0DX42PFN9LN5WdchEmmUK5F6/PixJnl63qVLl4qsLwhF7ytCRET0PEEQMLBOe7xk3hjzI35ERFYsMtTZeD/yZ1xOu4eFjQZxqo+qBK0TKT4mhoiIKpqbqT1+bjYLy6L34WDiZQDAvoS/cDP9IVa6jIaziZ2OI6SaTutEio+JISKiymAmN8bnTsPR1sIV/xe9D1lqJe7+O9X3UeM38Zpt25IbIaogXGxORER6YUCd9vil2Sy4/DsKlalW4sMHv+DTB7uQqVbqODqqqZhIERGR3nD9d6pvgG17Tdn+xEsYGboWEZmxOoyMaiomUkREpFfM5Mb4zOktLHUarllwfi8rBsPD1uD3f9dREVUWbshZQbghJxFRxXrdth2amzXGvIgfcT8rBllqJT56sBOX0+7j/cZvwJR39VEl4IhUBeGGnEREFc/F1A4/e8zCINtXNGUHEi9hROha3M+M0WFkVFMwkSIiIr1mKjPCYqdh+MLpbc0o1P2sGLwdtlazZQJRRWEiRURE1cJrtm2x02M2mpjWBwBkqZX4+MFOfPxgJzJU2TqOjqorJlJERFRtOJvY4admMzG4TgdN2cHEyxgRthb3ONVHFUCyxeY5OTk4e/YswsLCoFAooFari6y3aNEiqbokIiIqxERmhE8ch6KtpSs+j9qDDHU2IrJiMSJ0DT5oPBgD6rQvuRGiUpIkkYqJicGcOXPw5MkTiKJYbD1BEJhIERFRpehn8zI8zRphfsSPuJP5FFliDj6J2oXLaffwQePBMJMb6zpEqgYkSaQ2bNiAx48fo3fv3vDz80PdunUhl8ulaJqIiEhrTib1sKPZTKyMPoA9CX8CAH5PuoLbGdH40mW0Zj0VkbYkSaSuXbuGl19+GR9++KEUzREREUnGRGaEjx2HoK2lKz6L+lUz1TcydC0WNh6EQbavQBAEXYdJekqSxeZqtRpNmjSRoikiIqIK4WvTBjs9ZsPdtAEAIEvMwZKo3fjwwS+8q4+0Jkki5enpiaioKCmaIiIiqjD5U31D6rwKQQ00jK6NO+cf470jm3En/bGuwyM9JMnU3uTJkzF9+nScPn0a3bp1k6JJIiKiCmEsM8SI2M5o6G8JVfL/7jAPPHAJfw+zxbAeXTjVR6UmSSL1559/onXr1li8eDFatWqFpk2bwtzcvFA9QRAwZswYKbokIiLSSuSlGJxYe61QubnCGGlbFfgi81fM9u0Pc7mJDqIjfSNJIrVt2zbN369fv47r168XWa8mJVJ8aDERUdWjVou4uD20yGMCBIgQYf67AYY3XoOVbqPhbtawkiMkfSNJIrVu3TopmqlWfHx84OPjg/DwcEycOFHX4RAR6bWbhyJx83BkudtR5aiRnZZT7HEBAizTTJEbkYvhmWvg81dztLrTGALKPtXXwtcZLfycyxMu6QFJEikvLy8pmiEiIiqSMjMXGUmVd2edmcIYKgM1jna6iQjbOPQ47gkjZdl+ZCozcysoOqpKJHtEDBERUUUxMjWAmU35dyIvaUQqX8OE2riLvGfz3W0Wi4QGaRhw6mXYJVmVui8jU/6IrQkk/ZRv3ryJw4cP4969e0hPT4e5uTmaNGmCPn36oGXLllJ2RURENUgLP2mmydRqEQEzTiM9KavYOua2JlgzYwJOpNzA4gcBUKiz8KxWBn4Z+CfmNxqQt3UC7+qjf0mWSG3YsAF79+7VPGtPEASIoojw8HAcOnQIb775Jt577z2puiMiIiozmUxAh9EeRd61l6/DKA/IZAJ61W6FZmYNsSBiO0IyHkEp5uKLh3txOe0+PnUcCgve1UeQaEPOw4cPY8+ePXBwcMDHH3+Mffv24dSpU/jtt9/wySefwMHBAXv27MGRI0ek6I6IiEhrzu3t0XNWa5jbFEyEzG1N0HNWazi3t9eUNTKugx/dZ2B43c6asmPPruOt0FUIzXhUaTFT1SXJiNSBAwdQt25dfPvtt7CwsNCU29jYoGfPnnjllVcwduxY7N+/H3379pWiSyIiIq05t7eHY1s7xIQlITM5G6bWxrBvZgOZrPCUnZHMAIsav4G2lm5YHLULaaosRGcnYlTYOsx3GIihdTnVV5NJMiIVGRmJrl27FkiinmdhYYGuXbsiMrL8t64SERFJQSYT0MDTFq6vNkADT9sik6jn+dRuiV0ec9HcrBEAIEdU4f+i92J+xHakqTIrI2SqgiRJpEqD2ToREek7B2Nb/Og+HSPreWvKjif/g7dCViMkPVqHkZGuSJJIOTs7Izg4GBkZGUUez8jIQHBwMJyduTEZERHpN0OZAeY3Gog1ru/AUm4KAHikTMTo8PXYGXdWc9MV1QySJFL9+/dHfHw8pkyZgtOnTyM5ORkAkJycjNOnT2PKlCmIj4/HgAEDpOiOiIhI53pYt0CAx1y8ZNYYQN5U3/Lo3zA3wh+puZzqqykkWWzer18/3L17F/v27cPixYsB/G/7AwAQRRFvvPEGfH19peiOiIioSmhobAN/9/ew7vEh7IgLBgCcSL6JsIzHWOkyBs3NG+k4Qqpoku0jNXPmTHTr1q3IDTn79u2LVq1aSdVVpevTp0+B11lZWZgyZQreeustHUVERERVhaHMAPMaDUBbS1d8/GAnUlWZeKxMwujw9Zjj8DrertuF64SrMUkSqdjYWFhYWKBVq1bFJkwZGRlIS0uDnZ2dFF1WqqNHj2r+npCQgCFDhsDb2/sFZxARUU3TzfolBHjMxcLIHbiRHoVcUYUvo/fjStp9LHEchloGZroOkSqAJGukhg0bhl9//fWFdfbs2YNhw4ZJ0Z1OHT9+HM2bN0eDBg10HQoREVUxDYxt8IP7exhj101TdjL5JoaFrsbN9CjdBUYVRpJEqjR3KJT3LoaMjAz88MMPmDdvHvz8/ODt7Y3Dhw8XWVepVGLTpk0YNGgQfHx8MHnyZFy+fLlc/ec7duxYoak+IiKifIaCHHMc+mO963hYyfNGoZ4okzA2fCN+ig3mXX3VTKXtIxUfHw8zM+2HNVNSUuDv74+oqCi4ubm9sO6yZcuwe/du9OrVCzNmzIBMJsOCBQtw48YNrfsHgPv37yM6OhrdunUrVztERFT9dbVujgDPuWhl7gQAyBVVWPnoAGbf34bU3KK3CyL9o/UaKX9//wKvr10r+gGQarUacXFxOHHiBDw9PbXtDra2tvjtt99ga2uLsLAwTJo0qch6ISEhOHHiBKZMmYLhw4cDyFssPnbsWGzatAmbNm3S1J02bRpu3rxZZDujRo3CxIkTC5QdPXoUnTp1gqWlpdbvg4iIao76RrWx1X0aNj4OhH/sKQDAqZRbGBa6CiucR6GlhZNuA6Ry0zqR2rZtm+bvgiDg+vXruH79erH169Spg3fffVfb7mBkZARbW9sS6wUHB0Mul6N///6aMmNjY/j5+WHz5s2IjY3VLHj/+uuvS92/Wq1GUFAQ5s6dW/bgiYioxjIU5Jjt8DpetnTFR5G/IEWVgSfKZ3gnfCNmOryGUfW68q4+PaZ1IrVu3ToAeWufZs2aBV9f3yIfSCyTyVCrVi00btwYMlnFzyTevXsXDg4OMDc3L1Du4eEBALh3755Wdw5evXoVubm5eOWVVySJk4iIahZvK0/s9pyLhRE/4Xp6JHKhxqpHB3El7T4+d3oLVgbmJTdCVY7WiZSXl5fm72PHjkXr1q0LlOlKYmJikSNX+WUJCQlatXvs2DH07NkTBgYv/pIlJCQgMTFR8zoqindpEBFRHnuj2vjefSq+fnwY22JPAgCCU25jWOhqrHAehVac6tM7kuwj9c4770jRjCSys7NhaGhYqNzIyEhzXBsffvhhqeodPHiw0PoxAIiMjIRKpdKq7+IoFAqEhIRI2iYRlQ2vQ9JGb7igrpEhvlGehgLZeKp8hnfCN+Atg3boZ9ACMk71lVpFXoOlWdst2c7mAHDz5s0idzbv06cPWrZsKWVXxTI2NkZOTk6hcqVSqTlekfr3749OnTppXkdFRWHp0qVwdnaGu7u7pH2FhISUawE/EZUfr0PSlic84aN8BQsjd+CaIhIqiPg59xKizRX43Gk4rDnVVyq6vgYlS6Q2bNiAvXv3avbHyH/WXnh4OA4dOoQ333wT7733nlTdFcvW1hbx8fGFyvOn2+rUqVOh/depU6fC+yAiourBzsga3zedim+eHMHWmBMAgDMpIRgWsgpfuozmVJ8ekCSROnz4MPbs2YNGjRpp1kvZ2Njg2bNnuHbtGrZt24Y9e/bAzc2tyAXpUnJzc8O1a9c0I2L58of9StqDSipBQUEICgqCQqGolP6IiEg/GQhyzGjoh5ctXPDhg1/wLDcdMTnJeCd8I2Y07IfRdt0gEypt20cqI0k+mQMHDqBu3br49ttv4ePjA1tbWwiCABsbG/Ts2RPffvst6tSpg/3790vR3Qt169YNKpUKBw8e1JQplUoEBgbC09Oz0p715+Pjg+XLl2P69OmV0h8REem3TlYeCPCYizYWLgAAFdRY8/gPzLj/A57l8pfyqkqSEanIyEi89tprsLCwKPK4hYUFunbtij/++KNc/ezduxcKhUIzTXf+/HnExcUBAAYPHgwLCwt4enqie/fu2Lx5M5KTk9GwYUMcOXIEMTExWLhwYbn6JyIiqkh2RtbY0nQKvn1yFN/HnIAIEWdTQjAsZDVWuIxCawtnXYdI/yHpYvMXkWKzsYCAAMTExGhenzlzBmfOnAEA9O7dW5PIffDBB7Czs8PRo0ehUCjg4uKCFStWVIntGYiIiF7EQJDjvYb90MbSFR9E/oxnuQrE5iRjfPjXeK+hL8badedUXxUiSSLl7OyM4OBgjB8/vsjn6WVkZCA4OBjOzuXLpHfv3l2qesbGxpg6dSqmTp1arv7Kg2ukiIioPF6t5Y7dHnPxfuRPuKK4DxXUWPf4EK6m3cdS57dR26DoWSCqXJKktP3790d8fDymTJmC06dPIzk5GQCQnJyM06dPY8qUKYiPj8eAAQOk6E4vcI0UERGVVz0jK3zX9F1MtO8FAQIENRB5Oxbz9mxD8NVbUKtFXYdY40kyItWvXz/cvXsX+/btw+LFiwH8b/sDIO8xMm+88QZ8fX2l6I6IiKjGyJvq80WTe3YI++UhzNPy9kO8i2jctYpGj3e84NK+vo6jrLkkWyM1c+ZMdOvWrcgNOfv27YtWrVpJ1RUREVGNEnkpBtHfxcIcBTeVFlNEnFh7DenTs9Gio5NugqvhJF1s3qpVKyZM/+IaKSIikoJaLeLi9tAijwkQIELESf/ryPbMRVurytkrkf6n0u7aq2l8fHzg4+OD8PBwTJw4UdfhEBFRJbt5KBI3D0eWux1VjhrZaYUffZZPgADzNGN8emInnBPqoeMNNwjQ7k75Fr7OaOHHLRbKgokUERFRBVBm5iIjKbvS+jPNMMbZl8MRZZuAXoEvwSzTqMxtKDNzKyCy6k2yRConJwdnz55FWFgYFAoF1Gp1kfUWLVokVZdERERVlpGpAcxsjEuuWIKSRqTyZZjnJW0PnRIRMPYiXg9ujcYxZXv2q5Epx1fKSpKvWExMDObMmYMnT55o7tQriiAITKSIiKhGaOEnzTSZWi0iYMZppCdlFVvH3NYEn3Qfhg+ifkZibhoUZtkI8P0L7zbogwn2PpBzA88KI0kitWHDBjx+/Bi9e/eGn58f6tatC7lcLkXTeouLzYmISAoymYAOoz1wYu21Yut0GOUBZ2t77Dafiw8if8ZfaXehhohvnhzB32kR+D/nEbA1tKzEqGsOQXzREFIp9evXD82aNcPq1auliKlayV9svmXLFri7u0vadkhICDw9PSVtk4jKhtchVZbISzG4uD20wMiUua1JXhLV3l5TphLV+D4mCN8+OQo18n7E1zGwxDKXkWhv2aTS465our4GJRmRUqvVaNKk+n04REREVYVze3s4trVDTFgSMpOzYWptDPtmNpDJCt6hJxdkmFy/N9pYuGBRxA4k5KYhITcNk+98i8n1e2Ni/V6c6pOQJF9JT09PREVFSdEUERERFUMmE9DA0xaurzZAA0/bQknU89pZumG35zx0sGwKAFBDxKanR/Hu3e+QkJNaWSFXe5IkUpMnT8bff/+N06dPS9EcERERScDW0BKbmkzCew18Ift3b6lLaXcxNGQV/kq9o+Poqgetpvb8/f0LlbVu3RqLFy9Gq1at0LRpU5ibmxeqIwgCxowZo02XREREpAWZIMPE+r3Q2sIZiyJ/QnxOKhJz0zD57neYVL8XJtfvzam+ctAqkdq2bVuxx65fv47r168XeawmJVK8a4+IiKqStpZuCPCYiw8f/II/U8MhQsR3T4/hb0UEljmPRF3DWroOUS9plUitW7dO6jiqHT4ihoiIqhpbQ0t84zYR22JOYuOTw1BDxOW0exga8hWWOY9Eh1pNdR2i3tEqkfLy8pI4DCIiIqoMMkGG8fV90NrCBQsjdyAuJwVJuQq8e/c7TKzvg3fr9+FUXxmU6yt169YtzJw5E3369EHfvn0xZ84chISESBUbERERVZA2li4I8JiLTrWaAQBEiNj89Dgm3dmEOGWKjqPTH1onUvfv38esWbNw/fp1ZGVlITMzE1evXsWsWbMQGVn+p10TERFRxbIxtMBGtwmY2dAP8n9TgiuK+xgaugoXUsN1HJ1+0DqR+vnnn5GTk4NRo0Zh//792L9/P8aMGYPs7Gz88ssvUsZIREREFUQmyDDOvie2uk+DnaE1AOBZrgJT727GxseByBVVug2witM6kbpx4wZatGiBCRMmoHbt2qhduzbGjRuHli1bFnvXHhEREVVNrS2cEeA5B11qeQDIm+rbEhOEiXc2IVaZrNvgqjCtE6lnz56hefPmhco9PT3x7NmzcgVVHQQFBWHRokXYsGGDrkMhIiIqldoGFljvNh6zG76mmer7WxGBYaGrcD4lTMfRVU1aJ1K5ubkwNTUtVG5iYoLc3NxyBVUd+Pj4YPny5Zg+fbquQyEiIio1mSDDWPse+MF9Guw1U33pmHpvM9Y/PsSpvv/g/Y1ERERUiJeFMwI856KLlaembGvMCUy48w2n+p6j1T5S+Y4dO4bbt28XKHv8+DEAYP78+YXqC4KAL7/8sjxdEhERUSWxNjDHetdx2BEbnDcaBTWuKSIxNGQVvnB+G52tPHQdos6VK5F6/PixJnH6r0uXLhUqE4Tin1JNREREVY9MkGGMfXd4WThjQcR2xOQkI1mVjmn3tmCcfQ9Ma+ALA0Gu6zB1RutEKiAgQMo4iIiIqAprZeGE3Z5z8fGDXQhOyZuN+iHmJP5Oi8QKl5GwN6qt4wh1Q+tEyt7eXso4iIiIqIqzMjDHOtdx2BEXjHWP/kAu1LieHolhIaux1Hl4gfVUNQUXmxMREVGpCYKA0XbdsM39PTT4dxQqWZWO9+59jzWPfkdODburj4kUERERlVlLCycEeMxFd6uXNGX+sacwPvxrPFXWnP0ky7XYnIoXFBSEoKAgKBQKXYdCRERUIWoZmGGN6zv4Oe4M1jz+A7miCv+kP8CwkFX43Gk4uloX3ri7uuGIVAXhhpxERFQTCIKAkXZd4e/+HhoY2QAAUlQZmHF/K1Y/Oljtp/qYSBEREVG5tTB3RIDHHPSwbqEp+zH2NMaFb8ST7CQdRlaxmEgRERGRJGoZmGG1y1gsaDRQs7fUjfQoDAtdhdPJt0s4Wz8xkSIiIiLJCIKAEfW88aP7dDT8d6ovVZWJmfe34qvoA8hRV6/n8TKRIiIiIsm9ZN4YuzzmoudzU3074oLxzp3qNdXHRIqIiIgqRC0DU6x0GoP5Wa/DI6wBGkbXxq20hxgaugqnkm/pOjxJcPsDIiIiqhCRl2JwcXsospKy4IO8rRDSLLJwtkc4Zql+wMh63pjV8DUYyvQ3HeGIFBEREUku8lIMTqy9hvSkrALlFgpj+B5sCde79fBT3BmMCd+AR9mJOoqy/JhIERERkaTUahEXt4cWeUz4978up9whqIHbGdF4K3QVTjy7UclRSkN/x9KIiIhIUjcPReLm4chyt6PKUSM7LeeFdSzTTND0jj3Cm8UgTZWFORH+eDnECd0ue8BALS91X/XamMFTh89KZiJFREREAABlZi4ykrIrrb8eRzyhEkTcc48FAFz1fIBom0T0/aMlrFLMStVGbrZJRYZYIiZSREREBAAwMjWAmY1xudspzYgUAJibmeCNC21xPfEhTrS/DZWBGnH2adg1+i/0O9cK7lH1S2zDwFi3q5SYSFUQPrSYiIj0TQs/Z7Twcy53O2q1iIAZpwstNH+eua0Jhq3rBplMwAgAoRmPsCBiOx5mJ0BplIv9Pa7irbqdMdehP4xecFdfSEhIueMtDy42ryB8aDEREdVUMpmADqM9XlinwygPyGSC5rWHmQN2esxBn9pemrJd8ecwOnw9orMTKirUcmMiRURERJJzbm+PnrNaw9ym4Bomc1sT9JzVGs7t7QudYyE3wQrnUfio8ZswEvJGoUIzHuGtkNU49ux6ZYRdZpzaIyIiogrh3N4ejm3tEBOWhMzkbJhaG8O+mU2Bkaj/EgQBQ+q+ipbmjpgXsR0Ps+OhUGdhfsR2XKl7H3Md+sNYZliJ7+LFOCJFREREFUYmE9DA0xaurzZAA0/bFyZRz3M3a4hdHrPhW7u1piwg/jxGh63Hw6z4igq3zJhIERERUZVkLjfBMueR+KTxEBj/O9UXlvkYb4WuxpGkazqOLg8TKSIiIqqyBEHA4Lod8VOzWXA0rgsASFdnY2HkDnzxcA+UYq5O42MiRURERFVeU7MG2OkxG/1s2mjKdsdfwCfZvyNKh1N9TKSIiIhIL5jLTfB/TiPwqeNQzVRflJiIt0JX43F2kk5iYiJFREREekMQBLxRpwN+9pgFZ5N6AACf2i3R0NhGJ/EwkSIiIiK908S0AX5pNhsDDFrh/UZv6CwOJlJERESkl8zkxnjLsB3M5OV/PqC2mEgRERERaYk7m5fC3bt3sWbNGkRERMDKygqjRo3Ca6+9puuwiIiISMc4IlUKS5cuRfv27REYGIjPPvsMGzZswIMHD3QdFhEREekYE6lSiImJQc+ePSGTyeDu7g5HR0c8fPhQ12ERERGRjulNIpWRkYEffvgB8+bNg5+fH7y9vXH48OEi6yqVSmzatAmDBg2Cj48PJk+ejMuXL2vd9+DBg3H8+HHk5uYiJCQEcXFx8PT01Lo9IiIiqh70JpFKSUmBv78/oqKi4Obm9sK6y5Ytw+7du9GrVy/MmDEDMpkMCxYswI0bN7Tq+5VXXsGRI0fQq1cvTJs2DZMnT0adOnW0aouIiIiqD71ZbG5ra4vffvsNtra2CAsLw6RJk4qsFxISghMnTmDKlCkYPnw4AKBPnz4YO3YsNm3ahE2bNmnqTps2DTdv3iyynVGjRmHixIlITU3FwoULsWjRInTp0gUPHjzAvHnz4OLiAnd3d+nfKBEREekNvUmkjIyMYGtrW2K94OBgyOVy9O/fX1NmbGwMPz8/bN68GbGxsbCzswMAfP311yW29/jxY5iYmKBbt24AAFdXV7z00kv4559/mEgRERHVcHoztVdad+/ehYODA8zNzQuUe3h4AADu3btXpvYaNWqE7OxsnD17FqIo4sGDB7hx4wZcXFyKrJ+QkIDw8HDNn6ioKO3eCBEREVV5ejMiVVqJiYlFjlzllyUkJJSpPQsLCyxZsgTffvstli5dilq1amHo0KFo27ZtkfUPHjwIf3//QuWRkZFQqVRl6rskCoUCISEhkrZJRGXD65BItyryGizNjWXVLpHKzs6GoaFhoXIjIyPN8bJq37492rdvX6q6/fv3R6dOnTSvo6KisHTpUjg7O0s+FRgSEsK7B4l0jNchkW7p+hqsdomUsbExcnJyCpUrlUrN8YpUp04d3tFHRERUQ1S7NVK2trZITEwsVJ5fxiSHiIiIpFLtRqTc3Nxw7do1pKenF1hwnj9/WtIeVFIJCgpCUFAQUlNTAaBCFp0/fPgQcrlc8naJqPR4HRLpVkVfg46OjjAxMSn2eLVLpLp164Zdu3bh4MGDmn2klEolAgMD4enpqdn6oKL5+PjAx8cHx44dw61bt7B06dJK6ZeIiIiks2XLlheucdarRGrv3r1QKBSaabrz588jLi4OQN5jXCwsLODp6Ynu3btj8+bNSE5ORsOGDXHkyBHExMRg4cKFlR5z+/bt8dFHH2H//v2YOXNmqc7ZsGEDpk+f/sI6+YvYP/roIzg6OkoRqt4rzddNlyo7vorqT6p2y9OONueW9Rxeh9rhdVg5/UnRbmVfg2U9r6pcgyW1q1eJVEBAAGJiYjSvz5w5gzNnzgAAevfuDQsLCwDABx98ADs7Oxw9ehQKhQIuLi5YsWIFvLy8Kj1ma2tr9O7dGydPniz1XXsWFhalruvo6MiNQf9Vlq+bLlR2fBXVn1Ttlqcdbc4t6zm8DrXD67By+pOi3cq+Bst6nr5cg3qVSO3evbtU9YyNjTF16lRMnTq1giMqPR8fnwqpS/9T1b9ulR1fRfUnVbvlaUebc8t6TlX/fqqqqvrXjdehNG1oe251/FkoiKIo6joIKrvw8HBMnDixxLlbIqo4vA6JdKsqXIPVbvuDmsLW1hZjx44t1fMHiahi8Dok0q2qcA1yRIqIiIhISxyRIiIiItISEykiIiIiLTGRqsaUSiWWL1+ON998E3379sW7776LW7du6Tosohpl5cqVGDhwIPr27YsxY8bg/Pnzug6JqEa6desWunbtih9//FHSdrlGqhrLzMxEQEAAfH19UbduXZw6dQpr165FQEAAzMzMdB0eUY0QFRWF+vXrw8jICKGhoZgzZw527doFKysrXYdGVGOo1WpMnToVoiji1VdfxZgxYyRrmyNS1ZipqSnGjh0LOzs7yGQy9OzZEwYGBoiOjtZ1aEQ1hqOjI4yMjAAAgiAgJycHCQkJOo6KqGb5/fff4eHhUSG7n+vVhpzVXUZGBnbt2oWQkBCEhoYiLS0N77//Pnx9fQvVVSqV2Lp1K44dO4a0tDS4urpiwoQJaNeuXbHtR0dHIy0tDQ0bNqzIt0GktyrqGly9ejUCAwOhVCrRoUMHuLi4VMbbIdI7FXENpqSk4Ndff8WmTZuwYcMGyWPmiFQVkpKSAn9/f0RFRcHNze2FdZctW4bdu3ejV69emDFjBmQyGRYsWIAbN24UWT87OxtLly7FiBEjNI/SIaKCKuoanDNnDo4ePYo1a9agXbt2EAShot4CkV6riGtwy5YtGDJkCCwtLSsmaJGqjOzsbDEhIUEURVEMDQ0Vu3TpIgYGBhaqd/v2bbFLly7iL7/8oinLysoS33rrLfHdd98tVD8nJ0dcsGCBuGTJElGtVlfcGyDScxV1DT5v4cKF4oULF6QNnKiakPoaDA8PF8ePHy/m5uaKoiiKX3zxhejv7y9pzByRqkKMjIxKtTtrcHAw5HI5+vfvrykzNjaGn58fbt++jdjYWE25Wq3G0qVLIQgCPvjgA/4mTPQCFXEN/pdKpcLjx48liZeoupH6Grx+/Tqio6MxePBgDBw4ECdPnsQvv/yCZcuWSRYz10jpobt378LBwQHm5uYFyj08PAAA9+7dg52dHQDgq6++QmJiIr766isYGPDjJpJCaa9BhUKBP//8E506dYKRkRHOnj2La9euYdKkSboIm6jaKO012L9/f/Ts2VNzfP369ahfvz5GjBghWSz8yaqHEhMTi8zY88vy7wiKiYnBH3/8ASMjowJZ+5dffolWrVpVTrBE1VBpr0FBEPDHH39gzZo1EEURDRs2xMcff4wmTZpUarxE1U1pr0ETExOYmJhojhsbG8PU1FTS9VJMpPRQdnY2DA0NC5Xn32KdnZ0NALC3t8eZM2cqNTaimqC016C5uTnWrVtXqbER1QSlvQb/64MPPpA8Fq6R0kPGxsbIyckpVK5UKjXHiaji8Bok0q2qdA0ykdJDtra2SExMLFSeX1anTp3KDomoRuE1SKRbVekaZCKlh9zc3PDo0SOkp6cXKA8JCdEcJ6KKw2uQSLeq0jXIREoPdevWDSqVCgcPHtSUKZVKBAYGwtPTU3PHHhFVDF6DRLpVla5BLjavYvbu3QuFQqEZnjx//jzi4uIAAIMHD4aFhQU8PT3RvXt3bN68GcnJyWjYsCGOHDmCmJgYLFy4UJfhE+k9XoNEuqVv16AgiqJYqT3SCw0dOhQxMTFFHgsICED9+vUB5N2RkP+MIYVCARcXF0yYMAHt27evzHCJqh1eg0S6pW/XIBMpIiIiIi1xjRQRERGRlphIEREREWmJiRQRERGRlphIEREREWmJiRQRERGRlphIEREREWmJiRQRERGRlphIEREREWmJiRQRERGRlphIERHpyO7du9GjRw88ffpUU3b48GF4e3vj8OHDOozsf/744w9069YN9+/f13UoRFUSEykiksTTp0/h7e39wj9Dhw7VdZhVRlpaGrZv345+/fppnh1WUS5dugRvb2/MnTu3xLqfffYZvL29cfz4cQBA3759YWdnh02bNlVojET6ykDXARBR9dKwYUP06tWryGMWFhaVHE3VtXv3bqSmpmL48OEV3lfbtm1hZ2eHq1evIjY2FnZ2dkXWUygUOHv2LCwsLODt7Q0AMDAwwNChQ7Fu3TrcvHkTLVq0qPB4ifQJEykiklTDhg0xbtw4XYdRpeXm5uKPP/5AixYt0LBhwwrvTyaTwdfXF/7+/jhy5AjGjBlTZL2goCBkZ2ejX79+MDY21pT37NkTGzduxIEDB5hIEf0Hp/aISGe8vb0xY8YMJCUl4YsvvsDrr78OHx8fvPvuu7h27VqR52RkZOCHH37A6NGj4ePjg379+mHu3Lm4ceNGobozZsyAt7c3srOzsWXLFrz11lvo3r07fvjhB02d4OBgTJw4ET4+PhgwYAC+/PJLpKWlYejQoQWmIj///HN4e3sjJCSkyLi2bt0Kb29vBAUFlfi+L126hMTERHTr1q3Euvni4uIwZswY+Pj44PTp05ryZ8+eYcOGDRg+fDh69uyJ119/HR999BEiIiIKnN+vXz8IgoDDhw9DFMUi+wgMDAQA+Pn5FSi3trZG69atcfr0aWRkZJQ6ZqKagIkUEemUQqHAtGnT8ODBA/Tu3Rve3t4IDw/HvHnzCiUDqampmDJlCvz9/WFpaYkBAwbA29sbd+7cwcyZM3H27Nki+/j4449x5MgRtG7dGm+++aZmTdKhQ4fw8ccf49GjR+jTpw/69u2L27dvY86cOcjNzS3QRv/+/TXn/JdKpUJgYCCsrKw0U2IvcvXqVQBA8+bNS/4CAXjw4AGmTp2KuLg4rFy5UpOAPX78GBMmTMCvv/6KBg0a4I033kCHDh1w6dIlTJkypUDSZ29vj5dffhlPnjwpMkmNiIhAWFgYmjRpgqZNmxY63rx5cyiVSty6datUMRPVFJzaIyJJPX78uMCIz/OaN2+OV155pUDZvXv3MHDgQMyaNQsyWd7vdm3atMGXX36Jffv2Yd68eZq6a9euRWRkJBYsWIDXXntNU/7s2TNMnDgRK1euRPv27QtMSwFAYmIitm3bhlq1amnK0tLSsH79epiammLz5s1o1KgRAGDixImYN28ewsPDYW9vr6nfqlUrODk54cSJE3jvvfdgamqqOXbp0iXEx8djyJAhMDIyKvFrdPPmTchkMri5uZVY9/bt21i4cCEMDAywYcOGAud88cUXSEpKwldffYX27dtrykePHo2JEyfiyy+/hL+/v6bcz88PV65cQWBgINq0aVOgn+JGo/K5u7sDAG7dulWgL6KajiNSRCSpx48fw9/fv8g/f/31V6H6pqamePfddzVJFJB3p5hcLkdYWJimLDk5GadOnUKbNm0KJFEAULt2bQwfPhzJycma0Z7nvfPOOwWSKAA4d+4cMjMz0a9fP00SBeQtrp4wYUKR761///7IyMjAiRMnCpT/8ccfAIDXX3+9uC9LAfHx8bCwsCgx6frzzz8xe/ZsWFpa4ptvvimQRN25cwe3bt1Cnz59CiU2jRo1wmuvvYaIiIgCo3pdunSBlZUVgoODkZ6erinPzc3FsWPHYGRkVOyNAjY2NgDyphiJ6H84IkVEkmrfvj2++uqrUtd3cHCAmZlZgTIDAwPY2NhAoVBoysLCwqBSqZCTk1PkiNejR48AAFFRUXj11VcLHPPw8ChUP39fpJYtWxY65unpCblcXqi8T58++O677/DHH39okrmkpCRcuHABL730EpycnEp4t3lSU1NRt27dF9Y5deoULl++DFdXV6xcuRK1a9cucDx/2u7Zs2dFfj0ePnyo+b+LiwsAaBKlPXv2ICgoCAMGDAAAnD9/HsnJyfDx8YGlpWWR8eSXp6SklOo9EtUUTKSISKfMzc2LLJfL5VCr1ZrXqampAPKmxW7evFlse1lZWYXK8kdTnpc/IvPfBAXIu8vNysqqULmlpSW6d++OI0eOICIiAi4uLjh8+DBUKlWpR6MAwNjYGEql8oV1bt++DZVKhZYtWxYZY/7X488//8Sff/5ZbDuZmZkFXvv5+WHPnj0IDAzUJFIlTesB0MRrYmLywriJahomUkSkF/ITrmHDhmHatGllOlcQhGLbe/bsWaFjarUaKSkpRY4aDRgwAEeOHMHvv/+OmTNn4tChQzA3N0f37t1LHY+VlRXi4+NfWGfSpEk4d+4c9uzZA7lcXug958c/c+ZMDB48uNR9u7q6olmzZggNDUVkZCQsLS1x6dIl1K9fv9C6qeflJ27W1tal7ouoJuAaKSLSC82aNYMgCLh9+7Yk7bm6ugJAkaNboaGhUKlURZ7XvHlzuLq64vjx47h06RIePXqEXr16lWmkxsXFBUqlErGxscXWMTIywhdffIGOHTsiICAAGzduLHA8f7pSm69H/sjToUOHcPToUahUKs32CMXJnyrMnyYkojxMpIhIL9ja2qJ79+64desWdu7cWeReSCEhIUVO7RWlc+fOMDU1xaFDh/D48WNNeW5uLrZu3frCc/v374/U1FQsX74cAAotfi+Jl5eXJt4XMTIywtKlS/Hqq69i9+7d2LBhg+aYp6cnPD09ceLEiUKL34G8UbXr168X2a6Pjw9MTExw7NgxBAYGQiaToW/fvi+MJTQ0tEDsRJSHU3tEJKkXbX8AACNGjCi0PUFpzZkzB9HR0di0aROOHj2K5s2bw8LCAvHx8QgLC8OjR4/w22+/lWp0yNLSEu+99x5WrlyJiRMnokePHjA3N8fFixdhZGSEOnXqFDtC07t3b3z77bdISEiAu7t7kfsuvUjnzp3x9ddf48qVKyVOCRoaGuLzzz/HJ598gl9//RWiKGLGjBkAgE8++QSzZs3CkiVLsGfPHjRp0gTGxsaIi4vDrVu3kJKSUuQGoebm5ujatSuOHj2K5ORkvPLKK8U+NgYARFHE1atX4ejoWOAORyJiIkVEEsvf/qA4Q4YM0TqRqlWrFr755hvs27cPJ0+eRFBQENRqNWxsbODm5oYxY8YUuUi8OK+//josLS2xY8cOHDlyBObm5uj0/+3dsUvjYBzG8eccXDoWhLb0bygooYNkMIhLpw6WolA7ZmmDuyDi5B+RpYsURDoUSlsoBZd2UCq4d0iHmCxKJ6fecNyBaHsYOZTL9zO/IW+2h7y/PNnelm3b2t/fX/r7lkQiIdM01ev1Pvw2SpJSqZQMw9BwOJTjOH+tQfgdpk5PT3V1daXFYiHHcZROp+W6rprNpm5ubtTpdLS2tqZkMqlcLreyOb1QKKjb7Ur61Xq+yv39vR4fH1Wr1T78rMD/7sdi2b8CACCmZrOZDg4OtLOzo7Ozs3fXHB0dyfd9XV9fL/3ycJXb21sdHx/r5OREe3t7n93yP3V+fq7xeKzLy8ul9QhAXDEjBSC25vP5mxqCl5eXP4Pdpmm+e91oNNJ0OtXu7m6kECVJW1tbyufzajQar2oevhvP8zQYDFSpVAhRwDs42gMQW5PJRBcXFzIMQxsbG3p+ftbd3Z1839fm5qYsy3q1vtVqKQgCtdttra+v6/Dw8FP3r9fr6vf7CsNw5YzSVwqCQNVqVcVi8au3AnxLHO0BiC3P8+S6rh4eHvT09CRJymQysixL5XL5zSxXqVRSGIbKZrOybftNgzqA+CFIAQAARMSMFAAAQEQEKQAAgIgIUgAAABERpAAAACIiSAEAAEREkAIAAIiIIAUAABARQQoAACAighQAAEBEPwGsjjUM7t4xZAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 10\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "f7666a8c", + "metadata": {}, + "source": [ + "## Plot All" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "d9c82cbb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAATBCAYAAADddYOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVfrw8e8zfSbJpPdKekIVkN5BUcSCK2tX7A2xd117111dfd1VWRF7F0SqSJHepBN6Cum9T2YmM+f948kMDAmQZFH3t3s+15Xr2nnqmWfGnZv7nHMfRQghkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ+o1o/ugGSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0300OUpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6TclBylJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSbkoOUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TclBSpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/abkICVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkn5TcpCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEm/KTlISZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk35QcpCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0m9KDlKSJOm/2lNPPYWiKKxYseKPbookSZIkSZLUDR9++CGKovDhhx/+0U2RJEmSJEn6r5eXl4eiKEybNu2PbookSZIkSdJ/PUVRGDNmzB/dDEn6XclBStJ/jW+++YY777yTkSNHYrVaURSFq6666pTnrV27lkmTJhESEoLZbKZPnz688cYbuFyuE57z448/MmbMGAIDA/H392fw4MHMnj27y212Op28+eabXHfddfTr1w+DwYCiKMycOfOE53g6aU70989//rPD83bu3MmVV15JamoqZrOZ2NhYxo4dy5dffonb7e5y2z3279+Pn5/fSZ+3y+Xi008/ZeTIkURFRWGxWEhPT+e6665j9+7dHZ5TVlbGnXfeSY8ePTAajYSHhzNlyhR+/fXXbrf1dBo+fDiKorBgwYJTHpuRkYGiKGzduvV3aJkkSZIkHdXV+MjTIXGiv8suu6zD88rLy3nwwQfp1asXAQEBhIaGMmDAAF599VUaGhq63X673U6vXr1QFIW4uLgTHrd69WouvPBCkpKSMJlMJCQkMGnSJBYtWtTh8Q6Hg1deeYW+fftisViwWq2MGDGCr776qsttPHDgAC+//DLjxo0jPj4eg8FAZGQkF154IcuXL+/wnO7Ecxs3buSRRx7h3HPPJSoq6pTP5GS6e6358+dz9tlnExcXh9lsJjk5malTp7Ju3boOj29oaOCxxx4jMzMTk8lEcHAwEydO5Oeff+5Wu0+3K6+8EkVReOedd0557Nlnn42iKHz//fe/Q8skSZKk/4uqqqqYOXMmU6ZM8eZeAgMDGTFiBP/61786zL10J/YqLCzk+eefZ+rUqaSmpqLRaFAUhYMHD3a5zd29VldzTEII3n//fQYPHoy/vz9+fn4MHDiQf/7zn13OSdXX13P33XczcuRIYmJiMJlMREREMGjQIN544w2ampo6PK87eabTlUvrbuxVWFjI9ddfT0xMDEajkaSkJO6++25qamraHeuZpHeyv5SUlE63+bfw/vvvoygKf/7zn0957AsvvICiKNx1112/Q8skSZKk/4seeughxo8fT3x8PGazmZCQEM444wyefvppqqqqOjynO3mK3Nxcbr31VjIzM7FYLERGRjJ06FDee+89HA5Hp9ubk5PDk08+yYUXXkhCQoL397m1tfWk51VXV3P33XeTlJSE0WgkJiaG66+/nsLCwnbHnirfpCgKWq22020+1s8//8yUKVOIiorytmPixInt+siOHDnC7bffzuDBg32OHTlyJLNmzcLpdJ7wHrNnz2bQoEH4+/sTGBjImDFj+PHHH7vc1q7GfdOmTTvpM9u7d6/P8b/lcz5dfvrpJxRFYdCgQac89rPPPkNRFC688MLfoWWSpNL90Q2QpNPlueeeY/v27fj7+xMXF9fuR6Mjc+fO5U9/+hMmk4lLL72UkJAQ5s2bxz333MOaNWv4+uuv253z9ttvc+eddxIaGspVV12FwWDgm2++Ydq0aezcuZPXXnut021uamri7rvvBiAyMpKoqCiOHDnSqXMvvPBC+vXr1277wIED222bN28eF198MRqNhgsuuIBLLrmEyspKvv/+ey677DKWLl3K+++/3+l2e7S2tnL11Vej0Zx8vOMVV1zBV199RVxcHBdffDEBAQHs3LmT2bNn89lnn7Fw4ULGjRvnPT4vL49hw4ZRUlLCoEGDuPjii6moqOC7775j/vz5zJs3j4kTJ3a5vafTTTfdxNq1a5k5cyaTJk064XErV65k//79DBw4kDPOOON3bKEkSZIkdS8+Aujbty8XXXRRu+29evVqty0vL4/BgwdTXl7OmDFjOPfcc2lpaWHJkiU8+OCDfPLJJ6xfvx6z2dzl9j/66KPk5+ef9Jh//OMf3H777fj5+TFlyhTi4uIoLCzku+++Y+HChTz33HM89thj3uMdDgcTJ05kxYoVJCUlcd111+F2u1mwYAGXXnopu3bt4plnnul0G5944gm+/PJLsrOzvQPf9+3bxw8//MAPP/zAm2++yYwZMzo8tyvx3Geffcabb76JXq8nOzubsrKyTrfxdFzroYce4pVXXiE0NJSLLrqIsLAwDh48yNy5c/n222/56KOPfAbA1dTUMGLECPbs2UPPnj259dZbaWxsZO7cuUyYMIGZM2dyww03dPs9nA433XQTn332GTNnzuT2228/4XF5eXksXbqU6Ohozj///N+xhZIkSdL/JV9//TW33XYb0dHRjB07loSEBMrKyvjuu++48cYbWbhwIV9//TWKorQ7tyux1+bNm3n88cdRFIUePXoQGBhIbW1tt9rcnWt1J8d01VVX8dlnnxEREcHll1+OxWLhp59+4rbbbmPt2rV89NFHnW5zdXU17733HoMGDeK8884jPDycuro6li1bxj333MP777/PunXrsFqt3nO6k2c6nbm07sRehw4dYtiwYZSXl3PhhReSmZnJxo0befPNN1m0aBFr1qwhNDTUe/zJZt/PmzePX3/9lXPPPbdT7f2tXH755dx7773MnTuXyspKwsLCOjxOCMG//vUvAG6++ebfs4mSJEnS/yF/+9vf6N+/P2eddRYRERE0NTWxfv16nnrqKd577z3Wr19PfHy89/ju5Ck2bdrE2LFjsdlsnHPOOVx44YXU19czb948brnlFr799lsWLVrUYXx3vMWLF/PMM8+g1WpJS0vDZDLR0tJy0nOqqqoYNmwY+/fvZ9y4cVx22WXs3buXWbNmMX/+fNatW0dycrL3+H79+vHkk092eK1Vq1axbNmybsUDDz74IK+++ipxcXFccMEFhIWFUVFRwZYtW1ixYoVPH9mhQ4f49NNPGTx4MBdddBEhISFUVVWxcOFCrr/+ej7++GOWLFmCTuc7ROH+++/n9ddfJy4ujptuugmHw8EXX3zB+eefz1tvvcX06dM71dZ/p3/xrrvuIigoqN3242OW3+o5n04TJkygR48ebNq0iZ07d9K7d+8THuuJaWXcJf2uhCT9l1i2bJnYv3+/cLvdYvny5QIQV1555QmPr6urE+Hh4cJgMIhNmzZ5t9tsNjF06FABiM8//9znnNzcXGE0GkVISIjIzc31bq+urhYpKSkCEGvXru10m+12u1iwYIEoLi4WQgjx5JNPCkC8//77Jzxn1qxZAhCzZs3q9H2ys7MFIFasWOGzvaSkRERERAhA5Ofnd/p6Hk8//bQwGAzizTffPOHz3rhxowBEz549RVNTk8++Dz74QABi7NixPtsvuOACAYgZM2YIt9vt3b5v3z4REBAgoqOjRWNjY6fa6Hmmy5cv7/L7O5nm5mYRGBgo9Hq9KC0tPeFxV111lQDEe++9d1rvL0mSJEmd0dX4KDc3VwDi2muv7fQ9br/9dgGIp556ymd7a2urGDdunADE7Nmzu9z25cuXC0VRxD/+8Q8BiNjY2HbHOBwOERgYKEwmk9i7d6/Pvj179gij0SjMZrNoaWnxbv/rX/8qADF06FCfeKKhoUEMGDBAKIriExueyqxZs8Svv/7abvuKFSuEXq8XBoPBG+sde05X47mtW7eKX3/9VdjtdiGEOOEz+S2uVVJSIjQajYiMjBRlZWU++5YtWyYA0aNHD5/tM2bMEIC4+OKLhdPp9G4vKysT8fHxwmw2iyNHjnSqvd15Xp2Vnp4uALFly5YTHvP4448LQDz66KOn/f6SJEnSf4+ff/5Z/PDDD8LlcvlsLykpEfHx8QIQ33zzjc++7sReR44cEb/88ouoq6sTQggxevRoAYgDBw50uc3duVZXc0zfffedN1aoqKjwbrfb7WLy5MkCEN9++22n29za2iocDkeH+6688koBiJdfftlne3fyTKczl9adOO7ss88WgPj73//us/2ee+4RgLjllls6de/W1lYRFxcnALF9+/ZOndOd72Vn3XTTTQIQr7/++gmPWbp0qQDEsGHDTvv9JUmSpP8eNputw+2PPvqoAMRtt93ms707eYpJkyYJQHz44Yc+2xsbG72xwsqVKzvV3r1794r169eL5uZmIYQQiYmJAvBpy/FuvvlmAYh7773XZ7unT27ixImdurcQQgwZMkQAYu7cuZ0+Rwgh3nvvPW9c4IlljnV8XGa329vFw57jxowZIwDx5Zdf+uxbs2aNAERKSoqorq72bs/NzRUhISHCaDT69MmeTHfivmuvvVYAnb7HyXTnOQNi9OjR//a9j/f8888LQNx5550nPObAgQNCURQRHx/f4ecmSb8Vudyb9F9j7NixpKWldWrEMqjLn1RUVHDZZZf5zFY3mUw899xzgDoz/1gffPABdrud6dOnk5SU5N0eHBzMo48+CnDC5dY6YjAYOPfcc4mOju70Od1x+PBhrFYro0eP9tkeFRXF4MGDAaioqOjSNTdv3syzzz7LE088QZ8+fU56b4Dx48djsVh89nlKBx5775aWFhYuXIhGo+G5557z+TzT09O5/vrrKSkp4dtvv+1Se49XUFBAz549MRgMfPzxx97tzc3NvPjii/Tr1w8/Pz/8/f0ZOnQon3/+uc/5ZrOZq666CqfTyYcfftjhPWpra/nmm2/w9/fn8ssv/7faK0mSJEnd0dX4qDs8v/UXXHCBz3atVst5550HdD3OqK+vZ9q0aYwfP55bb731hMdVV1dTV1dHeno6GRkZPvuysrJIT0/HZrPR2Njo3e5Zruuxxx7Dz8/Pu93f35/HH38cIUSnlv/ymDZtWofVEkePHs2YMWNwOBysXbu209c7kX79+nHGGWdgMBh+92vl5+fjdrsZPHgwERERPvvGjh1LQEBAu8/Y85yfeeYZn9lxERER3HvvvdhsNj744IN/633U1NQwatQoNBoNL774ond7a2sr77zzDkOGDMFqtWKxWDjjjDN4++232y3NctNNNwGcsBKCy+Vi1qxZKIrCjTfe+G+1V5IkSfrvNm7cOM4///x21aajoqK88cyKFSv+7fvExcV5l/L9I67V1RyTJya47777fGahGwwGnn32WUCtWt5ZWq0WvV7f4b6pU6cC6nK8Ht3NM53OXFpXY69Dhw6xZMkSkpKSuOOOO3z2Pf300/j5+fHxxx+fcGm7Yy1YsIDCwkKGDBly0vxdZ7jdbu666y4UReHiiy/GZrN59y1evJhJkyYRFhaG0WgkJSWFBx54oF1lLs8M/ZkzZ57wPnI2vyRJktQZJpOpw+2eZUWPjQege3mKE+W8/Pz8GD9+PND5eCAjI4PBgwd3utJ4Y2MjH3/8MX5+fjz11FM++6ZPn05iYiKLFy/2tvFkdu7cyfr164mNjfXm6jrDbrfz2GOPkZCQwHvvvddhLHN8XGYwGDpcfUWv13srhx7/2Xj6VR977DGCg4O92z2xkN1uZ9asWads7+/Vv3gi3X3OJ/Lqq6+i0WgYPnw41dXV3u0bNmzgkksuISoqCoPBQHx8PLfccgvFxcU+519//fXodDo++eSTE1btmjlzJkIIbrjhhlOumiNJp5P8tkn/s5YtWwbAOeec027fqFGjsFgsrF27Frvd3qlzPKX7PMf81rZt28Ybb7zBSy+9xMcff9zh+rMePXv2pL6+ntWrV/tsLy8vZ+PGjURHR5Odnd3pe9tsNq6++mr69evHww8/fNJje/bsCajP5djkBeBdS3bChAnebdXV1TidTsLCwggICGh3PU/pypOtEXwq27dvZ+jQoRw5coQFCxZw9dVXA+qgohEjRvDoo4+i1Wq5/vrrufbaa6moqOCKK67g8ccf97mOp1PLU4L6eJ4f/ssvvxx/f/9ut1eSJEmSfm/FxcW8++67vPDCC7z77rvs2LHjhMd6fuvnz5/vs93tdnsTA8cu69oZM2bMoKam5oS/sR4RERGEh4ezf//+dgkOz7Z+/fr5LIVRWloK4FMO2+N0xBnH8iRqji9h7dGVeO6PlJaWhsFgYOPGjVRWVvrs++WXX2hoaPCJ5+C3f84FBQUMHz6c9evX89FHH/HII48A4HQ6mTx5MnfccQe1tbVcccUV3Hzzzbjdbu68806uvfZan+tce+21GAwGPv/8c5qbm9vdZ+HChRQVFXnLZEuSJElSd5wqJuhK7PVH62qOqTMxwapVq3A4HP922+bNmwfgMxinu3mm051L64rly5cDcPbZZ7frLAoICGD48OE0Nzezfv36U17rvffeA/79AT8tLS1MnTqVv//979xxxx1888033k7Wp59+mnPOOYcNGzZw3nnnMWPGDFJTU3nttdcYPnw49fX13usMHDiQfv36kZOTw5o1a9rdp6qqijlz5hAYGOjtZJYkSZKkrugoHoDu5SlOlPNqbm5m2bJlWCwWhg4denoafpz169djs9kYPnx4uxhGo9F4lyzzxA0n44kHbrjhBrRabafb8NNPP1FRUeFdAnf+/Pm8/PLLvPnmm6xbt64L70adBLZgwQKg/Wdzuvpe/93+xYULF/Lyyy/z2muvMWfOHJ8YpjO6+5yP53a7mTFjBg8++CBTpkzh559/JiQkBFCLaQwfPpyFCxcyduxY7r77bgYOHMjMmTMZOHAgBQUF3utERUUxefJkampqOhyY1drayuzZs739oZL0u/qjSzlJ0m+hM8uZDBw4UABi8+bNHe7v2bOnAMSePXu828LCwgQgKisrOzzHz89PAO2WNeusriz3dvyfVqsVt9xyS4clLn/55RdhtVqF0WgUf/7zn8XDDz8sbrzxRhEWFiZSU1PFxo0bu9TOGTNmCKPRKHbv3i2EOPXz9pSiTkhIELfffrt46KGHxOTJk4VOpxOXXXaZT2nF5uZmodVqhUajEQ0NDe2udddddwlADB48uFNtPX65t59++klYrVYRHR0ttm3b5nOsp6Tj8WXBbTabmDhxolAURWzdutVn36BBg064nFzfvn0F0KUlYyRJkiTpt9KV5d46+hszZkyHS1qUlZWJjIwMAYhx48aJ+++/X8yYMUNkZmaKoKAg8cEHH3SpnZ4lQWbOnOndxkmWxPjqq6+EwWAQAQEB4pprrhEPP/ywuPrqq4W/v78YMGBAu+VKPMv6zp8/v921vv/+e+/79ZTf7q68vDxhNBqFxWLxKVUtRPfiueOd7Jl0VWeu9be//U0oiiLCw8PFTTfdJB5++GExdepUYTQaxVlnndVuGbjo6GgBeOPF468FiMjIyE617/jl3rZt2yaio6OF1WoVP/30k8+xnthv+vTporW11bu9tbVVXH/99QIQc+bM8Tnnz3/+8wmXk/OUCf/666871VZJkiRJOp7T6RS9evUSgFi0aJHPvu7EXsf7d5Z76861uppjuvzyywUg/t//+3/trrV161bv+83JyelSW51Op3jyySfFk08+Ke68807Rr18/AYixY8f6xFLdzTOd7lzasU4Ve91///0CEK+99lqH+++44w4BiHfeeeek9zly5IjQarUiMDCwS7nK45d7q6qqEsOHDxeKooiXXnrJ51jP0r9Dhw4VNTU1Pvs8Mdzdd9/ts/2dd9454XJynqWZ77jjjk63V5IkSfrf9uqrr4onn3xS3H333WLEiBECEH369BHl5eU+x3UnT5GTkyOio6OFVqsV559/vnjooYfEbbfdJuLj40V0dLRYsGBBt9t9quXe3n77bW9+oyOvvvqqAMSDDz540vs0NzeLoKAgodVqRUFBQZfa+Je//EUA4uGHH/bGs8f+jRo1qt1z9qioqBBPPvmk+Mtf/iJuu+02kZqaKgBxxRVX+BzX2NgoAOHv73/C6wAiIiLilO3tbtzn6Rs8/i8gIEC8/fbbp7yv597dfc4cs9ybzWYTF198sfezP3YJtn379gm9Xi9SUlJEYWGhzzWWLl0qNBqNuOiii3y2L1iw4ITLyXlysOedd16X2itJp4McpCT9V+pMJ1xaWtpJEy/Dhg0TgFi7dq13m16vP2nQEBMTIwBRXFzcrXZ3ZpDSihUrxFtvvSX27dsnmpqaRHFxsfjqq69ESkqKAMTll1/e4Xm7d+/2Drw69gf2+eef71RHmMfSpUuFoig+A3k687z/+c9/CrPZ7HP/AQMGiIULF7Y7dsKECQIQ99xzj8/2AwcOiICAAAGI9PT0TrX32EFKH3/8sdDr9SIrK6tdoq+yslJotVoxcODADq+zbds2AYgHHnjAZ/vMmTM7fO8bN24UgDjjjDM61U5JkiRJ+q115ve6rKxMPPHEE2LLli2ipqZG1NTUiJUrV4qxY8cKQKSmprZbt10IIWpqasSUKVN8fucVRRE333xzl/5hXlpaKsLCwsS5557rs/1UHTmrV68W8fHxPvePjIwUb7/9drv11J977jkBiGHDhvkMRGpsbBRnnnmm9/zuxnNCCNHS0iKGDx8uAPHKK6+029/deO5Yv/cgJSHUQVzBwcE+zzk1NVV8+umn7Y698cYbBSAuueQSn8FC5eXlIiEhQQDCYDB0qn3HDlJasmSJCAgIEDExMe0GnLtcLhESEiKioqI6jNdramqEoihi6tSpPtuXLl0qADF8+HCf7cXFxUKn04mIiAjhcDg61VZJkiRJOt59990nADFp0qR2+7obex3r9x6kJETXckyffPKJAERKSoqoqqrybnc4HN7BwMfn3zrDZrO160i6+uqrO+yQ6m6e6XTl0o53qtjrpptuOml+8NFHHxWAeOGFF056n6eeeqpbA36OHaSUl5cnMjMzhV6vF5988km7Yy+66CIBiF27dnV4rX79+onw8HCfbXV1dcLPz09YLBZRV1fnsy87O1sAYvv27V1qsyRJkvS/KzIy0ue3+pxzzhGlpaXtjutunqKwsFCMHDnS5x56vV488MAD7SaldcWpBik9//zzAhCPPfZYh/vfe+89AYibb775pPf58MMPuz0Q5dZbbxWgTqrr3bu3WLVqlWhoaBA7duwQZ5999gkHvwihDvA6Pk94//33t8uvFBUVnTQ2cjgcXcohdSfu+9e//iW+/PJLkZ+fL2w2mzh06JB47bXXvMe/++67p7zvv/OcPc/x2IHhxxdTEEKIu+++WwDixx9/7PA6F110kdBqtaK+vt67zeVyeb9r+/fv9zl+0qRJAhBz587tcpsl6d/VcY1hSZJOixUrVrBixQqfbUlJSUybNq3b1xw9ejSjR4/2vrZYLEydOpUhQ4bQt29fPv/8cx566CH69u3rPeann37isssuY+DAgXz00UdkZmZSWlrK22+/zWOPPcb8+fNZuXLlCcuOe9TW1jJt2jQGDx7Mfffd16n2CiG46667eOedd3juuee46qqrCAoKYtu2bdxzzz2ce+65vP3229xxxx3ec9544w2GDx/O3/72N9atW8fw4cOpqKjg22+/JS0tjW3btnV5bdQ333yTuXPnMnz4cH744QefdW0BNm3ahMvlQlGUduv7grp0CEBOTo7P9ssuu4x77rmHb7/9lrfeest73ffffx84uiScJEmSJP1fEBERwTPPPOOzbdSoUSxZsoQRI0awYcMGZs6cyV133eXdn5eXxwUXXIDNZmPBggXe5Sfmzp3Lfffdx9y5c1m3bl2nlsq66aabaG1tZebMmZ1u8yeffMJNN93ExRdfzBNPPEFiYiL5+fk8++yzTJ8+nZUrV/LVV195j7/rrrv4+uuvWbt2LT179mTSpEkIIZg/fz6KohAYGEhdXZ031uhqPOdyubj66qtZs2YNl156Kffff3+7Y7oTz/3RXnnlFR599FFmzJjB9OnTiYqKYu/evTzyyCNceeWVbNu2jVdeecV7/DPPPMPixYv55ptv6NevH+PHj6epqYm5c+cSGxtLQUFBl+O5b775hiVLlpCWlsbChQtJSEjw2b9//36qq6tJS0vjueee6/AaZrO5XTw3btw4UlJSWLNmDTk5OWRlZQEwa9YsWltbmTZtmneZHkmSJEnqir///e+8/vrrZGZm8vHHH7fb353Y64/W1RzTZZddxscff8zixYvJzs7mwgsvxGQysXTpUkpKSkhISPCJC7Zt28acOXN87hkUFMTdd9/ts81kMiHUCbgUFxezdOlSHnnkEQYOHMiiRYtISkryHtudPNPpyqX9Udxut3fp5FtuuaVb19i3bx9Dhw6lqamJhQsXMn78+HbHrFu3Dr1ez9dff83XX3/dbr/D4aCiooKqqirvEsxWq5VLL72UDz74gE8//ZTbbrsNgLVr17Jnzx4GDRrUbhkYSZIkSToRzzJuZWVlrF27locffpgzzjiDH3/8kf79+3uP606eYuvWrVx00UVERESwatUq+vXrR21tLZ988gmPP/44c+bMYdOmTQQGBv6u77krPEuQdRQP5OXl8eGHH7bb7ukjc7vdgLpk8Q8//OCNr3r37s33339PRkYGK1euZN26de2WvcvMzEQIgcvloqioiO+//56//OUvrF69mvnz53uXLzvduhP3Hb/UWXJyMvfddx8ZGRmcf/75PPbYY6dcwu1kz7kzysrKGD58OIcPH+aTTz7hiiuuaHeMZ4m9lStXsmnTpnb7y8vLcblc7N+/nwEDBgDq0oA33HADf/nLX5g5cyYvv/wyAIWFhSxatIiYmBjOO++8brVZkv4tf+gQKUn6jfynLPfmqeJz7N+JRhUfe/zJKimdzJVXXikA8fe//927raqqSgQHB4vY2NgOSzt7Zjx1tLzF8a677jphNpvF3r17fbaf7Hl7Zr4fP2pZCCFKSkqE2WwW/v7+7Wa6HTx4UFxzzTUiOjpa6PV6kZiYKB5//HGxatUqQVsZyc7wPNOQkBABiCeffLLD4zwz+071N2bMmHbn3nLLLT7PvbGxUQQEBAg/P792M8IkSZIk6Y/SmfjoZN5//30BiIsvvthnu2fGfUeznd944w3vLOxTmT17tgDE7Nmz2+3jBDOqPGWOBwwY0K5iksvlEgMGDPBWVDxWQ0ODeOSRR0RaWpowGAwiNDRUXH311aKwsFD4+/sLnU7nndnVlXiutbVVXHbZZQIQf/7zn084G+5kOornOnKiZ9Idp7qW57szZcqUdvuamppEbGys0Gg04tChQz77SktLxR133CESExOFXq8X0dHRYvr06eLAgQMC1KWAO8MTT3riueuuu0643e52x61evbpT8VxSUlK7c1988UUBiHvvvVcIIYTb7RbJyclCUZTTUplCkiRJ+t/z1ltvCUBkZ2eLkpKSLp9/otjreL9nJaXu5pgcDod46aWXRK9evYTRaBSBgYHiwgsvFDk5Od782+HDh4UQHS+Lm5iY2Kn2r1u37oQz2LuSZzqdubSOnCr2Oh3Lvf34448CEEOGDOly+zyVlDyxV79+/U5YKUKn03Uq/srLy/M5z/NZ9e/f37vtuuuuE+C77LMkSZIkdVVeXp4wGAyiZ8+e7fZ1JU/hdDpFamqqMJvNHcZynqo2J+pzOpXfY7m3Xbt2CUDExcX5VI/y8OR7jv/zePDBB08aT9xwww0CEG+88cbJ3qrX559/LsC3yuPpXO7N43T1LwohRGxsrADEjh07TnjMqZ7zqQAiKChIaDQakZCQcMIlnz1L5p3qb8WKFT7nFRYWCq1WKyIjI735zqeffloA4vHHH+9yeyXpdOja1FVJ+i+SkZEBqDOuj9fa2kpubi46nY7k5OROnVNSUkJTUxNxcXFYLBZAHW0s2mZ1ef6On4l/OoWHhwPQ1NTk3bZ27VpqamoYPHiwt13HGjt2LABbtmw55fV//fVXbDYbmZmZKIri/fNc49NPP0VRFPr16+c958cff/S5z7GioqLIzMyksbGRffv2+exLSUlh9uzZFBcX43A4yMvL49lnn/U++zPPPPOU7T3Wv/71LwYPHszTTz/NX/7yl3b7PSPd77nnnnaf2bF/y5cvb3fuzTffDOCt+vDFF1/Q0NDApZdeitVq7VI7JUmSJOk/VUdxRkNDAytXriQkJKTD2c5djTMArr32Wp84Q1EUAIqKiryva2trAViyZAlOp5PRo0e3mwWl0WgYNWpUh/f39/fnhRdeYP/+/djtdiorK/noo4+w2+00NjbSt29fb+WczsZzTqeTyy+/nC+++IIrrriCzz77rFsz6zt6zn+0k8VzFouFQYMG4Xa72bp1q8++yMhI3n77bfLy8nA4HBQXF/PWW29RUFAAdD2ee+GFF7jggguYNWsW119/vXdGn4cnnpsyZcpJ47nc3Nx2177uuuvQ6/V89NFHOBwOli1bxuHDhxk7diypqaldaqckSZIkvfHGG9x555306tWL5cuXExUV1eVr/CfGBN3NMen1eh566CF27txJS0sLtbW1zJkzh6SkJA4cOEBYWJi36ua0adPa/Xbn5eV1qn1DhgwhKCiow1itK3mm05lL646T5R8BDhw4AEB6evoJr/HvzuYHOP/883nhhRfYtm0b48ePp6qqqt0xgYGBBAcHnzT2EkKQmJjoc96QIUPo06cPv/76K7/++isNDQ189dVXWK1WLrvssm63WZIkSZISExPJzs5m9+7dVFZW+uzrSp5i7969HDx4kKysrA5juf9L8cCJqgCNGTOmw9/t49sQFBTU4fU9K4vYbLZTvBvVueeeC+ATq/n5+REbG0tjYyMlJSXtzunM+zze6exf7ExMfqrn3Bl9+/Zl9uzZFBUVMWrUKA4fPtzuGE/eq66u7qRx17HV2wFiY2OZNGkSZWVlzJs3D7fbzQcffIBGo+HGG2/sVnsl6d/1n1mPVpJ+B+PGjePTTz9l0aJFXH755T77fvnlF5qbmxk1ahRGo9HnnDVr1rBo0aJ2pQsXLlzoPeaPsmHDBgCfgVV2ux2AioqKDs/xbDcYDKe8/sUXX8zAgQPbbS8pKWHBggWkpKQwZswYn6U3Tuf9AW959I5KHZ5MUFAQP/30E+eddx7PPvssLS0tPkuSDBo0CI1Gw6pVq7p0XYD+/fszYMAAtmzZwsaNG72DlTyDlyRJkiTpv8H69esB3zjD4XAAUF9fj8PhaPd73pXf+aFDh9LY2Njhvn/9619YLBZvzOaJz053nPHRRx8BXY8zHA4Hf/7zn5k7dy7XXHMNs2bN6vJSZh4dxXN/tP+U52w0Gvnmm2+48sor+fDDD7Hb7Xz00UfewWCZmZkEBQWxfv16nE5nl5Zoi4yM5IILLuDbb79lzpw5fP/994CM5yRJkqSue/nll3n44Yfp168fP/30E2FhYd26Tkex1x/tdMcEX3zxBQ6Ho11errsaGhqor68nICCg0+d0lGc63e+zqzydnkuWLMHtdvvElQ0NDaxZswaLxcKQIUM6PL+4uJj58+cTGBjIpZde+m+15ZFHHsFsNnPPPfcwZswYli5dSmRkpHf/kCFDmD9/Prt376Znz55duvZNN93EnXfeycyZM+nbty9NTU3ceuut+Pn5/VttliRJkqTi4mKATg8Y6ShP4YkHjh/o5PFbxwNDhgzBbDazZs0aGhoafOIbt9vNkiVLgI4nlAG0tLTw8ccfo9VqueGGG7rVhvHjx6MoCnv27GkXkwDs2rULwDvY/FSKiooA2k3qGzduHB9//DGLFi3iuuuu89l3Ovteu9q/WFdXx969e1EU5YTv8XQ8Z4+rrroKk8nEFVdcwahRo1i2bJnP4KwhQ4awZcsWVq1a1eUl2m6++WbmzZvHzJkz8fPzIz8/n3POOafdQHJJ+t38FuWZJOmP1pnlTOrq6kRYWJgwGAxi06ZN3u02m00MHTpUAOLzzz/3Oefw4cPCaDSKkJAQkZub691eXV0tUlJSBCDWrl3b7XZ3Zrm3Y9vq4XK5xAsvvCAAERYW5rPEWFFRkdDpdEKj0YjFixf7nFdQUCDCw8MFIObPn++z7+DBgyInJ8db+u9kTva8X375ZQGInj17itraWp99//jHPwQgoqKifEogtrS0iJaWFp9j3W63eO655wQgLr300lO2ycPzTD3LvDQ1NYnx48cLQMyYMcPn2KuvvloA4plnnumwJOPBgwe95ceP989//lMAYuTIkQIQffr06XQbJUmSJOn30Jn4aMuWLe2WTRNCiKVLlwqj0SgAsWbNGp99WVlZHZYHttlsYsyYMQIQDzzwgM++4uJikZOT0y42OBFOsCTGhg0bBCDMZnO75ea2bt0qTCaTUBRF7Nq1y2dfR8uxLlmyRJhMJpGSkiIaGxs71S4h1Lhl0qRJAhA33HBDh8/veF2N5zpyomdyrM7Gc6e61pdffikAERkZKQoLC332LViwQCiKIkwmk8+SyC6Xq91yvkII8dFHHwlFUcSwYcM69ayEOLrsi2dJldbWVnHVVVd5l8A59v098cQTAhC33nqraG5ubnet4uJisXv37g7vs2jRIgGIQYMGCaPRKMLCwoTdbu9UGyVJkiRJCCGeeeYZAYgBAwaIqqqqUx7fndjreJ1Z7q2zsdeprtXdHFNHcc3WrVtFWFiYCA4OFkVFRSdt17F27NghbDZbu+12u11cc801AhBXXHGFz76u5pl+61xaZ+K4s88+u8MlgO+55x4BiFtuueWE53q+hydaHuZUPMu9Hbtk8z/+8Q+hKIrIyMjw+byWLl0qADF06NAOP8fGxkaxbt26Du9TU1MjzGazCAwMFH369BGA2LJlS7faLEmSJP1v2bdvX4dxjcvlEo8++qgAxLBhw9rt60qeoqWlRQQFBXXYZ1dTUyMyMzMFIP7f//t/Pvvy8/NFTk5Oh0vGHutUy70JIcTNN9/sszS9x5tvvikAMXHixBOe+9FHHwlATJ48+aTtOJULLrhAAOKvf/2rz/bFixcLRVFEUFCQz2exZcuWDvvXGhoaxIQJEwQgHn30UZ99a9asEYBISUnxWWI2NzdXhISECKPR6NMnK4S6DFxOTo6oqKjw2d7VuK+kpEQcOXKkw/Z6lvg966yzOngyqtPxnAExevRo7+u5c+cKo9EooqKifHKaOTk5Qq/Xi7S0NLFv375217Hb7eKXX37p8B6tra0iLi5OaDQaMWzYMAGIb7/9ttttlqR/lyLEMXXbJOn/sDlz5jBnzhwASktLWbx4McnJyYwcORKAsLAwXnvttXbnXHLJJZhMJi677DJCQkL44Ycf2LdvH5dccglfffWVd4kRj7feeosZM2YQGhrKpZdeisFg4JtvvqGwsJD77ruv3T1O5aWXXmLv3r0AbNu2je3btzNs2DDS0tIAGDFihE+5PUVR6NWrF3379iU2Npa6ujrWrFnDrl27sFgsfP/995x99tk+93jmmWd48skn0Wg0TJ48mczMTEpLS/nuu+9obGxkypQpfPfddz7nJCUlkZ+fT25uLklJSSd9DytWrGDs2LFceeWVfPLJJz77GhsbGT58ODt27CAiIoILLriAoKAgfv31V5YtW4ZWq+Wrr77i4osv9p6za9cuRo4cyVlnnUVSUhJOp5Off/6ZnTt3MmLECObPn9/pZdSeeuopnn76aZYvX86YMWMAdWTzn/70JxYsWMDNN9/MP//5TxRFob6+nokTJ7J+/XrS0tIYMWIEkZGRFBcXk5OTw6ZNm/j88887LDvd0NBATEyMtwLEW2+9xfTp0zvVRkmSJEn6rXQ1PhozZgwHDhxg2LBhxMXFAbBjxw6WLVsGwLPPPsvjjz/uc4+lS5dy3nnn4XA4GDx4MMOGDcNms7Fw4ULy8/NJTU1l/fr1hIaGes+ZNm0as2fPZtasWUybNu2U70NRFGJjYyksLGy37/rrr2fWrFkYDAamTJlCYmIieXl5zJkzB4fDwd13383f/vY3n3NiYmLo06cPmZmZmEwmfv31V5YuXUpUVBQ//fRTl2aBX3fddXz44YeEhYVx++23t4sdQX2unjjE8366Gs/t3buXl156yft69uzZWCwWpk6d6t322muv+VRrOFE819Vrud1uJk6cyNKlSwkICGDKlClERUWRk5PDjz/+iBCCN954g7vuust7fmNjI5GRkZx11lmkpKSg0WhYs2YN69atIysri6VLlxITE9OpZ/zhhx9y3XXX+Xxf3G43t9xyCzNnzmTy5Ml88803GI1GnE4nl1xyCT/88AOxsbGMGzeO2NhYysvLOXDgAGvWrOH555/n4YcfbncfIQTJycneJWW6E9tLkiRJ/7tmz57NtGnT0Gq13Hnnnd7lGI6VlJTkE/t0J/YCfK6xaNEiysrKuPjii70z7G+88UZGjBjhc/yJYq+uXqs7OabBgwdjNpvp1asXAQEB5OTkMH/+fMxmM/PmzWu3JMXJ3H333cyaNYvhw4eTmJhIUFAQxcXFLFmyhNLSUjIyMli+fDnR0dHec7qTZzqdubTuxHGHDh1i2LBhlJeXc+GFF5KVlcWGDRtYvnw56enprF271ie+9nC73SQnJ5Ofn8+OHTvo3bt3p5+tR15eHj169ODaa6/lww8/9G7/8MMPueGGG+jRowfLli3zVlJ/+eWXvRWXJk2aRI8ePWhsbCQ/P5+VK1cyYsQIFi1a1OG9rr32Wm/1igEDBrB58+Yut1eSJEn63/PGG2/wyCOPMGLECHr06EFoaChlZWWsXLmSw4cPExUVxc8//0x2drb3nO7kKWbPns11112HEILx48dzxhlnUFNTww8//EBFRQVDhgxhxYoVPiuyjBkzhpUrV/r0SYFaken+++/3vv7mm29oamrimmuu8eaSHn74YTIzM73HVFVVMWzYMPbv38+4ceMYNGgQOTk5zJ07l4iICNauXUtKSkqHz2jkyJGsXr2aH374gfPPP7/bz7qwsJBhw4Zx5MgR7zPIzc1lzpw5KIrCF198wZ/+9Cfv8RdddBFr1qxh2LBhJCQkYLFYOHLkCAsXLqS2tpZhw4axePFi/P39fe5z33338de//pW4uDguueQSHA4HX375JVVVVR32t3n6/p588kmeeuop7/auxn0rVqxgwoQJDB06lPT0dCIiIigqKuKnn36itLSU5ORkli9f7rOCzOl+zoqiMHr0aJ9l8BYvXsyUKVPw8/Nj6dKl9O3bF4BPPvmE66+/HiEE55xzDunp6TidTgoKCli1ahXh4eHePufjPfnkkzzzzDMAREVFceTIkXZVrSTpd/NHjpCSpNPJUzHnRH+JiYkdnrd69Wpx7rnniqCgIGEymUSvXr3EX//61w5H+nr88MMPYtSoUcLf319YLBYxcOBA8eGHH3ar3Z5Zaif6O3bWkhBC3H///WLUqFEiOjpaGI1GYTabRUZGhrjjjjvEoUOHTnifOXPmiHPOOUeEhYUJrVYrAgICxNChQ8U777zT4Xv1jOI+fnRyR05VmaGhoUE8/fTTom/fvsJisQidTieio6PF1KlTxYYNG9odX15eLq644grRo0cPYTKZREBAgBg8eLB4++23TzqqvCPHV1LysNvtYsqUKd5n7Bkhb7fbxVtvvSWGDh0qrFarMBgMIj4+XowbN0787W9/86kQcLwbb7zRW82hpqamS+2UJEmSpN9CV+OjmTNnivPOO08kJiYKPz8/7+/gn//85xPOxBFCiO3bt4urrrpKxMfHC71eL0wmk8jOzhaPPPJIh7+J1157rU9lnFPhJLPN3W63mDVrlhg9erQICgoSWq1WBAcHi3HjxrWriulx//33i169eomAgABhMplERkaGeOihhzpV8eB4p4rlAPHkk0+2u39X4zlPvHWyv+PjthPFc925lsPhEH/729/E4MGDRUBAgNBqtSI8PFycd9557SoMeI6//vrrRXp6urBYLMJisYi+ffuK559//pSzCY93fCUlD7fbLaZPny4AcfbZZ3srJ7ndbvHRRx+JcePGieDgYKHX60VMTIwYPny4eP7550VBQcEJ7+WZWQeIvXv3dqmdkiRJ0v+2U8VdHDdDWojux16nus/xv5kni726ei0hup5jeuWVV0T//v1FYGCgMBgMokePHuL222/vcNb6qaxevVrccMMNIjs72yf2Gz58uHj11Vc7jDO6m2c6Xbm07sReQqhVm6ZNmyaioqKEXq8XCQkJ4q677vKpMHC8BQsWCEAMGTLkxA/xFDqqpOTx2WefCZ1OJxITE33i1lWrVompU6eK6OhoodfrRVhYmOjbt6+45557Oqwi6rF69WrvM3j33Xe73WZJkiTpf8vOnTvFHXfcIfr27StCQ0OFVqsVVqtVDBw4UDz55JMd5ne6m6dYuXKlmDJlioiKihI6nU74+fmJ/v37ixdffLHD6o6ePNHxfVKe39eT/R1/jhBCVFVViRkzZoiEhASh1+tFVFSUuO66604aR+3Zs0cAIi4u7qR9nZ1VXl4upk+f7m1DaGiouOiiizrs3/vxxx/FlVdeKdLS0oTVahU6nU6Eh4eL8ePHi3ffffeksdesWbPEwIEDhcViEf7+/mLUqFFi3rx5HR7rib2Pz7l1Ne4rKCgQN998szjjjDNEWFiY0Ol0wmq1ijPPPFM899xzor6+/oTtPV3PuaN/JwihxpD+/v4iODhYbNy40bt9x44d4tprrxUJCQnCYDCI4OBg0bNnT3HzzTeLn3/++YT3KSgoEBqNRgDikUce6XZ7Jel0kJWUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TWn+6AZIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvTfTQ5SkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpNyUHKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9JuSg5QkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfpNyUFKkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9puQgJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSflO6P7oBkiT952hububJJ59k48aNREVFkZ6ezrPPPvtHN0uSJEmSJOm/0pNPPsnBgwcpLS2lf//+PPPMM5jN5j+6WZIkSZIkSf91WlpaePbZZ9m6dSsREREkJiby9NNP/9HNkiRJkiRJ+q/07rvvsn37dkpKSsjOzuYvf/kLRqPxj26WJEn/IRQhhPijGyFJkq/m5mb++c9/8uOPP3Lw4EFqa2sxGAwEBASQn5+PEILU1FQcDgcFBQUYDAbi4+OprKykrq6OsLAwjEYjRUVFAISHh+Nyuaiurkar1WI2m3G5XNhsNvR6PW63G5fLdcL2aDQatFotTqcTAH9/fxRFoaGhAX9/f8xmM83NzTQ1NREZGYler6ewsBCA1NRUXC4Xubm5BAUFkZqaSkFBAeXl5WRkZBAUFMSOHTvw9/cnNTWVpKQk7r//fvr37//bP2hJkiRJkiRg06ZNzJo1iy1btlBUVER9fT0hISE0NjZSXV2N1WolJiaG3NxcWlpaiIuLQ6vVkp+fD0BsbCwOh4OKigr8/f0xmUw0NTVhs9kICAjA7XbT1NQEgF6vx+Vy4Xa7T9genU6Hoig4nU4sFgtarZaGhgYAQkND0Wg0VFRUoCiK997l5eVEREQQHBzMwYMHcblc9OzZE71ez7Zt29BoNAwePJiKigqqq6uJiIggJSWF8ePHc+utt8rBUZIkSZIk/S5aWlr47rvvmDdvHjk5OZSVlSGEwN/fn/z8fFwuF8nJybhcLvLy8tBoNCQnJ1NVVUVNTQ2hoaGYTCaKi4sRQhAWFobb7aa6uhqAgIAAWltbvTkvIQStra0nbM/xOS8/Pz80Gg0NDQ34+flhNptxOBzU19e3y3mlpKQghODw4cMEBASQkZFBcXExpaWlpKamEhwczIEDBwgMDCQhIYH09HRuv/12+vXr95s/Z0mSJEmSJIBDhw7xxRdfsGHDBvLy8qiursZgMGCz2aiqqsJsNhMbG0tBQQFNTU3Exsai0+l8cl5Op5Py8nIsFgsWiwWbzUZTUxMBAQEIIWhsbAQ6l/PSarVoNBqcTidmsxmdTkdzczMul4uQkBC0Wi0VFRXee7e2tlJWVkZYWBihoaEUFBRgs9nIysrCZDKxY8cOdDod/fr1o66uDrvd7h2QPnHiRK688ko5OEqS/gPJQUqS9DtYuHAhr7/+Ojt37qS1tZW6ujpcLhd+fn4YDAZqamoAsFgsOByOkyZPPCwWC3q9nrq6OvR6PXFxcQghyMvLIyMjA5PJxK6du3C5XZx55ploNBo2bNgAwKhRo3C5XKxZs4Zhw4YREBDAzp07KS4uZtKk8ygrKyUwMJB9e/dRVFzExIkTEUKwZMkSNIqGUaNH4XA4WLt2Lf369cNoNFJcVMyRwiP07dsXIQQ7duwA1EFKLS0tFBYWegc3eQKOk1EUBT8/P1qdrbTYWwgLCyMwMJBDhw4B0KdPHwBaW1sZP34806ZNkwObJEmSJEnCZrPx4osvMm/ePIqKinA4HNTV1QHqAJ+mpiZaWlrQ6/To9DpsNtspr6nT6TCbzd4Or7i4OEwmEwcPHgSOxiU7duwguUcy4RHhNDU1sWvXLoYNG4Zer2flypUAnHXWWSiKwpIlS8jIyCAmJobGxkbCw8NZsGABPbN7Ep8QT11dHevWrWPkyJFoNBrv+UOGDMHlcrFp0yZCgkNISEzAZrOxb98+kpOTATh8+DAAgYGBOJ1OmpubT/kejUYjRqOR+vp6AHr06IHNZqO0tJTQ0FDS0tIoKSmhf//+XHbZZUyYMIGQkJCufDSSJEmSJP0X2rhxI2+99RYbN26krq6O2tpaHA4HZrMZk8nkHTxkMVtwtjq9g4FO5ticF6hxCUBubi5paWlYLBby8/Opra3tMOcl3IJVq1cxZMgQAgMDKSosYtfuXZx77iQqKsqxWq0UFxezd+9en5wXwJgxY3A6naxZs4bevXtjsVioqqri4MGDHea87HY7R44c8Q5ustlsp8zreXNera20tLQQEhJCcHAwhw4dQlEUevXq5Y0/x40bx5VXXklmZmb3PiBJkiRJkv5r2O12PvjgA+bNm8e+fftoaGigurraO8DHZrNhs9nQ6XTo9fpO5by0Wi0Wi8U7wS42Nhaz2eyT81IUhe3btxMXF0dsbCw2m40dO3YwdOhQDAYDq35ZhVu4mTBhAhqNhp+W/ERUVBRZ2Vnegd4L5i+gR3IP0tPTaWxoZPWa1YwYMQKtVuuT83K73WzcuBGdVkev3r1oaWlh79699OjRA0VRKCwsxOFwEBQUhMPh6FTOy2AwYDKZvDmvxMREnE4npaWlBAcHk5qaSnNzM0OGDOH8889n9OjRWK3Wf+OTkiTpVORyb5LUTc3Nzbz88svMnj2bkpISHA4HoP7Y6fV672x5rVZ7wgE5Go2GgIAA7yClnj17YjKZWLVqFaGhoUycOBGn08mCrxdz9a1XEBgYyJ6Fh7DthKH3ZaEoCmuf3QMGGHZ1Nm63m/XP7+XMKWnoDXpGDxrHnplHGHqOemzAxngAho5WX5vXRmM5oKHfbZn06tGb7e/m4VgI5z1xHo4GJ5rlIYwZHEjKoFhstS24f7KSNS2e4PgAGiubsKyLYcjkTDQaDVv/sYcMZTDDLswGIGJnOoTBsCuOtmvQjHT0ej2VJZVsfS+X0Y/0xeFw8P7rH2KnmUuvmUptbS0//PADffr0wWq1cvjwYYqKivDz8/MJNjwJIYA9e/bwzjvvoCgKra2tBAcHExgYSF5eHgAZGRkoikJiYiJvvPGGTOxIkiRJ0v9BBw8e5N5772XNmjXU19d7O3/8/f2x2+04nU40Gg1CCE40D0Ov1xMaGkpRURFRUVEkJiVSUVbBvgP7uOCCCwgMDOSbj7/DTADX3XclOp2O1S/vYvDtGQQEB+BwONj00gGGTFPjn7XP7gFg2EXZCCGI2JmO2c/MGRN74Gp1EbU7k74DeuAXbCYjtDeHvy+lX1YKpgADwSUxVO1q5Mzz0tH761j77B4mKJfQd3QSfmEW1r6uvh42Vr22/pdw9V5nq68DNyfS9yr12nabnS2vHWLIFce16y712HXP5RAzNYDoHhFUV1fzxfvfMPnyc1AUhS8+/wK3cDNkyBBsNhsbN25EURTcbrc39qqqqqKqqgqA/Px8vv/+ewwGgzf+TUhIoKWlhfLycgIDA+nRowctLS3ceuut3HXXXb/dl0KSJEmSpN/M+++/zz//+U8OHjxIU1MTbrcbnU6H0Wj0zpY/Vc7L39+fmpoahBD07HU056VVtFx6+aW4XC4Wf7mMqTddREhICIX7Symb0+Sb88I359V/cgqmACN15U3sfjefoROzUDTH5bxQMK6JhO0w6L5sGuKaiNqTiXMRTHpiEvY6J1uWH6B31mAy+sfTUu/A/ZOVHudFEN0/jMZKG+a10QyenIFWr+XXLw+TpPRj6AVquyJ2pqvtOibndeaMNAwGA/VV9Wx6+wAjHu6F0+nko9e/pJl6/nTNRdTX1zNnzhwyMzMJCwujoKCA/Px8AgICvJ2IQgh27tzpfY5r167lhRde8FZ7CgoKIjg4mNzcXBRFISUlBYvFQnZ2Ni+++CJJSUm/1VdCkiRJkqTfSGFhIS+88AJLly6lpKQEm83mLXTgdDpxOBwoigJwwpyXQW/AYrFQWFhIWFgYqampVFdXk7Mnh/MmTyY4OIi5H8/Hgj9X3jcVvV7Pmpd2k31pAlFpYTidTja+uJ8h17Xlll7ZA3Y15wUQviMNYwMMmJiNy+kiYmc6mamxhPQIJDOkN4fmlJIdl4A1ykJgYQw1OY30Pb8HflFm1j63h/HKn8gYHEdwcgBb385hgnIJQ8dkg3JczsstsG5KIO3P0YSnBWO3OYjbd5AhVx6T81Jg2IyjOS+/LMg8P4Xa2lq+efcHJlw6Cq1Wy9KfllJRUcGQIUOw2+3eQe2g9vG63W6fnNfOnTt5//33fXJe8fHx3urpVquVpKQkzGYzN9xwA1dddZWs0iRJ3SQHKUnSCRQUFDB9+nRWrVpFfX09iqJ4Ey86nQ6Xy9VhMKDX6wkJCfEOUhoyZAgWi4WlP/1MWFAYV067Ar1ez9bXchk8IwOdTsfBlQWUrWzwDiYyro6EanVGltvtpkYRBPoFYTIZSR4Sz+6dR3xv2qwGJp4gJffnYtLPTcTsb1J3V7XgF2YmclAgZRvraCprwRCoIzDNQt2BZrb9Yy/9bstk0P0ZbHxtn/eygWkWUibG4mhwsvVtdUa+waLF5XCz4x9qqUcF9Z62SsCinucp5ZhxdiwALXV29VhFQQjBvvfLsCjqrDi9Xs8gZSzmOEhKSsLlctE8z8Cg89LR6XSkBWdTUFzF0GuOJqiaRTPDH+hJWVkZn370KQMGDiAoJIhdu3ZRXFxMQEAAdrvd+z727VPf0969e8nKysLf3x+n04ndbicyMpLQ0FAOHz5McnIy1157LQ8++GA3vjGSJEmSJP07Pv74Y15//XUOHDjg00mj0WjQaDQnnJHu5+dHgH8AJaUlREdHk53dk9KSEnJ27eXq664iNDSUda/lYFbMDLv5aAIjY0IsoQmBOB1ONr18gD591GTHcOVc73UBzIqZHTMLGHZ/NhpFA4CjqRVTgIH48aEc+bkK4RIo2raYaLcNpoDiVl9vfzuXQQ9mYAlWkxZb3zrEmfekkzElga2Vh33ey6D7M9CZtax9bQ/YICTLgqPJSXO5mhiJGxUGQF1h29JxRvWfc3u+UZf49cRax/K8Do9Ul0YJMAQyWBlPamoqiqIwjovV5M5o9dlYNyWQ8udIojKPJqj6P5BMS0sL7/79fZzYOfucs2lsbGT16tVoNBoURfF+ZnV1dWzbtg2Au+++m/vvvx8/Pz9vJYSsrCwaGxtxOp0MHz6cl156idTU1M5+TSRJkiRJOg1qa2t58MEHWbJkCaWlpbhcLm+sdbKcl06nIzg4mKamJoQQDBo0iIAAKz8v+RkDJm6+6waMRiO/vnqYQXemozfoKd5dQe635b45L9SclxCCKsWFn9aKyWQiIjKMMpoQ7qOxFfjmvPZ8W0T/ackYzXoAqnMbCE2xEjM0hOJ11dQcaMQv2khQmpnaAzbWvb6HYQ9kc+Y96Wz6237vNU0RJrKmJmKvc7LtHTUms4SacDa3suMfuepBLkALLftbADXWcrvU5xI3Vq0o2VKrxmkaoQ6W3/mvI5gUEwaDAYPBQF9lCKDmvNxuN41zdZw5OQ29WU/FoVoOFBT75LxaRAtDH8iisrKST2d9Rna/LCIjI9mbs5f8AnVAU0tLi/e5eKoc7Nixgy+++AI/Pz/cbjc2m42wsDAiIyMpLCwkOzubq6++mttuu+3f+epIkiRJktQNixcv5s0332Tr1q1UV1fT2tqK2+1GURS0Wu1Jc15arZaSkhLCw8Pp27cvVVVV7Pl1L3++5hIiIyNZ/+pejIqRYbcczXlFZQaRPCoGp72VmJxs+vbJQKvTMjJiHPaKozkvo2Lk0OdlRD4RiuJSY62GkmYCY/1JHBtJ/qIyXHY3WqMGjGCvB3erUGMkYO8nRQyYYcHgp8Zle2YX0PfGHmT9KYEdHx7yeS9n3J6COcTIlr/vxV4P/nFGWmpaaK5UY6nQnlYQUJvbAIAl0AzA4XnqMruK6CDn1baqXHy/GEwmE366AM5QhpOWloZGo6H8c4ea8xqjPpuAjfGEDPQja1ISrc5WNry4jzPu74HT6eTLD76msr6S8eeMpampiVWrVgHqoHybzYbb7aa2ttab81q3bh233nqrT84rIyMDu92O0Whk5MiRPPzww6SkpHT9CyNJ/wPkICXpf9ratWu55ZZb2Ldv3ynLTXvWUgV1zXmr1cqmTZuwaC3cNP0mzGYzm18+yKC71GpBuauOULy8nqHj1ESDWBoIdWC1Wr2DeFoaHPgH6wjPCKZsZUOH9/UkYfYtL6bP5CTvwCNbrR1LsAlrtoX6Pc24nG60erXjrHJzEylnuTBY1P/Et/8jl6GPZZE8IYayjXXseD+XYU9kk/3nRNY9n0NzpZuaw41U7q7xuXfdgWYaS2wcXFACQNrFsfiH+XmDhJQLo1E0CmU71FHGaeeog5KKN5YD4B9lQQjBtg9yve/l+CDC3ao+i8QxcQA0V6uJFo1GfS8F86ranRvWNwyLxUJ8XDxjlSkMPjsDnV5HSH00lSVNDL3Wd0DTiAd7UVBQwJdffElWZhbWICu7d+/GbrfT0NBAeXk5Qgj27NnDQw89xOOPP47T6cSgN6gVFioq0Gg0TJ06leeee46wsLCTflckSZIkSWrPZrPx+OOP8+mnn1JRUeGzPv3xMYKiKOj1ehwOBxazhazsLCrKKyjIP8LlV15GTEwMW19T44tjkzCJg8KI6xOJw+YgcncGsTGxaLQazBYz2I5eG2DfV0UMuz8QrUartq/ejl+QmYSJ4RQsrsDtEmg8nWM2386xnC8K6XdjD0IzrRz5uYrS7VVEnxFGwoQICpaWU7anmsieIcSNDadweQXN5Xas8X7e/bu+OkLy+AhspS0+zyh/RRnWRD9vWzMvTgIFNn9yAID4EeG4HW72fFgAqIOUXHYXtryj13G2qImtyKFBgJpcAjWWFUJwYG7BCT8j0dbp5h9p8TnXaDRiMpkYqZwHwKBB6jM3rYkidWokkZlhOGwONr16gAEPpmCz2fjH39/FiZ3BgwdTW1tLXV0diqJw6NAh72y0b7/9lu+//977XYiMjMTf35/i4mL69OnD448/zuTJk0/YXkmSJEmSTmzbtm3cd999bN68mYaGhhPOugd18JFHcnIyQUFBbNq4CQNmbplxIxaLhc0vH2Tg9DSMFgMlOys4/H05Qyeo+Rf3TwGAutSscKv3aShuJiQpEGu4Gle4WwVavdL+5sDBuUfof1MmerMBgLojTQQnBRA+wErFlnocTa3eHFfLkRZaW1wYTOrrfZ8VMviBDBJGR1C8rpq9Xx5h2GPZZF2SxLoXc6AFyrbXUJvX6HPPlvIWag42kLu8AoC40WEEJQVQc0jNecWMCEVr0lKyXc1LxY8NAwHFm9XjQzMCEUKw99M8ABSNor73Y8I7l1ONceLGqXmk5mo1yFN0as7rwHfF6mvl6HMxmU2YzWZio2MZpZzPwLPUZx6tT6LwSBVDp/lWmTrj/h6Ulpby2cdfkJqWTEhYCHtz9mKz2WhubmbPnj1qrLxuHevWrWPGjBm0trai0+lISkqipqYGPz8/LrnkEh544AGioqJO+D2RJEmSJOnE3n77bd555x3y8vJ8llnrqF/MU6nHZDLRq1cvqqqqOHK4kIsvnUJCQsLRgUe3Hs15BUWb6DksBYfNQcjWZGKj4jCY9Vh7WLHn2X3yVqUra0keFeN9XVfQSEhyINGDI8j7sRxnSyt609H4z+0SoFGP3f1pAUMfyCIo0UI+kLeyhOTxMSQMD6dgWQVFG8qJHxZJ3OgwCldWUpfbSOQZISSMU/fvnVNM0thwGgvtPu/58JISQjOs2OvV+Kjn5UloDVq2tg0WTzknGpfdRc5n6qAkY4AeZ5OLmn1HgytHo9qP699DnQhYX9TYdqxRzXktVfsyEQocF/p6BpqHpwUB0FimfkYGvRGz2UzPhqGgHM15GVdHEj7Qj/RJSThanGx6RZ3EZ7fbmf32R9S76jnzzDNpaGjwDlLKy8vzFlDYt28fH3zwgbfie0R4BAFWdWWdwYMHc9999zF+/PiTfKMk6b+bHKQk/dcrKCjgqquuYtOmTd6ZRtA+MNBoNJjNZm8FpNGjR+NwOPh13Tam3XQNkdGR5G0oo3hJFUP/rCYEAjcngltNwngHHtXY0YXrCE4JoXh5vU9gcOy9AQ6tLqPP5CRMfuoPqr3OgSnISGCmibq9LWpHkZq3oHFrM0zGO5OsaHUFaefHE9kzmPo9zTQV2whM8sc/2ULj4WZam1wY/DXee9rrHBwbB+WvKKO58miglPNpxx1WO2bmev/3ge+KQAsHvlZn69fnNxKeHcShn8oAMAboQEDBmmoAtBqNWmmpbZU2jaLB5VCfU8QQdaR2Y4n6mVhC1Gdw6Af1Wp4KTcfydJwl9AlFCEFjVduFFbXjsHJD09Fj295sQt8QTCYTyUnJjFf+xKCL1QpN4VVx2BrVZfNcLhf/74X3aaSaiZMmkpeXx549ezAajZSUlHjLmL/77rvMmjXL27GWmppKa2srDoeDp556iptuuqnDZyhJkiRJ/0v+9a9/8dxzz1FYWOgzE+z42MtkMuF2u3E4HKSlppHUI4llS5YTSBi3PHIdWq1Wnf01IIjkMTE4ba1sem0/SYlJaHVaCAGqfctc58+pJLZ3hHewc3NtC/6hFpLGRZI3v6zdwCO1YW3nLi4l+9IeBCX5UUAFzWUt+MeYMaeYsR2y4XYePddW2oIiFHQa9Z9TucvKiT4jDHOw2rFWvKKcsLQgGtuSJbs+zCPlomgKlqoDuW1FNnZ/lN/u2ZVtrqVsc6339b65BWgMR+O5lloHLrvb55yWWjVBE5JlQVEUag6q9wyK9wcg72e1I03RqgkaW5Hb+3l44rKo4cEANFaocZneoEMIQd4Phe3a6OGJyyyhfgghvIkhvV6P0WhktHI+AMPGq8md6D1ZpFweTWRqMAX5BXw5+2uGjh0MCixbtgwAp9NJXl4eLpeLDRs2cMEFF3gHqwUFBREXF0d+fj4jRozgk08+ISQk5ITtkyRJkqT/BbW1tdx2220sWbKE2tpan0Hgx1IUBT8/P2/Oa9SoUbjdbrau3sHUqy4mITmB0r2VHP66nKGXqjkv66YEAIKCgrzXrc1rICIrBL8wdWa72yXQ6o7L37S9zP2hkOA7rehM6sz6htJmguL9CR8URMXGWlptLnQmdbB4S6kb3KBpy5flL68g+LoAghL8qdhST83BBqL6hnirI9kq7fhFmry3bCqzozUdjZn2zTuC23H0WRz6oaTD55Lz+dFK5YUrK9H7a8mdr+almkqaaG1xUfKLGkuZAg0IAQW/VAKgVbTgVmipbbuPwBun+aeaQEBjsRpwBiepObD8Jeq1NUpbx1kHA5oSRqsDmpraBjR5ljMunF/lPdYb/waB2WwmPjaBscqFDLwwHYNFR7KSTdm6Oobel4Xb7eb95z+ilgomTBpHQUEBu3btwmQyUVpaSmNjI1VVVfz1r3/l7bff9ua8UlJSvBMHHn/8ca644ooOn6EkSZIk/S+ZP38+zz33HLt27fIuFwYd57yEENjtdpKTk0lJSeGXJasJIoLrHrkcnU7HuudyMIbCgHOzcTS3svn1/STFqdUiw1MCqT/c4nPN2h0tiAuFt8p3XVEjYSlBxPYK4nBeGa12l8/AI+E+2heZu6SSkFsCCYhQY7jag02E9wwktKeJqt0tOBta0bcNCMcOwnn0PmXb6ugxNgajVY3pyjdXEdkvlIYitX/u4LwSHC2tFCxTYyZ7pZ19X7fPJ9UdbKbuYLP3dc5XeRiDjo3nbPh0pQq1vxXAHG0EFOoOqbFsSKpadamwLU5TDBqEC2z7jw6McjarOUlrknqPxrK2iXgBBrUa5crj4rJjuNqKKwSlqIPSGwrVcw06AyaTiYHu8WqFprPUnFfU7kzCR1hJGxtHcUEx33w4h76je6LT6fj5558BaHW1enNeCxcuZNGiRd6cl9VqJS4ujtraWs466yxeffVVwsPD2z1DSfpvIgcpSf81mpubufLKK1m9ejWNjY0+A5I8FEVBp9PhdDoJDgqmT98+FB8ppvpQIzc/PA2dTsfuL/KoO9DsXfLCb0cspla10yciK5DiJVXegUfBWRZqcpqPDkSywMEFR+h3bSaWtk4qe70Dc5CJmAlWipfW424VKFowhx0deKQ1qkmZ8l11JIyIIHF0FDv25uFodGIMNBA+0I+KzU24nQK9Wf3PtmJbAynnCsLSrRygiN0fFzDwvjSy/xTPxlf3se/HYqIHWOk/PYVf3z5EyeZq3G43fW7swYE5uej9ddjzIW1qLOEZgVTur2H/V0eTNhr90eTOoIcy0Gg0rH8xh6INNSSdG4lfmJHC9ZXk/lxM9BnB4FLPKd5SRWCshYA4C1qjhtJdVWCBrCkJoEB1Xj0AicPUqktlOWoQYQxQn1dzbVsJbY3i7fwK7K3OumtpUBMlllD1WG8A0kH1BU/Vq/C+oQA0VarBiSewsh08eqxWq+VMZTQREwJIOzOBPr36EpOTzeAZagnMH17/iT1NWxlz9ihqqmvYtHmTev/CQu/37Oabb+bee++lpaWF1tZWUlNTiYqK4umnn2bcuHGn/P5KkiRJ0v81CxYs4K677qKqqora2lpvPHTsb7Jer6e1tRUhBL179SYkNITtG3YyIGEgwy8bgtPRysaX9nHmxekYTHqiW+MpWl7nnc1vjjVTuqqW5DEx3oqRTRV2rNEWMs6LZd/HRQiXQKPT4Jdopinfpt5fDa3IW1RGryt7EJziTx5l2Krs+EWYCB1ooWpzs3quVgNmqN2vdgRZQtSEzaGlpfS9pgfZk2PZ8uZBjqwvJWlUDClTojn0fQl5q4pJHBFNeH8rFb/WU/BLOWG9Awjt5U9zcSMlW6rR+StkTI2jYlc1tio1jhnycBatjlZyl5RQtevojH5zCNiqIW5CGAlDIijaWEn+knKih4YQOcSfsPRQts46RMLwCMwhGjIv7cHBxYUYrWqyJfW8eJqrW6g7rF4zNM2Ky+HCbRdgBr1Z5+38CusTgKIoOO1tA5ySrQDUHFBnfnkGedmqj37ennPDzwwCoLlGjYGM/m1VDL5X48gOl5zzVGgKM6EoCqbmAIYr5zJ0hNoJqlmuDjYaNj0bp9PJzBdnE5qpJmh2bN9BeUU5TqeTPXv24Ha7WbhwIREREfj5+VFfX49er+fMM88kKiqKTz75BLPZ3IlvsCRJkiT939HS0sK9997L3Llzqa2tpbm5ud0xngElTqeTQGsg/c7oR0VZBdV7G7nu4SvR6/Xs/uwwdYdavEtemLZEYajzUyfixfgD5bgcbnRGrXdAkCfGMwXBwR9LicgKwRik5mWaipuxJviTeE4Y+YsqabW1ojVpMQVp1ME7AnV5EKB0YzVB8f5E9VYHKdmq7Vjj/IgeaqVkXT0OmxODvx5M0FzYgrO5lbDsIA58X8zheaUExltIuyCeTa/v58DCUiL7BdD3ph5sfz+Xsh1qZfCsy+PJXViEOdhI9aFG4seGETc0goq9NRz87tic19EesAH3pqHTa9nw8l5KNtURNzoMc6iBip01HJxfRGBqIOZGBwarnvyVZQTGmtD56TEE6ijZWgkm6DEmEo1eQ+U+tR0p42NAgcp9amxlCVXjNXvV0erhntn8pij1+bTUq7GiNV4d0FS8Rh3crmhpn/PyVCUf2jagqW0SoqZtwFjZujrvsVqtlj7KYExJJgacmUKfnn2J2p3JwNvUCk0rPl7L5sMbGHbWYOrq6ti4caN6/+JibxWIK6+8kptvvhmHw4HT6SQlJYW4uDieeOIJWQFAkiRJ+q+0bds27rjjDg4cOEB1dTUul6tdvkOnUyftu4Wbntk9CQsPY8/6fSSQyqQHx9Jqd7HxlX2ccW4yllAzMdoeFC6qQqfRoSgK5mgjtqK2fqu22KT+cCPhvYOJHRFG/eFCWm1u9BYt/nFGGgvt6pK4OgWMkL+kirDbgrAmqLFDfV4zoZlWwoZYqVxfT6utFZ1Zpy7TVqHexxKu5ksKfi4hvFcgCWNiqdp9iNzlRWRelETyBVEc/qGUA/PzSD0vifC+gVRsr+PwT+rxoT2tVB2sp3hdJW7FRer50ZTvqMZRpw4IGnhPOu5WN4cWFqsDkhRAAaNVg73eTegZVtLOiaV4QyUFyyoItRoJ6eNHeEYwuz8pIGZoCMYwI2nnRrJ/SQmWtpxT1sXxNFXYqDrYVvGyfyjOllbsjW0T6IKMtNrVNvjHGdFoFex2tY8wrGcQAHW56gAnrVEDAuyH1GciAJdDPdY/US2mYGuL2fyC1Rgu95ej1S/brRbjVF+HJKu5Nl2zhYHKGIYMz0Sj06AsUycGDpueTWtrK5+88DWa+FbSMlPZtWsXJSUltLa2snfvXtxuN7Nnz+aTTz7x5rx0Oh1nnnkmqampvP/++xiNxi59lyXpP5UcpCT9n/TSSy/xwgsv0NDQ8RJpno6VsLAwMjMzqamu4cieEu589DZ0Oh17v88jJDOI8MxAANY+uwdNW8mijAvj2fjaPu91YgeEkru2in7xAVjaOoEcjU5MViPpFyawIUf94dDpdPQYG0nu/DKEEN4Ry6W/1tBjXDSJg2LVQUpuN3q9jvjxsez/sgghhLfTrXB5JQkjIvBrCxTK9laROCSGhJExVGw+0Pbjpw6GollNPnh+EIOzLBj9DN6R25nnx2JoG9nsn2yhx1nRagCjUeh5dRrGAAPBPfxpqXOCAuGZIey3lHirHnlms4G6lIjnuunnRuEXaVYHcEWZ0Ro0KBoFd6tAo1PwjzYTnhWIrdqBolGI7hNGY4ENW7WdoB5+hGcEcYBiDi8vImNyIj1GxlGxYR/CrXYSxg0Ow9mkdph5qkaljI4GwOSvJsGM/gYURSEsI5i6vSUoiuIdER7aWw3IPIOR/KLUAWatLWqQoWg6Li0OEJWpdpC5W4XPsWHNsYxSYhkyRE3iBW5JpMdF4cT0iaCoqIgPZ37EwCH9cbvcbNykJnMOHjzIwYMHvcma2NhYnE4n1dXV9OrVi88//5zMzMwTtkWSJEmS/lNUV1czefJktmzZ4p1ZfTxP7NW7V2+CQ4JZt3IDV1x1GQnJCbhdgvUv5DD0oiw0Gg19Ewew+6N8hBDo9Gq8UV/cTGgPKwnDYihaXte2HIiG9HOj2T5TLfus1WvBDMVrS7H+KZnQpECgiKbKFqzRfqSfH8PWt9X17nU6HeZYM/WH1Y4Vc6D6D/jSLdWknBtD2lkJVG3ei6NZjelih4RStLxKjUfaOnea8j2dPep7C4j0V5MNFrXNCcOiULQKIanqIKWE0REApJwTS2VOPdEDQnA5Q9HoFAKT/NCZtBSvUge7G/z0pJ4XR9WuvSgGNY6JHRPDwe+Kie4bAgro2xIxPSZEeTsHE4aHED8snMAeFsxhRlLOiUWj0VC4vAKdUYvOrCVtchyVO3JwtrRi8NOTcm4Uu77Iw+V0qc8QCE6zqh2TbdU8/aPVwUNhmcEUraxBZ9KqsZUZ/CLMagdXW8IsNEN9Dp5YV9GpSRprtPq8j60gGjkkyOd7YvZX79dQrCaGjq82CqDVaumrDOPMC9MwmAxkxmSz9+Niht6bhRCCt5/7J/VUM2LECI4cOUJ9fT2tra2sXbsWAIvFgp+fH2FhYRQUFBASEsK9997Lo48+2uF3V5IkSZL+03z22Wc88MADlJaWdlgZyRN3hYSEkJWVRX1dPUW7yrnt0RvR6XQcXFCM1k8haZS6bNfaZ/cgnIAe0i9IYNPf9oNQrxM/NIzi1WVEnRGKuS3n1VJtxz/aQvqUBDa+sg+3y41OryN6+NGcl6GtOlLRhiqsCf5E9w9XBynZXegtepLOj2Hvx4UIBDqDGn9U72mEP4F/dFvn2LpSek1NIWZQBCXr6tt1+OjNOkTbtHZTkAZLmNl7TPrkaAJiLAghCEozk3puDCgKihYsV6dgCjYQmmmlobgZRQORvUIo3lhDc2Fb1UjL0ZS40U/vvW7S2HBCM9Q4KSjRH41eg1avwdncit5fR2CiH/Y6J/VHmtDoNcSeGY6jthVbrVNdxqNnMAe/L+HwsmJ6X5ZMwrAIyjbU4nYLdIpC5JkR1B6uBw1o2nJOyRPi1PfYNnnPEqLGZUHJQVTtsqHRarwxkynK8x1QXwenqJ1hngFP2mMmHHp43lt820Bz1PQY2rZqnfrcQIYqZzN0aDYA1k0JmNJNDLgshYryCj74x2z6DOqJoihs2qRO2jt06BCHDh1i5cqVAMTExOByuaivr2fIkCF88MEHJCUltWuLJEmSJP2nsdvtXHPNNSxevJiGhoaTxl49e/YkLCyMTSt+5cJLzic1OwWXw82Gl/cy5KJMtDotfeP6s7tt1RK9SR0gVJ1bjznERPyACAoXVeG0t2L0M5B6TjQ7Z+Wpxxp0GMONHFhWQnjvYIIT1Mlk9UcaCc0IJPX8WLb947AaU+i1BMZbvFWJPIOhSzZXEpppJWVMDJXr62mpt2P115M4LoL8heW0Olzo2gomeJZc8xQr8AvzQ9EoGPzUGClpQjxag4agZH8qtteRek4MaMAcYkTvp6XHWdE4bU50Rh3WRD9MQQZKN9aAAFOQgfQL49n0+j40BjWOSRgXxYE5xcSfGYZGp6Azq+1ImxyLolHzQ+H9rfQ4K5rAtHqsCf5kxljQGDQUr6tG76fFFGwg44I41ufspaXWgV+kmdSJkez+ugB7oxOT1YDRCiFZVoT7aGGE4GR1WeLgHgEULq/CHGhE0Sj4xxlx1tvRaBU0WrU94b2C1M/DrMa6hkB1QJklwIKdRm+fJYC1bUCTZzWcgDC12IK9rfrTscd6aDVa0pW+nHFBCpYwE9kJvdn9QQFD71NzXjOfm00V5QwfMZTCokLq6+txuVzeZXs//vhjLBYLERERFBYWEh8fz/3338/tt99+0u+5JP0nkoOUpP94Dz/8MH//+9991nA9ltFoxGAw0NDQQFhIGFP+NIVAv0C2vZnH4Bsz0Ro07JuTT7TShFarxe12U3WoiapDTYRlWGltGyFrq7HjF26mfJ9aPlm41aXWirZUeQfueGaBl+2oJWF4BE016o6WWieWEA2lG44uVeZJApSsUQcpeXIth1cUknZWAoqhbWT0kUZMEQbvwCOX0427bUZU4eoaEgZHY2irnnR4cRGpk+MYelcW617MoXhzFW7RSs+rE9j9bQHlObWUbFFnbeUuKyYkLYjaw/U0Hm6mcG0FbrdAtAqKtlSRdl4s5dtqqDvQTGCahYh+wd73CXifC0B5Ti2Vu9TrHvyplOgBwdgq7RQuryR2ZChas5aCJeUEZ1kIywqm+kAtVTubsCRYiB0cjN3ZSnCgnrzlpRitBpInRxF1RghNlS0Ur6sgeXIUGp2Gljo7VTsrCe8bjhCC8rYZaE2VNrQmLQW/lHnb5LA5KVlTRni/tkoALeoo6Yje6kCjirbZarjB7XZzZHnl0ffWtvRMRH810LM3qx2uep2amCpYcfQ+xyfJPBWazMFquU6Tw48xygUMnZCFolGwblbLofe6K479+/ezYMECzGaz+r2rrMLldrFt2zb69OmD06kOxkpLSyM8PJy5c+cSFhaGJEmSJP1RioqKmDx5Mjt37vT+5h1LURQCAgJobGjELdxMnHgO2dlZHPyiAltpC8OmZON2CfS/hBNAEAD1peqAFLfTjWJQyFtZ7r2eJ/lTtrGKsORA7E3qb3JLgx1LsImStvjD5XSpg4VsUL2nBTFFeGdI1exrJCDKgq2tso+jwYnRaqBtJTZamhwY2zrSyjbXkjA6goZytdpQwZpKUs+OPiYebFFnt40MpXhVFU3lNvwizMSNCqPgl0o1oWPWYo41k7u0FFOIgfwl6vsp2aLOrCtYXIE5RIOih+JfygjuGYyzyekdhL7h5b0kTYzEVtU2Y8shEAZB0Vq1bFHuTyUExPmRu6BU/Uw2VNLS4oBmKNtdi97fSPGmWizBagIlqIeabFn7/B7ixobjanGRfVUiuz7fT8ygaEq31jL0niyEgLKd6vMMy1BjoLy22Mptd+NUWsn9qQRziIbmKhtuN2CD+CFhCLegaIdawTIw1h8hBIcWqMv/6jQ63C439SU2MKuxU0ud+t5CM9VOvsLNnthKjZHLttYf/Q60xdexY9uqX5a3xfwuBbfbTf78o7PVAAYqYzCHaDhjdCbOFiebXj1A79sSaXDUMefbOVTWVBIUGOSt7lVVVcVjjz3Gs88+S0tLC2azmZ49ezJ+/Hheeumldt9xSZIkSfo9vfPOOzz99NNUVFS0yz8AGAwGTEYT9Q31WP2s/PnyP+NvDGDXO0cYMC0Vo7+BfT/mE6k0oVHUZcHKdtVACySOjPTGOPWFzYSlB3qrW7fa1aXWKrZW0lKLWgXApcZlR9aWkXlxkje2qj/STFCSPyU71DyLcEHbvDBq9ja1bVPbvn9RLr2nZiDawsjKPXVY4y2YgqClVs3l0Nb3V5fbgnALbyfQoR+LyJyaxJC7M1n/0l7yfi5FGCDz0nj2fnmE4i2VVO5S25D7UwlhvQKpPdRI7QEbucvL0CjgtLmo2FtHj/GRVO+to+5QC6Vba4nsG+gdoAR4c0gAJZuqqDmkPpe8lRXYGx3Y6p2UrqomvH8gxgA9hSsrCUozE9TDSl1BIzV7mziypproMwNpqGgmqncIB38sxhSsJ2ZoCEkToqgvbqJkUzVRQ0LQW3Q0V7dQtqmSgOQA3K2C8j1qXGarbsEUauDIyqPVwu2NDorW12CJUwcsOdom80X3iwSgIqdWbbzQ4Ha5yV2knosbXG2jkAIS26o3tVUlNwWor/PXtN1HKGru8xieKgIxGerSJjqbgRHKuQwal4HOoCVgYzwo0PvueA4dOsQPP/yAwaB2AFZVVdHa2sry5ctJT0/35rySk5OJj4/niy++ICoqCkmSJEn6o9TX13PFFVewYsUK7xK4x7NarTQ3NeNyuRg/YQK9evXk0FcV2ErsDLs4G5fThW5lGKZ6Na/SWK52qjmbXGisGvLblhBTcx1usEPpxgZiB0Rgb6ua2Fxux5Ckp7KtmrWj0YnerPNWO3I53bS2xSrlO+sIzQj05pCayluwxlgQWjWgaqpsxhyo/sbX57bQUuPwtil/WRnZl1qwVav3rT/STEhqALEjQilaXUXN4XqCe1iJHRFK+a9VKHrQmTT4xxk5vLgES6iRotVqf2n+yjK1v/SXKoxWOBKoo2xrPYGJZhwNTgJi1AE6m9/YT8zwEOz1avvdDrfa57ZGvU7uslICE/y8S8Pl/VyKy+0GJ1TsrcccWk7FrnqK/aoQThdB6epz3vDKPqIGBuEWkHp+NDmf5xE5OJTqnHrOnJ6BRqtwZF059nqI7KP2EeYtVatoOpqcaAwK+T+XgBHqixvVZXkr7CSMCsfldFOyXW2Pp9L4oQVtuSih4G51U9NWtdzd6sZWoz7PsN5BCCHUypoAQs15lW9U36uCgqtt+eGgTLW4QkPp0U5Yt9vNwXmF3nM1ikIvZTAYYdjobJy2Vja9tp+0K6JptbSw8MdFFJYcIShIzXm1traSm5vLHXfcwX333UdLSwsmk4m+ffsyefJkHn/88Q6/45L0n0IOUpL+ozz55JO88sorHS7V5hEUFERWVhZb120ni0FMfnAkAOueywE7REdHe//x7mhyYDGa1ZKGqAkXjVbjMxjHM4G7al8DfuFmzAHmtnNbMQboMVvA1gytjlaUtixM0fIqEkdEQqt6cnOFHf8wM3FjYznwdRF1RxoJTPD3DjyqP9KMy6X+KFduaCL9LAW9tm3Ztp11pJ4Xx4AbUtny1kE2/H0vg6dnkjA+nIKfK8j5Jo+aHLXBFdsaiB/h9C63kbewjEEPZKAzabEEmTjwtdpZNOSRLBpLbexqG4UNagKmZE2N9/WBr4sITLMQOzKUolVV1B3wLRXutrt9jrWEaehxnjpr7sBh32ML2jrnanKacdqh9+WJ5PmVUrK+hgMFzQx5JAuNTmHfD4XQDOH9AojoHcz22YehWX1fdfkNVO1UA8PoAaEUbaxSr2uB0LQgXA43ZRvrsISpI69tlQ6aK90EJKsdaft/VIM/a5wfwiU4+I0aRBgseoRb0Fzcon4eAuzV6mcRnBmgdrK1BSuexFjlVrVCl0aj8VZVChugdgA2lqrfTXOwOkp677dFbd8j31HRVquVvtn9cCy00PuqJAKiLRRvqWDe/B/JGpNCQ30DW37doj7fAwc4cOAA4eHhaDVaEpMSqa2tJSoqipUrV8qBS5IkSdJvorq6mvHjx7Njx44OZ4p5ZGVlYTFZKNtaw+SLzyOiZzCVB+rY/0UR/fumozfpsJUe8R7v+UUsXFtMcLIVfVt1xqbqFgIiLbhRB6EIl/DORqvdry4lotWpx5ZuqaTHuFgsoepvs73WiTnEeMw9FPRtA48Kf6kkfkQ4ARHqP/gPLSwifnQkpgAtTYCr3g0mwAzY1MpIIUlBQDEVm2qxBBtIGBJB2Zpatr2TS0iWheq22Gv/17n0uSmTxtImbKUtFP9Sxhl3ZBIY6+etvBkzMpTEkRFs+yAXW1ucYKt201hiw1btxrZKTU5UUE/SxEjKNpWRt/jogGgPz7mVOxqo3NFA3KgwavKbvIOgQH0PjYU2bEU2bGoIQszgcAbdn8HG1/ZRuLwCa7KZHhOi6Dk1jc1vHgCgucoOAg7NUWOedS/kEJRupna/jaSJkSgahY0vq+9n4J1pGIL07Po0FwCdRYuCQsE8NelSX9gILoXa/TbMUSbQQOXeerBB1mXxaDQaqnLU5I1Go0ERCoU/eWJQgbPZBTZ1KT+Allo10RYY5w9A8Tr1eWl0CgjfJefcbTFwaN9QFEXxLudrtBgICIuhX+0YUGDoDeoMtAXPreWQbisDR/dn9+7dlJaW0tLSwubNm9m8eTMvv/wyISEhBAUFUVFRwbPPPstdd93V7rORJEmSpNPh/fff5+GHH6ampqbDAUmg5hJ69uzJ3k37SWk9g3MeGIKiKKx7Pgea1Yo19sa2Dq4qO6YAI0Y/E9BEq8OF3qgDT0rNDUpbiFexvZaw9ED0BjV+stU5CDCZwWQCWnA0tXqXGanZY4OLFFwOtY2NRTZCkq0kDgpl35EiKnJqiewV7F3SrWpPnTfD3HjADUJB2xbjlW6pJrxnENmXp/LrPw6y+bUDDJiRRsK4cAqWVbD7c3X5OYDaAzaaSmzeYLJ4XTX970jFFGIgINFE7nw1fjrznnSaq+zs/ijf+9xcLS5Kt9V5X+fOL8MSZyJmaAjF66rJLfTNM7rtR59/7qIyTEF425Q73/fYwpWV3va11An6XZ9E3opyStdXkzu/hTPvSUfvr+PI8lIqtrkJTDHR2uLi4Lf56gAwoKXKRu0BNQbuNSqCovUV3sl00QPCaLW5qNhWByY1T9lS6aSlvIXgTD/qCpsobBtYHpJuxe10e5euMwcZwQ0tbXGkcAtsbR2cwen+CLegcI16rinQgBCCio1qoxSNxptfNMerA83ri9UY2L+to/HICjW3plHUuMwjICCArJSeNCsG0s6PJrxnMKXbqln8wxISR0Vhs9m8VZcOHz7M4cOHiY6ORlEUkpKSaGxsJDU1lQULFhAUFIQkSZIknW6eAUnLli07YQEEgIz0DPwD/Knc0siQwUPJmJhA5b469n9VRL/0FCxWI7YSdSCJcAkUoQYqBb9UEDck3Fuxuv5II+HZwWj8DICd1haXNx9mr7SDGzRtOa+CtWVY4/0wBahxWVOJHWuCFoyAHXALDBZ1X01OI63NLvwj1d/mQwtK6DEhAm3bzDxbuROz1YTRCvZ6dXWQsPQg9huLqT/cQt7PpcQPDqd8Qy17Pz+CtYeJ+lw1bsj5ppCBd6TTWGrDXu+m4JcKhj2QTUhKIJvf2E8NjYT2tJJ6XjQ7Ps7DVqLGGPZ6sJU7sFfaKW/Ly9TubyJmeAhVO2spXnNMIkeof54BWHUHm6k72EzEgCCay2xq9aVjNJXasZXY8XxikQMMDLw7nc1v7Kd0cy3GMCOp58ZgTfDj1/93EICGomZ0Bg0FP6kDjTa9vg9ropH6fDtRA4Mw+OnZ9PZ+sEPvaxMJiPVj9+d5YG9btQWFgoVqLqo2vwFNoVatUmVUP7OKnBqwQ8JZ6uddc6it/9CkRbigYJEa0ykasDc4sdeDUR3rhK2tqlJIWzWnss216rl6DcIN9oqj+VjPajChqVYURaG5Qn0KfgFmLBHBZNYMJlMZzNBpWaDA4uc3cEjZTr9xvdi7dy9FRUU47A42bNjAhg0beOKJJwgOCiYkNITm5maeffZZbrjhho7+M5CkP0T7GrCS9DspKCggJSXFu1SXoig888wz3gFKnpk4iqJw1VVXcf9dDzJBuYRpU2/grLPO4uIRlxGqhHkHkQBHlyozti21tq0SIQShGeqybrZqu+867ijo9OqxhW3JAc+I3+LNlbhaXfinqj8euBSfssnCLbBGq51hB74uor60CU1b+b7aw00IlyAwVr2W0aojOMnqXYpsx2d5mEPU91f+az11eY1s+Zf6g2qxaNAaNYRlqb9iNTnNDHogg0EPZADw69sH2f7uYW87Nv6/fRSurVAH4QBYQKNVMAb4jkHsMS6aIY9k+WxLmxRL4phILGGn/r+CvjdnEN0/1GdbwvhwEsdE0vv6JO82vVENhAIS/bzb1r+ZQ8Hqcu/nU7GtgfUvqgm26OHBDHsi2xvMWRIsaI0aQtt+tGmGkl+rOLxY7YnrcW4cNYcbvAOwks+KwRJqprlAvXirrdU7OhmL2vF1aIV6bq+piSgahfLtauDjF6IuX1K3Qz3X5XRha5v5b4lRR583t609G5mtrhtbtVtNemkURZ0p6BmvpRytPhU7Uu0484xQ17eVyMxbUEFvZTAjR45k0nmTmKBcwgS/S5g+fTqDzxystsnfj8rKSqqrq9mzZw9RUVFERESoJSUtFu65555TflaSJEmS1JGXXnqJgIAAb9wVGhrKtm3bvMvWattKGw88YyB33nmn+julXMIll1zCpEmTyFT6U7SirUMkUI1jHDWtKIpCSJYa87Q6XN7lUhty3Qi38P7G1x5sVpc1GxADQFNli9oJpY5VoaXeTqtT/S0t3VavViiMUuOJyn0NKFqF1IvVcw8tL6S52u59b612F44mdRBy7X4bAVEW0s5Tl87YPvMwtYcbyZisvs77uZSC1RXec0NSA9BbdJjViVbo/QwMezybsD4B2KrVyke1+9XEgK3aTcHKcu8AJQBrjEV9z8eUce57czIpZ8cQ3la10SNmUCh9bjr1cq9+iWYSx0SSdm60z/ah92SRcm6Mzzajv867XAdA/WEbBasrvAOUALa/e5jt76nx46AHMhh4V5r3PQWn+qtLy7V9DptnHqB6f8PRpfKCDGz9UB2wFDkwiOBkK4ZANVlmCdMhXIKafWr1AbdbUJ1XT8HScu+z8VRKAtBoNbjb4rTgVCMup4sjv6jH+keaQEDVLnWAk1avPdoZ1lahqb5txllQDz+1QtNa9XPUGdrPvXG1uAlRQpgy/lKGDx/OxaMvZYJyCfdMv5err776aJs0GvLz82loaODuu+8mMDCQoKAgtFot/fr14+DBgx19RJIkSZJ0UrW1tQwfPhy9Xu+NvW6++Waqq6vV5dLacl6gcNlll3HP7fcyQbmEKyZcy1lnncX5o/5EkBJEq+24ypYCbx6rZIOa8wpMUuOw+qJmNedlajvULdC25cdq9jYh3OoSrwCFv5TjsrsISlYHgbtaji4LC+oscc8A4iPLK6k8UIe7repOzf4G3K1uTOHquYZAPaHpgYT3U3NvW2cd9k7sashvoXJ3Hb/Oavs9NYHRqic4Tc351B1qof8dqZx5bzoAO2flsfODPG87fv1/B8lbXkZD/tGBQ1qjBmNbp55H2uRYhjzsG2OlnhNNj7OiscSZTvg5efS5MYO44eE+28L7BZJ2Xiy9r0vybtMY1HjGGmP2btv0t/3kLS2lpdbtfU8bX91HSy2EZPsz9LFs9H7q520K0mDw1xOSdjRGzFteRu5StYJm2jkx1BxoYNdH6jNIvyCewDg/70AuR4PT24EF0FRh4+BSdbJA8vlRaPQaKvepHWfWaHWJ3vK22MrV6sJW3fYcTWpHWlOF+jq6X5SaH8tVYy2tVp2015DfthSMVkOrXb1vUJqaS3PUqBNETSHq8y1eVUqa0odRI0ZxzsRzvP+WmDFjBsOGDgPAz8+P6upqKioqWLduHWFhYd6cV0hICI888sgpPytJkiRJ6sinn35KbGwsWq26fH1gYCDz58/HZrOh1WrRtRUN6Nu7L9OnT2eCyZPzmso5Z59LmtKbqu1qhR1PnNFc3qLmz3qrv9uOJufRJbzsag5Mo1NfV+9rAgUi0tX4SV1yVsFoVfM19SVN3t/SxkN2NIrirbhdvrsWrUFD6tlqDmjfgkIaStRBMgBOWyuOtipMthI7QQkBpE+OBWD/t0WU76olfrR67qFFxeQtL1UHOwGhaQEYrXqMbXGbRq9lyCNZ6nuyw+a/7vcuG4cdDi4sZvM/9nufq3+cCY1Og97g3UTG1DjSLoglamCQz2eQNCaKPjemnvKzMlo1pE6KIXmib35r4L3pZFwY57PNFKRXl6hrexb2SjuHFxXz68yjuZq9XxxhV9vg9f53pNL/jlTq89UHEJZlVd9/2/k7v8hXV5hpe89+4Ua1mAJg7WEisk8IpmD18/cPN+JyuKhrK9qg0Wqo2FvjHQwVlhqIaD06yEhr0OJuUV/7J/nhtLVyZH1bVfIEtbhCxXa1f1Fv0sIx+TLhFtQXqUUcglL9EG5B2Ta1H1Pnp1MrkbZ9pkIBh60Vq2JlXJ9zGT58OBcO/5Mad91wN9dccw06RX0PWp2W/Px8SkpKuPHGG7FarYSEhGA0Ghk5ciTbt28/5eclSb8VOUhJ+t08++yzmEwmb3ImMTGRw4fV//NXFIWw0DBMBhN+WHnkwUd4+OGHmaBcwnj+RHJyMiY/9VekaLNaAju0h5r8aG1WO8dQczK4W4V3sFDJ6nqES3jXN7XVOFEUhR7nqeWRGyuPztACaLW5aK5RO2Tq9tah1WlJGKQee2hxIcItiBurVrWpL2ii/sjRkpABERZCU9VgpWhVFS3VDlLbOpFyPjtM1YF6b6WgpJHh6P103mvt/raAwdMzCe3tR3Olm7Wv7+HXtw+d8FmG9vZj2BPZJE+OgmYo+PloRxvNsPa5PWz5u2+HSsXuOoo3Vvps2/P1EaoO1NNceeLqCR4Fq8rVgUbHbvu5AluFnZ1f5Hm31eQ0s/bZPez/stCnTZ5BYEMfy6L/9KOBiilIjW4aK9WOxeaCZta+voet/1Tf/6D7M1AUhYptbUmWBD/vGrIAe77Kp6Jt4FBobz/0/nr2zVUTNL2mJmIKMmIyqd+d8p01OJtaKVmv/rgbAvQ0lR8d3KU369C1jWb3jzXgsrup2FELgF+kWQ0MNrYFERa9z3dHuAVNxZ7OPrVCU8lO9Xl5Rr17jxXCm1SKPiOYkJAQhvQexgTlEm67/nbuvvtuUpVsFDRkpGd4z7PZbLzxxhuYzWpCyGq1MmzYMAoKCpAkSZKkY1VXV9OvXz+1kk1b7PXII4/Q2Kh2UhiNRiIiItCipbdlII8++ih333wfE5RLGDlwNMHBwUcHHtldCEX9h7Onqo1nXfeKvWrnWHgvdYRPY2mLd6kQUAeEm/zVYwuXVyBcAmvbgPDKnHqcza2EtC1FodVqMVnbsh42tYS1KfTouc7GVqrblrawBFmwhBpJ+5OalDkw7wimYIO3Ok/Zzhq2f3J0dn1wagDBqUdnLRn9dQy8Kw2Are8cYu1re7zvzV6v/qvfFHS0clP/6anewd6Fv/jGU3u/PMLa5/ZgKzo6M2//N4dpLLZR8Wu9z7EFqyvI+7m0g0/MV1O+jcqcOvZ9leezvWhjFcVtZaM9Nr95gHUv5PhsK1yuxoYp50cz7PFsrMlHO9JQ8A4kA9j6/9T3jw3C+1sZdEcGe39QY6nEsyPQ++uIG6J+vmWba6naV8/2j9QYvsfYaBpKbFTuUOO00HQrwfFH47S6gibvDLPEsyMQbsGB+erg8dj+EWj1WqoOqd/J5poWHHVqZ5dnwFRdW4Im9dwYdRZZ26w9jV7B5XRTv0995hqt4k32mWPbOs4a1djSGm1BCMGRX9Tn5me10COph7fj7Pbbb+e+GffjTxCREZFERUXR1NSE2+1m+/btZGdne/8bysjI4KmnnjrBpyZJkiT9L/vwww8JDQ31/mYEBwezdu1aWlvVnFVoSCh+Zj8CCeWBGQ96c14TlD+RnpqOxarGR4Vr1CpL1mj1taPeiaJRMEWp8ZKzpVVdAheo3WfD5XChNaqvbaV2FI1C8lnqklo1BY1q2qJtjI692uEd5F2T14TWqCV2QAQABxcUIVxu4tvyVNUH6qk93OB9fyFJAYRlB6n79jRSX9hM8gQ1Dtv5WR4Vu2rVSkBA7KBgjEF677X2LyjizNvSCe0TAC2w9rU9PpPvFI3ik18JSDQx9LFsepyj5uOKV/vGPutf2uudOe9RtKGSwnW+Mdr+b/Ip31Hjs8zbieQuLSVvuW+ly4ptddTnN3Pg+zzvtubCFtY+v4f93xX5HFu8Tg0kBz+USb9bU7zbTZ6B/Q3qc2+pdavvv23weP87UjFYdN5nF5JhJSQz0Hv+9o/yKPlVff+WOBPmMCMH5qlxWsoF0fhHmrEEqYFT9d467LVO7/MyRxhoKGr2VtYyBRm9VUuD4kw4GpxU7lFjVWusH26n8J5rCjT6VAx3udzUF6oddOE9g9WKTHvajm3ryPVUjUIBZ7MahwWlmQkKCuLMrCFMUC7hpstv5a677qKfeQh69GSkZ6Bpq1pfU1PDSy+95JPzGj16NHl5R5+/JEmSJAHY7XYmT57s09941VVXUVxcjNvtxmg0EhkRiQETWcoAHnv0MWZcfzcTlEsYlj6KkJAQQtuWEXPUOVE8Y0XstA1SaiswsLsS4RaEtOWT6g43+ea8hPqbCVC1ux5Xiwv/aPV3uXJnPfY6J6a2gc16gw5LiNE72Kb6UAOm0LZzd9bTXN5CZdsEMJNJjzXOj7S2/sUDPxRiDDVi7dE22HxdhVoJqE1E72BC24oe1O5vQlEUzmiLR3Z/WsDa1/Z4KxnZG9TfaKP16GSvXtckMvhBtR+qfEutdzAMQP7icta9kOMd9AOw74dCag40UtpWFcjj4KJi8n5uXzn8ePZ6N8Wbqtg3t9hne+Ev5d7JaB47P8hj/cs5Pm0q3ay2MXZEKEMeyfI+F8AnpgTY9XHb+69XByENuDmNg0vUCZgRA4Kw/H/23ju8sfJO+/8c9WZ1ufduT/X0mdBDJwRCJyEEAgQIkAAhtCS7v2STLAkpmwALG9IgDdIJJaGHNo0ZT3fv3ZaLLNsqtiX9/nikI8mSBrLvvu9usrqvi2uwjs45Tzt6vuf73M995+oo3irEGby9AUb2TdHxW7HeVnFmAfPDfplYlL/ejr0yHqdNtc0y1eaVrxUJhemOii0Ubc5FrVfh6xPx08KUn0BU1AAAhYSnX+TDCj9gR6FKED0wKFkOhJg8JI6r1Iq4VbEWFApJzp/Zyo2EQxHGDkbjP4uOstJyTuECkfO66dPccfOdOCnAYXNQWFDI/Pw8i4uLvP3222zevFl+hurr63nwwQczdVsWWfyXI2v3lsX/Ndx1111873vfY3l5Oe3xgoIC8l35LByO0LRmHXUXljE94KXtiSGWfWHUOjA4FfgmwywGllFGF1NmDvqQzpcwOsXEM9YyRdn2AspPzqPvz+P4p4NoElSEJKWEKVcEAh1PD2G5q1Y+1z+xiNGuw1Cok5WIzIXCps03Gabr1SHMuYL5PNW9IBSCogtrE0dmqDm/hNrLi+l4eoj2Z/qZ6o6TlrQ2DdH3bHyTYUKBMFs+X8feB9s5+kQ/pkoD81EGrqPKiFKroGhbLlNHesEHuRvM5G9wcPiHvex9ML5bHyC4EIEIsmIAgN4JTTc1MnHUQ9cfkyd3gM4VCRQA30iA9qeGUj5Ph+G3ptJ+HiMTpcAA229vYGEiwOEf9sY/DyPLSYOQ4I5JdltqDFScls/BWLLKACq9EketmR7Egt6ur7ViKBV9UHNpEbYyk6xmkLfOITPXAY4+0U/uBjMT0QXC6vOKCc7GAwGFUkIVVR5w1eYwvHccd4xIdkoBSq1CJjQtB5aRlHGyUXg5wmSbSEI1fKwUhVLB4oJYHAstLxNejjC1T/SvpBBsdxBjWqFQsBQUf+cU6QiHw/S+Kto3Rmgqp5FyqZEdlzQSWgzz+jeamSzrxlXslNnNc3Nz7Nq1i7KyMnFOeTkul4sXXnghaxGXRRZZZPG/DNPT02zfvp2Ojo60xzVqDfV19cwMz1I6s5pT7mhCoZQEuSXKrdGaxRw0uGeC+g+XYa4QtmeRQASFTiHbpS35llFqxALHyNteSj4QJhyOzoF+sQu/8rwCep4fZaJtCnuVVS5HOBQhFN1VNLJvivJT8qg6p5Tptg6OPj2Ic5VBtiFTaRQoVQkqlssR6i8qZ+fXWuh9YYy5oQWZHKPUKFFqFBRttdH1ez/dL46y+dO1uI/O0vfiOId+1stCf5xEZK8R6kmxOuGHdTdW0vHcKJ4OPzu/2pLUfuFloQqViHU3VqK3atj9jbaU9vZPw+Ef9aZ8HiMPvR+0/yY1RospFKVD9UWF5DZY2fmdFrlPl/whiMCSL172vd+Mx5Vrrqtg8K0xWVWpcJMTlV6JMVfPQr+f/pcmmGyfk9tuy+frGD80I19fnaNCoY/30c5vt2AtEXF348dKsZQaOfpL0Q7GXD2SQsI7Kk6e7ppjdmReWL/ZwVxoZNEjkizmAkEOnx8W8bnWpGZxfkm2vjO5EkhXiB1kMWuTwg1WiMDwAdHWRrtIWsbs9MKhMMs+MV5j5K1Fb4ht0uk0nFuCrTSHA4/30D56jPyTcpiYmKCtTfRxR0cHX/7yl/nyl7+MTqejsbGRM844gwceeCBjv2SRRRZZZPGPie9///t84QtfkAngK5GXm0dRQRH+Qwqq8uvZcEMlU91e2n85RNCzjN4qyDhz/QEC3iDKqB1IILpj3+gUc9TIwUlq80spWG+h9y8B5of9GPPjCzEKlZKcqPLkwGtuHKssaE3R3f+jAWylJnLydLISkbXMhM4qCCVtzw5giZ47Nx5AUiowRvNnY83TrLmqkrqLi2j/3TCtv+3DMxiPpYx5urjaeAACnkU231HLu9/toPtPo4w2x8lBBqcOtUlF4UYHU4fnIACWKh3FH8jj2JP97H8orv4IsOQHwhERx8Sgg+13NDJ+dJqeZ1MJ3/0vp8ZIAU+YzjT5sXRwJ1jFJSKmaJQOWz9fh28yyJGfxL8TCUUILcbLPbJrWiYw6fJ11JyTH/++TmzcczaY6XtJ5MX2fKNNJqSVnuYid62VfY+J9slvsqLSKVFEFa+6/zTKTNcc0y1iDDZcWkFwJp7zUqoUqKLjylKlo/+tMabaRJ6q6pwSNDlqxg6KsoX8IcKmBLuRpWUm2zwAlJ+Zh0qjJBTdbBeKhFgOhBh7NxqHaxUszi/JdVIoFYQC4m9LhYlwKMzQbtE/eqsWIuAMFHOyVMy2CxsILYd468HDjOS3UlhdwJHDRwgEAszNzfHmm29SUVEBQFlZGUVFRfzud78jPz8/Y79kkUUWWWTxjwev18sFF1zA22+/nXa9UaVSUV9bj98dpNBdz44bV6M2qtj9gNjQFQ5H0EY3xQ28NY2jxoKxSMvUEVheWEZv16I1Kwh6w/hmAnIs5WkLsji/TDgk5sDFhWVUWhWV5+bT88IYI/umyFtrl8uxHAyzHF0Hmjrmpe4jxVR9sIDmti5afjuEo86ApcTAbJcPtVYhr00BhJbD1F9cyu5/bWVsn4eAdwlPR3y9UWNQ4Vplw9s7ysBrbppurmKqy8vAy24O/KhHJiEBuBot6GKEqKD4r/HKUgbeGmd+KChcThKwvBhOdqwB6i4rxlJqZO9D7UkEIRDXa30qdeP8xH5Pmt5Lj76/pJKZVpKeElFyiouibU4O/Hsrweh+wCV/CMKwFIiXvfnhOJG97tJixg5My6pJBZudaC1qzIXC8m5iv4e5Eb9sY7fxthomjngIekVMZHBoCSWoHe3+bivmqANL2Vm5OBsttPxabJA05euQVAq80XXmme55BvZMiGtpwVlnxT8l7qN1agkvhfFNiL+NLh2+mSD9L4p4yVpqSlJrD8wvEZgSMV7hBjuRcISxoyKGM+caUSgkvJ3iWuFwhIAnmkszK0CCxdll1ksfoPKkPPLXOjj6s246+3qwnaRmamqKY8eOAdDe3s7dd9/N3XffjUajYdWqVVx44YX80z/9U8Z+ySKL/xNkSUpZ/Jfhhhtu4Kc//WlGUpLD5uD0M09n6rkF8OnYdm0DkUiEPUfahMLQheIHFWDk8CTlJ+ZjqjHim5xDgSQvhoFQPIolcIZ3zlC6NV8mBIUCITR5eopPdTL0+iQDOyewJFiPqfUqpFzxA9/5+2Gc95up+3ARBx7rZmT/lGBFR9UNK04oRKlV0PXSiFAo+pcWqi8U7GX3wTmqz40QDooJa6p7gR13NhLwBGl+uDtloreUGFDplDLxar7HR9NNVbT/tpepIwvs7G6JW4cBFWcWioSPgfjnBjA4Bblp5eKZqThHTDi+5PZfd2MlxlwdBx5twZ+wqaxgm43y0/LpemFIVil6L2y6XSgO7Pu35ATSps/WoMlRJ5fJB0jIO/pi2JXQLo41RlldCqDughJUeiWGUoOwb/OJxa5Y/dfeUEHPq+MyuctaYpRVsgBafh4PjPROaLq5kdm+eUFSMghyVIyNnLfFIohl0ftXnl2EUq2g/y1Rh+Hdk7gao6xog9hxNtkpop+iEwUZSpKivr/TQTzqiEwEs5UlW7uElyIsz4tANn9bLkRg4F0RhFlLzSgUCtmuLrQckhfODKUG0acLSxgkA6d/4Cyc1VZcY1XML/iouM5Gd083r732GiAsFPv6+nC5XKhUKmpqalhaWuLVV1+ltLSULLLIIoss/nHQ1dXF6aefTn9/f8bvbN26lbUNa+l9YgZnYw61Hy5hpHmSvhcmWJxfQm/XorcLQk3Auxi3re3yo1AosFda6WOSoYNuKk8qpHCTg5G3plhaCMVtuAClWoGr3kYno7T/egjl1Qo5HlGpNKi0Spxrc5g8PMds34K8Aw0/LIwHGDsUlTDy+ynZWsHSmmXe/XYH+x/qwrk2B8dqE1NH5/HPLqJIiCvyNzio/XAJO7/dwtTReXYeTY6N1AYVtmoTfS+Os9Dvx1qrp2hbLsee7Ofd73TECUqAtVaPMVdHw0eKkhIa9gZB1Dr4WA8roVBKIEkpn+/4YiP+qSAHHk0mcm++o5blYIgD/55ZLTMReZusVJxeQMcz/Uy3xoNEY5medR+vwNO3QEuCWlSM/GUu0MtWbQOvTMSt1yr1giAUrbPeDjmFemo/XCoTvg/9oEduF2OZnorT8mSLXWOZHpVOiaUkHlcnKjhtuLUanUXDzq+Jflj0C9J2rCzB2UV2flWUV5+vI2+9DXt1DpP75/D7YX7ELwhQQNVZhURCEbnsxlydkPeOYnZ0gekOEb9WnJuP1qjG0ysW6MKhCJFwhMm94rhCo2Bxbkk+V6lRxtuqXEdoOcTIPnGfnFxBhPePBSiVqti6vY5IGPa2t6PKA9upat568y2GhocIhUI0NzfT3NzMN77xDfLz87HZbJxzzjl8+9vffu8OziKLLLLI4u8KX/nKV/jGN76Bz+dLe9xqsXLGmWcw90aEZTdsvqoWSSmx93A7gShR1pwv5pmRA25yCvTkFGuY6w8goUCti6doAzOLMrlkcv881WeEZfvUxYVl7Dkays7Ipf/lCXpeG8VeZZLP1eVoUEVJ3oOvT1K4yUHlmQUceryXwV1u8tbaCESVdSpOLEBrVTPaPEtgIsCur7XI6kVz/QFCS2GWooQbT6ef7fc14J9Z5OBj3bz77WRivKXEhNqowlCswzcUwDcUYNXVZXS/NC7Uhx5skRV9AGo/XIrapJIJU6LwyISqXStyajl5OpDi8U4M9ZeXYKvO4cCPeuR2BqHgU/eRMnpeGs1IQFqJdZ+qRKVVppCm1t1QgSFXz66vJceaSBIKdXLOK9ES2Fqjx9MZJ3bVX1iEwaXFUqUT9m2BaM4rWuyGK0sY2euWrd1sNTloTPHNcj3PjsUJWjrY8blGPH3zMklp2b+M3yMWqOyNJjr+NCQfqzlfkJKmDoo6DLwzQf46m3xvU5GBqbZZ+Vy1XiXbCi76lpnqnKXzD4LwlddohwRVzmV/3HY5f72dSAhGDogEpK3SjEKpYLZX3Ci0GGLJH7WJswp1TP/MMjpJx6lNZ1K40UXhTDXTLfNUXGOjd7CXV155BYDBwUH6+/spKChAqVRSW1uLUqnk2Wefpby8nCyyyCKLLP5x4Ha7Oe+882hubiYUCqX9zsaNG1nX0MTALzyYCrSs+Uglo/sn6XvRTWAmiNYqLM6C7iALE3451gq6gyjUChzlZgZwM/Cum4YCA861NobfnmJxZhmlMp5/UOmUuBptdP9pjIHX3GisagJRUrCEhMakwrXOgvvQLFMdXvLX22VykKd7HneLmF+Dc0HKT60iOLfE/u91cuSJfswVOmwNJmZa5/G7g2jMavlcV6OFhktKaX64lfmhYMp6oM6mwV6RwwBugu4g+gItpSe6aP/1EAd/0BMnKAFalxZrlQmtRZ0kOmCuEGSdtqcGU9pXpVGINdcVBKVt9zTgmwykbMxbf30lESIc+mHqhr10sFQbqLughO6/jDJ1LK5CrjVD0y0NeHrnk8q15FsGCXS5BoJeEY9P7PfIxCitSyuU0WPl1YKjzoypSM/+6Hpm+6+H5HbRmhVUnVdMy68GovdVoMlRYyk1ELvrngTxiNVXl2EqNLD7u1HiWzBCaDEsE6CWFkLsjuXItFBygovg7BL7j3ZCEKY6vMxElcSrzhDx9sBrYnNdTpEBTYKV8XTvHJ5esW6Zv8mK0aFjIaberhAbKd2HRJspjUr80/FO0prUBGbEe4O5QsdyIMTIYZF3tUaVz739QfKkIjZurEFCoqClAbRB8i+x8Pbbb9PX10ckEuHAgQMcOHCAf/7nfyY3N5fc3FwuvfTSLGkpi/8yZElKWfyn8dRTT3HttdcSCAQyfueyyy6jqqiad/+tg9KNLopqnHStHcK9e47wUjiJYOKfCRCOKuzMdQdRnqKkeGMeE7vm6HtriIpTSrA1GJiJLdLE8hI+IAL5a+30Pj9O9/P91F9SxdQR8ULsrDZjzNNT8AEbo+/MsPNfWlj18QTChgREizH0+iRFW51suLWa5oe76PrzIMZcg0yS2fiZarQWDbN9c7gPzrHr663onfFyhEMRFufjQVPDx0rJKdCz91vt7H8oWYo6d4MZvUtLw0crhTVbAhEJH+z5fhuOKmMScWn77Q1ISomd/7IiMYIgTbkPpn6+7BMLRP5k1WtyyoxISgm/N32Qlw4qffqfjODcEsqEvoxh19da03xbYONt1WitGjqVgzJJau+32sndYJYJO4Bcf4NTgSlfT+PFJbKy1Lvf6ZBt/opPdVK0xcmeh9rABxqbgUg4wnRUnlxvgD0PxJUOKs8oRFJI7Dwi2uzwD9soPqkIfOJeZSfnMbJfqBu5asXkvegViRSNWUXns/FyF250JMlIjh2cFj6xQPk5eSi1CqaiBKfY5+6o8kMkHGFuLF5flU4lTGUBY77EUnCZoXfEwpmtRJCfYiQtp9WFa2MuitftGAp1VF3m4s/P/5m2jjY0ag0dHR2EQiHKysqw2Wy4XC6cTifvvPNOxn7JIossssjifyb8fj9nn302b731FpFIJO13Kioqufiiizj4aB/4YctJdYQWQ/Qyw+ThOWovAFedlb4XJhja5abs1DzUeXr8035UamU8LvPD3KhPTuDMHvPAyYWyFdvswAIFG+3kbbLK9l/+hF3b1jITlmIjQ6+7aXt6ENcGMzqHDpiTrR/MlYJI4x3yUXV6IeOHPfinhU1b94uj8rVqLyghvBRh6mgrx6L+8jFilXfIhylfj96uxz/sR2+HtTfU0/fqGOP7PLKFmXytC0sF0SVBPSkGT4efjmcGZWUmgLytVqrOLGRhNMChH6aSlNKSjfTJpOhEKLVKJFUqqSkTQoshFGoJS4U5iaS00O8nvBwhFEyO4XpfGKP3hQxWcnpY/bEKQoth9kSVn/zT0P6HAaaOzsvfSWyXhguL0ZjVsrLVQr8/qU0331nLdM8c3X8U/bW4sJwU2w//dYSu30cXs7ZayVtvw1So59B/9OAfCzC0a1K2kdlwXTUqnZLx2K45iSQC2Pyon5ZfiMRR2Zm5WItMRIIw+tY0Y7snMBcb6PqzuFf+epu8kBtDbEega4OZ5UCIzteESlXeKgdKlZLpTtG+Ae8iEW9Ebg+lViknH521VioqC6BDj3vEy/qbKhicGODpp58GxM7OsbExWltb+e53v0tlZSWLi4s89thjnHvuuen7JYssssgii/+xePXVV7nsssuYnp7O+J2LLrqE8vxyDj/ah6M8h5rqInqHRhl3z7LkD2FwaYXVWgC8wwvEEgeeLj9KrZLcNS5G3vHS+cogdeeU4libw9ThOSIr57FQhIKNdvpfnqD7pVEMDi3j70ZJIKUm7JVmik92MvTGJLu+3kL9ZcXxk6U4qdp9cJbyU/NYf00VBx/rpuNPg1jKTQQmRF5vzSfLySkyMD8RwN08y55vtqGzxi+1vBiKK+YAFefl4ag2s+97nUJxKFpXEMo9ljIjjRcXC2u2WOow+p13v9uBrd4YJygBW26tQ6VTpizCgSBN7fp66uehYIjwUjiJoARgKc9BqVEkqRq9FzQmlWyll4jA9CJaiyapfgB7vpmqphnDmk+Uk1NqoPP5YdzNYnHy4GPd2BtNMglJXDz6r07YE5uK9Lz7LUEAO/QfPfI9XestVJyez+EfthPwgM6qE9a3UQs2nVW0aQw1HypGqVWws0W02b7HOqn4YJ5obx1Un1XIyD6R88op00WVN6MK4C4d7c8MCtUroPQEV1K7DO50o7WIhTTXegsas1pegNWZ1SDBbJTwJEkwO7gg11Nr0bAUteRVu3QE5xYZ2iUW6Jy1ViQFMrHKarCzea0LXrWCDtbfXM4Lf3mBlpYWNJp4zquiogKr1UpeXh5lZWU888wz6HQJti9ZZJFFFln8XeCaa67hV7/6FYuLqfkUgLLCMi669CI6fjlBcDJI07YqIpEIA3iYHxKWt45aK30vuhnaPYnWosHglAi6QaVWorNq5GtNdc6ij9q0zXaLuVRlFPmM6e45KqtM5G+xMbZ3htEDUywvxOMJZ50FaiyM7Jpm4DU3swMLGPPEvBOz4IqpJXn65qk6uxBv7xxBb5ihnW7G98UVtld/tJLQYog9re10PStyK1ozBIPg6V0QKuDmKPlGCxtvrGHwHTcT+z3s+nayBVrDxSXorBpZESrxWNAdpOXX/UnKTJZqA6uuKGducIEjT6RugDz281SlJBDWwwFPah+pcv42usHiQgiVTompWJdEUgp6RXy3vJAsxjC2d4axvTMZr7fhhkpCwTB7vx0lFgXh6C96ZGWjRFUpgNpLSskpNGCtNeLpWCDoDSfFmk03VTE7uEDP8yLPFpxbRhcMyedPNLsZ/KvoS0u1gZITXVgrjRz5cR8EoecvI/imojH2J8rQ2DSCJAVIyuQ9j96BBbn/XessuOqtKBVKJt71MNPhYabGzMBrIudVtM1FJBSvB2HktXJzmZbg/BL9bwoxhbx1LlQ6Jb5hMS79M0EC8/G+05rU+CfFhSxVNsqKSsClo7rfw/prKhlZGOJXv3yKCGEWFhY4evQoR48e5Z//+Z+prKxEkiQeeeQRzjrrrIz9kkUWx0OWpJTF+8bAwABbt25lbCzD4gdw5qlnsu3EbTKJpqaqVt657D7kpniHi9Itebh3zzGyfwrXWgt6J/gnQZujla26fCMBprs8qDTipTc4FUGpVpDf5GCm1cfg2xOUfzAfS42B2U4fi/NL8mKEfxJ0Dg3rP9XArq+3cvBnPZSfnMfoO2ICW/PJcszFRsrPEfZwu77WSt6WuI+oQiGhjMosTh1ZwHG5jaZbqjjwSDctv+yi5IPFMjmlYJuNijMKmO2b59jPBlLUk3IK9EmLNYBc5olmL5JqmPG98R1d1RcWkrvGytCeSQZemkhSGQIY3jOJudSY9BkG2H5HA6PN0/T9OVUi8djP0gcTHU8Pkd4QJjNW1i+GIz/uy3ySAbbeVs/8iC+pLK3PjNBwYWGKilPMmm37FxogHFde8k2Gk4hBsgpTdM0ud5UFpUaBwaDA5wsz2+lLIkk13dzIsj8k72o78qt+8tZY5GtVnVXM3n8Xx+xr7CCBPxpEKDSKpCRZwQYHbHDIpLCDj7WJcxCkpPwmu5zsWZoXJLGBaNLFWmLEPxOUy602qpCiyhWONUZ8kwE6XhIBR8VJxai0ShaGxDjwji2g0avldlUbVLJ9nSlfg8loYnPuiRR3rmbLrXX4l3x8/9++TwgRRHd0dNDR0YEkSZSXl7O0tMR1113Hl7/85cz9l0UWWWSRxX8bvvKVr/C1r30tY4JGhYY7PvdZpEUlzQ93UVqdi16nx1oiSCXhpbBYUIliYTSAf068fPqmltAY1FSdVsiB1m7anh2g4pQCjGXC5ktv16KKWkn4p8E/FcRebaIHGNs9Qe4aK+GweAte8oUo3u4kOLfI+B4PA29MMHU0zo6uObcYIsLqrPvZUbqfHcW5VhCAl+bFTqi8VYLwNPLmOJtvqqXl94Ms9PsZPzjDyLvxJMSWu+KLV4kqQQDo9Sg1CnLX2QTZJUqmiakh7X2oHXu5IYmctP3+BiJh2P1AaxJBCWB8j4fCTQ46ft+X9Pnqa8oxOLVJO+Vl+JFJQCsRkxl/v5g8PMfk4dTFuPe6VsW5+eSttSV/xy9IXe4WT9J3YwSlinPzKdhoZ2jXpNym+77XiWuDWVjB6ZEt4ADQizjEmqCqdDTB6mT1teWYiw20/baP6VYf43s8WEtNtD8nEjJNN1cxO+CTVZaUaoUcDwEMvj0h90fV+QXYqnKou6yY9l8PyZZvsX/X3yTUjmL9GvAsytZ8zrU5SJJE/1/F+4ur0YZKp2TRHX1v8CwxO7Qgn2vK1bMctTLR5+nwTfkZjSbBije4kJQS7misKoUVVJVWc7p0CeiFmsGbr77FX3e+jtFgZGRkBL/fz3nnnUdOTg6FhYWEQiH27NmD3R6Xg88iiyyyyOJ/BjweDyeddBJHjx7NQAiXOGnrKZxyxomy+k1dea2sIDN1eI66CxQUbXQxvnuW4d2TFGy1obMqCIyF0du0wmoWIABjB6bQmESctjglcgOuBitTh+foe32M2g+XYKs3MtO2QGA6iKSMW6sZXDrW31TL7gfaaHt6kJJTBUEJoPaiIhz1FirOXqL3L+Ps+WYb9sa40pKkiue85voDOOosrLuhgkOP93Lkl33UnF0ok2qsNXoar6jA0ztPy88HUtSTbKVRpZ8YeSeAUFKaDDDbHUgiugAUn+yk9KRcht5xM/Cam5m25JxX72tjcUXrBGy9u57RfVPybvNECDu3VEu3/pcn0lrAHQ/vfid9lqz9d8PHPW/zHbUsTARkQjVA5zMD1F1eLrdlDDECzta765EUsDu2mS4ALU/1ypZ6sgpTdF0td62wekMnGjswFkgiSW24pZEl37JMVDr00z4KNoi2NBTraLiohGNPCoK9q94CCilOFjKq2PWv8ZizZIcLFBK7DifkvBpE7JK3yUbpSbmM7JmSv78cCMmkOXtNDr4Jv0w+01k1qAxKuRxzwz563xRxWeVphWhzNPinRd54dnge/axWvq7eoSUQJf5binTotDq25J5EYWsj66+pAl2Yh777MEH8SJJER0cH7e3t6PV6ysrKALj55pu55557jtd9WWSRRRZZ/Dfhpz/9Kbfffjuzs+kVD3UYuPHWT6EJaTnwWDcOpxmDzoDeriI4GWQ5ECKn0CCTT6a75liO2o0GJgLobBrKTy5iprWblmeGqDw1T1YOMrr0ceWaIMwNLWCvyqGfCcYOzVB8gotQ1EFlybtM+QfziYQijOyapuelUWY746SahkvFnDPyzrRs82prELFX0LsMSrDUmJnY72HgHTdN11bR/eIw3t4Ag++4mWyPX6vp5ip0Ni27vt6C+9As7kPxttFqFWhz1OQ2imvFSCqxOjU/3IWl2iBblYHYXKZQSez5ZnsSQQlgtsvH3IiPjueT13trLizEXGpk/390ptq8Afu/15n6IbDvu3/baqN/NCgrca9EppgMoHC7nZITXOz5frIN3VS7F29/ch29USXH/C02Ks8sYPDtOLHoyI/7sDWY5HYxFWuZH0pQJLJpsCQQiTr/EI8Hay4sxLXaSvsfhpg65mW2y8fw3knGdonYc9VVpcy7A7J9nVKrRKmME75H9k8z0zov1yevyY5Co6Djd8O4D82iNigZaRYbJdbdUIekQLa480/4kaLkcVOxFpVOQddrYl3YudqG1qQmOCPGQNC7xMiBKYJRIpKtMkdWvte6wDuywER0jJVuy0WpUTLTIcq8FFimJLeMD0oXAbDt9gZ2v7GX195+Bb1Rx9jYGD6fj7PPPhuTyURhYSEGg4GXXnoJl8uVsf+yyCIRqdtDssgiAXfddRcKhQJJkigrK0shKOkxcf999/P5W+7hdOkSqlwNREIRDFFfzvBiGL1dvGD6J4XNg/vYbPRvP3qzlvrLqwDoeXGYgXcmZGUcW4VFJuTMdvpo/W0fy1GlpcWFRSSFhGuVFYD250ZQG1SYKsXJwdkl2d8TH+SusrLtvgZATD6jzVMyoaf0zFyqzipi9SdEMLHr661Jk6C9MiepDh1PD8n1G909QygYZrI9HiyUnpnLhltFnfZ+qz1Z9cgAq64oZ+vd9QBJBCWAscMewssRJpuTZY8qzssDAwy86k5aAALIW21BSiBWJaLppirKz8lL+TxWlv800pxrcCrY+JlqYVGWCJ9YeIq1ofzxgE8oSAFVFxSkXG/Ru4RvOjkKSiSH1V1YRtNNVfKx5oe72fntFnyTYRxrjGy+vTblejE1I0OhjvkeH93PCHZy6Yn5qPRKTFHp9aHXJ9n5Ly1y/1SdVSSPH4CDP+qh/6/jctnX31yPfzJqZTKzSHg5Qt8b4nh+k02oOUVJSUqtQk5MmioNTHV6ZWWospPzMTh1KCKiL3tfGWG0eQrfpBj3trIcdAmLzUHPIuNHPOLck/KRFJJMxlsOLGPQGjlV+ginS5dw2223ceEZHwEkTEYTU1NTDA8P85WvfAWj0Uh1dTWlpaUZpeuzyCKLLLL4v4/p6WnKy8uRJAlJkvjnf/7nJIKShIJLz7ucf/riP3G6dAmnSB9GrdKw7BekCnfzBJJSovw0YU07cWwWnzsgFHIQJG5nrVisWOj3M7J3ioHofKVWKzHm6qg8PR+Avd9sZ6rTi94u5iR1jkpWVPRPh/H0zlO8Vbx0ju4aJbQYJhQtR3B+kaZPN1J8kpCb7HtjnAOPxhdRtt/fQO2HSwAYenOSnV9tkRV09Hk61CYVFaeK+KX72VH8YwH0+SL2mu6ZS5IxBmE7a64Uako7v9XCkQTJ6aZPV1F/STmO1Sbwk6RIJOoSlHcNydBD+Vni/gce6cY/nWwrordpkqzHYrA3GGj6dBX6dPwTfZrP3i8ynFt+Vh5rrqtI+VylV6JQS9gbkmOyoz/pY3yPB/RQenpu0rGxQ7OEFsO4j3qTPo8RcrZ+pp51V1fEy+KHnV9tkZVCmz5dRcH2eMXdLR6WFpbl9tbn62j/zVDcas6hxdkYt8d997sdMrlrzXUV1F5QQt4mKyDGwMi+KXnH2bZ7G3DVxRcwfVNBeUzYG4S9cvsfxWKlrcaMQi3hmxFjc9G3xKEne/FH1Ras5UYc0WdCb4f+N8foek4Ie9efV4TBocc7Kq49cWw2aazoHVqW/FFlsAI94eUIVTkNnC5dws2fuIU7PnsHBkQdtVotnZ2ddHV14XA4KCkpoaSkhAceeIAsssgiiyz++/D9738fnU6HJEnYbDaOHDmSRFDKwcp9d9/P5z71eU6XLqbaVE9oKSysxxA2WLGd8wALY34mjnoAmBsLYso1UHdBOQCdfxqk59VRWZnI2WCVLXADEwGOPNnDoi+6y9kTQqlRYK8V80jHs2Oo9UqsNWIi9rkDLEzE1Xhc9VY5z9Tx+2GGdrnp/YuI8VzrLdRfXMqqq0XOa++D7ez/fnxxybXagjE3OsEHBOlHlyvq5On0s+hdklVyQJBU1t0g4o/mR7vE4lKCGtD6ayrZcmsdQBJBCWCydZ7lQIiJluTPi092gg7czbO0rNi1b60RJHS1KXWf7aqryyg9LcMiyP+JkE6ac3VWYQdnqUo9qNIpU3JeAU9YKCGBKOOK03zjyX0IyKQkW72Rxisq5HYGOPZkPzu/1UJgLEBOmY4Nt1QnnbvgDjDVJeI2Xa6OwERAHgPlJ+eitajRuUQZ3Qdn2fW1FkZ2icWv+o+Usu3eevlaBx5tp/dVkf8t3G6n6ZZGggtibC75llj2hxjbK65duNnOTNccAY+Il9VGlbzoq7MqmGyblcltFaflkVNkQK0ScfTAG+MMvj2Bb0i0Q26jDX20jOhgfsTHWNQKuPy0AhRqBZOHRL405A+hVqo5UTqP06VLuPWW27j47MtQoMKgNzAzM0N/fz/33nsvBoOBmpoa6urq8Hg8Kf2XRRZZZJHF/xsEg0G2b9+OUqlEkiSuvfbaJIKSChUfPvEjfPH+L3G6dAknSOeiU+hZis5BU0e8KNVKyk4S+YzxQx7mBuOkFKNLR+5qkZcIesP0vT5Gzyti/UetAFuFidITxLnND3cxdmAafYGYd7RWDZqoAwZBcB/zkL/RBsBI8zSL88uCcAQEpgM03VIn4heg+4URDjweV9/edGctDRcJJ5epY152f71VtiTT27XonVpKdohyDP7VjX80iNYZnaNbZlkYT9hZh7BRM1foCHrD7PxWC0cThABWfayU1R+rxLFKxIwx67EY5kb8+MZTnXBiZT/y4z6ZwBKDwRkl1q9IlWldWtZ8shytOQ2tQJv60ftGhnMLt9tpuKI05XOlVolSo8RWaUr6vON3w4IUpIXCDyQn5mbaZln0LScRwgCZKLTxthrWXlOVVJbd/9rKgUcFwXv1x0vJ32KTj022ewnOLskKUFqnlv4XJ2QiUU6JEVejVf7+wR/0yApPNRcW0nBJ/Hoju6bpe22MjigpftOdteSts8ntPzfsZyHah/oCLRqLhq6/iHFtqzaj1ChZmhdfXl4McfRn3TLZytloIbc+Wg4tdL04TNdz4j7VZ5ViLjISmBbXdh/2MDfik+tgKTPJeV6tU0s4GKbUUMlp0ke4/iM38plPfxY7eYCETquju7ubgwcPkpubS1FRERUVFXznO99Z2X1ZZJGErJJSFknw+XysWrWKvr4+dDqdbOWmUqkoKChgZHCEay+/loLaApZ9Id79TgdKpRKVQ0XNRUUMvz6Kq97C+usq2fkvLcwO+7BXm9hyVx17v9WOUqukeIcLY56O1l8OsnzOMnqbVia9lH4gl+LtTnZ/rY2W3/Sz6vJyVn28lGM/G6D+4jIkSWK4cIqpIwssnbGMo95MFyNojRIqnZLGS4rZ+80OPH3z5K+3k7fDyvhODwqtlCSfl7fOhmuNhT3/Gt8BP9ktXnw33laNxqImML3IgX/vRpKQFz4KPmCj4jRBqJk44iGnSI9CJclklm33NUSl+iRyN5ipPreYob1CFWndjZUYnFr87iDDe91svbeekD/Evu91Un9lIfYqK2MHp9n9r62s+WQ5pgI9u74m7OQKNjjIb7Kz66utGAp1rP9kJe72WTp/MyzkJSPIhJstn6+DiCBI6V1a8Z9dS+svBmj4aAm2yhx2fqeFHZ9rJBwOE16MyCSZHV9sxBsN7JRaJTu+2MjBJ/vwDfgE61qtQKlREJxdRJOjZmE8wOEf9lJxXh4FTcLyrPrMPNQGJWqjWlZeioQjMvO89IMuire76H5JqEhtvKMGrUmNtczI/u93sf2+BoJzi+x/qIuCbTZ2fLERvyfAgYd7aPp0FTqrhl1fb6VwiwOtTcPGz1Sz//tdONYYqbugjJH9UzhqclDnqNj+hQZZTUmpV2KvyKGbUdZfVyn3YdcfR1jyhdDZIsz3+DA4Fay7qY7wUoQ932iT7fyCUeWJjZ+tRmvWyOSz2C6/mOpVxRkFeHrnwQe1lxejtWhQRhcyt9wlrhtr7zUfFWPa1mDAUWdFZ9XS//Y48z0+Nt1egyZHTWgxTO/z42z/QgPLgWWGd09Rfk4ehZsc0ftOsvEz1agMSnmRevv9whbQNxGg6EQHZSfnEYlEyDeVcPdtd6O1aoiE4KGvP0Z+nZ35uXn6+/tZXl7GYrFQXCyk4e+//35uuOGGv+UnJIssssgii78RP/rRj/j0pz9NOBwmEokQConfcpvNhl6rZ3Esws1fuB5JKdH+hwHsegsRKcLWe+rZ8402Fr1LmAr1rPtUJYd+0MNyMITBqSVvqxV36xzF251s/1wDu77ayvCuSUpOcNF0cxUHHu0mf4ONwi0OBuwTDL05ie/kAMboopRrgxlHnRlbtYndX2+j448DNF5aQfm5efS9MI69JgdJIYIr/zREQhEqzi5g8vAc89OLIIFztZmhNyexlhopPzmPgXfcDL3uFgpM4WhgFlWgiRBh17dbca22QxiOPt0HiJ3pKqMSKSKx82st5DZY8fRFPdwvLCBvlQ0UUHF6AWq9EoVaISscbb+/gbkJP0wFySkyUndBKS2/6cXT4WfrvfUQiasebbuvAd9EgMM/6mXzrbWodSrC4TADL7tpurkKjVktf1epVcqSzXlbrVSdXkjva2PkrrGid2hZf5NQ8wTYek89i3NLKNUKNGY1hBGKma9MsOa6Ckx5Onn+3nJ3HSF/iP0PdWEs07PuqgpCyyGUGiWevgUsJQb5ulvuqkOpExsJ9HYFTTfXM9Hqoev3IyhVCgjHCVmb76yFSNwCZMddjQAMvDNBzblFuOotHHi0hT3faGPzHbVIaomx5hkGXplg+/0NzA746Ht1jJKTXOy4s5FDP+9lod/PpttqUOgU7H24Hb1DS/kH83DUmzn6kz60ORrUehX2BgOORhuuRgvh5YgcG4aXIwSjMuib7qxBY1TT/ecRxvd5UGokIpGITFzb/sUG2XLNtUGQjmJvses+XYnBqpXbpe6iMjEulYKk5aq3MLxnEv+wn9XXlGMuMeCoMbPnG21s+Xwdi94lWv84hL5IT9MnxULg0V/00nhVGTqLhtn+BfzDfjZ/rha1QcWidwm9XSh0hpbCeHoXqLusGEedGcLQ/9YEm++oRWlQEFmGHdKZ7PhCIxEpQs+hQd4++DpKlZKZ6RlmPDPcd999fOMb3yA3NxeNRsPevXvR6/9PGG1ZZJFFFlkcD4FAgNNOO43du3ej1WrlnJdSqaSwsJCxwXEuPftKqjaXsji7zP6HOpGQMObpqbmwkM6/jFC8w8Waj1ey81steHrm0Ts1bLq9hn3/1olSo6T0pFyMTi3tvxsm4FnEYNeiy9URWoxQ+cECIqfks+vrrRz9VT9rryqn4coSWn81yKqPlqNQKcQCQX8A32QQR63IYSg0oDGrqb2ghL3f6mCqc46yk/IoOtHB8FtTqC1KWZkcIH+DnfyNNvY80C62p0ZgqscDCHVxU6Ee33iAQ4/3IiklFtyiHWz1RpF7U8D4oRmhgqNXympAm++qRaUVC4s5NTpWX1LByL4p+l+eoOHKEixlRmYHFpg47GHzHbWEFsM0P9JF6RlOija7GDs0zd4H26m7uAh7rVkoZ+ug9KRcSk50seur4u/tdzQw2TZL5x9GcDRYiYQidL8kcl4bb6tBUsK+f+vEUmrEUmbE4NLR9vQgFWcLZesDP+llww2VhENhQoGwvBFx2731eAdFfKTQSmy/r4HW3/bh6fSz7sZKtDlqVHolgelF1EYVvvEAR57oI3+bnYpT85BUEqUn5SOdKqGzaeTcTng5zFKUYOZab6H6nEJ6Xx9nbPc0a2+swJSrx9lgofmRLrbcVUdwbolD/9GDtUbP9vsaWJgOcvg/emi8qhRzsYHdD7SxMB5AY1az4eZqmh/twlCsY93HKxjdP01OkR6dXcO2+xrk2EpjVGErzwHGaLq+Ekkp+rD7T6Ms+0NEliOCBKWD7Xc1sBwM8e6D8Q2agahK9+rryjHnG2h+RMS9RSc4kRQw1SGIZbUXluDpmSfggfIz8zDm62Xl1qZPVxEOxdu76ZY6JIXEdPccepsWc5GB/rfGmGlbYN2nKjFG4+DB1yfZenc9wflFRndPk7fJRtXZBSBBx/NjrL2uHL1TR3B2iYBH5D1VOiXzIz4ca3OoPa+YSCSCQ5PLZz5xOznFesJLYX70zZ9hqdUzvzBPX18fy8vLuFwuioqKUCqVfOlLX+Kaa675P/5dySKLLLLIIjOef/55Pv7xj+P1CuZDLOdltVoxGAyERzR88u6PodQo6fjTEAaVFkmBvJ7ocwex1ZhY84kyjjzRT2BuCYNLR/4WGzNtM1SfWyhyXl9vZeDNCSrPzmftdRUc/lEvhZudaHJU9L8+zvDbU8wOzGEqEAuR5jIthZsd5K23seeBNo49NUjTdRWUneOi/89u8tfbUGqim9OCEF4KU3FWHlPHvHhHAihUEo66HIbemCSnSE/1eYUM7Jpg+PUpIMLSYtyqbNu9DaCAAw+342owE14K0/WiIPuu/1Ql+lwtkZAgxRRtdeDpFetMhR+wU3pCLgq1grJT8uFU0Jo17Ps3Mc9uuauOuTE/cyM+1HoF2+6pp/1PQ8y0zrPpjhqQJPZF5+TNd9bidwc4+rMB1n+6CoNDi1KnoP/FCVZ9rBRjvl4m0ahz1DJRylJtoOHiUgbenCCn2EBOkYH1N9XKao4bP1vD8sIy4XCEnEID4aUww3umGPyrm5qLirBXm2RVxI231RBeCnPgsW60ZgVNN9eyvBRCY1AzfnAG1yoLu6N5tw23VKO1qpGiVsnb7qnHfWyW7udGUeoUhJfD+IZFbrDppioUagX7HxIk/O2fb0CSJKaOTJO7wUXRVgeHnuxl33c6WH99JUqTkrF90wy/PcXWz9fh6V+g+8URyk/PY9vt9bT8ug9vb0AQsiwa9n23g5wSEzllRuxVObT8agC1QYXaoMSxyozBpaXkRBehxbCcN1wOhgjMiPXEtTdUYMrT0/XnESb2e1CbVIRDEdm6btv9DfgmAwy/PYW5QofGqCIYEmupDR8vwVxoiG/qu7oclUaJWicRdmkp2upgaJcbb3+Qmo8U4VptoWC9nT0PtrPh1moCM4t0PjuE1gwbbmtEUkDL0/1UnpdPTpGBqQ4v3t6A2HCZoGC57Z56loMhpnvnKDsrl8JNTiLhCON7plj/qUq0dg2RpQgbpBPZencdkkrBYPMofz30CkqtAs+sh5GRET73uc/x5S9/mcLCQmw2G6+//jpa7f8Joy2LfzRklZSyYOfOnej1eiRJwmg00tfXB4BarcZisVAklXPfffdx7bXXcqr0Ecxmm9jhH12YmndHmb1KYcmVuOtsaNc0kiSJxQRgbiz63ShjSFJKROcZJpq9YoEu0S5eAmOBWCybH/dBguK2Uq9AqY7bshGBwIxICiiNCpCg7ESxCz7kT72uUqXEUmNAoZQgAmFf/BgQl+GWBOlI7wSFQgERCC2FGXl7DEmKlt8gFHUkSSj2HExQC1AoJZpuqULvFC/tBx7rFlZvkiTbWtirrSAhe7xLSqGgAEK9KRKKk3wSr7vxtmrU1mSuoVwmYOejLRABhUI+KP41CBWeSAj5PvELS0ntIF9XIfo8OLuIuy25/LFr9L89xuEf9spjI7G9UcKm22vQ2kVwp4gVKhQhEonIqkqx9gZxDhIY7HpWf0IkymLl2v/9LiSEFdv2+xtQW6JtpxDHfDMiyWZwKig/J09cM3pL35RfrpPeKc6J3dO5wZnaJhEIROWnZRnQ2KEQct9YaqJBbon4VxkdW0eeEgGeQiuh1Cpk4pOERHB+kZlWn2gzCQrW2+WyRcIRRg9My+2i0qmYbp0S7YAIdvyTyHWTlSUkiEQiBOeWkFTR8RCGrpdG5LpJCtgsncxll1zGJ6/7JJecdik2s43iomKmp6fp6+vjU5/6FCaTicbGRs444wyyyCKLLLL4r8FFF10kqyVdf/31LC4uEgqFcDldqFDz8bM/ya233sqV51/FeukD8rwqKSSGXhc7XmILUYtzy0QiEfk7ywFhn6ZQKPAP+wUhKBo/TXUvICklNBYRO3gGxAs90flcZ9XI13U3ewmHIiwvRHfN2FSgANcqQc6dG/PLnucASp0CtVYlFI8CQBjmo2o1RGOToi2CYBtZFmqbiZAkScyBiVOwHjGnhWGmO2HHvUKi/Kw8OQ5pf36EQz/oEW2gAH2RXhB2JQlCCNJ59LsKpcSa6ypS7MUkCfnv0WaRKJBVOaNxgmO1iaZbqpJilVg8I6kkDv2gJ0UFMhYzu1tnCc4tRvsxVg0p7XcBlNFcmH9mEZ87iCIhNoyVadkXSlLslMsU7cPik5ysv6lSbhcZYUSyxC9sjldCpVVSvM2ZUCYY3+dhpkeMl8ZLSlh9bTmSKlpePxx4vAcpIqFQSFSeVyDH/pJSwdDuaRHjRy3Y9PZo7BUtk5z4S6hHJJrPi9m1acyqeHuHYWy/6CODXSv6LcrrEeSnRfzDflCLdsprskXLIol46HmhyKTUCuJYOBhBoQIisORbFhZ00fEQex+QFBLhcBhPbJemQrTz2O4xuQ3Dy2GhFBUdL7N98R2dkiRhN9o4d8uFXHXVVdx0/c24KKS8rBy9Xk93dzdHjx7FYDBQVlZGXV0dR44cSembLLLIIoss/na0tbXhcDhEXkevZ9euXUQiEVRKFXarnXxKue+e+7j2mms5WfowNpM1mu8Q53v65kV8IgEB5PkMYPzdCSRJQqkXX47FVjELBqVGId7JEdZq4VCYUFQhPLwICrWCnGKRP5ju9hIJI+YkQOdQCxVLHfiGAoSXwvinRCyhUIvyFUXn68DMEuHFeLkUKgmlWom90YRCoSAShkggljMR5dGYRG4jlkPSWaPHIsLeYXjvTDxW0QlCioRE0LNE8w96YBGIxrONV5ViKTMiSRLHnuzHfXBWzIfR2Kp4Sy6SUkKhjMVNinh+KgChxRBLvvhiHpKIKdZeV44xVxv/LrEYQvy986stItcXO6xE/u78qJ/QYjgpP5WUx4Kk6yqiOZmF8QDuFo+IU6JjQCGJ7w68PcaRn/Ql5exiX5CUCrE5sUCUV77tcoRIKELzj7piVYvnZZQKUEiYcnU0XlUaz5OBiG0lCUkryFU6u0a0twKO/KQPz9A8EhI6a1SpKTZGgenu2WguUAJdtJrRe+attsnvITFEIhCIji1Trj4pbgwHI6JvAkKhSaGUsJYb5b6IhKD1mX4AtFY1aoNKVuKKhCIEPEGmDs+JflNJFKx3RM+ViIQijO4XtnEKtYTWpGG614ekkohEx2FgLCDykUoIepbkfoyEIyzOLUfbUfw9/OYokgo5v7pa2sLFF17CJz/5SS4/5SrsJgfFRcV4PB56enq49tprMRgMNDQ0cPHFF5NFFllkkcV/DW6//XY0Gg2SJPGhD32ImZkZwuEwTqcTLTou3X4lt912G5edcSWrpU1iXkXMW4O73GIOi677Bb2LIucVzTEEvYtIKgmFUiLoFbmlWGzm7Z1FqVGKORNwt3qIhOPxiCHXIG8m9/YHWfIvsxidW1QGsc6U2yjyB9Pd84SX4rGV1qJGY1RjKhYEi/BShPmRWM5L3KOwScxx4WCEcCBhIVMSdbPVW0Q9orGX1hzNNSyFme6I2spHY5XC7XZURhEvdb4wzJGf9KFUKEABWrOCLXfVidgKoYaEQpLn+poLhZ1qovNKbG0PYPAtN5Ew+CfjOSpJIazD1l1fkfTdaKFAAe2/GcIzOE/iIm3su+6jsyxM+uVYBYjmsRKCCgXJuSlJwjcZZG5wQeSxkuI9iaB3iZ3fapG/GzusiNbVXG9mzSfKxDUTihtZBt9kkKAXJDVJ10UBGpOKspPzEvpGgadjAffhWZAkqs4tYtVVpSgU8Xs2P9xGOBhGoRIqVApt/LoTzVOEl8JEQqJdtGaR74u1odqoEvdJWHaNRN8HTMVaFEopSZEzvBSRc17mQiNKjUJWrwoHI/jdQdnGTqFRyIpfSOLcjqhSktqoQu+MXzcSihD0LuHpWEChkFBoFLJ6WCwui20KlVQKFBoF4we9cswYWQ4T9IbFuFNJco5QkiQUkoQpx8RpdefwsY9+jBs+cSMVUi3lZeWYTCY6OzvZtWsXOp2OkpISVq1axcGDB8kiCymS3mg9i39wPP7443z6059meXk55ZiEgrM2XsTaHdU0Pyxeond8qZHg7KJMJFl/YyXTXXMMvOpmw63V6Gwadn67BXxCbaigyU7zw0IKb8cXG/EO+Tj60z4A1t1YyUzvPAMvTbD2+goMLp288ydvi4XibS75Plvvrsfd4qHnuTH5vv7ZRdqfGqL0zFzsFSYORuWTXetzqDyriD0PtYEPGj5WSv+LQ7JVVmxXVGx3va3BwEx0h7nBqWD9TfXM9s9zLEEuMYaGj5Zgq8qh/6/jDL81lXJ86731KNUKDjzagn8y5TBb761HoZRkVZ+VKDrRweywn/meZDnG2suL6Xh6KO05GITywLI/JNdp5XH+k85dO77UyOLcEvv+Lb2/7Hsizb1tDQYaLinHPx3kwCPdaU8r/aCL2YEFZjuTT665qIjO3w+nPSfWN53PDsp2cInYek89So2Cg4+2yWMhEdu/IGzc0vaNAXbc2Yinbz5JctyxxsjUkQUKPmCj7KR8Dv+iH9+AKHPdFcUM7pzGN+Cj6ZYqlnwh2aKv+FQnuass8rOx5a46ul8cEiQ7A2y5pY6pDi/dz4xSc2kRuhy1CDKB1Z8oI6fQIHYaAhs/U83Am+O4D86hd0LTTY14h30c/UkflR/Kx5irk8/d+JlqtJa4+tPGz1QztNvN+N5ZTJUG1n6snLlhH0d+3EfVBQUYXTp+8PgPmGcWm82Gx+ORyYfV1dW4XC527tyZtj+yyCKLLLJIj02bNrF///60x2y4uOb6a5jtX2DglQl5Z/GBR9rwT4fJ22qloMnBwcfisdWCOyBbSKy+thxP3wJDr7tZe10FxjydrCzj2mCmeKtLlijedl8DM91zsnXW6mvLWRgP0PvCGNUXFWIrM/HuYx3gB8dqE5VnFMoKPE03VzHSPCUsw6LnKhQSh3/Ui7VWj6POSvezYpe7uVJP42XldD43yNTReRyrTUwdnZfr3HhVGdYyY0b/+R1faCQcjivvJMJYpmfd1RUsLSyn9anP22Sl6pxCxg/OyOVZiarzC1KO2RsMaK06RqPWFyvRdEsVeruWAz/uFSSYROiRrcz+Vmy+oxa1SZVsEfy3IMO9t9xVh0qvFEmdDGWrurCA7j+mtoPaqJGVjFZi+/3R3fffTm37mCJRpr4pPV2opmbqm9XXlpNToGfXd1vlMtsbDEmqUL7JIMeeFIth+nwdpSc6af/NEHo7rLmujo5nBvB0iJPX3VjJxGEPo7umqb+8BJVeKb+TVJ1fgL02R67Hxtuq6Xt9TIxTvbC48/Yv0PrUIOVn5WEq0Mvnrr6mHHORQR6/TTdXMbTHjbvZK5SWPt3I3KifIz/qpezMXHKKDHI8uOm2GjQWNTu/Gj3301UceL2d11qeRa1RoVKrWFgQBCeTyURVVRV33HEHn/jEJ9L2RxZZZJFFFqn485//zKWXXir/niZCiZpT685j3Sm1HPqBiKW2f6GR4PQizY+KXFTjVaV4B30MvTHJ6qvLySkxcOCRFgIecKzNoXirk0OPC3vZ7fc1MDuwQMsvRM6g8WOlzI34GHx9kvrLijGXGdn7ULts41V+ar4cl22+o5bJ1lnZlqvxY6Us+0N0/H6YvE02ctda5Pd6S5WO2gtKOfLjDgIesQA1uHOaQNQyrOHKEoy5OvZ9T+RxrDV6oZwDoINttwsVoVg5E1Fxdh4Fmx0MvDnB0BupSa1Nn61BY1bT/HgPgRgJPQGb76hFqVWw+4G2lGMg1IWWFhbj5Ynd97w8ep8fT3sOOqH+uLSwLMeiK4+TWpT3BZHjXEqyvfubkObeunwdG26oZGEiHqOvRN4mG8HZQGo7nJ0nj4GVqDg7j4JNDjqfGxbkrxWI9c3Bn/TItmmJ2HZvPZIkybmkldh+XwMzPfO0PT0ofxYbO/ZGEzUfKqbl6T7m+gNyeSZbZ5nrD7D66nLC4bCcL3NtsFC40S4/Gxs/U0PPSyPMtC2ADjZ+qoaZ3jl6nh2j7IxcjHk6+dyajxRirzHLygzrbqhgaM+ksAyMjt+5ET/Hnuyn8AQH1nKjfK5QozewKxqXrb2+gtHmadzNs+isCjbcWs/coI8jT/RRfLITS5mRXzzxSyYZxWazMTs7KzZ2AJWVlRQXF/Piiy+i0/2feAZmkUUWWfzvwkc+8hH+9Kc/yb+niXBSwOWXXc7CRIChNyapvbgIZ72FAz/uxj8axNZgoniLgyNPiPf8bfc1sDDm50j0Hbr24iLmx/yMvDNNzUVFOGpyOPBoG0GvUPopPSlXjpc2f64OT/ccnVEL+NqLiwh4Fxl42U3JKS5cqyw0/7ALgmCu0FF1ThEH/j1u6TXR4pWt2WouKkJjUHLs5wNoXVoKNlrpi87XWpeWNR8vo/flMaaOeDFX6GTiCEDVhwpwrbay+7utKbZpAFs/XwcS7Plm6rqe1qxg42fqRazyUGqsYqk2sOrycsYOTNPzwlja/ig9zcXAa+6kz0zFWkz5emGJlgarrirFUm7i6M+68fav9HojbT3eD9ZdX4ExXy/nQP5mZLh306dFjm7ngy0Zy1Z2Vi79L04kfWYq1qJ36HAfSo2rQPTN8lKY/WnWRrVm2PiZRoLe9HGka52FmvOLGGtO3zfV5xfgbLRw4NEOgl7xrJjLtHJ7N91Uhd+zSNtTg9H7KSg6MZee58dACxtvrKHrhWHZ1q/hilJmeuYY2ztD+dl56K1aWp8S8VHRCcKdJzaG1l5XweBOt2xxt+mOWuaGfLT/Zoj8LTaslSb5vjUfKcJRZ2b3AyJ+XP3xUkYPepg64gUtbLuzgfmhBY7+bID8TVZs1Wb5vms+WY4pXy/npVdfXUbb3n5ea32OsHIZnV7H/Lwog8FgoLa2lnvvvZfLL788bX9k8Y+NrN3b/yLce++9fPOb3yQdL02Lnot3XE7EL+E+OMf6k4TVlN4plHx2/ksLpWfmyt835OrQ5KgZeNVN88NdGJwKDE4DvgEfxVtdUZZm9NyvtmAojL/YGXN1aHPUDLw0weEf9kYvCPigaIsTrUWDpcbAbKdPfjlNvK8uyiodeGmCAeITjKnIgFKjoPK0fHqeG6N1ReJFZ9HIu7oBmaAEcQWoGEN7JfpfGsZ8XS0z3akJLoAjP+yg4AN5KQSlvC0WxvfOsidNosbgVLDmulr2PNSWlvhU8AEbzlozxluq0pN6fAjijS818HOsMVJ3YRme3mRyTQwNHy1BoZTSErLeCyuJZCux40uNhILhlL6bafVx+Bd9KUQsGQYo3uGicIszZUEyRlBa88lyJIUUHzdA6y/jiRS9EzQ2QxLJ6fCP2ig+qSgtQQlgYSKQpNCVCFO+2NG4OJ9M5otZuznrLILl7YsHoO1PxUllepsWnSVBWez1SYZeF4Ok/Jw8VHol9nqruJ4PWSocwFFtTpJrP/qbfpn45VhjRGvRULwtF/fBOSSNLinIc62yJjHlB9+eYKJZsPFNlQa0Fg1FW5yM751Fb1Zy7Kk+uc2cDRaUagXbJKGcVHtWMS8+/SLdtKJSqejr66OrqwtJkrBYLNTX1/PrX/+a0tJUf+Asssgii//N8Pv9NDQ00N/fn/b4amkDJ1x0Al2/F4mTnEI9OouagVcmOPSDHqy1erROLf5pP0WbnehsGvR2Bf7pMDu/2oJzbY58LXOxAb1Nw9Drbg7/SMyRse8Wb3Ohd2jRF+nxD/vFHJvgJmUuNmBwaul9YUwuSwy5q22oTSrytloZ3+ORF9RiyCmIX8jT4ZeJIQBLQbEjOne1jamj80kEJYAlv5hb9fk6/GkWuxbGAywFQimfAyz0+xk/MkP3i8kkF2utHs+gn/F9nrQEm3XXV7I4v0TrU4NpCTK1F5ShUEsZSUoHHunGWKZPJSghCC1KtSJj0qXplioG3hhPaYf3g8aPlxGcW0whE8WOWcuNaYlTR37cjt9PRoJSjHTl6ZpLKpcgBPlk0s+RH7XjT2iSWKIBBAnOHY0xAPzDfsYPzjDyTnpymLt1jvwmG92vpD8uKzsllHk6IWZX61UYHPFj/rEA7b8RsVfhSQWodEr0Dj2e6AUSFwmtFaak2Kr72VG6EeVwrDahtWoo2OyU2yImpw2Qu8aKSh9XfOr+y5g8bvVFevROLcVbXbibvShy9Bz49xa5zfLW2pLOHTvqYeh1d/xch5b1J9dBqwrXGjPL4SWePfA7AviIRCIcOnSIa665hmuuuYb6+no+9KEP8eCDD6ZtvyyyyCKL/814/PHHufXWW1lcXEw5ZiCHc9dcgFKhZurwHGtPEqRuXb6OwFiAXV9rofCE+ARjrTBhdOkYemOSo0/2obOCwqQDT4Diba7kc/+1VVaOAbBWmjDm6hh8fZK2KCmc6OHCLU70Ti22eiMzbQsp5BtLuYlwdGf1+L4ZxvfNyMd0Nj1qo4qCDwhiT2zxTa6jU4faGFd+TiLCREOtmJLRSvT+dRxno4XJ9vRxytEnOinYlpdCUHKszWHq8FxaEpHOCms+WcuRH3ekJdfYG00UbHBgLjamJ/UEYOe3WkjHE4kRgqY75+TFlERUnJeHNkeT9th7wVZvpPTkvIxEo+1faCQUTN0sGBgLZCQKxVB1TkHafFmMoFR3cREak5ojT/QlHZMJTDqwFOmY7Y7fY99/dFLxwbyM9/X0LqDWKdMei43bWFwunxMdO64GC0qNgqWEhb9EMpWpMLlz3M2zsjVg3iYbWosaV6NVkJQCJC3m5a6xxhXsgc4/j8AfxJjW5esw5usp3uZi6vAcOl0yAa5wo13YKEcxvHuS6RYxdnVWBaYCPYWbHbibZ9E6NBz7VY/cZvlNNjQ5atZLHwCg8sR8dj+7myPsR6FQMDAwQE9PD3q9npycHNasWcPvfvc78vPz07ZhFllkkcX/VgSDQU477bS0G5kllNRL69lx1laZIOKoNWMq1DP0xiQdvxtmpHgSjVGJHyjaZCenxIi+QIt/NMjuf23FWmuUr+dssJBTZGDknWk6fz9MJ6B1CuZK8VYnOYUGmejx7rfbBaklCkedmaVAiIGX3Qz+VfwXg7U6B71dS+F2OyO7pjm6Yq3MlpBDCLqDMkFJfLCERq/CUZvD1BFvEkEJoutJEdDbRZ1WwtOffp0RIOgNM7TTzfi+VJLRkjfIbJcv7Ya/ukuLiYQjdPxuOIWgBFB/aRkao4qxI560pJ5jPx+Q+2AlNn6qBnWOit1fb009EbFuN7RrUibA/C2oPr+A5aVwcvtGUfWhAvLW29ISpw78qBvtcchTq64qxVJhYn4kIMg1UcwPBZkfCsqkn6M/7ZYJQwB7EtbobA2mpDoFvTDw1gTuA+nzht7hAEHvEsNvT6Q9rtAohANKwv0S66W1qGUVVnG/sCAoAUWbHWjNaowunUxSihGDQDwn6oTc0/DbUwy/LdadTcVaTAV6ijbZRX20sC8hfi/c7EBn08h/D7w1SecfxJqs1gzmMhMqrYqpI160Zi0HHmmX61CwyZGk2OQ+OiuTBrVmMJcaaVRXsNz2ISyVBhS6CC8f+TMeJpEkiYMHD3LFFVdwxRVXUFtby+WXX85XvvKVtO2XxT8eskpK/+B45JFHuO2229ISk0xY2WY8XRAfoqo8sZdlvRP8Yn0CiO/EjqnRxEhEMSQSU2JWVjHCTtNNVehdWpmgknLuFxsJh6I75Q1gMChkQknpB10U73AxtGeSgZcmMBTq8I3EJ/yNt1WjtcYVYlYq+Gy/v4HlQCjtTm5bg4GGi8vFItczqQslpWfmUrzVmVGhp+FjpdgqTRmPx+rd+9ooo+/MZDx/4O0JmbiyEnVXFCeRXmJwrc/B7w1lJPxYagzUXVhC+x8HU1SJQKgHSQop44794ykprb2hAlO+nvY/9stknURs/Ew1vslgEnloJcrPyaPvz6lBR/WFhQy/PZJWjSpWbsigesR712vbfQ1Iisznb7uvgfBSOL0yVfT6/smgrN6VCEuNgVVXlDPaPJW8EzA6JmO+rolqW4njeccXG1kOhpKISoZSQfyLPQfjh+Nj1VCow+cJgE+Mc0mZXO/YcxYjrPndQQ5EFTgMToUgt/lEnRWq5HNNlQbme3yy+pWsomYAn2WavWNvshxeRqVSJamxbdy4kX379qVtuyyyyCKL/w3w+/1s2LCBtrZUcrKEgjVsJddQBP74rucDj/fgHwtgLNOz0B9fTNrxpUaWA2Je0Nuj14++A8fmlENP9rLQ78dcqRcWVbFzv9hIaCnqha4HvV4QlgBqLi7C1Wih8/kh3M3elPtuuasOlVYpJzxiZCcQhKKm6yuZHVgQSjYrFHwqzysgv8nGgR/2pCUerb+pEr1dm0RyScSWu8ROssS5MBE7vhCdKzPM0zu+1Eh4Ob36Uuz8TOpMsfrlb7DSm2a3U+npuQy8kj7JANBwRQlaq0ZWu0pE3lYrVWcWMtM5R2uaxbL3UlLa8cVovR5ILbdzbQ4VHyzg6K8H05KnQJC3FEopiewDgB6qzylMIafFUHZmLkVbM6sexVSRZvsXZGWjRMQUrSaOedLeI2+TlaqzC+l9dSwtMaz6okJyG6wc+nlv0hiNYfOdtSjUiiQyUeKY3PHFRqFm8IN43BYjxVWdLxJd3X8ekQltiYS57fdHY86EsRp7zhyrTdR9pBRP3wItP4sqOtkV+P3C7i2m4pnYn7FzYypgicqiejsymSzlXD105jTTP96DQlIQjoSFxUkkgtVq5e677+a+++5LaZssssgii/8teOaZZ7j88ssJBlNXJ6y42KQ/WSbo7PhSghK1DnQ6CHjEsXU3VmLM1ckkk5wynawcA9H39UDiuQoCHhEfNVxZgq06h9bf9DPTtpBy7rZ76wFkkoUuVyerH7nWW6j5UBEje6foe2k86RjAmmvLMRXGFWJWKvhsuauO8FJYVk9KhKFYx7qPVzJ+dJqeZ1Njm7xNNirPKqDr+fQKPZXn55O/zp5RwSdW777Xxxl5O3XjXcV5eRRscDD49gSDGXJelefn0/PyWIoqkbVGTyQcSSLjJEKXr2PVZSX0vjIqk1MSsfXuKHk8k2LncZSU6i4uwtFoofP5YZlwk4h1N1QQmF6k/Xfp1b5B2ICkU6QqOyOX8UPepD5OKvc99SgUmVWPtt5zfFL85jtqUemUGc/ffGctREivTIUYqwsTAXlhKRG6XB1NN1Qy+q4Yq/EDQECogFnKTRx4vEeun84af0623xfNzybc21CswzcUEM/B+UWMHYyPVZ1VQSAQhkDq+wkgP2eGYh3rr61kYTwe8+ms4jsBD2z+XC1qQ3KcHbuvLlfHhhsrCUwv0vxIF+ggaPWyd/wNguFgSs5r8+bN/OlPf8oSlrLIIov/1TjrrLN46aWXUj5XoWI123Hq8iAoSCs5RQaOPinIJSvJLzu+2Miib5l93+kALWi1Cpn00HhlKdZqE0d/3oO3N4CpWCtIJVFsu6+B8GKYvVFCkjZHS3BSHC8+2Unpibn0/GWEsX2elPtuuKUaTY5azq9onfFztWZouqWBuYEFjv1iIEXBp/ADdkpPzuPokz1J5Ymh4YpSzKX6tOpIIBSYlTplEjkkEVs/X0doOZLx+Lb7GoiEwhmvv/XuOiC9OlOsfrkbXElErRjyt9gY25u6hhlD5bn5GPN1aWMEc4WO1VdVMtXmlTeRJeK9lJS23ddAZDmcRA6Sr12mpfpDJXQ8M5i2zQH0BVo0RqVM3ElE+dl5aclPALkbrVSfUygUqZ5PjZUda8zUXVCMp3uell+lij3IilYH059vqTbQcGkZfa+OpW3b4pOdFG930fKrnlTlKmD9pypRm1TJa9sJY3LbfQ0sjPhkBTKIj+fC7XbKP5gvPwcgVJmCwTAERUyoVCvYnZBPiz1n+gItTddVMdM1L5OgtGbxnaAXNt5WgzZBHTzx3JgKmH8yvhYpnu8V58bUr7QwaGmhfbxFznXFYLPZ+Kd/+iduv/32lLbJ4h8HWSWlf0D84Q9/4LLLLktr5eakkPXSDgA23FqFzqaVbdomjngYflssIPgnRaCw5BNWDd0vDuFcZZPJQ446M6suL2fnd8S586N+3Ec98rlrb6hAqVRw4LFu+t4YpfqsYkJeMUnMdvpYf2MlHc+O4BsJEPAsxpVqfODzhWUSy8AuN0VbnYT8Yid9jNBhcAoiU8CziNqkjpOTVsxD4XCE8HJ6BZ2ZfvHlxJ3NiZgbnIctTlTG9I/J5LEZrGVGFobSs57bfttN45XVaQlKAK2/GJDrsRKlZ+Yy8NJEWoISQPV5xccl48x2+jIu8IEg6RhW7Hh6vzj8i6iKUQZBpEwKSzHEFmVn++aS1KwAuqI7AR1rjCwHIikEq4P/0ZqRwAQw2jyN1qLOeDwwHUSVYQcZCF/WTOMlRr5bzqDqYMjVQgQ8PSsIa9EqLC0so7Vo4gQlpyKJcLccCOGfFhGGY42R8HJEbh//VIDQYpjul8UC4epryxnd58YXXe+b6p5DF91FZqo0sOqSUtr+MBA9toB/Kkj7C+LczXfWIikkeYG3/Y/95Ef9kg2lBtZ/opypTi/tPT5mWn2MNk8xfkAk5mIqEYZ/sYMEU9pJpgt66R8UgdD+/fvR6/UEAgE2bNiQ0dYoiyyyyOIfDTt27GDXrl0pnytQsoWTMUmCZbTjS9HY6tsdtP5xCFulSSZFlG53Yrs6hwOPCAWWqXYvo/vEgo9/WiTYQ8EwzQ930fvKCKUn5rMwIdgYCpVI3h/5cSf+6TALYwHmRqNMDT8Ya4xUnGun5ef9DL0+iq3SxNL8EiBUiRyrTSz5Qnh7/ARmFtEk7Gr2T4dlopJ/LEB4ORKfC1fwRuZGF8hfb8OYq05LUloOholEyGhPFglFknzkV2LJt4xvKrO+9HTHHN6RzF63O7/WkqQiFYO9wcByMIK3x5+WoOTaYKZ4uxN7tYmDj6XfVZ+OfBTD+B4P3k6PIKL8J5CJ9AUweXiOycOpZPlENF5eQWgxzJ7WFeQ5PzJ5qPhUl6zuE0P/SxNM7JuUSWorMfDKBI7aHI79Jr1amHc0SHgpwuTR9LGw2qCCCHhH0jeMWiNitnQEJYDIUoSIYsVGjOhX9XYIL4WZjz4jiWMYIDi7RHgxLBOUVpLQ5kb9KKNqE+ZKPaUn5clWb77JZRa9S/S+LBJd62+qZHEhJBOWBt6cwFadI9+36eZ6Bna68fb4Wej3M9XuZWiPeLY33xldTIySoQ4/3kH+NqFeq88Xi4FrRio4ElVIm1s7RPOx/SyFlvB4PHzpS1/i/vvvR6PR8Ktf/YqLLroobVtlkUUWWfwj4e233+bss89Oa+WWRwlrpK0ArL66HHOZgeb/EKSJ4d2TjL8bfSEPwPrb61n2h9j3vU56/jJC/ga7rEZjKTex+qMVHHi0nYAnzHTXHDNd8/K55RcWoTEqOfyjPnpfd4td8tMiPprrD9D4sVL63pjANxRgYTRAKBSfSwMTAZnE4j44S+UZ+SzOLcnHIE7uWJgMYHBq0VmjhKoV4UAkFCG8mH7vqahLRJ5PV2JuzA8RknZcJ2KqxYOrwcrcSPrYq/UPg6y7ujItQQmg9/lxRt9xyySVRBSe4GDk7am05CmA2gtLUemUGXNegbHAca3a9nyzLUnd6m9B+/PD6F4dlglsKxGzMsuEtdcJYpl/JiisyhLQ/7KINXLKdCg1Uort257vtR3Xwq7/jQnMhWmC2SgWJgLo7dqMxyOhCJH0YR3oIBKB0GL6LxicKgiDd2UONFreJd8y4aVwWoISQNCzxOKCyP3mlOlQ6ZVCYQlYnAuytLDMyFuifeovL2HiyAyBKAFt4rBHVnDVWRWsubaajj+JnJdvMoC338fgO2Isrb+pCpVOIW+6bPvtAPkb7NFzYcOtjUy1ztI+NExgIkDf6+N4+kQ5Nt1Ug8akRvtVM0iwsOxhvKyHnn4R/7/77ruUl5ezuLjIiSeeyBtvvJGxrbPIIoss/pFw5ZVX8utf/zrFyk2NliZOxiwJBsO2+xtYWlhm//c66fjTKI46o0y+KGiykf9JO/v/o5vgZJCx5mkmj0VzBUFo/GQFkVCEgz/oofuVcaoV4E0SK6jh6FMDBN1BZrrnCMwuyudqCyVKTyqi8/fDDO2eJG+dDb9HHPePBjGXaUEh4e0NMD/mxxiKx07BSUGsCHrDBL2wHAzJ89VKhZ75oQUIg9amTUuYWQ4I9SStWRAyViK8FEahSq9qCRCYWWRxPv3aE8DYgWkWZ5cyHt/zzXaZTJIIU7EWhVrUPx1ByVympfLMAlyrLWlJSEBGWzkAb2+And/8T1q5AQce75GJYinX7g8KIvFx0PTJqowbGmMEpXQkrIn9HmY7vUmqRomYOuJlbsMCLb9P70YTmBAK8FPtaTobUOlFzss3nj5PqdIrIRLBO5a+7qHlMMrQijg/9lWtWE/0TYlxLo/haDsu+UIs+UNCNQtktbAYPL0LaE3iHUDr1FJ5ep5MSAovBPGNBRh8O2pHfWUpoVCY9qhCbN9r4zgbzXI5tt1ez+A7buaHggS9YUb2TTHdLtYT13+qEp1NI5Ohjj7RiavJKZ7bqHWet7+Ukp81AuCvn2B/z7sEFv3MzMzwuc99jjvuuAOz2czTTz/N2Wefnbatsvj7RVZJ6R8EAwMD1NfX40+z+mHBxWbpZECwK5fml9j/UBdFJzoo3Ozg6JMd+CehYJuN0pPyZNnhrXfXE5hdlCWOHWuMWMpy6HluTFZ26X15lNHd4sc9URXmeIo3uRvMVJ9XnLSDOBGb76xFbVRltAbb/oUGJElKy7zVO6HppkZx7X9Pvbah1MC6q8roe2MsPXnIAFtuqePoL/qTCCSJ2PiZalp/2ZPRPqzplirGDk5nJCetvaECvU2bIu8cQ0zBaX7Mz+EMyQ9bg4Hcdfa0JCZTpYHGi0po+f1gZmu198DxlJTeD1ZfU45ClWzLFoOh1ED5Sc60NnSJ948sRzLu/qq+sBDXKktGRSQQ4+jYk12Z++nTVQztnEirggWin6c659IqPoF4lryDC2nrYXAqWH9zPbN982kt9WIqWkM73Qy8mhoYplNGil88WfVsJRqvKsVaYZKVrmJqTDFsvbseFAgLQgM0XlQq18G1Pofqc4vp/sswE81e1t1YSSQckcdhw0dL0Nu1ND/cJT9rMSWyScMYihofh48cZjkkAnmr1YrH4+H666/n8ccfT9uOWWSRRRZ/r7jxxhv5wQ9+kPK5hIImTsEu2WUlmJ3faQG/iBG8wz7Ztmvd9ZUsL4Y49mQ/BdvtlJ2cR9vv+2TbtIYrSmTyy9Z76gkvhZN20MQs3N5LsSadskv8IrDjrkZBYvlG6rxSflYehVscjDXP0PN8qprOqqvLsJQaBek9DZek8aoyTAW6jOTpyvMKMJfoM5J/8jZZyV1nk0kaKcUv0rPqomL2PZQhZtHD9jsaGNk3Rf9L6ZWQjjvvJtSj94X+JNuzGNZeV8Hi/DJtT//tliLw3kpK7wVzpZ66C0o4+kRXWkJR3aXFjO6fSlLbSkRMPSJRVWgltt5Tz9ywn5afpyckFZ/kxF6TI9sNroS+SE/9hwtTLANjMJbpaby4JK36aez6xTtcHPpBe9o6Nt1Shd6qlZ+1lTieGlVMGSnTu0nMFq/l6d4kS0P52l9oJLScqFwWVz0rPNFB+cl5dL4glMsqzytgutMjX2fdpyrRxHbG6cV7SM9LI0wenkOfr2P1laX0vjrK5OE5Ntxajdqokp9T7/phRtyDDA2J9wG1Wo3JZCISidDd3Y3dbk/blllkkUUWf4/weDzU19czPp76fu4gnybpBECQthfnlzn4WDf2RhMVHyzg2NODBCYC2BtNVJ1VyLuPdkBAbKAKepc48pM+ACxVOmxVFvpeGsexNofa80vofXWMsd3iR11nhUAACIid7gqVIm3OwlKlY9VHK4WaXxoV5ti82/JUbwpJBcQ7u0KlYNfX08QFOhHX+KaDaa+tsypY96laBt+aSFqISMSmz9bQ8rvBjPZg626ooP3Z0RRrtxhWX13OdKc34/XrLy/BXGLIqHwZU82ZG/ZlXAjLKdOR32RPsbQDUcdVV1fR8cxgkmLV34LjKSm9H9ReVITapEqrJKmzQvlZJceNC0VcEk6yMEtEyalOirY62f1vmUlLG26upuUPQxn7adXVZYwdnE4hSsWw9voKZvsXZOLUSmy+s5a5YX/6euhg++ca8fTM0fqrNHZ7Z+dRsNnB0DvutHYzMbX+nQ+2pK1fkurZClSen0/+ejvtzwwKK7io7WIMmz5bg0KjkN896i4uklWvLFU66i8up++1ccb3zdBwZQkqjVK216s4Ly9uP6iD7Xc2Mn5EqDt5dB5CdVMcO3aMxSWxIGi1WpmdneXWW2/l+9//ftp2zCKLLLL4e8U3v/lN7r//fkKhZNKMCjUbOBGzZJeVYA78eytBL6y+ugzfZFAmtNRdJjbatz01iLXWSO2Hi4XzR1TxpupDBWJTdhA23l4DIdifkNvRurQE3UGh1POxSqHy/FxqXipFnWUFEsUYViJ/k5XKswsZa55OS8SpPr8A1xorzQ+3piUeVX2oAFt1Dvv+LX0uo3C7HUe9WY43V8JSbaBoszOtUg8I8knDFeUc/EH6nBmIuHTk3em0BCSIrrcaVBmVjGL1GNo9nZYsVHdpMeHliGz/9bfivZSU3gv6Ai31FxTT9sxQWiu68rPzmG71pFUjAjEOHXVmel4czagWtfG2GubH/TIRZyUca8zkr7NyLMOaptappfbDBRljW61Ty6rLS2j+YVfaMepYY6bqzAIOPdlH0J36hVVXlZJTbGT3d1vTnr/tnnoikUhaFa2YMpJvIpB2HK26Sqhhtvy6H09H6iaQrZ+PKnRFY6sYIQrAscpMzYeL6Ht5lLF9HopOcDA3vCDbH9ZfUYLRpZOf64231dD32jhTx7xozdBwRSXDe6ZwH5plzSfK0Dq0Ql0NmFs1wph3mP4BEW+rVCrMZjM6nY6DBw/icrlSGyKLvztklZT+ztHQ0JDWUsSIme3SmRhKDTRcWCir20gS8g714bemGH5rCluDAf+kD1OJAaVWQfGpToZen0whQNRdUAYS9Dw3xsCryeQK1/ocas4vkYk1u77bmqS003hVKdZyEzu/2sJEsxelJk5uAqj8UD7GXCEX2PrHIUq2OZIINqZKA+Fl8A34mB/1i532aeCfhHAowpIvA+N4OYyklHBUm9OSiAqabKh0SirPzJd3Sycib4sFrUVD3eUVaRcxMAif2dIP5GUkKeksGhTqzDIBAy9NYC01piX4xDDT6ktRIYqh/EQXKr0SrVEinQNs0YkOyk7Jo/+v4wy/lX7H23th6731REKRjAuOOUV6JCl9HX0DvuMSlABmuucYeTdz2TQmFZJCSrEOjKHgAzbURhXVHylLS/TSO0Hv0FJxRiHug2nqYACtRUPeGltakpLeCQqVhM6aXrVJYdYRCUfk3VgrMdY8SU6hXn6GCj5gSxovR57qp2iLWFgyFOpovLSEfY93ymphh3/RRzhK6N/4mWrURrVsXdPy84Ek28P1nyhPSu4kPtfrPl6JKU8vP/Pug3O4D8aTrAZn8g68iSPTssWftdoGEgSmRXLmxI9sYWlhGfuhSoboQdkQZHRcvDT88Ic/5LnnnkOr1fLjH/+Y0047LW27ZJFFFln8T8err77K2WefnaJWKSGxhm3kSkVUXViApJDo+v0IS1GlSEeViamj8xx4pBt7g0E+z5inIxyNaUZ3TSdZXlWcm4+91kzjx0pp+cVACoFITu7/Swvj+zyMH/MkkTO23dtAwBPk4GM9HH2qn3AwIXbSw6brazj2i06h2tTmZWBn8rybt9XK+B4PfS+O41plYTyqmLkScyN+zMUG9HZ9WrsxnVWNSqPMqJ7kWm1Bqc68k6zstDxU2szn151fgMaqxrk2J62ikKPKhKSQUJsyv/a0/6Efe4M143EgIzkHwJSvl/sxHbbcJV7oMy3WvRdKT8+leJuTjj8Npq2jMU+P2qSi+NQCOtNYj6ST207EoSd7aLykLCNBCUCpUmSMewCKtjtRajL3Y/2FhejtWqy1+rREn8rT81EbVRn70VppQqGSgPTk8yVfCLUxlHaMAMwOLBCOKgMYy/SEl5HH69TReaZXzdH/smi71deW4x30ycpKBx7pJm+TVZRbDzvubGSiNU4ITFToWv+JSgwunWzFOPLWFCMJ8XZ+k4389TbZriTRiq7sxFxUeiWGXD0wh96mSLJEUSiTY+uTd5xE2++HqZcCdLjeRWfV0tXVRTgcJj8/n9LSUpxOJ7t3707fKFlkkUUWfwc444wzeOWVV1I+z8HOVuk0dLk66i4sjP+eSvHfy+mWeaZbOrHW6AlMiLhLbVJRst3J4OuTKRZpjZdVICkk+l4aZ+rwHLsOJ1tLrbm6UibW7HmoPYlcUXl+Pnlr7Oz6Tguz3QE6n022SCs+2Ym5xEDLzwdof7qP0tMKkghKunwdCpVQP/J0z6HINKcGYHkpJMeYqQijVCuwVprSkojsjSY0ZjUVp+WlJdhYqnQY8/XUXVCYlgQFYC41YMjVZiQp6WwalOrMCtbug7M46s20/TEziWeuP8Bcf3o72qKT8tBa1Ogc2rQkJXujIB8Pvj2R1nLt/WDzHbVAZls0W00OCmX6Pgp4eE/i+vjhGaZaPRmPq00qFEoFtnKjrDaUCHujCZ1TQ825+ekXw3RgKTViyNVmJCkZ8/TorJr0JCUdqHQqtBliP51VRyQUZi6DGub40VkcdWaZoOTaYEmyzjv8835KttkhIEhdjVdW0/yTLvmZav6PHhQa8f9rrytH79DJuayeZ8eSLAI3XF/J0sKy3FeJz3X9ZcU46i34ZxYZeM3NbHcgKSdmLjEm9eNMh5fe50UO0FZuBJCftY1nNhAOhXEcqmKSMRYbp5mYmCASifDQQw/x61//GqPRyA9+8AM++MEPpm2XLLLIIov/6Th48CCnnHIKs7PJdqcKlKxhGy6pgJJTXKiNSnqeHyPoWQIJTCVmgse8HH2yH3NFXMnQWm6EaKrE07GQlBPJ32Qlf4MdtUlF21OD7F+xWb7p02Kz0M6vtgilnhUEpE131BKcXeTIj/s4+tQAChVJKjNrr6qg/ZkRgpNBRvZNMX7Ik3R9xxozU0e8jO3zULjVGVd1WoHZAR+OejMKoxa8qewQvU0t1uIyqCcVbHKgyVGnWMfFUHV2ITqrJuP5FecWYcjVyeVdCVOxFkmtQHOcnFfrr/vJXWvLeBxIS/6KwVZp4nhaJxtuqUZSSyl9+H6Ru9FK5ZkFdL8wgvtQqtWuxqhE79RStMlO17Op5cxk5xZD+6+HqLu0+Lh2diq9AsNx1CjLT8lDa87cj9Vn55FTaMDWYGKmNXVVtvREJzqbBkdt+n60V5lQapXy87ISiwshlhdDae8NQo1fir4DaV1aFCpkQpd/VCiXjR4Q9a+9uIiF8QDDUTXUYz8fwLHKLBOUtt3TwMTRGdnCbs+DwlYRooSvWjPHnupjtsvH1DEvU8fi9Sk5MRciyBsE2xJU53M3WtFa1BgLtUwdE4pkSaQppZS0prxjyw46nhulRtpMr/0wKqdEV1cX09PTFBYWUlZWRklJCa+//nr6Rsni7wJZJaW/Q9x22208/PDDKZ+r0LCF0zFIBlnVKKaqMrRnkoE0u8d3fFHIqMks1gRyg63BQMPF5bhbZun8/TBFJzqY6ffLqiyWGgPV58QJUJvvrKX/r2NMNMd/lGIqLtUXFpK72sqxp/vSkkq2f6HhuPZlO74U3f2cZpdazKLK0zufkfyy+fZaOp4fSntvEMSdGGEnUREqHRxrjDJRIx1MlYb/tILRStWbdNde+7Fy3G2zdP4mM3NZ7ySjLVrpmbkUb3HS+ru+jESn91JS2vL5OiKhSMbd7se7fwzbv9BAKBg+7oKdwanA5wtntJY7HjIRmGJ4r35MtOIr/aArreJRDBs/U83g2xNJYz9+IaF8lGmXYEyVLJNy1vobKzHk6uh6fijt9TfdXoNKr5KfjZVjaMOtVUx3z9P353FqLipCpVfS+ov4c1J1QQHdz4jgbscXG5P9YqPlxycW7MzFhozktpW/JbHnqC1yAJ91BhQwPS2SmFarlYqKCt5++20MBkPKtbLIIoss/ifB7/dTXl7OxERqHFVBI1VSo6xoBOL3MBKOyPZNiSg7M5eirc64T/sK4s36m6rQ2zXyuRXn5ifZjzV+rBT/zCK9L4xRcW4+5mJDEskhsRzb7m0g6F1MqyxZsN1Oxen5ePoWZIuqRMR2+Hc+L9RfVmLtdRWY8vUy0WIl8jZZKdzsyKiaA0JhZuStqRTlmXTIRGyJwVypz6gSdFzE3DKOc+qWu+pQahRp+zPpUvbMdXivha73UlJybTBTfXYRfa+PJxHZ3u/9Ib5z7MAjbRnt2yB5DP2teK9z7Q0GpjPEniDszfxjAdBD3lpBkksHx2oTpSfnpd8wgFD0NBcZOPBo+rpuu7cBhfo47x3vpbp0Qal4t3plIqXOeZuslGx3ycpeTbdU0fHciGxZZ67Uo7drGd/nof7yEuzVORz4aW/8Ggm/Ccf7Lak8r4D8DTaxk/TZUbkc/oifvbxCbpGT8fFxmVDZ0NDA6aefnt3ln0UWWfxd4Pvf/z533HFHiqWIBj1b+CA6SSerp1Scl0fBBgcje6boeyl1gWLbvfVISgW7YjGLDpncoMvX0XRtJZNtHjr/MIJrvYXATFAmvhiKddScFyfrbLi5msFd7iTyUawcxSc7KflALq2/yayOpFQrMsZOO74YVbVMo5assypo+nQ9nt70qjUgYsj+v46lJbRAlCTSMitIIbk62ZIrHaw1+rR1kMuzQrnmb8F7navL1bHhU5W4j4k+yfg9Kxnt2PI22ag4PY/OF4YzEnTeS0lp42dqADIeP979Y9h2bz3LgdDxFcpj67j/iebMKdMdV0nKUqVjtvs4bW2NK4Plb7PLimHpsO6GCkbenU4a+4nYfn8jc0M+jj7Zl3LMsTaHugtKMubE6q8owV6TQ/efRxnfl7p4uO5TleisGvnZWDmG1lxbjnfIR//LE5SdkYvOrJaVkwDKzsiViVjb7q3HNxlM3hQa/U2oubAQ1xorg29PMPh6akJz5W9JrBx9kXYmzYMo1UqmpkSuzGKxUFNTw1tvvYVO95+zHcwiiyyy+H+FYDDI5s2bOXLkyIojElWsokKqR+vUygo72+5pAIm078uudUItMbaeuJLQ0XhlKeZSg2z9FLO/jaHyvHyW/SEGXnNTuN2OvdrE0QSXipiyEsCmO2tZ8i5xKM1Gf2utkcbLypjpmpctrBIRy490vTDCxH5PyvHai4uw15rZ/Z30qjXWWiMlJ7gyquaAIGGNRTeCJSrPpIO5Qicrz6SDqTi9vdx7QgtabXryUwxNN1ehyVGlVeBJulQGEhUISy+FWpHRlu29lJTMZVoar6ig7/XxjESi490foPQMF8VbXBz4cXdatSX5Oglj6G+FvkB73Gu/Vz/Kz5EWXPWWtIQsEP1dfXYRB3+YfsNA9fkFOFdbOfDDnrR12XRnLZrjKGdtu6+ByHJYVkZaee/VV1UyvHuSwb+6U9rLWmuk/JQ8mVy05tpyel8elcen1qXFXKjDfWiW0jNcFG50cvTnPfHxm/CbsO2+BghH5N+DRORvsVF5VgHjB4R6WqwcwUiQZt7EWmhiwj3B0pKwP6ytreXDH/4wDz74YNo6Z/E/F1klpb8TTE5OUlZWhs+Xmthfzwk4pXz570SyQMvPB5LIGLYGA/UfKWN4zyQDr7qZ6vKm+NfXXl5Mx9NDMoFFpRO7SlYSEyrPLEBr0cjXX0lYSbTO6PrjCF0rZJq3fL4O32SQoz/p49DP+vFNJtet+FQnQ3smwQfeQR/jB9Mr6/gGfETCETLR7WwNBtQ5KqrPLmR/Z+pEaSjUUXZKHkXbnOx9sD0tQWn7FxogDLv+tTUtsaX8nDwKNzo4+GR6izoQSalQMJSyWy8GS42BVVeUE5gJ0vxw+kUXg1VFJBxh8mhm1i8cnyA08NJEWsLa34JMCkrv5/4xhBbDx9n9J4hO62+uzyjxDEKBqOLUgrTkt9jfGz9TjUqvSlGgiPVjzUVFuFZZGHh7gqGERESMoORan0PxDheuVRaZkJcIQ6EOrUVD2Sn5aUlEBqtQVfJHFYdWYuBVN456M4d/IQLq8nPyktSbDv5HT5xwZYDttzcwuMstlzUx4bX2+gpMBXq6XxxmfK8IchLHkrPeLDOqY4gRlDBAJBxhKShUyAo+YCO8FJav0/fGBHXnFcq/A9vua2Bh3C8H4zu/2oItqg7S8NESbFU5DO10w6tNEI233uEv+JknEAhw4MABjEaxM+3qq6/miSeeSNs+WWSRRRb/Xbjnnnv45je/mfJ5Dja2SvHdsSvt0Fp+nWwJtfa6CnQODXu/2U7/SxPYq3MYeCs63/iFYlF4KYy72UtoKUwkIW/Ru0Jq2lppImcxTO8LYynHCk90UH5KHjOdc7Q+NZiSMCo9PZfCTQ52P9DK6K5pFsb9KcSe4lNdDL3upuM3PdReVJmWoAQQ9C5hyNVlJMaUnpSL2qjKeDxGypkf9uHt8bPSrbj09FyKtzsZ3jNJ/0sTaQlKW++pJzi7yMHHetISlGJkks4/pydaAWy+WVgM7/xWeoswgMX5JdT6935lOh5BKBM56f3C3ezNWIf3c3+A6S4vtqoc9Hk6/NPpY9WYrdmBx3sEWSgNNn22BkkppSWq+4f9mCv1rL6ygt7XxlIIVTGC0vb7GwiHIimxWeyeW26rQ6VVMn7Yk7Zfyk/NR2vVZCRFhZfChMORjGSs7peGcdZaANDbFZhrzEmEqJ3fbkFvEQtKa66rQGdWy304dXSenUfjiZ6maysILcWtEsf3eWRFqrytVvR2LRWn5XE0Ku3u7Yk/dwqVRCQSketQc3FRkhLWRIuHSFi84FScm0/eWhuHftaHf9hPz/OjzPbPMXV0Xi5HjNB0MufDCLgioxxiJ1qdlra2NlpbW3nooYcoKipiz549FBUVpW2fLLLIIov/DgQCASorKxkdTd4dLSGxjg8k5by23VuPpBB2aL3Pj+PpnpfJOYZiHWs+Ws7YgWn6X55g/MgMkiLhHTgAVR8uoPtPws4sEgnLio4rCRjlp+RizNXhWm/BfXCW5keT8wFbPl+HSqNk59daGHpjMkW1Z+NtNQRmFzn2ZD+HftpHwJs8t7o2WJjrmSPgCTPVOou7Nf1CRcATJhwKZ1QU1+XrMLi0lJ+az0xbmlySDmrOK6L81Dze/XZHWoLSls/XoVBK7H6gLS1BKW+TjcozCzj6i56MxJhNn60hvBzJuECly9Wx4YbMNngAOotEaCnMdHd6clEMxyMIje+bSUt2+VvwXjZw70VQAqHyuLSwlPkLOmG5vDi3lDFP6FibQ+2HSmj7fX8KAS3WD2uvK0dn06bkzWIEpZJTnZSckMvAm8nKUrE65JTpqDwjn6LNjiSLHbmYVjDm6yk7OTctSUlnhXAojN+TftFu6vAcc00+Op/pA6DwBAcjb8fzu21PDSYRrrbeXc/wnvjzlLgho+7iIhyNFnpejtswJtrn5K23CQVW4vFUolJUJCxykSDaVqFSyApPgzunMeTqZILS5s/V4ncvysSr3Q+0YakS8WH5mXkUbhV2drwG5XNCNXU/bzCDm8XFRfbt24deL1Tmb775Zh555JG07ZNFFllk8d+FRx99lNtuuy3Fzs1KLpukk+S/V9qhtTzVk2SrVXdpMTnFBvZ9twP3oVny11sZ2hWdb4JgazChUCmYOuJlKRgSKtRRosLK2ClvnY1QMMzAa25Gdk0nqTbaGkw0XFzKVLvY9LdvRU4id6OV8lPy2PtwO56OBQ7/tDuF2FO43c7Irmnanxli1SWlaQlKAP6pRSLLYbQ5WoLBNPZip+RhyNUlkbcSseaT5eQUGvB7Fpnt8qUQlHI3Wqk+p5ChncIWNR2xZeNnalicX+LIj/vSEpTMZVoar6yk8/nhtMo8AE3XVqF3atn//ZaMBJ+gZyk5Vs6A4xGEjmdF937g7Q+mJaq83/sDeDq8FKy3o81RZSQSrf54KeYyU9qxEcPa6ypQG1RpYyL/aBCtS0vTJysYeDPVWjnWj5vvrEWhlFJIQLGxsuGGanRWDd7hQNrxU/HBfAz5Osxl2rQWduFwhMhyOCPZqvNPQ+SuiSpnaSF3tTVprO/+Titas5BGqrmoiJwCvRy/zw8Fk/LJTddXEl6KC014OhY42CH621yhI6fIQNkpebINXtAdxB0tl0qthEhEbuuys3LpfzEel43smZTVY/M3WSk9JY+23/Th7Q8ytncGn9svt2nTJytE2b/RxnbOgFEoikzTzJsotUo6Ozv51re+xbe+9S0qKip48803KS4uTts+WfzPQpak9D8c1157LT/96U9TPi+gjFXSZiBKPLqwjJ5XRxjfO4t3yEd4OT7xTR1ZkJWCZvp9SEoJc7EgE7Q/lWz/sPlTtahzVIxE1YBWsi23fL4OhUrB7n9t5cAj3SlqNaVn5hKYDDDR7MXTv4BSlXmCU2mVGBzix3ClepCp0kDpCbkUbnSw91vtKdZrhlID6z5exvihGXqeG2PX11KZ2+Xn5DH+7jgzrT4O/yIzecg3EsA76KPnpVTP2RgWvUvHtfHQWtTCRm85MyNaUkoojmNnMjvsY2lumd5XM0srTjR706v1RFF3RTGOGjO9Lyfb6SXC1mBgpt/3n1InSoRrfQ7ug5kTR9vvF6z6dH0D74/oFJxdZGR/Ztu35YVlkISMdSbVJKVGedxAa+LIDM56M9NH0q/uuQ/OUbDJT+cf09vv+UYCSeOr+sLCJEKebySQ1Abbv9Agdpg9EVeuiCkBmCoNFG5ykLvKmpRgitWtaKMDSSmhNqSXTh/eM0HlGUUysajxqtIkdbFdX2+ViUSlZ+ZSvNUZV2jykbRTv/zkfCSlJF9rvsfH/oeiyUaDkNBXG8QUYqkxsBREJjZOHJnGlB+3s9t6dz0L7gD85GzRJgEfna59uN0iKPn5z3/Ob3/7W5RKJWNjY1l1pSyyyOK/DdPT01RVVeHxeJI+V6JkG2ejl4T0zupry9HbNLz7nQ76XhzHWW9mMmrZ4OkQRI1QCBb6/aj0SvFiFsVKZaOqMwsJLQqS0pEfJc81eVutVJ1RSPfLI4zv8dDydG8KYaf+8hLanh5k5K0pijY5GN6bnimsNilRqCVcG8y4m70pxJ7NnxMe9VOHpvBPhzm0YsfOqqvLyCk0sPuB1oz2YZXnFdDz/CjvfqdDEEgyEGeOPtFFxXklGdWP3K1zFG5yMHEsc5whKaQU4m0icoqMIImESyaM7pvGtcpyXCWlg48dP9my4wuNhJbDKYQbGXqwlx9fQej9QG8HrTOzolTxSU5KT85lZO8UfS+mKkm8H6LT0C43xdtdGQlKgIhlM4ezhEKAJOyPMyHgWUzZJJGIY08PULrdmbFf9j/UhbFMEJT0+ToctSaG3oyP+5YExcjqiwpx1Vs4+Fi7TFpKbIs1n6xBpVfi7Q/E6+0Hv1/8v86qRq3L/Mo8O7BAcF6MsbytVpQapWzvNr7HQ3AmKPfZtnvqCS2GZcJTYjkdq024Gi2YcnWyAlnMTg7AmKtDoZJkQlPBdnsSCczTO094WbRp8UlOirY7OfqUHmd/AQTBt3acnYfeAmB4eJi6ujoWFha48847+fa3v52xfllkkUUW/7fxla98hf/v//v/UiwkiqmiXmoCBPFo9ZVlDL0tFqymO+aiFqACM20L5G2yMb5vBt9QAIVagTFXkAli1k0xrPtUJcY8HdMdXmbaFtj9QPL8vfG2GlQ6BXsebKfl5wMpajT52+yEAiHcB2eZbJtFa8pshSps6sX/ryQG6XJ11JxXxNK8sKlqX2HXqrMqWH9TLeNHZuh9fjxtnFG43c50t4/AWICDP+nBN5Rh/g7AVMssg3sy51b8E0EU2swTvN6uASk6z2eApJY43hpXYCLAwkSAwbcyb5rzdPozx1QIVZyibU76XhnLaDdnqdIRnAq8LyLR8WCt0eMZ9GdUOdpyVx1KtZJd/5p+l/p7DmvPdAABAABJREFUEZ0IwMK4n/Ej6clpAMsLURudAn1GlSxJpThuTOxunadws5PJ9lTrERBkp+nOOfr+kl6tPeCB5sd7ZPWi8jPzklTLAh6S+mzr3fV4BxeSVL+OPNEHiHFdfmoehZvsSRvuYgQlx9oclBoFalP6nNfIvimM+XqZoFR7UREdv4+Xe++D7TKRyLXBQvU5RXT9eVgmIiUqlVWdVYhKp5SPBSYCSYQolUaJKpp7MxSLa8Z+C6baZ7HX5Mh2dps+W4NvKgg/P1lcyx+gO7eZ0YkRIpEIjz32GE888QR6vZ7Ozk6sVmva+mWRRRZZ/N9GMBiksbGRnp7kPIcGLVs5E60UJy6Yiwzsf6iTsX0e8jfY5ZyXt18QNdRaQWhQ65WCIBolHh1JWPMAaLiolOVAiKkjXqGulABbg4m6C0voe3WMsb0zHPtFTwopo+pDBXQ/N8pM6zy+iQCj+9LnvFQ6BSqdUlaoWUlCabpJEHZm+hbwjwY59otkhaWaCwux1+Sw58F2Bv/qZvCvqa4aJae4GPyrm4M/6EFfkJ6gBNDx2z7Kzypmtit9Hmi208vSKXlMd2TO0ShUEipNZvtcQ54BJFj2ZxYBGHjHTeFm+3EJPi2/Su9ME8PWu+sIh+Ddb2dey7NUGzLW9X1DC+b89KQcAMcqM3UfKWZk31RaezdvfzCtMlAiBt4cp/IMFfPHUVJSqhVI6uMEtBFAIaGxZH4H8I0Hkt5VVuLYU4OUnujMOH6OPNEvqzZpzeBYZU+Ke3ueH5Ot2IpOcFC8w8nBn/TJpKXZLp/cHzGi2tyIP07eCiJ/15SrE3aEGTDVOktoSeTSrLVGdFaNrHbl7Q0kEb423VFLeDEsE556XhijJ7rBVl+gpWizE1uJSVaIisVRADnFBpQaBd4xcS3XumSlKfexWXlt3bHKTOVZ+bT/rh9z/4WwCMF6N2+1vgFAb28vdXV1BAIBvvCFL/CVr3wlY/2y+O9H1u7tfyB8Ph8ulytFNUmJkq2chUGKkgyiFlQGp4L1N9cz2zfPsZ+lTiqb7xS7xA8+0ZfWSmzjZ6oB2P/9LgyFOvI3WOl5Lk7YMRTqiCwG8E+Ka0lKKSPB5D1t2a6O28elQ8EHbIy+I37kVn28lJ4/D6RX5YlaaHkHFpLIHvLhaJuEgunlskEkFIDj2o01fLSE1l8e30v+/xUaPlaKWq9MliVegeJTnRRtcR43qbPjS40QIaPcX+w7x7N7a/hoCfZqM4O73RlVmZpuqgIlGa04APK2WCg9IS+jbdz/a+RuMKM2qtPamUFcuSmTVZ5rfQ4155cQnF1Mr7rkVLD+pnq8Q74U4l0MDR8rpf/1CXwjgaTnIR22f6GBuWF/2msVn+qk9IRc/O4V9m1RxCwYd36nBXxR8lpCnQxOBfnbcul5bkxWYOt4diCtkti2+xpQqI5v1xgbT5YaAwpVnNA0Xd3PHB46O8VY0+v1FBQUcOmll/LAAw9krHsWWWSRxX8lMqkmlVBNnbQeECQC30wI/7BfKAEZVOktO/RiV/RyIJQ2XnJtMFN1VhGHnhSKKBXn5jO2eyyJ0BOzN9PboenmRobfFYpCK9H06Sr0Di0dzwwymcbOYvU15eQU6o9rVZa3VdhqGcv0FG6yJym5JGLNdRXk5OvFvJGGPLLpszVozGqO/qL3uMpGHc+mLysIcsX82MJxrd3+X2LzHbX0vDwiq9WkQ9PNVSwFQrJSzkpUnV9AfpOd0f3T9Dyfnoj+XnZvIMhQQEabGPRCgaj/jfGMNmkg+tE/E0wiwPx3ou7S4oykNxDxeigYihOlV2DrPfUoNYqMalgx67dM41ZvV1B2RhFtT4t4P2+TVVZCSinrZcXYq3OSCE+JeC8buS131bHkX+bAI93o7QognPTcV55XQM9ro+AXz9NyMJSWJGet1dN4eQX+6WDaOHvV1WVYyoxymxSf5JRJXP6IH/+6Ubp6u/B6RaayqKgIlUpFa2srer0+5XpZZJFFFv/VCAQCVFRUMDaWvFFMjYatnIlOEoSA2G73mOLMTHd6u7OYTe2xX/aktbdae105Kp1KJMx1UH5SMslCZwVQEPCEWXdjJRqDKqMK4nvZsq2/qZapdm9Gq7KYKhMIgsXAa6MEPGk2u+lg+52NzPbPJ5FaE4/v+HzjcZWnm26uQqVTHlfRsebCQjr/+D8jJqg8Px+9TcuxJ1NzfDG4NliEItQjHRnJQ9vvawBJYtfXj5/zOp7dW/mZQm19ePdkWhtBEJvC1Holhx7PnKOz1RupPKMw7W78/w5Ya/QYnPqMBC97o4m6C0vTKjeBUF1ac3UlgenFtIpZOis03dzA7OBC0oa5RFR9uIDRZkEodG2wyCShdNh2bz3eQd//z957xsd1nGff/y3AFiy2dywWwDYUdoAFoEhJFItYVW1Ltpqr5CYXSS6y7OfJ73GK7bgkdmzFjp3ELZFjJ65ykSyrs4udBEkQlei9bkHZfT/M7gJL7NmFEsXJm+D6RAI35sy5zpyZOTPXXHfWd8Bco6PqTi9TvZGsz6B0mxVPvY2TTzYSHV2c/k5tBMcGkQpO7VSz5oFyrvwme4rA1GGOg395IWu7a3i8hunJGV77WhNqpxqNUZHmb7Ksh1HVEBcvJdPVqdW43W7uueee5U2zZSxjGX80fOc73+Ghhx5a5JpUThUB2UpAOPPE54TwaM27K9DY1Fn3+EDMh6bDs4vcjEC4q1TdUcbFnwhHlJItFgbPjGS4CaUdYlRQ/5Equo4MZRUF1bzVizGgo+kXXVlTYwVvL8Ec1OVMVWZZpWfo7Dgqq4qSTaa0uCNbWZZKPSe/cSlraraUO9L5p9qyCnLSzka/7GLofHZVkG2NgZnILKOXswuP/9hY+6CP9pf7GWmUXvNaca+XxJy0mMm50YR/t5ue40NpQcq1yJfuDcShLuQyyTYHUPfhIFdfGZB0wAKxxjQzNStZlz82fHudOeuy7n1+SJB1/w7EAQqVoYDXvnoxa7sM3ubGUm2QTE2o0kPpDS6u/FKsR6beh2zw3mTDvcHCyb9v/Xelkav9QIB4LM6pb7eg0gNkpjks2WJh8OIkscEYq99VQSKRyJoyUWVTUfeQn3B/NKtLV+CAC/tqE699TXCyMLViLBFjcm0Xra0tjI6Jn7ndboqKijh79iwqlfSBymX81yDHOdhl/LHxd3/3d+h0OoqKitICJZ1WR6hoJTtkb+K20D1U7SgDxMkUz2YbtvpiwoNxDn7pAhN9UbRW8Ug3PBZi/WMih3rLs12EhyPorPOngMv229G6xcJPoa4grZYMd0eZ6o/g2ChSIKCFte/yseqdQtBz/ied9J6eF004NhvY+LFKdD4hnJroiXDuF2JBQetW491lT8fqrEqQgUovruXdbsMQFH+ntcqpelsJFTe5qPtQANvaYoZbJtICJe92G6ZqLRsfq6TkJhPeLXYOfukC577bjmVVESVbLenreLZZ0bg0DDWNc+afLuLdZUdjFb8zVWvxbBP/kcmFs5FlVVH6Xr277GkOax/2Y/IX491uA4RAxba2OCO24fFqGj5VLZyfFtyrq96EvVYvntUnq6h7JJDmW+vNjHVsNNDwRDUbHgmJe91lR+vVLoo1eIvQuTS46k3pv/Xusqe517rVyAvkaYGSbW0xrusWxCb5Hrg4xmDzmCg3aVhzLYdA+iSWxsqi2NhkjInuMIPnxinZalnEocYqBta2P/Sk+c7GYelWkQ7GVK3FENSmuU7F2mv1eLZZ2fyZGmre7k1zeC3f/tucNDxRneY8G4fVbytl82dq8N3mmm/f13AY2Ouh7EZH+nf2Wn0G39ZqI8iEkl1rlWfwYltbjLJIyUjLJK99+8qi9u3dZSccjnPwTy/Q89oAJVstbHysEsdGA55t1rTDUdvvOrCu1GMIyqm4ycXGT1RmcJjiW+tWI5PJKChWpNv3Qg47nx9kvGeKzsNiU7v2gwHBYbJ9D5wfpfOoSKdoWVVE9ZvKqftoYP5ea630nhgVz2KTcHCKTSVP6G83ZnA42j7OeI+YXFvXFdPwRHWaN8dGA63P9qQFb9VvKqP6TeWgFW12rW8DZVfWsJm9mPQmbDYbra2tfP7zn0en03HDDTewjGUsYxn/WQgGg6hUqrRASSFXYDPZuY597JC9ie037UTv06AxQ+XtXlbd6wWNSN916ecdODYZAZFqreFT1RhXaSAi3FWGW0Yhud9vrtbi3SnG2fh0HLlSRtmNZgBan+/FssaGRvyXug8HqLmrQjjFDEPrH3qZuJpcMNBA9QNe1rzXB0Dz892Mdk2mRT+OTUYsK3Xp2AK9OHWlMUNRmQbPtvlx1rHeyKZPVuHf5QYNmHw6Ol8VIt1UrGOTkfUfDmKr1dN7ckgIZCIiLZymRNycpkTEHv9WE0MXxynUKXGsN6av49lmo6hMIyx8ZWBbOz+uWlbq0hwCeG+wizECIR7xbLOlObSs1BF8i5vNn6nBf8CFe6sFY0iTvr9UrGOTkYZPVVOxf8GcosGMOTnOooGat3vZ/OkabLV6jCEN7gVzIFeDWbja1Oop0CnxbrMnBSWg92nwXD8/Jjs2Gel4uS8tUPJss6FxqjM47D0zytjVKaKTEayrizN4SXF47ReZrVaPLTmnScUOt43Te2oEjVOd8Rytq4sF3xE4+oVLFGgLKCpL8bKYw2K3BnNA1MNzvRW9b3HshkdCNHyqGleDOX2da/mu+2ggLfjPxqG5WkvDp6rZ+PFKca/JooyheQ4r9jqxVhtY81BF+tmI2Hm+5QVy5Erxf8d64yIOm37ZRt/ZEYrsi9u3rVbPuX9s4+CfXcBTb6Nir526hwPpNgsQGY4z1DSGY71o6/49bvy3O+Y5XMB3gVaJTCZD78t8NikOz//oEqNXJ0Ej7nP9R4MZ7bv76BCtz4qN4FXvDrLuAzUZfURkOJYWUhUUKVHpC5O/BM+ueQ5FvaNc/pUoa/0jQeo+EkhzOHY1zMmvX4QI2OqK8d5gZ8NHxXdGeb2LYHw1Gyd2USGrpKKigvHxcdrb29FqtQSDQb74xS+yjGUsYxn/Gfj5z3+OXq9Hq9WmBUpFmiIqNWvYIXsT+8vfgm+rSEVZ93CQ8h1OXPXFEBWHrMauhlEnHZLWfcCf7vuanu5mojeMsmj+FLB7mwV1uYhVm1QUJtehiMJEbxjb2vnv2dqHa1j9LrF+dumn3XQdmz+0ZK7Rsf4jwbQ7y3DrOI2/bBPlGuW4t1hA/AqNU4NMIU87Djvrzem/UxuhYr+d4IESaj8QwBjUMNYRTguUnPVmjEEN697nx7nVjHu9hZPfuMCFHwo3J2f9/CDgWG/CWKqh58QQZ37UjnuLBbVRjJXFZWrcyfFbXiBHXijHVJVcr1GLVFspDle83Yt9tQnvTWKcs601YK7RzXO4xcKGR0PUf7IKtVMt7jUJy+piLMkxecNHQ9R+yI86OQdS2zNjzTU66j9ZTd2HgulyU8406Vg1WCr1GLxF2Grnn427wUxxWYpDwW1KoGQManCsn59XpvjueW2Y/sbhjGdjDGoyOASQpcwJUrwYxX8NfjUzMzOMtEzQf2EMW61hMYdGORd+0EHLMz1pvrNxWLbNjspYgGV1MVpPJi+2tQYsq4uxrTWw+Ykaqu71zHN4Dd+eGy3UP16d5iYbhxW7HWz+dA3l++0Z7du9xZLmsOrOcsp3ONO8mKoy+batNiCTgbxQjtrIIg61Ng0DZ0c58Z0ri9p3qr6H/qKRrkP9OOvN1H4ggK3WINpsUEx6mp/pwVhehNopJ7ivhI2PVWZymOQ79TwKDcrM9p28zvCFSYabxrl6VGxqr3pnOZX3eNLte6hpkvaX+4mOCiekFW/zUfshf/o65pUW+pKbdJ7NJhSFcuaSbhTu6/QZHA42jTLSPgFRUJeqqX+8Ot32zDU6rvyuKy1EW3Wfl+o3l6E2ijYbKl2Jp2MlW9iPpdiG3W6ntbWVz372s2g0Gm688UaWsYxlLOM/CzfccAMqlYp3v/vdzM3NJde8HGzlADtkb2LLhi3oy1SggpX3+am+uwxUcPrbrVx4qhXbGtEXWlbo2fSJqvQeUP/5EQYvjSWFCEKg494q+sWZaAKlRoFzk/ju7zo2hKnKgEov+vJV7y5n5f1+9BVqiEHTr7sZ70yKdlQQuN3JyneIPdDWF/oYbh5PC5QsK/QYQ0Xp+1MZlcjkclRWFSqbCufG+XmBqVrH+kdCVN7qQaWXY/Jp6Uo6wKRiTdU61r3XjzFUxPDlCQ5/rlGIHjaa0LiEmEFlFbFnf9hG70kh8rWsml8TcK43ovOoQC4DOVhXFAtXKYTDUIpDgMB+N1V3ekW5eiHwScXqK9SU3Wxn8xM1+PY6sa0xCI6SvDg3mlDphZvNpk9U4d05v/5hW2PAENBmcNjwqWrsdaJuzgVrdJZVgkN9mQqtXU3ZjXZUVlEJjSuTQ8sKPV1Hh9ICJedGEyqbKoPDkZYwg41jhAcjmKrn50ALOUSJyEKThDFUhGWFPiO2/8Io3ccHUenlGbwYAto036/9dRNyGYJvWBSrr1BjDhVjrhLx9jqjaN/X8L32QR+bPlGFvW6el2v5XvNQBXUfEXNXfdliDg0BsVe9/pFQ8tmI9q3zzHPoXG/EWWdm9bvLM+51Id/KIkWGQ9C1HF78VQfdx4dAVbCofVtW6Gn6WTeH/6IR5xoTrutMrH3Ql26zINLkDV4ax7JCL+ZKt3oo2+3IyqHKUAhyGTrnvJDHuX6ew7Pfv8zQ5TFQibqv/YAP2/r59t15eJCWZ8XB1xX3Baj7UBWqZDPVl6mYicyl3aPU5sJ5B3YVuLbOc1iggvGuKVqS62drHqqg9oOBdOxkXzQtUNKUqfDtcVP3cPI7Y6UNf2QV68d3UMk6KsormJqaoqmpCbVajd/vX17z+m+GZZHSfwOsW7cOmUzGgw8+yNTUFAa9AQUK7tn6Dh792KPsvGUHADV3leHZLN7qtheE8jFwk8ir6FhpoLTehm+/GOSUagWFGrEIM3R2Cq1Zg3+PWOyxNxjx1NpY9YAY7KcnZ5Ar5puCf1cJ/ptL0v+XyWTMzQiVdeUBF6X1trQown9TCUq1gsBOJwDFLg1VO8TfBvaJ2M2fqaFkqyV9/ZTri2ezjcpbSzEEtVTs8WAJGIlOTHPhn64Q2OOh4iZXug6ezTaC+0tRahR4Njoorbfh3SJEKsH93rSwpOFT1Xi32AnsK+XSU5241joprbfhuV5cO3TAm/67I1+4iFwpI5jkrKTOQmm9jbKbBadKlVhYSqWsqrjJRWCv+J0tVExpvY04caYnZ6i+xYNn0/ymVcVOV/p+FUo5ap2KylvE/6tvdVNaPz+J8O8qQSaXMRsVHJfW26i+1S343is41LqFcj0RT1CxcwEvm6xUJcsN3CJiXVvEIBzYu5jDyltLafpxFwq5gtJ6GyV1lkUcpqDUiBUbz/UllNbbqNjmSD7XUpxrrJz5divh7ihlNzoI7CsFoPwG8Ww820SdKm+b5zvN4R7BoWu1CVVRIWNXJxlpDFN5a2m6fadi/XtKGDo7SCKewOQtJrBX3E/VgZIMvh2rzMjkMoxBPVqrnNJ6G5X7k7G3CL77Lw+TmEvgXGnCv2u+fYtYwXdkPIZMJkuLlvx7SjL4LnZpmJmaZejsFP7bvJTW27BXZfLd+MMOCAu+V9xdjneXnbJdgkNvgy2Db6VGQclG0ZZDB0Q7dF8nnqO1xsF4xxRymQzvFnta8FR2o4Pgfi/h7iidhwbQmtR4d3hoeKKa6rd4MzjUu4pEm9WC2lSIyVuc7iNCB+bbbModqVAr+oyat5dSWm8jeEDwotGrkMlkIqWdFryb3fN9hBYsASOFyVQo5Tucoj8pFIut/l0lVOyY51CulIl0lGGhei6tt1F5twutTMsHP/RB3v72t+NMiDrG43Feeukl5HI5BQUFnDhxgmUsYxnL+I/i7NmzFBQUIJPJuHLlCjKZDKVCSSkBPvX4p3jfB9+LRqah/GYH3i02Qrd4iAzDTHiGApUSW7Xo94P7S/HvdKfLlSlkhPaK/mt6chbHCnF6F6DyzjI89Q7QkHbl0bvFh2f59Q7KttoJ3S0WzRUqMf5OtQu1QsUOJ8FbkmPEegvmsmKKbOLDuXJ3KcaS+Q9Y/043odtKqf9kNdZgMVqjmrGrYSLDUH2bB+8WUR+9T4N/txu5XMbQpXE0Zg1lW+0E94n+OrTPTdlWOyUbrBTqCwju8RBMjt9ooGyrncoDbspvdrDunRWUbbWj0ci59ONOgvs9+HfP8+LdYqPqthKRYq4zjLm8OC0YCh7I5BBgdlrMh8p2llC21Y5jtRGAwD4Ptkoj8ZkEvWdGKb/RQfCAmH+4r3dRttWO9zo7xjIdMoUM17oFc4odTgLJ2LKtdkzeYhKJBAON4wQPlFK+YA5UscNJYJ+HgRPjtL7UjdakoWxncl5zayneGxaIpHe5Cd0qyjVXaynbase3S5RVdUsJ3i02ptojnPuHNsq3ugnuFxxqnGrxzJN8K9RyZDJZWrCSwXeyzhqDipanewjuE/eaEjgt5FtTosG7xUb17eJvK/aVUrbVjsWvS8aWQkKImUCIwiqT9fduF8/cvd7CbGQO5IKLFMpvdBBKtkNXgwt1sQpFMi1M6FbvIg6Dt3iZmZhlNjYr2tKN7nQdUhy2/rqXRCKBxpRMy1Gtp2yrnYrkvYcOeJArZWkHCP/ueQ71PtFm3ZucNP+sh9B+N94tNjZ9okrE3uxOc6gxCw4d68yojIVUHkhyaJ7n23+zm/Pfb2a8M4xjpYXQfrd4T/Y4KdtqR+/TcO4f20gkEvh3uynbZWfzp2tEH3FAXKd0sweTtxhbtZ6K7W4KdQUZ7dt7g108AyAyEkUmk4k+QgOVt5dl8C1TyNKpjza+u5Kyejvubcn38xYvGrM63UcUFhVQmEw35F5vEe/CdnHd8uvF3zT/VrhV+XeJPgJg0+rN3H///dx74B0oUFBUVERzczOf/OQnkclkbNu2jWUsYxnLeCNw6623IpPJuO2225iYmEBfrEdJAbcG7+Wxjz/GzltvAmDFveWUJ9cdmn/bCQkou1GMwVqPmoqbnPh3i9+rTYWo9WJhO9wZRWfTEton+mO1U07FVidr31oOQGQ4hqJAnhY6hPZ5CO4vSYsvgLSzgG+nnYqbnGnxRegWD4XFBZQl+2CzT09wR3JOsd1FxU1ONj9ag+cGK6EDHmSy+XSevp1OggdKhbBiqxN3rY3ISIwLP2whdKsX/+7572TfTifBW0rRWFSUbrJScZMTV70jWQcvvuSa28aPVeLf4yJ0m5fWp/swODRU3OSkdJv4fejWUiFCQaQbUyjl6bmKqbyIipucVCQPNqk0hSQSiXSqhcC+EkK3JDm0C75lchnTY7NUHhD3mkJoXymh5DqQQiVHY1RTeUDcT3CPk4qbnGmxSOgWD/ICWTodSfk2B1XJsbNiu42Km5yYyos49sXLzM3ECe6ZX68p3+FM19+7U5Rbep1YxwrdtpjD0C1e2p7pIx5JiNgGseYRvKU0zWEKBUViDcOT5Nu9Vfw+uL+Usi1OLvygg3BnlODekvRYb6syUHGTk7LtyfWmt3jTfF/LocGvpsimZbRtkqEzE4T2l6Tbdzp2n4eBi2PE5xJYfAaCe5PPcZ+411QbLW2wI1fKMJaJjdmKm5wE94mx3r/bQcVNTsb6YsxNx3GutBDYt4DDbY70/GmidwqZTIYlVJx8NqUZfFuCBqYnZxg6M0Fpsn2714kJU6rNNv2sG6KC7xVv8+G9yYZjg3hvHBvsyXJFm1WbCynZaMW/20Xo1uT3zDqzeDb1TgbOjRKPxynf4UwLqYJ7SgjdUkp0FC7/opMiq4bym0vY9PEqVtxTnsGhya8nlJzvFbu1WP2GdB8R3OdOt9lwZxQSoNIJAXjFAcFZKLluqDGKNa/oQEy4rd3kIXhgnhfXGisqrfjbqv0uFAVyNPaC5L16CCzgsECtZG5mjugolO0UHFbd5kEtU/Pe9z3I2x94OxWJagDkcjkvvvgiCoUCtVrNqVOnWMYylrGM/yg6OzsxGo3IZDJeeuklZDIZqkIV5VTx8Uc+yXvf/xAqmQp3gxnfHrdYK4nB1FCUQm0BzjVC3BC61SvmS4g1ekWhHP9u8f/IwDQldVbstWJOseIeH+U3ukCFSCmVAH2JGLPsK434d7upulvsRSqTewjjrcKaLnSgJL0uYSjV4lhlQe8pAhVU7ivBvOCQUPCWEqrf7GXTxypR2VQYSnWMtU0RG4wR2u9Kr43oPCoqby1FWahg4NwosVgc/243oeQ4G9jlwL/bTUm9BY1VReVtpQRvme/LfbtchPa5cW40Ufc+P/7dbvRuNS1P94rYBWOEb7eb4C0exlujDJwZxVplxBJKrhve4skYk2UyGTPJ+ZBjkw3/bjfu9WKcDd5aSskGK7PROQYbRwnuLyGY5MVda8a/241jkw1DRRGKQjmeTfNrXoF9JQST8w9LSI9jlYUEMNY0SnC/B9+CNbrggRIqb/Uw3h6j8V9bKLJpKE8ezArtc+O7eX5uFbrNQ9Wdog4qvRz/bjeB5JpXcI8T/243sYkYl37cSfk2V/o5gli/CSTnaSp9oWiHSYFT5W2eRXzrXVo6nh3Au0M8x9Scp/LWUkJJvlVWIUgJJtc0SrbY8e8W2UJEfb3IkKUdvgJ73On1VHut4Ltkg4WZqVnkBTICexbwsr+E0G0i1rnGhM6hTR88COwvzeAwdKCE0K2lRIZjzEzN4N/txpuccwT2luDbJe679/goiThoTOK+dR4V/t1uypMHBAJ7XBRqC9JC59AtJVQmn6NKLzis2OKg7bd9BG4WbTZ1WLDylsy5iu9mF2VbHGjtaipuFrykhEiVtwq+L/+kjeErE5SstxDYW4LOo8J7k3iOloCepp92MTcdJ3TAg73OSP2nqvHtdhNIrmM5a+1Yq4w415iouNGB1qwmuEBHENjjJpic7411hZHJZdhXiHutvrsig29loYL4nFjzWvcuP75tbry7knPxWzzoS4rSfUSRXYPKKOZdhlKt4Du531iZXK9t+b3QS1Te7qH6LaIOAXsN9z9wP2+9+X7UaNFqtbS2tqbXvG699VaW8V8PZf6QZfxnIBwOY7fbmZrKtPbbsHIDVcVr6Tk8wvjFCcarJ7matOcnAXOzYuO/7+gYWpua6Oi0+J0KEokEcpWQpF75VSfG4PwA3n18CJM/qXQ+PYrvRif9F4RyuO35Hiw18yrMid4IereWlW8v59w/tjFwaYyBM0Il3PJMD56tVta8p5rDf91I56EBCo1yrvyrsD8evDzOULLcluf68Gw2Yy4XJ9E7XuqnQDff5AbOjxEnwYq7ywmPRBm4NMblX3ZCGNpe6kVtFB+A5XscDLWMMdI4wWTHJBQW4tlqZeCEcIhpf74XrUN8zM5G50AJnS+JRZbew/0oi5R0vSQ6qbm5ORTIsdfq6T8xTu/JYSIjQr053DhEkVtDkU1F9dtKaftDD4by+dPaPSeGmB4Xk4jJwQkGLo3RfWyYyZYwllVFmKuMGXynREcH//QCobs89J1Icvj7bmyr508JdR4SdU2JoTL4fq4HR+187NWDA2llLcDAxTGGL46SbiBAPC7aQMfL/RTqM/meic6w8bFKrh7pZ242Ttdr4oRg+0u96cEyhVT9uw4PISuQ0XckWc8X+tA61Kx5yMfcdJy+MyOE+8SA0Xesj0J9AV1JJ4aF4jcgg++eMyMUlxXReWgYjRVaf9+N0ZfZZmcmZ4kMwqGvNBI64KH7mOCl9Q/dGW2288gg8Zk4nc8PpjlM8d36nOB76PgUh4434t1uQ6aZl24PXBqbb7O/EXzHx6Ns+ngVV48NoFTM5/4duDjGaJM4aaVzaEgkEvRfHM/K91jnJHp3EYPnxhkE5uYSDJwWHLY/34vGqqL3cD/hwTj+W11onaK997zah0KtoOfVPsKDcRwbDeg8WlbcXc5sdE5wmFQcD5weQG1V0fnyIKaKYmYis4x3zOcy6TkxJPqIMJz8hwuUbvHQeXCYuocDzEzPMnp1vv9Z2GaNpcXE43Ha/iBOt17bR8xOzzHZm9w83+ZgtHOC7kOC+6afdeGoNdPzUtKCVUY6by1k9hGTPZPo7BqmBmYAGGoaZ3pilhWyDaxgA85teo5efoXLVy4zOzvLli1bMJvNPPTQQ3zmM59hGctYxjJeD/7f//t//N//+38zfqYuVPPmm95Gz4vjEIH2l/spdovxMCUQGEz2++ee6qRkk4mBRvH/BAmQifGk++Uh1PpCxpOOR52vDlFYrECRHG9GWiYoLtGmXVJ6Xhtmsle4ZvYdG8C1wUyRRVy39fc9FLvmT4Z1Hx3CVKljzYM+Lv+khSKnis7UePhcD4ayeZFS19FBrCsNKBRyBpsmMJ4boee1kXSsMVDMxo9XolQp6DwyyGxkju5kitO+cyP0nxKx0YkYE70RrvxbNxqzHMsaCyQ/HomI2MFzI8RnwVVnZuTqeDr9VfvL/WnnmxQKk84Grc/34aozMdwm7r39hT5UZiUbH6vk6Ncv0XdqhNFW4QrV/sogszNz9J0ZBaDjcC8qtYq234k5Z++JESaSLn7dh0eQyWUMnOgnMixcdLT2+Z3HnteGCfeLuUr/8UEKdEq6Dg5DBNqe713Ed2QiBhroOTpKkUVL15HkPOHZbowV83PDhRhuC9O3kO/fd2OqNLDyHeUk5hJ0vDogRLpApDeawfdcLI5cI0+3j46XM1P79Z0bITo+zYaPhmh7tY/wSIxIVyTNtzIpbLOEdMhkMiKj4l7bX+pnemqGoWbRLttf7KOwWMxVNE41fadGGGufTF5zkLm5OCPnh+h+eQjHJiMa4/zccCHfPYf6kKtkdL0g5gmtz/Wgc2ozORyK0Xd8FI0ZSm5005ec27b+vgd96YI2e2SQ6Ng0Nfd4kavk9J0bSfOdarMg3JmQQWxKzBnGeyIZfLf/oYfAgVJmpsRcvePgQLrNRobn22xsMIbKqsK1yYJphYXIy0OCb4WMyHCcc//QRuAON3qPlpX3VND6fC/RsWnGezL5VhTKIQF950cYbRJttvWFAaYjsww0jjNwYpzy3RYScQUas5zV7wkx1DTK0AURe+WXfZRsnmHo9ACr31aBTCFjrHN+Xrawj+g9M4RzjYXu50Xbj03GGGyct97uPjpEZFT831ZtIJFIMNoxlubQUKZjOJlmd24mjlwu+qXBpgmcVyfoPjjCNtntWHw6hp3dvPTSi8zNzfHCCy/gcrmYnp6ms7NzORXcMpaxjNeFaDSK3++nuzszldjaUB0rDLX0HR9hqjPKSOs4bS8m03vMydJiodGmCB0v9zMbE2NnQXHmmlfjj9owV82f3G1/qQ9b8kR2tDfOdGSGgfOjALQ914tttTHtWjTcPI6l0sDKt5Rz7ntt9J4aZvii6DfbXuxndnaOytvLOPPtJlp/34fWUUDr02Js7jk2xGhbclx9dYiZmTkcK4QLS8tzvagN825O3UeGmJ2dZdX9Pib7IvScHKL75V6io9D6+160yY0aZ72ZgfMjjLaEmWgT44R7q52ew4KXlud6KE6Os9MTs8Tn4rS/IOrTd26EIpeK7mPiXudm54ACHOtN9B0f4erBfqYnBKcjbVP0nBxCa1NR9RYPLb/vwhSaX4Npf7GP+GxyvjcdpefkEANnRploj2Lwq7HUGOdjX5hPW3H4cxfxHXAydCHJ9wtJvpNzr7YX+lGq5HS+KNYMek4MMXJZzKfbXx4gNjlDZGou+az6KCyeX4PpOTbEWIcYH1Nu38ka0vpcL5rkumGK75lwjLqHg1w91E3PSRkDSceDtuf60nynMBsR1xw8PUihXkl3Ml1uy7M96D1FVL+1FJlCxtVX+4mOifnHwMUxiks1ab4VSsV8hYCrr/Qzk7yXsS7BYe/JUVBD28vdmH0L2uyLfWKuEoXDn2vEd8DJQHLe2/5Cr+A7muK7DxQyul8R8/aek0PpNtvxYh+RkRjDjaMcOTmKs96Msnh+Lt5zYojR5Fyw+bf9uDdMM9QxwYaPhmg/2EdBQXa+zQExpxhuTM3hetGY5/keOD+CpdLISPMEM2PTKNRy+o6JZ9zyXA86h4a+Y4NER+N4b7Kh84h5xHDjMGprId1HRon2RzHX6DCUFbHqPh8z0dmMNjvcMinem2OjrHqbhtmpufT7l+I71Ucc/JsL+G900n9ylFXvKCcRj9Nzct4Vre2FvvTc0LXGIt6j53uS7SOzj4hNTDM5IMj33GBlpHWCniPi3i7/sgfnOiNtfxDvoFwpTx+ySHGYquNE7xSWSgNTQ6Ks3nMjxKNxfLIafNTg2FTE8e7DXLp0iVgsRn19PTabjQ9+8IN84hOfYBnLWMYyXg9++MMf8sADD2SkdFMpNNxRfxcDRyZBJvb2jBViTjE7HYcEwhkFuPjjLpx1BkYuprKoJNLuNyONk3S81M9UcmwfPDOC1qECheg3e04OYq00pq/b/mJfeuwcaxplbsZJkU2MA63P9KD3aDNiLZV6Vj1Qxtmn2uk8OsBQ0xjEoPWFXgwV8+s1HS/0YVttpECrJDYQo/PIAEPnRf3b/9CDqcpA7QcDqI2FtPyhG6ZJp4HqPDLASHLsnI7M0HlkgPbf9aPSyzEE9cgV8/tFnUcGGL0yQWwywVwszkjrBOPd4t5bn+2lQDc/dgLpLDWdR4aZnZljKDnPaX22F7WlgLqHg5z7bhNXXxlgsk+sLfSdHEcmlzF0VtSv/eU+1LrC9Hyp45V+IoNi73fo/DAFeiV9J8eJDcYY7wijc8x/n3e8NM/30OVxOo8M0HtijNi4EG8YvAs4fL6PmfAcKj2MtETpPDJA/5n59YPUGgwA8QSpRhAbj2fw3fFiL6Y+A6H9JcgL5LQ91yvcpBZwmOZ7YgalSpFOIdb6XB/KQnlG7PTkDOve66fjyADTUzOMtov5SOvv5/nWOYSoODYmeOk6OsLcXJyxptF0bGourrKqMvjuPzGEXCVj8MwIXa8MYarWUbRg3bD9xT6iI4LDkYsjdJoK6H1N1L/l2R6K3ZltNjY+K9KmqaDsRjuDyfeo9Q+Zbbb9D73MTsfx7RXi7YV8tz/fm56LG0NFyJQyYsPTSb4zObz6ch9qi4q5SGrOnMl319FBRi6PExuaRl5UwMzUDPryIiY7Y7Q800uBVkFsHC4+dRXvThuGUi2r3+6n5blupo/MMnRFtNmWZ3pQ6ZXi+cwl6DoxyFhLcm0qycfIxRF6j47gus6EXCYHFax/X4i+cyMMXxLfMp1/6GU2Mkv/iSGCt5egVCkYaZ1PM7ewj+g8PkD5VicdL4p5W3R8mqGL87Ftf+hlZlLct32tiUQiwURyvSzVR6RSFsYmp9NCyNhAjMFLY/QeGmaLbC96u4qwf5SXDj5POBLmF7/4BQ6Hg8LCQq5cubKcCu6/CLJEagdmGX8UnDhxgg0bNhCPZ+aPXE0DdllJxs/8t7pwrDYx0jxB4z9dXVSW1qulcq8rna9y42OVtP2hh/4Ti3NKrnx7OQZvEb2nh2n+ec+i39vWFlOxw53OZV++x0Hbb7LnXS/f48C93kLvyWFafrU4n6ZnmxXvFjuXftaedmjJhfUfCXLh37oIdyzO5YoWNj9aQ3w2IZmP1La2GPcmG6e/uTg/ZbbyVt5Vnk7LkQ2bP11DIp7g0J9nv57GCuveV8PM1CzHsuTdTWHDIyHCA1HOfz97vlYQz9hcUcyxb12GLLefrtNnapiNzKWfjxRM1VpGGqULCt3lwRrS0/5CH10vD0nGbf5MDdMTM+kUXVljPl1DIpHg0J9J54k1BLWMNeW4MUSqscrbypjqj+Z8hv5bXZj9xTk5NwS1VL+pjDM/bM/enhAp3AL7PEz2RDjz7cV56wECt7mxrzLSf3aUKz/rzhpjr9Wj9+okf78Qpmot5Te4JHPLpt6ZyEBMMmbd+/30nh6m59WRrL9fiPrHq5mLzHHsr7JztfnTNcTnpN8pU7UWuVLG0Nkpau71olQrJLna/JkaSCCdi/aDAUbbJmn5VS++/U4UhQqa/q1LsqzEXPZ3r8lzHJkC2traADAajWzcuJHf/e53WctaxjKWsYwUdu/evaiv0FLMZtnNi2IbPlWNTC6T7NMCd7iJjszQ+fwA/ttc6OwaTmfJjw2iryWBSJGWBavfVUF4JMaVf+vGurqYyNhs2hklW70AybnJho+GkClkeecJINJTmXw6zn4ne7++7v1+NBYVTU93MpBlTgmw5iEfV37bI1nfhQjc4Wa4cTQtkrgWwTtLsNUY6Dw0SMfv+7PGrHnQR5FDzbkftjLekv2axpBGbCj+oD0t4MmGDR8N0Xd2VPJaAGvf60drU3Hy71tzlgUirVsuHvI9u1SdCnRKDn42e1sBKL/ZgXujhe6jQ2mhVjbofRpJjlLY+FglSo0i5/XQwPoHg/SeGaXz+QHJsJr7ytAYC3jta1ckYzY8EqJAq+Tgly6khVjXouFT1chkMsn3BUgfoFgK1jzoo/2FHkYvZ79g/ePVyJUySQ70Pg2BvSWc+Bvp+0rBVqsnuNdD82+76UsugC6E/zYXjlUmmp/ppu/I4t8DeHfY021yw0dDND19NWvdg3eWYF9hpP/8KE3/ung+5VhvxLvVnnafEuLGtrSIcCFq7ivDWF5Ex4v9dKYOxSTRn+hipmqUjqsd6UM1K1eu5Ktf/eqyw9IylrGMnGhra6OmpoZIJLMPW81m7LJM90R3g5nyHU6GL09w8UeL17zURjnB272cTa7f1D0cpOPlfgZOjS2K9d/iwrnWTO+pYZp/sXjNy+BXE9hXymtfFWscnhus6U2ga+FYb8K/x0XPiSFan1485trWGgjsK+HyL68ylEy5mwtr3+un+TddTLRHs/5+86drmJuOc+QLF7P+3uBX493i5Ox32/JeC6DmHm/azSkbGh6vJpFIcPhz2a+HGjY/llwT+mvpNaF17/MTGZnm4lOLn10K7i0WnGtMnPjOlbTgJhs2fzq5xvYV6fUeEOm+pHgE8N5kw3Odjc5XB9IOUVmv95kaYmMz6faQDfWfFO6MkjwhHL7CnTluDJG6rfY9Pia7w5z5TptknOcGK47VpvRpeqmyVt9bxqWftjPWnP26Br9IbTbRGU6/O9mu5b3eTt/pkazvC4j0buYqAy2/XLzuey20HjX+XU7O/n3261lWF1N5aylTfVHJb6cV95cx0jKZFmLlwoaPhojPJSSfX75np/WoUeuVDF+YxHfAidak5tz3ste94VM1IINDEnPUVe8oZ7I/QuvTfSIVoKlAkrOGJ2pIzMWz1uuS9TjKIhmtbeIbTa/Xs3XrVn71q19lLWsZy1jGMlJ4//vfz5NPPpnxs2JMbJJtXxS76WOVyAsUHPrz7H2a9yYbc9Nxul4ZwnODFWNZEee+1541tv6T1SBDcn+h8s0eZsKztDzdK9JoxROMt8eyxq5/JISyQM7hz2fvt9e+24dSp+S4xF7HQtjWGLCvNHBeYi5U81YvxoCOK7/upv+1UcmYzoN9kvVdCO9NNsY7w4xezr4PWnqjjdItNq6+MsDVF7LPTSrf7MFSqefCv7RLlqNxqVhxdxkXf9zOZKd0vdY+6GPw0rjkPBeg6u5SzIFizv2wJe1WIwWdR5Xzeps+VolMLufw56XXvNa8u4Iip0ZyrRVEarbAHjddxwZp/530ep2+TJX3uax7n1jXzHU9VLD2Ph+DTbm5ChxwoXNpOCUxfwHBudam5rWvXSCWfRmVjY9WIi+Qc/hz0jyF7izh8q+6IH+zo+ruUnqODzF2Jfta6/pHQhRqlRz8ywtZy1PZVFTd6ua0xJ7fQugr1NTcXUHLMz1Z35mSLRbKbnTQ8kwPvUez7126G8x0HxLC93Xv9dPy+56sdffcYKXsBgf9Z0dp+uniNS9jqIiK7U5OPin2UGve6qX5931pAdxC+PY6cdaZ6Xipf9EzHk8MM1HVQ2dXJxMT4nuupqaGJ598kuuvvz43Ict4Q7HspPRHwpe//GUeffTRjJ/JkNPAbrSyeRXmQiFG8897MJRqaXsm+wd/9W1uVIZCLKuKGDo7tWhjyrffiSWk59iXL3PuH9sI3ObOKlACcG2wotQo0g5D1wqUyvc4cK0zc+jPG2n7TR9tL/ZJimqmkirGIruWIRYPqilRyljbJOe/3yEthNECYeg7M0LPq9KbMb5dJcJe2goRifFk48cq6T0xTMdzAzkFSgAHv5xj8EJcYzYyR9+50ZxxBUVKihS5Txyb/cXCYjq3jofoSIyR1sncQZBToARw+Ued5J/KLQ05B/kk8gmUQKQam9k5S//p3OKbNFfJdpENqmIlcqWMsi0WGv8pe1D/iXEqdsTpPSG98HHlZ910v9JLeHDxhs7CclKCwE0fr6L1991ZBYIAwX0iVaHWrSbcvXji1/n8IEUONZeeEqk4st3jyW80p3+3+dEaYqPTOTcEc+Hgn14Q10BMCgp0yoz+Y2E7MniL0icWs+HMD9swJFPOLOxzUli4uedYbUKmkEmKlAbOjxGfS6aJu9WFqULH8W81QRiCnesBCDNLP51MTU3x7LPPIpPJcLlci07oLmMZy1hGaWkpnZ2dGT/z4KNKVjv/g2uEGP1nR9N2s9lgX2FkbjpO5/MDNP/smjmVBja8N0TPa8N0vjRI24t9jDRJi7V1Lg0aq4ordDOYZYNrw0dDhIdinP9eO4e+0igp7lgK6h4OoDIUcvBPL9D5/EB20YkGiIjxJnCHW1KgVFSmociupvo2j+TGlWOTEe8WO8e+dJkr/5a7f2761y46n+/JKqJIoff0MN7r7DnFN+6NdhSFcgpU0lRpzHIKdEosweKcIqW+0yO415vzCpSAvEKtXOKk14O23/XlFCelkE+gBDDYOE5xSX5XnEJ9AbYafU6Rks6lRlmgkPw9wODFcSz+4pxt+NBX8vOUEiiV7bJjX2GU3MjUONUUOdQE95Vy7HL2mNP/0Ip9ddI9Itn2F2K8JZKew6x8ezl6j5bT32/N+ry1VnH6brwn+0pS8896aP5dT/oa9Z+spvPgQIYwKNUeXQ1mCnRKXLVWRi8v/gZs+tcu5qJxWp4W/c+1oru+46NpoZRjvZEih5rQHeWc/vbiBbXWp69S+ZbydD0WlmWXlcClEswJH4f4LYWqAs6dO8euXbuYnZ3le9/7Hvfdd1/W+13GMpbxvxM/+clPuOuuuzIO5ClQ0sBu1LL5U8oLhRjdh4ax1uhp+13278Pg7V6KPVpsaw0MnBpbJN7w3GDFscbEa19tovkXPcxF47Q9k32sdK61oDLMOwxdu1DtbjBTutXOkS9cpO/4CH3nRiRFNRO9or/XWlQMsXgOp/WoWfuAj5GWCRr/+SqnJA4ioQai0HlwgP5z0mKnwL5SVIYC1HZ12p3oWtQ9HKT/3AhXnx/MKVCCJYy5UYgOTadPVEtBbVKh1OSeA9hWGFAvcN+RwkRXmIklzLtyCZQAOv6QW5z0epBLnJRCPoESQLQ3SmQwRt/pxeK6hbBU6lEZC1Ab5WlHn2tRoAKlRoGrzspYc2fWmLHmKNPjM/SelF5j63xxkMHTw5LXAeFmNtoknsn6jwRpf6mfgRPZ76HqVg9qc6GkaGvozAS9ZcPz4p1k21+I8ws2wRueqCEyFJN+d/Lg8OcuplPlVb+1VGwcLhA0hTuj6SU3a6Uh7UqaDSe/3YLRJxbQ3A1mXOstvPZ3Ten6LxSCeRqsKFUKSZFS99HBtFPHtQK+ysH1MAhxVLRzkWgkytNPP41MJsPv93Plyr9v/W8Zy1jG/1w0NDRw+PDhjJ+VESIoWz3/AxWsua+CoaYJOl8cpOvoUIZj0LXwNNiYjc3R9coQnS8O0knmfGntgz4GLozR9coQzb/pZlJiXgJgChQzNx2n5enerEKYde/1Ex2dofGpDo5//fKShBlSWPVAGUUlWg5/qZGB02MMZBtzVUAMLvxzB+W7HZICJZVVhdGvQ2UqmN+PuQbGUBH+m9289rWmvPOOqy8M0H9iiNi49Jjbd3oEnVMjKVACcK0zUVikRKHOMfdSgdamxhonp/Bm4OwYan1BXoESkFOgBHDkL/MfllwK+l8blXwmC7EU4VjfmRHMPl3uoBhoHWqs8txc6b1FFOoLJH8P0HtqBFetWVKgBHD0b/LzdDl5EM253oh7k5UTX88+9qv0YA4UU2RTS4rbz377CrZ1ZvFeJdv+QsQGYmmBUuCAC/tqE+f+KbtoTWsRk6pwX/a5etcrQ3QdG0pfY8OjlXQdHEiLkoD0v42hIjRWFc5ac1aRUueLg8hksrSgb2GfAzB6eYqTl8V7qa9QY/TrCKnlWYX5Xa/0orXMu5MtFPDpZWb0l8xYEwGO8iyoEly4cIHt27eTSCT47ne/yz333JP1fpfxxmLZSek/GY899hhf+tKXMn6mQsNW2b6s8Rs+EqKgOHnSOIvGovaDfpTqeUGBbW0xA6eyL2bkK6v6baUUl2g5mhxIpAQUqViTv5imX17Nej3HRgO+nW5O/0OrZBkL0fCpanpODku6NTU8UQ2JPBs7C4QcKaFW1jC3mrXv8jE9Ln0KTOvVsvb+cjoPDaTTrmVDLiHUvxs5RDdLLsKrZe0D5QxcHKPpx9kX+F4PluKktFQ0PFHNbGQupwPSkrBUnl4Pn0uIrX+8mtjYtOSkNCW6C/dHOZXDCSr9rua5ZsrFqfv4UPb3Qwv1H65msHFsSS5OGx+rZDY6J+kEsOnjVcgLZDkdsVJ9g/9WF9ZKA0f+5mLWe9jwSIiCIuk+B0gLIUu2WvButXP2qXYmWxYH53N5mHIN0Dh1mtGxUVGu3Y5KpaKjI/eC7DKWsYz/2YhEIpSUlDAykrkov5JNOGWli/9AI06KR0ems/aTxpCG6jeV0/SrTgbPTGBdXZxVULSwrMhwjJNfXzxmaMyw6t2VdB8bpvP5ATRONZFe6TnT5idqmAlLnyhf9wE/crlsSYLVyjd7MJQXped816JirxNXnTmnm5G4CSBCbh6YdyI6/b3sog4Qjk0FOiVHv5DjQz2lo1mqQCuL2OTfFbMEbPhoCIVKkfMU1OspK5+T0lJR+RYPlpA+p2vRkvEGcZVRpFmkX5NC2S47JRusnHzyoqRwLc3XF6Xv0bJSx9C5pMA/z300fKqaRBzJZ1mx14l9lZEjEqc6F6KoTMPqe8q5/Iur89dfAMd6I/49bnpPjKSFRtdiYd+w8bFKhq6MLxZFJuPWvcdHZDCWPkV2LRa+qxseDREbneFMFhe1pZTVv6KJM+dOA6BUKiktLeXBBx/kk5/8ZNb4ZSxjGf878I1vfIMPfvCDLFxa1KDjOtnurPEpd8QT32zJKrhZeX85anNBei3CXKNj+EL2A1trHvRRZFdz4lvZy6rY58AaMqTnUrlEPhW7HbjWW2j6VVdWpyZTVRGVt5Vy5gdtSxKmbPxYJX2nRmh/Nvu8atPHq5DJ8whhFgg5TFVFjFyU2LhKOh/FxmYkNyrURjnr3ldF5+F+rj4vvailNkJ0VLpK/y5kEaS87iKMUPuBGgYujNL00//4AaWlOCktFZs+XsVsdO4NKWtJXL0ePlP6wBzxGx4NMT0xK+lwpPWoWft2H5O90m7ksOBdzVO/0m1WSrfY6To8KPl+bHgkxPCVCUmXp4VY9z4/8XhC0pm97kNBCosKOPQX0vPsVN/g3mKhZJOFs9+5nPU9WPOQ6HMO/uUFyXtM8WCu0RG6xUPjj9uyul6lvpekyppU93NJfTb9XWuz2dDpdFy4cAG1Wr34D5axjGX8r0EoFKKpKXPMWUUDjmuytKSw+YkawgPRrE4wGpeKVW8rp/X3vQycHsMYKpIWyqjEfEOqLFRQ92CQvjNCDK6yqogN5nDg+Xgls5G45Nxl5f1lFGiVklknFqL0RhuOtSaOP5ld7ORuMFO+3ZnTzSh1D8TAENBKOtQAVN/txRTQ5XQiWnGPF41DzfF8e2JZBCT/4djXU6YE1j7oQ2UoeENESEtxUloqvDttlGywcuLvWrK657wuvAE8LSpST06xknO9kfIdLk5+R7r+q99Vgc6p4bVvNku+Q/oK9Xzby3MfGx+tRKaAIxLrr+4GMyUN1iXt36qsKta+o5zLv+pKp1hbCENAy4q7ykUWpl9nF20v7BtqPxhgtGUya6xKD3UP1xDui3Iqy8G71PVS7+q69/uZHp/h/A+y7A+m+q8cZQ3VtHLy/GsAKBQKSktLefjhh3nkkUeyxi/jjcGyk9J/Eu677z5+8IMfZPzMgot1susWxTY8UU18JsGRL1zMm/ZLqVGiWJCv81rB0IZHQsjkIt3Hsb+6nFMQUWRTo1Qr0jHXiosq9jmwrzJx5HMXs6aby6iXSolMLsO6Uk+HhEhp0yeqGDg/SsuvevOeKo+OTjM3La0u9u134lxnTgs5cqWVC3dHc4omAIqdBSCDeFxas5cSo0z2Rjjzd9If5ivu8xIZmc6aCm8hKvY5hHV4LpFMUpDS/lJvzjRfOquSRDzBZHduxc2mT1Qhk8skbThfD1LCtVPfackpTIvPJJiNzUn+PoX1Hw4SHZ+RdrpK3pq9Vk9sYlbapSksxGQr7g3mFlklHYnypdGTyUGulD5hMHR2ioPNudsXzL+rmx/JnWpt4Pwo1mqDcCvLhnCmjWr949V0Hh6gU2KhUVEoRyaXrv9CS/mae73onJpFfKSer7GsCIVKjhSOfXm+z3FsNODfVULTrzKFjSm3KZO/GJlCxtx4duKOfvFS2u3JsdGA/+YS+s6MpN3ginpsrGcHYcIMhq7Q29tLf38/MpmMQCDAc889h9frlazrMpaxjP9ZiEQiWK1WwuH5PkWGjM3sRSPLdIwJ3OHGvsLIhR+1Mno5klPoEBtPIFPIsFQZGDwzsUiY41hvxH+zm4v/1sZwY5iTX78gKcCIRECpUmAJFdP5/EBWgdKGR0IMt0zQ/LOenGmvAAp1uU/yeHfYcdWZOfL5i1z6cfaT1in0Hu7HvsrIQKO08Kj+k9XI5EJAnkugBIhTz3mEIYoCOXKZ9PgEsPEDlSjVirwLGXUPB3jt21dyXs9cLQYVqbRzKax8RzkFGoWkODmF2egc5K4+5motVXeWi1Qav8y/yZIP9Z+sZm46t/B7aiCGyZ/AWKqRTHUG4N5qwdNgzS0SS/552S477c/kEK8B/gMulBoFl/5Fuq2lNnZype1LxAEZaN1aIsPZN6WPfeVy3vaVEgj59rlw1pqypjRLITwYy+mg1vrrXlqTCyb+21xYAnrJuaN9hQGZQiY591rodARibt51aDCjbqm+QWOWo1QrKHZmd72K9EYz+q9swvSF76pSpQB99nu8tqxNn6hCJpNlCLfs54PskAU5mXgVg1dDa2srjz/+OH/yJ3/CXXfdxXe/+93shS9jGcv4H4n/83/+D5/97GczfmbDwxpZ/aLYTR+vIhFPcPSLl4QQIoeIQWUoEOtUSVwrUFr7Xj8FGgXHvnI5b1nFLi0FWmXameZagZK7wYznOhtHv3iJ1t/20fpbacdCeaEcuVKOrVpPu4RIacNHQwxeHqP16T5JYXgKk72RnE4GqVR43UeGaHumT1qgBBBF9OE5hCEapwbkyXFWAsVlalbd72OiKyyZtgsgeLub2chcTr5AiFGuPj+YV1Cz4bEQV18ZpPewtIpZZVEzNxtnKs9m1PoPB1GoFJKp814PKnY7cNVZuPAvrWlHoWyYm55jNjKbt7w1D/qYCc9yIdvGSQpRkWYNkL5mFFDDunf4JYXFKWx+NPehBwC5Qo6iQHqdJ9wZzdu+YP5drf9IFYk4ks9goHESV52FvmPSYrmFc92Nj1XSfWxI0uWgQKeEHMevF4rHKvY5sAT0iw6wpvoGS6iYAo2SqMS9nv5mC2oj6edU/aZyrvymO0PYmOLBUqlHrpQTk/hsOvW3zen+K5Wir/fUvNuULmqnLrqdKFH6Q5fp7++ntbUVjUaD3+/nlVdewel0St/4MpaxjP9RiMVi+P1+urrmD6fLUVDPdrSyzI88zw1WvFvtNP5rByONk6IPlxg+41MxFCoFRp+OgdNjiwRKhoCW6ju9XPpFZ96yAAqLlZh8OjpfHMwqrlj3Xj9jV6doebpXUjCRgspQmLEPei2c6414tto5/pXLXH0ht/io+8Qw7norIzlcItd/NISyUKScyyVQAmh8qiOvMESukqPIMdcDwYfGosrL65p3V3DxX1pzil90HhVKrVI8wxxlBe8oQWMqzHp4aSFmwrMocjgNghCb1D7op++UtCDl9WD9IyESs9LpXAGmemPEZ+JoTMqcIiXLKj0V252SwjUg/XP3dWa6X81xmg6R0kxjKuRKjrW91KHBXOK1eAKx5mUtkKz/me+05m1fqfJTArz2F/rSbkPXYuzqFMoc71L3oeG001HJFgvOWrPkM7AEi1AUKpArs5c3diWcsZ5d9+EgPceHMvhN9w0qKCwuQOfKvuYVGyfj3Vj3fj+J2USGSHLhu1pYpJTeB40h6qVK1utDQZRqeUY/ZLlQwQ5ZBZcTpykoj9Pa2sqjjz7K448/zgMPPMC3vvWt7GUv4z+EZZHSG4xbbrmFX/7ylxk/c1HBClldxs8826x0HhmEsEgdNhtOijiuHf+uEVLkW+iQK+WwsH+4pry6hwMoVAqOfvFSztzyAAZPEYoCOTqfNqvTidYqZ+U7ghz9+iW6Xh6i62Xp9FkaqxBLmHLY7LmuM+Gus/DaV69kdSBYiN4To9hXmejPYZe87gN+NGYVp568mDNtF0Df0TH6jua2Xh5qnmI2Okf7C7kXYgzlOgxl5BQp2dYW46q1YPYX89pXpR0QvFvsyJUy1Mbc9tgLU4/lwlx0DnmOxYfXg8jINMa5BAVFuctb6uJQob4g78QHLQT2eZiLxXOWW76rlMLiAnz7ndLPIQwzE7MMXMr93HM5DC0sC8SCWKG+IKcoLjY+TWxCegFrrCmcFiEtfCeywbKqCLlShrFMt8h+NV3/BYLAde/1MzkUlXTb0jk1Oe3aF9bDdZ2J8hudXPiX9kzBWPKf+jIdyGCqfyZrWamULQCGoJYVd5cz3jHFue8uyHO9oNjEXIKeY0Ko591lpyO5WaqVafE2rcaaCHCQ3yCXy7hy5QrV1dVMT08zNjaGVjufUnMZy1jG/ywMDw/jcrmYnp5O/0yOnAb2LBInea630vnSID2vjWANGVAUJvu7a9b/V75DpHY6+XctYuM+h7vN5EAMZGCo0DPcGF4kULKs1BG6pTTtqpLPKadAq8RUJj1Xqnyzh4IiJef+sS2vq4uhrAhFoZyiMo2km9H6h4O0vdjL4JmJvOWFB6LIC6QXWDRmWPf+GsKDUU79bUteB55881CAgQtjOeeOIERnKmMhvptcks40AMFbvCgK5XmfQZFdjULiY3sh8m0KAcgUcuKzCcI5Tg++HohNsNzCb8l0ftdAa1OhVClwbDLSd2RUMi41txm8NJEztZ1jjSnnBhFA56v9+Ha5Ge+RLqfj9/253bxSiICmRMO6d1Yw3hmWFLn3nRvFttLA0DnpjbCFzgEL34lsMJXqxOa5hEhqoaBJY4aVbw9x7MnLWWPN1VoUhXL03iLIMo+LDMczBHobH6skNjGT6RSwoFyZQpZzk3HhnHDDoyEKNMpMAeCCsmJjM2mRvsYM+uB8O1knuw5aIZqI000bs7Oz/PCHP+T73/8+991337JYaRnL+B+OD33oQ3zta1/L+JkHP1WydRk/c6w3MXZlhOgoxMZniM8uWJO5Zs2+4YkaZqaEk7PUafoUFIVyZAsPEV1T1qp3lqM2FHLsK5dzur4A6MuKUKoVGIOarIIQtRFWPhDk3HebGDozwcEzOeYQalBqlRi9OiD7mpG5Rkf5DU5OPHklI7VVNgw3juLZYqP/gvR6Rc29XozlOk58u4VoDndOgJGLUxzKI4Cf6BNpwjoP5p5HWKsMIJPlFClpPWpKt9ix1RglU1UA2GoNFGiUaCy5xfdjzdElORrOhPOLhZaK8OA0czNxZIrc88KlOpBrLSrm8qQLAai5uyLvYbry6x1orCp8B5ySqcUAwkMxRppzHy5Y0ppdsnmtfncFOoeGE1+/IOm4FR6IEs++DCSK6o2m782yupiy6xyceDJ7G9F6xOFaQ1mR5JrXwnXymnu8zEzN0iThOm4qL6Ygx0GPheK8lBPSxX9tz+gfUvdtKC9GJpcxJTHPb/ppd9r1S21XU/uQj9GWycx0jEle5QUK5mJxek+Kwt0N5vRmoVqmxtu0GnsiyiF+R1w2S3NzM36/n0QiQXd3N0ajUfKelrGMZfz/G7FYDI/Hw+DgfB+opIAGdqOSqTJineuN9B4fZeD8BO71lgWFZJYZvM2NbaWRk99pJtIT49CfS88PoqNzoJBR7NEI15RrytKXqah+SzlXftvD0NnxvMYEKlMhhhzDqnenDZ1Vw4V/7sg7Jyz2FlGoVWY6ylyDVe8sp/vYMENnxzmeQ7ALMN4xhcqQY5xWQf0j1Uz1RcR4kWeZJ5fgO4W+0yPYVxhzllWyxUKRU0PJFmdOIVDl7V5UhgLh0JejPH2JVgh88yCrG801KFDDXGyO6Mh03tilYC48x+x07jWvobPjDJ3Nvw+q0isp1ClxrjHRe1Ta/GHVO8op9miZ6ovmFKeVXmcDmSynSKnr4ABFdjXjOQwdlprWjhio9HJqP1jJeMeU5PMYaprC3TDL4MXsh/yAjMOEq99VQdfRIUkOzcFiCnVKSUeohYImVFD77gDnv9+SNZ2hxqVCpStAX1pEN1lEYLFMM4Z17/czOzXL2YX7gwvasrxQDjm2jxe6fq17rx+VqZDDX27MfB+S/44MxCgsVqbvw77SmH4uIdkaaAESGpo5x9zcHN/5znf4zne+w0MPPcQ3vvEN6Uos43VjOd3bG4RszknlVBOQrVgUa1tbTPBAKbGx6Zzig5Q70MbHKpnoidAokVd+86drmJ5cWmqujR+rRFEgl5wwlGy14N5gmT+1ksOJKZWWKleKsYp9DsID0bwCIJhP75RLVBS4zc1Y24RkirtrY63VhpyuQavfI6zzTn23jXBHDoX060zJZghqpZ1+kqh+WyntLwwsKT1ePvj2O+k9MfqGlAVvbLo3AO92G2MdU3k5WQqWyluuFID/Hqz/SJBCXUFON4fQXR5MZbolC7NWvbM854Q19U6cfPLCktIM5itv82dqSMwllpRGsXyPA0tQWkRXc68XY4Uur5MWgM6nZfU95QxeHufyjxY7LOh8WlbeVcaln7Uz0hjOmcZSY4V176uRFKqFE2HCa7s5ffo0iUQCjUZDZWUlr7766rJYaRnL+B+ESCSCxWIhEplfMFagpJ6bF4mTQLiCKArlOV2TzNVahhvDWFcX49vt5uz32rO6HVXdVYo5WMzJb7fkTNcGIvXTmvsq6L8wypV/y75Yvv7hIN2nhul+eWhJaalkMllOl6Wa+8q48P3cG18wL/CYHp3heI7Fn6WWB4Ln/rOjaZHG4osK8X1kSDqlVCru9aQZSz27XNCUaPDUm2n61/94WlxjSIPWoRXP7A3AG5nuDUTqLvtqfV73o6WgqEyDq84k2X5T0Ps0ku5IWZHnGet9Gla+rYLR1ms2c67Bpk9U0fPa8JKETbZaPUU2DW2/y76pmnonYqPTS0qj6GowoyiQSzo0Vb7Fg6VSnzuN4gIeNnw0RNuLvQxIHDxo+FQyhXKexdVUWUqNQnLOV3OPF61VlRYLGkPSzlspoZpU+sZwsJ8roxfp7xf3WFFRwdatW5fFSstYxv8wZHNO8lGDT1azKFbrUbP2HT6iw9OSAhWDX51OgVT7gQDhgSgXJdz46j9ZxUx4aem06h4OUlCkkEyjZltrwLvVPr/xlcOJyXODFe/1dgbOSacYczeYmZtJ0HdcevMjhXXv86Oxqjjxd9KiIu9NNqYGowzlca0E4VTkWm/JeZix6i0ezEE9Z3/QwkR7jnnr60zJVlymzl0e4DvgpPfk6JLS4+VD6TYrA+cnJdP1vV68keneAJz1ZiID4axpvV4v/Le46Do6kld4JiWuk0SeZ7zmPRVo7RoOfUnaNalspx3HGlNOAdVCVN1dysWnpJ35a98XQG0tzPlOvJ7yGh6vIZGILymNorPejHudWVIg5b/FhWOViVPfbcnbhtV2NbXv8THYOMblf1v8raG2q1l1v5fmX3czfGEy97NTw+aPSbu+RxNRImt7OHnmJPF4HJVKRVVVFYcPH15OA7eMZfwPQiwWo6Kigp6eeUFEISo2sWuROAnE/EdlKOC1r16QdNtJpUXSl6kI3VHG+afaifQsVrOU3WzHXWfl1D80Z/39QggnHR/9Z0Zp/lV28caqd5Yz1DguhA1LSEslL5Tn3M8L3VnC5SWs66RSRUWGc68/LbU8EDwPXh6j/XfS6w/1n6wmMhjldB6x/OtBLiFWCiqripKNpjfE0UjnUaFzauhd4AL9H8Ebme4NxL1aq3SSzkGvt6yl8KbzqJjsfB0HEPO0dZVNxbr3+Bi5MpHTkXz9R0L0nhyWdJRcCENAi95TJOkqptLLqftQVf412SRM1To05kJJlynvThueTbbcaRQX8LD2QR9dR4YYkDAe2fhoJbOxTHdwKax5dwUai4rDEocYfPucGEqL0uki84kZi91aSQes6bIBrsSa6O4R34NlZWXs3r2bv/3bv81bz2XkxxtjqfK/GA8//DAymSxDoBRgNTtkb8oQKGndatZ/JAiItE/jV8MiLUUW2Gv1VN5Wxrr3+wGR9khKoAQwNxNnJsep6vUfDlL3oYAo6y8v5RQouOssFBQp0bqTHzZZ9nsq7/YAcOVn3Zx68qKkQAnAVWvBt9Mt+Xsgfa2jX7wkxEI5XI/sq4wE9nlylmdbW5yuX760ZpHRaXHCPYdAyV6rZ/OjNVS/rTRnWVqvFsdGA8CSxDiN/3Q1t7hDO89NPjjXmVn5trK8cZ5t1nQKrTcCtrXFGIK5C9S61Xg22wjsyd0OUshXXl7ekkgJlLy77HljN3+mho0fq8wZExmKMTeT25Hr8o8608IZe61EPo0k/Le6KC7RsvIB6eeWeicig8K5LF95ek8RK+6TTnF28EsXOPRXjen4rGWm0uqtNKIyFEq2lws/6ODgZy8Q7o5iqtbS8EQ1llVFWWNVRTIS8QQjEq5Vky3CPWqkMQxaCB4oZdPHq7LGRgZh4OIYLc+IfqfmXi/BO+ZzbmtlWqynA2znTuTI0Wq0nDp1iqKiInS63G4cy1jGMv77IxKJoNfr0Wq1aYGSkgJ2yN7ENtltGQKl4J0lBO8U/UPbc730vDYsKYrY9Ikqqt5UDoj0SEe/cElSgDTSPEEinqBAm91VyLq6mIZPVaMpEQ5GB//0gqTAQ2OWU2gswF1rTt5glpgSDWXJsezU3zbmFCitfEc5xvIiPNdbJWPQCGeUSFeEk3/fmlOgtOpdFfnLQ9wzwJHPX5QWKCUxNxNnoi/3hsrGD1ay+YnFm57XwrtD8JJPoATifvMJlPS+7BbD1yKwx0P5jQ4hMMkBY0iTTjP3hkAjhDH5sOreMko25X5m6SJLct/EVHskr0AJSAuUHJuMaMy55yw193jZ/FgNxpD0tcdbIsRnE0TynMg78vmLaQFQPq6Dezy4N1gkf596J1ICJY0z9zy8fJsD7/XS88xL/9LJya/P1y9wR5a5cPJV0Ps0FOiUeDbZJMs79OeNaYHS+g8HWfc+v2Ts9NRsznTLF37YkRYorfuAn5q7KiSfx/nvNzHaMpkWKNU9HMh4xtomO6sHrifAKux2O52dnXzve99DJpPxiU98QrIOy1jGMv7/ga9+9avIZLIMgVKINeyQvSlDoKQ2ytP9UrgzyvClcS78UFqgtOJtPtY85APgxNevSAqUQKRYnZ6QtmZZ854Kaj8g1rxe+1pTToGCe4MZlbGA4rJkH59luuc7IFIodb44yImvXZQUKAGU3+SkYodD8vcgBAogXBjziTE8DTaCe0skfw/z6cCuPj+Y1209MiLcgHIJigx+NZs/VkPVW3KvtamNcmy1Ys0rn0AJoOWXvfnFHXnG2hRKt9hZdU/+dO6O9SYhQnmDYAxqMPjzFKgG304n/t25+Ush3fYk0PyLniUJdlIiF88N+ed8DZ+qYcP7QzljJnojzOWYOwC0P9ufFs6Ya3Kvr7gbzJiDxay4X3rN68STV9LvhNpIzmeXKq/mXul2cOgvLnDqb8X7X7rNmr19Jal115lRWwrFdbOg+Rci/Xa4M4raqab+k1WS91yggfhcnJGW7C4G0f4ox754OZ0KruauCjY8JvE8otB1eJDmZ0S/47/Fhf8WV/rXapka0+kKbkrcQSEainXFnD59Go1Gg8lkorf3P745vYxlLOO/Fj6fD7VanRYoqVCzQ/YmrpcdyBAoeW+y4d8v+ocrv+mi8+CApECp7uEgK+4uBxWMt8c4/pXLkgKk0eZJ4rNzFKizr3npK9Rs+lglOo+K2GCMQ3/eKClQQiXS7zpTa15ZLqnSy9Nj2dG/uSScTyQQvM2NbYUx79in0suJjcNr32rOKcYI3l6CtcaQtzxjSOx5vPa1ppwCJRCujlN9ucfx2g8EqH+8OmcMgHOjCSCvQAlECq2lCG2WgopdLnx73Kj0udd2dB4VhsAbuOalAnudMW/YirtKKbsx9/w7XaRVlU7xlQ1L4Q1IC5RM1TpUttw8+vY62fyxmnS7yXrdgRiz0TkiI7mFT8f/6nJaoJSP66rbS4Xjk9Q1x+O89s35d0JlzX0fof0llN8onVq249kBXvvqxbRAqXx3lmeSyuxmVaG1q3FvkF7TPPqlS2mB0qp3lrPqneXS9zI5m1MT0fJ0b1qgtOIeLyvv8Uk+j7M/bGPg/Fj6PVvz7ooMbgrbbdT0bmYVDVitVnp6evjmN7+JTCbjT/7kTyTrsIylYTnd278TX/7yl3n00UczfualkpBsVdZ4304HhcUF6TRFC1MdpRC6y8PlH3XSf2Kc0i3TXJIY3LVeLWsfKGeqP8rpb7bktTwu0CpzZl/QerUEdjk48+1Wjv3VZbRWuaRQyLvdhiWoZ81DPk5/syVvGrWOV/oZPiudz/NaN6acbkZA6x96GGvNsbGVFDj4dsc5kuvkTBJNP+6iidwbVuHRWeKzCdrzKHNX3e1FoZLTd24sp+vSho8kT8vnUQ6vuruc4hItV57uzJvKrfv4EOE8G35ar5ayrQ5s1QZOfiO/UnYpCB4oZTY6l3NhLNwdZfDyOJ0v51f7NjxRjUwuy+sksPYhH1q7Om/cpo9XoVDJ6XilP+czmZmaZSrPibzz389vcZlCyVYLZTc6cG2IZqbkWIDmn/cQn43T+nTu9IGpd2Lt+6pyuiA1/7yHxFwiZ5rBNAdacKw2YasxSgr5jv7lJSFiCoNjowFz0CAplrSuNEnne0UIxg6dFddJOSFFhmLZ22EYJrrCDDeJk6PeXXaGr0xmpJxcKIw0lotFoqYsp9Vukt1BeDjMKdWLhGNTTE1N4XA4kMvlGSdRlrGMZfz/Aw6HI+3UASBHQQO7szonAdiqDSTiCZrooi/L6Z+FbjhdR4fQu6UFE+veL1LIHvzSBfqOj2YtLwWZUoZMIcOxUk9bV/axueYeL70nBhluDHPy6xeJDEvPp9Y+UI5MIaP9mf5F6eSuxbl/aKP8ZoekswtAw0fn3ZgiEvVL4ex3WinbZc9Z3tr3+tHaVMBVyRRZaURYUqqOyZ4oamPudBgapxpPgxXHKmNeZ5nNn65hrGMqb2qVlW+rID6b4PDncovcz/+kE/cGY163p9BtXpQqxRvmkLTunaId9pySFtyBmC+rDPkXn1wNZip2OBm6NJ7z5BYa2PxI/hOIGqca/y43M5vtOZ9J97EBij1aYuO5DX3zPYeFSLul5eD65D+2onPkblepd2IpLkinvtuGPs8iX+rdTr0nEx3hrP3HeEskoy9Y9a4Krvy0XbJvUGqUyFXS/cbCFHZr3+tHa1Vx8hvZ+5rLv+omuMeddlIK3OHOEKZFhkm7WVXsdaIyFlJyo3OReK1cVgkDlfTYmjnffxIQ38w/+tGP+OxnP8t9990nWd9lLGMZ//3w85//nNtvv52F5uvlVBGQrcwa795qR2NVUbbTTvuz/VlFR6nUVGPNUSZ7Ilz5bfZvMrVRTu0Hqpjsi3Dm2615HZ4LDQXI5dKbKGqjHP8tpZz/Xjun/64VtVFOdDR7H2pba8C51ozOoeHMt1sl41Jo+k0XE93SmwvXujHlE59c+uVVyZTpKdTcVcFsLPc6TArtz/bT/mzuzbTYBMxG5uh5LfeazYr7/agMBUx0xnI6Gq150IfWqubQl6UdeQBCd5RgXWGg+Tc9eZ2o2p7vIzaeJ5WIGvx7XDjrTJLrMK8XNXdXMBOe5diXcsw1o9B7apjuY6N5y9v08SrkBfK8qfeq31qKyVec83ACLEjL25jbZSoyHMubiqXll705U8cthLlGR9WdXiY3RyTTKnYfGkahlnP1+dztKvVOrHt/DYm4tAtS96FhlBoFHX/InY4wlY6t9Do7JZuskuWd+PqVZF8gxGjOdRZJsaRjlR658ppUkwsw0R6dv44aNj9WI9bsv5W9HQ5fHme8W8y7srlwLXxnbTUGZAo5zb9Y3F9eL9sHw3BU/Szj0TFGR0dZtWoVxcXFtLS8Me/AMpaxjD8e1q1bx6lTp9L/L6CQem7O6pwE4N5ohQQ0/6qHsSvhRamqNC4VhlItvUdH6HipH1NAJ+nssuJeL4YyHQe/eIGxK2GOfCH3HENRqMBcrWeyM3uf7NvnZKRlkpHGSV772sWsqaBSWP3uAAVaJZ2HB/OmUGv6WTfhwVhOB50Nj1aiSLoxxQZyF9j00y6m+iOSTjEgXPzMgWKaftkl6QCzEEtxaRxrn6I4xxokACrw7XJRssmaN/Vd/aeqGWuZovGp3PtXK+/zkZiNZ6TFyobLv+jBWWfI+dwAQreVojYWvmEOSSve7MXoK2asPUJMIp0qQMuzPWgt+de8jKEiat5SJpwO8xxarP9EFdGhaU59O8f4qYLqO73CjTPHM+k6NoK5Uk9sInca4uNfzr2WuRB1Hwmi0uVO53fqH9rQuXLzknonluKCdOqbTRiCuY0YUm2k+m4vpqCO6GAsqwNXbDDGa1+d7wsq3+yh7fkByeesMhSC9HZjhrNm9d1ejD4dJ/6uOes7f+WZPkJ7ZYxeFqYWZTfbM8WGMdEXgBAGFjk1lDaYF6X2c8hKcAyVMGLu4bWhVwH40z/9U/7xH/+RP/uzP+Oee+6RrvAyJLEsUnqdOHHiBHV1dRk/c1HBClndotjqe7zoPVqOfP4i577bjqlaK5xCsmDlA2UYynTM3TpH8897JFMsgRAtzM3EmeyV3p2o+1CA2Vic099s4VAeN6GVbylFqVGg9WoJd4SzCo80VuFg0vHcABqbiktPSW9kbPp4cpPgTy/Qmedj9Moz3ZiDxTQ9ncON6ToT5Tc4OfWtRnpezWOhnRQ49J/LHVf/eDUyORz6s/ybHymXl3w4+4M2yrbZ86aFm47MIlflNzHrPTFEoU6ZV6AE0Pab3EIXgPBgmJGWCfpOvzGpSQBGWiYZzZPfHsia4isbRlsnc4pdUgiPTqM2q3IK6gBanunCUF6c95kcex0TgpVvL0dfqqXxJ22S73PXy0M415q4/K+5FwVSAqW1D/koLC7IaZk91R8lPJx7Yp0SKK16pxC4SdYxDJ1HBhlrFae4Uu/3orAktxXb3ciVMsm0hwvFflqrnDXvqeTCT9olHcXmZuIMXZJu1wtT1nk2WfFstEpOdg/+6YW0+1boLg+mch1HvnYxXU+tTMvm6T2ECTNe00FreytTU1PIZDKuu+46XnnlFcl6LGMZy/jvgfr6eo4cOZL+vww5m9mzSJykMcPq98ynGzv3T60500/VvKUCEtD98hCdz+de7B5pnqRAKz1tNldrCd3i5fBXLzJwYpyBE9If6BozGH06dC4NRxsvSYoQNGYhDrj003ZURuljxdbVxYRuLWWkaYLGp65KprJKYfjKBApVjiTewIZHQkwNxLjw/fa8KcMu/UsrlW+pyClQStVx6OI4l36cf05w4Qf508tFeqP0nx+l/1TuOZ+mREN8NpH3JBuIech0JPciAgghS3MegRdA+4t96D3SJ6deLzpe7MNaY8wrjpJKF3Yteg4N46ozM5DjQAEAEZibjRObzM1NpDfKSNMEbc9Ip+EAGL0cWZJYLYXNT9SIzdgc86SOl/ox+XKf6I90RYh0RdCY5ax5qJIrT3dKttuO33ej92hzppFLlZdKYzgzNSspzjr1t80E7yxJC5RS73dGecm+wBjSUOzWUHOPTzLt3EIBV8qJRGpDdqI3TKFOKdnXTLVHOJU8YRa8swT7CiMymSyr81jrr3sZuTKWFjRt+kQVQ03jGYIl14Afl8xPh7WR2eIILS0t3H///XzgAx/g97//PRs3bsxaj2UsYxn/PdDW1kYgEGBubv5kqgc/VbJ1i2J9B5xYKw0c/eIlWn7Zy9CFUcl0V/5bXDjXmpHJZDT/okdS2AAQHY0zE55lokf6Qz51svbs37dx7Iu5v+dr3upDbS1Mp5jLJjxSG4W4YeDUGHqvNqsgIIW6h4Uw5NCXLjBwIvdmVeeLgzjXmrj6vLT4w1yjI3jAw+lvXl5Smrfhy+OMtORObS/Sfio59Of5N42i/dElpe86/70mvDeV5E25Nj0xg0pfkDd9XP/ZYbR29ZJS5XUvJZ1HFAbOjTLYmH8DcanoOz3CeGd+x86linsGGkcp1ORfip/qi6IvLULtVOcUtl362VVsq415n0lqnF8Kgre5sa0ycvFfO9LOP9di+MIkk5sjXP5J7jl7SqBU/dZSiuzqtItjNoy0TOR1ckoJlCrvLMFSbeDiv0nXseX3vUSHxHwl9X5fi1RfENxfSoFOKRmXIfZTw6aHK7n0sw7JlG0zU7OMXJF+lxeKoSpucoIMSeHa4c9dTLtvpdLtnfn2pYx6boztJEqU0ZVttLe3Mzg4iEwm4/rrr+fFF1+UrMcylrGM/x5461vfylNPPZX+vxIlDexZLE5SQd1DQQYviXRj537QkjP91JoHfCCD3qMjDJweyymwGbo4jtqqQqWCWJYidR4V1W8p48y3rzDeGs0tolWJrB/moJ7jjZclhS4qPcTGofFf2tG5tZLCC32ZipX3+hm8KIQm+VJ89Z0ZRmvJ7Vq47r1+IqPTXHzqak6BEkDrr69ScHtZTv5SdRw4P0rTz/I7UUs6Ty1EDK6+MsB4Z+45n0ovZzY6R3gk/5rXwNlREvHch8VACEryOUYBtD/fj6H8jXNSuvpqP9HRGWITuffARi9PMUpuXlJxE91h+k7nn2vOROaITuY+KEAMek8O03Ukd3mxAeFWtlRs+nglczOJnH/T8rsebDWGnEK+2GCM2GAMlR7WvKeS5t/2MHQ++/pgx0sDWEMGrh6SXg+Pjcfpf20UEGkMpydnJFOxNT7VQfluR1qglHq/ry0PRKo7S6VeHKaTOAi5kIuqu0sp0Cg4+w9tWWMnesJoHSpJUWJsIMbZ74o5q+cGK55NNgo1yqzvau/REcJ9YcbbRVl1Hwoy0jxBy9Pzc33TsIsdsjfRr2ol7BmjubmZe++9l/e973386le/4vrrr89aj2Vkx7JIaYkIh8MYDAZmZ+cX5804qJVtlfwbrbkQRaE8LQBYJBbQwoo7vZz/fgfnvttO9T1emn+efYCy1+oJ7PMw0jxB4z9dzesSpNIXUjCXe8Ap2Wqh6+Uhjn7jEq7VJkkXI0NQy4q7y4mOxDjxN805BUoAU30RtLbcE4E1D/kYujxO5xLsqU0VxcgUMtQ2LZFB6cWByrs9XHqqM0PgIIXwYJQCTe4NupTjy0jLZM50e+kyu6NLilvqia6BUxMMnMq/QLX+w0ESiUROYZuooEjR9UZiKfcLwg2nZL2FU99qzCqGSZf3T7k3tVJYquhpqRwCoE26BAzG0laA2dB3agidS0NsLLeSPLWp5Ko3MTc9l1NspjIUIi/ILc5a2G42PBLi3PcuS3I50jpJkUMjKaIC6EhuOqec2WKj09IbYX/RiOs6E4RFfIFKOqWh6zoHMqUMg7coa0xkkIz+a/NnapiemJE8Hdv0y6uoTOKjrGSrBZlStkj8mLpOsUONolCeVUillWnRNlahT3g5yK9RKBQcOnQIg8HA/fffz9e+9rWs11/GMpbxX4cPfOADfOMb38j42XXsk3ROikRAUSDH4BUfyNkESp5tNmJjMQZOjNPx6gCTXdkXtUFs7hQUCefDtt/15RT/6L3FyAvleOptkoInc7WWSF+UyHCc5me66TsyKlle3cMBVMZCTn79YjKVmXR/PnhmAv+eOMM5FsI1Zjkr7vFz/GtNuR1zkijQKCnKkznCscnI7NQsQ+cm8258RMZmmZuO0/Na7sWkde/3ozYW5kxNvBBLSUMW6Yos2ZHnwhLmNUVlGla9tZz2F/voOZR7MavvyGjO5/x6MXRukqFz0m12IdZ/OMjcdDxvnvml5HqHpTlgATQ+tbS5HAhHMWOFjoNfupBTeDU9OUN4OPfp/55Dw+nnEbyzJGdqvyJPEXKlDGOgWFKkFBmOp0XsZbvs6JwaaSeuiLB0H+3IvUiWqlPtBwOoTYWc/LuWrGklRy9HMvoIxyZjznakMamQ5Tj/0PyzHpoR35g195VhLC/iwo9a00Kja+soV8wLlGru8S56L1J/p3GqURTI0Zqyn9TzDlbDIIwSZpheJiYm2L59OzMzM4yMjKDRLC294jKWsYw/DqLRKA6Hg/Hx+e9WK27WyjZL/o3WpEapUqC2q4n2R7MKlKre4uHiv3TS/Ise5AqZpPjH4Fez4q0+hpsmuPijq3ldEovsahJ51rxstQYGToxx4skr2GoNkgIqtV1N7YM+woMxTv1tc06BEsD41SkMZUU5RTjVby1lsjfC1ecHcwozAEyBYtGfurVER6XHef8tLpp/0ZMzNV4KEz2R/CfM1dDwaA0jTeNLKjM6CpezOBhfi8Z/XtpcYLQpwqmm/OKZNQ/6UCjknHgy/5wlV2q+fw/ytYUUHOtNlN/k4PT32nKKipYqZur4w0BexyAQDj4T7UtP71X/ySoiw9OSDj8gNt9MwWKi47nF6SmhoamqCKVWmVOwp7Wpcx74gMwT8bXvC3Dhn1skncyGmycx+HSSAiWA3sNiXqg2yqn9YJVw85aYFx/7ymVstQaioyJebVNJCpDc6y0o1Ar0pbrsMVEy+q+GJ2qYHpd2XLjwoxaKXOJQg2V1MSp94SJRXiq9osGrRalSEM3SxNQyNc7zVRgT5bzK08gVcl5++WWMRiPvfOc7+fKXv5z1+stYxjL+6/A3f/M3PPzww+n/y5Cxhf2SzknEoKBIib5ErHllEyjZ64wkZhMMnB6j5dkeYmPS39Fr3l2Bxq7m8J830nt8NKv7SQo6p4YCrRLbOnM69dSiGI+KmZgQBFz6eSdDZ6X3QlY9UEZxaRGvfbOZyc5YTrHVeHuM6fAso23S39sqPVTf7ePUt1roeDb/+FmoVyIvyG0iYAwVoShQMHR+PC1wkEJsCqbDs/Sdzr1GVPNWL3qvlsN/dTGvaxQg6XCTce3x+JIdeZYijkoJXDpe7qf3aG4xztD5cUkRzL8H461RxluXNvda9c5yZDIZZ74jffABWNJeMSzNAQvIEKvkg2+fE/tqEye/3iiZihEgPBhjOs+hwJFG4UwGIq1a22+l16hVFjVKtQJjRZH084kJV0kQ/YY5WJwxF1sUPjqd0zQFSNdp5f1l6L1FnPnH5qzvdmwgxqWfdjJ0RdTNtsaQUwSoc2pQ5jD96HxxMN0v+fY5ca41c+HH7WnnpGtjC3XK9HMMHHBx5ZmejPcxJVBS6UWfK/VNZY9VQDPEEnCVK0xMTLB3714UCgX9/f2oVEtLr/i/HcsipSXg2vQiKjRsle3LGrvxsUpkShlHPndRcsM/hbp3B1AZCrGtLWbg1EROwUf/iXF8N+c+BV55t4dEQgg4Dn75Qk73mLoPiWtPT0wzcGqCnsPSA85YU5jZ6Bw9J6UHWY0Vat4W4LWvXuFcnkEbxIKSxqzK7bSUdG1ZirCm+m2lmAN6uJu8IiqAM3+Xe/ACUNu0kICJ7tynpmxriwkeKGWoaTzvtde930//2VG6Xs69SefdZce52sS5f2zKm1JPmedDP4XgHSUYy4tel2tQPlTe7UHv1HLsr3KXWaBRIFPIMFaaiAzmntysfKAMtbEw70IeWqh9Z4DW57pzinFApHnJa4cehkQ8wdxsbr6F8Gnp6UcqdrogAf05XDWOfGHBxp+EW1EK3l12CoqU+PeXZ00bCdD5/GD63fLf6qKwSCkpAAt3iPe7+1juNplyMVtzbxkyhXRKvuaf99D8bI+4By1seDDEsW9dzn5PWpiLxRnrkr5hITJLpn673o5MvliklMJCoZ53uw3PZtuidIlamZYdvImwc5R+dRtXmq/wN3/zN/z0pz/lL/7iL5ZTkSxjGf8N8Otf/5p9+zLnWWu5DqvMtSjWscmIf6eb5t9203d8NK/FsHeLjfh0nIET43ndkya6I7ntlzWw/t1Bjn+tSYiYXurLKbSoelM5c9Nxjnz+Yl7hSt/pUVx15pxp4KrvLmWiL0rn8wN5BSSB28soNBbkFTugASLkTS0B4N/hBhkcPJc/dqp9ac458ekE8TwbjgAbP16JskCRt57W1cWUNNg4/b2WvO5D6z8cZKInklfEZfLpkBfIJNM9XFvmSMskzb9c2iLLUrDhoyEGL43T+uvcCyP50oGloCnRsPKuUjoPDeYVXXmut2IOFuddBKq+uxRTsJjT32tlql2a+KmBKIayIorsmpxxeeeEC1Bzbxkmn47ZyJwkR4NnJhg8s6DtJNu9FFy1FuEomQML59e1Hwxw4jtXJMvsPT1CyXpLVoFSCgsFSv5dbpxrzJIbioc/1yjuAZGmbjYyJ9nmJntEv5ZNoJRC6h1wbDJi9OnSab6vRaQ3mtHnbvpEFXPRuUXPq1a2BYDx9R2cPXeWWCxGcXExGzdu5ODBg5L1WMYylvHHw+rVqzl79mz6/xp0XCfbnTW29gMBlBoFR794iXPfa8td7rvK0bm1abFQLgHJWHOU2ehczsXvit0OlBoFTT/tFps7OURCq95RTrFHbOINnBjLKaCI9keJjc/Qm8udUQ1r3+7n1N82L+mEvMlXjL60KHeqKzUQFUKYfGKYsp12nGvNFGiUXPxRfhFQrk2GFLRWNYm5OFMDuU/eaz1q1r7Dx9CFMS7lSZWx8v5yhpvG6c4zp3CsN1F6nZVzP7qaNwVeYbESuSK/G3nZTjvWKkPelCivBxW7HZj8xelNHCkoCmQoCuWYA0V057mf4O1uit3avGWihlVvK6fr8GBOMQ5Aw+PVzM7M5XUVi88miMdyzw8n2qNLSiWYQtWdZZAg5zuWsfGXbPdSsNUaUFsL0ykas2Hg1BgDp8T1PDdYKbKqJNtmdDRObHyGnpO51yJT9V/9nqBI1yzxXdn9yhDdx4fS91D7vgAn/uGK5D1NT8zkdMEYa54XeAZ2l6BQySWdw858py39b9taA4F9JVz5TVcG92qZmu3cyUzhIL2lPVy6fImvfOUr/PM//zNf+MIXlte8lrGM/wY4deoUdXV1xOPz/fFatmKVORbFGkNFVN3ppe3ZHnqPj+bN9hHY7WZueo6B02NpBxQpjLRPotQoQUV2wYwK1t7n49S3W4SI6exoTmHN6gf8aQfkXAIlgO7jI5TpCnKmY/PtdTI9NUvni4N5XWm820vQ2tU4N5pyC2uS95ovnR1A1e2lyBQyDi1BhBMbXJpzztxcnLnZRF6BUt3DQQqKlHkP3OnLVHhvcHLuR+15y1z9rgoiQ7G881hdmR6FSiEOgufB2nf7GO2cyimYeb1Y+6CP4SsTecXaKmPhkspT6eXU3FtBz/HhvKIr2xoD9pUGzuc5wFi+24F7vYXzT7UtSrO4EJO9UewrE6hMKmLj0g9oqUKq1LVLNopTpVK8L3I7k3rHk/Beb6cwzx7zQlOHVe8s5/JP2iSFVz0nRygsLsgpPkyJpwwBLcEDJTjrTJI8HP+ry+IeEKnaZDKZ5L2H+6JMR2azCpRSSAmUDAEt9jUmNDZV1mvHxsnoc+s+HCQ+E+fkNzJF75WytVSylol1Vzl36Rzj4+NotVrq6+t59dVXJeuxDIH8Pc3/Ytx3333IZDL6+/uRyWTIkHOL7S3cv/+dQkiAEKh4ti04ar7AnEdjhYp9DjTW+djyAzZq7vUCMHBxjJHWcbEJrxWxWqt4JJZVRdS83cvmz9RQvseBZ5uVlt910fHcwHysW7gVmaq1lO9xYAnqsQSKKdlqwbHSkK5HxT4H2qSrgCGopWKfg8Z/amGqP4qySImr3pQRq/OJ2PUfDVL74QCA+ECdE6nXFsam0ixV3uVDZSikZKsFAMdGQ/rfAOV7HJiqRazWrWbg8giH/1q84PZafQaH3l12TNVaNj9Sw6ZPVlGxz5HBt3e7LSPWsqqIxn+6ynDLONMTM2m+LauK8O6yz8dut9HwRDX1j1cv4jvFYQqebVYKNMI9ofPIYAbfKQ5TMPiLSMwluHpweBHfOt+CWC1oLCo8m+frv5BvrXc+1hIsRqlRYKjJfI4pvrVudZqXw3/RSOtz3dJ8W+VU7HNgLCuioEiZlW/LKnFqJ9VmU1jE93YbtrXF6VhjuY6CYmVWvj3brNhrRc7S5md76DkxxNilsax8l2y14Ngo7rXIqaFQXyDJt+s6E656EzqnFrWpEP9+T3a+ES5GrutMzIRnCQ/GJPkG0WY7Xu5PnwaT4htEm139UAWbP1ODY6MhK9+p2KHmMfrPzy8wZOM71War7ilh86M1+G91LeI71WYHTwzS+JM2el4bkOR7YR9hX2nE5C+W5Btg4MIoY90xNFaRCjF417wQIMV3CmOdk4z3TOXkOyVIqn2Xn4JiJf6drqx8l9RZOPKFizT9uIvyPQ42f7qGjY9VZuXbs83KqW820nlQ3HfpLhvBN5cs4jvVZguLCyABaqc6K9/abiN1Rdexec31qApVdHd38+CDD2I0GgmH89u5L2MZy3jjEYlEUKlUGQKlcqq4p/7drNhQnf5Z2S47mhKxIz8bEafC1GbxcepYb8SxyZgRW3N/KUVlGjQlGka7Jjn8VSGWsdXqcTWYM2I3fCxEw6eq0TjVREZiHPtbschgXV2Me8E4691hp/rNpRQaC/Df4aJsQX9sWanDc/38OOvZZsNcrWW0ZZLmZztE/ZOXNVdr8WwT46wxpKH+8WostTo6Xxrk2N9eTsbK07/37pi/jilYTGlD8jqaJC9OMXbqfZqMOg1eGKPz6EBa+LCQw6IyERu4w83mx2oI3uXGsT6Tw6IyEaspmS/34r+1MdA0tohvvW8+tuYBMZct22VfxLd3hx1jKBnrVFO2y87pH7Zw5PMXF/Gd4hCEK9Tc9BzR8ensfF9vxbJSpP3y3mCnyK5G75Iv4hvAvdWCdbUYZwuLCzD6dJJ8uxrM2Gr1dD4/wMEvXqBAo5Dk27HJiGO9kUJ9AaZyXVa+07HrjRmCJym+U7EFOiXG8qLFfCc5TIlVmp/p4urL84s6GXyb5fOxkQgFRUpc6+fH+ky+SbdZ90YLOrdGku9UOxxsGmJuOo6hXJrvVD1P/b0QMknxvZCX+k9Ws+kTVZJ8g0gVODUYoTd5Cisb3wvbbP2nqtn8SE1WvlNt9vBfN3LyH1pz8p1qs94ddtSmQmrf5c/ONxAbidHzmvhuWHF/GXWPBrLyDTAzPk1sYprT32+R5FtjlkNEtFlLSI9jtSkr32W77AycG+fI5y+i92nSc9nUfV7L93hnjO6jQ1z5bY/oS+/xojFn8p2KLSrTkEgkiCcSknzrj3t5U/3bKFLpUKvVHDp0CLVazfvf/36WsYxl/Nfg//yf/4NMJuPs2bPIZDIUKNmh2c/dN92L2ihijEEN7gXjt1wlg9SwpYbSbVbURnk6tmS7haq3eADoPz/O4MWkQCgVa09+5/vVBN/kZvOnayjf5cCx3kTzM93pU7Cl26yok+NscZma0m1WnLUWrFVGbLUGbFXz37Ol26xoPSJW6xGxZ/+5jYmOMMSF6GFhbCp10ur3+qj9oB8QIoqZ8AyOhePhDVYMfhFb/eZStDZVei3FXKPDWT/Pi3uLBWNQdPRqo5zuM4Mc+ZaYc5qqijI4dDeYMQY1NHy0mo2PVSY5XMD3lvk5kLPejKmqiPZn++k/N8JUfyTNt8GvxnODNSN20yeq2PTxqkV8pzhMwbHehMZcwOHPXeTq84MZfKc4TMFapWNuOk7vqaFFfKudmbH6Mi2erfNj/0K+1fZkrBosVcUU6gswBuYPBCzkW22Up2OPfekyTb/qzMG3uI7Rr0NlLMjKt6kqmX43yUsK2fg21+jSsZYV+vR3xrV8O9absCTH2e6Tw1x9tZ/h5IbItXzbag3Y1op2aPAWoTYVSvJtW2sQQh21nOISLb7dLkm+LauLcaw3ER2dZqo3Ksk3iDbb8coAZ7/blpNvEG226l4Pmz9dg7PenJXvVJvtPT1E35n5Na9sfKfabPleO5s/VoPvgDMr36XbrEx0xjj/Ty10vtonyTfM9xEl9VYsVQZJvgH6zybT9qlh48cqCdzuXMR3CsNXxhhpn8jJd0qQtOIdXiGo2uXKyrez3sxrX22i6afduLdYqH+8mvUfDmbl291g5shXL9L2fB/uBjOOTUaCt7kX8Z1qs2qTWPMqNCiy8l0QtbIyvoEdq3dRoCygv7+f97znPZjNZqLZrJiWsYxl/FFgt9tZt25dWqDkYyV3rXwnlauD6Rj3dWY0LrEjHwnPIgMKdAUAmKp12NYYMmIDt7nQV6hRWVUMNo1y6h+FAMcYKsJeZ5yPbTCz7mE/9Z+oEinCwnO89q0miInNeueCbzznRhP+PS60TjUV+x24rzOTMgXRVwgxUDp2vRFDQEvvqWGanukSsXrR7+vLVOkxWeNSsfFjlRhXCneXE9++ImKtomCdR4X7uvnx27HWREn9fB/svs6MyqZKl7UwdvjKBO0v9aVFKAs5VNlErOcGK5s/VoP/FieWVfqMcnWezFiAcz9spe/McCbfDWb0ZclYq4rAHS42P1FD6Y22RXw7N5rQV4iOXqWX477OzKWfd3LsS5cW853kUMTC7PQs0ZFYVr7tdUaMIdHvl97gQF9WhMGrXsQ3CNGNqVqMs1q7GmNAJ8m3ZZUeywo9Q2fHOfTnF0gkEpJ8W1aIWK1Djcmny8r3wljFgow2GXxbk7HJtmWq1qG1qzH7ihfzneQwFXvlV110vDhvLJLJd7K96CEWi6Mxq3DWLW6zIph0m/VcZ8VQocPZkJ3vVOxw8yTT4VnUlgJJvgGUajkn/76V8faYJN8LeVn/SIiNj1Vm5zvZZtt+28fY1Un6To9m5fvaPmLDYyHqH6nOyneqzR7/ymVO/n1zTr5Tbda2xkCxW0vVWyuy8g0wMzmdNkQIHHBR+0F/Vr4BEjNzTA1GufyTDkm+VVYVxESbda0z41xnzsq3+zozI+0Rjn/5MhqXiqq3lrD5iRpsawxZ+Z6emqPt+V4uP9OD+zoz/v0uVHp5Bt+pWJ1HBXFIJP+fje/ik6XcueYejEUmNBoNBw8eRKPR8Mgjj7AMaSyLlLLg4MGDyGQyfvCDHwBQV1fHRx9+hO2yOyi72YO7zopnkxgg/Xs8eLfY2fhYJQDKQgUkRdAlW9y466y46sXHj+/mEtxrbRgrdGitcjybbBhKRYfr3WIX5W53i3J3ezCW6kjEE8xG5/BusePfXQKAa7UJd50V304HllVFBA+UppWbh/6skbIbHfh2inIMQS3uOiuBmx0E31zCirvLcdVaCA/GOf3NFiq2uajYIQQJGiu466wE94j/F+oK0BhUaQFFxQ4XFdvmxQvuOiuBPeI68ekEMpksferNt9NN2Y3zggT3eguVt4mNKv9eJ/ZKc1pI5d9dgnfLArHFJivB/aXMTM4Sn5nDXWdN/96/x5Mh8vFsshK6RYi+YqMzuOuslGwRdQrsKU0/J0D8nQymJ6bxbLLirrNStktwGtwnOEzBu8WOf6/4nb1KL/i+WTzH0AEPrtr5WHuNGWTCkUbrFXyH9ojYyv2iDQBCuJEQqWgA0AoOQ3vdyVgX7jorWquck19vJhFPUHHDArFIrYXgPlGnwF4Ra/EXSfId3FcKQPlu0WY7jw5w8LMX8N28mG//brGI6NlWMl9fwLe7JJPvzTZ8yXbo3ORAWahg4OJYVr69W+z4bk622XWizZYnr3Mt32U3OvDtEDxc+fVVZDIZ/t3OZGxJBt8VN7ko3+5ksiVM87OdqDQFVO4XPFXuS/KdHPNSbfbYly9z7h/acNdZqdwvrhPa4xR8JwVOKQ61Xi31j1fjqrUQ2ifq67tZxNpC4n317y5BZ9eQmEswG5nN4PvaPsJUpse+0oLOp2XFfV48m6wE9ojYa/sIg0eUP3hhLM23f48nzWeqjxhpDOPf7cGzyUrDE9Xp32frIw59pZGZZB1TvEj1Ec5NDuRKGbbQAjHiNX2EqVxPgUoI01a9rQx3nVWyj9CY1ExPzdD88x4CNztw11nTwq9sbTZBgvBQDN9OEXttHxEZhI7nBvBssuLZaMVWZaB0pztrH3HlZ90c/NMLeOqsBPeJvqfyLf5FfcSOW29k68wB6tbUodFoGBsbw+l0smXLFpaxjGX88bBq1Sq0Wi3T09NoNBruvfdedsjeREC2Ev9ON/6bxXurMYuUauveWYHep6F0swuZXEb7y+LD1H+zWzj8JOGpt2EsK6bmzlICu52YPMUU2cUCe2B3CRXb5xeoSzZZUSjlzEbmqNjhwFNvwxoU/XJgr4fyG0SfFbjDjafBis6q4cKPWlEqFHjqbXg2iM4wsM+D9wbRJzV8qhrvFhuBfaVc+GEHxU49nnobzmS/H9hXineLGGetK03IlTKCN4sxwrPBKspN9qvB/aV4GqxpoQMJSCTnnLZqUW7FDlHH0AEPJZusbH6ihrXv9VOx3UlJcnwvKtPgqbcRSI6zof1uPPU2Ri6PMzcdxxYwpvlGIzhMzQ1D+1146m2Yq9QMN4axBQz4d87zXbLJSiA5f/LvdGAqKyYxl6D/+OAivj0N1vTYWXmHKNe90Sh42VNC+YIxwrtlfjwsudGJWq9isHF8Ed8ghEmpOdzQpQlkMhm2FY5FfAOU3+jAv0fEtj7Xi7JQgTfZfoL7knwnUbHdiT85b7T4dXjqbfh2JfneJ/hOwb/TjW+Xi4OfvcD5H1/FU28jlOJwr+A7HXuzG6V6fsHGU29Lzw1DewQvKTGUb5dwZ0yd2inZZJ2fq+wSbdbi1yXLlebbu0PUwbXWTGQY5qbjqI3zNsSpNgvgvk7Uwb7eztkftDMbm1vEdyBZB+91djz1NgxlRo58/iIl6y2L+A4k+XasMOKpt1F+o43qu0upenPZIr4DyXmNMSTabII4sbEZAntLFvG9sI8osmoI7XdRc28ZwX1JvjXzfC/sIxRKOXOJOQACu5146m1pkVi6zUZE2sCSTVZW3lNB4A63ZB/R8ft+Lv20A7VJRXB/KWjAu90t2UfoXBpU2sI0385656I+QlVcCBEhDvLeYCd4QLqPQAanf9Ca5ju4XzybbH2Ezq4hPptgoHE8g++FfUTb7/rSfYTRp2PlAyH8O9xZ+4ijX7jEXCyOp97Gxo9XUv94teB7QR9RsbWEDzz4QVZNbcJX4WNubo4nn3yS6upqXn75ZZaxjGX8cXDx4kXkcjmf/exnAVizZg0f+cAjbJPdRvn1ZXi3OrDXiv47eKCU8h1ONnw0BEChVmyMg/iG8251UHJ9cpzd66FsswNzpR61U41vuxNThegnLaFivFsdlN+YXEvb7cFWbWRuJs5sbA7fzS6CyfG7uEyNd6sD3w47xWVqQrd7KN1i5/T3Wjj0lQsEdpek16LURvBudRC42UnZTjtr3+HDu9WBWg1nv9tGYI873b8BlG6x49st/lZnVaMxq9OijuDeEnw3z3/Peq+3p+cfiZhY84oMiQ2j4H4Pvh3z42z5NgehO7w0PFFD2W4XJetsuFda0rHlC8bk8h1OggdKCQ/FmJ2ew7vVgXOjIxlbSvm2+TmQb4eTyttFvz/RHcW71UHpjQvmkdfPj8m+7U7kShnRsWnMPp3g+6bkc9wrOEzBv8dF6IC4N7VT8B3YlVyD2evGu3XBIaeNduRymXB7USf53p0ce/Y4Bd9JMVR8Jo6iYH5eU7rFnp4bVmy34d3qwFiq4cIPOpibjmeseXmvtxPYm5yr3OTCu9WBLXlwL7CvZBHfqfmH6zoH3q0Ohi+Nc/CzFwjsL6F8Rybfgf2iDp5N1ox7C+zzLOI7kFx3s9UYUBUVMng+uea19xq+b3al5zXGUo1oszvtydiSDL4De0rwJzk7991mZHIZweS6YWC3uNeUYCXVZqOjcc5+rwWVrpBgcm4Y2JXk25nZZk8+2cyFH3RQusWeHvvLbxJ8m31ibhjc78G33YnaKGfjY5WC7+T8o/RGUa5zrTkday7XMzcdZ3p8mvJtDjHPAJwbHRl9hDVkwLnOgtqupuquUsq3O9N1uLaPsIbE8xxOriP6FsQu7CPGmqP4d3vwXm+n4fHqNN/Z+ogjf32R8EhM8J3iUKKPcK41o1QrcKyypEU/1/YR9pVm0c8Ba99ZgXerQ7KPMHh0RCemaf5FD+U3irZlSa4bZusjkCeIjsxQcr3gMLUumu4josKpqXyHE99OF7ZVRlxb7Fn7iKvPD3Lozy9Qdp2T4AEhKFv51rJFfcTm2+q5Ye5W1q/egE6nY2RkBKvVyg033MAylrGMPx5uvfVWZDIZAwMDqFQq3vrWt7JD/SZ8siqC+93pPR+Aiu0u1r1bbOpXbLEjL5AzeEmsf4T2l+DfO/99Vb7NiX2VieCBUrxbrdiqTGitot8PHfDgX9BnlW93UqhRMhOew7XZRsV2F85VRgCCBzz4kt943p02fLtcGEt1nPt+MzMTc1Rsd2FbJ+Zwwf2lYm0C2PBICN8eN8EDHlqe7kVVqKRiu4uS5BgY2F+angNZQsUo1Qoqk2OPsayIiu0uvFuT38l7Syjf5kyLIhIAcTHp1LhUVGx3UbE9We4eFxXbXWz6WCWr31VBcF8JpQ3JtQeV4NC/M9kX3uygYruLqV4hLLFWGQjun+e7/CZn+t7LbxS8WNfpmeyMYas2ZvK93ZmeG5Y2mHGsNDM3E6f//DjB/SXz38mI9ZvUXKVif4m41y3Je91fkr4mgG+3Oz3/sKwyo3NoGW6aWMQ3CLes1Lym//QYMpkMS0g8R//ezDlnYN9822r8cTuF2gLKbkjNxd2C7ySC+0sI7BPXUVkF3/7k+kFgl5OK7a6M2OD+Eg7+2QVOfqOZiu2u9DzSv0PwnRI4Bfa5UBvmXY/Kt82vPXivt1Kx3YWhVOwXBfeWkIgnOPXtlnm+9ybXArfaRTtMHlQI7C8hsDuT79RcxbE++RxXWyAGsYkZtBb1fOzN7vT8w7nGJN6FBisXftBKdHQa34J79d/sTrcXS0BPxXYX9io9x798Gfc6awbf/r1uQslYfZngsHybDd9eJ6vu81F+UybfweQ+pUov2qxcISMyHEtzmHoXru0jDKU6AntcBA648O8VsSmR2LV9RIFGCQnxHnm3Cr5NvsV9RKQnRvl2Jyvv9+Pf75LsIwZOj3H+qTaKbBrBtwps66ySfYTBrxPrY8nvDucq46I+osiqJjYexxgqIrDXTeUd0n2EXCnnXPIQX2CfO/09k62PsASNwlnu4hjBffN8L+wjul8dJnCj4NCx1sTKB/wE9rmy9hGvfa2JyECMiu0uah8OsOnjlYv75O1O3nP/g9RO3UTAH2Bubo6vfOUrVFZW8txzz7GMxVhO93YNtFotkci8vbSXStaXbqbnZXHatf35fmYjc3QeGUz+v5eybQ5mkjkje08OM5lMD9b9Si8yuYzRK/0E7yih7fkedB4N4b4Y4cE4PSeGCCdtlQdO9KPSFTA1NMnmT9fQe3YEGSJ1EoBSrSA2Ik6M95wZQefW0nV8hLUPlAPQf3aUsSZx3c4jg8xMzQAw1hWm/9woPadGKFCBNaRnuG3eh63z0ADx5GAfGYT+c6NMR8V1zv+sDXvQRCTpTt3xaj9y+fxJ76HWMczletY+5OPKs7241prSaZs6XurPUMj2nx2l0CDH4Cmm+aV+Slaa6DsnPkrb/tCLyjQ/UI1dnaD/1CgDpybQutWU1FsYOCE2H1uf60Zrmx9Q4rNx5Eo5Wrea3sP9KAoVdL8i7Npaf9+Nzq1Nx/acGCI6NE3P4RE0VtCYVHQdHkrH6stE55wSXMxExDPtvziOoXyUruNCid3ybBfmoBEQafOmwzP0HBXtI9wxz7eI7cZanRR8aAWHaYQF3/1nU7E92FeZCIfj8xwusFUcOD/GcNOoiP1DH661JspucFJ5m4r2Qz0o5AUZfI+1TST57WcmPJe2Nm5/PpPvvjMjTFwVp726nu+BObCtMCT/tieD796Tw0z1i/ej90gfSpWSrpd60hwWlxalY7uPD8232ZMjlN/oxFihS8cayudPQC1ss0PNU4LDS6K+rc91p/kG6Dw4wNy04Kjv8Dh69yj9l5Mc/j7Jd9IIZyHfrnoT8XictoPC0jLVZsMd17TZcBS5UsZMeJaW54RddMtz/ZSsNzFwOcnpi72o9IW0/UbYCvb5Rhhvn0zyu7iPUFsKWfEWL4oCOb2nh5nszOwjeg+LerY930ORXcNYUxidT0vvhSGmrmb2Eek2+2w35TtdKJSKxXwv6CMIQ8vvurCsNLD50RoiQzHJPmKyJcxo9wTWClOas2x9RKrNTk/NoiiUS/YR/edGGWwUsanmaQoWM9YUztpHjDSPMXR2Cq1Xy5r7tLjXW+k7Oraoj+g7I/jW2DUMnhsnIU+gMirT7eXaNotShmOFkc6DvZh8xqx9hPF0ObfsWMvPDv+Y2fhsWqz6rW99i/e85z0sYxnL+M/Bk08+meGiIUfOPu+bKBo3AmJ86Xipn3jygyoyHGe4eQxjWTFyJbQ8041thTGdVqntpT7kMhn+21x0v9RD78lh5AUJmv6tl6IyDc7VxnRaqbbn+1CoFax7n3B96z0xwmjLGMONYTQlGmJj0wwmFwVan+9BVVyI/4ALx0oTkZEo7c/3MXo5Qmx8kNnoHP8fe+8d39hVp/+/JRcVy5KsYsu23OTucff0SW+ETEIKIYUQQnpISCB0CNnf67XswlICCywLS18gkNBDCCG9T5/xFHePe7clWZZtFRfp98eVZDuxdY+yyX434OevOPPR1dHnnvu5pzzneVwtUjHsfWYUrUWqQ4uzS5AK/c9IdWf8wCTKpJW63/v0KNY6IwCn/zDKYmAJX8QiwtXiRGVIYfTwdCy26OIcdn+iiub/bGP4gJPgrFT3p9q96HPdjB7zRGJHMDokmeJF3xKDr3lZDkhEjPkBP+PNbsZPSrGjR52k56fhapnD1dKB/SxLLN/4pTo61SrFDh8cp/yyQor35uPu6IrlO4qJ49O4Oj2RnE1gqzXS8+wY+KH3uTFStCtjlfFj08xETimHwhAOhxk9Ffnsc+NrpJvHjrqZHZ5HY1NjKdUz3e+NjQ1X5xtg9JCL+Sk/aGDyyCTJqiRGX5uI5VCXvTI2HDnoJOBeAA2MHXejtahW8v3MKIaClbHK4GtTLPoW2f1gFUv+ZcabV+X72REySlZOKg2+PMnyojRW8Y8H1uS777lRzOXGWGz/yxPYd1lIVknvxPFmdyyHp58Zw1ZrjNmC9b8wsUJ2j+R7+rQ0nu59bpKcxgVcPXOR60ySsy2L6psLaflp/5p8D77sZMm/zNhxafza/9x4TCVgdb6BWO4mj0zid0Pfs2OkZa2oHowcdOJzroxVUjRJsRwuLy8TXuXaM7zfSdAj9dmJVg+6bA2jxzxsucqOUqFcY7MTzTeAZ2ilz0ZVl1bn8PU1YrzZzexUgJILs1mYX5TGAq+rEVGszre714tvMvCGGhHLd8s0WVUZLM4tMXJwet0aAeBqmWMs301GqY7dn6ii4w+9G9aIg1/poPDdWcyN+LA26tetEdE+658KEg6FGTk0GfmeN9YIfb5ujXWeIjIu26hG9D4h1dnpgTkyCnQYyyQruDV99hmpz/o9C4wecWHfZiGjTIfGBH732hrR98wY1i1G0nO1pGiSGDziWrdG6BQmssK5OJpKOdnbTGdnJ+eccw56vZ7p6fgS7JvYxCb+Z8jOzmZ8fMUOs4AKmiy7GXlBmmeOH5pCoYTJY9Lfvc+O4bgom+CsVJOHXpvEFyHquFtcqHTJTHXOULQ3i56nRtEXpRGcXiIwHmDw1UmCM5F5ftcso4eczDkD7PpcJeOn3IS7of9p6T0TWg6zHJDenbMTAUYPOZlomaHuRgcKJYwdduEblt43Ay+MR/esCHhg9JATZ/sMy8uQ3WTG1e0h4JH+ve+FCVZNURk77GJxQVrrOf7rXrJKDcxOSNfte3aCJPXKe3b8pAtbtZna24ro+ssYQe8irsiaQO/TY6gMK+OakQNOUtOTsZQbGDnoYsGzhLtFymHP06NozStkYGeHB1fnLK6Ts6iNSrJ3Whk/JKkf9jw1is628p5dCCySqklBa1czftyNxpjCWMTaqffpUfSr1mAGX50kOLsYU64aPeRkLGKJ1fvsCBnFkRPBaiAEiz4pD4HxlXwD9D83iqlUGtfU3V5EcC7IaNQeI7CSb5DW8yyVBgKTEoGp79kJklJWEj522MV0j7QGOfDKFIHpBTxD0nuq95kxUlZZS4wedDEzOBf5LS4WfUtk1hgp3ZvL4KvjEFq5NyMHnMxG1h/HXpuCZZhqdsbuTdqqseHwa1PMR8YqzhNOUjRJZG8zx2LTc1fGhoOvrPTZqbYZdJnqlXw/M4ohf+W09sBLE7Eceob8LC0sr1nziuUbGHh+nOVFqdMGPCEphz3SdfueGcNSaYip8/S9sGJfMTsg3Rv3QKQNz4+TVW2IWeSt7rOmKh2h5TDDB6Xnu//FKYKeBdy9Uk57nx1DlZ5CIBCS1pi9C/Q+LY0Dhva5WQosMx4ZG/Y9O446IyVmVzhsm4odSl2vRqRZ1NTckE+KLpnhI5PMj6ytEdEc9vxN6rOebj/qTDWjx5zMj0mx0RoR67NPj+C4ODdG5h94aWLdGkEA+p4awVwlrXnNT/o3rBGzAwHmXT4sxQYCHklFab0a4e6W2uBzBVClp2xYI0YPuvD0RdbYI+VAn6/FdXJ23RrhHZpnumMedaYaS5UBa5We0Vddb6gR0T6r0qfibpmWlO50UiNfXyOGXptEkaQgZ6uZ4cOTzI8F1q0R+hN5XHZ2A39u/i2LoQVefvnlzTWvTWzifwFPPfUUF198cezvZJK5wHAZmkkjBKV3f++z42vrULMTa2Q/aeClSXyTAfyRWtn79DhJKiV551iZPOZi6NUpktRK+v82gcqqIjizwHSk7vc8PYZKl0zV9flobWoGX5lkdsTHzGkfKouK0EKI6S6PFPu3UTSmVHJ2mcjblcn8pJ/+5yfwDgQJTi+iTFIw1Sy9I3qeGiUtQk4OeBZYXlpm4Dnpt0x3eRjSpzBx0huLja55Db/kJESIoDvy7hyYZ+jVSSYi1nC9z4xSstfOrk9UcewHPfQ/O85yxKLUPxZk6NVJpiKH1QaeG8NYrCezLoPF+WX6T4zF6j5BGHp1EneXFDt6ZBL/TJDpzgBHOruw1hnWjFWGX5vCExmrDB6awlyhp+DsLJzNXk7/bYyUVfsXQ69OxSw8hw64WZhfYvC1KQhC71PjqPQr45rBVyaZG4vMzcNhwqEw7k4ph71PjaFZtQYz8OIEPlcQlV46jDbVMcPEEVcsh7rslbrf/+I4Qc8SqCSnHo05NZbv3mfG0NtXxoZ9z46z6F8GFcwM+dbku++5MYxFK2te/c+MsbwYZtfnK1n0La/J4cCL4xhXjWt6n11rUzz06mQsh30vTjA34Y9Z+fU+NU7e2VbUeun3Du+bwtMXWZt6RVojmhmSxnQ9T2+c75GD0yz5l2OCCf0vjVN2iZ3qG/Np+cUgAy9OMD8pva+juXNGlB57nx6T3rMR27P+F8fxu6W1qemOaYZ0yUyc9BL0huh9egxd7kq+B14YJ+iV+qzrtHdNDpcWlgjOrvSl/uci+Qa84yt9tuQiGyhg5PCK2nn/Myt9Nuhd6bNzw5LqkmnEH7Noe32NGHp1kvkpH+WXFxDwLjD06uQbakQs9pWp2Fqgd2hu3RoRxeCBSXKbLCzMLTHZ4l23RgDMnPYx8OIEpjIduz9ZRetvehl6df0acfTfu8k5x0RwaomMSt26NSI6FvdPL7G8EGI4Mi9ar0YYCtLX2MgpI8r0G9WIqG3gxCk3WbUmDCVaZk77Xte/J5gd9eN3LeDtm0FfZMBSrUelVxL0htbWiFen8LuC6HI0EEpl4OXJdfusSqGifHYHJXXlHBs8THd3NxdddBGZmZmMjcW3+f5HgyIcju5C/GPjxhtvjCknAahJ4wzFu9eN1VqU1H+4guDMAke/LeMhjmSfpExWsO+hthh5YiPoHFpqbyhkqnWG7j9s7PWutSjxOUPYz7UQnA5KlnEbYPsny2n5zVCMjPFWtTUaP3rIKdnQbQBzTRquUxt7QK5G6ftysVYYmO6Zpf1XQ0KfsZ9rYTgycY7XztBSKCFfdRHseqCScAhZP+D8863Yd1uZPOXhtIzva8M9xWhMKo7/uBffaHwJ3vyLMsmqNnL4G/Ket7seqGR5QSwHux+sYmF2kSP/3h03Lvq7hg86GXx6Mm5s5Q35qI0pNH+3J24crOqHX1zfA35NW79QRWg5LHsPcs80U3BOFuPNbnr/Mh43NhEUvls6/dT5p4G4/VxrUZLuSGfi0MyGMaux+8EqwqEw+/81/u+KwlqfHrcOgNjzGsX2T5aTrEni5MP9zPXKF4Om+0qYOOWJ+yxWvj8v9lxHa9hG2PVAJQuzi0I1dvunyklWJ3H8v/tl65w2R039rQ7mxvwxa783INfLi2PPs7S8RHJyMjU1NRw7dky2HZvYxCbE4ff7MRqNLCwsxP5fI+dhUpjWja+7zUFatprm77bhd8e/trFMQ9W1RSx4FznyrfjvMYCtHy0lWRPf611jUuJ3SzWr/Bo7nb8Z3jA2/4JMTCXpHP++/PvOVKml4upCAtMLHPsP+XpX+K4sMmuNsu9yc7UOV8uc7PUAdj9QBQrY9y/y71yQ1FwmTnpipI91Y7YaKb44h/6XJhh9xbVxYIIovkw62dL5x0HZ37fr89Kp6/1fkn+PRolHh74uP0aqv6uYuUk/p/8Qfzzn2JuNrSGDnr+NMnHEEzd22/1lpOiShcY92z9djlKh4MBXOmRjt91fxsgRl+w9iD4z3iEfLT/rjxtb+t5crFUGup8YZurYBgb0Eez8rHQP4j1bbwbbP1kOSjj01fj3y36WheGX488Roqj6QAHGojRGDjoZkBnTRmGq1OJu33jcUXBRJll1GUJjb40JGu4R74d6h4byy/M4/M2N5wBZW42QBBMHPWtq2HoofW8u1koDzf/ZETfuzbR160dLSU1PkeaXG9SNruzDDI4OAJCTk8N5553HL37xC9lrb2ITmxDHP//zP/P//X//X+xvDTr2KC5eP1gNuz5RRdC9wLHvyY9Pou+xY99pi5GDNoI6U03D7Q4mT03T8+eNF2jVRiUBT0iyYQrB1PGN59FN95bS9echZgfkLYwSaStICgHjze4YWWM9GEs1eLrjDIxWIf88K/Y9Vtxds3Q8KrbmlbPLxOj++APgbZ8sg2XivhfeDHZ8ugKAg1+NP+4w16ZTfnkeEyfi31eAqhvyMTp0tP6qV1JnigPbThO528wc/Y78mH7HpysILYc4/JB8DnY/WEVwZpGj345/XWu9gdK9uYwccjLwTPzxgeMyG7oszcbrDKuw7f4yUtKShcbfOz8r3YMD/xb/HpiqdFS8N5+xwy76/jYRNzYR2HaacJxvo/PxIVwn46w5qSX1qaljYmteux6oglCY/TJreVFkVKQx3RF/bXnbx8uYOD4d25CKh/q7itFaVbQ90if0/NbeVoS7ezZmSbkeSq/MofuP0hwhWsM2wo5PV7A4uyRUYxvvKUFtSuXUz3tl65zaCI0fqWJ2yBez9ns9FtUeDiy/QnAhSFJSErW1tfz1r3/FZrOtG7+JTWzizcFiseByrczFt3I2RoV13djy99kxl+k5+l89BJ3BdWOiUFlVNN1ZLK0jfVe+htTcXIjWquJgnPlzdDMewLHXRu8TG++dZDYZyaozcuon/bLfrclW0XBrMX5nkGaBNTLb9gzsu60c+ff47/Io0UAEOz5VjjJFKbQ2BJJ9k2/EF8vHetAXqdlyfREDL0zIjtESQe4Z0v5V52PDuE7FX2/Z9vEyklKThNZbdn2+kgXfEkdl9voAtnwgH797gd6/xt8/s23PoOiCbPqeHmVcZs2r7rYi0mwaoXFP40dKSNEkcVBgHaX+Dgfjx6djNn8bQWVR0XRXMTN9c7Q+PBg3Nu8cK3lnWDn95CiTRz1xY7feX0ZSskKorYmg8Z4SlColR2T2fDObjLJtjMJxiQ1bo4nhg1MMPiM/TgKpn3v7Nh532LYasZ+RKfu8AqCC3Z+qYmF+iSMC8xWVVUXV++wxJfn1YCjRojKkMnnUs6aGrYf886zk7LRw4qe9MULXW9XWmpsLScvW0Pwf7QQ3eGwHslvpHpWeVZvNxiWXXMKPf/xj2Wv/I+Af3u7N6XSusXYD2M0lGxKUAHzOEMvBEHOT8ScGuWdKJ3PafzfAwIsTG5N+tNLkROfQMtfrY98X2+ISlHZ+rpL6D0uT1OEXnHGJCdk7M0jWJFFyUdaGMavR+9QI3sH5uAQlQ6kWx6XSxOXAl9vjEx60UH5FATsik2o5dP92hKBnQZagVPjuLIovlyTj5AhKICkuLQeXZeMqb8inaK9YrgD2/2u7LDkGwO8KsBwMcfrp+BtaAK7uWRbnl2QJSgCDT08KEZQAloMhlvzyOUgE85M+wsthlgWu2/7woBBBCWBmcB6/W+ZlEUHAE1xhpcfByCsu9n2xTZigpLFIxBs5ODtnJR94fWrcOJ8zJBGUtNBwV7HsdT19cwy+LLZJlnummdLL8qi70xE3Lva8aqH8Onvc2JbfDDE/GRAiKKEFlSF1jYXfeog+1/V3Oqj/cAWZjfoNY/f/a3uMoLTtY2Vxn8tDX+tk8pRHIihpIXtPxoaxAKGlMBMn40wgRvScE7oCPSZMGSaam5tRKBRrTr5sYhObePO4+OKLY9ZuAGayuUBx9YYEJYCpzpmIit7GQ9fsiA+4p8vPxPHpuASl4suyabhHqsVHvtUdd1KfvctEwz0VVN1YABCXoARga8xAa1XFjYnC3e5jfixA+69648aVXyPV7P6nJmQJD/V3FVN+ZT6W2vS4cVEM7ptiql1+M6HuDgdoJMJDPIISIJ2KD8N0tzxJveHu4hULOxn0PD7Gvi+2CRGwZkf9+CbFxhK+qSDu3vhE3yiOf79HlqAEsOBbIrQUZm5KrA2iWJxfYikgNp47/M0uIZKYp8vP4twS7h75HAy/5mLJv8zi3KJs7IF/a0+IoFR0iY2Sq3Jk40KLIcKL8udsogSl4iuyyTkz/hil7fcD+J1BYYLSjs9UUHF1YdyYgacnY8+rY282mtyNO7rfDZ7+ebr+HH/BLIqiC7JJ0SVjrtZtGDNxxCM9r0DD3RVs/1T5hrHdvx9h37+04XeHMFVqY1bmG7V18NUpTv1SIhVFa+9GmBsPSEoTcepG2dg29rCXHFsOLpeLhx9+GKVSidv91i34bmIT/6jweDykpKSsISidwaUbE5QAArA4t8jcRPwXftZWad516teD9L8wsTHpRy2RMoylGgKTAfb/a1tcIsu2j5fReI+0hjR1bCYuQSmjIg2VMWWNfUI8dP15EHf3bFyCktqmpjCyhnb4G11xCUoAVdcWxa2xqzH4/BTz4346Hou/5mXbaYrNgUU2v0IL4ZjidDw4LpNs8URx8KsdsgQlgKX5RUlp8IC8Gp67Z46gZ1GWoAQwfsAtRFACaYy0EFG5f6sw7wyyvBiKnYqPh97Hx4UISiCdxI8qE8m2YSyAd0h+XcbdNse+L7aJE5TUkfG9DDy9PsKhMKq0lPiBAWIqXjU3F8pe19nqiVl2y8FUpaPyfQXU3lYUN+7wN7piBKXSK+OPKTse6WN20CdMMNTZNGRvjT/miRKUKq7Lo/HeColkuQEOfrUjRlCqu9NB0cUbr3kd++5pxg67YgSlaO1dH0qWAstMtm5cN1MCRs5cvAwb+VgsFpqbm8nOzubyyy+Pc91NbGITorj33ntRKBQxglIWdi5QXL0hQQki7ia++O8wc40eVBCcCjL06lRcglLuGWbqb5Nq/Kmf9sclKBnL0mi6r4KK6ySLpXgEJZCs5NOztTErqnjwjwVxn56l7ffx19EKL84CFYwfmpYlPFRel8+W6wqx1m1cY1ej7/kJJiMqwfFQdX0+qGC6fS4u2QEgRZdKeDnMdL/8mlfNzYWoNt4CWYORV13s+5c2WYISgKdvnrkRMWEI7+A8091ia16tvxyUJShBZK8xuIzPJT+eSwQL3kXh8dzxH/TKEpQAgs4gvskALoEcTB6bIjizSHBmQTb2yDe7EiIo5ewx4bhEfs6y6F8iJDCujxKU7GdbyJFZl+n96zizQ/PCBKWmj5ZSfYMj7nM+fsQTe15zzzCjs8cJDsJUi4fTT2zMe1iNwnOtaEwqzFs2fnhmTvtiOWi4p5ytHy/bMHbw+SkOfKkd/1gQTbaKpntLN/5tQeh+fISO30prXnK1ZnbMz+Ls0oYEJYCCsS2cyWVkZ2Xj8Xj46U9/SkpKClNTYvfj7xn/0EpKFRUVdHauFJE8SilX1K0bq83XUn9TIbMjPiGWcCKKRFnbDRS/KxfvsI+Wn8pfu/w6O1qTKj6LsFQrWa/5pLbHUxcxlGqpel8BJ37QGVfZJIpdn69EkSSmcgNQe3sREyfccRVkNBawNmbKqvHE2vBAJQqleBtEsfsLVYCYmkDpVblxyWT/G2j8SDEjh5zC6jyiEFVSShS1txXhGZwXvs9vBwylWtLtWllyW/VNBejz0xg94orZur0VaPxIMeoMFX3PjDEmsICHForOzaLvifhtaLqvhLZfnY5Zr8XDto9Lp/baf9fPdBwFgNXXDi2E45540OaoY8Q6OfU0a306RRfkCJ2+Rwu7P1HFUmBZSIkgIQWoyLXnJwOc+K/1CQK+sI9DyqdZCi2hUCgoLy/n4YcfprGxUb7tm9jEJtZgZGQEu32FIKlAyfmKqzaMr7vTQZpVHVd9I4pEFYm2f6qcZFWSsHrQto+X0f2XITxdGzdktaqKnGpJw4eLCYfDHP9+fHISgLVRT+leO35XMO7YLwqNTU3Flbk0fy9+bOG7suh/Suz9Zj/LQv7ZmcJjVVFElZEmWz2yxB/7WRZcPfP4R8Q2Et4OFFyUSVqWhrZfDLyl101ESSkRZG01Yms0ceIH8v3s7UTxFdn0/Eleznj3FyIqkoInHEWx+8EqQothYcJUwUWZ0qZZnK6WvctERkm6WF/QwO5PVrG8EOKggAKWJldD3Y2FnPhFf9z+rsnVSP+ugbRMzRqbt9ej4cPFeAbm6RNYbKy9tQhdjoaO3/XHVYqCVapKguO0utscpNnUcRWbejUn6fVJC10Gg4G6ujpeeukl2WtvYhObeCMuvPBCnn322djfBVRQqqheN1ZtVNJwTwVzwxurb6xGdE6572ttMZuqjWAs1VB1XREzA/O0/ly+bhZcmImxMI0TP9yY8KG1qyW70YBEKoraX60HtU1N3QcLOfHz/rhxUUTnlCK/DSRCwvTpOSaOxJnfqyFvl0WW8BTFjs9UkJSiFB6rimLX5ypBqWD/v8pft2iv/DrE242amwsZb56OS1R7MxBVUkoUFdflMT/hF77Pbwe0djXGPK0suc1xmQ1bvYnRg66Y7eJbgS0fLMBQkEb/s+PC6hL551ll1Y/qbi+i87ExyVpQBnV3OkjLVNP5mIz6UwS1txaiUCri1pzVykhy6mmGYjWll+YJqfqCpCq15FsSUkJLSAEqooo3NxZ/L+MVxeMEQ0EUCgWlpaU8+uij1NfXC7V9E5vYxAq8Xi9ms5mlJYlgkUQyu3k3KsX6O+EV1+WR4dCx/6H2mK3TRkhUkajxnhJUhlT2P9Qme22QDo/1Pj0WV51otaqKyqKKq/hUdX0+SRql0D6qvkBF9Y3F+CYDHBdYu1DpoezqQtlr5+wxMXrELfT7zVv0lF9pxzswR8svxA4OiSBnl4nCC2xMHp/m9OPx10Qym4z4JvxrrKz+t2HbnoGhII3O38YnlSWKRJSUEkFGpY7craa39J69GYiMY+DtUxvf9XnJRSgeGXE1bNszGD8xHffZMG/RY9milz2oG8XuByLrQg/Jt0GlV1J3eyltj/bH7e8qq0qyDVSBzqqKG7vlA/nMO4P0C5D1S6+SFOLbfz/IdLvMIdgEVZXK3puLqVxP8w97Y5aHr8ewqoeOQDMA6enpbN++fc2c/R8N/5BKSseOHUOhUMQISkkkc4Hi6g0JSgC+QR/hpTDB+fgsTm2O5LXY99wozi5vXIJS+XV20MLEoRmav9cWd9On+PJsdn5OKmKdjwzH36TSwpbrCtn50cpY2+PBUmVAkaTAVBOfbRnFiZ/1MXxQfsJdc0shACd/2CdLoqm9pQL7Dgtai1iX3P/Ndk4/IV8gt32sjG0f25hB+Xrs+0YbnY/JL5pV31RAZrUxpuYUD0V7s9j6sVLQyoaS2ain6b4SoTzoHFrUGSpyGi3yF0ayxRNpQ6Kw1qeTUSl2YV22BltdfJWbKMqvs1N7e/xTUlGUvi+XrR8tFYrdcl0h+XvkTw62/PcAp58YFiYo5Z9vZdcDlWhkbsex/+gRJygBO+6rILvRLHvvjn5bIihl78yQ7ZeHv9HF5CmPEEEJIDU9BVWGjFJUhKCUf76V8isKqI5zcm7q+GyMoFT5/ryYhPz6F4Z9D7XFNr4q358XNxctP+tmdsQXIyhFa/J60GqVhJfDzAzGselTaDknfAUOqsnPy6ejo4Ompibq6jZ+X2xiE5t4IxoaGtYQlCpoiktQApgb9bO8GEITR2VHY5OecXe7D++Qj/ZfbUxQ0piIqbQc+lqnRH6Kg+2fLqf4MqmeHv5GV1yCUt1tDiquLiRrhxFA1i5JZUxFbYhfV6OYOuZl4vi0LEGp+LJszNU6/OMBWYKSxqYmZ7uZbZ8QGyMNv+yk5+lRWYKSxqZm1+crZZVVouh5fIyux4aElInyz8qk4UNi44Kt95ZSJHA6CSRCRvEV8uM5gKz6DIyFaUKxpkotJsHxUSLQmJBVBYoiZ7uZtCw1GoHbocnV0HBPMcYyeVkrjUmy8LKfJT8GLX1vLrZaE6XvzZWN7fh9f0IEpW33l8UU0eKh+4lh4UWgtAINuTssbLsr/rMxtt8dIyhVf6gw/kX9MHLQyckfiqmfZm5JR5miwFoZXw0tSmDa+dFK6m6M/2w0f68nRlDa8ZkK7OdufIr35I/7aP5uG+52HxqTMu7z4XeDq9PL6b9IiiDRmrwRAt4FlhdDcWukw1/LBYqryc/NJxQK8fLLL6NQKDh9Wp6AuolNbELC+Pg4SqUyttiZQioXKK7ekKAEEPBI6tMBb/xTw+pM6TnvfnyIqRZPXBJP0d4s1EYlnm4/x77TFpegZD/bElMjGnhmMi5ZAKD+Jgc77pPmkXLEI0u5jiSVEmvlxupzq3HyR92SqrEMF6LqhnwAOh4Zik9QAppuLyXvjEy09vh1MoqDX+mg88/ydnB1dzqkk8CC2P/ldtp/I6/2U/yebHKaLBS/R36MlLPLJNlRGeW/31Cspu5OB2qZ9wVItlXpdi0528TGlbadJqE2JApjqQZjqZjsp6k0HVuTWHuL9mZR/cFCodiCCzNp/LC80jdA3QcdFAgoi/U+Pk7H7weFCUpZWzPY+dmKWA3YCK0/H6D78RFhgtLWj5Vi32OVve6JH/YRmAyQUZEWV3UI4MR/9TJ22CVEUALQmFSoTfElQaIEJWujgarriuLeu5meQIygVHRxluyca/9DbTGCkuMyW9x+3PFID57euRhBKV7e1GpYXlhmbjQ+menM8GVUs5OC/AK6urpoaGhgx44dcT+ziU1sYi2uvvpqDAZDjKBUxVbOVVyxIUEJwDs0z1IwhEq18T6QyiJ93j8WxNk+Q9uv4rzDVRFFIiQFNjmCUtO9pTFVl+b/7IlLUCp7by7VNziwbTUCyFrSabPVaM1iCuPeAUkZSo6gZD/bgnmLnqAXefKTCgrPtdH0YbExkqvVS+cfh2XJLio97Ph0eSwPchjd76bt0QFZghKA48Jsqm+UVzgEaR0r/7yN5/SrUX6NPdYv5JCz3Yy5XEz2SV+gwlDyNmw2qiTClgiy603oC3VosuX7mkqvpOaWQoxlAmt6KolYlbNHfkxnP9tC3hmZlF4hrwre9mgfB74pvuZVf5sjpogWD+2/G+Tgt8QISiq9EsdF2TTeHn9c6Wr1xghKZQLreb3PjHFC4KALQEaZnmRNEsbi+GteUZLP1rvLqL2pOK6qU+svB2MEpa33l5F7xsbrpt1/GOHot9skgtKqurl+I2DksJOev0nr1tGavGH43CLLgeUNCUoA9mAxFyiuJi8zH6VSyXPPPUdSUhI9PWIuRH9v+IcjKRUWFtLU1BT7u5ZdnKu4Yt1YnUPL7i9UUXqV9BDu/3I7XY9uTIzZ8ekK6m91xIhH8WINpVrMpXq23y0twsipn6TbNCiTFWjzBQq/D+YnAwy8HP+kbPRaPY9J1hlxlWW0kjqUtT4d32hAVgmn4a5i0nO1Mcs7OZz8SQfTPbOySk5Fe7PI3pkBPpg8Ji97mKRJIkmTJNQGc00a+IirABNFy38P4O6Zpecx+QGGpdRAanqKrKIWQO52KypDKqTKb1zO9fo4/r0OOn4nX7ys9ekUnJlFzXWF8o1IEKWX5VF2eb5QbOsj/UKnrAFMjnR0NrGFoIwCHal6GenpCMaOuWj/fb9QbLSPWevFLHMUSgWmSvk+HyUoRYl88dD6m0GmWmeE+g9I9h9ZtfJEsNN/kl6s2z9ZTonMIGq1raFcDRp8boqF2UVaHu0Xaq/OpiFJpYxPwor8dp1DS0ZxeqxurhvqDMUmKls/Vkr9rY4N2+xzhtj/pfYYEW33F6o2lA93KCooHdqGOknqkydPnqSyspJXX301/g/cxCb+wXHq1CkUCgXHjx8HIAUVFyiuxq5Y/1mru83Brs9LJOuex8c4+JUO/BusbxvLNDTc7qA+YqHZ8rP+DWMBam4pJ3OLEY0pMvyNt1argeTUJPQi4y6g6w/9+N3BmLXSRkgrkGrIgS+3c0BGUaX0vSsE3B6BBY2s+gzK3pMn1F7/eIDJVg8tMl7sIJ2GBmR/G4C1Wo8iSUFoUV6ZM2pH5xTcPOj4fT+D+wRkcDWQakzBXCr27tZla7CUi8mEH/pqJy0Pi9l4lL4nX9YO7M2g7GoHRefaZMkgIG1iNH+3Le5zEYUqTdqgydkhT+T2+yFVn4K1Wj5v3b8fwdkxQ/fv5dVHo6o98SzMViMpVUmKJlk2bioynss50xyXnAMwP+DH1enl8PfFCEX5F2Siz9PGnpONMPD0JH53iKytRnZ8Jr4N9sDTk+z7YhuDz0rzLbl7PbxvKi7hejX0Dg1JqUr09vi1Ldpnqj9UQlZNRtw2dP5mOEJogobbHWy7f+ONuM7fDMfUpMqvsbP7gaoNr102up2i5RVCRWNjI2eccUbcdm9iE5uAPXv2kJ2dTVQ0vZbdnK14z7qx6kw1uz5fFbNFOvT1zphd0Xpouq+UxjscqI3g6fbHjVVnqsluNFN9kzROi2evBpCeoyFZlUR6gRiJZ7p3liEZq6jo5v3wS072fbFNVt1m+yfLMdemE/CEGH4pfmzl9XkYHTrsZ4sdGjv6w26mWjz4huMzn3LOMGPbKW2IiBAsUrXJJKvFlnYzKqRNGRF7q54/jzF5ajquLV8U1hojalMqAQHVqZztVtIy1agE9ocCHjj2nTY6fys/9lJnqim+KJvSKwvlL5wgqq4touwKsTWvUz/v5fDXxcYQ1koj+jyxuYa5TI/akgoCj8fAyxNCRDSQLOJAslOTQ2gphDJZiUlgcy+qfFV5vfzcpOVXQ4wfdwspJAGUX5FH9lb5dbeo7V3jPSWyZLuDX+uMjU/kCHRTx2bwTQU5LWjRqy9II1mdHP/eRX662qjEVm+i5uaNx1IBD7RF5nC1txXReKcDQ/H6Fw94pMM50Vzs+lwlNTcVrhtrU9gpGdxKepI0vj906BDl5eW8+OKLcRq+iU1sYmpqiuTkZH7/+98DoEbLBYqryVEUrhtf/j47Oz8jrXmNvubm8EOdG1qLqawqmu4qpi6yVt31+5G4NmQNtxSTs9WMyhrZRI/HI1JBii5Zdl4YRddfRpgf9zN+xBM3LkoWOfINeRusvHOsNNwtjROHXpRf67HvsVJ6qTwRBICgNE9ue1S+VkcJGK5W+b1GfZEBZXISIQFvoiiBx9MlNldv+3Uvgy+LEYd1Ng3mCjEyUUZxOplbjEKxx/7jNCd/JkaUKL1Cst17q1H+Hjule3PRF8kPenqeGOTotzrwjwmoT6WmkJ6jlcQA5BCENJuGzEqjbOjwS07Gjrro/pP84UtvXwCCCP02gOT0ZJJ18mtenq55CEqWkHLEqqA3xPgxN60/FzsEZq0zYKkySHaIcTB+aJqgM4ihRMvW+8tkbeL2/UtbbL4Vq1kboO/ZcVzdXiFVNJVVRYomCb09/ng1as3WcLNUN+NZ1Q08NRkjNDXdWRz3gMjAU5Mc/oY0F8i/0MrOz1ZuSKIrn9pOeVDiqoRCIerq6jjnnHPitvvvEf8wdm8dHR1UVlbG/k4mlXM2WKiJQQu7P17FdO8s7b+SP8FU+O4szCXpHP1OnAdcS2zDveSKnBhRYCOUvi+X7t+KWYpVvj8PnU0TewjksPvBKpYXQxz8N3nbgagl3Uz/HK2C8nki0tD2cy0szCwIEY4gYsem4C23w2i6twSVMZXOPw0IkZQSxqr7LhtqUQrZ7iX6/ZVX5jN6yMlMt3xDErF7K7/OjndonrHXxJSBRJFQHhLIb6JI1N5QFLW3F6GzaRg+6BS2v6u8IZ92mQ1lc00aoaWwmEpSxO5scX5JqG7kn2/FvtuKd3Celv+WVxzL3pNB/plZQjUGIPdMMz6nP27bHZfa6H1+HHySTWQ8gmf2zgzsO60clvGyBula9XdW4umbk633o+F+5vImGRyKLAzV1nLixAnZ79jEJv7R0NDQECMnAdSzB4si/gJx1QcKMORr2f/NdlmLN5DUXPpfGI9LdNGYpA13jSliLfvsxjXXXK1DmaqMkRrksOMzFfQ8OSJEtKm+uRC9XUvP06NChJ9tHy8jRZssLIdsrtax6FvG2xs/cRXX5tHxqPy4FsCxN5vsJhPuLi/tj4h9RhS7HxS3v3pT0CDUh0Denu/NIHuXCW2WSsjmLBG7N1OlFmuNic7Hh4V/nygSykMC+U0EWVuNFL87h7lRPyd/LLbBJordX6iCMOwTsLgBYspocs9rwUWZDAiO5aIWKJ1/HMTVIiMrDez8TAXKBOx+tt1fhvv0rBCxEQSs+DRQdK5txSZO5r433FPM+LFpxgTUEyqvkzb4RdSzTmW8in/Jh9cr1ebh4WFyc+VP821iE/9IGB8fJycnJ0ZOUqHhTMVe2c/t/GwF092zdAqQSbO2ZmBrytjQKhuQNuIjG+4FF0bsM2XUlkQtxYouzsJUphe26Nr1QBWhhWXZTTKQCDyVVxcw3TNL+6/Fxjx558rbt1kbDRBC2K5s1+cqUSgVwu8qUVR/sBB9gZbux0fecus0YM19lw1dZZv1Vn5/6btzmDzpZqZHviGJ2L0V7c3CN7Egq5aVKBLKQwL5TRSJ2mCLovy9uVi2GBneP8XAM2LjpLKrcun6Q/xalF6gJlmTxHSH2NrtrgeqWJxbFLJeszYaKN2bi6dvjrZfyq99m2vTKb4oJ6YULhIfWgjFbbv9bAvOE04CHklNLB7B01Slo/BcG8e+K7DRqIadH6vA0zcvOxf0hJ1M5fcxODRIOBxm+/btHDx4UP47NrGJfzBcffXVMXISQD1nYlHEV6xx7LVh3WLg+Pc7Y5vk8VB/m4Oh/c64BBqVPrLhroLcbWZGXnVtGKsvUKEyqpk6ITYWaPpYKf3PTeA6Jd/Y0itysFYb6f3bqCyZCSSRA7UpVcjuDqS2o1TELOc2gmOvjd4n5G3OQbK9crwrG1enV9jWShS7Pl/F8sKy8DsiYagQyhtI6jnxCG5vBuYaPem5GiF7rUTs3nR2FZl1GfQ+Oy78+0SRUB4SyG8i0Bepqb7BwezQPKcE9tcSwc7PVUJY3E7OWJZGanoKk0c9ceNy9pgYfU1MIbPksmwy6zLErNSQakyqNoX9XxIbh9bf4cA77KP3r2LPeP6FVgafiU+CzDvHukKUlLnvNTcV4OqaFVIMdVxiI7PGyIF/75DtSy1p+wkkz+PxeAA4ffo0xcXyyvF/D/iHIClt376dw4cPx/6u5xwsig1OO2kle6WRg874ykIRVH9I2nASmsxFCAHLwRAHvyq/IbPlxnyMRelMtnjolpmkQWRiqU4SJlM03FOMq3tWmCAhQgQpvSoXVXqyEIEBEicdaXPUGPI1slZZRXuzMBboZK1RYtfN11J+WTbN35WP3/HpCpTJCjE7ireRPLP9k+UokhXCBJBEkAhJKRGUX2fHXKqXLHbejrwI5nvLjfkYCnVC7Si+PBtlqlKYLJi9J4OcJjNHvy2/SFD47ixhO7n6Ox1oM9UM75ti8Dn50wXafC1brrLLE3QS7KPbP1lOy8+6hQhkDXcVo7GqaH2kX5gcRxihepq9J4Oi87KFiZP1dzrQWFQS8UHg9+74bAWTp6bjLpi/pvwr/mXpYlVVVTz55JPk54udsNzEJv6e4ff7SUtLi22SpaLmLMWlG8Y79mZjqdSLTdw1sOv+SmaGfDGrpXiIEgK6HhsSIhLt/kIVIFaHTJVaKq4uZGZgPq59SazpuRqqr8mLSfkLQYAIsvWjpbT+okeIXFJ0iY2crWame+do+6XYWE2UgNF0bwmDr00KE7zK32fHP70QlzQGkopMw+0OptrE1HjeLvKMJldDw81FjDdP0/uEGAFEFImQlBLFjs9UsBxYFtqYeVMQzPeuz1ey5F8W6v/1dzno/NMofhn7npX4YiZbPYy+svFiLEikI2+3V5iItfvBKsLLYWELuuoPFTI35qf/KZmxXQJ9tPBdWaTbtZwSIWxpVpHPBfJcfo0dS4WB8ZNuITLdjs9UkCRKmNJIh31c3WKLvQUXZZJVm8Gh73ZumBunZozjvtcA0Ol0nHHGGTz55JPybdnEJv4BcP311/PII4/E/q7nDCyKDeye1LDtw2WMH3fLEmwASq/MwVJhZP8324RIErseqGIpuCSkJuO4zEZ2g5nJU9NxVZmiaLq3lFR9imRfItCWLR8sYHbYx+DzAkqMIEQEyT/Pii5bE1MykcPOz1agTBYnm6qNStId6Uwdi795mLPLhGWLgZM/EiP0qjPVlF1m4+SP+2Vjm+4rJUWbxAGRtaa3kTzTeE8JyZqkt2VzLxGSUiIovCiL7G1mmn/cK2tD+KYgmO/i90gK28d+0CurUGQ/24ImI1VIAQAkok3+nkxZe2kQI/JFUXFtHuZyvTCpSZ2ppup9dnmCToJ9tOneUlofHRJSdqq8Po+M4nTaHu0TUijb9YA019wvQEI0VemoeG8+06fFiJMV1+VhLEyTNsIEfu+2+8uYap2Ja/d3OOk5Zpak9feKigqefPJJCgsL5S++iU38nSMYDKLX61lYkCxyNejYo7h4w/icPSayt5o5KjInV8GO+8rxDvlpf0R+rBElBHQ+NixEJNr52UpQwgGBOa7OrqL2pmI8vXO0/Vq+LSq9kqobioTeDysfQnbzvv42B+2PjcS1T4rCttWI4905THfPCeUPpDGVCOGg5pZCRg+7hfIMEjkitBCWVedEBbs+UcnkSQ89fxFYa3qbyDOoYOfHKxlvdgsRjxJBIiSlRNH00VJCC6HE+l0iEMz3tk+Usxxc5th/yO8JbvlAPqefmhDq0wBbbshnun9Olihk3qJnbiIoa8cYRaKkptIrcgh6F+XnVgn0Udv2DMyl6bSKzq0+V8nC7KJQnvPPs5J3RiYTzW4hy8Wme0tJTU8WJk7u/EwFrq5Zuv8ov1ad2WQk70wrR7/XveG1vSovhwJPA6DVajn33HP5y1/+It+Qdzj+ru3efD4fSqUyRlBKIoULFFdvTFACtFolSSlKrJVitg/LETsLrUUglT5YmF3E1SX2Imv9xSDunllZglLUyujQ1zol0kW8WIuS2tslicjm7/bIEpS2frRU2rATJDJYKvTo8wV0myM4+at+Bl+Vn3xm78nAUKrFNxqQJSgBZG7JQGNWxbeQWgXfoE+IoASwFFhieUFsc2PHvRUS8UIA2Tsz2P1gFY5L5b3jYxAk/hZfns32T25skfU/QeUN+TE7GjksB0IQBkOu2I3Z9UAlOz4d3xIjiqb7Stj9iSqhez4z7CO8HCajQD6457ExYYISgH2HZNknUhOiBCU5uzWA4//Vy1TrjBBBCaD8kmxS0pPJ2i5TyyLPdd2dDnY/WIVGRq3+0Nc78TlDZDbqqXx/fOnu5u/3sO+hNma6fUL5GHhxgp6nxXI91jzN8kKIPrmBfgSKJIX0HwJ1TOfQkpSixCAjC7kndAkVNJKbk0tbWxuFhYXcfPPNQu3ZxCb+XnHTTTeh1WpXWYzsiktQAjDka0lWJ63YsMVDZO1XmawQas/Qq5Ms+ZdxdotZivU9N073X2U21DWSKpO73ce+r7fJEpQqr8vDVKnFP+KXJQ5obGp2f6GKqg9ErKNk1rpzzjSTqk+haK+YzVvfX8cZP+kWIig59kqqVyIEpbQCDSpjKvad8a20VqPzt8OyBCUArSWZ8HIYT5/8PdSYYPcnq6i7Q96zHSTSxc7PVsoHAmnmZAjDUnBZKH7rvaWUCvi2JwyNtKmQf4G8LRtAOBwmLKJFjqSqs/vBKoxlYna7ux+sYttdG9tRrMZScJlF/5JQ7PHv9woTlNCA1qoiV8D2Y+KgB787JKlRNcpLow++OsXx/+4Xawegt2vJqpe33MWPROL5QlXMrnIj9D81ESMo1d5aJBGc4lx330NtsTqjyY1/Hzt/M4yr0ytEUAJwdXvxu8VWmjQm6buX/GLPi6kknWR1fItuiz+bCxRXY9AYCYfDPP300yQnJ+P3vw2sxE1s4h2CQCCASqWKEZRSI7a6GxKUALUaUtKSMZWKWUQsLUjPsdooZkvgcwZwdYqtefU+Ps5Ui0eWoBS1Xzr6nW55gpJaUg0CaP35gOwieu1tRRJxQJDIYGsyYSwUsyUFOP6zfvpflN/oMdemYyhWE/CEZAlKANnbzOiyNUL2XwCByYAQQQlgcX6RpYDgeOfO0hjJXw6GYmmcW7Q3vspEFOFQmDBiYxj72RbJekEwH4mg+D3ZNH64RCh2KbgMoTBak7w1B0iHIEXX6mpuLmT3p6pQG+VjPf1zhJZCaEzx360g2ZSIEpQA7DutaCwqtHb5ZEcJSoUXyd/zjkeHGD3qFFZdKjrfitqUGrNH3BCR57ri2jx2P1AVs4HcCEe/001gMoCxVEO5zFi+/ddD7Pt6G55uv3RfZFLS9fgQvU+JjbvcvXMszi0xLGJ3zar5sUAdUxuVpGiTMcisiW5bPp96ziA3N5eOjg6Ki4u54447hNqziU38veJLX/oSarU6RlCqYVdcghKAMV+HSpeyoeXPGkSmW0r58g3A0AE3Qa/4fmP34yN0Py6/9q7SK5kbDrLv622yBCXHJTaMZWkEvfJEEZUedn6+korrImtYMtPLjEodWpua4gvExg7jRzwMvzYlRFDKO0davxIhKKn0StJztOTtELP5BRh8ZkqeoATobSqWF0LMjgnMa1Ww+1NV1NxcKNSGpntL2fEpsXGGzqqCUFjavxNA7a1FOPYmsI+ZABruKha2VCYE4WWx8WLuGWZ2P1CFeYvYPGjX5ytpukNs33PJv8TivNiaV+svB4UJSqjAUKjD1iAz3kGyLAw6g+jsKqHf2Pv0GCf+O45C7utgrjRga5RvB0Ek0ttnK6V1rDgYPzQdIyiVX2NHJdPsA99ojxGU5GziBp+fYuyoS4igBDB5yoNvMiBmK6eX9jCWF8TmTNZKPaq0FFSqjfc+9EE9FyiuJiPJhFKp5Mknn0SlUhEMvh2sxP87+LtVUvrsZz/LV77yldjfJdRSqNh4EV1iwk4JWX1pc9RsuS5f2Fat9rYiUjRJ8W3gItBYoOGuKmYGxNRBSq7IIbPGyFTHjBCRYutHpZNnorZm1R8qJC1LnZAVh86hZa43PhOg+PJsxppn8A2KSbi8GZs3bb5W6Pq7v1CF3xmk+ftvPdu27Fo7OqtaiNmZvSeDwrNttP12QEh1JhE03VeCypAqnL9ElJR2fLqCJJXybTn9v+3jZSwvLHPsP+TvTf75VjJrjLT+sjuuBdibgaFUy5brCnF2eel6VGbzWiuRHUWt6qJqQ4OvTgqptwFUfSBfSHraUKoV7kuOS21k1WSw/1tiSkOJ2uAlokYQrYOiVpsZlVrKryjgxA/bhe592bV2klOUQjkEaLi7mI7f9MS99iHt03jnpQnhpv3bJv5RodFoCASkVVElSZynuHLjWJuasktzOPEjsclQ1Y0F+F3BFcuheO0wKam9vYyWRwaYH5Cf5FdeJ52A3feNNmFFGIVC0IZDI5FmRG3NNCaou6OS4YNOhl8QW5DWOzSyFm8gTfZE5asL35VF7g4L031zQopVIN1TEWJJNN/NP06AiCIIjUnJlhuLGXptigkRefG7i1EmKYTG6Ili94NVLM6JKdokqqS0+8Eq5icD8e123gQstekUvztX2MKw4Z5ivIM+YWuxRFB/VzEaU6rYuCFXg39EnKiSqEKS3qEhoyRdlrCXVqARqjlR7PhMBZ6+OaHnMmqD55sKclxgzlJ+jT2iRuAUIgNWf6iQ9ByNsNVm40dKCEwvCCuJSIpv3fgFFMIttelk1mTEvfaMfYzDQ5KqksFg4MMf/jBf/vKXhdqyiU38veBnP/vZmgMSZdSRr9h4Eb3iGjuTLR7cbfKy+2ojVN1QImYhFLm22qQSqk9RyyHvkE+ohtjPtpB/VqYQmQmk9TddtkbY1qz0yhwyitMTUuvR2tX4huOPYfLOteDpnWN2QGysk6jiEkjkLRG1np2frcDnDAqrLiWCoouz0BekCY1JTFU6SvbmcvqJEaF+mAhqbikkPVeb0FhKVEmp6b5SVPqUt+X0f8OHiwkthznxA/n8WRsN5O2y0vZw71tul6fOVNNwmwN354yQ9aM6Uy2kNASSwo+5TM/gKxPCqkqlV+YIPe/pBWrhZyznDDN5u62c+EFHXAu1KLZ/spxkTRL7viaoIvf5KsKhkLAC2a77K3F3eYXyrbWrqb6+gJM/7Ba69wUXZqIxq+gQtOuuuamQ7ifH497TY7rncc9KA7nNNa9N/KMiJyeHsTFp7ptMCucoLt8wVqVXUnKZXVgdpPjSbJYWlxl4Sn7uptJDza1ldP1hAO+A/Oa14xIbmbUZNP9nu5DF3PZPlKNMVXLgy2Lz5d0PVLEUWObQQwJjKRVs+0g5owedcW3pVkNnVzE3LP87iy/NFlMiQlI1KbkkMcUllV5JMBiSJTAUvCuT7EYzLb/oFWp3IlDpoeKaIiaOTwtZ6lXfmE+yJpnjAuOMRLHr85UszC5x9DvyY6lElZR2f6GK2VEfp37S/z9s5Vro7Coqry2k929jcS0Uo6i5qQDvuF/ouUwUVdfno8/XckBgrVhlVYmTmkhcIUllVWGtSpcl1WmyVfjHxNvR9NFSvAPzQmT4qA3e3JifkwJK4vkXWrHvsDL06tSKVVsclF6Rg7lcT/P3OoTqYM1NBSz4lun8rdg6ev0dDtr/MCKkYqUvUmNrNNMVZww4b5lh/9QzgKQkfu+99/KlL31JqC3vNIgd7XiHwWKx4HKtvOQuUFwdN15rUZKeq6XYbMd1Sv5lWrI3m5S0ZLL3ZDD2mryqT1qmGsQO/OP3SSeeFUqxD5x+ehRTaTrdT4ipjxz5Vje5Z5plCUpRgk/Lz/qFrrv1Y6VM983R89iYLEEJIKs2g8xqI/v/VaxQdj42gKEgXSi29Kpcuv8wIkRQ0lik01miJ7sbP1LM0KuTTB0XU2SQJbSswthr00L9CQCtpEYkSkARsR57sxCxLlwDLehs8kQ2QJgICDD4nJgN2mrU3elgskU+7zPdPghDUpLAc+kDny+EzqHFWKCVJR41f7+HLTfmCxOUii/PJsORTvWHCmWfz5lun2Rh+ZEKWn83GDfnvX8Zp/cv0ua/CMHv+A/a0dnFnkmA+ckAPsHT94pU6fjZ0qLYwlvOVgvKZAXGkgz8TvlnyFySLlxjMxv1aMwqqq4vibuJvd13Ea0cZsE0x8mTJ0lOTubQoUM0NjYKfc8mNvFOxuHDh9m+fXvs7zxKKFfUx/3MlvflkWpMESbYGAvS0OdqhUhKGVsySEpVkrPVRPeA/PgoFFGZ0WhARJDD3T1LkoziRwx+6H5imKl2+RlQlGghMok0lmkoe08+h77bKZS/2luL0OVosJ9lYfhl+fdN/1MTaDJSaRdY2LafZcHVMy9MElEkKQiHw0IEpZwzzWQU6YTs9AD87lBCtmaitsAQIYON+YVtut4O8vabvbaxTIOnS77hzpOzOE+Kj+tEVUijsDbqydlqEdqIWwouEw4hZI0W7XvFV2QLqQKNH5vG2e6Rb3AE1dcXgVJeVSxKUCq+Iht9rlY2P6uJi3JEq4kjHpQpSsYETnkCDD47it6uFSIorYFg/1YbUklJE1tKsJ9rlRTf3p0vREhwXJxDsiop7r03DEuqSgc0f8Pn8/HNb36TX//61/T394v9gE1s4h2O2tpaTp06BYACBecr3hv/A2owletJz9PibpOfYxdeZEdtSiXnDDOjAhtI+vw0klIEx0YJ8pOHX3Jiq89g6AUxpZeTP+rDttMkS1CKEnxEiBAgrR14h+fpe2JClqAEkLcnE/tOK/sFN/haf92PuVxM0b1obxZ9T0yI2YmpIRxCWBmp5uZCRo+6cAmQlQH6ErADcbfNcahNnAxmKFYz0yPWYd7qTazVSNgSTg3pWWLkmUSsSaaOzQipbK1G5fV5TPfNM34g/vghMBkgHAqtKFDLIDAZQG1TYyrSyipQdDwyRMU1dmGCUs4uE9ZqI6r0VFp+3h83dnYgELOw7PrzYNz+MvqqK1bPRAh+h/6jE3NZunDNmu6dZVnwOVNHFJdCgsoP2Y0ZJKuTMFYYZe8lgK3BRFKKmHlGeoGa9HwtVe+1c+x7G695Nc6dRy9teM2TnDx5EpVKxSuvvLJmHWATm/h7xfDwMHl5K+rVBZRTqqiJ+5myK/NIz0vDWJaGp0teKMBaYyS8FBIiQ+jy9KSmJZNZa8I7ID//XVpchjCQKubBNH7SjdYsLk3Y9tsB/OPyvzFKtDgsQGbSZKuoujqfoz/oFiL6lF6ZS2aNkeDsopB60eRRD/ocjZDCSmaTkdlRvzA5IylJCaGwULvNNXqsWwzCpNKgF04kQDpvERDBiEKTrZKUkwU5KKKHvt4MEiWGixLZ5obF+l8Up/5bbC0yCkOJFvtOC60CB+MX/UuElsKo9MiSZqIEpfzzrEI21kOvTDI7Iv9MRlH/oUKSUpNkn53oM2A/24K5NF22L662uJQjWnn7AtIhkxNiY93Bl6ewlBkY2i++HxwOhxEVJdJmqVEviY3TrHUGtJlqCs+zCh1CLNlrR21MZUA/RtC7/v5nmtPABYqr2Z/yNxYXF3nooYf44x//SHv72/fc/b/C35WSks/nIy1txZ7HSCZbFWdtGK9zaAl5A/icIbJ3ZsjaiGU26pk8JlUMEYUSkWtGoc3XklGgYeQVMQZx2bV2fJMBYWLDjs9UMDviE1MO0cLuT0QY0F8TKNqJxgNZ2w2EFkKyZB9tjprwQkBYGafmlkL09jRGjzrpe+Kt9U7VWpTUf7iCBe+i0AZY9YcKUaYoOPlDsYFD5Q35DLziFCJXOS61kd1oZrLdk5AVmSgSUVJ6M9cOh8LCBLXiy7OZG/MxcUhA8nxPBnm7MsVOQUb67eLsEof/XZwMJYqozV8iG4kZlVqm2+Xvf5SIJ4Ks7QaK35WLd0iMdJi9M4OiC7OZG/cL9V2tRUndneX0PDkSq49yaPxIsZA6VhSOS20xAtXGDUFSgNKCuTgtPhFTC1qLRMQy18jEsraWZ203xO2LvrCPNsM+PDMeFAoFF110EX/729/it30Tm3gH45JLLuHJJ5+M/b2HvWgUG1sMWRv1TEVqxer/XhcaMOZJ5AoRhRJztQ5Xz1zMSklus73oEpsQ6SmK+rscHP++2OmjrB1Gis7L5sC/i6mS1N/lQGtV0/nHQVwt8ifLq28uRG/X0vG7ftwC7w2A4suyhRRvRAktUez+QhWEEVOWShCJKgxtu7+M/pfG4/erCLK2GtGYVfQ/JTZe3P1ARNXzbThFn+jvTAQV1+ZhLtfT+8yYEMElrUCDfbtZ+LRQ3W0OgrOLdDwqv6gW+51fF1MtSwQlV+WQVZ2Bs2NGWDEsajHpd8cnRVsb9Sz7l4Sfte2fLic5NUm4r2z/dDnJqiThvFTdWEBaporDD4mNX/MvyCRZlUTvE2KnSu1nWXC1uGXzEkXWVqOsctlqQqqlNl1WqSv6foha1sUjcHnrRzjUvF+6tsXC8ePHyc19G6wWN7GJ/wMIBAKkpaURCknPp4lMGuOseUVt0gLjAcy16bLEE1OVLqZwI6JQYq03CKkVgWQvJLrBDpI91FJwWWijCaSDc3PjAbFNHrWkdLnoWxI+GLXrgSqWAkvCtTejIg1lqlI252qj9C4SVcYpvTKHzJqMt2XNC7VkIRL0LAqdii+7KhdVegqnBK1RS6/IYeSIW4jkZdtpoviibKZaPHQJrn0kgkSUlBLFrgeqCC8LKuogbTj53QtCz5K5Np3Cc2zC7X5bf+fnpbHx/gTmAKLEs6KLs4QJcMZSDVXXFeHpmxNa886oSKPyfQXMjogpNKiNUHdnBb3PjAmTxGpvLRS2VwRJ+UjW5i5qSamGjMI0pjtkDh9HFN8MxWpmRgJxyVar3w9y74pAOECH+QBOl1SbL7nkEp544on4bd/EJt7B+PjHP843v/nN2N9nchkqxcYWQxmVOqbbpbGUeYteVq1FX6TG2xcQUkrRF6nxjgZiVkpyZJLcM8zCakUgqe6IklqMZWmUX27n+H91b7jJvhoV1+VhKkmn84/DQgo2pVfmYt1ioP33g7F8ykGUwKEvUAkpUEWx83OVAMLKUomg/g4H2ky1pNon0KSGDxcz+OoUrlPyOcyo1JGWqRYeS+/4VDnKFOXbQj5KVEkpEeRfaCVvVyb9z48L9XeVVUXu9gx6nxBbDy6/xk5oMUz3H+XHo7W3SoquR7/dIfRcJIKcPSaKzs9mssUjvC+o0gOpKll1H0OJFmWKUvhZa7ynBJUhhf0PtQv128Z7SlAbU6U1L4H44kuzMTp0wuPXzCYjGkuqsOKVtc6AdzQgrE4lUstXE+VEyKnRa6r0SpRpKXFJkLNbRjnYsg8Ak8nEiRMnsNvtQm1/J0CMVv8OwBe/+MU1BKUGzolLUAKovaGQujskT045MlHhu7Mo2Wun+kOFoFAwczr+CvLWj5ZSdGE2GZXx/Z2jqLuxgIJzxLxVASxlevJ2W8WCtZCUqkRrEfC9BfBBcGaB0SOCgxgf7HuoTYigZD/XAlqYODQjpEZUe1MRDR8W87cH6fSUu2dWaLHGfq6F+jsdwtf2OUMc/3EvrQ+LFcf0HA26rI03aldDm68lw6Gj8oocofjJNi/zE35GXhDbbNjx2YrYgOqtRvl1dnY/WIWhVKyve/rmmGzxCF8/qzaDgrPF/G3NpQaSNUlkNgr4yvqg808DCRGUcs8003B3sVDs6BEX7b/rF752030lVF5dKJTH6ECkaK98zZg4NEPz99qEVdHGDkyz5F+m9zmxBSFNtgaFUoG5QuzUZ/l1dtQZKsquFXuRNt1Xgq3BJH9PI/uGuz5WSfkVBbKxUTJg+RUFss9G9P1QtDeL4nflSu+BDaBVaNnqvYAkUkhNTeWFF15Ap9PFb88mNvEOhVarjRGUUlFzgeLquASl2luLKN1rJ+dMM4AskWTX/ZVUXSN5V8taKGmg/Mp8dtxXIf0tE561w0h2k4k6wXFA5XV5aK1qii4RfB+V6FEmK9Bni40D+p8fY8G7KERQAmj5aT/N320TIk3kX5AJIERQMlfrqLq2iLo7xMdHnX8aZPAVsYlg/V0OsrYaha99+JtddAi+S3PONJOiS8ZYJKbyV3BuFjnbzcJtGT8+jatTjIxrqU1n94NVOPZmC18/Eez8bCXbP1kuFDt0wIl3xIenT4xgU3mFHXOFXiL6CSDNpsZQmCYfCLT8epDm73YkRFCqu1Osz5z+wyiuTq8wQQmg4Z4Kam7b2BopiqljXtztPjQmyN5lko0/9J1O9j0kvvg2fmya+cmAcF7SLCpS1OKCyPYdFmwNGcLx+WdnxubIcrA26il+dw71d8UfH0cJSjW3FlF2eZ5sHqPvh/qbCmm4uShurP54Lo2cR2pKKk6nk7q6Or73ve8JtX8Tm3gn4Ve/+hUajSZGUNrKOXEJSgCNtzqoj8xd5MgyWVszqHhvPls+KM2l5AhKtbcVUXpZLuZasfdu3R1lOC4UG0cBZG8zk7cnUzg+RZNCmlXw1H8AZkd9jB0VI0wB7H+ojcPflV87yNqagdoI0x3zQmpENbeW0PiRCuF2dP9xlKkWj9Cal7XeQM0thcLXJgDHvtNB6y/EDhQZi3Xo7GLrQKgllYiKy8XWATy9Pjz9cwzuE1uX3HZ/GTs+LZ7HRFB4URa7v1CFqUpsXu9s9TB+TFAlHbDvsVJ4nth6sLFQh8qQgm2n/HgEoO2RvoQIStZ6A7W3FgrFDrw8QcfvxRUGam4uZMv7HWRUyI8bowQl+9kW2VhPt59j32kTO5SL9GwG3AsMviS2OZliUJOUosRcIjjHuDATXY6W8veKEaZrbikkd6cFa6PMmlqkJG//SDmV7yuQSEtxECUDbrnOwc6PxX82orXKttNE+eV5sffAelAr1NS7z0GDDrVazTPPPIPJJNYfN7GJdxpyc3NjBCUNaVyguDouQan0ylwq35tPzh7pmZDb1N768TKq3y+tvYhslle/38G2j0TmaTLhxrI0Cs7JEh4HFLwrE32hjsKLxd5HppJ0klKTUJlTheIHXprE7wwKEZQAuv84wtFvtwmRJqL5FiEo6ewqqm8sTmh81ParXgZfFNsn2XJDPtY6sT0SgOM/6KXl4V4h4oaxLA2NWYWpWGw8UnSejfwzxcfSI4dcTJwQG7/o7Cp2fb5KuL8kiq0fL6Ppo/JrNQATB124u2Zx94itp5Zdlo2t0YRKcK88w5FOhkMs552/HeDo93sSIihVXpdPZpNRNm70NTdjR13CBCWAxo9UURPnnR7FzGmf9KypEGrLse+eFiYoAQwfcDI7PC8cr7OpSdEmS2RMARSdn0VOk/j6bumlubE5shz0BSrKr7RTe2v8dakoQan0ylyqrikgR2bNK1oL624vpeGW+Otp6a05bOciUpJTcLvdf3drXn8XJKWKigr+6Z/+CYAUZQoXKK7GrLCgc6xMljUW1vytzdcyMzJP//PSpETn0EpKHOvF5qiZPDxFcGaBlt8OSP+miQhQad8Yq7UoafvtEP6pIItBYtddNzZHmlWcfmIYZ7dn41iLMhYL0PfyOCce6ds4Nn/lb51NS/P32iRVHJnYgovNaCySPdjwC8435HB1rDZfy47PVpB7phl8MjnM16K1KMk/I5NdH6tcE7tRDgFGDznxuQNCOYz+W/sfB+VjgZwmM9pMtXRtmXxH2+sbDeD3yeTboUVjkSQP932/TTaHGotEmBh4cYKhw864sdG8zPX6OP3MOD5fKG6+o1gOLrO8sCyb79hvjf1j/BzqHFr8swuEl8OgFsth2y8H6XlmTDZWE1mLGD3qou2vQ2tj18k3QMvP+jn5cH9M0WejfEcRnF8RkpPLoc6hxb7LisasWrdGvD62/6UJSRVJIBYt9D4zStCzwPIqdej18h19FhzvsZHTZKH65sINcxiNjfbZ7Z8qp2hvVtwcooW2Pwwx1+tD59BirkmTzeG+L7bR/qsh2XzrHFo6/zxM3/NjDD03LJtvtHD0R6eZGZrD51mxZNwohwC9r4wyO+FbG7tBXtDC7ISP4QNTQrFT7bMEphdo+Vl/3HyjhcuKr6exeAcpKSnMz8+TnJzM4KC4xOomNvF/GW63G4VCgd/vR6FQUEw1ZykuRWNSorGtPBdpBZoVooMGel4dxzcVYPQVlxSbq1kTqzGtxKYVaBg55MLV5X1DrCZ3VWz0e/zg6Z+n7/lh+VgNTBz04BmY4/Tfxl4Xq3xDLED7Y0OMHJmMKS9pbOoNY9HAwKtT7PtiG95evxS7QV7SyjVYGtLxdPk58q3uuLFooOy6XLbdXxb5H/HznVagofbWIuy7LORdaJbNN4CrZY7AdJChgyuLO+vmMPZv4JtejlnIxcuhJhe0VnVskSRe7Oo2udt9svlOK9Aw+oqLfV9vY/g1l2xeAE79uJORI1NCsQBj+ycYfMW5Jna9HAIkacOEFsOSVPbrY1+fQxNrZmRx822S/l4OLrM4vxQ/35HY+QE/pyJ+7iL57np8mMHXxtBo5GMBmn/Zy8lVCgrxYllYgNRUoViNSYlpi5a0TDW5Oy1x8x2tEVE1J01x/BxGn4W5UT8TJ13r1ojVOYyi/q5Kii6wrRu7pk1+0BjU5F9siZHJ4v3WqRYvXY9JdkNZW43x82JT0/LrwZhymVwONTY1J37Zx4lf9MnHRvIyfmya3hfH4+R7JYdTx7z43AE6n1zZ0N4oFqD/1XH808GYqle8fGtyNQwfnsTV5ZX9rbnZObxLfwV1tXW4XC7uvvvuTcvdTfxd4V3vehc33HADAKnKVC5QXI1RYUFrV8c2qtVGSTkjCnWmGmf3DH3PSpsqq2NRvzF25vQM8xMBev48IBurzlTT9bs+Zkd8+N2LG8calagzpb/bHu1nsnU6fuyqd3LnX0dp+X2vUKzapqb5e20x9Z+1sayJzT1bIhGd+kk/wy854+fQpmbbx8ukReYAaC0yeTEqKb44m/q7KoRyCDD40hTeCZ9QbPTfuv46IptvAPsZFtJztZJak0wOtXY1aqOk6BQIhOLmUG2TYg99rZP9D7UJxCohAN2PjzB40Bk33zFlqckAfc9PEPAE4uY7ioXA8oqlXbwcsvbf5HKotavxzy+wvBAinByWjVUboftPo/S/PCGUb4D+FyboeGJwVez6+Qbo+fMYx3/VG1Mki5dDgAV/OG6NWB2rtavJP0si2CAQO3rEJan5rBf7+nyrofvJceYnAwTnVha91sthtL223Sbyz8qk+oOFsjkMBKS/m+4tpejirHVrRDQWoOOxYWZ6Aqgz1aSXq+PGLi/Dvq+30fGbYdl8a+1qBl6ZpPuJETqfGJHNIerIYdtuL/OTwbWxG+Sl+5lhZobmYqSleLGowd3vZXi/UzbfqME77GNu1Efrbwbi5hs1XJh3BdtztqNRa5ieniYpKYmOjg42sYm/BwSDQZKSkhgdHY2tee1RvBuVXonKurJrrslWSUolACoYPubEOzjP6GvuN8SqrKtiI58dfGmSqVYPKj2ysahgqtVD73Mj0t9rYpVviPV0zTPZOs3p51bWvFSW9WMBBl6cpP+lcfojJFGVRbWGxLE6FhWMNU+z71/bJBWoOLEquwpjjR7/WJDm7/dIeYlz3cJ3ZdJ4T0nkf8TPtyZbRelVuRSdn439PLN8DpGIBLMj84yuIqpvlEPp32BxgZi1abxYVGAo0pF/VqZsvqPtB2RzGI31dM2z71/aGHx+XDYW4NiPTjP4yhtjX5/DKKaa3Ywcml4/lrWxCo203xhwL6zKy/qxKj2QvGInGzffeunvpbklFmYXhXIY9IZof2SQ0CJC+T795Bj9rxN+2CgWoPnHnZxYteYVL1ZKztrrbpRvlV6Jyq4io0RH7jazbA5VVlVM/UllX79GrM4hgPu0l/FjbqG8AOy4r5ySi3OEYlXpKnLOyKDpvlLZ2JkBP12Rtpu36ONfV6+k40+jHPg3iQQlF6uyqjj+k35aH+6VyfdKnR14aYKeZ8dk8w3gHQgyMzxP/6paulG+AQYPO5kb98VqRtz2W1T0vzzG5Mlp2Vir1cpFGddQX1+P2+3m7rvv5owzzuDvAeJHMP+PIiUlhaUlafP6hhtuoDC/iIP/1kHhu7PI3WaJ2WHV3FxOsjqJxdkllGolSSlKQkthWn8yQPaeDBzn5+Dpm6X1F4PUfKicZE0S+77Yxo7PVpCUopTsqb7UQUallqqrC5kd9XHyR31svb2UVH2KZM+ghfpbHTErq87f9dFwdyU+Z4Dm/+yh8ZYSNCYVr329FXxQf4sDFHD8v/uZOj5L2XvySb9Ny9Fvn6b+RgdpWRpO/LKPuV4fdXeWo1AqCIfCnPr1AEVn2Vicl6Spq68pxJCfRvdfhpg85qXujnIUSQrGjrnIbpQYhEv+ZQ59vZPKK/IwlegZeGWC4Rec1N5ejjJZwb4vtlFyRQ6ZNUZymjLZ/6/tlFyRQ1ZtBuMn3PQ8NkbtLRUkqZQxK4r6mwoByChJJylVSd6eTJxdM3Q+MhzL9+rY8HKY0SMuUnTJ1H2giJmBOVr+e4Btd5WRkrZicbE6hzOD8+TtyaTuRgcn/quXpttKUBtVvPbPrVLsLRLbfN+/tLH7E1XSpqk7wLH/6KHh5mK0ZjXH/rMVv3NtLECyJong3CL4oPb2ItKztbT8uo+Z7pV8R9tUe4P0W8eb3WgyUjEWpdP79ChjB6apu70cRfLa2Kj1Xdn5dqzlBoYOTDH49CR1t1fG8h3Ny/JCiINf6UBlSKGw0YY+S8vpP42um+/QUpgDX26n8f4SNOkq3D2ztD+8ts+uzvf+L7VjrU9HlZ7KzJAkMbftjjJS0tfPtzZfS90Hioi6QMbLN0DdB4oITAfZ/6V2Gu4qRpuppvlHPfhGA+vmcGF2kcGXJ3BcnENSchIdf+zHdWo+1mfX5DDSZ7UmFXVbLfSbxhl5xbWmz0Zjl4MhDn61g9KrcsmsNsakz2tvk57fNfleDK2pEaFQiPAyhJZCb+iz0XzHasTwHK2PDLD97tfle1UOMyq1VL2viNlRH0OvTVB5tdR31s23RUndB4piNSJ8vpTTNTXi9fn2BDn67dPosyVGTP9LknrFevl+fY0Ih8OYS/TY6kwb5nt1jcg/I5NwOIxC8bo+G8n362tE/V2Vb4iN5jD/fOuaGrH9U5GaHGnj6j6btd1AycX2WI3QmtTU3lBIcGaBRd8yumxNLIeGUi3V1xcxN+HnxH/1Ym+wojZKL/DodxCO5FAr5fD1NeL0H/pj9Xv1vYp+59Fvn6b2hpUaAVB3VzkKhYLWR/qZ6fatyeGW9+ZHaoQKxbyOwdyTDI8Ms2vXLu6++24eeOABNrGJdyq+9a1v8bGPfQyQJEbvuecejv+0H/+In/q7InUoWrM+WMTC3CKp2hR8MwHSTBo6/iCdtq27I1LLV8Uuzi0xdtRN3plWlElK+l4Yp/M3w+z4TAVJqSu1vOGWotjzVn9PCWlmFSMHnbT9YiD23K+Ojb5n7edaKTgzk0X/Eoe+1kmaRU3dB4vWxIYWQhz4SgdZW42UXJLL8uIyQc8iyeokUnTJDDwpLfA23Bap5V9qR+/QUPMBBzND8+iyNCiSWVMLG6K15V/b0Jig/iZHrGbVXVOEQqHA2dEK/rWxIMX6XAGav9tDzfuL0OdqCYfCoGH9fEcsaauuyiejOJ2uvwxhXcggtymTvB2vy3ek/pZekkvmFiMDL04w/LKTlLQUKt6Tx74Tq/IdGdcUXWIjZ6uZsaNu0rM1pGVLC9fr5TvnTDNF59pwts/Q+dthqq+RyFUt/31air25SHpH/Fs7ltp0yq/IZ7p3jrZfDrD1Dml8HX0vrM53WoGG+psczI74OPnjPqmWW9TSWMUPDR9flUONlMP5yQDHv99D3Y0OdDYNx/6jHb87RE6Dhdwm65q8BKYXOPYfp6m+Vnp3tj7SS2gJtry/EAVv7LOHv9lFxXskS7XTT40wcdBD4dl2lCmKGBGj7oNFkqXMQ10UX5GNrdbE0L4pBp+dpOY2yeorioZbilgKLnPoq50UXJSJfaeV8WY3PY+PUXPL2vHH7gerYvnO2mGk5F25uDq9dDw6RPVNKxZyWz5YgKEgLfZONlVqqXxfEZ7+OVp/PkDTbSWojKkxYl31+4vI22lj/5fa0djUUp8d9XPiR700fKgYrVXNa1+L5PuGdfpsZFxT+/4i0nO1HPtx70qNSJJWbLoeG6Ls8jwWPIsc+U43VVcXkFGko+MPA7ha5mI1ouXhPry9fnY/WBXLd/lldiwVBvpeGGf0FRe1t5fFakTUUi5aIxx7s8luMjFy0En/UxPU3LpSI07+uI/dD1Zhq7OsqRETLdOc/sMo1R9aO0dRJCkILUtj5GiNmO6Zpe3hQWk+s8qyr+E2B2GkMVTWbhMlF2QzMzRPy0/7abilGI1J9YYaMTM0j6EgDYVCEasR9Tc5SMvUrOR7VY2Itjc4t8CRb3THasSpX/bi7X1jTY5aEXf8rh9boyVWI6Yi88doTe59YkzK9xlWkpKUuPtmsVas1Ija29fWZK1JTc015Qy8MEHRhdkkpSgZO+qm94k39tmaa6QaAVB/dxFpFu1KjbjpdTlcp0YsBZc4+JXOWI1Yk+9QGP+XQuQYXHiXPbS0tFBdXU1LSwub2MQ7GQaDAa9XIutdc801lBaWcvBrnVjrDZS9x46z1UPn70fYcmMpKmMK8xMBVIYUklKTCC+H6PrNCIZiNdU3FMdqVv2HitFaVSt1My2Z0JJkT6U2Kmm4pRjv0DynftpP7QeKSM/R8tpXWyEAjXc6CIcki6dTP+lnzz9tidWsLdcUYCzU0fyTHnzDAervKkOZouTUz3uZHQhQ88EM9NlpHPvuaSoul96d7b8bwN02R90dZbG1t7bf9FFxaY5kU9XZTenFOWTWZtD3zBij+93U3lZKsjqJ3mfHcVxgAwWxd0TBhZnYd1kZ3j/FwDOT1Ny8UltyzjBTcFYWebttHPhyOzm7TBRdmM34cTc9fx6j+qa1taXxVgcowVymJzi/SMUV+bH3bOOtJahNqSt16HYH4eUQ/c+Nk2pIouGW4th7tu4mB7osTWxdpeE2B4TD7P9yOxMt05RckkPtDZI9VM37C9Hb0zj67VYCHmi4tQgUCvZ/SVrzQgm+qSDHv99D1dX5ZDjSaXm4h5keKd+KJGXMfkuToSLoXSTgCVH+3lwsW4x0/XmYqeMz1N1eSpJqxZq0/mbp/TJ2zIVCqSC7wUzf8+OMvuqi9rbIuzMS23i7Izauyd9tJe+MTEYPOen728SafAM03uaQxjVf60SZrKTkkhwy8rR0/3GULR8sRWVYm+/lRWmtoea2QvQ5abi6vHQ8MkTjzSWoLW/M94F/60BtU6OzqvEOSGtedTcWocvWruQ78u7c/+XoeLU4tuZVc20h+oI0jn6/h8DkG3NYf7MDvzPIwa92UHl9HqZSPa2/7sXT7afuzjKSkpUrY6CbHQRnFul5cpjyqwpIViVx+q+jTByZpvb2UsnadVW+o31WpUum6LxiBl+ZYOgFJzW3lpGiXZvDxcASh7/ehf1sCwVnZ8XWvKo/VEpqesqa2OXg8poaEVoOEVoMs+RfRmVMWTeH0Rrh6Z+l9efd1F+3UiPekO9VNaL7yXEab3egUChiNWJ1n43mO1ojlvzLNNxSvKZGvD7fAfcCx757GmOeNCYaPSLNv6I14vX5PvrtlRoRDoUxleqxVhvf2GfXqRE52y2gWLvm1XibQ5r7fL3zDTWi4SNr17xW91lzbfraGnGPVCOibVydQ61dvaZGqAypNNxSzOzIPOEQ6LK1sRqBmti/nfxxP/YmK3p7GmojUt3XpxAOE8t3/c2ON9SIsQMSObDhI+Vr5jP1Nzti9o7le1dqBAGo+6g0vm57pA9Pt5/6mx2xuabjQlukRqQR6tUzkHeCoaEhzj33XO6//34+/elPy73aNrGJ/7N44oknuPTSSwEw6A185N6P0PGbIWZO+yLvzhU7rIZbiwnMLJCalsLsuA9jvo7uJyQicc2tJaRqk2M1q+nOYoIzi/S/OEHp3hySUpPof36c7j+N0nSf9CxHn82mO4pZmF/iyL93UfF+O+YSA8MHp+j+06hUWzJSV9W3YpaCyxx+qJOMSh1V7ytgYX6Rww91obNqaLixOBbbcLuD8FKIg1/rRGdXUXdLCYuBJYLuBUKhMOm5WkZfltYwomOVA1/pQKWHxttL8PTOorGqSdEkoUxWcuTfWwl6V+r+gX+L5OW24pilZsMHHSQlKzkxfZq54SD1d5aiSFbGrNMabi3GNxng+A96KX13pJYvh0FF5N35unxPS++IwnOzyN1uoedvoygUYKszk78ra22+vVL9zT3DTOF5NgZfnmToxSlSdamUX2aPrXk13VHMgm+JI9/sIrPJSOneXMaOuEhSJ2HdYljZV0B6nywHQxx6qBNjWRpbriuM2W/V3ySNN1p+PbiS7+UQB7/aicqqovH2Etxds7Q/MiiN9/LSWAoscfCrnWvyjUrK90z/HC0/H2DL1fkYi9M58u/tBL0h6u8qRZG0Koe3FTM/5ufEj/oof48dS6WBU7/owdsXIGebFfueLA6syqHfKRHGii+UFIU6/jjE3FiQxjsd0jviX9tW8u2R1seilmrRsXjZ3nyS1UmMR0hNTXcWE5xb5Oi/d8dsyYb2TzL4zBRbPij1WSJaAY23F7MYWOLIN7ow1+ipuDKP8WNuev4yRtX7i9FYVLF87/x8JaGFEIe+3om+SE3NjcVMtXro+v0IdTeuWMiVXpmLtcrA8uKylG+LlG9PzyytDw9SfW0BhkIdr32lFf9YkLoPFpF/xkqfbby9JDb3qbwyH1NZOke+d5rgVJD6m1+X71uL8Y0HOP6jXkr3SnuRLb/qW6kRaiUKhYLTT45S8u4c/O4gzf/Zg+N8G9lbzXQ/McLkUU+sRpz8WQ9zw0F2fyFi0fudbvLOsZJ/1oqFXfWHVmpE3W1FpGVrWJiVaoRtewbFF+cwfHCKgacm2XLjSo3o/M0wuz5fRXaTeU2NmDw5TfefRqm/KWI3GMm3MkXJ8rK0XhOtEc6OGTp/M0zNDYWk52rXrMEokhQoFGCq1lJ5VRGe3llafzlI9TX5GIrS31Ajplo8ZEVUvqM1ovxyaX3vxE/eWCOsdQZK35NLcHaBo/9+OlYj2n47wHT73JoaEXTC7i9UESZM+28GMTp0sRoxfmiamlvLYjV55FWXlO+5RZRKBZMtbuw7s2I1ovqmyBwlkhdDbhqaK/M5/cQIZZfbSdEkM3bERe9fx6n6QGR9L1ojPijVCJBsLs1l+jU1YnW+16sR0ZoQrRGvnz8GvxIkRzHNXPo0Bw4c+LtY83rHkpScTidW64rdWQWNWFNsTJ6SCuNk6yyG/DTGjkp/j5+YRp+rRZORikKhYKZ/Dv+0xPSc6ZxhrjojNvEZPerCVJwOaYoImSmEs0NaFJoe8DE36WcsEjtyxElmtfRgZVZI1LtFv0Sa8jlDzE34GW+W5IlHDk1hazDHbIn8niCaDBWZW9LpH/QxN+FnMiKpN3rYSfY2C3PjUrCz3Ys+X4MqPRWtMZm5cT+uSJvGjk6RpFIyO+iN/HYPqvQUfFMBwqEw81N+PD3zkeu6SE1Pwd0pyd9NnHSjNUVYpH8axVyZvpKzkx7SstSMNUue2xOnptfYl3kH55mfDtD35wm0OWoyStIZj7CQx4+5MRSsSPh6x+fxTy7Q/+SEpLZiUjF2zBlrk7lihbY43TNLWqaK3Q9W0fnkAHMTfkYjJ/pHj7pi+QZwnfZKmwVaWJxfIqyEkUPR6zqxNZjxRw69T3XOoIxsjGgtSuYnA0y2SL917LATxQ4rMyNSvqdaZ0hJW3k8/DMB1DoVYwfGUVu1JGuT8ZyO9LU2Kd9RzI740GVr2P2FKlof7UdjTMXZ4o3lO82ychLFOyTd9+2fKmd5KdJfTnqkNh13o89dUZpZ3WfVaamEQiHGj6302YyiFdlBT98cwdlFAOaGZ/F7A0y2r+Tw9fleCkiF0+eU2pMWOVkzeshFZt1Kvp3dayU5o302a7uByQ4nlrAZX+Skm7PdS7J6haUbzbc+X4cySUlgPogr0i+n2tbme27Mj7tHkhte8C0QCoVYXJJOFU2emkaTsXIK3zvswxu5b2PHp8koSyO70cz4wQkmTqzTZ51S+6I1IlmTxJJ/mem+uQ3zHasR+6fABxPtLgzZK1LP071zLM5Lz/30gJTDsSNOptt9hJbCLAYXY7Gubm9sg2u9GlF0YTa77q9k/7+2b5hvWFsjMiq1b8j3ejWi66+9+Ieg+PLsN/TZmYE31gh9rhZFCrAiYrQm36+vEcuLIRSr1CBW59vZPvuGGpG7y0JSZGN2dZ/19s4wN2F+Q43QZWlISQuv6bMzI771a4QWktVJhBZDuCJ9CR9r8r26RkTt5IKzC7H2x6sRgZkFNEYVi/NSO1b32dEjzliN0Cq07N12Jafyj3Lg4AG+8IUv8Ic//IGjR4+yiU2807B9+3YOHz4MgBIlF+VdztxYAL/bD8DkKY9EDIzAO+xjbmKOnMZM/FMBlv1hfKPR8cf0mjo0MzDPdN8chlwtCqWCuSkf063S8zdxfG3d9/TP4x2WnsUUjZJwOMzEaanejTdPo7Ot1H1P7xzzU1IdcrXPkrfHQlKKVKjGjrjX2FS5u2ZX1SEP3pEM0jLVpKQlM3zQKY0NI3B1eVmcl04Be8f8eEd8jB12UnR+NiRBcGalcE51zBCKTPL8bvCO+GJ1aLJ9mozC9JjN00TrNMqklULqHfHF6tDowSnYYeXUH/vADxMnPKRo1+Y7WvfHjzlJ0Scx1+9l6piXoktsb8j3TL9U9yea3aiNqeSfmUl2k4nxZvcauxRP3zxz41IDx0/MoMvWMNHiYXlxGZU5hbnRQCx2unsWX0Q9aLp7HnOZj7Gj0m8da3VjsKXhd0u5cHev5Ht+eFbKy1Gplo8ccpF/lpXgjPTvrk5v7HT8/ORKvkEaq2RtzWD3g1VMd88y2e6JtQd/JIfRd+cRqe7rHXrq78rGOzrHwuyKDPPsqH+l7h9xokhS4BnyU/yubBQKBb4p/0q+h3yxuj/e7CRFl4w38t52dnvQmldOvKzus+PNHrRmNVPt0mcnjk+T3WRCmax8Q74nW2fR56XFxoajR93o7Vo0NjV6u5rp7tnYWMXb7cVbncF4c3SO4or1WUOeRFSejFzH3S+9y8ePSfdm+JBzzfh6eXEZFNKY2T8TWJvvw5GxYSQVk+0eMrcY2f6pcg59rXNtvg87ycaypkakGJPRZ0tkuzV99sgUSanKN9SIqE2Yd2Qed3fk345LY5X1asT0wByWcn3sZOREi4c0m5qJlvVrxNyED12WFsfebMaOTpPh0DF5PNoHNq4Rfn8wksM35htWakTv89Jpq8xKw0oOj6ydz0RrRM9TY9Tf5GB5MbxqbCj12fVqxHTvHHl7LLhOR8YfkRrhHZOCX18j/O4AGpOa9Dwd48ecJKmlGrE631HMDMyjSFGgz9ESCi7hHfHh6pqL5HD9GmGtNqJMlur3RMTaOdpno1hdI1JUKYTD4ZUacfR1+X5djQiFQiwFlyN5WTufWV0jqhZ3knWZiudffp7W1lYUCgUul2vTimQT7zgEAgE0mpV6VUEj1lB2zKJstn8WT/8c48cj9eKwC1OxjhRdMgrA2eaJjVVmRgJ4+udiz9vIISeZ1UYAkjXJLC0sM9Xqkb7XE4pc1x2LtdVLSkKGYunZXz1n8vTPxd4vY0ek6/sic8DZcR+GPB3mcgOzAwE8fXO4OiLvzmNOklQrdX+82Y2xOI00s4bUdBXTp2djY5XxZjep+hTcPZF5/1EXaVY1QU+Q0FKImdF5ZnojazntXmmscioyFz7mjtX90Vdd2HdaGIvUWHePj4zSuZX31iHXmjrkbJ8h6F9k4MlJ1Ebpt8bq/kEX5oqVuu/u9bIwvSidmlVDWqaW0UOr3p2RfANMtkyTZlOx+wtVdP55aE2+R4+4CC2FCUgpZfykO1b3A+4FlCpFbM1r7IhEKJoZCURyOk1KmlT31UYlnt65mPXF+HEXyWnJzPZH8n98bd2fHZ1Ha1EzdniGFI1EcHJ3za/Jd+y3ds1iKNSy6/NVNP+kl3S7lokWaU1g5LBrTd13tc/gn16g6d5SwuFwpL9E+5ZrjWWJs30mVvfTLGrCoTDjR52x667Ot7PVE6v7AU+AuSkfzs7oPN9NZu3K+G6iZa2tn6d/LrZeOXLYSSgcJuCVcjhxfHrNfMbTN8dU2wymKh3T/V6UKUo8Q5H3bPNKvoFYvrVZWpJSlQRmgsyclvIyftS9Zj7j7p6NjQ0X/IsSkSi0HLmv7jVjFXeXNzafcbbPkd1kIrvRzMSJGUaPuNfNN6zUiJS0JJYDIabavWvzvU6NGD3kIuCB8RYnZocxFjt5ajo2n1ldIwLjARb9S9K9CETzvdYq5vU1Ij1HQ92NRRJJb518r1cjDMVqxpvda/rsejWi54UJAkMB8s61vKHPRtexVteI1LRklCoFilWypqvz/foasTC7SPIqy93VfXZ+cPYNNaLoIlvs963usz5nNN9ra0R6joZwSKoR0XwTYP0aEYBUfQpLS8u42lfWDmcG5plsWcl3tEYYctUoFAoCM6vqd5waMTfhx2BPk9S4XpfvqZOeWI1QK9RcULqXnvw2XjvwGp/5zGd47LHHeO2119jEJt5p+MAHPsDDDz8MQDLJnG+5jJleH4FJqX6MHnGtqUPO9hnmnH7yd2cRnF7AFfAyE1kTGDvsWlP3p9pmmB32kZ6rQZmkZGZ4Dmdkf27ssIu0VXV/qtUTq0NqfSrhUBhXl/Q+GT3oRL9qz23y5HSsDvlG5lhaXCYpRao7IwddmMrS18RG6/7cVBBXlxe9XUOKLoW+58ax+laU7saPu2N1KOiV5rcTJ6ax77KwvJCE37VAMFJ6Ro+51qxjubtnmWqNjAsOTGGtyWAuYmc3eti95t3p6vLi7oysjZxwk6ROou+5IQhKNez1+Y4Skp0tHtJsKqZ7fYwfms2XY6sAAQAASURBVCZnj2lN3Z9qnWE+sq7i7Jwj3e4lZ7sZ6xYDIwedpK96d06enF7ZAxrw4+ryMnlSWjcwFqXFap8U61lZExifl/ISGVeOn3RhyE8n6IzsYZ2YjtX9oFfK9/ixSC0/5EZlTCXokb43OjaVgqW8TJ1aGVstE6bpvgqc7TOMNbs3zPd4s1s6GJYKOz5djqd/LnbPQZo3T/dK/W7qlJsUXTJzA3OYa4zSWuzEyppXtM+CpP6sNatxnZ6P5MFNeu5KP1ydb1fXPPo8L1ORNZjRQy7yz8qMvQ+nTq3ke25gLvJb3bHfmuHQodIr0eXpmDyx0me9o4FYPwQYPuiSSGSAqURHGBhrlq4TnF2b77Gj0ywthGJ2Y0sLyyhXqTutzvfYMRdhwgS9UvDYETe5u6xsvb+MI9/sWttnm13SmG91jTClkFGQzqJvaU2fnTw5Tao+5Q01ImoT5uqeYaYvwgXo9JJmU69bI9yn51AZUxmNjDeme324ury4WtevEe7eGUzFBhyX2Bh5dTySw0i+X1cjJlblmxTW9tnD7nVrxODLU1KfrV65NyNH3Cwtht9QI/r/NoEmI4WlxfBKnz3mjuwDvLFGeEcChJfDsXXDaI3wjUTy8roaMTM0h96uIz1Hi7PFg9qYynRkjjh6yPmGGqFMBXOpAZQKXF1enJ3eSF7WrxHWKgPJqUnMDM/F1I/GDrleV5NXaoQqPZlwKMxEq2sl3+WravLrasTS4jKL/uVIe92x/4a1NaKKbdguSOPFQ8/F1rwmJyfX8GXeSVCEo8dH3kF45JFHuP7662N/7+YStIqNfdA1Fii+tJCWn/ULXV9jAb3DwMRh78ZBq9OmBY0WiQyjJUZC2hCrY0Ti3wwSvG7++VYGn5P3bY1ix6cr6Hp8ULKzEsDuB6tiyiciKLkiB2uVIcaUfqux+8GqmKLO24Ha24pI0SZx9NunheJ3fa6S5aUQh77W+ba0Z/eDVTEVBNH4hdlFySJQBhoLNN69Jab08FYja7uB4nflMnrERf+TE7LxuWeayd1poeXRIXyDb/3DZT/XQv4ZmUz3zNL+qyH5DySIhruLSdEmc+jrYveq7Fo7ljI9Eyen6XlsTP4DQNN9JcwM+jj9p1GxRmkht8nMyCsu+djoRyxKfE5x/13RdiRUO1fFaPO1CfUH+7kWhl9wygcC5po0LFsy6HxkOG7cvvBT+JglKSmJhoaGGNljE5t4J2D1KX4DJrYpzosbX36NnbEjrhjBQA45Z5oZTaDGaHI1+Eci19YQ28Df+AMCMf8DaEzKGPlGBDlnmhk94hJuU/n77KhNqZz4r16h+NL3SqeIxo66YxZ1ctj2iTL8rgXh8XIiqLqxAGNhGt1PDDN1LM74+k1C79BQcVU+vU+P4jw5Kxvv2JuNrSGDll/1CffRRND4kcjJpcgJIzlE1X9E41+vGPZWY/snJcWjg18RGyc3fqSEwMwibb8YeFvas+MzEWXMf3l7fu/Oz1UydtTFwNOTQvG7H5AUiaInDOVgrtbheFcOhx/qEm6T/Vwrwy+Iz800JokE+ZYj0doZideYlPj9IeHPZm01MtHqEY7f8sECWn87EDfeH/bzGk8AYLPZ+Od//mduv/12sS/YxCb+H+PVV1/lzDPPjP19BpeiVqg3/oAaKq/Mo/3XgvNTNVgrDEwdnxGOV6uVBDwhyRooIPuJNZ9NKF70skZiRB4R5JxhZvRV8bHm1o+V0vO3UcnOSgC7Pl+1onwigLxzLeRstwi/axPFrgeqWF4QXwNKFBXX5aE2pnL8+2JrQNs/WU54Oczhb4q/CxPBasVF0fiowo1o/PxkQHgsngjSC9TUfMDB6GEX/U/Lr3mZqnQUvyuHjj8MMjvw1j9c5tp0yi/Pw901G7PSfStR9YF8tBaV0HojQMGFmeTutDBxYpqeP4utedXcUkjAvUC36JqXGmz1ppiNntBHjJGa+HZBpHauilHb1ATGxfuDbaf4700vUGNrNNH9x/j5PBZ+BTcTKJVKGhsbN9e8NvGOQkVFBZ2d0jvTSCZbFWfFjS+8OAt35wzePrHnLrPJyORRj3B7VFYVwcimPSpi5IqNPyAQ8z+ASq8k6BWvedY6A1MdM8Jtyj/PiqEgjVM/7ReKt59tIf/MTEYOOxl4Smwe33B3McHpRdp+PSgfnCAcl9iwNZo4/eRoQvdZFCqrii3X5jHw0iSuU/Jrajm7TOSfm0XnH4eYbp97y9tTfeNapRw51N22onokgtcrhr3VaLynhCSVksPfEBs31txcyMLcEp2/jb/382bR9NFSUtNSYqqIbzW2f6KcsaNuhl4UW2Pa8anyNYpnctAXqCh9T37MelsEtq1Gxo94hOPfthq3+roJ1FqVHoJB8TZlVOrwjcwJPS8ApVfmMvjcSNz4YDjIKzwOQGZmJl/+8pe55ZZbxL7g/xDecUpK119/PY888kjkLwUXKN4r+5moFZbOoWWuV2aTWqGg/o4KFEmKjUlKr+N17f54ZKH6X9qEiEG77q+EMBIBRyB+5+cqUSgRJvjs+PRamzA5bP2oJGk9P+nDdUp+AcZ+roUklZLsJgvT7WIv9emeWUIhcT7c6T+NChMoyq+zY8zXcfA/OoSJWf6pIHMusUFk9s4MsreaOfaT08LXP/mjPrHACEQXst4spnvn8PTLb9q9GfidMDM4z9hR8Y2URDBxaIaJQ4KLp8DIK66EyDQgkeLSstRCC07DLzjJaTLjbPMIX7/qA/mk52g5+FX5Bcjm/0yM6NX16DCGj5Ux+prYYg2AypCKuSyZ04g9Y7vur0ShVAjnteleyTbm5MP98jUXqLwhnwyHjp6nRuLf68ilSt+Xi7XCwPC+qfjkykj8lhvzMRTqGD7oZFBgAzJaE/1Ov1BNLL00X2LfyxCndiveRVf4FH6Tm6NHj6JUKgmF3sZFrU1s4i1CUlJSrK+WUEOhojz+BzRgLtdjKEzj0FflN0aythopPCeLzC0Gjn9fvg4XXWIju8nEVNsM3b8fkd3ULrgok9wdFkYPueh/Sn7hP3uXiaILbEycmqbnT/K11VSppeLqQubHApz4kdjGReE5WeTttgpvTBmK0khOTZIPjGD4hTEMOVphghKQEIFi+6fKme6dk/IvgKnWadIsKmGCUt0dDmYG5oXuF4C31y9M7gXofWKM3ifE35uJYvDlCTJrMuQD3ySGDzhjqpdvBxLJJcCx/xAj5UehMSmpuK6IwZcncLXIL5h5eudI0YlPWzUmqLm1nKnWGaFnQHThJQr36VkWg0vygRHYGs2kaJOxNuqFnoGsrUbyz7BiKU8XqolooOGeBDdnH6hiaXFZvkZH6uuuz1cSDhGTQ5eLb7i7ImbRKAsNFL87h8LzbUI10Vytw1CQRuOtJXH7nkah4QKuZri0he6ebu6++25aWlr41re+Jd+mTWzi/yH+6Z/+iS9+8YsAKFBwvsCaV9S+LaMiTYhUs/1eiew61TEjRCDa+bGKFUsmgfgdn65AoYQD/9YhFL/tk2UkpyQJr4vEbFG+Ltae2lsL0eVoWZxbEiJmmWvTSU1PIaveJExSGj/hIkUl/q4aesHJkOChmMKLsrBWGzj1ky5hYtbMwByLc2LvqoyKNPLPyqLzN/3CpIuORxIjryQ6tkgUEyemmZ98+3Zn3Z3emDrNW43ZgYAw8RnA3TaHuy0xslf+eVYMeWmc+u9+2VjXyVmCZy8ytVqdVAbF78nGVJIutNnX9svENocHnpnEXKJn5GWxeQFIdmlqU6p8YATRmihK2qm5qZD0fC2tv+plpke+CBXtzSK70UzPk2NMHJmWjY8Ss4ZenYxfJyJfXfyebLLqMhg54GTgGfk1r2hNXA4sC9XEiqvzSdEm0/3kaNya26g4k+FwL9PWEY4ePUpycjJLS+Jj5k1s4v8VdDod8/PS+76MevIVJfE/oIKcrWYsVQaOCNQ9fZGaknfnYKvP4OSP5feMbNszcFyUzeSJaU4/Pia7CW7basQRsXsafEZ+fyajUkflVfmMH3fT+4T8fFmTraLh1mJmh+Y59d9iB5NKL82l6EKb8PvfusVIarr4OGqq2YmlVC9MUILE9lya7i3F0zdHz1/E1o1cXV4M+WnCBKWK6/KYHw8Ik0aCU8GE1l1G97sldc+3CYOvTpI1tyxMuEgUAy9PYsjfWJTkf4pj301sDUuUPBeDCqqvLWDs6DSuVvkkTbV50Fk0snGrr990RynOrhmhZ+DQQ4mNwydOeVAqFfKBEVhrTKgMKcJkTH2RGsfFOWTWidVEgF2fqGRhdkmYCLXjU+UsL4fla3Skvm7/RDkKJRyUO+ARiW/4cAWAZNEogMqr8iUREYF7oclWYd1iQJelpjnOgRCVQsUFXM1QySl6+nq46667aGlp4Rvf+IZQm/6v4B1FUiouLqa3V1qoTUHF2YrLhD536Oud5J9vFSIoAfQ+O4ZxlQSuHDz9czEbMREEPAuEl8QJOwF3kCSVUj4wAmfnDMZVEmNyOPLDbqqvLRTajAeJpOE+5U5IJSURxZmdn6tk9KhLiEwAoMtUS/lJQDQn3sP9euRsN6MypEpqWQLfEbXSEp14ayzELOlEkHummYJzsoQJFwDtD7/1DPHVSFR1YdfnKwkthYVIO1Foc9T4RgVPJzTqyd1uFb7PlkrDGolHOSS6wKYxpUp9VFThTAvb7y5nZnheVp0H4PC/J7ZAdfx7HQk9v4MvT5KqF39dDB+couAsmxBBCWDypAtjfhqzvWJEurGj05hL9DhPiJGm+p4cpvpDpcLPS+vD3ZReWSRcEw98q53shgyhe1umqMHpczIVfhEAvV5PS0sL+fn5Qt+1iU38b8LtdmM2m2N/7+Q8dAoBuxw/9L84ISkFCWDiiIfMugxO/UpsYtL3wjiWcj3DL4gRZCZPerE1mJg4IUZ49fT5CC2EGG/2CMW7230szi8x9Jo4IWj82DSzY2I1BuDQVzvRmMTHgn53iCOCE7fK6/LQZWuEyQ0ak5JkVdIaOzM5TB3zJqSglJalRqVPESYp1d3hYHjfpBDhBUBjU+NP4KTx9k+Xo1CIKws5T84KKTq9WSSiOgYRYl+jic4/DQrnCA1oNOLqPFU35DM3EWDwWYF3rUaFxqzCvjNTqD2JnlbzuyXL10QWtQouyiSrPkOIWJmoqkDrzwcSUlubOOLBUmWQlIJE4IcFzyKT7eKk/qB3gcDMonxg9CvcQZaC4mNH77CPgHdBPhDAL9mwTJ4U69euljkGTZMMvyw2gbJ3VzOpncQ97+bb3/42hw8fZt++fWJt28Qm/pdx/vnn8/zzzwOgQsuZikuEPnf8+z3k7BIn1HT9aZDMGpOwwtFkqwe1XnzDf3bUR3ICa1jzYwFU+hT5wAgmTkyTWWUUbv/Jh/upvDJPWDnKdXKWY4MdCamk9D0hTqDY9skyxo+6hUlK+jwNKdrkhJSjEiGC2HdZSctSgzoVkaRGrbQ6fiP2flYbIRAQujQgkaYq31vAyCExwgUgrLDzZiH6W6PY/slywuFwQocA1JlqApNiScqoSMO+yyq8aZZVl0FKmviaTiIn4QG0FhUpmuSE1IWa7i1lbtRHp8Chh2PfS2wzsfm7iT2/PU+Nkm4THzcO7ZugxGgXIigBTJyYIXNLBjODYpKREye8ZNVnMNUqNm4feXkMY6GOgVfEnpeTD/ez5ZoC4Zp4+LtdMdtPOdgVDjImTEwqnmN5eRmdTkdLSwuFhYVC37WJTfxvIhgMotVqY4fytnMReoVe5lNAELofH5HI3gLw9kk2Vf1/E3uXjB+aJnuriaGXxMYW011eFs7KZOK42JqLb8THon8JZ4s8aRLAPxbE7w4yfEh8HaL/xXEW55blAyM4+p1uVHrxsWPQC8dFDwlenEWGQ0fzj3vEVE9UkKJLRpspvuY1c9pH82nx/cYMRzq6bI0wSanq+nxGj7rwdImN9VUWVcx2TgRN95aiTFVyWJDM4u0L4O0TW5N9M3Cd8gopRkVh255B0QU2Tj8xypTg2i9E1HAEv6b40myCs4sMvyQ/flepQJ+fhkKBEElJhFy4BkFITU9Gnys+drFtz8C+x8oRgbXf/r+Jz2sAev4yxvDLE8Jqa96+gHTw+AnxPjQ37me6R1wVzOcMsuQXHwvOjvhRJsCWcXV6CSXA8Rg96mJmQOz59Y8F6f3bqLDSVN7pGqbTvEzOjfHNb36Tw4cP88orrwi37f813jF2b3q9ntlZabHfRBaNijPjxmfvzKDowmwxCySFAm2OitoPFnHyR534nHFSsipdtbcXcfKH4oo5idgHARhKtcx0izNvhJSiViFma5eASk3TfSW0/25YmCyy4zMVKJMVwipQmY16Svba3zYrLbSw86OVDLw8zthrYgMxSMwqatfnKlEkK8QtOz4pKX2JxueeaSb/zExO/3WYqePyG2A6h5aqq/Loe3ZUKB4Ss3sDaLinmMX5ZWGy0vZPlrO8sCxsh5eorUnTfSWoDKnCZJxECFBRbPtYGcH5xYRqQCLY/WAVi/NLwrKT1TcXordrEyIg1dxSiLt7NiHlqbe7jiUab61PZ354Xvg3F+3NYsG7JPybGz9SwsLcknDf3v2FKhZ98vfNF/bRrH4Bf8CPzWbjhRdeoKKiQug7NrGJ/w0cPnyY7du3x/7ew140ivinOrZ9vIxkdZKwVWvNrUUoFQph9SH7uVZYDgtvTGtyNajSwNMl7lWUVqBhfkA8Xu/QJGQXlqitXf4FmaRZVLQLnlZPK9BQ98GihOwZtt1fRkpa8tsmo1x3hwNliiJhS1hRUofeoaH6hqKElKx2P1jFgneRI98SG+c03VuCQqkQjq/+UCHKJIXwiaBE7d6ythrJPzOTll8PCpGtsnYYKTovm9NPDAuTp3Y/WEXQs8DR74iN1XY/WMXyQkiYyLXGslEAOWeaE1IfSxRRS8K2R/uEa8buB6pY9IuP1TS5Girek0Pz98SfhawdRiZOehKyXPu/Vseqby6kRXATVWNTU3tTISd/2CFEkCu5KofMLUY6/yhPwGsOv4ZfO8PS0hJZWVkMDr69hzg2sYlEUVJSQk+PVB8sZFOv2BM3PqMijcqrCxg/4ab3cXmitNoItbeVc/LnA8JEiKoP5CdEdknEPggkC6FE7Kq0djW+4QTm7WqwVhmYOia+5lV3exGdj48J2yZt/WgpKdoU9n9Z7B1uKFaz5XoH7u63x0oLpPWTwVemErOuSsAqKtE1rMYPl6C2iNvgmqp0lF5mp/eZMaF7p85Us+W6PAZfnhQmXSRq91ZzUyFLC8vClopN95YSWgoJv/Mb7ylBbRLPUc3NhaTbtZz6ea/QM/RmrMnq7nQQWgglrh4giF0PSOuOoveg7KpcLFsMHP9pr3AdqLjGztxEQGhDMYr/a3XMUKwmOI/w85mzywRJCmF7y5qbCgmFw7T+XIwcv/OzFSz6loXu26spfyG4GMRqtfLUU09RX18v9B2b2MT/BoaHh8nLy4v9fSaXoVLEJ6XU3+FAnZEqrJxRemUuqvRkWgSfL2udgRRdEqOvidUglUWF2pjEzOkE9g/tKuaGxckricYnamuX2WTEWJhGl6BKt8qiounOYong8Eexz9Tf4UBjUQmvVSaK8mvsaPSpwqSpKESJRCq9kqb7Kpgd8Qm/k3d/oYrA9IKwYlDNLYUkq5OE1aZKr8wlNS2JVsF5QqJ2b4YSLY4Lsul4bBj/mHyODCVayq/Io++ZcWGS0u4vVOF3BYXHaomu/6yxbBSAuUZP0YU2jny3622xNYtaErb9ZkCY7Lbj0+UsBULCYzWVRUXZZdkJjR0TtUEDSWlIpF9E8XbXsfJr7HQKHmhQ6ZXU3FrCqV8MCD3/9rMt5O3JpOuxYVnCW3f4JM60ERYWFsjLy4utLfxfxztCSSklJSUmD+qgGodCfiN35vQM4fNtzI2JqSflbDehTFaQtT2Tvr/KMwUrb8hHZ9NQ+r5cun8r/0J0XGrD1mDCWKAT2uzOqNRSeXUhwZkFYSJH7Q2FhJcFZfWB2lskWzhv74yQkk/2zgxUhlTKLsvhuKAPe8CzQGoCp3Umj3mZPCa+SVZyRQ6nnx4VVlEqPDsLZbKCFHViXV+UoASSdZu5RlzJarLVQ0aRuHJXonZm1sp0kjVJ6At0wiSlRKExqVDpxfmOiSoRTbV5MNjFc9r+q15ITRUmriRKUAKJUa9MFWf4AxS+O4vJEzNC3ye6OBXFVOs0OpsGtGqEHggtpOdq0VrUwv0paiUpqqRWckUOmTVGpjpmhOqkNl/LlusKEyJnlV6Wl1Ddy240Qxjh36w2pqJKFz/Vu7wQwj8trxygVWjZE9zLWGU7re2tVFZW8utf/5rrrrtO+Ls2sYm3C48++uiavniB4mqhzwVmFknEgEqXlZhdVf5uKygQJinV31SIQqkQngRv+7hE1mn+bpvQ5njFtXmYytIZ3u8UUo/R5GooPCeL3K1mYdWi7CYTSQm8a5KSILQQElYkAYTbAhL5IaMgTfgeAKgzUhNSHI1CVHXG2+un+Sd94BcnWcyPSScZRSFK1IlCl61JSBo5URiLdKToktEXiClCTRz0MHHQk9B3+KYCONvEc9Txu37c7eLj5UQISgCq9BSSUpVk7zIxJipbroGic21Clm9tvxBULVqFRd8SPpf4QkfFe3LQWFSYKrVCudLkaii+KIf8PZnC46Jdn69MqO5FLW6bf9IndE9qbi0iPUeDUqEQqgMV1+aht2spviybnsflVS5ytmWQlKrE2pgpVFfnxwKEK8L4RuVP1DUo9uDPc9I8dIihoSG0Wi0+XwJSvJvYxNsIk8nE9LR0iErIWhfwj88TWgoxL7hAa6mzkKxJIrvRQN/fBOyJLs7CWKSj7Kpcuv4gP5fL2WWi8AIb5rJ0oc1utU1NzQcdBNziGyh1NzkIL4ckGzkBbL1TqnGzo0GhDX5jqYY0m4byy7I5IXgYaX4ygNYiFArATE8gIWJ4wYWZkjqK4JJF1tYMktVJqBKwTAFxAgRI6znGUnFLivHjbixVAsoUEbjb5jjYJk5KNuRrUBlSMBamCZOUEoUuR5uQVXuiSkTjx9yYy8Rz1P3HflCLE8sSJSgBaDJSEzohDlId8Az5hEg4+xOwuAOYPOUmo1hHkrgDNqYyPfr8NGGSUtN9pagMKXj6fUK5tZ9tIf+sTJytM0J1Um2E+psdCR2W2HKdg1ACda/gPBuEESYppWUnNidf8i8T8IipZZ6xeCmTW7o42XKShoYGHn74Yd7//vcn9H2b2MTbgdWH8hQoOV9xldDn5p1BklTiRchYlEZSivh6TvHF2RLJUJCkVHeTRCwRtQytv8OBNlPN0f/qESJPFLwrk9xtFoZenRJS/FHplZS8O4e83Vbh92DebisqQwpdqhExYoYCFvxLOAVVrACO/0CcPKSyqDCXpiVklabLkhQvE4Wo0lHQG+Lo93tgQVwJefr0HDND4qozp37SLxwLYChKIzmBZyFR6O1paCwqMgrThMgoM6d9Ce83zvTN4eoW3ytt+VUv3j7x8XIiBCWAFJWSVG0yOY0m8f6ngrxdVqHns/ev4/QKrI2tRtCzSMAr3u8cF2SRnqvFvEUvpCCl0kPle/OlgwOCNWP7J8pRqpQcED0gfUsh6TlaWn7Rg3dA/p6UXpmLtdpAiiaJEYGxVP6FVszlehx7bUL2meYaI6lpyVi3pDP8knx7/M4FQovLzAk8z6WKWnIMBZya2U9vby9GoxGPxyP7uf/X+D+vpKRUKok2sZ4zsChsa/5dkZxMeJW/cf75VvyugCwZQ5GcTHh5ea39kogV06p05V+UKWwfBNBwV3FCNmNN95Vw+slRYVWR6psKCM4u0S0wMQKJEFB0toXWX4ifjDPXpAlbICUKx6U2ZofnhYk0Ggs0fLhK8nKU84p8k9j2sTJS0sVPtv9vwFqfjt+7nJBqVqJIVEkpYWjBviMxRZ63G2/3vTaUSgScRPNa/aHChO30RJHo82yuSSOzxpSQytn2T5Zz6medwpaGTfeV0P/CmHC7Kt+fh7PNI1w3Mhv1zDmXxImHib4jVrfthvy1VosKxZp3SBTPhf9AmBAZGRlce+21fO973xP/kk1s4i3GP/3TP/HFL34RACVJnKe4UvYziZwYAEDD/8/ee4e3dZxp3z8UEpUACBDsBECQIAmwiVSnLXc7jlts2ZZlyyWJndiON8kmsePEZb/vet9vmzebzSbrTVunO+sk65JNWccpTrOa1UWJkihS7L2ADYUF+P44AEjKojjDRF4n4X1diSVxhuec58w8M2fmnvuWUgVJwuQ2oDOqhIkQOetsmAsNtLwiZv/gTFiFHhKcqxnsairvKRFeYAbFWq1j15CUyokooWElCNzt5vh3xMkZScWfg19tlbJLk0HD04nTTIInuN4O5G2203toZEXtVgSySkorgcVrQKsT7z8XHAZoeDRAeEj85JosNnyyHK1Ow87PHBd+d856C8YsPe0S33gykO3PgbvdnPlFv3B/K7+9EFQI52RHlRnXlhzxd2CAmruKhVXCQFHB63pdQr58hWNEzjobaFiWkDcQ7+YIuwCoqqri6NGj8hdbxSr+iNDpdExPKxu+NTSQrco/b3lnvRVirIyMoUeY7AKQf7FDeKMboOpeD43fahMuX/tBL+2v9xJsFuv0vlvyIQ7Nr/QIlddn6/Fc7pRSLLL5DML3I4uiy7MIDUcZFrWE1UPDYwmlXgnbMBnUfqAYU45BGSsvzNROGpkVJmbDc1LqNLKQVVKShh5yqjLp3yeu4H6hUftBL6Zs/QVTT9Vn66l/0Es0KL7RBAqh+UKpisn2Z2OhnsINDiHCURL1j5Ry/PlWYSJYzQPFdO0cZOS42Oax98ZcJjrDwjnf5jMwHY7Lqc4lITlG+G7Jp/nl5fPxb+L/zQzTWK1WduzYwbPPPit/b6tYxR8Jzz//PHfffTcAWtK5THXTsnVKbsij5ccStqI65gk3C/+8XDWnDkOmVljlxFpqxFFmESYeWIr1uC/LFVY50VnAv90rRfLxXpfL0LFRITLAwvuSIX/IwHdLgbDiEswr/hz5RouU8ooMNj8RIDwQkVZeupDIXmtjoDF4QRR8QF5JaSUw5OlIN8kpi11oXOh3Xf9IKfrMdPZ//riwEpG11Ig51yBEwFkJZPtz6Y15dO4eESZ1ua52ojOlCX8Pmgt1FF+TJ0XEC9zp4vh/SqgJb8ikb6/EnH+FY4S11IjBlr6sDdx4fJy9vAZAIBDg2LFj4vf2vwA5GZC3GSqVKkVQauC6RQQllVb7FoISQGGDE98NRZwLyTopghLQ8DE/mz6VUGZaIn+pNJrU/+oeKqH+r0oAlicoqVQ4qs2U31kIIExQKrxcOYa1//OnhQhKVp/iPdn4zXYxgpJx3r5MlKBUdkchGBEmDhRensXmJ/wYXRK+mHV2fDee+92dC+Eh6NozRIugn68xX4/ZK34/AJMDYWbD4v65tQ96aXgqoJAZhG5KIcdk14ufmCq9vpCaHR7h8u9E1Owoxr0lR0pxas2DXqUdCmLtR0rZ/KRfuPxYb0h513JNhJwNVrHf3xxiuHmcfV+RICi9z4PVZcLz7hzhOnUPlbDh0eVP3sJ8fy69OR9j1vLDwfDRqRRBKdMvFqi9n1EISsk8tRz2f/40w0enMObrca7JWLZ803c7GTw0gTFfT9V97mXLDxwYJ9QRwrkmg02f9i//vhMpuOQ9eTR8IiD8Lvx3FWEvyaB8+4I2G48rRCXVYnWNK1VbWVe/jqmpKb7yla/w8MMPC11jFav4Y+ORRx5JEZTS0QsRlAI7XGRVWPFenyd0De/1eTQ8GlCs2wRgsCvWsbYyxb5IZHM/cI8bgx369wWFCErOegsGOwweGBcmKFm8BsIjMWGCkq1MOW3e9EKnEEHJ5DbgviYbQJjQsOHRcqre5xEqC1ByYx6ZXjPl28TH1je/dIqBY0FhwoRTYn4DgAFmpmYJtokTaBueDLDmIa9w+fLbC6l6r0e4fN5mO96r8/C/R3yO+k5E1V3FlN28/DiZRM46G+s+7BMub7CraXgqQOBuwWuElXc90S+3EWzxGjDYxT5hW1/toe3X/VKEF991hRSsF5fEsHgNbPqUX7itjzSFwAAlN4vlzOPfaSfcF8HiFVOsOPmDrhRBSaTOcONkiqCUv8Wx/AXCpAhKFXcUYXIvf40kQanukRIq7xVoH4n3telTfjY/IT6XL3lXPiVXn5/cAZCtKmATV+B2u2lsbEStfkcviazizxxarTZFUFrHVcsSlABK311A6XUFwtfY9KkKNn4yseYlMHz77yyi9kFlXBUhKBkL9ZRtVe5HlKCUu8kOwOGvtAoRCDLcitJH88s9wgvSGW49kYGIMPmh+Poc0CNMaHCusbLxkxWpexNB4aZsyiTWvIhA68/7aPkfQVKWTS11PwATfWGmJ2aEiQkVdxSx+ckAept47qx/uBTnGrF1E4Cy9xRRfbf43O6diPLrCyi9Lp+cdZnCdQI7XPhuXj4HJFFzv4fNnxYfJ4NnJpV3LddEcNQsvy4DEBmI0HdohP1fFV/z8t2Sj6PcQvG14mtegbtdrP9YmVDZZH8uujwLY+HyDx7qiqQIStYSsUAdePY0kWBMuO8d+Y8zjByfRG8Ti23rj/oYPDSG3gYV25fPH8HmMKGuCNYSPRseK0dvE7ot8i920PBYAM81Yu/Cc00O2dWZVAh8S16quon19euJRqJ8+ctf5iMf+YjYTa1iFX9kfPGLX0wRlIyYhQhKnmtzyK23470ud9myAPkX2Wl4LEDhpYlvyuU2n3Ww7uNlWEuNRAejQgQl38356Cxqxk6HhAhK1lIjuiwd42ciwgQlc6GO6Li4CpHFrVjltf60T4igpLOoKbpMWRcUJTTUP1JK4E6XUFlQ1P2yq234torPmw9/+ww9+4aFCUqZfnF3FAB0EBmNMiqhcrTxk+VUv98jXN79rmz828XjZC014ru+gPKbxNcG34mofa+Xiq3i82xbmYk1D3gVkogIdMoahchYnERkNMp4jxxpypCnQ5cldlOnf9pF62u9UlZp/tvdFG3JFi6vc+pY/4lystfahMqPn4mATmmHIjj9o16ig1EMeTqhd9Hx88HU96C5cPkKk13RFEFJ9BmSBCXPtTmp3HY+JAlKVfe4xHJUIr2s+1gZm/56edewJPy3uii+Zvm1RIvKwhZuxFvs5fjx42hkZEj/F/COXZFTLdjEbeA6jCplJzlJMloK7b/up+nFNuHrRMenCQ2KM/v09nR01vTlCybu33dDEY5SizDxofr9HlwXZ+O6RqwTG7PUVG73CJMSADY8Us6a+zwYBNffjfl6ssosbPiQ+DUyi82oNCpCQ+JJ+NA322j/9fJWewvR8dqAMHGqcpuLmh3izw0KAUJGKnAuGiMeiwurrRSsdZCWocVRIb5g0/3mMANHg8Llax4opuHpgHD5lWDDo+VShKD2X/cz2jrBcIv4JqQxW4/dK7Y4Asl3IVycU9/rUt61xLxh06f9lLxLfKJ78oUuqd/f+PU2eg8M0/Y/4v0iLUOLRiee2s1eI9nVNirvLRWus+Gxcvy3ifcl55oMKrd7UgRPEax5v1eKtFi1w43FZcKYL7YwZK+wotaqyKsTWzTsfXOU2GycAUFf46bvdjLQFFTe+blwFlnJdtCDelpLLBbjS1/6ErfdJmavtYpV/LFw//338+///u8AmLFxieoGoXrHn++g78gIrT8RO1XW3xhkbjrG8GExVQ1HrRNNuhq7zyZU3uI1YPOYqLxHnFzhu66QNQ+Jj2H1f1VK1Y5iYdKAIVdP4I5i1n1U/J4CtxZRsDFLmIwBoNVp0FvE7SlbftRLz75hORWsMJx+SWyjDMB3faHUHJUwvPnZU0L2XEnEZmNMT4kTyjNLMrAUijOSgyeDjJwap+134uqPDU8GWPth8XFVFoZcPQ1PBfBLLI70N47S8XtxdSCH30q6LQ1HldiiW3hEmQPHZsQnX29+9pRUezIUGKjaUUzF9mKh8kNHJuiRsEgGaPtNPwe/KG4xMxOMok5TkVUmPpff8Eg5OdWZGOxi5Q25eqp2yOWQDY+WU7WjWFElEoD3+jw8l+UIkxYNdjX2sgwqbxdf/DTYdJjzxO2BwkNRQoIS+ACnftRJ80/F8plZZaewvQqAeDxOZqb4JvIqVvHHgkajYS5xeO5ibsCmsgnVO/WjTk68JK6CODUQIdQvvuaVUWDEaBddrYfK211kVVqFSStlWwvwXp0rvBGOHqrv9QqTEkDZxKq+14s+W+zbUG9TbMHXPyx+DXuJGU26mpkxMdsjgINfPMGZX8rZLPTtHhFWXCnf5lGeO1echdL6oz4pVdDYTIz4XExYNSazwoQ+Kx1HhThxvfO3A/QeEh+/y28tkCZOyaLu4RIpQlD7G8MMHQsydlpc8czqMWOXsHybCc0RmxWfd7X/fEB51xJiFes/Vka5BFG/9Ud9Ur+/+eUeunYNcuZV8TUvvTUdrV58s0VvU1N0cTaBW8WfY+2HfVTeJZ5DMtyKfeWah8TXvOoe9kuRFgM7SrH7MoTJUJklVrR6DfYqARI6MNI4ymxkjoHjYm227bV+evYPcULwW9J60I0hmsHc3Bxf+MIX2LZtm1C9Vazij4VnnnmGD33oQwBkkEmD6lqhem2v9tO5a0BYrWj45BTToVkGj4mpJjorrKQbtWSWiu156LJ0OKtsVN4jTub13+6m7gHx8lX3uKh5bwnWUrF1E50Fqu4pof4R8TUQ/3YPRRc7FWKCINJMGvR2gX3ZBHp2jdD2qz5h1xkAoso7F4X/VhfrJOaoROHgF1to/5n42szcTJyZkPialzNgw+YVJ0+NdYboOzBC9y5x9eONj5VTJzHmrQSbnvBTdqv4vlv3riHafy0eV7svA2OuHqfovmxUmQfPRcXnXge/2CJlsaazQN39JfhvFnvu8TMROQUfoOWnPRz8qriyU3Q8ilanweYRF5uou7+EgvVZwmSr5HPXPyCeQ+o+VELNe0vQWcTm/7kbMim9Ll+8Tekgf50D3y3ia16mXAOmfPE1r4muEFMD4hPn4y+c4dSPxPKZTqWj4EwlALFYDJvNxvi4BJvtbcQ70u7tXASlcxGTkipKeRdl4rk0l0NfaXqLpdBShCbPu7I489OlBxzVEuyy+Ozs8pY/C1UyjFC40UHXrwQ3NoxQd6+cLVzdIyX07R+hd7dYQsqut1Cw2cnBZ8Wv4Xl3DgOHxwj1vDP0n8u3F+LwWWj6rzZGBRUGnGsyyFufxZGvitkTuK7JxlJgpFGQYb5iSFpIycJ/VxE2j5ldgj6dIG/3VvdICemmNPY8I76pIwtDFsKWYStF3kWZZFdlcvjLYgO15905GDLT5ezPHitHk65m19+Kv48LDd/WAqkJe95FmeRUZXJIME4gb19ZenM+kbFpcUtAo0L665bZjFxh38v0G1FrVcIEyTUPeknPSJsnPJ6lpASkbOB2xn/GnG6a9PR0rr76al588UX5G1zFKiSxfft2vve97wFgIZMNqiuXrbP+42VMDUY5/m2xTbKsmgzCY7NSNmcpSFr/FF6SRddvxQcM11XZqNQI2zvZ/Ubcl+dJ2ZHVPuile9cgQ6L2HgYouSqPlh9JSIpfYGx+ws/M1KzURlbFHUWM94SEiSI19xfTf3iU/mWka/9QGOwQFrR4Xwk2fLKc8PA0RwUtsaTt3gyw+WN+Bo4GL1wbWaHlliwq73Uz0jxB7y6xF1JzfzFdO/uFFcac9RZ81xXSe2BEivx2IWHxGrAUmqTy1JqHSuj4Ta/wc+dvcZBVZpGyZat9wMthCRly2Vz7h7Qp9zXZwjnaYFdT+2A5p3/StWzODcfDHDb9hsmpSYqLi2ltfedI7q/izxtqtTqlGn4xN6BXnX/T2R4w47uxkMNfPiVMDim6PIvOldqry9rCbbbTI5jHAarv83D0m23C5avu9TB0apy+3WLXsPkMuC7N5ch/iOfA/M12JnpCF9RiTAbuq7Mp2JDFiZc7hElKNp+Bgs3ZHPuW2Pw8Z10mdp+Zpv+8MFZbiyDZpmRQfH0OOdWZ7P7cCeFryNq9Vd3rweBMv2C2e6CQ5SLBC/brAUUBLKcmU0r1zJJvkLI/W/thH2kmDbv/4cKtD8qi+Noczvy6X7h92ANmCjZlSVmDyNpXFl2eRTwGXb8Rz9O5m+zCeRBYcb8zFurRW7TCucd/ZxGmbL3Qd+KB+O+Y0gVJS0vjmmuuWV3zWsXbgv/zf/4P/8//8/8AYMPJOtWly9ape6iESHCGphfEXEgsxXqIxaVszlKQsPsBcNZaGTwxJlwnd52NNHManb8WI6GsxB7Jv93FwLEgw0fFN8FdVzjp+JWELfgFxsbHypkJzXHg2dPCdbzX5RIZnRaeB1dsL2Lw2JhUnFYCnQUpdR1ZrP2wj8holGPfEesfK7F72/BoOUPHx6RIPtKQ7HsrgW9rARNdIWEyUfm2QvoOjAjb1lncOip3eOk9MCJFsLuQ0GXpcPhMUt+HlXe76N47LGx36ai0kFtnE26DIG/jlr3WxsD+oHD5P6Q95V9kp+cNsXjpLFD7gXJaXu1l+NjyHX2n4aeEQiHcbjcnT55EpxMnh74deMcpKS0kKF2lum1JgtJC2L0ZqDQqjHmL2XxL1au8u5D8tQ5Kl5DZP5ugZMzTsvnTZZTdnii/VH5YoIxR/X4PrqudEIKu18U2Zgq2OCAkbguXVDE5+GyLMEEJo2J3JEpQStqjtf1PvzBBqfZBr7CaCSjWcA1PByh5j5jtAUBsLk48FhcmKAEMHpoQJigB5K2xS520x4iULVcKkiSJDY+V47pSzCYHFEUXGYLSSnDw2RZpgtL6vy5bbIW1DFZCULL6jORdJH4yumhzNibBk1Kg9AsZghLAbHiOuWkJiSeg4amAYk0mgcDdLmEbwSRBSdSSrfeN0XmCkmAXSdpXiqovnX6lRyEoGRF7hyEUglLCQlHovkKAUYnvmgclTqDc5qH8PeKWOTpr+vLqVomxo0H1LmoCNYRCIV566SXuuece4eusYhUrwX333ZciKNnIEiIoAaQZtJgET0QAlN1URO3dYuonkDit/IRffFPbQMqaSnTTPG+zImPS8YsBic1vxa5JmKCUOEBx+MutwgQli9cAYYTJJzkbbZTfLifLvOnTcjZKAHPTMWYkFIsATnyvU1zJxgDmfANFm8XnOHmb7UJ2U2dDhqBUcUcRdY/InRDb+8xJYYLSihCGXX/XJEVQcl+TzfqPS5zw+wPIJKLqPQBWt4nCTeIyp0eeOyNM1AHFxjEekzuTU7o1n4anA2QJ2ptAQuVJ0EZwvDWcylOi7ffQl1pSVnEi6PndcIqgJKrYlCQoCdm+MZ9rPe/KIbBD4HRZok35txfR8FRA+L7Kby+kcJOT0q1iFjimQhNqrYpM3/LzYIPKQO3UpRQVFnHmzJlFaxGrWMWFgixBCSCzNANNmhpjvtjHl/fGXFxbcoSto/Q22PxkIGXbJrKpXXFHEa4rlDFbdAE6afMmSlBK2hQ1fqtNfGM+YdkmSlBKWkD17BoRJigFdrik1IocNRk0PB3Ae6OYVUwSsbmYMEkAlOcWJSgBFDZkCSs3AKBXiBUrggRRYt1HfVLXOfOTfoUQcwH5ZY3fapMmKNU+6J3vUwJYCUHJWKiXspQr2uzE4jYKW7717R6RIigBTI/PSKkMwFm2lILw3ZyPs15M/eDMqwpBSVSFaOT45PzmvGCskvaVovZqna8PpQhKou8wmQfrHy4Vu68IoFfiW/OA+Ld47b1eyiWUA4xOPWnG8+/dJFGv2sIa3xoikQgvvfQS733ve4Wvs4pVrATPPPNMiqBkJ0eIoASQbtFidIqveQXuKCZwl8Ta8nYXmx6vEN/U1sGaDyrWVIOHxQhKzlor6KBvX1CYoKSzLLZHErkvgKYXOoSJN0mLJlGCkq3MRMkN4vuGoFjobXpcblyZCc0ptqgSaP1pnxQRw16ageti8TUvR7VFyNLqbMgQlDzX5ii2ZxLY/4VmKXLISrD3MyelCEq562xSal7Aiggl+Zvt4hZxgDNgpWCj+Lz25Pe7hAlKAOPtUWIzMWIS+42Fl2bR8FRAyRGC0GXphK3uokPRVL8QVUs79p0OhaAkGNvhY+OpNqgTFCJNEpREnztJUMrdkCmmwJRoT55rc9j0ab+wklTRZU6Kr8yj9EaxPKdz6NHqNWR6xdStGsLX4XF7aG9vR6+X9H1+GyA2g3ybcDZBaTlyUlIF49i3FyfE5eo1frOd6vd7OP3KWxf2z6WgpDWlQ1yRnF/ixt/yTxn5Bsw5ejp+LjbYbni0HK1Bw1h3mMnW5ZOQMUvNmocrpNRuah/0YsrWc+yFNmE1k5odHuJzcWGSi9VnxJStx39bIfs/L8Y6nh6bJjYbp+Xn4hstzT/ophnxD+XaB73oLGns/Sdx67Y9z5zAUS0uY+e/xYW9JAOVWlkkEcGmT/uJz8WFCT5WnxGtXoPVbQIE2e9eIxoNwu98RTBCdoWFgQPiM6C0DC1WrXh8vTfkkltn5/RPuoSvU7ndA3GFVCOCxu+2E5+WW9kqu6MQuzeD3X8v1kcO/Js4Gz+J6Pi0lKynMUuNrdiMOc8gHCvf7QU4K6z0Hxml5YdifXHDY+Vo9Rph5YdMvxH/bR7Cw1HhDf5NH/Wj1qqE32HJ1XmkZWjx3+Ki6XmByXII4rE4cxL2NL0HhokMi8v6L+rfRpbe+E2MJdZDbgzxZiYJ8uKLL6LRaPjGN74hfL1VrEIUn/jEJ/jWt74FQCbZrFVdsnylBGlo59+Kn34BOPPLPjRp4tz4uekYsbm4MFEicJubdFsahZc76XpdYHw0QPFVuRRtcbL3GbG5Qd0jJRjsOg5+7QzhbrEba/hEgJmpWd78F7FNDd+tBTgDVrr3DAkTp9yX5CiWBxIqJeHBKCrJrwAZ+1uATY9XMNA4JmwFSBgOPitHeC6+Mhfi4u0xf4sDz6U5dPx2QJjMZikySllKgKIcNtQ8cUGViCxeAzNRhNuizWMmzaSVUpHa8EnFqk+0j5RuzSenKhNNmkb4vZ/4rzYp0hEo302T/RFhJTdZsn73zhEcPguxGfG5V9W2ItLMWgy5esJ9YnPJzU/4UalUwu3XUWWm/BYXwTNTHP+O2LOnVLo+c1yoPdr9RjyX5ZBTYxM+1JK31o5KLU7uCY9OY4vFwSCWtE7+oAvtvRpha8ChIxMMHVkQ02UuY1AZKO/eSCfKwQO/309T0ztH8XQVf17QarVyBKWECkbLf/fS8t/i6yWtP+pDZ06j+RVBS029nvhcjPCo+Ep9ZmkGtmKT8AbTmodKMDp1RIbDYkojeqj/q4TazRfE1rwq7ijCXpZB0w/aGT0hdgq39l4v8VhMWPVFn63H5jUTsKULn7SfC88yG56jZ09QqDwo1lztPxe3rKjYXkRGnkF4zgmw//PN2HzizGLPJTkUbMoizaxVbL0EsP5RhSD95mfE7ktvg3RLGjaXmU7E5mr6XD1pOi6sCpYe7F6zFGnMlKUnXZC4Acqml+eKXFp/2SdMyqu9V9lU7N8ntl5y/D8Th80kQuW5JoecWht7BNdTZVTSkggNRojJ7AvrwVltw1ZsZvCAmD1Z0eVZFF2cTf/hUeF8uvbDPnSWNOG5mj5XT/0HvEwNRIQV2td/oow0o5b+xlGh95J/sQN9VjoVNxdx4gWBQ5MR5aBvbFqctN/+237mIuJrZIsUyQTUmzKOFeGI99BPJ9/73vfQaDQ899xzwtdbxSpE8dxzz/H4448D4CCPOtVFy1dKkIb2CH4DJ9H8o250NvGcPzczx9xsXJgk4b0qF2O2nsJNWcIKbL4bC3BfmcO+z4qNwZU7XFiLzTR+u0VYEWrTx/1MT8wI73cUXpqFa0s2XTsHheeQ3qvz0Gem0/XbXmHyzURniHSz3KKXjIISKESowWNBKeu2/Z8/DuniDBffdfmgVgnvO9nKTPhvc9Hx2wG6fy92YDCz2IxBwuo5eZ1g+9QFVSEyF+qYm4Nwr9hFLG4T+sx0zIU6JrvE6qz9sA9Vmkq4j+RfZKf4SqU9ihKoGp9vZfyM3By1/pFSpgYjnBS0VBWdoyXRtXuI3Do7M+FZ4TplN+WRkW+Uiu/Gx8pRadXC7ddcqKPmvhJGWibE5jjMq3Tt//wJouPLz10MeTp8NxZQuDlLWCzGtSU7IUAgxkeIDEUhFidNL9ZFOn89iMGRzmnBg6jjZyKL56YCZNfSjnW00QZAWVkZp05dOHVYWbxjSEoLCUoXcZMQQanhowHmorHUBvBydbzXOdEatJz8ftciNvBS1m5JjJ8OsesflnhpS5y2PPilJlSIL9Y2fqOZkptcQgQlgNBQjNnwHL37xZm6Yx1T6K3pUmSV4JlJ5iQ8zseaQwqJ5IQ4WWXgwLgUucW3tQA0ClFJFLqMNLQ6uQ0mQNjOCaDtZx2ornUJE5RA8TGNSZAjxppD4lYgCVTd4UatVUnXk8HaB0rR23QMHDgmXEf2fqYGwsRjcTTp4u+x7+DI0uTCc2Aldob6jDTUWhXGfL1wfavPiPeaPOHNH1HCXxKhoRhnftUrTOwBpT/ZPm6i903xOpO9YYwSSiqjTSFmw3P0HRDPW+2v92EuElc0a/lhL0PHx6TynOzmZbKPG7IgcGcp+78g9n5cVzopbHAyfHqcky+cJ3+pVGxSXU138TFau1r4/ve/T01NDR//+Mel7nMVqzgfPvOZz/DZz34WgAwyhQhK/u1FZPoyaHmth37BTZa6D5Vw8OstwlZOSchYFAEc/3Y7Fq+B8VZRlg4MnxhnqCkofI2+A6MUbsoSJoUATE/MEOwUn0t07R7BWmgUJigB7P2nk+RstEkRYmQsnQDWPOSl+X96he36bGUG1OlqdBlynxrhEblT1y0/70GXkS5VJx6LM9kn/k5kyVmGXD3lN7so6Atz+CsXzjqqakcxs9E5YQLRSu4lJnkK/vT/9KDRqOndJb6RLktQAtDqNBjtcu/dd2sBs+E5Icu3cF+EPf8oR5hr/OZpDDniBCWA0ZZJKZWn4cZJZq+bY7xDvP32Hw3i9FuE88NIU4jxzhAt/90mfI1DXztDeEz8udt+1k/bz+RkyJPKIBV3FDHZGxYmGW58vAKNVi20uXgR19PtOcaJEyfQ6XREoxdY930Vf3HQ6XTMzSnkR1EFpc0fDzA3PSc8FuVvtmPOU6yZZCy8In0RaWumXf98HL1F/CTmiRda8F7vErZCIgLh4SiDx8UICADjHVNkFBqECUoAQ8eDUkTLyECE4y+cITIoPvEKNoel5hPuq7PRGjRSxDSjQ4fWIL/EK/w+gL69/aQZNbT+XPxU+1xYbi4RCcqvFVXvcJFmlLDNXQGq7/RgKTKx/0stRAbExjzZQx1TAyFic3Lx6nxjgKiE6oOoXeRC6DK0aHQarCV6xlrEnt1YqKf0Xbkcea5NqLxouRQi0PyTbmGCEijKRc6AjW5BuxWAYPsk1iLxw5WRvgjR4Ax9+8Wvcfon3WRVWIWJYz2/H2aic0qKlCdzYDd5DQD0ChFO9DvCWW/Fd30Bw8fHOPni+dfsq1UbcRRaOTPUwne/+138fj+PPvqo1H2uYhXnw8svv8wDDzwAKKrhIgQlz7U55K9z0PpqD32CFvTV97k59XK7kOXOQpxapo+cjdaf9DFweFSYHADQtWeQqR7x8n2HgqRb06Qs68KDESYlvoEHj02QVW6Rsnk78OxpHNUWKXWgkz8QI3ckUXm3i/Zf9wvHV5elI02vQW+RW5dQnkE8vs0/7kGfmSZcXpOmITYTIzQsfo2DXxRUil+Ayu0exjunOPr1Num6oqi5r4Tp8KwwgejUi92ckhC1AJgNz6KeFT9Q2/PGCIZMHd2/F58LyxKUANLNWuIxOeKY62onzAkqlEVh3+fkSCpHn2/D5jZJ5aD+o0E0WvH4TnZFiY7PMN4u/i3X8+YIBRsdQgQlUEhvQ01jtEsIphz+ajMgPofu2xcUHkOSSI4J7ndlMzM5K2z9tvbDPtLMWnZ/tmnZ1HKV6jbOFB+kubkZo9FIKHQBRU0koIonj3H9L0Kj0RCLKS/5Im7CmCa2Ib32r4qZ6Atz8oWu5UlNwKbHfajUKnb+f/Mb0ucjKPnvLMDmMdHyag8DB5XTMvHZBezCcxCU1n64hI7f9TN46KzTNUuF2QiZbqOUbdk7FcYsNaEhuQ/emgeK0erVHPg38cFw85N+5T1ewAWIug+VYHDoLug13i64rsnGlKWTsiVreDogpdKVs8GKM5BJ4zfaVniX7xys/UgpOku6lEeuLOoeKsHg1NH8o04GD4nZ/xRenkXB+ixpWz0Z8tQ7Hdn1cmpd6z7qo+W1buH8uvFTiY0swXeffI/ChDAjbPxIBSde7BSW7TzmeIPeQeUE9HPPPcf73/9+oXqrWMX58PLLL7N161YADJi5SHWtUD2730jpjUXs/cJJoQ3vwsuduC52MtY+JWw90fBkgJnIrLCdQlZNBkVbsoVJn8k6otZr73TIqLYkseGxctp/2y9MNMvbbKf4qlyCbVPCyjUrQcNTAUJDUQ4JnmR5x8KgKHv1HxxmuFHstH1K7UZi3ilL1ninwmCHug8FGO8KXdB5ZMPTAWIzcXb/gzgxue5DJUTHZ4VVi5Iw2NXShLt3Iux+oxSJLGedjfz1DuFFzpyNNkquyWfgWFBYJUn2Pfq3F6G3pwsreIbjYfZofsbs3Czp6emrRKVV/NGQkZHB5KQyJogSlABqP+glMhxddrM3iY2frECTLv49470xl9w1dqnN/toPFNPz5giDh8TJATafQYoM806F3qaWJnlU3FGEzpomRRaWfY8rQWCHC6vHzMFnj6/IZuydhPzNdky5eppfFlQOQxlPomMzixVgzoPMChM5a+yceKXzgtrKvR2oeaAYU46BXZIkKhlUbC/C7sug5X96hVWenPVWPJfl8KbgZmQS+my9MHHsnQ57QE6tq/ZBLx2/6RcmZq77ax9pxjR2/Z3Yu/ffWURmaQZtr/fPE5fOBz2s/6symn/YKZzzT2bto3OwDYCvfe1rvO997xOqt4pVnA+HDh2irq4OADM2NqmuEqpnLtRRfpuL/V9sFuKROKotlL+nkGDLZMpGaDlseryCmegc+wX3XCxuHZ6r8qUO8tnKTIpt0p8BdFk6ohIH0EHZtO/cOZiyaloO1lIjlds9jJ6epOmFC2dhtulTfqYGwuJWeu9g+G4pYOjEGKNNYmNWUu1GZm7rvS6X0FCUPgly8TsVmz7tZ6JjimMirh9/wDXiszEpVaWqe1zMRGLSpD6dRS1MCnonw+LWMd4XFeYN2spMFF3sFO7DtjITgdvdiornj8VIUZueSLxHwQOpnmtzsBYaOSxodR6NR9ml+R9m52YxGAzvCKKSOI3tAiEjIyNFULq58k7seQpBSZ8Fzpr50wrmYiOWUuVneZutOGtMHP9OC6f+qw9DrnbJsqD8HmMW7P5CMyf+pwvnGjOgEJSMLgOZFfNlHZVGjHkK4SnYOUl8Ls7ASSXZGl0GMgMmhZykUuGoMmHMTzAajZB/iQWdNR3PFXkY83U4qubvKdNvxOhacE9rMsAIGx4px3+bh9yLM5YtCwoRqOHpAGs/ovhrWn1GzN7FZQ0Ji0tDlvJ355oMGp4OUPye7GXLJlH7UDENTwUwZqlTZZN/xri4rNlrJNNvpOYD5TQ8HThvWaNLKZuEKVuP3qZbXDb5rPn6RXZrjmoTRpeRXX/bxMmftJ+37MIYWn1GnOsXx3DhPWX63xrDmfAssdn4W8qeL96bPu2n6v55z26z14jVt3S8cy/OIG9T5pJlzxXD+r8qoeHpwKIYOqpNGPP1S8Z7onMyRVA6Z9klYqjSqObb4TJlpydmaP3VvOrD2W32XDFc99c+xft0QVyWi3fhFZnkXWJNxfDsdviWGLrUbPxUBeV3FS5fNhHvmcicYjG0IIbLxts43z5Fyh78VgstP+9adEpuuX5vrzCj0anJrrcsW3a+vZSy5n4vWXWmRWWX6vdWn5G1Hy1l85P+ZcsujOHGT1aw4ZPly+aIJIpvyqXh6YCiirZMjkjGcOMnKyi9vhDnpuVzBEDmGiPpljS8V+efs+y5YhgejRIdnxbKERjh4JdaaPtNN7NT8+TV8+ZkI7S+2s3Y6RBmr5HszVasC8eqNeaz4m2mcvgiNKShUql4+umnOXDgAKtYxR+C06dPpwhKVp2VGwNbUz+zlRkwFMxbPjiqzGBQ/t0eUHLZ3mcUgtJSZUHZoHdUmel6fZBTP+yk8/cDmNyLyxrsi8smMR2eIRSMLlGWRWVNbgOeK3Mx2HUYCgyJsok8ZHhrWYvXgCFXT9l7ilj/aNmSZQ0FBmxl8/db9X4XDU8FlH8znPWsBQbsC3KW3W/EkKtn/SfKWP+xssVlc/WLyp4dw4YnA9R+0HvOuJwr3ha/gboPeKn5QPGishavYcl4519hR6vXYM4zLIrL+eLdu2uEE//VRvtvB85R9twxzL3ItiiG5yubjPfcTIzpiZlUDBeVPUcMK+4oYsMny+fjcp6yyRgWXpGZ+t3narPnimHDUwHW/nXpkm32LfEuMXPmJ+0MN06es80uGUMkyhpg8NhoiqB0dps9ZwztyrPUPFS8fNkFMSy+ISf17Oft94l4l28rZMMny4VyBCjWc/FYnNiCU0nnyxGpeBuUPy+XI5IxPPlyB80/7lw2Ryy+Bx3mfP2yOWJhDBueDlDzgG/ZHJG8h/xLbDQ8GaD89sJlc0QyhoWXZNHwVICCS+3Llk3GcP0nymh4MrA4hueMd+LvBQYqbvOw7uO+ZXNEEq7LszFk6VI/X67fR6eizE3HGGubFMoRoNgDnvphu1COAOg9MMSJHyqb1jkX2ZbNEfZCOxvn3oVWo2V2dpYNGzawilX8ofB4PCmC0o3e27BlJta8bArxIQljoZ4Mt9K2nfVWMitMnPx+m0JQ0i8uq8/VYy2ZJzrZfAb02Xr2PHOC46+cUcrqz18WYKx7irnpGIOtCuFIn61fZP9lLdGjz52v66gzYco14L40G71Nveiezi6bvIf6R0oJbC8md7M19bMMtx5j4eKyehupuGx+MkD9I6VCZTMrTBgL9Wx+MoDnWmcqhvNlE7nlrBiWby9g8xOB1D2fr2wyhtXvK1XmhAtimCqb/OtZMbS4jBidYmWTMdzzzAma/qt9cdmz4r0wLhluPZk1YmWTzzo7PZtS9V6qHZ4dl/WfKKPyXpdQWfRKe3HWWxfFMIlzxhCovNdNw5MBrP5lyi6IYWgonCIoLWqHy8RbpeGcbfZcMZwNz9Hx+8EUQWlxOzx3vGs/6GXzk4FzttmlYpi7MYPcTRahssl4r/9YGWW3FwjlCFDW72Kzc0I5YmEMk/9+vhyRLHvihU5O/biN6cnpZcsmY5jlzyDNpCVnXaZQvweoutdD/YNe7HW2ZcsmY1jzwWI2f9q/KIaLnvUcMVz7ER/rP1EmVBYg9+JMGp4M4Ls5f9l2aPMZ0OfqWfsRHxW3usjdmLFsjkhe05Stp/jKvFQMl+v3kwMRomPTQmX1Nmj6z06af9pBeGieBHa+fq/Xw+kfdxNsDqPP1uPcYFs2J5cPrcOAGbVazRNPPMGhQ4dYxSr+EIyPj6cISpZ0K9d4b0j9zOLWoXPOq5NYS42gU+x/rD49Gr1GIQ9FFcKSIW9xWZ2SntFZlL8PHx3n+Pfb6fhd/7JlkwgHo0RGImeVTfQL3eKyhjwdxdfmY84zYHHrzltW59RhcetAB4FtbtZ+zIcu6X6gm39WUIg/luL5vunbmk/DkwFsZaZlyyZjWPdQCWs/7Ftc1qJedE8W9+IYbny8gqr3us9Z9lzxNrt1rH2ohKr3ud8SF3PhuePtqDGhs6ZhyTecp+ziGI6dDnHkGy20/r5fieHCsmfHMIGsOsuispZi/bLxnonMMj0xu7gdnifenmtzWPexMnSFb22zS8UwtyEz9bsXt8Ol473pU37qHilZss2eK4Ydv+xltGlSqGwq3qol2uwSMRw+NU7f4VGhssm4bHrCT9X73Odss+eMYZaOwsscqXs8b9lEDN3vymbdx8qEckQSsZkYswlF3eXKpmKoU97TcjkiGZemH7Rz4uXO5XPEghiaC0xkFBmX7/cL4r35CT+1HyxdNkckkVVrZNPjFfhuKVg2RyTvwVFtYdOn/eQ12FI/Wy7eax4uYVNifne+HJGMt86ipuqeEuofLF02RyThuSqXjPz5vHC+HKFz6ohFZ5kOzxJsnxLKEQDHn2+l6eU2oRwBMNIUTK15Oaoty+YIW76FzXPvRqPREIlEWL9+Pf/b+F8lKZWUlKQWazalXUntbWX4b/MAUHGrG98NhegTG7bVdxRSeVsh/u0FeC7LofT6Avx3lQBQ9h4XvhsKU8Skqm0FVN5emLpO6fUFVN1XCiHIr7JTdqOLvAZl9bTmjkIqbpkvW3ZTIZXb3WCEjBwjaq0a12ZH6h78t7pTZctvdlF9t3K/3ityKb60kOEzY7z52Waqd3gov3n+491/m4eaHUrdwsuzKLvJhf8WF80/7iQWi+G9vGhR2dq7lbLONRmU3eSi6g7lOpX3KAs14RHlQ69yu4fqO5WyRpeRsptclN+qbHAF7iql7CYX5oIEuas6i5q7lN+DEcpuchG4U/l9FbeVUHaTK0WoMGbpQUVKGcl3YxGBu5V4V2/3UHaTK7XhX73djf82D8MnxwkPRvHdWETVe33KPWx1UXaTi7yLFDJOzQ536h2DQoSZm05c49oCym5yUXx5jvJ77/VQfvPCeLupvkuJaUaOmbKbXPiuL1De+Q73orIL4x3Y5qbs3S4CW5W6Ve/14btxcbyTMcz0KzFUaxSvzMCOkkVlF8U7S03ZTS4qtpVgyAK1VoW1YJ5AUXOXh8o75p+17CYXgbuUeJff6qXkChfea/LJ2WCl+k43ldvny/puLKLyXqVs1TYl3tn1FqJjM8Tj8UUxLL/ZTdVdyj35by6i7CYXhZdnLYp35T2u+Rgm2mzpNfmU3eSi5Grlg7b6nsXxTjNqUzF0bXYqbeumwiXjXXuvm0y/kZwNVqXN3q78vPLe0nPGMDo+w9xsjLKbXJQl2qz/Li9lN833m8o7PIvarPvifIovVd55xR1Km02SOs6Ot+/GIvw3e9GkqbG5TZTd5EqRas4V72SbjUVjaNLUKQJZ7VlttvxmN1WJuJTdWEjZTS7WPeyj/Gb3W9p3+c1uqu9R/u69Ipeym1yUXpMPIfBckr9km12YI0Bps+YsIzv/73EGDoyfP0fcPR/v7r2KvKPvOuX3LJUjFsZbZ0mHOJB1/hyxKIYqxXpluRyRRF6tnXg8zmx0dtkckWyzHb/tZyY0S9k1YjnCmpeBSqVivFc5vXW+HJF3USZlN7mYnZpj/+dPC+WImruKAcivy8Z3YxEbHisn029cMkcA+Lcn4m2EmrvclF6ZT+Ud8/dUdqOLwJ1K2fJbiym70YXZa+Ry9c1cecWV9Pb2snbt2ncEw3kVf5oIh8P4fEquU6PmkY/8FRUL+lvgjmJqErklf4uDiq1uym8oJHB7MRW3eheX3VZMbSK/ZdVkULHVTSAxR6p8Xwnlifw1dGSCqruKqdmhlDW5DVRsdeO7RelDFXcWU7HVndo0TjekYc1NLJgaUO4h0YfKbvNSsdWd2siu2eEh3ZTG4W+dIdwdpvwWF/67lPxWdYeHiq3u1MZ2zQ4PVXcVE+6LMN4VIs2gVeaGgP89RVRsdSuWaUDN3W4CdxSnntVSYCZOnOCpMCXvyqNiqxvXRdmAYi+xMC4Vt3movteNSqVCrVNTsdVNyVWJcfZu95LxzrvMjkqjIi1hj1Z1X2kqhql436vUtfuNVGx1U7Qpm+ngDGkm7aKyC+NtyNVTsdVN2VYlLjnlmahUKlpeUU5w1N5dTNWd889asdVNxXYl3r5blHdjKDAw0hRKxTCJ8ltcVO5QygZuc1Ox1Y2jyoyz3kLJlQWLYlh+iysV7/IbC6nY6iZvs31RvPf84wmOP9+hxDARF+8VSrw9lyTy/j3zMTRkpaPVaVIxLNzkpGKrm9J35yfi4HpLvF0X5bHm/cXkrLNRsdWN/z1F54z3whjOzcTQW3SUvEf5e8WdxYvL3llM7d3KsxrsSgxrH67A5DZQvs27qH2fM95n/T1JCDlnvO9JxHuri4qtbuoeUd5r7T0eAtsW/J7bPFQlxkPfdQVUbHVTWJXF3EwMk12/6N0sjHfx5blUbHXjvUJpszXv9ZBfn4XrysJUDM+VI5Q4KPE22NPRpmvOnyPuKVkUQ5VahTVf6fdL5oiz4t3waIDANs+yOSIZw+HGSaEcsTDeM1Oz7H3m5LI5ouI2D1U7lOeZicyi1WuXzREA7i3ZFF9WQJw4ao3q/Dlis11pLzcVERoMgQrcl+TOlz1HjqhMzMUDO7ykGbXMRpVFsfPliIo7SqjY6ibcHWaqP0K6IU0oRwBo0zQQV4hnyRieK0dAos3erPT7wQPjQjkCFDu6its81LzXQ/1flZ43RyyMYcUdRZRckb9sjqi9241BZeCK9TeQm5vL/v37V4lKq/iDcPXVV9Perqix1bOFursDlCe+27w3uAhs86Q2tmvu9lB1txfPNTn4ri/Af7s7lffLry8gsM2Dc41C+Ki9x03lnd7UdQLbi6m+T8lD9mIrgW0e8tc5Er/3HGXvdoEeTDY9Wp2G4k2JPrTDRWD7fJ+vvNNLzT1KLslZl0nFjR6GT4+x71+bqby3BP/t8/m5crs3lYcyK0xKjr65iBM/7CI2E8N7VUGqbNXdXmoS6xL6XD2BbR58iXG2fJsXtUZFeEQhrVfd5aX2ngX3v81D+e3KPfre4yGwzYOjQsktuWuyqLp7vqz/djf+RA7z31JEYJsnteFv91pQaRR7pmTZynsT48l1Srxz1iW+URPx7j88ymRvSIlhIu8XX5ZDYJuHos3KwkT1PYtjqNVpmI0qh1oKN2YR2Oah+MqcxLMVvSXetYl4a41a5VkTa16V9yyO98IYBrZ7CNzsIXCrck8V24uXLKu3qQls86Azp7PnmROU3VZMYJsnRYqovaeYqh1nxTvRZtOMWmyejBSZIdlmF8Y7kKhb8Z4iKm70UHZDIfkXO6i910Pl9sXtsHK7Mg/zXZtPYJuH3E12IsFp4qo4lbee1WYT8XZvySawzYN7y/w4G9heTMUdRakYpuYqdXYC2zyUXKPMa6ruXBzvdHNaqs06ajKUNptY8wrs8L4lhrXvLU6R4gLbPJTcpPy8/A6lHabK7vBSe08x0eC0suaxzUPZrcrPfVuVskkSzdnx9l5ThPdq5R6WyhEL4115Twlaoxabx7xsjqi6U4nRdGgWrU67fI4AXA1OAts81H+gVIntve7z5ojANg++xDjr3lIglCMAAnd6yfRa2PlPx+nfN7psjkjGu/MNxW6lPHFNOHeOSJKuau72YM42EIvFQX/+HFF7n4dAos2qVEr7Xy5HpN7j5XnEVXFmQnPL5ojAHUq8W1/rITwapeRdLqEckZGvQ6VSMdWnrHmdL0dYS5QYqlUqDjx7WihH+G5R/p5Xp7SBtR/xYQ+Yz5sjSm5yE9jmwViop+4DXnzvyj9vjghs82APKMrOV111Ff39/dTX1xOJ/HkoY63ifwdWq5IHtWh58AMPLWqvlTvm85CtzETVXcX4ri+g9t5iKrd7F+0VVN3jpSbxPatz6qi6qxhvYn294s7i1Ldj8NSUMkbcm+irOuV7y5dYgy690UXVXcXonAkynzWdjIL5AxmVd3qo2JYYT24qpOqu4tQGdM3dHgwOPQefa2G8PUrldg+BxHVLrs6j6q5iHNXKznv1PW7l2ysKg8fH0JnSUuOs6xInVXcVk1+vfF9V3e2i6q75uDgDNuKqOMFTU+Svs1N1VzGuS5xK2TtdZ8WwhOp73KAGdbqKqruKU3tLgbuKF8UwsMNLdeK701KuzDl1VsUerWKbe+l4Zynxdl+Sw2RvGE26Wol3YuO99t7iRbml6q7i1DibHXCgUqvo3K18lNbc46FqwTyycrsHf2IM8V1fQNVdxVhLjUx2Ram9w0PljsVlA9sSY/JVuVTdVUz2WhsWt46yGwqpSowJoIz9VXcq7aNosxLvgvWOxP0pMdz/uWZO/qCLqrtLqE7sSeTWZirPepkyr6m8oygVb7NTR7pZS00ixzoqLUrbSox5/u2et8TQe2Uede8vxlyoxNBzrXL/Zbe5qLxzQdkFbXYmNIvRoac0sUfke0+izVqWjnfdw2WKyte1SptNkjxq7j5HvBfe413FZPqV9l9z7+J4V+3wUpmYz3kuz6HqrmJq36fcY/XdbqruPiveiTWvgvUOqu4qpmizk9nwHMZs/aI2W3V3SWrNK3utTenLV+YmfubCfUkursS67VI5YmG8jZl6ZU35PDmi7NbF60tqrZpMd+JA/FI5IkGMSbbZTR/3U3mnZ9kckRxXx06HxHLEghhOT86w77Onls0RVTu8VCXmhpGxadKMacvnCJJqc8WgUYFqmRxRrFf68g0FhIaiqLUqiq+cn9+dK0eU3piI9y1uTE49M1OzoDt/jvBe50rkkzRGT0+SptcK5QiAdIOWeCyeUndbKkfAfJvd99lTDB8dF8oRAOPtUaq2lVB7n4c1H/SeN0ck411zrwfX1U7Kby5cNkfU3O1Bp9Jxufs6ioqKOHDgABdffDH/m5A3LP8j4ZZbbqG1VZE7LqGGDJyMd4cYOKKwI3v2DpNdk0kk4WAw0BhErVXT/Eofax4qZi4aY+CoMth07x4ib52D8R5l43bgaDDlxW7Mmr+mymCg68AEKo2KYItyUqz30Cg627yv51jHFOY8A5s/WsbRl7tIN2sZOj6GSqul7/Aohsx5n9Fg2ySTiQ3wzBIzE/0hOn8XVO5p3xCWgnmW2mjLBFOJxjtydASbx0zv8SGCTSE6fztIpnd+cjJ0apyZScVTfPDUBDmdU3TvVlRqunYN4qiwcvw7ijTc4Ikx5sLKgnNoKMRY5xT9BxUJ1q7dgzgrMznzk37O/KSf0pvnOzUhGOucYuDwSKLsADl1jpQt1MDRIOr0eQ7beFeI4aaxxD0MULApm+EWRTay7/AIaeY0ml9SJMir7nMzfFqxZOreM4Q6TU3wpPJe+w6NpGKYs8HKWNskY12hRMxG0VnT6D+YeDdvDmPKnT8xMto6SabXzIbHyml8vh1zroHehM93z75hrIXz8R5uHic6psRwoGkUh9dC9x6lMXXuGsBRajlnvEfbQ0z0h5idmUndv8M/f+Jv8NhYSv0mNBRLxTs8BKd/0kV2rR0S/IGBxiAq9bwl4FjnFIPHlPvt3NlPQUM2sdk4/XvHMGUb0BjmrQfHO0MMnxhL3MMAqLIZODHOwIFxiq/PIT1jvs2Od0wx2qqQ/Tp3D6PRaRhJ9I2e/cMUbszCkvBQD56ZZLxbucGeA0H0men0JuO9bzilrAAQm43Rs1/5PUOHh7G4THTvne9zNs/8qZtwMIrBpsNRbqP79z2MdWamCDJdewZx+BbEMNFmW3/cB0Zlk6h3X6Jsos2myh4fIx5LqBqFIDIxTWhE6XPduwbJrrUTTuSI/qOjqDWL2+zgsVH6947hqDaRt87JWOLZ+w+PojXNp7/xzhDDzWOJdzOINkONPkdpp72HRtBZF+SItkmCbUrb73lzhHSjluFTI+RUZTHaPYnROs9kDZ6ZzxF9B4IYnXp6DgSVa/aHyHSZ8d6QS+uP+86ZI3r2DiXawFAqR5i9RkbaxomOLJEjdis5AqB/7xgWt3nZHJHEQKNyb6dfUdi3580RjfM5Ys8/nqDqfZ5lc0Qq3h1TDJ8ep/eNUaw+45I5Ihnvsa4QvbtHGeuJ4r0ym/G2pXNEcoFm4PBYKkfUPVRCsGuSNO18H1uYI4InRxkrs6ZyRBylzSUtLM/OEWOdU0qbVano3jtEzlobxkwDnkvzlswRAF07B8iutaOKahg+NYHOoiE8PDP/rF0hBhsTOeKNAfLWO5nsU9qs1+Rnv3U/o8FR7Hb76qLNKlYEo3F+nLxCtZWuPUNY8heMnSfGU3lo9NgoNo+Zrr3DTA1FsRUbiUXnVeYGm8aYnlDa71TXBKNnJunZq+ShZN42uQ1MtYfpbxxlLqz0i6mBMKNnJulL5v1dg+TU2Wl4NMDUQIT+I6PEk4IqYRg9Mzmfh3YqeSg8EiNvs53p0AzBlimm2pV+H2ybSuWhnj0DxOacBDuVn/XsG0ZnV/J+49fbCOxwzc9V9g6hSlMz3hwEoHf/4rw/2jyRGj/6DgbRZaQz2KjU7dk9jGnBieDhk+NM9UXo+u2QokJzdU4q758r3uFRhXQePBJktCiDrjeUGHbsXDxXGTgeZGZS2eAaaQsp8d4zQPBUmJx1tkVzlf7GUWLTyjsI90UYPTNJ/8FhDAUGBptGsEzO/96+Q4tlk0fPTKbmKt17Bim+WlngOPXDTnr3j6AxzI+zwTNTqblKzx7lvodbJjEY1EQmokwusF0Itk6m5iq9+5S5SvBkMBH/YbIClpS11MipidScvvdQEL09nf7DyevMx/vgsy2UbytkalBps8NNE1gKjam5YdeuIWzu+bnK4PExdLY0xttDjLcGGT1jpTsxznbsHFg0Vxk4HmR2Shk793z+BIHb3Iva7MKxs//IaEqBMTwC0clp0k1pmHN1dO1U5ipJe8S+Q6OoFhwRScbbc2lu6u9Jcu05452Yq/S8OYi12ITBpsSiZ9/wW9psMOHh3rNvhDSjluHGEbp+O0Th5U5MydM7wMipifm5yuExDA4dvYeUd9O5a5D8tXY6dirj2FI5AqBrtzJXOZ6Qr/bdWrBkjuh8Y36uAkqbNeUYMNjV58wRZ8c7HgO9LY3J/gjmPMM5c0Qy3mrN/Fw8HoujtylzjHPliDTz/Nww2DqZyhGTw2FUZ8RyxPHvd+K+JHvZHAEwcGQcU46BM78aINwdJn+LY+kccTLIaGkGPW8OMd4apuW1HqEcocRQ+Z5J2jUulSOUd6PMVQAOf6UV7/V5LHSlOjtHKPFe3GZtZQY8V+QvmSMAeg/MxzupvJQ8PnWuHHF2m7V4jMp3zP90L5kjUvEejNL1+iC1D3uZmZw7b45Izg11zVo2rG/glZ7/4s0332Tbtm18//vfZxWrkMETTzzBL37xCwBKqMKuymGkeYLB40EAevYMEpuNM9at5ISevcNoTRraXusno9DAzOQsw6cVe9qefcOo0tRMJL6DuvcuyPvJJp+YpvUdDJJuSmMkYfPRtXsI04LTrIONQazFJhoeDXDk+VaM2Xp6E9ZtnbuGUifPk2WTeT+n3kawc4KenclvmyEyvfN9qO/ISCoPjbZNMXxqnMGmIUJdEVpe7cVRvnD+MZyaG0aCEYZPjdN/KPndOYgzYOPEC4oadO/+xRZDw6fGU+uGXXsGyYnO0fn7ITp/MYT76mzU6fN5f6R5guETiXy8d5B4nFTe79o1uCjvj5wcT8W7d/8w6nQ1Y6fHUu/GkJlOx68G6WCQsq0FjPckct+hMXS2dAaPKfmte+dQKg85ajIYPBZM5f2hpknMeYZUzuraPYx1gQpe/5FRsqszWf+xMo5+/RTDpyz07FOev+ONARylGQvKzse7e/8QOVWZ9CTWYLp3D+GoWBDv/cOpuUokGGO0dTz1966dg2TXZKYUgnr3jyyaqwyfGk+12eMvnCF3bRahofk2u3CuMnJqguGTSrx79w2i1quITcfo2TeMJk21aB1r+PgYwfbkWuAIGr2G4IkgfbtjhEemF+X9oWNjqXj3Hx3H4NDRf3Q89ayeK3OxFSttcWGbHWkKYnGb6D2Q/MYewuaeH2fnZubo3qPEd6pjguFT4/TuT64bDuLwzcdwrHMCmzuDrAorza/2KKf7E2W7diltNhXvA8PEY9D2Wj+gWJ8l22z37iFmauZSFns9+4YXzVVCQxHCo8r9L5UjUvFOtNnBA2NkuPUUbHaeO0ecFe++g0GMTh06m9L+z5UjUnOVxgmM2Xr6jgYpWudgpGMcU+a5c8TY6TGGT5npO6D05dG2CXJr7ZTclEfLf/eeM0f0vjk4H+9yC0QUUtLgyVGmR5SyS+UIgLGWCD17ls8RkXHleXr3j6BOV3HmJ8q7OV+O6Nk7lMoR+/61mYpthcvmiCSSbbZv9wj6XP2SOQJI5YjRE1OER7rxXOFkrG088axvzRHJucpE61gqRwR2uAh2TZDWr11Qdj7eY92RRW1WpVX6vz5XT6Qv8pYcsSjeOwfJ22jHWmimsMF53hzRvWuAuekYoaEIvW8OY8zVER6eV0k+O0egglCPEpeCWS+OTAdDI0NYrdZVy91VrAhpacm8p+Iy1c10vTGUGh8Aeg+MpL5Rg+1TDDQG6d8/RLBlErs/Y9GaV8++odRcJToeVcomvpniMYjH41iK9Yy3RenZOzy/fxFV1swHE2vsXXuGmJ2dY+0HK5joDdG9Z3HeHzw2xsjJRG7ZN0RsLs54T4RMv5npqRlGWiYJ9yr9YbAxyEjie6r/0AjqdDWT7YkctmsIfbaSh5pf6iY+E5sfOw+No8tIZ7hZmRt2/34QY858Huo7OEKoX8mTwyenMOUE6T+k/N7OnYOL5ob9h0aIjE7Ts2sEnQVcVxWk8kXHG4PYS+b3OHv3D6fy0HhbJBVvgK5dw9jL5+c1PfuGUt+o0SEl3gNHRhk7HcJWZsJZZUtZMnWflfcHGoMMNY2hy9Ix0jLO7PQc0XGlcNfOoUVzlcFjY4ycUuLdv38IY7aOyu0emn/UTdfuwUVzlcHGIMEzSswGDo+i0WkYax4HYkwNhhflt/5Do0wk1lUGjo2jt6czdCKZ9wfJqrGmVJv6Do0QSqxjjZ4YY6DQyMCRxFz894NYE84Pjd/uwHNtDtOJvD/ZOc5AY5DexNywc9cQ9gVzw94Dwxgc6Ux0hJkcXNxmu3YNkbVg3bBn71Aq7+//fDO+rQUL2uww0ak5ouPz8V6Y96cGwxiz9JjzTfS+OURsNs5k4nm6dp0j3qcnKNzoSL2rUPd8XNIXzFUGDo8y1pHcuwuSW2/HkKm00643BjEumKv0HxpN7QENnZjEmB1k4Ng4nb8eJHutjYwFe5x9B0cIJecqzeMMNJroPajMEzpeH6DoEiddu4YSMTx3jgBlHmkvy6D5ZWUP3HW1c8kc0bV7iKyx+T2fnr1DZBQa0Dl1RBPvZmGOmA7PpezTkjkizaglEpzGmK0/Z44ApX8u/J6Zjc6hS8xHzpkjFsxVBg6PpnJEdHyagcagUI44/r0uXJdkLZsjACbbE2127xCTXVEc1Zalc0TPfI4I90Y5+VKXUI4ApS84J2ZT/ISlckTy9yRzRNMLHRRc7ECbsXSOABjrDCXeq5IjDHk6Sq/NO0+OSLTZBcpJxIHENP5cOWLhHmffoREyyzIwOvWEesYYaDx3jgCl30+PzdCza4SMPAPTk3PnzRHJtW56dGy4ZDOdnd/njTfe4J577uHb3/42/xtQxePx+PLF/rh4+eWXU1YjWRRQl7Zl2TqWUiOOCgvtvxpP/VtMUE3CmAXhqfmXHA+f3xfZd3MuNo+JNz/Xgkq7mMcVO8ck2VFlovxmF9HgNPv/rWXpX7wg1Gs/UorOms6h51pTm/7LYcOj5cxNK0ofolj7kVL6jwbpen1IuM66j/ro+F0/AwfGly+cwOYn/AweH0uRG5aDIQvqHg4wMzHLm587JXydDY+WExqO0vj1NuE6sljzoBdTjoHmH3dKxeDtQN5FmUz0RplsvbBKKg1PB5iemGGfoD/yimBUThKOHB1JKXa9U9DwVABUsPP/ivvkSsMImz7qp2v3oHD/NGapWfNwhdy7McLGj1Qw2R3i2Lc7hG+v7pEShk+M0/HLQeHrrP9gGa2/7Gb4qJjvdd5FmXguy+Xwl08Kt4ENj5Wj1WuE300yZrPhOfZ+5qRQHdeVTnLr7exdzsNXNf9RaXSohJ9h0bhiBN+7czn1/W6hum+aX2NsfIzq6mqOHDkiVGcVqwDQ6/Wphb6rVLcJ1Sm/vZCTP+5KESxkYLCrU0SB5Qsr9rftv+6nf19QqMqGR8vRGjTs/MxxsfszQMOjAWYmZ3nzX8TmHSa3gZodHk6/2s2g4HwgZ52N/I0ODn6tRThu7muysRaZOPKcmH80KFYYphz98nlqAdZ/rIw0s1Y8ZoDrqmzy1trZ848nhK+zEjQ8HSA+F2fX3zVd0OvIwpCrx1ZspHfXyAW9TurdXMh5B4rNl8Gpo39P8IJeRxaFl2ThviyH0dZJjn+n/YJdp/r+YnRGLfu+ID6/XUm/Kd2aT1aZld3/IN6eU7nj2fN8S56FwsudOCssHPyieJ21Hy5FpVax71/FYmDxGqjaUcxUf4TDX2kVqrPuwz7SbYrKXZJEuhzWf6yMgWNB2l8bWL5wAgb7vGqTDLzX59F7KEi4e/l7OxR/g/H0YTIyMvjKV76SWsNYxSqWw6FDh1JWI04KqVVtWraOPldPTrWF9p+L94NUXRsp0oMIXFc4cVbZ2P95sVxgLNSz5n1ewkNR4ZxT/X4PGQVGjn6rlYl2sTWv+kdKicfiUnmt9oNeBo+P0fP74eULJ+s86KVnzzCDCXKWCDZ+soLBpiCtP+oTq6CHhscCRMdmhOMMUP9wKdGpGY5968KNhxXbi3CUWWh5rZe+3Rd2jiMLZ72VyHBUuM2sFA1Py7+blSBnXSZjHWEiAxf2eWSx6VMVqLVqdv5/F3buueHRcnreHKbrN4Jr0sl+E5xhv8x87eNlTPaGafrPTuE6Vfd6GOucpFN0vVwPtffJ5Q5HTQa+6wo48p02Ql1ibWDth33orGnK3FOkSiJmMt+5zjVWPJfn8OYXT4ldA0VhKRJcwdqtXlFLaxbcL9hrfo3xiXGqqqo4evSo/PVW8ReL/Px8ensVxWjRNS/PtTm0vd6fIr/IQGdRE51YsK26zBZr/SOl9OwZok9wzavuQyUY7Dr2f/5EirywHDY/ESA6Ps2BfxPbO9Rl6Vjzfg+n/6eX4aNia16WYj3eK/M59O1W4bjlrrPhqLBw7Dvi+xKlN+ZhLTGz/4vNwtepfaAYU66B/Z8/niLYLIfstTZcl2az79lTK2oHotj0aT/E4uy+wGtrstBZ1Fh9FuXg+gV8/uS7udDzDkOeDmOWTrg9v12wlZmo3O5h5NQETS+I9wNZlN1agMmp5+CXxL+l1jzgxZirl+o3RZc5yVtnF95rAyUGri3ZUmvf2Wtt5NTaOPq1NuE61e/zoNVrhL8ndVmKreRET0j4OtX3uckoMtH4fCvjZ8QmUnUPlTB8apyOXwnutZIYZwTz/0LkX2RnvH2Kya7lO/XpeCN9+jb0ej3PPffc/8qa19tu9xYKhVIPmo5BiKAE4L+lgNxqS8pKSwQbH/PhXOtYRFACRVHpnEj87uZX+s5JUFoKw41TnHyl4/wEpbPQfzTIzNSsMEEJQJOmRqsXF78yZIHOmk5enX35wglk+o2kW9Io2OQUruOoNqHSKLYmoggPwUR3iI6d/cJ1APZ+5qQUQanuQyWs/XCp1DUOfbuVgaagHEnrSb9CbJHA2o+UUvVej1Sd4ivyqF5gD/WnDNdmJ+4tObjfVbh84QQy/UY2PFaOc03G8oUTqHqvh4anA5i94smj440Bmn8kvrgB4LomO+V7KoQQ7P77JikCYWgoRmggQvuvBRdGE9fRpKkXMaWXhREMdh25ErnDnGskLUOL+9Lc5QsnEJuJoVKryKrPWr5wAiPNEyk2tghCQzFOvtIuNWnq+OXg/Mb/Us1mAUEJIDQcB5WK9X9dRvl28Ta9/sESssosGF1i7bN64mocDgdHjx6lsrJS+Dqr+MtGdXV1iqB0EdcL1bGVGXBUWFj3QZ/wdQI7XNQ9okjHyhCUCCvjuyhBCZTyJ/6rTZxAFYbwSJT+o+LXyK60Kra04VnhOvkbHRjsOgwG8TlRTk0m5vwl5qZLwGBVLLVk0PabPsa7QlKks45fDMgRlAyw8fGKlE2TKE79sJPWX/YKl3fWW2h4OkD57eL5NmedjfUfL8PkFo+195ocvFfnkVUjPu94J6Nyu4eSq/OXL7gAVe/1sOahkuULLkDDUwE2PV4hXL7rt0P0HRnh+ItyG7L1f1VK1fs8wuWPPndGiqAEygm44JkpqX6TbtCi1qqk2loqdxSI18mry8SQpUvZCYpAa9Si0YvnjvHWMDOTsylVBBHs+0Izx78nTlACePNfTkkRlEAhKDnrLWz4ZLlwHYMdcuszqb7TtXxhYI3qIupq6xgZGeHWW28lvMxhp1WsAiASiaQISjqMQgQlgOq7XBRsykrZQIlg/aNlOGoypAhKAB2/GpQiZ4S6Ihz7bqsUeajvwCjR4IwU2URr0JBmEl/zQg+mbD35a8XnHfpcvVJng0O4jrFQjzpNTbpB4t4iimpI107x732AA188LUVQqrzXLT1On3ilk579Q1IEpY2frGDzE3JrXrUfKCawQyzfJlH67oJFdiR/yrAHzJRel4/nCvH1VWOhnnUf9aVs20TguzmfhqcD2APm5Qsn0PJaLydektsky1mXyYZHy+fV2wSw9zMnxQlKABEYa5+i7TcSa16AVqfFYNMtX3ABLG4juWskcodereSOjeK5Yy48i1qrxum3LF84gf4jo0wNRoTJQ0QUlTNRghLA4KExpXwE4feZJCjVPuil/NaCZUrPo/7+UpzVtpRt4XKombiE7OxsGhsbWbNmjfB1VvGXjdtuuy1FUNrCjUJ1dE4d+esc1N0vPoZ6rs1hzQNeUKkWE5TgLevE8xdS/nPg2dPCBCWAg//eQuPzrVIb1BNdUww2ihOwHT4Taq2G2Kz4NVwXZ2PM1aOziOfcvHUOrB5zKhYiMGTpSDNopYgzbb/uZ/T0pDDRAmBgf5B9n5UjKK37WBm5GzKXL7gATT9op+VV8TUvQ56OhqcC+G4Rz7fWUiP1j5RicYsHumBLNr7rC8ittgnXeSej6i4PZTeKrxMC+G4poPr9Hqk6mx6vYONj4usQwVNTdO4aoOllublX9X1uKiXm0qde7JYiKAG0vzHAUNOYVL/R6NVo0tUp2zkRFKx3YM4zSLXP/LV2MvKNKetBEaSb09AaxNe8okNRQgMR+g8Hhesc/Wa7FEEJ4OCXWuYJSoIhiI7HsJYaWffXZcLXQQeey3OpuF2MQ1CqqqImsIaxsTFuvfXW/xUly7fd7s1kmpdYvMx0O/Hp8282qxPWJIef7yav3pKy0loORVdko9aqyCzRM3RcrNKGD/nQaFXs/ozYKVFQrM1aftLOcKOYckgSXa8PSZETAHb9vdzp8vAQHPziccISojujTSEpdSeA4aNT7Dwqz4KVYUCCouzSt3+E3t2jyxdOQGdNXyRHKIQQNP9ATNUkicneMJo0uQvprOlojXJdsP/IaEoCTxQNTwUIDUY49GXxdr0SNDwdYKJbnHHasWsQc56B9t+J94P0jDS0eg2Z5VYGD00I1Rk8PooxS0dMImyyfRPAlKVDrVWRs8FK/17BDwIj1N7jZaBxlN43xNr1St6jtDJDCI483yal2DXZKp87+veOiccqAVG1toVIKjv57yqi581hxprFnqvmgWLMeQapWKRlaLGmmZYvmMCbX27Be5mTcHcUlUZDfG7uvOWNRiOZIy6GGaapqYmHHnqIL33pS8LXW8VfHv7mb/6GxsZGACpYi0EltpsdPBWmd/8IZ14XXyA2FxikiDN2v5GK2zyMNk/Q9IIYMdRRZcZWmkHLK72MNMmpCsoolACc+WkfZ34qt0B+8NkWDLl6cZIWyuK9DJkBkCZaAAweGBdWhALI3+LAXpohRQ7PX+dAky5JjAWGjoiN6UlEgzPMTM4y2Ci+uWYvzSDNpEUjwe1q+80ARdEYQ83i91dzfzHmXAM7//bCnhBb85AXo0MvdZ3OXUNo0pZYPF0Cphw9Gq3cHHdqMCI9X215RXzBLgm9NR2tUY6sl7fZTnaljcP/ITaf6t01Iq2klbS8k8HBr7VgMEgo0IFy+h2kCFQrUUWT2fRKIngqjMGupvjdhVLxaHgqwEx4ljf/WeyaWWVWtDoNOetsQkTX8AjSY1vGviLi8T0AFBUVMTQk/52wir8sLFzz2qK6Trjem/9+CveWbGHCkXONlTSDliyfhWHBcXTdX/tIM6WxS2LsqNhWSNtrPYy1yCnBDB4ak1IqAqQOlgAQQVEbkanSF+HAF04QiYjn21BXRCpmSZz4ntzBp+r7PAwcG6N/n/ial9GpkyauEyFldyWKsbbJRXYSIjBmGZibPf/37dno3jXI7LTcieHNn/YzNRDmyHNtUvVksfmJABNdIRq/JXadkdZJBhuDKWtcEWg0kG5Jw15iFu4/g8dGsRSZmJkSn3sNHpDrmwAGezpag4bcNXYpglvgbhcjpyeF66xERWzX38v3z0NfbxVWNwKFpHPgy61SqljB5rC0akTXb4bkiF2J6wAUX59DsGWS0RNiexTltxbgCFg59t1W4RxvzNKTLkEmPfDcadxbsoV/v16lJ3eglAEGOHLkCA8++CBf/vKXha+3ir88PP/887z44osABFiHTiW2+xsdjNL+63663xTP0fbSjEV2YMvBkKej7v4ShprGOPWi2F6TuVBHdk0mrT/tk9oAB2iUzJ89u0bokfzWbfx2B7osHdEh8Y3sg19qwZCnkyICHV2Bi8rY6RBjp8W/PR3VFpyVVk683Cl8b5l+M+km7byNk8S9ySA2C+GhKEMnxMfrzNIM9JnpaIxpiD5Q995RVCoVfRIHOstuLcBeZmG35F61LPzbXVg9JimF6s7f9KOVOfCAQlpOkzmIAIy1h5ibkZvjdvxcXEEnCWOOnrlZOSMsR6WF3DqbsHLZaNMko02TUtdoe7WftlflviWOPS+fOw59M7FuJ5E7ZJQ4U9cRVA1fiPEzEcXy8sqClAWgCDY9XsFMZI79gurmthIz6WYt2WttDOwPLl8hCu2/7mfoiPjYZjlYiDq+jzlmycvLY2Tk7VXafVvt3sxmM1NTykT5GtO9AOclKamNRkqvz2S8O8rAobcm8vPZvakMBkUBY4ki57J8q7qvCJ0ljQNfXLoDL7R7y/Qb8d/qViRVRayX4nGKr88hr95By8+6hTfnC7Y4yApYOSxBTrD6jMzNIUUyMLqMxEMhwhLfQmavEXuxSdwSKnFvgW1u2n7ZJ0w4StrDTY/PCNsTrASGLFjzoJ++QyPSizbvVGx+ws9ET5jGb7QJ11mJ3dvmJ/2MtU9xXEK6852MjY9XMD02I80+loIRGj4hb3u4/uNlxGZjUtaPhizI3Zgj3a6dazKECWFJFF6eJUX0ytlgJb8+SyrWGz9ZgUqjEp4QG/P1rLnfy2xkTtgeKbvegvddBRz56jns6JY6IZMcd84ztC6l0rfmg24OfaX9vEQldUIJcOfUj4mmTWC322ltbcVolJAZXMVfDEZGRnA4lJOemWSzVnWJUL2a+4ul5FcXIaGMJFS0wEDN3W6aftDOeKtYJWmbNxRZ5bnInNRGe+2DXrreGGC4UfxDLX+Lg57fiX8EgEK6krkGgOddObT9tl+KmJBUldz/BfFx4+2yIFvzUAlpJo0wKeGdjsA9biyFRqkFm5XEuup9Hsw5BqkFm3cyvNfnkVNru+CWfyuxb8vf4sC9JZtDXzopRSIqvNzJcNME4T7xxWWDXQ3p6VJ1bGUGZqJIKRfVftBL9+5BYYJg3mY7xVflcuYXfcKkrWSsD361Vfh51n3Ux1R/RJi4CkiNOwuRt9mOwa6j9SdiBLmj2b9jYGCAysrKVfuRVSwJj8dDe7uyQSRsNXJNDuGRaSliSgp6xNU2UDakTbkGDjwrNh/Q5+qp/4BXyhYrZ10mJdfm0fJqr/Az2QNmCtZncfSbbULlQVGcSdMhRZ7SZ+thelrKskifrcdeZpKyk9Nn61nzfg9tvx4QJ3Os0OZqJdj0qQr6DozS9tqfx5rXxk9WMNEdkiPFrsDubePjFYy1TUmTz96pWPfXPqYnZznyHyv87hPESmJd97CibCKj3qa3QXa9U8pGAyCzwiRM6kkid5McUSuzwkRhg1PqsO7aj/jQ6jXseUaQYL4C2zdriZ7yW9wc+U47EdG5p+S4sxBV93qESX5H43sI6gbIyMjg6NGj5OaKq7av4i8H0WgUvV5R8nCQR53qIqF6/u2ulVkuqVSKAsZSG+ZnrQXrLGqq319K84+7hEkq9Y+Uos9MZ/+XWoQ389d9vIz4TFxq/lC5w0XPgREpcoLwJvkCWEuN0gSd/IvsDB8dkVJ2qX6/B41WLUU2SNpc7fyn4xfU6ixwpwuDU3fBLWbfLpTckEeW38Iewf0VWJndm++WAjJLzPKHGN6hyL/ITtFFTvb868kL2t5q7lcO3cvYtzkqLZRel8ex/2wTsghLInedjbHuMOFe8To6C6DTER0Ur2MuVEiBMvdWsb2IwWNjwtZ/mX4zFbcU0f56vzB5M5lDjnyjRfjeau4vJjw6TfNLEiIp5xt3zoNMv5mMQoMwQa4x+/f09fdRXV3NkSNH5C+4Qrxtdm/33HNPiqB0seo9qX9Xpb/1pLXaaEwpKDlKTRRfIiG/mmdgw6M+jAUIqy6Bsml87Pne8xKUANS6eZbsaFOIjjcGePMr4gOMSqUiHovTLyG9WLApC1O2HoO4IxL+29zU7PCIVwCq73RR97CcfLP/5kIKG5wY88Wl3bICVlRqFZEx8Z6VVIU69rzEYL6CPXtbaSYqtQq1xIlxR7WJmg8US72flcCYpWbDY+UUbBGXFgbY9XdNUgSllWLX3zZJE5TWfdRH5T1y8t8rgfeGXPySMuNqrUr6dD4g1+5CcOyFNimCEoBWr5GyfgRY80E/efVybWf9x8vw3Vgk9UwbHi1XpF8lcoL70lwMTp3UdWYjs8RmJE6/9kTo2jMkTFACGDgwzu6/b3orQem8F1L+s+YhLzUPFAtXK7s9D4NDh29rLiqNBtU5pD7UC6xKG0w34PP56O/vX3RaexWrWIgkQUmNRpig5N9ehDnfQPF14ouAtQ945+1LJTaKw91h9vzjCWGCEign7Dt+MyB1nbnoHDNh8RMuBrsi5e+VsMWyeA14LsuRspg15Oopv2XeIk8U+RscbPyIuJUWKBZPsuqNb/7LKRqfl9y0kBOEAiDNoEEjqQDg316E+5ps+YtJInCPm7oPyb2f499uv+AnygAav94mTVAqvCSL9Z+QkAleIQx2NdX3F2PxijcIjV6NSq3C7l/BBF6i3TV+87QUQQlgLjyHSqPCKWFPaysz4LrYSYWEHQYGqHukgqq7JOasBgjcUUzl7eJ1DLl6TDl6PJeL5/ngyRHic3Epq7jGb56i5bUeKcLVvn9tliMoAYSVHLzhk+VSbaH4ilxy68Rl+ov7KzEYDDQ2NvLRj35U7h5X8ReBf/zHf0wRlNZxlXC9vPUOvNfkiV9ID+s/UUaGWy+9UXzyxW5hghIoqkPNP+nm2LfE12E0ejWx2Rhjp8VJV57Lc8lwGRUSkSAqb3dReZdXynqq6s4i6j9cIVWn/JZ8PJfnCFsVAWT5zai1auYiEiesI7Dzn45z7NsSh6QkniMJm8+ASqNGrRNXVsxw66m8143edoGXkPUKcSZf0jZ4zzMnVqRiKIs9/3hCmqBU+0EvFXcUXaA7mkfR5VlSFlygrCulSX4fANLt7ui3WqU3ZtNMWjnrR6DmgXIKLxK31gPlYIr/drdU7ql7uATv1blKDhaE9+p8MgqMUn1oJjTLXFQuh7T9ok/qYM5YS4S9nzkpTlBKXAcUq/fq+zzC1dxXZ2NxGynbKtZOq1UbKS8rZ2hoiLw8iTFyFX9RSK6HakkTJii5rnaS6TPjuTZH+DrltxfiT9pFS2wUR8dj7PvcKSmSzoFnT9P6Wq+U2shcaI7pqRnxG9OBtdhM8RXi34O6LB2l786nTsZiVqdYzq/5oFe8Dsq8sOYD4lZaoFg8pUmoXAEc+o9WjnyjRW7zX05ACYD0DC1avdwcynt9LgUXy+3jrASlN+ZRc7/4/gVAy497pQhKK0Xzy93SBCVnrZX6vyqVsgdbCXQWKN9WKGV3ptaqUWnVZHrF7XnnLyhe9OQPzkgRlABmQtNo0jXYSjLEb8mpw3ttPuU3ys0/134kQNV2uX3amveWCNuXgfJ+7KUZuC8RXzcebZ0kNhtDpRH/Rjr07VZO/0+PFHnqyHNn5AhKAFEl3ms/6pNq2+U3FVKwXnwd09e/HrPZzNGjR/n4xz8ud49/AN4Wu7eOjg6+853vAJCrKsZoXNpbW32WGsTRH3ShzxBbbVQZDLi22NGkqbC7Mgh1L30yVGUwpNSU1v91CZp0NXs+K74RU7DFTvfvRuh6Xe7EfOuP+2j9sZx1yN5/Oomj2iSlcHTylXby1sqxZrp2DuKokMvgb37pFOU3FUpZPLX8sJeWH8pbOsg8P8DGD1egSVdLnUrv3T0qZScH4NqSizFLj8ZihCGxSWfZHYVklVk4/ZMuBgStVzK8GWj1GiwuE92Itzurz8hYd0iKtLcSGPOVU4kyhI50SxoandzG5KZP+1GpkDppn1OrkM9ksOtv5TcY136kFJ01XarNiVqPLcRKVAbafiOXdwC69gziDNik2k7Lz7rIrnFI5YSjXz+JKl0vdR0ZFakkOl4bABR1um4JtZOq+9xYXCbFPnOIpVWUFsCYpSceiytlBQQLT/2gl6LLo3S+Ps/UXs7+rbB9HcdR2lpVVVXK0msVq4B5ghLAFapbhOs1vdBJ4SVZdP1WfNA1Zst9pRty9dQ94GX45Dgnf9AlXC9no43+PUGpewN487NyRNDwSIyDXztDeEScxTDeGma0eYLuveL3Fh6LMNUboXuv3Gnftl/3MyOzAMXKLJ4AKQIZBmh4NMBUf4TDEqfXVmIllenLwDptoj2R10Ww+Qk/c7Mx9j4jvshhztNLW6isRAlnRTCAJc8g9Y6sHhNpRi0Wr3i9/C0OPJfl0LN3mLafiSkumApNWAqMFF2czbFWMcn55he7aUbyQx3ldP7M1KxwP5dRQkqif19QyEpsIYKnwgyfGOfkj8VzHGGY7AnT3yjxLRKGYOskXbvE80i4L8KJ/2qTsswMj8jPP8MjEN4TBObztyg2P+FnemJGWP0tszQDrU5D8eW5wjadp37UydSAeC41q+xkhByECPGVr3yFD3/4w5SWihNTV/HnjWAwyKc+9SkAcijCprIJ1z341VaMWeJLc+4t2aQZtdi8Zibaxcaa+odLSbdq2f0P4vMBZ72VwQNj0rZQPb8fllIdAmVDzuYzSNkonXipg4KNWVJErfbfDZBTlSlV5/A3W/Fdmy+l2LQSuyYAIkjZ0K170Ed6RprUqfRgc1jauq7o4mxsHjPGfCORoJjigusKJ4UNTlp/0SesOJORoyc9Iw2L2yRlP5Ph1jPRH1mxuosoVqLEZXTqSbfILb2v/0QZmjS1VH/NX+dIrK2Jz6Vkfn8S1e/zkFFoVFQnBOMtmqcWYiWqCS2v9ZBmlNug7vzdAAXrs4iMi9/j6Z92k7/OIfVc+7/ajN6ml2o7K1G4SvabZP4Whe/mfJyVNg58VdzOzlIkd7Cg/ecDzEzOSvXt7MYyQDnJHwgEOH78wir8ruJPC7W1tcwl1kwvWyCIsBw6fj7I9OgMfaLfdyoVVpcJtVZgXyGxBqyzQP1f+Rk6PkbzKz3C9+astTJ4eIy+vXJ7U9IuEFHY/6UWmBbfWI8ORek7OMLQ8aDUdYZPjTPUJMGWAE7+UOIbOoGVqhTJkAtAUayb6A5J2dGtxEoqpzaT2EyMbok59YZPlBOLxdknscZm9ZhJy5Cbp+gsakhPkyLSrQg6MDt1Uu8oo9CA3paOscBMdFxszmorMxG43U33viHafya2xqg26ciqsKJNU3PsjBhRfqXfB5uf8DM9OSvcxmXISUmMn4mwU/L7IDoYpWffMG2vyymzjpyeYFgyJ/QfGmXwqPj8IToOjc+3yllmRmGPxHpxsk5SXS6Zv0Wx8bFypidnhVVDrS4Duow0cjdnC7fT499vIzopbqSmU+nInvQwSSPPPvssDzzwAIGAnKjNSvC2kJTcboXlpkZDjXHLOcucTU7y3WSn51CQqY4YoWWOuqoWqEs0/2iEZuOI8Ga3SqtlNhoT2nROwQjuS3Mouihb6qNu4+MV9B4cSW2UiyC73sLAgXGGj8pJz442hRhtkjtJ1P27YamNewBCcPIF8YmDMUuNIc8g/TwNTwcID0c5+O/ik65g+ySmLLkjPsYstZxqCnDw31twVJukrPUio9PEZuNMdohLavbvHRO2CEzCUW2i4hYPEz2hCy7hvOZ+L3PTMamN0JVYyMhuzAIc/c92JvtWwNJKpiXBqoMnxsn2W89rNXk2klaGoYEIhyQsHTFCTpVVuE30viFvH9D7xqh0veGjU9L9WyEgRhSim1ZNqEMweEbY8KFyhpvHhYmPeRdl4r4sh+xqm3A+CXZMkVFoJD3TSFiQiLjzX5rm20ByfFmGrJQkKFXdV0TjN5UTmklFpaXISvWq6zhj28WZM2f42Mc+xr/8y78I3d8q/rzx+OOPp/yDL+J6sUoGCNzq5vh32qVJQLv+rklKvcKQqSYeixM8Iz4G1j1SgsGuY3ZqVtgerXRrPplusxQJxuQ2EJuIEu6W9w5aifrH4f+QX6yQtZRz1lsYFCREJ7HmoRKMWTp2/rO44ozBoGY6OMOAhJd9qt1IhnvnZ45jsMvJNs1MzDIzLecZL0NoSqLmA2XSJPmVoPZeL+YcAwf+rUmYeHPsW2KEoYUY6wgxNx0jOi4+/xo6MkFs5owUCSYJg10tRSQKj0QZF503JFD3cAkGh05qUxcS9owtk8LtVYaEmcRKrDZXoh6RfDdZNRnClm+g2E1mV9ukNg83PV6BOl0tRVKam4kp3+iCaH9tgPbfyansJZ/bVmbAEbDR8sryc8lq1Ub0hWraO9u55ppraG2Vz+Gr+POE3a4ov2jQUq3aKFSn+PocRk6MMdYSISK+RET7zxPtXWLNdSYyi8Ygd4Lbd30B3itzpU5Kr/9YGf2HR6XsluwBMyPHJwk2y00GJtojnGiXy7MrIV0RQWqDET1keuTtozY/GSA0EObwV8XHgeGT41hccqq6eptaiigByjhj8xmk3lF0fJbZ6BzjXeJj9ER7RHr+pLepqbmvhPHOKakNw5Wg/oNeZqPi9vGANCEMlPXCNJ3ccv3R/2wnNLQCllZyyVSw6sDRMdL0WvR6tTihTg+bPxFgqj8svS7pqMlgWHCeIlpuIUaOTzJyXM56e6I9wsl2SWJ9RFGm09vUqM3phLrErdXWfsDHaNsErT8SI2FnVpjwXV9A/noHhwXXGINtUzgqLOitKuHxaPfnTkgTA5MEpYo7ijjxw06h+hdzA02OXbS2tq6uea0ihe9///spK5oNXCNcz7e1gOaXusUISgv2Cvd+9pSUkkmaRUdsJsZYp/gYWLnDhdVrJhaLC9sTFV6ahbPSysHnxNWAdE4dxFkRwaT1J/IHoE9+X/6bWPT5k8j0mxltnZRSRPJvd2Hzmjjwb03ipA4dTPaGGTwmMZdMthvJcO/65yYMdrkDoeHRKMyJExKAFVkMV723BJ1FjiS/EpTfVEiW38rRb55mvF0sgK0/6ZNup+G+MNPhWaKj4mte4d4oR7/dIkeCSUBnURMdF5+LT3SFmJQ4yAFKPrG4TdIHzSzFeqLD08L31/aqvHX0Cdm1cxT1Llkk342tzETwlPh3We6GTAo2ZUkRH9f9dRnpZi2DJ8aE+/pMeI6ZqVnhawzsDzLQGJTKJckYGPJ05NTahN6XV1XBTN4EXb0dXH/99Zw5c2E5BfA22L0tlOS8yrTjrTfgsL+FoIQR7MVGKm86v5ynJjdnnqBkhHUPFgiTA1Tpaai0ykffoa92su8LbctXAuLxOKrZdAZPjNH+a/GE56gyoUlXYykQP2mQXW+h9PpCORlFo0LoqbpPXP4MFHWa6vd7pOpseKycjY/L2Y1UbC+m/GY3Vp94HAxZKISeQblkfPKFLg78m5zaypqHK9j4KblnAqRJGR2vDcjbSK0Aod4pJvvDdO+RWPVcIcY7Q/QfkSfCyGL/509Lq+hMtsorSeVtyqThEwEqbxWXH+x4bYB9/9osda3wkNK+oxNy5KvNH/NT8i45OcWyOwppeDogZU1o9RnZ/KQfl4ytjhEangrI5S4Uolv1neLxJgRag4ZMj7hMZu8bo0z2hTn4DXHCY9frQ+z62yY51atEUf9dRfjvSsi7q1SodOf/wHBd6SAj30DtBxbHQaXRoDK8lXSZZcyisqSScDjM5z73OfH7W8WfLcLhMM888wygnOQ3qM5B5DgHMbvuvSXYik3krLOd/wIL6gZ2uCjdmrBEE9mzSNQdaQqx6++apJRJTvxnC+OdIWGCEkCm2yxtE1C13U3dI3LzgLqHS2h4Uu5kgff6PDZ9yo+hQJxoYygw0PBUQMqKD8B3fSGbJOdr0eA0s9NzcvZ9IzH2faGZXonTsVXbPTQ8GsBWJukTF0aaSLbvC83CC/V/CPoPjTLaLL9JIovuXYOMdU4RDl/YueRUu2LLKPNegRURlDY9XkHdh+Ta6sFnW2j5kdyCRWg4qrRviWbnrLdQsdVN1XaP1LU2Pl7B+o/JWezV3F+sWJdJoOq9HhqekstDdR8qoew9RVL9z1pkQmvQSOWujp2D9O6Xaz97/+mklCIbAGGF5CYbb/9tHnKqxW3ffF3ryXZmc+bMGcrL5d7TKv48sXHjRuKJwwiXq24WrpdX58B/u0fqWms/7ENvQ3pj+OjX26SVJXv2DNP+O3GykT5XT5pJi6VQnDRjLdFTcauL2g/I2UxsfjJAQNLOff2jZVTd65Gqs/bDPjY8KtfPK7e5CWzz4KgRt0tAr9iZhwbldrDOvNovnSvrH6lgw2PyuUuWRNa/b5S9/3RSnIyxQkQiMUZbJ+jeswLlKkkMN43Ru0/yYOcKcPRrbRz4otyaV6hLXknKWqKn4bEAgdvE+1L/vlEOfPG0HNEtArPRWaKj01L3t/GxcspvkrPKc1+dzeYnA+hzxQ+s6nP1bPxkBZ5rxK2fADZ/2i+du+r/qoKq7RLr9RHQWdKwucTXvEZPTBFsneTk98Rzw+ChMXb/wwm5fp5ob94bc6nYVihczbnGir0sg5q7xWKnV+nx51cxPT3N5z73OSKRCyyZtoo/Cdxxxx0A5OLCojqHK8g51rz82104K63kiqx5Jep7r8vFm1x/kRiiJ7ui7PmnkymFDREc+68Ohk+OSxF07KUZ6G06qXurutPFWsn1+sCdLjY97pciauVuyGTjY+WYC8Ur6SzKHqX7XRJ7EEDFLUVs/Ijc3CY6Ps1MeE5OdSaqHCqSUbryvTufhscCOCol/ceiChFGBke/1sbRb8ofTJNF75vDckStFaLv4AjDp8aJjl5YxaboeIx9nz0lrWC2EoLS2r/2sfbDcmtejd9qlyYDTQyEmQnNSVmDWdw6qu724nuP+JgOsPYjPuofkVOYLru1gHWS6za+m/PZ9Gm5PBS400Vgmxtbmfj3aUahEZ0lTcrK78zP++jaMyiViw/822kaZQ+SRgEdyp6rRByq7nSTv85x7jrnGC/Le9eTm5tLW1sbVVVVcve4AlxQJaWXX36Zvj6FyFOvuu4tP1c7lNNmKquF+NiCESEEp18bITK1dEdXWRZ/8Jdf7UBrUOPZbKXtl+dPkqp0Rf7Vd3M2mcUm9n75jDSBofm/JE5SAcONU+xsOS51nYED4xRsjnLyv8VPaFgLjMRjcULDEj3CCGqNSt6LPI5iZySBlp/14r4sR2qzPzwEu/9ejvXputKJo9yiEBEkYj41EJFeGNr8hJ/o+DQH/k2c9FCwxcHM1Iyw1Rsoycfg1EmdLAsP8bZsyAE0fqNNus6GR8vR6jVSzGtDFuRflEfLz3uF322m34j/Vg/9R0eFFXd6d49SsDGLwWNB4XsD5USsrcgsJbUq274B+g+PotbK8UxDAxHwWchwWQgPibW9se4QKrUKS57ETl5IyQ2zkooVk71h+g7ILfrt/Ge5vApwROJ06kJU3uPCXGBkzz+Kn5zM9Jrfmic1GlhCGanjl8OL/puE2qrMKlUGPfHw4rHR2OQlHv89AEVFRXR2yjPSV/HnA4tl/gvknCf5k5PPs6wID36xhcLLnecnDp01cbUlCIKnEZgTJepufLxCWTSVVBgJj8iPM2/+yykpEgJA2y/7cPiXtiU+F+amY8zNyhFFDI501FqVFNHGUqiceJvokiNG9x8aZSYsl4+lVaGA2ge9DJ+aoOt18Q3NwaNB0owagqfE4+C7tQBnhZWDz7WKW6oZwHNJDm2/7ZciXjU8GSAyNi1Fehe1RPtDMXRkQkoBB8Bgh7oPBRjrmJJSVXLWW1CnySnh1D1SQro5TUphc6h5HJ1ZzqYDg6IqNXAkKEykWslpzsED4+TWhWh5Te79xufixCTzg0avRpsmZzMYDkYx5xkw5OqF+0XLqz0UX5En1f/eDvW3JAx2NTUfKKP/0Khwv8q/JIc0s5aSG/OEyWtN/9UmfW+FgxUMMEBLSwsvvfQSW7dulf4dq/jzwKFDh9i7dy8A9ZxbNXwpHPtPuf5UfG0OOlsaeRflcOYnYn3CdYWT3LV2jny1WVo9p00y30X6ItInqsdaIkx0hGiTOACoz9YTm40RDsqt22jTNNJqUvHZOHGt5JrXa/2UXCOp6hKBN/9ZjkSWsy6T7BorR7/bJkVOGW2dIDopd0Bqw2PlRMdmpAhRznorsdmYVBz8dxaR6c3gwLPHiQQFK0Xg+HfkFQVXgpMvytvS1j1cgj5Tx66/E+8behtk1zvp2Dko/G712Xrq7i9m4FiQlv8WG//GWiJMDUQYbJTbaMy/2IGjLIOjX2sTrvPmZ+Ttnbv3DpNmkJsPTfaHIQYZ+ToigvOhSF8EdZoagyNd6lpzszHmonL5YeT0BMMn5BRCdv6zuLVeEitR2QRlAzCzNENKMTOnKhMQd6cYPDRGmlkrZQuqb3SiiquIE6e0tJSuLvm5/Cr+fJBUr1Shokq14a0Flljzanqhg9wNmedXUTprzctZaUGlUdMqaCcNsPajPsZaJzkteZCGqPx36pHnzkhtVIPyDZhTK35AA2B2ek5Z85KYemXkG1CnqZmU2Gcz5JogFic8JEdq7do5JP3N3frTPqn3CgrhIdgxSc8b4gdwBo+PYXDoGD4mnvsLL82icFMWx184I6wghA4KN2UxeHBIini16fEKomMzUvtYMradfwjGTocYOy1/+G3zE36CrVM0vSA+FtrKTKQZtFJ2XVX3uDBkG3jzn8XHzMEjQYzZcs4/6KDyNhfDJ8eFbSo7fj5Ix8/F12YBxtujDJ8cp3unXL34XJy4pIJXukmLNl2j5C/BJh4aimKfjUlZALb8vJ9SDVJKSs0vddP8k26pfDd8bJzhY+LlU9DBuofLGGwKClu45a+zY8jS4b0yVziHNf5nO+kmzVufaYnxEqC4t5peemlqauKb3/wm9913n9C1VoILSlJKLtYZsZBlnJfuSJKTzoWiLRn0H51geInTt2eTk9RWC7GxcU7+cBiTO8hU+9KbMElyUhJmp07xkxXIdcmTcRs+5kWjVbHzb8VJBa4rsggPRxg8JH+q+uCzcp6yY80hdkncGwAhViTPtxKP8LHmEEea5QgCgbtd9B8ellIryqnNVNQTJMexFRF6VKn/E4b7UuWEzsAB8bhHxqfRZcp9NDuqTXguz+Pkj3uk7OhWgqr3eYjPxjj2bfEJQHRiRjZ0eN/twlacQWRkWtiecLQ9BCrQ6OUWOPb9q7zkZXZlJhqdvEid/64iBo6OCLfz1h/LS6x2vT5E1+uSJwxDK7Plk5WTBFZmSbhAsajpu+Kb6jUPFGPOM3DoiyeEFc30tnQ0aWopO79D32pP2dep0hf034SN27nISkmCUskN2bT8+K0TlKSi0kKy0sWq2zjl/C2Dg4Ns27aN73//+2I3uIo/K+zYsYPZWUUq9CrVbYt/eB5bW8+7cmj7Wf/S5JKz6yYmrzv/9vjyahoL6hrsKjRpanQWcRKCyW2g9t5igq2TUout5dsKlQUeSRux/n1BKYUnWJk900pst/r3BKVIIknIqsxk1WSQ6bPQLLkRY8rWk27USpGUVhJvjVYNKsQJSigEpYKNWWgMaiFLpyRmp+eIjMlt5AXudhOfja2I6CUDW5mB4qvzOfXjHqbaxRp6eERRb4yMyy36+a4rJB6LS7c/lYydNnD6JblDIEmYsvXk1mVKqT05qsxkBWxSC8FHV9DXV/K9JPv9B9DySq9U2wYYbw1zeIV2Zc56C1qdVirmDU8FmAnNCqu5hMMxNGlqrEXip95aXuml72BQuE8AKZKWwa7GUWUXsjy1q7JxOd10DXXyiU98YpWk9BeMuro6AAyYsavEVDjyN9sZaQoy1iK363zm1X76G8eklGmsbhPadI24LROw7qM+0kxpUqSKnHWZzE7Prshu6eg326TKRwYiUgTYJHat4GCQrJoNKIQH2Xme75Z8hprGpCzicuszMeVIbnIATf8pPz9RqVTS6zYl1+Sh0qjZdURuzWtuJiZOUAKMhXp81+fT9ose6T4li4pthaBSceJ74jGMBKfRShJt8rfkklfnIB6P0ym4fhMZiIBapcyTJbCSNdD8tXbSJb7nkii5KY/R0xPC9mpdv5FXxxo+MiHV5pJYiS2fjO1fEiuxOEkSlHy35NP8svhcuWJbIfZyC4e+3io8buit6Wh0GilbyINfPyNMCEsiSVByXeEUtge9QrWVY7lvMDAwwK233sqLL74odc1V/HngmWeeYXRUUTu5mBsW//A8356Fl2bR9ZuhpZVSlqi7559OKfZootBBmlGLwS6+f6OzqFn7kQqGT45LHebzXp+r2FpJiswET01JbdgDnFoBSbf5lR45u1yUe9u9gjle56/lSBWWYj1Zfps0SclWYsaQpZMiKSnxlltH0Bo0oFYx3if+cp0VVtyX5qC3pEkR5KanZgkH5daHSm/MQ5Wmpvkl+XYhA0OejtJ359H+ep+UatFMZI6o5JpXxVZFVVKGpIRKhVpyC1DGEjuFKFiLFacAUZISKO3cWZkpZZW2kgN9B56V/16SVhACun8/TLcEwRkUW8tjKznMEAVrqRGDLV0q5pser2AmNCduoxhV+rslV/yEdc8bI4y2TkkprYV7o4RR1OoyKzLPPRYmx8EED8aosuAxl9AZauNv/uZv/jRJStnZ87J8F5tuTv35fAQlgPx6K3lrLOz9wluT3NkEpST8W7NoemlIiqAEcOi7w8Snlt9pji9gkYVHougyJD7G4nEKNztBBYOHxD961n3Uh9aolVJYKdjiwFFukd7oL705n9OSkwbf7QUMHBqVUkQq316IzWNmz+dPSJGHbMVmzLkGho+KfwC++dlTGPPlFmx8WwswZ+ulmMOAPCkMOPN6L2kmuY96GQJGElmVmehtOuzFpgtOUrIUGqWVtVayIHLmlwMUbJqje7/EoLRCoo3rmmyc5Rb2f0F8sD36tVPSNn7GLDWZJRmYnHqGj4oTo6rf78GYpWfPM3ITeP8OF20/6yAsseaT6Teit+ro3S0ufZl3USbZVZlS77nyHhdWt1mKOFn3SAkGu468TZnC9zfYGMTo1INRj2hC2v+F0+f96D0XkgQlz7XZhAanGTx61rWWUFXyXOskpyYTQ5aOxm+cu+8vVFUyGo2UF/h5Y+h3/OAHP5C6x1X8+eC73/0uAB7Oko49T7utfcCLKU9PdHzm3JvN56jrrLOgM6fR9duh8ysBnVU3PBJXSN5xubFibjpG3wHxhFV4uZOsCitp79WKqy8ZoOETAQabxqTIObUPeOk5MMSghDJizkYb4cEo463im+iGAgOFm+zSxKENnyxnsjssRfAqvjKPNLOW5p92S5G8dv7f4xjOP81/C+oeKaH/SFBKaUVmYyiJ/jf70RjU9PxWThViJZsPNrc4oeIPgd1nw+jQ46ywSBEydv+D/Ly1a/cQUcmFq5UQbUBR5BprmxJXpArDwa9KqGolUHJtgfSmYVLZZ7BxjNafiC/02MoMOMpt0oRB7/V5UtcBxSqu9+CwVE7a9Ck/keA0hyS+gXzXFxKfi0uRlGamZpmSUawNr+wgzVR7GAxQfmOh1CLbmofKUWlUQiQlgLLB9czlz9LW1obX66V1hYSvVfzpYu3atak/X6S6Vrie58pcXJdms/sfxL/hfLfk0/w/PdLWWUe/3iZVHmCyL4JJzmWD4qtyUGvV7JQgB9Q8UIzBrpP6lnXUZJC3xkHjt9qk7s9zTY60MlTxtTmMNI9JEV881+SQXWPjyH/IKVc5q2zYPGbePCGuNnP4K63os/VSCiuuK5xYPSYpBRxAer0BoOXVXnRWuTWvMz/pF1YJS8Lpt2DOMZBZYr3gJKXMkgzp9YCVkMJ6fjdAPBZn8KAcSWclRJvcTXZyam1SazaN32yWIpIBoFcOk9rcZkaOi695VWwrJKPIKK00VnJTHt17R6XIMxluPXqHjsED4huUjpoM8uscUmRL3835ZFXa2CWhkBTY4SKzJIOpwaiwAlHfwWEsLrnvElnSKJCKcf5mO9GpGWGyas66TAovcmItMglft9zsZ2DgN7z00ktEIhH0enmi5ir+tPH4448DypqXTrWAPHSe3Fx2awHOShux2di5ySXnqGstNWBy6unZNUpU5vslijK/k1nz0qUxPTnL0HHx7zdHpYW8tQ4MmelSG/CbPuVn6FhQisRSsb2IwWNjUjZ0jkoLM5NRcRUglM3zgi0J4pUE1n7Yx0RPSIpI5bkiD3O+ge7fDxAdF5+v7fz/jqOzyLFSqu9zM9g0LmUl1vZqv7S91+CJMQyOdPqPyKn1yaiGJ+HwW1Cp1TRzYUlK1iIjlkIT9nKrFElpn6TFNUDbr/qkFehXQrQBRZFrojcsRa7b/6UWokNyjMSSawswOHRSJCV0sPZhH8MnxqXaoLlQh91vkVZvKrrMKU0yLL+9kJFTE1KEsnUfLyManJb6BgpscxOfi0uRlCLD04TH5NZOV+KwkyQoldyQJ/V+az+guBqdNx8tUFUqnawjVjRDR0cHFRUVnDgh/00oggtCUjpw4ACDg0rjulj1ntS/L0dQAujeP8ZsaHFCWIqcBJBTqcbqMrDmvlwOffOtg9i5yEkAa+5xcujFQTgPcTh+jgnF0W92J35vOvHp8zS4BXUPfauNrApx/+ilrr0cCjZmKYvtEiofJe/JI6cmk3SzVkoi2VlhxVFqkepERodOUSGR5MqcfKWd2Yh8PEI9cgsUdl8GmnS5iYYhC8IhpJ+p9w05j1OA7HoLczNzUopSJ1/o4iRvjwzuSkhAhixwVGdJqfuEeiIrZmobXcYUaUQE2QEr6TKkRJAmKCXrdO0cpOOXcoOy3pYu3WYLtjiwl2SQfqtXaiHKf5uHeCwuRVJyXZQjrSo1HVHyv9lrFCbWHfx6CyVX50ndW+/uUanyC+G7JR80ErafRshf5yA2G2fw6Dlifg5VpbZXBzFl6Tj2nfP334VEJcMpN7HYbwDIzc1N2a2u4i8DyQU6FSpKVQv8gpdZSD/8H60EdrjeutF8nnol1+SjTjvPRu456vpuzWdmck7aCmuqPSx9Wr7r9UF0Zq0UIcDuMUIcpickVHMMYMrT47k0V4oQUHJVPqjkNt/Lb8zH6NQxcnKM4Uax08cA2nQNOpvcOPbmv5wif4tDWoUKFKUeURjsYLDryK60SZGUDAUGKZu85H3JqsxgUHJ3z75hObLWCjaIVoLWn/RKE1hAURACpNpRxy/EZIfPhsEO4TBS8TNl60k3aaVyhSxBCeDUf8ufpgqPxNCkqzHlym2IVNzqQa1VSeWkqvd5sBaZmJ6YESbNGOxqzPkGXMZsqZwE0nuudO0aYlCCPAoJC84VwGCHiu0lHPx3cRJV/f2l6DPTsfuNjCyh0Hw22n83QHxW7pszp7ucbrppb2/n6NGjVFdXS9VfxZ8ugsEgBw4cAGAdV0nVbXlVLnfbfAacVTaM2Xqp77faD3o5+f1WaTLBSsjAh750iqxaOaaybN4BcF2UjSFLJ6Xykb/ZTsGmLIxOnRRpO2+dg+zaTKl5qClXj1avkbbWO/bdlZEcIwNy4192tU1aAUdvS1wrKFWNwUNyFmIAmRUKoUJGUar95wO0/3xl8xRZrESNCz3krrHTd2hEmJASCcakyVqpy+XqpYg52VVWTNl69DbxdyxNUAKIQNsv+qQtYnSZ6Wj1clsX9oCZ3DV2TNl6qUO81Xd7FXKYBEnJc1muQsbTI/5+x6YhBrYiA8FmsUny8ec7KL42R8oiLdgcXpGiJyiExjSzVtg6EMBzVS5zkTmGj4hds3/fKJleEyckCOXa0/bUfonb7aa//+2x2V7FOwOFhYWA/JrXqRe7ic/F30pQOk893/WFpJu19BwYFVYqcl3lhDnokFCWBogORtn3ObnvpOFj47Rn9dO1W/x7zJCng3ic6cis1LXspclD1eLfl6XX5aFJ10itjRRfV4SjzMJEV1iKfJBm0mJ0yHneHXnuDLnrbFIEpSRk62QUmVBp1VIkJZ1TJ0eOA4iuTKUne62NseaglEXcnmdWNrbIom/vqFTckrAU61Fp1FJWcSu5DgA60OmQip/NqyhyyZBzZAlKAM0/6kKdJvnBFYV0oxZTllyfqtjmJt2olSIpld6YR06dMq4Lq2fqwFFuwZilk1O9kqcWcOYXfYxKin4c+o8VHlzTQfVdHqkDRlX3uLB4zATPTAnbSba82kuaiP35AqKSu6OWDjo4deoUv/3tb7nkkkuE71EUqvhK2DDL/dLEIJ+OgctMtwuRkwy6cUJnfVeej5y0EJ5Nalp/FlxcdwlyEoDvOit2j4HBUyFafvjWTdxzhcRYlE7N7YW0/LxvkRLGOYlKf/yQCsNRbZIisYBipybr4e6oNqHWqFdkYXeh4VyTge/GIvoOjkhbYhmykFKXWfuRUnTWdMUjXDBnGbKg5oEKuvfIWW81PBUAVnaiWBYNTweYnphh3+fk7c5kUPVeD1aXieYfdzIgsZmy/uNlhEenaZRI3Js+7UetVcmRqSQIfwux+Qk/c9OxFS8IXGgUX58jvehVenM+g8eCUuppRpeReCgk1afebqz9SCmxubi44oNKRcNTfuKxOLv+TnzB2ntDLmd+PyLWns5SVjK6DETGll9MjocjhEIhjmf+img0yv/7//6/PProo8L3uIo/XTz33HM88MADAFzE9RhUBqGdH0O+/q1kD5F6dshe66T9tbMnbkvXbXjCD8DOvxNXUqr7UAnxWJxDX3rnqlMY7EC6XookYfcbsbgypAlb7muy3xrzdwg2PKookKzEfgUDUiSWhqcDzIbnpMbYqvd50Jm1UsqIhZdk4b4sh4FjQWkFK1ms/1gZaWbtigjfsmh4KpAYwySsq6/KJrc+k70Si1GGXD11H/AyNRCR2lQ32OXIbgAlN+eRU53Jwa+dkSawvR3IqslgenJWSj0NA5TfUCgl+Q9IkXL+N+Cst1BydT6Hv3pC+D2X316Io8JC7/4RzohK8hsUm0fZPJuqniue1xttb9A32ktFRQVNTSvYwF7FnyQ0Gg2xWIx09FyiumH5CoA+Wy9NKknCdYWTjp2Dwpvg7quzKdiUxeDRoLDVht6mnK48/bOeFdm2vV2w+cQ39pPw3ZxP86s9UqpDGW49aSatsDXV2wl9rp76B7z0HhyW/q6XIaMA1NzvwZxv5MAXTkiRr9Y/WkbvmyNSll2bPlWhWMS9DYTvhqcDRMdm2P/5C7vm5bs5n+yaTM78vFeKoFP3cAnRiRmptdoVzSclyDULseGxcuKz8RUTkC80ii7PErbKS8J1hZOx9gkpRS59th6mIysjbr1NqLnfg0qj5vBXxOfjm58IQBx2/b14Wyq6PIvBg0MrioUsue6g/XVCoRBPPfUUTzzxhPwFV/Enh9///vds2bIFgC3cqKgoCaxd6bLS30r2EGFJ66BgvUPKWmjjY8qaiIySUtU9LlRa9YqUL98u6CyATo40Yy7UkVlqkVZIKbhYLuZvJ+o+VEKaQcvef17BXo8OKVu+hicDTIdm2Scxxvq2FmDK0nFIItdn+s0EbnczcDRI88sXds2r9oFiTLmGt2Vfc9On/BCPS1kHZq+1UbTFSePXmsUJRzpoeCzARE9ISqFHZ5EjNYHSN1yXZHP8++1S5Ku3C9ZSI/G5mJTiFSywrZSApVgvfZ23E9ZSI2U3FXLk2+3CebPoMidFW5z0vDkspWCVtDJdCXRZOqLDAqpP8ThNtr30BDvx+XycPPnH3++WdE1cHrfcckvqz6IEJYCqOwrY+JFCqWsZExLUbbvlGKzNPx2j9ddBWn8hng0K6m2otAKTmAWTEOeaDBqeDlB2h9xz1XygGLPXKFUnCVmCEiBNUEpeR4qgZFTIObLY9Gk/6z7qk6qj1WuJx+JM9sgnbFkyRf/RIOHhqBSRJcNlQZOmJiNP3GsSoGf/sHL6SgKBu10KuWllzUkK6z9exqZP+6XqtP12gJGWCQZOyI3MaSYtRklG7+DxIBPdkm1ihWP+3EyMuaicRGTeRZk0PBUg76JM6esZXXIveCWn8k6/0iNFUALF6mylBKXKe1zkbLBK1Wl4KsDGT1YsX3AB0jPS0FnEvcIBTr7SIUVQAjjzmkJQMhbJXavqviJqdxSRu2b5d6wy6DEajfh9fkKhEI899pjUtVbxp4skQSmTbGGCUuElDureX0z5Nrk5iqHAQHgE2iUlXHf+XRMnXpKTwtVZ0tFb5frMxscr2PyE3FiUs9FG+e1ycUgiPCKv4jLSFFrRxrksQcnklptngGKV1/BkgKwasYMCScxG5ohNy59CA6QVm8a7QvQdkjvlZHTopHP9cOMIwyfH6dotN/fa9Ck/dY+USNVZCQwFBhqeDFC6NV+qXt/BUTp/L9d/zbkGtDqNVJsK90UIDUak566yBCWAUH+U2GwcY6acfdu6j/rY8Fi59PUMdhRynSCGjkzIEZQAwkgTlIAVE5QsXgNV7/VI1am4o4iGpwNS7UKdpkadriZnfY5wnZM/6OLUDzvFCUoAYVJ51lAglwsbngpQ+75i4fJVwYvIzcnlxIkTPPjgg1LXWsWfJv7mb/6GWEwZ80QJSgC17/Ow+cmA1LX0CeW2jl+JE5RAUZc58WKHMEEJILveiUavQa0VXyY0FuqVNa+tBeI3h2JdlOFemU2PLEEJUOIguZY90R6RIyjp51WHZLD+42XUP1IqVcdo1zI3EyPUL2cnAPIqOL0HR5nsCUkRlIyFetIMWsy5cvm34zcD9OyVW0Dw3pjL5icCqb5yIVH7oFd6vaFz9wiDjUFGmoJS9fSZOkxOuWfqOzRC8IwkqW6Fezxz0RjTIUk1joCZzZ/2k3+xQ/p6su9XlqAESp6VtQyMDKycoOS7OR9nvdya16ZPVbDhUbm5q8GhR2+T+w5q+sEZKYISKDGPBOXfle+WfOo/4CV/s7gan9/lJxKJ8OSTT0pdaxV/urj00ksBsJMjTFByVGaw9sESfJJzFJ1TB1GkyTJ7/ukkx19ok6qjd+ql9zfWftinkDAkkOk3U3pjnlSdJKLjSKv6THZFpQlKIB9znVMudgCOagubHvfjqLZI1ZudmmU2IrfXk4KkCM7QiTH6DsgtjGTkGdBLKkqFuifp3T8spcgFinXWmg96peqsCDplfa3kBrm22/n7Adpel1tzNefo0ZnTMORK2KRGYezMJP2Hg1LXkiUoAUwNRIjNxNDq5NQla+4vZt3HyqSvp5ATxcuPnQ6tiDgkS1ACVkxQMuTppPdA3O/KpuGpAJZiublNmlFLzhrxHNP560GOf69d2uYxSVCSzYWbPuX//9l7z8C4jiNd9Jsz4YTJOWAADMIMMpEBgso5Z0uirGTlSEmkKVrxvvvWd9cb7E2212t717te23cd19ley9Y6KZASxSDmDIIgcg4TAMzM+9FnBjMgwqkjCZb9+P0hQHSfUKe6urr66yo03K8w5qXRoGqsDX6/H4cPH8bjjz9OupcSvO8kpR/84AfgOA43Xr8enNMBazHQfKcZHnkdV3G5iKY75kufNdxmQs21Eka7ZzE9kkDL4wUInG+DxmJG+SUimu6c3ySpv9WE2huYoZDsQO01VrTeyz52+VV2tD4RhMagh8agR8Pdbqy5Q2bFSEDLQ14Un2+CI6xH6EIzis9hCwGNUUL9A0E0PFSIdDqNdDqNto2lKL/WDQAoutiOto2lOPXaAN7862MItDrQ9GhR9pnaNkcQua0ASKcRvNCJ9i2VWcJA8Dw3S1cmn5Zp21yBqo8WAgD8a+1o31IJa5i1rb0vhNZNEUgBASafiNo7ilBzN7uPu8GM9i2VcDcwWdTcXZS3KGndFEHHS1XoeKEK1rCE9i2V8K9lRIeqjxbmBd9bng5jzUNMASs+WoB1L1cjfIsPABC5PZjXtvmpcjQ8wiYc0QW0b6lE0eUedLxYhbYtFXmL86Yny/M2ZNq3VKL0Wnbdkmu86NhUhcbHqiEVSWh8vAzNG8rz2mYcxqJL3EyGLqaaGi2gM81vOLQ9W4GK9cyYFJzH5J0hdK15sAQtz4TRu3UUb/75AYQu9qPqTiZDb5sV7Vsq4axj+lP7MSbv+e9YgXUvV6P8xgCcdUa0b6mEp4npVvVdC+T9TAR194cAAGMnozCY9FliScX6M2VYL8tQCgho31IJwc7jjU/ux9xsKk+GzU+Vo/FRWYYSk0vJNSyAX3YDOyGeyQzV9GQZmp7Ml3fZDWzCDl3lZdeVZM6cBmh+cIG8b2XyDl7kYvIOMEO75qESND8137bt2RydPSdfZ+vuD6H1mXkZakUOGtmieJoseTpbe2/xGTpb+7EQpo5H0bdjCO1PVmYJKVV35su75Zkw1jzIdNZUyvT75G/68dbfHFpUZ7PydnFZnQUATstBcs1PKM0bytH4+OLyLr3Wl/02HS9WYe2LlWh6Ml+G5TeyTcGiyz1o31KZJeE1PFKKZCKZzdbQ9mxFlqiYlbdsI9Y8VJIl4U32JgAN4G9mAZulbET222yuQM3dReh4vgoN94ZWtBG194UAANawhLXPVWLdy9Uou8G/rI2Qipi8gxexl2t/rhIdL80vhJayEQDLvNS+pRJVdxZh3cvVaH5meRuR0VkAaHyiDNaQCcXn+7Jtl7IR9Y+UZnV2NjoHjR4r2ohcGY51TmPrpw4oshG19xbnPH8FQtewd62+qxBtH59v2/pMOGsjmM5WwL/WgtBlTtTfUYj2TfNOQNNjRVhzH3teyadB28ZSFF7sBLRahG/2QXLxmI2l0Hc4yua19WfOawBQcpEZLQ95oREFmI7VwGazAQAuueQSnMWfNi69lJUYCfgDONd1AaDRoP7BEjQ+Nr9gbPt4JDtHBM5zoG1zBNGBKcxOzUFv1jH7ptEAGg1aN4ZR8RE23rwtVrRtjsBSwjYYWjeG0XhfCIHzHPLvEVStLwQ0GrjqLWjbHIGzlo2h6o8WolUeb45KCS1Pl8PXynwrW4WEts0V8LbYAAAVtwXRmrNoat5QjtqPhbD1Lw9g99dPom1zBfxy0LL85gBac8Zb4xNlWPMAG1OiA+C0GszNssBB6TX+PFvY8GhZdo6AyMZ16Aovis/zwllpYbZQ3kupf6QUjY/N26y2zRUok4M6wYvcaP+EbEev82PNAyV59q3145EsccTf4UDb5orsJnlmTsm23RjJLpLcTRa0ba6ALcLaVt9VjJanwwjfUoB1L1ajdVME1bJf46w1oW1zRZZMVLW+ME+GLRvCqL+nBG1bKmApFZm822V53xrMs29NT5Zn5wjRawA4gPewQHbZjfkybHy8DPUP5suw6FIPdnzuKIYOTSyQdykaHs3Rw80VKLma2fXiyz3oeKkqG1yrf3AZeZ/vYjKUA94aTgNnxfz6oHVTBOFbZJ1tt6Ftc0WWNFFzTzFaNoTx1qcP4Y0/34/WjRFU3l6YJ29HFZsjqu8sypNhzd1l4PQcYqdjcFQxnXXLvmHl7YVn6GzNPfIcoWHlWDPyDt9SkCfvxifKUJfVWY5loTKwIGvZdQvk/VgZ6h/Ol3exPM/626wAB6RT7IBE/SOlaHg0X4al1zAZFl3qYTJ0sDJxzohl3gfKyPvGjI1w5sm79r4QBJseb3xyP6ZPxtC6KZIl9XlbmLwtpbLO3l2cd7hAL+rgKGHfyrXGjLbNFdlycwvl3fJ0GNV3FzN9f6kabc+ubCMARkApPMeNk7/px/DeqRVtRNvmCgQvYrZIK2rzytIuZSMAIHSFlz1/kwmNT1Sj/amKZW0Ekze79poHStD+QkVW35ezEbUfC2XXSa417MBLw2Ps+ZeyERm0bmQ2ouOFKqx9vmpFG5HRWUupiJqPhmAplFgGp+VshE9A2+YKBM5zYuDdYaSSadTcPr82XspGAEDJ1T4Un+fFG5/cj85f9K9oI9o2z9vkgjY3Gh8ry47X5WxEXY5NXvt8FRrvL1nRRuTKcC4+h8G9YyvaiJanw6i+i8kwoAuB4zh85StfwVn86eOTn/wkNBoNrr30ZgBsQ7Z1YwTeFhYTKL3Ol7fmqH+kFLX3hDCwexQTp6fRujGS3aQvudKbp1f1D5WgTh5vEICmh0qz5Ouii92srbykrbs/lF0nA0x/Q5d7YQuLCJzrRNkVgSxppvae0Lx9A1tjl17Hxpu3xY7WjREM7J/EG5/cD3eVNW8+aX4qzMpdA3A3WNG6MQJrGXuI0ss9SKfTGNjDYl7NG8KokMebvdKI1o0ROKqZ3a+4pQDNG8KAwMoc1NwVQuV6Niebi5kM3Q0sJhC+MZBn3xoeLWM+1HOVWXn71jLfsOQab768H2byBoDgJU4W57lZjpVcni/vNQ+WZNdtGRkWXczWmy2bwvnyvi+E+ofy5V1yJZsjAh0OrN1YhaYN1bCFRdTcU5wv76fDKLvenydvKcgurBW0MFjnNxxy5e1cY0brxghsYWazKm8vRNMT5RjZP4Vtf3UQwQ4XKmU/0hYW8+QdubkAzU/Ny6XpyXLmu17vhxSU5S0TJMqu9+fJu/6R0uwcMdmdAG8xZAkEJdcs0NmHS1F3ryxDgcnFGTbhjU/uR2wkkS/vB0JY80C+vIsvY3NE8AIXCta6cPL3jJRfd29o3gfKyFuO1/jWOtC6MQLBIyCdSkPDAZU3zW9CtzwdRliO17ibmM5mSHFVdxSi6bH52E7zU/M666g2oXVjJFt2rvK2INNZGaLTAE4+vGotYzJ0yvNs+KZAnrwbHytD9Z1FiPfF0fXGMOruK1/RRgCAYOPQujGCk7/rx9t/d3hFG5HRWYBVNTC6hRVtBAAEznUyGdpYvGXt85Ur2ogM+aT6ziIkZ1LZTJnL2YjK9YVZEl60ZwoanQaeehuAZWyEjKYnylG5vhBtmyvQ9GDpijai+i7mjwg+Aa0fj6DjRabvy9kIwcbkEryAxVlaNoXzYl5L2QiAZQ5q3RhBybVerHu5GvWPlS5rI5i8mW9Yc28x3HU2FJ/P9H85G1F9Z1HW54yPzYLTa1a0ERk0bwhjvHMK2/764Mo24rFyVN3BbPJMLM3G55XsXZezEYKHjYVAhwO+tQ40PVSK9ufn17uL2YhCOcZYfJkHthITEmOzGDkwsqKNyNhkYZcPTjubRy+++GKcxZ82Nm3ahFQqBY/Hgw7vZYBGg4rbgliTMzabHi9D6VVsvDlrzGjeUI5EdAbRwTg4PRihQo55NT5amiXs2CJGNG8oh7WcjaE1D4XQ/EgpAuvYnNfwUEk2Hm0p5tG8oRzOGmb3S6/2ZcemJSRgzf0h+FuYXvIeAc0bwnDXM5tVfIUnb1+h7v4QqtYXYfvfHsauLx5C84YwfG1sjii80J1nC2vvKUaNbN/AAzpJizm5ZFvBuU7WVt6frrmzCHU5sevmDWEUXexG6AIvPA12ND8VBm9hdqhqfVGefWt6shzFV7Dx5q63ouWZMNa9VI3Sa3youDWI+pz5pPHxMpRew+YIe5UJzRvCsBSzh2h/rhJrn5u3AY2PlmXnZGu5hOYNYdgibJ4tv86PxsfKELzAxTbNHy9FRJ6TTUEezRvCWTJR6dW+PPu25oESND9ShtZNEfAu1tbTbAMAFF2WL8O6+0KovkOeI1x6cAYNjHLMK3iBK1/edxeh9u759W3zhjCCF7iw56sn0bdrJE/e1XcUzc/JGXlfxuymr8WGjheq0C7vuVSuL8yX9xPlCMlzhLPOguYNYVaST4YrPE9waHysLEvUYTobzpImwjcG0PhoGXZ8/ii2fuoAGh4uRVj2iSwlTA/tVczul17jy4thVN5WAr2kQ6w3AdHP5+ls6Epvnrzr7p/329PpNAQXD58crym6eIG87y1GzZ3zOtu8IQydke3vZnVWRs1dRai9J19nCy9kMgw0OVi5Mi2LeVWtz5d305PlWXl7mm1o3hAG7+Zx+rVhWEPGbBwoI+9SOdbgrGHyNgWZvMM3F8ASlPDG/9mPscPTaHy0bIGNCMNazmIC5df55/dvwRIpWIuZPjMbEYazxjIv75y425oHSlBxaxBFF7vR8UIVmp9Z2UYAjDBUdkUAJ387gOF9EyvaiOYNYRTIa02DSQe9UbuijQAAX5ud6VapgOanqtHyZGRZG5GRN8BiSO1bKrP6vpyNCN9UkCW5WYp5dkhM/n0pG5FBw4PMRrQ/y7gJK9mITLydd/FouK8UzgoLeBe/rI3IyDDQ4UDfjnHMzSYRuaFwXt5L2AgACJzjQPlVBXjjb/aj65eDK9qI5g1h8DJR1dfkQN39oezYXs5GRG4pQIMcd2vZFEHzoyvbiKwMHy7FzPQs+naPwBIS0LyhHPZKU1aGuftJ9Q+E2B6RRoPCRAW0Wi2+/OUv4/3G+0pSCgTYhFNTVYPqaqYQRocWWr0GRg8ToOTQQpcTDDZIHASrFkf/J47BIwlo9RqYXIZsX51hvi1v1EKwMIOmlUmNcwk2KZv8IrQ5NRYNRi7b1qAFtHoNzD4e4cuc8FRJrK28IS7Y9OAt80EBrV4Dk7z4sgTYdc0hUW5rgME031YnaGH2srbmgAQtz8HokO9rNEADDaJd7ESrTtTC5GHXMcltMyeLJBcPvVGHaE8cB77bCY7jYPSyvxn98nX97IGNXhE6cZ64ozfqkE6nER+bgcknsusGWFuTR4ROmG9rMOshyqxa3qyX34HJ2+wVzmgrOFhbjcSewVIgAWlAo0NeUJ+36uezHUjsb+YCKSsXjUaDxMQMol1RCFYDDJb50kVanoNZJslYguw+ejv7PZ0EOM38fXSCFiYP+5upgL2r0cWuJTp4GEx6FF3ihhQQmLyz38YILc9BdMnydjN5Z68rapFOpxEbTsDoN+bL0LdA3iZdluxScWOAPX/QKMswX968xQDBbpBlxLHryhmUzF4xT4YGsx683FayCaytrAMWWQcyZBfeYsjLCKDlOVhk/TD72XUlm4AD3+hCai4Ngzlf3hZZ7ywF7Lq8lT2HuCDTgE7QZk9vmYNMLpk6v5JLgN48L0OO45BMsNN1Gf0WPRl5C2forOTmIbqAyA1Fsg4wGZq8+W0NJj1EWQ+NLj2TS0FGhsIZ8s601dsFWS5y2wL2e4Z8ZrDos6eJxIzOyt/cLMsFEpCaTUOj0bA68zkyNAdkGcrvqpFYX8HBw2DO0cNlbITo5LPfZkqucarluDwZLrQR2W8jamH0ihg6OoHE5MyKNiJzMsPkE8Hpuew1lrMRRoc2Ty4a7Xw5z0zbRW0EAHOA6WHPW0NIzqRgMC5vI7Q8BzFjky0GpFPpbCmf5WyE6JjX2bf/9jA4jlvRRuTKMGMjCjrcK9oISR4LRr8ErYFDoNGJqo8WwrSYvGUZmj0GaA0sc1rnL4eRSqXyTifzpnk95C1i3vxj8orQGjjs+LcBICrPa1Z2H0mS5ypPxn7zeXPgHXfcAUEQcOTIB5u+/iz+8Hj11VfBcRxuX387IMq+isOQd1pSJ2rnbaFPkse8Fm///RFITj4vW5HeqJvXwQLWVpR9OMhq3vP7kfm28nWN8vxn9Mp2yMNKZNTcU4zKjxTDYNLD6JZtrlPI2jCAzYf6HN+Ktxhgkm2s0aljzx+U7YVPhF6abytYDRBl+8aZRWi0Gkz3smNK5mD+2BQdBoj2+UW/TtTCFBDx1qcPITYSz7OFop3Pzt+5bQHZNzSwOa/n9X6ILh6ibf66ekmXzZZoCUrsXZ3yM2vYfJkr70xbs9/IbE1WhmyO0Mo2Qy/pYJTtm+hm72aU5wiTX8yzWQarHulkGkP7JiC6efb88n1MPiGvrWA1QJIXlsO7WYYis5M9g8Uv5clQsBkgOOXvaGXf0VIsIXCeE5bAgrZ2HkJGLiKTYfZdZd8wKRPKBKfhDHmbc+YTnagFb9HA226DyS/kyztHZ80F7Bkkp16WoZDnc+bpt09u687X2awMzXpYijNzAmtr8mV8w/y2vMWQ/TbHfnEaGk4Di+wbLmwr2vjsnMy72LfhOI38/OICGRogynIRRY7JJeOfOkT5fr3s73YeomOhDOf1QydqAVFExW1BSD5+ERsx70fqRC1EOye/+zI2Qh5joqw/GZ3NtjXpYC1lcjD6Mjq7tLyNbh6J8VmkU2nZnixtIzI6m7ER1nIjgue7VrQROlGb9VXiozN5fs1SNgIATLIeDh+YQmwkAQ3HLWsjdKIWnJldS3Tx0Gq12Yy7y9kIyT3v1wwdYVlrDfLvS9mI3G9j9AiIj85gZnpmRRsxb094aDQaDB8bB2LL2wjRzvTQEmBl5RKjM9Dxy9uIjO3JtRGWUhGiY3kboRO1EEWmh4KTXbfyllBW3ovZCID5zBkbMXacZZSg2IjUbBrHftyryEZkYhxryhvQ2NiIZDKJc889F2fxp4tzzjkHABAuD6NuDduAkRw66E06mALza77cNYfk4CF5eJz47350/bofepMOlhzbkmvfRCefXXMIMtFgNsZiXuaglNdWcuWfvtebdDAXiKi6rQTFF3igN+nAmdhFJA+fnU8AtsY2y3bfEmTPYC/PrCWF7JoaAHiLHubc+c+kg2CXfU4zD6Q12exGBosepoL5NanepINRXm+ZAhIbb3Fgz38chwZcdmwKTp7JMDO/+MU8+ybaeaRTQHQoAdGmZe/qz8Ts8uUtOgyQvLLNkt9DJzK5mQvEBTLk5w8yCbIMg+y0l1bHsXcV5tuKzjPlDTA7xOk0iI0kMHYkBqNHgJQjQ4NZP++HBZgMRQd75mQsCU1OaJY36+fnelmGgnPeh+NtjDAk+Jj9MmbjBaIsw3m7z+fIkLcaWMxrZAZGF7/g+aU8eWd0FgAi1/vYdbP+ar4eig5Ddq0gCFzeM5zR1ilAzDk4xsbCvC3Xm3SouIFtrImefL9Gb5xva5HbClYNTvy0H7PxOYg5fo3BrM+Z/zI6Ox8P4XOuy5v1ebE/vUmXfUajT8ybIzQaDrPTbDyKbvZumbFhDkh58hbsPJtnBaD2jiJFNgIA9FYDyUaw68ryLmTPlCHyLGUjABYLzNiIZCIJDadZ0UaINjaHZ2yEby3Tw+VshMnLdBZgWbzSKUCr5eTrLGEjMt/GZoDJJ2Dg3TFMD8VWtBGZ64g2LfSSDhoNoNVxy9oICEKefusM2jzfcEkbIX9HvUmHof3jmI3OQbAYlrURepMOetmnNroFpJPA9r9n8ZrlbITRI2T1d9c/HwPHcSvaiOx3zLERwfM8y9sIuyH7t4yNKGh1o+qOwmVtBG9GVoZ9W0eQSqay69eMvJe1EUYd3vnsEcTHlNkIwcL+/tH1d0KSpA+k7MhZfLjwd3/3d9BoNFh/+3oI8v6FySfkHUTmrYZsnN7oYXaJN/HY9aUTMLrzM8zwdkN2bEouHrxFn9370BqYnet5g8W8BCef9Td4G7tuZg1lCYgQbAaUXetD7Z0lkDxCdhwLVg68VT9vcwNS3ppacvHZWANn5OW2ss0tEPP2IIxeIbsuBgCtnsOUnM3bFGBtefn1JJ8IyZMrFz3MARE7//kYxrqmwVv00Mt21ugX8jL2CVZDdp1s9AswmPSYic5hYPcoTD4xb2wKtvm2Ji97BkGOp3NaTX7c227IykV0sHfNyNBcIEGwG7JrRMHKZ+0bb5Xb+uT52y/mxTAkF4/kXAr9e0bBm9m+TWYtaQ1I4HPmE8nNQ5K/49CeKSCN7DrUEpDy5C15RUieeXnzVj3MRRJ8LTbmQ1j14OX9PMkvZNfJmbaZuIrRx+KTc7Mp+fcF8s6VYUAAb9VDcvCwRYxwRCwQcuZvwb5Av616SM7M3Clm9xMBWWcDmdiwkCdviyzvDES3AEfYDN4i749b9TD6M75KvryNbiFruw99pwscp5lf5y/QWckjQJLnZJ5ncsmMLXNQlrf8ekavmJ2/szIsyOyJi0Aa6H6DxSmNgXx5C1YDrIF5/4PtT2tRfIUHjnLz0jbCy3SLl+dWc2CBjXAYsuNRcst6mN0flfLkLbp5OCKMuMjbZHnLPobFL83HO8D2R01+EbHhGaTm0uBNy9uIzLfI2AhrCdPDlWwEb9VnfZXJ3hg00KxoIzJy4K16pGbSmDwdBZchv+fIO9dG8FY9RLtOlj/bb8wUmVrORuTKe+IkS9qQObCxlI3IPoOb2Yip3hjiY4kVbUTGR+bNGmg4DYYPjyMxlFjWRvBm9gymgIjEYAJTXbF8v30xG+GfX0tkbITo52EqFJe1EbxVD17muRh9AswFEmo/WnqmDHNsBJOhlLURQ/vHgTRINgIp4OQrgxCc8hyY0dmCfBmKrvl5rcgbQktLC+bm5rLlV98vaNJphUVSV0A0GoXRyCTa4boLVklZba/KK0RY/Hrs3sohOqaBtldFjn8DU5L0+Mq50iqus2FmKokTv5ZLlSXZ5kgqtnSasI4tZawW898cO+Nv6dk5IHVmqr+qjxZCdPDY8bmjSt7gLBaBNSxhZpReLmrdy9VIzqaw7S8PfjAPtvBeiRS2/bXyezVvKAdvM9DqxMv3mosls8QNRchUiCJWflj3cjVmJmezC2alEF20knmSi0PDY5WY6ovh3S+fUNyvbXMFdKKWJENrWELtHSWY7Ini3X9Rfi818DRZEL62UNW9PE0WDOxQkffxLACwzFa+NXbSOKm5uwi2EjP6do/g2A97F2+0SCrh5g1lOPC9bkR7EsteX2OgpdbOhdbN5tL6W00wSBze+ud+xX273L/HgQMH4PF40N+vvN9Z/PHA6/ViYICdNr6Uu1Vxv47nKxEbmcGuL3Wy/0irLNOlAGKBiMrr/dj5hUXqoi/hglbcGoSryoq+d0dw7AdLjMlF0Loxgu6tQ+h9U4UveRYAWOaWoXcJ5XzBTtKavCJ2ffU4pk/SS7BQ72X0CNj5+f2ksmDrXqpGYnwmm+WQci+qvyY6OMRGaGOqdWMEepOOfK9syTGC2Ns2V0AnaPHG/yHcSwTWba7GVE8M7/6rcr+m/ROV0Bo4+nupwNpPVIJTcS/RwYEz8x+47v4po/HxMkz0REn2et1L1UAaeOPPlX+vshv94LQcjnzvtJrHVA6NBpYSEbUfDaF/76ji9xoRR3AQWzE7O4uZGXoJprP440Bm87oFF8KmURbzKrnGC1+DE3u/fgKTXfEl/Z/3C2XX+5FKpkglvjteqAY0wJuEMVlyjReWAiN2f2kRH+8sFEEKCkhNzZBKqQHMhiYTSWz7mw9+c37dS9WYi9PiULX3hGApkvDGp/eTyomte7EaM9PEOFRm74RY+WHdy9VIjM/inX+kxbwEG0f/Xi9XY/J0FHu+0qm4T+NjZRAdPGmeFGxA04ZqTHZHsefflN9LDaSggMb7yzBxapp8L0e1iVZK8Szy4G2xI7jORdLd0ut88Dc6MfDuKKkMaP3DpTj0ox7EieXN1WDNgyWQXDy2EmL5fdUHsXffXni9XvT19X2AT3cWfyh0dHRg69at0ECDS7iPKO7XvjmC6HACe/79FPuPDzDmxbt4RK7zYc+/nTzzj0v4fMELXCi+wIv+nSM4+mPla6jGR8vQu2MEfW+Nqn3c/9/DFjFi7PA0qU8mRrnvm53kvlRk7rX7K0cx1b38fkMu1j5fhcToDHb+85n710ve67YgnBEL3vnH/aQSZLyFXrKs/sESGH0iLQ4FzJccUy4KND5aBtFJ86EA5odOnJrG3v9YZCwvgeYNYfBWPf29VKDlmQgMJh35XrwF0Ft4kj6dRT5q7ylGdCiB4z9T7musfa4K0ABbP3VAcZ/gBS4YTDpVZfBI0GjAu3k03l+Cof3jiuehRCqBnab/QSKRwOTkJHieX7mTAtCKGC4DlysToOEUE5QySKfSiI4pbx++VIStQI99P51AlEhgOfRjwo1kHP5xLyTPmZvM6dml629b5KwzFBRd7kGw3YXuNwbR9aryuq2Nj5dhvGs6WwpMCUylEsx+Hr2v05yaokvcGNw9SCKiWMMSKm4oxJGfnsLoAeVsmaqPFIPTacibDX07RxAbpRldd4MZ0yPJbNYrpXjjk/vniUAKMTUYz57kI9+LiLYn5I2oVdgcUkMcig6lVD1bdChBrtk8fiSK1z+9j0zYggQUNDtx+vfK6yIP7JiAq3oSnb+jGajWZyLQm3UYOLif9JxrHipBOpkmBb0AdeNZdAHuJg+6XhlQ3EcKCKj6SBBHf96D8SPKX6zjhSqk07TJ3BWxsFPvAQHRHmWBlH1f60LF+uDSBKUl8M5nlTv+uWh8qBAGsx7b/lZ5QD81myavqR3aSwEcyJJYzuJPD5lvey5uUN5JZFkKqbXU136iEtGhON79105Sv9jp2OIEpWVw6DvdwK0gbXhbStnJSle1lURSWvt8FdKpNLb9lfJgqLPWhKILvDj4nydIZJSiSz3oen2ARCgRfQLsYSN6CHMQwModJWdS2P815Ytr0cEhckMhCs9JYOcXlNu3o//di2C7k0zy8Hc4yISy3V88zog5RD7JbGwO0wM03zBTwoKKxicqMTMxi+3/8MFnslu3uRqzU3N4++8OK+5DIrtnEAPmEklMD9A2KLb940HytwIAY7EIXtJghLBu6HpjMC+jj1I0PlFJPgTgrDWh9LIA9n71KMkGiA4O9ho7eTz7OxwY64ohdlq5MEuv8cPkE0ikstAVXgTanDj28x70bx9T3E908tAJWhyDcpvdvXUIY8dphEjKnJALS6mImvUh9O0axQmFQaWJEzGW0UuvXKccMQdi6TjSSMHpdGJ4mPadz+LDj1AoBADQQKOYoAQAOr0W6WSKEZQUovgyD/zNDrz79U5Eu2m299iP6GNl/7eOwxw0kfo4yy15mTWUwN1gRfi6AnS/Poiu/1Ee86q9J4Spvhg6X1FOvBJ8AqxBEf3baTEv31oHxg6OkYgogkdAzfpCHH+lB6MHlW9e1dxapIqk3PX7AcwlaItDe6URiakkWZ/e+D/754lACjE9EIPoMZCJQ9TNJABofigMXi5L+0Gj6YlyCA76gUM1zzbdHyfHlONjwBt/QyOGZeBtsZPGSrQ7joE9ozj9Ns2Xr3+IbVLu6DlIGmOV6wuhNXDYR9g4BOTxfDyKOMWHFcBi879VHigTbBwqbg+h67f9JBvQtrkCGq2GtBZ1VVvYqf1iAZMnlb3X8R/3QavlSAQlAKpJqLX3hGD0CaQDvXPxJNLJNLM3Cj+XbV8JgL3o7+9HPB6HIBCN1Vl86LF161YAQAeuJPVLzqWRmqGRwlueCSM+lMDer3eR+iWGEosTlJZB92+HoBO16Pxv5X4N7+Ihuni4Ki0kklLLpgg4jQZvfUb5etcU5FFyuR+Hf9SLxJDyOIqvzY7Rg6Nkwos9YkMfYf0JsHJHGq0Gh77dTbgZUH1bMab7YthNOFTe+ZtBzMWSZIKSu96KwYPjJILNoe904xDfTeoDAInxGUz10xwAkuxy0PxUNWIjCez8J3X7IhSse7Ya8bEZUiIQClErF4mJWUwRY17vfOkI+VsBAO/mIVi1GD+qPOZ14tU+CFba2gsAmjdUYyY6h+2EuKGlmEfZVUEc/GE3Yr3KX1DteHbWWRAdSpDuVXCuE7ZiI/Z9Q7nN9rXYUHplAMdf6SXZUZYBzABAOf+i81e9iA7T9Inie+aClbMLoX/PmOJ5JTGYQDpFW0/yHI+ZqVnMYhZFRUXvW1KE94WkFI1GEYuxoOk5tc8CE8qVad/ufAcy6XesmE1JL3DQcBpEJ/RADndIY7UsmU0p2GFEQYMZR/9nFMOHEtkMShlworBkNqXhA1EM5wTJzyAncdozsilt++uDZPJKajaF9FwaXW8qD9YAcskok55EUqq6Pgi9WYfxQ+OIDilXxuA6NwJtLhJpwNfsgE7UQrDyoDAvet4ayqYpo4AihwzC1xYCGnXBAyrp5dA31TkAajC4fyxbbuSDxsC+MdiKVudee/+9U11HKkEJwJqPlsAckDAzOYPBXco3U/YTFzUA0PVGP9zVdnI/k1cENSle8CIXCs/xwFJkxF7CybeGh6qg0WlIJCXRqQVvNaDoPA/2HFF+r5mpWTIxZ8dXjqr6zsuOy0WyKGXQuikMTssteYp1sSxKGq0GGgXxxkwWJQDY8wP6SQ1JckGn02Nubhbt7e3Ytm0b+Rpn8eGFw+EAAGjAQdSLSCcVko5iwNa/WbAw0XDLnywTWRONdumxsBjano1gLprEjs8vsUDUaJY8WXboO7S5cuJ4TNUcnpiYQZrG10JwrYeVDxF5UBgYwQ4X/M0OUhA6cm2ApZgdTWB4r/ITx2YffV6IxVIY65xG/07axvr0yRgOnaR9r8B5TpRc5IO1yIiD3zpF6quG9PL2Z5Qvxt8rpvvjGDwwvjr36o1j+BiN6KEWb/21OnKTGtTfXYJ0Ko03Dyhfb1CJPxmMnZjGKFGGRh8r7+Fb61FMegGAhkfZRhTlWS2lIkou9SE2RCMPumut0Bpom5v9bw/C10D3Q9/49H7yt+76lToCtbfFhrIrAjj2C+VEqonjsTPK2CyJHJ/vzU/Rs/Keg+vwlv7nAICRkZHsXH0Wfxo4eZJtQJ2Da0n9jvywF0dyD0Ms4/9kINoN0Gg5EqHE3WBF+dUFOPyTUxgmZkUcPxbH+DFaEHX7Pxwhk1cAIBlPYmAHzWZbiiRIHp5EUqq4PgCjV0B0MKZ4Ix8ASi/1IXWhh5TNw1vPSAOiS8AolK/bun4/CHsZjRwGqAtgV9xYCE7LqSICUUkvJ/67HycIG6/vBb07R+AsM6/Kvfp2jMBZaVmVex3+L5VZA1UQlCpuKYCrxgaNToO+rcpJR0e+TyO8AIxg521wIB6nBXpsIWNeGTYlsFcaUXa5H+Od09j7H52K+7U9yQ5gksaZwEo/B9vdJJJSfGyGvMamErUyoBKUMmh4tAx6o5a0ntLooCjmlQs1MVSBE8BDQCIVx3nnnYe3336bfI2z+PCisbERAMBBC0lrIWVD2v4PC9ZNK8W8AGh1Gmj0tPHY/GQ5kjNJ7PrSEoSXZXw+CkEJYGSoN/7P/vnMMgoRH0pAo6O9V6DdxcqYGoEEwRSWXu7H7LluvP23yu1F0aUF8NTakJxNY3C38jiKvdQEDUd7LwAY3DeOoYO0eE1iMIFjP6EdArBFjIjcEIQjYibHN9WQXlaDMJTB2LEpjHWuTkbEkaOTmDj1wWavyuCdz6o4aKgyOVHjg6VAKo2thPjw8B51lVcG3h3FVC8tYKM3MVKkt96Gzl7ltqruwQgMoo5EUuItHCpuCCLaF8euf1FOjvY1OvJKtilB354xFJ7vQSpJi5e/+ZkD5G9NJWplYC2XUHVLETpf7VN8jcRQAhotB4NRAd0nx5/etnB/SAHacRW2GX6GRCKBwcFBuN1u8jXOeKT3o9ybJEmIxWLQgMOlbf8PAEDbtzwTLemzo/miNHo6gd4T+RPKiiXfDEsr31IkpfDVVjhCIrb9ex8wufRuVC5RSXIB9feXYfjoFA7/FxuMy2VPyhCVKBk83i9ILo5ENpKKJBSf68SB/0vbGApd5cXs1Bwpqwy7IVQRB6iovqsIJr+It4hpr0NXeaHjtThKWLSFby6Au8aKQz84ieE9yifLokvciI8mSCW9nHVGVNxYjMGD4zjynQ+4xAHUl3tTg44Xq5BMpEgn2EUXEDjHj57Xe0lZgNqelU8pEQKO1rCE4FoXjv+8i3SvqjuLYA7QdVEVVI6v2nuLcfynp0i2o+A8J7SilkRSAlbfLqq537qXqjEztUDvVwiEtX08Ao1Og21/pZykpBS5JCUAgATUX23C4LE4Tr+x/MZDqrQAABCNTmFP1xeRTqcxMXG2jOCfCmKxGCSJMaHPxQ0Q9YzQuxJRqfhyD+wlpvkyb7n4ANJft2+pQDKexPZ/XOHES44r2roxAp2oxZt/oZycAKgrsfVeIPoExIhp74su9SAxNkPLUOITELrQjQPfJBJ5AFUZh9SgbXMFRo5P4uh/KfehRAeHkquCOPGbQVJ2mPZPVCI1kyJlDhIdHLytbnT+rp8kj9ZNEegEui6qgepybypQeXshHBEzdn75OEmH3U0W6I16EsHG22JD2ZUBdG8dIpFSym70IzEyi25iRsq2zRUYPTH1wZcDU4ng+S5Aq0H3r2kHUipuC6Lrd0Ok77XaNhGg28WMLlJITqKDQ+PjlejfPYpjhNIIirHA7wuc54C3zoad/3R8RVKJRscCQgNVB7D73d0IBAI4ffrDqYtnQUdRURFOnToFDhwu5m5h/7lSKE2jQf3DJeh/dwx9WxfExz6Akm8lV3rha3Zi5+cJGUoElpVvaP84iRQheARaZpL3AdQyW4JHQOE5DjKRInCuE0im0fMhLR9cdr0fjjIzyRcCgECHA7xDTyoDGLzAhcJzPTj8YxrxzbfWgdnoLKmP4BHQ9HApBveNqSK/UKG23JsarH2OZW0kZdkUgKJ1bgzsGCbpffOGMLQ8R4qvCT4BofNd6Hylh3Sv0ut8cJZbyLqoCoTsOrmouKUAJ38/TLJX7gYreKueTAZcbbuopvTg2ucqMTudJG3ENj1RDp2kXZ3YJoA1D4QwenwKp369gvxlny2eimOf/TXMzMxgaGjobDalPyFkiInn4QbwWvm7rhC38rXa4a62Ys+3us7cUP4AYl7NT5cjNZNe+TBJjt9X/2AJRCdPIicALFMGJavRe4Wa+/na7EgmUiSyEW/hUHSxTx2RkodqkggFTU+WY+zEFKkEE28BCi/wo2/nCKnMVvPTYaTn0tjxeeWZg3gL4G50YXDnECmLVeOjZTBYdNim5kAaEarLvalA0WVuFLS6sO8bxzFxUrnsbREjBIueRC6xlAioXl+C028O4dRvlMd5Ci90YzY6Ry7d2PREOcZPTpNJc6qgYnx5mm3QGTjyOqr0ah9Ovz2KxCAlaxOHxMTqxryodjF0pRf+Jid2fI5QUpEH1m6qQt/OETKZVREWxLycdRYE2xzYraRyhsxAH6o9jF27dyIYDOLUKRX7FQvwvmRSymRRWlf7rKL2SZ8dJmcaBh7wFQK9yrProfIaCYPHZjFMzDh65GfjQJI2OIx+CelUGpM97P2WJSjloOGBUqSTadKmhqfJAn+rC7u/dlwV2YBCMgCAaFcUB/4v/UadP1c5MIi38rZZUXyBD/u/dwpTx5V3NroE6AR6qQc175VOpYE0EO2lsXmD69xIp9IkklJqLo10Mo3EyAzpXuGbCyDY9OQyYGpQcJ4T3no7Kf0iwMpYzU4pG1vZe50bgHcNO+lNKdGVJrJkAVYmbvwI/USP0cWr0sU1D5VAq+doDHiVBMC9X6WfwCITFGWoJSgVXe6BJSCRsmeV3eCHd40dfTtHSJnVknMpzMVoKVXeeg/ZOeruLcCxX/Qg2qdcL3mzFt4KET0755COrbyjJ0kmTExMAkjD5/Ohr+8Drml7FquCkpISAPNZlBRBw8FTbYXeRHP9LCUiguvc2E9In5qBmoXuTHSOfJo0fEsB3NVWdP12gERqqLmnGKMnplRlYKESlAB1mUNifXF1BCWATFBqeLQMM9NzpBJxEAGdqIXJQwsGx0ZSqnQqnUwjOUvzeYsuCcBVZcVcLEnSj9koMcWWjIZHy9C7fZhERlOL2vtCmO6Pk7L5xMdmkJpNA9RxdlUQAC1jUWwkAaTpJ6nVlvXSiVqYvDRdtEVEhK8txLGfd5PKy6kBlXSVgZo07KoJSiLLItr1+z6MHVZuRDpeqIJGoyFl6IgOJ2CbNcHiFzFxXNm9YiMp1YFN1xozXFU2UvY23xo7BLsBokOD2AgUEUvM74YA7EZPzwe/yX4Wq4dM8G0drlHWQaOBYNPA6BHgXWM7k6S0DCI3F2Do4DhG9tNOKKvJXmP2CkjOpBAdpkWgGx8sRTqVImUbspYJKDzHh73f7lRFNqBuxscH4qrILj2vrU6pRltYRPnVQRz5ySlSFiuTT4ReySnZBVBDutJwAFJpxEZmSf1KLvYB6TTefJdA9OaA5EwKiXHavYov88DoFVRlYaHC3WCFv8WBdwklYgBgLpbEzBTtvQItThSe6wFv0ZM2blNzKXDEjBnxvjgOqvA1TF5ZF4kEosr1hTCYdDQ5quT+HFJBXB/cpS4jqlqCkm+tA/YSIw78p3L/JNDhQOhSHyNtE0p8JhMpzEzTdJGyUb4QlbcXouv1QVJWQFNAgt6oX5mkJEPgBEyMTiKJOZSUlKC3dxU2bs/iA8c555wDgGVRyhKUVoKGg6/BDslDSzXEu3gUX+DCYRX24p1/oI+PmakkdEZarCF4gQtF53nQ9fsBEoEyfFMBJk9HyUQIAKoIUaruM5FSnemNSqCoubMIc7Mp8vqat+hhJMYZEhPAURWHatJzaaSIMS93owvFF3ih0WhIRJnE+Cw4PTFYA6D2nmL07x4jkdHUInJLAeKjM6Qy0TOjs0gSyyIDQMUNQWh0HImklBiOAyn6fiPlO+WCt+ph9tEqD4l+HlU3F+LE//Rh9ABhfamCADjwzhi9E4DjhJhmBqoJSjxQeVMh+naMkEo4tn68AloDR6owNXk6Bm9dErxTQGJCoS+UAOkeubCWS3BXWUm2x19vg9EnQvTzisvtmXcXA9iJ7u73p2LUeyYpBQIB+SdN9lQ/wIhIC7MpJX3z6eOnhjXY+bs04ovEghct+SZnT7J49DA5dBheIpC5WMm30IVmxEdm0Ldz5cBzbtm3wT1RDO45rpiclCn7Nnk6irk4zdkoPNcD3mqAJHGIRpUPsHUvV2N2eo6URjF0lRf+Bgf2f/ckxo8oD8a3PhNBKpXCOytlRFjkGacH4tj9ReXMMleFFTpBCy2R4/H239MJA1KRhNrbC3Hyt33of0v55Hr0Bz2kzEsZdL02gPQcbfIaPRAllbzIwFVhIaf0VAtfox2CjZhzFCDVKM/g9Gs90HAa9LxOc/Yo4yQXzRvKkZiaI5VFI52Sy4GRuNGbATsJOEMan8GLXCjscGP3lw6RiI7NG8qh5bWk03mZbGDjnVPY9zXlAcRAs5McZDv2y144wxaMHqNlDjojw5bSdOISUHtr8Rmkr+WyKHmbTTB5BUSuCWLXv54ZjDojixIARIG9Px5HVF6PakQ5e84CslImi1IG59Q+idf3fjZLKD6LP35kav6eg+vy/l+j1Z6ZTSmHHfD2PxyD6FsiG+US6a/LrvRDdPKwRUTShnX13cXY/92TyogyOSmwKb5CBiOHxmENSmQCgLXYCKNPIJEuau8LwRKUsPMrJ0gZgFo3RTAzPUd6P0upiOrbQjjx6170bxtT3K9lQxgGq568kS85eXp985i6Urm194WgNXDk702ZdzLoerUHc/Ekut+m6ccuFXXsxQIRRo8AX4NjVUhKlqAEyc2TSEqdv+hH5y/o5PzO3/WT/deJ4zFVZWW87TYUnevB3n87zIghCqFGF3kLD71RB0eVjURSqn+kFEaPQL5n84ZypFJp7FyqDOYicFRJiNxQTLYFrRsj0Bt1JFtg9IgwBUQUX+TH2GHl43Ps+BQ0OlqAs+tXA6rLvvk7HNAbdbQMXVcVLF8CbxG/b8dX5O8UW9BmAVkpk0UJACMPy/t/HR0dePPNNxU/41l8OHH++efLP2kgcDlrtcVKeOToUXwsjTc+vcQafpnyH64aK2xlJry1X/mcF7zAhdnpJPq30zaHJk/GVa3HR49NIj1HJA1f4IO5QILkEkgb1h0vsizPlIw33hY7Qhd7cej7JzF2RLm/Vv9IKThOQyqvCbCMvJM9UdLhMEelFQaLHgYzDwoDY/eX6L6yYANqPxbGyd8NYHCH8pjXqV8PKSYK5OL4K73kOFS8T50ueupt0Ivvy/nbFeGrt8MckMgZc9TEhnq2D4M36dC7lbaJRdXdDOruDyE5kyKRvahkrQysRUZwRLI8wGxBYmQGO76gPOblbrKi9FI/9vzfTpLdqbs/BN6sJ307wSeg6cFSjHVOkeRYeI4Leommwz1vjsDX5MDIYVrMS3XWKwGovLEQBwmHZ6xlAhwRM3irnmS3dnzx+Mrja4HP1oGr8Bp+jOnp1SkJdBYfPN544w0AwFpcnv+HxeJWOTGvXf/SCd6lX3xzfYmYV/kVXlhLjBiIjJE2rMM3F+DIT08r28jP8fsOfJNOqp3onESsyorurbQ52V1thbXESCIPhW8MwF1rw95vHMfECeV2s/HRMszF5rCHcCCat3CofyiMzt/0k8gNdfeFYPKL5KzXpgIRUJHMVE127fDNBRDMOpI8AHXE0MGdQ+C0GgzsoPkM+/9THcHbGjJBo9WsCknJVWnFTGyORFLq2z6mqtTW8Vf6yP5rYgLkrGgAYK8yoeRiH/Z9+xQpe5AaXdQbAMFugKPMTCIpVa4vhKPcTI4t190fgpbjSKXbTEEeVbcV49RrgyR71fBwKUQXT5ILz3NwlJuhl7Qkmz98cJyckGJ4z4TqMn3OOgsEqx6nCQdoyq8tAG/SL01SWiTmtfc7XeB5rJzpKWeu5bU8dEkD5jCDtrY2vPXWW4qfcTG855VchqG+tvYJxX0kic0G0Sh9UbL3V9EViSsLiUreKiOgMSoiKWVgCokoucCBPd85DVDsLadVlbXmnX88CmedkZwRaS6WxDTxtIbJI0Cj02D8NO20sE7UIg3aQJRcHJIzKUz10TbHKSSG9wpvnRk6QQujRwTlY0tFEtLRKKkEGAB0qwjyiC7AUmolkagA4M1PHYC4CNfhg8A7/6LudI2pVAJv1JBK5sWGgCOEdPS5sFdJGCWelOetBuhNxI1blXjzz9UxZZOJFKLDtExbekkLjVYDe5UdUcImvU7UkYlDw3umkbo2jegIjYa991snMdVHzGwQVbeRDTDiltkvkkphNtxdAqNHhP8cO3pfZ47USmXe+t+Zgo7X4vQbtDGdIShZQ8B4p7I+kuRCVVUVDh48iMsuuwy//OUvSfc8iw8XLrroouzPirMogZ3WHjsSQ6yPdnJy5xeOw99hJxGUii5xwx4yovrmIlK2nMrbCzHaOUnahAeA4b1TGN5LD/6/8en98tyvHNP9cUhunkRQAsAWMsRgiL3cDE6vAcfRNv6jIwloDHQfWw2ZRC1MXlHV5oSlVHnGlQxiIylVZaGctSZER5Okbx07HcPrf7NvVcrsAcDOz+8nkXgycDdZMNU5QeqrJuMYAIgOAKJIkqO5QIJe0sFW4UDsAy630799TBWhbHowDt6sJ5dV1Bv1oFZbj42mwOk1sBWZSPZxejABI+lOwPTJGA5+t5OcVUp1xjcRqF0fwrGf95Ey1JVc6kM6mSaRlA59/yQSE0RDLH9b0ccjNp5Q/K2bcTkOSK+dLff2J4Lf//73AIAWXKC8kwAIFh7xAfoR1B1fPA7eTOsT7HCB03EkkpLgEVB6uQf7v9tFzlJCyUiWwZ6vdMIWFklEAQCYmZglx7wsQRFaA4c4IegPALxZDw1H9E8EYHZ6DlP9tMn/+I/7cPzHq5Pl1lpuh8Gsh7lAJJGUBJ8AxOOIj9HuRyXLAYxIZSwyk0rEAcDbnz4MwUa+nSrs+WqnqrJjUlAAb9Ji9CCBQBEHOTNaBuZiAZMniXFir4iUiszjaqCGjAYAs9OzmB6gjTOO46A1cHCGTSTbYzDpoRNp8e94XxyzsTlM99Nkv+9bXYgO0bMwqc1w5G6ywh4ykUp8Vt5QCGfEguAFLsVZXMaPxXHs571ke5AhKFnLBMVZ5gROQE1VDfbt24dLL70Uv/rVr0j3PIsPFzZt2pT9WdJaFPezFPGY6EogMUSLee37Rhfc9VbSZrWzzgJPjRU6A0daB5Ve7cNUf5ycbWTiZAI7VRyieuPT+yE6aAfKpwfjsE7NkQhKAKA36shZeaxhC3SCFjqB1m96IA6Din2a1ShrloG12AgdT6+wYSnmSSXKAEYuoJB4svcqETAbTyvOnpLB63+1j3wvtXjns4QyWTmwV5kQPT1F6quWdMVbAPA8iWwkOXkIdgOcESN6iOsVKiZOJlRlo57qjcHoEcBbFBBYcsBbDYrP/WfvNZiAXtSRM6NP9sRUEMtSZBImAFK5xzzwQMX1QXS9Nkgaa+FrC4AUSCSlQ9/twixVnRJAIgHwFiZHpTGzDlyNXeZX35eYlyZNjZLm4NZbb8V3v/tdAMBlbf/vom20faN5GZQAoOXiNPQGYOfvgPgyRCVt70g2gxIVWZJSMgnJBdhKjOh5W5mzkYrF0fhwEQSbHge+dwqjBwnZhp4uw3hPFIe/9f6kujoLGta9XI3YoDrHjYqOF6ug4TTkE9Ttn6jE0MFxUpmyNQ+VwOyXsP87J8gEGzVY9zI7rbj979VlA6JArRzbnq3A+KlpHPqm8rHW8EgpjF4Ru79+glRGUC3UZDc6i/cHUpGE2tsKceq1AfQSyivk6SMhk1Kw3YnuX887DSuRlJbDolmUctB8lwVavQZv/Vu+85yOxc7IopTBRPQtbNv7U9ZO/bR/Fh8CaGS9XINz4dUHF22TTibPqK+07sUKlnnx71eYHxc5WaYGwQtd6N42pHzzPp3GuperkZpNY+tfKidrBs5zoqDFib1fPaq+vNFZqIaaTC1q4W2xofzqAowen8L+rys/jVZ5eyHMAZF8cnjdS9VIzdH0US1aN0agN+lUZQKiwttuQ/kVBRg+NEHaZC670Q9nuYVMAlYzrtWi8bEyiC5+VeR4Fmei4rYgjB6BVPo5M64nTkex51+VZ2QInOfE6L5hVSS9RbGMzyf6eDQ+WIrYcAI7v7DgNGA6nZdFKRdvS/+NsfExPPXUU/iHf/iH9+lBz2K18elPfxrPPvssAOBS7tbFG6XTZ+hQ/UMlMHoF7PjS8eWJSu+TXy7YAFulA31blQ+KmnuKYQuZcPAHXSRiSMOjZZjuj6kqpXYW7x3rXq7GdF8Mu7+sLosNBe1bKqHVc2Qie+vGCIYOj+PET5WTbCpuKYCrxobDP+kmEanUgsVqaBm61EKtHJufCmOyO0ojk9xeCGeFhTyu1WLdi9WIj828p5JgZ6EOgo1Dzd1lOP32MMn2t2+phNbA0dZvAitBuFrlMFueDsNg0S/u0y/hs40Jg3gn9luk0+mzMa8/cmRiXjVYC7+2ePFG6dSZMa8XKpCYmMU7n1she8f7FPPyNFsxsHdceUmkdBodL1QhNZvCtr8hVCaosaDoAjf2f6ebRII4i/cHdfeHYPZLq3KozxTkUX9/OYYPT5Ay14Wu9MJRbiatwwFg7fNVSCdTq0Leqn+wBEafuCqxQ0uJgLq7yzB0YByHvqN83zB4gQveejvZN1z7fBXSc7RxrRbVdxTBVmZaFTmexZkovsIDe6GJlCXKUsyj9p4yTHROYS8hMYu73oqJE5Pqy9otxDIxL94CNG+oQrQ/jl2LZUrVLE4k3WH5JUZGR/DYY4/hn/7pn1Q/Gr3oZA4yBKWQf/ETZcO1pjMISgDQfQyITS9PUAKAmTJP9mdPBGi7U0KoXdkjawQBkEueRIegmKCUwc4vdeHEr/pIBCUA0Jt0sBXSzqzW3hfCuperIQVoTMGau4sQvIieJkdyqfjs0spNFkPoKi/855ypAyth3cvVaNtcQeojuoC5eBJjpwi1Nd8DBveNY/Q48V4SoDVw5Nqhp17rx3jXNEZP0vSxbXMF2rdUkvqoRfjmAqx7qRpSEU1Z+nePYmDPGPl+OkELE7E02ultg5jqjyE58cETlACW6WySeIrK3WDGuperUfXRQlI/KSCg6s4iUp/5ziq7EW2J6GKEO6qta9tcgY4Xq0h9EI1DJ2rhrrWRuh38r5N44zNERy+KfIKSTjm5du3mUrRtLM3+rg34VuwzdCyOqYEzy5BqRBGTJYvPPxapLfvzq6++qvj5zuLDhddeey3781IEJY0oLuo8TnRH0btjZcKeJiddZfuWCqx9Tt0c0v0bAkFJxs7P78fB/+ok9XFXWaE36RCL0Zz2dS9Wo+XpMKmPpVRE7cdCLHMKAaJDpbtNvE+mT8VtQfI9q+8qxrqXq2Espt104nQUs9MKyyK/R0wcn8DE6Sh63qKVhzL5BOiN9OSx/XtH0bOdFoh3VElY92I1ii/3rNz4fUDblgo0bygn9Zk4MobR41PoIZa/s/gl8olyABg9Mom+nR9sNqQMJrrV6WPrpgjWvVhN7hc4z4ng+SpTlqoY32psSfB8FypuW3y+WAq2iIh1L1WT+1mLjBBsNJJ2//YxHP3ZaRJBCWCZvdQQlMpu9GPdy9WwRXI+ALe8Xsf6EogOJhYvr6DRgDMt7nvZxwMAgH/8x3+kP+hZfGjwiU98AgBQjMiif9dotYsG/Lq3DmGqN7ZyJqWcvtYyAeterkbJNV7yc8bHQNqkBoB9/3ESh3/UTSYySE4e1mJazCt8UwDrXqyGtYy2DgzfFECgw0HqA7DNe3onehcACHQ44FtLf8aOF+i+KMAyS40T40Jq0bt9GMMH6YQhvVEHs58WZOjZPozhQxMY3E+7X9Nj5Wj9+OLj8/1G4UUudDxfRdbj09uG0LuLTu7gzXqY/DSHoXf7IMY6pzDdtTplrxITs5jsoemjFBSw7qVqVN5Oi3kJNg7hmwLqxqrK8U21JYINqL6zCOZi2g2bnihHx/O0mFc8ngJv08NdpTzTDAAc/F4ndnyOGPOKQzVBqf0TlWh7lhbf73lrGGNLxNuXirfZ4u4sOen73/8+7SHP4kOD7u55QsFSBCWNXrdozGvwwISimFdu3+any9FO1M8MBt4hEJRk7PjcARz4diepj6vawrIhJWgZotq3VKDxsTJSH97Fo+K2IMsMQ+lnURnzoiV5yqL0Gh94F61z6dU+5ouW0/yTidNRxEZXhxw2O5HA8OEJ9BLjUOaACMFKPyx9+s0hdL9Biwvxbh5rP1GJoovd5PupQfOGMBofpenxRE8cA3vG0PsWLbuU2S+Bt+jJejnw7ih63l6dmNf4qWnER2fIY7Tx0TKsJfoZACPKqFmLAVA1vtXYEk+zDeXX+Wn3cfFY+0IVwjcvfth/KThKzJCI2Z4mTiZw4LtdJIISwDJ7qSEoBS9wYd1L1bBXmeb/c4WYV2ICGD85jVNvLm4POGHxj1kwynTqi1/8Ivk5c6G63NvQ0PwDhwsvPuPvw7Wm7L/OvfmOZd9JDfpWOACdXKQeczqZxsAxBR8mwUoeaYxGtH7Mirl4Gjv+lV7moXcbfTGu5uTubGwO6WQa0R4amcEaMsEcNJLKh/nX2lFymR9jJ2g1slseDsNgXuIUwzIINDsBIFsCSSnm4klEh2kOQGwIeEsFY7VtcwV0gpbMQD36AxUnB6PqdGT0QBSjBzrp9wPeIxWRANnWcUSrcvwn6lLlqZHj4K5JDO6inyZreKQUkkcg31NNybHBw5Mom0sjNkor3VZ6hQ/WQmNeyTElaN9SCS3Pkd9t3ctyholPKc+MYKuww+yXUHqFD3v/rVNxv9noHKChKVZ0KKV6rKmB/xw7Si7y4fTbI+h6dQRIpQEFpQLm4in2frnQ64DZpTdZT745A+BM/Rhbx4J8kyVGmE+cGZT0egrRP3AKzz77LHbs2LHis53Fhw+ZUm8mLE7+1YgsiM0ZJaSm83V571dXPoWzsLxFfGyGXNqx7Fo/vPU2HPphF4b30oLjsREgNkJjNu3+kvLTC7mYSyQRn6AFeUIX+WAukOAISaRSSPUPV4DTach+xrrN1ZidmiNlACo+zwNXpRVIg3RiKDaSgLlAxPRJmvwPfVtF5lCRvdtY5zT2f015RqTYSIpMZACA7f+g7oT8sR/Q1w4aLXO6NNTcxiqh0WjIZWliIyBlospg5xfUZSlVWwZs3YvVmJmaJX2/Yz/uxTHQv1tsdIZcjhEAQhd4kU6l0f075Wsx0QE0PlGN6GACuwiZX2vuKYa12Ij93zpBKr8ZPMdNtuNjh2NIJdOYiyVJ/dSW2lVTbg9gmTq0gpbkiw7vH4OrwgqtYUGQRsMte6p61xcXn2u0VhYd5ExGpKby57xy/RpMWgeQSCRw+vRpFBTQAmBn8YdHPB5HKsX0IszVn/H3DLFbo9WyLJY5GN4zieE9tHUnp9diLpbECJEU0v6JSszFkqoywgzuUhHzUnGSfC6WRHIupbh0TwbuGhsckRR6CKU/rWUCaj5aitGjkzjwn8rnoDV3lcDkF7Hjs/tJ5c2KLvBAo+XIJLGZyVlVm15q/JqmJ8rBWw148y9o305N6RAAqk53T56M4+BJFT4Dt7p+FzQacHoaaVtpeayFUDPWxo/FMX6M7udVri+Eo9yMNz69n1TO7p3P0vUx2h3HXCKJ2AhN/wsv9MFTZ0dsZIYk0+anwuCt9Hh2x4vVLOMJoTyd4BZhLzOD03LY+x+divvFx2egNRCDt3F1cVGqHc7AXmlE5S3F6HtnmFSKMD42g9QsbZOt582RRe2+Rs824TU6PdJzZ67lC6zFOD1+Ev/7f/9v3HTTTaR7nsWHA42NjQCWiXnpddl/0wvipke+T18HRvsT4E20eHOgw47iC704/KPTGN5H8/USE0Bigmb7KHGdXMxOJ5EYo8W8is53wVVpxdCBCST2KK/vVPdAOfSijuxnrNtczbJfEeYSZ50F/mYntAYtjnxfeabB+PgMZmJzGD9Ki/uf/MUAToJ2UA5g8YyRY5OkjEiJCZDaZ7DnK53kPgBw6jd0P4/TgR2yoJ9fUwcO9L3NBEi6kcGBb9JIJBmoLQO29hOVSEzOYuc/KY8LnX5tmFT+K4OpgTg0Wrq/XHZVAEiDtBYDWGb6qd4Y3iXEcMuu9cPbaMeh/+rG8D7l9qfoAg8Mog5Hf6x8DkgMJZBMLLIntwLUVm8aPaAuqUrDw6XgbXpStrPBfZPwNS9CLFsh5rVvCa4Il9lrEnik4vnzl1cbRL/Dg6npKRw7dgxlZTRCYQaqSUolJSUAAC13JkszQ1BaDM0XpZFOATt+u/igWEhOmim0w3BqFAOHgQElAdlE/sZtOslIQEqQijFHvfbuApj9Anb/x3FMnyJM5ilaIDcDSrmqXOz6wkHo7cQ6jQMJJMZn0EVkyQ4fmYCznEjRBHDge52QXPSjwmrIRv5z7DC6RTJ5aGZyFlAR02h+qhzDRybR+XN1deIpKL8xAFuxkRyQUrtZoAZHvnMaR0B3AMK3FsDiF1etJFrzU+UYPDiBrleUO5jTIwkIDp5lHCL4ss46Izx1Dhz4vwQHMwrSZksGx3/cBVeTi0wIHDkxCbOXPkanB+KIEtPM9r4+itRsCv1v0YLhFGft/UDb5gpoeQ5v/rn8HRQEPXt3jiJ0gRd6IcdLV0BU2v65zuzPeVmU5IX3UmSlYLMe/loRb39nYlGdXIyotCb0ILbFP4ODB5UH2c7iw4W5OaYPHforzvhbhqC0EKJPj/p7S3Di1/1Ljr2FJIfMZtvuL6koI6EF0qm0coKSfNpx3YvVSEzM4J3Prs5coGZ+fPdfT8DdZCERlABg6PA4BAv9VFNsOIGxThrR6+QrA0ingMEdtCDKiZ/14cTP6AvrituC6N81TCJNiCKH5EwK0QFagDx0hRf2UpNqsgwVTU+WY+zENI7/VPlCd3jvFN7Yu3ppl7f9lTp73vJ0GIMHxnGS4AuphdrvNpdIIj5OC6oCLFPOVHeMRHyhEKdz0fnbfkydptmD2AgwMzaLoUPKgy4A0Pv2IAwmneL68Bkc/F4nEkPEtHZQ54uqhS0iovq2EgwfmiAF4Wdjc+RA29jhWP64yT1RljlVvUTgpvnJMqTm0tj5z4sTlhYjKhX4CrB77260traip+dsaaw/NtTXM2KSFmdmbcjNPHlGvwdLwOk0S+rKmRfTAOk0Rg9O462DdP8kNZPC7DTNXoZvDMBVY8P+bx5XvWFNwYn/7idtamew43P7wTtpMa/EJDDdH0fvdlrMa+jgBHR6LYmgBAD7/rMTRmLWIEAducPdYIWpQCCVUQMYSYBMgAArWzh6bEo1WYmCwotccFfbyGXDVrPMWNf/DKqSRehyL2ylJhI5+b2g/qESjBydxCnCgdbYcAJzQQmCwCEeV04osZYJ8KxxkMs/qon5nvpND2KjNIISAAwfnIA1RMv+BgDjnVOIT9AOD44diakqtUc5RPx+oPGxMgg2A94k+HujB6eRTqbIG9O7lyB6rwR3kxWll/qx+0uHER87UycXIypVTbZh2jaOw4dpZb7P4sODTFKEtdrLz/hbhqB0Bnig7YlydP1uEH3bFcab5c1aNQdqOAOH1FwKw0cVjnM55tW+pQIzE3OqN7mpUDM/Hvmv0xg6ME7eUB/YPQqJWO0CACZOTWOil7aeHt4zgWNiD0aJpP6e10fQ8zo9203p1T4MHRjDxAmCv8wDM9E5RIdpPravzQ53rVU16YiKuvtDGD81ja5fKvdtYr0JbP3L1YsVvKPy0OGaB5gPq4aIRUWgwwFnlYX83Wam5hAfoce8Ci90IzqcwDCBSHiEUDo4F8d+3oPEGH2tONUbwxBxjPbvGoHk4RElktgPfvskZonkTwB4+zOrt2/Ou3g0PlSK4YMTJAJdYmIOWonmeCWGEtj+tzl+ECHmVfexYmg4Dd5dQpcXIyoV+Auw892duPDCC3HqlLpDqqpJSlNTbLJaW70x7/+XIygBgF6fnZsVw1kKBGp47Hk1sTxBIHHm4mH718aRnl55gydDUALYKa90Mo1oH+FBU0mse7kac/EkabElBQQEz3Ph8I+7SeQHgGUKwRCt09TxqCoyyImf9uME6EGl0QNRjBJfzF4lwVZqJgdeis71QmvgyCSlpU7GrgTeaoArYiGRlMI3F8BdY8WJ/+klkUnspSZVpUr+GGAPmaAT6PTrjheqkE7TN1F4qwGeKiuJpKSWgFV2RVBVaRRnnRGWIhNpDESHUqR3yuDId9Q5KWoDDVSCUgb+tXYITgNJJpnMcaPHJklEsdnoHDRczmZEOr0yUSkKbP3rRRaaCohKpVc6IbkFHHiVQHTVMmJJsEqP7ncWd2gXIypNTDAHdsOGDfjsZz+r/H5n8QfHI488suTfliIoAYB3jQ2cToPUDO30Yu29xZjojqLrVdqC7tgPe3HshwpJHTkO4dxsEokp2gmG6ruLYQsZcfC7nSTiUOgKL6ZWL4wZAAEAAElEQVQHYxjcQSMJAFDV5+h/qduYVkvQ7PoVfS4IXeHF2IkJEtkIAJwVFhg9AnYcVu5bxkZSqsg17mpW2o+Ktc9XIZ1Kk+8p2A1waDVQN9t9uGGw6OEIm0kkpeBFbhSd60bXa4Po/rVyu6D2u6kl2nvr7HCUmsnZeUJXeDF4cIKUTazn9+rKXmxXsTE9ciCKkQN0m0Ad01mIQPjqAnT/+jSprFrblgroDLQMtWOHY0in0pibpR342aWUALIAogOouK0Ux1/pxUSn8s1HvVGfLSOyFBYSlcx7QwB2o7eXfrL7LP7wyGxyduDKvP9fjqAEALxVT85yZy4WUHKpD4e/10kmyVAyLmYwN5tEOknPbNTxYjXm4nN4+zPK7ynYgILz/Tj2Si8pQwvAytjFiYHx+EBcVabNnteGVZUzmjwZx+RJ2jNKQQGuiJlMeCm+wAODRU+Ole3/hjoChNEnQifoSM8ZONeJ0IVedP6mnyRPR8QCwUEn9f8xwBE2q3q3ts0V0Gg1ZB82890oJKWTvxzAyV/S1xAllxVAcvNkkpK1TIC1mDYG4mPqslJ1vqLuYKnacUMlKGXgXGOG0SWQZGILi6heX4KRI8RsHZOz0Bnpscqtf6nugETwAhcsQYkm0xSgNXDwNDmXlMliRKWxsXEAaTzwwAP413/9V1XPexZ/GPz7v/+7/NOZPtSSBCUAvjordLxWUTb7XIRvLkB0IE7OStL922F0/1Zhn9yYVyzFDsoTUHqND75GBw59n5ZZJHCOA4mxOVKfDNRk/FBLZt77H/TMfwDQ9xbtgDbAZDLVE6WRjQD4mhywFhlp5LIEsF2Ff+6ps5HLvAJAy6YINBoNmXRh9kvQizoSSemPBSa/CE6rIZGUnHUWVFwfxKnXB0n9XNVWVd9NLdG+8Fw3EhOzJJISII+B7mlMnFRO6BncrW4fj5JBKYOp7oQqgt5Ut8pyjDxQfKEHfe+MIzGk/BpNT5aDt+jx5l8o35NODCWQmkkhmaDFvNRm9wIP1NxahO6tQxg/rvzdeJthxTjGQqKS6d1iADvzyrVSoYr1kFsmRpLmTwwtRVDK/L9z7xS2vqIsg1IuCupNEKQUJAmILrYHtQg5CQDKLhYxcDiGyW7jskSlXIISABz87vxJ8sXSR+Z3nlesxPgMosPqSjRNdk+TSCstz4ShE3VkgkbjE2WYPB0jE3manixH9xsDGCBszvnPsSN0gQ9Hf9ZNKrFVelkAvNWAE7/uJxG39vxnFxxl9BNsRZd7MLR3glxuT01a3dhoAqm5NCZ7acbz7b9Vdwpk3cvVSKfS8xlhPkBEbg/CXWHF6beHSMQtNSeoAGBmalZVaQ413w0ACs5zYvx0DFPHlSvloR+eguSkF2ANX1sETqchBx9bn4kgnU6TM27V3R/CVH+MdD8pIKDqI0Gceo1mF2ruLoK12EROAV9yqR/QgPSMvVtHUXS+FxOnaETJRYkBKxCVNDpGaop8xIvu1wcR7c0hhKRkRV1ikvfUWOVMAIvMU0tkVOp+axbdMuErU+ZtMSwkKvmdDegd3oWf/OQnZ0lKf2T48pe/DAAoRmXe/y9FUOKMbD7sfGUQna8sEdRbxvG0FEowegUSSclYLMLXYFNGUlqw0fsWIXVpBhMnp2H08OTMRoFWJ9KpNI1wJALrPl6NwQPjOPI95eROb7sNgRYnDv7nMdJGf8nVPogOnlyWq+XpMJJzKez8PI3MEGhzwlNvI3+HY6/0YKqP5tNYSkUYvSJ6iemC1WzCAkBiYgZpFclO1fgLZTf64VvjQPfWwVXJUrTuxWoA9HIgat4t2jeN5IwTiXGiD6vyu4kFIpxlRlIpNQDo/E0/Ro/QMpCJBSIK2l2wFhtJG9veFhtKLvXjyE9OYXiv8mCuu8mCQKuLTPguu9EPk0vE7n+h9Vv7XBUSEzMk4mPxeR54amzgOA0pu9HU6Rh4y5lZZ1YCJcCTC0eVBHu5FccIqb1FrwTJLaDoQh/2/vsiQZ8lTpdtzdkkzpR5Wwy5RCVRL4LneCSTSezZswd1dXWKn/Ms/rAYGxvL/ixw8yfDlyIoZf4/nUziLQKBJ4PC870wBSTwToFEyim50ovRYxMYO0IjJJ74aT95rQkA0YEYEsQsd4UXBeCps2NmcpZEmqh/uBSCzUAqtQQAdfeGMDVEW9sCwJoHQjj99jCJYGCvNCJyfSGOv9JLKp1XdrkPlqARA3snESdkltz7n6dgK6XHvAIdDoyciCLe98HHvGan5jAXTyLaT/PP1R6C6nie+UJvfuqDz2RZeJELRed50fPWECkzmNpNqPjYjKrSHGpjXt4WO6KDMRLp7vBPTsPooce8IjcVsY1R4sZ2/SOl0Oo4skwrby9EbCRBImIJNqDi9lL0vD2MwR3Kx3cmU92bn6GVzgtfXQCNliPJZOxIDDOTs5g4SfN930vmppJrvOjfPY5ot/KXC7Q6yYdTB3eNZ+1qpszbYlhIVKpAAw5hJ371q1+R7ncWf3g89thjAIBClOf9/1IEpcz/920fV55BKQeuCjOSISOJpMS7ePhbrOj8bwW2ZEHMS00GxcnuGOyls2SyUdH5XiAFcr+1z1VhaN8YqWySvcqEYIcLh3/US9roD5zjgMkn4jAhvgawDDmcRoNdxDVx6EIfZmJz+RlGFODQ97vJMRDRz8PkEcgEDzXEDgBIDCcANf6CirKygQ4HSi7zo3vbIE7+4oOPebVvqYBGy5H3wNWUHo4OJTATnUN8lLa/r/a78S4e9lKJTLo7+vMejHcRD6PxQOhiHyZPR0lEIGu5hMgNbK1DIUXZIkYE17rIRMTCC92wBMUlS48thZZNEcxOzGL3vyj/Fu5KK4LtbhiMelKmqbETUzB66Znj3lKZuckU5OGospDIhLyFhzVkAjQajB9fJJ63RMxr+9/Pz1PcMgfic4lKvJYHr+Uxl5zD7373O5x//vmKnzMDVSSlc889FwBg0DHy0UrZkzJw+tIY7gNyGdHLkZMy2L5dD5t9FtHF4hlLEJQAwBniYQ8asP0/Fp8QFpKTAEAqNKCg0YojP5r/6EsSlRaUd1OToWjvtzpRdpmfXKJJDTkDAEQHD4NRj6NQTlJyN5ghOnj4mpwkMoLJK0Gj1SCVpGVvOPCDHhS02OmZpbqiiHYROwEItrvgW2NfldJo3b8eQjchMPdeMdEdJdf+VovBd0dg9goYOqTu1BAVq1UeDgAgAaGLfIiPJUj3HT8SxfgRuk6e/HUftCoyMKnpAwDmAgmSh5Y2nhM48FYD2S7MzaaQTqchBQQSMfDkb/sx1UfPBkANamfgabLA6BfzZZJZYC5BVvK2mOAKWyDaDNj9L4ucYlsiq9K+X0YXn99ysQRZyRoCxhAFq0W4OCZLWGpz84lp1JbdhKS2B9MKMgyexYcLmewNEX0DgOWzJ2UhAhaPiIkT+WNHyen+Nz91GGIB7SRI5Co/RBePwXfHzrhnFotkoSi52ofxExNkslH374bIBAYA2P/tE+DttGC6xS8CaSBJKH8AAL4GB0QHjxjRfHnqbKrKcugELbg0vV/XbweQmKItxAGgf9sYuU/kuiAMFj2ZpKQWVMLWe8HooXFYCqRV84XGTk7TU9SqxMiBKLYdWL1yoXV3FEEnasljXE12o9jpGPp2jqDnbeJ6TAtweg1MAYlEUgq0umD0CBB9AmKEDWNXhVWVXUA6TV47nnxlABqNBp2/WJ1sHRCB8qsCOP2bPsRGlNvZyA3F4PQaEklp5EAUe/9v19LzVAZLBG5sERGTK4iFMzHfKzU1jbqaOmzfsR133HEH9u7dq/g5z+IPi4aGBgCAASwAuVL2pAysZYKq8mn7v94Fc5FAzsjjb3HCs8ZOWvMINg6B8zw4/ss+cmaj3V+mB+GPfL8HiXEaQSmDlbKXLQZzoQTBTcvAK/gEmAISAs20LCgmv8jsMtE0H/lJH/xNVhJBCWBZovqIfQAgdKkPgcnZvMDzB4VcYsFqYPTYhKLy7O8Hho9MwRGxYOTI6rzfu4SNlvcDZVf5ER+ZIRGAot1xElklg+Ov9II30knNBrMOnIrv7QibMZeQyNmijB4BvgY7iaQ0G00CqTTMXppNP/ZKL2aIG+EAVI9rW1iENWQmycRaJsDf5IQlIJHmg3e/fpJMkszAXCxgaiS17HyVOTSYnptFIVeOCU9ftgLIWfzxIB5nH7lC2wRg+exJubAU8Zjooo+dN//yMHg3LS5UeqkHjrAZ451RjB5cQscW8V0KznVieiCOscO0WOzg7nFVmUz2fu04RGK5XN7FI51KYY64j+Sps8FcIC2WAGtZ+Fuc4M16HCZWrjCY9WS/CwCO/ncPOZ4H0IleAFB+lR+WoBGDB8cBlUleKNjzVXUZqdRgtHMazu5pcrk9tRg+MAGNXsUHV4FYb0JVBiy1qP5IEKKLJ5OUBt4Zo98sAXS/Poh+YvaldDIFHa+F0c2DEmnz1tthDZlgKRFI2cs8dTbwVrp/iDQ9NDq4exy8TY/urbQ16vGf9q3caAkUXexG/54JJAaVG4bKW4thMNIyniUGE3j3q52YOr3CfZaIeVlCAqZWinkJbP5MxROor6nHWzvfwhNPPIE9e/Yofs7sY6RVrPo18oLgnNpPINbmUdzv2uAkK8/0CxpJKQPDqQUDdhmCEgA4wwDHAYMy92RhNqXFSEoNDxRCcvE48rMeDO7J3yzLIyotIChVfbQQyWQah7+lPq3VqkECmQAkuThEoylyv9VE+5ZKRIfi5LRw4VsLMH5skkS0KLrcg2C7Cyd+2YverconEmtYgrXISC6f07a5AloDp/qUMRXrXq7GzCoFsWrvLYalyIg3PrOfpF/2KgnmAF2W7c9VIp1MkzM4VX20EH07hzFK2ESXiiSsubMY/e+OqDqpulowlUqkDFFZqLAlqw17lYSSSwLY8TkaqW3dS9WAZolTiAuCYpmACACUXePGsZ+uoJMLCCLagE/5g+XMQ6FzeHgiAvonOOzuVUYWNp+Yxu/f/RTi8Tj+7M/+DC+//LLye5/FHwz/63/9L3zyk58EAFymX6+MoASg4gYn7CUSOn87gJ7X5ucqSgmSdJKWgiZ0hXf5Te1F3M51L1cjnUzT5jgRaLhXLtdzXGU5o9WCCEDFIxqLRVLpqdVG6TV+uGutePfLB0lZopy1JjgqrKSMVADQ9mwFkKaXAQte5MbEySmSnog+AY0PlmL40AQpi4xatG6MQG/SqT75TkXHC1WYnZwjlx0LXuTG6PEpkl4Gz3eh6HwPjv2yh0RqczdZYCkwksgnAFD3QAkEm55Uimi1ITrYv5RxwzpClS1ZbVTcGkQymSKVugyc50TJRT6MnpjC/q8pD7K6myxIxubIJFdwBGJ/TsCm4/lKaDgNtn1Ouf2aHh3Ca/ghu9QqkQrP4r0jE/M6F9dB1BsV91v7iQjSyXRe5i0SiDpiC4vQijoSsaZyfSGcEQuO/qwH/duVxzJKr/NBq+VwhJiV+w8CAWQClmBj/1LL7a0mWp4JIzYyg33EU8klV3ox0RMl6Ym7yYryqwpw8n/60EMglpuLBZgLjeTSeU2PlcNg1akuJ0XFuperkRifxTv/+MHHvDKZdXZ++TiJmKZWlq0bI4CGnpG97Ho/Rg5PYPSg8k10wQaseagCA7vHVJdVWw1IQUEVmUqNLVltZMqFvvuNTtKzrn2uEpyOI2ebKLrYrbq0ExW+tQ6UXubD8OEpHP4vZZuC6blZvGH4GaLxaWzcuBF/+7d/+wE/5Vm8H/jpT3+Ka6+9FgBwqfZ2xQSl4oucCLTacPI3gzj9uspDUGkacSV4gXP5cm+L+HJrX6hCei6FbcTM1bX3FKPrt32k8kx/EPBQRcYR/TxixGojq4nAOQ4E2l3Y87WTJFKBpZiHq8aO4z+jkRmaniyHRqvBO8QKGb4WG6KDMZqe8MDaTVUYPjC+Kr59/YMlMPpEVRmO1KDt4xWYnZ6jlekDk+VUX4xUQsxZZ0H42gJ0vtpHIhzZIkZYiiVyub3ILQUwByRV2dlWDTzA8xwSE0RioEpbstoovsIDrZYjjXFruYTaj5Zg9Mgk9v+n8sN9togR6VQa40dXJ+bV9vEItAYO2/5e+XozNj2B1zQ/RDqdVhXzUkVD1Gg0cDgcWYLSJb5JnO9hi10JUVxZMIlKM1vUNNmncGUB+9tAFJhLAQ3nppGUdEga0+g4ZxalZSwtZ3lkFh3nzAJgv7e0zGLtulmce/4sPJ5ZNK83oWQdE25RowbNd1uhl5NH1N1sRv1t5uwzNt9tha1QxOAhINCkR/PdVkhu9rfa211ovM+bbdv6VAkqP8I2ifv2jyE1l0JC/ua1dxeg5clQtm3bpnLU3FkAgGXaaN9SCXeDGfZSM1wRC9o2V8xfd1MEtfexvvYqCe1bKuFfawcAVN1ZhLbNFeh4sQpVHy1EyzNhrHmwhMmwiLUtOM8JgJXRant2/rrNT5WjcUMpAEB0MXJO0eXsW5TfGED7lvlSME1PlqPxiTLIHwftWypRejF719JrfaytLMPGJ8rQ9OR8Ss32LZUovzEAAHA1udD+ZCUkF1OZhkdK0fzUfNu2ZysQuT0IgJXFat9SCamIXXjNgyVoeSY833ZzBaruLAIA+Nfa0b6lEvYq1rb2YyGsfbESdfeHsm1r7y0GwDI6tW+phKeJpdevubsoT95anoPRx1ji1vACeX+0ME+GLU+HseYhJu/Trw+j5NIAghe5ADDSUq4Mm58qR+OjZXnythRJSKfSsFeaFsi7DE1PluXJsOwGPwCWErf69mIE1zFFbHy8DM0b8uUdvpnpVtElbiZDWd4aA/JGa9uzFahYz+TtP4fJ0CSn/a67P4TWZyJZGbU/V4nqu5i8vW1WtG+phLPOmJV3rgzbNleg9mNM9hqtBu1bKuFtswIAqu/Kl3frM5HsdzKVSmj/RCWaNpbDXiWhYv2ZOlv/CNNZycUxnb2EycFg0+cZr+YN5Wh8PF9nS65h47XsBn9W3pHrihBc515SZ0NXedG+pRIi+6xofLQMzU+VI51kp8nbt1QifCuTd/AiF5N3gOnPmodK0PJ0js7K7zJ6IJrVWWtY1tn7QmjdFMmTYc3dTN62kA6cTgNzESMU1N5brMhGWMMSOl6sQvtz87pFtRENjyi3EeGr/HnyLr1WoY14cl7eRZd78nR2WRtxqRPtz9FtRMfzVWh9NnyGvJezERU3FUF08Ahe5ELrM/PyXslGzCbmEJNLLUgBAe1bKudtxEcCaM9p2/RYMRoeYiXXTm8bRNumMhRfxr5N+fVutG2atwmNjxSh8aH58mxtm0oR6tCiZb2E1jslNK+XsvKuu05A/Y3zJ1+ab5dQepEA6HUINuvhKJcQneFwapxDR/EUzi+dP8VzUfkUGgLs92JbFBeHp+CQopgsMaKttQMA8Gd/9mc4iz8OfOpTnwIAnN9+MTSiCG+jhJbHCmAuYmnPqz/iRtMD/mz75ocCqLjeiZ6dk0hMziK41gVnjQQNp0H1R4NokX0IAGh+sgTVdzBbaAuLaN1YhrVbwmh5uhQVHwmgdWM4p21ZdrwZi0W0bY7A38HGUPlNfrRuCmcJSo2Pl6LugRAAQHRo0PbxCIIXsjFUdp0/zxYmJmaQiMrEc5GN62LZZoWu8Oa1rX+kFA2PlqHkIh+MHhHVtxej9Br27sGL3GjbXJElAKx5oGTeBwLQ+vEIWjaG0f6JSgTOc7K2crao2vtCefatdWMEFbcym+VtsaFtSwUsVaxt9d3FeXNE68YIqtazce2sNaFtcwWccpbRqvWFaH103ma1PB1G9d1MhpZSEW2bK+BtsQFgG/u59q3iuoKszRILWNuAbPfLbw6g9ePzbRufKMOaB0pkeTMZBi9i82zpNfnybni0LDsnA4y8u/b5KogFIoov97C2Mg+u/uFSND42L8O2zRUou47J21oqyVldmN2vWyjvTRGEb2G65e9woG1zBYzFIob3ToE36/N8oNaNEVTcxuTtbmL+tEP2DavvYvJOz6WRTqbRujGCanmOcFRJaNtcAdcatgaovL2Qbcxk5L0hjKJz3ai4oVDW2Qp425m8w7cU5Mm78Yky1GVk6NYjjTR0FrbuKLsxX4aNj5eh/kFZhjk666w1oXlTOG8+aXi0FA2Pzsu7bXMFSq5m82zRpZ58/X6wdN4Hysj7RibvrM7Kvm7tfSG0PBvOyq11U47OttvQtrkCllL2IWvuKUbLhnmdBccyIgKAa405T2er7yzKl+HTYVTfxXS26Fw31twdglueZytuC+a1bd5QnvUjM/IWfQakU2l46qxLy9vB5els2XV+lFzszxKUGh8rQ/3DZ8obONNGGH089DmHYNo2VyiyEXUPlGDti5UovzmQL2+lNiJH3ivZiLr7KyAFcmzEQnkvZSOuzbcRTU+WK7YRzU+XZ9c+Sm1E1fpCrH2uCm2bKxC6gvniSmyEs9LCUmef75LlvbKNSM+lkZxN4uRb7DR/7cdCimzE4I4J+JrdZ8h7JRvhbbNi3YsVaN1cjpq72bcxFolo+3h5du0TvtmP1o1l7HSZhkPj46WYm0li6Mg0RCfQ/HAAgTa2piq9zIrmhwPZZ1hztwe1tzP5GgMuOOwOcNzqnAA9i/cHGo0Gdps9S1Bac18xau+RfXgBaHmqFMEL2HgrvsSFlqeYjRp4dwxziTmskX0gAGjdGEZItlnB851o3RjOEmLq7g2heVMZ1r1YBXeTFa0bI9m1r2+tA60bIxA8zO5X31WEhkfnx1DL02G4a+wYfncS7gbW11zM2lauL0TTE/NjqHlDGBXyeBs4MIq5xBxm5AyKlbcF0ZwzRzQ9UY5K2WZZywS0bozA3WCFp8YGd60NzU/Nt218rCw73gQfa+ttYb5h6XU+tDwTRvuWSlTcUoD6R0pRew+Ti2BjYzVwLpNh6HJvni1c82AJ6h8rzcq7dWMERRezMVV0sZu1lZdJdfeHUC/bNybvCEouZDIMnOtkMrSx8Vd7TyjPB2p5JozS69icbC23o+6+CAR5nq2+syjPvjU/FUb4JjbOnWvMaN0YgbVMlvftZ8q7UrZZ9kojWjdG4Khmdr/ilgKsfbESNfcwW9/0WDmq7mDyNhfL8m6S7dCNgTz7ZjDrYQ4wAyx4WFvfWjaplVyTL8P6h0tRdy+T94nf9KP0Ej+CFzBfvPgyT768Hwgt0NkInJVmpJMpmIvFfHnfu4i8r5Tl3eFA7V0lCF3Efq+5pzhf3k+HUXY9m5Mz+i4F2YV1Ji00uvmDFM1PhRGR42MZedvC7N1zdTZ8UwCtz0ZQeTuTIVvPROCU7X7k5oIzdDYjbw2HPHmXXe/Pk3f9I6XZ7yTYOLRuiqDx8VLYwiJKrlwg74dKUCfPyRmdLZTjB7xTD2jS2Zhe3f2hbGwnI8PQ5UxmwQtcss4CkRsKEbrIO+8DZeS9go1IzaWRmkuj5ekwwnK8RomN0Ok5jB6chqPahNaNEdgrjWfIG8i3EbxTgE7QwloiZb+HEhsh+ASsfb4Krc/myJBoIzLxSCU2IhvzwgKdXclGPDpvI7wtdtZWiY1oMaP143Qb0fZsBZo3RvLlvYKNqLq9GOYCI4rP86Dh0bJs/HclG5GIzWF6KJ4nQyU2out/BtG6MYLiy9i8VniRS5GNaHk6jLUvVOXp7Eo2onCdG9NDCfS8PYbK2/1ofLg4Ry7FCN/IvqOzVkLLhhLYygVodHqc23YBAOBzn/sczuKPAx/72McAAG31HdDodbCVC2h6tBjWUpapofwaDxruL8q2r7+vEOHrPBjYP4WpgTh8TfaszSq92ovGR+d1sP7+YlR8hI1N3s2j+clStD8bRvOTZSi+zI2mnPVJ3X3F2XUbb9GgeUM5fG3Mrym6yI3mJ8uzBKW6e4pRI4838EDzk+UoOIeNt4JznWwcy4mapgdiSEzOlyVs3hBG4YXMZvna7GjeEAYvV5OuWl+EuvtD8LXYYA2ZUHl7CMVXsPHmrreytnIGqIpbg6jPmU8aHy9DwxNlaN0UgbPGguYNYViKWdvwzQVoyJlPGh8tQ3kmtlMuofmZMGy1TIbl1/mze2EA0PBwaXbPyhTk0bwhDGeNRZa3D00Pztu3NQ+UZNdtvJu19TTbmAwvy9/HKb/Sj6r1RbK8mVwCHUyGhRe682xhba68ZRkWyHNE4BxHnrxr7ixC3b3z9qJ1UwRtWypgCvLwtdhkeTO7X7m+cH4+AZvjQvIcYS8zw2DUQS9/m8gtBfnyfqwMpdewOcJeZWLyLhEwcTIBLa89Q96ZOdlSIqB5Qxi2CJN32bV+ND5WxmJec2k0PFiKiOy3i35Z3nXsIUJXevPmk7r7Qyi9KoDw9UXgXaytr2Ve3rkyrLsvhOo75nVWowUMVhY7CV7gypf33UWovTtf3sELXLAU86h/tJTN9bK8q+8omveB5LZFlzH99jQzeWfqOVXcFszGLjPyLpXjY846prOmIJ+Vd/Mz5Vk9bXxsXmdtESOaN4RhLZf9jxsDeTqr5TnoJBbPsxQzudirmC9eeo0vL+5W/2BJNrZTemUAdfeUwl3P5tniKzx5Olt3fyhHZzk0bwjDXCQinUzBHjHly/veBTYiR2cLznWi7IoAun7HCEo1dxWh9p55nV3ORtjKTHnZhpqeLFdkIyK3FGDtC5VZnSXbiBydXdFGPByGqVCW99W+PJ1d1kacn28j6u4LKbYRdQ+FUHMPzUaUXu1D+7MVTGdlP1KJjQi0uOBZY8/KW/TP6+xSNoLTc5iNzaJ7B4t5hW86U96L2Yixw9NwVVrzfM4VbcST5bCWCeh4rgItT5Wi8nbWlnfp0fxkKXwtTL+LLnGh+YnSbMyr7mPFmE0k0b9nEuCBxoeCCLSx6xass6LxoWD2Gapv86H6NvZuotECl9MFjUaDwUE6kZ0cKWtra0M6nUZNTU32/0QdkMnSauYBnQawGxj7ysqnkVlnvjViho4DeHkDVhIBrRYwywPMYmK/Z8DLf0+ngYEB9rPJqQMSMzC59NDqNdDLySMEMweDNP86Wr0G9iL2UGaPAVq9BoKPDSLBboDBOB+81glctoa22SNCo9XA6GZ/lxw89LJB0+h10IlaGL1sYWz0i4wY45fwxv/Zj7l4Erqcckt6ow6Si13X6JNkEg3ra/IK0IlaaDgNtHoOBpMeopO1Nbl00PIcLIVMUGavkFe7mbcaINlFhK7yQmth17UE5LYF7Jnm2+ohWNkmZuN9ZdDyHEx++Rn8+W0FqyHPwGl5DmY54F3Q6oSW58BZ2EJCcPDgLfM1oXWCFma5FqOlkD1Tw70hdLxQBdHJw2Cav65O1MIktzX6ZBn62PNLbh4cx0F08Nm2kltu65dlKD+/0SvmyRsA0nKSEcnDs3eVZWj05MvQYGbydjeYUXd3iMmwgLW1+PLlYjDrwdvZu2ok9gxIAm/++QHwkiFf3hbDvFwkWYbyNzf7JWg0GgwfH8/K22BZIG854GQOsGfg5XfXpDlocvJm6gQtTJ6MvI1MLi52LcklQG9i+msNmaDVczDKbU0ZGXrm5Z0rQyZvJnuNTiPrS44Mc/XbpIPkkr+NSw+tgYNo5uFvdsG0QN68xZD9prxbyHtXJOWTqjIx0GCZ11lJ4lhb+RnMmW8jAZ2/6UU6nT5TZ+XrmuS2Gon15e0GGMx6vPU3h/DWpw+xby5/G0sBk4voZM8sOnmWPjRH3tYSI+ofKYVJ1m9JthlGtwB9rj3JsRG8mf070RmT5S0oshGcDlnbkIESG1F+YwDrXq4GbzVAkOWtyEbYDVj3cnVWZyk2wlNnYzIMSIptRHGHF1o9B5NLNy9vBTZCo9VAa9CeIe/lbASn5bDz30+g+9dD0Jt1MMptV7IRel4Hg9EgP592SRuh0elhMOvAyzobPNcJrUEDS2FGDwVoDfNjl7fowVv0rPSbBGh1GpicOszEWBk8rU4DSRaFYDpzXjM52bubPHroOOBQP4eRqASJB4ScbJh6LSB/CtilFHQckNmzPfeCC2CxWFBQUICz+OPA3NwcBEFAR8daAIDJx0PHcxDtTGcltwEG0/y40EtamDw8JrtmMHIsCh3PQfLI48LD540hg0mftWeSm4dO0CKVSmNmcg6mBZv9vMWQnSMkh57NRbLNtRZJ0Es6BM5jiwXRxkOSbZbeymyfJTPHFeTP3wajHgZBHm8iG9dmebyZgxJrK08Zop2H6DDgxM/6sOurx8HpmK8CMFvO2rLfRRefnU+YXHTQihy0Og5mP3sGKSvDBW1Nuuz8bfKL0PFa1N5SkpVh7hyhN+qydtPoY8+Q8WvsYXN2TgaYT5HxOTN+TKav2SdCb9RB9AlY91I1BFuOvO1aJpfctjnfRrAaYPQKWPdyNXzneJi8g/N2P1feosMAMVPuTgS0eg6cTgPEEjDLMhSz8jZAsOfYclGblXdihAXZ9Db5GV08RNt8unS9UQeTHMQ3BWR5O/Wof7gU5gIxb47QG3Xz7+Y3QidqIbjmddZg1uPtvzuMt//uMPRGXdavkXxGWYbyuwbEfP226JGaS+HEq70wyT5PVrf8+W1FGw/RyZ4plZiDRqNBcioly1vKk6FgM0CQ24qyfpt8IvwtLggmQ958Ith4CDnlBdlYmH9enajNpkYXnAYItnx5W+R3swTYM/AW1lhy8zAIejgjlqwMM3XRs99R9gWMHgGGnPlbAw3Sc4wgbvLLbd1itm2eDHN0dqo/Co1GA7PfuKgMeYsh69dITj17t6QGb/7FAeh43RnyzrTV2/hFbUTrxyOwlIoQ7PN+5Eo2AkkNI6TnyFCJjRDtBnBcrt+uzEZ0vFCFsisD+WtEBTYicn0hWjaEYVogw2VthNw2Q0wSrMpsRNmNfghWPusDQRQV2QitqAWn07DrZtuubCOiowm8+RcHYClkbZXaCE7HQTLqs22V2ghLsZi3plJiI/r3jCM1l4bewFKXA4DJzeY1cyDHRkj5OstxWhz7xRgMZgN0vAYmjyH7zXX8vL8nmHUQ7eyZRImVDkulUrjqqqtwFh9+PP7440in06ionCfviU5D1q8RhIxOZtbYst0UgOM/H4BWP7/GA+S2ss0yBSS5Lesrug3Q83okZ1IY3D8OvVE3P0f42bpesDLdMnqF+fkbbI5zVrM5wFQgt82sF30C+Jz5xGDRwyRf1+gQoDXk2Cxf/hjibYbsWkywi9Cb2Jja+pcHER+fYWsZGYKdz849kkMHvUkHS3A+/mEw6cHpOWhFLUS7Ietzcib2vJasLRfz/CWjR4DJLWaJBHqTLutzmgL5bSWXkF0n19xTnNfWIrflTHJ8wcNDcuTI0KSHOSCh6bFylFzmYzEOhy4r79z5mzfr5+2DT4LepEP1+lKsfa5yUXlnYn+iHJ/JyMkUkMBxXFafeIcBJrmt4OTZ82d1S8ybT9JzaSTnmG8iWDVMhtl3lfLnWYcBooeHuVhAy+Nh+bo5bXNkKLqE+bIwApO3TseyGmm1WqZbMrlZ9PBZeWe+TXaOCIjQcBoMy+XQjB4hX95m/fycVsC+jejIlGlKA6mcdXNOW5NXlONPZ+qsu9oGvTA/n0gu1tbknffjeXO+zmbkrdHKMpSff6G8JQefnU94p0GO3zB/L/P8WRk65/0aQeCYXGR9wawGGo0G8cwhKJeQbyNMuqyvYvLL1xUEnPhVL1JzaYiO/PlwJRvxzmeP4J1/PJInbyU2wh4xo+6+EIzejM4qsxEAMH6CBfTMPkmZjYjPgNNpoBdyZKjARgTOdWLdy9VMt1zzB7pWshGSW0DHi9UQPALNRpj18DWw9a1FfgYlNqLiikLoJR1Et7SkvBezEVodB73I5clwJRuhM2ix8yvHcPKXAxDthuzh3ZVsBC/qsmNDsAiKbYRvnQN6ky5LTDPLbVeyEYmxWaRTaehNOvDyGfMVbYRRi9NbhzF1Kg6TW8iLR/Jm/bwf6WFtRXlcNTY1wOFwwOudP6B+Fh9uDA0NQa/XY137OQAAySmAN+uya0CTTwBvz4l/2Nn3j/Un0L9zArxZl7VLloAIwTavK6KLz+qKaNeCt+iRSqaQGJ+BpUDMW+MZ3UJ2DHFGA3iLPuvvWYpF8DY9AvJBPcnDQ8rMETyLr2dsizko5emraOXB58S9easeloKMrrO2nFFeA/rZHNG3fQzbv3AUOr02L6bP9vrY2s3kFyHm2ELBxoM36mU/jwdv1YO3yTECv5idAwC2T5KZv41uAbxZj6rri+afKWfuEZx8dr+Ft7PrGr3sWr4mB4SctpJLyI5jwaplcskkFQhITN48sPb5Khh9AozygXHw8nUzdkh+1+y38bLSvOteqkbhJW7wVn2O/8FkyMuxeskrZL8NwGKBOn5eZrxVD71sZ00+cX6dDBbrybzr9EAcSAN6gz57nzx52w3ZecroYTZKcgqoXF8IR4X5DHln9ENysrYZH8McYDGPnf98DDs+fxSCi8/OJ5KDl3Urp60tX2fn4kkc/1UveKOshxkZ+vP1UHLzkGR95sH2GmenWPZ888K2HhGSdz6LP2/VwxKQ4K5zwOQR2f6GWV7n+4VsXAJgex/WnDU1b9VnM/qbAmKeDyTYDDmxEllnrfz8dzUb4Fljz8o7s6aS3Kxt1kb4xez+LcD4BMmE7DO72DNkfENLgZQnQ9ElZOfZoUPj0HAaGDPjvkA600b4MzZCz3RJr8W2vz4EDpoFMhSyMlzKRjQ9VA5ruQSjV8z6S1l5L2EjUrNpJGfmqx4IVoMiG2H0CuC0XDbGqNRGtH28AtW3FjP9lr+zEhtRdg0jMpkDYnbfDFBgI+yGLLlLcvOKbESgwwGL35hd70KW90o2QmvgoNFxefJWYiOmB2PY+pcHYPSzsZyZc1ayETpeB8mcM5YV2gh3rTXr4wBY2UZYDRg/FkcykYROnF+H8hLzMTN+pCUgLrARAnR6LTpfHWE6a9Zlbb3Jx4M35/jXbgMk9/x3bWxqQjqdxl133QUqyOXeMmmvA+03wFdzvuJ+F3onkUoD/zPJgiiufTHKbQEA+qH5lFaaseXTFLfcY0UqlcaOr8+X8EqNsYVyem5uqW5Yu7kUQwcncfQnZzK+0jMz9OKGHwCsYQklF/uw62vHSaWW1jxYAsktYOunDpDu17opAs7AYRsx7XLjo2WYm0mSy6+tJsI3F8BdY0XXawPo/rXy+pOiC9CAQ3SIXstWDaQiCZhLIdpDyzMsFUlANE5+TrXl3kylEqb6orQSYBJgL5ZIZdTeEyRAckmIdtHut+6laqRTxHJEqwx7lYTwNYU49otuDO9RnqI7cnsQrrAFu/6jkySXuvtDMHpFsk2J3B5EMp7EsR/2kvqtNtY+X4XoUBzvfvnEon/X6OSJWTNPJAqeb0PhOhe6XhvE6deWrs+s9eWUStUR0i/K6LmKEYyq5qZQ7knhjcMcYpkUTApw6rW/w8DAAGZmli+behZ/eMRiMUgy2fJyy32K+4kuoObWApz8/QiG9rG5IxWl29l0Kp37y5Ltii5xI7jWhcM/7sZQbimJFfym+gdLwdv15BKcq42y6/yAFjj2A5rdWvtcFcY7p3Dgm6cU93FUSai8OYSe7cPLl85bANcaM0ou8WPvt08hdpruZ68WOl6oAgDyfCoWiKv3XiJgKxQxdph4PxEweuhl+tSWexMdHGAwINZH8w8z2YFWS56ig0MsliKVKgtd4UWgzYnuN4fQ9auBD+7h3iMyhKG9/9ZJ6tf+iUrMTM1i5+dp6cfXPleFiVPT2P8N5emhRQeH8puKcfS/+z7UtiF8SwFcFRaybWjbUgGkFJSCzC3XqyGf1YKuiPleNVcbkJ5LY9+3la8do4FO/H7fq3A4HBgeppXtOYvVh8FgwOzsLEpQg3J9neJ+NXcFoeE02PsfbM6nlsxlnZTHm9SWdFr7XCUG9o3h+I9pJShWE4JPQNnlXhz70SnEx5THMipvC8IaMmHbX9NiV/WPlII368klZTMZS/Z/XblNXm0EL2BlV7tfH6SVaBIY2YYi//cCwScAKZDKoQEsWwxmZsjPqbbcmxQUEB2Kk0uAWcsEjJ+m91MLwScgTvQP18qZvFer5J4aCD4BNbcW4sSrvRjZP7VyBxlFF7tR0O7Cge92YuyIcl+o4pYC2MrMZJtSco0XSAIn/lv5Wu4PgdZNEcSHZ7Dnq52K+ziqTai4qQinXhtA92+V+0JUaG3slL+9RIOSi7zY+82TiA8qH+cHPL9Db28vpqamIAjCyh3O4g+KzH7jZcKdyjvxQNN9xTj5+yEM72Mx8PTs0nt+irBMzMtdb0XZVX4c+3kvBnfnxHtX8N0qbgvCHJCw/e8/vOXIAeYvaAUOJ39BW3u3bIpg4uQ0Dn9PeTls3s2j8f4S9O4aId3PUiKg7IoCHPt594e6BF7rxyug1WnI5Z95N4/ERGLVyl1ZinlM9BHvxwOig16mT225N97CAbyeVG4PAHgXD2hA7qcWLOtOComJFZtm4Wm2ofyqAE69NohTv1mdMqpqELmlAFq9Fge+SVvvND8dRjKWxK4vHSf1a9kUweSpKA59p1t5Jx6ouqkIp17rJ5XqW20UXuhGoNWBbcQ9kOYNYUALvLPSXv17jHlpnYyYH7nCCE6rwYHvKPdjE44h/K7757DZbBgZoZVfVU1SKv7aX8D5a36F1vO4Ri759sMRCklpFtU1QOcJYLZrNu8vK5GUFiJDUAKWJik5qyRErvNj+MgUDn8//wOkczdyF4is9t5iWAqN2PnP+xGj+OcSaGSOs1gSZTf44V1jZxt6P//gF4FtmyugE7XkzaS6+0MwmHR45x+Pkvqte6kaAFatbqtakpIaVN9VBHupGZ2/7sPp3ysP2pdc44Wnxk4OFrRvqYSW58jfTi3+GMhNf1RQYTdbnglDL+nI32DdS9VITMwsOV6zJCWAPPHnkZQAQKdFsFGDuZk0+vat3D9DUmo2TqJQSOP4EIejw8pISr3XzuDkvS8BqRSuu+46/OhHPyI9+1msLq688kr84he/gEajw4UX/hn07yizy8UXWuBvsOLUtjH0bGUBXCUkpcA6GwCg542xfIISsGzAZlEocDFbng5Db6SPz44XqhAfm8HOf6Jt8EMEiShxFktDLdlILda9XI3ZqTm8/XeE4J4ItD1RgZ53RtD9a+WL/tAVXhS0u9D7zgiO//SDJ9SqJSmphVrfpHlDOWIjMySCDMC+XWwkQSbkqEHZdX54G+zo/E0/egh+5VksA6LdFAtENH6sBMOHJ0iBpar1hbCXm7Hz3058MGSq3IANANHJoejiAA59t0dR9wxJqfVOI5AG3vonZf0AYKahDL/+9QsAAGL45Sz+AMjEvK4s2YRkt/Lv3LYpDA0HbPs089WUkpTCN/hx6rd9iI9+8GQQwSeg8YFSjBwcxyHCZlL4xgBc1Tbs/MpxGvFBwKqRMv7UEehwIHSpD71vD68K8aHh0TJIbp7sm1TeFoTo5LHzC7Q5v+P5KoDT4M0/X72YlxqSkhqUXOlFoM2FU68NkIhigXOdKGh14u0vHCaNo5anwzBY9KvmV/4xkJv+qKDCbtY/XArRYSB/g7XPVWJmcg47Pk+LUauFb60D6bk0+rePrtg2Q1LyNUkoPseO01tH0PUbZZte2gIfftX5ecylE7j00kvxy1/+8j0991l8sPiLv/gLvPjii+Cgx2WRjUh1KfNPvI1mlF7qwak3RtD9OtMpJSQlZ50Zep5D3/ZFDpZ+ADGvuvtDMLoFMmGl7eMVSIzPYPe/LH5wdknwWDWSy5862j5eAU4F2Ugt1r0k+yafpfkmzRvC6N0xjJ7XlRMDPM02hK8pQO87wzj+0w/+4IJakpJarP1EJaDRYOtf0mJedfeHkBifJZHuAPbtYkMJ7PznDz7mFehwIHSJD12//2DJwv+/AtFu8hag8fEqDB8cx5EfKI8XhK70wtfowP5vnsDEiQ9gkbwg5sVbORSc48Hxnysjg2ZISi33uQCk8fbnlMd+NQU+/OLwXwOgx7x0Kzd575gTNTI5aX5zbKhGXJGoVFAAOF2AAbPYt0AeaZt5SaKSXgJmMX+7XIISML+xvJCsNHwgijcPnGlI0gszTWg0eU5IOpVGOp2mEZQArH26CpxOQ144Nj5RhpmJWez7Gm2DwL/WjrGjo+TnNJVKmDpOZAVIQN36ELp+P4DxI8r7FpznRPGFXgzsGcNRwgCfPDUNZ8SC0aM08ppa9LwznC2vQYHkYel7qRg8tHRGluWw9vkqJMZVbOKqgKlUQt0dxejbNYITP1UeNDu9bQg6UYvRAysvUnNhDbIyd6ILJJ3u3zOaLRexGoiPJTCXoAec171UjeRcipzBLHJ7EPHRGXS9Qsw6ILHyetSsW+4GM6YHZklZvjIZn4789BQpg1bTk2UQ7Dze+Mx+ElGJ2Wjl7TNYynHOIyfN3ySPqCQV8oieWty7OYOgBABzSQRqLEgn0+jbt/zLZQhKAPDOtBbvTAPQSJCg/NvxjZVIvLMfO3bsUNznLP4wePXVVwEAgUAbqV/XbyfR9dv8OZGTpBWJSoXnuMHpNDj92iI2WcMtGbQ5I8uNwkG3/R/UbQykkmmkkrSBLRaIaLy/BBPdUVLWE9caM0IX+XDgB92kDDligQjJrsXwXuWnfAF1WWcAoPhyD3SSlpztqf0TleC0GjJhJTqwupGvie4oxo7RZGnx55e1Uor+vRMwBUT07hoj9Su7zg9PnQ27/vkQYiMf/GZz42Nl0Bt15MwPA/vHkJ6lT4y81QDOQPdjp3vjGNg3Ru6nBmMnJuEImxEfog2giluDcFZacOj7XaQxa4uIKFjrwb7/OEl9VBiL6Vm3RAdgClkwuINwRA9A9V3F0Ata7P4X2im2dS9XYy6RxFt/rVzHMnNBaiHRdQVQMs6dAZFV8YstFZddEKwBgMhNxTD5RQxWjmLk4PLfIUNQAoC3v8FOamtsVqTHlK/ReJ5HKrU6GUnO4g+Dt/4236fRaLUrEpVs5SI8a+wQrAZSJgvBBsTjIG9kx/viqkggqVQaSKfJmVlan4xAL+jIGxJ194YwG0/i4LdodsG5xozprknEx0jdWHacbnqguOqOQvS8NYjxY4S1cKURVbcWY3DPGCmoHR2KYWZiFmOdNF9ILXq3j8BdbSX3MxdI0En0UHPfzhFo9Gfa6pXQujGCmalZ7F4i+/H7CcHGoeHRCPp3jZKIYr27xiG6eAzsp8UrLUFJLnNH08+et4ZhKzOR7vVeMN0bVxVvWftcJVLJNDmjbsk1XsxFkzhFyIYPQHV2MHulEbGxJMn+SUEBlTcE0fnrPlLGp5p7imEtNmLHF4+Tsoql5lLktTHw3ohlauxm6aU+JGdSK5KUMgQlAOjbEUXfDvoJ73JrBw6O/QYHDpw9MPphx2c+8xkAgN9cSerXv3MS/Tvz7apGr1uRqFRyiRcGSbs4SWmZmBfv5vOzsig0fGorjKiJeYEH1j1bjYmTU9hL2De0FPMouypIzlDEu3gINi3Gj9LGKG/hkEikyGQqX5sdvF1PzvbU/EwYel6HrX9Fswfjp6ah5+nxD7UYOjCOqR5afIC3sLJW1kITeqCcpDR+ZAJDB00Y2E3bjys414lghwvvfr2TnE1JDWruKoLoEsiZyHp2qDuwZvTkl/5VipGjkxg5sjr70hOnphEfncFUL01XCi90o/BcN478+HR+NrgVYAryCLS7cPgnp8ljVvTTs27xFsBUaMHwPlrMq/w6P3irHvuIGW47XqjCbDyJ7YTsxIkJIJ1KIU200Z3/3Y9OtYdNeFY2cMlsXYvEvIov9cNdbcV4dwzDe5bXzwxBCQC2/xvzsTVGI9LTyqv1GAwGVTEv0srx7rvvZj/INSSHL2IKtlxGpTkxVzj5GwQrEZVOnwYEzGKIuH9Vc70FBonDW98cQ6qHQO5YkKHjDHJSLnKISlSyUAajJybzaloqhejgwVvo/Uou82PuPA9pASi6gPq7ShAbSWDH55SfrChodsISNCK41oXxI8rlMzM5g2QihfFOmlEf2DGBAWKwHgCanyoHbzWQiWLdvx4ilYfLgEo4yeDId2js3Qw0HKDVr44zpdUCGk5DDkiNH4ni3SP0gNKuL9I2WTJQm2lLra7s+Jw6gtjM5CxmovQ0ta6IBam5NJmktO7j1ZiLJUkbnZKLQ+T6IsRG4qT3NPok6EQtXLV2Ekmpf/cYfI12iBIQI6x/qJnL8kDJ3CQTldo3l4HTafDmX9Lu27MnivHB5Z2bXILS/AMyRF0cpGVIZr3Xzs9pvmfuwtCjf3427fUfAeZkQnUkci0AYLY5DADLZlTSLOKYZrASUWn/d7th8ivPlJlB430hZkM+c5hWGldlZqNtak4yxRKIjSTQv5uWdtRdbYPBoodg1kK5aw5U3VQAwW7AG3upWRfDqrI1+pud4LQaMkkpPjwDzkDfFKKSHTJY91I1pgfj2E2cx6nltABg4nhM1Sny2OmYqvvpRC00HF2WaqETtOBUkN+P/pfyTdFcqD319l50JToUx65/Vt5/eO8UhvfSU+mPdU3BWmzEbJRWnil4jhfWQiMcVRJGSMTrcmYfqFlZH6yAjtdicAetn7VIWnZuWArT/XFMDdCN9BvvJRMGNXOTg0PjE5WIDiawi3By8fBPeuCsNJMISguxElFppqEs+3NFRQXeffddPPbYY/jCF76g+DnPYnXx5S9/Wf6JjRdtMAAApIxKuViJqDR2NIYT/9OHkcMUDwOIfKQEJr+IHZ89SNtwV5nZ6NiPenHsR/TMgkMHxmHy0A8ImQokpJL0AGfFDYWYnZ4jl8BruK+UbENsYRGOsAUaToPxY8pjXnOxJGan5jDWRfvmY0diqsj9ax4IweSTyHa5f/uoomwnC0HKeJkDtdmhOD0HrYFePl0tNFoOOpF2v3hfXFVJwIMqybs9b46g503aegdg2QPMfrquUAiWuYiNzCCl4kCfv8GJ5FyKTFJa96yKrKwCUHVrMaYHaGsX3qSF4DDAVWklkZT6do0w/VpuP2IRqCVBAFA1L6jNAnv8V32Y7l3eX84lKC0EZxSRml7ab9MW+LI/h+xN6EntgF5P32w+i9VFpixM2HExAICTfW+lGZUWYiWi0sHvnILJT4+FNj9UipnpOTYXU2JeKjMbqSkPx/PA5Oko+t+lHXa3V1ohunjwNgEgkJTCV3lhLTFj+98fQGJCuT2vvqsEooMnxxeC57phEHVkktJUTwy8CuLJoW8Tyk3lYO3zVZjuj5FtMzV7D8AIC2riNImJlKr304ocNDoO2lVyvXSCFloVJPauX6orn0bNvJSBWp9Nja5MdSdUZUCc7IkiMT6LmenZlRvnwNfogLvGhuHDkxjeo3z/vfaeYlhDJmz/+32kMng1d8uxsn00vbaFzdDxdMUcOz6N2BjdSG8jHOQ7A9R5QSagTvXG8O6/Kt9HP/nLHkz1RDF8WDlBaSFWIippcnyv6upq7Nq1C/feey+++tWvKn5OEpvg29/+NgDAUBmidMPltglIWuAHwzosJCotB/3QLLqWWXMslU2p/1AUrlJxRYKSRqfLy6bU8QQLIr75N8eWJyhlL8CISu4GMwZ30ZmSh76pbqJTm7J39PgUxojkn1gUmO6PoXcnjX16+vfDmJ2exWQXjTg0uGsSg7voG4/eNissxSYymScxMafqlFfVRwuhE7TvbSFIQP0jpZiZmsMBYnmNN/989U6MjB+JqtJNa1hC+OoCHHvlNImwohb+c+wINDvJxBW1uuJts8JaYsbhb9HGu9rsIkd/2o2pLvrpyumBODkTWXQohfFT0+jdTnP81JL8Tv9+mFQSMBemUgnJiSgp61btvcWwFBlx5MensjZ+0SxKuUinMHRgAqJ7cSLpolmUZHS/I89HOppDdbV9AgYO+MEwLbvb3Nwcjh374LOsncUfBu1PBzEzmcTOr9A2lCaORTFxbBlbvMTJsonTMUx0TZOCNYHznAhd6MXg/nEcISzGRQcHiDy5HFBsJKWq3JTa7B4nf9MHb4OT3K9v1yg58w8A7P7iIUgBFf1UEkjCtxRg9MgEht6lzR3J2RTio7TAu+gAKu8oQ/ebg+QMMmrgWmNG0fleHPhuN2KEU9Nqg1hqoXYjsGp9ITgDpyr7jxrU3hdCfHyGTI5KzqYQG6HpCqBON/u3jaF/2xj5Xsd+2AUpQCMoAcDpt4fgrbWT79f95hCMHnpQXW1Zxt1fUmcfAJCJW4C6UoSxkRSig3H0bl9iQ3YJclasL4HuPjkyRCjbqxeBxo+YMD2SxL6fKp+HxsZYMPAb3/jGWZLShxgvv/wyAMCi95L61d5TCHOBiJ1fOEzL4pNOo+c1+vqmd/sI/M12ckaQtc9UQqPlyNmUbGERY0fohEVKhuVcvPkX6mJe/btHMU3N9CgAEyej6N9LI+SMHYlh/7c7EeujyWXyZFzV/O2oNsFebiaTxeKjsxDsNAIuAJRe54NgNagi16hB9Z1FSMaTpDKEALDtr1evxFh8LKUqE5ngE1B5YwG6ftdPIqyohXONGcEONw596zjJHsVHZyA66IdV1OqmWh/jwPdOkscdAIwdn8JENzHmGAdGDk+SD7mMHpxWFR8dfncSw8S1VQaCTwDiM6R5oex6P7z1dhz/ZR/6tip/x75dIzAX0NedlHvkov5uLwSrDts+R7MPMzMz6OzsVHXPs1h98DzN/rR/vBSJsTns+lfaPDV1OoGp08v4CkvEvIYOTSA6FCfFvKzlEmruCJGzJ/IWgDPSM5AkJoA9Kg5bnfzFAJn4AwBdrw3AO50kEZQAoPetYdjKzeT77fmXoxB9dPK72jhN8RUeTHRFMXqANnfPRucQH6URQcADdXeG0PP2CIkIohaWEgGhi/04/oseTHUr17OuXw6qJgCpAbncoYzSa3wwmPWqyUNURG4pwFwsieM/o5XOU6UrAIouc2OyO0bSzbHD03jnMH2/8dRvezF0aAJjxEM1p98eRnImjQRxaXbydwOwFtF9DEompFwc+Ob/x957R0d2VWnfv1s5V6mUc87qnNs5YANtmzZO7WwyDGCSwdjg+d5v5iXOMDMwhBnSwBgM4wFsjA0OgEnudrc7uXOr1WpJrZZauVSSKqjS98dVKZak2rexsL+lZy0vt6Rz6t7a99xz9tn7Oc/WvtdxV9nESnKbH6wnkYjLSE5hGD4zSu+Refgu88S8wv4EXbsm9riCmBfApvdlM9IT4diTvvRvc8QOwFNPPSW6lijjPj5B3HF/5M4Zvx+4IjxHTWm6gpIvqmBUEqQiKPU3qgvLdEUlY7/6YNduU4jHEhx8dv57SkVUOvfiAOdeXPz7wEyikv9cEEWvpEdQmvwAherri6m4Ji7eHK/9UCXn9vTTs0dbKS8ppAQXAALaFWu0KBtlr3biKnVw+peyzW3ppXkYrHpOIduwHPlBm6h9Ep5yh6aT8lsericeT4gVlew5FmyZGvST3wDw1jgxuYxiVZ2K6/LIW+Ol/Q89IuJK3govFo8ZW4mNQEf619M6Vsouz0dv1iFdJrW+C1reO0CsaJGEFqWJC8HKd5fjPxcQKWK5q2003V7OWE9QNJ/1vDqI2W1kbFAN6i5KUJrA6acn7m3W4r8QQQmgYI2ewhU2jr4wQqCbGWSluQpKUxiOgmvi1gJZ6jVnKypNV1FKIiz1Epex5AgG5w++RtZVz1FTmq6SEQnEGOlJTa7Q2VR/bLqiUiKeILPRRvW2Is787jw9+xaYS1IEbY58X75xHD0XIDQ0Ts8BWbCy7rZybNkW9n/96PylfVKg7NpcbDkWjj26NMQMVdFFnojo+K08OARqoj44KL9exbZ8fK3DYjJBdoMbT4ldTFLSooJlL3Jiy7SQ3ZghIimVXJ1D0ZYs2v7QQ5fAV8hu8GDJMOEqtYhISm8UeCq0+bGbHlQl+KXP0FVkw5FjoQUZSUmTYhrq2HQX2MRjU8u7oPW900qKkozjvwZy13vIW+sVJxI3PViH3qQTJ+j8nQGiQXkyfV61rUXUo9Z9qJJEAvYnCazTfLf5FJQiQYiGE4z2qzEEZeLE/2xFpekqSgAFBdvo6DjOyMjSyMAvQxv6+tSge0PWNTN+ry8qWFBNabQ7hMVtTEkIUCaOGs9QVJpIcK1+fyWKAge+JSNR9x0cpu+gPI402DwiVoEBaNhRLlbdBVjxjjLOHxjSdK9aoEXtiRAc+e82TdcbOiEL1oNK+PKUu2h7XkbgKrssD0uWSfwdm3+hTYkiu86NXsNp5I0P1IKCuISXu8xBQoN61hsBzgIztmwz2fUyVZ28zV4qrs6j48+9dP4x/dNW2Q0eHLlWbAUOQr70r3fqCW2KceVX5WP2GMVjU+u7oOW9AzimJSYO4rKTF4q6HcUEekN0/D79JLDFA+veW8lod0BU+rD31SGcBbZF1Y1mQ1xqbwLZq91UXJNP81Nn5zzHhRSURs6HUfSqT6ezq3mk2YpK01WUkgiF1H2cz+fD4/Fouudl/O2gKylcUE0pPBRlZB7ComJUg6SzFZWseWZW3FFM2x/66N2/gG+SIubV/DM50SU0HGPkXIDeIz5Rv8ptJWRUO9n/nRYRUalgixdHgVWTIo8W+M+E8J+RX+v8Xh/n9/rE/cL+OGG/fA0ouiyLkXMBMZmgcEMWmdXjDB2XHXTfp+HgudllxlVkJxqIi0hK2avcVG1TidDnBAcfPFVOHAVWXMV2EUnpjYKsOjc6DaX61n2kGr1Bx56vyPxYb42LRDQuJilpGSsARZuyCVaFxQQ6Le9C2I+m927o+Kj4/gAGDvuXhKiXREa9g8L1XlGJTIB1H67G7DaKlcwGTvkhLs/zH53Pj10k5rXiHaXoDToOJv3DaTGvhRSUQv4Yoz1qPlGxq+Sj2YpKyizfKze6nuO8hN8ve35yWRDAZptLNppOVJpZ4g32jMqZsQAGo0JCrwALb1SnE5XivmHWvLuQwdZR2n+fXiAkSVQ6+liXjKA0Af/ZAL522QvnrrZh9VrIX5MpIimVXJVN0dZsOnf20fG79Dcs+ZszKL44hyOPnxURM/IvyqBgbSb7vteSfskjoP7OEjyldvGp3fKrCzBY9WJixpHHz+KtlDMsM1fY0el1YiUsrQpF0VCMeEQeeNGqnrX1kQaioZg4QKQF7mobjTvKVNk5Acv5zDM9mk5YBvvDxKMJIkKJwgMCCffpsGXp8K7wihWAmn/VgcUtP41WcU0herNO/C6s+btKTA6jmDRZc1sRFqdR9OxAJQ3p9IqYzLjloXrisYT4Ph35Vqxes4ikNHwqwGhPkO5XZM9OVXZLU0FpOmyw9r5y+o4Pc/YPPmBxghKAzqCg6BS8BQYC3emX+ntpZK6C0vTSb6kISgAlJSV0dHRw55138uMf/zjt6y1j6fD+978fAEVJnSCYTlSaXcZn/3fkSRpnoR1dujK604I2JVdlk1ntFCfY/K1BUSnZJLpeGSC7ySMiKAHkrs5Ab5JvUrUSM1a9r4LIWIxjP5KRola8q5xAb4jTv5I9w42fqiXQFxaTR/PWZpBZ42TwuIxOe/r5LoJ98mBGwSWZDB0dED2//kMj9B86Kr5WeGSc2Hic8JDsPrWqZ616bwX2XAsHvnFMPD61YOOn1NJfUj9Rq6pOZExehha0+7FZK51EQ1F8zbLT8h1/7GWgWR4MyVubgafczqAkCGmFzR+pp++ET1Rq0erVUXdbOZ27ZepgrgortW8rpvWFLhEJsuzaXAo2ZHLq152i6xVsyMSWbcHqRTSmz+3qx1kgP+Wq+VDAtbl4yh0zSzWlUd5Oi0oqwP7H5wbpppd+m01QArBavdjtdlwumfLlMpYW8bjq23gsWXP+thBRqe2FPto0nCo2OQzJynIirHx3Ob7WUVESG7QTVgaODTPSJZuLLR5wFdtR9IqIpJS50knt9cV07uoTfT9vg4Pyq9Tk90h7+gTjzJVOijZlcfJ/20UKJOXbcslpzGD3106ISiWVXVWALdssJmYc+3mnppiXu9KC3mwQK/js1hhDGh/V5itoUSgCVYEvEozyyle0nZ6WwOKBtR9uYKQzIFKq6Ns/TN9CyfB5EPaFiYZjhEdkMS+tqgEWD3jqvGK1m+anzmLJlMe8Kt9ShNltFL8LDXeVYM+z8Mo/y555+ZvVAytSJdG624ox2uVK+hsfqAUQkzu9VU5cRTbR/BfywdDpEfqOysbZSHtIVOZyOla9p5yB5hERgQ5Ab9LhLLCJyGatL/jm/G566bdUBCWA0tIy2tvbuOeee8Sn+pexNPjBD34AgG6eFOVCRKWD35cTD91FFvQmPTpDGs7XtJhX3jo32Ss8HH6sTVSiJ9wX1lSFo2vfAPFEQqyklL8+E7PbSLPwEP+6D1ejMyricrn1O0qIx+Kc/F8Zgav2liJC/nGxetO6D1cTGgzPn6yfByWX5BAejrDv32WEkJNPdBIZlce8ctZ5GD7lFylMhfvCvPQP8phXJBglEpKr8WhVRKq9pYjMWheHfnB6SchNaz9UhcVtEpeilZKMkhj3jWsi6b/8BW0xNneVjUQsjv+M7HBky2+6GO6Qq0qWXJJDsD/MgRbZ2r/xE7X0nxim9RkBCcsMK3aU0rV/SEQ6MmebabipiI4/9zFwNP1+ees9lF+Tz5nnu0UkyLxVXtzlThxFZtGYPruzD3eJPe32SZzSuB8v2OIls841cw+SRszL5DKi08lzIa/+ZO5+YHrpt9kEJVAVEZ1OZ0r+0ELQFpVbALMJSgBbnX7aRwycW6DUW3+jlayjwUkVJYA9T6Y/kSc8ThJt6oJodhnIrHamTVICsGVBzfYiWp8/L2bVHvlhu6wWLWrS/MA3jxMIyAgrsfE4iViC4IBs4sqsdWGw6rG6FQnXiPw1XiwZ8s2myWGYPOUgwclfnsVbIye1BToCIvJVEjU3lKDoFPoOaguISCF19i4U4eHxeZU0/toYHwoQGYsycHJpmK7dLw/R/bJMkv1CUHtzObYcC4OnZWNNVYeSj83W589hzZSX8zBY9OmTDKYhs9Kp6Z2151rmkCPSQSwSJzYuPyl/6MdtjLbK7alVKarhrhIigRgtTwkCZwEwu41k17s5++Ig+vzUAZPZ6HwlSucr096faAwM+gVVlJIX3OiI0R3QczY+tc5OJyqlQlZ+Ph0dHezZsyet+1vG0uOJJ54AwOksWLDd7Hcwq8mKq9BM63O+BfvpbDbigQCJCQZ/2/N9tD0v2KQqOojHyGl0Y3LJ67tXvb0AvV4nDmj07PXRo+HU1e4vncBeKk+axwLyuQrAnmUhniE/HeEssGLLMotJSgajHqNNvpnu+EsfgfPyUzFaVGCyVjopvyIPT5ljSRSttKrVaMXACT9Gq35JCEoAw2fGsGpICmmFFlLhhaDmbcXEx+O8LCQIdv5J2+nurj0D9J0Q+rFBlWRsdqYu8zofjB4ztmwLuau8ItKQNduM0WHAW+sWkZSCPpXcn4jK5qQT/6MGr6RjWusz8NbbKLksj4M/bAVBzC27wY3RMS20kaZvOkdiOxEHRTevitLkfZZBRrGJ03+eSQSfTlRKBbfbzejoa1/qZxlLj4ptuQyd8jO0AKlS0etVNaVpsSNp8joJR74Vo80gIylZYOWdZXT8qUdcuk1aggvUpPm+r8mTLYloQlO5z4wqJ2aPEUumWURSylvtxZFvQ+cwgS/9fmanCb1RJyIoATQ/fY4sDTGvUG+Irl55bKfu7aXozXp2HluamJdWwoNWjJ4PEuxfGgWAkA9Cg+MMSH0FjRg6McaeE6/9gcMkyt5cTGaNi7AvLCKQjLSHRO9cEqd/04ktV068M9oNGIzyPU92kweDRd7PXWpHZ5And6LB2OQ+W4KDP2gl0Cm3p1alqOrtBcRicVp/JVN/sOdZ0Zv0IpLSfCqAC6koJVF2uQt/9ziDJ6dsM52olAoFmcW0t7dx/Li25PEyXnt8+ctfBsBpzhb1c1eY8ZQ6aH9xYeUYxWiYoaZ0fu8w5/cKyHwTMa/slR6cBTYRQQmg5MpsjDYDp5+WxXZ8zWPi0koA+/79FNZ8eXxgfCyCwaRlfrRpmue81U6i4biYpGSw6jDa5ens1me7CPrkwhQSgkQS5mwz1dsKGWx2XVAZqXThax7TXOZKCwabR7BmmBjVcGBRCwZO+XEVyH0FrTj8w6VR3k+i/pZSEtG4+HBA7z6fpuu1vXgef7t8btGZdJic8ri/q9RBIp6QkZQcCtYsM95qh+gdDPrGiYXjxCKyOen4Ex2YzTpx2crefT5Nz8FRZKb08lxanuoUXTOn0YMtb1quOM2Y176vzorjTsS8FlJRAnAV6siosNL+51nqSdOISqngdrvx+Xxp3dvkZyYS6bNrkkmw0kc/n/Lvmd5Ror+efeIswPbMKKE4PDs0/6lBz2l1obB2apQ/71IXtUklJBsiXkDRxQ6KN2XRf2qYkz9NPwCTs9ZF6SW5HP1FpyaSzBsCQlv+LbD2Q5XoTXoxCajkqmxMTiMtgrrAoKoqJGIJcVAxZ62L8EiU4VMyg255uJ7x0Qj7vrY0yaGtjzQwPhJh779pkxyUIKnA1Hd0WMYktUH+mgx8J4cICvIgJVdlU7Qlm9PPnxOpmGXU28hbm8XxJzpE70PFdXnkrMjg1e8cF93nkuMN8J5fCJreUYZOr4iVorY+0kAiluDlLwvfhQl76tzquqcIGcRJ9F1ZDEDEvpDjMf86+5H7f8Y/7LkuZa+RnQcZ/NbjKIoyeWp8Ga8v6PV64vE4q1Z9AK+3OGWbuEHBsmfm+Fz7nnyMNj27v7ow+SceVAN8M8qPSBCf1s+KKKEM6tqm6BSxNOqKd5UTHYtqVrt5Q0CDPZcS1kIrK+8q5dyeATpfFCRIrVB7fRHdewfwt6b/BQsuyaTs0lxOP9clIqhZveCq9oiJSsnTYQe+eYLg4Gs/P274WA1Gh0Gz4pAU6z9cjcGmF5N/PDVWDBaDuIzahk/UAIhVDiqvzyfoGxeXONvwsRrGR6K8+l1tBOUlw+v8Pb8QuCqs1GwrovW350Tl8xruKiWjwkHz02dF5K2UttRAogfQ56hJEsU6/2GBNbfYMFp07Hl0LuHI+eNR+j9TlrLfiy8+DIAgBLOMJUYy5vXm8o/P2yaVmtKWh2oI+yPs/8b8e41Jf+uv9fwtiAgy2avd1NxQxMBJv6h8kafaSsXVhZz6dacmIsIbAkJb/i2w4t4yTC6jWAUgb7MXq8fImWdlajXrP1oNII4JeRscxMJRhk/LDLrpk7VERmPs/9bSxbzCwxH2fe21j3lZPDrWfLCO/qM+Tgljj9lr3Yy0DqcsJblQn6o3F3Lm9+dFqkjOUgt5a72c+k2X6H0ouDiToi1ZHHq0ndDruUzyG+A9vxDU3lSIwW4QK0Vt+UwDiVicl78oLLP8V7KnzqL6W4plYWLFpg8XEh6JcfAHM8lUPY/mkvfh1DcSCvn4Q/f30el0xLTGPJbxmsLpdDI6OsqK3OsocDfM2262mtKq+4qx5ZjY9eVFiLETz10LkWai48T/E2BGTFLa+Ila9GadWMm49pYi4tEEp55YmrJtfxNosOdSwuyCFe+uoXvPgKiMGmaouDqP/iND+NvT/4IZ9Q5q31ZM229lKjBmFzhKXQw0+0X2LLkym4JNWRx5tHVJFJFWvbsce55VHP/VihXvLMPqNYtzt44iMwabQUwSXPOBSnQGndhPL748m8hoRFz+cPV7K4gGo+ISZUuO1/l7fiEwZ5upf1shbX/qEY2Xirfmkb8+k9PPdnF+j0CAI5UtNca8dA6H2t0yf8xrxS0Z2DIN7P6PuTH//h94yPpoar/queZ/AhKimFfaRwF+//vfL/j3TK8aoDO8dW4W/siIgf1D6bFcg0XqiaKCOtj0dj1VG9Po1JWCdStItseDITpe6OfA909z8inZ4p/T5MHoNGD3ytjGDXeVsOUz9SwgLpUSthIb2au1lc/TjCUkLqz5u0rWf6Ra3M9oN2KwalAP+F2fmKAEgEbftmpbEQ03l8ovl9DmUDfcVULhJZniflrRdF+ZeHzGYkAC4jFZErBkSzYVVxVQcnWRqF98wo5Smbuh4wGO/1hGUAKwZpjUMl5Ckkr5tlw2PySfIzRjiQlKtiwduRsXPy01G+vur1LtIoSzwIojT66gcvDRs+z6YrP8/Ztlz0QgPQNvvM/F+rvVdyhJUFocNk4F9Pxp1jr7kft/BsDfb3w6ZS/n1tXAXBWeZbx+kCSPLURQAghtnLluHv95N2cFpAxFr66fmx+sYetDtWne3CxnVEOifdfnj3NAA4nAmW/FXe4Q99v0YB2r318h7pe91oXVKz89e0FYIuKCNc/CpgfrKLp0blmbhWDL0KM36bBkCE/SBOHk450ighKAbmKekhIqy99aStW1hWStlPom8QlfT3a9rJVOGu6S+3laUXBJJrW3yPwggFg8rsmVrb+5jJob0l2bpiGBJt/59K+6xQQlAINVj8klP2G5/iPVNL2jTNxPM5aYoJTZ5MBaKPOFrHkWtn6mgaq3L6zoNxuOQhsmjxFvvUfU79jP29n/9eMyghKktmUaQZG624rY+tl6vHWqw50kKC2G07sCtO5KTVACyPpc24L9l1UsX58IhdLLtuqL5r4Pzb86x+nfpHlKfmJNy6izs/WRBmrevphq6jwQJof7Dg6z72vHOfFLGck7s96DJcuELVs2f1Rcn8eWh+qx5MjUgS15FjLq5NL5F4QlJC403lPK2g9WifuZM4wY7fKY1/mXB8UEJUDz2l17Ywn1t5TJL5dQ/RMpqrcXkLd54ZPAf03U3VaMt0G6D4lDPKH6lwJkrnRSc10RZdcIY17ROCQS6ITb/JH2EKeekBGUAKxeEwazHqtHNj4LtnjZ+ECteI7QjCUmKFk8OjKFexCAle8qY+Mn09yTT0NGtRNXsXzuPPCdVjlBCTTbc8vDDWz6lFpOXbdAcmw22l8a4sSTcwlKAOf/PfXnWCweYJkc/npGMKg68QsRlEAt+zYdJ35xltYX0lfhUSYmxPUfrWTzgzXpdUrMmrM1JNr3fOUk+78jj3llVDjwVstjXus/VsOKd5bJr1fvwOxa4pjXUhEXzLD+ozUUXCTzFXR2MyarAWuGTDGZMLQ+c15EUIKJPFUigTT9kL81l7obi8lb4RH1i8cSE76J7HruKhvVN2rcu2hA9io3ldfli/sloonJHKAE9beVUX9zibif1lzx2T/0iQlKoFbwMGuofrTyXeU03K7h+2nFEhOU3FU2zNlCu5hh06dqqdiWXiWUJCxuPbY8C9kNsvxm6+/Os/ebLTKCEqS2ZRr+TcnV2Wz9TD3Zq9T7TBKUFsPpPw5x6oW5cbn+H3jU//9bar9fQf39L37xi7SuA4Jyb//n//wf9R/GuV2SBKXJD31r/zRFJRstC6jpJRWUpiNY5CQwPEJ0PM7gYpyhWQSlmu05eCusHP55F2Pti9fiTKoIAAS6Iqi8rfQ3jkc0SsDpDDrVQRISA5puLcZg1YvLk234eA0Gq55dn5Mxt9d/tBqD1SCuq6lVHcHsNqFo8Il2C0+CJ7H2Q5WMj8Y48oM22fW+rO16fUeHCQ/L5SW11jX1lDtw5Fs5pyHBI4WtwIK7xI7RpqfvYPon7EdbA5pY1P2vDuDIt3J2p6z+ROeL/XS+KJc0ylxhp/LaIk4/18nA4fTZsUc1MprtWRZ0BgVHnk1U3mzV+yqw51g4+K0TBBYo9TUbTfeW4iq2i5/F6vdVYMuxiNUfVryzBr1ZJ1KzAnVjqYVSI537ANDpZyjkJeKJyY3tYtjw8Sp0eoVXvj0VEE4EAouS1UIjMcbH4nMISsYx1emYT1HpaHBmMCpJUEri7zc+nVJRyePx4PF4FrynZbw+kSQoJRHaWD2pqBQchODL85eTme77JKHo9fjPBTFa01iEZxGUNj9YR2w8ziv/KpcYDmo4bav15I2iU9J+h6ejelsRkdGo+Ptt/WwDvvYxWVkzK2z9eAMDzX5RGTxPjZWG28rxtY6KpP7tOUb0Jh1W4SZu4MgoO4/In0P2Whdll+Vx7BdnGWtPn6HR+ad+TeWjOnf2Eo/E6T8lU/5p+UUXLchJ7MWX5GDTUKpVK4q2ZGEwyxOWB76hrRTLuT0D6E1yR11rueOm+8rQG3RiRSTpSdUkTA4jOqP8+239bAOxSFy8H9n86XrCw+Mc+JbseWz9TANBX1j8HGtvLCHsG2ffv6evUhEcDoECemGZk64/D2gimBGEYFCepM5sclC7vYTu/YOc+fW0BFYiseDpsoFmP858K+FgYg5BKTGxVqZSVPKnmJ6TBKUksj7XNkdRafXq1Rw8eJAvfOELkyVdl/H6wec/ryqG69IIk+mLCmYoKg0cmX9/mFKxUlEIj8YI+yIMtMhIeaVvyqFgYxYnft4uKskEEPLJ36/TT3Vz+ilZmRKYmDd0CiG/zNdruLEIS5ZJvL9c9b4KbF4Lu74g7PfeCiwekzjGs/GBWvRmPbs+J7ueLdOsqeSUVpXrFfeWEYvGxaWg9n5V2/W69vQTG5ePM62lD7NXePBUREWKQReCzFoXZreRwWPpl+4M+WCXhpjeQPMIfUd8dO+TracDh0bYdUh+PVuRhfq3F9P2h/MMCFQztc4R9lwLBoseq1dPSFDxp+7WIry1Lo4+1ipS7KreXkBWg4dd/3JMRLCp21GMt9LJTuG73nhPJWa3kZ2HZP0UvU7TnlUT0Qi1lKQWrPtwNXqLjj3CEjWj3QEiwdgcglIipGbf5lNUOr9/Zlw0SVCa/Pu/W1IqKmVmZmK3LzHxdRlpQ6JwpSspnFRUCvuh58AC81SKz1V0CsOtY5jdaRy0mkVQWv+xGuLjcfZ/Q672F9ZQFkuqeJyEooBOw/xRf1OJqi4oVIHZ/HA9vtZRTghVzjd/up6BE8MidUGzS8e6++vUWNnj6cfKrF4zJrsBe7YsThPsDovnfQBXuYXKNxdy+tlz+M+kP78OHPVrKi/Xvc+H3qBjqNkn6tf5x35Ruc4kijZl4al00vG7bnF5LC0ovjgbS4ZJXDLxiFBVMImzf+zB5JKXNTugsdxx9Y2FmB16sSKStDxcEtZME1Gn/Llt/nQ9sUicV74iu+76j9cwPhzh0PdklU02faqWsC/CwW/LYoGNO8oIDoRlMbaw6nvphbHA4RZtOW3CEA7L1wVHkZmmuyvo3j8ws1TmIjEvX8sImdVOwr7QHIJSYuKQVipFpUAvBHpn3meSoDT587/p5ygqrVmzmv0H9vK9732Pt7/97el8tfRJSscm6pfrPDNPAcwmKE1+8ARRaYVtlHJLnJ2DBvoFkiDdeie+pxfZFKVQUIrHEiTiCRJjMoLSineU4MizsOsLgiD6BTDxpaSYJM7+pZeMKvlJjMhYVFPQXasc5khXUNMpL61kHK2weMyYnRq+o8bSWKJyZtNgzYJgQH7Nlmc6Ge2PLt7wr4BAV4iWZzvxt8pIJzDx/YR+UaA/zrEfaZQ01PD83KVODFY97lKniKSkFVoJkEMtI5idRgIBmcOh9V0fH4tijcn7du7qw1Usl4laihKE07HmA2VYXCZ2fUldG9IlKiViEFfm2mUxotKhn48JFJSmcI3Hj16B3wy55hCUkkhFVIpGo/T1CUo1LeN1gdkEpSSSRKW178pnPBjjyGOy+u7Hf9K1eOm32QpKqAp10XG5fPrmh+oZ6w1xWLhZ0QqtPsZg8whDbcJyxFaIRxOMp+GPzug2QRKTnvgJ94eJjEbFic7+QyP0CwPnFwJ3mQOjw4CrwCoiKQGaSmP5W4P4W7WVBbR6VcKfBCd+cgZHmfzEo1Yc/nEHtgy5v40VrFb59+v4rWxOmX1N6fNzFliXVO1PSxASIDgQJjgoP4RAIqFpOxmLxomMyedcX+sofcd9sk5B7cRQrdgyEeyWlPSMBGIk4glVPWI2Fgja9B3w03fAn7aCUhKuIqi5xE7nkQDnDyfmEJSSmE1UGh1VX4JkbGUZry8899xzABh16e1RkkSlvA1uSi7O5uQvOxluTT8ZETgXFieDQFVJScTihEdl80DtTYVkVDs1J7KlOPVEl6rKIkT7Sz1k18kVdyOjUWJO+dyYiCc0xfZ8raNYM4Wn60ETqf9C4CiwalMR0VjKqV2gbDHjch4IheTXPP6/7QR9S1fG6cSTHYx1yONBFg+ikm0AhKBZYwxRy/NzFdkwu424S+0ikpJWnHqyS1z+DmCgZQR7rpXwgMz3ik+86xaLjlAo/XjZ+FiEWESe0Ov4Sy8ZGvYFrwoTcheKxntKceRbxWT76HgM3TxxiYVw+L/aRApKSTTcmoXJauDgD8/PISglkYqoFIlE6O+XJ+KX8fpEkqi06r5iYuMxjjwmm0Nanu5ZPP49W0EJiEfixDUQcDd8vIZAb4ijWvMXQmg9HHR+/yAj5+Qyv7FwnMiohrxTIkE8Kox5heME+8MMt6ZPEgbtZCOtcBbasWaacRTYRCQlQFNprHBfWEzgmbycSyX8SdDyqw5shY4lISgBHH38LBa3hpiXGcxm+ffTomo0/ZrS5+cpt6M3afh+GrH7y9rITSOdY4xriEGR0KZmGA3FCfvlc0vPwSF8Z+R++lJzEjZ9qpah06M0/zx9Pz/ij5CIxUlEUthzgZiXvy3EgW+1pq2glITZC43XZ9J1cJTzr4bnEJSSmE1UCk48t5aW9Em9SiLNUWKz2QgGg5hWVJL/qXcB8xOUpmPTn01km+AvAzNJSqkUlKYjLztEvj3Cib/M0yBVibdZSIzPf43ZKgKr3luKPcvCzs9Pe1FTOCVTf1PNtvZDVVg8piUP3i5jJrZ+toF4LLFkE8rWRxqIR+XXW3d/FYH+MMcfkyXMtj7SQCwc16zgJMXWRxoYH4ksCSHEVmJjzX3ljPUEOfif6W/GbQUWmu4o5eyuXrpfSl8er/CSTMquyGPw9Ihavu01RsV1eeSt8dK5u5+O5y8gubeMC8KaD1ZizTCnN1frppzDdR+swOQyzCGwLkRU0rldi15iPqJS/iodxhoX+wYWJqPOVlS6zutHB5Tf9fyi155OVGq/+2FgWf769Ypkcv6KKz4/+bv5CErTcenGANFIgv3/OTNgk0pBaTpq3p6Lr31sfoWzFASlC8GWh+sJ9IfFgditn21gpDu4ZOSmZcxFxbZ88tZm0PaHHm1qKUI03lOKp8zB8f89w+Dx9FnGRZdmkb/Oyyv/0SwiyKx+fyX2HAsv/dPRJSnJteFjNRgdBrFqhFZserAOvUknvl79jmLMHhMHhafENj9Uj04vV1jVis2frkfRaVdUWsZfB1s/08BYT0ishLX1Mw34OoQqdOlgnqBN3W1FDHREGTy98Bo3XVHJUwI1lznoaw3T/3eL70OSRKV9+/4Tv7+djIwMBgeXRvVjGemjtLSUjo4O3KYCthTuSLtfSVOEvNUZHP9ZB76WKV9rMeJ3Rp2N7HqPdhKCEHU7ismocLLr80IF3HvLcBTaxP2W8dfF5k/XkYhrV/WWYutnGohF5SqBq95TTmhwnJOCoDuo/n00FNOsqCTF1kcaVNWIry3BISgLXPSpRka6Ahz6rmD/YoF176nm3CsDIqUoT7WVxtsrGDzl5/hPtJH1Jcjb7KXiTXl07R6g7XkNpQWX8VdB4z2qOrpU3W3FO8qw51qWjMCavdaNp8zF6V8vfFhutqLSmnfmYTDpePqixWMS04lKz575F2A55vV6RTLmdW3Np0T91r3NRCwaZ/+3Zu0XFvG9Sq/KYqw3TN+r8zAXFsoFTrZJfyxt+mQtgd4Qh4UHkTc/WM/IubElIzctYy7yNmZQcU0+7X/o4dxfXvuYV+V1+eSt9dL8y076Xk1fACBzhYuSi7I59tgZEXGofkcJ3hone7/VokntS4pV7y7HnmddspjQug9Xq2qGwutVvDUPe56Fw99vE/Vb//EaTFbDkhHi1n+8Br1B0Uw6WsZfB5sfrGO0OyhW7tr8YB2+9jGxCt2imCfmVXldHkMdEXytC7/r0xWVzF5YfXM2vc0BXrlvcXWxJFHpZO8fafPtJjs7m97e9HLhaUvrRCLqSXBzdRmQHkEJYPcl4zw54BIRlAAqCsGdYyRYlCJRuwBByZal/gegmFKfakqVpHv12+0zCUpAyrpjiZmnrGKRuFrDU4jND9Wz9ZGF6+2mQuPdJaz5YKW4n7vahrtarloiEL+agYrr8ijflvpkw0LY8pl6Nj9UL+4X9o8TGly6Ipej3UEGTsolGM1uE64iuczsWG+I3qPCOpWo46zp3lJxP63Y8nA9NbcVifoE+gMEBkJ0H5A5fNZMPQarnsyqxQkh0zF0eozgYJjeQ6+9gwkq0zgWjhPslWU5q7YXsPWRBvIvyhD1c1TYaLy7BGvW4m1nQ0sfbJCzVvYMAEquyWHjA7Xifus+XMVFf98o7hcLx9NTi9LNZK/v+0ZrSoW9+T5rkqBkA/sCr0IiMDfJ3ndlMQWrXeSlMUUky78l8fSgKy2CEqiKSkk4nU4sGk6xLeNvg3QISgB/2mMTE5QAMmuclF6cg6JPcYpjAYKSq8Ka1n3Nxq7PH9d0UjQRTxALyQhTVq+Oi/6+kVXvrpBdzKoSSPK3yOrXA2StdKrqMVJo6GP16qjfUYy1UNa55Ooctj7SQNEVMhWRsZ4g0WCM0XMaZCU1oOfgIGO9IYI9sutlVDsxOgxY3bJ5rvvAAKM9QTFBqfbWIjY/WCfrdAFovKeUjZ+Sr6W9h334z8qfnavUji1LXvd+oNmPr/21V6FMIjgYJqhhX7D50/Vs0vD8yt+aR+k1OeJ+gKb33VVhxV4q77j6/ZXU3irz00FN5G78pHycxWMJImE5uXXn545pIihZvTqs3gXCGykSCvrSbDJrXBSm4csmpq2jvg7Y8+hoWgQlUBWVADIy8gCWfa/XKUZGVOUQu0G25nccMbLri80ighJAycW5ZDd5wCpTorB4dFg8cpXsEz89q4loFAnHUquULYINn6hh62flMa/qGwtY+e5ycT9bkQVnqYZ3S+PrWHxFFiVXyvwnUBOWmz4lX2sCfSECfdrKMmnB4OkR+o75xP1sOVbc5XL1GN+ZUXpelce8NjxQQ/3tciVirdj0yVqqbyyQdQqBv3OM7v0ycqrFZcHsMeKtktkz1BdkpCugyZ5aMNYdIDIaZeS8zLcsuixL3YdcJgtEWfIs1N5UqGke1PS+W8DbIB/TueszWPfhavE1V9xbxkV/3yj+frFQjERMPlcf/q82zQQl6Zyrs1gouzyP7MbFK0Qky78lceD759MiKIGqqJSEy+XCNE9+aBlvXOz75biYoARQsN5L6eXZqQ+eLkBQchSaVZUUWLCszmzs/qeTYoISqKqZ0bD8fb7o7xtZoSEPtOb9leRtlOUfADw19im7CGCWpxEwu6Dq+nys+bILZq5wsfWzDRRfLvPZgoNhwsMRRs8vwak1oO/oEMNto/jPyXw9b6UDa5YZs1Dd8/yrg/haRwj7ZXGT0mtz2PgJeWxAK6q3F7D+YzXift37BxhskatCZlQ6ceTJE+K9h4cYaJbnirVirCtEQAO5bP3HazTl4wou8lJ4caa4H6BpjnAUmXEUyTs23lVC1fX54n5bHm5g/cfl4ywaiRPVoLL38pdOaCIomV06zC5ZzEvncJC7OoPizZ5FPz9Z/g0gPAi7v92XFkEJVEUlgAyLui8zGtMvm5h2ubdkjVjLuqa0CUoXgoPNkJlqwVpEQanhpjz0RoXdX1dl7hSTaYaiUjpJuhlQdAs6Ka8KlF+mY7B1BJtH7iQ7i+ya5FQbbi1F0SniE9NbP64GlaSs07zVamDvzDOyUzTjIxFNZaf2fU1eExhUUlQsHBef1hKdfpoGrSfktY4znUHB5Ez7Nb9gKHoFs114vQAc+Ia8buvA4TF2HpbbM9AVYv/X5eMl/6IMyq/Mp3v/gGhc9x0coe+gfMM/1hckFnGJyXclW7PwlDvx1mdyTqBu0XRfGe4SOy3Pds6vopICK+8sx5lvIzxyhuFT6QelMqvU8nnSUn99x4bJbpTL/6f1zupk8pqzS79NV1Bad3sOBrOO3d88P3//FKXf9vXqWQqVz2Tpt5ycnOVyb28QpEtQuhCceqaL4HCKNXgRBaWmO8sZ90XYq6FkiRZoUUcJBuMEBkL0HvWJ+rnyrRgdBrzVTrp3pZ9YyF3voeqthWQ3+0Uli4quyKb0khx6j/o4JTiBnrshG2+Ni/GxKKcFMt2B3iDRcIxgnyzw0rPXR48GGeTK7fnkNmVw4udtIkUktSydPMCgVW2rZ7ePnt0+cT+Ly6SpvLJWmJwGDEb5onHm1/OvTQtBqqaQhGQsT8fGB2rR6RVeFl5Xa5mMsH88rcOzs5G/1ksinqBdqJi59bMNJOIJ8ZzWdEe5quj6RVk/W7YZk0u+LxjrCTHaLQ/OSu/vQrHmg3VERqMLl1KaLYMdhLZdIwx3vvaJ/6zPtRH8eDXt7bvJzNQY4FvGa4pgUB3nHrP8sJUWnPxZG+4qt7gkU+PdlZg9xiVT39N6wrP/6DCOfDmh0lPhwGiRz1Ur7ihDb9SJTzBv/mgdil4nVh8p3JSFotfR8XvZXio4NJ5W+fDZOPS9NnEfUEk18WhCXGZO63OX2jGJYxpVrg0mAyZX+kHwC4XOpMfiksdypSfyAUK9IU3vecinLWbpqbbScGs53fsGOPNs+jGvkfaQpjKGgb4QkWBUTL7LX+0mq9FDYDDM2RfTDyZV3pBP3movZ17opkuwr6u7oYjMOjcnnuwQlcHLrHVi9hhx5loYaU//O/YeHUYnLEkHcOLxTlH7C8XaD1RhyTKJx+ixJ3uwaiAoSJEs/ZaXl0dn59LaZhmvXxz73w6i4VSlchZ+31beV0FwMMyBb03sMxVFU6nYdLHnK9rUUfydY/QdTT+mDyr5x5plJrPayfk96ZNbHUVmGneU0X9imJOC+Sej3kHDLaX0HhoSlfx0lbvJXeMlHk/Q+kz68YyIP0x4NCImdAy3BDSVZS64yEvpZbk0//IcA0fTJ634z4Q4ckZOaNNaOnXo+ChDx+U5frPDiN68dDEvs9OAwSKPeXW9NEgXcuViLc8coOMFbbmVNX9XidFmEOemj/9Um98c6guhaIhZllycA4oiVhXb/Ol6SCTEMb2muytIROPs/ieZXZzFdqw5MUBWAtHXOkpgSB4T2quxxKZWrLu/jpBvfOHcdorSb6ee62NUSIDUgv5/0+P+QCGKouDxeNLul3a5N6vVSigU4iNfeFh0Y46wgh49w+Youn7tzHVdJAJp1IA22BX0Rgj7Zn2tRHxBaU97jhlFURjtWeBhpeqvU8v+JIR1VJcaJqcBRa8Q9kVE/SwZ6mY/NCTrp7eoL0IstDR2MTr0JOIJogHZJs6WYyaRSBDsk9Uyt3iNxKMJxjXUxtQCS6aR2HicyMhft9TOfHDkWYnH4poYuWLowOo1MT4WJRZ87evZKnqwZJgYH42IxqfeomBxmwmPRYiOCp6DDswuo0rAW4rHpwODRUc0GAfB66e3KJgcRkJDERICdTi9RcFoMxDyRWBpyhFrg04l0aWs2wrznoSxZZnQ6XULrg2KwhyCk8GmoDelWIvm+YCoU/v6mJXjI+Z3ADr0Lhlr/1/+8Yf4/X6i0aWZy5Yhg16vx+l0ct87Pybq53ZCPA4jY6Ab0a5ekkiQVuDFlm0iEowSGZVNAu5iO9HxKGM9srVGMU34Xa/zOcfmNREciZBIFQSbB4pJweYxERgeF/VDAaNNRyQYXxK7KHoFs8tAaFg295tcesxOE6N9IRLj6X8/g1XB7DQx1h9eku9ntOsw2Y2M9S6NSqcj34JOr8PfuTTKVGa3Ab1RR6Bf5v9qhSXDiKJXCAqvZ881o+gURrtlm2mjQweKsmR+s96qQEK+77FmmiABwUGZXawZJmKxGOP+pfl+WqEYFPXwifCddRXZiMfjjHbJnrst20QkFEvvuSsKilH7QQ5DWQJryESMGOPO9J+Dv3eI//zSf+J2u/H5fJqvv4zXBi6Xi5GREe646Z1ke/PS7ufIVNCb9Ax3R0mEL2DdSDPZZXIZMNoMjJ2XvSOuEjs6vYLvjDAhsdg+6nUCs9uA3qAnMCB7BrYsMyiIYx96qwIoSxLDAPW5k0gwLlzbXEU2EvEEI10ysqktx0wiliA4sDS+gj3XQmw8Jo49aoWn3EE8El8y38uRbyU8Mk5EEkvSCh04cq2EhsOiGKliVnDl2Qj5woSHBfEBneqbhIYjSxMb14HRpicyFhPFvBSLgj3DwthgSLY/syjY3GbG+kKv+/2nYlRke0jAWWDFYDEw1Co7EGJy6jHZjYymuRYpwkOB0zHeZMQ7pkOPjj67LHb1v1/6NoODg5OH75fx+oJer8dut3PvrR8W9fMWGohF4gz3xiGgXekmXZ6RI99KJBCZOzcu8gGZtS6ioRjDQlVhnUUhPv76j3nZcy2Eh8dla41RwZFrJTgYkuXxFDA5DIwHorAEr7NiAGuGmcBgWHQ9s8eILcvCSNeY6PsZbDqsXguj5wMkliBEb3TosXjMjHQFlmScuUvtGCx6TZVptMCSYcRoNarfbymul2nCYNKLD3e5iuzojPL9mclpQKdX1HzcEsBgU4lN0ty7PVdVNhxbiHORArZsM/FYgpAwVrbU0JkUtcqWcE7KrHURi8bxnZY9d0eBlWggmt5zVxQUnfaYV2S9kVy/gYguxqBD5lv+58c/L4p5pU1SysvLo6enh//n//w/ohuagcSFqAC8vgMiy1jGMpaxjGVow4Up5CiK9vXxscd+wtmzZwmkKD+3jL89LBYLZWVl7Nhx+wV8yrL/tIxlLGMZy1jGXxUaXbfx8XG+8PkvUFZWxpkz2pTelvHaobCwkK6uLj7xiU/gcMhL+yxjGctYxjKWsYzXABcQMvvfx/+XlpYWwhdCIl7GawabzUZBQQF33XXX3/pWlrGMZSxjGctYRhIX4Hv9w//7DxQXF9Penp46XNpUqmQ5mBuveJEHz1wsuqnY/pnlbBzdi9NBayvBbIJDx8F4dkqaLTG+sFOZv9KB1WOm9U9T0mOJ4DRmmYZSYgvJn+Sv92B0Gul4USbpliy/dvSnbaJ+tTcWozfoOPa/Mvm/0qty0Bt0tD4nK+9QdHEmOoOOjj/Ivl/1DUUAnHpKJqnauKOMRDzBscdl3y+r0Ul0PI7vlIyZbsu3Eo/GCAmVlBQHKqtZqJJWf1Mp4dGw+DlgkV8LVHtGAlGaNTwHcT8zNN5YRsgX5vSzMkk9Ld/P4jVQcXUhvjY/XQI5UgCjWyGSqqTRInCV2/F3jYFgb6s4ILfWQ89JHwkBObZgoxdvpZvB0z7R98tucpJd76VjZx+j59InnrjK7WTXuWj9c7foPrManXgr3TQ/3yl6hiVXZOPMtXPs6TbR9SrfWoDVbebor86I+nkbHHiKHSnevWkrriKXu1TM0xSQpv0zp96OM9vC6T8tLIMZL56qkxvI0bMqM4bZAHt6Fj9lVveWmWUSy80yGdPLbD6++90AiqCe+jKWFuFwmJaWFq6/+ln+8V/fLOprODNzHk6MLe57Nd1WSNAX5vRz/RCbzspfeL6s3FbISMcIvYeX5kRM+bV5DLaMMHw6/TXfXmCl4sp8RvsCnBGswdY8K5VX5jHU5ufczvRlbc0ZBkovzaPnyJDoPs0ZBoo2Z3P+VR9jghPvrnI7RRuz6T7Qz1Bz+pNj0cVZZJS56Hm1X/T8jC4Fb5WbnqM+0ZqIGZx5dkaEJwmT14z4ZWt3wZZMMkqdHH2iTXafoNZNF/apuq4Qi9vEkR/LyAe1by/GaDUsWb/JmvDC71f5lnyMdiMnfiaUljarJxETwsduyVFPXYV6ZU5iRo0DdDB0QnYqqen2clDgyGMye9ZsLyIeTdDytKysXcmVOUSDMbp2ySSzK9+Sz/hYlLN/ku3PGneUEQlFaX5Sti9ourOcWCTOceH+rPSqXEIDIXoOykoOaEXlW/IZ7QnSs9+3cEP9lMOmuMw0vjWL4HCU1pcW6Qecuzdnxs81BbI9z+azR9TrLvter0sMDal7rsy8X7Dv5zeK+sb7fDN/EVv8dGPFm/OwZ1k5/KMzSEjlOas9OPKstEr33BqRvdKNNdNCx4vpl38CqL+tFINJz+FHZSU4q7cXYbIaOfoT2VxcdHE2JodBbJf8TZkYrHrO/kFWsrNyWyE6o8Ip6Zx6VwUk4MiPZXbx1DggDr4W2dpmzlbX0rCwpJZim4h5CQ8w191cwvhoRD4+k1Oz8Hor7q5gfCzCyV/IytOtuKeC8VFt/cYGwrQ+Iyxla0L83TBB401lDLaO0L1b5isYnQqREXnMy1FsY7QnILtXE+Q0eBg6PSy6ZlaDi4IN2fQ3+0S+kKfKQcH6LM7u6hPtKewFVnJXeujc1ce4QCnKVW4nd2UG7X84L+pXsDmTzCo3p17oIiRQECh7Uy6uAgctz58jIFATdZXb8VY5aXtBW1lnKbIaXLjKnWm8C1M+j2IyU/GmTGwZZo48vnh5op47Kmb8bK6UzX+fLf8NP/zBcszr9YxgMEhbWxuXXvskX//EtbLOfTNj5Yno4hNX0x0lBIfCnP5NDwjUtcrfnIe/M8DAkekxk9fuQGDpVbkMtY3hF6hsKFZYeXsV/q4xzgjWYKNDoe7t5Qy2+Dm3M/0SmooVKt9USP8xP76W9JXYFCuUXZJH79Fhxs6lH/Oy5pgpvzKfrn0D+E6lf72cNR7y12TRfaCf3gM+0X1mVnkYaPGRkIjjGMGeYxV9t8muDoXIqGxc5azxkF3voflXnURGhBJMRkAoxFN+TR7OAjuHfnxa1Lfq+kJsWRYO/dfpxRtP73dDITavhUM/kPUDNH2/0qtzsWZYOCHMvWOciHkJH7vRY0JnVAgLFV2dpTb0Rr3o3QNovKMcnUHh8H/L9iGV1xcCcPpXMv+3cGsW8Wic7j2ynFXp1bnEwnE6/yzkXOwoIxqO0fyE3L+PR+Ic/UmbqF/hRVmMj0TpO+QT9dOKsjflEegPLT6X6adoP4rJQtMtuYwNhTnz20X6Ad13lM742VYrG2Mfzvw1ADpd+nnWtElKScGlUV8Lv762iw37b02rX24PFNti7A44J383PrK407Dr4NS/bTP2/GYSC8g41lxjxWDSMdKmSo/FR+YaMZGCqFR0uRdPmYMjP5gVdI8v7LAMn9KmPvHqf6kBl4BQxj4WioFZfl37LVYUvSLu13hbGSgwfEo2MRtMaoJder2uvQNERqPiflqfQ+OOMhLRBLu+cFxTfyle/uLSXCeJaDCGr2NMk30SsYS4X/QtMYZaRzU/DwmGgZ7dS5MQByi6IouSzTkMtvg5/phsofMdkNsjMhQiekWCcy92E+hPX0oxZ0UGil4h4h8XPYeSS3KweiwYE3r6BM5+6eW5GG0GYmMw2pr+9UKroziyE/hOBkBgnv3facFdaNM4R6QIPM8OVswiKpVcmYmr2MaRH8595jrrXHadYlEzvzVX2jBYdIy0zb+5iDSVwrQ99bDbwm8FZaTrSqZsoDuSQTCWSfbW9Gr13ueasoXEaVjG0iMWi1Fb0cWP/v37XHffB9LqU1UWZtxnoffQlL8U9y++U9r1pamaxonorJ3cAsKbVo8JPS5afilLXjXeU8rgqRG6d8k2K69+S64+4W8NMtYVxN8dBMGmMRJIkLg8QWgwir81/Y5ZK52YHEacOTbOvpB+oKfgkkxsmVZcBeN0/yV9uzgKbegMCsQV0X2eCfQR3hyl6889BIXl2gcOyte2hrtLySh3cKKvnYEjwnIzGuBvlSUOLxS+02Nk1uhEzwCYlAaW9vO3B3DmWeXX04gD35AFMi4UjTvKUHQKO//vMVE/rfZo+1MPOoP8+RlMBuKGuLif6w478ViCEz+WjVNrhgWTQ369WCRONBAT9zvwHfW5B4WlpQ63tonaJ9F0XxkDJ/3itcHqtWAwGTj1s/mD8orRxPRFQOc1s/vb6c/RXQ412U8wxOUT3KtgfnqB5O+XPsu/H1JjIkajMe1rLmPpkExijo308oXHH+P+y+5Iq589F3JWOGn99VQQdY4flQKvfrtt6od0640ANTc4MXuMjLTL3snc9Rlk1jo59mMZ0VR6nSQO/UCNIUmJptHRKHq9Tnxd56029Ca9uF/j7U4UvY5j7TK7GG16dDr5fbb/sYd4NCHup/U5NN1VQSIW5+UvntDUX4pXvtK8JNdJIjQwzkh3QJN9EjG5XcPDEXynRjQ/DymW6rmBerCr4sp8Bpr9nPipLOY1ckpOjIkMh0Cn0P3KsGie8FQ40Bt1xAJx0XPIW+vFkWvDYDIy0J7+PqRwUxYWt4lEVDZeQjUR4rE4I20h0fc7/KN2nLkWTXPEuT/IyGygrg3eagfHfyJ75tVvLcKSaVr4PmfF23TmBIe+n36Csw/L5L8rCJHhh+OlC3SYhsdXfh+ARMK8HPN6nSMWi5Fb2Mc//vRHfOJN6Skq5dfDeFxP/5GpmERifPF84+5/OjXVXkBScubZMJj0tD834eul6bdV31jIyNkxzu/1pX0tgKM/FB4KmsCr329htC8sPkgWj8QJDo0z2pl+R2u+GZvXgj1nnM4/pL+fclfZcBU5CA9H6dntS7ufwWZAb9KjUxTRfUb8fURDcXp2DxD2y0pVjZySxTgBKt6aR/76TE49c47efT5xfylGO3to/ZX8PrVi4OQIRquR0TMyUk0ikoAEomcHMHhqBKVS9swvBEdncwNeY2y4tRSDxcCuz8tiXlrt0fpcN0abXtzfaDGAIr9uRqWLRCzOqV/IDi848+3EI3FGO2WxsmgoRiQQFd/n/m+rMa9wv6zfyf8RHlqYQPXbCxluHxPPEa5COya7ccF3XjEYmF5/TrHq2P3v6ft4A3rz5L/XxgIMxGEoI72+P2z8IZ2dYRKJBAZD+qXm0i73ZjQaiUajfPx9Dv7p/+QBpEVUumKnCYcBfjFkAKYUlTKaF3ccbEfmz9YuRFRKIhVBabL/LKLSxk9UYbDo2fm5aQneRQhKAFXbC3AWWDnwTQ1szjcCko/sdV4JaP1HqomF4xz4D9lzqL+jmODQOG2/kS3mmx+qJzIaYd+/tyzeeBrc1TYiY3ExOW3Lw/WEfONLNs62PtLA+EiEvf92avHGFwhblo7V76+j/5Sf5v+RLTyZK+wMnB4Tjc+Meht1by/l/MFBzjyT/nO3ZemouL6Etj/2isg4OWtdlF9TwJnnu+jdv3SkKi2wZelEhKg3Esq35ZJR7mT/1yfe2YVOUk0jKqVcG0gSlObpPkFUwsa8YzPSNH9kZbhs/s9O4pL7d8/42flULQoKpbf/dtG+0wlK+nzVHmm6AstYYiSTZSPnSiZ/lw5R6bItQWLjCfZ+d+YcF/cvHoxdMKk23zixIiL+JLH1kQbG/RH2flW21qz5YCV9h4fp/FP6gZA3EqxexIShpUbuJg+ll+XS/GQHvub0H76nxkrBphzOPNMu+o4V2/LJXeXh4PfPyIgSVvCW2Rg8LnNka28tIrPaxc5/OaZpbEux4WM1GB0Gdv6jLDChFWs+UInJZWT3l2SJL2uhFZ0BxtplRln7oSoMVj17/ik9Im0SZdfmYrDrafmFgMELrH5/BYpOef3vz6wT/18ajtmSY/X7K/CdGaPtOdk+S+vasBhUglJq6LyeRfsf/8LUWpw7FuKt/dBngL4rFx+f3y99FoAPfLyPH/1PEKvVulxq93WIzMxMBgcHueFGE//8VS9AWkSlusv1uEts7P+vDkLnpwKb6RCVJOSkC8XaD1Zh8ZrEa03Jldl4yu0c+l7ba3Njf2skt15LwznRjFXvVclG0udQcX0e0bEYHb+XnUTe8PEaIoEYB4UxNmephUgYQkJi68ZP1hL2jfPqd5amFObWRxoID0fY97XXPuaFBbZ8rJ7+E8OcekLm03iqrfjOBkXj05JjYfU7yzi/f4i259Nfgy0eKHtzMd2v9DF8Ov0Luist1Gwvoe3FHvr2L416olZYPBDy/a3v4rVBwRYv2Ss9vPqfskMF6z5cjdlj1LYPWUgVf4GYm85snvdvSbQ9uHbGz2/Hjwl4av3i+aQkQQmgpkQl0C3HvF6fSMa8jrQXTP4uHaLSplstREMx9n5rZuI1HaKShJw0iekqy4KxtPWzDYSGxtn/DVn+qOmeUgZPj9D10us8MKQRZpdOTBhaanhq7FS+pYCWZ84x3JL+vs2ab6ZoSxYdv+0WfceCi7wUX5TN8f9pw98uIEqYwVVgwX9G5neVXptD/movB77VvCTPYtW7y7HnWcUH0LSi8c4S7HlW9nxFFoMyZ5kxWuRknBX3lmLOMLP332Rk/YItXiwZJlp/LSN7N9xegsGm59D3Xucl5DWquL9R0HhnCf5zQc4Kq1BpXRsWg7IAMUixWuf9WxJnPtk0+W9TLMzNjNODwisbF59fftj4QwCefXqMBz44jNPpxO9PLxeeNpXcZFKDei/vm1rsX1n7+IJ9Is9lsX/EwMmxuWVrhmpMDNXMHyhc1xhi4zs9GG2p/67YFjbqQgQlAEU301k+8sMWDiXVUeKxtAhKAN5qJ9bMxZ3r2Vj5nnK2PFQv7mfNUokuS4YAS0pQWvP+StZ+qFLcz+gwYM6YfzzNh+OPnRUTlEDdayl6uVxs444yVt5bLu6HoqkSFdW3FJK70S3vqBH1dxSTUS8cnxNzi1R9N39zBnU3ltF0S5rHaCZgMOtRdIpY7jfQH+fIf7WJCEoA9nwreqMOS9bixJPpKLwkk42frMVWIOt3IVhKgpI1CxwV8rlM69yZ3eDBkpwjFnv2ibj6H3D4hy0c/Z+Zm96FCEoAidCE56WBoLT14gjbSuZfvy65f/ccghLASNNZRit6ODxWtOC9TScoLeONiad/8K0F/245cIaO3cOcSqHeo3M50Lkc8/bd8mAVGz9ZM/+Hz/fuaEywH/ufM+z9tjwxYPWayVuTJo1/GjY/VE/DXbI1A8BVYcXqFXfTjKUkKLkqrGz4RA3Za12ifvYsKwazHmvm4puc6fA1Bzn2qIygBKAzKyg6BZ1ZtnavuKOc+lvKcVXI7lOn01YSwFtvo/aWhefhvyZy13uovD5/8YazodNWbmrV3WWsulvux+qNujl7r3TQ9lyPmKAEYHGbsHjk+4I1f1dJ0zvKxP00I8iSEpS0zmWbP61t7rRlW8iqk80tAEd+fIajjy4NQclTZWXLp6uoeYsz5d9BJSdNJygB9OjgVTvs8sLukxXz9FSRJCgBHDmqklZstiXczy8jbWRkqL5F6+mpWNDX/vjYgn1i585z+nf9tP2xbwZBCUAxGFEM86tm1d1SyNZHGnBXLs1+79iPW8TS/gBZ9W4cBfIxW3dbMZs+VSfuZ/GoRJclQ4glJSg13FXCqvcuPG+kgtVrwuqVxx5bf3VeTFACNd6lN8qDUCvuqmDVPWXy6ykKaPAVyt+cS/bqpYt5VW8vwFMt8ysBUBSxf+kstdB4ewUNN5cs3ngadCZQ9DoUoWhfyAcnfnpWRFACsGRYMdoM2IUxr8yVTtZ/tHpJ3/elJChpncu0zp15a73Yc+TX2/edUxx9TKNaqgaC0oaPV7PpE/PPgW0Prp1DUAJ4CRMHMBLYm7XgLU0nKC3jjYmvvPCjBf+eOHeelhd6af713PimYjKhmObfB256oJr1H6uW35QGghLAoR+c5uij8iS0q8RO7ip5zGvDx2s0xSOs+WbM8m2bZiwlQcmcbWbth6rIXiXzFSweE2anEXu2bF4Ndoc59Ytz4u+oKMrE2j03j74Qqt9SwIq7K8monz/WO9/1UBQwyZwFV6mZirfmifpcCDLqHZS8KVvcT9Fpy6WuuLuUlffKc9M6ow6dhlxx165BMUEJwJZrwZopj3k13V1Cw+0yv/KCEGZJCUqOIm1zmda5013uIKtBfsED3zvNUWFJ9MUwH0HJ7IItn66helvmvH3PfLJpBkEJ1MrPr2BkH0b8+xb2vZIEJYDdf1H5Q3a7Pc07F5R7c7lcBAIB2jpn1rZ8Ze3jKRWVIs+pN96PjX5p3W1gpG0Ua/XCi4Bis85RVKp+qwdvhZVXvzNCYJED9opOmVRUCvQD/XI2jvREcBIGs04TyWXlO+vQm3XiEw7r7q/C5DSy63OycmPr7q/CaDfysrAc2uaH6tHp5eUZLF7T9HLVaUP6vZJY+e5y4tEER37QJrve57Vdb6h1lOCgfGbW+v2y69xklDno2fPan2ayZenwVrmweEwMHU//tF2gK6SJRe1rGcLf4ObcHlnAre/gCH0H5dfLXu2k7PJ8jj/VKSIqnXmmR6TYlIS71I7BoseaqScgyM81vaMMV5GNQz+WEaoa7y7BVWIXj7XV76vAlm0RP8MV99VisOrFc5nBrNc0d07O1cKkbLAfgtPWhsUISkmse2cOOr3CK9+Z+ewXIigBjI2BpgogFQHiE6yow2NFrLBPUyULBLjzolcxHs5nuqIhQE5Ojkh+cRmvDzz9g2+lVFSyHFBPUHTv05b1Dg6FCQ8vUsNcUeYEZjY9WEcsEGPvv8uSyhIFnunQqjaj0ykYzPJdatOd5QQHwxz4huwk+dbPNjDcMcbR/06/ZK7VC6vfX0//ST+nfp6+bGzWSic1bytm4KSfk4+nr0pozTZjtBlwldjpE6j9tT7TTeszMrleUEk8FVcX0vxMp6jkVMsvujSRVbp29xFfm6mW+RPguLDERRKlV+Zjy7RwkqUpM1d6ZS4Gs57Tv5I9C+lYTqJ7/wAWtzwQ8sq/aiv90nhPKYkEHHtUVnb6ZaFCVBLWDDMmpzxguvUzDUQjMfZ8WbYv3PxgHUHfuPjE+9bPNBAYCHHwP2T9mu4sJzIW5ZV/kT0PnUHb3Kl1rtZSrs9VYaXp9nK6DwxyZlaQbyEFpXAwTmQsxvDpYQTnt8BqYf+0HPXukxVsqp14HsEg333bT3n3L3fw/bo/zuhmcawF9lBRIScoLOO1R1FREadPn6avZ+Y88LU/pi79FjunjrXQ+TBd5+V7/KHWMRz5VsJjsn6lb8qhYEMWR37cKis95IOQT87G0XrC02DWo9NAcmm6txqTS67qsfJdZdhzrOwSxq5WvLMMW6aZ3cLY3oZP1GAwy8szOPKt6A1yu2gt+1W3oxhFQVzKSWuss++oj9CwPAi8+8vavl/+hkwiY1H6Di6Ngk/OygxsuRZ8pwRrcAjxOAEY6QkxeMpP916ZemygM8Suz8mv5yy1UP3WIlp/ew7fqfTX4p69Q/TsHVq84Sy4im2YnEYsmWbRXFZ9YwHZTR5O/LyDwWPpl22rvCGf7AY3B//jhIisVH97MZ4Kp9imdTsqsWWbNcW8dBrmCM2n8UOIiWmgqvMZrHr2/POsuWKRmNtIZxCzRx706sFCMroW2JuFbf209yIU4rl3/wfDe0zAzJhdfn4+8fjrW7FlGXPxlRdSl35LTPhe08u8STDWHWQ8sEjMKwXW3V9FfDzOgW/J9tFaSzJpVZvRG3UYrTKSC8Cad1US7A+LK5Rs/nQ9w21jHP+prETWpk/VMnDcT4sgjmHNN7PmXZX0HRvm1C/Sj5WZHQoWjwlXsY2+V9P3Fc7vGeL8HvnaZs03U7utkNbfdYnUjc79ZYBzf5GX7Ow5MICiVwicS389BGh7toe2Z+X5quJLcvFUODn3l94lIZuVX5mHJcNExwuy/N+RR7WVbet6uV/NTwvx6ne1KRpV31iIzqBw8n9lMUSpYlMS9nwrCQ1icpsfrCMaibNXGEta/7EawoNhDv9QFtPb9KlaAv1hDn+/TdRv5X2VqlKqMD+hN+oxWjTEvDTO1cFu+dpgdulY83e1dB8YoP25mSTdhRSUAEJD4wyfWVjUZw70ZqZb0b8vC9e6ab5XOMwT7/su/r8YmZLMgv7zTcArlJSkT4ZLOzO5efNmnnzySfoH5k4+s4lKSYISQBYBtrqjnA7qOTo+lz2VVFOaXv7NdqSLTqBz9+Ib29lEpXgkAgkr2NKrPZIkKpVdm03+2gyOPd7O8KnXXjpo/9c1JgcODuLKl5/aiY8nksIgIiiKIla4AQj0hzBa5E6RVvKPVjjyrEsq+Xr8x0tb17TjL72MdC6NFFagP87Zl3rpPy6c8DQi2I94oboQeOvcGJ0GvOV2sZqSFhz7kbax4j8XwJ5tYfS87B4Vg06TqkJ0PD6nfGY6OLe7H2/1/KfW58NkuTYtkH6/RJyNn1BVZfb8S0vaBCW1a4LELDLVYgQlgFcPqMEaN6EZZd9SqSdNh+OZauK2cQJXqE7fdKLS3ZsOYhyHeEMXtFXN6Ofz+XA65c9hGX97zCYqJQlKAI03eTE7Dez/QWrlrKSa0vTyb4lohAPfTDPYnoKoFNewlm74WA2JaEJMbtKKnRqC9QD+zgB9h33ifol4glhY5nwFB1XfVJq8GuscIxqM4T8rm/t7dvvo2e0T9bkQeCrcmDxGvNUuTUQEKQaOjDJwRBasuRCceLKLzMr0T4tcKJqf7BCrWV0I2p9fWjU+d7F9Sf10rXNE0Bcm7JcHuxW9XFUBIB5LEA3JN3a+tjF8bfL3Yakk2UElXFZfV0T7n3vp+nP6QVrDhMpaIjZzvCxEUAIInguz99+n1s/pZd9mqydNx8beENVB+E0ODE74h0mi0g+2PYYtFOMn1z9K8NTMzzhzRr3WqlWrFv9Sy1hy3Hnnnfzxj3/E55s778wmKiUJSgCWbB0r7iil+4CPzj/NTWYk1ZRmlH9LJDQn9hOxBCQS6E2y+SNvs5eyy3NofqpTlNjXiiP/3aapX+fuATxl8rU0GooTj8nXDJ1e0XQIZuRcELNbnmjXSv7Rioxy2cn6C8WpJ+Wk8gvB6d90ExpaOlnCMy90M3hmieTmQ3Jy2YUgo9KJJcuEu8wpIilphdYDfSPdITxlUQJdsuegN+hQ9DqxmlIsHCcRk/td517uJ7tJrvKlde7UirUfqEIxKuLShynn2zRibiemHaiZXvYtlXrSdFyHnwAKv0eNX00nKv3hnm/gDoTxbghw5vBMhY+hoaFlBcs3KGYTlRLTfK/q67OxZ5k4+F+pySpJNaXp5d8SsRiHBQfIZiAxd5+RDta8X1VkkZJ/tELrYZ3+48MMtch9w3g0TnRcznhQdDoUIZE9OBgmPBwR57n8Z7QdjtcKd6EVW56FjBqXuASbFvjbw/jb0ydtXShanu0ho8y/ZGpYzb88iy136WJeXbuWtsSit9qBotMg+aQRu4UH65IYOx9kPCh/13U6BUUD8ToWSRALysdY3xEfI11yH/blLy0dJ8FRZKbxjjLO/rlPNt7MRkgk5uRhFyMohf1w4D/bptpPK/s2Wz1pOqpjIRqJ8AdM+PSqvzadqPTsfd8iazjI+FaFU/umFP5bz6jXKi9PX4VfSaQZ+e3o6KC0VE2wxrqrUrbZsP/WGQQlUElKl3ii9EbgpbH5pa+SJCXbkakNbdXVNgZaAwylkTNLEpUWK/M2H8rfkk3e6gxOP3dOpDpTcV0eeWu8nHyynYHDwiNwy/irYdOn69DpFc2KQ1JsfaSBRDwhvt6a91cS8o9z/DFZoGHrIw3EInF2azw9J8XWRxoYH4mw999e+8Rx9monNTeU4O8cE5GObCU2Gt5eSPsfztN3MP33vvqWQrLr3HTtHdBU6k+KpvvKcBXbOPi9VgJdS6gjv4wZ2PSpOhKJBHv+Wcb43vRgHSQSvPJ1bcFBxaIu4ukQlAAaGiP090FvrxrwThKVFiMpuZ6qI26IMfrWme/sCnsn76jdiQIkgMS09TsQCOCsVNfcpUwCLyN9JImDI+fmT5Red98HZhCUANa+MwejScfu/1hYMjZJUkomzbJWOvFUOmh5Is3TTBc4bjY9WEcilph7+nIRbPxkLYlYQqwGsoy/Hrz1NupuLmPghF984kcLKrfnk7sig85d/XT8Nn2iTPZaFyUX5XDsx60EB9Pf4K56dwWOAiv7v32a4PnXfu3e8LEajA6DZuUZKTY9WIfeJFdmrd9RjN6q58h/tYn6bf1MA6CdBCTF1s80EAlFeeUry3PE3wq56z1UXltAx5976fxT+goQBZdkUnZZLm1/7BGRlFJhMYISQNYKG55yBy1PTc0rSaLSQiSla7tC5Efgf3IgOIvE3vaOT0/6XWOz1m9XUQeJhOqDWa1LF2xdRnoIhUJYrVYUBU62py5jcP9ld8wgKAFggS0fqWLozBgnHp/fh5okKU3znyquz8N3enRJSEN5m72UX5XHmd+d5/zL6QdECy7OpPTSXFp+fW7J1GqWMRfrP1qN0WoQK0VpRbLEuvR6jfeUEh2LclKgCAqqAmk0HFsyEtfWRxrUk9ZCYoYWWHIsrHt/Jf72MQ7/sC39fh4d9beX0/FSLwOH0o95FV2WRcmlOXS/MsAZDSoJUlTfWEB2o4dj/3NmSchNy0iN9R+pRtEr4j3yho/VoOgV8Z58DtI8FFh5Qx5DLVPrXpKotBhJ6Vb8hICnmJlbsq3vZ/91n5/0vVo6Zq7fNSXnURRlWU3pdQqj0Ug0GmVfcybmaaS16fjEm+6aQVACWHVvIWaPgT1fXZh0lCQpJWJqct1dZSWz2kWrNB+gMfa17v5qUGDfV2VrzdoPVaEoilgNZBl/PZizzax774Ry0xOvPQmoYIuXsqvz6Hy5T6Qa5K6yUXZ5Lid+2UW4L311lpqbCslu9HDksTMMt7z25OtV7y7HnmddMsLYuo9WY3YYxder2JaHxWXi2E/k6mCKXieuRqQVmz5VSzQcF88ty/jrwVVuoWFHOWf/3CtSQcuod1C7vVjcLxUWIygBuCsseModtP9uKi6XJCotRFLaGAtQQYxfY8Kvn7k+u9b188pbvzDpex1rL5j829rqLsbH4ejRozQ0NKT1PdJWUkpHnqn/rIfZZwT6sfGEb/HPH6oxUTD9dK4NvCUm7F49Q62Lb8YUm5VYT+9kX4sNQgJF3NZfddMqLJUAqooICVUSTIKa24rIqnHRubOPjt+lv/DkrHVRcmkuxx4/KyY8ZNTbGDq+NCd+MlfYyWzIoPl/ZImrDR+vwWgziBeQcX8Eg0mu3KQVo91BYmE5e9SabcacIZcMDA6EGdWQJNv4yVoCfWFxOTstsGbBqvfU03NoUHQaaqxzjJAvTO8R2SnSrGo7JqcRb51bRFIaPOHDXWij/+TSKD4F+kM48q0EhNL6az5YidUrl4bO35yBNctM69PyerZaYCuxQSBEoF+24V/xzjISsQRHhHKPWz/bQCIhJAgqiia1J4DdXzqh1jQXlkSzFeoInIuTCIWJrq9Js1cEbyY4XdA7sZz5KxS2Xffyoj39N0wRGG39Af7xmqdTN8yfUqJ65J21AMtKSq9j6PV6YrEYTz07yg1vTn0KWh+Z++7t/356JA6dy0FscGruLb86D6PNkD5JaZqikrXQSvCcLCi9W+MpL5VxJ++mlSjReE8piViCY0I1RKtXBybTkpBcACq25TPSPSYq2wZqksbfGRART4JDcWLjccb6l6a4+MAxH+4iO7409gTTkd2Qgdljwl5kJziYft/zhwcpMGcSHJY9u4pt+WQ3ubWPbSGa7ivDmmESl1MbOOXHmpE6CLwQ3OUOdBrUJnwdS3uQIxKIEvTJS81s/WwDwSF5acfqmwrpOzyouYSlFK4Kq1iJzF5qpe6GQs78totBwX6wYls+eWszOLe7X6akNbEti4RlClNdfx7QRE6yeiEYZFJIOR2CEkDppTmYnIYZJCWcdo4/nLlgv+cKpohJ1kE/Rz/x+ZQVy22FE+uGAoFD2Xi9mQwPDy8TlF6nsFjU57pgHipVEjYEu760uNqrYjCSiMycm/JWe/GUOBg8JlSLtYDFgkgR5PzLgyJyUhKRQFQ1ivAQbPEVWRRfnMO5l/tpfyH9+cNTbaX86gJO/uocgU7ZOuwstYjKRl0I3JUWshozOP2ULI646n0V2LIs4tJRgf4wFvfSHSwZOqONOOcqthOPyskAwx1jBIfkfuW6+6sJDoTFfrpWbHyglt5DPtqeTz/mFfKHGO0Jcv6wLOZlK7BhzTKTXe8RkZSG20YJ1LsZPLU0pMKxvjAZoRihYdn4bLynFHeJXRz/zVzpxJlnEz2DC4ElxwLj44R8snFdd2sRil4Rq2FpJQgm4qBoEGPQWpbZkmchlNznClTLc1dmkFE+te4pJhNnPjZ/kiyJx6eRkyxBH/u+/I/oEglmO2CVpROxUAV+8E2VsLQc83r9wuFw4PP5+NF/hXjX++fZn6ZQGXn1h+mRRhSTiXhwat9UcXU+1kyzjKQ04Rias80iEgigmQibiCdIaAh6bfrkBFHii7L5o/rGQhQdNAsJxmaXDsxGsV20ovDiTEJDEQaOymJeWx6ux98xxlFB1YqwP8z4WJRA39L4lUNtY2R3B/G1yGJeGVVO7PlWMkqtnBc8h75jw5jdRkK9su9XcJGXgo1ZHP5eM2HZY9CE6hsLcRZaxZU1+g75cGqoRuStdWmqDjTYPKKpzLVWhAcjjI/J1bw3f7qe0GCYg98WlC0GSq/NYajZvyTqYACuUjP+dtm8Ys4yU7e9gPY/9eJrTj8GmbfeQ8WbC+jcLSMI6ox6iCeIjcv8w6Hjo7x8XE5mM7sgHAYmzJJurrLk4mwchVba/9I/1ddkpPUjtQv226O3sWf69YN+9n3xH9EnEijKzPWpvnxCeEgH7owsBgYG0yYogYCklC6GG6K4j6X62AAwv7xmkqCUcNhQRgMQgK6jAXoOpxdgjvX2q954Is6Wj9QQCUTZ+1XZy6YFHc/30qGh9EHfoUHc+TaGhUH7jBqXSsyodYhISivfU44z38aJJ9pEik9rP1SJ1WvhpX8+qj7CNFFxVSFGpwHpVifkG9dUe/vAN7XJZm58oBadUc5yPaSxzqjWE/Jav5/BosfqkZOitECx2dAZFOxZ6ZfEArVM3L6vyUt4dfxORvBLYuDwGAOH5ZuEhrtK8JQ7OPitEyJCTuvT5zURhkK+CGaX/NmVXJ6L3qgTX3PLw/UoekU8RlfdXYqik/dzFtg0qfeM9gSJRwT9JoIlezSqKSQlgqVYeVsx4ZEorz41junsEOPFGWn1O30aghNz7dkrVWf6mac3L0xUmrW8Nv32LApMspmnY/rvdx5Rgzy1tQs7Jcv42yErK4uenh7+4QvD85KUQFXqMh6Ry1ZPJygBnHq6E6NdULZi4h1e/5FqTC7jkqnAaD3l6T8X0FQGRGvJqTV/V0c8mhAHiLY+0kBsPC4muuStzSAz4BSTlGLjcULDMkJH8HxIExHHVWGl6Y5yeo4McfrJ9JN6vuYg+5vlvsKxH2mTc9daBs+WbUZv0kF6VacvGNYME0abfDvX8gttpVi0ngo79qi257D50/VEx6LikpBaky3RcIywL7J4w+mwQk6jB0eOhQPN6fvr9lIrq++tYPjsmIggmLvJQ9W1hQw2+zn+0/STXjmNbsweE64Sp4ikNNw+grfKISb3L3Upyab7ajDaJ9TIFIVENDJZYmshHPtJG95Gz+TPutJCAOo/P7AwUSkYggkFpWsPnUDHIn5XAnhuHIvFgV6/dAdrlvHaQF+UT6xTfsBtNkEJoO235xk87hN/1tZPNjDuj7BXy+lZCyCIL/ftH6Zvv5zsMHBqlOwGD/6zspiXu8w5Qcxw0S4gKdXeVEhWo4fmpztF99t4TymeMgcHvn9aRIoqu6oAR56V0893i+wZHhrHZJev3VrLwa/9QBVGp4HdX5b5bScEa8x0SMlXSRzVWILH5JCX3NMMixpjs2ULid4hePU/5fHpwWOj7Dwmt+dIe4iDGkoLlW/LJW91Jkd+1Coi+3X9ZYAuDSfBg0Nh7Lmy+CFAxVX5GB0GMUlp4wO1GCx6MSlq1TvK0Bt04oMungptJVyGzoxqOhSw1Iora99TQWhwnP3faFEdnTSJSid/2Uk0oPrb+gnyUPm/HlmEqBRCXbxUXNbcoibJmEssVhJTvtePflQMnKeysjLt77WMpUVjYyMvvfQSv/xZiHe9f/7yiEpxAYmz8j3sdIISwKlfncMsyZNMDLAV7yzDWWhbspiX1jzQYMsoOqN8/siscaK+OTKS0poP1pKIxcUlpLY8XE80HOeVr8j6lV6eS3hUTlKKBGIEh4SHmMKw99/kcQWzS8eaD9bSd9jH6afT3y8Eu8O8qiHf2PZsD20aVBOHjo8ydFxOSLdnWzDZDGA2M8l4eA1hzzRjcsp9vY7fy3OGAHs1KvZrLXe8/uM1xAIxcUnIg9/VxnuIjEUJDMifW+GGLDKKHbLrmuGiBxsZPjPCkUfT38e4yi2suLuS/uPDIuX+jDIr9nwrngqHiKQU6AsSOB/C1yybV3zNY5pLbGpB/Y4KbDkW1Y9VFBKxGEoasaXmJ8+SUeuZfF11bjUfWPHVkwsTlWJhmKagtLX1DMZ4PLXvFZ/wveJgsVjJyEgvD5rEX42kVP7L907+ezZR6Qa3H71CWopK09G5W0BQSkLREegPMSAIpCaiKutw6yMNxMJx8eYdG9g8FhFpaOh4gFeOyye9kz/VVlLj3Mu9FG7OIdAtCxD1Hh0md4XcuWl+phN3iV3cT1LuazocFTayap3i8l2x8RiKTv79Kt+Wj96iFytFaUX9nSVExqK0CBe8pXKeAQIdAU3XsxVYqLm+gJYXzjPa+torfWWusFO4KYdDj50REe9i0TiJeIJAQMaOzVxhx5plpfNFgbQbcFzjScDmX3Zgz5PXWx84PYJNA6Gt7+gwRps82aJV3vPQdwQO+7QgibvKJpYvdda4WXFrAaM9IQ7/8Fz6ako29aRr/9kptbX0iEpGujUoyNp2l2IYseJf3QElAfbsqGX7y8ew/EkN/CStMFnyDUhcaeaVF18B4MYbb5RfdBlLgo9+9KM89NBDnG5Lrdz3tjvfN/nv6USlrAYrlZe7GTwT5NRv0k/SqCogaTIrpnmkXfsHyaqZv6TvfFj13grsuRZ2/vMxMaFDi5KIVlVBrSWqBk+NENKg5jLWE2K0W85w6fhjL/5OuWKNVtWfokuzGD0/JlKPiQTU+tkJKQ/Eq6PyhhI6d/YsiVqNp8ZKySV5nHriDEGB6MRSKFdOh1YyTuX1+Rgs+iUp1QdQe0sRYX+Etudkfno8HieaQi1uMZRek0Pv0RGxupumEjNBaP9DD0PtsncvPhIkMBCi77BP1M/fHsJ/LsC5PTK/8syvz3Pm13LS/MCRUQaOyJNe1jyLqkQmfF21liLsOeTDXWqf4fulQ1QKDsK5P/tkNwnc2wsRQjxWauHJyzfypkPH2XZAJfGl8rvC28xwu5tzD3Rg0kiAX8bfHvdffufkv2cTldbfX47BouflL8sItV275MpGAMPtYwy1yhMLWz87UQ5TWAIbC1hcFtFp60BnSE1eC9H+Qq9IeSmJrr0DGOwGRjplgffeQz4MVj3xUdnJ4FO/7sJTbBMRlABOPK5t7bXkWciud3BWGFeIRWPo43KiRMmV2ZhdRs1JFymqtxcQDcXE5cl2fX7pYl6EtMUxLB6ouqGMsy+dZ/j0a38C3V1poXBzDq3PdIjU1hIRSMTiRIRrt7vSgj3HJp7PWn91ntZfyX2TE7/owFkgj3n1HfHh0KCq0P3KABYNsbKXv6htj6WVIKhJSc6ikl5HOgMcFpZz9rcH6J+e0EuTqDRwWK5qv4UopfjZhYl2LDy3aj0J5ZfwC9X/TuV7Dd9sYtfTaszrkksuEV9zGUuDL37xi1xyySV0tqeOeX3i2nsm/z2dqOQsMtN4az4DJ0c59Uz66+LouTCj59L0E6bHvF4ZJCcQByEvo/aWIjLrXBz47mmC3TL/xFFkZlTo02gtS6Y10d776hCRgLzSiK91jMCQfD1s+U0XoX55PEgL2QggZ52H0GBIpB4TDsdJxOJEI0K7mKH2hiK69/YviVqNo8hM8cW5tP62h7BAIf3Uk11L5huCdjJO8eXZGO16Wp9ZmkojpdfmEAvF6fyjzE9PRBJEx+XvUMEWL0NtY+J5RSuhufXZLkbPy989/9kxeo/JyD/hgRD9J4bp3iuz5fm9Ps7v9Yn6APjbw5rGmTnLTHgkLObqrftwNWaXUZxr6No3SGa1a2bMKw2iUtgP51/xyW4SuIVxorFxntCrhPIXG1eRuNsJj6p+XCrfq+8eK2f/+yxGo4xYqImkdOJEgLq6qQ3BdIJSEsMNKvHHfcyAPwbzkXgLUqgQJRzqZzddqcPq0bP3v+dPsM0gKE3g1e+mv+lPEpQAQkNhRoQl1AC2fqKBWCTObuEGpP7OEkK+sKg0llao6jFyNm7ni/1icgXA8KkAw6fkhBNrFmSvyhYr5DS8vRiDVS8mKWlR8AHIafKg6BSxUtSmT9WBIk8IZlQ4SMQSYpLSGwG5a9zYc63kr8vglICkVPm2fHJXZnDyyXaROljx1lzsuVYceTYRKUorQbDqLcXozTrxe5Sz1kUinhCVsgOVAKmlrKNWwt2SjkkbrL67gjO/P7/4/DJtwc5Z66J6WxH+c4G0iZCKyUQ8FGJ8NErvEXUNSkSjaRGVdM5sjjw318FcjKjUtDKCywX/YzCAbmbQ7ZmnNwOkVFQazxhDP2aGrAAP5fwZgJHHshh5JUD2jXPXz8RzBbDSRmKi9NvDDz+86Hdaxt8Gn/70p3nooYeIplBwnU5QSiLSVApA/+l2Sre4GO1NTZCZraA0CSts+nAtg6dHOPXzBd7tWZR5reV5eg/7yDNmYLVOlOlJE6veXYGjwMr+77WKSAjeehvFF+XxqsZNrhQn/kdbgPlVoexuEp1/kvtrAJlNqkrXwBFZsrPkshwio1FeaU7fGwqeD7Hr83I1HkeZA3eJnXg0B19z+iftc9d7qHxzAR0v9dH5Yvq+Zf7aLJyFNlzVHoJLqAazVMhZ4dFE0t/0YB3x8biYHJVZ5yIeSYhJSnuEJzKTKNyURVati33/LvDzrVCwPpOuvQNiYo2Wdy84iLisHKjv0OHvaVN01YLyt+ZhsOo5JZT+X3VvGToNZKOBU36xKiswsXec+44vRlTa+PEKRrtDnNg5932o/7y6rqVSVBrRw+hEzv/Mm78Lb4bEgUKUt86109hvs6Heys7d6sCKRIQszWUsKQwGA9FolN8+F+Tqa6eS2dMJSknoi/IBiHV2M9oVwuxKvU9IpaCURN1txbiKbWKVSK2qMyPnAoz1a4h5PdBANBwTkzkrb8gnGoxpIh1JMdIe0mSXvoPD9B2UK0UFOkPicnSgElY8dV7OHxwUEZwabizCkmUSk5RelRzymYb89ZnoTTpxImr9R6rRGXXiMZ3V6CERi4tJSm8EOCvcuMvsjI9mMnw6/fW04OJMSi/LpeWZc6Ixmr8+m4xKJ/YSJyFf+vGktud7NJVQq9pWjNltFJOUMurUg61DJ2RE75H2kKayjlrHllY1Bq1YcW8ZZ3f24DuVvkNqybOw8t5K/O1jHP5hW/r9LDDWG6L3sHwOPPLfKa6zCFGp+m35ZFQ72ffDuQp05f96BCClotIgenKI0wUcf983J36bT+IDIZQ3zY1ltvzOA9UWQj9Tk9Nf+tKX0vhGy/hb4OKLLwZgPIWrNJ2glIRSXADAyNkuwv4oI92p54LZCkrTsf6j1fhOj9LyqwVUbmbFvAYO+xk4LK9t1XvEh9llJC50/2tuKiS70cORx86IDty6Ss0Ubsnl+BMdSyFyQ6uGQzAAx3+q7WB27z6fpn7uKhuKThGpqwBUvaWA8HBERuwII1aWArB6zWTVu1H0Cv4z6ccSXeUWGnaU07mzT0SQ8da78NY4GW4fpUtAUnqjIH+9F71JJyYprbu/GhJyMk/+2kwSUTlJSStpqOyqPHIHwhz4liymlLfew1CzT1yqTwv5hzBiAjSopJqTGg91aEHBRV4sHpN4rDTdVYLZYRQfYOg76sNVKCfN9+4fpjeFWvBiRKW1H6xgtDtIy+/mzn8VX1XnqlSKSoMohCeoSCfe/a2J3+aSeJcH5fK5c9SxP2TizwT+O0g8LjtsKiIpORwORkdH2f6uHk68VJ52vz+Myk/XAxhsCjrD/M5tKoISQPEVGeQ0uNn3jTZVY2oeJGZl/fZ/XZuUor8zwFivnEmYUeEgEbWLSUpbPlNPZDQqlvZed38VvvYxTv9SIE1ug1V3V9D76hDdL6dfPz1zhZ3q60po/9N5ul9Kv1/19nKcBTbGegMi4knb77txlcxfCmde2BCTVQAO/6SduLzsJ4m4vFwMwMEftkFAQzDxkQaiwZjm0jgSZNTbqL+5jOG2UY4KJPzOPNND3/ERRs/LnkEipqoxhMdkNj34aCuZlXbxM7dlqZkISak3gNbnz+Euk9c/r3xLIYpOoe+gbKHb+EAt4ZGIWE581fsq6D82zDkh0WDDx2voPjAoImHZSmysvreM/ma/iBxVtCkLe66Vwk1ZDJ9Kf4yNdoww1hukc1d6wfFkibfA+QT7vjkz0L0YUUmXm031pQYsLj2Hn57r5C9EVLKYQWdgDkFpMURX9zOyeq79vfcOM3sFVYDELd1wspKsrKzlRNn/XxGEfd/TEIQNgt6oW7hM6Dxlz1a9r4LRriCnFwr0zEL3rkG6NSgIdL7cS8GmbBmzCSjYlIOjwEpmk0NEyKm7rRhvtZOdX5EpPhVdkU1uk1tGlEBVKPJUOMSqPKveW4HRqhf7h7XbS4hHEwwckZGHeg4OMdQiD2hbvep6GhxMfz3t2+8nFjzDYJts7Y6GoqrvJSzzd/yXZ7HnWBlrl42xpvvKcBXbOPCNE6LvpxUbH6jFYNaLT+Ac/I+TYBWWKmHC94rKfdkD39eWINWimAZwfv8QvlbZ2Mxf7aX8ijxcBTYRwbDoimwKN2Zy5KftovFScEkm3iqnqNQbQOX2fJx5Vg7+h8zPW/+RagxWg7j8ZN7qDBSdwimh9P/5g0PYsuRjTFMpQkVh/YerOLd3gO5dc/edCxGV9EYdRo8ZkKne/aIoBZHq7u6Ufpfltn5Ch4r5+y8VA33LJUde56ioqKC5uZkv/qN/BklpMZz4mbz8G4DJoUdvlqvS5q7PoHBDJvu/JfMxtASKAQab/QQ0JDByV2QQj8XFJKVNn6ojMhYVKzGtfFcZI+eCYjJCw10lDJwYoWdv+rErW5GFph2ldL7UJyJnlFxZSHaTh9h4TFSWrvW35/CUa4utalFYeTUVASENxMcTqua/EAe+1wohuQLplocbiAajmtUlJbB4dKz9cB2+1lGOCZSv+/YPM9YbJiAlCMYSqhpDSBZ8PPHLs3iKrSKSC6jfDyDkkz2/07/pJKNSPjZr3lasqYza2g9WEQlExfNZw50l+FpHxWSqNR+opOewT1bSzgJbPtHAwPFhmn+Rvg/lbXDgKrWTP56F75TgwEsohK9tlC6h0mbIp60UYfmbc3EUWFMfAlyAqGTxmDGY9GIFupNYOUmKNfne1L5X6d3DtL9sITc3l0AggMUiJ8Av4/WPAwKRgukwWPRYPAuoPMwT82q4vYSxwRDtz6Xv02gtqXV+bz96o16kYAmQvcKLt8ZJTpNHROgpvTaH/LWZHPhOq0hVJ2edh4J1Xg4KD9rlrPPgrXaKlePqdhRjzTCJiRn1t5RqKkt39i99mtTKzS51PQ37019Pg91hDj96Gr9QQCMeUX2FeFS2dnf8qY++I36xEk/V9fnkrMrg0A9Oi5W+tGDNByoxe0y8/AVZHOPVb58Cs7xMXDwaBw2hvAPfbVVzOkJY880EB+VqPGf/0sdIlyw+6iq3UPnWQvpK7TQLDqFlrnBRfnUezU92iFS+Mle4yG50c+KJs6LvV3RZFhkVDrGft/Jd5Vi9JnYLD9UUbsrCaDWISUrdrwxgz5WTjTSR3xWFle8so/dQarWohYhKRqses8cMyOay3+nn4Vq8M7XvVfHOId5WvRoYEMe8RK/OF7/4RT70oQ/R0qoqRKRSUJoNtfTbOBfZo/SEDLTEppKvqVSUpuPg0zEgNudLL4bsWhcmpwFsQEC3IFFpOnLWuijami0mK0mDy0mcfLKdgdPyhS4RV0tPSWF2m8is1nMaQQAtAPYcCwUbM0UkJZ1eh86g4CiwAen3a/9jDwUbMsV26d3vp3e/nNG+4b01GJ0G8SlfrWXJtJKFAh3arhcNxgj0vfYSkQDh4TixcJyRLnkySYs9W58+T+vTGhj7AUQEuCRWvLsGvVF+Irzv4IhYDQng3Mv9GKzygLXBokc8aaK+5ya7QURSshVYMNoNZNe6RSQls10l7I37ZQSZzhf7GekMMHxugfGSIhgS6E9w8D8XT5Aqs8pv1NyYi96ocPzx9MaZLjcbAHeBEZ1e/hCecC4e2Hvm6c1z1JRsL5YSKO3joc3Pzfi9fmJKTADja/WY9qvrqeJPMBYI4PP5KC4uFt/nMv42CAaDWK3WlApKsxFpKiUv0kNOnZXjv5y5Bs+rojSBnZ+Tq9yAOoeYnUYRSQmgfkcx4ZEorc+k308tPyQP9Jx+qg2dU048GR9ViS5Wr1Wk3JRd78LsMYEVEbkpf70Xo12+uzW7jOhN8nIe5w8MEfLLk0LSZ53Emg/WEQlEeeUrsmTSoAaVwIEjo+wSkq8ACCIeJwAjXQFsWWaCwdeeoATqyWerW15+QiVQyb+fVj9WWnYNACusuKuCQF9IHISUzCdJ+E4O0l9ko2OnjKztyLGgN+nEhxcK12didMjf88wqlyb/MDYeR2eUj8td/3ocb5m8pIpUNSuJ1e+vpOOP3em/74qCtdCKyW0ku8GdkqS0EHb/dPGxWf/5gRlqSk2DIXLC8HsPnLnxR1O3MqDaNwEkLjKhvDSOAugH1ERHZ2cPiqLwwAMPiO5xGUuLRx99lE2bNnH2rPrcUikozUay9Fv123Lxdwbo2Te191tIRQng0PfaNN1nTqMbS5YJS56F0Pn09/ueaisll+Vx6Lsy8qjWEmXHHj+D76x8DYhH48Q0lD5wFNgwu0xikpKn3IHFbRKRlOJRde8tLR/VsXOARDzBiJBM6zsVFJNOQCWxO/KsvPQPR0X9JONqOqTEuQu9Xnh4XE3uLAFCoTiR0ag4KQRoUt3q2jWorSRkCE1jpem+SkxOozjmpXVstv+xF4tLnkA0OQ2a9jyeCge2LLPMphawZpnJbnCLSEoWj4VELM74qMxBHDw2yoHvnxaXnwz5tCnslV2Ti9lp4KRQMTOr3q1pv3rsF4vbsPxfj8xRU7qMEVox8vz7vj/j90qXuk4kgMSbLCgvhFAAY5e6hvt8PnJzc8X3uYylhU6nIx6P09cXJjvbnFJBaTaU4gKcugFyV7o49auZCd+FVJRAeylGd7kDW65FRFICqNiWR3Q8RscL6Sem/e1h/O1ytaHTL3TTc3BQTB6J+KMkonHMdggLuI7ZdS5sORa17JGA3FSwzostR04etGWaMWnYQ5/9cy+xkNyvPPsHbUp66+6vIzwaYd+/yQ4QainzNtoZ1qTcRBgxQQlgtDuIu8xBZGnSjYx2B9VJXgiVICb/fge+qU3EJNynzRdd865KAudD4nJjWsamvytE994Beg/JYiaOAgsmmwFFL/O9CjZ4cRbaxI8hu8GNNVN+4C0WjhGLyAfLK99oxlUgn4+6XtJWtr3p7hI6dw+kr+ymKGAGR76VRDQhVrV65TuL74srvnpyhppSaSxMLjH2oOfEbN+rVfVtE0Biuw3lyYB6OK81zsmYeq0771w8hjLjMxOJeejB83WYSADHuqvSIikBEAhwnx/Go/CMX03CLkZQmg6TDSK9MzeB86koARPkpFm/m0ZUmq2glMTK95TjyLOKy0flb86g+OKcJVGr+VvAXW3TVLptKZGz1kX51QW0/Oas6NkVXpJJVoNbfHKk6R1lOPOt8pIlNrB5LASErOiND9SSiCd45V9e+9NhoCowjY9E2Ct0prSg5KpsCjdn0fxUh4w8ZAObTSdWNlr1vgqsXrOYgV2+LRd7tlWsbLHu/ioiwRiHNMqsLxWsWaAgt+frBgtISq94ZxnAgqXeZhOUADY/UIGiU9j15dQO6nRFpSRBaRKp1qFpmK2mdPZKK7Z4gECaKkqTRKV+8Oysw2od5b47fzKjjbehG90I9J90g80GgQBZtcPgVFhXoufgkSgWi4WgUI1mGUsLm81GMBjkqstNPPnjvLRISgAbNkUwm2H3f3VNchEWIyglYfWqpYjmYCGXUUjESWLrZxuIRxNidY8V7yonFoqJTjG/UaAqDcVTP4PXEVa9uwLFoHDwP2Sb+MZ7Shk+GxCVXwPY/GAd/q4gxx6VBeCteRaCwyHR+Mxd76Himnxaf9dNzxKUe9vwsRqMDjlp/kKul4gnxKpbWmwJsPmhenyto+ISiCveVU7vq0P0CDbh2WtdlF+ZT/NTHfiaX9/rm1alqNc7rF5oureGM7/rpv9Q+kT93E0eqq4tZLDZz/F0TtXO9v0WWYdmqylZ6goZF5g/SVS6vT2ElTgP3PMY1unchKZW8MXhVCGTdUyrz4FHR+BQEc5Cdb0Shl+W8TdAMubV3JGXFkkpiY132YmMxtj7dXXftxhBaTosHjXJnH4HxEoUAHW3FpFZ56b56U6Rio+3wUH5VfkcffSU7D7fINCiNLTUcFdaqLmhhNbfdTMgmFuzV7vJWekRExhq3l5IRrWT3V8SJnMtYHFZxOoPaz9YhaJX2Pe11z4GBWrMKzwcWZLrZa91U3lNPqef7ZaVFtRoy/rbi3EV2cQnyQsuzsRdbOP4T2T+2sp3l5OIJERlxv4WsHgAdGKlqDcC6m4tQm/Ri9/zTZ+qUw9jCtWsgMXXoVl+mt7pxOSC8TTPFyeJSkZC3EIIj3OED9/xq5mN1p2B/hicLFJr14VCUNtJNEvhzotN/OzxMDabjbEx+UHVZSwdysvLaWtrY9NWI9/7SXZaJCWAxqv0ODL1HPhO22TposUISkmYXaQud7SQn25GUwm1zQ/Va1LxqbmpkEQCTgnU2N4oUJWG4uKSU0uN2luLMNkNYkWX6hsLGTsfFBON13+shtHuoFhhyuzSEQ7HRePTXWWj7sZi2l/s0VbKS4hV7y7HnmcVl8bSitXvVXM6B4TxSnOWmfCIXNlowydq8bWOcuoJ2ftat6OYgeN++l5N3z90lVuovq6Ylt+cE5WD/FvAUWReEsWtJYcZ1ryjko4/9zFwNP2JzFVuoemuCgZO+tMraTc75rXIOjRbTcmS72JcMESSRKVtsREyiPPJ+x7DPJsvdnEbdEfhWDGYzRAOQ8NZwnk6bK0TB/eEMS8NImQq0iYoAdhsvBIJcNQIbuHis+lWE/FYgld+bkMZTdOiqZopiysqHfrxGU2kh4wqJwarnvzNGSK1oepbCsmudbPzX44tmMxOhfyLMkRl1C4ES01Q2vhALYMtI7Q8mb7cvyXLgt6sw13qFBFdzv15QFzeClSZNEWDUsrmj9SjMyjiJJRiUFDi8uuVXJND2BemZ4+8HIsYNqi6poCuPYMiEpbBqkfRKeiNslPh695dhcVjFp8INJh1mlRupGUZkzC7TBjt8mTExk/WMtDsl5VnvAAE+0GTnqUGZK6wExyIicl6Gz5eg86gY/eXZYFSR55lMtmQCqkISgAv/3MrjrLFT8bOISiBaE4/e6WVmniAdUQ5H/fzoi59qfSHGv5Ms6kdi2nuBQeP5c/8hc1G/1mVBNXWFAR8PPzww+nf6DL+JvjABz7Av/zLv/DHv8TTJigBHDkMej1EKksxHkk/WNl4TynuEhtHftyG/4wge6sxz37ksTOakvTOfCtxDWWnNn6qlshYlAPfkG1UrYVWzHaWhPSwFGXCpqPy+ny8VU5xmQxrlhlFfohZ0ylfAJ1Bh8ku8xWsXh1r31vJaE9QREjXGXUoOgWjWbZVshZayV/tofX33ZrfCQly13sw2gx0/klW2kFn0pEQlsADWPOeCqKhGHuESS+dXsFgk6v/HP6enODtLnNgsOoxu8xIHkLV2wvwFNvFxK0LwVISlHI3ecSEO2uehTXvqqD7wCBnfp2+emnmqmyMDgPuUoeIpNSz24e/PaQS4RZDKr9OYE5daSGrrreg0ylpqSlNxyP3/IgDJ6pnEpQAjlTM/Nlqhc4qQOWuJ0+JL+ONAwlBCeD0zjEG5FVz2PKZBuKRuGyPo5FPc+KpTix/6BeTHtzldsweI96mTJGaSOmbcihYn8mB752RlyxZ6xYRqS4ES01QWvfhaobaRmj9Vfpzq8lpxugw4Cq2iUhKfQeHZcSYCRhsenQGuaO34e9qMNrlxGu9SacpxlawxUskGNP0HcWwQNmluZw/NCxSfjKa9Sh6ndieK+4ow1VkZ9/XjorIgUabHp0wvgbQ9ZcBupDHR21Z5nQLGMzAuvurGWz2i5XPtEK14dKsw+5KC+ExuULYqvdVYHIYxIqz7jIHOqP8fd395RM4SzWWQhN8Nb3Tib3QSNPNufjagpz8Zfrj7ND7vs/ps5no9SlUUPaVz/zZYoH2KgzAn1b5gV7uvffe9G90GX8TfP3rX+e6667jwF4lbYISQMsrMfSGGOPuAvCnn0OqvC6P3NUZHP/ZWYZOCBS6NebZjzzaqilJ761ykdAwua77cDWxcExcgs2cZcbsVDSp+UghKYP210DRZVnkNHnEZYSdhTYMGpT7pESVJAwmHUYNcZP1H63H3zm24OHs2VB0CopBh94iu545y0xOk4uzu/o0vxMSZNQ7MDuNnN8jy4PrzXqQm5J176tkPBBlrzA+qjfpMGl4dlJCGoCz0I7ZbcTqNTMsSEAVX55NVr1LrFR+IVhKglLmChcDh4XkEzNs/mgdXfsHRGp3mVUurFlmPOV2EUnJfybEvm+dVolwiyFVzEtgTp3bReMtORgtOvb8p6wa0efv+xHHW0vnEpQA/lI282ezGU5XYQb0RWeIxeSqdeJZVqdTu5h/8svJ35WOBcgPTLwQgQA1IwFsEz9nTPx81G0Dmw1PqZ/aQ1MqStkVqlISgM2h/pyEMw9CYzF859WSQFkrbVj0PmK9/ViyIGeNfbKtq9JGRu2UAsXmT1ay+ZMTte9sE20VHYlYDEeFjYz6qbbZq53YCiwQgEAgTs5alxpJBGwlNjJX2Ge2LbFNfe5aF8d+0cHOfzzGcFeY7NXOybaZK+xz2k5+boEFs0OduDJK1Ws4KqbuaXbbnLVTSet1H62i4qoCbFm6ybbWrIm2WboZbTPqbbir1Q9a8/5Ktj7SMNnWmsWMtu7qmXbJWevClqVj3f1VbH6ofkbb2TbMWetSbTjtu279bAObH6rHUZHChrPaTre3warHPWG3VPae3jZp747nezn5ZDvnD/nntff0Z5NRb8NRodpm3f1VlF6bPdV2ARsmv+uJx0+z8x+PzWnrrp7bNvmcrFkw0jWK/2xgQXunejZHH++g+VcdM9vOtuG0Z5O0d9GmLCquLljQ3tOfzYwxqyxsw9ljtvq6QnJXZlB2Zc6cMZu09/T7T47D8y/30vJM52S5vlT2TjW+u/YNEBwKLWjvVON739da2Pl/j81om8qGs+eIVR+ooHZH0aI2nD1mW37dyctfPT7ZNq05wqZKx3sqZj6bxeaIoiuy2PpIAw33Fs1r71Tje8W7S9nymfpJm6U7R6z/RDVbP9uQsu1Cc0TN9SWsflfFjLbpzBGKTkHRK3Pbltrn2nDS3g52ff4EO//1OJlNc+2teFSCki1PIXvF1P1m1NhwlFkZbVMTVzmr7dPmCPVnxWpBl5uNuxicBerfyrbo2HinjfzVE21dkF01+bE4C9T/TGeHSOgimC5P4IwH8KHm1nwAcXWOyI8HKIpPOZuV8QDOiZ9ffGolb+7qIxCAmqoOIlETx05MBWgOHKyjo0N9kP39Ng4crCO5TJ9uLcDtduPxeHjkkUdYxusbX/nKVwCVhW61TpRIVCJk50QA9WerLYI3c6p8YlZWBBIwOmIEIniuLCAWVDd01kIrmU1T75C3zoa1cCLTaoXRvgAh3ziRcbDmmdW2iQQkEnjrbdhLp7KyWSudqnIFUPqWbLY+0kDRpeq489RY57S1eicu49WpfVGT9J4aK66KxduCqjziqrCy8yvHePmLxyfaTsz7Xma0tZda8dTM/FydoqA36MA6t6132pyV2eTAmmeZtMuad5ZTe2PppA3ntJ1mw+l22fqZBtbeP1WL2Vtvm7etNc8y+VlbHq6n4Z7iee1tzbPMuH9PjZWGe4rZ+kgDWSudadkwiYxqx2TZqdk2dFXMtWHS3q9++zinnp46+ZHK3tNtmPzc2luLWPm+sgXtPeO7Tth75+eOcfA/Whe0d9KGSVhzLYz2Bzm/bzAtGybt3b1rkOanzjJwpD+lDecbs5XX5JK/zkvJpVPk1dn2XmjMLmTvVOO74pp8Si7NWdDe022YRMsznRz+Ufu89p5uw+ljdrhjjOFzo/Pae745Yuf/Pcbp35yf197Tbah+Vx2lb81hzQcrsRZaRXNE78Ehjvz4zKT6UrpzhKfYjsllnNeG880Rmz9dz5aH61OO2RltZ43ZTQ/Wsfr9lQvaO9X43vrZBpruK1vQ3sm2yfv31tuouraQle8vn9F2sTnCUWACBUxuvWjMDrw6wM5/PEbXS92Lzsmz7R08ryp1LTgn25QZ33XzQ3Vs/GTttLb2lDZMRCNYc3RkXVoIwFBXhMBIdNIOAJllTNnQO/HzBDb/YIBn636J1Qpr6k6x50g5XQNq43Pnnew5MmXfw80FHD+dB6iCSje+p4B4PE5T08zyJct4fcJuV/2k0/EXJn/nzAd7zlSbjFIwTgxJi1P9OUlQcq3Nx1EwFWrzNjiweNSfLR7158nPLbUw1hNgsNk/py2WmW1tRRbclVPJ5I0P1LLpwbqZbZP3lGfBUz1tra+zY8mzQAhC/tCcthl1U76hp9qqtp32uWd+18POfzzGYPPYnLa2oql7mvG5ORZMHgPoFOx5RtyVljltVWUTsHh0M77ryveWUXNd0eR3mNl2rg2Tdmm4s4Stn2mY196zbehtcGDJsbDy3eVs/GTtnLZzbJgz0y6bP13Hpk/VzW/vaW2n29vsMeIpccxr7+k2TNq77+AwRx9rpWfaSesZbWfZ0F1pwVlqwZJnYdX7Kih+U9a89naWWmYQFbwNDlqf7mTX544taO9JG06zt+/sKEMtIwvae8Z3ncDR/+2g+ZdTMa9U9k41vsuuzKPyzflp2TBp74XG7GwbTm9btDWTws1ZVFyVM6+9Z9pF/ffgcR8nn+iYLCeYyt6pxuz5/UOM9gQwZ6ZuO98cceh7bez6/LG0bZi0d8N9JVTfWJCy7UJzRPNTnez+2gmxvc1uI56a+e2dao7wNjjY+kgDdXcUzWvvVGO29rZCNn9afVcXmpNnj9k1H65ky8MN89p7vjmi9u2lrH1PxeJz8vTPtYDeoEOnUxadk2eP791fPsGurxxLacPF5ogkSXOhOXn6mC3Y4mXrZxsouipzXnu7Ky2TijRZ67KxeCAWiRAcjDA6rTyjNU+Hq2QqA5ZRY8Ey4ZeVf+sIj132NKEQVBYPEIvpOdJSMNn21eYiOs+rN+zzWThwogSfT/2sti4PDocDp9PJN7/5TZbx+sa2bdsAiEajmJNhZT2485kkGZhd4Mqb6uOa8MkCg2obz8YC4nE1fmvOMuOumnrfXGUWrPlT4yzQH2bsfJDQcARzlhlPzVTMy1VqntHWU2OfvKecDS62PFxP0WVqzMtVasZRlLqt2aVTPxc1Se8oStVWN/ndkm0BrPlmXKVmXv634+z+8km1bdZEX3OKtuVT77y7yqYedDcoU22TXbPntjVnT33uuvdVUndT6WRbd9XUXsxVbpnRdvrnbn6wjlUfqJjRdrYNJ+9hwi5mF2z6VC21txbOa+/pNgRVkaXy+jy2fraBnHWeBW3oKFJtmERmnRNLhgnM89t7xj1M2HvvN5s58cTZmW1n23D2szFD2Ztzqb+reEF7z7BLlmrvl790gsPfb1vYhskxm7R3qRlfxyhdrwwuasPpY9bXPMaJn3fQf2hgXnunGrPFW7yUXJpDycR7kMre6YzvBW04AXO2mepthVS8KX9xG84as6eePsuRpPL+PPaetMs0e/cdG2bozOiC9k41Zl/+wnFaftU5r72nt03aO39zBiveWTZp63TniMHToxx59PQkcSvdOcJTYceaaU45ZpM2TDVm13+shs2frl/Q3qnmiPUfq2HFO8sWtHfy/qfPEVseqqfh9pIF7Z1sm/yu5iwzdTcWs+I9ZWnZMDlmXXlmUBTMLlPaY9ZTY2e0J6zGOV/oXnROnm3vpFLXgnOyRZlhlw0fq2HDx6unbFiW2oaJWAyT10DGKjUmPdASYLQ/jGWavoK7zDzJxzG71J+TWPV4C7+59n8xm6G+op0jLYX0DU+8G/12jrQUEp5w486czeLMWXUeCIfh/v83j1gsRmNjI1KISUrvfa+qoJQZnmJEXTECb5rghlTE4aIxuHKCiPwmP2wdg5qRAPedD3DFCNRfohrf5oDKDWbqLlM9jupL9VRuME86IA2XmrDY9Zx6Sf25coOZ2huLUIwGarcXU/XmAmzFqpEabsqn7sYpZ1XRKyQU1SFuuqWQqjcXkL1SdVBW7Cil/uayybbV1xfTdIe6CG/+aB3V1xVTtEk18Mo7S6ndXjqj7Yod6ktSdU0B1dcVU3Gl6iWtuL2E6uuLJ9vWbi9l5Z1q35KLc6i+rpjaG4rUe7qzFFeRg53/9xhDxwPUbi9lxQ61be5GN9XXFdN0i/pz444SqrYVTX6u2WkiHo8TCMRxV9uovq6Y6hvVoGj9HRUz2tbfVEbjbep3HQ9FUBSF+h1qsqx+RyXV1xVPEhIabyuj/qYpu1RtK6L+jooJYgBUX1c8SQhZcftMG1ZtK6Jxwi5Nt5RSfV0x48EIgb4QK3bMtWHThF1qbyii+rpiSi7OmbQ3wL6vtUzZe2JSqrgyj+rriqm6pmDiOc5v76JNWVRfV0z9dvXvTXeUzmhbf3MZK3aU4i53YHabKNqUQ9OEnRrvqpppw5vLaLhV/VxbiWrv2psqJu1dfd3U5zbeNmVvbKrN6naobeturcRT6qL1eZW52HDrXBs23KU+m6obyqi+rniSjDF7zFZtK5ocsw1vL6H6umLyL1LLRzXdNmXvzt39KHpl0t7V2wqpvq6Y8ivUmtwr7iiZ8Wxqt5ey4g7V3jqTTh1b29RAftOdpXPs3XSb2jf/ogxy6jyEhsO0/b6XpjtK59gwOb4zV9jVz92ujtmGuyrnt3eWeg91t6p2qdsxYW8bdL80hMVtnrI3qr3r71DtXXuT2jZJSkll78Z7qiZspto7SbJJNUfYsyx4K5zUby9+7eeIAERDMcwO04y2i80R4aEwsXAcT4mLFberf0tnjnDm2yeVhqqvK057jjDZjCQmCgNX31ie9hwRHh1HURRyN7pBUdKeI5IlNefaW7VpxZV5VG8rouoa1XldcVvx1PsZgNrtJaycGN9FmzKp3lZE3VvVd6Hx1jKq3jKlPFS3PZ8VtxaQUWMjZ7WdqmvzabpJfRcadpRReY36TBP+EWovtVF3mbq+6IwJFEUhs1B9dtVXmqnYPOWs1F9ho/4KG+FSNfKyiSiXE6VXZyMC1ANJN/8yolzCVHnSjUS5auLnrfooL++9lB8+9i5+8OPbeeHFt/DHv1w92fblvZfwwh/eAsCfd17Oy3sv5dDRVQA89fxb6O7uRq/XcKRgGX8z6HQ66ptUIlJ9A9TVQ4E6JFm9Bhqm+YB1DbBqDazfGOGiS9S25ZdPzEN3FFO7vWSq7c2lrLwz+V5kUbQ+G/+5AMFzQZruKJnVdmouz13voXZ7CfVvU9+xnLqZJQwbbi1n5Z1lgEpGqN1eQuXb1J/r76igZqJf9loXDbeV03SHOkdZveq7WnPLxFx+a5l6DxMxpqbby2m6vXxSMaN2ewl1t6t9q24sp3Z7yWTSfuWdZTTcOpU0rnlbMdFQjL1fPUXDTaXUbi8hOznv315G3bT5rfbGEpom5ovqtxaiKAr+TlWpceVdpdTdPLNt0lcpvyKP2u0llF8xMUcoCSzuKYe/7uYyVt414atsyKJ2ewm11034hneUUHtjCcFzQRSdgqfUyYrb1etkrXRSu72EhomgUeNtxZM2TNrbXeQgGoyhdxqo3V5C1cS8X3d7+YznOGlDACuYHSYCE/XTa26poHZ7ySQhoXHHXBsm19nKG9RnkyQdpLJ304Rd6t+mjrvc9R68VU4cObY5NmyaGIdVbymgdnsJJRepvuGKO0vm2nuibeklOerYunpi3r+rlNobZ45Zi9NEz14f+Vu8qr2vn7D37SVzbLjiDvU6mU0OareXUHHdhK91Z8Wcto071LbWPIs6Zt9ewennewgHxyneNJXJnmFvJsbsberPNW9X7Z3ckaWyd+Od6ppcvk0ds0lCy4rby1B0Ch1/6p1j79rri6jdXkL+FnWtSTlmJ8Zh5dX51G4voezS3El7z7ZhcswOdwTIqvJQ9RbVF0+O2elt55sjUtl7oTmicF0WVq8ZR66RhlunbJj2HDHd3mnMEUkFpcbb1HtMd44I9IWIRePUbi+haEPW/PaeNUfoDAqKTvUN57N3qjkCBSJjqi9Qd1NZWnNEsCdAIpHA7lX34PZSa1pzRN9+Pzu/coysag+1E3Z6reeIDQ/UqPbeMdeGk3PEm/OpfVsxJVvVSIuiU5VSJ9tuL2HFHep3L704h9q3FVN5VT6KXk/T7aVUb1Xvp+UvMWwuA01XqXbJq4PqrTaq16ukzfrLzFRtmUpw1F1m5/HnruL/fvt2nt+5iude2sqzf7oIgJ/99kqee2nLZNsnX7yMX/z+cgB6B730TMyxV1895ast4/WLr3/96wC4M6f2YnVX2Km/St3nWJxQc6mDqsvUsVNxsYWaSx04C2HDHXYa32Sn6c6pZE39zaXU3loGqPv8+ptLJ5PIjbeXYc+1cWpCRbruphIaJvrWva2Y+ptLJ5O/K+4oo3HH1OcarHqUCcG/6jcXUH9zKXmrp+b9htum3rf6W0on56ENH6qh/uZSSi+ZWGfvKKH+lqn9VcNt5ZPzUMEaL/U3l1I5sb9qur14Ztvpa+dKJ/U3l1I3EfNquKWI7DoPuz53jIFDIzTsqGDlXWpbZ6lF/dwbJvZ8t6l2ScKebSMRTxDqC4JFtWHNxBxc/Xa1bTKZ3nRHOQ23qXaJjEVBB7UTa3TFdSXU31w6mVxfeVcZDdNsWHdTCY23FavKziYd9TeXkr3aPWnv2TZsun1i3/mmPOpvLiUSijJ2PpTa3hN+ZMnWbOpvLp1aZyeeQ/I0f8Nt5ay8W/3ueatVe1dPrLONO2bau3FHxaS9M+rsqr0nYl4Nt1dQd9PUXN6wo+L/Y++/w9u6rnR//INGVIIgQYAdADsJkuqV7j2WXGRbtmTLceKJ067Te7F/33nunZLcO5nMnclMkplJMimTSeIkTrOT2HFix7Z6rxQpUewNlSCJwgL8/jhoFNvZSKxxcvU+j55HJPcGznnPOmvvvfa716LlYRf5pVqMdh2OrSXU3SP1bXxoPt+te2poTfruFN+Nye+tvy/Jtz1js5dz2JwcZ6vvrMLeXMjwYUnk3bZncb4BGrZVSHyvk/hufXgRDpN+v/qWEpp3OqnaWpz8XAfu3VLbnldGUWqUtD2aWc8073RSfYvEd+sjVQvsuzUZK1FqFJJtbZMWVS27qhZwmLJZS70e57WlhANRul8ao2l39aJ8gyTwaN7ppP4+6eeGnU6J7+Q+ROsj1bJ8hOf4OPpC7QIO5fqI5gedtCRjJXJ8hKXKhLXRjOv6kiviI6L+afRZ6yQ5PmIuNsvM5CyF1eb0+lGOj7DWF6BQKYmORGl6wEFjMo64ko/QW7SglGJeTfdUyvYRYU8UhUJB+Qbrknwv5iOO/vMF4rOJhXzL8RFRMR/RsruGtsdqsK7KR1cq8S3LR6ilA4TWBomHJX1EMsbYcGcxDXeXEB2DWGiWqvWFWJKbcq33l9F8b2bnrOHOYprukdbRdbfZ+cUr1/GFbz/EP//XXfzoxZv4yUs3ptv+7HfX8/1f3wTA74+t4hevXMfBs9I88qvfvYPh4WHU6pwLiFzFfwMUCgW1yel0RTM0X6+lXHqkNF+vofm6zLys+YY83DdocN+sYsO9Gpqv1+K6IRnf3VU5b6+g5eFqWlN7Ei351NxWxtRojMhwDPcDFbgfzPLlj2T8kKlSS8tuF663SD6rZFURCpWC+LSUBcj9cA2te6T3WmuW1kV19yRjSPdWSvECrbTJvurxWtoey/iWlt0uGnYmx7htVbTsdqUFCqsedeF+pCadMcP9kJPm+6Vxqv7Oclp2uyhslvx+6yMuWrLWvi27XcSn4xz7l4u4biqhZbeL0jYLIMVK0u9xsm1rMk5fuaUYhUpBaEiKebXudqTjHdL31KTjB/ZWCy27XdTcIr2rCrUCY3Fmo73l4YzftzQYadntoj45zjbvlvZ8YiFQKJUU1Rek+daXSXzXbJOuqWHnZdfwaA22lkJi4zPEItPS5yb9W93dUtuUyKDlkSSHSRjteiaHIxAD1x3Ss0mJDtJ8k+HbvVN65nW3l9Gy24W1zZy8NyctD8/nMDXOOq630bLbRfm6IuwtFgqr8xfynfT75RuKaNntwnGN5P9aH17Id0tyrmJbXUDLbhe1SaGOe2dlet8MpFiVsViH71QIc7WOlt0unLdJfDc95Jzf9pEaWpLPRlss8V27Pcn3fVXzr2FPDa2PXmazDzjo3+dnyhehaktJWlBxOd/uh5w0J+c1jlsraNntQplcr7c94qJlz/zPdT8o8V1zayktu13YVifH2bc6UWtVdL84nOEwabNVWyW+KzZal+SwLbm3VLq6UOLlRmle07Jr/r22PFyTnhv6OycoXVWY3ltawPcyPqJhpwP3rqy2K/iImtvLya8wYCo30LqneiHfK/mIbL5l+IhUpq3UXFyuj5gYCDMTmaFlt4uqrUmbleEjVFpJeO1+qPIyvpf3EQq1gunJmQV8L+cjYhMx4nMJjNZk/EaLLB8R6o2x/3PnsLkL0mufN9pHbHhSEhu17nEs7SPWF9Kyy5mOeal1SjSGzJym9ZHq9D6rbXUBLbuc1N5WCgol7gcqaLpT2qPpe30SU7GW1nuk8dFcqaF5exHO65JzuDusNG3L7Oc03WPju7+8mb/994c4eLqWZ1+6kV/9XhqYf/77dp7Nmod9/4Wb+f4LN6d/PnlGmvddc801iEJ4tvblL3+Zr3zlKxw/fhw79wPQq4FoMi44ooQRFZxNqrFOGqA6BgMqIA7RMAT9MFegZ4IEIU+M0W5pwj/UMYfNFYek/mns0jQKJazepsI/OEdoMIznrHQiZ+DgOGWr44R90og9dmocVVb6vVB/GN8FSSk1uD8Am2CsQ1JSDR/zk2fWpNuO90zi75Y+dzYaR6FX4D8lqU+HjvjQF2UmQYHuSSaGpHQUQ0eD6Cx5jBwNsunjjSg1CgLdmTSRgYsTTI1KJxK8R72Yyw0MHvQnr8lLQTL7R0G9AW9niOmQ9PKFuscZ7yukf6+UYmxgrwdrYyZDiadjnNnwLIRhfDDMeN8Uw0eSbfd7sLkzhjV2OpiuAXjmP/pofbuL0eOSQrb/tTFK1liTZZ5g9FRgXkmkUH8Yz9kAowfHsbYZKVtvY3xQuveR437UWS9GqG8K33mJ3/69HlAouPiLHiJecN1ZMo/v4KVJxnulSc/gQT8anRrvUekihg56MZZkJjbZfI8cDWIo1jF0NCj1PeQlvzyjwgTSKfT9p/xYnCb69yfvdd8YRTWZk7wpvvteGKPvtTFaH3IxeGAszeE8vs+MMzctGWXYK/GtzEvQ/rSbsTNBYqGMiCCbb8LSifOxk/7kcxyj8nobzTsrOfKPFxg9EUCVlxEJpPgGGNg3RsVmO76LydJ1l2V3y7bZwQNelGolwfNS32yb7XthDJNdl+H7QACtUcPoMen03fAh33y+kzZb2W4jPhNnfHSKwQPS52bbLICvK0TEPw1A8HyA8foC+l8fIzwUXcB32mYB38Upxvum0nynRC6GYqnU4ny+44z3TaVtdmDvGPZVRRCWyiVOR2cJXsi8c9l89+8dpWy9jbBXsp8U3+1PuUkkEvNsdnD/GCTsK/qI4WMBTKUGVHkqWT4i2DuBvc2C3i79ffDgfJuV6yMAWT7Cc3wCz/EO6h+sSPMt10ekyspl8y3XR6Q4lOsjLv5ymKpr7IQuLc73Yj4i2O3FUKyc7yMUks+dGE75iAAGq5ahZFmAwcNeytcX0f5UM8e/3o3vQoiIT7LZwLkQha58Bg5J1zBw0EdhdYbv2MQ02vw8Ap1hKetSa5jBg0HpmR8PU1idCaZ5e2LpslPdBxNoddOMdErPauh0jOKaTBpbz6UYc1n1QYIBOF+o5t54CD8wDaSK9lxEiYZMOR4vcMEIsYIZTk9CPKSgGDUmZZy62vNEo5nPLbENU14unfZocZ9mbk5NbfUFNv7iw/D9f2V6eppoNMpV/GnAZDIxOTnJD3/4I6rcj9PfN4NSCQHJXTA4wLyyMz4fjAehrBziM3OEhiOMngygUGsYPODHlOX3fR0hppLlN3wnfZgrDJCIs/a9NQzs81JQlXkvxs4EmU6OeaHuIIHuAgYPShbb9+oY1kZzuuzU6OkAs2HJlwf7IwS6JxlJ+qH+vWNpP+Q5F6J+G0x6pGuI+CU/erkfSomSho/5USgUUuagh6qJTUwzsE/63MG9o8yttzE1JjUeOuxDrc2Ms8HuSXznQ+hLdQwckcagyZ5Qum2eOeOz/J0TjPdNJf/mR6NX0/NLKWXz4L75cxXf+RATw9J3jhwNoi/SMpI85d77yhj5ZZmH4zk7nh47faf9mB1GBg4mx7h9XixJv7/3r85Sd395mm9v1wT27kkG9krX3f/6/LnK6IkAc9Nxen49CnqwVpszfL+aHDuTGDkeyMxVIhLf6bnK60m/nyw5N3zEP29+Hbw0lfb7Sq2U4SvozeI7K71xoGsC/6XkXOWgF4VaSag7yL4vBqncYps3dmbzPXwkQJ5Bg+d08tnsl+Yq7Z+Vxm9fR4iJEek7x06GMNr16blh/+seChwZm/WcHSe/UkfN9jKG9w0TqM1n4IDEd9/eMYqqM3OVbJudU8yRSCRQ6aUxr+/1sXljZ4pvgMhING2zkcEIPb8emcd3ymbTvGTx3f/6CKXrbRiTwZ3F+PZ1SLY0dGAMEuC7OJnmW2NSpd+5bL4HDvhQ5akIng8m+Z8/VwEpmAjSekZbkJfOzDCwzzvPZn0dofRcxd5qZtITZvhIIN02m+/FfMTs9AztT7sJ9U8ylUmmK8tHnE1mezJXBIgny9Ot5CPm5uJStrQsvtNzFZk+Aki/ayv5iOF9foxOPc7r7PhOJ+dwMnzEpd+NERmMUH6dVdhHnH9GymA2djYoy0dE/DB6PGOzU2OX8b2EjzDX6Al1R4R9hMVlZMMH67nwywHis3aC/fJ8hKXGxGxUsomBy2x2UR+RTKvd/6oHo33+uDYxmvQRp8Yx2nUMn0y9G17MlUYc69QUlGrw9k4TnZS+098LlvJpBs9JnA6ciWEpVzNTZgFgdGQGk0mN0QQbmjoJTlpZ1yxljtjcdprzPVkBydpu8tTS57zt/9vG8eN/i0Kh4Itf/CJX8ebH29/+dh5//HFOnT7FjfV3oAhHGe2Mpf1QdAL8fdN4Lkrv6vDZKDOuPCYGkTJZeiOEesLpDVrf+RBjp1J+c5TZWDFhr+RXhw76UOUpWfUOF8FLU/jPh/B1SvY6fFh6R/3JGNPgAe88P+Q7O47/UvJvh/2otCqCHUHpe/Z7571DntNBJoal75wJz6HSqBg9kYrfeMkv081rm/L7/nNBzA4jw0cDrH9/PRqTBu+ZTCafkZP+tB+a6pvAdz7E4AFpXOp/3YO1QRpn8506Ro770n5/YjSK73yIkWQcaGCfB1uzJf25w4d8JBKJdIkr3/kQoydScRUPJavn0n8bOuxLj7NdPxlCpVXhOSf9ceiAh/hMgonk/Qwe8M7zQym+PcfHyXfqqNhiY6JnfFG+vWfGGe9LrjuPBckzaOj59SDRYJzyrUXz/H4232OnJzDYdIyclD63f998vkdPBjJxlY4gPqeRweRp+L7XxiiqzmQoQUG69EugR1pfp+ykf1+Gb4CRIz7mpuNSubeOcZrurUrz3f/aGPa2zLxm+LAvMzeMSnyjlGJeo6cCzITn0uX6Ujab5rBzIsP3QQ9qkwrnzWUEu7oZOjif72ybHT7iQ6lRMtEt8XJ5CeFsvoePjKM15eE5k7T3vZlxdug1H8ZibSaucm4SU6me4SNJvl/zpjO1Z/PtuqmE+ExC4vBIcm74+ny+s2022B9J8x0diUpzlSybTfENEA3G59lsQpEgkUhQUKFj/GJ0ns3C0j7CdXsJM+FZ/J2Z8n5yfMSWTzWhUChz8hEjx/3oLDp0hXnyfMSlIK5EKfpiKZ7T//p8vuX6iMv5XspHjF+McuiLnbhuL1lgsyv5iJ4XpLJy82xWpo9I/Q2FQpaP6P7NKI5r4vhPJ5/r656VfUTnODq7TthHVF1jo/2zbs58r3se3yv5iMmxMCa7IX1/2Xwv5yOGXvVjLjdm2ayHkgU+IovDzgl8l2K07bEz6Yngv5AgmLz3oWPjaPRZPqJrinFPHIU5n5HzEZRqBfmlapTmOBtbzzE+nnk/G129VNqle1vV2MlkWIe7pp9tt+2ib/p5IpHIVZHSnxDq6+vp6urihz/6IU1lj+Lti6IzTeNLVs0aPDuDsTDjN0cuThMZB6tDRWI6jud8iLEzEyhUKgb2+cgvz7xDQ0e8zExI78Vk/wRjp4JMh2doe9xJ32seiuoydjV02Jv2Q5OeGGOngll7El6KmwoY2peJ26fei1gIxk4F0+9F/z4vsck5iEGoN0ZiNpGOYYDU1pte53uYi8WZTB5q6N/rQW1QoS3Wsu5dNUTHp+l/XXo3hw/7QKEgPJgaDz1osvzQ6PEAof4wWrMSb1cQjV5NIJmtc+DVMQxZa6aRY34mkyUpPWcm0Bdp6XvNm74GU2k2hz6iST803hVi7JSR4WPSvXb+bJBCl3Fe25mkHwr2TkkcpnzL616K6iW+93/uHI6bbZm4in8+3/2vebC1ZDLGp/geeMWb5tBzJijd2wEv0+G5dBm5gb3eeXMVz+nxNN/DBz3EZxOERubznX42JwIEeqR1p8qgJJFIEAtJbQde86DLGjtTfEv/D6E15eHrmmLoqJ/SNst8vo/6Cadir+enMNqDjCZLU/X9fgxzlYHNn2hEoVDM4zt0aZyxUyZGjyf9/uue+Xwf8lJUm4/jNht9v/fM47vvdQ/FTQWZtge8ab6ZnpFiXkaJp/59XmxZe5wD+z3z5iopvmPeGN3PD1GyxprhZQHfQfxdko2OHvFCAgzFecm28202m+/ho9LeXSgV10ryncoYlG2zY2dC6Arz8CZLNva/Pt9mAVR50vUHOsYZqzAwlpqLv+bBXJWZqwwd8aZttnxLEeMDk4wcS/L9qidts7C4j4gEorQ/5SbYM4HndGadJMdHpEoDqvWqBXwv5SNmZ+fIyxpns/mW6yMARk/I8xFjR4Joi7U4ritmLBWDkeEjBvZ7iQzHsLaZhX3EhZ8PJ+/dK89HxKS5VnpuGJPnI0yVWiYHYsI+wtpSwLon6+j8aT8KtZLJ3iSHK/iIsnVWZpJ7toOveVb2Ecm4+IXnhzFXZeKGQ0d9RP3JfeJL44ydMjKaLH3dt9dHoctAySodRbUGRk5PMBOW7jvkmcHTOcXYaemdGzgyibVWi6JAih2OdMQwFYPJqqXJMcCo7xLuuksAbFp1lo7uqfQ1bHSfYy4pWrj3wUc5fPrzKBQKvvrVryIKRSL95AQ6JV+Y4s+8D4PDsULrDBq+EVnwO9X4wt9djs0P5TETjXPkn/sW/C0xM7tIDwkV1xagUCoY+H2QxOzMwgbit74k1r6nFo1Jnc70IRdbP9uMQqkQrte+9n/UEp9LcOKr3UL9CuoNqHUKfKemVm6cjZTfll/mEoPDQPUNxZz59sLnthw2fbwRVZ6SfX99Trhf2Bvj9Dd6hPrlAvs6M84bSzn3kwEmu+WTsv4DdWgL8oSfd8tbHeQZNRz7iljN0PUfqCM+nRDu1/60m+mJGQ7/Q5fsPvZ1ZqpvLaf7hUE8xydW7pCE4xYbJasLOfT3nULXuOXTzSjV4u/OqieqQQEn/+2SUL9cYKox0LrLydARH30vjK3cIYlVT1RjKtNz7Mtn0wIhOajeXsLcTELou0AqFxceEhesOG63C3+Xtc1I7VsqufirQXynL/NDy/jkNe+uwWDXce6HPQQ6Vh43UqjfWU5xnZl9n+tI/06h1ixsqFykzusSUOabFvxOYU6WMbpFw/l9M0v6ylQGpWxEr49zG7NMAL9Qmhd2yu5funAsO7TtH1a8ZkASKAHKz/0LfX19vPjii9x8880r9LqKNwOef/75dArs67Z/HgDN1NLzn2yo9p5Z8LtF50RZWPs/atAXaTn2L+eI+OTPlfRF4Li1kvM/GFi58R8BWz7VzOjJAJeeH5Hdp2SDhbptFQQuTnD2P+XPT2zrzLhuKuX09/qJDMr3QQCV1xenhSQi0JfqpNJHAnDcKp0M6vuNfN9srtHTuqcaf+cEHd+XXw/ddUcJJWsKOflvnWnBwhuJVe+oZjYWTwtX5KL9aTez0TkO/h+BOboeNryrnv79HkYPBGV3K9lgwXlTCZ0/7SPYKd9ONn64AY1JLTynWfOeGkDBccF53pr31BDxTafFLnKgL9Wx7l21TA5FOPHv8tcflgY9dXdW0v3CIP5zAguJHNH6uAu9JY9DXxSbV7Z/1s1MeFasn17KANTzskfsXU3FFsRcCdZWE9GJOaZ6xTqufqKGRCLBya+JzX3bn3YTn0mw/3OCa7KPNRL2XYE1mUJB5fVWZmJzy76nikUyR274cB0anZID/7UylymRUjZe/P43ZF3ijU+8Eya72PvaN8jPzycQCMjqdxX//VAqpU2JdZUPY7PUoAjLe8dnexaZW8iIO7U/7WY6NJPO6iYXtnUFaLSq9IbZGwn3ow6MNp2wf938iSZUGiV7/1psjGt9zIVCAae+2SPUL9+pQ61XEegQjHmlYsQC7lxn1+G8zsr55waF+q1/fz15Jg37/laMk/UfqCfij3H2O2IxtlxgqddTc3sFF381wPhF+TfX9rgLc5WRI1+5mBYtyEH9jnL01jxOfq1H6DpXPVFNIp5Inw6Xi/an3cTGZzjyj/LfuYJaHQ33Ouj57Sie4+Mrd0jCtq6Aqq02jn7tgpCdbPxoAxqD+PywaVcVaq2K09/qEeqXC3QWJaueqGfkqJ++33pk92t8oAJrcwGnvt2dLjcmB6kyS6lNatnXadcJ2WMK5VuLhP2rrlRH6+4qLv12BN9J+bHRpl1VWBvNdP5sQMi+XLdLa7ID/7tj5cZ/BNTfV07/74bSIrAFUCyMrekr8ln7eCVh7zSn/nP5dWoqtpaN5w4+J+vatt22C4CL0e9z8eJFfvCDH7Bz505Zfa/ivxcXL16krk6qdnDbxr8EQDkh752NX+xZ8LvE3NzChlloedRBgdPIkX/tJibiG7RQe1sZF38xLL/PH4CNH2lg9FSAvhfl+1ezU0vrY7X4uybo+J78+I65Wkfdtkou/KKfUG9s5Q5ZKN1gYSRZbl0E2mItMa/gd20qRKlRMPS6fN+sNStZ974m/F0hoRhI6aZCKtttnPl+L5FhsevMBY0PVUICoWsEKZYxHZnlsODe2pp31TBy1C/07ArqDNTdWcHFXw8R7JQ/1179RDXGUj17/0psTuN+2IFKrxSe57XscRALzaTFLnLR/rSbiYEwpwRiGfoyLY13V9Dz8qgQJ7mi4YEKTKX6dFZWudj8iUZmpuaE+9XdXUb/fj8xj8A7kDrbL/jamKt1xGcSTA6IdWzaXYVKpeCMQJwfpP3lxGycAyLxYiRtRiwww9n/eoPXZAoF9vUFJGbBc2KZueHlpz2Ate+tRV+o5sCXV94zSYmUsvHcaz+RdYlvuedRYrEQ+zu+hMFgyCnmlZOkvKqqiv7+frz/5ys4/ulvBHomqHbDaA+Ew9Kkda5AitIuJ1Y69fw0U+eGFv2bQqNeUqjkuNZGYi7BwO+Di39wauJ8WdCooN6AwapleL98QkVFICl4O0Oo8xYGTleCrjAPctBYtex2EZ9N4DslP9hc2GygeaeLqbGokCiq5mY7BQ4jZVsKhbicDs2Ql7+IiGAFCG0+ZWHrZ5uZnphJl5iTg7GjIcaOhoS/S+Q7siEq9EohL19D4o3fNwTAVG5ApVWit+oA+Qvxvpc89L0kf7Kdwv6/PZcRzwng5L+Li5MM5TrWvKMGT8c4Xc8Myu432R2WrlMQ0YkZDDadkEAJoGytlOJSVDi05h01zMXiQkGNkk0FVG2xYXEYhTgtbi1ErVOhVC8iClIolgziDx3yUtluExIoAXT9cIguMuPHogIlgHhinlDJeWsRvb+Zv+BZTJyUDedGBZayPBq3wvmXFopAFhMoAeh+r+RH1y8/HC8mTmr3RTiuX6TxZUiJk1LweDyUlZVdFSj9CWHbtm0LfjdjlGxmJbGSvghsa4voeyljz6n3YCmx0rFvdEub54Ji7tp7XBQ4jIS2hhkWDOY6b7fTK+i7RDfOAans1wZr+pSoXGhNeWgMasrWWOgWECmtfncNphI9gd4pIWHB5k82ocpTCm9KVG4pJhFPCImUQt0R4jMJYhPLi9cuR8+vR6XMTYJo2lVFUX0+e79wVkikISqwSGHv34l9DwARhDeKAYwletQ6FYYSg5BIKVfoLNrF1qIr4vhXxA45gJQx6vX/uVD0uBKCnREOd4pzuf79dWiMGuH3PFdhzEx0lkhgWqiP4xo7RQ1mZmfidP1I/vxwzdtqMdi0HPvnDiGBX/1dVSg14gJ9g12b09mcQNcEsQl5gthsiB7aASjZbCE0EBMWgVZdY0OhVCwpUlpMoARw+IsXMLZWLfq3FC4XJ+mNM9hs0Nez8jr1xifemf5/76UXmZubo6WlZZkeV/Fmwy233MJvfvMbjg8+w22WT5IwSAoWOWKl8mus+C9OEU2JF5eIO2Xj6D91EA2KL9zr76wgPhcX3kQ3VOow2rV4jsrfCM9VGDN6PIA2Xzz0aCzTLbbXvSLa3lrDXGyOAx3yfZHOomTd+5uYHAoLiWSq2osobrEwMRpl6DWf7H4RfwxFDpW3RQQ12dj8iSamJ2Y49mX5cctgV4SjXeLxK5FNnWykSh6KwlCsvWIxL73NgMaoxmjX4UH+u+M5Oi70rqVw6AudGfGcAEQOHaShg60fdeM7N07nj+XPaaLBeE7jfmxilrnpuJBACaByazEKlVJYpLTuXTXSoQWBazVU6qi+rQxrs1loc7R0VQF5+Ro0BrG49shRL3n5aiGBEkDPC6PpLFEiqLqpmP7fifFYsqEQe1shGoN68QM/SzjtyOAEB/7vwLL2vJg4qWJtHr7ulefnKXFSCmNjY5SUlFwVKP0Joba2Nv3/WCyGVqslni8ZzEpiJa1ZijUP7s3sPaXWAEuJlc48k7TfqNgiqe72MkrWFhEJxIREMpCb6FH0QDdImZtCPZOMHBX7LqVGha4wj6JmC6Fe+T6l8aFKipsKiIZmhAQa699fj7ZAIyxacd1cComEEP+xUJyZ6CzRkNh6f+RgIJ3FRwTOO+yUrbNy7N+6hURYuR743Pt3Z4XFIADH/1U8LqQv0qIt0GC0666IIMdQpkO12B7SChAVq6QgGmsBiAzHcuKy7XEXhmKtsECmUyD2lI3pydl09h25sLaYKVlbhEKtTGd9koOm+6S47+lvXRQSPTbc6yDPpBb2C+ZKQ06x0bGTAWanlxe1LoZj/yKuBbG2mImNx4QFWK4bS1BrVUuLlJa48WNfvojBWbDo39JdLxMnaY1Q5FQwfHblsfEt9zya/n9v8KdMT0+zYcOGFfsthpxESh0dHRiNRlgmi1E2UhmUbGVQ7oBCKxx9dX6b5cRKSwmUUlBopNu4XKw0eMiP9+wSWZTmfcD8jfGW3S4S8YSQsAag7JpCNEaNkEBARPCQDdEsQyn4ukKEesQGkMC5MLHxaUaOyQ+6AHT/oo/CZjGBEsBxwexQKZhqDBQ35tPzS7HFWSJOOnW7CFrf5pRS5wreXy4ou6aQopp8YbFSrnaSC7p/MUL3L+Rns0ih8qZi8ssNnMtl8pDDgfzWx12MnfALicw0RiWJeCJdd1ourG1G9MV6BgQX/p3fz21Seub7PRis2pUbXobJkUi6RJ1cjJ4ex9pQQN9egXtTKDj/vUFgGb+3hFBp7GiIsWPyxW8AGKB5RxXnftKPYlpGgCgpVKq/x4atuQBtvobOZyV/spJAKRGaoPdQPhCm98z8619KnJTBNPbf5zFw48KIzWLiJADCERpiUBODjc9/CFg8o9LlAqXB//UF5qamiMXe+BMgV/HHhVqtZnZ2lhP7/5XVW96V/v2MUb2oUCmVQWnVR2pR5inmiZRSWFKslINACeDiz/qwrSsWFii59zgorM1nbibBwO8ERKt6aLqnSjgQL5p1BmDg996csiH1/m6YkjXWdHkpufCcHkdvzVu54WW4+OIQkyPi73cugi+QskRNjkwJCXJmZ+ZIxBPoC3REIvI3Jko2WLA2moUyYAHiAqUkmndX4b80IZRJqfu5YbqfuzKnKiH35+Z+1InnbABPDoJ7UZRtLaLAYRR+T+NzCXJI+IvzdjtjZyaExS6HviAeAO77zRizsTkCZ8TWSMOHfZRtsApnILv0u2HyK8QV+vv+Jjc7OSdw8jYF5+12ov5pRgVP0tbeWg4KxIJRiQTHv9WLtXYhJ0uJk7IxdbofpWuhUGmxzEkALa2g04PfP8Ntux4HFs+olC1QAujrk7K/vfjiiyte01W8efDiiy+iUCiIJ+bPsRIG3aJCpVQGJUOlDtdNduytsYVxjWXESrkIlAB6fjuC/5L4onj122ognhAWTtjWFKAr1AhtbOeyeQ5w4PO5ZQUZOeFnQnAMiAbjTA5H0uVM5aL/5SEmRqKM7Beb+wrPZZLQleqwNZuEhQWJeCKnmFfD/RWM94UZPfzGx7ysq/KxNVuE5wv7P3dlsscAjOz3Cz9rkDIpFVWbOJ/LplIOFdqbHqpMlzGUC51ZR2IuzuyM2EZNQa0Oo90gvPGeq7Dm5Hd6MNrFY16BixOEBbN1hL1Rxk4F0iVv5SLXewt2RQh2iR/KaLi/gs7nxbK5lV9rxXFdCYYirZBdjh4OoDGq8J64zAfJUJTOTUygYqEQaTFxUgoVa/SUunVs3yRllV4so9LlAqXjfT8jFAoRjebw8lzFfyuKi4vxer2c7P4uG5sfT/8+nq9bVKiUyqDU8r4atCb1PJFSCkuKlWLkFPO68MIwYb+4QMl5h53KzTbUepVQ1jm0UHNrKd2/GRESoZzO4bB7sHNKWBgAUjms2fAcwV6x/cbho76c1rZdPx8kNi4e8xLNMpSCfb2FqD9K6JJ8nzIXjZOYi6PRiWmHLA1GbK0WugTEwkBOAiWA2rvKmBiOMHYkKLtPrsKtXJHrc6u7u0wqe3rqjY95WVvMFNWbhAX38Zk4cznMz8u3FhHomRLO7pWLsMZ3JkSneiBdgk8uRk8E0OhVwlnZLr04Qn5WWTO5yEUwD9D9nPhedummQmYic8K2Vbe9DKVaKRafSyQ48c1eCmsW8ZUyVFnh3nFUhQuFSotlTgKo3qKloEzNVGCK7dfuABbPqJQtUALo7ZNs67e//e2K17QYchIpGQwZUsJdlzDUV8vq5xlWUFyW4NxR8e/c8lEXM+E5jnx56QXr5VmV+l7yryxQSnfObIx7zowz3iO4GQ5U31wGCfEsJuveV8f0xAynvylWviIXnP9ebuKHXDIAhb1xwq+KBe1TcNxux9sxSbhPfsDN/UAVap1KWKSUS6YbALPDiF4w41bZNYVU31RG3+tjQsKVqq121Pocjtr9CaBiYzEqrbjUdcunm5mLzQmfKjBXGtDmq4VESuNd4ZwEX7VvqUStUwmLlBy32/FfmBQqJQjSdY53iQepcyp9F879NK0wDLDpyUZ6Xxll9JD8QFvzvZUU1eZTd1s5F5+Tvwjs+o2HPJOGzl/LEyilkBEqZbCSQMlgmGb9OpicnGZA5JikQc+JWITIMq/O5QIlAEMozATwgx/8QP53XcWbAl//+td57LHHCPkWLiqWEioBXHplLKfTBKvfXYPRrhPKQhPxx4Uy+KRw6Zd9xG+rYmC/WFa9xrsqsTaaqdleJiQMKdlswXGtPSdRgiiCnRGCneJzr1yFLiKCmmyYa/SYnSYxkRjguMEulacRyJRz4cdDXED8tLzjOjsak/jSZeOHG1CoFMKL1sL6fExl+pw5fTPDUm1EX6gREik5b7dTsbGYzp/34xUoXVG5tRiNUfy55RJAAajYXIytuUAoE5bRqaewRtz+AYZyWOuMHg4Ki3hAer9HEe+XC1oec6LWqTgheCKwYlMxJBC+v65fDpBfZhTqAxAZCDNwmRhhJYHShvfXoDGq2fc5sTHg8GFobIDJ0NLC98sFSrHA6fT/9XrxYNtV/PdCoVCQSCQYDnZQZmlK/34poRJAeCDK6MkAF18QD3hu/aw7meFZvv/Ktczb8CEfEyPi68a6bRUAwiKZtsddzEbnOPdfOWR4EUT3z8W5h9wyLkeD5CRaAUkkEOyZIjwgf9Or5cEqtBYxkRjkHrgvbinAXGUQEikVuU007nAwsG9M6Dod19jRF4uLT/4U4LjWjrZAA4IipY0faSA+mxDOoFXUaMZg0wmJlKJj0ZwEX3XbJJsU9UXl11qZ6J8SzqQUHogKvTMp5OR7otD1bG4ZvnLBhg/V0/v7MSHxqOv2EmytFhLxhNDm6NBhHya7jr7figvnFmSxWkmgpIP2jzUzMRjh7A8FDz/vnVg2U9rlAiWAmFJ61l/60peEvusq/vvx4osvsnbtWoKTC/fHlhIqAVz6zQganfh6s/GhSqwNZo7841licpfFMYQFSgC9L4+Rp1fT97rYerNqq42y9VZIQPfz8uc3hc0mqm8p5ei/XchZwCIXkeFYTuXvJB7FufSdyU10oi/TUlBlEBbY1N1ZTjQwLVQia+AVr3DGP4Cqa23kVxiERUpr3lWD2qDm8D+IrW9L1hRiqTYJiZT+VGBfXUh+hUFISGJfb6HmtjK6nhsU6ld1TTEGu05YpHQmx3011y2llArapNampbBa3P5hhTJjSyBwbpLAuUnhfr4zoZzfcVHU7yhHa9Zw+ltimgzXTSWgVAiLlM7/ZABzpbgwM+aJMnK50H6FjZ4173Cit+nY9zmxNWDHazEcrXOElnHplwuUQlFPOm6i1ea2lsth20pCY2MjAN4vfkWo37mjCmDpCexcgT6dVQkg0S+93LPROBPDK++SpbIqpbD5k41s/HC9vItTKEChoOvHgzmV8up7bYzjOdT81hXmYSoXN9D2p92s/0CdUB9rm5HNn2zCtmbpkwqLwXG7nQ0fksljFjZ+pEG4X2GzgaotNurvLBXq1/vKCCPHcgsQFdSL83/x14Oc/pbY4B+fkVZXSqVYmsLT3+3l/E/ERWxbPt3M1s80C/fLBY27K2l/2o21TWyD4dTXO+n6uXjAIJFIQA4H9jlhqQABAABJREFUTs//pJdzPxTbMDYUK9EXi3/XxV8N4DkjPpBXbi6m5UGHUJ+yawrZ+plm7OsWV8Iuhcbdlax9T+3KDS/Dxg810PYXLnmNk74VoP2pZta+p2bl9ln/d91Qglqnwlgitrlz7r8GGD0ZFBIoEU9AGM58dwilyiRboJTvgs3vLaFyfeZ3K2dQkjA3B14vVL6cWXDHSmeWzqKUxLFCPR0Fi3OymEAp3O8jHo9TVVXFfffdJ+varuLNg7e+9a3p/0ciC+dDM0uIAMaOTDB6aHlBgUKtmV8KMZEgcHGSmfAser3YVLF6WyntT7nRF8nvF/EnyxIIZrw5/4sBBvZ7hAU95kojGoOaks0WoX5r31tL+9NuoT4Abe+oZu2T4n52zXtqqN1RJtSnZLOFrZ9pxtoqz3el0PygE8e1NqE+AKOnAlz4pbgIS1+kFLIRgNM/6Kfjhz3C35UrOn/az+lvion0SzZbaH/aTfU2sTlsrtj6mWY2faJRuN/5Z/s4+4zYc1Mkx+bZqFj5r9P/0UnnT8Xneeaa3AQdw0f8XHpJzCfU31mO8zq7sE1u/HAD694nthYD2PDBesq2ypsjpFCy2cKmjzUK87Lhg/W0PyXut/LL9Bht4jVmTnz7Epd+Ky4Q8BwNCfvyjR9uYNPH5tu/nAxKEyNRZpLC3nhPxjZnyixLZlECYE7D+XPyBUoAkYnjAFx//fUrXtdVvPnwwAMPAHBy4McL/pYq/7YYLv5sZPmMFllro2xMh2aYGBAXDm38cAPrPyAWc+l5YRSfgOA0he4XhjnxLfHM16YyQ05B2fan3Kx7UszP5jt1bPxwA7Z1y6e3vxylW4qEvwtgzXtqWf9+Mf51FiXVN5dSd4fYfKH7xSEG94tveoHEiyg6ftTH6W+KCWTmYrOQyMwb5OLcjwY594x4zGvjRxvY8qmmlRv+EeC6vYT2p9zCtnXmWxfp+FEOG1GJ5D9BnP3eJc7+SGyep7Mo0VnEtwguPN/P8CFxwbbrxhKaH3QK9SlsMrLlU03C/FdvL2HVO1xCfUA6tNPymNg1ghSrX/1OeYe5UyjZUEhevkbYT/a8MErfq6N0/UpQTBWFzh8PEg3K76KzKNn6WTeOm7PWjDLec51OwfTEDIGLE8xNZMYdhTl/2SxKAN7zcXxdiwd+FxMoRaNREokE5eXlvPOdC+dlV/Hmxpo1a9L/jy2iGkqVf7scgY4wY8eX38dTqFTz1wmJBP7zE8TGZ0BwU7V0UyFbPt2MqVKgXyxZ1lRQMNT/sofeV0aFBEoARrsOnSWP8nVia073w46c1o4ND1Sw5okVYv1LfJ/rLSVCfSwNRjZ9rBFrm9j+h/tBBzW3i8XXAAb2erjwvHjMS2sGrVlsXO382TCnv5NDhZk4JHKYMJz5Xg+nvyl2OMxcraP9s27h55YrNn20kQ0fbhDud/o/uzkruP+nVACJBPFZsQ3Hc9/r5lwO8zwhH5KF3pdH6X5RLHZSfYud2reUY3aKfefqJ6pZ8y7xd3v1E9WUbrAI9SmoM7D+A/WYq8XWLG1/4aL9s+J+q6DahCmHbG7Hvn6J7hfEhZnBzimxTHpIAsT1l2srZJxEDw6EiQal8pZzgczetKLAvGQWJQBi0Hdk6Zjv5QIlgGn1XhKJxB8U88opkxJIJd8UCoW0obsMUqXeMkiw9XaIReDoq8uLlbJLvx3+Z/kveiqjUmJ2RrrGHOrYb/pYI/GZuNApXNFsKSnkUusSYDY6x8So2AkSpUqJKk9JYWMBnuPyg1LFDWby8jXoiyEicJsqrUq4VEPgXBj/hRC9r4ktdEcPjoNAXfgUNn+iCZVWKfwcpO8Tw+jB8Zz6hYeihHM4wDMzOZOT/eeCiH+a+GyCyLjY8w5744S94gHSAzmm9fadEq+X2/r2etR6lbCN+E5N5fR9w0d9RH1idZJNJQYUKgUzEbHNw8LqfJQ51PbVmNQo88Qm24ZiBbPROYJ9Ypz0/GqMnl+JZ2dRqDViAiXA2mKgfnsZPa94GOuQb8sFpdKkZmogAuhlC5TC4Tz27pv/u5XESYZwhIeC0JsHvyvObFZufP5DHNr2D4sKlAC8//vvYWYGl8sl69qu4s2HwsJCAoEAx37/edrv+MsFf09lVEqVekuhcWcpRbUm9n1+ecGFQq1JZ6Ds+81YTlmRwj5pXmKuNxMRyEBTfp0V53V2jn+zR36Zpgj0CmavBOj60SBdOZRbGO8LS1kN9QgJqgzFWpQqcT9rsOnIM2m4iMDiZw4USgWmcgO+0/JPrfS8PII2P4fycj/JLePT2iebpNNoX5IvAooMRojkUCXj0Bdzy5glki0ohVggxtx0nGhAbAzPFTNTs8xExeuni9hGCj2/HqXn1+KlKyJ+iPjFuWzdU83M5Kzw87skGMAF6PrlEOUbioTLrynzlCgE51BGp548s4Zid4FQacxCVz5qvYoZwcD2xHAEs+DhCID9OZZZmuqNMNUrpjjd8MF6iMPhfxLbCE8jkQCFQpZACeD8MwsXVcuKk4ANm2fQ5MG+VwEyQqXbdj3Oi9//xqICJYAzZ85gMBh45ZVXZF3bVby58MwzzySFFouvCVIZlVKl3rKx+WONREPTnPjXZbLzXFbm+kiu70COWPfeOlAidAo317Jf+/4mt5hXLDQjXJZ8JiatVQtdJqGMJMUNZnRFeRgqdUKZWjQGFQrBeV40GGfkuJ/ho2J8BjqmCHSIxxc2fLCePLNGOJ7hPys+Xxi/GGXf34o/7+hYlKj4tJ5oYBqNNufQthAi/mlmo3NMC5aZiQbjRIPiXOY6hw12idc6bn64Gn2xVthGxi9GGb8ontmo79UxYhMyKx8kYSrTo1QphQ8rFjcU5JTVU1+YRzxfcNNXJwlOx3vF/Nbo4UDO/lU0s5qhUseqR130vDwmlAkuv0YSFEX8yXWOTCFiNJjg8P+dP86sJE5CBxt3FeC/NM3F32fsefum7Tx38LlFBUoA+3v+ndjsOGVl4kKEq3hzYM2aNRw/fpx9Z77Cjes+seDvqYxKqVJvKThutlK2vogD/9i1rBBIoVKlS795ToznlCEk7JFs0lSqZ3JA/nhgbTFTt62Mcz/sFSodlktGnlwz+QT7JtEV5aE1Iz+7FJBfYUBjEPezBdVGDCU6en4lP84Qj82iylNhtGkR2TnseWkUrUX8GkVFBSms/4CbiDfGsa/IFwHFvDFiOWwvH//3HIRNwPgF8cMRsckE0+FZov4rE/OKBGKQQ0k0kXcshZHDQUZyyHgdC0EsJD7PW/X2WmLjM8JrwEHBPXOASy+NMR2aES6/pjaqUQjGk7RmMJbqKXbHhfi01JrQmjUoVGL7jaHBMBq9+Lt9OMd5dswTY8wjxuPqJ6pRqpVC/iAFBYp0zEtuqYyeX3voYb7vWlacBDTdqsVoUXLkh/PXEduv3cFzr/1kUYESwPHjx9Hr9X9QzEuREFWQZEGpVJJIJMirr6P0o+9atE3DN6MLhExbb0sQiy4vUgJQnuuRUkwk0fygHZVGyenvrhx8ji+SZUA2Egm2fLqZxFyCA/9bLEC7+VNNzEXnOPwPVzbA9IbDAIiPW1cWBtj8vib8FyaE0iI6brdjrjBw+hs9Ql+34UP1KNVK8dTZKYGmAJ+195Zhb7Fw4l/PE/bmkD5IEO1PS6nmr4Qdr/9AHao8lTCPooI5ANedJZStLeLsM71CZdEqbyqmqC5fuCza5k80EeidpPP7uZVZvGJY7v2+LHguBMHTk/P7Jgfd5XI7L4OCxnxadlYyeNhP30vyAy9199iwuQs4+5NRJnLYe1ckMy/FXNYV2xoM07S1wqnTklgJYNagovee5fs1hCK0T8IJvZRNKQXrITW+9UtvVve9R1rgT01NzSvbehV/OohEIulnd932zy/ZTvfiiXk/u26zUra2kHM/HiR4Yfn5UWIms9A0OvU076jkzLe7iOSWqFA2bOvM1G+vZGCfV0gc5bqjhPINVo59uUNYYPCmh6AY6r8DjQ9VYq40CJdebXtHNWOnA0Kl1KytJurvrqLvtTHhElv6IoRteONHGpgJz3E8h0WkKDZ+uAGNSZ3zwQURGJ162h52MXDAK1beLEd73PiRBmajc8Ll21rf7sJ/cULoWdc/UEFhtSnnsjZX8Ych19KKmz/ZRCKR4OD/zvG5JeebckRKLW+tJDYxy4WfZMUTVCrmNi1/8m79phnytLDv1fmZlDSdg4TXL55l4di+rzLp70alUjE7K3aI4CrePNDr9USjUSz6KjbXPrZom7mzC8fATR9tIDYxs7xICRass2rvKUObr+Hsf77xZbU3fqwBBeLv7MYPJ0tQXWFR1RsOHctnwHqTYOOHG/BfnODiz+QvVsu3FmGpMQnb1ep31aDRq4QOb6YhyGflDcVUbC7m1Hd7cirnJYr2p93SxpBgKbVcsOqJavKMamEedRaEMt2AlBHMeYOdzp/2CwnabOsKsLdaOCNY8mLDh+oZ7526omXRcsKfyPstAp1dx9onahjc7xHaRK+8oRjHdXbO/6w/p4x6acjJomQB955aOn46OO+9VleUL9svvxyabi1g+EyUgSOZjcC414eidunsVr8+/dcABAIBLBbLitd3FW8+xGIxdDopi8ZtG/9y6YbH5+/X2deYqb61hPM/HVhRqJnImpdrbVqa763g3E8HiQluOovCVKml7bFaBvZ66H9Z/jtbuqkQ182lnP5Ot5Ao6k8CWt7wcnR/KJx32CluKBCe9zY+VEng4qRQKTVTpRb3bhcDr3uEy6iKCssA1r6nltnpOU59vUesYw5Y/UQ1xlI9e//qjY95ac1KVr+rnqFDPjGxXirJkKBNrn1PLfHZOCcES0fX31/BxEBYqASb42YbthYLR/51eUHmmwJ/Au+3KFY/UY3aqOaI4Jx+/fvrUWgUHBaMnaeRmnPJECnV31dGfCbOxV9kxJ8KpQKVo3LZfk23ajFYlBy9TKQU9/hINC4+9zrf92v6Rveh0WiYns5duJhzuTeAr371qwBMdy1+8qrhm8kJqFKRzJcmYd+LCnkCJQCVSvoHmCv1mErFUxQbHAZq7xVLo7z/b88JC5RASmmsVIvT2v60m00fFyzXYJDSmYmWbssJf6hASXA/vPVtTnE+wqDSKjGVidlI3wtjwgIlkLJEKTU5POuPutn4LrE0hXlGNQqVAqVZ7N6sbUbKthQK9ckVBocBxy3ipWLUOjWqHHhc+163dPJaANoCDQqVIlv7KAsDv/MKC5QgaY82sTSKzY9UsfkTOaQr/0M0J4u939llCETFRkuUMFj1DhdlWywy+mfswVRjoP2pZlofk1f+LpXCt6BKBwqIeORHohR5Gi7+Ksj+v+8l1C2/n6EUqm/KTwuU5KK2BvLyID9fEifNGqSxzvmz5ft1mvX8R7k+LVCyHlJjPSQpxq1HFt+gK/6vX6BQKCgqKroqUPoThl6fEaV1nvzRom0uFygB9LzoY9//viAkUAIocBjIM2uouHH5IOJiqL27TKh0kudoiL3/66xw9qZIMAYKKXOTCFofd9H+tBu9WPZryrYW4X6reNr/nPCHCJREK2XppSyitXeLnTo12nU5nZg79bVLQgKlFJQqBTqzWManjR9uYO2T4ql/1ToVGoO8zCzZqLy+GH0O65VcULLZgqVB7GHrC9Qo1Qq0JrHntvE9DTmVO1TlqVDrxHk8/R89wmI0U6lOynYmiE0fa6TxoeUX7AuQWzW6K4qSDRbJXwle66ZPNOaU5p/lq7oviQOf7xAWKNVsL5PeM8E5qrnCgLU+uXbOijOoDi4fLD1yUDNPoKTpHETTKR2KMRxZfEPXmj+HWq3mmWeeEbrGq3hzIXUiMBhZvGzlYgIlgINf6BQWKAEUNxdQ4BJbU4C0We26XazswqG/68xN1Jnju771s242flSwXIMOmnZXYV11BWJef6iAQXDor7+vnI05lK/QGNWYysQc+9A+f07CN41ehUorPq62P+1m/bvEYjUavQqVRonWJPZ9BbU64fJfuUJn11EuWK4VpHieKoe50Lr3u8VLCZo1qHKISXuOjgsLlADyjBqMJWL2WL29RLJ90enyHzK9vkICpabdVZRsEIvB6ixK2p92435UXswrhfxKrRTzCoptCg284mXvX50VEijpLEqqcyjtU35tCbrCPPIvWxvNDi4vapsYgkPfGk8LlOJeH3GvtC5IXFzcTkOaQyiVSoqKiq4KlP6EodVq0WikOfeZ7p8v3uj4wv26seMhDvxdl5BACUBfqMZQqqNqi7hvr7yhGK1AzH9yIMa+vzkrJFACiPilmJepVMzX1u8op/0pN/oysX0Ja4uZxgcF18a54g8RMORQKWv9++up2Sa2R5xfokdrXrrk91I4/4MBIYESSLk6VHlK8grEvm/1E9Ws/2AOMS+Dijyj+L2VbrAI2f4fAmuLWbj8l9KokXgUzKK45q01tH88h5iXXoU6h7ho148HhQRKAPnlSXsUfHfWPVlH/Q7B2P4f+oivgECpoM5AwwMVwte67sk6tn6mWfj7lGqlcGYpkDImiwqU0mOMYMzLWpdPcZO0R6JQKtLXO9e3fBKNjt/E5gmU4h4fcY8091KcX3zupTKMoFQq+cY3viF0jZfjD8qJ+853vpN3vUvKoBT83WtYbrpWdt9Ce4JyJ5w5JJ/kU88MEB5YWV1weRal1Y86UCgVXPypYPp/A1RuLhYq47b/b8+JfUcS0xMzTAkqtg0WHfkVBvJMaqHSbW1/4SK/wsDxb/YQ7pOvPtr8ySaUKgX7/kb+PVrbjDTucDI5HOGkgJpUb9XmtKGRywl0Q7GS5kdqGDroY3i//IHhQI5lECL+GL4OMWnzue8uHhRdCQ13O1CoFEL3lSua7ilDX6TDc8IjlOEoFzEgSDx6zoqlZT3/vdwyGq17Xx2hgTAXfiJ2Oiw3e9Si0uYmfpuLxYX4bH6kisLafM7/pHd+WboVBr+tn2lGoVQIq99NZXp0ljyG9weXbnSZIlilUjIbnWP0pNgJgv7f+en/nV92GkQAQ4USU7GOsRNiqszG223kGZX4hqaYSJqItse3YjalU6fzMBimpSxKMnVDTeMRKqbhJSNgkL9A7T5xEpVKxdve9jbZfa7izYm//du/5dOf/jSj/QdpWPWAUN/GnaV4z47jOytP/TL0qo9Ad1h++bUkilflU7KmUJprCGahKdlgIdQdkp0VafRAMCexi+dsEH1hHujF0sNUXWPLSQTR/pSbuZm40NyhZIOF2jvLGTkaoPs5+aflN32iEbVWsERpBNR6FfkVYoEvkXJt2ajdUYapRM+Jr8pPS+07Pcne0+Lj6vDxQEaUIACR+W4KlgY9zhtLsNSachLAi6L29nLmpsXsyntyAu9JcR5HTwUpzGHjfP/nxHksv85KySoLx75+UUisd+yfc8t6pdapMBSLRTVWP1aD0a7j2L91ExmRv/O19TPNzEbnhLKPFTUbaNrpwt85Qcf35a8Jqq6xkZdDQHVyMILWIt5PNKMaSKK+gUNeYVFm6bpCbK0FHMgSNyXm5lbMprTvc53oBf1cy+oZBvpgPCCfk96ulxno76e6upr77rtP6Puu4s2FTZs2oVAoSCQSXBzbS629XXbffIeOii3FdPxA/hr0xDd7iAr4lBRWvc2JWqei5wXBspw6KF9bJHRaO5d3HSDsjRL1ikeri+rzMRRqhTbUG+6voLilgLPfuyRU+mrDB6Uy7/sFSsvr7DrWvbuGicGw0El0Q45C75xOoOtg9dtqGD0RFCrvlFMGJWCiL0ygR6zsxaVfjXJJoNxLCo33SbYvUtovV9TcbqewJp+JoTATvfLf05x5HAjj6xLLdNPzwqi4H0CKE0+ORrj0nFjfvX8tbo/5pXqp/Jqgq2v/mJuZ6CyH/k6+D3LdXkL5JitdvxjEc1y+jWz6eCOqPBX7BO+vqD6f/DK9WOk2XR7ToRnh+Kbn6Liw3essSvJd+UJcADTsdGIq0zPeN5UpA5kqPbIMun8xytDhcaFxzeIAq0s/r8ybHJzvPYxCoeDhhx8W6ncVbz48++yz3HXXXQz5jtBSc7dQX+dtNkL9UwQ65MV1g51THPnqReEsSqZKLY7r7VLVha+JHWq2NBiJBGZlf+f4hXBO+42es+PkV4gfUnXcYENfJK5O2PLJZuKzcQ5+Qb4A3lyto+XhGkaP++kWKNu+/v31aAs0wnOivHwNRsEDZadzEPACVN1oo8BhEOofGY7lFIcaPhbAFhU8kU9uc3qtGWq3VRDsnuDMd974zK8N91YwFxOzq1x5HDnux9okdgAWcisbZm0zU76xiM4f9hELya8KkCvneWYNxpiY7TfeU4m10czp/+wWKp+3+eONzMbiQtlKtTYt699di/fcOJ0/EqiQdJ2d/EoDvS8OE4vJ5zHYM0m+4KEPIKdybfb1FsZOB4VFW45r7ZRvtHLwC1n2lYivuNe5//90CosIq9s1eC7MMClwbtw73k1/fz8Oh4M9e/YIfd/l+IMLd2/bto3nn3+e0Pd/Nk+klM6ilI2UyiyeoKENVGqABJcfw0pnUcqGSkU4uT9jqFQtKVZarMxbz29HmI3KTLGedZpt6webUagVQiIlkDLKFDeZ6HtB/lPNpaxWeCjKhecGGDsqJngZOx3IabIxMzWLKk9MPOE7NcXMbbN4TgeF+uUa+MoJeXloC/Kwry68ImKeXDdQckH/Po+wajhXXHppmNK1VuESbLniSvKoK8zLaVM6Fxz5x9w2fCP+GBOCQoLpqVkScwl5AqWssm8TwxE0i52oXCFAcfzr3aBehsdFBtnxC2EOfuHCimXfsjelDGVqbK0Wel/0yhq8FXnSplPz3eVoDComR3oJj0IiEkWhX3kCd/zZCDXXqtMCpRSWEypJ4iQIoV9UoOT8GYuWfVs/BRqkLvpDi7/b1iOqeWXfxn+/j/FgEIC///u/X/F+ruLNjU996lN8+tOfBsA7fI7isozyf7EsSinoi6CozkR+qQ7f2Z4Ff788i1IKKYGSvlQneyPee3KCgpoAF38iVjPR0qCn9s5yIj6rcGko1x0ljB4alV3SK1dx05ln+ohPiG+whb1RYsEZoT6jZ4JU31rGbEws2OC/MIGxSPyo8ZUoNZaCtcGMOoeT+blg4HcesbJmfwCC/RG858YZPiJeIz4XDB/xEw3knlJXBH2/GaMPsUxnucLeYpHWKleo3GEuG75jJ4OUbygSEigBzEbmmJ4SK/01G0swMznLyDGxSfbh/9tF8ap8YR5zybbhuNWO53RImA/HDXYqthYLH/7oem7xwNVyQiV9hZ7IYITIyHQ6g1I2VAfPLij7ptfPUFgIJiMc2Es6e9LlMBzpnVf2ra/zlwDccMMNsu7nKt7ceOqpp/hf/+t/cWHsd/NESktlUUqh4d5KtAWaxUs2LVFOO7WRqyvVCW3qXvx1bqWWNr2vEbVeJVxSQmfXUdxsEiqhICJMTiMKHT/qy2yKy8TYKT/5lQbmpsXKlsdCM8KVzqNjUSLeGGMnxTb9c+LjD4DRrsPeWiAkUsoVp77Z84Z/Rwq9L4+hKxQX1uaC/lfHmJmcZWL0yqTlOXUFBO8p5Jcb0FnyhEVKueDk13py6jfRH2bSKzapmY3NMTcdx9Mh9n6Od0/mJNg++k8dKE1iWV+jI9GcSgHa19mEyrwBND7kwliiY3oixvhF+XZ88t8vUb29ZKEvXkaopLNriY7FlhzLZgeHFi375tycj9akZPBEhPDFxddUiYu988q+BScH8Psl3/alL31Jzi1dxZsY27dvT/9/2HuKsuK2zB8XyaKUhhbK1xdirTMR6FgoHLo8i1IKKbGQtlhLTKaYenIgxsDrYqUWU9/hfshJeCTK8X8XmweUby3C1zUl+xqDnVMc7RTfYzj7zIC0XSuIiYEppiNisavQpShzMfH18dipIOZKcYHBvr+5cjEvW0sBukKx8SBXjB0JCmdtyhWxEAwf9uE988bvoQL0/X6MGUG7yhUjh4OMHA5eke+yt1hyEhHmilyEjt6OEPrCPCGBEkBsfIbZHERzEa94QopT3+jB0mAUEnoBdD8nmMwGqfRm4FJYWNRad2c5zhvswnqHMz/oQa1dZO9vmb1OrU1LzBNj2je9aManub6BhWXftGCr1mC2qTnx00g6e9LlUJzvnVf27Xjnd0gQ/6PEvBSJhOgSfJEPSU5Iiz/6Xgz11cASIqUsmArjqBQw7l1I1qIipSTa9pRgtOVx9tlRQt0LFyeLiZSEkEWH4xYbKp1SeJG29bPJLCOCmz2tj7uYDs/S+f3csr1cBWz8UAOafPUV2WhrfbsLc5WBM9/rYbxLfuaVxt2VaLQqTn9TvpK67JpCqm8uI3BxIuesSiJof9rN9MRMTuK5XL5LNAuAfZ2ZynYbHd+7RNgrfxDa+tlmFArxDEC5YONHGtAYr4wt/tGwUvrA5YYL0ZJwC/ovMrgaYMMTtVx8YZjAuaUD05dvRq19jwt9kZauXwzgOTm1rEgpJVACKZOS69pizn4/swm7nEhJTnm3pURK114zjUIBvzu69KJqMZES4Qirp2Gga/msINkiJf7mS/T19XHLLbfwm9/8ZsVrvoo3P2666SZefvllFAoF1277XPr3y4mUAMq2mBnev7iweSmREuSWBShXuB91cun5ftmZlEAqwVZzWxnj/VNC2WusrSZcN5Vy5J9yE4dehYT2p91E/LErIh5uf8pNfDYhlJ1HX6qjcUc5Pb8dJtgpf52w+ZNNqDTKKzNn+HADGtOVmTO4H3ViqTbS8cMe/Ofkz1/db3USm5gWEh+msoH5OkKcf+aNX9+0P+0m4osJixyvIoPGBytR5SmFhUrtTyffTcHgV/W2UqKBaYblCiRkzDcXEykVtxmpv6uC8b4wZ7+3tA1fLlICKLLOEAnD7InlRXppkVLoLPv2/Sdzc3PE42LBsqt48yIV81pT+RAlFqn80koiJZ1di86sXLzc7jLrqqZdVRQ15OckzhFFyYZCdIUael8UE6HmOkY2PVTJ3HScLsEMxVeRwep3SZn8rsT8pH5HObY2C10/F8tCU729BG1+Hh3fkx+7stTrce+uFs4amCvan3YTG58ROuWdK7Z+1s1cbE6ovKKlXo/j+hI6fz5CdEzg9PonmlBqlMIZgHLB6nfXYLRdGVv8c8ba99bS87sRAh1TKzdOwv2og8KafC48PySUtUln1+G6yfbHfceWmJtt+lgD6jwVe5fJZrGYSAnA1qxi9NXlx6VskVLn1He5dOkSN998My+99JKMi76KNzs+8pGP8MUvfhGlUskt6/9/mT8sJ1ICbKvz8ZxYPAPdUiIlgC2fbiY+LZatJVfU7yin7zWfbLERSCWNWh+pZvzSBKe/LX+dZq7WUX1LGScEqptcxUJs/YybiDfK8X994wXmWz7ZRCKe4MD/kW+LWrOS+nsrGTjgI9gpfyxZ/8F6NEY1+3PIOiSK1U9UYyzVX5E5Q822UkrXFXH+pwP4TslP7lG/o5yZ6Bw9Apk9zU4trW+txXNmnK5n5WcAyhXtn3UTHhUXOV5FBs477OQZNXT9WOx5bf2MlC0uO5u3HJRfU0Q8FpcvgJOzx7rIXqfZoaX1URf+i5Ocf2bptfYCkRJgKJbKTUY6lz9wmxIphWPjHOr4Z2ZmZv4oMS/xmkKLoLGxEQDvF74MrCxQApgMKBn3K5GkufJ1Ur17A0xPzTE7JXZquH5nOe1PNWOqWUaheFmgqO8lT06nSPr3erj4a3GnZK40YK0VK0dhqjHQ/rSblreK1a4u21LI+g/UCfUBSbhVeVOxUB/7OjMbP9Qg/F3tT7vZ9PFGoT6hkTCzV0hd6+sYZ2ZqlhnBhApFtfmYHUahPuOXIsxG5gh2iwUpm/c42PAhsRr2uaL+/go2fUzseQHExqeZHBIrr1W63oq+SIemUCxTxMRQhCnPlTn1NjkaFbZFg0N6n1vf7hLq1/o2J61vc67c8DK4H3WgT73OsgZABY27Kxden4y+7U81s+7JmkU+U7mkiKj21hLy8tUUNeQv2kahUi26EXXsWz14u0KSQAmWzMKULVACCA/G5wmUQMqmtGjfpEBpw8MGNuwWU77PGlR4gjAhf90AgCEcwXomf0WBEkjZlAAm9h5mdHQUp9N5VaD0Z4Tf/e53ACQSCfxj0gbZSgIlIC1Q0hWJfd/kcATPafESCps/2SQ8jp/9Tq+QQAlgeJ8f77lxTn+vR6hfcbMFrSWPyuvF5jVrn6yl/bPidcpb3+6i9u4yoT76IiVNu6qEv8v9VieNDy1ceCyHtndU0/60GwQPpM1MzTIxfGVS3kyNRBkXLB9irtRhtOspWyf2nCcGI4S94nOGjR9pwHVHiXC/XLDhg/XUP1Ah1CfYO8nM5Cz+HrG5l8VpxNZkEeoT8ceYDs3gPRcU6pcT9JIthvrF7mvTxxtpf0rwfdbDhvfXU9QsNv5XXl9M+XXLl4JdDOveVydlRBJA69tdtD/lRl8kttwvqs/HkkNZv4u/HKL3ZfF186XnR4QESkVNBtqfahZ+x6a8MaYnZrn0W4ETc6oZYIaJfWMrCpRAyqYE0N//CnNzc9x4441C13gVb27cc490euD4wA+AlQVKANGxWEagJLBs7fmdh6h/mrBX7FS542Yb7U+5sdTLH8hHDweEBUoAPS+N0vUL8ZhXYZ1ZuIyCzqJk62fduPeIxbyK3CbWvKdWqA9A6ZYiyreKTZYt9XrWvbdO6DmDJF7Z+BGxWFmob4rpiRnh78oF3o5xov5pogGxoJe9pZAiwdhmsD9CbHyGYK/YIrn2njLWPSke28wFjpttbPigeHxtaiQsPD8pXWslv8KIsVQsm894zySTA2LflSsmhsKSLYpAJ8V6Wx4Ti1813F9B027xNVHD/RXoLGJzoeq3lAj7G5A2sVe/e5GY1zIo31qEvlhLcVOBUL+zP+xj7GRArKwcUuY3UYHSxo80CK/pQco6GhK0RY0O4l7figIlkLIpAQQjI4yMjFBZWXlVoPRnhFQW+Hg8zqg/KUxaQaAEpAVKWsGKTYGLE4yeFs8Ms/5D9Wz4sNg43vWTISGBEkhVBoYP+zj9A7GDJGaHCWOpnsobxGIhrW91sOXTzSs3vAz191fgeovYOk1rhtq7xOJkIAlK6ncsLnRcss/9FbQ/5RYuhRQNxAgNXpmxNdg7hf+iWMxLY9ZQUJ1PyZpCoX7j3ZNM5RDLW/veWhw324T75YLVT1RTs71UqM94b5iIP8bksNh7Zm0uoKTNItQnFobwWBSvYMbGXBEJxAgOiM2V1z1Zx9bPiL/Pa56owdIgtodtX2+hdINF+Lva/sKFtUXMcdfdXcaWTzejLxN7n0taC7E2ipf163i2n0svice8hl73CwmU9GVatn66GcetYu/YdGiaqZEoA3sFMvtrpX+T53wrCpRAyqYEMBh6lunp6T9a5vA/Sh2ojo6O9Mmy8NlOQN5k3mCIs+YaiEXhyCvS75bLogQQujTN0X9bXAm2XBYlf8c4xQ1mDBY1Im6+5q5SStcWcfxr3YSH5G1UiJaHS+H4N3sI94kNeJPdYRLxBLMzYht6pWuK0BbkUVBvEMoCVNluIxFPCN1jsduCJl9N2TWFDL8uf8I3MzHL5JhgDerv5XZKe+NHGlDrVez7a/nK4eH9gZzKwx3/6jnhkmjhoajQqasU8sv1qHVXppxKQZUhp5JouZQ3O/lvlzAUK4WyKAFCGTZSaH3chbnSwLEvnxV6budyKJUBUhkQn+DExlwlNmEAqL23jMKafBK3V3Huv+S/N0U1+ShUWaIkOeImA8RnE8RCYoH2iz8bZfj4hLBfJAydzyyf6eFygdKGJ6sgAYf/ZeWATXYGpbmZ5UW2S5V8O3Np5c2D7JJvheEI9wZhyjbBbz3yA76Bb0kbKQ6HeJDtKt7cuOaaa3j99dc5c+hrXLf987L7rXuPE61Fw77/eyFdAmi5LEoAJ7+W26mr+HSc2Wlx4fCmjzWSmEtwSKCudy5ZWs4/MyBUxi6F6YlZ8kzi6f/NVQaMJTou/lx+Jpqau6qwuExUXl/MwO/lD0IWp5FEXCxZqq8zhM6sQa9XEonIH19zKdGrr9Cz9vFqfJ0hzv9A/rM7kcNpodHDQULdQdmlAFM4+x35GS+zoTGqsVSLj8u5IM+soaBSTCgz9KqPoVfFy9Ht/auz6AUFjqHuiHD5CpBOKMVCMxz9ksAcMZKbLU70h9FZxdKwO66xk2fRUFhXIJSNynGdHRQI8W9bZ0ZXmId9dRHek4ufCl4Ms5E54rMJYdHnvr85h75CPHX+qGBadHONntZHqul7XWY5xuR8U1OQR2Iugadj6RORi5V8i4wlOPLlld/p7JJvGzeBVgsH+pFdMs87fI6enh60Wi2//e1v5XW6ij8J/PSnP03HvIaDHdjlnvfTQftHm6WMLSmftkIy8+hYlKP/LL5G9nZOUL7JiiY/D5E6j+XXWnHeUMLp73Qz0StvTiS6MZ7Csa93C5WxA4gG48Rn4sIHgOyrCjHYtBS5TUIZqapvKYV4QqgEXmGDGV1xHpWbi4VK4IW9UaKCG5WXfjXKJYET3imseU8tOouG/Z+Tnxk10DFFoEPcFk/8a8fCEocrIUpOWY0KqoxXrJyKpcZEnll8DZBLebOOHwygswwI89ghMK9Oof6+cordFo59Tez97P75CN2IlcvQmXXExmfwdcqf0wAUNeSjUImJjcq3FmFrtaDMUwpl9bK1WnKKo85NzzEdEhNtDe3z478UFvaLRBHOSLf+A/UoVQqhNTbA9NQs6rxl+Fii5FvPCysLjeaVfNPB2ocLiPj0nPi6fDs+cPHrQAKXyyW7z1X8aeC9730vX/7ylzl58fvcVvT/ye7XsqcSc5WBo//SSSy5ZFguixIgFJPIxtzkXE4pINY9WQcKhNa73c+LlycaeMWL5+yEcHmiaHAGXfGctIEt0NXaaCY+HRfKRFNxnZT1JjYxIzSHsjYWAAm6kO8L/ecnMJWKq7yPfVk8U7PWDGufbMZ3PiSUsUVkvEphciDG4X84J1zy6oJAbDIbeqsWS7WJPsTKHeYCg12PSis2JvvOhPCdkZ9BKYX9f3tOWOAY88RyyrC1+eONxMZnhPvmkjU8eGkSc7lY3NC2ugBDqQ5rg1koO1f1zSUoNSqhsnmmSi355QbsbXGh5zY7I60RI4JitINfOC8sVASWrfKyGLTFWta+s4b+V8cYfE1GDDA5l9IVaIjPzhG8sMxceZGSb7EQnPyPlfejs0u+uW/UYrKqOPYNX3q8XAmhqIeenh40Gk36EP0fij9KuTeAlpYWzp6V0rXduvV/yu638YY4o4PQ1yk9hJVESul+T1YyMzXH8f8YlnJR8QeWeluCBvs6M3XbK+l9eZRBgYByy1sdFLhMb95STwbQGxAWyzhuseE94RMWh2AArozgmLod5UyHZ+mTsSBKYd37atEYNcKlbNyPOpgcjtD30hs/KDfuriTUPyUk9MoVV7LcW+vbnAwe9BAQ2OTJFavfXcPA3lF8p+QPrs17HFhcRiEBG0jipu6XxsQFNjkiF9FW9fZSLr08KvxuGqr00n39ISXelinBtiSSGZEWy56UwoYP1qDOU7H//yxiuwrlAnFSChvf5yARTywpUkqVfZNT4u1ypERKswYVBkOEzU3QNwIXh1beBEyJlKoOTXNtyRwXJlR0h+VNLDV9+zj46x8CUsadq/jzQ2qzrI1rKM2Tdxq14joLJa0FHP2PXtkiJQDXHSWUb7Cy9+/Piux75YRcREogpeiOhaavSNmxXKCv0BMZFCNPXwTW1TZ5m/jz+imFxQm5wujU47zeztlvi4l6tn6mGU/HOBd+LD+oVLwqn9L11pxEx6KwtpqwtxZyLocgkSiuZLm3sq1FGEq0QmXbcoXjVjv6wjxhEeHmTzYR8caEBJKOW+0oVQp6fi2+cZsT9Aj7Qn2pjsJ6o7BITF8EkYj4910R6KH9o25858VK+lXeZMNxjY2zP7i0chnGHOab6bmiSsW6dztQapQc/lKPrL4pkVK1xU9xrZ7j/yVfqHAg+l2CwSDXX389r7zyiuhlX8WbHA8++CA//KE0t75V+aDsfmvfU4Pn7DgDv0+++zLn5Rs+WM9sLM7xr7yx85qCWh3u3TX0vjLKkJwAahL1O8opbrGw7wtn4cokKxaDDnQ6hEUepVuKCHaHhUpspb7vSvHguNlGfC4htJnX9jYXeptW+PBb/Y5yIoFpoe/KFdXbSwiPTucsghPBlSz31vhABWNngkLlvHKF+1EHw4d9Qt9Vc3cp9haLkIANoGl3FX2veQgPXBnD11mURINi65vya634T/uE/YCuVCcuHLpCWPOeWrQF4vHrXEVKspA9V9PB1g81MXjQR99vV17DpkRK8Ukfq/dUMnoyxMgheTtlUauXVwd/TSKRuBrz+jNFKublZjMVmmpZfYrcJqrarZz4dm9aYLOSSAmgdFMhrptKOPblTmGxhyjWPVmHQqngyD+JjUEbP9LAzOTsFSk7lgu0Nq2wIAotlG8oYuh1sVNlWrPyDX9O6e+yaXFcVyxcHmrzxxvxnB2n+zn5AjNztY7yzbacxEqiMDu1lKy1XpEyzFey3Ju1zUx+hV5ILJcrSjdYMJbqufgLsfja+g/UEwvEhMo3lm4qRGNQ0//yG78PDQiLFEF6LwsbzEIiJakfxGLi33elsOXTzXhPB4WEfbbVBdRuK6fjR30rC71y2WNN7q0qlApaH60iz6zm6L/Ii6GmRErF5RFK2/I5+R3578ph1U/xB/zceOONfzSR0h+l3BvAmTNn0v+fiBzAYE4NEnHs5XHQST8bDHFsZZkBpLsD/H5AqQBlAnubQRK0AAY70s9JWOp0GJ1SwFGpAo1eidYCqFQYSlTY12WkjoXNBgrqMn3t68zoiyVBRMvbq+a1LagzUFA/v62hWKJmoi/EhecG0gIlU42BwubL2pYnFbgG0p8bDc2QiCeovDWTTtG2Jn9h29S9OgxY24xs/lQT7U+7pbYOw5JtbWsymTSsbUaaH6uk7JrChW3LdQvammoMEJYESpe3vZzD7PJ49nVmPCc8hL1xDMXK+RzWL82hvhjsTfPbLuAwu23yc/XFsObJGspvts5vuwjfqWdjbTNib7NQscEqi+8U+l8b49R/9S3edhEOU8/GUm2ifFOxEIfuxxy0P+VewGFh80IOU6W4DMVKrPVmqtrt8vheJ853ikM59r0YhyvxvRiHhnIdBU4TNXeUr2yzWde08SMNbPl0syy+Uxzat5owleip2GyXxXfqc8/9Zx9nf9Arm29TjYGGB8soqDLiur5Yls2msPp/VFN9l21JDhfw7TSm25ocphX5nve5JhWXnh/FYNFiW5MR3lhbF/KdeTZa7OvMhAdioFAsy7ehWJG+19bHXZRstUg+OVnezb4uH0OyrcRh5noL6gysfdJF+2cbMVUb0m0VKhX6EhX2tZnrNVUbKGzKXEOCrLi/gflt6w0UZbUtbjFgSGahPfT1Pvpe92XutUI5v+1qE8bq5GfpwVYP6x7UYyiR6rZas7J6F1aTvjcAW+U0GCQRSEUyC0UkqQkpzo9gMaQ25yKUFUUwKKSfDYYIa09PYz2kJoyBkz4VE+k4WRiHPowhqTAzJH9OKc5syjCB7hOoVCpuvvlmruLPE3fccQcAZ5T7KM6aL+W79FjqMiK44jZDOgPK4OEgfa950pvdRoceS0OmrbXVhD51skgviULQw3R4FhRQfUvJ/LapjBtZbUES5FhbTZhr9Gz8cANFzYal25bqsLZm3tULz/Vz9seZBfnlbbPLHlka9Bid0h8T8QRKjSJ9r/oi5YK25hr9vM+1bzTR/rQb92OOeW3NNfN5KV6Vny6bpC+CypuKcD8qCcOMzkXaXs4hEBmMYHTq55WIWorvFIf6EkNaoCSH7xT0JTrZfGdzWHmTjVXvdGbayuCw+pYSCqtNlF9XsIDDy9tmc9j1i4G0QGklvlOfW9luo6DKSPF6w/y2i/ANpPne/Mkm1j5ZuyLf2c/GdUspRQ1mWRwWNRvSHKauSY7Nptsin++l7HslvlNtq66zUdJWuCTfi3FYvN5A+2fd1O4oE+KwfKM1U9ZnBZvN9hEH/rGDoUNeIb4rNlkp32iVxXeKw5ItJtb8j+r09yzP93xezGXybDbFoaVBT2QkytCrPlk2m4K11QR5Oslnr8B3ykeUX2el5p4y2XynPrf9KTcbP9qwrI9I3Wvqc22tRkjA1GhUBocZmx34nYfT371EPGu/YAGHq83pYI25Wk/bE06ak6VepLaKZfg2QVKopNIpUWmy7Ls1w5mxSk9R9hjo1mP2DqLpHGTgVIT+I6EMhzYodGWCR4UuBfpUBm49TFd2Ew6HqaiouCpQ+jPFM888k/6/x96DoTJzErvIbUqX39LZpew9KXS/OIS/e2peW50l2dainNe2oFZHvlP6IGWeEo1JtWTbfGembeZzlTQ+UEHzI1Xz2hoqdRTUXtbWLv08Phjl/LN9aYGSoVI3r2RcYZMx3RZd5l6nvDGIJyjbXDi/benCtiBt+hc2GdnwoXraPyuVpVuyrV1qm4KlXk/d/WWUbilayPciHBoqdRCVBErL8b0Yh8GOINGxKDoLC9ou4DBZRkpngaIaeXyn7zX5/9a/cFJ+YyZV4VJ8pzi01Oup3Gqjcmvx8nxfxmH/3lFOfy8jKL+87aIcImWVqdhSLMtmU59bu6OErZ9xY3HJs9kUh2XrrDhusMnjexn7XpRD5nM4r+0KNpuCqM2mOCxuseC6rVQW36l7XfPeGjZ9vFEW36lnY6nTUViTT2V7hsPl+E59bvfPRzj5nR55NovEd9WtxVgbzDivs8my2RRaHnfgfIstJ74N5QZZfKeuHx1Jv7aEj1iEwxTfKYGSXA6bdlVRvMEiZLPutzlof9pNYZNxRb7nlfFUkcmYuwLf2fZ95F+7uPjrISEO17+/nnynTpbNpjgsW1+AQqmQ4gfJtvmOpfhWYCmeIu71QRQuvuBlciRzgKqoSZduq7VIP6dgqtIxapQ242655Rau4s8Tn/jEJwA4y4F5tq0v1WJ2ZTJhFNTo0FqlgjH+i5P0vpI5uK61aTFXZ2ynoM6QyaKhRSpnpIXYxAwKlYLSazIBXXO1btG2IGXJKKgzoC/TsvY9tZgbdfPKDl3eNrts0oVf9HP2h33z2qYyuGjNynltTZVaTJXSB8XnEiTUUhupLQvamp3zr6GgXkf7U26aHq6c11ZftrCttjhzryUbC6i/vyLT9nIOixfh0BOTzTdIz6agypAWKM3jexEOs/d6tYWaBXwvxaHZmeHQvt6C+60OWXynPrfq2iLsrRZKr7GsyHf2szn/04G0QGklvlOfW7ZRGl/tmzNlQJfiO81hnYENH2pgzRM1smw2BeetpdhXFaY/ezmbNTu1OfGd/lylfL6Xsu9FOTSnPjjT1nmDnfINVlk2m+LQXK1jy6eaqdleurLNZnFYeb09U2ZvBb7N1RkfceQfuxg44BPiu+o6O1XX2IQ4tDRpaX3cmX5WK9nsPL6L5NksZHxELBRn5HBQFt8pFNQZpBTWsZX5Ttm3tc2M4zbb8nwvwuGWTzez/oP1smw2xVlho45EPEE0mS1Trs16Toxz+tvdxGOzS7dtNKVjXvoyLU27KtJlLFfiu6BGh0KZzDhuVqNOZRzTSnO6eRzWZPg2u7Ro8BH3+BjrCNO3N5hpa2He2Gp2aNHZM8kiYs5RwpEwpaWlfzSBEvwRRUoAO3bsAMATOseqDdLvHPVQ3woNyfLFrZukn1NoXAVt66D9tjhVhR5qby2m+U5pMuC+r4KaWzIClaa7bLTeK9UoPf+8F7VORcM2abOs6Z5S6rZVpNs2P+CkZZe0eaQvhvrtlTQ9VIO5yoC5wkj99sr0ZnTLLictu1zpvvV3VdH8iLTj3PBADfV3VdG0p4Lq7SW0PeykeWembd32Slp2S2V0Wh9yUX9XFSWbCrj402FIgGOrPfO5d1fRuke6psZ7Kqm/qwrHVmlxtmqPk8YdTqZGosSC09TfXUVb8nNrbyuj/q4qam+T7r1tt4P6uzO1uBt3OCl0mnFcW4Jjq026/h3S31v3OBe0bdstXcOa90v31vawdD8tux3Uba/McLjTRdvDUltTjYH6u6poeKCGLZ9upu1d9dTflfncll2uDIcGicOm3RKHTbtqqb+rivanpVOp7ocWcujeUytxtKOa+ruqKGw2YCgzYrTqcV1TMq9t6yPSNbU84KD+rirKtkgDQdsuicNLvx3m+L+em8d3w90S364bpM9qe8RB445M1on6u6tY9YgTQ7mO6ptKqL+rivq3SPbU9qhrAYerkp/rOR9EpVHSfF/SBh5xLuQwybdtTT71d1VhTC483Y/VLmjrfkhqayjXSRzulHhpfrgGhULB6WTt8Hl8k7TZh5N875T4NjgMrHpnNS27XQtt9tE6AGrvlmw2JWhp273w2aT4br5P4rviOumdTNlsNoer/0I61VD/lgrq76qi5ubSNN+LcRgeiuLvCaEza2m4W+JiUZtNvstlWwqpv6sKlU65NN9Jmy1slmy2/j7pmhybykgkEnT95FK6bYpDfXHSZndJfDftluwQA5RdU7g435f5iJRYp+1hJ8VNhXS/NMSlX/Ut6SNSfGdzaLTqKV0j+b+lfEQ23227q9j4kQbaP+pe0UekbDblI9o/3EjtvaW0PuKc9y437nDQtku6Xvs6M/XbK2l9UOq7+vHqjJ9VKGl+wJn2U6YaA/XbK2l4QOK7+eEa6rdXYltjwlyhp/aWsrRPxgD12ypoekhq2/Sgi/ptFWlhj/vBSvQWLXOxOJOXwtTdWY77kdr0fdfdWZEWJrU+VEHTfRkbyDOoic9KQlj3fRXU3VlB6eYCFGo1rfeW0bAtU8+17g4b7p1VrH57GfW3F1N7qx3nFunZtNxfmW6r0KipbTfivlX6TmebkpotJtRaJUWVCppvMVDbnpko1F9jpOU2qW1ZGzRXJ2iRXjlKkvHnIa+0uG6rhzXJ8bGkEJqroTlZznyta47VlhneUjLBW0om2GibY7NdyhxoBtYUzrGpWPp5i32ONYWZEgjFE+e4cOECJSUlvPTSS1zFnyd+9atfARCPxzGtU2B0SHbV8mA5zQ9k5kT128txJ8d6945yGu6qYNOHa1j/pIvWB8txP5Q5kdZ4n4PWh6X3uvGuShp3OCjfYGXoVR9zM3HK1lrntW1Ltq25uYzGHQ6qb8r4/cb7HBQ3W9CY1DTtdLEqKeqp3FhM4w4H9Ul/0ppsm0LTAy7aHnax+okabOvMNO5w4L5f+nvLrioa7s34LPdD1azaI93buWd60Zm11CX9ftPD1TTuyHyu+8FqWh9O3qte8nfl6+3MRubQW/No3OFIb6a3PlyN+8EMLw33VtGU7Ft7rwvndWVYqo0YnXpW7XHN47Dh3qo0h+77HTTucFCSrMm9+rFqmrLG2cb7HLQ+IrWtu7Ocxh0OKrck/f6jTpp2uqjdUUb7Z90S38m2rutLaNzhoObmpN9/+DIOd7pY+xfVrH2ylvINVhp3OGhMjbOXtXU/VJ2eC1ZuKSa/zIR7Z3Kutad2Ad8tu6W2+go9jTscKFUKLjw/SElb8Ty+Wx9eyHfTLunnhp010r3eLM3hWnYv5NC9Rxpna+5y0rjDQVGzgfM/6CE+G6fhTte8tim+m+6pkvjeLPHdutu5gO+2pB3W3iHZrPM6aa7etscxr63WnJcuV+i4xk7jDge1d0h8t+5ZyHdrcr7X/pRbutd7qtJ8L2WzRc0GGnc4UOmleU3zIzVL812kpHGHg4adEi+ND0n27X6rcyHfJPnenZyX3Se1NTr1nPrPPhJziQV8t7xVGmfdD0h8p0QfbQ+7MnzPLe0jIGOzKSjVCmZjEodL+YhsDlc96kRfoad+W7ksHwGkfcT4wBQXfzW0rI8w10g2m/IRrpsrMBYb0Bck5+aL+IjGh5LzvQdr0j6i/Wk3rXuW9xGNOxxpsc6qPS7cu6rZ9InGdNulfETbw640h0annsb7HKx+XPp5KR+RfuZJH1HVbqN0deGKPiLlk1M+Ym5mjomByLI+wtpqkuwu6SOcW8pBSboc5WI+IjUXb9ot2WH1tlKct9tX9hH3VqEvlQIkLbud5JcaKEyKABruqcT9SJaPuLcqLS5ve9hJ8/3l6etXa1XMxaS5YeO2Ehq2l1OyQbLv1gfKaNyRadtwVznuuwvZ/M5iWrflU39TIVVrkmPrdisNt2fGwIbbrbRsl36ubNPTF+hidnaW6667jqv488XTTz8NgE81nLXON9P8gIPG7ZLPanmoiqb7s/zQrmpWPepi66ebsa3Lp3mnk5q7kn50l4umB7Let101tD4ivQcn/+08eQYN9fe7AGh4wEHzTmd6g7n1kWpa92ROSjTvdNK4y0VRgxlLtYnmnc705vqqR124d2faNj3gwP2gNC9ouqeS5p1OGh4qx3mbnbZH5o/JzQ86aX1Yup/a28to3umkfG0RQ69Jc8Pq68rmtU3NDZ3X2Wne6cR1fTIG87CD5gedhPrCTHmjSV4kDkvXFNG800n9W6T3sWV3Fc0PZta+7oeqsbcU4rjORpFburempK9376mZz+HuGlY9KnHW9Kh0b3UPutJ8N+/MfG7rngzf6CQOG3Y62fixBta8t4nmnc60yKDl4YUcpsbZmu3Ss2l/yr0k3y27pOtt3F5B804ntnUF6Cw6zBVGXNeVzuf7Ealt9S0lNO90UrlZWii3PerAvauarucGOf6VTonvPdK9V20tpnmnk+obk3zvcczncFc1bXtc6Ep1lGwolO41Oc627K5awGFbcuzseW0EtVZF9Z3SNTU/XL2gbUtyjNDZdTTvdGJx5UMCnNuq5/P9SM1Cm31I6lt/rwuFQkHXr4aX5NudjHm53lJF804nhU1GmnZVsebxGlqy2jY/6KQlKWqtv7Oc5p1OSjZIc85Vb3Xi3jXfvlM2W32jxLcjKfJpe+QyDndXs+6d0veUb7BK7/Jt0rNrfbhqId/J2NTQUS+GQl3GR+xayHfKZgtqJQ61+VIG6OV8hM4icZjyEY4bpGvper4vyffiPgKg9h5n2kfY1hXI8hHW1NzwERdVm+10/myAS78cXNJHgDRXyea7oNJE+QbJnpfyEdkcrnrUyep319D+UfeKPqLtEeneUj6i/WNuqreXLOsjDJUS33X3SD+vfbJRlo8AqL9P8ieFbj1FDfnUv6VsRR+REjGtetSFpdLEzOQsgY6pJX2ExMt8Dg1FWuIz0rxmKR+RfuZJH9H2NhdVN67sI1qTNpvyEVqLBmtjwbI+wlKvp/kBR9pHlLZZQQkj+wPpz834CC3NDziov1f6uXGnk8Z7Klj7Tgfr3+uk5cFyWh7MzMsa76mg/l7pvam7s5zGeyrQlUrvRv7mGbq6urDb7fzmN7/hKv488fnPfx6lUhqHTZtJC5Vad1Xhfih7veKgeafks6pvsuF+0MH6d1Wz9t0uWndX0PpI5t1s2e2idXdq7LTRsttF5ZZiAucmmZ6YpWJ9RqTU+khNOn5Q2mahZbcL103SO9Syq4qW3S4Kqgzoi7W07KyhNemHCptNtOx2UX+nZM/N91ek93wA3I9IfqhljwNTpZaW3S6qt0nvUMNOR3o9BdD6aA2te6T3+shXujAV66m/V7rXunuktqnN9NY91emxEsC9y4njulJi4zNo8zW07HalRQerHnWl11MSh07cSQ7rbi+j7s5KbC0FFNQZaH3YScvD8zlM+SznjXZadrsoXS2Ns+veXUPro5fxnRxnKzZaadntwnGNNM627pauv/KGYrZ8qlniOxnfsK0uoGW3i5pbpbHN/WDlPF5a9tSw9ola1ryrhoI6g/S5t0r+ovkh1wK+W5LPxnGdncLqfGq3S9fU8MBifM+/fr0lj45n+ylymCW+k8KBlkcWctiU/F7nbRXSvSWTL7TtcaVjXGm+k+Ns7W1ltOx2YVtdQM+vBpiZmqHu1kxMN5tDxzWSzZZvkMbZ1keyrl+ZmmtJbcvXFUm8XG9Lfk7VvHs1lRqZicwS88awtkn3Vne7NK9376xc1GZBynzdstuF6w7p+hsfdOLetTjfWrOSlt0udIUSZ/U7kteQ1EG07qleYC8NO5Nx5m3Svbkfk2xtMZttTt5P/TaJb0uDkTPf72cuFqclKz4mxRyl6625pZSW3S7srRbp2TzqlHxEIgGJpX0EZGw2hTy9mpmIJEJZykekr+Hhalofkeyn8iarLB8BpH3ExHCY8z8bWNZHoJWuP+Uj6rc7KagypYXFi/mIFN+ut1SmfcTWzzSz5vGaZX1Ey24X1pZkgoKHnbQ+WsOGjzSk+V7KR7TtcaZ9staspOVhF2uSe8pL+Yj0vSZ9hOumEio321b0Eam5YcpHzE3HCfWFl/URWpvEd8pHVLaXotaq0lllF/MRDfcl58HbpeututVK1Y22lX3ELidml/Rs2h5xUlRvxtpoTt6PA/eDkh+ova2Ull1ObKuT+5a7HZl9VkBn1jAbTcavt1pxP+igfH0y3v5QxbzxsmWXE/e9ZWx6XxWNb7HSfG8JjqQosvm+Utz3ZvQs7h12Wu+T+LU26xid7iYWi3HTTTfxx4T6j/lhzz77LAqFgu7ubn78w2epStyB12DAXABDyQPxg71QkDlohXcMNGooKIKEQkFoMMLgUSmt58DhAEU1mY1f34UpZpJ16INDUUKDEbQWNRigf58Hm9uSbus5M048Lk3aI14Y75ti9ISPqbEZjHYNJautUsKJRILRU4F0+kiQ2nrOSpPpgb2jlK23UVRTQGIuwchxP2pthrZQ3xS+89L19r8+BtgJdY8DMHzMj81dQMmmAkYPjhO8NMl4r3SCbvCgH41OjfeEdFpt6KAXY4mOc9+ViGre42BiSMqIMXwogL5Qy/Ax6XMHD3nJz6oj6esKodarOPONXgzFSsxVRvr3S587uN+LxZXh0NsZStfIHj0TwLVVi7drInmvnvRLkOJwLrk5MzkSZrxviuEjHhrudjAbizM1lDkNOHY6mEmtGpY4HDspqaAHXh/DdUspqjzpWY2eCKDKqmcd6g+n+e5/fZSKzXYCvWEIQ2DNODPRTMrW8Z5J/N3J693vRaFSErwg9R084kNflJcuh5bN99AhP3l6NWMnks/mkA9jSUZBGOidoMhlpun+Sjp+PIDRpmcwmWJ6YJ+HAmeWHXaFiPilkx0Dvx1Ca8ijf5/kpPr3jVFUkznJ6+kYZzZ5esTTOUFJ3xSDB8YInAtTsqkAmzvzMmTzHR6KSjZ73JfkZQz7qqJ06bDFbDbFd9/rI5SttxH2holNzGC06/Cey6TKDfWH8XUkbWn/GCTseJL14IeP+dGY1NiaChbw3b/Pi0qjJHBO4mUoyXcKc9NzaeXn4OEAWrOGkaNB6ecD8202cHEifeK69/lBVHepGDrkT16Tdx7f2TYbvBBgvKmA/tfHGO8KU7alcL7NZvEd6M3YbOrZ2NyF6RKHnjPjxOcu8xEpvl8bo2SN5COqby4jPhufx+FiPmJyRHo2KR+RssOVfESeOVN+LNg3SSQgpTdZykcAoFAQ6J5kYjhMUU0+yjwlUyPRZX1Eyma9p/wUufMxWHTMTM4xeMCLxZU5EZXN91hHCHvbFP2vSxxOh2fRZNUB9pwZZy4ZHMn4iOS78LoHe1shnuOTqHXDmKoMxKezfET/FGOngkkOPZSsKSKcfDajJ4Oo8pR0PSudNpgYCOM5J93bwD4fFRsTBJLvwsiJIBqDdE2r3+lgYjSM71zSRxwIoFQrCfZIfmD4RACdJaMGHu8Lo9AqMJfomZ2ZIzQYwXMm+WyOBzHadSg0kr8P9EaYGpsG1Hi64xgs03guTOPthrnpMOaSzLsQ6J8mMinZofciWMqm6fVr2dAYITgJ6qxqdaMBmJ1JPqcABCdg+Owc+pFJBtVQXJlAn3QTg2EFSf0VIcAfhZ6w9GEXJlQ49HPYX5kAJvhR748A+Mu//Euu4s8b//AP/8CHPvQhvvOd73CN6h6Yg5HjwUzWCCB4aQrfBal28tAhyTcZSyXF/dBhH3nmzLwm0DWB/1LyHTroQ6VVETiTHGcP+rA2mHA/6uTsd3rxnQ8xMSz5rOHjQXSFeWm/P7DfS36Znu7nhhk+EsBxXXHa7/tO+zE7jAwdTs4T9nkpcGT8/tjZIOYqPcYyHVqrhkD3JAP7kr789flzldHTAWbD0tgZGo4QGp5EladMfq5n3jg7cjyQmatEINA9yehxH77Tk1hbTZSssRJJZpgePuafN84GL2X8/tD+MRIJG6On/Uz1Rhg67ENtyLzYwe7JtN8f2OcBhYJQt8TLTGwWZjLPz985wXhf0kcdCZBn0OBL+v3BfZLfT/nO0OAU/i7pOY6eGMdg0zF8PMn3AYnvFDxnxymqzyc2PkvgTACL0ySd0gH69o5RVJ2Zq4ydDTIdknzW2Z/0ULXJztAB6eRh/77L+D4RYG46OXb6IwS6Jxk54sF/Lszc9Bz2VZlMAIvxnZ4b7h2j4Z4qHNeUMfDbAMNH/Onndjnfg/vHSMTB3xOGCAv4zrbZoUNelBoloS6Jl8GD0lyl60dSWu6mXVVpvocOBdGa8hg7GUo+1/lzQ19HKG2zntMhTKV6hg4l+d4732Y9Z8fT4+xsbA4SCSkT0CJ8Z9usvydMoHsSY6kWpV5J/96xeTY7n+942mYBho6PUXtrJdHk915us/P5HqV0vY2psQhEWMh3ls0OHZSefWp9kPIRqaxXeUb1sj4ie24ox0dczrf7/gq0ljwClyaX9REpm53sCUk+Yq+HULf0Xcv5iJTNAnT/apiyjUVEkqfll/IRIK1nStZYASVz03EiwRiTWeVNLvcR8RkboeS9Dx32UbK2MP18lvMR2T5Za1CQmEvgSc7bl/IRl/M99KoPx+1WTHbTsj4iZbMpH9H76hhTvRFKNluW9BG+i5MEuicZOjhG2dYiZmZmCHdncnIv5SNAml/bVxVRuqYQhVLByLHlfUTJGiuR4SgoFAwfDaDSKNM2IfEt3dvg/jESczb8vcm18xE/aoMKfRE03ldF4NIUgUvJ9/5ICJVGyXhyfTN41I/OkkdiRro//4VJEsoE1up8PBcmmY0p8J5PPsdTYQyFGd/j644SDswx5/Hx4usH6fNdQqVS8V//9V9cxZ8v/uf//J/81V/9FQODA/zw+z+kKtHKRE8I3/kQQ4eS4+xrY1jrM+/QyHE/Kp0SW5MFjUGN73yIkaPSGDGwz4Ot2ZJuO3zYl34vokHpvdbb89BZlPS/7qFk9Vy6pNjQYd88v+87H8JzLsjUyAy6AgWl64qZSI5jgwe888ZO//kQvmQMYPCAFxQKiustxOfiDOzzzpsbes+MM55cew0fDaDRq/GfC0rX/7qH0g1FlGwoZPRwAM/pIBPD0neOngihL9IyclLyYf37vOSX6eh6VhpPau8pS/uhYEcQn9PIYPId73ttjKLqzBp15KQfjUHF+e8Pgk661+HDWXPDhiy+j/jSfmj0ZABLVT6+zuQ1vDqGvS0zzmbzTVT63LFTAeq2VTAbmSPYPZUuLzV00Ddv7PR3TuBJ8jC4fwxdoQa1To3OolzAt+/sOP5Lk5nnplYy0T1ONAhjpwMkMmdN5vN9ZBytKQ/vOanv4OuS3/ccl+7HcyqYmaucmcRo1zOc/Fvfqx4KHJmYwOipACWrCmnaUUHH9y7iO29i+EjGZufxfdyXHjuH9vsxlxjTfPe9PjbPZrP5jo5F8Z0PMXrCT6BjiiK3aR7fQ4e9C2x27FQyFrh3lNJoMcGLE4vznWWzw4c8kIBAzxQFDhPx2QSec5kScdl8Dx7yo8pTMX4hFU/woi/KoyS5UZJts8PHx9EW5DF2OhkD2yvZbAqxiZn0NflPBzBXGBg5FpTavu6dx/fICX967Bx+bRStMY+hw0m+Xx2bb7NZfI8PRtM+ItgVwboqf0UfMXrCn7wGyUdER5I2u4SPABjcN8ZcLM7EaJS2x2qYjc3hOeVblO+Uj5jqy/ycZ1an7XAlH5E9V/F2BJmeSMakl/ARKYyeDBDxT2OuMJBnUjMxEFnWR6T49ndPEuyfxFxuZC4SX9ZHhL3ReT55yhNFX5iJGS3lI0Dy3yXhOQJnI3TQR0GNAWYzfF/uI+KzCcYH5/vkS89J5TWW8hEpXlLz65bHnAR6JvAnfcJSPiIFz6kgyjwF1sYC4oqE5DuX8hFJvgHGLwTwnTfhORfAd3KSKW90SR8R7I9In3vES9PuKiZGwunPkfj2p+OG0bFYxmYTiXTc0FiqB6U011Wosji8MInnbDLOedDPbKyA8MgEROH7z/yCRCLBZz7zGa7izxvPP/88b3nLW/jud7/LdUop5jWwz0tefmauMnZ6PB37HTkeQp2nJL/KgEKpYOB1D7qsNerIMT+TyfXf2JkQusI8PGdSft+DrcVMwwMVdP5okJFjfsLJ8q+BzhBjVUZGTwSltq95MFcZGDkYINAdpnR9ATNJPxQenGTsVJDhw6l9HS9F9Zl3aOiwF7PDSEGNiYJkfDy97tznpbgpEzQa3O/N+KEY+C+Mo9ZJc4yB/V6mp+aIJbcsBvbPH2c9p8fxdowTODeJuVpHyRoroZFY+l6z5yqe08F0vGnkmB+lVkng0gTjF8IM7vOiyZobjh4PEOqX/P7YyXHyDBoCyTVrLDQjlTlYhG9vxyQGW5DRU6H0NZhKdcxOJfdyuicIXJSuIXRpQuLwqORz+17zUJi1xzl0xIe9zUIkMM14f1ji8Ghqf+4yvg94037/zLO9VG0sZuRI6tl4sLUswTcwdiqI50yQYOcUs5FZZqJzxLwShwN7vfPmKp4zEt8AI4e9WGpMONpLGPitj4F98/keOxEgkLTZ0eN+KY51aZxYSPLP2TabzffoqRDagjx855N7zK97MNh1dD8v7aHUbCtN26yvawpjaZDR40m+X5VsNoXhI750PGmyN8TYqSAjx1L7i5fxfdib9vszU7PMxuYYPuhJP8fipkzmp2y+Y6E4Y6eCmMp16Au1DOz3EpuYTZf1utxmU3wDDB4Yo6DaSNiT3IfddxnfWTabevbB3imISbGHbJvN5nv4WACVVsV4VzImk/QR6fJwCpb1EabSzDgrx0ekeTniYyY0S/22UgpcJjznlvcRKb4nPbG0jwhdihKfjS/rI8ZOBdNzlc6fDlCxtZjA2eiifKd8BMDwIS/xmQShQIyZ8ByRQJSJoUhW2/k+QqFWMtkvcTi4z0v5ViuKZAmy5XzEwGtjGJJJPDRmDXPT8XQsbSkfkc1h1D/NyMEAZddYMNmNy/qIlE/O9hGh3hjWFvOSPiIWyvBd2Gxibjae3sNcwDeX2ewhLzPROcrWFKPWquh9ZXRZH5GIQ2goAigY2CfNDVPv69jJYMZHHJP2OEOXkhy+7kVXpAEttO2qYvTUOBMDSR9xZhKtWY3vfHLevt+HwZaXzsI5cjwAKrC3FjLeN8lcLMFoat/14DjmLL6HT4aIBWeJT05yuGM/XeMdqNVqvvvd7/LHhCLxRy7a+81vfpO3v/3tAFxX+T4MBgNzVtPynQDlGXn18rJReW0+lRsshPrDnP5m78odsuC4pZi+l7xZdYGWR9mWQob3i9VFNxQrWfPeJmYjc0J130s2FeC6sYwDX+pIVe65CgGUbCqg5rZyel4eSQtF5KD17a60gEguWt7qwOwwsu+vz4ldZGp8Eni+6z8g1Ss+/A9i9YpzQfvTbqYnZt7w73LcYqNiUzFnf9jLeJd8MgzlOsJD0ZUbZmHd+2rJy89j/9+KPavG3ZWE+qeEbGnzp5qYmZzl6JcuCH2XLCxWo1SuG1eqFv4uEZf5vYsk3vtD+i6Dte+VlM0nv9aXTlu4EkzVBtp2VzI9McuRL3VLX6teRIerWshB2UYTw4cmF162ZmF/RaGF8tUw1Em6XJZcbHo0n3gCXjmmX7adfmDhtXg2Wlb8fPsryQBX/m85fOQwVqsVr9crdpFX8ScJpVJJIpFATR43qu4DpPKIKyExM71im8ux5dPNKFUK8TrieihbU8TwPr/sLiUbLIwK1rHe+OEGNCY1x/65g4hfpo8CVr2jmgRw6mvi89GrgLVP1qLRq4Xmu2VbizCW6dLiF7nY/MkmIt4YJwWflb5UlxajyEHxqnzq7qzg0ksjwnYoipTd7v1fgu9VDtjwwXrmpuMc+/JF+Z1Sw5bguLf1M834uyY4/8yA7D7WVhMlq4s4+599KzdOwnGrnYpNVs4/24tfYB5/FRL0RdD2jkYu/nIQ3+mFc5ClsOljjaj1Kvb+3Vkx29CDrdmM52ho5bYACgXl1xUx9Kr88QOg7R0u8sv0XHxxlLFjy99XSqSUDZXNukjL+Zjz+IjMRbhQcoBgMMhzzz13teTI/wM4ePAgmzdvBuBa7kKn0C2+RrscOYTebGsKqL+7gvHeKc58SyzmVbqliJH98t8b66p8SZQgsszWQfvH3cxMznLoi52yuxU2GanbVsGpr3cSDQp831UAUiaJpgecDOzzpk/1ykHTQ5WMngwQ6JhauXES9TvKsTaZ2f+5DrGLTMW3Bexp9TurUeWpOPrPb0Ac5TK0P+0mNj7DkX98Y2NetnUF1NxSStdzg/jPyh9jdXYd0TGxmFfrYy4MJVoO/h/583GAmrtLmRqOMXpYfsxr44cbmA7PcuKr3ULfdRUSWh5zokDB6W/1yO6jsyhZ9/4mYsEZjvyTmN3a1hSkRWVyULKhkNHTAbHxAGj/rJu52TgH/vcKNrjIeKjU6RZpOB/xqHRBobV9HDx6kOLiYjwej9hFXsWfJIxGI+FwmDy0XK+8B5AZ85pdOMdfCRs+0kCeXs3evxZcm2vB3mph7EhQdhdrmxnfKZlroiRWvaMaU5meI1+9SMwTW7lDEo0PVqLOU3JGYJ19FRm0PuZEW5jHkf8r3/9a28zkV+gz4heZ2PChBiLeKGe+I/astMXatIBKDsxOLY0POOn//Rgjb3DMa/UT1RhL9eKx5By/Kx5PcOrrPfI7pfTJ8ukDYPPHG/F1hLjw82HZfVKCwa5nB2X3sa0uoOaOUjp/PkjgnPz55FUkoYX176qn+zfDQvytfU8t+mItR/7xbFoMKheFzSb536VQULrBIvwe1u8ox9ZaQPcLo4weWX6ely4VnAWl0bBIy/mIT0r3cLb0dbxeL9/73ve47777hK5zJfxRy70BvO1tb0Od3Bh+deCfAVD5JlH5Vn4gjuvNbHhPxYrtUhh4bYILL/jEBUq32ahqt9P2Fy7ZfVICJUP5ypPmFMLeOBd/PSi0YQNgsOlQaZXp0mRysfmTTWz9bLPYd5XrWP+BOgzFYqZgqjFQdk3hyg2zYG0z0vxI1coNs1D/YAXtT7uFrm/KO4NCqcBoW14IcDlO/0ePkEAJQKlRSiKKld/neWj/qJv1T9QJ9dEYNaj1gsnPDKTL4b3RsLYZKagXI0JXrEWhVqAUvK0176hhYzJ9oFwo1UpRrQwA5783ICRQAlAqFfNUsnKw+RNNbP5k0/KNLgt+l22xUH9fubygeJZAqWZ7Jm2fLFIUSla9w0F1Vqk0OX0bd1fQ/lQz9nX5y7a7HDpLHkabTrZACWDyUpiOZwc4871lBEoAc5ljqoaki71coKTQqBcVKKVQ2WZk4w7Blx44cAyOLDMc6Acm5wmU6jfAuttX/lz7K6NpgdJo6AJHjx2loKCA1157Tfgar+JPE/39UhbGWabxz0mnMBJzcySy7H0pbPhgPa475M83Tn23h71fEF9Ubv1wM9W3lq7cMAspYYi+VP7c6/Q3L3DiW5eEBEoAxhJduhyrXJRsttD+tFuIP4DqbaXpEl2i/URRu6MsXbZLLjZ/somNHxYbY9V5qnmnXuVgeJ9fWKAEoFQpUGnFxtiNH2lg7TtrVm6YBVWeCmWeMn3CRy4sDXosDWJz0Jygl4R8CH6VWq9GYxSbeG18TwPtH3ML9dEns7UpBe3Cd3pSSKAEoC3QoFAqiIzKn8eba/S0PyX+/jY+VCn8fMu2FqGvEOtjdOpZ855a9EVitr71M83Cc+SyrWWodSry8vNWbpyFg393nq7nBoQESvpSHUSQL1ACVr+rGtcNJZRsKFi5cRZOfa2Hzl8MLStQSszMzhMobfxwLeXXrrx2mvP4mPNI4+3r/IzR0VGampquCpT+H8GmTZsoKpIyB77GL6RfJhKyREilW4rY8MF62d/lOT7OuWd6hQVKtjUF1NxWSluyXKQc+E5KAiWdyLgXhfM/7RcSKAHkmfLQGNWUbhLzwRs+WM+WT62wZr4MOouSVU9Up8scyO6XLIsmgoJanbQ+F4DjZhtbP+sWur6oJ4JCpURboFm5cRY6fjAgJFACad6lUCnF7AJJvLbuHWIxr7x8jfAcBZ1k74hdXk4oqNWly3XJhcGqRaVVzcsmLwfr3l0j5CsAVDql8LwLoPvnI0ICJQCFWoFaK3ZP6z9Qz6aPNQr1KXKbqN4u5icAnLfZV250GZp2Vwn3c9xso/0pd7o0m1yYyvSYBPYXAKLBOMe/0c2Zb8s/aJB6b0UESgC1byljy4fEfC3A3r8/x6nvLjNeXTZWOm62se7Jlf1EPBpNC5SCiSCHjx8mPz+fV199Vfgar+JPE36/JLqeJoY/LgnT5Ma8Vr2jGsdtthXbpXDq270c+SfxmNfG9zVSd6fYHCAlUEqVD5OD889c4vS3xQRKAAVOIybBNamlwUj7Z9047xDzjeXXFNGYLGUmgoprVz4kcjkcN9sobF45QUY21n+gnvXvFxtj1TrVvIz1cuA7FRIWKAGoNIp0tiy5WPOuGta/p1b4u9Q6NVqrWBzAVKnFXH0FJl4glROT/3oAUnYebYHYPbXtcdH+CbGYF1pQqJUoBfcAQ5eiQgIlAF1hHgq1krB3ZuXGqcszK9ny6WYh/wdSNi7R52ttM6MvE3tQWrOStsddQv4PJGHY+g+Ivb/l64rQFmjmZX6Xg2Nfuci5H/UJCZRS9yMihmrcWUHNW8oo3SS29uz6yRBnv9+3rEApEU/MEyitfU81pZssK352fHIyLVB6Of4sQ0NDNDY2/tEFSvBHLveWwszMTDJtWIILY/uos28FJLHSclmVrHVG1DolBjuEx+R9l/esFIyu3lbCpeflOf2+Fz1YHEZOfa9H3pck4X7UgaXaRO/Lowy+6lu5AzB6UDIQQ7GSsFfehtml50a59LtR4SxKM1OzwsKIgmo92oI8qu+s5My35W8IrNrjIhFPCIk36u6sEt5UivmnScQTmBwmwl553mCyO5zTSfTae8uwNpiFTh0JKXKzEA3EGDsjtkgUzQAE0PKAA0uyXINoJjBRNN4rbbiKKKI7vz+AWDhTQsQTw3NejL9cskK1vt2FrkDDYQGVPMC+vxF/Vol4ApaKJy0hQnJcV4JKq5RS5isUiwfGL8ue1LirnOJ6Myqdiq4fJVXeCuXiWZGyREimUj2GYh2Xnpd5SkmhZGZyjsRcgrGjE/L6JLH/811iwj8DUnnIjjAKtRrFSiPb3ByoVKx6xEkikeDAP0i+bzlhUjZGOyPMxOQLIGz1EJ2CkYR+Ub++WOYkgAIbqDXSWLoUUuKkFI6P/BiAsrIymprEg0pX8aeJiooKmpqa6Ojo4Ci/4VZ2pf+WmJtb+oSZHvLMGoqbzPT8Wt4caqpX2o0uapZeUrlZS1JlUUXR/lk3iURCtl+N+OPgjwhnftn3xXPCWWJGTwapvqmM2WkxQVTJqkKUarENhObdVRQ1mEnMJWQ/K/RQ0lZIUXU+3pPy/XBiLkFiVizbg+jmZAobPljP5EiUju/3y+6Tyxg7ejKIJauUrKw+h4M5ZVByP1RNIi7fZnOF8zo7lVtsmCr1XPyJ/FNb+z8nfl3DR/xYm8wrN8xCZCSa0ym5TR9rZPRkgN4XZC4Gga4fDdKFWJBHb9NCAqY8IgobqZScucLAoU75Nl99cykoxObI1TeVYLBp0ZfoiPjlLwpnI3NMT4idGO5+bpju3w6LiY2KlET8cSGxkfN2OxWbixk9FRCy2RPfvkTrQ05GD8uf+ztvs9P74hi+s4vf1GKZk8zVejQGNcWN+Qy9tvS6KSVOArgwdzL9/+PHj8u+vqv404fPlymjdCFxmjpFq/SHRGLZAyS2RjN5Zg35Th0TvfJSVKREJVU3FdP/O3nzKc/xcWwtBZz9kZjos3p7CWXrrPS/Nib7u3zJOYbOokyXRlsJo4cDOWXpiAVnhBNS6Uv1mMr0uG6wC4lg176jBhIIiTfqtlehLdDQ9csh2fc25Y1CPIHRriU8IK9TNAj7RDM8INlQ6ZoioXnb+R8NguAYC1LJdl+H2JHjQ38vPp+sua2UsrVWtAUaoaxSuaD5QRcKlVKI+94Xx+h9Uf6cJoWJvjCBHrGT8if+VTyrUcP9FZjK9MLZq0SzNQEkZhIkVGIvcPUtZWgtGi69NCr7nXLcbKNyqw2dWZO0X3korM2nwGEUel6z0/FkmRKx+OSBz3eICeuSbeX6iBTW/IULhVLJvr8R8xc9L4ttqlvqpcV38EJ08WtcwnEXNxegK8xblouUOCmFI4qXSMQTVFVVXY15/T8ErVbLjh07+MlPfsJRXuZWHkz/bdmYF9KBNLVORd+L8uLZKfGPqVKLSqdi/IK8tVjvy6OodeKnozd/ohGFQsn+z8tbp8dCUjkiQBJvyNQqHfyn88JZYoKdU8xG55idWlkMlo3yzcXkCR60d95hp3KzDbVRRe+v5fvhynablBnxnPy9m8RcgsSc2Hh0PIcxFiSRXMQ/LSRKOZDDGDty1E9RvVjMJtQbEx4fAFoflebIcm02V1jbzDTdV8XoMb9QpqLDOcwnR08EiQvGdonltl+7/v31jJ4MCM1b+1/20P+yWOZAfamexFyc6YB8YRNA6boiCmvzhbI21t1ZhlKtFIqDVt1QQn6lAVOZWAaw2PgMs1ExnzS0z8/QUb+QD9SalcRCcSGxkX29hbo7yxk55qf7uRHZ/c7/fJBGYOSg/HVneXsRQ3v9jHcvPjdcLHOStlgSatmazIwcDC752SlxEsBIvI9ZpPjZoUOHZF+fCP7o5d5S2L59O88//zwAdzR8Yt7fFhMqpcu9JTebRbD28RK0BXlceH6QMYFAKYmE0Pfpi6Ht7Y2c/o8u2YIjyEqF/4WzQvdmKNeht6rwnRI76SSKgnqDUKktkAQ9od5JPMflb3pZ26TNoTf6flIQva+1/6OW/z977x3d1nWme/8AEMBBJQACBMBOkGCBKIlNlKi4t8RW7NiOa9zi3mIn7rEdf3fdOzeZzEwyk957PImTOHF3iuM4cVPvhZIoURR77yQIFuD74wAgKVHi3pyRxjfhs5bXsqS9cc55zz7v2efdz34eU5qR7d/eR1i2trGIcXs6YA2YyTvTw+HXjkpd02Ls3gIf9aHRaTj8kvik4bRiEfdo9eMl6IxaKdKbOcfMWM/Yf+94OFGh2ww5H/LMfGgdm87ns3czw7Irs9j77DHWK8eSlI5VSTKD2W1mrGmeC1uorwSyznbS+s6AVJ9VDxWQoujY8M0G8bjrdJRe5UGbomXvc51iBKX4GNI4HXLn9wnVB/2tbVqOlbw4EUHp2GPOZ/d2LEFpKO0dNm7ciNlsZnhYjhi2hL8PJBbLrDhZo5srwzVf0SY2OaEOSUlyDqjviehkbFGEB5ljln0yj8jwJPUSBWaTS0vF/SVMDE1Kk0z9tXKWdIuBJdeUJHsJwwQll2VLkXkAss710PLWaZLAN4HJZSLcKn5taz8XYnJUziImcazFjNvTgcA6P9OT01Ikm8XYvZl8Cvnnp3Pkr91SMT9tWMQ9suSaWHlzvrStkT1gYqjh9MQgrczK5Ni01PHcK2xY/WZxgmEcp+O60sqsjLWNEJZIe4kcO94/IWVtbPIplF2fw+bvHBQfG4lxJKIaGoe/1kn++T5GO8bZ9bPj3x3zEZSOOx7z273NJigB1GduoKW1hVtuuYUf/vCHwue4hL8PPPXUU/zzP/8zABdorpr7jyez6FaQJucsvzUPW5aZw79vl1Y8kTqeokrh732uWcpqqvyeAsweI9u+vk/Kvk1xaDH5TNLqPrKQIYUlkHOeh5GOsJRFly1XIcWkO+XXM/t4MtcVuiEHR8DKjh83SJMdFjNuTwcUn0LeWW4a/9ojNWYXY/eWfa4bnV5H45/kVRFOCxZxj6oeDGK06aVsjRSfwvjA+GkbDxlnpNH2rthG4QSKrszk4Out0udozlLknw1JeKud0nm88v5CFJeBbV/fL0wGBSi4zI/RphcnaC7yOV/9eAk6g5b3Pz9PbWChZaf4MeezezuWoDRW3c7GbRswmUxLNa9/UOh0OqLRKDZcrNbOVTCdt+Y1NSVF5JmNtU+HmJ6cXti+cD5IHDN4RSbRySiHX5VYTzHC2kdDhPsjbP+WhI07qm1U9045YqUsjB6jSqSSjHvhpX4O/aldqp+vxknHzv5F3WNpGMFoN0qpWK15spTJkSlpm87FjtvTgayz3cSmY7RKvJsXY/dmtEPOeRm0bOwl3P4BDMYi7pHRDlUPhhg8MiJlvWjNMjLScnpiYM9XIBpj6Kj48VILzdgyzdIbBk7HddnzFSLDMSkiFEZVFTbcE2H7d8RzrNGuJfSJfPb94rC4+lJiHEnUvBxFFkJX5zDcOsaen7cc9+/zEZSOOx7z273NJigBNORtpbGxkVtuuYUf/ehHwucog1NGUoKZxTINWi4qevS4f59NVkqSlAB3yExGpY1dzy784RcdGcHkhsDFOVJKQAAVdwcweYzs+GEDY22n7iMk53wPnmWpbP2a3M6Utc+E1J3Y803yTwBnqZngumxpizngA0u0wQyB83w0vCrOPqx6sBBjqkGaGLYYrH0mxNT4tNROouCVmZhcBnb94MjCjeNIXtMiVKJksRiS0mJQ81gxKYpO6poyz0zDu9LBth8dFr635gyF8tsDhLvlXiyLwZonS9GmaKSuyVuTysTw5PF2gxIvpyQSKX0+gtKCfePFjnkISgvG+pi+ZZ/MYXoiSt0vjn9RngiFl3nxrnDS3zBC3XPihIS8D3twFVjZ/j2Jxfv4x6uoehJA9T0Z6PQaNj0rV3ROzYa03BQa3p1iNKRK5J6MnOTNg/Rc2P23mb+bTVI6lpwE0DPWxM6O51EUha997WvceuutUue4hL8PvPDCC1x55ZUAVHIhLp3ruDazCzexyYnk/6+8K0DzOx3CykiFV2bQvrVfmmyzaFKKJCruL6B79yAtb4t/IC27ORdHnqqYKdMvdEMOsekYdc/JEYg+yESbtDIrGq1GSoFp7TMhpiLTbFpMEU8CFfeqnuDvf2mfcPxMLii+poD2Lb1S6khrnwkxOXLqx+tiSEqLxdpnQox2jkvttl9xez7D7WGOvC4+F1/MHG8xMGWaqLgtn9H2cXb+QPya8j7slSYNnTYsMjeseqiIAy81SxGb1j4dklZ5wgQVtxXQtlHueZLFHNKa5Hd+6IYc9v2uCcKgMaiS3icjJ628M5ejf+1ioH4mdrNJSseSkwDenP4NMaKEQiH27t0rdX5L+PuB0WhkYmICLVrO01x5fIPZ33OzSm+pBQo5Z/vElZkVKLksi/2/Fv+2Aii9PhtnoW1xpBQJeMpTyVidxs6fNkgtcNc+HYJojPUSu5BtuQpFl2XLL/bAB5ZoAyopqukv4sTy5bfkYcsxs+37DYx3nNqLWvu5EJNjU1JKR7kXpmP1m6RIx8tvy8OWaT5t8yFZktJiUPVAEGOqXuo96ylPxV/t4uDzR8RJf4q6mDLaEWbn98XrjIvBqkeL0Jvk5q2ukJXo5PSc9+wHCovIDcUfzwSQUmvKqHWRf6Gfvvoh6n4p/u2YUevCs8LBzu8uTslDFNWfDqK36qWV2sxZCr4KBw2vdMy8906y3OQImsg+w8vuHzcm/242SelYchLAaGyAzSl/xWAw8OUvf5l77rlH6hyX8PeBffv2sWzZMgBqOA+79vhNBXNqXlMz8/+S67Lp3NkvrIqRc56HgcNDUgv18F8gpUhi+a159O4fok1ik11gnQ9/VRpH/9YpRSYIrPOhM+ikLao+yEQbe76CTkmRUklZ+3SIifDUopR6ZBC6PgdHoZWtX91PZEiQmGqEsmty6Nw1KEVCq32qlMjQpNTmo8VgMSSlxWLt50IMt47NeccshOJrsgj3RKTm4pX3F6I4Daf8mox2qPp0iOEWuWvKPCON1s29H8xncJG5oeKeAg7/vkUqL69+rBitXietGrb81jy6dw/QcQprXka3kap7Chg4PMI+yTWF2aTOxHvvZOSk0PVZtG7qYfDwzBxrNknpWHISwNvRl5kgQnFxMfv375c6PxksXu5CAKOj6kJujCj7Ot487t91veqFzyYoAeSf68LsNmB0iB0n3EOycGkNiHsEdezoYzoShYmJhRvPQtUDhdQ+XSrcvunNbmmCEkB/wwgNb7RJ9Ulf6SLFpCPnIjmv2LXPhKi5X84bvOrBQlZ/Vk5adcWd+az9nJy/Z9UdhfgqXJgl/LpbNnQzKrGL6r+CcF+Enjo5BnpasR2rX84HeLBpjKmwnJSdOcfMqoeL8NbI+aMvBpWfKqT0hhypPiPtYSaGJSUHK5woTqMc+WxigsjABB07Tq06BkDX7n6GWuSYcYELMii9Km/uXy5AUKp6oIDap07w/J2AoBS8wkftk0VY80+SJ48hKFnzzax9qJiyW7JPej7H9rVnmHDkiudjjVbD4Ve7GO0OSxGUAI6+2S9FUApd72fNQ7mYvVKHYaQzwoSMxK0Z9GYYbIaGd2c+jBdST8ouBUuqBuOs8Hk2DwDzE5QAtrY8x9TUFE6nc4mg9A+MK664gqws1fd9G2/M2yY2rY7h2QQlU6YJi1chcFGm8LEO/a6N0aNhTD7lWIGwk2JieFI6R1pyTax9OkTw4+Lnt/2bh6WIRgB7f3OUodYx6X6OPCuOwIntjOfD8tvzWftoCJNLfCruKjWz9ukQORfIzfFqnypl5d0BqT7FV+RQcLF4vAEGj47Sse3UWssCdOzoJyyzAwYALZZ0BV/l8cS9k2FiSH68hm7IYeVdcvFeDLyrHVR/Oig1hjDB5MgUA5L2IdYME55lcnPJnn1DjLafhrl4OMxo+zgtG8SVqxxFJjJXu6Wfi7WfCxG6KVeqz+onSii/p0CqT82niqW/lwLr/OitKdIS74f/3EbXvgGpPoTVHCtDUKp9qlT6uYhGYkxFpmnfLF4otOSqL6R9/9k0h+h1MoKSyafHkq4QvCRjzt8niEnzEZT2T28hhlow3rJli/D5LeHvD4ODah0gSpS62LbjGyQWaY9ZrC28JBtbphklXbDGMU6SoGTOEq+LtG/pYXJsiqhcyYvlt+axRqLW071jUF08l0z7Xbv7OfR7uZqXs8CG0aEn7yK5j7nap0OsurdIqs+KO/KpeUyuTlZyXbZKvpI5zu15ZJ+RTmqBRM1rYzfDTWMwz2L+fzeGm8fo3iNX80pf7iBV0mp34MgIkcFJKRssxaGl8v5CPJWnvua1/LY8Sq7Jkuoz1DzKeL/cA+ircGLLMCNbsh/tCNOxfUCqz2LQvrmP/kNyKjaFl2QSui5fqs/y2+TyEKjqDrVPlibtx0SgOLSsfSzEspvl5njOoA1Xsdy4a1vfx0DjCHUvyC1Eta3vkyIoFVzmp/apkNT7AtTvuciAxHhV1PiNtYyrBKUEFtgPH7goE1uWGcV3PDFpPoISwHr+zNTUFG63e4mg9A+MUCjEWWedBcAm/jJvm2TNaxZByWgHV6FNteEWRNNfuhk6GsFoR11QF0S4e5xBye9to9vImidKCF6esXDjOHb/uFGKoATQ8FoHfQeHpdVO0sscpBXZpPoEr8hk7WMhTH7x4Jn8RlY/XkzOeR6pY61+rJjlt+ZJ9Sn7RIDgJXI1r+66Qdo3ySn7LQaduwYYbhoFJOzHImDPs+KrdEoda6xrnMFGuc3YgXU+yiTfmYuBs9RK+V0BjB6JBxB1rXbgiNw1pQXtpK+Ui13nzn7pZ30xiESgr36Ylg3iz63RbST3XC/Lb8iTOtaaz5ZSLDnXrfpMkOW3yR2n8o5Cap8S51eAStg2uY24Sh1S/Q6+2krnItaEd/+4UYqgtPqxYpbfIvlcTEwSGZykc5f4cRI59dArc1XnTkZQMtrBkW+h8CNz3zHRUbXePR9BqTl6mIn4ATZt2iR8fouBnDmoJMxmM1dddRXPP/88zUNbybPXYjbPXbTW9Y4Qm5wEvT75d5t/3ILFoyMycPLfj46OqYvicQWPmkeKSDHp2PGjBsbaFl68aN/QT/sG+cWU6YkoLEJ/SmVST7L162KEpToJybcEDjzXotpNzWfJdBJMDE8y3CG3o0Wr1aKVVHqZHp8mFothciNsP9bwRhvuUqeU2lXnpkE6N8lLV9Y+XQoxpPwzt39TXplnw1frpBWeDr0oV7wDSM0worek4AqmLioeMlCcBvRWuZSy71n5Mb71a4cwueX6jPVEhZ+7BAIf9eGrcNHyfjdNb4ovjsgofiVw6PUWHIFZi0oCz1V0OnacyxpwUgUlo1WPRqth5Mj8g0+j0837Qpsan6Z9y4kn4Rqthlh0bgHt/S8cwJyzMElJo517rTu/Lz4mzB4tK28vpGPnAI1viE82tDoNsViMcJ/ceN3/Qi9EY2jSxCatVZeaVeWl343CGMSGRzBvHCGWeXKCwZbfgzsrRmTWbdI0dZA+Nv97bcChSi4pikJTk/wztYS/LzQ3NyeVLN+efomzdB87rk2iaJNAuDXMgRea6N0j93FlcmmpuDMgpTQja78GJNWadClyhfrAOj++cifv/7ug4k4Ydv9Qfufx9p8ckbbb6tjei5LqA4MB0RW9vsYx0IDJaZA6ViwK0Sm5iWvn7n76D8jNG2R2yieQf4kPf5WLxr920vaOWLGnfX2ftCVfuC/Ktm/slbK0gsWNV3uWGa3+lO4DAcBdnIrBrkfvMBLuExx/YRalCvX+P+2TIiMCNLwmb/9b+1QpsShSNpLhPqQUlAAGDobp3NNP+1bx70BTpolYNMbEqBy5XqPVoJEUtxxqGsPklnvOG15rp33HgHQu6tw4QCcDwu0rP1VIikknpSCLSc1Dk5KbLcId4zPKbAJzY0uuiZU35ak2dInvs1iMWCRy0vlxuGOSfb9uOl7dITo9L0EpPB1m2j9GSncKd911FyaT5MOxhL8rKIrC//7f/5v/9b/+F600kB8LoWiOWRSeZ7F269frSS1QpOypYMZWTVQZaaA+zOYvy+f9yfC0+q0pqS6y6uEiJsem2SGoXnz4Zfl3RdNfuunaNyytHjTWM05Ywp4DQKPTHPe9uhAmRieJTUdVSyzBczz0xw58FY45O1sXQv/+0UXZyq1+vASNFjZ8UXw37O6fNkofZ/O3DkqT1prf6qH5LbmFU32qAcVlIK3ITve2U1vzsvrNTE/IvcvqF1HH2/3jRhQHUtaJjCOtoORb4yJwoY/WDT0cfUOc7C27uA1w8KUmnEVyROro1AlqXieByWkArYaBZon5kMHAxNCk9KbGDV/cP4dkIwqpbyYFah8O0b6lV8pmUJeihVhMWkFPdrxW3aUqhc2xoRMw7Nj2zUM4SyzH5cgTEZRGV7Wi2axBURSOHpX/5lzC3xf+9re/JW3f3o2+zhnaS45rc2zNKzIEe59rZPCQ5GKMUbVmigxOCisj7ZRwzUieX0+EWCwGknOOjA+5yDnTy/ZvHRBW3Kl7Tr5uvP1HR6QszgA6d/Riy5T7Tgq3R9DotBjt+oUbz8L0dIzopNwLo2V9N4NNcvOo+t9JKkmh2tEFLvJz9K+dwvZovXuH6N0r6hU1g61f3SduMRXHYsarM2jDYD6ltAL1OAEr5nQFa7qcxZ6sBSKg2t7KcaFofbdXyvIOYNUjxWi1sFGmnhKB/ZIqO5GeCC3vdTNwWHxAGO0Qm44yNSY319VqNei0cjXQvsPDpGaJixuAStjuPTQqnYv660akFNOW35KL0WVki2TtNBqFqYhc7T0yFJ15twjUvIxuIxW3BQj3Rtj+nXgdNBZTSbknqXlFhmDXTxsZOXbDb3R6XoJSJBphLKsbXbuOe++9F7tdbg4vi1Nq95aAXq9nKs5e/nDR48f9e6y5bXbj5P+a0yFwfjp7fjn/x1KC6ZWAt9pG1mo3W78hmIjil15xXwGK0yBlq7YY1D5VyuTolNSCR8HH/HhXOKl7vvF4K6iTwQxWn5mRhg+if9vpQdG1Wdj9JinLsqoHC4lOxKQswdIr7WSfkb4otSwZmNyQd1E2zRt6T/l9PV12b8ErMxnpHKP9vVOrvFB6Qw5aLVJWEf41TnLO8bL7Z43CBLnCyzNwBqxs/s7BxdsMLsbiDY63aJPqOnPMk3qWCvZNW2amd+/JA3BssXfNY0Gi0zE2/bvAcxS/Vn+tnbyz0znyZied2+QLtBpFbPYZusqNzWdk9y9aGOtBmKTkXw7ufIVd/zm3iHcikpKvAFLdcGDjrHNsmkV6cx9/3H0db9I2ugO73c7LL7/MGWecIXRuS/j7xu7du1mxYgUA+ZRRoFt2fKPo/B8dpddl07mzV9j2reLeAlo2dtO9TfzDx5RpouKT+fQeHOLAb+RsS2SQdZabnLPSOfhys5Rt2eonSojFYtK2Za5Ss3Dc/i5hguq7gnTtHaTpz2ILHfaAiZKrcmj4Q5vUPQrdmMvE2CSHfie/8CMDf60Lk8u4KMKNDE6X3Zs9YMJflcaBV1tOrdVg3A6s6W+dUuTH8ntUpZ0d3xEnHVV/Okh/wwiHXzm19+iDDHvAxFB7WOqeeirtBNdl0bK+R/h5BTXeOkXHxn85dVLPoErpD3eEZ4ijgvPjivsCHP1LB311x8wLT1CwWX5bDodebJpLYJz9fpyn319ivyEajbJixQp27twpdF5L+PuHw+FIqipdoLlKuJ/i0FJwWbbworUjaCL3PL+05c+ym3OxZ5qlbNUWg5rHipkam2bbN8VrI1lnu8k5M539v2uib58EYV4Bm1dh+OgH1L/tNCD/I16cBTapeK+4PQ+AXT9sFO7jLLGQc7ZX2s5PGgoEP5JBx/a+U35fT5fdW95FXsJ9E3RuObU1r8ClPgxmPft/Jb6I5QpZKbg4g/3PNwnHO/tcN56Qg20/PPSBtU48HXAETdLWdTWPqqpsm74k/o3pClkpviKHI2920LHh1CnDBy/PwB1ysP1HcvaRaSvUdRhRgpwjaMK7wiVlkdccO8Qh3W4sFgu/+MUvWLdunXDfJfz9oru7m/R0tbYaIERAO0/N6wRLnoFLfPQfEV+0Lrsph/YdA/Tullns11JxbxG9B4flLdIkkLbMTvCyTOpfbZU6v6oHgmj0GmnbMnu+wtCRf+Dkb4TyWwL0HBgSJuwa3UbKbsyh8Y1OKeJR4aV+otMxGl6X3wwvg7Tldiweo5TN2WJwuuzeTH4j/gonre92SBO2ZLH8tjya3+1m4KD4mlTo+hx0ilbKtm3lHfkMNI9y9I/idZu/N5j8RsJ9ESmLOHuukWU3FND8XpcUwX7F7fkoDgObviy3JiCL1Y8XM9IaZm9CqEaw5rX85lxaNvXSX3dMDf0ENa/iqzNofKubSM+sDZeza17zHPfN6PPEiFFWVsbu3buFzuu/glO/zReYnJwJwFuHv7VQ4+T/hq7MxOo1YhZU3uvcMpwkKC2otDJropJURpIj71FxXwEV94vL96//Qp30juyefYPEojGUVDkq59pHQiy/Tk5eLHh1ZvKjSRhmKL5OTgIOMyy7Sc4WrOjaLCmLPQBHtgWDTY55vfVrh6QISqBa7BlTDXjKxWUv/R9ysvaZEDnni8tXOgqduArt5J0lZ/PyQYZnWSq5Z4lLrQLUPlnKqs/IybQ78iyk5slZ8bRv6GfjF/dLKXg58izoLSlSBKWqBwpnJOQFX0b5l3jxrpKTlc46x0V65fFj9Fiy0Ow/B6/wUfNw4Qlz43y7SvMv8VB8eTal18lJpk5PRtVcvBBmkbHa1w+x/ouHhAlK5iw9NQ/lYy+QS/YaLcRiMcbi85lY7wIFRpP6X/tujiMonQw5JeD0zsR0DkFpHoyNjdE8tJXp6WnOOOOMJYLSEpJYvnw5F198MQBH2EN4WqyAanKpO2IK1wnYO8ax/duHVYKSxAaphNKHziA3DXUUmVj9RImwvVXL2z28/3/3SZFfQFV9jIbldmGFbsyl5Ko8Ms5ME+9kUskpeR+WsyvxVjvw18rZlnlXO8g6V04yu+axYjl7pjAY7HrSguLzoaGGMJv+9YD0PXLkWXAXyb0HVz1UxOon5Cwjcs/2Sstlf5CRd64Pd2kqdgnL4fxLfKx9OkRamfg8KqM6DZPLiFtShnnHdxqkCEqgjjmn5Byv9qlSAuv8Un1CN+RIq0kVXy35jYSqQiJ7bsuuy2PtI3LWQnqLnth0jO49cpW7LV+tlyIoVdxXQJmk9L7Jpc67JkdmWbQtsK/KFE+J27/VcDxB6QRwBE3Y/CZC18/Kcycg8Cbw9vRLRKPq+2GJoLSE2RgYGEj+/zux14T7lV6fT2quRdjma6A+nCQoKQ7x85sanSIWi0n1AQjdKGdhuunfDkgRZgB66kaITkUx2OUU5GofCbHs+jypPnkXean+dFCqDyBlvwKAgrQtWN5FXmlrK2e+DUVSYXPXDxulCEoA7tJU1Ta3XHz+6SyxUPtUiNwLxetXNq9C+gonuWfL1Yg+yMioSSPvPLm5fs2jxVQ9IDdOPSEHzkI5K56+fSNs/vJBKUKYq9CG4jJIEZSW35rHqoflangZZ6RJW/h5q514yuX65JznoerBoJTFoG+Ni9B1+ZRcK/7NDDA1Os2UpKpk374R1n9+nzBBSXFoqXm0WMo6EtTv8lg0KqdQp0DvrmEpBa/gR7NJC6UKv4vGY+McYAfT09OceeaZSwSlJSTh8Xh4/HFVCKGBfUSigivXRvBVuij4iPh7fc/Pm1QCkBFhpZXIUJRYLCa9n9iaZaT6oSJhe6vevUNs+Oc6KYISwOTYFNOSaimBS3yU3Rgg40MStSgjVNxTIG3f5iiykF7lkOrjLLXKnRuqSrCUbVkEzOmKVM0r0hNh61fqpZWR3GUOPGVy77TyOwJUS75v8y/wkVUrd38+yMiqdeOvTsOcKV4j8lU7WPNkKWnLxNViHEUWbJlmPGUOqfPb98smKYISgMVrwhWQm+OtfqyY3A/LrSEXXuqXVpPK+4hXuk/FvQXkXCg35pZ/Io/aR+S4AXqrkejUNL0H5erNu354RIqgtOzGHJbdIMd1wAixaZiavRa6QM3LGB+eu3929HiC0on6eIykBW2EPj5rnXaBmtfG6JvE4jZip4OgBKfY7m023nzzTc4//3wmpkc41LWewvRa4BgVpQTiRKUt32nFV2VmTIZwrNFS9akAxlS9sO3brkXI2gEoDrliAABmqLmvmPrXmoWUkQbrxxal8DTUMsZQq9xu/tRMMykmnUpIEOxaeVshilMl6HTvEHs4VtyQj81vJutcNy2CUs66FC0arYbUoJnBerGTk9mdMhuln8hmoGFE2Apwz68a1f+RCPd4XwRioJVYoG3f0I/ekkL3Tjlm89pnQgy3jrH7R41S/WSx9pkQ4e6IFMnr8B9bmQpPLdxwFmKQXBwQxfrP12HOkPtIL7s1j/Yt3fTuFmdDL0Z5SmfUodNrpRSU/BUu0EDn5kFhBaXsWjcarYaubTPPxULS9Y5ci5oTjhnbJ+qn0Wro2NSNK2Cj7uX5E/eJ+m7+isC4mXWtVffn0b1/iKY3xXeTZa92oU3RYIgvMsbGIwurKUVj7H1O7pmruky1edv4bXE5boBNr4GvIHZiclJP/xw1pW7rnwEwGo28/PLLUsdawt8/Xn/9dRRFIRKJ8B4vcwHXzvzjCSak4T44/Kc2OjcOyB3MBGsfDUnZvr3/efndM0anEZ1BS8aHvFKqKbkXpeMK2oTtWRdj8bXvt0epuK2AtpNYYx6HMOitKTgLrTT+UTxfFFycQXQyJmV5VnBhBrFojJa3xPOZTq9Fb5LzqVqMElBamRVveRr7nhWX7t/+gwbCkjYvsWiM2LScWmD9q83SNi/l9xRgTjMuaozLYOUdASw+RWonWv0LR0hb6WGoQXznd8I+cqxNfKLb9k4v/Xt7CUtsMPfXurBmmKiX2FkN8mMurcyqWrBJFIzzPqwqVZR+LJs6QZltf60Ld2kqhtv1wjaSJpcWvSUFe7ak7PWWXswuucpQ2zu9whaLoCov5Z7pZcv36qUUmxSHAYNN7rkL98lZbyds3kY7x9n5PXGS20B9mMNvdKiW2Ccq1ESnkzvSwsXdpDRq0UYV3n77beHjLOEfB3V1dZSWlhIhzKHYHgo1ZQv22f7tw3gqU6VsvkBd9LdlmYVt32RUK2bD6jeh1Ukq/SpQeXshjW91CCkjjXeNS1mPJdBfP8Rot1zcUnPNGGx6FId2xppoASy7ORdHnpWBplFhO7GSy7JIK0kl57yI8M50jRY0Oi3OEouwjdu2by9OzbvgMj8jbePC6j71v2+j/vdtUsSUcEcYYjPzCBEMHx3nyF866NsjZ51R+3SI4eYx9vysUaqfLGqfDDHaHZaqIe//XZO0WnVsOkZM0qp547/sR0mXq3mVXJtN584+KdtAWUs5AL05RXpzSu6Z6Wi0GikLv7zzvej0Wrp3iPdxBm2qrZDE2O7Y0Yd3pYP9L8lZr8g+ryvvDtB3cEjKAtH/IQ8pJh0GmxGZi9r/azl146oHgxjtet7/0j6p2G3+j4N4KlOFrQz7Qg2wD6xWK6+++qrUOS7h7x//8i//wrPPPktbWxvvaV/lPD4+848nWuyNwIEXWhZlpVX7SCkTw1PCtm8bJZW5AXSKDoMlhcxVTikFHV+Nk/TlDnYJfneKtpuNhjc7sPgUendLqLpFwJRmxFVok1LqKb0ql+jUNF1bB4T7FF+eDTFoe0/8/FIUnXSNaDFKQPZ8BW9FmpRd3PbvNxA51pppAUxHo6RI2qQefLEJnSJHEQhdn4M9z8KGU6zQWvTxTFxFdqnjNP25leGmUSl7L61RC9EYkUHxeA8cHOX9f5WsRS2zk5prllbHkq0tWrOMaFK0qvWrINKrHHgrXOhMOg4IzglSC81k1rixpivsEbWyNYLiNOLMtdKEeE5oeqcLm6Q9nKxtoj3XSMHFWWz/8WEpxSaLT3I3I0AEKSKU0W2k6u6AusYvQXKLdEc48GIrvftGTlzzisWS69ITuf3EuicwThr585//LHyc/ypOi91bAmvWrGHjRtXH5sys2zCb3fOTlGZDrwczlF/jZ8dP5i5IHWv3loB/dSrZH/Kw6csnWSib57KX35aH2aOI7w6VIPMkkBo0s+y6PGkyR+knsrF4lEUtnJ1KmN1afGvSaXhVIrmaIe9sL42/l1vAP11Y+0yIqfD0oklOHzTUPl3KQOModQnpOAEsxu6t9qlShlvH2PPT//f9wc1uLeX3lhAZnDjlNn6AtMWbOcOIq9hKy1/FJcPNGXq85Q6OvK5OAE626DqniDZPnhPuewzm65d5poOM6jR2//ww4yervcxaTVTcUHFHIZNj02z52hE0OomC1zHXczKSUv4FdjxFVvY815pUUUr2O4nlW16tDofPwPafzT/ZOtbuLVgNE+NwdM/C6kkJktKfDn6ZGNMEAgEOH5b3Wl7CPw4SCwM69Jyru1L9ywVY86CqpwAcEfx4qv60nM0XgMmnsPKT+bRs7BEnz5iQtqla9XARekuKWkQV7GtyaSm7tZAjb7RLq/xIYRHXk/dhL52buwn3iVcfss5y07unT6rP6UL1p4MYEkXuU2lBdppQ9sk8LF6J7wkWZ/cWujEXe5aZDV88tYWh04WaR4tJMelOueXdYpH3Ya8UmRAgsM5Pw1/aP3DjuvrTQfqPjnD4RXGyZ8W9BZjcRrZ/X54gKJPnVj9RwnDLGPvm+245yXx51cNBDr/ecmLLzWOkr8vvymPH9xrVPyz0TtTqGJnuY6Pmz+h0Oi688EJef/31k/dZwj8sbr/9dn70ox8BUM0FODQOsY4KrLwpX5gA4CyxUPDhDOn6UMk1WdhzLOK1DgVpSyclXaHy7gCjHWEpQkP+Oi/OPDnrstMCBfLO8tL4J7l3QM55nlNunbFYrH1GbnPBBx2rHy9h8OiolNXZYuzeah4rZrhljLpfypFTPpBQYO1jIcZ7JhZNdjuVUBxaXKUO2iQ2ZSgOLemVafLP3SLynAzSVtjIP8/Hnp8cFiZHoqibgCaGJ+XXASSuJ+OMNLLXetj5k0bGu8SDkHW2m/Qyh3C+TiiqHX1DvFbwduxVJhgnNzeXxsZG4X5L+MdDoualx8DZ2o+pfymw3JlR6yLFqqPpDbGcseL2fPoODUvZBhntWlbcUUj71j7xfkakFshBVSsypRnZ+vV9whZXRjuEbiyg5b0euneKkzulsYjryfiQi94Do1IknfQqB4NHw9LEntOBxOaCrV/dT2Tog1eTk0Xw8gycBTYpksVi7N4KPurHXWpn47/9fazRVt6vin2casu7xSKj1kXbtj6p5zXzjDR6dvV/4Mb1itvzGWkPSxHCQtfn4Ciwsv2Hhwm3S+YRiTxX9ekgwy1jHJxvE9FJal4V9xbQ9LeuExOvjql5ld2UzZ5fN6vntVDNS6MhEo3wruYVtFotH/nIR04rOfy02L0lsGHDBhRF3dnxTsuPxDpNTlJ2qQfFkULuOWKSa+0bB9n074dAo8XsFl/8N1hTVEUTUVJevAYaujGHomvFpJwH68fY8e390pZitkwzBrucdVnexV7WPhMiNSjHMvSvcWJ2iw2NsZ6oHEEJYIxFE5QyZWxUgDVPlrL2c3L2B0f+0i5NUFr9eIm0hQhmpO9NzWPFVNwjbjEIqoqQDEFpsVj/hTopgpI1YKb2yVIpyzvMYM6Ri1ngoz7WPhPCWyMukTnWE+XAi0epe158N9Hy2/Kkn7f0qlRMHsmdqcBYW0SKoKT2meTI691x9YCTH1Oj1ZBzXvxZG5v79yfrW/NoULWHm+f3TtQvfZmDFOUkSh0a7XFqUeM9sP5rh9gisYOx6v5ccWJpNAbRGDavgkanYUyQjGpOhdjwCEf+NHhCgtJ8SMvQ4A9oFiYoxVE39AIx1MnFW2+9JXycJfxjor5eLWpOM8nWafHx4q904SsXt7na8tX6JEHJJKqwPDGONkWDI9cifBzCKoFIxqpj87cPyhNgDAb05hQyVi3kHzwXqx4pkrPOjZ9T1lnix2n8Y6c02ajl7Z5FEZRMLqRsvjyVdtY+E5KyP6h7sYV9vzoidX8yzkxj7edCcvZ6qIorMpZduRels+azpeJjGtjzk0YpgtJise/Zo9IEpfJ7Aqx6SE7+2x6Q3xW0+okSaVuPTd88wOE/LbB55Ris/VxI2qpa1ioxAVmCEkDDa+IEJVOmCfcKOQlv9wqb/HNgUi3yXPlyx9r+7cNs/+Z+YYJS8TVZFF4Zt1EQJofGFdys4js5TS4NxGJs/vLBExOUjkHBR72YPUaKr/ILkXYBtqS8RSwWw2w2LxGUlnBS/PCHP8TnU4neWxDffRi8OAOLz0TeRWK2UP37R5ML14pDvKynt6agM+rEbd/ij3zgUh/BK8SsUca7xtn29f3SiiuugF1VK5e0Xap9OoQrJGf76QpZUXyCBxpHmqAELJqg5K2Ws5ld9VARtU/L1bzqX2tl87flCErVnw5Kv3MBbLly6j5VDwRZcXueVJ+N/7pfiqC0WGz6twNSBCXFoWX14yVknyvxPaGAOUsuZonnwLdGYo4zDnt/0cD+V8RrXkVXZrL2mRBpEvMVZ4lF2mYSYHwgKkVQSvSRee4yEnNCCYLSqoeKpC0j/eVpGGx6MEi4MYzD+1/ax5bvihOUKu8vVN8HEtfjyLWo6yATYp0S97Llbz1ShFJ/lYuMGvHnoNlTx0T8Qv7whz8I91vCPyYGB1WCzSQTbIu+I9wv52wvGVXi43LXD48kiUZGu9jcKxKJojPqsGdIrGVEVAJRuYTd7vYfH+b9L4kTlBIwuYx4Vzqk+lTcU0DVZyTyYHzh3lctfpy29/qkyUZdWwcWRVAy2lXrLlFYs4ys/VyIotn2SQvg4Kvt7Hm2QYrI4Sy1subJUmkLO6PHKGW/5at2sOrhIkx+8U71L7ZJEZQWi8OvtksTlELX51B5//FrUyeDNUsuZqAqCspa82775iEOvCSnXLjms6VUf0autuZZKWcTmEDbejmCEkDru73C49po10pZ6oF6b9Y8WTozZxOEOV3BEZD7Ptz3yya2fm2/MEEp98PpFHzUr/5BNG5G0JtSMKaK8zyMdrXmtf1bh4SVoTLWOLHnmAle7BOueW1I+T2xWAyHw3Ha1StPm91bAuFwOMlw/uPBf+Ui040L9tnzbBu+VTY6dshtbVh2YxapuRaa3uueayt2Ajb1YhVTHPlWKfnesR71wV1xZz67BAs3m755QFq1qf/QMBlVadiyxC3SUoNm8i/0M7HGLayiY3JDxb0hwr0Rtn9LjHzlKbcRvDSb7r2DwlKHK+5UbeKik1FhK7bRzjAGi9wwb39PjvwBJ1ePORHWPhwCjZxNRYpRznYFZkg9Y02SA0gSacstUtZotnQjmhSN+rEuiOXX5WHPslD/ajNd2yRm3jEYbpBTwpC5FoDh9jBmtyL8rAEUXpwJmkze/7/ii4xrny4lMjTJ1m8I2lmYYe1DxYx0jrPrB2IkMrNb9fD1VTjZ9GU1LwrZ3cTkn4Xt32k8MXloHi+Woo976a8fpnuXeJyDH/OgN+soPN/DoVcWKFrNOv9dPz9xMTrW2z9HTSk2PELZDV5iMTObviu+Owxg+8/aMXvE8lTX1EYGxjpRFIWnnnqKnBxJz9sl/MOhsLCQZ555hn/6p3+iny5aphvI0izsub7/t430Ncq/N9Y+HSIWiwlZ9YT7FieVnHNBBga7ntyL0jn6J4HnLb5A7qm0Y8+0CFnFhTvGF6fsE4WYRi4P1jxWTIqio2Vzj/DxVt4VwJIuZ/VV/UAQvS1Fykap4r4QsWiM9XvE+nRvGyL//GmGJKzBRo/Ky8yMdY4Ri8bQSsgXZ53lJvccLz37B4Xliw02PVq9BpPXTLhP8JpM4MozCxMmFgtTpgmmY1KqNgarXtpuo+wT+eoYkBg30akosUnJuXEYaavJ8YEJxvsnhNtnnesh98x0HLkWYdu24muySCuys+cXR4Rt8iruK8DkMvL+l8VzSNk12eitKYy27BcmFJrTTRCD/nqJOWs4/u0hwT0ruzWPPT9ulCI6ugptaDQaDiFOPFvwnTBLhhog90IPmavddO0d4NDvxI9z+NVORtrG6NwyINS+rXg3U/umsNlsyUWQJSzhZGhvb0en0xGNRvlz7Hku0Fy1YJ/6F9oYODIqZVMEKnnIV+6i+d0uIUugxVrAe1e4iE1HqRd8phNqIaEbc9j3rNiGqa3fr5dWMxloGIPzwOxR6EPM1kFxaCn5eA6RgUlhyxYUqH0kxFi3uK2kLVeh7MYAPfsGqH9BLG4l16g2cTpFS9u7YpZnw61jGJ0S5AeQstBKIDoRA+QI72s+W4JGp2W9hE2F3qJDmyK3kStBOBuXVfqThCNoYqA5LDxOFY9qVS1T8yq6JBNPmYMjb7QLk3S0KRpi01HC3XJzT1mbyaG2MKl5FnolVGaLL89Gq9NKWZWs+WwJkcFJtn9bfHPv2qdDDLdJWGAokHeBj8xaN5v/XZywF4vGRARa5mDPzxql1I3y13kZah6TinP2uW4Ul4Hsc33C+QaYX7nyJCi/pwSNVsv6L8h9w2/4yn4c2WKTz65YG12TbRiNRh5//HFKSiQ3BC/hHw52u51f/epXXHvttfTRQWu0gUxN/oL99v2ygUi/PKll9eMqYVfIzi3CoiyxvNUezOkKORd6xJSe4peRWmjGUWDl6B8XrpNFhuD9f9snTUqIRWOy04Gkgkz/wQFhIlXxNVm4Cu1S+Wb5rXlY0hU2SGwaq7i/FKIx4T4jLREig5OMtInXsSLdESKS3PWx1jGIxqRscx1FFpZdl0f33oH5VVrmgd6qJ0VJwewySqnH2PMVho6c2nmX0aMyhyLd4ueluAwYJDY9AZTdFJAaAwDRySgswp+qd7cck3C0fYzIyJRw+7Rldoo+loWr2CZc98w5z0PGajd1vznK4CGxueSyG3Kw5VjY/s064We65JpcLD4T2/vElYrMXrXmNdQst0674Z/rpIhnxddkceDXLVJEQt8KJ5oULYdfFVcoJ8LJN5seU/NKr0yl8OIMOnf0Sx2nbUM/kcEJYVJTZ+l+JvdOYrfb6ekRVwv878JpJykBjI6OYrGoDNU3w7/ifNO1C/bp2KxOzqs/lUfzxn46dyz8wBz5QwtltxTSsqlPXeyOiQ2y4JWZpBWL+13ufa5RipiQOIbNb6b0hhwxlZv4z+ec70GnaDny2sI7uQbrx6QX/wbrxxhqHuPwq43CfcI9EJ2KERmaFO7TvWOYwnVymfzQa+0UfMRH+y5xEtFiinD+DznJP9fPkbfahQlLi7GG6z4wKEb8mIXFLOaW35JHdCp2Sn1is851k3uml74Vw8KqTe0b+oXJZgm0be4mRdFJEZQaXu2QVvta82QpU2NTUrLKjb/vFFcIi79sWjZ0yxUUNVqi0zEmRsUnJ2a3mehUjOG2sPB4G+uBnoPD9B+UG6Obvjw3Xgv1XXFHDrt+0HQ8QWkeclICaUEbrgIr3btmClax6ehJLd/qX+qms2CUocMnydOzyEklH0/D6lXY8i2xCX1sWC2ID7ZH0EkUVKsvjNG0cYjuJpgYWvie9oz1sL3vb2i1WtauXcszzzwjfKwl/GPj//yf/8PLL7/Mzp072c9mHDEbVs3JdyEkCBbe1Q6y13iE8+FIR1hqPgCACWoeKKb/8Aj1Ah/SB37dgj1gEiYMJBC8OAs0CJGUgCS5YPnt+ez+oRipfDG2GUfebMfmt0gRoka6wihOAyaXVpg4MBmeRmuSI6j0HhhiqEVujrtpEVLM1Z8OotVrhedTAwfDUqQZgJbNPaQV2encIbboB1D/21ahMTkby67OxZFnZf/vjtK7R2zBdDEovyUPjVYjNTdczHy198AQk2NiO28S2Hwyy+15kHWuh5y1Hg6+0ixlr7jtG3IbTFo2dOPIs1D3krgKQnQ6Riwak8o3kaEpVQ1I4pne89ND5F+cJUUEavpzl5TFZv4lPsb7J2hf3yd8bstuVm0Fcy5IlzrW+i/Uqcplgljz2VI6d/ULW4wSi9G1pYf05Q4O/V5sMc5f6yCz0sWWr9cLE5T+GnuJqX2T+P1+Nm/eLHZuS1gCas3LZFKfgb/FXuZszWUL9kkQlCrvLaR1cy+dWxb+Vm54owNXgY3u7XLFxNwL0/GVO4V3J+/8aQNjLXILEVlnu3HkWym5Lpv9IsTQ+M97q50oTr2QLdB417j0Yvn4QJS+A0M0yqj3jcPU+BSRQfE57vDRcWLTUaLT4nWv/S+3EDJoadsiPlfZL7gAMRuukJXij2Vz9J0uYTLUYizBOrb1ozfLbbTb8EV5NcrK2wNMT0VPqZKls8RC6Jo8+uqHhNWUBurD0jW8zp29GG162raLqwi1vdsrfB8TWPVQEdMTUSk1nI4NfXRskFM3OvLnTqwZcspQ01NRpiTmnopDy1RkmpEuiYnXOLRt7GW4Q+47R9Z6bdnNuez92VEpAqavPA3fChfrd4l/6zS/1cNAwwjDR8UOVHCZH1fQxuZvHpQ6t979Qxjt4jXMyvsLaV7fTfe2QQbqF74/47FxdvE+mgENZ5xxBv/n//wf8ZNbwj80rrnmGn7961/z29/+ljq2YoulYdecXLFj6Ki6SO4stZJ3tlfY9aT/8AjRCXmV6qoHggw2jnBIoB7V9Jdu+g4OMdIixyAquSIbrV4nRFICkgQl4bkasEOQrD0bh//YhqPAKqX0NNw6hi3LjNFjFCapRIYmMTrkiNvt23qJ9IpvfALESe6zsOL2fAw2PVu+IlYriQxFpUgzAAMHRxk4PEzHNvE5QfNfu2n+qxyDquCjfnyVLg6+1HJKrQKX35SLwZQiRXRejG10+7Ze+U33EkRqgLTldoKXZFL/eqsUUWm3hGsNQO+hIbr3DnBUwpYS1LU1UYISwPjgJKbxaalnev+vj5BzfqYUGa5r6wBdWweE22d8yEU0EqVjy4AwATOwzoe7JJXweREpRc6N/3ZAVeESRPXDRXTt6Bc/RixG154BsmrdtLwttubsLLGQd5aH7d85LExQWh97g9G9g6Snp7Nnzx6xc/tvxmm1e0tgtkz6NJO8F34VzLDqM/nkf1iVq8//cBqrPpOftF5beXsWFfdkk2LSklFpZ9X9WQSvUGW0cy50s/qxIsxxhcbyu3Op+lSAsR7Y9OVDrL4vSNltmaDRknlWGqufKMEaUH94xR35rJolmVbzWDHOAgvaFA25H1HbOkvVtmW35s2RN655tJiyW3IZrB/DU25jzZOlhG5R7S2W3ZQzp+2qh4tYflseoKoVuYI2+o+qhI7ST2RT89hM2+pPB1l5tyrpaM5QWP1ESdISK2utB3/ljKR/1YOFVNwXt/8yq/YKeRerEuGFl2ew+okS8td5qf50kMpPFVL5qRmrsNVPlFDwMVWSLH+dV7UrM6s2FSXXFFD14Iw03urHSwhercoY5pzvYfUTJZjjH5rldweYGptK7pCreayY0k+ocfB/yHl8vOP2D+s/X4czYCV0o6oE4q1JZfUTJaQtVwlsZZ+cG++yT+SqPLMxVbVn9RMlSQuv0I3HxPszRay4Q2XNF12XQe3TpUmruOLrso6Ld3ki3m4tOWd6QQMmp5Hg1Zmsfnxm10bVg4VU3D833vnr1HiHbsli9Wdn2lZ+qoDKT82K4RMlFF6uSqTnXezFFbDR/KZaUKq45/h4JywEs851q/GOKyKtvDtA9SxZzZrHiim9IWdOvBOWY8tvyyM6FaVjh1pIqHm0mGU3qW3TK+2sfqIET7kq1Vx2S+6cGKZYdJTdmgeAs9TM6idK8K9RlWNKb8iZE0NfhZPJyCRtm3ow56hts+KS1kXXZh0fw7hlnck9d8wGr8ycY5tX9cDceBdeks1gk8qcDXzUlxyzABX3F1D1wDFj9spMss51k/PhdDWGcRvD8rsDx8W7+Do13plnpqHRATqVbDJfjkjGe40a78BlXiruK6DsjvlzBKjqYaufKCG9Sh2zy27KwVfuov55tTi66qHgTI4oNLP68WL8H4rH+/osah5Vz2HDvxzEaNOz8i71d80ZelY/VpS0Zyu6OoPVj86Mj9LLfESGJmj8QzeYoeaRILkXqvem8DIvNY/MtK24J4+Ke9RzqP9tO4GLMin4qOodn/cRj9o2Hu/yu3OpvE99xnIvdLPms0GCV8Zz8vlpak72qzzYlXfmUPWpGZnaVQ8VUPVgHtZ0E8tvy6LmkSDWfDNotCy/NYfqB2d2vKz6TIDS69U85a22Ep2M0Rov2JXdlMmqT8+0rf5UHstuUNu6Ss2s+kw+FfepuSizyk71A3nJtlX351J2cwZEY1iyNFTfl0nGajX32HxGdPoZslHFHX6W36jGweyG6vsyyT7TRmx4hIJaLavuVP9t/0sD6E06Vlwfz9FmqL4jndyzVHnJ/HNtVN+RjqapA7u2ixSTltwzZ6TSq+/2EbhI/YjOOctK9d0+DPFv6tJrHDTb3wPAaDTyzjviEsZLWALAjh07MJvVB3gDfyEcCxO6IWeO9VP1p4Msu1nNLfaAiZrHisk5Ix2DXU/Jjdlz7JuqHihk+e3q82fKVNtmnJnGrh8eYXo6Ss2jxbji86eK+wtYeYeaA0wuNY/mXKA+N4F1fmo+VUyKQYfVp1B+TwHl98zki5rHism/RM0tuRelq+8eEww1hFl5d4DVT87NuQWXqzkg61wPNY8VY3KpeX/F7flERifY/mOVbLTqkSKCcXlmf62LmseKkwvqZZ/Mozou21t6XTb2TDOV8feLp9JOzWMz1xa6MXdODFc9VEToplyqHwgS+JiPmseK8VSqD3LJtdnHxbvsk3l0bxuip26AmseK8a52AFB8dRarHplpW/mpWfH2KaQF7bSuVy3cCi73z3n3VNxXwMqENLhJjWHuRens/EED3XsG57y/y+8JUD7LRrbmsWIC69QY5lyQTmqehfb4HGLlXYGZd3I83gk7p6yz3Gq8fQomF6x+opjqh2beL6seLqL4avU9613toOax4qSN2LKbc0mx6pJfJaseKqL0OjV3u1fYqHmsOGk5N2fMxq8tdJM6Zh1F6jj0xmXES66dO2ar7wgyPRVl4GAYS67aNmH9Ffx45twY3l/AikS8XVpqHism61x1Ll5w6THxvrcgOW/HBFafifGhCGNtI+R92Jscs6DO4SrunT/eiT8nrOVW3nHieGecmUYsFqP/qEroKbs1b84caNXDRRRfE493tRpvR5F6EqGbcufYVKx6qIhQfF6TVmal5rHipO1Y6IYc7Flm1baM+XNEIt7F12Sx6uEi7AETrlLzCXMEQOGVGXNi6F/lBC2MtgzPnyPmjFk1Ryy/PZ+cC9JPmCOS8b5vVgzvLybcH4Hw/DlidrwTOaL+t600vtV5whyRiGHC4tBTacfqVzj0ilrknTdH3KjG0FVqTuaIcF+U6FRs3hwxJ97xHLH6syXUPDETl2NzRM1jxUkbyUSO8Fe4yD/fd8IcASqRaXa89WYdE6OTSYLSsTliTrzvCrDq8aLks7Ls6px5cwSo5M/Ed5KjyIRWryGtWB138+WI5JiNxVj1mSBld+QS7oty5I12aj51ghzBTE4mOk3mGhcGh56Ms9UYHpcjHpiJtyXXhOWyaaZQCQm//vWvycwUl/RfwhIURWH79u2Aaj+yIfYGoI7J/I+o374ZZ6Sx6uGipF1b2c15lN8bQEkzkLk6jerPBCm4LPEd5GTVw0VJG6jQDTlU3lsI47DlK/WU3RKk9OZ4HipPZdXDRaQWqG1LrsueY0dQ9UCQtFAqOqOOjLNcrHq4KGmXVvzxTKoenGlbeX8hpddnM9Yyji1XoebxYkI3qccJXp4x531Sfk9B8h2hpCv4q1z0Hh5k/3PN5K/zznk2V94dYHm81oCivrcSllgFH/GTuWbGfmXFHflz7L9WPVxE7oVqzso+182qh4vIOC+NynsLWX5r3kx+S8Q7Xq/JqFWvVUlX2P/rFgouy54zB6r+TJBgvF7jqVRjmLAqK70+m+nxaNJSrOrBIEVXqjkhbYWNVQ8X4QiqOavk2pl4b/jifhy51uQ7whE0serhoqRdVtGVx8T71kJ1V/a4avm16uGipP1bwWX+OXWglXcHKLtZjUvOhW7VCuGMeD312HjfFUjWGlCg4CMZaLQajKkp5F6YPicXrrg9j5V3zvoef7goaUNY+DEfqx4pSlo+Lb8lb2YOFI934FL1nexb48JTlkpznNSy7ObcOXOg6k8HkxaCiTE7O96zrTqqHgxSEp/XOEssrHq4CGeJ+u1eck0WU1PTtG9WF+Qq7y+kJD6PTC1QY+gpV2swwSvmjlm9VZesRyo+tW3CMi1wqW9ODHPO9TIZnqJtUzeKQ41L1tnqOM27yDsnhivvnDVm4+M75zz13ZhznkdtG+ftLL9tbryLLsthpFNVa5ovR8yOdyJHeKudeGtPkCNmxTsxZj3lqaRYdGgMas1jvhxxbLyzL3Sz4vY8iq+dP0eAqh626uEiPJXxeF+eQfaH3Bx+WZ1HHpsjVj1clLTvmD1mN3/pIFpFe8IccWy8i67KZbw/ktzMO1+OSMZ7Vo5o/FMngfP98+YIUMdsIkd4q52sebqE4JUnzhHHjtny+wpw5FlZflvOCXNEMt6zcsTU+BSt29TFxeNyxL2FyXl7Ikck6vzpK50nzBGKQ6vGO54jnEErenNKkqB0bI6YHe/cC9OT8/b6F9vQ6jlhjsg62x0fs+o9VlwGCj48861zbI5Y9XBRUgmt6PpMGjK2AWC1Wnn77bdZwhJk8Pzzz5OXlwfAJv5EJBYhcIlvzrO58o785DvC6DFS9WCQvPO8mNxGCq/wz3k2l9+WR+h69Xkz2tXnOqPWxcHfthIZnqLqwSD2fHX8lt2cS9lNM0r3VQ8Gk++IjA+5qHowiN6SgtVvYtkNOTP5DTUH5FyoviN8NU6qHgxitGsZaYlQel0Oqx+bvdZUSF58HulZmUrVg8GkTVfx1VlMjE2x48cqeaLivoKkFZGz1DrnfINXZCbXZnIu9JBWZKf8XjU32vMVqh4M4ixV54YFH/XP+aYuvytA8dVZrLg9n9yL0ql6MEjacrXmFbjEN2ctbMXt+ZRel8PgoTE61vdQ9WAwafuWc6FnbrxvzWNZPL9hBH9VGm0be4h0R8g62z0nF5bdlEPZzTMK8VUPBsk+x8PB37bStqEnHkP135bdkDOT3+Lxzv2w+o5Ir3LgLk6lv1ElUZZcl83KO2byW+X9hQTitYa05XaqHgwmrcGqHypK1glBrQsVXqrG21FkoerBIKmFat0weHkG5nRjsuZVfleAYPydbM9Vx2HCBiuwbtaYNULlg4XJ2o7Jr7ZN2HnlfcR73JiNTsPQkXGMdq0a7xp1Hplz3jHxviWXZTfOxLvqwSCZ8XdE5hlparzj/ItlN+aw/JaZeDsKrYx2hxlqHZ81ZtV/C11/fLwTYxaNepyEQlLxNVnHx3tdPN7L7Gi00FuvkqCCV2bOsUCsuKcgOW9PLTRT9WAwadtXeKl/zpyz/K5A0p7PmmU8bsymFdqTimXz5Yj0Kgeg2ntVPaA+c6mF5hPmCIDsczxzxmzuOR60eg0jHSpzZr4ckYx3PEcUX52l3osT5AiA0utykrVLgMo7C5kYnSLSE5k3R8yJYTxHNP2lm4OvtJ4wRyTjfUV8zOarVmqH/6CuaZ4oR8DMmE1bbicyBNOR6XlzhBpD7ZwcUf1QkFWPzsz3js0RVQ8Gk3aIiRyRc0Y6+Rf5T5gjQJ3vzR6zJoeBcP94kjx0bI6oejCI0a3GsOS6bKo+U5g8btHHsufPEUDRx2fGrNFjxGBJwV2mPrvz5YhkvGMxyu/MJ3RjNkTg0CvNlH2yYP4cAZTfEVBzRHSanDPTMHmMZJ6tnt98OWJ2vJ0f1zCmUclMv/3tb/F4PPxP4H+EpARw8cUX88QTTwAwygD7xzai02uwxienVp+CTq/BGC96KnY9BksKu37ewPbvNs9pa/eZ0Bk0aG3qTVUcRgy2GZEonVGL3W+l6lMB7JlmdAYtZof67yaXUd3pGkeKoiM2qcrg6xVVmtfiU3/X7DaSYprZBZRi0mH2qOdgSjehTdHgyFGLDRavaU5bvTkFs1tta05XfzexK9mWbSZFmWlrsOlR4uoqpjQdOoMWq18NxMTY3J1bBpseY6ra1uxQ1LY+ta3NZ0Jn0OIpdWCw6zHa9TM7HsygM2ixxdtavWpbs1kdEorLoP6ueSaGNm/8dzPUtsZUta3RacBg05NzUTpVDxaSougwxx9cW5ZFjaFbPxNv86x4m3TYstSDWNLV37WknyTeXiO1T5firUyLxyXRV5kbb2sKJpd6DmmBVDRaDZaM+LWmK8fHO95W71TQ6bUMNo7Q8GoHNq+Czqid2zYeQ7NZq8bQb8bkBkeOXfXyjsfMaDdgtM/IOs+Jd/zelN1ShLPUnIxhsq1Riy3+YWzLUMesKVXDqs8UYUlXMFhn2qYoOizxl7s13tacrv7ZlGZEm6JNKvykmHRY4vfR4o/HOx5Ds2duDLVabfI+mt3xtonz9xwTQ7MeDVoG68ewulPicYmPl3liaHQaqHm0mIp7Q+p99CbiosyxITHY9SipMwx4nUGLO6QmZGv8/E3xeCt2Awb73Bha/Qo5Z6STUeVCZ9CitasxVVzG4+Jtjcfbnm1Go9HQ9Fd1J/d8OcIaf+4t8fuYVpyKKc2I2XnyHDE7hvYc8/E5Ii0eb69xznNvSTeRouiovC8fkxsM1hQUR/weO/XoDJpkW1v6TLzzL/FgsKckn3tzago6gwZbxux4z5BxjHY9Roee2s8WxXOEBqtfmdPWPDve8TzrCdnRaDRYvYkxq+bkRG4yphrnSG2mKDpiUxqa13cTGZxGZ9BgSdPFr8eIfnYMFS0Wj0LmGanYchW0eg3ERYdMafF4x1XyUkza5HNv9hjUd4hFT+GlHsweIynKzNjSm3SYnGpbi0t931jiz83k+NwdMQazDiXuFauz6dW2HvXPFo8ebYqGqlvVl7jBokWxqedvNoNOr8GWrra1etS+mGG4MapaFc1SjdLpNVjdhvh9VIlSKXFb7D+9/RpdXV2kp6czNnZqLYSW8PeL0dFRtFp1zL3Ha1jSFfSzLFENNj3m+PvE5DGSoujoOzjM9u83YHEa57Q12g2Y0uK5xakjRdHNyvvqHKjkqjwwgZJqQIm3xaTms2TOylT//P7/3cf2bx5GcRqS+Q0Tc9tmqPMlU1wNyOw2okvRURAvBKSYdMn3rM2rvqf0iVzpNmK0GAi3hjFlmtCbU2bmnBnqOZjT9MnfTbxP6p5rJhaLoY0rw1l96jmYPYn5x9y46C0pWDxGDA49rqAt/o6eyblz4m3VJ9+zJpca79xz1I93c/rc+ZKSOhNvo12jxjvLRMX9BTgD1jnvE8VhmJlHmrRqDH1z4z3T1ogya6fZ7Pto9attV34yQM2jxeq9mfVOTjHpknPDRFuTUwsmEzqDbs5cRW9JwRJ/RyTbxvO1JV1Bi5ZNcbn0RPEO1PdsiqLD5DEl2yZiWHN/8Zw5kNmr3hvLrDnF7Bga7HqsGSZW3J6PKTVFjcus9+GcGKYaMMXvTcX9JaQoOuyJthlz5/iK04DJkYi3OqeIDE4R7gNb1tw5vslpTN6bZLwzTXP+rLWpf1bS5on3rDm+NkVL13ZVZcPsNs7Z1aw3pxx/b9JMrH0mhD3HNGcOpLekYElPzGviMfQl5oqKOqeOn+N8OSJxr6xe9d4UfyybkqvyhHJE8tpSdExPRAn3ccIcMTveisOILcOEr8J50hxhchiS4zvngvQ53x3z5QhTIvfEY+gqtJL3Ye9Jc0Qihol8kn+BXyhHAJg96vkG12VR9sk8oRxhyzRjcmnR6bWkGI4Zs8fmiIzEeFHnnNu/vY/611tOniP8M/HO+7AXxWEkxTB3DndsjjClKsl7ozemkPMhdU50whwBmGaN74GDalE4GrcInC9HzMkn1hTsfotKJDpJjjg23m2b1IVyxXriHJGI96HJXbz55hvY7Xa+8pWvcMYZZ7CEJciivLycH//4xwCMMMie2Cb01pTku8eeYUJvSUGfqOekG1FSDWz7XgPbvnkIg1U/k2Mz1LGt2NUxa0lX5ijyGqx6nLk2Ku8tTD4HpngesnqVOTnLYNejicVVmqOaeA5LHMc85x1hTDUk/01xGkkx6nDkxmtevrnvE5PTkHxHKKnq78biC+CuItucZ9PknHnPKnZlzjmM9s6V9TC5jJjSZpRY9JYUbPEahtWnxtBb6kBxGzC7jZhchvnb+tW2xvgeEVumWT1fZSaG5sT3bKbaVol/L1p9JoypBnxrXJTfU4DRNnNvLG71/M3eeN4/Jt5Gu57UfPWjTklTf9c6KzcaZ8fbacDiU1j9eAmZa1xq24yZ+dPsXGh2GZN1H9+KNLQpGmyJ8/eZ5tQwTC5DstagKGpcBhpHOPJaZzIuiTiY0pRkfSwZw/g8IH2FS82bSrzG4TFich4T7+T7RI3LsuuycIWsmD1z55wGm35m3MXff0qakZV35uMstM1RQjDY9DN1LK8pPq+c+bMuRZdcWDA6DMm6hOI0zXlH23zmOTHU6rTJOZDJoYuff7yt3zx3zKYaIBa3SFPmjtnEeEm2TVPHbOW9hax9NKT+bnz+YY0/9/EQYk4zYkqbFW9rCu5l6gLGfDnCdMxzb/WbKLjYT/453gVzxEx9SUGj0dC6XiV2zZcjEnNBU3x8p4ccWDPMWL0nzxHqPF69OPey1Dm/O1+OSM7h4vFeeWc+ikN70hxh88/EO6PWhcWrLJgjlHgt0ORWn5vap0PHtz0mR8yOt6/KqdZIF8gRybjY9Gg1Go680c5gY/ikOcJg12P1KXgqU7HnWdCbU9BENclzOi5HJMasS588h6IrM0+aI/SpBvVa4+c/MTB3bWG+HGHLmBmzKSZdkkR2shyRiDeKwnjXOFPj03PscObLESaHOu98Z9dfaGtrw+/3MzQkZ4ezhCUkcOTIEaxWlVzzDq+oz9CsZ9OUZkzWJYxWDUa7nsHGUbZ+5zCmY9ZxzG4jZl9ikmDEaNdj8c/kIWOqnrIbAhjdRszpimrFDWBU3/3JOZzPhNGuZ/u3DrDjew2YvErymwPAmKrHnlyfU9TavFM9D1uOCZ2iTRI3lFRD8hvP7FPPSXHoZ45jMxBuj2B0q3WHZNs0ta05LTGnmHlHNL3RTXQqmrQVM6cp8bbxtb0M05z3t+IyYvWZsPpNpJXY1WvNSNQTlDk1DDWG6u8YnXqMqXpy4jUvezwus9uaEvfGqFV/12ei7OZc3CH1OAkShzndlFxvATXeyW/ULPXeYI1/Rx8bb/usePvUaw1e5qXq08H4+2T2vTHMqk0Z4/fGiNEYX5uZVYMxOg3YMhNrbGrbxPes+hsatsTtRZU0Y/J8jY54vOPvR7vfrJ4/UHFbAUqqITlvNNpS1GvNnDUOj4mhPU8lwmkt6lpwsiaQYUr+rhpDBXP8fbL20RDGVP1MfSzjmN/1mpJtAYxWPZNDKhHGFm+rtcRrHL7j45241sSfTU71HW71mua8v42peuz+mRjqlRT6Dowkr1WZfW+cM/MPk8uYjOHaz4Vwl6XOmUcqacbkfTQ6489yfFza88woLkOSWDJfjpjNQTDa9QQvyWDZ9XkL54hZMUwxpjAVnlZVwU6QI4zx9bzEmE0rsuNflXbSHGGZFW/PylQUp4HU/HgM58kRs9/fisOAs8hK9jmek+aIZLzj87vCdZlCOUI9hjoOiz+WRej6nIVzRCIuRnXuqjelzGk7X45Q423GaNez4dv7OfhS60lzhCVxbwxGMs9Iw+RV5hxnvhxhtKn50eJVMNoM5Jyt5rET5Qg1hjPxjnRHVJX2CXVSNF+OmB1vc7qCI9+GPV85aY4AUNzGZI44+lYXxMBoia8vzpMjLPH7eFTbwB//9EcsFgtf/vKX/0drXppYTNZN+b8XF1xwAW+++SYABaygwLRCqF/5HVnoLSkz/q8nsQcCqPpUgLqXOxhrGoOomGxswvZrx88a1X4LwFNuo/vg8PHWRSfBsptycOTb6KoboP434nYSnnIbE6PTYjZzcVKBzHnlr/PiXeFi10+PMNYmpv1a82gxKSYd7395n/Cx1n5O/TAUlUA2u7WU31tC/+Fh6n4hJkNpzjEL3b9jkXO+h6Y3xSXeym7JpXVTN/11Ysfyr3GSf6Ff6lqCV2fizLVK2XWEbsxBb0lh53fF5TjXPhNiYniSLV8Rk6/MPDMNf6WLLd+vF773pZ/IxuozSfm/r30mJG1dV3xdFgMNw3RuEpOf9NakMtQwSFjSftMaMDPScJKLP8ZDeO3TpWqMv7aADGU8ty27MYvUXAtN73XT8teFJbY1Wg2rPlNAiknH+n8Wj/HyW7NRHAY2/4ecbKXZrdrEiSD3QjdH3zhB4xPk8trPqrtK1//LrHjNsvDUpMzvXupfbaN941zrmNj0TD+taWbCUnV3BtNTUXb88MRWI9FIZKavTf3wXXF9Gq3bhuk9cGJ52Oigeg55H07Dt9LBnt90MCaQXqLDw7wx+RwAGRkZtLbK2Q4tYQnzYban+QWaq4T6mDJNVHwyn8a3O2l7Z2HpYG+1A+9KJ7sEbdISSOxuFpXS96520LlxQOoYsnOPBGTsjmRs2BKoebSYkY5x9j0rKOdrUosJEwOTbBGUm86/xIe/ykXX3gEO/U7M5mTVQ0Xqu0TCXs2Sa2L0aFi4Pagxs2RZhO2+vKsd2DLNwtcBqqWUNkXOIm3VQ0X0HRnm8IvtQu1NPoXSq7Jofr+LbkF72lUPFaG3pvD+P4mf18o7Aoz1R6Ts6FY9VETPgSFhS63Qjbk48i3s+c8jwnZnaWVW0suc1AnKxYOqDCWSV+bABKZUhXCH2HdK6IYcHPlW9TtFcGiu/VwIYgjLi5tcWiruLyHcF2H7N8XmUaZMEytuzKXp7S7Vhk0UiTqfwLW4Ss1Ep2NJMpAISq/LxlVkp2NXn/DYB1Utz+Q1Jy1DTwZHkYnQ1fnSNn/2gInARRnsELRkWP1ECWM9EWHbziOx/RxmD1qtlksvvZQXX3xR+NyWsIT5cN999/Htb38bgALKyNeULNBDxbKbc7GkK8Lf/ivuyOfIG+3Cdj8wY/u179dHVPLFAnAETYx3hxkfED4E+eu8ZFS56d4zwMHfib+zUgsUNFqNkEVQgmAjZam0xkXOmR52/fwo44LvkpV3B7CkK2z7+n7GB8TmebVPloJWw3pRqwoF1j4Soq9+SNjKTUlXGB8al7p+UGMgY99V/PFMuvYO0L9/VKi9LVdh+c0B+g4OJ1WoFkLuhem4S1PZ+jVxK5WCy/yYnUZ2/7RRuM/aZ0JEBieFj5O2wkb22nT2P3dE+N7nr/PiCtilbGFqnw4RnYyy8V/FLV4Cl/oYbg3TvU2s5uUKWRlrGxO+jgTMWYqU7eOaz5YwOTotfP2BS334yl20vNctbIVReW8hitvA+/+2T3j8l1ybjS3DJG3TrTi0wjHLOttNi6TVSoI4JZwr4vBUpgrf+8TOe1k7nLKb82jf0UuvwHzNt8ZF/rletv/4iHBu/XPst0AMr9dLR4fYd8oSlnAypKSkMD09DWi4QPNxoT5Gt5Hy2/JofqebNoHvstRCM1lr3OyNO4uIYvlteaQoOrZ/S+xbJm25XcoeCmDNE6VodEjVcEAlfopcO6gqHJEhufdI5f2FjHaNc+A34la1az8XItwbEbbX8lU7CFycQdeOfiFrPVDVc0xpRil7NZPfKGVbBarajjnTSn/diFB7Z6mV1FwLjX/oFD5G9UNF6CXrd+V3BRhqGaNB1HrdCCtuzKd9S5+w3dvKO/Kx+ExStbiS67KZHJni8Kvi9YiKewroPTyUVEZaCIFLfPgqXRx4oUXYHsuea8RbkUb9i+K1SF+1Q7Ugk4TRbSTSIzbOApf48Ja72PaN/cLP5ponSkEDG74oOF6MsPaxEOGeiLBFptFtZPlNubRt6qHtPYmaV4JPJXD51iwjOkUnZVmXc6GH7Np0Orf3CeeKxHmlZpuFjmX0GKm4LZ/619uk8rjRY6Too352/7hRqH3Vg0Ei/RH2/FzsfdQRa2YPG9FoNFxxxRX89re/FT63U4H/cZISQG5uLk1NagBLWUW2qXiBHqpVT4qiZf0XZr08FiAqAThLzBisWiHCgv9DTvLP89P0bhctb4l/XPjXOHEFbewVHBRlt+SyR9JfcjFkjfRKO9YMMw2vnqIJ/yLIUGnLLfTuFitwnE6U3ZJLaq6V5ve6pIhKH0TUPlWKRqeRWviSJSmV3x3AnK6w49v7GeuR92X+IGGxi9cnxTEEJfF+c3OaZ6WF7p0LPy8a7czxzP4UxtqnFnd8AZTdlMWen4t/XGSf6yJrjZvR7nF2/WCeHHmCPO5bbSfFqKXl7QH1L2Jzx9lskpLZB8F1Wez84fHnNZugBHNJSjWfyiQahS3fmr94PpugBGox9MhbCxdpEgQlgNLr/ThyLez+VfuCJKXo8DAdJXvZvXs3oKrgJOy6lrCE/wrC4XByLGnQcL5A0caSa2LlTfl07RMntySQf4lPmBSx+okSYrFYUlVHFOX3BDjw6wZViWUBZJ3rYbx3XGpRvPyeAsweI/WvtQgTT0C11tr3c7k5ngxMPnGSRgJpZVZ694gVRU4nZAkhH1S4Ss2UXJXHQOOo8L1fDElp7edCTE9G2ShRSPsgIrDOj7/KReeefunccsphAke2SYrcI0MeWgwC6/wMNAwKkYASWPNknJwnMb5AJXbt+0+x79nQTbl07eyTyqs5F6STtcbNwZfFSEre1Q5GOiLSBMjap0oZH5wQIo4NZ/eyr38Lw8PDlJWVJedgS1jCfxXnnHMOf/vb3wAooZIsTWCBHiohxuQ0sOGLcnnenKVgSTcKLVq7QlZKrshRa14SC+qukJX0FU72CxJSS67JEibcJLCY95wjaMKRb6fxT+KLOVJYBBkqtUBhsFWeQHSqUXCZXyWErO/m6BtiJPwPKmoeU62jZeaQsiSlkuuycQVt7HvuiBhx7gMMaeLcaYSzxCJMgktASVdVe04VSq7LFs51oNrpBS/NZKQ9zK4fiG/YcYWsKC4jbe8uTNxXHFD08Tx2/bBR+PdBtTNGo1rqiSD3wnTp/BC41Id3hYudP20QIrV1r6hn586dgFqnUBRlgR5LWMLCiEQiybGkQcv5misX7GN0G6m4M0D37gEpUgTIEROrHgii0c+o6ohi2Q05HPpjpxBhIb3KwfR4VJh0ATPvuYbft0mRKYJXZFL/wqnbUCtD0kggtVCMQHC6seazpYAEIeQDCqPbSNW9BfTXj1D3nFi9YDEkpTVPlhKdiLLpy3L14Q8afNUOCi7JpGtXvxSx6XTBnq8wdERiHiVBHloMMs9IY7RrnIGD4vPB6oeLMJhTpNdzg5dnCN+T4OUZ9NWPSOXV9CoHBR/2c/CVViGSkrPUyvTYJENH5YK7+rFiIoOT7PjewiIlEc8wuyIbGBwcpLq6ms2bN0sd61TgA0FSAnC73fT2qhPxCs7Crc84oTJGAokFY5ObuaonJyErrX1aJUDJFmllsBhSCEDORek0/Uls8l/6iWyaN/SeXLnlGKz9XAg0ctde+alCNBrY+nXxXRapQTOTo1FhBSaY5x4ugLTlFnR6HV2iO9QfLkJvEV/8Mbu1BD6aw+FXG4XPK+tcN1lrPGz4ap0UUUsKZii9IoeObT3Cik2LgSxJaTGQVThaDFSP0xjbviGuCpRzUTp6k47DL4l9kFQ9UIjRYZhfQewE5KTCy/0cWmhX+qw8JvN8JAhK/tpU2teLx9aab6bsqkzqX2+ld6/Y2Fpxew5Wr4mWjT00vSmugFB2SzZ7fnqCIs8x+TvzjFRatw3OxDY2Pwlu9vui4u5sjHY9h37fQc+emWs5lqAEc0lK8+FYYlICy2/JxOYz0bFvhMa/zr/YP5ucpLhhPH4PtVbLyY85rPZ7Y/JXaDSQlZXFtm3bcLvdJ+23hCXIoK+vj7Q01W9ctGgzGyYXQoSgwisz8JY56T0wJLyDWhbeagcFF2cw2jnOToEJeQImF9iDgkpMJgh9PFdc5YgZ8kXfwSFhVRn3ChuFl2Sx8ydHpMhHi1GUEr2HCciQzUw+hYo7A4y0hYXVtAou9RMemJBS1Km4r4DoVEzqvstiMYpNslgMSUkWrlIznjKX1K5FWZgyTSy/IYejf+mkU7CwaXJpCXw0m72/OSqlcBTuF1cr8lY7iAxFpMhGss+HJTduUyRBoKm4v4DopNz4XQyZz1Fkwl3mFB7DWed6aHlLbpPG2mdCTE+cWtKcvLKV3D3sirVSb9rB5OQkK1asYOvWrYs80yUsYX6sWLEiSXxbwVrSNRnCfRUHwupFtU+F0GhOLem35rFiUow66UJwxhlpQgvwoC509+4bEFJ4SqD2yVI0Wo3UtS+/NQ+tQSulPG3OUr8hZVRlZO4hqOQmg81I9w7BHep3B7C4FfFrV6D0imyO/L5VWB3GU55K3gVedj/bJKyQIg0Fgh/JoHtv/yklA8mSlBYDWYWjxWD5rXlo9VqpuYRvjQuTQ88RQWWGspvzsOeY2fYNcQUxWXKL7PMBcgpCoJKZVn4yj4MvNwsToUquySKtJJXWDT1S5MeSa7PZ/1KzEDnRU5nKcMOg1PUvvzUPW5aZ+ldahXOELIquzMRT5qB9ey8Nryz8DbiYe/hW7CWimikyMjLYsmULPp9vUee6hCXMh9lEJR0pnKu5XKq/0Q4RgWWnzDPSyDvPR0/d4Cn71k4tNLPsujyGW8eElTUAMIKnJFVM7cYIwXWZ1EuoXvpqnBR8JIOe/YMcECSj2/MViq/IYc8vj0opES1GUUr0HiaQfY6H5r8KfgcbofaRUoZbxtjzM7E6YfY5HibHpujY1C98TmU35YBGI3yMxSBtmR1btklKsUkWiyEpycKea8Rd5qThzx2njECDEarvLaLpnS66tg6IdbFDzvmZNL3ZLq5w9GQp470RIdIJgKPIQnRyWopsJPt8GN1G9AqMtIgHd/ktucRiSI3fNU+WQkyOzGfyG/FXOIXVwHw1TqnnENRv7OmJaSmHI1mseTJOZBQUppG9h0OxIfaY3iUyEaGiouIDQVACODkL6DSip6cHm83GyMgI23mbisnzceMBTmzjA6osV9ZqN72HhjjwXPwlmljEnoes1PReN9NhMbu3BBIWYyMdYXZ9f+GFlp0SC1gJ5K/z4q9Mw55pZo/AZCNhD2YNmJkeGhMiMBx5q53BZlkZQv0c/+iFYHLDsuvymBqfZtO/iT2wZbfmYc8yU/d8ozDxpvjyXGLTMWGS0lj3OBadaeGGifY9Ufb8pFG4PYDJaUSboiGzKo1WwQW2mkeL0Rm1rP+8WOKx+sy4CmwYrSn01526BbnTgbSgHUeOVZiktOLOfKw+k5Sd4GzPTVGIEgUTGOuNkGJKESYo5VzowbvciTnNOP+up3nyVvmdRWg0Gt7/womfqdnqSc4SM3nnePFXuNj2LbHF4YzqVDQpcopPu37YROASjzBBybPCQveu0RMTlOZBzhkesmvdbPhX8eLh9u8241tlSxKU5iMnJWBOh+XXZzHYEmb/b+dex4kISgB7fzdIycc08xKUZpOTEqi4o5DpyRibvnziBdUEOQngz5O/BmJoNFpefPHFJYLSEv7b4XK5qK+vJxgMEiPKX2IvcJ7mCqG+q58oQafXCn1cHvpdG3qDTpqgtOzmXFJzLGz/1r4FF5kTZAhRUkQC5feopHIhck+YJEFJVImo4bV2olNRGv8o/qGvSdGg1WvwVzlpeE2MLFv96SAGu56hlgjhVrHFHFl1gpV3BbD6TIx1jQvFOdwxzlRkmtFe8Q/kwzLyunEoDgPRafGJqsmnUHFHgIEjI8IKMXnn+NAZtB88lR9J5J7jx+xROGBqEScDPR1ifHCCbd8Q26yQvsxGilGH3iY+/wr3RdkrU3AzwWR4ihGJxdHARX6pDSQJ4mPvgSHhYuuya3PUBfsvidvJKaly4xdgzy+OYHSIxdfk0oLBwMDBsDBBa+UdASx+hehUVIowuOc/jzA5IPadmVxI/3fxWAEcebOD6KRYUS90Qw6OgJXDf2oTyvF9sS52sR7Cqr3uEkFpCacCu3btIi8vj6NHj7KL96mMnYlL412wn6cyleC6TPoOiNl/HfpDK1rtwirjc6BA7cMhRjrG2P2jxgWb7/p+PfpUg9QhfGtc5J3rxRWwsednCx8jsSiupCswMSFEjjj4Wgvhvkmp8zKlqXUcYShQfmuAydEpYev64BUZeMocHHipWcguCWDZ9QGiU1FhAsJIexi9SaeqPYm8Iseh7pdy83O9NQW9KQV3sZUWwfdw+T0FmJxG1v+z+KJU+gonZo+RgXo52+gPGnzlLtzF08JEmpJrs3EW2tj+/QZhZSCT24hWJ1fHkbH4AxjtDWPyGKTIbFm1HuxZZuHF9BV3FqMz6ITVnRSfQnBdJtm1HmHrMl95KjqjFq1BPD/u/3ULOedFhO3nEkpQMt++wUsyiU75pVTzdv+4EU95qlB+UBxQcX+IgYZhqWf+4O9a0WgQIiiBeozpCfG1gL/FXmaaSTRoePbZZ5cISkv4b4fRaKSrq4v09HSmmeKvsZc4R/Mxob5Vnw6iN6cILRS3vtuLyWmQswsCCi/14y5zsP37DQsqBQ0eGpOyo0qg5lPFpCg6MZJShCRBSVSJqGNTPzqDllZBAnoCenMK3pUOGtvFamXLb8vDlmFmz9BhYYWRNU+UEJ2OCRMKiq/Owl2aKk4iisDE8BRjEipPwgSoWTCni69nAmCENY+U0n9oWLiWkXeeF2Oq/pSSlE4HstZ6cQZttG/rFybArX68mMiAmAINqKQ/gzUFo0TNKzKEtNrYxNAkI+3ixZLgpVnoTeIbSOz5CmU3BOjeNyhMTFx2bTaK08DWr+0TJsYoaUY0kg4z23/QgNVnXLghKkkHo2q92NAuNl8JXpmJZ1kqWr1Gyn5u2/fFRTBKrsvGkW9l+zcPSNli1r/cik4Rm6cmrAob/tQulLOGYkNs4k8Qhry8vA8MQQk+QCQlgOHhYRRFIRKJsJ03qZhUFZViU1MnJCo1vdeNv8JF8/vz3IhY9LgF/5a/qgPP5Iaym4uEigpjPVFi0zEmx8TITWNN6kvcGjBTenmW0DGOvNapvmxl2NBmWHFDnrrIJPAx0/6eGiNzjhm9EQbrF55syHrXhntguHWMpnfEiR6Nf+sidGU2kUHxB7Z77yDtO8TZjqLWe7ORd7FK8hCNQf3vWqXY5gATw5MYteLFvZGGMZrf66J7p/ikZuXdASwe5ZQylaseLMRg0wuTrQAOvdbCZFjchmxybJrYVExKpUp2/FY9UIhGq2HLV8UJMQnC4Byc5OXb9EY3Fo9C3Yvz9Zv/JTTUPIbeohM+p/79Y4x0hDn8prg82cHftAPiH1SZZzpofWeAhtfFxmLmmQ5yzkjHv2qcXT8Ufx47dw4QHpgQalt4qQclVc+eZ9vo2Dx8UnJSElGIRWOMds09xokISqXX+JiejHHoz6Psf2ng+J+bh6AEEBmcZPgkhdzZBKWukjo0e0GnTeFvf/sblZWVC1/HEpawCBQWFvLOO+9w5plnEmVamKg0cGQEk0v83ZVQESq5NpvJyBSHF1KSA8Z6ItizxO0NE8SZ5bfnM9Q8ylEBwmnzu90gWdQvvyeA2aNwUCtmT5QgKPlrXbSvX/jjp3vbEN3b5N7Xh37fQkZNujBBCWC0a5xxwdwKcPD5RrLO9UsRwWQt+0AlXE2OTwurGUjPUzvGiU7FiIyKL2DWv9yERie32Lv26RCjPeNSqgyyWPu5EANHxS3l9v/qMGllbilSyNTkNBMj4nO1o3/qEnr2kjDBmk+X0vJ+Ny1vC85ZwrD5y3LS+Hufa8Rd6hBuP9IdYXJ0iqY/ixPTDr7YRMbqdKn4yoxfV6mZcH+UoYYwogdZeWcRWoNWSqFr5w8aKPtknjBBqfrTQfY+3xI/LzFMjk4z7YgKx6r600G2fK9eKIcm0LK+G6vfJERQ6oq10ultQNOlwWq10tp66uwKlrCExsZGvF4vXV1dbOMdVsQWVlTq3jZI3tleWjeK5ckkIUKBytsLxRbwx2F6cprJUbGa1/hAlPGBcRSfQujjWULH6NjQh6vAKkwSTqDyrgBTEbGF7wQBSElXUFI1Qko80rthx6Gvfpj2zeI1mea3OkjNsUgRqNo29dJ7QFwh5fDL8mTvjFoX2Wems/Fr+4WITW3v9gorYSUwMTwpVctgHI680U5fnXjOL7kuG2eB7ZTaly2/LQ+r18R6wZ3NAHW/OSpWk4gjMjJBdDIqZV0mSghJYPlteehNKcLEHlDr1UdeE1+47N4xiD3HTOvb4n36Dw2jOMS/L8c7xuk7OEz7FvHnsPFPnVJqSN5qJ51b+oUJSq6QlZKP5zDSNiZlw9b4104QJK1nn+vGnm1h78+OSikoxaajwgvp+eu86I0pHPxdKwd+Kz4nGu0YI9wn9n3Ztfwg0b3TpGhSeOuttzjjjDOEj7OEJcjA4/Fw6NAhCgsLmWKSv8Ze5BwBRaXufQOkZp9cBX82EgSl3A+no9NphdQ8xnoi6jtiQmxukCAoBa/MJDIwIZSbDv+pHSVVbgN38TVZpBXZVaU2AXJTgqDkWSmm2DR0ZFx6jergK+3kneORskAaPDrGpETd58DLLdIqR1u/Lq/GuOL2fGJTUXb/VKyOI211FoHp8WkmJeo49S83oTXK0QRWP1bMWE9ETtlLEms+W8pA44iw5erh15pwFjmkFLqmwlEiQ+Kx6t45KEb6m4VVjxTT+n43bRL1DJl5GsCeXzTiKbULt48Mxwj3RWhZL7F2+FIzGavdUso9ohs6QFXCioxBpDtCpFvsHpbdFsRo1fP+v+0TVs+q/10r2hRxglL5XQEOvNIqNa4mhieJTkSFCUrldwWoe65BiojaurkfZ6GNjp1iBKWWjD1o2jU4nU6OHPlgbQSR3F516jE+Pp6UYtzO27RPqgk7NjVFbGpuwtAajTAGG//1AGNNY6SVWQh89BjmfSw6898sFKzLRW9JIe/ihXeugVpErosXU8xusbAFP+JHb0khvVIsQSRUmvIu9oLIutyYusjU+Be5YkT5LXmErsmV6lP2yTzh69j9o0YhAlQCIw1jbPrSASl7uPrftUpZ3QF4ym1UPVAo3F5vSkGj0+CtSZU6jgx2fLeBjf8qZ4vQ9Ga3lDXe9ESUU+3qGJ2KnciF64To2jYkZVlX959NUgWhxUBv1aO3iE/KgldnUnpDzty/FGAH1/2ieR7lpRPnlb3PtrDju/NPXjVazRwVpQR2/7iZsSax1Z/yu3Ix+8Wvu/AyLzlnpFN6faZwn9Z3BogMTnLwJbGidOBiVTmo4fUu2t8fEOqTFrRi9avvD5FioNkNYz2w6eutNL8zTDQSSf53IjhyLaQVWuf8XXRwOPnf3ANA6fV+ALZ9+yj1L3QeZ/UWHR6eQ1B6Y/JX7Ny9k/T0dH7+85+zdu3aBa9jCUv4r+CMM87gnXfeASDKNG/GfrdgnwO/bmHHd1TyRel12cLHcgVtpIccQm2PvN7B+i/UEe6Lq4EIwpZhwlfhEmrb8nZP0tIo78Ni88EDL7YR7okIEZQSWHZzLvkX+Mi5IF24jyXXxIrb84XaDhwMS9nQAez8XoPwripQ1W7qJYrUCYRuyCGwzi/cXm+R25G0GGz4Yp0QUS6BvroxIeWs2YhOx4hOndq5VywaIzohPvkK9yFOBIpj078ekFYWlUFGdRpavUZqR3vFfQU4iuR2Ew41hIWVyUC1bNv87wcJ94nHd+BgWJgw5l3toORa8dwJUHJlHhV3BKT6HPlrB4NHxexMTC4tWWepcy/Re+6vdWGw6ym4UCx/JnL5vmePCqu4Bdb5Mdj1BC8Rm3MG1vmxB0wMNYSFiAcdsWZ2sZ7u7m6qqqoYGpLbnbyEJSwGnZ2deL3qc7OL92mLLfx9tPk/DjJ8dBxbrkLeRWLPXPAjGSgug3D7Tf92IKn+oTgEd3Cen47iMuCtdgq1TxCUMmpdwsfoPzzMkTfFdsYmUHFngNKr8qT6FF2ZiadSrPaz/7lmKRu68YEoW75aL2UP1/inToaPylmqpRYorLxL/F2hNWjRGbT4ysXmzovBvv9skiYXt63vk7KNik5EpchAi0F0Kiatfti/f1TKsu7Ia53S9UFZKKkGDDbx2k/eRV5KrsmSPs7hl9uFlZcA6l9ok17o3P8r8eew7Oa8pE2jCLLOdlNwsZ/S68Xna337RhjtCHNQUHko5zzVPaLt3V7hhUt/VRqpOeLECcWhZXwANnxxv7D9nne5k7RS8Tp48cfVOdquHzZS/8LCBP+3Yi+xa9cuXC4XP/vZz5YISks45SgoKODQIXXBf4op3oq9uGCfpje6k8qSBR/1g5ioB/6KNNKXO4Tatq3vY+O/qiobRrv493BaiR2vYM2rd/dQkkSUeUaaUJ/GP7Qw3DYmRcQo+Kif4GWZZJ/jEe5jdBsJXZ+zcENU0oKslV7dc01y6lYRaHhNbr4JEFjnI+dC8etWHAaMLsEBtUhs/veDwrZXAENHIwwcFKsbJDA9LVePWgxi01GmJY4RGYIOSYX9rV+vp+45eXELUThLregVHSkmccL+8ltySS0U37QLEG4XV30EiPRE2P6tw1LEm5GWCAcF68KOIgvBK8TXDQFKr8mj8s4CqT4Nf2yn9+CQGEHJqH6DAsL1cEeRBXO6QuA8se/pRC5veK1DmGCYUevCnK6Qc56YFXzmGWnY8xUi3RHVtnqBax+IdbOJP9He3k5lZSW9vXIbTk4HNLFTzV5YJMxmM+Gw+jFXyiqy9HMHaEJZafZicu1TJar//P89AZFhNgkgOk1q0CxFpgFY/dm4xYngjlRrwCxFpjHnmCm/JY+psKS/oRnMZi1jPQsn7tJPZNO7f1DYKi1hdydj4VZ0bRbuIruUhVvNo8VMjkyx/Tti0mlVDxRisIur91TcU4DJY+TAi0fp3S334hVF9WeCGGx6qR3L/g85Ge+LCMep+jNBNGjY/BW5Qo8M1j4TYmJ4ki1fkWeEiyDrXDfZtR4OvtIkfC/y13np3NgtNMYBah5TJU1l7oUsap8uVXNO4hgLEJRW3JmPNV1h+3fr5hLNTkBQMrmh/I4imt7rpvWd41mx85GT1jweJBaDjf8mdu88KywUrsskMjgpbA0HKrFpx/fEFuPshWaGBGRiAdBosReYWXZ1BpNjU2z5qpgKReKdYM7SMyqws6LinhwUh4H6P/TSd0B915yMnJSEGcx2DeOjM4WhE6knVd6bizFVz+E/ttO1XR3nCZLSbGJSAi2FO6mrU/PZ1q1blxSUlnBasXnzZmpqagDQoOF8zccX7OOvdZF/gY/R9nF2/mDhZ9WUaSLcF5ZSGvFU2gmuy2K4LczuHy6coyy5JkaPShwAWPVwEXpLCtt/dERKjSixEL4gTLDyhoBQjBJIWLjt/NkR4etZ89lSYrGY8OJ/1rmqZfKGr9YJ3ROTT6Hi9gADjeJWaWufCRGdiLJB8JwWg7XPhJgYmhRWQTS5tHgq3TT9WaxQ76m0U3BRJkf+3C5tKSiKVQ8VobemnNI5y6qHipiKTLP9W2LzbFepGb3FIHXNa58JEe6JsP3b4jLIMvCudlBwUQYDjeIKUmufDjHaPc5OQfnu8nsKSDFqhcdTIke1b+3jiGAhsObxYmlrOG+1A1uOWch20ORTCA+OS+XamkeLSTHp2P7NhS02Z0M455pg7aMh+W9cJHIt8ZwzGWPDFxf+Ppwo7GZT80bGx8dxuVwfyGLNEv6+kZ2dTUuLWiAtoZIszcLkktWPl6AziFnuAthyFWmiy6qH1HnR+1/aJ6SuY85SpMg3igMqHwgxOTLF5v+QqGkooNgVIZWZwKU+hpvD4kojCqx9LMTk2JQwoSb3wnQyV7s58LK4hVvl/YVMRabZ9QOx7+7lt+Zh9Ymr95Rcl40raFPVDyRUVmSw8s58LD6T1JzFU57K5OiEMGFn5V0BUoy6RSkUiGLtMyEig5Nqcf8UwFOeSuAiP4f+0Co8PrLOdtOzs0+Y3FN5fyGKy3BK54+rHytGZxS3Dym5JgtngZ3tPxS0rFNg9YMlNL/fLazSVfNoMRqtRpjQZc5SKL81wHjPBNu+La5MsPyWPHb/tFGorWyuVXwKlXcGFjUGRXPusptzSc21SNlMqicHikNhXMDScfmtediyzBz+fTudWxbeyd8eqmPv3r0AbNy4MVl/WMISTgdaWlrIzlaJhxp0nC+gIu4oshC6Jpfh1jEhIqXRbSQyHBFW9IAZ26WhplH2CNigGz1GYZWRBMrvCmBOV9j1k8OMtIj3tWYZhduHrs9h3y/FyR7Lb83Dlmlm73ONQtZyANUPFaHRatgsuPjvWZlK/oU+dn7vgJD6i9EOFfeW0H9kRJjEsObJUmJTUTZKKhvKYO3TIcL9EeFajtGuJW25Q1gpxp6vUHxlLkf/2knX1oH/wpmeGCvviM8fT6HTS/kdAWLE2Ck4z7bnGtHbjfTuFt+otPZzIUY7wsLHkEUiH/QfGhEmT61+vJixznFhda7Q9TkYHXrhup0910jZjQW0bOqm6Q0xIlTlpwpRHAa2fm2/sJqQo8iCq9AmRLAz2rVEIlGpXFt5f6FqV/fdw1I51OQ3CpO5ap8qZWJsiq2Sa+oyubb2qRDRyWmhnBPxjLB15G3Gxsbw+/20tYmrxZ9OfOCUlBIYGxvDZrMBUMdm6ia3zvn3hLKS1jjDPN39XBNH/3YS6dbZqkpaXZKgtObJUmoeLRY6r566Qcb7xe0xRhrGwKwew79m4d1lY01j9DeMsOlbci+2tY+EWHmX2DXU/aJZJSiZxVShxnqiHP5jq5SMcNvmPmLTMVKM4ixRnVGLXmJHz+T4NMQQU50Ctv/sMDt+2ihNUEoNijNX+4+MMDk8JXxOAPnn+QmuE9+dk2JKQSfBvgWVLHcqYc4xS12zxaug0WmIjApyJM3gr0wjdIM4m3agaZSJIXFZz8XEaP3n66h7vlH9g4CCUmw6RiwamyEoabQnVVDyVnnQ6DTH7dg7kXoSwMTIFJOjEjKVu0Y5/Ic2YYKSPc7kFiUoBS7xsOzqLEquFWMDAwwdGqG/YYQ9/ym2oFjzSJCCdWnEpqNCBCWAlvd7mApP07NrYEH1JN8qG7WPF+BbZYMxGB+1nFg9aRa2ffso3fsG5xCUjlVOSmCj8jp1dXV4PB7q6uqWCEpLOO1YtWoVu3btAiBGjD/Hnl+wT/v6Pjq29QuTb8KtKkEp48w01n4uhHuFbcE+3duGmBydovkdscX/xGJ54ZUZrHqkSKjPnp8comvvgBRBKXRjLmU35CeVR06KMMkY2QNiCjBbvlrPgReapAhXk6OTUu89rU6DVq/BL7h7PtwxLq3MuO9XRxZFULLkiivlTAxN0t8grnRUdkshWbUC9y2O2FQMrV6DxSuh3mNSiSKnDCaV9CcDnVGH3iw+zy64JIuCi8Xf3ZjUe9FbL74IIvo8JNC5cYCdPzvCvufF5iAml6pqJTMvMthSSJGIE6jqCh3bBoTbb/rXA9S/1iJMDsSkWlqKEJQAym/LZ+0jIeHzAdj9o3q69w0KEZQyzkxj9RMlYEI8R4Uh3BehQ9Cue9UjRcnvcxkruaa/dbHzJwvPaffHdrC9YxtTU1P4/f4lgtIS/kfQ3NxMfr6qmrifbRyI7Viwz86fNNIooSqUWDRf9VAR1Z8JCvVp39bHaPe4EEEJUBfLFZU44Fuz8JxifAC6dw+w+8dyNga1j4Qovy1PqG3DKx0qSUdRrd8WPik48FKzlOJP584hpifldpAbbCkY7eKKkZOjU0SnYygOsfb7X2xmx48bpAlKtlzxOUvvwWHG+yZAYpoTvDSTwkvE1XgMlhSpHeegkj5kzkkWSrrc71vSFXQGLTEJZc2cs9JZdpN4zav/8DDjPeL1aRkloQQ2/tsB9v5Szr44FhO3rPOWOdEZtGglLLgjgxNMDIt/84y1jFP3m6PCBKXE8yBKUMqodbH85oCU4tR4xzidO/vZ+zOxBcLqzwQJXKo6R4iSQlve61Tn5gIEJVfISu3TITWHjyNEUALY/eNG2jb2ChGU3je+zr59+3C73Wzfvn2JoLSE046srCy6utSNSjGm+XPstwv2GTg4SvO73cJKb5EelaCUtszOmidLSVu2sCvJ0JFxwr0Rmt8XW/xPLK5nn+Oh6kGxuV3dcw10bOuTIigFLvGx4pMFwgpMCYKSNUtMJWj3jxvZ9+ujwgQlgMjABOP94tcQjaprk84SMcXPyJBaP4hJKCfu+0XDoghKJr+4mtJIR5i+w+J1luKrc8k7zyesADY5rsbJ7JFQeDKqhLlTCZkYAaTYU9BbxefZBRdnUfwxCbVII4x1jEvVvESfhwSGjoyz9buHqXtBkPBnhOg0TITFLLsBlDQ5VU2NXsfU+DTde8TJXNu+cYi63zYJEZSMdi0Y1XwrqgC28s4gtY+UCp8PwLYfHKJje58QQSltmZ3qh4vAiJTa1HDLGJ3bxWpeFfcUUP2Qum4hk5sPvdbKrmcbF2zXHDvMzvH3iUQi5Ofnf2AJSvABVlJKwO/309GhDk4nXqr15x7XJjY1NZcgYIbaz5TQ1zDMgedOIkEWv/TVT5QQjUSllWlKP5Gt2jYtgNSgmWXX5ams67hUpAj8H3Kit+hp+tPCO71X3JnPUMsYjb8X99de+0yI6FSMDRIWWgUf83P4jfbjrar+TlF2Sy72HAuH/9hK56ZTsxOt9BPZtG3ulVb1kvl9V6Gdo+900vKWmM2HrJLS2s+pCyGnkg1deHkGg43DdO+Q2AEkgf/yNQiQlI7vszie6IkISidDLBo7rl/BR9M5/Jeukz7Ps/vlXugmo9rFQOModb88cW6dcywzrLqrgM3fO7xg3ohFYyy/JZs9PxeXcDW7YeWdRUQGJtn2nYUXLQsv89C2uZfRZvXlrzEYFuzjW2Uj/9x0Dv2+na6tA2hSTjLhNcOaTxXQWz9C/Qsz+Tg2NYlGd3yhdWxyjPd4GQCbzcamTZsoKSlZ8JyWsIRThdbWVrKyZj7SPsQ6TJqFiQTF12ThKrSx/j8WVuXxVjso+HAGB15qkrLRsuSa8JTYafzjwnOd6geCGFL1vP9lcaUSgNBNuWIKLSaovisorLYCM7tZj/y5g3ZRL3IT5J3lFbrmvxes/VyIWDTG+i+cGotX9wobtiyLsOrNYrD2cyGIwfufF5tTyCop5V/iI6M6jbYtvafsOhxFJtxlTmFijCyyzvWQc4aH7n2Di7IS/H8RJhekV6dzVODbLoHap+KqnRLz0/xLfJjSjEK5LPeidEY7wlIWlivvCGDxK8Lqc8VXZ0nL8696qAg0qlT9Qii9LhtHwCqcM7bG3qYf9R5UV1ezefNmqXNbwhL+u1FVVcW2bdsASMNHhUbM+mbNZ0voOzjMwd8tnEOrP62q7coqdgQvz6D+xYXfA4pPofKOAMPNY8IL+6AujFu8Cs0CdYqS67IJ90aELYsAap8OEZuOsuGL4oTp7HPddG/vkbIb+38ZBZf58a500vjnDmHLKVkELvXRu29AyiJPBnkXeclc46Zlfbfw+JBVUqp9shQ0GtZ/4dTVvHIvTGe4dYy+fXI2w6JY89kSNDot6wXnp38PyDnPQ9P73cKkS2+1k4KL/fQfGqbulwvX+xOovL+QbT88JHSckuuy2f+c+G+jqCTN8T4xtdKc8zz0HByWUrhzllgouTKXQ68LqLApsOYzJfQeGBKydwOSG6CsVivvvPMO5eXlwue2hCX8d2NoaIjU1BlLwzO5FKNmYSJBzoUe/BUuNn71wILqHamFZkqvyqX+lVZ694ov7BvdRtLL7DT/dWHC0vJbcrFmmtn2jQPCSiUAwSsyqX9B4PvbCBW3FrD9x4eF1UoKPurHW+6k8U2JOYURsta4afmbnDX9/8tY89lSiMVOmeJ4aqEZe5ZFaBwtFmueKAGNRkjBGOSVlHzVDgouyaR9S6+UdZ0MrFlG3GUOGv9wauqtacvsFF+ZRffuAaHvqb8LLOJ5rn64CL2ik6oBZ9S6sGWbhRTPfDVOJsPTUopZxVdnkVZkZ9dPxdTnApf4pMdp+R0BdGad0LdI3ke8eFc4hN4/AAdiO2hGJefX1NSwceNGqXM73fjAKikl0N7enpy89tPJu5Ovzd9wFtfKbNag0WjQG8R23mz8l/1JglLmmWLs4Kxz3TgLbFTcs/Aul8H6Md7/p31SBCVQFXayVovt9N71/SNJgpKnfGFlAoCxrnHatorvGvWU2/CucFJ1R6Fwn2U35bD6s3IL7ivvXljmPAkzVNxfIKx25F/jZO0zIYqvE2PJNrzVzXj/BMMyTPOP+ii7NU+4fd0vmk8ZQQlQCRmdYfoOn7pj9B4aoqdePNEvBodebBMmKHlrUim/OyCl7tRTP8RAo3gxaO0zIWEFNoDyu/PxrhL3dS+9LhPPSnGv+aKr/dQ8Gpz3mmPR47moihvSlzuouWf+5zkWjR3X7+h7qvpQ3UsnJyglkF5hhTHY/BUxglLZJ3OwZZnJ+4i4l/NoV4z3P39AiKCEGTyhVJbfkC/022mlZsxu6Ng8zPp/PSwkeWo2qyQyvXnm/RObmn+X39jkCG35u5N/7ujoWCIoLeF/HJmZmYyNzTyw7/Ea4djCi9B6cwoaQbJm55YB3v/8Pnr3jGDKNAmrqSy/Po+MGrF52pav16sfvxIEpYLL/TjzrRSL7IINkyQoiShCATS8epSJoUlxghKq/UFGTRoICs6YXCr5Pv8Sn/AxPJV2Cq8UV8zxrnZIzXNqHi1OEoFFMHBkhK7dA8LtTS7VFiStzCrUvmfX8CklKAH0Hhiic6/Y7pnFoGvvICNtYTp2nhoCPcDAwbAUQansk3nkXJAu3L734Ajh3ggtb4kRlEI35rL2mRCuUrHJnXuFjRW3i73vATAhNa5BfdaCH88Ubl92SxGZq91SSmHtW/sYahGbwyeegSOvdwjb4WXWuCm6VFzRFVRluPf/aZ8QQanivgLSSux4KhfeRQyqjSjA5v84KERQAtApOjQaDSYBUbiBikbCyhBarZZzzjlniaC0hA8Etm7dypVXXglALx28H/vjgn0UB2g0WmG1mS1frU8WQL3VYrvJ01bY8Cx3sPLOhXPpeMc47//ffVIEJYDij+WQtVbs3bH/ueYkAcVZIvadPNg4Qtsm8ZqXOUsh+4x0lt0kpkwAKslHpi4AELoxR0qVp+zmPOFrdgRNrH0mRMm1Yrm99e12RjvH6TsiXi/KOttN6IYc4fYNr3ScMoISQMeuQYaOjtJdd+pqUp17+unZN3DKfh/g6BtdwgQlZ4mF5bfmCatsAXTu6Kdfom5X+3RIJQ0LInRjDp5K8ZpX4FIfaYLfUaCSuGoeLRa/ZgWyPuSh5lPiz2fnln7G+yY48nsxEpErpM69tn1TjKAUvCKDtCI7+eu8wufEOKz//D5hW5astR6WfyJPqG1qgYLiU+jfP8r6L+wTVmHTaLVCCq3jsXEaAzuSf+7u7l4iKC3hfxx2u51YLIZWqy6LvsMrRGILr/sYLXo0Oi1G48LLqYOHxtjwxTp69w5htGux54u99JffnEv2GR4hBZzdPz3K+i/USRGUMj7kIn25g+CVAt+wEdj+HZWg5CgSm4McfqNdXW/cJl7zqrorSM6Z6RjFPhfBCFWfDpL3EfE8mlpoJiBRI3OWWim9TnyeU3FfAbVPiau6dO8ZoH2HBDHcCKXX5eAsFat5DR4aO6UEJYD2HX10yFyDJPqPhuk7OEzXrlNXVxtpiUgRlIJXZgoriwGMdEYYOjpK03ti3yKBS3ys/VxISIENVBu2ZTfmCCtmgUqUlkHVZ4IUfNQv3H75DXnknJlOaqH4omzLu90MNIg5HyV+t219n7AlY975PoIfFa/bARz4TQvvf36fEEEpdH0OvioX6VUOod/2rFTnyjt+0CC8WUKv6NBoxd4/wyta6DW3odVqufjiiz/wBCUAOS37/yFs376dq6++mueff54ww7w5+RvO1199fMM4UWmsO8b7n59h3gU+6qPh1YUXI4JXZuJZloo9x0Ldf55cUq3lrR5MbiP1v5Hb+VvzWDE6vVaIGXj4j62M9ohL2EJ8t61OQ/eOhVmpO747I9lrzlAYazv5F1X3jmHcy0YWjM1sGFMN6PRalTghUPMo+Jgfq9dE6MYc9j278HFSM82YXEYKPuxnW/3CH2ztG/rJOdvLaKdYgWSsaYxt35CTIU9f7kSbIq50k3O+h4waNxu+WicUo8Q4bXm/m6Y3F55wDNaPsaNeTp5ZFgeek9sdLauSUPWgSqTZ+jWxe5G12oPRYcBkhrBgre3gr+SuYXJ4ipEuwdVvM5g9Crlne+ncPOujPxY9oZqSs8CKI99C906xBRqrR0Gn18wZQ/ORkxIY74HOnf30HDx+EjBfP2u+mZEjYyrhaB4c26fyvnyMqXqmJ1ro3XvimzC7356fNFHw0XQa/3DycR2Lxgh+3I+nxM6BF5tP+vtz+g1N0rall65d6j1YSEWp6FJ/fJwuvLPBXmDG5NTSuWWE9V88dEJiUgItk4epYzMcgWXLlrFnzx6ha1jCEk4HTCZTsmgTi8V4j9coi63Gpznxx8yenzQm/9+72sFQS0RsAfuT+aARU7Hb/ctGnLni5E1QCTjBS7Jo29y7oBrR4RfbmQ5HpVSLvNUOCi7OIHPNODu/d/J3bbhvhthkyTUJ2STVv9yE2WcRJluF+0Cn12LPFv8gDF6cBRqECSm5Z3lJUcQtOEbawxgd4pLL+yTmmQCYTFi8CpmrPcLKXJWfKmR6MsrO74rNjxIFJ9F5i6xqjCxGj4aFbRYBAuv8+CqdtKzvoenPCysMmDJNrLgxl8a/dtC5cUDoGPZsM+Z0o9Dvg2r/uP1bYostAEOtY1h9Cn11Yu/8nLO8KE4DJp9CWMCyouzaPOxZZrLOctPy9sK7vkw+BZ1ei+JYWJExgc3fOUjxR7OEnn1Tpolwa1g8H5mg+IocptdF2SixI3P/bxvR6MT2LdU+VcpUeJrN/yGuPrz9W4cpuNxP97aFF0VDN+XiyLNgsKUIqU3lfVhVmZv9/jkZ/hJ7gei2aex2O5dffjm//OUvhfotYQmnA7/97W956qmn+Od//mfGGOat2Eucq/nYCduPD8D6f56ZO+Wc56HpLwvXBrLPdZN9RjrOQuuCSh69u4Zpz+7lyGtyu4urHgiit+iE1Iv2v3CU2LScZVrNo8WkKDre/9K+BUkBs+cUik9Z0MJorGVc3e38B3GSrslhRGfUoaQrQhZXGbUuHPlWQh/PEZrzKOkK9lwzKWYf/fsXfm8O1IeZHJliqFXsfTk+wIJz2GPhr3ahN4mXkz2VqeSf52PXs0eFbKSyznaTc1Y6rRt6hJSRxjvGpQlysmh4RY7gXvtkKbFYTFjFa8XteWj1OnZ8R2xulFnjwZZlBkVBVCboiKRSQLg3wnif+IZNR74Vi0ehe5sY0cW3woW3zMn6XWLza3u2mRSjTlzlbBwa3+pkrFPsWTBnKYy1jKuEIwEsvzUPW5aZeoOA+lAc9S+0ERmcFMrXOed5yKr1cOCVZiHLtgQa3+xgoFnsmkPXBSAaY72Aw4LiU7BlGOneNiikKNYT62AH78JhKC0tZd++fxwFryX8v4Hp6WlMJhPj4+O8wysL1rzqX2xLqqE4S61MDk8KLWCX3x1Eq9cJPTe7f3aUtKBFWLkIwJ6vsOz6fFo399D0xslzS9t7fWg0GlrfFSdw2/MVQtfkMtwm4BATgR3xOYXJbxSySTrwQhOpeVYiohzaiLpJ0uYX3/hTckU2OoNOWOkk/zwfitOgkj8E7sXg0VFiE+JmRYdfbRduC2A0grPQSopRQ3+dWM1r+a15EI2x+6dim5dqHilGq9cKKyMd/aO4suliEOmOUPeceG3QV+0g8JEMdb1U4B1rtMPyO4poebuLji0DQsdwl6QymWcRfn4iPRH2/Ews/gAjneNEhiaF1ddyzvZhz7Fg9RiFclHhpX7SiuxknS2odGQEvSkFk0u85rX7R40E1vmEbByNbiORnggdm/rp2CRGRlt2bR5T49Ns+rK4xeKenzegt4nVpGseKWZqfFp4Lgiq1WXOhR4hcYPAOh++ShemNIPQOM08I43Wd3vV9w8Lf5++G3ud8Z1jWK1Wrr/+ep599lmRS/gfx/8TJCWA3/zmN/zTP/0T/9//9/8RZZo3Jp/jQv11AGhSUlTLt9mIxUCjofzufMwehanwFE1vnvzhq/9dK1afIkzCSRCUSj+RjS3DzKYvLfxwTEn4QybsxawBMyWXZQpZb7Vv78PkFE8cIGdzlYiNf42T9g0LJw9Zgs/hl9qZHJkSIt+ASsA58OJReneLsS0BqcI9qApSBRdnUff8USHFoz2/OspIg/guNGOqAW2KBn+Fk/b3Fo5p1+5+nAEro13ix6h6oJDufYPCcZVF1YOFdO8fErImBAj3RJiaEH8WDBY9SDicbf36IZylZsKCyoKrHi4i3D/BHkGPaUDOHnIMdnxnPwhYiyWw4+fNmE6wqWw+67Zt3zpyXJsTwV+bSvv6QRpeP348zNev9PpMHHkW2rb0cfQNsaDuf6GZ4o9lCRGUAuvSsaQr7P5x07znNB8i/RPEojF6j4zNa6M2G9nnOsmocrHhi/tp/IP4JLr30AhDjWLFoGVXZYAGOrfMT1CafY6DoaM07N8FETAYDEsEpSV8YBGNRlEUhUgkwh420hvrYJlm1YL9Ci7KIDYtRkRteqcLY6rYx8Lo0XBycX/1EyVCBIqRxhFi0RjhAbEqT4IQsPz2fPrrhxckK3RuGcBfncbB5xuFfh9mCCOdu/s5/OLJixN9dWNJUoa32kGnwMezrG3pwVeaGe0SJ8Xv/kUThMUlqqRJR6iKNgZLitA8MtwaZt+vjjBwUPycjHY90WnxItJwu4QkF6qFljNgZcd3Tg1JXP19m/BC1lDzCGlFNmEP+bQiKzqDFr1ZnFz2/pf2YXKJFQrdK2wEPpLB/uebGGoQi23LW920vCU+j932jUO4Ss1CBCVQiZaiBCWAcFw1RBSJ51eUwFZxa76c7WEYBhpG6G8QK1pWPxBk72+ahUlfANMTUSJDYrmi5tFieg8McfiV9gXzXAL7fn6UlXcFhAlKmavdmD0K+55duPDXUrSH6AH12+OLX/wi9957r9A5LWEJpxNf+MIXqKys5Oqrr2aaSf4ce54LNFct2K/kumzSitQdtwsVO5vf6sGRtzBBKYEEQSn/I17cpalCJMXI4KTwpq3+/WodR/EphK7IYtu3F37vH/1rF86ARdi+CeRsrhILkJ7yVCHiwZ6fNYqfCCTtT0RtUMa7xtn33BEG6sXnIjJkUlDVVIouz+Hw79uElHx2/2cT4wPiN0BvTiFF0eEqtNAm8F7uOTCCd6WTYUGiFcCKO/LpPzwsZB24GMj+/mCzeI0SQHEapTY77vlZI6kFCxPvEii/p4CJkUmhzaAJiM4zE9j29X1x0pRg++83YHaLL0vIuBMknt82wYXE/HVe/JVptG3spfFPYmSu+heaKLoqVyhPZJyRhjNgZe/PjgotSgGEByaITkcZbVp4LCWIgJu+dEDKtrFjay/hAbG5Xfkn89DqtEIktOHidg4c3QZhMJvNSwSlJXxgEQ6HycjIoL29nT1sZCDWTYmmcsF+xZdnQwwhQsehP7RjzRDLjZGeCG09au2q+jNFtLy7MIFiqG2c6FSUiX6xZzlBsCj6eCajneMLEi6GjowzdHSE+t+LE10zal3kne+jc0f/goSckZZIkmCRttwuZMm0QYBYORv7X2hmfFB8HWrvr5phYlKYLNbwmrxSd9HHMzGnGZOkrpMhMgR7fn6YoaPi7DWTy0gsJl7zGmgcIUXQlQhUCy1PqV2YBCUL2d8f6x0n3BOh76BYzcuaa8dgSkFvFa95rf/yPkwuMdkia5aRkqtyqX+1RYiwA9C1dUCI6JLAnp8dxZ6vCBGUAA690s5Ie1iYlEVE7llLW2and++Q8PNQEVc+l7E97NjRx3jfhFDblXfkc/C1tnh8xGI0NT7NxLBYLq24r4DBxlEaXu9YkCCaQMNrHZgcYgQlX7WD3HO92LMsQoS91pK9jMfre1/5yle4/fbbhc7pg4APvN3bbDzzzDNs3bo1+ec3Jp9jbFINvCZlng+bWIwd32lgqHlsfoLSPLYkiR29wSszhSWbbRlmVWZbYNP6tm8cYtO/qWQm/xoxme2iSzIw2PSkLV9YPaDx953U/UItOBV8TEyKbahljN5D4pK/6ZV28i/0U/WAuO1bwcf8whYKCSKNU9DOIUFQErV8g/+fvfeObuQ4s8UvYgfkDIIgCAIEQGCYM6k4srIsK0sjK+ccRhqFUdj3zvPa3l2n3bW1sned5LCWbUkOspI1CrakyTmQM8NhHA5zTgBIAv37o4AmMUOii/5Z761s3nN8jqkpNApfV39V/dWte0kSWXMTnWxjMpGEXCmDs4rCQwBYEUEJIOS4zV9qoiIoAYSYtf3rR1ZEzGKMathLjCvq10rAGNSwh+llnfd8t3VFBYYtX21ekS8pAIyuYNNFxSuhsVEWU3iiiHaKreJyCz8e4K0yzAwJmOmRnhA5K8BbiYoXjUIQn6NE1UOZ1nbZCEqsFfCe7UDtY5nP71L2bml0ftiP+WhiSYLSyZ+zlWlgK9Ngpncee77bseT1Tv6MvdgInUt6Y1NICrCVawEe6Hp/GFu+elTaRm5+Dha/FnKlDFrfQpCWU1HKO8uI2kcKIMzO4sjLx9G7dSzj32XKpRevx7cMoeuTAUmC0p/mfoe9zbugUCjg8/kQj6/geMwqVvH/ALFYDAUF5MWhF51UFiTdW4Zw7G06pcnuPw+h9XVStKh9MgRHnVHyM8YgB4VaDmtIet6JjiSx5SvNhMzEgc4qigN0Lg6uejoZ373fbUV0JAlbpZ7Kuq7tDULI7vkz/empuqeK4L/IRW37Bo6QEGjsj4b2TyLaFwOXy1FdP3oiiugIUZKh7Y+tUo+ax+jtIjR2FqyBnti7EoISQBSRVkJaP/ijjhURme1rjOBp1xV/Acj16TWdh/ZPYse3jlITdro/GMTmLzWtiBSEKKjU0wDAFjFCySgwRzkFRm7KR8kKrNvSzyEtAccYJO1pCUrFt3qRfz69tV31QwH4L3JRW1sCwOixSYwcoyNKp+0dm37eRWUn6ag2Qm1UIXAJ3buio9oIANj+9SPY/4P27I0BgAOUrAJGL53yXc1jQTGetGoeHe/0Y7RtSpKgFBWi+LPy9zh85DDcbjdaWlpWCUqr+B+Nq6++Gr29C+uDTcIriAnZc/fhl49j+MgE9cb3gdR85jnHhupH6GzNTAU6KHkllUXZwZ90iCQZWzldjaDwfCdYq5qqff/OURxOyfvnn0eXi4ePTGC4md4iVZfPInBpLirvo6955a2lt0BLkwgMfrq1QpqgpMunX1usuTmf2tIhPk1qIjbKmk6sL7YikljPx8PY/I9N1ISRWF8Mu/69hdr6DAC0ORzsxXQ11r8EK71+08+6VkQI2v71I9SqS2msxEKPM6mhddKvQ6ofCdBbsbFE8Ss2BjrSFJtSNhuIUd1j1gjyLNIOfxYIXEpf0weA3k8GER+foyIo6fJZWEp1iI0lsf/7FOsiALn1Fhg8GqrfYCoi7QZ3j2PrPx1GbExabc4a0kPJKqhyiq3SgJrHyXtZ+9v96NtKR2pqfbsXXR9LE8m3Ce9jb/tOCIKAcDiM6emVEfZWsYr/2+jp6cE555wDAOhGG7YKmyQ/0/bHXrS+Rae6OHxgQlSdqXooAGfq3SobuBwGao0S5gCF7VMc2PYvRwjxgKG3ZrOE9Mippat5HfxpF+JDcRgKeSobp54tI4gOxdFNmV8AEpvQZe4V2b6V3VkAxipdFxk/NoP4YByMXk51/fhQHPGJJBi9nNpKy1DIo/LBQur2OhcPlpLwAmBFBCUA2P6NI9T26QBw9NUTaPoF/brFXmKELm9lSvcrgaN0ZdefaI9hz3dbqQk7wwcmsPnLTSuzxYuDSh0MAKzFRqi1SghzdOS4wOUurFmBlbLWTcbORDvdWlCfT9rTEpQCV+bCfZaVuj8lt+QjdIV7RTZvfftGMXyEjpOQ7kvbG31UZGx9AQuNk4P/PDqbx7TF3u4XjtGpXzFkP9xA6fZQcZ8fnnNsAIBDlAd5+3aOYfDguCRBKS7E8SfF79Dc3AyXy4VDh+a951wAAQAASURBVA59pghKACATVkKp/B+CmZkZaDQLA8CPUvhUkVPVlBZDJkPF/T6wBjW2fHXRi98yP792QwhKToHN32iisuBKg8Y2DVg4pTHRPUO16WEK8ysiXVQ84AdnZtD+fi81+WUl31N+jw9HXm2jVqppeDYMmVyGzV+iOz2Rjv+eF5uovqPuySIoGDn19RufjyA5L6yYeU2LuieLIFfKVkysoUXh5S4IgoDW31FucFLa7aXR+HwEs5NzVOpdKwXvYuG/0InWt/uonpWVInidG9agHi2vH8fgXnpJZFoUXu6CvcSI7m1DpypHLUF8rFkfgEqjxN7vHsbM0DLpdpHlW92GABnL3zqS9Z6llZRK7/RAY2PR9m4v+ndOZiUopT+z5kY3BvaPYnA/KRZk+4ypiF9283epzzU+EwJkIAQiys8AxE4um/1J+nONz4YgzAvY8s8L119OSYmzy5clhi1HUqq4Kw+sSY29P+nETNepN2AxSSl8fQ6MHg22fPsYhCzKAun+7dFtwtAISWiXXXYZfvvb3y77mVWs4n8a1q1bh1/+8pcAABlk+JzsKsnPcGag4r4IBprHJK3EjEEOkesKMNkTxQGaTfDF30Np55S2xKVZK+h9HLXCSxqNz0eoFaTSMAY5KoKNo9oIY4GWWoXFdYYF3rMdGGufplIZ4cxyVDxQhLmpearT91wuh4rbCxAdjlNZdvkvzYGj3ISuj1emhkMLR50R/vNdOLFtiEqFZaXgcjn4z3Og9fcdiNLX2ahRsz4IlVZJvY4lnQK1DaD/0hwkEwLaKeXNV4qGZ8KYjyVWVARbCeo3hiGXy7CZQgEDHNC4IUI/lp0sKu7yYXZsDju/TbfubXwu9R5BKYXOOVkUXpJDldvMYX5F6kaec+1wN1gxcXyG2vYMoM89ZXf6oMlh0b6pj4oARZuPFz4AND4eQXx8Fru+LaGgwgEN68OY7IlS/dZocAifHPkQAKDX69He3g6zme7QySpW8T8BCoUCySTZnPajGAWyIsnPRG7wQJ/HY+u/HpYkkVTcR2pGm78hbZu2GLS2Zo5qE/wX5WCic4ZKbcjgZ1dEuojc4IHRp0XXnwfoLAtSMAY4KlWiNTfno/XtfqrfCqRqUio53VwFQrpgrWrs/l4b1XdUPRwAY1Bh89fo7lfDxjCSSWHFSuK0qH4kACVHZ+v3lyD/PDvkChm9RRm96xkAsm6Pj89h17//9WterBHwXeJB23sD1EpHK4HnHBvcjTa0vHmC2lptJXCdboF3rYNaVajsHh80dha7/6uN6vemx/Lub9MRcIquy4M5qEPbu33UhJrAFS6MtU9TqRytNPfUP10EuVK+YvVaXT6LyU7p7yHrzCTVs0Wbjxdjzc35MHg0OPSLNsnf7bvUCUeJGXv+o4nKZm+/5c8YGCLvYpdffjl+85vfrKhvq1jF/0v8wz/8A770pS8BAORQ4BzZFdIfYoD6R4sweGhcUjGIsTGoutuPia4pHPzpytSm07ZIUqh5LAgVp6Rai9DasS1GwzNhCAlhRcon+nyGimBjKORhLzaKipZSMIW1CF/lwcixSTqFUAZofCI191O89zN6OaoeLsLMQIxK7SitHtX10crWpbQwFPKIXJuPnl3Dn4rVGmNlkH+WFZ1/GqIaaytF2Z0F0Di5lc2dlHZ7AJB3NiGArIh0tALUPh5CYjZJNXb+ElQ/FoSSUVDvVTc+t5KxDFQ9HCH12xfpVDLrN4YhzCex7Wt0tmqMHvBd7KFS/KHNCWlYSvQIXe7GePsUDq3gAADt9wSuzIUtYkDHe3QEKNp8vPABoP7xMOIjs9hDoVJa+3gIUz1RKtLgpHMU2/vehyAI0Ol0aG1thc1mo+/b/xB8ppSU0uB5HoIgQJ3aZG7Ffnwy9yZqnwih9E5yytZWrkP9xrCoVlR8s4d4iaZQ+3gQZfeQtoYAj/qNYbjXEkZe+AYP2cRKEZRqNgRR8YCffLeLRf3GMLwXOQAQQkT9xjD5Nw+P8jt8qH82VTziyQOdVjQqvNwltm1/ox+JRAKMbkEBqn5jGIFrcgEQElP9xjC4FGGx4HM5qH40gIZnwgjf4EHd00UIf5GcivJ8zob6jWHwHsJUrLjXDyWjwETXNHo/GUXdk0WialDOaSbUbwyLKkWldxWIp0vqnipC+Goviu/0AgActQbUbwzDXkmYhMW3eVH7BGm793ttKLk1hPIHSQwtJRoS79NIvNfc5EHdkwtFtEQ8iZmhmBin+o1heD5HHpjwF/NQ9/RC25pHg0gkE5geiEEGOeo3hlFwCYl34JpcMYYAsRmreqgQA4dGMdUfRf3GMAovdwEg6k31G8OiwkzVQ4WoepichNv8jSbx/gGA9yISb95KHomKB/yoeXThxH/dU0WI3OwBZwXca62o3xgWVVnK7/FlnNCpe7IIUAhIzCaRU0/inVbBKr2zIKNt7RMhFN/mRd1TRWh8PoL6jWE4asnpteJbF+INEOJW6V0k3vYSIxylJuSeQRjvkRsz413zWBAV9/oX4v1IGJ7UCeXQOndGvKsfDaDyQdKWsyIjvoErl4j3wwunCes3hhG4koxZ3+edGfGufLAw42Rm3dNFCK1zI+9MK/RuDcpuLQCfkjutuN+fobBQ92QRwin2cPXjATQ+H4Gxgly47KR41z4RQvEt+QDImLX4dRCSAgb3TqLk9pNiuESOKPg8iUvxLfkZMazdEELZPT4AmTni2G97MNoxhZyKhU2OmkeDqLg/nSMY1D9dBO+F5Lrx6VkIgiASlKofLkRlKp+AJwUO/xfI+C68zAm5UobocByYAaoe9KHqQd9CvJ8KInAVySfeC22oeyKAo7/twqFfd8NVbcloW/dkEOF15N54zrGg/qkgcs8mY0vFK5C/1iEqGtVtCGDNjeRZyGk0ov6pIExFPGofK0T4qjzUrPcv/Nb1fqy5OQ9CUoCjWo/6p4KwV5ITdsW3ejA/l0Tf3tFUXPwouY3kKXOYQ90TAeQ0GgEAa252o+GZoPjbI1e4UHYXuee8h7TNW2uGkBRQdK0LdU+S8THWMY35+SQq7vOStlagboMf3gvIsxC4woG6DX6Yi9Qov92Huo1BVD2YGe/Cy0kM/RdZUfcYUaFyVvKovDsPMjmw+ZvNmOmaQf3TRQhem5uKtx31TxeBT+Xk8rs9ovoTp55H3ZMhMSe711pQ/3SRmCMCN1rRnr8TQyNDUKvV+PGPf7xKUFrFZw4vv/wyfvKTnwAABAjYJLwC1zlG1D1VJKr1lN/ry1BZLL0zBMiBZFyAe62NtM0lz03Znb6MOSL4BQ9GWidx4AftyGkwo35jWFQ3Kb7Ni5r1C3NEzeNBRG4keb/6sQAq7vLBdaYRAFFcWTyf1KwPovhWLwBgoHkUQkIQVUHC6/Iy5pOa9UGUptRaEgky95fcVYCGZ8IIXefOmE+qHwqIcwRnlqPuqSJM9s2g+ZUOFF7pQt1TC/NJxQN+VNyXykMcuW7BxU7ofYSY1fBcWFQkqrjPL645gZSC0uU56N85htj4LOqeKoKjXktieI8P1Q8txLD2yRBC15BcLpfJkJhNovMjUrwovaMgI4a1G0IIp07XO+qMKL0riOhYHO3v9aL41pPi/VgQkZtIvK2lOtQ9VQStQ4XocByJROLUeKeUM41BDnVPFSGnwYzW13sx2jYJ1yJVyupHAii7MxXDXNLWfSZJsqFr3Kh9MiQqz1Q9VIjye9PxJnFJK6/4L82B92wnhIQAIZmK9/2ZMfSlFGMKLnai7qkiaEIcGp+PoO7pEDnttqht4ZVkHek5107GrJOFq8YIg0eDkjsz1xSha0m8XWdYUPdUkdjfkiXinVZXcFST58ZSTO5j8a1eKPiFV7Kax4JYczOJt6VYi7qnimBLrcUjN3gWxmyUxDutMKT3LcQbAELXusW2jlITcqrMKLs7FUMnS+K9lqzFA1flovbJhd/W+Hxk4X0mNWa9FzjEeGeM7/v9EGQCZqfnxRj6L02tVS5wnJojHikU/659MoTAVWSezZYjtn61GfOzCRRdR8ZsToMZdU8VLZ0jokQFdX6W9MdWqc+I98k5ovh6DxKzCbR/0AtzmCfPmESO2PyNJhx7pztzzF67dI4wBjlgdha8lYHnXDJml8sRnFmOoqu9aHguLKoj+S5JxXuZHJFTZUZ8chYHf9yB/PNTY9ZMxtPJOaLhmTAaniXreq1TQ56FfHLh5XLEvp+3ITYZh+dMu6hEt1yOqFkfRMVdvswxe+MSOfk2LzgzkHOWGXUPF6H94z7s+vaxU+J9So54uAiQATKFTMwRaZycIxTnz2B/zy4olUpotVqMj4+vEpRW8ZlDIpEQx20rDmKr8C6qHgqg+GYvAIB3s6jdEIKznrQJXOGC3pM6zBcjJJiS20lb1k7apk+h+i51QqVRigSliof8Yq0BLMkBaZUi7/kO8dlkjXJU3uND/TOZ783pek3eWitqN4TAGoniUSKegEq7cKCk5vEgAql6javBTNo6SU3Ac7oTlQ8Uou7JIhRdl4ea9UGEUnOErdKA2g0hUSUkcqMHnIXByJEJdP9pCNWPBETVIHNEi9oNIZgjJO8XrcsT55PqRwKIrCvAmlvInGwMcKjdEIKtkrwnh67KFfPboZ90InKNGyV3p2LoJDF0pebZwOUuUY0EAGan5zDZN5OKE4lLXqrGWHCJIyO/ld3jg6AQMHliBrGJGGo3hOA9n8Qw/zw7aZsSRCm7qwBl9/jQu2MYE50zqH0wBN+lZI5wn5WON8n7Jbd7RfWnLd9qRnIuicAVJN7OehJv3k0uXHyzF1WL5oia9UEUrXODNcphKyfxNgbIHBG5wYOqhxfaVj8SgFwtx3w0AVORBrUbQqLqTtF1eah+dKFt1UMBRG70oPqRABqfi6B2QwiOalI3DF6ZmzGfVD5QiJJbSLxdNVbk1FjgOp285/u/kIOaDQttK+7zo/QO70K8HwyJJ5QLLjw13uk1EICMf/OcY8uId+mdBSi/d1H9Y0MQ/i+QdY3rdAuJt500LrnNi8oHFtaRNeuDCF6ZC0eNHSa/DmW3ekX1qzU352fEu/rRgLiuKbunAI3PR5DTSOISvj4v4z2p6uGAuI40Bjjk1FiQTAgYbBpH0bXujBgulSO8F6bWe1e4Mubk5XJEz8fD6Ns3AnupMSOG6VrayTkiNhGHkBREglLZ3T7xPSkd78U5QsHKMdkzg9hYEqV3eBfek7B0juj40yAO/KQNtpD+lHifnCNcZ5HnU6VRwnPmgtLacjmi/F4/1nzRh+rHTor3jcvniMRcEj3biSpY5QOFYrxPyRFXusiaLvXbCy/OXYi3cfkc0b9/FHOxeZSdlJNPzhG8nyX5eGPRKfFeKkfYyg0oud0LRqPC5q83Ybw1hprHgllzhKUoJTnCsiRHpN59Ts4RgetycDx4AANDA1Cr1fjRj360SlBaxWcO/+f//B989NFHAIAkEtgkvAJdBYPq9UEwKRXjyPUelC+aT6ruCUCmlCMxn4StzIDq9UFRsSR0rTsjv625Lg+DR8Zx8KddMIVJHkqrHgWuzM3IbxX3+8XaTundBai6zw/3WjIfFl6akzGfVNzrR3gdyVnd2waRSCREtSbfxc6M+bv8Th/WpPJbcnoO1euDZF/uyRDyL7SjetFeWMntXpSk9lvAANXrgxg/PoXmV7uQd7YN1euDompQyS35Yn4DiFWd5zwbGCuD4pv8aHg2TFSJAKy50YPyOxfF8JEAfBc7MX5sBpPdM6heH4S9hvQ/vM4j7m8BZI4rTNUa5Eo5Zmfm0bONkFJC17gz6kCVDxSKe1bGoAbV9wcx1R9F26ZeBK7IzagDVdznF2s7+nxyz/UFOkwen0Z8Zj4j3uV3+xC5nsSQsZG2zloTeraMoG/vCBwVC6qLZXcWoDi1J8voSQxdp5E5wnMOiWFaEafkdi9KFrnQVK8PisSb3NMtCFzqRnIuiUQsieKb88XaZTre+ReQOc/VYEb1+iA0HgaNz0VQsyGUOWYfDsB3CZkj7FVGsQ+WgAa2NUaUpu95Kt7pOdmyRo/q9UFRKSd4VeaYrXygEMHUnGwo5FG9Piiq0wQud4G3Lyj9VdzrF+dkrZvE0F5lBAD4Llk0ZuMk3mmFIca6EG8AyL/AjqrUmjO3zoK8020ovjlzzOam1pHimE2h8bkI6p9Z2POsXh8U15G5p1vIc5+aAotv8kCukmF2ihxQr3o0AO+FZE521ppOzRH3+sTxXvVQAP7PkzGbLUfs/OZRzE7OIXAFiaEprEX1+uCyOSIxm8B8nNS89AVsRrxPzhGRL/oxOz2Pro8HweWkYiiRI7Z+sxnNr3ZmjNn8C5bOEfoCFvE4oMlhxXfNZXMEA5ITngvDcx6Jt+s0cyreS+cI7zkOzAzHcehnXXBWkzHL5ZALn5wjap8KkfvKACp9+lkmY2+5HNHyxglMD0bhqrfCFCbvj8vliPI7fai614/qx4KwlZG1of/zOUvnCAawVxlQfX8QHX/uw57vtpJ4L3pPWipHyFQyyJULOSIj3otyBHtxHIend0Iul8NkMmFiYuIzSVACPqMkpTTi8TjKy8sBADOYwPt/fg+skRCRmJSfN5eS/GNNashkKWUbQYCSU5C2MhkYnRJypUxMlrxFDYVaLqqYqDilSHBSaeSkrYVcV2NZ8A2f6ZohXp9J8jfPk7Zpr0relmqbInHIBDnUWhW8FzlQca8fcqUMmlRbjZWFXCmDjCeNVVoVVBolZHIZGK0SCpUcnJn0SeMgbTkD+V61XgUlp8DBlGengpGDtaTa2jjIlTKwhlRcjGooWVI06t5MJnVOT9pyFnJd1kriwpkW2gJExp83cah5LAi1Xk36b0tt2psZKBh5RltGp0bOaSYUnGMh/U0lb87MQKFa1FajgFKtxL7vtQE86YMm1QeNOdOnXa1VQaVVof2Nfuz/WTu5N6l7zqfuDZeKt0qrgjrtMzoDYv+UKohprKStXE/+VutUUGoWfqtCLYcxX4vIFwvB20mfeKNyId6L4qJg5EhEk9j+9SPgU/eGNbKnxFuMoYXB5IkZzMXmSX8tqXibT22bHt/9BwirM20lwpnVmfHmFFDryW9lNOS3uqrN4m9dHG+VRgm1jlxXpmYz4iuO2UXxVmsWlGTkShl0+Rwan4vA4ONJXFIbbWodGbNiXFRy8BYGR17uxuTANGQKGRiDXLyuksuMIZ8as/MxIovIqFK/56R4K1kFOFP6GWMhU8hwPD2WzUxmW0ZxSo7IqbCi5rEgWJP61DGbjmEqR+jzOWLfZkrliHRbjQJqHWmr4hUZ41ChVEC2SGGJxJu05XnZKTlCppBhT+qkqUqjhFq7EEPyLKSe5dSYlbEcxo9Op3LEohiqZAs5IjVmPQ0OVD/sI/E+acym46KxpcasQYXWd3qQTCahZEhbISmk4k36z6WeMdbCoPQODziTCkq1HO1vDYoxZA1qCEkBakM6R6THLAOZTAZF6trpHAEAvEGWkb95OwOFisSw6efdUKrlC2NWS8adxqKGMD8H3qyCXCnD8MFpzEcTkMvkGf7Ci/M3lxrfhedZUHBuDtSGVI6YWRTvdE5OxUVu4VF5rwdqnRJyhQybv9yMmSEBCrUcfCrevG0hRxxN7sePf/lDHDt2DMFgEC0tLbjllluwilV8FnHTTTdhZmZB4eOXH/8UY5OjgJo814xBLeY3AFAwCswMxtD2Ri80NgYKtRxMau+MMWbOESS3kGcot46sExxV5GWSM6mh4hfaqjilOEdMniD9kYP8u8bKZLblleJ1Z/pmIVOQ9V7N+iB4R+YcoeKVYIyp/GZQQqGWQ60lay/eflJbnRKMgbSV68hvm59MYOxoFBoHmzFHMDq1OCdzHFlT8FYGE21RJOYSGXOEWq8ScyFA2mqtZG2lsZHr+s/zgHOyYAwqqBaR3ZWMAtyi/KZQy8HqFCi5owDsSTFUsoqFHGsh1+3ZPoyh/ZOnxptXivmNTbXlzCz2/Ecr1Kxq2Xgzekb8rcDCGihNilBpFsVbL4NCLYfGkZojLGooGQWKbyCFF7VOBSZt/8YRu7/0fKKxkz5t+UozujYNkHinx2E63vZUXCykT8nBOOam5yGTyTPHrFourjn5VFsVL0PrO72YjyWgUC6a+xmF+Nu41LtDes7mrGqotEqR7KJkFeKcnO4Dk1q7cCY15PJF6zJOKc5TjCkdw1SfUuua2g0h1DwehIpXgk2NQ8aoIm0dqftqXRize148DCEhiGOWScfbtqgtszC+BUGATJClwi1PxTB1b6ykT2nSDKNTAQkZWbcDGW351Jg9OUdUPBAhlmCMQuzDcjnCmtr0VDIKcKk1EJ/qA6NfiOHicSiXy6FQkt/DmRfGLLB0jkjOChg+OAXGyJ7yWzOee40SrFlNFKwS5Ley6T5ZTs0RvI1B5LoC8G42NbZSv9W8dI6IjiTJIQ3ZoveZVFzSSOcITT6HyI35JPdMJVMxTF2XS42fk3KETCETVTUX5wgAp+YITgFtLgdEgdGj0+RZSL8jLpMjurcOYTY6lxFv3nJqW86kRvm9YRSc4STx1qVyhEV9SrwZowreCxzwnm2GQi3HyFFCZk3nCDEui3LEO+Ov491338b8/DzOPvtsTE7+9ZVVV7GK/1sYHh7GlVdeCQCYwjg2ffRHsGaSy1m9ktQTbAu5US6XieobjEklWoOquIXaA0DqTUpWISrPcEZGnINZNjVvWRbexZSsAmCB2FiSKNwmF9YuSlYBjWVhrULakmslkwIYvQrOejNK7/BCxSnF9YfGQdqyOnIt1qwW37HUWgWUvBKsNbO/asNCrUetVYm2b2qdSpzr2dRcmbbQ4C2M+D7Y9m4vIECsh6l0qbVJap5lrQyxtUuB0augc/CofiQAzqggcUnXsawMVNyitjoVWJMallId8s7NIddNr1UsXEZ+Yw1qqDglDvywQ4whb8ucv1MhBGNQgzWo0bNlBAd/0pHRX02qrVybWqeZ1FAbUn2KkTWFNkX+5W3kt7J6ZSpOqoxag5IntjKRG3xiLYoxpNdlzEItDaS2loglsfPfWsCZmIyxxZsZqBbVjNRaFXgLg9H2KcQnZ0nb1NzJ2TLnZLUuNc8C6PiI3KvFaxUVuyjeBhXY1FoKahZKTgFXHdkY4e1sZrz1KnG9lI53Gum2LEvmWtaoFtdLAKBildB7ODQ8E4G1SJeqW0Bsq9adNMfZGHS+O4Dho+NQKOVQp67FmdQZ8VZpVOBTYzQ+Qza90msv3spm1DDUWpVYM2ItHBQqOXq2DQExcm8Wj1m1VnlKjnDV2FD1cIDEcNGYVRsW1bpTOUKbx4I1AhoLe8qYTdeMTs4RCkWq5iWOWVWGbfMpOUKtQMsbRN2TMZ0U75NzBEdyxGRnTMwR4nWXyBHeM8lmG7/EmE2P0cU5ovWtE0gmklBxS8d7cY4oWpcHzsFAySpFhSlGrwKXei89OUfwNhYymQwqRrkQl9T4Bstm5ggXJ9ZEW3/fC6VaCcaYGcOTc0RyOIbYyCySCeHUeJ+UI5ynWRG4NBcaB0dyRGwh3gtrzoUcUXZXAVizCkqlAlu+0oRYXwxKXrnwrrkoRxwXjuEnr/8QR44cgc/nw5EjR3DrrbdiFav4LOL0009HLBaDIqWI/4cDv8L49CiY1N4SZ2XEGgZAcu5U7ww63u4HZyF5XqVdqCMz+oVnU61TiTXm3AYrlJwCzhRpV2tnxZoRADB6tfhsjram3mXS+412Fipt5nyYzg8z/XEoFAowFjXK7/ZB6+YyciFjUol5U65RQc0rodYrIVPIoXVxUC+q0XEmBkzqmQcANa/E/EwS48dmoEnZ0YnXtTDi3gwAqDVKaK0c4kNxzE7PQwYZwKTmJisDxrQohhqVONezVgZqrRKFF7jA5TDgbUzmHKFVLryrm9VQc0owegaha92k7eJ461Xi+zdrVEPNKzF0cByjzVPQ2JiMOhBjUIv5WKVloOaV4CxqHHipM7UHsei3GlXiPMVoZVDzi/KoSQ01rxKJR6xJDTa1zwc1ue5CHYuDWqtE6a1+gAFYEwMmLbDBkHin17a8nYWaV2Lv91rQ/achsBYmQ4xDrVFCa1u0ZuOVkCVBDsFDOGXMalIxZM1kDKh0KvTsHkFsYjaj5qXSLvw21kTapt+5tW4OrFktkl3UOpX42xgDiTebus+8lex3LcR7YU5W6ch102sXjZ2FWqtE5QOFRHnRqAKbbsum4pIaL1obCya15tzz4mEkZhNiW4aRp2KYqkvYSVzSpJlkUgAWiTmqeSU09vSamcQb6vTai4WQEETLbDWvgnbRnKzmlRk5grMwqHq4CIyejJ2FeiSJy8k5Ik1EIjFMtU2N2fTa6+QcIZPLIVeQe8XoU2M2XZtaIkcI8wKGD0xArVGQ/opcgcz1EmtVg3eyQByYiwokhum9MTN7So7QunkU3+AD52QynwVbKt7pPqRzRBwYOTYJGWRirZs3p+9NZo5grAyCV+VCrVEhkToUyabirU7tgZ6cI5QqBeTpmpeZxDBdNzw5R7AmNfQeDogD/XvGSAyNi+KyRI7o/GQAsfFZqDmluP7j7cySOaL2oRAKL8wlcUn3wUJyxOI+sBYWzloTctc6oOaVGDk8gYM/7SI5YlEMF+eIj/AHvPX2m4jPxnHeeedhZORTkPz/v4jPpN3byXjhhRfw4IMPin/X4WzoZNk9ExufjwACsPnLzeQ/ZAlD+It5mOyNovsDeqk+3ipH8W0BbKeQRKvfGIZcSW+FJn6Hh1/SjmgxDAEea9Z5MR9NYPvX6eTZACD3DAtOfCTtF1/xgB8tb/Viqo3OlqDxuQggA/VvTav40EjdcVag/J4wpnqjYrEnG6oeKgRjVOPQyx0Yb5Huf+WDhTixfRD92+nklHPqTeAdLL0l26eIuieLICQF6jGwErs3z/l2uGutaPnDp2OvthLwLhb5a+1o/k0Xnb0dD5Td5MPAwVEqW0RJq6DFdm880Lg+jNH2KTT/t4TsqEwO7wU2uKrN6PzzAE58JN2X0js80Do5dG8fRte7dLmp4j4v2t4bxPjR7J7wljU8oqNzmOmZEzezslnCGQp5rLkuj+SZbx6T/AzvUmGm51R7tOU+V/WgD4xBheZXj2P0cOaNTVupCfPkemnVuENZpHPTVm/C7Kz43yof8GP3C8tLLqZt3iLX58CQr0H/gVG0/i67bc5wyTEcaTmCmZkZ8DyP6enscV/FKj5L0Ol0mJqaAgAw4HCG7JKs7QNXEfnUgUPS1m/ggPJb/NhLIYO6GGtuzsfs9DxaXj2RtZ21VIfgZXmY7o1h3/elZZvFbuVyiJ6ISrareSwIlUaJPf/VRm17pMnnoFBA0mLOHObhbnRgP6Ulnu+SHORUmTF8ZAKHfyktgZ22jqK1dorc4IHRq6W2Nml8PoLEbJLKesR9phVGn5bewooDir6Qh853j38qlmwrgaPOCP+5LrRu6kH/tjHJ9iu1e6t5LAgIoLIz+7ThuyQHk73TGNxN5yXvqDbCWWUWSU3ZkH5Wp3qiVGO+7E4fOCuDrf/WTGWFV78xjORckn59/Fz6/ZHuPhmDHPLPzKHKM64zLOihePdKI01So8kztLlr4QPEMo/q/ZEDau4LYseLR6ntBwGSa1RaBVp/K/2eRBv3EWEEE/4uHGsltnEvv/wyrrvuOvpOrWIV/4Px1ltv4eKLLxb/rsa5MMqMWT/TsDECyIEtFDmr4BIH5qYSK7OnYIHqewLY+b0WSZutmvVkbbT56yu0lnOykvZRrJ2oicxOzGHnv9FbMDjrzVTWUSW3eNH1cR+1HVTDxjBktBalIHO6XCWns2VjgbqHizDTH8OBlzokmxff7IU+n8fhV7sw0jQl2b7kdi/6do9SWWQBgKVUB52Tp7IE+7RR9XAAMhmox8BK7N5slQYUXuDCsXd6PhV7tZWANQKec3Jx9M0T1M9S5AYPxtqmqCwsap8IQckoqO1YGjaGMdo6KRIGs8FRbYL/whxqK5zQVbmwrjHixNYh6jFWfLMX3Vv6JS0ddfksEglgppsuiCvNMzS5azFKbvFC56F7Vv1fyIFao0TzLyjsjRah9M4C7P9Zu+S48V3qhLPcjP59o2j9ffZ12nBJO1rajmBqagoGgwFjY2Mr6tMqVvE/GQUFBejo6AAA8NChUXZB1vbus6zwnGHHwL5RHHtd+h2n+OZ8HPxJ54r6FLjcheS8IGktp88nCkaTx6dx4CX676C1Maq41w/OymD/j1sx1U1ne8RYGTA6GSbasychrZtB/tkOalsnZ60JvgtyMHx4Akd+LT0X2auMKLzQhY736aydfJc4YS82Yeu/NlNZjzU8E0EinsD2b0jXGCwletjWGHD4N8fpbM0YwHeuEye2jX4qlmwrgTGoQdEVeej4oB9926X3sVZq91Zxrx8ypQy7vyNhCf9/Ae6zrIgOzWL4EF3NyxTWIrfGQvV8a90MSm/1Y6Jrmqp96Bo3jF4N9n7vCOIU3alO1Q53UtYO6zeGAQHY+k/Se/EAsY30fY7uebWVGTC4j34dvZI8w9gYxAdXbl85F01QxabygUIc+mkb4hPSNsVp2KuM0DpYtL2Zff8QAOqfCgNyaQ5EXIijP3AER1tIn3/5y1/i2muvpe7T/1QopZv8z8cDDzyA6667TpSz2oYPYRYcqJSdsexn9v6gDXJWDggCLCUaDB9YfvNYJBjwQMP6MAYPjeOYhD9qwUVuKFkFPOfb0fXH7D6hW7/aLFq1gQcVuaL6kQDUehX2/7wjK0FovGUGnR/2UxGO0ii9swDaHA5qvRLtb2R/EdyT2tTX+ngkY0nM9GRfaBx7sxtTXdLFkTTmphdIElKIpt5xF6sEZe3L2z3wnuOkIigBWPGkWHBuDiADNUkpfIMH87MJtPw6++YqQCz+cuutOPxaJ0abpfu/7V/ovYJXiq4/DkiO8cWofSIEYU7Ajn+VngA4KxBe58fRN+mIcIFLXdA6ODiKDXRkshlQbZKlcXzLIIxpCf2lIAgiUcmUT57p+MSpZJylkJwjp1JP7JJe2AHA/h90wXOOBV3vSz/bjmo9+ndOYM+LHVTXDl1OJDc3f/lIVnJSGuPHZtD+QT96N48ByE5oqnsiAIVajs3fOpKZ65IJCFBkNk7lw13faYO2gMdU+0ljQEhCmM9cHBiy3Z/0x2ZnST5/vAgj7ZM48vKJrAQlADAXqTF8cBqHftqFnHojereOLdt2JjmDzXgD2AcYjUbU19fjvffek+zXKlbxWcLk5CTOPfdcvPfee4gjik3CKzgNl4CTcUu2b3n1BCY6p9G/cwwAIduMLDd/RSESlCI3eKDP01CRDgx5GgiCgBZkn0eH9k8iOt6O6c7UBTlIXpszAxW3F2Bual6SGLLjm0fhqDZSE5QAoOymArpN+OYZjDQTsoatUi9JDGl7oxezk3Po/jPdpuPg7gHk1lroOg1gNkpOs2jyuYV4ZsFYxzSGj9K9lHb/eYi63wDgrrfBEtJDrspH08+kX+6NQQ7ec1zUZLi0lQYNMah/2xgVOekvxY5v0pOTHNVG+M7PQdt7vVR9ClyVC0EQpMmEKTgrTXAkjNQkpf6dY2IekMJQyyRy+2NoeYNuLS1TApCBmiyTiCUwlxrDNNjzo3bwJoVkOy6XAxICxo5GMXZUep3pvzwHjhIT9C6eikwIADu+cRSOOuk8Yw7zKLrai5nBGPZ+l2LNm8qHe37YTkVsKlhLLKMKL3JJjpnAVbmwhvSi6pkUjEEOY0ejaPpVO+JD2fuyR/gEw+iFrE2GUCiEPXv2gOOWno9WsYrPIi666CJEo1HwPA9BELATm2AVclAuO23Zz+x5sQlM6vS2wc9mJdksrvvUP12EwaZxyc1p33lOqPUq5J9hR+e72Z/pHd86SmzdYiBqKxRLpHRdqunl9qyEg9hADC1vnFgReSR4ZS6sawzgjCq0v5295pUmA7F2FpBDknhw+DddiI4lqPsSn5jLULfJihiI7SVl82Nv9yFwiRMjbXQ1OJrDfosRuDgXcoWcmkDiu9QJmUwmObYAQgzyn5+D1rd7qUhTNGSjvxSDu8dXNL7Slg+7vk3Xp9I7C9D5QS8VEc57QR4sIT2mBmLo+Ziuztv0c7qNXgBof68PloCeqi2xBZOJ7wM0SM4nMbSPbn1/5NUTmOyJUm0iW0p1GN4/iYMpVXIpFH+xYEVkwthADC2vn6Aai9WPBKDWqbD7O02IjUk0TuXDAy91gHezVKQpW8QAmZyi7p0iNY61TuLIqyew//vZCf/GAIexlijaXu/D5PFo1t8aE2L4GH8A9gN6vR7nnXce/vjHP0r3aRWr+Ayhvb0dDz30EL7zne9gBpPYJLyCM3ApGBmzZPvuPw1lEBn0BWxWQk6akOC90AF7sRHbv31EkqhiCZH8LEVSmuiMY88PWhHtTV2QgTQJhgGq7vEjPjEnOX/t+W4rLCV6aoISAFTcReybpDbhp7rjIuHBFNZitDn7GqZv+yiQFNBHWWMYODiGgnMcSM7RkQ3i43OADNA7GUx0Sv/eoaYxjB+n22scPjCB4QN0dRQAsBTqkVNlgVqnwuGXpesGXA4D/7kOtPyui4rQUn6nD3JGjt0vSO+Bjh2dxlYagv1fiD0rOLSqL2ARviYfne/3U40Dz3k2KNUKtL0hTR4BAHejDUgK1CSl0eYpyXGbxlR3HCPHJtH9Md3eqkIpB2Sgup8AMDcxR1SjKLHnhSPgnNJ1FMbKADIg2hunIii5TjPDe44TpkItjkocLBb7QplnuBwGFXf4MdkzQ/cuk8qHu/+rjYrY5Kw1gTWp4T7TIZl78862wVVrxrZ/O4KBXWOQuqv6fJJX9v2kDUmJLeSjwj50oQVoAYLBIHbs2AG9nm7N/j8dfxMkJQCwWq0QBAEmkwljY2MYQT/eE17F52RXLdleJNPwQOjyfCQuSWLbP2VPrIZcHjK5DApW+mXg0E+7MpSOtD4+K8lipmsGvItF+R0+xEZnJQkxXR/1I/9sJxVxI01QCq1zw5CnkVR32v/9dpTf45MkKC1G6Q1eCPMCtkgsNAZSGximMA+jTyf5Hbv+fWXEoC1fpmN5AoTAta+FnqACQPSFpzk5076pF+M99Is1k08LISm9uQoAidkkZHIZNE6eiqQEEJUhKRLZX4QUv45KuQjEMzgJuoWg+8xccGYW9oieaqzv+14bCi5xUBGULCUaBC/14Nib3dQKUN0fDKEbdAWV0eaZBaU2CnS9P0xFOAKA8BfdaP7vbqr2aYUmW8SAgz+h2/jq3jJEpKaFJCBbPt95L7DBWW7C1n8+KhKUpD7Tu3cUtqD+FIIS5Jmbfml1pqn+GPZ/v/NUgtJJMBTyGD82gz3fa0Z0uaaLSGQAUW7iFsliL/cZ91orPKfbMVUXxf4fdGQlKE0V9KBtsgXpVcgbb7yBxsbG7N+xilV8RrFp0yZ8/PHHOOMMQgr/BG+gUCiBVxZasn2amFB2tw8aB4uWN7oliQ1p2w8a0sGeF5sQTbXT+7isqkRpQk3ZPT5o7Kzkhnx0BIiOxNG3m45I2r9zDOBIYbjrzwOSqkT9+0YxNUAvQ1JyRwF0Lg5KRlrxKE30KbouT5IAER0BsUamxLHXenAMdGQWAGj66cpOCjqqjSg4LwcH/rtDkgTV/cEgFCoZOimJ07YSMzR2Fp5z7VSECZlCRggwtEi/169AXYb60k6WmgTHmtWQyWVIROk2TG1FxFed9r7u+0k7eItKuiHIOjoxm8SeFykLTlFg33/Sr9WpSDiLQKtEVXCxEwOHxjHdGUWUop5SfouXbHxRnhJs/W0vNBaWiqBUuyGE4SMTaH2djnQ20jyDual5dLwvvSFc+WAhWKMae/6jSZKglM6x7W/2oW/fOBWhScUqyNqLQtmp7qkiQmr/UhPGjmZvO1R2DGMHBoAE4HK5cPjwp1csXcUq/l+CZVkkk0mEQiEcPXoUQ+jF+8JrOEd25ZLtY2NAbIzMFWuu92E+npCsBbFOFjKFHEqKg19tr/ehZ8eYSNrR5bOY7Fx+bor1xcAagcoHIpgZjkuShDs/6EXhxXmSiigARAJJwYUOWMMGyfx+9LUTUGulCUqLUXmXD8lEUrTTWw6jh8kBSN7NwhbWSxK4pIgDJ4NKcSmF2EBMtKagRdldBVCoFVQbVC1vnkB0hO5QFgA4SsyAIFCRlBKxBGQKuWgVQgPWziI28CnUvFJOLbTKRXKVDKDcD3KfZYXOxcO6xoTxVum4HP7lceSttVIRlHg3i5IbvGh7h47oBayMkDXTHcOWr9I7AvTvHEX/Trp3qeCVuTj62gkqgpKj2gT/RTkYL5/GIUpVkmPv9EBrZyXbOapNyD/bju3fOUIdw+OfDMFZZZIkKLFOFpV3+sRNNSmCUjrHbv3Xw6IdZFbEALlCnmHzsxwspTqELsvDZPcMDvyoI+tvHXcNojt5FEgN1zfeeAOnn346RYdWsYrPHr797W/j0UcfRWFhIQDgI7yOgFCKfFlwyfZpEkPoGjcsIT2OvdWDgV1jWb+DMzKQK+kO3G/918NgUhwprZvJunmfJiiFrnXDEtBj/0sSaiRxYLJ7GoPNdOyHNLmm+tEgujcPSqrpHP9oAIkYPYk7cEUubGsM6HhPWvEoTUzxXeKUJp7EgW0UzjdpnPh4GCcoScEA0CIhbHEyjEENgpe6cfi1TkmVqeFDE2g39qLnEzrpcEtQB0OBDo5qG7reH5RsL2fkkKvpxiIA0TqNSgVqhaBV9QIA1kzeXxJzdIuvnHIzZEo5NUlpz/fboLUvTU48GaV3FAAAtfo9ACrCWRpNv6AnngPAPsr3DNdpZkx1T2OiM474hLQTSOnN+VBxSmqyd88nIzDk0RGUKh8sxMixSXS83U9F4ov2xjEzEMPxj6XHePHN+dC5Ndj9n62SBCUuh0G0N46+7aMYbZ+hIjQpWDmxz7Rlz88AUPVoAIxGhc1fb1oglC6DkdI29BxqB+YhWuv+LWEFWeezgdHRUdH6TYCATcIrGBKyJJwZYKo3iu5PpAfxeMsMNn+pCUdeJtKBFff7s7ZPE5TqnixC6Q3eBTLHcu17YkjMJTHSKk2YGNg9IZ6iXnOTB7ZyneRn9C6eeIpL9AMA9qbUZcI3eGAISH9gonsGHR/QJXYACF/lRU4l/Un9uieLUPVQIVVbrY9H7RMhqt8JEGm3ygfprq3klRl+79nQu3VU0o5vMQ693EFNsjrx0TA2f6mJ2oKw7skilN/ho+7LSlB7fwiNj0eo22/9ajOVDSIAtLx2Avt+1o62P9CPLVpynXWNCTKFDNEJ6QUyZyVy4IErc6UvLAiouNeH0Dq6tnweh8ZnQnCfbaboNbFsMxVokNNopLh+Eh1v9yM+PouDr0gveErv8AA80PXeIIl5FrIRAJh8GsiVMvAuFSEnZSEoVdznJdd+dwi7XkhtIiYT5H9LYPzYDJLzAoaPnLQYSX9m0edqHw9izbp88C6GKKqd/NgJgmjpWXh5DtxrLcAMsfvc+70si7XUZ7o/GMLsxBxaftexfFsAHyR/g+3tWzA2NoZgMAhBEFYJSqv4m8fpp58OQRCgTtkoHsMB/En4fdbPHP19D6IjcSrllb3fbRNfevLPtyP/fPuybaMjAKJk87z4hgKquX346CTm4wmqDfY9L7QSQhBHbKWkoLFzUKjlsBRJn2wQCQccELkpX7L9gf9uR3QoTmXJBhBrJUtIj+JbvdTtG5+NgKObmhC61o3i2+iuHbrGTeybKERO5mPzkCtlcBQbqa5NS1ACyMba7h+0URGUAGD7149Qr18AYpdVfWeAuv1KUHGXT1R2kkLnHwew+R+bMLSfjpC9+ctNOPgL+oLKdGeUWkVJySmh0tGtoysfLETdU0VUbTkzscvhnDQ7NsTyueYxuvgBQE6VmbzLUaLjg36MtUufnDOHeRRe6QJAV8TizICSVUDvkX7JsVXqEbrGDYCQsaSIPgAw1j6N+VhC0i6RM8tRfEOBOAal8mc6Xzb9vAub/1GaAAUAvbtGMCah/DEgnMAm4RXs3bsXdrsdTz/9NLq7pSX+V7GKzzqOHDmCF154AQCQRBKbhFcwIGTfEBk5OoGe7dIbLLG+GLZ8uQlHUgXkklu8ku0BYrVVcrMPrDH7+2NsDJibmZd8vgFgvDUmnuQPXO6CpZSi5pWvgZJXgjVKNhUVV3yXOmEMSC9KRlom0L5pBQf5bvQit85K3b76kQAq7steY0yDtbOofiRA9TsBomZdfi/dtdUGFVQaurl6eP8ktV0WABz8eZvkwcY0RpqmsOXLTThOWfOqeiiAyns+nZpX5R2FaHyCvua145tHqYnQ3X8awp4ftqL1j3SqkQCoY2KPGKBQyTE3PSvdmAUano0gcLmL6tqRGz0IXEHXljXK0bAxDPdZdM9D5EYPbMVG6vb9O0cx3RfFoV9JE5TC1+cBLCFj0ZAULUU6KFkFeKv0GrPkFi/Akv7QKLbH+mKYi81j+Kj0Gr38Xj9KbvZBl08U6bIRoPLWWsXYbflqE/b/oEPy+sP7JzE9EEOLxIbtR8Kb2NX7EQYHB8Wa1ypBaRV/6/D7/RAEQXRwacF+fCS8kfUzHe/0YKo3KklQAoDml7uItVIccFYbkXe2bfnGcaKgwliJRVQFxdw+cmQSszPzVKpHB17qJGQjBlhzg0eyPWNloOKVsASl12gnPh4mZCIG4ntqNrS8eQKTJ2aoyKoAsU5zVpqx5kbpfgPEiqn+qSIwNjryifdCByLX013bc44N9RvDYChETuKT81CyCpiCdIootAQlgKwxdv/XMSqCEgDsfuEYtS0YADQ+EUHFHXTry5Wi6l4/9X7twK4xbP1qM7WV2LavHcHBn9IfcIsPxqlVlNR6FdQGOoJ98c35qH186UO+p4AhlmNcDt14LbnNKyp70iD/LAci6wqo27e904fBZul4a90MfJc4AZBcJwkGUOtU2Z1sUjAU8ii8NAcAsPc/2zB2VJpcNdIyidnpOWkCHANU3O4XYyhFUErny463+7H1q81U+fb4R4MYPjqRleQ3IUxgk/AKdu/bDYvFgv/1v/4XWlvpVcY+K/ibIykBhOU8OLiQfPfiY3wsvLls+/3fbydqQzwhIlQ8IJ1cA9fkgrMwCH8xT7Jt1yf9iI7EqZRmtv3TYXS8RV6Uqh6mSMQ8YPBq4b9IenLf8c2j2PylJtIPCgIPZyXqPkVXSk/AB3/Ugd6to+CsxIpMCu2benHkt/Sn6eVKGRSMtL0CAFhD5CUycAkFSQSgPuEEEIKNlCzlYtQ8GkTDM2GqtrS2c4vBW+ke4YFDo5jq+xSO8gPo2z+KGdrTajyoyWNp0CgoAaSQ0fhcZME6UQJHXu7G5i81UV1f7zMAAjDVT9cXzsrA7JVeoAOAtUgLyIDZMTp2+J4XOzDYNL6gXLQUUoQh74VkM3/Xd9ol809OnR5aJ4fKW1MLkmwEJX6hL5v/sRkzJ7L33X22GZyZQdmNqY33k8lJi1SUgte4UHgZWbxs/eejOPHR6NKfWYT293oQH5/FzMnKZYvISWnYi43Ia5DIUYIAUxGHxucjCKcWGTv//ZhoKXky5vghHPPsQALzSCaTqK+v/5tjNK9iFVKIx+P43Oc+BwCYwyw2Ca9gRFj65TnaFxPtYiM35aPxuQixR5JAbo0VubXSxeqJtiiiI3G0/VH6hEb3B4PY/i/keS280oWCi52Snym/xQ9NDgtbZfYiwnRnFJu/1ISD6RPsFKScqjsLYfRqYA5LzGVRiGo02YhbaXRtGkDfnhEc/HGHdCcAzE3PE0nrgJGqvblQB72Lbv6Njs4CAmD2SrcfPjiFzV9qQhul3ZcxyKHxuQj8l+dQdESaXHEKVuAeNd0fQ89e+gLSSjDVE0XvLrprc+aVv+5lUyFbjIZnwlTvTWls/adm8XmTgiDQL9Dzz8uDSqOEPp+OpCRXyyGntIcGgKO/O46WP0iTX9xrbQAH9G4ZobJWCXzBA/saI9244ggRc/M/Non5Mxv85+dSESQBiPew7Y1ebP+69P2JjiQRHYqj/T3p5zJyYz40OSxVnqq434/GZ8kmcNemgawxnKrsxmH1LgCAQqHAjh078NWvflXyO1axir8V3H///YhGo5CnLH/2YzM+Ed5etv3hX3Wj+0/kZabh2QjK7pYmc3jOsUHn4VF0nXTNq31TL6b7ooiNSSsm7/jWUdEerIySVGIrNqLwQun6zr7vtWHLl1MWSzRTAgs4y80IXi5d8zr8q26iAsMCrtOlD9wd/X03Dr9Gf9pZrpJDwdDNTQYPB7Vehby1dCQRCPTz6o6vH8W2f6FXayq7x4f6p+lIxdmUtpaDFPEtjd49I5joXHlNjQY9u0Yw2b2Ca9MtR0TMdMeoVJoKLnGg4dkIDH66L+j4Yz82/2MTlRqZMY8DksA0pWqBIU8r2g5Jti00QCaXYW6aTkGj6Wdd6Nk+JOasbMhbS94N9/1Xu2QMjQEOpkIdKm6jWLuyC33Z/I9NkmQ8S6kOOg+P0hulN/jyz7PDdyl559zx9aNUqljt757A9ECM6hlyN9qR1yhdl2edLBqejaBoHcnx+77XtqwS2TQ7hnbfHsQxg2QyibPOOmu15rWKvzsMDAyIwghxRLFJeAUTy9S84hNJ8RCK7xInGp4JQ58vTS7IP8cBd6N0zSs+FMfkiRm0bZJ+HxvcNy4ST/LOtsFznnR+KLoiD4YCLexVRsl+bPlK04LdEwV/ovi6fFhCepjC2uwN4xDVIF0N0qfnhg9MoPuTQSrrKQCYnZyDTCGDKZ+uyGNbY4TeK02cAIDpwTggAHyuxG8EUYHZ/OUmdL5Dd3iOsTGofzosEj9orr8iMKC6jwAwemwKvRSHIP4SDB+dQB9lzYuGDHYyaK0Kax8PoZzikGoaO791FDu/SUf0ksno1+eeM21gTWoY8ujqrkpGsSJVrEO/aEfLH6RVwJzVRjB6ourV8pp0zT10pQfOCjPdPUrZsG39ajP2UiiqBy51w15mohqvJbd7AQA9W0awi8IhCXFgomsKHe9LE9p9Fzth8GmpcuuaGz2o3xgGGEKuO/Lr5euMkxUnsI/5EwBAqVRi586d+N//+39L9/0zCJmwkgrwZxBerxednQtkmEZcDF62zMPMA/WPhDF8hO4hc6+1iko2tnIdlWVU9aMBJOcFSTu3yI0eGAu06N8/itbfZV9wOGoN6D84Tm23ZQrzCF/txcxATFRMWg6LfyMNGp4JQ6aQETIUBXirHK7TnTi2QilEyet+WtZmKfg+76RS96l6qBAqrYqO2MQDjY9FMNUfxf7/kj5N3fBsGDIZvZXEStD4fASzk3PY+a8USXsFKL7NC72bx7E3ukXrP6l+TPVGqSTQIzd6YMjXUKlROWoNiI3O/UXEMFrwNjlmhrKk16VSr3x5Ih5nBdxnONHyG4lxJ5DCcM1jAah4JQ693InxVolnIfUZz3k2dL2bInguQ1LiXSqU3+ZDfHwOu769RB5b5nO5Z5gI4WgpotGi3934bAgQgM1fWVTwWOIz9ko9/BflYt9/Hlk+zukY88Suc7xlBo5aIybax5clHC2+Lw3PhDFwaAytv18+5puTb2NOFcP8/DycTie2bt0Kj4fuZMUqVvG3iGPHjiEQWDitoYcJtbLPLdvef3kObEVGcnJMApxZDt7FY/jgFIxBDmPHo5JWWpp8DqU3eHHkN50YkbBHTW+O08jV5jSYqVWMAHI6Xq1XYc8LTZIqJe4zraJFmxQsxVqErvAgOhKnIi4AhIx17K2ev6oNGWeWIzpCZ+X6l8Ac5iFTyDF8UFp5ofHZCAaax3DsNem1ZdmdxHqQ5p67zrDAe7YDw4cnsr5I/iWoWR+ESqukXj+vBI3PRZCcF6iesbJ7fNBY6eIBEEuu2OgslSWb9wIHOt6hV6BYKVZigUcL/+U56Plzr+QzSzpA1LMSs0l6Kx6OSI1L5ZLye/3gbYykLWXGpc0A79JKPjOBq3JhixjQf2AUrb/N/s5Z+WAhhIRAZddnKV74btcZFvR8JF28DF3rhrFAi23/fnjZ/BQVovgEb0Amk0Gv1yMvLw8HDhyQvPYqVvG3jDPPPBMfffSR+Pfp+DxY2TIkBhaofTCE0dZJtPyGohBdb0bfVpKjTEUa0cosG8ruKoBMIZe0cyu4xIGcSgv6941K2n+ZI1rM9ExJ2ielwbtZlN/qw1SfdC3BUW1C/8FRaiuv2g0hKDkFNn+tieozrBHIOc1BrfhMi0/N2iwFzzl01iAlt3nBWRlqtcmGjRFM9RN7KynUPVUEuVKOLZTrkpWg8fkIqWn8+1+35hW43AVbiRFt7/aJz042NDwTwWT3jKjslQ3+L+TAvsZIpUZlKtJASCSpCEp/KVijnIqYSH9BwHeeE22v0ympp227m3/dSZWbALLRLaXKwRqBygcjiI3OUtkepuGoNlHZ2TU8Q945t3wl+7g2BjgUXZWPvT/uEFXrlgULGHJZjLfGYCrSIEpJGq17sggDh0az5qfdwkeYUA4jkUjA6XTi/fffR1ERHTFxFav4W8Tg4CCcTieSSfKMGWFHtezMZdu7z7LCVWOhOgzC6AHOqcHY0Wli5zYYl7TSYqwMym/z4sjvuiWVROqfKgLkMqp9KluZgVqZBiAkAF0Oj13fa5VUKXHWmiTt4dLQuolq1MxAjIq4AJA1TP/OQcTpxG+owOjliE98ejUvrZuBSqfCaLN0zavuyRCGmibQ+gdpklroGjdMhTqqe24MahC5Lh+DB8fR8hsKn/sVoOzOAmic3Keyj1n/dBhCMoltFAfiitblwejVYuu3mqls6qofDSI+GseBl6TFNnJPt6zIGnClWIkFHi3yzrZhYPcw9dhufC6CuWgCO75BT1S2VxklVeXC6zww+bU4+LNWTHRS/kaGCKxIPTPus6zwnGFH354RSYu/4pvzIVfJqZTODYU8xo+RfQaa3wiQvVd7iQk7Xzi67PiLC3F8hD9ALpdBo9EgHA5j27Ztktf+LONvUklpMTo6OvDmmwsqSpvxJrYLHyzdeIYw9dIEpYZnwgitW16hKE3eKbndi8CleVQKQipeCbVOWvKt6WddOPZGt0hQyqaY07+dEJTca61ofD4i2Y/R5hkkZpPo3ye9GEj/Ru9FDmKhJoFjb3ajbw/9pl3pXSHYS4zU6jo1jwZF5mM2zPTEAB6iCooUtD4e1Y/QSeBVPxKAs8IMk5TKAYBd3z5Gr7w0AwhJAclZuklhvHMaE8fpXsQNAR5VDxdSWfetFKV3FiB4nbSSFwAMHhrF7MQcFUGJswJCQsDczDzVtZt+1kVtl+c7z4U167xUbcM3eBC4hk6VK+c0E9ypk1wzg1nuoyAAPNCwMQz7YiWOZZSCAKDk5kLYIoallaLSVmvCwnfu+G4Lxjqmlicopdr7LrGj9nFi1yESlLJg5kQc87EEBpvGTv3HkwhKDU8HUft4IZBM4MSfhrL+Pj51UGT/fx/Hnv9MLXSyqCfxDg4yuQzWspNOsabVkxaRjRofi4j3u3/HMgQlQQBvkaHhmTC8FzkAAFu+0rwsSXQmOYM27y7MYBJzc3MoLCxET0/PKkFpFX/3KCwshCAIcLvJvDCBUbyHVxEVli6Qt/62VyRP+C/NQf1TRctajEVHkuKmd+TaAjSsl1YqtIZ0kClkYIzSJ473vHgYe35MXkSk1GfSpILaJ0NUllRDhycwNzVPRXZIE5RqHg/CfWb2U3TDB6cw2jKJPT+kIygZgxzsa4zUNmSOaiP5fRKHy9IEJfdaG6wUdiwAKZYErqKbX4uu9qLwErq1xuYvN1ERlABgLjqPZEKgUrLp2TmM6EgcQ81jVNcOXeNGJK0g+FeEOcyj4j4/lfoYAIx1TmO4ha46Nx9NkHhQYts/H6YiKNkq9XDVWlB+L90JtMoHC6l/X1rhg4agVHpHAbXyE2cGHCUmlNxBKb8dBfr3jqL519LFq9oNIbjOsABRUJEdBw6NYT4qbUvpvcCBxucjcFQbER1BVoJSOse1vHoCR393XJKgBABqrQpqvfR7bMHFToSu8Ij3JhtBqei6PDGHHvlVNyF4LfMzx8q7sJPZBICcJPvhD3+4SlBaxSoA/PnPf8aePXvEvz/GH7BL+NPSjWPEvjRNUKp9IoRgFkvzNMkieGUuwtfkI/88aVU0xqAGQ5Er2t/ox+FXu0SCUjbFnJEmQlCylRvQ+FwEnnOy17xmumOYm57HwEHpzbX+nYSg5Kw3U1mpNv+6E707hqlJTSW3B5FTaaG2Ziu7x4fim72S7WIDMYBF1vu3GKyTpbZ8K73DC/dpNiqLvQM/6liRHW4ykcR8lE5RZ6h5HKOtdHa1rJNF2V0FVNZ9K0XRujxqG7Shw+OYHoihj0ZNkwWS80nMx+hqXq2/76W2ywtc6qa27fB/IYf695kjWlFJTJIEw5IcYys3UF278rZCOMvN1EpR+15qw3DTuCRBydVgRvWj5N2HxjYoNgbEJ+aWrnmdhNonQqhJ1dOkCErpHLfnh23Y8x/ShHbGwEKulMMmpTYCoP7RIkTWkXX26OHpZe8NawTqngjBez6peW37l8PLEpRiQgydhfswgn7Mz88jFAqhp6dnlaC0ir972Gw2JBIJNDY2AgDGMIAP5L9BXFh6x7n7T0MiQcl1mhm1j4fA6Jde88QnIBKNim/yof5R6efN5OWgUCvAW6TlRPa8eBj7fkze35frQxppglLlg4Wo3SD9Tjy4fwyx8VkqEkWaoFRxvx+u07KrJE11x9G/dxR7X6IjKDE2Bu5GGyI30q15jEENsYKXCF+axGGvMsKyhk66J/8CO7XiUektfgQ/T7em2/YvR6gISgBRSU/OJqmUbMaOTmOqJ4qhw3TktPwL7AhS1vRWAq2bISR4Smuz4cPjGGqiq3klYgkk55NUBCUA2PmvR6kISvp8BvlnO1B6B93aq/SOAurf57vECTCgeraCV+XSKz8xQN7pNpTcSWerBwCdH/bj6O+OS7arfKBQVECjIe8MHBhDfHJOkqDkrDai4ZkIUXmLIytBKZ3juv80hKZfdUoSlACAtTBgjWrJds5qI9as84rjP9tv9F7oQE3K1q/r3UGitLXMz5xc04Od3CYAAmQyGV566aW/eYISANAZjX/GcdFFF0EQBPA8j2g0igkMY5PwSlZVJd7DQ6aQQcVJh+jAyx2ourMQXe9Jb/Bv+crCC2XkRg96dw1hdJmT/WkiR81jQag0Sux98TBmhpZ/CYwORSEkBYx3SRNX0id8OSvgOdeNIy9nPxFuDepTPtzyrH0Y3DspKkpV3OvHHonTcwd/2QlzgYZaBUqlVVJL1dXcHYRKp4QhwEsq5njPsEGtV8HzOZvkfWz6zQm4G8zL3reTwbtY5J1plYwxkDk+pNBEKV8JAIYCLVgjA0el+a+uHqTN4aCx0xUR+rePE1IdBaJD9PHIqTdBpVeh64900phNv+qEvcRE1dZUQAoCLZBmkHvPckKmkGVXH0uRZ7xnOSBTysA7OADSC6nt3z2GwAVOzHSddP+EzOcxcIULM0MxnPhoBE0/O760stGiz1gCOig5BTgrFsg7S3yG9/DIrdSj5Tc92P51OtnKxBxFAVKuQO1jhVByCuz53hFMtad+3zLkpPJ7fNj7vTZ0vD2Ajrfp7vdQywSScQnSGICZmSRkChn0udnJfJuTbyPBzCLeFofZbMYLL7yAdevWUfVlFav4e8Hx48fxy1/+EuvWrYMgCPgEb8AgmFEjO2fZz2hzOMhVckQpDvwONI0hEZMm9Xb+cQCd6bmBA4rXeRfs104CIdpEwTlZVNzlQ3xsdmnFuEWYm56HQim9Lul4p19UkSm80oUTH/ZlVR7inCxUvBK2EoOkqlLzy+QF0b3WBqVanlWtZuxoFP17R9H6Ol1BQ+PgoFDL4aqmUELhAM/pNiRmkxjaL114t4T0EJIC1fw6cGgMvbvoTtoBxAJvui+Kof3ZN7ZoLLlEREGtVgUA5oAOMrmM/vqUcFZawdtYaB0qKlWdpp/S2ysf+gl929A1bnS910OloDW4ewLmwgl0bZImj3kvcIA1qZFbZ8Kx17L/PmupDuagDhX3+7HnP6TvDWdlIFfQ3ZPoCNC9ZQiDB6XXaGV3+rDv+21Uz5Umn4OSU8C+xiD5TIWudePI693o+WiYSolo8sQ0hISZnLiV6EPZzQWiAlu258RSrIU5ZEDLqyeo1LgAoP3NPhgLNDj8e+niFaNTQaGSgzNjWRJnWj1Jvk8OlmVhMpkwMvLpWCmuYhWfVZSXl0MQBOTm5qKnpwejGMQm4ZWsqkqsEVCoFWAoDtEdffMEOBuDznel378WKwUELndh6PDyJIKRJlJYTiui7P1RW1ZbpdhoHMn5JCZ7pGsaO1LWJmCBwEUuSeUo+xo9VBoleDebtQ+TnQuWSyW3eUUrkuVw4GddsIa11CpQnEmNpI6OMFx2M1GEHDo8LsZyOeTWmsDbGCqFpKOvdiFvrRPDEuuoNFijHHlnO9FCoZC+Eis5KYWtxdDYVdDm8HCUmjHW8tc9/W/y6yAkkmiB9O8bPTyN0cN0G6mI0cfDHNFC42BxnFLp/uAvOuGsMFK1tUUMkCnkVPev8JJcKFkFenZKE/Wc5WYoWQU0dhaDkK4D7n7xGAoudEgqgXvOsWF+Nomej4dx5FXpe20rNUKtVUmqj7FGOVxn2NH2eh+1wtb8TAKJeem1cMV9fnBWBru/1yapihS50YOmV7rQv3OUSpkJAHp3jUDBSr+TxmKAXK2ATuIwwB7hY0ypRxFvicNiseC73/0urr76aqq+rGIVfy/45JNP8PHHH+OMM85AIpHAR3gdJsGOqiyqSrpcHnJGjni2GnUKJ7YMQSa9REPfzjH07RwT/w6v86D55aXrHPEJABNxMHqg6qEiRIfjknt3s+OzEJLSHVncD895NvTvnUA8y3spowdYIwP7GiN6Psn+bpcm5NirjGANqqzrmPhgHN2bB9H1ifQ+LQDwFgYqXglXpbTSHgAUXujCfCyB4UPSdYKcCgsgCFTkiO4tgxg5Si/95Kw1YW5auh9tb/ah7U06hUIAVAoyadiLTVAycoCiprcSWNYYoM/TwJDLUdnV0axf/pK23gsd6N05RkUOmuiM48SOIfTtll7vOKuN0OZwcNdZJPujz2fgrDBDn8Nj7/el15c6Fw+VhpLyEQfa3u7BOEVdMXK9B02/6KJSimL0crBGNawRg+Qz5b3Qgd7N/Rg+NEH1TM0MRpGcTyA2kn0txejlqHqoCDODRIEtm8qcPp+BrcSM1j/0itaYUujbOQZbqRFH/yA99tUaJRRqORgbs2xOjAtxfIw/QN4sh1qthsPhQF8f/XP7WcffvN3byXjhhRdE/1gA0MKAetl5kp+r3RBCz65hSeuz8A0emHxatLx+PLv9Gw80Pp6yX5A4CeNea0VOhRk7KP0sAaIM5Gm0ShJZap8IQckqsPeljlPJD0v0mZZMlLarGzgwRmflxgPF1y2/cfgXgSdEkI636GS1TWGemni0EqRjvPkbTVTx817kwMChScn7wVvlKFrnw4ntg3TEnxXcvxXbvVFeu+J+P8Y6p6ikzv2X5aD3k/6spLg06jeGIVfS2wyuFDREN4CQ/myV9kyylOykzTCalLvI/sxzDjml1vX+okWAsHxMGp8LE7u0Lzdnko2yfOaU+7fE5+qfLiIx/mbz0vc69Rnew8N3lgUHX+pY/vsWQ66A5xwLHCVG7Pi31qxqS57z7XDXWYkF4A8WXX+JmNY9WQS5SpaprrXUveCB2gdC6PxT3/LPUepzk/wQ+i3t6Ogk311UVITmZnpi4SpW8fcKs9mM0dGFAutpuAScLHthNKfBDHe9dWGDKQsan41gbmZesm16A6z1rR70LyriLIWa9UF0bR5A/7bs7RYjclM+2t84Lkk+qrjLh/loQlrum8OKLNkan4uk8j/dXJh/vh2x8dkV/UYpeM61o+uTAap+630cJto+BQuKlO0WVYxB7omjzEBlRVZwsRO6HI6ucLOC+7diuzfKazvqjMipMJNThxLt9T4O+nwtuj+QLualx/HsxBx20vi5rxDGIIexo3TB817gQMef+/+q9oVrbs6nJmyFrnHDUqSnsksTQXH/jEEOkesKMDclndsiN+ajfVP/iuzuatYH0fXRgGQupLXydlQb4b/IRRUHz7l2su6jyO+TVd3YvW8X5ubmwLIs/uEf/gEbN26U/NwqVvH3jN/97ne4/PLLxb/1MKM2C0k8jaqHAujfP4ruP2WveRVc4kBOhQUtfziBwb3Z6xCNz0WQmJO2wbSVG+A5w45d36afU1g7C+9aGw7/MjshsuqhABijCof+u03aBp0FtUJS2q5u8MAY9YZH+Po8NP9CmsBJDRbwNNLZsgGAwc9Kx+AvQOUDhWDNakLAoLCgc51uweTxaZHstSxYoPQGL3r3jGKQYtNnJfdvxXZvlNcuvtmLyd4ZKkKf5xwbBg5OUsVMXCtS2gyuFLp8Vvp+AAALuOusknliJbBVGsAaVNQErIZnIoAMK7MBpLh/6RhLjWPWKIf3wlwcfpn+WbZVGuA5TTrH2coNCFyai8kT0paIVQ8HoNaosOWr0nGoejiA7s1DkqSnmBBDr78Zra2EtBAKhXD4MD2xcBWr+HtFOBzOeFYacT54WXbpGlNYi4JznFS2knVPhjAfTUrmkNC1blhCerS90ytpp1Z+pw99e0cyCE5SCFzuQtcnw1nJR2CAxicimJ2el97wZ0CtaAMA9U+FATmoXUuc1UYAWNFvlLxmrQmjh0eprOS0bgZT3X9de640Gp+LYHZqHjv/VfqdmtHLYaswU83drtPMMHm1OERzoG8F92/Fdm+U1zaFtcitsaDlt8clLcsYGwNLoYaKjJYexyu1fqWFPp+htjVzNZjRs3tkRc+KFAJX5opuUlLwnGOD+zQb+veMUit40dw/xsag6h4/VYwLL83BiZ0jVKS1NMrv9uHEtmFJ28rqx4JQ86k1dpbLGwp5RK71on+ftG2cvcqI3DoL1WHKmYpe7Dq4E/HZONRqNb70pS/hySeflPzc3xL+5u3eTsYDDzwAQRCg1RJ1lCmMY5PwCoaF5ZM07+Gh5BRwlBglrx8diUNICNkJSgAwAxx7oxv7/4tsnmRYPp2E7g+GRIJSxb1+VD0sLcG25mpCEuKyu4Rg+wtH0Lt7WJqglOoz7+HR+HwE5fdkl41r+lkXuj4eoCMoAai83Q+9m0dOPZ26Tfk9PmnbtxmIBKVs8U1jtHkG4IlllxQ4K1kMlEnEAQBa/nAc7e/2UpF4TGEeuTVWFH2BQmpZrQZrUsNVKXGT0/jr869WfG3OwsAWMVK1dZSaUHK7tNw6AGz9t2b07qbzfG18PkJlGQge4niUJCjx5N5Fh7C8mlPKgoyzAnVPF4F3ZVGfWkTUya2zwN1gXdLSbSns/+9OHPpl5wLRaInP8B4ejc+FUXZPSoJyKYLSSZ/b9/3D6N4yKHmvS67Nhd7DZ7WoBABHrQENG8MAD3RtGiAbVcsQlGzlRGa+648D6Pp4YIGgdJKt22LEx2eRWO5kyqLP8UYWSlaB3NrslgF/Sv4e++a3oLOrEzqdDr/4xS9WCUqrWAUlRkZG8PLLL4t/f4I38InwVtbPOCtNUGmVy1q/LcZcdB7TFCdb9n2vDR0f9oub8pbi5aXzd3zrKCHvcMTfPFtbAOByORi9GhTfkn2NFu2LoXvLELa/QGGLkSIxlN/rQ+NzEUkLusOvdmDPDyhPbgPIrbOi4JwcqraafA61T4YkbdG6NhGCklS8AIgEpZwGipsMIofc+FxEumEUOLGNMsYASm/xwlVrkW4IwLbGAK2L0kbkU+BfrfTarkoLeBud2mXgklx4TreBc0q3j/bF0L6pD82/lVYJLb/Xh8ZnI1SWeumxQENQStsKdrwjTVAqvaMAxbd6pTsAwH2mFYZ8DYpvo2t/5Nfd6PiwX5KYU36vf+E5prh/Y0ej6Nk+LEnk4XI5GAs0KL5e2m62+qEA1txMLAh3fOtoVoJS+hne+1IHDr/SIXnt/kNjSM4JiA7PSra1hw2S+X1EGMEm4RXs2L0dKpUKFosF0Wh0laC0ilVQ4LLLLoMgCMjLI5aLEyDP01iWmhdrBBiDCnaKd/Xo8BwSs0kMUlhBNP2yHftSh1dMRZpl2w3uHRc33sLX56HyPoqa17o8mIM6sBLz1q5vt6D7k0E6ck6MEBAano2g9M7sdg3tb/Sj7d0+aoJS5EYPTIU60fpAsv0NHmnbtxhEgpI5Ir32SsfAUU1Rd2OBho0RlN4h0QcAh3/Xjda3eqnINoRc5oD/Ijp7EK2Lh6uKLmafBnlnpdfWe3jYKWrHAOA+zYbSm+msgXe8eBTHPx6g6kfDsxFxvpdCeizQEJRMRRogBulNTpbYVvNuujWo77wc5J0mbSWZxp7vt6H5V9kPDLBGORqfXVT7o4jbjhePouvPA5LjeM3NfpgD0rnHVKRB3ZNFAAsM7h7PSi5I58fBveNoe7dPkqAEANMDMczNzEm2Y40Ao1fBWZX9ud8mbMJOdhNaW1uh1+vx61//epWgtIpVUKK5uRkfffSR+Pdm/BFbhU1ZP5NbYwFrUoOxSls+zU7MY0ZCLRcg9tnH3uwRCUqGwuWdAvZ+v42Qdxji4mKSsJZk9HLYio0oXifx3hkH2v7YiwM/oBBbSP2konV5aHgmAsaWPRYHf94m2tXRoOD8HOSf46Bqy1gZVD0SkLRF69tOCEr6fEbSIi5NULKU6CXbAsSqq35jmKq/HR/0YeeLdIIWxbf44TmDbp51lpthKJBeUwL4q5Jm/tJr55Sboc/XAGppta/ARU4UnJcDrZviZsSBI7/pxrE/SBOSi9blof7pMJWlXnos0BCUjEGyNujZIk1QCl6Vi7DUs5nuwxo9bBEDim+ia9/1/iCOvdkjSVCKXO9BwzNh8hxT3L/4YBwdH/RJEpQYPWAvMyFytXR/S273IpKqje39z7asBKV0fA98/xiaftUp2efxYzOYjycQG5GueTlKjeDMTNacNiNMYJPwCrbt2wq5Qo7c3FzE4/G/O4IS8Hdi97YUJicn8dJLL+HWW28FAOzBh1AIKqyVXXZK25muGex5sUm0Qqp+JICB5vElyQgdb/WLxJj0CbNDv+xYkuSQtnPjXSwKL3HDe470iW/GpF7SvelkbPuXw3CvtZI+Z1O5mYGoalO/MYz56HxW9ZyZrhkk5wWMd0tbyqVVp6ofDWCiN4qjv1x+I2P3d1pRcIkDvVvppGx5GwshSScCVvd0ERQqOQYOSysZNTxKTgv3fpK9H9EhQEgKy5MgFoGoM9GxeEabZzB0dBxdm6Q3fWZ6YpIWgIvR8EwYs1Nz2PXvfz32L+/hUX6LF4OHxqnYt5u/1CRJnEuje/MgYqOUK5JF4zgbeA8PISFgZlj6utV3BaDWqxAbj0sqbNXeH4KSU2DvD9ow05O9oOFemwuFSg5rsR5dEm0BYN9L7TB4s9uPgQfqHgrh8KvHMX5sJpNotATSz/Fo20mS8Cd9zlFjgP8CF9o39aJ36xi63lumGCWTA2wCmAG2fecwcqsskuPS6NNBppQhp1if9bm3lGgQuDQPnjNnsevfj5G8IpMtSU6qergQKo0KW7/ajL3fW+alJa2edH8ITa8dx1RbZn4/GZOefnTEjmKuP465GFBcXIwDBw5k/W2rWMUqTsV1112H6667Dna7HYODg4hiGpuEVxBBDVyyU4voe15oFe1/zGEe/gvdy27WL1aarHuqCPHxOexdRrI6bZlU/QjJ8fsm2zHduTxjwFVtgVwlg96jxfDB5W00oiei6Piwf8GSKYtSStcmsn50nWGB9ywHjvy2K+u1x7tmwBjUkrZaI6m5yhzmUXhpHrb/S/Y1ZceH/Rg9REfwta8xQMko4D3TIak4pPdxCF3hwezaOeyUOi1cqUfBuU7YS43Yt1zeTiE6NgvexoIzyyVj0Ulp/woAHe/1QcEppBsCOPCDI8taUp2M0DXkFOPmbzT9VQlLVQ8VQskrJVUpAGDPi63UpJimn7ch92wntRpPL83pMwDzsSSxwaDoQ8G5TnjOtEv+Ns4MBC/Lg+98OrUsjYNukwwAuv88BCWnkBznRdflgTOrsefFViortonjM2AMKsmxW7M+CJlKhu3/coRK3euU3JMFar0Kckb6RbJ2A1nXbm5tQvREFNFllvjmMI+iK73o+DP5/mx2cPnn22Eu1GHPf7SSvJAlR45UtGHfvn1AAuA4Dt/4xjdwzz33SPZ7FatYRSa6urrw3nvv4dxzzwUA7MSHUAlqnCX7wiltY2PA5q8vKLSU3e3DSMvEksomfVtH0LeVzAHOejMKznGi+dftGGs59aEW/xsLhK/Jp1KH0zo5KFnpeXnXv7fAWW+WtE4CFog8NY8HkZwVspIFYmNJJOIJTFAc5EvHoexuH6JDcRzNUhNp+lkXPOfY6E5vA9DnSdQAFkFUgOlpkrSVSyt9S9pIxYDEfALzFPbKM92xrBZ5GZcdiKFv7wh6PqJYq8WA3d8+jNgYXc2r9okQ5qbmsedFenteSbBAw+MRDB2iU8za/I9NYI10l257tw+J2PJK0hmIgUppiDXKkZxLIjYmvYFSeocXWheP+dl5SWu/yvsKwVrVOPCTNklCk6fRRmyrw3p0UoyLfd87DGORNBGt5vEgWn5/HGMtUcQkhk9sLIn5eAITx7M/x6YiDYquykf7e33o2zqSnYCVUmOizT0GjxYKRg5nuVnMFUuBd7MIX5OP2AhREsjWtvTOArAmNbZ/7YikklPVwwG0vtWNsZYodn9n+dwQc4yhXd6MyZ4xIAasWbMGBw8ezHrtVaxiFafi9NNPhyAIKCsrw/79+zGFMWwSXsEa1CBniZrXwZ90gtETCzYuh0HRFW7s+UHrkhvliy3Zqh8NIj4xuyyZcWDXGABiSavL5XHw522YaF8+X1kK9VDxShjyNRhtXr4uFZ9IouX1Ewsk9SxKKWmSlGWNHoEv5OLIb49nvfZY2xS0Li67QhMWSD9aN4PQ1R7serElK7Hg6OsnMEWpvGLy8WB0KjjqbOh6N7tCJWNlUHyTn9inSyil6PMZhC5zY7JHWiEvOjyL5Fwyqy1UGlIWeYvR+k4PWD2FdyCAQz89RqUSBRCFHVedFXu+3ybZ35Wg5DYvODOD7d+QrvU0/aILjF4uqaIEAC2/7UROo4Na3YrGfgwAEvEkEnNJqriFvuDGfJyijsUAkWvzEZ+awy4KpxujVwu5UibZDiC/q8PYJzmG8i+ww5inwb7vt4t5JRvGuqbAO1nJsVB2ZwFUOhV2fuuo9DhmSI489lYPVR94K4PEnDRnoOJ+Pzgzg13/fhjxiSTiE0tzHbRuBsU3+ND15370bBnBjixj0llrgr3EiP0/aMeBH3WI+X0pTFR0Yff+3cA8oFar8fWvfx3333+/ZL//VvF3S1ICgFtuuQW33HILPB4Pjh8/jgTmsEl4BR6EEJSVZLQVN7B5UuB1lpqWV0xJgTWoARkwO5r9pWimJ4aZgRiOb+4Xv2M5TsvWrzaTfweRZRvvmBTJTicjTRJqWE/sn7Z8hUL1g4L3s1hSMXBNLlp+nZ2cotapYFJLF5nSJJPqRwJoefNEVvWazd+ks04DgK6P+mH26ajan9g5DIWKLqFTxTMF/2U5cJSasP/nHZhqy96RIy9LE5TSoCUoAQAESRGeFYPRkOsmZikLK8CyZJCT0fUenWR5/cYwhISAbf8ivVk30zVDfd+aft6KwsvzqSwAm147Dv95zqUJSieRaVp+fQIt/AnJ8Vj1YAG6PurH4N4pzJzIPrm76yxQqORwVpsw3jINYOkbrfXxsAa16Hh7AFv/6aR4CcIpnxMSqb4rsjwTgoDA1U7Yigzo+ngA3R8M4USWjbLSuwqw/7/ayTjPRqBM/dvwgWnEzprF4dcWPRfLqCfJ5RIbb6nP2YI6KDkF/Oc5se97bUuOyRlhBpvxJlQ9KgiCAJ7n8dFHH6GysjL7d6xiFavIioGBAezYsQO1tbUAgCbsQLOwC5+TXXlK2zQZxHOWEyqtksoeTCaTneLsuBSaf9uNwgtzFghKy2yY93w0jJ6dw+K/Fd+2vDVtmiSQf74duXVW9GwfzkoykKc6KjWHtr/Zh/aUh7z3Agf6941nJZI4K61QMgo4qo1ZlVLS/bVV6pFba8Xe7y5PEmp/sw/tH/RREU0m2qKY6omi5W1p/+zB3RNwlM3g4Msdkm1bXj2BlhV43dc+GQIEYPvXsr/8S9ldLQYtQQkA5ucSgABwZg5RCo93WiQpSfppSJFiFrc79pr05pulWIvQ5R50bx0SCXfZcPDHHVTfDwB9u0cRm5DeVIuOAGMd0+jfQ0ey2/KVZkklJ3OYR/7aHOz5j1YqcpDBq4FCKU34KbzShWOv9aDtjV60vUEpjU1xixueCUNIAlv/qTkrQclRbQRvZ9H+Zh95f8o2FFN5sP39XjhKzZLPe7Q/BsgAzqiW7K+j1ATlYjLgEtc+IuxFt6wVwm4BBoMBOTk5q6qVq1jF/0987nOfgyAIqKurw/bt2zGHWWwSXkE+ihCQFWc2XrS00NhZqDVKSVIEZ1EBMiAmtTERIxtQ/QdSxJgs1ks7vnWU/DuA/PPsmBmML2srl97Mr3uyCDI5Tn3HPRmUU+jijQPfpU60vZ59TcPbWDAUmz9pslTZ3T50ftC7JLErja3/ephavefYWyfgKDdLEpQAoOujQeqNKqk11GK4z7LCc7odza92YvRw9kONUvFcDFqCEgBAWPk6SQqskQWSAlnXUYLmPgDISkZZjJrHgoAc2PF1acWE2FiSqjYGAEdf7YDv8x5JghIANP2mG4XnO6kUl7reH0TX5kHJ8Vt6hxcndgxjeP+kZCxs5QaoeCWcFRaMtSxfM2XtLOzFOnS9P0hFZE+m7qtc4v0xbXVy/OMBHP9gKGt/Izd60PSzLnT8sZ9YEi8Xh1QenOmOYfLEDFr/KP1cyOQyyChednX5LBiDCnlnODDW0rHsmHxf+C0UwzIkEglotVq899574nv6Klaxir8M+/btQ3d3N7xeLxKJBA5hBw4Le9CIi8DIMlU10hvY+WfZwZkZGPJ4cvg4G+SAQqr+DeDo670IXOxcICgtQyoaPjSBzccWbI5C17px5FdL59m0Kom9yojCi1zo3jaYndCTPgudyD43920fFYlNrgYzRjums9o6WYuNYLQq2IuNWYkLwwdIgA2FPDxn2HFgmVqe2Id9o3QKMENxjBybROefpOshE51xDB+ZQMc70rWW4x8O4viHdPthALE0lillkrZ6Y0elxSbSoCUoAUBiNgkkBTD8X1dUSUgISC6z97MUaAhKpB3Q8bZ0rUfrZlBysw/HPxmksshr+Q19nbLjwz4kKUg0iAMD+0Yx2kZ377Z/44ikWpfWzcB3gQv7f9BORXKzBokCthQ85xFiX88nI1TXpb21NY+HIJcD2752JOtzbgxqoHfz6Hp/ENv+7Uj2wZjKg61vnUBunV1y7MxNxAE5wJqka1451WZwJkb8jqWepRNCO5qxC9gN6PV6FBYWYteuXZLX/luHTBBW8MT/DaOrqwv5+Zms5kZcDF526uklzrpAtKh4wI/JE1FJWzNHrQG+c1048HJnVpIKb5Wj/L4iwsR9ITsTt/H5CISkgC1fzl68rXjADyQyWddSSL9UZUPNY0GoNEo0v9KRnciRjYhwEkxhHuGrvYiPz1Ip/oS/mAeNjcXOf6Pzkec9PJ21HUDV75zTTHBVWST7ainRIPgFDzo+7JNUabKV61B4iRtdfx7ISvYACOFD6+Sw+Usr8GKnQOPzEcxOzmVV1Vopah4NQqlRSI5XgChhzE7OUfl21m4IQZgXsEPCg7fwche0DnZ5hZ3FWMGY5V2spHoSQHKA9+wcbPvOYclr8y4W5Xf4MB9NYPs36KQ7wQnkulkKFg0biyBTyLD5Hxfdg/QUsOhzgStcOLFtGDM9EkvMtGWah0fpDfnY/1J71lgEr3PDGtRjtHUSzf+9/KkvrY9H6Q1ezAzEJO9X5YN+KFmlZAGKt8pRfFsAB350BNEh8vdyJL+Z6h4cOnII4xPk5etzn/scNm3KLtO7ilWsYuVYu3YtPvzwQ/FvAyyoka1dsm1aPYdzsii+3oODLx2VJIzUPBZEfHwO+3+Q3Q6g/F4/eBuDPS8czkroiNyYD2OBRpJ8pMnnULIuH/v+6yg1QUSTz8G+xiCSkZYEBzRuiCAxm5RW0cmiUnIy0uu5PS80ScaUMwMld4Zw9LddVJZcXO4KCDqUfS6724exjilJtaSa9UEISYFqjVhxnx8qjfRcAgCNz0YQHZU+MbcSpBUQ/urrueciGOuYRtPPOrO285xrh6vGgsOvdkjeV9cZFnjPdGDPj9sl723VQ4Xo+mQAg8scqBCxgvG6kjFV/UgAo51TklZsALFCUxtV2PND6d+10Blk7betUo/AJW5EhyXGCweELl2+GLwUKu7zY342iQMS+a3x2QggI8oOWa/3gB+ciZFU/jIGOYSv9uLIbzpF9bblUHilC7yJITk4TRJb4tpRIYrx4k7x1L7ZbMa2bdtQWCht97SKVayCHmNjY7BarUgkFsgWp+PzYGVLqM2l/1MMKL7Zi5nRmCSxxBjgUHRVPpp/3ZHdWo0l65npwZikimLDs5HUgbvsOWzNzflQqOXY//3sOXExAle40PJWT1YiRdndPmgcLI787nh2IkcW0tUpTZ0sKu/yITY0i90vSte8Ci5xwOTVSVohLL4+jboUaQzJfltKdfCcZpdUJ2KdLCpuK0D7B/2ShBODn0XR1V6c2DokuflTdF0eTIU6bPnyX7/mFR+fw65//+vVvMru8YE3M9jyVemaV836IGan5rDvv6THbOUDhZDJZVkVwAAgb60VRq826yasiBWOWZoxZQxwCHwhDwd+cFSSqMUagcqHIpidmKOu59L0Oa0UtvlrTVnb5p9nx2DzBLUCGGuUo+yuAPb9tDNrLPLPsyO33oqRo5M4/Mvla16snUXl3T5M9UUl81bxzV6wJpVknFgjsObmAA69fByxgRhYo3xZkt90RS8OtzdhdJTUpy+44AK8/fbbWa+/ilWsYuW4//778eKLL4p/m+FEpez0Jdum1WAYPbDmpkIc+mmb5AZ6xb1+zE3P4eBPs+/hhdd5YPJrseeHrVnJP76LnXBWmXFi+xA631m+3sJYGZTcnI8DP+2kVtBhrAwcpXqRsL0cGp+NYD6WkFbRyaLkdDIq7vWDszLY9d1WxIckPsQAVXcH0PpODxW5h7Ey0tdcdG2aPofXeTDVF5UkLJXf6YNMJaNSkFxzgweshaFa99Q9EUJ8dA57v09vrSeFsjsLoHFyknWJlaJ+YxijrZOStRRbmQG+8504/JvjkkRAS4kehRfloPnXnVlVyACg9I4CnNg+LBLilsUKxiuNktbi75/qjaItWy05BVFd7aetVHZzpDPI2m99PlEVm+mLSY4X3yVOtL1Bf1Ahcr0HMgVwSIKjUPdkCHKlXFKYYs2NHhjytdj17cNZcyuXw6DkBi9a3jiRVQEOAPLOtkHv5sQ+LqeeFBfiGC/txIEDByAIAkwmE3bs2AG/35/1+n8voDAO+/uAx+OBIAi4+uqrxf+2GW/iA+F3qH40gMCVxC/dXqlHya0haH2EvMSZGdiKDeJnqh4uRPA6NwBCTKndEIIpzMMSNECmkCH0BddC24cKEf5iHgDAEOBRuyEETYEGibkkkvMJVD8SENtWPujHmpRPJO9iUbshhL59wzj8Wif8l+Wg5vGg2LbiXj+Kb/WS/lkBFafEwKExAMT6rO7pIrFt2T2+BY9uEMJH0Q1uGAu0qHkiiNoNIfHfSu8sQNk9PvFvmVyG6Cixwso9w4LaDSHRyqv4Vi8q7k09ZDOEoFL1aCEan4/Af7kTtRtC4F2k8rXmJg8qHyRtR5tnMDs9j4nuqBjv2g0hGAIk3uEbPKh6aKFgbfRpoU6dAjOFSQwtJcRPMnidG1UPL7RteC6M8lu8AE9IELUbQrBXErPQwJW5qH50Id6Nz0eIAhUImaF2Qwg5pxH/bv9lOeQkEwBXlQWMQY3SuwrIB3kSQ/daEgjvRQ7Ubghh+MA0tny5GbaIEaV3FmTE23M+8YT1fM6G2g0hTE/OQSaXwVVnQfmieNc8FoTv804AhBxVuyGE+dkEhISA4ju8qLh/IalVPxpA4eVkrDlqDSTeHh68i0XkxoV4A2TMBq4h49tWrsu45+Ev5mXEsOrhU8esrV63ZLwrH/QjcmNqzHp4KDRyUcmp8HJXRrwr7vej+JZ8Md5ylQwqDWHq+j7vFOMNAOWLx2yKQ5g+kek5337KmE3fG0tID97OwnsR8SJ2r7WStqlrFN/mRfk9PjhqDWh8PIK6p4tOiTdvJSmz+JZ8VDzgR/WjAZTf4UP1Y5k5onbDQo4I3+BB5YOFcFVaoWDkqLonsGSOAIDQOhLDmd44Dr3ciUQ8gfD1pK2hkEft40HYyokvcOBqFxqeLULDM0WAIKDy9sU5gkHt40Hk1BsBAP7LnKh5NIADv+xCz85hVNzrI/EWBHBWMg5zzyDy2gWXO2BbY0DJjSTGZfcUZOaIx4PwnGMFZxHQ8EwYtU+EMNM1g61fbUbhxTkZOaJ2QwgFlzhgK9ch9wwLjHka9OwdQvN/H8/MESA5wn9ZDgBAZ2cgCAImB8nLwOIcAZBNx3S81Vo1FKx82RxR9XAhQuvcMJeYoWQVKLu7CJYSDWaGkqeMWfs1amzh38KWnVswNz8HpVKJ6enpVYLSKlbxKeGDDz7AzMwM1GpyImEcw9gkvAJVbeYaqOSOAvg+T+Ye3wUOqLRK5J1LcoB7rQ016xfmiOJbvSi+zQsAULIK8E4GnnPJPOs6w0LapjbLIzflo+xOH8a7pjEfTWDNTX4UXEzyvqPaiJr1QXBOslYJr8uDSqNA18eD6HinH5UPFiJyE+mTtVSHmvVBaPLJhd11FsQn5hAdScJaqkPDc2EUXknmZHOYR836IMypvB+4KhcVD/hRvC4fOVVmVNznR+hakvc1+Rxq1gdhLSXzrP/cHMzF5rH/pQ4AZA0XXkf6wDlZ1KwPwlFtBAAUrHWi+pEAGp+NoOaxIMru9CFyY4qMz5GNEdcZFgDAwMExzE3PiwSl4tu84joSIG3da23kt53lhJJRILeBxHTNzfkouWNhXVP9SAD5qXWN71I7Km4vQHlqfRK5MR9ldy/MEdUPBeC7hOT9svsK0LghAkcD6X/RdXkov3ehbcUDfvgvJ201DhY5NWbofSTeoWvcqLhvYY6ouN+PwFW52PGtozj2VndGvAuvdBHyfgrl9/pRdF0elKwCCrUcNeuDsKXWhr5LcjLmk7K7fYjc4EFinkg516wPwlFH+uu9wJExZkvvKEDkpnwy1syZ8faca88cs7d5oeAWXslq1gezjtnSuzPj7b2ArGscdakxaybXWnNLPgQIiI8TZaKqhwrFeNsq9aRtLrmwvcQAuVKGseNRMd4nj1ljkLTV2FlER+MikafiPj9C15Axq/eRMWsp1sIY5MAY1fBdkLMo3j4UXZcas7mcGO+6h4vQ+FwE1Q8txLDs7oUxy6VjuNaMitsLUPtU6JQcsebmzPHtPtMKtU4FS0i/bI5YHO+d325B/94hFF+bd0qOEOP9eBCNz0dQeKWL5Ih7M3PE4jVQ5YOF0OdqMHBoDMc/HsjIEaFrM8ds/WNFsIT0MIf5ZXNE+v/XP1uE0LVu7HmxFW2b+jJzxKU5qHywULxvZff4MNk/jX0/bT81R1zszIihXC0jVtpRnJIj8s/PHLMyhQy+i3IzYijmiDOt4pi1Bg3QujiSI6IAopk5IqfBjNGKdmyRv4WDBw/CZrPh/vvvx/Dw8CpBaRWr+BRgNBoxPz+PjRs3iv/tY/wBfxZeR9k9PvguJWsgY4BD1V0BGHJJftN7eDhKTeJnyu4qQOAKMkfo8llUPRSAOaKFJWyEXCWH7yK32Lb0Di9CV5F8wdpJW1uRAXPT85iPJ1B538KzXnKLV5wjWCM5HX5iez8Ov9aJvLVWVC2qH6y5OR+RGzzi36xBjaHDpCJcvSFA1BRTCF+ftzBHgFy38AonbMVGVN8XQNVDAdGeq+i6PJTc4hXbKhRyTPVHMbx/ErZyA2lrJ3EJXZWL0jtSbWNkTVF6rw+Nz0WQf5ENVQ8FoMsnbQOXu1CWqkvE+mKYGY5j/AR51zX4SVyMATJH+C51ZswnjjKTeHqXdy/EGwAKLnRkzifPFKHyLh9YIyFVVD0UgK2S1Cs959hQ+cBCvBufi6D+sXAqgCQuznpSE3CfZUVVak52VVvAWRmU3JkZQ9fpZI5wNZhR9VAAsbEYtny1GaYCDYpvXohh5QOF8JxD5ghbJYlhfHoWCqUc9jIjShbNyRX3+eE9n6xrLKU6VD0UQCIxj+R8EqHrF8UbZB1ccAlpayrSiPFm7SyJ96I1Z9ndPgQuzxyzaRRc4siId+kdXgRTtQbWSdpaqsk86z0/M94lt3lRlFq3s0Y5OLNaVHI6Od7FN3sRvj5PjLdSo4DaSGqZrtMtGX2K3OARa2kAqb327yc1L2c9iXeaSFi0Lk+Mt6PUBJ2bR/559ox4s0ayNiy61o2S270wBjg0PhFB7ZMhFFxIYmiOaFH1UAC8OzVmr3CRetqdBai8y4fy+/2ZOeKhAAx+0tb/hRyU3e1DTrUVKl6Joi/6l8wR6XiX3+tHbAzY+6M2zE7NnZojysmYzT/Pjvpni9CwkYzTkutOzRGOapKb8taSMbv/pU50fzKINddm5oiMMXumBbn1VhRfT8b0Ujkib60VYIkya9X6AIAktn3tCLxn2TJyROV9hcg/zw5TkQa2cgOsRQZ0bx/A4V8ez8wRIDkiPWZ5qxICBERHyObn4hwBkDHr/wJZQ7NWFVQ65bI5ovROkpM1Hh0Ygwplt3thjmgRG0uekiOcV/DYrv0jtu7ZjFgsBp7nEY1GVwlKq1jFp4T/+I//EDekAWAEfdgkvAIhMpNREw9d40bBxaka15k5YM1q5F9Acq6tzEDaplRSAlfkInI9yW8qrRI6jwbus8g+lGWNHhX3+sFYSePCS3Ow5kYPxjunEJ+aQ+BilzgnG4MaQt7JIW19lzihsTFoe6cXne8MoOR2L4LXkj7p8xlU3OuHvoDkfWeVAfGxWcQH49DnM2h4JgzfF0h/uRzS1hgk+3Oec2wovaMAxTd44G60Yc3NHhReSvIbYyVtLWtIDcZ9lhXxqVkc+O8OAISkkK7/gyF7nvYqIwDAVWlGxb1+1D0ZQtUjAYSudYt1CYC0ddaSuPfuHEZ0NI74JGFbBK/KRVGqlgYA5Xf74DqNrIFy681gjCrk1FjEeK9ZNJ+U3+lD3tkkhs5aA6ru86MsVbvyfz4HxTcttC253QvPeaRt6Do3Gp+MwNlA+uS72ImSWxbmnpLbvPCm5mSTXwv3aVYx3vkX2DP2Zopvzof/8znY+/02NL3SjYp7/TCFyTybd7YNZYv2Htfc4EHgchdUnBJKVk7iXULinXu6BeWL1kvhdSTe87NJzM3OZ8a7wZw5Zq91k9ols3BvXA0khvYqY+aYvTIXjHlBiab8bh9yU3OypSQ1ZvVkrRK43IU1i+JSdmeBOGZNYS1payMX9l+WA5kMmJuaF+OdfwFZA+kLWDJm85nUvTJBwSoQGyDzbskt+fCl6r9aNxmHhkJSg9E4GcwMxUWCUvFNi8asbWHMMlYGWheHwksW9vvX3OBB4AoyZhk9iYutzICquwNoeCacEe+idXkIXpU5vp31RlTd7UfNhuApOWLxmK241w/XaWbwdhaWiH7ZHJGOt/ssKw78qAMdH/bDf5H7lBwhtr2fvMv4P59DcsRtmTkiY8ze7oU5bMSJHUNoe/dERo44eczWPRmCs9IMU1i7bI5I///6p4pQeGkOmn7RhWNv95+SI9Ix1BewiFzvwWTPNA79vO3UHHHSmFXwCiSSScTjSTGG6RzhrF4Ys8l5sp9QcP6iWuaiHJHOyYwecFSYYMjXijkiPpGZI0xhLaaqu/GJ/A3s378fFosF69evx8jIyCpBaRFWSUon4de//jUEQYDRaAQAJDCHl17+MXrmCRvTFNRDySlgSBX1E3NJUWq14l4/GIMaRg95wIw+0tbo06HpZ11IxJNgdGpofTwangmDMaqhzyNtDR4NaevVY9s/HQajY6DWq9D4fASldxWANTHQuUlbnZuBklOA1TMYbZ6BuUAHFa9EferFjbMx0LlI/9QmHkpOAXNAB/CAQiWHQrVw2zU2Ftoc0pazAkpOAU7HYODAGOanE+TvFPFI42ChsS2cslNyCtGqJO9MG5ScAmoTSeY6FwfOuqAxp9IpIVfJISQEsEY1lJwCOjeT+j0asKaFtmqNEiYfmXR8F7hIvFMx1bt5MIssBWQyGRKpxGL06VLxJknL6NGAMWS2FQSiNmPMJ3ExBUlbk08Lte4kyeuUsIzGTe6NpTDV1qsVCTS7vn8MECDGhbem4l1Iihhmvy7D2kDr5KBJbWaAJzG0BFJtC1Ntx2ex+UtNUDIK8IvirUrFBQAsQQOUnAK924ew5SvN0Dk4cJZFMdSpxLbmAGlbdmM+yu/wQZ+XGW/GoIYpX5uKoT6jv3p3ZgwZgxr61Dg0pfobOC9vyXizJmZhfOcxkMvlGO+cWjLenIWBzkXGDmNjIZPJMJNioZt8C/EGiJR6esxW3ObPiLc1ZeOVJh5pHCw0qSJiWnXC7M+MN29NjdkcDryNRWx0Dsl5AQqVXGxrKSRx0aR+u9bFgzMzOL55ALOTc1BrFuJ9co7Q5/FgTWrs+W4rNn+jCYxWtWSOAABTgQ6MQQ3eKsP4sZnMHJEas8b0OMzXQiaTYT6aEOMt5ohclozvQh0cNQY4SkxQaZWYaptBx1v94KxL5QhyXXMe+R3bvkNOLGisLLROlhCaLEJqzOqh8+ghU8igZLPnCGvEgMClechtsEDJKTB6mIyBpXKEo9SE8BfzYA7oIJPJMJU61XZKjtCrYAmTmI20T0Imky2ZI3LqTamcrEX3B0PoPzwCuUJ+So6YEWbQX3wEr/7uVczMzEChUOCf/umfMDc3B54/VU1vFatYxV8PHMchHo/jtddeE//bOzt+hz9t+xBRgZAgdE4Oejd5FtteJydSOT0DcEDeaVYiP5siFehcHPSp+WTLV5ohl8thLtSh8sFC5DWSthp7Kj/n8tA4iA3S9q8fgVqvgr3UiMZnIzBH9Km2ZK7S52ugsbHo/oCcZGJNahi9OjiqjTAW6qDSKmHwkO81eDXinOystEAmk8HkJ7lV7yFt9R6Sw4xeDTgzg/3/dRjdW4bAWRgYvOm1IQ+VVglj4cK8pWKViPbFYCnWQmNnYSgg19XYVVBplYvWH4TEPTczj5mhODQOVoyhxs6Rtv6FtYpKowTnZNHwTBh6Fy/OEeBI4Su9VuEtmfdB7+ahcy74aKn1KrEPnIn898HmcbFtek4GALVRBXMh6f9cjMxljEYuxpC3LrTlzAzMBeS6Q8fGIZfLoU+tXQz5moz5hLMwMKXiYish8sRGH9nsMHm14MwLbXkrifeObx1Fxwf9qbik5sNCbcaaU2MnMdz2z4fR/XF/Ki6p6xYukOYBst4z5PE47Yk1KF/nJ22DC9ddLJmsy+EgW+QxQe5jer1HxiFnILEw5PHQOjiRkK3Wq2BKtw2Q38o5SFudk4MMMrS+TlSEGKNavK7ZT66rT63FFWoFscBJux+aGZi86bWhQRyz7jOtsIT0GWtOzsrAkJ+ag/O14pgdOxrF3PQ8FMqFdSVvZcXxrc9hUr9Vj8kTUSSFpLhZtzjeAKAykjFrytMhOhxHci6ZEe/FOYLj5GK8N3+jCfGxuWVzRDreOakNLs7CL5kj0lDzSgiCgNGjE+R5XCJHAIS0w5rUMBfqcOy1nqw5AiB2tYm5BEaaZ5bNEQBgKtBCLpdnzRGsSY36p8MoutoLjY0Fb+Ew3RldNkc0Phsh44NXi4cJTs4R1nBqHDpZorSVBFRsagyflCNyGy2kLSfHvv9shpAQlswRE8Vd+PD4W9i1excEQYDf78fAwABeeOEFrGIVq/h08ZWvfAWCIIhkwFnE8dPXfox+gaiDG7w6MEYV9J7UHD09L9a8Ijd6oHFyMKbmWZ2LB2NUwejXovX3vYiPz4EzqcHaWdQ9WQStk19YqzhVYIzkvXnHt46C4VRgrWo0PBNByW1eaN28OJ+oDCwYowoaK4/Rw9MwF+rA6FSoe5IcuNPn8tDnkZzKGgHGqBLzkJpTQckoROKRIV8Dfe5C3ifX5XBi6xCm+2JgjCqo0vNsvgZa90Jb1qqGUkHmMd8FOeSzTpL3DQVaaJwLbXkbAzWnQGIuCRWvAGNUiTUOo08LjWMhF/JmBma/DpEbPAhe6QFjVMHgTeVnny7jnVouk2MuRjZfdE6OxDCdywP6jDWQXCaHkBQQGwO4VFtLum1QD3bRBhEglrzAGkm8xXVCgIwBADjwww4k55LQWFP9Z1PxDi70gTGqwOpJn40FWujyFsXQrIYpdW8sQdKW0aix+ctNUDEKaBfNyZyVIbVLkPUpY1RhrG0G2/75MAy5mfHW2FhxzWb0asEYVQhfl4/Ke3wwFmgz1pwaO7swZvM04m8j36PPiLfGycPoS49vBoxRhaKLPQBL4rI43lrXwphlLGrIlXKMdxLymSmgy4i3LnehLcvKIZPJEO2fTcUlFe9UN/R5PAypOtCam/PJvRHrhuS3ssaFMatLjdm00o5JrGOR63KpeVifr4E2h0dsUsBcdB5KZqEOZEq1Tc/ZRr8WWgeH4x8PIDYyS8Zsqm51co4w+3XQ2Fk0/+I4Nn+tCbyZWTJHpMcAb2PA2lnMdMegWSZHkP7rIZfLMTtNxv9SOcIc0MJUpEHe6XYwRhViAzF0vT+YNUdYUvE58PIRMYYn5whzoQ6GXBZKRgFGmz1H2NYYEL4mH/mfc4AxqjCdUilZKkfkVFpQdF0ejH5Sz0u3PTlHaBws7CVGAED/nlFS81oiR5gjWmhzOBj9Wgzvn0TXR31QqOSn5IiYEMNAyVG88uavMDlFVOG+9rWvYXp6Giy7hJreKlaxir8qRkZGsH37dshTNm0fNL+NP+36APMpiRJjgQbGVH5r/UMvIAAMT+Yq38U54GzMwjuhTwt9qu32rx+BTCaDJaBDyS35KLjACc7KgDOTdzVjQAddngY9W0aw699aoM3h4Kg0oX5jGJaILmN/wFSogzaXF23XdC4e1pABzmojdHla0jaXfK8loIcuh+Q3R4UFMoVMnJPT9X5DQaptUA9tDodd321B54f90OVqYEzlY86sBGdlYPKlr6sDo1Mj2huH1s3AWKhdqC+ZmVTbhbUKZ2UQH5vDTH8cpgItjKnvBEPWFIvXKpyJgd4mR+3jIZgKdWK8ARCiR6peo7FygACc+Jiopxt9Wug8i9o6WfG6vI3EbrSNEOVNAR20eQttdS4eltQ8OztD5ny1jtwbk18Hbe7Sbbu3DpC8n7+wL5WONwDo3LyY5y0hHpxtoQZmCeqgWfT+rfNoYPRpsff7bWj+dSdZa4lrQx34Reslg1cDs1+LXf/WgmNv9meuywq1GWsgo1cDo1eDxicjKLupIHXdzHvD6El7s18LpXpRXcjOwhxcqGFwVgaMRS3G2+DRoPpRckhK4+TEe2MqIH3QuxbWnABEFSFdDi/u3xryyXW1qb0yNasCkgvWcNpcjbhe0joXxqytzABnuUlcwwOA1q0Ray5aOxmHxgIN4kNxzPTHoFAu7LWn4w0AKn1qzBZqMdY+BSEhZMTbmK8RxzOTGrPmAj3GO6cwPzNP4p0K+eIcAaTGd6EOW7/ajInOmdRzf2qOAADewSK3lmze8Sb1kjlCbGtmIUDASOskDAWaJXMEQMhjulwe5kIdOt8ZyJojAECulGM+Po/R5qllc0T6/8vV8qw5grezqF4fRPEXfWRt69BgojO+dI6wMSJngjcxQEIgylAn5QhrqQGcjYHBwyI+GEcinoCazRyz6XGYf44DnI0BY2Jw4AdHMRdLLJkjpgK92D79Abbu2ApBEBAKhTA4OIhvfvObWEUmVu3esqCrqwterxeLQxREOTyypU92NjwTBmSQtLMKXJMLW5EBx97oxkAW+wPeKkfZPSEMHZ1Ay6+ze1sW35KPie4ZdL03mN2qatG/RW70oOm1rqzWU4Erc2FbY0D7u73o3bq8TVn9xjCEhEDtfZ5zmgmxkXhWm7i6p4ogV8qo7ME859uRW2PBlm81U9l0ZbN6+kvAe3ioGGC8JbvtXePjKcnKr0nbiVhKNJjpnRatBZeD1sdDY1Whf/t41nb+y3LAWxgc+GGH5HfT2r2511phCxukLU94wF1nRfcH0j6uOfWmrGMtjbQ1YGw0jt3fyf79uWdYJK3zVgxKS7iKB/xQcXQWMpGbPDB6tTjy2y4MH1xCUjSViwLX5J6aE5axefN8zgp3g235Zzj1ufqniyCTAVu+etIzfNIUEf5iHjr/eII8P5S5purhQjT99zHJsdzwbBgjrZM48nJ2ic6GZ8IQBGCrhIx6Otd2fti/7P1/X3gNSZBc4HK5UF5ejjfeeCN7R1exilV8arj44ovx1ltviX8rocbZsi8s2da91gbP6Tac2DYkaf1V/3QYgiBI2qSF1+XB6NNKysRyZjmK1hUszH/ZbJ9S/8blcsitM+HYa9ktghueCSMxm8w6b7jPtMJzph2t7/agf9tY1uul4b88J6vtlbVUh+BleRg4NCbZRwCoeTyI6PAsDv64Q7ItZ4akldxKkdNgRu+W7BetfLCQEIUpLbxslXppazKQ+Hf/WXpNU36vD717RiTv0Urs3opv82Li+Ay6NmUf87ZKPab65yR/N2eWg7EyVPZ9tU+GoGQUkv00h3lER5OI0trNUCBt+SjdEGhYH0bHB/2S4wMgcvJz0Xns+Oby9rqWYi3kajnV2ADIO4yQELI+w64zLPCe7ZDMX5wZ8HzOjSO/Tq2NKHJN/vl2sEa1pOR50XV5MBZosfXfmrNavDnqjPCf70LvrpHslpQg8UzML29J2Sm0oAX7AAAsy8JqtWLfvn0wm81Zr7uKVazi08HY2Bjsdjvm5ubE/xZCOfKWqXnVbghBoZJL2lnln2dHbp0VLW+ewODuLHUKFqh7uAijxyZx9LXsNa/AFS7ExmZx/IOh7LZPi/4tcIULxz/oyWo9lbfWirzT7Gjb1JfVpqxmfRAyhYzqvR4gSkDJ2SRGDy9vFVL9SAAqXkllD+aoNqHgXAe2/uthKpuubFZPfwlYOwvWIMNYS/b1QuPzqXn169K29QY/i/jwrGQ/Wef/x955xzd2len/q2b1asmWmyzLXWPPjO0Zz3iSkEIKSQikkEIqKaSQngwkJGT3s4UlsAssJcACWUooCYTAkgykQQhJpmR6sz3u9rj3qmLZ0u+PK8nWSPfKQJZl96fnrxn7+Jb33nvOe97znOfRoM9RSVvuITxLY4GO5jS2ELHrXIvdm6PeTF6dlSNP96Q9Zn6TjcE15B7Z641p7wVWrAF9Y0EOfUu65pW7ycrIvvR1tD8FGgtpbdtAqC3r7Oq09UMQVICcG2y0vtDHZLO4hUbJxbl07xC3114NR72Z8gsL6Ppd+m9YoZaz+0np+aDnEieDe6cFW7c19jUbbvdw4mc9ad/lrY9WMdU+x4lfSPd3jdsrkcllaWvsrnMcFJ7moOeNEQbfTl3zeiuyg2A00XM6nWzbto1f/OIXksfNIIMM/vvwwAMP8JWvfCX+fzUazpB9MGVbxwYz5ZcU0L9njL7XpK2/Nj1UgVwmS2uT5v5ALrnrLez5gnQ7tQkqPuJeWUeSsn2K/k5tklNwek5a66nGhysJL0fY9+8Sc/BaExWXFND96hDD+6YljxeD6zyHZJxMJRpqrvUwcnhKIIOlQd2dpSzOhTj+4/R5hZjN018CxwYzY4el1/tqbizG5NKv2cIre52JiePpLzSnwcLosem0FmXrrnMx1jrL6P5pyXZ/it1bxRUFLIwEGBAZ12KwVhsITIckLQxBeDbqbE1a6zaI1hAtWYJtrMRhDYVqQkHWbMu2FsQsH9M3hC33VdL75micVCiFLZ+sZCkYlsx5TcVqVCZ1etu6KBruLUemlLHvyxLf8DoTlZcW0r9rTNrmUQ2l5+WtfJNr6GucmywYC3W0/0q6dl18QQ7O9VYO/Ue7ZGwtFXq8VxbT/276vnbLpyoJL0VEa4hjkSEO845wuWo1ubm57Nu3D4fDIXnc/5+RISmtAf/0T//E3/3d3yX8bAtnYZTZkxtHF+Zrb3Gjz9UKRV8JIoPWDhvvqGZg7wR9aRbYmh6vZmEkkNavetsTXpb8y5LFE3O5jnXXuNO2yzvNivss55rJPyCQYTr/S3qg3/aEFyK8Zz6kldcUkl1uov3Fk4wdkp7sb3qgnCyjikPfbJUkKulcOjbe6Gaqa46Wn4h7iYNwP5HlSNpFzdxGc1oyEQiWYeUfLGJ+xM/h/5D283yvYxk75lpISmtF5TWF2CvMDB+eXNO7sRwKsydN4QAEotJUr0/y3XRfmEv+pmxm+30c+16P9Lk/4xXapVlwjfvcf7E57Xex5VNVyFVpyHYxQk8qolEKkpCtzMTYiRnanosuPqX4u5KLcuh+Y0T6+lb9XcM9pcjkMvZ9tSPpnDEYPDrWX5e+3yg4I5vis3KZ6pT+dszlOtZd7WZw/wQ9v5UuQG35VBWBmcW030PNTcUYC3Qr36IIkeqQ8U2UOgXDw8LEyWQyMTOT/tvMIIMM/jqw2WxMTa1MtgxY2Co7N7nhqgX7pseqmexI70W+4Q4PWQYle78ovXjiuTiP3A0WDv2gR5Lo4b2+GEuJnrb/Osm4xIJD4/ZKlFoFB59qlSRbbH6wgsWFJQ5/e23+71obZG9wxFWeUl7jdS6spUaG9k/StSN9MWYt2Pa4l5Bvib0Sk1Lh+uTU3V3F4mwovsNbDDU3uzHmadPmUxtu86DP09D5qjRJS2uTo7Kome1KT8DZ8kgViix5WgJO+RUF5KyzMLBnnJ5X1rZ4kg5/CklprYgp5Oz8rPQxN95Zis6h5vAPu1nofW+IXE2PVSNTyNLej/eGYsxFOg5964TkN6Ev1rLhxhL840EOfjPdIp2F0gvXRqhZK7Y97gVZ+lzbfUHumt8JrU3OxjsraX+pX7Lf2PxwBSqdkoPf6ZIkfTVuj+amaa5x/a0l6Bwadj+ZhmBwfg75m6IbQCReC60NNtxezVRXtO8VIVFNRiaZKe3l5MmTLC4Ku0iffPJJHnnkEcnryCCDDP46+MlPfsJ1112X8LNNnItFZkluHF2Yr7i8AGuZkcPfbpUmMmhg6wNVDOwZFwhGEtjyqSoWhgMc+2GPZLumx70spclBNDka6u/wpM0/bF4DFR8q5NC32tZM6nGd45AutkevkQjs+pf3ZmyPE79eGmDskPS8dcPHhYWgQ9/rwtcvPnZoLHI23lnBdPcCrc+lqXl9xkt4KZyW4LFWAo6uUMPGmz3MD/nT1jibHhNymvcqlrB2ktJaUXxeDoVNDoYPTdL56zQ1r894WQqubfOisVhDaEaayOWoN1N+cQGzvb60387WR6uY7felJXLV3y0Q/Q98vTktUanhvnKy9Gsj260F7vNzKdhqZ6J1hlaJeV3+6dlMHptYE5EKBCudLIOK/V8Tf+Yai5z6e6sIzUv3L9nrjVR+uIjJtjnJb0fj1LDxY26GD0zR86p0jrjpgXKCs6G0G0vLL8snu9K08i2KEKmOKN9B6ZAxOCgs4NntdsbGpPutDDLI4K+HqqoqTpxYGQcs2NkkOyu54aoF+8aHK5nqnEu7MF91TRF6h0ayvwOBXOt6Xw7HftzNfL842cJzkRNnvY32FwckSTN1d5WizVZz8OlOSeLI+ltLiCyFOfqDXsnri0MN+ZtsDL4jTkR1fyCXgkY7Q/sm0pKkVh9Xioiy5ZOVLAXCaeOIGrZt9xKYXuTAUx2STcsvKyC7wsjuNBsoY8IRXa8MSRNR1GByqtdEUGq4vxy1UZW2ZlB4pp3iM3MZeHecnpffm5rXn0JSWiu2PlIFclnaTezV17iwVRg5/mwP023imwdisFYbmGoRJ1IDbH64EpVGkbbe5rnYSU6NhYP/2S1JaFLb1TTcWcrCsJ/DafJic5kO71VuBveP0/uKNJ9grdj6SBUyhSxtLbbwTDv9b6bfsAnEyVQdLw9Jkp/q7ixFa1dz5Pudkv1Q3SdKUVuy2J3mGiuvLMTi1rMnTZ7tbLRSfFYOe75yQpqMp4ZNd1cw07NA+wsDov2GLzLLiKeTgcEBAgEhMfvyl7/MAw88IHkdGYAyfZMMnnjiCZ544gnOPfdcfve73wGwhz9ARMY2LkQnW2UHFF0Mz9IrkStkaQkMtupsweJhWZorprPL4xLb6RBaWGL6pHSHO9PuY+jAhEBiABwbjSnJPUPvTDH0jjAQ5p1mpagpR5KckF2rJ3e9FWuJQZLg0r9zDP/E2nZXl1ycS159tnC9Ijtp0imvrMbA3nEKtzjSKin5+oSHp1ArJNsBzPTMM3o0PXN1LQQlgNEDs+Rt9tP5WvqkavToNP6J9ImIwaOj8oP5dL02KKlg9adg/cdL8E8vplX6Ovn6ICq1gs7X0i+MTrTPsjCytndjLffR89sRrMUGjj3XI9lOF7XgCC6EJNsBjB6bxl5hWhNxby3qYtseiu06X/VtiRCFWn5yEu/1LkmCki5PkJF2eC2Sha+Si3LJLjOy76sd7P96p+g5rdU6plp8zHf5GD44SddL0u/lwFsTFJ7mYLx5WrLdzIAPZKBbZXkiBkWWnCx9+iFLrpIjk8tW1NJOeUbjpZ0c6jgIs6ANaampqWHPnj0ZW7cMMvgbw+TkJJOTk+Tm5rK0tMQ807weeZ48ilkn27zSMGZPVSBYZq0lV8rSKVGuYWzX2LIEK4Y0SjQTrTMY8jWSRAMQpLiLz88RyBhawVIpFSlkdUF80/3lDB+cklTtqb1NULeZODwmqlbU/OM+qq4uWjNBacsjVcjTTFDTTcZj8E+GWZwNMXgg/c7yJZ9g+5ZONafthS7KLitJq1Dknwzjn0xPvAEY2j+JypD+veh/YwClSs7I3vTFmvIrCsjSKzn+wzUW39Igu8aA6325tL4wkFalqO+t0QQLXzF0vTqI68zcNRGUgDWpCXW8PIAtKrMtBblS+F7TKSQt9PoJzS9x8p30BZiRfdOMpNlpWXpJHrkbrfS9ObomRazOVwaRq6Rd0mNEs7HWWclYbn6ogq5XB5k4Ni/5fWXXGJg4Ns/eb7RRuNWR9nnP9C2gc6TPp2QKGTI50opMCHLcMrkMR7U0Kc0/CXKFDE3MGvGUY/ojfo6b3mF6dho6weVyUV9fzy9/+cu015pBBhn89XDttddy7bXXcvvtt/Od73wHgH28jjwiZxsXoZGtsgOKdkdqswq5Up6WIJBdYUSuWEM9SwMyOcjSD134xgP4RqX7xcBoQFAX2SfswrZW6VOqGk02z7O7OWoN7zXgOS9PktSkK9RQeJoDxzqL5KJV1ytDhJfWRnrKb7LhPtfJ0N4JukUWg3pfG6X3tbUtRJx8Z4ySc/MkCUpAnPgiV6XPn8eOTzPZmZ58tBaCEoCvP8B09zwn30p/TwO7x+I291LQ5GiovDSfvj+OSCpY/Smo/mgRiwtLaYlHI3tH0ZhUDPwxfa49dHCC0Hz6+wGY601fGxs7MENOjYXjP5PONzUWIZeJ5dtSGNw/SX6DbU0EoLUQvbY+WkV4ObImYlbPqyNkGZSS6moaC7jPzqVgS7bkxpP8JhvOehsHnurgqMSmRWOxhrmRAIHpMCffHk1LqJw4MkfovCUmTkjnxYHpADK5PMlqMRWUGkXcelcKcrkMmUKOxqkR1J5OeUWmPYPs69wJIVBPqFm3bh1vv/02Fosl/cEzyCCDvxpaW1sJBoPk5OQwOzvLNOO8HnmeIsqolG1caRhd8lGb5MhV8rTzUgCNSYVSm76dNlsNchnzadRgJtpmsVYY06r6HPxmJwWnZ8cJSqbi1OSZI0+vkDA23FbCWMuMJAGp/uOCus3EiQWC46mvteflERRK+ZoJSg33l6PSKCTJQulIDnEEYX7Yz3hz+nW/RZ+w7qR2qCVJK+07BlCpFemVcoKsiaAEMPDOGBp7+ppB/+5xtNYshnamJ7a6znOgtarTbhZdK0zFaorPyaPj5aG0CkmdLw+hsaYfX3veHCFCZE0EJSAtQQmg7b9OYq8yp20XW1dOp7gUHA/iGw3Qvye9E8xMhy8tcT//NBvus530vDEs+W3F0PKLPrQW6VjGiGazffOSqlR1d5bS99YYE8dnJb8hc5mOmQ4fB7/XSX69TZKgBMKasa3EKH0jUcjksvTqZuEIcqUCR1UaxbIgKFVyNFGrxlMJSsFIkGbLLiamx6ELCgsLOe2003j22WfXdK0ZZJSU/iy4XC5OnlzZKSFHzjmyy0Xbr9UyDaJKLicXOJaGSbz109WEFkLs/6o0O3fbZ6K73CUsDHLqTZRdXJjWNqvhvjLU5iwOPd2Fb1C8I6q+zkXLL6Vt5GLQ5WvYcHMJXa8NihJ4dHY5G26v5PCPeuPEITHElF6muuZpWYMUo86lS3vM9xpbPlWFQp1+p/57jYIzsnGf7WSycy5tbNaqpLTtCS/hpUhaxvJ7jbo7S9E61Bz5cQ/zXX+957dmm8Cotd/8sJ8j35FmP4OwYyowu8Sx/xRvu+VTVSyMBRLVoFYXelMoLvW8elLcYk0mo3F7RVpFKK0d6u5Kb1MYU0/q3zMuqQqXt9VKyXl56e0u8zVsvMWzJiWzrZ+uRiaXtto8HtmPzzzJ/Pw8kUiEcDjMO++8w7Zt2ySPnUEGGfzP4+233+aMM85I+JmbKspkNaJ/sxbLNBBUkMwuHYe+1SJpR5bXZKPkHCdtL0qrJXkuzsNZb6V9R7/kwn7cNuvfmkWJAlob1N3tTasAoLXJKTjLuSaLNoDaW0vQmFSSu4PX31qCQi1Pb+eKoEylt2vY+SXxe1m5WNBq33vrNylk1xiovMzFdM8Czc+8N2ShtWLrp6uRK2Rpd4utVUnJe0Mx1hIDLT/vZvI9IpyvFds+4yW0kF45672GtkC7Jqs+7w3FWIr1HPyutOIQgKVCS9Xlbg5/W/y7z91ioeScPA7/h3TfEL/OU23ZUsDk0VJzXQm+sQCHviWulFZ3dylam5rm57olbfg2P1iBUqtIu9tt073lyLVy3k0j6V/zMTfG/PRKZjGruv5d46K2g/6In128jNFsiCtVVlVV0dLy150zZJBBBn8eNm/ezL59++L/V6CiiQsSyUqrUHimHdcZ6S3TQCArzPQu0PJT6Tle4/ZKlhaWOfBN6ZrX1kerCPmWJYkS5lIN6671sDAakFTmXX+rG0O+jqM/7JIkh5Rfms/JP0jbyMWgscCGO6roem1I1PpOY4ENt1fR+oseZjqlxzBNjoa6j3uY6pyj9VnpGAIrRIa/IjbdX06WQbVmQvt7BUu5lnUf9TDRNps2NmtVUmp6XFCQSmcZ/V6j6poibOVGmp/tTmux915CY4FAgPSWghpoesjL/LAvrfIPCHZoy4GwpNJTw33lBKYX10zu91ziZPCtUUmVqYZ7y1GbVdKKUBrY9slo7VyC8JS93kjlh4oEq14JwqDNa6DyUhddrw5JWvBpLLDxzqo1KZmtxaquO9LKuPkkCwsLhMNhIpEIf/zjHzn99NMlj51BBhn8z6O5uZkNGzawtLQU/5kHLx6ZV/RvtnyykqVQmP1p1m48FznJqbVw8OluUYIPCOoxlZcW0f7rAUk7sPwmG8VnO2l7sV9SHSVmm7X/q83iRAE1ND3sJTgjrUCkNkHB6c41E5DKLy/AVKCTJJOXX16AzpaVVrUGoPKqQqylRnZ/qSWt/ZlwvWu07XqPoM1TU3drKVMd87Q8m3499L3EpocqUGmUaUkza1VS8lzsJK8hm9Zfnlyz9dh7ha2friY0v5ReOes9RjrCWgylH8zDUWvh8Pe70hK4tHlqaq51c+Q74jZn1moDFR8s4ND3eiT7hpULBc+5Trp2iH+HaoeahjtKmRuUzg9rbnBhKjbQ/LNeSfLYxts9aKxZaZXHam9xo7ZksU+CAwHCHC670pT2eDGrupPvjHHyD+JkvbciO9BZNXEniE2bNrF3717JY2eQjPSU2gyS0NfXx8LCAlqtFoAwYV6PPM8bkV+lbB+cDxFZjsQJSjn1qXcWx5RcQsHorhYJYY+1aSrB8mKY4Ky0MszogVmCM4u0xnapiJx3/1c7BIu0wQDWah3uC3NTtmv5sUBQKjzbzrYnvBSckS16bnOJoHxgyBO/Wd94mF3/0oKvz4e1Wkfh2Sls9qKYH/YRCUfWtMuq5mNuNt7klrw+EIgpTZ+uxvV+ad/I2P26zs+RbDc/5CM4s5j2+nR2OVs/XU355QVpGgoEloqrCyWbDbw1wTv/dnxN5K21Yuc/NQuWhmmw5dGq9PeBkAxUX1uUtt30yXmWAstpCUrbPuOlcXvlms6bLn4AG+6oZNtnxCcIqxEJR/BPSz/niqsLQSZj37+3SxKUQFASSlAcihGUIpE4QWnrp6vZ8qkqQFBcSklQ0hG/13f/9QQHvylCUIp+kv5x8E8E6XxZmhE/sH+CSDiSVhVuZlBIevR52tQNoueNESEVWam30upcOnT5QpF8cW6R0PxSyna+6jGanTsZopuZmRlcLhf33XcfkUgkQ1DKIIP/JTj99NOJRCJ87nOfi/+sh1ZejzxPTyT1ontoYYnAlNAH64u1aG2pU97YzvE4CUGsa7KrQQYL/dI7b5aCy0SWI4y1SE+mu18fYm7Qv0LqSXFe/yQcfKo1TlAqvyL1OOqfDMcJSlseqaLxk9LjnsasSquwc+Tp7jhBSey8MQSmFgmn6ftj2Pawlw23V6dtV3lVIY2fSj9+N26vpOkx6eNNHJtnyb/MbG/6XVNVVxet6bzlVxSkjTPA7n9veU/lrJuf6eWdfz2elqBUdXXRmvKfyiujcRZ571djcSbEdJ90DD0X57HtCS+5myyS7UoucrLlkSq0Nulzus7Noe6WEiqvSp+jhXxLQu4lsRDrOjcHfbGW6TY/u5+UJh8ZC3TIlTL0heI7tQrPdrDtM8L9+icRJSi5L8hFW6BltsvPwadaxQlK0efQ9tIgvrGgJEEJYHFuiaXAGpQY5EgrmETPGw4JxSux/tK+XojF4L4JwqEIoYXUudfUxm72KF8hzDKBQIC6ujoikUiGoJRBBv+LsHfvXiKRCLm5Qs1nmRBv8xJvRn6dsn1oYZnlxTDDh4SO1eY1pGwXU3KJxPKG1JynPwlL/mUWZ6RrXjOdAeaH/LTvGJQ875GnezjwtVbmegNonBpc56SuAbX/SiAoOTaa2fa4l/zTxWtKunwDCpUcY4H4YBuYFhSYZzoDglLTmeI1r8BogMhymJAvdR+8GuWX5VP/cY/k8UAgSzRurxS93xgcG81s+4wX9/mpa4ExTHXPE5hMX/NCI9iall+an7bp5gcrqEhTU5pu9/POF46viby1Vuz6bDN7vpKeoLT5oQpKP5SXvt329PcBMNvvIzS/lJagtPXRKjY/WLGm85Zflj7OG26vounhtdW8wkvh+HxLDLGYHP52V1orOpVOgTaNIsLmhyriOW7Xi8OiBKXYefd/rV2coBTrBwIw07tAVxrl94m2OcJLYZYX06jyD0YVw+0i9xI9b+yaxJTMNBZBLQnAP7HI4lzqb34mf4zWgt10coyZmRkKCwt5+OGHCYfDGYJSBhn8L4HX6yUUCvHcc88hlwu5UhfNvB55nr5IavKOf3KRYNRZQ21XoxZR1Y0rucRICCJCOrE1h/lRabJCOBQmHFpmok265tX58iAz3fMrBKVU5w3Cga83xwlKxRfkpGwXnCVOUGq4t5xNacY9Q44GlU665tX+wkCcoFR8gfRann8qSGSN6phbH6lm453ladsVX5CT9j5AsLja+oh0zcs/FCQwvcjMyfQKQJ6LnGs6r+s8Bw0PpL+PfU+1vad2vF07hnnn88fTEpSKL8ih4d5y0fc5Btc5DjY9UIHalJ4GsTDiZ7pbOob5TTa2Pe4lp8Ei2c7ZaGXzQ+nP69hgpuGOUsovS58bhnxLRJbC+CfFv1HnJgumYjX+oSB7v3hCkiynz9GgyFJgyBMPomODmabHqoX7DSJKUMpvsmEoFMhW+7/aKk5Qip6q/bcjzA340qpb+acWCa1BARTS8CWi5w1F62di/aWlQg/AxPFZQoFl0fnWVF0Pf1T+miB+FhYWqK+vJxAIZAhKfyYydm9/JnQ6HT6fD5/Ph9VqZXFxkWWWeD3yPEqyOEv2oXjbvldH48oiuY1mSi8ooKAxyMFvJe5O9/X5EhYytj3kZTmUesfOaq/vLY9UgQz2pNhRsdpqSkpVIKbIZK3WUf0Rt+gOs5iKTOWlxciVMnreHBFVYFn2L0MEZiR2P6+2kwNwvd9B3+/E2YnVV7hBBv1i0ru+RDUVKaWkrpf6qLm5nIH90jJ6Pl8YmVKGxWOQvLb+PeMUNTkIpbELO/7M2khCvvEwcqUMQ06ayp0PFGo5xnTtom3fc6Q5ps4uR6GSp7Wg0NnlyJUysoyqtKfs3jEiav23GkuBZQJpiEK6fA1ypQyNKf15p7vnUWqkk9zYOyel6gPRHQXWLOa2LIgrrOmgoCGbgbcmkhc5U4jgCRMF6aS58ROVKLUKBksmme/ypSQyxdSTQnNL7P33NlElDdf7HRRuc8RVkcTuufzKAhxVZg79oEfo50SUImLWjjE1JtGFXR1svMkt9I9PtqZUgOuKtNLFMRQnhOelUqm44447+NrXvpb6mBlkkMHfPB599FEeffRR7r//fr761a8C0MFROiJHqaKBQllJvO1q5aGaa4pRZKVWMFytTldykZO8BltKC6jOF4fofFEoXFsqtHivKmFw7wQ9rySORX2vj8aVRfKabJS830nna4NJtmRjB2bjSkubH6xApVcKqnanWiVFbbBs1TocXjPmfB37JHb1hBfDRJakCUOr1TXzz8gWbFBEUrXC99lxeM1oLFkcfTo1mXa1rHM61Zv5IT8La7D71dqyUGYp0NqkVZeC0yFU+vS+MOkUtWLQWIXzprPC0js0Qj6Qpl1aZak/B2s4pj5HnTZfAYF8p8xSrOmYUu9dDItzIcKhSFq7NVORDoVKjj/NefveGSV3vYUTL4oTpWPvXPsvBmhH2n64sMlOQWO2pFJQ4dkO+t8Yo+OFwbTqZPMD8xBxsLwoXjTR2iC/MZucDRbe/cIJUWu7DXd40OdoOPif3Sz0+jn0rdS51+aHKpCr5Oz5fCuHvyuuBrLlkSrCoTB7v9QmqcS22tqxWWIjQ91dpWjtasKhHiZbfOx+MjmGb0ZeJEQQDoLBYCAcDjM+Ph7f2JNBBhn878Pw8DCBQID8/HympqYIscjrkefJQsv7ZBfH243sm4orhljKtVRd4WLhND+HT1EVDkyHE5RAtj5QRXgpknKcXv2zTfeXI8+Sp1T2Xd3HNW6vJBwKp+z3jkQXojRODfUf9zA3kHqHb4z0UHudC5VOyeiBMVEFluXFZSLhCAtD4gX2yeZ5djav5KD5p2cz+LZ4DWr99W7kSjn9b4rbTa2OoZRS0sk3BjG79PTvkbauCgRAqVZgdusB8ZrX2KEZPOfnsTgnXfNKZ422cmJQapRrsitV6ZToc9dQ8/rvEI1ag6qQSqdEn64mpwGlWonGmr72NPj2hOR7EsPi3JLohq34aS3CebVrsBwbPT6FPlt63I69c6vrzalQc6MbU7EO/1iQwV0iCb0GnBttDO+elFQJimHZL9RnpVB/VxkaexYTLdNMt/tFCUrbHvYSnBPUtMTUmxz1ZsouLKDjtwOMHZgRvUbXOQ4Kmxwcf7aLmc4Au0RUxGLWjgO7BTUmqXuuv6eKpaCgaJ6K4DUY6aOZd1EMK4hEImRlZXH//ffzhS98QfSYGWSQwd82rrrqKq666iq+/vWvc++99wLQxiHaIofwsol8mTvedrVlWs11LtRGFTv/tTlJ6af9lwPEsiJnoxXP+XkpLaAG3p5gIDruqB1q6j/uYWDvOH2vJeYFw/umGY7O9y0Veqo/4qL71aH4z2KY6fAx0yHMLzfe5kGXq2H/15JVlWL/1+apKdhsx+YxcvCb4oreId8Siixp4sfqNVfHBjNjrTOiCkjZ60wUNNox5mo5JjIW9L02Fo9DOtWbyY7ZNYknaK1qlFoFartaUsXGNxaENewJPPB1aeXRGNSmLOG8adSe9Nla1HpVelWotTnN/WlYwzFNTq2whpimrSFXi0qnWJOy1VqUIYPzwkax0WPTku0sHgNKjYJgUPq8Y60zFJ5mp+934rlz7J3r+/0Yfb+XtuArOT+f8NIyeyRUtJ2bLAzvm6b/zXHJ+QbA/GiAyHKE5YDEfajB/X4ni74l9n2pTTTWVdcUYSszcuyZTmZ7g6I2vHV3lqLUKdj7pTZJpfKGB8ohLNgOSz27hvvKUemU7H6yhZ6XR+gRsdb2ftSFpdRAyy/6mGqZZ+8Xk2O4O/I680zDAaHmpTfoGRoaQq1OP5fJQBwZktJfCJ1ORzAYZHx8nLy8PJaWlliKFm4UKDhbdllC+5F3ZyhotHPieSGRqLnZzUTLTEqSQnB2kcXoZNPg0RGeDaS0mgqHwsjk6bWVwksRySI6wFSvj+VgmP6d0gSQw99pIW+rE3wCoUFGsg3W0O6p+H1Zq3WUXVgoaTu3+SFhkW6mb4GZ9tTMlxP/1YvWvrZCd9Nj1cgUMlFChG88HC9yOTYaGTskYt/iY23WbD7S2iPEYPDoqLm6mK5XBiQtr9ZqCbfWdls/XU04lN7+Zi3IO81KyTl59L09Kk4aQ4jzWq5vre0at1cyN+RfkyLUWu7TNxhIe97Y+5HOdqzuE6Vos9VprcxASB4rrymUtIBsur8amVImEOlEyGDuC3Oxlhg4+I1Oyfs1l+uYaffx7jdOUHpenqQKlX9c2JE63i7tpTzevkBhkwOVXqTIpgN8MNM5h6PSjMGuxJfiseXUmxg9MEv3GyPkrrcRGE9RBdRBw61l7H+6A3yC1/NwCoLhichh1GUReru7IdrdfehDH+KFF16QvJcMMsjgfw++8pWv8JWvfIWbbrqJH/7whwC0sp/WyH5KqaFEVpXQvud3w9i9gle41ian8qqSlAQA32iA5cVwnKBkX29Mae2mNqkhApPtsWoKKUkeCo0CIjDbLj0eTLTNYSszSBJFJlt8DB+Youv3wsTV5BFUWU7FaiuujXeWMt48k0S4ikML7rNyKWyyi9pA9f9xHK1DTfsvpMkfINhjlZ6fz+xJH8e+35OyzepCWnaNgYljqXcpSVlhrYYUSeNUeK9zoc/RSNqViRFD/tx2xefnCHn/r/pE7/VPQWzneLr8Zv/X1lagkir+xZDXZKPodAdHn+lNa6PW/8dx8fdtFaSsdmKIvR9ScweAultKWF5cmw1L39tjzPaKP4fsGgOu0x04vCYOPiUem80PVnDsZyeZbvOLWtlonRr8MwH8kzC0f5LuN6Sl6Yf3T1J8Vi7+SWnmVmQ5Qpj0BbZwSHynv9apAYUM/4Af/3gQuSp1kTf/jGwsLj3NP+6j7TeDlF2Ql6Ti5Y/4GSttZ2p2ilC0WJuXl8fevXspKEi/GzCDDDL424dGo2FycpJAIIDdbmdhYYFF/LweeR4VKracYgM33e5nrt9H52tCv1d1VSFTXQspbY/8E0GWosV7jVMDYUEp6FQsBcNrKl6GQ2HCacjagekAofklgaQtgb1PtVF8Ro5AcNCAxqRJurbJ5nl2NQs1IF2hhurLiiQtImKEVP94gKnW1MSm4z/twVikl7y2GBq3Vwr27SKbewLTKyQua5Ve9JwEWLM1WzpiSgyaHA2117vo++OYpOWVGJnjVKz1+mKqQu+FPa21Sk/VFcX07xzlpETNiwBrU84MrO1+G+4tZ2HET+vPpNWsAUl7nPhpp9OfN/Z+pNsM6L3OhcVjoH3HgKh9YQzHfthD6YfyxAlKwOZ7KlBplYIKm0iamd9kw+41CUpnEvaPxmINc70BDnyvA/f7cqVVqAIQmF5ksl3cxhtgrmsOwgIJLSU0RJWY5ijYYifLqCbVjdi8Biab5xncNUnhaQ5h0TkF1t9WQtvz3QSmYapzjvEU6rx9kXYi5T66u7thCcLhMFdddRXPPvus5L1kkEEG/3twzz33cM899/CP//iP/P3f/z0AzeyjObKPctZTLEtUwun87SC5G6wCYUMNtdcUc/TZ3iQCR2B6kcWFJQb3Cf2ypUKfUslEa1USWY4w2xud+6lJSQZRaZVElmGqV3oOO9oyTa7SKm77hqAG1PfWKP27hfHWUKhmvj/5pKtrSuuuczHVNS8+zqih/JIC3O/PFa0rTByfZbBoQpS4sBqWCj3eq4qZ6Z7nuMi6VNuq2pm5TMdMR+r1l7WqPkqRNE6F52In5mK96GZzYM12cGttl9NgwXN+Hu0vDbwn9mx1d5WiUCvY9+/SedzRH6zNGrb5p+nvw1Khp+yiAo4/15vWRm3i6Oya7nMtzzf2fkg9L4C62zwsB5fT1sYAOl8ZJDApXrczFKrxfCAfZ72NQ98Wr8ttvN1D1ysDzPYGRa3RBJWoMMFZ6P3DCONHpOdWg3vG0Ds0zA5Lx3hpcVm0RrUa4UBYcHURuTa5XoV/KMjcgA+1OfXaZfY6E7ZKI+0vDNC5o5/yDxcy1ZJcM+xxH2bON8v8yDQABQUF7N69m8LC9KrvGaRHxu7tPYLdbicUCtHb2xuXZVxmmdcjz/O7yAv4IisD0oGvd8YJPaZCHcVnO1Mec/9XO+IswNpritl4V1XKdnu/1BZfrGjcXsm2J7wpLdv2fKE1rpi05ZGq1PYYPqHdxNEFdHY5257wsv62kqRm/nHoekkoOm28vVr02mLwnJuPSq/EWi1u63bsh23MnvSJEpQAJo4uCIQYnUBCKrlYXGZ6rHmGhRQFrlORU2+i/JIi6u8pk24YtVWTOidA6YfzaHpcWoYxHBBUknI2pPG5QFAYyq5dW5EqHSLLkbQKC2uFIktYfF1cg3XdWpB3mnVN7ZRaBQaH9A61hvvK1mzzls7GT2uH8kuK1mTr0vXaEEv+ZUmCUtMqC78Tz0onmm0v9THeNiupVuXcaEObLc3Wrb+nlHXXuHFsNIIPOv8rmZ0d+9433uEBhAXQVAWq6utcbHvCG1eM2vnPzQy8lZyENNxXxraHhb5o9MAsO/+5OWVcGu4ro+ziQqFv8MHuz7WkbOc6PQe1JYuaq9wAHPlOd0K7hXUD/I5fcJJ2urq6KCoq4tJLL2VpaSlDUMogg/+j+MEPfkAkEuEjH/lI/GedHOP1yPO0Rg7Ffzaybzq+O7bssmJ0DnVKO6qRfdNxooOj3kTFh4vYEO0TT22387PNzHb50drkbNvuTdmu/40xdn62Gf9kGEuFlm1PeCm9NNkGomvHUHwBqe6uUsFWNAUfu2vHEPghd5OFmutKqL01OT+LQws6h5r8RglLWz9MtM7S+rz0pD1GUKq8slBQ7xTByJ5pQvNLdL6WvrjT+KlKKi9zpbUZKz4/Z03jb+P2SjbcnvwMVkOfo0GlX9v+jNwtljW1S4fFOcGCTKl5b/aFRJYjopPwPxW2al1auzUAu9eMUqPAPyORU2uFvNx1rrRMeukleWx+KL20eMO9ZVRe5sLkSb8xYWE0wPBB8cUvz8V5bH1UyMv73xhLSe6LYeLYPNM9Cxz8T/EikX29EZVBScWF0pYudR/3sOU+4Xvp/s1wShLihts88e99ZN+0MJ9L0a7psep43PZ9pT1lcUprg21PeKm7uxQQ5odiuynrPu5h/fXFgFDkFSPdFZ+Rg6VEsGxa6PVzeFURyx/xc8zxNu+wg7bONkKhEC6Xi4mJCQYHBzMEpQwy+D8IjUbD/Pw8U1NT6HRCXScUtYH7feRXBCIr48TR7/Xg6xf+bys3UXJu6hrK4e90x3O09dcXU58inwKBHBzLlTbeKeRKGktyu31faY+TNjbdX87WR1PkLQGBwDJxZE5QU3ncS+1N7pTtel8T1DEb76mkPk2eUfp+J2qLStTqDuDwD7qYbJ8TJwsBc72BuILOlk9VSVqrDe2fYG4gvVy2sVhD9ZXFbLyzNG3bTfeXU/IB6ZpX4Zl2IbZSZZnFACq9ErvXlPacGougwPVeIBKOrNmGOB2UGiWR5TCLc2uzmUgHR715Te2yTCr0Tul41N7sXpvN20MVFJ0tbfeHBqqvLF5Tjtb1u1GCMyFJglLj9sq43Vo6Va3Wn/cxdnRaUq2qoMmOIU8n+b6tu7GY2hs9ODaaIQA9r6aYj2ig6XEvGz4uzKEOPNWRsl3Jxbls+4wXY7GGwHSYXZ9rTqlqVXuLm23bvWgsckE96XMtjB1KjkvtLW6qrnCRHbXNffffTqRs59hoxpCnpfRDQo7W8tOTCe18laP8jl/QxmE6OjooKCjgmmuuIRwOZwhKGWTwfxR/93d/RyQS4VOf+lT8Z+0c4fXI87RHjsZ/Nt22ECezlF9UgNGlx1lrSTredNsC+77cBkEwlWjwXlVM7S3ulO12f75VIDCpYdt2L7U3J7cbOzzD7s+3EBwLonaoaXrMi+fi5HXOwXcm4+pG3o+62Prp6pQ2WP1vjkNQIG+s/1gpNTe4JONjKtaTv1VijAvCwN5xTvxSuuYVIyi5znFIjoXTbQv4x4P0vpm+5lV/dxnrrnGjTpMGOTdZ2PTA2mzfUj2D1TAV6FBb0qsmAmTXps/P1oLFuRCEI2nVrdaKyHJkxRb6L4SpRLMmmzdHjYUsg5KwtFAoWz5ZmdZCOf8025ps6GpuLGbdNe64vZgUprvnGT4gTvjPP81G48OVoIbR/dPMdosnVfP9QcaOz9DyrDhByVSsRpejofis1JyFGOrvqWT9x4V67cDbEylJiJVXFtL0mPC9z3YHhM0cKThKjQ9X0nCfYC949D97Um/6UAu1sbrofObgtzpFiVYN91ZRe60bEIiDYkpLngucOKqF/Dw4G+bYKgekYCTIibx3eT3yPB3d7fj9fkpKShgdHaW/vz9DUHoPkVFSeo/hcrlYXl5mfHyc/Px8QqEQEcLs5DcQgW1chE62QtQ59M1W5CZhplV3dykaU1aClVsMPW8Ok10ufDC6fA1VlxektDiaPrmApUgfJzXkNpoZeTd58rPkXxJIJlLIyiKyHGGyU3pnycC+CazRAnZMOeVU7P9aBwaPjvkuH1o7ZNfak9R3/OPEd95vfqgChVrB7hSxADA4dcgUMvQO8Yl7x69WLBrW31YSl/c+FaMHZik6bZFWic45BoVajq3USDfiyYhMJkMml8XVYVJhLeo9MWy8q4rIcoRdR8VVmjwfdOKsszF8cDJOHkuFte56Wwv63xiXVFCKYdsTXsJLEdFnCeA6P4eirQ5sHmNaO7y1xE2hVqBIw7i1VuuQK2WYi6Ulzf3jgrrGwB4JG8JrixjcOyEoFUmoG+jscmRpLPzi1mhPdzFxdIGJo6kLmK7zc+h7dZTdX2lBpxO51+j32PabIao+VCCuFoagZBVeihBMI90+0TKNxa1HrU/xqevAUSGoTo21zuLckJp45nq/A1OhjmM/6OXES4OUn5/HVEtyx1HzMTfGAi27PttC36ujBMYDSd/Uu5E3CKrnWWpZQiaTEYlEuOWWW/jOd74jeR8ZZJDB/x38/Oc/B+Duu+/mG9/4BgD9dNAf6SCbPOpkp8XbHn26O0EhadvjXibaZxMsy0CwY8vfHKDtv4RcwntDMRNtM0m2bRBmyb8s7P5FXH1JkaUgshxhovnUv09EYGoRlVEpqao0sm+aotMcdOyIFv1TKTn54eB3uuLKN65zc+I2dKsRK2Tpi7VsuKGEoQOTAqEiBXR2tTC2SlicxXat26p12KotonZZvb8fwVFjSWszZnEJEsnpbOQUWXKy0hCQ1rqjvuZmN+YiPSwjaVu29dPVyOUyyZ39Q7smGZLYPf6nYi33UH5FAQ6vmZ4/jDCYgkQcQ+VlxcjksrQ7/8Vs/lYjd70FmUKWdlHQ6jYIO9HT2OQ1vzBA5SX54oQiLay7spjjP+xNq8qky1EjV8oEZSMRJaitj1YTnFvk4FOdND+Tekde4fvs9O8dZ/zIHP4ZwZIt1XXF7mthJMBYi7TCwHTfPJrsLLRaOX6/uDrSUmCZxYXUVi6OehNjB2bxT0JoYYmZntSL1XV3ldL6XCf+SZjpXWD0WIoilxa23l/N/IifY9/r4fizPYSmE+/TH/Gzk9+gN+iZHxV2mGm1WgYHBzO2bhlk8P8JLBYLCwsLBAIBnE4nMzMzhFnibV5CFpGxlfejl1ni7Q881YzKLMx/vde7MObr2PPV1iRSQuerg+SsE/5OY4HKK0uS7OIAprvmUWTJ4xZO2euNAuHoFKSb1wJoNHKWFpeZ7pNWO+x7ewxH5arFnKh6ymoc/UEPukKNQM7SQH6dLXlnf2BlZ/WGOzxozFmiNRpNjga5So4uR3yV4+Qb45xEqMlUf7SIll+eTEn2mOsNMD/kp+2lNDZsGsgyqLCWSNe8wssR5Eo5Dq9ZlKwSmF674nf93V7Cy2FJ6yvnVhue85wMH5qk60XxmpeUxemfirFDMynJJKei6THh+qVUHR0bzVR8sBBHtVnSXhXWpraUZVChUEvXvDRODSqdEovLEH9PUiIgfFdjx8Xv1XOJk8nWGabb/ez/qkSMNUI9Tsr6rvi8HPIb7Rz+QRdzvQHmelPPFwrPtNP/5jh7v9SGJkeTmsgU/RY7Xx7Be2Wh9PMKwFJgicCk9EbLydYZcmutKLWpa+YxVaTRIzNozFmQQuHSUW8mu8JE67MnaX9pmPIPOlP2UxWXF5BdaYoTnJYXl5lsTuyPjkb2MJU1QrgjHK953XPPPXH78wwyyOD/Pj7/+c/z+c9/ni996Us8/PDDAPRygt7ICZwUUSPbEm/b/ssBxo5PxxWStnyqksn2edp/maiOPdsdYLpznu4/CON9+aX5zPX7kmzbQFBgio0RYupAah2EQ8tpFeoCM4voAhpJ+62ZDh8Lw346X4/mIiJKTge+fiJup5XflCLvAnpfEepgaruauo97GNyXbGEXgyFXi0ItbYUWI1sZCtXkrLfSJVI/63xlkPxNdkn1KBCIVll6JaZiNbO94gozKq0yrZOOlDLOapRdkkdunY1O7SDD74qTXzY9VIFSYn0WVght7xXWcg8Fp2dTfFYuvX8YiVsUpkLl5cWoNIq0apztLwzQ/oK0erylQo9cJUcmk34G2ZUmwYYuDdp/dZKKy4pSKpnFUHllISd+3p9WlUmfo0WhlqO1qUWVoDY9WMHSwhKHvt2V1BfEkNNgYaZ9mtneIAef7hRXlYp+j1Nd80x3Sc+hprrmMbn0kKVCypsvtLDEUjD1pgBrtUFQNwpCYHKRye7UfUzNDS7afztCcDzIWPMMkx2p221+qALfSIDjP+7j2E97CS8kzhmDkSC7eBmtUcPcoHAMq9VKT08PJtN7Q+7LIBGySCTy3lATM0gJn8+H3W7H708s8NbQiFOWyAZuuK+MLIMqbhkmRjCqu7sUrS29pVTdnaVoHWq6XxuStJSK2azt/GKzpGLLtie8BKcXJS0ktnyqCoVaLlmM2PJoFQqVnIPfbMYvMk/e9EA5Co2CPWvwJAdBhWfondT3WHCGMHD5x4IJnrSp4NhoRJutoe93IoQUERLWnwutHQrfVyA5EHqvdzHVPSd6f7Hrary7kp7fDaW1GbNW61ISQlZj2xNeFudC7Pt38eKDzqXDN+5LG4+6T5SyOBeSJB9p7VB5hYdDz3SJHs9arcNYZKDv1eRF1j8baZ5n9XWu9LZyOsHLXoqIpbWDoVDCUnAV3Bfmkt+QzfHnekRVxWLf2aGnu/ANpl5wi1nPHflxj6i1W3atnspLi5nqlLaya7ivDLU5K20f0fR4tbDgmaYYKdlOB9mleiaOLrDuBhfmYgOH/jP5Pkdr2xgdHWV4WJgMuFwuLrzwQr71rW9JnjuDDDL4v4+/+7u/45/+6Z8SfqZGyxmyixN+ZvJoqfloCSPHp+j81ZBgL9U5n5I8se0JL+FQhN1PStu6roWYq7XJqbu7ioXRgCTBwntDMZZiPYefESFEAJYKLd6rSyQt1vTFWjbcWEJofkmU5GKr1lF1uZvu3w+viVRjX29kvH1OlGiy9dFq5Kr04wFA5VWFSSSxBKQhtPypcF+Qy8ixWVHSk9apofRCJ8ee7ZE8r/eGYhRZ8vQkHi1ozeIEGRCsSVQGZdp4WSq0TLdJByN3kwXX+3LSSkHnn5GN0amVlA8vvTSPzleG3tP4Sz1P17k5zPbNpb3HWI7T9l8nU5ICQVDDSiYVpsaWR6pYnAuJymxrnRrqPu4h5Fti7xdF4qoV8sHQgvh3BlB/TxkaS5YkOUxrg7pPePFPBSVt5wrPduA63cF0z4IouQoEy76Sc52i/USM6ATCzjTfRDCpbxqM9IJ3gba2NpaWllCpVNTW1vLrX/86o5qUQQb/nyMQCOB2uxkZSSS1eGkk/5SaV+0tbvQ5mjgZRYxg5L3ehaUkvaVU1TVF2MqN9LwxklLpJIYNd3jQ2zUceKo5Tm5KhabHvfgngpK2rg33lZNlVLHri82i6i+bHhDaHPiPrpT2dQAbbvegNqt491/TW9SDQHoQi4XNa6DqChcLI4EE1btUMJdqMBYaBLWCVEhBwPqLoIGS9+dK2oiVX5rP3HCA4d3SOeim+8vpfXM0LXHIXKphplP6JrY94SU4E5Ik3GhyNARmA2njse7GYpYXw9KLSBrwfsRF16ujou+Exqkhx2uk7/fiG+T+ZKR5nuWX5dP+y9QkodXY9hmvYK8rtvFRAzaPIYlgkwrOrTZKznHS8vNuUUu2hvvKUZtVHPpeV1yV7VTErOeO/6RL9HnrCjVsvMnDZMccrc+JP5/aW9wY83Uc+Lp0H7HlEaGenY7kv+VTVSiyRNppwFKkZbrdj+cSJ7m1No79WCBsrcbYuk7GJkcYHBSeT2FhIR/+8If5+te/LnnuDDLI4P8+vv/973PrrbcSDq8QafSYaJKdn9BObVdTd2sJY8dn6HxpCFOJhtnBQEquQNNj1YRDYfakyUu2PlZNZCnMni9ItIuqL80N+jj6vR7RZp6LneRusHH8p12i6i/aPDV1t5Yy3Tkvat2ltqtpuLNUGNdFbHcNhWpqrvfQ9+aIpA1pDOYyHYFRnyjJaNODFWTplez812Yp7gUg3GfXDgn7dxES1p8LZ6MV34hPnPSkhurLXHT9pk+SRFV+aT5ZeqWotd3q46lNaoIiVqYAG24rQe/Uph0/05G1QCAMec7L48B3OyTjll1rwlKsp1OCpO86x8HIvrG0ZLI/CRLP07nJgn96UdQGMAbvR11Yygy0/3qAscOp897sWtOaLfYaHihnaX6JwyIiHmoTNNznJTgfYr/EevDWT1cTml+StLeuvakYfb5Osi6OGrY+XE1gPChJTMteZ6LyskLJ7x/SWzHGiU4Iip/+iWBS3zQZGWNx3QQn2k4QCoVQKpWsX7+el19+GYdD2okng78MGSWl/2bodDp8PqHTycnJYWxMmGwe412ORd4ljxLWyRoA4lZsIJAjrB4DhjxdkjXTwac6V1R6dND0YDXjLbNJRJcTz3dTeXVJnKC08Y7UJJD5YT/GfF3859m1+mT1Fh2ElyLMDksvGsz2L6BPY8V19LttFJ9fIBCUdKDTyeP2dzGsJsfU3FTMVNd8SkspiBb7rVmwTEoy1sBbEyi0ijWRW8o/WAQyxElK0RhtfqAC/8wixyQSrcKz7eQ3ZEsq66y/TZjgtr88IEr+aP7RGjxgfaypuFV/Txlam5oD3zguShBbKzZcX4xMkX4BMp2vKghqRYfS7ISvuMSFQi1n7MCo6LWXXZqP2aVL+JZOhdYOGz9eTdtLfaIqRSB8L7ocDa73O8TfBwCf4Ls6sF+8KLrxDoGUM3ZIPFYN95Wx/6sd9Px2hJ7fpi7gxSzWjj7bR2GTTZSgBDC4bxz3WXnMD0vbJ0YuiRCcTb3LNEZom+ycI2ddalWkiqsLWRj0M/DWBOMts4SXU+w00EV35g8LO/Obf9bLjIgs/baHvRCBnUebk4htvoiPY/q3mV2YhSNgMBgwGAx8/etf56abbhK9zwwyyOD/L/zjP/4j//iP/8gzzzzDjTfeCEAQP69HnkeOnCYuRCvTMtvlT9hRU3mpS+h/UuyyOfhUM3KjoBKy/tYStHZ1yt3SI4emWF4U+sHC99nJMqoEm7ZTsBRYZqxZmGjaqnVMpiAPB6cXWc7XihKUAILjfpYCywzuEc9xFnr9TLTO0vc7ocCdSpVossW3ct9aqLu5VHL8rvhwEWUSpK3D3z6ByZN+h0nJRU7sVWYU1yto/pEIycIvkKJKLywQlBckUtGGe8sYa5lNqRoFwr3nN2bj8JpFiST+4YBkfheDFClkNbZtjy7q/IW7y0weLeuu8TA34OOIBDFqZN+0pAJUDFIqSyAQZXJrrdhKjeLEHASCVd9bo5LnrL21BKVGLhBuJJ5f4VY7bLGn3el28BudFJ7tECUoFb7PjuvMHHJqrKIkssKzHegdak78rF/02cTUl/zDASZOzNL3ugSZzi9InU/1Si/O+caCws78FGSt7BoDE8fmBVUk3xKzKXIlrQ3KLivh6NPd9L8xhr3SSPeO5Hex/IoC7JUmdv1LC0O7JgkthFLGK6a8ZcybomvHUHyzTAwTJb0c7NoLgKxFRk5ODlqtlu7u9ApbGWSQwf8f0Gg08Y0j69ato7lZ6MObeZfmyLsU4KFaVg+QILXvPj+X/C3ZjLinkiyhmn/UF1crAdj6aBVjzTNJ7XpePkmW3h0nKK27sZjOX/cmkQxm+xdQaRTxn1ur9MmWaxpBcdwnQiCJYbJzFqvbKEn8OPb9dorOzo+TUTQ5miRiymoyUcXlBcwP+UUXzdbdWIy5WI9KrUjZZrJ5nh6bNFErBu9VJcjkMnGSUvQyN9zhYcm/HLfjSwXHRjOu9+VIEn023yUQsYfeGRElf7T/Kj1JBtamklRzoxuzW8+RH3QmkT7+VKy/sRilRpF2QU0qRnEE0tf21l1ZhNqiYrR5joAIub3wTDsOr5mD35Sos2mg8d5KOnYMSJKGqq4uIrvSxOL8UtzaUAztLw0w1yO+6W7LfVFSTrN4rDbc7uHwD7sY3j0pSkjTODUEhgMc/2EnRWc5RQlKAIPvjqHP1RCcEG/j6w+wvLhMcCa1epKlXCALjTXPohGxyHGfn8viXIjBXZMM7Z0QtbRp3F7JwmiA4z/s5ehPegjPp76upoe8AOz6l2a6XhxOUAYLRAIcN+9kamYSjoFer8dsNvONb3yDa6+9VvQ+M8ggg/+/8LGPfYyPfexjvPHGG1xwwQWEQiEWmOX1yPMoUdHEB1DL1ATHgwkqN96r3CCXpSQP7PpiCwaHoN5YfnkBZreefU+1JZEt+t8Zi6vJODaY0eZkpVQmCs6GmGgTCBRixJPgTIjl4LKkPZV/MkhwJsTQIXFiUXA8yMDecYajZG61I5kwM98fTKhf1d7iFrWAAvBeVUxYgoy17xttZFeY0pKLnJssOOttZBlV4mTmqP1e5WUujny3TZIwU3uLm+muBU7+IfValdoEnvPzJAlbBKHl2fTrjWvNz5oe9rIcXObdL66NeC8GtQlqbypjpmeeYxK51XTbAgfaxNf+Ypg4OitN4lFD4TYHjvUWSWJO3Z2lDOydYHT/tGib8ssL0NvUHPpul+Q74T4vDyKk3QDb/NM+nI1WcYLSOhOVHy5kduN8gkXZajg2mLGU6Gn/1aDo/alNcoLBMMFZGD4wycDb0vmgfyzA3KA0P2Bm0Ifaqk5J1jKVaITvPQjBqUVm+1OsD0ZJdC3P9jFxfJaZunk6dyTX4lznOMjbZGPPF04w3bZA8896UypTFZ3loOgMB8P7J+n6zXDSWv188Qi7e94S/nNc4HBkZ2fH57QZ/PcjQ1L6K2J0VPjITzvtNHbu3AnAEN0MRbqTdvj3vNKH9pqyOEGpcXslU73ztP9cICLF1HJyqkzI5LI4MWC1So5vPBzffVtwRja6HA0bb/AkkUFWK6jE1Zf0p6gv+UhIYMR20aw+1uYHKlAZkxWafOPheLst90SVlyQUWkwuPcYCnShJ6cB/drDxBo+kWlSMoFTzMTfGfG1SAT6GzlcHCC+Ky03GoDIokafxWs2ttaDUKuLEklTo2HESjUWTXo3ozlLU1ixJBqpjo5HiM52ShZuBd8fI3WDD/x6oQY0cmUJrlfa5XXeDi3AYSTWi6utcWIr1HPp2iyRxas/XWyk7P1+yja3ciFIjbWOYuzkXmVKGyWWQJCkd+o8uyq8sECUoea93YS7Ws+uzLaLvZgwDu8clpR5LP5yH2pzFuhtcoopTse/p0A968PX5aEvxTsVU1nZ+sZmRd2dSKrG5L8wlf1M2g/sm6PntiOi3sFrtqHvHSOqdjzqwV5iweYwMvDWRRJSMEx59IFfIUBuEIWe1QpQuX0Pt9W66Xx9k9MAsU13zLIwlTk76Ih20cQiDwcD8vFBkUyqVvPnmm9TX16e8/gwyyCCDG264gRtuuIGOjg68Xi+hUIgwYd5hB0TAy2byZcXx9gPvjqOK9lN5TTYKm+wc+34H/skw/klgUpiIqXQK5IoVid/VJKPOF1cWzwq3OZCrZEkkJf9kOIFYXPURd0qVps4Xh+LH81ych7PeSvfriUpH/skVkrLWBnV3e5nt9yWRbGJqOSaPlprrSvBPBEVJSDVXu9FmqwV7qz+mHnTHmmeY7RUfQ4WYTYNWINOPtc6ktH7r/s0w8iwZnb+Sth8xFxtQZMnJ22gTV3rSgtqSRW6tRZSk5B/wM3Jois7Xpc+nLdCy8SY3o0enE57pqai+pohwOCKpBDXdvcDC6F8uRRSa9jM74GNgp7gSAVqov7WMrlcHJNWItj5SxfxIQFR9C4R3q+/NUWb7xZ+zpUKLyqDE2WCTJCnp7OqEb0YMnS8PshRIbWsWe5cmO+Y48bN++t8QJ5D3/3Gc7AoTR38iTqQparJLyqVrbQjqSVEFspTPOKqe5J8IcvCbnaI5+JZHqlAo5ez8bLPoLv4YsWq6TlBFElPCqrq6FK1dHSc0HfpW4rxutdqWTC6L/381QanyykKM+Vr2faWd9l8MoHdo6Pp94nv+VmQHapOK+Z6Vxc1zzz2XV199NeV1ZZBBBhkAHD9+HBBysB/96EcADNDFQKQLLQZOk30g3rbnjyOYXLo48aj+7jLmBnzxBZEYucJcqkGmWKm9rFbJCUzDkad7AEFNyFysT2kT171jJG5fFldfen04kfATIKHvbfp0NcuhcFIhe/WxNtzuQefQJKkqBaaJq9PEFGEOfE1coSW72oytwihKUjr+s15qr3ZL7vyPEZTKL8snu9LE7n9PttQDaP1lX9paFoDWmkXYKC2876y3ojarMBZrRAlBrS/0YczXSarTgKCKY8zXSio4mEs1lJxXwKHvd4qSxPp3jRAhh9DMXy4HNbR/An2OtJVp+WX5yOUyTvxCXB295OJccmutHPp+jyj5CGD/d9opOStXsk3ueiHmUgpJuTVWlBoFZpdekqTU+txJSi7OFSUoeS5xkrPOwu5/b02rXtX1+hDGAvFY5TfZ0Odq8F7hErW723C7B32uhqM/FFSFUi2OrruxGLNLz4GvNzPd7k+ZL8WsAQf3TNDz6ojoO7Va7UiKOJXfmM3yYpjBXZNJKlcxkhOAXCmL20+vJldpLHJqbirl5DvjjOybYuToJKH5xHx3NDLIEXZiNBqZmxFyNrVazdtvv83GjRtTXlcGGWSQwdlnn83i4iJjY2NUVFQwPT3NEiHe4kWIyKJOLkXx9j1vjKCLEpEsFXpKL8jn2E/7CI4HISgQeQA0ZhVKlTxOMIgTCyCB5Fx8Ti5ZeiV9fxxLJCMESSDIeK/1COpLp/THA29PxO268ptsuN/vpOd3p+Rnq4+lhqaHq5ntW+D4KcTfuK2bQ03DHaX4hgMCYSQFyi7Jw5ivi9uKpkL/znFp6+CgQIJBDVvuq2SseSalWtLwvmmyrCpRi7kYDPk6VDol2etS29bF2zmFdmIkpeAsnHx7jJO7pM+nNsnZ8PFyxltTX3cMnoudyOUyOiTqYmNHp/BPSVuprgXBIIy3zjBySMJNBmHjaO+bI5JqRJserMA3HJBU3yEI7S8OEJwVZxWpHWq0djW5GyySJCVTgQ6VPj3VouXnvchV4nl448OVTHUJ9oxSVnwTx2eZqp2n5Zfi91dyrhOFWiFONlNDw71VBGcFQltK60I1bH2omsBYkEPf7RJVYmq4txyVXsnuJ1voe20s5fseU0Wa6pin5dk+UcJ99WUurOUGHBvMjB2eSfrWY6TH8HIEmUKOpULPdNtCAkHJdZ6D7FITB7/Vyck/jGF26Rh4O/H+9kbeIGIMsXByIW6ne8UVV/D888+njlcG/21IPzPN4D3HO++8QyQS4ZFHHon/LLbDv6vkAMVXWPCPC96ljdsrydliQqlVYCs1svmBCnR24bHV31NKTq2Vnf/UzNDeKRq3V1L9ETdNj1dTdmk+mx+qiB8/p9aCfzbIof/oQmuHps9U0/BQOSBMmBu3VwJw4jdDLC8v46i1AIKKUeP2Slzn5wDgOj+Hxu2VLC6EWBgLsP62EjZ+whM/T+P2SjwfdAKwtLREOBxGqxN+V3Ozm7q7S+NtNz9UQWA6QGBqkbz1Vhq3V6JzCY3X3eCi/p4yAA79oIdQYImKqwspOCMbx0YjjdsrMZcLbasvc8W92OvuLKXpM9VUXyskYNZqHY3bK3FsNAKgy1EjU8gEmy+EHffe6wUJcoNHR/H7nMiz5Ojscpoeq2bzgysxrL+nlJqPuYVr+lYrkXCEvNMEdZnSD+fFYxi7jsX5JQ5+sxnfuE+I4fsFWTj3hSvxnji6gN1rZsMdnvg1NW6vxH1hrhDv9zto3F6JPEuGTA7rbyuh7s6VGDZur6T0w3kA5G+zk2VSUXyRXYj3x9zU35MYb1OhgSPf6Sa3xpwU74Z7y1gNRZTsE4u3tToa72uLaLivjK6Xhjn+TB8N95VRfZ0QQ3N5YrzNbgNWj2FVDMtYd4PQVucS2mpzspApZBScnvjO1t1dSs3NQry1JdD4CUGKD8DzQWdCvDfe4WH9bSW8+68nOPSDVtF4A5gKdfhGA3HSTeP2SkouFuJdeLadrY9X4b1RuEaNUUXdJxJjGIu3OluFTC7DVCkoh9XcVJwQ7y2PVtH0mWrQQWAqiK3MiMEjxNB7vYuG+8ri12gp1jM3vMDxZ/rIrtXTuL2S7Fo9AJUfLaThvjJ6/zjM4myI6kvz4+9sLN459YJaRYQIkUgk/s3V31NKzU3CAry9TniOweAi4aUIhjx1Yrw/UUr9/aXkbbWitUN4OcLCmFBsWd1H5NSbaPpMNXX3eMAH3b8fIhwKJ/URlR8tpPLSYhoeLmfjHR52/nMz+7/WEe8jdC4dBWdkU3NtMQq1HGdDNjU3u9FYVHFSoeoDPnpLD9PGIQDkcjmbNm0iEokQCoUyBKUMMshgTSgrK2NxcRGfz4fNZov/vJm9vKV6EcV5frQ26H11lCy9ig23e8hZb0GlV7LuxlI8F+ehLdCSu8nC5gcraP55P7v+pQXvdS4aP1lJ1UfclFzkpOHeMkovFcYI+3ojy8FlBvYKE7Pa24pp+kw1tuhYWnd3KZVXFgIw3TdHOBLGVq0j/4xs1t/ujudAIPTPhkI1y4thZgf9bH6wgqKzo/nHJXlsurc82lJOJBJBqRWIF1qnhs0PVpC7xQIIqkUVlxSyOB2i+/VBNtzuYV10jEArKOLkn5HNse/3MNkxQ16DEKv8M7KpvbUkPiYDWFx61JYstDaBuN74SKWgDIOQf2y4TcgNtVo5MoUMY4Fw33lNNjY/WIHWJuRt3uuLMeQKf+i9oZitn66i9BIhho56k9C2QEvni0NMtc/h3Lii6tdwbxlll+cDggLN5jsrOPFiD3u/3EblVYUJOWfd3aVUXiXEe+LENJvvrMCxWchPyi7PT4z3XaW4zxAILNpcNZsfrMARHWdLL8lj0/3l8bbWciO2CiHn0drkbH6wgrwmIW7uC3KF9+VHvfS+OsqG2zzxPDIW78L3CTmbLCuRLFNzs5vaW0vi/9/8YAU5m3I4+nQ3OodOyE+j8V53YzEbbhfi7X5fLhprFq6zhRjmbrEkxXvjnR7kSjkKtZxN95YnxVtfrAWtsLvesc7MbJeQC9TfU0b5FYKtl61aF8+RDz7VSmByMTHen1iJt8mjJbwYpv0lgeRTemleQs658a5Smh6rRmuD2f4AnvPyyd1kAQRy3up4yxQyzMW6aLxX3lkQ8r2mz1Sz7kbhnY5EItRcfUq83+8gd4uFwrMdLPmXOfi91ni818firV2Jt38yyMzQQjSGwq+9N6zEG7+Qe8lUwvOL9RFapwa04L3RxcY7S/GNB/FPB5P6iM0PVlBzm3C9eqeG5eVluncIJKbVfUT9PaVsfbwKW7WOg9/sZG54geKznAnxrrq6iG2Pe/FeWcLmByuY7p5j5z83k11pEfoIrRCzjXd6sJYZyDKq4n3E0MEJ8IPjLD0LWwbYo3+FIH5mZ2cpKyvjgQceIBKJZAhKGWSQwZrxzDPPEIlEeOqpp+K77f3M83rkedoL95L3QUGJqO3XQzTcW46j3ozGkoW1wkj93WVoLIAGam92k9/oYNdnmxn4o9DWe42Hpk9XU3S2nYZ7V8aI/E12Fsb8cYLS1serqH9AGJvyT88W2mqg5+UBloPL2MqFsb3qqkIa7i3HdY4wN8/dZKXh3nL8U0EWRgNUXVNE7W1ugRSCQKZyny/UD8JLyyCLCBvPgMorClh/28r4XXdXKYFZ4Thap56Ge8sxlgttyy/LF+pARMfS2UXKL80nd5MVc7WGhnvLsVYJNQHPeU4UWqE+U/3RIpoer6bySmFM1jiFttnrhXzEVKRLWPxYf6ubqquF+pjGIsdzXj5ypRyNRSDRro5h7U1uqj8qtN39760sB8PkR/OawjMT473uxmLCSxEOfK2Vud4ADfeWU3imkNfkN9ni8Z7rDWB266m9aSWGDfeWU3yeUD9w1JtpuLcchVaBXCmn6poi1t/qjp+n/q4ySj4gxDtvix2dQ43nAmc83hs+vhLvjXeWYqsyc/yHvfF4m0uj8b50Jd4xKHVCTI3Fp8T7Eid1d5Vy8o1xWp87yfrbSqi8IjHejo1mAOzVZrK95pUY3uKm6ppYvIV7NRfpkCnk5HiNCTGsudGNN1pL0zih4ePlBKPklfg7G4X3ehc1N7rZ/7V2Dny9lYaPl1N0thBv51Yh3hqL0NZaZmCu30f3y0LNq/7usoR4b3m0Ml7zUutVyfGO1sd0djVylRxbqZB0VlxesJIDAZseLmfbZ7yggdDcIla3EUu50Lb0Q3lsuMODc6vw/jhqLcycnKf5x33oCoUY2rxCLl5ycS71d5XR87tBAuOLlJzrpCqaR2pyNPE+AiAcCRMhQmw5o/bmlXfWWKaJx2wpsIzGpkqK98ZPrFxTOBJmbsSfGG+NQDxqeryaDXcK71b7SwMs+ZeT+gj3RTl4rymh4b4yam9xs/vJVg5+szPeR2icGhwbzay7oZQsk4qcWjOVVxRgyNVy8g1hUVzzgUV6yw5zBGEjcyQSoaGhAb/fTyAQyBCUMsgggzXB4XAwNTVFJBKhuro6+tMIx9jDm4r/grNmUTvUDL87hUIlp+bGYnI3CqTXqsvzcZ3nQO1QY6nQU3dnKd2vDbH78614LnZSf38pNdd7KL4gh9pb3HguEsZgU7GaZf8yfTtHIAjll+fR9JlqLBXCWFp7UzGlHxTmvmPHp1heDmOtNpC9zkT19UVsvG1lPKm5QSAlLPqWmOiYpu7OUvJOswBC/rExOvao1RCJgCI6fqMW1uCc0fpBfpMN7xWFzA/56fnjCFXXFFF5dWH8PHV3lpLfZKPjxSEGD0zgqDaDWlA7qryyEO9HV2yK7VUmVFqFQEJ6tIrND1egNgljT/llBayLrs2o1aBQKzBF19is1QZBbCBKBiu7JA9zvvC70g8K64fFFwhjsrlMR92dpZiK1Qy+M8nwwUmyq1cUyWtvceO5WIi3oVBN3Z2ltO/o4cDXOyi+IIcNq3LO2puKKYvWdkaPz1J3cynZG4Vx1nWOIx5DgHXXu3Cdm4c8S47amkXdnaU4NgjjbMHp2Qlrj86NNhzrraLxrruzlI4Xhxh4e4LKqwrjOVA83qcJY65CqwCZcAyAiisKWHfdSrw33u6hcKudEz/rR6FWCDG0R5W9Ls2nJrqemNNgwZCvpfjs3IR4a/PU8RjX3uxGoZKh0MqpvcWNO5pHmko08XijBs9FTpwN1jgBr/bm5HhrrUr2f7WZmZMLCfGuubGY8kuFeqTariYcCtP+okBYLzorOd5bHqlCbZITGPXhPjOXnIZoDE+zrcRbLazHmkv0ifFuFOLvbLQK697RuIWXw1RfthLDujtLKTg9G8cGMzkNFkK+JY7+VCAClV+eHO+iJgezJxeY7J5NeGfLL82nJlpXIyg8tohS2LgQ6yMMhdF4XybEe3bAh388kNRH1N1ZGl+nNxZpWV4M0/W6kJ+u7iPWfayYpsersVYbaHm2j/ETsxRszl6J9w0uyi8rYMunKvFe56HuzlL8k4vs/lwLhjztSh9hkrPuOhfOjTY0NjWYhLiMN88QnAVzgxpf0yB7ja8xwwSzc7OUlJTw6KOPEolEMgSl/yFklJT+B/Hkk0/y5JNPcuDAAbZs2cLS0hJdXV309vayHFlms6KJdVo3FreJnf/UTOP2SlRGJbW3VsTlZbOMgpKNwZmFUqtgcSHE7IAfS7EelV4pWEh9twOtTU0kLHQmCpMOmUwmDLSAtcQo2A4Avj4fcpkcfdTmylxsIBKJkO0x0scothIDSq2Cg988gX98RW1l2xNedv5TM0qtIk5KCS2E0VrlZFl1VH0kD61DDas2Yqn0SiLhCPv+vZ3q61wotQo23uRm5xebMRbqkStl8WvK0quwFMmxV5iILEeERQqXnpl2H6YCXZykJM+SIZPJMBUKnbnZLdybqdjA2KE5iIkk+SBvqxW1JQtllOVqzFOj1CqweIyYS4zIFLK4ogKAxqomK7qTTJunRalVUHS6A9cZuSz5luIxBNDahXj7xyH/LGv0uAb6fjeG1WNIaKuzq5HJZWy5p4o9X2iNx7CHEaxlwvUf+0kvvsEATY9VJ+z6VmoVWIqFe132RSAb5k8Kk2xDnjYew1i8LW49dXeXIlfJUGoVmIvU+Pp8GAp0KE5h8cqilxiLodltZKrFh6lQj0ItZ/NDFfTvHENtzkKpEeJkjr4fFo+JsUNzLPmXE+5VY82KKwoZnSqUWgVzXX4OfLlDUApaxTjWWtVoTBFy6k2UXSwklNYyQbEnKYYOTbRQITxbpVaBrcwoxDt6TZ4PO8mtSbYsU2oVWEuMdDOCrdSIXC7HXCTE1ODUJsRbpVeSXWGikyEWJ0NoTWo0+ixmCWDI1yXEOxZPnUWDpdwUfVY65rt8GAt0KLLkFG5zkF1lQm3OQqEW7sdcHH1nXQbcZwsKSyCop40emGXbE16U2ug7W6hDqVVQdnEhoweaydKqkMlkcbUp4Z3NYsMdHvQ5QnHOVmBk9+da2HR/eWK8bWqQgftsJ0dHgyhUcsKLQkwT+ojpJWQyGRqLkIwMHZyi5Jw8sj1GlB+U41hvRqFQ0PdaPwZHGVlGFTLtioqUUqsgZ4MFZ52NuSEfSq2C47/sYeaYj6ZPVxOWhWl37aW3txd+K+wey83NpaGhgR07diQ9vwwyyCCDtUKr1TIxIezSuuiii/jtb3/LYmiRV17dgUwmQxaRszn3EVRqpWA3pRWsuqxlepz1VpaCyyjVCgz5WfiHAxgLhbHTPxmk+zfD5D3hxWFSEppfRmVQoDIohbEZ0OcIuZd/SkhEtDZ1XPlvYSiIxWXE5DKS12ATyNSrr9umZmlxmT2fbyWvyYbKoKTo9DyMBSZ02VlkmYQ+1j8ZRoYMtVHon+tu84AMsstMjOyZxlKiJ8ukitu0eq/UgFyw82h7aQiVQYmt1MjgWxNozGpUBmVcoS+yvCqB0wqKklaPgYn2OZCBMkuBVivH7w8L+Ud07PRPRhOvaA6aW29GZVCitqvxT/oxFmhRKIXx0uLSgxysbiGPtJWaUBmUmPLU+Af8mIr1KFQCifzk22OoLVlYo39rLjaiMijRWvWAD1uZMWH81trUqKJjp8kltC3/gIvgRDfWYkNCvqfNVgtKoP/cTO4mC6UX5mMrNTF2YBarxxCPNwARCIeEe1PbhZhZS40M7ZrEWiYcN6/JRkFjNlkGFeFoHLRmjdC23Ej/H8dX8oeoBZgxL3EnusqgJHeDFYvLwPJyWLhXm2DbZ8zXxVWKel4ZIb8xG0X0eNllQgx1+Tr8k/NCvFXyuG3Jtie88bzd7Bau15SvpeaaYmGuseqxa6xZ8fmHuUQ4rqPWTPsvhjG5hN18CfHWKdnySBWLC4uoDErMHgPjR+awlRgT4q2LFp6cW53MD/viMRzZN43VI7yzjnoh/oRBrhC+G5VFUHGylhgYfGsCq9uATCaL5ysGp5ZIJBrv6Dtb1GRHJpOxMBQQrsEvvJ/GPC0ymQytTU7d3VXR98/Iwac6WXdjsaCgatTCpB9ToZDveW8opvmZ3mjfIdyLtVS4N0N+FnW3eQQCE7KEeNuUcjoZwuwR4q0yKHHUmzC79Cjkivg3s7qPUBlUyOVyTC4jky0+NEa1kMNpoeG2MtTmLFQGJRPts6gMCkwFesxuQ8I7u227l9DCEiqdkuVQmJ2faya7RriGYO4Mf1T+mqU3hQ0mDoeD4GKQ48ePU1aWuIkhgwwyyOBPwSc+8Qk+8YlPMDw8TFlZGQsLC/Se7OUngz9kObLMemUD9RYPthIDOz/bzMY7S9E51NTcVE6WSUVkGcJLQr8oN2hQW1QEZxaZPenDWmpEbVFRd1cpB7/XiSFfs3JijbDBJUsnjNm2MqGtRiMnMB1GJpdhLNCSvd6IrVJYDLKWGen7/RjWMgNqi4qjPzzJXG+ALZ+sRKFR0PSwl12fbUZjy8JWaqSHEQJTIYwFMvQ5KkrOdmAtMxJZJcytzVYjn5Wz/6vtlHwgF7VFRe01Hg58rRWL2xAfOwPTYXQ2DSq1EkethfBSGLlSjqlIsKWzlhhRR/MPpVYhbJaK1oGM+WrUFhUWt4GJI3NElqMnD0D2eiN6pw7NovBDjUNom11uQpetRpElT7CuMuRrCUdzPo1JiHfBNjuFpznwTwZRW1ZyIGO+Nn7txmKhrbXUQP+b41hKhRhqTBoCgQCmomgN6Z4K9v5bm3C9HgO9jJJdbkJtUdH5cj/T7X4aP1mJImtVDcmehVUu1GtC88J9zEVrXqYSPUp1Yk6hyJJTe5MGuVaO2qLCWGhgpjOApcSQtMM9lj8Zi/TxGE61LmB1G1GbVdTfXcbAngn0udq4FZg+RyW0LdEzdmiG4FQIjX1FYdzg1BEOCdepMgtxmWwPcOhbzWy43ZMYwwIhVzGXalh3rbC4YvMYGXx7guzo+x1TTDIV6ZFFH1VgOhyNt5GTb4xji8bbudWBc2M2kQjIV6mPaWxZWEuN9L4m1HQVKgXmQiH/M7n08VpULN52nZnuHSP4xoOYCvVkGYUE1ezWx/NpIP596ewaTEXCNZiKDEy3+7GWCIRoz3lOcjdY0Ns1hPwCActUqBNiWGqgYKs9vplhpjPAgW920PS4F411OXpsJWqLivKLChg7MINan4VMJiMwLXxohjwd4aUwVVcXxTcO2EoNvPuvJ1h/W0lCvA35GuQqOe6zchg+NIlKoySwtBiPe7yPmIkgk8vQZwvv+NihGcovKcBaZiS8HKFgSzYKtYKJ47OYiwxozCqyDCvvgMaWhbPBSv6WbMbbZlBbVJzYcZKJA3M0bq9EpoKu4gN09XTBbyErK4vc3FzOOOMMfv7zn5NBBhlk8JcgZlH0wAMP8JWvfIWl5SVef+NV5HI58oiS9fn3oTNrBbcOtVDzkivkFG5xsLgQIkuvwuDUMt8fxOoxkqVXMjfgo/eVUZoe86LL1RCcDQmbpO1qaBHGUovHiEwmIzgn9PX6Ah1Z0bFzttdP7nob5mI9Dq9ZGI9X1RoMhXqWgsvs+1Ib5jIdWruaknPyMRcZUekU6KJrGsFZIAya6Hro1oeqkStlmD0GhvdNYyszoLWr4/PvyksLUagVgrXbj3vQ2tVYSw0M7ppEY8pCa1ez7qPFmAv1LC+Gka0qxWntamwVRsZPzCNXyFGo5KitKoKzQcwlepTRsTNuzRbNv/IabGjtagw5guWcudQQHzvt1SYUGkGIopdRTIV6oW2+ntneaLyNKrZ8spL+XeMYnFqy9CpgGEO+EJdYzcu5wZqQL+nzdYLFFkMYctRoHWoqL3FxfL4Hm8cYjyGAsVDP8uIyuz/XgqlYTc0NpVg8BsYOz2CrMArPNYrwUjieG6rVcrR2NZYyI8P7prF6hHhnbzRR1GhPGHPjMfQYGHxnMl7bUJuEuFjchgRSvS5Hg1OnwFykY3F+Ca1djcaiIDgeXW+M/v3o/mnKLsxHHn1YJpcuGm8N/qEgllIh39sddQ7Z9rgXlVZJDyMYC6LxLtRT/iGXcL2r8nZDnpYsQzTeTi1ahxr7OhMdbQtkl5rQZq/ExVCgQ5O9TMMD5SzOhYS4lOiZOD6LrcyQGG+XHrlChrPJzuiRGaGtW8/o/mmyy4R4Z68zMXF8lshSGEU0P1WrozEsNTL87hS2UuEbU2miNVS3PrHuaVfjel8OMrmM8bYZ4XqjYmCWEoOwVhlVI5MpZETCEQ5/t5vSD+ahtavR2VXCO1tiIMugpPoawXJNJpchj5LDTcXReDu11NzgEdaPw3A0qubf9Jg3Pr8xFOrROtTCs91kwVZqRKGSC8ptJPYRGnMWMrkMc7GeqZZ5dJYsIYZqqL3OjcGpRRNYZvjwFGqTCnulGVupgYmjs1hLhXhve9xLcDaESqckvBRm1780x5WwAgXTvH3kJRYPLBIOh7Hb7RiNRg4ePEhp6QopL4P/GcgiseptBn8TcLvdwuL8KsiQ08QH0MmEiVvJxblY3AbByk0HW++vpvt3g0nWTpsfEkgfcSs1HSltxRo/WSn4rP9Tss+i54NOul4SpNAat1cyN+RPsu4qv7IArSWLI9/pRpevwV5tTLLIKr+8AFuFkT1PCjuWtXaSbLsqri7EUqRPktNejeprixg9OsnE0QV0djm+cXFrtoqrCwlMLcZVWRKgE+wZwksRUQu1dMcH2HR/OVlGlaRHfeP2SpRaBYee7sI3mFqPueG+MmaH/HE7PzFUX+eStE5bC7Y9EbXqW+VJnKrN4lyIfSJ+pXlbrZScl8d09zzNP/rzr6f0w3mMHJ1hvktcnjFmB3b02T5R27wtj0RlmiVsA2tvcWMs0HHwm82SlnExRatUx3Gdn0PhFjsLowEOn2KbGEP9PWUc+Lq4L+7q92r9x0s48uNu0Wt2XyjIgu/5emtSm9g3VB2VRX/3VAlrHZScnUv3jhF0Lh01VxXx7jdOJBzH4NFRc3UxJ37Vy1SLD9f5OfS9PZp0rk33C0Vi0fhG+5Z4X5KiXcN9ZSzOL3H0P3vIO81KfkM2+7/bEW93KLKTcQbRaIRCJoBMJuNHP/oR1157rWg8M8gggwz+EvzmN7/hkksuIRxOHO/zKGadbLPwHy3U3VLKybdGGT8yx/pbS5CrZEk2SzG7tcXZkGD7FCWcnAqtU0Pdxz34xoIc+lZn0jGyawSbNft6I54P5HP0h734V9s+aGHznRUc+4FgRee+IJeeP44knksLjXdXMnFils4Xh9DaBPuuxJNB4z2VnHx7TNJCreZqd9wWTGuTrxCPUmDjnaVJ97T6dzqHms7fDqa2BhOJV0ITp4a62zxMdczR8mxq26wY0SS0sCRqmWXyaKm8rIhj3+uQvB9LhRaz20hvqlxyjai52Y2pUMexH3fHVYlOxeYHK1AZlClz8Ri2PFKVQDD6c1F5VaGkPR0IdmA6u1pUfjlmGxicXmT/10RyHi1se8iLbyKQ9K0kNZV4r5oeEwooYrFxX5CLTCGjO5U09SnHd9SbMLn0kvaCjdsrGW+ZTbJpXP0NbXmkipFDU/S8kmi95zo3h7EDo/gnYcNtHmYHfUnX5b3Ohc6mZl9Ust51bk6yPWGUIBmzmku+IcC/0uf4J4Nxi+8YcrdYKD4zl3e/IOSHG+8sZfzEbNwmzx/xs4uXQS6ocMpkMsLhMF6vN27XlEEGGWTw34HTTjuNnTt3JvxMgYomLkAjEwr6+adnY68ycSRqKdC4vZLu3w8zdiCx5hXbjBO3UhOxwGq4V7Bc2/lvzUm/LzrbHlc1qb+rDN9EgNZTxsni83Iw5es4+oMeNBawb0i2B3Gd48BZb4vXszQWkizO3OfnYveaROssIKj4zPQuMHFkDo1FHidjpIL7/FzCS+EkC6oYtn3Gy3JIvPaT7vggqHnrc7Ts+lJy7GKov6sMjT0rbtOVChtu9+AbTW3htRrll+XHrfL+XGx73MtScFmytrjtCS/BmRD7v5r6WcSIQ9Nd86L2ZGuB6xwHU51zonGBqB3Yx0o58cuTou1iNZkDX2sVfWaVVxSQXWXmwHe6CIymsbsT+VYcG82UX1LA/JA//v2divW3lYj+LnY/sWv0Xuei+Rd9ou+Oc6uNom129n6jLalN7BsquTgXe4WZvd88pY0GXNsc9P1+DI1FzrobStn/nfaENpocDbU3uOj87SCTzfPkN9mYbJlM+jbX31aCIU/Lgf8QiV00XvV3l6GxZbHzX5O/h/W3ulkORTj+w15sXgNFZ+Rw+Add8XYnIoc4SUdCzUupVPLjH/+Yq666SjSeGWSQQQZ/Cfbu3cuZZ56J359YiyiijErZRuE/aqi91s3gvkkmjs5ScUUBarOKo//Zk3iwKKkpML3Igac6BFWcFE5ZahM03OdlbtCX8hjODVaG353CVKym4rJijj/Xi38omNCm7uZSmn/RT3AsSP5pNgb3TSadq/7uMqZ75unaMYzatIowtOo4DbeXM7RvQtxCTQ2VH16pkahNcoKz4rlRzY3FHPthb8rfVV8jKEJ1vTKU2qorxnERdxdDbYK6u6uZbJulTcxKVg3bPhnNY76WOo9RO9TUXONasfMTgTZPTXaFUdT2bi0ouySPnA1WWn7Rx1RLapvZDbeVoHdqJetZDfeVozaqhE2jfwFKP5hH50viNR8Q7MDMRfrk9zMKtV1Nw52l+CeConUxgK2PVOEbD3LkafG8CKTfq00PVZClUwq5RYpH5Wy0kmVWSloGxo5vKtFgr7aktm6Lov7uMiY6ZuMWiSvHWPmGGh4oZ+zIdNIcw7nJwlSPn+B4kMqrCvFPBZOuy3OxE3ORnoPR2nDB6dlxW8fVaHrMS3B2MfU6aqxvib7rvtEAh76dWFe0VhsovSCffd9sg6CgWDXVPc/gO8K3HowEeZfXCMkWQSaoVUYiEbZs2cLu3btF45PBXx8ZktLfKB599FE+//nPJ/08h0LWy7bG/+/5oBNnnY2+t0fpf2Oc3EZzAlkpRogwl+tYd42buYHk5KD0w3lYivXs/2oH6GDTx8tp/nFnEkFn2xNelvzSE/0YSUGKkFN9nQurx0DvH0YYeCu5gwJBhk3rUHPom60piUJaO9Td5ZVcgNr2hBciiA5+ldcUMtk6IygsSWDrpwWZTDEy01pgrdYx1SJOxFkLyq8sIKfawmTnnChRqeZjbkxFOkmyzlqQjqS0Fmx5pAq5Usauz4rHbdsTXiLhiGSbtSK7Vs/E0YX0DVOg9MN55K630v3aEEO7pX1vN9zhESUorbvBhdltYOTIFJ3/lZwMxVShpEhODfcJO+KlFipjilpSid3WTwu7CaTehVi/MNu3wLEfJCbYldcI6lUnnu2n4Ixs8hps7Pt2e9KxEvqFU4iQeadZGXpHiOe2z3hZXgrHiYoAvoiPvfLXsOfaGRoS4qXRaKiurubtt99Gp9ORQQYZZPDXgN/vx+12MzqaOEmTo6CJD6CVrSjbbHmkCrlCxq7ozpzcTZYV0k2smT9KUtYokvtqLWy6vZzet0YYOzBL1dVFhHxLdJ7i8R4b0w9+pyuRpHTKsbZtT5+fbXs82geLEZS1AnnbNy5OKNl4pwedQyNKtim/ogCH18zo8Wk6XkixuKSFmmvcHIvusBFD/hnZuM/KpX/XeDJ5Y43IrjEwcSx1ceRPwbbHvSATzyVBGJOXAsui+ehasBaSUjrEyG8TJ2ZFSUjrbizG4jZwcufYnx3bGGzVOib/gtx266PVhMPhOIlGDI56E6YCfdL3EcO2z0TzfZFCVnzTxr81pyYNFmipu7mEmb4FjosUG13n5lDYZGfk0JTodcSIW3GSogjE+gWtU0P1RwrjBZr6e8qYaJtNIshtuM2DPk8T7xcSCF5asJcbGT8yR8lFTvIabPS9OUr/H1cKjkcje1AWhJmamsLnE56f2+3myiuv5Atf+ILodWeQQQYZvNf4xje+wb333puCKO5mnWxT/P/5TTbc5zrpf2eMvt+PYfMamOyajy/8xwgRmhwN9Xd4mOvzcfQHPQnHLDrbTnalOU6k3nhnKa0vDCSREZoe97LkEyGIRhEjKUgRcko+kEve5mz6/jgquuhT/dEirB4jB57uIpAqz9MIOd7inPi40vRpL8hhl8gYWPKBXGYHfUwcka55bX64ArlCzp4viG9kSwdLuZbp9jRs8zQoPNNO8Zm5TLTN0ipCRi+/LB/HOgsHvr0GIo4E0pGU1oJN95ej1CrY/aR43Joe90IYdn3uL1twA7BWCcpafw4Kz7TjOiOHrteHGd4tslAbhfd6F83PpyYWeS5x4txoY/jQJF0vJi+AGYs11N7oYX7Qx5Gne1Ief/1tJehztez6ojjxrfGTlShUCnb9i3jc4vlzCsJQDLF+IRXZrOQDuah0StpeGCB7vZHiM3I58HRH0rG2Pe4lFOsXYsII0TaOjWbGDgk1+K2PVhFejiRsIAxEAuziFXLzHQwOCvMjtVpNbW0tL774Ik6nkwwyyCCDvxY2bNjAkSNHEn6mJItGzkInW7EZa3igHJVGye4nhZpXdq2JiaOrGEBRAkHdJ0rRWNTJfbUaNtxQwuDeScYOz8TttnpeTtzkU35pPo4aC0e+38l8vwiRJkpSWFxYYp9Efrb1kWgfLFEX2/rpahZG/KLElKprirCVGWn+WS/TbcnjbeGZdlzvy2H00BQdInWBqmuKRHOYGLJrTVR+qFBYz/0zyUGmEk3cpuwvwZZPVSJXSo+3Wz5ZyVIw/BflTGshKaVFlCQ31jxD+y9TE7g8FzvJa8jm5K5RSVLPWmAqVjPbK8EoS4NND1aADPalqRWay3RYy4xJ30cMWx+pBrn42nTdnaVos9Xs/1pzMlEPgcBUd3clsz0LNP809ZqyY4NAUh8+MClKcIoRtwJTUZKiCOruKkVtyUq6XrVJTuWVxRz5UTcEBUGJqc75pG+g8spCsitNHHy6E/9QMIngZa02MNUyj3OTBc8H8gWOwSoSVEfkGKH8OaZnpllYEL5jl8vFDTfcwD//8z+LXncG/3PI2L39jSJmBefz+SgoKGB6ehqAUfp5PfI8IKOOM+El4kpHAKUXFOA5Lz9O+ogRfEILYZYCy/TvEgrd628rYSmwTPOP+hLIFJUfKiTLpCJ3i4PuHYkd4+qFk8ZPVqJUJxfY333qBNWXFgkEJZ2w0//4DzsSiEbjx6cwFejiBCXHRmMSUSgwu4jamiWqZOQfh9DcEiNHxQklh57uQqUXpOhy6k2MHkjspU88Kyzg6PI1bLzFQ/+74ylVl5Z8S6Tj8rkvzCV/Uzb9O8eSVKQAplp86Oxyqj/qEd1xnl2rp/LDxQzun6Dnt8mDUvvPB+ByaH9BXG1p9uQChjwt5gIdM+1/GSnqL0VoIZQgO5kKJ37VS5YpS/T3TY9XE5ha5OA3UjOWyy7NR6aS0f7zAVGCUtPj1YRDEcmC22zvPDk1FmYGUyceTZ+uZmEswJHvdqckF8XIgcef6SNvq1WU6DR6YBb3+5cZ3COeJPkmFlHqlEmEH51dDllZ+AYDLIgU46qvc0EkQstPTtL1ygAauyaJVBQjAO78YjMz7T5RElN2uSluETnw1kT8e82u1VN6QWE86V+cCzETU7hadZzyywvIqbFgLNTT9lx/Ql8xvb6PqbkJOrs6IQzz8/OUl5dzyy238Oijj4rGJoMMMsjgvwtarZaREWHsffLJJ3nssceIRCKEWeYddkAErOTQIHtfAtHHe50Li8eA2pIlkD5Wrc1Mdc9jcEYr2VH1oxP/dZLZLn/CYpOtTLAmOJX8cOz7PasUUwR1oJneU4gUfhjYM85Mj5BHVV9TxFIoTPspO64WRgJxiwV9sZbwnD9JWWk5FGZuQHxxaeDdcdxnOkXVgNp/McBs70KcsBW36Fp1rTGC0obbPWisWSlJU/MDPiLLEWb7pBfUtjxShUwmixfOViNGUKq8qpDA9KKoElLdXaWozVkpjwHQ/fthFkakF9yW/MsEZ0OSbf4a0FrlLC+Gme4SJ2cd/2EvpZfkiRKUPBfn4dxo5dhPxVWf6j5RSuuznaIEJfcFueQ3ZtPzhxEGRTYjACz5l1gKps7z3RcIefXBbzYzdmA28T0C0EJ2qUBEa/1FD/4R8Zx37PgM1jKDqEqXf8DPcihMYHYx6Xcxslvf66M4N1qZODGdeBlODeuuLmLfV9qZ7fILBLEXkwli2z4T3Vjx5TbefepEymvJ32pFY82i5CIn3b8ZTthN5r2+GIDmH/UyeED4DlkUrne1AtW2hwRS3fiRZrp/MxxXcZqMTEL9NK2trfh8PmSDMlwuFzKZjObmZrTaRHvBDDLIIIO/BmJWcIFAgJqaGjo7hTn/ED0MRXqQI6eec2AXCbvfKy9zQTjCrmjhO64qs7hIcCbEwF6h0F11TRFEoPW5k5x8YzyuluQ+PxedQ03eZjPdOxLn1avJPg33Cso1pxKADjzdQfkH8uMEpfq7y2j+eX8CYWayfQZ7tTledE9FLgnMLrK0uJyaoAQQgIWxAJNtKVYbojj4zWY0Du3KOXoWEggW3dHFDo0F6u6qZmDPeErVpeBMKG5bIgbnVhuec51CzSvFMabb/WgsUHmVh8PfTk14NxZrqLnWw9D+CXpeTa559b85jkqriF93Kkx3L2AtM6Ixywj8ZXzrvxiBqRDqNNt+j/2oC51DfJzd8qkqAlNBDn8n9Q78orPtaCxZtP9yUJSgtOWRKiJpFmbn+ucJL9lZGEqdMzVur8Q/EeTo93pSqqVnrzcycWSOrheHmTvpjxNzks7TG4h+h+I54NyQL25bHLwcAAEAAElEQVSftxoai2Dr6OsPMNvnQ6VJfidLP5SHUiXnxC8GaH/pJMZCfRKpKDY/O/C1VgKjAVESk7M+O2o3NMDEkbk4mc9YrKHiw0Xs/7agyrQwHmB+KJq8rTpObLE6u8JI68/6E8hq094+ZhanaG8X5nwzMzOUlZVx7733ct9994nGJoMMMsjgvxOHDx8G4Gc/+xnXX389oVCIJRbZyasQgRwKWC9rYv+qTevFF+RQuMXBScfoyvgfXT6ZaJ2N28eDUF/pfHmA2e4Ah1cp7uWutyBTyJNIGO2/GqT9t4MriinbvQKpdDWRIghdrw4RmBbmv56LnCCDrh2JRIqpVXUQtUMNwVCico0aQr4lFkbEiT1D+ybQZatTEpRAyFP844tMHBdysxhZYjViBKXKKwsxFelSbmabHw6yvLjM3ID02l3DveUotXL2pNjYFSMoFV+QQzgY4eQfUq81rbvOhSFfy55THTii6PjtEKFZaSJOcCZEyLck2eavAYNDzaJvibmT4oTtrh3DLPmXRVVG85tsuM7Mpfm5blGSV+1NxbT98qQoQcm5yYLngnx6fj8srtAFBGcWka32EFx9jEYr7rNzOfh0NzMdPmY6kt8FS4We6bYFjv24i5AEH21o3wTOjbaUBCWA4KzACwjMJNe8zGU6Zjp8jB2ewfW+HCZOmXeoTXKqr3Fz6AddBMeDAonpd8kkpq2PVrM4F+LAUx2iylPZtRYM+VrcZ+fS8/JIAlmw9IN5KLUKTvy8n6F3x9DnaAiHVq4/hi2frESukrOrpYXhfdMMR+vPvsgswYYJTpw4wfz8PAwKxCSXy8XBgwdRq9Vk8LeLDEnpbxw6nY6pKYHw8Pd///f84z/+Y/Q3EQ7yB4hAFhreJ/sgAMMHVzrGiqsLsZebOPKTHua7fAm7OQxObQLxxuDRMd/l48Sz/QmqP2KKOr7xIFprdFKpg3VXuDj+TB/4oOUn0cH4Q4Wo9EpyNjsSSDdjh+YYOyRM3lzvd1C4zUFunS9hZ33sGCDs4rGUGOjY0Z9ANNr77yuDvLALalFQg4pd4yolp7KLCym9YKWQtRr6HBXIQKFKPWisXkisvKYwTm5ajdHjc+TV25gbFB8kK68qQW3JEiWxTHQugAyyTKoUfy1AiqAE0Pe71CSp1YirLf0Fu/Ubt1eiyJLHVSRS4cDXxaUQYxCIRSIxi4roxHxvU8GxzoxMLqMd8bgs+ZdZ8i2n/J3ng06GD0xH30kJNSc5qLSpi3YlF+eSV5+Nw2vl2Pd7kp6tY6OR8kuKmOqco+UnJ5Nt2YAtj1ahUAoWLmIqWRvvqorbE4pJa1s9hjixSPhWZuPXYCzU0/XSMBPts+RZstFZNPh8gTixKKbyNHp0mo5fDXL82Z4Eopu5XCC+WUvNKLWKuBXk6r5h0wPlKLVKdn+uhfYXBjA4NbRFF+vG8wbonmtmZm4GDguy1llZWdhsNjo7OzOqSRlkkMHfDB599FEeffRR/H4/5eXlDAwIY8wUo1GiOFRQh0tWSvdv+6i43BMnfWx9tJrgrECuXU0UKrswH5VBialQz2yXH5NHGyeB7PxsMyaPsHhReZWwY6T5uW6m2/wrZAatmuXFMKPHhDGm5CInUx0zTLf5Ewg41lKB8HTquHj4uyuLRbXXugWlvdV5gJ8EwlAqm4zVZBHv9cVYSvRJqkoxglLtrSUY87Uo1cMpreSUajlyReq8a7bLH88v9MVassuNKUk1wZmQ4H8ugexKE+FQRJSklI6ELmqDtwpSagsxND1WTWhhSVJhRwpaG9R9wstEm7hK0mSLjz0t6RUQxJSAAFR6IaBiBKXC99nRZqvxfLBYVHVofshHeMnG1PHUhO2yy/PpeGFQMhaKLDnIQG3X4p9MvpamB6OKkseaU5KlNt1fTpZBkAnveWUkyZYtd4uF0vPz48pIqchyMcWiTo1gT5hq4S9/s5UskypOLFr9bLzXueI79kMLSyuLW6tuZ/ODFah0SnZ+tpnOXw0x0TwtfPeQ0EdYivXxd3X1d2ir1lF1uZvBfRP0vDLCyJEpQn4h5/VH/ExV9dDcGrVuOwBGoxGZTMaXv/xl7r///uTAZ5BBBhn8D0Cj0dDRIdRxvv/973PrrbcSDocJE2Yfr0MEtBho4Cw0Mg0n3x6Nz81d5zgo2Oqg5efdTLf7E3Z4W9z6hIUBY7GGud4APa+OMNU5w0ynUC9q+rSXxflku4z5QR8G2cocteqqQsEGLkDcsqz4vBw0tizy6s10v7xSf5rpDMTzg5h91qkKT907RuIbA2M1hfYdAwmWdqs3SDU9JtS8Vu9cDkxDYFoYK6qvKCa8HE6p6qPO1oBchlwpT/kMVtcXPJc4UyrkTLdOs3xmDvPD4uRtz8Uu9Lka8ptsKRdt5noDIFvJN1JBiqAEMHZoRpQgE0P5Zfk4vBZhQ9afKTJQf3cZWUalpErSsR/2pD3OXG9A0uoNiNdwUiF/sx1FllzSAi8wvUhEpG5WeKadyc55ZjoDkvciV8pQpiAFAeRuslJ6YR4zG4XNEqfG31isofYGD5Nts7T+rD+l0sLmBytQapXs+pfmhHd/NervWbEnbH0utQpFzjpL9F8DTLf74+pd5lINFo+J3tdGGTs+gyFPC5osIBB/B8ylGtZ91MPYsWnafzXIsR8nqqHF+ghjkR61WYXnPOFbWP0dbrjdg8aSxZ4vtNL/5jhWt4GeV4X8bz5njFb/YaZnp+E4KBQKNBoNeXl5NDc3o9FoyCCDDDL4W8BVV10Vt5ncvHkz+/btA2CUAV6PPI8MGdU0kC9z0/uHUQx2TZz0semhChZnQhx5upu+368QlwtOz0abrcbkMjDbHcBQqI6rI+35wgkMhQJJwHWOg8ImB80/j6oVRXkgaqOa4HyI8ShJouD0bOaH/cx0+BKs0xw1ZmQKeRJJ6cTPV+bitTcUk6VVJqotB2H/qhrE1keqCAWXEwhZMx0+DkRzUs9FgnvN8ed6EggkMYJS+WUFONaZ6XljOG4vtRpZOgVyZeqaV3AsGCcNqe1q7FWGlHZY/vEgWUbp5fv8hmzCobAoSWk5lh+IWPMlKGSJ4FSbrVRofLiSkG9J0hotHZoeq2a8ZVZUJWm+PyipphWDGEEJQGVSggxmRRyAsteZMBbpKbukkOMia3S+MT/Li8tMdKRe03R/IJmEcyrkKhnIZWgsCoIpxLQ2P1SBKvoOp1IZq73FjT5Xy+7PJZJ1YrBU6PFeVczwwUm6dgynjFvFFQXYq810vTzI8L7plNaB2ess6HI0cWLRapWlskvy4opiwelF5lOIKmy4rQStQ8Puz7Uw+M4k8/0LcfKXNk8dt3m0V5uQKYR5ymxvMD7f0eap2XBjCUOHJul9ZZSBdycSct6xyk4Otx4U/rMfDAYDSqWSb33rW9x6663Jgc3gbxIZktL/IvzDP/wD//AP/4DP56O6upq+PqGjXCQQXzTLfbGIWtkWAJQq4cOe7xIG0vp7Shk5PM3AWxPs/OdmQZkFWP/xEgxOLZ2vDDDy7kyCLdlyMExgWqAtut7vwFSo49gPehMIReuvK8GYp8N1fk6CEtGJZ/vj5CcQdhH7xgIcWjXB6/vdGA6vmWPPCceruamYnrfG4n8DMD/kx1SkjxOUdPmaRCs5XXT3vwQTeqprnoVYMeUUhRqBoLKStNTdWRr3zFyNwrPtZJebUv7e1+eLq1cZPDrCS8LPVuPgNzpTKjqtHIQ1EYeaHqsmEhGX+NO5dJRf6BS1EwvOhogsR+JWgH8OloPLkDrPAgSFo+XQcsrCA4Dr/BwKt9hFlacA8JHWBm7XZ1vIrtWn/F3MakzUfkUHzjobObXWlLF0vd9BllFFx68GU19H9D3q3jGCzWPk2M96Up5m7NAcZRdFUrKVY8/APxFMSYJaf1sJ7b/qxj8OcwM+xpsTi0HWah3VH3EzdnyG9hcGOPLjnoRvJ4byS4oAQXVtNZEtp95E/mY7h/6ji9EDs5R+IMJySFjcWk1Qano8uhj4T810/GqQwbeHhXdHB/W3lNK/c4zRA7NJxbV3njrKLl4mQhj5sDwu5S+Xy/m3f/u3zAJZBhlk8DcNrVZLf79Q6HjmmWe4+eabWV4W+sg2DtIWOYh8QsHkdxLt4CLRoTV3iwXnBhuHn+mi44VBBv4wHFc9qbm2RCCeRhV8YmSE0MIy4VAkTlTYcLuHk28NCwSUVUSKvHobeXW2JIurnZ9tRl+8ivBUbuLg97vxr1JI6v3DSJzMpHVqKDkvl+ZnEgkni7MhfFPCuJVgJxWFfzKIsUArSmbp+GU3lVeVrpB8oopQMaxWlSy7PJ+5AR8je6aTjlP7UTdylSwlSenQqlwsd4sl5d+f+GWfpO2bmLXdasSUgTp/O7hi63cKSi5yElmOJJFhYlgOhePkkT8HcqOW8FIkvnswFWpvLaFjx5CoNWDTY9WElyPiln8gSoCKof+P4wSmg4ynsI0xebSEfBHGj8wxfkREhvquUrR2NTM988nqSAjv++Fvd9H54lBqMlX0PRrcN4FSJ77AuTASQK5KXojVOjX4hwOM7JnGfZaT+dHE99dSocVZZ6f1uZO0vdBD5VUlSc98450etDY1u/6lhc4Xhxg+Ms1Cb+JxPBfnYS01UnV1Ea3PnUwgsq27sZjJ9jmGdk0SmA0l5NOx777wfXZcZ+Yw2TZH63MnOfjN1vg3WPg+O9lVJg5/u4vJHiFXUxmEKX3ni0Mci7zLMH2o1WqCrUFkMhmRSIR169Zx7Ngx0ZhlkEEGGfwt4GMf+xgf+9jHgMRFMz/zvM1LEIH8P5TglTUAK/3f9Emh/6y92c1E6yyDuybZ/WQrGoswFlReUUC210zXa4LVVYygBBDyhfBPCQXy3E1WbOUGWn56khOryOaVVxSQXWXGfX4oQQGo97VRxlpm8fULx9v6aBW+sUCCzdXYoRnyNtlo/y+hfldxeQEjhycSrmF+KMBSYDlOUNLkaJKszJb8Sys1rRQYOjSxsjlLQwI5Z6YzkKAIVXuzm6Mp7Hez1xtxbrRhdGqTlH0C0yu2wZocDSotSeSb5h/3CXZ8zeK5l5SdSAyNn6xEJpeJ5iyaHA2lH8gVJUwHZ0Ish8Lo7Jr4s/lTEfIvCaRpEbjOcSBTyOh9LTURPkZOi9kUiiGdxd6eL7RirUpd83LUmxk7MCNa+wNwnZFDwRZ7yvM46s0YC7R0vTicmsAUfY9G9k2Ru9FC569Tx3uuN8BycBn/VHKeGrNjnBv0o7Ml72KvuqaInt+PERgNMNk+x1Rn4rujcWqou8XDeMs07b8c5PAz3SmfqfeqEmRy4XmsJrJZyrUUnZ7L0e/1MNMZYHkxTCj6nax+f7d8qgqFSs7OzzYz+PYEk8emBJU2jTAfGT48xdiBmaSa197vt7KHVwgRQjGuiM8VVSoVX/rSl7jnnntSxiyDDDLI4G8Fe/fuBeCNN97gkksuYWFhgQgRmtlHc2QfqkAWvh+tsoOLrGz2slToKdySzbGf9THw9gTjR6biqic1N3iILIXjZJwY0WIpuMxScDmuVlR9jYuhAxNMty0kkIiKzsgBkte/9nzhBNq8FcJT/hY7x57pSiBydL8yTHaVUPNSm8B9QWECiQkEtcrF+aVom0Q7KYDAzCJLgeWUCjcA7b8ZQGNSrhCUTiEBHf3ByphZdJaD0HwoiUgCUUKVXikoEJ7CRVmtKJVkuRfF8Z+KKwIBaa3nQFD18ZyfFyerpEL+aTYUKoUoGWopuMzSX6C2pDbJWQ6GCaZYP4uh6poiun83SnAstcLR5ocqkMlkvPtFcWXJ3ldG6X1FXIpz4vgszaHUdn9qhxq5UiDRiClTeT/qwlJmYGEowNjhZFK996Mumn/ax+A7kynJbbH36OQfR9HliJObZwd8ZBlVSe+d2q4mOB5kum2BxYUlfKesl2vz1BRuyab9V4O0vTSA2qBMeubej7owuXTs/nwrg7smmepZiJOJYnA2Wsmts6HQCOpHq9fKyy/NZ67fx/C+aXyTiyi1KxSUGEHJWm2g+gqXoEb+834O/Ud7/Bt0bDCTu97MsWf6oueVoVQJ9b/+N8fpiByjh1aysrJYbF2M17y2bNnCm2++mVFN+l+IDEnpfyF0Oh29vcJAd+DAAZqamliMSv6PcJKRiDD4dDxTTZlsXfSPQGNVk785m4G3JtC5dOATOqmB3aO4z85j5N2oj/anq5kf9nPsez0JE9m8hmwU6uRJ+pHvdFP64bw4Qanp8Wp840EO/0dXnDChtQu7g5YCwoQtu1aPb2gB//iqhSodmFx61l2lZc+qCfJqUkXMVm28bZa256LJhY+E9ts+42UpkLj7f7U6zbaHvSz5l1PuiF5/WwlahzqJcAXQ/8Y4+lxNSiWlhGNc54YIKT1WYwSlxu2VHPt+e0qSkLVaR9VlxRz+UW8S0QlgcT4kqS5Uem4OhlxtnKRzKtpfGJBUHloLxCzrYsipsYAMUZJSaEEgSvXtSp3YNG6vxDcRTCDDrUb9PWWMt8zQ97uxlDZvMfUtvUNLx69Edpz5YOTIFEPvpL7GwiYHyEj59wVnZFN8Vm5cHenUeBSebcd1eg79ewQLwVSKU9ue8BJZEtS9jqSQ9s5tNGPI01J1dSkHn+pMYF/Hnu1Uiw8ioNQkEhLN5TrWXe1m9JigitT7hxGmepMLmu5zBClFrV2wUIxdp8Gjo/aaYoYOTtLz2xGmu+dh1S5UfaEe3/gcOosGjVVN0Wk5jB6YZf9XO/BFfOzhNcxWIz6/j0hAeMdzc3NpaGjgxRdfTBnvDDLIIIO/Zdxwww3ccMMNAFx++eX88pe/BEiwg8tCg/9z/jhhqajRQZZlRR1RX6jHPymQO6Y65lgMCBN4z8V55NRaOPz9brp2DNG1QyBnaJ0a9LkaSs7NZ7IlcZw5/Ew3Bocw8YqTkZ7uwj8ciBMm5HJhohYjKMWIPEO7JuPkoaorCtDa1FgqtHGCBMC+VTtoNt5ZiUwmSyBErbaS8lych7PemkDi8U+ukIhilgvtO/pTElNyvBYcVeaUJKPDz/SQs86Y6pHEUXllIdlVJowFOjpeSByzYwSl4vNzsLgNovYjtbeWoNYpE+47hpG9YzjrbCwvipOM8uptRMLiJKVUKop/ChZ6/aKWdCDcn6lAh+t9dlGiUWB6MU6gOxWWCi1VlxXT/PPelMQzfbEW7+VF7P1yW0qCEgjEOyIkEedW4+A3Oym/oiDle+C5OA99riZO7DkVjdsrUWoEq+lUylibH65AqVaw619aaElRiKu+pghruZHu1wV1r1QLn5WXFccXJP2T4fg7rLXJUdvVTLf5WQqGhThGCVOx723DHQJ5affnWujaMUQkEol/I3FowVysR2dXM7RrkqNPr+R/NTe70TnUvPuFE/T/cZyc9RYGo5ZFZGWhdYJ/OEDeJhsqfXQK7xfiHSvS2O12xseFvwmFQjQ0NPCv//qvnH322Un3mkEGGWTwt47YollPTw/19fVxhfFBuhmMCP1n93/VUPLrqvjfGAt1qE0qBndNookX9gMM7ptA69AwvFvIfzZvr2BhOEDzj/oSlP2KTrMLytankHxO/GKAwGwoTkjZ+mgVC6MBjv5nzwphQiMQ1WNWpuZSDcGJRQLT4QSlov/H3n/HR1Le6frw1TnnbuWcpYnS5GHIyeRgg8HgCBhj1mGd1gGfPZ/FGBMdsb0GbDBgwJhgk2wMJk6ekSYq5yx1q3OO7x/VXVKPNODdd8/5nfX2/ZfU6q6ueqrU9e3vcz33bV9lwlyvz6sNnJ0+EVDKudYsdPvyQKmlwOvWb7aQjKbyXI2X9l62fbWNZDi5ottj05XlGCq01JxXvCxybeFIgLkaD0N/OrnrIkD7jXUgYVkUHiACShu+0EjP8xMrAiWGajVtV1fT+9xYHqyVU8wbz+s/nKiqHTbMNXoqTreLkXpLtdTZ4T+r91v9DlC22YZEJj0ppJSKp0jF0sx3rhx71nFLA7FQ4qSg1ZpP1+AdDTLxpmvFmLe6S0ooWW/FXKUTnb1W0sTOeZw9K0NjDeeXgVSyonOWba2B5ssqcfcJ7kgnunk71ptovLicqb0uxv46v+Jk3bZvt5FJC+5eK9V25kYN1kYDKpOCw/8+nPecHIAVnY2SSaeRSoXrIXc9qYvUtN9Qi6vHx8AL0wy+Ok3ItXzSsvacMjR2lQj+5Xrc6iI16z5Vw9whD6OvzTF/3INSvThFoi3TEvUK42ao0KJQy3F2+jjy0AjRTJQDvInGrCQWj5EICwt7HQ4H27dv59lnn11xvAsqqKCC/l/WmWeeKcQkAf/yL//CvffeSzqdJrEkDk6Lntj9MVQSoRdVuc0uuM8ZVMRiMTQlGmJ+4Z41f8Qjzl+VbbNSsd3B0d+N5sEZKiNYGvSozQq6+vMNAboeGsZYJtRyVWc5KNtk49gTIwQnYyIwIVfLIJ0RAaUcyLNw3L/oeHRZFcZq/bJotqX3+bU3NiBTyfKAqKX7WbLZQt25pQz+eZr5g17hCbFFEKnuwhJKOqwMvDi1IphSvs0OGVYEgI4+PIij3bqiy1FOlWc4qDzVwVy1h6GX8mu0HKBUstGMvc3EsZPUFY1XlqMvUq9ozDB72EPVqUUkYic3M6g6rRjSnBRSWhpX/59RzJ9+X7jItsaIrclIOpGm/9mV5zXD81GkJwHMVQ4Vaz9RQ98fRleMcVPZVbRdVUHXL4ZOGvfX/plakEpOahwBAlhW86HiFa+Dks0WzA16mq9aDs1B1sXTqBDdkZa9/+fqUZkU7Lmrd0XYqvr8Iso32Rl9Q4ihW8k9qe3qKlQGhRizmLuGVUbBedU/EiURSZJOZVAZIeZH/H9ruaYSU5WWvXf3MbvPg1wjW7EOd6w2Y6zUMXvAm5cK1HhlOaZqHQd+2I+nJ0hgOszMgcXXqxwqYs4YFdvsaOwqEcDac1cP05lReujE7rAJPa8MxONxNmzYwP33389pp5228gkp6L+FCpDSf3N1dHQQiwkfFPlxcDBKD6MZ4UOzJdTBrvtAk3WrXnNNFTKVlF23d7NwNMTC0UVQSCqToMiuTi4/1YaxUkvP7ybYe3cvjvXCRFHOwcUzHKTniXGG/jgjvh4gnciCCZtNZJIZ5jv9eaBG06VVojOLqDD0vTBGxCcUMO231iNTSPMaL/OHfRStNosRUjUXFOdFyYFA7oorzU9wTQIhcsF3kszXIw+NUH6qAHKBEJPlPLQ4GZMDlJo+WoG9ybiic43zuI9YMLHi9kEATOQaGfWXVq3Y+FBo5EhkEiq2WelfAVJaGmm3ko4+NUpRy/s4NiFALCqD/H2fc1JpoWqb431j5Xbd301Ri/Gkf5/Z6VkRoMpJrpahtZ+EetWC2qKkdIPtpPvQ/fg4Hf9UvyJgtOnLTci1wiSWeN0ukW2NjoWjIXqeHSXmW7k4m3p3gcodRbi6vcv2jTBM7nVRud1B6gTXhPJTbbh7Foi4ILIQI+jMb8jVXFBM6Xoru+/sYW6fD4VOweSb+Tf79lvr0VhVpCIp5jv9eTBc45XlDDw3JbogKbMrS3PXMwhwVDKaYt89fRx7ZACUSiIu4bhLNzo49ptRgrNhJDIJ+hJhon1p/OLmrwuThM7+bsLTUY48Mcr8kIv9vEFFTRlT01Ok4gncHjd1dXXI5XK6uroKcW4FFVTQP4yee+45gGVxcHGiIrCkQUfkJxHsNVaICHFdTZdVUnNmggM/HsiDKHQlaqRyieiAs+oT1UztmcfbH+Hwb0dIBwQIYvM3mpErZOy6o5vQWESEI2RKoWbLvb7+8lKGXpjJe4/SbVZqzynB0Wrm2COj4uNdDwxRdqpNAJQ0sPVLrYzvnGd6yX3D1edHbRYifjUlaowV6jx3mXg4STqZYe549rETXJMW+vzoyzUrgikgAFc52Vbr85yPIlMRxrKQ1bZvtxL1ClF6S9X3zCTrP1e3DFBaqpJ2K7IVnHVy0tiUyE4SgRJxp98XEAIYeGUSZ8/711QVZzqYfPM/N2Hm6DASXkgsc+zJaey1ecKu6Pvuw4njtlQl7XakSinSk3wzbDi3FIVejn2t4aSQ0vT+lSfhzE0a2q6uZabTzcgrs3kxiLB4zodfniHijp00Yi8wGUZtUy7/Q/Z6iweSsELZlhv30dcm0Jc24e3z5v190z83EfUnOPrwCD3PrNzQa7+1hXRCcD5bCtAXbzSTiqeEMTmBYcsBSm0fr8Zco6Pr14Kj2VJ3r9ZrKnH1+3B2+lFoZeLqMFjS5NNA+011JILCZPOxRwaJRNKMZ4YIlM6SyWSYnRXeKxaL0dLSwg033MDXvva1FY+loIIKKui/m2pqanC7hXvDgw8+yOc//3mSSQH0HuIYQ5ljkI0l2XUPqLMLeFZdU4nKpGDXPd0ExqJ5DoxyhVwEPm1rDdgbjfQ9O8WBHw8IrjVRwcGl46Y63AMBep+ayINRMhnEz31rmx6ZUobzkC9vkV/Lh2uQKaXLFq8d/e0iML3qE9WoTcq8eAXfoI+Yz87YG8L9smyHjekTIkASoRRxf7bndAJQBRB2RYmcZJV5/3NT+MbDzB0Q+jGWFl0eBJMDlKrPLaJss53up4aXgURTe96/nrG26VGZFdSfXZIXcZeTVA4ytYyitVZ8Q8vrtxNdnJYdwytTLAz6WThJTQKgrVCjsSre9znvp5XGfan2/KgXW9PJQXp3d5C93Sd3SVKa5Mi0J69NDWVaNDYVE2+ukAECDL84i75IvSKgtO6zdWisSvb8oHfF1+fO+dIa/EQtHAmQOC/JQv8J45e93py9PurOL13mFOpYbyIwHSM6H8U/GVrmAlqy1Ur1aUXs/Ukv3oGI6G62VLlFh1KplLkDnjyXp9qLihl5eU50GpOphNppaQTdtm+3kYwm2X9/Pz1PDoFaAJRM9WrKNjvoeXKC6LzguqkrESbAl0J+G77QiMqsoHO6m6gXDv1mGPeEl0O8i6PWyvT0NLFYjKg3RG1tLTqdjv379xfi3AoqqKB/GN11113cddddxGIxduzYITpbhgnyLi9CBvSYiT1yKuYyIzFXDFTQdnU1UY8QTbs0jk1XqkGmkhJxC7VJ45XlzHUt4B+JcvCXQxAXapqlkEbMGcOZrWUUWjlIJCKMVHWWg/G/ORl+ZVaMnzI36Wi+vALfuiDHH180Kzj22DhFG8wioLTpK01M7XblxdLOHfWgtwtzICojGGtNeZBJKpYmFU8xf8wrPHCCe81Cvx9rk3FFMAWg68FhVFlTRGOtOs/5KOZPi6DH5q82E/clOPRQ/uK6ibecmCo1ywClpSrf7kC1grNOToYyDUq9YvkfEJ7/foAQQN8LE3iGT+6UCQIoNXvU+77A1clkbtKRDCdXjDYDIZbueGwU79jKABGQd96X7VuHCYVGhlQlZ6UdrD7djsamOqljFcDom3PiXNtSaUpVrPtUHdMHXIz/1cnoCdHFpgatGFuYiqVPep0sDPqxVOuX/yF7TsMLMSSy5RB/LmZ57K15bA1GFgbyx2jdjbUkoymOPz7Osd+No9IuH4KOf2olnUyz9+6+vNrS3KRDIpPg6QkK8/2Zxf3JXbf1F5dSvN7CsceG8I/FOP7UYkRi3YUlBKYiOA/7UGplyFUy8fVL58U3fLGFmE+I3+7+3RCxGDijM8wVDyGVSZmeFvYpEonQ1NTEl770JW655ZYVx7Gg/34qQEr/QMrFwQFcccUVvPDCC+LfeumkN9QJIWihg9J3LDhWm4U/agV3oeBshCMPjuQ1USq2OfLck0LzQtGQTgrRFdP7hA+jjn9qIJPJ0PXAUF40Vt05ZUhkEuY78xszo2/NYs5+6NrW6Gi8uIqeP4zlueIoDQqkSz94tRCejoorzvR1Wso22ihaZc5zRVq6Im3bl1sB8gCppfFfK7ku5YCODV9sQGVSkk6NLXPrySQykIHg7HKISCREtbD5883s+3lfHig1s9ODbyK2oksSCG5LJ47XiTI1amn9SDU9fxjLi+UCIMwHwkerrqkhk8r8pyClurNKKO2wobarFt2sTtT77MPmrzUTmotw/LGTFw4ruVAt3fahh4fzI/+yWndzHcHZCEN/nKHzZytPxqWSaWSZlSNCtn27FYlMwq6j3Xmxh7DcHelEarr1uiosdXoGXpzAeSiwLCJOW6Wl+oxiyrfY2XdvX/5kYRZuUhoVSOQSijebmNvnEwGl9s/VI1VKOPiTQfqen6LxkrJl47vpK00odHJmDnkIDofFMSw/1UbljiL2/LgHwgKkF8o2dMLhNJpsR7P+QxXCCoTsvogAYfbzIeaNc/Cng0ztcWGp0xMOhZmvH0QqhX6E/6mJyQlKS0vxer0MDw9jt9tXHOeCCiqooH8ELY2Dm5qaYvXq1Xi9XgAihARgaRS0GGhfOA3vaAjncWFCaOMXGlGaFOz6Xneem4rGKjitaCwVHOgfIB2IEcn2ToLTUdRZZyaNFdbe1MLwX6fpfnwRrLCt1lO8xoKxTJt3n5nZ7c6L193whQZigSTHHhkVgaTS9VakCsli/GgW/lgKlay5vhq5RoZ/2Cvu1+SbThG+Kd5ipv68MuYOecS4rrkDXhFqqr2whNIN1jzXJRG80UDzFVWkLkqv6HKTSWVInWRlVy62reHKMpQ6xbL4ur0/6UWjWemVgvbd/cFOR20fr0ZrVq7otnQyAEt87XVVWOoNpKKpk0I476fGCypA8v710cn2wb7WQP0F5Rx7auykkNNKq9uX6vBDw2jKNXmxgSA4DK3+ZAP7f9h/UhepmCsGGUgnl5+74o1m6i8oI7Q9yuFfDS8bmw9yR1oaYbeSS9amrzah0MpZOLxAxJ1edJRYAtIptHKx0ZNzkbK2amm8tEocM3d/gIWB5Y2k+gvKSMXTuI70cnhJI7H9lnrSiQyHHxpm/rAbffHipFXYlcyOHVgaDehLBYCv64HF/9d1N9ehK1ILtVgE/JNhZg8uMJ4ZQl2WYnxiHG/YCzNgs9koKiri8ssv59///d9XOAMFFVRQQf84uummm7jpppsA+MpXvsKPf/zjbKR4hh4O0BM5gCQioYUNWF/XU9JhFQGe7be1EZgKc/Q3o+y+c/F+WnNGCSqTAl6egihE3AJ0IZVDIphk/ohQu635dA1SuYTDD47k1SkNF5Yj18jyIAmAwT9PYWsQFm5pK9Ssvqaa/j+O4x1YvJdqbSrhO3hOaiFW7eBPhFpDbZZSc2YxZRuseY5PS6GmzV9oRiqT5IEcS+O/VnJdygFKaz5dg6FCK6z8P2H/08k0pDPEFpbHbix1KdrwxUaO/3ZIiMbKyt0dpNM9TPQkEbS+oWj+gsUVlBuzgZcmlzsJRflA+GjdJ+vIpNIsHHn/OLWVVLLVSu1ZJRiK1XluVn/vPnTc0kDYE3vfiJUV49WWqPOBbqIrDF/rtZXEggmGX5zNixVcqlQ0TeYk7uuiM+W93ctcrk50R9p/b/4K/NqLiintsDHw8hTOTt+yel1thsZLykWwOs8lKgs3KbUyZEopxastzB3wiIBS2/XCyv6uXwzR/YdxVl9dI16nOa37bB26YjXeoSCe3hC7sz0521oD9eeVceShPqJeiHpiRNzCdRv1gtos/NxwYSUqswK1WXh8qRPYtu+0EXXH6PrFEOPvzmNrMeL1RJmvGkCigX5JP5lMhuhEiNLSUiKRCPv376empmbFcS6ooIIK+keQSqUSnS39fj/t7e0MDws1RhCvACxNgwEL66M7cB7z4h0R7tlrPlmNvlzL7vt68lM9VOBoM2Eo1dD5wCDEY2T9F/CNhTCUacTnbfx8E2N/m2PopRkR0NGUqqjY7sBaZ8iDebz9IdwDAUZeEd5nzWdqSEXSdD85LrofWVr1KDRy5HqZ+B7EYPyvi3VN28eEiHr/dFSMFXMe9olgialBy6prapjtcosglm8wzIEfCffMlVyXYq4YsSwzvPpjdSSiKfavAAWlUxmSJ3HwPpadR6s8w4GuRL2sxjj4kwFURulJAaG/x+mo4ZJSDOXaFd2WPCdxZcyp+vwiKrY4kKllTL0P5H0yNV9WgVQhXTGNJKeTORzpK1S0XFVN7zNjJ4WcPijmrf/ZKcYcruVRcipov6GeroeHmN23suFCOhSDdGbZwjUQoLRV19QQmA5z9NejywClZe5I5O/j5q81Q0aAyFZyX2r/nHC95iLZOh8YFPc7dy2oLUqSWUORmDNGjMUx639hHP9IlLlDHnwTy+eq266uFhKJevryHKxWXS8YkBz77Rhzh9yY6/Wks8cf9abEfSjpsGKpT+A87MuDyHKJALvu7YaYsLjV1e3HmZkhXeFnamYKd9QNc2C1WikpKeHaa6/l/vvvX/EcFPTfWwVI6R9UuRgSgFNOOYVdu3aJv/fSSe/uTtgNlTTSbt9GKpEWSdT1N9ehMinZe3cve+/upXSrBQBtmZr1N9QRWYjR9fOhvIg1lXEJiasVQJbhl2Y5/MgIpZuE1+fcl2a73Ay/NCs66ZR22JHKJSSyH5yWVi2ennDe9ld/ugZjhVYEQECItvIMBxl7V7jLr/lMDdFAgoFnFj8wo+44kuxVrrFDJEweMJSMpYieJOu054VpWi4tWzFObOC5KRFGKj/VhrlGtwy6qT9XiNJqvrRiWURcDlDa9JUmkrFU3sSEOIx2KWtuaOLok+MrAk1SuYTyLXZ8A8thHxGo2eVc0W3IedxH2Llyw+iDNLtnHo1FycQbKwNK277TSiqWXjFOD0CukaErXnmmcOOXGvFNhPOsAHPS12lZc61gCX4iQJSTrkiN1qpa5pCkrdLSfHEpXT8fet+ibKbLjda2soPTwtGV3ZH0dVqCw2EmdrswVemI+Bf/rq3SsvrqSvbd20d4PIx/PMTQy/kTp1u/1YpUJmHX97rpf3qS/iWvDbvCEAaVRYkkywqGp6Ni03Hbt1tJxYWxPv6HSUrWGgkOh9FWabHWa5l804XSKEcql4juVyKkp82PPux+NlvchqH1Y5WYa/RCYRgWVgyE3XHCmTDH/COM/mmUBRZgCBQKBTqdjlQqxc6dO+no6Djp+BZUUEEF/aOqvLxcjCHZv38/Z5xxBuGwcK8KE2AnL7Pzty+jQMVmziHsjiFRLoLYW7/VirPHy9ALMxx7YoREWJhYWP3pBhRaObtu786DkYo3FSNTSpGrhCKn4kwHCz0BFo4Fmav1MJ2NMt38tWYkMgl77+rlyBIYSmVUIsvCSBoroFTnxcBB9h4RS+XB30d/PUD1ueUCoKSBTZ9r4tijg0Tc2S+8nhipeFp8f121Jg+MSQSTZFJLXJeWKgLe0RCewZUnfPYsmQhZ/7k6+n4/Kr5vTo4WExLpCvEgEYhEBIir6dJKDv16RHSeWqrGD5ejL1av6DqkL1YLq35Ook1fbUKmlK1o/TzyxjzpZAZv338cUAIYfWcOtXEFFyEWwa+TxumtsyJTSknHlk9WGes0tFxZxb4H+vLcr3Jqv7UeEBy3TgSUAGrOK0ehl6/oEtX28Wqcxz04O/0njYCbO+ClbLON/j+Mrvj3ldyRNFbhXBKBqC9OIpxflzV+uByFWkb3E+MMvDiBfbUl7zrJgXQLfX76fj+Zt29LYw9lSikVm230jU2KEFf95aUUr7bQ9RvBFWm208PMbuFar7uoVIxqVFuUorW960gA1xHhf6j98/VobCq6Hugm4oah16bFmMPN32gmNBvl+G/H8E+EURkVaKxSZk3jvL6vl2PHjgk7eRSMRmHS+5JLLuFPf/rTimNXUEEFFfSPrvvvv19sVH/84x/niSeeIJPJkMkBS8cPwHGooYXVlrUkwkn8k0Jt1nptJfoyDfvv6+fgTwZwdJgE9yQzdNxcR2hOgGeXxqVp7Kq8RXS5uLQjDw1QstkBZN2Xbqhj5tACIy/PiRBL+UYrco2MTFq4N5jq1fiGonnbb7yiDMdqswiAgAAszR5ys5B1cG75aCWJSDIvji04ExEcBgDUoFYLAEZOiVCK+EmcvgeeH6f56pplgBLAxJsu0YXHttaAo828bEKsbIcNlUlB9dmly2CeHKC07uY6yLBy5K4aNt3SRO9z4wTG8uuydFLoHRWvt64Yd2Zba6D50koRqDlRM/sXiPpP7nD+fvL2unGWaRg/ySTbSuDXUqksSmTqlV2S1n02u7BuhUg9dZGa9Z+pEdwKVjhmAHOdgUwqvSyiTW2W0vThKo48PMqx346e9NjG3prH0qBf5r4FgjtS/YdKSQSTeY9rK9SEJ6PM7HTiaDMT9y1O4KnNUlZ9vJ6DDw4Q9YLruI/xv+Uf26avNCHXyNl9R3deFJ+6SA3xKFEv6IrVyLPusEQRj2Hz15vJJDPs/2E/fb8fpXSrA09vCHWRGmuTjun3FpAr5cg1Moo6BGeNrl8s1vHbb2sjHkxw4EcDHH96AoVG+P+ovaiYotUWEbRKhBJEFmJEM1EGGOX118dw4oRxkMvl6HQ6pFIpb7/9NuvXrz/p+BZUUEEF/aPKaDQyNCR8vk5OTrJlyxbR3SSAh3d5kXefBw16NnImIVcMpVEpghKbv9qMq8fH8CuzdD08RDp7q8lBQbvu6c5zCipZY0apk6PIAkUlG814xiJEZmKMvzuPs1uosdo/X49CI2fffX15dYrWpiKVA3ZVoDKq8PQE877/b/1Kq3A/X1KPdf9uiMrTS0VYpf1z9XQ/Oyn+noqmiIeSTGWBFU2pSozDgkXXJd+Ad8VxnDvsIbKwMkiTA50AVl1XxeBf5oRFX0tU0mERXQRPVMyfxlitovXqGo48Ppq3XzlVneXAXKvP6w/mZKjUojKt3HcCYTGW0iBn7wqL/GZ3z6NQynAdOXlyyvtp+LVZNCs5ZyOc+9rzyhj6y5K4vSUqXm9FqVsZc1A5VKy+popjjw4R8y9fOLfq+ioUWjmHfjW8HFACas4sRmNVUb7Jtgy+arikFN94GOdhX16/cqn8I1H84yEGXl0erQsIveET3ZFUoFIJUWvhuYj4v5JT1bkO1EYl/c9O0f3sJOWbLXnnOgfSObt9DDw3lRfJa6xW4R+LkUqBUieneJ0V/8i06EhWvsNG1WnFHH9CcEUaf3ce5/GA+Lep/QsQI29uNzgZ42B2McWq66ow1eo5+MshYq4Yfc9PitGLG77QSNgZo+epcQITYfRlGlRGFfOyMd7t7ufo8aNkyMBx4fNGKpVy7bXX8vjjj684dgX946gAKf0P0M6dO8Wft27dyt69e8XfJxhgYmyAP90JdspYL9mOQidHqlj8cKw8tQiZRsbCURcxX1y0dha+aMrYfUdPHuW69rpaDKVa4qEkk2+6RGBEbVWRSWdY6BM+mFZ/uobQfIRjjy6BNrTQ+pEaEZzIyTMYQGtXiYBSxz/VM/SXGXqeWAR0DOVa9OnMIpkNeeTv2s+0iBF3OeW5Li1ZjQ0CSJQDWto/V4/GoVox3q1yRxFS+fIJsaE/zjDT5VsEjFaInpNrZEhPEj9iajAhU0qpPd2+DIDyDYTfd+VZDqhhBQtAYEUI6O9V2JV+XxekVDy9rKmxVO+330qjAmvDypbZjlYDEqkEXYl2OaSUHduTOSy1XVmO0qDA1Khd5jy1+WvNyDUydt3evSw6sOHyMorWmE/qjrTpy00oDHIOPTxMcDi8bGKyrMOMXCOj4fIyBl+YFq/1tTfW4uzxMrPTIzQVdfnFpalRKCainjidPxsUt6u1S2n9WB0HHxoU4KGEUPiCcL0OZ6+19Z+oAQlMvuli5OU50bp67Y216Es1wjkIQ8wbx5n9f2y5pBzfdJiB4TBytQyJTIK2TI3PO8mf//IqBw8dFHbukLCSAkCtVvPMM89w8cUXr3TKCiqooIL+R2rTpk2EQsLEwnvvvcf5558vAksJYgKw9PjLyJCxidOpaC5HKpOIjfnSDTa0DhVdPx9i/qgXS13W7lcjgEPekSDdT4znOddUneKgcptdiDJ9cbGxk4ymxJgzjRVarq2n98mhvMZM23UNqMxKuh4czgN3wq6YaMddcZodY5WO7sfHRGCj8UIBUHF02Bl/XZgc8vZHxDrKWKdh9XW1ItwOMPmOi8l3hAmvHCwyudslvl50QMoea9yXWOZcZF9rQOtQ03x1bV50C8DuH/ag0UjFbZwI3uhKtEhkEmxNeiZXgJSsDYaTxsKdDL7OKRFKrRg3BkIU3we5Fb2flsbvnahMKkMmlTmpk9KJrlJLVbmjCLlGhq0+P2YvJ6VewYqVZHZse56aWNFhCQ2Ya3ToS9XL9svaqqXlIzV4R0N0Pza2DAjb8i8tACu7I2mg/dY2EiEhwmMlyN/RYhJ/9vZH8PZHsLZqqTy1hMO/GmZur5fqU4vxnmBVvrQedPcs1tm1F5agsSjpfmIc72CAojYz+mIFkamICCXVnF9M6QYrKoOcnqcm8r4Xbf9OGxFvjK4Hhpg+uEBZh41IRAALS9dbREhJrpCJiz56Zg/xp30DzC3MQfbUq1QqYrEYZ599Nq+//vpKZ6Wgggoq6H+sHnvsMR577DEArrrqKp599lkyGWFiapReRj29vHQfFFPJGskWVCYlcuViO7RqRxEKrZzpAwuEZiNMHxSg4nU316G1qth9Z09e76jl6gpsLSbSyTTjf3My+loWzi5SkE6l8Q4FxedFPHEGXpjOi05Y9bHFGM+cvCMhzDV6EVBa8+kaJt6by4NRcjXhUsCle8mq5I03N6I0ChF3OQglz3Xpa83AYk0T9abFe23rtZVY6g10Pz2S5/YEUHduqQBCnRAtN/3eAu7B0KJj0grRc2qTUoSzTpSlRifAztsd9Izl10nR2fd3W1o4EiB94ckdg3Ln5D+jqFeIxTuZEuEUifDJe167v3/y/dY61KiMCoZYDilZ67VI5VJ0xZrlkFJ2bLse6CUaXV5wNl9Vja5Eg7VNj7s7v8bpuKUBlVXJ7vu6mTvgyXMoqjjdTtWpRQy8JLhpnejwlHMvOvrbYQJj0bz/AwD7OqsQ7XdeKUN/mhHHreWjlfjHQ0zvduMdCaI5YTGgukhNx811hJ0xDv1yiP33Cf8LajM0f7SOvqeHiXpzk73C8Ua9aUayESrrP1MjxH+8t5B3TC1XV2BtNLLrPuF/IDgTFuNpmi8vIzwfJTA2jVwpQyqXYqhWMzs3y+vv/JWDnQeFybEuUCqFiVKj0ciTTz7JhRdeuGzMCyqooIL+p6qiooKpKeHzvru7m3PPPXcxjikbCffuS6BExXpOx+FwIFVKkWXdIx2rjZirBFBmptONo9Uowkxbv9WKZzBA3zOTzGbdtwFqzi2lJgN7ftAjxkwBJCOpxYVqKlhzXQ39fxjPAzNWf7QaY5WOI48M5TntBCZCxEPCvIptjRFbk4H+Z6cYzPbUKs9woLGrKFplZOItYT40OBkToSaVXUX7DfWEZ6Oiq9My16WP1jD+3ry4z0tBrK3faiXmjefBtSCAJKZaPS2Xyzj8UD5MtP/+flR2lXi8Jzonqe0aZEoZljrdipCSY5UZhWFlJGClxXpLFfMmVowbAwGoGXxxeW3z9+pkEWgASCWkE0vi9k7QUqetE1W51YrKpEBfqSd2fHnPTG1VIVet0APMju3on+eYOehdEWAqWmvB3GhYtu+aUhXtn6nHMxSk56lxjv02vye34UuNSOVS9t/XR9/vl5tAbP9aGzG/EH12bIU52NL1ViRyKTBFzBlj+OVZ9BUqas4s5thj4/gGw0S9cfH7SE7ttwiL5nbd001kJiY6tZedYkVXrGHguSl8o0HS2+0ojMIA5K7bog1mas4qQV+moe/3k3nxgFu+3kzMl+DQr4aZ2r+AVCWFeIyiDWYqttpFSEmukaIyCtfekK+P158eYHo++/1oRuh5JRIJLrvsMp577rnl56Sgf1gVIKX/YdqzZ4/481VXXcUf/vAH8XcX07ye+QOv3wdylGzmHKrbi5GrZZir9Uy+6cIzHMTWYmK+008ylkIqX/wQ3/qtVqYPLnDkwRHarq8So6q2f7eNVCzN3rt7RfckAGOFFkOpRgAotKAvERxpQvNRXN3Ch/vaG2tRW5Tsu6dPjGGztGpRW1Q0fKiMgwOLrji7bu9GW6UVX6cv0dD1y24i2bpl5uACthZh5TFaaL2iKg9ySkZTi1EUJwBF3okgSrNiGaAEsOfOHhzrBbDG1Kgl7gmL75kDlMSJj/u687abB72c8J4zezx4Bz3itlaSxg4Nl9bkZXgCRFwsA2qWyrHeQN155Qy/NiWCX3+vNn6pkXgoyZGHlhPXwLKmRU5VZzuQqaV5We8natd9J2/mLIVtlioXy7cSoJSLTTvwowGKOozLo/GAwEwEQ+kJzk7ZczF7xItjVb4rg6VVi6XeyPBLs0zucVK2yZb3vu231qM2K9l9Rw+DL0wze8Sbf91oQV+qQW1WMrPTw7FHRgFo+mgF1joDe+7swTcQJuaNM/HenPienp4wRZscqExK0Z0rN9ZVZzuo2O5g7ognC8ctEJzKXntfbybsjHHskVEi7rjgNlWmRmOTkYqnGX9NmBhWGhVYFELT88C+vfTO9uJ0OpFIJGQOZZDJZKRSKSorK3nhhRcKjkkFFVRQQX+HduzYIQJLU1NTrF27FrdbmPhKkWIPf4M+4HaopIFmyXpM1Tox+mPstXnMN+oxN2lIJwX751DWCXH1p2vQmJXs/2E/A69MojIJjYrmqyqwtRgZenU6zz2w9oIqNFYVxkYzkb1erK1a3D1hxnfOU77ZIQJKW7/ZyvxRbx4AVLbZhlwjywN/Bp6dYvqAW3RK2v6dNgKzETG+zj8cIeKOMfam0Cyou6gUV49XjNQCsnBNttBZChVFIBFO4plYDs64jgSQyBddgxwdxkUQJgKRSBpdtYZ1n6gl7IyKUXAA46/Pi0DUShDT3p/0rugotFR1F5USckVEuCSnE4GpE7XmhlrkKukHNn5OVPFGM9VnFNP73Hje2OU0+pe5k0atrf5UjRDxd5JjOv7bMcGZ6ESDp+zYrBS7p7FKab+1RYyBXQooaUrUSFUSQmMR+v84gWuFGBR3T5hUPC26WZyoZDhJ+oTJzNZrKoW4twhEXDFmDy1+n9CUqGm/oQ73YIDepyfoemRkGTRVd045SrMCTYmayGxUnJzd/LVmgjMRup8YZ/aQB2OF8D3CWKcRx7pkvUWsAxeOBdl9TKivt/xLCzK5lF13dDP6lzk0FiU9T01Qc34xxesXV+ankmlS2clES40BZ68fImCt06PQy9FVa3CNunn15VfZ3yVY6XMQJBLhPSUSCR/96Ed58sknVxyvggoqqKCC8vXMM8+IP3/jG9/g/vvvJ5USJqDmmGAuM8HrvwAVWjZxFtZKMyqTAmudgen3FnD2+LFkYaFUJE0ysejYt/nrzcwedNP7+0maP5wRHWG2fbuNVFxYaLc0XszSaMScSotOP4ZqNYGxKN7hoOhk3nJ1BYZyLft/2C86GqmL1BgqtNSeU0bXwGLdsPvOHtQlQoRo05Xl2JqNdD08QjQb5z6x00VJu1kEhZo/XJ7ncBQPJpGsPLeEbyKMoVy7DFAC2H9fP9Y2wX1HW6EmHUd8zxyglJv46PxZb1702967l9QSJ0BMnt4QnT/tznN+WiY1tF5RSc+Ty2Hv94tMM1SrabmyitE351Z0ino/rbu5jmQklR9XtkS5OL4T5egwobOr3xeQ2n1HtzAOJ0oN07vdTK8QC7z2hhr0pVoOPTK8LKLNttbAwpEAhx8cwbbWsAxQAvCMB7ApjfkAWfZcuHqCVGyzw5L5OUO1GluzidHX5hh/Z46q04vznK5WfaIaY7mW3XcKE8XuoWD+fqnB2mTAUKZherebgeeFCaia84opXmdm7z19ROejBGciTO0TvgeYGzV4ByIY6kzoitTUnFdB7+8nxbF2rDfReEk5zqNeBl6YZvw9JzG/4Iq/4QuNRNwxup8YJ+SMYqrVYyhWI5VDJonoCKZzqEWnhcPdhxje2c/s3KzQ8zq42POqra3lueeeKzgmFVRQQQX9HWpraxOBJafTyamnnkpfn/B9O06MfbwGTnjl+xKqaaZBshpbgxGNVehfze7zYKkzYKxVEwtkSMfTotNQ4xXlGMqEWLieZ8bQZWPUK89wULnDwfCfpzn6m1FxX2rOLMZQrsW2ysz0brfoGjOxy0mVBBFQ2viVJpzHvXnxU1WnOtBYVfSrpkTwZ+ItJ64+vwj7bPlGM8HpiPi6mCtGYCLEdBaULd9hIzARxD8mPF8ilZCKp1joz/ZFToCKYp44vonlzon+sRjdvx8T480srfq8uLWYK4bKrmLDzfUEZsJ584LzB70rug3ldPBXK9cwS1W+w0Yiklq2ne4nT25aAEIvUmVUrOjS9H4yNWhpuKCcwVen8A0u7xPN7vOcNGqt6cPljP11itjKa/YYfHGGibdnlv89ey5WrOlUsO2r2RjYXw7lAUoqoxSFUUFwMsbxp0dX3N/ITIxYMIHvxH5m9j3j/sSyxZF1F5Uw/PosxMA/HsTVs7jDKiO039KCezBA/7NTHHpkdBk0VXt2CYZKHfoKFcHJmNgL7ri1gdB8lL5nJpnat4C10QCxrAOYOwYxqNjqQKaSMsAUwcmY6JS14QuNKPRy9tzZw/xBL8YyDYMvzlCy2ULFDgcHsmktyWhahPetDQbc/QFifjBV61BblJgatMwPeHjtr6+xvzPb8zq+2PNSKBRcf/31/PrXv15+Lgr6HyFJJre8qKD/0frmN7/J3XffzdLLQS6Xo5AriEQjfPL6T1JdV00mmUEil0AGMukM/okQrn4v9edVAEKMmLFCg8qkJDgT4chDI2z/bhuZTIbd3+uh8eoyHM1mwp4oh349TPuN9WhMKsKuKFq7mkw6g0QiEUnO7d9tAwQAKecCc+SJUWQyaLuqGolUQjqVQQJI5BLi/gQHfjzA5m80IVfJGXx5kvlOP9u+04pEKhFXYuW2O/bWHLoyDfYmo0A1v+kSJh2UUsjAru91s/27bSSjQtxJ3cUllLRbAej5wyiNF1cKee63L9/fXOSaq99PMpSkaJ0ZqVSa99x0MsOeO3tYd3MNuiItIU+Ewz8bYeOXsivgljw3k86w+44e9HVa1l5XQ3AmgkqvEOln8bm3Zcf7jh5WfaoKU6VedDFYf3Md2iI1Y+9NU72jjEwmg4T88Y754qhMStKpNFKZlJ4/jOLpCbPt260CLZ0RJlxkCimJQJL9P+qn9boqLHV6YqE4fS9Ms/qj1Ujl+eOdyQjn1nnch2OVicm9LsZfm2fLNwSHq5G/zTCz05MHtdVcUEzZRpt4/Wz+evOy8U4nM6STaSZ2zVN7VimeoQA9v5tg67dbkMqkYuTd0vHe/I1m5CoZ/okwxx4ZFUGnXbd3s+7mOnRFanG8czGHoXkhZm3pOQYh3g5g8OVJnIcCi9f7/T2s+7iwLe9EEHOlXry+B16aEJ8bjyQ5cG+/eM2OvjPD9NseIQZOLhFek50cS4SSDP91iqI1Viz1BvF4tnyzBZlCyshfZ0AGtWeVitdsbn+nDywgU0pxtJmRyiXieQaIheP85c9/pm+wD4VSgd+fX7lt3ryZZ555hqqqqv/oR0tBBRVUUEErKBKJ0NbWxujoaN7jer2eYDCIXmLky9/5IqloGoVWTiKSRKGR4+r3EfMkKF5vEaLH0rDrDqFWSafTDL06TdF6C6ZynRB/8do8225rFWqr27sFF5sP15CMpZCrZaRTGaQyCXNHPQy9MMOmrzWh0Mhx9wvAx/bb2kgl0+z9QS81FxdR1m7HNxXEVK4nEUuiUAlRdDlwJXfvLD/TRvWOYnxjIY7/dkyYuLKryKQy7P5+D9u/k71Xfr9HcE36mnCv8o6EUKhl6ErVYiRWrv6IewVXpe3fbRPrmo4vNqA2KfFNBTn+63G2fjMboXpHtwiI52Calo9WYm0yiLFoJ97Pt3+3TXQ1WHNTDYYSLeNvzzP5jkvYllom1oWA6PpZfV4R5VvszBx04xn00XJVdX69d1sbyXgKiUSCVC5BIpUItsvPTrHpn5tQ6OUkgkkUerlQYyXS7L2rF9tqPc1XVBEPJlDqFUR9cdTZWgUEKCxDBvdAgPGdC7R/phb/ZJhjvxll/efq0DqEBl7YGUNjFe73S8c7nU6z545e1txQi6FMIzpp5cY7d01s/24bEbfgBNR2fTXmWh2JSJKZgx4qNtuQKqR5dWSuZhNhudemSUVSNF1WedLxzo1pzlVrqatR9XlFVGx1kE6m2f39HirOdFC1w0FwPsKRfx8RxzDnzLT9tjZSiTRSmYR0OoNMIcU95Gdi5wKtl1csr6+z+2tu0tD20VrCnihai5pkPIVcKePYEyP4hyPCeEsyTOx0sXB4gfZbW0glUuz9QR9bvtmMTCFj173dtFwqXGeZVIZDj45SvcOOtclA2BlD61CJdd1bz79Nz0w36XQaf8BPIpEQJskyGUpKSrj++uu55557/os/eQoqqKCC/ufq5z//OV/5yleIxRab+jKZDKVSSTQS5ZorrqFxTaNYc2WSGTKZDO7+ADNHFlhzbR0AzmNe1GYlhgqt2E/Ydlur2Fcp22Gj5sxiwgsxDv18iFU3VGMq0+GbCGKq1JNOCPeBnNvO0nqk6cpy7KtM9D47TtSfZPW11ciUMpLhJDKVFKlCSswrrKzO1UDDf51ldo9b6HEoZKJb5vbvtiGRSBh/dw6JRELFKQ4mdwpRW7l+UyYtQDPbv9NGIppk/339FG+0UH9BKWSg97lxas8uRWVWrNjzsrbpaflwFQvdPgJzUapOcyCVLdZA277dRjop9HYaP1KGo9VM2BXh0C9G8l2es9tNpzLs+X4PqGH719sITIaRyiXoSoRFZZ0/FQCord9sQSKRsPvOHjEmLxfR13JNJdZGA4OvT9NwTpngtCSRCHBQ9n2irjhqu5JUQuhrDbwouAht/lozMpWMTCpNOpVBrpIJK9l/MkDth4op3WQj6osx9PIUTZdWodDJF2ug24S6TCKRMP7OPFWnFTG9d4HR1+bY8MVGVCYFo6/PMr3bzbbvtJGMJdl/bz+ODhONF5WL/ceOWxtQW5VL+k3CGKbjaQZemqDtmlqxTt/8NSFGLXdet32rjUwmzZ4f9NLxTw2oLUqxFl/zmRoM5Vp23d4t1sTpRIY9P+gRxyU4HebIw6Ni/7TzwWGis1G2/IvQW+t7YRx3d1Csn7p+1kfNeWVYm424B/1Y642k4imkChm9z47h6Q0JPa9QggP3D9D+Tw1oLEom9zkZ/4uTTV8TemDpRFrowQLxQILBVyYx1Rgo32oX6uIf9Ir13vBfZ0mEEzRfVinWkdu+04ZECjOdCyTDKUo6rCi0cgJTAniXSUM8HOeNv73O0e6jqDVqfL58cG3Lli288MILlJSU/Nd84BRUUEEF/Q9XLBbjrLPOYs+ePaTTi/CyTqcjFAphlti49Zu3kAgmUZuVxAJxVAYl891eogtxitaYhRj17NzHtm8L8y/9L05hrNJQ2mFjap+Lsb/M5837GWvVtF1TSzIq9Lwy2Z7A3CEPQy/NiPM+rm4f/c9OsfVbrWSSGfbe00vRJjMN55fhHg1grTYQDwm9mF3f6wYVbP/GYq1iatOy6soafCNBjj8xTtu1VZgb9OK9dcvXm5FIJWIM2Pbb2kAC7oEA6UQae6tJdHba9NVmFFoZEVeMrl8Msf22NtGdadUnqzFV6fBPhjj2mzE2/nMTcrWMPXf2CDWDRSn0x34xRNW5Diq2CPDW7AFvXi8QhB5SzqGn8coyHKvMjL8juDx13NqA2qwU+ovfaQMpxAIJDv5oANsaI82XVTB9YAHXMS+rrqtFtqQPtPVbrSRjKTLpDAqNHKlMgvOYABWv+UwNhjItodkIuhIN6USGdCrNvnv7UDkE0CriiaGxqAjOR9AXacTtbvlGM0glLBz3MfjiDNtva8M3GuT44+NCvZdNYwnNRlBblEikUvbc1SOOdzop1ESNV5TjWGXi2BPD+Eei4vzibKeb4ZdnhfGej3LoV8PUXVhCSYeVWCDB7EE3pRttyLUyoT4lWwdna7YcLDf6xizB6RCrP1Ev/g2EOjgeEMZ727dakcglYs3Wfks9GquKXXd041hnovHScvHasq0y0nxFhXDOHxlj/Wfr0BarWejz0/f7SbZ+q5VULAUSCWQyKLRynD0+Zva6qD23FEOFdsWel8ooZcMXW/BPhTCW68TvPEeeGCI4HWPLl1qQKiVMvudi4i1ndo42xd67+9jw5UZUBgVdDw3haDVScYqDdDJD14PDVG6zUrTOQnAmgr5EQzot9Jl3vdzFsckDJJJxAsEA8Xg8r+d100038W//9m//Rz+HCvrvoYKTUkEA/OAHP+AHP/gBAL29vWzevBmpVCrCCo8+/ihqtZpoNIrDVMTVH/koaqUKc60BlUlBMpLCOxkkOBcmFU9RvN6CPutOE56PorTI0VZpUemESRJ3TwDCoNDISSfTjL01S+3ZZSRjgkXj9tvaiHrjJCMpnD1eANJZyKX2zCKOPjxKYCaCQiNDKpMglUlBCr6ZIBu/3Mh0p5Oy9UUEZ+PUXlSMVCYlmVi0Y44HEqRTaabeXaCow4it0YDWIUQs+CfDGCs1pKMCsBXzxYlHhCx731gAx2ozUpkET08Y37oQ+qLFZVCJaFK0m/bOhSmLpPAO+Jnv9CPTyDCVa1l3cx3xQIKoJ0Y8IOzT/DE3NWdqRNtCz2gQa71wo9XapdnjFwq6lD9MMpLCPRRgcq+L1ddUobUuOgGFnFHRTttUqSeTybAwKBDb7sEASoOCqb1ept70svbGWqRLbBqTkRSe4SAl7VahaIiniDoFIjgwLcSS5aI1Nn2lCc+oQAR7hwIYyjWodErqzi4mMBnKy7CN+xP4ZyOEpiPEA3EsdXp8I8JrQ+4wxlI9RastzOz0EPPFCWfzdn2jAUo6LCKN6x0PYSzRoLVLWf3pRmLeOBFPnO7Hx9FWaYVxGRWu2YW+ALYWA+NvCKsbI+6YEMWSPf9ShYSFAaEx4RkOYmsV4kHmD3uoOaeEkFNYQRiOR4ViOgs4+yaC6OxLxns+ir5EQ8OFFTgP9ZCMpJg/7qXpkgpkKgnJSApXvxdTmY6IL4okJc1zr1Jk3TImdjqp3FZEMp4QGzkpf5rgfBSpTIKxXItMLUWmkOEe9GOq1YnwUjKWIp1KM7PHw/qbheZp0BlGYwffZACdTYtvNEDrR2rIpDPEfHH27NxN73gv4XCYaCwqTo7JFXJqamrYsmULTz31FAUVVFBBBf3XS6PRMDKyuLro5ptv5rHHHhObN8GMnzvvvBO5TA4ZCetr2jnrkjOx1BiQNUlx9wfQWJX4Z8KggVgwjkqvxNFmYWa3E90lajTZugYQHQRUZjXpTBr/TJhMPENGksZUpkdnU7L9tjYWhn3obRoxmixDRlzhM3fAj6PRTGQhjqEog388iKFYx6pPVBP1xAnNRUlEhPep2lYECA0YAPdQgCKdjNG/CZEliVhSnIwgAolgEplaxuxBJ9oSHUqznEh2IX9gOoKhXEPEJ6yWTgSTuLN1zcx+N9VnFTH8grCiyz8dFu+r++7tY+OXGvFOhtj01SYm9s1jKNMQnBa2k4qnWLpSI+aN482uYsvFsMai2fpvPIQ2a6k9+tYcxWvNhOcXa5WiVWZ8I35qzipFKpWKK7sBIgsxIu44vU9PoKvW0HZlJd6RxbrMUqMXFgAg1HC5yNzwdJhEMMnELidze73UXliCrXExEjc0F0VbrMLWbKTvxcm8cXEPBlFo5EwdWGD63QXW3FC7GLUSgXQ6jVQqBQ14BgKojQoiPmEFvH8mjLFcy/R+rzjensEgbddVoTLJSASTHHt0kIg7jbFcK4xV1nkplUgTdkWy59yPsUKLfzJGxB2hMZMhEVlSi4cSootEIpJEKpfiHxf2Px5NIlML18fYa/MUrTfjHxHqUf9YkPQ2G/oiDaXbrHjGghjLtIz8dY6NX2gkvBAj5omjL9UQjyVRquQs9PoFxy+ZsFqrdJuVmd1uQvNREqGU4IJpUpIIJpk76KWk3ULQGcZab6L+gjK6HhgSGmYlGnQOFR6HSvgesUtweZUpZMJCj4hwDapsctIxaL2iHLVF2O5k7zSjnQMcOnxIuLZiMTKZDHK5HKPRSH19PQ8//DBr1qyhoIIKKqig/3p9/vOf5/Of/zwAs7OzbNmyBZ/Ph9/vJ0OGJ59/EvWrQs+ryFLC5RdciUalxr7KhLZYTcybwDsZJDQTI+SMoS/XiA58vtEQ+hI12go1OodQLyz0ZV2RDAqS8RQTe+eRK2TEAkkUGhlbv9lCxBMn6o6z0C/0MFJpAWou22rn2K9H8Y+FUBrkZNJCBGs6mcA3FaTjlgZm9s1RtqkE/2SY4o0CvJ6LggehT4Ekw8SbLsyNGjIZOyqrUBt6RoLYmgykYpnscyMkk8JrA7MREpGk0HcYDmKq8mOu1YvbjXpj5OyYwoEkMW8C90gQZ6cPhUaGrclI67WVZFIZglNhEjFhuxMH3NhbTMxlXdM9QwEUmmxLOttSE2uVqBApsjAQYPq9BZqvLkdfrBVjzvwTYaEHiBBbkslk8GRrIM9gEJ1Djb/Hy67dXlo+WinWdQBRdxz3UIAyu410Ik0ylCIwm63pRoKoLErRNXz95+rxTwm1inc0iLXViNqkovqMErwjQbRLeoEhZ5TwXJTAbJSIM0zMa8E3LvS8/LMhHCYz9jYj07vdhOYiRN1CrRiYjpFKLMbHeYYCWNIG1GZY/alGgrNhEsEUvU9PoDYLkNrCiHC9zHZ6KNtqEx29gtNhktlrIOKNoTIr8GRrcc9QEJVJkX2dC3O9nsBsWBz/dDpNJttfcvX4MFbriHqzteF4CEuDgaZLK9jT3Stes6VbHagsCmLeBM6jC5gq9YRcUSRI8uLqFGrhPI+/M0fN6SUE5xNs+04bMX+cuC+CbyyMQidDV6JGaVSgMqnxjQYo3WwVV9nHo0nSpJnd46blGgF8D3uioBb+1wylWnwjIVo+XEUqmSbiirF/fxcjr/TiD/jzel4KpYKamhpOO+00Hn30UQoqqKCCCvqvl0qlYufOneLv3//+9/nBD34g9ry8mQXuvOv7KBVKMskMq8s7OOui0zBX61G2CRG8hjINvtEQKiOEXFH0xRqKVpkZfXsOa6NRjEvPpDLifJxUIYNMhsBUiJg/iUQB5nI9co2Urd9qxdnjRZKB/qzTpEQK0mzvwdfnJbLBRnguirFYy8JQAHO5jsYryomHE7gHAuL7NF9QCRJYWNLzUlkVjO8W7snxUBKlQSG650QWYij0MpxHfUjlEvTlGhJ+of7wZuuyqEfoP4Xno+Jc3uwBD/pSDQN/EXpp3uEA6uycW+cDg6y7sRbPWJCOf2pg4r0ZIq4YwVmhJxMPJpEtScEJzIQJZR0wVVnTg3i257Uw6MdYLtS1Ay9NUbLeTHhBqFXCrhgRVwzfWIiKHUXIlFLCnuWxeQPPT6EySmn7WC3ubNSYZyiYtw/+8ZBYq8T8wnan9i8wf9BL2TYrsnWLz/WNhzHV6ihaZ2HwReHYPNntegcDaMxKxvc5WTjup+nicuTKxXovlUojk0tRGaV4h4Poi9XEssfjGQlibzTiOia4M4Vno7iHA9RdWIKuVE3EFaP72UlizhgaixK1RbnoghRMEMrOW/onQ0RcRoLTIfxjMdLJDIlwQtyHsDtCYFI4FxFfDKVOjm9cqI9i4STq7GJC52Eflac58I8KfwvOx0jGU5iq9JSdYhWduEb/PM26G2sJzISJ+5LobCpSqRTJcArvYJDgZAyJQiJ8lzjFyvRON56BIOlUmtWfqEZfqiHiiuE66oMU+OfDFK+y0HB2OYceGsY7GsTWZERtUaJyqEjFUkzsFK5npU5OJpMh4ha+B/nGQ2TiGRovLMFUoyfkjjLX42b3sR46uzqRSiVEo1EyGcGp0mg00t7ezq9//Wva2tooqKClKjgpFfSBOuOMM3j77bdX/JtWo8Ukt7IquFV0fsmRmo1XlTLw8gyl7Rbqzi4jMB3myEMjlJ9qA2Dq3QXBpSi7Er2ow0hJh40jvxth65daCbuiHHlwhIbLy7A1GTny614qz66g/2khq3Pbd1ohLVhe57T60zUYK7Sig5K2TE14OsrqT9dwLGv/uPnrzSQjKdH2zrZGR/Pl1fjHQxx7dGxZ7Fpuldnxp0aXxYXlnH5yLkxLte07rZDJrlpfou23ZV2RTng8p6qzHaTiaTHeThjo/H1aSRVn2pftg2O94T8c5wYCZRsPJDjwow+2gFwqS6sWz1g4b181djA3WJjZs7ItI7Di8S09Zyeq8UqBgJ4/6mXwhWnx8eZrKrA1Ghl7ay5//IBt32olgxDPd6JyrgG5a/fEfco5TB38iXDNlG61UHN2Cd2/H8M3EKb5mgrmD7uJOaOEXUKxve07rXmuYEv3r++FMRaOhqi7uITZTi9155WgtavE+JHtt7Xh7PMRccUwV+k49ugY2iot6z9ZQ2AqzNCfxqk8p4y+pybF/cutLCg/00bQGcF3LLzoPHVfN2Gzl1ixh4OdB5cdv1wuZ/369fzrv/4rF1988YpjXlBBBRVU0P8d7d+/n3POOWeZq11ORbZiyhYaqCytpf2mOtFF0rpei0KlZG6vV3AUUize15qvqmD8jUmarqzLcylq+3g1nsEAxgot1kaDWJts+koTgakIY++5KFplYOy1eYq3mKk/r4yZg25GXpkV90dYobS4EltjBU2xFkuziaEXZrCt1tN0aSUDL02K8V8bv9SI0qBYvEeeEL22/bttpOLpFePGtn6rlUw6s+xvOYed2U4Pwy8v5tE3frgcR5tJdJZaSas+Ub080mOFOLilKt1mZeaQO/85GjCWalaMZXs/5VaH59Uhf6dsq/UsHMu3ka44zc7kO++TFwzLjq/iTAeJcGJZjF1O276drWvu6F72eCaNeP5zyjlMjbw+y8wJ0SX2tQaaLqtcFseX2yfR3enXi9Ft7bfWI1fK2P/DftBA24er6X58TIxwKzvVRs0ZxeLqsrz9S2WEFYwaqD+nlOn9HtZcX83sIQ/jr8+z7rN1qC1K9v6klzUfq2Xi3Vm8/ZE8B62K0+wkwknmDnjF1Ze9fxglMhem9NRihv8oRLss/W4T2zzH4OggM3MzSKXSvBWk5eXlrF+/npdeeun9z1NBBRVUUEH/x/WpT30qDxZfKq1ai1XmoCW8adn9uubCImZ3zaN2aGi7ppbAlBC54egwIVPKmN2Tdc0JC44vpno1FacUc/z3Y2z+p2YiCzGO/maUitPtlHZYOfrEOKUdJkbemoMowip8mSQv1izntjT06gxzBzyoi9RE56O0fLSS3j9OQBQ2fLGRZCzF4X8X7rHaCjXrP1WHb1xw1Tkxdm3tDTXoy7T0Pju+LC6seKOF+g+VMrFzXozNymnLN1qQSJfHrm37ViuZTOakcWyODhMKrZzp95b0bE7Yp5VUts26LA7N0qLLA2L+Xgk9nsRJo9tOJkO1msBcdFl0WvFqC3MH3qfntcLxtV67cowdQOWZdip3FDF32MPQnxbr2prziinbYmP0zbn88UOIsZXIJCvWz0tdKlfap23faSPmjdP5gNDzsrbpabq0gr4XJvD0hqi9qBhPv5+oMyLG8235lxakcqnoUrV0/3LuVJVn2nH2BKnabsNYqeXAj4Xx3vrNFhZ6/fgnI1ga9PQ+NYHaDB1faCMwHmbgj6NUnlHGQLbft/227HeDu3txdJhIxON4j0VE56nOn/bii84SXRVh/4H9y45fJpPR3t7ObbfdxmWXXbbimBdUUEEFFfR/R0NDQ5xzzjnLnMVzKrYVU7rQhF1dzPavZ52dfz6EvlaFxqbGecDHxn9uQrnE0bDmQ8XM7HJSfW4p9lYTB385RMwVo/GKcnzjIdRWBWUdNtHZqP2WeoKzUcbfdWFv0TP13gLGWjWrr6tj+sACo39ejG7d+s1WMum0GIOlMkpRWRRYWkyM/WUefYWKVR+rYfDlGRaOC328NZ+pQV+iWZz/OyHqTXCxTLH/vr5lx7/xK01IgP3ZOK2cHOuE6NMT9y/n6DO5yymCyyeq8cpyBp6byn/whH06UbZVRoIT/vyoNBUYS1RipN3fq3U31qIr0eTNk/29MjVol8WqFW0wv2+sHbDs+BzrTMgUEmYPrPy6zV9rRiqXLuttbf5qMxIp7L0n/1yVbDRTd34Zo3+bXVaf6itUrP1UvZA0tDT+LrtPjVcIfcpjvxPcnQBWf6IapVEhzlnnzpnKriLmimFu0tF2dbXgzL7kXG76ShNSmUTcv6pzHcztdbL6k43MHfEw+baL5qsrMFRoOfBAP82XVjB32IO3P0T75+tRm1Xs/r7g6AQCNNV8dQX2FhO9z06wMOin6nQ7468J3wO239ZGPJjkwI/6iXTMMzIzyPT09Io9r1NOOYWnn376/c9TQf/jVXBSKugD9dZbb4k/d3Z2cuaZZ4oTZ+FImDBhZvgDf7tTisVsQZ7RstmxBUeLBUu1UbDvsyiRZEHYqlOLkMgkTL27wK7bu2m8qhy0UHVqMUqjAq1Wyp47e2j6aAWmRi3GCg0ylZSIC/qfnqT9c/XMHnIT8yUguwbesd5Aw0UVDL06xejb8wSHhRvX+hvqxOiwnHJRbgDaKi1KozLvi/r2r+RDRN3PTNB0SZkIKG34YgM9vxsm7EoT88fJpDJM7hU+pHNQFEDEFRNX/SzVrvsX36v2omJm984RWdLrqdjuAMiHbLL34Q1fbECulucdDyDGfU3udeXBPjlASWMn7z1y21KZlP+hCbET49ZEZYEeT89ykmrNp4XX+AZ9IsADAoxVsc3Bkd+Niucrp5z1d80FxYy+ulh05W7OA89NMbVnQRzrnCbecWGpNeAZiyzuF8K+xUMJllomtF5XRcwXZ/ilWWa63Iur+ICmj1ZgbzIy8tcZZvZ4hOPVQtV5RYy/Nk/UF0MilWBvM+EbCNP31CSlWy20fqRGtHw//NgY4fEwm77cBMD+H/Uztc+NpdaAVC1l/c11TO93EZ6OorWrkGsE2rv5mgoO/XqY8HRUBP8ALNUaBv48gXN/gI1fFiZ3tVVapHIITIc4+vAYGjtU7ygmEUry6tFdvPnuFAMDA7hCLiRhCZmpxQGoqalh/fr1PP/88yc/4QUVVFBBBf1f16ZNm/IiCD75yU/yxBNPiG5I8wtzzDPHoZmdvHGPFqVERV2mnU1nNaHQyZk74mXPD3pY/ekqNOUaNEYJ9lYTGpuKQ78cwrHZiLHRTGSvF3ONDn2pmn1396Gr1tBwZRmDz02j0MrRF6mJTEWIlqpY/eka5o67ScXTzO4RQJ9N/9xEMp5i1/e60ZQLDoNrb6hFX6ah++kRhl4QJlQsTUYkMgmhBWGFeNU5RRz41YAIyFScZqfq9KI8+MnZ7RMcAID6S0qRKCQMPidMUsQDCdJJoZ7QWCGS7QX4x4KkNtuY2b04kQMw8OwUkzsXiGRXjNVdVJoHMdVfUoq5Ri9M7j29ZKIoghABdlUtQ69P58E7umoNteeUUL7ZJk625F7jH46cFHDa/t02ESr7e7X9u21i5OxS5Y79REBJY5VSdXoRpZus7L8vv6m1+RvNxP0JAQw6Yf+qTnFAhrzj1Fil2NbZmHzTyaFf9ohjvVQRd5xkdNG5IQcNzR9wUdphIxkTzrumXEPLpWV0/WII15EA5Zuj9D83Kr4uZ9+++/s9HM02cSpOs7MQiRFxp0XbcOFNofvxMTGiedft3Uy/u4BvPIy+RMW2b7dy5IlRQmMRot446WSG0m1W7G0mYdsakGtkmKt1+Js0BGciHP7VMMY6DYYyDTVnlXJoYpiFfr84MVh1ehGpeJq5A14CsyEWhvy4e8Js+moTCq2c4T/OEWic4I9/HODIkSOCs9LexXGSyWRs2LCB++67j1NPPXXlk11QQQUVVND/J3rkkUd45JFHABgdHeX0009nYmKCTCZDOBomzBiTjPHGDyXYrDZUGSOtkg7KNtixN5k48KMBRt+eRaEVvtPXnlWCXCNASrvv6Kb2wmJQQ/UZJejLtGjtavbd20ftRcWY6tWYq/UodHKi/igjf46y6hPVuLr9hF0xpFlHS0O1mlXX1jD02gyT+xYITwp1Tcdn64So93sXJ07kKql4z1SbpRgrtHmTQlu/3AIswkX9z47TeFmVCCitu6mWvhdniM5GScaTpOJpnF1CQykHRQEEpsJiH2Opdt/Zg9os/Fxxuh3XYTdR72IvqOH8MiRSST5kk23trL2hBpVFyf5782uYHCDm7vHmbSsHKKnNiPBMTksjzv5ebfiCEM22bBIta5oUGFtOUm24qRGVWUFgNiKeFxBgrIbzy+j+/Qi+ofzXNV1ZjrXRSO2HihlZMtFYc14xo6/NMfGmC+fxoDjWOc3um6NorZnAxCKYlTv2qDeOdIlbQd0lJWQSGUb+PMf4e050RSrxb9XnFlG+1S5G0O2+oxvUwvmafNtF2C24XFoaDXh6Q4y8PIepXk3HF9rECLnDj44SnY2y7uY65EoZB386wOw+J0XrzKSladqur8J5zEd0VnC/UOgV4n4deXyU8GRUrKMADHUm+l6eYKEzwNobazGUaXEe9xANZPCMBuh5fALU0HhROXF/gteP7uft/W8yOjrKnEeINcwcyIhRIlVVVWzfvp0nn3zyg098QQUVVFBB/9dUX1+f5yz+b//2b9x1112Ew8L80NzCHHMIwPZ792jQK4zUZdax/tz1aIvU+Pt9HPhhP40fKUdTqiKdhLJNNkwVWg4/NMJcmwdjuRqnK4ajzYSpVseB+/uZ6/JT86FiRv88h8osuNjEXDFC83Jar6li+oiLeCjJ3GEvAOtvFNIq9vygB1XWKTMXHdbz7DhjfxF6Y+Z6A1K5jERQIGLKtlk5+sSoCMjk4rum9rvE10zuc5IMCn2U8h02VCYFwy8L/bDYQgxyvY/crTsG/uko8VCSmRMgm4m3nMwf8xPLOvxUneXIg5XKtllxrDIhlUnoe2ZxQRcx0JSqWPeJWkbfmM2Dd1RGKc1XVBD1LALM4n7kAKUVIKdt324l5kvkv+YDtP22NgLTAui/VCojxPwsA5RQQcMFZVSe6uDgCQYLG77QSDyUELZ1wr7VX1gGcMJxgm2N4Dq076fLgTGA4HSEpTYvOWho9qiXqtOLiWXd0FVGKU0fqeLor0cJTsbwDAYZfn2xxtv81WYkMth7dx8Dz08x8PwUjnUmVI4MMWcMhV6OYkldPfDclFCXGhXsuqMbb3+IroeHUBnkbPl6M73PT+AbDBNxRkEiwbbKSNEaMz1PjWf3R4G5Sou3QkXUF6fv95OojFJszUaUBjnesRALA37G/ypcK40Xl5OMpnAe9hGYDxOYCbFw3E/75+rR2FWMv+3CWzrNSy8Oc+jwISH1Z4kXglQqZdOmTdx9992cdtppK45lQQWtpAKkVNB/SB0dHXkTZ7fffjv/9m//RjKZJJ1Js+BZABZ40TnBaz9QIZVI0WSMbG65EblGxsjrcxx+ZITmK8txrDcQD6VwtJgwlmo48OMBai8rwdJqIfzuAvYmI9Y6A3vu7EFbphaAlbfn0DhUVO4oYt+9fTjWG2i8slyIb5BKCLqShMfDrL2xlpAzSsQZI5C1OFz9yWoMFVoO/XuPCOysvroSuUaGbySSBxels3eeog4jlTuKOPiQcGOtuaAYlUlJ7QUVHH9snJmdHmZ2CqulHOsNNF5SKRCyD41waMlk0tZvtSKRwu47ehYhIi2UdtgoXmvNc/fp+cMoctXyRg+ATClDIlsOPo28No2p3rCi29KKK6YA71gIW6Ps73Jpyik4E0FnVy97fNNnm1AY5Oy6r3vZto49MUbducV5gBKA2q4CCaSTLNORh0aou7gkD1AqP9WGY5UJfZGarl8Oieer7foqzLV60elKHEstbP9qm9Cwu6dPdEHKyVKnJ53MMPzSLKOvzlF/WSnrb67j0L8PM/nGNJYaPVHfYjWz9UsCMDT+2jyenjC7bu+m45/q2fbtVnZ/v4eZPR4qtjvwTfrZ+OVGjj8uFEmybHFhadVStE4411q7FO2HKqncUUTQlWT2iIfx1+Yp3mzC3mRCa1bR94cRfBN+erJkdPUZxaRiaZzHe4kE4nhGfYTHwyLINJ+ZIunw0fO7QwwNDZEhA7uFAgGEaKH29nZ+97vfUVVV9UGnuqCCCiqooP9H9Oijj4pRBJFIhI0bN9LdLdzTc7B4J3+j6/430ev0RMIx1rIVY0Uba67VsO/ePuaOu1BohSZM3ZllyJRS5vZ66Xqgm8rzytFYoenCMjR2FfOHPOz6XjdV5xShKVFTeYoDpVHBsadGce7z03xVBTMHF5AppYs1SSpD+631OHvcKLQyvP1C7bXt262E5qKLNYgGKrbZKemwsC+7Ci3sDJOMpRh5U2jIrPtsHZ7hINNZWLtojRmJdBFSyq0qAlhzYzNypeB04x+OiCvHbav1NF9RxfxxL4PPTYuAUvvn69HYVPgngqKr09CLM6TiaUb/slhz5EkCWlt+7RMai+AdDTHy8tiyp2usUtpvbSHiitH1i6G8vyWCSXyTf2fRhQAiJYJJ0dJ68Q/Qfquw4v3gT/Prm4g7zUKvn7nD+avrAaQyqRjfd6IGXpkkvJDIe2zdZ5uRKiRMvunMA5S2f6eNZEyYED30y6Elz69DV6zm8G9HCI1F8lag1Z9XjMauoniLmbm9XvqfG6b1Yw0MvjKFfzhC2BUjFV+sFY11GqpOL6JorZnOnw2y794+NOUatn27FVefn4Fnp3D1+dBYVNRfUorKrKT7sTFUWgkSmQRHi5GSdjMjr0/j7Y/kTYLVnFZM1wO9RNxp0XVs6MUZ9OVaJvc7Gf+zU3RSnX5vDl2FjpArSv/To2hK1JSstRHzxnnjnb/g+usgIyMj+DI+yJ9PpaGhgQ9/+MNipHZBBRVUUEH/76umpoaxscX7+yOPPMIXvvAFgsEgmUwG14ILcDGVGeadO5XIZQr0GSvtqz6Gxq5irjPAkYcGaLqqCmubnvB0mNINNiy1BjofGKTyXDvGCi3hySilHTaK2szsvacPtVlK1XZhUslUrUNjUXLgxwOY6tXUXlRMOp5BKpeSCMQJT0ZpuaZSiKodDRLJRm7UX1qKo83EoUcEeASg5ZpatA4VoZmwCNj4J8Ji7K6hWk39BeX0PiXczx0dJnQlGurOLqL7iXEWjgRYONIrPnfNJ+oITIY5+ptRup8YF8dp0z83IVfLRKfzHDBUdargrLh0od3hx0bQWBdjiZdKppSJUW5L1f+ncYrWWPMApZzabxEmT3bd053nVuQZCqLUK1YEmE4m71gQc7V+2ePrPiHUOJ0/7V22D8cfG6Dm/Mo8QAkQemdSyYo9r/7npoh643mTiNY2PWVbbJhqdBz+1bAIKNVdUkLJeis9z4zh6Q3lAWmCE0OS/ff1izF1OZWstZJOpRn58xyze9xUnmlnzadrOPqbUcbenadorVmM6QXYdKtQK03udRGdjbLre92s+WQNW7/Zwp4f9OIbihJ1xfGM+Fh3cx19zwu1uVIngOSGajUl7Vb23dMHami+qBK1SUlgOsZ8t5fJt12Y6tWUrLdiKNHQ98wI7mE/U9nvAI0XlZOMpFjo7CMajBPsCuMdiIiAmjfjIlw9z1NPHmFgcEDoee1d7HmpVCo2b97M008/TUlJyQee64IKKqiggv7f0P/6X/+L//W//hcgxKJfeumlvPHGG6RSKaLRCNFoBBevsf9Xf0Wv05MIpljNJhwtbZgqdRz4YT/j782htasEgOXsclQmBc7DPnbd2039eSWojFLqzy3G0mjANxZiz509lGy2oHKoqDzFgaFcy/Arkxz4YT81HyrGrfQi18shNw0Xi7HuxlpmD7uFCPgeoUez+avNhOcj7P7+ElfBs0so22bnQNYJKRGMEfMnmN0tTEi2XlNFYCYsuu+Ubrah1MhFSOnoo4t1aMdNDahNSnbd203MGePAD4Vt6itUrP1kveC4+NKMCCi1XVuFuUFPyBlj4ahgMjG92y0YRry3vEeUTgJSCSqbMu/xmD+N85iX8RVegwq2f62N8FyUQw/lL6aLzC/Oxf5dUpEX47ZUG77QRmQhRtcv8/tqxGByrxP/2PLemlQhyYt9W6qeZ8bIJFJ5j625QXDkmj7gzoOatny9mVQiw4Ef9dP95GK923xVBbZmI8eeEByQ9i1xwqo8vRhDmVZ0/ux5fpw119Uw8Z4Tb38I/1QY6RJDC5VdReMl5ULv8JdDdP18CJVRypZvNOPuDzDwwjTzR70YSjVUnG5HV6Sm75lJ0kmhXjbV6jBV6ZjY7cI3GBZhIlRQ1mHl4L8LbmIbv9yEUi9n7C/zGGsNjL03y9RbbhHmd/f4kall+KZCDD43ASqo2VFCxBXj3X1vs7BniJGREbxRL2RLzZwxR0NDA9dffz3/+q//uuKYF1TQ36MCpFTQ/1/67ne/y3e/+13x96uuuornnnuOdDpNLC58skeI8P177kCpVBKPx9GGDKw1fYm688vZe1cv7hEfOrsWbZmaohYzMqWUqXcXGHhxgtKtNiytWmrPLkNjVRGYDHLoF72UnGpHW6am9pwyAcC5r5uBZ6YEkMkVRl+qQetQi0BI2/VVSBVSJBKJCCht+nIT830etKZF96Pt320jvGS1euUpRahMSrRmNeFwlPn9TkIzYdGhaNu3W4kHExz8ySDByQDJSIrB14RJrrqLS5jZM0vEBTFPHLk6e4Nc4u4z2+XGMyQUDLY1OhaOhkQ3Io0d2m8R9icHPC1tRix1bZrv9DPfKWyndGt+tNrCgB9ztW7ZuRv64wxDzCx7/P3U/fj4io8vDPqxNRiXxbxpS4VjOrakuNLapYRdafqfnsyby9HXaVl73aIT0fBLQmGWG5epdxew1OnFbeXcoZzHPJiqdCSyhYRoXxmGmC+OeyggjkvtuaWM/G2GmZ0eIXJtKCRCWo42s+haFHalOfpwP+tvaRHdCybem0emk7Lhiw04j/sYf2OxmVS61YK2WM3++/upONOO0qCg5rxKAjMRjjw6sswVqfSUYvpeHmOhMyTEwkkF+MlcZ8A97KXn8SnRtYrwFE0frSAeTtD96BCOJgPmcj29rkkOGN9g4tmjjIyMECcO3aBQKMileK5evZpf/OIX7Nix4z90ngsqqKCCCvp/UxqNhuPHj4u/Hz16lAsuuICpqSkymQyBoHDP6+QdDn3vPWQyGalMmhLptdTV1KEp13Dk0VFWXVNJ/SWlDL0+g73RhKlUx/4f9tP6sXKK1lvwD0eo2GanbKONPT/owd6hpfrUIsZem8fWYsRUrWPPXb1oyjUUbzFjazShsaqIupIc/Okg9ZeU4psRmgy5BUfV5xVhbTAwuddFzC1kwa//XB1au1qAnLN9DF2xGpVRwfjr86ARnHWsrULxVHGmg6pTHPS9MM7CsSDOYz5MVdkaRwO1Z5Yw8sosiXCKdCLD/CGhHsq5DnX9fIjWaypFQMnaqsXdExYBpTU31GIo1dD10DCR2Sje/kjeSnqNVUrELUxMdT8m1CP2tQZcAwFx/yPuNIlgkoWB5XG7+3/Yv+yx91PEffLXxLxxnD35kYDFG83MHfDmr45j0d3oxMjbpePv7FzcVm5cBl+ZRJ0DtJa4QyXCSSIe4RxqrFIcHXbGX59n7K0ZGi+qJDQvPHHDFxqQa+XsvauXY78ZxdqqJTInFIsKswa1RUntWaUcHh7m8K+GWf+5Orbf1iZCZ56BAGF/jPZb6+l6YIjIVASJRIJCK6ftuiq6nxuHSDaKTioBDWhLdOy6vRtNiZr2m+owV+roDk3h7PUwt9tJ8RYz5VvsGCq0TO2aI+QMMfGuEzRQc4bgRuk8KkxEzx9zE3GnWXtTORI5/G3hL5Q2ODjw4BvMzAg19MRhUKuFMTKZTFxwwQWFFfsFFVRQQf9A+tSnPsWnPvUp8fdvfOMb/OxnPyMSiRBPxIkn4oQJcc/P7xJ7XkasrHd8noaLytl3Tx8znS7MtQbUJWqK2ywojQpmD7k5/rthKk4twtyooXxbEeYaPRFvnM6fdlO8yYG6RE3deeVo7Co6/32Ysb/OU7bDhncigqXeQCaVFtyQ1NBydQVIJUgkUhFQWv+5ehaGfEScKhFQ2vadNkKzYY48PApAzRklaB0qFCY1UW+UwHCA7qdG8A4I9/LNX28mEUzS9YshAnNRYt4E4+8IvZrKM+04uwSXpNB8FI110aknFyU2/u48Yafw3uZGDd4BwW0oPBkFNWz7av7+LAW8l7o2+Yai+IYEKMax3oTz0OLiSWe3D0ebadm5m3zbxeTbHxB/e4KWRqst1UKfH7lKlg8oqcFap8fdHcxz41SbpUS9aUZfm2P0tUUIXl0k1Cb+CcGJKAco5cbF3R1kodVH37NT2e0IcJXziBdHq5lkRJhYqz63iLF35yEKwbkIvjHBVcnSoqPlw9WMvS1EwXX/Pnses+eiZL0VhS47DRCF/Q/0543/6BtzqCwK1n2iDveAn4k3XeICTus6PaZSHZ2/GMS21oCuSE3NmQ4WBvwc/d040dmoCBMNvDBN5TY7fX8cYeFIhC3fEJwvJ992YWsz4+r10f9M1h3ArGDo1VlqP1RM1Bun++lJ1CVq7I0mhrqH2a9/nYmXjzI6OkqMGPSCXC4nkxEck9auXcuPfvQjzjjjjP/QeS6ooIIKKuj/TalUKv7yl7+Iv09OTnLJJZdw9OhRUqmU2PM6wNt03vFu9p4g4TL1FVS3NjN7wM2xR4do/VgN1ecXMfaXeYrXWTFV6el8YJC6S0owVevw9ASpPaeU6mSKvXf3YWxW42i3Mvm2i7KNNuytJg78sB+VXYVjnQlDuQZdqYZMl4RDvxqm4nQ7EVd8EWJCiP9yrDUz/LdpUiHh/tlyTSXmWj1dD/QR8ws1hLlOh65ULdQoKjjwQD/GMqGnYFtjpPHicgb+NMXCcT+zXW5szUYRoMm5JCVikIimcPUK9VDOdaj7yXEaLikVASVjrRr/SFQElBqvKMfWauTwb4aJzMSIOWN5fSKVUSruZy5y1VirJrYQXYx9i0HYGcXZu1iL5XQitPSBirEcQsoqMBNeBi/ZVhlZOL7o/iPud9bd6MSIvNZrqjDV6uh6oCfPkSk3Lv0vjGMo1wnju8S1KuZJEA/lHJLAvtbG1HsLjL/nRGtXEVsQ6tM1n65BbVWx/74+Bl+cwdnjIzovvI/KoMJQpqVymx1vf4jepyZovaZKNDyIuWLMHfIQ9kVZf2Mdhx4aJuZPI5FIkCqk1F9cyuQ7c0z402z6irAYABXYGnTsuqMblRE2fLENW7ORbt8kzl4Pzk4vxjI1teeWYm0MMv72LMHZMDMHBCCu8ZJyYr4ErmMhkEqY7XITnIyx4UuNKHQy9vjexVynpefXu5maykbKdS32vGw2G5dddhkPP/zwf+w8F1TQ+6gAKRX0X6pnnnkm7/ebbrqJRx55hGQySTwuTGaECfC9730PqURKOpNmfFcTF15yIQqdlKOPjbL6+mraP1dP1y+HaLykksaLKtn38z7WXFdN+ZYijvxuhJLVdorbbOy+o4eay4ppvrSCvj9NUrbRRvEaC7tu78a+wUDpKRaKVlvQF2sYfm2aIw+NUHqKBd+ED4VBjq3GyMGfDlK61YKuQk06mSE4J9xkVn28ColUwqFHRwUYSAvrb2kh5ouLkBIZyGR7FNpSHdMHFwiPCzeiknYrRWss7LmzJ+9mu/nzzSJYlQNx0ELz5dWkLkyLLgCRMGRSmRXp49qLiintsOEZCtDzu8VmSM41yTe+6Aw19MeTg0hV5xVhKFZz/LGV4aOlcqw3ULrRzpHfjSxzSxp+aZZhZvMeW3ujEEG3ayjfXWn9LS2kk5llE2XB4TCZVEZcBQiCe1L1GcWEtgugUA5QysWd7bqvG+ehAM5DPeLzi1abRbelgw8N0vihcgC8gx44pxSdQwN4iCyk2P7VRReCI4+OUNJhZvPXm9l3Tx9hV5p0MkMqkaT1uip6nhgHLVRscuBYJTTAOn8mnNftt7WBBGZ2Cg2oI0+MolBB21W1FK0yMbXPhW/cz2ynh7qLSyhZZ0WpV2Ao1hP1x5jeu4C2TI2t0Ujcn6D0FAtSuZTJzmzTqlZLd08Pf3I+T5mijD/d6yMUEhpRkWgYlUpFPB6nurqa5557jo6Ojg88nwUVVFBBBf3315o1a5icXARSpqam2LFjB6Ojo6TTaTEP/PHfPy7WXQDK8Y/Q1NzE0IszzBxyUdRmxb7WgL5Yh0IvZ/DVaYZem6Zso5WK0+yYanSYa/QkIin6nh/HvsqIfa2BqtOKUVuUdD04jFQlwVKtQ2MNULzOQtEasxCdq4GyU204Wk0ojQrGfy7cO1s+WkkimiKVSIvwy+avNTO514XzgDChtPHGRpRmBbvuFUAhtUUBGVjINiqkSgmHHhW21/5pwSUpMBnCdSQguvic6GzU85RQN63/XB1ah5r+P06I0FLEE0NnV4nOS0u19ZsCbHwitNR0WSW14WRetNrJwCKNFeovq2Fy55zoNvV+aru+Gu/YoquUqAjLHJSMdRrqLyijcpuDAz8dyNuGuVbH6Ftzy7YTnI+iMuWvmFsaoSaMSwCNNd+5aenxrbu5WXCafH0eb3+EmXIPxlIN/uF8S2yAuvPKURoV7LpdgJC6fj3CqisraPxwOQPPThFyxlAaFdRdVop/JEjPUxNs/IJwDWjKwVhhZtcdgstX5XYHbVdW4R0P0ffCGO7usLjvk3ucVJ1mZ3Kvi/HX5tn+HaFOG/2bk/o2M97xAMefHmfzrULd7O0fZ/3n6ohHEhz/3QT6MiUxSZS/HHyZBcMCxx55j7m5OTJkGBz0YTIJdaBSqeSGG27g5z//+Qeey4IKKqiggv4xdPfdd3P33XeLvy+NKMn1vPy4+d4diz2v2qO1XFJ3CboiBceenGD1xypZe10NRx4eZdXH9GgvVrP/F/20frgSR5sJZ7eP8s0Oyjba2X1nDxVn2qk8xcrAq9PUnFlMxVY7u+/oxtysoXijBUu9HluzkbG35+h9agJHh4nAtA+tQ4VUYqbzF4NY2/QYa3UkY0lCzkXnJYVWTueDwyLY1PGFFqLuOJ0D2TojA+m0cEM3FKuZ6XKL0WWVpxRRttnO3rt681yV2m8RarLOn3XnQUJtH61dFk2XiqcIzi+vu0q2Wqk7twR3n5/e3y/Wuh23NKC2K4l6YiJ49X4wUslWK+ZqXX6k70lkqldTvq2I4ZfGlzkvrfQem24RoJzO6Xx3pfZbW0gn0nnuUQDR+SjpeCqv52Vt09Py4SqC0wIolAOUcu6UnT/tJTAWFbdlbdNTvtWOuVbP4V8Nc+TxEWrPLgbAMxqCTLZeBrwTEbZ/t42oK07nLwY5+ptB7O1WNv1zk1DLRSEVSxGPJmm6spz+rIt31Y4iZAopiUia478fgyhs/WYLUpmUmT1zqHQKDv1mmHQcOm6uI+yMMf7OHJ5RPws9AUq2Wqk6tRj3gB+VLkTEH2NmnxvUAigV8yawrTUgU0mZ2u+EKNjajAyND/LS3DOUlZXx1v0vEAwK9X5kJIxarSYej9Pa2soTTzzB+vXrP/B8FlRQQQUV9N9fFRUVdHV1ib87nU4uv/xy9u7dSyqVEmuvP7zyFM+9KtRdEiQoZq6gZVUzY3+ZZ/jNaSq3FmFbY0RfpEFfpmFml5Pe58cp32qjZLMFXZGakg4rmVSGY48NYVttxtKqp3yTDVONnqOPDjLT5cFQpkFlhIrtDkhn2JOdx8sBSoYyrRj1VndRCalEimQ0JYI/Hbc2MP7OPK5e4R635mOCm83Bnwjb0dpUkIHghEAEyVUyYXsILkmWRgORhTjOwz7251x8VILrUGguwuGHRhh8UZgLbLmmEmuDgYEXp3AeFoCiiDtGOpYmMnNCFhqw8Z+bkGtk7Pn+kjk7Fay+ro5YMJEXrXboVyeBkVTQfGkFs13u5TFtK6jhklKCc1Fm93mW/W1Z/JtdRfMVFUROj9H188W51roLSyjpsDL65izTO915rwnMhNGXa4gtOdwNX8xGqN3TjX8kin8kCioBnI+6BVejpbDVmhubUGrlTL23QGQmxtS+BVQ2NTF/lEwqw9LGV9VpRRjKtOy6p5uYK8bBfx+i+dIy6i8uZeilGYKzEXSlaqrOsxOaijP00gxrPl2DtkSNyiFFX6Jnz1292NYYabmiEoVejvO4j76XZ/D3BcRY4ulON6Xbixl7d5apt91s+XozMqWMyd1uajbacfX76Ht+kvYb6tFYVfQ+NUnbtVVEfXGOPzmBQg0ZXYK3uv/KtHaK40/tZHZulgwZFoYRe15Go5HPfvaz3HPPPR94Lgsq6D+rAqRU0P9RPfjggzz44IPi77fffjvf//73iUaj4kRZ/1A//T9anOwYenEVlVXVBDJhRt6cpPaMCurOKkGpUYgTKSN/m6Fim4PVn6qBTAZTtZ7IjjgznQsYStXUXVyCpU6PyqTkyBOjOFoNKIwKtHYptWeVkkmXCNEjdig9xULVjmJxQgag6mwH+lItMpVUhI7WXFdDPJhg7qgXgPU315FKpsXYkYYLK4WJkb0uCMPYW3MkQkJsxupP16C1qdh3bx+uXl+e61DVeUWMvzZPcCbCQp9QgFhatXh6wsLkXlZbvtFC/4vjeHrCjLw5h6PNzNhrU3nj3ffHCapPLxYBJVFaIa4sOB3OczUq32hbMT5uJVWdJkTdabVSwuHFBsy277Qyf8y7DIYafHmC0o2OZUBTxB3DvyTqZMMXG/CNhxl8YVo83tzxT727QEm7hYFnR9HYwdxsYWanh/mjXorXWSAMDZeXYW81sefOHqbeXcBYqRXBrS3/1IJMJWXgz1OC61KfD0ericEXpglPR0kEkiQTKcpPtTH17gKmK3TI1TLKTjfhn0iw584e0dFIUwkGh5GuX3RTcVo5lacUobariPsTjLw3g68/wrqbm5FIJXjHRqk+rQTvSICRVydZf0sLZGD+iBdHmxn/dJCe58fFCLm5fT62fquVRDTJgR8PoDw/wez+Ud59512kGilv3/tHEgnhWvJ6vVitVsLhMGvWrOHFF18sxLcVVFBBBRUEQHl5OSMji1EPbreb8847j66uLhFYAnj22T+IP+ve0LEttI1AJIzrhwE2fb2JzV9oZt/dfdSfV0bZVgX7ftrH6murKd9ko++FCWyNZmwNZroeHqb6dAcNF5Uy+OdZqk4vonybna7fjGCpVVBxpgNjmQZLvYGxd+dZOOzE0WEkOOfH2mQgEUyy965ejHUa9BVa5BoZxjIt4+40FafZiUUSwgruLM9jbzIx0+WGiAAIFa+xYK01sP+H/XT9fIjGD5eLwNGWf2lh7pCH0XfmSASTTO8XAJ3SbVZmDrnpe3GGlsvKxOebmzQMPjfNIMJqscYPl6NzqDj0S6E54eoXosWWKuJO458IM/7O8qi4+stLKWoz59VyCrMGU6UO2WmlePs/eIWZuVaHoVyTBxet/nQNWrtKiNJYIv9whMB0hME/50PjI6/PsfpjVeI2bKv11J1fxv77+vOO11gngEUzB93oi4VVUlXnFDH++jwRtxA7l3Nu2vSVJgJTEXqfnmDkbzOQdczWWKVU7XCQaLew//5+On82yOavNdP28Wq6Hxtj/rgPe6uBtk9U0/3bMSJTEZRmBWa5jorT7Aw8OwUawTrcVm9AoVNw4KEBiCCCRv6xKOl4msk9ToLTYVqurCY4HcFUEyY4HyYwEaX+nFLsLSbmj3tZ/aka4pEEE+840Vg1QsSOM0r9+aXIVTK6XxjBrXEzNJuit7uXnpkeDEEDgYOLTlharRaLxUIikeAb3/gGt9122weeu4IKKqiggv5naGlECQg9sG9961u43W6x5zUyNsJPfvIT8TlDr7RSXVuHNxPj+B+Gabuijtqzi1GoZejLtKjNagZenqLqNAdt11URCyQoWmMhGUkx/s48xiot1ecWYazQYqzU0f37UULzEdLxNOoiNQ0XlEO6TOhvqaF4o4XKU+wCKJyNRCvbZsVco0dlVCxGw32skpAzykL2ft9yTSWZVEZ0Gm++vBKlUYH7mIeoN83AS4v9qKYryzFWajnw4wGc3T6KVptF0KfidDuTb7tw9/vFRYGGajWBsWhePbPxy40M/XkaT2+I2T1uKrbYGH0rHwzqfn6S+vOKRUBpqTZ9pYnQfDTPAbxqhwO5ZuXYjxNVdVoJxkqd6CqV09ZvtjB31MPIy/n1Xu9z41TuKFoW/xaYCBP2LL5+7Q01hJwxhv40w97s8Zrq1fiGori7g4ROjdL/8qxwrlZbmDvgYfrAAlU7iohG01Sd5aCkw8q+e/twdweZa/CIjk8bPitMVs3sdBL1ppne76Kk3crwi7MQhbAzRiKaEKNHjGVaFHo5JdsthKYi7Lu3T3Q0Gt81ha7IQOdPu7Gvs1N/Ximmcg2BuSijb03jHY2z9iahP9b54DD1HyrGddzH+HsLtN9QC1IJc51e6s+34R0N0PP8hBgh5+z0semrTcRDCQ7+dADpjigHDk+xc+dO0uo07/x0caLZ4/Fgs9mIRqNs3ryZJ554gpqamr/rHBZUUEEFFfSPLYfDwc6dO8XfY7EYV199Na+99hrRqHDvzZDhhReeE5+j3q9mu3I78USKhYf9dPxTPWtuaODAD/tpvbIKtUXFgQf6kWkklLRbCUyFKF5jpXitla4H+qg8vZjybcWMvj1Hw4fKSJ1VTNeDw+grVZRts6IwyqnY4mDivXn6/zCKuVpHxBOipN1K1BvnwA/70ZSqMJQqUFuUmKt1TL23gGOdiWQ8RXg2KkJMJR0Wpg+6BNcilQBDOVaZOfjTAbqfHKfuwhIRONr45SbmDnmYeMtJ2BllLuskbltjJDjmZ+SVKRQfqRKfb6xW5UHXlWc4MNfpRBhorsuDsUKTP+AxwbFy7uByGLzidDvlm21ibQOCe5CtxYhSL+fo4OgHns+itRYs0VQepNR4eRmmGj0HftGfF8EWc8VY6PMztTvfRWnqvXnMdXohsi17nI2XVnHwpwN5x2usVuEfizH+9jzWJgPEoGSzRXjvGETmF92h2m+pJzgXZeC5KYZenV6MkFNBwwVlxHxCPXPst2N03NpAyzWV9D41wdxhL1KZhKbLyun//RQxZwxtkRq5RkbJRjMTbzmZeMvJ9tvaiPkTIIWjz46CH7Z8oxmpXErnWBCFRsbIGzN4hkO031hPYDKM26EkMBdhpnOBsg4r5ZvtzB/x0HhFOfFwkvE/z6BSga3ZSGA6TPkmGyqjkv4Xxwln/ExERuh/o5/jzuMYDAYCP1rseen0OqxWK0qlkttuu43Pf/7zH3juCirov0oFSKmg/6s6MR7O5XJx+umn09PTI0ZUHe8+zvFuIcpk33tvUzJYQjAQJPpinFu/eAvbv9rGrtu7qT2rFHmZjN3f76HtU5WUb7Ix/s48+nYd+hIdh349TM1ZRbRdWcnEe/PUnltK+UYbk3tdyA0SVn28ijRgrTUwc2iBZDRNUYeRgNNPxXYHyUiKXbd3oy1TY2lSYSzVEZqLMPmmC8d6A0qjArlqsdmRCCfxTkYgLESRVZ9RjGc4yHynH61NJca9Db80i2+NcBNYf3Md2iI16UQ6Lz++9SM1ZFIZcWKr/FQbMpWU0g12PD3jEEZs5pRutVCywUrXA0P4BsIcGRC203hVOQPPZJtGYZDKJKhMirzz0f3MGL6pD6aaAQ7+ZJCiDiNh12IDpqjDiEQqEXNIQYCuXL1BFo6GWDgaEp9Xsb2Izp8N0vXAEgtHLahMSmxNcnGSrOHyMorWmFkY8NP31CQHfyJAYItuRR7GdzvxjQvb1tpVSOUS9HVagsNhLHUGNnyxgYM/GWTw1QkqTy+m9sxiRl6eQ21QIJFLqL+imKHn59j/o362f7cNzQ418UCcrgeGxJi9REiY0Bx4aQK5Skb7p9ogA+M750mn0vgnQ8TDCco32fGNBSldbSPiieEeDFJzqgNdsYaxd+dY/elGkrEU3X+YwLHaiEwlJRZIseGGBpBmeOj2R9E1qJj9Uy/Dw8OEM2H48+IQKRQK6urq8Pl83Hbbbdx6661/1/kqqKCCCiqoIKvVyoEDB/Ie+/GPf8x3v/tdAgGhFgmFQrz+xuvi33c/oMNisTCVmWbgnsN88uvXsu7jdcR8CRTlcnRlGo79boSWD1ex+toqnN0+bM1GyrdYmNztwlKvo+miUtKpDMZyLcNvTiGRSVBq5ZibrdSeXQIZ6P/jBBFfktJtViq22VHo5IJjUkQAaSq2O5AqJCJA3nBFKVKFBKVe+PpSuq2YkCvKyF+ESZqNX2pEoZMzwBTWVi0ypRS1WQkRAeL2DwukU+05JdScWczu7/eIq6/arqvCXKdn/D0nk28KDQ9LvT4vy37wuWnx5/bP1zPy+jTe/gjHHhkFBMhHX64VYSC5QoZEKsHcpBFdk/zDEfpeGBfBqA9S1wPdKMz5TSK1XpG3XyAAUUMvzHD04cVasv2WesbfnWPhWDDP8rqkw4ZCK8fRYRQj3nJxabu+1y3E7AE15xdTvsWOvkRD9+NjDP15Enc2klihlaMvydo9N5ow1+iYO+4l4k7jGfajMiy6M8lVMrQ2JdZWLeOvz2NrNGCu1lG8xYB/IMSu27vZ9NUmqk4vYmHIhdYinAe1RUHduaVoS1WoNApmjrqJeRKs/0wtEqmEkTdmqTu3DHe/n9G3nLTfWAcZ8I1GKFpjZr7Hw8Cz02z9ditSiYS5A162f7cNl8vFYw8+Qf2qWtwH3UxMCGB75/OLq9+0Wi1lZWWYzWZeeeUVrFbr33W+CiqooIIKKuimm27ipptuEn+PRqNcdNFFvPPOOySTQmxET18PPX1Cr+dgj4Sd7mIhPs6X4obPfZqOG+vY9b1uGi4oQ66R031XL8gyFK+3MP6eE1OFDlOVnq4Hh6k+1UbduWVM7nZRf34pVaenGXljFpVFTsvVFcTCCco67Mx0LRD1JLDU6Ih4Q9ScU0I8kGDX97pRm6UY6rRY6w2EZiNMvu3C3KhB61Ah1yy2jePBBP7psADlqKHxonLcA36ch3zoSzUo9EK/afJtF8FpoV/T8tFKbM1GpDJJniPS6uvrFuPqANtaA0qDgpJ2K55e4bUHfiys2Le06Kg6tYjDD44QnY1y/LfCwrvai4rzwCG5SobakO8Q2fPMGAnfcqBpJR39zSjWNn0eAGWqVyOVSZErFmuvkq1WQjNhAmNRusfGxefVnF3G4V8Nc+y3o3nb1ZVoUVmUDCHUrBWn26k6rUh0icpBYFu/2YJULmXugAdnp4/oQgyioLEokatlYiyco82EqVJH5wOD9P9xgtpzSyjZ7GD0tTmUejkypZS6i4sZfmmOQ78cYvttbegdGiKemOB4pYbtX28j5kswuctFz/MTqI1y2j/TBsDwazPIVTLcA348U0Eaz6vAOxrE0Soh6onhHghSvtmCuUbPxHvzrPpoJYlYkr5nJ9BWqFEaFfgnwqy5tgaFVs7j9/weaU2S2T/3MjIyQigTgncXx0cul1NXV0csFuM73/lO3v9PQQUVVFBBBb2fVCoVf/zjH/Mee/755/nyl7/M5OQk6XSaaCzK3/72N/Hvux7WYrVYmc3MMXTHUa779lWsuaYa/2wEe7MCQ5WWw48O0/qRSlZ9vI7JPS4aL7KSjCYZ/usMlmYDjReWEPMnKFprYehv0ziPe0mnMpgazdSdUwJSCcefGiWTSOFYZ6J8iw1tkZqDP+km5gdTg5bqM4tR6uWiW3flWXbkapnYTynbaMU3GWLibaHWWfOZGnQONcOvzKIpVaHQytE6hIV0g69MEcw6ZTZeXA7pcvbc1SMCSDUfKqZso42J9wRIBqBojRmlQS7EnMUQHwdY/YlqJnY58Q2GGcg6LaocKizVGmYPeAHEWDJzkw5vv1C7xVwxup8eE3//IO26txu9I38xoNoq1D1LAaWqcx2M/9VJ3zOLteSq66uY7fKycNwvmkgAONZYUZkUONaZREBr81ebkamk7P5+D87DPpyHfRRtMFN3fimWOgM9T40z/Ma04KqEMF+Zi/Kz1OkpXmfBP+Ij5ofZQwtobWrx/ZR6ORmJcE7nD3qxNRpxtJjxbvDjG4uz584e2j9XT92HyvCMedFYdAy/NoNMLaXlikpmOheQSiRMH3SRCKRZd1MjcrWMvhcmabm8grkuD5N73ELPC/D0Bag7v4S5ox4GX5hm89eakSqkLBz1s/VbrXicXh55+DHq11Xz9u+8jI2PgQQyS3pearWa8vJyqqqqeOaZZzAajX/X+SqooP8TKkBKBf1/KrvdzvHjx/Meu//++/nf//t/EwgEyGQyzMwsOvT86Cc/QqlUEs/Eef3f4JJLLqXiE1YizjjmSgmlm60c+m0va69rZt2naxl9YxZzrZ6iDhOTu5zYVxspXW8l5IxiqtQxdWCOgFqG2qgko89QsdkOgKvfj6fPR/M1FZgqdMg1Mob/Ns1Mp4eiDiP1HypHIls6cVaM2qwk7hfcbkq2l5BJZ/COCpNQYWcUpMKdLQfhOFt8HHpsmDXX1DD5pkD0bv5aM7NdbjzDQRLZ3NPizSai3iiHftErAkIbvtBA95ODRFxQeWqR4PRjh0gWam68spyiVjOK62XiKrKl8SQ5+Qb+PkApp/lO/7Lf5zvzt1uxxU75JiGKL6eas0qRa2Ro7VLCrjRt11fhnwoz+aZLPK6Gy8sYfGGawRemMdfoGH9vkk1facLZ42P01TlmD7lFW+ztX20jk86w+44e5o64UZtLCA4Lx5JKpkEujPXC0RDNl6tRG1TMdfk4+utRNn65keLVNoLTEfxDfsbemqNiu4PGSyqR64RrzTcaRKaVUXNmCXPdbkxlOpy9PmLuOFWnFAHgHQ1SstqKdyTAWKeLtVfWkIqlMVfp0Jdq6H91HHuTBZlKSiqWJjgbxrA9wxOPvcrM7Awmswmn00kyk4QBoaiOZb0nm5qaKCkp4dVXX0Wr1f6HzlFBBRVUUEEFvZ++9KUv8aUvfUn8PRKJ8KEPfYjdu3eTSCQIhUJipOhYZIA77rgDCRKSqSRNTU1s3bqVuffctFCFXCtDrpMx8rcJas6swDMQ4P/H3n3HV1ne/x9/3WefnJO9d0iAMBRBFARFQS0qDtziqrjqttVaraO1trb+bKvVap1UXHXVURfuDepXURGQPcLO3snZ5/79cZIDIQECEkB9Px8PTM59rnuck9w5b6/7c1+XK8WJ1W5h/ksrydsrg6KxOdQvayFnRCpm1GT1rBocXhuF47Joq20nszyNhopmousgd3ga0VCUsqPyCLWFWfVRLe40C8mDk8naK5X2mgCLn1uLO8dF1t4pWGxGvPjItJhEgrGcVL+wPTbyz3exu7H2Or0fAJ/+eQEVH1bFi8xLj84lpZ+HhS+tYHBqabxAqezYXL7462LcaRYAiidm4Ui0s/SFdXiK3bjTnfQ/ooDZSzYOd73X6f3AIF6ktGnnyaZ6W6AE4KsHX33XaeE2ncoNYK+pJSQXeQi1RuIFRu4cF+4MJ6U/y6Nu/hLcaRbKTy1hzgMr+O7xVbjTLHgKPKTv5aVufmv8brGiw7PI3juFL/+xhIq3qvDmxgqUBp1WSNrAxHgRV/O6dsLtseGTWit9JBclUDgmgzXv12Jz2UnIdFFwWAZr36vl0z8vYOzvhjDguCKW29ex6NmVJA30UDaxEP+oIC3rfVR8UElSvocR58byXeOKVqKmSdOaNsxIlNSyRCILm8gck4yv0U/VN01k75uC3Wuj6ts6RpxfSjgQYd6Lqxl6fAGGxaCtMkDRuUl8M+cbXn/9NXJycpj9z3dpbGwE4Nu53+J0OjFNE4/Hw+DBgzn11FP5zW9+0+ufj4iIyLa4XC7ee++9LsueeuoprrvuOtatW4dpmlRWbhwF8d4H7tnY5/UXmDTpaArPzKZteZDsIRby9kvjm6dXsvfJRYy4oJSF/11J+pBksvdNZvlbG8jeN4XCgzJoXNZK+qBk1s2uoWFFC1a7hcRsF0UHZWJYLWz4so7m9e2UHZdLUkEC7nQnS2aspnV5O2lDvPSflI/NbY33eeWPS8ebl0AkFMuIeaPSiUai8ZGRWjf48DfFRsLJOyidkgmxUXYWPbuGIWcWsfr9WMYaecUAquY2UDV343QcqYM8mGGTr+/ZOG3asPNLWPLCavyNUUp/loczxY4ry4W/Y2q4gkMyyBuZgTvFGZ9q7rPbNpmepENPIy5tTf2C1i6Pm5b7+fTPXfu8Sg+L9fdtur+yiQW4MhwkFLhoX+un7LjcWBHQR7V886/Y6+p3ZDYr36xi7Ue1ZAxOpuLj9Qy/uIzGFa1UvF3F2s9qCQdir3/MDUPAjO2j+rtGvHkJNC6NZcJIIApWM/76vNkJuNNcVM5pYulL63GnO8kZkU5LdYCWJc0sf3MDhQdmMPiUYpa+ug6LzULtd01YXAb9J+VRNbcOT3YCG76pI9gSpvRnsYur1fMaKBmXQ838RjZ8V8feJ8fylicjRPqQZJa/sRpPrhdHko2wL0LNqkbKDknnmWeeYVXFKtLT06mprYmNCr4yNk1u52hJ/fv3p7S0lGeffZaUlJTt+hmJiIhszQknnMAJJ5wQfxwIBDj//PN59dVXaW5upr29nfb22HWkleZi/nLbX7BYLITDYcqWljFmzBiaPm8GExzJdrw5LuY/v5KhJ5ZgsVtISHHiTLLzzZPLMSMmBftn0rC0JTYFnAkV727AkWqn+JBsGipaKDowm7plTbRu8OEtTsILlE8uINAcYumr63AmQUKBh8KxWbRV+lj64jqcGU7yRmfgcNv4rqNwxuIwCAVi/TC+DQH89QGq5zcCMPT0Egybhc9vW8jS19bh6hioIG9MGll7p7DwpRUkFyTEC5EKx2fy1T1LcSZZIABZI1NIzHWz/LUNOJMsJBV5KPXY+GbZxsEGhp9bgtVujRcpdY4KtLneFijFfjjQurbr1HObT/PW/9hcskekQYR4nnQmQXKJF2eKg7rvmnEmwYDji5n/+CqWv7aBtR9X4Ux3kDrYS8PCVjZ8VY/dExvNKHdUOt/ct5zqrxpJKfGw5LV1FP0sk4IDMlnzSew11S1pho7pjptWt5M5NJmMEWms+6geq91GUpGHggkZrP2gls9vX8TYG4cw8LgClr62joUvrSZ9cBLlxxTiqwvQsLKVFe9uIKXMy4jzBwNQPbcBw2JQu6gJf1OAfhPyqJ7fSNaQBHyNAWq+bSR73xTc6U5Wf1zDiPP7xfq8nlzGoJOLsdgstFf7KT47mXmL5vPaq6+QlZXFV/e/R0NDrB90zrcNuN1uTNPE6/UyZMgQzj//fH7xi1/0/ucjsguoSEn2OFdffTVXX311l2WPPfYYV111FQ0NDfH/qQV49dVX4t+73nVRVFhEW7iN9i8aGTZsLwrHZRFqD+NJT8A+3IHFamB1WrB7rKybXUveyCwikQhWS+xiVTgUIeQLk16aiCfTTkJaAm2Nsc6W3H3TKDowC6vDSjQUJRqJMujsAny1frL2SicajbLuixoSihLIGZaKYRhsmBX7UEgsTIiPNtS4tomMoUk0Lm2GdvDmuDngxkEsfG41NreV3FFptKzxsezt9SQUJVA6MQ/DiBVE9T8+j7SBidicVgYc3w+rw0J7TYA1s2IXpUZdU071gjqWvriOpCI3nqyNVb2d09O5U50sfmsN5UcUUvlNPTn7pmF1xAppvvj7xuEZbZ6Nd4odcH3sjq6Fz1fgyUkgb2Q6kVCEyq8bSO2fiN1p5ZsHYqElHIzQWhkLIwOn5JNS4GX+U6uweyyUHh2bS9Wd5iSp0EPOPqk0rW4nqcCNM9lB2oBEFsxYw+y7ljL4rCLsHhsZ5UkEGoJkD0+lZUMbG2Y10N7sx5XgIHVwAukDk7G5rez/m4F8+bclhFrDuFIdDLushLn/qmD1Z1UUjclm75+XsHZWDb5GPza3lbKJBfhbgtjdVoKtQYLrw7GpAE2TaMjEVx8g0BokY2AyFquFSEVTbIStUJiGFS2klSVhsRk0VbYz7MQSwsEIhsXAneVg/vwFrAquZNliC6veXkV1dTUWi4XoExtHoUpKTiI5OZmmpiYOPvhgpk+frmnbRERkl3O73Xz00Uddlvl8Pk466STee++9LrlryZIlLFkSG5Vn1l9fJycnB5fLRUpKCqGlPkr7ldJe48eT7WKvE/vxzSOLGDFwEGnlXqq+qyepIIGigzJpXNuKO82JaYFIKILVbsWT7iB1gBfDMGhc2UbDqhaKJ2SRf1A6DpcdX0MAe4KV3DFpFI6LjbLUVhe7WFNyTBauRCe+pljnxtALi7F7baQMSKRufivBYAiLESs4ivgiFB+ShSfbjjfLg91rY69T+zP/sWXghn3O6Ycn04031823D61g5BX9cSTZY9O5rmyh5JAclr+/gapZDQw6rRBPrpOv7lrG8rfWU3BwJv1PzGPZi+tJG5xA2ZEFNK5qxpvjobXKjzfHxZpPqhl4XCGhYJjminYWP7cWOiJXZ9FQ2fG5ZO2VQqglNg3s8ItLiYQjOD0Ovnt2DXudXsTqT6qpmt1Ie00AT46L1e9W4yl2039SLqGWCAueXUmg1sf+Vw0kakZxJjoYdHoBiTkJfPmPJYy4rBDTNGnZz8f8ZysAOODqQVgsFtw5LoaeWRgfBXTRK2sYfVU5qWVe1n5QQ1J+AiYmxROzWPV2NQVjMigYm0nTmlbmPbWS0b8sp2hsFtFomIZvmwkHI1itFgZOLqS1qh1XspPWKh8Wu0HW0BSSSxOwWqxUL2gktdRL6oBEzIhJKBAmqSCBqu9q8WZ6sDmtGDYHBWMzsCfY8NUHKD+hmObWZmZ9MgtLuoUVb3zN0qVLiUQiRD6OxH93m5qayMjIoKmpiZycHG655RbdqS8iIrvFGWecwRlnnNFl2RtvvMFll13GqlWrumSvGTNej3/v+MpBUVERvoAP/1eD2XufvRlwTCH+2iDe7ATsB9oxzSh2tw13jouVn1RScmA20UgUTDCsFoK+IGFflMy9U/DkO0jOT6Ktvp3mVe3kjcjAOcGB3W0jHIgQag8z4JQ8Wje0Uzw+tp31c2pxZbkoPigLw2rEp9BIH5KE0XHLeXNlG9FolLqK2E1u3gI3B9wwiDnTKnCm2Mk/IJ2minYWvbwGVwoMOrko3udVdGgmWfuk4PDaGXBiEWYY2mv9LJuxBn+zn5FXDqB2SSOr3qwhrTwRd9rGu++HnFmEYTVwJtpZ+d4GSn+WR/X8BrL2SsWeaCPUEuarh5dCR92SfZM+r/1/MxC708aiF1djdVkpOjCLSDhC9bwmkvLc2L22+EWzYFuIttrYRkqOyiK9fzILX1qD3Qn5+6eRcJQTT7abSDBK+qAkWjf4SEh3kliQQPrgJJa+uYY5Dyyn7LhcEjJjxf1Nq1spHJdJy7rYVHfN1a140t2kDfGSXOTBmWJnv2sGMPvvS2mvC5BS4mXYJcXMvX8Vy95aQ/+jChk2tZhV71fTXufHle5gwBF5+EalY3fb8LcEaV3iZ8Ax+ZiYhP0R2qr9+Or9pA1Mwua00bCqmZIJ2YQD4diFskGp2FxW2lv97H1qKSF/GExIGeBl6aKlLA4vxrbBxur/W01lZSUWi4WZj23s84pEI6SkpNDW1sbhhx/Ogw8+SE5Ozvc8e0RERLaP0+nkySef7LIsEAhw1VVX8cwzz9DQ0EA0Gvv8Wr58OcuXx65xfXzPq2RlZeFJ8JDoTcS+OEhpWRkta9qwe62MOLuMT/+5gLH7pJKxdxKVX9fizU2g9Kg8apY24M1zY9pMQr4wZhSSijxk7J2CxWpQPaeB1io/pUfkEPJn4Ep20ry+DbvbRub+yRSOzsThsdGyPlZMlTU6GU+mG39jrM+r7ORs3JlO0soTaVjYStAfwtox6mOoNcjAyfl48ty4k+wkZLkYclIZi15eC04YdGIBaf2T4lO97X1eCQmZLqw2CzXfNVB2RD5L3lxL7exmSo7MJqXUy5z7lrP4f2vp97McSo/OYcXrlXgLnAw4poD6lc0k5XtoWtNGSpGXinfXM+SMUkLtIZpWtLHs1Q2xKgQD0ocmUfddMwWHZFA4LpNAQ4iv/7WMoWcWESWKK9HJgqeWM+SMMtZ+VkvNt0201wcI+UKsfr8GZ4aTsqOzibRHmfvoclprAoy4uIxINIo3y82AE/PwZrn5ZvpyRp5RStQ0adynlUUvrYEAjL6uHKvdirfASf9j83GnOXG+s47V79SQOzKNpKLYSObpA5Iw7OBrCLL2o1oGHptP0bhsWtYHWPrSOpJLPBQdlEXYF6FhWTvB9hAWu4UhpxZTt6wZb66bptUtgEH+qAzShyZiMS2s/6qWjCFJZI9IwwxH8TUFSC/PZd1XtXhSnTiS7NgTrFj3TyMh3UXL2jbKJuXS5m9j1iefYfQzeevjBSxdupRQKER05sbc1dTcRGZmJi0tLZSVlXHjjTdy9tln9+WpJbJTqEhJfhDOOecczjnnnC7L3njjDS655BJWr16NaZr4/X6WLI1dOFu3bh3vvvs2dpud1LRUnE4nJcUlYMC+++5Lcmoy1gEWTNPEarUSagsT9IXxZMSKegybgc1rwzRN7A4b9iQbJiaGYdC8oY3G5W0UHZRFSpGX9H7JhPxhbE4rJYfl4kx0dJn+rP8psSIjs6P6tnBMNlarlaJDsqmZ0wIWsBgWmpa2s/j1VZQfXUxSoYcxvxqMYY1tx98c66RKHeDF5rSy9vNKVr9Tz9jfDcGVZpKQ7sRiA5vbSt7ILCpm1EIU7Ik29ppagt1lxZ0Ru1vcsBiUjouNbJTWP5GIP4LFYWBzWyEB6BhcyWKxxF+DxRZ7rxoWtlN4UDY2txWb20r+6AysDguGxWD0dYP4v9sXYXNYSUhxM+LiMtwdwzV6suwUH5KD3WPDsBose30tWfukkVSQQGqply/uW8zIX/THmehg2IklLIxWkFzoAWD2XUvxlsaKvLxZsVGFEpJiP6fUsiQWPLmasb8bgt1lIyHPxZIZ6xl2ZgnetASGXdCPhnUtHa/BiHWsRaNYLBbaa2PFSlabFVeyBXeyi+aaVpIyvVgdBq5kB1aXBcMwWPd1Nfn7xkZQstqsZAxMIRgMsmbtGmptdXz2zAdUVVfhcrmoqakhEoldFLPb7fHv8/PzSU1NZd999+Vf//qXRkgSEZE9ltvtZsaMGV2W+Xw+fvWrX/H000/Hp4rb9M7/OXPmYLFYcDgcZGVlkZCQQHZpNgsXmgwYMIDMISkE22IjTqYUeFn18XqKD84DwJUcuyCGAWbUJKXEgyPFgsVqwWqatGzw4UqxY3fb6Hd4DmbExDRNElJcDD23mOQCT6zIOBjFU+wmKTv2Gbv+i0YAHK6N090mFXswDIOEdDdf/mMJ+/96AHavnewxmeTtmx7Pa98+EZt6w5niIBqOsuTlNaSVJ2P32igcnUHVrAaS+3mw2i0M/Xkx3z2+irKj8kgt8TLq2nLqlzdj99pIG5iC1W7BnmDD5rZSO7eFAceY2J02kotjWacz76X0jxVVpfVLxDAMQr5YhkjIcMVzaMbQWGFV8aHZpPTzkpjjxmqPZbZ9fh4bMSqabNK4KoGyI/Oxe200rWqj8tsGig7MimfUqjkNZA9LJakwgdFXDmLuk4uwWCy01fnxVfqxuayxLOiGIScVY7PZSMyJdXq1VccK0TL2SmLV29UE20I4PHYGnVhM/dKWeIbsNy6f/H2zsDmshHxh2mr9pBR6AfA63bTV+olGovGfj2GP4EiwEwlFiPij2D2x/1VN7ZeM3W2jsrKShoYGqiqrmPPtHBITE2lpaaG5eeNIn263m2AwiNVqZe+99wbgvvvu46CDDurtr7+IiMgud9RRR7FixYouy7744gsuu+wy5s2bRyAQIBgMsmxZbDqLdevX8e7772K32UlJTcHldFFcXIwFC8NHDiclMwWrxcDExGKzEGgK0VbXSnpZMkFbCJvDijvdhWnGnk8scIIlljXqljfTstpHyYRsMgYkkzU4FX9LAKfXQeGYbJxJtnh2ASg8LKNLn1fBARlYrVaKx+VQ93VsFCfDMPBX+5nz1AqGn1FKcrGHUVeUY3VYMQziozClDUrC4bVT8cEG1s9sYMz1g8EK9UtbCdQFcSbbyd8/k1Vv1mCGTJzZdgacnIc7xUlChhPDMDBsBkXjsnCm2EktSyTYGsKeaMOZYichIzbSEcT6uTrZXbH+v/oFrQw6tQBnih2wk7+/DcNmYHVY2f/XA/nyX0twJNoxIzD49EJS+ycCkFSQQPawFJwpdmx2KwufX0XW0BTShyRjd1mZ/eDSWCF8lpuhJ5ey+OU1pJXH1v3qnqW4UmLvkScnlmGTc7xgQEqZlxWvVpK7fzoOtx1Xjovlb1ax70UevBkeBp9VSOOyRgCsdgtlR+bG+rysFppWt2HzWrG5rHgcLjzpBrVL68kYmBbrP0t1Yk+0YRgGFe+vpfiQgo7tWMkZlkYoFGJtxRpqrbV8/txHbNiwAbfbTW1tbXzqQpst9r4B5OTkkJWVxbhx4/jrX/+Ky7XxpkkREZE9idPp5L777uO+++6LLwsEAtx+++08/PDDbNiwgUgkQnV1dfz5ufPnxvu8srOycblc5O6Ty3fzv6N8cDk5IzNorYldWMvsn8rK99fTb0IeGJDQUYBiGBANRckYmoIrvR2r0woGNKxsxZFow53qZMDEfCKRKGbExJPppvyUAtLLY9NxRYJRnBlOMvqnAlA7PzYqtivZGe/rSS6O9Sd5Mp1886/lDL+klIRMF+mDEykaW0YkHMWMwrz/VACQmJ9AJBBhwX9XkVTkxZ3hpPjALGpnN5M5JBm7x8aQ04tY8PRqXCc7sJRZGHllItXfNeDOcJLlScXutsVmeklz0rwqgBmO4vA6SOlvATZgscYyV0o/D3XfNZM+oKPPqzXWR5hY6IldI7UYJA9Mjh3DhGxS+nlwpTqwOWN9QyMuLMViM4j4I9QuaKbsqDzcGU4al7ey/Nt19Ds0D4vVwOmE1TOryR+dQdqAREZdXs4X9y7G6rDSWu2jdW0s1xoWA4vHScnYFGwOG0kd1yMbVjWTPiCZrBEprP2olrZaP95sN4NOyKd6bhOGBTChbGIe/tEBHF47gZYQjRUtZAxMASOWLdsq2wmHIjjdDjDB4rDgSnISCUYJNARxp8eunWb0T8KRZKe6upr6+noqN1Qyb9483Alu2traaGpqiv8eut1uAoEAFouFYcOG4fV6ueuuu9h///131ukhskupSEl+sI466igqKiq6Lb/zzjv5y1/+Qn19PaFwKB4m1qxZA8Ann3yCxWLB4/HQ0tJCfn4+paWlOOwOSktKySvMI+QLYXfGLphYHRaiEROLzaClso2kXA+ejFhVbag9jOk0aavxkZzvxZ3qxIyatNX6Wfryekb9phyby0o0GmXuE6vJHJ6IKylWLPTV3bHOpc67zQBKDsoFYO5jKyn9WTauDAffPbYUR2oCY24YjL8lgN1lo3ZxrFNl+TtrKftZAfmjM5h991JWz6wmMTd2bAufWkF7ezRW7GQx4tO9JeS5aF+/7SGvgy2h+PedQ3wDzH14ZWw7HVO3AQw5q4iUfl5yD0xl7n8qYlOvJcCIc8v45l/LSciLzUsfaAny1UPLoB1Kj8gHEyLBCCMv6M9Xdy2j/LRckguTCLTBJnVelB6ajWEYrP8q9rMMBcLYnTZs3tifsLZqH54sN3tPLaZtQ4Cqb2tJHZBMYl5CrDgrbOJvDWIYsdAWaA+RkOGircaP3W0jGolisVnwpsY6hNpqfLHqdL+fhQsX4Q8E+OKlWaxftx6X20V9fT0+X9fpVyBWiJSTk0NNTQ1jxozh8ccf1+hIIiLyo+B2u3nwwQd58MEHuyyvr6/njDPO4OOPP8bn8+H3+1m9OjbtxqJFi7qsD7EipPLycjIzM1n9/grGHHwAdo8t/lkejUQxLBacHgfRsEmgMURirptAa+zilb8pSNgfISHdhWlGSSn00t7oo2Z+AynFyex9ZnFsNKZVbfjW+Sg/M3bBpXP9SDiEYRi0VcXuQLMn2AkHItQvbCazPJnapY2sfLWakVf0Jxo2wYRoyKRufivt61tJLkzAkWjHnQb/9/8WMfziUr777yoAvn18JanFHooOyQKzY1pgN7jdsanbOn32l67TkZhBExyw/H+xaWe//MeSLs93Zjh3jgtfpZ8179Ux9sYhpJR6mfvwxve4fkkLDctbqJrdyP5XDcTutfHd/1bSNM9HykB37HXXtHPAbwfz7aMrWT+riiFTy2hb58fpif186Bh8yGJYMCMm+GDBC6sYe01sKrakUjerPtzA4FNKcHoc7H/1QL68fwnDpvbDk+Yia0gKmFC3rImUIi/RSOzClcVqIaXQS0tlG4nZHqKhKO7UWKeQGTGJhCJklWewcsVKGhobaKhvYMWKFZimSSgcor6+Pn53Y6dwOExubi6tra3k5eVx9dVXc9VVV23xd1hEROSHZNSoUXz55Zfdlj///PNcf/31VFRUEAqHqKmJTX2xZm2sz+vjWR9jsVjwer00NzeTl5tHaVmsz6swWkjJgBICbSHsDlvs5jZnrEDY6rDSvLaV9NIkkvM9YIK/NYjdaaN5bRsZAxx4MmKFTc3r25n/nwr2++UAHEl2zKjJgmdWklzmIrnQi2mafH13bIpaMwIdA1pSdkhsJJ0Fz1aQOzIdb4GLBY+vBIeD0dcOor0u1lfVtiHW3/Ld/1ay18mlFIzJoGp2A0tfXUdqaazgeelLFfj9MOryWLHTZ3+J5aVNp4XbmkBTz31ei56LTdnrSgG/H/BD6bE55AxPI29EGnOmr4gVOrlg2JklzP13Ba4UKP1ZDv7GIHMfWoy/EfoflY8ZjfUbDp9axpwHllN8ZCaZg1IINoUwzI2dXkWH5mIYBlXfxKYN9jcFYlMou2Jt6pe3kFaWyPCpJTSvbafiw/Vk7Z1GWmkSiXkJRIJR2qp92BKsJKS68DcHSS7y0LKhnUgwihmJYrFbSC6KXeRs3tBOUm4C4VCYefO+I5Dg49vXvmLNmjW43W4aGhriU+FsyuPxkJOTQ1NTE+PHj+ef//wnJSUl23yvRURE9nROp5Pf//73/P73v++yPBAIcMUVV/C///2Puro6/H4/q1bH+oAWL+mYleSl2BS/ndPGlZeXk52VzYb3K9h3zEjc6U4aVraQWppIOBDBYrXgSnUSCURpXt9Oar9E2ur9YEJzZTtEorjTXGBAxuBkWivbqVvSjDvNxT7nlmC1W6hf1kzTsnaKj4rdjNZZ8B0OdPR5VcayUEKai1BbmJp5LWQOSqZhZSsVb1Sx97klYEA0GCUSMmlc0kbjqjbS+nvx5ibgzHDy5Z1LGHpWEQtejPXxzZm+goQMJ+WTC3C47fG+KmeShUDzxv6a//vbxtlaAKKB2Kiey1+L9Xl9O21ll+c//3+xPjJnhpNAbYDq2U0ccN0gUssS+eLexTidsSBZ/W1sBKrqrxoZdn4/PNluFr6wioaFbTgznVh+ZtC8ro19LixnwbMV1HxTy5Czymhd78OZGCsIMkOxPirDZsRmU9kQoGJDFXn7pRMNmyT1c7H6o1pSShJxJTrY97L+fPfsGkqPzCIpz0PuyHTMiEn1wgZSiryEAmGcUQcGBhkDU6hb2hz7OfsjuNNjvxPRsEmgNUj+yAzWLl9PZUMlzc2NrFixgkgkQjgc7rHPyx/wk5eXRzAYpLS0lF/+8pcaEVx+dAyz85YHkR+5hx9+mFtvvZV169bFR7fpidVqJSkpidbWVtLT0ikuLo6NnpORQVlZGR6PB6Kxu64i4Qg2u41IOBYuwv4IFpsFi82IjVpkGPia/NgcsWIam8uKYRi0VLaz/K1qBh+fhzPZQSQU4f/+32IGTsknc2AKDSta4iMERcMm9StayBiYRPX8Opa9VcXeU0pobwyQPTSVUHuYL++IXcwafe0gAP7vr4sYc0NsJKZP/7QAdwb4aiH3wFQ2fNMA7bDfLwdQv7yFFa9VklCUQPmxuXzzr9hwlmN/N4RgS4jZdy1lwIn5mFGTZf9bH9/HopdW07S0naKJWax+O1Y4lJBhYeBJJSRkuVj66hqSSxLJ2juFOf9eQft6PxkjExk4qZBASwjDhNn/WUoCFva5qBwzCqs+qKR0Yh5tVT7mPLiCsb8bgmmafHbrQhLyXAw/v5RoNMrCV1bjzXRSNDYnXiHevKYdd7oDe0LsLi6LxUJ7vQ93qotgWwh7gi1WDNYxQoNhMYiEIpiGydq1a6mqqqK9tZ3aulrqG+qx2Ww9FiJZrVaysrJoamqivb2dfv36MXToUJ599lmNjCQiIrKJ+vp6LrroIt59912amprY2v9yJCQkYLfbaWlpYdCgQaSlpWG1WCnpV0J+fj5mOHYXUjQcKyo2IyZYYgVL7mQn7fV+PBkdBU6GEZuGo8pPamli7LPfNFn21hqiERhwVAEWi4VP/74AfDDmxsGxKUZuXcCIS8pwZzhZ9HwFAycXgwHfPrgY3DDo+H5Y7RYciXbmPbeSlsU+kkrd7HVGP9Z9UYu/PkjZUXk0VrSx8vU1+OpjnQsFB2ew9uPa2PRvkwrima3/iXmE2yJUvFUVLyjqvEA2/OJSFv9vPb5KP2XH55KYk8CcB5bjToOk0hSqZjfiTrPgq48y9qYhREJR/u/2RYy6thwzbPLlnUvADftfMhC7x0bVvAacHjsLXlzNwGPzyShPZsNX9eQMT41nxb2mlpBc5GH1F9WsebOG0b8dhNVuoa3az5LXNjDg2By8mbH57IOtIQxLrEPHlRK7IwwTolGTsC+MIzF2sdPmsBHyhbG5rISDESxWg+aWZtasWRO7+NXWzqrVq3A6nbS1tdHY2NgtoyclJeHxeNiwYQMOh4ORI0dy+umnc8UVV/TNL66IiMgP1Msvv8wf/vAHFi9ejN/v32L2slqtJCYm4mv3kZScRL+SfthsNtLS0ykrLSUxKZFIKIrdGfscdyTYCQXC2OxW/E1B7Am22B3xRqz4qL3Oj9VuIRo1cSXHRhZvWtvG8jeqGDAph8T8BMLBCF/cvpj8w9IpOTCH+qXNLHx6TazPKxRlw1f15B+QQdW8epa/WcmgyYUEWoPk7ptOsDnE7Adj07Tt98sBGHaDL/++hFHXlGNzWvn0zwtwpVjwN0bJHJ5MS0UT/kbY58J+NK9vZ+XrVbiyXAw8Noe5/64AYn1egaYQX/1zKcU/y8LqsrDi1dgIofv9agDLXl9L41IfeWPSWP9ZrNLclWKh31H5pPZPZOmr63Cl2ikYm8X8J1fQsspPYn8Xe59eir8hSCQUZfHLFeCHfS4eCFFY/NIqhkzpR1ulj28fXsnYmzr6vP68EFcK7HvFEKLRKItfXYPVCgMmFcWKuaNQv6gJT74bZ6IDOka/aq5sJzHTTXuTH3eKEzMCFqtBJBzFarcQ8oUx7LB+3XqqqqtoaWmhvr6e2tpa7HZ7j4VIFouF7OxsWltbaWtro6SkhBEjRjBt2jRSUlL65hdXRETkBygQCHD99dfz0ksvsX79+i7T9W7O7XbjdDppampiUPkg0tLTsFgsFBcXU1RYRDRk4nDbCYciWG3WWN+X3aC91k9CmouW9W0kFyXG+lUMA19TkLYNftIHJWGxGkSjJsveWoe/PsBep/fDYrXw1f3LCdQGGH1drG/n01sXMOT0IlIHJLLohTX0m5iDxW7w7QNLCRBl2Cn9MC0midkJzP/vGpoXt+DMcDLiwlLWfVZL89o2hk4poWFZKytmrI0XJeWMSqXyiwa8BU7KTyjiq3tiReqF4zMxLLD6/Rr2uaAfnhx3vKhp6FlFLHurikBNgPyD0kkbmBibVtcJ6QOTqJvXjDMJAs1wwPWDiQajfHHHYkZeMQAgvo/hF5eSkOFi9efVJCQ7WfLaOgoPzKBwbBbrvqwlc2gKjgQbn966gLJjcsnZN411X1ZT8UYN+/1qAI5EOy3r2ljyaiXFh2aQMTAZM2ribwximhAOhEnKi91kh2EQCUQIByK4UpyEA7GMHGwNYffYCPliU+61treyevUaGhsaaGtrY9WqVTicDtrb22loaOjW55WYmIjX66WqqgqPx8O+++7Lz3/+c84777yd/SsrskfSSEryk3HhhRdusdL0t7/9LY888gi1tbVEIhGam5uJRCJUVlVSWVXZpa3NZsNms2G328nOzsbtduPxeEhLyyA7O5OUlBQSExOJRqNYrVYcXjtWq5VIOPYBFAqEScxOYPg5JUDswllrVXt81CXTNKl4v5r0vT0dQ28bLHl2LZ7LysjeO4NIxCAxPwFvnptAW5CaBQ2MuLQMw2pgcRhE/LGAULu8kdSS2PDRBhbKT88jvX8SJYfk8NldC3Ek2ckYnMyK1yopn5SLO81J1r5JVH/d3OX1ZgxOwrAYLPvfenIPSMXqtFA4NpPkfj4KRmeQXu6lZY2fZf9bT/P6VlxpDmrmtGBYDLL2TmH4eaXULGjC4jAINAfBBo4EBwMPK4gP7fjZnxew39UDME0Tny82skFnMdEBNwwi0BQiHAhjc9oYenwJkUgEwzAIByNY7RaSChPiHXCmGZsCxp5oo7a2lpqaGlpaWmlubqKxoZG6+joikQg+n4+2trZuvwtut5vk5GT8/li1+dChQ8nIyOCBBx5g0KBBO/KrJyIi8pOTlpbGf//73x6fW7ZsGeeffz6zZ8+mvb09PgJTNBplwYKNd7J/9PFHQOyOtEgkQnp6OqmpqdjtdrIys0hLTyMzkklycnLs879jSjS7x0ZqWWJsFB5fGIfLTtnhBfFpPQItQYafU4qrYySfaDiWnYLBEAmGi8IJOXz+/xYy9ndDGH5JOY3LW3GnOWlv9hOuiZK3TzrBsjC5+6aBAU0VLTSu8VFyeA5Nq5vw1UcpOzaXpBIP7hQHoUCYzCEp2BNspO/lpW5+K1lDU4iGTCrequry3uSNSych00XpxGy+e3wV6QOTsDli06wNvzhWgJ5S6mXxq2vBDZFQhA3fxi6emRETu8fGsEv6YTENNsxtIHNIEllDUzAMgwHH5ZFZnkLT6jZWzqgkd2QapmmSMtDNmq+qSCrsR+H+mWQPSqF5QysphYl4slyMOK8fmBBoD+Jw27ElWLFarfH3LRKNYLVaaWlpprm5meol1fj9fhoaGmhubqahoSE26kJzc3x6kE1lZGQQjUaJRCKkpqZSXl7O+PHjue22277Pr6CIiMhPyuTJk5k8eXKPz/3zn//knnvuYfXq1QSDQVpaWohEItTU1MRHYurU2edls9rIycnB5Xbh8XhIT88kOzuTJCOJ5ORkIuEIVosVR1JsirNwKNbn5W8NkpTnYd8LS4FY307jqlb2vbI/rmQHpmmy6osakss6ppuzW1j1TjWeLBc5w9IxTTM2jZpp0l7np3phE8POLCEKOJLs8VG/131TS/6+GeACvz/KgBPyyByaQjScy+f/bxEJWW4ciXZWvl5Fv8My8eYlkHNAGpWf13d5vTkj0rA6YkVKqYM8OBLt5I3OxJ7YRMnhOWQOT6V5ZSsr36yiaXUTiUUJ1CxqIjnfhXFgFnufVcq6L2pxeG20VvownCaerASKxuaS3tGf9umfFjDson6xkQ78naN7xoqJRv92EL4aP77mAO4kJ4MnFxMNRTEwCLQEcXjtpA9O7si5EO2Y9tidZqeuoS7W57Us1udVX19PQ0MD4XB4i31eLpeLlJQUfD4fhmEwZMgQ8vPzefDBBzUqkoiISC85nU7uvPNO7rzzzm7PrV27lt/+9re899571NbW4vf7CQQCmKbJwkUbR9b+5JNPgI19XmlpaaSlpWG3xfq8UtNTySCDlKyU2LS6BhhWA3eaA3eqE4zY7CFOt53SQ3OxuWJ9R77mAP2PzMaT68LqsBAJxfpuYkXsXgrGpTP7H0sYc+NgRlxezoav6vDmuWmv99Oyvp20fgmk5LvIG52BYTFoWd9O07J2gu0hmja0EWiOUjg+k8QSNymFsREuE/PcOJPtpA9Nou67ZvLHZmCGo6x+v2vOTBnoIbnES9nhsODp1WTvk4oz2QFO2P/ycuxuK+sL69gwswaIEvZFqJofG2kyGo7iSnew17nFmEGTym/ryd47lYL9MsBiUFDvo+igbBpXtLDqrWryR2VgmrHRkdZ+Xk/2iFTy9ssktSyJxjWtZAxMJjHPw8iLy4gGTfxNAZxJDuweGzanlXAg9n5GzCh2uw2fL0BDewNVK6sIBILU19XR3LKxz6ulpYVQKMTm0tPTY9vp+BkPGTKESZMmcf3113+fX0GRHwWNpCSyDYsWLeLXv/41n376Kc3NzdhsNiKRCJFIBIvFEi+K2ZTFYsHtduP1euNTyyUnJ+PxeHA6XSQmJpGWlkJCQgJJSUkYhoFhbBx9KR46OpaFWsLYEqxYbBZC/jBf/msJY38du+uqeW0bKUWJscId06Ct2o9hNUjIjM1Fu+z1tRSPz8HusVG3opHGpW1UfdFE6eRsmla0UjevjdTBCdicVmrmtABdR1ICyDskmYbvmvDVwpCfF7Hg8dgQj3udW0Jinjve6TLmxtjUcu31PhwJDtqr/SQWJsRGPDIhHIxgd9loqmph/oOr46Mlhfxh/P4ASane+HsYjZjxIcE73x+/z09rWytVVVVEo1Gam5tpb2+nvj7WydTW1ha/4yscDncZItEwDCwWC5FIhNzcXOx2O2vWrCEhIYGRI0cybtw4br311j77PRIREZHeuf/++7nvvvtYsWIFwWAQm80WLx62Wq09johpt9vxer04nU7sdnvHxbRYR0BWVlassCkrC7fbTUJCQpf8Fo2YWDsKmACaqlpwe12xkRiNWMbZ+5ISkjI9+FsCOD0OTGLr1i5qJqXIQ9AXio3mFDb5/K6FjL0mNhpm85p2FjwZGwp88FmFLHxyDe40C4kDPVR/Hstdm4+klDEskbA/TOMSHxnDEknIc7L6zVpyx6SRWOwmY0AyvroAld80UPqzXKLRKO3VAULtEZKLEjANE6vVSu3SRtL7JwPw6d8XMOrKcmwOK5FQhGBLGFdKx3RrpgnRWGdXPIt2vDdNTU20trbS1NSE3++nra0tnr8ikUj8+VAo1K0zxmqNFd87HA7y8vKoro4VL5WXl1NWVsZ9991Hfn7+zvmlERERkR1SWVnJjTfeyLvvvktVVRWmaXbp8wK6TT9hGEaPfV5ejxeHw0FySjLJyckkJiaSmJi4sc8rGssZkUgUi7VjWcSkvS6AM8WGzWEj6Asx+96ljL1mCBhQvbCB7CFpsfwXMWhc2YrdZcVb4MZitbBsxnpyRqbiyXJRvbCBlgo/VbMbKDgsnfYNAeoXtJJc5sLqtFG/oBXoOpISQOZILy3L2/E3Rik/LZ/Fz64DYNCUQpKLPVgdFj792wJG/3IQVoeFlsp2nAl2mta0kTEkGQMD0wR/a4CEZBeNG1r57uFV8T6vQEsIf4uflPyk+HsYDkSwOizx99MwjHjxfufPobGxEZ/P16XPq6WlZZt9XtnZ2bhcLtavX4/X62Xfffdl4sSJXHvttX30WyQiIiK99dJLL/HAAw8wZ84cmpqaOoqYt97nZbPZSExM7NLnlZaWhmEYZGZmxvu8ElwJJHgTMKNmvN8qHIhgd9qgY6bZxjVNOD2u2I17HX1e5Wfkk9E/BV+jH4fbgWEzwDSpXdBEYn4C/tYgKUVeIoEI//fXxbFRvYNR6pe1sPTFWG4qOz6X5f/bgDMJEvslUPttbMTGzUdSSu6fgBmK0LwqQFI/F0nFCaz9sJ7UwV5S+nvIHZ5Oe5Wfig+rGHJaMWbEpGFFK2bEJLnEg8VmYLVbqZpXT+bQFAwMPv3bAva9sAxXqpOQP0SgPow7y4nVFrt+Gw2bsZFAiQ2M0HntcWPWaiQY9NPa2hrPWp2DWbS2thIMBrfY52W328nLy6O+vp5wOEz//v0ZOnQot99+OwUFBX3xKyTyo6EiJZHvqb29nT/+8Y+88MILrFu3jnA4HP/A8ng88ZEBDMPo1rEDsY4Eh8MRn7c2wZ2Ay+0iISEBq9WK0+kkOTkZm82Gy+UiFAqTmpqC0+nE5XIRDAZJSYk97jydO6dBC/iCON0OwuEwNpsNM2qy4et68vaLXbTDhA1z6sgdkU5DRSsLX1jN4BOKSC31EmoPU7e4mRWvVcY6VsImLZU+kgtjIzz5mvyE/SZJOR2jGJmxO+ZciY6N702rnwSvi2g0Gr+ABdDa2hq/uBWJRAmFgjQ1NmFi0t7eTiAQoKUlduHO5/Ph8/kIBoM93n3f2ZnTeWGyc0qZ8vJyqqurMU2TvffemxtuuIHDDjts5/3gRUREZLeYN28eN954I7Nnz6ahoYFgMEg0GsXpdGKxWPD5fFssJIdYR4LL5cLhcGC323E4HCQlJYEJSclJWC1WUlJTsFqt2Gw2rFYrCQkJeL1eIpEITqeTxMTE2PSyTe0kJG+c8jXQEsSRYMfouPDWsLIFV6odV3KseLx2YRNpAxJjBd63LqD06FzSyxOxe2zUL2lh0bNrGHpOMclFHio+rKLkkOx4R9K6/6slb790DKsRy3ZWG8FACIfLDtClyD0UClFf24DDZScQCMRHNnI4HAQCAYLBIM1NzUTNKH6/v0uhUWf22vziVyeLxYLVaiUlJYVAIEBzczP5+fmkpKSwevVqSktLmThxIrfccgtut7tvfglERERkl/D7/Tz00EM888wzLFmyhLa2tvhoAB6Ph0AgEB/tekt9Xna7HbfbHb+hz+WKjc7U+TgxMQm7fQt9Xv4gKWmb9Hl1FFZDrM/L4XQQicb6vKIhk3X/V0PhQVkAmFFY+V4lpT/LoWF5CwufWsPAE/PJGJpMsCVE7YJmKt6uYsyNQzAjUeoWN5O1dyqmadLe4MdXG4xN/dFxcSvQGsSd4oy/tvaGdhJSE4hGo7S1thEIBrBYLLS0tMT7vKLRKKFQKNbnZZq0+zr6vJpbMDHx+/34fD4CgcBW+7w8Hg8ul4umpiYikQiDBw+OZ7vhw4dz3XXXMXr06D76LRAREZFdZe3atfzlL39h5syZrF27lra2NoLBIA6HA6vV2qs+L6fTGe/zcjldeBO9GBixPi+rleTkZCwWCw6HE6vVEu/zikajOByOeJ9Xa10b3nRPfNtt1T7cqS4sNgPDYlC7uBG710pSnhfDMKie30hKiQeby8pnf1lI/kHpZA5LJiHNReU39ax4t5LSI3LIGZZGxceVFB2YjcUWG+Cg4r1KCg/KxOqyEg6HsWAl0BrAneICNg5qYBgGwUCIhsZ6nE4nfr+/o8+rEafTgd/vJxgM0tTUFLtmGfB3KTTqzF6hUGiLfV4Wi4XU1NT4djr7vBoaGhg0aBATJkzgN7/5DU6ns9v6ItJ7KlIS2YW+/vpr/va3v/H555/T2NhIJBKhpaUFlytWlNTe3o5pmrGCItOMX3Tr6cNyc1arFbvdjs1mi1886gwVnY8jkQgOhwObzRa/S95qteJwOOLT01mtVlatWkV6ejoJCQmEQqH46FGhUIhwOBzfVjgcjt9dFw6HCYfD8XC06fOhUKjHwLSpzo4rlytW1BQOh0lLS8Nms9HU1EQoFKKsrIzm5mba2toYOHAgEyZM4IYbbiAhIWGr2xYREZGfHp/Px6OPPspzzz3HokWLYoU5zc2YponXGxu9sa2tLT6tSTAYjI8csC2duWXTQqbOi0idjztzVmebSCQS31dnTrPZbLS2ttLY2EhRUVE8SxmGES9878xskUiEQCAQX7fz+c675jfNXj1d5Npc54XBzlxntVpJS0uL36WflZVFSkoK69evJysri7333pvLLruMcePGfe+fjYiIiPz4LFq0iIceeohPPvmEdevW4ff7aWpqwuFwkJCQgM/ni+efHenz2jRHba3Py2q1xi/edfZ5deYrm83G6tWrSUlJwev1EgqF4tvqqc8rHA7Hs9b36fMC4jcodk5zm5KSgsPhoLGxkUAgwMCBA2ltbSUajTJgwAAOP/xwrrzySlwu18748YiIiMiPSCAQYMaMGbzwwgt8++231NfX09TURDAYJCEhNrtJa2trtz6vaDTa62t1PfV5dS7bWp+XzWYjHA5jt9tpa2ujoaGBoqKiLqN1bqvPKxKJEAwGsVgs8ced2ay3fV4ulyt+bBaLhfT0dHw+H83NzaSnp5Oenk5DQwMlJSUMHjyYiy66iBEjRuysH5GIbIOKlER+ABYtWsT//vc//u///o/ly5fHP0ij0Wh8xKW2tjasVisejyf+4d75fOfjzqAAEAwG4yMudT6G2DDeNTU1eDwePB5Pl0BimiahUCi+vDNIJCYmEo1GCQQCAPG76VpaWkhMTMTj8dDY2EhzczMFBQVYLBaam5vJzs6mX79+TJgwgSlTpqjYSERERHY7n8/HBx98wHvvvcd3330Xv8jW0NAQH1bb5/NhmmZsFMyOi26dHTedU6MEg0Hsdnt8u36/H7vdHrsbv6PIyDRN2traaGtrIzMzE6s1Nue9wxEbmbLzQpjb7Y5NFxIIxIf37hz1yOv1xocHb29vJzs7m3A4TGNjI1arldzcXBobG0lJSSE/P5/+/ftzwQUX0L9//13/5oqIiIhspqKignfeeYdvvvmGxYsXU1tbG59q1ul0YrPZaG5uxm63k5CQEL8w1ZmRwuFwvI+qM3t1juTdmdcCgUC8X6ympiY+YkBn4VLnxbZQKERCQkKXi2eb9nl1FrsHg0FaWlri22lqasLn85GdnY3T6SQUCpGfn09OTg6HHXYYkydPVrGRiIiI7HaBQIC5c+fyySefMH/+fJYvX05TUxMNDQ3xUco7R3jsnNa3s8+rc/AD6NrnZRgGPp9vm31enf1lnSMQdfZ5JSTERqbs3GZnlmpvb8fj8cRHkGprayM7O5tIJEJbWxsWi4WsrCxCoRA5OTlkZWVRXl7OGWecoanWRH4AVKQkIiIiIiIiIiIiIiIiIiIiIiJ9yrK7D0BERERERERERERERERERERERH7cVKQkIiIiIiIiIiIiIiIiIiIiIiJ9SkVKIiIiIiIiIiIiIiIiIiIiIiLSp1SkJCIiIiIiIiIiIiIiIiIiIiIifUpFSiIiIiIiIiIiIiIiIiIiIiIi0qdUpCQiIiIiIiIiIiIiIiIiIiIiIn1KRUoiIiIiIiIiIiIiIiIiIiIiItKnVKQkIiIiIiIiIiIiIiIiIiIiIiJ9SkVKIiIiIiIiIiIiIiIiIiIiIiLSp1SkJCIiIiIiIiIiIiIiIiIiIiIifUpFSiIiIiIiIiIiIiIiIiIiIiIi0qdUpCQiIiIiIiIiIiIiIiIiIiIiIn1KRUoiIiIiIiIiIiIiIiIiIiIiItKnVKQkIiIiIiIiIiIiIiIiIiIiIiJ9SkVKIiIiIiIiIiIiIiIiIiIiIiLSp2y7+wBkz1ZVVUVjY+PuPgwR2UVSUlLIzs7e3YchIvKTpewl8tOi7CUisvsod4n8tCh3iYjsXspeIj8tyl6yNSpSki2qqqrilBNPAevuPhIR2VVcLhdPPPGEgoOIyG6g7CXy06PsJSKyeyh3ifz0KHeJiOw+yl4iPz3KXrI1KlKSLWpsbAQr2JakYPHbAAuGxQBj4z/DYgEDMCyxZZs9v+V/HetYDKDzsbHJYyM2GaFB/LHZuayj/aaPTWPjNszOSQw7t9nZtsvXzvU62m2yjtm5HSO2yDTAtGyynrFx22aXdeiyTpf9s3G9eNvN1o3/Y+vtu6yzhWXb/D6+zOyyzOyyTbPL49j+zW7r022bHe0sG583DDO22Oh83Plj3OT5jq+xpza2sxhmx/rmJo9jbWK/AiYYZny5xTBjz7HZMsPEQuyfYZgdv6ody4xN2nd8jf/DxCCKpWNfFiPa8RxYiGIYJtaO/VmNaMdXE8OIxpbHn9/0cTS+bYsRjR+DjUgPz0WxAJbO7XXsp/O1WDC77CfWtuNYO763YmAAVgMMjI7HG79aMLAYFtass/Pne1JobGxUaBAR2Q12W/YyLHtU7oo/3oOzl2nZZN09IXdt1mZPzF5Wy56Vu6x0rK/sJSLyk6Q+r9iiHrOXhT0qd22+bE/NXntS7toT+7w2z142I6LcJSLyE7LHZC/Dsmflrk1y1R6bvSybHQe7P3fBphmr80e552Svzty0p+Qu9XnJnkhFSrJNRrsNi88BRmdosMTDQSw0GGDZGBqMTZ7v8lz8cef3lu4ho+OxaXR8Um3ynGl0fCoZnR8rG9uYm3yCmh1tOj/wNwaSTR9v9r3F6BYIunwYdhQpdQaZLYWJ7l+NbsFgS223FRB6arfN59lW2x6Cw+bPselzmwcFs9tzRuf3mxcpdfkaa2N0BoDNQ8Mmz5nx780u61no3HdnR9DGfwYb19k8BFi2uCza7bF10w/vzg/lzu8NM/aBvkkQ6PwwtxpRLIYRbx/7Ske72Id4bP3YB7mlI2zYjShWovFtWzsed24zFgqiG7/v2PfG781N9rVx+1aMju9jAcHaERRijy0d38e+iojI7rers5dpsexZuatLW/bI7BUvUtpTclf8GPbc7GWzRPeo3LWxvbKXiMhPmfq8Nm/bmXP2nNy1xefZg7KXZfMiJfV5bSt72Y2IcpeIyE/Qbs9eFsselbs2Zo09OHttXqS0u3PXHtjntfkymyWyR+Uu9XnJnsiy7SYiIiIiIiIiIiIiIiIiIiIiIiI7TkVKIiIiIiIiIiIiIiIiIiIiIiLSp1SkJCIiIiIiIiIiIiIiIiIiIiIifUpFSiIiIiIiIiIiIiIiIiIiIiIi0qdUpCQiIiIiIiIiIiIiIiIiIiIiIn1KRUoiIiIiIiIiIiIiIiIiIiIiItKnbLv7AGTPZyaEiVoALBgWA4yN/wyLBQzAsMSWbfb8lv91rGMxgM7HxiaPjVgJnUH8sdm5rKO92bkdDMzYNx3fQ+w/dG4g9nx04zpm53odu4u373wc33bHY4uxyXOxp2P/ocvyLusYYHTub5NlnfvsXGb2sP7W2ndZZwvLtvl9fJnZZZnZZZtml8ex/Zvd1u/59ZsdPyuz432IvcGG0fm44/3Z9PmOrwabLgeLYXasb27yuOOnHt+GucmxmZiYHa/NJBp/LbHlJiZRw+z4VTWxYMa2udnX+D9MDKJYDDraRjueAwtRDMPESmw9qxHt+GpiGNHY8vjzXR9bOn6dY18NLAbYsGCFjv0aWAwj9hWwdG6vYz8WzPi/LtuNb3Pj91YMDMBqgIHR8Xjj19i+LKxZp48EEZE9wS7PXoZlz8pd8ePd+G9Py16mZZN194TctVmbPTF7mZY9K3dZO1KQspeIyE+b+rw2edx5eBb2qNy1+bI9NXvtSblrT+zz2jx72QyrcpeIyE/Qbs9ehmWPyl0bs8MenL06hjvZk3IXbJqx2OOyV7QjN+0puUt9XrIn0m+IbFE0GsVmsxEe2Li7D2XHmGwSIHrP2Oyr/PB0/uiju/tAtqozWe1ZA9rZbDai0T37nRMR+bH6QWcv5a6ftD0/e+2ZuQuUvUREdpcfdO4CZa+fsD0/d8Gemr2Uu0REdp8fdPZS7vpJ2/Oz156Zu0DZS7ZORUqyRRaLhXA4zE033URxcfHuPhwR6WOrVq3i1ltvxWLZ88KMiMhPgbKXyE+LspeIyO6j3CXy06LcJSKyeyl7ify0KHvJtqhISbapuLiY8vLy3X0YIiIiIj8Jyl4iIiIiu4Zyl4iIiMiuo+wlIiKwJ479JfIj9PHHH3PNNdcwYcIEkpOTMQyDqVOn7u7D6tGTTz7JRRddxH777YfT6cQwDB599NHdfVjfWygU4oUXXuCcc85h8ODBeL1eEhMTGT16NPfffz+RSGR3H6KIiIjsBMpdu59yl4iIyE+Hstfup+wlIiLy06Dctfspd4nsHBpJSWQXeOSRR3jsscdISEigqKiI5ubm3X1IW3TTTTexatUqMjIyyM3NZdWqVbv7kHaK5cuXc/LJJ+P1ejnssMM47rjjaGpq4tVXX+XSSy9lxowZvPLKKxiGZggWERH5IVPu2v2Uu0RERH46lL12P2UvERGRnwblrt1PuUtk59BISrJF6enpTJ06lfT09N19KD94l19+OfPnz6e5uZnp06fv7sPZqmnTplFRUUFNTQ0XX3zx7j6cnSYxMZF//etfVFZW8r///Y/bb7+dBx54gCVLlrDffvvx2muv8fzzz+/uw9ytdM6LiOxe+ju8cyh37X7KXb2jc15EZPfR3+CdR9lr91P22jad8yIiu5f+Du8cyl27n3JX7+icl21RkZJsUUZGBueddx4ZGRm7+1B2qxdeeIFDDjmErKwsXC4XeXl5HH744bzwwgu93sZ+++3H0KFDsVqt3+tYotEo06ZNY9SoUaSlpeF2uykoKODYY4/lww8/jLf78MMPMQyDP/zhD3z66adMnDiRlJSUXlXuHn744RQXF3+v4+wUDAb5xz/+wf77709iYiJer5chQ4Zw9dVX09DQEG9XUlJCSUkJTU1NXHLJJeTm5uLxeDj44IP5+uuvAVi/fj1nnXUWWVlZuN1uJk6cyNKlS3t9LPn5+Vx66aV4PJ4uyz0eD1dffTUAH3300U541T9cOudFRHYv/R1W7vo+lLt+eHTOi4jsPvobHKPsteOUvX5YdM6LiOxe+jus3PV9KHf98Oicl23RdG8iW3H//fdz6aWXkpubywknnEB6ejqVlZV88cUXvPTSS5x00km79Hiuv/56/vrXv1JWVsYZZ5xBYmIi69atY+bMmbz77ruMHz++S/tPP/2Uv/zlL0yYMIFf/OIXrF69epcdq8/n42c/+xmzZs1iwIABnHvuuTidTpYuXcqDDz7Iz3/+c1JTU+Ptg8EgP/vZz/D7/Zx22mlUVVXx3HPPcfjhh/Ppp59yxBFHkJuby1lnncWyZct49dVXOfroo1m4cOH3DmR2ux0Am01/EkVERHYX5a4dp9wlIiIi20vZa8cpe4mIiMj2UO7accpdIj9OOktEtmLatGk4HA7mzJlDVlZWl+fq6up2y/Hk5eUxd+5cEhISujxXX1/frf0777zDI488wrnnnrurDjHud7/7HbNmzeLss89m+vTpXT7cm5qaun3Yb9iwgYMOOoinnnoq/gE+YsQIrrvuOsaMGcO5557LHXfcEa/QvvTSS7n//vt5+eWXOfHEE7/XsT7yyCMATJw48XttR0RERHaccteOU+4SERGR7aXsteOUvURERGR7KHftOOUukR8nTfcmsg12uz1e/bqp3TWPpsPh6LGaNy0trduyfffdd7eEhnA4zEMPPURycjJ33313t+NNTk7G6/V2W+/vf/97lwrj008/Pb69W2+9tcsQkp3Pffvtt9/rWB966CHeeOMNDj30UCZNmvS9tiUiIiLfj3LX9lPuEhERkR2l7LX9lL1ERERkRyh3bT/lLpEfL42kJLIVU6ZM4dprr2WvvfbijDPOYMKECRx00EEkJSV1aXfXXXfR2NjYZdnUqVMpKSnZ6cdz3333sddeezFlyhQmTJjAmDFjcLvdPbbff//9uzxubGzkrrvu6tbuD3/4w049zkWLFtHS0sLhhx/eZZjFrUlNTaWoqKjLstzcXAAGDBjQrZq787n169fHlz366KNUVFR0aXf88cczfPjwHvf52muvcfnll1NcXMyTTz7Zq+MUERGRvqHctWOUu0RERGRHKHvtGGUvERER2V7KXTtGuUvkx0tFSiJbcc0115Cens7999/PHXfcEa++Pfroo/nHP/5Bv379gFhwWLVqVZd1x48fv9ODw913302/fv2YPn06t956K7feeisul4tTTz2VO+64g4yMjC7ts7OzuzxubGzklltu6bbdnR0cmpqaAMjPz+/1OpuHMdg4b+vWnguFQvFljz76KB999FGXdiUlJT0GhxkzZnDyySeTnZ3N+++/Hw8iIiIisnsod+0Y5S4RERHZEcpeO0bZS0RERLaXcteOUe4S+fFSkdKPRHt7O8888wwLFixg4cKFtLS0cP3113PUUUft9H3V1NRw77338uWXXxKNRhkxYgRXXHEFeXl5XdodfPDBPa7/i1/8grPOOmunH1dfMAyD8847j/POO4+6ujo++eQTnn76aZ577jmWLl3K3LlzsVqt3Spq+4rNZuOaa67hmmuuYf369Xz00UdMnz6dxx9/nMrKSt56661ux7+pkpISTNPs8+NMSUkBYN26dX2+r019+OGHvWr3+uuvc9JJJ5GRkcEHH3xAaWlpnx5XMBjk3//+N2+//TYtLS2UlZVxwQUXdKs+70lvz7f6+noefPBBPvvsM9rb2ykuLuass85iwoQJ3bY5e/ZsnnjiCVasWEEkEqGgoICTTjqJI444It4mEAjwj3/8g4ULF1JdXU00GiUvL49JkyZxwgkndBkq84033uC2227r8fhfeumlLsOVnnrqqVRWVnZrd9xxx3HNNdfEH9fW1vL888+zcOFCFi1ahM/n4+6772bEiBHbfM9ERHYFZa+dT7lrxyh39c6O5rHVq1fz8ssvs2DBApYuXUowGOTZZ5/tsdMpEAjw3//+l7feeovKykoSExPZa6+9OPfcc+Mdjp2+/PJLHn30UZYsWYLdbmfkyJFceuml3bZ7zz33MGfOHCorKwkGg2RnZ3PooYcyZcqULnf/LVy4kDfffJNvvvmGyspKkpKSGDp0KBdccAGFhYXxdtFolLfeeouPPvqIpUuX0tLSQm5ubnybTqdzR95eEZE+pdzVN5S9doyyV+/siuzV25zUafHixUyfPp158+YRDAbJy8vj2GOP5eSTT463ufLKK5kzZ063dUeNGsXf//73btt7+OGHmT9/PqZpMnToUC655BIGDBjQpd32bFNEZE+g7LXzKXftGOWu7nbF9cbtOd96c72xqqqKGTNm8Nlnn7F27VqsViv9+vXj5z//Ofvtt1+X7W3P9UaI/b167LHH+OCDD6irqyM5OZmhQ4dy44034nK54u162w8nu46KlH4kmpqaePTRR8nOzqZ///588803fbKf9vZ2fvnLX9LW1sZZZ52FzWbjueee44orruCRRx4hOTm5S/v99tuPI488ssuyzf9H7YciPT2d448/nuOPP57a2lref/99li1bRnl5+W45nry8PE4//XROO+00ysvLeffdd/H5fFscjnFXKi8vJykpiS+//JKGhoZeD8O4K3SGhrS0ND744AP69+/f5/u87bbb+PDDDznllFMoKCjgjTfe4Nprr+Xuu+9m2LBhW1yvt+dbW1sbl112GQ0NDZx88snx13bzzTcTDof52c9+Ft/mzJkzufHGGxk6dChTp07FMAw++OAD/vznP9PU1MSpp54KxC6yVVRUcMABB5CTk4PFYmH+/Pnce++9LFy4kN///vfdjvf888/v9oHe03zAAwYM4LTTTuuyrKCgoMvjNWvW8NRTT1FQUEBpaSnffffdNt5lEZFdS9mrbyl39Z5yV+/saB777rvveOGFFyguLqa4uJilS5duse2f/vQnZs2axbHHHsvAgQOpra3lpZde4pJLLuHRRx8lJycHgE8//ZQbbriBgQMHctFFF9HW1sbzzz/P5Zdfzr///e94JxzEhjYfNmwYkyZNwuFwsHTpUp566im++uor7rnnHiwWCwBPPfUU8+bNY8KECZSVlVFXV8dLL73EBRdcwP333x/vKPP7/dx2220MHTqUyZMnk5qaynfffcf06dP5+uuvueuuu7p1PoqI7G7KXX1P2av3lL16Z1dkr97mJIAvvviC66+/ngEDBnDOOefgdrtZt24dNTU13babmZnJRRdd1GXZ5hfEFi9ezGWXXUZWVhZTp07FNE1eeuklrrzySh588MFu08z0ZpsiInsKZa++pdzVe8pd3fX19cZOvTnfenu9cebMmTz11FOMGzeOI488kkgkwltvvcXVV1/Nb3/7WyZNmtTteHtzvbG1tZUrr7ySmpoajj32WPLz82lsbGTu3LmEQqF4kdL29MPJLmTKj0IgEDBra2tN0zTNhQsXmuPGjTNnzJix0/fzn//8xxw3bpy5YMGC+LKKigpz/Pjx5oMPPtil7bhx48w777xzpx/DrvTBBx+Y0Wi0y7JgMGgOHz7cBMyKiort3uZnn31mAuY555yzXev5/X5z1qxZ3ZY3NzebOTk5ptPpNP1+f/y4AfPmm2/e7uPb1G233WYC5vTp07d73d/85jcmYJ599tlmOBzu8lxjY6PZ0tISf1xcXGwWFxf3uB3APOSQQ7otX7ly5Xa/jzNmzDCdTqeZk5NjLlq0qNfrfR/fffedOW7cOPOpp56KL/P7/eaUKVPMiy++eKvr9vZ8e+qpp8xx48aZs2fPji+LRCLmhRdeaE6ePNkMBoPx5VdddZV5wgknmIFAIL4sFAqZU6ZMMadOnbrN1/OPf/zDHDduXPzvjWnG3tdx48aZCxcu3Ob6p5xyinnttddus11bW5vZ1NRkmmbs93ncuHHm119/vc31RER2FWWvnU+5S7mrr3yfPNbU1GS2tbWZprkxc61fv75bu+rqanPcuHHmv/71ry7Lv/rqK3PcuHHms88+G1929tlnm1OmTOmS0ZYuXWoecsgh5j333LPN1/P000+b48aNM+fPnx9fNnfu3C7bM03TXL16tXnYYYeZf/zjH+PLgsGgOXfu3G7bnD59ujlu3Djzyy+/3Ob+RUR2NeWuvqHspezVV3ZF9tqSnnJSa2urOXnyZPOGG24wI5HIVte/4oorzJ///Ofb3M9vfvMbc9KkSWZjY2N8WU1NjTlx4kTzxhtv3KFtiojsKZS9dj7lLuWunWFXXG80zd6fb7293rhixQqzoaGhy7qBQMA888wzzRNPPLHL8u253njHHXeYRx11lLlu3bqttvu+/XDSNzSS0o+Ew+Ho9d0Xn3/+OU8++SRLlizBMAz22WcfLrnkkm5TEPTkww8/ZNCgQQwePDi+rLi4mH333ZcPPviAX/ziF93WCQQCAD/IqQOOP/54kpKSOOCAAyguLiYUCvHOO++wYMECTj75ZIqLi3u1nZkzZzJt2jSA+B06M2fOZOrUqQBkZGRsc3hfn8/HgQceyMCBAxk5ciRFRUW0trby2muvUVlZyTXXXLNT3uNp06Yxc+ZMAObNmxdf1jm84UEHHcQFF1ywze388Y9/5PPPP+eJJ57g888/56ijjsLpdLJixQrefPNNZs6c2eP8rX1l0aJFnHDCCQQCAcaPH8/TTz/drU1JSUn8Z7KzfPTRR1itVo477rj4MqfTydFHH81DDz1EVVVVt/l8O/X2fPv2229JSUlh5MiR8XYWi4UJEyZw//33M2fOnPhQj+3t7SQmJuJwOOJtbTZbtyrpLekcAaC1tbXHvznt7e04nU6sVutWtxMKhQiHw1usxu9pWG4RkT2JstfOp9yl3NVXvk8eS0pK6tU+2tvbAbrd1df5d6Lz96W5uZmKigpOP/107HZ7vF3//v0pLi7m/fff5/LLL9/qvjbNY5323nvvbu0KCwspKSlh1apV8WV2u73HtuPGjeORRx5h1apV3YbaFhHZ3ZS7+oayl7JXX9kV2WtLespJ7777LvX19Vx44YVYLBZ8Ph9Op7PLSEubC4fDBIPBLfZPzZ07l9GjR3fpT8vIyGD48OF89tlntLe3d1t3W9sUEdlTKHvtfMpdyl07w6643ripbZ1vvb3e2NPfA4fDwQEHHMBzzz3XY27q3P6Wrje2tLQwY8YMTjrpJPLy8giFQpim2eVYYOf0w0nfUJHST8xbb73FX/7yF0aNGsVFF11EIBDgf//7H5dddhn//ve/tzr3YjQaZcWKFT0OuzZ48GC+/PLLbn9I3nzzTf73v/9hmibFxcX8/Oc/7zL11J7utttu48033+SLL77g1VdfxePxUFZWxv3338/555/f6+0sW7aMxx57rMuy5cuXs3z5ciD2QbCt4ODxeLj99tt57733+OSTT6iuriY1NZXy8nJuu+02pkyZsv0vsAczZ87sdqyzZs1i1qxZ8ce9CQ4ul4t33nmHe++9lyeffJKHH34Yq9VKUVERF198MSUlJTvleHursrIy/oH6zDPP9NjmkEMO2enBYenSpRQUFODxeLos7wwCy5Yt6zE0bM/5FgqFegwJnUMZLl68OF6kNHz4cJ566immTZvGkUceiWEYvPvuuyxevJg//OEP3bYRCoVoa2sjEAiwePFinnnmGXJycsjPz+/W9pe//CU+nw+73c7+++/PZZddRmFhYbd2X3/9NRMnTiQSiZCTk8Mpp5zCKaec0sO7JyLyw6fs1XvKXTHKXTvfjuax7ZGfn09mZibPPvssRUVFDBgwgNraWh544AFyc3M59NBDAQgGg0DPHTxOp5OVK1dSV1fXpUM4HA7T2tpKOBxmxYoVTJs2jYSEhC4dSz0xTZOGhoZe/fzr6+sBel24LiKyJ1Lu2j7KXjHKXjvfrshenXqTk2bPno3H46G2tpYbb7yRNWvW4Ha7mThxIpdffnm3XLZmzRqOOOIIQqEQaWlpHHPMMUydOhWbbeOllFAo1O0iGMR+N0KhECtXrmTo0KHbtU0RkR8aZa/eU+6KUe76fnbF9cZOvTnftvd64+bq6+txuVw99pFt63rjvHnzCAaDFBQU8Lvf/Y6ZM2cSjUYZOnQoV111VXxquh3ph5NdQyn4J6S9vZ27776bY445ht/85jfx5UceeSRnnXUWTz75ZJflm2tubiYYDPZ4onYuq62tjc+5vddeezFhwgRyc3Opq6vjxRdf5E9/+hNtbW0cf/zxO/fF9ZFLLrmESy655HtvZ+rUqd/7A8lut3Pttddy7bXXbrPt+PHjMU1zh/bz6KOP8uijj+7QuptzOp38+te/5te//vVW21VUVGzxuS29jpKSku16jd/nPfk+tvThtuk505PtOd+Kior46quvqKysjN8xBrG7ujbfxznnnMOGDRt44oknePzxx4FYyPvjH//IuHHjuu3r448/5pZbbok/HjRoENddd12XThSn08lRRx3FiBEj8Hg8LF68mOeee45LL72UadOmdQlFpaWlDBs2jMLCQpqbm3njjTe45557qK2t3SnnmojInkTZa/sod30/yl1btqN5bHvYbDb+9Kc/8ac//Ynrr78+vry8vJz77ruPxMREANLS0vB6vfG7CDs1NTXFRzyqra3tcryLFy/ucm4UFRVx2223bXOkgXfeeYeamhrOO++8bR7/008/jcfjYfTo0dt+sSIieyDlru2n7PX9KHtt2a7IXp16k5PWrl1LJBLhhhtu4Oijj+YXv/gFc+bM4YUXXqC1tZWbb7453jYvL48RI0ZQWlqK3+/nww8/5PHHH2fNmjVd+scKCwtZsGABkUgkfnd/KBRiwYIFwMbRLbZnmyIiPyTKXttHuev7Ue6K2RXXG6H359v2Xm/c1Nq1a/n444+ZMGFCl5GSenu9ce3atQA89NBD5OXlccMNN9DW1sajjz7Kr371Kx577DEyMjJ2qB9Odg0VKf2EzJ49m9bWVg477DAaGxvjyy0WC4MHD+brr7/e6vqdlaGbDofWqfPOkc42APfdd1+XNpMmTeKCCy7goYceig/HJ/JjFwgEen3ObL4e9O58O+aYY3j55Ze5+eabufzyy0lLS+ODDz7gk08+6bYPu91OYWEh48eP5+CDDyYSifDqq69y6623cuedd3a5ywtgxIgR3HnnnbS2tvLVV1+xbNky/H5/lzaHHnpofHQAiE0XMmrUKK644gqeeOIJrrnmmvhz/+///b8u606aNInf/OY3PPfcc5x00klkZWX1+H6IiPwQKXuJ7Bl2NI9tr8TERPr378/48eMZMmQI69at4z//+Q8333wzd9xxR3xakeOOO46nnnqKBx98kEmTJtHe3s79999PKBTq8XhKSkq488478fl8zJ8/n6+++gqfz7fVY1m1ahX/+Mc/GDp0KEceeeRW2z7xxBPMnj2bq6++Ol5MJSLyQ6PcJbLn2FXZC3qXk3w+H36/n8mTJ/PLX/4SiI1wEAqFeOWVVzjvvPPid+b/9re/7bLuEUccwd/+9jdeffVVTj311Hi/2QknnMAdd9zB7bffzhlnnEE0GuXxxx+nrq4O2HjX/vZsU0Tkh0TZS2TX2xXXG6H359v2Xm/s5Pf7ufnmm3E6nVx00UVdnuvt9cZN894//vGP+ChQAwYM4JJLLuGll16KT/W7vf1wsmuoSOknpLOq8Fe/+lWPz3cODxcIBLrM2w2xSsrOPzqdJ+2mtjZcWie73c6JJ57IHXfcweLFixk2bNh2vwaRHxqn07lD58z2nG9lZWX8/ve/54477uCyyy4DYnfpX3HFFdxxxx243e74unfddRcLFixg2rRpWCwWIPah//Of/5x//vOfPPjgg132lZaWRlpaGhCrEH/iiSe4+uqreeqpp7ZaWTxs2DCGDBnCV199tcU2AIZhcOqpp/LFF18wZ84cJk6cuNX2IiI/JMpeInuGHc1j26O1tZUrrriCKVOmdBkafdCgQVx55ZW88cYb8bvNzj//fJqamnj66af5z3/+A8D+++/P0Ucfzcsvv9wlu0Hsb8V+++0HxDpn3nnnHW644QamTZtG//79ux1LXV0d1113HR6Phz/96U9d7kjb3Hvvvce0adM4+uijfxB3n4qIbIlyl8ieY1dkr069yUmd+zvssMO6rHv44Yfzyiuv8N1333WZPmRzp512Gq+++iqzZ8+OX2ybPHky1dXVPP3007z55ptALPedfvrpPPHEE93yXG+2KSLyQ6LsJbLr7YrrjT3Z0vm2vdcbASKRCH/4wx+oqKjgr3/9KxkZGVt7yUDP1xs7i6sOPPDALtPUDR06lNzcXObPnx9ftr39cLJrqEjpJyQajQJw0003xYsONtXZef3+++9z2223dXnu448/JikpCYfDEb8jZFOdy7b1x6RzlJTm5ubtfwEiP0Dp6eldhnjutK1zZnvPt/Hjx3PggQeybNkyotEoAwcO5JtvvgGId7SEQiFef/11zjjjjHhggNj0JKNHj+all14iFAr1WE296X4efvhhZs6cyeTJk7f62rOysli9evVW23S2A/1dEJEfH2UvkT3Djuax7fHRRx9RX1/PgQce2GX58OHD8Xg8zJs3L14EZLfbue6667jwwgtZs2YNaWlpFBYW8sc//hGLxUJ+fv5W93XwwQfz5z//mffee69bkVJrayvXXnstra2t3HvvvVt9bV9++SV/+ctfGDNmzDaHTBcR2dMpd4nsOXZF9tqSnnJSeno6K1eu7Pa3ITU1FYCWlpatbrPz3N683YUXXsiUKVNYuXIlHo+HsrIyHnroIYCtFj1tbZsiIj8Uyl4iu96uut7Yk83Ptx293vi3v/2Nzz77jN/97neMHDlyq/vcfP+bXm/sPN7OPLep1NTULsWR37cfTvqGipR+QjpPspSUlPgdJj3Zf//9ufPOO7stt1gslJaWsmjRom7PLViwgLy8vC7Vij1Zv359/BhEfgr69+/PN998Q1tbW/zuASA+R31Pd7/Djp1vdrudwYMHxx93VhV3nu9NTU1EIhEikUi3bUYiEaLRaPx/Lrakc9jDtra2rbaD2Pnem3NdfxdE5MdK2Utkz7CjeWx7NDQ0AHTLUqZpEo1Ge8xfm45YGYlE+Oabbxg8ePA2z+tQKEQ0Gu2WxwKBAL/97W9Zs2YNd955JyUlJVvcxoIFC7jpppsoLy/nlltuwWZT14CI/LApd4nsOXZF9tqSnnJSeXk5s2fPpqamhqKiovjy2tpaYNvn7NbO7cTExC6jd8yePZvMzMwu+9nebYqI/BAoe4nservyeuPmNj/fduR643333ceMGTO44oorOPzww7e6v572v+m5Xl5eDmzMc5uqra3tMYvtaD+c9A3LtpvIj8WoUaPweDw8+eSThMPhbs93zhubkZHBfvvt1+Vfp0MOOYRFixZ1+UO2evVqvvnmG8aPH99tW5tqb2/n+eefJzk5Of7HQ+THbvz48UQiEV555ZX4smAwyIwZMxgyZAjZ2dkAVFVVsWrVqi7r9vZ868maNWt4+eWXGTt2bPzurdTUVLxeL5988kmXYR3b29uZNWsWRUVF8SEdGxsbMU2z23Zfe+01gC7ncE/n+2effcbixYsZNWpUfFlzc3O3wBIOh/nPf/6D3W5nxIgRW31NIiI/NMpeInuG75PHequgoACITZ+2qZkzZ+Lz+RgwYMBW13/mmWeoq6vjtNNOiy9raWnp8W9HT3msc7js7777jltuuYW99tpri/uqqKjguuuuIycnh9tvv32nTrkiIrK7KHeJ7Dl2Rfbanpw0YcIEAF5//fUubV9//XWsVmu8P6qtrS0+5Ukn0zR5/PHHgdiF9q157733WLRoEaecckp8RIHvu00RkT2VspfIrrcrrjf29nzbnuuNAE8//TTPPPMMZ599NqeccsoWX2NvrzcWFRXRv39/Zs6c2WWdL774gurq6m1mrJ764WTX0u2SPyIvvPACra2t8aHZZs2aRXV1NQAnnXQSXq+Xq6++mj//+c+cf/75HHbYYaSkpFBVVcXnn3/OXnvtxVVXXbXVfZxwwgm89tprXHfddUyZMgWr1cpzzz1HamoqU6ZMibd78cUXmTlzJmPHjiU7O5u6ujpmzJhBVVUVN95441ankxL5MRkyZAgTJkzgoYceorGxkfz8fN58800qKyu57rrr4u3+/Oc/M2fOHD7++OP4st6ebwBnn302EyZMICsriw0bNvDyyy+TlJTUZeoOq9XKlClTmDZtGhdffDFHHHEE0WiU119/nZqaGm666aZ427fffptXXnmFgw46iLy8PNrb2/niiy+YPXs2Y8eO7TIM4yWXXMLAgQMpLy/H4/GwZMkSZsyYQVZWFmeffXa83axZs3j88cc55JBDyM3NpaWlhXfeeYeVK1fyi1/8gvT09C6v6bHHHgNiF9IA3nrrLebOnQvAOeecs6M/EhGRnUbZS+SH4fvksdbWVl544QWA+Hz2L774Il6vF6/Xy0knnQTAgQceSL9+/XjssceoqqpiyJAhrFu3jhdffJH09HSOPvro+DbffvttPvroI/bZZx/cbjezZ8/mgw8+4JhjjunSMTRnzhzuvvtuxo8fT0FBAaFQiLlz5/Lxxx8zaNAgJk6cGG/7r3/9i1mzZjF27FhaWlp4++23u7wHnW3b29u55ppraGlpYcqUKXz22Wdd2uXl5W21wElEZHdR7hL54dgV2Wt7ctLAgQOZNGkSM2bMIBKJMHz4cObMmcMHH3zAWWedFZ8uZMmSJdxyyy0cfvjh5OfnEwgE+OSTT5g3bx7HHntsl4vgc+bM4bHHHmP//fcnKSmJBQsW8MYbbzB69GhOPvnkeLvt2aaIyJ5E2Utkz7Mrrjf29nzbnuuNH3/8Mffffz8FBQUUFxd367Pab7/94iMc9fZ6I8Dll1/Or3/9ay6//HKOO+44Wltbee655ygsLGTy5Mnxdr3th5NdyzB7GipDfpBOPfVUKisre3zu2WefJTc3F4BvvvmG//znPyxYsIBgMEhmZibDhg3jxBNP7NX/GFVXV3Pvvffy5ZdfEo1GGTFiBJdffnn87mGAL7/8kqeffpoVK1bQ3NyMy+Vi8ODBnHHGGds1x6TIj0EgEODf//43b7/9Nq2trZSWlnLBBRd0qfq98soru4UG6N35BnDLLbcwb948GhoaSE5O5sADD+S8887rcT7Wd955h+eff541a9YQCoUoKytjypQpXT6MFy1axNNPP82CBQtoaGjAarVSWFjIxIkTOfHEE7tMCfLwww/z+eefs2HDBvx+P+np6YwZM4apU6d2mY968eLFTJ8+naVLl9LY2IjNZmPAgAGcdNJJ8bvaNnXwwQdv8T3d/H0SEdkdlL1Efjh2NI9t2LBhi3dV5eTk8Nxzz8Uft7S08Nhjj/HZZ59RVVWF2+1mv/3248ILLyQvLy/ebsGCBdx///2sWLGCQCBAUVERkydP5rjjjsMwjHi7devW8eijjzJv3jzq6uowTZP8/HwOOeQQTj/9dNxud7dj35LO17S11wNw5JFHcsMNN2zxeRGR3UW5S+SHpa+z1/bkJIiN5P3EE0/wxhtvUFtbS3Z2NieccAKnnnpqvM369et58MEHWbhwIfX19VgsFoqLiznmmGN6zGl33nknS5YswefzkZOTw5FHHslpp53W5WL59mxTRGRPouwlsmfq6+uN23u+9eZ64yOPPMKjjz66xdd09913x0e27O31xk6zZ8/m3//+N0uXLsXlcjFmzBguvvjiLoMi9LYfTnYtFSmJiIiIiIiIiIiIiIiIiIiIiEifsuzuAxARERERERERERERERERERERkR83FSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIQkAfJQABAABJREFUiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJyE/So48+imEYPProo7v7UERERER+9KZOnYphGFRUVOzuQxERERGRrVCfmYiIiMiuUVFRgWEYTJ06dXcfisgupSIl+UF67733OOGEE8jJycHpdJKXl8cRRxzBjBkzurRbs2YNl156KaNHj+7Sdty4cUyfPp1QKLTFfTz22GOMGjUKr9dLcnIy48eP57XXXtvuY62qquKKK66gX79+OJ1OMjMzOeGEE/j66697bN95AWdL/xYtWtSlfWfHwdb+Wa3W7Trm559/niuuuIJx48aRlJSEYRicddZZ21zv008/ZdKkSaSlpeF2uxk2bBh33XUXkUhki+u89tprjB8/nuTkZLxeL6NHj+axxx7b6n521s+mL5x55pkYhsF99923zbYTJ07EMAxeeumlXXBkIiIi2++nkgkaGxv529/+xplnnsmQIUOw2WwYhsG77767xXX+8Ic/bDV/vfnmmz2uN3PmTCZPnkxJSQkul4uioiImTZq0xfabu/XWW+P72Nrx9SQQCPCvf/2LUaNGkZGRgdfrZfDgwVx55ZWsWrWqx3WWLVvGueeeS0FBAQ6Hg9zcXM4++2yWL1++XfvuC9FolKKiIgzDYMGCBVtt297eTkpKCg6Hg+rq6l10hCIi8lOzvdmp86LElv5NmTKlx/Wqq6u59tpr2WuvvUhMTCQ9PZ2RI0fyt7/9jZaWlm0e55IlS/B4PL3Odpvb3jwTDAb561//yj777ENCQgJJSUkcdNBBPPfcc9u976VLl3L77bdz6KGHUlhYiMPhIDs7m8mTJ/PBBx/0uM62+s4eeOCBbut88cUXXH/99Rx11FHk5ORgGAYFBQVbPbYdzc5b8vrrrzNx4kQKCgpwu92UlpZyyimn8Nlnn/XYvqWlhRtvvJFBgwbhcrlITU3liCOO4L333tvhY9iZ1GcmIiI7S11dHdOmTeOEE06gf//+uN1ukpOTOeigg/j3v/9NNBrtts6O5K61a9fy5z//mVNOOYX+/ftjsVgwDINly5Zt8dh2JENszbx58zjzzDPjrzM/P58JEybw7LPP9vg6TdPk4YcfZvTo0Xi9XjweD/vttx8PPPBAj+23prm5mV/96leMGzeOvLw8XC4XWVlZjBo1irvuuou2trYe19ve66I78jp3du5au3Yt5513Hnl5eTidTkpKSvjVr35FQ0NDt7bb6hM0DIOysrIdPpad4eGHH8YwDE499dRttv3LX/6CYRj88pe/3AVHJhJj290HILK9rr32Wv72t79RUFDAcccdR0ZGBjU1NXz11Vd8+OGHTJo0Kd52+fLl/Oc//2H06NEcf/zxpKWlUVdXxxtvvMF5553HE088wdtvv43N1vVUuOaaa7jjjjsoKCjgwgsvJBgM8swzz3Dsscdyzz33cPnll/fqWCsqKhg7diwbNmxg1KhRnHjiidTU1PDiiy/y+uuv8+qrr3LEEUf0uO4vf/lLUlJSui3PyMjo8nj48OHcfPPNPW7jk08+4f333+eoo47q1fF2uvXWW/n222/xer0UFBR0K4zqycsvv8xJJ52Ey+XitNNOIy0tjVdffZWrrrqKWbNm8d///rfbOvfeey9XXHEF6enpnHXWWTgcDp5//nmmTp3KvHnz+Pvf/95tnZ31s+krF154IU899RTTpk3j0ksv3WK7iooK3n33XXJzczn22GN34RGKiIj03k8lE1RUVHDttdcCUFBQQEZGBlVVVb1a95xzzqGkpKTb8v79+3dbdv/993PppZfi8Xg44YQTKCgoYO3atbz44ou88cYb3Hrrrdx4441b3NfXX3/NH//4R7xeL62trb17cR3C4TCHHXYYs2bNYtCgQZx++uk4nU6+/PJL7rnnHh5//HE+/fRThgwZEl9n9uzZHHroobS0tHDYYYdx+umns2rVKp555hleeeUVPvzwQ0aMGLFdx7EzWSwWzjvvPG655RamTZvGnXfeucW2//3vf2lqauLkk08mKytrFx6liIj8lOxIdgLYZ599OP7447st32uvvbotq6ioYPTo0VRXVzN+/HiOOuoo/H4/b7/9Ntdeey1PPvkkn3/+OW63u8d9hcNhzj77bCyWHbt3dXvzTDAY5IgjjuDDDz+kpKSEc889l2g0yowZMzjttNOYP38+f/zjH3u9/9/97nc8++yzDBkyJF4Uv3jxYl555RVeeeUV7r77bq688soe1508eTLDhw/vtny//fbrtuypp57i7rvvxm63M2TIkF5lwx39+ffkuuuu469//Svp6ekcf/zxZGRksGzZMl5++WVeeOEFHn/88S4X4hoaGjjooINYsGABQ4cO5eKLL6a1tZWXX36Zww8/nGnTpnH++efv8PHsDOozExGRneW///0vl1xyCbm5uUyYMIGioiKqqqp48cUXueCCC3jjjTf473//i2EY3dbdntw1e/ZsbrrpJgzDoF+/fiQnJ9PY2LjVY9uRDLElr776KieeeCIWi4XjjjuOk08+mdraWl566SWmTJnCu+++y8MPP9xlnbPOOounnnqKrKwsTj/9dBISEnjnnXe45JJL+PTTT3n88cd7vf/6+noeeughRo0axdFHH01mZiZNTU28//77XHXVVTz88MN89tlnJCUlxdfZkeuiO/I6d2buWr58OWPHjqW6uprJkyczaNAgvvjiC+6++27efPNNZs2aRXp6erz9+PHjt7itV199la+//nq7r8vubKeffjpXX301L7/8MrW1td2uLXcyTZN///vfAPziF7/YlYcoP3WmyA/IQw89ZALmOeecYwYCgW7PB4PBLo8DgYAZiUR6bDd+/HgTMJ999tkuz82aNcsEzLKyMrO+vj6+fOXKlWZaWprpdDrNlStX9up4jzvuOBMwr7zySjMajcaXL1682ExMTDRzc3PN1tbWLuucc845JtDrfWzNAQccYALmyy+/vF3rvf/+++aSJUvMaDRqfvDBByZgnnnmmVts39TUZGZmZpoOh8P88ssv48t9Pp85ZswYEzCffvrpLuusXLnSdDqdZlpaWpfXWl9fb5aVlZmA+emnn3ZZZ2f+bKZPn24C5vTp03vVfnsMHDjQBMyvvvpqi21uuukmEzBvuOGGnb5/ERGRneWnkAk69/Xuu++adXV1pmluzGPvvPPOFte5+eabTcD84IMPerWPYDBoJicnmy6Xy1y0aFGX5xYsWGA6nU7T7Xabfr+/x/V9Pp85ZMgQc+zYsebZZ5+9zePb3HPPPWcC5mGHHdYtH//+9783AfPcc8/tsnzYsGEmYN55551dln/yySem1Wo199lnny4Zd2t2Zsbd1OrVq02r1WpmZGT0+P8HnQ466CATMN9+++2dun8REZFNbW92WrlyZbyfq7cuvfRSEzD/8Ic/dFkeDofNQw891ATMxx57bIvr33LLLabD4TDvvvvubR7f5nYkz9x5550mYI4ZM6ZLH1hLS4s5cuRI0zCMLrlxW6ZPn25+/fXX3ZZ/+OGHpt1uNx0Oh7l+/fpu62xvH9A333xjfv311/F8AZj5+flbXWd7f/5bsmHDBtNisZjZ2dlmVVVVt30AZr9+/bosv/LKK03APPHEE81QKBRfXlVVZRYWFpput9tcs2ZNr/avPjMREdnTvffee+Yrr7zSrX9jw4YNZmFhoQmYzz//fJfndiR3rVmzxvz444/NpqYm0zRN85BDDjEBc+nSpVtcZ0cyxJYMGTLEBMwPP/ywy/INGzaYWVlZJmCuWrUqvvzFF1+M54Sampr48kAgYB5zzDEmYL7wwgu93n84HO523bXTmWeeaQLm7bff3mX5jlwX3d7XaZo7L3eZpmlOnDjRBMx//vOfXZZfddVVJmBedNFFvdpOOBw2CwoKTMD89ttve7XOjvxe9taFF15oAuYdd9yxxTbvvvuuCZhjx47d6fsX2RpN9yY/GIFAgBtvvJGioiIeeughHA5HtzZ2u73LY4fD0eOdYXa7PV4pvXTp0i7PdQ7xfOONN5KamhpfXlJSwmWXXUYgEGD69OnbPF6/388bb7yBxWKJT8vRaeDAgZx33nls2LCBF154YZvb2hHz5s3j888/Jz8/n6OPPnq71p0wYQIDBgzoscq8J88//zw1NTVMmTKly91nLpeLW2+9FYjdabepRx55hEAgwOWXX95l9IHU1FRuuOEGgG7Dbe+sn83WNDQ0cPDBB2OxWLjtttviy8PhMPfddx8HHHAASUlJJCQkMGLECO69995uQ01eeOGFAN0quztFIhGmT5+OYRhccMEF3+t4RURE+tJPJROkpqZy2GGHkZaW1ut1tld9fT1NTU0MHDiQ8vLyLs8NHjyYgQMH4vP5tjhC0vXXX8/KlSt59NFHd2jkgxUrVgBw9NFHd1t/8uTJANTU1HRpP3fuXLKysroN93zQQQdxzDHH8O233/LJJ59s97Fs6ttvvyU/P5+kpCTeeeed+PL6+nquv/56Bg8eHB+2/bDDDuPtt9/usn5hYSFHHnlk/A67nixatIiZM2dSWlrK4Ycf/r2OV0REZGu2NzvtiM7P9OOOO67LcqvVGu//2fQzfVOzZ8/mT3/6E7/73e8YNmzYdu97R/JM5+fzjTfeiMfjiS/3er3cdNNNmKbZq+m/Ok2dOrXHkRwPOeQQxo8fTzAY5NNPP93el9bN8OHDGfH/2Tvv8Diqc/9/ZnvflbTq1bZsyb13sMEGQqiBS0kgEFoSciEkBO4l3BRSCSQkoSf8AoEAgRBIcADbYEx1N+5NLrLV+2q1q+31/P6Y1cpCAmwDNyT3fJ5nn2hn5sycObNkXr/ne77v9Okj5h8/iE/q+Tc1NZFOp5k7d+4wB8hTTz0Vu90+7BkPjPNPfvKTIY7xBQUFfOc73yESifDHP/7xY/VL5swkEolE8llhyZIlnHvuucPyG0VFRVx//fUAvP322x/7OmVlZdlyYsfKicQQH8SRI0dwOBwsXrx4yPaioiLmzp0LDI37BuKBW265ZYhzjsFg4Kc//SmgupkfK1qtdti86wAXX3wxMHSO9UTnRY/3PuGTi7sOHz7MqlWrsjnFo/nxj3+M1Wrlqaee+sDSdkezYsUKWltbmTdv3gnF2keTTqf51re+haIoXHjhhUQikey+1157jbPOOgu3243RaGTMmDH813/91zCXrwFnpEcfffQDrzMQk0kXJcn/NlKkJPmX4fXXX6enpydr+bd8+XLuvvtu7rvvvg+sxf5BpFIpVqxYATDsRfHmm28CcOaZZw5rN2DPN3DMh+H1ekkkErjdbux2+7D9o0ePBvjAuvArV67k7rvv5p577mHZsmX09/d/5DWP5v/9v/8HwLXXXotWqz2utsfLh43ZokWLsFgsrF+/nlgsdkxtPmicP6ln80E0NzezcOFCNm7cyJNPPsntt98OQCKR4JxzzuGGG27A5/Nx2WWX8bWvfY10Os03v/lNvvKVrww5z1e+8hUMBgPPPvss4XB42HVWrlxJW1sbp512GqNGjTrh/kokEolE8lnj3yUmOB7Wrl3LPffcw913381zzz2Hx+MZ8biCggLy8/M5ePDgMJH8wLZp06YNsY8e4M033+S+++7jF7/4BWPHjj2hfk6cOBFQ45D3Txa98sorAEMEPJ2dnYAq/BpJFPVRseyx8MYbb7Bo0SKEELz77rucfvrpgDoxN3PmTO666y7y8/O5/vrrufTSS6mrq+PMM88cNqk1MNn1QUmXge3XXnvtpzppLJFIJBLJidLe3s4jjzzCnXfeySOPPMKuXbs+8NiBd/ry5cuHbE+n09lJoSVLlgxrF4lEuOKKK5g2bRrf/e53T6ifJxLPDMQUA7HD0XwS8cTRDEyiHS3SOZodO3Zw7733ctddd/HUU0/R2tr6iVz3k2bs2LEYDAY2b948LLZ89913CQQCw4TXn/Y4y5yZRCKRSP5V+Kh44Hjirn82EydOpL+/n7Vr1w7Z3t3dzebNmykuLmbChAnZ7ccSD6xZs4Z4PP6x+/byyy8DQ+dYT3Re9Hjv85PkrbfeAuCMM84Ylv+y2+0sXLiQcDjMxo0bP/JcA/OyH1fwE41Gufjii7n//vu54YYbeOGFF7KlnH/84x9z5plnsmnTJs4++2xuuukmqqurueeee1i4cOGQueRZs2Yxbdo06urqWLdu3bDr9Pb2smzZMpxOJ5dccsnH6rNEctz8s62cJJJjZaAMxXe/+10xadIkAQz5LFq0SHR3d4/YtqenR9xxxx3ihz/8ofjGN74hqqurBSAuu+yyIccFg0EBCJvN9oHnAURBQcFH9jccDgutVis0Go0IBALD9n/rW98SgJg7d+6Q7QOlMN7/sdvt4sEHH/zI6w5c2+VyCa1WK5qbm4+pzQdxLDaJs2bNEoDYsmXLiPsnTpwoALFv377sNrfbLQDh8XhGbGO1WgUgQqGQEOKTfTZCDLeu3rFjhyguLhYOh2NY6ZSBci433nijSCaT2e3JZFJcc801AhDLli0b0uaSSy75QGvsAbvL559//pj6KpFIJBLJZ4F/15hgJI6n3Nv7P0ajUXz/+98fsQzaX//6V2EwGITdbhdXXnml+O53vyuuuOIKYbPZxMyZM0e0C/f5fKK8vFwsWrQoe85j6d/7SafT4sILLxSAmDBhgrjpppvErbfeKk499VSh1+vFN7/5zSGlQQ4cOCAAUVhYOOK9nH/++QIQl1566TFd//3l3p566imh1+vF+PHjRWNj45BjFy9eLBRFGVYasK+vT0ydOlWYTCbR2dmZ3Z5MJkVJSYlQFEUcOXJkSJtYLCby8/OFTqcTHR0dx9RXiUQikUg+CY6n3NtIn1NOOWVYWQsh1PJdNTU1AhBLliwRt956q7jppptEbW2tcLlc4o9//OOI17rpppuE0WgUe/fuPeb+jcTxxjMDJX+XL18+7Fwvvvhi9n7D4fBx9eP9NDY2CqPRKCwWy5BywEIM5oDe/9FqteLrX/+6iEQiH3l+jrNUy8ctO/Lb3/5WKIoi8vPzxVe/+lXx3e9+V1x88cXCaDSK008/fVgZuOLiYgFkn+/7zzUQ1x0LMmcmkUgkkn9VEolEdv7w1VdfHbLvROKu93Ms5d7ez/HGEEfz7rvvCofDIYxGo7jkkkvEd7/7XXHdddcJt9stqqurxebNm4cc/6UvfUkA4qGHHhp2ru3bt2fvt66u7rj6kUgkxB133CHuuOMO8c1vflNMmzZNAOLUU08dEked6Lzo8d7n+/k4cdett94qAHHPPfeMuP+GG24QgHj44Yc/9DwtLS1Cq9UKp9OZzWEeC+8v99bb2ysWLlwoFEURd91115BjB8r+zp8/X/T19Q3ZNxC/ffvb3x6y/eGHH/7AcnIDZZlvuOGGY+6vRPJJIUVKkn8Zrr/++mwCYfLkyWLNmjUiEAiIXbt2ZeuFLl68eMS2dXV1QwIORVHErbfeOqyWaltb24cGDPF4XADCYDAcU59PO+00AYibb755yPZDhw4Ju90uADFu3Lgh+x577DHx3HPPiaamJhGJRMThw4fFPffckz3+kUce+cjrPvHEEwIQZ5999jH188M4lpf72LFjPzQwW7BggQDE+vXrs9v0er0AhkyGHU1JSYkARHt7uxDik382RydcVq1aJex2uygpKRE7duwYclwqlRK5ubmiqKhoxL729fUJRVHExRdfPGT7QB3XhQsXDtne3t4udDqdKCgo+MBavhKJRCKRfBb5d40JRuJYREB///vfxR//+Edx5MgREYlERFNTk/jDH/4gCgsLBSBuv/32EdutXbtWlJeXD4lNCwsLxYMPPihSqdSw46+44gphtVrF4cOHj6t/I5FOp8Udd9whtFrtkOsvXbpUbNiwYdjxA8/z3nvvHbJ93bp12XOcccYZx3Tto0VKv/jFL4SiKOKkk04aNom4Y8cOAYiLLrpoxPMsW7ZsxITb97//fQGI733ve0O2//WvfxWAuOCCC46pnxKJRCKRfFIcS+zU1dUlfvCDH4itW7eKvr4+0dfXJ9555x1x6qmnCkBUV1eLYDA4rF1fX5+44IILhuW6vva1r424WG316tVCURRx9913H1f/PojjiWd+9rOfCUAsWLBgiBApGAyK2bNnZ9sPxHonQjQaFQsXLhSA+OUvfzls/9tvvy0eeOABceDAAREKhUR7e7v461//KsaMGSMA8aUvfekjr/G/LVISQhVx5eTkDBnn6upq8ec//3nYsdddd102hjpaLNTd3S0qKipkzkwikUgk/ye45ZZbBCDOOuusYftONO46mv9tkZIQQuzduze76G/gY7fbxc9//vNhQuunn35aAGLMmDGit7c3uz0ej2eFwO/Pyx0LkUhkmLDriiuuGFGIdCLzosd7n+/n48RdX/3qVwUg/vCHP4y4/3/+538EIO68884PPc+PfvSjExL8HC1SamxsFLW1tUKv14unn3562LFf+MIXBCD27Nkz4rmmTZsm8vPzh2zz+/3CarUKi8Ui/H7/kH0TJkwQgNi5c+dx9Vki+SQY2etOIvkMMlCWQqfT8dJLL1FVVQXA5MmTefHFF6mpqeGdd95hw4YNzJ8/f0jb2tpahBCkUina2tp48cUX+eEPf8jatWtZvnw5ubm5n0qf7733XhYuXMhvf/tbNmzYwMKFC+np6eFvf/sbY8eOZceOHcPsA6+55poh30ePHs0tt9xCTU0N5557Lt/73vc+soTbgKXg17/+9WH7GhsbeeKJJ4Zt/9GPfnT8N/hvwAsvvMCqVasYO3YsK1eupKKiYsj+gwcP4vV6GTt2LD/72c9GPIfZbKaurm7ItiVLljBmzBjWrVtHXV0d48ePB+Dxxx8nmUxy1VVXfWAtX4lEIpFIJJ8sy5YtY8eOHUO2TZs2jS984QsnfM4LLrhgyPeKigquu+46ZsyYwbx587jnnnv4zne+g9vtzh7z9NNP89WvfpULL7yQH/zgB1RWVtLU1MRPf/pTbrzxRt555x3++te/Zo//29/+xlNPPcVDDz00olX38RCNRrnyyitZuXIlDz30EOeffz4Wi4V169Zx0003sWjRIp5//nnOP//8bJvf//73fP7zn+fb3/42r7zyCtOmTaOlpYW///3vTJ48ecRY9qO4+eabWbZsGf/xH//B008/jclkGrJ/oIyz3+8fMT7t6ekBGBZ7XXfdddx55508/vjj/PjHP87GygOl4QZKwkkkEolE8lmioKCAn/zkJ0O2LVq0iFWrVnHSSSexadMmHn30Ub71rW9l9zc2NnLeeecRiURYsWJFtgTFP/7xD2655Rb+8Y9/sGHDhmypLJ/Px1VXXcXcuXO55ZZbPnafjzee+da3vsXzzz/P+vXrmThxImeddRZCCJYvX46iKDidTvx+fzamePvtt3n77beHXLOqqoqrrrpqxP6kUimuuOIK1q1bx6WXXsqtt9467JjFixezePHi7HeLxcLFF1/MvHnzmDp1Ks8++yy33XYbU6dO/djj80nxy1/+kv/5n//hpptu4sYbb6SoqIj9+/dz++23c/nll7Njxw5++ctfZo//yU9+wmuvvcYLL7zAtGnTWLp0KaFQiH/84x+UlpbS3Nx83HGbzJlJJBKJ5F+J+++/n1//+tfU1tby1FNPDdt/InHXP5vXX3+dL37xi8yaNYsnn3yS2tpaOjs7efDBB/ne977H8uXLeeedd7Kl7b74xS/y1FNP8dprrzFhwgTOP/98TCYTq1evpqOjg4qKiiExwY4dO1i2bNmQa7pcLr797W8P2WYymRCq8Qnt7e2sXr2a22+/nVmzZvHqq69m52vhxOZFj/c+P2uk02kee+wxYOR52WPhwIEDzJ8/n1AoxMqVK1m6dOmwYzZs2IBer+f555/n+eefH7Y/Ho/T09NDb29vtvyyw+Hg0ksv5Y9//CN//vOf+cY3vgHA+vXr2bdvH3PmzBlSsk8i+V/jn6uRkkiOnf/+7/8WgJg3b96I+6+99toRV3p/EM8+++wwVeunUT6kvr5eXHnllaK4uFjo9XpRWVkpvv/974s1a9YIUMvUHSulpaUCELt27frAY/bs2SMAUVZWNmTl1AADiuL3fz6If9fSLgOrwnJzcwUgrr766hFLmaxdu3bE8Xr/p6qqaljbX/ziFwIQ3/nOd4QQqnvB6NGjhaIox6W0l0gkEonks8C/ckwwUjndkWyO33/88ToVDTCwkv+ll17Kbjtw4IDQ6/Vi5syZwxwGUqmUmDlzpgDEW2+9JYRQ7Z3dbrdYunTpsBjlRPo3UIrjvvvuG7ZvwL2osrJy2L5t27aJCy+8ULjdbqHX60VNTY34zW9+I5577jkBiCuvvPKYrj/Q54HYa6TyHkIMui181Oeqq64a1vZzn/vckHFvaGgQiqKIysrKEV2qJBKJRCL5NPm4Tjp/+MMfBCAuvPDCIdsHVvCPtOL53nvvHRbnXH311cJsNov9+/d/7P4dbzwzQCAQELfffrsYO3asMBgMIi8vT1xxxRWitbVV2Gw2odPpss45I5XU/SDn9GQyKb74xS8KQFxyySUf6Mz5YVx++eUCEPfff/+HHsf/opPSQNuRnCBDoZAoLS0VGo1miNOmEEJ0dnaKG264QVRWVgq9Xi+Ki4vFjTfeKA4dOiQAUVFRcUzXlzkziUQikfyr8cADDwhQy9ufSKn3D4q73s//ppNSb2+vyMnJEaWlpSOWDxtw1Xl/fiUej4u77rpLTJo0SRiNRuF0OsX5558v6urqsnm5I0eOCCFGLok7Um5oJDZs2CBg5IouxzMveqL3eTT/7HJvr7zyyofOX38YA05KA3HXtGnThrmOD6DT6Y4p9mpsbBzSbuBZzZgxI7vt6quvFoB49NFHj7vPEsknwfEtn5BI/onU1NQAqop3JHJycgCIRCLHdL7Pf/7zAENWZ1mtVkpLSwkGg3R0dAxrc+jQIQDGjRt3rN1mzJgx/OlPf6K9vZ14PE5jYyM//elPOXjwIACzZ88+5nPl5+cDEAqFPvCYARelD3JbOuWUU7KK56M/H4eBZzNwT0eTTCZpaGhAp9MNcQD4sDYdHR2EQiHKysqwWCzAp/NsAO68807OO+88Hn/8ca655pqsY9cATqcTUN0SRhq3gU9DQ8Owc1999dXo9XqefPJJ4vE4b775JkeOHOHUU0+lurr6uPopkUgkEsm/Ap/VmOCJJ54Y9u4eyVnyk2KkmG3VqlUkEgkWL148bMWYRqNh0aJFAGzduhWA5uZmPB4Pb7zxBhqNBkVRsp8//elPAJx++ukoisK99977kX165ZVXADj11FOH7Zs6dSo5OTk0NTXR29s7ZN/06dP529/+Rk9PD/F4nP3793PzzTezZ88e4PhiWVBdraqrq7n22muzLkdHMxB73XfffR8aez3++OPD2n7ta18DBt2THnvsMYQQXHvttcftHCCRSCQSyT+bkeKJQCDAO++8Q25u7ogrngfe8wPxBMC2bduIRCLU1tYOiScGjv3zn/+MoihMmzbtI/t0vPHMADabjTvvvJODBw8Si8XweDw8+eSTxGIxgsEgU6dOzTrn/OhHPxr23n+/sxJAIpHgS1/6En/5y1+47LLLeOaZZ05odf2x5Nr+t/mwuM1isTBnzhzS6TTbt28fsq+wsJAHH3yQxsZG4vE47e3tPPDAAzQ3NwPHH7fJnJlEIpFI/hW49957+eY3v8mkSZN46623KCoqOu5zfBbjgfXr19PX18fcuXOzObGjGSnuA9Dr9dx2223s3r2baDSKz+dj2bJlVFVVcejQIdxud9Zx86qrrhr23m5sbDym/s2bNw+XyzVinHY886Inep+fFB+Wl4Rjm3v8sOo2x8q5557LnXfeyY4dO1i6dOmw/ByosVdOTs6Hxl1CCCorK4e0mzdvHlOmTGHbtm1s27aNQCDAX//6VxwOB1/84hdPuM8SycdBZmol/zIsXboURVHYt2/fsH8UA9mJkoGX60fR1tYGMCyBsWTJEgBeffXVYW1Wrlw55JiPw4Dd5GWXXXZMx/v9fvbv34+iKB94j9FolKeeegqtVsu11177sft4rHzYmL377ruEw2EWLFiA0Wg8pjYfNM6fxrMxGo288MILXHzxxTzxxBN8+ctfJplMZvfX1tbicrnYuHEjiUTiuM5dWFjIeeedh8fjYdmyZTz66KPA4ASaRCKRSCT/bvwrxwSfFIlEgm3btgEMEWPFYjFgsFzZ+xnYbjAYAMjLy+Paa68d8TN27FhAFd1fe+21TJo06SP79WHXj8ViBAKBIdf/qHt89tln0ev1XHTRRR95/NGUl5fz7rvvUlNTw9e//nUeeuihIfvnzZsHwJo1a47rvADnnXceRUVFrFixgpaWFh5//HG0Wu2wcsoSiUQikfwrsHHjRmBoPBGPxwHo7+/P/n00748nAC688MIR44mzzjoLUCeRrr32Wi688MKP7NPxxjMfxZNPPgkce25sgHg8zsUXX8zzzz/PlVdemc2FnQibNm0C+NildT9JPivjLHNmEolEIvmsc/fdd3PzzTczbdo03nrrLQoKCk7oPCPFXf9sPul44C9/+QvxeJwvfelLn0j/AoEA/f39xyUSH2le9JO+z+NlQAS1atWqYXPPgUCAdevWYbFYsvmq99Pe3s7y5ctxOp1ceumlH6svt99+O7/97W/Zvn07p5xyCl1dXUP2z5s3j76+Pvbu3Xvc5/7qV78KwKOPPsozzzxDKBTisssuw2q1fqw+SyQnzKfgziSRfGqcd955AhC/+c1vhmx/7bXXhKIowuVyCZ/Pl92+devWEUueBQIBcdpppwlA/M///M+QfevWrROAGDNmzBBLvYaGBpGbmyuMRqNoaGgY0qanp0fU1dWJnp6eIduj0aiIRqNDtqXT6WwZi0svvXTIvo6ODtHS0jJifwcsDU8//fQRRkblySefFIA455xzPvCY4+VYbBL9fr9wu93CYDCI9957L7s9EomI+fPnC0A8++yzQ9ocOXJEGI1GkZubO2Q8vV6vGDNmjADE+vXrh7Q5kWfzQQzYWA5YRCaTSfHlL385a+k5YDMuhBA/+MEPBCCuv/56EQ6Hh52rvb1d7N27d8TrvPrqqwIQc+bMEUajUbjdbhGLxY6pjxKJRCKRfJb4d40JRuKjyqn19/cPK5kihBCxWEz853/+pwBEbW3tkDIomzZtEoAwm83DyrNs375dmEwmoSiK2LNnz8fqn8/nE3V1daK9vX3I9m984xsCEEuXLh0Wn373u98VgJg9e/aQ7cFgcFgsnUgkxPXXXy8Acdttt31kX9/f54Hn0t3dLaZMmTKipfbJJ58sNBqNeOyxx0Y8165du0RXV9eI+wbu5eSTTxaAOPfcc4+5jxKJRCKRfJIcS+y0devWEUuSrl69WhiNRgGIdevWDdk3fvx4AYjvf//7Q7ZHIhFxyimnCED813/918fuX11dnairqxuy7UTjGb/fP+z8q1atEiaTSYwZM0YEg8GP7O8A0WhUnHXWWQIQ11577TGVdD06Lh0glUqJO++8UwDC7XaP2Mej4VMo9xaPx0VdXZ2or68fsn2grG5hYaFobW0dsm/FihVCURRhMpmGlEtOpVIiEAgMu8aTTz4pFEURCxYsOObytzJnJpFIJJJ/BX7yk58IQMycOVP09vZ+5PEnEne9n0+r3Ft9fb2oq6sb8o5ta2sTOp1OaDQa8dprrw05vrm5WeTn5wtALF++fMi+kWKa7du3C7fbLXJyckRbW9sx933Xrl0iEokM2x6LxcSVV14pAHHZZZcN2Xe886Inep9H83HiLiGEOOOMM0Ys/3vzzTcLQHz961//wPMO/A5vvPHGDzzmwxgo93Z0uebf/e53QlEUUVNTM+R5rV69WgBi/vz5Iz7HYDAoNmzYMOJ1+vr6hNlsFk6nM5uP27p16wn1WSL5JDh+D1yJ5J/IQw89xPbt2/nOd77D8uXLmT59Og0NDSxbtgytVsujjz6atRoG+MlPfsK6detYsGABFRUVWCwWWlpaWLlyJT6fjwULFnD77bcPucaCBQv4zne+w29+8xumTJnCRRddRDwe57nnnsPr9fLAAw9QVVU1pM2DDz7Ij3/8Y+644w5+9KMfZbcfOnSIk08+mdNPP52qqioSiQRvvPEGu3fv5qSTTspaAA6wf/9+TjvtNObPn8+4ceMoKCigra2N119/nc7OTkaPHp1dWTQSA+f7uKuOli1bxrJlywDo7OwEYMOGDVx11VUAuN1u7rnnnuzxDoeDP/zhD1x00UWccsopfPGLXyQ3N5eXXnqJAwcOcNFFFw1TEI8aNYpf/epX3HTTTcyaNYtLL70Ug8HACy+8QGtrK7fccgvz588f0uZEns2xotVq+dOf/oTJZOLRRx/lwgsv5IUXXsBoNPKDH/yAnTt38vvf/56XX36ZJUuWUFpaSnd3N4cOHWLdunX8/Oc/Z8KECcPOe8YZZ1BVVcXmzZsBuPHGGz81xbdEIpFIJJ80/5digltvvRWPxwPA2rVrAfjVr37F008/DcAXvvAFvvCFLwDQ29vL+PHjmTVrFuPHj6e4uJienh7eeustGhoacLvdPPvss0PKoMyZM4err76axx9/nNmzZ3PBBRdQWVlJY2Mjy5YtIx6P8+1vf5uJEyceV7/fz4svvsjVV1/NV77ylSEl7b73ve/x8ssv88Ybb1BbW8uZZ56J2Wxm3bp1bN68GbPZzH333TfkXG+99RbXXXcdp512GmVlZQSDQV599VUOHz7MRRddxE9/+tMT7md+fj5vvfUWn/vc57j11luJRqN873vfA+CZZ55hyZIlXHvttdx///3MnTsXl8tFa2sru3btYs+ePWzYsGHEFZJf/epXufvuu7NOTHI1vkQikUj+Nzne2Ok73/kOhw4dYsGCBZSVlQGwa9cu3nzzTQB++tOfsmDBgiHXuP/++zn77LP52c9+xuuvv86CBQuIRCKsXLmSpqYmqqurue222z72vYwfPx4AIUR224nGM7W1tUyZMoXa2lpMJhPbtm1j9erVFBUV8Y9//OO4VnBff/31rFixArfbTWlpKT/5yU+GHXPKKadwyimnZL/Pnj2bSZMmMXXqVEpLS/H7/axbt449e/ZgsVj485//jMPhGHKO/fv3c9dddw3Z1tfXl32WAPfccw9utzv7/Xiff1tbG+PHj8+O4QAXXXQRp512GqtXr2b8+PFccMEFFBUVUVdXxyuvvIIQgrvuuou8vLxsm3A4TGFhIaeffjpjxoxBo9Gwbt06NmzYwPjx43n++edPuPytzJlJJBKJ5LPGn/70J374wx+i1Wo5+eSTuf/++4cdU1VVNeS9fSJxFzDkHPv37wfgtttuw263A3Dddddx0kknDTnmeGOIpUuX0tTURENDQzafVVJSwg9+8APuuOMOPv/5z3POOedQW1tLZ2cnf//73wkGg1xwwQVZd8wBTj/9dMxmM5MmTcJut1NXV8fy5csxm828/PLLlJSUfNCwDuOxxx7j8ccfZ+HChVRWVuJyuWhvb2fVqlV0dnZSU1MzJLaB458XPdH7/KTiLoCHH36YBQsWcNNNN/HGG28wfvx4Nm3axFtvvcW4ceP4+c9/PuL4pNNpHnvsMeCTzT9df/31mEwmrr32WhYtWsSbb75JRUUFS5cu5a677uL2229n7NixnHXWWYwaNYpgMEhTUxPvvPMOJ5100ojO8y6Xi4svvpgnn3ySXbt2MXPmTGbMmPGJ9VkiOW7+2SopieR46e7uFjfeeKOoqKgQer1e5OXliS984Qti06ZNw4595ZVXxOWXXy7Gjh0rHA6H0Ol0Ij8/XyxdulQ88sgjIpFIfOB1Hn/8cTFr1ixhsViEzWYTixYtEi+//PKIx95xxx0CEHfcccewvl522WVi1KhRwmQyCbvdLubOnSsefPDBEa/d3Nwsvva1r4np06cLt9stdDqdcDgcYvbs2eJnP/uZ6O/v/8D+7tu3TwCirKxsRPeo42Hgfj7oU1lZOWK7tWvXis9//vPC5XIJk8kkJk2aJH7zm998aH9eeuklsWjRImGz2YTFYhGzZs0STzzxxIf273iezYedg6NWhQ2QTqfFjTfeKABxxhlnZFeBpdNp8eSTT4olS5aInJwcodfrRUlJiVi4cKH4+c9/Lpqbmz/wWgMKcWBE1wWJRCKRSD6r/F+ICQaorKz80Hs9Os7z+/3im9/8ppg7d64oLCwUer1eWK1WMWXKFHHbbbd9oMtPOp0Wjz/+uFi8eLFwuVxCq9WKnJwcsWTJkmEOUx/GhzkpDcQ4R6/AGqC7u1vccsstora2VhiNRqHX60VFRYW46qqrhjklCCHEgQMHxIUXXijKysqEwWAQLpdLnHLKKeLpp58W6XT6mPt7dJ/f73Dl9/vFggULhjlC9Pf3i5///OdixowZwmq1CpPJJKqqqsRZZ50lHnnkkQ91XBhwTP0k4mKJRCKRSI6H442dHn30UXH22WeLyspKYbVahcFgEOXl5eKSSy4R77777gdeZ+fOneLLX/6yKC8vF3q9XphMJjFhwgRx++23i76+vmPq60etOB/o8/s5kXjm1ltvFZMmTRJ2u12YTCZRU1MjbrvttmNyPXg/Aw4Gxxq3DVx/0aJFori4WBiNRmE2m0VNTY244YYbxOHDh0e8zsD4fNjn/XHN8T7/gZXzI8XU8Xhc/Pa3vxVz584VdrtdaLVakZ+fL84+++xhLgMDx19zzTVi3LhxwmKxCIvFIqZOnSp+/vOfi1AodDxDLHNmEolEIvnM81HvXEAsXrx4SJsTjbs+6jrvf1+eSAwxkJMayRV82bJl4swzzxRut1totVpht9vF/PnzxcMPPzxizuOXv/ylmDFjhnA6ncJgMIhRo0aJ//zP/xyxistHsXbtWnHttdeKCRMmDIn7Fi5cKH71q1+NGGMc77zoid7nJxl3CaHOz1511VWiqKgomy/71re+NcTB/f2sWLFCAGLevHkfeMxHMZKT0gDPPPOM0Ol0orKyckjMumbNGnHxxReL4uJiodfrhdvtFlOnThU333zziA6iA6xduzY7Po888sgJ91ki+SRQhDhqOYxEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRfMKcmMerRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikRwjUqQkkUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIPlWkSEkikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpF8qkiRkkQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIvlUkSIliUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolE8qkiRUoSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonkU0X3z+6ARCL5ZOjs7GTNmjW0trbS2tpKb28vWq2WUCiE3+9HCEEgEKC/v5+amho6Ojpob2+nsrKS3Nxc3n77bYQQzJ8/n5aWFnJzc+ns7MTj8TBv3jz0ej3bt29Hr9czbdo0wuEwvb296HQ6SktL6evro7i4mEgkgs1mo6amhry8PMaNG8f8+fMxGAz/7CGSSCQSiUQi+URIJBIcOHCAvXv34vV6OXz4MLFYDI1GQ2dnJ4lEgkAggEajQVEUzGYzTU1NxONxqquriUQi1NXVkZOTg9PpxOfzUV5ezs6dOzEYDEyfPp3e3l76+vpwu9243W7a29txOBzo9XoURaGoqAghBIlEArfbTU1NDfn5+UydOpWKiop/9hBJJBKJRCKRfGL4fD7q6uro6Oigo6ODzs5OtFot6XSaQ4cOkUwmsVqt+Hw+dDodfr+fVCpFOp0mNzeXAwcOoCgKFRUVtLW14XQ6CYVCJBIJSktLMZlMeL1eDAYDTqeTWCyWPcZoNGK1WqmqqsLj8WAwGJg5cyYul4vy8nJqamrQ6WSKXSKRSCQSyb8HqVSKzs5OWlpaCAQCtLW1EQqFMBgMtLe309TUhMlkwm6309DQQDqdxmazEY/HCYVCJJNJkskkPp8vG2NVVlYSiURIpVLk5eURDodxu9309fVhtVqx2WwUFRXR2tqKVqtl9uzZmM1mjhw5wqhRoxg1ahR2u51Ro0aRm5v7zx4iiUTyCaAIIcQ/uxMSyf9lOjs7efnll9m4cSP79++np6cHr9dLPB4nNzeXnp4ewuEwOTk5WCwW2traAHC5XCQSCUKh0D/5Dj4aRVEQQqDX67Hb7USjUcLhMEVFRVitVg4fPoyiKEyYMIFkMklHRwcul4vKykpsNhuzZs1iwYIFLFmyRIqdJBKJRCKRnDCJRIKtW7eyfv16duzYQUNDA93d3fj9frRaLQBdXV2k02lKSkoIhULZpIrJZCIQCJBKpbKxzWcdu92OwWCgt7cXgNGjRxMOh+nu7sbtdlNaWkpLSwsWi4Xi4mJcLhdTp05lxowZzJ8/X4qdJBKJRCKRfCx8Ph8bN25k9+7d7Nu3j5aWFjweDz6fD61WS19fH6FQCKvVitVqpa2tDSHEv2TOS6fT4XA4iMVihEIhCgoKsNvtNDU1odPpGD16NADJZJKcnBzy8vKorKxkzpw5TJw4kenTp0uxk0QikUgkkhMmlUrR3NzM3r17OXjwIPX19XR3d9PT00NfXx/RaJS+vj7i8Th2u51IJILf70ev12MymQgGgySTyX+5nFdfXx8ajYby8vKsUMput1NQUEA6naawsBCLxUJeXh4LFiygtraWcePGSbGTRPJPRv7LRyL5FKivr+fJJ59k3bp1NDY20tfXRyAQAMDhcNDf308ymUSr1ZJKpT7wPAMBAYDJZMJisWT3jRs3Dp1Ox4b1G3DYnSw+dRHJZJLVK97k8+d/DpvNxro31+Pp6OM/vnI+Go2Glx5fiQYtF33jPGKxGG/9cQMzvjCRytEVtNd3Uv9SJ0Wzc5l2Ri393iCbf7eHKFFOvXk2yWSSFQ+8icVtYPEXFxIIBFj+p9dZeunJ2O12dmzbRd22/Zx/2TkA/O2ZFxGkOfuCswiFQry+6nUmTpyI2WymrbWN5nAzdrs9e/9CCJqbm4lEIiSTSfr7+2lubgZg5cqVAOh0OpLJJABlZWUAtLe3Y7VaGT9+PPF4nKlTp7JkyRLOOeccGWRIJBKJRPJ/gEQiwerVq3n11VfZvn07HR0ddHd3E41GMZlMWTdJAI1GQzqdHvE8Op0Ok8mUjU2MRiMmkwmfz0dRURHFxcX4/X4O7DvA0tOXYrFYeG3Z62jQcN6XzkEIwcq/vM6MRVMYPXY0fX19bPj7Ns74ymKsViurH12HElc4/caT0Ol0rLt3J3r0zPn6JKw5Zrb94wC9dX5q/qOEgio39fvq2beygSVfm49Or+PFh1aQJsU5151BMplk2RPLGT21nAmTJ+D3+3nj5bdYcs4paDQalr+0AoFgypQpxONxent7MegNaLVaFEUhnU4TiUTYv38/kUgEIBt3vfbaa9kx0ev1JBIJbDYbhYWFtLe3Z10IXC4XZWVlLFy4kKVLlzJ58uRP8zFLJBKJRCL5jODxeFixYgUbN26krq6OtrY2vF4vkUgEs9lMf38/iUTiI3NeZrMZjUZDPB4nJycHs9mMTqvmfcZWj8VgNLB53XsoaDjzvDNIp9OseWU9i85diMPhYO/2Otr3dXPmlUvQ6XSs/uMaNGj5/DdOJZFIsP7RHVSfWkL19Gra67poXNmLa7SN6ReOI9QbYdvjdSRJMu/bk0ilUrz1wCaESXDKtXMIh8O8+fh65lw0BafLSf3Bw+x99wCnX3YKACueeY00aZZecArhcJi3XnubcbVjsdvtdHd1c+TIEZxOJ6lUKusm0NLSks15Hc3vfvc7gCHjVVpamhVxDbgGOJ1O5s2bx+zZsznppJOw2WyfyvOVSCQSiUTy2SGVSlFXV8emTZvYtWsXhw4dor29Ha/XSzQaJZFI0N/fTzqd/tCcl1arxWw2EwwGAcjLy8NsNuPz+nEXuSmvKCcUDFG/u4GFp83DarWybtkmNGhZ8qWTAVjz7GZKJhcwec4E+v0Bdr5wgDmXTcWZY2fzUztJ9sP8b0xFr9Oz+YH96NFSc2ElOWUOdr10mEBjmOJ5dioXlHJkbxNHXutg1jXjMZmNrH5oHWnSLLp2NqlUijeeWIelwMjsM6YRCoVY9+JmZp89Da1Wy8a3NxPsDzJlyhR1MeLmbaTTqmA8Fovh8/lIJpN4PJ5szmuAP/zhD9m/9Xo9yWQSi8VCYWFhVtzkdrvJz89n9uzZTJ8+nSlTpshFfBLJp4AUKUkkx8myZct4/PHH2b59Ox6Ph3g8jsFgIBqNIoT40EBAo9FgtVoxGAx0dnYyZcoUiouLeWPlm2iFnkuvvgiLxcKah7aRa89n0c3TSKVSbLrzAHO+Mg69Uc+hN1roXtfP/M+NR1EULBtKIAjTpk0glUwTX2mh1FZKfrWLHOFm/7NtFOeXYLDomW48CeKQl5MHAsYoE/H/A5JfhuL8EpTpZnq2+NF8ToMmpMVmdLHgy6NIeVN0bg4wShnP2EWl5OY46dsaY5qygDGV1ehMWhof8zFfqaC6uhohBCcrZ2OtNDB5cjWJaJL06w7mfG4cepOefS/VM641xvwvqvew/qf7AFhw8wTS6TSrf7aRSddUoTfq2bFtJ9s3bWfJWacSj8VZ/cZqQJ049Pv9pNNpgsEgmzdvBmDHjh386U9/GpLcKSoqQlEUPB4PLpeL2tpaZs2axfe//30pZJJIJBKJ5DOMx+Ph8ccfZ+XKlRw8eBCv14sQgnQ6TTweB/jQFV42mw2n00kgEEBBYcmpS9DqtKx7bQNzT5nDuPFjCfhDHHmmkyXfnYNGoxmMS748ASEEG35WR2l1LlULiwn7opTUTWDG1HEYzDpir+tIhKF6TLXaXyUJa6D0lFLyrPn0Kxo4bMR9qpuTTlpA81s9dL8VIn+Sk3mXTqPuxRbSIVDyNCT2w+ip5bjMTiKNSUKv6qlUxuF2uRECJigz0Tv1lJSUEPbEmKUsZvzUcnJHOWjZ3M0C5UymTalFo9MQfll1nlywVL0H55ZKqs4ooHRWPtFQnK2/PsS8b9Wi0Wh45yc78dPLwhumEolEeOGPyzDYdcw5eRYdHR1s376dnJwcEolENt7dv39/doxfeOEFYFBMbjabKSgooKenB6PRyKhRoxgzZgzf+MY3OPXUUz+134pEIpFIJJKPz3vvvccLL7zAxo0baWxszMZe0Wj0I90kFUUhLy8Po8FIZ0cnEydOpKysjK3vbicVhHOvPhOz2czmh/dhw8Wi/5pCKplm0y/2M/2S0VhyzRx5t42Ot33MO3M8Go2CeX0xoOa8krEU0eUmcgO5VE0vxh7Lpb6ug1xdPvYSKxPsM0kGkzgMLhQjlChVhN+GgClGjjmPVI2evoNBFEVDwp/GpLdRfWYxkcNJPHv7KVIqKJmeS64rj77NUcYqkynPHYU130jjYz6mKgsYPWo0CJilnIrOBJMnTyDaHyO1ys6Uk0ZhL7Rw8LUWRjVMZ/6l41E0w3Neb/9sC1WXFGDPs3Kw7iDb3t7JvM+riwPffP1N0qQxmUz09/cTCAQIBAK0t7cDsGLFCmCo8L6goAC9Xk8kEqGwsJAxY8awePFirrvuOlwu16f7g5FIJBKJRHLCRCIR3njjDd5++212795NQ0NDVnwUiURIp9MfGnvl5OSQk5NDwBfEiIGTTl2ITqdj52v7qJ42isnzJxLqDdP4Vw8n3ToVnVE3JOeVTgs23lmHVatj2uk1+NuDFOxpYnxpBa5yG/G3jcT9KSpLqtDqNPQoCdgDhWcVY0+66FPShNYLyi9yMm7ceLq29tHy9z7cExxMOG00TW93k+wVKGUKySZBflkuTrsdz5YQgTWQrxTj1OSgJDWUK9VoDVCUX4y/OUSNMpXSmjwqqwppfLeLKcp8JoyqxpxjUHNeCsxfMh6REjjeq8Ax1sTkL40h1B1mx+8bmPn1aoxWA2vu3E0kGWTmDeOIRqK8+se3iCtR5pw1na6uLnZu2UVOTg7JZJJeTy9dXV3U19cD8PLLL2fH+v05r0QiQWFhYbb075VXXsmkSZM+/R+NRPJvhBQpSSRHEY/Huf/++3n++ec5fPjwkNVfGo2GRCIxrI2iKOTk5BCPxfH0ehg/fjyVlZW88+oa9Gkjl99wKU6nk82/OAh6WHD1BFLJFJt+cYCZp1ZjshvJC5TQsdZHWVkZiqJQoJRCMHOBtOqk1Hc4QP74HByFVrrpJxlNozdrwQDEQaQFSiZWaXypA/e3nGj1atmSxlVdjPpcMaXz82h7p5e651uoXFLA6LOLObK8g/plrcy8qYb8iWl6dviz92YwaLAWmfEdDtC3P4ipwICzwkLrhm66NvYBkIykiPky42IAkYZQZxSAotl5KIpCzy6fuj+lOib17Yhlx06k1U7batQVYIlgApviIj+3AL1FR05nGScpJcyaNUE9x5suABZcPoF0Ks3GO/cz9VtVKDpYv2YjOzft4uQzF5BIJHjjjTcAsFgseL1eEokEPT099PT0sGbNGn77299iNBpxOBz09PSg0WgYN24cRqORKVOm8N3vfpcJEyac8O9JIpFIJBLJh3PgwAHuvfdeNm3aRHNzc9ZtcsDBZ6REjN1uJycnh+bmZhQUTj31VDQaDe+t3s6cRTOZNncqUW+Cuj+2Mu8btWi0RwmPFqqindQqOzl9VgoKCrBqInQqYRKBJEanASxAGERKQMbRsu0NL5XzixCZhe/eff0UzcijYF4ebW/2EmgPYy0wZ/sYaA2j0WnUtuu8oFEomOSiY5sP774ABROdOEdbh91bwQQn9lIrm36rioBGf76YQHuY5nc86v7JDmL9CepfVieqSEM6kab5jR4ARArSQp2w0mcMOGM+VcxlsOkRQtD5nid7LBrQK3rcFJGXl0c6JZijLKHi5HzKZxcQ6AqRt2MM875ci0afGUcFZn93LH6/n+cfXoaSk2b2gpk0Nzeze/ducnNzSafThMNhwuEwfX19bNu2jeeffx5Qk2gDIvPc3FwqKirIycnhS1/6EldccQV6vf64f0cSiUQikUg+mmQyyUsvvcRLL73Erl27aG1tJRAIZF28R8p5AZSUlGC1WvF0exg3bhyjRo9m5/rdKH4d533jTHJcOWy+6yCg5rwSkSTv3XOQidMrcVXZyAuX0fGOl5LCErR6LS7FrZ5YQDqmxi3tm3sZ87lSzDYjAKGuKLZCMzoTJKOQCKey+aO2dV5KZ+ejpNVYq+G1LsaeV0perZWuLX7qnmuhdGEuZYvzaX2nh4bVXcy6cRwiBX0Hg0PuLWesnd4D/fgbwuhsOvJqHRxe1U73FjU3loqk6Ds82CYVTRNoV3NeedNciDR0Z/JoIqHGjz2b+tXvKUE6qfZZlzE9CnvimBQb+fYCHPlWut4IMFPJYeZ0VWguVjvVcbx8Asl4is13H6D28jLMxXq2b9jNzrW7mPG5yarz0+q3SZPCZrPh8/nwer14vV7q6up45ZVX+K//+q9szsvr9WI2m6mqqiIvL49FixZxzTXXUFVVdQK/JIlEIpFIJMdCT08Py5YtY8OGDVn3yb6+PpLJJPF4fESzA5vNRl5eHm3N7RgxMn/xXPR6A3WvH2b0+CrmnD2dUFucQ39pZ+aV1RidhmzOa/7c8aTTas5L26jBfW4+ulAQgxLC3xgmb6wDQ76BeE+cWH8crUGNpUItSZLxFKmoGrd0bfVhL7SQW2Onc7MPz94AOWNsoAVS0LPDh86itg00Rahf3kHBRCeeff1EuuOkxwjc0xy0rvEMuTfnKCs5Y+zsfrwBgPwpTgKtYTq3qnON9iorgdYILW+rOS6NTkOsP0HXJnV/Op4mOjAXqYV0XBDsUJ2SLDlm0qk0HVt9ACRDAoNJoE1psSlOcl25pMwpxiszsI+1MGXmKHqP+HFtrWLqeWOwuo2svzOT87ptLIFAgBUPvUlEE2TmWVNobWll7866bE6rs7OT9vZ2tm/fDsCvfvUrAFwuFxqNOjb5+fmUlJQwZcoUzj77bJYsWYJWq/0YvyiJ5N8LKVKS/J/kqaee4uGHH2b//v0faoU4UGrNZrVRXlHO/n37Ia1w4SUX4Ha72fNwKwYMLLhuAql4ik13H2DaKaOx5JnIjRTT+baf3JxcFI16HuKZE2cu03vAT8nMfGzFVsBHIpTEYBucmBFpMTA3xqFXO8gfn4M13wSA96Cfwim55E920rPVT6g7irXAjMEG8WCaaH8cR6k6+eXZ3c+Yz5dQNjeftnd68deHMJ1vQFOuvizjwTQb7qkbNk7xYJqt9+8jnsnH2ApN6K06kmE1WBlzTjHmHCOHX1MnyiZcoloeHl7VBoCjwEIqmabxtW4ANHoNyZjqbmTIJGiifeqgFI13ANC926fuyIxZvHnwmaRT6nWdGUHTQFu9xoDBosOyr4j5ShGzZ6sOTcqbOYCqCk8mUmy+6wCjrs5FaNKsfnU1za3N1NTUEIlE6OnpIZ1OZ50Bdu7cyVNPPYXNZiORSBCPxykpKaGkpIQZM2bwox/9iKKiomFjJpFIJBKJZCgej4df/epXrFixgubmZoLBIEKIbNmxkSgtLUWv13PkYAOjRo/mlKWLSAWg+bk+5vxnDTqjdlB4dNIEddLqDRfmBgPmU8ykVCMhYr4E5jwjeqe6Yj6dENm4rG9XCHGeQJP53rPfT9mcfEpm5NK+1kvYG8OSZ8r2KRlNqQJx4MiKTgom55BTaqONXhrf7mbyF6uoPreY+pc78NT1M2ppEaUn5dG2tpd0QmCw67Hk6vH7E+x/vlUVEb1vLnDf31qGbLOXmdEZNQRb1aRLyVw3IiWy351lVkI9UUiA3qlH0Sr0NWSsu6fkINLQudMHgMlpgDS0vasmdxQgmZkYJBN+RryqkNxkNaiCpq29AKTToDlKL6bX68lx5DJVWUDlwnxKZ+QzOmcchXtqmHNFDTqD+nwSIsGEb5Tg8Xh46flXMNr0VFZW0tzcTCqVwuv10tOjJp9Wr17N17/+daxWK/39/ej1eiZOnEhBQQHf/OY3Ofvssz/wNyaRSCQSiWSQd999lyeeeIJNmzbR2tpKKBQCGFZ6bWBlvs1mo6qyisb6JkRM4fP/cQYFBQXs+107OkXHgusmEA8l2PKbQ4ydVEr+RCf54VLa3+3DZc1Bpx1ML4t0RugNdG334KywYs7kuUJdUeylVjUbnYREKIGiqHmprs1+Ri8tweRSY6/uHX1YTzPhqnHg2dlPX30/uWOd6Gw6ksEkgfYIrio15xVqj6IApXPz6driJ9wVxZJrRG/K9CsJW+49ODwLnoTtvztIUtUcYXLqMLoMiITa/8KZLuylFg6/qua8KpcWoNFoaF6j5rhc5TZSsRStGTG53qol1h8/6gIKwQ517PNqXZAGzy5V0KRoFNJpQf+hzMXTaqwJYHKpYxLuVvfp9Gp5FlN9DlOVBcyaMR6NToE3XICa84oHk2z57UHKLnCiz9Ow9o31HDnSQE1NNbFYjJ6eHoLBIHv37kUIwTvvvMNPf/pTrFYrqVQKIQQlJSVUVlZy1lln8dWvflW6MEkkEolEcgxEIhFefPFFXnvtNXbu3Elra2t2zvGDyt5WVlZiNplpO9BJYX4xp5y/kHhXmvZX+pn8pVHYi8ys/5ma85o7t5a0EIjVDjgCZpOFmKKuoPM1hiiYZMCcbyDSEyfii2fzVil/mlQsjUaoOa/uXT5cVTZcFRa6e+L4GkLkjnNkhUfh7mi2be+efipOLsgsxvPRvrGH3Go7pfPdtK310Lu/n3EXlJE/xUnPLj/pWBpTnhGTS08okqJtQy+dW3tJxYfed9sGD20bPJAZFnuZBZNLT8SjHlg2Nx9FA6EONQbKHWunvy1MKp5GawCtQYO3vj/T1kw6KejZ4wPAkm8kGU3TtXMw55UVNAHppKC/Xc2l2XKMpFNpeveo5yIpSCdEtl9aRYtVa2e0MgHXOAsTpldRqhuFe1c1U84ehS3zfFKkqP1GMV5PL68//zZxTZSqqipaW1vxeDz4/X4OHDjAW2+9xX333YdWq8VmsxGPx3G73VRVVTF58mSuueYaZs6ceRy/Oonk3wMpUpL82+L1evnOd77Dq6++Sm9vb3Zl2AdZI5aWluJ2u9m7XbWdvvqWL2PSmtj0qwNMuqQSZ6mN5qJOWt7oZVz1ODQ6DQalO9t+4Kye/QEqTzLjLLTSiV8VHtnfJzzKKGkbV/dQMjMfa666UqzvcIDCKbm4J1vx7A4R6Y1hdGVm2YIQ9cfRZJS2h1/txFFhxeJW2za91U3logKwGiAYp229B0ueMXvdgy+1kggNvpQ3//qA+ocBrLkGQp3vixgyDAiU7FVmPLv78ezuz+47/EoHsWCCzs3qi79pdScViwsJtajn6q33Y80xZ68TDSTobwwDkDcph1QsTcsadWLKnGcknRS0vKlOhmk0Cql4OtsWBp0A8mvt6ljv82eOJTtGAAoK6YTa1j3LhqIoRHrUSbdcVy5Gm4HqnllUK7NYcL7qlLT+Z/vAAHNuGcfhQ4d5+fkVVE0ox2K2sGvXLoQQdHR00NbWxnvvvccjjzyC3W5Ho9HQ399PTk4OEydO5LrrruPKK68ccSwlEolEIvl3ZuXKlfz6179m+/bt+P3+Dy0JotfpGT9hPP3+AH1N/Zx96eeoGlOlOk8C8y9XHY823lmHPqCnpLiEoDZCM32EPTGcpVaMZXpirQlS8RSKNjOZ0xoHAdpMcOA91E9pbj4FU3JoW9NLxBcbEh8loyk0evXY5rd6KJnuxl5iAby0bfQwakkRueMteOvCdO/2YS+zZNt66/sJdapxTbAhQu+BfpreVSepOjZ6h/3vwN/WUhOhtiiJ8AiDmAnVLIV6wt4EO/9wZMju/S+0DPnesdVLf4t6Ir0ZAi0hWt7qBMBo1xHqitC+Ro2tFEUh2BXJthVp6G9T2xZMdkEaeveqcZ7RpYc0dG8JAKp2fCAu01sAMShoMtoMKChZobmSJhsY6xU9+e58XNYcTlbOZtQpRZTMzKNrj5f6v3cw++axRFNR/vzb5wngZdqsqXT3dOP3+0kkEtkVaa+99hparZacnBx6e3sxmUyMHTuW2bNn8+tf/xqn0znCYEokEolE8u9LMBjkwQcf5MUXX6S+vp7+/v6s2GQkSktLKSwopH77ERzkcfHN56FL69l+/xFGLS6geGY+LWs6aXm7lzFl1RjsenSZnFc6KbLv9p49fvInOLNiolBXFGflUcKjcDIrCPfsDlF9tsDkUmMvz75+rJlV+d69AfzNYRyVg86S/uZQtm3XFh95NQ4MVjV13bq2B41WozorBaFtvQdbyaCL5cGX2obc785H1RX66FTxUbQ3Ccnh4zIgUDIXGAm2RVUxU4aurT518munmntq2+RFo1UIt6mNfIf7iQcHTxrpjdHfkhGSjzYTC8Zpf0+N/2xFZhKRFO3vqXGZ1qAhHjhKma4ohLozbcc6EGnw7leTXBqNgkhBtCtzfFqQDGcETUU6EGRdBJyOHJzFFir7JlOqjGfe2bWgwMZfqAvy5tw+joYDjaz+29u4xzmxOqzs3bOXaCxKU1MTDQ0NvP322/z3f/83drsdrVZLLBajsLCQSZMm8Y1vfIOzzjpr+EBKJBKJRPJvTl1dHY8//jjvvPMOTU1NWUekkRbf6bR6JkyYQKw/RqgpyfzPz2bs1NG8d88hSMHsi2tACN47eBD6oLiwGG8oCPTT3xTClm/CVm4g2BIn0hfHODC/GIdULJU1V/DuD+Ae78ReaibSEyfYFiFnrD0rPIr0RNEYMgv19geJnZLAkqtOtnVu6cOSZ8RRYaG/QXUzclRZsm27d/QR9avzcXF/iq5tXnoyeZ/+5jCHV7TTd0iNVfwNIXb+v8MAGHMMxPriwwRKQFYEZLBpiUdSHFnRMWT3wZda0Ro12e9t6zzEBuIlg5be/f10bVf7YHTo6DvcT/eugTlCDb4jgUGjCAS+RrV/1mIj6YTAe0DNcZlyjSRjaXoyIiVFw5C4TKQHYytLrhGRFHgPDM6LDiz40ypach05WISdGcrJ5E6wU3NOOW2bPTS/3s3kq6pQnIKXfrMKP72MmV2Bx9NLff0hWlpaaGlpYc2aNTz88MPZnFc0GqWgoIDq6moWL17MTTfdhM1mG2EwJZJ/faRISfIvTzwe54c//CF/+ctfaG9vx2AwEI/HR7SprqyoxGK10HCgkclTp7BoyUkQ07DjwSPMvbwWrUHDjLz5NL3RjdVqRQiBtciAp64PR4mVwmm5tLzRSyyYwOwyMurMQhpe7SKdFOgMWmzlRlrX9lCxMB9XlQNox98cIn+ii/GXlVP3TAuxQByjw4Cz2oq/PkQqkcKYCQxa1nopmJxL6YICPLsbCHSEseSbKFqQS+d6Lzq9Bp0z859tHEwOA6Wz3TS91k2kM4K1yMSMa8aw8Rd16Kxa3FOc5E/NYcfvDlI8M5d0PI39Ygvt23spGO+iY4sXV4WV3FoHUX+cbQ+otVbRgKVwcAJv/vfGIwRsvLOOwpkuSubmoTVo6NjmxeY2MeHLFYiEwFaiJl3KTnFjzTWRN95BtD+OIddA9ZlFWHKMg+KhcU60Rg22MhOe3f3ozVoULdhKDQTb4oAg4+SNe7wdIQSxoPpMrSVmhBD4m9SJNa1RO5iIMwAKpDON3ePUSatQt3qszqjNjh9kjs2s8itZkItOp6PUXc4C5XPMOacGnUmLa1sVKDD39ho6Ozt55rFnSelSVFdX09zcjBACr9fLmjVrWLNmDV/5ylfIz88nJyeH7u5u5syZwze/+U3OOeecE/yVSyQSiUTy2WHHjh387Gc/Y+3atfh8PnQ6HeFweNikmNVqpbKykl6Pl3B3lEuu+Q+Ki4s5uKwNb2OABV8YdKLMMxei0+kYd2kpB59rIxlPoTdpcU9x4NnVjxACc44aL/nqAzhLrdSeXc7OR44QDyQx5xkpnJFD17Y+Usk0JpcB9ND0dg8lc9wUTldFSj27+qhcUkTFmfk0v9pDpC+OtcCE3qkn4U8AAkdGiORviKC36Cg/qQhv3RES4QT2EjM1F5Vy4IU2UBQqTy1GZ9bTtLobvUXL9K+NxrOnn+7dPvInOjHnGXCUWfDWB7EVmdj352YmXVYFGoWOLb00v9GNxqBBo1NwjrLgbwgz+twiiqbm0rbRQ9PqbsZ/sRydSYveqmPvX5qo+UIZndu9VC4upL8jjKPcQt+BIJO+PBqA4pluDq/ooHhGHmgUcifY8R4KYM4zIlJqHGYtNaHRadBnkj+mfDXhFcsI2g1WnZpo0wMJUHQKqbA6CeeqdYAC8ZD63eo2IhD016tOAYpek43D9BZAgWRcPdZWZEIIgadeTSJpDVrsWjtTlHkALDhjAslYis2/PMDYS0qwVRhZs3ot27fvYNyEauLxOB6Ph0gkwq5du9i1axePPfYYWq2WqqoqIpEIBQUFXHDBBXzrW9+S4iWJRCKR/MuTTCZ5+umnefrpp9m1axfRaJRYLEY8PjjzMyAKr6iowG6z036okzFV1Zxy/smk/YJdjzYx7fwxWPKMNOg76HivD6vJCooqzune46V4hhv3xBxa3u4l1BXB6DBQuiiPtnd7SURS6C06rCUmfAeDiLQgd7SNI4DvcABnpZXq80qo/3s7oa4Iriob9gozgeYI8WASa6EqaPLs6qNiUQGF03JUkVJTkLxxDgpmOene4kdr0GArtmQFT9YCI45yK+3rvUT9SZyjrEyuGsN7vzmAzqIlf7KDwqk57H6qkYKJTlDAfmYxXTv6yK1x0LPbh8Ghp2JRPoH2CAf+2kQyClq9gv0ogdOcW2sA2HzPARxVFkrnu9GZNPTs9qOz6qg+p5hYIEXuWCtRX4LCmS60Ri3lJ+UT6oliytNRODUXZ6UNUGgDcsc5MDkMWN1G+giit+rR6hXMuUYi3TEUDdnyddZStSTvwMJCR4UFhKC/TY2tjC5D9lgAjV4hmSnH4h6v3nfUlxGPO3SqK5MvI57SkC05Z6syodPpyLcVMVVZwJRTRmMrMuHaW6XmvG6rodvTzd/+8BJhpZ/q6mpaW1vx+Xw0NjbS2NjIK6+8ol7X7SY3NxeAJUuWcMUVV7BgwYJP5kcvkUgkEsk/kba2Np588klef/119u/fTygUIhAIDMt5WSwWqqurCfSGSHbB6ZcuprSylP3PtRJojjDv3PHEAgm2P1iPPepCp9Ux6oxCGlZ2Ee2LYS0w4xxlxd8QIhVPYys0ozWA70iI4pl5lC4o4MBzrYS7o1jyDOTU2ujbHyQeTGAtMqM1a+k7GCSdSFMw3UX3Dj+e3T5yx9konZtD2/o+gh0Rcsc5VFFQMAVC4ChXBeLR3igWt4ni2Xn0N4SJBRLkj3eSCKdoXt1NOi2oPrsUg6Wbji1edBYt479UiWePn559PnJr7BgcOlyjbHgO9uMostCwqpOaL5SiNWtp2+Che7sPjV5Bb9FiLTYR6oiSP9XJ6DOLaX5DPW/ZyW4MNj1Gh46DL7ZRfnI+vXt9lC4sINAexjHKSqAlwoSLytEYNCSCSdo3eSmdm4/OosVRaqG/OYyjwqrmvLRgMGvRmXTojOpcqilXdQtPRtT4yOjSI5JptFoNqVQanVlLIiM8Nxcb0GgVEtFMzqvIDAr0t2YcLq1a0pncGlpQdBqSkcy8ZbEJEIQyTpo6sw6jUU+Vosaa806tJRZMsP3BwxTOclCyOI/Nb2xlz/a9lNQWkEwnqaurIxgMcuTIEVatWsX3vve9bM7LYDAwffp0zjnnHL7whS9gNg/GsxLJvyJSpCT5l2LXrl3ceOONbN26lXB4pOXnas1Wu91OV2cXJ518EjNmzCDWlqL+b50suHICKLDrj/VYdGbV1tigvlDiAbUciPoiUYUrGq2CwWGgc0s/o5eStYr2N4QwTzfiHG0DukgnU2h0Osw5RoItMYQQaDOr8pve9pA/0YW1SD1vxBvH5DRiLTfirw+hUTQoukxpM28cRUPGRhE8e1VnpdLZeXSu9xLqjuIos+Ke7MCzu59UQpCKqS9AvU0HikK0T31Z2gvN6Iw6kpEk8Xgaa4EJkU5nJqS0mFwGrAUm2rb0YikxqWpsA1nxjsZwdG1UhWifmvCwFpoxuQykkwKb24ylyITWoMHfECadUicQHUVmmtd0Ya+0YLTrMVgV9j3TzOxbxmGyqxOM/e1hrCUmrHlmTAUGDA49CAW93UDlUhc6o45UQpVWu8c6URQFnV7tk6JVUBQFS56RQGMEoQiUjG2le4JaNi4ZV9uaXepkWLRf/a4ZoebrgBW5MxOgxTJl5AZq8g6g1WopKSlhoXIWFaflUT63iJAnwo6HjzD5WxX4/H08+fjTpEhgNptpa2sjFAqxatUqXn/9dfR6PfF4HJfLxZgxYzjnnHP40Y9+NOLvWCKRSCSSfzaJRIKHHnqI//f//h9HjhwhFosNO0av16tCEKGQiqS49MpLKCosYuuvDjPu3FLya1wEeyLs/N0RCvKK0Gg1WPKMePcFVMejzLvduy9AToUdR2bCKNobQ19qwVpgwkM/6ZQaw6CHrp39VCwuxORUhTXe+gCleUZcoy10besjnhGT6y0Z4ZEga1ntOxikaqlCbpWDZnpIxVJo9RoKpjlpe8dDPJzA5DSit2hI+BOkoikyVUhIxQQiKejcqjpIGqxa0mlB53b1u6XAjKLVkIynMOXqsbiNJJMpdGYdtkIT1kL13to2eiiZl5edHNPoMkKhHCP+hjBGs550Ok3PbvW8A+0UDVjc6nn1Vh0iJTDYdFhyMqWAD/STM86GtUT9Xr+qg+rPlWArNKHRKPQdCZBTpa6+qjq1ABiMVwvG54AGrG4TPfgxWPVZJwNzsR4FhYEaxLYiVcSVzCRw9Bb1OWjMWgin0WiV7GSYKxOXpTITaQNuCIleNf5WtINOW3qL2peBuMzkNKhJP8tEbEop888bj6JVsmXkpt5UyYEDB1n92uu4nC5CoRBdXV20t7dnhXSJRAKNRsPYsWOprq7mvvvuY8yYMR/8o5dIJBKJ5J9Ia2srP//5z3nttddoa2sbIkQawOVykZeXR2+Hl9lzZjFz3kyCB5I0r+pm7uW1aHQadj9+BBFOYbFYSWbKgUQ8MSxuI9YyM7zXRzKWwmDVY7Bq8TfEEGk1rgDw1gfJHeskZ7RdFSmFEhjtOowuPaH2KKlEGr1FPbb9PVUAbssIkYKdUXJG2bGVmwg0R0ADerN6bDIKGr0G54AgvD4EZ0DRtFy6t/jpbw9jyjHgrLTiPxwiHk6RDqj91+nUEmmhjCukJd+E0WEg7k9AMom1xIyiUxexaQ1abEUmQh0mund7yRlrU500dRn1k0ZBZx6aGwp1qbk0c54BW5GJVDyNyanHlG/E5NAT3u1HpMFWbCYRTtK63kNejR2zy4DOrKPpzW4co63Z+DTiiRPL5Bl1Jg32YhPptMDk1GN2GzA5jSQiap7KNcqJVq9Bo1P7pMk4hBptBoJEM/GSGjtZCk0oikJqIOeViQNjmXImA7HdAIqiQSTVMczJuFbF/YnM+TPTAhk3KY1OS2FBETOUk3FUm5l83mj6W4Ps/mMTE75WSigZ5Pkn/kYoFcBisdDe3k4wGOTgwYP8/ve/x2AwkEwmycvLo6amhi9/+ctce+216HRy+kEikUgkn01ef/11Hn/8cTZs2EBnZyfRaHTIfp1OR0F+AUpKiyak4+zLz6Qov4gd9zVQPDWHUacV42sMsu/pZnItBegMekw5BgLNEdLJtJoD0ULvoRClCxTspWoM1N8cwVZswZJnxN8QIh5KYnIYQKvF3xgCBBZ3JtdzMED+RCfOCit9+4OEemLkVhvQGhRSEUjFBQarGn8E2qJoDTocFXba1veRCKcwOvTkTHDQtbmPiDeOa5QNvU1LIpgi3BeFTE5GpASJSBJvneo2ZLDpSMXT9B5SF5nZSyxo9BpScYHOpMNeaiGdFKqQPceIvUzNXbVu8FB2cj62YrMqUtIpKDoNRrueUEdUPW80jfew6nJkLzWj0amL94w56nn7m8Okk2l0Fh2OzJh17/aTP9mZddI8+FIrtRdXYMozkEqk6drlJX+CC4Ci2XkIoeanAAqn5qAzaTFm5iYtuQY0Bq3qMqUFhKJaiAP2AhNpIUhknJWMLiNCqOV3U6TQGXRZkZKl0IgCJKOZ7zlGQCHSk4lfTRpEeqigKR1Xx9ucb8JssVCmH4VeyWXWGdXoLXo23FlHSqSY/M1yDtcf4e2V72KwqYtDGxoaqKur45lnnkGnUxcXOhwOqqurmTdvHt/73vcoKio6of8WJJJ/BvJfCZLPLBs2bODb3/52dqXYB1FTU4PT7qR9Sx/Tx8xm+uXV9DUEqXu6mck1o7A7zaz/o1q/NRlLodEqBNviBNviVH+uNJvg6GsKYM410r1btWKO9sUwOQ30HVRflumEIJ5Z1dS100vRtFwinepkXfceH4VTcvBn1LTB5giazERL3BtHJAWJgJpAaFjVRc5X7bgKrbTjZeeThxl3bjmOUaqtYtObXQS96nn89SEi3nhWNLP3qWbm/ncto88swbO7n82/2k/ZKW5m3jSWrfcfYsPP1fs0FRjY/3zrkHF677cHh3xvfHWwVN22++uHDmoagi2DIrCB8wIcWdExzIbx/ZgKDES742zJXLPq9ELGnW/nvV+r30efVUzxzFyOrO6gY4OXnHE20gnBvr8cIdgSo681iN6qo/6ldgAMTj2tG7tpft0DBjA7jQTbInRt9eEYZUFBQ9e2TAmVfBPxYII9j6r3JIBYf4L2d1RLbQSEPOr45k9xgIDOLWpbjU5DOik48Jx63XRCZIMIg01tG+7JJK6cJhBw5A21pIpJZ6asxMqpyvkALPjKBBLhBMt//TbxMT6KygvZuXMn8XicYDDI1q1b2bp1Kz/+8Y9xu92YzWZSqRSXXnop3//+97Mr0iQSiUQi+d8gkUjwy1/+kieeeILm5uYRJ8UAbFYbkyZPouugh1xvGafdOB+9WcfGX9QBUF5aQSxjB+2p68dd7cRXr8ZSMV8cncFE6xq1JFo8nGTANrFrh49RS4uyJTL8TWFshWa8GevosCeGJdcICUj4E0S8ceIh9Trtm/rIG+fA36quVPIdDmGcakCvV6unBdrCWWFN2JOg6e0unJkkx76nm6k6o5C29WqfDr3UQc0FZRhzjSTCEVrWeahaUkjJ/DzaN/TSub2PadeMpmunjz1/asqOizFPz3u/OTBkrDy7+hmJ1jWe7BgAJMNJ0klB1zZVlFT316El3bbcNzSG23i3Wq6jLVPGDUDv1FP/8mB8Nv0/x9C+0cvGu9TnMvs7NYi0yLZNxwXBjgi7H2/M3HcrRpeB7m0+XNVWAm1hjixvgQRUnVxEOiXY8Xs1trIVmkhGUtS/pF4v4o0T88WJ9SawFBtIRlK0rFfjzJwKOyIlqPurGpemk4JEKEUoUyYlHU8TaFefee5EByIlaN2glgImBelUms71vkzbNMmgGpc58o24nC6qnbWkFBvjP19Bzmgb7z2wk/2+A1SeUoTP52PHjh2k02kOHjzIgQMHWL58OXq9npKSEiKRCLNmzeJHP/oRs2fPHvFZSSQSiUTyaVFfX8/PfvYz3nrrLTo6OkZ0AweFsdXV5Obk0vdelNH2Ucy+YTI9dX7qX2xndEERDpuTI5vVGCTaF8dg0RHMvmdT9LequR3v4QCuUTb6DqkTT/1NEZyVCv4GdX+sP0ki417tPRAitSRNqFN9R3ds9VK+MJ9wt3renj1+TLmZsiNJiPcniXrVth3reymenoclUw5u35OHqTy9JOusdPAfrcT71WOjviR9h4MkM+6MTa91kzvKzpgzi9n2UD07HzlC3gQHk6+uYvfjjWz+lXqfBpeO1nd6aH2nJztSe/7UOGTk2jcOxkl7j4rZAFKxNH2ZiTFQHZQG6Nrqo2urb4RnAe0berPXj/uS2Tgqf6qTqiWF7H6iAZJQOMNF1dIijrzWQfcOH5ZCE8loioN/bSPUHgUdNL3TTdtaNR605Bo4/Go7XVvU6zrKrHgPBejd14/JpTojtW1W81aWQgPBzgj7/qLGixq9QrA9QsdGNY5EgK8pU9qkxEQ6nqYt02+dVU8ynKJ+uRrDJSOpbDlfgHQiTX+LGk/biyyk4mma16hjrE0ZKHIXMSd9Gigw50u1xPsTvPu7rfgLOiiZUMCePXvo8fTQ19fH2rVrWbt2Lddffz15eXnY7Xby8/O5/PLLufbaa2XZEolEIpH8r5JKpVi+fDlPPvkkmzdvpqura1jeS0HBbnYwcfIE+g9HcfTmM/uSyVgLTWo5WAVKckqJ9KjtfEdCJEIpvBlX6VBnFFOOAW+dP/td0SiQgnBblFhfDP8R9dhAW5h4wEGgXY3DAs0hlAp18R+ogvFUxsnHfzhAX32Q/mb1WN/BIPZCS1bU3FvnJ6/GAVpIxdMceLEJe6n6nm1d4yEeTNK91wdAw6pOxp5bmnEOStH0Zjfjzisjf7KTnt1+tt5fz9jzSvE6AzS90U3TG2puR2/TsuepxiHjteORw0O+N2fiMu/+AN79gez2ZCRNvD+B96C6rW1dL23rBuO0ur8MzYENnLcnU8Zt4PpdW/voyiwaHHdhGT27fWx/SM1TTbqiEkWrZNumEmn8DWHqX1bn+RpWd2K06/EdDmHKNeBrDNO6rptEMEXp/DxESrDvGTVetBRaiPbGacnMJ4a7I/QfCRLri6M1a4l4Y3RsVvc5y6zEQ0kaXlNjq3RCEOqMEO5S543j/UkCbWo8bSs2kggmaN+QyQemFRLBBF3vqfeZCKWIZOJprVGLzWijOFnBfOUMSqfmUTrPzY4/1tPsacJ9kpn+cD87tu3A5/OxdetWtmzZwoMPPohOp6OsrAyn08nnPvc5vva1r8nFepLPLFKkJPlM0NnZyVe+8hXWrl07okOS0WhEQSEeizNj6gyWfG4Je37XSDyYZu4FtSgKbNy6n8iROCItsqu0+g4HsBWZya9x0rPVTzKSxOgYLGOWjKeyK8XaN/gompSLvdSCZ2eQqCeOJdeUFdxEfKpoCSDUEifkiSK06sSad3+Qoql55Iyy0OWNk4wmyalwYK8yE2iMcPjNdkpmuAGIdsfxHQ7QslF9GSUjYM41UjDFRX9DmN5DAaZfOwbv+AAH/t7K9ofqMdjAWmQg1Bnn8Mp2gl2Doi2T04DOpMVg0xAPpsEA068dQ6Qvzo7fDwYKEy6rwNcQyiZVAIrn51Iw2UXdM0eID+ZnRmT0WcXYikzs+mNDdpsh18D4/yij7m+txL1qcOae7GDseWV07+zj8Cvqy9mSb0Rn1mWdmo6s6CAWjNOxQU2ypBJpNv9qf+akMP+b4/EdDmS/W/LVxAp4IA69+/rpPaC+vN0TnPibghxZqYqFCia70Bo02fvR6hSSmeDOkGsgFozTvkUdA3etOhnWsUkNtkx2Q1Y5DpBOp7Or6exj1JJzA7VnjXbVIrI/k9BDEdnrYACBIOyJU6CUMm7mHNw1Tgo6y/D6osz45hi6ejt59slniRPHYDDQ2dlJIpHgt7/9LQ8//DCgThiPHTuWa665hv/+7//+8AckkUgkEslx8Nxzz/GTn/yE+vr64YkZRcFqtRIOhTFh4dIrLiHXlseu3zfiHutk7GkltNp6aHnDQ6Qnir5icJIhGU6iyThEBupDapk2lxo/9R0JqCv4q0yEGqOEOiNY8jNxWUKt+W7OUb937emjZFYuebV2Ak1hOrd7KZnlRm+BRBhS0RQ6fcaVx59Ab9FRPD2Pzo0+GlZ2YrTryJvgJPyuh/b3vDjKBmMnZ4VVtWvOYLDrmPvtWjbdu59AU5gt9x7EllkB1r6hVxXKbO7LHq+36LC6B+PJMWcVkz/Fxd5nmwhkStFa3HqqPlfMoRdbSYQHJ38mfrkCf1N4iEhpJPROPbUXltK2qVd1ncpQPC8XW76RQ0cJkqZ+dTRGpz47waZ36tGZVLeDAfb++Qj6zMo6S6GeuhdVARLAuAtLcY22sf3hQwC4xzuwFZmz/W7d1Esyksx+VzQKh19rA8BVbcVeZCaQmQC1F6sr9P0DIv90mv6WcKaUnjp2wW41QWMtNaHRagh3q8kbs9tAMpbCs6Mvc6w2W1IOQNFqSITV36qz2kk6KejNxGV6s1YVQPn1jFEmMXdeLal4GvfOaizFesZ+sZR3Vr/Ljl3bcblcBAIBvF4vK1asYOXKldhsNoLBIDk5OZx88sn87ne/o7i4+EOfkUQikUgkx0owGOSOO+7gb3/7G21tbSSTySH7jUYjZpOZdBQmVE9kyTmncODPrUQ9SWacMQaNWcOWLYdIBtXJp6xDZH0I9wQXtjIbUV8/iUAyu0Ic1AVbBqt6bN8+P4mF+ZhzjUCAUE+UnDE2zAVq+bFgZwh7ifoeTwaT9DUGSGdSHIEjIZSTCrAWmIl6EiTCKQqn5GSFR/WvtlEyS815JaNpund46anrz353lKmTPYHmCP1HQkz92hi8+/tpWNXF/udaQAemPB3R3iSHXmnLluIAMDr06C06dDZd1sVx8pWjiPTG2ffnQfFR1dICgt1RPLsHReI5Y20UzsihfnlHtu0HUTQrB0eFhYN/b8tu05k0jPp8MS1vdRHNlE+zlpiYeFkVnVu8NL+t5pIseUb0tsG4q2ubj1QiPaQv2wfyczqYdcM4eg8O7nNUWEFDVqTUvrmXYEckcw92eg/2ZwVZxTNzMdj02fvR6rQkwqlMfyHijdGViaVcY2ykk2k8B9X8mTnHqLpdZoYilRaEOzKxa6kJkRLZyVNzpsRcqEWNoTUahZh/UEinCKG6vSsuaseNpmJBIe7uSvp6g0z8cjn9aR9/e3IZIQIYjUba2tpobGzkvffe47bbbkOj0aDVapkyZQpf/epXueqqqz70+UgkEolEcjxs3bqVe++9l3feeSc77zKAoihYLVaUuBYHLk6/YCm5Rjf7n2vFbNcxefFompVuOr0+Ah2ZvJUWVWzUG8u6FkZ646RT6awzoa8hSM5oG0a3kXB7DH9TCGfGxRBUkbQxkx/zHw6RXJzGUW4h2B6la7cfnUmH1qwlFUmRCCaz8V4qrroaFU5z4d0foGe3H0OOHnuZmag3Ts8ePzFfEjJxmzXfgrPSku2zzqBh6lWj2fnYEeL+JHufbsKUm6l20hCmfnkbvozQCi0YHDpMOYNxTf5UJ+UnFbD/heas+EZr1lJ+cj4ta3qywiqAyqUFhLtj9OweFBiNhNYAFUuK6D3QPzi/BjhHWbGVmIaImEafVYy9zMzOx45ASq1+YrDp1MoyGQ6+2IrervbZYNPSudlDKpPqLJ6VS8EMF3ueUuNGR6UFZ4WVprfU/Z6MoCoRzFRi0Ss0rFZzbsYcAzlj7HRsUvtjcRtQILsgAI2grz5A3K+2NeWoYnJQhVU6k5ZIbyyzz0g8kMyK2ow2PZG+wXysRqcl4VG/2wrNJGMCfybHaLDpSUVSxHtTFCllTJ0wmnRKkLt9FFqDhglfLWfzW++xa+9uTE4dgUCAxsZGdu7cyS9/+UvsdnVuc9y4cSxatIgf/OAH0iRB8plAipQk/xQeeOAB7r77bjo6Okin08P2O51OiouL6dzvoZZZnP5fcwh7oux85AgVhfmYTWbyJrvo2OAl6othzjVl2yZjaXSZMl2+wwEqTy7EPcZOz1Y/fQ0hCifrMeQaiHvjRL1xtMZBxyNFq8E1ygF0c2RNN/ZyC+4JDlq7PfgPh0iXD/bVYNGpFoyoL/NIb4zC6Tl0bfVxeEU7pb5EdmW4zW3BnGPAVq6Wgwt0RZn4xUq2/b8jxL1xNtyzL1tmLdodJ9IXx9cyqBqa9o1aADb/an82yZE3wU7vvgD1/2innvbBwYtDX30gO2kzgKPCisGhHyJScpZZsLiNHylQAnCUW9SSbEdhcuqwFJgom5ubFQl5dvdTMjtCy/rB6+x7pnnwmtVW/M0h2t5V948+u5iiaTnqqrHMarVIXzyb0CJO1gUAYNr1Y9DoFA6+qK7Id1ZaspNuAPtfbsFRrLojOEZZ0Bp1HFmlHlu1uACTw0A0o3YPeaIYnIbs/Wt0aimUgX4azHr6Q2ogYC00k4oLuraoyR6tUUMilMg+N51Rlw048ie5ECmBN7NC0eTUk04JvAfU4EVv0FNaWM4i5TywwfxrJtBz0Murf30d63g9BqOenbt2kk6nOXDgALfddhu33XYbABMnTqS0tJRnn31WBhISiUQiOSY8Hg833XQTr776Kj6fL1teawBFURhVNYpkJI2p08npl5xKzhh71h2pKL9YtSYEPDv9VJ9ZjDVPjb18R8LYS604x5jxH46QiKSyQqNEOE0skEBrVmOt7p1+Cifn4CgyE2qMkgqrZUYsbj1hTwLv4X5smdJmsa4Eoa4oUZ/6oo37kphzDRTPK6D5zW5a1/Uw+sySbNvmd7vxtw0GNPYyKzqzlpZ3PXj3BahcXID1ChN7n2pi31+bswIdAO+hgFr2NkPhjBxGf66I5jXdtK3tpXNzH3oLGHJMhNqiw9wpWzd5MDp0WYESQMHMXBzlVvQW7RCRkqXAjBge+g4jEU5gLTDjKLcMESkVTHZhsOuBQZFS++berN01qKKto12dXNXWTMJJvemJl48mHU+x9UF1xZm/MYzBrsv2s/7lDupf7YCEKrYaf3E5TW+qk3D2SgsWtwmTwwgE8TWFaN3goXmNur9gipNge4SwR71WbrWDxFFCo2BnBN9hNSGTO8ZGLJigbVOX2s9KO1qdhkRmGFMJQSLjfmkpNpBOprPxrbPMiqIBf5Maayt6hXhwqANFKOP2kDPagdViYZxpCi6lgslfqMKSZ+Stu97jILsZM6eC9vb2rHDpH//4By+99BJCCPLy8hg7dizXX389X/nKVz76wUkkEolEArz66qvceeed7Nixg2AwOCz2cjgclBaX4T8QZjS1nHzjTIKdYeqeaSHXYsdsMuMosxH1+OjvjJIzanCCK+pPoMtMjvW3RVAUcFRY8Ozpp/dAP+Z8Y1bwE2yLZEXLyShodRpco2y0vuuha7uXvFo7rkoLke4YvvowpJXsdYxWPfZiC02vqwKd/uYQ+ZOc9O7rp3VdD+nYoBuiyW7AVmzGWmIi1B4l0BGl9j/K2f1UA3FfkvceOJgVxiSjaYIdEfpbI9lrTb1qFFqjlm0P1RPMOJQPCKDaN/YOcUUCNaYccHkaILfWgaXIPEQYZCkyYS+1kIx+uEAJwF5mxlZsHrJNZ9WQM8ZO2BOjLSMwD7VH6TvYT+cOb/a4pje7s7GSpdBE3D8oliqc6aJqSRH1y9vp3aduC3ZEsk6jAFsfPJTN0I/7jzKMdl3WZclRZcVaMJjzPLSyDXuhmvMy5ekwOnQceVWNCwum5WEtNGdLv8UCcQJtEeK9GUGTQcGTWfBncukwuwwEGtW4zOo2EA8m8OxX+6g1a4n1xbLlSwx2PeHMIj5bhYlU8ihBU56RVDxFX516TwaLAbemkDnKUgDmfLkGz34/61/aTLo6jMluYPfu3UQiEdavX8/69eu5+uqr0el01NbWMm3aNB544AFcLtdHPjeJRCKRSCKRCA8//DDPPfcc+/fvJxAIDNmvQcPoytFoIwYs3TlMmTeJkjlutv7+EMTBbS0YFB71JIkHUxidal6rvymEu9aBrdRMsDlCPJDENSA8Sqk5jgExUX9DWC316jIQbo+RCqcx5xoxuw1EPHF69vlxVqhtU/E0/UdCRDPukolAClupGfcEB11b++jc5mX0GcWYcg1EvXGa3+0m4hvMeeRUWgnb4/Ts8hPuilE6142lsJgjKzpoebeHlncH3Sb9zWFMeYML7ezlZsZ9oYzmd7rp2eVX80VaMOeo/dz79FAHSu/BIBa3MStQAsittpE71k7nFu8QkdJASbiPEiml4uCstBL1xoeIlPLGO7AVDxUpde/oU+fdUgNt0+x5sjG731Ko9i2eERmNu6AMIcjeR7A7grnVmO1n93Yf3bt8quDJrKXmglJaM3GXwanDUWYh0BIGIsT64zSt7qIvE7fl1ToItESIDhg21DoHjQuA/tZQVsBkL7EQ7o3RvVcdC9coG1q9NtuPZCJFrC3jnGTWkk4MOn06SsxotEo2r6U1KEMETYqiEMq4cFlLTRh1RsoYg1kpYNScQnLG2Nj4YB2tHCZ/jo3Ozk6ampvYtm0b27Zt47777kOj0VBaWsqkSZO45ZZbWLJkyYc+M4nk00CKlCSfOvF4nKuvvpply5aN6JIEYDVbWXzqYnTtFsI7YfJFlVgLzGy8S3XXEak0hky9+86tPZTMcmPN1LvvbwhjdBjABgSBlMhM3kCwJUbEH0PJrOj3HQqSP8GFvchIrzdOOpbGVmjOipa6dvRmV53FO1XRksGinsvfFKJkTh6jzy7myPIO6p5rxFxkzroDKVol+6KMB9PkjXfgnuTkvd8c5MjyDo4s71CPBfpbwhRNz8Ho0BL3qiv6J1xcQft7vTSt7h7igATQ/p6HZHjwZZc/zcnYs0vpHuuj/h+DAqUB56b3l3qDjNDHMHTbSMd9EO+3bwR17Lfet191cDqKAbcla5GBkDeeFfJggAmXVBALJNj2gDoxduT1DkxO/aCddpwh9z/vtlpCHVF2ZwKPZCiJJhM0Amx/+HD2vspOcVO+oICDy1oy1zehKBDqVjvgbw7Ssb2XQKOazCqdmz/4cjeoL/dkZoLOlKPH1xyiISNwyq91oNUp2XsVaYgF1ESPqUBd+d+zty97rEarob9BDSoUlGypQABFM1hyrmRyHhqNQqQrQbUymYnzKrEVmcnbOYY4ccovs3PgwAG2bN2Coijs27ePvXv3kpeXh8lkory8HIBHH32URYsWjfzwJBKJRPJ/io0bN/Kf//mf7Nmz5wNKh8DECROZWDuJrr9H0aNnzsU1+BpCHHyhlXBnlLyxDnJrbXj3Bwl7okMmR2KBBGTqugfaI2j1Gtw1LvyHI3jq/BTNyEVv0ZAIp0kEk2ptdyDWm0Bn0pE/yUXHxj4a3upBa9ZichsJexKkIwKNZnByTNEpVJxcQOemPnz1IXY904AxE5dFPTEUjYKlyEzYkyARTDLlsjHUr2zDs6uf9x4YWnotEU4OimUSMOHyCqyFZt77zQE8u/qHlGbr2taHc5SFtk2DSZFJXxmDwaZn04DzI6C3AHo9sd5EtuTGAI2vddG2pmeIQAkYVhLuA0nAxrvrhm3e9+cjWRHPAD07/fTsVJMe1lJTtpQawNhzi3FPcrHvL03Zci4t73aTTg9OlnZt68uWmqs8rYCiGbns/tNhwl0JtFa9OgmZEYAF2sNs/E1dVuQ164ZxJEJJmjMTc2jUOEcdHw2HVrQRyzgljTmrGEe5lcbX1Yk0rUmLRlFIZHJXYU8UTyZ5Y3HrseQZ8XSq92LKMSKSgr4B1wGNIOSJZh2azE4D0YG/i/QkY6nBiTO3gVQ8Tfd7PgCMFj3puMCiOJjGQuYsrsHfEORAaxvWeRo0RQneWP0m/QE//f39bNy4kY0bN3LVVVdRVFSE3W7n7LPP5pe//CV6/VABv0QikUj+75FMJrn77rv54x//SHNz8zCXJACrwcbJpy5C12wlul8w6uQi8sba2XJQdTFMRlMYM0483t0BkqelMLkHFsWFsBeZMLl1RD1J0vF0xg1JdTwKdIQRmXevvzFIyRw3RpeRaG+SZCRFbq0Dk0tH1JekeV03lryBtmk0ioLGmJlYaw1RdVoR5YsLaHmnm0PLWjG4DehMGpLRtFquZCAVk1RdegqmutjxyGG6tvno2uXL3m+oK0wqmkJvUcuimZw6Jl0xmvZNvbRv6OXA+3JRret7s/EDgK3UxIRLK+nc5s2WGQGyrk8t73TzfrY9VI/ONHRb2xpPVlz0URxa1j5sW7Q3ybYHD2aFOtljX1KP1dl0kEySHAy9mPBFtfTx7icaAeja6cOSb8wKlEjC/qNK+864oZpAWzh7/UQowWA0DAdeHByr3Bo7Y84uof5l1e3JnGtC0SjEMnmtUE+UXU83EGlXY6/KRYVEPIMTihqtQjqqxoDGPCOeA/7sAsP8iS70Fj3xjGOUSEPUr/6tM6mL9HoyAqfc0Q50Bm124kxRINp71MSZViGUieGcoyxoNBrCHTGKlApG1ai//dwdo0mSpOQSK0caD7N582aSySR79+5lz549PP300xiNRsrLyykvL+eee+5hxowZw56RRCKRSP7v0dDQwJ133slrr71GR0fHsNhLh55xY2qYUDOR3hVxtIqWKaePwnckRPNb3UQ8cRRFwVlqxd8QIvg+QXioO4qSeRlHe2JoDRqc5RaCzRG8B/ox5ejR29RyabG+RHauKhVPozNryatx0LsvQPcuL3q7Fp1FjbWSkRQarZJ1OFJ0CuUnF+CtCxDri7PnqSYMNvXYeEA91uDUEfXGiQeSTLi4gobXO/DVh9jzTFN2LhIgHk5mKpGoVCzOxzXaxq7HGwh1RDnSMbjQLdASoXObl569g0KiseeWYi00sePRw4Pn1YLBrCUeTA2JxwB6dvvxHggMKRsLDCsJ92GMNN945LWOIfcFEGyPEmxX4wpjjiEb9wAUTHdRflI+B/7Wkj2m+Z0eNIbBaCrQHCHQrM4H5k1wUHZSPgf/3kLEE0dn0pIIJ4l4M+XZgskh/Rp/cTnphMCTieMURVHngQG00PBGZ7aMcf4UJ+4aJ907fOpuowaNRiGVEU9FPDF8jWpuTWvW4qq0Zd0vjQ4dqVgq66Sp6BX6W8PEM7GYNd9MrH9wHjMZTWbL/5lyDSSjKXwNgcy59CTDaQyKgdGMZ8qUUfgcIZpbujFUgXFKinVvb6DH301HRwfNzc2sWLECgOLiYkpLS7nmmmv42te+hlar/ZAnKJF8fKRISfKJEwwGufzyy1m1ahXRaHTIPkVREEKgQ8/Fl15EeVEl2+6vhzRMn1JLj97HkZ2dxPpS2Es02EoNBNvihLojmFxqIiXuhWQkmU1gBLujlJh0jF6kKoXbt3rIn+jKXlOjKBgyZdr6DgZRFChbmE/vvgCNb3eSP3XwWGuBGVuJJSs86tjSq9ZzzbQNtIXpydRv1Rh0jP18KfljHez7Sws7fn8YxyhLtjxcf3MEzVH/Hz7xy5U4yi1s+HUd/voQ7/1mcBW+vz5ELJDIlhYDqL2oDHu5hfd+e5DWt4cmVXp2+MmrtlO/cjCJklNrY/x/VODZ1591GQK1xJnJqVMVyUOruZwYmbEZYEC0kz/FQc9RE3wYYMo1mbJzv8u82OPQucWL5yhba+KDTktVpxdSMMXFjkcOZUvXRfri9B4aVL8P2DICTL6qCmuRiY2/UScMQ+1Ror4YvRnHgXQ8zaZfDpaRG31mCRFvLNuf3v0B+tvUCazKRQXE+hMcXqUGbMUz8zDnDrostW32YLSpvyNTgQFzrpGO99RkTs4YGzq9hv4WNYiIh5ME2kKEOtWBsuSbsuVKDLkaUrF01m3BWmQiGUvRllkZaMkxQia2MygGKsuqyFUKcG2ronRhHnmzrbz4l2U0djRgsVhobm4mFouxePFiXC4XNpsNnU7HAw88wDnnnPORj1MikUgk//q8/vrr3HzzzRw8eHCYKEmjaEAojC6p5vxLz6VllVo+rGZyGbYiM15FnRxDgCVPfc917vRSOCsXW4kF7/4gwdYIRoce9EBCjeccpeoK7kBTGF9jkERM/Ud3qCOKzqjFXmXFuy9Af0uY4pl5WdFS24Yeov3qP/4T/gTOChuKRsG7P8jh1zuYfHkVRXNy6NzcR/cOX9aCGqD69BLMuUY27qsj7FHdgtyT1DjNc6Cfknl5RDP12/V6DTNuGEffkQAH/9bGnj8NXQnmywhYBtA79Uy9ehRtGz10bPRy8G9tQ/YfebVjiFsRwIQvj8bkMgzGGhlyJ9jx7gsMEygNjN/HYUCg5BxlIdwVHXKNcV8oIW+8k11PNmSFSode7SCdIitQAujcMli6buaN1fQeCtD4mupmFOqMEvHGCHepHQ00hdnygPob0Vs0zLhxHN4D/RzKiOT9DcFsjGMp1HN4ZTvhDjX+qT6nFNcYGzv/oArTu3b50Fu12XPby8y0rldjXL1TT+5YBwg1RkwkoO293qx4qnRuHkKQbWtyDq4CRK9arnduVx0Niqe7MVr1WXcHRckI645iIPHjHGVBq9cQyfxuCnMLyB3tIBDUggLTrx9Dc0cjy154iRgR4vE4hw4d4t577+X++++npKSEWCzG+eefz8MPPyxFSxKJRPJ/gGQyyR133MHTTz9NW1sbqdTgTIqiKGjQYMbG5889k/KiSnY/2gAJmDx2DJ64n5b9HmJ9CbRGLbZSE8G2KP0tYezFgwqbqFedPAN1oszoMOCemEPrOz10vNdLwVSXmtFNqouiLJn3YrQ3CUJQPCsX/+EQbe/1EgsnGZi7s+SZyJ/oomVNL8lgktb1HtyTnGpbT4LeOj+9+wfzNeMvqKC3zk/9Kx0c/HsbJrc+69LkawhitA6mlUedWkjeRCc7fn+QaG+SHX84Mng/vUlC3dEhgpnSk924a+zsfLRhUMCTIdgWpeM9L81rhwqUplw5iu5dfTSs6spu19l0mJw6gm3RIWKhEyYzrgMMCJScY6z4Dw+NH6ddN5pIT4y9R5Wda1nTTbDzqI4koeFVtb/5U52Uznez5+mmbLm2QHsEf+NgnDZwLMCozxeRN87BjkfqSSbTRH0Jgp0R+hoGXZi2PVSf/Xvc+WWEu6LZ/nRu6yOWcSV1T3YQ609mx7RgigvXKBuH/9GROXZw0abOpMFZaaVtoxqnWUvN6Mw6IhnheTKeoveQn1BmMtBZaRtcDGBSFwcMlAK2FpozDk0ZQb3byICxmE7RUZJbii2Sg00pI2esjfIz83j1xVUcajmI1WKlpaWF+vp6Zs6cicPhwOVyUVlZyZ133slJJ5000hOUSCQSyb8ZdXV13HXXXaxevZrOzs4hlVl0Gh0WbJTnVvK5i06j/U0fvsMhSkvyyMm341MaARApgSVffc/5GkJE/XFMuQZVpNSmlnTTmjWkImkUFJxVqmgpHkzh2esnEc0ITXoT6C06zPlGEsEwwbYI5YsLsqKlljU9WWedVBxyxznQmXUEmiP07PFjLTSTO9aOd38AT51/iDtR6YI8XJVWtj1STyqSYvefGrGXq3mocFeM/pbQkNKrU64Zha9BFV41rR6MH0B1T9KatVlBlNagoeaiMrp2+Ojd1z/EqQhUYY+92DREIDT6zGIcZZahwiXAVmIi2B4dJlAauNbHItPelGsgEUkNcWkqnpVLybw89v21iUjGlKB7lw+tXpMVKAFZ8Q5A7SVl+BvDdGxW80XRvjihzgiRTFm1WF+cuoFFh1qYes1oevf305oRufuOhEin1MBFb9PSscWbdVEqnZdH0czczHxliv6WCD27fUQyVVzs5ZbsddFC4bQcPHX9gBr3Nr3TRX9mjrBgag6KRsm2NToNQ0Trwc5INpbKr3FiyjFmnecVjYZIb4xUxmRU0Sj4W9SY1eDUorfqsiJ0Z46LojwXgZCa8xp3QRneWA+v/2M1/fQRi8XYsmULW7Zs4YYbbqC0tJS8vDyuvPJKbrzxRgyG97lgSCQfE81HHyKRfDjxeJwLLrgAk8mEoijY7XZeeumlrEBJp9VhxsIlp1/OD3/wQy4YdQWnKOeTbywZfGnF1RU9A5bFbVu6SUZTOMfYAYj2JUklBl96ikYht1qdlOrZ4cdzwE/Yq/4fukgoWHJNFM50AdCyvge9aVAtFPHEsv9YDrbEKJqSx4SLVTeaAy80suH+fRgyYhR7oQmTS5916unc0Uf12SWA6iLUudXLvr9nXmIGmHhZFbX/oZ7r4Iut7H+hNdvWU+cn1DP4srQWGZhzSw1Fc3IA2PZg/RBb6lTm5Xe0+1HhTBejzigEUM99lFiob38QX0OQxteHrkirvbCUSZdVYbANfW5lp7hZ8L0JuCc7OFZmf2ccs28cN2z7jBurqT6n7P+z958Bcl11mj/+qXQr5+rqrq7OuVtqZcmSbMk54xxwTtgGYxNNmj+zv92Z3Z2dsDDAMASTDRg8BmyDscE2No6SrZylVuccKnbl/H9xq25XdVfJMLM7ywz1vJG6Tt17zz3n3Drf+z3PeZ7SD5PgObEoyU4XMPLiHKHRGIJNoO+2ppIyeV7xKlkIcJJw6LFhyaJu8ye7aH+fS/q+73SI6HxCagf/aFhUVkK0a2u/vJ7e9zdK5xp5aUaqT8fV9aj0CmbfFRe/TPU6cSE0f67Tz0xw4NviuQyNatourJfs/ZQqiAcTeE4GALC2GQjPxCSFJlu7USLVIUBgNMT478VAsemcOlR6JYExMVDIprJkEpmSvlycjEjXVQoKyQ9XaVCilmto923gQtkNfOi+h/jERx/FgRs5cgwGUbpxdHSUq666Crvdjl6vp7m5meeee25Fv1VRRRVVVPEfE2+88QZ9fX0olUpkMhmXXHIJx44dI5VKoVQoUaLCTRuf++Rf8KmHP8MFsuvoDK5FmVGisYkkikwsg6BXojKLfwfGw+IOeSAVzJJNZMmlxfk4PBNDYxZo2OoAYPy1efxDSwRinV2No0eMJwKDEUJTUeztYuARGA4TWYghz8tfa20CHZc3SNc98O1BRn+bjxVSoHWoMTWK8eDsXj9am0DjTvG6oy/PMvjrJfJQz00NdF7lRlerghQc/vYI4TlxLk5Fs+IiTpGVRtvlLtZ/uB2A6V1ejv94yY42FU1BToxHi9F1gxuVTk5wJLoiiTP60qy060mCCrqubqD/3pYV/bbpw13S9f8Q1Kw1s+0venGsKY3V1HYVfbc003G1u+TzkVcX8BwPligpkYKh58X2bb7IiaVjaXcgeT5NNr2kquQ5usjhb4uKmHVbrGz6SKfUV6lUluh8fGm3nQpOPzvN2MviYlfnNY2suWvp/k48PcHkWwuS9Vv75S5JZUFlVqG1qdHVLC3I7vvyCQZ+KfZv700NuNbbSHjFYxcnokTypCNUYoJt4nXxunVrrehrNKQjeaLcXIS5gz6JEG5tN5WoM2RSWSILYiLQ4NaSiqSZOSz2o8GlRaFY+nIuA5ZMLTtkV3JTzz088uFHuPqsmzBgoqamhlg0xsLCAt/+9rfR6/U4nU7MZjP33XcfweCZ5c2rqKKKKqr4j4F0Os3/9//9f7jdbhQKBSqVir/5m79hfHycTCaDoFBjxcFV62/i85/9S65pvp1tskuwJB1ki/JYCqUCQ96afv5EkEQwib5OnAdjnkTJQo9MDo78hrnIdJzpPV5iHnEeTMcymBr0Uuw1+bYHhUYubUMNTUZZnBDnwGQgTf1mO51Xi3mskZdm2f/VJXK11q5B79SIikDAwrEgLReJOad4IM347+dEC9g8+u9qo/0KMf6YftvLyEtz0nU9pxYJT8ckQpTSoGTdA21SzunEE+P4Ty/FZblC/FG0fdbYpKV+ux2A8d/Pl5CFYvMJ5g/7JeWfAloucLLqthYES+k+XGuXgbM+3YOt28gfiv57W1j3gZWxWs/7G+m+tnHFVt+ZvT7Gfl+6KDi3P0BkOo5SI6f18rqSMrlCBjlK7OdOPz0l7bjvv7eFxnOdUllwOMLiZFQiSkW9cU48MQ5p0eqt69oG2q9cypEN/mpKqk/9Vhtam4DnqJhnNDboxPGWv/TEq3Mc+q6Y81IalHRe1YjGKua85Bo5oekoi/m8lbVFT3AsIqkQOHpN6B1LMZzn5KJkK1O32orOoZE2YeYyWdLxDOn8BkeZXIZ/OCxdV20SyORJ94JJgSyhoMnTy7myq7jn+g/w0Qc+Tiu9qNFhMpmYmZnhjTfeYMeOHdhsNmw2G2effTZvvPHGin6roooqqqjiPyZGRka4/fbbqaurQ6FQ0NfXx+OPP8709DRKmRIDFrpYy0fv+iQPvf8jbJddRuNiL7mwHIVWfJ9PRTKoTSoEszh5+wZDUKB9ZCAVSpPN57xingR6pwZ7Praa3u0R8x75JUWtXS3FZQl/Ev/pMMb8JrbQTJzFyQiy/HfVehWdV7kRzOIHx348ymQ+d0EGjG4thiKHGKVOTs1akTA+vcvL4HPT0pqpe5udrusa0ObVNYeemyGWJ8iQEZ1fFseXCNQ1a8303CyuhQVHIoz8ZnbJIi2TLZvzcp9tz1u8JiW1oAKmd3mZ2etbQTzqvKaBjnxsWYzemxrpvaVxxeeVoHdp2PhIZ2meClAIsOq2ZhrPcZR8Pn/Yx+wBn0RQEm8MiQhU02/G4C7aXKgAckgkIxA3Vg7mFTFNTTr6bmuS1KsAgqMRgnkrXBTiuef2ifmixnOd9L6/SRoXU7u9jL86Lyk7NZxjx1fIQSrAUKdBm98MqhAU7P/2IFNviWOh+TwnjdudklJSZCbG4uQSuUrQKZjOCyQYG7VYWgzkJBefFFPveiRiVk2vSVpXBZFgH/eLuTRdjYa4L4FvUMxPGWo0KASF1Ke5VBZN0Mh62Q4utd/Ig3d9iGv734+LZmoddcRjcQ4dOsSjjz6KXq+nrq6O/v5+vvjFLxKLlVovV1HFvwZVJaUq/lX427/9W/7u7/6OQCCwokyt1qBIKOlhE1d+fgeJxRT7vzpI9ESOaHcctUVJCJEhp7YIkjKP5/Qieps4QUcmkiCToRTEX3z/YAhHr1naWT+z3ydNBgCWFgPmZgOzu4NM7/ISW4xLNm1ypRylRoG1y4B/IMzMfh8t59cy/LvZPJEmiOeE+COdDMPWz/WSjIh2ZMutO4wuLRqzgKFRTXgiwfALs6L920szkITpdzzM7F9qk7UPtKGxijvs5/YFlizNgFQ4CXKZqExQhOYLnYz9bp7TT5fu4AdoPKcGpVZRsmsMkOzqCopExTj5iyncm6ySIlABkek44bkYnlOLK46pBP9QGHIrPx95eXbFfQBL91AgWhXFDx2X1GJuNUgWdQDDL8wy/MIsAPY+I6lYRvKkFQxyUYmriKA99ZZXWjDsuakBa4eRA98ZIj6fJDgYYXafj8k3xPO1XFzL9D4/yXwgZ3BrEfRLdT5S5GPr6DfRdXUD0+96GX1pjvBcAv/pRUZ+nw8izneRDKYJT4gLXGqzCrlyaUFr4UiAqbfFPmq7yIWtwywFKLOHPag0coKDYrDj6DNLrOcCUvlFNnOrgfhikvE3xXuwthlQqhVSO8aCSWKeBOtk27B2Geh7fzMTe+f59fO/RmgUO8rn8zE+Ps7VV1+NxWIhFAqxZcsWfvKTn9DUVEoSq6KKKqqo4k8THo+H22+/nddff32FSqVcJkej0uJI1nPxFRfj3uDg4LdPE51L4T0dQpOfn1PRLCqdCmurkek3fYzt8qCv12Jp0bFwKEg2lqV4m046nqF2vY2J1z34TobxHg9KL7Uqg5KaPguR2QTTu7wc+vZpXGfVSMdqLAKKvNx1cDhKekuG5h01DDwzzeSuBbLpnEgKAurWW6nfbOfoE2OExqK8+79L7dAMLi0KlZwJPARHougcKtxn25l6y8vQi3PUzsYldR2dS2DNXW3MHvAz+uIcx35Yqp6UI28nV6RoZG7Vkc3mFYO+PFDyfXObDnuXiXQ0y/ALRaTrfPgQHImWKBSJDQ0jL84S9SZYDu/A4sqdZmdA4HSI4HhEUocqIOFNiYpP75Qu0qWCKUnhSGVWSVZohTrXbbBhaTUQGByW6rrvq0u77wvtWoBgUIFcJvUVKSTrElSw5WPdhKdjUvx58ucT0oKpSifHdZad8VfFBStzqw6tTZAWv1LBVElfr769CaVGKdnhTbyxgLlZL53L3m0SZb8R4yGVTintws+kshx7coTFYfHZaDrPRS6bA8T4aWqPR1r8qt9mR21SSeQ1haCAHKTyRKpcLsd83r5XZVahtQgSOUqplRGejZE6KmOr7BLW3yBaAL74929xkgPUtdQwMz1DOBLme9/7Hj/96U+Ry+VYLBY+//nP89BDDy3v4iqqqKKKKv5E8eyzz/KXf/mXnDx5coWFiE6tQ5Mw0kU/5318i2TtlTopI7gqjEovBlSynAxDjRalQUk6nGb2oFciKaUDaciBQiUmtoJjEdxb7TjXWZg/GGBmj09aZAOwdRlx9JrwHhskOBLl6E9HUOvyiZZsDsGgwtSgY3E0ytzhAK0X1TG/3086nmVmr0/aqEca1nywg1QkzZHvjzLx2nyJdZrGIqB3qiWFp5k9fuq32pg/GCAdzzL++zmJYALQeW09pkY9+75+mtB4jJPjSzm0dDwNcllJ3gWgdoOFuf0Bpnd5pQ1pBTTtcKKtUTO9jIhUaMPluTCA0Rdnic7HpR3iBSSCaXyDIYlo84fAezKEXFi5n3fijQU0lmAJaQpg6s286nkhu15UXr/VgXO1hYUjAcKTYowytz/AXD5nqK/XIJOJqlGFc8gVMnJFSTffqRC+U+LGAPcOB/WbbBz54QhxT4q4N83Yq3N4TorltRssBIfDxPPtYHTr0NUuEYlGXphlJJ9v09drWH17CxNvLTD9tpd0PM3sPh9zh8RFPvcWO+loRqqbxq5GMC4tIXiOBZk/KH7Xuc6Ca72NaJ6UFBgNoT0oSDFy7QYbicWimFSGpIpgcmsJz8WY2i+ey9xiRDColkhZvgTJYIp22SpWOdax7o4OJnbP8/bv3yZRHwQljI+P8/bbb0vq4rlcjiuuuIIvfOEL1NWVksSqqKKKKqr400QsFuNv/uZv+MlPfsLo6GiJSqVSpsKisuNMNbJmzVraLnBx7IlRYgsiqUZXUN/OgGAUMDcZ8B4N4T25iLlZj65GTTKYJh0rzcWkohlq11pZOBQk5kkyu8dHYFScU2VKGfWb7KQW0ywcCXL6mQmsHUubxzRWgUxSrGPCnyQRSOFcY2XyDQ/zx4LIFKICE4CpSU/LhbWc/NkEkZk4R743UlIPc7OemD/JwqEgcV+SVCyDvc+E9/gis/u8JMNpSfVHZVDQd1sL84f8zLzjW2HBRlaMJRSCXMo9aWwCcpWM6FyC4z8pXTtUWwVq19kgC1PFMVl+3TXuS0qqQcUY+vU0qXh6xefeU6EVn50Jkfk43lOLJepQICpQjb0yh38ksuLzQs5KoVWUqCwBuLbYSARSnPp5XsQhAyeLLIZtPaKCVQFKvQKZXCb1JRkYfWkp1uy/q5XwVIyRF8X4aeyVecwtOpHgo4CaVWYWDot5UrVVwFgvxuLhqRhk4PB3l/q67dI6tHaBw98RP5vZ55Vsc1GAvcfIZD7+1dYIeSWlfJJWBid/PkYkr1reeE4NyGTM7BLjp6l3PRLpyNSqw1CnZTqfL1QICkBGMih+QaaQMXtwSd3J6NYTy1v2KvUyAiNhYqOwSraZzu1u9C4Nu75xlFFOoG9RMjM3w9GjR3n00Uf5/Oc/j06no7+/n8985jNcccUVVFHFH4sqSamKPwi7du3itttuY2xsjFyulKUil8kxKs10ptZzzl3rMTXp2fvlkyTDWRaOBaQX/PhCEo1FTf0GB56DIYZfmaHjMjfWFpE8pNGrEAxLQzK2EMfWbWTs5Xk8pxZpOjdJKi+HnI5maLvYRWoxzdyeAMMvzkiWDgBdVzaSy8HcngAzu3zM7PNhblpi5Co1ChzdJjxHFhl7aYqem1uJTEZJhrN4TgQJTS8tOK19oA3BoGTPPw6UkGhA3JlVt96KoFNw8qlJaSd5Ab7BEOYGXclnnde5mT8SIDgY4d1/KLUHab2klvqzHKSimRXJGoC9Xz6NwV0qqWdq1bHqthYWjgQkFnAxkr5k2USOfyCMfyC84vMzYfDZlecHUcWpIgTY9mgvUW+CQ48tyX0f/+lECUFpOTqucpPLIrVRMpzl3S8sLWb13dHE4DOTkt2c99QiaqtotVeA1FcCuDbbsXYZOPDP4k4xyYIOkRjm2mzn6I+HCU8kWBwJszgeYfQ1sd16r23ANxKWCE5qi6pkIXf4xVmJdNR2hQvXRhuxQJLZd/0MPz9DMppibk8AgFU3t5GKLQVx0dk4kbzkef02OzK5jNm9YqLL4NAi6JUkfeI9ZiIZpk+Li32CTcBYqyUTzUcgKlicjjD7TpB+2RY2Xt+BoFfx2t8c4hQHsfcamJqaIp1O8/bbb9PZ2YlKpSKXy3HnnXfyjW98o3IfVlFFFVVU8e+Oz372szz22GNlCeF6tQF7wkUrfez47Bqi3jiHvz3C7Lt+dDY1cp0SSKExqLA0GyRSztS7C2jtotJfypNCbVShqxH/nj0QwNJmlKzKFiejJYsRepeWvptb2fvlAWZ2iy+0hX8da2w0bK8hHc8yvcvL/n8exNy6FP9orALpvB1cdC7F4nSM9otdDD0/w/TbHjQWgfiCGHsZm3X03dzEyO9mmd8fYM8/lhKHum5oRGMRmHrLSyqYkiSYAaIzSSLzcfyDS0kHlVlF64VOBn4xJS7OLGvLrusaIZdbcR0QCVbF1mkFrLm7FY1FWEGoKqBgUbYcI0Ux5B+CVDRbovZUjAL5pxw63ufCsdrC4e8NSgQuUnDkh8OSFdtyuM+x03xuLdlMTurX8VfmGX9FjG2t3QZMjbqlWDcF4ekYniJLmIQ3JSWMWq9wYe804TkZJDqTJDgSZfffLcW9mz7aSdSTkAhOU7u9aPPJRbVdhWu9leM/Fxc6zW0GVHolufzut2wyyztFMXTLhXXksjn2fknsw2M/HkadV7Ss22Kl8WwnA0+L54r7E0S9iSWVpQ4Di0Vxv9okSAtphjo1wbEwo78X49/atTZ0Do1ksReajpGKhDDL7JzvuJy1N3fgORZk7zPH8DeNgQqGhoeIRCJ8+MMf5nOf+xzRaJT+/n6++c1vsnnz5op9WEUVVVRRxb8vRkdH+eAHP8ibb75JNFpKQFbKlNiEGtoS/fRf0olzvZUDjw2SDKSZ2eNFld99nY5nMdTqyPbl8J2IMrFrDqVOgc4hsBhOo9Kr0FqX8jnBySjWTgPTu71EpuNE5uIkguI8nYqkabusiUw8i+eIqFCdDC3N4V1XNiBTyPCdChEcEYnWBrdISMllcggmFcZGHf7TYaZ2e+i8op54IEkykGb2gL9ko1TntfXonRoOPjbM/MGApOoDoHGoaNzhRG0TGHl+ViLYFOAdyMdcxeSc7XZCk1FC4zEOfnOo5Ps1a820XuwCGSWb+Ao49uMxNI5SUpPGrmTNPe3MHfAz9sr8imPS8SzT+dilGNG5eNnNf2dCuTwciJv8ItPxsmUAGx8S45oTRYt/47+fZ+F4ULJIW46uaxpABge+lieMp+HQt5ci1dbLapl40yvZwi2ORTDWa4l7lhbyii18m851Eltt5ujjIklfWqAD7H0mWi+u48RT40Sm4yR8cRaOBZjPx6xN5zgJzcZEu0BEUpJSvUTWmnxrQSIsOddZaDq3llQsw8KhIPMHA+RyORYOiYt0PTc0i2rheQQnIiRDeYuRdj0KQcFCXt1JW6NGYxFE0h6QiqWZyCsMoAR7hwnvgPhduVqBd2CRhUNBmmXd9J7fhKFOy54vnmIsdwqhN8v0zDSBQIAnnniCp556Co1Gg9ls5kMf+hCf//znK3VfFVVUUUUV/w/w5JNP8oUvfIEjR46UbMaTIccqOKhNNuGimQ0PdhKdT3D6mSmCg1HmnX7JH0ilVWLvNjPxppdMLMPE6/PonWI8lIll0doEtBY1ASL4Bxexdxsxt+oJjogK4OnoUgCjq9XQ1dnI0cdHCY3HGHp+WlKA1NfpaLm4DplCxsKRIAO/mJTUjUBUWiLPgcrEMoRmYtRvsjH9jg/vqUV0DjXxPBFEMCvpubGRyTc8+AZCHPtR6ea6loucmBr0eE8tkknCwpElheZUOENoIkpoYilWVQhy6rbYmHrTw8KRYMn3AdqvcCFXypY2nBUh4U9y7IkxSQmogNaL6zA16jj03eGy9m3FdmrFmD8QKPt5RSwjBRVjuapTMZzrLTRsr+H4T8ZKSFQnfzYukXGWw9Kup+1SF3K5TDq370QI3wkxltU6BEzNekk1CSAwFCZSZOGbiWWk79dvsuE6y054JkZsIUnCnyyJe3vf30jcn5IITrP7fVI+ViHIcfZbmHxDjHn0Tg3qoncEcnDoe0tt37TTiVwh48gPRgE49fSkJBhhbNLSdpGL03lV8nQ0Q2g6KhGgLO16QlNL668aq4pM3rpQaxPwDgSZzyuL27vMmBr1EvkrPBclOBFBK9OyWtjEuivamT8UYOC1cTzOMbKmBEPDQ7z22mu89tprmEwm1Go1F198MX/9139Ne/sfriRfxZ8vqiSlKiri4x//OI899lhZ2TadSk9juoNGOtn2+T6iC3EOPTbM2Bvz1K23gEEJ4SSGOh1ahxqEKUjC4PMTaOxioJAOptHXaalZY8E/EObUz8bpvL4RQ5ua8HD+JV6WZ4IkRTJHwzk1eI+HmD3op3adlWhA/F42mWX9B9oZfnmGuT0BBp+bIlS0g33zI10oBDm7//YkCweDLBwPSmo0+noDBpcW9/YaRl6cY/AFcSFCMMhJhrMkgslSYpYAPdc0cPKpSfyjYYZemmbunYBU1n97C1qbmne/cIqJtxaYKJ7jDXlZ5FoNB8eHpHsrHDvy4hypZJ6gJCyVrX2gjdkjPuZ2BwhPJUvKFqeiROZjjBd2cBWpFm3+RBcRT5zjPyxa4Mof2319A/OnAmKwlSwtW/7d4vN2XF6P/3QI72Co5LvmXj09VzUy/OKM2L6Fe0uKSYmFo8EV5w2NxsAA6+9qZ/D5afHv/HUGnp0kHc+UrZO1xYCl2UDr5fWcela0vVs4vMhCfqGs9ZJanOutHPrRMPGpJCTh2M9HieflE5svdLI4G8V/TAw0U9EM6fiSMhJ6JUefHJOua24zonGoJaLR/scGpbKemxuwdZo4+sQoiyNRhl+eIeZPSDZyWz7dQ9ybYPL3HtH6bSRMMs8Or91mQbAoOf2bvOqBSQFymdTHco2Mkd8tEa0Mbm0+CPegtiuYfGee2d0+EKB5Zy1am1okUgmwcCJILg2CTGCz+xw23NCB/3SI/U+eYK5hCJkGBgcHyeVyfPOb3+THP/4xkUiEvr4+fvSjH7Fu3TqqqKKKKqr498PQ0BC33nor+/fvL9k1BiBHTo3aRWdiLetu7sLaYWTv106QCsLEW/NkyYEKEospLE0G5AoZx0bGGXxhFuc6IzqniuhUCnODXtxRnSctjb4yh6lJlEIOz8WQyZGksOcP+ui+oQlLr57AiQjegRByYYmha+80Ur/Jxr6vDjKz20c6mZGSIdZuAz03NDKzz8fob+c48PUhSX0IwLXZhqBXMfT8DKlollPPTqLSiZUKjUVJRZdkt1GBpUOP1qxmZrePgV9OUMwU1jUKrH5/KxNvLjCzz8eRH41KKkmooPVCJ7ZuE3p3fpdSURnAwNMTZFK5FepKTec7OfLdUZGgVKh7vnxmvw9LEfm9cGztBitN59Zw7GejRAsBYP5YW7sBU5Oe0VfnlupQVF7y/6I6Wpr12DpNopKTqrSs90aRsCW1b75seo8HwaIiWlBgyp+3QFCq22rF1mZcUuBUwdSbXnIZmNnnW3EdUmJSRGMVGHt7HvL5qONPLcWXmz7exeJkhIGfiYmRgZ9NYVuzKF2z42oXgy/MSOeNLyYltSmVTs78kYBU5tpsw9xqQOcQiM4k8ZxaFJU/8+U9NzWRDKXE+wYOPj6MLp+gqdtmpfmcWo79REz0RbwJwpNRfHlCvXubYylBo0IcSvkw39iuY3EiwsgL4j04VpkwNRpIRcXv+kfCTO7Ox9s6qOkzE8yrM2TU4riY3+vDLFg55+L16Gu07P67E8zIRqAnzuz8LOl0mgMHDrBt2za0Wi1qtZqHH36Yv/qrv6KKKqqooop/X3zrW9/if/7P/8n4+HhJzkeGDKPKQlO6izoa2fzJbkKzUU4+McHMHi+pZAby7u66Wg22DiOjr89DHE7+YhydUyxMx8HSbiQVT7M4GmXilVk4vw59o4bIRFycf4pEexanYrjOsktKjcGxMLE8mSgdy7L6jjZGX5nFc2SR089NEQ8vLaz139uC2iSw98sDhKfi7P3qEvlaa1Nj6zIR9SeZesPD9LsiEUepkZOOZ4n6k6XqQUpoPldU+I57Upx8doLgQEQqa724DnOznoPfGMI3EMJ3vGjXvAbqt9iJtug5/i/5OCG9dN6FQ0FkMplIhFIulXVeX49vMIz38KJIwikqiwfT+EdCkspPsWpR/z0txPzJ0g11+WMbz3USmAiJFmXp0rLl3y0+r3urg/BUlOBEtOS7mjoVvdc3M/77eYk4Uyj3DS4SHCtasMuft0BQ6rm1kcnX80Sf/HVO/WISubJ8nbQ2NTWrrSAX84SkEZWqpkXSdc1aM007nRx7apT4rBggHfnJCOQt9GrWmomHkoSGxZgnm86SDKWWiFYaJcMvzkrXdaw2Ywxqpb488dS4VObe6aBhq4MT/zLO4miU+aMB0rGMpPC07oE2Yj5RAQIlLJwMkkuK9TC2aTE4NZx+RyRMqYyiYkHUK7aDUidn5OVZ6b5tHUZCWiWz7/jR2JSM/n4G79EQKKFhmx1rq5HTv5oCJXhOBfDlleHbjd1sfF8PnuNBjj83wkLtCFlziqHBIUKhEH/5l3/J3/7t35LJZNi5cydf/epX6ejooIoqqqiiin8/+Hw+Pv/5z/P0008zN1dKTFGjpV7VRGOqm9btLuo22zj43WEy4QwTv18Q4y6FSBJxdFtQapUMPzfD7Ls+Yp4YSr2oqmN0abF0Gph4awEyovuHqVHcQJcMZkSVIZ0Y8wSGw1gvqcPYrCU0FiMwFEapW7JuMTXpqD/LzrEfjbE4HmXgl5MSOUdjE+i7rZnpd7zMvOPj9DNTJa4vzrUW9LUapt8RrdIm3lrIK9pAMpgmEUyRKVgCK0SCjNaqxncyxOir86iK7LhUZgU91zcx844Xz6lFhl+cWSIOKcC5xkLdOiu+U4uiFVxRGcDgr2eQq5b+JiOq/jScY2fo+RmRoFRUBqLzTDKSLj1XRlybar2olsEXppcs1/LH6hxqDPVa5g8HSolNijL/Lzqv1iZgaTaItnKK0jL32Q6MdRpO/stkSZn3ZAidU008WFqHAkHJ1KoT4/MCAUoBgaGISDwbDq+4DhlwbbFjatQxd8QvrftNvLW0ObDvtibCc3HG8+pV0+/4CM2KBCUA11YbM3uWrPFigaSkEKUQ5ISmYpJtrq3biKPPzPzhALEFcbPloe8skZI6r3GTCqc58aQY9518ZhK1Xgwgja1a2i52cfpZMW+VjGbwDYRYnBLHpnO9VSRW5dWeZDIZZMW4TLApWZyIMvNOXsGy1YC9y8zkax5QiBvxvKeC0rGuTQ4Cw2HmCYAgY/LtBfyDYbRKLTs3noe1zcj+r50mKPMQbfeyEJxjfmGeJ554gieffBK9Xk9bWxuf+MQnuOuuu6iiinJYqWFbxZ8tZmdnWbduHQqFAplMxpe//GWJoFRfX88tt9zCTq7mE/d+ik/9xaNc/4krAfAPBjHUaum4up6EJ0HNaiubHhBf9gafmyCbyrLlI90ANJ5dS9N2Jz03NZAMZwkMLVLTaxYJGTol5mY9q29pA0Q7CZ1Vzap7mgEwtugx1GnROAVIgmBSsfrmFgC8gyFRhnGz6F1vbjew+YOdtF5ZC4gydsWjfftn+tj+l32AOLnK5KJ9A8CGBzvY/tk+Vt8r1sPaYZSsvFzbbJz92VXYuk00X+hk3X3ttF245P++7dFetDVqktE0NWtMnP3ZVTRfKPrJr32wjW0f6+PID4c5+I0htn6yh00PdQKw/sPtnP3ZVbRd4WLy9x7672lh+6fF+gkG0NdpaLtAvI7GKXD2Z1fReZ0bgL6bmjDW6SSVny0f65HaO5POYm0x0vt+0Qu256YGzv7sKgSbHHuvie5rGjjr4z0l7bLqDrG9NQ7xOgXlps0Pd3HWx3twrrZQv8XO9k/3sea+VkAkBa2+UewLlVbJxg91sPWTvdJ5zU0G6reIfdNwnoOzP7uK2o0Wsb3v60BrV1O71iq24ad6WX9/O/6TYXQ1as7+7CrO+kw3+jqBdR9sZ9un+vAPhDny4xFsHUY2fLADwSZg7zOK7X2Rk2QkjVwhY/09S0mHvmubWHOLeG+uzTb6bmim/X1im9o6DJIEec06M5se7OCsT4htKNhEy5rCQtrmR7s4+3OrpPOamg1ksznJlu7sz63CuUa8t+7rG1BpFcTyZLotH+vG1mmUlK3aL6xHbRKIB5K0XemiYUsNp34pLqpteqgTa7txqV0+3Uc0kODIE6M0X+Rkza1tNGx1Alk2fLADrUVg8FeT+Tbso2FrDdZWA+6z7Wy8r5PQVJSJt+fZ/uG13Hbvrdxy0y1cyA185OGPsnPnTnRaMWA/duwYW7ZswWw2Yzab+fu//3uqqKKKKqr4v4Pvfve71NbWIpPJ6OjoYM+ePRJB6bxzz+Oua+/lItmNfP7zn+dDn70fV4+TyV1e0okMGx4U529bh5HW8+vov6MFUjB/2I+50SB52jfvrGPtPWK8cfSnY8gUMtbmYxz3Vju1a2zUb7NDCmK+BK3ni7YIqVAKrV1N52UNAPgHw9RvtNN+jeg7L1hVom1vHm0X1bH1U+Lcn/AmkMllUqKg60Y3Z39uFR1XifOuSqskV0RC2v7ZPjZ/pBNzm46Oq1xoLALBQXHRYdOHOum7oZmG7aKd3Np7O2g4W/x/y6W1rLurg0wiSzqWYcODHWzOx0Aqs4ptn+pFKcg58vgI9i4j2z/Th7lVh84lsO3TvWz5WDfBkSjhyRhbP9nL6jvFOKHpfHHnWu0WCyAqJ531iaV4qf1iF5q86k/NWjPbP9NH7QYrckGGSqdkzW1Lu4XO+ngPa+9po36zHdcmG9s/04f7HDEmWnVHk9RmAFs+2s36+8Vj9W4N2z/TR9tl9dSus9B7cyPbir67+ZEuTE06MqksKrNK/O7lYvs2nO0UFbTypJ5ND3dJMScqaL+4HlOLHlSi6tL2z/ShMquY3uVl4wc72PpoD723iLHjtk/10nNTA4e+NYzvVJDtn+jD3Cre+/oH2tn80W5QiYoP9m4TfbeJVrINOxz0XNWIuU1H0wVOnGutnPXJpTY01OowukSC3LoPdnD2X6zCsUaUTze5deSyOZHgpILtn+tj08NiTOdYbUKhkksJmPUPt7Ppg53iQiIiaVumlBGejGFu09F/awtRvxiH9d3WhLFBh9YsxnybP9aNSq9g4OdT6FwC/be2Yu8xA3K6b2zA0WNm9xdPQEps7+Zza2ncXoNKJ2f7J/rwj4YY+u0MndfUs+m+LtHqJJhi00OdaKwC03vFReAbPn8lN9x4A+8/7w7uu/Qhbr31Vrq7u4nFYni9Xv76r/8ai8WCIAhccsklzMwUWQtWUUUVVVTxfwzhcJjbb78do9GITCbjwQcflNTC65wubrn5Fs7jWu6//MN8/HMf4bIHzgVgeq8HS6OB5gudxMNpGrfXsOn+LlDC2KtzJCIp1t8rzt/usxx0XOqm9fI6SMPMAR916+0IFiUgx7XRxup8XmLkhVkMdVq6bhJzO9YOA7ZOE/p6cWOf2qySvhudi6MyKHFttAEiOWrLw100XSDGRDKFDLlqicR91qM9bH20RyS8OARkChmxfE6j54ZGtn+uj95bxTnbtd6GMm87Z2rRsfVTvbi22KnfaqfrejfdVzVK592Yz1MkQ2l0bg1bH+2lfqsY13RcV89ZH+nh6I9GOP7EOBs+2MGau8WcUdcNbrZ9upeGc2uYPxig9fI6tj6aj2uU4Oi10H5pvfT31kd7ab1YzOc173Ri7zSTjoix49p7Wlmfzzmmk1kcq8y0XSHGr+5zHGx9tBeNXUn9Fhs91zay4YNLeaGzPt5D57XidbR2ga2P9mJoENt79W3NbPxwJ+6zHNRusLH5o9103yTGwY5+E+vu7kAmB7lKRu/NTWx6pEs6r6PHLOVurF0Gtj7ai2O1GNf03daErcOIvVv8e9PDXay6tZnoXByZQsbWR3vZ8EgHGoeKzuvcbPl4D7H5BEceH8HaZqL/zhaUBiUah0ps7+12MvEscpWMtXcuxZy91zfTfa3YV407nfTf3kbTeWI+0tKiR1cj3qehQcOWR7rY9JGl+gt6JTGfSGDqv6+F7Z/rQ5lXund0GcllcyyOirHWts/2UrdJvNf6bXZ0Tg2pmBh0rr2vDfdmu6RItermZgwuLelImtqNFjoudzP68hSkYdWtzbi3OHD2WwDY/NFuYr4EA89O4lhtYsMDXbRe5AKlnJ4bGzE3Gjj5iwlIw6ZHuui4rAFLmwFzu55ND/fiHw4xs9fPmhs7uPED13PDVTdxfu46Hr7/Ec479zz0ej2xWIzf/va39PX1YbFY6Ozs5Ec/+hFVVFFFFVX838Fbb73Feeedh06nw263841vfIO5uTkUKNmxbSe3XnAPF8lu5OMf+Ti3f+pmHG0WFo4HiftTYo4LMDZq6b6qkY6rxPl74s05bB1GbF1GIEvn1Y1SjmvsdZFA0n29OH8711loPq+Wmn4xPxaajtF2sZg3ScUy2DpNtF0i/h0cCdO4o4am88XYSmMVMLq10r20XFjLpofFuTMeTKIQ5MjyxGPXWTYxztnpAEBtVJFNLNnLbfpYFxsf7sDg1uJcb8Ho1hFbEOfdnhsaWHNnKw3bxWPX3dNG7XoLAI4+E2vvaSedyJBOZOi62s2ae8TYSqFVsP7BDjQ2gaM/HkNjEdj0SBcGtxbBoGDjhztZd38bCX+S2HySdfe303aZeK91Gy3UrrHi6DEC0HapS4qtANoucaHLq/7oatVseqQLW68RhSBHMKnovalZ+u6au1rpvraBmj4zjTucbHqki5o1Yns3nVvDxg93St9dfXsLvTc2SvXf9EgXTRfUUr/NjnuHvSS2WnVrMzWrzWTiIsFm0yNduLeJMadzlRlHj1kifvXe1Mjq21ukY3tvbMKxyoxCEHN2mx7pQjAr8Z8O031dA+s/1EnzRWKcueFDnTRf6GT4+Rlm9nnZ9FAXxkbx3juvcktjKx5M4ey3SHk3S7ue7msbMTZpsfUYaT7XycYPL7WhudkgbVzovrGBbZ/tw9IhbnY0uLXkMjmJ4LT1Uz2szo93rVO0eovk16q7rnOzKa/YCdB+iQuVTkHUk0AwK1h7TyvJWAoyYh6ubp1VytWuvrMFrUNg/LUFFIKcdfe1U3+WHRQy3NvsNJ7jYP+3TpNJZul7fxNd1zRQt8EutbdvMMjk2/PUbbSx+cOdNJ5TQyaWpeeGRoxunaR+ecEj27jmuqt536obuHnVPdx+8+30dvcSi8Y5ePAgd999N2azmfr6ej72sY/h861UQK3izxdVJaU/c+zatYvrr7+e2dmV9hPuugZa6ULjt7Ht3j5S8RQe2Wlm9/tQGZXijmdEr9dcLsfC8aBIPBoJk8sTgpIxkSlakJIeeHaCpvNrmTskHquv04k71pIQn08yvc8rLajo6wRy5FBpxMlm4JlJ6jdYl2Sps1lkMoWktOM7uYg3v4tm4UiAurVWaTKdeseD2iggGCAZFv1ONVYBjVPAPxDEUKMmk82BALP7/NRtsorsXcBzYpHQVJT297mYeteLrzGIfzzC7G4/iVAKo1uHa5sNZ7+FhWNBogsJpnd5EWwCvlNBvCcDbP6EqOTkO7EoqfXMHwmSyMt1q3RKUvE0C8fFdpnd7yMVEbctJcP5v/O2XvFAEt+pIPNHAmz5dA8xXxzfqSWVovmDfmkX4P5/GqT35gZmD4vnnTsUQCaDpC/L3i8fx3WOE3l2KZHlH1hk4YTo15uKpIlMxQjnJ8uZAz4EnYr5Q17CU0l6bmwQ1ZQAz8AiGouKoeenSYazyORiIFeA98Qi8VCCsz7Tw/xRP75TQfx5Us/MHh/6Wo20823hWFCSIwyORQlNR9A7tZhbjczs92JqECfz0GiM+SMBdE41Gx/qYPjFabG9TwUJTyRIxzNYmg3UbbFSu87K/JEgyWh+h9mPh2k6v46FY0Fc22wszkRF1SYgOBgiFU4zf1RsM22tSmzvvOR5MpRCoVpivM0f9ZErHrPZnNRX80cDyJVw+jnx3nKZLDJ10Zg9lR+zSfANB6nbYKXlXBeHTg0ze8iPoFMx+bq4UJVJZNDbNQgCeE8F0dkEgtNhkmGYO+in+dxaXJvsLBxexHMiiFIrZ2qXl0wsTWqbA4NLS3guwewBP/ZeE+nFvJz2lLgQvqZ2Ayd/M0ls1QzegJfTp0+TyWT47Gc/y9/93d8RCoW45557eOyxx6iiiiqqqOJfj0984hM89thjK6xEVAqB/o61GE/Vs+qGFuy9Zk4/K5JP/UNh5Go54dkEpFIoNQopHhp/bZ7GnU7mDooKfro6DTlgcTJKKpgSlXHy4gAqnUoiXgOcenoC9yY7gWExfhKMSlHFUgWpKEy+7SEZEie5TEScm3X5+X305TlsbQbpXLFAEp1dg8qsIhpMsXDIj/+0GCcsHAlibTVI+kez+3zkcjmMzTpCY1EWjvvR2jREZ6MsIIrb6Op0qHRKZvb7ECwqJl8VX349RwJ4BkL039uCbzDEwmE/p38jKvQotQpUWgW2PiNd1zQQmY8zezgg2bWpDUqic3EcayzkcmK7FjB/OMDilKgSMPTrKdzbHPhOiX/P7Q+gdQi4z7FTv8XBwskAoQnxnIuTURYO+wmNh4l6UqRjGQz1S4ms2QM+4r4Uc/v9mNu1OPss+IfEdpk7GCDuS6G2qvLf9ZMMi+2d9MdZOOzHMxAkPBHF2GQosYudO+iX7PVQwcJhP96TQelecqksXTe4MdXrpPYGRCLbQR8Lg6Iy0cKxIDIZpPIx0uwBP3WbbegcYgy9cDQgWbnM7AtAFrquayUVSTG7349Kp4QUHPrWMB3vc+EbDtN/bwvewUUWDvuJelMEh+dRqGVkU2IdWi6pLWnv2YN+7D0mQlMxVDrwnRbtBgF0NhWZZBZfXmY94o2xcNjPzLuiolEmlYVcTnp/mN3nIxHIt+Gi2Edah0a6TnIxxeBzhdgqi9qkQmVWkQomWTjkwzMQJBXNMn88gL3HRP8dLRz53iiz+3wotArmD/pIpbIkQkmsrUaGYpPMHwkgV8uJLSQgJSoqNZ3rRJcnsi0c86MyqJg76Cebge5rW2i9so13T5xCvi6FRzbBxOQEwWCQl156iZaWFgwGA06nk6eeeorVq1dTRRVVVFHFvw6jo6Pceeed7N69m3S6WK5GRoOjgRZZLxqPic13dpEKp/HIhlk4GkRXo8GTn1c1RgFkosU8aZjZ5xUXRdKQjafRmFSE58Q5Z/TlGVLRNJ5j4rHmRp2Yg4mnIQ4jL00jk4mxmNKgRC6XocznvAZ/NU1tv5lEfgNaLpVFppCj1IiqTFNveQjlSbqLo2EyqZyUd5l624vGJkjf9Q6EMDfq0JiVhKdjzO71koqkUGpg/mAAhVrO3AExdpzZ6yPuS1K/3c784SCze7yE52J4joawdhqI+1JYOw3UbhDzZMlwCs+RRZQaObN7vfiHw6y+qxmNTc3sfp9kRza7z0c6Li7Qaa0CyXBKig09x4LkkvnFuzSMvDQj2bqShtm9olrAugfaiPoSzO71Suea3e9HrhCjyhNPjNNyoRNfPqYLDIdRqeXEg2n2/dNJ7P1mFIql1Pfsfh+BsQjWDhOpcJrZES9xT1I6r2AS8z9xb5rGc52EZ8T2Dk9Hmd3rZfIdH+lwmkwqK1l2AEzv9ZGKptnwcAdzh/zM7vUSzscyM3t9LM7EmMxb9U7v8ZLMW8vGfCkWTgSxdRgwunV4jgZJ+PNl8wlm9/rQ1WrY8KEOTv96gtm9XgJDEaJzcTLJjETScW2yMbvHSzbfhoe/N0Tz+bX4Ti9i7TQQ8YptCBD3xAnPxFg4Kva/vl7D7F4v3nzfxH0J1EYV6bj4vMwe9CPPq9wrDUpyaXFhV2zvCNM6D5P5RapMMotcKZNUuqZ3+0Q7nTgEpyLIANeWGvynx5k74Mc/FJYs55KhJKYGHUqNkvBklOndHiKeBOlwmvnDASwtBurWWQkORZjZ60MwKFg4EiQeTBPzxbG0GBj+9RTzRwJkc1nSIbGOoRMptp99Dp26VYy8PEd89QKe2DyDg6cJBoPceeedfPSjH0Umk/Hxj3+c//Jf/gtVVFFFFVX86/GjH/2I//k//ycDAwNks0tEHZ3cwKrGfgxjdTScVUPDthpOPSMqxcwd8qPSK4ktJEjFMqgtKuJ5UsbcgQByQSapIxtcWuQKGeGFKJmkGEMoFGIspVCAYFBJFmATr8wRm0uwOCkSPtRmFXKlDIUAmSQMPT9NJk8mSiYz5LKiMALAxBsLJbZq4Zk4tg4lgkFBMpxh8o0FgpP5+GMkTKTfQi5/u7P7/cjlMrQOgZgnyfRuD/oaLbGFBJlEhundHhQ6BaYaNXMHAgRGopILyfS7XkJTMVovqyM0EWF6t4e5AwEy+bhJpVeiq1XTc0MTi1MRPCeDJPxJclnxvDFfEkOdhlwWPCeXLNOm3/VKecTp3V5S0TSLeRVIz9Egkbk4lnY9jTtqWDgaIJpXg0wsppne7SE8HSMZTDPwzCSG2qWc18xeH+l4Bv/pMPNHvFjbzYTy7e07HSIVz6BUi/0zu9dHNq/6mEmK9V2cCBPzJFFb1ZISY6ENc7mcZK82vdtDYFTMIQXGwsgUULvOjLXdyMxeH3L50hrn+OvzhKbF8RGaiDG920Mmn0+bPxSgbrMCfZ5ANPOOl9CMWF//6TAKhZzm8+tIxzPM7vOjypO2h389Q2RjnOhCnNbL6giOi30T9yUJjccY1i6tr9esNTOzZ6m9Zw/4yaayRBfioIDF8bBEUFIZxPyuP7/OmommmXprAe+AOLbSiazY93mVpam3veI6ZgaSMXHM6mzivfgHw2STWVHBC0hG0pgb9eKYjYljdnEqKtrWDYWo3+ag49J6Bn81zewBP55TiwQG87m3uSiOHgsTr3sJjoWZfEdOIpAik8wyfzBA2+UuKW84vdeL2qQS+zuWpW1tLZfuuJK6gR4ULWl8pikm5iaYmZnhK1/5Cl//+texWq1s376dL3/5yzQ1NVHFny9kuRIfqyr+HPDUU0/x4IMPEggEVpSZsLGOc1h1fSvWDiPv/sNJANbc34r3xCJTb4k2ZFs+0o3vdIjBX07j2mbD2qzn+E/FoKLzOjfWNgPvfuEUIPpvTr3rFZVm8scGhiMMPD2Jvc+I2ixIu2za3+fC0Wfmnb8Xr+vaZmNm1xKzcvMnu0gEUhz+7giCQUzsJMPiBO3eaafpHCdHnxhdsg0rsgnb8EgHKp1SOncxBJvAxoc6iMzFOFzkAV9A2xUuXBttDP12WrLxKsaqO5oxNmjZ/9WTJMMrimm5uBaFWs7Qc8t2Ri+3MluGDR/pYOSlWfwny5xUgA0f7MB/KiQp8xSj67oGRl+aLFuf98L2z/exOB7h6A/H3vvLy+DaZiObzDK3L7CibPMnu5h+xyuOozJYc38rvsGQaI32B0KwCfTeIO7wL4fVdzZjcFfum7M+00MuhzTWi2FoVLPmrnYCY2GO/2h8RXnH1fXUrLZw9IkRccwtw+ZPdJFJZdn/1cGSc4YnEmicAus/0M74W/NMvS62h7XHQMyXJD6fpP+eFjRWgT3/KMq0a5wC9RttDL8wK9V7/qBf6vvO69wi6el4iN73N2Ko10rH1m2xYusySvdw1md6WDgaZPj5GQSDnN5bW5h+x8PC4UX6bmlE7xKPHc2dQtGVxOP14PWKdTSZTOh0OtavX88zzzyDIBT55VZRRRVVVLECqVSKO++8k6effppksnTSF1DTwRrqZc1sfKSD4GiEwedmqFlrpma1mdNPj5OKiopBjl4ze78k/q733NSA58QinqOLoIKNH+zANxRm5IVZbH1GTA06RvPzQ/NFTpz9FmlOaLrAycw+P6m87PDGRzoIzcRENZlaFQqNilA+UeE+x457q4MDXztNKppF5xIk+y6A9Q+1k8vmOPjNlXOwuU1H783NTL61wOQbK+f1vlsaMbUa2Pe1Qakuxdj8yW5y2Zx0z8VQmVVseLAd/+lFBp6ZXlEO4vx/6pfTZc9dCY07HRgbdEs2aMvgPttO7Tor+/95cEVZzVozuVwOz+HFMkeeGX23N2Fq0rP7f534o49V6eQ0nOtk5IWVGw5aLqnF3Kzn0PeHSy3m8rB2G2ja6awYQ4kXYMWxbZe7iHrjZWPiQt/4BhY5/ezKvqnfZqflglpGX5mT4v9i9N/bgt6plRSMlmPLo93E/AmOfHd0RR3NbTp6b2pi6DczouVIvj6kUqSi4phQGZUc+NqQdGjNWrP4XRVs/kg3s3u9TLwujte6LVYicwlCY1E6r6nH1KhjXz6mM7fqqFltZvBXYmy/6eNdLBwNMPbyPKig62o3nhOL+I6H6HifC3OLXjq2fpsdS6teGmebP9HF3OEAQy9PMWQ8iLZOYHh4mEwmg1wup66uDrlczuOPP875559ftpuqqKKKKqpYwp49e7j//vs5duxYiYWuAgUOXPSyiabttdSus3Lg6+Jvc+e19QRHo9LmpLX3txIYjjD2yjzmdj22LiMjL4n2WPXb7dSutUi2o80XOvGcWJSstNbe38riWJSRl+bQ12vQ2gU8R8T4wLXZimuLnf3fHIS0aPdQsM0CWHNfK4lgilM/n0SpAZRK0nlbN1u3kfYrXJx4apzwZHyFTVjPLY3oHRr2ffX0ykZRiko1oakoJ/PWEcWo3WCh9WIXQ7+ZlubQYrReXIu9z8zB7wxL9SlGzVozGouaidfmV1yXlV+X0He7GCsWVHqWH9v3/maCYxGm3lwZSzacW8PsO0vkpT8GWz7Vg38oxOmnp/7oY61dBmQyWUm/FbDmA63M7vNL42g5Oq+tJzwVY2bPyhiqEpQGJe2X1nHq55Nly1svqcXWY+LQd0fK9s26D7UjV8jKxq+CRcm6+zvwDyxy+pcr4zbXZiuNO50c/+mYaFW3DKvvakYml3Hk+6PSZxqHirgnhdKgZO19rUy+tSDlB/X1GjKJNHFvmtbL6zC5tRzK52CVBiXO1Wamd4vx4fqHRMLX9Nvi3+5z8jZ8I1Eaz3Vi69Rz6PsjkAZrpwFbl5GhX89I97xwLMjUGx6UGmi93I33+CK+UyGaL3BiadNz6NsjzOemSXb48Aa9LCyIJDKj0YjZbOaqq67iK1/5CkpldX93FVVUUcWZkMlk+NKXvsRXv/pVSaESQIYcM1Za6cMuq6Xn5kZCE1Gmdnkx1GtwrLYw8ft5MsksNf1matdZOfrDUQDcOxyExqKSvVrPzY0sjkWYfseHrlaNsUHH3D5xLq3pN1O73srRx0elvwMjYVJhMQbsuamB6HyC8dcWEAwKFDqFZFVm6dDTfF4tx386RiqcQTArSQaX5tLOq90o1DJOPrVyDlZbBfpuaWJqt4f5A4EV5e4dDurWWjnyw2HJhqwYq+5oRq6QceQHoyvKFAKsuqMV/2CYidcXVpQDtFxSx8QbC2RiK89dCbYuI6Zm3ZIN2jJYOvS4Ntokm7FiGBu1yJQyyU3kj0Hjzhqcay3s+6cyMep7QCFATb+N2X0r1XccfSasXXkr2DLNoHUKNGyvEe34Kl6AFcc611vIJLJ4j6/M7xX6xnc6VDbXaWrS0XVdA2OvzLFwZGVM3XJxLbZOI4e+N1K271bf1UIikOL0L4vqnK+jxibQc1Mjo7+bJTAYyddHXCPPJLM0X+hEV6PmxE+X+s/UpJOeo/67W5g94GfhcH4zRaueVDRNdC5B3UYbtm4Dx58cl65l7zYylc/b9d3ejPfkovTcubfZCU3FWByP4lxvwdFrko61tOsxtxoYe1kcZ6vuaMZzYpHpvR4m1KdRNKUYGhkinU4jk8lwuVx0dnbypS99iXXr1pXppCr+M6Nq9/Zngm9961sYDOKL9M033ywRlGTIqKOJi9Q38qkPfZabLr4FQSaQjqTJpbMI+Q3yc4f8OPpEmT6SkMsucdtmdvnIJHOiVQiQiWfIZXPSsSOvzuHebJOOzaazZDNiEsF7PEQimKR2swWAmDdJNpVFyO88ntnlo+E8h3StVCSztDs6nCUZzlKzTqzXwtEQyeIX8qRIYCnYlfkHQhITtABzXmIv6UviPb7I0HOlE5a1R7yJ4ednGPzN1IrFGPfZ4j0f+9EYu/+2lAQjGOT039UCwOhLcysISq5tNrZ9qhd7n5FysHYZUBtVGFzasuUkRaWkcgSlmnXi4mbDTleZA8XE1/qH/3X+680XOjnrMz0iwaoMWs6rlWxYlmPPFwcqEpQAtDY11hZDxfJNH+tk40dL6530JaXFtfptdtouryspP/rDpb4xteowtepKyg99f5iTPxMXiUytupL7Ck8k8J1aZPB5ceGvMF4K8J5cJLoQlwhKhfFSQGQ+TiyvCiXYBMwdeklJS9ArScczBPNqCq5tNiKTUeL5IDkdTZOKLwUqDVsdEkFJXyeQTWeJ59Ut3DvtROfjeI+L58plctIzBlDTZ2byLY9Uj2w6SyKczLdZDalYmoX8omo2kyOTt+BpkXVzzWXXcUX3DWxgJ3aTHbPZzNzcHC+88AIGg4GOjg527NixYuG9iiqqqOLPGalUissvvxylUokgCDz55JPS76QWA5u5kDvOeoCPPPgx6mWiTHI2kyOT3/28cChINpmlZq0YZ6SjGbKpLCqdGLrP7PVRU4jLUpDN5qTYzHc8RDKUxrnBAkAynCaTFC3BAMZfmcd9lk2qazqRJRMTf/ejcynigZRku7U4ESMdy6Ayi8n56EwSc5tOqkdkLk5kupSka24T59ngcJTwTJTASKSk3Ngslo++OsvcQX8JiUilA51LnIgHnp7g0PdKiePmNtGqLRVM8c4/nFxBUGq+yClZaxz94dgKgtKGhztY+0AblWBq1qOv1VQsn3rLW3aBB6DxnBpJJnw5VDo5mz/RJVlj/LFY+2AbvTc3li1rONeJa4NNatdijL44J8ZIFXhaxnotGquA3l3+nh2rTWz9ZA+2ZbHq8AszUkzce0sjqqJLF/qmQFCq21J6z9O7vAz8alIiKBXGSwFDv5lm9qBPqrOhoTQO9g+G8OZ30ulcgjgW89/NZkQJ7sBpMeFi6zOSCooEJYDEYopkKP+uoBLrVliI1dlUZBIZIvndms4NFmILCYmwl03lSCeXYivnGgtjeTKTyqwim8qSiohxm2ujjVQ0gy8fl2UzSMoGALYuA7N55TOVWVSKSkXSqGQqLtl8BVduu5rzs9fhpo2mpibC4TCTk5NccMEF1NbW0tnZyTPPPEMVVVRRRRVLeP311+ns7EQul7NlyxYOHz5MJpNBiYoWerhIdiMfuvEjXLrtCpQyJelYhkwyI1lazR8JYu1cep/PpnNk86/jwaEIqWgGR68YY6SjGTLJrHTs1Ds+nKvM0rGZZJZMXj0wMh0n7ktKc2nUlyQdz6DJH+s7FcLRb5J07uPBlKSyk45DOpzG3C7mIRbHQsR8SWmXPmlQauRoHGKM5zsZwneqdDFFV4hr0qKCz+jvSknNBauzuf0BTj09sYKg5OgX73nkpTn2fnmghASj1Igbt0CMXZcTlMztejZ/pKukXYuhdarR1agx1FWIvdJw/MdjZQlKBreGhq0O6s6ylz20430uVt3ZXLbsveDoN7H+wx0oNeVT5m2XuWg4x1G27PB3RioSlAAM9TqMTfqK5atub2bNB1pLPkuH0xJBydppoH576T2PvDjHvq+cJh1Oo3GoMCyL647+aIyBZ8TjNQ6VSH7LIxlIM73Hy0TeHqdgNVhAcDxGcDwiEZQK46WA8FSMcN6ORKmRY3BrJCUtpUZGKpImPCMea+0ykFgUCUoAmViWVGwptqpdZ5EISkqDkkwyIynM2/qMJEMpgvmF0Ww2K8ZW+eFo7zZKqrJKjZxsKist/Nl6LGSTWYlUlsnkJBUHp6yeS7ZeyYWuq9jKZTi1LqxWK1NTU3z9619Hq9XS3t7OLbfcskyJrYoqqqjizxuZTIa/+qu/wuVyoVQq+dSnPsXo6CiynBwHdZzNZVzXdge3XncHdploq5VJZsnm81bh6TipWBpLhxgjpGJpMskMCq2ouOM9toi1vTQuK0htROcSJAJJyTorEU6RSWQQDOKxC0eCWDuXchipWEZy0EiGMyQDaWl9KLqQILGYkmzDksE0Wocg1SMyFyM0U0rS1TrFnFXCn8Q/FCY0WUra0TrE8tm9fqbf9ZYSlBQi+QNg6PkZTv68lAyksQlobAKZJBz+7sgKglJNvxlzq3jfoy/OriC5dF3npvuGBirB2KgtsbBbjsBgpCxBCcC12U7rxXVly1CI5BpbT/l1zvdCx1X1NF/oLFtm6zbTcI4DQ/3KeNFzfFEkIFXgaWktavS1GrQ15RcydbVq1t3fvmK9cP5AQCIoNZ1bIxGBAKlvCgQlS3tpXLc4HhVj6jxBqTBeCpje5WH6HZ/Ud4XxUoD3+CK+vKqSYFaIYzF/f7mcOGZDhbjMrRXfO/K5qmQwTaKIZGftNEgEJYVWQSqalnJixiatRFACMbbKJJYUm2ydBslJSSFANpkhm7+OuVVPNpWTzg3imn/hWEu7Ed/AonRsJpEhE8ugkCnY0L6Zczsv4TyupZeNtDS2EolEeO2111i/fj1Op5MtW7awe/duqvjzQHU7wH9iPPPMM9xzzz0Eg6VJBhlymulkde1GGrY6GPzlNCRBY1GhzycHRl6cY+GYH02NjmQ4irXFgK5GjWCQkwxn2fOPA2iKfmBt3Ua0NWqmd3kZfmFWIlMANJ/jxNppwtSqY3Ekyt4vlzJmO69yk03nmNsTYHqXt2RXde1mC807ahH0KoZ/PcPBbw6VHLvuoXa0NrVoNedLsu8rpefe8GA7mUSGPf84sILMY2rVser9zQSGQhz/6QQDT5cyopsvdOLe5mDs9TmmXvcytydQUt5zYwO2HhNxf1Iih5Qcf7ELQ6MOa4+hrBJSeCZGKpImNL7yWAD/QJhdf1N+R33b5XWoTaqKQcPCwaAoszhcXkYpl80tSWn/kUjHM2TTWTQWQSLUFOPk0xPllZ/ycPSbcG9zcOixlbv2y6lcFSO6kCCbqrxLzr3VjlwlLxl/xei5oQmZAt75u6XrxOeTxPNyVn03N5FJZdnzxSXVhpM/E8eFYIC+m5uJeRPSOPQPhPHnpRdd22y0XljH9DteiY1+/MdLSgx9NzWidajZ9+XjJMOwOBKVVC1AJHe5t9il5+PEvyyNx+YLndSutRLzJph6y0tkNllSx/pNduRKuUQAK9QZRGKV0a3D0WuWmO7Fx1raDKjzC9cAgbGItDvA4BZQG1RojCpsMie9PV0olAoGJsY4yOtYHWYmJiYYGhpCrVbT1tZGV1cXzz77bFVhqYoqqvizQyqV4u677+ZnP/sZqVQpK8SIhX6203aWm2Q4je94CI1VQG0uWE2lOPD1IWrWLi1wmZr1yFVypnd5mXzDw+QbnjzRKIu9x4y53YCuVkV0LlWiDAPQcLaDVCTN/P4AM7t9zOxe2nHUsMNB/WY7MU+Suf3+FSo6a+5sRqFR4Dm8SGgsWkLKUZlV0o7240+MM/CLUnJ380VO6rfYOfWLCXwnwxz9Qaki45r7W9HZ1ez+4kmic6kV6j9rH+xCJoM9/zggLUIUo+eGJtKxtKRIsxy166wkw2lRYaoMwrMx6aW6HI6dQUGy/94Wxl+bJzhcftfY/scGMTesJAoBCFaBXDonJcb+WOSyOTLZ8vUeeXkWz/FFiUxTDl03uInMxlcQxcdfXWD81fK78gCCEzESiyni3pU750FcMLK0GnBtdTL+yvyKcscaE20Xu1CbVKLCUB4FtamGHQ4ad9Qw/JtZ5vJWH9GZJKMzYhzVe3Mj5nYDh787SHROfKaK1Zn6bmxGJsjZk1dvDY1FOfgN8VlQ6eR0XdNAaGNU6tfiY9svdlG73krclyQwGCE6lyoZ6007ndJYBDGBWIC124BjlZlEOM347+ZJBUuPrVltRmMRpPE99a6H4RfE+uscKgx1OkwNcfF3wKLi5JNjRPMLevpaDdq8ZHavbAOtfXVMvu3lFEeY046Qy+YYHBzkuuuuQ6fT0dXVxd///d9z8cUXl+2jKqqooor/zDh8+DC33347x44do1gkXkBNC320Gbup22hl8jVxrtPVakSbUETLs8XRMGqTqFRkcGkxNerRWJTEA2mOfH8UwbKUMq1dayHqSeA5ssj8wUAJEcXZb8a53or3dIjF0ShHHy+NJzqvaYBcDt/xEMGhCIeHlkjYxiYtHVe40dk1jP9+noFlajldNzRgaTWw/6sDpONZji7bbb/m/nYy8bSoCrOMHKOxK+m/swXvySCDz80wtWy3t73PRMf76hl7ZY7ZvX4pt1FA/XY7TTucZBLZFWUAznV27N0mFtqDBIciK8oTgQRxf3LF4l4BsflEWcVMEJWddLWaskqRAOGpOEd+OEJkvvy5M9lcCUH4j0EmkSWXyqIyqUjHEyvKT/18QrL3KwdDg4aGs2vKKlYd+Fr5GLaA8GwMuVB5P3HD2Q4Eg0pSF1qO7msbUOlV7P3yUrumw2nCeXJZ783NkM1x4BtL7w6F50NUrmoiPBfnRF7tMToX51Q+P2Ru1dFzUxMTby5I1x/93VJ813q5C1u7kX3fGCQdThP3pDj8naWx3naZi3Q0LSknjf9+6Vh7n4nGs2vIxDPM7vWTDqdLjnVvsSOYVBKJbuoNjzSeNXYlth4ziVBGJFMp5SXHmlv1mBqXYvTobFy6Z6VBidYuoDYLGGQGdrgvQaVTMDk+z3H2oHbImZqaYnh4mCeffJKWlhbOOeccvve971UVlqqoooo/S3zpS1/iC1/4ApOTS/GKAhU1uOhiHTVtVrKZLKHxGIJWKa4nmhUkgxlOPzOFqWnp99jWYSSsj+E9vkhgMEJgMCKRg4wNWhyrzMwfCRDzJBn4RWl81LijhnQsQ2AwwuJItETdx9Khp2mnk3Qsg+9kaIVwQMdV9Wjsag49NkQymObkvyzN1wpBnCsDI2GGX5iRbLMKsPeZaLmoltO/mmJxJMroi6VxStvloory4e8MkollmHm39Pi+m5tQaBQc+d6IZElXjK5r3KSTWY7/uHxuqm6DlVQsQ3BkZdwFEJ6OIVPKypYBjP1uZd6mgNbL6pg/FCBSIW4beHYSrb38eo9KqyCTzEjWeX8sspncEgl/GRaOBwnPxiR7tHJwb7OTDKdXKBf5BkL4BsqvvQIk/AlingSJQHkistYpUNNvIRFOSwpCxdDVqmm/sp7p3d6Svg6NiwRuS4ee9ivqGXlxFt9JsR7JcEZShXJvs1O30caxJ8ak8TCzd+k8bZe4EEwqKa5J+IueBYU4XgJjEYbzSpLFx9asMdN8fi2nfjFBaCJGJpYpUQRrPKcGpVrB4fzm0PkDAUkRTGMTcG2xk8uI58wkKTnW3mPC2KiVruc/HZKOVWgVWFr1JAKiDZ7KIDD84oxE1tM61CIHIQNuWStOx3r8/hDTTDKmPIlMJmPPnj1s27YNvV7P+vXr+ad/+qeqwtJ/YlTt3v6TYdeuXVxzzTWSTG0BcuS0sYoWdTeCQSDpS9J3exOWFgP7vzVYlmyy7f/XSzKcYt9XVr5Et13pom6dlaNPjLI4EkWwiecsYONHO5DJZBLhomBxVfh/380tjPxuloWDQex9RkLjIUmFqGadmfrNdmnRrPlCZ8kEau8zonEITL3uxdSqw1ivLVl0MXfoiflSJH1JWi6uxT8SJji4NHEX17X7+gZGXpyWLOOWo+emhrJyjgU0X+QsWXRZDoNbIDy1rG0FEAR5xWuCKE08+OtJqc2WY/3D7Qh61XuSev61+LfYvb0XOq6pp2aVhSM/GFzZNnn03dbE4nT0jLZvGmcZkpSANL7LwdCoRmvXsHBwpdQiLO32L2dfAuK4nz/sIzyRWDHmoXS81Kwzl1xHsAm4N1lFspwA3e9r4FRRgG3tEncH+AfCNF/kRF+rKSE51W60SBLZmz7WyeJ4rIRYV3jGajdbaLvYxelfTUmS8gVyIYiWezKFvNTeLm87WLPGRNc1jcwd9jNYxqJl08c7UWmV7Mrb0RjcAguTPg7wBhl1mlwuJymFWK1WLrjgAn72s5+Vbcsqqqiiiv8seOSRR/j2t79NIlE6Z5uwsZ4dmOt0EsFi62d7iPmTZYm6nVe5cPRbOPrjMZFwssxma/Mnu0nH0pK1iEqHpBDjWG2i48p6Tv58gsBgBL1bQ6TIkqHjKhd6l1a6rmO1qYTI03NTA4GxCLPv+rF06EnHs4QnlxSSOt7nYjCf2Gk6v4aZd7ykoktxjK3PKKrGqKDj0qXvFlAgYplbdZgadZKd1nLUbrCSiqclBZrlcKwxEZ2OSYSO5VCZVaSiqRXKQWq7ioS3su1bww4HGotKsu5aDmOzjlW3NDO1a6Fi3f8t+LfYvf0h2PJoNzFvosSKoxiGBi2tF9VWLIelPlyOAlGuEhp2OMpKYBfQcZWrYrurzCoatzsYfmGmbB3MbToMLvE9QG1XodQoSsZ9/TY7gdOLRD0p3GfbCU/HSshv9dvs0uaI/ntamNzlwX9KfCFR6eToajUER6I4N1ho3O7g6E/GpHFU/IxteLiDdCJTYhldqKulQ0/vTU2MvzHP1JsrFxQ3PNyBSl/ejlrv1rDm7lYWDgcYfG5GHMeLKSaSgwxyFINJT3BxKdZcv349X/rSl9i5c2fF9q6iiiqq+I+OwcFBbrvtNvbv319i5Sagpou11KmaEAxKkoE0zRc4qdtk4/D3R4jNr8ytbPp4F8nFFIe/O7KirG6Tlebzazn+5Bih8RhKg7JERajvtiaUWoW0aKB1qqVrCBYlvTc2MvG2B9/xEIYGDXFPUrIlM7XoqN9ilxbFajdYmNsfkM5tcGvQ1WiYPxhAY1diajSUEJC0TjWZpKgEULvBQmQ+Ltq/5VFc18Zznczs85W1AYOV+bblKM5DlIPGrpSUcYqxvL2Wo+fmRsZfWyBagezTc3MjOqeG/eWs6/4P4N9i9/ZecG220rBDtEgrWAAuR/OFThLBFLN7K9u+CRZxHJdACUpN5bbVWJRonZqypDIQ1a2UakVZ+5JC3UPTMcJT8bJ92HyBk7HX5yEtnquYnKbUyHGuszCd3xzRfIGTsSISu65Wg0ItIzQeo2atGVODTrJnA3G3v/+0WO9VdzYTno6VjM3CM2Zs0tJzQyODz01L31dqROUxEDcWqHTKUvXTvO2gvl7D6jtamN3nKzvuV93ZjM6hlkjqGruSsCfOMd4lqPQgU8ikd76amhpuvPFGvva1r5VtyyqqqKKK/yz4/ve/z3//7/+dkZERiRSuQImTBjpZg8GilQgIa+9vI+5PlrUoda630LTTyYl/GReJMMtstlbd0Uw2nZWsqhSCXFKI0bs0dF7tZuj5aUITsRW2bHUbbZhbdNJ1jY1aQhNLOS33OQ5i3gS+EyFJVaeY9OLaZGPmgA8yooWYfyRSolJkcGsJT4nnc51lY2YZeUmhVZCJZVBbBUyNWslOazkKJK1iBZpiGNxakuFUyb2tuE4ys0I5SGVQSPZ25WDtNKBzqis6nAhmBatubWXqnfLWdf9W/Fvs3v4QrL6rhZg/wVCF3JJgVtJwdg3Dz5cvh/x4y2RXtG2BZFcJtl4jvhOViVDlxkvxNZ1rLBLZpzCOCtA6BHRODd7jiyi0CgS9gphnadxa2sV18IRfVBZLhpaUkQBsPUaJHNV6SR0Lx4LSOFYIoLaqic4lMLi1NJ1bw+Cvp6WxV/yMdd/QQDaTK7HNK9RVYxNYdXsz46/Nlx33Xde50Tk1K8RHQBy3a+5tY3a/j6m3vNL49qcXGOAQcnNOEmBRq9Vs376dL37xi1XC0n8yVO3e/hMgHA7T19eHTCZj+/btEkFJhoxmurhIdiMXyK6nRdbNtkd7WXVrEwCDz05y+PEhiejRfKGTbX/RK1mtTby9wLGfFinB3NYk2ZdN7vKyOB4hviC+BSZ9Sbqua5DUlWKeZEmyITyRwNgiSgmG5xLIFDJ0+V3C3uOhEps0e4cRXY1aOtfyF8f2K900bBXtxBZHoiWTq2AQPev73i9aYoy+NFdCUDJ36Nn4UAed17kBOPWLyRKykLXLwLa/6JVs3JYTlPR1Amd9pkcqX0FQEsRkR98t4vXLkXA2PNjBhke6VnxeQM0aE1q7Gkt7ZXnEA/88xDtfKk9Qqt1oYevnelZYjxXX0dCornjuPwiC2BaVsP7hDjY8Ut5ObvDZaXb97+MVCUoApkYdjh5zxfK+WxpZ/0CHZOUnISmORWOLlq2fXeqnAsITCZE4JIgLdl3Xlcpfzr7rlwhKWz7dQ/89LSXlw7+eEQlKBtj4wfYVMtyF8WJq1dF5pVsaByDWq6Dm1XFZPfY+EzV5Ox0oVWWydhgxukvVGKTEoAAyhQy5uLEAjVNAMCAR2jLxLMlwCk9e5r3jmnoE65JS0uwBP55jQamemz7WiaFWHA8LhxeZ2u1h8AWRoLThIx0l9np7v3RakiE1d+hZc28Hq97XyXbZ5exIXsUG2QWoEZ/zxcVFfv7znyOTydBqtXzhC1+giiqqqOI/C3784x9jNpuRyWT88z//s5SsNmBmO1dwkexGtsguoPuKJtbe14GuVvwdPvEv4yUEpQ0Pd0hzyejv5hh/bV5SxDHW61j/4XZ0eQuPhaMBZvYsvdiqbVpaLhFls4PDi8SDKcnyLTIVR6WTSxZvcpUchWop7F+uNGRq1mPvEuOOwGCkhKBUs9ZMzRoLjTtFW4vxVxdKCEq9NzfSfU2DeI8pVhCU+u9tYcOD7aCC4Eh0Bcln1Z3NbPpoJwBz+/0rCEqdV7nYmI8pPIcXVxCU3Gfb2fxoNzpHnsCyjC9jaNCy/oEO2q8ob8UGoiKotaNy3BUai7L7iycqEpTWfbCN/ntbKh6vq1WJpLN/AypZsoFIEtvyqW7MyySqC3j3K6fOSECydRrQ12orHo9KVCftv69lRVGBoNRzU4PUT8UoEJTcZ9vZ/IkuaUwWUCAouc+2c9ane0ruMxVMSQSlzqtcbPzQ0rMEoqVg4T2g5/pG+u9oKWnn6V1eaby4tzrouLK+5NoFgpLOJaCv1Zbssk9FsxKhSWNWIVfJyxKUQLQ9LLz36FwCLZfWSmSqyEKSwFCY+f3itfpua6LzqqWxePJnY4y9Micdu/WzPZItYGQqzpHHRxn8rdgGvTc1seVj3TTKOjhfdi2bQxfTa1yLHAVyuZwDBw5w/vnnI5fLOeecc/B4/s8T6qqooooq/l8gnU5z4403IggCnZ2d7Nmzh0wmgwqBLtZxkexGdsquok7WxMaHOum6Wsz3jL0+z5EfjErkIcdqE5s/0SXZo42+PMvAs0u751sudNJ5rThXeI768Z4IEvPlrdfCadw7HNKxkbk44ZmleCk2n0DrFN+rk4E0ckGBxiR+NzwZlwhKAIZ6LcYGnXSuYoISQPvlLhrPEXNecW+6VCFJCavvaKHzSrd0bDFBSWNXsv7BdlrylhkTr82XEE10tRo2fayL2rwt8PJ8m9KgZP1DHVJ5OYLS2vtbab/SJdVvOXpuaWTdB9oqavcb3BqMDTrMTZXtRk7+ywT7v1F+Icvg1rDxo52SDV45FNr2Xw2l2JaV0PP+RlbfVd5ObmaPnz1fOVWRoATiDnRbV+XYs+k8J+s+0LFk11dAWhyLGruSDY904lxnKSmOB9JSXmnt/a3SOCggOBSRCErrHmyj63r3irqLakSw7gNt9CyzGx57RSQoaexKeq5vlMYBQDqelQhKrs1W6jbZsHUv3WN0Li4pC1jbDVjaSnOWBcIRgEIlR64SlSCUBiVKjVx6jnPZHDFfEv+I+H33OQ4E81I7zezxMXcoAIikrf57W9A7xfLIdJzRl2eZekuMkXpva2LNfUt5vWM/HOPEv4h5cI1dydr7Omg9r561su3szFzN5uzFOOS1yJDh8/n4+te/jkwmw+Vy8YMf/IAqqqiiiv8sePfdd9mwYQMKhYJ7772X4eFhZDk5tTSwk6s5X3Ytq2SbcK+tof/uNsmyauDZyRKCUtd1bjqvFeea+cMBRl6alZR6BIOS7hsaUFsFqbw4JlJo5TjXWwCIzMeJzsclu85kMI1CEEkOADIF4ryRXy8pJigB2DoMWFrFeSe2kCwhKBnqNdRvt+NcI17Lc3yxhCji3man+/oGyaZtOeGk+aJaVt/ZgkIQlW6WEzWazneyOm9BuzgeXUFQqttoo++2JlCINqrLCUqWdj1r7m1FbRXEepUh0fTf1Yp7W3kLXABrpxF7l6lieTKY4cC3BisSlDqurqfjqvqyZYBotaeoWPwHQTArK55D6xRYc18rxsbysePRH49WJCgBGGq1WFr0ZS3jClh1R7MUXxejQFByb7PTd3vzijoWCEqWDj2r72qRbAcLKIwXS7uetQ+0lVjPZZJZiaBUu9HK2ntbpXEG4hp7IW5rvsBJz01NJdcPDEVI+MWx3LC9ZoUdX4GgpDIoMLfqMbqW2i+TRCI0CSYlCpWcZP6dQW0VSsZheDYm5bxUBgV1G23SM5IKp5k/FMCXj+Oazq0pWZMdeWlWynkptArWfbBdsgVMhTMceXyE2T3iemzrRbWs/UAbVlkNZ8kuYvPixWzU7kCPkVQyxauvvsrGjRsxGo3cc889hMOV3Xyq+I+Dqjbpf2Dcc889/PCHPyRbZP8gQ4aLZvpkmwBxh3DjjhoOfG2AZDjLwvEgwTGRtJMMZ3FuMlK71sbQczN4B4I4VplRmxQkfTD5ew/GFi3xvMqKxiYgy69vJX3JEpUdQ6MaR58JhUq0qTr+xBK5CcSEvKXVwOHvi+o5y3cLr32gDYVGzv5/GhStqvLXLKD7+gYWZ6LM7PJx4qkxEp7SQMPaY8A/HCYZhtk9XqYq7EYKDkaIzMaYebe8tYV/NEwqlibqLa9glAqnyWVykn/uCiQhnUgTL7PTvICpXR4szRUIRIhEkeDw8RLiVjHqtlhFIk1ljo8ox13B6s291U7LuXUMvzzDzK7yLN73wlkf7yGbLrVFK0Y69B5e7UmR5KTQKkvkOAvY/88nK94/wPgbc7So5BWJTglPgkwqSzJUuR9y2RzpeOV6JkMpQlOx8mVhCI5HWMj7si7H4kiU2YN+hl8SgyNHv0lSNQIY/OU0/sGQZBO45gOtDPxqSiIMHvzGkPgMIFoetpxfx4mnxsW2Spbata2+tRmlVsnuvxXVFzxHFpeuJUDNKgv6Wo20KD5RZOtibTOg0ilJRsTxbO7QS1Z1AHFvUqKyCjaB7vfVc+oX4rMdm40RGAwxmV/gW/tAGwCGb4ljO2lJMKo9xPjkOPF4nM985jP81V/9FUajkddee42OjvIktiqqqKKKP1UMDQ1x6aWXMjRUuvtDi561bMcgE8m1/fe1kIlnOf7EOLN7PCiUkMrPR1Ffit5bGhn85QSpKMQWEqRj4lyUimaZesuLsVlHaCxKJp5CMKgwtRiIevyMLrOtbbusDp1dzeiLc6SiSDZXBWx4pIu4P8mhbw2vsGUzt+rour6Rweem8J8K8+6XT5WQe3S1KloudHH8iXEWDgVJRdIEBkvlpC0degKDEQafm8J1lr2ims7sfj+WFv0K8lABxQt85ZBKZs9o15EIpcgmMkQrxF7hyRjB0TDjb1UmbBz+9giqCvwcY7OOZDh1RiWmZChNOlF5Z1XfLa0go6KlyXvBfbad5vNqGXh2sqyVXWgqTiaeQaGusP8kX/WatWbJJqMY468uMPPOgqTMVe5438kgnjPIZMcXUwjmyguCmVSWXDonKl2VQdSTIBlOVbRtmd7vR2WsrNp08hcTOHpN4r2qRJJfsQXega+fRmUWX31dW22ozSpGfys+U9GZJLu/eEJqp/UPtZPwJzme38FZbItnaNDSf2cLC0cCEiHvVJHNbuPZTmydRmb2+kh4U6SCKU4UycdrrILUT4UxV1BRUAhKEospvPnkTsultcS9SYk0OPn2grTIprarWHNXK47fmXAf7oQcxPrneOfYbtK5FG+99RbNzc2k02k++clP8r/+1/8q225VVFFFFX/K+NKXvsR/+2//TdpBC+LO/Sa6aJf1AeJGs5aL6jj2xCjJQJqZfT5innw+Jw26GgFrl4GpNzwsTkaJ+5MoBAWQwnN0EY1dKamwaBxqVDox85+OlxKvBYuShq0O1EYlw8/PriD3NF/gpG6jjSOPjxKdi6+w9eq8uh6NTeDI90eZftvL9LteKEpHuHc4SC6mWDgU5NQzk6SX7YY3uDWixVgaxl+bwz9UPmES96YJDIeYO1J+B3/UGycRTBKroD6djqfJpbOSLV45pKIZ4ouV46Lp3V5s7YaS+ytGeCrOga+dkpRvlsPaZRCJNhWOVwhyUpE0kbnyeTtrp4Hu6xsZ/u3MCgu8PxTrH2gnl8lxsIz6KUBiMUWmUtwFkBbHjEqnLEtWOvydwYr3DzC914dgUlZUmooH02TiaVLRyjmtbDpH6gw2x1FvkvBshUqkwXs8SGCsvJ1M3Jtm4o15qX2NTVqJgAR5slMRKanz2nom3piXSG0Dv5iSViRMLTo63udm4OkJkSAFJepmXde40dWopTg6PBkvsT2s32zD1KjjxE/EXFVxrGxo0KE2C2QS4nX19ZqSBfDYXJxU3lpIqZHTckkdo3n1p3Qkzdx+HwuHfNI9KDQKND/VgAzSuigT5tMMTZ5mdnaWe++9l49+9KN0dHTw7LPP0tBQuimyiiqqqOJPHcFgkA984AP8+te/Jh4Xf49lyHFQRzfr0cpEcnDrZXWQRbSwOh1G0CtJLoq/s8lgmqZza5h610cmliHiSUBhHS0D3uOLaB0CMU+STDKHxi6gr1WXJfe4tzmwtBqYPxyADAwsUz9cdWcriUCKUz+fZOZdX4ndlsYm0Hl1PaOvzBEaj3Hkh6Ml5B6VQUH9VgdjL88Rno5z4snxEgUaENWbIjNxpt71koyky9qzgThfpuMZMhXW6iJzcZTaygyeTDJD9gxxVzqWIRVLk46Uv0AymMFzLMjC8UDFcww/P4Oigt6AxiaQTWZInkGJKXmGtU6A9ivrUWoVZ9wcdyaYWnV0Xd3A4HNTBMpYCMe8SYlAUxb5qpuadGVVqnwDIYKjoYp9BLBwOEh4rnJ+MhlOk4qkV5DECshmcmTTWTLJ8vnLRChF3F85BvcPLqKxChXH2dgr81ha9eL1FaC1C8SKXGZO/HQUpV7sZFOrDr1dIxGgUuEMB789JNW981o3qWhGsiv0nQhJZCvBrGD17c3MHvBJmwKLRUKc/RbqNtnwDS6SDKbJJLNMvL603qixCUs5XAXIVYoi5UsF0YWElAeuWWsmHc1I5bP7/ejymz4UgpzeW5qYeEOPdUTcoJtoC3BwYg+hcJAf/OAHPPXUU1itVv7rf/2vPPDAA2XbrYo/fVTt3v6D4bnnnuP9738/0Wjpj60RC+vZiSATcG2zIeiVjL08j7XLQOc1DZx+dlLaTVNi/fSJLmTKZdZPeRga1ay5q53AUEhK0hej5eJaatdbJcKRuUNfolrk6DdhdGkZeXEOfZ1A4w7nSuu0PBlp1R3NKHWKsvYnANv+opdYIMnBr6+UhdM4BTY80EF4JlZWpltfJ7D67jZRzreCNVv/PS1M7vbgP1k+0WPtMpBJZcsSagowtmgJjVaeyPR1ApHZM8yEQM+NDQy/Ml/Rrqx2s4WOy9zM7PdJXqN/LDROgcazaxh7aaoiEei97N6aL3SSCKUq2qL9Idj2F72komnJErAc2q504T21WDKulqPYSrAsBNDbztz2Dec5zmgtt+b+VoZ/O13+OoJI2goMhkvs2woojM/QVLRsoFazxkTHVQ3M7vFKSkvFqN9mp2G7g3f/6RQkRbWw4n5z9JswNekZ/vUMgk2g7cLS50zjFMimRWJh/z0tqIxK9v/TSgtHBNj26T6i83HJarEYHVfX4+y3cPjxobJ2dwWS0qFvDSMY5LRf6Wbo1xMkwxConSZi9XPy5ElyuRxKpZL6+nr6+vp44YUXVtaliiqqqOJPCDfeeCNPP/10CSlcgZIe1uOSNaPSyWm9pI6BX09DSlQOyiSyJYRtye6sTUff+5uZfKu8bdia+1vR2TXs/rvytl/rP9xOZC7OwM+nJEWaYvurzmvqGX1pmlQUWi6pxX86VGJvVbCIU+lg7f2djL02X5a00nJJreSLXkz0KGD1nc0Y3Dr2feVUiapScT3MrYaKpBxDg5amnTUrSO3FcG21MbO7Mpn6vWzGQFSmic5Unv8tHXoMLu0Z7cg2PtKBQqPg3f996ozXOhNqN1iRC7KK9/Nedm8qswr3VhtTu31lLdf+ELRd7qJug5XjT46tIJwVoLaraDjLwdAZJLBRgdp0Zvu85UpDy2Fu1ZFJ5UoUu4ph6zHgWG1m4GflLViaLnRSu9bKwe8Ml22P1Xc3Y3BVHp9rH2xDbVTx7hfK92n/fS0kfEkGnpleYbsI+efs9wukgimaLnASHA0THF56TgpEQ1Sw+ZEupnZ7JdWmYvTc1IC1w8jerw2WvY/Nn+wmFU2LBMQC/yv/NWu3gY4r6jn201GiM0kadzqIBZJ4Di+SyqUIrZ5kfHZMUlOy2+0YjUZ+8pOfsHXr1rL3XUUVVVTxp4DDhw9z/fXXl5DCZchw4GIVW1DKlFi7DGjMKmb2+NE4VPTe1MzQC9Msjoq/xUoNpNNAWsz1qPTLrJ/yUBqUbHyoA8/xYIntVAHOdRbc2x0ceGxQsooqJpwYGjSYGvRM7/aiNChp3GZn5KVl7/R5m6nWS2pR2wROlsmtAWx8pJN4MMmxMjkYpUbOhoe7CI6Gy9qnKA1K1tzdwuw+P9O7y9t4tF5Rh+/EYklcWAxdrQa5EokkUg7FlnblIFiU4gLSGdaQms5zMnvQt9LGLA9jk5ZVt7YwtdvLxGuVbejOBKVBSe16C3MHAhVt0d7L7q1mrZlsKlfRFu0PwcaPdpKOpjn07ZV5ygJcm60lZJ5y0DhUxCtYHUvfqWC7V0AlonoBndfWM7XLV5EUtf6hdgKD4ZXjm/cen/p6Datua2Fqt4epN1fG3LZuI03n1nD08WHS8VLrNhAJeuZWA1NvelBqoHFHbUk9lAaR7ZQOp2m9vA5DnYYj3xstex+bP9lNeCYmEZqK4dpspem8Wo49MVrW7q7z2noUagUnn5wAJbReUMvE6wuk41lCeh+hxllOnjpJNptFoVDgdru59NJL+drXvoZSWd0jXkUVVfzp4u///u/5h3/4hxIlXj0meliPVVaDQoC6jXZm9/nJJLO0XiKqtYzkCQ5Qane2+vZmJt5aKKvK03pZHdY2A/u/OViW7NF5rZuEP8n4awso8sSeYlUj11k25g8HycQy1Kwx51WNl2IThSAqxKCAvpubmNrtJTiyMv/h6DPRdH6tSJAtQyZuPt+JY5WZw98fLmuj5tpkw95n4uiPR8veh2BW4tpsZ+zllfNmAcU2p+UgGBQkyygnLb9OJWs4EO3CDC4tCxXI6yBaeWnsag49tnLd9Q+FqUmHUqPAV2Fj23vZvSkEcPRb8Z1aPKNt3ZlQs8ZM8/m1nPrFxAolLek6WgXOfnMJoa0cBIPijKQttVWQFIzKQWMTkClKLQWLoXUK1PSaGX+tvJCGrdeIe6uDU0+Nl61H84VO7D1mjvyg/Phsu9KFoU4j2VIvR+tldaQiaTEXusx2EcTnzHssSDKcwdFnIuZPSgpogEQ0RAGrb2thZp+vbMzs3manbpONI48Pl7XMW31nM+lEVrLAlp5fQFsj0H6Zi6HfzBBbSGLrNZKOZ1gciZLJZQh3zjIeGGZuQXzGbDYbra2tfP/732f16tVl77uKP01Uo+T/AEgmk5x//vm8/fbbJZ8rUbGOHVhkthLlocbtNcgUMsZensc/EC4hIJladay6rYX5Q36Gnpvh0A9GS4gGrm02XBtt7P/qIOGJBN4Ti4z8vigxIIC5SSQjxYNJcpmcRL5ZTiRpvagOhSBn5MU5IrPJFQSlrZ/rIe5PcfCbQxz70bJEjABr7mpl6m0P3uMh9n1zaAVxx+AWCE8lic8nmT8SYPyVWcohMpskm8ySipSfWASbgKFeS8NWR0WSUte1DeRylCVzgbjIYOsycezJsYqEmtV3tZFNZSVv8+UwNKqxdZuQC/KKi3ZzewLoa7QV/VMFm4Brg0X0iK8wT8bnkxUTMX8oynm3L4e1y4DWri67KAMw/tY8gTPsyBcMULvOirFey6HB8uS1hvMcNJ3tZOyNOaZeL3+dzQ93oRDk7P678n3XdqUL1wYb6WimLOnK2KJF79TScFYNJydWJlwAMokMYU/54Cc+n2T2oF9SHCqM2wIWDi8SnByUxvfaB9qY2u2R1JCmdy0tbBWe37n9PoZfEMd7sXJS24VObF0mTK06iVAXL2JUZ9JZlEUqYNYew9KYT4oqZIFxcfx2XF2PzqGWiH+Dv5xm/E2PVM+NH2onupCQCE3FxKbG82qxdhrR1xtIDoSx+OuxzNXjZhUHeBNTg5bJqUnGx8eRy+WsXr2az3zmM9xxxx1l27CKKqqo4t8br776KjfeeCM+X/GLqwwXLaySbRT/zJMXjC167H1m3J4EU296VyTF++9rQWfX8M4/nCQ4HF1BSFh1RxOhqRjjry4w+eYCWnupJau5TScRILLpHLm8vPVyUoOlQ4+jz0wqlmH0xbkVykstl9ZSt97G4e8NEp1LsfcrpckBW5+RunVWjj8xzuiLc0y9s5IQUyAGDb8wjaPfUpYAAhD1JkR7ijIED4D6LTZMjXrU9vJkl/ptdlouqEWukJXs2ClG/13txIPJigT3hh0OGs+pYfD56YqLMo07a9DXaJnc7amo9HTi5+OY3JXtROo2WYksJMqSuQqY2/+vJ3WD2NcF1Z+KUEHjNgezez1lFZGGX54hFUlVJCgBtF1ch7nVwPhbnopkqE0PdSJTyCrGs9ZuAz3XNzKzz7diDBbQdV0juWyuIonNtdmOoU5bcfykImnSsXTFOp56ZhrXJqs0PnUOVYlN4KHHhiWSn2O1CecaS0nsfeS7o9L/19zditoksOeLS4Sm089OL9V1ow17t5EDRRspCmNB79SQy0LMJyZNjc06QtNR6Z7GX50jGc5I97H2wXwMeFiM6/Z88ZRUz45LXThWWzj87UGinhT+U2H2nFpqv7rNdjLxDJ7Di6hkKmwDrdhSrQTxM+k8QVaWYXR0lG3btmGz2di+fTu/+tWvyrZfFVVUUcX/C3z4wx/mO9/5Dsnk0vurDiNr2IZBZpLIPgCNO2pQahTM7PET96Q48PUlApLGomTNBzqYO+Bj7JV5TvxssoRoYO0yUH+WnWM/HCMdTjP9ro+5Q0XxnlL8/Y5Mx4kHxJyX1iaSc5Yr4rReVIfaLDC920s6nF5B4NjwcAdxf5LjT4yX3ZDUeW0980eCBIciHPr+yApCTYF4ko5nmXx7gfkKC0zp/M7uVKzCIpUS7J0mVBpFRZJS93VuZApZWTIXiJZaDdscosLzaPlzrLq1hVwmW1F9SLAoqdtkQzAoVtgDFxAajzH2yiwzB8rHTkoN1PRbxfIKt5sOp5k6AwH9D9+OkREAAQAASURBVMGZCD0F6Os1aG1CWZVLgLFX5gjPnkExVAkNO5yEpqOcHC9PXrN1G+m82s3oK7NlrfdAtE7W2tTs/XL5uKp2g4XWi13IZLKyylIaixJLm7jwM/KbMiQlpageEPWVJ6il41km35rHd1Jsh+WEqch0nP3fGJTGd/G4B/CdCuE7FZKOXXNPO1PveCVCU3gqLpHnajc7cK6z4jm1KBG7Sp6bdE6yAgKRSFhshzj+2hwxr/gbU7/VhqFeKynOzuzxs3AiJJ1v3QfaCM/FJGLh6WeW4r+6dVac66z4hsIEhyIYEzaMJ23U08cgR5E1JpianuJb3/oW3/rWt1i7di1//dd/zdVXX122Dauooooq/r0xNDTEXXfdxe7du6UNeSrUNNNFi6xb/FKevCCYBeo220hG0ywcCpaQkwBaL6nD1KLn0GNDJPxJDn5nuIRY1Hyhk5gvyfyBALP7fYTGoyWkCK1zSREmm8mSya9dFJ8DROJH/RbRRmrmHd8K5aWafjONO5wc/+kYcV+S48sIqXqXhpp+C6MvzuI5voh/JLLiGoJZQTKYYXK3l6g3UZEwEwskRFWdCrB3m7B1Gpnd5y9LZjG16mi/op6xV+YqEoh6bmoiGU6tFH3Iw9Khp/3yeoZ/M1OR7FS3wYal3YDvVLCiitDIb2fQ1VW2QTO36kmGUxUJN0BZ9aI/BpkkzO17j7yZAmxdRoKj0RX9BqISErmVVn/FqNtgoW69De+pxYrkrp6bG1DplBVVobQOgb5bmpne411h/VdAx5UuZHIZR4qUH4tRs8qCtdMoKY4tRyaeJRVOVSRKTb7hIeZLSuOzMG4LGP71jETy09Wqca6xMPrKnPTcjfxm6RluuzRPaCoS/yi+r/qz7CQjaYlIBKINHYCgVZDNZEnlYyetQyDmT0rXmT0YIJvKSXXruLqe+SMBad3y6A/HpHo611to2F7D8Z+Iz29sodTJqX6TnWwmy/GRcRQyBeYRN/0ZN53EmLAcJ6mOs2/fPvr7+6mpqeHqq6/mm9/8JgrFv9GHsIr/66gqKf0J46mnnuLuu+8mFlv6YZUho5kuOmT90mfWLgM9NzUx866X0ZfmVpAgataYcG2ySz80/fe0MP7mQgmZpqDO0v4+F85+Cwe+M1RCbihgy6PdyBSyFXZtBaz7YDuL4xGGX5gVyUu+ZAlZprhufbc3ERyNlF18EmwCGz/UTnA0UpawY3AL9N/TQXAkXJHQs/aBNmb3+yq+yAsGQBDVYJarwiyHtcdANp2rSEASbAIdl9dx/MeVFQGaL3SSjmcqLrYBJeSSfw26rmugZrWZoz8ZrVjXrusaSCcyFYlO8N5KSqZWHS3n13LymamK7fZeY+UPwXJ1rnJYfWczR58cq0jKqttiRW1SVVTRArFvzkS8Kh4f76XctP7D7Qy/OFu23uK47iAyW171S+MUWH9/O4HBECf+ZWUAKtgE+m5q5PhTEyR9ybJ1KR5Dmz6WV8k4uDLY7bquAccqEyd+Nl6WnLf2gTbUFkEi5i1XcOq9uQHfSJi5PQEaz6/BUKMuqXOxstjWz/US8yZKiEyxXJg9/B6VXkEkstRWO3fu5LXXXltRnyqqqKKK/9tIpVJce+21vPDCCxSHx3qMrGcHGtmSH1j/fS1orGr25JVYlivHdF3vJjgaZW6/n7pNVgx1mpLFmIKiEYiqlpG5eNl4xrHaROfVbqZ2exl/ZeU85VhjomF7jWT1ZmjQrlCnKdRN51DRdnk9p34+UZZc1H1jA5Y2A/u/OlC2fPXdzRjqtOz+4smyxBFLh57GHTUVdy5DqbJRQV2qEtzn2Jl6s3LM1HSBk/BsDN/xCoRnFfRc21AxoVNAuTb7Y7DlU92kY5mKi3oF67zR381UVH56LyUlENWtkFGRrGTrMdBzQxOTuzxlx8ofBBXoHGdWn6rfJiYGzqSm2XWjm5Hnpyrax1k69KTj2TO2e2F8qO0qEoupiiSy2g1W7D3Giu8Dvbc0Ym42sO8b5dWKem9uxNSiZ/9XT5atb/02O4ZataSqpDOXEp5UOpBrRbJdyyW16Gs1ZVUw4MxjRe/WsPr2FibfWmDqLW/JbwSIZMX6TXbJOq7v9iam3/Eukc6K6tZySZ6Q+PhQSV8O504ywjHUGrUk32+1WvnmN7/JTTfdVLbOVVRRRRX/N7Fnzx5uuukmxsaWfjcVKGmnnyZZu/SZxqGi/y6RyDn9theNRUm8SLHH2KSlbqNN2ozV8T4Xswf9JeSEgjpL7UYLjTucHHtirKwq0JoPtKLSK9n3lfI7vbtuaCAyF2fqTQ+CRUk2ni5RfSmuW+sltUTmE2WJIUoNrPtQF4HBUFnCjtKgZP2D7fgHQwz+cnpFOYhkD99AuLLajxIEg5JkIL1CFWY5dLUaFGpZRUUfpQYaL6hj5PnymwNBVHmWK+RntFjTOFTEA6kzqi2dCfVb7TSd6+TEv4xVJFy5dzggR1nVngLeS0lJ41DReE4NE7+fJ15B9em9xsofguXqXOXQfqWLod/OVGwzc7sefY2moooWiOO+Um4UKBkf76Xc1PP+RqZ2ecqOFaUG1j/UxeJklFNlYnClRs66D3XgHVgsO5aUGjntV9Yz9rtZ4oF02broajWS4tPqu1uY2uWRnAOKUb/VTuPOGgaeniy7eNt5bT2Gep1kzbhcwan5Aifh2Tje44s4VpswNmgZ+c1SHF6sLLbhkU6iC3FRZSmPdC7NQd4gqYsRi8XI5XKoVCquv/56fvSjH1XVlaqooor/J/gf/+N/8IUvfIFAIAAU1Crr6GUzgmzJD6z1kjqMjVpJiWW5ckz9WTbi/hS+gRCmJh0Gl4bpImJDsSLKqjuaicwnJGupYuhq1fS+v4nJtzxlSSoGtxb3Vruk1KexrbTDKqgJKbQKms9zMvb7+bLEj/qzbDjXWTn249Gy5KPm/Obvw98fKXu81iFQv9XOUAWidXFdYEldqhJsPUZ8Jytv4Lf1GklHMpUJQApoPLumxGqrHCTVm38l+u9pIZPMVsy5KLQKGrbbmTsQqGhV9l5KSiCSzBSCgtl95Yk/WofAqttbmHzTU/E7fwjeSwXJ0q5HrpKfsW/c5zhEZbEK/at1CCCnxI5tOQrjQ6FVQKayXaCxUYu911z2+QFwn22ndp2Noz8qr1bkPttOzWoLRx4fLVtfS7sevUsrxc3LCU8oRDJSMpyhpt+MsUHH8Avln4EzjRWVQUHfrc1Mv+Nl4XCw5DcCxDZz9lsYe1XMZzZf6MR7YrFE6axQN3ufiebznJx4aryEPLeQm+EUB5Fps8RiMWQyGf39/fzjP/4jF1xwQdk6V/H/HtWI+E8Ql156KS+++GLJZxp0bOEiKVhwbbNR02vm8HdH8A+EiS7ECea9wiWCUl5dydFrRl+nlYgWy1mgmz/ZBcCeLw4w9NzMiom245p6AsNhPEcWmXzbU3l3FqA2q9DXiszb5fZa+jqRWLQ4FuHYj8bKEnrW3NfK8G+nCE8l2fW/T1QknoSnkgRHwgy/XP7HWTDI0TnUOHrNFV/E1z3UA4jqSOWINoZGNd3XNXLku4NntIFLJzOERmMVCUoap0B8PnlGEoy9z4h3MHRGgtKaD7QiGJXs/VLlyXzg6UmC4+EzEnssHQZy6ewZSUrvBX2dBoNLi7Vdx1yF4OP0r6aIvEcA1HaFC2e/uaLKUeE+ataYWDhcPvFWIFIV2nk5ihfR3DvtZRWXCn3Tc2NDWSWrwvhou8JF3XorQy9OM7cnsOI8xhYtGotATZ+5bB8kfUkCg4tMvls+eRSfLx33q+5oZna/D29+ATbpS3Lwm+JCtGAT6L+rnfAyG7nCGLJ2GVDplBU9j0dfmgQapLHdd3sTY7+blZ7bYkKRe6edph21DP5qUuqHYkKSvduExqJaOrlAifXh4niE4KTYHu6z7VjbDBz94Rg7eR9Ewd88xr6xPQC8/vrrmEwmAF555RU2bdpUtv5VVFFFFf+nsGfPHi6//HK83qXfZjly2uijRSbGCqig94ZGFo4H8RxexDcQQmdfmnMiU/ES1RdrhxGVXsncfj+ze0sTLc4NFtoudTH46yk8hxdXKNLoalU0bKth4JlpPEcXMTfpGX+jfAwh6FWojSqJiLSc9LH6zmYM9Tr2/dMJop7UCvKxrceAY5WZgZ9PcepnkxWVawAmXl/A0WuuWO7oMaGr0VRUR6rbZKX14jrGX59n6i1vWcJIz00NxIMpUcmpAkGpbouV2Xf9ZyTiFOpwJoKSrceA72S4MlFGBVs+1p23pqi86HPoe8MIBlXFclOzAXOzHrVF/Z72dGeCo9tELperSFLynQwz8KtJSYWnEjY+0kFkLl6+bVKIpBYVmBt1JRZmBRQrZFbq64JNm7FZRzadXWH9ViDWqHRyVt3VysDPxkuIP7CkFLbm7jayyQz7vlqeBGbvMWKor6y6NPbqLO6tNRUJcSf+ZUI6Vu/W0LSjhhNFVjzF99t3k0gm2/f1JcJTKgpExf/rnWq0VoFKGHlp6b3FsdqErlbDeD4GjUzFS4j9ax/sIpPISApNweGo1B+6WhWmBj0xX1Jsy3z9C20YHIugr9VIBKW+25uYPxKAwz200UM8HuWUcR8LoTn8fj+33nord999NzfeeCOPP/54xfpXUUUVVfyfwqc//Wm+8pWvlKgmmbGxhu2oZWI+ydolxiinn54i7kkRHIsQnhbnbIk0kldXMrcasLQaJAWX5aSf/ntaUKgVHPzmEHP7AityRPXb7MQ8Cfynw0yegdgCoLMLkCezL7csUxqUrPlAu0h+eWa6vHrS1fVM7vYSm0+w96sDZ1QD8hwNMLOvQgyiBFOjqPRYiaS09p5WFGoF+/95sCxBSWNR0nFNAyefHK9o86V1qpErZUSm4xUJSoJFJEIVFJ7LwdCgITwbPyP5peN9LvR1mjPao03v9hLzJSoSlAAc3UbgzCSl94LaqMLWacI/FCYeKH9fQy/MkIqemW1Vu1HcFb7v66fL9nWBoPT/Z++9oyO5rnPfX6fqqurqnBPQjQzMYDCZMxzmYRwOcxaDGESRoiTbCte6vvZb9rvv3WddW9dB0bJkBUuycqJyJBUZhsNJnAgMMJhBzqGROuH9Ud0FYNDVDVmU5HuNby17idMHp07tOrXPrn2+sz9nUta9p6IUYdHOF2Py7IxWlcjX6ij5HIpzPnqZD9FpWSVvWJwfwa0uEntDnP1eX8kKUYLLjBKW8NTZS5KUsvMweGiCsfbSNsvO51fM++RNIcZOLckQZufz2ka0WYTWR2qY7J7hzDIZueJclQJWRJeARS69tdH3yihm0aQRlJLXB+k/OKpVeVpeGcndoFB/a4yOb/VqVZ26l31reBodOGLyEknJzAqS4/jpKa3SlKfRjqfRTsd3+9ievRrmYDo0zMH+X5PJZPjiF7/Id77zHbxeL9/5znfYsGFDyfGvYx3rWMfrhd7eXh544AF+9atfaVWTrEjU00bIENPaxa/wM907y8TZGcY7p0nPLK3ZC+PpFbJQvg1OUgPzjJ2ZZur87AoijRIRabgjTucP+pjomFmloCIoJvyb3fT+coTZwQX6fj3KyLHSh6CMggHRKyD5BeaG06tIMNVXB/A2OzjySZVYdDF5Qg5a8TTY6fnFCH0vjdH3ypiufNrAqxNkUlld4ok9LmOPyrokF3uVRMOtMc7/bIjhY5Ml+4nu8ZJfWKT/lTFdEoyrzsZExwxjJ/VJMhbFRCaVK0tQUiIiqb75sgSlTY8l6X9lrKwc3IkvXkBQ9KvRyH4BX7OT8c6ULklpLfA22TGWISnNjaQ5/fULZSVyQT2AOT+uvxdbnMuyz7pCKrCIibNLe3pFO1+MYoxpdQsYzatl3Yo2NwlQuz/GuZ8MrKrcVJwfTXep7+AqpaECnAkbjriESTCSS68+UDp0ZAKgJEEJoPdXo/S+OFqoimYivN27wjYTZ2e0e45d7iOwyc1rn+5cquKUQ/vfks+K7CuX8xrEJBgBtXKZLSRqso+ZVG7FfmPDnXFYhJMFgvfcSFojKJkkE556B5lUViUpFXxP8R5nR+YZ70hpdq/eG2C8MwVdYfyEyc3lOKcc51yqg6NHj3L99dfjdDp5xzvewV/8xV/ojn8dfxgY/9ADWIeKjo4OfD4foihqBCWLWeCe2+7lnsZHucywj/rrYrS9uQYAT62akK+7IwLAya/0UH1NEF+rurm/68+a2f3uZvW3L15gsjtF8qoAoFZE2fnuRqJX+wBYmMpgMBq0sTTfF6fpnkKAokBgk4vqa4IA5LI5ort8KgEK2PDGKnb/eQvh3R6tr7F2dQH1b3ay+elagjvUMUV3B8jOZTn3YzVYaHtzDfGr/YBK0tnytlpsYYnYpQHqbo3Qen9CG9OmNyVJ7g+y6z1NtDxcxeanazn/swHmh9LU7AvT+qja1p6Q2PRUktjlAV74Xyc5/8shNj9diyOpVj9IXBdk0xNJAPoOjJBdyFK7PwyoJKrNT9fiblIASF4XxuoUsEXU/97wUDX1d0RVG3rUto13xGi5t5roFV42P7V00q/lDVU03a3acMsTtez+b80Et7kAlWC2+emlts33xmi8M872t9QDsPnpWs2ewR0uta0AmVQWk2Ci5Q1V2t9ufrqW6BVqmUv/Jgebn65lvPBxX39HlA0PVWtt256soXpvgJf/9hQd3+tj89O12ELqg6zdH6b1kSV7YwSrR/3NkZTZ/HQtSlyVn6nZF8bf7OTX/+MEgwcmaH00Qc0+1YZK3Mrmp2tx1tkYP5Miss3NpjcltW5bH0lQd6s6Z8WAgKdRIZdbRAwIxK/2a/MboOWhKhruiBHc4aL+1hg7392If7NTnUt7vCts2PbmJFufqqPmphAIFOadau/QTjebn66l/o4o1VcE2fSmBM33xVfYMLJbtaEjIeNM2tQqW0DjnTFaHlyytyMuMz+ZZvDABL5W1d5CwU51t0WovjzAC+87ScezfbQ9WUNz4W/dDYpqw6jAyS/14N/govWxBLv+azP1d0TZ9HiS5PXqO2aPSGx+uhZPi4SjSiZ5Q5hNjy+z4aMJam4Okx5LM9k9jUUx4W5QcDcpVF8boO1J1YbjZ1JM98xiC6hJ3p3/pYlL/rRJ8xGB7T7kgFV7xq4ahab71PkiKKpdivYW7BYW83mNoLTtj+tpfkPBhgVf0P1LNVlTe1uIS9/Tos3LpntikF/UyGHxy/3Yq9Rkqn+zk83P1BIcS3Kt4W4ev+0prrryKrLZLNPT0+zatYumpiaefvpp1rGOdazj9cZf/MVfYLPZ2LVrl0ZQakg28aY73sI1hjtJGJrY+Fg14V0eyIAzoVBzfRiL00LvL0fJzOW0eCm6x8ul72mh5pYQAKe/eR6j2YAcVMkrtftDbH1bHQBDxybIZxdxFHyhLSrS+lgCJSYBUH97HN9GF7JP/VvBYab6SjWGk30Wdr67ke3vUGMGgxFSA3MaCaTx7hiJG4M4kzIWpwWzzcz4uRSZWQjv8mjxEqjVnmpuDOOutWNxQutjCXyN6hoR3Oqm9bEEdbeE2fmuRurviBDY6ORsgeDc+liCwFYXADU3h2h9LEHHD/p56e9PEd/to+H2iHad1scSKrHolXGmB+fwNNqxyOonSPKmEA13R7W27jo73iZ17XHV2Wh9LIHVq9ohcX2QTU8mqbkuTNXVfjY8VEXscjWWtVfLtD6WQA4LJG4IsvXpOlofX7rXljdUUXVNwYZhge3vaKDxzjiuOhuxy31seGhprW++N071tQFkj4XcQh5/qwtXnfqsIru9bHx4KbZqvDtGZKeX6e5ZLLKR1scSeApxZGinasOBl8d54a9P4t/gpK4Qc2Ip2HuTo/CMLRjNS7F4/S1h6m9bacMLvxrh4Ac78G100PpYAkuhsFftvjANd6o2HDk6Reujqr1BlV5rfSyhSYYlbghiEk1kC8mQjQ9XE92jrtfOZMGGPgvbnqqj5b5qmu9fipdaHqwifoVqbyUmseu/NrP5cTXmqLravyI+bbk/TtXeAM33xGm+p4rWxxLYq9UBRy/zsqFgQyUuI3mtJG9S7WJxWmh9LKHZO7zLQzad48Kv1QRQw91RaoptC/YeODzOy/94mlCbm7anarT3puH2CHW3hJkdzND+3T5aH0uw8dEEO97ZSGC7k9bHEiq5B6i7MUzD7RGiu7w4qxU2vSlJaLtqQ0+LXbP3uecGmJ9cIHmdOpdcdTY2vrHgI4C+A2MsTGewOC1EdnvZ9V+baF42twKbXAh2dSMtdpmf2G6f5iOq9gZoWWbvxXyeTOE5BbY42PrH9ZqP8DY6meqboasg/XvJu5q55D0qoVL2WYhd6qPnl2qyMn61D1dSwV2t2rTpvhhNNyZpS13OTa4HuP/uN1BXW8fc3Byf+cxn8Pv9bNmyhf7+f/9hhnWsYx3rKIWJiQl27NiBJEm8733vI51OIxit3HHt3dyZfIQdhmuIbQ5qa4+r2oa30UH1dep3cud3eohc4sVdr66z295ezyXvUOVIen42zMjxCYKbPdr1Nj1VQ/gS1ZfPjS+oOa8Cl6F6b0D7/gaovipA1dWqb89l8wQ2uzCLhVjlxiCX/GkTgc2uQl9pJjrVRL69SqLpvjieFpUUE9zsYmE6w4UCubzhzqi2ntgiIi0PVuFusBPa6iKyy0v9vqW1vv72CJFLPWx9ax21+8M03Rdn8Mgk86NZQtvdWi5KdJlpvC9OZKeXgx9p58LzQzTdF0eJqd/9wa0uGgubHRd+PUI6lSF2pZp3Mytmmu6L4yzkx8J7vNgjkibxkbwxSHUhXsKsVsxpvjdO013qPTYty6Mk9gZI7FXbtj6UZOe7GzU7uOsVtW3R3tcE2PBgkrZH1bxG031xLS/hTMo03RfHrJjJzOYwWo3U7Atp12m8K0awEHMqMZGm++LMDalxb+RSr5ZfAjUHFtru5sjHu2j/Vj9N98URC3FBZJeH+mXxqUkwIPnUfIjos9B0XxxbpGDDbS6CW9y89LenGDk2Rd3+MNHL1BhIcKk2tFdJzPTN40ooNN6ztMGb3BciXojbzaIR/yYX+Wwe0WnGt9GxwobJ64NU7w2o8+ieKrY8U4e7QZ3fnsaV9q67PcK2t9SrVaIKNvS2OFbYO3qZl7p9URrujpK8acmGTffG8bep8bW30Y5/oxOzoj6c6OU+am8Oa22dSYXU0Dwjr02hRFV7i161bWS3l6orArzywTN0/3SI+tsj1Ba+faSAlab74kgBK+efH8Iekai/M8K2t9VTvVfN8RbzbqJTtaFSJeJtdJC4NkjDXUs2rL05TPRyH9l5GDoyhqCYcSRklKiIf4uTpntVu8wNLTB6ZgrRpSalNj9Vw7Y/qtN8hLfBgRwsPGOXmdA2Dw13LNm06b44ngKhTXCYWMzlGetW89kbHqmm9pYluxjNBrp/psZdoZ1udr+nRfMv8SsDYDFoRLDE9UG136zqI5rfEMc7H+Yqw208eOnjXHPlNSwuLtLd3U1bWxtNTU381V/9FetYxzrW8Xrj61//OrFYjKqqKn7xi1+wmF+kMdzCQ1e8icsNNxMyxEjeFMLTrPpCb4uD6r1BBKeJiY4Z0tNZqgvxkavWxs53NhErrIft31EPJomFfRH/Fpe2h5Lqmyczn0X2qz5YUEzU7AsjBdS2VVcHiF3qw1o44GOSjHg3uAr/20TrYwlaC3shRpOB6QtzGhkhusdLeLsHKSBgEsDqNDPWPk1uLoczadP2qACiu70krwvha3FiEozU7AvjqFJjIHuVRM2+MMEdbjY9niSy24Ovxa5Vg6rZF9byEoFtTmr2hRk9PsXhj5/FVWPTclGgVp3yNKjk3bGz09irZCwFUo+/zUlVIQ4DCG724N2ort+ST6BmXxjBqa6z/lYndbdFqN0XIbjNTfXeAP7Wwt6M06za0Cfgb3Wy+cnaFXFN1ZV+AltUG1oUExseqqbpvirsVRKeBjvJ65figujlPoLb3FgUEwszWXwtDpRCDOSqW23DQKtTtb9JtYu9Ss1LOJIyNfvCTJ+f4+AH21ECItHCWl+0oTNp08Zvlk2YCvtI4e0eLbYCqLkpzODhCU58rhtbWKRmX3ilDFjB3tPn50hcH8LTpM5ZyV+w4TJ7W10WsrNqLqX62iC+QrwketS2VrdA4+0xmu+rproQy4JKePNvKtrbxJa31LLxoQSgVrVKLLNh/ArV3g23Rai9KUzNvjC2cOGgRb1C8sZQoR8BZ7VM7DJ1DpgE1S5KVLWhq9ZGPpun76VRzd7hSwrfMwV7T3XPcvRTXdhCIg23RxA86nwJX+IhuttLJqUq99TsC5O4Icimx5I4a9XnWCQMhTZ7iF7uw9vkxNvooO7WsBYvyUGrZu+hQ+Ok+mcJblXHYAuLqr0LPmL42ASzo2kEpwln0sbWt9Vp9woq0UwoxJjhHR4Se0OIfvWh+1ocVF+79P21mId0oRiKEhbY8FC15iOc1TITXSntfdz8RC1b3qLuBZsklWg1dGxCtWGDjeAWN46Y+m7HrvAS2+GndmYT11vv5N4bH6SxvpGxsTH+r//r/8Lr9XL11VczNvbvr8a1jtcX6ySlPzDe9773YbFYqK+vZ3R0FKvVSktzC3u4kTsbH6RpY6O2oEd3+bQqRce/1E12Po8SUh2a1WFC9lmxRdXfs/M5MCxtdtiCovbBbQ0rmCUT4TbV2aQnMprDAlBiMu5GO0pUgDQs5pZ0Re1hGckjaCQO0SmAYRED6rUkj4A9IhXaSkheK7U3xKi5Oaxdv1ipRfZasUckmu+LY4uKiA6B9me7OfXlHpSIhBRc0kKVfVYUn0R6Jks+m0fyCIge9Xd7VEIuEDE23FeNEpDUE9VpEF0CkkfQbOiokVHC6vh6nh/BbDVjj6oOTHAU2haIG/n0IvnMolY22BYUUQqLjSCp9zraPkXn9/twFOyi2TskIhfajnZMgcGgXdceuqhtWCIzn1N1QYs2DKljUoJSwd4CJ794gcxcVpsDAJJbwBFW23o3OJH9VjwNhb+NiCvayj6rtljKAavar0Mo2FBeYW8Ak7WgW+pX20peUeu3mMxR+xKxFxZW0WVdYe/gNrc2RwGkoKg+G0CwmbFIZgYOjjE/lFaTY96lfpWghC0iMnhggtEzk5gEI0rhOTui0gobCjYLi7lFel4aQxAKNizYxR5V7d3+nV56XxxBsFk0OxTt7SiMf+TENCwCgtq37SIbSh6B+RGVYR3a5kb2WbE6TAW7FOZhgTgt+0U8tXaiV3g1G1rsRXtLyH6R9EyGibPTSD4r9sJCKnsLbSUrB99/mvRkBslnpf6OKErcqtq7YMPBVyewOlR7N90RJ7LDi+RdsoscLLwLAuQzOUyCUSUtCeCILM3Dqa5ZMrM5FnPqidANj9Qi+6zYI+qYrJIZQ8GfCB4Bq8OCK6GssIviV9taCgHk8GtqcOWssWGLLM0Bg9HAeIdKdvI0OpC9VqoKiWdv3M3u7ZeyZ/5mwlRTX19PZ2cnH/3oRzEYDGzevHk9gFjHOtbxWyGTybBt2zYMBgP/43/8D+bm5kgkEjQqbVxruJtbrrsVb0z9KE1cH8QRs+EqfFRf+PUQRpMBa4Fk4EzIOJKqLxw6pJ76sjpVv2q1WbEFRISC3/c2OxHdglbxZDG3iOiwFP7GghKRqduvJhgy01ky8zmtKooSltR11gIWhwWTYGSxcKBFCUsr1il7RCK8xUPjXXEssgHRaSHVW4jhQiJyQESJSSSuD2KPSGRmcrz6wVOABVtARC70pYREbAGRyfOzLExlUMISSmGdwgK2gLo+xi73EdrixRaSsFiMajWaiIQSXZLGUyISvg1qUmCyI4XNL2Kxq2uFPSppcQxAPrvIdJ+68Sf5CjYsVCmyRyUEm4Xunw1y/rlhbCFpWfyhjl90CvS/MkZuIafGqAXYQhL2QhwqOgXMgpHJczNMdMxgj0rYgkvrlC0i4YjLzA5mOPNsL6LDosU9SlTEtiyu8TQ4CLS6VLPYTapdCrGKPSgi+5eejRKWtPXQYjGuaGuyGDXbghqLK8vWTltARClsIMrBwt9ZLIW2khYXuBsV7HEZd10h2eBXbWiR1TXcEZPJp/NahQk5KGrxqVRs67DQ/fwQc+MLK+7VFpK0WEX0WMAAk90p7RmvaBtWx9T5/X7O/2pInVuFGM8RkbU5O346RWYmi9Gs3r/VbtbmFqjzWZDMDL06odq73qElxIySam8lKEIGlLBqlw0PJwvParUNYZGFqTSyd8n2WtuozJmv9nLwnzqQvVaUuETdLWGUgr2NkoXZ/jSLWbCHJGr3hWm+p6owt9TryIU5a7WbWVxcxGAwYCvEz1jUbwlHIbbqf3mMfGYRwS6gxCSiO70r4iWj2US+cEouvNOH6LAghwvvQkzGFlhqC4vkFtS2clT91pEKsbjsFcnO52j/lvrM3bUOItvVxKFFNlBXV8Ou4FVcyj5qk3WYzWYOHz5MJBLB6XTyt3/7t6xjHetYx2+Db3/723i9XtxuN6+88gpms5kNja1cxn5u8N9N06YG7bu05oYwrhp1Dev60SBzI/NaDgCzGWfChr2Q81qYzsCyw3ZKZGmdMitq7iCwpUBSGs1gFo0U1ZUcCRvBrW4t7snO55g4q65pciGnZVbUtUnyWDEYDZoUsD0ia/kEyWPFEZOp3x+l6qoA9qiEwWjQKrXYC2tR9d4AtoCALSDS8e0eur4/iBJdFlsV2tqCEnPjabILOewRSatWbI9IOAqxVfMbEnhq7WoiPgtmm1ltW9joU+LqZhTA2IlpzFaTFi+ZrWpfUjHvkobMXI6pc7NL4y22FdV+R09O0vn9fmz+pfUOCtUE4oU17eAYGAzY/EsxhT0iYRZVgytRifR0mvM/Uwm0SljCXogbpEJe0GxVK9fMj2W0TYbi3xZJVM6kDU+dHUchznHEZO3eiuMvjlF0WbBHJC02t4UlLfcHal6imLsQlELbor2j8oq2yrLrmK2qXSSPasPYHh+eOrvW1hGRtDlqFo1ILoGBV8aYH1VzeatsGJWYPj9H78sjmEWjltuUQ4W2hTkrOgWyCzmGCxsy9oikxYZFGw4enqTrx/2YrWYtxwXqu6EU5vrgoXFy6TwWeSkWt6+Yh5KW8/JvdOJKKpgls3ZNe1TWqiC5kgrBTR5C292ITtWGYoEYr0Ql7GGZ+fE00z1zK56NWSrMWYfA4X86Q6p/HntUInqZDzkoYl9m76FjU2o+0iPQeFecxFXBFfGdI7r0PZCZy2GWzOr8NqvfM8Vrzk9kmRmZJ59R3+OGe2K4koo2t8yiOm5z4f854jbt4ETx3uVCTGeWTJBfZKoQB3s32HEWyOAARqOR4eNqRQpHlYy71k7kEjX2clc52dqyg92zN9HAZhoaGujq6uL//r//b4xGI1dddZUmwbSOdaxjHf8e5HI5nnnmGURR5M4776S3t5fqeDWbld3sNdzFlVv34q1W/Zu/1Uloi1vLeXX9eACDwaCt345qCU+TmsuZODfDYjavEWpMZhOO+BIZJ7zFjbPaphFLFtN5bQ02ySY8DQ4ShSII8xMZ5ifSWjUiR2E9xKSSiK0OC/lsHkxg84vY48v8fkwmvNtDw+1xMJmQgxIzhQp7steKIy4jOM3qnlREIjuX49gnu8jl8jjiMnJhP1F0CzjiMnND88yNpVfFCfaYjOy14qqzkbg6jKdewSQZIKfujTniS229zQ6NODzRkcIRkzGLxXV2KV4CyM5mme5W4y6LbFbHa1NtaguJSC6Brh8NMHhwXI0NC+uUYFPbWmQzYx0p5sfTWiwCakxRzO2YRRMWm5mRE5NMn59DClo1chaAM6auyZlUjq4f9GF1CRrht2jDIoLbPIS2q3vIJpMRR1zWYk7JU2hrWrKZsiz+cMRlLQ9kEU1q3se0tI/miC2PiSTkQt7N6rLgiMuYBEPBhpI2JskvENriwlWjzlmrs9C2ENcoYYn8wiK9hYrYjpikxe0WpTBnZRM9vx5h+vzMinu1x2VtH9MsmjGYjGp1HkAJiBeNV7V31w8HOP+LYRxxGWshBpIDS/aeG06T6p/DaFLvxSioYyh++0heK1anoFV9DG7zrIgpHHEZ0StADkSvgKfRSdPtKuHaHpGwx1ba22g2MDeaRijMLWPBhkpUxBGV6H9pjCOf7MIWlLCFrUR3e7V3wVKQdMvO53FUyfjbnDTdE8dVI2vfY4JdtXfRRxgwLOXWTIVnXog5Bw6Ok5nJYpFMCE4TVdcENF8DYLYayafVuCywxYOj2rYUB/utK+5tkUWV7wAIigFPg12L221ekYWpDD2Fw43BzV7iVxWIgSYTVYkYbdbdXMGtNEZbkESJ559/Hq/XSyKR4POf/zzr+MPCsFj80l7H7xV33303X/3qV1f8m48wmw17tP8WPAJNd0Q59cUu0im1Islkzyz9L6zepHckZTa+IcHYmamS8g3eFpUx+8qH2yEN7iZFV8JMlWWr5cIvVDmOixHd46XqyiCnvnZetw9HUtZkpxrvjHH62z0lpducdTY23FetO25QKwCNdUxz4bny+qqgVh6aG0nryqbV3xHF1+zk+OfP6bbZ8c4Gsgs5Dn3orO51qq8N0P/iCOnU6hJ7Ggpye68H6m6LMHR0oqwcXHi3h6rLAxz6eGdJ+TpQK9fU3him4zt9ZUtxX/rnLUydn1klC7McW99eRz67yOGP6NupWNVneSm/VRCg/uYo/S8PL0kV/jZYg91rbgrR+ZMB3XahnW6Se0N0fK+P4cOly11ufXsdFsm8Qppj1XX2hdcmqyfA1qfqOPu9/tJSfQLsfncLc2MLHP6n0vaOXuFlfiTN6IlplLiV1IXV5SqL2PHOBnKZPK9+oLR0yo53NrAwkeHoJ0qXWbcnJBZG5kin1CoM+UyeE8ukUdY6bsEj0HR7lFNf6iadytN0d4zp/rkVfmdscYjD/BKMkM/nEUURURQ5cOAAdXV1uve4jnWsYx3LcfbsWS699FKGhpZK2poR2MLlOA1u7d8iu71YXRa6vjeA1Wuh9roQ7c/2kpldvd63PVmD5BF0JUsb746xmF/kzNd6sTgtWER05b42PlyNRTFr0k4XY8tbasEAhz6ss+ZaQPYJzPan8bTYMYsmjdhRatyiW+Clvz9VUh7LWSOTuDbEkX8us3YvQ9U1gbLSazvf1cj8RJqj/1J6TfG3Oam5IUz7sz2M6cSVFhlC231c+HkF2Y4ycnW/CZSYhK/FwbkSMi3L0fpYgtxCab31ItqerGFxcZGjZaRLWh5UZcRe/OuTum38bU6S14U4/dULunIgctBCywNJzv14oKRERxHOpIyrVqH7x/rP7TdCBbtbnBYCGx0lvyuK2PxUDQajQfcdcNbINN9TTd+BUd355kzKmCQTYyf0y6IXEb/Chz0m6z67hruieBscHPnUWU02beVNQc21Ya2cvBKTdKUDPS12Gm6J0fG93pJyfNE9XqK7fRz6WKeuLJ2zRpXfszgttD5Uzdnv9pWcBw13R/HWOzjyiY6S/ia0043sFen8Xj8Wp4X6m8O0f6d/xXWPLr7IED0YjeoG/eLiIs888wwf/OAHS45tHetYxzpK4f/5f/4f/t//9//VJN0MGIiQpNmwVWtjVswkrw3Q9eMhsqksVVcFmB2dL5mrEL1m2h6vY+j4REnZMSUqUnNDmBNfukA2lVXlxXpKS5iZFTNtjyfp+eUwgyXiJXeDQt3+KGe+2aPJaF0MOShqslPxKwNc+NVQSTkv0Weh7dFaddzfKy2XVn97hFTvHP0HSkudLIez1kZuPkeqt/S9RXZ5iV7q4+SXunXvv/XRBIv5RV77V/18T3Cri9EzqZIycRoKcnuvB6KX+ZjsSuneF6gn0xPXBjn5pW6NCHYxlKhI411xOr/frx04LIWd725SZfm+3qvbpuUNVWAwcOJz+naqvyOKSTBy6osl8iHLEL3Mx3h7SldW7zfCGuwe3uFm+Ng4WZ3LOWtt1N8SpfN7/Zq82cVofqAK2Wvl4Afbda8T2eWl70X9+G45NjxcTfdzg6XnpRm2v62B2eEFXXt7WuzkFvJMnp1B9FmYn8jo2qH1sQQswrFPnSv9+6MJ0tNZTVruYoheM9kFVQYveWMQg9FAp47c4Y53NDA7tMDxEuM2i0aS14fo/vkQ6YkssSv9pCczDB2e0NqkFlMc4RcsGOe0nFcsFuO5554jFout6nMd61jHOkphcnKSO++8k+eee047MKMsutjIJdgMSweNXbU2JK+V/pfHMAlGYpf76Pn1aElpspqbwzirbBz6546SEmnR3V6MFiMXfj6MSQCzrbQMGqhVLGWfVZN2uhj1t0cxi8YV0usXQ3CaSU9mkYNWBLtZk5FfNe59hXF/rPS4JZ9A7DI/7d/q1ZV+Ww5/q7OsHNrGRxIsTGVo/0bpmEKJStTeHKHr+/0rZPFWwAT+lvLXKbZby5grQXCacNc5GDw8Xra/YgWmrh+WXgNBnScmi1H3/qFQeajNxcEP6McUSkSk5sYwnT8YINVbOrdikkw03x3n/C+Hyu6Tih4BR7WsSY391qhgd5NkwpmQy0r01d0SwWIz6c5x0SPQfG8VfQdGGTxY+ptA9AhYFFNFyTsAT4MdR8LGOZ1nF77EQ2SHlxNf6C4tCWiC8BYP/a+MadfWk/OTAgJNd1bR9aP+FXJ5RbhqbVRdFeDUF88vyciV6GNuKI1JgLpbY1z4xXBJOb7wJR4iO70c/1x3yfE4kjK2gEj/S2OYBIhdEaTnVyMrfNz5xXY6OUHeqP6bzWbjv//3/86f/MmflBzbOn63KC3cvI7fCdLpNFu3buX48ePavxkw0Mx2IobqVe3tIStKSCJ8SYDunwytIvFUXxsg2Obm5f91mqmuWU5+VZ80ZDAZsEhmdbE7PLmqXc2+MIFNLl794ElmBtK8+N7VmySCYiSdyjN8ZJzgVjeZ6dJOKXqFl+rLg5z/1RA9z49w+murP/rCuz30vzDGZMcMr/2bPmEIQWU2u5OKLkmp4Y4YzqTMgb87w+CBCd1+SEP713vp/lF/WXLR7NACmRn9VUdQIHKJD3edXZcwAnDJnzSxMJnh8Ef127TcH8debVM3CvWINQL4N7qQ/dayG1z9L4yVJLAtx2Jukexcjvmx3z4xkp3JkU2Xj4rKkpMKEF0C/hYnFquxNNGlgJaHqrBHZV7S2QwGlYRVty9K93OD9L1QOlHiSMqEtnoQ3YLuxtRYxwyx3Vmm+/QX/Fc/0KFVFNMjRhUJSjU3h/E1OTj80dOkS7yi7hoFa4GJXJKklIZjn+4gVShtGt7tUU8rLrtmUU4NYOODSXILeQ78/ZmSY5/pmyO7oPJTBYVVYzrwd0t/1/bmGgSbeUVf0+eW7GJ1W1jUe53ScOjjHeQLiaOWB6uwugQOfUglR6XH0iuIUK5a9STb8k1MjyHANdxJOp9mbls/Bw8dZH5+npaWFmpra/nrv/5rbr/9dp0BrGMd6/jPju985zvcc889zM0t+S0nXjZzGRaDZVX74GYXZtFE1/cGWBjNrFqX2t5cw0z/HB3f6qf96xfIlCFmyH4ruYzqIDOTGTIX5Rq2v72e2dEFTvzbeX1ScIH8keqZpdyxgu1vqcdgMnDg78+UJmhYwNfsYOToFCc+14lFtuiSShwxGdEl6JIuLLKRtjfX0f/KKL2/1CeMFMd+6CPtJUleRcwMzJKezjCtl6wB6m6N40oqjJ6e1CV6Rfd4iV8W4OSXu5ns1O9r57sbGW+fpv2bfbpt4pf6cNUq9P5yuOzYj33ynO5vRaQnM7weZ0LmRtNkZsrvSM0OZnjlH0qv/ctRdVUAW0AqS1KyOC1sebKGkeNTGhGnFDa9KYmgWMpet+XeOJLHSu/Lo7rzbmZgfnkR2FWY7Jzl4AdOLz2PEsQojbRjUd+J4ROTuvfoTNoQ3daSvwGc+WovSmxMJShZCgnDI8te4gyaXaqu9hPd5aP9O6VJSAuTGebGFxg5qf5mkY0r5lXvr0a12MfitLD1zbX0vDBM7y+X4qHinHYlZCw2M3mdaXnmK704a8bV98QC259poPelEfpfVL8RBl5eSnaFt6mnXa128wqS0ibDLgCyyRRnZo/S19/Hhz70Ib761a/S0NDAj3/8YyyW1f5zHetYxzqy2SwPPvggX/nKV8gXHJUZCxu5BJ8htKq9YDPjqXcwM7BA34ujnH9+pc/2tzmJ7vJx+F/OMj+a5fjnz+kSbxYXVflUR1Ri7PT0qnbBbS7ilwU4/C+dZFNZDr5/9SaJWTSSnc8z3plidnie9HTpddfdoNBwW4zzzw/Sf2CcCz9bvdZ4Gu2MnZ1mfiTDsc+cK0tOUcISRpNRl6QUudRLYKOTw5/o1CVNFYkrfS+OMnR4nOy8fvyS6pvTqijr9VV1VRBvs7MsQWfLm2qZn8pwsgxZu+oqVarkyCe7yhKeIju92KNSWbLPeHtKO2leDumpDAuTvz17amEyUzY2AcqSnIowi0Ziu32ITgtnv6MfUyWvC+JpcpTfwIuJNN9bTfdPB1cQXZZD9JqpuiqILSzR8WzpeHemd46FiTSzI/o5r5OfP6/JHuoRo4oEpeA2F+EdXl77VFfJuScHRbXiU1gq/Q5n4bVPdZKdVy/iblDU6gXLrrn8G6flPvWw3GGdQxVT3bNLz67E2JeTl+pvj2Dzixxelr9cToKTPFaMFn0hikMf68S4TEpSiUgcL3zbZefztC97Bv4NTrKz2RXPTjEo7OEmsvksc20DvPLaK3R0dJBMJqmvr+eDH/wg11xzje7117GOdfznxmuvvcY999zDqVPqfokBA2ESNC1uwWQwrWrvb3UhugX6Xx4jl87T/ZOVMUzdLRHmxtP0/nKE7p8OYSxDzpD9IsVL5NKQS6/cHGm6N8bCVJau7w+suk4RJkH92+kLc1rlnFJoujeOoJg5+okuZgcXVpMXTOCIykydn6XzB/2q/JfOuCWPFVtQRPKqpIhSY2q8u4rhY5Pa/5UePJCDk184R67MgfmFyTTzowvMDOsfKI/u8hLa6mG6d06XCOJM2qi5MUz7s726JB6A1seSjHVM0/sL/UN+/hYXoe0exk5PkdEhjUB5clIRC1MZzMJvL9iUnsmwMJlhMa8fo+bmcrz2mXMV+wpt9+CpUxg6OqFPLjJB6yNJxk5NaZWXSqHmpjCy38pr/6p/3eqrA7gSNibPTuvOhVTfPGZZ307zY2mOfqKTXKGidili1PxYmvnC9m/z/XHG22cYOFh6P9gel7CHRV2CVf9LY4y3p7T5trzoCKh/UyQoeRrsJG8IcfZ7fSXJgbmFHKmBOaYvqPPSJBiX7gOYODvDxNku7bcND1fT//LYiner+C5KfgnRI6hS3SXQ/9IYE11L4255QxUDh8Y1gthU16x2H85aO74mhypTt4ykVGWop4p6cp5ZOq0n6O49xzve8Q7e+973cvXVV/PZz34Wk2m1/1zH7wbrJKXfA8bGxmhoaGB0dMnZmTCzg2tRljGZoUDEiMi89DenGD0xzSsDHauq4hTJQtm5HBgNKFGBVG96FfFoOalj5NhU6co5BXLF5LkUngYFoyxAarUnbbgjhrfZwdFPdDAzkC5ZgUXwCKTH0vT+fBRnzKaVWLsY9oRE8poQnlo7xz/bXZKg5G5QMFmNjByb4qV/KEPgAXKZXEGii5LtBMXI1rc1MnV+hhP/dl6XoFSsPnP8s/pJGFAJHe3P9jDVpX9CHdTEz0yFU1IzIwsILqF85Z80HPxI6Yo3y+Hf5GC4xMbIcujOg38H9KrsXAzBIyDYDLqVfeaH0uWJagVM984h2CxlKyUNn5gktsdPakA/UJvqmuXsD/v0CW2o5JlX/lFNDIkBgfmJdMlrplPqvGl9qIbh45O6CSDyiywuLpYkKAGMn0rxwvtOatdIXh+k66LqDcUqU4JiJHFNiOAmty4B7sKvh7Uy1sX3cjmWb7pvfKx8RaiF8fTK4PAi+x98/9LcbHlDFfa4vIJ0N78s2DeZjBiWxWJFX1bEi//zFEKhrH7L/XHsVTbt/RcMAsKr1VxDNYf5FdaAkdOnT3PHHXdgMpl46qmn+NCHPlTyHtaxjnX858N73/te/uIv/oJcbukjJErNitP7oJIFtjxTz+iJKc5+t5/XPt21ipSynFBgNBkwFj6+i3JsWrsCqaPYV8mKMMuIFQvTGebH9VlOO9/VyNz4Asc+cU6TalrVXWFsPS+OkM/qf8hvemMS2SsycnKKzCxkZldfN36FWqnows9HuPDCiC6ZJJPJQ25Rjb10ULc/jLfZyeFPnGVhtHRHFtkIFhOzgxnd6jlFnPzCBXwbHboEJVDjrtnR+bIEJYsMc2MLTF0of+ro5JcuoMSksgQlW1QkncrpVr5Z3tfrgVTPXEU7FeFpUnSrUgGcebaXfImTksuRmVRLsM+N6yfSACa6ZjRpDz2c+NIFZK8+MQ5YQRqTw0LJ6kXF59F8fxx7VObl95/W7XMxvySBVgqvfbpbk9fztNhJT2VXkfKK/91yTxXOahtTPbMl5/P5Xw4jugWNoGRxWlbMi5neea0ymS0q0vpwkv5XRksSqCwiZGazTJ5bIlwtv8fhI5NLZCkL7Pzj1aS74jtgC4gYjJApbApfTI46/9Mh+g+Oa2O9mMBn7lRo4VISTNEZOMbs7Aw///nPEQSBhoYGnn/+ecLhsK6N17GOdfznwfz8PJdffjmvvPKK9m8SNrZwOfJFOa/lRIzZwXkOfqRjFXmlSBbKzuYwmAxIHitzQwuryA1aXx9pZ6ZvvjRhtkBQmO6ZJz2dwWyFbIklMnKpl9huH8c+c465oQWNZLCiK8VMNpVl/EyKoWPj9B8qTSoSXGbqb40y1j5F+zf6ShKU5KCIRTExeXaGQx87W7YyzmImX3bDBjNse7qeyXMpOr7dr0tQEn0W5kcyq3INq5BFrVY0UZ7oM3EuVZEMNDe+wOzoQvmKTMChD7eDufwGlzMp61aTLCLVO69bPec3RTlC0XKYFTMW2cTcUOmYKTuf59i/lieqAUz1zmH1CphFdCsgpXrmSQ3MMTus39f8aJYz3+wpW0kqO5/X7GRWzJDNl5w32fk8gsvMpjfWMHxsgm69wwmLQG6RbLb03JsdnOeVD57R5nl4h3sVKU+bb2ao2x9lZmBO92DhuecGNemUor9YjuXjbLo7js0n6laEmh/PYrQsizsvIjUtH0Mp0t3yuW0UjNq4So3t0Ic7NOKX1tfHzpKdz2M2mLEfjXE1Mc5ygkxoilOnTrF3715EUeS//tf/yl/+5V+WvId1rGMd//nwgx/8gDe+8Y0MDqprugkzNbRQbWhY2dAErQ8nGDs9Te8Lo3R+t38FeQBWEgoMJgOmgh/LzeVWcBtMArQ8uETqaH+2BFF3GSFifjzDwpR+EmB5BSI9ooVJMpGby9F3YHSFf70YNderksFHPnaWXDpPenJ1vsPX4mDkxBRjZ6YZOzutS17JpSlP5gYCW1yEd3g4+cXuktdSBw8mwUQmldOt3FdE769Gmbowq0tQApU8Pd0zW5aghEk9ADZXogLNiuu9MMro6emyBCXBaSaXXixZZWtFX2XIUL8J0pOV7VSEEhFJ9enHQhd+McyFXwyXrzqVg5nBeeYmykuyTHXPkE6Vz/t1/7ifQa9Ylqy2fI4Xq4KtGlLhPYxe5sPbaOf4Z7pXva8AmNQ5msvq32D3T4a099EWFsln88wNrxxgcb7FLvcR3Ozmtc92l6yGNnZ2GulVQSMoFd/LItKTOa2SlqCY2PBwkv6Xx0q+10bBwMJkhpmhee1elj+nVO/cisr+pUh3RUKT4DRhNBnIFWKti8lRYyenmTw3q4219dEEY2dTWl+mUZl6tlPNJs55jjC1MMkXvvAFvvjFL3LllVfy1a9+FY/Ho2vjdbw+WJd7+x3i/PnzbNy4kenppdMeEjZ2sBfBIGj/pkQFLHaB8VMp4lf78TY6OPyJsyVJEdv+qB6zaCorMSUGBOaH0sSu8uFrdHL4k6X72vR4EjkglqyapKFASFCiArX7Yhz5dGfJvmJX+YjvCdD1o/4VJ3RXdLWsYkv1tYGyp7cv+dMmFhfh5b/Vv8/EdUHO/ahCcqWAzU/X0n9glMGDEyV/D25zUXtjhIFXx+jUKcENULs/zNkf9r9uMm6vF9xNCi33VDNwaIyz39ZPpDiSMvl0tqKs2lrk3hDA31SZGLX7vzWzMJXh1Q9WJlr9vhG7ysfE2emy0mi7/6yZhVRGVxoNYMtb6zj3kwHdSmbL4d/sZG50XveaNfvChLd56Pxxv25lrOgeL8Mnp0mPpUtWQlqOS/60iXxGv6pS/Go/it/KyS9VDgJbHqrCGbdx8AOnS5L9qvcGcNcvVRizhQRmBkrPtbpbI/hbXRzXIahVXxtYUa0suse7Siama/EkZzmuyZFYLBaeeOKJdbLSOtbxnxjvec97+Nu//Vutco0BA41sIWaoWdEutN3NwCtqvLLpTUmGX5vUKo0sh6vORtM9VfT+alhXakz2WTTC0qY3JRk6OlEyFrJ6LWx5Uy0jJybp0CEdLSckNNwZZfLcLIOvlo6rtr+9HgzwSolKAFp3MmRm1TEqVTZdCbjIbi+Ja4Kc+6l+JUJ7tYxZNDJ+uvJa52lSiO3x60q8AWx5phaLZObl/3Vat429WtWw17PBHxJbnqnFIpt5+X364wdwNxZOgpfJaaxF7g1UOTeD2cRMGSmU2n1hglvcHP5ER2mZsj8kLFB1RYDzOqcoARI3BAlv9XDyy+d1y7cHt7rxb3CUj1OXIXa5j54yibMd72xkMb+oXw3KAtGdS3FI8b0qhdBON4m9ITp/0F/yfbPI0HhPNae/0aeSg8pJ5Vngknc0MdmVKimLbZGh+YEk/a+MMXxkcoUvKoWd72pkfjJdsjJrsa/BQxMMvjqOq85GeiK9or/MYoaDPEcKNfaXZRmXy8WRI0fw+Xy6113HOtbxfy4mJibYs2cPJ06c0P7NjY82LsNsWDoTKbrMWBwWps/P4W1xEGhz0f718yWJGC1vqELylJeYEl1m5ieyeBrtBLe6dfuqvTmMu96+ghyxCgVCglkxU3tTiLPf6inZl6fFTt2+KJ0/6NM9+LWcXBLc6mLw6ITudbe8pRaD0cCrH9LPMyyPVyuh8a4YwycndSVP7VUSLfdV0/PiSNnNpMhuL30HRl83GbfXC6LPwuYn6uh7aXXFreWQAlYWczldObgi1iL3hlmtMDp1rjwxatsf1ZOeyrxu5KjXE94WB/MTaWbKbORte3s96VSmbIXQ5geq6H1hpKItABwJmVw6r3vNwGYXNTeE1VhJpxqUp8XObN8c8xPZsqQtgM1vroFFVlRCWg7fRgf2mETX9wv54zJyeYm9AfybXBz5ZCfpEiQ9X6sDf6tLqx5W9EWlEN7hJn6lKk9YSpbF3+bEt8Gp9eXb6Fgl1zy02MtxDoBpkXw+jyzL/Nmf/Rl//ud/XvoG1rGOdfwfjy9/+cs89dRTjI+r8YEVkWa2r6pY6aq1abJLNfvCTHSlSkpRiR6Blvur6XlhWFcaS1BMmkRTzb4wE50pxk6t7sskGNn4aIKRk1NrIq5ELvEwN5bWrZLYdE8Ms2guWzmnWInJJJmwR8SSUlOg7ok13Bqj+6eDupWRrG4Bi2wqTwIqQAoIRC/x0fEt/Qrd9bdHkX1WjnxcX2lEcJqxBcQ1VYr8faP+9ii2oFhWJQYKhKHB+bKEoLXIvUGRdGIqS9bytzmpvirI8c+fK1kJ6w8KE/g3XlSF+yL4W51UXRngzDd7tMpDF8Mel/C3ujSVlkrwtjgYPaG/R7vx4WoMJkPZWNXTbNd8RPG9KgVHlUzdLVG6fthfet6aILE3RN9LwyqBr5xUngk2PZpk8txM6WprJpWAON4xzXh7CotiKkus2/hIgvR0hjOl4nsT1NwQZqIjxdiZaaSAQG4ht4JkmFvMcYpDDNDNIovIsszmzZv51re+tU5W+h3it6/Dto5VOHr0KLIsU11drRGUXPi41nA3eww3rSAoAWx8uJa6fREALjw3rG7KL3MC/k0OHEkZgNGTU4ye0nc4O9/VyKY3qhtxPc+PqIvIRQ5F8KjXHzk5xUwZOavm++LsflczgmIk1ZtWpbt0nFPPr0eYHZpn7IQOQckjsO3tzWx8WJW1K0dQAjjzjR5O/Jv+Al69N0B0l4/YVWUS4oIqiwVw+J/O6hKUAAYPTjB1fobOn+gTlNwNCsE2N823l9cE3/yWWtqerCnbBlTilH+To2wbJW5l939rIX61v2y7mZ4U/a+McuHX5bXgG++IseHBymNbC+puitBwWxwlri+VAdD30uiaSkPu/C9NbH66tnwjQSXXRfd4yzYL7XRzyZ82aXNdr6/4pQHqbyn/PIePT9L9k/JkuEMf6mD8VApBUa9dDrU3hmm5N6H7e+d3++n68UBZ6b7eX42SHkujRAW2/VELjXfq38Pwa5MMv6YfGF14blgjKLU9WcMl72nSbTt6coqZoXmNoHSxfbt/MqSRimr2hWl7ok53jg8dm2Cmf04jKFVfG1jZ14+X+opd5SNxTYjqvSvbJA3NXGu4m2vi11BdXc3CwgIf/vCHiUQi3Hbbbbr3sY51rOP/PDz55JMYjUb+5m/+hsXFRYyY2MZV7DXctYqgVHVNgJobwvjbnAAc/XjXKoJS9DJ1nZnomGH6wgyj7aVjL3+bk7Yn64js9mp9XUxQshSqzCyMZpjum2OsXUejvFAVpeX+OABnvtZblpwzdGKSAZ0T/AANt0fY9vYmrF6VuKBHUALoe2GUzh/06xKUQI0h6m6O6v4OKnkEC4ydSpUlKAF0Pz/EwOHyG281N4RIXhcs20YOWtjxzkY8Lfay7aJ7vDTfGy/bBlSi2fa311ds1/n9fi78srQUcRGuOhvNd1cR2/X6EDg2PlxDw23ln0HPSyNc+MUQs6U05ZchfoWPXe9p1uanHnybHLQ+mqg4ttbHE1qcr4fG22JEd3qRw/rxWe8vBhlrn9YlKAEMvjquEZSKc04P8St8VF0RILDVpdvmxBe7OfWVMhWvMmgEpZYHq9jyTKPuNUdfm2S6Z1b3fcvMqlWcMpMZrF4Lu97ZRO0+nWpEGdS+jqtx3MXPKjMLR/+lS0uAbXikhq1vrdO9jZETU1pM6KyRcdbIq/oq+py6/VE2PLLSd1oMFnYZrudaw93s2rqbfD5PX18foVCItrY2XnvtNd1rr2Md6/g/Cz09PdTU1OB2uzWCUog41xruZpvhqhUEJYCWBxPUFnJeoyemOPn5laQiJSaiREVA9VVDerIawKYnkrQ8mABg7PT0qr6gUBkGGDszzeS5lC4hoeqqADve3oDgUisknf5yaYISqFJTE10pJvQ2kczQ9uZ66u9Q1+nBVyfKEn1Of62Xk1/WX3s8LXYSe0OEd5TJL5jVTQmA01/t0SUoAUyfn2P4+ASDB/Q3DUWfhfhlfmquXy3NtxyN98Rour9yTNV0bxx3g1K2jVkxs+OdjeXvE5ifyND90wEGDuvnSQDqbg6z4YFkxbGtBeEtblruq8ZeJZVtd/5nQ3T9uHLOa/OTNbS8oapiu7r9YYJl4hYAZ62NrW+tQ/SWF0iouSFEYm/5WLr/lbGyxC9Qpd+mzs2umHN6qLs5QsOt+vHq0OEJ2r/Vq0tQAvV9m5/IIrjMbHlLA8nr9e9h4NXxsj5j5LUpjaBUf2uEbc/U6+pKjHemmDw/qxGUir5E6+vYlEYqCm510fZkHZ7G0t8g410pJjqnNYJScJtrxe/DRya1vjyNdupujhLZtTLXGTBEudpwO5e5b6K2po6ZmRn+4i/+glAoxOOPP657z+tYxzr+z8PHPvYxHA4H9957L+Pj40go7OI6LjfsX0VQ8jTZqdsfxV2vrsGd3+1fRVDyNKu+a34szejpSaa6S5NQlYhI66M1+FudS31dRFAySaosUi6dZ6Jzhqlz+t/yrY8lSRbijL6C3JQeho9PMVgmZxTe6WHT43UITrWqix5BCVRljY5v9+pLtwG1N4aouaF8DOSokjEJaiWXcgQlgN4XRujXqRBVRPxyP4lrQyqRQwcmyUTrowkcVbJ+I1RiWvXeQNm+QN2z2fBQ+dwNQM+vhjlfQtJ4OQSnmaZ7qghsclXsby1ouC1eds0HGDuTovung6QrVEDyNNjZ8hZ1fpSDEhGp0cvJLEPy+hA1N5dvF93ppeqKAJJfP+c1fGKSoaMTugQlUOUPiwQlR1Iu+0zd9QrJ60J4GvRzomee7aHjO+Xna9FHxK/ws/HRGu29vhgzA7OMtU+rhzFLIQfnfjhAejKHSTDS9kQt0d06e7k5mOhIMdG5VKHp4t87v7dEhmq4PUbLA/qx9NCxCUZPq/chegSUiLiyr+/2M3ZG/T1xTZCmu1f2ZTKY2GDYzl7DXexpvhLDooFf//rXBAIBduzYwZkzOgcb1/FbYV3u7XXE0aNH2blzJwsLSxVSfITZbNizop2gQPMbauj60QBTXbOc++kAE3qLtwB1+2MsTKsSa6UqB9kTEvn5HDMDaYaOTpDN6LMJd7yjAaPFyEt/c4q+F0bLbkYNHBlHcFpIlyoph0rGSO4NcerrFxg/lVJJTDpIj6WZGZwvuxnVfF8cR7Uq71SuLDGoZIhcLk/P8/oJlrZHa5D9IqPHJnQl3hDA3+Jk+PBkxdPY42dStH+nl+HD+sEMwGJ2sWJJSHtCQvII2GO2spWIDCYjC1Npxk6Wv2Y6RdkKUEWc+/EAZtvr89r3vzRCZiZLqkL5SD3N4YsxNzzP7Ej5vkiDLSiymF9cVVVnOWaG5llcBJtvtdTZ8r46vt1TsRKUJuG2bK7oYcMjtYguqzrPdS7b/mwvC5Pl77P4XjbfG8ORUDj04VMlqyWletPMjszTe0B/k3Q543rHOxrIzOU08s/FGG2fwl2ln0QcPDihkf3qbovg3+ji1FfPl6wg1fPiKDafVbNvcJtrBVFwqmuWo13qBra3xU5stx/JJXDqK6srBfQ8P4LZYtLm0qbHkwy9tqxSyXkXtWzDTTXttoNMTEzw7LPPYjAYuOOOO/ja176me0/rWMc6/vfGo48+yqc//Wntv02Y2cbVOAzOFe1C2924axROfukC5386RC6d0z3Z0nBnFG+Tg8lzs6R65jj+2dUyA8WTrsNHJvE1Oxg+Ujq+8bTYabwtRk+hElMp6RANGVWybLRMDNT2ZA0Gk4HD/3S2bDUagP5DE1jsFn25NaeFzU/UMHJykq7vDVQ8qX/yy+fL6sxbnBaS14fwtzpUKS0d+DY6GDk9xdiJ6bKbaQBHPtmJu6b85pbVZWUxv8j8UJkj1oAracMWLL/JBEV52cqx0mTnbFlpOYCZvhm6fzbI0OsktXv++SEWpsuXmV4YzehW/VqO8c4Z3A12VV6sTJjpiNqwBUWsXv25BLCYWSRfIf49/ZUePE1K2QpPmVm1HZQ+Ub4cVq+FmhtCeJvsunIgF34+QjadL0vSK1amsshGNj9dz9gpVbKxFIaOTKhxvp4c4mxee889LXbqb47S/q2ekvJ7C1NqievBo/pjW35fW95Uw8J0ZkXp6+Xoe3mExcJnoBwWIL+4QiKx83tL91RzQxjBbtGtznvi813IhffFVWcjusvL8S+e1+5bORTlMqIc5UUWPQscPXqU1tZWXC4Xv/jFL9i4caPuPa1jHev43xcDAwPs3LmTCxeWyDWl5HQxQ8OtUfpeHiXVM0/XjwaYG9Vfp5vvqWJ+PM2xT50rSVwQvWYwGJgfyTBwcBxDmUT9xkeqsToEDn6wnfH2VNnNr5GTU8hBK2kdKTJnUqb+1hjtz/Yw2TXLmXISFFmYPDfD6En9davqqgC+DQ6O/ktnRemvsRPTnLX0lT2JXb8/gqfOwXTfbMmqL0W46xXG21N0frd8zmh+JMOpr5yvKKmWz+Qx5sufeRVcZuxRidTgfNn8ntkKqYE5JktUmlmBLKvkwUqh+7khBOX1yXkNn5wmn19kbqj82Mo9o+WY7ptjoYLsHYAzqWAUjCrRTQcLowss5hYR7ELZqlGnv97DVE/556nlhc3gTipl35nGO2I4qxQmO1O6soJnvtFDLlM+Jiye9o9d6Sew0cnRT58rKQmYnsgyeX6WoTIH75Z/w2x8Y4J8dpETnyv9LTLWkVKPa+uYbLJrVpv/4R1uqq4McurrF5gssfE9emIKe0xmrLAZVnzPipgfyXDma+pJfjkoktgbQvZblyo6LR/X6Wm6fty/lG+7NcJEZ0qLgy2jIonRNgLU8pr1Baanp/nkJz/Jpz/9aZ5++un1auLrWMf/wfjoRz/KO9/5TmZnC5LeONjMpUgXyek6qmTc9QrdPxli7NQ0BqNB15+Hd3qI7vYxP5ZmdnCh5N6NPS4xfWGOVN88w8cmVP9ZAlJAoPmeanp+rVZi6v5x+YPek+dmmC6zLtXsCyMoJk59qadsZRiAsfYUokfQlVszCdB8f4Kx01P0vTRWlsQE0PHdXsximRjCBLU3R5i6MFNWyUSJSqo06+ACsxX2zc5+u18lUpSpQiTYTeSziyxMl48hHFU2nAlbeYkzYLp3lmwFCTeAueH0Knmwi5FOZen8YT+pC5UrLa4F538xRH5BZx+3gNxcrizZrIhU3yzTvbMYjOVK+YDkteKIy7oSbEXkc3mMFWq+9L4wyuT52fJ2y8GFn6t7ecW5ojc8k2Ckbl+U8bPTdH2/dBw/3p7i7Hf7ysZv6juiVjXa+GCC8XZV/rFkfx3TGC0GXZm/XFolIYH6/jfcFqPrBwNMnV89B3K5PFPnZ1R5RR2c/9nSvmbzPXGyc9mSlcRBLYZhtKjPQFBMGCymFfJ0y6vBxa/wo4QkDn2so6R9O77dh+RRi2+IHoHwTg/nfzqgVZCSTvnZzU2cp50JTz+vvPIKjY2NbNy4kWeffZZk8vU5FLGOdbm31wUdHR20tbVpwQJAkCpaDTtLthc8AtuermPs1BSnv1b6hWt5qIqO7w6QHksT3OFi8MiELulh939rJp3KcPD9+mWiBcVIOpWnem8Ak2DUJbQ03xfHmbDx4t+fqihpJngE2t6Y4PQ3ekrKNYG6mTY7slC+hHIBsat8BDa6ysqCbX6qlpmh+TX1JygQ3OHnwnP6BI62J2uQAyIHP9KhT2YBktcH6frh2qTl/hDY/FQt4x3TayYEVcKa5N7WCEEx0vJQkoFXx3SlAH+zDnnd5fb8mxykZ3NMljm1v/VtdVgdAi+874Tu9QWPgK/RXpb8V4QYEGh9KMGpr11g+lzppFf8aj/+Dc41SeUJHoG2R8v3t+nxJOmpTEki0MVoeagKe0TmpX8o7QuUqEDyuohWJlLw6BPC/Jud1O+PMnRsgo5vlmZtR3Z7Nbs13RNj8MhEyWSmoMC2tzczdWGW458tPT9TwgQvL/yUPGpQG4lEuPnmm/nnf/7nSre9jnWs438T/PEf/zEf+MAHNFk3CwI7uBbZUPpkUcsbqlAiEi//4+mS5AJXnQ1vg0MlJlgg0OrSJTXU3RLG3+rixOe7dTdxLE6LKuVUuPbZH/SXJHhYZCOb31LP+JkpfQm4ZWi4PYLRYtT9YHMmZWr3RTj2yQ5dOarl2PxUDQMHx3UJSs6kTN3NEY5+plu7n3II7XQz+tokmdnSSQWLDNv+qJmZwbmykhLOGhmD0VC2ms6/C+WktX4DhLa78W90cuxz516X/tYq97ZWxK/w4ai2lSfF/YFRSYJNDlpoe7yOia4UJ7+gX2kiusdL78uja3oOdbeEERwWTnyuNKEJC2x+vIa+A2NlSU1F1N8SxmIzc0JnfM6kTM1NYV77VJfuO6FdWoYtzzQycnxqBZloORLXB5mfSDPw8jgW2Vi2z61vrcMim3lJRzrbIoOzRiWByUELsT0BbSPtYjTcHsHT6ODgB07p+pV282G6M2q8KssygUCAX//614TDlU8krmMd6/iPj4mJCXbs2EFHR/G71EA1jdQbShMSzSJseUsDI8cndfMoyRuD9B8YZX40i7teYfpCSreK0fY/biCdypSt0mgWjWTn8/haHVidAr2/LL3GxK8MENjk5MjH2stKSBX7bH6giq4fDpDSkVqtvzVCZibLuTXkYjwtdiLbPbz2b926JIn6O6KkpzJry+2YIbjJVZbMUndrBG+jgyOf6ChLZvlNpOX+EGi4K8ZU98zrNsY1yb2tFWZoujPOyInJsuTq36S/11tuz14lsZhfJNWjP+mb7ovjiMm8+qHTuu+GWTTiqld0JQ9XtFXMbLg/ztnv9eu+P76NDoJb3GuKWc0itDyYpPP7+v3V3hwmn8mvKX9bvTeAt0klDZYiXAkuM9VXBWj/Rp92P6WIVABKVGTDgwkGDo7pvrueFrt6ej+rEhbHl1VZWnmjsO2ZeqbOz2jXvhjz5nkOZp5jDvVbKRwO89RTT/GXf/mXFe97HetYx/8e+OxnP8tb3vIWUik1N27HRRt7EA2lD17Fr/DjabLz2qc6S8o0SX4BV41C/0tqZR9n0sZkV+l8S2CLi/jlfk5/5QIpHelOk2TSSAzVVwfof3W0NFmoSIroTOnGZssR3ulBsJt1fanoEUheF+TM13vJ6RRWWI76W6OMnprSqqdcDKtboOb6IGee7dMlZSyHM2kjNTCv39YEW56sI9U3R/uz+jGG5BMwCUZd+/67UZ6Ps2Y4qmR8G510/3hwTXauhLXKva0VniY7rqSimzv5jwBfi4ORMkQ7k2Si7fEaxs5MlSxMUoSnwa6SfNbwXIPb3NgCYlm71N8aZfjExJryrcFtbiSvVSMlXQzRI5DYG6D92/2V3x8TbHokyciJSfpeKl1hzN/qJJfJM3ZqGpNgLDv3Gu6IIgfKyBGawB6VmD4/h0kyEdru1pWhDG/3ENru4einu3Tvo890jtPZw+TIIkkSzc3N/OhHP1qXgXsdsC739ltgYGAAp9NJfX29RlAKUsW1hrtXEZSie7ya/FR6LM0L7zuhS1CyJyRc1Qo116jSRoMHJlaRBMK7PQiK+vh6Xhjh+Bd0ku2oEnBtb1ZL/3f/ZKhsxZ2J8zOkZ/S/hgWPwLY/qkOJqvdx4O/P6BKUAAS7GclbRnILaLpblarqeX6kIhnDYjMhuSv3525SSKcoS1ACOPn5TvpfHi1LUApucxG5xEft/vJJ9vBujyqHUX542BMSSrRCI1Spt5b74wjlCwgAILoFbEGxYrvNT9Xi3+ys2G6taH00UVGKLp3KI3kEHFFbxf4iu70V7Vx8Fy4ulVwK4d0eNj1emdVatz9K/c2Rsm3OfPMC3c8NliVIpcfSGtGm9ZGE9o6WguQRMAkmZL++XN6F54a1dyJ6hRd3k/5kcERFzFYTsle/v6Of6NIISpvelFwlsbYcs4MLLExldO831ZvWCErxq/1se0ud7jMZPqxKEhUJStErvKveE43YJYC73k7VlaXHlk7BC399UiMobX66dpVMoJJ2cY3hTnZxLRtaNjA0NMTHPvYxBEHgiSee0L3ndaxjHf/x8Vd/9VcYjUbe//73s7i4iBmBS9nHlYZbVxGU2p6sYcNDaunWE18+z8vvK01QAqi6MoBvY2F9zLCaoGBZkvPs+H4/vS+O6hKUglvdbHumTpOXOvFv53Ur0GRm8yxMppkZ1j9dVXW1f0kC7ht9ugQlANFtxSKbkYP6ZaA9TYo2tsMf7Sy72SN5rZhEE1a7/mkyi9NC0z1qLDfw8nhZ4kRmFrqfH+RMmWQNQN2+CI13VJYR2fBQFb4K0rnAUpsKRJbEDUFNBrAc7FEJOSBW7C92uU+zzesBf5uzoqQagBKRsAUqx4UW2UjDnVGs3vKSbwC2qIgcrNDOohKuKknv1e0PE7/cj6tOPzacHczQ86thTn61jAwbBRm2DLgbFZI3lS/NLnmtiK4yMXhGfSeK77+uDFsBos+KWCbumuya5dCHz5KZzaPEJNreXIOlTIX2hakME936p9/O/XBQI/y3vbmurLTbqa90c/4XamLX4rTg27jyPcnMom2kxvYE8DQ6kH2ln++Zb/Tx4t+pBCXZp8orXvye1Gc3qzJP9TtxuVycO3eOSCRCQ0MD/f3/cROH61jHOsojlUrR2tqK2+3WCErVNHKt4a5VBCVPo52tb61TpdPm4cAHzugSBUSXGf9GN+Edaun/8fbVBCV3g6JJLXU/P8iZb+ivB5ueSLLxjep3/8ixqbKbYFM9M8yXkYcwi7Dh4WrkoEh2Ps+xT57TJUQASH4rok9/LQCVkABqdaTX/lWfoAQguQWkMmsLqNVnHAkZspQlKAF0fLeP888PliUo2askqq8JUn2Nfn4AVImx+juiFWvyi14zUqD8PYBKAkneGMQsVk5N28MSSqhybNN4V0xXfuvfg9qbw4S2l5eiI6vGXvZw5YqdnkY70csryAAXHlUlqbxim4Y7y0sBAzTeEaf2xvJxTecP+un8YX9Z8l52Pq8RlGpvDq+SQ1sOwWbGLJsRy+RwR16b0ghK3haHOq91IHpFBMWCUEaq+Ox3+jW/U397hMgu/Y2j2ZEF5sbTuhWh0hNZjSTkabGz9ek6Xam7VO88F34+THdBFsfX6lj1noydmNaebWCzi9genVxqFg6+v532b6vXbrgzSsuDK+N/MSuyx3ATl7Gf1g2tjIyM8Fd/9VeIosif/dmf6d7zOtaxjv/4+PrXv47L5eLhhx8mlUqh4OQKbuYSw7WrCEo1+8LU3KT69gs/H+bIP5cmKAGEtngIbnZrslGrCEomtO/zoUMTnH9+SJdAY49LtD1eo8lLdT83pFvNiJzqb+fL7L15mu0krlMlvvpf1id7gro3KDgsiGX2G6WAoN1L+7O9ugQlUKsUWRQzgl2/TKdJMFJ1peqzJ7tmypMxcup62v2z8mTZqisD1N1Sef2u3htQ5b4qwB6XtOuXg7/NiTNZeY9O9os44nJFgpKnyU7V1eXjx98ESlTS5nQ5SD7rSikvHZgEiO72IjgrV9kUnCasFfadMamkvErPxN/mJHFdaOm5lEBuLkf3c4NcqDBXxs6oBCUpoFb7KQfRLWCtcK/tz/ZqBKVK/UkeAcmjH3fNj6U59eUecnM5BKeJhjuiujJxALOjC6TKVMEfPjapyUk23BktK5Pc9aMBzj+n+gqTYFz9THJoZPBAq5NQm1v3+fa/Msahj3WQm8tp8oqu2pXvSSSX4GrD7eyKXInX6+XVV1/F6/Wye/duxsbKyzquozzW5d7+HUin01RXVzMwsET2KSXrBmrVj3QKUoPzLOZB8lhUQsxF67IjKVO3P8KrH+1g+twcRz/VQaq39OIteASS14Twtzg5+i9d+kScQsWZsfbpsiX8ktcH8W1wcuDvz9D/whj9L+i/VKLTjKBY8Da7SPWWDhgEj4A7KTN4cIIDf1depzF2lQ9Pk4PqvYGyAUiR3FWpvyLBQfRbS0pQFeFuUMjnF5nsmCnLVAVV4sokmCpWx/E1OlDCUsUqP/W3RLHaBV74/06UbRfZ7sdVa8coC5Aq3+mL76188t4WUpNdzipbRcm6tUIJSxiMhopksBf+v7VVBohc4sEkmMqWzAS1IpASlhg/PaUv5Qf46h0qeatC9aXOH/Qzfnqi7DVTFxZIXVA3keNXl6/Q5W2xY4/LVO0N6VYOGj+VWvHcitXO9BC/1E8unefAqdLvwMixqaXTbAJEd3np/bnOnBVQyxmWiTPP/WgQCu9G3a0RnAmZg//UUdKOw8cn8dTZl+TcSti78zvqMxUDAtWXB/HWOTj6iRInYdNw8J/Oki7M+ZY3VJGdy3Pm66U35fPp/Eq67bJrKwYXykkX0mKQgzwHwKc+9Sn+9V//lQ9/+MM8+eST+gZYxzrW8R8Kn/70p3n88cfJ51XHZcLMDq5GuUjWbXmlnHwmTz5dKBhagkxSf0uYRaDjW/2c/Hw35ZzixjdUo0RkrUrQ+Z+WiFkK1x48No5/g4NxvVLSFtjyZC0jr01y4ecjHP24flUAAGe1DWs5YgUQ3uWh/8UxBl8dZ/DV8ifMa26IYDAZylaKKVZpGXhFv8pSEdVX+HDV2VFiEqkefTmMYsW8/hcrf7wd/UQn9kT5xInFaUGJyGRSWUbKSLfKPgv1N0fxNjg0GTE9BFpdLFRnKsp2tH+zDyiv5w7gqrEh+yonTtYKZ1xGichYZMpWyipXeWg5BLeAt8nB/GSmvHygBVofTjIzNMexT5wr26c9KpOdz5WV8uv4dj9TfXMVT24VZeucNTLZhbwmy1YKVVcEsDotdJU5jFEkV8PKamcl+7smQGCzi6neWd35sLwamL/NyUT7tC5Jz9NgR3QJWOwWMrOrr5uZZYWM27a31TFwaFxX3nhouURciQphs4MZZgfVd63pjii2sMRkZ6rk+M58rRc5OMTsSAaLbKTloQTt3+pZKctX6N/isLCYX2RmQJ2AF89Fd0cVbqrI8iLDhl7a29upra0lkUhw5MgRLJbKhLh1rGMdf3hks1n27t3Lz3/+c+3fYtTSZNiyqq1ZhOw8zI7Mkc8tIihmVXrsIk6M6LNQe1OE01++wPxElqOf1K/sYxaN1N8aY+r8DKe+dEF/XS5UnBk5Xr6qS3Cri9BWN0c+3sXk2ZmS0k1alzYzkteKK2nTlWQzi0Yc1TbGTk+Xre4EKiklvNNDdj5H34v6OaVilZaS38gX30+bC2dM5vg5/eozclDEaIFUz3xFmbTp83N0fLuvoqyKp8GOs7ryxlbiujCOqKxWMC1DyPI1OwlscjPw6gTZ+fJyKAc/WPnkvVkER7WN+fG0JsH128JVo2CWTRXj4Vf+oUKusoDwTg+iS9A9yV1Ezb4Q/g0uDn2so6yUnythw1FlK1vlB6D9273M9JaXrUtPZBmZUOdAYLOrpPRiEXJQxNvsJDuf083lzg7Oc/D9S8+tWO1MD9VXB8hn8hzWkbVN9c7zyj8u2dnf5iwbsyshSc3l6nx7DB+Z1P4+vMONb6OTY585V3LOTp2fY7IrxeiZwjtSotpV8f02i0ZqbojgbXJwWudwyeF/OkMxkZXYq27urqrGVug/n86TNy+z27JriwYR8UQjzsUoL/M8+XyO//k//yfvf//7+cxnPsOdd95Z8vrrWMc6/uPh5Zdf5pZbbmFoSPUFMna2cBmS4aJ1d1mlnHwmz2JeXyQntM2DSTTQ+6tRzj8/AL8w6ZJYqq8K4Gt2cvRTnWRSOYaPlvCvhWtPX5hjvH2a6T6dpIRJlf2dODfD0KEJOnWk1IuwRyR1T61MFSBXnY2JjhmmL8xx5GOl14kiElcHsdjMTHTox1TFKi3T5+cqxnLeDQ78rS5GTk2VlW/zNKgV8/QqVC1Hx7d6NHl1/UGCK6mQzyyWLRJhEow03BZj5ORkxUqcoS1u0qlsxTEOHBxj4GDl3J09KuFKKhpZ5LeFHLDiTNgQFBPplP5+du8vR9ZUmcsomAht95BLL1a8nw0PJCtWwCIHrjqFRSj7TIaPTJKeyjJ9oXzsVYy9JZ8ABsrKxIV3eLFHJfoPjum+J8vlFpdXOysFT5OdyC4vc2MLurm55fvm9rjE7Ehat08lIiMHRCx6181Bx7NLedSme+OMvDapW21q6OgkJmth06+Eb8ikchoBMXaFH1+Tg8P/0lny2v0vjzF6elIlU5rU/fkLPx9eSZ4s/JlgM5HLLLJQyBeaBFaQP5V+P034kemgg2O8+OKLxGIxrrvuOr72ta9hMpXRJV9HSazLvf2G2LlzJwcOHND+24WP7YarSrbd9HgSW1Dkhf91siJxJbjNRc0NETq+26tLIIlesUQ6iF7hpffFUd1+d767iexCllc/UFkmquamEL6NLg7/S6duRaHEdUH6Xhgkrc/70bDjHQ2YRRMvrFGywtfqKFsquO62CP4NLk58qbusHFcRYkBgfqi8wXe+qxGjxcCL7y0tgVCEt8XOaJlNllVYgxSZLSTgaXZWJPbA2u7ld4HXU+7tN0E5ybDlUOJWnElFn4Tz74QSt5KeWSw7huZ7Y7gbHJz+2oWyc0OJCrpEw4ux7Y/qMYsmXvob/floT0gsTOXWZJ+ND1fjqLJx9F/PasSqckheH6Tref0qUS33x7FFpMokQVRpt7p9UbqfG9Ql9oV3exg9NkY6Vdi0Pqjvy3a8o4FcNr8mX9b6aAIlLHHwAydL+qpZzzSd5iMMDKobmA0NDfzjP/4jN954Y8W+17GOdfxhcODAAa644grm59VNIiMmtnEVTsPqE80Wp4VtT9cy1j6tK1u0HFvfWkc+m+fwR0snOCwyuJtU2TeL04KzWtIlw0R2e6m6IsCpr55fU8nc7X9Uz3hHSpWXK3ltI4Gtbnp/WXmdcyZlWh6oZuT4ZIE8Ux5WrwWTWSUx6GHnuxpZmMpUTP4UIQctZfvzbXTQcFuMvldGOfcDfXK4xWnBYoHZkTVqqK1Rvi2y28tE+9Sa+q1EXvld4PWWe/tNYPVadCt9LUf0Mi8jJ6cqt/0NJfWKycZyuORPm8jOZjlYruKqBSzy2p6du1Gh8Y44fS+NcL5MPO5uVBg/vYaPHwvsemcTc+PpFUQj3eZOC4GNDl0CktVrYdMjSXpfHF2ThPCWt9RiNBn07WOBUFtBxscCwVa3LpkxsNVFzXXhNfkyiwzb3t7E+NmULgFwYtN5Xj32Cvl8HkmSuPLKK/ne975X8Z7WsY51/OHw5je/mY9//OOapG6IKjZeVCm8iJp9IbyNDg595ExF6TR7lUTT3VWc/X6fLpHV2+JQSQBZNXYYOTWlS3Jpe1OSfHZxBQFVD4HNLqK7fRz//Dldwkdwq4vRM6myRI8iNj5SjeS1cuADZ9Yky+VIyEyd09/IiOzyEtvj59RXz5dtV4RZMZOdX00EW462NyWx2CwrSB2lYK+SSktO6V6civcsuMy4a5WlQ0wV2pYj4fyu8LrKvf0GqEQmKkJ0mXEklLJEoaVOWbM8nOgyk81SdgzRy33EL/Vz+msXGG/Xj4NEr7lsha7laHmwGtEt8GoZspnoNZPPsab5kLw+SGCzm+OfK1/prIjgNhejx6d0SVJVVwXwNCi6BKnlKPqy7p8O6j4fd4PCdN882VQWT4udqc5pXR+58ZFqjGbjmgiKyZtC+JocHPpYZ8lnmFVSdNhfo6dPjcvq6+v553/+Z6666qqKfa9jHev4w6C3t5e9e/dy+vRpAERkNnMZimF15TaTABsfrWG8PbUmUkjDHVGMFgOnvqRzWMsEzipV9s0kgC0q6xIvnEkbNTeGaX+2l1QF0itA8/1xprpn6dX5njUJ4K4rL4dVhOA00/pIkqEjE1z4eeX9NJNkwiyaWBjX30PZ+EiCdCrLGR2lm9VjMOlXiwLkoJXm+6rof2lUV8qqODaTYCA9+frGPq46G7PDC2vqtxJ55XeB11vu7TeBRTGRKUN4KsLTYCfVN1uWHAX8xpJ6ctBaltwGKo8gO5/jxL/pqyXB2u9F8gk03VNF74sjDB2a0G1nC4vM9K9NcrDtzTUsjKfLVvcvwiSAq86hewDCJJlouivG4Kvja/IB9bdHsdjMnPiczl61CVzJpdxiuTyjEpWovyVKx3d6K5LIMEHbEzVMnE3pEgBn6gZ5petFMtkMoihy77338ulPf7riPa1jCeskpTXi0UcfXTG5JGzsMdy0uqGgsn+nz80R3OHC3+TUJXqEd3uI7vTyyj9Wds7OOhsb7q9momOaE2s4Hd1yf5y5sbRueW0lKlBzQ3RNH0G2kEDbE3Wk+ufW1F6JCkhekeEyp9p3vLOBmaF5Tny2vOMtXr92f7RspQFBMdL6eA2nvnSemYHKJA4xIGAPlR+ju0Gh+Z4qxtunOKkXzBVQfW2A7h+/Pozh3xQ73tkAi3Dg79d2cmsteL1JSonrgkR2etdMmnm94W5QwEjZ6loIsPvdLcyNL3D4IzpapgUsJwxWQstDVaSns7oVlUCtzCS6hDUlyOwJiQ33V3Pup0uSH6UQu8pHz/OVGeViQGDrk2t/v6NXeJG9ou5YxYBA8z1xDn3sbEXCHgLs/i8tzI8vcOjD5W0O0HBHDNFr0fUFwR0uAhtcWqLa3aAwfmb1Mz+/2MGo5wJj42MYDAYURaGrq2tdQ3Yd6/gPhJGREZqbmxkZKfoxAxvZSciwWgLMmZQ16bWWN1Qx8OoYYzr+fuMbq5nunVvTmt325hokt8CLf3eqIunCIhtpfkM1J7/co0uSqNsfZvKCflWW5Wh9NIEtJHHw/afLyqcVUaxSpIfQdjfxKwMc/3Tnmog6dbeEme6dL1uVqW5/GIMB2r+1Nimn0E532XULltn8f5YnkbsbFTIzubKVm35XcNbItNxXTddPBirez1rxuyApbf+jenKZPIcqxDS/K0Qv81Yk2TXcHcVb7+DIJzoqktwmL8ytiYAkhwUabo1x/DOdZatNbXy4mtPP9q2pz5b744heK69+SJ8k5dvkYLp3bk2Er41vrEYJyxz8SMfarv9gFWe/36/bd/W1ASyiiY4KlUgBmu+N46pVKtq8iC3P1HLh58OaNNwKWKDlrjj9h8YZP53SraaWWcxwkOcxOhaZmprCYDDwnve8h7/+67+ueP11rGMdvz/8wz/8A+9+97vJ5dTEtxsfbVyG2bC6ALscFJkdnMeRkAluctH+3b6SJAl3vULsMt+KynN6EL1m2h6vY+TEJGe/U9mfVe8NkJnL0ffr0muN4DJTfXVwTd/YZsXM1qfrmOxKcfqrlRPvgsuMLSCW/NYsYtPjSeZGFmh/tjKB3KyYqb0hVPbaZhGa7q2m47t9zK8hljMrZuxhsTzJxGeh7bFaho5P0PVd/UqEoJI81kI6+l2g9dEEJsG4JgLJWvF6k5R8rQ5qb4hw/AvnSPWsbbPn9YQcFDFLxooktx3vaGB2ZEGTWNNDpcOky5HYG2BxEbpLVZotwNviQAmLFSs8gOoLWh5Icv75wdLxRwGVqj0VYVbMbH2qjsnzKd3KRsvhabRjj0q692NWzNTfGqH9az1lK0OpjWHH29dmc4DIpWqVBL1xOpMygTaXJkOnRMWSJK3RxUG63ceZmJwAoKqqikOHDuFyuSqOYR3rWMfvB3Nzc9x000387Gc/A8CMhTYuxW1YLQUp+QWtwkrV1QHGz07rEowT1wWZH8usqQpO7f4wjriNQ//cUZF0YRIgcUOY888N6ZIkgtvcLEykmShTsbKI6r0rKzdVgrteKRvTOKpkEtcGOf313rLkpCJC2zykpzNlpeACW1xYbOY1VeyBtR3Aqrk5jLOqss2lgACL5Svr/K4gOM20Ppzk3E8HK1bZXCt+FySl5vvU/PDJL66tkvjrDU+znbGT5YtbRC7xEN7p5cTnu5kb0X+WSlRiYTK9pndBUEwkrgtx9jv9ZeX4EteH6Pv1cGXSFSpB3RGVylZlVyIi6ZlMWbJeEcX3+9inOtd0/eq9AfpfGdXt29/qRFDMuqTH5Yju9hLa4eHEv5W3eRGNd8Xof3VMl6AZv8LPxLkU0+fnsLoFFqbSJd/dE4uvMOMcZ3JyEqvVyj/+4z/y1FNPVbz+OlaK5KyjBL785S9jNBo1gpIJM1dwa2mCErDz7Y203KtqRQ8emChL8hBkM2bJjBLX12oP7VQrBUx2zHDhV8NlCUpb315H25M1AJz4wgVdghJA7NIAtpCEPVGmrGBBWWRmIM3ZH/aVJTBEdnu55E+bEANq9Zhy5B+AXDpPZqa8gwrucCEGBGYG0hWlULytLgTFghwqXybR1+rQqhNVGuP4mRTDJyY5+93yH7GhnW5iu/3U7Kusl7rjnQ003ROr2K7utgi7/6wZwVNBBxUYP5ticg2n7Vruj3PJe5oqtvtNsPHhai7508p9jrZPkRqYYzFTmRPZ9uYadv6Xyn0qUYGd/6WJyG5vxbZNd8WpuylSvlEaBg+Pc+qrlQMbraLZnsrXVoIS9lh5ndoLzw1rybHqveV1fDOzOfKZRRamyicmiwSlTU8k2fq2Ot1280Npzn5/2ftdYcoF29ya5rRef4c+pBKUnHU2dr2nCf+m1ac/AEhD5/f7OPkV1eb+zc6y15d8AlaHvkzI4IEJjaBUf0eU5nuq8LasHmuVoY4t41fTEm4ln88zNTVFIpHg0ksv1b/4Otaxjt8bdu/ejd/v1whKSZq41nBXSYKSb5ODlgeqqbpaTeSc+LfzugQlANFlxebTj7ssMniaFADav9XDmW/26BKUfJsc7HxXI3JYIDOb5+jHu8oSDjxNDsLbK5AhCy7u2OfOceYbF8oSlDY/XUvzvapNKlVbSacyLKbzZCrsaRXXtY5v9VeUjVNiMvaqypIfoe1qLLsWQk/7Ny/Q+0LlBFDNdSFa7tfXJi8iusfL9j9pwOqtLDG14x0NZfXOi8jMZZnqmWX8bOUKOzve2UjD7RXij98QO9/dSO0aYs6JzhRj7ZWrgcphgUv+tIn4Fb6KbRvujLL1rfoxRRE1N4WpvjKIu1Ep267rR0P0HxyrSJYZeW2KzGQG2WfBWVM+plLCMqJLwJ7Qj1UAXvtMt9pn0IKnRKywHOmZLJm58icSR46qVabksMCOdzbi26gT+wCvfbqbjm/3romg5KyRccRthLfp+47uHw9pBKXWxxO0Pp7QbXvySxc499ygZnN/m1O3rb1aRrBZMAk65aoz6jdnsdpUy/1VJeeHxWBhl+E6tkxdjd3mZHFxkfe+973U1dXxzW9+U/f661jHOn4/ePXVV1EUhXe84x3kcjkkbFzOfrYZripJUNr0RFKLP6bOzaokHB0XabIasToEbBF96VNPo+qD50ezdP6wvyxBqfmBKpoKGxLdPxnSJSgB+De6cNfYUWKVZVezqSzt3+wpSxJy1ytsfWsdos9CeiJblqAEkJ7Nkp4pv3Y4a22IXrWyTiVylC1qQ/JakQPl78deJanVclLZspt5APMjGXpeGNHkVfXgSMgkrw0Tv7J8rgJUclbyxmDFduEdbrb/SQOir3KMNnpmmvGOynFX1VUBtr29vmK73wTJ64Nrin1SF2YZ70qRna+8EVN/e4Qtz1TuU3CZ2fx0LcGtroptm++Lk7y2st17fjnM2e9WJmYVCUrl4pkiHAkb9nj5+Gz0xJRGUKp0P9kFyC/kyFR4f4oEpbr9YTa+MaHfXyrL6W9c4PTXC+/Yare2AsGtqvRbuf5O/tt5svN5RJ+FbW+rVw9GlmwMZ77Rw9nvqaQiZ1LGXOYVtgWsSB79b9XJrlmNoBTZ5WXDg4mS1/YagmyduIY23yXk84ucO3eOWCzGtddeq3/xdaxjHb83vPOd78Rms/Gzn/0MI0aa2cZVhttKEpTkoJWW+6sJblPzKuefGypbAVHyCojeMsl1k0qIADj//BAd3+7VJcsoEZFNjyWRfAK5NJz9Vn9ZEkVgkwt/q0v/2oXrgxrHnflmT9n+6m6NUF1Y2yrFNNmFHNn5HPlM+XXY06TGnQMHx8oSlAAcMRlnhfUNwFWr5sXWUlW952dD9PxyuCIprPrKAA13VN5DdCZtbHy4GsFZWWJqw0PVJG8MVWxHbpGRU1Ok1lBhZ+MjCeJXrJ63vw1aH0sSXcN+33jHDKMVniGoVXvanqwhsMVVsW34Eg/N96/OPV8M/yYnNdeHcVSVnx+Dh8bo+fVIRbJMqneOTCqHRTFhC5eP9QWngBwQsYXKtzv3wwHShT7tVeX3zLOzOTKz5Sdlqm+e9GQOQTHR+sYEzqR+Prj7J0OcebZniaBUZnpa3QLeRgfeRv3Ya/jYpEZQSl4fov7WqG7b3hdG6fr+gGbzcs9IcJqxuiyYrfoDvPDzYc3nNtwWoeW+0nnjFsN2tk5eQ0iOsrCwwNNPP019fb1GRF2HPtZJSjoYGxtDURTuvfdeAJwOJzu5hjubH+KStzZjC6mLfd2tETY9ldTIPrlcnukBlTDiSMpseaZW+61mX5gd76hn69vVj1FntY3h1yZIXVhAiQpseaZW+7hIXBdk6x/VUXN9mLpbI7Q+mkB0qdcUA2pbX6v6sRi/2s/mp2vJLeTJzefY8FA1jXeqi5igGNnyTC3BbS4Amh+Ks+WZWk59uYeD/9RB/FI/zfcWFjxBPS1bJEbtelcTu/9bMwjq5n/zvbEVmzdbnqnVNrMkvwWT1YhFNgDQdHeMDQ9Va203P11L/Go/3hY7vlYHi/lFun+mlmesvyNK66MJrW3bkzUkrgtSc22Y1keSbHmmFiWq3nvt/jCbHk9qbTe9KUnNvjD9L4zx2pfPEbvUhyOpOp6am0JsetOyto8nqb81yqZHapbsXdiIrL42QNuba7S2rY8mqL8jqhJHBLVtkWgRu8rH5qdrtbaeBjupoXk6v9uPoKh2Ce5Q7R3d42XLM7WafU2CEVt4aVHY8kwt4d3qpkNop1ttK8Ds0AKL+UXqbloKHDa/pZboFaq9/ZudbHmmFsEj0PHNPgwGlTCktX2qViO7eFvsbHmmloW5DOnpDHW3RVbZO3m9GvA562zqGNTHSM3NF9n7iSQ1N6sbY0rcihwUycyriYPk9UGNJFe0Yd1t6sZcfj6HyWpELHxsV+8NsPmpJRtufLhaC7zmxhcwmgqEFdTKPZvfstS25cEqmu6JqVJqi4tE93i1ORvZvczeqImalvvjdP64nyMf62DLM7UaqSm4w6XasPA933RPDNFjUeX1BHXOxq5SN+z8mxyavUGt6LP9T+pJXBMiusdL25trqL5Wtbe7SWHLM7WajxjrmF5RQrPtyRpqCs/1Yh/R+liC2B6/9vumx5PU7i/YuzBnJZfAy//rNM64jbY31+Css2n2rr9DXaCX+4jFzCJmq3HFnL3YR0Qu8RLc5sK/2cmlf9rCjnctJfZa3lC1wkcs5hbpe1l9d5O3hFR/Vvj2udhH1O2PgAGmB+YJbivaW112ij5i8OAE80NpNj9dS/3NUba/pR5f60p7F33EkY91cuDvztD2ZA2b3pRg69vqcG9QSvqI7h/1MnZmiuilPmr2hQntdGNPSGx5plbzEXs2X8E7n/wvxP0JLBYLL7zwArIs8+d//uesYx3r+P3jv//3/47BYODFF19EEiW8hLnWcDc33X0D9bcUSBmWwlq0X/WTRrOR7EKe878sxBS3RWi4c+ljZdMTSbb/ST2hnW58Gx2kUxnan1WJkXX7wzTcvdS29bEEW55ppP6WGO5Ghbp9Uab71ep/yZtC2oYcqJVQ7DGJfHYRR7XMpieSyEF1k6X62oDmC21RkdbHE1Rd7efQxzrp/MEAm55IosRUv191TYAND6lto5d5ufQ9LdTfHYUMzI8vsOmJJM6Cz4pd7mPjG5fWesFuwVpIPlmcFjY9kdRIIZHdXlofS6h/awHfRicTXSkykxkssmqX4qZDaLubTU8kSd4UourKABvfmKD+tiVizaYnkgQKmwn+NiebnkiCBQ7/01mme2ZouGulvYtrsqfFzrY/qafmBtUH1+4L03j3UpKl9bGEFke6GxU2PZEkl4ULPx8hcUNwRWJg48PVxC5X12RnUiYzn6PnJfWZV+0NrFh7Wh6souoadU22eiwINjOCoj6b+BU+NiyLl1ruj5MoxEBzEwvIAatGgole5l0RLzXdE6PmpjCz/WnOPNtH4+0xjdAW3uVZQQxpuDtK3S1hFqbSzE6lVXsX4sjgVtXeWtvbI9iWbThueiJJcKtqQ98mh2ZvUCtcYYD5SfVju/XxBOFdahzpaVJtaHGqjfM5kNxLycnWRxNEL1Pt7awpzFmfhdn+NPlsHk/j0ibUhoerNdKSvTC/bVGRfDqPyWqi5cFl9n5DFVWFmFMOC2x6IsnoqUnOfq8fJSiuiE+b74+TuEG1t9VrofnuGBOdarIxeoU6Z5fbu0jGsshGNj2RZONjNTTcFiO0073S3ndFNR8xdGyC2ZEFTBY13ghsda2w98U+YvOb6rUEh2+jam9LIYdR9BEd3+rn2CfO0fpYgtrCdYpztmhvzUfkF1nMq/GpNmdrVvuIwCaXev2natj9Z80a0VKJSSt8hDOhMD0wy7nC4ZO2p5diTjloWeUjJI+VXOFUf/O9cZKFmHK5j+h/cYzIbi873tlI3c0RXHU2dc7uL9pbnYdWu5mX/vYUBqP631veosbRDXdGS/qI7p8OMdGdYtMTSey1MrLPQv0tYc1HWAwWnnzgzdyy+W6SiSTnzp3jrrvuIhwOMztb+cDFOtaxjtcX8/PzNDY2sm3bNmZnZ3E53OziWq4L3cHmNzQgBdRv98guL033xjSiUS6TZ+qCugkjes00P1CFElV/C2130/pEQls/XTUKA4fHmembx6yobR0J1WcFNrvY+Gg19bdFqd4boGZfCNmrXtMsGml+oAp3vbrO+jY6aH6giuxcltxCjuSNQRLFwz1mlbxUJJwmbgjQ/IAqb/DqRzvwNTpWkGaaH6jSYqCtb6tj57sbMYtGxttTVF+jjqOIpvviBDa7AJUwIihmzLKaxI5d6afu1iVf2HhXjNB2N46EjBIVMRgMDB5WqxhELvVSv4y0XH9HlMguL3X7IjTfm6D5gSrkoFiwt4eGu5bipfrbI0Qv8zF5doZjn+kk2ObWiFfBbS4alx2Cq9sfpuneKprfkNDsXVwj/G1OjeAFkLw5RPU1AbU6QDar2rthpb2L8DbYmTyf4sLPhjQbFu3tabSrbQvED4tiQll2SKvp/riWu3TW2mh+oAqzYmZhKks+lyd6yRJJuuneuEZgsVdJND9Qhegy0/frUbKZPPXL7N1wV4zwDjVeskVEmh+oIp/LMzeWJrLbq+VGNHsX8kCiz0LzA1UYCjmv8A73SnvfGiFaWL9FlxlHjY1sIZ8T3Oqiadn3QO3NS8StbFbN91mdauzla3XQtCyWTd4U0nJ0M8MLmK0GjaDnabGvsHfyuiDJ64Oq7FlukdAlHm3OuhsU1YaF0LH6mgDJfSE6v9fP8S9coOm+uEZAdiZlzd4A8SsD2IKiKtFmhsZ7YlquWImJmr0Bopf52PjGBHU3Rwluc9FwV4xIIeaUg2rboo8YOTm14hBd/e0RIpcW7H2Rj0jeGKTmprBm47pbI8SuVGOg4pyVfQKHP9aJ1SnQdF9c+9uafeqchZU+IpfNY7IaV9rwIh8R2enF06CSFne+s4m2p2u0OZvYG1hFrOv5tfqdEdrhYsMj1ZhFo2bv5T6i9qYIBrOBuVG1stxyexd9xGTXLPMjGRrvitF0d5yWB5Mo0YK9vWrboo9o/0Yfhz96lvo7otTfEWXjI9XY4taSPqLvlVEGD47ha3EQvcyHp9GO6CrYu+AjWqo28NZ7/5g6ewuSJPGTn/wEWZb5h3/4B9axjnX8/vHtb38bm83G3//932O1WqminmsMd7Lz0u0rDkLX7g8TLewXmQQj6VSG8dPqoa/wTo/mQ0Hdu9nwcDWeZju2sEg6leXCL1QfFtzmpurKJQJJ8sYQrY8kqNsfQfILVF0VUKuCoMYJyw9OJ64LokQksuk8osdC7f4wYiFP7291krhO9ZuC00Tt/jD+NicnvnCe7ucGqN0fVisBoVbSKxJjXHU2dvxJo5avmR1JU7s/rJEyPA32FUUAJJ8V2W8t2EG1iz2ufie7am3qdXwCmMBdpzDZNaORnmr3h7X8v6NKVse4yUnNDWFq9oWIXrbShq7C/ooSlajdH8YkGOn4Vh/jZ1MrSDg1+8Ia0UkOWml+IE79LVF8LQ4CW1xUXb1kw+T1IXwt6vot+QU1l2AyMHxsEv+mlfauvjaIv1Vdv61ugcxCjt4X1Ofoa3GQuH5p7am+OqARbgSHGdFjxVQgWXia7dTctGTD+BV+QoUDTzPD88hBEaUQ07vrFW2fD9S1P3yJh3QqR/dzg8T2eDVyizNp0/aoQK1WE93tZXZkgfkJ9TkWSSv2KtWGRWJK+BIPjuql/dCam8NajK9ERNXekto4tM2DwWxgoXCgq+amMJ5m1d5SQKB2fxhBUdvm83kk11LOK7Hc3j61rdUtkJvLkUvncNUskXqr9wbwb1LtLTjN6lzyC+TSecySieQNS/auWmZvi6LO99nhBTq+04tZNq2Ys7HLfdrhVJNgJHF9mJkBlezlarjIhpf5iFxSOIxmUudsy/3V1Nyozt1V9i74iFTvHNO9sxgtajBrjxfnbMHeF/mITY/VaDkvW3ilvYs+YvDgOB3P9pG8MaTFcJK/YO8CAa7oIxaBXHaRQJtTm7OiR1jlI7yFHGPtLWG2va1ei0+LPqPoI5SwyOT5GfpfVr+b6m+PaqRMk2Ra5SPscYlsWn3Po5f7CO8s2nvJR4ydmcZVa1Pz27dHscclonu8K8hvxfEe/ZcusrM5aveHqb8jirfFQeQST0kfce6ng4ydTVG7P4wcEBCcZsLbPZqPMBlM3Hr1ndxa/wC1iTrOnTvHNddcw86dO5mb+/0rAfzvgnWSUgls3boVr9fLzIyaeHnjI2/kjbc9gcPgQfZaEV0CgkN9iWxBESUg0XSH+vFpFkyYjKpZJZ+A6BI0cpESEjHLZiySGUExInqtGuPR6lT7Fb0CSlRACYkIkpmBg2N0PNuH5LViK3yQCDYzoktA8llpvDNGcLMb0SVw5J87ee0z3cgBK3JYXcCNstrWFlAdkCfpQHSpv6XH0sgBK1JwaWNEdAkohWpE2fkc2pc7IAVF5IB1RVvfRpdKXMio5IXM7GLJtpJbILzNQ+MdcRzVEqJLwOowaTaUvMvaetT7P/PNHkaOjattnervSlhCXNZWDogEN7sQFBBtqq0lz9KzWX4CRfRamZ9M0/mDPix2tW0xCWYLidrfIYA9LuMtJAwEm0FtW9hAsgelpU0fAWx+EVNhUUBQ+7X5VRvaApL2/EmjJTeKf7vc3raAqM4twUjfC6OkZ7MrNq0kl4A9WGjrV9u669UFSw5bkfzL7tUtaHNLCqhza+T4NIc+fBYlJCH5lj1zz9IYJM/SfAV1zkrLKk5IXitKsV+3FZNgpO9FlcWqRCTEZZthkk/U5qxZsSC6rVpSwxYSV7b1W7EV5mzvL4YxGA3Y/MvsvWxMtoCIXBjD4X9qxyyYNDvZQqpdiqQZOSgiB0UGD0yQTuVX2ttfeDaCoLW1+UXsCYnd725B8lo1e8vFZ2NTn7McsmI0Gel9cYTeX40ieZbsvcpHBEREr5Xa/WG2vr1OfTYFu1zsIwwGA7lMns7vqaXW9XxE8dnYgiIt91Rpz6aUjzj2r+dI9c4hugSV5Cag6yMmz8+Ry+QxC0tHy0r5CKtd/dvQJveK+XLxey/IZiY6UswPpbHHJSSvFbF47yV8xMzIPGee7UXyWSv6CKvLilkyIzmsJX1EOgWnvtyD5LHiqrNRe0OE2GX+kj6icWQ7G8cuo62tjXQ6zXvf+15qa2t55ZVXWMc61vG7x4EDB7BarfzlX/4lAFWxBH/y9newxbAHACUkIRcIvhZLYe1v8+BpsSP7rZjMS7GKLbS09gDIPtVXKAEROSAi+6xqJ4AtLGEvrAmyz4LsE0kNztH+rR5knxXZZ9XI10pIPaVi9Vpoe3MNsl9EkC288o9nIGtQ29rUfpWwpMUMLfdXY4/IKGGJzGQG0WVB9lkRXRatXzmgjmHk5BSLi6oPB7DYCm3dhVglKCL7Ra0yUX4hR65wWltQTNqYAZSgFdkn0nxvFW2P1mAPSdraiUXttzhGW8EuXd8b4NxPB7HIpqUTORbVhsXEkC0oooQl4leqH2tyUNLWVSjECQX723xWLFYTfQdGGHh5HFtE1GKIYtvis4pd6kOJSNrv9rCELbis34CIvTAHrF41fpsbShfarnzmtsDSdSbaU+SzeaxO1aZKREL2L5sfIQml8LF74flhzFaTFvfYLoqBlJCELWylam8AT6OtYBf1bxW/am+tbVDCFpI4+vEuBl8cW9HWFhS15wTqPDRZlz7JZN+SXWS/2tZSINzYQhLZ2Ry9vxottBVRCs9Ga1sYhhIRcSYVjewi+ZZiCqkwV0yFOTs3uoDFtmzt94sokYK9nWZknxWr3UzHt/uZGZhbEZ/agiL2gg2tDkFt6xYYfHVcjTlXtJW052iR1H4ln5UND1dTdVlwxVpvC4rahrhRUuf3+NlpTnzpPEpQXGnvi32Ez4oSE9n61jq8LfbCe4/2XJfPl3wuz9Q59ZuvnI8o2iXY5qbh9oiuj5gdzPDKP5zBahewhdX3VfJYdX3EWHuKRRZRCuMv6SM8S5v/SkDC26Qmd0r5CFArygE4a2x4G9TEUCkfYTQZ6PnlMBMdM9hDErbCXNHzEWbJjFkyqc+mhI8YfHWcfHoR2WelcX+UjY/WIIdX+4hoVZja7m3sabkKn8/HwMAA8Xic66+/nnWsYx2/Hzz++ONIksSZM2cAAw/c9SAPXP0wisGF1WFW81F2dV2whay46x3U71cJIoLNjMGkrksWmwUlJGrEDFtQRHJbsdjMmBW1n+KabJFNKIXvddFrxhawIjqtnH9ukO6fDGGPSJpvMYpGNRfhFdQE/i4vtqBI+zf6aP9GH0pYwhZZ8i1KSP2uC213E97mw17wZ9lUFltE0nxscYzFdSw9lQWjAaNYXGdF7JGVbb3NdjCrOa9cOk9uflG75vK4RglLBLd7aL6nCmdCRgmJS34/JK4YgxKWsIWsnP7aBfoODBdsWLB3YGW/9iob0V1ezKIRs9Ws2RDUHMZyH6uEJWaH5un8QT9m0aC2LXz7KoGVbUNtHo2Ahdms2RBA8i4bg1mNn7SqeubC2lSIa0Svmr8zm1Ubzo9nMCwrBKqEJM3ekrvYFsZOTzM3ktbisKL9i0QMsdDWFpOIXuZDCYsrDvwpy9Zzq12dh9M9s5z4XDe2kvYu5EoUtW0xG24LrrS3LbwUq5hkM4Jkpr8gmSMHV55aV8JLG33mgp2KRHPbRfa2hyUttho6OA4YtNyO7C+MoRCK2SJLbQ9/rBNBNCN5Czb0FHJyZvOK8Y63p8imsighCaVgb7GQWzWLhkJbq5ovcZnZ8fYGXAnbkr1dhbaFeFAJilgkE+d+MsDgwQnV3oFivHeRjwio/YZ3uGl9NIESXnrnLvYRRpOR7Fye3l+MaM+xlI8o9uuuUWi+VyXB6fmIru8PMtGRwhYUVTKXGV0fMT8yT2YmiyAtxb2lfIRYyOfF9gRwVtl0fYToFhg9Mcn8aBZbUMCVtC1tupXwEVMXZun8fj9Wp1DZRwSsWBQLZsFc2kdk4dxPhlBCEq4ahfrbokT2+Er6iESqhY0jl7GlbQuZdIZ3vetd1NbWcvToUdaxjnX87jEwMEBtbS233HILs7OzVPsTPPPw22kwtwGqb1m+ZrhqFGKXBXAmbYguAZNgIpdbypE7IivXF9FhQXIJWJ0W7FEZs7jUtlg1SXCasEckUn1znP1uH4Kiti2SW2xBCXtEwiSZtE19q9PCic91k5nJY4/KWGxqWzlg1Xxhw21xvM1OlKBEbi6HyWrCHpWx2lX/JnkFre107zyLuUWtH5NgUNs6l7WNShphKDuTXaqqZ1L7Lfo3yW3FHpVpuDNG4+0xNd4o+lwTK9qKXgF7VGbs1CRnv9uHSTBpOQwAe1TSchGi04Kv2akd1JODVm2tB3Xtlwrrt9VhweoQ6PnVMCMnptQ1ePnaE5W0XFqgzUmg1Y0ttPTtbo8skbrtEUnbJ7EoRuxhWZO+koMi9uVjiEpaDJTqnSM7n9OUJyTfyvHao5K259b34ggW0YS1aEOPau+lMYgoQQl/qxNnlbzS3h7V3kXYCnFN53f7GT46iT0qa3Gk6FLtXYwdlaCkHRzU7F2IT4XCnC0SbOSQlWwqy0hBZk4JL+XlrI5CW2lpfrsb7Uh+QRt/Ma4xy+p8sRQOF0z3zGm5VrWtvLRvKRbaKmaGDk0w2Tmz8jkuixNMwtL8nuiYQfIKK2JZe1Ra2nMrzG/RaaH66gB1N0VRlj/zZbGtqTBnxzqm6PhWr2bDItHrYh9hj8pIfiuNd8UKMrWy2gmrfUQ2ndeqhpXzEaDuicf3+Ki60q/rIzKpHCc+143oFJAD6r6bWTLp+oiJszOQW0Qp5HhL+YhijGmPS/hanBrZrJSPMBgNdH1f3TsNbHAuVb8s4SPMokmtPndhTn0/izkvHR9hdViwSOZCfL3aR0yfnyM7ncUelUlcG6L53irk8Gof4Q46SHZv5rLIdYSCIQ4cOEAkEuGxxx5jHathWFxcrKy/9J8EH/nIR3jmmWe0/7bj5hLD3pJt/ZudTPfNMT+UJrrHy8TZaWYGSpdtS1wXxJm0cWQN+un+zU7qb44ycGiczu/ql7kuYvufqBVPXvmHtel5Jq8PlpWB87U68DU5OLUGnW5bSKDtiTqme2c1iaVyEBSouiZCx7N9Zdu1Pprg2L+dgzVIrjbeGcNVp/DS35wq285ZZ2Py/Mya+gRofSTB8KnJitIkO9/VSDad49UPdFTss+62CB3f66s4BkdSxtfspPPH/RXbbny4GkeVjV//7YmKbd1NCpnptFqBqAIu/fMWps7PlJUrBEAAf5ODyc4p0hWqb299Wx1Wu4UX/vpkxev7Wh3Yw1LZuVqEf7MTk2Cs+KyiV3ipujzIqS+fr1iave3NNZz/+RDjZSSDLh5vsRy2HpruieGoVnj5/afWNA9r9oWZG1+g/wV9DWlHUsaZsHHhueGK/Qkege1vqSPVP1dWurEIe0Ki6rIAxz+rPwecdTYE2VRROhFUhnrkEi+nvnKhov0Bdv9ZM/NTGQ59qPK7FdzhIrLTx6GPdejatmZfWPOp0Su8mmTfxRha7GWuboT2DtWnJhIJuroq22sd61jHvw8tLS2cPKmuCwYMbOVK3IbSslOhnW7N11dd7ee8ju+zyEZaHkyofvx0ZX+z+elaBMXMy+87XbGtu1Gh8fYY534yyMArleXLfBsdzI2nmenVL5PcfH+c7h8PMDtSWfqp9dEEtpDEwfefLisFV0Tsch9jHVPM9usvPOFdHoxmA72/rKztbZGNtL25jpGTk5z7Qfk12t2orMn+xbaRnV6OV4g7PC12Gm6NcfZ7fQwfmSzbNrjVTXoms6YxVF0TYPJcisnOytVcdr2nmZmhOY598lzZdhbZiBKXGe9M6UoGFtHyYBWOKhsvriFGkoMWLLKFSR299OXX3/4njYwcn6T9m+VjbyxqOfHh4xNl54raL0QvD1Z8/oAmj/JqhbU8tNONo0rmzFcqy48Ux2D1SKR6ypxEssCOtzcy/NqEVoWoUp/1t8bLSmuDWgmh68cDFZ8pqHG6EpM5+OGONUm7NdweYfDIRNlnG7/CV1GWp4htb6sjm86v6Ru05qYwwc0uTnyhu+LcArWK1+jJaV2pSTksoIRlhl6dQA5aEOyCbvn74eYOuno6mZqawmAw8K//+q889NBDFcewjnWs4zfHT3/6U2666SbS6cKpeSK0GUpLXjsSMunpNPOjWbwtDmaG5pjXiVUCm114Gu2c+mJl6XQlJrLh/gS9B0bp+Vnl79gND1djtho58vG1fZOFd7jpP6AfoylREf8G55pyDWbFzNan65jsSlWUY1P/AGJ7/BXvq/7WCF0/7CNbWUWD6GU+AptcHPrnDl1ZPVA3sNKT82vqEyC5L8T0hdmKeYxNTyRhkTXlEKKX+xg8MFJxDKLPgqfBQd/Lo2XvCdQcZmCzm4PvP0N2vnzsq0RFsvNZtVJQBex8dxPjZ6fV6unlYFblXmYH5itev+m+OPaozIG/q/xNocREHDGbduivHBwJGYtsZvRE+WflabRTtz/C6a9dqLiWN9wVY+DgGFPn1lbJ0JGQK7aNXu4jsNHJsU92VbQVqJXA8tnFsjG96LPgSihr+u4yi0a2vrWBqQsznPpSZV8kuszELvNrkrmlIAWsiE5LRZkhUL/7kteFOP31njXZddvb61mYyvDap89VbPv/s/fe4Y1d95n/BwRw0S56ryRIsA/JmeFUaYqkUdeoV8uyLcsllmvs2PHupjzJ7i/JbrzrdeKSuFu2XOQmW26Si2xLdlSm9+EMh23YewEbQJC/Py4AktIQ90CRNrbC93n8PBrz4OLge8/93nO+5z3vayszE73cS8v3Lq4Z29AOd348FapRJpfGGa3s4nzreZaWlti2bRu//e1vMRrVrTHXsY51FI8HH3yQRx55BAAJA5vZg6y5tK2RI2HJr5m8DXaGTqyRH7WQuDHEwLGxgtZvOSRuDmEJGDn2efV1ockrUX1HlK7fDjJ6Vt1KSw4ZyaQWC9pZRXZ7GDo5yfyY+oZI6dV+PDU2jn6xbZUzxVpw1ViZGZxnbnTta9vjFiRZt3Y8V0KrHDYca52i74W192RAUaWZFrBEA0UFKLDZlSdXrNnOK1F7d4y2n/ep2sfZYmYWM0ske9THgKcuW5sU6G/TOyuY7p9V3cPVSopIQXJgTtW+LrrHi6/JwaFPqu9hS3YtWoM2fzBx7Q5A87srGTw2zsVnVNYUWvDW2ZnqmS04VnJtfY0OBo+Mq/a16vYwOqOW09/sKtjOFjPjiFvoElj75PpgckqFbeK0sOH+MkbOTNJ3sPBYzbUv3eOj89eDBZv5NjkYOTVORmD/snSfD0+tnRNfaVu2diuA0HYXE10zBcehp86WJ6mpIafW3/Jd9XWat8FObK+Plu9fJNmr/hzErw8w2TWz5vxbkrWY/UbGL0yjl7UY7NKaz+J4eTetI2cZHx/HYrHw/e9/f/2Q3gqsKykByWQSq9WaJyiVoGUPt6xJUJJkSNwUpuZORT2p5/cjaxKUIMtoXqHuUghDRyeY7Jqm+5m1CybWMlPehurgZ84XJCjZ4mZ2/JfavE2YWiEmssuLM2EV6ut0f4rOZwcUQlEBVN8RwZ6wkEqi+nIL73FjDZuJXHbpDcqXouX73aoEJYDau6JsfW+V0DUBTny1Q5X0AjDZNc1kl/riM3qlF3+jk1Czup9qbJeXwCZnTuCnIE5+rZMTX28XI3TdGqH2njL1hkUgsNFJ1a1RvE3qv+v0t7s49En1zTeA2BW+vBSlGsqvCxLb7VNtN3R4jLmxedKz6ptExz7XJkxQKt3no+rWSP4ZWwtnv9PNi/9bjKAEyoszvL3wNSfbZ/IEpfoHSvPWdZdCalR5Xo8/KlbcLd3twxazYPStPRAnWqcVgpIE2/+8hroHLu3JCooX7XP/+4xCUJJYJSd6KQyeGKf792ITN1dcxmDVFWyTIyjZ4mZK9/hXWdWshE8TpvRCE36Uv3d0dBAOh/m7v/s7ob6sYx3rEMPHPvYxNBpNnqBUShX7NHeuSVCquy9KfF8As0c5PbEWQSkHo0PCWW4V6kvviyP0vVh4g6DsWj/oYawlyfMfP1uwUF53X5QtH1DmHMMnJwsSlMxBCXuZTGSXmIf7ia930PHL/oIEJb1dn7ex6352WJV0EtriIrRV/T0OkJ5Z5OAnzqkSVKJ7PNTcGc2fJlfDWEtSlaAEiuLBzPAcQ6fVi0vRPV4SN4ZU2wGEtrqJXaE+lwA49MkznP2+OpnG3+yi9q4YjtK1fdpfCeruKaPqtohqu/TMIscfaVcnKAF6s57QNjfhberzb99mN6Et7vzJwkKY7JxmvK1wYQ2g/8UxYYISQNM7q6i9O1q4URoOfLxFiKAEENjiwR6X87Z8a6H9ZwpByZGw5K3r1sLJb3XS8Yt+IYKS3gyuaptqLsgRlCK7PWz7cHXeQu5SOPSp1jxBKXy5u2Dbi/82zOj5KSGCkt4MRocB2W9Ys81MX4rBw+OAQv6quTOWV7N6KbxnEmyavBIdepaWlnj7299OTU0N6bQAE2wd61iHEBYWFqivr2ffvn2kUikkjFzBbWsSlNBB9R1RKq5X5hMjpyfXJCiBonhi9hjyFlSFkOyeY+j0OP2H1p5LGd26vO3Xqa91FiQoGT16mt9XmVeaLERQAgjt8OCptwv1dSG5QNuTvbT8sHDhO7zbo9hhLKBKUHJVW3FV2/A2iM2Ren43zJHPFCYogWI31/BgReFGK9D+035VghLAWOs0Ex3q73JXnZXoZV7c9Q7VtsHNLqK7vOiMhdfwoNQwj39FjPRSeWuE6ttV5gdFwhYxU3dv6fIp7QJo/UkfRz6jTlACpfYaFqx7VtwQIrZHfa0wemGKqb5ZoYMM574nRqQBxaqn9p5Y/hlbCz3PDnPkXy4I3SuA0HYPoa2F635zw+n8uit+YyBvpXYpLMwt0vZUL2e/r05QAghuc+OqtmH0rD0/mh2czxOUNv5JxSrLwZdi+OQkBz55TomrjlU2IZdC7/PD9B5QJ6kB2EvlrPLW2rHNEZSMDh0V14fW7KuscRBrbaRyqRGAF198kfLycv7pn/5JqC/rWMc6xPCLX/wCs9nMI488ggYNNWxij+bmNQlK4V0eKm4I5RUQ1Qg1Zq8hr/ynhv7DYwoxuAC8jXbQwuxQiqNfuFCQoBTe7WHDm8pAC8neuYJECr2sxVvvwNeg/h4F6Pz1ABee7C1IUNJKJXlr9dGzU6qkk0Czk8AWsX0mMnD6652qBCVHwkLN3dG89ZsaZgdTqgQlUFQ7J7qmhchnkcs9xFfYwBVCeJdXuO538isX6HxavY5ijVmouTuGbYXC0quB8muDVN4UVm+YgZOPdqoTlFBEhmJX+PAKzOccZRZie3y4qtTv7UTXjHIwUQWTXTPiBCWg7p4YlTerxCADJ7/WIUZQAlwVVjz19rxS2VoYPKIQlExeSXV/tvM3g1x4sleIoIQWvI0O1TpxjqDkrJRpfFs8nxMvhZbvdtPyeHe+vcG5dtvRlikGj48LEZTQLiuKr4VUMqOoRKFYKlfdGskrgr0UjrYIm8avxI7i3rV//362bduWPzj0nx3/6ZWU7rrrLr73ve/l/11FEzFN5SXbehttDJ2dhBSEdrrpPTSyJuHAv9WBu8rG6a8XZlGC4ilec2eU7ueHhRRRtn6wCp1RK6RIgwRb31NF+y8LFyAkuYRUUlnsSC6JVIGXe/xaP7ZSixD7Ggl2/lkts+Mpjv7LBfX2gNEnMafClK17IIZk1Qtf09/sgBIYODBesF3TO8oBxH5bkfA22oQUZyCr/KTCli4W/q0OFucXhfogqqQkyRDc7qPvyHjBMVMsLAGJdDKlqs4EyvMz1pEUJv+IIrDNSekVfo585lz+2VgL1XdEaPm+wMlKlE2i8A4PL36ypWCf1Z7DlXDXWam+PcrQ6Qn1k4AoYzG616eqAJZ7FiUZ1Xux6T0VjLZM0fnLwmxsUBQjHGUyJ7/RwaTaZpgE2/+0hpnBOSHFNnvCQukeX8GTnuE9bnqeV/K3f6tjzbyQWkoxuqGNM2fOkMlkMJlMnD17llhsbTLWOtaxjsIYHh4mHo+TTCpJxYCJHVyLXnPp4rCn0cbw8UnQg7/BycDhAuSgN8boeLpflZQDyql8k9vAwU+cU23rSFiovTvG0MlxWn+krnIZu8qHvdRcWGkn93PTYHDrmR8psBmvh40PldP+i34hpZ/Km4O4Nzg4+bWOwkozK7/Cri9IpNCbS2h6R4KOX/cr90MA5TcEaftZ4XgZ3Hoa3xznwlN9jJ5WP6VXDPRmMHrNTHWKkC5KKDFpC9+HYr/frsfXYKPnhZFXVUnJs8HG4uLSqx4va6lYrKA4laxi0PDWMjLzi3m7srVQjEoWKPP7mf5Zzqs8v6rP4sprvrMco13ihY+pH5YA5beNnF1beeil3683lxTcZPRssBHd7eXIFy4IqTrt+GgNcxNpjv6r+topdqWX4FY3J7/eUZBkmUPN3REGT4wzugbBX28GZ42DwcPjywpja9y7ZHSIroXz9PYq5Lp3vvOdfPazn1XtwzrWsY618Xd/93f81V/9FUrpT0M9WwhqSi/Z1la2rBjjqrMy2Ta1piqOPW7GXWuj7afqGy4mn4H6+0vp+f2QKokIYMNbyjC5JA78X/V5GjpoeKCMrmeHmLiwdg1FZyzJkyckh47U+Nqsn2KUoQC2fKCK2eF5Tn1dnXAt8v0AZft8mAMmTgteU1Rtp/K2EFqDVvi3FQMRtZ0cLCEj0yKbBEXAXqFsuhQaBzkUo6Tkb3Iw0qLYqb1aMDp0LMwtChF65LCRuRFxlSxR2CsslF8X5MRXO1R/W+wKH12/Ua/1gFKjK73Sz8lHCpPLdLJOOKZmv5ENbypj8MgoHb9S74ccMVJ2lZ+T3+gsSPDLP4s57lOBtjX3RpnsnBFSvyrd5yOw2cXpxzqFNpo3PVzB9OA85wQU24wePdHdvoJj111nY+TcJCxka6ZrqJkvLC0wWtfGmXNnSC+k8Xq9HD58mEhE/UDEOtaxjktjdnaWyy+/nCNHjgDgxMNGdqPVaC/Z3hozKXlCC464paB6Tuk+H4PHxgurq+TaXunDVmrmxNc6VFVujC6J+jeW0n9kjJ7fqav2umqtOBMyF1TW11oJMimFqJRWITFU3ham78URIQKBv9lJZKeH09/uVFfbyfXFpC2szKSFuntj9L4wkiceqCG4xaVKENFKJdTeF6PrN4NCQgdFQatYts0OqcdAKylWZUJkEtGvN2mxl5qZaJtSVd0pRklJDhnR6DRC789iYPKoKBO9pA9CZJYiUXZtAA3Q/vPC6ydrzMRSBiGVLFDEAOYn03k73bUg8iyuvKY1bObYFy+o5hBQfluye6agCtLK51ArlZBJrT1PtASNRHd5OPv9bqHvb3p7OfOTaSE1TVeVlegVPs49flHo+Qnv8jDZOc3UxTXuhxbsMQsT7dOgVWyT1xo/KdckbaYzdHdfpKSkhL//+7/nox/9qGofXs/4T6uk1Nrail6vzxOUzFi5WnPXmgQlySVReXOExjfFAZQCc4HxG2x2Y4tahBSJxjqSpKbTqklHkpXbdeyRDk48WphEU7E/iLNGhhQc+L/nChKUIld4aP5AjULkAVVihDVmznuXqiIFx798QZVM5N1ozxOE1AhKADpJS4lOo9pOyjItBw6NqxKU8lC/LJJLYvN7E8jRtdmUL4UoQQkQJiht+0gNpVeLnfwfODBeVB9EkEoqCjmiZJqtH6yi8nZ1JvR0vxhBCVAW20UQlGrvjVJzt/qCe35c2fGxrPCKXQs5gpJUgNmbQya9iEarWeVjfynkYhrY5qTxoXjBtiOnpzj+1QtCBCUAe5mMZNEXVEmC5Wdx459Us/WDhZXIjnz6Qp6gVPdArGDuO/31Ls7/qDtPUCqkAEUK5sZTChFNAOEdbiwBY8F70fOMkr+NPomKa0M0PFh2yXaSRiJwqobqzGZAWWhu3LiRO+64Q6gv61jHOlbjwQcfxOv15glKG9nFbs1NaxKUNryplMRNYfR2PaQpSFAye/TYIhZCW8ROBk12TjMzVHjBqTcr867x1mlaHr9YkKCkN5dQdafyfut6elDVCmzLuyrZ/E7FCkuNFGH2SBhsEnZBRZ7zP+rj+FcuqBKU6t9UiqtOORmkpvRi9BrRaDUsFlhA5qDPeoWrEZSA/KmUubF51bZVt4VI7C+swrcS6RmESTfpmUUhckrlzUE2PSymUpCeSCsWeq+yGMzwyUlhglLsKh9b3n/ptc1LIRoroCiCkrXUTNM7y9GLHK4TmIODkgtyfciNt0Io0WnQmdTVGnJjoOHBMuzlhTt87MttHP2S2GEJ9Iq6mz1a+Jq57/dvdtL8/uqCalXDJyc58i8KQclVZyV2ZWGFhZNf7+TUVxUCdy63rYWp3lnmxgvbVOahB3tcLnjCLj1DXlWp5p4Y1bdH1+yDfNFLXd9lWLGj0Wj4whe+QGlpKX196vlkHetYx2qMj4/j9Xr5y7/8S5aWlnDi5WrNnWsSlHTGEmrujJG4RZnPjJ5em6AE4NvoxFVlW97cL4DZwXlmR+aZHir8vtcZldxw9rEuTqkQVkM7XAopZQFOfKWjIDHFVWdl83uq8vMeNYKQLWbG5DYI/TaA44+0ceqxwmQiOWKk5p6o0PcD6ExatHr1F2NOWWayY207gpdB4H2rM5ZQ/6ZSLCFxCyhRghIgTFDa+M5yQjvE5vcTF6aFCEpFYUGpJ4qSaRoeLKNsn3qNbm58QVhxKNlTHEGp9Cof8WsLqz0CzE8o9R6zR72OlSMoFVIyymExvUiJToNBpT6Wi6mzUqbqzsI1upmBOY5/5YIQQQkUBSyj04DRUXiemHsWG98SZ+Nbywu2PfvYxTxBKX5DIJ+vLoXOXw1y9rtd+Q3WQm0Bkv1zTHWJjd1AkxNHXMboWPtejJxWCEo6WUflLRGq14ivTqPDd6aKpoVdlFDC0NAQDQ0NvOc97xHqyzrWsY7V+OxnP4ssyxw5cgQterZyFc2aK9YkKJXu81F1SwS9rIUMBQlKWpMWZ8KKq7aw8m8OUz2zJPsL23DlVD/mRlO0fO9iYYKSVlFQAhg9M6VKUKq5O0L1XcohXzVShF7WYnJLmP1ic46BQ2Oc+Fq7KkGpdJ8PW0xZg6tZxxlsEiW6EhbT6noeWpNyP0UUbCS7kqvTM+rziOB2F+GdYnMeADIIESxAIYuJEJQCza78fFX1mrMZRs+qE5SKRbJ3Tpig5Kq1Uv/Apdc2L4UoQSnXB1EYnBKVt4Tz46IQNIJsjKmu2TxXQOS6Wn0JOkn94rlnsezaAHK48N5k20/6OPONDiGCECjKumrXzD2H1qiJprdX4Kxce1Nwum+Os99RCEpmvwFvU2EVrDPf6eL8j5TDblqVWMyOzTMzOCf2/GjBXW3F2+BYu00GhaAElF7pp/qO6Jr3TRq1UdOznQgVLC0t8V//63+lqqqK0VExRazXI/5TkpSuvvpqKisrWVhQXg47uJrLNNddsq2zSnlQUqMp+g6McPxra6tzyGGJ8hsUib2j/3qBw586szZ5QoLN70vgbbRBCg79c+uaJxtA2fRvfn91Xl0lebFAcUcCX4OD+NVicn+DB0eZHZln4MR44YbZicvxL7TzosqpYXvCwtYPVSG5pIJWeDn4Njgwewx5IpYajn+pXVUFBmDjW+Ns+7NqoWuCoqCUs0UoBF+jDYNNQqNV72/NXRG2/3lNYSJGFpErPGz/8xrksHqRQHJJsLjEYkZ98iTJijSxp0FsIlsMGt5cJlQAyaFEI7YD1fSOcja/LyHch20fqRFqK4dMmAPqk96xc0le+MezBZ/LlSi/IcCWhxO46wpLQfa/OMYL/3iWqQ6xyZa3zo7ZZ1AlPOZyQt19UVVSU+sTvTz/P88oJCQBvuFo6xTDpwR8m1EIh45SmfJrCm8k5whzTe8sZ/N7awv249jn2uj+jbJQ2vzeBMGda2+EnX60i0P/eoHUaAqjTypoKzc3mKLnhWFavqsUwJ01l35IQ5pSrtbcxfYt25mZmeHxxx9Hr9dz7Nixgr9xHetYh4K+vj5MJhOPPPIIAG78XK25C4/m0vMUe1wpIrQ80UvXbwYLEmjKrvWjt+uZGU5z6JMtBYlEgW1OGt+u5MeLzwwXVLvUm2Hze6uou18pqqylEJJD7Ao/7iqbKrEhh+GWSYbPCGwk6RXbpBc+dlbV4m7Dm0qpuFHJeWpqUnq7HjlgwiNa4Oqc4cDHW1Tj4NlgY8u7E4QECytjLUkO/N9zQupXctisuuDNYeuHqvOkMTVseriCuvsErUFKBFk0KAShnO3eqwnPBtua5NqXYmlhEZYQIghZS81s/VC16sIflPGz7c+qhYjyJVowOQ04axyqbU98qUNVRWkltn6wigaBgtSRf7nAGYHTVKD8NrPPiK9QAQIgrZCKDG49ze9NYA4WmMiklUMj+T6o8KpGz44xPTDLoNraLIvSveo2ycluxf7F7NfT/L5qKm9ee3401pLMr4e8TXYlb67V5zQc/tS5fD6N7fNhcK/9A89+u4uLvxvMq0RZSy89OLdrrmGP/WbKy8vp6uoiFApx7733FvyN61jHOpbx0Y9+FKfTyfDwMCVo2cG1NGv2XrJtjoSyMLdI52/6aX1i7YMvkkOXf8eff7yHo/96bm3lER3U3R/DVa2sj099rbMgiaVsn49N767E6FYUZmYGCm8OBLe5ie0Ws8udbJtisnuayTYVkm92z7/1iV5VizWTz0DT2+PLSiwqe0/eWjtyyCRE8gBo/XGfkJJw3b1RNj0sVjcBOP+DXs5+S/2daCu3YPYaESnfhC5z0/zeSqHf5qq2svk9CSHyk84ILMFSRozMU3NvNK+m9GoifmNAmCgFoBGcL1betvaBqZf14YYAm98jdp+tUTPWiPrkb244zZHPtAqTy3wbHTQ/nCi4oQQw0T7D4U+3ChPRHJUytohZdfzkLCdLr/KtSbrJoff5UQ7+0znlMwKP3PCpSYZE1mYohEPfBgfB7YXt3HIWupW3hdj4rkRBi8nzj/fkVeZq748VrN12/GqQI5+7wNz4AjpZV9BWbiG5QMcv+7nwlKLYIIcv3QmHxs1VmjvY2XA58/PzfOYzn8Fut3P2rJhi6DrW8Z8dyWSS6upq3vWud7G4uEiECq7U3Ipdc+k1mil7aLj72WHaf9VfkMTjbbSjlxX1kRNf7SiolGKLm6nMkc3PTRW2F9NC/ZvixK9X6nJqpAzvBjuBJqdwTWbk7JRYzUurECeOf7GdwSPjBZuW7vPlSTypCZWJlxbspRacFQIbcsD8WIqTX+1QVTsy+w1sfFs5XkH7utkh5boiBBlryIQ1KhbfDW8qJbZXbB5ceVuYMkFbOMFtOwA8dTbhPhQDS9BI+Q3BNa2zViEDS4tLQkQeya5jw5vLVO3OQCHwNTxYRnCbmE2gHDJhi6jfu/Yn+1VVlFai7v4Y1bep1xXP/6CHTkEit1YqwR4zYy9Xj0MqmUFr0lJ7bxSTCqn91KOddPwiaxOocjumemcZ70gyKXhYMrzdQ2i7u+B1UxMLZGaV/ja8NZ4nVV4Ks0Mpzv9AWfPKYROVt4XXvnYGTn2tnbafKvsN3gY7kn3tjnQ/M0DH0wN5QpbJe+m41Wg2sUd7M1WJKs6fP4/H4+Ev/uIv1v6Br2MIngt6feD06dM0NDSwuKgscB142bJGoQYU0lHt3THGO5OcfrSL9p8X9uKsuj2Gwaan7Vf9kCpsjyRJJUgWPc4KMQuwvhdH0UladcUaCUjBiUfbChOZUGzbRs5PMdk+oyr9b09YqLunlIGjY/kHshBsUTNaSYtkEhO5OfVoZ77vhVD/QCklJRpOfLVD4KowcHQMrUH9JSVHDZRdEeDkY51CHe7+zXCeNKGGuYk0pukFIWWgpcUlFhcWSfaodyI1muLF/yPmd2/0KicB5YCpoKrWK4ElaKTEIEYuE5Jrz2JhNiN8on56eB6tWf0+F9sHgOBOF9aAmXOPF5Zd7n62HzloYqpLTN3A22ij7OoABz51ruCYO/GVDqFnIwfJKaHVC/JPJdjxoRpmBucL2qO1/rA3/981d0c4+8PuNfszdHSCufHUMglLpe/9h0bx1NqFfp/kkpBkHXJATIWq6pYwFr+J7udG1sydOfUnySVRc2eM6YFZjn/h0rGwHorSsGThIE+zsLDAlVdeydatW3nqqafUO7+OdfwnxX333cdjjz0GgAYNO7kGs2btomvDW8uw+Ew8//EzpCfSBa2RzH49wWYXJofEmW9fLGiNBGD1GzHYJVUbJVCUPya7puk/omJJogfScOGnffQfGyusPKKHxHVBWn/cR4fKnBKUBbHRZeDAx8Xe9ZJNj6iHc3oizQufOKuq8qM3l9D4UDkXnuwreKovh4m2JBOd0/QeVLdBSOwPMt41LWwfd/jT6uR0APTKyfCZQXV1JoCF+QwLc2JHg86veB+qwV5mxmgXVB4tAnLIhMVvErImu/jMMBefEZuvTvXOsJRVe1RDeiLN/FSa9LR63CbaZnj+fwlYVGehN0PiliitP+tXVfgaOqXMOURR98YYC9MLnPvB2vcxPZHmhf+r/mzkoDNq0Rq1WIMWIbJd/IYA/kYHx7/atmb79Ax5NTZ7uRk5aKLn92s/U0e+cAGzK0sMyuaktTAzkGaqZ5reAsp0K+GIKeNYr4f0GtfN5VO9GUJb3Nhja9tdpmcWFYUxlIKbrdTCoc+0XvJe6yckyiY2MsY0I/Txne98hxdeeIFnnnlm3Xp3HetYA8PDw1RWVjI+Pg5AkBj1mm1rttfJOurvL2OsdZLzP+hl4NB4weuXX6fI/g8eGWFhjoLqLjodmFwGbBEToy3qa+SBExNIdj1zIyqbTjpgAU59vZ05lQ0q/2YH04NzJLvnVO3NjB49DW+K03twVNUqAZTTwjqzDq2kRZWhBLT/YoD2Xw+oNo1f60dn0QmrJPe+OIJBYL4hOXTE9vjo+HmvkCrP6OkpRk+LzUEXZjLMTaTE1Ia0sJhaZHpQvRMLc3D08+qHCEH5fdawmcmLM6+6mpKjTGbWNi9k8yVCLMthYSZD2ig2B50dmsfokPLjvxBOPiLeB1AO59oiZjqfLry5NXhyHHuZmamLYhtK1piJ8msDnHq0s6BqVPtP+2nX9Ys8RoCiWGBQUUhaic1/kmB6cI6W76xd01t5b0uv8tH5zOCa/Ul2z3H8kXZmc2sNlXsyeGycpYUloedOZyzB5DIg+4wMs/YaKfeslV3hxV1jZ+TM+Jq5c/DoeL6ftfeWMtUzs2Y+tJwM0ry0j+d4ksnJSXbs2MHtt9/Ol7/8ZfXOr2Md/0nxiU98gj/7sz9jcXERCQNbuRqTZu26ddk1flyVNo594QKZ1CKjZ9aeI2lNWqK7fZh9Rjp/OaCqBmRyGTB5JHVrM4CMQmSa6FB5Z2qVtkPHJpjsmmV+rMCaV5u1QHthlKET6oedS/f5sJdaOP5Iu5Bai8EuoRV8b5JB7LpaqL0rysVnh4TUc+bH5hk+M8Foi/rvCzS7mBmdyztJqOGc4NwPYGYkxaygs8nCXIaFWbGXbN/BUSGFKABrxIw1bKLrt4UPVBYLo1PCXmZBZ5HIpAr/xtFzU4yeE9uLS00skEmJjZ9MCmZHUqQE5rbzYymO/KtgvRJAC9HLvQwcGyU1Ubg/QycmyKTFyPoAsb1eFheX6C6wlsmkFjn25TZhhSStBHpZh8llECLbeRvsRC73cva7XWu3z5DnGBhdEnLAWNAm7vwTPYoqWYZ8TloLmdkMY61TjJ4VJJ8HTJjcElptCZk1Dkbk1cK0EL7Mgz1uofWJS9cVMyny6rbh3R4CTU5OfK3tkvdan5GItjawgJ4LSyf5+7//e7797W/z7LPPEgiIEQtfD9AsKcb0r3vceuutPPHEE4CySbad65A1azBpV2yqV98Rof3nvaSSaycDe8LCROs0kgwGj6mgQkr4cjcTXUlVAhEoVkR198Y4+eVWIYLLxndVYLDpeeEfxU467Pyvtcwn00KKREiw6R0VnP/BRSECjShq742i0WkKqhmsxKb3VKDRaDj8qSISv0g/7ongqLRx5POtqnZz9oSF2dG0sMXZawWjT1I2Zl6Dblz2F3VMdk1z8muFJctfCeSw9KqOoVcK70Y7Q0fVJ5Sb35dAMut4/n+9uieI/M0O4tcEafnBRcZUlClAUfmpuC7IwX85/6re88aH4gydmaDvOfUJqL/ZQcX1IQaOjXHhx+pkxZq7IjirrBz/0gUhRbW6+6KkZjJrvuRfivKbgrT9pHA/3HVWRk5PgQSyt/DYS9wSou/FYaWvKuSq8cZOTp07yezsLHq9ntbW1vUNs3WsYwWGh4eJxWLMzipzIi8hmjSXrf2B7Ma6JWzEXW2jq0CR3BI2KhsbaXAkLKrkmdhVvoLXW4mcEtEFAUK2JWyk4YEy+o+MCZGOEvuDeBscnH6sk4k29SJFYJsTZ5ksrAAjAr0ZNrylgtaf9gnZe7lqZBL7w5z7QbcQSakYbP9IDbOj8xz/4tok2Xw/6qzCFmevJcx+PTMDr7J/Gwp5xhaz8Pw/iJN5hKEHvVmvSvh5raG365FkraqFmDko0fRgBf1Hx2j/mfgJMxFseriChdmM8AZi7T1R5qcWhKwLRWEJGym/LsCJL4n1YfN7EuhMWl783wIbxXrY9oFqkn2zQmsrvV1P3b1RTj92UWh8WEvNGOy6gsRCa6mZqd4ZSGf/u0Ce0dv1RC5zL9/nAgSrGf0kQ6XtnD9/HoC3vvWtfOlLX1Lt8zrW8Z8Jf/u3f8vf/M3fAKBFx06uxrhWzWvFpnp0r4++Q6MFCSaWkFFRRdGBxWcsqJDiqrYyN55WVUIChSRVfXuYlsd7hAgulbeHsUXMHPqX80KEhub3V5KaSqva8OZQc1+UzqcHl8kHrwKie30YrFpaBdbPADX3RNGbtUWRXUQQ2eslvNXNsa9cyCvSrAWTz0B6JiNscfZaQSfrWJhTV6l6Jdj24RrGLkwJk8GKgdGtUyfb/T+AvcIiRNiqfUMMi8/IwX8q7kCfGqwxE1W3RWj9UU9eVagQLCEj5dcGOPOtjqLs7dSQ2B9kvHNa6MCmHDFS/4Yy+g6M5i3uCiG8y0Noq4uTX+8UyhuxKxQVUpFrA4R2uFXJcdaYSbHFyRJDC/UjtMPNWFtSaaNCrpqs6eFU13Gmp6dxOBycOXPmP9WG2TrWoYZUKkVTU1NecayMahKahrU/kN1Yl+xaHOXWgqpBkl2rWHNlbY5mBgrnF2+jnaHjYg4Ivk0O9EYtPQUOBOb7IWupe2MZA0fG6HtRfd/A22QntsdHy/e781ZVhWCLm3GWy8IKMELQQvVtEbqeHVS1gwNF1ary5jBtT/YL9bkYNL41zuzYsmJLIchh06v+/a8Ekl2rSpx5JYju8eJrcnDok+df9WujBb1Jq2or+FpDa9IiWbSqRB69rKXhLeX0Hxyh94VX1+Kr8rYwi5lFVTvGHMK7PCylF1/Vfkh2LdE9PqWuLnBLKm8LY/YZhNyNQDnQOz04LySkopWg/MYwHb8srFiXg2RXyFg567ZLweCUWJhOkUmBySMVvN9akxZfvX2Z+FeAYJVaSjFQeY6W82fRaDT89//+3/nLv/xL1T6/HvC6t3tLJpMYDIY8QcmJj32aO9ckKFkCEjs/XEvtPYp0bMv3uwsSlBofilN3b6liw5aksIWTBLG9PqpuE7OUcFbIGKx6nNUOofZDp8eZ7hN/mZ36VieHP1uY7CO5JEVmNgVHPn1BlVzS+PY4Wz5QKdwHk9eA2WsQbn/k0xeECEp190XZ9uEaISsrgDPf7ubQv6gTlEBRZ9n8zsJe5Tn4tzqIXFFYAjgPiYI2Vi9FwxvL2P6nYhZnfyioviNC00OVGH1iN0aOGta04HpZ27BE4taQUNvaeyJU7g9ji6tLYJ/8eldRBKWcvZ8aBg6N8/z/PCNEUALFKkVv1uEsF4tH6dU+tn+0RrEFLIDjX2rPE5QC25yqfT7zvS4hghLAwPFxZkdSQgQlAEvIhL1MzCrJu9FOYJNT9Z6PZDe1N70jQcNbKgrmhNYnepnuTyG5lPdAIfsfx/FSmmYvByCdTrNlyxbe9a53CfV9Het4veMv//Iv8Xq9zM7OokHDZdxYkKBUc3eE7R+sQW+G6Z65goQivRkaHojT8MYyAFXiTOXNQcLb3XkLOTXY4xZsa9gPvRTTPXNMD84VPO2xEq0/7hMiKOXstvpfHFMlKJk9erZ9uFo1f+dgjclIVj0Gq5iY6ujZJC/+7xZ1gpJesVgru07c/vWFT5zlzDfVydCOhIWa26PC147fEMDsETtd7UhYMPvF2lpLzWx8eyWxfeoWZ39I2PaBaupF7ewA/2axsQTK4QuX4Dxt859UUHWrukz1TF+Kg59pFSYo6c2w5U+rKL+hsM0sKLZvxWz6mn0GLEHxdUrzexPU3lM41tM9c3mCkqvOqmrFd+LLrZwSeE4ASEOyd5ahk2IFaleFjMkpYReUlK/cH6LiusLzrqlOhaBk9uupv7+U6rvWtmNJT6Tz97n6rux7wH7p59GctlHa2oQX5fsfeeQRampqSK8l77SOdfwnwsLCArFYLE9QClHGlZrb1iQo6WQdW95bRfxGZbP54m8HC5JRym8MUH9/GUa3DhZQtXAqvz5IooDl9kpYg0bMHgP2mNjca6RlksmL08KkldPf6uLMNzsKttEZyVuEnf3WRVWiQeKWEE1vL2yvvhKWoAGLgN18Dme/fVHoXRW7wsemhysKWkitRPdvhzj0r62qBCWAxE1BNr5drOZlj5vxb3aIdQJw14lZDQPU3Bmh+d3i9cU/BIR2utn49krMfrEbY3TrsMbE3sNGh46IoK1KeLeH2rtiQtc+/3g3Bz8tTlAK7/YIWc9Ndc1y6J/PCxGUACSLDoNDwhIUyweeBhvN76vE6Ci8rmn9cV+eoJSzn1wLye45Tn2zQ5hENHY+yVTvrDCx0R434xC0JJQjRqJ7vJSprD2mupR9gJo7omx4oKxgTuh9foTZwXl0Rtjy3ioqCuRq29kwm6avRIuO8fFxNmzYwF/91V8J9X0d63i944knnsBisXD27Fn0GNjFTQUJSuHL3Wx8ewVak0IAKWhrpoW6+8ryB+jUCEr+ZiexK3zCNmyOMvGaVyqZYfLiDOPtYnsXQ8cmOP1YpyrZxpad9022z6gSlLQmLY1vjeOqLZy/czC5JYxuCckiVueZHUxx/IvtQgShDW8Wt/8COP7ldtqeUq9rGF0S1XdGCG0Xu7Zvk6Og3dRKmHySokAjAL2spfHBCoJbxH/jHwIa3hzPPy8isMXNqnZkOTgrZeF5Wv0bYpRdrV63TCczHPtSmzgxSAt1byzNWx0Wwvkf9AgTlADkgBGLX+z3AVTfGaHsmsK/MTWRUfqQURx4tFJhCsr5H/XQ8t3CDjYrMd42zeg5sTq82W/C4jdiEuQflF3lJ35toOD4mB9TCEpak5bae0opLTBPy8xm8gSl0HYXG99egV6+9MUljUS0dQNVNLG0tMRf//Vf09TUlD/8/XrG69ru7a//+q/5H//jf+T/vY2rsK3hBZvDdH+KmaF5BgWLuxd+2kN4p0/Yhq31xz0MqUiN5ZSZ+p4bpe/QqKpqSs1dEc5+t5ueZ0booTALOrjTRWSnh2OfaxWSGtzwxhgGq57hlkkh9Zb01IKw/zogrIhUdXuEEi2cFUxYqZmMcuJKoM/OGpmxs0lhZaSWx7uF/WEjO71IFp2QNVx4q5uyqwJoDSVC7XueH0FS8WzPoeauCI6EzPP/89X3E298KI7RbeDFj6lfu/fwCItLSyzOiMV6wxvjZOYXOXBWvWASuzKAo1Sm69lh1Xt54ZeDhMfTQs9A7lrWMhNTvbOqY2p6ZB5LyIgkF7Z8zMFZJVN2jZ8jny5sudj73EhB26OX9WNgjsUi5CAbH4pjCZoY75guSNbLkapq7o5g8hk5UsB+Z+xckrFzSvvwHjczg/MFSVkHPr58n3N5cC0MHZ1AK5XQ/2LWrkRF+aj1Jz34G51COSE1qrwH+o4WtkKRNQ6u5i7GNnZw8vQJPvvZz/Ltb3+b/v5+JOnVt/hZxzr+0JFOp4lGowwMKKpCara6OQyemqBEKiEtUL9Oz8DA8TEGDqvkw6wix/kf9THWOa1aHM8pfhz+XKuqzZOrRkZn1jF4eFzoZH7TO8uZ6Jym46kBVYKSOSiRuDGEq9IqvEjLzGWYVilc5TB6NskLZwXmAnpofEtcOU3Wrb4g0pv1LMwuMDOk3g+9uQS9XcdMX4q0wHtqvHWa7ueH6XpGfbPA7NcT2OREq9PQKrAwT9wYQqMrEbLUmxtP0394jOFjYjZZWz9YxeTFmaIW20LIquUMHh8XUvDqPzQqLAMeu9JL5DIv6bkFIeWq6C4vMyPzjAoQri8+O8REl5gaV07Vxx43qz676RlYmF1Q5v2CqLotxHxyIW/5uhYOFancmppZEJIDB0APVTdHmBmeK6gmlp6B9MwceruepreU0fbL/oL35vQ3lhWUEvuDBZU7Bg6PMXBiLJ/z5Iip4PN+4sttWEKmfP/VbOWGT4zTKWCZBDB0egKdsURV0alJcxmz+gl6w620tLQgSRKf+cxnePjhh4W+Zx3reL3hu9/9Lvfccw9LS0toKGE7VyMXsNUFxSZosmtayIINoOuZYTJzi8I2bC2PqxN9zH4jMwNzjJ1PcuCT51RJR6VX+eh8ejBrQVa43/YKC/F9fk5+o0uIOFB5eww5aOLAP7cIkZ9SkwvoBK3mQSE+iSB0mRuDrKNd4N0OsDCnvHNEFGfksJFkz5ywMlLrT/qwhsRqXuGdHix+IwOHx1Xb2issVN4cRrJo6TugPp/qfX4Eg02s5hXe5SGw2cmhz4ipbBWD8hsD2MtkjnxGfV4wem4CraQlNSE296q7r4zF9CJHBU6PB5pd+JtdDJ8cU30eBw4Ms7SwlCewFELOis3o0bOQzBS0ZgOYHZknPb2gKF0JjCmz30jZPh+nv91V8N6MnU9y8BPiZKm50ZSwfQ0o99Fb7+DYlwuriSW7lYcqvNuDo8zCqQIK8zMDy1aSrjormdlMwbnriS935Hdi8gp1Bfpx7gfd+ZqamvJRx6/68GxwCuWEhTmY6JxmWGV/wqgxciW3MVnfzYkLx/j//r//j29+85ucPXsWne51vaW0jnWsieuvv56nnnoKgDBxajXNqp8ZPT+FZNGrW7ABZBQr14kOlQJZVpFj4NAYs0PzqiSbnOKHiKWY2W9AsuoYb50WUitJ3BxienCOvhdGVdWL9LKWylvCDJ+ZEFZQSs8sMD8udjhldjAlrMhScXNQIW8Oqb+ztRKkptLMFbK7yzcGg01SyAwC93xuNEXnLwcYK6Dekr+0SUt0lxe9rBOyJy69wo8k6zj+JXUF88VUhou/G2K8TaxuU/9AKcm+2VdXCSuLxofiDJ2cEFLw6n1hhAWRZwuFdFRxY4jzT/QUVMvJIXalj9nhFFNd6nW9rmcGmRsVG6e5cWHySurjL6OMvfScuFJUcJuLpYxSDyyEYuuVqekF0qI1Ly1U3hJmemCusJpYRnkGtFIJVXeE6XlhpOCe7cVnlu0Fg9tcBcfI1MVZjn7hQl69SE356NwTPch+o7CtXO8LI0LWjwDjHdMY7JKqolNMU0lAG6G3tIXjx49js9n49re/ze233y70PX+MeN3avUWjUbq7lYfMjIXLNDes2VaSoemdVQyfnBAqCESu8BDZ7uHol9uElHe2fKCSEl0JL/4f9Q0QySXR/HCC6YFZjn9B/eURucJDbJePnueGhV4IZdf48W9ycuQLbUKkHKNPwlNnEyLNFIPGh+JMD84JK7I0v7+SEp1mFYnh1YAkQ/MH6pgZnOOYoNd9sVAjWyx3RvEjvfj7oVfdwq10nw93rU2YFFaM3Vvi1hAWv1F4AlgMAtucTA/OFVYoy0JySeglhFV7ioEclmh8MMF4e3LV5s+rgcgVHqKX+Tj7/S4hVSU5LFFzVyknv9kplH9EIcklBHd4VDfscqh/oBSz18CB/yv2TO74LzVkUotCz7AcNdD45grGO5OcflQ93mXX+AludXPuBxfzykmF0PTOcnTGEg79s5jV5bb319Dz4hA9z6xNiuhfushJXgAgEonw8Y9/nLvvvlv9+utYx+sEv/71r9m3bx+5aeUmduPWrH26IrzLTXCzS7GwFFjDbX5PgrmxlFAOdtVZqbo5QudvB+h7Xn1BW3e/YrV15POtzI+od2bLB6rQaDVCxBb00PwnCSYvznD+h2JWltE9Hi4+NywUF1GY/Xqq74hx+ttdQr8xF8MLT/YydExswSWK2vuiOOIyBz/T+ppYkJn9etJTaSHSmxwxYXTpC9pXvVI0vLWMic4ZIavBYu3emt5ZzsDRsWWi7qsEvRk8jS7lkITArVGz8/r3oPFtccweI89//Myr+iyAoryUSqaF1loA5TcEMdh1nBHcaBZF+HI3gycnhZ4Dg1tP41vK6f63IaG8FrvKR3iHm9afiD3DDW8tw+IzceiTZ4SenS1/WkV6ekFo/WQOSmx4Y5zOpwcZOKw+Zsuu9eNMyBz5/IWC9/75pV+QZAK9Xk9zczPPPfecesfXsY7XEa677jp+/vOfA+DAzRbNlWs31kHDm8oYPZ+k53fqtR13nY2yfX5OfbNDSHmn/o2lSDYdR/6l8MEbUJSLNr27mqmemfzmfiG4qq1U3hrm4jNDqrZHoChSRnd5Ofn1DlLj6kV0nazDXSULkWyKQeKWEPMTC1z8rdj6uu6NpUiyjqOfVY9hUdDB1vcrVqBnvvnq1jJyUCNbrOyLt97OWMvEq2rnBYqqjn+jsyChZCWKsXsL7XBjKzULjddi4aySmZ9YELNHNILO8tpYyelkHc0PJxhpmaT1CbE1iyhcdVYqrg9x7ofdQvZzkkNH9W0Rzv+o+9X9rToIbnIKEeQA4tf4sZWaOfaVdiHi2+b3JIQJZ5JDx8a3JRi7MMn5H6jH29tkp2xfQDiGlbeFMLkMQpvS6GDjQ+X0HRpl4ND4ms0mlkY5yK9ZYolQKMTnPvc5brrpJvXrr2MdrxO0t7fT1NTE1NQUJWjZwhXYNGurEDsSFkLbPZz+VqeQ5VHV7WHSsxnan1RX3jH7DVTfHqXrmUFGBJS9I7s9+JucnPhaO6kJ9YRWe28UvUWM2ALKQeZk/xzdggdU3HU2xluTZFLih6vVoJe1lF8XpP2XfUJ2ZbkYdvyqn7HzYkpRogjv8hDY5OTEV9teE+s0SdaSySBEgDI4JQxWHZNdr37dJn59gOmBucLKYFkUa/eWuCXE6LkpRs+KHaoQhhZcFVZGL0wJPZdqpJZ/D+LXBnAmZI59oZXMq/wVtfdFyaSWOPd9MRKSt8mO2WN41QlnriorU70zQlZrWpOW2ruj9B0cFcprrhor8WsDXPhpr7r6P8r+oavSyrEvtws9O3VviJFJLdLyPfUYSrKWmrtjXPzdkFA+8TbY8dTZOPf4xYL3/szSYXpoQ6fTsW/fPp588knVa/8x4nVHe29tbaWqqiq/SVbLFsKasoKfSSVBo9Ggs4iFY7p/jkwRCiVjF5LoJLGTVqnRFMOnJxSiigC6fzPM7OC86sa85JJIjabo+MUAHb9QJ2KV3xRk4NAI0/0pugfVJxjb/7yG2eF54cmL0Smh0YorLh365/NC1m1Gn0TdPTHOPd6lak0Hyr3ve3GEiU4xhvC2P6tm+MykEIs8ByGCEkAKLv5a7L4bfRKVN4Zo/1UfyYvqpwM7fzX4mrCaAVoFN11zqLw9TGYuQ5uAjUcxm2+p0VRR3C5JLmHjn1QydGJclZyY7EkxfHqSDsECIygTdI1GsRIshO7fDNP9b8PCxDStSY/erMNdY6VnUL1I66yRqbk9StfvBwuSbFLJxTxBqfqOCC0/7i7Yp1OPLhf/cvmlEE5+vZ3UmNguY/LiPKMtk7QJbOwCDJ8ew1kpCxGUANLTCywtiuVki0tCUwKL6cJ83oAmSoAo/XVnOXP2DPfccw+33HILP/zhD4W+Zx3r+GPGfffdx2OPPQaAARO7NerFyqUMUKJBb9YLbdCnZxZITYnlkNHzU8yMzDF6XiwnXHiqj/A2jxB5B+DYV9rRCyhH6+3KbxNRY9GbS4js9dH+s34uPqM+74rs9hDe6eHUNzqFlI6clTYkqx6tJDb3Gj09xfPnxcghVXeEWZhdpO1nYnOjtl/0E9ziErrvZdf6cVdZOfRZdYWrHGYGxBktye5ZofiBYqMKCJN5RVS2XimKIYbLEROxPV7O/6Cb9Ezh9Ut6BiECTA7FEpTKrvPjrrQKPRNdvx3E7DUK33dL2EjiphCnH+1Q/Z0HP32uKOKTHDKiN4mrZmx4UylGt0FVDaDn98q8zBI24q6y0lVgHTA/kl5FjMzll7XQ9fQgk13TQsUaUNSBfU0uIYISwGRHkpkRwcnr4hKL84tMD4rtSOsMJZSUaFTv0Q7NNYxZB+kxn+P5559HkiQ6OzsJBsWl3texjj9GjI+PE41GSSaVAmgjO/FpVOw0F6BEq0FnKCy3n8PsSIrMXAYEzzSOnpvE6BRTkl2YUxQCRs6Mi127ZYrT3+pUVYTJqboMHZsQImeGdrgYbZ1ibjgtRFDa9HAFM4PzQoVqAIvPgF6wxghw+uudQhVanbGE6rujtD3VL2YxtQBdvxlgZlhMdbPp7XGGW6aETufnIERQyvZFlPyuM5YQvz5Az3OjQgSe4ROTeUuvVxu9z48IEeRyCF3mhiWElLDzKjkCWJijKOVIdND0YJzhs1Oq5MSF5ALdzw8zdGJc+PLRvT50Jg3tTxaup42enmL0nJhSGUCJToPBIWEvk5kbUe+P2W+k7g0xun83RP/BAjXEBfIEpcheL/0vjBRUjWpfUTsXUY06/a0OFsQeM1LjC/QdHGXgmNi8e6JzmmT/rHDtOjW1gNYgNnfVGXVoSjTK+rwA7BoX+7iTobrznGo5xf79+3nHO97B5z73OaHvWcc6/pjxyU9+kve///0AOPCwRXOF6meWMlBSokEyaUkJbNCnpjOkZ8QS5czAPJPd00z1iOWEvoNjZOYXhQhKAOce70FrUp8zak1aMrMZzn5HYG6kheAmlzABwVkpE7vSz7kfXFRVZwKwBIwY3RJavYr8SRYzA/Mc+XyrEFEltN3FEtAnaM/Vf2iMzOyiEEHJU2fD1+Sg5XvdwqQtkfGUw/xYinkR9ScU4oRGpxEiHQFChLpXimII05JdR3Czi94DI+pkmAyMnhMnPhVLUPI22vFusAsdsO0/Mspk94wwQUmyayndG6DtF/2qJJsz37koNLZzkP0mTB5xV5DSfT6sYTMnv9pRsF0u1pKsxV4uM3R87XVAZjaz6nq5/LLmtc9OMTeWUrXEzKHnuWFmR8XUzUDhdCzMi7VdAtKzC8wJKqmWSCVoSjSq975Ws5kyUwUdztM89dRTeL1eWlpacLn+uCwZ1SBWofgjwQc/+EEqKyuzUtca9nBLQYJS4pYQgW0K4/nF/9OieoKm4c1lICl2Rwc+fq6giokcltjwplIALvy4jxYV1mLpPh91b4wBcP7xHlWFlI3vqqD+AeX6qhvzEjT/SQVN7xTzlEcCf5OTytujYu2BubGU8GIJlHiLnLwNbHMu+1wKPOP+BgcGmwRFWM51/GJAqDAgySUsLS2xtCA2Ydj4rgqa318p3I/m91cSucIj1NZdacUaNmNyi/nc2+Jm5KiY92axkGTwNhaWlF8JV6UVV5WYjzDApvckVL1Oc4hf62fHf6kVIrSlksp91OjF0uC5x7uFLQEB5LAJS1DQ0zUFloBE3X3qz9xE6zTP/cOZgoSjlRhrS5KaTjPTL/bCdlbJuGtt1NwaEWtfI9P8cIJyFe/f5MV5UslF7AkL2z5Sg7WscGzOfleJty1uZuO7KgpfuyfFkc8oJ079zQ6qbi/c99Nf78qrJ1TeHsbTsPb4ne5P8cI/nqXvOWUh0vhQHEle+9qB0zW4MyFA8ShvbGxkdFR8w3cd6/hjQjqdxuVy5QlKMSoLEpT0dn0+z/U+N8LBT5wruMnu2WDLE0NOfLlD1b4rcXMQZ7UMaTj+hfbCpCN9VqnFr2d+JK1KsLGWmtnyp1VYwkbSE2lmVFQF4jcEaH44gRwRew/EbwwS2OjEHBRbFCb7ZpkbTwkTbHp+N8IL/3iWmT7191jVnWH0dr0wicMaMgnb4IJCtuh4SszKJE9oF+iL3q5n+0dqCO4QW6zFrvLR+La4UFsAT40Nb51drLFesQVEgMz2SmAJG7GExeaAcsCIvdSCtcwi1D68yy2+ZkA5NV7/QEyo7VJmSdnvFojLeOt0UTa3OqkEk9OAW+QeZcdTbJ8PV536nPT4F9uLsn6b7JllRpCQA5C4KURwq1t4vDS+Pc6mt6vfoxxBqe7+GPXZdelamBlI5+0Da+6O5NfIa+HcD3rzJ2Vr74sqOaPAtQ9+8jzJ7ln05hJq7i48T2v9UV8+3oFtTmJXetds65zyUd2/nRK0pNNpqqur+fCHP1zw+utYxx8zvvrVr+J0Okkmk+iQuILbChKUQjtc+bXOsS+0qx5cSuwPojOWMDMwx9HPtxVUMZEcOhK3KOuevgNjqgd/PA02Km5S1ow9vxtWVUipujNC5W3K9UUsq5oejFN7v9j7CJ1iU1ZxQ0isPcrca0rFSmUljn2hXUi5yF5hIbTTrfxDYO/QkZAxe41o9eI1r4HD40IxRKfw0pYyYuS0qjvCRc2l6t9Uir/ZIdTWGjXjqrRh9orNjU0+Aybfa1PzQqdY0Ioe8/VtsOOtF6+R1b4hRmiHW6itt8nOlg9UoZMFOpMdT6IHRHueHRZSH8vBFjNhDZvFGi8oRJ/4DQHVpnPDaQ5+4lxBVZ+VmBmYY3ZkXpgMbfIZCG9zE73SJ9Te7Dey+U8qiOxdez4CMDeywEJyAZPPwKZ3VWAJFZ6rX/ztIKnxBYxuHbVvKJy7UuMLnPmGYpdnKzNTuq9w3zt/NZhX/gpd5sZZuXYRayG5wJF/vcDg0XEAKm8JFRxf3tOVxBdqAfj85z9PQ0NDnjS7jnW83pDJZNi9e3eeoFTNxoIEJa1E/vmcaJ/m5Nc6ChJKLEEj/mZl3dXx835VQmmg2ZWvvVz4sbpiUPmNQQxOicxsRtU2y+CUqH+gFJNHIpNSJzR5G+w0vbUck0/sPR3c4iK0041J8L0+N55idmiOWcGDMeOt0xz7XJsQqSS8040ka4VJHNaIGVtU8H2HQrZQs9nKQaNT3tFCBCWtUsf01InNMdx1NhI3i891XdVWfBscwu3lkBGtOK+lKEh2HUaX2MUNNj2eDXblkJsAnJUyVXeI7XsBVN0RUd33ymFpYYmlxSW0kvp+4+xQSoiwtwwNcsiEvVRgLGbHtqfOhi2m3r795/1FucdM9cyS7BeveUX2+ohc5lUs1AQQvz5A/f0x1fY5glJkt0f1HqWTGQYOKWT18C4PrprCtcC+F0fzhyuie7xKzihw7TPfyhIqtYpNYCEMHBrjdHadaIuZ8W1yrNnWNGunqmcbMnaGh4eJxWJ8/OMfL3j9Pza8bpSUKioqaGtTSC82XGzTXKX6GU+dHVupWUitxbvRjjVqpnxfQEgBJrY3gDVmQQ5LQoo+rhobUhGnrEr0GqFkB0BKOXUx0iKY9FJw6psdTPYIHKWVlPaiVml1D8SY7J4Rto8L73CjN+uF1J+gOMWgxC0hXJVWjn62hZTAeiqVFLOqyrefTKMzimVeySWhN2mRLGK7Ez2/H8mfvhZBzR1RNFoNL/zjWeHPiCJ6RZDAJhdzk21CtmzF9kGy6DAJTkqSg3O4ZxeQvWLPnYgF40rU3htFDpuExsHBT4jJV+ZQui+AvUzGEpCELOskl0TdvVFOP3axMHkqxbKtWfZ5LYSxc0nOfE/Meg4U0ubM4BzdgicLS0o0aDQIPxv+jU5MLgk5ahBSDQvv9CDJ4rvCnhob1ohJ6NSlf6sDOWgitNNfMCc1arYzvlRJf/gcJ06cwOPx8OKLL7Jlyxbhfq1jHX/oOHr0KJs3b84rV+7gGmRNYXJAaKsTe1zGWS0z1qKeY6K7vejNOjHlGj24a+2YPAaha9sjZsweI556J10D6tfXm5RTDhqNWJF/4MAIZrckTCI6990e7OVjQiQiUAow463qcy+DW0/VLWHOPtalqi4DiuqOu8rG4vwirYKWvMWQN7a8v5Kx1iQXBBUp23/Wj5hGp3IyJ5VMC5NDTC4JySr+vijmdzrLZWrujNH52wF6fic+XxNF3X2lZOYyHP60ep/6D44VPlX+Ehis2bjoESKHpSbTpARt+zp/OSisRAUK8azprXH6D42qSsdPtM/w/P8Ss8vLIdjsYnZ0nlFBJcbIbg9mt8Q5FVuOVRZ/AnE8/WgbklNcNWrg8DhWQZIaKOvGYhRsrVELeotOaI1sLTVjj8vELvcIPdeRvT6cCSv2cjMTbeprzeAWFzqjrqDKlF6j5ypu55zzMMNz/XziE5/gmWee4cUXX1S9/jrW8ceEW2+9lSeeeAIALyGaNJepfibQ7CI9syC01rHGTLhr7MxOpIVUdIKbXbiqbFhCo0JKOp46xUZAFFqphMUiRGOGz0yQ7BNX9Dn59U7SkwIHeXRKexFLJlAOTs2OpoTfvaHtbiw+ozAxd/jkJMMnxWp7wa1O/M0uTj7aqaoCA8CCQswVRWoiLTw3RgcGu4Qki9V2xs4neeFj4rWjyptD6Ew6Dn+quDqMCPxNDuJXBzn9WCeTHervLhG7r5UwOiTmXGJrgNmReeYnUujNWqF7ekzQ2jaH2BU+XFWy0G8QtdbLIbzNhW+Dg4HD44L2diUkbg3T9lSfKnmqmL7MDs5z6psdJLvF8sXMwBzj7UmGj4k90xqNMu8SVa5zVdqRgyZh28TQDjdywETnbweFiI3BzS5SybSQ/YitzIyrysb08Dy9/7Z2TirVVONfCtMROcnJkydxOp0cOnSIxsZG9Q6tYx1/JOjv76e6uprJyUm06NjBNZg0hQ/+OBM2PLV2Rs9PCZGDQ9vdmNxSfuNcDb6NdmaHTExdVLcqNTglbFEzyb5ZBgWUdEr0ipIdgq/10dYklqBJSOUIFBWi8fYks0MC7bUKgeOcgCWr1qSl9CofnU8PCimkSHYt/s0u0GqELJABYRVNUA7wTLRP0yuoujR0fKKgusxKSLKW+fE0c4L1F6Ndj8ktziJq+a747zS6JGrujtH56wHh/heDqlsiLC4s5okchTB1cVbYRg5AZ9JitOtVlXpymJ9IsTAnxmgbPj3JcBHEI60E1XfFGDqlrgSbmljgyL+K1yUBwpd5mBmeF7b7c1VZMfkNqmvB0bMrrPgExMvanuzDaJeEiYHDpyaUOqNge61UIs6VQKnZmpySkJ2gZNfi3WBnMbMotB/vrbPjrbczem6KpMABF/9mJya3VFDBTKvRsoNruGg+RzcX+MhHPsLBgwf5xje+oXr9Pwb80SsppVIp9Ho9bW1tGI1Grt16C9s0V2EJSDS8uSyvHhO+3E3d/TGQFJWjmrsiDJwc5fAnW5FcSlt7QploBHe6qMueCJZcElW3R5B9Ro5/pZXuZ/tpeHMZzhrlFIK/2aEoLGWRuCNE+Y1BTn+ji+NfbSW+L5Q/ueZttK1qW35TkIrbFIbfkU+3MjM4h3ejssHnrrPmlZsAym8IUHl7GEtA+T/mx9IMnFAmMM4qmYY3lyHJyu0su8ZPdZYN6t/qoO6NMcbbpxk4NI61zETDm8swZlnOpft8q06zbv9IDZGr3Ey2zyB7szEMK23De9yrlF5q3xjjso/UUXl7GKNPaZtTRwntdOeVoQBq7opQdo0fa8iMt86+Kt6Bbc68KhQoyibl2dM1J77UyvTILO7sKeeXxfuWEOXZ03hl1/hpeGtZXtXH02BbHcObgvmTfgCOChlKFMs3Z00uhsrf4tf6V6mx1D9QSt2bld9jT1iUtlniTOnVPmruWm5bd3+M8OVuTn+ji/an+1fFO3qll9p7ltvW3hslcoWH1GiKE4+0YXEb1ox3zd2RPBs/N2ZtcYUJG9zpWhXv6jsiefUhSS4hNZNm6PS4EsOtjrzKF0Di1tAy01TKKoZlJ6TejfZV8a7YH6Ri/zIrteHNZcxNztP9b0MYXPrV8b4xSOLW5XhveFMp/q0OYGW8Sy4Z77oHYgR3KkoIZ77Thc6gXR3vu18eb4DZkTnmx9J5meLIFR5q710xZu+JEM2exs7liOBOJ/5mx3KOyMX7rkhewSMXb42kYXFhcVWOAKi6PUL82ly8WZUjat8Yo+GtyzG8VLw9DTZOf72Lzt8OUH7tcszKb3p5vHM5IrDZhtljILhFiWkuR+RQ/8CKeFfJNLy1jB0fqqXu/tiqHAFQ98ZY/vSmtcxEZJsHo0+iYn+Q+jfFVsf7vijhPUpbOazE5cJPFdWj+I1+Nrx1eWytjHcuRyykMrzwj2cxOQ3UPRDLj4FcjlgZb3vCwvnHe2j/TT+lewP5sbUyR+TincsRPc8NMz00m//byhyRj+GKHJEcmOXwl5UJXuL20Koc0fDmsvxJT2eNjK/WwbFHW+n4xQDxa/3UPbA8tuofKM2rDtgTFna/ZTONc3uQjTJLS0vs2rWLt73tbaxjHa8H/M3f/A2bNm1iaWmJyvJKrpbuQtbYiV3lW3U6tubuCJ5GG3LEhD1uxuwycPyrFxhrSRLZ7aFixSmHqjvD+DY7AHBWm6m9J8rZH3Rx5AtthC93k7h5RdvblpUwzX49tfdFMdv1HP3iBYbPTFK54t1TeXMwn98Mbj2190axlBmZaJ+h/Tf9GB3LJJXE/iDhXUpbvV1P7T1RXLUW0IPWoGWyazpPOorfECC6R1E/1Juh9p4o9nIz9riZwDYnpVcFOPWospguu9ZPLHfaVa+0dVYr74jErUE2vVtRi5tomyG2z0fZtcvqgbX3RPFsUHKWI2Fh659Wse3D1aCH2JXeVfGuviuCt0l5R1hLlRiGtrqw+ExEr/KR2L863v7NSgwtYSO190QxuPUku2fpOTDMyv2mqttCeXUis1+Ji9mvx+DWU31PhKrbluOduDmYfycb3ErbnJqUf7sTrbGEdFYut+LGIJHduRiWKDHMzms8jTYaHornPxu/IbCsppKNoSM7j3TVWam9J8p0zxxH/uUCjnJ5Od7ZGLqy72RntUztPVHQKwWYwePjlF23HO+auyP5eNvLlRjqs4eOons8lN+wIoZ3LY9ZOWJS2mbVZCwhA1N9MwxmN4Wr7ggT2JIds0FJiaFHaRva6cbsXd60rbx1Rbw92XhnFbYCW5xU3RGm89cDtP+yX4n3S8ZsLma+zQ6q7lqeF5TfEFwxZkvyYzYX79y7vu1nfQydHCe2+9JjNhfvHKb6ZkmtKOzU3hPNqxM5EpZ8vEFRr4rfuHwvczkCFIUCJd7KvCCy20Pscg9LC4toNKtzxEvjvTJH6O16mt5RvjpHrIh3cIcrnyNOfK2N2YG51Tninmhepcq/WYl3DqHtLpxVtlXxtmZPsXmb7FSvWA/EbwjQ+I442z9Yg9nzknhvsK2KYXiXH3eNTVGbeyC2Ot418qq2sX0+TB4pryzX+Pb4qhyxcszmcsTJRzo58aUOqu+KEMqOl1yOyMUwstuTzxEHPtnC/FQa/2YnevPqHAHKmK3Mxnuqc4axtilmRuez113OEaCs81bmCK1OQ9/hESbaZpR4v2FFjtjspOrO5XhX3Bhk6MQER7/Yht5cQt2bY9grl8fsS+N99cbrqLdsIZPJcODAAcrKypiYePULputYx/9rLCwsEAwGeeKJJzAYDFxds58mzWXoZB2J/cG8Woerzkr8xgDowOjRE93rY+D4GCe+3IHOqMxz5IjS1lkp5595nbGE8G4P1pCZY19upee5YRL7g9jKlOfNHjevmkOE97gJ7/LQ+fQgx7/QSnCzE3uF8k62xkxK2+z5u9AOF5GrlJx/9rGLjHcmcVUr7wg5bMwrN4Hyjotd4cPoUD48N55i+JTyHjX5DCT2B5Gyf/NvduRrI65qK/Fr/UwPzjFyehKjW4mL0a209TTY8mt1gE3vqiC43cHs4DwlRqVtToHHXWdbNbeKXeNj+4eqKd3ne3m8q62U37jcNrLXS2iHC0eFokyc2B/EGjO9LN6gnN7NvXvOfKOLye7p/BzIVmZeHcOdSrxBqYclbg/lVVHkSC6GStvgVifRvctzIE+djRJdCQvJBSyhbNusQoq/2UHpVctt49f7SWTrky+Nt2+jg7IVc6v4NX68TXY6fjVI56/6lXhn37OeDavjXbrPh3+zQyFAfaUdg1WL2f+SMZuL9xW+/HxJZyxRxmz2neyskvNKXADh3Z5l9SEdpGcyDGats+wVllXxDl3mVizYskjsD6LJnpl6Wbx3uAnvXlY4r7gpSCazSPsv+kCzuGrMvjTe8RsD+TmQ2f+SeK8Ys7l4597fZ77TibZEkx/73iY78RVq4mX7fPg2OgBF9WZ2eJ6lxcXleF+/It5X+fI1jNyYdW+w4qySXxbv6F4fwa25eCtx0Zo0ZFKLOGtfMmZfEu+VOSJ2tY/KO5bf9SvHbC7e9goLnU8P0vpkD6GtztU5YoVCUfmNgXyOcFTKOCpkfBuyNbBsjsjH8IYA7qyahMlnIHFLkOb3V5K4JfTyeF/rz9fmjW4dgY1OjG4doR0uEvuDq8bsynhLDiWGF383zNz4Av4tjlVzlVVjNhtvjRYOf7oVraSl/KZAfgzkcsTKGFpjJnqfH6H1Zz0EN2fjoludI/IxzOaI3udHmOhK5u/bpeK9MkdMdCc5/4MOJd67XKvG7Mp4W0JGfBvsHP96B73/NoK/2bGqHrlyzJp8BjbcXEnj9C7cJh8LCwts3bp1Xc1yHa8bPPHEE4TDYSYnJ6mMVHG14Q5MGgvuOhvBLcvKzeFdHuxxC0aXhNElYfYaOJm1qHXVWAluX9F2pztfwzD5JGJ7vXT+tp9T3+jCWSkTXvHMh7a78i4UellL7CovBqfEmce6GDwxvuqZD25z4apV2mpNWmJ7vZh8EvNjKdp+3oe0QhnN3+zE26DkVK0Esb1e5IgEWtAZtEy0T+dJRL5NDryNywcRY3u9WIJGjC4JR6WF8DYXHT9XhBy8jfZVSiCxvd684pN/s4Oae6NoJZgdTOFtsOfVo0BZh+aUXkweifo3ldL4UDlaqQRXrZXgtpfHGxQSVmyvF3eNFXvMgrfBRugl8c7lQsmuxEWya0lNZOh6ZgBWqEYGt7vyqip6WWlrdEloTVoiV3hXx3uLK//u0UolSryz6lDWmAmDXSKzsPSyeKNV4mL2K3NOOWwicXMo/1lvkz1fz8vFUM7OOS1BI7G9XlLJDC3f68bkklbFO7rHm59z5saWVoKe50boe3GUQPOKuOz25PcTja5s26y1/cvifbkbR3aOL9l1SgyzajImn8RY2xTjbcmXx1vOxVsZe44KS75/cOkxm1NNssXNhHd76PrtIF2/HSTQ7MorR+XGbE69yxozEd2zPIfwbXK8LN6WoBJDOaTEEBRiWN/hUVxVyyqDsb1e5LDSR7PfoLTNzhVnBudX2cOuirc3F29lbpjLEbk+rxyzL4t3jRXfJheLC4uwtDpHrByzwKocoZVKqLg1uDpH7FVyBIA9bsmP2TPf6STZO/vyHJG1drPFzPm6LChzZv9LckQ+3lFTPoa5eCduCbHx7RX5614q3gDeekUsRitB6dX+VTli5ZgFRaXN7DPSkz3AUbE/uCpHXGrMdv5qkPM/6CG8y5PfI8zlCH12zLqqrPkccfLrHcwOz+OslNFKL4+3I2HJxzs1kWHw5Hhe1c3oWj1mV8YblFx68bkhkj2zSo7YtzpHrByz/mYn4xeSnPpGF2iV/QNzaDlHrIphk53NlVvZuLSHpUX45je/SU1NzetCzfKPmqT09NNPYzAYWFhQjg586AN/RuNWRXJUDpuxRpWTnaCc2rKXWdj63irqHyjHkZBxlmUn4h4Ja9SMM9e22oa9VM7bpLnrbLhrbSR7Ukh2pa0roXzWXWvDmpX7sycs+Ood+RdKemwBa9SMuzK7IV6TbZt74Opt+BuceTKGNWzGW6O0dVUrbY0OpbG7xoa7xkbT2xJ4N9qxlVrw1ijf46yQlbZZSTt3rRVHQlYIDteFcJTJ+cToiCtt5VxRoMaGo0L5LcGdLrTGEgJN2eJ1LNs2rCRHb60jH08Ae9TC0tISgyfGsQaMWKNmHLkY1mdjmGtbIeOqsfLCP56l7df9SgzLlb97a5Tfk4Or0oqr2op3ox29LGH1mXFWZuNdvRxvAFeVDXe1FSQIbnNjjZhxV9vy99EaNSNl4+2utuKqXpZDlMw6kr3KZqO7Smmrz57qctfaVsnh2sssOMushC9348zG0OJZbuuoWNlWxt/sxNNgw15mwRo1Yw0pSddTuxxvAEe5jKfGrpDnosqYtcWs2fFix16+fF1HhRV3rdL/xgfLsJaaceZiWGtfFW9HQs63NXgMmF1GWNQsxzu2It65GAKSLK2Kr+cl8XZX2/LxBUWC2xa00PmrQVyl2XjnYlhtxVW13NYWs+CpthPY5qTmzijWmBnJqb90vGMy3trV49viW34WVsfbgidr7WHPjtnY1YF8DB0vjWH2GcvliNIrA5Re4c/niFUxzLbN5YiZ/nkO/XPrco7Iwlm5HO+VOUKOGnCWy1gjLxmz2YmvJJWsyhH2kAlr1Ix3sy0fw5fGO5cjDFYDLMJAVpLZXWPDVbk8tl6WI0JmUskUY+3JfI7Ix7D00jnCU6+MlZVj1h6X8dY6lP68JEcEm93YIssxtJdb89e9VI5wxGU2vqtKaZvNEQAml351jkgoOWLbB2pofn8inyMAJUdEX5IjAkqe3fzeWrwNjvz4RlJiuCpHBM1IKEVP3wYHnvrlBYE1as6PgVyOIHvY1tfsxBFXin35eGfH4cocsWP+eq6+8mp0Oh2PPvootbW1rGMdf8zYsmULf/u3fwvA9g07ue+++9Cbs5sStTY8Ncs5y5mwEtzqouFNZUSv9GVztzL19NTbca1o60oon03sD1JzZymOhIzBIpGeSOOps696f7uqbXiyObfmrhjOSivmqIn5kTSeWtvqtjX2fB6y+I04q6zU3aWQKT2VVlyVL7lu9jk2u/Q4KmQqb4my+Z0JPLU2nInlXOipseXzhd6stHUmrFTdHqVsn3/Ve8pTZ8eb7a9er5Ck3StylsltyJM4vLXKybscHBVyfuHpqJDRmbXMjMxBWnl3rop3pRVP9rc7Ss04KmSGz0zx/MfPYA2ZcVa/JN7ZhZstqrT1NztAD44yeVVbZ9VyvC0Bpa0ctlBxTQB3lS1P2sjFMPc+NHsMOCrkvBSxO2FFoymhK6t46aqx5e+NwZVtm30Pe6ptWMMmau+OLsc7e28Mtmy8szH0VFlxVMjErvSiN5cop1ayfeAl8XZVKG31+hLQg7dudbydCWv+XeQoVzZG9FY9rhqZ6B5fvjCfj2H23tjLlLiYXdl5TcKOyWXI2xm6Kq35GNqiFqVtQJkbumut6Fcoaa4c3+aACUeFjC37nvXUKu/6wcPjjLUks22zY9atz8bQnI+Zq0K5TtM7yvFvdi6PWbtOaZt9J7urXjK+a+35PuTHd3l2zFYqMVwes3Z8TY48EWxlvJ3ZtitzhLfBQeQyL/7NTpyJ5TFrjyvxlrKFlVyOOPSpVi4+M5zPEQD27Pi2ZBf6K3NE7d0RLAFjvv/WsHJd84q5eK7tTF8KV40df7bAZ/EblXhn576eutU5AjTMjSuFiVyOcGTH96VyhM6kY2Z4DvTafI5Q7rH1kjki0GRXxkdixZh9WbyX73lwhwtryEx4pycf+5XxfmmOcFVZKbvCT2inO58jckRNd61t+blPK+M7uMNF8/tqCWxxZuNtyN4b26oc4SiV8dTaKL8hSP39CRwJOT839NS+PEfYosrf6u+LKapKuRxRa8WVWJm/lRyRnkgrOaJUpuqWbE6otuVzQC7enjo79mEf1zvuora2ls7OTuLxOEePHmUd6/hjRUtLC0ajkf7+fkrQ8t63vY/6bdUAGO063LX2fK3BnbDirbXT8EAZ9feX4am34cqu43QWpW2uDuColHFnc0nTOyqIXObFu8HG3MgCOl0J7lo7jrIswbc82zZLfird7Se0ValhzY0v4K6146pYXhO5a+35DTH/Jiexy7z5GpmnxoEru+63Rc1KW3sul9vwb3LQ9I4Erjornlp7fs1nDZlw19pX1cc89Xb8mx1U3RbB2+RYfh/6lbZmTy7v2/NWoPYKCyavQTlBD5ic0qoYuqqtq+YFnmo7SxkYPT+FwabE0J4tkrsqZTx1jnxbb50dd62NI/9ygfM/7VHina1zOSos+XiDUqj31tuUtaQOnHFrvm6Ri7dOl2trw5slacT2+vHWOfJreXtZtm1Wld1Tb8ezwmbM5DEx2TW9OobZDSNPnT0/twLwNjjx1SsHuCx+g6JQ6s6St2pteFbYf7jr7fiz5DSTz4i71o7Flx2H1bZVa2pPnT0/fkwuvRLvLPHIXWVV6mG5tvXLn615QwxvkzP/znAm5FX3xrdh+bfqjDpsETOakuwmRLm8Kt6+DXZ8K/rkrrVTUqLUx+yl2RgaczG05UkxoIwfW8jMwOFx5IByH3XZzQ5PvR3virmhp8aOu8qKPW5mw5tKcdfb88Qjd+3qeHtq7fm6hBxQ7o3Jl41LjQ33yhhucOTnpwa3cm+iu5RNi5VzwVyfct+TyxHl1wQp2xfI54hLxTuXI+YnFjjxlQ4ccfnlYzb7W1fmCJ2sI7zVrdzHlWN2hRXNyhxhdCj9d2fvnafOvspO2VO3nCMki46l9BKj56ezf7OtGt8vyxHVduZGU4y3J/M5It+HOvslc4R/s0uJ94o+uOvty+Snl+SIsisDq+O9wb5ce71EjvBvcuUPfuZyBIAk61bniGzubHowTuNb4vkcoQRcieHKHOGqsKEzQtPbK4ns8uZzRC7eq3JEpR20Okw+A2V7A3limhJDx8vyrDa7UxTe6cG/cZmE6qlz5OfQK3PEprk9XLPrBoxGI//8z//MVVepO1usYx1/yPjABz7ArbfeyuLiIltiO7njjjvz71l3jW1VTcDX4MCzwUb9/aWEd7rxNjrQZhVsXZXWVc+mt9GBM2HFt8lB/RvK8G1yYLQayMxmlFpOw8p3siNfby7d5ye8w4vZL5FOZnAm5FWWXN765feJZNES2uGhOnsQ3FEm42twrmqbe+a1khZvo4PE/ih198aUunbj8nWVecIyOcTb6MAWNZO4KUj5dSHlt0q5trbVc4pGR55U4NvoxFlhRStl39HVVrwr8rOv0ZlfG1t8RkweA7NDc2RSiy+bU/g2OHBm85vZI+FtdDAzMMeRz7Vi8RvxNqzof4M9v1402g1K/CttaKXsHuyK3+rdYM/vqUhWPd5GB2afgcAWJ+FtbvxNK667YXkfTS/r8DY6kLO1HUeZTImuJK+M5a2z5/eAcvHO7RHZY2Y8G+wk9ofz9yb/PtQuxxvAlu2vt8GOVirBXWt7SQwd+feJHDQp98akA60yh1s5V/E3OHBm5/hmvxIXyarF5JGouCm0ypbXu8GBM7uWMHuUtjkijLPCihwwkc7aGXoa7Dirlskh3kZHXkHVWWHNzxNz8c7thUlWJS458pazXMbf4GCya4Zk7xzeDcs1Rq1pdbxtpRZ82ftYfmOQ2JX+5bbZeNuytrS2aPaeZ4lHObWbfJ8aHfn3tzVizo5vpbG71op/kyNPqvE2OPLrJDmgxHtljghscVJ2TQBXrRVfgwNHuXJvzL5sDG1K21yOOPvtboaOT+RzBIDJZcTb6MBoz8ZlRY4o3efHV+/MH2wz2LJjNrtXvTJHpCYyeOvt+Dc5QavkCG+jA0t2zumoWJ0jWITpwflVMcxZ+14qRxgceqZ6Z9BqM6vGrDVqvmSOsJXKeGps+DY78zki9zxeKkfYYmZ8Tc48ydviU+IiWbL35iU5wr/JSWJ/WCE6ZXOEwabUvJzV8nKOyChjNrDZSePbErhqbEq8Xdl4J6yrfqur0qrcr0Y79ffH8TYpOQLAUW7BtzL3bLDhyK65y28IEN6+TIBzlMmr8lQuR2RmM2glLcEtbir3K/nbHntJnsrmCNOshSs0t9KwoYGWlhZKS0s5d07c/ekPEZqlnE/HHxk++MEP8olPfAIACQN7NDcLfS6wzYnOrBW2G6t7Y4yhE+MMHReTadv4cAWtT1wUspqS5BLq3xzn1FcvCNmNSXIJNfeUcvxL4nK95TcFafuJmKUGKGonc4IyjcWg/MYgU70zDB0VO81a98YYjjKZ41+9IGTxBArTNjW9INT/8huDjLVOMXZOnGkY3Omi7zkxqcatH6qiRF/CC/9LTJ56+5/XkEllhC3CGh+Ks5DKcPpRMa/QxofijLZNCY/7y/6ijsmuaU6KSCZL0PjmOANHxoQ8451VMhU3BDn/k14mWqdV24d2uim7ys+FJ3uFrl9zVwR3rZ3jXxOzn/M02JhsT5JKCnj/AkhQc0uEtie7hZ5b/1YHAwfGxa4NbP1gFTqjluf+QdCyRIL6e0o59WhxUttCl3ZJha3kXgJ/s4PU1ILwc1V2jZ/MwiIXC1h4rETN3RHmxtPC9o+ND8UZODEmHP+md5Rz5nvdQr9ZkiGxP8rpb10UuvZMxSiHLv6e+fl5zGYzAwMDyLKs/sF1rOMPBOl0GrfbzdSUIoXayE58mrDKpxRU3RHm3I96hKyMzB49ZdcFOf11sfebf7MTZ4WFs98RkyWO7fOhlUpoF7DuBUU9ZyG1SN/zYu//3CJRxHIuB71dnyezvGrQQ9WtYc79UCzuADs+WsPcRJqj/3pB+Gs8G2xCliN6u57oZR7aftkn3B+9XY/FKzEuMFdwVsvU3hWj54VhITuxwDYn8X0BWn7YLWT15UhYiF8boOXxi0KWfL7NDjy1NuFxXPfGGLaYhecF3/3hy93YwmbOfFvsHVR7XxQWEW7f/N4EmhINB/9ZbF66/SM1pGcWhOznQDkBpCZlvRKOhAVryMTFZ9TnsWa/Ho1Oy3SPmIWHPW6m7g2lDJ0Yz6sTqcHbZMdg06ta0L0SGNx65kfE80Fsny9P/BNB3f0xTn+nS+g51Nv11N4V4fhX24XayxET8Wv8nPhyh1BfPI02nHGZ8z8Us1CK7PYwMzTHqKAlcU/VKc60KM/U3/7t3/LXf/3XQp9bxzr+UPDVr36Vt7zlLQBYsLFTc63Q5+xxMya3QdhuLH6Nn/HOaeE1XM29Ubp+MyRo1wSVt8c4/3j3qhPIa38AKveHhK3VQKkXiFqlgaKMomYd9UoQ2OIkNbXAaIuYhWjpPh+BZhenvt5BUvCdZfIZWMpkmBtR739oh4up3lkhu5kcXNVW4f43PhRHL+s4JDhX2PgnFSxlFoXtxxL7g1CiofUJsbGQ2B9kqneWgcPjQu23fbiGsQtTnBewkgFFzXmkZVJo3mj06Km8OUzHrwaE4m+vsFBzR5QLP+sVmleHLnMT2+3j1Dc7hK5vjZmYHU2LWf4B6CB6uY++Q6NCn3FWykJWYjlseEsZJpfEgf8ruKGig/i1Adp/3i9kb1YMdLJOPC6QV48Ssf0DZc6ok0roOyCWj6N7fWRSGeGcVnFTkPH2aUYErWUqbw9z8dcDzInkQB3Er/bT/qRY/W3BN8nzE88wNzeHz+fjwoUL6zWvdfzRYdu2bRw4cAANGjazF6fGo/4hFAWU/kMjZESczExaoru9eRUiNVhjJlyVVjoF13zuOhuSVUefoN2Yq8oKWhg9I/b+N3kldEYtUxfF5xeitlrFIrLbQ/e/DQtbQjW9o5z5iRRnvy1ua2aNmYTetVqpBN9GB32HRsUtqkxajA490wJ2xQan4jrR8/th+g6q31tr1ETVbRFaf9zLRLt6TU1RqPHR9cygkCWfNWrCXWOj4+kBod8b3ePF1+QQtmVzVsrYImY6fy027iO7PWilEuHnpPquCHqzjpNf7RBq3/DWOAuzC5wR3Aeyxc1MtovNFUB5ruSAiaET6nUyvaxFK2mZE9yzk+w6Gt4cp//ImLDFoRw2YXJJQv0pFnpZmye3icDbaC/KUrD0Sh/dvx8Uy8cSlF0bpOPnA2RS6mtVya4lsssnzLeQQ0bs5bJw3J2VMpn5RWF7vsGKNo63Hgbgi1/8Ig899JDQ5/7Q8EdJUtq5cyfPP/88AB7CbNTsLNg+fLmb0Da38AIouNOFPWIW3vDyNzvQaDX0vyi26PA02EglF4QTlbNKZnFxSYjQAUoStIZMQh6JoNg7lV8T5NgjbSDw8CoWTxX0HhgR2ggChYSzmF4UX4RKEL/CT/vPBRZDEkL9Xomd/62W+ck0hz9VnI+nKCS5BGvMwohAAQMUS6p9K5p1AAEAAElEQVTMXEbs974C7PyvtST7ZjnxlQ6h9sWSlHZ+pI6R05Oce1x8kicKySVRvT9E+6/7hAhrxca+WDhrlI3QwePjwgUzpWMIjVNPg42lzJJw/8N73JTu9tP57AA9zwg88xJs/9MaZgbnhMdDeI8be8gsTMiRZIjsCdL2U3GCZPRKrzBZCRTbP9H8Awp57aygt7Iclii/LixMCK3YH8RWauGIyubs7FKS3/MkAGVlZRw6dAiXy1XwM+tYxx8ChoeH8fv9LC4uAhr2cgt6jb7gZ5reWc7ImUnhTfz6B2K0/qxPeHM+cXNQmFAAEN7lpud34htYxW54xfYpi3lRAk7VXWHG26YZFNxIqX9TKSaXgYP/JDaPiuz2EN3l5fxPehgWJNq76qxk5jJMtAnMT/UI/1ZQNo68jQ6OffmCEMnnlcBVIzPVlSQt0H1L2Ejpbi+nv3exqN8hiqrbQriq7Tz/v8RIR8WSlOofiGEJmHjxf7f8e7q5JmJX+UCDMPnFWS2TvCgW+1eCTQ9XIMl6XviYGPm/WMSu9NJVxBxky/sroUTDwU+IPY+xq3wEt7g4/NkLYoREPWy4v5S2n/QyMyw2QIM7XEy0TzEzINbeXm5mYX5RnMxVboYlmBBcvwa2OJmfSgsTNqtuCzF8bkpo8xc9bH5ngou/G1Ilu51cepEhbQ96vZ6rrrqKn/zkJ0L9Wcc6/qPxvve9j0996lMARKigRrOpYHtXtZXILg/HH2kX2sS3V1hwVcjC9QdbmRlJ1gkRKECxckMDyW5x8o1W0gi3N7p1WCMWYcKr0aGj9JoALY93C8VHcuhofLCc3udH6H1ebD646eEES5lFjn6uTag9KESiXkEifLHY8oEq5sZTnHyk4zW5vs4I5oBZmKwR2umGJYTjWSya31/JVPcM574vRjoqlqS09UPVDJ8cf21qdjqovDFE9/MjzA6q17x0RrAEzcLv5GJh8hlofDBO/8FROp8Wr7mgQ+j5kiNGtAYtExfEatzOKpmqWyN0/npAmHy58U8qmBme59z3xGpArjor9jIL7T8VIw2gg9DW4taLvo0OBrNK6CIIbHEK/15QiI+im7OSQ0fZVX7h5yW41YmrxsYplRrxwtICz/IjMmQoLS3l4MGDeDxiJI91rOM/ErOzs5SVlTE4OIgOPZdxA5JGKviZxC0hJjqnhecipft89B0cITUhtjkf3Oai70XxOYKr1ipMNAKFnDR6Try9t8HOaMuE0MY/KMSt6aE5oUNnALErfdgiZk5+o0OI9OJIWKi4IcSFn/YyLvg+yVlRiZCC0CJMNgLF+iq628vpb3YKkXxeCcx+A/NjaUEyhWJt2vPi6GtCEAtucRHc7ubwv55/TUhKsSt9OCtljhUxry4GnjobJYYSBo+MC7UvJvavBIlbQshBE0c/K35oFBAep546G8Mtk8JjuuaeKHqzVnjv0FVrJbrby5nHOsVynBbi+wL0HhhlfkzseXFUWJgbSwuTs0weCTQIP48mj4RGq2FmQFAwJWZmaWlJmLAZ3O5ienBOmBNSc3eE/sNjqvmte6mN89pj6HQ63vjGN/LFL35R6Pp/SNCpN/nDgs/nY2hIKSJXs5GoJqH6GYNDokRfIqwKEmx2IVnEQ1O2T7GWEiUpVdwQYmkJXhQstFfeGkGjgRf+UbD9zSEkWS9MUgpvcWP2GrG4JKb71eOzkIbU9AIjLeIMxhc+cTYvza2KLJlDdPG/4d5SrBEzz/2fM8JkpUP/3EKJWewel13jx7/JyZEvtAmryqSSi0WRZIolu7gT1qKuL6zK80qQguf+7nRRH7EEJEqMWiGlo9RoihOCrGYoPvYADQ+WYbDrOfhP6hOlsbNJTn2rU5g0CMopQ4vfKHQfhk+IFX5z6HlmhIn2pLDiGCmYG0/lrQ5F4GtwFpUTq+8qwxo2M3B4RCinVN0ewVNvY25kXki1rvzGIMFmF6npBSF1s4r9QVw1NmFVq+jlPiwBE3LUIBRXg0OP3qhVbWfSyFzNXfTWnOb0mdO43W6efPJJrrvuOtXPrmMd/1H4xS9+wbXXKif39Ujs1dyi/iE96M06TC6x97611Iw1YiG0zS2kcBTY5sTb4GBuPC1EggrtdFO6189SBqFCsm+zg7Kr/OhMWroECvOWsJHwNjdGp55z3xUr9DrKZAyyXpiklOybZWlR/FxB97PDjLZOihGCsoQjIXJAtv32D9Yw3pakRZD82frjPgZOTAgTlDa/J0FyYFY4noCwugrAdM+cMPEWFIWY9OyCMInu3A96gSLmdkXilKCSZh56xUZCtEAoMu5XohjlMABzUKL+vjIu/n5IaP3U8p0u0jPibDK9XU/zuyoYOTsppNKTJygJku9Of6ODmSLUz8YuJPPWJSKw+IzIATO+ZhcdTwmsh/RQutfPzAY7xwUVKqrviJKZy3BI8MBG1W1RlhaXhIlZ0b0+ltKLHGwRKELqwZGwYnBKQnnIbNejNWiRrOpz0w2abUxHhjk9foSf/vSnVFZWcv68WGF0Hev4j8Lll1/Ov/3bvwGwgW0ENDHVz+hlLTqjFqOsE1LICG5xYfEbaX96QIhUUH5tgBJJK0xSqrw5jEarEVbYq7olhM4srsoTvy6knDY+NSHUf3eDA1vUgsllECKBLC7A3Og8E13ia/4jn2/FKAuumbNkDlGCUvwaP54Ndo58vk1Y9eXoZ8/lLczU4GmwEd3t48xjHUIqTQALc+JqMiA2B89Dp1hPTfXOCivniI6dV4oDHy+OGC45dOgMOiHFMRbgfBE1wYU5cdJwDvEbA1iDJo5/UX2eMDs4z8lHO5juFSMNApTfGMBVZROaJ6wiIwoQm8bOJTn25QvMCRK3AaYH55gWiX0WvgbF+qQdMZJS/NoAvnoHYxeSQjkltNNNbI+PhdmMkFqZf7ODsn0BFheWhIhNgS1OAs3K5pdITdHX5MQRl7GEjEL32eiQ0Ft0qvdLp9FxJbczUNfCiVMn8Pl8PPPMM+zatUv1O9axjv8oXLhwgfr6eubn55Gxs0NzjdDnJFmHZCt8eC/f1q7DVWUjnVygV0DhyBozEdrhZmE+I0SCssXNlF8bRKsrEVI+kUNG4tcHkKx6+g+p90eStcT2+jB7DMLKNq5qKyaPQbgGMTMwh9ZQIkyiGG+d5sRX20lNiKvhCZGTsmh6qJzxtqQw+XPwyDhTF2eYHRareVXfGWFuNCUcT0CYPAGQmlig67fiB7EMTomldIaUoMJN38FRIUWnV4quXw/SVURsQCESzQzPC42hYUEFwhyKiT0oa7Pq26P0HRoVUjvsfHqAxVQRWjJaaHqb+OHg/O8VJDVd+Gkv6SLIbcneWWaHUywJfkQyaXGUy8yNp4TJmGVXB5gZnOOc4AGDxP4QiwtLwu4zFTcE0ZRoOCF4wCN2hQ+W4OTXxNp76+xY/EYhkpLWpEVv1qEX4C9ENOX4HB5OLB7gS1/6Et3d3Tz11FNCffpDwR+NklIqlUKWZdJpZVGyjauwaQorUBRrs7RS6USSS4TtnySXhF5CaDMewJ6wsJRZEmbNyVEDRodBnLwggafaVhTZoZjfWwycNTILcxkhMgoosWx+V4Khk+IqNcGdLry19qJs8IpB6dU+fI0ODnxcrChfd38Mo1vi8CfFCnL+rQ4cUZmW74tt9IV2uolfHaD9l/3FFXqKQFFKSq8A2z9aw2JKXFnL3+zAGZeFlXDKbwjgqbPz4v8RKyTV3RfF4JI48pki2cqCCF/uxlVh5cS3OsSIdBLs+FAt0/3i6lcAkSs8wpZ+ReEVqJV5G23CNplQvJJSeI9bTDkqC2eNzFgRG9h5UmuRv12xD5xUtQL83dJPmWMGs9nMO97xjrx96TrW8YeEj33sY/z5n/85ADacbNPsK9heb9djduvFlHgu8dliLM/s5eaiviewzSlMJgclb4uSvUE5fStM8gGFDAGviYpPsSpQ9Q/EMPtNHBB8Z6KHujujDJ6eEFZpKhZN7ygn2TPLBUFFvi0fqKLv0IiwWlblzUGGz00Jk2u2vL8SjVYjrghaJIpVUioW4V0KUe/Md7uEf3Nif5DRtqTwuN70cAVT3TPCCmdb3ldJz4ERYSvFYlH/QIyB4+PCYzSxP4in3s6hT54VVoSyliqWH1Odr76Sgd5cQnpGfG3mqpEZvZAUzimuOitzg3PCSk32cjPp2QVhoqHZryc9lRH+DaveAUUqtXkabar3eXJpghf5BQDV1dWcPfvaqHKtYx3/XoTDYXp7lTrIDq5F1tgKtndWyUVZ2K/cYC7G5khnLEFnKREmsBg9enRGrbgykkOHwW0QVlZBB/ZocUoyOmOJmOVckbCEsqfyBQkdOmMJmx5OMHBknK7fCCoWVsl4N9iFVU+KhbfJTnibm6OfFzutXrrPhy1qFq5V2CssOEotwqo89riZ2ntKaf9lHwOHxoU+UyyKVVIqFpvenWApvSgcU1uZGVeFTIfgZqi/2UFwi1v4xH3sCh/WsIlTX39tanzOKhlPjY3zP+0VJpZtfm8lyV5x9SsoXo1IGLk9oCLs5OwVFvGchUI8ErUjBKW2VExdX44YhXMuFG91t/J75sYXVD97bOnfGKIXo9HIn//5n/O3f/u3RX/XOtbxWuPpp5/m6quvZmlpiQBRNmi2F2yvlcDoNhZFdsmRAoq1PDP5JGYHxQvSjoT4oSQoXklJDhlJFkFeBYpWIxJFsTajsSt9OMotHP9Ku1h/tBDb5WWia0bIKu2VoGJ/kLmRFD2Ctbu6+2MMnZgQtt8Kbncx1T1LskdsT7bmngh6i54TX35t9leLVVIqFo4KC4n9Yc490S285x7c4iI5KG6NXHlbmJmhOeFace29UQaOjxelcFYMSvf5GGtLCv9e3yYH4e2K8q5oLjI4JUr0FJWLRKGVSopSprIEjUwPzgnnFEvQSHpmQZjIaMwetBa20ZO1ZDIIx3LVO6DI3ChiO5lamuX3PEWGBerq6jh48CAmk0n8S/4DUfIf3QERJJNJjEZjnqC0h1vUCUrNDiquC5G4JST0HcGdLnZ+uA7/VgeAKmFHDkts/VAVcljZyBYhKDW9sxxJLmGidVooedTcHUFySSQvzgstTOLX+nHXWSElpsbibbSx4U2lgPrvBcXCafuf1xC90qvaNofEjSHq7ysTbg8wOzrPwHHxjcS+50aFCUq2uJmdf1FH5ApxudnOXw4KE5QAKAGNRrx5YJMLV03h4uNKDLdM0fvCMMMnxGLkrJHZ8V9q82P7tcDWD1bR9M5y4fbdvxui41eCMsqAf6MTZ7V4jJYyCvdSksVS3OlvXSyaoLTtIzVseneFUNue348oalCi7/MUzAzOMdomPompvTdKbJcPW9ws9gEJtn6oiqrbI0L9ASVnNLy5TOjyOYJS3f3qJ3+BPEGp6vYIloC6+kqOoFRzV0SRjldBjqDU+LY4dfdFVdvnVNO2va+aze9TV+zLofLmMA0PVaq226W5kapALQCf+cxnePDBB4W/Yx3r+H+Bhx9+OE9QChFXJSgBNDxQSs2dYs88wKZ3V7D5PcrzJUJQqrk7Qu09yvMrQlAK7XRTdp0fEFO7tISNlF2rtBdadOoViyIQVyGquy+q2CalEdqEr7otJPyuAcV2q+wqP+U3BIU/M94+TbKnCJJFWnlvipI/mt5Zzpb3qefFlTj2+TZhgpLBrTC+FhcEz13owbPBga/BIdyftl/20/lb8VNcjW+Ls/Fd4vetWAS2Odn24WosYaNQ+8ETk3Q9M0jyovh99jQ4CGx0indKA5oS8QnwwU+eL4qgFNntYcd/qcXsETuteurRrqJIdEOnJ7In7sWXx3X3xkjcJP6sRXZ72PrBqmWSYgHkyD35nKGC0bMKQclVIxPepT4vGj09xcxwGoNbT8WN6r9hom2Gmb4Uers+v34shJmBNOmZReSIieb3JvLP6VrIvQMCW5zs+FAtrjqr6neAYv1ZuT+sGiObxs5ebiUej9PS0rKqtrCOdfwhYGFhAavVSm9vLyVouYLbVAlKcsRI1W0RSvf5hL7DWSmz9f3VuOuU66ptMEsOHU1vj2P2G1mYWxQiKFXfGUEn65gbTgttlseu8CE5FPUnkc1+f7MDe9wMC2JKMnLESGW2JihEUNIptm2BLeLvv/LrAtTeIz7/BZjqmWW0VfwdNXYuKUzkMDp0bPuz6qJ+w9CxCWEyDUCJVgNF1Lx8DXb8m8Vtzqf75uj4VT8jgsRqk89A8/sr8WwQrxkViw1vKaP2DeL3ufM3A4pSmSC89dkYCYpx5U6qSw6xD3T9ZrBogtLGd5RTL/DOB2WMnn9CnKAEMNk1zUSH+OZvdK+P8uuC2MoEa15Aw1vLiF/jV2+4oPxvZc5QQy5nxa/1C923HEEpvMuDyWdQbZ+r60f2evFtdKi2z+XcxC0hKgTmp7l3QOPb4jS8tUy1fQ41d8aou1e9ptakuYw6+yZ0Oh3/8A//wEc/+lHh71jHOv5f4NFHH2Xfvn0sLS2RoEGVoARQsT9C5S1h4e+ovC1M3b3Ku0NkIzu8003p1UrOEiEF2OMWgtuU96sIQUmyawk0K+1FCUrhy5W1pShBKbbXi5wlcItswge3uKi9N6ps2gvA6JIovyFIWGAvIIfJi9n3jSgpIANdvx0SJihV7A9S/4DY+zKHCz/uEyYoaSWlRpHb7xJBsNmNu0ZsTQ3Q/bthLj4jXvOKXx+g5m6BPaVXCGvMROPb4ph8Ygr9Uxdn6fhFP9P94opHgS0uPDV24faaEg0UUfM689jFoghKzkqZze9O5Mkyauj81aAwQQlgomOmKJVYgOo7wpRdJTCPysJVZWXDm8vQCvyEHEEpumdFziiA6T6FoGT2G/DUqc/5p/vmSE0soDVpCW5XX4fMjaaYG02hlUqIXx9QbZ9KZsjMZpDsOmrviyLZCyex3DvAGjOx6R0J4T1c3yYHVbdFsEYLE44kjYk93EwiXsnp06eJRqOkUq+N9eSrjT94u7fW1lYqK5WNjRJKuEpzh9DnBg6NYwmYaPuJ2AbHSEuSYHOKsTNihQKT14RW0qK3isls+Lc6MHuNBLd7hGQC5bCEs8pGpUErLEnm3+zEU28XtroKbnVj8RmRZFRVPwAkp4GlRZgbEU/2x77SgSthEW6fGk1x9F/FySIb31XB8NkJYfWYpaUl5sbmGRTctLAnLBid+qIUuU4XacFx7HNtSIIvH1BiJGqFB8qmXXomzdzYa1eIn59Mk54Sv34x6hQAZx9rFxqjObT/fKCoGIGinONvsgur+Uz3zTIr6Jmau37dvVF6fj8kpDBUrDLYmccvEt7hFp+cpIqb3AIEt7ix+I3CymuhnW4ccZnSfT6hvCe5JNx1NoxOvfDvt1fImANGYdUQSdah0YpPKJM9M8xNiVfaun47yESHWA6ODdRj9Jk5PnCIRx55hLa2Np555hnh71rHOl4r3HDDDTz55JMAVNFETCNGMDn3wx5MbvH32UT7TFGkXsmuR1PEB/wbHeiMWjG7JKD8mgAWv4me3w0IKanEdvtw19rxtCaF7E/0dj22UguZhSVhFailzJI4+QbFdqvj6YGilJR6fj9CD2LtfZsd+BsdnP12h7DazETndFGWoeHL3QyenBRW1pofSXPwn4ogk6fhuf99Br0Y1wUowgovi7nxFDr9a3cWZH4iTWoqzdKi2Kmj9ISYNeJKHPpMa1HqZq9EjdLbZGdmeJ7pHvWC5+i5CZyVsnDxEhQFKWdcFlIGnWib4URbh/jFgfZf9jNWxAn6+ck0S5klzHa9kIJRLmcsZsRzRvk1QTT6EmFVsYrrgthiFrp+Pyx0v4ObHchhM85qWUiVS7Lp0Bq1mJySkF3iyPkk/k3zTAnOpVp/1EdqOiMUH71GT0VHMwPSIDPz05hMJtra2ojFiiMXrGMdrzbGx8fx+Xyk02n0GNiruVnoc8nuOS4+M0Tv82LP+9TFJDMDc0x0ieUTg02PzqxDL2tBYCplKzNjL5PxbbAJ2ZjpZB2BZicGh47zPxBT0Q7v8LCYElenCWx04qiQhRVDjLKOpcwi85Pi778z3+nGFhM/pbowt8jZb4tbzlbfGWG8IymuKKSFyZ4ZxtvF8qjJZ8DklIQsqHIottZy/ge96GTxja+FuUX6D4ofXFxaXGR+PEXqFajCiGJ+LMVCSvzIc7Fzx85f9XHhqT5hks/g0fGiFYV0sg53lSys5jNxcVrY9gVAZ4TELVEGj40LjSdR9fwcLv52kPmJVFE2g4sLS0VZZvsaHUXlDGeljK/JyfzkglAu1hkhtM2NHDTS8h0xpXhvvZ309ILw/TZY9SwWYZox0T7NYhGn+due7GNuXCxHhiYrsDplXkg+yz/+4z/S2trK9773PfEvW8c6XiP8wz/8A//tv/03ADawg4BGjGzR8at+zB51kmEO423JomohBoeE3iy+4PU22DG5DcJ2ScEtbtzVNoZOTwiRplw1VgKbXSR754QIO1qpBGe1FY1OI0xqWlrKHjgTzENzoyku/LSX8SIUjsZbp4VVpuSwCd9GB51PDworpEx2zTBfRO3EVWVl4uKM8PUzqUVOf6O4/cbDnzkvRBTJoViVrPmxVFG1ymKxMJNRFG0EhXYyqcWiLdyKURQCOCfogrMS1piJhZmMkA3gZPcsE13TFON75ayUcSastP1MnQMxP5aiTfAwaA4dvxhgeqgIm8FkmsXMElqTjkxKfR6llZQ8U6IXzxmxvV4kWS98v4NbnPganYycnSA1oX6/7eUWnBVWhmMTQipbWkMJeosOSZZITai3n+mfJ9k7K0yoGzwyzlJmiamLAn3RaCnraGLcMMnwyABOp5OTJ08Sj8eFvus/Cn/Qdm/PPPMMe/fuBUCPxF7NLaqf2fCmUuaTC8KSvd5GG7Nj8yQvCj5sr8D2KP/RnH2QIGxxc1FsyBzRpZjvECUovRIUayG34U2lLC4ucfrrYi9dSYbN761loj3JmcfEizzFYOPDFZhcBp77u9NC7Y0+CW2JuPXfK0Hl7WG0Og1nBRe0rwSvtd2bp8FG5DIvR7984RU/TyIoRv5+459UYPIYeO5jp1+bPkmw889qGTk7xbnHxe6dp8FG/OoABz59rqg+vVb2jcrFKaov9oSFiSLkZl9J3ism563+MEX9ltKrfXT+Uqy4avRJbHhDKce/1qnav+6lNjqMp1lYWGDDhg0cOXJEvFPrWMerjM2bN+fHYBOX49UUPoVp9uipvjvGyW90CRMawrvcwhvoQNHWP6s+WqRlkhwxkewWk/oFxe6pGKsnvRlhck+xKPa36s0lNLy1nAs/6xUmQFTeGsJVZeOFj702Vkl6M2z5QC0TndPCRRh7vDi7l+L7VEL13VEuPjv0iqwMRfBa272Bcu9S0wvC77FXArNfT3pOTBkNPez8cC2T3TOceo3mmzV3R7DGLBz45xbhHFJ7T5TMwmJR1iPFPnvFoNicYfboSc+I26yBoiInQhTL96lIe87lD1JULreWmtHqNcIF5cqbFYKWyL17duknpDRz+Hw+fvnLX7Jhwwbxjq1jHa8iOjo6qKioYHFxETMyl2muV/1M/Ho/i+kloUMgoBTHM/NLzAwUsfmwwhauGBRrH2TyGZgdFC9864wl6IwlzI2Lf4fOCAtFupMU059iLOTi1/vR6kpo/bHgBoEONr+rkvG2Kdp+Kq5EXQyq74zgiMu88ImzQvdcJ+vQGRC2/nslCF3mxmDR0f6L4shQxeC1tnuTI0bCOz1c+FHva2IzmP+esJGk4Du88rYQrkobhz559jV7JrZ8oIqR0xPC906OGCm/Lsjpr3cWFafXyr5RuXZxOcMSMgrbPQKY/cai8vG/67cWmcv9zQ5hQqRO1lF7V4TzP+hWzcnjS8OcND5POp3msssuWz+ct47/ULz3ve/l05/+NABbuAKHprDbhtakJXFjkLan+kgLEjddtdbiLJ7+HbZoxdrIGV2SsJ0RgMkjCREsljvEa2LxBsXbQ6GFmjsjXHx2WNiiL9Dswt/s5NgXL7w2v0MLzQ9XMto6RfuTYnM7k1didug13EDTQvm1QQaOjhVnZVgEXmu7N1As7hYXlhg4JE50LxaSrGUJhHPB5ndXMt6ZFBZSKRbhnW7cdTZOfa2djOAQCe/yUFKi4eIzYkIN8AqevSKglRDuOyg5D8Rt1qD4vFdsXl39YYRzh2TXIVl0wgQtf7MTyaITunfHln7PSMkAbreb5557joqK107t/9+LP1i7t6effjpPUDIjCxGUAExeg5A8WA4VN4aou6dMuP3W91Sx9UNVwu3LbwgoVkGSGHlIkksU2ywJ4Y36qtsjeds5ke9wVslU3q5IU4oSlDa9p4LwHnEZxcrbwzS/vwY5Ks4ul+x6YTk7UPr+/P88I0xQ8m60U/fGmEJMEMTRL16g7Unx0z2VN4ZoeltC+Dskl8T2j9YUFVt7zIw1Ki5vLLkknFWycPtXAqNPwl6EYpY1aMLkNmALi/+OrR+sErKXyGHTexLU3KUuQZxD648vcvqxzqJIK6GdbiHrMABS8Nw/nBEmKAFotBp0Ri3uhLg85+b3Jtj0bvEcJcklbHpPAu9GQXnLFFjLTNTcJXbKJEdQqr0nIqQYlst7Zdf4qdivLlGdy3mlV/vY8gFxO6H4tX52frgOZ43Ys1G6z0dkp1fYKtJeakZv1uEUkG6MaMrZ6rgCq9XK0aNH/+DZzet4/aKuri5PUNrGNaoEJQA5ZkGy6pEDYu/72JVeSvf68W8Ws6Bw1cjs+FCtkK1jDpvfkyCwTbm+yEZ9+Q1BgjsU6VcRgpLBrSeRzU+iBKXKm4MKgUOQbODb7KDhoTL04q9JNr27koaHyoTb28tl9BYdFHFc4fwPe4siKFXdFcbbJC6fnJ6B09/qpOPn4gv42ntLaXiwTLh93f2xoqzY5KgZOWDGVMSJSXvcjN5ehFTTK0Cx32GPyzji4vPB8OVutv5ZtZA1GShEnaa3JYhfLWY7RBrO/6iHU98SJyjpzVB9VwSH4Jzz7He6OfB/xAlKAEa3hMFRTFzNNL+/mlgRdtihnW5hW41czkjsDwrZ+80MKzZrlrAxb3ephumeOfRm2PCWUjEruok06BVF22Jy85b3FGcPXXNHhMqbxe0ULCETFr9YHWC35iY2b2xmcHCQhoYGjh49Kvw961jHq4XW1lbKy8tZXFzEgVuIoAQgB01Yw+LKPZU3h6m+Q/xZqn9TKZveLv6e9G10sOEtZaBTt5ADQAfVd0dAhzBBKbxbsUdamFsUIiiZfAZKr1LeR6Jkg5p7o0KWSjmEdrjZ/J4qZEHrVVAUEoqZT7AAhz91XpigZI2ZKL8xgE68S7T8sJtzP+wWJjJE93hoelsCnVGwnKyDze+txL/ZIdwnZ1zGXiE+Z9HJuqLuwytBsd9hdErYohbMAfHPbHhLGZW3iVmNgTJm6+4Tr5Fd/M0gp77RURQBx1VtJX6juuVFDgf/6VzR5DLJqi+qxllzX5Smd4jnKJ1R+YyolezCHBjdOmErzRxBqfQqn5D9Xo6g5G2yE92r/h05gpKnwUbjQ+K1It9GB1vfX61YZArAXWcjfnWQ4FaxdbrZI2FwSJhD6u8jh8bDDv1VOJ1Onn32WbZvV7fVWsc6Xgu87W1v49Of/jQaNOzkelWCEihj3eg2CO9ZOStlyq8N4hK02jL5JDa9IyFkX5RD9Z0RXLXK9UU20r1N9rzdr8hGvdakJZS1RxIlKAW3uTA4JeHNeTlsInFzKG9lJoK6+2NF2e1ZfEYMdqkoBff+Q6Mc+5w4QSm80409Lr4nRkapefU8J04Qqb4jSuJm8flBdI+3KCs2o13CXmbB6BTfNDV5JEVt9TWEySvlCSkicJbLOMrE74UjYaHhrXHx79BCw1vLCW0Vr4Gc/1E3bU8WQVDSKiQiWXCt1/PcCMe/KE5QAjB7DBgd4vdasutofFs5/mZxK2lHwkLFzep7CrBMUPI3OzF51fuVmc3ZrC3bV6phbjQFWsWmUCTnZGYzoFUsO4vJzbX3Ram+XfzZS9wUovx6sTgByCGjMPelSXM5W2u3Mzw8THV1NWfOvHaHYv+9+IO0e/vxj3/MzTcrEtdWHGzXXK36mZyaxoGPF2H3ALT8oJv0tHjleuTcFFIRydHolNAZdMLEh/BlXsxeI+6EVci2TZJLcNfaMHkkjglKXsf2+jB7jXT+okfM5s0lYbDqsbjFC2HDpyYwOSVxhSrg8KdahdtKMlhjYjHKwd/gwBq1FKeSk0JcVhvo+M0A3jqH8HcYbFoWU4ukBKVyAQ7+U3GM48QNAZzlVn7/P04V9bliUHdvDIOs5zlBBYBXYse2kMqQmRdnsHY/O4ihCNJbsidFsRJKvkYHpiK+AwAJPNW2vL98IQwdnWDo6ERRlx85O4nBWgTZL7WI0abHVW4V/q7ya4OYPeJWkdYyE85KGwldibAyhrfBjkaj4YLgKVO9WYfWoBVWkeo7OoYjITPWJsbU7PzVIJnMorC15MCB8VU2kWr9MgzIVC818zy/pKOjg61bt3LgwAGh71rHOl4NJBIJLlxQ7Jou40bMmsLFzJxyyODhcQYFLQMAun49RHo2w8BhsZMtU11JZkbmGBKUcTW49WgNWvRG8bmaq9pKJmWmT8CaBKB8XwB7hUzv88PClk3uegd6q15cHShqxuQyFKWgMtoyWZQM7/DJSSGbuhxcNTKjF5JFET5cFVZ0kpahY+LvsmJVkbp+O8jMkPhuy8J8Bu28eCFsrCXJ8/+ruMVc7T0xZobnOf7F4qxbRaG366m/v4zBY2PCagwHP1HcGimVXCAzlxG2JkvPLNL74ghDp8aFv6OY8QeQToOz0spielFYXQeKG7tH/qU427qJ9hmmuqcZPS8uTSv7DRhdBmGVJL1dj2eDA0nWcfpbYoczyq8LYPEa6Xh6QOh328ttyCEzoS1uYbtIvUmLuQiLz8mOJDMj4nPts9/vLsqa+Ohnl9fCImpPzqNl2JbamWCEvXv38pWvfIXbb79d+PvWsY5/D06dOkVDQwNLS0t4CPD/s/fe4W1eV57/hygv0TsBggBBggRBkBIpUhQl0U225R73HrfYcktix4md4oln5/fsPpud2dnsTmYmk8lMsplk0uM4ZRKnOXaKU9wk2ypWFyVRYu8kCIJo/P3xAiBpS+K9SOh1Mvw+zzyTRPfyfXHee88999zvPd+2snOW7VOoUrT7i8eknrX/qZOUSZwhjO6bwihzSOFS0JvEU4vetQ7sNRacYQvjIr5TB1UbXFgDRvYL+sDgZjfOBiu9L48JEad0BjBVGJiTuGE7cXQGS5V4FRtA+P3Vl1LjQZm4yBOz4Wl20P2MRNWlDGLfIY/+l0eZm0gLV3YxWHRkZjOkZ8RzOW98Ta7CYmCjC3+nm+2fOSRVyUsGDVdXYfEZeOVTYvHUyO4poZzPYmSSWTJz4rfUe18YYcwlTnpLTmRAogoZgLvJiiNs4ahMJS+JsRs/mZSOUUf3TTErsefJJMFcYcAeMAnL8FWf68VRZ6X3JTEfYnDo8K13oTdphWNzf4cLraLhxK/FquIpZh06oxbFoSMl8B3HDsdxN9uY6RfzIaN7p9Doy4T3bVPHEku+3XIVn3RxE7HpzfyWH/Hyyy+zefNmXnzxRaFnrWIVfwzceeedfPWrX6UMDWdzOYayM59zFSqHTJ+YVUkrghg/FOfIj/uE19bZ0RRTJ2eY7BHb32qNWvRmHTqJnFdFs535+XlGBfNqlesdVLa7GD0YZ25cgNSkQOV6FwaHwlHBGMTqVy+YZLPi697w7ilSCfGE1Ex/Uvi8FMDsNzAzlJSqoORZa0ex64Xk8AqQqkwFHP/FIOkZ8fU7O5clnRT/EcmxFK99VvxcFiB6bZDEyByHvr8yFSkB1txWS//2UXp/J5af2PsNOUm8TCJLeiaDziBYNScLPb8aYkqi+r6IRNebn+FtcaDRlBHvFe9r8pUzNz4nRFaS/WapyQxjh6aZEvRRAAZ7OeYKg3BFIq0CVZ1uTO5yYR8S2FSBo97C8O4JoSpPJk85znor0z0JMam4LCgWHeVO8UuME90zZCTm3uEf9aEtF89PH/nhQowpYlvr3gA181GOZQ+wadMmvve977F161bh571deMfJvX3729/m5ptvBsCGi41lFy7bJ3JNFRVrHez91nEhWSHFomHNXWHe+PIR4UpCnhYxUsEfA7LyRZaAQnw4JcWvsFSXSxGIVhp1l1fS/RPxTW/zrdU4IlZ2/fsRqd8hI2/XcF0AR61ZOAnxToW11ognapMiBcnKvVW02lCseuGg4Z2K6HVB7LUm8W9egvxj56NRtOVaXvyf4geezqgFnUkrTVhaMShgcCgkh8R/vLXWyPQx8eBqRSXr3gRn1ML4sbjwt2y4LkAunRMmUG34YAPaci0v/a/lq4/E5+Mcq3ydwcFBvF4vAwMrU9Z/FatYjHA4zLFjxwA4hyswLENQAuj8cCOpqbTwhr/ucj+ZVJYeQWkSvQnKXXLSa38IZCWVZOWRTB4xosfbBU+rjeRYWsq+mz4WIzWdliZxyEg8dTwcYfTgNMckiczvNPg3u5gdmRMm0pQi9xa6oIKR/ZMk+lew7PdKQw8dD0YY3jcl5Rtk5qo9bGLNbbUMvDpO90/Eb7CFLqig55fitxtXGia/Ivet9VBu0zM3Ku53SpZxKwHORgvjB8Q2ZXq7nqYbg+z68lEhX+JstNB4XTV9L40IfcMTwTfoHjiMXq/n6aef5oILLhB6r1WsolTs2rWLdevWAVBBFevKzlq2T9VmN8GzK9j/nR6mjgk4QR003RTi0PdOCpNJbLUmsb/9R4CsLJzi0JGKZ6RkiwwePcl3UOxVtdlFnyAhHqB6i5fAZjd7vnpUigglI1VV1eWmYo2NnV86WpK83zsFBo8eV8QqZV9ZuTdbrYlyu16KeP9OROAcD56YlZ3/V5BIX4L0Y8vdtZQ7FCnykclnoNyuY/ygOGFupWFw6KSkJeXlK1dOivLNMPkMpCaTUr5Bo2g4+WuxWLj59hoMToVX/2n5S7Vz80mOVL1KX18fTU1N7N27V+ylVrGKPwA33XQTTz31FGVoOJfLUZYhKAGsvauWVDzDwe+KKSJUrLOj0WnEpaa0KtF7RWW8Fj9OUq6p3KkIEZQK0Fu0pGezKyb1JgtLwEg2lZWyb+u9YVLTGfY/KUEqByl5p9jNQSaOJBjYIR6zvBPhqDeTmc0Ky1SVIvfmabYx3Z+UGofvRMRuDjJ+ZEbYN8jKnyl2HS3vCTPwyhi9ghfOQC0QMLz7nRPXKnYdqUmJoFOryu+lJsWdzh8k4yYJs98gLJ+oVaD2Ej/HnhkU8tPGCoWmm0KcfGGEodcmlm0/4O7m4NQetFotv/nNb+jo6BB6r7cL7yi5t1/84hdFgpIDjxBBCaD/pRESQ0khghKAd4MLg6Mce0RMfsIZtRC9OkjTzeKlujZ8sEGqDKs9Yi62FyUo1V3hR7Fo1AowAl0Ul1KUKhIl9tRdXklFq3hJM4DOx6LUiEo9oMo0+Te4pSTPDj/dy8Cr4+IEpfxFQFGCEoBWK1ELEpX41fa+eqy14hWnbGETikV8GioW6Pp4E3VXiJeBmz42K121SBbDu6akCUqbPhZjzR3ipakBYWmuAppuqRaWJQOYl9G8gYV5J1FMqef5IY78WI6x3Hh9kPBW8RLbigU2fKiB2ovFZD7UTuohqRBSkBxKobgUAmeLzdsCQangt5Z9RJ6g5Ot00Hyb4HuhEko3Px4TlzhUIHZjSErSwFlnwRkRH4uDuyYYOyR2Y89SZqF+oA1NmYbBwUGqq8UlC1exilLQ0NAgTVACGD84xYCEzrez3ownJh5PNN9Rx9rbxaSHQK2U0vlh8XL2oMpGufLrigjpodytJ3iuGkeJEpT8m13oTRpxgpIeojcEhH83qHFU23vrpfqEt1bSdJOcfzny4z6O/1Iinii8j+j5YL59TqJySsM1VUXpPdFn2OskNPRQS4pv+JC4jCpA/4tjUpV+SkHPL4elSCu1l/rY9NGY1DP0dj2WoHhca60x0XpvWFyGLg1lZWVodOIxd3GuCj5i8miCky+OcOLX4gSl6vM8BM+qEJalBJXUtP6hiHB7AM9aW9GnLIfCtw6c7Rb77WmYG02jt+upPk/sGQWCUvPtIUx+8eB27Z01UjJujTcGiV1fLfwMZ70Zk8eAt8Uh1H78QJx4b4J+wSp/1SfXELCESCQSXHjhhfzmN78R6reKVZSCw4cP09bWBoCPoBBBCWBozySTx+LCJCJX1IrFb8RWJyZ5YPDoabopJCXrtObOGqI3SEhJePQ0XKdKdIgSlPydTnSWfNUQESU5A0VZMVGCUuUGJ84GuTxD671hqjaLyQuAKqMU2uITllEC6H9piJ7nh8QJSvliVjKkh7LC+it4HqA4dDS9O4RZUGYAVHKEziJXxH/Dh6IEBNdHUL+1DEGpFEwdS0gTlNreWy8l3wZgCRqkNA9qLvQSlsj7FCsUij6jMDYk3qnn10Mc+VGfeAdU6aJaiZwXOlUer+os8TwyOghfXin8W5ITGXQGjbB0dYGg5O90Csm+FeaqPWyiTsL3WgIG1j/cIL7v1cGa20I03iSef/U023BL+MXB18YZ3Sc2P8rLDET7NqLT6ti3bx/t7e3Cz1nFKkrBe97zHp566ik0aDiXK4UISgDDb0wyskfc77sarLgbxSTeAOov9xO7IaQSXARgrFBovSeM2S++BgfOdmMNqb9X5OBbq2ioaFF9nigxxFFvRmvUko6LE5QC53iEfzeoPqnxxiBaifOX0JYKKelwgO6f9NP7gpiCArDwG6Q4D2VS50/+TS4CEhLroEoIyqD6vArW3lUr1WfiyIwwQalUjOydkiIoVbTY1byExNjSKhphKUdQyXt17/Kj2GVi2zI0EpqDRYKS4O9ITWbo+eWQVI7eETFTc6FPWJYSwNVkpelWuTyypcpQ9CnLoUBQcjZYxGQgs5CazC7xW8t2yROUarZ6MXrEv3vNVi+NEvveqk0uYjdWC8nXAZh8RmzVZmw1YrHd7HCKscNxJgTPGytH62gwtjA7O8vGjRvZuXOnUL+3C+8YktL27duLpabsuNlQdv6yffxdLgxehZmBlFTpvpO/GmHHP+4VrkoyfjDO8N5J9n1fjDkNkJnLSZXhC2xyY640ogg6RcWl4Gt30vTuWuFnNF5dRehsL+ZK8QnoXeeQ2iiaKxU0Oo3UAdPxZ4fofraf3ufFSS6peI7uH4sfNrRtq2fz43IHM/ufOilVRclRb8XoFC+1DOrtxrYHG8Q7KApz02lmhsUrH4Qv8dF0y8oSHXydDlrvFSflAcxNpZmVCDRqLvLSfFMNvg6HcB9LlVEqgXboe73SlbOab62m6yPNwkSlwR0TDO+Sq8p25Md9vP6v4kzzVBw0Oi2KRfzEuqrDjSNsofqCCuE+rXfWENoiTki0BBQq251ErxMfj/4ON7aQ+IFyfDBJLjMvXioxBYOvjbHvKfFbEi9/+gDb/178e5z45XDxhmb4kuUTiMYyC5tzF6PVaunr66Orq0v4WatYhQza29s5fFgt6buFa4QISoUD9cM/7BeWbAPY8U+HefVz4uWDD/3HCU7+fkSc4KIpYz6dIzEmTgZyhC34N4gfMNVf5id4ToU4AUMPNVt8NN9eK/yM0DkVuBtteBrFCV2KUYtOr5GSYXv9345y6IdyhNmRPVOM7ResfGKCzR9pol6CVE1aHSeiFXUArEET1mrxNaKy3cmad9dKkU8So3MkRyWqj+phzR2hIgFupRC9ISBMFAZIjqZITqSkyGxt28LErhffiOsMGkweA45a8W+y/dOHOPYzOTL9po/GWHOLOIG557khqepLJ54f4fBP+qR8HIBGrxH3D0DthT4pH2QOGAid5yV6tXiyNXZ9gEBXBXrBT2Ly6bEFzVRtEB9b6dms1G207h+fpH/HmDDJbujVCXZ8ep+UtOierxwnPZnG5FfwCFy4iUy048KHRqPhxhtvZMeOHcLPWsUqRDEwMEA0GmV+fh4vAVrKNi/bxxm1YPDoycQzHPiOeD5qbO80r/3zAWFpo+RImpMvjHDiF+JVXDOJLJlZ8ZyXb50TR9iCwS2W1NcZIHiul8i7xGOJ6gsqqd1aidErnpfxb3RTc4H4nlZn0aHRy6VSR/dOcfCHJ+l/RXxdySQRlt8EiF4TZMMH5UjVvb8ZEa+oA1h8Rix+o9jBQeG9rg3QcqfE5TQdJIbnSErIg/o6HCr5ZAVhD5uIXi932Dk7PCclc+putrH29rDUxQ5bSC4W7nthVP3mEhfVQ+d72fjBGDrB1Nrk0YSUhCCoF1F3f+WYeIcM6BQNilH8JNIZtuBtcVAlEXtFb6hWc+KCZ5E6i47qLT5qLhAnjvnanbgabOLkqckMuVQWNIIHnhk48ZthqcuSu/79qJRvGN07xfH8Hq5yw/L7LF2ZjnOyV6LT6Ni5cydbtmwRftYqViGDD3zgA3z5y1+mDA3ncCVK2fLJe0+z6oMHd4wzdlAsjgI48NRJ9n5LXG6q51dDnPzdsDDBRaPTkJnLkpoWT/y4YzYq1jqE2we63IS2eFHs4r619qJK6i8Xj9VcUSuV653YQ2JEegCdUYe2XCtVXebAUyfp/qn42SFAvC8pLs+lhfYHItIEov1PnhCvtgVYq4xS67y12siad9dKkU+SEykSI3KKOzUX+bBWi19oKwWBLndxPoogOZkiMTCHVhEfv403BolcKU4oLysDe8iMqUJ8r7H/yRP0b5cj07feE6buUvF5Nbx7UqpS2sThGQ7+4CRj+8V9HFnQ6rUoFnH7Bs+pwN8pHncpFi11l/oJni1+WaH6fC/V53nRCsaEWqMWV4MNl0S8nUlk1UpxgujbPsbJ348IV3KbPjHLri8cloqfjz0zQCqeRbFosQkQ1/1TYepYA8BFF13E7t27hZ+10nhHyL0dPnyYhgaVqGHGRlfZJUL9up5oIj2TYfs/iB0Wt9xdi86s47XPiB+SBc/3cPJXEgzaPwCyMm/OmIXxbnGJIlCJXf0vSDjFEmSdVhotd9Wis2h57Z/F5UZqtnox+wzs/bpYsGgJKJTptVLyVKXA1+mgrKyMgZflDkFk0P5QBMWsE5KaKkBW7q3p5iCOBhsvfHKvtPyZKBSXQnCzm5PPD66sDJgCFTGbMJGoos1OZZuTA08dE67UVbPVi2+9i5c/Kf5N3g7ISrJZa42UlZUxdVT85K+izS4nW1fYP74NLsjgVbBWGYXfL3C2Krvw2j8fFBqTvk4HkcsCDO4c5/APlr9ZmFYm2GvbyfDwMB0dHWzfvl3ovVaxChGcd955xWoRZ3EFJgGCUuQqPxUtDvZ/54SQTI/erqdtW5ijzw0wIuhTPa02Jo/Pvi2SQ7KyUaBWbBIl6oB6oJFOpEkMiv8eWSm5FYceNjwU5eRvhxnYLhav6E0aGq4N0vviCJPdglUfmq1q1bkV/PR6ux7/Bic9zw+t2HP0dj0d748w8OqYMPmmFLm3jR9pZHZkjt1fOlbimy4P33on2VSWkT0rK3ltCRpJz2aEpckabwwydTJBv0TVhHX31zE7NsfB78iR81YSJo+exGRaaiz61julyFN6kwZDhYHp4+LO7u2UffNvdkl9x7YH60gMz3Hwu2LfsePhCDqjjpcEY+7xlmO8tudVcrkcfX19+P0SRMtVrOIMmJiYwO12k8vlcOFjfdm5Qv02fDBKeiYtfFgcvrwSc0U5e74sto8HVZ7k7ZKwkpV5M1cZmBtLCUvWgUr0GN0rsW7pwGCRk3VaaYQvr8TkKueNr8l9R2vASPePxYhmikOHrlxHYnBlY05ngwWNXiP3TSQRu7kac6WBHf8ofpFIVu4tcK6HwCYPr/7LYakxLAOdAbztboZ2T67YM9QHgb3GzOQRsaqflqAB/wYXR386IDwXPWttVJ9bwWufP/KOkhKUlWQzuHXoDDopyUV72MSkRI4M3j7pN51Fh7XKICyr54xaqL2okt1fPiY0Jm21JppuDjGwfYzjv1j+4smcLskh93YGBga48sor+eEPfyj0XqtYhQj+8i//kr/+67+mjDLO5goMAhWUvO0OQud5OfC9E0z3LJ8f1yoamm4JceK3w0weFfSpASNzkym18tBKo4RKP5aAkXiv+NmAwaUwPy9eeQnkpeTeDqy5o4b+7WPCpA2tAoGzvYwdmBKuKGSpMhAfTK6oJJ5W0eBqtDJ2YFqKtCL3EFj/3gYGto/S95LYXr4UubeWu2tJjM5x5IdyZDMZ2MIm5rPzQvP9D0G5U2E+lxWWJguc7WZ2NCVFIqq/0k96OkOPoFTr24FSZCBtYZPUWSNaMLoVZiX4C2+n7JuzwSJFPopcVUUqrlbHEkHjDUEM7nJ2fk6MKzEd7eOVQy+i1Wrp7e2lokK8YMVK4f95JaV4PF4kKBkxCROUAPZ/9wS7BEkUCxDnZDXdUk3oHK+UbNCmj8WIXid+49gZsxRl5EQJSr4OBygwvl+coFSQIBMlKCkWDZaAUpR1EoG/y1WUkxNF+0P1dD4md9urTFem0lYlcPy5IWGCEkDdpQFabperDFQKBl+ZkCIoWQIK7mZxJjTAa585LEVQKgX7njzJC/9DjqBk8CpSUoKpsRTdP+5fWYIS0H5/PZErxefw8OuT7P6SOEEJIJ1QF0FLQLyqWd27/HQ90YQiUZjBXKlIyd0VCEr2iNhthuljs2rQoCBcoa1AAPJ1OsReKqX+nzNmkaoIZq5U2PSxGDVbxW/Ftt4Zpv4ycfZ8Jpllfh7hEp+Dr0zQ/Wy/EEEJQJ9yUD2sMpx37NjB5ZdfLvxuq1jFmXDbbbcVCUqbuViIoARq9aQjP+0XIiiBegNifh6yc+J+u/6yKtaKSk8Coa1eOh+NSlUviV4fUEkRonsevZpoB4QJSiafHvTqTWJRglKhZL8MQSlylV/qt+vtejY/HiNwjvhtL4tPjSFTcXHSQjqRY+/Xe4QJSqBWAFh7m5wMrCzSk2m1UpME/8LVbJWycXoyzYt/s0+6OpAsXv7fB6QJSs5GCyaP+G8ZfHV8xQlKepN6AaFW4sb5gadOShFbAMo0oBG9cZ7HhkcaWPseuTEZOMdd9BfLITGiEpRMfkW4wlWBoGQOiJUzSCdyKkFJr45loT55glLBV4qi4ZoqKWlEV8xC7YU+6iRu3s7PAxKfcd83j7P3SfE9oHN3LaacGmzX1dUxOfn2EDdW8eeNTCaD1+sll8thxyVMUALY9+0eDkhUfIX8PBFE9RYvdZf6peRy299bT63EHsvkMxC+TPXxosQLe70ZdDDTlxQmRRSqJwmTYXSqBB0ZhAlKzgaLVGVnUAk0bRKSmJBfrySztcM7J4UJSgDVZ1fQ8p5a4eo4pWL8UFyKoGRw6LBJVGQE9Ya6DEGpFPT+ZoSX//d+KfKQzqJTx7IgCtWzVpSgBMSur6bxWvHcSvxkkkPf75MiCxZum5vc4gOscoOTzkejUvKAikMnlfMpEJREK64nRzMqQUmHcBW4AkHJ2WARro6USS71lSLQWXS0vz9C1WbxfV3zzdXUXyGe88qmcjA/j94kVp1g6liCQ0/3ChGUAMozBiIDbQA8/fTT3HbbbcLvtopVnAmf/exn+eu//msAzuJSIYISwNBrExz8wUlhwoLWWMb8/Dy5jLh/rLusUqpyi6vJSsvdtVLVSwJdblVmKIswOaAgCydKUFIsWtBCciwlTDgqyCvJEJT8G11Sv12raGh7sF5Y/gkW8voyuctsCnp+OSQledZwdVCu2ngJyKZy0lV1LFUG9BI2JguvfuaQMEGpVOz+0jFpgpLJVy5VCWzqaGLFCUoAa2+vwS9Rrbr3d6NyVY6AMk3ZgpSzIJpuqab+Srkx6WywCFXuAYoykIpdK1yJtUBQKncKnptmUQlKWoSrexUISoEut5Q8YmWHS5VGlJDprLvcL1VxTUYOEuDwj/s5+H3xfIH1YBX+XA3pdJq6ujricbnqpyuB/+ckJbtdXTD0KLzv3oeoaFP/e0WbndZt4WIVjcjVVSr5R1FvwrbeG6bcpic1lsLdbKV1W7h4eF/3Lv+Sg/mWu2up6nKz+0vHOPbzQbVtXlbtzVJYa++sIXCeOmh6Xx5lbjpNakpdOGsu8tJ828LBWfMdoeJmyBJQaL0zTC6dY2Z0luoLKlhzx0JSu/nWamrzOuEGr0LrtjD2iJnqsytwNNhoubu22Lbp5iB1+QVLsWho3RbGmZeM8J/nov6KKtrvjwAQuzG44EgUaN0WLhI/fB0OWreFqb6ggpbbw7TcF6bhuoXyxK3bwsUES0WrbYm91z3YQOu2CIpFU2zr71JLsy3YW/23uiv8xG4KEtjoJri5gpa7a4vyE/aI+S32bl6kXalTdGTzgZy11kjrtnCRuFGz1UvzooPK5ttD1FzkZde/HeXgd3po3RYukq+C53tYu6iEdNMt1UVZpch1fjo/HC0SLwJnu5fYO3ZTkLp3Feyt/tbhg5P0vjRC5Uanapc8Gq8PErm66pT2Puu/NLPxo43FtpFrqt5q7zwxw9Nio+39dax7oA6DV6H+yreO2YK9nTFL0YZ1lwZovL66SGwD9WCnMGYL9jbknWvtxb63jNmCnJeluly1d3X5gr3vWGhr8pVTc5E6vs2V6pgtLECB89y0LNKqbbqlmrp8eW3FpbYtkPuqut5k7xtVe8duqCZyZYDWbWE8Lfkx2+lYYu/odUEi1ywE7hs/HKXlPvXfT+sjFtm7crOTrieaWHd/WMhHAIwemGRuOiXkI2xhk/pdNzloubt2eR+Rt3ffC6P0bx+l5oKFIOB0PgLUMWurNjI3lUZjUs7sI7pcRRvWXFiJq8lG9KZTj9mCjyig4boAGz/WSPPNoWLb0/mIyNVVNOYlYDZ9KEbrvZFlfUQBbe+to/7SKppuDi7rI9bcUUPwfA+hc704IlZa713eRxSg0ZWhM6tRw5l8RGHM9r4yxIHvnhDyEe5mK4M7Juj59SB1ly7M8zP5CF+Hg4ome9EmbQ/WndFHtG4L4yr30EoXNpuN559/nscee4xVrOIPwf/8n/+Tb3zjGwBc3X4j629qLv5b9PpAUc6t3K2n+bYQlqCR0AUVxG6tpunm6qLcTsNVfkL59URvV9va69Q1wrveQfOt1cz0Jtn+9wdxN1gX5qYemm8L4WxUfZan1bbEb072zBAfWNggNt8WKh74u2IWtW3+ML/2Eh/2GhOZuSzpyTTNt4WoWKfOMUfETPNtoaLEUWirt0jocTXYaLq5uliK3h42qW3zRJTq8zw0LFp7NjzUQMM1QUx+BXPAQPNtoSLRI3COm+gNC/O4IMHV/O4wGx6O0nxbqEgm8G920bho7YleW0X1eaq99R49a26vVfXTUZP0i7W+I1f5CV2o2lBv0tB8Wwh/l4uKtQ4ar61aYsP6K/zUFqQl8/YuSI9VrLEyTxkT+Vt+4csrl8hjnMre8cFZtv/9QaxB05KESvNtIbzrHaoN6/I2NKl+v/3hCLFF77/Y3tYatW25W7Vh8FwP0WurOPqzAU48P0zjjcHimmzyK6q9fXl7n+0meqNq76Zbq+n6y+Yi4crkWRizBXsvXnsarqli3QN11FzkXRiz+bjGt965ZO2JXOUnlF+/o9cEaX+gDkd+Ta5YZ19i77rLT2HvPBnE1Wxd0rb20qWEjObbQkUpqrIy3jpmr1waJxRk6t48ZkMXVCwZs003V1O5UW1rCRqLYzZ2QzUNN1QvkSuJ3hh4q7396jobuqiCzseixTF8Oh8BULnRSdPN1TTeGGTz4zEhHwFqNbOZoSSZucwSG57OR4Qvr6T2Uh+1l/oInONe1kcUxuzr/9qNRq9Z1kcUbXhrNdlUlvhAclkfEbspiH+zGgMFz66g7l1Vy/oIUMmMze8Jse6eemLXBs/sI/I2tNaY8G920Xp3Ha2LDr1P5SMKY9a73sGmx5qIXqW+x5l8hGetrfhbXQ02otcGlvURBXuXO/VodGXF/34mHxG60Iu7wcrxXw7R/ZN+IR8BsPNz3ZSVlQn5CIDgeV5s1Ub0Jlh7T82yPqL6PA+byy6h0u0nmUyyfv16VrGKPxQVFRWk02lMWLjtujtwNaprhDVkpOHaqiJJpKrLXdw7Rq8PELmmSq1qPZHBEjCobfOH9/5OJ+GLFw6z69/lp2KdnaM/GeDoM4M0XFuFwaG29XU4lhx8h6+oxJefm8N7xpgZSpKaURO13jYHdVcszPnwJb7i3FQcOhquryKbyTE7kcKz1rZknard6i0elusMGhqurcISNFDV6cTb6lwyN0Pne6k6K5+s1UHDtVXFNdnZYKH55lCRuBzcUkFwy8INz4Zrq9TDf9T1sOHaKlxrrbTeHabxpiCh871L2hbWZEswb0OD6ofW3llL+/0RlLydIldXFf2bueoU9r7ER9VGN9Xneqm7orK4nhi95aq98wQG3/ql0mN6i45sRk02Gxw6Gq6tKhKqKtbZqV8kZxe+2Ie/08mRH/Vz4Hu9qg3za7C72bawz0TdCxd8oX+Tg7YHwsUDRlejlYZrF9qGzvcSOMezxN4TPTP0/HIQa7VlSdvAuR6qtyy1YSG3s/EjjbQ/FCkSL6rOclNz4aK2Vy+1d+zWILFbqjG4dVRtdi0ht0Wu9BfzQCafam/FocN/lofmd9e8Zcx62xyqDT161d75ddbb5iC8eMxetjBmC/Y2+VQbelqWjllLpYGq/Pqts+jeYu+Gxfa+cMHeOoNqlwKZyhldasPqLV4C53qou7SSxmur1fGdJyvZ681q27wNA+cstfe6+8LE8vmnM/kIUMesu9nGhg9Fid1SLeQjAIb3TTIzMivkIwxu1S6uJvU3Lusjrq3CXGVg8sgMJ34zTFXngvTX6XwEqDGzo95MYmQOXfnyPqJg78o2F/6N7iVj4FQ+YrG9178/QvOtNcW/ezofUbV5wd5t2+po3Va/rI8oIHp9gMYbqglfUrmsjwhfXomvw0Fgk4uKNQ6iNy7vIwrQG7Vo87HVmXxEYcz2vTLCwe+fFPIR9rCJqWMJjj07SPCshcO1M/kIW60Jd9QKOnU/G7s1eEYf0XBtFRarg81cgsPh4Hvf+x5/8zd/wypW8Yfg5z//Oe9///sBuLTmGhrPX8h7V21yFckrWqOWmq1ejF4FV8xK9YUV1FzgLR6Q+ze6in4TbV6lw6/6LGvISM1WL6nJLG989TgmrwFvu6P4nJqt3uJhuaXKoPqS/KH22MEp4v2zS9raQqp/M/nKqdnqLR7mV7TacdRZSCcypOJZQhd4ceTXE6NHUdvmJY48zTb1IFwLFa0OIlcFir6w3Km2LZB9XE3WhTkPNL07ROymEMYKBcWu2qVAEHA2WIo5AFiQ4IpcFWDtnbWqDfPkI0e9mdAiCV3/EntraHlPHbGb1TXOFjItWdP8G1wLNszb29Fgpmqjm+B5FUvaetsd+DoWfOFie5urjcA88RHVxhXr7Pg3LshN1VzgLZ5vGb2qXbKzOd746nEUi46qTQttQ1sq3mLvApmn8aYgNYvW2eC5HlxR1b8pdpVAWyDLuGJWAud6OPKzPvpfHiNwthtXU76tRbW3IX8u4oiYqT5PjXsD53jofDT61jFboba1h81LJIv9G100XFeFr8OJVlk6Zt9s78qOBXs3XB2k+d01WAL5MRswLhmz3nYHlR2LbLjVW4w5zX5Dfsyq/1bR+lZ728OqDcs0ZUvGbEWLfQl5o/q8imIOw+A6xZg9e+laVJC0K4xZxa6j6aYQ4Uv8BBaP2bPduPOycfq8vQtj1rXWRsu2cNGmp/MRoJ4D1lzgJdDlpv19ESEfUcD40TjpRTLZZ/IR3nYH/g3q365osS/rI/z5MXv4B33M51jeRyyydyadIzEwt6yPCJzjKY7Z0AU+6i+vWtZHFGxYe4mXtXfVETyv4sw+QtFQs9WLyVeunrneXUt0UX7sVD7CkiedW6uNrLuvjsiVAdCe2UcU7K01avCucxK+qHJZH1Gwd7lTh9agQZv/VmfyEe5mG66IlaM/HaD3hVEhHwFw5If9ZFNZIR8BUNnmUC8Xa9WYsubiM/uIilY7TWUdhKy1xONx2tra+H+N/6ckJaPRSC6Xo4wytpRfjdlvxFWXT+rXWTH7jSh5B+est+CoMxM8y4PJa8DiN+KqK2w6LJj9RvQWpdjWFs6zERSwVpuKk8peY8bsN2J0qRtaZ9SKrWbhZos1aMLdbKNyoxNrtRHFosfkVQe7M2ItOgQAW9CMo159jrnShLnSyMkXR+h9fhRXxIptkV6otcZcDAzMnnLMfiO2ahO7vnCU+PAslqoFlp+t1lIc3OX5ts7873GGLJCDwz/qLbZ15t9BsSiY/Ubs+bauetUug68MM3EsjsGmx5FfFFBQ/27eho76vL3zNmR+nlxmvli1ZnFbe636dxWnPt/XjD1sYfs/HOKNbx7DUmXE1aB+R0fe3uZCsNJgwbpIc1Zn0JDJV5Wx+k1q20rTgr2rF9raqk1UtNhRXAqmSqNqw4Ap/1utWIOLvk2NGUf+HZz1NvQmHY78d3bVW7FULWpba8GZt7diV21otJVz/NkhXBHVLgXYw+YFeysa1S71NlDUqiq6cm2RxOGssyzYO29DV/7bOMIWTC4Dpor82Fo8ZgFLlan4HEdItWG5TUv3z/vIJDPYahe1DRpxR1THbw0a8/ZWN7SOiAVHvYV196uHGPZqM65IfkNYtLcx/x0t2KsXfxsdznxbY4UBs99YdObuiG3JzWp72EzlBhcVrTaMLr06DvP2dtZblto7rI7Z488N0vfK8JK27vo329tUHHcooDPpMOdtdjofscTetRZmBpPkcvOn9xF5e7si6n/XlGkptyln9hEFe1er9nY3WLEGTLiblvERfiPWYH4cRqzYQubieDmdjwBwNVgxusp59Z8OkxxKndlH1FuK33TvUz1kkjlsVfnxfRofUYAjbIZ56HtptGjD0/kIR525GGQOvT5OGSzrIwowuspJz6TZ9+TJZX2ErdqEK2Jl5793c/KFQcyVZ/YRhTFrqjRCWRnJ0VT+t57eR5g9ql10ej3jB+O4Gt7U9hQ+wp6fgwUf0fXxJmov9p3eRwDO/FqFAhVr7Rgrys/oIwr29pYFuPaq68lms3zqU5/i+9//PqtYRSn40Y9+xMc//nEAYqynrqUGZ3ihsoY9bCn6IaNTwVZjxho04l3rwBG2FOc8gCNiLc63cqsOW40ZW37eVG1242iwFg/pHRFrMS7Qm/TYaswLa0TYgq3GrG5o9Kr/s/rz80+fn6u1altHWPXHer0avroarJRb9EX5V1toYf7ZQma1rVV9B1fEgqPeSnoyzY5/OYxWry36LEvAiK3GjGmR33fUL9hFq2iZm0yR6E9h9attDfnY0NVgxbHIvznCFlwNVnqeH2LyWBxbjblYicgVseCoW2hrr7PizG9QTDY98/PzTPfmb95GLEUbqf/dijO/Tuntqr31Rh07v3SEVDyjrifFtpaFtgV759/R5C6nTLNQrclVb8FVv/BOthozzvx3ttWoNgzkDxNcDVacDQt2sVWbi+uuPd9WcSo4Gy3F8VP8rWFzcZ21VuVtmCd8uKJW7PVWBl8dZ/JoAkd44f0tfpP6bSqMxd/myPvfiWMzwHxxbBk85aq985tUZ51lydrjqLdirjDgqLNgcKh2KSRhnPVmbDVL2xb+7snfDaPRaYq/xxk2L/ltrohlYXzrwV5rJnpNEGuNCWetOr4LpA1XxFpcTxbsnX9uWRm2GjMao9rYHbXiiCyyd81CnGMNmnDUWWjJX4hwRpaOWdXe+UPwoGrvcnc5x385xPz8/JIx6wxbi9/GVGHAVmPG7M3HhmELerMOe358nc5HFH6bPWxmonuGqROJM/oIR91SeysWPbZ8fHQ6H1G0d70FV8RKxRoHFWvty/qIwlgq2LuQqDidjyjasMZCcizNsZ8NLusj7OGF/Vj/q2NoNGXL+gjV3kZsVWamTiY48szgmX2EW5+3oZH+F8dIJdKYFt0sO5WPKPgFR9iMRgOHf9SXb3t6H+HIj+/0ZJpdXzhMWd7mi234Zh+hN6l20Rt15NLzxUplp/MRhXdwRKz0vaDGnPZ6C67mM/uIxTYMnOWm89HoGX0EgKNOtben1YXVb8Jee2Yf4WpUY7Yu68V0buiku7sbj0euUvAqVrEY0WiUiYkJdOg5q+wynBEb9hrVF1oDJpwRGzqDenDtilrV/2u24qiz4o7ZinsFc6UBZ8RGuU1t64zaiv4BwNfmpPpcNVlp8ipq2+J8s+JqWKjw5opYcTVa8ay1YXQZMHkMiw6XLEvaOqO24tqvWHQ462wMbB9ncMcEzjrLkrjA2WgrrhF6mx5nxIYtaOLw0/2MHJjEHlqYb65Gq3qQTSHvYMOSXyPsIRO57DzHnlMrErobLLgbFq1bEVtxz20NmXFGbEydnGVozwSKRYdrUSV0Z721uJ7YgmpbXeGm+Pw82VSWVL6KkppPyMcfeXsXSByOfAz0xteOs/cbPbiitqLfN3nKcUZUWy7Ye8EuillHekZ9RrlbbWvOExAcb7Zh1ErFOieKQ4fBrtrFXFnwWebiugr58ZK3i2eNA5PPiDWfH7OHTcU9qNrWsmBvnQZnxIbJZaD/lfH8HtpWJHG4o1ZcDYvjSlsxlzY3mUax6Ipj1h21LhmHjoi1uCZb/UbsNRZsITManQ5nvRVn46Kx1WAt2tBcWZ4f33r6XxphdjSJK7LQ1t2wyN5uQ97e5cXvVtnmLBJ7XBEbjvwapziUvA0X2i62t2LTF9dzxZwfh/n8iL3WtCQOczfbCF3gxdVoRVMYs/k8rqNGHVtFezeYcUet9L4wwpGf96nzPp+3sFfnx+Eie7sXjVmTz1CMl07nIxa+jRVH2Mxkt3rwdSYf4WywFv1JGWCuMJ7RRxTyWEaXam97rRlXg42KFvuZfUTEhtm7sM66muxF0s/pfASocYI1YOaNrxwnOZpZ1kcU7N3zqyFmx+awLcqpn8pHFG3YYIEyOPmbIcic2Uc4Gyy4oupz+rePAWXL+ogCbCGVcHX0mYFlfYQrHzMf+kEfR37Wh6P2zD6i8N8Ndh2UlZHKV8A8k4/Q5ce3YlGYOpbAHjbhjp3ZR9jyPrvgIzoeaaDqLPcZfYQ1uDBmK9c7cdSe2Uc4IzYUsw5LmY2rLroWjUbDE088wc9//nNWsYpScPDgQS699FIAWukiWB/AtXisN9qKezOdQYs7ZsfiM+JtteNd41jaNmot7qm1itq2sCZ72x1UbfIU/airYWEOoUX9u/4CicOIO2anotkGWjAvWq8B3I12rHmfZfYacMfsaI1qNRRnvQWTS2H/kyfzbRf8ptFTjjtmL5IKHPUWlQifhd1fPoZGV1bcRxscerWtPR/v1S56X0Bv0jLTn2R2OEW5TcEds2NwqHsxe60Zd9NiG1qx15s58bthxvZP4o7ZMebPoWwhM+5Fa707aiuuJ1qljFw2x3SeoGUNmZa0dUYX9tQFe5fbFHZ/pZvZ8RTumL1I4nAv8m+g2tuaXwcMNj0anZbUhHre6Ios9c+umK2Y87f41G/jXmNdZEPbkraFXIjRpdpbb9Zh9CjqPjO66LfGbNhqFwg27pid8ry97bVqXDB1NEFicA73onGo2NRvY8jnGuw15uI4jPfOMj9PMRermFW7FM4TbdWmpe8btWKvseCoNRdtaMqvJ9aA+lsX2lqKNjz6bB96kxZrfsxa82O2QMRwNViWxNcVa+00XleN2W/A5FXtolHya2dkaaziarQVz7fKdGXqOMxfKLeHzUvbxmzFNdng0lO53kXDtSpJxRG2LBkvnkY1NgEot+fHrF2h+2f9ZJIZPEvmsq2Yl9CbdWrb/Ny1BQxYKo1YKgtE/1P7CFDXOFfMxlRvgrGDU2f0EQUbFlBu1S2cu57GR2i1+Xip3oIzasHX6sAdsy7rIxbPZXfMhmdt/iLF6XxE0d5WUlMZ+rePLesj3I3WYp7l5G+GKCsrW9ZHgEqwcTXYmTgcp//FkTP7CKM6PsxeA1NHE8wMJbF4FypfnspHFM41LVVGtHotR37aB9kz+wiTz5D/NmW88dWjZOdyy/oInVmX/z16sskc2dRC21P5CFDznq6YjbGDakWsilY7zsYz+4gFe9sIdHnUKnrO0/sIyM/7sBlbyISrQc2VnslHFGLFtWzirLPO4siRI7S0tPD/EmXz8zLFoP94qK6u5uRJdYG9qOxGqb6Ku1yVRhN89faH6hl6fYLe340KtV//cIRym8IL/1tQvkpRK4kMvT7O0WfEpB0sAYWKNU7h9qBW+xCVhHu7oViQkrsCtQJQ3/ZRRveKl67reqKJVDzNjn88vGLv52mxEdri5cBTPcwMvDPtLYN199eRnslIyd2d9ZfNTPXMsEdQTtEWNhG9JqDKAAlK4byT0XRzEG25Vvj3AyrZSGK4VLTaiF5TzcBrYxx5WrB0pQLNN4YY3jPB8C5J+RXJ93u7YPAqwpKSoFb18raK+07FoqHtwQZG9k/R/SMxO6+7vw6T18COzx4W9rkdjzTQ86tB4e9Sij9/ff73jNCHxWLhtddeIxKJSPVfxX9u9PT0UFOjEhoC1NNU1i7eWQ96vYZ0QqxcsKfVRmCzh52f6xZqb/LoWXd/hMmjcfZ+U6xEad3lfpz1Znb862Fh6a7QhV4Gd44zNyqu9VXu1ku1f9ugR0qyDNTv4gxbOPQfYpKToN5y965zsvurx1TJqBV6v+Zbq5mbynDkxyunNf92wRWzUHOhjwNP9qhyXgJovj2ELWTmxb/ZJ/ycxhuDaBWNVHz3ToU5YCByRRXdzwwIjzO9CXHJxjzWPxRBb9Lx0ifFZZBdMQsVax0ceOqk1LNKeb+3C3q7vijpJoLQVi/928eF+4S2evG2ONj+9wfF3scEHY80MTM4y+4vHhPqEzjbjStqFW4P8r87PZ/m1/wHABs3buSll14S7ruKVQBcccUV/OQnP6EMDVu4Gl2ZuISRzqKTknyK3VLN+KFpBvMVL0Xa24ImXv3MATKCKhXt761ncOdEkVy4HHQWHd4Wu3D7Qp+VlroqFToDwrYqoO6KSkb3TRXln0Sw4YNRUvE0u75wdMXez1xloPYCH90/HyjKX/0po+HaKrKpnJTc3caPxBg/Ms2h7/UKtTe4dTRcHaTnV0NS3/OditD5XsptOg4JStEDKpFNYnqaqwy03Bmm/5VRYfkvUKsFTRyfYfygZG5R8v3eLigOXZEMKdreE7PT96Kg79TBurvDjB2a4cSvxezccHUVrkYbOz9/WFjucs2dNfS9NCr8XXQGDZlMTuqbHJvfz2H2YDKZePnll1mzZo1451X8p0c8HsflcpFOp2mglZoycRlqUCt+FCSAloOlykDVJjcHBdcQrVHLum11jB2a5tgzYmtVRaudirV2Djx1Uli6q6LFzuTROKm4oMYbamWZtET7tw1ahKXqCrBUGbCHzfS+OCrc19vuIHSel/3f7pGSbpN9v+rzKsjOZVdcIu3tgNGrEDrPy/FfDJEUPNuoPq8C7zoHOz4tLs8bONuN3qwXnjPvZCgWLaELffS9NEpiUCz21ioUyTCiiF4fxFRRzuv/ekS4j8lXjidmo+fXw1LPKuX93i7I+HNQq0xN9cwI+05Ps43KDS72fO2YmB/QQvv9Eab7EhwWjL0d9WbczTYpyUPZ3w3w/PzTpEhyySWX8LOf/Uyq7x8L/08qKd14441FgtJ5XC3Up2arl7YH69VbAqIHu/nLpa995ogwQQng1c8dpvtnfcIH+gaHwnx2nsS4+Oa+7rIAlZ3uosSRCNruraPzUbkAa9PHYkukwZaFovapk9BHVVwKHR9sLko/ifaxVJvwtTrE3w144xvH6f6p/MIkQ6Cy+o2U2/SkJZJjgbPdRamrlcTaO2uKslOi2Pn57hU/wJo6mmD73x+SIiiZKxXaHqwvSpqtFMyVyhJJLREYKgwY3OJzE5AmAA3vmuLYrwfECUp52MMWvK3O5RsWoKjkvpbbaqX6bPxoTMpuloDCpsdjS0pZLofg+R7W3x8pyqGJoPHGEJUb3EX/vhxS8RzzOTku7r5vdHP4R71SJKId/3hIijhW+Nv+LpdaMl8AbWVnEatvYmZmhrPOOkv4WatYBUA4rJa4duARJiite6BOLWmfRpigBDCya0qYoASQGElz6Ee97P2OuIbyPPPksvPiRBg9VG10E71a3K951ztY/0BkoXyvAEJbvXQ+1liUhRJBwzVVbHikoVhtRwRrb61h00dj4h0A71rHkps8Ijj8dD/dP+uXIyiBNIHK6CnH5CsX76BXy9gW5KBWCo6ImbXvqZH6nmP747z2z0eECUql4sBTJ6Xju9pLfEukx1YKlRucRZkvEWSSWYwupXizSQSlEICO/KSP3V8V900AvlYnznqr1PyMXltFxyNNRSk5EdRe6pPe50VvCLDhQ3J9NnyggdZF8rfLweTRE9joJnJp5fKN80hNp5nP5ITnTToBh3/cy+6vHhN+Ru/vRhcISoLfpkBQatlWW5SmORP0ZXq2cA0+n4/XXnutKBuxilWI4JOf/CQ/+clPADiHK4QISp61tqJUqjBRJ/9n93/rhDBBCWD/d05w6Ie9wqQWnUVHLpMjFRdf22rPr6D6nIpipRERrLm1mnX3hZdvuAjt761fIp0k1Of9kSUyEMtBZ4D1DzUukc9avpN6a9fTLBd7vfGN43T/TJ60LUOgMnvVm+/ZlHgS29VsLUpdrSTCl1cukZcQwaHv90kRlEpBcjTD7i8ekyIo6Sw6Gm8KFiVRVgqKQ6dKIopPNUy+8mJ1BWFIEoBm+pIc/lGvFEEJwNPiKMqEiGLDB6M0XiOR+9ZB2wN1UnNaZ9Gx/qFIUbJOBK5GK+33R4oSZyKou9RP4CyP+PfMQC4zzzziea9DP+7j4H+cFCYoAbzxleNSxLFMUiUoORssrBGMPWvLYqypbiWZTHLBBReQybwDWWereMeivr6edDqNn1phglLkqqqirI/MwW68LylMUCr87UM/OMmJX8mtVblMTpighFaVHg9dKO7XLAEjrXfXFavcicAVs9JyT7goUySCyg4Xa+6oKVZCEkHN+V7WPVAv1cdRb8G3TuLMBBh6bYLDP+qVIyiBNIHK5C0vqvWIwtfhLFbBWSkYPQp1l/ulnjM7lOLAUyeFCUqlovd3o9IEpYpW+xIprJWCLWxaojawHLKpeSx+Iya3eOxVCgHoxG+G2P9t8dw6qJUvPWvsRVk4Efg3uFh3f4NUn4oWOy1310q9W9UmF2vvkusTuylI7AbxmFBr1BK6wId/s/j+IxXPkMvk0Iv+/qyqjFWobi6CiSMzCwQl0cfk17G6y/1FOcTlcDaX4/dX8dxzz/G3f/u3wu/3x4TEFuaPg6985St85zvfAaCNc1HKxE6abdUmyiUOCOwRM803h+h7eZTjz4ptiJwxVUpt/GCcwR0Tws9KDqV4+f8cEG4PsOsLR/G02KQOwUf2TDCfFd90KBZIz2ZIjIo/w+BQyKVzJEYkFuZUhnhvgr5XxYlgqbEUL3xyr/gz8piSvLHU8UgEjU7DK38ndpMX4Ogzg1IVrgACXRVQBv0viLOhN364kbnptNRBrtlvLJaXE4UtbCI5nJCudCULS3U5qfF0USJwOSg2BaO7HGvQyOThGaE+nhYbDVcGOPrcAAMvjwv18XW48a51MPLGpPCG+rXPyFXqAqi7wo+vzcmOfxGvvtP7vPicASAFO/5hv7CNC32mehKMHJiU6pOdy4pvhIB4b4pcKkcmLR6ln/z9CK56K5Mnxf3Nnq/3oBiRIoW98inx+Q8qqXH4ddVeNVu9HH9OPKm26WMxkuMpdn5ebF7b/CbKrTrhykrBo2sZcQ4zPDyMzWZjakqyotYq/lPC5XKRy+XQo7Ch7HyhPiaPnnKbHnOlgZE9YuOsZVst5TZFuHoGQOAcN72/HWVEsjrc0Z9IHkSkYfdXjkrdKJs8PsNkzwzDO8X9ZzaZJTObkavWkcySTmaliD3Db0yRmpFL2u79eg96k/z9hIHtYustgMmnp/XuCCd+OyR1QWDHP8mtu55GG/71LlJTaeHn+De7CJ3n5Y2vHyd+claoj7XKiKXShF4vwYez69Gbykj0r2zCRm8CxWkoSveJwF5jFt9E59F6bxidQcurErFR9XlecqksQ4IH5nOjaV78W/HqRgVseKSB1ExGuNrEZLc8s2nf905Ik+4Gd02gVeTsPDeZJpPMSlX7SY6nMTjTUpXLhvZOkp0T94OJkTT7v3uC8QPiG4mBl8eF4/QCCmuAI2Imm54XJkaGtnqp2uBi15e7xeacHgyOcmw1JiHfpi/T01jWym8yz/LZz36Wq666issvv1zo3VbxnxevvPIKH/vYxwDo4HzKy8QOJKzVJjVxLVgNxODR03JnmN4XR4WrFZmrDGh0ZUz3zModNscz7Py/cpV9Dj/dz9CeSalD8IHXxuX8pw7mptLMjYs7ap1FRyaRYW5Cbp0eOzDF8D6JPXUGXvlHuTwhIF3ZqOm2EOUWHa9L5JWGXp9g6PUJqedUn+VBW64V3heAGkOkE1n2fUOcVG2vNpGaydL72xHhPkZvOempOelKV7IwePRkkvPCJEKdTpU+nTo2w3SPWOxp8hlofneI478cFN6DOOssBDd7mOmbZfyQ2Lze/y25AywA33oHofN97P63I8LzWma8FPDaPx9SCS4SGD0wyZSgjQHIQHo2SyopHhNl4hnSMxkpct/YgWnGDk8T7xN/t8M/6kdv0kqRwnZ/6Zh4Y4AMxTXA1+GQOgNpf189s2Mp4TFkrCjH4FQwOHRC48bf28i4a5S+4V5qamro7RUngqziPy/OP/98hoaGMGNjTdkGoT5aoxZTRTkml0H4vKn2kkqsfgO7//2Y8Lu5YlbG9k8zfULCRwHDuyYZ3iURd2ThjW8clSI2zI6lGNk/xXi3eEyYy+RIx9OkJsV9YTadJZ3IShF7xg5Nk0nlpPqc/M0I/S+NSROIJgTPpUAdN613hzn522GGd4t/H9nKzEavQvU5FeRSOeHn2EImwpdVcug/eoWr9RicCvZaM/2vaEEwX6pVNGiNGlKTK0sk1SqgtyhSZChrtQmTq5wTiFcFCl9WidGlSF0CDJ1TQS4Hk0fFxk42lZOqblRA0y3VZOZyHPq+2Fo4Oyyfh+x9eZTel8WrjwGMHYmjWHUgwVWYm0yTTmSkqrclJ9PMTaWlqjaN7hdXbQKV2HPguyeY6RffSEz1JKQvjRbWAGOFAmUq2U8EriZrvtrbCeG5YKooJ5PMMiZgC22ZltjkBobmf8Rf/MVfsGXLFjZv3iz0nD8W3la5t4GBAfx+tQpMkDpimo7lJdvKyk7/b2foq7gU1t4WYu+TPcJSQp2PRdEqWl78n+JSC52PRul/bYyTvxLfQFe02YsH4P9ZUYo83MYPNzJ2aFq4JBpA9LogOqOkFEYpsliKepA1fUw84GzdFiY5nubg9+SCFFmc9ZfNTPcmpDatsnJvAGf/1RrGu6fZ+7WVq9qkuBTW3h7i+HODwjKBigUUZznxEyWUMZcYC86oKu9y6PsnhGUCC1Jkw7snpIlxpcyhPycoFjBXWYST64pFQ8u2egZeHxMmhzXfWo0jYuWNbx4XJtK1bgszeXxGitgkhfya+Gzu2wCce+65PP/88yvzrFX8WeC8887jN7/5DSAvryuL6vM8mH0G9n9bbF1zNlqI3VDN0OsTwjJfwXM9uGM2dn6pW/hQ3hExM3F8Rppo8OeEUqSnai/x4Y5apST1TH6F+sur6P7ZgDh5pgTpOlAlwmaGksJ9Xc1Wqs+pYOcXxcdOKWi+tRp72MILEtJtpci9rb2zBkvAJLVvKQWRq/zojTr2PSl+mCX7bYqQHAuNNwaZm0pzTCKGqr/Cj6POLE2MeyfLt71dcDVbGZOQ6Q6c48bb4uC1z4on4zZ9LEYqnua1fxbrY/IrNFwZZO/XjklV/JPFgfnXOcFhXC4Xe/bsKeY0VrGKNyOZTGIymZifnydMM/WaNcvnvEqEzqAhekM13T/rIylYva/lnlrK7XKE8pa7axnaPSF1iG2vNzN5RPzA588RpcjDrbtPTrIJIHCOh3KbTq6SUCmyWDowusqlSFSRK/2kZ7MrtzfOY+OHG5k8NsOB74jn1mTl3gA2fTTG2IEpOYk0SegM0HhTDSd/PyI+h0r4Nov7io4Fo7ecmgu9HHt2QNjnFKTIRvZPSxHPoLQ59GcFHVgqDcRFL/XpYM0tNYwemBK+ZBI634t/o4t9T/YwdUws0I1c6WdmMEn/K3KEdGHkc16/yH2XHFkuvvhinnnmmZV51ir+LPBXf/VXfOITn0CLjvO4Cm3ZylWeccWsWANG4XXN6FFovq2GgVfG6BUklDsiZrytTo483Sd8edjoVUhNpN6x0ktvB0qRnvI02/C2OaQk9RSLluB5XvpfGRUnhJQgXQeg2HVkZzPCv8vkKyfQ5aH7ZwPSkk8yCJzjwd/hYvs/iO8nSpF7q9nqxdNkZ8c/ifcpBZUdLsodOql4tdypMDeVkv+ukmMhcLabbHKegR3ihTG87Q48TTZpEs07Wb7t7YIlYCTeK36+72yw4GtzCJ+DQP4Sx0yGfd8Uy7HqLVpqL6yk++crO68H53vZzQs4HA727NlDILDyVfgLeFvl3go/zIRVJSgth7Iy1t0fpvm2aulnpcZSvPpPh4UJSgA7v3SMIz8V32yaKxU0eg1anbgZG68P0nBlALdEqdfI1VVs/HAjinjlRYLne2i+Vc5uVV1uItdUSfXxdTpoe7AexSJuA1+ngw0fbKZyo3j5RcUC8/PzZCVuuQAc/J6cFIYloHDWR5upkywXTgopghLArn87uuIEJYCBV8c4+Xu5ZEAp6H91jN6XJCsDSSI1luLVTx8WJiiBSuQphaDU9fEm2u6tF24/fjDO6/9yRJigpL5bjvn5ecr0cq5440djtN7bINWn7go/rdvkSuc7oxaabw9J9alos0s/J3ZjkM7H5ORK2h5sJHqdeOnGVDyHzqDF4hEvtb73myc49tygMEEJ1HldShLWGbWofl5QAnQzl+PxeHj55Zf5/Oc/L/28VfznwOc///kiQeksrhDqY/Lp2fBIA5agvCzBiedHpALz8QNxjj4zIExQAjC6FPRmnRSRIXptkI4HxWQVC9jwSAO1l0pIeqASTZyNEsEaKslC1tZr7ggRlJAoAWjdFqHjYTkbUJY/V5WwdaI/xe5/OyZV3WfdPXV0frhR7t1AfYbEu43tnVarV64wWa33pdEVj4cATr4wQu/v5TTjS8HhH/ZLEZRA/tuAKu/S9ZEmKWm9A0+dlCIoAWQzOXVcS8i3VXW52fDBJux14vpteruelntqpX1C3eV+PBIyuADRGwNS8np6u+rnq88T9yOeVhuN1wYJScj66gxadEad1Dc98tM+9nxJvFpLol+tXlkKQanp5mqabxOLcxvL2mhb287Y2Bitra3Sz1rFfx4Eg0Hm5+dx4lEJSgJouLaKyJXyxLdMMsferx0XJwsA+77Rw5Efi+e8dBYderNOqrpRVZeb2A3VOKPi/s/f6aTtgTp0FvGq0e5mG+Er5PI2zqiF6i3ifgzAVmsidku11LtZggY6PhCTkgxGp8ZdWYnKxAC9vx2RIijpLDo2PRqTkrsDICNf5enw0/0rTlACOPH8EH2vrHzsdeI3w/RLHBKVgkxSldWSIvmV8G0A1j/cwJpbxCVgZ4fm2P/NE1I+h0x+P3GG+8enwrr7wqy5Qy6vVLnBSfR6uQMVk89AnaQfsdWaaLhO7jnBLRW0PVAn1Wfd3WEar5fI62dAsekwOsVySgA9vxriyI/7hAlKoM7rUghKJp+BtgfqMLjFfOnZXIHP5+NXv/oVX//616Wft4r/HNixYwef+MQn0Gg0nM2lQgQlrVFL820htZqFJMb2T0uta7MjKQ7/sE+YoARgdJSjWHRS6gaRdwVovFEuf990azX+jS6pPjVbvVgCcvmrwDkeaVvXbPVS0SInlxu5KqhKykmgTFfGfG5eytapeJbuH/dLVaypu8xP671yaxpAalKcoASQGJzj0Pd7V5TIADC2f4rjv5TLw5SCod0T9EgQ90vFwI4x6Xh1blyeoFTRYqfj/Q1SUom9vxuVIigB5OZyzGfn0UpMO1vYRNsDDVirxee3VtFQd7lfWtbY2+6QksoDCHS5pWQptQo0vzuEt90h3MfkK6fxhiD+DeJ+sUxXht6sk5JL7P7pAAf/Q3w/no5nOfSD0uZ14BwPtZeIxbm+sgCdDZuZnJykq6tL+ll/CN42klJDQwO5XI4yyjhLc9nCP5yqUlJZWfF/1xm06mGUICra7HQ90YSv0yHcx1JdjrlSldqRqXA0M5Dipf+1X1hODuDA0ycZfH1cimQBMJ+bl6qa4mm0Y6uVS4p72xxUNMsFAM5aC0aXIiU/NTMwy8xQkoHXxTc1qTi88ncHparN+DodVF8gp0GaScP0iYRUGW9/l4vOx6KYK8U9v+JSVJKWxGJhrlTo+ngTNRKHAwDdPxmQKuVeKrp/1C9F5oA82UaS0GILm/C0yB3etNxdS9t7xQlHABNHphl+Y0Kqj7XWKE30e+XvDtL9I/EDeoCJw3FG98mVzbYGjBg94rq3AFUb3dhrLVIkxIqYDXOlQZhsA6rU0Xx2Xmo+HH9+kMM/lCv7/NL/2s+B78oRAwvSCRVtcr6x89Eo6yUIAbncPBp9GfYzBXaL1kuLxkJFppq5uTkeeOAB4vH/xGW1VnFKTE5O8sADDwDQSDumMrHDdXOlCY2iIZcVD37b31dP+/vkfKwrT9aWkRIDOPQffVK3/wEOP93L0V+Ixw96k4Zcdp5MQtwGJo8eW9CMs06chF7u1uNssOKX2DQBmHxGrJKJoeF9U4wekos9j/1sUEriC1Siickvl4AaeWOS8QNya1rrfWGiN8odDrhiFswBMcmdAta+p0aa3DV5NEHPL1Y+kTJxeIYTz8uR0EMXVLDpYzH04lwb0EPFOruUVKAlaGTDBxqK81wEY/unGD8sN0ZBrdYj85xjz+THtYy84s5xpk4mSM9IyDgm0pi9Bhx1kvuxVju+deIXOQCcdVY8TeKxcXoyzXxunjKJizYju6bo3z5Gj0Ty7vizQ7zydwek5C9Hdk2RTuQw+RVMHnFyU+UGJ5sfj8kRyaw6dCbxZJLnjXp0Gj0jIyOcffbZwv1W8Z8HN910E6Ojo2jR0aG5YOEfzlQdHNCbdOit4uPdEjTQ+WgUz1rxeW9w6PJSVTlpmbdXP3NYWE4OoO+VUU7+fkTqOWVaDfM5cRktAFejFXdULi/gbXFQKUHqBLDVmLFWGckkxd8tM5thvDvO+AGJdS0Du75wlL7fi9vaXm/G1+EQf0YeI3snmTgi/n3s9Wba7q/D5BOPo3QGDa5Gq1qpR6LPhg9Fqdosd2ja/8q4sJzaH4K+F0eJSxDxAdrur6PxJvHLVaBWLLKHZYI1qLuikqZ3yx1Qj+6dZERGwhBV8i64RS7PuusLR+n9jVzMOnJgmuE3JHNeVUYsfsmDsrU2PM0OFIf4QHXUWnCELRgk+mRmMuSy8+gM4rHXsV8OSee8XvvsEY7+XO7guCDJZ6+XOzBsubuWlrtrhdvnslm05VpMZ7o4uGi9LNcYqJ6JkU6nuf3225mYmJB6v1X8+SObzXLWWWcBsCa3CaVMbP4bXQo6gxYkCl02XB0gdrNcMYACmUdUDqqA/u1j7PnyMak+R37cx4nfSlxg0kIuPU9GQgZca9TijFixh8TXJ62iwdfqwB2Ti9esARNmSX8+um+K0X1y+YThXZPC1UwK8LY7KJcggwKMH5xmZI/celt3hZ/QBXJngGa/AYPEeQyohDBZctfsSEpOirBEzA6lpCT1QK12tu6BOinSCFpVKk9rFO+j2LU03VqNTSJemzo5y/CuCelqRa6oVYoINLJ3in3fOiH1nKmeBKMHp5mbEs/dZFM5rNUm6djL3+nC3SznE9zNNpwR8bxfNgW5rNxFtsTgHD2/HqL/NXFS2Ni+aXZ/6RgpQfk6gHjvLNnZLIpFi2IXjyWtISNtD9ZjqRLfjykWHYpZfFzbDwexauycOHGC22+/XbjfH4q3Re7tf/yP/8F/+S//BYDzuAZF8yZnufgVlkngnLZfHtZaI9GrA+z+t8PCpJ5SZN6a7wgxemCKwVcmhPu83ShFDkpxqWStdxoqNzpVUpPEq3U8EkEx66XkNkpBzVYvlR0uXvr7/cLvV/cuP/71LvZ845gwscdcqdB4Y4ieXw8xsltss65YoPHGWk6+OML4fvHBUIrcW9Mt1UwPzkpJH667v46ZwaSUhN/GDzeCpoyXP7lfuE/rvWF0Ri2vSkp7yKL5jhCOGgvb/2G/FHHPGbOQmkhJVWF6W1Bw1SXIH0r3eZugWKDp3XUc+I+TwpX2mm8L4Qhb2PP1Y8I65c13hMjM5P641dJOsT7+NvcjkiSIRCIcOrSy5U9X8acFo9FIMpnEhpONZVtX9FkNV/lBU8YhwZsApci8mfwKtRdWsvfJnneubFsJsmV6E6TT8v1WGia/gt6gY1LQ54FKulr/YITh3RMc/qEc+VYWbQ/WMTeelqrw0/lYI9m5rBTxqu5yPwanXqoqZ+BsN0anwuGnxW1Qitybs9FCZbtTKqnmabUR2ORh75MnhIkjrmYrseuqOf6rQXp/J3ZwqrfradsW5sTvhhl4eYWkIPLY/HiMxOgcu/6vePUd9OBpsjGyS+7w6+2A3q6XIvXAO1+KzrfeiT1k5OD3xeP9TR+LkZpOC0vF6e161txazcEfnCTRv3JBaHo+za/5D/R6Pf/tv/03Pv7xj6/Ys1bxp4Wnn36aq666CoBzuYpyzZuSh3/EtJvBoydyRRX7nzxBJim252y5u5Zyh5zMW/gyH1M9s4zufef5ygJKkYPSWXRSZKi3C86ohfHuuJQMW/NtIcw+A698So7ALwtPi43qc73s/vIxYdv51jsIX+xn31M9wlWBdBYd0WsC9L88yvgh8fxV5OoqhnZNSFWDKUXurWarl+R4isFXJ4T7NFxbRXI8IyXh13pvGJ1BKxWzRq6uwuDQs+fL4jm8UlDIf772ucOkJsQHqyVgIDOXlavC9HZABzpdCbJypUgmvl3QQcNVAU78ZkjY3jUXeqnc4GLvN48LE/7CF/uYz81z7I9ZLe0UOa+dud8zTC91dXUcOSIuIbyKP380Nzezb98+fARpKdu8os+q7HChNWmECZdGj0Lzu2sYeHVMfA9t0RI4q4ITvxp450oulSJbVjgfX9niPtJQLFq0Ji2zEio8WkVD23vrGXh1XFrCVBaRq6tIz2SkKvysvbOGXHZeKn/lbXdgqjBw7BnxqpzOBgsmT7lUhbBS5N6MXoWKNQ56fzckPCfMfgP+Thc9vxgUJo4YKxTW3FbL8V8MipOitLD29lr6Xh5lbL/8ZTsZrLu/jtmROQ5KxKxowRYwMdXzzksUaY1a6apA73QpOmvIiK3GLEXKb703TDqeYd+3xHK6WgXq3xXg+K+G1UpeK4TsfJZf8x9odBo+85nPFC/AryRWnKQUj8exWlWWW5R2QppT3Eaen39LINr23jrivbNnPuT4I726pboce9hC7/OCjlWBrg83kRiZY+fnu8W6WDR0PNLI6L5pqUPrlrtrOfpcv5RclbvZKl2pqRRykqW6nPjgnBQZwRmzENzs4cBTPcIkDsUCGz7YTLx/ll3/JnEAgVp1R5RUANBwXYCpkzMrTj5TXAoVa63iY65EWGuNtNweZuD1calqPaWQlLo+3sTseIrX/2VlN42eFhvZdE6KdFUKFJdC/UVeTrwwLDz/FJeCRoeUzGRhfE/3Jtj9pWPC/Wov9mF06tn3pBwJxh4xS1e8KoXwaK5UyObkbNF4fZDJkzPCB5qKBdY/3MRUz4xwAG6tNbL29jDDeyY4LEioUCwQPM9Pt4QkVamwBBSabqll/3dPvFVC8jQk3uP1r3P48GG6urr43e9+t+LvuIp3Pi666CKee+45NGi4sOx6oT72sIn6K6p445vHmRtd+eRxzUVejv96SJicE7nKj6fZwa4vHCYhmGxturUaa8DEy/94QPg5lRucGNwKx34mfgPV5NGTnUfOboWCCZKmttaYmD4ut8mMXh8g3p+UqoKw9s4arEETL/zvfVLvaPLoSSeywtJLlqCRynYHx5/rX3GShSOi3g6ekFwDZbHu/jrK7Xpe/t8HhPuUQlKqu9yPr83B9n8+LE1qkYIeKtc5Gd07WZKklgy86x2YPOVSEm6WoJH4SbnqCaWMb71dT8O7/PQ8Pyz3PD2YXHoSg5LEoxLISo6IWWp8W4JGqs/ySJH9Gq7y42qy89Kn9gvbrmVbLUZXudScqOpyM9E9JW23UlB/hR9jhcKefxfb96TqRnm59wV0Oh1jY2Po9RLagav4s0Qmk0FRFObn51nDRvyaU9xGPkXuqvGmILPDKXp+tfLV9wxuHbZqC0OvTwj36fhAAzPDSfaLkmF1sOHhKCO7J6QOrSNX+ul7ZZzEoDhLwBoySlfOKYWcZHDrSE5mpMgIJp+BQJeLo88OiT9PB5s+FGPiaJwD35Hb35t8BinbBc7xMDs2x5hkzlAWOoMGR8TCyP6pFSVz6Cw6Ot4Xoe/lMSkiUCkkpY4PNDA7lmLv11aWCFS4Lb/S1aF0Bgic7WV4z5TwGNIZNOgMGpISBCV0sOnRGOPdcQ5KjG9vmwNzZTlHfypXGchcZWCmT5a9mP//Ej9LcejQgJQtAud6mBtPFasXibxXx3sbmDwWF74AYXDoaNlWz9DOcfHDbZ1aSV2mklupUBw6YjdU0/3T/rdWJjtNzqs3uod9+/dx1VVX8YMf/GDF33EV73x84hOf4K/+6q9QKOe8squE+pQ7Feou8XHkp32kJleeMVPRYmfswKTwwbq33UGwq4I3vnFc+AA6cLYbd8zGG185KvwcW8iE2Wugf7t4tRC9RUsZSFULgdKIBUaPwuyIXKeqTS6SU2nGJCop1VzgxbPWzuv/ekjqHfUWLbkswiQLxa7DE7MxuGtyxWXYjF4FjVbDTL8s81YOdVf4sQaN7Pyc2Lk4lEZSqmi1E9riZc9XxedEqXBEzEz3Jlf8G1lDRkwVBgZ3iF/mM7gUkpLn9jVbvXia5ca3VtEQPNvD0BsTUuQ9tGrFntSkXMBfClnJ5CsnMSjOk1DsOirXu+j5pfgeobLDReUGJ7u/eFRYCrL2kkrsNSZ2/lu3MCHTETGTGJ6Ttlsp8LY7sFQZhfkBKXec7Ynn0Wg0jI6Ooijy8qgyWHG5t4oKtQysEfOpCUrw1iBUAcWko9y+TMJvUT97xMzmv4hR0SpXKgwF4ifm5MgiKXjhb/ax89/FHTGKjtnxlJR8lDNqwRow4W0VL3VsCSg0XldN821yZX473lvPuvvl9LGbb65l04diUn18ax1YAiZARusVjv5igO6fi9++LUCGoATqrWp/h1uqj4ysVQGpsZQ0QclcqUjLnE0fm+X3/2OvtJxYKXjhb/ZJE5RK+U0ju6dKIigpFqTkxBQjuBrtVLaLj4fUWEqKlAPq+D7x+2EOSFSTArW8vaykY+SaKta+u1aqFKW11kjHB5uJXC0hY6dA670RGq+VK2vuarRS2S7u71JxmB2dY/K4+IHc9LFZdvzDXmGCUuE5BYKSjPQdwPoPRFj3wCLfuky1wPmsGhS66sVLWLpPRJifn+f3v/89L7zwgtT7reLPDy+++CLPPfccoN7kPyVOMQ5t1SZ0Ri255WLjRX1b7wtL66oXJKOOPytOUAI4/MN+dnx6nzBBCWDyeIL4wKzUc7xtDrwtDvEOQOTaIO33yUmCRS7zs/kjTZS7xQ+3XTELLXfUUn2eR+pZjjoL7pi4TwE48IM+jv1yUJpElRhJSxFZKtsdVLQ4QOaQX88CyUsCE4dnpAlKrphF6hsB7Px8txQZo1R0/6SfF/5mnzSRRfo3pVVZxlIISvrl9nJvgr/DJS11JktQAlU+49CPeqXHt73GjEeyLPXGDzYSu1GufHrLPbWsf0BOQrPp1mqabgpJ2dzX6sBeb5GSaBw9EicxlJSasru/ckx6TvS9MEpiMC0nTYhaLWzjRxqX/qZlYq9yh57y00ltnaKv0u1GSRmJx+NUVlbKveAq/izR1NTE/Pw8NlynJiidBga7nvLl5IIWjUGDR0/HBxpwRuX2gDoDJEczUgQlgB2fPsT+p8RJjDodxPtmGT8mvtYaPHpcMbuUDIjOoqP5lhq5/SnQdm8dsVvkpFqi11bT8b4GqT7OBguuiGReMgMHf3CSEyXcypchKIG61vol9tyg2lwWmWROJWJIkj5kZc4y8QwvfXK/FEGpVOz49CFpglIpv2m6Z7Y0gpIOKXk9dDoqO1xUrBEfr5lkTo6gBJCB7mf66f6ZeJUGUPNDrga5uVS12UXLnWFsteI2Vxw6Nn4oRs15crI667bVE75czg9VtjvxtjrEO2Rgui/BlES8m5zI8No/H5CqvkGGIkFJRpIOoOndoaVSg8vEXbmMKnNqrRKXh/HtV88efvjDH/LKK69Ivd8q/vwwMDDA//f//X8AbObSUzc6xTg0+8rRm3VSFX3qLvfTcK2czLxWUefQ8G5xghLA0GsT7Py/h6TIGDMDSaZPzEo9x7PGjldS+jZ4TgVr76pbqIokAG+7g3X3N0hJoxk9Cmtur8XbLvd+7pgNV4Nczuvki6Mc/Zl81ap0PCtFrHDUWaja7EErc3yoRa59HrNDKWmCktlvkJNGQz0jkSEolYrhXZPs+LTcnIDSftPE4ZmSCEoyEnEAFS0O/Bvk4nBZghKospGHnu6VHN853M12HJLnjWtvryVyhVw8VHtJJS131Ur1CZzjoenmEIpdQr6sxkzFGjvGCvEJNXkiztRJOU7BsecG1GI2EkNo4vCMSlCSG0JYqgy0bgtj9EjkvKx6DHb9qZ91qpzXqAV3sop4PM769evlXrAErGglpdtvv52vf/3rAFykuWllHpJ/fU+LjbpL/Lz+xaPCFYFa7qrFEjSy4x/3CVcJccYsZOdy0uSXUlFKhaO6K/z0bR+VIkvEbgoycVy8ggmAr8OBwaHIbXzgbZGCilxdhStq4+V/FJdgK0CxaKSkurqeaCI5keK1fxYn6DTfWs38PMLl3EC99W2rMfP7T+wV7lMqSqmkVArWPxyh3ConyedpsVF9npc3vtEjPDdsYRNrb69l4DW5ilKlzL+3q+R6KfNIcSnUbKlQD+Yk+rbcXUvPb4elKjDVXeFn8NVRKQm7t1tusvqCCk78Ulyzu/W+MOYKAy/8n33C9mu9L0w2meONr+bnUmHhl116lwk2duVeYIiTBINBTpyQ09NexZ8XtFotuVyOEA1Ey9a9tcHisVTqOMz3a75VPejZK3jDXm+Cjg/EmDw6I1W5o6rLLVUF6A+FbAUTk1/B3WDjxPPiB0v2OhP+Dhf7vy1+m1hvgtD5fnp+VULVoRKk6GTR8XCEyeMz0lJvsvauv8KPt83B9s+IVxAyefRErg1y/LlBKQm7zY83MTM0y+4vHhPuUwpKqaRUEvRw1seaGd4zISzPCBC9IUAulZP6tuseqKPcJldRqjSpMw3rHogw+OqY1BwsCSXMo+C5HhLDScYkCPaVG5yYvQZhOUxQ/ZArYuOkRHlpKM3mpcIeNpHLIVwNTm/X0/HeCGMHJoWl4kwePc3vruXQj3qZ7M4/548Re52i77PzT6HRaLj77rv5whe+IPe3V/Fng09/+tM88sgjlFHGVs2NZ278B8ZdlqCByOVV7P92jzBJIHyZD0+zg9c+d0S4qo8loErVvaXCxQqhlApH/k4n40fjUtJRofO9JEaS4hVMUP2WwaUwuGNC6v3eDikof6cTX4eLPV86Kiz7V4CszTseaSA5nuINifxQzVYvGkXD0Z+IE1PCF/vwrXfx4v/Zt+L2K6WSUimI3aJWdn3l78TjIUvAQPUWL0d/3Cc81xWHjvYHIvS/PCZVna2U+Vez1YsjbGanjNRuKShhHukMULXZS9+LQ1ISbpEr/Qy8Pk78pHinUvzQ2y036W1zSBFUI1dX4ay38MqnDwrbviFPGD1UuHi5QjmvntxBDpXtwu/309u7svN2Fe9sVFZWMjg4SJR1hMpOQST+Q3Jeb0LwXA86g5ZjPxes6KaFdffWMdE9w/FnxavAuaJWxg6ubIXDxZCtYKJYtNjDFnEpLFTCUUWLQ6qCCVrwtTkZ2TslTxgpRYpOErGbg0z3zgpL+BUga++KdfkKQl8RryCkNWoJX+Sjf/uYFFFp3QP1zPTPcviH8sUhZFBKJaVS0fFIA0OvT3DiefEzn0CXWqRARsKu/io/Fr+JnZ8TPxPWKhrh6jwLnaD51hqG90wwvFN8DpaEEuaRK2YlPZNh+oQ4odoWMmH2G+h/Sa6im0PSD0FpFZtKhcGlUKZDuBKVVtHQck+Ysf1T9PxabLxqjVoarw1w/FdDC3N9hXJev57/IZmyFE888QSf+MQn5P62BFasktLY2FiRoLSe84X7tdxVQ81WidsLeUOO7J7i5f9zQOqAe+D1MeInZ6VkjCJXVLHmVrnbsE03B1l7p1wfg1cBhZIO7Lt/3C9dzWX/t09KEZQABndMyBGUCuQ+yZ+0/gMR6q7wS/XJZeaZz+ZKIkPJEJQAhvdMMvCanO1MPgMmn0Gqz7FfDXDid+KLK6hEsk0fi+GMyTFgS0H7QxHaHpS79X302QGOPid3m6rcpjI/zV5xBuzU0QQT3XFG9sotYqXMv1w6RzYjN4YUl0LHIw0Ezpao4lV4NQlmfWospSbhJH/W7i8dk5aI6/5xvxRBCRbsba0Vv1EF6jjveETuhmvz7SGqz66QetbQrgkme2ak7Lfr/x59K0Gp8J/PkIRRXArtD0WEK7W1arpobm7m5MmTrFmzRvwFV/FnhY6ODnK5HDr0byUonWbMmTx6Wu8Ln7n6xpv75v/z3m+eECYoAaQTMNEdZ3CX+JrpiJipucBL5EqJOEAP7e+rxyW59pnzh3KyB/aJ/pQ0OWKyOyFFUALVfkd+LElQKkFWLnC2m7YH66SrFeWy82Qz8klAWXuP7JtUpcdkiGSVRkzu/M1JCRz9+YC0DE/rvWFa7qmV6lMKXM1WOh9rLMrYCSENx381SK9kPGmpNGKulFubB18dl46PSyHLpBM55jM56b147SU+Wu+TqwRXnEcSc+Pkb0akCEqgVq6SISiB6odkCUqg2lxvQrpiWPNtIeoul9ufNd0cIiKxp0tPppk6McPQHvH4PTGSZvunD72VoFT4z2eIvUIXVBC94TQ3pU/R92zv5ZhMJp588kkSibfnAtMq3lnIZDJ88IMfBKCDC4T7ha+opGrzGW7Qnibuip9M8vrnu6WqmIzsnWLi8LTUoXj44kqabparzF29xUvDtXI3aBWHDp2Bkg7s+18ZlyIGAPT8akiKoAQweTQhR1AqQTIKoPn2GgLnyFXKnJ+H+UxOmqAE8jbvf2WMQck13VJllKqUoj5nlKM/75eynzVkZP1DEez1EvFQiYjdUr20YowATv52mO6fShL4TTosPgPl7nLhPqmJDEOvjzN2SG6MlzL/spl5crIxvw7W3lWDT6Z6R+HVJML3TFKd6zIEJYDDT/dLEZSgND9UsLfRK/5tQSVMttxdK2WLmgu9hC+pxBIUzz0P755QiRISw+LQD/reSlAq/OczxF06i46m20IYlqsomEdIE6VlTSt9fX2ce+654i+4ij8rPPbYYwwODmLC+laC0mnGnNaoJXJVlXTFE1D3csIEJYCsGnuNHRT3xeVOhfBllXJnAkD0+iDWarl1tlDVSPbAPhXPShMDZkdScgQlgCwM7hiXe7/CZ5Xo4qg3E70+KD0msqkS1j/k7T19YpaBHWNSFYQUqxZLlRG9Se43Hf1pP70vyeUR6i73E7lKLu4vBUavQst7aqXH+dGfDjC4Uz5utUjGrcN7Jul/RY6wJk1QAsiq540SwkSAKjkpWwmuOI8khtHY/mkpghLAVE9CiqAEahUzWT8E+fmnVUlOMqg+r4KqTXJVrxqvD1J7gU/83VI5xvZPMXZInKSanc2y9xs9byUoFf7zGWIvV5OV6vMqTv2Pp+h7jukirFYrf//3f088Lq9sJIoVIykFAuoEsOLEpTnNDz8FTD4Dznq5Q6UNH2zA1+GQ6gMwvGuK3V8+JtVn55eO0f2s3AbTUFGO0SO3AVlza4iuDzdJ9al7l5/Ox6KqrJUoFLWajWzJ8LYH64lcI7cYNd8YouuJJilSBYDeqEORXGC7f9wvXcmm+fYQnY9FpfoAHP5BH/0vyDnV7f9wiB3/KMccjp+Yk6r6AuoClsvkyCRXni2ancuSnZN7zvj+uDQ5rvd3o7zw1/ukJd/2fr1HugJa9LogGz8qJ2m4/9snefXTh6X6pMZS6I1aDBIlUAHW3V/H5sfk/IS11siGDzZglznUBNbcIV9Sv+nmIJ2Pys2p5ttDtNwelpJR1Jm1KGad1G/a++0ejj03yPQx8SBq4OVx9n6tR7h9EQq0vbf+1ATc0wQORpceg13BL5HE8+xVN+h79+5l165d8u+5ij9pvP7667z66qsAnM0VS//xDAGqp9WJyW1AbzpNm1P0DW31SpOvC9j/7ZNSB/YTh2c4+swAh58Wj72cdRYUqx6NTjzMNfkVWu8Ky5GhUKsHyR7U11/hJ3q93EbR2Wih7cE6TB45IsGmR2PSEsDlNgW9WS9dMea1zx6Rui0P0PlolJqL5KQVJo8mhKuqFDCyZ4oX/3a/9OHk4KvjUpWXADLJLNm5EhIPksgms+RSWeazckmy3t+NSskmArz6mcNq6WIJDGwfp0e22iqw4ZEGIlfJzakd/3RYmqCjWHQoFrn5pLfr2fx4E/UXy71f5Eo/a+6Qm4fORou0FLfermfDIw0EzpFLcHd8IEbjdXISvSZ3OWaf3P72yE/72fPvclUX9n69R1qmEcC73qGSLU+F06yJjnoLtuplYslFfY3DZgwZC/F4nFBI7vuu4s8Dzc3NzM/P46ISh0Z83jlCZux1p8m/nGZ8rr2rBleznIwFqLJRhyRlxfd9s0eaKGn2lWOSzHlFrqii/X1ye0Vfh4O2B+rk5Md0KglIRv4JIHpDkJoL5WKU0DleOh9rlJZHU6w6aVmKge3j0pVsard6aXtAbm0BVYJTNoZ64yvH2fUFufdLTmQYfHVCqs98dr6kXFQpyM5lpXNr8d4ko3vlbDd+KM4rnzrI5BG59e/oM4PSFdCqznLT/n452eqTvx5m95eOSfUhA4pVj2KVy3k1XFvFhofl/ITBoWPtXfJzPnyZj9D5cnO+eouXdZKk95oLvbS+J4xBYl+n0WsodyjYguK/6fgvhjjy4z4p8tXk0QRHJKrPL0bjDUGquk6xFp5mXdMZyrBUGnHF7MLPcO2pQ6PR8Nvf/pY33nijpPdcxZ8uxsbG+NSnPoVGo2ETFy39xzPkvOy1JqxBE4pZfJ11N9vUC/PyvCZ6fzsiJdk5N57i8A/76H1RnOxg9CgYPUpRWk4EeouWtSWQomM3BaUP6r3tDoLnyj3H6FFovCEoJQ8H0Hp3mPAlchLceosOg10vTR469P1eaWLFmjtqqOyQl/eSrdY0O5Ti9X89woRk7DDVkxCu+lJAJikfD5WCXFp9lmzOa+zgtCqjJYED3znJge/IXSSdOppg6LUJqT4ATbdWS8/D/U+ekCbo6Eza08vanw5aaH9vhMBGuZySt90hnRs3Vig0XB2Q8rNaRbVfRat47ACwblsd4Yvl/IS5slyaVN79TD8HJffePb8eJt4nX8HYWm2k8YbT5PFOl/OqteAIi+e8tLNGfHPVzMzM0NXVJf2OopAXFhfAf/2v/5VkUjXsJs1Fy7Reipc+eUCKxGKvN6M36dAZxEezJaCw5vY6un/ax/Auic1ivrLRoGR1ldc+I17yrYDjvxxaPkn6Jmh06gCSqQzlW+eg3KZIa04rVj1GySTA2OFp9TtJVnF56X/tl+uAKgk2slsuEZCby0mzWSva7HgabVKybaWi8fogZVqkKi8M75qSG+N/AHaVUOrZ3Wyl+lwve792VLqClSwCZ7ux+Iwc+K64/TLJDLm0fNCluBTKbVopAsyLfys/zie646QTckHX3FQWvUmHo9YsVR3J7Deit8otGbkMzOfkAsme5wdJJ7JSVax6nx+l93lJKagUC/JRktJ57Q/Vk5nJiifmUmoFMGvVaW6wnaIk4+ThGV7433ul3kvRKFTkggxzkiuvvJKenhIIVav4k8XGjRsBCBJBX7ZoE7Jc2fRfDNHzm6G3ElLO0M/iK8cgcbMXYM2dNWi0ZXIJ7by00sB2OTLr+IG4dOyQGEkxvHuCEy9IEB306rTNZeXWL0vAiK5cLu6yBkyU2xQSkpVmJrrjagU4CXT/pJ/un8glpy1BI3PTGalKOHqTemskI5kYarjKz2TvLEOSh1iyKHfriV4VoOfXQ1JEpZLIrCVgsjvBjn+SI0UDRK+tIj2XkyaUSUMP0XdVMbRnUopkkknlyJRwu8wVs0gRIA9+V14mIj2ZZurkjPScKnfoMTjkkq2KWY/RVY6z0cL4AbHfVZh/WkUum96/Y4yJbjny//YSyrQXS5NLyuZ5Wm2Et1by+r8dFfYxilmHYtVjqlRInKqy5ylir13/flTsvcrKiv3a5s7hWZ5ifHyc//7f/zt/9Vd/JfR+q/jTx9NPP82hQ4eAMtZr5Co6vPYvR96aiTtD3GXw6DE4y9FL3PbWWXS03FXLsWcHGD8oMb91kEnmGDsgJzmyX0LGt4Ce54ewheRyXlq9agOZ6i+2oAmzz4BO8uKb0amXLpk/3Zug3KmXrk7z+r/I5wztYZM0kTqdkr/AZg0Z8cRsHP3F4IpLsAW3VKBXNByVqFoR702uvOxYHockSfKgSrcFz66g+5l+UhJV0EqBq9mK1W+UqnifTWbJJrNqVTOJ8xGdRYdi1pEYFO/06mfk49bxI3HpPG0ynsHgLMdSaWTqmPgcsQVNZGblnpXL5qt5SkjT9b+qHnAnJ8SDofGDcbYflLuICyyQCyWl82I3V5PLznNQ4sDWVFFO7nQHyaeIu5IjaV75xwNS76XT6KjPreUQu7jssss4cWLlc/GreOegs7MTgPrcWrRli9b0ZXJeY/um1QphEsufyZMnX0v0qdnqRWfSckRCIr0grTR5VG5/OTuSYufn5C4RpeNZTr4wwvhhuRhvPgfzkkcjlipjfv8rnl8zVpRjcCnSccrogWlmR+ak+gzvnJSWzSp3qu8mS2zKJLNkU3J9/BtczI7PSROOZKFVNNRs9THw6hiJQXEbSlfIKhFz46mSzlz9m1yQhf7tcoQyaWghsNHNZE+CeK/4GWAmkSNXQs7L7DdISfn1vzQmTaojC2OHppiW+D0ABoeCQaLgAIBWr8ESUCuvilZiyuZTO2XaM/v9N6PvxVESkn5i/5NypDVggaAqKZtnqTJQe1ElB//jBKlJsY7acg0Gl4LRrTA7Kpbz6n6mX+y9FuW8alJNHOMQb7zxBp/97Gd53/veJ/R+Miibn/8DxVlP9UfzBljLJio1YrcKg1vcpGeyDG6fkH+g5E+oaLNTd4mfPV/uFpYj8nU4qLusiu5n+hh8Rfwday7ycvzZt8dx/znC4FWkpet8nQ4ilwU4+cLwitu+5a5arNUmfv8/9gr3MVcqtG6L0PfyiNT7bfhQA2VlZXIVohRQLIq0bNlZf9nMVM8Me75yXPxRFkCRe1bNRV6qNnp44xvHpKocbfpYjOR4SupWf9v76jE6FF74m33CfUrF5r9oIjObYfs/yB3gKC75b7WKBdgjZnSKhtG94huujR9uJJvOSVU2a39/PZmEBEmpgGU2zkUsWtMUC9S/q5p9EoFRT/1ODh85zI033si3vvUtuXdcxZ8ktm3bxhe/+EU0aLiw7Hr1fxQYb9Fr/Bz8Ud/SQ9kSxqkI1txZQ5kG9vy7+Lqy/iH1Vq9MQtsVs5CKZ4mflNtQrSIPPehNemnZrY6HI2jKtbzyfw6s0IstYPPjTUz3JXhDIkZpuaeWcrvC9r8Xj6FcMQvRa6o5+vMBBl8VJ8rp7XrSibQUCaP59hC2kJkXJWOUUp614ZEG0smsVFIztNVL1QY3Oz69T1xuUA9dH21idO+kdOUrWYS2egluVuPJosyXIMrdeuZG5WXmVqEicI6b3t+KE8UrNzqpvbCSfU8eF/5W5oCB5ptDHPphr3xVpRLWNO96B2WUMShyK3J+nqR/lFdGf4/VamV4WK7q7Sr+dKHX68lkMrRyNl6NWLVZzxorudw8Y4v3KisUd1lDRiLvCrD/OyeYHRJLyFpDRppuqqH7Z31SVXN86x3S1W9WsQDFoZMmr1iCBtbeHqbn+aGFizcrhPAlPrzrnLz0qf3CZAKdAdrf30jvCyNS77fmzhr0Ri2vyxy86kBn0EkTwzZ+JMb4kWkOfU+CtFzCs9zNNuou83PguyekCDNt760nOZ5iv8ThXOMNQWw1Zl75u5WPx9c/3EA2mZEmiOksOjLJzIoT3v5cYfIZ0Js0UgTF1m1hKEOqslns5mpymZw8qb+UNU0H4Qt9HP25eH78ZHQ3Bw4c4L777uNzn/uc3Duu4k8SX/rSl7jnnntQMHBe2ZXq/ygw3gKbXQzsGC0ebK8kai7wojNrOSJRBbzxhiAafRn7vinu602+cuaz88yOrJ4flAqtUStNNmq8IUi5Qy9dJbIUrHugnuneBN0Sle1qL6nEUmlgj4RqkNGjELspxPFfDjK2X/wsRWvUQjYrNa+qz6vAu87BDsnLTlqjViV5SXyupluqyWXmpSojuZqs1Gzx8cZXj5KKiz+s4+EGhndP0PPrlc0DuJqs1F2ixpOy0mp6i5a0xG9axVK4mqyM7ROfH7aQiciVVRz6Ya/wt1IsWqLXV3PsuUEpwhtQUuxlDRnRlWsZF8mvzc+TMs7yyvwvMJlMjIzIVbEXwR9d7i0WU6WRdOiFCUoAVZ0eKb0+gLrLfKpMmeiHyGP49Ule+l/7hQlKALNjKZLjcwzunBDu4+9yEeyqoO5yuVJinY9Fqb1YzhaVG53YwnKlbFGQklQqwFItVz0BwBmzELspKC311ratjg0fbFi+4SKM75uif/so/S/KTRh3CeXTd3/5GL//pDhBCSCbg9mxOeJ9cg5n+98fkpawa7o2SOdDDdJ2LwWt9zawXrJ0+PFnh3jhr/dKy7DNjsxJM3pf/8KRkghKBq8iPeZPvjjM0Z/LVSjwdTrY8P4IgfPkyin6u1zS0oug/q5SxoW5UrKTgrQPVCwqKU9WAqj5phB1l8qVlpw+MSNdPeC1fz5SGkFJUSXwZOxefb4fZ8RKRatNuE/leB25XI4nn3xS7h1X8SeJdDrNF7/4RQA2F0peC8RF3vV23M12ApskfI6eBRkmydjrja8clyIoAUx0z0jfKKu72E/zrXKyO6GtXtrfV69W95Dpd6FXuo+sXBuoFYf0dvl+dZf78Uj4DoDqLg8bHopgr5OLKbt/PsCJX8sRw01+paTf9eLf7uONb8qNpeneWWYk466x/XFe/Nt9UgQlgPUP1rPubnkpFVmYPHo6H26g9kK5PcP2fzwkfesy3j/LzNAsUlvHNLzwyX0lEZQckpK0/dvHOfGbIRIDcvHk+ocitN4lJ9GhN0HDNVVYgkapfqCOeVno7XppP2MPm6TnfuhCb5EYKorw5ZXUbPHhbBSXDR/dM05iOEl6Vvx0cqY3ySufOlgSQcnZaCZ4rlxsXXOBj+BZguXXy8ow9LsxKWZGRkbYsmWL3Duu4k8Sd9xxB5lMBgMmYYISQGCzh9oL5fZFlRscWENG6bhrumeW1z57WJigBJBOZJjuSzBxWJygZA+bCF/sJyAp6dG6LUzVZrm56YxasAROU5n2dNAhLb0GSMkwFWDyGQhf7EMn+Yprb6+l9V65tSg5kuT4LwYYkpR9sIbk166jzwxKEZRUaJjuTTAzJCdd8MZXjssRlIDg2RVseKgBg2NFhAKWoPmWGtruk4vxRvdO8crfHZAiKAHETyakc14H/uNkSQQlnUUnPeZ7fjXI0WfFK16BOv463h/B3+6U6ueMWqjeIpcbAvV3yc5HQH4s6ZD2Z+ig5e7aU8ujnQFNN1cTvkhuHZnonhE7hFqE/U+eKJmgVLvVK6Xb4VvnwNvmlJI09XWr5wSf//znyWRWGW//GfDggw8C0MkF6v8gEBdZqgxUbnDhapKQBdJCoMtdkszb8V8OSRGUQFUdkc15hc6rIHq9nFS3q8lK441BtJLb0YoWu7QtZOVrAdCqRApZeNsd0uehzgYLbffXScdEJ347zInn5Ygoil1X0u/a+bkjdP9UbizN9M8y3St7vpbitc8eliIoAax5d4jIVXJjsBRoFWh/oJ6qDXJyefu+dUJaui05lmKyZwbZai47PnuoJIKSySd31jh5ZIbjvxiUqngFKrmu6WZJaXqtWo3KWCGfv1Ls8vG41qiV9jNGj4ItJDf33c02mm6plupT0aIWu5HxM1O9CSZ7ZkjPiBPDUvEse758rCSCkrFCoWKtXP6v5nwfVaLnQWVlKLNG3Dovo6OjvOc975F7RwH8UUlKY2NjHDhwAIvFwkPbPgCAp8VK18dj+LvUTUjLXTVsfryx2Gfjhxtpe7COl//xAMd/PUDXx2NUX6AmOJrfXU3XX8SKbTsfjdL+/npAPSiv3OAiem0AUPVRu55oWtJ2/QfURKtiga4nmohcXUX0uiBr76lV2+bnWccjDWz40AIRpuuJJmI3qo627vJKup5oIjmZ4bV/PsL6ByJ0Pragh9318Saab1UHd81WL11PNGGtVRc5X5uTbCpLd15OYfNfxFh7Zw0AVV1uup5owhlTk7rr7q9j08diKC6FMq2Gyk6XetsBtYpT1xNN+DocgJrQ2fSxBbts/GiMukv8xG4M4YxZ6HqiicDZ6iBbe2cNmxfZcOOHG2l7n2rD5pur2fBQhMg16oFj863VdH18kQ0fi7L+4bwNXQpdTzRRd4WfljvVd11s7w0faqDjkbwNFdWGDdep3yZydRVNN4ZwRdXJsv4DETofXWrD2E2qvcOX+Oh6oqlIhMhlc2gXSaJ0fbyJ5ttVxxo830PXE01FJ9H23no2fjRGKp6j+ycDrH8oSstdtYBK5Oh6oglPi/oOrfctteHmv4gRuzFE3eWVVLTa6HqiicqN+TF7dy2bHl9q77YHVRs6oxa6PtJUJJY03xFi818s2GXjhxuLY9YSUG1Yuc7J6/9yBO9a+1J7Lx6zeXvXX6l+m+h1S8f3hg82LCFvdT3RRPS6/Jh9l5+uJ5pQXAp9r46TSWfpfGipvQsOueYidcxaAqq9299fz8YPL8zPzX/RRPMdqr0D5+XHbDQ/Zh+oY+NHF+yiM2mLJTl9neqYrWhTNwKt9y6196aPxWjN67Z7WlR7+7vUgKPlrlo2L7b3R2K0vVe1oS1souuJJsaPxun+cT/Nt4XeMmbb8wcs5sr8mM0TZGLXiPkIgMg1VUUf0X5vPS131S3rIwqEv/UPR/CvdxWr+ZzJR7S9b8HegzsnmJ+fxxlVN+an8xFLbLgtjL/DRcWa5X3EuvvVZJozZqHrL5tZ/0CEyGVVZ/QR1lojXU80UbNVTQht/ngT6+5fOMA6nY8AVZ6w64km6i7y49/gZuNHGs/oI7qeaFKrcQFr74mgWPUoed3cM/mI9ocWfHL3s/3oDNplfUQBmx+PoTPoOPJ0/7I+YtPHYsXkccFHrH8ogmIR8BFPNBE4142vxY4zaqXrw4t8xGNR2t+nfhtLQKHr4zFqL/FBWRlNNwfxtjh441s9DO+aovNDDax/uH7B3h+PLfIRAbo+rr6DMmalvb1d/R2trazizxuFb7xlyxbsTg+UlbHuvjAdD9UX22z6aCPRPJkxcLabzR9rJN43y56v9eCKWtnwSIOa5CkrY+OHozTeqM7Nyg4nmz/WWCSsbHhfA951jiKBoPOxRppvU+ebp9XG5sdjePKBcfNtITofa0Rv1xO7KUjno1HW5GMgR8TM5sdj+Nar62zspiAbP7Kw9mz4YJSWe2rp/kk/AzvH2fx4rBjXRK+tYtOiedzxcKS4npS79ehMWiaOqcTDyJX+JetJ+/vraXswf7CgV31A7aU+FJMWxaZn82OxIhmg7cG6JQf2mx+PFQlaoQsq2PzxJoJdHgIb3bTeF6bj4YW2mz4aI3q9asOqLjebH48VCQ1tDzbQ9URzse3GjzTSdLO6RvjWO9n8eKxo3zV31tD5aJSarX42vD9C54cX7O1qtqr2zhMRmm+tpvOxRTb8UJTKDif+Dhf2sInNj8eKcU3jjW+y9yMNtGyrBSAxPgtlZViq1PdtuKZqiS/seDhSXE/0dj2bH48R2upl/EAcU4Vhqb3fV6+SvxbZu6BRXnORl7Z7I7Tn/9a6B5bae9PHYjTk7R0818Pmx2OYfOrHab0vzIb3LqzJGz/SSDQ/Zv2bXWx+PIa1Rh2zLXfXsuFDUY49M8i+J0/Q+eFGmvJrcsU6O5sfj+HKr7PNt4eWxKedj0ZZk4+BnI0WNj8ew7veAaga6IvjpQ0fitJyt2rDkYOTGN3l+DercU30hsCSMbvhAw3FMWvyqDY0ONU1LXKVf4m91z8UYV2eAK43adj8eKxI4PVtdDM/P8/IQfUwue29i+yNau/6/JocutDL5sdjRVLYuvvrlo7Zj8WIXpv3EeeoY7ZAqGnZVkvdRZXs/uIx0okcGz/SSGM+BqrcoI7Zgo9Ye2cNGz60yIYfWN5HLLH3nTWEL6+k+ZYaNj/etKyPALXKTsd768ll50knlvcRmx+PEbqgAoBUIrNEMvx0PgKg9hKfOr5NejzNdppvDZ3ZRzweo9y9MGa7nmii5Q71b5/JR7TcU8uGD6o2tNeZ6Hykgfb71e96Oh9RtGHeJ0evqyZ8ceWyPmLte1SfbA+bCGx2ozNqQX9mH2HyK6pPPsfN0WcHmOpLEL1mIUF5Oh8BKnGy4wMxdn3hKIn+1LI+YvPjMfQmdR+47oE6Oh9rKH6PZX3EB1QfUXdRJaEtXqI3qOPbv0ld16z5hFbLe2rUPVV+Dez8cCOJkSQ7PnNY9REfa1zkI6rpXLQf6PxQA2tuD0FZGef7rsBisfDyyy+vyM2yVbxzkEwm+drXvobRaOQ9N20DVHJK54ca8Ob3vuFLfWpslce6e8M031bNzi8c5chPeul8NErVZheUlVGz1btkXLXeU8uaO1W/qTNA3aX+4j4/cK5HnfP53O/au2qKvhBUP1pzoZfAuR4iV/npfDSKkj9sb769hnX3LRBhNnwwSvgSdT751jvofDRKmUbDvm/0ELmmmrZFl486PtBA/bvU+eZuttH5aLR4sONb7yKdzNCbl8td/1CEhvx64myw0PlotJg/aLi2SvWbOtDoNQTOctN4g/rbLEEDnY9Gi2tE3RWVdHxgwS5tD9TReF2Q6LVBjN5yOh+NFve+4Ut8S9aedfeFab5d9W/VZ3vY+GiUmkvUnEDofO8Sv9lyTy1r35O3oU61YXBLBWvvCLP+YTVvVSA5rLmzZgmZaMOHosV9sr/TScvdYbztTtDpaLot9FZ75/MSFevsdD4axZyXAs+kcyiLiFQdDzcQye/xXM1WOh+NYqtVfVb0+gDt74+QSUL/K+O03FVb3FPbwyY6H43ialTzCZGrq1j/8IIN2x+qp+WuMMEtFVgCqr0r1uXH7BWVC3t1oO3+OprerY5Dg1tH5weiVG5Q1+Tard4l9m69N1yM8XUGDZ2PRvGud7L/WyewBc1L7X13bTFeAtXeBfJJVZdbtXfeFmtuf6u9w/nLnL4OdcwaPHrG9k8zF08TW3QA0/FIA+ErVHt7WtQxWyC4Nd4UXBIvrX8oQkM+D+SMqmPWXq+us8Uxm4fRo5CeUQkRtlrV3u5mdcxGrvQvHbMP1hPL591MPtXe3jaHau/LfMW1HvJjNh8vGRw6Oh+NkhiZo/e3I6qPWGTD1m2L7a3aMHCOmkMPdIn5CICqza6ij1h3T5h12+qW9RFGr3qgFrulmuBZniLx6kw+InpDkPb3qTZUJTDmi/mZ0/qIPNrfV0/jDUF87U78nc5lfUQsH+MXfMSGhxsInO09o4/QWXR5n6zuNTseibD+4eV9BEDVWeqYrVzvILTFS9t768/oIzofjRYJUE03hzD7jUUZzzP5iNgt1cWcaPdP+9EatMv6iKIN3x+h3KnnxK+HlvcR760nlt+XFnzEmrtq0Fl0y/uIR6NFUq1/o4uNjy7Eka3baot7Kp2hjM4PNVB1tpq3qN7iJXSelz1fPc7Y3mla3lNDS8HeqLFWdcHeXW46P9SAzqJDnzHQ2a7K3Z911lms4s8bDzzwAKlUirM2no3D7YSyMure5af53QuHza3bwgTzhGlHnZm2B+rIZnLs/UYPFp+xeB4H6lpUmJvWkJG2B+uxVqs+K3ZjkNAFXqz5fMjaO2upzccQJl85bQ/WYw+ra0T1eRW0bgujVSC0pYLm20PFnHi5U6HtwXpcMXW+BbrcxT0SqPmEyNVVquzYG5O0PVivEoIA/0ZXMacM6t4sml/r0YLBVc74ETXn5W130PZgfZF81HBtoJg/B3Ut8m9yoTfpMHrKabmnvkgiilxVVcyNAKy7r66Yd3NFrbQ/HKH2okoqmu3UXeEv+s2CvUP5uWkPm2l7sB6zX/VZrffVL9lLtrxnwd6WQN7e+TWi5gIvLXfX4m110LqtjpZ7aglfptrbWKHasLD3DZzrWeJjm28LUXuhD2+LA8WuU+3dtMjei2LZ2M3VNFyt2jA5lUKj0xTl2Cs73mTvG4LF+LRgw8oOF4nBOXQmbd7emgV737zIhg/UUbVJzQO5m220PxBhzR21ANRf6af53QuxSuu94SLJ39lgoe3B+iIppO5yP2vevWjM3hMmdIFqQ1vIRNuD9Vjya0TNRT7W3lXL8O5Jjj83xNq7aovFL8x+A20P1hfX3dCWClrvWbDhmjtqimPW6FHt7WxQ1+TAOR7W3bd0zNbn998Dr49j9hvw5GMg/yYX6x5YsGHs5iAN+TN7raLa0Jwn5fg6nKq982mY6PXBYn6pYG9/npTkarRDGUzmiRuRq6uWkEzWPVCnkgpRiXhtD9ZTns+t1b3LX4yt4E0+ol4ds0av2jZ8SSV1l1TS/eN+0vHsGX1EzVbvklh27W3L+4gCmm9TfURFi501t9XS/lBkWR8BKoGvJf/dsqncsj6i7cF6vO0OAFJTaRSLblkfASohp+1B1UdUdbqJXh08o49oe7C+KPFWd4WfDR+K0nxrTdHep/MRtRerYxZUX7nx0SjNtxTij1P7iKK976whfFkl9Zf7qb3Yt6yPKJybKXYd4Yt9lDv0aI3aM/oIrVGd5xWtdoZ3TzJ6YIq6SxaKIpzOR4Aaw7XdV8+xZwZJjqWW9RFtD9aj2NXJUH+ln5Z7wsW/tayPuEO1dehcL/VXVBE6X7W3LWSi7YG6RT7Cq66B+ZzX2rtqmR1L8sY3ezD7y2l7oO5NPmLB3mtuV/kSlJXRqnRhtzv41re+xcCAXHGO5fBHvWpSU6MapqWphdlhdeOWHE+RnEiRzJfRn+6fRaMskE5mR5Ok5zKQgoljsyQnUkVG4PTAbPGQGiAxnCSTUPUa0/E0s2NzDL2h3hyaHkxi8CwwEGcGk8xn1LapFCQnUsQHZqm9sJJsOktyIgX5QkqJgVnKNAsM7OREiul+1fnNDCXJZeepu9jL/m+dZKYvida06P3HU0znNbhnhpIkJ1LMTalEjZmBJNlFjLnZ0YW/Ozs6R3IiRXpafYl4/yzz2XlSYyle/uR+Wu8LE8+3TeTbzo4ttF1ML0uOzjE7McfI3inS06q9E6NzRXtrFyXfZ4fnSE6r32Jw5yTWgJmJ7pmiDRXHAkNyZihJLpnXx0ypf3dmcJbB1+bRWbWYPQtXUhIDyYWKYYvsDRAfmMUaNPLGd09ASm2r0S+y4USK6cF827wN0/nyyZNHEuhMi95/LMXMgGrv2SHVLql8kiDeP4sxmaV1W5jpkwlmxxbsnRzNj8OJuXzbJCyS/kyMzFGmhZMvjVFu0y61d9/s0vcdThb/LXJVgFx2nkT+huJMfxLFvGjMDiWLJQJTs6pdMtkclRudTA3MUu5aNGaHkkU90lRcfd/44IINPWttNN8RYu9Xe4o2KGCxvWeGZklOmEjFU6TGUkweiS+dc+ML9k7k7Z3KkzRn+udQLBlsIXPe3nPFZyUK9p5Sf/vMQHKJfmpieI7pHjVJMTtSsHdhzC5939mROeKDSRSXQsOVATKpLMm8duZ0/yyaRcS02ZEks+Pqv6VmMiQnUuRyqg2n+9/kI4bmyCRUe6fjmSVzeW4mTZm2jMDZbnp/N3paH1H4FtaAEVJw8sURnHVmMovm8pt9hOpP8nbpS6Kza2l7bz0nnh9a3kcU3j+lvv90PtFzOh9RtMvYHPH+2eKYjVxRdUYfUbjFmJ5Wq8Jl5jIMvDaKu9F+Wh8xN6X6ykLf6b4ZTIvm/el8BEB8cBZTZTndP+5nZnAWd4N1WR+RKvrkJMnRVLH0+pl8RKI/WfQRg69M4F/vXtZHLNhQ/Y7OmIVAl+eMPmJ2dK44jpNTaVIzGQxOheC5lWf0EampvE8enmN8fxx7yIypYpHvHH6rj5jJj5epgSTl7nIm8xrUc9NpUlPqbyn6iEU2NFcu+JNNDefQ29vL8ePHGRgYoLJS7rbdKv400NPTw/79+9FqtbTVdXBwh1oiemYgiaZ8Ia5JjMwxnR8riZEkyak06dl5EgMJ4gNJ0paF24eJ4YWxPjs+R2JkjvSM6hOG905iDRqL1SwSQ8lirJIcS5MYmSv66/hAEsrU8trOiJXp/kSxbWo6RWJkjuT4XLHtYqLAzPAsFr8Ja42J5IT6dwva0fHBOcqdC2vK9MAs2XxsmJvNkhiZK94Cig8kMfkW+ayBJPPpRevWiLrGDe+cZLInUdwIA8z0zVK2aF7PDCeLdokPJkkMJRncPcbgy5MY7MqSWCUxstB2dixvw3zVkOn+BBrdwt9NDCYXYpW8vVN5vz/dp/r9/nwlH8WmV+0KzE2qdkmOpYvvVKZb9M0HZhkZS9H722H0Jq36bQo2HJhFb15433j/LHN5nzrVk2JmYHah7WByia749MBs0e+nE+o7lOVvAo8enCQxssje/bMLfj+dt/ei9TAxNsfgzvFi28WxSmI4WVw7E6N5GyZVAo3JU85Ez8Jtw9mRuaIu+2x+rKTi6aINs8ks3vUO4v0JdczmKyoVxlZyclGssujaVC6bw1ZtBj3MTaljtqDz/Wa/PzMwWxz7J38zgtltKNpwZiBJ+aJYZbp/tnijJp23C9oylLy9jRULvjw+MFuMtdLpnDoXhhf+7sxgkvjR2aINF18oTYzMFcdLYiipPiedpvnWaoxuhbHDC7flEsNJpgtth/P2TswX7ZK2ZFQb9s6QGE4W157i+J5Z2OflFs0xyuYx+9Xkwul8RNGGg0lmhpIMvz4OZWD1G0/vI/pni7FKKq7Oe7PfQNPN1UyeSCzrIwo2HNk9iWbRHvB0PqLwfomROdKTabb/82Fqz/Oc2UeMzJHLl5Cf6VP3SeMHp/N/9ww+om+WTL7fZHeC1EymSLw8nY9YsOEs8YEkfS+PAllCW/xn9BGJfKySnk4zM5jk+C8HIX1mH5FOzC/4kzSM7pta/BlP6SMSw4ttqPqI6LVVaHRlTOX3Dqf0ESNzpPPfY6Z/FkOTjYq1Do79bPC0PgIg3ptEsarvv++pHuovr2KmX/3ms6PqXE7NLPIRcwuxYWIoWXwnjU59p+J+pm+pj5gZShLP5y2yiXk2b9rMs889ywUXXMDu3btZxZ8nNm5UD0Vj4TUkh9Sxk5nLEB9YiP9nBpOUL6oUOD0wS1l+7Mz0JYkPJJkZWdhTTy/y+9N9s8xn1MaZDIx3xxnN+47ZsVTRrwPEe2cp0y7MwPiA6kdD5/vIpXPEBxb2avHe2SV5rPjALDP5HMbsWIpcRk14dz/dT3wgSWZmITaM980W5+bcpPoOBb+v7lFzxSo7032zRb+ZnEwTH0gyN5kp/tYyTRlk4PV/PULDtVXFd8jMqjYszLeZwSR6o27JO4wenmbicJx0Iqvau7AmDyaLBxIAU30Lfmjs8CTedQ6mjqp+NDGSfIsNi/M6o9owMZzk5G+HUWw6zD4jhSId8b6lsYpqw7wfGksx1TPD0Z/3k4lniPcm0ZsXte2fJZG3YXI8b8OE+odH901hXPT+0/2zC/HehGrDQlwT708yn5sncqWfxGhKrXSYX0/mpvP2zq+PM/1LY5V47yyzIylG8rFXfCBJMr8mJwaSlFsWjdm+2eIeNXptNbncPLP5HGN8KImhf3ZJ20Ksksmo4y4zl8HVbM3HDG+y96JFo2BvUPfbWkVD+CIvh77fR/xNeaF4/yzxvL2T+bmQSc6TiScZ2TO1pHLDqeydKeYEkuTmcjij+mLbwnecm1THYWq6MGbnllTrmDo+w0ze76fihfG9ENdoy5e+w+x4CnTQ/O4Q6bkcs2Nzxb9bbl9qw0KuO5NUbZhOqTacWbRXUNsmmE8v+Ij4QJLZfFyTjmfQlmvwtTkY3D5xWh+h2jtV9BE9z6sElmxqflHbpT5CHbPZ4t/JzGWI3Vz9/7P331GSXVWaN/wL701GmsjISO8zy/sqeYMEkpAHJCSMEAIhvICWQP3Nmne9s6anZ4bpoQ10Q0M3TUND4xEgEAgJJKEqSeW9T+99hvffHzciMrMqzd1XKBG89azVqxeqe/LeOPfcffbZ5znPw9C+SXUxIo/JM2EihbXPUjFiXh9GRhOM7p/C6NDTcGPVsjEiHirkKpn8M2YYPTKDM2BdMkaQzsfv/PiePB3C3TCnELlUjAClzhwejjO8f5rEdBp3jX3ZGKGM2UJMjpOYTtLz7Gjxty4VI+bnhlNnwoTWrxwjFvThUBxHlZXaa/2ER5eJEYNzuWE6kiY6kcAZsOHf6F02RqQTFGNyqDdG7wtjuIL2Bddmi2M2p1ybXycVYnIhjsVnUgtqrxfGCKUPlX5Z59tKf1Ufx48f5+zZszQ3yxRBL+FPA7FYjK9+9asY9AbWlG+k95hiIRoZjpEOzxuT/bHiGi8RThGdSJBJZEjOZAiPxsnOi0OhgVhxHycVzhAaiBbH88TxEKlopmjRExqMFmtR6Xg6f63yDUXHExitBnxtHsrXe5k6FyrOEem48ncTM8q1sYnkAnW82aEYpc0ubBVmktPK3y3Et9hEYoEiTnggtuC7Dg1Ei44A8YkkoYEomfxnExmKLVjzzfZHiY0nmD4XITIcx7/JW4z1kaE4BttcDAgNxoiNKc8Qn0ky2x1h8lSIqTNhdEZdMQ4V+jsyNjcfhgai8/KaGUzz4sXs/P6OKv1SsJ5S6kk6ps+HMZr1mOxGYvl+yMTyfTib78PxBCGHccEzTJ4KM3Z8ptgvyZm5dxPqXzxXiY0nmTw9O9ffkxf09wUK3KGBKLlclsabA0yeC+X7Ox/LL4ijof5YcU82MZ1kujvMxInZfH8nijV95T5z83diVunDTCyDt8mBp8HB9Pm5ek1oYG6OSEXz4zCf1xT+u7vWTiKk/FvhWyhcmyrkNWMJ9PNylUwiQ0mzE4PNMDdm5/f3vDEbGpjLVSaOzuKqshEvju+FfRgajBfrQpmM0od6vX5hf88bsxf2dyxfB4pPJ5k6GyI+mq95DccX5Iah/ljx+0xMK32YjmeovrIMT52DiWMzi18byvd3vg4QHokp9b9aO/GZ5LIxIjq6MDfM6XJ48ockl4oRBYQHlLrK5NkwOvMorqB16RgxECMby9exkjlCA1EsXhN111cw0x1ZMUYUxvfEqRB6i37FGKG8m3w8ieU4+LXzVKzxLBsjQgNRxYqP/Ldg1BWV4ZaLEZGRuVwlMZVktj/GVH7va6kYMf89xqaTDO+fhKyiZLlcjCjUXjPJHFPnwozsnyKTrwsuFSMyycyCPpw8FUI/7xkWixGFHD8+lSzGiMB2HwarfuF9LogRSh8W3k0CZ5WNio0ehvdNLhkjQMkxC+O361dDJKNlc2M2kiY0EJsXIxaqb4UG8/NlBnQG5X+nZgsxIr4glw0NxIrfeS4FOzddztO/+zm33XYbr7zyCn8o6HI5obn9Eti9e3eRvf4m/dtVt1v33jpcQTt7v9xFcjIJuezKjcxgdpqV6+dDzU9Zqu0y2PZoK5l0lv1/f1Z1m/UPNmAtMfPK/xFI7ZohuLOUgedfX0/5PxXUvakCu8/Mie/K5Pl2PNZObDLBYaE3uhZs/lgz0aE4J7+v/hnXP9iAM2Djpf8us4nb+EgTsz1Rzj+lXu4xsMuHp9rOye/J+vCyv+xktjfC0X9Xb6fi3+bF1+jixH+q91HGDFs+1Mzgq5MM7Z5U3WzTh5uwes3s/iv19m1mJ2x8uI3+l8YZ3P36fmNmn5ktH2pm5MBkUUlNDfxbvFSs88qtxP5M4QyasZVaGTus3nKg9c5qfG1O9vz1SdVtyta5abk1yPmnhxjZN626nbXCTHxUxVyyiAyxo9KsznJUpyQGmz/SgMVlYvf/UP+7RppOc+TMIRwOB+GwzNLuEv40UFJSwvT0NJXUsla/Q10jE+x8tJ3oeJzD/9qr/DcVuZe9zER0PHXxP6jIvSylJhITi7RdAv7NJTTcUMmx7/QQ6lEpV2yCHZ9sZ/jAJD3PqLcdKxT/Jc/354zO+2oZ2jfJ1Cn1MaP+zX4qN/rY8zcn4HXuxqpdpVRt9bFX6GO/87MdhAeiorymcnsJ/o0lYmu01ruCjJ+cZfK4esnszvtrcdc62CO0pW25vYqprjDjgnmy/kY/zoBVbL+464kOJk7NcvoH6q0fWu+owlpmWZWcfN376rF6zWJr5NY7qggNxxnaoz4P/XNGYKdP3BfbHm1lpi/C6e+rHxubPtxELpPj4JfVf18mj4nUjMogc0HuZfKYSEVT6mKUTo+9wsSG9zUoY/5H6i0Ld1ufIhKNcPLkSdra2lZucAl/UhgeHiYQUE5RSmpeDW/xU7HWy6F/7SI+mVZX8zKC0WokHb7AxkZl+c7oXKTtMlj7njp0ep1oHdpwcyXeOgcH/vGc6jagnDAdOySzKftzRfkGD06/la5fyWyzNj3STGwywUlJ7UUjOu6rJT6eED1jw82VVKz18vL/Ur92BUXlKDwUZ+BF9Yp0Ja1OvHUOun4t68Ptn2ln6lyoeDBKDTxNDnwtTrp+KbvXmnfXMXJwivEj6vO1trur8dQ7ZDVlFIWbwVcnGT04LWonhhG2fbyNwVcnGHhB/fvyNNip2ODljAY74D9HmL1GbPMOpqlB1WWlVG0rZe8XT6u2YXRUWem8t47zvxxi4rj6cWj2GklOq7jJIjUvq9dIXEVbnUHZwG1/exXOgI1X/17975qu6Wdvz24qKysZGpJZI13Cnwauvvpqnn/+eeppp1m/TnW7jR9sJDIS58yT+Zp8dmXbHbPTUCQiSGFyGoqb6mrgqrHRfEuQ0z/pL5L01GD9gw2MHppheJ/69ZqzykoykiI5o+23/bmh7toKJs+GikQ0NShf56H6inIOf72rSBJ4veBpcBDcWcqpH/QWyQtqsPHhJmb7o5z/ufpY6G6wU7mxhNNPDhRJQ2oQ3FXK7EA0r5CoDjVXlVOxwcs+YS0vsMNHZDTObJd6K7vydR5ctXZRX4CiZjp+bIae59TXlAPbfTgrbZx5UmiRqgH1N/hxBW3ifcOqHT7isykmT8hs/f5c4W12FA9fq0XnfbXKwb7fqB8bLXcEMZh0on15g82gEL/UfI8X5F6StjqDAYPNwIb31jJ2bIbe36q3LHzF8TSzoVnOnj1LU1PTyg1U4A+mpHTNNdcAUIXMn/vUT4eovbJMRBrqfHsNnjon+/7pnKhdYUNZ0gYQF7tBUauZz/JTg8Y3BQhs8ZGOZRh5dVp1u22PthIdS3Dsm8KNlw0lnPj2eZKCvet1D9QTGYmLiBfl69003Rzk3FMDIrKBr8214KSGWkgLIaAQG3Q6OPVDGZlHQlwr4PTPBvDWO8TtDgqLfwD+9SXYSmUep1rhX1+Co1Lm50sS9v2dvA/P/WJogSS6qluFERd4AEo7XdRcWcHBfz1XVF9b8V6TSXb/lYyEBuBrcuIM2jE79STDKorXeWz5eDPZdI4DX1I/RpxBM8231nD+6SFRotd4UyUOv1WUEHmaHbTfVUP3b4ZFJKA19zeSyyGKG5HRGM6gVdSH40dmRQXDAgoEJdWEozw2f6RJIRwJiFR9L45jdsnGfGV3B0c4RCQS4eWXX2bHDpUklkv4k8CpU6eYnp5Gp9OxzngZuYzKFWUKel8YLZ6sUYv1DzYSGY1z5Ovqc40CsUlKABrZP8VIXj1ILUx2E/GZOeU3tWh6SxW5bI69X1Cf61VuL6Hm8nKOfaeb6JAgf72vlpneCAMvqifKepsd1FxRzskfDajfnEeRkM1lcyJyiL3MhLvOQXQiISIpdT89QvfTss0ak8dE2x1V9D0/xoxgDhrcPaGJaHz6yf7iCSW1GH5liuFXZOMQoLTNjd6gE5GUtKKs04PJYRSRlLqFG6EFnPvlUPF0k1qc1rgB1XJrgFQiK3rWI//areleJS1uzB6TiJhTvkHxpT/+3V71REqUAxhWr5lTgsMNhW9l8OUJJk+q/y47763BUmIWkQcCO300XF+J3qBj4Pfqv7P4TJL4lOz7kuSsBRRi4JKk2SVg95vY8L4mxo7NcPan6gqV0dEUw4em6H9JRtgqiVYR4QyXX375Jdu3P0Ps3LkTgHpdxwpXLkTfixOkYhmFoKQSdVdXULmxhENfP0d8Qn27wqawhKAEcPQbMuIqQGIqRcwtq635N3tpuEEhekmISuseqCc+meTMk+rnFU+DncqtPs79YljUH403VxKfSonyDUeVlY6313L+l0NMnlI//5e2uXEGbGKS0oF/lNdQgleUYbLo6RYU1wFO/Eev+F59z48z0y3LGQBOCQ/XAZR1uilpdotJSlpQ3uGmtMMjJikdE5DkC+h9YQzzQXkeevCfZeR6UKy9gpeVyb6VNLz6N/L6mqvWQUmzG6t3VBWBpYDO+2rRGXSivjQ6jTTfHGBgz7hoI9W/xYu7xi4iUlnLTHS8o46+50cZP6o+L++8tw69Qcf+L6r/pmPjCWKTicWJrEsgMhjX9L4KBCW1hKMC2u+pwRWw8uoX1G9G9780js1nVk1QAigZasBk2svw8DCvvPJKUe3wEv48MDMzw/PPP4/FYqElu1F9zQvofnak6LSgFh3vrCMyEuesINcoEJskBCWAUF+MA/8km8sNZn1e5VVWy6u/3g86HUe/0a26javWRv11fs7+bJDYuPpcr/baCmLjCcaOqM/xrD4zVTtL6X9+VEQSa7o1gN6g58yP1ZNDDGY9pZ0eRWFIQFIaOzIj+k3KzaDxxgDD+ycvUjJZDjNdkaIajQRnnhwgk1C/lwQw2xUV7QkV4N/sw+gwiuZWrajc7GO6Kyx6Tk3vC6UPC4o4ajH0irbDboGtPrK5HCP71Od63Rpz3bI1HiJjcRFJyVllpfGmAOd/MaQoSqtE+ToPtjILvQKil8EMtddUMnFydk5pWwWqryzDGbBx8rvqD224ahWCaM+zI6IxEp9KEZ+W1bwksamAAglSSnw12AxseF8DI4emVNfyMrEMfS+NM3FSVruui6zlCC9x0003cfq0nDezGP4gJKXnn3+eZN6nZ41puyhpSE6lOfvkPMKLTr/iybL+lyYgzcVkI51uyZNlTW8NKKSc7/UydVp9gde/xSvaVC9AchqngPNPDZGKpUUEJYBMKksmLkuGShqc2MstIoISgL3CukDGUC0yiQwz/bKNwwNfPAfmla/7Q8BdZ1sgK6wGZieYnDJyAijEhmE16isXoGydm9muWdE7O/hl+QaAVhz+mrZT8u4GO9l0hnCf+iRASwIFgBmc5WbCA+r73xW0Yyuz4Kl1MCNk2UohVQ0rIDmbJpOWJaLpFNhKLfiaXaL+dNXYi77NajHTGyGXyS2QC1SD878aIjosS3gHfj8h2libD0elGb3VQKhb/T23faoVvVG/NDlykRNlQ/snsXlVkAd1c/01dkjbZne1q5H+0HkeeuihS9Yjf2YoFOCqc63itoN7phf+BxW51/CBqaJd28K2S+dea97bSDqaFm2SO6ttJEJpESEHlM1rqeINwLFvd2H1yJONbCorIigBOKsUIu8A6mOUp96Bw29TfMEESE6nyGZlYqnR8ZRYyUcrXAELzoBdOTksmIPsfhPRSZVqKPOghTDkCFrR6XSE+2Xz0O5V6kOt9zLZwVXrFBFeAEb3T4vvBdremafJVZSCfr3x8hdOisdTZDRGMpxCb1j52vnw1DkW2BSrQSqawllpx9uQFL2zdDyDISFbHw7tmUSn04mJgEf+pVt0/XyUrXWLNvN8nS7abq+m94XRpQmfF+Re0ZEUE6dmGXxVxe+al3t1/VL9abICOkxbSHinCYfDvPDCC1x55ZXiv3EJb0z09/fT09MD6GgxbSKXVh840pEs/c/PK2CryLtGDk2hN+ouJigtk3f5t3ipv66Skz/sE6lylLQ4mTojV13VQhwe2T9NLisjKAGk4hnSwpqXu9aJu8ZRtAZSC0+tA4tHRlLS6RWbq+i4LGc4+d2+P+DR0eXhbXBgchhBQlIygtVjFBHlANLhtKbcy9NgJzIUJS0oHSpEktVR5Tn7syHO/kyu1mL3W8nlcsRG1de8YqMJ0fVFaHhnVp8ZT60TR7mZGSHBUYr+343R/zv5/BqfTi6w6FWFdBZXtR1XtV20kequsSuWz5LnG08plsHCR+x6eqhov6YWU6fDon2N+TA6jZgdxqI9kBqse189JoeJ/f+wBOFokZrXyP5JQhXWRS6+oKlhvg1OUlSrLaBBt44zugO8//3vv1Tz+jPDLbfcAkBNqgOE667pcxd883rDimpKg3smSIRl32PrXTVkkhlOfEf9JrmlxEwulRGrNmWSWRGBqoDTP+rHLKx56Qw6Msls0apdLTy1dgwmvWjz31FpxVvvoO950a2IT6cwGmX7DJlklv1flCn5aIWtxIy3wcFMT0REUjJ78opeQsEmiSLX3L2M6A164kJBj9XqQ9BGzDeYwVpqFfeJhCAzH2anomAjUb4qaXGSSWVFJCWtOPxvXeLxFJtKkZxNqRXxLcIZtOH0rzz/z0cmqSiIJUMp0TvIJLLi9WGoN8b5XwwxeVq2Tjn/C+1qja4am4gUaSs303lvHb3Pjy69Zr4g98rEMowcmGJCxWGZ+bnX2GH5eq3SUMto2Tl6e3vZs2dP8SDXa8EfxO7NYrGQTCapoZl201aAlYlKOj07PtPCxKkQZ396gSqPGvnrpbDEz3EGzdReU8nxb6k/BVTS6qTznjpGDk9x9ifqk4DGmyoJDcUYO3hJwnq1se6BehyVNvb89eu/QdR4S4DAZh9Hv90tIq+sfXcd6VhGZBFXGItDeydEKlZaocXuTSt2fa6DRCjF/n9Qn3R4mh00vjnAmSf7ROSm7Z9uA72OV/63XG1LirXvrsNVbV/VzcpLUGB26mm6JciJH/WpVr8CxcomMSsbi3XXV5DN5uh7bolC2yIFG9XQLVxsmZ2w6UMtTJwOrTgnzU84DnieYXJyklOnTtHc3Kz9eS7hDYNTp07R3t6OTqfjTcZ7iv99pdyr+dYqvI0O9v7juYs35V+H3Kv6yjLSiYxIjWbTI02YXSaRKqLJrqf+ej/dvxkipZHDegnasfPxdibPhDj9w9df3njbp9rIJDKi08aeBjt11/s5+/MBEbFs0yNNmBxGXvm8/NSxFFrt3rSg4aZKApt9HPzyGZEaTcvtVeiMOpHdm6/TRfudNfT8dkQzgViCHY8p1i2SZ7yEPwzK1ruxesz0CyxfWm4NULbOy6F/PSf6NlvfFqTnudGlVfr+gLlX081+fC0uXv3bsyvOk4Xca6apl1dOvoTX62Vq6vUvOl7C6qCuro7e3l7q9WtoMW4AWJmopNOz6UONTJycpfe3F3wbr0PeZfYaCV5WRtdT6usF1jITGx5sYmTfpEhhJ7CthPhMSvNG+SVoR8NNlZS2uUUqoFrh3+Kl4U0BTny/V0R8a7ipEtI5kbqR1Wtk48Mt9L00JrIP0wotdm9aseVjLSRDKZEatbXMRMONAXp/O0pEcIJ9/fsbMFoNolxZKxre4qesw6PJfeASXhuMVqi+vIL+34+TjqufT7Z+spX4VJKj/9atuk3ZOjdGi4HhvUvkNK8h75pftwLACBseqGfqbJie3ywfP3TGOeL/Ed+zjIyMcOLEiUt2u38mmJmZwev1YrVauTJzR/G/r1TzqthcQsUaNye+23cxYUCF5ZsUvlYX6GFSoETRfJtibSg6WG6A4PZShvdNkUm+hhzyEjRhw0ONTJ4O0fe8nGQrxdp315PNZDkuULI0e4zUXlXBwO5xkfJVy21B7JUWTQc+pdBq96YF5es81F3n59i3ukX9Edjuw2g1iN6zrczMmvvr6XluhLHDrz8XYP37G5g+HxEpFV3CHwbOoA2bzywiYfq3lFBzRTnH/qOb2Jj6sRi8ooyxI1NL23T+AXOvig0eKtZ7OPrvvSvOsYW28cpJXuz/NU1NTZw589q/abkkzgXo7e0tqigVCEorQqfH7DOTSWSJjstOhmz+SBOtdwalj0l4ICkiKIFyOmFo7wS9v5GRQio2lFB3dYWoTc215Wz/dBtmn4zZHLy8FGvFKskNaUT1NWWYnbKhFryqlF2f68DTLDu9MtsfJTomZw5rwejhSUaPTovVdWzlFmx+mQVbZDBM/0tjDAo8h0Ehymz+2OqQEhpvqmT7X7SL2/U+P0rXM7JvzOw0YnWbcFTI7OUG9owz8NLrn1ACzPRHiWgYi5s/2syWj7eI25Vv9OBusIvbaYaGsKMlXq15Vx2bPyobw55mFyUtLuquksXhwVcmOP0T9adfAHp+M7o0QWkZOKstbHu0hbJ1LtVtkmGFJZ6JZy7aRFsOunEr2WyWbdu2iZ/zEt6YKCgzBHOCb0OnJxlNk4pmRKohZevcbP5wE/Yyuf1q/wvjYrus008O0PeC7JsK7CqjbJ0Xu18WAzd+qInWO6pEbexlJio2e0VtAJB3n2a46uyUtDnF7TZ/pJl1D9bLGpkgNBjTfOJIiv6XxujfLdu4spVasJdaMJhlUgXdz47Q86xs4W+yK8X/4OWlonZasenDTbTeJVsXjbw6Qc9vR4gK1crsfisOFSei52PyTIih/ZNMnZJbqmpBeChGaECmYlHS5mTHY+2UrXWL2pk8Jiq3l4jarDbsZSb8m2XPaPeb2PrxFnGcq7uqgsA22bjvfWmcvhfGxKp0p78/ILYRBYUUtV4Y4+LTKVKxDCY7qnMvz7laAKanpy9Zvv2ZIBwO09vbC+iKBKUVodNjtEIqkhbbjXa8s4b662XrGFBseSQEJVDUP3qeHRHXGQLbS6m5slzUxtfpYuMHG7GWyubj0k43Vu8qyQ1pRNk6N0ahHX1Jq5Otn2zFXS/LX8ODMWb7VifvmjkXpn/PODM9spqX02/FXinLGeLhNF2/HmLiyLSoXcNb/Kx7X72ojVb4N3vZ9EiTWP2q+zcj9PxWllMaLQacfqtifyVA/+5x+l5cnZpXqD/GTG9U3B/t99aw/v0N4vu56+04qmTj6jVBQ9jxdbrE8arhRj9r31svamMts+Lf4qNikyzP6/3tKOeEagDjR2aXJigtA6vXyPoH6ylpFaxL05COKcp5FxGYloFntIpcLseNN94ofs5LeGPinnuUw3jVSYFyuE5PNpElFZEpmjgCVjruqcHskX/0k6dDIoISQO/vRul9XjYn+FpdVG7zYSuX7Se13Bak+soyURuT04C3SbYfB4jVrl4LrD4zzqBsTwig9a5qmm+T1QABZnoiRIZXZ7+xf/cYgy/LDnhZPCYcARsGoYNF/56xFQmhi2Htu+soX+cRt9OC1jvlY3i6K8z5p4dIzsrqDA6/FWdAlmfExpP0vTgmzpW1YqYnSljoOmIrM7PhA43i79pg1lPSIq8trya0xCuDzUDnO2sVkqkAwZ2lBLb7RG3Gj8zQ8+yIiKAEMPDi+NIEpWVQuaWEFmGMS8ymSIbSGGwG1bmXddiHIWfk7NmzjI299nXHa17pb9y4EYAyFv54ncFwMfNqXmEvOZlk798vwRheRv7aYDZgtC4TcBeRv+58Vy0Go150aqUALao1e/7mBA7hQtJkNYBed7GF3QqovcZP+TovB/9JPfu68ZYA/o0lHP1Wl9jWiByiUzJmp57aKypwB+0iklhyNk0ykiY2LAvwPc/IWaQlrU7a766h+7cjDO1WX5wL9yU40yc/dfXq38hPGSXDChlCimwuB69ZK00dcpkcCK1lAE0n68cOzmhSKtN6in/bp1pJRTOi76zvuTFN5JX4VFIsEQ3QckuQ8HBMZLtXc205NZeVc0QYC7Z8vAWDxSBSpHIGzdRfV4k7aJPb2gn7Y+zgDPHppOg3gbb4AeDf5qX2ioqLY+MyrObwaAK9SY+j3Mo4iyxol9gIWzBvFq65YL68MKHYaLqCF40/IZPJMDk5ic8nS6gu4Y2FVCpVTAA7TFsW/NtKuVfvs+P0PrvEhukSuZe91IzBYlheceXC3MsEmz/YTPdzI2Krh8hAnMiAbPHf+5tRJk7OittpOXhQc40fX6uLqXMRkSXdto+1kQylOPTP6k8olbQ5ab+rhvNPDzOyX31huP66Chx+uapkbCxBOia0eEjBMQ2qi+sfasBg1nPgSzJb2qE9cr/34b1TmgrrU6e0qEPoIZt7TQIZEuQyOSX/EiA6niI6Ls+HNJ2uS0GXhrVUYKeP2qsqOPJv54iOqP/OtIzF6HiC+HRSLBPdclMlnganmIi55aPN5HLI1MAa7XTcU0ff86OiXLblzhpsPrMofkRHUugMOkw2WZX5xHd6xMS3xERKpLw0H2veVUsylObMhcqSywR2o82A0brM71ok9xp4aZKBlyYvvmaF3KuCakbp581vfjP79u1b+p6X8CeBwqZnla5+wX/XGU0XqynNG0fpOBz99yVqIMvUvEw2A0lhzavhBj8ml1GTqqGWOXL/l89iFZJyTFYDOsMiFnYroPEtAaIjcY59S32M92/2UnddJce/0024X6BC82ADOj0c+qrMyr7pLVVMnJoV2bBkklliEwmighPeoFjlSe3yrKVG1r67UTnlLWgbn05rsubSUnslrdgBipFBnAtpRS6r3MtohLRgGE8cl5O1wwNxTQpFWmz2QLH0SieynBAoN4wfnRVZthaQmEiS1mAr1353DbP9UU7+p/qDZaWdbppvruLE93uZ7VZP7uu8vw6r1yTK14xOIy1vDTJ6dFpMGJWuS8P9cQ5/vUtsCTh6cFp2ozw8TQ7qrqlQLGPmv7plHjweTmO0GrGVmFhslllqI+zYt/ouuubCGsd8FSWAWmM7fcaTTExMMD09jdfrXfb3XMIbG5lMhl//+tfo0NFg6FzwbyvVvMaPhxhfKg4uYflm8Zgw2o0khXGp/R01DOwZF9lJAiRn0kzOyGL15IkQkeEECaH9mhZ5ivI1Hqp2lnH46+dEm+Rr76sjGclw+ofqa/5Wn5k199XR9athkf1S5ZYSStvc7FvKhnIJRMbimvbJugXKkAU03hzA4jaKrAABpoViCKBYWB36iqy2BhAbTRIbldtsZjM5squVe2WWFJFdEqlwRkweBDj7U232wVos29wNdhpuqOT0j/pFBJaeZ+RjMTmbJDaRFCkvAlRu91G5uYSDPWdExM/2t1ejM+jENphr7lNqXhKlopqrK/DWOdn/JfWxIBPLoDPoMFhkAbLr6SGSMblNp+T3zEfdtRWk09mLFWaXyb0MFj3GZWp5i+VeM11RZrqiF11zUe51QdsW/QZOZPdy55138uKLLy55TzV4TSSlZDJZlDDfZLpKdbuytS5KW12c+qH8w1e1SLugaGN2mTCYZBm/f5uX2isrOPGf3XJP5CREhmVtzv9iWBMh6uT3ekknZR/HTFcYZ8Aq3sCf7pJPkslwlnO/GCQ8IDvppZWEUn+Dn/HjU6J3ls3mSIRSYkZ0480B9CadyApQK8rWuanaUcrJ7/SQDKufUI5/U6Ye9lrQ9asRun4lnyibb6vCaNFz8ntC4ooGlLQ7qd5ZxpH/6BbZgMUnk6Qi8iJK8KpSwoNxkdqWVPGtgK5nh5kQbqhOnZ2lpMlJLiWLIVNnwxgtss2r8ECSrmeGGdwn2xg99k1tloPS+FbA2nfXYbQbRbK7BqMBg0WPp9kx965XqjIl4eX/pc1CqGyti7J2Fye/rz72tLe2c+DQAa655hoOHz6s6b6X8MbA9u3bAfAgO73ecluA0aMzzJyXzce9vx2/2KJkMczLvbx1DiUpFhJX17+/gfhUUtMGm5SgBHDgH+WL+FM/6adinVdEUAKYOjMrVlJIhtPM9keZPCeL7aefHMBdLVfWO/FdWfEEFPKEzWcRb3DGxxWipgQmu57m24L0754g1PP6Kwi03lFFfDZNr0BNKRXNsvfvXn/56gIOfllOHLKUmmi+KUD/78cXLERfLzTeFCAZlpFRoqNxhbStl63f7AEzJU0uBl5Un2skJlKaCFjdvxvBenha3G76fIRMWlYcmjkfJdQfJTwoy23O/2pY08atlk1RiXXgfDirbbTdEeTcL4dEBVmLx4zuwlxrhdxLTJIvwAQtbwkwemSGGZUbnBtMV3DA8wynTp0ilUphMq2inN4l/MGxe/duANaYdqlu46yyUtbhpvt3ows3dFXg8L90r3zRhTUvtwmLRzbOXLU2Gm+s5MxPh4iOCPOotEJgkWBk/7QmEsqxb/WgE57Oj4zEme4KiwhKABOnQxiM8h29kz/sIzEjqwHOdkc51i1f6/q3eJnpiRCXxF2djthYgtiEjNBQubUEk8NE3+9ef0sJZ9BK1Y5Sup8dISkYWxJLudeK0YPTmkgeVTtLsbiMq/Ksjiorga0+un81SFow/KOjCbIpOcu+bK2b+HRS9K1p7YezPxskPCLLhUKDUaa6woqasABTp2cxu2UxNR1Oc+ZnA6KNdkBTHRUQE5QKaHiLH2uJhRPfltUeTQ4jrirbHCFjpZpXGvZ/SZvtoLPaSlmbi+7fqCdJdjasY++xl7n55pt56aWXNN33Et4Y+PSnP002m6VSVydqF9hewmxflMiQ7NuYPClXQ7KVmTE7jegNspyh8aYAqUhak22YmKAEnPmxvLY2uHeSyGhCrOIxfjxERrhHmc1kmDg1K47tfS+OM3lWTkLRYidrKzNj8ZrE5KHYRIKMkNCAQVEoHj02rYk8JEVgh49MMsvogWlRO4kV3WvFmSflY9hg1lNzdTmjh6eJjmibKyWo2OQll86JyCjJmTTR4YSYNGf2GHAFHSICfCaJiDxYwNjBKWZ7IiKCEsDUeTmHIDGVZPL0LJFR2dpt4KUJhl6RH8LUst+YDGuzDDV7DDTdVEX/78cJ9amPdRavCcOF9p4r5F4DL00wgDaRjsotHkIDMdW8lmpDM5PlfRw4cIBMJoNBoIB5IV6T3VvBbsTK4hshRXaVTr+A1Vy1tQRfm2t5u6BFTjLWaZC8Bjj4j+fY93eyxNjmtaA36gkLpbh2PNbOuvfUi9pYK8wy+dN5mDodFm/GTxwPcVh4MgzgzI8GNPm1j+ybFpO2KreX4KiUqVGZnRDcWUbtlX5Ru5mzEfb/w1lmhRs1pW0ufK0yawiAXU900HpntaiNu9aBw29DbxfyCs1osuXSDA338jY4cNfKZUR3fa6DzvtrRW18zS5cQTtOod3eka93ayJR1V3pp+4aYdwyK+Nfav04tHtSrMQW7ktw+KtdYiLm+aeGOP0jeX8M7p4QkcMKMDv1lK+XfWuuehu7Ptchnjf0Zj16s2xTdHD3BHv++qTY+hEU5vxFv20FO5HqXaWUNM+TpJw3xy51Gs19SJFTP3LkiPgZL+GNhYMHDwKwicXJ4YvmXiYobXcR3LmCitYFY69srQu7cC4G5eTPK58/xeRJGbnGYNaLN4Zqr69g+2fasJTKisi+dqdi3yNFCkY1bLCd/ekQfc/LCiKRgTjH/r1HTIhKTKTEJ+wtpSbKhHEWoPbqCuqvrxS3O/3jQfG8aq+04m1w4q6RyXp33FvD9k+3idoAeBqclDRpyM9Xk4tgkt/P7DThqnGI5dFb76hix2NyW9/SDjdlnbKxNXM+yqF/Pi+2Aau70k/tlfL1ot0vH//RoaQmtYJzTw3RrWEz6ti/94hJZaGeKOF+baRtb7MDk5Dw0HlfLVs/KbBkABKTMfRmA/Zymaz6/i+e5agG5SxgcTvGZXIvkwlKO11UbvUuvH6F3Cs2niASifCOd7xD03NewhsDn/70pwFwsbilTlHN4YKaV8VGDxUbPBiXW74vMu78WixlgVM/6Ofwv8hqPDafBYPFQHJGVgze9KEmWoR2uUanEVet3JYDIDoSJzIoe8bwQJzTP5CvVwdeHKdXaMsFMHNOSBpCUfSWWt8B1F9fSfVOme1FfDzFsW/1iElbZZ1uyoV2qKBY3zbcIKvLOSqteBtdGC3CPjHyB/AIEN5PiJImJ97563eV2PLRFrEtjTNgpbTNjbVMNq+e+/mQJrJMw40Bqi+XHZ4BZfybhbZok6dCIgIbKDaYp3/QLyb0DL06pUnNfvJ4SExMBTBawdMgW5yavUa2fLyFqp0yu12DUY9RqB4wcy7Cvr87I1aMAbCWmShpWVjzXclOJLC5RLFiNs5dX2hzoYpSASVnmgDYs2eP+Bkv4Y2Fr3zlKwB06rYv+u9L7Tf6N3rxr/cu/8f1C8ees8qKVVh/B8Xi6fC/dDEjPNBvsOjRC4UUfO0uNjzUiKVE9pzOKqvY/guADOLfBTC8b1KsGJKcydD96xGSM7LAmYllxPt4BpsBd61dbEvn31RC45vlFnFDL0/S85xsHjE7jZSt9eCslOXMwSvK2PBQo6gNKPlJSaOGmtcqWvthkN/PYNbha3Xj8MtyocotPjY+3CS7GVCx1ktpuyzPi08mOfPkADGhomr5Wi8NN1RiEIYtszM//gVIhjMiUk0BI/umNKlLdf96REwqS0wlxVZqBdjKzRiECuK1V5ezVsj9SIYzGC0GzC5Zfe30jwY4/3OZRW8BvkXG47K5lwECW3yUtbsXXF/MvZZoaxx1Eo1G+eQnP6npOQt4TSSlV155BYAdvGXRf9cZjYsWXg5/vZcDX+1aebN6XtvglaVU7yqj5lqVi/E8q6y0cwUy1BLo/vUIL/+vk+IN9cRMSpEOFKDxxko63lErJiVs+kgznffWiNpghs77a3EGZfcq7XTReEtAdi8Uq72175Yx3wEa3hSg9S7Zb0uG4fj3ejj/rGxh7W6wayKJvfp/T4vsrgAwQ2wySWhYlkid//kQu//7ceJCFvW2j7ay45PyDSUtaL69issfXyMeW3v/9gyv/B+5okx0IkFIeKL83M+GeOm/HyfcJ5vwzD4zldtlXu8AZ37az8nvyDZQXFU2mt5cRa3Qb9e/xcvWT7SI413ZOremb7vx5sDimzzLwNPsYPun2yhpl31v69/fRPMtQVGbUHeMZCRFIiQrFh/+Whf7/17baa+Sdqe4/zvfUbNgg1+N9+vxb3ez+28W+WZ0enS2xRcyZpMZXX7Kf+KJJ2QPeQlvGHzhC18AwIhpaVUGg+Hi3CsFe/7vac78WMVmzby29ddXsuad9aJnNNnBVaeF/aMoG0nVfJIzKRKzKRITsm+99fZqOu+XLeLL1rrZ8tFm7AHZh161q5Saq2QxHaD+Rj+eRllfmjwmNj3SREmbLM7WXlZG663VYlLCyR8OcPoncgWm8g0e8b1mzkfZ/T9OiFRyAOUkiPBkHih5nsSeDxRlqcse66RaOIdrxfZPtLHpIVkRJdQTZY+GfpwdjBEVrnEAXv2bU5oUnzyNdhxBWVGp59lhjgvzLoCW22toeou88Nh5bw0ttwvbmaDuTRXijShH0Err3bJcCKDtbdWse1+9qI3db6LznjrqhHErOi5X6UhFlTEyuFvDaS8TczFSpU9K7TVl1F1dQdm6hcWXlZ7xwD93cWoxBctlcq/NXAvAb3/7W1XPdglvTHzpS18CYKP+2kX/XWdavOZ1/qkRDn6ta2Ulk3ltS1qdNLypkqodsnWns9qqiTgxenCa/V88K1JbAYiMyS3Kgjt8rHlnvZiU035PDY03y8nQDTdVYquQHUxyBq1UXVYq7suGG/y0CIkkAE03V9F0szyuH/tWN/0vyhQYbBUWZZwIcfQbPSK7qwLCQzFCw7Lca2TfNK98/qRY1Wvdu+vZ8qEWURutCGwrYeenO8R9eexbPRz4R3k/hgblKooj+6Z5+X+fFBPSjE6jcphYiNM/6uOscAPF6DTSdmcNgS0yG3p3vZ11D9RjFFpNumptBK+Q5+aBbSVUbPSK2ljLTGx4qIGSFtlarO3uOlrvkB1mTU6niU8lSYZl6+CzPxvSZsmIotRltCLyp+t8Rx11186RFnXmldfSXb8aYu8Xz11E+NIZDOidSx9yteEkl8vx3/7bf1P9fJfwxsKePXuIxWI4cC+pyqAzmxfNvQ5+rYue51TsCc0bvzVXldN6h3AuNoCtQtuJ8DM/HhATINPRDLEJudVb0y1VNN8qy09sFWY631mLrUz2+7zNDsrXeURtAMrXe3AEhPmJAdrursYlPLxW2u6i9c5qLG7Zb+v73RinfySveblr7WICRHImzb6/P8PYYRnZKzaaYLZfrpJ9/D96OSUk9Zs9RrZ+tJWKTV7x/bRg7f31dLxdukecYf8X5f0YnYwz2xcVk6KO/rs2cQNbuVlMkhw9NM2xb3eL1Y1qrq2g8Sb5/l/NVeWacqjy9R7sQpEIs8eg3EvY/8FdpTTdKvttBpuBznfWUblFtu6OTSaJjgnVuTJw5N+6Ndk/Y0Dcj75WJ403VuJtnsuXVsy9MnD0P3rpWcRJY7ncq023GYBvf/vbome8EJrPmzz99NMA6NBhNl38I3X5I2N6s4lscl7CbAaSEBcy3AZemFjw/1VBp6P19mqSkZRIScnsM2P1GMWMXEBkEVTA2aeGqdpSIlZBMZh0YqsM/zov3gYnswNuwgPqT/QHLyvD4beJ2XtWr3klUZBFcean/aSkkojAlFC1AaD5rVVYnCZ2/48T4rZiJOHgP8nHiFYMH5jCKBwjWjF6eBqTRU9SKHOuFVqsObSi+eZKvPVOhl+RsYDHDssnn1B3jJ4XRhjdOylqZ7QaMNqMeGodIkWf6svLsfks4m+7Yr2HVDTDwO/Vx+TYZAqdQYe91MIU6r/VnudGxJYvgFhBrwgzlDa7mBAoJJSvd9N6ew1D+yeVvszlVBVuup4ZZqprYeFRp9eRW8YmK1nouvx8WoDeoWzU6Ww2crGLi5lbAlexf+R5fvSjH/FXf/VXKz7bJbzxUCCYreWyxS8oMNxNRnKpeRU9E5CClNCN58g3u9WfPMlbjtRcHaBycwlHvtktsuQqaXMydT4Mwmcc3jslthoDOPvzQdJxWZ5hdpnQmw3ijbnKzSUYLAaxklLlFh/2cgsz59VLKTsrLZidJgzCub/7+XFCI3GxalNqJsWksI3JY6LlrUFGD09x9qfaToVI0P/COP0vvO63ASA6kWLs8BSTZzUsPjVgeP+UeGNC871emRLnQa8FHW+vJTqe4PDX1CuDRMdToMF2rPuZYXQa8gyLz4xBw3qlalspdp9FpIxU2uqitM2Np3FKZNtpMOvF68XoSIq+F0YZFiqyaVGIKsDTYCc6EicVVW81s/mDzRhtBl75P+rt6Xp/P04ylGH8yMJvdKXcKzGZH1f5+bSA5XIvq8lOc10zPT09PPvss1x33XWqn/MS3hjo7u4mHo+jx4DVeHE+pDPla15WC9n4vGKlEUgjPhU+dTrM2Z8PMn5KxRwyz+qt7a4aUuG0SEnJ6DRi9RgJa7DL1aRQ9PIkydkU8QlZnxjMerEKgLPaSsU6L/HxhEg9pXJTCaUdHgaFlgEWnxmTXX6k/NQP+zRZcmp5Z/XX+3FWWjXZeWrByf+Ub+ZpxdDeScyO1ZGxnOoKY9k7IbY61AotFthaEdzhI7C1lL1/e4p0XP1crMU6OB1Oc/apAaalKhgmPRaPGXuZmdmw+ndQucWXtwOWrcUC20tJxzMii7/4dAqDxYDJIdtu6X1hFKNFHkeOaVSVxAjuajuzKm1sQSEorXt3AwMvT9D3O/VEyXNPD11MYjcYILN0Dl0kz+bn0wL0LoVIp3c6yIYvrntu9V3J7tlf881vfpP/8l/+i+pnvIQ3Dj7wgQ8A0KHfuui/FzZaL8q9DEBm2WGlILcwvp3+ySB2ISGnfI2Humv9nPxeL2GB0qMjYFWsjITLx9neKLO98lh77qmhZdc3i8HiMmGw6ElGZA9Zsb4Eq9ckVlKqvrycme4I54fU14VsJYr9mjQ/nDg2SyqcFpO9Msms6D0DYICWO4IMH5jSZDEnxeTpkNhqVCsysTSDe8aZFdR7XwuG906STcvzZS2Y7Ypq4gNoReud1URHEyJbxlQ4Q0qD7djg7gn0Jnk9z1ZqJqthvVJzZQUTp2bpGVFfI3JU2KjcXMJsT0Sk4KQ36cU5VCaWofuZEaaFqnFjR2bEca4Aq89MKpYR2UC23hbEVm7l0FfyfAIV+42Tp8Nks4MXW1SukHsVx1V+Pi2gQFBaLPcyGAy0N3Vw5vxpXnjhhaLzmhS6XC6n6St3u92EQiFqaaPNtGnhH71A03o+SWnbJ5shB6/+rWDzOCf3xS6gaqePZDh1USFyOax5Vx2eegd7v3RWRByqe1MF090RTZY/qwmzU08yLO9TZ41FrECzmmi+rQpn0MbBf5SRgDzNDuzlFoZ2y0ghOx5rZ/JMSGSBZ/aZKW1zMrRvUqTS1fGOatz1TkXdaxVw2V92Mtsb0WyjIEHnu2pxBuxiVaqSdicGk170bYPy3iZOznL2yUVOQy8BZ40Fd7VTfMq74UY/Ja0u9v+DRrLMKsDsM0MyOUd8EbSTEitXHWZovL6SwX2TIhWyrZ9owWQ3iomLTW8N0PfSxMJ+EZwwW+wk/1ILyrrry6na7uPof3QT6lHicmGjrNh2EaLSS+afEolESCQSmFWcYLuENw5SqVTxnd1guvfiCy4YPwWSkrfZTvvd1XQ/M8LwPkEiLcm95qWSJo+JwNYSeoWnw3Y+3kFsMiFSrrH7TZS2eejbPS4mN602TB6TmABksuvBZBC3W01sfLiRsaMzIsIqJqjcUMJsd1ghlahE81sDeJtd7P2CbIPN1+4kk8iKN1G2PdrK9PkwZ36iPl/Qis77a3HXOtizGoR5YPun2xg/Psv5X6gvBprs4GsvYfLkFClBVzbfGsDbJH9v/s0lREbjYruyDR9oZOpcmN5n5RYdqwV7wCy2ssMEJpNeROL5Y8DTaMcZsIligt1vYuNDLWLioq/ThcGk13QooABJ7rX1o01k0lkO/NMcEWSl3Gui8jz7+16hqqqKgYHV22y+hD8MNm/ezIEDB2jUr6PJuG7BvxUISgXM3yhb995aDEY9B7/Wrf5mGvMuAF+bi0w6y8w59XWo+usrqNxaysGvnhERh/ybvfnYLCfKrCaMVj3pdFZsu2QtM4lt21YTVTtL8TY5Of4tWZ3G7rdiKzWLT/Bu/FATU2dCItUHoxU8jW5mzs+KVLpqrq6gYp2Hff9wRvSMWrH9M+1MnZPV87Si4QY/3hYXB74kqws5g4pVjzSH3fRIE5OnQvQIciGr14iz2s74yVnRd+Pf7KV8rYej33j9a4daYXQaIZ0Vka8K7dICMtQfBUYIbCph6nxIFMvX3F+HvcIiJi5W7Spl9Ois5n5Z9CT/EhtmZWtcNNzg5+QP+wn1KsGkQFIqYDGi0h7LTwmFQsRiMaxWuYLcJfxxodfr0eV0XG+62C75wvFTyL0sJUbW3FtL93NjTJ5cgqixWJ6lbUsUg82Ar9XJmPBAx4YPNhKfSIqUa0xOA94GJ2PHZ8TkptWGwWYQbb4DimWVQd5uNdFyW5CpsyHGhTmUp8FBbDIhOrRQsclLxTovR7/RLbqXI2Alm8kSEzqwrHlXHdM9kVUhUtVcVU7FBi/7/n518ry176ln8tQsgy8L9nsNigJWZDghGpP+LSWUr/GI35u7wU4qlBZbvjXeEiA8GGP0wLSo3WrC7DGKD+yAckAlk3xj17xsZWZs5RYmT6gnBhpsBjZ+oFFMXHQErBithostOCX7jYLcq+3uKnR6HSe/N7c+ulBF6cLcK+Ie46WJ37B161ZeffVV1c81H5olVkIh5SWsRFC6ENPdEaa6ZLvhwctK2f6ZNhyV8g3VwT2TYhLDuV8NMbxvUrwBX7W9jMY3y6SoS9qdbPl4M84amWyXtcKsycYO0ERQAlaNoFS1q5RNH24S/z6rx4TZKT9BNXM2IiYoAWSSGdIRWbANbPbS+KYApUI/+kQ4QyoqD+z1N/ipvmZ1LEcclWba314tti1MzqZJReWFwJZbq2m8US5TmE1lyQjVM8J9CU02FBaPCZNdLljXfHsV6x9sELfTguSknKBUaKcVUktAUMhsa94ls450B+0EtpZSc3m5qF3PcyOcf0au7nHuZ0MX94uKRe+6B+rY/BGZXc/I4RmiY3FyqaX//mL2I5mIcv3b3/520f0u4Y+Pd77znQC4WESKdBmrmlQsTXgwxsQJWQFl48ONtL1Nhez1BWM8NZMSE5QAzv96iN7nZe2CO8upvqIci1s293feW0PrHXJbDrtf+yltLUSjVDS7agSlNe+uo/b6CnE7s9OEWdj/pBQFLAlBCSAZy4jVrwCabqqi+Rb5+06G0yRmZc9oLzPRfGsAS+nqnOgPXlFK8AqZ9SpAMpImEZLN494WD003BfC1y+SQUxrf28j+KTFBCcDsNGJ1y3Ivk8fE+ocaKFvvXvniPwDEBCVQ1PC0EpRMiO0VXXV2Nn6oSWy513BDJdXCvCs6kqJ/9zg9QrW5yeMhTQQlR9DC1k+0ULZWth6bOh9m6tzySfOFuVfpsGIrOjj4+pMdL+EPj0OHDgGsSFC6EJNnw0yuMFYuREmLg00falrZPmSRtcXkqZCIoATQ//Ikvb8bFSsb1VxVscC2Rw1sFRbWvrceR5UsnhidRs3a7+m4nKAErBpBqaTVScd9tRitspKsxW3EIoznANGRuCaLgXQsQyoqm8O9zW5abg3irpPF2GQ4SWJWPj/6t3jxb/aK22mB2Wuk7voKrF7ZwEyE0iQ15PTNN1fRqMGONh3LiJXp49Npxo/KCEoAJpdJbJ0DUHVZKa13y+zNtCIdTosJSoV2WiG1tgTlkKPUOtLsNFJ7rZ/AZtl6oO/3Y5x7Wl7zGtwzqalfGm+uZO17ZPW86XMhZnsjpJcZy4vZj1jDSj7/wQ9+UPaQl/BHx5e//GVyuRyluou/g+WsanKZHFPnwoSEdlcttwWpu1ZeA8nEMmKCEsD5Xw4xsFu23vG1uam7zi+OszVXlRPUYEFv9sgV3QrQQjTKJLW104K66ys0WZRZfSZMLnlMn+mKiEka2USWdEweY+uurdC0RxafSZISxnSDzUBghw+zU/tYkaCkxUlpp7xOk5hOiXNYR4WV1tuq8dTbV754HjIxbfu2s11RMUEJ8mpiLuF6wKAcrvc0LG2Z+oeEFoISoJ2gZFBInRJYSsy03hkU23dW7Sql7mrZejgTy9D73CijB2RqVpGh+MUEJVhxv9HsMbDm/lq8jbL3PXUuwtTZ5esYF+ZejtlydOg4ePCg6F7zoWnJ//Wvf115oAs4TksRlPRm5aPJJlOc+bE8CTbm/Tsjw7KPduMHGwkPxZQTmQJ2dHw0yflfDIvuBbDvn85iltmh4gzYMDtMpBMy9nbnPbWaLMq2faqVyGic499Ubx2CGbZ/op2hvRP0Pade0rX6mjJqL6/g9JP9IqKYs9KG1WMWKQ0BmlV/NnygkYkzs/Qv4rm4HPZ+Qc78HdozTiqSYeKsTILx/FPa7FD8m0rIprPi36YF3lYXpe0eprrDjAgILBJFo/k4/8tBMgn5xKVJ4twMGx5oZPTItIjQpsWPFpSkyOKRF3q2faoVgFf/RvYbtz3aSqg/KnpeZ42FNe9soH/PGAPPqydwdd5Xi7fByUv/+7joG7d6zSB0YpntinLqx31ioqrWE/nOoJm2u2vpfmZkoVVcYf5ZiuWcXfrwdMF+5sJT/fGxJIe+qsS8C0/xL2h/gf3IJq7lVePTHDt2bIVfcwlvNDz55JMAbOQC6cwlCEqFDbTIQJKj/y63XMhlWd6CYpG8qmytm+BlZZz8QR+JCVkhfnT/tPAJ4cxPBhk7NiO+l6XEjCEhW6yaPHmlj0NTnP2Z+jk5eEUpVdtKOfgvXSLCUetdQezlFg5+WWZtuvUTrWTTWfZ/UXZS215m0WQ58sr/OSVuU7m9hLION0f/TZa39f5mVBMB7vRP+jVZeUlUvQrwNLuoWF/CdFdEPC61ILBF2ZAYeFFGpNZiPTx9Zoazv9AxdXJa1K7nmVF6npG/t+AVpXjqHBz/lmDNgrY8LxVNYS+14KiwMo76HKBis5emNwc489MBZWNPJaqvLKNyi0+sLtVxbw22Uov4+975qXaxdV4uk8PiNuH024gIrIVOP9lPKiqPJZqUr3Q6Gm+qxFZq5phgbRvJ2z+ZlrAHWir3OvfUnFS5JPcK+AOMjI3wjW98g/e85z2qn/MS/rg4fPgw2WwWEwsPky1FUNJbleuy8QQDv5cfgDJYTZDLEVtqHb1EPav17mpi40n6fif7htLhNIN75IdwDn71PEarbE61l1mwlpjFVg0tt1Xh9MstytY/2EB0PCGuM2z6UBNDeydFNsIlrU5ab6/mzJMDTJ5SX+OxlVlw+q2K2pMAXb8aAQ3Wmi13BpntjTCyb1rU7ui/dYvvNX12ltM/zTHbI6t5jeybFj8fQGBbKeRgRMNaQgpHhZXA1lIio3Hi0+rn/cE9E5q+t3NPy616AI58vVvcBqDt7dVMnJwV1U/6fzdGv8D6qwBHhZJ3SbH+wQb0Rh0HvyLL09e+p47IaJyuX6r/foxOI+veU8/gy+OisVl3XQWBbaXs/eIZEaHHWmrBaJERF5PTaU58t1dk2waIrwdAp8PsNdLy1ioGX55g6ox6cmwukyOXXWLuKNQzLjjVn47DqR8q6+4LFZTm40L7kbW6nbxofJIXX3xR9fNdwhsD//N//k8A2nSbF/z3pQhKhdwrOZug61dL5EHLKFVmszlxjLX7LVRfVkb3s8MkZ2Q1pVCv/ADOyL4pwoMxsUWZ1WcG4ZaJwQzr3tvI8L5JkSqut9lB9WXlnP5Jv4iYENjhw11j59T3ZXsnHffUgA5OfEdW53RU2tAb5HodWuZUd4Od0jY3Xb8eFilgjR+fFSs2AXT9ehi9Uf7bzglUjAuwl5sJ7iwjNpEguQpuQpVbSjCYDWKy/Zkn5UqZkdE4Z54cIDwg+1a1vreSFifeBiddv5LxEI59U8MeeAacVTYiQ4nFSS9LwFllpe2uGs79chH7sGXga3VRtcPH0f/oEX0DwSvLcAdt4u97w/saiY7LrPOyqQy2cgs2r0WkQtb3/CgZDecOtdrEVWzy4qy0XayEv8x+Y2F+MtjMLGo9sUTuNXpw7hkXI4LP/7f5uVdNeR29Y91897vf5R3vuFgJcSVoIil9/OMfB6CRtcDK6kkFtN1VRWQ8Qb9gQxug59lxep6VkyzMbhM24SZU2To3tVdXcOr7vWJSVHIyKeXV0PfcmIj4U8DAnnEc5UJGFAobMR2RZSkOnxmyObJCJmOoP0Z4OMZslyxIn/6RNmKHVtjLLKSiMoYsZnCWmwkPCMdIOKtJkcdRaUZnQHy/l7+wOvZwAAPPTzC2f0JuG+YEW6VDbJMoJZ4U7+czozcisv8iCfYyK56gnSHkRWcptGyMAkx3RTRtMudyOYlKIADhkQTZdJaccA924JUJkkIFMkCzZZ7WcdJxTw1Gi4EjAqnO5Ewas8OEs8q2kKRUwBK+sUe/tXLMW2zDzFFppvHGSs78epzkMj+zcKo/F4vhNLmoKK+4ZDnyJ4ZUKkUqpXxsVlN+vlpGPakAW5mJuisqOPurMbEiz6Gvdi/9j0tslNn9Vqwes1h9pvO+WpKzKRH5pwDJIqmAA0JbWABSKYb3TzFyWHbqIZdRFPzEikhyTg0AE6dnNc0Dmgi8GuGutuPwy3NYS6mJbCwjVpOZOa/NU95VZyc0GBVZCQ7tmWT88KTIDu214NA/nyalgQtl95vIpBERqVJRbWTCwv2ikylRX7qrFduwVUEK9vxPec480xNhpjdCTFg0zmVzkM2JbSDTkTRph3z5PrRvktCgrNAW7o9pspnWpBIFOIJWmm+p4vzTw4R61H9ANp8Zm1dI7E/Bvn9YOddeLPcKXubD5DTS+3t1ikq5WIwGTxtDI0P8P//P/3OJpPQnhMK7atSvAVZWTyogeEUp6UiakQOyIuT40VmF7LjYFL7MgTu7zyy2K3EGrdRd5+f808PERmVq2elwmrRwvT9xfFaTis/gyxM4/HISQyomV7w2Oo3kNGxWxqdTTJ4NER6RxdjBlyYYfEleF9IKd42dXCYnIwEZweoxitW20nFF6U4Ks9eI3oD4fge/eg6VJenXjKnTYfb+7QmRjR0ARoXgFBmUNdSyoQ2K3aHeqic5LetLV9BOMpTSXEOR4MyPtR1WnDgdQmfQuFASFr3S4TTZZEZMsBw9OkM2A6Rl/X/i2zJifgGaCEcoZCqz2yh6F8lwGpvPgq3MKiIpdT83Baywjl5kw8zoNFJ3VSmDh+IkZpdeAxY20rLhCEajhcqKSgYGBkin0xhXK0BcwmtGd3c3egzYDErNazn1pAIMNqjeUcbwvimS4Xl7gCpsdM/9XF5/spVasJVbyMRkcaH26nIyySwDGvaEIkNyi13JRn0BmQz0vTBGqE8WU3IZxW0kKVTk0cHiee8KmDgd0nQITWqV+1rgKLfirXeKLfpMTgPZjFxdKjambQ1uKzOTnE2KCBeh3hgH/vG0JpKGFpz4nvzQLeRVwTIsjAsrIYOIwHPh/ZLhjOid2/1W3ELVpteCQ0KCN0BsPMn4yVkS07LCYzaTJZvJYbYZRO8gG8uS1qAgPvjyBPEZ2aBMhTOa+kRKUC3A7DRQd10lg69OiOK61WvGVrrMfLjEfuPx76kgvy2Se5U0O7B4jIyeWj6mz8+9GvTt9Ol6+F//639pIinpcjm5Aasu/6NvMN2rmqAEsP2T9SQjGfZ/Uf3LNzvB0+hi7HBIVYKxLFT81IYb/VRu8bHv70+IyBYbPqBIuYvJBWbEikGXsDh2fa6D6HhCM8FDgupryqi70s/ZpwZEhZ6aa8vxtbjEAXDrJ1ow2gzs+evVIR1d9pedzPZGNKtTSdBxTw2+Vje//5/HRN9C402VOKtsolPhYUEiNwABAABJREFUADseayebzorVhrTAGTSz7oFmRg5OcV7D4ucSFoEwZlbtKqX6inIOfu28yKJu00eaMBj17P3b18Er+YLEQWcwYC4x4q6yMn5s+YlnfuG8pN1Jx11BBvbO0vd7dRshuViM36V+QpIYH/jAB/jKV74if/5LWHV88IMf5J//+Z9x4mGX6SZVBCWA2qt8VG3zcujrXUSH1S8ofO0OQr0RhWhxYe4lTxtXxJaPNpMMp0UnlOx+E53vbKD7mWGRggkmRESJS1gaTTcHKF/vZd/fndJuQyXA1k+2QjbH3r+TxeW1765j6nxYdBrQXmZi48MtDO2fpEuDuqoUnffX4q51sEeokKoVOx5rJz6VFOfM695Xz9iRGZHKROX2EhpvCHD6p/2Ma1QqlGDd++qxlVp45fNyla9LWAQaYua699WTSWQ5/h/qN9sspSY2vr+JvhfG1B3okLLrL2xuMODrcBLqCa9IKpyfe236UANGi4F9X1W/oZeLxfh16jvodDqy2dc/Vl7CHwZGo5FMJsMN5vtUE5QANjwQJB1Nc+Qb6se/0QqOoJ2Zc9FVybsqNnqpvaaCw18/LyIxtNxRhcFi4OR/CjcLjGiyXruEi7HlYy1ERuPyd6ABvjYXrXdUc/bnMrXAsrVuytZ4xM/YeX8d9nKLWGVQK7Z/pp2pcyHO/Oj1P7xTfXU51TvLOPjlM8QF35x/sxdvg5NTP5Ad5Nz4cBPotClnSmF0Gtn8cDPD+ybp/a0GVcRLuBjCmFnS4qT+TX5OfLdHRPJrv6cGi8vIoa+qqKm+1rzLbMZoBXulldnuFTbm5m2UWcuMrH9PPQN7QwwdUEecyIYj7E8+xwRDfOITn+ALX/jCa3jyS1gt/OAHP+Btb3sbZboqNhmvUkVQAvC12Km72sfx7/QttE1aYQ/REbAQn04rZJDXIde6EG1vqyadyIiUaww2Ax1vq6bvxXEZccKAmBxzCYujfL2HmisrOPrN85qJCRJ03FuDwWzgqODANEDdm/xEBmMiNR+DGTY90srgnnEGX379D+TXXFVOxQYv+/7+ddhnWQTrH2wgPp3i9A9lOVTDWyqZOR9h8rR6wr2rxqaoDT01yNQZ4WkODai/sRJPnX1V9sD/PwENMbPhxkpyQLdABctghrUPNDHw4pgm5a0VceF+o9mMI2AmPqGCiDgv92q+tRKbz8yxH6ivoWfDEZ5J/Scms4lEQnYICkCsA9fbqxRbWltbiwSlrR+tZ8NDNQDY/WZ2fKqRuut8ALTd6WfHowqB55UvdGMw6dn8EeV/m52w67NtNN2iePi13BFg12fblE1oYMvHmtj04RZabw3ibrCx63MdtN2leFY33lTJrs+1Y/YpF2/+SBPbHm0pPueuz7bTeY/yTHXXV7Drc+04axQZyI2PNLH9023Fa3d+tp0171K8kZORNOjAUeUEYMMHG9n+F+3Fa3c81s76BxsA8G/zsuuJDso3egCwlZrZ8djCawvkpdJOF7ue6KBql2LLsO499ez8bDuX/UUnHffUsP0z7Wz8UBMArnobu57ooObackBRGNj1uY7i39326TZ2fq4DR6UZa4WZXU900HhTJQDtb6tm1xNz1279ZAtbPt4MgKPGzK4nOmm+XfH2bb69Srm20N8fb2brJ+f14RMdtL+tGmuFWenvJzqw5j0aN32kuWgtBQpBqPO+WkAh4ux6ooPmO6rwb/Gy8UNNbP/MXL/s/Gw7695TDygEgl1PdFDaqUi3bvhAI5f9l042fLDxov4u3+hh1xMd+Ld5AWWymd/f6Oe8J0tanex6ooPg5Up/r3lXHTs/O9cv2z/dxsZHlP521ljY9UQHdW9SfIg77qlZ2N+famXzR5U+NPuU/raXmRk5PIW32bmwvz/RwpaP5/vQrPRhy51BQPH9rLm8HHupMg43f6yZbY8u7MOOdyjju/4GP7ueUN4xQE7PAnb5zs920Pkupb+rrylj1xMdeJoV9uLGh5uKY3bzR5vZ9ZcdrHtA6e/K7SXKmF2veLmuf6jhojG7/iGlv40OA7ue6KByewkA6x6oZ8fjc9du/4t2pfgBeJod7PrLTnZ+rgP/Fi+d99de1N+bPqJc66hU+rDhRuW719t0ZLO5IvFk26OtbP5Yvr+denY90UHTWxVf3ZY7g8Ux6wzYcFbZ2PqJhWO2GCNuDrDriY65GPFRZcwOvDLOwO4JZczem48Rb6pg1xMdqmJE8HJlzJa0rhwjHFX2/PygvLwLx+xSMcLT7OCy/9LJznljS02MMPvMNN9exbZPtbLpI0ofqo0RzqC5OGYlMWLdg0q/SGLE+g/Uc9n/rxNXvXLKXG2M2PWXnex4tP3iMbtMjKi9phxyYPOZ2P4X7cXYslKMMFmNpPPqcVpiROMtyphtu6v64hiRH9+YlX5pvq2SDe+pp/mtVex8rBWzMrTY9EgjWz/WNNcvf9FCxzuC6PQ66m8op/3OICd+PELf72fY8N4AWx8OzvXLR2vouFMZH8FdbnZ8vAZPvRmdzcZ77nsXOp2On/70p1zCnwa+8x1lc/OuW+4Gg4HKLW52fLIRd51yunzNO4NseaSueP3Wj9bT8bYAvc9Pcv7ZUda/uwFfpzKwOu+rZtsnm4vXbvtEM2vuV+JmSauDnX/RSuttQda9t5GOt1ex/dNz3/HWj7ew7n31ADirbex8vL2Y17TeFWTHvFi45aPNxfnEXmZi5+Pt1OZjVvOtAXbOm09yOdCblZTUZIedj7dTn58j6t/sV67Nu/Js/FATmz7chNmlxJrmtwZpzs8RtdeWs/Pxdkwe5eINH2hky0fnfuuOv2hn20db2fl4O8HLS9n5eDuOoNKH6x6sZ+vH5+Lb9s+00f52pV/8m5W5s+VuJTaufXfdgvl726faivGtbK2bnY+3U7bWXfy72z41N59s/WQra9+tvCtPo52dj7dTuVWZZ9vfXs32zyjX2v0mpb8fVPrbEbQWnxug9Y6qBbFwy0eb2fBwI/U3+rEHzEp/X6fErKabF/b3pg83FecTTEoc2vWXndj9JupvVPq7INi14YONbP7IvD58rJ3mW5X+Nth16Aw6THYl91r/UMNF/d16txKXAjt97Hy8HWe1EvfXva9eIR0V+vvTbXS8Q5mTKzZ72fl4OyVtyphd865atj3aSv9LY/TvGWfbo6103q/0t6/dyc7H2ynfoOTinffWsO3TC/vbXefAGbDhacj3dz6vaX1bsNjfAFs/1sL69ytjFotCTCic5Wi5NbCgvzd/pLk4n5g8yviue1MF/s0l7Hi8fWF/P9LEpkfmxfLH22m8KT9mr69g5+Pt6IxL93dLfk4OXqGMWbtfGd/r39+gzJf5MbL9M220vk3p78rtJex8vB1Pg/Ii1763bkF/o6P428rWK2PWl8/FO++vXTBmtz3aypp8zunw22i4MUDFZi8AHe+oWZAvbf1E60UxwuQwMLh3Al+HS3OMWNDfK8QIq9eCbt4Kd+fj7apixPr3N3DZf+mk9Y58f6uMEeUbPLTeXa30d2O+v9XEiI1uTB4TnffVimLEjr9ow1KqPL/aGGEPmNn52XY2PLxwzK4UI9rfXs3Oz3Sw8/F2GvJ5pJoYYc3n3jVXlSljtiw/ZpeJEb4WFzodzOZP7q4YIx5ro6RNWfusub92QR1g2ydb6LxfudbX7mTnY23zYkQ12z7VSkmLnbbbqtj0SDNr361c6663s+PTLVRu9eT7MMD2Tzaj0+vQ6XVs/UgT2TTs++og9jIT2z9STXC7Euubbixh2yPVxWfY+L4A6+9Xxqi53EZrSyt6vZ6hoUuHFv4UEI/HyWQyNDU1FQlKa+8P0PkO5TswWmHLh2qp2q6MleAuL1s+VAtGOPT1AdDrWffe2uLf2/aJZmqvKQOgamcJ2z7RjNGp/N0199ew8QNNdNxVjbteWds23KCMHf9mD9sebcWa/4ba761hYz4WAmz5eAuNNyvPVLbWzbZHW3FWKzGr7e7qBXPP5o8005KPb6loGp1OOeUNCvlo/ne86ZFmWu9WxrOr1sa2R1sp7VTGusNvY8vH5r63jQ830Z6vu9kqLGx7tBV/fo5ouNHP1k+0sv2T7TTdEmDDQw3FWGj2Gtn2aCtVO5W6Yd11FQvi5vqHGtj2qTbltxuVuSh4pdKHwSvKlGvzc+fa99QV14Nmr5Ftn2ql7vqKfH/72PZoK2avcnHnfbVsyM89oMxbDW/xY3QaqdjiZdujrdjz6k3t99QU6x2gEIQK80lpp9LfNdeVKWSeu6vZ9OG5Ppzf354mB9sebS3WD1puq2LXX3bS8c7afH830ZbPOZ1BK9sebaVsndLfjTdXztWXAINZj6VEGQ/WMpPS31vy/X2Df0Hc3PBQA2vuV+YTozPf3/m8vebqhf297oH6Ys2o0N+uWht9L41hK1feq9GqTK5r3l03ly+hzFv1+f6u3FpC81uDuILKJNFxXy0bP7BwzDbkx2z5BmV8O6qU/tabdAs2ijd/tIXm25Q+9LW52PZoazGvabkzWOzv9ntr2PFYO613KfOJu97Otkdbi3lN821VbPnovDH7oSba8/OJ0WZg26OtxTmi4aZKtn5irl82fqCRjvyYtebH7JZPKN9D3fUVC/p7/fsbWJOfv41WvdLflyn9bbTryeVyxOMKgWTte+f1N0p/115TGLOlSn87jTgqrfjaXAvH7Cdbi7U0f37MXhgj+l8ao//3Y2z5mLYYUdLqVMZsS37MLhMjbD4TerMOdMq7a7oloCpGWEuN7PxsB9v/Yi4HUhMjjFY9wSvKWP9QA2vfk1//qowR1lJjsb8lMaIl/1srNqqPEc13VLHj8XZctcraR22M2PZoK1seabmgv5ePEU23VJHLKTa2Gz/YSHu+zrlSjLC4jKRjSs1rxRjx3nrWvXdef3+yhZqrlby96rJStn2ypWgFuuZdtazP56egjNm6a3x0vL2a9tsCbP1wA9YSpb/b31bFhgdq5vrwQ3U0vMUPBgPl69ysvb+e07+YYOhAlNabfay/r7x47cb3VNB4nfLtljRa2PygH3e1Cb3Twe233YFer+cHP/gBl/Cngc9//vMAXHPZtejMZlxBCxveG8QZUNYVtVeVsOaeQPH6znsC1F3jY/JMlLO/HKX97mpljshlqb2qlPXvm/uOO++rLdbErT4zGz/YSOvtQdpuryJ4WSkbHpqbpzruraH5VuXbNDkNbHy4ifJ1yjgL7PAt+Obb315Na37Px2BW4l3FJi+g2PNsfLhJ2fxGsTw0WuYOG258uInAdiW+la/zsPHhpuKeVvNtVXTcW4PZYSCbVUgTwfy36Wt3sfHhJiwlSr803hyg8/65WuD6BxtYe38dmx5pxtPgYOPDTdj9yl5H/Y2VrH13ffHadQ/UF2Ohq8amfKvXKd9Y3fUVC+apte+uo+FGpQ9tFWY2PtyEt0lZizW8xb8gL+i8r7ZYE7eUKNf6OpQ5ObirtLiuN3sMdNxTU5zrDbYL+nvrwv5uu7ua1rdXU7HJiyH/bvxblHVy+QalDw35umLLHUHa3zG3NtvysWa2faoNW5mZsk43Gx9uwpzv76ZbA3TcOxeHNjzUSPAKZT4xWA0YrXoMJuXaxpsCxf0hgPXva6A2HwvdDXY2PtyEI6DMEfU3+Fn7nnl9+J566t6kzN/OKisbH27CXavkNbXXVrDufQ0MvjzJwO5x1ryrrlgzspUrfViYk4NXli3s73fWUrHeiyNgxexR+qWQt1ft8BX7G6D9HTW03FHYO9Dni7HK/6rccnF/t909b337cBOVW3y4amxsfLiRTR9uxmBT+qXltmAxtwKlRlAcsx3KmC3kkU1vDRTnelDyp8L87W1WxqytXBnfDW+pZMtHm4vf5LoH6qm7Nj9ma21sfLgJZ1CZZ+uur2Dde+f6W2/Sk8vvxzkCSn97GpQxW3t1eXHtAApRvvFmpb899Q6a3lqFrzU/Zi9fOUbYSs30Pj9avE+xvwUxovXOIG1vW9jfS8UIR4UFvWmu6LXhA42qYkTDWyrZ+dl2aq5SxqzaGOGqtRG8vJSNDzcV8xpVMaLFgclpoPrKsoX9vUKM2Pihue9TbYwwOw1semQux8eAqhgR3FXKlkda2PDBJgI7lP5WEyOcQSs6FKL4xoebsJXl+3uZGOEIKvvEBSV2cYyY14eLxog8NyB4pTJmrSVG2u+oYu27aml8s/IMZpeBDe+rxZevpQW2elj/QI1yGN5goO3uKnRmE8d+MIHBDOvv81PeqTxDxToH6+/zF5+h5S0+Wt6i9Jne6aCzo5NUKkVXl0xQBDTYvd12220A+Ev9kD8YEx1LkIwobKt0Ikl8JkU0z14Oj8SLHwVAZDRBNqlcm0wqLyU8orDow8NxRc45T1aIjsTRmXREhhPMdsWITSUJDUXzfydGbMqu/BEgOpJQFkZ56Iw6XHm5tOhYnNhUkmSedB8ZjpN2zv302ESS8LAioxudSSjXzuaffzC2wOYsNpkgPKRcGxtPEptKEp9WTiIXlF2K144nir8tkf+7sQmFSRYaiqG36klF04wdn8FoMRDLS5IlZjPKteNz15pdpuLfzSYzmOwGjE4TqeFIvl9ixWut5ZbitdHhePH0Z9Obg4plWP7a8FBswfNGh+ML5BILf3ftfXUY7UZiU0myUWVRHR2KY7DPBcPY5NwzxMaV31ra5qakwcnU+TA2zxwbLzYx79oJ5drETP63DsawlpiL0pKxibn+jk8n8/2SLD7/fJpdeCBGNN9nyVnl2mi+v8PDMYz2uWQwOhonEU7j3+al8U0BktE00VHlXYVGYgvH7EicbCI/BpLK353pijKyb5qqXaXYfHP9HRmedyKkML7zYys8EsM1Yefg184V+3v+hBKbSjKbvzYyooz3VP5bCHXHMDnmnj82mSjKwsVG832Yt9cJD8WKNoc6vY5sOkco76Uam8z34VS+XwbjCzyKY+MJwsNxnH4b2XRWuTavPhMaiKEzzhsfY/HivyVmUyRmk5jtRnQGHZHhOKZ5dhSRkTipfIxIFfol39/T5yOYrKYF12ZT2Xx3Z/MxIlZ8j45KJUYc/pcuOu6pWUASnf8tKH04L0YMx9Fb9PT/VrGOrNjgLfZ3dDQfIyK54nu8MEY4q21s/mgzXc8Mi2JEdCLB2LGZ4ruZb+GzVIyIDUdIR9OkE/P+7mh8xRhR1ubCv76EyESMWN6uMhtNrhgjbJVWNjzYwqtfPKH0t8oYAeCqchT/rrveoSpG2Eqs5MiRmM0U76MmRsx0h9GZ9BjmxykVMeJw/mRYbCwujhGYIRnJKdeqiBFV273oDDpy+VM7oaEYNv8iMSKXg6SO2FSSyEicmZ4ormorrip7YcgSHYktjBHT88b3aIL4dLqY2ERGk5jnP/90knDe0jA2kSQ+nSYeUvrYmHBTUVFRVEW8hDc+QqEQVqsVXdgGJIhNpoiMJ4txNTQcJ5OcG5PRsSSh/BwRHU0SGU+SmCl8FwtPLkZG4sV4nJhOEhlLMHluluhIEoffWiQPkcsRGYoV41AqliYyFic6prTN5nIYrHoqt5YwvHeK8PC8uB/NEBmLz+V7Q3FshThkUr7VQtxPpSAyFieSvzY6liAyFi8qeUQGougMOqbPRtj7hdOse7Ce8PCF1+bnw4HYgjgUHY+TCKXIpXJEx5VrC7Kz4aE4addcHIqOxIvfW3wqgU6nwx2ci3fZeZZqkZHYXNyfShIZixPPS+E6AzYy8+aI6HCMSD4OpSIpImPxBbmh0WrAHjCz8cFmYtPJ4vtKhpU+LMSw0PDC/Do0HMPiNlG1rZTQcES5dnQuv7ZXzotDg7E5S7gUxGaS6HQ6oiMpIiNxImPxooVYZGhhHIqOxYvPNH48hMVtJhXN9+FAfEGuEh2LK3kGynwXGYuTiqXZ+HAjJqeJ8MDcadjIaHxe3Ff6MJGfZ0NDcXJZGH5FUe/xNbuK7zwRSi/o79DgwlwlMhxjfDJJ969GsJeZlP7O92FkKI55Xq4SHo4Vx0MqrORts93KicXQSBxrmWXBtYW4n4oq7zEyGsdoNZDLUcyzQMkT5mPh+Fb6u3DQMzIYQ2+5oL9HLujD/CccGoxh8ZjQG/Rzf2vogmtD+X4ZiJGZl1OEB6LM9ir9H59Unj8xU8gj4wuI8ZGRuWc4/K9nabolSGyi8G4WPu9iMSLUF2P6bISqXaVYbHP53koxwl1nZ8dj7Zz6YZ8oRkyfnV1gAxIZi6uKETM9ESxeM+ER5d2pjRF1V1egM+uU/o6kiv2yUoxoenMV8akkU2dCC3LDZWPEcAxfm5uG6/yc/F4/4aGYkquwfIywlljQG/Vk4vnnT6VUxYiJc2Gy2RwWj6nY32piREFty9fpUq6VxIiU8ntCAzHS82TuF8aIFJGxRHHMOoO2BTlNZHQuTiVCyrXxqUKMiKMzGZg6E6X3xQlc1RZi48q/pcLKtbHJ/PgYiRcLgQDh0TjJ/PeXiqeITqSI5tdCkbEU1pK542mRkWQx9qcS0Li+idNnTvPAAw/w9NNPcwlvbHzqU58CoMzjh/zhyPBQomj5k04r30IhD49NKPl8QfkiNJRAl50bv6HhOJG8rVpsPEloOF60AQoPxolNJ4mOJJjtjhEeihMejUEuV1wTpeO5/DPESYXmVDKMFj2+Njfnnxomnl8npPMxITQvboIyZxTWIYlImtBQjHj+G4oMxxecvAwPRYmMzMWh0FCMxEySMz8exL/Fi6feOXftQJRY/u+kohlCQ7FijSAymsDijZEIpZg8HSKby5HJKy9m48ozFOaT+d+4ct80jnIrFpeJ+LTyDAVruthYYsG14YEYOpPy/LVXlGOyGZVYD0Ty12bj2WJ/z88Nw0MxIsMJ2u4MYi+3EhqMkk6ki3023zYuNBibyz9mlP4u7/BS2pxl9MgMucyF/Z1fd4bS+T5MF+/prLExk88xwgNzcT9deDeFNd7IwrrKxMnZYtxPx3PKtfn+Do/GsfjmcsPZASVXcdUqp7sToVQxB4qOxS/qwyLSyvgJDcSYPB6ipNVJyG8lnc4Wr51few0PxYpridhEgunucNHCOTwQJ+FY2N/RfB/G8zWKVL5+MHU2jG3e84cHo0Tyz5gI5cdhPq+JDMWLhCaDQU86linOJ8lw/tp8bhgeXDhPhQeVMequdZBLZxf0d3QkjmVe7XV2IEoqovzudFrJKWylFnQGZcza5vVhaCBKNlWIEfm/mx/fsz1RrB4z5OeQcH90Qa4SGooRmdeHoaEYpNOcf2qYTDy7INcKD8XmcsMlYkTBrq201V2cv9XECFfQztr31HH+6RFRjJjuChcVB8LDMQzWeXPnEjEiPpEmPh4nPc9KbXYwtmKMcARt1FxeTqg/SmR4Xv+vECNctXY2PtTCwa+eUfp7RF2MgBylLU7OzO9DFTHCFbChy/eP8ndjqmLE+NEZ9DY9BuO8d64iRpz6nqIUERqIiWMERkgX+nuxGKHTLVi3lbW5MdmNxXp8bDxBaHjuXYYH4wrpMI/ISILIWJKp81EclWY8NQ7Sqbn8OjkvNwwPJ4jk61jx2QyR0RSxvPpYeDRJOj7/2iSRfA6XCCvXFmq62YiZQCBAMjmXm13CGxsHDx7EYrFgjLmAKKlomtBgnGR+HbFAJYl8/pSPD4mZjHJtqJCXx+fqWCjfUDy/Z5JJZpgdiDHbFSY+ncLsNBb3TCC/bs6T97LJHLP90WJek01nsXpN+DpcTJ4IERqMkcuP+0wGZvujxbgfn04y25//bgxKDJhfT5/tjxbXeIVrC/ulkcE4epue2HiS49/qofGmwLzfmmK2P0o6PldPXxCH+mOkYmml5BwuXKv8e2R4YRya7Y8RzcfNZDhDLpvDFXQAY8p/nxf3Q/0xopPKtZlohtn+aHEfqrTNU3yewrXJSCEO5a/Nz8nR8QSh/hgGm4H1DzQRHonNWaFmlGvj0/k5eSIx14cofWj2mqi9qoLEdCr/bpRnSkwp/zuT/33hoRh64/x5No7BqCM5m8RgMSjXJvN7QIMJEvY56eDQwFwsnO2JMF5umevv4diC3zo7ECMylp8PQ2lm+5Wx23xbFfYKywIFrNBAdK6/I3PXgpJ/6I264vWuanuxHzKxhf0dG0sQmpcbzvZHmTwdZnjfJAabId/fc30Y6p83vuftYWUyWSbPhYvjPzoZv6i/56PQ3zqdjmwG4qMxMsm5fpn/zYX65+3R5sdstvhu4iRn543ZgRixfB8mZvPvMTY3vh1+azGPCw3Mzd+pcCbfh8q10QssrKfOhogW3k1U+bvJcD6vGUugn0caDPdHizHi2De7qbm6omgdFhtLEnIvHyOiY0nCAzG8TY4Fe/grxYjYZIIN72/k/C+HRDFi8mQIvW1hf6uJEeEBZZ+vsE5SGyOCO8swu4xKf4fn9fcKMaLuWj/xiSRjx2cw2YwLrl0uRljcJgI7y+h5ZkTJVfI52nIxwmA1YHIa58ZwBlUxYro7AkYdFo9prr/zfbhcjJjuCjN5MoTdb1nY32piRD6PjIzEF6h2LxcjvE0OzPZ5fTgQWzxG5HLERpOEXHHiU2m6nh3D6TcXLXMz6SyhwdhcPJlMLdgnCo8kyOaMhe4mNJwgnl/DxqdShIbn1bpHFs7LjbWtHDtxjMcee4zvfe97SCC2ezMYDGSzWa4x3IXZrN4zcfOH6shlcxz4iqLElE2+Rq+NFWQbCydLun41Mq/N8j/V7DOz9ZFmRo9Oc/Yn6iXcC0otEiuhPwZKWp24a+30PCOT4K3aVYrFZVzYlypg9pkxmSEy/Pr3i9lnpnqHj/6XJ0XvoaTdScObKjn9o17CA+rbVW4vwdfsEtkYvBY0315FLpPj3M9W5/Ttatq9uRvs1F1dwaknB1flGwpeXoq72s4Jofz42nfXkUlmxe0Cu3xk01lGXp0WtdMEMzj9FsJ9Mlk9d4Md/8YSzvx8QGSlVtLuxB200/ObN76st6veRqg7tvKF87DriQ6iYzILSWuFmcYbKzn/q2Hio8t0pn4uGdbipW2oVOa4QCdUb/Nw7LsjhAWxdp/pSSYmJhgaGqKyslJ8/0tYPfT29lJXV4fD4eCyzB2q27nrrHTcWUXXs2OMHlaKxrmUBq+N+fnWMnmU3W+i5ko/558aFFl/rXuwHptPbs3kCFqJDKj3cP5jIXh5KbP9MUI96uTpAUx2PTVX+xk+OEF0SDYvrma/VGz2kk1nxRZerXcHIQenfyiz12i9K8jUuTBjh9TZW74W2P0m6q+tpPt3I+J3oAWrbffWcFMlmWSW3lWav1vfFmTyZEhkF+OsttF0U4Bzvxgi3K9+/jZ5TAQ2exl6eWJVbAjtfhOpUEZ8r9rrKohNJMTjueaqMqbOR0R98seApdRENibrl5ZbA5St9bL78ydWtpibVxCrvbacTDK7sqXjPIktTbmXXzm1ue5OB7l0jsPfUr82jqWivBj/LhaLhVjsjf3uLgHKy8sZHx/nKsvdWI0O1e0631GJzqjj2DeV+U1TzUtl3gWKiorBZGBwj3opdoyw49F2hvdPitZwRqsevVUvsof7Y8Dut+KusYlsSUFR6rGWmGV9idIvRodeZLGkFUarnoqNXkaPzhaJJmpg91upf5Of7mdGiI6ozxFLWpx4W5x0PfX6296CosaiM+gYeGF8Ve63mnZv1jITNZeV0/f70VUZK742F54GO12/lNVwG26qhFxO3M7X5gIDTB5Xb43yWmCrsBQJSWphLTNRvqaEoZfHScfV5yaOKivOSisj+6eFT7n60NIvWz6et5D8zgp1znl5l9Gqo/Y6P4Mvjy87nnXGuY1aNORd+tq82qYnRv3VHk7/fILwiPrv55T713R3d3PmzBmam5tXbnAJfzQkk0ksFgt1dXW0jV+tup3ZZaDjrkp6Xphk+qxC7shqsJlZgGVyL5PTQMWmEkYPTBU36tWg4cZKPA0ODn5ZZsFpKTGTmHpj7zWCotwSm0wQW64GfiEM4N9YwkxXpEikVAuzx0gynF4VSztXrQ2dQcdsl/p6HihqMHqTnr7nx8TtwsNxmb2fRhhsBqp3ljJyaFr8DrRgte3eyjd40Ol1jB6YXpX7BS8vJdQXKx4GVAOzx0Dt1X4G9oyLvh+DzYCv2cnk2XCR0PV6wuw0kMkgvldZp5tULCMez74OlyKCMvbGjn8FJTFJv1Rs8lJzRTkHv3pe1K4sr462kk1cwflMeUDD0hcuAX2NolrVtBn0ejjzS/VWkJlMhmfD36CyspKBAdn6Smz3ls0qybylo2OFKxciOp4ostFUwwxbP9aEf7NH1g6FnCQhKBUw2xspqp6oRfONfrZ+uLlo0aMWwctLqb/Bv/KFfyBMnQ6LCUoAg7snxAQlUEhbUoKS2anIxZnnne5Qg4r1bgJbSylpUE+cA5g6GWb/P5wVEZQAKtZ68TQIXzh5K7Z5thhq4Wt2FWUG/9xQ0ujEFbTjmneCWw2ab69aYLmlFuVrvXib5O/u6L/3iAlKALVXVlB7ZYW4nX+btyjhrBpJxAQlgNmuqFKcE879UyfDq0pQ8jQ7ipaIEmz5eAtr7q0Xt5s5H2b8uGw+iI8mOf7N3uUJShegwJpe/2Bt0f5ULcLTkJhNi3QRdbVVJMJKovLggw+K7ncJq4+PfexjAFhy5ejr1I//XDZHbCpFaFBGWGm62U/nfdWFP6K6XXQkxanv94s36sePzzJ1Su7FvO5d9UWrKAlabq8q2jetBgZ+PyEiKAGkolnO/2JIEzlGC0HJ1+kqWmJIUHtVBfXXykmOp38wICYoAfha3ZSvka0JTB4TOx6bsxFTC0elHU+DE2dAllf+qaC01U1ZuzDHQLFrKFjtie7X4qZUeL9wf4xD/3xeTMYpbXNSfVk5nmZZrmfymBSrNNPK185HdCSliQzV++yoJsJd3/Pjq0pQqr2uomjvpxb2MhNbPtRC7TWynGbsxCwTZ2YxqXkH89b2vc+NrUxQurB5NkfFRjcbPlAvagcQm4WIsGBmr63PW/288cm1lwCTk0oxztouW2uGR5IiEkgBa99Ti6/VKcq7AEb2TctJNUYYPTbN5BkZmaBqZxmbH27B6pWJsfs6XUW7ptVAdCQuJigBTJ4KifsSIB3PykknRvBv9hYt/9TCVWun9mo/XmHNKzoS5/i3esRjs6TFScUar6gN5K3YCrbCApR1uCnvlNd+/xRgr7Dia3NjK5WtQap2+tj6yVbxWCntcFGu4d11/WJYTFACqL2mgtqr5DUvT5MDT5N6ImgBUiIOQHw8Rd/vRkUEJVAUTVaToGSrsBQtPyXovK+WNffVrXzhBZg4NsPECRVr8Xl5VzqeUxT8JLEvX/Nqeaufmitlc0IkYyM2mSYrOGKfq/GTnlXu81//638V3e8SVh9f+9rXAEiHfNAiGMd6RfUhOi6b3yo2eYu2RBKkwhkGXhgXEZQAps6FGDs8Lb5f211BWu+S18CrdviK1kOrgcmTIRlBCSADI/umNJFjkjNygpIjYMVVY1v5wgtQfVmZpj2dgd0TYoISQPl6r0L8FWLDB+dsxNTC4jZStsaDvUy2H/engrION2Ud8ppX5ztrizZaEvg3+IqWfGqRnMlw9slB8fdjLzNTd50fl7C2bbAZ8LW7MAjDQzKc0USGGj8+q4lwN3kitKoEpdJOd9G+Ui0MZsUWunKjV9Qu1B9l9NC0qA0ofbkSQekiZDK4ghZab/MXbQXVIhozEhmXvQN9Yw3kdIyMyNcSopVOOBwGQCfnNnHy+wtP3+jNphVPlpU0OjHZDRgsi9xPp1+yiFO+0UNZq4sT31XkTtUSlJKTSU3KMQN7J0klsiTDsnZV20vRm/V0/1r24rY92koynBape4DiIzl5PsTA87Liy7r31DO4d4IJwakYs8/Mhgfq6X1hVKQgU9LhpfqyctKpjOg5+18aJzIYZ6pb9hKcNRasXktRDlktDv+L3FsRFCm8TEIe1F/5PzKFiQJ2fa6D+GySA1+UsfW1wN1gZ+399Qzvn+L8U+oVn3p+M6qJ6BIdTRCvToIZEblGenKhAGuFGVeVjbGDsg2l49/tKUpPStBwfSXpWEY8Njd9uInYWIKTeblntei4p4bp3ghDu9UzZM1OaH9HA0P7J0X9UrbOTfMtQc79clDULrCxBF+bB7NvVKS6NbBnHItbuOsIHF/pNNkSqNpVijto4+T3l3gH+oszg1w2h8VtVjVdFVSUAEKDcPhHEcCK5EPoCLyFV7u/wdmzZ1W3uYQ/Dn77298CsKbiBlG7UF+Cw/+2cAzrTMYV1ZTsZRbMTuPiOZZOt2RO1XJrgOneqHjTfWiP+pgzH/0vjRdl7tXCEbRSvtZLMpIWkXn8m0uou66CE9/rExGOyjd4KF/jEasuVm4twVlpLVplqEXrXUEsbhNHvt4tatdwnR+9SS8+/Xz8m13oLPKTGWVr3cz0xUjNyBQm9vy1BpWhVIbYZKIo86wWY4dmNBFIGm8K4N/kZe8Xz4p/nxZs+GAjFrdJrES2929Pa7pfdCwu7kuA3RoVonztTuJTCaIj6vty+MAUsbEEM/0ycmDlBg81V1YQHooxc15928qtJQR3lrLvy2dXVv+ZB1+7k/K1Xk4tlSssgeDlpbiqbOI8b92D9RjMBg7+kywPDmzxEZ9JMirYoIuOpxjeP8XIYRlRYPpspHgKWhVyOWVeMkHrzVWMnZxh6tQS7XUX1xOMVgMWhxFHlZnI4PLzSUFFCeDsb5R76N0usrPq42ZFRQVTU1PMzMzg8fx5bsT/OSCdTpPNZjHohNXbbJbe5xYqwKipedkqTFjcJkz2xWpeS+dd7no7pa0uup4dKdrMqUE6jiZlnLHjM+RyEBcqKQW2+LD5LAwK8721760nHc9wUnhIqOmWAKGBGKMHp0XtGm+uZOLELDOSk/JG2PBAA/0vTTAhKBo7K6003BBAbxhm6FX1cXLqfJij3+wqWn2phbXUiMVtlv024PxTw5zXMFa05AkAh7+mrca25eMtxKeSHFsFFXCj08iWDzcz+PIkfb9TX8OaPB7i5eMnxfeLTeQt59MyYs2ZH6t3BpgPo9OIK2Bl6oysrnrqR/3kkvKaV9NbAmQSGQ6dk7379ntqSMwkxYSquusriIzERcqeGKHlrVVMnAgxeUr9nO+ostJ+dw3dvxkRxQdfqwv/Zh/Dh6ZFZKyhVyexeOQ1r25JLbaQd6GoZ7mrbUu2X6CiVEA2h63UtMB+cSkUVJQAEmE48WIWcAHqY2Zj4CoGpw+yb98+1W0u4Y+Db33rWwDUle8QtUtOpTj31MIxqLdYVlRTspdasJUu8b0sk3sFtvuIjiXEm+7T5yJMn5Nv1Pe/NE46IoutBpuBqp1ligX9uPrcyxm00fiWSs49NVS0kFfbrrTdRf8Lo2QE5Tl3gx1XpY2B3bI9ysAOH/Zyi9hppPryMixuk3g/7+zPBtGb5DUvZ9BGYiYpJrRp2rMyKDasBbsstYiOJNj3D3JVo/J1HmqvreDYN3tWRYGp6dYAzoCNQ1+R7YOf0LinExmOK4fBhdj/JW0KUY6AlVQ0rZDvVCI0GOPYf3QXrSjVwl1to/HNAU79ME2oT/3BN1etjepdZZx+clBEVrL7LZS1u+n9nYyw52124Klx0POcbL+44cZKLB6juFYW3FFKIpQSxelMEvp/P85sjyy2x8aS9I3JCYygKK3N9EYX2nTPwwIVpTwMRrCWmLH5zCsSvwoqSgBDJ9KAGcp8IJhLAv5qhsf6mZycxOdTT0oXkZQeeOABAGymEgB0TQq7OXdu+cWgu96MM2BjcPfCYv9KRZupk2F2n5QX0SvXe3FW508XCdzs6q6vIJvN0fecbKDMnI0wIymo5vHq/z2NtULObE6EUqRm5RsfziqFMSwh/5h9Zlw1dkpDaRFJyeoxojfq0RtlhLaRQ9NkUzlmzgo3hpKKUpQUTW8JYq+wMn7kuLitFpz+kSxIvlZMnQkRGl2d09bxsTjT3WEmTssVMbRgcPcEg8Jk9rWg7fZq7BVWMUlJajFWwJknB0jMyAt8Rothgc+rWnibXJhcRhFJKZkER8CGr9El6pf4ZJx0LF30QVaL87/s5/wv+8WE0OFX5KdpQSEx1uwq58SP+0VEuIoNXmwl8tj+yt+cWdF+ZD5BqQBnJXgCZgYOuMnOLP396Wrnkg2fswaPx8P09LT4OS9hdREKKXOv3aIkdwU1pWzP8vNJYLuHmZ7oRZv7KxGVjnyjV3ySH6C004vZYxIRO0x2PXXX+xncPU50XJbX9GuwgogMxHn1/54klZL9vkwyQyqSJi5c9Jc0OHDXyk8Hl6/zYC+Xk5SMVgNGm7yAcuIHvZrmDeWdyfPRlluDzHSFNRNBJUhFsxz+qrZNLy2YODWD0aEnFX39CUoAY0dmsHpX75Tk8W+tjs1xAW131jDdFZYVmFKIN2IBhvdOEhmNM9Mna6s36dGbDdg9JlEcK2t342txKcpNguHibXTi8MvV4BIzKYwWeWw/+C/nSEzIx/P5X2izqA5eUUo2nVNPYM3lAB2lHW7QszRJaREMvDTJwEuTK+de/otPz/o7TYTGUkRZnqikC8y1DVbWMDo6ymOPPcaXv/xl1c95CauLwrtx2fLvrjmvHnd2mfiXzWItN+KssDB+bOEYXKnmFRtNabI9KG13UbGuRKx4Xb7Bg96oY2TftKhdbDRB36j8YNGxf+/BLFRfAkjMJEnH5aSHkmYXBqtBRlIyQvkaL7lUTjR/WJ1GDBYDepPMxig8HOfEd3tEm4AApCGsQTGz5vIKfG1uXv7fcpKMFgy8uDp2bQWMHpohMbM6p63T8TSjR6eZOrc6Na+pM2ExYei1oOE6bWNFi7IRwOmf9Gv6zk02A5mEfM1Tvs6LrSwmIymloaTJRTqaEZGUErNpkqEUaeEh1YE944zsnRQrPmkdJ1avEf8WHwO/V2mDlycqlXW68dQ7ZCQn4PC/9q1o/TafoFR8Tjc4y/SMUwLjS9f3cjVz9TKr0YnX62V8fHVj0iXIcfToUQCctrz6cUFN6cwy+43ZLN4mO9GJBMnphd/ZSkSl7mfkKg8A/k0lzPZFZSQlA1Rt9TF+clZEQgBFTUSKTCzDgX+U76XmsjkS0ylxHcMVtFHa7hEfPve1uClpdIpJSiarAZNdHv+7fj2E0SrPRxWSkXyear09yNTZMF2/WgXL3Ayc+6m2tbcWhIdiDB+YIiWwHn4tmDgxS3TkNdo4CiAlxrxWtN1Zw+TZEN2SsZJBk9LQbE+Yk9/vIzws26vUGXQYrQYl/xKQlNzVDsrXexl4ZVLUzlPjoKTVJX4XiZkkOQEXpIAT3+sVEwpBUYPTAl+rC/SKCp0ElVt8GMz6JUlKi2H6fJTp890rWr/NJygV4KnUEw9nSbA8USlXN9c2GGhiYLiHz3/+8/zVX/2V6ufU5QRvrrS0lMnJSTZU302lt33uQVYgKa19VxCn38Ke/3Mx43Glk2UrYomNNLMTkiHZoNz+F+2QzYlVazrfVctMV0QsM38Jfzg03lSJt8nJ/n+QqYK4G+y4qmzid7f+/Q0Y7Qb2/73sfiXtTjKJrNjLdsvHW0hF0ppPl0lx2V92Mtsb0aQsJkVpp4vmtwY5/6shEdHF7ISSNi8jR6ZFBJK6N1VQudnHgS+dFJFdPM0OHOVWMTGq6a0B3LV2Dnzp9Vezek0QKlL9KcHs1NN2V61YEa7+Bj/BnWWc/EGvqN2yfbmIitKFWG6zbDGS0vq7XFhcel79txnVJCWAp4/+dwBNCdwlrB50Oh2g481tjy347yuRlHZ8qpHwYIJj37nYVmtZNSU1BKWlxoxws718g4eWtwY5//SQyJrD1+miYo2Hkz/u18KR+dOAsC//GNjwgUamzoboFZL7K7eWEBqKidSsLKUm1r+ngb7fj4mIpyY7eBrdjJ+aFfVnxWYvddf4Of6fPZos9KTovL8Wd62DPRoVh6RY+946DGaDWJXVVWdHr5eTgDY90kR8IsmJ78qIaZXbS5jti4itDzc+3MjYsRkGXry0NvtjIbDTh6vKJrZ23PZoK9lUln3CNZ3JoSO11LBcREXp4kuWyb0uJCmZYNt9Xqb7U5z5TUQ1SWlw+jhHRn5KQ0MD58/Lvr1LWD1cdtll7N69mzU1txL0bZj7hxVISo03llHa7uTVL3VfpGy0bM3rNeRdRquijCTBhoca0JsNHPiS7BtreIuf8FBck8rgJfxh4N/ipXyNh6PfkNVorGUmnAGbWKG5+bYqbD6zWKHTGbSSyyk2WRKsub+OdDLDKeHpZ63Y/pl2ps6FFNv71xl2v5X2t1XT/dyITLnUCCUNTkJ9YdG3XrbOTc2VFRz7j26SAvUzW4UFR4VFRuJBsaUraXJx7Fuvf/3wNcGISHnuTwpGaHpzgPGTs8wIlADK1ioq56d/3C8iYWHSLdmXi6ooXYhl8q7FSEotl5lwVxrY98O4apISwDOH/5psLn2p5vUGh8FgQIeR69c/vvAfViApbXiwhtBAnPNPX1yPWElNaUUsNWYMiDgrdr+FznvrOP+rIRHpqKBAMrB7gozwgO+fDIR9+cdA01sDzPbJFeM9DQ4SMymR0pDBDB331jP46oSMoGYAV5WN6EhMpGblDNpouMHPuV8MrQoJqOaqcio2eDUdztCCujf5sbhNnP6hLK+0+szojIgt2FruCJIMp+kRkiC9TQ7iU7KxAkqePtMVYezIpbXZHwveJgeOKhsDwkPUnffVotPrOPZNWd5sMLPkN76YitLFf2DpPcnFSEobb7Uy0Zeh72BKNUkpmpjixRP/wFVXXcXvfve7lZ+pcH/VV0JRcWE+QQnmFJWWwukfD3D+mcU3MPRmE3rz4gns9k+1sO0Tzcs/1GJFx1xOTFACeOV/n+Tgv8pJIJ5aJ6VtQo9Ls0KKqrte6GtqVhacrN6h6VVF3Zsq2PRhuX+9IpEuZ0TPdkU1kcuyySzZlHyMtd5WTdudcj/hTCKr6YRR402VlG9cJTsBMzTfXoWrXubxm4plyKayYlWdiq1lNN8cxL/OK2qXTmbIprMIwx8zZyOalJssXhMmh1x2ufGWABsfln8LmrHKBCVn0Iy7wS5ut+3RVtqEntzJZBZXjZ3yTtm30P27EV79vydkBCXQTFCqvqqUyz7XhrfVQS67ML4YKv2LEpQAzr8U4uSvlaRU73Gj91w8H11IUALQ5Q1pe3tXVxnjEtRjaEg5DWPUXzzpFxSVlsLx7w3QtcSpA53JiM50wZyZy1K21smuz7ZTvmGFb0W3RFFRSKoZOzTDq/9whuFDstMHZe1uSppd4vu13F7Fxg/J46qrzo7dL4/jrwmrSFBa92A9NVeViduZXSYsTnnuNbx3Skz8MehQcoW0LPcqXVtC6+3VYi/6bDJLJpEhl5blXq46O/VvXjxWvx4oW+um+kr5u0tHM6Rj8l2atjurablNQx6bypIRWpWAooQoJSgBmJwmrG75YmnDBxoJ7FQvSfwnBROUtDkVAqQAtdeWs/UTreLbFeO0EAf/pUtMUAJIRXKLbyasQFDa8uFGtny4kVw2d3Hu5a9YVEWJFJx7IUL383O2b3r3xb91PkEJoMrbCcDIiLbT25ewOjh1Sjmw5nevWfgPBUWl+chmlf8Dep8f58zPFrdeW7TmlctCLsuG99ez4f0Nyz/UEnmXlKAEcOirXRz5Rre4XWm7R17zAjY+3ERgW4mskVGxs5Ppvv/poHyDh877l6+hLgaLy4xZw9wWH0+JCUqgKImmNWyMNr81SMttF5MMVkIqliYdlde8KreWUNLiFLfTiuCVZTiqZIqG2XSadDxDTlhDLGl00nZXDd4WYR6byZHVYL8WG02ICUoAZocRi1e+VgpsK6H9nhpxO81YZYKStdQoHiug2F023CBcT6ShrMODT/gtjJ+cZe8Xz8gISgCpxfOulQhKvlYH2z/RSEmzDS7Iu/S1wUUJSgB9R1OceC4/6ZWVKP93AS4kKAFYjIqqcWFuv4Q3HjKZDNlsFotpkXVDyyJz5bzc69SPBul/efGNU73Fgt5iuei/2yrMbPlIMyUtKyheL1XzEobW6EiCA/94lsnTsm/MU+egfJ2XTEY2Dwe2+mh/u3y9bvWZMXvkCkWvCatIUGq8KUD5evn+mK3EjNktn99muiIarND0ZJLKHpkEriobbXfV4BKquGfTWVLRjHh/01JipmKTF1ZpuDiDNsrXyd9dOp4hLVDvKaDhRj9Nb7l4D2UlZJLyvU1Q7CC12OZZvWbMGuqxTbcG8HXI6zR/EjAo9nnSselrd7HmXfK1mafeQcUar7jdqR8NiAlKoJ2g1HZXFR33VEMmo/zfPOhrqhYlKAGc3R1n8Eh+c6LMp/zfBZhPUAKwW5T87PRpmaKfaCRns0t/aLqmuiUVlZJhGD0klyicOh8ml1ERKHX6uRNouRzb/6KdmXNhTgmZkgBJDUFh91/JrcLMTjNkc+JkI7itlPrrKjE9MySyZaq+pozqneUc+063yH6q/gY//k0lHPjSaZJh9c/a+a5avHVOXvrvsr5xlFmwaJj8T/ynNsuQ5turMNsMYssRrQpD3b8Z1sSA1+RJC/g3+XDXJcQWZVrg8Jnxr1cCkWSMzXZFefX/yqVIR/cq43/qlKyIMvD8hMjysIDyjR6CO8o4+K/nRISe49/URgBxlFo0ecpv+nATFreZPX8tU2NY/2ADRodcHWzTR5rRG2Df38narbm/kWwqq+ndqzgQvxBJxLGo0C6p5cSKGXZ8sp2xYzOc/3leclWFgtL02RC+JgepWdk8FF5EEVTvmbN+W4ygBLBhw3oOHjrA448/zre//W3RPS9hdfD//r//LwAO8+IkBH1d9ZKKSqE++UmY2GSCmb4I090qVFJ0umJhsuGmSsra3Zq+59SMnI2jKHPITz3rdEvXmpZD2+1B0OvY+wXZ79v04SbSsQxH/rVb1u6RJmLjCbGP9s7H2wkPxzj6b8IT9iUWbOXy9/Dq38iLvSa7nvZ31NK/e5ypU+rlDKPjKU3EhYlTYXT6YWbOynKF8aOzmjZpKtd7KF9fQvezI6tCNAvuKsNaYhbbH0rHVgHnfzmoqZ1Wy73WtwWJT6XoFcrHvypUxS3A6jVj911czF4OJruerZ9oY+zoNGcFMuv2MhNr3i1XB/M02mm7q4auXw+LTnQGt5dSd42fkz/qE6k45DL5TSihuptUeaMALXMCKCRUT52DvX93Zi7Qq0gYJ9XWGy5qd/Fz6t1z1m8XEpQKKC8vx2z+Mz1t9GeCmRnluzIuVuxrrp1TVLqgNpaOw/R5uc33+MkQOqOK5GRe3gWw8YONzHRF6Pq1nPSW1mDPIM2BAKXamMstKUawFDx1DjreVkvXr4cY2T+tup2v00XDmyo59cM+wv3qGVzlGzxUX17Oif/oJi5Qnam7XlFo3vf3J0WEMVuJBXuZbK4B6P3tKL2/lVtQVO0qxeI10fULmeVI1y+1ESq7fqXNckSqvFdA9RXlRMcSq2KLZrRCzWXlmMx6kVJUfEKbKnqoN8y5Xw4yLVSwnDwekik25eGut1O1vZSzTw6I7Ma6fzMqtv0CsJZp+xba3l6Nu9ouXns23RLAXm4R5yjt99RgshvEa7qOd9SRy+Q4+BWZemJeSFmMlz+vwdIxrW1OANj0SDNjx2fof15Zh6hRUJodTDDVFSE+Jat5xRdblpXNWb8tRlACWNO5jr2HXuR//I//wde//nXRPS9hdfDkk08C4LYHFr+gpW5OUemC3Cs+JScgZBIZxk/OEhlVEcPn5V7l6z34N5Zw9FvdYnKNln2goVcmGXpF/b5fEXo0xY/6N/mVOCeMj613Bsmmc5z9qaxO0HJHkGQoJbaJ2/BQI+HhGOd+Jss17OUW0lF5rNO0/2eAxhsDjB6eFtkyZZJZmc19HtGRBOeeGiTUK1uHREcSnBQqXQN4Gx3UXFHO9JkQSQ0WWVJUbPDirrGLFYO02g/3/m4MvZq12QU4/5RGu/tdpaTiGUYPTIvaHdVw6ATAUW4lPi7nP2z5aAvDB6dE/Wow6+m4p5ahfZNMHFdfX7WUmGm7K0jf82Oi/N5da6f1tmrOPDkgs+XMKpaXBqGdXc9vRsUxDBDdYz4CW32UdrgWxCU1CkpT5yLyvVQgvNirLpuzfruQoFRAZWVl3hVEPVblbNKmD9YyeSZMz3NLT656s+kiGewzPxZ83Do9ZJUXnE1mSAlPBztrLHTe20DPs8OM7JsWtdWC5GRSbCsHMHYihMluZOLItKhdKpQmFU2TmJV9BLlsjlwmJyIogeIXatDLR7+ULPRa4a61Y7TIPwOzU6+QF4QxXevYslaYyUaTInsygANfPUtWQxKmBZHhJAf/+QwRDUQ/R6VZaSdomgxn6f+ttoTD7DOLCYnuaju2UgtWr5m4UPJRC7SccAWYPBXCXirf/EgnM+jN8m82MZPU9K33vjBKOiIfm1pIEK8Fmz7STGo2JVuYJBXFj0wiH29VEJQAwoNJDv/rHKktl82h0+uWVFAqwgwbb3Mx1pVgYN/c2JxPVFoMuowXgFdeeUXV813C6uPZZ58FIOheJ2pXfXkJvhYnh7++/JyqMxkV67c80TsykOD4twTzcL5oo1Xtr/O+WgxWPUf+pVvcVgtO/1gbwaL72RF0BvkiNTGdIqUhzmVSWU2FrMlTs8wOyjdItRI6tMDis+Dw23BUWEUkJQCTxyQmMKRmUgzt0VDcM4HdYyI6LrvfmV8OMbB7fNWUsI5/qxu9TX6EzWQHTPL+nDypcQPQBCaTnlRUNq49NQ6snhSrpff38v+Wb+6kollmusJMnpFtBiqnFrMg/NRTsymS4bQ45o4enQUdhLoFxRqg7/lx+p7Xlm9rgX9zCTVXlXPoX7tE4zMVz5Au5F25nOrcq+uXC4tKxdxrMQWleajeasEbNHP0Jwvf+3yi0mLIZrOMjcksMi9hdZHJZNCtpLi7yOG9jrcHmOmKMrh36QJ6seY1z+JNpOo8b7MsHc+QFBY4jU4j695VR8/zo5oIDGKkEW/OA0QGYnQ9M8TEadmck45mSMykxBvuubzqTDouazd9PozZYRQrWmklG2mFp96B1SuvDxitetLprFh9RmoJW7yf0wjptLg/D3/9PFkBoea1IB2Hg18+Q1wDqcPqNSrtBE3TcTRbLBqdRvG3YC+z4Kq2Y3KbSMdff+uXrl8Mo4XGPnFylqQGUnM2qW2NlZhMkknI8+2eZ0cvUmlUA61Eb61ov7eGTDzDGeFaOR1Lk01kIZdDZ1IXY9LhNGeenEeAzOZAr1tSQWk+Oq41M9mfYeTMvLlvHlFpMVipA17k0KFDqp7vElYfP/vZzwAod63gpHJB7lXSbKe0zcnZX44uSxrSWywLrN+SMxnZpnI+98qmc8r6S1j2qrmqHIvHJCbxaIVWclP/i2PoLfLafnwySUZDnMuksprUGseOTBOfksd/rYQOLTDZDHjqHYQGoyKSEiAmSYBCbtJE1DaA2WYQE41GDk4xdWp2VQhKAD3PjKA3y+uxBjPozQZSwueMDGmQqgUwgMGgF+cZnkYnqUhaTFLSisP/ou0A4diRaWZ7ZLWkTDJLNp0lJ1TET8czxKdS4ppXZCBO16+HCQ/L3uHk6ZBY7e61wFVjo/bqCs78dIDkjPpcPZ3IkJqnOqvK4g0YvXAtkcmAwbCkglIBvloDJUED53ZfsA8+j6i0GHJZHRNTshqianZGMqk8zHIFm6XUlIw2PSbH8rfKpdPo9LpiAm92Qs3VfgZemSI+poIQkMsWE4e9fyv3tjTkiSpZ4UnK4OWlVF9Rzonv9jIrWYyb0WSvlJxM0q3htNzIvmlNBBmtjECt99OKLR9vxmA28orw5IhUNaaATR9uJZvO8urfyAgTnffXEp9OzamrqL3fQ03EZ5Ic+KJMUWk1yDTzERmW38/dYGfduxoY2j8p6hdHpZnmW6vpfm6EmbPqJ8nqa8qou9LP2acGRGP03M+GxEx9UDxiy9d52fePZzUptUmh5XsF7YpPWttJlOAuhNmJmLC36cNNoNNx4Iuyb16nX9qKfDkUyVQ6XX5+UrfYC17hIx3PMJLf4NB7PeTicXTWZWTCk0oR2eq8uHAW+l457k8v3sybXA88x/Cw7FTtJaweCu+m0tm55DX6+hqy3QuJRVaPEfMi4+EiZDJK7pXPcSs2e9Dr9AzvU6nqkf84ep8dpfdZDbEnvxksxcaHG8kksuICrskOKQ37JloUdQCO/4e2+KhVdUYrCUsLHEEr697dQP/vx0QqPuH+GHv+p0zpD6ByewmNNwQ4/dN+xg+rfx/eZgfVu8o49eSgiPDQdEMA/6YSXv2HMzIiTwoxsem1IBXNgpD4A7Dm3Y2YXSZe+byMoFb/Zj8mq4EzP5GNta0faYVsTlG5EUArMXnbo60kQinN35IUWg5ZpKJZTepg0fEUB/9JrrCamkkx8KJcSRSYs4gTDG1vs4PW26s5+4tBmXITOciByQopwb5s99Pz1seC3MteZqJ8g5ee58eKv0/v9ZBLJNAtYhFRgMlhwGRf/O8P/Hs11Y8tnvNPTc6Qza2y38wliGHQL6MG0VIHpy6OLWa3EZNr+dwrl8miMxjIFewvjVC1vZTJ4zPqFXzyNa+j35Cf7DZatK1rSlqcNL45wOkn+2WntAslQOGQT8ezmmpJs91RjnZ3i9tpVU+c6YpqJuRoQed9tVi8Zg58STZ3nPi2tnx07XsbQId4zmm4wU8ynmFAqPK44cEGEtNJ8dhOCtSv/hCQqG0VYHQa2fhwCwN7Juj7nfo1k9FppOnNlQy8PC5SBytpddJ2Zw1nfz4gGtvDe6cY3iuz4QbFtq3mKj9H/r2L2OjrT24aPzKrycJQi/Lca2kntlCbB6NVbunZ/o4ajFa9+BvS6XVi0jzMI1PpDeQyGXQGdUSusk4n2UyOyVNKHddQVgrRODn78tZ4ZrsOi+Pi2kHm+w70jy7RJq3YCQ4NaVO4uITXHwUrvlLnMiSl1no4uZD0bHYasXpNK5KGcum0knvlLW5ctTYMZj3TavcR8onTxPFZkRLIXPOcpgNvzbdVkcvmxPsQBvPSlkDLISxQB5yP3t9pO3wh3RcrYHAJe7/XAwabgQ3va6Tv96MiwnAqnOHAP8rX+a4axbbt7M8H1I9PwFZmpnKzj4GXxkTEofI1Huqu9XPkG90kJOp2GVaNoAQK0UXLmG54cxWOgI1DX5HlseXrPZjdJrESU8fbazCYDWJC3PFvaXPr6by/jnQ0zekfaVMilULrt35cwzokE8twWoNDViaZ1RSnizAgIqJafWZabg/S+9tRkXJT4bySwSQjho4dmZlTFNPpVOdeJuf/n733jpPsKs/8v5Vu5Zy6ujrn7pnpiRppUA5ISAIFJIEsEQQCIxZsbMDg9Xp/adf2Gi82eAEDNiJjQASRJJIAxdFo8mhy7JxzV1dXrt8ft6rDTId670iN4DPPH6Duuadv1bnnvuc973nO8xjw1NkZOz419y4ZAn6YTZK3rlDzMrNk3gUQ+44P+8eWbjczlSWdTpPNZjGUmBuW3BNPPPEEAAb9ylKsuvoL/ft2f7qD0z8tbSFW3Kzytrgp2+TF31yCn/KCk2iKAxxR+SmhydMzvPRPx8W2WJlUllwqR0LAegNoe3MlV/73dSpZSYDoNX42PFQja4TaJ84aq7id4tCjOORM6sgOH9Fr/OJ2Wz7YwPaPNIvbTXbEme569eWdixjYN0b/Pnli5IzacFfbxO0G94/T96J8Y2HLnzXQcIfcR1ULFIe6KSR97lO9cYYOTzB0SNafFp8ZW9CCQ+jxPn58ipEjk4yvUUFxsiPGzOAspGQZVd3tEXb8TRuKTxYkHJVmbc9cURW7xM0cegIbXOJ2ldcH2fCOGnG7rX/ewJYPtorbZWJZTcpN+/7PaU0+sYpDj71sQX/mS6v6VL7OT+XrVGsvg89T8v32fGOSM08v3jSY/A91vp765NK7ioriwGg0YrPJY9IlrA1mZ9VnajIts1lWkM/U11Qu+vXpJ4bZ85mOku9TTGordwSpvHppa7kLsGCXyxY2LbtZuxKOfrtbE4kgFcuQjMmJIFs+2EL7e2rF7doeqKJsm1fcztvs0NQvZr9pnhRQKkxQc3MYW1jW0BZRuOLjrUSvks3dqViW6Z4ZpnvXZi6dOhtjcP84k52yk2iOiBVHua000t4CDB6aoH/fmFhpKHqVny0fWOUU6CuI+tsimsZ074uj9O2S55Xuajvuaru4Xf/uUfp2r11BcbJzhomzslNeANv+ookN764Rtyvf4SfQLs+FTDa9qmolhKPCii0gtwRue7CK0BaPqI3Zb+J1H2uj7qZlLBiWQWo6RSaRFVupDe2bYM+nTxIflMd4W0RZHDtLyL38bS6i2324K9UHUWrude7pOPv/88K6Qfdn3QD0fGLpnNrn9QHzSomX8NpCkRxuMi5TNynKljdfGHcPfql7ReXwRX+mYInjLLdSdVUQb6NT9kGNYNEQAxKjGQ584YxYRSmXyZGOZ0jPyN7LyitDXPGRVhSPTLna1+ak8e7VVTXOh8VvxBaW1QZAJQMYLfJ8zdvkILTJI27Xcn8lmx+pF7ebODvDxOm1O+Xbt2uU/pc05Aq1djw18lyh94URTZuPbQ9UUXXdyup3ryTaH64lLJxLM7EMPS+OMHpctnFishlwVdtxlMlqudN9Cfp2jRLrWZs8fbp/lolz04tOd5eC8FYPl324WRzPLH4j0asCcm8II+J4BGp8cNXIE7bAeheNd8lrc20PVLHpkSZxu2QsTXJaXvM69q0uTv1YftjFaNFj8c/3Z5EEshoqr/JTsUPNhwyhEmsPwMGfJek6sPj7ZT+v1llz/7L0foDRaMRkMpFbQgHxEl4b6O1VN9gVZZXcq6Vu0a8HD0xx+Julb84Xa17ll/mpurrEOWNBzUtxGDBocB/oeXaEU4/LSQTp6QxpDe/zurfX0qQhh6q6NoivSZiPAvaIRVO/mBwGlRAgRGizB8Uti+MGq4HN728g2O6W3SybZezUFPE1IN8CxEdS9D4/QlyoAmP2mPDUOzCuIhByPiY7Z+h+bpjklGy/ytNgp+UtFZqenxaENntovEs+pgcPjtO3U64I7aq24a0tgY9wHgb2jtO3W+OhMA2YOD3NhFAlG6DtT6povEPen54GO65aeS5kUPSaYoTFp6C45YOs+voQngbhOsQA2z7URHS7rC6ens2SjqXJZWU5Rqx3liPf6GRWg+2e4jZgWLjdWELu5SizUHV1EFthPbGaangRg6eyHP31hfEv9ln1/2c+sXSs8nvVv//UU0+VdB8QpPTf+MY3ALCaVi/ALqeotBTymQsnXJ1ex+CeSeLDCab7V5kIzis+Vt1QTnijl4OPniLWK3jQGpWNBndPMLh7Qt7uUKGN8J6+OieOcjnZqPGuSixuhZ1/Lzu9vv5ddZgdJnb+g6xdxRUB9Iqe3mdkwXm6dxaTBtuK0xoWVKCSatKzWfHpsM5fa1Or2fUJDR7hwNkntSmdGM1GTf2pFXqTHsUiXPSn4JQG1u/o0Wl2Hj0qbjczkOKEBjZusN1Fw+1RTj/ZJyIzDh+aYlig+lDEdG8cV4UNUrJFScXlQfytbrqeGxEpN7XdV4W3zsnz/+OI6H7N91bhjNoYeVn2LLx1DuwheRF54MA4FpecTKXVPg+0KTdt/NNG9EYdu/5pgUpFCaf6j3yni+Ro8oJNsnxCnfhXVFRagCJBqYipT6ZxfeTC4p/b7cZqlc8pl7A2yCyRI83hPH/fpRSVlsUSSazOYODQl89gcpVQJD7vGP76t9eRnsmw/99kc6lWZaOj39R2Inzw4DizpahzngdXpY1cOic+Wdx6bxUjxyY5+YPS5ziT28TWRxoZOjjOacGpOXvIQvllfvK5PJ2Dpeco2VSemcFZZoSFkPRkmiMalPTCW7xU3xDixPe7ReoD8ZE0ZzR4vPc8OyJSeioi1jNLrEdunWe0GDCY1y7vMtoMmCzy+2m1DjmowbYHhHZGC9D+nlr0Rr04T5e8cwsx3RMnMSGPEZVXBUlMpkQqXwBb/6yJ+EiSQ1+SkTXXP1hDbCDO4a/KSNSuCjuZRJahfRMlt0mOphk5MsHocdmYiQ+m2SdUr1wEE2Llpra3VtP17BA9zy4Yb6vkXgN7Rhk7M81Mb+rC3KtgDbGSotJCFAlKRfR8QrlAUam2tpaRsSG+/vWvc8MNN5T0dy9h7fD4448DYDUtQUw+L++iuXZJRaWlkF+icKkzmpjumuXgV86SFm4ORLb4qL4+zOFvnhOpq2BErGoEqmLQoXNyUvn46SmMZp1Y6cZdbcejYXOg5sYIzgobu/9ZphLYeHcVjjKLWL2v/HI/Vp+ZoQMTonZTXXFSU3IippZDawDr31lDNp3jmFDhU/q9itBi8QdoUvABlchj0HAoQCuMFgMGDblXj4YT6LNDSfF4BpUUpcVS0BG10HxPJR2/HhSdRI/1JDjZI8+94sNJpnviZBIyQrOv2U3llUFGj0+SECiYVl8TInKZnz2fPkFGYBFYeV2Q8EafWA1WaywbPDCBxS+veZ17QrtCthblptY/qUZxGNn72fl3vpRT/cd+0EsmlrmAoKSLqx9gNUWlIooEpSJy/xJD/5cX9rfP58NYoiXKJaw9xsfH0Z2fYxVx/u9b6i5QVFoOS+43Ggyc/klvaWSO82peTW+uJJvKckyooKtV2ajzt9r2nfr3jJHWcEDX2+xEZ9SJLY9a7q1k+NCEWGVl48P19O8ZFdUJDFYDVdeEMBj09O8RkJqzeSY7ZpgdlT2IbApNbjaOqJX6WyOceaJPpFCVnc3KvlcBE6dn2H9avu5OTWYYLFVFfwGMigGTzYjBsGRp+RWHyWJY1aFpKUx3zTKNvKZ35ifaVL40We4BdbdFUOwGjj8m26vUqio22TUjyoGKqLo6RHI6LXOSAta/o4b4SFJM1my5r5Lpvrj4eXibnORBpEZGFvpfGmX8rOwZZmez4ue2CELlJsVtpP2hOrqeGWJowd70arnX+LkZDn+zk+RE5gKCkm5WrXmtpKi0EEWCUhEzn0hg/9jivC0aLaez/zA///nPufnmm0v6uyW/4acLwc5uCZZ0fZGoVPt6P6F2N0e+3SMiDen0OqY7ZQQlgIH9Y6DXyQhKwIYHanBGbbzwd7KNdsWnoFgR32/06DSjwhNsoN2buuu3Q1hDpQ22hejbNYrNL2938KsdLEeCXwlayCqg2oBkE1kxGSQ5mdaUvDXcWc7seFJMwtKKlvsqmOyJiy2ypPZ3F4NUTCMJS1EJMv17xxg//uqrYSk+hYabw3Q9P0Ssu3Q2fCqeJRlLk4rJxoviU4hs9tC/a4RUrPQkYPjApFjZDeDsz3vo2TUstpbr3ztGRoNlTOfTQ3jr5YUX6YZcEVrfOcWhxxwwM90hS1A3/5d6LB45wbP3xRF0xiUW2qtslk13XkhQKgWb3+pCZ9Cx71uTFxCUiliKqDQ2Nsbo6Nox/S9BhvxynhzLFHGKRKVtH6ghNZPl0FdkBZRMUk96NdvOJT5Tz/MjpOPyuXTrn7US64tz+OuyjXZHhZXk2KyY4LTIDkiAF/9R21za+fQgEwLJV4B0PM3AvnGGj8ri/0xvggOPniYuPImRHE1ryi1NbhOh9S6G9o+rlmOl3m8qRXIqTTou25xzVtuIbPZw7pd9mohtUnibHQTXuzn5fVle2vnrIc1Edi048T1tC+Ky7V7sAYsm4pcWlO/wY7IbxH2TGE9hMMg3Hn1tTvRGnZg0pLU/X/7aGdIaFPL79owRH5Y37HpmiJkBecFNi9UiaLeStEUU0vG8WJFsx9+0Mnp8SkQ2m+mboW/3KGMnl3jmK+Re6Tik4xcSlFaDK2qg+SYnPfvj9B9KXUBQKuJ8olL/OXWtMzS0dnHiEkrHkSPqYQ2b+TyS0nKbZwWiUqjdSdU1fo7/oJ9YX+nrS53RxKwGe/bxs9PoFT0xIcG49qYwoXaveM1udBgxWnQiMgBArDdBrFce4849OcA5DYe0ep4fxhbUcAhm7xhWDTWvEz/sxShvRt8L2tZe3ibVImnyjCy3TIwmyQpV7QDKX+cnE89qJitJUXVdiPhoQmzjdXCNrF2L0ErArb21jNFjU0x1vPqJrNECldeEGTo8yYxggzSTzJIYT5ESKtYaLXr8bS5GT8bICOpl012zHO+SW+b2vaTO99KYNHJ8ilwWMhlZ3Wtg3wTxYbmSxpmf9XNGg6WRVqsSowVMLrPYcq/5ngpc1XYxIa535xjGJQiCq22WJUYuJCiVgtbrFUxWHYeeSF5AUCpiKaLS2NjYyoe/LuH3imQyuTSJbLncq0BUar0vQiaZ5dSPZTl1LqsnOb5K7Fiq5vXCMHkNhIwN76pnujcutm0zexUyMxmyKVm8WuvDSOd+PUB8UB4fe54bYbJbTgg49JWzZGdl73M2lePsk/JYbFD0uOvsTHbGyc6W/vCzySzxkaT42Zm9CoEWJwMHJkT30wprSMHX5KJ354iIKDFydIqRi7HUEqJ35yi9O+W5s6vWhj1koX+NLAI9DXYUp4mh/ROidsnxFNmknPzuKLegN+qZ6pLllVoPEB7/QZcmwmXfrlGSwnoQQOdvBklqONRx4AuyA45FaBljoCobZVOI39mtf9bI8OFJugSE1FQsQ9ezw0vuM6yYe2VZkqC0GhQ7tF5vofdwmpGO7AUEpSLOJypNj6qKW/F46WOz5Krv+LjKrHQopSeSuvpqpnsTzAwliZ13cj2fySzJai6i+oYA2/58BQnkZeTbYz1JTv+ob/lkZhkMHBhfuqi5ClrvrWDDO+W2DtEr/dTdJpPNvxiMHp2m53fyk+QDL41rUvFJjaXExC1Q1Wr8bXJ5yerrwtTcWCZud+jRcxz7jnxRHGxzE94ot37Z/pFmTXZ93kYX4Xb5/f4QoDgUvHVOgq0eUTtHVOGKv26l8vrSiJNFOMvMeBtd+JtlMp+Tp2fY939OMylh4gLBVicVrwvia5PdT/EpRK/0iy0hUzFE5Ksixo/HOPlD+ebc1Ln4mm7IelsctL6lQtyu9U9qWP+g3BJnYP84I8eEc4NOR9/OMXqfXSbBWcF+pPnN5bTfv7y8ZD6RmFNVWoiJ3hSTfallCUpFnG/9tiwJ5hJeM7jgVNkq+Y2+ppKJc8tYHWWzKx512fCuampuCS//x5cZL307RzUVQ4ZfnmDgoPzkzoa319DwxsrVLzwPjW+K4NRguaoVvc+NMiPdnEvD2Sf7me6Ub2DE+1Mi5RFQ7abKtnnFllPBNhfV14VxCu08Jk7PcPCLZ8VWTr5GB4F1Hkxu2aRYdX2Q7R9txuSW2UgEWlwEWtxy270/EITaPQTWC+XOgXVvq2LrB+XrnvBmDyENefPJ7/dy7LvyPL3upjJqbpCvC7zNDrylWI2fh/hgWkzEAeh6akhMpAI15kqUyC4W1TeFxDZxABsfqqfxdvl6d+TIJMNHZHNKelZHx6+Glo8ty+VeJtj8SC1l7cufrsknk3OqSkXMjmeZGsgQG84uS1AqYqH1mwX1PRgc1EaavYRXF0XLEYvimf/lanWl5lriIykmO+IkphaPk3w2t6SKUhHBDU42vLNGbFmUGM2oBeasrOY1enyaof3yvKv2phAbH5Lbk/nanJS/TiabfzGI9SY0EWrGT8bo01CYzsQyJEblG9+uGpsm66iaG8LU3rhCnr4MTv+0XxPpK7LFR3izR9xu43tqaXqz3EYitMlDaIP8fn8QMEK43YtfaO1odBjZ+ueNRC6T5VBGh4nwZh9uYZ6eGElz5OudTHfJiND2qJXa10fwNchyKKNFT2C9S263mEFMUAKY6UvQ/fSQWFFudijJ4N4J8f20wl5uoeZGuYVhzc3ltL9TXvMaenmCwX3CuUFvYOxkjKEDS+exK9mPRK/00nLL8mNFF0/MqSotxER/lom+7LIEpSLOt37T6XSX6l6vYWQymQtJSqvlXi11jJ2OM7HEIdTV9hvr3hAmss23/N9eZqxMnJ5hUngADVRlI+m6BmDdA9VUXivb7wAov9yHNSRXYtOKsWPTJISHpEEliGsh6qcmM2KihEEBT70dg9BpxB61UHdLBEeZjAA/O5Li1OO9YisnR8RCZLsfs0tok9zkpP3hWrE1lrvSQWSrD4Oydkrga4lAi5uyzSu868ug6voQbQ9UidsF13uIbJXfr3fnKJ1PyffVKq4KUn29PFewhc04yuWHOlKTWU3kueGXJ8VEKlCVqbQQILUiuMGNp15uV73ugVqqrpbHapVwLxSwyekY2j9BanLpOW6l3Kvp7nJ8NcsXuHWzyTlVpSJSCRjvzRKfWJ6gVMRC6zeLwQPA8HDpCnslR71YTE3yPHbZYnM0GWDkvBPyKyULRZgcRgxmPTq9jnzuvARhhQ3e6NV+XGVWjj3WoyY1JSaiWlVLep4bVi2ZhAhv8WJ2mDgrPMG88b11KA6jWIq6/o0RTBYDx4UnhGtvDqMz6MREpQ0P1UBObrFU94Zy8tk8o0dlJziOPdaladHhqrWRnc0ws5pyxHmQ2t8VkYplmB2XJ2E7/15uawaw42/aiPXFNStwiaDA6/6qjfFTUxz7bunjLDWWEluMAaRmVcUJqVT66NFpnj8qvx+KalE2fjYmsmns3T1KcirNyAnZJlRks4eK1wVJTadFCmHBTW6qrwtx/LFOEVHQVWuj4nUBTv+oR6T4FNjgony7n0NfPyfql7rbI4Q2uHnxn4+L2kW2+vDWOQFZLOt5XluslqqXFRfTZdu9+BodHP3mMpurS5zqN/g8KF5zSUW6fCKxyPrt3HOJVQlKRSxUVIpEInPz+yW8NqHXLxgPJRKwzx61XGj9VoIOr2I3YHaY0BkMFya3K8yxLfdVMHRkkjGhQqRWFZfeXaNMnpONW5PbRLDdSz6PiABkcpvY/N46el8cofe50jewTG4TjW+M0PvCiIhMYHKbqL0xRM/OYZV0VCIcFVYa7yjn7M/7mTxb+v18LW7qbomQy+VFFlDDB0eZHUuK5XBNNrCV2USfEbQrFCUnM6Sm5cpNp37Ux6kfydVjmu6N4mt08aLGPFGKdW+vxhGxilUxDmlUHUhOpMUHQQD2f07baSZb2ITOaBCT/Y7/oEfTuqD+1nLI5dlz4pSoXdsDVWRTObESU9WNIbLJrCi2gEq4TM5k6fqN7J3Y+sEGZkeSHBXaFES2+oiPJEUxAgqxukOeY4jfvcKYbLq7nMnOOIPLfc6lci+nB5PdiGJbvTibTybnrN/ScTjxi9iqBKUiiopKgXCY02OQTss3Vy/h1UexkGY3F4g1Jca7mLOcUz9dHFdXIicVYbIbUFwmdJjIC1jG/jYnrkob534xKKp5TXXENam49O8ZE9vCAoQ3enGUWcTKQY13lWMLmMUKOeVX+FHsBjqEhf7wVg8GxSAmKtXdVoZB0XNKqDZXd3MZOr2O/UIr0+M/6FneEmcFWENm8tmsmFC19zOyubCI2fE0iTF5jNvzKVmNs4htf9HEVNeMZqtXKbZ/tIXhoxMya62MNjXDTCJDciJFUqj+nhhJa1ZPdFRYSIwkRNZfk50zHP1OJ/EBWXxx1dlpuD3KyZ/0iNaRjgoLta8v48wTA8QHS/+gloCJyDYf3c+NihSfHFF14/jcrwZF7cJb1ZrewS+fE7ULtLgo2+an5/kRkSXLwN4x4kIVJVCJmuMnBfmaXs2Z3PU2As1OzjyxNPF6qVP9hlAAs9+K0bp6zUsXTyyyfus/vjpBqYiFikrhcPiSevhrGLlcDpNpwcZpifPc4Kz/Auu3UvYbFaeRdNwornlFrw4w1TkjJnFqsdMC6PrtIPFR+ftcfkUAnVFH75BgzBug/Z21KqHqUOl7owYFKq4JM3Jkkpn+0mOxQdFTtt3H6NEpEcFJcRuofX2E3p2jxHpLfw7WgIWGN0Y5+2S/iBQw1RXn2He7mBkS5sAGsPoV1V5OwOkYPTqlSUkvPZshMZYSk7cG9o4xsFeuMlR+uY/IZX72/tsp0ffTiqrrQ/ibXez/vEzJUot6FkBiIoVRg62v1M6sCMVhQK8YxGS/c78a1FKao+aGMHqjTuxoUHVtEPQ6kfIPqOSffDYvVt+KbPeRSWbFB6Jb3lJBYiJDxy9lXIbyy/3ER5JMCBVru58e0hSrxQpfhYddfrmP+GhyWTu7JXOvcAiz14phbPXPqZtNzlu/ZaFrf3pVglIRRUUluyI/mFcySSmVUl8Up1Je8h8HcIXAVe6l+1nZpHz6x8sMpBUISqAm87bAgo3aEos2Zdu92EMWsfyiVtu2fV84jaKB2KzFux7AW+9Ab5IH2GC7F3SISUomh1HT5sDJH/eA3HFK7IdZRNtbq0jHs+z9V20FGCm0Ss5pxXT3DGOn14iAkIJY/ywjUhao1tuNpdj7r9qktrUg2Oam6U0VdD03RPdvBV7LKcSS5QD9u0ZITqcZPi5ra7QaMJgN6BUjEvZPoMWFt86JvdxGSlCgcFXZsZdZcQQVESkqOZ0io4GBffSxLk2xU2usDmxw4W90ceIHJWw8LsgOQ+vd2MtW8bxcYrPs6A+1LWA91XoCHXrO1JQWQItEJZPJRHYtTKQvQTPmSEqC1UdZC8TyFqY6ZYvpvZ9ZRuJ5lfnc26CeCpaSlBreFGH4yKSYsCLdmAdIT6bZ/S9HNVmFpWcypKZlmwM2nwlXlZ3JzhkRScldaSXQ6ma6b5Z4f+mLFpPdgMlqxCBcTI8dHyeXzTFxSqhaEofxE/L8InJFiIodAV7+RocmtSgpBveNy08GXwTGT8UwGOX2ZFoxemKKtFDu/GJwWrhOuli03FuNwWwQ20/EeuRWaACnftwDGg5amxxGDGn5Aia80UsuJScpeRqcqtSzMBamYhmSU/Lxsvf/HEcLp0ZLrAaouTlMrG+WkcMl5MAL5kZfswujWb88SQmWzL32flmQ1y9A+UYzsSkYd5V2fc8nFCr+Wj1ll0yu3anASygdU1PqmLMqHlHeZXGCe7OLwf2ydVvfixP0vTghagPga3TibXCqJCUoueblbXRgC1vofU6msB3rSRDrkZOUjj3WxVIOLqshOZHRdKrbW+9AcZvEJKWyzV4MZjlJSXGaMCjyOf/0z/pAw6aC1MKpiNb7Kskksprt1qU4+X1t1qlaMXpyiunutVMXHDs5Jbbc04wMHP6abBPpYmAvt7D+wVq6nh6k70XB5kkGTQTIqbPTnHy8h6lO2RrSYDag2E0lEV0Wwhm1Ed7oY+LMDOOnSl/H2MsseOud9L80SkxANkrHsqSmtVicDNH7wpCIKAbaLTYdFRb8za7SlBz087E50Owk0OJalqQES2+Wdb44C8hzdYcfzH1GhspLewZFotKlmtdrG/l8fp6kJMi9PGFIjihitZrjjy1DJFgljwqt92BU9GKSUmSbj6neuIjEA2i209r/bydLOZ94AZKTadJx2TrRYDXgb3YRH0qIvp/iNhLZ6iM5lhIRMwwmA4rThF6RJVGxwQQnf9gjJ9xnET83AF+9k7pbIxx/rIuYwHJVK6a7Z5nuXhuiNsBUzywmx+SaEJQAJjtmyGuwLdaKof0TDDGxZvervSWC2W3i0KOyPD2pQQQDVItGLesQk8uITkPD0EYP+bw8pnkbnWQTcpJSYiJDalLeN4e/dlZT7NQaq4Mb3STH06WpTC2YG8ObvKp7xgpOP0vlXkd/pm2/3lthIDeTJV6iyJRKVHKg0+mYnS19vtTlS2SSlJWVMTg4yH/9+H8v+Y8DGE2g0+tIJ/Mg9H1+ZbHy1zTaDOh0OtLCEyp6kw6dXkc2+fv8bpdgtBrI5/Li56A36sgD+YxssjPaCvcTnGpRb6hTh6KQwGW0Gchn5d9PK0x2I/lsnkxiDTIOHZhsRrKpLLm0MOnQ6+B8pbUS2pisBrLJLDnhc9crenLpnGwDS6/DaNGrJ6Ckn/USXjHojDoMRr14TBstBnSGUuYGDRneQui1t8+7dZgyoENHyigbY9/4/JcZGhq6tFn2GoXJZCISifDAWx4StTPbdeRyedKzQPoiCAz5uf95VWDxmskkM2TisvfSZDeSSWXJS+eMS3jlYNKhWI2kZjIgKRjodepcKozFeosek9lIcjolI7PrAIMOpPO9xYDJbCCpYXGrBSanEb1Rr7nQIIXRbkBv1JOSWpTpdWqfCotEJrsRnUEnPmyhU3TodJBLCvNmuwEd8nXdJbyyMNoN5LJ5csL1ktmrkMvkSa+6sXeRuZdBO6Ew49fjyOpJ63IkBbaQydkkn/kfn6C2tpazZ5chBl/C7w2bNm3i4MGDPPKeD2G3l8g+AxQLmMw6ZibzkLiIOH7Ra8WV25u9ZoyKnplB2QabwWbAYNBr2my/hFcOiluBfF48lxosevJ5yAlrSRa/mVwmLy/0G/VqvUuYK1gDZrKpnOaDmVLYy6xkktk1y72sQQvpmQwZ4SawzqQnn5HWoMDqt5CaSZMVrrOMNiOZZFb2/Iw6LG6F5FSavAbS9iW8MtAreoxWo/idVVwmTDYjMwOrzQ0XcRBDD5pYq0XUgnlWjzGrY8YhG9M//Nx/0tXVdUnF8jUKs9lMWVkZd976kKid2w/pFMSngemLII7m87yaNS93rYPkVJqEUGnD4jeTnsmQXYt9mUtYEnpFj9VrJj6WlM1tBjBZjWotQjC0DFYDNp+Z2OCsbJ9SB3qTnlxKNv8a7UasXoXp/viaEI4sfjNml0msiq/5fh4Fo81ArE9IijWoe/3SfMbiUzAohhLm0vNuZzGg0+vE+aHFYwKDXhxbLuGVhcVjIpvOi2uPrmo72USuhHX5RdS8dDp0Zu32n5mNenxTBpKmPDNW2fvwb3/592zevJm9e/eWdL04Q9QLN1JzOdDlCu2MpbfVm/To9LyCpIyV751LqUmJXnj62WDSgw7ywmCuN+nR6SArnED+2KE3qQUNKXlEp9epPtMa1jw6VAKDrI26SSMeL2Y95OXPXafTgV5+P52hYJeoJd/W6bTdTyO7WafXoxcSLIwWA9lMTkwyU++nQy987uRAL9zQ0OnV52cw6sjnZPczKHqyUlLUHxJ0iL+bzqA+NzEhsUAolY7pXCYPGfncIEaBFa036QpzQ+kdk8/ryKJ2pz4vjGVatEEvYc2g0+nQ6/XoDbLnlElCHp160DFf+tg1OdQN5exs8f3Kc9GbwCsgFVMLhXqT7P3SK3qMesgKpRdNdrXoLp4z9GhSefyDgF6H0WIgMysroOiMukI81oNe2J/ZvPiZ6/Rqvq036EEgrmCw6DGYDOKNVZ1BN1fsEaGQq0kLRPNzgDzvQkMBRafXATrx/Yw2Izo9pAWnyAGVKKaT349CzVhvksUhvdGg6fkZCnar4kMIfygodqPwlTXajORzOXG/GBQD+ixksrLxUhxf4vEigm6OIG6y6dW5T0CGM+h0JHR58jodBknNurAWuJR/vbahN8hyr2waclnUNoI1g+LQY1AMzM5ZY2lct5eI9EyG9AxihW2T1YTBpBPZDoGq8qg36kmKCbEUCLGyZn8oUBwG8nlIz8i+oEHRF+ZE2XMo1iqlz12nU9cS0nZWn0Ium5c/dwrrdeH9DGY9+VxefuCNwncU3s9o0RdqUPJ76QzC++nA5jeTns3IxkuhBqXT69ELiLQAuXReVfIVTMHFA2EGRU9OsnbUg9lpIjWT0VTTe81DBzoD4rGiV3QodhOJiZRoTjDZDIV1nUHULjObI5NIrT42Lyp1Ucc/gMmmw2DSkZgsPZbls5A25Mno8+izwnWBXn8p73oNo1jzMgj3c+LTKr/IYAQEawZHuYX0bJbkeGGO0uACIkGsbxZyqgqQBGa3Cb0eksJcyBa2kJyWE1R1pkK+8Ee4DNaZwOJWmJ1MIXBXxmBWa2Ums56sMADmknkMRmE+Y9Srh/oKe82lwuQwYimSjQTzjbrPoVM/p2TZbQKj2SiyMQWVG6DTyd8FnUnNnbJSknehBiW9n8WvYLQYRJaCoK4DdXr5/chCPpsXtzNYjGr+JV3XOY3oDTqSE3+kxF0jag4kjJ3WgHpQTtovittMLpUtcEtKR1GlTTxeJNDr5jgP9qCRTDJHckoQ5LM6YpYcOR0YhbmXFCWnADMzKiv5LQ9/lo/d9YjoJvmuxR7t+RKknqJXevHW2jn8jZ4LPWJXQNtbK7GXW9j9Lwvsu17lhEML2t9di9FmYN9nZHZV2/6iEYPZwK5/PC5qt+l99RjMerGtWft7atEb9Rz4vMym7LIPNwGw+59lvvKXfbiJTDLH/s+ujY1X61srSYynOPfL0j0SLwaV1weJDyY02U5pwY7/1kZ8KCGW9n7df2tjumtG5k+qwJUfX8fY2SmOfadb+Ek1QIHa68IMHxkX2YxphSWk0PTGKB2/HdRsLyhBeKuHulsinP1FP8MHSpc2rL4xRPkVAY5/v4vx46Wz08t3+Km4KsiRr59lZqD0/qy+KURkq499/36WlECmteXeCvytbnb/yzFSsdInyOqbQpRt8bHrU8clbnZrgwWFj+Y3V+CutfPSJ1e2qNEt8K7TOx1Et9lwRc0c+9Hq9kQn/7px0c9l62XWBo+2fp3vftWO2Wxe/eJL+L0gnU7T19fHTY98m0/c9mZR23zf4nmtlNyr5b5yxs/MMLhvcnHutUoeddlfNjF8ZJKONZpLtcDkNrHp3bV0Pz/MwEul23/ZoxY2PlRH764ROn9d+jtmiyisf6CWrmeHRPdzVFhpubeSjl8PlGZ1VEBgvYuGN0U5+4t+hlayOjoP4S1eal8f5uTjPWLbPS1w19mIXhHg1OM9pOOvfgXMHrXgq3fQ/YzM2kYrWu6rwNvoZNe/yPLftgercFXZ2S1st+FdNdhDVl4UttMKb7MDi1ehX2IBchGoujGEYjWsmc3cpvfVoTPo2P852bpn2583ks3kxO3a31NLJpbh6LdlefOWDzSQmEhx9JtdonaX/1ULickUB78oU/DZ9Eg9idEkxx9bWwufkrAg99r2Zw1MnJtZdbzojPM7tnq3k+bbPYydTTB8bHU5/lMfbZr/wQTWlgnRx/2z7E8BcDgconaXsDYoiozfdvdX+de//oCora5rYNHPudjqp/p9zXb8jQ5O/XTwvLxr5fmx+oYQ3no7B/59wRr/NVjzqr89gjVg5vBXO0Tt1r29GqvPzJ7PyOa2pjdHsXgUsV1C4x3lGB1Gjn1LFlM3vKsGg0nPAWFMbX93LblMbs1svKpvCJGezYrt7LQiuNFNcjKtyf5LCy77cDOxvlmOf1c2l27/aAvjZ6Y59UOZRcrlH2th7OQ0Z362NrlJ5DIv4+diJEZe/c0ko0VP7RvK6N8zpsniUQpnlZWWeyrpfGqQUYFdhr/NRf1t5Zz6UY/Its3b5KD6hjAnf9hLfLD07xfY4KL62jBHvt0heg7RqwJUXhnkwJdOi9oFNriovCrEy1/vEG8CvypYSPBZYJkbvdJHaIOb/Z9fOebqlQV5l9+Hr86IJ6pw9tnVY8TRv61Y9HNTU98yVy6Nzzd8m5982YPxYlScLuFVRSqVYnp6mmv/8nH+7b67RG113eflXpOrx5GKq/3M9CcYPz0jqnm1PVjN+Ilp+veszTpYEwyw/oEa+vaMMnas9H0ng9XA5j+tp3fnCP0vlf79DFYD6+6voufFEdH9FIeBxrsq6Hl+hMlzpatgWUMKrfdV0/HUAGPHS7+fs9JK/W3ldP5qkOlubbbwElgDCqGNHvp2jZKOvfqMe8VtwBW1M3Jiak0I/tEdfiLb/Rz4VofofpXXBAlt9HD46x2i+1XfFMbf7OKgsJ1W2MJmLG6FsZNrs3cbaHNhdpvoXaM8veFN5ZjsBo4Ja1Ctb60EHeJ2dbdFyKVzdPxKtl/Q9OYKMrNZzj4py7fb31VLMpbmxPdktavGO6KkZtKlWd+uNRbkYa1vrWSqK77qeFm432gI+IlusRAbTDPZu/pLe+wfyhb9XBEufU8D4M8rfsH/+SgYDKUTsErO0pTCFzvyMnzqiUf5i9veXVK7aAuEXl/Ovi/JEsne58fpfV7WAQCZVG6xCk+JxZrGu6O4q2zs+bSMxKMV0sJJEd3PD2O0yhl2qVgaY1YDM0+j6uXkuTh5DQ2lpKaLhavajjVoXjOSUvdvh7U1VNBEyDj6nc4FJzNfZaTU+830aShGafl+KbQ/Nw33c4Qt2CNWXNW2NSEpDe6dYHDvhLjdVHccd80sM0MaBkwessI94/RMVpUDT8nu17tnlFQ8KyIoAXT+ekhEFLhYiOaGfH4uccims+RWsThdmDAU0bsnTu8e+fi6ZiaO94DCrk2lPYdHW78OwMjIyCXZ69c4cjl1HH3siR+UTFRqu95IrMdD59MTonsdf2yZXE2nWzGfyqZyqhWmEFs+0MDI8Sm61mARkJ5MiwkgADNDCXp2jjByRJaTZlN50rNyK7t8Pq/J7iU+PMtU1wwzgoI7wOC+cQb3yfNtrXBV2HBV21G8Cum4cPPDhOjkG8BMb4KZXo2bLBrud+aXg1gEhb2LxfEf9GJ2aii6F/cKhN9v/MTaSHMX4Wt0YrQYgLXZCDzwBW32W+OnY2S12JprFE1JxdJyNSug69khkhpsdKSHVS4WorlhYe6VyZNexRJhIUGpiBM/mxB/RlM6zS2ZJGeGoCNUWpt/3fAdnn5S7f9LNruvTRTJY319OT7343/nv9zx3pLa+SIQ2ern6E9GRSeYx07MMHZiic0ZnX5FolI6kSWblte8yl/nJ9DqEh9g0gqtJI6eF0ZQHPK5LT2dmVPqkECru/HYqZh66l0IrbVArfA1O0nH146kNHyw9ANWi1B85MLp7cg3O1X74TXCkW92kJjUcD8j4u8G0L9bY56u4X6KW8Hb4CLWO7smJKXprllN67P4SJLxM9PMjgk/Yx7I5ecIqaUim8iRmkmLFf9Hj02Qz+RJCE/lj7w8xcjLpZO2LhblO/wE2paZG85XIMrn5ohK+Wx+VYXzhQSlIsbOZhg7K38ZNk2lqDxs5cT60kgGn2/4tnq/sTGygsPvl7C20Ol0ZDLqeHj/Y6UTlarXQdJjY/BlWf2059ll5sLVal7JLFlpwRxovqeCiY4ZBveuQc0li5gAApCdzdL5m0GmeoQEnmxeVW0SKm3m0catT01nGT0xxeyIbB013T3LgS+s3XrW4lXwt7gZOTolJykZEBONUpNZRkog6L1S9xvYO87Y6ek1UzzteX6EoQMa3x8N3y8+mCQ+uHZrdU+DA6tPWTOS0umfyDgaRYyd1lgLzGt939OkZ+WDrOvZIU3OVad+LDu0cLEQzQ0La16p3Krfb8n9xn0a8vpslmuGc0ya9Iz6SuvTj9b9gtGhNPl8fo5PVAp0+RKz86qqKrq7u/no39h5+BEXQElEpdrmBMFmO7u+2L2IFLDaiX5HuUJwnYuzP78I8ojgDWi5rwJnpU1Mkmm7vxJ7uXXNyTWXsBjbP9JMJpkVK1NpxY7/2kpyOi2+X9v9lcyMJMUkix1/08bsaHLNkqrX/bc2pqRKShphCSlsfV8jw4cnOfnD0lmuik+h5a4o3c8NM35ScHqqxUHbfdX07RpZE3KaqohUztlf9GkiHV3CK4OWeytw1Th46X/LVOg0zQ0lSEkvlTAAhDY5MTosDBxceY48X0Xp9tgMtnyeZ3esvkAvEpQAWqvUzQNpoe4S1gY6nWpl+usz88+7FKLS5tsMxEdSHH98sXrMarlX2VY3yakUY8upsL3C42Tbh5oYPTnFuScHVr94Af4QlJv+2FG2zUvNjWUc/34XE6dLP/2mFTW3hCnf5ufAf5wiPlh6od/b7CCy1cfRx7pEhJzGO8sJrvfwwieOiok8WlBUUnrxH469+jdDVfCx+szs+oRsTqy8JoDFbeLUT2Qbz5vfX4/JbuSl/72yuuArhU2P1KM36Ni3Rsqsl7A0tn2oiYkz02IlrG1/0cToCeHcUErutQRBCRNUXuFjtDtNYpX60EIVJVs6zRszCY4bTJxqX73g868bvgPAN/9tlEf/aZQtW7awd+/eVdtdwtri7rvv5vHHH+ev/9bBe/5UJSyVQlQq80xRvtnBy98fIrMghVpNTcniMeKtt9K3b2JpMsEqikrqNaXnZhXXBgm0uMQ1heobQngbnWu6wXMJF6L94VpymbxYmUortv5ZI6npNC9/RXa/mhtDJKfSYnLNtr9oIj6U4KhQ0UortCopaYIRrvhIK4P7xjgnOElutEDtG8oZ2DfOdFfpm8cWv5FN72mk+4Vhep999dVEnVVWWu6t4twv+0VKsJfwyiJ6dYDQBg/7PyfLf5edG1bKrXSrEzSXIigBuKotKCHXqkSl81WUrh5P4MvkOHblxKr3LhKUANoaxkilUpdqXq9RmEwmTCYT33p5vuZVClGpuT1JciJD5/OL1U5WU1NyVVvJpbPLK+q8wuOk9f5KJs7N0L9LdpBp3duqGTs5LVI2uoRXFs5KKw23Rzn9s941UWAKtLmoeX0ZR77Vwexw6QfBrUGFULuHnhdGyQpIHWVbfVRcFeDgl86sieJTUUlp7/9ZG4GQulsjuKvt7P+8bE70tTqxeuSkocY7otjCZg7+u7aDb1I03FGOYjdy9D/XJm++hKXRen8lU52rKxst1U48N1zEfmOgzcHMjJnUKuX7hSpKhmyWW/uyHHcZSDStnt9/tO4XAJw8OMPH7znDXXfdxQ9/+MNV24HAcdLr9QJw+uR8EvmpJx5dsU2+q4+zvxpj12e6L1At0Vmt6KzWZduWX+4nss2P4iudcVWEJaSIk4rjj/VoIhqlZldXy1gKG99bx46/aRO3q7guQNsDVeJ2ikOPs2b5/l65sbxJcJObyA6fuN2WP2tg24caV7/wPMQGZpkWeoVeDIaPTjK4X87iddXY8TY6xe1Gjk3Sv0/OqN38gXrqbouI22mCAlv/vJHyHX5Rs8REirETkwy+LOtPq8+EI2LFXW0XtZsZSjF+aoqRk2tTPJkdSzE7liQ+KmNhV98YYsd/bcVRKbPickQVqm8Kyd9bDe85qGQxR1TeOLLDx/q3V4vbaY2dmXSOXFqedGuaG/J5FIcOZRknj+USBoCqK/1UXLZ8jDj5140XEJQAfuaw85jTwcDhlY/zLyQogXpi3LrCXHwJv3+cX0z72BM/WPn6vkH2/UffBQQlWD33qro6SNW1K4yhZRJikw1MNvlJ8j2fPikmKEFBuUl4khVUgnHr/ZXidq33VxJY7xK3s0UUTf2CiXmlG0Gb6FV+zH5ZQ3edjcs/1kJ4i1fUbnY0yczQLKnptfHdHD0+zciRCdLTMsaQu9qOu9qOzS3rl6GXJxg+NC4mKJXv8LPpfXWyRheBmlvCbHhXjbjdwL5xBjWcRvM1u/A0yt+FwQMTmu6nFbGeONM9clXCrR9soP3hWnG78BYv3mYN9l3S97wAe9SCySZv13RvlLJtsncdtMfObDpLSsPptz2f0jA35POYVnjPlyQoAY6wQsUOH6EVnt+pjzYttnkD4iYT37U6OaRYmD3uWfGjFQlKAL2n1Pv4/bL10iWsDSIRdd3c0z0/bj/3439fsY2ua4DBQ3H2f3UxQQlA77Cjdyy/VvW1OKi6NoTNv8x6b4VNYKPDKK559Tw9rIlolJ7Nkk3J3+WGO8q5/KMt4naB9S5qbytb/cLzYLSANaTRxlqDKKGrxoa/TT4ntj5Qxcb3yOea6a44091rY6EGMLB/nMEDE+J2vhYXviZ5v/TvGWNAQ67Q8tZKolcHxO20Yv07awht8sgaZWBgzyjDx2QqU0aLEV+DC1eVrOaVmckwuH+MiTNro4CZnkkz3RsnMS5bF/jbXGz7iyYcFRZRO8VjJLzVI39vNTp+GS16LAF50uZtdNBwR7m4ndbYmU/nya6iKLkUlpwbVtsIy+cwWtS4uxSWIyiBSg6v2rb8mD76txUXEJQAnvVa+FHQxsmTK/fpQoISgNVqxWKRjbFLWDsYjcY5JaUi3v/Y4yu20XUPcPJn4xcQlAD0bhd69/JzUNW1QaKXr5CHLzP2DQoYFHlt59i3u8UEJYDMbJasBrXyze9voOb1YXG7qmuDuGrlC0zFbcCgwfEFUFVuhNf7Wp0obllDxW1k45/W42uR7celYlkmu2ZIz6yNZNB0f4L+l0ZJCQlD9qCFQKsbxS7rl8nOGH0vjojVaty1dpreXCF/fhoRbHdT/yb53ubwkQn6dsv3Uj11Dvyt8jx2+OjEmtpBxnoTTGpYFzTfW0HjXVFxO1etDUdUw/6RxnFi9iqaYm70Sj/eRnltbvP7G6i5Wb7+zCZzq6p5LwVNc0M+j8mxfIcut99oshuovjaAp3L5/chj/1B2gc1b1mDgp5UKp90GegZXriMWCUoAvSfVz+hylf4elZyi19TUcOjQIU6dWJw4LGf9lu/SJh1WxLnfDDF0aILUmGyR03R3lOA6N3u/cIqEFrsjIU7/SNv3HDo8gUe40ATwN7mWL2KtgHXvqMXiUdj597IT2lv+rAGzw8RO4cnumuvD6E16+nfKXrbZoSQ6o1yi++g3tbFGt3ywgVwmL7Yx0PrcX/xfshPrRWg93aXYTVi8GndApPdSwGQzYvEKCSspOPZdmU8owOTpGV74u6PidqmxFEeF/qkA4cs81NxQxskf9TC+nMrIEpg6F9dkkxEfTpCYSpOakRWfo5eHCKxz079PFj/b7qvCU+vghf8p69PmO8pxRm3iZxFoduEoly+AtMZOre+sVmx8TwN6k55d/7RYNWIlghLA0e/1YbLr0VxBAwYOhyhbv0CtLZXiax/8Opmn4Hw2msViuURSeg1Dp9MteeJvOeu3fN/FKQsdfayb1MwqrIwlZLA3/5dmUrHMmlkCaVVHGT0xpclX3FPrIJvOiU8Gb3p3AyPHJzn5/dLncJNNz2V/2cLQwXGR+ogjbKX62jAGs0Fkn5eeSTM7liQxISPSTp6L8/K5DlEbAF+bk/pbyzn1ox6RAtN0Z5zpTvkCvOOXg5oUtybPxpk8K7+f4jKiONcm7wKwuhXMbjlReGjfhKb7aT0VptVipv09tZBHbE0kVe4pYmYwQUYDqab6hhCp6bTYDu+KD7cwM5zg5Uc7RO02vL2WWG9crHjqq3dhVAwM7JFtAmuNnfs/t3aqK+5aG+seqKFn5whd59lrL0dQAoj1pDjy3V5mh2bBJD9IUsTscQ/Wlgn1h3Sar/7tN3jn/3wb/7plMbE4NhoAOufIMJfw2kJraysAHecW17yWs37TdcmJ1gsxuHeUyXMzK1sKLGH9Vn6Fj6prQrz89XPM9L36lkx9O0c1xfHRY1OayE3eBgeeOifnnpD1b/3tFbhr7Lz0SZlqX+ufVOEos4htp6quCWL2KIweleWH8YEEKQ0behIFnoVo/ZMqdDrECkW9z2lT4NGap2u9n8WrkFlDuzez24RJg9VuhwZ768REhl1CJWiATAJNquGuGhsNb4xy5sk+Js+UnqcnRjMc/468xpaKpYkPJcgILWwDrW6qrgkx3ZMgLrC6rr42RGSbnz2fPkFGYE9UeUOI8AYvL/6jrC7uaXDgb3JxGlktavS4ttjZ9+IofS++AnYxJZzUB2h9SxWKy8TezyzO91YiKAGcfHIIxaoDtOddJ0+W09S0oF8zGf7v//cJIl+f4vxamsViwW6X1xAvYW2gKAqx2IVrqOWs33TdF5d7nf5xL9nkKu/XEjWvtgdqSMezHP+uPNZpwYnvy/dJAIYOjDM9ID/EH1jnBr2OqXOyGsiGd9QxcniSzt/K5rhtH2qif++YaO43KAbqbo7Q+/yIiAySTeWZ6Z8lJbQ9T46nOPuEvK5gDSk03B6l46kBkQpicjylyfJr5OgUI8JcFGB2JMXsiJxUoziMWLwmDAZYCydNxWXC6pXvhU93zYr6v4izGu2qtSrM190WwWDUi+3GBvZqI0TFBhKQlR/6rb42RHomw/HHZLFp47vriA8nOfW47Pu1vqWS6d44Z4S1vcA6D1POGcZPyWpzWmPnybVQZC1AcRhof3cd3c8PX+DWs9J+Y3omy9HH+tT9HrtcVKaInkEvFeEFtcRslr/43G8w/u80C9lovcdVcpLH4yn5b5ds9/ad73yH+++/H68XXjh4YVFtIVFpIUHJVaXQeleYgYPTdD49sezfX2hBkr+ICOeqsVK2ycfJn/VcoN60EmpeH6b8cj/Hvtslso4CsJcpzAyszUlyrQi2u7CFLGKbseiVfqx+M6d/LFtUFVWbpjvWRt3I2+TAaDMwfEB2Mqn93bXk0jlxkb/6phDZTI6e37360smgnqSJDcwy8NLanEJfS7s3xQH1t1XQu3tMnAxrgb1MoeJ1Ic79bkhE4glscFF7UxnHf9gtGteWkIK33iEm7GmF4gBXrUvsYR/Y4CLY5uaYsLjkbXLgbXBqStzXEopPgVSKlPAw4faPtkA+Ly52l+/wY3YaOfer+Zi7GkHpfOid88zvpdSTFuJPpmNM63T8dMFp7SJR6bvv+DwVg1Mkq/Sce27xiZrWqn7MZjOJxKu/wXEJcphMJjKZDE+dbVry3xcSlRYSlNbfH8bsMrL3iysnyxeVey1IH6uuDzI7lmL4oGwOvuwvm8ilc+wVWqeabIDJRHpyDXy4LgLVN4UYOxUTk2ua3hxl8MC4mCTjbXYQ646RXotD9iYIb/AydiYmeg7uWhv1t5Vz6qd9on6xBUxEtgfoen5kTZ67u9ZGaL1bbGumFWtt91a2zYviNokIbReD6JV+8jk5WantgSrymTzHhMXgwHoXyemMJmKbFtijFvK5HPF+2Xqw9tYyZgYTYtJY5TUBYoMJMSlqrWH2m0iOyt7XwHoXjXdEOffrAdG6x2TTU3ltmIEDo8QH5u+5EkFpKejd8xtm56snLcTW5CxNuQw/NVqYNs3fw9oywff+/Au0dA4x1aqw52c1i9q9ZccZRgezPPPMM1x99dWiz3YJrz56enqorKykpkbPr5+5UFlyIVFpIUHJ5ID2t5bRfzBG357l38uF9m/yvGt+Q93iNxJc56V/14hooz2wwUX9reUc/363iIAAqnJJamLtiCBa4KqxYQ+axTZjvjYntqCFnqeHV794ASwBEzq9ntkhGdFbK+zlFhS7UVx0b7ijHB1wSljTC23yoNPDoEZisxTlO/wkJ9Ni0pdWrLXdW821IYaPTa0JsdDoMFK+zcfQgTESgvfWEbVQd0uEs7/oJ9Zb+uc0Ooy4q2yMnpxa2rryFYbRArYyG1MdsjzPUWEhuN7NuZ/LCFz2cgvuGjt9L7wCBKBXEUaHETIZMsIhtvE9tehNBvb/2+mSCUoAvmYnFo+RvpfmawCrEZTOh94/v1m2lHrSQrx5OM6UXs+v/fOqSEWi0j9++DG2HOhl5koTA/+5WCWnoWoAu92+JBHmEn7/qKmpobOzkx+ebl/y3xcSlRYSlKqvcuIIKxz5/srv5UL7t4upeQXaXKRns0yek+VPRTcUKVHYoAAGg8i+6/eB4AY3sYFZkT0ZQHSHn4mOGWb6ZQHLHrGQGE2QXaNtWFetjdnhpMgOzexVqL0pRPdzI6LvZ7AaCK1zM3p8UqympAUWn4Kv0cHg/rE16c+1tntz1dqweBSG9k+syf28jQ50Rh1jx2SHuyqvCaI36egU1uYcUSvZVFb87mmFuSBKkRSqZoY2e0hNpZkQrj19rU5Sk2lia5A3XwwUh0H8vlqDCm1/Uk3HrwdF6x6DAsENPibOxUiML6h5CfcbDYH5POl89aSFqJnOsnk8y1NlBqaUeRJSkaj0t//4M97w1FE67/Kw/3/PO3/9r0c62PXrKZ566iluuOGGkj5TyZpZd999NwCxZcZT0frtfAWlqYEUs+NpZgZKW7jPJQwKbPlgPdGrZVLoU+finPyhjKAEMHpqiomOGDMjwuLyzWE2vbcRb4tMRsxeptB0dwWKQ4MNiAYMH5oSE5QAep8fFROUQCUnaSEoOaIKwXa5pF7D7eXU3SI/kXro0XOaiDhlW3xEtsiZh9v+opH2d8ulvYPr3UQu0850fC3DErTha3YTaHOL2rkb7Fz+sRbKtstsK7wtLgLr3LirZOoxIy9PsftfTorHdfVVIepuioitK7W+C6kYYoISqG2kBCWA8ZOxNSUoVd8YElsKAmx6uI5Nj8gls0eOTjJyTN6ffTtHF51eLDVh2Pyn1dTcqH6/3HTpRZRRnY4Bw+L5pGj9Fh1UP7/StXgTY6xA0jMY1kij9RLEsNlUtbF0eulN3qL12/kKSlPds0z1lJ7IF3Ov6ptCtD9cU1qjBQXMrt8OiwlKoFpqDR6cELfb9L4m2jXYRZZt9xK5Yu3m0s5fD2kiSZz8Qa8mFZ/xE9oISr42JzahhYEjbKX+1ggRoXXU5Lk4+z57WtwvrhoH4c1e3NWyubtsu5fLPtyMLSz7foFWN8F274r2UX/IKNvqpWyz3PZr/durNdnZRS7zU64hjz36rS4xQQmg/tZy6m6RSzVreRcAZnoTYoISwLknBzSpWnU/M7JmBCWT20TdrRHxuxBod7H1kUZxnh4fmGX05BRTZ2XfLx3PcfbJ/kXPoRSCUvR1XjY+PF9QyU2WVlQc1RsYRcf5V88e99DYpa65nccvHBOxKTUXu0RQem2iokLdIB0bW/ocX9H67XwFpXQMpvtTJdeSFm6SrXtbJeEtntUbLbB+S4yk6X56SERQAoh1xxk6PEFSaEMe2OBiy/sa8TbJal5Gh5HKa0PqxvkaYKojLiYoAYwdnRYTlEB9DloIShaPEXe9XNWj9qYwdbfKa16nf9wnJigBlF/uJ7Jdvu5e/45qmu9ZmWywFCKX+SjbKs9N/hBgtBgp2+bHL7TBs/iNbPlAA4ENsnauqJXyy/04KmTK1bHeBIcePSciKAGE2t00vimK1SdTOtD6LmQSiAlKALGehJigBDDTl1hTglJwo1v8zAHW3V/Jhnc3iNsNHphg8OC4iKAEMHZimr5d8zG3VIJSy70Ryi/3AJAbLf0wZ59ioN+8uOZVtH7bdFglG1pfWrpuUqyrXMJrD9GoajsUm1x6k7do/Xa+gtJ0f4qJrtLn4GLuFVzvorFUG8YF78TI0SkxQQlg+OVJhl+W18pa3lJNi4a51F1rF9uaXQyGX57URJLo3TkqJigBzPRrIyg5yi1imziD1UDTHRUEWmT7VcnxFMcf6xF/P1tAIXplAHtEVvNyVdnY8FAN1oBs38lZaaX8igBGu1yZ+w8BwfVuyjXksdU3hmi+V/7ulW31Un6Z/H7dzwyLCUoAtTeXUX3dhYdqVoOWdwHUcS0lKAEM7Z8QE5QAxo5NrxlByaDoKdvqQ1nBSm0p2MJm2h+uJyC0/07FsgzsHycmjBHZlKqglVggulHKfqOnzkbj7aE5saPsSGk57bQR+qw6Zs7rlqL12427VLXXyK8X75sO9aqf79prry3pPiDwk1EKXzizwmHIvGGJhDYFh76+uhSjzmpddKKflGpVZfUIAmWB4dx2fyWjZ6YZ3D1RctPpjlmOdsgtw4YOjWO0G5kRWst56p0E17uZ6p0RnRKN7FClvY9+p1NElvC2OKi4IsDL3+oQEbi8TQ7KNnnEdlzVN4Xwt7jYJ1RHaLyzEotHYfiQjBRw+md96DXYxCkOPYrbSKxX9vz2f+4kIPcGziRypDVIUe/912NiBRiAK/66lfhwQmyToQWKT2Hr+xsYOjgukuKbOhdn978cEX+/XCZHLp0T23L0/G6EoUNTYitJxQGK10ysW1aIPPe7Iab64+L71b5etVEbPiSzUWu4sxxHmfVCT/lVEL3Sj9ll4uyTMuncutsi6E06sZ3a5g80kM/KrRbLtvrIZXJiNYbeXcPoDXJSqFYC1rq3VTN4cJyRl6fQmUsv1plsesyu+alZZzJx4iM1q7b75QIFJSUWY9//+J+YcjkM+sVxqqlO/T55I7zn/vXAKFVVVVzCaxPBYJCpqSmefmKGm+70LHlN3nRhKtf1fGlzqM5qJTczX+A1u4yYJVZVBRlsX5uTQKtLZGsGaCJPA/TtHiUTl8/BFTuCoIP+F2XKdhvfW0cuk+PlL3eI2tXdGiE9k6b7GZnqYtWNIRLjKTF5YcO7a5jsiNP1G1m/ttxdKbaliw3OcvrJPsY1LDZtEYX0ZEpEqBrYM87oKZlqE0AmkSWbzJIVpl5nnuin63f9YtJX/W0Rgu0eXvzkMVgDoa8ND9Vg8ZnZ/c8ytb8Dj57FpIF/lZrNIBeGhoNfPIngbMwc1LGSIS1830/+uEe8eQ/QdEeFJhu1Te+rY2D/uEzx1ASNb4jQv3+CWE/pazqT20TDrWX07BwVkf08DXYa76jgzM/7GDta+um+YJuLsi1eJjpjjAnev8nOWQb2jTMqJFPFR9Kc/J5c1SK8xYszauH0T/ohn0dnKq2GYPEYMdkXV110RiMn/2JlMl6HSaGjcA9TPM6L//h3mDNqoNEXX5I8XNOqnhTNKfDczhoCvnLGx9dGGfcStCM+u3yky9qVJYtoJ59YPbfQO+yL1JQAzC4TllJJgDo95ArE8htDTPfPit7nxERGbKEGMHEuTu+Lo0wLC8XOiIXoFX4SE0kRmd1db6f+DRFO/aRXZNNgL7cQ2eaj45cDojnAFrYQWu+i4+khkQpMcKOb8EYPh78mVOW+sUyTLd25Xw9iUORzqdGix+gwkBiRJSaHv3oOLTWv9EyWVFxe8zr4xVNkNKjwbPlgI/GhxNpY8Bhh+4eaGdg7TtfvSs+3M7EMez59TKxwk8tCZjZLNil7DmMnptnz2VNiGzWjBYwOk3isDB2aJDGRYnZMViuL7AgQbpfbqJVf4cdVY+P4t2XP3NfmxOJWxLWkyGVejDYT3U8L11hvrURv1HP0m7IYUbEjQD6XFx8+7HlhFKNVHiPmbICFJKXaN4QZOxVj8swMekHNS605LMi99HqO/s3qpJEX3fP3MCYSPPP/fBJbKoVbSaIrDHVdGqrbVSJa3qrj3/+2BpgnIV/Caw+NjY288MILHHx+iitvW5qomrWaLsi9xs4k4czqMUfvdi1SUzLajVi8gr3GQs3LHrHgbXDQ86ystqOFoATQ/9IYuZx8Di7f7sNoMTB2XKbmUndbBL1Bx+mfCFUXN3vIZ/Li7xnc4CYdz4jJC3W3RogNzIrVcZrfXMnwkUm6BLZ02dksJ3/cU7LwxkIobiPZ2YyIUDXdPcv+L54Rq2dl0+peY04ovjR8cJKxY5Ni0ldwo5vKK4Mc/PK5NVH6qr4pjLvaJt7bPPOTflWRTIhMPEvaLP9eJ3/QjZaal+I2kJ3Nk03J3vczT/SRz8mrcw1vijLVExfb2jXeEWX01JRYKar8ch/jZ2MyMqMBqq8JMXRkglkB58LsVWi6K0rn7wZFbj32MgsVVwVITCRJLafQswSSUxm6nxtmqksWx7KzWXqFcwmAs8qKK2pTbSHz+ZL3GxWHEYtfgYXD2mTk2P8XWLHdqNXA6AKLckMqxeP/3xdwziapsk6hi6lj1hTLcdMNai6fdhjQJUNYLEMiUQTxkaZVzeFqo3BucWEx0GxFcRnp2738IC4SlHQGwxy7+cV/FHhvL/hg7nonRptRRFICqLs9wszQrKjdzEBKkzxw7+5RRk9NkxCSm9KxDDlh0ALw1jlxRm24ojbRSxre6MHX7EZx9JGKlX5fq0dB0XBiruPXg5g98l0TqUVfEe3vqcdgNrBLMtZA1BcLISVkzN9PUzNmBmaZ6l4bqwtSKeJDCXFgBm3fb7pjlt3/clLeEMSEIYC6N1Tgb3Wz+7OnRO1TYylNVm/nnurHXSs7rQpg9SooLvk7FNmmLmSkJCV/sxOdUQ/IFjLZ2aymZGrXp46jOORZZu8z2k6+tb6lgp6XRkWkUMUB7mo7uVSWkSMz5NMZdEsQSZbCS5+aT7oNPnWB3vzJjhWJSv5UippslpcNBlKKwtbubqyZDDoWOUMAoMug/j4D+15S39X169eX/N0uYW1x/fXXc+bMGZ749tSyJCUAqqPQuSAXMUF0s4vhkzOkJpZfXM0RlHR6yOc4+QPhKetC7hVsc+NrdAKyfMhZbSPc7lY3lQXofU7b+/zyN86RFPrQA6TjGfJpebzyt7pIxzNiklJki4/EpJykZHErJH3y73fuqQEmz8kWmqTRpABjj1rY+FAdvbtGxCQ1LTZvI4emGBES3+fupyF9muyZwepX1oSgBDBxNoZdA/mdNCwj0LYitJBHoNiX8tx5w9vqSEymOPjFs6J2WlWGzv6yn9lRYY5oAsVpwiI5WIN6UjLY7iWdzIlISo4yM55aB5OdcRFJKZ/Lk01mSc/ICm59O0eZODVFXLhhmZ5Mc/ZJOdE7tMWDxW2i67cyVZPgBheOMqs6n+h05DPpkpSUzjwxDMzfy+BXc6+mT51dkajUkkowqTPQbzKxfrAfdyKh5lfnXWdI5tXfJ8F5OM3MzAxO59qdbr4EOQwGA5n0yu9JprUK47HFB9wcESMWt4mR48u/z0WC0sKa177PCeLbgt2H0EYvFp8iIikBlF/hIzGVFrXLxDLizXmA8VMxDnzhlMhuClRSRiYhXyvaQxb8zS6GDk2IVFa8jQ7KtvkZODguImcoThNmj6JWVQVfsWfnCMPH5JuWWm3Cmu+rxOozs+fTstqJFrIvwInvyw44zt9PUzMmz8WID62RFUQGJjtmmO6TJ4lavl9qIsOhR7UdOJQSlABCW/xUXR3iwJdOi96FTCwjjkUA/S+NEOuTK/BbfCaxahNAZKsPq88sJin529woDqM4DmZmMug0HKbd/x9nNNXTtVolVt8YYuTYFDP9so340HoPOr2OybOz5FLpkpWUDj46Ty7TB9UNsra/71uRqOTIZKhI5Dht0ZMxGmkYGqF8YlLNsc57HQ0ThdxrIs/Pv6/Om+vWrRN9t0tYO9x+++189atfZfdvppclKQFkmioxnlxATDSAr9pMbCizotVOkaBUzL36d43Rv0tQoy/UvDw1dsKbVKtdCanD7FXwNznok9wTGDspj6kAJ3/cRzYlJ1hkZrMLRTtLRnCdm2wqKyYpRS7zkZyUW0BZ/QrZhPz7nfl5H/FhOdlIsodahMFqoP2hOnp3jtD/kuy5ayH9zPQnOP6YttxLiyrV7HCS8dMxkNonasR0b5x8VstROW3fr1eYIyy+lzx3bnlzFcnpNCe+J3uG8UFtdtNnn+wnPSvPEa0BBfOAbL/RoOgpvyJAHpgdLv1dsLgVAuvcxEeSIpISQDqWJitcw0x1xTn4pTOkpQTB2SyDe+UH0JxVVixuRRw3fY1O/M1udYzqdORTqZKUlIYOTTG0oC5uiIQBaP2/RlYkKkVnsiT0zBGVKkYnWd/Zv2Tdy96VLvw+zaQ/Jq556fL5VWlH81/AYCCXy3Gs60KJ4Q+96eHFv1hAVNr63nIMip6XPrv8y7ZQReliPGIBUBDbvQHs+JtWEpMp9n9WRiRpubeCmdEk3cJi6h8EFFAU7SSZtUL1jSE89Q7xJkbZdi8mu1H87DY8VINe0Yvvp/gU9EbE5LTN/6We9HRGkzWdFrzuv7Ux1TWzJvdzN9hpvrOCs7/sl50UUsARVMQqWOU7/ER3+Dn4lQ4R2chZYyXc7hXbH9beHMZZZePQf7z6alYXC8WnaCJwveahwIYHauh6bpjJ06UvgFy1Nja8rZb+fWNihjkA+vNO5pdIVCqiSFICViQpXTsTpyqX44dmhVghOTl95n+g+5ya7CwsixVny+EP2qj89zipJPT391NWJrfFuYRXH11dXVRXV+P06Hl834XS7f9451sW/6JAVHKUm1h/b4S+A1N0PTOx7N9fqKJ0AaNtNZSePi6LhjdGCG30svfzp0iOll4Id9fZiG73c1R4evYPBSa3SRMhZ62x/p3VjJ+O0fu8YBFvgprrwwy9PC6yx7KFTbTeV03nM0Ni0pEtbCI+lhYRhwLtLmquC3P0Ox3EB1/9Z9H2YBWuKjsv/oPsJLnm+91ficFi4OWvdIjamf0mcrNZsbLRhnfXkJySK+REr/STnEwzclj2zDe8q4bhI5MyZaPfA0y2Alnstf+6ixG9yo/ZqYiJSpveV4fiNPHS/5YpjABgAjKLNwNLISotRJGkBKxIUnrL7DRxdPzUqh4oeM9vnuKvf/GEes8F1xVnylMf99PzPj831p1EURSSSW1FxUt49eHz+RgfH+f42QBG4+Lc/X1/8oFFPy8kKrXd7cfsNrL/K8tbCS1UURLXvM4/Hi0kxhSx7UNNJMaTYvWfymtDpGIpBvdOyG/6WocRjEbtJJm1QmCDi0Cbm+NCi3ZvowPFaWRQSC6vva0Ms8skVqsxWvToLXpSQnJay1sqySaymqzptGD7R1sYPzOt6dCpFBa/kZZ7quj83ZDsgKURLG4jiVFZX3qbHFRdE+TED7tFbS0BE/4WN70vjojiS3iLB0+9gxMaN0nXEkaHUROB6w8BjXeU079vjJjA9l3xGNnyvkb6do2q6mBCNaXzWQ2lEpXmrg/Ob46tRFLaOJVifTzDz7wKE2Z1bj439Ql0H1MPAy2Vew1+wskVn5uhsyPH8ePHaW5uFn22S1gbpFIpzGYzlY1m/vXJC5/RZ95x36Kfi0QlgxXa7wvRfzDGwMHliSQLVZQuer9RA4Ib3VRfF+bw1zsWWfSsBmtAIbjBQ9czQ4vVL/5IYLAa1kSF52JR8/owsd5ZRoQk0NBmD5MdcZE9lsFqoOnOcvp2jYmtBRW3QSXrCbrUHrFQfX2Ic78cYLZEy+qLQeU1QUIbPez9P6de9XsV76e4jCK3FwCTw0AuKyeM1b6hjGwyJ1LrAvA1Ockkskx1yQhxtW8oY7JjRqyattYwKAU+22v/dRfD1+TE7DGJyYgNbyrHUS53wQFUy7bceTWvEohKi/5EgaQErEhSur0nxYxBx+8i87nd2dSn0b13EHIX5l55Pbz02Wp2vL+TcDjMwEDpQhiiHVOXy8XExATPPT3LVdfO+2NeQFACVVEJ4FwvJ54cWZaJtsjirQBdQQqq/V1V2AJmdv6vFVRulkoYNMbVQ4+eYWZA3tjb6MQaNouJLls+2MDscJJjwiKDJaRg0KPps4qRgtQachaC7S6irwty9BtnRMQoe8Si6SSN1s0LvUmvSWp707vrQAcv/ZNMuUmn16Fbyk5xFZTv8DM7mtSsNCWCApVXBhk+MikiYemNOtDrxGvhuhvLiGzzc/Q7naLvZ7Do0Rv1kJIVJqY7ZkVqOkU4yq1Y/fKx2XR3BQZFJ44PF4O1JCh5mxzican4FDa9q5auZ4dE7663zoEzasNb6xCRlKbOxVXlrJiwX/RLyxmupqi0/oEojoiF3V++MLlp/mQHsDRZaafJSHceYorC6Qc+X/htkPyDbnRXXmhjeuJ5P1Qq5L+o7oxeIii9dlG04puZvpAQcAFBCVRFJSDW2cuJJ4YY71y6QLmInFSETg8muOIvmxg7PsXJlSwcX4FiDUDnb/rp/M2gmPDgbXDirnVgiygiokvZdi8VVwTY82+nZKQAE7grbExqOEWlBWtNUGq6J0pqOkPHL5ffWF0KtqCFlFTFJ434PgBkC7mXUeYRHljvounOCs49NSCy+dPp1NwEvSw5sQVMeBpd4hPaWuGus6E4TSIbHQCdUVte2f7OOnKpLHuFds4Gkx6jUZ43iwhwC2ALWnCGk0i0IU1uEy1vjtL19BCTZ9foXV8jsVNQx2Y6LY8vTfdGMbtMvPxoh6hdoM2N4jSJSUoHvnAWW0CDF6FOt+SG6mqKSpd/uJ6p7llO/ubCHL/pU+phlKXISr8wWuYKKafe8W/wDsh3V6PbfiHx47kXakmXmfjl42rfX8q7XttoaGhg9+7d/OrnaW5943zefj5BCVRFJVDJSmefmSSfXjqfOd/iDeZrXg23BfHUO9j9qRXi6lL+DRr32A9/9axY2QggtMFNYlJOUmq5v5LkVFpsM2d0GDEa0fRZxcigyWZMKxwVFiquDHL6Z/0isoQjZMERsa5+4XkYP6WtFmRU9Bg11LzWva0ag9nAvs/KcgWdQadJdcbX7CQ1kxYRMy4GoU0epjpiorGpMxjU7ycsegXXual/QznHvtfFpEBtQm/Uo1cM4g2hxEia3ufk9hO2Mm1jM3p1AMVh5JxQzftisJYEJUfUQmwwIYvXRrVu3LNzRHSI0xIw4Wt2MTOSFL0LqYkMez59gjn1h3y+NKLSMpIrqykq1dzoJ9DqZN/3Yxf0S9vfq/WHpchKR2x6hhWFCQOcu/OLhd96yL/egW5zxwXXn90XgICR0f8vCaQuEZRew1AUBb1ez0j/hWuU8wlKoCoqAXCym5M/H2NmGSLmQnJSEcXca9N7axg9NkXX0yvs471CNa/hw5OMnYyJCQ+2kIXgejfDQrsjV5WNiqsCnPhhr/ie1qAis2S6CKw1QSm6w082lWdgr4xM4KywkcvkQUhSktrRAZDNY1AMGEyy3MsaVFj3QA0dvxoQkal0OtAbdIuZBiXA5DDgLLcxdmZ6TYgn1qCC4jCJiVt6gw69Xp7HNt1VQT6X5+i3LtxPWQkGRa9J8UmrapozalXrsQKSkkGB6psiDB0YJ6ZRoVUKLWpWWqE4DOSB9ArqekshusOPNWgWC1N4mx3YQxYxSen0T/pQHLLaNqC+tEuUG1ZTVGp/qJKpzjjdxy/ck2z9v9S8fymy0m9CBoqf8uxNjxb+y0n+ZRu6dReKcfxs9zp6JtQP2NBw4UH7lSAiKV111VX89Kc/5X///fQiktJqiPVoG41jp2KkV/IyXyZhaLijHH+Li12fkBFBtJJ+dmo89aw36DQRXTa/p57ERIr9n5Ox7bb/VQvTnTGOfVdwukWB7X/WzNChCTp+Vfqmkr/NSdPdlXQ/P0TP70pf5DrKrFh9ZhSvmVSs9BOmR78hmziKCF/mIdjiFisGHfx3mYJSEb07h0FDDNon3Awqovr6ELPjqTUhKTnCZqquCqHYZSzl8eMxXjoue1cBhg6NoVf0zPTJvlv3b4c1qZ5VXh/EETTL3h8QqxQU4ay0qgQuIS7/WAvJ6TQH/k0WHy77cBPjZ2KcXomYsASu+HgLQy9PcvaJ0p+5s8ZK21urGTw4LkoArD4TOoMOgQAgoI6xF/7uqKhNEWLilt7AhrdXYvGZ2f3pC9/blYhKo6di5AV+rXOfUVFYMiI9MnDBWkMHVD0yQdfPQjgdTqxWeTHxEtYWOp2OnIaFzvhpDQuOtGphMHZ2hbi6zPu37c8ameqLc/L7pZ9G1moB1fHLQW1EFwC9DpvPJFLHaXhDhFC7l92fOSXa4K+5JUxwnYfd/yxTBKm/LYKrxibO8za+tw6T3cieT8nsPFwVdlIzcmKUJqUToOmucqZ6ZhnYUzrZND6S1mTxOnk2Rt/uUcZOyRb+wwcnxcQfgPIdAULtXoYPjovJd1pQc1OZKhMs/KxHNObNPS8Mk0vJ49GBL2jLm1vvr2TwwDhjx2W5nnQNCGDzm7CHrFgDZhFJqfKaANEdQV7+xjlmekuPu1U3hgi2usSEr6Z7orjKbewRnkBsfHMlFrfCLuFBCaNiUMn9QkjVZhdCai2HTsdlH25icN8YXUusO1ciKk2cizM5LH9XJ01L/L2/HFwy72r76AAHv1HJM9/3Aee4+uqrxfe7hLXDW9/6Vnbv3s03vx7n1jeWnidLlU6KGO+Ik10pz1uKoIRq21a2zc++z8higVbSz17hfYowmLQRXTY9XMfsWJIjwjrNpj+tY7I7LiY9bHxPLcNHpkQkY2vIzPq31dDz7BD9u0vPaax+M86oDYvHSExAmOh4aoiOp+S2e+5aG8ENHnHh/dTj2hSNel4YRW+S1zGO/ae23KTuDRFNY0ULjA4jdbdE6N89SudvSn8Ws0NJ9gvrMwCTnTN0Pz/MTK/ssNzo0SlN1l+B9S6c5VbOCddZ554Y4JyIGq7CXWXXZGu2+ZF6UtMZjnxT9sw3vKuGyXNxVTFIgC0faGDw0AS9z5Ze2zY6jKx/W614rFjcRvUggTDdToykxTleERdYO65GVNLpqb0ljLvCyoEvdVzwzysRlSY74xhdVjHRNmM00rfUUPm/h5fMvYL/zxTDn/Fhs3lwOjUU4S9hTeFwOJielsesmSFtOc3I8Wkmu1YgPCxT82p5SyXxwcTK5KbzoUGRBbTH8Tx59AY9JqFSUWizh6prQhz6yllSk6X3a3CDm8g2H4e+LHOPCG324G9yig9m190ewR4w8/JXO0TtXNU2sskcA3tFzXhZ+L2KKL/cR2I8LSKgZFM5Dn+tQ3yv1GSKrmeGmOqVkXhifQlNDireRidV14SIfWVWNFa0ovxyP86oTaw60ylUNCqi98UR8RwMiPPsIiqvCTLREWO6S5brHfqSfGwarEbcVXYmO2ZEJCVvo4Pa15dx/PvdIps5f5uL8EYPR7/bJSK0lV/uw9vo5Mg3hMq/14dwlsvHit6kF5MDAc78RIPrSgEr2ZQuCZ2ODe+oYfDQOEMHLqz/rkRUGj0xzWzahpRVOKsskz99emzJ3KvlcwM8OlsLwJYtW0T3Eq0GvvrVr+L3+zlzSv1CSyoonY/aKPT2suUd5YyeitP59MTcPy2lorQQPc/JWGhFpGcyZJNZse1b5fVBItv8YpUbrdjzaW2Fnr6XRpkZlG8+ZhIZUnHhC5AC9DoxWWJ6IEl8OMHMgOxznvvloHhBfDEINLtxVdnX7H5aT4Rrxamf9JIYWxtmbKw7ycmf9DApnFQ13683xenetZECB/C3uLB6ZPJ5F4O9/6otPkz3xkUSskVIT/UBKA49mWSWpFBpKDkyS//eMQb3yd6HydMzmjYetWLDQzUYbYbSiQIFBaVMIkcmKV+EDp3RM3Rm5QVM8yc7LlBTunc6RofRwLcf/uqi3+sOq88lD+Tf7kD39Rg6wHo4y/GjKcbGxohGo+LPeQlrC7VgM81Ab5qyqGlpBaXzUR2lqmIab72Ng19bXDBeUkVpAY59V5vlQTqRJaOBlLHxvXUkxlNi/20tGHhpXJOCYt+eUVKxDOm4bOM8PZMhM5tRLYgETXV6bTF54lwMs4ZC/55Py8k/FwNfswvFaRKRlLQiHc9pJ7RpQOczI4ydia0JQQng1E96UOwaVGc0QqJGddEwgafWQWYmIyYpacHk2Tgv/qP84ElsMEFsIM7MkCzf1ht06IRKXQCZeI7UrLwY2P3MkCZlT+kJwouByQab3tdE97PDpccHnQ6T20RmNktqWp57nX5m9efW9Kmzi9SUtiRnieay/MRo5tTD/zH/UXapfysP5D/oRveZSXSA7yV1bXT45WPo9Xo+9alPiT/nJawdPvShD/HRj36Uwy+rE/dSCkrnI9NahfFYF21v9jPRmaBv7/wmwVIqSgsxenSG0aOyTQVAzUtm0mLrosB6F5VXh3j5y6fXxN5MK3Gk+9khEgKLjCJSM9ryUS3K1bNjSaa6Z5gZltk3aiVCa4WvwYm/2cVpY59mBS4JtGyqXgxO/LB75cOtryAysQzHvtfFjGCD5mKQmshoUjbSCn+zC1eVbc1qskeFJKMiJs7GSGpQRNLpdcsJAC0PY2FNJxxjmUSGrqcHGTstOyiRGM1oIrRpRd1tZVi95tIJX4UOzCQypDQQLyYn7Uw+t/Lk0/b3fReoKd02MkunxcBPH/zK4o/za7W2kddB/r/70P2PMXR5cPw6xamJDMPDo3Pq1Jfw2kVbWxsvvvgig90pwpXKkgpK5yPTVEkoO0SgycbJJxevG5ZSUVqInme17c2k4xkyCfm4r39jhMxMVjNpQoLprlkOf71D3G7i7DT5TJ6scJ2Zns2QnE5jUPRkU7L8S8taeLorTlKD8vgxoXXtxSK40cN076xmlRwJsimNyk0aMXp8mvhQck0ISqCuCUy2tat5TQgcOF4JhNo95PN5MUlJC1KTGfZ/Xi6EkZhMMX42RnJK9sz1hsL6Shg204ksKQ153sCeccY98tph9zNyMQvNMMD6B6rp2zVWenzQ6cCgrv8zs/J17kCHmdUeQuv/NbJITalmOkv1TI7ngnpO3XLefuPjah/nFch/MoTuI0PoUlDx40kOeE+h0+n4+Mc/LvqMurxQkqK4aXKsK1IaSamAbbfpmTgb5/STaiKwGkGpiOobg6TjSyzMXiHZxYWIXuknekWAI988J1JVqrw+SPTyAPu+eEasuqE49KRia7OR8ceM8FYPdbdEOP1EH8NLsAlfaWx4qAZH1MZOoTpL5fVB7H4zx4Wbsdv/qgVyeV76pDbVAile99/amOqa0cSolqL6phDRKwKc/FGPSM44uMlNaL1HzKrd9L56rH6FnX+vTQFNiss+3EQmmWX/Z9eu0PDHCsWByAayiM3/pR6dXidWJGt/dy0Gi740ktIyFm/L4Xw1JYPPS+PNDnr2xJgtYQ+4SFRSUikeyk/RWtvJm67bvfiiW7qgKw0HK0FRVO/Ojd0kKvVcrofDB7PccMMNPPXUU6LPfglri1tvvZWf//zn7LjJzv/8YrQ0khJQvRH85Xr2fal7jiCzGkEJwFZmIro9wKkf90N+iVOVrzA2vreO5ESK44/J5sVNj9STmc1w+KvyecpkW1ubpT9WbPzTOvRGnVjxSSuu+OtWprpmZKQJEzTfWcHQyxOMnyh9Aglt8dBwazlnnuxncN+rT6Zqe7AKV5WdFzWqs0px2V82kUvnxCo+jW+KMN2fEBPMdvzXVkZPTXHye9pIkBKEt3ipfX2Y49/vXvMC0x8jTDa9mHRniyisf7CWzt8Mid4fe9RC671VdPx2gJFDJawJhGTO89WUyq8rQ6/X0X+wNKZGkai0Ixlnq3WSD73t8cUX3NcDZ9KwqwJMJkin4fIeqDfxu69VcWOdSgiVKoJewtpDtQbIc6qzrCSSUhGbL88yeWqKrufVguNqBKUiQptc5NJ5hg9NLP6HZVSULgbeJgfV14c58cMeZodkJ2Frbgxz5D87SAjVzowW/YVKHZcghrPKSss9lZz9xcCaEIFqbysjtM4jVmcJrHfhCFvEqk8b31OL3qRfM4LG9o+2MH5mmlM/fPVzE3+bi8Y3RTn5eA9jJ0rfsHTV2Ai0uTj7ywERwazx7ijeOsea1Q83vKuGXCa/JmpWf+wwWtBEIG2+rwKTzchhobpI/e0RLB5leZLSwlxLyPA6X01JHwxQeZmZ4VNJEhOrty8SlYyZDB/ODtJa28l1lx1efNEj/XAiBb+KgtGoene+vpdYk46/CBr48pdmueeee/je974n+uyXsLb453/+Zz7ykY9w64M+/vT/rSiJpAQQLMsSjsKp7/fNWQqtRlAC1RIosM5F365x8tnzcq1XIU+vf2OEzGyWTuG82HhHlGw2x9mfydU6DMra2iz9saL+TREUu3HNSE6b3lfPVFdcbJlecXWAibMzxATKi/aIhZb7Kjn3ywHGBJZhWlF5TZDQRg97hYrQWtH2QBU6vU68bxjZ7iM5IVPBAtjygUZGj06uCRnREbXS8MZyzjzRx3T32ohF/DFDC8nSYDWw7oEqep4dEY0VxWGg4Y4ofbtGmSjFylla8zpPTcm7uRyjGcY6S6srFIlKzZNZ/kTp4R1vWmLP8P8dhqMp+FYZGAyQzcIDA5xptLH+m2Nk03oyQi918XFrvV5PLpfj/be8nRWs7i7AnidygEV6O8o2u8nM5unbuUTisAIUn4I9pDAuOHnb+/yoJqWbxGiSzGwGxa4jJThg3HR3BcH1bnZ/9pSI3BRsd1F+eUBuOaaAt84h6pO5pj5FTMAq2+4lm8qJSUNX/HUrE2emRRuW8dEkicmUJpalFgwfnSSblhfaguvcmJ1y9u/I0UnIyRPl9nfXEh9Nii28tMASUmh7SxVdTw+JyEZjp6exl1mYElhkgNqX7mq5Ctbw4QlcFTZxO62YHU6SnpEXmHf811bGTkxz4gelvweKA8p3hOnbOy57X4uxXLiAsZepDaVWmXW3R1BsBjEpYeN7m9Cb9GI1pfR0Br0G2cZDj5YonbmAoKQ4wFXjZOSwwBPY5yXYouCrMhMfzdArUD87+tCjy//jL847MaYocKweCzB1eQqdrpsvf/nLJd/rEn4/+MxnPkNDQwOHd+lLJigBdB6EzoM5KI9CZ+nF90Crm0Cbk6FDk0x2xC8kKq0AX5tTtdUS7F1ptU9Nx9KkNZze3P7RZlLTabH9VNNd5cyOpeh+Rnaa2RY2kc1AclR42quYKgiamdwmwu1uel4cEbVrvLMcb6NTbN8WH0yg02BLqhVjJ6cYPyPPYX1NTrLJrIikFOuaYeTEJNO9svsF1ruI7ghw9Jsda6KmVH9bBMUlL5oNHpogryGP9be5sQTMYpLS6KkpRtZIWSE5lSI+mmRWqMDRdE8Ud7VDbM8YWO8CYOSw7PuZ3CaRfWQR7jobk91x0TsOsP7t1fTsHBERtxwVVtrfWUvPzhG6BFYlBsVIOp4hMS5TmpjpTZSu7LagWONpsDMznBL1p8HvpazNisGkL5mkVMTX3vvVpf/hsYrFP5tMsE+Vu27uT2IwGHC5XKJ7XcLvB16vl7GxMd5137tQBBWz/bsMgBcjsqJ29HIvmUSOkSPTopqX0WHE6jOJTt6On4xpsoJPTqVIxdIYFAOSAFR+hZ+qa0Mc+so54gI1cGeVlfLL/Jz4vlBp0wiOMguxHvkuv1SVClT7A4DxU7I+3fKBBsbPxkS2dMmpNDODCVIx+dyhBRPC71REYJ0bZ7lVTFIaOjiBToO9aMMd5aSmMmILLy0wWvQ03VNJ/0ujomc+Mxhn8OVx4oOyjSRvvYPgeo9KUhJg9MSUqua6RogNJMgLN3cAtv5ZI2PHpzj3K4FykxHKNnkZOT4te1+LsVzYLYrHiN4gt/SMXObF4lXEqlQtb6nG7FbEm7ipWIa8Bov4M6WSHxYSlIzgrrYxeab0Uz/6YABHSEeo0UxqJkdiovQ4duqeFWpen48s/tlohN9W4wB2Xm8EjvN3f/d3Jd/rEn4/eP/7389HPvIRTuz0lExQAhgeMDA8ANRUYjxZ+nrYHrEQ2eZjumeW6d6EKPeyRywkRhMiAtCZn2qzBErNpMml5e/1hodqSMczHP+uLIeKXO4jE88y/LJsH09xqDVxsX1RsZQuaGawGvDU2pk4PSV6BpFtPkKbPeL6Y3wwScqydvPp8KEJsUIzQHizl3weEUkpMZFmYP+4WB3SHrEQucxH528GSUufuQaENnuw+hQxyW/45Uku8KQq5X7tHmaGEmKS0uDBcaa71uY0bDaZZbovTnJKtiYov9xHYL1bbBXniFrRG3RMCb+fQWg7WYQ1pDA7mhIrMNXcXMbI4QmRlZ3JYWDjw/X0PDfCwN7SiR0GRUdyIi1el6Vi2dIP3i6oeVlDCqnprKg/DZEwoSYFs13HWKfs2T15zzI1L4D/O3jejQzwnSjls1nyX5siHA4u3W4FiFeAra2tAGR8L839rnk71G1U/1tRYP014Cs4yJTVqT8D2FzQdF+UuhsKxTkFNjxURXCj+nNok4sND81vqjbcUcZE9wx7Cwok7Q/XEt7mgXyeYLuL9odr5zbXG+4op+Xe+cLg1vc30Hx3JQDeFgftD9ei+NSL626L0PrWyrlrNzxUQ/QaPwDuVjsbH6nDElKvrb05TNsD859p/durqbxe7WhHpZn2h2uZHU+y59On8De5Wfe26rlr2x6soub1YUDdzG9/uBZXrUqOqLgugCVoYuzEJKQytN1fSd2tZWq3+NRrvU1qwaN8h5/2d9fO/d3K60LYwxYsIQXFofZLYIPah2XbvWq/FJ/NmytouFM9fdD+9lpa76siuMkNqEo0i/rwznKa3zzfh+0P11K23cvWP29kyyP1ah+qH4n6N0ZouW/Bte+upXyH2ofeJrW/a24IU3N9mLpby2i7f0F/v6OGiutUVp6r1kb7w7VzZAe1v/LMFggW695WTfWNoUX97ahUrQoqrw+y/u1qf093zJIcT+OrUz+gJaT2obtBJbFEr/Gz4aGauc/Q+tZK6m6LENjg4vKPt7Dlgw14W9S2kR2+Rf3dcm8FDXcUpGYVtV+yiSxHv9lF+DLPov5uuruCxrvn7ZPaH64lvNUz19+Z2Sw7P6mekj9/zLa/u5bIDh8A/jZnob/nX1Gzc75CuuGhGqJXLu7v4viuvTk8198Wvxl/s2tuzDprrGofRtVrq28K0fa2+fHd9rYqqm9S+1tn1tH+cC3OGusF/Q1cMGZb7q3A7DJh9pqIXnlef7+lgrrb1cWj4tDT/nAt/jYnAI6IFaNimCPVLNXfxTEb3jrf30e/2cXw0Uma7l48ZsOXFfp7mRjR+/wox77TvXjMlhAjtv9V89yYan+4tuQYoVf09O5WZQOrbwyVFiMU1YvYHp0ndpYSI/wbfESvCND6lgrq31js79VjxNZHGnndx9pQfIv7e7UYseFd9bQ/3ABAYIOr5Bjha3Kqdj/F/i4xRvTvH2N2Iknbg/P9XUqMOPz1Tg49eo62B6qovVnt71VjxAOVNN4dWdzf58cInQ70BlruKafhTeqzqbguRPNdUepuVT9/eJub9nfPP/OmuyM03hUhn85ANsuGd1UTbFEYPp6ia8807gplrr9rr7XRcNM8Ea/tDhfhDeo/XvHDPv5aOcfeI5WkUvCj323nP5+4Zu7aR3/wen63pw2Ao6ej/Mf3bmFgRP38Tzy7jUQiQSgUuiR9/QeA+vp6ANLpNGXqf+L0Q+uVoBT4ltFWaLhsvk3TFRBRX038ldD6QBSLXU2co1f6aXrzvHx605vLqbhafTdtAROOcgvHH+9lsiNO5HIvrW8pvMf5PE13lVNViG8mt4m2B6twF/KahrsitN5TRfk29W81vClCVeHdNNnUeOdtVsdgcKN70XvceE85Nbeq7yYm9VpfYY4IrHcturb21jLqbo1w5BtdnPx+L20PVhHcqMYsb7ODtgerMBX6pfqmEA1vmi9ctj1QRWxgloG947jrbOq1bpUNVHVDiMY75/ul9S2VlG33AupGvb/Nja9FjaMVVwdoumd+rm++t2JuTrZFFNoerMIWUd/Vje9poP2dC/KEe6JUXK3GB7Nf7UNntfqBy7Z7ab2/ElvAxI6/amXTe+upuiG0uL/r1GvDW7yL5p6GN0VovrucqmtCeBsdi/o70L64D+tujVBbmE8AHFEbmYRaePG1OdVrCySpmlvC1N+2oA8X9PfwkUmMFgMmm5qrVN0YonFhf99fSdk2tQ/dtfP9vf6d1Wz7yyaa7lrc35ErfHP93fZgFbaA+iGiV/lpujfKyR/0MnxwkqZ7o0SvKvR3WO2X4nxZvsO/aO5pelOUnueGOf2T/gv7e5t30dzTuGDMpuNZjGYDilN9jqEtnsX9/cYINTefN2ZbHFi8Cla/mea3zP/d4phd2IeBdnUs+VrUZ1VckdXcHKbhjYvHbGiLB1CJGOr4LvT3DSF8rU5sAXXOa71/fsw6q9X+NvvVPqy8JkDTm+fHrM2nkC0UPO1Ri9rf4cX9PdeH986P2UNfOkM2lcNRoeaGkSt8tC74rsvFiJPf60WxGRf192oxYtMjdVz24Wac1Tbqb4tQc0tpMcLb6CTWm5gjBpYaI2aHk+gMOsJbCmO2xBhRc32Yulsii/q7lBix5ZF62t9TS/RKP80L1gMrxojLvax7oIbmO9XrG+8sLylGOKttuKrtVFwVWNSHq8WI5HRGJffXWOfIWKXECIvHxP7PnUFn0C0es6vEiPXvrp7v7+uDy8eIShttD1bOxYiWN1ew5ZF5O7ame8rn+ztsou3BSuxRM/lMmsh2Ny33q9/14HcmmBpOEd1iKfQhNN/mwhFR11yhNjNNtzjn/u4t+wf55+pdDI44mZy08o2fXM/xs+pn3PNyA9/86XVz1/74t5fz5HNbAIjHTfzp3zaQzWbZsmULl/Dax5133glAKvfC3O+q67JEa4pFwSxN67J4fOrPXr/6M2QxW7JEbo9SvnneXrHxjjDeJvXddNVYaLwjPLdhHt3hZbJzhpe/qm6uNd1Zjr/VDrksjgoLjXdHMRasXMuv8FNbWDsCbHmknpZ71LhqL1evVTzqtWXbvNS+Yf7autvKCG3yAGAJmGi5vwJL4R0Kb/FQd9t8XlB7a9ncu2nxGGm8O0ouDS9/uQNb0Lxonqq9OUz5Fer7ZnSo1zoq1HfK3+bCWWVhcN8YqZkM1TeGKH9d4VqLqvbiqlH7xdfsXFRHqbg6iLfJiS2s/q3Gu6O469V1kbverl5b7MOrA1Rdp8bC+lsibHhnLb5mZ6G/bWofFpbV5a/zz60dARrvKlfnkQeq2Pyndef1t29u7Qjq3F+cT2xhtb9rbymj+rqQ2t8Lcqu628oIF+Zvi1/tl2J/hzZ50Bn0JEbUTaHaN4SJXKb2t1Lob3u5+oEDG1xztZHURIbZ4STOcluhD/WL+tvX5qRxQdysviFE9KoA9nILWz7QwPp31szl7d4mx6L+rrw2RMW18wXl4r+de2Lgwv6+KkD1DYv7sDgnO6usZFM59v+bqtRYvsNPzcL+vqN8bj4pjlnjAqtis3v+v+tvj8yNWWvIrPahX/338FYPtYUxaw+ZCWxwz9Xdiv1tDZnn+vvCMavOJ3qTTu3DQh4ZWO+i8Y75Pqy5MTRXwzBa9DTcUY6jzIzZbVLH7IL+rrpO7W/14sVj1uqzYDQbSEyo+XbFtUEqr13QL3dH52o77lrbXH93PjVEzwsjVF+7uL/9bWofLhcjxo5Oc+7ngzTcUT5XByolRmx6pJ7m+9TYsHDMrhYjjBYDQwWydnCju+QYkZ7N4qi0zl1bSoxwVdioubGMxjvKiV49b0uxWoxY/2A1l3+4ZS6mlRojNryjlk3vURfWjuj5/b18jPC3uQht9mJZ2N8lxIiBfePE+uLU376gD0uIEeeeHODkD3qpff2C/l4tRtwUovqmwntfHLPnx4h8HnR6Kq/1U1HYNwlvcLPuLZVUFWp27nobjXdF5vv7Sh/V1wfJpdLkszka7qnEW20kNpTnzHMxHEHjXH9H1itUbpufL+uusuCrU//Qti/08Un7YU52Bslk4MVDzTzx3Na5a3/yu8vZd0TN//qGPfzg169jaFR9j3YfbmBqaopAIEBzczOX8NqG1WrFbDbT19eHL6jmVoo1S01jFsWs/uwLZqmond+crajN4g+puZfDmaXi9nIUg0rQ8DbYqSyMV4DoFT4ChXnKYDXgqrRx4id9TPcm8NTZqLkxrI71fJ7I5b6599igQPVNYewRdcCGtnjY8I5afM3qvxeJL+rF6rWOqBrTnJVWqm+ajw+RK7yUXe6b+7n6pjCuKvV9s0csVN8UxlCoBQc3uolc7qPzqSG6nxmm+sYQ7trCfBJS1GutKsMnuMFNdMf8d626Nsh03yyD+yew+NRriyQif5trfp5CXbP6WtR+UdxGyq8IzNW8fC3OuTUpqHXE4txjchiovimMNaB+4PZ319HyJ/N17+gOP8EN7rn+rr4pjLWwh+KutVN9YwiDAls/0EjLPRVz/T3Xh4X45qxa3IdlW31UXROk9vVl2KM2qm8K4yzMIY5o4doC8Sm02UNk23x/O2ttKpnAALawudDf6ho12O6mfOGzuT6EpzCfTJyLoVf0K/Z3kbBu9hb6261+5/XvrFk0T0WvDuBrLfa3eo3Zq/aLr8lJ5TVBeneq6irRK/0ElulvT72d6uvn56nyy310/W6I3udGMCh6qm8KYwurcdVVa1s0p0W2z4/ZbEqteZmsaj+cP2bDW72UbV08Zp1VVkx2A64KG1XXhxb39/YF194YmtsDL/a3rnDtBX14fQhPYW/GGlD70FQYs4E2F6GNHuxlhb3Ja4L4mubHbLG/QR2zC/tbcZvIZdSal1LoQ0thH8rb6KBqQd67cMwe/mYn6XgWa3BBfy/sw2ViRNEFatF7v0qMaLirnA3vrMEWNhPa7Lmgv5eLEY6odZHlXqkxIjGZBr1ubsyWGiMqrvSra56bwiiFXL2UGLHh7dU0vbkCT4NdHS9L9PdSMaL9nXVUF9Z2C/t7pRihOAyE1ruJXDY/tkqJEblUnr4XR7CVmef6u5QYYQuYOfH9HrLp3KoxeWGMqLu9DMVbGLOtzuVjhMdI9U0hzF41F2++q4KND9fMX/u682NECKtfIZ9K4ak2U32rWiM4/cwsE31pAoXcyqBA5VYzVjWtxFlmoGLLfB523bcm+c/wM0xOW0mlDPxq52a6B9Tv09UX4Fc7N1Pk9e450sBLhxsBVUzp4/9YRzqd5vLLL0cKMUnpu9/9LgBj4/PsRWdAjzukMrsUG9g9etyFZ+EJqT/7otB+nR5PmR5PrfpgFAXsYQvuQuHVW2fHHrbMbdB6qu04w/OKJ/awBV+tA3Q63DUO7GVWFEchYNTacS1QVdEBswU1Ck+VHXuZFbNLHQCeusXXOsqt+OrUAdByZyX2oAV7oeDvrnfgrJz/DM4KG76GIrnChr3Mqn4On6IWYRYotLgqbHjq1e9qDVqwl1nnXgxfnRO738Kx7/aQiuVwVtlxFwk2biP2Muvci+Gtd8wFYwCj2UhyKkViKIXepmAvs84pynhrF1/rqrHhLfzd3peGIc/cd/XVOdXPXuhvb51jbgEIYC+z4q11MHBgjMRYEnuZFVOxv+vsuGoci68tfFdXldov3TuHePmbHbjrHDirFvR3dL6/nZVq/1mDanDx1Dsgzxw71llhw1P4/MW+dlaof8vX4Fzc39U2vIWFpj1gLlw739+O8gX9Um3HU2cnOZ0ml81jcSt4Cp/RW3deH1bb8RQCveJQ+9vb4qThznJ8DYuvddfa8NQUvqsy34cAntrzxux549Aemb92bnwXAr+/xYm7fr5I7ii34iv87KosjMNistI4398v/dNx9Abd3BhwFsasNah+Zm+9c5GqkKvChrfwdw2KXu3DSPH9dCzqb3XM2gv9rWD1WujbNUrvM6P46hf3t7PagadwrVIY3+7C+Am0udRrlcXPBkApfIZizJgb38UYUWOfW0SD2t++8/vwvBgRvcZP9Eq/+ncLSWcpMUJv0JNJZnFWWAv9XVqMcESscxtGnvP6cNkYkYLEeAqzY151q5QY0b93jBOPd2N2KnN9WEqM0Ct6xk9NQ6rQhyXGCL1eR2JCJZe5q+0lx4jhlyfI59XvAZQcI3p+N4Jer180ZkuJEUVCnLPChrvwGVaLEZ5aB6ENPhyVZswugzpelooR+Zw6Zgvv/dCRKfK5PHpjIWmrdajzWgHuajuearvqva2A3W/EXaE+Z6vHhN1vnOtvT7kZV9m8ZKE9YMRdIBi6qs0Mjvv4+fNX8vnH7qCzN0L34HzCNzDqp6NbLUD1DAUYHPcxNqEmdT/9dZjh4WEmJia4hD8M2Gw2kskkJo/KfHd4wenXYy28Yt6wDndwPqVzB/V4ymDjTTrqNulx+vXYwsVYvmCeAjw1NryFeGEJKLgqbJjt6vj11i+IhTod7jrnXMyyeEy4quxzCyyjyUAum2P4oKqw4ql34mtQrzXZ1GuL8c9ba8dVWYi/DXZC67wE2zzqtSZwVdnxVBdieZUdV5V9bkPcW+fAW4jd3maHem3h+7gqbbiq7Oit6sXeBieeuvm501VpJ5vIMbBnHGdUvbZIAPbWO+ZiCYCrxj4fy8st5PPQ9fRQ4e868CyIb+4a+9w8awtacFXZsYfUfklOZtAvOBXurnHMLVBsAbPah4Wil6/BiavKTnwkzejxKRSrcS5uKg6D2odRtQ/ddba5PgTw1DkxWo0c/U4nsd4krio7rsLc5K0u9GEB3vr5z4sJzG4TUx3q2PJUq31qKqjPeesdc5+h2IfeQk7kbXTgrrZjchYWWA2ORbnKwvzJEbXiqrJj8ZjIzuYwKHrcC5/Ngj50lKl9aCnMs74GJ54aB2XbvZRt8+Kpmf9MtqD6d4tx1ltvn8sv5vtbvY/FXRiHhVjvbXAsmus9Dc65v2vyG3HX2PG1qos+z4Ixq/b3/Gcojm9XtZ2eZ0cYOTKBIzI/Ty0cs1Ac3/a5PnJV2ecOJ18wDivn+7A4vk2FudPb4IAcc5Zt7ur5PnSWF/q7QPjwNjoX9YunwUmosNC3h9X+ts3lhovHt6fGod4LsBTHbJll7ru5FsSTpWKEq9ZGzS1h9X2tXvB3V4kRVp+ZXCpLKpbGW++Yex9XixG+ZuccqXiuv0uIEd3PjKDX6+byp1JjxMvf6mDo6ITah4UxW0qMmO6OM7BvHE+dA/fCPlwpRtQ7yWXz9L6oKv8uHIcrxYjpzjip6QxGi3FRf68WI9KTaU490YcjPD9vlBIjQhs9mNymufFdcoyI2mkvEMY99Y7lY0TYjKtyPkYkJtOw4JDx4hhhwVWpxgidwaDOa+XzuZUrpOCpUv+O1WnCGTbhCBbWAxUKrsj8tZ4qC8fO1PKlx2/nVE+I7qEQvUNqUamjL0z34HxB8lxvhLM9ah42mzZx7lwfOp2OL3zhC1zCax//+q//CsD45Lx6iTcI/iL/wAjeADgL9VKXR/3Z6oDNl0NZhLn4BoU5pFiQjljx1Nrn3kdv3fx7C+Cus+OqtoFOhzNixVvvxGRTx6S33oGncf69yAMzBXUiW9CMt96J2aXGN0+DA2/DvHKXr9E1F59b76vG1+jC6jMXPp8Db8P83/XVz8dyxaPgrXdiCykYHUaCGzx4FlzraVhwrd2It96Jo7BOctfYcFU4OPerQTKxDN7G+bivtxSuLczJ7qr5OgSAYjUQH0qo6ktGtW7hLsQ0V4Udb72TwnILf6MTXyFu9u8ZJ5/Nz9UYHYU+LPa3r2E+LwA1f3JX2xk4MM50T7zQh8bCvzku/K6FmGULqv3S++IIRx/rwlPvmKvPQGF+Ka7zfZZCHxZqXnV2dDro3z1eeK7OufuYXSa89U7shWu9tYtjrK/VNVe8NhWudUYKfVhtX5T3ehsc+BocZOMZsukc9rAFR2GsuSoX97ev0T4/Zov9Xe8genUAd43twj5cOL7rnLgLdQlneeHawmaHt8GBt2lBH9Y75uYTR5naL8WaQLDdQ6CwHoBC7lLs70BhfHvMc8+m2N8H/+McukI/Apg96rXFOdlda1/0HL2Nzrm6isGoV/u7kEd6auxzzw3A2+Sc+65Gux5XlYOe50cZ2DOOu/a8PmxyzI1DY+HvFvMaX7MTf4tzzlzA1+DA17hw3nXiLszJjuhS/b14zBZrMsvFiMB6F4ENLnWOri3Oh6vHCKNZT3Y2i82vPptSY4Sv0YmrqnitveQYEeuLY/HMb4yUEiOmOuIc+c8OFLsBf3FslRAjTHYjQ4fGSUxk8NY5S44RepN+Ls7aC2O2lBgxsHecfFbtH6DkGDFyeIp8nkX9XUqMKI6JReuZVWJEcL2H6BVBnFVWjMX+XipG5LL46p34Cn939NQkuWwOXeGEvzNqxVvnWNyH9XZ0hkI+VW7CWab+m8VpwF1umiMpeSpMeCrm657uqAl3gSxuq7BztjfCT5++iq//9CbOdpdztnueZHWmJ0JHv0r8Ghl3cbY3wsS0+pn/4zubGRgYICtQyLmE3y/WrVtHIpFAZ1FVfCwW8AfBXCi9enzqz0X4AuD2QdM6aN6g/psloF7sqrTNradArTkV5xPFZsDX6EApbCg7otZF1/oanXNrDoNiwN/swhZU45TJbCCbyjJ2WlXS8zY65mKWwQD+ZtdcfHOErfibXWBQN6Zrri8jXCDegnqts5Ab2kLqAXO9UozlTnyFOGQLm/E1ueZq17aABX+zC1Ph87tr7YtilrfZRT6bZ/xUDIvPpF5bcPRw19jxNy6ct5y4C2tAs9tEPpOnf5e6znRV2dXPP3eta64PTXYj/mYXlgLBZrp/FoNpXvHD2+ic28cxWtQ+tAfUl95RYcXX6CKbgoHdY5gK88Ki/i7Myc6IddFn8DbaMbtNHPtuF1O9cbW/C/HNXqb2i8GwYI3aNP9cHUGLqgKTBXuocK1V/cyeusVx39s0v1fmiFgIrHPPkThcNbY5koza3865vRmLR+1vxaGQSWbV777g7/obnXN7M4pDwd/swlwgsjqrbPianXjq7Xga7PganXPEW6NN7RdrIa9xVdgW5Va+JudcncJg1av9XZgjnFEbvqYFfdjgmB/fVgPhdvfc3p7j/P6ud+BtmM9Viv09cXqGnp0juKscBYXVQs1rQW7oa3LNrW/m+rtA+PDUn5dTNDnn6hZWn/ouGAt5jbvOjg44WrAk9TU71XUSKsHG3+zC7CqQW2rs83kBqiJSkQijuEyFMau+C66q+T1kKNbLCs/Gvri/nVEbvsaF+dKFMcIeUUlGnjo7/oX9vUqMcFfZySSyZFN5fI0OvI2L+3u5GBFodRFctziHKyVGjB2fRqfTzY/ZEmPEmSf66ds1qvahu7AvVUKMmOiYYejgOO5K++L3ZpUYkU1lGSrYoHsbnCXFiFRMVZcymAvFVQMlxYhsKkffrjGVh1LgbZQSI/wtLgxWA9aAufDelxYjQu1emu5UCUSeGsfyMcJuwt/kwuxRn01scJb8ApclX6Nz7t012gz4m9QxqzMYcFZY8VYu2FMOmXCXz5OUvJVGbAWilDOox1c5f0jEXWPm0Ml6vvrjm+ke8nGys4KhUZXR1D/i52Tn/AHLM93lnO2ZJ9U/W6hT/tM//RNS6PJ5udlqMRG98ar/iWG6dPms5nVxup4fJz64QI9vtYRRgcs+0MD4mdiFXuGvgk9s+Q4/OhP0PiOzfdv2oUZMNiM7/+GYqF31jSEUl2lNfND/UOCoNGPxmEWWYQA7/qaVxESK/Z878yp9snlU3xSiYkeQE493iz5n/RsjBNrcYruqbR9qxGg18OL/krXTitf9tzamumY4vAae8q1vqcDX7Gb3vxwhJVAUX//2aiw+hT2flskgb/+rFsjleemTMjsPLXDWWGl/ex2DB8c5/ePSLfcsIQVnuVVslfjHDG+Tg8hlPk7/SCV2loq2B6rw1DnY87nTIgs8R1Qhenloabu98/1gdTK+r06/uL0hGGDbO32MdSQ5+/TKNix5j3PRz1Xt8M6HDrBjY2nvwc33PcSL+/6ZmfgYb33rW/n2t78t+uyX8PvBgw8+yLe+9S2c9ijbNz6CYbo0Od5gDRgnx+h7cWLR71eTs264vQxvg53dnz5zod3bq5B7NbwxQt+LI8RHSpdJtYVNbHpPI4P7xznzROny2Sa3idrXh+jdOcqM0Gb0jxm+NifTvQmRXVLDmyKE2r3s/swpTbZVUlz2l03kM3n2CO0PtnyggVj/LCd/UHquXRxffXtG6fiFzKZBC9oerMJVZedF4TpCKy7/WAuJ8ZRM7twEl32wif49Y/Q8O1Jys9AWDw23lnP2F/1imzgt2PindVjcCrv+SZYz+1ocJMaTxAfXxkbnDwH1t0WIjyXpf1HgZw5c8fEWZseE4wt1HZ6OZxg+WEL+e34uttrlBsOinxvuqcJdrnDgP1cfk3n3fO5l80C4wcBn/+k7Jd/75nveyVMv/Hf1b70Kc+glvDowGo1ks1muu+kfMAhsk2pdIwwdmV5kDZRPr95+48NVTJydoeNX59k6vQpjxtfsxGg1MHRgQtRu3dursQXM7P6XEm0ZCwhudGP1mtfEjusPBRa/EbNLYfKcTHp/24eamB1LcmQN6jSB9S4abo9y8vEexk6UbnlRts1LZLuf/V88LbLWWvdgNdagmT2fko0vrdj+0RbGz0yvSS02enWAytcFOfCFU3NqSqWg9g1hnFGb2JZj03vr0Bn1c4pWryaMDiPbPtBI/55RkRWL0WHEHjYzeaZ0G9o/dlhDZsq2eel+ZkRkZVd9Q4jIZX4O/McpkS2dxWMkvMVHZymWvnrD6tcswPl5l6EsRPtdDsa60vTsW7mWkXfZF/0crIWPfXQn65pKs0e58e0Pc/Tw1xkaOMp73/tevvjFL4o++yX8fvCNb3yDt7/97fiD69iw8W0Y4qWNZZcni3lggLETi+fTfGrl+m9ok5vQejeHv9FFPiOYrDQiss3H6KlJUpMCqx6rgU3vrWNg7xi9z5e+T2lQ9JRt9zF2YorZYZkF+h8zHFErycmUyKIstNlD1TUhDn3l7JxqzauJtgeq0Ol1HPmGLM9rvqeC+HCS7meGS25jUGDz+5vofXGE/l2y9b4WVF4TJLTRI7Yz1Yr2d9eSnEyLraPXv6OGwQPjDB8qfU/OHrHQ+pYqzv6yn7FjMps4Lah/YwRn1MaBL8j2wO0RC+l4WhSH/tgR3uolPZNh7LjsuW18Tx2J8ZR4fHka7OSzMHmuhPz3ImteZddX4a9ROP6b+KrWeTnPPMlQMYM/Cv/+6W9hKDH9u/HtD/P0U3+LwaAjnZbXVOWG36gn+gF6+neTdVpWuXoex38wuJigVApSqu1RLrlET67yoNrfU7vICqoU9O0cFROUADp+M8jpn8kXt8H17jl2tATbPtTIlg82iNute1v1IjnaUqA49LTdX7mIgVwKwpd5uOwvm+bsn0pF892VNL4xuvqF5+Hcrwc49RNZYADVyqloO1UqOp8Z4uCjp8REqmwyRy4j92o/9PVO9n1RVugHuOzDTZrGiRaEL/Ow429a56zCSsWxx3s4+OgpEUEJIJfOkc3Ii7YH/u0kR74pK/IAcxZiEkz3zXL21/10PVf6Zh5A3evL1HdANixZ97bqRZZlpaLlvoo5i5iSocCmR+rnVIpKRfgyDzv+ayvBdtfqFy9AaL2noEoge39O/3yA3p0jIoISQKw3tTRBaSkUSByKA7b9eT3B9uX75HyCUrFdNpUnMS1f8HQdQkRQAgiGXNhsNr72ta+J73cJvx985StfAWB6RiU7Zp2lxaPhDi4gKJWC2Yk06URuzhJpEVbIvQLrXWx+f/2cokmpOP3TfhFBCSA+mKbz6UG6npfFV5MJ/E0uAq2yGBTc6Obyj7XMyRCXCl+bkw3vqhG1AdWqaaGFUqloe7Bqka1XKTD7TbTcXUnVlYHVL16Avp0jnH6yTxNByRYRTnDAka+f4+CX5AWNbDpHLiWbO+KDaQ78xyk6fiMjKIW3eLni4/JxohWbHqlX3zkh9n3hDEe/2y1qYzLp1dwrLevLoX0THPiPUwwclBGUTG7TnE2YBKd/1seZX5RODC+i6c4KGt4kWzea/SY2/5d6fC2yxc7/z95/R0d2Vun++EcVTqVTuVQqVUlVKuVWtzp3u9vGsZ1xtrE9GIMBkxnypDvf37p3rfu9c+98h8sMzDAwAwwMORiMDRhsE4yNY+ec1C21WjlnlSr+/jilktStcHZB9xjTz1qsNdM6r8+pfd6zzz77fd7n8dQ6NCszYa6M7giKn2/Q5sm691avfOA58De5CDZ7xONaftZF2696Vj7wHHS9PKiPoAQF4kbd7eU0Pbj8fTu3WQNa3ZVJyr8jpkagdZf+pt6N976DZG4vAPX19eLzXcJ/HWbvV1fnLjI20wpHz6H9+WHRIvEsUlMZ0ou9q1boedXdEV5gp6UHQ8fHxQQl0BQlW34qz6+la+Z2Mkuw+uEYa95RJR4Xv7msYNGlGybNlsoZta187Dy443aa31lVsNDSi+qbwtTfJXvnAJz6eRenn5bnV5PVsMBWTQ8Gjo2x78snRQQlmK27MgUVG704/kQn+74s73k1v7OqqHlSDJxRG1s+Xl+ws9CLzpcHNAKJgKAEkE3myAhrWIBD3zjN0e+0icfN2rtJkJ5Ic+InHfTuli1wRrb6WHVfVDwv4zeXLbAq1IvoNUHxfQNofKCyoGahF86ojc0fqy9YyumFt1YluMYjfnY6Xxui9Zfd4ndPYiStj6AEkM3XPiZofkd0gbrGuVis7jKZIDWTIzkpn8/9rYgISgBOxwwWi6WgjHgJr3+87W1vA2B4SPvez9j1PQhjI8bzCEp6kBxPkZxMFyx69EINW2m4t6Jgu6QX3buGxMSAzHSG1md66NkzIjsZENroLSgP64UatrLuvdXiWsheZqH61vKCjZJeuKJ2yudZKOlF9NrgApspXTBqRJ7gOo9o2OCxcU482UFSQBydheIWJnOg5clOjgn7NJBfOxf2aTJJOPC1U3Tvkr2/1YiN9e+rEc+TYlF3R4RVD1SKxx3+Tjstgg2ts8jMZAo2cXox2Z3gwNdOMXRCVjMbbUZxDgI4+0I/p38u/221bw5TdV1o5QPnwaho64bS+20rVYhs94tzZaDJJX++0eZJw73yb6tgs5tAk/w79dRTXXS8JFuPABhpmdRHUIJCz6t8s4+q65fncyxWe2UzOVKJ7IoEpXORnIHu04gISplMJyUlOdasWSM7WR7ybAn8n//zf/jIRz7CydafU1G+pUBUWklVyRpQaLwrxNnfDTJ4LH8zZn/tMrv693z+9NK7/ktKltxdZnGZC6pPEjQ9WElqJivaUSMlq8xi1xdOQhGk5qnBGSiCoOGM2AqSeRJ4ap1kkjmGT+hnkpgUI0aLAWupneSE/oKx7Ze9GBT5okTPa8Xtzt70/hqmh5Ls+6KAfZrUSAxStD3bS9uz8h35UoLFLCb7EmSm5B+BxSAxnGJ6OMn0oFCZoshYHvmuvGgDSE5kSU7IzqdGFNY9UitWRCIJ3S/L2einn+3RfEWFYVHcpkVJMCvBW+dCcZtFz5C3SsXms6CW2xg8or8IyySyJCdTjJ6WsdKO/6hDI21Jea5DSdGOPtCIi00PVHL6F92Mzd/dusL7xFXl1OQ0l7gHS92b6dYB9n5n+Ws6V0EJYM31Rsb6Vq40ZslJAInkGO3t7ZSXl6MocpLAJfzXwGw2YzQayWQypFJTmM32AlFpJVWl6NV+HCELR783l7tmi9elaqvOFwe1nVrnqigV/gOL114mqxFFNeOusIt2hrur7cSuLePA11tBwHfp/J2cVD41kOLlfzgqOg/AZOcUiZEkuYys9lLLbTiCNuzlClPd+hNYcJ0be6lVpBIFWu1rNMtqqJnBFG2/7qX/iKyWnRpIMTUwIhoDGqmgdK2Xnf94jJSgRpES2WaxvwiSN1CUos7U4AyT/QmSkxdHjWeyc4oSo/y9XwyxLDWVLVjLSVFMLJvur8TqkSsiTXYmilJJa/lZF6lJWfPR5lUw200LLB31ILjGjX+VG34mW+z3xB1YnPIFxKmBRFHfja99+riYSAUwcEj+XVx7WzmUQMtPZDnPGrAUpMwXw2LNGoDWn5zFGFiexDBfQQnAVwnl9WZOvLzyfL7x3ncU/u99h34NwIc//OEVx13C6wdf+cpXuPzyy2k79QzhyOYCUWklVSWTA2puCNJ7YIyR01ouKjFrY5dTVDrynU5y6SXm1jI9L1uppajmdmxHEHLoX6AGxtunxecBOPK9MyJFnVloVm/yd5yn2kliOEnXy7I6MbhO27Qj+Z0GswFFNWNxmUkKCCjtv+3DrHMBdj4k/bj5WP/+Wqb7Zzj8LcHO/DRFEe7694/qJ5zOP10RC4AAE53T4vq8WKSm0ox3Txcs73WjyFhKns8Fp0tAOiE7n8lqYP27a8WKSABDgn7QLDpfG2J6KCm+7xaXUrC3kyC43sNE9zSDgu8da8CMM2Jn7MyUSPEpl80xPTjDVK8sZ3a9NEjXa4PifJmeSNO7e0Q0xmSFurujnH2hj4kO/XWzGrRicZmX7NkvVXfNdPRx9OfLE2rPVVACqNlSwtTwys/3LDkJIJ1O0NbWRjAYxGrVv7H+Ev7rUVlZydmzZ0kmJ1EUR4GotJKqkq/BjrPcypnn5vrvJfl+51KKSiOnphg5NSVXUSopwepTsPqtTHbrf3asPoXwdj9nft1HZlr/irFU3QM0wsruz58UL0xPDySZ7p8hm5K9U61eBXfMgc2niJSbfA1OvLVOsYqPxW0mmxGudWWg9Rc9jHfJCG2Z6czCdQGdmFNgOiUipyUFKk/z0fIT+SYCoChFneREirGOKZEi1e+Dia5pDDb5OrHkOZuPo98rcr2xiFjGrgviqpArIiVH00Upe536ebdYPMOsKihOeZ/ZE1MJbfHRs3sYieCAM2pHLbeJ1NsBpvqL+248+LU2McESYKJL3nMs2+TFpBjoFH6jWrxmbMsIrCxVe/U9f5bBivCif5vFfAUlALsLQnFo1yHyP7/2Onb452SzWT7ykY+sPHARFGX3Bgst3+ZjMaJS7rimWqKosPF9NfQdGuP000vIzy2yYJbLZCjb7CExnFr+w+APJIW99ZMNpGcy7BE24psfqSKTyBRNnng9Q1ENIoul/wrErg/iiatia4HqW0KMd07Rf0DWUN/8sToGj4zR+oyMdKT4FDHpqOa2cjzVKrs/d3EkES+m3Vvd3RGcFTb2/LPseVN8ikY2EvaHtny8nv5DoyKymKJC9LowPXsHmTirz2YJoOqGMtxVDvGc/K+AoiJWs3q9wxFSWPVAjFM/7xY1dENbvcRvKOfE42fnCFh6CK9L2L6tRByLXReg+7UBMrbzmeKLkZNmseVuM5PDWY48p703n/rVD847Zj5BCeClXf/IdGKQHTt28Mtf/nLZ67qE1xduueUWfvGLX+B2Rtnc/J4Ff1uMqJQ7ruWdpj+LYPcr7PqXpRXkFiMrmV1GgqtddL60QvH8B6i9Ste5qbk5zIknzjJ0TP+z6m1QqdpRxqFvtV8Uu7GLCbMdUvJeyEVH8zurGDg6JrKDUitsBJpctP2mV0QWi+4I4q93svcLQltfM5jtZvEc2fCBGgZPjNMuXKgpBhfb7m3jh2rpPzjC2ecFH/5FxjF2fRBvrVO2GQBNmc3mU2TXiDYnB4+NixenLzbMdoOIpPfHgob7tN1rxx+Tqduuf38NRlOJnAi3RH22VKMGNGKs0WJg6OjEokSlc8lJs4htMhCMmtj5ZLLQ9H/qN4+dd9x8ghJwyertjxgGg4FcLsc11//vBf++GFHJuC//nW6CTe+O0ntojI4XRxb97y5GVsqlU7hrHGRmMssvGP+B5tG6R+NkUjkO/WebaFz1rSFyQOtTcjWf1ztMVgPpxOs7LwfXe/A1ODkmXEAp3+IlMZJi+KTsg3/NO6oYOjlO10rfA+fApJo0koxg/aR8i5fAGjcHv9omOlexuJh2b+HtfvwNTm0hRIBi4ghab3rw2Dhdrwjumwki2wIMn5zQCII6Ueyc/K+AyaoRuN5IMKkmVr2lgjO/6WOsTbBJKG6n/u5KTv2sS6aWtoTt23J1F0BwvYuhlgly6iI9r0XISbNYd6ORyZEsLa9p776nnj3fbnf+IhnAkUPfo69nH/fddx8/+MH5PbJLeP3iM5/5DJ/85CcpLVvH6uYHF/xtMaKScb9We1Vc4cEdtXP4O0sTNRYjKxkMWdw1jotiz2Qvs9B4byUtP+1irF3/s2orVYheFaT16e6iCSyvVxgVTc3n9Y74jSHGOqZEJFfFbcJTrTJ4eET0G/1NLkpXuzj2A6FTjBGMilFMzKm7K8LY2Sl6dxcn/CDBxbZ7q7+nguFT4zLifJFxLG1242twinsgasSGzafQf1BG7o/fGGL07ORFyV2/D4yKoShF0Nc7Itv9GK1G2n8j6xXX3hFGUU0c+bY+dcgCiuh52fwKJoeR8fZpjIsQlc4lJ82itALCtXDohTmazs+f+vZ5x51be/32V/8PBgOki7RPLcruDeYs31rbf7vg35ezf0tOwCv/99TSBKVlUH1jOfEbVrApW+yGKWANytQiXvu/x8UEJdCYvIpXrkyx5RP1rHuPXIK/fLsP90Wyk/i9CErCkCg+hfXvrxHbQTnLbdj88vif/nmPmKAE2kvL5JDtfgtt9bLlQ3Vi+XGz1YjRIqd1eutVsR1XsVB8imYZJrwFZpsRkyL/bRveU82WD8ltEwxmA0aLLPUlJ6DlyS4RQQmKn5NrH42LbRl/X1wsglLs+qDYXlGttLD9b1YRuUL23LjiKma7SWxN0/PaMC//ryMyghKghs/PBysRlNQKhfBWH9W3LM9sXgw7H08VCEqL4VyCEoDqNGA0GnnqqafE57uE/1o8+eSTAIyOn1/MLmf/duQ7ncsSlJZC9Q1BoleXYnavIKOxyPNhL5NJb/TvH+WVvz8qIijNQnGYcUZkOyQjV/i57C8bV/5t58AeMIvzULG42ASl6I4gTW+NisfZA1acIVn8JzqmaXtGRlACMFuKq4U2v7+O9e+Ki8cZLUYUqTqFWSPdFWNTVgy8DSrO2GK+jMvDqBjEyhsV2wJs+XCd2MpOsRkxFXHfBg6NiQlKoM1JR1Bm0Vu6zk3zO6vk960IlaFZXCyCkjtup3SdXL66+V1VbPyQ3DLa6lWwCus8gH1fPCUmKNkD5kUJGystlMWuKaWuCDvNM7uz7Hw8ueyu5HMJSpPp1wAIhWSy6pfw+sCqVasAaG//3YJ/X9b+LQ27/619SYLScqi/I0Ls6hWs25b4LrEK7cb2f7lVTFACsPkt2L1yG/S174rT+KDcqsHX4EQV1nnF4vciKAlFkUxWA40PVOKtl1mxOIIW1JDcXqN757CYoAR5lVRhveCqsrP5Q3WUCS1VDFYjJoG14iwcYSuuKnktVAxMVoNm4SW8TLPNiNEqr4Wa317FukfkNazJVkTNnIbO3w2ICEoAjlBxc7LurrDclvH3xMUiKJVt9Ihzskk1sflj9ZRt9IjGOcosWFzyumu0dYqdnzkutnO0es9/B61Ud5lUE1XXBsTW4gD7n8kUCEqL4dxFMgADvRiNRr7xjW+Iz3cJ/7X46Ec/CsBg/5Hz/rac/VvHiyPLEpSWQmiTl/gNoaJsuRS3LMdO9c6w519bRAQlgFwGrH4Fa6ms9vLUOFj33mrxdZpVI75VF2cd6WITlEqb3cRWsExaDM4KG/aALP7J0TR9e2UEJQCDuaSoWqjxngqaHpT387Q1OWEPxKhZ9RWj5FoM7GUWbKXy95zZLu9DeaocbHhvDa6orK40KkbMRdy3ic5pMUEJipuTathK9a3l8vv2e9zmi0VQsgUUXHH5t0D8xhCrivg+tfiUZZWNlkLLk11igpJZNYJB3vMq3+Kl9hZ5D6q/A/Y/t6zp2Xm1VzJ5GsiyevVq8flmUZTdG8DXvvY17r//flrP/op49OoFf8s4rctavykqGKwKiYFFMvU59m+zu/tPP9NN74GRlS/sHCnsbZ9oJD2dYddn5SxNqbJIMecAmBlNMTMsVwCIXxdisi/B/hb9Ki2la13U3hah7Te9Ihuq2jvD+BtcvPr/ySwXtn6ygVwux87PnNA/KJnG5rPgrHCIyEPFqv6Et/vxxOxiBSxpLACGWiZxV4wy2ir7EDwmZOLOou72CBhKGDwiv1YpKrb7Kd/oY6p/RiSFKWaP5tG7Z5jUCpKvi6GY+1a+3Ye3WuXIt2TXevDrbeJzAdh8FokSIgCRq/zErizj5E86RM9N8yNVWL0KO/9R8IwCW/+ikeR4SqSMoPgUItsCOIJW0X03WkwkJ1OMdco+5rpfHirKbq9gKyewCy3bpCnBnH1pgLPPaTsW9VjvTXQkOfmzbsZax8lMgLFUa9wsp6AEoAZgYpm128UISn0DRxgaGqK2tvaS1dsfIcxmM4qikEwmGRltx+Ne+AGacVqWtX5zhM1Mdi1ea5xn/5bLcvrZPnr3jehTTZlXe0WvLSWyPcCR755h9LTsmZWqBw0fnxBbQQFM5G0azPYSUoLvwdj1ITxxlc7XBkUEm7WPxlFsJnYJdwxt/kgdY11TnHhM/w7v4EYPNTeVc/InnSLLJVfYhk34kQsUFX+A+vsiDB0bF13jqae6oQhP+c6dgxiKsETb9U+y9yKAr0al7rYIZ57r1SwTLzBq3xwhM5Nhz+dl5A7pOx9gqGUMq9vMZJd+uwuAkz/pBuT3rf6+CMMnJ8SWMcXMSTVswxG0iolDmz9YTzadFcd/6ycb6Nk7TLvAxiW83U/0qlIOf7ed8TP6E2X02iCOUps4jon+GTIO+W7dYtRDi1WOW/VgDIPZwM5/msutKzVrAA584wz+Oo0YkBkYLKgpLaWgBGB1QWKaZXP/uQQlgK6e/ZhMJv75n/95xeu6hNcffvSjH9HY2MiZU78kGn3Tgr9lbKblrd9MYFVNJBaxADvX/m3W5q3lp50Mt+rIsef0vDZ8sJZsMsP+L8tJ6VJlkcNF9lymB2bElpoANW8OM941xTFBr8YRttL0QJQzv+mjb9+I7nHhbX7KN/vY/S+yem3do3FKjAaRVUM6kcUZsTPRkxAp/rY+0ytW8gaN7OWucYgVsKT2EwBTPVN07xxk9IysXuh8YYBOobUDQM0t5ZisRvG7uBj4m1zEbyjn6PfPiKytz/y6ryjrtq5XBsgWYWUnVh0FvHUqnjpVPEdaf9FL6y/kc1Itt2MwyhZGvfUq9XdWcPJnnSKLufitIdwVdvYJLaDXv6ea5GRa1rM0QdWOEIMVY7Q8qZ80YbKWMD04w2SfjEk1emqSXZ+V1/XFqEqpFVZWv7WKs8/30/XaCKCv7kpPpDn6WBfTw2kyE2mMIY2Mu5yCEuRrr2U+FRcjKE1O9DE4OEBNTc0lq7c/QhiNRhoaGjh+/DjjY104XQs3c2bspmWt3xS3cUnLpXPt33LpND37Rhg9Mym2TfLVO4nfHOLE4x2Mn5XZOkrVgxJDyaLs66eHUkz3z2AwGpH4vgXXeQht8jHaNiVSk6m+tRybT+HwN2V1YuP9lUz1z4gUSdSIjYa7Kzj1iy5GWvTXGvagBVeFnFR74D/k9TVA5E0BxjunRGtkxVrm9uwZLmpD35HvyNfkbF6F+rsrOPPr3qIINlJU3xgim8mJ1w+lcxE0q+nOFweY7JeJFPTsHqJnt3z9KbLdz0RPglE933/zUMyctPktuKOO5dkni2DVWyopMZSI49/8SBW9+0fo2zuie4wrbqf6xnJOPtkpstMMbfThq3eKv+ESQ0myWXmdffpn8v5mscpx1TeVY3GbOTBPaVZP7XX62V6cES3fZTq6CmpKSykoAZgUjRgrISgBdJ99jpKSEv7u7/5uxeta8tzFDnzLW94CQC6XJZlMnrfgOUtUmrV6m4+N76shMZpi35eXmdxG44KI9O4a0X9x85o2fQdGmeyXFQygLcDn0tmimvhSO68DXynuZXfqF10MHx8RjRk9PcbMWJDEsOypmBlLkZnJiIlbQy3jYi/b5ESWl//ufNb8hULpGjd2ISO9WCSHkhz/UXGEo2Jw6uddlBSxMFcMOl4eJDGUFBNJioXEru33RekqN44idocVi2KIVONnp5nonmb0tEwVLDWZLmpX31TPNAmh5UtyKMnRx9qZFtodjrZMsvtz8qajNaiQ6JOdq3y7j/h1IU4900XvLv3F9nDrNCMtE5x9sR8w6CIozWLg4MIG20oEJVcIVl1hpr89zemdc/n11h1v4alf/WBRghLA4RM/IJvNcMcdd+i+tkt4feFv//Zv+e///b9z4Pi3uWrrX5/391mi0qzV2yxq3xwk0OTkwH+2M9W39HNbYjQWiEqp0RQjkmc8X3t1vzqIxWVmqkfW9Qxt9RLfEeLYj84yfFy209viNzMzqP9aR09PFdXoOfPLHrqcZrEC0GRXgkQRHurJqTTpSRlpYvjUJKOtE0wNyuJ/Mexd58Nf56KEEhFJqVhIrOh+XwydmuDUz7sZOnVx5AlPPdV50XYnTXUnafmp/GO8WPhqXRhNhqKadFK0/ryH1p/LrYsGjo6KFw/NbjOpqTQzI7JEkhieYXooyXiXrM4+9t12nFVy5V2NXCaD2S23AwRY9+46crmcWEnp7EsDWFST9t1fUqKrWQNACgaPLHxGlyMoAdRtN2OxlbDrxwvryluvvY+nfvPYogSlVGqG9vZ2TCYT9913n75ru4TXFRoaGvIE8RnS6QQm08IFz1miUsHqbR42vbuS6eEUR76/dG4pMZsWWL8NnxQ0qOf1vHp2DjJTBAFo3aNxSkpK2FcEudCkmkhP6D/nScFi/XyceKKDyU5Z436yL8Fk3wwzo/KeV3IiJf5t/YfHiuq57PzMcfGYYuFvcOKtc14Um750gqIIOcXi9NPdGM0XR8Fy8MQE6UQno2cvTs+rd8/IRTkPaCSlQJPnolk57v2CvL8zPTTD0PExxtplPf70ZJak4JmexWjHFJlpYZ2dhsPfbiMtzMmJgVRRJFDFYyK5CBl2Objjdhrvi3LqF10MHNT/LZYYSNK3d5i+fcOAoO4Cxs8u/DZdkaCkwpqrjfS1ZWg/OPfvt97wAE89+71FF8kADh/4FqlUioceekj3tV3C6wv/+q//yo4dOzh25DG2bPvIeX+fJSrNWr3NIrhWJXKZh6OPdZMYXnqFtURRCkSlzHSGCaGtE8DQqXFsOxWmFhNfWAbOqI36OzSipYS4ApqaRkpg9zYznOREEXamfftHGDo5Lra7muieJlVEnk1OpMUb0Kf7pxk4OkpiSPbdeeZXF682AQg2ezBZDOJ7XQxGTslq5d8H08NJTj7ZyYSw51ssWn/ZS64IIkkxSE5k6N518fqHpWs9mJ2TYpJSMeg/OFoUqWzg8BglJtl3jlGB5Hia9KQsj6Qm09qmYmE/u/25HgaOyn9bMffaaJPbAQLU3VWBUTGKyXNdOwexuhV5zysD4+fUy8sRlACiq8Dp1ZSU5uOWW9/Kz5/69qK1VyaTobX1JHa7nTe/+c36rm0RlORyxZvar127loMHD2K3Bti++WOLHmPYdfS8f6u+pZThU5MMn1g+SZ/rF7vhA5ol2t4v6GiiFP+zAE05KD2VERMhtv1VI+mEXLmpfLuP1ERa9IFwCedAge2fWsXwyXG5d2sR2PLxekpMBl4T7thuerCS/mNj9O/Tnzxr7wgTbPaw50stYtJFMbj8b5sYa5+8KIuWRcfxrVH6D42IVIOqby0ntMHLoW+3XZQicfvfrGK0dUKs0nUJC1FzWzlnn+sV2U6WbfJQc0uYsy/2c/Y3+i1GnVU24teFOPDNVkgVT/DTUzQEmp1U31jGyZ92M3w8X5CWGDDUxpYfqEDdJgNnDmYXkkZ7Bkg3LT42mZzmxV3/m2w2y+/x2r+E1wFK8gpfOy7/n0seY9hzDOZ9xNkCZkKbPLT+un9Fgs3sbn4AX5OT2lvKOfqDDsb1yFL/HnPLbDdQd1cFbb/qZqpXf7OhWOUms9tM+SavSMnkEs5H41sqcMUcvPbpC7/Q5mtUabi7UlMDFRCPAmtceGtUTj4hWyDd8okGkhOpoghtUjQ9FMUVdfDK/z7/u+kPDWfMzpq3xjj7u346BIoFpevcuKN2WoTklS2faCA9nS5qV78U9fdG8NY4iyJ7X8IcfE1ODKYSBoR22Js+XKspGwk3+USvC0IJtBfbOM6/F/XUXmvfXUVmJs3hb877ViwxYKheXh7fEwanv4SzB895z/UNkm5cfOzhU/9BT28rN954I08//fSK13YJr0984AMf4Itf/CJOd4xNW96/6DHKy+fn7vBmFxN9Scbal2+yZqcXNg8b7qvAZDVw+Js6dqv+njV9+HI/ZKHrFZnyX7HKTd56lWwmx+hFXEh5I2Lzx+oZPD5WFLlWiuZHqjDZTez9VxmhJLYjyHjHtMhKKrTZS+zaMg59q43Jrgu/8LX1U40MnxrnZBGLuFKseXsMxWkWqz3FbyhjpG1SZNUXXO8hfkOIoz9oZ6ztwve8Nn+0nuGWcU4Vsav8EuYQ3u6n7+CoiCA5p2zUR5fg28jqN1F5ZZDWX3QVZ4E3W3eZVvY9dpQrNNwVpuXnPYy15U9mKMFQW7Xi2MgqGGiHmfmvjN4BZtYtPfaF3/w/ZLNZstmLs4njEi4MrFYryWSSN13zPzEuUd+fW3sZbRBsctG9b2xF4aDs9HShhrIFFWrfHKH16W4mLvS7xwixa4L07BlhRiAeUKxyk1Ex4Gt00n/gwm/6eSMjst1PoNnD/n+/8P0Mq09h9UMx2p/rExFK1LAVd9whVvNe83CMdCJzUdZRK68qJbjOw26hwnwxMKtG1r6zmvbn+0Sb3pyVNlwVdjpflsVx9dtiZJJZjn3/wq//lV/mo2y9l31fPiURSbuEc+Aot2K0ykmEDfdWYHGZOfBV2Xewv8mF0WIQKUstgKDnVX2LZmt5+ufzeC0lBkpW1y47zuYE1QP950zjku4BZtYsbovXceYpWk6+wKOPPsqXvvSlFa9tKfxe20127doFwFRi8Qb3YgQlgNM/7xcTlAAyiSzpYphqd0dY+y6Zj3fLE11FKbX0HRrVbECEqLq2jOg1QdEYa1BhyyfqiVwh8/G2BhXq7o6IxsyOCzS7RGMUFervrsBZJVOhWfuuONv+epVoDEnyO4zlylnFYPDEOEPH5aQyT42T0Hqv8FxjjHdOkZ2SEZRq7wyz+m0rEB7+QCjb4mH9+2s0qywBBo+PM9IiVxzwVKuUrvGIxgy3jGtSmxdJ7WlqYEa8y27122Js/xvh3Ee716Xr3aIxik+hdK3smQatgRLaKpvDAJs/VifOPf4mJ6ENPiqvkflGD7dOMdI6q2ykH+Nt05pspuBRK9vkZsMHa1CEfrQGYwm5NJqtQ4lB+x+QbVmBHJiEky/PIyj1DGj/A0xHFh87mX6WbDZLc3Oz6Bov4fWHhoYGAPYe+fqifzfsyS/OG0q0/wHTAylan5YRlADGOxNkk1lMNhlhzx4ws+491bir9XtCp6ayHPl2u4igBNC9Z4TBY2NMCZSUAGJXBqjYHsARkcnA195Wzvr3VYvGAJRt9FK6TpajQSPYmO2ycj2wxkXsellNiVkj2tfdGV752HkY75pmsvfi7KAa755hpHWC8Q5ZnVe6xk2gSR774RNjDB6V1Xlmu4Hmd1bha1x+h8ofCqserNQIHgIkRlKMtE4wqod4OA/BtR4CTR7RGNDUhgYOX5zG6HjnNJPd8u+Ay/6ykYb7KkRj3HE71beUw8rrMwvga1Qxu4WDgPgtIfG4yJv8bPxQrTiHxK4JUnOTLBcAdL4ySO++YfG49l/3iQlKqx+OaXlOYM0LkJ5Ok55VRZhfe51enhAy0sVCglLfoPY/wHRs8bE5pnC73fz0pz8VXeMlvL4wa9U3Prp4jb0YQQmga9eYmKAE2hxNCXedgkY4qr9Xlse6XhoUE5QAevcM0VnEuJpbwkSvKhWNMVkNrH13nLJNHtk41UTF1bJzzY5zx/XXr9ogqLw6iCqsKWveXM7mj9XLzgWMn51i4iL1vAYOj9JfxDs8uM5LYI2s9hrvmmbw+BgzYzJFhfB2P7W3lYvGFAt3jYPGByoxWWXv1YEj8poSILjei3+VrF8z0Z1g8PiYWOGjWIx1TDHeKZuP8RvK2PLxerG3Q/hyP946WY1tshrEY0CzSPQ3yXtla94eIyaszW1BC9GrgkS2+kTjEiNp+g4M0ydUpk0Mpjn5YxlByRm1sfqhGIpXVosaFQOZmaw2H+f1J7ItbSuO7Tw6j6DUO6D9D7DsX3zs1PgvyWQybNmyRXSNl/D6w8MPP0wul6PlxJOL/n2x2iszDd27dRKUQPuGKClhejBJZiYjVkQ02ozU3h7GWSlY78poaj4SghJoyk09e4bFed2/2kXs2jJsQVmvumyTV/xtDOCK2nHH5Qq+atiK0SZzeFAjNoIbPOJzrXtvNRVXBkRjJvsTjLVdHIJ9YjTJwKFRJnpk71V3tUpok+wdAjBwZJzBY/oJ5QAYNREAZ/TiOI5UXBkQ3+tsMkf/oVEmhL0hX62zqDj2Hx5l8NjFER6ZHphhrEB3zJgAAQAASURBVH1KTFBa++44sR2y+sTiVQht8mEUrvU6yq2YVblrS9kmr3icp9bBqgcqxePCl/mpvlH+/dC9Z4juIqz9Bo+MiQlKsR1ByjZ55T2vqcyc2tO8nlfu8PKbJabHFxKUSroHKOnO116HFifgTU+dRlVVPv/5z4uu8VwUbfcGoCgKTqeT8fFxDh1/jDUN+mXMa28L4orY2PNv+pVa5nvvLYtzdpTZSy1YnPJmcOz6IGrIJpLhKsaTEODkTzoZEBJeEn1JDCYDikN2Gyu2BQiu8dB3cIRRgXdr89uqMJgMMrUnRaF0jRuDEY616WfljrYX9/Lf90U5q9kRUljz9mp6dg+JpB+Lvdcv/cMREQECYPjYBMPH5EQeZ8SG2SGf+8XAVeHA5pPb5p1+qsg4/r9HxISo4RMTDJ+Qx3HrJxuY6J4W+6/uL0I6f7RjEqOw6QVQutqDI2gVKXRVXR2kdI2bxNhpxtv0F24VlwcoMZbQ85psIcpgNGAQvlgHj4xzJHuG4dOy+5YcSnLkW7L7VbbJQ9k6L8e+3yqytXRFHVhdZpITcw92LpNZkd3ct2+Mvn35fKozLLH14Aub2PvLtCiP7Nu3C6vVyjPPPKN/0CW8LvHqq6/i8XgYGpHtPjHbYfVDMfoOjtL1yoiuManRFLv+WeeO33m1V2oqhdWr4K5SxepG9beX0/nKoG5v+dRoihM/ku+APvPrXvoPjzLZKSPYlBhLMJjkOTp2bZB0IiPaxeOpdVB/ZwUdLw+IFJ/Cl/mxByyc+aVg0T8FEz3TjAl25gF0vjgo3q0FsOr+SuxBi8jeKTWa4mgRyoRHf3hWbNEHFGVtZrAZcQRtqOU2hoqo26RQy20YLbL5WGwcD3/jjJiQAxSl9BC9tpSyDT72ffEkqSn9O6G7Xxkqyt5vvHOKsQ4Zaatsoxd/vYvTv5TNk9rbIqSnMyI1BV+Tk/KNmuquRP3KZDViMBtEMQTY+6VTeGLyBnPPLjlBadWDlYyemaJLuFvR5reQO8dqT0/tdeTb8l2i6242M9yVof2A/jgePvk4vf29rFq1CrP54nyLXcKFgclkYt26dezfv58Tx56kvlG/bXJ4swtvrYPD39WfJ079TGfOPKfn5QhacATl3+LB9R5cUTstAjs2iWLHfBx//Kx4Q1k6kcWoGDBaZI3nQKOTim0BxjumRMpNTfdXYlZN7P6crM4OX+bDZDcw0an/nTfWMYVBkdeUx38oz2Ma2UvreUnuX/dOeV4H2Pm54yB0fZnsSojm4SxclXZsAfncLwaOUivOiB2D1QAJ/e+EYt6PAK/+wzFx136qt7g4rns0zkR3QqyIdKKI+TjWOY3iMovnSOQyPxM9CZmy1AYv0auCHP5O23m2F8uh4k0BzDYTg0dkfXqjYsAgJDtM981w6JutJAZljeL0RJrWX8g2VzujNso3+zj9TK9ItckZtmMrtZBNzI3JpVMrqimNnUmw/z/yfTmDvriUxiEYNXD8xSxpwRzZtes5FEXhiSee0D/oEl6X+OIXv8hXvvIVerp207Dqbv0DjVB3c5Ch05MMHtX57s8g7vUDZJIZHOVW7F1WoboRVFwZZOjEuP5xGej8nf5vwFkMHh5hvHOKaaEjh6GkpCgb1eg1QbLprMi6yuJVaHxLlI7fDdAjWPgvXe3GU6OKF/1HWyeZFNqUjbRM6u5PzkfkCj/umEM2vzJw5jdydeHOlweKmiOSmM+HO+pgonta9F4tFu6Yg8RIUnSvM8ks7UXE8cxv+jjzvHxcMeo4vkYnkcv8HPvhWZGV48ipyaLs/UbbJsXfYb46lfA2P/1HRpGwoqpvCpFOZER9R1upQuWbSsmms6K+uUkxYrTI7DBB42LYi/h+KMaZp+LKAFMDMwwdlRECHWVWDKaF38B6el7tv5XngtoNMDYIfYJ01dO9j87OTjZv3oyiCBfpz8HvZfcGcODAAdatWwfAjjf9v4V/X0pFaRYNd5fhqrCz89/OV6xYTEVpFo6QQvSqIEe/v8SH0B/Qxmbde6uxehSxZUD93RWYHXKPwYsFRQVLwCYiJQCUrneTTWYZPCJ7oNSIwkTnxdnF46yy4a5y0PGc4GFUYMuH6+l6VbbQpkYUwluDnPhZh5h0JIWiGqi4qozePYNM9ryx7N5iO4JM9SdEtm3FInKVXyvuhQuqGz9cy9jZKVoEVjHeehWb3yJedCkaCiiqQnJI//xQfArlGz2yhez8uVwR+0WxzCsG/iYn0WuCHH3srMgesenBStzVTl7+uyNz/ygkVZ2LpQqHijf5yOVydL60dOG1mO1b3XYDrlIju59MFdSTFsN827cjxx+nu383qqoyPi7cIXEJr0t4vV5GRkaoilxLTey6wr8XVJQWQzbH5g/HGTg+Qduz5yuMnauiNB/h7T4yM1l694wsfsAfqvYyw7ZPrKL/4AinBARWe5mZ2tsrOP2LHiaEKjsXC86YnfGuKTFZpuLKAL27h0QkA7PbTGoqVRQxpxiENnuZ6EmIYl97Wzn2kJUDQquY8m0+sskcvXuKW+yRILDGhVk1FUV6keJi2r3Zy8wEVntpf6Hvgs8Rsx0qrg7Ru3OQqQH9J4tc4adsvVdsixK5ws/w6XGmui/Od4e9zCxWf/M1quRyMHxcRmJTK2xM9E5ftOdailUPVjI9lKTtGdli2dZPNTDRJd8IsFx9tlTtVXdHOW2/HSA1tnQD61zbN7MF1tyoMHg2Tfu+bEE9aTHMt3371Uv/PwDOnDlDNLq8ldwlvP4xMjKC1+sFDFxz/f8q/PtSKkqzCF/mJtCocuR7necpViymojQLk2qicruf1qWUvf+APa+6u8K4og4xKSfypgA2n1IUGeKiwAR2v5Upodqjq8pOSQmMCr9zrX4TiUEh46JIWANmXBUO+vaNiMatfXec3r3DS9fzi53LYyKwzkvPq/3F2UJJYILwZj9DJ0cvSiwvpt1b6To36amMiFxTLPxNLgzmEtECD8Cqt0aZ6klwRrAxwl5mxV6qMCBU8ikaJjBZTSJyjclqILDGLSeKmcARtF4U68FiYC+zEtsRpPXpLtHzEr0mSNlGr5xIuFzdtQRRyd/kwGAy0H9o6Xm/mO1bZBX4K4wceDZTUE9aDPNt37o6d3Hi6A8pLy+nq+t1+l66BBGuvvpqnn/+eWob7qCicnvh31eqvVbdF2KkdUpTVToHy9Venho7JSUlFyVPb3h/LX37h0WWUmbVSPSaIN07h5jqnbmAV1c8rD6FxGhSrPDiW+VktG1qTvlDB4w2I5lk5qLZXbnjDpITKab79fcZyjZ5cUXsnHxSVmd4arXNQsUQo6RQw1YUl5khqZpSEbiYdm+KasQdVxk6Pk4meYHtP40QWu9jqGWU5Kj+CempcVC+2cfRx86K5rGv3slk/4xYka1YKG6j6HcB2MssGEwGJoRKmxavQnoySebi/DQxKq4MkJ7Kisl9ze+MM9E9TesvhBs4i+h5hS/zMnB4jOTk0v2CxWzfGrfBaC90t1JQT1oM823ffvfb/0k6NfUH6Xn9XnZvAGvXrsVk0rZ2nDrza93jjj/ey85/llnqAIS3B/DWOnHXyHd3Sq2Q9v/7aTFBCcARtmIvYhfb5o/W0fxIlXicu9YhshlKTiAmKAH07xsVE5SAoglKkav8Ynu5+PUhKq8QWpwkYednToiJK8F1fkrXuHFHZXNx7aNxNnywRjTGUWGnfJOP4Fq5xdbrHeGtfiqvkt2zyBV+tv5FI46QjKUZ2RIgcrlc9n3Pv7SICEoAsevKiF0rsygDqLmtHKtQihWAJCKCEmjHiwlK+XNJCUrF2Mo5QgqX/WUj5dtlUpueahWrRxHbIx757tmFBCUd8NarKKqcyBTa6CVymcyqEzSbt5UISufCaOnFZDLxm9/8Rny+S3h9YlYRq737t/oHGUrY9S+tixKUVkLF5QHCRcxXs9uMMyawzEjBK39/VERQAkgltIUoj1Baunybjy2faBBbIWEGb4PMNmD8jJygBNDxwoBYBSU1WhxByR4wExXK/wLEbwgRu0b2bm35abeYoARQcXkpke2yuahW2Nj8sXoCwvdQ5ZWlVL5JXjO83hFc76NiewC7T6busu491TQ9uLgP+VJwVmkKQJ46Wew7XxwUE5QwQ/SqILGrZbWXr8lJ2cbi6mspQQlg6NiEmKAEaCRAweksfrPYzhJg9duirHuP3NLSEbLhjMgl31/79HEZQamkBN9qeU3pbXDgb1QpE9pupmZg70+SKxKU5mMy8xIlJSWUlpZeIii9QeDxeAiFQkCW9jMv6B7X9eooB/7zfILSSgiudhJc75HbjoG4T3byx11ighJois1qWP7Mr34oRv09Mvtv0OyQTKpAUiaNmKAEMNY2JSYoAUWTavxNLvE9q7i8lPgNIfG5DnylVURQAs0+pGJbAEdEdo11d4RZ/dD5G26Wg9VtInp1EH8R1rKvd0SvClJxhcxexluvsuEDNdjLZO/yyHZ/UfXr0W+3iwhKABVX+Km5WW4PG97ux+opwtghjYigBJoaW1FKVmnEBCVXlV2sfGVSTWz8UK3YFtwdtaGGbKSFXIX25/rY+RkBQamkBEfYJsu/eZRv8lJ5hbyH0HmUFQlK52JmahdGo/GSxe4bCI899hgA3R2/Eo07+ljPogSllVB5RZDQJvk3oVExYCuV9fD3frFFRFACyCYzuCocOEKyd4Irbqf5kSqUIqyX1LDsXIkhOUEJYOjouIigBGjHF3Eus2oU51uA6pvLKd8iy2e9u4fFBCWAiu0Bwltl51JUI6vfFsMjrCnLN/upFFox/zHAHVeJXVeG4pa9u2puK6fqBlk/yeZTqHhTAHdU1iMeOTXJ0e/JCEoA8RtDlG+W5SpHubVAfpNCSlACmOqdEROUAGaGZQQlo82ILSBfQ41dG6RBaJMOs9+/8h7bwa+2yghKJSWoFfI+gM2vENrkxVPnFI899srKBKX5mJk+QTaTIB6P/0F6Xr83SQng8ccfB6DtrEZSWklFaT5i1/lwVekn9Jx8vIsD/3lKJNkMUP3mcupvrxB72QOolTLC0d7Pt7DzMyfE50nPZMmkZAtR1qDC6gdj1N4sa1JU3xLisr9sFI0BjWDTcI/sIa64JsBlf9WIosqmW/RNQaJXyxbLTv+8kyPfk6v/KKpG9pKg4/lu9n3ppMgyD4As5IT5ffjYBIe+00brc7Ldyc2PVLH1L+T3uRisur+CbX8tP9fBr5/iyPfl0qpkc6SEDYp9/3acw9+QWbApPkWcAwCOfLOVlp/KpK+99SqhDT4iwmJ0/ftr2PAhGfFNUQ1s/midmDzU/EgVmz5yPuN2+ZNB7e0VrHuvbNHL6tOsPMbbZYt5p37azct/d1Rk2aZGlihqVtipXH9nhA0fqBdcHVBiYNc/t3LkB7L5Ub2lBGVyQBdByXREy4NHjv+Ijo4O6urq2Lx5s+w6L+F1iy1btmC328lmswWC+LIqSrMwlGDxK0Svk+WYQ99qY+8X5Haq6x+tpuEueeEPGmFGL1KjKV75+6MiGyTQFq9yqSzWUtlHxtp3xGm4S0bWANj4oVrq75MtzAXWutjwgRqxzda691az+m2yD4XwtgAV2wKi2AMcf6KDEz+Sv8cdEStmt+xch791mj3/LiOvZBNpyMpVJ47/oJ1DX5Pbtl72F41U3yL3Ni8GWz7RIJ5Tbb/u5eA328QEm1w2RzYji+PQkXH2ffkkXbtkTVhnzC63lkvBke+e4cwvZbuTYlcHqdoha0TZA2a2fLKB4EaPaFzdnWGa3ir8gDdr9zkiXOSpviHE2rfHxSTMbDJHJiFvRO36pxMc1GvNnoe9XNhQKikhtMlL410V4ngMn5jmwDfa6XhB/643VxmEGtHISToISqZjWh48dPgFzGYzX/7yl0XXeAmvb7zwgkZOam35BbDyTv75KF3jQA3rn+9drw6z/6unxWSZsk0eVt0XJbBGTuSzCt/9x753ln1flNeG6USGrHBHs8lqYO074lRdJ+sNlW30sPFDtWLSQN1dYeLCBQpfk5ONH64TEy/iN4SIXilbHOp4vo/D324TjQE0ZRhhY733wAj7vnxS3H/NZnJkhbVXYjDNwW+00vmyrJ6P3xrS7vNFQOXVQTZ/VPjtDxz+Risnfyz79i8pKSGXyZGdkfW8DvxnK0e+2yYaY1JN2IrYaHv6qU6OPS6zELZ6TESvChJcL9uIVn9PhNUPy4hvmLT+lbdetnBYfWuIte+Ky84FNNxTyaq3yOo8i8tENpllekDGNureOczOzxwXkbbExLD8Dv6628OsfXuVbKyhhEPf6uTIY7IF+nA9mCcHdBGULPvbAE1Fqb29nbq6OjZu3Ci7zkt43aK0tJQNGzYwOTlJZ8ergP7ay2gzElwre+6PP9HB0e91iNX0Vz0QpeYWOVkTNIUSvcgkNXKTVCUvMZQkk8xicgjrk5tD1N9dCUJuU/3dEWLXyuo1NWyl4d4KjEIL3Jrby6m+VdZ38dSoxK4pExMbTj7ZyZlfytbkABS3CaNNFsQTj3dw/DFZfy2TzJEroufV9usejhaxjrr2XXHCl8ne48VizcNV4jnVf2SUw99qEylfgbZeK43jdH+SA185lbdE0w9bQMFYhEbBke+eoes1Wa1cvsVH1Q4Zd8CoGGh+ZxxvnSyXlm/2iYleAGveXkVps4xAGNrkpemtMcxCEmY6lSUlJEYCHP3uWVp+IhOxkBLlKCnBWWmj8d4KStfK4jE9lObQt87St08/UdfqAF+5Rk7SQ1CyHNLq/iOHnsRgMPCFL3xBdI1LoYitC+fjtttuw2QykU6naWl9hnr0LdwoKpRv1KTvDrZpH2zLWb3NYlaZR/GdY220zGLy6We1Xfm9u0d0Xdss4jeWUb7Vz4knOhg4KGNie+tVhk/oXyUvpsmT6EvSs2eYjldkzf+ZsRTZVBZrUBHZIVlcZkqEBdvMSIpsMoslYCE5oZ9FeexHZxk+LSMnaHNDrtzU/K46FIeJlwU2G8kJSE7Iz3XgP+TKAYCcDAVMDcxgEBZ5xWJqKIm1VL6jvBilrc4XZdZ8syjmntXeHMJTrbLrn46ISC/JiazYwm74hEZGm+6RsY0ziQwlQt97d60Ts90kdgvIpLNkUsJBSWh/rpcJ4W7WwSPjDB45LhqjRhSSo0nRvQJoems15OC1T8vU80480YnVv3RTfzGv2Nl310TH8nMx23KmYPlmcUJp1IRlh5+jP9Y/97v79wDw9a9/XfeYS/jjwHPPPcfWrVtp6/zNAsu3lVB9fSmuSivdrwySyq99LWf1BjCVtxk1u82aSs98LJNEzv62jwmh3zvAlo/Xk01l2f0vMjKK2W7AbDfqtpUabZ1iVxFSw+3P9WFxyb8mM8ksOWH+NJgMmB0m3JV2Rk/rX6zMzGRIJ2SLgGdeGKBn34jIlgs0IooUFr+ZdY9U07t3WKScVYxyzdRAil1FqERI4zCLxEiS6eGLI8GeGJlhuk94rlRe2UuIA18prn4t5p6tfjDK1OCMWG2rGPWLvV8+hbtStkvJ7DSTncmIJbatfgWTVdZAsQcUsskMM+OyOJ5+toeytR6xEtvR78sWGwHccbs49qXr3NS+OUzbr3v1WSrmvz97dg9j8ZqX/Q44t/Yyu82kxjJM9awcw+zp9oLlW8VqMw5vCT0vo1vF6tSZXzExMYHD4eCOO+7QN+gS/ihQW1tLeXk53d3dnGn9DXXobPSaIHaVn/HOBMef0FRKlrMbmUUi/w4yqedYGy1Td/XuHsFoMYqtl0rXuam+qZyTT3QydFz2TlcjViY69dd6x38oI2qApoRy9oU+Bo7JfldyIk1mJoPVYy7EUw+sXoWURda4To6myCTS2iLgiH7SwLEftotr5cRIWnSOWTTdH8VRZmXnPwo2VKaLU4k69TOZKuosirHWmhlKMuW6iHWXkEyijZPHcOj4uPh5BIq6Z5GtPsq3+NnzbydJCq41nUBMYEuMpDnwtVaSk1JFJHnPSw1pNjYlJtm4XCpHekZuD3P6F93MjMlqw8muBPu+JNsUYfWYSCey4m+9hvsqMShG9v6rjm/seX3/E090YV9mQT+XTp1n+Tb77lppLmZb2gqWbyYTlDcYsZldnPq1/nx/8tiPyeVyfOtb39I95hL+OPD0008TDAY5deJnRCou0z0utF4luNrJUMs06Sntfb5S7ZUc1eaq0WYkM6U/P7X/rk+8gRqg6aEYJSVw+JsygohR0a5Rr7pJcjQtt9UGenYPMXxyXKzykk5mSadluSmX06zibKUWkfpKJpEllxZuojo6zkTnNNMDslxdjCqMUYHmd8Tp2T0kWsNKTsjJE5lktqj7nCriXACT/QkSYxfHh36yP8HUkLD2yiC+xwCnf15c/VrMPau/q4LpoSQnfiT7Nirmd7X8rAubX9bDNjlMpCbTpIT1mtWnYPXKNr+YVSPpRIaUIPeC1htKjqbE87jzdzKSF4CtVBGT3hzlVhrfUsmZX/YycERHXZOvvcbPTnPmt330H16a+HZuz8toM5JJ5EiOrRyL3OGWguVbWQy8IRg7hG4Vq8GB44yODlJVVcVNN92kb9AKKMnl/jCG9k8//TQ333wzADdYH9I9LtCkMnBkbjVZD0kJYNtfNZCcTLPnX+YRe/4wP2UhFGi6p5KWn54VLXo3vTWKJ66y50stIhKQs8qGJ65y9jdyO5ZL0LD+/TUkBmc4JlApKdvkweQw0vm8jPiy8c9rmehIcOJx2QvlPIKdnnN9uJbRtklO/bS4F6YEl/9tE2Ptkxz6hpxNLYICWz5UT9drMtKRohpIJrMyPpoCW/+8gc5XBkTnclbZKG3ycFqwiKqoBta9p5b25/vExMhL0KBGFPyNHs78SiY5vvmjdZhsJl75P/oJh6BJjpvtxqXPJyRnLhg6WzSUGAg0q9TdGqJr5zBnfr3yPJwlKdEzgCumMNad1D3vR6uO8sqe32G1WpnWsRhyCX98cDqdTExMUGGoZ5WyRdcYsx0Uj5nJrlRBXWYlkhJAdEeQyBYfh77dznj7vMXoC1B7VVwZYGYsJd4ltu2vGpkeSrJf2OituDJA74HR8wlYl6ALwY0eKrYHNIUjQQhj1wfpPzgsIrFErvAT2uAVE9gwg9lsEBE2Ilf4Ca71FKUiJkXTQ1FcUQevCMjyxSJ+Swhn2CYmHS1KUlwBdbeXYyuzislG5dt8zIwkGTqm/+Or/q4witN84WvXNzAiV/gZPj3OVLf+AtsRsbL2HXH69o2ICIdmu4H4zeWc+JGOHfZF1GDza68N741htGgqlnowS1KibxBPzMzIGf3zfq/xCfoH+nn11VfZskXfe/kS/njQ0tJCXV0dUMKNjod1j3NWWBjvmGuu6yEpAWz4QA3p6QwHv9Y2948XoucFxG8u4+xz/aJF79h1QUKbfRz4WquIMGsNmHFHHWLrsUuYQ8O9FSTHU7Q+o39XvztuR3GZxfV101ujTPUmaBN+l59HsNOBVX8WZbxrmo7fXvh+6NZPNTJ8apyTj8utWKRofqSKvgMjojlvshq0hV7h2ve6R+P07BkWncvqN+FrcNP1kqAfatLUZTteHihqw8IlgOIx4at1iu3oVj8cwx6wyAiHgK/BieI0rXy+YuquWZKSoQQ1bKHpvjAdLw/RtXPlfDNLUqJ3AKvPRHoqrdsmdbLsNC8e/iV+v5/+/kvrKG9EbN26lZ07d1Jn2kjcskbfICPY3Eamh+YWa/XUXr5GJ/Hryzj2w7NMds9csJpr9lyZmSyjrTKi59p3x5kZSYlJ375GJxPdU0VZN10COCttRLYHOPnjTjICRdDSZjej7ZMFEpweeGochLf6NdcRye0ygtFoEF2fp9ZBaINXtIZaLCqvKiW4zsPuIjaKSlG6zo075qDlSZnqjdFmFFsPhjb5cFbaOPljWT3pqXWQns6KCHDll/mw+S2iNcpLWAhfvZPJ/hnRhkNFNdL8zmp69sgIh0YFQpv8dL42uPKz/Hv2vOpuL8PqNXPw6/qe5VmSUkn3APaAkakB/fP+AD+mp7ebAwcOsGaNzvfyCviDSazcdNNNWK2adPBk8xli12mSb/YyheaHKwqWbhVXeFnz1jlbgtImlfgNAdSIguJTWPvuOSnWyOV+mh+Zk3NtfEsF1W/WZPwGW8bBAIFmzWMvtNXL2nfPybE23FNB7Z15uUVFe4mXrnez6SN1bPpo3YJj6+6OUH/3nB3J2nfHCW3VvB0DDa4Fkog1t5XT+JZ5x74rTni7JjfvbVRZ++44ik+h/bc9TA0liF87J2/W/PYqIldpx7ridta+O441qLEYq24oo+mhKA13VlCxLcDqt8WI7dCk7NRKC2vfHS9YTsV2BFn9trm4ND0U5bK/bKT6zeVYgwpr3x0vWJdFrvLT/EhV4dhVD1QWpBCVMoVNH63D26jFO7zdv0DStvEtFdTcVr4ghoFmFyhQca1vQQzr766g7u65+7r23fGCtV7pejdrH40T2qbFtPbO8ALLuPnx9jc5tRiqBtRKC5f9TSNr3zN3nuZHqgry/t76uXiDZmHX9GAlZpsRxWmm+e1VVFwTWBBvR0g7NnZ9kKZ5Nij+VS5MivZgqxEths4qGwCV15ayZp6scNNbo8Rv1O6rUTHiqXPMxfuKc+J9/9ycVVQDa98dZ+2jVWz5UB3hq3wL431fBbV3nDNn81ZcZVs8WN0KFpf24bfYnC3bko/3Wpd2bxSNDLX6HTEa71s4Z8u3+86LN0D1reWsun/u2OZH5uasu9axYM7GbyxbYFnR/J4q6u/R5oCzyqbN2cji8W56W5SqG8pQVAWjxUB4qw9XXNvFXnFNgOZ5UsJND1ZSfYu2U1XLEXHWva+ObZ9oPC/e83OEos6bs0D0qlJMNiMlZi3pL5UjQCOtzc7v8bZpjBbD0jmi2ZWPofa3mtvKaXhLpaZgZVg6RxTi/cCc8tz2v1nF+g9qtm1L5YhZzOYIV9xO6DL3ijliVmpxNkeU5i1Kls0R+XjP5ojaO8tZ934dOQJtzs7GcMvH61n3vurlc0R+zmrnCdPwQIzItkDhehfLEaBZec6fs5lUlokejUCxVI6YxfwcMdEzjbvKsWSOaHqoci4nRxTWvz/O9r9upGyTm8prA6x5eN6xf1ZZyBHWoELzI1Hctdr8tvlNZFJZzvxOK2oa7w1RfYsm8a+o0PyOCvyrtHxSvtXN6ivBltYUBsqa7FRf6S7Ee/X9AQIN2j0PNttYfX+gcA01N3hoaT+Gqqo899xzXMIbE7t27QKgu+QUTfeHC/ZIsev81NwyZx2x6r4wZeu1esleZiP2plLMvhJsQYXoNX7q7piTSF71QAWhLdrz5ozaaXqoEovfTPfL/SRGUpRv9RSObbgvUshv9nKFpoeiBfueyBV+Gu6roGyjl62faqDhzyqouFKbo/aAmaaHoqgV2nu2fJuPVffPPZt2v4LNr81ts1s71l2tPUNlG70L3j21t5cTu157Nrv2DJLN5fA2aDmrdJ17Qd6subWcqpvm6rKmh6KUX+Gl8spS6u4q147Nx7DqpjJq5klHNz0ULXjXextUNnyolg35fB27Pkjt7fOOfWuUUN4j3B230/RQtGBrVnNHmKZ5+WLV/ZWUb9PeyWqFTYth3nKl4soA9fdqedPiN9Nw35zFkb3MvCDe4e3+BfVp/T0Rqm8vx16uYPFrxzpjWgxDW72smpcL6+4ME81bqDTcH2HrXzUW4h3c6FkY79vKqcrnN8xaXJxhK0arkch2/4J4V99STvyWOaWJpofmLGh8TU4cZVamhrTF/6oby6i9bWEMZ620PLUOLYZ2AwZjCWaHibp75h37YGUh3s7YwnhXXhWg/p4Il328kaaHqmh8S0VhzjoiVi2GZdqxkTf5F1inla7zYHGbwTwXb0fEWoj3/Dlbf1eY6LXaM+db42LNu2K483VNaLN3wbun7vZyovn3idluoOmhKKa8BHjpOveCeNfcen68fU3asxxY42Lde6sLvzV+S2iBzVzTQ1EC+TrS16gW5rdFNWELWM6bs2Ub83O2emEMo9cFaXiggi0friN+S4hVD1YW3smz8bb4583Ze+Zi6K5Wsbi1ObpUjijE8N5IIUeMtowT2uRbMkfU3zU3Z2dzhC1oxayals0RZrsWl9kcUXNnmG1/vapw/YvliNl4+5qchRiWrnNTdfPyOUKbs9rfYtcHqbtnzgZguRwRvbaU+rvmjl33vupC3b5cjgAKOSJ+S4j1769eMUdUXqXFezZHVF4ZpO62imVzxOycnc0RjnIryYkU7S9qu9EWyxG+fB0ZWOsq5IjUVJb0dHbZHNH0tigoWt1edUOQLZ+oY92j8XwMKwlu1OKt5YhKzHbt2OiOILW3haBEqxUzmSyT/RqBwhm10PRguBDviit91N05d88b7iknFElgz41hLzMTWu/EHtB6AeHNKrU3ewrH1t7sIbxZ+232gIlEYwt9/X2sWbPmEkHpDYra2lpqa2uBHEOxE4Q2afPVpBqpe3MANf+8+Rvt1N4yV5d7q+2Et7qx+k2YrFB3dxhXvtfga3BSd/fcMx+9Jkgknwv7Do+Qy+Vw12jfBt46x4LvqciVASqvnrM/qLs7gq/BSdNDMda+q4q6uyOY8u5e4cv9hW8Z0CzN/E3a9asVVkw2E5i0Zya8zb/A7qz2tvJCfrOXWam7O4LVY6LztSFG2ycJbfIWjq2+NURZ/v1tDZi1Y/M5q2yjh+pbQ9TcFCZ6dZD4LaFCLlQ8JurujhTsyALNrrneCBC/oYwNH6yh4upSTKp2rFqhHetvclE3L2/GdgQJX563hLTCmndWFd7J3np1QQwrrw5ScfVczVx3d6Rga+Bf49SONc3FO3rN+fEGcEZt1N0TKfRvwtv9VM2P9x3hQn5TI1oMTaoJxWNi00fraJyXc+fH2xa0FOINWp8ifmsIxWnC7DQTvzVU+Ka2+rW4zNp2Bdd7qHnz3HvK1+DElFfZPi/ea1zUzYt31Y5goV4y2Yx4G104o/k52+RcGO/rgkTelJ/vJi0uNXeE2fyhOkrXuxfEu+Lq0vPm7Gz/1x2346qwY3FpvzXypgCx6xbO2dl3sjNqy89vAybVRPWtoYVz9o5woS/hCGvxVvIxLN/iJX7z3LE1by4nuN6zMN7+fLw3avGeu4a5Gs6aj6G9TIth6Tr3glo2fmMZ4W0+MGkKjOWbfKiRefFeYs5qOSLC6rfF2Pzh+nyOmIvh/BwxG+/ZHOFfrWL1WSgxaO/DpXIEgKvKXsgRs2o3y+WI2TkLWo6ouS2MyWbCYCxZMkeAVgfPf9dv/mh9wbZtqRxRiGE+R9iCFtz1jhVzRHhbPob5HDHbx1o2R8zGMJ8jwtt9rHrr3PO4XI5w1zgKOaL5nVU0PlC5fI7Iz1ntPH4a760gdl2ZFoclcoQWb1+hvwSaYsZIm0ZsWCpHFOIyL0dMDUzjrLQvmSPiN4co36rVnIrHROP9ETZ/rA5/k5PAateCnsGCHGEtoe6OUCFH2PwmUokMfQc1glL0Kh+R7Z65eN9WhqtKu4+eGhu1zSks0wNgAn+NhbJmR+E8tde78VRp71ZXhYna692FnBzeaOdk/wFsNhtPPPEEl/DGxLPPPgvA6ex+Kq50Y9SmGaVNDso3z1nhVFzhwRPPz0G3kWCzC5PdiKIa8TXYF1hFV1wZKDybittE7PogitvE0MlxJrqn8Tdqf6OkhMibAoVcqKhGYteXYc33mL11KtGrS3FWamsg0R3Bgl2R0aYda8v39N1xx4Ica3GbUfLvO6MCsevLcJRrz4Uraid2/dwzH9rkI7jBA0Dny4Nk0lmcldpvVSM27dj8WnVwg4fyzXM2XLHry/A2OonfEKLiilJi15cVLKZK17kpn2fZFdsRxJN/n9hKFerfUlGoT0qb3US2z8UwenVpIRdafQqx68tQ8pZLocsWvmcjVwbwNc7GW4uLxatdhK/eSeVVWo41q0YiV/gJ5ONtzsd71prNU+sgOs/2K7LdT/l2P1afglExELu+DHuZlt9ccfuCeJdvnYth+HIf6z9Qg5p/nzijtvPiXTavto1dX4YjZMHsMOGpVc+P99aFMZxd37KXWbCXWclMa6Sh0rXuBRZpsWvnxTugxdCsGikxlGBxm4nOe/dUXlWKr16LocWbj3feLtC3yknkygBr3xGn9vawFu9V+XirC+M9O2dnUdrswR60YrQZ5+ZsaT7eNY4FNmvhy3wF+yk1bKH6zaG5eJ8zZ8s3z8UboxZDc36+OysXxrtsk5fQpoVzdvZ9ooat1N4VxqjO9cvOnbPueD6GQS0uRpsRRTWhhm0L5+y1QTy158cbtDohclWADe+tIXyZT8sRjfNzRFnBtsvX6Cz0rQB8DWphji6VI2YR2e4v5IjxzgT+Va4lc0T5Zb5CbVXIEWVWFNW0bI4oxDCfI4IbPWz8cB2KT7v+xXKEKzrX25nNEa6ondKNy+eI2XiDliMqrw4Uno3lcoS/yTX37QDU3FleqPGXyxFAIUeUrnXTcF/FijmikJPzOSK2I0jVdcFlc8TsnJ3NERafwtTADP2HRgrxPjdHFHJy2FrIEZkkpBIZyjctnSNiN5RhtGi1YelaN2veEaM+X/fHri3FU52Pt18hdn2wMGcDTS4il/sKPa9sNsd4j9bzsniMxK71o7jyOaLBQeTyueuNXO7FbxvDMj6IYodArbVwrCeqULF5Tmm+fJ0Nf632nBttkI6fpae3m/Xr1//BCErwByQpARw/rtnyHD5xEGeldhPtpQqOMgvO/IvWG3eghuZ80J0VNgJNKs1vrSTYZMVRZsOVl9z31jhQy+eC4oo58OZvTNeLA1hUBVdUm+y+uANHyFY41h134K3W/qYo4AjZ8MadmmyYQfv/ZxfEPVWOwgcJzB6b/+iIaf/d5nfV0vRgJZ5qFVdMXXhsTf7YSu1Yq9vERGcSg9GAKzZXXKsRG/5a7UXrrLThCNlQy2YLcxVXhZ0TT3ay9yuncFbY8eSv3xHKH5uPhadaxVkxd73OCjtGiwGr04RaZsURsuHMN/X9tS7U8rm4uGKOwuSuvzmE1a0UHlZPzcIYumJq4RoUVcERsuGOOdj+yVVUbA2eE287nqr8b1UWxtAbd6KW26jeUQ4KeOKOwgtk9vf5qmcbEyqOkA3FbSI5PIPRZMDun/NGV8O2wn11Re04QjZsPu2D1l3twBl1sPMfT3DgP1pRIzZ81fkPwrAWQ3swPw9rnLjmxdBVYad8s4+yTR4cIXs+3rb8sefH21OrXUPLzzoxmo2FOeurc6KG58WwSi3EW/GacYRszIxnGDg8iieqnhNvB558XArxno1hlUoOCtKNi87ZqnNiqCrU3hLCE1MXzENHaC6Gs/NbycvweWocuKrm5rcanouhq3I23rOJ/5y4hOwEVueLlXJbft7OzVlXxdw1uCrseGpUkkNJTj3VhcluxpmPm6/aiRqZi4sz6sCdv16bT4vhZH+Cvv0jeKtV1PC8+1il4s2/LM35GLqi2v+vBqzkctDx3EA+TovnCABPTC3kiLXviuOrU1fMEQa7UvitNr+NV//+GL07R5bMEdqxjgX3psRUguKYK9oWyxGFuORzRO2bw8Svj6yYI2bn7GyOqH9zhOpby5fNERaXUZuHldr/X7rGg6N05RwB4MvPQ7XSgsFswOoxL5sjHCEbSr5p6ok7MJYYOPWLLhJ9ySVzBGjvCee8nGz1KAV28lI5YhZqxIavxsnWTzUS2uJdMUfMxsURsmH3Wclmcgy3TuOtduKMnBPv2aLNp+Aosxbmt7tCxWA0FNSQXFF7IWaKRzvWlc/f3rgdR6mZpruCbHo0hCtixZN/tyoWcATMuPJFkLvSiiMwJ6e558wLDAwM4PF4uOwy/bLIl/DHhYaGBqLRKJlMhmO9BzHbtTngjTvwVM2bv5VW3HmCijNsxVlhZf1DVay6txxPla3wHIOW03z5+auWW3BVOrB5FVJTOdIzGdzRuWM9VSrefG5xBLV8ay/NP0PVKu4qB+OdE2QSGTwVjsKxFr8FV9RRKPi91Squqrln0x1XCax2sfmj9Vh8JlxRR+EZ81Q7cFXOHeupcRZybO+eERyl1sI72VPlKLwDZsf6avMNJzPa9bqtnHyyk0RfClfUgTn/GPlq5/67WgwdePPvaGeFHavHjMlmwuI3461R8dQ4Fxw7+z5XI1pcrJ58832tB8+8nOWqmnsXqSErrqgDS77u8daqeKpU4reE2Pi+WjzxuXjbS7X/7mze99Y4cM97f7urVELrvdTcHMbmVbQYFt6zaiHvaHFRC7/VbDVhMhsK+c8TPyfe84+1m3FFHWSSOXb+3+PY3MqCeHtr5n7bbLxn3wPumAN3zFEgnnhr1AXz0FU5d6wrqt1Hs9vE2ecHmB5O4o7Oi3ds7jyuivw8zOd9b70Td5VK9+4huncP4Y7P1WVqWf7e+K1z1zAvhordxGRPAlJg9Wv3Ri2z5ePgWDhnq5148nGpvy2CK+wo1IPe6oV1mHvenDU7jbiiDm1xOH8NC2JYO3fPzWYDrqijcO88tQ7UkI1YnmjirZ6rgWbj5o2dE0O7mWM/6CA5lsJTvXDOzpJOXBV2XFFHoYHgrVFxhe307h2m78CIliNm52y5FhfbvKbXbO0KGpl/qk/bCr1UjpjFbD4JbvRQe1fFijliNoYWp5YjBo+OsfcLp5bNEQabNmdnc4QjaMFgLmFmMFW4r+fmiNn62hPT7o3db6b2zWHK1nmXzRGz8Z6NYaDRw9ZPNRSOXSpHeGrmYuhrVFHLbIUm0lI5ohCXKi3PWlQTZrtpxRzhrdN+62yO6No1QMtTXcvmCCV/bCFHxByYbXMqW4vliNk57Ylp/3fDfRU0v7NqxRzhqpwfQydGs6EgN+6qdOCZnd+Vdu1Y1+yxDtzz3oE2t0IuL4bkDGvfyTZv/pmrdhTej9p5bZQ2KKy5L0BkowNnuQWrd7ZhY8FdMfdd6q6w4Ilpc9So5th/eC9Go5Hvf//7XMIbF3v37gXg2JlDuKLafLA4SnDH7DjyC7/uqG3BHPRW2wmucdD8Z2E8cQVvtbPwbLqjdrzz8rGv1oE/n/d7XxvEHrAWnjdn2I63xllYoPXXO/HVzX/vOnFH7aQmU1BSgrfGicGab6jXOQvPPICn2lm4RjVkw1vjpOHuMNW3hvDUqHjmH1vrLOQse1DBW+NE8SiaSk4OfPNqIG+tE0989tvdgrfGiT3/nnXHVXx1Lk4/28PBr57GW+MsfKNaXGbt2NJ8fosvrAs8dU4U1ZzPb0a8NU6c+W9YV5V9wTvNW+vEl7/+2BWluCsdBcKKuzIfw9l41znw5a8BU/4bsNLOpj+vI3ZdGd4aJ6Y8ectXq+Krn7smb/Vcj8AZtuNvdFF9cxiT1aC9v+fHsEYt5DdHyIq3xonVbSI5ksZsM+Kc19NYEO+AFsPC4lKNE1+Nk4Nfa+PEDzvw1TgLcbJ4tGNnG/XuuANv7by41DiJvKkUX5MTRTXhrXEWerOearVQx4BWP83WHyee6MBsM819z8Yc58RbLcTQZNX+u9lkhq5XB7GXWhbGu1Y9b87OvpPVCju5HJzJq8r75tVA2jU6C+8mZ1ibs2aXmchlPkIbfQvmrLdGLcxDR1CLt5InfHhqnQuuyVvrnFsACGjz2+ab68H45sXQv8pDZGue4OtV8nM23weKO/DUnvPcVKuQhuM/PIviVnDk431uDH11zvNiODUwQ9erg7hj5+SIOhV//reaZudsvtfmKLWTy0LPPk0pZ6kcAfneaj5H1N4Rpmy9d8UcMdur8uRrwz3/cpKBg2NL5ohCDOfF2+wwYsnXPEvliPnX66lViV0bpPGuyhVzxFz9YczntEoqri5dNkfMxlvNf2tGtvl15QjQ6j1tvmjfhY5S67I5wlvjxOQw5K9BxWg2cuLxDhIDqSVzBGik//n3Ri23FRRelsoRheuv0b5R1r+vhtK13hVyhFrIyYpqwh1VyWVyTHZN46l2LIi3t85Z+O4wqSY8cTtqSLs3asiGUTEW1JC0ei9/rLUET9w+l7/DVtwVCnU3+lj3lgDeqAVvbF6tVWnBmd9IqIYU3JUWTPl3YMvoHnp7e6mqquLyyy/nEt6YcLvdPPDAA2SyGVonD2HMbzB3Re14a+benb4aB85Ivi7zKHhrHDTeHaTm5lJcEaXwzIOWG2cX5a1uBX+9S9uclIHkeGZBvvDXOQvfrGanGX+DC2u+1+CK2vE2uJgaSJKaTOOdt95lthnxN7iwB/JEmArbgvzmq3NS2uym6aEYZtWkHZuvI50RG/6GebmwzoEvv9g/eHwMV8VcX0INacfOCmr4atUCMUD7rS7sXoUTP+5gvGNaOzYfQ2+1uiAuvjpXoe9mC1hwhe0oqgnFbdK+M+e/ZxvmxdCrxUXJf4tVXhEk2Dy3IO6vn4uhxaXgb3BhyRMrXTE7vgYtFmvfVU1glQv3bL6wazG0+fJEmEpHgagDWi6PXllKxRUBTA4tho58T98ZseOrnxfDWrXw3WkyG7C6lQLJWC0/J961jgXf+f4GFyUlBg5+tRWjxXBeDOfXKr76uRg6glYCq91E82QST7W68PrrnYXvZFvAgr9BI9YNn5xgrHMK97y+kK/BiTMfb4tH+62Kms/lMQf+OifdO4fo2TOMv85Z6BEorvyc9cyfs3PXYHWZGW2fJDOdQVHz8Q7k411hxzv/euvmas7a2yu0NaLZeFfa8C/4bXM9AaPRkL9e08J45+est0bFO69W8Te4Cu8Ie5mV4BoPkS2+/LHOBe8tX52rsLHNEbBqMbQa6XxxkMmuxMI5W+csrG9Zvdo8NOfrGnfcga/GSeeLAwyfmsDf4CrcG6s7P2fzm5zc0YXz0GQxMpG3K14qRyy4hrgDZ6WNqh3BFXPEbD1iULR7M3pmkmPfP7tsjsCoxXA2RzjKbChOEyS1PspiOcKZX4e1l2rz0GgzUndHhMhlpcvmCH+DC8Wh3Uh3lYPQRh/r3l2tXdMyOcJd5SjUsraAQtkaL+F8z2upHDE/Lu5qB4rDhOI0rZgjZr9vZnNE12tDnPlN37I5wpiP9/wcYfNZCkp0i+UIdd6c9Te4qLwiQM3t5SvmCH+9q0D08sQdWFQTyfF0/r7OxdAWsOCv13IEaGucs7UVgKPUQi6VLcTQV6dq9x2t3+Cbfw21DrwVBppu9xJotOGNWbA6tfrUWW5eUId5YxbcEe2+KVYj+068hMFg4Ic//CF/SPzB7N5mEY1GOXv2LApWrjbfBfO88ZaEAk13lXP4+2dE9k3eRpX62yOceKKT4WK8ugXY/NE6ZkZTC6W2V8Cs5VP/oVHantUvw3yxoKgGfE1uel6TScvW3hFmvHuK3p0jusc4q2w4glbxuYqGgswKDNj+t00MHx/j2GNCicMiznWxUKx9YDF2b95GFZvXQtfLMsu8i4Yi79P2/7aK8bNTolgoqoHkhNzDvhioEQV3lVNml+dTqLmhjNbf9IrsKK1BBWfYRv8+mUT8xcLWTzbQf3BEJHsfaHZRc0uYYz86y2iLDpndIm3fSkxmNn6wisRQkiPfXUFuNLdw7oSvLMPsMHL2xZXfc9nxcZLKBC+nniGZTDIzM4OiyHyHL+GPC6lUqnCPr+QOrGa7rtqr8kof00NJ+vcOic636oEKFKeZ/V9uvcDy1yo1t0Y48fhZRlunVh6QR+z6IIFGl9wO7CIhsNbF6JlpkW2WvcxMeGuAM7/qFdmVhbZ6GT41USBgXGiY7TI7NU2Fyc6r/3CsiJMhspa7mAht9TLdPyOat8XavYW3+xk5PSayzLuoKOI+1d8TwVfn4pW/F8RilqN7kcJQttHLeOeEKO7BjR6sXoV2oV1O2UYvvQeHX5fzPXZ9EF+9k71fOiW6Pk1lyqTfmrPI2su32k3NDWUc+3EnEx3L17u5zDx5azM03BOl5Rcjus6THR+ntXIPLadPsHHjRnbv3l3U9V7CHw/uvPNOnnzySRy4uNx8KyU6a+349T5O/bxTZN9kL7PScE+E07/oZvS0zBJEitUPx0hOpGX2VyZofriKwePjMquoiwWT1nwfPDImGhbe7icxmhTZWFn9JhxldvG5isas4LtgPm35RAMDR0Zo/YWwP2mSnediwuo34apU6ds3IhpXjN2bGrFi9SkMHLxI91iKIu/T5o/WM9o+KYqFyWoQ2UP+PlA8JlyVdlHcTVYDkSsC9O4bKihF6RqnmnCGrQyf0G85fDGx7tE4/UfGRPlWjVipv6uClp91Mdam4/uk2J6XotB0f5iZ8TSnfr5CvTu/7gJ860uxOI30HlzZ9iY7Mko6neQl5WfMzMwwPT1dcPa4hDcmMpkMVquVdDrN1ca7UYw2SsymFcf56uykZ7KMHJetRUWu9OMIWDnxeOcF7XnZAgq1t4U5/XQPk906PQ7RFDSC6zwc+U77Bbu23wfOShtTA0mRbZZZNRJs9tCzb0Q0zlPjYGogcdFs7IyKzE4tenUpvkYX+/7tVBEnQ2b3dhHhjjtITqaYFqwpFWv3Vow910VFEfepfKuP8s1+9vyr0PruIs4JV9TOzHhaFHdn1IbNb6Fv74j4XJM9CdGzdbEQaHIRWOMWWz1Grw1i8yn6rTmLrL3sIQfVN5Vy+tn+lZ/H+euNRqi8NkLngWldcyo7NEJ35AiHWvdx11138fjjjxd1vUvhD6qkBNDSoi0KJUkwkOo+r/BcFEk4/E0ZQQlgsmOSXA4s7pULk/lQfArr31dTsADSg12fPSkiKAEkJ7KUGA0FhpteVFwTYPt/W1WwytILxacU5KX1Xl8xpKGWJ7tEBCXQLLOKJSi55inY6EHpejeX/0VTwcZJL17+X0fEBKXVb4tx+V80icaAZqkluVegWWZt+US9aMx427SYoFQsho9NiAlKseuDbP/bpoLEt140PVhZsGbTiw2P1rD9b1aJxgC8/HdHRQQlgI0frmfjn9eKxqiVloK6mwQTnUkRQQkgOZTk6PfOighKAIm+pIigpKgUpKUl2PzROnH8FJ8CJSVks7IPyIGDY7z6/x3TR1DKo+mhSiqu9q984Dzk0ilyWchl5B+4XS/06iYoAbQHD5NKpbj++usvEZT+BGA2m7nrrrsAeImfaf+oo/Y6+8KQmKAEkMvmyOVy4mZN5Ar/AgujlTB0bIKdnzkuInqAdlklhhLMdlmJu+EDNax7b7VoDGhywwWChA4MHBgTEZQApnpTtPykW0QAAuh5bbg4glLe3kyCDR+sYf3760RjjnyrvSiC0ra/WsWaB2MrHzgPgbUu6ubZm+mBr8nJtr9ZVbCi0Yue14bF87ZYdL08KCYobf5YPRs+UCMaU0z8MMP2v1hF3Z36n3uAEz/qlBGUgOibStn+qVUFS0O9mN11J0XvnmFx3Pv2jIgJSrPnkhCAfE1Ocf5zxuxs+6vGgsWiXpitRgyGEjGB6si32vUTlNAsQte8PVawaNMLxWogl8sx0StsMqTg+Pf0Nf2z4+MMpnro7D5LWVnZJYLSnwieeOIJDAYDk4wxlO4ll9Q3x079REZQApgaTEA2h1nYUzKpJhreUlGwANKDw984IyMoAaTRrFitsuvzNTnZ8vH6gnWTXpishoK1ld7rK4Y01PXyoIigBJplVrEEpdmdunqhRqxc9vHGwq5jvdj5meNiglL8hjIu+0TjHClKJ6p2BBfs1NaD5keqWP9+WY2SGEyLCUrFYqIzISYoBda42PqpRtm8JR8/YZ+s4e4KtnyiQTQGYNdnT4if/bXvrqb5kSrRGKvfJJ5HAMmRtDju6USWM7/qExGUANITaRlBycSCHf56sfrhmDh+JqtBs/ITtpQmOhPs+XyLPoJSHvEbyiibZx2jB7lkkmyRPa+hff26CUoAZ+MHmJmZ4e67775EUPoTgNFo5DOf+QwAr2aeASCXWvnZHjo5JSYoAZDW+l7Snpe3Tp2z49SB6YEkB7/WJiIoAWRzOTCUFNQ39KLurggN91asfOA5cFbaChZxejB+dlpENAJITWQ0KzvhuJFTk8URlIwUHBr0ou4uzYpVgvbf9hdFUFr33mpqbpH1X9TIQnszPbCVKmz8UF3BHk4vRlsnRQSl3wdDJ8bFBKVVD1bSeH/lygfOgxq2iuMHsOkDdQvs3/Sg+7UhMUHJV+9k0wfrCmrjemEV8B/mY6x9Shz38fZpMUFp9lwSApAatorzn+I2sv59NeJvE4PFgMEsIycCtP+mTz9BCc0itPrmkPh3mZQcZCE5InweM3D2l526CUrTmQla+05SWlrKY489JjuXDvzBSUqKovCRj3wEgL38VvvHTEbXgtmq+yvY9leNuhfqkxM5Xvv0cTH5xeIyYgtYiAgXHRRVI5dI8Nqnj9HyxAqqGedg4MgYyYkUBkX2slz/zjg1t8gWAvxNTi77y0Y5SeStUervlhU2NbeVs+FDMuJB7R1hmt8WFxGV+o+MMn52itG2C7vTEKDvwDDDLXIVL2+tk7J1svk3fHqCkVbZb/LWq6x7T7WIkFcsGu6pEM+JsY4pJnummeySLeZ5apyUrpGRlPr2jzB0gRXXZjFwdIy+gyOiMU33V3HZxxpFY+I3lrHxw3Iyz4YP1YrJfxv/vJY1D8uK8epbKqi9NSI+19TADIn+GdGY5FCS1z59jDO/1L8AGNsRFJPdQJM8DTTIx+39YhtHf9C99AG57AJW85qHK9n6idoV34nZ8fECQelIaietra243e6Cd/slvPHx+OOPYzQayZDhVOqg9o86ai+zHbZ8op76u/XXDsd+0MmBr7SJr9G/yrXABkovAmtdlG/TvwDT/qs+dn3upJjQM9U/w1SvrDnka1Spuy1C1bVlKx88D01vjbL20bhojDtu18YI1ujNdq25EblC9qG99SMNNN4ny/d9B0bo3X9x1DIHjozQd1im6Bdc48G/xiMaM9mbYKx9koke2byovb2cqptkc6IY2ANmVj8cExNtRlrGGTopq4eCazz4V3tEYwAGj4zSL7xXxWD49CQjpyYYP6O/nvQ1qqx9R1zcUFr33mqi15aKxtTeXk5tESS5zR+rF9/fujdHaH6njHBpMEBiNMXwMdkCYMtPu8WqdXV3hkV5DCC4wYtabivYcepFz+5hdn++bVkSVS6TKagome1w2SfrqL4luOJ/e37ttYfnmJ6e5s/+7M9kF3gJf9T46le/CsCenNbzyiWTushKlVeXsvkjdZj09pfTsPffTjNwSPZ8mkx5O4Im4TeLSVuclmD/l1s582sZCXOsfZrpoaR402jTQzHqbouIxjjCVjZ8oEZMEontCBLbsXI+mI/wNh+rhd/Moc1e1j4Sx1Wl/5t5ojPB4NFRRtsvPCl64PgYffvkNV5wg4/AatnGvMET4wyfkNUo9jIr9ffKCHnFInJlQDwnpvqTDJ8aZ3pQ1t8IbvARaJLFr//wKH0XqR7v2TMs7nnV31XJJuGmhrKNHu2Zktxek/a9pUZkC3lNb41SJ9hUAxDZHqD+rgrR8wsw1ZNgok/2jZFOZNn376dFm0NL17nF/X4AT62KX7hoDXDssS5OP7PMRtlzehTxG4Js+EB8xXdidmS0QFDqTJ+m5XQLHo+HH/3oR+JrvIQ/Tvz5n/85kUiEBJN0ZLTvj1wqvTJZyQjNb68ierX+77fOlwc5KVzLA82ax18rf27UiA1fo/5xQ0fHOfKtM2JCz1Rvgglhz8sWUGi4p5LgBhkpuvKqUuruktVrVp9C7e1hOfnqjoj4fbnmoSpqb5Xl+4HDo/TsvTjv2L49IwweldX+nmoHISF5PTmaZvD4mLhGCW3yEdokO1cxMNqMVN0YwlYqW9ccOjkh7nl5a53y32SEnt1DjJy68OqLk/0z9B8YET3DtoDCmoerCApJx7W3h7UNuQKENvnEvWdbqcKat1dhC8rub/XN5TQI84vBaGSqL8FE98qE6Pno2zvCkW/JxCsi2/0iYieAN67Z6pqsMrrOWPsUh7/TSWa5NsT89UYjND8SI3zZyryE7NAI2aERAF7LPMPk5CSf/OQnMepxThPignzFffazn+ULX/gCqVSKXanfsNl8rfaHTGZZC5LhtkmsfgVFAZ2b0QDNZip2TRn7vqiPmTreNs3uzx4hKcwf5duCeOuchLZ6RcQoNaJQtsHPqZ8uszg9D4m+JLs/J7cpaf1VD8kJ2S6R8Z4ZTY3KI+v6quU20jOyYsjiMmO2y6ZcxysDUAKJfkHzJQkHv94mOg9A430VeOucvCyw2ug/MEb/AfluuZf+4YhYOUxKdgNwVdqxB604AgrJoQvLcHYJd6+Dpr40fEz+In/pfx0Rqw5J1YYA1r2nGotH4TWh0kMx96r9hb6CF65eWL2K+JkqXeXE6lYwmoUc1RxilaJjT3QQG04yJlSUOPItmWStv8mJGraJCEqgFVC5TE5sX/fK3x8Xzb/qW0JYnCaO/WiJXau5xckU410JDOYSLVdYFj2ksEAGkEwlGbB0wIy2w/sS/rTw7LPPct1113Gaw0RTjZhnV3OXqb1SU5AYTopJGAD190aY7E3Q+Tt9ufXAf7YWZVcU3xEil8nR/YpM9anyqgAjZ6Z0kxaOS61e0dSe2p/v02oVAXLpnLYzTwCjzYjdbyXQ4NK9UJmaAkU1Y3XLXpidrw4wMyK7WXrnwbnY8vF6JnsTHPm2/rzf8hN99fR8HPlBu3j+zQymxO8jAE9cJZPK0saFtXq2h2w4I3bsQQsTHfo/tFt0fo/Mx5Fvt4uJJaTgxI+F9ZAZtn2ikZ69w7QJrFvHz0xxVEBQAhhvn6JnzzC9uwW5xQyKw4QirNecFXZt57sASr6+m+iVNVGO/bAdg7DGG22d0v0dPYuqm8ro2z3E1ID+B6t8m4/AajfjndP07NL/Ld32bB+dL/aREtzi5ndW0farPia6Fr++3BIk3sRIiuFTy28KmV979cSOQQs4nU7+8R//Uf8FXsIfPd7+9rfz3/7bf6Ozs5MDqRdZa74C0MhKy9m/jbVP4qywASVI5DAcYSuVV5Vy7LtndR2fGEmz5/PHSQtLvECji+AGLxN9Cfr36/9GsnpM+Js9dL6gryZKT6Q59J9tsosD2n7VSzYlI6JP9iUgB2bhope7yiFWBDHbTShOs8h2a+DQKGaHmSlhPV7M+zzypgDhLT52/vMJ3dc33j7NeLvsXQTw2j8dEyuHFWMZaPMreKpUev0WEiMX1pPOV6NiVAycESgjTvUm5AplaBtepR37oSPjYgWwurvCqGE7e/9V1oOWqqgDnH2+H8Ul+1EWl4LFZRbNJW9cxRGyYRQqvGWzOXJp2TPf+fIAmemMSKUIoPVZ2XeCI2zFFbHRvVNoW3WZnxKTgeETsvu79wunRPOvbKMHe9BC26+XuL4l6q6JvgQWt4l0AgxLEJVmyUmzaLMdgin4yU9+ov8CL+ENgZdeeolYLMbJkj2UZ+KFhdJcKr20/VsGJnoSTPbLe16R7X6SE2n6D+qrh04/3V2UFVP06lIMJgNDx2T527fKSWIoyVSvPoJJZxF5e3ogyelnuhkSEoizWXnPq8SofTerISujgk36Fo8Zi1Bxt+uVQdIJ2c0aPlkcEWX122JM9c3Q+kyP7jHdu+Sq9x0vDdChsw6fRSaZ5cwv5X0rT5743yPppRQBRTXiq1UZa5tkul//umbvbjmZ7Ozz/Zx9UehGkynuuVr33mr69oyI7vPMcJL238quLzmWpP35PoaFhC2L24yiCnteERtmh1G0/mq2mchlcySF9fvJJzsxWmQ1XmIoqVl4ClC6zs1o24RIrc0VtRPa4mN6JMnQUf1xHzgyxnDL2PJko3NQfUuI7t1DJIaWyLWLrDcajdqG3IkVFPxmyUkAw2XtJM8mqK6u5q/+6q/0X6AAJbnchTFXbW9vJxbTdhBt50ZU8zwm4iKLZXolshdD9a0hytZ5OfTtVsbbBB/PClRdXUab4OPAXesQ2QKBRnSwB61iYlTDPRUkJ1K0Cpr0l6DB3+SkfJNPZNMV3u7XPH2/eUp0n2rvDDPeNSW2wJPCFbfjr3NelPlw+d82MdY+KbY5kyLQ7MLiNdP5fHGLmxI0PVhJ564h0fNbe0cYe8DCgf9o1T0mtiOIWTUVRVT6k4cC6x6p5tTPO5k4q5/Fv+GDNVg9Fl7+tJD8p4BaZtF9Ln+TtrNl8Kjsw2Tjh2ow2Uzs/KdFrE2WICidC4Pz/F018xfJADqq93P0+FEaGxs5elRmlXMJbww0NDRw4sQJFKxcbb5r4R//wLXXlo/Xkxie4eBX20TjfE1OUpMZ3eQhR8SqLS4JCCZmO2z6yComOqdE7zG1wkbVjiCH/vPCvvveqKi+pZypwYSIyL/64RjjndO0CxQY3NV2gs2eonY3ShHe7meqP8GIsPaXoumhKK6og1cERPliEb22lIFjo0x1X1jyenCjB5tPERGIzW4zjfdG6H5tSKQasur+Srp2Dl40m703EqI7ghhMJbQ9rf/7wuw2s/mDtYy0TnBUJ2FiFs6YXaR4VXlVgLPPDyCRW3FX21l1X5Szv+un67Xz59FSBKVzYXSfvyN3fu01mhrhmOslSkpKaGlpIRCQqXJdwh8/JiYmcOZr9O0lt6Ca5nacLkZUyk7LiR6zKNvgJnpNGUe/f4aJDtlCW/kWr2hh2xG2MtklVBG8I4y/3sXuL7aQFmyci1wZIJfOFUV4+FOHGrES2uAVkZW8dSplm7QxkvsUvtxPYiQpJsBIYQ2Y8dU66RJuTigGWz/VyPCp8aIIRBI4ozZsPstFsaSL31BG/9FRUY4Ib/Ojhq2c+JH+OASaXdh8Vs7+Vm5jewnQ8JYKzj4/IFLxbbi3AneVQ04+NYHNZ2G6T1/PyxG2YrIZGT0tq6kbH6jE7rew98uLbPDQWXcZPOerNpxLUOqqPsTh44fYtGkTu3btEl3jJbwx8K53vYuvfvWruPBxmXLzgr8tRlT6fWqvNW+LkhhN0fKkrO9gL9N2meolDylukyY6IOHMGGHDe2oZ65jULYowe67I9gCtz/YURaj6U0dwg4f0dEZEKIvtCDI9lBTZYNkCCr46Z1EEGCk8tQ5Skxmx7aAUlVeVElznYfc/y2zOikGgycVET4LEBRZscEZt2PwW0b01KhC7vpzBo2MiMl7lVaUMHh/TnVcuYQ6BJhdmu0lECjMqsO49dQydHKdNQDAE7fmdHtA/9/xNLgaPj0FWf8/L6lNY9ZZKOl4aYODoIjWb3vVG//nqYfMJSslMgv3OX5PJZDh16hSlpTJVeb34g9u9zSIajXLLLbcA8DLPLPzjChYkDfdUsOXj9fpOlMtx+mfdvPzpIzKCErD6/hjhrX7UyiUkKhbBLMHBXatfKvrod9o48JUWsXKTp1bFK/S2jlzlZ9tfN4rtvUJbvQSaZdKIAI6Q3EZMEjvQrk3qS1/a5MYVdYji0PXyIPu+KCMoAZSu9lC+SSZn1/xIFZs+IpM5jl0ZpHyL3Bv19YzKq4JEr5DJZVffEmLrXzSiCBSL1YiCt85F6WqZVGHLk10ighJAYLULf6PsWaq9Iyz2NXaEFBRVmMIV5GPQrBol8QaNOLThg7LntnyTD3upFUdQZm2y919PceT7Z3QTlBRVmxMkEZGhqm8qp/5OuX/3ns+f4rXPHSeXnseyOMfabcF5bg2y5aO1S8Z8vsXILI6mdnH0+FG8Xu8lgtKfMI4fP05JSQlJErSmjiz84zK1l9ltZvNH6vRLs+Zy7Pzn42KCEkD97RFqbg7pPn6yUyMoOSJW3UouqSk4+r0zYqKtGraihu34GmUJb917qml+pEo0xmw3EBXaRYB2r6SKNma3GYtfNqjpwUqxpVXpGjfBtR7RmMPfOCMiKAEEV7sJrHZjtut/n5ndZjZ/rJ6w0GM+elWQyjddmI+w/xKYoeLyUiouk5EpNn6olvp7ZXLK5Zt8hDbK5LJToykO/kebiKDkiFjx1Kh4amTP7dpH4wTWyOo1ZxGqofaAVIJKI3NKr81eZmbrpxrEstz+eieBBtm5UqMp9n/tFEd/qJ+gNBs7CUHJHbdT8aZS6oRWeaOnp3jlH4/R+dLggtprvrXbudj85zVU3bD0s75Y7fUaTzM2NsZNN910iaD0JwpVVfkf/+N/APBq7ukFf1vJ/i1yhZ/179Fp/ZrL0btnhJ2fOy4mKFXtCBK9tgxHWL/t0SxBSTKm5aku9n/tlIj4Alrfxi/sefkanGz68zqsftkOX2+dKrZ8A4qyEZPEDrRrW/VnUdEYV8yBf5UbW1B/P3P45ATHvntWfJ/CW/2EhFYv8VtCrH2XzN64fKOP6NVlF0jz/78Gke0BYtfJLBSD6z1s+EANJsEudpPVQHCDF7/wnd71yqCIoARQ2uwhKKw3wtt81N0hs9ZRPCZRDAAwIR+DtjFBarHReH8lqx+S9fHcNQ7cMRW70Nrk+A87OPLdM/oJSia03JBGN0EJIH59GfV3yGp+gGPfO8uef29Z+N5bpv9QttHDukerlrxX8+3dZtGZPs3h44fweDyXCEp/wviP//gPPB4PYwzRmVm4EXQ5+zejovU4StfqzF25HIe+fUZMUAKouzNC9Cr9PYTkqEZQUtxG/RZBGTj2WLuIoASaQoq3xokrKvuurbmtnJrbZN9kRgXxtyloKuII3YSMigFFlQ2qvKpUfH1l670EVsnes2d+1ScisQA4K+2Ub/WjuPX/JqOiqTZJre9i14UoF9rEvd4Ru76M0jWye1t/T4XIFhKgdI2H8FZZjzGThNNPdYsISkabkeBaD+5K2XdM9ZvLxc+6LSBf65c+ewCOcqv42ow2I2vfFccj5BZ46534hc9FJgmH/vM0Z5/T36+ejZ2EoKS4TVTtKKPiclk/KTGUZO+XT9F/cFT3emPjWyKENi39XMy3d5vFK5lfMDIywjvf+c4LRlCCC/zp99RTT6EoCqlUildSv2CbeSHDedaC5NzmTWomA7mcZqej954mtUX78PZS3TthDn//DGXNHtEiNcCGD9VidZt5+e/0LQQnJ7IkJ5J5goB+2629/3pMTJgZPztNJpnF5jOL7L3i14eYGU8xcFD/osCmj9Rhthl55e/1W2GtfVcctdwmsjtTy23YfAqKT3/sjj3ZIbZTA00pxWQz0rt7RPeY3V9sEVupZVJZskLp8OM/7cLqlj2yrridpgeitP+2/4LvTtzyiXpmRlIiUs/h77TjEL78sukcZHOiZ2OiM8nOfzwsspFUVANlW/ya1KNg3O7PtYgJPWrEhqLKFrHq76nU1IP+7sjKB+fReGcFvnoX+7/SwmSPvh/lb3IS2uDDYDaIdhmmp+RbMrpfHmLw4JDo3qoRhYnOpEghq/H+OI5yG7u/IHt293/pBO5a/UWut1HFW+Xg9C96F86hFdjMJSUlmtzlvDhkx8cxOJ3nLZABJFMJes1nIAVf//rXdV/fJbwx8bOf/Yxbb72VFg5Qkaqbs32bxSK1V2o0RS6Tw2gW2BHla+DY9UEGj43rtptq+VkXA8dlNqn2gJm1b48zdHJcty3brKKKvczMVK8+Gaae14YZPDQsshQCSE+nSSdk1iNVO8oINHsYPDamEbF0wBmzs+atMbp3D4mssDZ9oFasKuUI2ykRWkbt+fwxcezMdghu8NP52qButayTv+jm5C+6RepaqdEUZHNIBWSPfv8MU0Myn7g1D8dQXGb2fF5u3SxB5Ao/ke0BDn3ttH7LrRQc/GYbCaGdXyaVJZeUzfH9XzqtkeoECKx1kZpIi3ZvT3YmePnTMnKuI2LF7rdgE2xmMNsNrHlrTJSHAJrfWUNiJMn+Ly2iprgEYlcHUZxmEVlLcSpkZ7JMdsoewr1fOIVZ0Buy+M3MjKVkSlxmWP1gjMneaQ5+rU33sNHWKU7+tJOBA2O6lZRqbi2n49UBZgYXzvHl1JPMdshlcqSmFs7xzOgYRrdr0dqrPbIP2nKoqsr3vvc9Xdd2CW9M/Pf//t/593//d7q6utiTeo6N5msW/H3W/u3cnfzp6Qy5LJisJaQTOt9NaW3RPrTeR7vOhmnbr/oYPTslVkZqfKASZ8TOzs8d12ezlIbEQApMoKgm3bL9h/7zlNiSbqp3mkwig8km8FQDat4cZmYkycEVLB3no+mhGPaAhV2fPaF7TPWtIUpXe9j9zyd014c2v4IasmINmLU46kDXa4N0vTYotlRTK6yY7SaGT+j/6N735dNiYlMumSUjtOY7+9IgfYdGRb/J6jGx+uE4HS/207tnRHQ+Kda+K87MaIrjP9RfB7T8rFvcx8vlcuQyOVHM04ksr35Gf28WABOUrfUweGRE9Bwe/XY7JhkPDzWiWfhIEL8hhDuq8tr/1f+7ItsCVGwPcPDrbbqVimxBC5VXlqLYjbQJrPxSk2myFqHF7qlJ9vzLMVG8rX4TicE0Ezq/GQFqbion0ORm/5daRDaIh759Bm9cf0PTXmbFU+PQrBrnn2YF9SSDkfPmeHZkFIPHfR45CSCdTtNi3gdJ+P73v6/7+i7hjYldu3ZRW1vLkcwrhKjAeA6zZ9b+bX7tlUlCNpOjRPLI5qdxabObid5ppvv0ff+c+lk30/0yIQWjzciat1UzeGxUt6Xo7EK44jbqtiMab59m/5dOiiyFANKT8h5/oNlL5ZtKmexJ6FeVUo00P1JN12uDdL+mX/Vk7buqxapS7pgd86BJZG985Fut4thhBF+Nk9G2STI6eyp9B0YYPDwiOlcmqeVVqWXSicfPkpyQ3d/YjiD2UotYVVkKT42D6NVBTvy4U6SKdPibZ0hNy35TNpUlk5bVraef6tZIdQI4K21kklmRIlJmOsPufzkpIu+ZVSOuCjsTXdOMtevsERmh6cEYA0f15yGAxvujJEZSnPiR/vo4fJkfR5mVff92SvcYxWEkNZVmelDWzzz54079BFC0fJxJZsTPRcO9lUx0TdPyE/3k1uRomhM/7mC8axrNDn5llG3yMHx8/PzrW269MV93ZZILM0R2cAiD33ceOQmgv6yFmbNTxONxPvvZz+q6tmJxwezeZjE0NITfrzEK17CdcvP5uwz0Sq6fP3Dhpa99NI6jTL7wDDIbt0CzC0fQKnpYAbb/zSpmJlLs+WfZokXpejf9+/S/MItBoNklIiiBptpkcZg5/XP9kmfeehVvjSoaczFx2V82ksvkeO3/Hv+vvpQ/CBwhhVUPxDjz2z7RHCrG7m39+2qY7p/huOCF9HpG1Q1lRLYFOPGTjgv+/BUDb6OKt9rJ6af0F+CuuJ2K7QGOfHsRCeZlEGh2aaSCC6iS6W1UmeyYEBGUSte6qLu9gp49Q6KcYg0qVF6hn9B6ni2czoWyDR+oxupRePn/HlsQu5JFbLdWQi6TWXLcmao9nDh5gnXr1rFv3z7xf/sS3njYunUrO3fuxICRHea3LHpMLp0W2efMDZyrvcx2A5v+vIGJLhkBBjRrtYnead1Ek+pbyjn70oBGNtGJqpvKKN/o49C3z4jUO8x2A/Yy6wW1jjLbwR6yi6X06++L0PFiv4ggEN0RZLhlQhSDi4XQZi/VN5Vz+uluenbJfeNfj6i7M4ziNHH4m/rftcXYvZWuc1NxeYBD/9l6HrnijxVbPl5PLpNj1+cuvAS4GGaIXhlk8Lh+YiFoz19iOEmfZOHUDJ6Y44LbDPqanGLrng0fzFvYCr+VKq4MMN4xpTuvuuP2hcfqeF/ZA2bWPlrD6OkJjn4//z0y+84yyGsvctlFa69e81la2IvFYqGjowO7Xa6wdQlvLCQSCex2O7lcjnUlbyJoOl959Q/V86q9rRxfo5sDX5YtPINmD6Z3kVuNWFHLbeJ388YP15GaTInVNt01DkYF5KFi4IzatAawIGz+JhcWt1m04cteZsUTd9C1S04guhhY/95qSkwG9v7rhSVTXyyYrAZWPRil8+VBho7rf6cVY/dWf0+E1Hia1mf1bxZ4PSOwxkXtmyOc/Ekng0dk/eCLAUfYijvmED1/1oCZ8i1+WoU9Z7XCSmIgISZNis4RsZIYTIo2t6gRK6vfWkXHywN0/m5A9ziTaqJ8k0+/JZ8J7H7rHLFLZ5+g4b4KXJV29n7h5ALC7R+653U2vo9jJ45x1VVX8dvf/lb8376ENx7+8i//kn/4h3/AioMrlTsXPWaBuoQE82svI6x/tIbxzimxapHUxq1sk5eh42OkBAvjpc1uotcEOfbYWZFdl1EBxaPoJl4VBSPYAxaxPVXkCj+DR8dFpBQpkexiQo3YaLyvktZne16X79piUL7Vh81v4fTP9T8Txdi9qREbkW1+Wp/uFhNGXq9oeiiGwVDCoW+0/VdfyqIobXYz0TPNdL/s+UtNp2X9KyM4gtYLbjOoRmxMdMpIo3V3RbD5FQ58Reau42t0MjOa0v2bzrOF01F7GW1G1j1SxeDJcc78Ml/j5d9ZJSa5HlEuk6HEdP7m0onMKAdtv8VoNNLR0YGqChU5hLjgJCWAj370o3zuc58D4GruQTGfw3BeomETv7GMwGoXO/9xieR17qWfu5CsE+s/UIPNa+HlT+tX95l/Tr1j6u6OMNwyLiIDzRIlWn/ZI/owi99YRiqZoeM5/R8xr3coKiICQ/Pbq7CHrLz6/+nfdRNodjHRmyAhKGoqry0lvMXPq/90TDR/HCGFyaGkfkWpiELDvTHan+ul/8CFLWqKISkVg/Xvq2Gqb4YTj+snNs0q50iw9tE4RouBvZ/Xz84FzWqw5zX9jdlV91fgiqu8+o/654J0Xv8xoPntVRz/aZeILFoUQVCBNQ/EOPQ9/VZvIoW+PNa9pxp70Mruzx4jOZEVETtccTtj5yzILdV4qb29DFelgz1fPl24xvnvx8XGvZz6OROMUl5eTleXXIb4Et64MJvNpNNpfITYdM6ufsiTlGYxO6fNsOHRGgaPjtK+VP1wTu2lVth0qyjNwuI3s+G9tYy1TnBEuvPGjG5ik9luIH5rOSee6BSp7mz5eD25HOz6J/275i1+M9U7Qhz9/oXdSXSxYbajWx3JbDew4YN19B8e1b8wYIbAKpemlCLAuvdWkxpLyeaPGexus37VIaDu9nIUj8LhC1wPFUNSKgal69xEtgc4/J12/YQ/M1hc5vOUaZYd4jaz/t3VtD/XR+8e/XWUPWBG8Sii5saWTzQwemaCEz/Uv8gomdd/DIi8yQ856HxR/7di5Ao/sWvKOP1st6jW9TU5cYZtcw2RlSDI2YUhdgObPtLAeOfU3LOns/ZyRCxMds6c3ydYgqS06YPVdO8dpuvleTGYtwPt3NorlUrxHD/EYDDw8Y9/nE9/+tO6rusS3vj4+te/zjve8Q4Ari25D9M5TcKlel7B9W7KN/nYv1QTdJF2nS1oEdn3ANTfW4GnysGez58Uqz8iECwKX+5nsjchIhwFml3U3hqh9dlukRJO2UYPlCBSwX69w2RFRJKI3xLCW62K1BudURupsZSI5BZY4yJ6dZAD/9kmUvdRPPkFWp1DTKqJxnsr6HpFRjgqBsWQlIpB/b0VJEeSIoUeq8dEQhA3gLo7wihus7hm9darDJ+e0H2uiqtLKVvrYf+XTuqeq9J5/ceA2tvKaf9dv27VOIANH6iBkhIZQdAE1TeGaP91n/7cLROZA7T54613se/LLdpvEvS87GXW81Srlup5lW/x4F/l4tC32wvXuFLP63DqNbo4TSgUortbRhK5hDc24vE4bW1tVJTUssq89by/L0pSMkL9HRFG2iaXtuA6p/ay+hQRYQY0+7F1j1Yz1DJB2zPCjfpGdBObMELlFaWaC4SAw9H0UAyjuUSkcmu0GYls9dH+2379J/ojgFFBv2KREZrfHmfwyChdr+pXenJF7frVbPKovT1MOpGhTUiMlihrAYQ2+bAHZYSjYlAMSakYqGEr4W0B2n7VrT8ORlBsRhkRygjNb6vSSPIn9NesZtWI4jSLyDlrHq5irH1S9OyJ5vUfAXz1TgymEgYERD933EHdHRExQdBRbkUN2+jdrbNPJsnZ88ZseE8to2cnOf2z/LOns/YqEGDTC99VS5GUGu+L0H9kjMF5GxQX1F7nkJQymQzPZR4jV5Ll7//+7/mLv/gLXdf1+0CmS1okPvvZzxIOa97Tz/Nj0dgSowFFrxR/EibOzqCoUH2rfp/UM7/qpWfXoHjhesvH69n8wTrdx598vFOsVtT2bC+9+4fFVl3B9V5C67yiMWsejrHtrxtFY0JbvWz6SK1oTNkWD5s/VqeRBXSi8S0VbP5ok8hGa3JghpkxWVd84OCYiKAEkE5kyKazqKX6f1DZFg/r31Mn9ps0201YBNYUoJEkdD9DvwfctQ4UVZZSzA4jFqH09ZqHq9n8Uf3PHUAunSNXxC5GyaINwPRwiuRESpRL1ryzlsv+UvbcNT0UZc3D56vSLYfGt1TQ/EiV+Dzb/qpR9KyGt/txVtoJNDhF52r5aSftL8jU6UiiEel0xju83c/2TzVRulbmQ9vykw4GjoxqBCVYdLFgPrz1KuHtmp/zuQSl5WC2mTCYShYlKC2G8UgPkyXaO2XPnj26z3MJfxpob9dUXIbooTe1ApFjdk6nwGgqEdlPzhKUyrf5cET0SfjPDKbo2zfCSeEO19J1brZ9YhW+Jn35JTWV5cRjMoISQPtv+zn5hEwVMNDowlOjElijP7+Y7Qa2fqqB2tv016yg5eb4LSHZmLdGqbszLBqz9VMNND5Ypfv41FSWmdEUMxIrsRRighLkZWrTsn0Wm95Xy+q3V4vGKB4Fi0tmWWZ2m1ErbKIxxaCY81hcZhTVBCn9X9DRK4Nsen8d7mr9ajEWp4lcKksqISu+pgZSYvWgxMgMU4LFeovfzOaPrqLqpjLdY8x22PihWnyNst1D699foztfzeKyv2ik/i7Zsxpa76V8i180pvPFQbp2DYpr3aEj4/oJSmjP3fr3yZ671FSWrp2DtP16XkN2hdoruiMIZhYnKC0Bi8+MwWxYqIq9giXvkdIXAFi1atUlgtIlLMDb3/52brzxRgBeyD2pe1wul8OgGFA8+r+Jp/tmwKR92+jF2Rf66XhpQExQWvP2GOseies+vuulQbEi0sDBMc6+JLfqCl8WILRB1vOK31zGpo/IegnuGgdr3lElGxO3s/ZdcZElVuTKAJv+vBGTKpgL/TNMDcoIa+Pt02IVrtR0hmwyi+LQf21qhZWN76sjvNmn/0TpLBa3GcUp6xHZy6yiuBULR1h+HqtHI2BL0PRQlei5A8iks2SFtTGg2f4JpkNyNEViKCkiHdXeVSl+7uI3lFEnrIcqri4Vj4ntCLLpI3WYrPp7md46Ff8qN95qWV148slO3VadBaTh9FM9unO3u8bBlo804BP241p/3Uf3zqE50tUKtZQtqFC6Tvvu1WurB2B2mDCaDIsSlBbDtHeUHkMbAHv37tV9nkv408CRI0cwmUx05FoYzOjsLWXAaC7BbNWv9jVLUHLHHdh0rv1kklk6Xx2k6yUZoUcNW9nwnlpccZ3f3hk4+7yMoATQ8UI/p4SkFDVkpXStB3fcoX+QUbNKjbxJtv4VvTZI+VZB/YBGgpGep/mRKqpvjugfkIGpgQQz47I6SkpQAsimc+SE7/WGeytovDcqGmNxmcRrc0bFgC1w4dcajTYjVuGaptlhwuo1i54JX42Tte+uwVmpv7+mqEbSMxnSgt4aQGoiI1YPmhqcYVpAlDQqBta/t47yywTPkFFTR5TEAKD+7giuqExZeu274lReVSoaU9rsFueE0dZJ2p/vEyuYTXYn9BOUgMZ7Kmh8y/lKyssiA2ef76P7tXmcjxVqr9JmN0ZFs4g7l6C0FIw2Iwbzwhp3pdrrpP9VsmS49dZbLwpBCTR+/UVBZ2cnBoOBXC7Lq6lnuMysNXCWC0rrM720PiOX0W28P45abqPjlUFdSh7DJyYKfuyKT9Gt/jHeMUVWSHxwVtlY/WAVna8OcPY3+gqVlifl6hj7v3ZaTLYZ7ZjCaDWKlEYsTjOKw4xaqV/BymAyYLaZ8FaphbivhN79IxgsBjRenb6PM4kNVgEKbHp/HUPHxnTPve6Xh+h+WT97GmD46AgDlSrDx/QnyYnOJK/8H/kO++a3xRk+Pc6Rb8ksvqRY/UCM8c4pEQt/52f0q1TMonvXEMlJ2YMnuaZZbPl4PX0HR0QLMW3P9ooZ7v2HRrF7LaIxFo8idq2w+i2Y7bJBkz0JzA6TiHTV9fIgo63jTPbI8s+g0G7ksr9sZLxjSmRdN9mfIDGaFCmRKaqByZ6kaIdl/MYyLE4zXcK8cPT72jmWei/Ol79OphKcmjyMoih86lOfIhSSERYu4Y2P8vJy/vf//t/8zd/8DQd4kWtS92I2a2SLBSpKs8gXw7uElrQAmCF2dRmT/dMc/I82XUNmd+mY3Wbdii79R0YJb/UzI7B8A42kqUbsupWRJMovs+h8cZDh42MilZ7UVJbpwRkm+mQfqHa/hRKDzKrP6lUwWmRE4qHjY0wIP573f+m06HiA6LWl+Btd7P2CfrVDqewuQOcrg+d9nK2EYhSUGu4Io0bsRdVsEtTdEsIdV3lZoL7U8cIAHS/IVFYHjo5gthpF1oQTHdPsEu6Qq7qxDHeVg/3/LptDenPOLLJpGG4Zp/+QfitfZ1TF7DDp5b4A2gK1xWXGJGiAm+0w1Z9gtF2mTrf7X1qw+GVkOoC2p/XXrNFrSwlt9LH/a6dFqlpjZyZJC5qrs++EdoHihL3MTGSLD6vHpBFTdWJmKMXOz+bfeUuQk+bXXmdC++jv6KeyspJDhw7pPs8l/Ong6aefxuVyMT4+zt7U82wwXwUs3/Pq3z9G/345WTd+Y4jgag9DJ0ZJDK78bTzdN1NQXzKpJt1qOCNnpjCahDWHx8Tqh+N07xyk6xV930OdwncTwOHvtIlUTADG2qexuBSRsovJYsTqVUR2ebkcKC4zjnK7bpvLoePjWIXE6J5dw0XZ5a5+OMbwqQm6XtK3GXL01CT7TsnezxMdCbpeHWSoRf93fjqRZXcRlq/Nb69i6PgYJ4vonUqw+s9ijLZNcvyH+jczFFOzdrw4QDYtIxSefkqo1IG2ODt4bEz3cwrQt2+Evn0jovMMHBplukxGprP4FBEpDjRbIbtftpg52ZfAFrCICJzDJyfY/yW55eZEZ0J3DgFNeWmsfYpTP9Pf206Op5nsTTB06v/P3ntHR3aV6d6/iqokVVSVSiWVVFKpVFK3UnerW3LEGeecbRxwxAYHwAbPvf9997vfncwQBzDMkMbAYDIYY2xjjGO3O2d1K+dcWRW/P05VSWp3S/v0RWBm9KzFWrS1T9Wp9+zz7nfv/eznEX/vCmOCsDUcUHu+C5Nbz+T+kCyS28CrUwy8OiW05pVOpzmqeA+VSsX//t//e33Nax3vg16v5ze/+Q0XXHABexSvcWbmGrQqKQesZPVWtIWWCd/FFUTHExz9idh8o7DJrdIqySTFckxkJEF4OEZKJgnGc6Yda30p+77VJ9T+dEgz871R9n7zuDy1mQyER+LEp+SNAUZXCQsheXsYertWNll3al9ItsDBsZ/L32+0NZXibDFzSEbfOx1lo9H3ZmStPwD0vyKTPAtUnenAscHMji+srSpSxRYr7k02tn9OfP9w9miE2aPyLEsiIzGG/zhFbFx8HSY5n+GgTGeA8hYz1oZSjjwvLwedzh732O5Z5o6Lx0Fv06KzaFHIUFLUmtXoHSWo5ew3qiA0FCc6Jm+t+fCPhtCY5FvJnlIx7ySwBUqpOtvB4eeHWZgV39ecOx5DIaNkVelVZOIZWapQKr0K7znlGOxaWe9sJp7hwH9I/fSUtVc6VVRTGi07yvDUADU1NfziF78Q/p7/W/xZ7N4K6OnpoaFBOj1Rx0bqNRtXZW4BuLZYqPmQi13f6F1OIDrVrWuhPFgm2xKr/aF69FYtb/7DQfm2bzKw5bEGht+ZlkVsabu/Dp1VK8u6DE5uNfTfCWa/EVOljuHXxJWotj0VZP54hEP/KWPAOE2rwT8H6i5zM3VwXlY/OB27N9/FLub6osLEsz8bTuPZaE1KOj4WYHLfvHAhYPJosQbMwuTD/4oordUT7pO3sea/upLyZjM7nz0mTqzUQsf99cwcCtMvYxNLLjbcUUOZ18iOr/S8n7y6UtG2yhh0ooR1673SKYc93xhYdUwsXPvb1HMAdHZ28s4776x4zTr+e6OtrY09e/agQMGFmpuBU5CUlkKhoOWeWjLxNAeeO2EsPEXtZWsuZUYm2dDg0tB6t5/pQ/Mc/enabSp4z3dirjGw9zt9wqpKBreWljvrGHlrisHXZGycacDg0BIb/S+kqysHGvBsszN1MCRMZKi9xEV5s5l3v3BEluqV0aMjOpGQrZS11rD4jRgrdAy/Ll57no7dW2mNAUuNQV7//DPhdJ5N4JpKyrxGtsvYnHR32QgPxWVbTv5XwulYbnY+2Uh0JCbLLrFiq5WKTTZ2fUWedbIcaAyw6dEgkZEY+79zEhL6CrWXrbmUmf0rzP2XsPsNTg0bbvVy7DdjzByKrqqepFCp6E0doIc96PV69u7dS319/aq/Zx3/PTE3N4fNZiOXy9Go6MCrbhRa8zL7DNRd4ubgc/3LN75XWK4z1xtlqxYFrvNQ5jWy6ytH1tR+aeNdtYy9NyNLSbzhqkpKqw2yrMvg5FZD/51gcOkwVpQwuVucfNv+QB3zfVF5h0LVkipQQgYh/88Fd6eV0HCc6Ih4PzgduzfXZgvR8QSRoQ9Yf1OD3ibTBlIt2UxM7JsTJglqLWqs9SbGd8/JthP7rwKdQ0NiLiXr97s7rXjOLGffd3rF3x81BK+vJtQfY+Qtec4KcuC7yIWjxcLefz/2fsLrKhuVK41BJ655+a+oQK1Tcug/R4TXvF5O/ScZ0px11ln84Q9/WOWXrOO/Mx599FG++MUvoqGED2mvB1YmKRVQe5GkrPu+w8anqL1MlToi4wlZCi0qvYrWu3xM7p+TfVhIDmzBUqwNJo79alT4/jQmFc231DC6Y0bWRj7k7Ybm/5sOBCpJeScyHhO2EytvMePqsHLwuQFhwhossXWSayW1xtCXazGU62Qp1JyO3ZvOpqXUo2dyr3iN++fC6Twb91Yb9sZSWfutFr+RhbkU8an/pmvMnJ7l5sY7a4mMxWWJSZT5DLg32WQdRpANFbTdW0d4OH7yPecVai9TpY7IWPyUfW6p3ZtKryJ4bSUDr08RHoivXnupNUxnxngv8zI6nY69e/fi98tzz/q/wZ/F7q0Av9/P3/3d3wFwnH2EUmIknWQkjUIBOlHpuSTFzeGGa8Ul+0Z3TDPbE5ZNUNr8iQZaPyouxbv9c0dlK++Eh+WzjmsucLLx9lo8Z4rLgGtNSlo/6sMu05rAGjBhrJB3YsXsN8qykbIGTLTdL88uoOGKSrxnOmVd8/bfHpJHUAK2Phak+WZ5csx1l1bI6p8gEag6HpG3KH78V6N/FqJa74vjsghKZr+R7r9ppuYC8edjDZho+UitLPs634dctN3tx9EibsGTjGR5+28PyWIqe8+toPrMcln35r+6Er9M+x2rTKsRkDaW5KL1Xp/s65pvrqHzyYCsa6ITCRKhlDzltyTs/OIxYYJSaa2ers8EcW22yLq3obemCA9GhdX13N1WKXcuGYOEkK8/RDYwAPprJGu3kpKSdYLSOlbF7t27MRgM5MjxWkrQfiSXk+piGWo9BYKSrbkUh6ClYmw8Rag/wsh2eTWRc5OFrZ9sxOAQO20+8PIEe7/ZJ4swERtNkphLEp+TVxRueSTABhkWaSCdDmq+pVrWNYBwnJdCjmUXQP1lbslGSRBGp46ac11UbROX2e77zTjv/pM8gpJzk4W2u+tk2byU2DU03VQtbEsIEsGt+7NNwn0NYK4nKougdLoI98dkE5TaHqhjy+Pyxun6y9x4zpJnJdZ8k5ctD8mz9TjykxFZBCWAmnOd1Muw+EYDG++qkWWTpzEoZfUZkAiYcq34HBvLaL7NCzJENDxn2Wn5SC2uTfLqtdhkgvkheXODsXdmZRGUWu6ulT1vS8UklauRd8XHhLpLKyCXW5mgdAI0Jg0oFCTD6VUJSgAp8xxDJdLpza997WvrBKV1rAiLxcJvfvMbAA7ndhJJzwldl4plUSgVsqykCpvD1eeKj9Nj780yfWheNkGp+fYagjeJ1yr7/r1PFkEJIDQcIyLzVK29uYyWu2rlzfPU0HBNJdYGefNqg0uHzi5P2UXvLJFlI2Vw6Wi8sUqW5r3vYhe154tbmALs+upx2ar17ffU0XSTPMt512YL3g/JW4/reLieDTKt7UffnZVFUDpdjO+Yk0VQ0lnUbPtUkMou8TpK7yzBf4VblgWko6mMtnvq5FnMpmHnl3tkqZhVtNvwXehGbxNXAq/stsvKUSBZBcqFNSB/nazhqkpZVt0ATTfW0H6fvDogMZ8iPr0gj+CXhkPfHxQmKOksajY/2iDbZnhs9xxzPWEhRT6Q4myul6ye5JBkFUoFKMTXvEZ8+8iQxmazrROU1rEqvvCFL9DR0UGKBd5N/lb4OoVSIUuhOjIiEZQMrhJhO7ZMPMP0wXmmD8qriUqr9bTe46PEKrbHMHMoLCn8yCBMpCIZouMJEjLXvJpuqabxOnnrV2Veg6z9n6XXyYXBJc+twtlhwdlhEW6v0avwfbiC8o3i10zunWfft/pkEZSMbh2td9dhbxQfp1R6Fd5zy4VtCUEiuG16pEGWfVt8MinbQut0kJhJyiYo1V/ppuXuWlnXuDZbKW8xy7rGf4WHDbfKrFffmZFFUAKo+ZBLdi3tu7hCVh9AhWz7Pq1JJe87kN7NmgtdqGRcZqk3suGOGmxBefVNeCQmW60p1BuTRVCqudBF4Dr5Nm8Te+aY3DcnfIlrswVyOSLDpyYonQiNXglKSEWTQrVXUhXnkPYtAH7yk5/8WQlK8GcmKQF86lOf4vzzzwfgbV4kmRWwYzsU4e2/OyybaFF3uZvyDWZcnRah9uPvznHoh1JHlEM0yCSzpBPyKK3WgInOJwPonGLfc/xXo+z5hjyZ4P7fTTB7NMzwu3I2SrIYXXrKN4gnZq0Jmm704r9S/KUs8xnYcEsNwavErzF59BicOlkEqqO/GGHns/JP/Mp5/gDDb08y+Ed5ii72YBlWv8wEOxRjTqZkYdNNVcXTAWsFrU1L670+cc9kIB1JER2LMytDetAeLKO0Wl6BOrFnlsl987IWSUXfy6U48L0Bjv16RJjQAmCtM2Gtl7eYErzOK4uoZqzQUneRm40yFvq0JjC6dNhk9s+B1yYYeVvexuzomzPslHFatu2BOppuljcZUutUZFM5IsOCY4hW+t98zwpqYic5WeM9y4n/cnmkM4DdX+1l99fE8vtOXqXneA8ej4dQaO0nBOv4r4G5uTkUCgULxNidel3omj3P9p6WTWj9hyup/ZD4mHPguUGiwwk0MlJ7ZDRGNpVFqZO3URS4wUPz7eL+7Lu/epwpmaqcw29N0ftbeXYLVr+J0mqjLHJC8+1eGi73oDGIl/JtD9TRdKM8f3proBSbX3ycig4nOPLTIekEn0zIsaua2DvHyPZpZo+J1xAavRpLvQlrnfjvme+LMD8QJSVjT8FcZ6D5Nq+sPn068J4vk6ADzB6LMC/D/gHAFiyTNS8AGPzDJIN/lKdApjHLtyvb8+wxen4prsLmaCrDVGlAL8MKxHepm9a7fLKIavWXe9h4R62sd9rWWEqZzBp3+O1ppvbPy7ao3P/tfmEincGtZfOjftlErXQsQzoufrq28PyPPD/M7OFTvNcn1F4VnRZc7RbZJLr54zHe/acjQgpUqWyKfbntpDNprr32Wm6//XZZ37WO/5646KKLeOqppwB4M/cC6ezq70JsPMF7X+qRrdDi2myhcptNeKM91Bej9wWJnCKHEJWOp0nH5J2Y1ztLaLvPh04wf47vmOOIzJOr0wdCTOyclZRdZMDiM2GRUd+gho131FJ7kfi4q7Ooab3bR/V54hsLOrsGc40Jq0/83o7/Zoy935Rvt6s2qWWRoQb/OMXga/LWvMo3mHFskEcCmT0SZrZH3pqX90NOWUSg04FaJ5Hb5BBo0mmYORYmNCRO5rDUGLA3mVGXiD+c0GCMwTcmmTkiXuPJIUEVMPDqBIefH5Sl2GQLlOJokreu1HSjVxZRTa1TEri6St4hUDWYfSYsMuYFAH0vjTH8prxDArNHIrIspAPXefBdJs/aTGVQk0lmiMmwEVfrJCvQU9oknmTNq+bccuovkTf/ADjy4yFhW5xD6R0cPn4It9vN+Lg8MuU6/vvi3XffxWw2M8ckh9PvCV3T+5sxen8j3yqz7mI33rPEx/aB309KKigqpP8JYGE2SXohg1LmFNnTbcf3YfH80fPzEdn7raPvztD/qrx3s7Raj6W+VBY5ofqcchqu9qCVYfFUf6VbNoHKESzDJoO4nopkOPLjIYb/KP9gmhy7quhogqHXpwgPiNcQShWUt1owVYofmIpNLDB9OERGxt623qGl5gInKr18+y05sDeXUbnNJuua+WNRZo7KW/NyNJVhl0mCGXpjkuG35NUDpxOvA8/10/+yeP1tcJVgbShFbxUn67k322i+rQadjP1wzxnlNN9cI+udNtcasflLEeQrAzDXF2Xs3RlmDsl7pv2/mxAmuGlNKppuqZZNukonMqTj4j+m8PxH354hPHCKtagTaq/Sah1VZzgob5W3JpuYSbHv3/uIC4hCZLIZDhhfJ7GQ4NFHH+WSSy6R9V1/CvxZ7d6Wwm63MzMzgwIFFyhvELpG59TSfo+PqUNhen46sqL0dQHlrfJt35rv8GL2GtnxlWOyCAdyYKouYePtdfS9PMbYO+ILy23315GKpU9r41AYWmSrSdVc4GT07SmSEXFGsP+qSgZeHpN1zencm1y4Oi3UX1JJ/2vjsmziPqjY9nSQVDTNe18QJ4LItXtztJQRuKqKgT9OMPTqB892RC66PhMkHc+w/XNr660LyO7TnjPtJGaTTMuwVfKcY2f6UFieWtEaQ+fU0nqnj6O/HGb2kPgi5JbHG0iG0+x5Vh5pUw7aH6pHZ9Hy1j+uYv15ggSj1qalpExJuG/lhSGFSoXWBB0P+Zk5EuGIoMT8wex2hulFrVbz0ksvce655wpdt451AOzbt4+WlhYAfGygXtEkdF3DlW4sgTJ2feUIqRir1l6lNQYSkzGprSAKFj/h4dia1jct99Si1CjZ/VXxjRxb0ETdRW52P3uMVExGvSIHGmRblhlcGko9JlnkBFvQhNqgZuK9uTW9t9PB5kf9KDVKSVHprxze88rxdDnY++0+YRuu07F7a3+oHo1e9V8iZtXnOKg6q5yDPxhgrkeedZFsyOzTGrOGyk4r/S+JLwxpzBrKm8sYeVPmPGKN37emW6pRKBUc+J54nq3YYsX7ISe7v3lc2MJRLgwODa0f9TN9YI6jP1+F4FiovfJjkS1oYkakjlSq8F9RgdVvYte/HiUVE1sC+V32P8mRo7m5mf379wtds451FHDGGWfw5ptvokTF+crrhK5R6xS03lvP9OGQpBorsOZl9hmYl7nBVLT4+cax5fZyf0LoLGo23Omj/5VxpvbJsH27ppJcFnpOtXH+p4Aa2XZVznYLMz0R0hHxCyvPsDOxZ17WNadzb3JR6tXTfEsNA6+MM/quPKLrBxEdH/OTiqbZ9+99wtfItXszuHS03FnL4OsTjLwlTwX2g4hNj/jJLGTY/fW1W1cpQmaftjWXkolnZOU1e3MZ0fGYsCLQ6d6brI82qdl4q5fel8Zk/ZYNd9aQWchy6Afitrxy0XCtB3ONgPXnCWteap2CEmsJ0dHV17zUOmi528fMoRB9girow9njHGQHKpWK3/3ud+trXuuQhZmZGZxOJ5lMhia24FGKOV5UbLbibLWw/7t9ZJK5VWuvEquWdCJDRsbmNCpovdtHZCTB8V/LP9AlipoLXejMGllqIHqnFt8FFRz9+TCpyAfHV0xjUmGs0MlaHzC4StCa1MzJsUNW8WexU2u8vooSs0a2CMUHEbZAKb6LKzj0o8FVx4MCTsfuzX9VJXp7CXu/+dcfM2uDibpL3Rz5ydCpCSp/Ksjs0yqtEvuGMlm2jyqtEnOdUTZ5aK3fN8/ZDjR6NX0vihNQy7wGai90cehHg2tmY6nSq2j5SC2TB+ZXVzE9Yc3LVKmTlPxWgUKtxtluxtVqZv9zA8Jj1B+zvyJO9C9qr/tnV1IqYHp6GrVaTY4cr2SfBy10fzZYtD7yX11J92eDaPNE1s0f99NyWw3JaJroRJzuzwYJ3iip8NRdWkH3M01F9ZNNj/qLlkOTe0J0f7aJzicDaG0Sy7P7maai4kv7Q/Vs/XSweF9dnwmiNamJjMRxNJbS/UxT0Saq7f46tj212HbbU8GizVt5u5kz/mcz7XmFk9Z7fWx7erHt1k8HaX9Q+ps1aKLlzjoG35hg7J1ZNtxRQ9dnFjcLt36ykY6PSW1N1SV0P9NUVMLR27VYlpyq6nwywKaPS/JbWpuW7meaqLtcOtXQeF0V3c800XyHl21PBdnyWANbHstbL2ih+5kmAtdKMay/wk33M01oTUpIwqaP+9n2VGPxe7o/21RUL/Fd7KL7mSZMHineHY/U42q3FslG3Z+VvhOg6kMOup9pkqzdToh3z89G2PRIoCjBV7HVSvczTZTn7Uta7/O9L95td9WBViKfdT/ThLtbYtO23F1L12dOiPdDUgzbHvJxxv9spupDkvVI8x1euj97QrwfkWJYUJ1JhJLMHQnTdJMUw2K8nwiw+RP5eJuUdD/ThP+qStBC5ycb6f6b5qKF3ZbHGtjy+KLVRfczTTTmJeDqLs/H2/b+PluMYd76peZCqc+aqksw+410firA1k8uPpuuzzQVVXI859jpfqapaAnW9kAd5CgSlLY9FaT1XqnPujotdD/TVJRGb713ebxLvcaiTYO9WXoXKrul02ktH1ke77pLKonNLDD06hRlPgPdzzQVZTybb1se784nA2x61I+9uRTfpdJvq8srAQRvOFm8l/fZZTnimabFHPEJP51PLInhM00Eb6yi9aM+Nt5de8ocUYx3Xl2j5gInSrWSmbzSwMlyRMtHagFJurr7mSaCt1Sz9VNB2h5cOUd0P9NUVHZr/Wg+R+RJMCfmiO5nmvCcI8V7aY4Y/uM09ZdWnjJHNN9S/b54u9qsJCaSp8wRBWx5rIHOJxsprdWvnCOQckQh3sEbqzjjfzbTdNupc8TSPtv92SaC11eh1Ciw+k2nzBEAXU8Hl+UIjUHNaF4d7qQ5It9ny1vL6P6bZro+E8TeXLpijjD7jXQ/01TMEShyKNWKxWdzQo7ofqYJ38VSvJturOKMv5F+a3ImSfCaajYXcrJJIY1rV0rxbrhWGtdyqgwL8QwKtQJznXFJXILLc8Rng8UcUXWHkXnTJABf+tKX1hdr1iEbGzdu5NlnnwWgl/1M5IZpvs1L55OL72bnEwE23iWNJ+Y6A11PB8mpIBlKUX+5h62fXMybW5ZY3Ro9OrqeDuI5y064P4bv4kq2PR0sqrxsftRffDc1Zg1dTweLFmL+K9xs/niQ+d4IYztm6PhYPR0P59XiNFIO8F0qnQSrvdhF19PBonrQpsf8nPE3zUUFnq6ngzTk37fqcxx0PR0sqp+03uejxKQpEpS2fTpI4AbptG1lt52up4OU1ki1Ycs9tUVLrMxCFq1FQ1Nexte5yULX00Fs+XF2w501y8aezicb2XB3DZ2fbKTxpiq6ng5S3iadeGi+pXpZLtzyeICWe2ohJW0wdn2mCe+FUlwCN3jYtiQXbvlEA633SfE2uDS03l1fPFHWcHXlsly46RG/NP4jWVV1PR2k5kInM4cimFx6upbUpx0PL4l3PoaF5+a9wEnXk0E0Zg0ag1RTbH50UfJ121NBAtdIY3LV2fl4u7UYXBrO+Jtmtn5qMS5bP9VI4w1SfqvYaqXr6SDmfC3ecnctKoOKkXxu7/xko2R7hWRp1/V0sGhd0Hz7Yp91d9noeqapeNLa2mii6+lg0fqq6ZZqtn7qJPEGTFVSHAp1TeD65fFe2mdrLnRKz+a8cgD8V7qXxXDTI37aHyzEGyq32hl9b4bIUBzfpRVS2/wJyPaH6tn0yGIMu54O4r9CirdCKf270J/b7j9JvK+T+qznTDs6s4YDP5DIJi331rLlseXxbsrb8lRskeJt8RupPsdBy0dr39dni/HeKMW7YCUokiMqtkjxDt5YxdZPNeLaZKX5Nu8pcwRA4JrlfdbZbiWTyjLXEz1pjljWZ/M5ouNj9QSu96yYI9ofrHtfvBs+fOocseXji3V7IUek5lOkoplT5ohivPN1u3OThc0P1ZOYlVQGTpoj8vMkW1Dqs3VXSe9R8/WnyBHkc8TTQdxd0tyn65mm5TXcCTmi6+kg1edIdU0hR6gNKtQG1SlzBEDdpcvj7e60kYqmiwSl9+WIp4NFFaS2B+ro+kyw+PtOlSNAqoO35Gv82FQKhXpRTelkOaIY71yOzk8G2JyfYym1ylPmCJD67IY7ayCXJUcGjUGFLSjl5Kabq5aPa481LMsRC2eMkSOHyWRaJyit47TwxhtvUFlZSZYMr2V/DkDn4w3FeXLlNiudTzSgyyuaNN/uZcPttSTmk8SmEmz5REMxvznbLXQ+EcDgklRcgjdXF+cy870xNn+8gbYH69BZ1Niby+h8IkBZrfQOBa6vouNji7lw0yN+Suwa5o6HKbGX0PlEAFuj9A41XFPJpkcXc2HHw/VFmzeTR0fXZ5uK70ndZRWLc3Wg/YE6mm6V3n+dQ0PLPXUMvznF1L4Qvotcy/Jm232+4vitNqnpfCJA5RnSGFFaZaB84+Jp0Za7a5fZNnQ+ESjaR1WeYafziQC+S11sesTPhjtrimMPSHnUl58nV2yx0vlEQLJsS0PTbd7ivA1gy2OBonpJeZuZzicCmPIqcsGbqvF024tko82PNtCQz922xlI6nwgULZAC13mKY8/IG9O0fKSWwPVSDVRWa5Dinc9Z/qsq2bxk7Ol4qJ7g9dWgBmOljs4nAjjbLQD4Lq1YNta3319XHL8b8msj7k5pTK69wLls7Gn9qI+NH8nHWwfB66uJTiaY7Y1QdW651Fa9JN73LI93zflSvFvv87H108GiCteG22tou++EeOfnya7NUp/VO6WT3E23eml/YNEGdPMnGqjPr0s4Nkp91lSlQ+8sofX+OjoeXt5nG/LjibXBROcTgaJdX8M1lSgUFAlKHR/z05iPd6lXT+cTgaLSmDTvWIy31V9KMD9+653Su+DalI/3h5f32YYr3YRH44y8NbPYZ/PqTTXnnxDve31svKsWU5UOV6cUh6pzpTrSc7aDzicCqPOCTBs/srzPdj4RWMwRXTapzxZzxAnxfiyA79IKGq6ppP5K9ylzBMDmjzdIa5dIhB6NSc1sr0TyPVmOKKgSmeuN0j1d5KTjoXoab/KsmCM6nwgU19DrrsjniPx+z4k5ovOJQLGOXJojZg6Eqb3Adcoc4f3Q8ni33F1L5VZbkaB0shxR7LN31tD2QB3GSilOWx49RY5AyhGFPus5y8EZf9NM/VWnzhFL51SbH20gcFUlKp0Ko1t3yhwBUp9dmiMMjhIm8jYgJ80R+bV5Y6WOzicDbHk8gNlnWDFH6CxSDAs5QqHModapigSlE3NE5xMBPGdJdWTVuQ62PRXE4NGRTuSou9h1Qk5uKOYIqc82oNIrSC1kUOuUxXkzSLVWId6uTRY6n2hAn1+n9VxvYsQsrV1/5zvfWV/zWods2Gw23n77bQAOsp3Z7ARVZzuK+yAAzbdWF8cerVlN+4N1qHVK4rMLVGy1LbOrbrqlmoarpFyo0qtof7Ce8lYzC7NJnBvMdDzsx51XeWm8oao49qCC9gfrcW2W3rfyNjPt99Uz2xNmct8cDdd4llnotj9YX1SLcTSX0f5gPVqztNYTvEmaH2rNUl5qu68Oz9nSu2ltMNH+YH3RpqnuMjemCl2RoNR6rw9vXs2xzGug/cF6TPncV3uRi435vY1sCkq9BnwXS3ExVepof7C+aLVWc56T1nsWY7jhjhrqLnfTclct1R8qp/3B+uKY7DnbQdt9izFsvs1L/ZWFeKvoeMRPxTYpLpXbbLQ9sJg3gzdV03BNPt5aJRtur0VjlH53xWabtGeSF6JpvH5JvPMxdG+xERtfQGNU0/5gfVG1pOEazzJHhrYH6vDk14FsTaW031eP1qxGpZX2Pgp5E6TcWJWPt8VvlOLt1KLSq9jyiQbaHly8/5Z7fMXxu9Srl+LtkRSNai50oXeUFC08N36kltqLpfHE4Cqh/cF6zD5pjPCeW17ss2afkc2faCjum+lsWtofrC9aX3nOtL+vzxbGeo0p32fzNmbubbbivhNI6zeB/FhvDZrY9Ii/aHvn7LAsi3fguqriPjyA9zwnI+9MEx1NUN5ipv3B+qJKlP+qyuLaSDHeZ0rxVmqUtD9YX1TsqbvMTfPti8qJrff68ObrJbPPiMmt59ivpEMLvosrin0WpLG/EG+TR4p3qVePvbmM+suXW75tvLO2qDCmd0oxtOT3oarOdiyrw5pv81J/xdIcUY8trwjp6bbT9kBd0b7wVDkCwL1lebxdm61kEhmJoHSyHPFgPSqttI5VyBGBaz14zy1fMUf4r6yk+dbFPtt2fx2eM06dIzbccUK8z3OSSWZJTCdPmSMAWu6qLe49mip1tNzjIx2TSDAnzRH5Pqt3SPEu5C3PGSvniPYH63E0S3Xk5kcb2LKk3jsxR7Q/WF9cby/kCK1RjdaoOmWOAChvNS/LEa5NVlLRdJGg9L4c8WB9MQfXX+Fm06P+4u87VY4A8H24orhnn4lnUOtV6MqkNa+T5Yhin83l2HhXDRvvkv6dzeROmSOWxjuXyZBJZtA7tJjz+dtzhn3Z3KHp5mr8V0n3rjGpyJw9RZwotbW1f1F7Xfn6rn9CRKNRSkpKyJDhj8lf0z5bR2RUYhJGRuOY3DqS+U3i6FgCpVLBge9LJwlcbVbiIWnxNzwap6zWSDYvPx0ZTqA2LvKvEqEkemsJ/g9XML5rlvhskmQ033Ykjt6yyCqLTyeZ643Q/9IE1oCJRChJYkaq2sMjcXKZRTZ1fGqheL+JuSS5TI7CGYPwUAyWHDiITyaITUn3m5xLEp9NEptYwFRdgrFCR3xmUS43Op4o3l8ymiM+myQ6Ln3P0FtTOILmZW2zCxI5KBmRPjc6Fi/GRe8qITa+gLZUw8JMcpENnoT4bJLwmHSaIzIep3TWQDLvjaouUaEqUaFzaklMSJ8bGs23HYtLMcyTPqMjC2iMaZpvqabUayQ2vVBk0UbHEsRnkyyEUovxti1h8SkV6PL+uvEZ6Xvi+UX9yEgClogWxKcWSMbTnPHpZiYPzEkxnMz3geE4CvViwOPjCeJ5T91MIksukytKEoeH42gMi10/Op4gFZXuKRVJE59NMvzmFNGxJKGxOCVL/Naj4wmyqXy8k1kphqMxSEqetJlUtkhsiI7Gl506kdrG83GJk2wwsemBOnp/O0Z0JIFKv9hn4zPSdxe+U+qzOYIXOdHo1IT6Fxnh8emF4ufGJhaktvnfHhmJk13idxufXpD6JhCfyvfD6Xy8R5ezeDOpLOER6b8tzEufG8+3DY3EUJYs3m9sPE4i/4wT81IMo3mZ4dBIDG3poj5pdCJBJpal+hwnelsJ8dmFYv8Oj8bRlS+J92ic7JJ3DgWY8xtEkdE4pkr9Yo4YTaBULYn3TJLwWBxvQymxKen+T5Uj4jPJ4m+NjMaJTS8w8s5MMYYn5ojQSKwYz/hsksxCGnI5wkNxcqlT54j4bFKSeAVMFXqy2SVtT5EjCvekNavZ+ukgR38+tGKOCI3F0Vqkd6rppirUelXxmZ8qRxTjPZbA7DOy8bZa3vx/D66YI2KjCZT54ikxlyKXyREaWjlHFBCbXmDuWIT+301gDZooqzaeMkfEphcID8dpurmanJJVc0Qk7zcbn10gGU2h0alYmF9YMUcshFLEZ5NF287pQ2Fyi+tAJ80RkXz/js4nsCpKqftwJXue7ZNyRFp6rslkbtl7HxmLY3TpMJVriQwnmTsSWT5OFPIJEB2LEa/WQzLJXHaGt57/Nel0mltvvZX777+fdazjdHDvvfeyd+9e/vmf/5k9vEmwt54KxaJMdXQ0TjSfh1KhFNHJBJO75+npHcVzlh1N6eLYGRmNs5DfqElGMkQnE4tj8lgCa6CM8hYzA6+OEh6Nk4nnX9aU9Lmx8UJtlUDvLCna7dobyxar0xREJxNE820jY3Gik3pS+XE4Nr6A1qjB4ChhYTpFdCJBON82OrVAdDJBKj9pWpr36y51k0lniQxLbWOTCaKTCZIRKQ+Fh+Ok8+/8fG+M+d4I8/2FvJ8kOpkgMZ8stl1aG0bH4kTGEqi1KhLz+bZz0ueGTshD0bE48bxiZyqcQqlWYG8oY+ClCaKjCbTGxXiHR+LFvJ9KSHFJhBJ0PhEgNp0gNrl4qiIyujj2p1JZKYb5nJVTZFGqlRgcGmJTKSJDMVAuuafJRDGPxsaluDTfXI22VMPs4dDysX8yQXhseQxTsRyp+RTZdJaF8JK8P54ojofxwrMJ5+MyFCOdyBTtp6Jj8eK4lZiR+svC/OIYQT7cllojCoVisVaZkz63QA4JD8dRahbvNzoSR1+po/2heg7+cCDfZ/N9ayRByZJaJTwWJx2VYujutJPLZIkU+uFoAr1jceyMDMeKtUqq0GfHCp8rzWeWtl1aq0QnE4RHEtjNGshJ/87G8791OI5qiZ1fbCJR/K2xfAyT+ZOO4eE4qbLFeEfHE8tqlehkgmQ4SdVZXqlfLqn5omPxxWczm++zM9I95JAsNExVeiJD8ZPmiEJtGB6No9apsNQZKas2MHc8smKOKLEsSimHh2Or5ojFGMYhm8NYqSebzK6YIyIji32g9mIXSq2ShfxpopVyBEB0Ik6pW8+GO7wMvzV9yhxRiGF4WIph7fkuMqncqjkCIDGfJD6XxLXRjFqrWDVHRCcTxCYke8x0NEMmvXgPJ8sRhfc+PBpHZ9Oy95t9gLQ5dqocERmPY5wsQWNQ0nRbDdHpBLmFJfd/khyRiklxiY7E0ZZqijE/VY4o3K/WqC7movBAjPleaX5zshxhWCo/n8uhNaopsWtWzBEgvQsLISmGo+/MYHDoScwmi/ewLEeMSvUrwCtjvyA0OEt9fT0HD4ornK1jHSdieHgYo9FILBbjnexvCY5WF8eI6FSS8GiiOAcJD8VRG5T0/lqy0LA1lBX7dnxGmvOnF6T3XMpDS/L+RBxLrYmqs8oZ2zlLeDROMry4JpDLLE6awsMxomMJRt6aQe8sWVarRIaXr2GEh+PFOWo6miazkCGX/6joWAKNfrFWCQ3FSOZzYzqRIzwaJz69gM6ipqzOWJyDglQTFdax0om01Db/Pf0vTyyTtI8Mx8ktmTeHR+NEJxdrivBonMh4Ar1V+i1Lx9nIaJxw/nsL6ybp/NKbWqdCW6pB59CQmEoRHokRK8wlC23zMS7UKjXnO7E3lREeiS3WH+EU4dE4C/OFeCeW3a9SrcCQrxuSkXzbucWcpVyS98NDMTKpDFsfDzK+c1qKS36tMDqaQLvEom9+OFasVVILGTLJLLH8mBGZSKAbWYx3eDhGNr9OkU5LMRx/b5bEVErK1aPxIpEkPBhDsSSG4dHFcUtnLSGzkJE+BKl/LF3HiozEi/VSfFpaa2q62cvAK+PSOLXk/iPDcSL5Z5PIz5nTkTSVZzgwOEqY3r9o0RAeiRffm8S8FMNE/t0o/Pfi5w7FiObrjVQ037aQ90fjKEsWrTbS8Uxx/E7FMvl452M4mqCkbLFWCY3EyRRUVdPpYv8GiIwl0DuXxHsoRi6To3KbA4vPRGgouti3JvJ9qxDv4fiyPqtQKTDnCYbRyXzbRDb/ufFltUp4JEZ0NIH3Q06pr6+QI8IjcWmMBBbmk8z3R5nYNVt8bifLEQDJsPRbMwtZcjkI9cbILhFWPDFHLI23o9HMUvOGU+UIkGpvvbOEjof9HH9hZMUcEZ1IFNdYqs4tR1+uY2LvorrVyXJEOlFYC4xT3mKm+ZYa3v3HwyvmiPBwnAWj1F9SkTTpRKZoyXmqHLH02YQGYoxtH8BYqaPMe+ocERmJER1boOZ8J0qdYtUcEc//LRVLk5hLoi3TkIplV8wR6URWGhfiaVDDzJEISvXiu3CyHFGwjotPL6BUKfCe6eDQD4YID8VRKJfmiETxXY5PLxAeiVNSBukIjO2YQ6VbkpNH4kQm8m1nFgiPJkjFsiSyCZ5/4QUWFhb42Mc+xi233MI61nE62Lx5Mz/4wQ+46aab2MHvqRipWFarhIcX50yZZI7QUJzZ4xGG/jiNtcFIbIndUWgoTjaff8lkCA3FivktNr1ALpulYpONiT3zy2uVjJQTCuN3YjZJaCjG4OtTkAGTO47GuPj+hQZjxb2ZxHyK0FCMTDw/ZxqNYarQoTVpSM6npc8dl9ouhFLLck9kNF60HipvM5NJ54rz5FQsnc/B0m+Pji3moYXZJGPbZ4p7EMmo1DZV2EMZTyybo4aH4yTmkiiVChby91uY+8YnFwgZF5XjQoMx0vmxMxPPoTGosfvLGHt7VlrvH4ot+dzFPJTJZKXPDSXZeGcN0SkphgUFlvBQbFkeCg0txjCnyOXJACqi8YyUR7VLxs6hxXFrYU66f++5ToxOHWM7Z0mGloydg/HiGkYh3pmYpKKVXsiQWOLAExqMFfdDU5FMPobSDcfGE5DLMXUglP/cxftNJ/LPJr/WEJlIFGsVk0ePUq0kkt/zySSX98P4ZJLw0PL62uw1ELyxiqM/Hcn3w3zbqQVCg0viPRQv7kvVnldBNpsjMS21TUwni3s8hWejPCHehfE7PiO1zSbz6ywjCZRLasPwYJz4ZBJjhQ6y0t5RKr7YZ1NL1EZDQ/HifksyUujf+X44Fi/uyRbiXeizqVg+3pEMgauqiE4mCA0tr8ti+fcxk29b2IfKZnOUlGkx5PfQw0Mn5ohYcUyOTUl/L/XosQXKmNg7t2KOWBbD/hihVXJEJrN0HUuB3l5CJpNbMUdERhKo8+uG9uYydFatVKuzco4oxNDgLKHuUjej706fMkcUnnkh3nWXuMmmsqvmCJAs0SJjcdybbajVSsKj8RVzRGgoJl2rkmK4VGLnpDmiEO+ZBKGhGL0vSApKldtsp8wRhXhDBv+VlcRnksvnmifJEZlkPt6jCQzlumLtfqocUYh3ZiGL1qQiGckwuW+eaL4WP1WOKCCXyWEo16E1q1fMEdI9xEjl6//53giTB0LF+MfzfbYYh5FYcT6zN/IOw6/14vP5OHr0z+AmtAL+YnZvBYyNjeF255m6WOhSXiR03eaP+9EYVLz1/x0Sam+qLiEyKO6bDZKiiqfLQe/LY4y+uTZyvq5OC3UXVdL70qgs27fmO7yEhmJrZq2ltWlxNJbKsinwXezCGijlva/2CNtXtT9UTy6TY/fXxK1XWu/10f/aBPNraAdhDZioOd/Frm8cWzN7OZ1TS8vttfS9Ms7kLjGPTJ1Ti8agItwnLgvYdn8dar2SHf+ydnZvtRe5cHVY2fn148IWiVqTEmOVQZbVV9sDdSTnkhz8gbhsqVwEb6gincpKlpJriOANVYQn4sKWghVbrdR8yCUrxnWXubHUGWVZ/WltWsqbSk/LW1kU7Q/Vc+yFEVn9eOsnG0knM7z3efHfIhfbngqSTWd59x8FrXPyC/imqhIiQ6uML/mhtunmaiz+UvZ9r3dVWziASDbMW7wASJYRf/zjH8XubR3rWAGXXHIJL774IgBncBkGhWHVa8x1BppvrmFs1yy9vxaTTTW4NMTG5dkDbXksALkc2/9l7QrkwsnV974onk9KawzUnudk77/1rdFdSXl+et+8LFu59gfrmDoQYmg1udg8DC4NG27zcew3o8wI2oZ6zrRTUqZdU1lykMhjOXLC/et0ELjeg0avYv93xO2uzHUGYmMJ4edicGnYcHsdg69PCNf2p2P3tukRP4nZpCzrLlOVnoVwmtS82HtZ3mam+qxy9n6zR5aFoxxozBqC13rofWlc2B7vdGD2GfB0O2TFq+WeWrLpHPsF62GNQUnzHbVM7JljVIYVjLvLxtSeuTWzlKw624HepuWojNq2YquV2vMqOPyTQWYPi9fqcuDuslF7novjvxmTZV0JYHBriY0K1MMa2PZ4kPjsAnue7RP67HezLzPPNAqFguHh4eJaxTrWcbpIJBKYTCYymQwOKmhXni10XfPtXgz2ErZ/TmxuUiDbyIFjYxn1l1Zy/MVRJneLrUnIRVmtgcbrqun97ShTe8Vt33wXuYjNLDC+Y25N7kutU2JtLJX1u8vbzDhbLRz+Yf/KFklLELi+CqVawaHvi1s3NVxTyei7M0VC/VrA4NLhPbecnl+NyrOjkwG1Dppv9zH0+hQzh8XqTrVJjdaoLpKVRdBwTSU66yIZVwRy7d4cLWV4z3Fy4Lk+YUsxtU6JzqEtEltEELjOQyqeWdN6uOrcchQoGPy9uJXt6aD6XCfJcJJxQatpc72RukvcHPxen7ANZcUWK47mMvZ9S6xWA+m5WBpMsvKRXARvrmbwD5NEBew5Cmj9qA9yrKkVUEHVYde/HhO7IL/mpbOrV+/3+TWv6nOdVHba2P/9fqG+v5CN8wd+AcC1117L888/L3Zv61jHCvh//p//h//5P/8nChSczWVolauveZVYNWy4tYbx92YYFtwP05pVJOfleRc13VKNSqti37f6ZF0nB4FrPah1Kg78h/jct8SqxdNt5/iv1m7dx1JvJDySkGWV13CVh7neCJN7xeo1lV5F043VDLw6QWhAbBHD4jeit5Uw+s7a2rk6OyyoNMo1/Z7KbTZKrNoiWUMEeqeW5FyaTFJsPUKlV9F8czUj78wwfUBsLD0du7fAdVUkI2lZ1l0lVi3ZVEbYutDk0VN1hp2jvxiVZ+EoByqJ2DP67jTxyTXaaEZSLXK2WSTLcEHUXlyBUq0Qf+9V4L+8krmeSJF0JwKzz0hkTN67LwfWBhOGCt3qVmpLUOY1UH95JT2/GCY8uDZrkWU+Aw2Xe+h9aUy2NZ7WrBa2n2u910diLsURwXlNT3YPfRxGo9EwPDxMeXm5rHv7U+MvqqQEUFFRwRtvvMEZZ5xBhDm2Z19hi/K8Va8benMKo1O3arsCCgSlhms9KFBw5Merkxz6/zBBWbWB0R3yBo7m273orFohYsD4u3OM756TTYQpqzKgMahlkZSa7/CiVCiEiCfJmeQiQUmL0P31vjhO74vjwvcDsOsrghOjJTidCZvWpMTRYhUmXensWvT2EsqbzcIEIrlITCR5958EyRBLrpG7TCWxWtf2VU8tpMmmsiQj4h05GcmSlEFQAoo2PWuJUq9hGXt2NZiqS9BbS5jcI2+B49B/yiNajb0zK4vICMifWGild1+UoGSqLqHphhoO/me/MAnU0VKG3laCxWeSRVJ65x8OF60UV0PFVivec1zs+dZxEhPifXLsvZnlyl0rQOfU0nSjl/3fOi5MUALofWWceq1SiKAUz4YZ9OxFMaLA7/evE5TW8SfDb37zG1paWti3bx9v8CvOzV2NRqFZ8Zr54zHmjkUYekOcwBgbT6Exa2i6sYqDPxwSIkaM75whlZA3aTG4NDTf6uP4CyPMCIwr7321B+Tt4WGtN2F06SmtMRDuF1voMFXpCVztYf9z/UWrpJVQzPEahO9v17/KGxdj4ynZtcfpklYdG8uIjcWJCW6YWuuNyxQG1wJHfiQ2YVuK+ePy2DmpBGQWMmQW1oZwUvyeWJpUVN6molwS0OTu+TXbtC7AVm/C6NYvO026Giq2WJk+MCuLOCWpookv0gKyNjsBUrGsvFo1/67LITQ13+YlFU3LIhzZAqWUmAWLqDzG3pllbOescC5qf6ie6HCMoz8Xrz1Hd8xgrTUKE5Qarq5kIZJm4HcTYgQlgBRM7Jtjvk/scMtcSz/R/fNoFBr27t27TlBax58EOp2Ovr4+vF4vU7kx9mXfYqOya9Xrht+YorR69U21AgoEpcpuO1qDij6BBeqpfSGsdSYm98vL9bUXODFVGYoWWysh1Bfj3X85XFTqEYU1UIpupkQWScl3kQu1UcXRn6yeI9OJ7OIYp0bo/k5nXDzyI/kHrETu/0SodWDxlzG1T2xdQmNQUuY1YvYahDeY5CKdgD3Pylu/S0fSsklT6WiGVMkabSzlkU3mSCcyRZUdEaQTWVkEJYAjz8uvVeXCWmdEqVIw+Hux9jqLGn25jtmj8tbv5JKg5o9F2fkleYfSxrbPMrZdxjqZWnouogQlrUVN8Ppqen4xKkycM1bqKPUYMHsNskhKe57tFV66NfsMEqHrh/3CpDmA4bemUC9RFFkJapOawNWVHPnZqDBBCaT6rqRMLdT309kU/dV7UAwpOPPMM9cJSuv4k+F//I//wcjICF/+8pf5A7/m7OwVaJUlK16zMJtiYu8cY7vmhL8nOZ9BpVVSe4mLgVcmhIgR47vmlqnqi0BjUtFwdRVDf5gUIt4c+dlwUXVIFEZXCeYaI0a3rqgItBq0ZjV1l1Rw/DdjQpvpc8fyczIVwvd39GfyxsVMPCObADbXE2UO+WIIpkodySU2UavB5jehUCnWlKQ08rb8z47L2DsBSdEpFUsXFXvWCqlIuqjWI4qFWXm/JTIcLyr7rxVMFXosPhNTB+eFSUpmn5HIcFyYOAaSa44cghIgiwAGQAZ6fiZjnpJ/1wuq2SLwnltOJpuTRTiy1JsordTLuiY0EGPnV3uEc1HDVR5iMwsMvy7vO6b2zzNzVIyg5N5iI5PJMrFzTjivAIxunymqzK6GaP04w33HKVGWcPDgwb84QQmWCWb95dDd3c0LL0hKEXNMsSv7x2UF7skwvn2O47+UFkELPpEisNQai9K5qyKJdGI+CfbmUuENcoVCgUJOZJMSiab9oXq0JrEL3/vCIdmEDZ1Fi9ay8ibkieh8MkDnI4HVGxaglUhars0W8UtMELi2avWGS9Dykdqi96MINtxVR835LuH2o2/O8Ob/OiCLoFRzgZPuZ5oxecQ3AbQ2bdGvXbT9lscaqNhqFb7mwHcHZClVnQ6GX5uWNj1l1AEdj9Tjv7pSuL3OqcUaMK3ecAm2PN7AlscaVm+4BO/+4xG2/7M4q7v+wx4arqwSzg8Amx71SzlFEJ4z7ZS3m1dvuASt9/qwBsXjVdltp/vTzbK+x+ovk3zsF8Q3laf2htjxLwcYfGVSqH3z7d6id7Fo/yop04CCorThaihvld7B/pcmhO/L1WJBZ9ZS6l0hxrlccSzznGnH5JHsM1dV8MjlSGYX+CMvMDw8zKZNmzhyRB6pYB3rWA179+6lvl46Sfl7fkoqt3oxe/AHg6TmU5iq9Dg3WYS+x1ytx2DXYW8Qy0eDr00VyTo2wRyWCmdQKEBbJljj5H9qZbedhivFaomBlyfY8fmDwgQlgGwmg8agxlIjnoudmyx0fbIJm4wxwtpoonmJ57sIHK1lRe9uEdiCJlqX+FivBo1ZQ8OVHmovrBC+ZscXetj5JXnk9c2P+ml7oG71hktgrjOgMYvXw/WXuWm5p1a4fWo+xXtf7Flzcs/eb/bJVsZpf6gejfh+N9ZGExqD+KTG7DPQ9XQTrk3ider4e7O89b8Piqv1aMB3UQWNN9YIf0ftxS4CN3iE24P03JExbXJtshK4RryuBdjyUAMdD9fLuqbErEFnk0c42vNsL7u+cljs8+0aWu6ulUWWBOTNfTXSe0gKDjwnrixirjFiaxDPjd4LJDvT3l+PrU5gzeXYm32L7bvfobS0lOeff57Gxkbh71rHOlZDVVVV0TpwjEEOZnesuuY13xtj6PfS3KSy2y78XbZAKZY68drj6M9GIA2mKp3wBrlCKXPNK39uKnhTNWqT2JfsebaHgzIUAABKbFp0Fnk5suXuWtrvkVdL+C52YW8WX8dBDd4POVdvt/Q7LqvAc5ZDuL3/qmrqPlwp/Azne2O88/eHZBGUHBvL6HyyEZNH/MCoWqekTHQNFolstfGuWhwbxePb+9txWUpVp4OZw2H2PNsri0AVvLla1nNXm9TSeygDG+6skRR4ZGDvN/vY/XVx8lj1OU4C11Sh1om/9E23eTH7xJ+7rbEUq+B8sYCGqypl9S1zvZGtjzXKmmeVVhrQmjRkM+IbsdGRBDu/dJgRQRK67yIXznaL9A/B7qUxqUGhKNq5rYbCs5jcPc/ou2KkLkutQTqk416B2LFkzcvWXIrBpSMdSdPzi1VI67kc6WyK3/MzBgYH2Lp1K3/4wx+E7msd6xDFl770JW677TZyZHmdX5LJpletvYb+MEUmnkFrVmOpNwp9T4lVQ5nHSGmVWD6aORRm5qC0YW2qFMv5qXgGpRLUogd78inLUm9cXFMXuK89z/YIE5RAsiQqKdNicumFrzF59Gx60E+ZjDFC79RSc4G8Osrk0WP2iT1DAIOrBP+VMubzKmi8rhrPNvFa7dAPhzgoY/4L0Hh9FY03yNs31Zdr0ZjED4E5OyzUC66NApCBQz8YWiSdrRF6XxyTRQgp8xpovL4KlV78txvdOlnttWYVHQ/7sQXFa4nIcJz3vniUUK/4enL9pW5qLxHfyy5vMeM9Vx7ZpGKzDZWMaVNptV6am4iHi+D1VTTdLG+9usSqRW+VN5/rfWGM/d8Rq21VWiV1l7lRaZWyyJwK1TJX9FW+RMopZKD/lQnh7zHXGbDJqIcL6/qTe+YJD6xyKDWXYyjbw5tHX8NgMPDiiy/i88mbQ6wV/uJKSgVccsklPPfcc9xyyy1MMcLu3Ju00S39cYWn7+q04Gq3kstRJC2thHe/KI9IARIxJHBtNbHJhBAxaP93xGVmCyj1GtHbS3B3Oeh/aXXGYzK/zuq/ulLyGhRQcZFj+VRAqC9GJi3jJHhSWkBWaZTCJ968F1Ti2FDG9OFSpgWtRwwVOpQyJsjHfjWCqmRtOXmzxyNYA6WgFKfDb7zdS4lJIy4znEyi1qvRyTkNrQWTS77doRxobVqUamSp1mgMGrSl4rsf9Re7MdcaeeNvDwi/wwWfz7XEwf84jqPFLnxPjpYySsq00qKCIDzd5SiUCJPmTB4tRrceR5NZ2E4vPCp54coh5g2+MilM6gHYeGcNR345KmxXB1DqMVBi1shS8uh/aUIojwKU1uppuLKK8tYIB2TY//S/PEn/65Mnf+4nmfR6z3GS2mJj++dWIMDlr0vmkrxnehkiYLfb2b59u/B9rWMdctDT04PH42FkZITf81MhRSWAxms8qHQqJgSk+6f2hZg6HJKtXNR8mxdzjZH3vtqzqgpRKpaVrQ4E0iROa1QDYsofqZhEvqm7yMVhATW82GiSt/9OzJa4gIm9c1R0WEnMio/ZjmAZZTUmNGaNsI1X3cVuMomMMJFGZy3BYC8RVpJKzafo/e0YY7vlKQDKRXgkTiYhXqdqzBo23FrL5J5ZYcWXkjJ1vp+Iw+DQkEoh/DxOB0aPjuhEQvjd0pZq0JrUstSHGq+pJjaVEFZByKRyxKYShIfXxh4MgBQc/OEAyah4bMuqpQ0mUZS3mXG2W0hGUgy+JrYo5thQhsmtB8SJYzM9EbJZeYpbO78sTuQrbzOjt5cw8PKE8HN3tVulDalKcdU4QBbBsPUuHwa7jrf+8aCssUGODWj9ZW6c7RbCQ7GVCXD52mu2YYDxI9KC8fe//30uukjMgn4d65CDxsZGduzYwebNmxnmOIqcgiAd0h9XWPMqqzVQfXY56hIVA6+uPscRUTd6H9TQdFMNkdG4EDGo97fyFLQBjE4dpVUGnC1mIYXrgp1aZZedxGxSyC7sdIgqM8ciKJXy1orszWY0pRphgo+7w4p7q43wSIzZI2JjpNlrZGE+hah+QP+rExKJZG2c2wCIjMaIjMbJyviOhmurMLn1vPuPYmTZdEI6dKQtlcEUVoPeVkJ8Yu3WvNQmNWo1wjZkACWlatIybC2qu+24NtnY/sWjwmSo8GAclU6mJIdMHP3VCI7jEdKCNbfJo8Pk0uVVHMVqieqzHaj1anYcFRvr1SY1Fn8pqWiaUJ/YdyzMJwkNx5g5Im63MX0gJIvIV3dZBQOvTckis1kaSjFU6JiQod4ytTckUw3Ky8yRkERKFf2O/WGmDodPnlNOsublu7CCdCy9MgEuf106l2aX+VVy81n8fj9vvfWW8H2tYx1y8N3vfpdQKMQvfvELXuPnnJO7ElVhh32F2st3YQU6u5a5Y6vvA8bGF9j5NXE1jgI8ZzuoaLOy77v9q6u/ZBByRjkR9qYyDI4S4TX1TFKy8qrstDH42urr/alIht1fl3cwPjIcZ64/yoKM8bSs2oi9sYzR7dPC9nq1F7jIZnLCCi5qg4pSj0FcSSoDPb8cITK8tkSd8JA8ZW9U0HxrDeM7ZxkSVJXRmGTuNSKpe2UzrJ1FGnm7q0ha+N3SmNSUWDRkkuL35L+yktjEAkd/IlpxK5gfiBJbw5oT4OB/DpCTUW+bPPq865TYPp3RrcNzpp1sVlLtEYHNX4o1UCqLODZzNIJKJW+eJf4sJKKnwaVjYuccGcHtRnO9EUutkTGrhti4+HMUtVID6WCltc7E7q8fl6WGdegHQ8IksPJWM95znSRmkysTlPK1V7RqgkODO1EoFLz44ots3bpV+L7WGopcbhUK8Z8Zn//85/nEJz4BgAM37YozpT+crHDI37qr08L4u3OyvsfdbaPmHCf7vtcrRN6ou8zN0FvTsjbXfRe7cHVYee9rx4Wu05oWyUdC0EL3J5tIzCdlLQz7r64kFUnLln8Tvi2TkmRE3oK7NWgSJlP8uVB3mRtXh5WdX+uRRb6RA0dLGWq9SraNlxy03uvD5Nbzxv86IHzNGX/TTGggKlwAtz9cj96q5c3/9+Dp3uaqMHm02JsswuST08GWxxtQKBW8+48fMNUarbRIOd8jXvieznsoB23313HwR0PCOdHRUkbgqirGd89ybLVTVUtRqJEFvqb1oz5KyjSyyQr1V7gZfHVUKP92fKweFLDzS6eYhJ1iSLUGTUQnklK8VhjPkrkkB8vfZHJyErfbzciIfKn/daxDLsrLy5makiYZ57I6UanErkFr0sjawAZof7COdCwjNLZoDErcXQ4GXpaX87d8vIHImKBcr0ylEAD/FW4cLRb2fbtP2DqrxK7Bf1kl+09jUUkUGgOyyCelNQbCIzHZv3+tseXxAKlYek3tXavOdjBzcF7Yhu500PXZJsJDMeFn3ny7lzKvkbf+t3gd1f1ME9NHQhz5z7WzBXFtspKYW5BteScKo0dHy0d8DL42cdq2gmsFi9/InIy6C6S8lYqtTe3lPa8clAoGZMzf2h6oo6RMwzt/L7YxXIBoPimxa2i7p46hP04JW2oXrnNuMAsRwEprDDTdWM3xF0aFLYwKcLSWMVU4yLNC7bUn9xZz2glKSkr42te+xs033yzre9axDrl47bXXOPfccwHw4KNJsVn6wwr91BowCZNbCrA2mKj7sJtDPxoUshxyd1qZPhomKWPTyNluofrscvZ+u1foOrVukXwkis2faCAxm5RVR1V22yGXE1YykQu1TilM2CjAVKWTbf211nBttlBzXgV7v9W7ZgQfU5WOkjLtmlnKgUQMKd9o4e2/FT8csPVTQWaPhTkquOEQuL4KS62Jd/5B3gEEOdBZJOKNLPsymdhwZw1ao5qdX5GnXrrmUEtERjn2aKeTT+QgcH0Vfb8bE86JxkodG2+rZey9GfplzmFFLSfrL3dTWqlnl0y1/MouOxO7ZoXyVuONVWj0KvZ9+xSE1VOseRkrdSyE8naNK4xn6Vyag843GZ8Yx+/3c1SQmLaOdfzf4KKLLuKll15CiYqzuBytIr/YfIq+qtKr0JaqZNtg1V/phhxC694qLdiazLIVmIM3VRGfSdH/kgBhXIatWgHODgvVZ5Zz8IcDwhv4Kr0K79nl9Mq1jpIBlVYpa7Nf79ASn03K/v1rjeZbvWSSWQ6fhh2wKGxNpURGYsKErtNBx0N+5geiHP+V2B5P9TnlONss7Pi8eM7f/GgDUwfn12wPGyT1pUwqK0tBTA40JhUtd9Ux+NoEk3vXVm1dLvROrewcJ/c9lANbsBS1XiVMmgJpT89UqWf3s8dlvesqLUKkJpVexYZbvIy8Pc2UjLmMSq/C5jcJPXOtWbIW7ntlXJbaFkCpV79IUFqh9hrI9TCgO4RareanP/0p559/vqzvWWt8IOzeluLjH/84X/3qVwGYYpQdudekPyyREC0iH/gCQcl/daWwzG1scoFsOkcuJcbROv4rSf3DVF0iLC8YGZPnG1nYIG97oE7MAiwJe791TLY1hr2xTJY0tdakpPOJgLC9WoEYISonCSwSlOSRdjH7xWUbay9yse2poHD7qYPzxCbkDVCltXpZNnRTe0NrSlACGHxjkrFda/sdw3+cZGz72vnpAkSGk7IISuWtZVSfJ0/mcO54lLCAt3MBLXfXsulRv3B7rU2Lzimvk2tNQBJhgpKjpQytTStOUNLC1k82UnOhuGyqu9uGwanD0SgubTm1N8Sef+sRJii1P1QvWeIlEVapSoZSJKNiC0ha06JV6LFfiBGUANKxDOnoCVVPYXw6YYyyN5dKdoNaKcedlKC05Lp4LsJr/IzJyUmCweA6QWkdfzZMTk7ickkysiLWbwvTKcL9MTQGibgnKuWfimVICvqJp2LZIkGp9mKXsO1SMpZmQfTkav5n2ppL2XinmHVUzy9G2fONHmGCEkhKR6VVBlnWAt7znWyWMb6kYtLGv0WwLgr3SwQlOdZfICkEybH/an+oXpbNVqgvwmyPvE1Yz5l24d8NkoT7WhKUAEbenmb4TfHTRaf1He9MM75jbeu78fdmZRGUai50YnCL1zm5dIbISIzZw4KTfQ10PhHA3WUT/o7SGpmdPJ9r5BCUCvZ2ogQl36UVks2bDJEIR7MZZ4tF/AJg91ePs+/bYptYjtYyNtzhBeQRHjOJDNExsXxYdbYDg0PDwrS4QlU2nSWbzBKbFpuTtdxdi/d8qaY9JUFpSe21K/dHJhgil8vxf/7P/1knKK3jz4JzzjmnaGszTC/7c+9If1hhzatAUKrsshO8SUwyPz67QGYhQzYttuY1+u4sybk0Oouaii1itp2xyQTpuDipqUAoCFznEbZy3//dXtlEb1e7BXuTPDu2lrtrqRK0SShs9MtZVysQlNTy3LwwClrBgKSg1/Exv7jl27EI8/0RcjKsrHQOjSz7wchQYk0JSgATu+cYfF1c4fl0MPruNEN/XNvvSMylZRGUSr16XIIW3AXMHo0wd0y81vZdVsHGu2qF26t1SnQWeQqkah2QRpigVOrVo7WoZRGU2u7zUdkl3m/N9UYsPhNWGdaZ0ZEEu7/ZI0xQaryxCnPBTkowjS5E0iTCgvMYNUXLyJG3poWJlclImqTgmpfJo6PlnlrUOun3n5SgtOS6dC7N7/kp4xPjbNy4cZ2gtI4/G377299y2WWXkSXD6/ySZC6/0HyK2isTz0ib9yrJbsvgWsH2cAnSsQypE9+fUyCTpEhQKm8zC9suJcMZkqJ5IH8rBleJ8H7VxM459n77uCyFEVOFDmtDqSwLN1tTKc23eYVVQzLJLCq9CqNbrC6KT0kEJTl2ViCRSuTYf/mvqsR7nvieyuzxCLPH5a152QKlwtaAADMHw2tKUAIYfG2CiTXebxx4bYKJvXNr+h2hgZgsglJ5i5kSmVZkM0fDhIfF15A33lkra46hd8js5PnuLYegVLBOFOU6lLeYCd5UJVmqCcIeLMPVZhFuD9Ke3sHv9wsRlIxuHb4PVwBiBKUCktG0RHgUgC1YitasJhPPiJPSMjnS8QypsFgxWHOhC2eHBeDUBKUlY1t/7ghH2EUmk+HZZ5/9wBGU4ANIUgK4//77+da3vgXALBO8k3t58Y8nKx7yMLp0lJjFVnvne6K88w+HiY4lMVZo0drEXubgdV4qt4pNbCb3hHj3n46QnElKRAMBaE1KDPYS4UXoyLD0glR9yEHFVrGFpJ1fP857nxe3fktGsqBAll1a3eVuas+vEL4ngG1PBdn0gPiGXMfH6mm+qUaY2JSMpMllchgrxC4I9cbY/bXjslSUfOdXUNFhlUW2aru/Ds854pPlzicDbP1ko3D72UMRISvE/xtM7gnR+6K45HvtRS7O+Jtm4YVJkDY65SyGVZ3tpKpb3BcYoOdnIxwSsPApIgtyxOiarq+i436/cD6wBk1sfqxZlu9y/aWVtH+0Tri9qVwLSoUwuQdg9M0Zdny5R/jUfPPtXtAu5qvVYKzQordpsTeahdoX4nnoh0PC6huN19XiarNiqhabaBb66t5/62Pvv/UJXVNWZUCtV2M82fhywliW0s7RW7kHAKfTycGDa6dKto51nAxjY2NUVUk+57/np8Ryq+9Sa606tEYNxgox//n93+7nyI+k08qixKbSGgPuzTYCl4t5w+95tpfeX0unt0QJOI5AKUa3Ho1gDRkbT4FG2mATwfAfp9nxpR5mBC1tAdLxDAqVUvieAFrvqsN/hTghyHteOZsfa8JUJfb8NGYNbff78V8l/h25TA5kaLYe+cmIbPWs6rOdVJ8lTkp2d9nYeJcYKQ3AsbGM7s82CW/YAgy8PCFbhUcu+l+aYF7GKZstjwckYowgPGfZi6QVEWgMSiq32qk6U/xZxMZT7Pv3fmHSmNGpI5fJsRASXJTVwIZba2Q974776tnyeEC4vbvLRv2lblmHM1RqBQqlQpaS2Xtf7GH3N8Vs9yq2WIvEqdi42JeUB80YK/TCeVNjkAirO77QI9YPNVB1hoOGa8XIFRqzBo1ZQ3Q4wfZ/OUpsVKyGLLFoMVWcYgH3hNprvm2AWZWUb375y1/y8MMPC33HOtbxp8BZZ53FO+9I5KRRBtide2PxjyuteVWUoBNcu0pMpdj11ePEJxYkqypBu/H6yz1Un10uRHSJDCfY/XVJRUmUfKPWQWmVAXtAjLydmJbmqfbmMhwbxRbs9367n73f7BO7IYA0KFQKVGpx2yzXJgsNV3oobxObswJ0PFxP0y21wu0bb6xiw621wqSjZCRNLp1FbxOb4ybm0hz+4VAxxiJwb7VL9oMyyFaB6zyyyDQtd9fKqlkiwwlG3lhbRcbwQJyRt8S/w7GxjG2fCi6SUATQeGOVrP7k6XZQc55LuD1IZBVZdo05yAkSHQFqL66g7X6/cL4xuHRsejRIpQwCuv+ySjbeXivcXm1So1ApSSfEN2znj0V57ys9jAvYmwP4PuwCNcLvktqkptRjwFYvtjhYeN+Gfj/JoefEbC1957uo6nYIEx1NHqld76/HOCKo8GEol5TSNGUnyTknjGUJdYJj1TvIkSMQCLB3716h71jHOv5U+OUvf8nVV19Nlgx/4BckcktIA6eovbQmFSUWDQa72Lja/7sJBl6R5hf6crF6TWtW4z3biadbbB59/NejjL4tHRQXJeCYq415C3Qx8k1yPgOqRaLjapjvjbL7G8dlqYCkExmUKgVaGYSgphuqqLu4Qri9LVhK2/0N6AUPjKu00HJXnVQHCyKXy0FWfJwcfXtGllIMgPc8JxWbxcdJs88oS0RB79Sy+dEGbE0yDqMfCBGRoX54OpjcMy+LSNN8m5emm8XWG0BSz/bJ6E+owHuuk4p2i/AlqUiGvhfHSAg6kWhNKrLprLhdsAqCN3iLB/FF4L+8kpa7a4Xbl3kNNFzlobxFvEZVaVUolApZAi5HfzLMAUHr7jKvAWuDVEOJEvIsdUbKvAZh4pRKK9kZHvrBoDCRrfqccnwXivUplV6F1qQiGclw4D8GJGKlAIzlJRhdYmte0cYJ+jQHUSgUvP7669x0001C3/HnxgfO7m0pfvjDHxYDp8PAWYrL3t9IoThpEWGqLhGycQPY9nSQbCorZPGkNSnRV+hl2S6V1urZeJuPqYPzYlLCWoSVQwro+kyQdCLD9n8WP4VQfV45yUhKtlWeKGovctEnY/LbdHM1sakFYQk/R0sZekcJg6+s3WkmU3UJvvPc7P1Wn1B7nVOLSgnRMfEH2P3ZJub7oxz43imkdE+A/6pKUEDPT8VUVkpr9dSe4+LwL0aErbnk2r35r6okm8py/Ndisp7WoInqM8vZ8+1eob6uNcHmjzcxezQsi0QkRxa/7jI3mYXMmkpImjxaXB12YTUhnVNL4zVVHPzecWGln9JaPQZ7CeM75k7/RldA821eDvzngHCOquy2U3u+i8E3JuW9q4J5UGtSsvnjjUSG48LvaQGOljKm9q5+qrPmAieebgf9r40z/Nr0KcedAk45/pziusncCHsVb4ECWltb2blzp6zfsY51/ClRV1dHb6+0Ed7JeZgV4hvvBrdWaCO56mwH1WeVc/w3Y4y/t/rJG1vQxIxMS9gNd3gxVuh553OHxYgAMq3fvOc78Wyzc/Tnw8IWRBoD+C6u5MhP1kYlrbzNTHQsJkxK0Jg1NF5VyeGfjZCaF7um9hIXEztm1lSJqPocB7mcpHgkArPPIIusE7jOg9VfKmwJojFraLjczcBrk8IKWjUXOsnlELbmkmv3ZnBo8J7nYuC1ceHnXX+Zm9RCRviemm6qptRrkGUVZnBpSCUQ608aaLq2mv6Xx9a0P1Wd7SA8FBPuI1VnO9CZNfTIsKatPschrAwkF65NVhRKZCkrbH7Uj1Kr4t1/lGfzJpoHG66uxB4sY8+zx2Q9O7PPwPyQmM3klscDKBQIW/iecvw5Re31Ru4F4ooodrudL3/5y9xwww1C37OOdfypsWfPHtrb28nlcpRhZavigvc3OkU/1jk0JATfwY6H/eRyOXaJWDypweTSERkW33jQWdS03FPH5J45+kTGGUFro6XY9IifzEKG3V8XI2yCRBTJZVkzJR93p5XRd8Xzc835ThZCKeGcbvLoMLn1a2r/pbOrqeoup+eFUaFnojapUZeIkzFAsuybOxbhmODhucpuO+oSFQOvitUsOrsaT1c5w3+cJCFozSXX7q2y2w4KhMlQxkodlVtt9L40IanLCGDL4wGmD83T+4L4OqrJI/6uVmyxolAgq8/Khc6ixt5iYViwjleb1NRfUsGx34wJx0lnV6O362RbYIrCd7GLwdfGhZWarA0mAtdUMfiHSVlENuE8qIbNH2sgPBTjyPPybJ5F50n25jL8l1fS/8q4lG9WWfM65fhziusiuRDvKF4iR44tW7YUSbrrWMdfArfccgvf//73UaBgGxdiUpxk4/0UfVlrVpOcX/3FtTaYqLvUTe8LY8wcWf2wmtGtk2035T3PibXBxL5/6xMjAsi0frMFSvFdUkHPL0aY7xXcB1WBp8u+ZlbupdV6kpEMC4KqJioteM+vYOj1SVIRsR9f3mZmvi+ypkpEtmApKo1SWGlFX64lPim+1+jeasPZbmXfvx0TU4xRQc15Lib2zAqTgspbzCjUCmHClVy7N5VehWerjfE988LPu6AuI3pPnjPtODaYhQ+8g0QiyoFwf/KeW87YrlmhvHG6sAVKScwnhdXPbMFS9FYtw4LiAyDVCWs1nyr16tHo1EK5soDGG6ooKdOw5xvi80JAOA9WbLbh7rRx4PsDwv0PJFWrZCgtlJObbqlGrVezV/Aw4inHn1OMV/tz2xlT9GO1Wnn++eeLdvMfRHygSUoAb775JmeccQYAKjScp7h61Wt0Ti0d9/uJDMeEFC+qPuRgYSbJ5B7xF01rgpZ7GzjysyHCfatvWLQ9UMfxF0eF2haw4Y4acuQ48J3VySultXpZnw3Q9Zkm0vE02z8nNjhoTUo23OXj+G/GZJG0tCaluPXUnwG1F7kYeXNS6J6qzyun+oxyjv5ymMldHyzfUFF4zrFTc7ZL1m+QS1La+ukguYwY0e+DCrm/ofq8cib3z8tS2lpTFA4FyLidtvvrmDowLzx5qNhqpe4iNyPvTMsiIJr9RqGcYaouoemGGg78R58sol/rvT5G3p0WIhy1PVDHzNGwbHJj083VHBRgcxsrtLR+1E9Y8P1Z8E/yx2N/IJvN0tzczP79+2Xd1zrWsRbYunUr7777LgAb2UaFYvWTKM23eymrMrLjKz1CBIWGqys5Kki2LaD6HAel1QYOfHf1usjRWkZ50MzBH4idwgBpkzt4nZf9z/WzML36byitMUi2aYKoudBJZaedwz8eFCZdVXbbsdQZhX5zARqDPLumtYbBpcHsK2X0LTFb2C2PB8ils+z4grjq5wcNWx4LkMuI/wa5JCXXJit1H67g6M/ESXIfNLg2Wam7pIKeX40UZe5XgsaswbmxbM0WPE8HGoNS2OINwNpoouoMB4e+3yf8jm5+1I+yRMW7/yCDcKQBg0OMNNp8SzWpeEZWPjb7DFSdVS5kv2T2GfBdXMGubxyXRQR1tJahUquEiKwb7vBS6jGy4/OHhZ7HwYq3GB6VDj3s3LmT9vZ28RtbxzrWAENDQ9TU1JDNZk99OO8EqHVKOj7WwHxfRGjT2t5cRjadlbepr4aNt9XQ+9K4kA1T4PoqRt6akkVu8l3kQqVX0fOz1XOQzqEhMZeSRW7a9GgD6XiaPc+KLf6qdeC/upqRt6cJ9YkXU2qdUthK6c8B1yYL00ciQqQPW2MpDVd5OPrLYVmqnx8kWAMSSaTnFyPCGyhySUpt9/lQqJTs+lcBot8HFG33+VColWJkRaSN2vBQVBYhba2h1iHL5i1wnYe541Emds0JtTf7DARv8DL4x0lZ6lzGSp1QntRa1ASvr+bIT4eESaYA/ivcTB8JC+Xwhms9RIZisslovotcQipbapOajgfqmeuNCL0/KXeI18d/RyaT4bzzzuPll19e9Zp1rGOt8fjjj/O5z30OgA7Oxq5YXZWu+pxyyjda2Pet4yQFCAqebrssEgBI5AFzrZHeF1Y/BG5063A0l8k6bK01qai7rJLjvxkVIk3oHVphdQ+Q6s3aC1wc/ekwoQGxOspSb8RaX0rvi2IH34FFi7i1dTQThsakorTSIEyyaLqlGqVayf7vyLMz/iBB7m+QS1IyefQ0XlfFsV+PrLlK+Vqh8BuOvzDK7NHVx2+VVonFb1pzm2Q5UGmVstSQ9A4tld12+n4zLnxd4/VVlFg0wvO1AkqsWiECkedsBwrED8IWPrtym00oF5dYtdSc5+TYL4Zk2ciZKnVojGqhvuE9z4mjqYy93+oVIsj1VeyhZ/QIWq2WvXv3EgiIq8X/JfCBtHtbiu7ubvr7pWSXIcXvcj9a9I09BRITSeZ6whx/QWyxdejVKYmgpJU27UWsunTlBrRGNbZ6MRm83V89TrgvjtamxewXk/stsWrQWcTkCAsEpfJ2Mw3Xitlw7H+uT5igBIBWjc6sFbaiA4k8sPnjjcL2Z9aAia2fbBS2ZDN5tGz9dBB3t5jkoTVgwtPlwHexmG3M4CuTbP/cIVkEpZaP1LLpUXHbOrnQ2rT4r6pEaxJ7fYdfm+aN/3VgTUlW7/zdIVkEperzynF1WtbsfmoucLL1k43CNo4g/YbdgjZeAFXd5TTfJG6D0vlkgMbrqoTbtz9UL0uisuW2Wro/2STDWhL09hLMNeLy42PvzLL/+/1CBCWdU8uGOyR7FVFSo9lrQq1TodKLSYOXt0unXfZ8o1eIoIQWdBYtFsHf3HCtp2jfIkJQAklFbf5YmJ7frH5K9GBuBztHd6DRaPjwhz+8TlBaxwcG77zzDtdccw0A+3ibY7nViRN9L48xfWBOWJGnsCHuOdOOV9DSsqzGiKFcTK5+ak+oSFCyNYvVahq9Go1BTalHzP6sQFBquqlayJat/6UJ9n2vX5YqlLnGINnpCbq+acwaNn88SOB6cUu2wA0eNtwpbofVcHUlHR8Tt+AIXOul5lxx29Ld3+yVRVAyuDRseSxQtLdaCzg3WWRZGG//3JE1JVmNvzfLm//vQXEVL7OGmgudsuwD5aL9oXpZ/W78vVm2f6lHiKAE4LvAifdcJwaX2G+o7Laz5RMNwr/ZVKVn86N+cftDA2z+eIDgjeK1nT1QKpzDCtjxrz0ceE5s4a/+MjcWvxFSiNujWbXoHWL2BeY6AxoDzPfGhAhKAGafiRKzFoNj9ZpcY1AWc9HUnpAQQQmg93djTB2YW5WglMqlOFDxBsOjQ5jNZubm5tYJSuv4QKCqqor5+XlKSkpIEOPV3E9J51beOEonskzsnmXgNbGNqekDoeLmduD6KtS61dcSdBYNOlsJZq+YD+SRHw0RGU6g1oGpSizX6Rwl6GXY15GWTtt6PyRWVxz8wQB7/l3egrfJrccqaMEEUH+5m46H/cL2ZwaXjrb7fBhOJdN/AtQmNe0P1OEUtJbQOTTUXlhB9Vliaqgzh8Ps+LI8W2LfpRVsvKtWuL1cqE1qKs+wC1uGzR6J8PbfHlrTTZ3dX++VRVBytJQJz0FOB/bmMtofrEdnF/QCRPoN+2RsiNae78J/hXid03JPLb6LxO3nAtdX4btM3GbFd2kFHQ8HhPsFajBVGigTzGEg1Tj7vtsnRFBSm9T48/YqIgQlkKyLtSYNap2YvVHBLrDnF6PCJFOTS0epV2zNq7LbXrRiFLUBTEfSTO6eZfC11dsP5Y7zXvhNVCoVd9111zpBaR0fGPzzP/8z//AP/wDATv7AcG71WmHsvRnGd84IEZSAIkHJUm/EtVlsLcHk1mN06hZJOCsgOpooEpRMgmtYSq2KkjINBsH5X4GgVHW2A42AVdz0gRAH/qNfmKAEYKzQUVqtF7auU2mh7aP1eM8RX2PydNtl2Z+5t9hk7cnUnO+i5gLx8e/IT0dkEZRUehXNt3mxCVolnw5KvXpZn3/wucE1JVlFhuPs+PxRYYKSSqvE2WFBJcM+UC4arvLgPVfcCjAyHGfXvx4TIqEAOFst+C6qELaKNPuMbLijBq1Z7DdrTSqab/UKfz4q2Hh3LTWCa/YgrduXVhpAJW6hffhHQxwWVIp0bbYW852owpHBWoJe0LJT79Ci0ipZmE0KEZRAsmPXO7RoTAJxVUnWyKggMpIQ7htj704zvnNWiKB02PkuPaNHsNvtTExMfOAJSiDsbP6XhdfrZWFhAb1eTzab5TV+xpm5D6NXnHrhoLChrHNqabqhmp1fP7aqwoh7sw2DU0fVGQ6GXl2ZWRfqjfHmktPOWhNCdkxtd9ei0ih56/+sbjHx3uflb254zylHY1AjQj0qEJtcmy2ojSrJxmgFJGeSvPn3B2UptYzvncWeLBO+JhlKotQoKPOZiI6tfuI+Mix9sNYgvnjR88KwLIs7uSpQuVxuJVXc96HmQieV2xzs/bee4u9ZCY7GUlxtVmKTC4zIZOR/UFDZaSebygo/h84npGQqavmAAlAqhO3tCpDTfu+3ZZyg0wI5yGTE+5JapyRrFE/RY7tmqciK5SGQ2r31/4kpNqCVLFkOfn9QmHBUd76LshqjLOvN4T9OCyskBG+swhYoIx3LCC3WFHK0qL0PgK2hlLJqg9A91V3uRlOi4vDzQxx4bnVC01u5l4gwhyqu4qabbuJ73/ue8H2tYx1/Dvz4xz/miSee4J//+Z/pZT+h3BQdirNP2T42muTozyVyXsPVlcRnkkKnFFztVpQapZAF1dJNcVG1IFtzKY3XVDFaNUPfiysvpM4fj/H234nnCJDUlMz1JrxnOjj2q9XJiQVik6iS1EGBfLIUqfkUof4ok/vEiclaoxpVifhEPpfJgYw6p+cXI2QT4iewRYluBcRmUqAApVZ8Erzl4w2kkxl2/auYrLP3rHJQKhh7Z+3sMdYSzo1leLZJtmczAvE1+ww03VxD38tjwr85l5XXL0Desz7y/DCO1rCwvV1hA170O0qr9Kh0KhbCYn01FYP53ijje+aE2gP0/HxUstMRuCXPmXZiUwvMHo4QFVEl0YBjgxljpY65HvEN+Z1fFq9ng9d7SUZT7PzS6tcUcvTAyxMMvCxGonBttlFaZcDWXLrqZrnGAE23+jj4n0PERpP0/Hzl/BvLxXiDX8EoVFZWcuDAAczmk1g7rGMdfyGYTCYikQjl5eXMzc3xe37KmbnL0SlOTWQpbEypTWoarqzk6I8HVlUYMdcbsfhMODaaV7UQS0yl2P7Pi/NvUQWT5tt8aEs1bP/c6nP3g/8hrhRZQNVZ5RjLdQy8PrGqqlJ8QpqHltUa0Nu0jL83t2L7dAK2f+GILLWmyf3zKBTi6i7JaBq1Xo3BqSU2vvpFBTUkEWIZSM/tyE+GZKlmidpsFZHLSeO+IBwtZdRdXMmB5/qElLaMrhK8ZzvJJDKrPrMPKqrPcpLLZIXJXxs/UoO6RMWur4nVpkqNAoVSnu0eyHvWe795HGWJjG2DHGQz4v1CY1ChkHF0evpgCLVGKf4b0vDeF8QP5haUhEQJR5VbbNiCZozvzQpfM3skwvYjYuuanrMdVHU7OPSjQeaPrb4OV8jROwWVsgBc7RYyyazQe1axxYreqqX3t+NCtp4HctsZoQ9lVMnDDz/MF77wBeH7Wsc6/hx48sknqa6u5qabbuIgOwjn5ggqOk7ZPhXJFIlH7i020gsZIbsuZ5uVkjI14ztWn1cPvLL4bqm0CKly6Mu1NF5Xxcg704y+vfJeWmImye6vi1tbgWQx5GyxkkvnhJShCsQmT7ed4XemV1U7krMXAFJMZg+HmOkRr3PUBhUag/iaVyaTJZfLCVtDDfxeXM0KIBOXJwGViWdQKBVC5LUCgjdVQQ4O/XBIqL2ny4HGoJJlufVBgsmjx3uOk4W5lJA9odasYuMddfS9PMbMQbHfLHfPF5ClQjS6fYbIRFzY2k9VIhVRotaEuvIS1HqVeP/LwNTBEKF+cSWr8R2zjO+aFXpvLH4jmYUs4cG4MOHI1WYh4U1yRFAJFeDoz8TbNlzlIRVLC63FF3L0zMGwcB+y1pmwNZQyczREaDU7XhXUX+pm4NUJkkvGn1Mhk8vwOr8kNZ6kpqaGffv2YTKJH7z5S+IDb/d2IkwmE9Go9GK00IVLsfKpDt/FLiq22Dn0/ACzAifXtTbtIlFBixC5pv2henRmDW/906FV29ubS9GY1LI2OeouraC8xcLOrx9flUQhqajIs1fb+ukgICnJiKL1Xh/HfjUsy5LprxXl7Wb8l3k4/tsRWeQmUZT5DPguquDYL4eESEpoobRSnr3ftqeCTB8KCcmog3y7t21PBZk+HKJH0CpCa1KiNavFfi/QeF0VCiUc+k+xwkoutj0VZCGUEpa9/mtH8x1ext+bZVpwwazucjcV7VaOvTDC+I454e8xVmiFckTL3bXorFpxEhqAFvwfrhTq0003V2OpN7HnG8fEclY+9y8bD1bBlscbUKqUvCNgxzK24RD79+8nl8vxzW9+k7vvvlvoO9axjr8E/v3f/73YR0UtSLY8HiAVS4v5emtAo8lbJmkQ2rw3uLW0fqSeiT1zHP/16sSg2ktc9P1G3KISDWx5qIHQSIwjP1p9MmNwaIjJkOsvWHUNvDbB8OtiizG2oAlHs1nI0uW/Alrv86E1qNn+LzIUP2Wg4epKUomMcL8wuDSkwhlhay//FW4sdSbh+5dr91Z/mRtroHTZ5vFqMFXpiQyJ1Y5Gj466iyo49uthYVKQHLi7bNSc6+LgD/uZP/4B8iZcIxg9Orxnl8siHXY+2UgulWW7oBw6SIpZqVhq1TxaYtfQencdI29NyVoQrthiJTq5sLrNpQa2PtZIZDQuZlW5JPdrzBohYpktaCJwdTUDr02semgj5Jihl71MTk7icrkYG5NhJbCOdfwFsGHDBg4cOACIWZA42y3UnO/iyI8HmV9tsROJ1FTc5FcjRMhpuNZDWbWBHV86ump7Y6UOvU0ry47UtcmC54xy9n2nl+TcKl+gBrVOLYts0f5AHUqNkve+KH4Q0H9VJcNvTReJTv+VYarS0XRTDb2/HRVTKJYJnV1N7QVu+l+dEI6nwaUTInEV0P5QPTOHwgy8KrZRKNfurf3BemaPhukXJN6qdUrURqUwichztgOtTiWsZiMX7Q/UkYykOfA9+cTAv0b4Puxi5nBYKCeCdHi39oIKWZaBADqLmsRqOQtJBcpcZWDXN4/LIkF6znYwLHDwx/shJ65NVvZ+67iYjVw+96t1StLprNA9bbizBq1RLUSCmtzQw94De8hms/zoRz/iuuuuW/0L1rGOvxB27dpFZ2cn6XQaKw42Kz606jXNt3rJpLIcFtynUBWIAYKkF61JRfPttUzumRMiBjk7LEzsmZNlfxa8qZr45AL9r6w+rmlNKmEFKYDSaj2Ba6oY+P0Ek3vEDtAZXCVYA6VCOe+/Auouc2Owa4X33uTCvc0GGYn4IgKtWUUmnhMm1Tg7LDg3moXvX67dm/T5FvZ9u0+oPeTtv0JJsXfMrMLTXc7oOzMkZIociKDUq8d/mYejPxsiIkhk/muG1qTCvc0uy35yY15FW847oNIqgeyqBE6VXkXzzdWM7ZgVIpMWUOY1kF7IEBtfZb6igtaP+IiMJYT2JZbmfpUgUUzv1BK8zsvgaxNMrVKbJvURjpTuYmx8jM2bN7N9+/bV7+kDhA+83duJiEQiRYmqvbzFodzOFdv3vjjOjn85IBGUtGCqXlnaq7Ah3Xqfj64ngkI2ZeO7ZwkPx4UITdMHwkWCUutHfULWTNGJBNl0FpKrzxqSEUn5p7RWL2zFceC5XnZ9WZygZKouwejWU32WuNRb2wN1bPq4uAVamc8gyz7BGjAJ29yBZL3V/qBYfCYPzJOYT5IUPFkNEgnHLijtHOqNsfurx4UJOySRRVACyKayZFPyFKFkf74MZnAykhX/vcDh54eECUpyYl9AdDROeEhs8aK0Vk/3Z5uo7BaTT7cGTfivFrMXBChvLcN/lXh7V6eFbU8FhW0ktSYwe414uhzC33H8l6Mc/OGAEEGp7nI3wRukd1eUxJgMpUklxCY7wRuqJJu3JMKku7Gds8QmF4Tup+nmask2T5CgVOaTpMO3f+noqgSlZC7J73I/Yt++fVRXV/Pqq6+uE5TW8YHHXXfdxaFDh1AoFCSI8XLueVK5lRc+t3/xSJGgtKp1UgpSsSwGl4auJ4PUXbq6BHNsNElkLMb4HjHCd4GI4txkofYSAQnmFKQSGeFxv0BQClznoers1XPr+HuzHPiPfmGCEkinmqz1pcK2bxa/kc5PNmJtFD81UXepG3OduB1C/WVujB4xq5LKbjvbngpSYhf7AeHhOKFheeQVW9AkHJ+jPx2RRVyLjaeECUog9Z/MGtZd6WSGzIK803eiBCWA6HCCvf/WJ0xQsjaa0BjEp5WJ2SSx6YQwQan1Ph8dD4tbDNZf5ha2bQOJtGZwi1sEdzxcT/Pt4pa/nm12zDUm4f4PsOsrRznwH32rN9RI8TE48uQegUeWTUN2IUNsavWNYo1ZQ/Nt0m8d2z67OkEJIAXhoRgTu+dW/3yDRGhqukmS01+NoFTIOTOHIuz4/MFVCUpHc3t4Z/Jl5ubmOPfcc9cJSuv4q8D+/fu54YYbAMmC5PgqtrsTu+bY+aXDxc14vXPlNa8Cucd/hZvNH2sQsimb2jfPfF9UaCM7OpIoEpQarqkUsmaKzyTJJNJkRUqvtPQbdHY1Tbd5hfThD/1ggD3PiisHaC1qrP5SKvI2SCJouNZDy921wu11Do0sayxjpU7Y5g6kg0BNt4qNVZGhBNGxuKw1L7VOSVmtWN2YmE5z6AeDsghfcghKAJlEhnRSXm0k6/MXMsJrFiBZMspRORr+w5QwQUmtk1Qv5WB+MEZoWKwW1FnUbHk8IGwxaHDJ65umKh3VMqygy2oNbHq0gVKvYG2nBnvQjLtTbM0OYHzHHPu/2ydEUKrYYsX3YendFSEoASTDaZKxjFAOrTq3HFujtKYpulk/eWCe0GBUiKDk/ZCTzo8H0NnVpBOrE5QK1pT7v90vuVSsgHQuze9zP2P3vl243W7efvvtdYLSOj7waG9vZ3x8nLKyMmaZ4g+5X5LJrZzvD/zHAId/LO1T6ARsazPxDCq9iraP1uER2E9IRjLM9UaZ6RE7XDyxcw4ykpqMe6tN6JpkNC087hcISu5tNspbV1ejDQ/GOfBcvzBBCaB8o5nyZrOw7ZveoaXl7lrxsQGJ+GKqFLdfd3ZY0DvFrbfaHqijxCrWPjwcY15kbr0EBldJnqSxOkbfnhEmKIGkxiNH9SeXzpGWuSYlB9Lny1OLXJgVIyiB9Ht7XxgTJijJiT1AOpEhPBwjIljP1l3qlmUx6NpsFbdtQ3p3RXJVAQ3XePB9WNyS195sxt5YhtYsrsB58Pv9HPmZ2H5v/RVuSqxaMsnVCUoAZHKk4xkSc6s3Vmmh5kKprgsNxFYnKAFkYKYnzNQhgRyXJzTV5ud9qxGUtGY1qCA+kWTPN3pWJSiN54Z5LfYCk1OTXHPNNX91BCX4KyQpARw+fJibb74ZgCGO8cfcr1dsX7A/2vSAn5Y76oS+Y2p/iNjkghDxaPTNmaIHZ93lbrQCL3x5uxljhZ6qs1d/2cd3zPHuPx4hGcli8oglk/ImMzpLCdbA6ptTkcEFkhFps12E6BMZXGDHl3tkqdqkYxkyCfGBrvZ8F9aGMiESF0jer46mMuHPX5hLkZgWXCBJws4v9ggpcRXQ/mAD/ivESVP25lJqLpRB+rq/jpaP1Aq3f/efjnD812u3KC/n860BE51PBrAGxR6u2W/Ed7FLiDAIUHtRJcHrvUXyiAj2fbufY78QYL0Caq2KVDzN1GGxiUL1meWUb7QI92XPGeWUbzQL/16lWkkuk2N+QEx6MRmBHf9ymD3fWN0KxFRdUiQcicrFW+uNlNWIEaYK+ezw80PsErQbsfhLqTpTzP/Xf1UlWpN077sFZdMnD8wTn0kKEZRaPlLLhttq0Tm1q44VEec8e61/IEcOtVrN0aNHOffcc4XuaR3r+EujsbGRhYUFtFotWbL8np8yn1thYzi/Nmr06Gi5s5bANasTL2PjKaKTCSYPiC1i7Pv3fqLDCTRmDV5Bf+zKrXbKN1iE2u7+2vGiPZzBJUYsMNcYiwvKq6GwkdhwpVuIuLD3u32898VDQgQEgOhIlFwqi0ojVuprDJL/uadbjMCqMWsob7NQfYZY+7njIZLhFBq92IS199djQipWBdiCJoLXe/GeLVhLacB7XrkwycoWNLH5Ub8wkaX/pQlZNlpyIffzm2/zFokmIqg+xyGLsNZwpYeWe8TmWACzhyPs+bq4JVliaoGEoPwzGihvsVDzIbFaQWPWYG8y45Vx+CKdyJCSoeBx5Plhdnylh4Xp1V9g/xVuDG4tqVhWSKHNVm/CYNdhaRCbBxXITDu+0MPs4dVrO882G2U1RqH+YHBo8J4nxf3gc4NCKiqpGETHBXO/BlruqKXlntritSthtq2XAYV0UvORRx7h1VdfXf071rGODwh++MMf8rd/+7cAHGc/23OvrNi+YDUWvLmajbfXCBF3pg+HCQ/HhWzKZo9GigdEKrtsaC2rf4GpSofVX4ZLgOgQ6oux++u9EvlI4LMByqpNmCr0lFWtnp8Sc2nSiSw6h4aa81fP98m5NDu/eozeF8QJzelImpQM+w7PNgflrVYhEheAp8uOa5NV6NmCRPwSXvMCDnxvgFCf+GZZ8+01NFwlvuZlqtLh7rQKt2+4ppIGgTlEAXv/rY+RN8QPAMiFnM/XOTS03ecTJhLpnSVUdtmEn62zw07TTTWyiEq9vx5j6PeTQm2VJWoW5pKEBsXWgNxbrFRssQn3ZXennYrNViGCJIBKoySbzBCfECTcp2HXV45w6PnVFSy1FjW1+bmkiBUhgC1QiqVObM6ns0sxGX59igPfFVMKcG40U9klRrCq7LajNqmJTyxwWNDSZ+ZoiPBoXIhE5/uwi5Y7axfJrytckjYl2Od4nRRJTCYTPT09bN26Veie1rGOvzRsNhszMzM0NDSwQJxX+SmR3CrzkwxoTCqab63Be+7qc89MPEN4MM7scbHc2vfiGPHJJCqtRJYRQcVmK+UtYpbWx385WiSxaM1iPmJWfynWerENjoJllXurTYi40P+7CfZ+s1eMgADEZ5NkFrIoVAqxC1TSmqCzTawWUWmhqtuBs8Ui1D4yliAxk0QpOJZP7p5n8DWxcRkkMlzzLTWUC94PKnA0l6F3iK1h6Z1amm6uFia+TO6d59AP1sbx5HQ+33tuObUXi5NqbE2lGFwrH+xYivpL3TTeIC6oEZ9I0vPzEWHSVHxmQegQWQHuLTZhMrZKCxWbbNI8QhDpWIZUVHzNa/SdGXZ/s5fk/OrXVGyWCFOZpJhVnb5cS1mVkTLBg4has4pMMsvB7w8SHly9drQ1SgQrk2f1z1fpVcUcO/SHqdUt2wAyMD8gTjptutlLw+XSHGu1fBhqGmaf4i0A/v7v/54f//jHQt/xQcNfJUkJ4LnnnuOb3/wmAHGi/C73Izo/HaDtAWmBvLy1jO5nmotqJ633+igp1TC5Xyowtj0VpD1/ItfsN9L9TDM1+YnJhjtqqPmQs7iJ3/XZJrZ8UlJvMlZo6X6mmbpLpaTXdHM13c80A5I1UMUmK5vzn6s1Kel+prmoohK4tkpqq4XJXfOkY2nswcUF5e5nmovqQfVXuOl+prlIeNr0cT9bP9VIy11+Wu/z0f1MU/EEb+1FLrqfaaa0VnqROh7x49ho4c2/P8DskQjdn20qnujynGOn+5nmotJM+0P1bHtKsnurv9RN+UYzrff5AKjYaqX7mWZcnRYphvf56PqM1DY5k2TbU0G2PRXEVF2Co0WKt+ccKd4td9fS/dmm4m8zVepRaqWiocxnkOKdJ+U03+Gl+5nFtls/2YjaqGLHV3pQGvLxvlxSVmi6qaoYb5AUkbY83sCBHwyy4yuH6X6mmcC1UgwbrvVIMczXTlsea6DzSek57vlGL9ZAWZGhWneZFG9jxZJ4f7JxybNpYsuTAYlMdIGT7meaiySYjo8txhCg+7NNpBJpjv16BM+ZUrwdLdJzbn9weduup4O03V9HzfkuKrc56H6mmYqt0oDR+lEfXZ9ZjMu2p4K0PyT1LY1RTWmNgaoPSZuDLR9ZHu+tnw6y6VFJucpUXUL33zRTd5XUZ5tve3+8N39Caqu1SfEmX98Fbzgh3k8E6HwisCQuzTTeUIXOqcV/VWU+3lJa2fyJxXgX2jbfUo3WrEatUxG83lskqWx61F+0HSzEsCD557/MjXubHatfepDtD58Qw8800Xqv1Gfd3TbszWXM9oUJ9cZou7+OrqcX2257Ovi+HNH+cD325lJa7z1JvE+SI2aPRIhPJdm8RIlr66cW431ijihsYhXIkp1PBtjyWIMU75PkCL2thL3fOwZJyULsxHifmCOmD0d45x8Os+nB9/fZE3PExntrMXm0bLir7n3xPlmOqLuoEltTGdueXhrv4Io5QmNQ887nDy/GMB+nE3NE64M+Wu/1F9/BbU8F6XhEartSjnjvq8fQ6FRFZTad8+Q5wlRdgrPFwuZPNLHlcSneaDl5jrBJY8SWxxrwXVTBrn89Voz3SjlC79QxeyREYiIpxfsOKd4n5gjtRXH2Rd8kEolQX19PKpVCqxVnr69jHR8EaDQaFhYWqK+X3tN3eYVEyxRdTzehMUskm/YH69jy8YbiNS131JKMpOh9ZZLqcxx0Pd1UJHm03udjy+OL+W3bU0HSkQzh/hiVZ9no/pvm4qZ4yz21dD65mN+2fqqxmN823FpN1RkOKvJ5aMOdNWz91GLbzicbi/mt/7VxVFolFVukcbb5lmq2LcmFnU8EaP2olN9MVXq6nm6i/aF6Wu/x03hr1bLxZMsnGorjicGhoevpJsb3zbHn6700XF1J19OL48nmR/1FFRiNAbqebsJ3aQUGhwZHq5VNDzUUFYA6PlbP5kcXlSe7nm6i4Uo3pMDd7aTrM00EbpJyWNsDdWz5RMOStkECN0gTGecmO2q9msRcqhjvpePJtk8Hab5Fym8VW6xs/ngTva+OcuC7A7Tc/f54b8iPyY7WMrqebsJSa2DPvx1DqVW+P955AoHFb6Tr6SYqtlqJjadIzCbZcFvNYgwfDxTHE6NHR9fTTUUlqsD1Hro+00RDfnzc8okG2h+U4q0xS/EujBH+K90Erq5m6I1JRt+aYNMj/kU1UY0Uw/rLpDGi9hKX1A/NSjzdDjbcXvP+eOe/03teudTWoSGXgxKzlg231i7G8KlgcZGisttO19NNlNbk++y9tctqoK2faiyShFybrHQ93SQpPwEb76rBXLtI7u38ZGOxBrI1l9L1dBPOvJJD821etn6qEY1Zg8Yg9dmWe6V7MvsMdD29qPQYvLGqWC+pdErMtSba7s/3WZcUwwKhJHDN8j5bfa6Tppuke9AYlHQ93UTtxdKpn/rL3FLbfJ/d9IifbDpL3yvjxRj6r5DiXXOh8305ovPJQPHvXU8HCVwn9dmVcsSRn4xQ5jUW1XbcXTa6nm46eY5IQTaTLday5W1mup5uwrFRqsVPzBHtH60jNpng0E+GsDaapD67So7Y+80+RnfM0vV0E56zpHgHbvC8L0d0PFKP/0o3BoeGzQ/58eY3xk+VIzQGJY4NFto+6seXryPrLl0e7xNzRODqaqYPzzHy5jTeC6R4F4iPJ+aIM/5HM20PSvnGc5bUZwuKU6fKEX0vjjP4xgRNN9YUldlOlSPqr/Tg6XLQ9ZkmytukhZvm270nzRGuTVYCN1bR9XQT04dDTO0L0XRL9bIa/3054skmIpMJjr0wIuWIE+JdyBEYYKTpADt27cDhcPCrX/2Kf/qnf2Id6/hrw6c//WneeOMNFAoFc0zzau6ntD1YV1THMVbq6HyyEVd+jKi7rIJSj57R92YhLa09FMZvnUVN55ONxY1v30Uu/Fd6OPIjafF/y+OBYq2i1knvqic/Jlef65TeebWknlN7QQXt9y/moc4nG4traZXddjqfbERtUhMZShCfjlPevLjm1flEoJjfKrZY6Xyysbj53Xybl46H62m5p47gzdVseTxQVBh2tJTR+WRj8bR88OZqqs508O6/HCbUF2PzxxuK44l0KKqxeGAvcJ2Hzfn6tOZcF54zHDTla6CyWgOdTzYW12v8V1Wy5TEpF6YjaToermfTo36MlToMLinehTHCd1nFsrxp9hmLJ6y1hXjnx+TaC5zL8mbbfT4MzhJ2PdtDOpGm88nGorJM1bnlUgzzBI6Wu2tpu8/H8V+NsvOrx+j8RGNRgamyS4p3gdi14c4a2vP1ac/PRnBsMOO7TIq3a5OFzicbMeYVBJpu9dLx8OJz3PJYgLYH6zDXG7E3S/EuKCU13ljFpkcW225+tIFMKkfPz4exNkjxLhD1G66pZPOSsafjY/788yqXFFyebCyOEf4r3MvmAx0P1dN8u9RntWYNjmZzkdjk+7BrWbzb769j4121gGRh2PnJRrwXSHVNzfnL4936UV9xzQikPqvSSIWC5yxHsc8CbLxLivfStr6LXegsatydUp8tEE+ab68prtGB9B7VX+5Ga9KgLdUSvKEaU54QH7y5mo6PLYnhJxqKJKyaC5zUXlSBLSDVg43XV7H50cUYbnrET2N+HcjsM+A5w8HkwTnme2M0XLPYZwvxPjFHNN/uxewzUHdZxbJ4nypHxMYTRIbjtNy1+Nva7vMV51Qn5ghJYSNHOiGtfbXcU1ucUxViuDRHWHwmDv5nP+nE8j4LJ88RifkUu756nMB13mXKmifLEQ3XVaJ3luC/uppNDy6J9ylyRNUZDtzb7Gx+bHm8gzefOkcYynXs/KpkHdnxcL2k6AbvyxH1V7vZ9LEAdfl3sP2BumK8V8oRe/69D5VGUZxToeakOULvVFN1ZjmbHqp/f589SY5ouKaSDR+pwX95JYfyFsSdTwRWzBGWulImds8Sn1hgy2MBGvLxPjFH6M5J8Z7iNebm5ujo6CAcDqPTiauVrGMdHwSoVCqOHDnCrbfeSo4sb/FbItWTdDzsL5Js/FdWsuGOxTWN5ttqiM8kGd0xg8VvpONhf1F5p+4yNy35cQqkdedMKktsfIEyn4GtnwoW9/JqL65YNk613F1bVBmvudhN/WWVxTxUc56zOK8H2HhnLfVXSm2HXp9CXaLC1iSNyZ6zHcucRJpv89JwjZQLtSYVHQ/7abjOw8Y76qi+wLmsLmi6uZrG66WxR6WFjof9TB8NceTHw1RsttHxsL+oetR4Q9UyFZiOh/1UbrOh0quoOrOc9vv9aEwSEarhGs+yA1TtD9YXxxNzvZFNj/iLaz31V7rZeOdiDNvur6PmPOlvllojJRZtURSh7lL3MkXL1nt9RdJKabWejgf8DPxhguO/HqXmQtfyeN9VS11+zcjgKqHjYT+lXiP7vttHLp0rrv2BtG/sv1LKhSVWLR0P+7E3l5GJZ4iMJWi8bjEOzbd6CeQFIVR6Kd6FGsi9zcbmR/1FZa3gTdWLrjIqKYbuLZIqlrPDQtPNXgZeG2dy7xyN11cVa1mAjocWP6e8xSz12TIVNRe4CFxXXaytANoeqC+uu9kCpVKfLddCFkyVBgLXLBLQWz/qK47fZT4DHQ/7i0pUvosraPmoT7KxAlru8eHLx9vk0dPxsL+4L1JzgbM4XwHY+JHa4j6OvlyKoS0g9dnqc8ppe6AelV6FSivFu0CK15rzMcyTRDzddjoe8hfj62gqW9JnlXQ87C8S/NxbpD5buN/AlR6ab1nshx0P+yWLPKQ1pI6H/aj0UuPAtR5yORj8g0Qqa3+wHs+ZUrztzWXvyxGt9/qkz1JJazIFEuNKOWL07RnMNcaiok+ZV4p3afXJc0QmmUGRX/MyunV0POzHUi/VkSfmiKabawmPROl/ZRydLR/vVXJE74tjTOycleLduiTeJ+SI4M3VeLrtqLTQercP12apBjpljlBJ9V3rR+uoLMS7VYr3qXJE43XVTBycY3LvPLYmqc8WVKFOzBGdTzbSdp8flVaJpV6Kt9Et9dlT5YjJvfMcf3GUhqs8lHnzffYUOaL67HK85znZ9DE/lryrjffc8pPmiFKvnqqzpZhFRhOEemN4zjoh3ifJEZHROENvTOLeZlsW76U5IkOGyY09vHvwLex2O2+++SaPP/44f60Q19/6AOLuu+/mqquuory8nGw2y+e/9C9c0n4FAPHpBLHJBJExiS033x8ll80t2gMpQJNPNPGZFLHJRNFWYm4ggqpkkb+lUCpQqaV/pyJpqW3eGmp+IIa2TFoITs4kCQ9HWZiVGIDJZJbYZKJoIzU/FJHYq3kGXKg/hkIpFR56ewmxyQRz/ZIaSmgohsmth6TUODQQQ6OT7nfo7Sl8F1ZIcttI8oDmWiMLoUz+c6OUlGkgKZEgUEA2Kw3YkREpLomZhWJbvV1aFNr59WO03OUjlP/c6ITUNlqIYV+UXDpXjEt0Kk5ZpRHfeW6OvzgixTvvsTnXH0WhXGQyh4djJOZSUiLQKJbHsDeKWrfI2A4PxSSblZkkxiotC+EFwoPSPc0NxtCaFzf3w4MxsulFm77YdILwZCQfsygGR0khhIQG4svYzInQAvrykvx3Rin16ElFksVnozUs3lN0IoGpQk/FJhsj26exTCZI5Jmh8/0xdJZFFYToeIL5/ihTe0OY/cZ8vBP53xrB6FqcqEVHE4RH40wdmEVbpqb6rAqiE/m2/VFymcV4R0bixPO/c9/3+mi8uopoPt6zAxEU6sV4R4ZjLISkjclkNIdCAY5GM8cZY74/isa4GIjwYJR0SvqeZCRJbDJRvMe5gegymcrwYIzcEkGs2GQChRo2P9jAxN4ZYpMJknlpyNBgDLVGsaztXH+M8XfnyCSyeLocRXZtaOCEeI8nmMs/8+MvjFF7iYv41OKz0dmWxHssTmgwlv//CWITCQZellSd5vuiZBcWbzg6Eieal1mMTyeITSUwlOtwdViLOaL4W0diJGakGBZyhM4mkbFOzBGRoagk3czyHGGqLlmWI6S2MTL5g/En5oicMiO9R33Sbw0PxFEsoZIuzRHJhTQochjKVSRnlucIkPrs0hxh8RspdRuoOc+9mCOWxjv/uUtzxJ5v9BK40YOmZLG/RMcW391ijpiO0/lkgMTcAtGxRDHHRUbixPOnN+OTiWU5YvZIBJ25hGN5SfNCjgBIzC/PsyqtEoVSUbRgK+QIgGxM6rMn5ojI4AKHfzxI+Qbzom1AUorh/NDyHGELWDG59cRmEiSmFinKsckEc3mFqkKOMFbr2PiROmb7wqiVSg7lT6tFxxNFNavQcKyYI3qqd9D/2z5UKhVXXHHFXy2jeR3rKKCnp4f777+fr3/967y+51UiuTkcMalonh+IoV4ifxseiTN9MERqPkVqIYNChVTvjCaZ71ueh8JDseL7ZiwvQaEAna2E+eOSBPJSGerwUKyYH47+fAT/5e7FmuKEvB8ejBbz/sL0ApHhGOl0hq2faiQ8Eie8xFJsfiBazEML4TSRkRjj++aw1pkIDcZQKRd/23x/tHhaPhVLERmJEcmPRSqdskiQKLQt5KFUCiIjMcKDMWJTKQb+MI61xlRUSJrvjS2rVSIjMebz1gyR4RjZDis2Xykas0Yaz5fWT8Ox4gn4yEicyEgMjVnNlmsbmO0NL1OiCQ/HmMtLS0cnF6R7OibFPxVPkRxYHu9w/h6kPB4jNrUgPcf+KIol9xsaiBbzfnIuSWQkRnxyIR+HGAZnCe4uG6NvzRAaiC7WKpGMFMNR6XtC/TEsPiP2oJmjvxqR4l2w2EhJ8Q6P5OvTgRg6i5aBVybz10YXa5V8vOeH8mPccJyIM0ZsPsuB5/qxN5pRLbn/8EiMUP6kTTgfw1QsQ2wqwsi708tqlfBwrJj3o2NS20L/ySxk0Rg1ODaWMbUvRGQoxvzg4tgZGYmRmM3HpTeK3q4r1hWRwRjhfBwS0/l4TxRiGIVsjra7pcny/GC0WKskQlJcinX7YAxlXklr7zf6CFxTuVirhDMnxDCOpnTxfZw8MEeuGO4skZHFdy40HENv1y7ps1EUSpg5IJ0Kiows/tbwSJxSd4xULFV8Vo5gGY4NFnp+MUp4JE5oYLGtFG+pFivkiObbvAy8NrksR8TG8zHMW4MVcoTGrIFUZlmOiE1J/Ts2nSh+biFHWPxGwiNRqZ5OwcKc1Daa77Nz/TFYMp9BQfE5FXJEJB/D0EAMdcli/5jvj1JaY8TRbGHkzfF821jx2SzNf4UckYpl2fOdHurOryQ8WIh3FIND+74cUXW2A2erhchYjPmBxRwRqdSTjaeKn7s0R0TG4tLcIrWYIxbyuXWuN7o4n9GAQq1Ak7/HUF+ciDfGwvRiP0xG3p8jht6awtlixrnBUjwFeOJ8ppAjPN12VDrV+3LE0vljIUdsvKuGHDkiIzGG3pwiNpok1B8rzuUL35NKZEi6orw1/TuSB5LYbDYOHDiAwyFucbyOdXzQ0N3dTSwWo6Kigvn5eb78rS9wYZO05rUQShPqjxbXD0KDMVQlqqJailKtQJ1f7E0nsoT6o8X1sdBwfNkcValWAtK7mk5LY2lsTPrcyGiMUL9WsllLZ5nYO0squnjqNdQfJZy3FI2OxQn1R6UPAWZ6omh1KnyXVmCpMTLfHy3mt+hEglB/lFR+bJrri1JSpiabzDF1KETlVltxjIhPJ6W2+boh1B8lGU5BWiJMKLVKcjnp/hNzKUL9UeIzi3kom1/HOvyjIRquqyyuoyTnpM+NTy+uuy2df88PRHFutFC5zU7vb8eXxTt8wvx7vjdKMpHBd1kFGoNKaluI92icEsviuspcb5RcRlJsUuuUxCbjREbzcRmJE3JECyFkLp/304kskCU0FCU6mY/3uBTvdH6Dbq43uqxWiYzFMeXXvArxXgjl17H6oiQsi7XhfH8EW6AMZ4uZ4Tdn8jHOx6UvSjq2+Mzn+yJExhLM98bQOTRSDGcXY7h0zWiuL8LCTIqZQ/MoDWqqux3EC2PEYGzZOtZcX6R4f4d/NEz9JRVFm4zQQByNcbHPzh2PkM4/13QijVKlwNFsZuB3k4SH4+iWrGPN90aX3VOoP4olfwguMlqIYX487IuiXnJP8/1Rspkc7Q82MPLOlNQ2mi3+TWta0gf6IoSGpHr84A/6pTWv/Cn0UH+MhfCiQmKoL1qsVQZenkSlVhCbSBY/d6mt73xflFi+3y2EkoT6ooy+PVuMNyfGezY/nwmlCQ1EsfiMOFsszPZGUC2tVf5/9v4zvK3jTvvHP0Q5BECAAAkSIAgSBEiwSiQlUZIld1vulnuNW2zZTpzEdppT9tl98avPPs9uNluSbLIpTnViO3GJa9zjJjf1QlHsvTeQIAiiEP8XBwBJizhnmJ/z302W93XlShgNh3PmzPnOzHfuue+uYHptmIoRuhwNJecUnhIjpruW9jPLY4ShQE9wKESgS0qr7AS6Vn5Hy2NEll7+OZx8nuluOUYs7+9UjIjMy+9Vn1QKSsWIFf29PEYMzJHns8DishixvN7kvm95jJh6IUgkFMOQu/z7DKbtX5bHiIa7fYQnIwR6gulnne6eY2E6lXtdGZMDHXPkuk0M7h1P9oscIwAWw7EVMUJj0KKVNBhsOsLTsXSMkDtcfp6Px4j5yRgnHu/B5rOs2D/O9MwRSD5rKkaYirLJ9+cyMzhHoHtJMWq6+9SYrLfo2Pw5P5PtM4SnI2kbwkBPMD1mUzE5Mhuhr+Q4rW+1oNFo2LNnDz/84Q9Zxzr+kvHrX/+aiy66iD179vB+75uEXpnBFZEJnoHeOaRlqnHTHXIcigbjLEYX0WZrkCx65kcjzPaFVsSh6a6ldViOXSJLA5JJrmu2P8Tisrg/3TmXniv7/ziKVpfF3FBy/TEwv0J2YqorSCS5PorOx5lql+Na/V0+ZvrmmOpYUm4KdC3lVeKRONMdQSbaZ5kfW2CmP4ROu1TxdPcciWSsi8flZw0l26A1ZaHRZaVFYgJdoRV5oemOIMHRMPH5OO0vDGArM7OYtGT9+B51ujPIXDL/MT+xQCQp6jD4/gQzPSHCU9EVZVO5qYVAlOmOIFlaqL25lKnOuRXKL9MdwfS+fmFGLjs3JP8cX5DjbLoPO4PpWB6bizHdEWQhECUSiDE7OI8uZ1m/dAXTe+FYWO7DVA5sbmgem8dEfq2FyROzBLpP7e/U+dbcUJiFYAznlnyG90/JZzip+Tye6sNkv4wvMN0RZPRIQP637jm0y9YqU53yugzk/Md0R5D4XILmR3uwlJhO6e9U3m1+Si4bm48TDcbpfnUYadkZZ6BzLp2bigTkfonMJcdaOEqO3YbNl8N0+xyBzqDsSoR8vjjdEUyf+80OzGMpMaVzIFNdQSKp/p5P9ksyPxYcmkcjaai6qhitpGWqbXapD+cT8jhMfhvB4TB6izy+u/4wzMJUhHhybRiPLyb7O1l2dJ7pjmBa2aj37bHk/mfZeEmO7/lxuf3x1JhN5rpTqjzTnUH5/At5zMplk3ms3jmkXB2urXaG9k0y3RFM591SYza1pk7FCM95DsaOTq+IEQuzyXGY/LZTMUIraUCbxXTHUoyIzkbTYzbV36kYYXRIBHqD8ncUl2OKkf3SAAEAAElEQVTEx8fs8jxWlkaDzpDsw/SYlcvODs8jdSxbG3bPYSvPwbEpj9HmafndJNdAc2Nyf8eT/Z2OEXFofqQb9xmFBEdT/S334cdjRF6lmaIteQR6gswNLMWI6Y5gOh//8RgxcSKARptFPLKY7u/o7FIfLo8ROpMWKbmuDI2G5T6cTY3Z0Io8VipGjB0NMNkWwF5pXervwfmV+5lkjHAlFaM+3t8r8ljJGFF2gRONlMV0R5Cx4wHmxyPoTXKblpdlEeLGCO/FXiF8dJ7i4mKOHj1Kfr6Yzed/VWQlUjv5v3A4HA7GxuRkTAHFbMo6XbH8pvsqSMQTQhZAUr5EJBiBiGxPFBxQ1x107czHe66Tlqf6VG3CKna7sJSYOPQDcdsGKV/Cc2bBEukqY0HY/sUaxo8H6HxBzM5Kypeova5EqG9E+yOFzZ+vgKwsDn6vXah86jbtB//QolpWMkPTg3WExsMc/qF62yuvcVNQZ+XoLzoI9qnL6RkcEuFR8Wetu82DVqfh6M+6hX9nTZAQsiMEmbEcC8cZeFdMnvr0v61jpneOY79UlyPOKZJw73TQ/cogkaC6pZ9kXlIV+qRhr7Pgu7CIlid7hd5pqj0g1qamByvRGbRC49Fcmk3DHRVMtc9y4jF1menKa9w4NtpofbafsUPqlhfus+2Unl7IoYc7hcdlTpHE3LB62fLLXSSii3S9LCZvL+VLbL6nnJGDU3S/ovw75tJsCmpsquWWw7nNRukZhez79zbVMZ9SWDrwHfUYs7w/RL/vvCozVVeX0Pp0v6IFXjARpLPwAKNjoxiNRh5//HF2796tWv861vGXghdffJHLLrsMgCyyOINLMWRlthzIqzbjv6yY5sd7mROQ0s+269PWSMv/txI2f66CeGSRIz9RtpHSm6D+Lj/drw0zuQYrV8/5DsaPTKlaMHl2OXDU2zj8w3aiITGr27ILHMQXFul/e1y1rKlAL2QDBWBySWy81Uf36yOMHphWLe/ckkfFpS76946lST9KqLmhhDy/hQM/FLOy2v5QNeHpiJDVl94kk7pELe4sZSb8l7lofWZAaIz9KdCb1C2mQB6zxdvt9O+dIBpQf4C6Wz3kenJ4/+9PCLXDtUPegA69PylUHj3C/bhW1N3qITYXo/VplT3JMoh+01afibqbyxh4f1xoPDbc7cNUkM373xazRtz+UDWLkUX2/VubSLPZ9NlyYuE4x34uZtcBsmpVaESlMXrYeHMZJ5/oE44Z3oudFNRY2ffvrarP6r3YycDbI0JjN4WGe3xMtc7S95ZyTMqvMVN5RQltzw+kiWpKSPeHHvR6se+p/i4vi7EEx1X2JUcTHzBnnmJ+fh6fz0dbm9h7Xcc6/lJwxhlnsHfvXgDclFObtUWxfNV1JWh0WbQI7EV1hiSvKCbbE4nYAFkrcqjc7abtmf60jW0muLblkVdpofnXvar1Lm+Tc1sBA2prIx1suruCseaAetl03RoqLi/m5O/7Fe2LQLw/Uqi5sRSdQcOxX4jNFZs+U442W8v+7wjELB1se6CK4HCYE79R78viHfmUnung+G+6haysJJuOyLT4s/oucqLL0dH2lLhF75qgQ/X9pJBSJhg7LGYdvf2hGqY6ZoXarjPrKGrKY3j/FDEBu1edASEbxT8FRkc2/stcdL48nCbbqTcIdDqxNtXd4sFozxYaj5JNx+Z7/IyfCNDxvHq+uXhHPp5znLQ9O8BEs7olbH6dBd+uIo7/ukv4G0yRfNTg2pZHll4jbOGnM2jYeKeP0cOyeqVaG/JrchkUXacjr3nLznfS/EiX6nuq/ZQHXbZYrnn5Ny36fRsd2dTeUEr784OKFpCxRIzmwvcYHRvBZDLx7LPPcv7556vWv451/KWgtbWVxsZGwuEwerLZycVIWZlV8Y2FEhWXFtPx4mDa6kwJerOWaFA+aJfM2qQqnTJSKkhtT6vMXVqovqaEwQ8nmO0VtMpEVoWZHQipWjbZ63JxNeVz4nd9xAWtbgvqcsnSZTF2RH2eFu0PkPux9kYPvW+NMt0+p1re7DZSc30pvW+NMnpwWrW8e6edoqZ8jv5SzMqq/k4vC4EorQLri5TKjKjFnWTV4bugiN63R5lfwxnlWqCVxNqjNWoprLMyeTIg9K5Kzy7E0WgTW+8CtoocNHoNky1iFlloEbZWWys85zmIxxaF9xmw8vtWgmTVsfE2H/17x4TGo++SImw+s6zoKPC89Z/2kliEY7/sVi+MrASVSCToeE6MRwCywpWIbZvvoiJ63x4TjhmF9Vacm2wc+3WP6rM6NtuYaJkVrhtkJavZgZDq3sHokKi6soSu14aF7N3S/aEFraQVapP3oiI0uixV/kZ/ooNBSwdzoTl27drFSy+9pFr3XwL+akhKADfffDOPPfYYAFq0nJd1jdDvVV7jZvx4QPHAGeTD9fo7Kgh0zNL8qHKiJ9dnovrqEg7/vDut8iMC9xl2Bj6aUD2Ib9jjI8dl5OCP2tdEnBEhiJRd4KD4tALanx8QIkuATLSaGw0z/OGUcFtE4GyyEQ5ECQgsMkC2yxo6OMFst9gC7E8izAiSgzZ/oYIsTZYQWSJVPjYXF9polpxbgOdMB23P9DN2RH1zv1ashaS0Vmz/Wg2J+CIffbtVtay5NJu6m310vTIkNBbLdjko3m5n/3dOChGm1kL0Sv9KUs1HBLU3ltDx6qhw+fJLi+h8cXhtDRJA/Z1eTv6uV6xPkC3psrKy+PCfTqqWXes3tOV+P9m5et771gnVvnefbWfgLbGkUQobbisjkUjQ/Ihy0lbKl2i6z8/c8Hza2lMJdbd5aH+6V+hZe6QTtC0cB6C8vJyPPvroL57RvI51rIZQKERhYSGhkLxIr6SBsqwqld+S7bp8FzhofUJ9015/p5ccp4H932lRPcyuvbmU2FyMtmfFN1Pooagxj+F9yusXvQmaHqhlbnSeoz/tFq9ekNSy9UtVLEYXOSBI4tZb9fgvLeKEynr0T4HnfAe9r48KlTU59biaCugQJMLrrXoh0s7KX0KIcGIq0FN/VwU9b4yovk+QD7O85zs59HCXUJu2frEKFhPsE0yqrAVrJSmtBc4teZRfUkT784NCB3d1t3rQShrhcb758xXEQmLr1z+FLLWWMWMpM2GvsdD9khgR2lpuQitp1kRWFEHR9jykHJ0QsQrAscVG+cUuul8bVt1LicaUFEwuicY7K5hsm+Xk7/pV686rsQkRGlPItuvZcHMZLU/2EhpSXtjV3FCCrdzCwR+rkxpt/hxs5Wa6BQjz0USU97NeYiERRq/X86lPfYqf//znws+wjnX8JeEf//Ef+frXvw5ANkZ2cjG65VfXM8B9ZgEzvXOqB1WSTUfjngomT86okg4MBXqqriqh5Ym+NRFb8usszHTOqh7El19WROEGG4d/2kFYkJwNYgSRgvpcyi8upv0FMYIlyASLyFyM8aOfbP7F6jMRjy4S7BcjnLjPKpBvewsSVHQGTVppSRiC5KCaG0vR52iF1ww1N5USjywKEYPyqy1UXuWm7Tnxd7QWrIWktFZs+kw5ZGWlbeSVoDPrqL/dS8/rI0yeVH/OgvpcvOcXceznnUJknLUQvZa3SYSMBeA518Ho0UlhElHxDjuD768txyMC/5XFdL8+Ktzuhj0+tNkaDn5f4B2tkXRWc3MplmITB//9pHos2pjLeMvMmt6R70InWqNW9dKyzgCbP1fF7MA8LY+r7xl9lxbR98aoULwY1/VxKPqB/Hs+Hx9++OG6cuU6/ioRj8fZtGkTx44dA2AjOyjKKlH9Pa0ERacJEK2RzzLyK3M58vMu1cPslC3aWsgSIO+tVAk8Wth0TwVzQ2HanhGfG0VJLXWf8pBIJIRzWFpJQ8kZBfS8IZabWgsK662MHRU789QatTgarAx9IEY81RrFSAkrfwkhwolW0rDx01763h4TIu+Y3Ua85ztofWZAiGBVe1MpWknzZzkPXCtJaS0wFxuovr6UzheHmGpTz+14znOgN2vpEMwdV17tZjG+KFb+TyBLiX5DIFsM5pWbGd4vNh6NBRI6ozatAvVJIdcnK2OJXg4wu41UXVVC9xvDTJ5QHrtr6Q+QCWH1ny5noiVAz2sq8UIrW0VOd4hxDUD+piuvcNH96mhaaTMT3DvtOLfkc+xX6qRGY6FErieHkf1ifIoDvMVkYhSdTsc3vvEN/p//5/8Rfob/6tCoF/nLwaOPPpq+WRYnzquJ3zGeUDnwl6CgJhdv0q9ZCcG+BQI9QTpfV0+WznSF+OifW4lMRsj1majY7VL9HSlfwnOuk8ZPl6uWPfJwF61P9a2JoNR4bzlb7q+RiRkK6Hl1lP3fbxcmKAEUbrRRvN0uXL762hLq7/CqlhvZPy0TlCS5f9TQ+lS/MEEJZHKFZNZgcKjXDTJ5Y9sX1A9gAQ5+r0OYoLRWjDfPMN21JKGnBtfO/BXewJ8k1lr3+PGA8ELQmCdLky8IHk71vDbKe39/QoiM4z7Dzs6v1VG4ySpUd8pHdy2kwxOP9wuVzymSx58IQSnXZ2LrFyuFvgeQiX4Wt4ninYVC5QE++nYrh/5DnaBUd6uHpgdrhdsCcOCH7bT8rk+VoGR2S5Sd5RSKEzlFElXXyJvE47/qUSUogfweA52zdL2u3uf2Ogu2MjOe84tVy3Z7D9GTaEOj0bBjxw46OjrWCUrr+KuFyWRibm6O8847D4A2jvB+4hXV3ys7uwB7VS6WsszKSyl0vzHKeHNA6FD+xKN9aYKSf7dLtn5SQd2NHrwXFqmWjYbgxG971kRQMjn1ND1Qg19gDXj4h+3CBCWA4m152HzmtAe2alsK9Gz+XAUmp3qfpAhKpgL1sqGRqDBBCUiTTcwlRqHyji02dj5US36dRb0t41E++McWIYISyNLciQSY8tWfE2D06DQjh8XJ+FXXuinYmCtcfi2outZNQYNY3bNDc0y0zjDdJnbAl5WlXmY5Dv57h7Bq6NbPVcqqqgIwFehlQs4aSG2zPSEhglLqew90hoQISnW3ePBerL5XTMHVlI9zs/jcP3pgmv3/3i5EUNryhRrqbvEI1x0ainDit72qBCWAmpu9lF/oQq8emvFe7MTklBWxDnyvXZWgBND71giTbTNCKlreXU4cDTbVcpOJUdqKP2IhEUaj0XD06NF1gtI6/qrxta99ja6uLrKzs1lgnj/ye6YT6gdVrqZ8POc4VMtFpmOMN08z8L46yTI8HuXIT7qITMcw2HXpgzMl6AxQcUkx/qvV8wedLwzT/FjPmghKlVcXs+mzVegMyuXGj85w4AftayK/FDXl42oSj+3uswqovFp9/xjoCskEJZ1MDlHDwNvj4go6yDZeOoOs7iKC+ru8bNqjnpMEaHm8b01rYxBfZ8wMzDN6bFo455VXZcZ3ifhcvRbkVa6t7pGDU4wKrhkNVh2JRILYgtiJ1vjRGfb9a6sQQSmv0sxpX6oRWkcDmJzyhyNK9AHo/eOoEEEpNf5ECEoGu476O73CY9biMWJPWhWK4sjDXRz9qfpltbJdDjZ/rgqDXawtAC2P9nHi8R5VgpLOrKPikmIqr3Cr1qkz6yg7X47hXa+MqLsqIBOrRo9M0/eOejzPKTbg2GDDfYZ6HO91H6NFexiNRsM111xDZ2fnOkFpHX+10Gq1HD16lL/7u78D4Bjvczjxnurv2TfYKGrMw+TMVi07fGCa0cNTQsSWgbfH0wSloqb8FZajmeA5p5CKS4qRrCpl43DyyT7anl8DQcmopf6uCtxnqJ8Jnnyid02X7Gx+MwUbrFhKxXJHWqOW6utKyM5TP6NInUuJ9F98Pi5MUEqVBzAInpWY3Ua23FeJ1aee24tHFjn8o05hdaHYvJzz0pvE5rDRowFGDk0LlQWZkJE6L/uksZa6IzNRhg9MpW3s1LDGlBdtTw8IE5pqriul9maxc1K9WbZ6XQshZ2EqIkRQ0hq1oJWt60QISp5zCnFtFd/nOOvz1lQ+ODDP4Z92qhKU0MKG2334LioSrjsajNPyu151ghLg21VE+SXFcv+ooLDRiiFfIj4fp+XxflWCEiTzxkemhEiBxTvsFDXlycQ2BcwngrS432cyMYrFYqG1tfWviqAEf2UkJYCdO3eSSCSw2WwAHOIdPky8nvkXInDwJx0c/JF8e8LZZFOsv/lXvYRHI+QUSWx/qIa8KrNqmyoudclJVpW5KTIZofePIxz+ubpVGcBEMqHS9GAlldeob2pGDk/JPuACgS8yGQEJmh70U3aBejLr6M86OPBd8cM1kysbg12c2LDjyzU03F4mVNa5zcbOv6kVnsiaHqym7kaxZP901xyTgoc8KYi24+D3xA95wqMRmh/pFbLuAijcYMVWIZaYWCvWWnfnC0PCVl9jR2b48B9bxKT0zJo02UcEwZEwobGwEBkvr8bMxlu9+K9UTzICbPtyFZs+K3YIV7Q9j8a7/ZTtUv/OAOyVFvQmHXrBRx3ZP82Rn7Wr97kkk/Cc22yAmDrS0P5J5kbCqkQsg0OOl4UNuRBBVbUOIDgQoffdUY7+olu1bMVuN/baXCGy1Kb7KqhLLhabH+1TJDWm5oOJ5lmO/KJDMRE0mRjn1cTvaO9qx2q18vd///e89576xnUd6/hrwOuvv86jjz4KQJAAryZ+x0wic2xtf3aIwz/rYLYnBHoUE+ezPSHak5vB2htL2SCwFjAV6Cmot+G/WH1T0/x4L92vDQsRIQKd8lxU0JDL1gcrVYlNoZEowcF5hgU2+SmLJ+eWPLZ8wS8rziig59VRDj/cLiRnDZCVrUWy6LGVixFbPOcV0nivn7xq9XUuyDZbmz4rdqDlv8JF/e1ectwqJ4jIG7zZwZAwWRlkcpgIyWLqZJB9/9KqalGTQu/ro6rWV8thr86lcKP4YclaYK/OpbBOrO7QUITW3w0I24gd/1Wv8IGjCNFwOSbaZplsFVtHV9/gYcsXaoTK5lWbOe1rNeTXCI7X28vY9mWxSwcAJns25iL18ZrCwe93cPwX6vs5zy4HjffK341IDIqGYLZvjuED6kkp/xWudN2icaLl0V66XhlWJYXqTRqKNuVTfpH6ujiv2pyOl6GRKK1PKiS9l80Hx3/ZyUEV6/H9iTc5wFsMDw/T1NREPB6nurpatU3rWMdfOrxeL+FwmC1btgAJ9vFHDif2Kv7OoZ90cvK38q1oa0WOrK6SAV1/GCE8EUNn1rHpM+XketVjfdm5RRRvs6MzKKcYY2Ho/MMQ7Wo2JUmklJ823FomtF8ePRog0BUUUj1JETHqbi2jeKf64VrzI93C+RoAi8tITqH43LH5M342CB5qWH0mtn6xCotH7OBu02er8F+lrvwAMNkWZFxA0Wc5corFnrPlsT7leWAZYsEYXS8MC5PU7DW5ODbmCZVdK+y1a6t76KMpYauv4ECYQz/oULTVSkFnYE1kmXAgynRPUGjtZXRkU3+HVzgvtfGOMmo/JZZHtfpMNN7rp3iH2GFWbqmZbJsEOrFjxNneeQ7/tF3Vhg2dvGex18n7IRHFoLFjM8z0hlSJWKl4mTojEFFGiwVjdLw0SNuz6t+E99xCnFvyhYhbVdeVUHG5fEmm57VRRVJjaj6YGwxz+Gcdigd8oUSQ1xNP0drfQk5ODt/97nd58sknVduzjnX8NeD//r//bw4ePEh2djZjDPDHxO+ZT2TObY8enOboL7sIjSwAKBJtFqYiDCTjl/sMO+WXqV9y0xq1uLbnU7xTgFj45hidLw0J2THNj0UgLivT1N1ahl6FxBOfjzPdGRQ6K0sRMSweo3zZXeVgfqJ5hqO/7BRWgNFqwWCXsLjE1iT5NRbq7ywn1yOW0yi/1EX19WJrKcdmGxtuK8MoIIoQHJhnqmOWyKx4zktKklvUEJ6McPxXPcwNiRG+J5pnhIUFAByb8sj3/3nOG9dSdyQYZ+CdcSF7NYCeN0aFSUeiZLMUJk7OMCmg5gRQdr6T+rt8QmWNBRKN95YLr/39l7mov0OsbgCTMxuTS51UmULbMwO0PKYuEmCvy6XqGjdoEVMYi8NUW5CJFnXlWmdTnlw3pGOtGrpeG6bzD4PqbdGCe0eB0B7RWChRd2sZUtLiT03pLjUfdLwwRLOKlV1H4jjv8gcGBgY444wzmJmZwecTf69/KRDf3fyFYWpqirvvvpuHH36YGSZ5LfEEp3MxxqxTk9cpNSIpX6L8kmKKmvI5/EPlpKix0IBGnXAHyDeMc30miMhECiWVl4F35UVJXo2ZqitLaH26X/VAX6PLQqdX37wNfziVvqFbtstBz9ujqoQlbbYOk0AwTpFl3GfbySszq8oCHvyeuqTucoy3zDA7KHaINNURInZmHG22GAdv9Mi08IHJWqWgt36xEp1Rx/v/S8y+I6dIIhoRU+spPa8QvUErpL5z5MfqN4T+VKylbovXSMl2Ox0vDAqpHeXVmJkStODwX1mCzWdm3/fbhfov0D7H4XYxQuBUZ5Cp1hl6X1e/rQSwMBMlKnj7bLJ5isI6q/w9CqDr5RG6BKwv8qrMlJ3n5NB/dBAcUO8PszMbrV6DToBJXHpeISMfjTHVEhR6Pzo9ZGlAa1Cve/PnK4hHFjny4y76/6g8qaes9478uItcn0novWslDTqBGwTm0mwqLimmoNbK8V/1EOzLvNgZq+6gc6AdZsFoNNLf348krW0Ru451/KXjpptu4oorrsDlcjEzM8OHvIIjUUJD1o5Vy6dUN+pu8GAty+HAiLr9j9aoQSupx5HQeJRjv+wm2C8nMxTtoqKk10b1d3lJLCY49nPlNYzOoCVLp0EjsIpOrYf0Jg32jVZVpRSdSYM2W4vJqiekcigTGomCHupv89L58jBzA5kTD3MDYT74hxb1Bicx9MEYOU4DU51ic3A4EEGrE1t39bw1DgkU25tGFNX3sRw5bgMNn/YxemhaWOHJ6jMJEZX0Vj3ecwsZeH9M7nsVvPdnsG77U+ouu8DBwnRUSGEq2y6z40SUbgA23OxhfjLCYRUySQpda7C07XplmFyPmFIYQDQUY7ZXbLz2750gO09MQQsQtviru7mUsRMzjB0OqH6/AIY8PXqBdRd6KN5qZ/C9CVXL8RQ02Ro0AvtDmz+HyitLOPF4L8H+eUYOKIwTPej1Mqny2CNLMVYJWVmQpddgytcTUCFiNXzah8lu4P22E0mi1OrlQ4kQY/42ptplZYC/+Zu/+au7SbaOdYhg//79fO973+P+++9njEHeSDzFTi7FkHXq4UxaGUUHVVeVEBya58RvlBPLBqsOjcC6C+DkE/2YnIa0ak8sRkb7oolmOelschqoub6EtmcHVG3oNFIWGoH8TqBjjkBSvt+xycbosWlVGyUpRys0J6SUa/LrLNj9FtpUlExE7JWWY+TgFOGA2CW0uaEQkWCULI0YiWPwgwnhfNrAO2uzkNlwaxkmRzYf/XOrUHkpSbIQsQgs2JiLlKtncK+6+k77M4O0I5avWSvWUrfBrsO1xU7fexNCikRmt4GgyJoYKN7hwLU9n8MPi1kgzo8ucPK36kqKqbLD+ycZ+FCMXBWejhKPihHgA30hJk7OMLhPrO7RQ9OMClzyMDqyKTvPQcsTfWJqTmYdOoMWnVE9lhTU5zLdFiQ0EubkE+p9qNGBRq8RykNX31BCliaLlsf6VO0jU9Z77c8NYfpoSkhBS2/QkiWwLZNsOmquKWWyfYa2pwcVx9RkWS8dUydZDMRxOp10d3djMIiTMNexjr8GbNq0ibm5OXbs2MG+fft4lz/gTdTiz9qwavmUkkbJWQU4G/M4+kt1+x+dQYtOIHcen49z4rHetLKHmsVYygLLe6ETbbaGjueUcyUanQatPossgWVg6lK0VgKr16J6xqaVNOhNOiSzTrU/UsSq8ktdDO2bkElUmcoG46rnucsx2TaLxWVkblhsfbQwHSEeFTtKnzg+jU7SMD8htq7r+oN4nkRWrypneN9kmtymBqNDYl7AjUcraXButjHRGmRhSr38we//eRxk1lp3Yb2VWDguZPWmNWrRaBEmNFVd42ZhOiq0FgCE7c8ABt4bx1wsRjpCIzvNhBS+geUY/GgCo12cdNTyuNjzlZ5dyOxgiOn2OSICfZht0aHPEfhutJBfaWGyZZa+t9QVIAG0uiwhsp6xUMJ/WTHtLw4yPxpRtXpL2c21/LZPSD0JQCdp0Fv0qn3iu6SIvHILh3/aSXw+nnEcxhNxBvzNdHe0osnS8IMf/IB7771XqC1/ichKJBKJ/+xG/DnR29uLz+djcVHePLkoY0PWtozly3Y5GDo4TWQykj4AV4NkhuprvUKKH9u/VkMitqi6gbfXWai43E3zrzuFCAYpOJtsjOyfVixjLs2m4Y4KZnrn1uYxKqFKatp0XwXZuXrhg7CyCxzYfGbhww3Rdvw54Wyy4dpm59AP1IlWRdvz0Jm0qmQLACQ4/Wt1zA6EhG7obftyFRq9Zk2HjqI4/W/r1j4+BFB5jRvHRhv7/6NN3aow1R99IaFvy+yWcG0vFCKSlV/uwpCnp/lX6ozfPyvWMJadTTaKdxRw8EftQr9Te2MJNr+Fgz/uEOpr0XZI+RJNn/MTGg2rfre5PhORudiabCk3fbaC+EJc9Rso2+WgeEcBnX8YVI15xTvtZFt0QuSu5XG//NIiOl8bztg3kUSEt3mWBAmsVivnnHMOv//971X/xjrW8deOPXv28NOf/hQADVrOYjf6rNUPf/QmKNpakFaoUSQULYNnl4PQWJjxI8qJ3aKteXgvLKL7lWFVksaG28tILCaELCNTMDn1oMlStTpquNuHqcDA/u+cELKuA2Q1JZWuMDn1NNxZwciRaTECiB4a7yyn540RYXUVkXb8uVFzQwnB4TD9KjdSQE5gDX80LkQS2XCbh9zSHCHSj6XMRP1tXvr3jtH7htimWRR1t3rI9eTw/p+B2LT9oWoiwZjQunXD7WVYSkzC7SjeaScyG2X8mPotp4a7ffS/OyZkr/ZnwxrHcv1dXsaOB1TJham6t3+xmuDQvHoMWWM7NtzmwVKaw8EfqpM5CzbmCr2PFMwlRmquL+XkU/2yup0Ctj5YSWIxwX4B9dzam0s58USf0HOm4r6pQI/Vb2FIQX3iROIgA8hjubq6mpdffhmPR9z+bh3r+GtEMBikrKyMyUn52/FSgz9rY8byhY1WZnvmCE/H0gfgqtCB/xIX7SqHWgCN9/jI0mRxSOWgKKfYQNVVbk4+OUBoRNy+LK/SrHoIIdl0bL7Hz2TH7NoumulQJTVVXuMmt8TE/u+3qZYFmexQUGel5bE1kJYE2vHnhNVnonhHgSqRDeT3oc/RCZFKALY/VMN056yQotLGT3vJztWzX5AsvBZsf6iGqbWODwEU78jHc46TIz/rEhrXpz1Uw5RgfxhsOgob8+l7U/2Cm2tbHiaHgY7nxW2Z/yxYw1i2eIx4znJw/LEeod8pOacQ15Y8jv6iU52ktIZ26Ayw+fPVYmTOAj0kEkIkqRQqr3GTpcmiVeXAs2BjLuWXFNPxwmCa3JkJeVVmjPZsdTUpWBH3XdvyGDo4lbFvYokYe3mRCAtYLBauvfZafvazn6n+jXWs468dP/rRj7jvvvtYXFzEgIntXICUleGyqhYK66xphRo1QlEKBXW5ROfjBLqU8zYWj5HKK0rofm1Y1Qas7DwHWoOWzhfF5wbZkkqreljvu6iIvEoLhx/uFFNMAVlNSaWo3qxlw61eRg9NMShiu6YF/2XFjByaElZhEmnHnxvuswqIBKKMHVEnuTib8phqnxFSx/KcU0hhg439/96m+oySWUvD3RX0vTPGyH4x21pRlJ5diKPR9mdZ09V/2kt0PiZEtPGc56Bwo1WoP0Be58YXFpnpVU/kll/mYuzotPi4+3NgjWPZd0kRgZ45dRu2JOrv9DI3sqAeQ9bYDs85hRTW24TInJZS45r6WLJqqbqyhM6Xh1UVl2puLEWj19D8iPqZuOecQgbeGxOy60vFfa1Ri7XMpBirhxO9HONDAGpra3n99dcpKhK3v/tLxF+d3dvH4fF4iMfjbN++HYAhengt8QSRxOqjp+e10TRBqek+PxsFbEVKz3VhKTVRUK9uoTF+bFpIrmyieZYP/7GF4EAEg0PCe6G6/3npeYVUXFpM6XmFiuWCfQt0vz6yJgLKhtvK2PGVWiSz8pA59IMOPvgXcdJMbokJQ56kaoWXwmlfr2HzPWI2WsU77TQ96BcqW3JuAad9vUb1+QDMLiPGfAmzW73Rwx9OiRGUACKyJV/Xa2ILxcM/ahcmKNnrLJz29RqhMbpWbHnAT8MeMZm5tqcG+Oh7AgQlgAgMfjhB716xg8DgQEQ4wZTrMWF2icl5Nn6mnM2fFxtz/iuL09YaarDXWdj5UJ3q95pCXrmZbIseUYGeE4/38963Tqj2df2dXnZ8pQZJzCGFyGSErleGhGwp627yUH+bV7WclC/hu0iOcYf+Q8z2cOiDUUJjYUaOTquWLTm9gMJGdXn2nCI57tfdIh92db6YmaA0WdPD0by3SZBAo9Gwb9++dYLSOtaRxMMPP0x7ezs6nY5F4rzJ72lJHFq1bDREmqBUe2MpTff5VW3UAJyNeXjOUrcjmGieIjgYYviw+gb7+C970uQCz3mF6E3qa4K6T/nY8Cn1OfDEb7pof3FAmKCkt+o57Us1VF2rbOcbGony/rdbhBVq9CY9BptEXqWYbHLp2QXs+EqtsK1X/Z1ePILzWuO95dTdKkYusJTmYPOKqep0vjgkRFAC6N87Tq+gkuFsT4iPvtsmTFDacHsZDfd88jK8BQ25bPtyFeYSsRtXH37rJMd/IaZ62fPGKIMfiN3GAxh8b0KIEGMuMWIqMGAsUL/JlW3Xs+0r1Ti22ITasPlzFRQ2ilnfNd5VztYvitm86U1gyM8mt1TQ0i4KH/7rSVWCkt6q57Qv11B5lZiFMMDxx3rpfGlIlaDkOd9B5ZVuob7znFeI3qon2D/Pvn9pVSUogaxsO3xIPZYWNORi85kp2aFuP1B3i4em+yrQm2QVvEwEpWgiSn/1MQaz5PXn7t27aWlpWScorWMdgNlsZmJigvvuuw+Ablp4M/EMC4nVCRJjhwMyQckAm+8tp/Jq9XhUtCkPe601bWWkhOGDU4ypHKiDbC908PsdhEbC6Mw6ISuo/DoLVdeUqJaNTMdoe2FgTQQU34VOtt5fhc6sfNu37akBYYISgKXEhKnQgE5QdGTTfRVs+JR6HhIgv9pC/Z1esbJ1FrZ8wZ9WMlKCIV/C7DJicqo3eqotKExQAuh/Z4z+d8XWGi2P9QofZpmcBjZ/zi80RteK2ls8VF0nZvEy+P4k+77XJky8635jmMEPxfojPB0TIigB5HpysAqunSuvcbPhVrExV7wjn5obxWwJc4oNbHuwGtc2Mas8q8+MsSAbnUFMqaL/zTE++k6rKkHId4mTrV9Q/7ZTiIWh/bkBTvxWnaRXd1MZtTeo953OoEnHrbanBlQJSiCvuwI9QQKd6vG09KxCirao97POrGPzZyrw75btpIY+ykxQCpQOctT+NhEWMBqNHDlyZJ2gtI51JHHvvfcyOTlJaWkpYUK8o3mO3kSG+SpOmqDkPsNOw50+JBUbNYCipjzcAlZDs0m7sECnOsmg543RNLmgoC4XrYCqr393MVVXK+elQLZRan92QJigpJWg4U4fnvOU83rRYJxDP+4QIygh276ZHNnCCjX5VRY2f8aPySmmOuO9qAjHZptQ2YrdLnyXiJEL8rw5WARzDyP7p4QISgBjxwN0vzYiRBiJBOMc/GGHMEGpbJeDSoGxsVbkuAxsvMMr/E6O/rybtqfFFC+HD0zS+9aoMIFmqi0oRFCSrFpyS01C9nBaSUP9nV5sfrF1WtU1bqw+sbIVl7nYeIdXqCxayHEYMBcJqjkBR3/ZrUpQ0koaGu70UXKWej4ohd43x2h7fkCVoJRfJe8F86vUc9r2ulz0Zi2RQJxjv+wRsoSbODHD2JFp1XI5LgOF9Tbya9VzkaVnF9LwaV+aqJSJoBRPxBmsOkGzZh8AX/3qV2lubv6rJyjBX7Hd28fxwQcf8Prrr7Nr1y4SJHiLZyhKeNiYtX3V8pHJCLN9c/S+o34Q0fHcECMHJ9KKR0Xb8zLeuF1uzbXlfj/BgTCtTylvTmquLU3eiBhTtMjqe2OMbIuePoHDk9TtiuKddoq25nHgO8o3YsdPBNAZtUIWXURkm67Ky90c+WWXIklChIywHLODIWEfVYNNj96kI6dIStvRZcLcYJjEIhgKDUSCyhNPx3NDqrKYy+G90ElelYWD31O/dbyWeoXeRRLR+TiLsUWyxNTA14TFWIJ4RLwtIupkKaQkQ9VQfpmLXI9JSCUA4ND3xe0GE7EEi4J6c6bCbLJzxexDZocXCE8vMPKRYIJOUKa78d5y4mF58hVRRxprDpClyyKiImzgvdCJzW/m0Pc7xBQFgJ43RwmNqS8A6m4qxZiXzcDeEcV2mN0SdTf7OPn7ftmuT+F2rmTWkOszM350hkM/7SISVO+MueEIwf4QfQrEuPlEkL28ROJEAovFws6dO9m7d69q3etYx383VFRUEI1GOffcc3nzzTfpp53BRJeiqlL/BxMsLiaElJQO/eCk7DuEfOgy2z27KgEoGlqyC8urNlNxkYujv+5WPOzXW/UU7yjAUmLiuAqhu/25ASE57miItOpT473ljB6dVlQLiQaizI3OMy5AbE8pldTd4oHFhKIdVDQQ5YN/FCeTDx8OkFdpITwmtvbKtknkhMR2+4uxRRYF1w8fffukUDkA9NBwh4+JkzMMvKM8xwY6QwQ6RaWtEBqbKSxGF4WsFv4UJGIJovPiN7ajIbF+DvbPC1l4gUziHjsaELqxHeyf5/3/LabOZLDqSSwmCA6pv5cctwHJLK/3RTDZMiNfjhBANAQf/ZP6uDO5JOpuKKPlyX6hvosGooTGwowdV7khqYdNe8rpf3ec8WMzjB6YVq279/VRNLos1bLZdjnGmYuNqqSqyitcGAqzOfpwN90qipSOLTZGD0wzfmSG0Mi8kC3i4IcTxMJxRQJnc2I/g3RBC/h8Ph577DG2bcusjLyOdfx3xfe//32++tWv0tjYSCgU4m2eoyxRTWVW/arlY2H5EHxcLR4Bw/ummO6aTZMB8ussTDavnmBdrnJb+ykP86Nhul9TJlb4LnSSV2FhvGVG0QZssnmW/vxxBhXWUMvLgqww4t5h59ivldVZJtpmyc6XxJSlYjIppuqqYlqe7FO0Sep6cZguxG08Ah1BwtOC1gJGLdlWCaMjm/lR5X13aDTMYjwh26uoWEaN7J9WVSteDscmG4X1VtV1M8Dg++Jk6FhYPM+0uBAjERMvvxYsRhdZFLQ2A8TGUBKi/exsspFflSsTZwSqF7UlAViMLBKXxJ7P5DBgtIutpRYmIwSH5hkTvJ3f/+YY/W+q57MrrywGDfKBpEBfTLYFkSx61fdS2GilcKON5kd6mGoVU/7senmY2IL63qf88mJsPjOjx2YU2yHZdNTd4KHzlWFmukOKdn06A+S4cwh0zNH8WF/SZ1MZsWCMiZYAIwrEwrR6Uu8COTk5XHLJJbz44ouqda9jHf/dYLVa6e3t5W//9m/5n//zf9LKYXoT7WxnV0ZVpfHmWbQ6jZBN0rFf96BN2u7muAyEJyKrn7/El+zCjIUSvguLaH9+QJHEopWg9BwHud45Ol9QPovqfnUEvUVgvx0nTeao2O1iqiOoqM4Sj8jlpzsE4m3yUUrPLkRr0NL9cuZ1VTwCR34idkkLINA9x0zfHAszYnO3qUAiIXhQFI8kSMTF5te1upmUX+Ziti+UJsBlwvx4hPlx8bM4YRUsIB5ZXNOZoCiysiAeiROPiBtAibYjEogJW7L5ryhmqiOoqmYo1xvn0H+InTfqzTri0QQL0+r5EsmsxZAvIQkSrafagoQLBPOWcTgm4F4jmbX4r3TT9eqwkG1gPLLIbN88gW519f7Kq92MHp4m0DXHTJd6DnCydRZdjlbIVrLsXAfTXXOqpKqipnzMbgPtzwyqfk+5HhMzvTI/4egvO4XIgmPH5DqVvq3BRDfN7IOTUF5ezu9//3s2bsysjPzXhr96JaXlOP/880kkEtTXy0maYXoVVZWO/bKHma4Qkhl2fLOW2hsz35xJEZTqbvNQfqGLXJ8K81WSPxYRL+xDP+ig/dl+mZSishdsf0ZmjZZd4GDrFytVy+e6jeiNOlUFoZH902lrJ9fOfNV6NZosNLoscgRuTIO84d725SrVept/1UuPSoIrhc4Xh3n/f7WoEpQAplqDfPitFqFgmIK5NBtJgB1rsOmRcnRCalFSvsSmz1VQuEmdhWl2S5z29RpKzlVnpc50hfjo262Mqdji/Ck49P0Ojv9KbCG17StV1N4kduuq8TPlQgpiACa7JEwOWqua1JGHu4TtCI/8pIsPBQ60QCZrHfz3DlWyWd3NpTTcLa7EoM3WCN2EcO2Ub3ENfzjFkR+rL95znAayLXrVcey90CnHHmDovUkCCnZCKfWmQz/poPXpPlWiVCKOHFcK1W90Nn7GT+Vumc0fmYxkJGwZHBI7/6YW/5XyDeKjv+hmtnv1Q8aZ+j6OWd9Lqyc9++yz6wSldaxDBX/84x85ePDgClWl44n9q5ad7Qlx8ndyIta/28X2h6ozqipFQ0uEkaor3Gz8tLrinTE/myy9hkWV3EM0EOXkk30cf1Se2/QKS7rp9rm0ksyWL/gpVrnppjdpkCx6zIXq66NjP++RD9j0CCnF6ExaofifQv2dXioucymWiQaiHPlJlzDJZd+/tHLicTE7k6M/7RYm4KaQVy1wOz4K2VZJeA3qOa+QDbeJqbFUXe8WVlc88WhfmiD3SWL8yAz7vtOmqqoDUHJWAVu/VCWkTubYYqP+Lq+QgpjeqpfVHXPVEyWmAj2mArE1GsjEsX3/0qpqoQgwNxDmg39sESJKgaza1vZ75Rt2ehM03e8XG2uAIS8bjV5DllblJoBeVhgCeeyr2S3qTXo5VqjdANXD5s9XULRdvj2vSCRKvoaFiSitT/UJWVvqcnTojerv2ebPoeISF/4r5JiiRFCqus7N9q9Wg16OoZksbsKJEAM1xxnK6gbgvPPOo7Ozc52gtI51KMDv9zM3N8ftt98OQA8n+WPi94QzqCp1vTjMbO886KDp/kp8l2a+qZkiKJXtclC5243Fo37rVm/UostRjyFtTw1w8olemTyjQ/E65cA7sgJnQX0u9Xd5Va9emhwGsq2SqjrLTHcobcmWX21RrTdLC1pJK++RBZDrNdF4j09VUanrlRFZ3UQAo4em2fevraoEJYDweJRDP+gg2C9urWew6zAIKC/pLToMVklIqUZn0FBzU6ncx2plzTo2f66Coq3qCjHh6RiHftQpTC5ZC07+tj+da1VDwx4fvsvEbjxXXesWUhAD+UKcMV8SIuXkegVVIJPoeH5I2I6w/ZlBDgpe+ouFFznxm15VcpDnXIewOhPIlhk6AYJ66jsOdMwpkn1SMDsMGGx6dAbltbBjk7xmBvkwcLY3M0k99b23/r6flt+p98ViDDSSBoNNPYFce7OXqivlnFcsGCOW4dPWmXU0PVBJ2fmyWknnC8PMDa5eOOgf5nDem0RYwGAw8NZbb60TlNaxDhX8v//v/8vQ0BBut5swc7zFM3QlVr8YtjAVoTdJxnRsttF4Tzn6TKpK8aVDbf/uYiHFmuxcPbpsrapKTDwCJ5/so/Ml+fBeqxBy5scj6fOy6utKsNepnKtowZiXLaSi3P3KSJrYpHqWipzz0gtcEkyh7AKnqhpVPLJIx3NDwuSc5l/30vOq2KX67peHhc8xU8hxiUlvmuzZwhew7HW5+C4SW5u4d9qpvVlsTu5/e1yV5PanIDgY5sSjfSxMqeeE8irNbLzdK6ROZnYbKb/cJZY31YLRLiEJEPS0Ri2SVVwLJjwZofmRHiHyWCQY58hPulTJMylMtsym90oZoZVtzSylYgpKuhwdumwtWWrqF9ql77jr5WFVSzatpMFg02NSy49r5diTXyvvHUYPTquWj0cWaX26X8jaUmvUoDdpZYs6BRjyJSqvcuM+Uz6LVyIoFZ+WT8PdPrSS/L773lqdhB9PxBmqbuFElnxOcu+999LR0fHfiqAE/81ISikcOXKEvXv3kpWVlVZV+ijxRsbykQgszEaYFGD2Nv+ql8EPJ9KTt8Wb4WOPwEffbqX513JyuPam0sxlIU0u2fr5SjmpqwKjTUIjqQfclt/188E/tBAJLsr2ZSpzm8Eh4Tu/iIbblUkTE82zvP+/W5honhUi5+gMWrTZWiyCUozbvlLFlvvFrNwKG3IVCWbLUXJugRCJRjJDwx0V1KjYsICsgPPBP7QIqdpEghGMeRJWj7qEX3AgQiIuziiWzAjZ2a0VOUWC/mOkVJfE2mzMk8gRkBcHmVAoYn1ncEhUXVnChtvU5ZhzfSYa7vYJ2aDlVZnTFmFqKNxkZef/qMW5zSZUXp+rF2NLJ1/Dge+2KyoMgfzOfOcXCdn0WZPSk8d/1SM0jiWzHo2kVe238stcND1YJ8uxR+SYkQl1t3kwOGRFtPf/t/JhpLlUXti0PzdI6+/VE1Hh0QgLs1FmFRQbJhPjvJr4HR8e+YBEIsHZZ59NPB7nnHPOUa1/HetYB2zatIloNMpFF10EwBBdvJZ4gplE5k3W7GCY8HRESLmm9dkB2p6VDw5Mrsxz0uB7E3z07ZNEA1FMLknRSm3qZBCiMimm6YFa3GeokI+sepl8blJee0VDi3z07ZO0PStvlERs1DbeUkbFZcWqRJMjP+7i6E+7kw1SrRbJrCPbJnawVrQ1jx3fqBGWI66+voQct/ocrjdp2HB7GSanejvqbvFQc22pEInmo2+fpFVQ7tnsMmJyiK0/EwuLLEbF115rIeeIQm/VC71fgEQiAXExdbLcYiOmQoMQIS0aiPLhP52k+yX15FzFFW4a7vELtbnqOrfQQSTIB3vWcrFDuM2fq2Dz58TIZYZCE1qDFq1ebM082TzLh/90UtUurf42L/7L3KrjV2/SYCrQy338rZOq6kV6PeiytUIJym33V6VtiSdbMu9rLWWmNNnoxKN9HFBQg01959Ptc/S9PUb7s+pJoEBXiPlJ5QP1g4m3eYcXOHHiBF6vl6NHj/L666+r1r2OdaxDxi9+8Qu6urowm83EiPIOz3Es8YHi78yNhZkRsH7seW2UntdH0gfzRkfmxPKRh7uWLtLtcpBTnHltEEjm0DZ8qozN96rnerJtEjoBEuXAO+Ps/04bsWAMg02nSkDQGTT4d7upuU45LzQ3GGb/d9vS7VaDVq9BZ9KRnS+W46i/0yts5WYuMaTt09VQsDFXkYyWhg4a7qzAe7EyoR1g4O1x9n+3TUhBKBZexOwyYnapr71iwRiJWEJez4hAh7Cl11ogQtRKIb6wSGJBjNxvdhnJKRIbD11/GFGcj1PQGTTUXu8RsnE02HVUXVei+k2A/J2Lkq8sHiPbvlxFwUaxC4LZNh3ZAsT3FHGw5bE+TvxamWitM+vwX+Gm+ir1XHAqLnW9IvexmoKXzqhFZ9SpjjXnFhubP18tk8ZiMhEyE3yXODHYdcSCMQ58r13RQtGQ3F90vDhM6zPqlpaxYIzQxALB4cwExVAiyBuJp3m/7R2i0ShXXXUV8/PzbNmyRbX+daxjHVBUVER/fz//1//1f5GVlUUHx3gr8Szzicx7rvmJBeZGw0QFVJXanhmg5w15X6hEhpjumOPIT7uIBOPozVrcCnZLoZEFiMvqSw13+ymsV74Yp5VAb9KqX2CJw7FfdjPwtkyUMBao71PLdjmovNytSjTp+sMwbam4J8AzMVj1SAIXtkCeuzZ9tgKzWyw35D7DjrFQxNpLJkuJ2ICVnl1IzfWlmYlry3Dsl90ZiQ8fh6kgG4vgc8Uj4md3gBA5aK3QShpF4tzHsRhfFFInMzmyyS0xEY8IENLisgPQkIDNYOlZhdTf7hNqs3unnbxKsQtxxaflY1bYOy1H5ZVuYWGI7FyZfKXRCeS8tHKsOPLTLlW7tLLznFRe7lYfv1rZHi8eWZT7+EP1PtYZxS6G1N3iofpqee0XzEDIBsjOk9IExoF3xjnxaF9Gcmd2MtcWnozQ/dqIOgkMmB2cZ240TFxhqHUmmnmDpzjecozy8nI6Ozv54Q9/qFr3XyOyEsK7vb9OnHHGGSuUMBrYiSNLmXhy2tdrmB0M0fwr5U1R7Y0l5FXmcuzX3YoKPVK+RNN9fuaG5znysLKiifdCJwarnpbfid88L6jPlQ/hM6iDpLDjmzXEFxb56J9bFcuVnldI37tjQqQbkPsrPB1RJU6sBXW3eYjOxWl7Sn1DtumzFRjzJd77pxOqbd78hQqkHL0Q4aX8MheD+yYU7eyWw15nUSRi/Lmx83/UEp6W1XvUcPrf1jHTO6cqNWnxGmm4vZyRw1PCN8s+aVj9OQR654THo+8iJ6NHplQVtmpukL/f/T9oV7Woq7/Ti7nYJFTWXJpN9TWlHH24XVU5SBT2OgtVV5cw+MGEMEO/bJeDnrdHFfvNfbadsrOcDLw/rlpv2S7Hmm4HGBwSNdeWcujhDsU2mEuzqb+jgun2WU6o3O7b+qVKdAYt7/8v5e8312diw81l9L47ysBbyuoLI3Unae9sZ35+Hp1Ox3vvvcfWrVsVf2cd61hHZpw8eZKGhgYiEfnDt2DltKwLFX+n5KwCik+zc+yXnar2Qad9rYZwQH3NUXNDCbZyCwd/3K6sSKOH+tu9tDwxsCarL/cZdgbeVY4vnvMduE+z0/b8QNoKbtUmmKCgIV/RHm5FvecVUrzdzvFHe1WJE6LQW/VsuLmU1if6CClYmoBsJbX5Hj+THTO0/k55nWYq0NNwj5/hg5OqhJcctwGbN0e1X9NtNkF2vlHYvuyThv8KF46GPD76bpvq2Km71UOuJ4f3/17dEq3xM+UYrNKabPs+adj8OapKQCmYCvTY66z0vaW+kd/+UDWhsbCqApXeBE0P1DDTF0pf+FCC/woXWZosVRWltaDhbh+SRc++f1HeN6WgN2koaLCpfsdbH6wkS6dRtTi0lJnQaFmTXWHV1cUERxZUlafq7/SS4zTw/rdb0naSq8Hmz6H2Bg/Dh6boejGz5D7IyqCmIqNqf43phwgUD9Dd3Q3AlVdeye9//3vF31nHOtahjAceeIDvfve7AGShYTNnkp/lUPydzfdVEBycp01lj19yTiHu7XaaH+tRVBNBB9seqGJ2YJ4WFcVFxyYbOY5sulRImsthLjGQWCSjOkgKW77gZzGyyCEVpeTCRitTJwMZlUk+js33VRAORDnxG/U5SRS+C50sLiaE9tiV17ixeXM4+P1W1TbX3FhKjtPA/u+0qdbr2pbHVNssYRV7uBQsHqPyOPgzY+sXq5ifXBCyndv+UA1THbOqOUWdWcfWL1Qy9NEEPa+vTQ3hk4LJaSASCAuPR+cWGzP986oKWyXnFFK8NZ8jP+lQfce+y4ooqLFy+OEOVbtAg02H/0o3LU8OrMn6Tgk5xQbqbvIw8J6Y3SPIsWSyZVqx3/KqzFRdVULf22OqVoTOLTZGBOx3U9CZdfh3u2j5XZ+iApZk07Hp7gomWmboeF6Z7L3h9jKM+dns+1fl9ZTBrmPDrT4G9o4zvE9ZmW2suoP23lbmQnPk5uayd+9eNmzYoPg761jHOjJjcnKS0047jfZ2mVjqwE1D1k7F37H5c/Cc46D1qQHCKucKDXt8LMxE0yrkmeDeace5JZ9jv+oiElAIQloov8RF35ujQoSpFPJrLEy2KJ9z5ddY8F1YRMcLg0x3KOQPtJBfqV7f8no95zhofbpflTghCq0EFZe76X59RLm/kJVzGj7tY/LkDD1vKK8NtEYtDXf6GD4wqUp4kcxaLJ4cIXsxuXL5kv9a7Nw+STg22/Cc7eDIzzpV+6z07EIcjTah9WfFbhcWt0nYPu3PAZMzW3hs6c1abD6zkNpR/Z1eQhMLdKhd7tJC493lzPbNC6kBOZvy0Jm0aXLgJwHfJUXkOAxClnCA/B1XWFSt2GpuLEEy61V5ENl5EjqDhrkhcRVY12n5RGZjqt9Q2QVO8v0WjjzcqWgVaMiX2HBLGUMfTTCo8v26zyogz2dW7a9gYobR8g46OzvIysriS1/6Et/+9rcVf+evHf/tSUoAw8PDlJWVpQ/M9Ejs5JLV/WMl2HxPBZMnZ1WTBVK+hP8iJ82P9qV/zkRgyCmS0qSJknML6N87rkq6aLy3nMhMVPXg/rSv15BIwIcqhxlluxyExsLClmD2Ogtl5zs58F3l2zz1d3qZ7pmj7w11dq/BIdF4ZznD+yfFCQ8Syn0lgSQhRghRq+tPhO8iJ8WnFdD+woCY5/wa2pFXY2ZK4TZ0CuWXu5gbnhf6+6IkJcmswXthMYP7xgj2KU/cZrdEZB5VEo9cr+D7Ijm+F+HDb33yh3VraYfS971UCLH3KsFpX6phsk09aQZyOzfe5af5sV5F0pz3Qie5pSbVRcBy1N3iUT0ALL+0CNdWO52vDjH0XuYJO9dnovqaEo7+qluV3Oc+w87ARxMQkcdOylJzNaT63rUzH8mkE4odW79YSd87Yxm/h47EcbqQD4udTie7du3ikUceUa13HetYhxi++MUv8m//9m/pn6vZRGnW6rfmHVtsFG+3c+gH6hvU0rMLmBtfYLJ5Fr1Vr0gOMTn1hEai6E0a8mpyGVVJOptcErXXeTjxRK+iFZX7DDtl5zrpem1YmZCgh6rLi4UVf0BOTE+2zSrWa3JJVO4u4fDPOhUJBin4r3Bhq7AIky3Qo1pvtl0vZEcGMuEk+slwqVZg25erSCyimsRfazuy7Xq0WaiStcwlRgrrrXS9OqzaX2shKRU2WjHmS/QKrKut5SZxEovAewUo2p5H+YUuOl8ZYvhDMTuaNUGwHWrf91rqApk06Gy0cejhLiFCYunZBeQ4DcqWhXpovLOczpeHhQmDBQ256Axa1b7d9pVqEosJ1e+2+voStJJGncylh6LNefLf1ctWAZm+4eV9X3Wdm64Xh1QVuDznO7B6TBz9Wfeq/x5NRHmfl1lgHq1WS2VlJe+//z5Wq7rV5TrWsQ51BINBamtr6e+XY5YJC9vZhS5r9dvwNTeWMtMbUj201xk0lJ7nSBMVdWZdRlKCZNMRCcYgJl+kGz8xo2pdVXl1MfHIIp0vKBMhN3+ugixNlqrSTEF9LvGFRWFLsJxiA97znBx/rEexrRWXuwiNhoVs2nRmHfV3eBk5MKXav0u/hGpfKfX9Wuv6U1BQn4v/Mjftzw+krZA/qXaYSwxCNnXFO/IJT0WZPKl+yClKUkIHJWcUMtkyS2hEuQ0Gm45FUCXxgGwDJko62vTZCrK0WRz8d3UlpbViLe2QbDr1Z1vDe910XwVTbeq59VS9G24qo+OlQcIKa/DCRit5fgutT4hf7PVd5KTr9RHFdjs22Si/2EXXK0OKRCVDgZ7qq0s4+XS/YjsB8usszHTOEQsvYrDr0paaqyH1fVsrcjDlS0KxZuOnvQy+P5HxexhO9HGMD4EEhYWF3HzzzSv25+tYxzr+v+FXv/oVe/bsIRqNkoWGek7LKIxgKTVSvN3OSYHYlV9jIRaKM9MbQmvUKtqUSVatbEmkBZs3R5kohEySqdhdTNfLI4pkKasvh8or3fS8PqJKzBC5wLccZbscBIfCiiQDvVmL94IiOl8YIC5wzuJsyqOwzsqxX3erWuEBskqTSjm1vl9RVkKonWtF3a1laLRZwiQS0XZojVq0krKdFciqXvn+XMaOTisSPWBtJCVLqRFDnsTYEXXSj9EhMS8oICHyXkEm3VdfU0r3K8OMixLG1gLBdmglZCUepbKCdQHk11pwn2an5Xd9QoTE/BoLFpdRlYjnv7KYwQ8mhEld5mIDUq5elZS44bYyNLqsjDmkFNw77egterpfVt4vooW8cjNTbfI+UDJrMypwLf++3TvtDB+aVv3e82st5FWY6XhxaNV3Ek/EOcb7jDGERqNh48aNvPXWW+s5L/6b2r19HEVFRSwsLPCNb3wDgCgR3uIZDiXePbVwBA7+e0d6E7XtK1U03LO6ZVJkMpImKFXsdtH0Ob9sbbQKUgQlg0PCc4aDhtvUbZj0Ji1SrrrM2Ynf9tKWsj1SkJ3reW1UJihJ8gG+vU7ZIz6/Opdsi17V7uvoz7rTBKViFR/Y8HSExdgisbBYdN10XwXbv1ijXCgiE03MpdmUX64iVZ2c0wrqc8mrUZfeq7zGzWlfV/n7QNcfRxg5MsXI0WnVsgX1uZz+tTrKdinfbgSZAFZ7nZjNWOfzQ2IEqTUgElyk9al+VYISQNU1HpruE7Pa2HJ/LZu/IFa28+Uh+t9VP6iru83Dtq9UCdVZnpQ/VyMomd0SFbvlMaVGUPJfWczOr9am7cjUEI/ECU0oZ4vMbom8KjORIBz4Trsq8cfqyxHyhN78+QrcZ8vfquKhVvLT73xxmN53RhUJSiBL3GslLdZSZXsWg0Oi7FxnOg4qEZS2fqmSzffI1iVD72UmNxY25LLzb2opbJAlx/f9a9uq38NMYpLu8kP0auVDP7vdTm9v7zpBaR3r+ITxr//6r0QiEYqLZSuCkxzi9cRThBKnbgBHD0ynCUqFjVZO+1pNRpunvrfGmUyqFm66u5zGz5RnbENKlan6hlLKL3ap2jCZXbINVJZGudzAuxMrCUqZlmpR0gQl95l26u/yKtaLHkyFBvLKldcnoaEIh38kE5Rs/hyy7cprxfB0VF53CahgW8pM7PhKDSUKsuFAmtzgu7RI1aYuRQzynFeo3gC9fEu+8gp165G+d8fo+IMYAazxM+Vsuk/dThlg8z1+Kq5Qt/sN9s/Lh7biAlxCGDscECIo6U0a6m4uU7Q1TMGzy8HOh2oxl6hLgE8cm2LowKQQQWnbV6rxCKxn82vMS9+0Sn95L3Km7dBU//4D1Wy4TWydHJuPE48sqtbr3CLb0fW9Na5MUAJyHAYMeRJ5FcrfbH6dhU2flWPV+JEZ5b5Nfk7tzw/Q/Bt10rmUq0MvYH1Tf6sX764iOQ5GyUhQyq8x0/R5P+4z5XVi6xMDGQlK9Xd52fIFmXza+/poxuRST8Fxmgv3soCsvvGtb32LEydOrCdr1rGOTxBms5m+vj4eeeQRtFotIWb5I09zInFg1fItj/elCTQNd/uouXF1+4BYeDFNUHI22dhynx+rb/U1WmRaJijpDBrKLy6m5lp1SwLJokcSkPY/8dte2p5Nkk0UQt740Zk0QWnjHWVYK5RtbK2eHIyF2RjzlffQHc8PpUkD9jpli6tYMEY8HBfOeVVdV8KWz6rb36Xs7NxnKq/RUkQMc4lBtqFSQfFOezqWK2H86Az9748z3a5+mGNyGjjtyzWq+UGQ15IbbvGiE3C7GHx/UoigtCbEoP/NMVWCEoD3YheNe8TyWA13+9lwe5lQ2c6Xhuh7W53I493lYNNnKxS/gRSKd+QD6gQlnVlHyTnyGl2NoOTalse2B6oUbR2XKpbXXgsq6y7JpsPiMUIMjj/So0r8sflyMBcZVPug5qZSnE02AFm1LdOjJesZPTRN50vKBCWALI0GnVGHyaHcBzqzDv9lbiqukPfCSgSlDbeX0fBpLwCBjrmMBCVziYGtX6xKnzsc+3n3qt9DOBGmu/wQLbr9QIKqqioGBwfXCUrrWMcnjNtuu435+Xkuu+wyEixyhPd4J/Ei84lTFQdn++bTBCVzsYHGe8sz2jxNtswy0ysnUWqvL6X6usy2limSSdm5DiouLVa1YcrOk9Dn6MhSOTEOdM3R8cLgEkFJodoUQcnmz0mfoSjBUmwi16O8PokG47Q9LROUjIUSklX5uSIzUaLzYgxayaqj8e4KChuV96IpwkJho1X176eIQWqWeinU3lyqaNWXwsDecbpfE1MerbjCxYbb1c+bAerv8OI5R91GOBKIMbx/UpWgtFbM9s0LEZTQQt1NZXjOE8g51Vpo+lwlOS71NcrswDy9b40yflJ9TVv/aS/OpjzVckaHtPS3VbYAhQ1WJKtOHjcqZTfe4qX8MvXvCmAxskg0FCeqQrax+uT90WTLrCpBSTJrySkyYClR/mZNzmw5VmllGzZFglLyc+p8aUhV1RdAb9GTbVFf/Jad55Rz/8k4mImgZHRINN5VTmGD/L0OvDeRkaDkvdBJ7c3ynnbyxCwdz61OUBrJ6aHZsZcxhpAkiccff5zDhw+v57ySWCcpLcP/+l//i0QiQVmZvFEcZ4hXE7+j4u4C6pKDzbUznx3frMHqlz9WraTBWJhMWEiw/Ws1bLhN/v3CTVZ2fLOGwoZcRg5OsBhbpPJKeeEgmWH7V6vTHvN5NWa53jIT3a+PEFuIc9rXa9JEoW1fXiJDWbxGdnyzhqGDkxz+USc1N5Sw829r06SarV+slDemyAojdTd55Mldgp1fq+P0v6tLP/OWB/xLZBBJtnyrvtqN3qSj5MwCdnyzJk1E2PyFCrY8sJScsFdbGD85w9xwBO9lTnZ8swYp6a+66b4Ktn6xMl32tK/XsPXLlXh3OfFfU8yOb9akyRoN9/jY9uUkeSQCGp0Ga5ncv+4z89jxzZr0s9Xf6WX7V5cOkQx5EiCLgRU25Mr9vUn+uDfcVsb2ry0RiOo/XU7RljyQZEnfHd+swbVT3pjX3Vy6gmxUdXVJOmlmdkvs+GYNJefKi4Oa60vSZeenFtBIWWz6/FJ/7/hmDd4L5Yncf6X8rESg/feDbPmMn82pBE+yv1MLtPJLi9jxzRpmumYIDs1jr8td0d87vlFD1TXy+Cnb5WDHN2sYOT7F4IcTbPpsBVu/tLK/a2+Uy7rPsLPjmzWU7y6i5voSGu72rSDrbP9aDXW3ygc4ziab3N4sVu3v5WPWXmdhx/+oofE++VCl7jbPiv7e9pUqGu6Wx2yuz4Rk0TEzIDP2a28sWdHfW79UmT5IzimSyNJCNJi8oX1NCTu+sVS26UE/m1P9bdZQcYkLg01OXFbsdsntT2LzF/xsuV/uw9jcIvocHf4r5SSA76JTx2zTg5UUbc/DtdXOzv9RS/W1ch+WnCt/C2a3XLbx3nK2fbmK8kvcOBrzOO3rNRljRMMeub+nu4KEZyLU3exbNUaAvAjc/jV5vOz7lzbc2wpOiRHObTa5v2/x0LDHn27jajEiRTSqvd3DaV+v4fAPO/ngX1pOiRE7vllD2QXygq7yWjdGezbWUrn9q8WI8stc5NWYOf3rdez4H7UgQd8bY6fEiB3frKHyGjf1d3jxXuqg+toSDvywg5H906vGiPo9cr/YaywsJhJ0viIvRFbEiGTZuuShY2hyAY0+K2OM2P5QDRtvLyPQOUM8tkjF5cWrxohIIsJ0UzcHdG/R3tFOWVkZjzzyCOPj40jSGoyQ17GOdQhDr9czMDDAc889h1arZZE4e3mZbs+RFd9x42fK0/NJImsRbbYGq0/+5j0XONj+UHX64L7hHh+N9yYP+08EMORJeC92ojfJtnHbH6pOk2bq7/Ky+XMVHPt1D92vDLPpvkr8V7iw+ky4duSz/aFqTC75+99wexklOwv48FsnmRsIs+0rVWz9ohzvHFtsbH+oOn0oV3eLh+Kt8vqi7AIHp3+zLh2z8mvMbH+omvxkzKq5oYStX6wit8SEwSbRdL+fulvkslafie0PVaeTI1WXF0MikSaPNj2wdLhhcklsf6gaV/LAwb/bxbavVFN9bSkbbi5j8+cq0iQovVXP9oeq00QjnUmLZNZBVP63xnvLlwj4etmCK0U0yaswo9FrmBuVk2INd/tWEMG2P1SNL0n09V7kwLU1H/9u+ef6O+X+TmHbV6rTZKMNny6j5MxCXDvlzf2G2zwrDsS2fqmKquvcEIVEYhH7Riu25Dxbd3MpWx9cmk+2PlhJ7Y2laaLH9oeqKdgoz7NV17vZ+qWl+STV3+PNAQI9QbY/VJ0moVReVbxi7tn8+Qo23l5G/94xhg5Osv2h6vThWsVlLrYtG7ObPltO/R4vVde6KWyU33np2QXJfnHKYzaJxnvLsbiXNvTbH6rGe5G8jiw9OzlmkwS6+j1etj9UjWOLTe7Dr1ZTkUxIFO+0y2O2QB7f1TeUEgsvMvCBnBTc9uUqKq+S10DOLXlsf6g6TUqyek0kEom0Nd7WL1VRdb1MbirYmMv2h6rJq5bHrH93KfbKpYsMWx+sTK+BbP4cub8bcsm269HosuS1dxJbvuBPk4Zy3Aa2P1RN0dY8fBcUUXezl21fWeqXzZ+rSK+Bsu3ymHWfY6docz51t/syxgi9KTlmz3cwNxgCDRljRLq/L3Yy+N4Eo0emV40RKZz2dbm/vRc7V40RqTGrN8n97d6Wzwf/3EJ4OnJKjGi6f2l8V+52Y7QbMBXoM8YIkL+h079RR90tHqZOBtGb9CtjxNXymM2vMeO92CnbGkUTHP5hZ8YYkfqOdCYtkZkI0dDiKTHCe/HSmJ1sCZJYTFCQOoT/WIzwnO9IjlkIjy+gz9FmjBGapjAnit+jbewEoVCInTt3kkgk+NKXvsQ61rGOPw9uueUWYrEYl156KQADdPJa4glKbsql/DL527RW5ND0QGU6ZmkNWiypSyY62HRvOZXJPbW5xEDTA5XkV1uY6ggSm49Rfon8bzqDvE5IkWUNBXqaHqjEVmmm/dkB5gMLbPmCXyYgIMe4mpvk+URn1tH0QCXjzQFaHuuj5JxCtn9tKY5uuL2M2uR6CR1s+JQ3PZdu+2I1O/+mNk0uqL3Fs4IM0vRAJd6LnWTbJJxb8mh6oBJdksxZc1Npeu4BKGrKY+zYNPOjCziacml6sBJDcp6tutadnnsANn/OT/0eH/7dxZScU0jTA5WYS+TDiMori9m0bO7R6DVY3PJz59eZ5f5OEqbKLyti07LLXRa3IZ2fySlO9ncyT+i7yMnmzy/NJw33+PGcXYjOINs9NT1QmZ4jPOc6Vqyt6u/wUXvjyv52bZPnbPeZBTQ9IK+twpMR9DlaNtyxsg+LT5fXQMU78uU+NGjof3OMyms8bFxe9v5KSs+R5wjnFhtND1SyuBBjsm0GW2XOCpL+li/48Sbnk4KNuTQ9UEmgJ0jvGyP4LnPTuOyC6Ob7KtLzSV6l3IclZ9nx7nLgv7KYTcvmnk2fKU/ngSweI00PVJKVPADxXVrE5mX93XiPj8pr5DFrchrY+uVKeazpZBLQij68y0v1DXI+xmDTYXYZmO6SSXCl5zhoun9pfbrxjjJqPyWPWZ1BnndTB6bFp9vT/Q3yOmHDrUt9WHmFm2yrvN4o2nrqmN2YJLBEFxYx5EmUnS33YWGjlaYHKjHY5bLV15XQsMdHrtdE6dkOtj9UhS+55syvs9D0QGWaYFR5dTGN9/goO6cQ9zY7mz5fkTFGVFzuYtNnK5gdnGduJEzl5cWrxggA3yXJMRuTSTSORtspMaKgXl5jlO1y0PT5SqqvkcfpajEiRTTyXuyk6YFK2p4e5MB/tLPhUytjRNMDlel1e/EZdvL8lvSB2moxouScQoyObHZ8tYbtD1WjM+sYPTR9SozY8gU/ZbsclF9WhKMpl7qbPBz/TTeTzbOrxojKa0tAB7luI4nEIgMfybYsH48Rmz5bQUVynzQ7NI/OpM0YIxrv8VF5dTHB4TCxcIyK3a6MMWK2qZ8P9C/R3tFOaWkpTz/9NCdPnkSnE2C2rWMd61gztFotzz//PM3NzTidTsLM8S7P0+04ysa7vOnD+IorXFReLcfCRAIMNj2mZDy2b8ylYY8PrVEuXH6ZK01MGjkyhclpwHVaPlpJng8b9viQrPI37b2oiJobS+h5bZSOPwxSfU0p7p12jA6JXI+Jhj0+jIXy/FK2y0HJGQUc+UkX8+MR6m4rS8/n5mIDDXt8aeJUyVkFuLbLMdVel8uOh2rT51vGQkmea5JzhHunnY13eMkpMmIqyKbmxhK8F8nziWTV0bDHR16lvPd1bc8nSwtdf5AJ8DU3lqYJGFqjloY9vjQZ3LHZRsMeH5VXuPFf5qbySjf+JPETrXwekyIZ6AxasnP1aLVyPRW7l/oboOEuX5poYnYZybZoWUieS5Vf6lpBBKv/tJfi0+Q9dX6dBf/lxZScKc+73gud1N60RMLfeHtZmjzuOb+AyivdODYn12XnOdK5P5Dnfk+SFMwiFG3Kw1IqrxXdZxWkz5IAam8qpWyXg0DXHLH5OA17fGliSaq/U6i+vgTfJUVMtswycXKGhj0+8qvkOcK1NZ/6u5bmqapr3JRf7qL3rVFGDk7KfZgkVqX6OwX/lcX4ryzGfYYdS6mRhj0+HJttABTUJcesJOexyi93rRDDqL/LhyuZM82vsshjNkkc8V1URONnyrEl57yNd3hxJ+dvqy9HHrMFyTF7roPofIyxpCjEhtvK0uSuVJtSxCCrN4dEFmnrsLpbPJQlyU1GhzxmU3sS984CHButabJJzY2l6bPe7Dy5rK0iB61Ri0bS4NqWv9Tf15VQfqk8ZvVmeczm11rwnO2g5kbPij6svNq9RNxLjdlGK+6dBVRdLa/ZVosRQLq/p7uDLMYTGWOE3N9eXKflM90xx8jBKRo+fWqMSJfd46Pm+hKKT8tfNUakCDlo5f2Yc0s+h3/SydzQ/Ckxom7ZWtZ/RTG5ZSayc6WMMQJkG7bTvlKD96Ii5sciLMYXT4kR9Xd6MTmzKWrKp/q6EjS6LE4+0Z8xRpicMgdBMuuYn1qQVaQ+FiMK66003O1DK8H8aITFeJz8ZWIzy2NEfo08ZvVmLeHJKJJFnzFGaMqjtLo/5GjwI2ZmZ9i9ezehUIjrrruOdSxhnaS0Crq7u2lra0sfTP/o4R/ym1d+xXwiSDQYk2/aLsibyen2IAuT8qTVdF8l2uwsFmbkn2OhOLH5OJFQnOBAhMnWWSJzUdxn22n6Yh3x+CILSb/OWFguG5uLM/jeBOHpKNFQjKprSmm420ckGCOarHcxWTYyI//uQiBKliYL766k+stsjMhs8nZJRG7vwkwUIhCdixJdWKLzRWdjKzxDY/NxggNh3vv7E4y3zBCbj6cPFyKBGNHZlWUjyVsvRQ15ZOmyICL/e2QmSmRZ2eh8jInjMwx+MJGeQGMLMrkoOhOVZb+TiMzFCAeibP1iJaVnOuWyyVtmkZkYkbmlsuHpyJLPpUZuUywkl12YiRKdW7plMz8RYbJrVu6H+Six+TjR5N8Nz8SIhlbWO90tJxdiUbne1LOHA0vs6/4/jjM3GE73A5GI3N/JhczCrPx3AJBk64TUBE2EFWXD03LZSASOPNxFeCqyor+j83EWZiMr6p3umKf7lREigcjK/g7FWEj+HEmWtXnN5FVa5HcTXF42mr69FJmLLbU3+azL+zv1blLtgSxyCuTJZ2E6SjS01N+RYCzdL4uRGLFQnNGD08n2r+zv5eM7GoFoMMZYUk5xYTaygu0emYmlv7FNn60ksZggPJ3s72B0RfujM1Giye+k9al+IjNRwjOpPkw+a9LmMTIbJRqMMfzhFJ2vDrEwG2Uh+R1Fk2Uj86k2yH145CddtPy2l2goRjj5dz4eIyJzUaJzccaPznDwex1E56KrxggAfa4OnUGTvvkUmYutGiNS72ZhJkrXK8On9OHyGFF2gYO8MjOL8SSrPbJ6jEgkFrH6c4gE5PHQ/Ehv+tk/HiMWAhGmWoJE52PE55fY8qvFCI0+C0upCYvLlOzv1WNEfCGGpTiH+ju8RGZixOZiGWOENluTTiiN7JuS+3yVGOG7yInOqCEWjxMJwsmn+uU+/1iMOJTYy4nC99i3bx9arZZbbrmFjo4ObrnlFtaxjnX8+XH55ZcTi8W45557AGjvaeU7//Fv6dv90ZmleWr8+CzzEwtEAlEsZSbc2+0sLi45Fy9MR9PxrevFYTnWzMRovKcS19Z8onMxiC7FgIVAFKIwvG+KSDBKblkOtTeXkYjHic7FiEfkuiPTkXTsBkCThd4sYSkzEZ2Lyf8Jx5bakIxZk21B4pFFQmOy4mB0flEum4yd4ZkoC7MRTjzax0f/3EokGCORSMh2SuFYum6A8GwsXa9rRz7ZVomsJPEiHknIZYNLa5VIMErnS0O0PNbDQmCpD4nKz5aKlZEZ+W/k15hp+pwfrZTFwvTSs0bnluaMyEyU+YkFpjpD6E3JODrzsbk/+fPcyALh6Sjtzw0n+2VlH0aCURaS7R36aJLIbJRAUnZ3IRBN15Mum2x/xwtD8ppjPjUfxtLzNchrgXDy57wqC1pJk+7DyMyy+Q95PRWZiTLwzgT974zKfZhcyyx8fH06I8+7/W+PE+iaT/Zhcg03E0mTq0GeZxcCUew1ueRVWeWyweVzz7J6A1EW40tjODq3tM6JBOPJsovpftEZtBRukDfS0eDSukZeb8SIJpuxMB0lNDrP3EA4/W5S9UZDctnFqNyO+ZEFgkNLNzojwWh6n5Ee33Nxyi91YfGYVvb3bJRwcp0QnZfbGwvFWZiIMnxgkvDUkhpiZNm3nFhIjsNQjCMPdzJxMkBkWR8uzERZmJZ/dzGWHIfTMY78ooOhAxMr1qfLY0Q0Kq+DIzNRmh/tY6JldkV/L48RALpsLQU11mQfxlaPEUmEp6NMdwfpfmmEaDCWMUY0fqYKvUlHeDYGUTLGiNTBcWg8zND+CULj0YwxAmCybZZYOJ7+PjPFCM+5Thz1NnkMJ/twtRihlTTUXOeRv+XpKMFkwu7jMSLbokdn1FKQJNXP9MwRnlw9RhRtyUOj1xCNQtuzQ0x3zp0SI2bGZ2l27uWPR15meHgYq9VKW1sbe/fuZR3rWMf/f/DCCy8wNjZGcXExCRL84vGf8dR7vyWcCBMPx+UcwoIch0aPTDM7IJOT624qw5AvsZCcI+KRhLyPnpdj9PCBKRYCEfKrLWz5Qg2JxcRSTiCWLBuKM3lylsikvN+uvcFDzU2lhKcjLASSc0ZsMbk/l+NxdDaKRq+hNEm+WAgszREg7+VTc0hoLEx4WdxZmI6siOULM1HmxxbY/29tjB8JEJmNkpdU81sIRAgvq3dhJppuf8npDvQmHYuxZNwPRFeslxYCESZOzNDz+giBriCR2Wh6jggHYivaFA5ECM9E2XBrGb4LXXLZcGruia1o79zwQtryJEufJb+b0Oplp3uCjB4LEAvDYpwVZSPB6Ip1WKAnxNjx5C31mBzHI8lcQzS4FNcnT84y0TxDeGJlf6fmnoXk2ioWk8dLjjMbrWEp1bwwGyUSTK5Vgqmy0Pb0IPPDC+lcjvyulvJPqbklNCLb6EWmo+lcFCTnx3RuSi6b68mhsDGPcOBjZZf9HF9IrFwLBqIfezdLa9DFWAwSWVg9Jogl8zPTK9cFqfERi8ntT72rSDCycr00HSWcHN+xGMyPLTCRVH9dPo+m2pT6Fhrv8ZFIkJ6/I6Fk2Viq/5fKDrwzzuxAaEW+KTIbZTGZIovMyP0w0x2i7bkBgkML6W85VTYeWcqrLMzE6Hh+iOO/6WZhKrr03X8sRoRn5fVocCBM86975XezSowAkHL1GPKkNMFpeR8ujxGp9gaHQnT+YShZdvUYUVCfS9Hm/KX1dGz1GLEYi2EuMcj1DoRof34w+W5OjRHR2SjzowuEJhbkf4ul1uKnxogECQrrbFjLzMm/kyFGzEawV1moutJNdD5GeCJCPLR6jMjO1ZHnlw90J5pnmB9bWDVGODbZMDmM8rPHoOWJPhYmT40RnYkTHCl8iw/2vY9Go+Ghhx6is7OTq666inWsYx1/ftTW1jI8PMyPf/xjJEmifeQkP378B/TEZRX/hemlOW1uKMx05xyxmTiSVYf3fCeJBJCMccvj0NjhAMHBeaKzMSqvLqXkzAIWAlES8VQcihCeTp1hzhGejmApNVF3Yxno5FiZUsGJBJbOIACysmQl7xyXgXhkcWXZYCzdhuBQmIWZCKFhOeeVLhtOlp2Tyw68M87Rn3UTno4Rjy2iN2tJxBMsBKJLOf1gLL0uyPWZsJbloEudoyXLpuaT2Jysxtf1yjAdfxiWz3ECK+fS1NlTNCTHQilPovEuHzqjduksj+RZ39zSfBjoDjE3uABaOXZ/fE2RnqcCMQJdc/S/KavNLMxECU99bJ0wu5TLDPTOEeiW8y6RmdiKNVB4eik/1vXqCMHBeWILS+uy1Boi1YbUmUqux0i2VSK+sNSHK9en8jw71RZkeP+03C+pvMTcyrkylf+YPCFb3C4ElnJi0eDKNedCcv4u2pxPXrlZrjdVNq2UuJTHioUXl/1uhIW5pZzGQiAq25ohz9fZFj351blLfydZb3xBrjeezNdEZmPM9s8zPx5J9mEk3YZYWC67GJX/bmh0genOJcuU8PTSWmUxmvwWFhYpbLBir8n92F5iaQ2diMbTzxOfjzPw7jhzw0uylOFl64/FePLZ5+K0P9PP0L6JFe88dQa3/F1FgzGaH+lm6KPxU/p7xc9Bud7+t8eZbJ2R/22VGAGyyEdhkriT6pfVYgTI69PRY9MMfjBJLNXfq8SI2htKMRVky2vdOBljREoVLTgQpv+tcRamIhljBECgK8j85AKR5HjPFCOKt9txNtnktWHqXa0SI7QGLTXXe9AatSwEosz2LeU9l8cIfY4WU4EBi1cmx401zxCeWD1GuHcUIFl0LMZheP8k48cCp8SIudkwrQUf8Wb/H+gf7Keqqoqenh6effZZtFpl5bX/jshKJBIJ9WL/ffGtb32Lr33ta+mfJQzs4CKkrFOVNfxXFaM3aDnxWB9Skmi3ml1UTpFE5dWlaesSKV/KaBVVfpmLwX0ThEcjmN1SRtsjKV+SN/4RWfVl9MiMqv1U04OVDH00yeB7mX1hq68twV6XS9sz/bIVXAaUXeAgFokz8JaYx2zdLR7CgSidzw9lrnOXA71ZR/vv1WXdqq6R23n8193MdIUUy0r5EiU77HS+kPlvp2B2SwTHImkbuEyoub6EuYmFtK1dJmz/ajWBrjlOPqlsDyHlS9Rc7abnrVEC7cp+wbU3lhCLJmh7akC5kWvA6X9bx0zvHMd+2fOJ1Gd2S/h3l9Lx0iCz3afKmi7HhtvKmO4KqvoV5xRJbLi9nMGPxun/47hi2cZ7y+n4w4CqLZ3Fa1RtH8gL5dwyk+rfBVnZTJut5YN/aFEta3BIVF9VItv0ZICUL7HxVg/HHulV/cblX4D6W7yq/q3bv1ZDVhaK7ZTMUL/HT/9744x8NK1Yn+8ipyybDYqxa/m/+a8spvf1YSLBVWRCJZAkOaZWXVNCLByj88XVvWYNDonwaIScIomq6zwc/83qfRXyj/JB57vE43EkSaK+vp69e/euKyetYx3/iYhGo9TV1dHe3p7+/2rYQknWqbZt2XY9NdeW0vx4H9FAlGy7PqNFUUotrufVUfQmDdHo4qq2UnqrnuJtefS8KicZTE592hbu40j/mx5KdhTQ/7bynFC0NQ/n5jwO/6xT0dJq+0PVxMNx9n+3PXMhPdReV8qJpK2wGvRWPXU3ldL8q+6M1kwg3/Q6+cygkJXW9q9WszATVZyzUnCfaWeqbSZjXy5HjtuQJtYolfGe5+D4rxQsSZGViJyb8zn8sy7VZ3LtyMdSbKT1SeX1lKXMhPd8By1PDgj1kwjqbvWQ68nh/b8/8YnUB7JSTmJRJnUpwebPwbU1n/ZnMtt2pVB1dTFmt4kD31MYm8i3pvRmXdoCKCP0YLLqCalYd4D8DQ/uHU3bA2aCzZ9DzQ0eBj+coDeDBexy+He7CA6HGd6X2WKt/FIXGh20P6u+dwB5vMcji4q2bY4tNvyXFtP//rhiO1078nHU21S/s2y7njyfmeF9U2nlrUzvMxW7TC6JfH9uxtiltyZt9fRQf5s345hfHlOrrnMTnorS+/qpzxRNROkqPkzvYDcAJSUl3H///WnL9XWsYx3/OXjuuee47rrriCQv71iw0cS56LJOVdYo3mEnO08vx3cd6HSaFYcOKejMOvyXu2h5ok+2eDPriC0j/i5H0dY8pruDhMejGOy6jLZHuiTxJRZepGBjLjP9IVX7qQ23lzF6ZJqxw5ktI4p32vGc7aD12f60ZfBqKKjPRStpVrUMXw1luxwsxqDvzcwxvmBjLjkOAz2rxMzV2llyRiEnHu9htlc5Z6EzgGOLncG96vk5g01HOBjLbHeVRMk5hcTmYorzJcikmpmeEF2vKNuP6AwavBcVMXJoSvV5POc6yNIg1E+i2P5QDVMds59YHi015vveHmNuUHkd67vESXAorDguU3VuvLWM4f2Tqv1edV0JfW+PMT+qnPMyOrJVy4CsxGX1moXG+4ZbyzDkSez/bptqWZ1ZR8XFRWlbo1XLGDRU31DKyacGMsaNj8N/ZTHtLwwqjuPGe3zoTDr2/5tCO3Ww4aYyRg5PMX5M2ealaGsew4emIIZi7Fr+b8Wn2xk9Elj9uZbFVPeZBSQWExm/YcmmIzIdQ2fWUXWVm/bnB1aNhwslAT4YfotIdAGdTse2bdt466231pWT1rGO/2Tccsst/OY3vwFAi46NnEZh1qmWTVqjFt8FTnrfGCESjKM3a9ME7o+jsN6KVtIyvH8SrYRM+lilqFbSYN+Qm75ILlm1aVu4j2P5vxXU5TLerBwXLR4jrqZ8Op4fSFucrYb6O70sxhIc/5XyuZPnPAe9b42qWl6B3FflFxfR+dJwRmsmkJVjBvaOZezH5dh4h5foXExxzkohr9JMaDzCwpT6WU12nqRaTrLqcJ9WQNfLyjmVvEozxafZaXu6P6N9VQq2ihxyio0MqOQus/Mk3Dvs9O8dzTg21orSswtxNNrY/x31tYIoipry0ehg8INJxXLGAglHo43+vZltu1Jwbc8nr8JM82+Uc435VRaybXqGPlT+22hlSzSRfixssMoXXVXaaCyQqL2xjMEPJhjer/L3kRWFYvNxRYu1wgYrkkWneh6bgs2fg0avYfJE5jrNxQaqry9l4F3ldlp9OTg32WhVWZNrjVosbgPT7XOgBa2kzdhXqdilN2ux+cxL1pSr1Jmqo/wyF/1vja76HWmTR4XxiKz8FA0viXEsRzwRZ9DVysmh44Cc8/qf//N/cvvttys+2393rCspqeChhx4ikUiwa9cuACKEeYtn+DDx+ill238/yInH5MOiulsraHqwNm2Vthxzw5E0QcleZ2Hr5/wZvSM7XxgiPBpBMmuo/7R/hT3BckQmk0QaCUpPd7DxVs+q5VIwOCT0Ji2GfOXD+JNP9jO8f1KRoATyoV+KoLTpvoq0EkwmmF1GbEkZwox1vjaaJiiVnleoWLb33VHmhudVCUoAtdeV4Nycl7b5ygSDQ6L+Tj/1t3hV67RVmJdsDxTw4T+dVCUopWB2GdM35RXLlZjITcmv/xeFtcKCsSAbjU495OSWmrDXqPfl3HCED/+xRZUoVLjJislhSFsDZUJOkcTGW30rpJszoeKyYkpPd6z6fX8cQ/smmWpbha34sTbmFMnEGrVDqHx/DtkWibwK5XfeeG+5bCMXQZWgBND5h0Fan1Efm3qjDmuJcl8W1Ofi2m5PW9FlIihZvEYa7vSnrQnbnxlcnaAE7PhKLRs+LUtatz7Vn5Gg1LDHx+Z7/EhmeYwc/F77KQSlscQgb2Q9zQed75KVlUV2djYHDx5k37596wSldazjPxl6vZ62tjZaWlowm+VY08IBXk88SSCxcrO0MCETZKKBKHqrns33+qm+vmS1aul5dTRNPNpwu5dtD1SvWi4aiKbLVV9fQsMef9o+6+NIEW6qrnBTemYhljLluGxxG5Esq9e1HO3PDchJdiVESROUChutadvWTLBXmjHmSelbIZlw7Jc9RAMyeSFl75UJk60zDH6ovoHVm6D0TAcVl7pVy264zUP97b603VYm5FeYsZTmYC1X7vO+t8bZ96+tQmSigtpcbOXKzwzyDZscpxGb97/22iu3LCct+a2EgtpcrD6zTDJRQevTg6oEJQB7bS4FAmu5jTeX0XC3P02qyQRTgZ7ibXb8V5YqlgOY7pljtm+OIZXDvJTlR/tzQ6oHf1aviVyPcl/mVZvTa8iBdyYUCUoAowem6X9PmaAEYMzLRrLoVb+Jups8lJ0vS5BHQ4sZCUr1e7w03FkBeggNRTISlLwXO2n6vF+2BIzC0Z92ZyAoQdMD1dTdIMeg1icGViUo7U+8yX7za/QOdqdVK/v6+tYJSutYx38B7N69m4WFBR566CGysrKYZZo/8jRHEu+fUnbw/Yk0AbVydzGbP1+JznBqnbFgjJbHZIKSyWlgy33+tP3CxzG8b4rweBR0UH9HedrO6ZQ6w4tpQpT3giKqr159zZeCzqwjO1ePwZatWG7wvQl63xxVJCgBjB+dSRM2am4sTVtCZILVm4PNp7xWGD82kybeODbZFMuOHg0w3TnL7KD6pSrvRcWUnlGIwaZMRNAZNNTvqaD6KuW+BCjcYMVeqz63H/5xlypBCSAWWyS/Kpf8ZRaymWArF1vT/Gci120kt8SELls955VflYu9Wr0vY8EYh/6jQ3WdYi4xYPOZZcUnBejMOupv96bt1ZTg3eWi7Fznqt/3xzG0b5LxE8qEq1yvCUOBnlhQ/bA3xy1bAqmttSuvcadzz+3PKBOUADr+MET7s+qktGybHrNT+cFzig2UnefEl1x7ZSQo2XQ03OVPW+UN7p3ISLzacl8lNUkLxoF3xjMSlMovK2LT3RVp8mfzIz2nEJSCiRne4lneG3qD+GKMgoKCtGrlOkFpHev4z8evf/1rJiYmaGxsJE6Mw7zL24nnCSZWxtL4fJz2ZweJBONoJdh4m4+ypC3qxzF2NJAmAngvdtFwp2/VcvHIYvpw3b3TTv3t5WTnrZ4LTxErXFvzKbvAmbbOyoScQiMGm3pevf2FQbpfU18r9L4hE5TMxQZ8SYu4TDAVSpiLjOQUKq/7ul8eJhqMI5m1mN3Ka7nx4zOMHFKegwHQgndXEaVnrr7WXQ7PeQ423FKWtjfLBFNhNnmVFtU2TrUFOf6rHlWCEoDVZ6ZAYC2n0YLNZ8ZUKLAI+E9EbplJaH1oKTVRUKt+xgow9OGkKkEJ5PyPyLlt2bkONt5Wjl7lfWuNWkrPclB6lvIZOMD8eISJ1hkmTiqvvVK2fqMHpxUJSgA2rxlrmXJfGgulNIdhun1OkaAEEBwM0/vGqCqRSrLoMORJqn1UfnERvgtcsgVenIwEJe9FRWz4lGw3GA3GMxKUCuutbLq7PG0H1/nC0OrfkRbq76qgbJf87APvTaxKUOpIHGef5VVODh1HkiT+j//j/6Cvr2+doCSAdSWlNSASiVBdXU13d3f6/yvCw8as7aeUtddZcGy0cuJxefNVvNO+umKRBA23+2h5rItIUFZoyUS0qbqmhLHj00y1BhUVX+x1FubGFwiPRihsyGWsZUZVCajuVg/tLw4rKrNUX1tCXpWZAz/szFjOXJpN/e3ljJ+YUb6RJJFuk5KSFMjKUGVnOenfO0aPwI3ogvpcxo8qkKokyCs3M9WiTBwB+Zl73hklPKrCbjZrMpIrPo6cIom8mlx1FZ5lffRJIK/GTNWVJXS+PMTYIeVJTFRJqenBSiIzUSESzJqg8uzCfZiqTvD9VF9bQv/eUeaG1TveXmdJy3OvBtVxuAw7vllLPBLno2+3Ziyz4hlU+kcya2h6oJpA3xzNCioT9Xd6MTkMfPAvLYr1VV9bwvCRKVVVL+c2W1phKWPMY2Wcq7vFQ/sfVo895tJsgiMLEJEVwyY7gqve5JPyJawlBsaOzJBXY6aowZaOvcsRlYKMlffSfKJZbq/Tyd/93d9x//33Kz7XOtaxjv88PP3009xwww3EkpYGOiS2cwGmrFOT1lXXuhn8cJJg/zwFG3MJdAZXPah3bLFhKTLKCjMKSi6mAj3uMwppSxKmzSVGgv2rr70cW2yMHpgG5Fvxajdvbf4cbOVmul9WSMzoYduD1QS6g7Q+kXlNVXdzKeYSEwf//aSyyoyetIKT3qRRVM3Z+qUqsjRZfPTtk4rPkYLNnyPfZsmAvGozUyfV1105bgOFG610v6SesFJ7huVwn2Fn9NiMMllpWf98UthwmwedUadKQBZVUnJssVF2joPmx3tV1abWBIFnL95pZ6J1JqNa2SlVCrwfk1OPc4tdXXEJ9TEmWgbAs8tByY4C2p4bUFQxSCsJCaDyChf5tVYO/aQjYx+ZCvTU31XByOEpxW8/266n7ByHqqqX3gTmUvnbMjn1aA16ZntWDwIml0RoKEJetZncUlOajPlxpOKc3qqn8nIXzb/tXXVsFG3NSx+aVl1dzMjhaQKr7GHn60c42nWYmdkZsrKyOOOMM3j77bcVn2sd61jHfy4uv/xyXnjhhfTPXmrwZ208pZzZbaBwgzWtnptx/aOTCU1dr44SC8YwOQ2ERlafw4pPtxMcnGemO4ShQC+Tl1ZBTrGB+EKM8ESMXK+J0HCImMq06LvEycD7E4rqS+4zC3A15XPs550rrA+WQ7LpaLiznPGj03QL5KdAWUkKIL/aQtXVJfS+NaqodJ6CxWNUVR8SKQOyQtL4samMJIsUdIbVVbNWg2TTYfOaGT00rVxQhyqxZC0wOrKpub6Unj+OqJLORJWUNtxaRnQ+pjonrxkqz64z67BXmRlJ7i9UqxN8P+6zCpg4Ecj4bS1HrtfETHfmzYXoGAPY8gU/i/FE+sLualjxDGr9Y4DGz1Qy0z1H2zOZL3f4Li0ir8LCgR+0KdbnPquAmZ451efJqzSnLyHm11kyjrPlcc53kZOhDydWjSnLlcw85zoIjs6vWqfOoMFSamKqLYjJacC52UrXH05dS4Z1YQJVPRw9fhSQc17/8A//wB133KH4XOtYxzr+83Ds2DEuueQSBgbkecaMlS2ciZR1Kjml+LR8prqCzI9GMBcbmJ+KrnpQb/EYMbuMDH0wmVRy0REJnBqDtEYtRVtsafUUQ75EOMMZndWXQ6BrLl2/Wrw0FkjYvGaG9ikQFLSw8VYvM30hmZCUAe6zCiioyeXYz7vTdlKZ6kupLmkljWLZ2ptL0efoOPKTLsXnSCHHZWBuKPNi0+TMJjSirlQombXYa6zK/ZKE2jMsR16lmbmheWWy0rL++aRQdp6D7DyJVhVRBlElJbPbiHeXk44XB5kf+wQPRgWe3ebPITQcFiJ8gdj70Zu1FAi+b6NDYn4iothOtXGYQn6NhfKLXXS8MKgonrBcSUitj5xNebi25tP8aM+q8SRV34ZPeRg7ElB8Zq1RS1FTHgPvqJztasHsNBAcDKM3a9Hn6DJ+ZymFMmOhhNVjzkiOSsU5raSh5OxCet4YWfW5l8e84tPyme6eW/VvL5RPc3R8P9OBKbKysrj88st5/PHHMRqVCYbrWMK6ktIaIEkSXV1dTExMYLHITMRhenk18TtaEgdXlJ1onk0fktfcUIJ3l5O8mlVuZ0fgyE9kgpLBIbHhFi8bby9b9e+3PtXPVKscVDZ+ykvTg5Wrlptonk2Tavy73TTdt3q5FKz+HGxeM+UZmNgpBPrnWJiNKRKKgn0LvPetE+mNfmFDBnZusorCTVaaPufHd5EzY539fxwXJiiZ3RJVV5ZQf4c3c6EIMkFJIq30kgknn+xPK1kpIUUecZ9hV21jzY1llJ6uzopNk0Y+IWGX6GyExZjYwkYUi7FF4cWSEFLPqrIGKb+kGM8ZDgwO5c5xbrMhmVElKKXe78kn+xUJSq6d+RRuklnSSgQlKV+i8soSGu5Z/dbCx9HxwgAnfqtMCNtyfxWbv+CXf8jQxJwiCbNbIhJc5L1/OqFIUAJZbSA8rWxnKJkhvyYX73mZv1GQv+WKi4vxX1kMkDG5WrQ9j423eNPffPOvV7dik/Il6u+oSCuZnXi8P6PU+KY95VRcKv/dqZbgKQSl+USQNxJP8Xb0ZZpPNGO1WvnGN77B8PDwOkFpHev4L46rr76aaDTK//l//p9kZWURI8JeXuCtxLNEEyuT661PDqRJRBWXFtOwZ3X1ydED02kLrA1pJZdTy4XGo2mCkvciJ/W3ezOqC6UISv4rXFRe6VZV+PGc48C5KU8mh2RCFMJTC6se/C9H86N9fPivMkEpx23IrLiS7K5N91WwSWVtePKpflqfFrOSq7/LS811nlX7MIUUQamw0UrBxsw3t+YGwmmCkpq6TjS0iN6qV6wPZHKG5xwHvguU17lpIoa62JUw4guLLAooFK0FiVhCOGmiitSzCvBwPGc7qLlWXcnIuSVPrlKFoKQ3aQiNRFUJSv7dSze1lFB3q4eaGzyqikMAva+N0vPHEUWCkvciJ02f82PzK98my0/u79qeHeKDf25RJHGFxqOEAxFm+pW/6bLzHORX52JyKj9L/V1+qq6U9zKhkWhGgtKWL/jZeIu8Jp06GcxIUKq71cPG27wywSwQpfnXqxOUCjbmUn6xK22j2fr04Clxqj1xlFcTv+PdI28TjUUpLi4mGAyuE5TWsY6/ADz//PPMz8+zYcMGALpp4dXEE/QkVhKXgwPhNEHJfWYB/svd5FWusk6KQdvTg8SCMXQGDRtvK6PymtWVXAb3TqRJERs+5aXh7tX303OD4TSppuqqEupuVd53G+w6Cjfm4d6pfMM9NBJmfnwhI0EJIDIdY993W9MEJauKWpLFY2TLZ/24FW7XT56cpeuVISGCks6so/bGzH2YQurwsOx85fVP/5tjhCdiaTu9TEiRR+wCCuL+y91pdT/lSpP//QkJu0RDcRKf8LorHl0kvvAJ1pl6VhVyVulZBXh3FWHIoOiaQl6lWSbBqRCUUu934O1xRYJSXqWZ/Go5361EUNIZoOZ6T0bls4+j9ff9tD2jTPRquLucjZ/2yj9k6B+dWYfRkU0sDPv/vU2RoAQw0xMiNB5W7m8duJryKTlDOU9rLjFQdU1JWsUkE0Ep12ui/g5v+pvvenlk1ZiiM0D9ngqqkkpmvX/MrOi24bYyKi6Tc16hkfApBKVYIsbexEvsjb/A0eNHsdls/Nu//RvDw8PrBKV1rOO/ODZu3Eh/fz/PPvssFouFIAHe4nk+SrxOJLEyXz74wSTzyTO/8otdVGdYC8z2zssEJaDsbAcbb/OhNZ6qUhKfj6cJSgV1uWy4tYzcDKp8qcN6x2YbVVeXqCr8FG3Jp2hrftomaVXEITS2QHBAmfA08PY4hx/uJB5ZRLJqM6sQJdMk/iuK2XDb6uerKXS8OJTOC6rBe6GT6mtLV+3DFFLkBbPbmLEPASLBeJq8oZWU117xyCJaCVX1Tr1ZS/klLlzbVM4lU2kkZcGaNSEWXSQe+eSYT1kaiEfin1ydqWcVqM67qwjvRau7HS2HrULOEamdiaaUfNQISq6t+aBF/rYV2uk5p5Ca60qRrOovcLJlls6XhhQJSgV1uTTuKV/6ljP8bXOxrKg1sn+KQz/uyEhQAjmmhMYWmBtVJlI5GqwUbcpTdXmquqoE/xVynIsG4xkJSlXXllBznbyemh+LZCQoec4ppO5TZejNWuKRRXpeXZ2gZHRI+K8oxrU9H5Bj78f/9khigDcST/NO52uEF+bZsWMHMzMzPPvss+sEpTViXUnp/wP27dvHmWeeycLC0gD1UUtF1oZTypZd4EgnhOvv9NL1yuCqFkjV15Yw8MEowYEIxTvtTHbMrqriU7bLQXgmwshH0+T6TITHwqsSMZzbbISnogTa57D6cwj0zq1KSDCXZhPsk5+j/NIiOl8bViQulF3gwOYzK94M913kxLXdTvdrI4rJlsZ7yznxm24hpZuK3S4MNknRs9Z/ZTG9rw8SUbmw77+yGEeDjbZn+hXt7MxuifpP+5lqm6Hlt5lZwc4mG/7L3AwdmKTz+cyLHIvXSCIaz2iBlYJk1tD0YA3T7TOrqsIsFYSdX60l0DMnHyZ8AhBVUhLFzv9Rp9p/qXKBniDNj6g/h7PJlpG0kq7vb2qJhmLs+9fMLG25n6uZ7QupPu/2r9WQlQUf/EOLavvKL3PR//5ERlJfrs+Ef3cxB/6jXUgxq/bGEia7gmmlotVw2tdrSCzCh9/K3L6i7Xm4ttk5qGLX4j7bznTrLHPDkRXx4eNYrihVfrkr49hfrixVd6tHvpm/ynN7L3TSnZSHr7mhhL63V1e2qr62hOk+uT8KG3JZmI2dokIXSUQYrW6lt6+XUEj+t8suu4znn39e8dnXsY51/NfFHXfcwS9/+cv0z9kY2cFF6LNWJvCtPhNZ2iym2+co2pqHwS6tqs5jcupxNRWkkxMlZxWsan+kN4HvomJan5YT4UrKQJ5djrSFk5KyS0rZxOSSMLtMaaJTJjTeW07fu2OKN8O3fbmKRAL2/UtmZT7nljzMRQaxhIweGu8qp+3ZfkJDq09WpgI99jorfW+pqxtuf6iaeDjO/u8qz0F1t3iwlJj44J9bFAk0Tff70Rq0fPgtZcWngoZcxlWsi0G+TWcty+H9/608z1dd5ybfb1EtJwpRJSVR1N5cSm5pDh/8o3L7qq8vIa/CzPvfVu5nkMcrkHEcAFRc5sKxyUbzoz0EOjMfbFVd7ya/wsL+H3QoKhU5ttiouMRF/ztjquNLb9Lg2lmgaJ9Wd3Mps4PzQmNVb9VTdYWL4wqEb/cZdjznOOh+fYSh9zMnnurv8sry+0p2LXoo3VmQblsqPpxSzATZ+bLakc2fg0aXxeQq6rB6qx7JrGVuIIxzSx5ZOla1oDMV6Mlxmxg7HMBSZsJeY1k1Vua4DXjOKOTE4zJ50X2mnYF3Tt3fDejbmC8OpJWHCwoK+MMf/kBTU1PmZ1/HOtbxXxb9/f2cfvrp9PXJ334WWVSxmdKsU4ngy/fn/t0uBj6cZH701D2k+6wCplqDhEbC5FdbCI3Mr3qAX1CfSyIOE80zGB3ZREPxVdWIrBU5LEYXme2dx+Q0EAmEV1VVWq7M5NqWx9DBKUXiQkF9LgV1Vtm2LgMKG62UX+yi+9VhRcWbqmvddL48oqimlIJrWx5ml1GRfFG8087owSlVYoprWx6e85y0PTeguH7UmXVsvrec8ZMzdL2QmTxsLjGw4RYvQx9O0vvHzPNtilijqtajg20PVKn+XYCtX6xiuiso23p9AhBVUhLFti9XMd4yo0q+3vblKqY6xJ4jr8qcvqiaCU0PVhILxTj8YwUlCB1svb+KQHeQtqeV/27jPT50Bh37v6usdADy+Jpqm81I6jMU6Km4tJjjv+kRUszynOtgbjTMRHPmNfvm+ypAk8XBf8+8l7BW5FCyo4Djjyjn9/LrLIRGw4THo4rKbcsVQxQVw5cpT/kuctL31siqsWi5GqXnXAejRydXVTJzn1VAeCLCRPMMFo+RRDxB8GNKqrFEjBF/K33DvQSDQTQaDXv27OFHP/qR4rOvYx3r+K+L73//+3z1q19lfl6OO3kUsokz0WatJCYY8iV0Bg3BwbCsnOQwrkqGkMxa7BusadKSvS539TirBfcOe5q0pKTYUthgZeyIfOFHSUFIssoKTpJZi6nIoHrxyH9FMaOHp5npzZxLqLu1DK0+S9HVw+IxYnEZGfxAXb0GLVRe4abvrbGMKlJao5Z8vzmjbdRybLzDS2IxoXh2CbKykL02l6M/7VIku1RfV4LBns3hH2ZWIgSwlBqZ7VNXN3SfWYBjo42DP1DOyRWflo9zc75qOVGIKimJwn1mAQV1Vg7/pEOR2JN6jiNJkpsSJKuWLI2WhanMOa/CRitl5zo5+WSfYn+n/u7xX3UpXjI0u41UX1dC39tjq1qILYdWAvsGm2K5krMKWJiJKl7IW6pPQ+m5Drpfzrx2tfpy8F9RTM+rI4wrrM98FxUR6FOxgNNCYZ01/R2l4sNq5Yx5EvPjsiqSzqhdVblNK2nQm3WEJyNYPEb0Jt2qtnZ6sxZToYFA1xySVYu9cnVlK8mqpWiLPa3qll9rWfV5JhLDTPsG6e7uIpFIUFdXx1NPPUVVVVXmZ1+HItaVlP4/YOvWrYTDYd588030enkT3sUJXk38js5E84qyKYJSXpUZi9uEY9PqzNaTT/anyStl5zqov9W7arme10bTZIWa6z1s/vzqH8HIR9Npi6ba6z1s+8Lq5VIEhFyfiaIt+dRd78nw1DKsnhwMGfxqU+h6eYTx4zOqt8EO/6iTSHARqz9HVXkmtyyHHBVv8PZnZIJSXpU5o09vqtzJJ/sUCUoAwYEIc8PzchJLASP7pxl4f1yRoAQw2z2vSlACWf1nbnieyQ4VtlUEQuMLBPrV7S0kM6rqQ8KQZAKXyN+cG51nqlvlOSQI9oeYaBGzSFMjKIF8W6vjJeX3EQkuEuyfZ+Aj9VuLh77fSvPjmReZklm2ZYSkj6mC6lhBTS7ZZj2W4szMWtfOfOpulb/FE4/3KxKUAHrfHqXjBeUkW647h2yLHkmBqSyZwXOWk8qr5VtxmQhK7jPsVF9bmv7OMo19/5XFVF1Vklahan5kdYJS8U477h0FaZWllt9mVrbKr7bgapLj6NiRmRUEpUgiwkemV3mLZ2g52YLVauXCCy8kkUisE5TWsY6/cPziF78gkUhw9dVXA7DAPG/ye95JvLBCWSnQFUonQBybbDjqbavWFxqJpsk63ouceM52kF9nOaVcNESaoOTckkft9R5Kzlr9RnyKJOE530HtjZ6MSj8pAkLl7hLKL3QpKviYnHoMNgmzS/k2RsdLQ3S/qnw4MnJgKv3MtTeWrvq8KVhLTBjzJPLKM5cJjUfTxAr/buXnaH60l/3/oZ7kGD40xVTnrCpxpvOVYU4+oa74JEJQAphonWWqI6iqpjTTE5LVcARUl9TUcNaCbLte6G8GekLMDiir9QBMdQYJ9MwJKSmFhiKKBCWAjheG6Ht7TJGgBDB6aJqZnjlVK7XRA9OceLxXkVRUenYBOW4D0dCiIkEJwFRkxFa+uhpaChtvL8PkkogGoooEJYCBdycYOTitSFBCD4b8bKxeZUWm2utKKTmjMD1eMvV14z2V1N4orw2n2+dWJSgBbL6nnNqk8tXIgalVCUoAdbd48V1QBMBsTyij1WJRYx7WCnOarPZxgtJk8QCvJn7HichhBgcH8fv9HDx4kLGxsXWC0jrW8ReMkpISent7aWtro6ioiAQJTnKA1xJP0pdYeWEttT83FOjJr7FSWGddtc6Bt8eX2SAVUXPj6rmn8aMz6UO06qvcNN65eq4o0LFk0VRzfQkb71hdSTNFQDDYdXjOdeJPqpJkQm6pCVNBtqLKz9jhAIMfTKpacrU+OUAsGMNQoKf6OmU1b6vPjFkhRwCyanEsvIjJacC1LS9juaGPpmh+tEfV+iwWjDHdEWT8mPKBRrA/TM/rI4oEJZD7WsROjBhMdwQJdKvnsgI9QcVDyzR0st3cJwWDXaAuHUx3zzGTQdFwebmJkzNMtiu/jxTUCEoAJ5/4/7H33tGNnfeZ/wftohIA0UgQIEiQYJ0hp3BmNCNp1DW2Rr13W1ZzkS25KI6S3fw2e/ZsTrybTazEjhM77lWWbMmyLbmo9zK9Fw57rwAJolwAxO+PC1wCROHE9m7iBM85PhaHL+997/e+5Xvf93mfZ5j+F9awSU7C7KkFps5ic/Xgt/o5/mSZ3Fq9os41/v58WdUxi8+IwaHFVGYN19JslFUzh16ZKktQAhh4aZK+Ndb4jC4deoe2/LtTQ/MH62j+gDQOlGqv1S0mOm9roG67tPZUUjF8SzUdt/hkpbH+3xQnKFmajTReWiurLA29MlXSarF2UzU1G62ApIqSS1BKppMcNr7JKzzD8d5jGI1Gbr/9dlKpVIWgVEEFf+T4+Mc/TiQS4Qtf+AJarZZ5pnmZp9mXfp1UeoXsEJsTCY9J44JzvRXXZmvR64nhlExQcnSa8V9ei8Vf5Ns0hUxQMnn0tN9cj3ND8VwuS1CytVfRcatPVpYpuHeGgOC9wEXTLndZVSWVXoXBpcXgLL/vN/DCBIOvls9DFoeiMkHJs9NRVtlIaxYwuHRUlVGGSkVTMrGitqe8OtTpn49x4sdnsUZ1IsTciYU1iTNDr09x+mflD/0DZ0VQAlgYXGL2eGhNNaXF8SjzZxbLK2FlIFhUfzB1Jo1JdVb3XJqISvnjGgpJi2NR5k6vHWcAMZQqS1ACKfcf+O3EmvGePxNm7vTCmiro4dEox58YKks8srVXoXcKpETWJDKZ6w1l2ztIAgF6h0BKXC5LUAJJQW30zdmyBCUAY62u7B4nSCRI30UuWT2plCJT+431tFwrqSdFp8WS1pIdt/kIXCnlkItD0aIEJYDm3XU0XlaTuWdpZStLownnOgt6p1S/1QSliG2eV9M/Zz9vMDw8RGdnJ729vRw9erRCUPo9UVFS+gPimWee4eabbyaZXOlgXpppV2zKKyfYBJm8sPlTAWJzYlHlGFO9FpVWTah3Cc8FdnRmgTO/KPwYs3dWoasWGH1zlqpGPQa7tiiBo3ZbNel0msn3g1gCRuILiaIqTTVbrTIZIve/S6Gmx4rOKpS1Y2u8vIbazdUc/nZfSdJB5231WJpM7P+XM0XrtRq5cSyGrZ9pRaVV8c5fr30qfd1dDZxeg1Qi3ZSzUr1Zq26WgJHOWxoYe3fmrGzs/lA450/bWRaXef/vSisswNkpKbl32Gi6zE3/CxNnJUv+h8L2x9qJTMU59I3SJ8XWiv9KQc5axWjkvVkWB8onIJ231WNtruLIDwYKVH2K1m2N+2/8WDM6q0ZSOChRrvteP1qrhvf/tvQ7FWwCzZe5yityIZ0WXehfQAyXV6rKHRfab/Jy4qki1xWgYadLat8CtFzpKXpK0ew34DvfKbc1z3krpzZyUd1uovUaLyd+Okyod6noOw6nw7zPC+hNOsJhaUHv3HPP5c033yz73BVUUMEfL3bt2sVvf/tb+WcBHdu4BJ0i/6NMY9GQCCWobjPRfEUdJ54alq3hcpF7srXjtnoGX50sShZousJN3/NSTuY5387ou7NFiR6Bq9z0ZnK3kmo+GrC1VDF3bBGNRYPBrlmT5NFybR0Dvx0jUabYlkdaWRyNcLLYGJ257zmfbic8HilPxtAgP1s2jsVgDRjpuNnH1MHgmipNFr8B5zqLHJuyyLl/uTIajbKsxdj6uxvQO3W8/7flVZf+kPCcb6fhwhqOPzVUUnkLzl5JacvDLShUijXzuD8kfJe6qNti49C3zhCZLP0iyrWN/IKsrdrk0OC9wMWpn66tbnDO59uJh0QO/HNpdVe5bmvc2+AW6P5QM9OHS7dhg1tg/Z1+ht+YLktOqr/AweJYdM3TovK4oAFHm5mZI4VjhKFGg0K9ooqUiCWLbji7NlsJjy4RmUzg3m4jPB4ragHnv6KWpckYU/uCWJoMJJYSRd9txy31aMxqDmXUGYq949PpQwTNkyyGF0mn0+h0On7961+zc+fOss9dQQUV/HHi0KFDXHzxxczNSeOfAgXNrKNR0Z5XTm1Sy6pBnXf4EBcSRed8nV2NWq8mPBLD1lmFwalj5NXpgnLGOh0Gp5bpgyF0djUGh565k4XjoKXZiFqrktWX0mKqKImiusXEfH8YkmenVmNuNGB0ahl/v/TBNecGC74LXBz94UBJwoPvIhc1m6s5/J2+8iQeNZDMj2MxrP9QAzqbtqyCZhb+K2oZf3umLKkk995rYa266exquj7UxOg7s/9P14s2fSJAOrHMgTKq73B2SkoWv4GOWxrof2H8rA7J/aGw+aEASxMxTv6k9PqNWqckmVxe+12d5ftsuMTF7MmFAqWe1fBd5MK91caxJwZLbhrltY017t96gwdzvZE9Xz5VslzT7lrM9UYO/HNpFQm1Dup31tD/2/KELZNXRyyYJBlOYmk2SmT9IvfNHRcaLnEx+FKRdVs11GxYWTerv9DFcJGNc51Dg/dcp6ye5VhfKt/T0XaDh95fjrE4FC3ax+LpGPt4DWVVmsXFRRQKBTfeeCNPPvlk2eeuoIIK/njxF3/xF3zhC18gkZDyBit2ujkPQZHP5FDpVaSiKfQOgeYr6jjz6zHZGi4X1mYjwTPSN2r9BU6mj4SKKgjV9FQzeWAeUhJJYu70YlFCiHubjfH3pLwwV3luNbJKPyoBdPbSKk1Z1J1jY3J/sCy5pOO2eiLT8dJ7ayro/rCf8ESMvnJrVCrkZ8vGsRh0NoF1dzQwsXeO0TVyG51NwNZiOms1p7OxI1MJyrLxaLjUhaXBWHbP7A8Na7ORwFUeTj07UnIvDM5eSan9Fi8ao4bD3/x/9wy2jioaLqzhxFNDRGdKb9SVaxv5BVnzfar0Kmq3VDNaRMl/Nbrv8yMuJMo61Jxt3QSTis47G5k+FCzZhgWTivabfYy+O1uWPG5rryKxlFyTsJU7LpQaIzQmFWqdiuiMpIqkQFH0cEJVvR4xLJHJrM1G4ouJouOcc4OFxFKSYO+SRMhKLBclRXnOd2BwaDn9jPQ9UCyOE+kRRkwnWIgskE6nqa+v55e//CXr168v+9wVnD0qSkp/QFx33XUkEgmefvpp1GrpxMYIZ3gh/RSH0+/J5XI31hUKIEMTE2wCQs7h3vBwXFZBqtlQjXNdcfby7LFFeVO/5SoPTR+ok8gPqzDx3rxMLGi7rp4NHyl+wixbpqpRT/OutT1c6893rul5Gg8nSMZTJQlKAMd+NMzevz9JbEpEsAllFX9M9Vp6Phago4z/+cGv9XLk++UXJkB6TnODkaYyqksgvZ8dn+uQlW1KofV6Lz0fD1DVWJo9GupdIhZc258TJBJI4+U1a9YtcG0dgql8l57YM8fIO2tPfmeD+TNhpo4EmSmyOJiLhktdsoJOSQiSjY3ZX57pC7A0EZMWFMug++4Gzvl8e9kyOpfAjkc7aLuh/ElGwQTWgFlSuVgDx340zMmnh8sSlHo+1kzXPY3SP5ToDtWt0kBw4J/OsO9LpQlKAJHZOIlI+SQksKuG6hZz2TYpmJS0XOOl885moLRSVdsNXpo/UIc9o7xRlKAEbPhwE57tDkmxSaTk4l/dFhtVPiOmei1AAUEp++9LmYTD4JR+zh1H48Ic453HeVfxa1KZFaaLL76YdDpdIShVUMF/cPzmN78hnU6za9cuAERivMFzvJJ+lkh6ZSzObqxrLRoUCghPSh9FWVWQLLIEJYvfgMVvwtVV/HR6lqBkcGjw7XTRcWPxfCSXoNR6tRdfsVwjgUw46LjZS8fNDWXVcixNBhydFnwXlZ+XxKUE0dniSnjZ++778imZoGQpNQdn9tDW3d3A5o82oylRLNi7xPEnh87KRs53kQt7p2VNVaDW6+o45zPtaAzl85ttD7fRWUJ9NIvQ4BKLw2uf1K9qMLDu7vK5L0gbDHU7yue/M8cXGNszS3iizHv4V2DkrRlG3ym/GKaxaGjcVbNmzHyXuPBfUbvmPSOTMZamYmUJSha/gS2fCBRv3znovK2ebY+0rfnevRe5sLWaMTjWlo06+oNBDnyjdL7ffrOXno8FJBWqEo9gqNGgMSiJjIvs/YeTZdtwZEYkGU2RWMOyp267g4ZLyufvnXf4aLnSI9et2IYVwPq7m2jPKHVO7psvSlDSGKBpl5vm3dKJs/F35ooSlABc663UbpLGtlBfJO/dagzKvLajUCjk/84lKIXXT3DA9gqDnCK0EKKlpYUnn3ySSCRSIShVUMF/YHR3dzM7O8vBgwdxOp2kSdPLEV5I/4TT6cNyubyN9ZxxRK1TotatjDGx2SThEWlNpGZjNbUbi+ddS2Mx2bag8TI3gas8qIsctA+dWZIX01uvqWPdh4qrL82flghKglVN67VeWq4rr6pUv9OJ5zxn2TLJSIpEJEksWHq+HHpliv3/eJrYTAK1Tlla6SVTt00PNtO0u/RcfeLHgxz7YXnVPwCdVY2z04r73OIqoDLU0POJFlquKR+Puh12ej4WwOQprXYQm02yOBYlOrN2DuS90Ckr1ZSsmk6J53wHalN5ZaPRt2YYefsPs+a1NC0y/Na0pLJZBq6NVqpbyis1ArTe6MVYV14hAiA0sMTCUPmcte3meno+1lK2jNqkZssnW2Wl6tIFwdltxXt++TYOUhsuS1DSwcb7m2i9QcpHShGPsm3n1E9HOfDPvWWJTLE5kfhieYZ73XYXro3VmLxl4quGjlsa5PYdOlOcoFR3rp226+vldbmiBCUgsLuOxktq0WWUu4oRlADsHRZsrWb5mVfne1l7RDEUAxRoLdLPueNoTB1jct1J3lQ+xxILLC8vc80117C8vFwhKFVQwX9w/I//8T8QRZG//Mu/RKvVEmSW13iWd9MvEEuvjMXZjXVNlRoUIC5KPwuW/HkzS1ASLGqcXaXnr8m9EkFJpVfhv6yWxkuL5yNZgpKhRkvrdV7cW2xFy2WJDA2Xumm7oR6VUHq9Qlst4N5qp7antFokQHwhSbTcIfUUHP3eoExQyiqkFCsH4LvYRdeHGlHpi8sCxeZEjj85tCZBCaB2iw3Xxuo1VYHcW2xsvL8Zjam8FNH6DzUSuLp8frY4GiXUv/aal84m4N9Vu6b6kcmjx9ZeWlUdYHEsxvAb00Sn/zBrXmPvzzG6Rh6nEpS4NllLvqcs7J1m3NuKt8dciKEECyNLZQlK2mqBDfc2UdtT/nqe8x1suLdpzbq5ui3UdFejXcOpCODEU8Oc/llpu17PDjvd9/gL+nouNCYVKr0KMZzi8Df7y7ZhMZwivpggES2/5uU9z0HdtvL5e/0FTlqv9crPWSp/bL/Zh/8DK6pIRdVTVRC40kN9xtUgeGapKEEJwL3ZhnO9FYDojJhHUFIJrLyfdDr3UzWPoBRpnOOw83WO8A7BcJDOzk5eeeUVBgcHKwSlPzAqSkr/F/Haa6+xa9cu4vGVQdqMjW2KS4qW3/RQMzqzwNslTlFnlUNqeqw0XFLLsR/1F9owCZmTHO8H0bkEWnbXcfgHAwUkh6pGPSa3nvG35zDVa9FXa4vanjVc5mL8nSlJWaWMqlJVo57FgSiWgBHBpGb6QGkZ4ZqtVmq6qsuyerd+thWVRsk7XzhRskzXPY30/3ZsTes0wSaw4Z5Gep8bY76EJYKpXlvS0ioXGx5oYmLfXNlTVOXi/rvgnM+3k4gk2fel0vYozo0WWq/2MvL2tGwt+PvgbJSUzhY7/qwDcSnJ3r8vzZSu2WqleVcd/S9NMP72WTDM14DnPDsGl67sqTgE2HhvM32/Hi/L9AbJ1q5cO9v8yQDBvqXyrPwM1t/dwNAb0yXv2X6zF1urmeNPDpU80VnTY6VmQ/k+hACNF9YwkDlJZvYbit4zt1/n9vfV1/Ke62DklRkQoOkyd9Fn9VxgR1+tpfdnYwgmJZYmU9FxpeueRtRGFfu/LJ2EK6V81XVPIyaPgb2Pn0AMF54UmEgPc5T3SGeYnjabjXPPPZef//znpeNSQQUV/IfGbbfdxhNPPCH/rETFBs7FrihcnNfaNWx+MMDsyYWiii25qiEbHmwiOhfn1FOF5RzrzcycXIAENO92szgRZaqI7YfvUpdsR1W3w87YnkL1JY1BiXNDtXTivIyySlWDQSYg1F/gKGuHBRLBaOy92ZJqPrZ2E23X1zO+b66k3ZOlyUDNpmpO/WRtdZvGD9Rg9ho49PXS85TBoSGyhhWINWDEu8OxZj7SvNvNwmjkrHzX14LnPDv1F7g48eRQWRWczQ8FUOlUvP9/fn9lprNVUjobNFzmwnOOg8PfGyhJUgFJrVGtU52V+sKa0EDnzT5OPzNSVs3KtdmKo93MsR+svaFqcAslLc9snVU0XlzD4W/2llUTAzB6dPjOc3K8jOT6OX/SjhhOsP8rpU/or9WHQCIjRmdFlkZjmLz6omptaMDRIaknaSwanJ3mogoTjm4zkbEokZkEtVuqWRgOFxDFNAZouW4l7s4NFqaPhQrGlaoGA+03eDn1sxFCfZHSqlca2P7ZDsITEY58u3if25t+lXkklRODwYAgCLz++uuVRZoKKvhPit7eXi6++GJGRlYOrrjw0MlW1IrChfL2W+qp8hp4/+9PFiUHZJVDqnx6Ald6OPWzEZbGVh3sUoOtuYq5k4uodUr8H6yl/1djBdZKOrsak9vAzJEFdFY1epeu6Pe1a6OVud4wyXBSUk/pCxetm6FGR2Qyht6lRWfVlFVfMjcaqO2xcaqMEk7XPY1oLQJ7Hi89DweucjP63hzRqfJrVWqdknV3NTDw4iShEusMOofmrCzYWq6rY/bUYlmLuGzcT/9i7KxUetbCpo81k4imOPLtgZJlTB4d6+/yM/T6FGNv/f7KTGejpHS26PlkC4losmzeW+XT03FLAwMvTDB1IPh739PWVoXJrS9vvaeGtuu9jL07W3JTKAudVV1WZavjdh8LI5GzOvHvv6KW6cNBmYC4Gp6dDrzbHZx4aqhke7X4DdRsLt+HANxbq2WFM2OdrnC8IF85zbXRytyJBZKxVfmqWiJxZ99N3Q570fzM1lmFyZWJuxqq/SaJ9LgK/t21GOxajma+YUopj/mvqMW1zsr+f+lFLBL/UHqOg7yJiDQG2Gw2brnlFr7yla+UjUsFFVTwHxdf/OIX+S//5b8QiUjjpwET6zkHs6KQ0KMSlGx4oJmZYyGGXi6cL3JVQ5qvdpMMpxgsUs5UpyM6I5ISl6npqSYeEouulTi7Mt+jqczY2xcuUJRRCWBprpKslFRQ5SmurKKzCbLCk73TzOzJhbLqNA2X1TB3cqGkqoveKdB5awNj78/K9nfF7ulcb2H4tUJVz2LPavWbOP1s6TxCsKgQQ+UPlusdAu5tdsnKtEzRmp5q4kFRJpn9PjD7DbRk8uxyKjhtN3rRVQsc/Je1RSDWwtkqKZ0N7BnbwhNPDRMeLV3/wDV16G0Ch7818HvfExU0XOBi7P1ZEmUs3Krq9dg7LGvaqIFEFCxleWao0dJwsYtTPxtbUyFJsKhwb7YX7btZdN/rJ7GU5PgTpdfFGi51MXd6sWzOaPLoScVTRGdEtNVCSXu8rGJSXn9ffa06HeJSEjGUxOI3EgsmCq+XifvIO7OkoinpuqPRgr4iWNS0XO1h6NUpSbGtjLLUhgebCY9HOPPz4vu4vemjDHGKZVLodDr8fj+//OUv8fuLH36p4PdHRUnp/yIuuOACYrEYR48exWCQjp0vMMcL6ad4Lf0LxHR+pxt6eYqZE5mNKEEaPATbCpsyu4kvmKVTFeFJ6SMltwziihJS/XlOTB5DUT/IxYGoTAZpvbaewFXeoupLgy9IhAXBpKRpVx0bP9pc9FmzNlgtV9URuKI8q7emqxqDS1f0fln0/Wqc8b3lySqHvzVAeFRE5xLovrf0ICEYFagEJQaXtmSZLEGp/SZvWaWkg1/rkwhKAiXrH5sSpcnvLAhKjZfXlIxpFu9+8URZghLA9IEQx54YXJOg5Ogyr6j4/J5ovLyG1uvLqxAB7P2H45z8SfnNxcn3g7z1v4+VJSh5LrCz8WPNZdtNFqNvzpZdbBJMgCgpFZUiC5nqtWx5pAXBpCxPhBNArVOjs5Y+7e85z07gWqlfHPnuYFlSVN/zI8ydWii76OnstGCs0eX3/VVYf2sDddvsshJRsXtm1dI675LafLa/r8aGDzfhO88lqyKVImO5N9uwt5kBEMPL+QQlgTyluFzkEpT8u2poyig7DL0xzdzxhQKC0on0QY643uCEeq9MULrxxhuZnZ2tEJQqqOA/OX70ox+RTqd54IEHUCgULJNiP6/zQvon9Kfzic/x2QQzR4KMvC0tQDRc5sJz3sopkIJN/AytX2NQ5inBzBxZkEkB9g5zyZNjWYKSoUZDw0UuOouoLyUiy/KCeOfNPlquzqisrEKWfFLVYMB7vpPWMgoAWrsGk1uPo91csszciTAzR4IMvFTaIiHUF5EJSoGr3Dg3lFZJ1FsENGucHIrMJNBYNGz6eHPRZwRJnSlLUCql4ARw5rnxsyIoaQxKuu/z4+guHYvRN2d552+Or2nTdeKnQ9Im6xoIXOXOa1e/DyRr5PKqk4MvTHH0B+UJSiDlQHu+XJ6g1HVv45pqUQAk4NgPhkoTlDKvd2pfsCxBqeOWeho/IBEKSxGUAPQ2AbVOhVJfOvfqvNOHxqJhaTRWlqAEMPbuDH2/Kk001xiUmNx6XF3W0hfRQOCKOgJXSn2xKEEJSW4+cIUHNNIYU2wDTGOAwG4PzddIKgQTe+aLKlkZagxYGoy4t0snyaYP5hOUNJmT+LFpqS3obVJOmDu2ae0aOu/wyVZ404eDBYuyiXSCN9PPsa/6JZmg5HQ6efPNN5mfn68QlCqo4D8xAoEAw8PDjI+PEwgEAJhilFd4hnfTL5BM5y+8j7w5zeS+eYnYopYIMYJ1hcyU3cTXZta84nMS4SBPPSeJbPXm2liNrcWMzl6onhKbTcpE78YPumm52ltUfWnqQFC6rxoCV3novKX4elBkUqpL0wdqpbG+jKCPo9OMud6Qpxq1Gv2/nWD0rfKbYL2/GCc6FUdtUtNyvadkOaVOKa1JlFkfyBKUPDsdBK4qrcZ5+pmxFYJSKaGn2DKnnzk7gpJro5X2MgroAPv/5UxZghJAeDTGke/1r0lQMnl1aypBnS1qNltpuKS8SiTAwX85zamflSfTLA5Fee+LJ8oSlGxtVXTc7ivbbrKYO7lYlqCk1gFJOPnkSMnNJp1VLR0gM5UnKAEIRhV6S+m8y9ZWJceq//mJkgQlgNG3Z5jcN1eSoARgC1RhrjfkjQ+r4d9Vg+/iGlmdqhhBSbCqab3OS8tuqU1MHQgWEpSAlt11+C+vldXNSlkUuntsONdnvoGS5BOU1JR8d7kEpZrNVurOlfLr8fdnmdg/V0BQGk33cdj5Bgc0ryMSR61W88lPfpLZ2dkKQamCCv6T49Of/jRLS0t885vfxGKxECHMe7zIq+lnmUjnf/emxGXG351l+nAQkIg1js6VtZDVm/hZJQuVQJ7KTngsJtuMOddZqCmhfDl9OCSrLzV9wF1UfSklIhMWPOc68lRWcpElKAkWNY2X1lBfRtFSpVdhbTRiaTSWLBOdFhl7f5ap/aX3nmJzovwtXNNTjbW59PUEs1pSrSqz7CWGUqj0Ktpu9JZUuYnOiNI+S4qyqkuTe+fPjqCkgqbdbqyB0nVf6I+w9yun17Tp6n9hnCPfWZugVNtjw95Zeo3tXwPfxS6M7vKqk7PHFjj6g4GyBCWA3mfHOPzdgbJlmq5wn13dUzD48lRpgpJK+t/icLQsQclzvkNWdypFUAIQqtRoDGpUgqJkmYZLXWhMEhGuHEEJYOTtGQbLEdtVYGk0Ymspr5zVfKUb30VSvleKoNS0203LVd6MPSFFCUqooOVaLw0XSut/of6lotfTmgUc61bGrcWhfIJSVhFJDCdRKECjl/pZ7tim0qtouNQl99WJvXOyAlwWqXSKQ+m3OWB/hQGOs0yKzZs3c/jwYY4dO1YhKP1fRkVJ6f8h5ubm6OrqYmxsRZ5NiZLNXIRVkb+hlT0FferZEWYOl/Z+NNVr6f5QM7PHFzj508KPYlmhRIBtn2pj5K2Zwo8tAWo3VjPx3jyCTaBlt5uj3ysklXjOszN7epHYlIh7h43Zk+EC9RPBBJYmM9OHFjB5BDRVQnH1IgEQJVsrS4NRVnsphp6HA8TmEkXrBJK9mr3TzLEnBmV7vHIop4qz+VMBlCoFe75YntV7zufbEZeS7P9yafJQ+81erM0m3vnb0nZd6+5qwFSn590vlrf0gtJqM/8atF7vxdFpZs9Xeste62yUlHoebkGtU/Hu/yqtdnVWyCZgazxa5x0+zD4D7/x16futv7sBo7t8PJ0bLQR2exh+a0pSBiqBhktd1G2zc/RHpUlFZ6vAteWRFlTa0rGqbjfReo2XU8+MlCQnCTaBhgudK+SrTB9aDfcOm0T2ylFVK3i2y1wyoa3x8hoGXp0suFbNViumGj1nfjGOYBOw+PSFCmkCbP5ogIWhiKSeVKqNCrDj0Q4i03EOfq18crvtT9pJp5Z5/28LN07Dm0c4euooi4uLKBQKAoEAN910E3/1V39V9poVVFDBf1588Ytf5POf/zyJxMqmvAsv3YrtBWW3PNJKOrXM3jWIwd33+dHbtSXHdI1BSSKyTOBqN4YaHYf+pfBUtaPbTKh3gUREUh1aGI4UnljXgOccO6NvSHmb5zx7gSUmSF7bWYJOzeZqafOvoFLI5IWmK9wMvzVTXEkFqG4zEdhdx/Enh0sSLbY92kY8lFhzTIfyijiWJgPtN/kYfGlSttorhvoLHHh2ODn+5CChvuJzssYAGz/WRvDMYmkpZA1se6SNuZML9JY4NZN7vUSCkhZhZ4ttj7YRC4pF20EWZ6OkZPLq6bq7kdF3ZxkqYTtxtiippJNbxgCbPtHG/MkFTpeIVbbM9NEQ/c+XXog5W9Wmnk8GSERTJZUIDDWasrZzWVgDRtpv9jH23qxMDlyNzjt8qA2qsu/Fd4mLmeNBqf3m9KFcVLeZCE/ESYQSeapqudDaNVR59MwcWsDgFjC69IWkOg20X+flzC9HSEQk1ampw8GCa7m326jbYpPHqVLvsvW6OmwdFvZ/tZf4bOmYOTdYCOyuo/+3EwV9MOGKMG0b4NjxYwCYzWba2tp45ZVX5AM4FVRQQQW5iMVifOADH+D1118nu9QooGMz52NSWPPKOtabab6ijlM/K/0NDBLJYOP9AaYPzdP/m8J1o1yFko0PNDH63mzhGKsGW2sVc8cWUeskq5Ezvx4vINnY2qqIzMaIzSSobjWxNBUrVDfJUU8RrGp0VoGFgSK5iRpIgt6lpbrJxFgZu9bOO3wkIkmJ+FMEdTvseM9zcvzHpW22cqGzq4nNFt/46Ljdh2BUcbDM/AfS3J1cQ93Ie6GTmg1WDn71dIGSVRaNl0oWvwe/VrpMFqXUZv41qNtup36nk0Pf7i+rQHU2Skqdd/jQ27W//6l/NajVrPn8DZe6cKyzlFUh9++qobqlikNf7y15PZNXR8ctDYy8PiWrDBWDY72ZxstqOfHUUElS0dkqcK27swFdtcDeLxWvu6FGR9uNXs48N1a8vyC9f3ePbcU2LdOHVsPeaZZtHW1tVTJpMRc1m61MZpRta3qsTB4MFlzL0mzEVKdn9PUZ1Dqo8pmKjkWdd/hYmowx+OIUap2yKMkJYMunWwlPRDnxo/Lk+A33+1GolBz450IFz6V14xwbOkJoQRrDWlpaePDBB3n00UfLXrOCCir4z4uXXnqJe+65h+FhaexRosJHKwHFuoKyHbfWo1ArOfb98ofJ/btqsfiNHPiXM0XVfbIqJa5NViwNRk7/fLSgnMmjJzonkoqmcG6wEJsXC3MYFdjbcsb0juKKK7nqKaWcIlAh16Gmp5qZYwsllVT0ToHmK+o486uxknZRXR9uRAwnObmGoh+UV8TR2QTabvIy/No0cydKq1TaWqtouLSG08+OlibfqGD9nY2EBpbKqj113+tn9uRC0fXD1dcDyio4nQ267mkkHkpwqkxOdTZKSiq9io33NTH69iwTa4hXrIVySjorhaDr7kbmzoRLK0WqpINm00dDJRW4AAJX16GrFjjynYGyt2y7yctyMs3pZ4rH6mzUt0BS4Oq4pYGxd0vHyrvTgd6uLXkvkHKqyHSM6LSY14fy7uUSSMVTiKGU1K+no6RWCx7pVRhrtSz0R9CYVBhrdEVJdd6dDsb3zJOKpjD7DCyMRgruafEb8eywc+yJIZn0WOxdurfYqNtu5/B3+8sSvoxuHe031tP/wkRBH0zpo0w3DHHkuGRbXlVVxY4dO3jmmWfQ6wuFXyr4v4PyZt4V/EFhs9kYHZUGhXPOOYf33nuPZZbZw0uQBi8ttCs2ANIp6PF9QXnDf/uftrM0HuPwqoEuPBknNLjE4BvSR1zzVW4is3FZkSb79xafEYVKIXtJ5pEJRJh4T/pw9V/kwtJgLDrh505sjRfV4N3u4P2/y99sEMPI6imtN/jQVgm8/TfHCskUmZ8bL69FZ9EUJUlkkV6G9HJpLt2pp0cQXl0hYxltAksTxS+28WPN6G0Cb//N8aL32/cP5Tcms1gcjbA4Vn5xKDi4hKFGhyCAWOLZShGvVmPjx5vRW0tbAYKkNOTd7mT/P54qao0FUqxOPX1Wt1wT5RZOstj40WZQSKf1S2HdLQ2YG4wlLb2yOBtrkMhMHLVRXZbwFOpdJBaMM7WnfLIz+OIUgyU2tkDapDbW6Nn7T6UJX1kS056vnEYow4YXgyLpdOlTVwDt13sw1uoZfHVaul+RW3bf58dUq5cJhMUISu4dNrw7nKgEFX3PjZckCPrOd6HUKDnzi3HEOZHpnGeUxw8RVBolglGaSsRVZdquqpPGLBGCvYtMHy9iWdSoZ/3tjYy9P8vgC1Mc+Hpf3nXC6TB7eJEkCdgLer0enU7Hr3/9ay644IKS8aqgggoqAOmU2ac//Wlef/11rrrqKhYWFphihBfST6HDwGYuwqCQNtv3PH5KVh5puMxF7SYbh795psCSbOTtGWxNGWk4DXRcX0/vL0ZlFZns/6t1KtTalWNVuWSCmRylOVeXFWujsZCklEAmKPmvqMW92UZ0Ns7cKvJ3diPOUKOh6QO12AKmQuWYzCMYajTUbLQimFSceLL4YotKqySdhvhi6Y+8/f94Wn7OciQkg0ND94ebCfWFi6rZhPoiZ0V2njgYwhowEZkofeI6EYF4SCQyW4Y8nID3/mZt9SOtXcOmBwPMHgmWJOiAZAOcjCY5+r3SOcrZ3O9sEB6Jls0DQYr3ug81MfDiRFllqZ6PNbM4FpUtKIohETmbuiuJLyQI9ZfeXAaYORpCX0ZxMotyBEGNRUP3PQEWRpY49v3i8c6SmIK9S+z9x96yRKx0Ml32+0JjgLqtdiw+g6SQWuxSGmi7vp7IdIxDX+8vas0I0HVHI0qtkplDC0TGxaL9xVJvoDpQRd25EpF8tWVkdvxYFtMoBZXc73KfsXZLNUKVmqGXpxl5dwZUCuILhRXvvMOHsUbH+393iumDIYIDkbzr9KYPM8ApFFPAFBiNRi6++OKKWmUFFVSwJnQ6Ha+++ioADz74IN/4xjcQUzHe4QWUaRXNdNKgaAMkJcrgQEQmpWz6RIDwWKSAqCOGk0wfDTK+T/p+r9tuRwwn5DE3+/c6hwaloGQ5IY3teYSXJHKe5dpsx9FpYfLgfAExI5fs0PQBN6lYigOrCdk56inNV9RhcuuL29dlfm64yEWV18DUgdmSpJLl5TTpZOk5aeztWaYOh1aetQwJqeV6D1a/if1fPVOU8HP8h2uvqwAETy8SW4PQvDi0hMVnQBLpL76WM/DiFANl1lWyaL3Ri8VnKFhjzIWtrYrGy2o49v2Bkso/Y+/MliWE/WtwNmtQrTd4UOtUZcs2XujCtcnGgRKWXlmstQYFEJmNo7NryxKeYjMxFsciTBc7uZ6DmSMLJXMXkNRAbW1mDnz9TMl6Z0lMR78/WHY9S1xKQjqNSihdpuFCJ44OC9NH5qT2XeSWgavc2DssLE1GiM0mixKULH4D/svdaKo0jLw6LanhF0H9eQ60FoHR12dIxsgjKOWOH2qdCrVO+qbLJSipdUoaL6uh91cS4XH6UJDgYOGGnM6qZv09TYy9O8vY27Mc/dFwXt+Mp2Mc4A0WCcIRac2rtraWZ599lq1bt5aMVwUVVFABwCWXXMLQ0BD9/f3cdNNN7Nu3jwGOM5A+jg0X69mOoJA2JY4/MSwrj9g6qqjf6eTEkyMFCiZTh4PEQ6JMHvBd6GT0vTmZKJD9f41BJY39mXK5ZIJcok3tpmoSS0lODK1ag0ohE5ScXRYaLqkhGUsV7ElmyU0qvYqWKz3MnFhg8IXJgmtly3i2O9BZNSXnVJVGCek0yUhpMsixHw6Qyvy6HAlJpVex7vZG5noXC+uEpM508KtrH+4LDSyxMLxEdLrMelZK2vuKlVCwyeLQN8oT0SFjBXh/E5OHg2WtXJt2uyENfc+XXhf7g9ipIbWrUmTnLFSCks47fAy/Pl1WWWr93Q0sjkbp+2WZw4mpteuuUkkxXxovzzSfO7mI3rm2/cvJp8qQ3lTQeVsjC0ORkvEWTCrEqGS3dvCbfWWJWOnldKn0XL5f/U4n4bEovT8fK05WU0H7DT7CE1FOP1OaQNdylRtttcDBr/aRCKcIhovkQzaBmg3VpKLLjO+ZY2Eov59nx4/l5DIqQYm+WpBsJnOe0ew3oDVrmD4YYuZECJVeiVjke8d3oRNLk4nD3+xnaTzGga/nx2oyPcop9iNG46SPp7FarTzwwAP8r//1v8oErIL/W6jYvf0b4d133yWdTvPRj34UhUKSbRvhNHutLzLb1YeYFjG6BLY/1oH7PBvRORFNlZpzPt9OTY+VhktdbP1sKxs+3MTR7w2i1irY/lgHzm4r3u0O2m/2sv1P2+X7tVxZR3whwfSBEIJNYMtDAbY9Ki0OtVzvYftjHQCc/OkIYliU5KsF2PqZVnb8eQfNGTnopt1utj/WwYlnBjn5zAibHgqw9dE2ardJMo/bH+uQLcDmziwCaXRWAcGkpOfTLWz5dItcp3M+305sOsaxHw/h2W5nx5914Ltckm7c8EATWz/bCsC+L/VS5TXQeZePdXc10HJDHdsf66C6Xdog7L7Xz8aPSJJrmz8aYMMDAdnSzNltZvtjHdT0WAFYTqUk6crMXL71s6103yf9rSVgZPtjHdTtsOPeYePc/9rJ9sdWYrj1M62yNdvQKxN4znFQf7ETnUug/SZvXtktj7Tg3mKTbNoE6T1mLawC19TJ8QbY/MkAWz7Xir2zSo5hICNP3XRFLdsf62DmeJCZEwts+kQzWx5ZieH2x9ppu0GKt6lWj0qrxNImXWfjR5vZ+pnWvHh33ibJbNftsLP9sQ4sGenH7vv9crwBUEonnUA6dbT9sQ4cXZKsXtc9jWx7dOVZt32uTY63vbNKivdWKd5aswa9fcVmb+tnW9nwQBMgkVO2P9ZBPCJtbjVf6eGcz6+K98ekeLfdLLXRhsskOcG2G/Lj3fNwgE0PNdP3/ATHvndGivduqc02XyW1WQTQuQTW39OEQqWQCVHbH+uQpdP9u2o49y862fwpSap+48dXxftP22m/WYr30lQUhVKyE4RMm82J97n/tZPue5ox1gq4e2xs/mQH1a0rbXbb59rY8EATOpfAurubiExEmT60gHOjJdOXzZJS0cMBtv1JO4e+3s+xJwbZ+BG/bG9Y3W5i+2MdtN0q1T8pplheXpZJPtl4CyZY9yEf2x/rQKVVMvDqBIJRlTdGbHmkhR1/JvV1IWOjMnlQIi/mjhE1PVa2PBRg6+ekZ33/S6cw+4wFY4RjnYmqegNbP9dKz8MBjv9YUoXb/lgH7Xd4abvBS8NlLtbd1ogYSRKbF9n4sWa6P9QAQH/6BCNtRziof1UiKAE+n48TJ04QjUYrBKUKKqjgX4WdO3cSCoWYnp6WZVpjRHhb8TxDLYeY1Usfiu03eNj0iWaicyLR+TjrPtxEy9VuAle5qb/EKSsI9f5inPV3N7D1kTaszSaqfAa2fqaV1hul8di5wYK5wciZ56WNts2fDLD14RZZcnnLp1vpuEWak3t/PYpg1mDrrKJ5t5utn21jy6dX5pMtn2pBbxPo++04qfgy2x5to+sjjaCRNka2flbK5yKTCZJiCpVBSu+9FzvY9mibbNcVuNrN+ruaOPajQU48OcKmjzfT83AANBIBYtujbdRf4GDm0AIzx0NseqAJQ42GdXf52PBgkzx/o4FNn2ihcVcNJq+eDfc2s+PPO2Q7tu77/fL8HZlJgDJNMrO64znfzrZH2zA4JMJK1z2NbH5ImnM3fbyZHf+lk5aMPWrtlmq2PdqGyavPkDOW6b43IFvDbf1MK603SfF2dJvZ9mgbQ69OMfrGLJ231bPlkZwYPtIq50DVbSa2PdpG5+3Sz603efLm755PBghc4Wbu9AILE1G2PdpG7RYpz225tk6ON4DeocVYK52uMTikGGat3Zp3u+VcGySifPf9UtvTGJRse7QNX8YWQ2fXolQrZFu0DQ80seHBJvlvtz3aJtug1V8gvdcsoa77Pj+bPi7FW2PWoDGosLdLuWDdjky8a6Sy6z/cwOaHAkwfDjF5cJ6tn22j9QYphjWbpXhXNRiwdVax4cEmtnxqJQfa8ulWOQdyrJfiXeUzcPCrfdRsrM5vsw+30HmHD61dg6XJQN05doKZBYjWG/PjveUzLZz7XztxrDdj9OikeGe+K1qudrP1c1IME6EE6eVlNEZpUVVrl+Lt3SlZnTVd5Wbjgy103dsIQOet9XK80UgxbL+tntYbPPgudVHlM8jS3933++V4uzZbOefRNrwX1nL8x4PMnwnnxbvrI41s+UyLrKyUTqeJZuyI3NttbHu0DaNHR+2WajZ9vImeTwY4/YtRjny/v2CMOOdP2+nJ5Jme7Q4SkaSsdJk7RvQ83MLWh1uwdVYxuW+exeElOm9tXInhp1rovNOHd4dj5T26jZz6ySitV0tjRP0FDmztJjY/FEDv0LI0FcNQI8XQ2WkmkU4w2nyME553GOAkkEalUvGpT32KcDhcIShVUEEF/2p89atfJZlM8qUvfQmj0cgyKU5zmPfNv2V2XT/JdBK1TkHPwy04N1gIj0dRm9T0fLIFi9+Ae2s1Xfc00n5TPf3PT5CMpel5uIW6HXY82+14L3TS8/DKPNV8RR2xYELa7FLDtkda5e/6uu32jBI0jL01S3gySuMl0rza9ZFGtny2hfoLpTm5psdKz8MtnPr5CL3PjdF+az2bPtEsW0FsfiiA/3Lpb2dOBFEoM3aaaulaG+5fsQPY9IkA8XCC408MYm6oYssjLXh3SnlCy3V1bMzMPSd+NIzJYyBwTR3+D9bgOV+qb3WLtH7QtLuWrrsbAWi/rZ7NH1uZT4x1OnoebpHrl06lUahWyFvd9/lpz8wnOruanodbqNlspbrFxPbPd7Dlsysx7LqnkY7bJbu7kTdn8JzroG67DcGqxnO+Iy/e6+5swHuuk6PfHSQZW6bn4RY85zsy8bZl4i3lpB23+9j4sSYsfilZ7PlUi2wNVrNZindoYJHJ/UHab6mX1+jkeO+S4q13aNBZBaoydi6tN3jy4/3xZpp2S+tu1S0meh5uwdwo3TNwTZ2cn4JEMDF7pd9V+fT0PNyCLbOW5t9dy6ZPBOSyG+7303qjlAPpXVp6Hm6R18cMLh1m34q6YNdHGmV7O8EqxXuZNNPHgtRssOXFcP2HGiTLVcBzofTO67ZL7aPuXOnn7NHizjsbWHd3A5N7gxz/4RA9D7fgvVBaP3VvrZbibVIjWNUErq1Ho1PJbaDnky2SzQVS/rHjzzvkGLfd6M2L4eaHAvg/KMV7cSKGQoV8KC23zYKUW216MIDepcXSbGTDg81YMtY4zVe62fSxZlpv8KCzq1l/h4/weJT5U2FMHqnN2jqrQC0pzG9+KMCZX45z9IcDtF1fT1sm3jqHhp6HW/Bn3msikWI5lZZJel33NNJ+Wz2opX7S83ALBoeW3uekA8J5bfbuBrZ+tlWyKVGDtlpg/OAK+TE7RlT59Gx9pFX+Rjn0jX6sTaaCMcISMGHvsNB9bxPd9/oZfGmK0JklNj8UoPlqNw2XuHB0mVn3IT+xkEgsJNJ6o5d1mW+SqfQYI61H2Gd8WSIoAd3d3Zw6dYrx8fEKQamCCir4V8Hv97N3714ikQjXXXcdarWaOaZ4XfFzBpoOEq6SCLy+nU46bq0nEU4SmYjTcnWdZEG1xYats4ru+/wsp5YZe3eOhktddN/vx9ltxejUsu6uBnwXS2OhqU6Hvd3MyJsSwSVwfR1bP91KVb20PtJ5u4+Gy6T5pPe5MbRWDRa/EecGC133+un6cKNc9/Zb6jF59PT+cpTYXJzu+/w0X+VGJYB7m43uzL5fKpoitpBAnVnzqm4z0X2/X7aCcm2ysu4OH8efGGTwxSlarvOw7q4G2Yqr+z4/rk1WwmMxJg8E6bjVh7ZajX9XLc1Xu2nN7LEBrLvLj3uTDcGkYsNHmtjy6RYEk7QW0XSFm/ZbvHKdFBpYTklkc2uzke77/LIFb+PlNXRkxv2Wazxs/dzKGkaVTy8dgnfrSInLJJdStN1cjyZzn847G2jIxNtQo6X7Pj/TR4JMHw7h2elg/d0rMey4rZ7GTH6qswl03+encZf0t54ddnnvDiT3l4bLaiTC/miE7vv82DqkHMi9xSbvO4FkAVaVyXNUghRDZ5dFjnf3fX5ZkanlGg8t163YE2fjDVL+JFRpZJJc05Vuea4H6P6IH/c5ktOQrVVqh4JFKuv/YK2cy2pMavQOLdZMjmzxS/HOEoQaLquh83YfE3vnmT22wLq7Gqi/QMqXTB4p3qY6HYYaLYFr6qT2kUHnHT45X9K7pBgaaw30PjtGlc/A+g/lxPvWevy7atGYVGirBbw7HUQyCp5159jo+shKDNfd1cC2R9sw+w2o9Cq67/PLeXtNT/VK3puC5dTKmle2zTq7pXg7uy30fKqVlmsy+5iX1RTEu+FSF96dDuydZuztZgZekhTPm3a7abtJindVvZ6u+5uo22Lj5E+GmTkeovs+v2y76N9Vy/p7GiVieQrSy8tE56RnM/sMUrxdAmafgZYbPHTe4WPw5SlOPjVSMEZs/Fgz6z8k9UHnegvxcILxjHBE7hjRepOXrY+0YPEbWRyOMnd6UeInZNB+Sz3+D9ZSt8UmtdH7/FTVGRh5fQZ3jzRG2DqqqKrX03ajF5NXUl9TmaR4V/uNpNIpprxnOOl9l8O8TZwYDoeD//N//g/z8/MVgtK/ISokpX9j/NM//RPLy8u8+OKLGAwGlpaW2H9oH6/xLD/vfYLxsQnEeclOI9i/hLiUkBYKttmJLySIByUyQjKeJhFJcOa5MQ5+e4BYMMEyac75fDuCSUk8lEAMZpWTkqQSyyyOSoxGhVpBKrVCq4zNJYgFRaqbTKh1KhJiSmboxuZFEpEE82ciLPRHiAdF1IKShoukAUVcShANSoNWdDqOGE6wnISO2xvRVmkQc07lJyJJovMJQr1LiMEEKMGzzQmC5GmZe/JXDCeILSQw1xuoqjOQiCRIxqQNr+i8SHxRKtv/2wmS0RTRTH3ji0kSkYR836XxFbZx5x0+llPLxOelv01FE1LZcIKF/jCpxHIeEzO+kCA+Lz2bGIVEJEHtpmo23ttMNChKJ4OyZUMJ4kHpug2XOFFqFEQz8Y8G4yQiK88WDyYQ9GoaM4NyIrISw1hQqtPUnllOPz1KPJggnnOaTVxKEgtJ1w2eCRMPiYT6JUZrfD5epGyCrZ9txbXBQiKSIBWVfh+fS+S9G4DlpNQmxGwMM7GIzouISwm2P9aO9yIHYjgpn7ATI/nxnj4WIja/wgAXF5MyO385liIRSRDqDXPsB0OZtrUqhvMizo0W7G0W0ull+Vljofx4KzUqtBYBMqpViUhipc0uSG2282Yfm+4PEF9KSO0tg0QkQTRTx2hQJJVcJjItbTaJ82JBDKvqDQg2gYXhKPEFkWQ8nXmP+W02FowTC4osTYiIIek9JjLxjs0nSMSTGFw6vNsdiIuJlRiGMzGMpNhwTxM6s4C4JP0u1LtEfDFBLNNmE0sJFCqwBywgQGw2kVeH7Bjh3+XF4jORjKeIBxOMvjZLLJiQYiisxBslGBxaEJOISysxTMQSpNNSe5jcGyQVX5bbaDaGsXmR9Xc34OqW2tbYu3Mc/HovSxP5EvniUgKjQ4e9w0wqJT3r4e8OMrk3SHg2wt7DezjoeJUzHOHkyZPU1tZyxRVXkE6nGRwcxOfzUUEFFVTwu8LhcNDX10c6neb2229Hq9Vy+vRp9kfe4YX0U7z23qsszcaY2hfk0L/0Iy4kSCSWcXZZMdcbEBdX8o/YvEhkIsrBr/UydyJMfCFBdaCK1uvqSCwlERcTsoLl0niUZCxFMMeWNhaRxlhxPiXdZymFzqZBoZYUgeRyQZHYXIKJ9+ZJxJIkEylMdXp8F7iIzYvEF1bKLk3EiM2KaAzg3e5EqVYiZnKkaCa3CmVOpcWXRLRmgc6bfZBIIC4miGfm+nhI+rluq4Mqj1EmkwKQQJq3giLhkSjh8SjR+ThZR73YvCjnpwDRGZHIRBytXYNzvVWKS7bs7EpetjQVIxlbyTnFsFSH5VimTsEEYjTJpgcDBK52S4v92fkwnI13Co1BSVWDMe+9x0MikeyctiS9P4vfhMVvIDafkPMLgFgoQWwuwamnRlnsX0JclHJD+dly4r0wuMT8SenkXyITl2xOGgtJ8c6SiuJBcWVeTSxLZTP5SDqTc5Ebw5zTceJiguomiWASzzxrNoi5ZUN9EZYmY5IUeubvxMUEicyhr/icSCwocua5cWYOLRBfWKmTuCSVTcUSNF5cg8GhJZbzHuMhUc6vE/Ekaq0KW5u0sBKdE/PbbEgkGhTZeF8zDZfWyPWQ6ptYlS+JpMQUoWGpj0jxzuScwQTLCck6EWBxNCpbtyxHpbLZa8VmRZLRlGwFJAYTefUXFxMYnTqsTSbE0Ep9snUQgwk0BiVNH3CjUCuJB6W+El/IlE1I7UaMJBGMGjpulBbJYnMi0YzaWrZsMpbCd5ELoUpDLCgS6o8QGZfaw0oOlyQZS6HWqjB59VI7zKnvcmqZ1LLULub7FklEknLbjc5L8dbaNWz9XBtppO+3wz8Y4OgPBqQYLuW3Wc8OJ55zHZn6hDn2/SESMRgfmeDg0ju8ofoFx3uPMT8/T3d3N2+99RaJRILHH3+cCiqooILfBw899BDhcJgTJ07Q3NxMNBpl/5G9vMIzvDT3LONDk4jhJKefHmX+xCKxeRH3OXa85zuJzYnEsyq7yWXiQZG+58Y5/tQw8aBIejnN5k+2IFjV0nics/YQWxBZGJRyHoUmzXJimWTmszQyHSc2J0rK11UakpFleR4TF5PEg9LYHh6NEZ8T0RhW1mtiOfOLGEwSmYqRFlO07K7DVKuX8wDIztHSdcSlBEq1krrtTtQ6JdH5BLFg/lwUnRextZixNpmIB1fWR2LBlTWL4demic7GiWWsPFPxZF7ZyFRMPuXccKmLVHKZWEZlMhmX1i3ExSSL4zHESDIv34jOiTnrN1K87essdN/TRDy8Kr+bj8t1qtthR2NQEV/MrsFk1yqXM3GIo7NqabgkG0NRzr2y8Z49ucTQK1PEZuNEc1QxYzlrg4ujMRaGl1gclvLp2NzKvCrVSSQWTNB9r5/aLTbiQZFkdHnldznPmk5Lh7xAUseJB0V57ozPS+sbPZ9qwb21WspzMn+bFlNSvDO5yuTeORaGV06Vx+ZX2uxyUor34nCU/ucmiIfy6yC1WRGTR4f3HGkDLfusYs56L4BSUGCs0cnEr3hQWmeS/kaKofdcOxvvC5CMp4jlqFPHcta1xHASMZwkmlnzigVFonO571XEXG9EsKqJTMVYmoiRjGe/fZJEZ1fKLo5FWByXcrNkNJWJd6ZsSMpFLI0majbYiM6KxOalmEnrUlIMW66qo8prkNtOeDQmtcNgNoZpVBolrvVW1DqIzyaITK6oGWTHiLqtdpzrrdK1F5LMHF6Q1uiC+fFGATqbJvOeRcTserCYIA0kk5JiRzwoEs69T1DKvfy7aqg/30k8KBIaiHDwa70s9i/Jm3dS2QQ6q0Btjw2U0rvqfXqEuWOLLM1EOdp/mCOuNzjEW5w8dRKHw8Fdd91FOp3m4MGDeL0rm7YVVFBBBf9a6PV6nn76aRKJBH//93+PzWbjTF8v7yy8zEvpp9lz8j2WZmIsDkc5/ewo0bk4qWiKuu12LA1GYnMiqXhm/g4mWByJcvibfSwMRYjOidjaqvDudJCMLRObE+X1saWxGLHZOIuZOVGhUpBYyuYqkvJLMpbCYNOiUiuJZMdNFfI8G+xdIiVK38q2lipc3Tbii4m8uSc8HCE2K1lTNV5Si0avQsysuyXCycz3eWZfcEHEWKvDf2ktpKR5ILsOIGbKWppMWJtNpOLLeXN0dE4kHk4ghlPMnlxgcTQqKyvF5uJ5dVoYiBCdjKHSq3B1W4nNiyxncoz4fILonHTP8KQ0v2Tn5GQslRfvaFBEXEiw/m4/nvMd0rNk5rGUmF6Jtwoc7eYVuzYgOreyZ7gspkin0zjXWTHV6YiH8mOYjffom7OEx6WcOJHZZ4uHE3l5wezxBWaOSirdqWwMMzmQuJggNidia66i+14/8cV4fv4xt5IvpRMZJetMEONBMa9sdFakyqun47Z6ElHp3WQtxWLzK7lKbE5k9uQCS6Ox/BiKyyvxnhWZ3DtPqH9JyikyOWcqkx8lY8t4z3Vg9Zvyc6A5kXhmDysVX0Zr1mBpktYWxVAib67P5iodt/pouFj6ZklklLnii0mpjWawNB1DXEwSm45DKp0Xl8RikkQ8hSdzuDR4Opyff+S8m8RSkvBUjJF3puX2kpfHz4roHVrs7WY5hstiZt8ymwerIHCVB41OSXwxKfXLqNSX04ls/RMYXTrqL5LIRotjUXn/PBFLym224RIXBqdOOuQ7I73P3BwuGVsmvphAY1CjtwvEQqJM5AJpzSud4STM9y4SmY7L44m4kCQyF0clKOn6cCNKjYL4vMjpX4xz9AdDUlwy/T47RtTvdFK7yUZsTiQ0sMTAbyZATDE9NstJ9X5eV/+cQ8P7mZ2dZdu2bRw7doypqSk++9nPUsG/LRTprFF8Bf8uIIoimzdv5ujRo3n/XkU1m9gpyzNWNepZHIhi9htYd3sjQ69OFviMNl5eg629SrYwC1xTx9BLY4irHBk2fzKA1qzh7b8qbyFxzufbic7FObTau16AqjqpPjVbrdRusnHwW335dlQCeM91MPLKDAjQvMvNmV+MF1zH3WNj/O05BJMSs9/EzOF86WHBpJQVcJquqGXk3bmSVlsbHmwinUwXlzgUYPtn24kFE2WtyECKdTqRIjxaeJ+aHisWn4lTT5eW6mu41IVrg5WDX+0taWfm6DIzc3KhrE2ZJWCk5co6Dn13sOQzg7RANPZ2aXnrTZ9oJjIR5+RPS9f53P/SycLQEkdK2ICYPALtNzcw+MoU0weK24lUt5tILIpF45ZF971+4sFE2boAODdaSt4HoPV6L2afnj2Pl5aENHkEGi9xl3ym2m3Vsu1hKdg7q2i9vp7J/fP0PVcou+jsNuP/QB2Hvt1HrISncfNVboZfGUcM57dnGQLUdFmZ3BtEMCmp7jAX2LZZAkZMNTpG35zFVK9Fb9cVxKfhUsm6Mdv+LQEjoZzNcfl5rqtn6I1JRl8r3Wa67/VjcuvZ85VCa7u6HXbiIZHZY4s0XenG7DNw4OtnCtryts+1IUaSHPjKGQQTKA2CHKOod5r90+8TiUmLyEajkUQiwXe+8x1uvfXWkvWqoIIKKvhD4JlnnuGuu+5iaWlljFShZh1bcSmkUymGGg2RuQQkpPxCLSgLrak0klf53MlFRl6fwdZuQqVVFdhuGRwaNjwQYO70YlmpX+9OB95zHRz5/iDhkXxJXYvfIJON1t3dwOzJhYI5zLnBwsJIhPhsAvd2GwvDEflDPgvXZitTh4OQkNSIcm3o5McyKElEltEYlLi3Oxh6qbhktsEt0HlrI6efHSHUV2jL1viBGmo32jj6o0EWB0vbtmXrXsqurOOWevpenCA+W9qCZPNDAWZPLsiqNMVgazcVWOetRsu1dai1qqJWdVkY3AIanVp+H6vh2mzFc46dIz8YKmk/1nmnD7PPyDtl7NxarpU87svJUdduqWZiT+lcxlCjoe0GH6eeHS1oC3nQgLXBmEeqy/u1RUP33Q2MvjNb9n6Bq93Mnlpk/mRhnE1ePcuxZIGd4mpseKAJoUrD+39b3Hpu/YcbWE6kS9qsaO0anJ0WRjIS5hqDZGWXC1tnFXOnFyEhKUpNHp4vsHdr3FXDQIYAVbfDztie2bwyGgO039ooyY73LmHy6gv6LUgKCzqrUNbOBg1s/2wHS9NRDn9jIP9XBiV15zrktr3xY81MHQwW5P6e8+zUn+/i0Nd7icwk8uqTSCcYrz/JqWHJalGhUGC1Wunq6uKFF15Ao1nbmq+CCiqo4HdFMpnkzjvv5Cc/+Qmp7G4PCpy4Wcc21ApJtcVQoyMyGUNnV9P14WaGXplkcpUVpmujFdcGK0e+PQBI6jNT++bzLJlAUh+qqjMUt2XLwaaPB4jOxTnxROG8n61PlU+PZ4eD3p8N51tuqcG13srUAamOnvMdjL6xyj5DDfZWs6z2ZGkwElplVaHWIV/XvbWa2dOLJa22Wq6rQ6lRcrKEhe/mhwLEggmOfb+0vStIdlRKrTqP/JGFudFAdbOprA2ZY70Zz3Z7gY1VLqp8ehbHomXjr3dpCex2c/qZkZJ2btn7lbMpa7+lnthsvKzN3LZH25k/s8jpp0eL/l5tUtNxk5fR92YLLZkzMHl0EiGoTC4TuMpNKr5M/28LLWBykZvbF0PduXYcHWYOfb20hYtgVeM730nv6rXWDGxtVUXt0XJhrNPReVsDY+/PFrV/MXl1tFzt4fiTQyWfu267nakDUj9U65QF/RGgutUk2aupwdZcWC+9S4uxRsvM4QUEqxpTjb6gjKPLjK3VzKmfSO3f5NERXpXfGmp0rMvYwpTLWZt21+JcZ+Xg13oL2p6trUoi1PdHqN1Sja21imM/Hipoyxvu95OMLnP0+4OgBp1lxZYxZlvgcOQ9QtGgVC+DAYPBwA9+8AMuv/zykvWqoIIKKvhD4NChQ9x5550cOXJE/jcjVXTQg1UhqfpoTCqWxRQpUVK50Vk0hd/YKmj6oJvF4QjTh0IYarRoDGpC/fm5jEqvYuN9TcwcD5XNH6wBI/7L3Jx8epjIZL7Nmd4pEJ2W9g0aLnWxOBpl7kT+PGDy6KXDbaEk1majRMaZyd+QqPLpiUzESYnLVNVncpFVtlYqQUlKXEYlgK2j9FqUxqSi7XovAy9OEh4rzJmcXRbJQu8nhc+zGmafocDuKov6C5xMHpxDDJW28mq70UtoIMLE3rmSZUwefUl7rizcW2wIFnXZ9yRYVKi0KqIl9rpMHj2eHXb6fztess71FzhxbbCy9x9K7925t9gw1GoL94xzYPEbC9pbLlR6FYHdboZenSpoC/kFwejSlbRxUwlKWq/3MHkwWNDuclHbY2NpKiqT83IhWNQolMoCO8XVaNrtxlSr49C3+4tarjVc6kKpUtL/m4niddWrsAVMTB8OyXXPkrayMLp1xGYlMpfZn2l7q+7l2mRl6lAQUpIi6XxfOL+MCvyX1zJzNMTicBRttSAd4lx1ncbLa6jy6Ne00tv40WaWxmOcfjY/F1cJYF9nZWp/EICW6zzMnVqUrSGzyI4fx38skZa01YIc61Q6xZx7iCPjB0mRRKFQYLPZuOmmm/jyl7+MSqWign8/UP9bV6CCfAiCICcM//N//k/+8i//kmQyySLzvMazKNIKOthC3cCKFF18QZS9xttv9hKdExl8cYqB304ykPkQrm414eq2olIrCwgh+77UK1unmeq1rLvdT9+vxphetVEVmYqxMBKRrwcZz24RFgekgdjeYsaQY+8lQ0QiKAGtV3pxrDMTGlzKJyGJMP52Ru7tTj96h5aF/hN5JI7sfwsmqNlsw9xgLEkyUqgUUIqCJ8K+L52Sr2eq1xIeLp48dN4ixfrd/3Wi4HeTe4Oyv3kpctDZ+Mpn45AlnxXDcnIZjVGNo62qJAmp4xYvtjYLi+ORktfZ/4/lSVlng/CoyJ4vlveIDeyuQyUoeeevC+OWhdaqQVnGk97sN7DQHylLUALKksQcXWYWRmOER8WSBKWmK93UbpKsRYoRlYy1AksTEhFn79CJkmSzpLiMQgF6q1CUpGT2G6jZUI3WLCX6xa6z6YFmdBYtk4eDiOHlAoISQNv19SgUSIz34XjRtmtpMKJ3aiWlJJEVgpIA9ec5GX55mtlji8Quzmcxy/V4KEAqluLQ1/s58eN+tA59UXJcw8U1xBek2OT6/BprBQJXezn+wz7EsDR+rKhFgbgYZg8vE1WEUYwqyPJlW1paeO2116itrS0a4woqqKCCPzSuu+46wuEwkUiE888/n/3795MiySHehjRYsLNx4nw0CmnjfnE4KstLaywaWq920/v8OPHZRB6R23dRjeyVnYvITIIjPxhkcUzKqbruaQQFHP7mQH656RiR2bhMLMjNM+RNDA0Ya3QkosmC+Sv3vvXnO0nFUgXEqqnMZp/GoCRwpYfaTdUc+Xb+XJmISHNV4BoPVr+JmUPzRYklWrOAQqkgGS8+Rw78epLR16el62kkS9hiRCP3dhv+S2sRqtSMvlGY72QJQwaHBo1ZU5QQte/LvQX/thpZgpLRoytJ2NE7tag05YVnu+5uQgwnSuZXU/uCcpx/H5z+2VjZ31sDRpo+4EZnFxj4dfGNMIu/CqFKQzpeerHL4BaIjIslCUogWa8VkPRyULO5msl98/T+vPTiUsctPtKpNHseL07Wydbj4Nf6ZCvBYlCoFCiLNzkA2q73YrDrGHlnBhKFBCWNRUPbtV5Cg0sc+8EQk/sK80BHt5m6rXaWk2mGXpoqmYcbnDocHWaCvUt5BCVrwEgytkx4JEpoMFKgXgoSMa/x0loOfbuP+GyC408OFm3b/l212DstTB8NEhkX876D6i9woDFq6Ht+nPmTCzg6LaCRbInDI1Em0sMcZw8anYbYsNTmDQYDf/VXf8UjjzxSOogVVFBBBX9AqNVqnnjiCQB++tOf8tGPfpSZmRmmGeMVnkFIa+mgB+dkRuJfoWBpMkaoT5q36y90kYwkGH9/nqkDQZkUpHNoqD/fidakllX1sjjxo2FMXh0kJSLH+jsbGXhhsoD0EBoME8ucdjfW6VCqFSwOSeN5lsBja6nC5NYXPlgSuS512+3Un+ckMhWT1sxyymQX2FuuqsPWYmbvV3rziD0y8UkN3p0uqluqShJxlSqltO5VAoe+3itfT+fQlCSVtN/agFKtKJo/LQxEWBiQ5iN7p7lggwBg5shCWdIQIMexXD3SYgqtVaCqwUgsWHwNyLPTQf25zoyiZ/H87UQZcvnZIhlOrrm54t9Vi9YisOeLpYnHeoe2YKMo7/cuLdGpeFmCEkg2hWNvFc8/TF4dyXCSWDBZkqBU02PFf5mb3udGCw6DgtQvxHCSpbEY+//xdFFiEcByAhRKBYKp+HvUWdXU73RicGnpfXas6HXabvZiaTCx70unSMaWixKnWq+pQ61XM3N4ATGYZC5YWMZcb6DKo5d2NpLkEZRcGyXCYGQyRngylqfOlUX7rfWQltpL328mmDwQLEqOa7rCTWxeJNQ/wMSeeZnsJFjVNF5SQ99vJkmGkyyMRklmvptIQngmxjHeZ5oxlEEly8vLKJVKLrzwQn784x/jcDiKxriCCiqo4A+N7u5uDh8+jCiKPPzww3znO99hKbrIHl5BmVbhpoHWxQ2oFNLGfXgsSiLzzaoSwHdRLaNvTSOGU3lr/3Xn2KmqM7D/n/Lzh1Q0xZHvD5JcypCMLqtBo1fR+/P8NY34QoLF0YhM6LG1VjF3ZhFSyAQlVGD2SWo2q8kiuQSc+p1OUol0ATE7m39kFWQWhpcKSDDZebp2q53azTYWh6N5Kj9ZqPUqFEoFqUTxOXL6cIi5k4vy9QSTCjFcuPZi9hlouc7D0CtTTB8qzHeGX5OUclR6FVqzuijh6eRPyh/4h5X46GxC0ecBKQ/RVpWnCLTf6CMRSXL8R8Xzq/BotOwBzLNF1gasFLTVAi3XeBh7Z4axd4uXNdXq0Du0LJde8pLJLKUISiC1ieNFDi1kkSVLlSOJtV7jBQUc+c5A0d8LFjViKEnfc+OytVoxKFVKFJrS+X7DxS6sjUbmToZIiRTknSpBSdsN9QT7wvQ9P85CkZzT6NZRv9OJQqlgcu8886eLH+jMOgwsDkfzyFdZu73otMjCSITlZOGmvMmjx395DSefHkEMJTn59HBR4pur20bduXYWRyJEp0VOP7NCYrK1V6G1aBh/d47F0RjhsZUxID4vspCe5xh7SOrixMZjKBQK/I1+vvCFL3DzzTeXjGEF/7aoKCn9ESAcDrNp0yZ6e/MnfB0GtnGZrK4EktpRIpqU1JME0OWQJeydVcxmTgBt/lSAdCpdsKHi3GjBf7mbA1/vQ5wTqdlqZfJgsEAVZcunW9Do1bxd7MR3hhRh9hvovNXHmV+NF5BMcpVxuu5p5OSzY3kECMEE7u0u6ZRwrgpTDqpbTSyNhRHDlKxnFm03eJnrXSggXoFEYmm9xsvU4SC9zxZuADm7zSwn03LsiqH+Yie+812MvDVdkpDkvciBZ5uD/f94okDNCiSlm3W3NjB7fGFNZaFSEGwCzo6qAlWt/ELgaDMXXZjIYk0lpXot6USapYnSTGBTvRaT27CmOlG5eu54tJPoXLwkEa3rnkY0JjX7ymyUbX+sg5SY4v2/LXNiHYmolJto59Xjcx3EFkT2f7lIPQTovsvPoe/1l2x/uSpNzm5zQTvUuQQsDQYm3w9iqtdS5TXKhL0sAtfUsTQdY/ztOcx+A7FQsoA0tPlTAVKxZQ5+ra/kc3Z9qJGqekPGii3/72u3VTNxYB5E6WR+KpYqWJjznGenfqeLw986w9KEmDeuwArRLtuvht6cyuu7J9IHSddFCC2ECIeljtDQ0MCdd97J//yf/7NkvSuooIIK/l/iG9/4Bp/61KeIRFY+3pSo8NOBX9Eu/1v9BQ685zk5/N0BwiPRAsKLNWCUVVXW3d7AmV+PFagVdd7pQ6FUcPS7g2gMYGkqPB1u8urp+lAjs8dCnHqmNFml695GFApFwSlrrV2DWqdiaTRG7bZqBJOmQBGpdls182fCxGcTuDZbmT+zVKD8I6sPacDRUVx5CSTSU8s1Ho6VWMTY+FFJHee9vymujuO71MXQGgTvLZ9uRaFUlFTYAWkui0zHOPWT4qfkNzzQhK5aKEpEP1u4NlsJDy2VVQQy1EgEt8jk766kVN2WOclURniodls1s0dCMrHsX4vWGzzY28wc/EZv0bpqLBo23utn6NXpomQeAN8lLrw7HJz+xWjJE4ggqSAkIsmiRJzAVW6cXVaO/Wiw6Kado9uMya0vScZCk8l1jyygMSjR2rQFqka5pD/vTodMYsrC4NDQcEmtTIqzdVYVKCk4N1jwX1bLkW/3Se9fQ9H3s/1PO4jOxzn41VX5WU49s0pkvb8YLSCIbXiwiXQqLfVrDVi8K2oLuSpvmz7RjEpQ5W2WxtIR9vM6Vo+ZsbEx0uk0Go2G7du389Of/rSyQVZBBRX8u0AsFuPmm2/m+eefz1FXAit21rMDnUIn/9vGjzWTiqckcvcqtRKTRydZJCSh43YfSrWUX+WiyqcnsLuO408OEptNSieF+8MFqijr7m7A4NQVzzMypAidXc26O/z0/2aigGhhaV5RSQpc5Wbkjel8AoQaajeuKCBmSRW5MNToEEOSLUWpembh2ekgMrmKFJWByaNj3e2NTOybY7CIIqbJq0OlVRWoOuXC1llF69Vehl6dYuyd4utN9k4zvotcHP7OQFFFJZ1Dw4aPNDN1eJ7+X5VXFioFtU6JtaVQdT2/EJi9BplcVQxrKSnpHBpIp+W2VbSMXY2hRl9SaelssOXTrUSm4yXVrvy7azE6dbJaWDFsfiizvruGSnw51fWeh1uIB0WOfKd4PVquqaP/NxMlyUvVrZk8NVlcFUptUmP2SbESrGrM9YaCd1i33Y64lGDm8AJ6l5aUmCpQEeu43Uc6neZEiW8MAP+uGlwbqzn87YECdbDqFhOLw2GSMWi90Ut6OV3QBqpbTTRfUcexHw3J6mnyJjcrxDJDjY6uDzUy+PJknkrTaLqPhdpJFpYWWFyU2kZjYyOf/vSnK6TwCiqo4N8N3nzzTR544AGOH19Zg9BhIEAXtYp6+d+qW0w0fcDN8SeHiEzG89RKAAw1WiKTcQSTivZbfQy9MkVwVT7hu9iFWqei7/lxUEGVJ39cBYnQ0/WRJqYPBRl6dbpkvf27alEbVHnEBZAIPRq9iticiNlvQGcVZCWWLMx+g2RXFkpS5dNnbLfymSGmOp2sklRO7QgVNFzkYvCVqaLkkuar3Zjceg5+va/o753dlqIEpVx03FaPxqguq6IYuKYOcTHJ0MvF18+adrux+Izs/1pvSRLMWjD7DMRCUtxKQTCpQKUoWeZslJSMbh1LU7Gy9bQ2G1kci5GK/m4P495io26HnWM/HCyqtKQSoOPWRkbfmSlJ1LG1V9H0ATdnnhsrWQak5wGKkqFcm6zUnyepbhX7vcmjp8qtL03cyulHKgEEy4ryWBa5aki2jipCZxZlCz2QlMHcW+1y2ymmvGXy6Gn6QC2nnhmViG4qir6fDQ82E5uLF5LVcuupV9F+o5fBl6cK7tN8lRulWin36+y4kq1nIpqClKSqpLNoOJyTF6fSKU6wD5U3xejoKOl0GoPBwOWXX863v/1tLBZL8RhW8O8G5Y8GV/DvAiaTidOnT5NOp/nbv/1bWYI/RoTXeJYX0k9xIP0mIKn9HPmmRNjouL6ezQ8EMNZKJKZcIkFiMYm4IE0axlqBztvqQYDpAyHe+98nZPJD0+V1bHogUFCnQ/9yhr4XJEKHqV7L1s+0UtWYOU2WGewEk5rlRJpQJunIqi8BMkHJudFClcdAXU913vXFMLKNQecN9fjOd2EJGPPKzJ8KZyyzoGlXHRvvay4Zw+rWKuovcBX93czhBRaGlhh6qfim3/ShBSl2gkQCkZ8zB8MvTzO+Z7asYlI8mCCdliaNYgj1LhE8s0j/b8qflDd5BJzd5qK/E+fE8gQlpHi2XVePYCpbrCzab/DRdU/peAOEh+NlCUrei9bYFBFh8sA8w6+V2aRcRvKzLYMzz43S+4viMd3wQJNcj6IEpUw9Zk8sMvBi8UU0Z6cFk1tP06XFlX/MfgNNu9x03ukDKEqU67qrEf+lbkCK22qCEoBznQV3jw2Ahf6I3EfNfoNEDARSsWVSscJMofMuH+vvlhTBTv50iDO/GSsgKFW3mmj+QB3t13gBOPBPZ2SCknuHjaYrpfqFBhZJxVMI5sJxZcsjLay7rRGQ+tWex48x8soM0+kxxjuO86bul4xwmtGxUaqrq9mwYQPxeJyBgYEKQamCCir4d4V7772XpaUllpaW2L59OwqFgmVSnOEIL6Sf4rX0zwmlZxl+bYY9jx+XCRDr72xkwwNN8nWyZAONUUUymiQ0KJVr3FWDIzOXH/v+kLyB5r/CQ8s1HpnUkkV4JMqZX41z6pfSfNZ5h4+Wa+sK6p2KLZPMfqxrJDUagPhsQiZPuXtssnpgLibem5eVjfyX1bI+M2/lIqs+1HFjPS1XFtYzC89OJxa/CUtTcQmcwVemJBnhEsgSlDzn2+m8o7AeAL2/GOXUM+VPyq+VI4y+PcPo24VWFqtRl/GHL4apfcE1Lcu672mm5Zr6smXKweDQ0HGTj6bL3GXLTbw3X5Kg5FhvRmsvb+PV/+IUM8dCJclU2io16TTEgqWly4demmL49amiBCWL38CGB5tAI6kuFCMoAQy+NMns6YWSqgL15zlxrreWrMOGjzQRuNIDGkkJbDVBqbrNRMPFLpp3S/EceX2mgFzk2mzD2rzShnM3IC1+6d+WJiIsJ5bRmDNxzVyjqsHA5ocCcrzP/GqMY98rJJBvvK+ZwJVSP46Mi+z54imCvUtoDNB6kweNRfr7xEICcSEh3yMbF5NXz4Z7A/gvk3LQI986IxOUJn299Dbs4Q2eY4lFgsEgzc3NfO9730MURV577bUKQamCCir4dwOdTsfPf/5zkskkzz//PDU1NQAEmeUNfsFL6ac5kd4PSN+px384AED9eS423BvAUCNtAoRHYzKJR1xIIGbI1mqTGv/uWtQ66UT9/n86I5NPAlfVsf7OxoI6nXxykDOZvEuwqum+z4+xLkOWytxDrVeTiqeITErzjMmzQqbKEn5MXh32dgu2zlUL5ElkYoPvIhf+XbWYG/PzpshkTCKFqCFwtYd1tzZQCjUbqvGeW3xcD4/GmD4WZPSt4jlPeCQm1VctkbNynyOLuWOLDL06WZKgBCCGE5BOIxiLn8iPzSSYOjDPcBGlzFwIVjXVLcUXrJKx5fIEJcB3vovOWxvQWX9384DmD9Sx/u6msmVis8myBCXXRuua9xl5Y5rx98rEIw3pIqfRc3HqZyP0Pld8zavlujpqeqR6lCIoAUzsm2foteKbwiavDlurmZottqK/19nVtF7rJbBbymmK5W8dN3tp2iXlXWIwWfQdurfY5DWv6FRcJijpXVrZByIZTRZd8/JfXkPLNdL9+1+a5PQvRgsISjq7mtbrvdRfLOVNp34yIhOUqltNeM6X+s/iWIzEUgK1Xtoyyd1IX3dnA+vukPphZDLG3n84wcSeecLpIOPtJ3jb8DzH2cfoxCgWi4Vdu3YRjUbp7++vEJQqqKCCf1c477zzOHbsGMlkkkceeYSqqipiRDjCu7yQfoo96ZcJpxeYPx3mwFdPy4SBths8tN3ola+T/XeVXoW4mJTHXme3RdqzAIZenpIISkhjfdv19bLyShZiOMWpn40wmpmr6i9w4tlZmNckYymSkcw8oJJUgkBSb8qqBbm6rNRuLlzzWuiPyCQa/+W1BK4qXFPLEpQ85ztoudYjX381nJ0WHB0WTLVF1DWBsXdnJfeVElyaLEGpusWEf1fxPaWBFyc581xpdWrIrHmVWfea2DvHyJvTaxKUSuVdAAtDkbIEJYD2W33yusTvApUgqW17tpVeewMInlkqSVAy1ekQLOVtvKYOBZnYM1fSCk6lV5FOp0lESgds7sQigy9NFiUoaasFWq7zgEoiJ5VSa5o9GmTqULDk7909NpwbSpNrmj7opuUqDyoBUiIFBCW9Q6DpCrccz7nj+QQlkBTKnOssmDxSG84lDsnKSHMiyVgKlTZDI0mtPGf7zV4Ei5Sg9f1qrKj4R2B3nbQ2h9RHj35vULqPCjw77BK5DYiHVr7bYGVcEUwquj/SJD9H33OjMkFpzjlGX+N+XuZpxhlkdnaWdevW8eKLL7K0tMQzzzxTISj9kaCipPRHClEU2bVrF6+99hq5r1CBgmbW06how+QR8J7r4kTGn37b59oI9S8VqPS03eDF3mHm0Ld6CY+KCCalbEPl3GghGUkxfypM6/VeLI0G3v/yqTzFmPqLnXi3O9j/9TPEpsSilmWCCXoe6SQyFStQedG5VtSeNn8qwMJgpGBQ81xgZ/Q1KUlpv9nLiZ+N5NXBvcPGQn+YpQkR50YLod5QnlqRYFIiissgSteaPrJY1LqqutVEy9Uejv14oMBCyxIw0nmLj7F3y5ORmq6oJSUur2nxVhYZNapiOOfz7aTT8N7/Ln7qv26HHe+5Dt77h5NFr2Gq12JvszD42lTJe6ylpOToMqOzCwXqVll03dOIQq3Is73JRdMVtbi32On91WhRO7Nyz39WEKD7Q34Ofae0uhECnPPpdiJTsaIy3t33+kFBSbZ64+U1sp1i1g4uF+4dNplslFs2i9ptK/Zy1a0mkmIqr9+YPAIdtzbS96txZo8t5vUTuUy9lu4PNRPsDxdIwBtrBZbmRBBh8ycDoEBSWMtBy/UerH6jrDLl31WzIo2f8w62fqYVpUZZoDRhrBVYd3cT43tmGX55mroddlQ6JcMvTxMVwkQ7pth3YJ9c3mazkUwmefrpp7nkkkuKxrWCCiqo4N8rXn75ZW677TampvLndzPVbOICNAoNnvPtxBcSzBxawHeJC1e3lYPf7C9QJNr2aBvxhYSkrJLljSQADXi3OyTSBLDl4RamjoYKVIU2fbyZZDzF4W8MoDGAUl9ondZxWz1Wv4k9/9hbcH+tXSrv6Dbj2+ni6I8G8/7e4jeQSqQJj0Sp2VxNSkzlqztpwHOOXbZjc26wFJBSDA6NrC6TW3Y1uu5pRAwni8pDr7u7AYNDy/t/V0YNUQPrbvVx9ImhsipDa6KECk7Wfq7/xQnG3yl+iqnrnkbii4mSik11O+wsTUZLknLWVFLKtIu5U8UJRBqDkg33NTPw6mRJdautn20jvZwubUlS4vnPFr6LnaTE5bJked/FTtxb7Rz+bh+R8VU5jVdP+431HH9qqKj9ntauwdpgYnLfPBqDkkRiOa++GoOSKp+BuRNhjB4d+mqhoM0GPuiWLejc220F77N5txtjnU7OX7P9JBfd9/kxOHS887fHC+KVVVIzuAW67m5i4IXJPMUpjQG67w0wfXyBoRensGYOYMhkRoOSRGSZqgYD6+9oYPS92YK+33JtHeZ6g2y313K1m9G3Z4jMJIi3zXNi5jDTM9LfaLVatFotV1xxBd/97nflgy4VVFBBBX8MSCaTfO5zn+NrX/sa0ejKd7KAlha6cSskEkptj42BzFi54X4/C4MR+ld9e9edK9mvHf6OpKyi1illRRhzo4H0cprFoSh159pxdpo5+K3+PMUie6cZ/65ajnyvn9hMQlZSyYMatj7cRng8yvEf5n+bC1a1TLjovMNHeCzG0Cv543tuLtVwqYvBV6fy6lDdYiIWShCdimPxG1gaj+Wr2qhBrZaey95pZnEsUqBCAxLho+16L6eeKULicGhYf5dfstEokfMA1Gy2ohKUZcusiYwaVTFs+lgzClVx+zmQ1u0aLnRx5LsDRZV9dHY1Vn+VpBJd4h5rKSlV+fTobdoCdass/Ltr0Zo0Ja3lXBut0in7X40VV5Ys8/xnBTW0XuPh1LOjZa+z6eMBlqZinCpiC9O0uxahzDPU9GQU65OSjdtqKzRbW5WsIJZbNovqFhNKjZLZYwsYanQo1fmWbIJVTfuN9Qy/Ns386XBeP5Ef06Sm5+MBZk8uFKwTC1Y1y7EkyRi031aPRqcqWNur22HH1WXhQEbNsnZL9Uq7yHLYktI3h65aYO/f5ys8qE1q1t/VwNSBIGPvzFLdakKoUjO5N0gynSTcPcbeQ++TRlqXt9lsVFdX88Mf/pCtW7cWjWsFFVRQwb9XnDlzhgceeIDXX3+dZFIaj5WoqMFLCxsQFAK21iqSiRQL/RFs7VXUbbVx8umRAkWignWerAKLKqMmnLGP7bitnrnTYSb35h90b7nOA8tw+tlRUIGgL7RO85wn2bMd/k5/AYlGY1KRCKcw1GhpuNjFmefHEEMrf6+zCShUErnD7JPIVKtVk3Jtbs1+Q4FNVq6dWylLXJDs7kini+4VNlzswtxg4PB3B0oTiVTQeEkNAy9N/s5qSNnrFPt7s89A6/VeBl+aZPpwcXWnxstrWBaXS6pcVbeYJNvYEqSbNZWUVJLdX3gsWpwQpYLOW3yMvjNLqL+48ue6uxpQqhR5Kjurr/H7xM/WXoVKoywZo2wZ34UuTv5kuIAIJVjUBK6so/+3EwWkIpAIUlUeHcHeJVQCgDLPuk0lgN4pqR0JJhU6pza/TaokEuB4xgovq+yfC9cmK5YGo6xYlO0nufDvqqU6YOLgv/QWEJuySmoak4rOOxoYfmWauVM5hH0VtN/gJdgXYWLvHHqngEpQyQQolSA9k2BR0fWhJsbeni1Qi3JvsVHdapL3Ot3n2Jg9EUIMpUh5ljgZO8LYjJS7CoJAdXU1H/3oR/n//r//D5WqPEmtgn+f+N2PlVTwbwpBEHjllVcA6O3tZefOnUxMTJAmTS+H6U0fRjWiou3Hm6lTNIAAy8llEpkTJ+4dNqz1Bo7/eISTPx3JI1n0PNzG0kSMQ9/oz7NpU2b7eGZwarqilr4XJxh+eZrhlzMTlADr7/ATmc4nI4lhmHh/lrm+sPy3So2S3mfHVogXAqgFFRqdUv45e68sQclzgR1bm5n685wr94Q85ZnA7joSSy72PL4y6WVJVwjSqaqaDdUFhA0AnV1AoVKQThRy90K9S7z9N8flOlW3m5g/UciYday3kk6VJilZAkY6bvIx+OpkUcWcmq1WmnbVMfDSRNHfD7w8QXi4tGz1cmoZhUqB2VOYPIGk1BMe/j0IVLDmyTWVVoWyjFdq3/MTpMTl4gQlJPKQGE4U2BFmse1P2olMREuSqBp2ujDW6CX59NVqTgJybN794omSJCaloIQSj+DoMlN3jh3BpOHU0yMFBKWarVaaLnNjsGs584vxAoISSMllKr7MxHvz+ZLsmXYvhkSUGiWmOj2zxxblfmIJGGm40MWhr/cTHo4zc2yBgVfz36fJI9B9T4D53kWOPzGcZ4eXa1+4nFjOu2eWoGSq19L1oWamjwTp/dkYh78/IN+/pseKvd3Mse8PsTQhkk4to1RJgRp4a5xT5j1MpMdQJVWkDqRQqVQoFAo+8YlP8PjjjxcPaAUVVFDBHwEuvvhiJielcfIv//Iv+cIXvkAsFmOBeV7lZ5AG2+suutiBRiFZRCwnlmWCUNtNXqaPBJk7Eea9x0+iMUiEgZYPurGvs7L3KxKZKEtQ0lg0pJfTpOJS7mZrN7GcTBPsXWL/V1bmx+YrvVQHqgrISL3PT+A91y7/27q7Gxh4aZKl0ZhMvDA4JHuPeFalJUNUyT0BXX++A4VamU/4SCCTjgJXuXF2W0ksJfM+gLPqQq1X1mHvtLAwHGVxsDAvUQpK1Lri4q5Hvzsok7iqGgwsjkUKiCG1m6ox1xup3VCdZ7WQi847fOhtgkzsWI0NDzahMaiLEnjG35lDqVKUJCgBqLRKNMnSH8PlTq6fFRLI7aIYjHV6FBolqXhpm7ej3+9DZy9URgBpA8d3gYuTzwwzf7Iwt3Vvt1F/vpOjPxwsSiACcHVXw3K6KEnJ0mQg1Bdh6OVpht6YLkqGSqfTKNQK9NVC0Xusu60BjVHN5L7ialHd9zah1qt598QJlkZjBdfw7XTh7LISHFxi5tBC/vvMtHuVQYlGt/Ies/2k6Qo38UWR0TdmGXp1CmONruAZuu5txOjU8c4XThAZF1eI3Rrwne9k6OVpEpnmrxKk9p7bX7ruacTg0vHu/zrB4mCEg1/rlUl+rVfWMXNqkbljiyRiKVI5igqH3j3Iu9PvkESEE6BQSDlZe3s7P/7xj+nq6ioMdgUVVFDBHwHUajWPP/44jz/+ODMzM1x//fW89dZbiMtxjvI+R9Pvo5030P7CRpwK6SR8KpFGzKx5VbeYsPqN9L80ydhbs8wdC8kki40fCxAei3Lix8N5lmBKTSYfyeyN1G23MbZnjtljC3kbT+vvbGBxPJpvOZWEoVcmicxI5KWaHiuCSWD41ak84oXGoEJlyNwnh6iSJbJUt5qo7bGRWErmkYByT2u3XOMlsZTgYO6hsCQkk9L86N9VSzwkSpZ4q6CzaFBqlBQ7rxqbSbDnS6fkOpm8OsIjhXOyu8cGSkVJkpLepaXzVh9DrxVXVjQ3Gmi7oZ7BlyaLkoD6fjtBvIxq43JiGaWgRO/SFtjFgKRwNDFbWtX7bLA4FC167Sw0OlXJ/BVg6kAQhZKS1reb7m9GXEoW2BFmsfGBJpamY5wuYfPsaDdT3VQl2S+vXp9Tg9GlY2ksJtm7lCAxqXWqlZPxq2Cs09F4aS0Gu5b+30wWEJSqfHparvUwsUeyEJzcGyy4hn9XLcuJZWaPLeQT4jLtXgwnUetU6O1a5k+H85ST6nc6OfWTEZLhJKPvzTKxavNabVKz6f4A08eC9D03kdcXq3x6lCoFoX5J8TK9nEZtUpMMJ+VvBbVJzeaPNjN1YJ6BF6c4+fQoyZh0f4vfgL3DTN9zEyTDSdLJZciQkKZPBhkwHWUofQaFSkHqkLTmVVVVxec//3n+7M/+rHiwK6igggr+CNDc3MxLL70EwNNPP83nP/95ent7GWeQcQZRpzXUnvTRQjcqhQoUkEosyyQHz/kOFgaXWByOcvhbA2gyKik1PdV4tjs48r0+xFBKJiipBCAt7VmCZPGkVCkIj8Xy7Nw82+zU9tg4/N2+PKLRxL4gqVhaJrU0Xl7D5P55ojMrNm46myApX2bVdzJElViOeEHddjuCSc2hb+QfVM/mfs4NFhouquHk08N5uUGWoFTbY8Nznp3YvFiUpKPWKUmXWKoZfHlKrpPOJhALiQVEGrPHgK3VzMJwhLkTxRUc6y9wUlVvKGkf23yVG71Ny5HvDBT8bmEoQt+vx0teG0CtV7GsLp33lLM9OyukJLWfUtBZBFSCknSqtN7K6WdG0FYXV74y+w0Erqjj9C9Gi+Z3Zr+BxktqOP2z0ZIqSzUbrChLkJT0LoHolMjciUXmTi8WJ0Ol0qgEJRqTuihJqekDtRhrdBzoP5MhB+U3msDVXnR2LQe/egYxnEIM56+v2pqrqDvHTnQ2TrB3KZ+glGljakGJxqCSf872E9cmK+lkmunDISb2zbEwEikgKPl31WJtNrH/q70kwinp0G3m2s5OixSXzHMrMstquc/ZcKmL6kAVB/75DGIoxeFv9sl9qO4cG+HxGAtDEZLxlLS2manjwPEhDoXeZ4E50iNpFAoFWq2WD37wg/zd3/0dfr+/SLAr+GNCRUnpPxi+9a1v8clPfpKlpXyWpBoN6zkHh0KS3dvwYBMGu5a3Mye2PRfYGc3INndcX89c3yKT7wdpvspNdbOJPV85nUfmcG600Hq1l4n9c5z5Rb7sYNOVbkL9YWaPLdJ8lRuDQ1twmmXLIy0oBdWKGlAR5ZyehwOotOoCxaBcctCGB5oYe3cmz0IrV/3JudFCdDaWp4pk76xiaSZObKq46lIWOpdA0+W1HPv+UMHvOu/0YW00cfj7/UVUo1ZUm4pCgK0PtTLw4kRR6y8Eyf6h99lhwqNl5IR+D7WhztvqESOpojJ8UF5JSecSaL+hnr5fjxclQa2Js6h3x631ROfEouQegE0PNRPqW6Lv+YmS1yimPASw5dMtqHVq3vnrQrUCZ7cZi99E78+KxyVXHaluh71g0zFXManpitr8+mXUncbenWXm8AKWgJHQ0FJeLALX1OHssrL/a72Fdc/ErWm3m5pN1Rx7YpBQTrLh3mGjdnM1+78sbVx33OJl6LWpAgLVjj/vQAwnC06IBa6tw9polMl9Xfc0MvLODPMnwtg7q4gvioSH43Td04ipzsDbf3NMIlOlRQ7xFkFm0Ov18ilXlUrFBRdcwFNPPYXNVlwWvIIKKqjgjx2JRILrrruOX//616RSuV+hClx46KAHjUKDxqKh5+MB5k4tcOqno5i8elSCglBfhOo2E7UbqjmeOcW8+aEAM8cXGHopn4C6+aEAGoOad1flRQa3QF2Pnd5MPrbhgSZG353JU9SpbjPRdkM9Q69MSXNXEdUco0dH191+xt6dYSiHCI4GTDV6wiNRHN1mXJ0Wjv1kOO/vfRc75b/x7nQUEGpqNlfLijLFVJeyaN7tZuZEqFBxSAPnfKadWFBc+RDOQTHFm1w0fqCGKre+qHIigO9SF4JeJcewJH5HtSFLkwHfhS5OPDEgE1VysZaSUtMVbpRqZBWgfzXWqLfRo6NpV23RzUyQrOJ8F7rY99Xe0tfRgEZDwfNZmgx03trA9OFg0fi23eSl77eTBWpfICkLmeoNzJ8MY6jRoNJp8ohuJq8ejVHF/MlwgSoRILXXLqucy2fJUrnY+plW4ouJQvXPnJht/Wwb4mKiQA22804fi8MRhl+bwdZZhdGhZfi1/LYfTNvLQgABAABJREFUuMqNa0M1R38wkEf+0xhg/T3NTB8OMfL6DLVbqjG5ddI71pBHutv+px0sDC/JJ8lm05Mc5T1UeiWxWEzeaG5sbOS//tf/yn333VcQywoqqKCC/yh47bXXuP/+++nt7c0j2hgw0ckWrArJGqTlujqsTVW8/7cnAWkumzmxAElpkXxpMsbMkQVqt1Tj7LJw/IcDJHP2lUweHevv8jP+/iyDq3Kyuu02lqbjhM4s4d5ajclrKFDkWXdnA1qrZkUNqIhyTscdPnRWgf3/mE+iziUHtVzvYeZoKO9gU5VPsmVYHIpi8RtIRJbzSCDGOh2peJLYbBJzo4HIRKyo4pDapMZ3gYO+5wrXVRoucVHbY+PoDwcKiEpqHSSThc+zUgC6P+yXFXKKof3WegZfnipUpFp1nd9VbajhUhfLSRhedaAri3JKSmqdksC1HkbenC5K0loTZ1HvhktcJKKpkkT29lvqWRyPMlqGpF5MeQikgwl6uzaPcJaFyaujutlcMi656kjFVCFqt6zkJ3XbbflENTW07K5j5sQC86fCGGp0RGZjeXWo227De56LQ98+Q2y1XXImbjWbrTRcUsuJp4bySITVrSbcW+3yBmzDJS4mD87J1o1ZbHmkFTGcKFBFr9tux9FpljehA1e5mToSYmEggsmrYzkhWbj5P1iDc52Vff98hmQ4STKdpJfDjDOAoBfkNS+dTscVV1zBd77zHUym0jY5FVRQQQV/zEilUvzVX/0VX/7yl+VDewAatHhpopF2ibCkgk0PBJg9HmLo1WkEixq1TkVkMo7eJeBaZ5UIOUDbjV7m+8JM7Q/m3av1Bi8Gp5YD/5x/aF0wqXCsszCWUYhpvtrN9JFQ3r6U3iHQcUuDZD1/OFRUNUcwqVj/IT8jb8/k31sF+mqB6IyI0a3Dud5SoFrk7LLI5JRi86PFb5QVfoqpLmXh2mRlaaK4DVj3fX7ioURRlfFiije5cHZZMDcaOFNizcjeaUZn0ch2eiXxO6oN6R0C7m12hl+bKlrPtZSUXJusaHSqtetXCmvUW7Co8J7vou9X40XLmep0eM93cuInw2UVrVSqfHUjkNSF1t/ZwMSBeUbfKMzbPOc7mDowXzQuKgH0Dh3hsRgakwqNUS1bnUn1ViOYNIRHowWqRNl6O9ZbGfiNlMtnyVK5WHdXA2I4mUf8yz5P9lnX391AIpLi5CrlzYaLXURm40wfCmGo0WKs0clWhVm4NlnxXeDixJNDsl1i9vpt13mZ611k+mAIs89AlUfPaMbm2NpoJJixx97wYDMLA0v0Z55jKR3mJPuI6haJi3GWl5dRq9Vs2rSJ//bf/htXXnllQSwr+ONFRUnpPxjuuece7rnnHgD++q//mv/+3/87sViMJAkO8AakQYWGiX/ejK9K8tE21go0XFCDxWfk2PeGOPPLYZm0o9GrUKqVMpGi4xYvw29OMX0ghFKjkJVwtn6mVbKQePw0fb9cmQxNdXq0lhUGq7PbzPShBfY8fhrBJLFv6y924t3h5MRPh/KUieZPh9FWSU1UMCnx7nTR9/yEXEbnEjA4tdjbzHlkn1z1p6znea5N1WyOZ3zgijoSkXzVJflvL6vF0mjC5BEKyEK9Pxui8XJvAUEJVlSb7J1VtF7rpe+F8XzFIJEV2xJh5d9yf3/gK/nJ2Go4usy0XO1l8OXJkosazo2WvFjkwlRvJBn93VZ7rI1G9DYtWktxywhnt5npEwul7eo+3U5sXizY6MnF8SeKy00LNgFxTpSJOKux9bOtiItJDn6tryhBCaD/NxMYaoorCfgucqExaIqSlLLqSHqblr5fjhfEPXBNHTUbqonOxZncGywgUAmCdJrN1WVl5vCCTDCqatRjaTQy8soME3tnMNbqWF71anoeDqBUK3n/b0/R99w4I69NIoaXEWwCWrOKxYEoRqcOnVmQyVnHfywlFQ2Xuqg7x8Hhb0t2jn2/HmfycBCQCIWLw0tMH1pApVJKfT1Dhjr51IA0DgjQdn09S9MxDn61j8M/GECMixzgddTVCsSESDgs9Umj0UhPTw/PP/98ZZGmggoq+E8BjUbDL3/5SwBCoRBXX301b775JsvLy0wxwhQjKNIKbMFaIn8dke2Wmj5YK1lG/fVx5k+GCQ9L46jGAEq1EkXmgJJjvRmDU8vQy9Mc/mYvVY1VgHTCt+OWBgZenGBiz7xM/jB6dOiqBXSZ3Mvk1ROfizN/Mszex0/KCjRbHsos3ucQM8RwiqXJKOP7goAknT3fu0BkMkF4RMp3nO0WqnzGgjhkCUq126rxXeAC8pV/sgSl5t1uXButJGOpQsUeDTjWWyS7rb5VhJEEjL49Q2io+EJPlqDU9ZFG1HpVgRLjwK9zFtMsmgJCzGpLrWLourcRrVkoaZemMYCp3lRUiUhv02J06Uv+fi1YGg2yamHhjcHWbGKuiLongOd8O/XnSZZ+xZSsAJZGY0UJShoDJBIwc2QhX0krg5rN1TRc4uL4k8MsDkZIFCEwhfoiEkHp14WLZVUNBmwtVaRiqaIEpu57m1DpVLx38mTG5i7/Bp23+lhOLLPn5OkCGWuQ5MKrPAbZRi1LUPJd6mLotSlJNWxwiaWp/AVCW2cVrVd7ZYuWA/90Wu47tvaVWBtr9NmD9cwdW2QO6Ruj55MBkuIyB7/aR++vx5nrCxPqj2D06HBvqqb3F+MkIqASVGhM0rfOxJ55WTWs82YflgYjs6fDJEIJ9v7DSUaWhjjJfqprrExPTbOcXoYorF+/njvvvJPHHnusMPgVVFBBBf8BccEFF3DqlDQX/+xnP+Phhx9maGiICGH28AqkJcLS7NObqNFL60Fqk5rmK+qobjJx+tmxPCs1jVGDSquSCUoNl7qYOhwiPBrj+FNDhAal+WX9hxpQCUoO/kt/HjHD5NFTVaeXf7b4DYT6Ixz9/qCstGNrq6L5yjpO/WyE0JmV+Wru5AIGp1b6QQ11W6WDUFlijFqnxNJglPKmHJJS7glw/+W1qAQVe7+0sqa1lLNB0HKNh2Qkma+6lIFnmw1np5XJA8G8vwEYfE3KjYqRdLKxMtbpaL+pnoEXJvM365KsEETUoFaTRwADOFFizScLY52OztsaGHp1sqhKD2RiPRwpSgiy+o2kEmmGXy17m6Iw1Oqo8hjQWYWizy8RvyIFz5TFpgeaic6L+Upbq7Ca+JZFVvGnlAVb10caSURSnHhiuChBCWDgxUmpTRb5df0FLowuHcNvThX83txooOVaD+PvzTH0ylRRglLjpbUkY5INdDElLUuTifRymvlTYZk4p7OrsTSYmNwXZOrIAuYGI8lY/nnpzjt8CFUaDvzzGSb3BZk9tkAytoxap0SwCEQmY2jNGgxOrWy3mI2hY70Z/y43x340yNJYjNO/GGVpVOpnddttRGdFiSynlNTS1DqpPQ68MC6/w85bJXW04z8Yov+FSU7/apRT6QNELSFS6RQLC1IsjEYjF154IU8++WRlzauCCir4TwGVSsVf/MVf8Bd/8ReIosif//mf881vfpO5uTn6OU4/xxHSWuqSjaS+kkKlliRUvOc6qW42sfcrp4lOiYwEM/OeSlKiVqmkHMlUp0Pv0DJ9KMSpn43IOZVgUbHuDj+DL08yd2JRJihpTCpMbr1szaatFkjGUkRnRA7+yxmZQNJxcz2p+DKncsjIqRTM94UJ9knf7dUtJiIzIvF5UVbPsTYZsTaZUL06Se45xCxBqapeL+VeWmUe0SlLUCqlupRF7eZqorNiIWEEaQ0tWkJJMktwadxVi96m4fiqHGP6cEiuo0qvWlGOyqCUFV0u/LtqMdXpSh7uQwWmGl0+ESUDtV6FpcHItE0gES6tRFkK5noDWnNpEpXJo88j5+TC2mzEf7mbUz8bKWk3J4ZSeXvWMjKKP+GxWNHcq8qnp2mXm9M/HyUyGSeVKiT9x+dFRt+eZfpwYV4kWFTUbKiGdHHVcUkdSeDgV/tIhFMFRKbWa70AHPnOQFH1pap6A1a/USaxZQlKzi4LcycXSYnLzJ9eJBHJv67eJdB+g4+BFyeYPx3m+BPDct8x1a28Y5NHL6lHHQoRmYzLBKq2G72ggJNPjTC1P0h0Nk54LIZgUeFozxAKU1JfV2fUyheGIixNRCAFnp0OajdVc/gbkprSkW/1E4zPcYqDCDVKpqenWV5eRikq2bRpE5/97Ge54447Cp6/gv8YqCgp/SfBo48+yt///d+TWLV7oESJn052nLODud4lxDmRjR9vRmfR8M5f55/UN9Vr6f5QM7PHFzj50xGqGvXEF1KIcyLtN0sD5oknRzDVa2m5pp5TPxnKU3Gp22HHf1ktI29PM/jCyge5vbMK38WuPAWYiUPBPMJS5x0+rP4iykU5qjybPxVgWUznsa11LgFTjY6Zwws4usyYavV56jy5qkv2zioWh5ZWrOFAJigJJnB0FSrnALTf7MVUpy8gOulcAl13NXL8ycE8JadcnPP5dlJiij1fLCRJSUQkDwMvF7eF2/RQQJpIimxK1Wy1Evigh/E9s2XVhkqhnJLSWtjxZx0kIsmixC+QmLnhiVhRlaRzPt9OdDZecOIJpM1S30U1DL5Umpi14YEmIjPxgtNwDZdJFn/v/cPJAvKUYFJi67Qw8d48gglAmdcGaretWMY17XbT99xKQmOsFfDscHHq6RG5jrkJR+22ahovqeHId/skolsRFamtn2lFpVXlKzsJ0HGdl5H3ZlkciNJ6vRelWupfudj+WAepeGqF9JZB2w1eVIKCYz8axlgr0Hqjj9PPDBEeFXF0rciB7/jzTiIzsQJVis47fFj8Jt7+35Jakuc8O/3vD7Mn/iqOejvjE+PyWNLQ0IDZbOY3v/kNtbW1hS+lggoqqOA/IcbHx7nyyis5cOBAgZ2GGRubhJ14u1xM7ptHY1DS80gbM0WUZrrv92Owa3nnC1JOliVImLx6mq9wc+z7AyQiy7Te5EFcTOaRcQC2PNyCQq2UVQSyaL3BgxhOMvCbSSxNBpydFolEkpMmnvP5dsTFRJ61HCArzJi8ejpv89H73BhzOQTw3BPWgavcDL89k6dylKu6tFpVSWPRkIgkICERYOZOzBco82gMsOHBVkbfmSmwYGu52o2mSiMrzqxG3Q47votc9P5yNE9pKouuj2SISI8XEpF8l7rQVWs49VThYhJIxBSVTsV7f3Oy6O/LYS0lpXLwX1GLe7OkdFCgQIWkolV/vrNoblW3w079TifHnhgqSmDq+WQAhVLBnr8vntOZvHpar/Vw+HuD+cQvDWx+MMBc72JBm4RMGzk4Dwkw1GgyBKTMn1o0GGwaQv0RrAEjCpUij9jlu8RFqF8i/djaTSyOx/Pu3X2/H9I5m6OrVKQsTQY6b2tg6kCQMzk5XXWbCXtLldwHu+/3M/jiZJ76ke9SF97tDk78ZCiPFGZwC7Rc5eXYj4dJhBK03uAhEU3R//wEWrsGlRoik9K/29vMBdaMIPW38HiUo98dxODQYKjVs+/wXoL2cVDB1JT07WQ0Gqmrq+OBBx7gT/7kT4q+lwoqqKCC/4z41re+xZ/92Z8xMbHqsBA6AqxnXet6otMxYsEkrTd6MdcbCojHapOano8HmDo8T/+vJtHZ1SynQAwm8V7oRKNX0v+rSdQmNa3Xeuj79VieGoyl2UjHTZLNWe6ahcmjw3ehS85PGi5xMd8XzlOJ8V3kwr3NxtEfrFIuylHl6bjdBwo4npPnqE1qjE6BUH8Ek0eHud7I2Dsr9zY3Gkgvp1kcimLy6ogFkyTDK+wUnV0tKdGoJQuxYqRk74VObM0mDn2nP4/Yojap6by1nt5fjOfbeeVg44NNpJfTRUlSxjodHbf4GHplqqjtW8ftPkbfnsmLUxYmr471d/oZfmu6rNpQKZRTUloLPZ9qIRktTvwC8O+uJT6fKLputfGjzcSCYlGSVnWriZZrvAy8MFE0HiAphCUWkwysItg7N1jw7HBw5FtnCshTah1YmjKqD2pQ69R5bSBXPWm1OpJgVePebMsjBOW2EUuzkcDuOo7/eFhqA0VUpLruaURrXUX0V0PDBS5mTy0QHonhOd+BYFLR/6v8vHHzJ1tYFlMcWLVm5dnpQKhS0//chNwfB16YJDIZk4mCIK23hSdjeX0GpD5Ys9nGvi+dIhlbllQxTi1wMPEW+no1E5MTiKK0eFdfX4/f7+cnP/kJDoej2GupoIIKKvhPh3A4zGc+8xmefPJJQqGVNR01Gpx4aFd3Y2+slpRSVLD5owEmD84XEDWarnBjaTSy/yuSqmSWICFYVPguqGHw5UkS4RSeHXaWE2nG9+SvAbXfUo9QpS5UzzvHxnISJvbOobMJ2FpMjO2Zy1PJ6b7Pj7hYhBicUZgRLCrab/T9/+z9d5wkV33uj787Veecp2d6ctjZnHcl7SrngAAJZBBYgIQNCBNt4Ivtl/262NgggskIASIIMAhJCGWU0+a8Ozu5J/XMdM90ztXp90fN1uxoJSP/fO3re93PP7tddarq1OfUdH36c57zPEw8HZFJUSCRYs4owPi3OIgNpmTbKlipumQJGlYcK1m/16iK0r7cfPEcZR5U0H9LK/OH4+dYoPk2O9A7BVlx5rWwthvpvKaJ8Sdm5T6ejdbLJJXxkz+bOGefs9+CwaVl+sWFc/aBpIKtcwivq27+x/DHlJT+LbjXWmm95I2JX3qPQGC7i9Hfnys6YG030n6Fj+GHZlYoFJ1B703NaPTq140HSEpGnVf5GX109hwCUe/bm0nP5Jnb9zqk7fYlB5Wl5+hsm0KVoERr10gqY6+jjuTst8jWgUa/DjFTXnHtjqv9qLTKZaLba1SktHaBNbdKz8/Zf296j4C93bRCkWxuf3xFXByrzBIp6+GwTLwDSYUseLGXqRcjiKkqTdsd1IG5fXFUehUqQYGYquDf5qBpu5MTPw3JNoxnsO4D7WTniow/NodKr8Lo1hKaDDFvC1HTlmWlNoPBQGdnJ3/zN3/DzTff/Lrj0sD/W2goKf0PwV133cVdd90FwN/93d/xpS99iUKhQI0aY5xkbN9JFChw04zvqBV70CIdKMDOT60icizJ+GNzHP7BKMWk9EOt54YAglHDni+eXkGecPXZ0FkFzhBLmy9ykRzLMHsohsGjlQlKm+7sopytcOLeCVndSDCBrduC2qCWyDdLpI6BX0zh3mCVCUrb/rKPhWMJQk8t/4CtFKrUSrWl8yhRGtQUo6KsqBO80IPWollBjjlbaajr+gD1Kuy/a5mcdUZBqe+WdkxePfGxzDkKPW+0sr0YFTnwVelHuM4j4OwzE35xZSIWH8lQSLw+gWlxKE3rxR6KsddXBDpyRjb8dRA5kMTo1jP+zL+foPQfxeij/3aR598iPhViJTLTr7/Kf+FYDFe/ldlDK2MomMC/w8Pk09E3VGeqVmqgUCCYJCWms7HmfR1ozRrmjyaWFMSWE8O2y70EdrhQaZSEX4mtICgBdFzVhClgQHhBOu+ZF/8ZWc/MVI5auY7GvPQgi1J/13+wh9hQhvFH5xh8cJpSeimTWGommATs3RYUaiUDE1MyCcq9zkLHVU2c+mWI7HSJ8L5FUhNSwtBxjZ/xp+dAlFj9CqX0XObmRflZWfveNswtBtLhUcS4yMlfLJP+tv9VH5nZPAM/nyJ6IolCqSAhzhFtmmZ4CqZKUlEnEq3g9/ux2Ww899xzDSu3BhpooIHXgd/v5/DhwwAsLi5y4403snfvXqrVKmnivCD+Dg6BHhMbyztJjWVZOCXlJP23tGDw6Tn49WGO3xPC4JdUkQxeDb1vayE2kGL4odkV7zyzT0/FLr2/NAYl3s0OZl5aZOT3YfRLK/St7QZ6bmxm+KEZhh9Yflc3bXNibTMx+eycpISzROo48aMx0Ejvko6r/dg6jCvsvjRGFTWxRiYszYSYWw1kJvMyQcng1eBea0OpU64g9pwhKAUucNJ6oReVVimTgc8QNzQGSRnAu8l2jg2XUi/JzVReszIMYOQsaevmXS5m9i6uIKgsHIvh6DKxePr1V5FlwoXXPS/8cbWl0LMRaq8tLv0XYOaFearF6usSlAASQ9k3VG/KLxQpJsU3VFiaP5pApVWds71pp5OFgTTZmcKyjc3ZWIr5mdWRZ8PgF2i/3Ie9w7Q0obWSrLPh/ZKf/IGvDZ+rjqSRVCasrQZOhCZkopDBqyEfl8htlXwVamcRA8sSuciz2srBb4yQGs8z9NDMMrFu6XkPbHNiajLIZL0zz93qW4MoBSUnfjTB1ItRlCoF8cEsxoAOc0DP/P4ECqUSvUOLa5WZub3xFX9fG2/vIh8rcvyeEKEnwoSeiVJOlWm70ot3nV22b0yMZYiNpDhVP4TJpmZ2fJYcOYiB1+ulpaWFz33uc3zoQx963bFqoIEGGvifjrNVxe+//34+/elPMzU1hVgvMsBBBoYPokGgiQ5sJwyUc8vvny0f62HucJzwS4sc+u7okpcZdFzZhNGn58BXh5h5YXnCxt5pxHiWOrNrrYVcRLJ/m35lgdkDUl2g7xZpFf/Ig+FlArUaPBvsaO2CRL5ZInVMPR8lNZ2TCUobPthB9ERqBdGlkqvAmVerGnRWiWCUWiKcNF/gxhwwMHswJhNFzib4dF8vrXo+217ujFVW11V+nKusZOcL59hwKRUKUHAO+aSSrciTgmqTGkeX6RxyTfREiqr4+rlVbrZIIVaiEH/9mtjpX74+6RwkhaepFyLShON/MYZ/N4NSc26Ocwah17HPO4PsXIH84uvfb2I8SyqUJT6YXLlDDb4N0iKAkYfOnYADqJZrKAClTg3FlQPV/bYgJp+e1HiaSpEVBCXXWgtd1wQIPT1H5FDyHHWkwHkuPP022VbtDEHJ2KQjN1skFylRLVVR65fiUUG2+0uM5ph+IcrII2Go1OV7oSKpa3k3OtAYVIzOzMn2KKaAju63NDPyuxmyYWmMi0s1PP9WOwsnUlSKNaxBI5qla1ayFdkCrv0KL54Ndo79cJRirMLJ+yZlS8ENf95JbrbAyMOzxIbSaAwqspU0U64hFNkak2XpHEJEwO/3s379en7yk59gs9leN+YNNNBAA/+TYTKZ+MEPfsAPfvADCoUCn/vc5/jlL39JNBpljgnmKhOoRtU4cNNdXUv0RJLkuPT7PrDLhb3dxMmfTjD++Bxau1TzUulV9L69hYXjSaZeWFhBOjE366nXkEhKKnD3S0SgiacjGFxSzUuwqum9sZnxp+ZlIgaAc5UZ30YHkeMpSWFoidRx6hdTssqLe50VV7+F4QemqS5NHam0KiqFKsWlPEXnECjGRZn8o9Kr8G93IpjVspUdLKsu2TqNdF0XIPSHeVnJSCYkqaDzmiay84VzVJVUgtSneuVcbZH5Q8v35VhlJjWWkfsLkJrKkRjJkJk+l6AEkJt9Y5Wj2ECaf8tsLfzqv58U/r8DCwNSPF+PoARQiIqvS1ACELNl8tHiG+Ze0WNJBMu5bjG2LiO5+SJiqvKGji8ASuW588Iak4quayX728mnIysISgC9N7eg0ig4ce/rqyO17HKTnS0w+vtZWRlKY1JRE+tUxRrlXIVa5aw8tAqufgveTXZO/XySUkJk6IGZZeLT0vPuWW3D0WchciROVUS2Bgxe7EEwqxl9eJb46QxqnYrUVA7Bqsbo0ZEYyVIHzM0GzAEjsVR6xd/X2ve2kY8WGX4wzNyhOIsDKcrZKu61Vpp2Ojn2w3GoSs9XbqHITD1EzZ9lLjpLhgwkwePxsH79er7whS9w3XXXvWG8G/h/Ew0lpf/huPfee/nYxz4mS9eejRZfK+vM61l9dT/xkTRKpQqdRY3OrSV6Iolap6JerjP5UpTuG5pw9dqIHEmQGM3g6DEztrQSeefn+6mKVfZ/eQgEyepj4ViKzqv91Ko1suEi0ZNJWs53kwrnUCggeiCGmIVtf9mLUqVg7z8NYm7T41ljI3wkxrpb2knN5MhFihSiJXKLJZq2OEmMZ0gMZtnw4Q4MDh0HvzOAGJeUhQSThtREjnQoT8/NAaxBE6d/FaKyNDGRDmdRKlXUqnUcPSaix1MkBrO0Xe4lFysgmDQsnMzQcp6TQrLE7Mtx3OssGL3L6kxrb29DzFYZ+tU0gklJy0VewvtjrLo5iN4mMH80zvijUsGi5WI3YrZM5EASwQSr3tXO2KNhsmERe58Je6dZliFsvshFtVSTFJUE6LzCT/RkElu7Cd9mB/HBtBzvwPlO6jXkYlbndX4WTkk+vZZ2A+7VVtIzebquaSI2nCYXLcrkqY5r/SRGMqy6OUg2kic3X2LsKYn44ttmR21Q0bTFhZgtk57Ky/E2+gR8W5xMPz+HmAXvZhs6m8Dk0oRe+xVeTM0GVFolg7+dJrDNyfSrMcS4iHuDFYNby+QfpLZtl3vJRQosHE8jOAQ6r/ISG8kQPZDEtdaC2a+XyWmtl3pwrbEimDSc+MkY3g0O5g/GyM2L+LZaaT7fK6/WOjvemKD/bUGmnpkHpQJHnwW1oJbjveZPW4kNZ5jbE6fjej+KOkRPJslMFFj3gTYEi8DBrw2DAO2XehHTFZmgtO0ve1EJKvZ8eQBzk/TMjj01R2Crk1qtjlKjkJ7VsSy1Sp3ESIbEcJbVt7VibTby6tcHIAstl7igrqAm1tC7tNTEGvlEidbdXmb2LaIza4gcj5OdKtF5vQ/fBifzR+KMPTJH+xVeMnMFFk+k2fHZPqrlOsd+HEIwKmi+wENxUUSpVuBcZSF6PEl+sURgh4vsfJ6TE0eJFReZnp6WbdwsFgtKpZLNmzfz2GOPIQjLFo4NNNBAAw28eZTLZW666SYef/zxc9QtBaWOzd1bWN22HpNfR3oqT3pael8vnE5BHerUiRxJYvbrab3Ei1Kl4MDXhmne5SK/UCQ+mKX7bQHc/TZOPzhF4lQGz2YrgkFDKV2m7RIv80dj5CIi9jYT+VgBwSyQCGVJj+VxrTHS/ZYg0SOSykzTTidirowtaMTSaiQ2lGbhRAJLi4lCvIS1zcTUs1E0BiVbPt5LIS5y9HtjoIHWCz1kIzliJ3KYWw103xAgHcoy+sgcvi126jXQ2jVMPROl9TIPKkHJ+GPzmJr1OPvMZGYL5CJFbK0mjE0C409GoCypI8ZHsmQm8xj8An03tXLipyOUU9IqcrVeRWo0w/o7uihmyow/NktqPL9EmrIz+2qUch5ar/CgUCqYWFqx3bLbRTZSJDGURevU4NtkZ3Z/gnKqjKPfjN4hEH45xvo7OqhWaszuWSQ+mEVj1dC01c7sAamtvdeEyatj+kWpgBM430kpVSaw04Var2JxIMXC0QT5xTK2LiOWFgOmJj2WoJGp56OIubKk8rQUw3q9TtMWJ5MvRNAYNTJZyrfNTq1SJ3o4KbddPJ0mFy4u2aiZcPVZCC+pKdRry7Z7rZd5iI1lyIYKGAM6XKss8iICzyYbjm6zvMI/eKmH1JJdmcEv4Nlgw7fBSW6uwPyRBBqDWs45V/9pK/mFIqHHIhhcGtwbluPddrWX8lK+5NtmR6NTyfH2brFjCRqYeCaKrc2AxqRCqVQy89IixoBk9zL9SpT5vQnsvUYsLUbmjyQoxcp4NpjpvLaZVCjHwC+m5HjnFwponRosTSYUagXOLjMTz89j9BiYWlID2PG5VRQTJY5+bxyNVUnTDhfJ4SS+zR4WhzMY3VpMXh0qQSkVxhR15vclASnfUygU7PvSoPzMTj4dpf1qH76Ndiaem2duT4LABU4MToH5o9Jvn0K8RDEuko9Jv13Gj0wzmjtJtpAlFJImepVKJW63G5VKxd1338211177n/F11EADDTTwPwIvvvgiH/rQhxgcHKRWWyYTK1ASdLbRrdtE/8WtJMfToFCiFlRYWg3MH4pLEwLlOpFDSZovdNK0zUV4b4zEcBZbp5HZV5dqAJ/qpVyqcuRbEvmn+UIniZEcLRe4QQHp6TyLQymat7ukSSONksRAhkqxxro7OtCa1Rz46jA6pxpHr5X4cIreG1tIhQvk54rkF4tUChUc3RYyswUyUwV6bwpg77Jw9J5RiotlrJ1GdDYNmZki+UiRwC4n7tU2hh6YoZyv4llnJTtfRK1RUhWrWDuMpMZzpEJ5vJttFJNlBJOaxFAGzyY75VyFhWMpzEHJzu4MeaXzBj+1ap3Qo/OodeDZ5CQ+lKLtMj/WViPhfQvMvCDFxbXWQq1al4jBaknxeer5BQrREsYmHda25Ri61lmoV5btSJrOc5Icy2FwCzRf4CZ6PCm3dfSbUaoUskJ0004n6akc2XARnUuDo8dCeibHqrcHWTiVIhcpysqdTTucpGdy9N/SRno6S3q6QPRwjEpRsn0RzGp8m+yUCzUSw2lyCyXSE3kEmxpXv5Xo8RSVbEWO9xkrOt8WO0a/Dq1FYPh3YTzrltta2gwYvVrm9kl5mHeTDTFTITGSRa1T0rzbRXa2yOLJ9FK8DbIalmeDTaqDeQ0cu3cUR4+V+FCKYqyCpV1H26VNHL9n/Nx466DzMh+z+xNUxSr2ThMqrUqOYcf1ftKhHIsn0zTtdIICUhM5crNFOq73YfIZOP7jcaiAb7udSr4qx3v9BzvQ2QQOfWMYtVGJo9fK7P4Yrj4LVbGGxiDFMDWRo5yvyM9s+1VevBscHP3eEMVkDfcGK0qlgnKxitGtp5IvU0qXaL2kiZm9C2j0auJjOYqRIt7NNjqubCL86iJTz0flZzY1lpPUlqo1Bn45iRLw73BSjInUqnX8WxzMHYwjZip4NtjILRQJRUZZqM0yMzsj18LNZjM6nY7rrruO73znO+h0yyTEBhpooIEG3jyq1Spf/OIXufvuu5mZmZGVxRUoMCksrG3ZRKutA3OLgdREjlJSpGW3m9hIlnqlBihITWQRjGqad7sRDGqO/yiEY5UZMV0hGy7g22IjeJGPoQenSY3lMLcZ0Jk1FOIibZd4iRxNUEyJ6J1ayvkyap2a/EKB3KyI3i+w+p1tzO2LEd4Tw95tolqqoXMKOHvNLJ5Ok5rIYXBpKaXKmAJ6KYdQwZY7e8jOF+RaiXu9lVJCJB0uoLMKtF/mJT2dJ7wnhrXdiEIJGqOaheMpqValUzK3L4FgVWNtM5JfLFHOltFZtRh8OomAVJWUg7KRAoWoiGBS0XltE2NPzCKmqphb9GiMalKTeda/v4NCvMjU8wvk5opoTCpsnSbiw1mqhSrONRYEg4q5pUWBzn4LpaRIdraISq+SldqrhSpGvw69XWBxIE3HtX6USogcTZKZLqASlEuEqCxitorBq8Xo0clkLEePmXKxgnuNDZ1dw8LJFKmJLGKqit4tYPLr0dkEPOttjD0+S61aJx3KS2SzNVbqlRrNF3iYeimKSqOUczZbp5F6baWVXma6QDEuorULWIJ6nL1mokdTVMpVlCqFvNDNvW4phhFRjvfCyRRUJQs3R7dZnrd8bbytPSaad7jJTOeJHE2gMaqJD0qL3Fov91DOV5l9JSbFsGc53u4NFmqilMvauowoNUr5mTW16LG2GYkeSaCzC2jMapQoWBxII1hV9L6thdm9MWKnMxi9AgafXo63MSDQ/442Fk+lCT01Lz+zhXgJjUWN0S3lLO7VVqZfXkBnE1g4LsVw44e7yC+UGPrNNCoBnGusZMIF6TfFdA6tTUBvk/qzeCqNUgOJMUkBau3721HrVBz5zqgc74WTKdz9VoKXeJl4eo7YqQyOPjNah0ByJEPz+W6K6TLFWIlisoRvo5OZU/NMV0dJ15OEQuPU63UUCgUej4fu7m6+/OUvs2PHjv/sr6YG/hujoaT0Pxxnrzbbs2cP73znO5mell600/OTTM9P8ujIw7S1tnH55ZejKFlQKhUEtrmolWvUa3WUWgWeVXbEYoWFgSTBCzxY243YO00c/JcRamUpwQDofWszrl4rglnNke+MseodzfiWVs/Y2kyY/HpQKMjNlRAHs2h0asS8NInn2+TAs8ZGbrHI/q8MsfUTPdhaTdTroFCASqPE6NGSGJS8z41OPXqHETGeo+MKP/Vqneml1fuuXisoQCyAd70V30YH6akckSNJNt3Zhc4u4Oi0sOeLp/FvdciTbv6dDnybHNRrddKTOQLnudE7BJmkZPYb5NhaO0z4NjqoFKoc+cEom/6sC+8Gh0xSCmx3UilUiRxI0n1jCyafgeDFPgZ+PkXzDhfmgIHxR+cQHALBXR5qFYmkpLMJ+DY6pBddpoxaq8K30bFMUjrPDbU6s3tibPl4N1qzgGBUkw7ladriwNlnJXI8Tildxtpmwt6xrPDk22hHv8ReF8wazH4jkSMxsmGRlvPdKDVKcnMFStkKvo12TD4dicEsnnV2fBsduFZbCe9bxLvOhsagkV/2vi1O6tUaVbGGq9+Cb6OD7FyBSFyk5QIXOrsWnVlg6IEZ/FsdFJMiC8fT2DsNOLosWFtNRA8kaT7Pjd6plUlKTduclLJlxp+YRWuR4lIpVsnNR2nZ5UFjVONeZ2HheJrANieVkhTvrX/Wi2BUU9pYZuyROdouMmAJGhl/dI7+WyXLFb1Lx9yeODOvxNj6kW7UgoqhiRkMbp3MaEcE92o7KkGBYFQTeiqCRqeWVgKK0LTJiWu1FZVeibvPRrlYkSe0AM77m34cvWYOfnWYerWOQqnAGtBTFxV419pR61SUC1XUOpUU+/kC+740SOtlHnybHLjXWtn7xUGsbSZq1Rpjj8zRcY0f32Y71miJxRNpxGwFvV2LvdNA0zYXar0Se7uJuQNxFAoFzvVmxg+cZt8TzxGaCFGv11EqldjtdsrlMrfddhvf+973/vd+8TTQQAMN/A+FRqPhd7/7nfz505/+NHfffTeZTAaxVmTP0MvsGXoZUHDVVVfRvr0DlAr0TikvWRxO0/OWAEqVUvqhPCIV1pvPc6NUK5h8IUJ6Io97lRW1WlpZ03V1AIBXvzDAwrEU2/+qj2JCRGvVYC0aJfVLsUq1WMO32QUKBdElVafgRW7qNdj3z4OYWw2svbUNvVODo8tKMVlCaxGYejZKOV+jVq2j0p65ph/POjuzBxTETuTwb7WjtwmUl1a4NV8g5SoHvzECGghsd4FiWZ3Ss87Oga8NUM5Dy7tcCDYN5iYjx+4ep2mbE61NQ2YyT+slXvR2gaZtHib/EKXlAjcqrYq5vXFGHg3TfW2AwDYnqfE8rn4bge0ukmMS4SawTbJrOENSCux0k53NkxjK0vvWZsxNBorxIpFDZZrPc6F3aAm/HEOjV2Ew6wic5yI+mMXWZiCw3UUxXkZjVBHc7aFWqcskpebz3BSTIrn5AlqnJENdKVbJvxwjsMOJucVIeiq31NZFOV9h8Xgao0dHYLuLxeEUhbiIrc2Erd0kk5SkvExB01YHp341TWC7C5VGxXh4Dv9mO65VVsrFKvWaJK1NrS6RlDTQvNONf5uTQ18/jX+jHc/6ZZJV68VuBKNA8BIPU89GCWxzYnBINjLu1TaaNrmYfDFCeG+MjXd0otYvk5SsQSNmv4HQYxEcq6xSvMezUIemLU7q1TrhV2LM70+w4zOryEUKJIaytF/uQ6VWkhjNsHAsxboPtGNwaZl5aZF6pYrGoKJ5u5P5vQlUGhWB7S5cqywc+uYonvWSouPEU0t58E4XpXQZrUVDrVpDMGiYejHKoW+Nsv6OdoxevUxSUihBbZByOnunmcAWF4JehaPbjMGrRWcV2POPkgXf1k/1ojGoEEwCc3sWUQsqogNJAFa/uxW1oGLyhSjxoTTejXYC290oUOJebcXg0qFQKVGqFOidWkRTjmPhPTz6qxkymQz1eh2j0YjZbKa9vZ377ruPNWvW/Ee/bhpooIEGGgB2797NqVOnABgdHeWDH/wgr776KqVSicnYOJOM8/TPIdjUyuVXXI5yTo1SraBll5t6pU5FrIECmnd4KGVEUqEsnjUWmna4cPdbOHZPCDFblpV1ms5z0rrbh8GZYPDX0zRf6Ca4y4NGr8S92oa52YBKo6QQKZENF9E7BMQlZRtHt4W2S7zUxCrH7gmx5k/bcHaZqRQqqPVqVIKS5ESOzNQMmdkijm4LWrOG4mKZ3hsD1OvIat7N57lRKhXUq1UsQT3BXR6Gfy8pCfa9swV7pwnvOjsHvjZMyy4PhYUSp+6bxNJmoPUiD/U6FBZL+Lc4sLWbZZKSZ42Neh1Cj84jWHUEd3mgBoO/nab/liCBbW6ZpBTc7aFSrBIfyNCyy42rz0qtWmfkt2E8621419mZfTWGWiepPFVLVdmSLLjLg9YYJzNXQGvWENzlIXo4QaVYo+U8F0qNisUTadb8aRumgJ7o0QTZ8DzOPist57s5+uMR8tEStnYTjm6zPOHVcoGb+OiS4oJZQ3CXWSI4zRQJ7HSitQnERzLUxBrNuzykp3OkJ/JYWgwEd3nwb7ZLk5o9ZowenUxSatnlplatUS3UMDdJcRHTZRZPpgnsdGLvNKOzCIT+EJHiHS+RGMmi92hp2iblhosn0/g2O7B3mmWSUvMFbsq5MsMPzwAKKd7A7Ksxghf6MPl1sl1byy4PNVGK95pbWrG2mChna0w9H8Xg1OLd6GD21Ritl3rwrbdjazWyeDLN7J4YOz6zioglTmi2iK3FhM4hyLZw3rU2tHYBwaRhdk8MnU0gv1CkUqzh2WgnuMuDWq+kaYuLYrqESqXi0LckO5cd/98qinGJEF4Va1Iu5NaiEGp419vQ2bTkF4roXVqUaiWZcJ4j3x3FtcZC27VemndW2f+VIezdZipilanno/i22Om40k9yMktqLEd+sYit3YS11YhzlQWdTcDVr2ZiaVGiZ4eNYyeOcPjgS4yfNTnmcDjw+XzceeedfP7zn//P/BpqoIEGGvgfA5VKxV//9V/z13/91wD84he/4Etf+hIDAwNkyilenXqOV6eeQ3Ncy8UXX0hTsA2FUiGRhNfbiRxLYA16qFXrmLw6WaGxZZcbwaxh4ql5srNF6rWarNzce2MLKq2Cff88yMmfTbDu/e0Uk2W0FjXlYhWTV8/kcxGqRfD021BppHwKoO0KH9QllcnkSIZ1H+gkejyBZ52dzGwec5NByiGqUClWUeul+oFrrYWOK/1MvxAlPVXA3m3C1mmiXJJUcwI7nCjVCtlRJHiRB7WgRCmoKGcrBHd7OP7DMcRslY4rHdg6zNhaDQz+ZobghR4WT6eYfCaKe4MNe7cZ15SV2T1x/Fsc6BwC8cEQIw/P0HVdAM9aG6G5eUx+Pa0XeSksimTDBTqu8KPSKGSSUssuN+mZPNnZOYK73Pi3OhgsTRMfyODdaMcaNEqkGaMaU0CPQqUkMx1Ga9fQepGXcbFGvVKn4+om6tW6TFJqPl+qwSQnctSrNVov8jL5HBI5q9+Ke52N6DFpHJvPc1MtVUmH8qgEFa0XeaVF+HMFjG4B7wannLMFdrrQmNUUFkoM3T9D60Ve5vZL5DJHp4nABdJ1UUrzrCpBJZOU2q/0UavUOfK9MaxtRlov8pKayCGmKgQv9GBpMVBMlokcStCy20NsUIq3OWikdZdkM7hwKkX39QEMLq1MUvJvluZzZ1+JYW7S0XqRl2JCpJQq03FlE7VyndhAmuRojvUf7CQ7lycbLtB9fQCdVUNurkByNEf7VT5s7SYWB9JURTD59Pi3OYmdzlCrQ+vFXgprrZz6+RSuPhsKBYT3LcjxLucqaAwStUNrE5h6McrAL6Zov8aLd51DUuqvglIFgkVqp/doCe7yMncwhm+DHXOTHpNfz8FvDUMVVr+nFXOzgck/RJg7GEdr0RA9IT07vTc1Y3AIJMeypGcK1Kt1mrY7qRZruFdbMfn1aLQqlCoFBoeAOlDhxIHjPPvsFJl0mlq9hl6vx+12c9FFF/FP//RPtLe3/2/97mng/140lJQaeF2Ioshb3vIWnnnmmXNW+gNYtHa2tJzPeTdtYP5wgsXBJJ51dsxNBk7/cpzum1rRaNUc/f4YuoDAuj/pYOaVBXILRYK73Qz9egIxK1lMFRIljv8ghOAQUC7R5jbe3kUhUWL0kRnERAkxC+7NFrquamb00TALR1M0X+gkFytRToiYAkayc3lMTTpaL/Qz/OgM5XSZ7HRJWnFzVRPhvQtMPbOA4BAQ9CCmKojZGoJDyeYP9REbSDP84AyCQ8DoUiCY9UQOJfFsseBd5+DEzycAMDVr8axyyASiwA47ocekCS6jT0ChV5MN5XFvsKJQ14keTy9ZeCkR7BpW3dRKRawy/NtpyiKy/VjHdX7Gl1SLzrTNTktShBs/3MnCiSQzL0mFClOLlmykJNuHCXat3FbnkUhGxajI1k/0kI8VGXlgCjF7btszMT9jYWdq0SImSmz5WD/pmRwTz86vaKsRJPuw5bZlxGwNBPCss9B2cROTz8+TGMuvbBsQ5HgjgMl7Vv+9AmveEST05DyJ4azUtrAUFwHca81UinUSp7JSXKxqTAEj7Zf6mHgxSux0Ro6hqUWLa7WNiSciCCYl5nYjsRNSEmFfbUIwaojsT2DvM2Fq0TP9woJEJtrlwN5u4tRPp0CAll0uIkfSiHERwQSbP7qK9EyOUz+bkmMo5uqIcRGdR2D9+zoopcsc/e6YHMP+WztRKGHk9zNkIyVad3uYO5yk5QIHYw9LRLVtf9lHKS1y7PvjclwUKiVrb20nPp5h+tmI/Iz4tltpv6SJ6T0LzLy6SOfVfuoVGH90jk0flaxEBn8xg3+ng+adLgYfmMTRacXeY2b0EakP2z/eRzKc5pGHH0HfJDAzPUM2J6kl6fV6AFwuF1/5ylcanq8NNNBAA//FeOKJJ/joRz/K2NgYr03P1QoNbeYuLrvicmwtJo79OIRGA103NhM9nqSUKdF+aRMTz0aIj2Toe2szglnD8R+G6LjORzlfZfrZBYIXu/FvdTL420lSYwU0Vg0ag4LmnW6cvRaO/3SMeqUuW3Ct/2AHap2KQ9+QJhrar/YSejpC8w4XkUNxNFY13dc3U8lXCD0h2cWVU2XWf7ADwajmwLeGoQwGnwYUCvJz0vu6/71BzF49+74+JO33C1hajczvTaAxQOf1LSyeSrF4Mo3WqcHVbyY9VSQzmce/w05qMkt+rgwasHUYSQ5JhYjWyz0sHJFUikA6r7lFT9tFfkaeCFNcKMl9cK23Us6XSY1INigGr4Zypko5X8Peb6LlAjfH75aUbTRWDRodclwMXg3l4pI9nQYMLoH8oohvo53mnS5GnwyTHFw6r0sjx+VMn/KLIpQlaz6NVU3bJT4sQSPHfzD6R9ue6b/WqaHtMi96u5aj3xt7TVvQWIUVbQFKMem8gQtd2NuMnPzJ5DltNVYN3g1WZl5YlPtQTomsfo9EmBt+aHpFW0urjlqpTmIoi7XbSD5coJyvgQaCu91MPbMgPzuRo3F53Prf1cr0s3NkpkXcG60U4wUys1L/u9/ehLPLyt6vnpaej6V4A5TzZVov8eDf6OT0ryfJzxfRmFVobVq6rgsw/odZ0pNFHJ0mMlNZDE1aaiiIH8/g32EneKGXwd9MSepaS2PT/84W9HaB4z8dJ78oojFooFym75Y2tGaBg/8yjNapoeNKH1MvLGBpMdC0w8nxu0co52Hd7e2UUiJDvwmz9rY20jN55o8k8G2041lnZ8+vjzCjHKGiKDMxMSH/XdtsNiqVCtdddx3f+973sFqt/85vjQYaaKCBBv7/RaVS4a/+6q/42c9+xuLiSvsKJUrsgpu11k1se+d65o8kiA+nsXUYsbWZGX14muClPrQWgdO/nEKwqVn1jlZm9y2SnSsS3OVi7NEwlaJkMVVKiZz+5TRqk1TwUqth7fs6yEdLjD05SyVbpVKsYWrTseptQcafkGxBnGstVPIVSjERY5OBXCSPYNbQdV0zo4+HEVNliotlzEE9fe8IEn51gdlX46hNatRaqJSWrL10sPUjvSyeSBJ6KoLapEZrAcGkIzGcxdyqw7fFwcjvZqECOp8GR4dliUCkxLPJLivw6Gxq0KkpzhextBlQ65XER7KShZdOidqkouvaANTrDD8cplZZthdrOs/J7P7YUltQmzSytdyqP2khPpIhcjApXceloZItUyme21ZtUqNUg5issPa2NgrJMhNPSPFGDTrbyrZqNRSTlbPOW2XTnT0kQhmmX4i+cVunmkquRqVYAzVYgno6LvMzs2eRZCiPWrtsl6dzqpfjfaYPybIcl56bmpl5eZH0RB6dTU3lrLhYOvTUgcx4QY6h1irQfX2AyecjJEZzcludS4Oty8T83gRqHeh9ejITkp2HoUmHziYQH0hjbNJhatIRO5mkUgRHvwl7p4WxJTsU7xY7idEMYlLq75Y7u0lN5hh5cFbuf6VYp5KtoDapWfveVsRUhVP3Tcox7Li2CY1RxdhjsxQXy/i22FkczODdZCO8RNbf8OediOmyZHe4dN5apc7GO7pYPJ0k/PKiHAtrp47u64OEX1lg7kiCpq0OFBol4RcX6b81SCkpLTK0dhppu8TL2BOz6GwC7rU2Qk/NUUyW2XB7J6mZLC899zIERMKzEiEcQKfTodFo6Onp4Utf+hKXXHLJf/h7pIEGGmiggTeP4eFhPvOZz/Dcc8+RSqXk7QoUGBVmWnU9bNq0EWeXldNLyi/NF3hIjmUpJksEd3uZPRAjHcoT2OXE4NQx8lAY32Yb1UqNhWNp7N0mWi/xMvL7WXKzBVR6FSpBgbPPQtN2J6d/NUmlVENMSe/Vzuv86OwCp5bIRL4tduaPJHD0mElNZFAJalp2u6lXYfpFabFTOVul41o/Jq+OUz8PURVBsKoAhXze1kvc2LrMnLx3fGm/Gr1LILVkw9tygYvUVF4i6+hVWFr0FJMihaiIrdNAKSFSiFdABQaPlvycND/n3mAjNZpBzEpkKMGqQmfV0H5VE6E/zFOMi3IfTM16oEZ2piS3rYpQLVTRewWaz3dLlqwiS3FCtiYTTCqqVamtdKwaMVvBHNATvMjD5PMRslPFf7MtVVAJSlR6Jd71djzrbRz/8Ti1N2wLKr1a7r/GpMK7yYHJq2XwNzMIVjXVQoWqeG5blV6FUiWNDYBjlQlbx5JLjQoE08q29i6jrBApnbdG25VeNHoV40/Or2ird2qgriAbLqD3CoiJimTbpwL3agsLp9JQBe8mO4lQGjEhWQq2XeYlejxFfq6IuV1PJVuWxrQK/p1OfBvtHL9HInGfiSEgq2C17vYw/LswhYUSKr0SlaCk69ompl9aIDNbxOjWUkyVEMxqFBolmVABS7uezqsDjDw0Q3ZWUteqVaH1Eg/WoJFTv5igWqiASgXVKsFLfBg9Ok7+dAKNSUXTNgfR4ykEs4bmC9wM3j9BtQAd1/gpF6tMPxul/QofuViJxFAaS9BIYLuT44+NElaNIGoLjI2PyX/bNpsNp9PJbbfdxqc+9Sl5/rGBBs5GQ0mpgdeFIAg8/vjj8ucf/OAHfPaznyUel1ZPpUsJnh19hGf/6REUKDBj59YL343OLiBm4dS9k2z4804C5zvJzBZQKKFWrZEazVFca6PvlnaO3xOimBTJhqUXmmedBf8mB8funWD61SjFmEh2ukTfzc3Yu8wc+uYQew4NyH0KbHdTr8P+Lw+SDUtkEkWzkXq1TmIkCyJ03SBZmu358gAsWXxuvL2DSrHCoW9IUtyIUIiVWDiVBMDVayY7X5BXRLm6rJj8BgSTgBgXyY6XyI5Lq7VbznPi2+ggv1AiciC5RMpZIh1d4adeh+hB6YUnZmuI2RKFxdKS2s9Kz9HxJSWk/luDAAz8fEred+Q7S1/uAuhsgkwcks4L9lV62i7ycfJnkzLhCODA14ZXXEPMgpiVjjUFBFz9dlkFClhxXmorP4txEctaC9Z2M7N7YivbitJ9nrlX5CiAe50F3yYHJ+6dkHecOdbUIhGmDn9zdLkPYRFrl5H1f9rGsR+MsnAoc1b/a4hZEbEAzedVSI8tE5QAPGsd+Dc7KKXKzO2JywQlgJ5rmwGI7E+QGMySGMzK+7zrHGjNarl/088s0nmdn7FHJPu63EJR9k0Ws+Bca6T9Eh/jf5hjfn+CfV+TlJH6bmpm/NkoYhaqxSoKtYLsdAnBBJNPRyWVo/UOcvMl5vcn2P9l6bj1d3SgswuywtLCqRSTLyzQdbUPnV3g8LdGmd+XIrDdQzlXIbDDiTVolOOm0ihRKpUIJvCstRHeEyMzUaJ5uxadVcPp6ZOUgilO/3wP4bDkc6zMKrFYLGg0Gi644ALuv/9+HA4HDTTQQAMN/J/BVVddxciIRAbK5/O8+93v5sknn6RQKFCplxlNn2b0fknVRYuePsM61tg60Du1zO9PoLPGadrsID6SQaFUoNZJK7zGH5lnw591ICYrlFIVikmR1Jg0mbH6lhZyswVCz0QRcxVyYemduu3TvWRnCxy7e1zuX9NOJ/5NTkrJCjMvLaIxQH5OpFqSJtbyi2UMXg0t5/k59uOl48rSca0XeRh6cJnckhiWJrNY4sG7V9tku7FyXlLk0ehVLJ5MU4qVCb+07HfefL6HwHY3B/9FIkCdISg17XQS2Oaikq+SX5Qm0s5cT8yWyYzmJPLMEhaXVmdpnRrW/Ekrp387Je9PDGRJDEh5gsEvEXjKyzU08vEy/e8IEn51kVQoL19nfn+C+aVVanLbxWWyv2+LXVJbLItL91qjnBdft+2Z/rfsdhEbSJFfLK9oW4qVGfrXmRVtz6D7hhbmjyflbWfISQaXhvximfALi4SXSEjlPJTzIv23tFDOVRj5/ZxMUDr7vPmFEtTqK65TTpXpuKyDeq3OwaFhUiO55XvdaKd5h5tqqUb45Rihx5fzTYNDg6XJgGetk8z0HAtHUljbDbj7JSn12Kk0WoMGjcQVIh8ps+kjXSg1Sg5+fZjJJ6NMPhvF3mHCv9PF1DNRypkq9XINRU0B5bJsbbf6vVL/4sczzO1NMLc3gdapYcdn+pg/kmDiqQjTLy8gGNRQq7Plz7uZemWB6OEkmXCBmlt6JnquD5CazpMLF7EGjSgVCjRmDe71FmrlGkO/kfIrvUtLJp5jz+KzuCasTL88TaGwNHloMKDT6fB4PPzzP/8zt9xyCw000EADDfyfgVqt5qtf/Spf/epXAckW7uMf/zgnT56kXC4TEyM8v/A4z3/rcdRocOHjqo1XY/ToqBRh/NF5em9uxrPBRno6i1ItqUEWoiUyc0W6bmhh8NfT5KNFclGp/mEJ6gme72bwgSlCf5inXKhSXCwT2OWiaYuDYz8el5WQAILnu1GoFBz+9ijFZFoipTh01MQq+bCkZNO000l2rsCBrw9JuRWw9tZWqmKN4z+SyNZqID2RIz4i1UcsAT1itizlY4C93YK93YLOGqUYq1CcLzM7v2TDtsYqqQJlyiyeSC8ReJYm9q7yo1ApiJ+W6hKVokToyc0VQCmRiM7GGaJT++Ve1HoVIw/PyvtO/3Ja/r/OppaJQ9J5wRgQaDnPzcjDszJhB1iuM8mNkY/V2dTYu83MHVjOzc4+L7WVnyvZCrpmHa5mA4sn0zIB6cx50+MFjp6VG1eWSkqmgA7/NicjD4bP7YNLIkydXd8rJivoPVpW39LCqV9Nkx4vnHWvUgwr2SqllEhmJr/ifq1BI20X+qgV60SPJmWCEki5ilKjJD6QJjdbJDdblPd51tox+ZYnhiIHExJp7FWJNJaayJFcslOhAlqrwPr3tRD6wzzRo0mO3C3VJFsu9LBwMi71sVBBoZTuVa2D+YMJPBtstOx0U05XiB5NSjbQQPeNTViCRnnhw8zeRSJHkjRvd2AK6Dn500lSY0UKsRJiroqzx4Kj28zJn0qTxmpBhaiUCFW+DXZm98fIThexd1gwuLTMZWeIe8MMPbJPdgdQDCuwWq04HA5uuOEGvva1r2Gz2WiggQYaaOD/DHp6enjwwQcByRbuS1/6Evfeey/j4+NkK2lOFQ5y6pWDKF9RYcVOe6GPPm+Q4mKJ+GCGuQNxnL0W0lN5QIFaJykpzR9K0n1jgHKuSqVUJb9QIjcrvR/bL/dSiIvMH0pQq9TJL82brb2tjexsUXYmAbAEDTSfL9UwFk6klkg7FapFSUGonK2i0qvwb3Mw/sTScVWwtBvovjbAyKNhmdySmsyjUCmpLpVPrG1GWSEIJCVnrUUgHcpTLVTlnAykmhfAyZ9OQBWZoGRpN9B6oYfJs1SMxFQVqlCMi+TmSzL5ByA7I8VApVfRfX0Tk89GEFNShwoRkZEHpLxFsEoEnupySoGYrdJ6sYfFwTS5uaJ8X5mpAqeW3s1ntz0Da7uRSrEqt6+KkrPKGZTPaiv1v4Kz30ImnENMVamKlRVtZ15cWNH2DJp2uElOZJevU6hSRSI2lQtV4qezxE9n5TESUxWad7moA+GXFmWC0tnnzUdLqATliutUC1XaLm5GoVJw4t4JCpHlepg5oKf1Yh8oFCwcS8k1KACVoMLRaaacrpCfK5IJFdA5BKxBI6lQjuRoRnazORPDnrcG0Fo0nPjJBLGTaWKn0+idAs7VFqJHkqCS4lmr1aFaXfo7kNRIlSoFJ0ITpEMFjnxnFJWgZP0HO4keSzC3L07kcILEcIaqWKfnbS3MH0qQGMmSDS8PemCni0JcpLAoSnZ0StDoBcxN0qLH6SVFcpNfR6lU4nTmOFqxxiO/miGXl3JIvV6P3W5n8+bNfP7zn+eiiy6igQb+GBokpQbeFO644w7uuOMOQFJZet/73scDDzxAsVikTp00cb7zs28CEvvZqfayxdSF2a8n/EqM8P5F/FsczB9NoHcK6KzSl/Cxu8fZdGcX/p0OBIMGhUqJGBeZeX6RDX/eia3dRGomj9YmSCo8wNZP9pAYy3Lyp+Polzw3A7udtO7yMvJomP1fGZL77V5jw9SkJzEoqfAAxAbTlPPSy8a72YZvk4OBn48hLr23WnZJ1ib775IIIwO/mkZwCEuqOko2friHqZeizO2JM/bIHNVSjciBJAC9b2sm9NQMYhZO/nQcwSbdp73PRKVYJTNRkGUeAda9v53YaFq2WwOJhLTkjncOtn6kB6VGKZNZzsC73i75jwoss4OWYPQJeDc6GH98fsX29subMAcMTLwQOeeYN0LwQg9ai0a29TgDe48JU0Av2+mdDd8GBya/HsGEHGOQYuVcZeH0b6ZWJGIABrcWtU6FscmAuLRPMMGa27oYun+K3LzIwa+PyO2bL3Ix8/wi44/NUUyIzO2RJjNbLnaTjxSJDWSYeGaeXHT5xbv5L7opLJYY+MUUp34yuqJvbZd78W10UIiJzO6JcfyeEK2XeVh7Wxsn7p1gbk8cd7+VbDiHKSCQDYuYWrQ4+izUazD0wIxcLNv2qV7q9ToHvjrM+GNzlFIi8dEc2z7Vy+yhGDPPL5KezFEr1TAFBHrfHmTi6QhiXESpVKBQSg/D+g92sHgqReRAkq4bmhCMagSHQMt5TsRsRS56GZxakroIL/Eko3u9zP52FrEuwqTEXhYEgZaWFr7//e9z6aWXvrmBb6CBBhpo4L8UBoNBLt4AHDhwgNtvv51Tp05RrVYpUeBYfh/HvrwPAB0GrtJfQ4vXDWU4/atp1r6vjeDFbhYHkghmDYJJxfSLi2itala/p5VTP5tEqVaiUCkop8pkwwXWf7CDwd9Ok53Jk5xcWuG124VnnY3jPxqlVq3JJJz1d/RQq9Q4/O1lonHz+R6cvRamX12knCpj8AskJzLYpozEl8jB/e8KkgzlpBXVQOACJ4HtLkrJMvMHpXPv+/ogGul3MKve0YJg1XDsB9Kk0Ol/nUIwSQQsR78ZwaBm/mCC2T0xauWafA7/Dgdze+Pk50SZ7G0M6Oi82s/xn4RkgpTBpUWtV6Oza1cQcAAcfSZ639pCeH9MtlkD0Bg0WJoNVDbaSYXy54xf4AInyVCOXLi4YnvbpT5y0QInxif+6DMAklJR8wVu9C4tw0sFpDMIXuph7mBCVl1a7psSc9BIvQbxgcyKfWtu60DMVuQJo7OhdQiolqzP5Ps434klYOD0r6dXXN/cKtkbZybzjD4aJjtfkq/dcqGX8cclErdaqyL88pKl8DY7Lee7OfCtYfKRMoe+M7qi7z03NlOvw8KxFPHBLJmpPH3vaGP65QWSozkWB1KgVKCxSsylcl6ykdHZBYmklK9x8BsjeDfZ2fKxVYz8PsziyTRjj4XJzJXous6PpdXI4W+PUoqVyUWLZOcLdFztx+AS5PxcoVagMajwbbNjaTFw/B5pgldrEzAVq2gMSlyrLUy+ECUfKdO8S4dgV3OMV9E2qTj+kxeJRqVnJR2KYbVa0Wq1vOc97+F//a//1VBLaqCBBhr4b4rdu3dz+PBhQFJZuuuuu/jOd75DOBymUiszzzT3PnU3PAUatLgVfta72zFmJSuSyecj+DbYSQxlMLq06J1SLWj4gTCr3hWktNaCSlCi0CglIlAsTe/bm7E0S6rgmdmCTOpZ9/52UhM5Tvx8EqN7qabUY6LnLc2MPBpeQZRp2u4kv1Bi4L5J1DpArSZyLAlLqpzmoJ7ADhejD4clRSCg9RIvKCRrE4Cp56PMHozLKkAb7+hi+uUoiyfScl51ZjKn5UIPc/sWqRRrnPj5JAaX1D9jk1Sby80WCT21TEzuus5PZrZA5HBS3qZ1Cmh0K3OOM1jzp21oLRoOfXNkxXb3KgvWDhNqnVK+jzNQm9R41lrPqVP5d7rwrLWxcCJ1zjFvhObz3ZgDEknpbOg9Wiwtenkx44q+rbViazOiNqlXEIqaznPScr6bwfunzskXdVYNGqMGg0sgfeYYNax6h1QPKkRLnPjxxPI11luXJsCSVMWa3D/XGgvlQpXUWI7QU3MrCPmr391KKSUy+sgco7+bpnIW58q1xkJwl4dqsUrkcJKRh2bxbLDRfWMTIw/NkhrLER/NkJ7JyUQrwaamaZsDtV5B6IkI449JNcZ1H2hHqVZy9PtjRI8mqVVqJEezrL+9neixJHMHEpJyRA0Em5ru6wPM7o1RyVZQqBQolyyqe97eTGIkQ2wgjX+rHa1NQOdU4+i2IOYqjC6R2szNBmbmZ9hXf5qxSTuze2YplUowA1arFbPZzKZNm/jyl7/M1q1b39S4N9BAAw008F8LlUrF5z73OT73uc8BMDU1xd/93d/x2GOPEY1GSdQXSdRf5vAPX0aNBisOdpjPwxL0QlUimghX+XCvtxIfzqJ3CAhmDdEjSTSGFO1X+Qg9MS/VvBQS2SQzk6fnrQEmnp0nFcqRW5DqGPZuE/6tDoYeDDP6SJjkmES46HlbCwqFgoFfLhONPautNO1wEhtKI6YqCFY1xXiJxcE06aV3fevFHjLzBVkYwNou2Y2dsQIDOP6jEKoljkrgfCdGr57hB6RFaMO/m0EwSQWxMzb08eEM6VCekYfDpJZIxfZuE4mRLGK2ytD90rGCSUXwEi+hJ2ZlgpRgUqG1aCTrtMWVNS+9R6D/Ha2E98SYP7S8OFAlgK3bTL1WJze3sq4F4OgxU4iXzjlf+xU+cnNFRh4On3PM6z8I0Hapl4WTKaaei67Y5V5rJRXKriBBnTnG0WNGKSjJTBVW7Oq7qYVyvsLgr2d4LfROLbwmHbR1GbG2Gpl8JsrcvuX719oFlBooREXGnpyjmpf6oBLAs87B3ME4makC40/NET+9tAigXbIGPv2rKaqFKsd+HFpBGuu4WrLfOxHKUVgQmXx6juBFPhZPp8hMF1gcTKPWqVAJUl5UFWv4t0hCBdEjSajCwC+mMAX0bPhgN2OPz5IcyzHxTAQxU8a72Y6j28TpX01TFWukJ3LkokU8G22Y/HrGH5OIdSqNErVOhaXdgLXdKOdXBrdWjq97tZWZVxcpxkXs3Sb0Pg0TqkFEd4aTj7/MfETKAVXjKux2O51dndx+++3cfvvtDbWkBv7daJCUGvh3QxAE7rvvPvnz1NQUN954I8ePH6darVKnzmJlnn/68j8BEmlp4+JGLtVeBiIcvyfExg930vWWJub2LaI1a9DbtYw/Nke9UmP9Bzs4dvc4glmD3lZl9OFZKrkKGz7UycCD01AH6pKVmGOVlU13djH+zCzZSIGFoxKLeNNHuyhnKhz6xgAI0hu/921BTC0GDv3LgExIcXSZMbi18mfvVhtH7hnHuFRoab3Ug2+zg5M/HUcEjE0G6vWl1eSAuU0vJxz2PhPOfgv1ejPDD86QmxdltaTu65pRqGDfP59FLhJA79bixLKCpHT4W8uTfd7NthVFkPDeGILp3D/b4/eEXpegBNB9Ywt6p5bxZ+ZX7B95bBaNQfWmCUoAJ+8dxRw0n7O99RIveqeW6VcWzjnfiZ9OnENQAgg9NYvaoFpBUDpzv3N74jLR6Ay0Lj1ai4BnnZ3Q/HLRq/dtzTj7LRSiJWIDmeXClADNO90UUyKxgQyRQ0ks7Qb5uLOtdMSsVAgULGoOfn2EiT9EKMRLiJkKOo9AMSpiazehO4vhfPyHITZ+pBOdVWDPP54mO13ixM9DaM0atv9VH6d/M0U6lCc+kqFWrtH1liZMfv3yxKBSgUZQ0fPWZgSTailOSgSjBnPAgKlJj9qollea6R0ClbweU0DA1m5k7LFZxLiIwaUlkp3l+frvcHmd7PmXx8nlpGR1YWEBq81KpVLhb/7mb/jEJz7xR0a4gQYaaKCB/47YunUrx44dkz9/97vf5Qtf+AJzc3PU63WK5Hno2ft56FlpvxY9AfEWjE4L+UiZ0B/mCex0MX8shcmrw7BE8j787VHWfaAd/w4HGqManVWglC4z8Ktp+m9pQTCrqVXrKJQKynlJKWjd7e0kQzkWTiWpL/3At/ea6Lo2wPCD04T3xWTyybr3dpKdz3PyJ0sEbQ2YmvTUa3Vm98QweDWkpwsM/25GnmzZfGcX2fmiXGSp1+sr3tn1el0mPAV3S+TpMxNoZ/51rbHQfqkPwaSWFZpA+qFtcGoxWDWyalFiKMu+JWVDNODoNsvknvhglsRohrk9K4sl5VSZQ98cpHwuPwmNQUlwlwdra46B+6ZW7Bt6aJrEePbcg94A5VSZk/dNSnYhr7lGYJsTs1/HqZ+vvEY5X5MUHs91a2b+cIJ8dGWBydEv3a+s2nn2vm7zitznDFbd3EK1WOXQt0ZJDC3fT/sVPpyrrESOJ8iFi8y8tIgxoCMXLlJKlanXweiRPgsmFRs+0MHU81EihxMM/26G/HwR1zoLi8fTlMs1jF49zh4LydEcU88toHVq2PLhLmKnUww/NMvgA9OU0mVW3xpEpVNx/J4QkRMJXP1mysUK6z/YwfzBBOXUch8NXg1d1zcz+UyEVCiPZ61NWiCggbW3thHeG2N2T4yOq/3obAIaq4bg+S5KKZGBX0kr85VGOJU9yGnlACdfdBCJRqjX6yhmFbjdbvR6PRdccAG/+MUvcLlcf3ygG2iggQYa+G8FtVrNZz/7WT772c8CkEwmufPOO3n00UdJpVKU6yVm6xN85dtfltojsKa0loD1YirFGiMPz9L3zhaCF3mYPRjH6NaRcWiZeWGBehX63tnC4G+n0TsEarU60y9kKecqrHpXkNBj0kRBvSYp+6iDBla/p1Wy/RrLEB+WcpT+dwWpFKsc/NawXCNquciLZ62dQ98dlcky9g4z5mYDlYqUtNl7TJz48Ti6pZqXs99C68UeTv9mmkq2gt6hhXodMSMdr/do5fxK79FKJBWtgtBTESrZikyw6brGj9qwXL84A3PQiNqgXkFSGvzVsmqStdNIamxZiTH86qI0ifQajD4yB+o5WS3qbHRc4cXWYSZ6JLGCjDT90iLRY8k3TVACGPztNJZmwznbm893Ye80EzuVPud8oSciTD8fkezmzkL0cAy9XVhBULJ2GklN5kiMZCVV0LOgM6kxeXXYu0wUosvK5U3nOQnu8lDJV0mMZFcQqNou81FMiKTGcqRCefSe5dhJObT0/0oROq7xYW7Sc+yeEIsn01TFGmK2gs6pphirYA0asLQYpZmCCow8GKb35mYsLUYOfHUIMVnh+E9CqDQKNn2ki9FHZ0lP5Fk8lQalpGpqbTdyemkhgkKpQKFWErjAhcEhSMpZatA7tOhdWtQGFVqHICt+mXw66uUaapMaZ7+V0JPzFGMVtNsF0iTYU/8DJq+Ovfc8QTYr5XbViIjVasVut/O3f/u3vOtd73qTI91AAw000MB/JwSDQX70ox/Jn59//nn+4R/+gf3795NOp4kR4dFjD/LoMVChwYINt+oKDA4rC4UU40/MEdjpIjmeweDWYm6SiBLDD8zQcY0fxyozCoUCvVtLtVBl6oUFWna7UW+2Uy1UUSgVVAtVkmM5Oq7xk50rsHgqjWJJKVPnEOi+oYnxJ+eJ/2xZwaf/llYys3nGfn+WIlOrAYVGSfx0Bo1JhZgtM/TANJlpiVDTe1MzxYTI5FkL4eq15ZqXUqWUFW6atjkxBwzExzJQRSYoGbxaOq72M2uNMXdweQ7NEjRibjKgNgpUxSXVpAWRY/csE9zNLXq5L4WoSORYgoUTyRXjURXh5L1jMtFpBZaszJITOZn4cgbDD81QSpRe56A3QBVO/nySWvlcIlLLLjfmFsM516CKpN7+mkMAZvfHqRRW7jhzvyMPnUucsraZsDTrQcWK8/XcGKBaqjLwiykKZ7nWeNY5aDrPSXIqSyEqEj+dQWsXKCVEypkK1OsIVjWFBRGVCla9t43Z/THigxlCT80hZqtYggbSU3mqokRgEzNlMtMF4qczkgLSHZ0snkwy9cICk89FoSqpWglWDSMPhcmGCxJJLlOm+4YAsSW1q3qtTr0GKpOK1gs9RA4nyM0VsV1oRO+Q8v72q3zMHUoQG0jjXmfF6NUhmFTYus2U0mV5nlvjVDFZG+YUJzBPGInuj1Kr1VDMK3C5XASDQd761rfy93//942FeA38h6Gon131b6CB/w0YGBjg1ltv5cSJE1Qqr1NBAM477zyaHa3EHy3j3+kguMvDwK8nadvtxeDTyUpBmz7aRXIsh0IJnnU29tx1GkRY+942CkkRtaDE2mmSyT/rPtBOYjyLs8+CmJEkle19Jjqv9BM+sIC1ycTg0qTX9r/qIzGSZfjBJaaxQ2DLh7rIhPOyCk7LxW58G+2y5Hb3WwPM7lmQyUc7P7eKUrYs227Z+0yyjdi697eTmckTeiqC0SdgDhqZ35/A2mXE5NURfiW2gljU89ZmIicSpEZzcn82f6iL3HyB4z8MnRPDnrc2y30/A2uXkcAO5wopaZ1HQK2RbNTeLM77fD/pqdwK1ac/Bme/mdhZK/bdG6w4u80M/mZlH1sudpOayMns8jMw+gTWf2Bl/EGyvxt9aEoiOS3FS3AING9fVodqvdTD5DNRjD6B3puCDD84RTYsYu8xySQo9zoL3Tc0M38kIfnRIvmpLp5OkQ7lWfXOFrQOgaPflSbpBJOSLR/rIztXkIsmZ5S0YoNpRh+exbvVhtGlQ+/UolRLso+CQ2DDBzqY2TOPu9/BzMsLxAYyrH1vG3qPjtP3T9J1bYCRh6Q+bvxIJ2qtimP3TrD21iBzByQ1iP53B7G0GNj7T4Osv6MDpaDgyLfHQBCxXivw/HPPk81l0AgauUAjCAJ+v59sNssnPvEJPv/5z7/p8WuggQYaaOD/XpyxK5mbm6NWO3cixuPycv75FxD/XQWNQsP6D3ZQzlYYeWiKjR/uJT6YZvSROQLnO3GttjLw83HWf7CHUlLkxL0TmFsNtF/mZfSRGVa/q53UZI7hB8K41ljwbbQTPZ0keIGXY3cPU85D/7uDVHIVipkK2XCe+GCWruv82LvNHPjWsEygWXtbG0a/nr13nZa3rbu9nWy4yPjjc1g7DFiaDUy/KNmPdVztx7vBxslfTJJZUnqythtIhfKYmvV0XOXj9G9mKKfKBC5wyio+wUs8zO2NSqQiDVCWVIraL/Mw/NvlQsXq97Ribjaco/IDYO0woHcsT9SdQc/bAkSOJkiNL+c19l7TCvLOH0P/u4NYgkb2fvH0mz7G4Bco5+sr+rnqHS1MvhQ5RxGq42o/44/PvfYUrH1fG0avnkPfGJJX3tu6jNg6TUw8GVnRtmmnk+REhvyciGeTjcRYjnKqTPBSD0a3ltNLE45nxgNg44c60RjV7L9rSO6zZ62diSWFhc13dhHeG5NjumYp/gf/5bRMAOt+SxO2DpNsYdx9vZ/UbI7mHR4GH5giPyey6pYWVFolibEs1maDTCba9uleoieSKJVK1EYlw/eH0Vg1bP7zLsJ7FlDpVFiCy2pJ2z7dSzKUJXIkQc9bmhl7fJb4YBbvjTrGwqPs278Pq81KJpOhWpUqWB6PB0EQWLVqFffccw/BYPBNj2EDDTTQQAP/d2J+fp5PfepTPPHEEyQSCV5bVlWhZuuWrbRYWkk8V8HabqDj6iZGHp7BvdaGo9ssk3n63xUkNZWnVqrSvMvDkbvHqGQrtF/jo5KrUavV8G2wy8pC3Tc2kZ7OY+swUS3VGH14Fr1HS/d1TYT3LWLy6eVJr40f7iI5kiG0NOGg1sHmO/tIhrIM/Vaq07jWWAjscHJs6V0YuMBFbDAl25Vt/otuxHRZrtGYAjqyS0qRXTc0kV8oMbsnhtqkxhLUEx/IoHNpsDQbiR5NrohLYJeLVChLdqa41B8lmz7STXomz+C/TvNatFzoYfqFlURxvUdL01YHY48u5zVqkxq1TrHSyu2PYNun+0iMZZYt2t4ELG0G0hPL+Z6pWYd7jZXQEytzJtcaC8WkKN/n2f3c9OddJENZhn+7XCdrv9rH9EuLspIVFWmsPBuczO6VctkzC/rUJjU9NzQx8UyUfKS4YjxMAR2r39XG7P64HDf/VjuZuQLZmSItF3owB3Symilq2PbxPtJTOQZ/PS1v2/jBLuKDaSafjWJtN2D06dGa1aiNakYeDKPWwZrbOpl+OYqr10r0eJLESJb2q7zY2k2c/vUk7Vc0Mfms1Me+d7SgcwicvHeM3ptbWTiRIno0SeslHlxrrBy7e4T2q5oQzBpO/WySSr2C661qXn7xFWKpGDq9lkxGqjVqNBqampowGAx86lOf4gMf+MCbHr8GGmiggQb+78WTTz7J1772Nfbv308ymVyRe6lQ47V52bJ9G5lnqqiqAp3X+6mV6oSempecTIbShF+JYW034t1gY+yJeXpvDFDKlhn7/RyCVUVwt5fplxfpvMZPdibP1AsLGP06POttxIfTNJ/nZvC3M1QLVYIXe6hWaojJMsWUSGaqgGejDe86GwO/nJItzlov8+Lqs3D07jF5W8e1fkpxkfCeGDqHgDmgl+3b3OusBC/yMHT/NNkl21a9W6CwICJYVbRe6GPy2XnEbBVHn5n4oPR+dK+1Eh/KSNdYItyoBCW+7Q7CLy3KsWq92INrtZUT946fo1CkcwjonQKJkZW1rKbtDtIzhRXWYAavlnzkzZORWna78ay3naOU+W9BsKqoV1daxDXvchE7nT5Hwcm32bFCCeoM2i734uixcOxH47Kqkd4lYG01Lbdfipet00gxUaYYF7EEDRTjJcRsFVe/BaNfJ+fXeo8gE5e6bwxg8Gg5tqRyKphU2HstRA5JNa5V72whciQpLzJovdSDa5WVoz9c7o9/iwPXGouca/u3OcgvlvBttDP1UpRCVCSwy4XWoiE5ksUcNDD5tJR7rn1fO4unUlTLNXQWDVMvLIAKNtzeSXjvItTA1mmSCVprb2sjFcoROZ6i+7ompl6Okg7lcezSMluY4sCBg+ht2hU1L7fbjcPh4KqrruLzn/88brf7TY9hAw28GTSUlBr4347+/n5ZJhskpaU/+ZM/4cCBA5TLUtHg1VdfBV4FQHtQS1eyi4WJBLHQFs7/5Bo2fbSLw98cRaNXo7WpOf2LacRcha139nDs3gn0Hh0qo4qj3x3D3KZn8190MfL7WQxuHfVynaPfHcO9wcr6OzpITmfRGNTEjqeZezVJ/7uClLJlyoUK+YT0su+4xo+13cjEsxHSU9JLY93t7ejsWvYvra4XHALufitak1oi7wiSj7qYle6p9VIPtk6TtEJeBL1reQVTLr6sqtRxpQ+dVUv4QGxZdUgA5yozBp+Wo6MSSUaMi8ztjzG751wLNf9OB67VFipF3wobt+AFbkxNBtmeDqB4hu17ZiH8We/w/luDaC2a1109/1oEdjtp2uLk2L0T8rnPxEWMiysISgCB7S6JpfsahafmHS68620r7NpAUsaaPxyXFJ+WYO8zYWs10Xp5QCoeLZ1n1dubMXh0zLwURczWmHxJShKqNdBaNHjWOciG57G0GGi92MvR74+xcDyNa1WGyCHpJS6YlPg22jH5dBwPhTj9r9P03dzMzs+tYs8XTyNma4T3LaI2qth0ZxeHvzWKmK1RKVZRqmHDn3cy8OtpIgeSbPxIJwqlgo5r/ejtgvTMCNC6uwl7txnfJgfVao39dw1ibtOjswpYO80ELzYCCpkEpzGo0TsFArudWFtNnPxFiLRvjgOnowwNDxGpR1BVVFQfWE7OmgJN+P1+PvrRj/LRj370j45jAw000EAD/+/hk5/8JJ/85Cflzz/4wQ/4x3/8R6ampqjVakQXIzz4u99KO+tw6nd+7BYHypwJ40NG+t4eJDWdR2eVJLLLeTj49WHWf7CD7rc0kY+VMLh0lItw4GvD9N3cTM/bAtTKNUxNBk7+bJLowRSrbmkhO1tAa9Gg0igZfmgWg0vD2tvayC0UEXMVmYy0/oMdJMYzxEcy0jYNbP9EH5FjCZkg07LLjclvYHrPIpRh7sgiKjUyQWnt+9tYOJkiFcrj6rdgcGphaQVWeJ80qaN1aghsd2LyaCXyytL123a7cPZYMAZisi3b8G8n8W52nUNQAui6pgmVTrWCpKQxKHF0m1HrVaTGlwniZwhKGqtmxbkMXg2rbm5l6qUFFo6l/ui4rr+jg8JCkeGHZs+6JpTLnENEMrg0WNtNNFdrK4hX7Vf78G60kQxlZAWqMxh8IIxnjWWFNUjrJV50VmEFSUljkCx/nb1mTtw7QfRwUiJ7AZZmPTq7drndRR6i9hSRwwnC+2Io1QqZGNZ2iQ9L0Ej45QjlPBz61ihbP9mLvcPE6V9PE3o2gsGrpf/dHSwOpAi/EqOYEBGzFdqu9KIRlIz8fg6DS4PmEjX2LjOdV5qZejFKajzP6luDGLx6rB0GOq70c+zH45RiZdbf0YFaq8Tg0rDqllZCf5gncjhB7zubZRn1jR/uRMyUOXX/BMX1UULPn+Tk6EmqyirVB5fzrmq1Snd3Nz09Pfzwhz9sKCU10EADDfwPhM/nW6Eunkwm+fSnP83DDz9MLBajWquw9+Ae9rIHAO20ls5nu8jPlWmZ7mHzbX2sfV8bJ348gWDRoHOoGXt4ETFXZfUtLQzdP42lSU+lUOPUfZMsnEiy9rY2Qk/PY242olAqGPrNDKZmHX3vaCExnkEwa8iFC8ROZWi71EO5XKOUKlNISPmCd7MNV5+VkSfDFCLStq4bmrC0GGTrXrUOAjtcGNxaqf6ihsnnItSq0kSgs9+Ce61Vsg4rgjmgR6WVLCkqxYqsRNl2iQ9Li5H4YHKFupB/kwNb0Mip+yaXjqkx+VyE2PC5xG5rp5Gm7Q5qtdqKyTXfZjuOXgvhVxYoLtnjVbIVKllADWo1K67ZfoUXg1snX/PfgqPXTMsuF0MPTlOMLS+4PGPjdjZBCcC/1Ymtzcj08wsr1JVaL/ZSKVRk4tcZVLIVpp6PsHhyOZfUe7R4VtuoizUmnonKSlHtVzXh6LawOJhCTFYkCz+ASg2jV4e920Q+UkTv0tK8y83gr6bJhotEDsdZOLU06aaGlt0eUlM5hn4zw/QLUZovdLPl4z0c/NYwVGDy2XlUeoVsBU0FxEyZaq1O3ztamHhqjlQoT987WtAYVPi32jGepRDecUUTxaSIrdOIUqXkyHfHEGxqTH495mYd3nVWVFql3F5rE9BaBRy9Zjwb7AzeP0XCEKewuMDwnmHm6nOoVKoVuVfA2UR3dzef+9znuOmmm/7oODbQQAMNNPD/Hq688kquvPJK+fOLL77IV77yFV555RUSiQSzyTAPP/kgILm6nNzjw2P2oqnbGHpQoP+dQXKRoqQg7hCoFqoM/HKKruubCFzgIjdfwLykpDhw3ySBC1w073IhZivY2k2E/jBPanyS5l0uSqkyWquGWlXKUVR6FR3X+MlFC5QyFZmM1HVDE5npPKFn5uVt6+/oIHo8KVuLeTfacPYtE4xS4xnmjWqZoNRxjZ/keJbCgog1aMLo13GGnhUfkfIulaCkZbcHk19P6Kl5WRHItdaKb72d+FBaJtVMvhglv1g610INaL3Eg87+GpKSCtzrbegc2hUkpTMEJZVetcLSTKVX0fOWJuYOxkmOLitlvhE6r/NTTJVX5HosOQKLqZV9VOlVuFfbUKqVK6zh3GutBM53ko8XzxFFmH5hgUy4sKKP/u1OLM0G5o/GpVhVpWu2X+EnPZNj7PdzpKfycj+Mft2yyqYKfJscpMZzxIczzB+Oo9GpZaKTd5MDzzobiwNpqoUqp/91mjXvaZOJRXMHYyTHc7Rf5iU1kWPhRIpiSqSYLOPZYEWjVxPeE0OlV6G7RMDk1eHb4GDhVIpsuEDwYg/WVgM6h0DwQjfDD4UpJUQ6rpWUwM/Ef+q5KPHhDIELXGjNUs2r+8YA5VyF0PPzFLtivHxyhFMzpxCVJaovLsdHW9OwevVqrrzySj7/+c83lJIa+E9HQ0mpgf9yiKLInXfeyW9+8xuSyeQ5+3VaHXq9nmwyR6e7j5v/7C1EDidAocCz1srEcxHm9yfY9qlexGyFhdNJgud7OPGrMbIhkXXvbwcFlBJlHH0W9tw1IKkv3dZGbqGEq99KpVDh8LdGMfoEuq5vplqtYnDqZULS+js6qJRrqFQKWcVo6yd7WDiZZPbVRcRsjQ0f6kRr0cgqTqtvbcUc0LN36bN7nYWF45IM84Y/60RrW257Zp/OI9D3thYGfj2NUg3FpAii9IJOT+Xk400tWtbe2sHsgZhsW3L2+c/G2QSl5Y2w81OryC0U5dXiIMVEY1bLSlBn8HpKSu1XePFssMsqV3K/3ttJbCB9jqoTIFulnQ1rl5HCfE5WRtr+8T7y0eKyepIAq9/RyqlfT4IoXSM7XaLjWj+CXsXg/TMIJiXGJgOJ4Syr3tmCrdMkq2wZfQIKlaQc1f/uIOZmg2R7IsKqdzRj61p+Juw9Jtqv8JGeyjP68Cz+nQ68G+zUxBqR4wkiB5KsekczljYT8dEM1CXJa3ufib63B4kcS2ANGhj5/QzZ6RIbP9yJxqhh+uUoLee52f/NIRBh88e6qVfrTL+8QNfVTYw+Pkt+vkDfO1qBOoe+McrOz61ibmqeX/78X2ntbyYejxOJROSVAQqFgnq9TlNTE21tbdx1113s3LnznJg30EADDTTQwGtx4MABPvGJT3DkyBHy+ZU/2hUKBTabjVwqj75m4uZbb8Ljd7H/riE2faSLarnG4G+nsbWaaLvMy+D9U7Rf4adeq3Ps7nE0Vg3r39vGxHMR2q/wU1gocvJnk1jbDQQv8pAJ5/FtdnL83jHycyKd1/ipUsPdZ2PxdIrQ4/P4tthxrDKjFlTM7FkkPpCh6zo/Bq+OyWclWy6NVcPmD3cROZog9Pg8GoOSjR/uJjaQZuyxOQx+gapYpxQry2o5CyeSjD02h63LSHIyB2XoubGJQlxk+sVFDH5BIvtooOctAYbvX6mqpHdoZSsOjVWDYFLJhKYz0Do1lGLnkpq639KEc5WVIz8YXd6vga0f7WV236KkqLmEN1JS2vihTnILxRX9Wvu+Ngwu3bJF3Zvoi6PPtGyRd4kH/xYHR384Jrd1rbFgcGuZem4BjQHQaFCqoeeGAIMPhCmnyivOse3TvWRnC/JK/NfuS45mZGLVtk/3kosUOfWzSTRWDb5NVtz9NnlCdM17WqlUaigVCvl8Wz/ZS3Y2h1qnZvDXU5TzNTZ+qBOVWsnicBqtWcPQ/TNoDEo2f7SXuUMxzH49lWKVwd/MYO020PfWIONPzuHf6kCtVXH426N4N9lpvcRDeO8iGqMa3yY7v/7GQxStWQxmHaHxECWxJP9d1Ot11Go1a9euZdeuXdx1111oNJpz4ttAAw000EADZ6NSqfCtb32Le+65h7GxMYrF1+QOghaD0Ug5UaXF0M5b77yW8N4YlXyF5vPdTDwdITaQZt0H2ikXqkQOJei42s/Qg1NkJot0XutHrVORmSsQ2OHiyHeGZDuvUrqCe5WFarnGiXsnUOuUdN0QoFysYG0xyu/f7hubqNVBrVbKqkrrPtDOwqkUCyfTVLIVet/ejCmgl1Wf2q/w4uizyJ/PVk/svrEJS9B4zj61SU3XtX7Gn5yjVgEqFSpFaNrhoBAT5YkwwaZm3W0dzO6NyepBZ5//bAg2NWLyXNX2LR/rITtfWKHK1H6ND5NHt0KtG15fScm7yUZgp4vD3x+VyUKCTc2GD3SxcDwhK1L9sb7oPVrK+apsubfhzzvJL5RWqCd1XONj/Kl5qIDOpaG4WMa/1Y7OJkjXUYO5SU9mqkDwIg/eTXZZZUuwqVGqJeWoZTWiMSrFGs0Xumna4uTw9yXLP1NAR8tuD7m5IlPPR5fIX06qpQrxIck6rvlCN541ViKnkqhQMvV8FJ1Lw7rbOgnvX8Ts1zPz8gLZcJHem5sxenSEnpqn9SIPJ385RSVbof89rSiVCiaemafvpiChp+bJzObpvj4gqY7/eILNH+1mYW6R3//mUVyrbKRSSdm6GqTcS6FQ0NzcTH9/P//8z//MunXrzol5Aw000EADDbwWU1NTfPWrX+WJJ55gYmKCUmlZ5UeBApvVRjUHloqDC6/cja/VzbEfjNPz1gAKpYLQk3MIVoHOa5sYe3QW32Y7So2S4d/OoBKg96YgM3sWCV7gJh8XGX90DsGqpmWXm9RUjuAuL6d/PUlhQcS72Q5KcK+yEh9KM7svjiVowNFnRqlRsjgguXp4NtqwtBgI71mksCCCSlIzjByOM7svDipY9952YsOSCpRgVUEVxGwVlQBr39fJwvEk4T0x9G4BMSURpPzbHFSKVRaOpxCsasmaTgXN57mYeXVRJjG1XuzB3GLg5H0TS8pLIFiEc1SKNCbVCjWjM/BtdtC0w8nJn4dk+zuANe9tY/5gnMWB5XnLN1JS6r4xQClVXkE6arvCh7XNyLEfjp1j6fZaUtQZmJp0MrHLscpMyy43p/91Su6XqUmH3q2VFguqQCWo5BhMvxilnK2uOMfa97WTnSsQemL+nPOve1878dEMM0vEqrXvaycXLTL+6BwqQYmty4hnnU1WG2+9zEu9VkOpUsp2amve00ZmNo9SpWTm1QXK2SrdNwQQLGqix5PonVopJirYeEcX8wfjCDYNVOtMPhdF71LR87Y2Jp+dx9FtQWtVc/pX01iCBtou9zG3X8qlWy5y88y9L5HQLaB1qgiNhyiWln+XnKkHr1mzhhtvvJGPfexjqFSqc+LbQAP/mWgoKTXwXw5BELj77ru5++675W0vvvgiH/nIRxgaGqJYKspfloMLx/nCP5wAJD/1NaE1rF23FnGfSDEhonNoqJdh/Ok51r2ri9Cz8ygFJSqdkulXFgg9NcuOT65i7kAMg0eHSqti/5cHsfeY2PLxblJTOYweHSd/MUE6lKfnrc3UlTUMbi2JkQynfjODd6sN92orSrUSMVNFzNbouNqHUqUgM71UMBHA6Ncz/bKkemTvMdF9QzOOrjRDD8wQG05jCRjktr5NDlIzRZq2ONE7tQhGBdnp5eTJvcaKvdMkk5DEXJ1yvkJsaHnV/Zl9fTc1Y2k3sf9fJCKOGBcRHAJr3h3k5H1TEmFJhNRkjoWTyRVj8dpCzb+F0FMRQk+tLMpkIyWy4TxTrywnEmve00ouUiT0VEQmKPW+rRlrp9TH1NksalEiZmVnl5nYvg12rK1GWnd7mHw6KsfF0WVCqZZW6QXOc1Or1UkMZ1kYSKExqREEEEVY9/4uiimRI98eZeC+KTb/RTer3trC6X+dZuF0Gp1Hy/rbOjh29ziJ4Szd16swBfT039LCwK+mmdsTZ+f/1493A/g2OmS5xm2f6qVeq7P2tjbq1Tp7/mEAU0DAu86Os8dK/zvsFBZKnPppiPbrAihUCqxBI31va6EqVjlx7yh972ynIlapiTXMF6g5PnyMJ594ArvDzt5vPCHbtg0NDWEwSM+Ly+Xiuuuu4ytf+QoOh+NNj1cDDTTQQAMNnMHWrVt5+eWX5c/lcpm///u/595772V+fp5EQlrRLVLinp9/X1rBXK/y4ncELrvqckzrrZTnK1RKFQI7nBz94Rib/6yLLR/rYeyJWRQaJZY2A0e/N0L3W5vZ9JEuFk+nMXr0DD4QZuKpKP3vClIRq5h9eup1OPDVITQGWPOnrdTqYPbpZSJ0z9sD6OwCGp1Knpzqe3uAwmKR+KCU/7Rf46eUKjO25E/f85YWdFaNRBYvV8nO5okcTwJgaTFgXLLatbSZ0LsrTL+4KKsRBXd7cHZbcPSlZLJNZrZAvba8lqOcKlNOldEYYMOf9RA9kWTy6ahM9Gm9zIPWomH4AWmyK7x/EbVWRSl9FmmoLN33m8WR756rdDl3KI693SR/1jo19L29hYGfT8h90RiUbPizLhZOpZh4KrJCQSkxlsXRbZImCpfQepEHpaBi6rmFJZu1MuZWA0avHs9aC4un03g32JdjM5OXlEOR7O6cfRaO/Vgioc28skjTdqd87tREDq1dI9vv1cp1VFoVvbc0s3A0ycmfTdJ7UzPmDiMd1/qplWsc+OoQ9l4TvW9roWm3C2enRbZ2W3d7O4JBTfBiN77NDvZ+9TT2DhPOXgt1IHC+k+CFHgZ+NYnepUVtUJOfK1Cul6n35Hjw4QcYGh7C5XYR+0NMkrDOgsFgoFqrYjAY2LRpE3/zN3/DFVdc8abHqoEGGmiggQbOQK1W8/GPf5yPf/zj8rahoSH++q//mueff554PE4iIa2gP50/yuCXjwGgqCvpTfeyfv16Kqcq5OaLmAJ6lIKCoQem6b+ljdBT86h1KgSbhuyhOAe+McTmD3cztz+GpdlAKVvh6A/GJZLJ+9uJj6SwBI0M3j/F2MNzBC5woRSUWNtMxIbTDP1uFmu7AfdaG2qdilq5RiVbwbvZhkqvJDG6rJht6zAx/aJU89K5NPTdHCR6PEHoiQiJsSz1ynLe5F5ro5AQsXeasDQb0RjU5GaXJ0V8mx1US1WZpFSrQDFeIjW1XC86kwMGLnDhWWvjxI/HqRRriMkKap2S3re3MPJoWCYJxQZSEin9LIQem+fNInI4SeRwcsU2MVshPpRi7siyhUj7VV5K6Qqzr8bkawcucOFZZ+PEj0YpRFfan+QiRXLzy/dubTfgXm2jGC8zuzcm29Q5+iwIJjX8IYJ3nU2qOU4ViA2n0TsFqCypMLyvg0KsxMmfTjL5bBSTX0/LJR5Cj82THM1gadbTfZ2f00vqSoJRBQEt7Vf7CD0+T2osx5aP96BQKnGusjD2+xlmXlhg3fvbUShBZfChFpTsv2sQtUlN0wedWFoMdFzlpxAXOf7DcZrOc6IUlBhcAh3vbqVerXHs3hDd1zZRKVaolKpYt2sYXRzimSeewWDXs+/HT8q2bbGheYxGI4Ig0NHRwXXXXcff/u3fYjKZaKCBBhpooIF/L4LBIF//+tflz9VqlQceeIAf/vCHHDp0iHg8Tq1WI02C+54cQ6VSUa/DngcN7L7sAgyrrZQnaoi5Mq5+C6EnZum6oZk1721j7LFZVBolZr+O0/86TWCnk/53BZk/nMDSYmT6+SiHj48QvFCywTJ4tChUCk7+dEJS6LnKR61ax9Zu4uj3pRpPYKcTrVODYFJLBCWg/QofmXCe1NRS/rPNKakMLS1wC+72Yg4YOPI9iXCeGMvKdRm9S4vRrWNxII2900RVrLFwPCWTdBw9Zrwb7KQn85JKEFJ+otQqZSJQVUQiKKlgzbtaiZ3OMHcwLhOUXP0WdE5BJufEhlJoLWrE7Eqy9smfTrzpcTtjQ3Y2Fk8mKefKcr9UehUdV/oYf3J+maCkgtV/0kp8UOpj9qwcMztboBgTqYrLeWlgpwutVSORlKpQLVQRrGpsbUYy0ybio1kcvRaykSJUITGakdWi/FscNJ3nZOCXEglt6sXoCsJXfDiNwaXDvdbKwokUlUINtU5Fy6UekiMZJp+O0LTdgWeDBd/WEvWagpM/m0DnEFj9rlbysRK2diNTL0QpLIh0XOPH4NTi6DPTfL6L4z8aR7CpaevwUspWsLYb6bquieHfzaBUKdE6NORni1TrVbRbKjz90pMMDg1i81iJfXup5pUGQ9aAUqWkq6uL888/nzvvvJMtW7a86bFqoIH/LDRISg38t8Du3bs5ceLEim3f/OY3+frXv87U1BSVivSyOzlwkpMDJwF48YdSAlKv1ikly2h7ryO4y8fJn47T/ydt9N7YzMn7QlQKFZx9Fiaemce3ycHOz61i6pUoGr2aYlzk4L8MsupdbSiUCjQGiSm65x9PgwCb/6KLWrWOzqplzz8OAJJFmsGjRaVWcfhbUlKw/rZ2FApJFhnAucpCMS0SekpaRe7staDUKACJtWwOGLAG9Yw/NsfMoRhiRJTVjhYH0xz+1iAIkj9b53V+tDYNB/9FYhoLJiUbP9zD9EsLzO6JIeYqVEvVFZZq1mYdWrOAe5VZTmRk3/nXQgBnl/kcu7YVTc5SLloB8Vyik8GnR2NWw1mEpmJKxCwus5y3fKybbLjA4P0zHLt7HPcGKxs/0smRb48xvz9Bdi6PmCiz4zN9JMeyDN4/w/FfTUpxAjwb7NTKNSafjmL06DC4tYASqJEIZaQCzhIUCjD4dfi22Znfn8DeZca1ysra97cx8+oi+78yxLrb27F2mFj3gXbyiyX2/OMAgd1Ogru8dN/UhKPDwpHvDGPtMBG8yEOtWmfNe1oxtxjZ848DrH1vG7VqnWKmTPfbmrG1mjn0/RF639JMpVzm6cefpdCSJ3xghOHhYUqlErVTy3Lg+Xwev9+PSqXi4osv5stf/jJdXV1vOB4NNNBAAw008B+BRqPhC1/4Al/4whfkbXNzc3zmM5/hqaeeYnFRKjqINZHHHntUbmMIGWhpaWFSnCbzhw3svnoX/s0OTv96inV/2o5KrUBMl9HaNBicAnv/+TQ7PruK2GmJUKyuqxj/wzylWImtn+wlPprG1GRg9PdhBk5O0nmNH61VjSVoIhXKcvyeEI4+E03bnBg9emb3LZIK5fFtsWP06amJy+/SOnUWBpIAKPUqDF4dJp+O7EwBz1obAOFXYhz8+jAaq0R67nl7AGuriQPfHGJxICmTltbf0cHkcxGmljzne94WQO+SfObLZaiKNUrJlYpFtg4TakEpf87PiZz+9TSvB2uHgdR0Xraeez2crf50NhaPp1k8S0nT1WdBbxcw+HSkxqViUzlfo1KqUs5L+bN/h4PADhcHvz1MZjLP0e+Ps+odLWTnC0y/uMjJX05SSpfput6Po9fC/ruGyEzmOXTPKOXFMr4tdmztJtzrrSwcS6GzCzh7LczvTzD5QhSDW4trlY2puSiVUhWFCla9u4XT900zdP8M2z7Vi3eDDaNHx/ADYcIvx9jx2VUIRjXBCz0c/b5ECN/yF91UyzUstxuoFKoc+s4onnUW1HoVRo+ede/tID2ZY+5AnKbtDsRsBa1DQ89bmimlRCafi7LqnUEmhqc4WtyLo2rlxQcjTE1NScS7X54lQ65S4ff78Xg8fPjDH+YDH/jAGw9GAw000EADDfwH0dvby29+85sV25544gm+9rWvcejQIRKJBLV6ldPDA5welmpPzz8Czc3NqFBTWQDjoILmXQEGfz1Nx5Veet/azLGfjlNKlbF1m5h6YQFnr5mtn+hh7LE5NCY15UKVw98bpf1yL83nuVAJSlSCkoNfl5Qi17y3lWq5hrnJwP6vSETq9qu8mAJ6BL2GgZ9LdaTutwZQqBVUluo6jm4L2fkC4SXVI0ePBa1ZKjE7es04ey0kRrNEDiWJjWWpLJF5Nn+0m8WBFIe/PyoRcpBUlQwuLSd/uqTkrYaNt3cys2eRhWMpKoWKRHw5y1JN5xIweLTY2kxEjyYBXlfp6Mz5zqgSvSHULOWNK1WvqMDoI3MrNlmaDVRKNWZfXVbFLCVFqqUqS6VLVr+nlfxCkdATEUYeDGMO6ul/dysD902SCuU59uMxiskymz7SRWIsQ+iJCEMPTlPJSvfo3yItUJs7kEDvECSymk4JxRqRE0nMTfrlDinB3KTDtcbC4sk0ybEcgfNd9NzUTORQnGP3hOi6zo9rlRW1oKSUqnDw68PYu010v6WZpvPcuFZZOXnfBDqbQMsuaZK1/Qov7rU29n9liM5r/SioI6bLtOx24d3o5Pi9IQI7HdSUNV79wx6yHUkWJ0YZfmqEQiFPffQs44Z8Hb/fj9fr5YYbbuATn/gEzc3NbzweDTTQQAMNNPAfgEql4uabb+bmm2+Wt2WzWe655x4eeughTp06RSKRIFfN8PgfHpfbGH5rIBgMslhKktrTy9ZLN+Hd5GDwt9Os/0AnSkGFmKlSr9YxeXUc+e4oG/+8i4VTSQSLBoVGwcwrixQWRdbe1sbCqRT2TjPjT8wy+YcIno029E4t9k4TibEsA49MofcIeNfbsLWZmN0fIzdXxBI0YGrRr1ASUighevyMZawSa9BAZiZPPlLCs9aGWqticSDNwC+nUJmkOU7/Ngeu1VYG7pvkxOyy4lHn9X4ih5MsLikF+bc5sLQYZHXNcr5KKbuyGGXtNKKzLpOUytkqk2cpIJ2Ns5Wd3ggGr5b8YukctaTsbHEF6cjcpMPk06O3a8ieISlVpT5WStJna7uRlguW1ZOGfjtDYJcLMV1m4ViK0cfmoFrFu9mOb6OdYz8eR0xVOPbTENVsFXOLHvcaq7QgbyQriUqYNcSHM0SPJzG16DE3GygsiFQKVRRqJe2XeQk9GSH8Sow1723DudqKYNMQfmmRE6EcG/+8C61RjX+zg+GHw8zui7PqnS0AGL066rU6R+8ew9xuQGcT0Fql2lZqKs/k8xG8m+2UkmVUeqVc85p5MUrv21sIj84xlD2OsU3L4ZcXCE2EpJrXb5eDqVRKhKTt27dz6623cvnll7/hWDTQwP9JNOzeGvi/Cvfeey9f/OIXCYVClMvnzuyo1Wq0Wi0Wi4UmfxNuj4e+7j4sdjPlfAUxV8bo0lMp1dj/L4Oc95l+6rU6ufkiSp0Cg11HciaLNWAiHy9gdOlZOJVg7kiM/pvbUQlKqEmMXL1bh5gWQQkGp456vc7wgzNorQKtl3pQKBS8+r+k4tJ5f91PtVxj3z8P4ttqpeOqAHOHY4QejbDz8/0oFHDwO6OseVcQtV5FMS6yMJBCsKgJbHNRq9TZ+8XTrHpHM9YOE/UajD4Spv0KH5VCjaPfH0PnEdhweyf5SIHjP5yg5+3NOLpN7P0nSZVg8190Ua+DYNQQPrhAYIuL6PEUzj4zar2KerXO3q9Kakzn/U0/tUqNvV+Ujt35+VUoFAqO/3gU92o73k126nXITOYQbAJqrZKD3x0BEbZ/po/UWJbxZ6Ose08rar2Kkz8bJxsWWX9HB4JJLcfc0mokM5WjmCrj3eSgXq2RDucZ+NkU697fjtGvk1aWpUU6r2qiEC9x5NtjbLyzE51VYPT3YSpijb6bWqT+f3GQjqt9+LZIq/L2fWkIe4+JVe8MUi1XyUwXoA7mZgMqjZJ8oojeoSUfLTHz8gKd1wZQa5XUanUKCyWUGgU6u0C1WGNm/wLtF/upFKtkZwsY/TrUWhWFRAm9XUsxU2IhFSUcDnNg/wH0ej0lsUQstly4EgQBURRRKBSsW7eO9vZ2fvjDHzYUkhpooIEGGvhviVQqxV/+5V/y6KOPEolEpBU4Z0GhUKDRaLDb7QhqgVWr+zGqTfSv70OhUBI9mcTTb0WhUhAbSKE2qrF1mIgOJrH5jVSpIeg15BeK6GxaVIIShRIGfztNdj7P1o/2IWbLqPVq5g7G8K63k57MYWrWIxg15CJFjv1gnNXvbcXaapSsan8yyZoPtGLxGxn45TjJsSLbPtULKtj/pSECFzhpvdhLYixLZjqPd4MdlVbJyZ+N493kxBzUY/LoCf1hnrm9cbZ+oodatUalWGP+YILWSzyc/s00mck8/e8KYvn/sXffcVJV9//HX3fq7mwvLLuUXXpViiKKgFQ7FqxoFLH3aGzRxPzUWEi+iUaNiVFRUbHE2BAFERRQUBSkqPS6wBbYNtumz9zfH8OODLtUWUB5Px+PZWfOPefec2fm7ny493PPyXfx3bPrCFYH6Xd7F2q3eFg1eQuZnVPodEYrPBV+EtIc1Bd7ScpLZM2HW+h5aTvCwQi1m+pZ/tZmel3TnuS8RNZ8WETZ0mq6nN+a7B5peMv9LH52Hcfc3AkMA5vTwtpPiuh0ems2fbmN0m+q6HxWHumdU1nwxCoKRubQ4ug0/O4gP7y8EXuanb7XdsC9vjaa+LW5joz2KXz791Uc97suWJ0WAnUhNn2xjfIVNRx/RzdC/gjfP7+avjd1xZZo5au/LCejQzLdzmuLp9LP0ufW0/vaDrhyEihdVMmGaaUcf083rA4LGz4voeSrKo67oyv2JCs1RR42z9pGl9FtMc0IVruVcCCMLdHKmmmbScp20eaEFoSCYSyGhe8mrOXYazsRCUWo3ezBlePEmeZg1ftbaD8yN3qXn2kSDkSwO21UVbjZ5i5lzeo1rFq1msysDCoqKmLT6hiGgc1mIxQKkZubS6dOnfj973/PmWeeeSgOJxERkT364osv+Nvf/sY333xDZWVlo9ir4ZxXWlo6OS1akNuiFR3zO5LRMh2fO0B9uY+szikEakN8P3Ejx/22M+GQSeXKGhypNlLyXJSvdpPVKZ2aojoyO6VSsricbYsr6TQqn4QMJ2F/mNrNHhKzHPhqghgGpOYnQcRk9eQiDMOg89mtsDisfP1o9JzXCfd2I+QPs/Afa3C1TqD3Fe3Z8lUZm2eX0/+ubljtBgv+sYLOo/NJyLDjLQ+wdUkVtmQbHU/JJeyPsOAfq2k7JIeWfdIIByJsnLmVVidkEQmZrHhzE7YE6HtzF2qLvKx8azOtBmWR1zeT756N3tDX46J8rE4DR5KD4m/KaXVCNqVLqsjsmIwrx0nIG2HpyxsI1YUY8McehHxhFmxPzOp/V1esDis/vLKexGwn+SflYEZM3BvqsCXaSEi38/0rGyAEfW/qhHttLZu/qqDb+W1wptpZ9V501KLO57bCle0k5I/gqfCTlp9E7WYPtUVe2o3MJRIKU7W+nnUfFtPxzDyye6ZT+HkpnnI/R10Wnfrjh5c20nVMG9Lzk1gzuRhvVYBe49oTCUdY8PhqWvROo/NZrfHXBvjuqbUkZNs55obO+GuDVK2pJeyPkNUtFVuijboSL6ltXbg31FH8TQXtT8nFlRXtX22RB9M0SW+XhN8dZNPX2+h2Tj6B2iAVK2pI75SMM8VOTZGH5LxEPBV+aiKVFBUXs3jhIqwOK8FgkIqKitiUbQ6Hg2AwiNPppGfPnpxwwgn85S9/0QhJIiJyWPJ6vbz66qu88847fP/991RWVsYGS2jgsDui57ysTrp170ZCIIUex3YGDIq/qaBl3wzsiRZKFlZhmiYFQ1qyZf42knNcRCImrmwnVWvqSGmTiMVhwZZoZfkbhXiq/Bx/W1fqynwkJDso/GIrrfpl4d5QS3JeEsmtE3Gvq2P1e1vIH5lD6/5ZbPvRzboPS2h/akty+may8u2NVK/3ctTlBdhT7Sz+11rSOybR/aJ8ti6twr2+fnv/rKz5sIiUti6S2ySQ0yOddVNLKPuhmp6XFWCaJmFfhKL5FdFRiz4poa7YR/6QFmT3SmfphPWEvWF6XJJPfamPwi+2kZjloPOo1tSV+qL7uL6OjPbJrP5wC0df0Z5wIIJ7fT0bPy2l/Sktye0XvcHRvbaevOMzKRjaEveGOla+vZmu57fB4jCwJ9pYM7WYzme0YsvX5VSuqKXlsRm07J3O9y9tILtHKrn9MvBWBVg3pSQ6Jd4V7alYXUtG+2Qq1tXSolsq37+ygZ6XFOBIteFzByn6upyaDR763NCBkN9kxVub6H5RW5LzEljw1BocKVa6X5RP/TYfq97eQocz82jRM41Nc7ZR8k0lva5pjyvLydqpxZT/UEPP3+ST0jaJsh/dlH5XRfuRuZgG2BOt+GsCuFoksGbqFuxOGx1ObUXIG8KwWPjx7UKOuih/+2tThyvbQXrHFH6YtJGCk3KwJdswDPBXB0lMd1Cx1U2NWcmGtetZuWoVaVmpVFZW4vVGE+8bzslarVYKCgro2bMn99xzD/379z8ER5PI/tFISvKLMm7cOMaNGxdXtnz5cu677z7mzp2L2+3GNE3KysooKYne7fTJJ9OwWq1kZGQQDoVp3bo1uXl5ZJ+bReWWajJbp5GQ6aB6cz2uzARcmQl4q3w4XHbMiElynouju2cQ9oUgAu61tVRtqqdDWxeGxY7FZmXNzE3kH59HwfAc7El2DAw8ZdEhAfve1BEMYtN9ZB+VBkDIGw14woEQhs0gUBlg6+IqCoa2JOAN0XZQDoYl+qW0ae5WcIAt2YrFbuHHSdHp6VoPyCYpN5Euo9uwcc42DAu4WiQA0Tu5gp4Qx9zaCavNgq8qQDgUwWI1CHrCBD1hfFUBNs3ZRlqHJFLyXHGjMe04DUigLkSwPkhdUYCU/CBBTxgzYlK71UeKxcCW42TAXd1Z+c5mgp4Qvuog+YOycaTYCXhCGC4Hx9/TgUB9EH9tkO8nbKDvzR2xOAx8NSHWf1ZKdXE9nU5vTXpBMtlHp0bnWY1A4WfbSOuUhGmaeMujF50cSTYwIOAJU722HgMDrNDy2HTWTyslp1c6VoeV4+7oQuEXpdFhJw1IbuXC5rQQDkZwF9YRDkVwZSbgTLfTZXRbir8to/UJLfDXBDBsBs50B4bFwL25nvZD8wh4g5RXlLOtZhtrF63BNE18Ph9FRUVxcx0DBENB8vLyCIVCtG3blssvv5x77rnnwBwIIiIiB0FaWlrc9LwNXnnlFf7zn/+wfPlyPB4PtbW1eDweNhdFRw6aPM2Cw+kgNTUVyzcWCgoKaN26NQnVKSQHEsnpmk7RwnLy+mRiWA1MoH6bl9S2SdQWe+l2XltqtnrABF+1n8AWD+ntkrElWElpm4Svyo/PHcAwDY79bSccyXZCvjAVq2rJOSad5BYuMKG+JBo3WJzRJHMA95Z68iMmvqoAW74sp2XfdDAgrWMyecdkUrfNi3tDHSXfRaf1sLts+OuCLH1+PRldoxdYup3fhiX/WYtpgMVmIbd3Gpu/KMdfEx0a+4Q7urF1cSWBuhCecj+GAd6aALak6PR1Rd+Uk9rWhW/7XWxmOHphJ1gffe5zB/FW+imcFR0RwF8TxLCBGbbh2+onUBei7aAW5ByVTtWa2thInjm9M7DYLPir6ul8TivSOyQTqAtRta6ebd9X0/2ifAL1IbDDgmdW0/38tqR1SKbgpBw8VT6sNgvlK9wEPRDyRTC2/0/RsBoYVgOLMzoqqHtDHUm5CaR3SgJg/fQSOp/dmjYDcsjskEJNcT1Wh4XU1kl0OD0Pu8tK5dp6QnVh0jsnY4ZNupyRT/XG+mg8bDPwlPvoclYeFls0hk5unYhhtVBX4cF2lJ8FS79h0+ZN2O12ysvL2bYt/o49wzCADPLy8giHwwwbNozbb7+dPn36/IwjQERE5OA66aSTOOmkk+LKSktLefrpp5k6dSobNmwgFAqxbdtWiouLgCUAWC1W0jPSiYQj5P3YilZ5eWSf0oLS5RW07JZJar6L8mXVpBckk9zKRW1JPY4UOyFvmITUBI76TSe81X6IRCj73k1duY8uXVpjTbRitVtZ+f4G8gfnkdc/k4SG8yQboiNtd72oDYbVwFO+feTrXqkYFoPw9unJArX+7bEalC6spMu5bajZ4iX/pBbYXDbqSnwUL6gAG9iSLdiT7ax6bQO1m7xkdU8ls2sq7U9uyYZZW7FYLbFRhALVQfw1QbpflI8z2UbNFg8WiwGmQdAbxl8TJFgbYtOXZaS2SyKtjSs2ZRqmGTcip6fMR9Abpq7IF439aoKYERNfZQBHUgRHqo3jbu3Cqve34HcH8NeEaNE9haTcBPzuABCm702dCNQF8VUHWfW/LXS7KDoVcdmPQbb96Ka+wkfXc9rSokcaVatqSWzhxIxEk+ATc5xEQpHYtHCuTCcWq4WgN4R3mx8zYmJzWsnskULZ0mpan5hNYoaD3te1Z9OXZdRt82IGo1PJ2BOthIIRypZVEQ6apLROJDHHSfcL81n3yRY6jWqDt9IPhklKKxeGzULZimq6nNEWb6WfqtoqKhPKmT97DWEzjN/np6i4KJYE3iApKYm8vDwSExPp3bs3l1xyCZdeeumBPBxERESaVWJiItdffz3XX399XPm8efN48803mTdvHoWFhdTV11Ffv5XNJdERJj+aZ+B0OElLS8NYayG/IJ+83FbYqhKoL0sjt08Wm+eW0bJPOtYEC4bNoHpzPS26p+FeX0e3C/Kp3lwXnZmjIoB7XT2pbV0kZjmIhJPwVQbZ+r0Pq8Wg+5i2uHIS8Jb7o8lObRNJ75yCGYpQt300cGeGPTqdCOAp9xEKhPFVBalcWRudQtZuwZlho+3gFtRu9rB1qZuy5dUAJGRGk9JXvb6JxBYOTBM6nJHHirc2YZom9kQrWd1S2LbYjc8dJGJG6HNNR0oWVuBzB/GU+7HYDAL1QbxuP4HqEJtmbyO5dSL+6mj/zIiJGYGQNxp7BWtDuDfVUfR1dFQmnzuA1WkhEjQJVAbxuYO0Pj6LrK6pVKyswVcVXU9uv0zsyTaqNtSTe2wmLY5KxecOUl/ipWJ5DT1/U0CgJghWWPZmIW1OzCa3bwZtB7ZgddkW7Ik2ypdVEfaG8deHcNSHIGyCCfZEG9bE6Ojo7vV15PRKJ7NLMiXfVLJ+Wik9Ly2g1fFZpLR2Ub2pHk91gIz8ZGwuK66WTkoWVRKuD5PeKYVwyKTT6W1wr63DW+7HkWKlZlM9rfqlY0+2Ub+ujpTWLmxJFso3VOM6NsKyzUvZVLgJe6I9ev1x2zZ2HF/GMAxSzRTatm1Lu3btGDFiBBdeeCHt27dvlmND5GBRkpL84vXo0YPJkyc3Kv/888958MEHWbJkCXV1dbGpS6rcVfy47MdYPYvFQnZ2NhaLBd9UHwMHDSIjLZ3sUAuSbEk4ku1UrHXToksGdWVe0jun4mqVSDgQoWpDHekFKbTsnoUzxU6gLoi3wo+3yg8YDLivO1gM3BvrKJxRStuRWaS0SiISjLD58+gIO1aHlXAw+gXtTLVjAkVflbOyeDN9r+1I9fp6bE4bA+7uwdYfKrG77NRs2D6dhzdE0BuifpuXQGWAHydtxO+L3mnnrw1SuqQKV1YCdpeV5a/HT/dW+lVV7PHW79zxL14EPKU/DYX93fap5gBKvq6k5OvKuOrJbZ10HZ1PfbkH71YfG7cPs11T4mHbgui6w4EwkTAUzo5eVKov9uOvDpLVLYWsriksf3MjgdogZT9WUf5DDe1G5sZOaqW2dWEYBkF/9HnNhnoyuqbS4ZRc1lPKwn+v5dgbO9H+lFxaDciitsRL6aJyOo9qS8HQPKw2A29lAMNiYIathAJh0tslU1/uwzQh5AsT9ofJ65eFryZAeVUZ9YE6Vs5dSSAQIBAIUPJhSXSatshPJ7Lsdjupqan4/X7sdju9evXi2GOP5Z///CcOhwMREZFfoyuuuIIrrrgiriwYDPL444/z+uuvs379erxebyyRpHRr6U8Vp4DL5SI7K5vSGVs56uiedOrciUQjCVedk6SWCXgqfTgSbNHkaouVrM5JeKr8eKt8hP3RkXRSWrsI+cPYHBZ+/F8heX0yyOmdTkKaA0xY8MwaElq46HF6LoYBJYuisUtu7wwwDOqKo3GOxWYlUBui5KsqLFYLmZ1TWDOlhH43dCYcjlC1rjY6BDXRZCJPlR+b3UrQE2HF65vI6p1KxdLo9Gu+igBb5hXjurAjxd9VseHTpoe+LpwZXx4ORIiETNxr6wHY9Nm22FRzAMteK4yrv+Q/6+h+UVvqy/1Ewiab55VFy19Zj91u4CkJ0GZwNsmtI9QVeyhbGj355Cn3U7uljhPu6s6q9zbjKfdjTbDy4+sbSW6TSCRi4quIJjzZEqIX+QhC5fJawqMiOF0OcvunU7asClcLJ2ntkjn+nm5sXVpJ8cJyUnJdONLtpKU5qVhbQ8gbpqbIgy3RFh0uu8COrzKAvYWN0h+raNE1DTNsUrO1hhq/m0p3Fcs+X4bLlUhZWVnszvwdT8ykpqYSiUSw2+3k5eVx1FFHce+99zJ48ODdfmZFRER+qXJzc3nsscd47LHH4spXrVrF448/zpw5cygqKopOGReJUOWuYvmKZbF6FouFrKwsbFYb3m8CDDxpAOkpaaTUpGN1WHDlOCleVEGrY7Oo3eIhp086qe4g/rog5SuqyeqcSlbXTJKyE6kr9+LZ5qes1I1pQL/bu2CxG5Qtq2bL3G20ODqFnKMyCNSFKJ67PeE7yU5oe0KQIzV6w1nJd5V4tvrodkFbago9hL1h+t/ejeKFFdRsqo9NzRb0hPBW+vFU+iEES19aRyi0PbnbE6bsBzdWhxVXtoP1U0vjXp/yH3+aHrd6XT07TsIbDpjUbPHEnv/4yk+xVtWaOqrW1MWty5Fuo+u5bQi4PXjL/BRvn+bOWxPEvSpaN1gfIhI0Kf4muqxmi4eQJ0Rm52Syu6Ww7K3NeMp9FH1TS+WqWlqdmEVo+/m7xIxo4lfDtCjbfqim7aAW5A/NYePMrSz6zzr6XteRDqfmktcvk+pN9ayZVkT3c9pScFJLbIlWqgvrCfkjBL0WImGTnKMyqC3yEAlFCNaHCNQGaTeyFb7yAJW15fjw8tVna6jz1hMOhyh5ugSfzxd3zstms5GWlkY4HCY7O5vu3bszYsQI/vjHP2Kz6ZKCiIj8Og0cOJCBAwfGlYXDYaZNm8Z///tfFi5cSElJCeUV5YTDYUrLd5ga9qto8lN2djY1i2vp0LEjnbp2xB50UVPqIDkvkbptXqx2CyFfBDMCuX0zqNlcT81mD/6aEGbEJK21i3AggjXRyor/bSazazJZXVJIyk3EiMB3/1qLI8lK6xEtsdqtbJ4bPS+U3iEZw7Dg3X4ey5pgwecO4F7jYb1RQmbXFIrmltHtvGiSeeniKsKehiRu8JR5sTltBOvCbP6iHHdhPbWF0bjMV+ln6/duEjMTYtP67qhscfTcU9n31ZR9X/3TaxcwCdaHqCuKrqd8eQ3ly3+K0wo/iz9Htvq9LbQelB2NrUIRSr+LXsdc8d5mbHYr/qoA6Z2SCAXC1G314F4XPZdWU+ihenMdx1zbmbVTivC7g1RtqGPd1BKcqQ4iETOWOOVMtoEZPR/nLQvgrQyQmOogq3sytZs9bJlXRsveGfS+tgPbFldSOLuUhEwnCRkOMrukUP6jG39NkJpNHhzJNlyZTlzdE6jeUIcr20nxt+Vk9UgDEyo31eIxqqkxq5n9xkycyXbKysuoKK8gYkYanfMyDIOcnBw6dOhAz549ueOOO+jevftefnpFfln0Pwr51Ro+fDjDhw9vVF5ZWclDDz3Exx9/HBsBp6Kigkgk+oXw8ccfxepaLBZSUlJwJbrwTPPQuVNn0tPSSXQl0qlTJzI7pkLEJCknkXAgjMVuITEzeoEt5I+ABbZ+X0GL7hn0+E077Ik2IqEIqz/cTI8xbUnOd2FYDKo3RL9Ik9skYFii05HVbvSSkObAfpSNle9sJlAbIDUviR/f2MQxt3Qi5A2TlJtI3WYPRfMqSMhx0P3CAgC+/dtK2g5sgdVhYf5fV8b2p8dv8qneXE/R/AqOv70bnm0+fpi4kbbDWpDXL4tv/7aSnR09th3WJCtLnl1HansXPccUULKwkuKvy+hxWXuWv72Zus1+vnt6Dd0ubENG51RS27vI7pFGbt8MEtLsbJpZxvcT1nHsbd1of3JLnOc5WPbmBnL7ZuHKhqq1taR3SiIx04nDFU3usbtsgElyWyebZ5XR5sQWtDwqg+QWCRQtrSChhZOEdAc9xxTgrwlQU1hPSptErHaDtPwkEjLtWO1WvNUeXJmJOJJsWBOtBANByuu2sXnZZkLhEFuKtmAxLNTU1sSGU99xSHW73U5iYiI+nw+Xy0XXrl1JTU3l3nvv5dRTTz0gn1UREZFfOrvdzr333su9997baNmsWbP417/+xbfffktZWVl0FMLiIsLhMIsWL2LR4kWxuk6nk/T0dELBEKmpqRS0K4BV0LFjR1pk5eBIthKsD2GxG/gr/TiTk+l0Sh4J6Q681YHYXeg9LmlLUlYC4XCEuhIvdRVejr6yHSmtXYSDEcqWVuPKc2B1WrA47NF9SLSR0spFcmsnFWtryeiYRP02P9Ub6jjujq74qv0ktUhk/uMrAMgf3oLWJ2SzKTk69Vx2jzSC3jCLn10HgCvbTsdRrVn59kbyBuSQd0wmP7y6Ds/WIL2v7YC30s/qd4t2eiGh381d2PxFGVsXVdHz8gISs5wsfHI1rQdm4cp2smZyMSvejl5qO/7ubvhrAlQur6XP2A6Y4QhLJ25ky5flpBW4yO6ejjPdgcVmsOa9zXQ8qzXeyuhoTDm90rHYLBCEjHZJWGwGyfmJMA/cG+rJ7pFGv9s7U72ujlUfbaLrqHzaj8wjUBfCYjUo/b6ClkdlkdUjDbvDSiRsEglFCAXCpLRyYbFbyOqcgjfgYVPRJqqqq3C73bjdbiKRCJWzKqmrq2uUiJSSkoLP58MwDDp06EBOTg6nnnoqt912G2lpaQf0cysiIvJL1bVr1yZHvKyrq+OVV15hypQpLFu2jPLycqqqqgiHw9FzXtN2OueVnIIryYX3Wy8dOnUgvSidREcSnTp3pEXPdAwrpOUnEfQHsTksOHPtpLRNJOgNY1gNihaUkdMjk67ntSUxw0nIF2HVlM20G5FDRpcUbAlWyldEL1SltEnEYreQ1iYBT5GPlLxEXC0crPhvHfVbvaTkJrBuShHdL8knHIqQ1jYJ94boRTBbso1u57fFYrOw6F9raTswm4QMJwufWh3bn/Ynt8RT4WfrIjd9b+hIfZmf1e9uIatHKvkntWDxhHUQP4sL7U/PxZXpZNnrhSRk2Tjqsg4Uf1vBtsUVdDq7LRs/LcHnDvHDxI20HpRNTp8MylfV4GrhpN2IXDbP3UbxV5X8+PpG+t/WlTaDW5CY7mD1B1vABFduAhVr6nDlOshon0LtlugFusRMJxYrJGTbqVxVG7txLiHTwbYf3bg31pKSl8TRl7enptiDe30tKW1cWBzQ8ugMknMTsSXYqK+ow5GWRGK2g4RUO8FAmMqaCpZ9u5QQIYq+iU7RV1tXG5vGpqlzXsFgkPT0dDp37kz37t256aabOO644w7kR1ZEROQXy2q1MmrUKEaNGtVo2erVq3n77beZN28eq1atoqysjNLSUoLBIIuXf8fi5d/F6jocju0zvkRITkqmXbsCLN9YaZ3flkxXJmmZLnxVAezJNjyFdaRnp5A/OJvkNi7qiuqJBCNUrKij4+m5pLRxEQmZVKypoabEQ7vTWtKiRzohf5iqNXU40mw4Uu04iI6yZHNao6MTLa+hYnUtmd1SCdaFcK+v4+hx7fCU+UkrSGbpC9FzWpndU2h/ci6bZm+jdouXvOOyMIkmEQFYE60UDMuhcOZW0jsl02ZQNqve2YKvMkCHM/MI1YXYNKdspxcSel5SQPE3FVStqaNgWA4pbV38+PpG0tsnkZSbSNHccormRgec6HVVewJ10WSg7qPbYBrR7bvX1pPa2kVunywcLhu2RBvrZ5RSMDSH+lIvgboQ+UNysKdYIQyJ2XbsiTaS8hIo+76aihU15A/J4agr21G1spY1HxXR+ezWtDu5Fd4KHxarhU1zy2g7sAUZ3VNJSHUQ9ERn2gl6QqS0S8Jqt5BzdDpB/JR6iqn+oQp3rZuqFVVEzAiVyyqpra1tdM4rOTmZSCRCekY6+fn5tG/fnosuuoizzz6bxMTEA/mxFTnsKUlJjjiZmZk89dRTPPXUU42WrV27lgceeID58+dTWlqKz+ejvr6e+vp6QqEQC79bGFffZrPhcrkwTZO0tDSysrKwW+1kZGWSnJxM69atyOyWitVpwfRHv4giYZNuowvAgEg4QsgXxpnp4IQ/dMdqtRAORQjWheg6JprNbDWs1GzwUL3JQ87R6bQZlEkkZJKY7aS6sI6SxRX0v7sb4UB0NIFN86KZx5vnb6PtwJYkt3WSmJVA/kktsLtsOFLsFH1Rgb86iLswmhzVML1IclsndZvjpy0zbAaGJRrI1BR5CHpCVKypIamVi8RMJ0ddmk/IF+b7CRuwOq14qn34yjysn+Ehu0cqrY9vQUaHFMyQycY5pbTpnw1AYgsnLXqlQQTWfVRCzyuiCVYZ3VNo6wtTu6We1Pwkjr68AyFvGH9NAGuClaTcRDpmtsLqsBCoD2FPtOJItuNMdVBXV095RRnlKyvw+3zU1NRQXVONx+MhFArhdrsbDVFtGEb0YmgoRDAYpGXLlrRs2ZKkpCSuvfbaRtMLioiIyL4ZNmwYw4YNa1QeDAZ57733mDhxIsuXL6eiogKfz0dVVRXBYJCKygo2bNwAwOwvZwPRO9Lsdjs2m40W2S1ISU3BYXeQnp5OTk5LMtLTSWufQjgUvRDnrw2S3MpF+wwH9kQbgfoAgfowx97aCXuyDYvNoGxVNXknZJLdMxUMyOiYwvopJbS8txutT8jCU+4DTGxOG2unbeGoSwswIyapbZII1AUpmleB3QXeygCO5Oh/r466ogCr00pihhNHRgLV6+vI7JyCpzI6UhEG0SlJdpLSyoVhQKA+Wq+msB62n8zI7pGGI9VO3xs7sn56CeGASSgYpvCLaOxXvKCc/EE59BjTFnuijTUfbCS3fw6pbZPwbvORe2IWKW1cbP5yG/VFPuyJ0dEMOp6dR+WqWiIhk6yOaRx/dxJ1W33460LYnVaye2WQfXQ6AU8Ih90GtmgyeXrnJKpqKijaUkwwFKC6upq62jrKK8qxWCzU1tZSW1sbdyEMICEhgaSkJLxeLzabjS5duuB0Ohk8eDC/+93vyM/P/7kfORERkSNWcnIyN998MzfffHOjZeXl5Tz33HPMnj2bdevWUV5ejs/vw+P1EAwGWbTop8RxPo1ekEtyJWFikpYaPedls9nIzMzEleCiVdtWZB0VvXDjr/GBAaFAmB4XFmBYIBKM4HMHsSfZ6Hd7Z+xJdsL+MPVbAxSMiE73Zo1Y8W7zU7WmloKRubTs5yMSiJDcKoHKNdVs/a6Cvjd0JFAfwpnmYOPn0RGTtnxVRruT83C1TMBih/Yjc7En20msjCYp1W/zUbt5+yjknhBYDJJyEqgvjj8nZLEYEJ3dA191CJ87QHVhPfZUJyltXHQY1YqwP8Kq/23BkWylbpsX7zYvtZu85B6bSduBOSTlJWLBYM3HRbQZmA0G2JNstBncAkyTLXPKKBiZg2GDFr1SCdQGKV/lJrd3Fr3GdcBfHaBuq4+EdAeZnVNIbpmII8VG3VYvrhYJuHKc2FolUldfT5WvijVLVuENeKlZWkNNdQ31nnrC4TButxuv18vOMjIyYvFYq1atyMvLo2vXrlx66aWMHDlSoyKJiIj8DF26dOH+++9vctm3337L5MmTWbp0KevWraOsrIy6ujq8Xi/lFWVs3BQ958X86K+EhAQcDgc2q40WLVqQsjkFu8VBelU62ZnZZNgyaHlMBpFgGAzwu/1kdU7Fle3E1SKB+hIv/roQ3ca0xZXlxO6yUbSgnMwuKWQdlYbVaSWlbSKbZ5fTZmA2KUNy8JT7MDFxptpZN20LbU5qgcVukNEhBV9VgLJl1VitUL2lHqsjGjS1Ozk6kmNKaxeOtOj0vb6KAL7tIxVZLAaGrfE5L0eyDcOAkD8al9QWebE4LRCGzC6pJOclkJTjpHh+BYH6EOFghOJvo6NzFs2voP1pebQ/NRd7oo2Nn5UQiUTI6JRK/VYfmd2TyemTzvpPS/BVBkjMcmBxWGk1IJOaTV78tQFa9konvX0S1RvqqS/1Yk+20/rEbHKPy8RfHcSSDFanBVdWAi0dadQFaigqKyFY5qOmuobauloqKiqxWI3YOa9QKD4D3ul0xhKR8vLyaN26NW3btuXkk0/mwgsvJDMz82d/5kR+LQxzxxQ+Edmt0tJSnnzyST755BMKCwvxeDxYrdbYSQCLxRI3NHKDhmSmhISE2OO0tDRsVhuZWZnY7XbS09OxWCxkZGTgSnRhtVkBCPvDGBYDi82CYTGoq/Dg3RYgq2t06L8Ns0ooGNQSi82Cr8aPGY5OIedIsmGaJsvf20Ru7wwyO6ZSuriCDTO30m5IS5JaOzEDsPyNTfS4LJ/lb2+CaAzBiX/sQc2men7cPr1Iu5Nb4q30Ew5EaDe8JaU/VOFeVYM1Ebpf0AFMWPTCenpc3AZXdgIhTwirw0rhvFIKBudiRsBb7seZYcfmtOKt8FG5to7Wx0cTlsyIibfaT2K6E8MwMAwDr8dLXX00YKurq8PvD1BfW4fH58Fd5SYcDuP3+6mtq6W+PnpCZueAwGKxYJomiYmJZGZmUl4evWjWuXNnWrVqxU033dRk9ruIiIgcHmbMmMHrr7/OggULKC4uJhAIEAwGCQaDGEb0hMfO/50xDAOn00lSUlL04lpSEgkJCWRkZGAxLGRkZpKQEF3ucrlwuVwkuZKImCZgUr/NS2JmAla7BUzYNGcbmd1SSM5NxF8dIFAbIjEnAYsVNswsod3QPEL+EM5UB+5Ndaz5YAt9r+2EaRose2s9FsNGakEiLXtlsH56Cc50BzanleKvo9OB9PhNPqn5ScwfHx2hye6C9qe3ZvW7RXS7sA0RoL7YS9G3FRQMy6HVcdlsXVSBe2MdXUdHE3oCdSECNUFsyVYSUh2E/GE2zyujw8l5mKbJtsVVpLRLJCnLRTgUIRKM0JB4hQGhYAif34e7yk3EjMSGna6ujiZ719TUYJomHo+H+vp6fD4fwWCw0WvfEAvn5ORgGAZ1dXVkZ2fTqVMnBg8ezM0330x2dnazfmZERERk/7jdbt59910+/fRTli9fHrt5z+PxYJomhmHs8ZxXQ+yVmpqK3W4nIyNze2JTBkQMsltk4XQ4sTnsEDG3J2Yb2BKt2BxWajbX4S700vqETCxWC6smbyH/pJY4kq14ynwEa8M40uy4spxgmiz/byFp7ZJodXw2W+aVUTS/gpa900lqmYhhwLqPS2h/ei6bZ5US2p6f1P+ublStq2XN+9ERLXP6pBMKhAnUBGk/MpfSJZXUFfvBCNP9onYYVoOlE9bR8fQ8Mruk4an0YXfa2PBZKZ1OzyMSMand7MWZZiepZQLVG+uoWFFL+1NyMawGIV+Y+q1eUtskAWBYDTx1Hjze7T/1nmiyWH30ubvKTSgcwu/3U1dXFzvnFQwG4173hnNeCQkJZGVlUVtbS0pKCu3bt6dLly5cffXVDBgwoFk/MyIiIrL/VqxYwfTp01mwYAGrVq2itLSUmpqaWOy18yg88NM5L5fLtT0GSyIxMSF6fRELmVlZJGw/J5bgSMSV4MKV6iISjmAYBuWrq0lvk4QjxY4ZNlk9pYiMzsm0PDqD2mIPtVt8pHdKwuqwsPajLbQbnkfQEyaltYuyZW4KP9tGj0vbYrFYWf3+RsJBSMpLJKdnOlu+KsdiM3Ck2KnYPqVb25NakNM7ne/+uSa6A1ZofWI2RV+W03pgFlaHhfqtfipW1ZDdM5V2I3Ipnl9O1bo6el5SgGEzqC3yEqwPYU2wRG8YrAlSOHsrPcYUEAmaFM7eRlIrBy2PyiTgDRGqDRMOhknKScCwGAR8QQJhP+6KaiKW6DkvDDM2wEF1dXTUz4YBK3Z3zgsgKysLp9OJw+Ggbdu2tG3blpEjR3L++eeTnJzczJ8akV8PJSmJHGBr167l5ZdfZs6cORQWFlJVVYXf78dms2Gz2airq4vdpbRzUs2OHA4Hdrs9FnBYrVYSnAlgRKfBsFqtOJ1OwuEwycnJ27NzTQwjmnHtdDqpqKgkPT0Nu92Ow+Gguroam8VORlY0IcrvDVBbVk/brq3wVQeo+L6a3GOzcabYCXhCBGtDVKyrps0JLfD5/GxZVkput6zoRafaeurr60hJTcEwjGjCUE0tScnRky6+7SMZpaam4vF4Yj92ux2fz4fX6yUUDBEKR0cwahitKhAI4PP5Gt1136DhtXM6naSlpVFdXY3X66Vdu3Y4HA4Mw+Doo49m4MCBXHbZZcpMFhER+RULBoPMnDmTDz/8kEWLFlFSUkJVVRWBQACn00kgECAQCGC1WolEIk1eWIPoSAF2u50EZwJ2h52kpCQMw8DhcMROPCQkJBAOh2OJTYmJibjdtWRkpOJ0OgHweDwkJyfH6tbXeEhOScKV7MLAYNPCUtod1wan087GWdto2TMdR7INe7Idf3WAoq/LyT0+g4QMB4WLt5BekIoj0R6dHq28EjBISUuOJWu5K6vJzM4gEAjEkuYbkoNqa2ux2+0Eg0ECgQA1NTVYLBaCwSB+vx+Px0M4HMbn8+H3+5t8XQzDwGq1YpommZmZGIZBTU0NCQkJtGnThlAoRJcuXejVqxcXXXQRRx99dLO8zyIiInJ4KC8v56OPPmLu3LksX76c4uJiqqurCYVCGIZBfX197OazPZ3zstlsJCQkRM95Waw4E6LxVGpqKlarFYfDQSQcITkles7LNE0wwZngxOl0UlVWRVpWGjabDafTSXVlNYZpJatlBlabFV91EPcGN+2Ob0vdVh9bv3XT+vgsErMS8NUECFQH2bbMTcfT8/D7AmyYv4WCE/K23x1fR527lpTMlNjNiXU1HpKSE8GInvNyV7lJz0jH5/NRV1cXO+fl9/vxer0EAgEikQjBQJB6T/Scl9/v36tzXg5HdKTQurq62J34ycnJ5OXl0atXL/r27csZZ5yhC2EiIiK/YuFwmBUrVjBv3jwWL17MmjVr2Lp1a+y8l9frxefzYRgGpmnuMr6wWq2xuMvhcOByuTAMg4SEhNg1SKfTiRkxSXQlkpiYiMvlorqqlvSM1FiMVldVR2pW9ByYGTapLq3Fle4iLTuFSCDC5q/KaX1sDq4UJxumlZLeLgVnpp2knARqi71sW1xF1tEpZHRKZsO8YlLzXSTlJmJGIlRsriJihEnPTSPgDxAKhajYWkl2XlY0fvJGR3yyWCzU19dTW1uHzWqNJnb7/NTW1mKxWggEAvt8zgsgPT0du91OKBQiOTmZ7OxscnNz6d27N126dGHIkCEa+VvkAFOSksghVFdXx/vvv8+8efNYsWIFJSUluN3u2B1qtbW12Gw2HA4HoVAodoLHYrHETnaEw+FGGb37y2KxYLVaCQaDsS/nSCRyQNfvdDqx2WyxfWwY+tDr9eJyuUhPT6eyspJwOEyrVq1ISkoiLy+PHj16cPLJJzNkyJAD0hcRERE58qxatYpp06bxww8/sG7dOrZt2xa7Y8rr9eL3+2PTyXm93thFtoYRG8Ph8C4TnfaVYRixu7DC4TA2m223iVT7s/6GOLJh5AOXy4XD4cDn8xEIBMjNzcU0zVgclpubS2pqKr169eLoo4/mzDPPJC0t7YD0R0RERI4soVCIr776igULFrB8+XK2bNlCWVkZNTU1sQRqiCbmBIPBg3LOy2KxEAqFsFgssfjoQK6/IfmqQUpKCpFIBL/fT2JiIunp6Xi9XpxOJy1atCAjI4MuXbrQvXt3+vXrR+/evQ9IX0REROTIU1ZWxqJFi1ixYkXsnFdDUlPD6IwNcZDP5yMSiRy0c152u/2Ar7/hnFfDqN4NgzcEAtEpYzIzo7PYNMRgqampdOzYkV69epGfn88xxxyjhG+RQ0hJSiK/cIFAgBUrVvDNN9+wbNkySktLYxfZ6uvr4y6yWSwWbDZb7C4wu90eGx6ypqYGp9NJKBRi5cqV5OXlkZaWRiQSISkpCZvNRiAQoLa2lqysLIDYiEipqamxoadtNlusfkZGBrm5uXTp0oWLLrpIX/giIiLyi1ddXc2iRYtYtmwZa9eujU2J1nAHW0NMFA6HY4nmNpuN+vr62AhNDRerDMOgsrKS8vJyunTpgtVqJRAIkJGRERsBKRKJkJaWRjAYxOfzxUbTjEQisZED7HY7mZmZ5OXlkZGRwfHHH8+xxx6L3W4/1C+XiIiIyH4LhUJs2bKF1atXs2rVKoqLi/F4PPh8Pmpra/F4PIRCoViSU0OcFQwGYxfGHA5HbITJcDjMqlWryMnJISMjAyA2ikAoFMLr9ZKSkhK7YGeaZizxqOEil2masfNdWVlZFBQUcNJJJ+mcl4iIiPziBQIBNm7cSGFhIRs3bsTtdhMIBKiursbtdsdGhmyYESUYDGIYRux8VcMUdTue89q2bRtdu3bFarUSDodJSUmJS1hKTEwEiF27tFqtJCYmkpqaGovB8vLyyMvLw+Vy0aNHD9q3bx8baEFEfpmUpCQiIiIiIiIiIiIiIiIiIiIiIs3Kcqg7ICIiIiIiIiIiIiIiIiIiIiIiv25KUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWtkPdATm8bd26Fbfbfai7ISIHSXp6Oi1btjzU3RAROWIp9hI5sij2EhE5dBR3iRxZFHeJiBxair1EjiyKvWR3lKQku7R161YuPO9CsB7qnojIwZKQkMBrr72mwEFE5BBQ7CVy5FHsJSJyaCjuEjnyKO4SETl0FHuJHHkUe8nuKElJdsntdoMVbKvTsfhsgAXDYoDx049hsYABGJZo2U7Ld/2zvY3FABqeGzs8N6KTERrEnpsNZdvr7/jcNH5ah9kwiWHDOhvqxv1uaLe93g5tzIb1GNEi0wDTskM746d1m3FtiGsTt31+aheru1Pb2A+7rx/XZhdle3wcKzPjysy4dZpxz6PbNxu1p9E6t9ez/LTcMMxosdHwvOFt3GH59t/RRT/Vsxjm9vbmDs+jdaIfARMMM1ZuMczoMnYqM0wsRH8Mw9z+Ud1eZuxQf/vv2A8mBhEs27dlMSLbl4GFCIZhYt2+PasR2f7bxDAi0fLY8h2fR2LrthiRWB9shJtYFsECWBrWt307DftiwYzbTrTu9r5uf2zFwACsBhgY25//9NuCgcWwsLnIzqP/TMftditoEBE5BA5Z7GVYDqu4K/b8MI69TMsObQ+HuGunOodj7GW1HF5xl5Xt7RV7iYgckXTOK1rUZOxl4bCKu3YuO1xjr8Mp7jocz3ntHHvZjLDiLhGRI8hhE3sZlsMr7tohrjpsYy/LTv3g0MddsGOM1fBWHj6xV0PcdLjEXTrnJYcjJSnJHhkeGxavA4yGoMESCw6iQYMBlp+CBmOH5XHLYs8bHlsaBxnbn5vG9m+qHZaZxvZvJaPha+WnOuYO36Dm9joNX/g/BSQ7Pt/pscVoFBDEfRluT1JqCGR2FUw0/m00Cgx2VXdPAUJT9fa4nD3VbSJw2HkZOy7bOVAwGy0zGh7vnKQU9ztax2gIAHYOGnZYZsYem3HtLDRsu+FE0E8/Bj+12TkIsOyyLNLouXXHL++GL+WGx4YZ/ULfIRBo+DK3GhEshhGrH/3N9nrRL/Fo++gXuWV7sGE3IliJxNZt3f68YZ3RoCDy0+Pt2/7psbnDtn5avxVj++NogGDdHihEn1u2P47+FhGRQ+9gx16mxXJ4xV1xdTksY69YktLhEnfF+nD4xl42S+Swirt+qq/YS0TkSKZzXjvXbYhzDp+4a5fLOYxiL8vOSUo657Wn2MtuhBV3iYgcgQ557GWxHFZx10+xxmEce+2cpHSo467D8JzXzmU2S/iwirt0zksOR5Y9VxEREREREREREREREREREREREdl/SlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWZlO9QdkMOf6QoRsQBYMCwGGD/9GBYLGIBhiZbttHzXP9vbWAyg4bmxw3MjmkJnEHtuNpRtr282rAcDM/pg+2OI/kPDCqLLIz+1MRvabd9crH7D89i6tz+3GDssiy6O/kNceVwbA4yG7e1Q1rDNhjKzifa7qx/XZhdle3wcKzPjysy4dZpxz6PbNxu1b3r/ze3vlbn9dYi+wIbR8Hz767Pj8u2/DXYsB4thbm9v7vB8+7seW4e5Q99MTMzt+2YSie1LtNzEJGKY2z+qJhbM6Dp3+h37wcQggsVge93I9mVgIYJhmFiJtrMake2/TQwjEi2PLY9/btn+cY7+NrAYYMOCFbZv18BiGNHfgKVhfdu3Y8GM/cStN7bOnx5bMTAAqwEGxvbnP/2ObsvC5iJ9JYiIHA4OeuxlWA6vuCvW359+DrfYy7Ts0PZwiLt2qnM4xl6m5fCKu6zboyDFXiIiRzad89rheUP3LBxWcdfOZYdr7HU4xV2H4zmvnWMvm2FV3CUicgQ65LGXYTms4q6fYofDOPbaPtzJ4RR3wY4xFodd7BXZHjcdLnGXznnJ4UifENmlSCSCzWYj1MV9qLuyf0x2CCD2nrHTb/nlaXjrI4e6I7vVEFkdXgPa2Ww2IpHD+5UTEfm1+kXHXoq7jmiHf+x1eMZdoNhLRORQ+UXHXaDY6wh2+MddcLjGXoq7REQOnV907KW464h2+Mdeh2fcBYq9ZPeUpCS7ZLFYCIVC3H///RQUFBzq7ohIMyssLOSRRx7BYjn8ghkRkSOBYi+RI4tiLxGRQ0dxl8iRRXGXiMihpdhL5Mii2Ev2RElKskcFBQV07dr1UHdDRERE5Iig2EtERETk4FDcJSIiInLwKPYSERE4HMf+EvkV+uKLL7jrrrsYNmwYaWlpGIbBuHHjDnW3mjRp0iSuv/56+vXrh9PpxDAMJk6ceKi79bMFg0HeffddrrjiCrp3705ycjIpKSkcf/zxPPvss4TD4UPdRRERETkAFHcdeoq7REREjhyKvQ49xV4iIiJHBsVdh57iLpEDQyMpiRwEL730Eq+88goul4v8/HxqamoOdZd26f7776ewsJDs7Gzy8vIoLCw81F06INatW8cFF1xAcnIyI0aM4Oyzz6a6upopU6Zw0003MXXqVD788EMMQzMEi4iI/JIp7jr0FHeJiIgcORR7HXqKvURERI4MirsOPcVdIgeGRlKSXcrKymLcuHFkZWUd6q784t1yyy38+OOP1NTU8PLLLx/q7uzWhAkT2LhxI2VlZdxwww2HujsHTEpKCv/6178oLS3lgw8+4K9//Sv/+c9/WL16Nf369eOjjz7inXfeOdTdPKR0zIuIHFr6O3xgKO469BR37R0d8yIih47+Bh84ir0OPcVee6ZjXkTk0NLf4QNDcdehp7hr7+iYlz1RkpLsUnZ2NldddRXZ2dmHuiuH1LvvvsuQIUPIyckhISGBVq1aMXLkSN599929Xke/fv3o2bMnVqv1Z/UlEokwYcIE+vfvT2ZmJomJibRp04azzjqL2bNnx+rNnj0bwzB48MEH+eqrrzjllFNIT0/fq8zdkSNHUlBQ8LP62SAQCPCPf/yD4447jpSUFJKTk+nRowd33HEHVVVVsXrt2rWjXbt2VFdXc+ONN5KXl0dSUhInnXQSixYtAqC4uJjLLruMnJwcEhMTOeWUU1izZs1e96V169bcdNNNJCUlxZUnJSVxxx13ADBnzpwDsNe/XDrmRUQOLf0dVtz1cyju+uXRMS8icujob3CUYq/9p9jrl0XHvIjIoaW/w4q7fg7FXb88OuZlTzTdm8huPPvss9x0003k5eUxevRosrKyKC0t5dtvv+X999/n/PPPP6j9ue+++/i///s/OnbsyKWXXkpKSgpFRUXMnTuXmTNnMnTo0Lj6X331FY899hjDhg3juuuuY9OmTQetr16vl5NPPpl58+bRuXNnrrzySpxOJ2vWrOG5555j7NixZGRkxOoHAgFOPvlkfD4fF198MVu3buXtt99m5MiRfPXVV5x66qnk5eVx2WWXsXbtWqZMmcKZZ57JihUrfnZAZrfbAbDZ9CdRRETkUFHctf8Ud4mIiMi+Uuy1/xR7iYiIyL5Q3LX/FHeJ/DrpKBHZjQkTJuBwOFiyZAk5OTlxyyoqKg5Jf1q1asX333+Py+WKW1ZZWdmo/owZM3jppZe48sorD1YXY/70pz8xb948Lr/8cl5++eW4L/fq6upGX/YlJSUMGjSIN954I/YF3rdvX37/+98zYMAArrzySh5//PFYhvZNN93Es88+y+TJkznvvPN+Vl9feuklAE455ZSftR4RERHZf4q79p/iLhEREdlXir32n2IvERER2ReKu/af4i6RXydN9yayB3a7PZb9uqNDNY+mw+FoMps3MzOzUdkxxxxzSIKGUCjE888/T1paGk899VSj/qalpZGcnNyo3d///ve4DONLLrkktr5HHnkkbgjJhmVLly79WX19/vnnmTZtGsOHD+eMM874WesSERGRn0dx175T3CUiIiL7S7HXvlPsJSIiIvtDcde+U9wl8uulkZREdmPMmDHcc889HHXUUVx66aUMGzaMQYMGkZqaGlfvySefxO12x5WNGzeOdu3aHfD+/Pvf/+aoo45izJgxDBs2jAEDBpCYmNhk/eOOOy7uudvt5sknn2xU78EHHzyg/Vy5ciW1tbWMHDkybpjF3cnIyCA/Pz+uLC8vD4DOnTs3yuZuWFZcXBwrmzhxIhs3boyrd+6559KnT58mt/nRRx9xyy23UFBQwKRJk/aqnyIiItI8FHftH8VdIiIisj8Ue+0fxV4iIiKyrxR37R/FXSK/XkpSEtmNu+66i6ysLJ599lkef/zxWPbtmWeeyT/+8Q/at28PRAOHwsLCuLZDhw494IHDU089Rfv27Xn55Zd55JFHeOSRR0hISOCiiy7i8ccfJzs7O65+y5Yt45673W4eeuihRus90IFDdXU1AK1bt97rNjsHY/DTvK27WxYMBmNlEydOZM6cOXH12rVr12TgMHXqVC644AJatmzJ559/HgtERERE5NBQ3LV/FHeJiIjI/lDstX8Ue4mIiMi+Uty1fxR3ifx6KUnpV8Lj8fDWW2+xfPlyVqxYQW1tLffddx+nn376Ad9WWVkZzzzzDAsWLCASidC3b19uvfVWWrVqFVfvpJNOarL9ddddx2WXXXbA+9UcDMPgqquu4qqrrqKiooIvv/ySN998k7fffps1a9bw/fffY7VaG2XUNhebzcZdd93FXXfdRXFxMXPmzOHll1/m1VdfpbS0lOnTpzfq/47atWuHaZrN3s/09HQAioqKmn1bO5o9e/Ze1fv44485//zzyc7OZtasWXTo0KFZ+xUIBHjxxRf59NNPqa2tpWPHjlxzzTWNss+bsjfH29atW5k6dSpff/01W7ZswWq10r59e8aOHUu/fv3i1jdt2jTGjx/f5Lbef//9uKFF/X4///vf/5g+fTqlpaWkpKRw1FFHceWVV8aC5gYLFixg4sSJrF69GrvdzrHHHstNN93UKCDb23UuWbKEt956izVr1lBdXU1ycjKdOnXiiiuu4Oijj97j6yYi0twUex14irv2j+KuvdPc8RjABx98wKJFi1i+fDnbtm3jtNNO4w9/+EOj9e1LnPPaa68xb948ioqK8Hq9tGjRggEDBjB27NjYe9/g1Vdfjf1NqqqqYty4cVx11VVN7tPChQt57bXXWL9+PeFwmDZt2nD++edz6qmn7vH1EBE52BR3NQ/FXvvnSI69DkY8BdHRCN566y1KS0tp0aIFF1xwAeeff35cnZdeeomJEyc2autwOJg5c2ZcWWVlJc899xxff/01Ho+HgoICLrvsMoYNGxZXb9OmTUyePJnly5ezZs0aAoEA//3vf3d5sXHu3Lm8/PLLFBYWkp6ezhlnnMHYsWPjppf57W9/y5IlS5psb7VamTVrFgCLFy/mtttua7IewDXXXMPYsWN3uVxE5EBS7HXgKe7aP0dy3AWHV+z1xRdfMHnyZNavX09NTQ3p6en06NGDK6+8stF+f/bZZ3z11VcsX76coqIi+vTpw9NPP73HPr/66qtMmDCB9u3b88orr8TKS0pKuPjii3fZbtSoUdxzzz1xZatWreLll1/mhx9+IBAI0KpVK8466ywuuOCCWJ1dxWn9+/fn73//+x77Kz+PkpR+Jaqrq5k4cSItW7akU6dOLF68uFm24/F4uO2226ivr+eyyy7DZrPx9ttvc+utt/LSSy+RlpYWV79fv36cdtppcWWdO3dulr41t6ysLM4991zOPfdcysvL+fzzz1m7di1du3Y9JP1p1aoVl1xyCRdffDFdu3Zl5syZeL3eXQ7HeDB17dqV1NRUFixYQFVV1V4Pw3gwNAQNmZmZzJo1i06dOjX7NsePH8/s2bO58MILadOmDdOmTeOee+7hqaeeolevXrtst7fH29y5c3njjTcYPHgwp512GuFwmOnTp3PHHXdw7733Njn/7dVXX93oJMvOc/c+/PDDzJs3j7POOosuXbpQXl7O+++/z4033sjEiRPJzc0F4KuvvuIPf/gDXbp04frrr6e+vp533nmHW265hRdffDHuAtrernPLli1YLBbOOeccMjMzqa2tZcaMGdx666389a9/5fjjj9+v90JE5EBR7NW8FHftPcVde6e54zGAN954A4/HQ/fu3amoqNjlOvclzlm1ahWdOnVi+PDhuFwuCgsL+eijj/j666956aWX4j6DEyZMIDMzk86dO/Ptt9/ucvtz587lj3/8Iz179mTcuHEYhsGsWbN49NFHqa6u5qKLLtrbl1VE5KBQ3NX8FHvtvSM59joY8dTkyZN5/PHHGTJkCBdffDHff/89Tz31FD6fj9/85jeN1n3nnXfGfS4sFkvc8vr6em6++Waqqqq44IILYq/NAw88QCgU4uSTT47VXbZsGe+++y4FBQUUFBSwZs2aXe7T/Pnz+eMf/0ifPn247bbbWL9+Pa+++ipVVVXceeedsXqXX345o0aNimvr9Xp5/PHH4y4wFhQUcP/99zfazvTp01mwYMFeXYwUETlQFHs1L8Vde+9Ijrvg8Iq91q9fT0pKChdccAFpaWlUVlYydepUrr/+ep599tm4/Z88eTKrVq2iW7du1NTU7NW+btu2jUmTJjX5uUtPT28yTvrmm2+YMWNGozjp22+/5b777qNz585cccUVJCYmUlRURFlZWaN1tGjRguuvvz6ubMfBHKQZmfKr4Pf7zfLyctM0TXPFihXm4MGDzalTpx7w7bz++uvm4MGDzeXLl8fKNm7caA4dOtR87rnn4uoOHjzYfOKJJw54Hw6mWbNmmZFIJK4sEAiYffr0MQFz48aN+7zOr7/+2gTMK664Yp/a+Xw+c968eY3Ka2pqzNzcXNPpdJo+ny/Wb8B84IEH9rl/Oxo/frwJmC+//PI+t7377rtNwLz88svNUCgUt8ztdpu1tbWx5wUFBWZBQUGT6wHMIUOGNCrfsGHDPr+OU6dONZ1Op5mbm2uuXLlyr9v9HMuWLTMHDx5svvHGG7Eyn89njhkzxrzhhht223Zvj7f169ebVVVVcW39fr/5m9/8xjzvvPPiyqdOnWoOHjzYXLFixW63vW3bNnPw4MHmv/71r7jy7777zhw8eLD53//+N1Z2+eWXm2PGjDEDgUCsbM2aNeaQIUPMf/7zn/u1zqZ4vV7znHPOMe+8887d1hMRORgUex14irsUdzWXgxGPmaZplpSUxD7Dp5xyivnoo4/udR/3Jc6ZNWuWOXjwYHPmzJlx5cXFxaZpmmZVVZU5ePBg88UXX2yy/e9+9ztz9OjRpt/vj5UFg0FzzJgx5rhx4/a6zyIiB4viruah2Eux1744GPGUz+czR40aZd5zzz1x7f/85z+bp5xyillTUxMre/HFF83Bgwc3Oh+2szfeeMMcPHiwuXDhwlhZOBw2r732WvOcc86JO5dVXV1t1tfXx7VriK92dvnll5tXXnmlGQwGY2XPP/+8edJJJ+3x2Jk+fbo5ePBg89NPP91tPdM0zTFjxpiXXHLJHuuJiBxIir0OPMVdirv21eEWezWloqLCHDp0qPm3v/0trry0tNQMh8OmaZrm2LFjzVtvvXX3O2ua5gMPPGDedttt5q233mqOHTt2j/VN0zRvv/1287TTTot9Xk3TNOvq6sxzzjnH/MMf/hDrw67sy7bkwNNISr8SDodjrzP75s+fz6RJk1i9ejWGYdC7d29uvPHGRtM3NWX27Nl069aN7t27x8oKCgo45phjmDVrFtddd12jNn6/HwCn07mXe3P4OPfcc0lNTeWEE06goKCAYDDIjBkzWL58ORdccAEFBQV7tZ65c+cyYcIEgFim5ty5cxk3bhwA2dnZexw6zuv1MnDgQLp06cKxxx5Lfn4+dXV1fPTRR5SWlnLXXXcdkNd4woQJzJ07F4AffvghVtYwvOGgQYO45ppr9rieP//5z8yfP5/XXnuN+fPnc/rpp+N0Olm/fj2ffPIJc+fObXL+1uaycuVKRo8ejd/vZ+jQobz55puN6rRr1y72nhwoc+bMwWq1cvbZZ8fKnE4nZ555Js8//zxbt25tNJ9vg7093po6dh0OByeccAJvv/02Ho8Hl8vVqI7H48HpdGK1WptcBjTKTG/4O9PwWaupqWHjxo1ccskl2O32WL1OnTpRUFDA559/zi233LJP69yVhIQE0tLSqKur2209EZGDQbHXgae4S3FXczkY8RgQGxFyf+xLnNMwGubOdXc1FcnOPB4PKSkpOByOWJnNZmt0l6qIyOFCcVfzUOyl2GtfHIx4atGiRVRXV3PuuefGtR89ejQzZszg66+/5pRTTmm0/vr6elwuV6OpaACWLl1Keno6xx57bKzMYrEwbNgwnn32WZYsWRK7+z41NXWvXouNGzeyceNGfve738VN7TZ69Ghee+01Zs+ezRVXXLHL9jNmzCAxMZFBgwbtdjsNU6RceeWVe9UvEZEDRbHXgae4S3HXvjqcY68GGRkZJCQkNDo/tat+7cqSJUuYM2cOEyZM4KmnntqrNuXl5SxevJhTTz017vM6c+ZMKisrufbaa7FYLHi9XpxOZ6PRNncUCoUIBAJNXkeV5qMkpSPM9OnTeeyxx+jfvz/XX389fr+fDz74gJtvvpkXX3xxtye2I5EI69evb3LqqO7du7NgwYJGyRCffPIJH3zwAaZpUlBQwNixY+OG0T3cjR8/nk8++YRvv/2WKVOmkJSURMeOHXn22We5+uqr93o9a9eujZs/E2DdunWsW7cOiH457ClwSEpK4q9//SufffYZX375Jdu2bSMjI4OuXbsyfvx4xowZs+872IS5c+c26uu8efOYN29e7PneBA4JCQnMmDGDZ555hkmTJvHCCy9gtVrJz8/nhhtuoF27dgekv3urtLQ0FsC+9dZbTdYZMmTIAb9YtmbNGtq0aUNSUlJceUNwsHbt2ia/sPfneNtZZWUlCQkJTQaUt912G16vF7vdznHHHcfNN99M27ZtY8tbt25NixYt+O9//0t+fj6dO3emvLyc//znP+Tl5TF8+HAgOicuNP2fAqfTyYYNG6ioqCArK2uv17mj+vp6gsEg1dXVTJ8+nQ0bNnD55Zfvcp9FRA43ir32nuKuKMVdB96hjMd2Z2/jHNM0qa6uJhwOs2XLFp577jmsVut+n4Tr06cPb7zxBhMmTOC0007DMAxmzpzJqlWrePDBB/drnSIihwPFXftGsVeUYq+9czDiqYbp1bp16xZXr2vXrlgsFlavXt3oQtnFF18cm5Jm0KBB3HzzzWRmZsaWB4PBJs9ZJSQkANGpdfd1KrXVq1fH+rWj7OxsWrRosdtp4txuNwsXLmT48OF7nEZnxowZAL+ovysicmRR7LX3FHdFKe7ae4dr7FVbW0s4HKaiooL//e9/1NfXxyWD76twOMxTTz3FmWeeSceOHfe63eeff04kEmn0N2DhwoUkJSVRXl7OH//4RzZv3kxiYiKnnHIKt9xyS6O4cPPmzZx66qkEg0EyMzMZNWoU48aNi0tEl+ahV/gI4vF4eOqppxg1ahR33313rPy0007jsssuY9KkSXHlO6upqSEQCDSZQd1QVl5eTn5+PgBHHXUUw4YNIy8vj4qKCt577z0efvhh6uvrG2VlHq5uvPFGbrzxxp+9nnHjxv3sLyS73c4999zDPffcs8e6Q4cOxTTN/drOxIkTmThx4n613ZnT6eTOO++Mm4u9KRs3btzlsl3tR7t27fZpH3/Oa/JzNCTo7GzHY6Yp+3q87WzLli188cUXDBs2LG6kJKfTyemnn07fvn1JSkpi1apVvP3229x0001MmDAhFtTYbDYefvhhHn74Ye67775Y+65du/Lvf/+blJQUADIzM0lOTo5lwjeorq6msLAw1s+srKy9XueOHnjgAb799lsgegycffbZjB07tsl9FhE53Cj22jeKu34exV27dqjisT3Z2zinsrKS0aNHx563aNGCP/3pT3t9p+XOrrjiCkpKSnjttdd49dVXgehJvz//+c8MHjx4v9YpInKoKe7ad4q9fp4jLfY6GPFURUUFVqu10Qjcdrud1NRUKioqYmUpKSmcd9559OzZE7vdzvfff8/777/PihUreOGFF2IX9PLz8/nuu+8oLS2NG/Xy+++/322/d6ehH7vapx37ubPPPvuMcDi8x4vq4XCYWbNm0b17d9q0abPPfRQRaW6KvfaN4q6f50iLu+Dwi70a3HjjjWzatAmAxMRExo4dy5lnnrlvO7eDyZMns3XrVv7xj3/sU7sZM2aQlZXFMcccE1e+ZcsWwuEwf/jDHzjzzDO57rrrWLJkCe+++y51dXU88MADsbqtWrWib9++dOjQAZ/Px+zZs3n11VfZvHkzDz300H7vk+wdJSkdQRYuXEhdXR0jRozA7XbHyi0WC927d2fRokW7bd+QGbrjlE4NGqYKaKgD8O9//zuuzhlnnME111zD888/HxuOT+TXzu/37/Uxs3M72PvjbUc+n48HHngAp9PJ9ddfH7ds+PDhcSMWDR48mP79+3Prrbfy2muvcdddd8WWpaSk0KlTJ4YOHUqPHj0oKiri9ddf54EHHuDxxx+PDZF49tln88Ybb/Dcc89xxhln4PF4ePbZZwkGg436uTfr3NH111/PxRdfzLZt2/jkk08IhUKEw+Em91tE5HCj2Evk8HAo4rG9sbdxTmpqKk888QSBQIA1a9bwxRdf4PV693u7drudtm3bMnToUE466STC4TBTpkzhkUce4YknnqBnz577vW4RkUNFcZdI8zoY8ZTf79/lXesOhyNuGxdeeGHc8qFDh9K9e3cefvhh3n//fS677DIARo0axeTJk3nggQe45ZZbyMzMZNasWXz55Ze77ffuNIwqvuPUuTv20+Px7LLtzJkzSU9Pp1+/frvdxnfffUdlZWVsP0REDjeKvUSa1+EWezW499578Xg8FBcXM3XqVPx+P5FIZLfTqe1KdXU1L730EmPHjiU9PX2v223evJlVq1Zx0UUXNdqu1+vF5/NxzjnncNtttwHRka2CwSAffvghV111VWxWmXvvvTeu7amnnsrf/vY3pkyZwkUXXaTzY81MSUpHkC1btgBw++23N7m84Q4Tv9/faP7IrKys2Jd8Q+LBjnY35VMDu93Oeeedx+OPP86qVavo1avXPu+DyC+N0+ncr2Nmf4+3cDjMgw8+yMaNG/m///s/srOz99jHXr160aNHD7777rtYWV1dHbfeeitjxoyJG96zW7du/Pa3v2XatGmxOxSuvvpqqqurefPNN3n99dcBOO644zjzzDOZPHlybPjqfVlng86dO8cen3LKKVxzzTWMHz+ehx9+eI/7JSJyqCn2Ejk8HOx4bG/tbZxjt9tjF7JOPPFEjjnmGG6++WYyMjI48cQT93m7Tz75JMuXL2fChAmxkznDhw9n7NixPP300zz33HP7vU8iIoeK4i6R5nUw4imn00koFGpyPYFAYI9x18knn8y//vUvvvvuu1hyT8eOHfl//+//8fjjj3PzzTcD0VHBb731Vh5//PE9TrnWlIYLfA3939t+FhcXs2zZMs4777w9TiEyY8YMrFZr3I2GIiKHE8VeIs3rcI29jjrqqNjjESNGcPnllwPE4qx9MWHCBFJSUjj//PP3qd3upsRt6POIESPiykeOHMmHH37IsmXLYklKTbn44ouZMmUKCxcuVJJSM1OS0hEkEokAcP/998fNzd2gYUqozz//nPHjx8ct++KLL0hNTcXhcDQ5vFtD2Z4SInJycoDocHMiR4KsrCzKysoale/pmNnf4+1vf/sbX3/9NX/605/2aR7YnJyc2BCNAHPmzKGyspKBAwfG1evTpw9JSUn88MMPsYQiu93O73//e6699lo2b95MZmYmbdu25c9//jMWi4XWrVvv8zqbYrfbGThwIK+//jp+v193R4jIYU+xl8jh4WDHY/tjX+Kco48+mqysLGbMmLHPSUrBYJCPP/6YSy+9NO5uM5vNxvHHH8/7779PMBhs8o47EZHDmeIukeZ1MOKprKwswuEwVVVVcdOOBINBampqmpy2ZGc5OTmNjsGhQ4cycOBA1q5dSyQSoUuXLixevBhgtxepdqWhHxUVFbRs2bLRPnXv3r3Jdru7oLYjv9/Pl19+ybHHHtvk3zMRkcOBYi+R5vVLiL1SUlI45phjmDFjxj4nKW3evJkpU6Zw6623xk1dFwgECIVClJSUkJSURGpqaqO2M2bMID8/n65duzZalpWVxYYNGxr9XWrYv9ra2t32q+Hvyp7qyc+nJKUjSEOiwJ6GlD3uuON44oknGpVbLBY6dOjAypUrGy1bvnw5rVq1wuVy7bYPxcXFsT6IHAk6derE4sWLqa+vj909ANFjpmF5U/bnePv3v//N1KlTufXWWxk5cuQ+9bO4uDjuuKyqqgJ++s9GA9M0iUQiTU5FkpmZGfviD4fDLF68mO7du8f6uT/r3Jnf78c0TTwej5KUROSwp9hL5PBwMOOxn2Nf4pxAINDobtS9UV1dTTgcbjLuCofDRCKRRrGaiMgvgeIukeZ1MOKphlEmV65cyYABA2L1Vq5cSSQSiRuFsimmaVJaWtpkPbvdHpc81DCa+J6mXWtKw/pXrVpFjx49YuXl5eWUlZVx9tlnN9lu5syZtG7deo935c+dOxePx7PHZCYRkUNJsZdI8/olxF4QPZdVX1+/9zu2XXl5OZFIhKeeeoqnnnqq0fKLL76YCy64gN/+9reN9qGoqIirr766yfV27dqVhQsXUlZWRn5+ftz2YM9/L/R35eDZ9wkC5Rerf//+JCUlMWnSpCaHb2uYNzY7O5t+/frF/TQYMmQIK1eujPvjtmnTJhYvXszQoUMbrWtHHo+Hd955h7S0tCazG0V+jYYOHUo4HObDDz+MlQUCAaZOnUqPHj1id1xt3bqVwsLCuLZ7e7wBvPnmm7z11ltcfvnlXHjhhbvsT1PH5tdff82qVavo379/rKxNmzYAfPbZZ3F1586di9fr3WNw8tZbb1FRUcHFF1+8X+tsSGjaUW1tLXPmzCEnJycuq1tE5HCl2Evk8HCw4rG9tbdxjtfrxefzNao7e/Zsamtr6dat2z5vOyMjg+TkZL788su4ob89Hg/z5s0jPz9fieAi8oukuEukeR2MeOqYY44hNTWVyZMnx7WfPHkyCQkJcRfPmjoOP/jgA9xuN8cff/xu92Xz5s1MnjyZE088cb9GUmrfvj35+flMmTIlLvH7gw8+wDAMhgwZ0qjN6tWrKSws3KubCmfOnElCQgKDBw/e576JiBwsir1EmtfhFns1dS6rpKSE7777br+Owfbt2/Poo482+mnfvj0tW7bk0Ucf5cwzz2zUrmFkyl3FVMOGDQPg448/jiv/+OOPsVqt9O3bF4D6+vpGU/eapsmrr74KRBMspXlpJKVfkXfffZe6urrYcG3z5s1j27ZtAJx//vkkJydzxx138Oijj3L11VczYsQI0tPT2bp1K/Pnz+eoo47id7/73W63MXr0aD766CN+//vfM2bMGKxWK2+//TYZGRmMGTMmVu+9995j7ty5nHjiibRs2ZKKigqmTp3K1q1b+eMf/6jpA+SI0aNHD4YNG8bzzz+P2+2mdevWfPLJJ5SWlvL73/8+Vu/RRx9lyZIlfPHFF7GyvT3evvjiC5599lnatGlDQUEBn376aVwf+vXrFxvh6MYbb6RLly507dqVpKQkVq9ezdSpU8nJyYnNHQswcOBA2rdvzyuvvMLWrVvp0aMHRUVFvPfee2RlZcUFB59++ilz5syhd+/eJCYmsnDhQmbNmsWoUaPiAp59Wefdd99NixYt6NGjBxkZGWzdupWpU6dSUVHBgw8++LPfFxGRA0Gxl8gvw8GIxyD6N2Dt2rUAhEIh1q1bxyuvvALAoEGD6NixI7D3cc6WLVu44447GDZsGAUFBRiGwapVq/j000/Jzc3lggsuiNv+9OnTKS0txe/3A7B06dLY9k899VRyc3OxWq2MGTOGCRMmcMMNN3DqqacSiUT4+OOPKSsr4/777z9Ar7qIyIGluEvk0DoY8ZTT6eTqq6/mH//4B//v//0/+vfvz9KlS/n000+59tpr46b7uPDCCxk+fDgdOnTA4XDwww8/8Nlnn9G5c+dGIxldfvnlDBs2jJycHEpKSpg8eTKpqanceeedcfXq6up49913Afjxxx+B6PGenJxMcnIy559/fqzuTTfdxH333cedd97JiBEjWL9+Pe+//z6jRo2iXbt2jV6/vZ3qraamhm+++YYhQ4Yc0BE7RUT2lWIvkUPrcIu9xo0bx7HHHkunTp1ISUlhy5YtfPzxx4RCIa6//vq4vi9ZsoSlS5cC0SRDr9cbOz/Vu3dv+vTpQ3p6epMJ2f/73/8AmlwWDoeZNWsWPXv2jI3mtrMuXbpwxhlnMHXqVMLhMH369GHJkiXMmjWLyy67LDbV3erVq3nooYcYOXIkrVu3jk23+8MPP3DWWWcp+fEgMEzTNA91J+TAuOiiiygtLW1y2X//+1/y8vIAWLx4Ma+//jrLly8nEAjQokULevXqxXnnnbdXB922bdt45plnWLBgAZFIhL59+3LLLbfERkkBWLBgAW+++Sbr16+npqaGhIQEunfvzqWXXsqxxx57YHZY5BfC7/fz4osv8umnn1JXV0eHDh245ppr4kYu+u1vf9sokIC9O95eeuklJk6cuMvtP/XUU7Hs4BdeeIH58+dTUlKCz+cjKyuLAQMGMG7cuEZztNbW1vLKK6/w9ddfs3XrVhITE+nXrx/XXnstrVq1itVbvnw5zz77LOvXr8fv95Ofn88555zD2WefjWEY+7XO9957j88//5zCwkLq6upISUmhR48eXHLJJfTu3XvvX3wRkWak2Evkl6O54zGAxx57jE8++aTJ7d93332cfvrpwN7HOW63mxdeeIGlS5dSVlZGKBSiZcuWDBgwgMsvv7zR0NMN/W/KjvEgRC+UvfPOO2zevJlgMEjHjh0ZM2bMfo8OJSLS3BR3iRx6ByOeApgyZQr//e9/KSkpIScnh9GjR3PhhRfGnWP6v//7P3788Ue2bdtGIBCgZcuWDBkyhLFjxzZK7nnooYf44YcfqKqqIi0tjYEDB3LVVVc1GqW7pKQkbkTwHeXm5vL222/HlX355ZdMnDiRwsJC0tLSOP300xk3bhw2W/x94ZFIhAsvvJCMjAwmTJiwm1c4OnLB448/zvjx4xk4cOBu64qINCfFXiKH3uEUe7300kvMnz+foqIiPB4PGRkZ9O7dm8suuyx2U96OdXd1zXLcuHFcddVVu9zn3/72t1RXV8eSmnb07bffctddd3HbbbfFJY/vLBQK8dprrzFt2jTKy8tp2bIlo0eP5qKLLorVKS4u5rnnnmPFihVUVlZisVgoKChg1KhRTV7blANPSUoiIiIiIiIiIiIiIiIiIiIiItKsLIe6AyIiIiIiIiIiIiIiIiIiIiIi8uumJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISERERERERERERETlMGIbB0KFDD3U3RERE5Fds48aNGIbBuHHj4srHjRuHYRhs3Lhxj3UPlHbt2tGuXbu4sokTJ2IYBhMnTtxj3cPZrvZD5EimJCURERERERERERE5YoXDYV544QWGDBlCZmYmdrudnJwcevXqxTXXXMOHH354qLu4W7Nnz8YwDB588MFD3ZWDaujQoRiGwezZs+PKfwkXrn4JfTyYZsyYwZ133smIESPIysrCMAwGDRq02zYvvvgi119/PccffzwulwvDMLj//vsPUo9FRER2zTAMDMM41N0QETls2Q51B0REREREREREREQOhXA4zKhRo/jkk09IT0/nzDPPpE2bNgQCAZYtW8Ybb7zBypUrOfvssw91V+UIsmLFClwu16HuxkHzr3/9i8mTJ5OQkECnTp2orKzcY5s777yT6upqMjIyaNWqFevWrTsIPRUREfn1Gz9+PPfeey+tW7c+pP0YPXo0J5xwAnl5eYe0HyJy4ClJSURERERERERERI5Ib775Jp988gm9e/dmzpw5pKWlxS33eDx88803h6h3cqTq1q3boe7CQfX73/+eRx99lG7durF582bat2+/xzZvvfUW3bt3p6CggIkTJ3LllVcehJ6KiIj8+uXl5R0WiUFpaWmNYnMR+XXQdG8iIiIiIiIiIiJyRPrqq68AGDduXJMXQVwuF8OGDYsrmzhxIoZhMHHiRD7++GNOPPFEkpKSyMjI4IILLmDNmjVNbsvj8TB+/Hj69OlDUlISycnJDBgwgDfffHOX/fv0008566yzyMnJwel00rZtW8455xxmzpwZ63dD/x566KHY9CI7ToO2Y38/+eQThg4dSlpaWmwako0bN2IYBuPGjWuyDw3Tqu1oxynmFi5cyGmnnUZaWhoZGRmcf/75bN68GYD169czZswYWrRoQWJiIsOGDWPp0qW73N+fo6FPhYWFFBYWxr0WO+/bypUrGTduHG3btsXhcNCyZUsuvfRSVq1a1Wi948aNwzAM1q9fzz//+U969epFYmIiQ4cOBSAQCPDMM89wxhlnUFBQgNPpJDMzk5EjRzJt2rT96qNhGLH176i6upr77ruPrl27kpCQQEZGBqeeemrs89DUth588EGWLFnCmWeeSXp6Oi6XiyFDhsQ++4eDAQMG0LNnT6xW6163Oe200ygoKGjGXomIiDQ/v9/PX/7yF44++mhcLhepqakMHjyYt99+u8n6pmny1FNP0aNHDxISEmjdujW33HIL1dXVB2w62YbYZ+PGjXusG4lEuO222zAMg/POOw+v1xtbNn36dM444wyys7NxOp107NiRu+++G7fbvVf92DGGbUp9fT133303+fn5OJ1OOnXqxF//+ldM02yy/ttvv81JJ51EWloaiYmJHH300YwfPx6/399k/e+++47zzz8/FocXFBRw0003UVJS0mT9tWvXcuGFF5KRkUFSUhInnngiH3/88V7tq8iRRiMpiYiIiIiIiIiIyBEpKysLgNWrV+9z2/fee49p06YxevRohg4dypIlS3j33XeZNWsWX331FV27do3VdbvdDB8+nMWLF3PMMcdw1VVXEYlEmD59OpdeeinLli3jkUceiVv/Aw88wJ///GeSk5M599xzadu2LcXFxXz11VdMmjSJkSNHcu655wLwyiuvMGTIkLjElp0vUr3zzjt88sknnH766dxwww0UFhbu8z7vbMGCBfz1r39lyJAhXHvttfzwww+89957/Pjjj0yePJlBgwbRrVs3xo4dS2FhIe+99x4nn3wy69evJzk5+Wdvf0ft2rXjgQce4MknnwTg9ttvjy3r06dP7PEnn3zCeeedRzAY5KyzzqJTp05s2bKF9957j48//phZs2ZxzDHHNFr/bbfdxpdffsmZZ57JGWecEUuoqays5LbbbuPEE0/k5JNPpkWLFpSUlDBlyhTOOOMMXnjhBa655pp96mNT3G43AwcOZPny5Rx33HHcfvvtlJeX8/bbb3PKKafw7LPPcv311zdqt3DhQv7v//6PAQMGcM0117Bp0ybeffddRowYwZIlS+I+pyIiInLwBAIBTj31VObMmUO3bt24+eab8Xg8vPPOO1x88cUsWbKExx57LK7NzTffzLPPPkurVq247rrrcDgcfPjhh3z77bcEg0HsdvtB67/P5+M3v/kN7733HjfffDNPP/00Fkt0fJSHHnqIBx98kMzMTEaNGkVOTg7ff/89f//735k6dSpff/01qamp+73tYDDIqaeeSnFxMaeffjo2m40PPviAe++9F5/PxwMPPBBX/w9/+APjx48nOzubSy+9lOTkZKZNm8Yf/vAHpk+fzqefforD4YjV/+ijjzj//PMxTZMLLriAgoICvvvuO5599lkmT57M3Llz40Z+XLNmDQMGDKCiooLTTz+dPn36sHbtWs4991xOP/30/d5PkV8tU0REREREREREROQItGjRItNut5uGYZiXXXaZ+e6775obN27cbZuXX37ZBEzAnDJlStyyJ5980gTM4cOHx5VfccUVJmD+9a9/jSv3er3mqaeeahqGYS5evDhWPn36dBMw27dvb27ZsqVRHzZv3hx7PGvWLBMwH3jggd321zAMc9q0aY2Wb9iwwQTMK664osn2Q4YMMXc+jdywTcCcNGlS3LKrrrrKBMyMjAzzkUceiVv25z//2QTMJ598sslt7YuGfs2aNSuuvKCgwCwoKGiyTWVlpZmenm5mZWWZy5Yti1v2ww8/mElJSWbfvn3jyhveu1atWpnr169vtE6fzxf3fjRwu91mz549zYyMDNPj8ex1H03TNAFzyJAhcWXXXXedCZjXXXedGYlEYuWrV682U1NTTYfDYW7YsCFWvuN79PLLL8et6z//+Y8JmDfeeOMu+7Czf/zjH+YDDzyw1z/vv//+Xq97Rw2fx4EDB+51m4bP+B//+Mf92qaIHHz19fXmiy++aN55553mGWecYQ4ePNicOnXqfq/v1ltvNQcPHtzkz9ChQw9gz0X2rOH7d08ee+wxEzBPP/10MxgMxsq3bt1qFhQUmIA5b968WPkXX3xhAmaXLl3MqqqqWLnf7zcHDx5sAruNL3a2qxiwIfbZMa7YuW5FRYU5cOBA0zAM8y9/+Utc+88//9wEzAEDBsT10zR/+s6+/fbb48qbio0a6u4cxzS8NqeffnpcjLV161YzLS3NTEtLMwOBQKz8q6++MgGzbdu2ZklJSaw8GAyao0aNMgHz0UcfjZXX1taamZmZpsViMb/44ou4bf/lL38xAfPkk0+OKz/55JObjHE/+OCDXcZjIkcyTfcmIiIiIiIiIiIiR6S+ffsyadIkWrZsyaRJkzj//PNp164dWVlZjB49milTpuyy7fDhwxk1alRc2S233ELHjh35/PPPYyMVVVRUMGnSJPr168c999wTVz8hISE2LcUbb7wRK//nP/8JwOOPP07r1q0bbbtNmzb7vK/nnHMOp5122j63251Bgwbxm9/8Jq7siiuuACAtLY177703btnYsWMBWLJkyQHtx9569dVXcbvdPPTQQ/To0SNu2VFHHcW1117L4sWLWb58eaO299xzT9wd8w2cTmeT70daWhpXXXUVVVVVLFiw4Gf1OxAIMGnSJJKTkxk/fnzc9HudO3fmt7/9LYFAgFdffbVR24EDBzaa7u6qq67CZrPx7bff7nUfnnzySR566KG9/vnggw/2d3dF5AhQXV3NxIkTKSwspFOnTj97fZdffjn3339/3M+dd94JwHHHHfez1y/SHF566SUMw+CJJ57AZvtp8qOcnBz+9Kc/ATBhwoRY+SuvvALAH//4R9LT02PlDoeD8ePHH5xOA4WFhQwcOJBvv/2W1157jd///vdxy59++mkAXnjhhbh+QnQquT59+vD666//7H48/fTTJCYmxp7n5ORwzjnnUF1dHTeF70svvQTA/fffT25ubqzcZrPx+OOPY7FY4l7nyZMnU1lZycUXX8zgwYPjtnnnnXfSrl07ZsyYwaZNmwDYsmULM2bMoH379txyyy1x9c855xyGDBnys/dV5NdG072JiIiIiIiIiIjIEeuiiy5i9OjRzJo1i7lz57J48WLmzp3LBx98wAcffMDYsWOZOHFiXGII0OQFB6vVyqBBg1i3bh2LFy+moKCABQsWEA6HMQyDBx98sFGbYDAIwIoVK2Jl8+fPxzCMA5pU1L9//wO2rgb9+vVrVNaqVSsgOn1Zw5RoDRoSrrZs2XLA+7I3vv76awCWLl3a5HvRMO3fihUrGiUx7e71W7ZsGX/729/44osvKCkpwefzxS0vKir6Wf1etWoVHo+HgQMHkpmZ2Wj58OHDeeSRR1i8eHGjZU29R3a7nZYtW1JVVbXXfdi4ceM+9VlEZHeysrJ4//33ycrKYuXKlVx33XU/a31NJSJ9+umnAJx88sk/a90izaG2tpa1a9fSunVrunXr1mj58OHDAeK+2xseDxo0qFH9E044IS7RCaLf3RMnTmxUt6kYaG+tWrWKAQMGUF9fz7Rp0xgxYkSjOl9//TV2u53//e9//O9//2u0PBAIUFZWRkVFRWzq5X2VlpbWZIJj27ZtAeJinEWLFgE/vaY76tKlC23atGHDhg1UV1eTlpa22/o2m42TTjqJjRs3snjxYvLz8+Pel51jX4ChQ4cyZ86c/dhLkV8vJSmJiIiIiIiIiIjIEc1ut3PKKadwyimnABAOh3n33Xe56qqrePXVVxk9ejTnnntuXJuWLVs2ua6GO7Srq6uB6EhKAAsWLNjtiDp1dXWxx263m4yMjLi7w3+uHe8cP1DS0tIalTVcINvdsobErIOt4b144YUXdltvx/eiwa5ev/nz5zN8+HBCoRAjRozg7LPPJjU1FYvFwpIlS5g8eTJ+v/9n9bvhs5SXl9fk8oZyt9vdaNnOIxg0sNlshMPhn9UvEZH95XA49jo5Yf78+UyaNInVq1djGAa9e/fmxhtvbHJ0ux3NmDGDxMTEJhM6RA61/flub2jTVAxqtVobHVMbN27koYcealT35yQprV69msrKSvr06cMxxxzTZJ2KigpCoVCT295RXV3dficp7S6+AeJinL15rTdt2oTb7SYtLW2f35vdvS/QPDG4yC+dkpREREREREREREREdmC1Wrnooov44YcfeOSRR/j8888bJSlt3bq1ybalpaXAT0k6Db9/97vf8cQTT+zV9tPT06moqMDr9R6wRKWdR4JqYLFYAAiFQk0ubyrx5Zeq4b1YunQpvXr12qe2u3r9HnnkEbxeL7NmzWLo0KFxy8aPH8/kyZP3q687auh3w2drZyUlJXH1msOTTz65T5+FPn36NDpmRET21fTp03nsscfo378/119/PX6/nw8++ICbb76ZF198cZdJBG63m4ULFzJ8+PADmvArcqDsz3d7amoqEI1BO3ToEFc/HA5TUVERN03w0KFDMU3zgPb7rLPOomvXrvzhD39gxIgRzJgxo1GiUVpaGpFIhMrKygO67f2142vdsWPHRst3fq339b1p+L2n/xuIyE+UpCQiIiIiIiIiIiLShJSUFIAmL/A0NW1DOBxm7ty5APTt2xeIThNmsVj48ssv93q7J5xwAh999BGffPIJo0eP3m3dhmkl9ndUnIyMDAA2b97caFlNTU1sCrRfCqvVSiAQaHLZCSecwLvvvsuXX365z0lKu7J27VoyMzMbJShB05+RPfWxKV27dsXlcrF06VLcbnej0QNmzZoFsMsRDQ6EJ598ksLCwr2uf8UVVyhJSUR+Fo/Hw1NPPcWoUaO4++67Y+WnnXYal112GZMmTYor39Fnn31GOBzWVG9y2EpJSaFjx46sX7+eNWvW0Llz57jlTX239+3bNzYt8c5JSvPnz99lwvmBdt9995GYmMjvfvc7hg4dysyZM+NGETrhhBP4+OOPWbZsGT179jwofdqdvn37smjRImbPnt0oSWnt2rVs2bKF9u3bx+Krhhh+9uzZXH311XH1Q6FQLKZveG8a6s+dO5dwONxoyrfZs2cf6F0S+cWzHOoOiIiIiIiIiIiIiBwKb775JjNmzCASiTRaVlpaGpsW7KSTTmq0/PPPP+ejjz6KK3vmmWdYt24dw4YNo6CgAICcnBx+85vfsHDhQh5++OEmk4nWrVvHhg0bYs9vvfVWAO68806Kiooa1d+xrOHu9U2bNu1xf5uSkpJCt27dmDdvHsuXL4+Vh8Nh7rjjDrxe736td19s3LgRwzBo167dz15XVlYWZWVlTfb7yiuvJD09nYceeohvv/220fJIJLLPF5LatWtHZWUl33//fVz5iy++yPTp0/e5j01xOBz85je/oba2lj/96U9xy9atW8fTTz+N3W7n8ssv36e+74uNGzdimuZe/0ycOLHZ+iIiR4aFCxdSV1fHiBEjcLvdsR+LxUL37t1ZtGjRLtvOnDmT9PR0+vXrdxB7LLJvrrrqKkzT5O67746LD8vLy3n44YdjdRqMHTsWgEcffTQ2xRhAIBDgD3/4w0HqddTtt9/Os88+y7JlyxgyZAjFxcWxZb/73e8AuPbaa+PKG9TX1zN//vyD1teG1/CRRx6hrKwsVh4Oh7nrrruIRCJxyUjnnnsumZmZvPnmm436+eSTT7JhwwZGjhxJfn4+AG3atOHkk09mw4YNPPPMM3H1J0+evMukdZEjmUZSEhERERERERERkSPSN998w1NPPUVubi6DBg2iffv2AGzYsIGPP/4Yr9fLOeecwwUXXNCo7VlnncXo0aMZPXo0nTp1YsmSJUybNo3MzEz+/e9/x9V95plnWLNmDf/v//0/XnvtNQYNGkTLli0pLi5mxYoVLFiwgDfffDO2/VNOOYX777+fRx55hO7du3PuuefStm1btm7dyty5cznhhBNiSSBdu3aldevWvPXWW9jtdgoKCjAMg8svvzyWKLUnd999N1dffTUDBw7kwgsvJCEhgVmzZhEMBunduzdLly79Ga/ynjUkidlsP/909YgRI1iwYAGnnXYaJ510Ek6nk969e3PWWWeRlZXFO++8w+jRoznhhBMYMWIEPXv2xDAMNm/ezNdff01FRQU+n2+vt3f77bczffp0Bg0axEUXXURaWhoLFy5k7ty5XHDBBbzzzjv71Mdd+ctf/sKXX37JM888w4IFCxg2bBjl5eW8/fbb1NbW8swzz8Q+P780c+fOZcKECQDU1dUBsGbNGsaNGxers3PS04QJE2Kjlq1duxaAKVOmsGXLFgC6devGvffe28w9F5Hm1HA833777U0uT0pKarK8uLiYZcuWcd555x2Q7xWR/bXj99jO/v3vf3PXXXcxbdo0Jk+eTO/evTnjjDPweDz873//Y9u2bdxzzz0MGjQo1mbIkCFcd911PP/88/Ts2ZPzzz8fu93OlClTSEtLo1WrVrFpfA+GG264gYSEBK6++mpOOukkPv/8c/Lz8xkxYgR/+ctfuO++++jcuTNnnHEG7du3p66ujsLCQubMmcOgQYP45JNPDko/TzzxRO655x7+7//+j6OOOooLLriApKQkpk2bxo8//sigQYPiRmVLTk7mpZde4sILL2TIkCFceOGF5Ofn89133/Hpp5+Sm5vLc889F7eNf/3rXwwYMIDbb7+dTz/9lN69e7N27Vref/99zjrrLKZMmXJQ9lXkl0LfziIiIiIiIiIiInJEuvPOO+ncuTMzZ87k+++/Z/r06fh8PrKyshg6dO9iCTgAAQAASURBVCiXXnopl156KYZhNGp73nnncd111/Hoo4/y8ccfY7fbOe+88xg/fjxdunSJq5uamsqcOXN4/vnneeONN3j33Xfx+Xy0bNmSzp07849//KPRlDQPP/wwAwYM4Omnn+ajjz6ivr6enJwc+vXrF7uTHqJTh73//vvce++9/O9//6O2thbTNBk0aNBeJyk13Mn/xBNP8Morr5CRkcE555zDY489xvnnn78fr+y++eGHHwAYM2bMz17X/fffj9vtZsqUKcybN49wOMwVV1wRSwAaMWIE33//PX//+9+ZPn06X375JQ6Hg1atWjF8+PB93t/TTjuNKVOm8Mgjj/Df//4Xq9VK//79mTVrFuvXr28ySWlPfWxKZmYmX3/9NePHj+e9997jiSeeIDExkf79+3P33Xdzyimn7NsLdRhZu3Ytr7zySlzZtm3b4sp2TlKaO3duozbff/99bESrIUOGKElJ5BeuIYH1/vvvJzMzs9HynadUajBjxgwATfUmh9zO31M7evLJJ3G5XMyYMYMnnniCN954g3/+85/YbDZ69+7Nk08+ySWXXNKo3bPPPku3bt147rnn+M9//kNWVhajR4/mscceo02bNo2mM2tu48aNw+l0Mnbs2FiiUocOHfj973/PwIEDefrpp5k7dy6TJ08mLS2N1q1bc91113HppZce1H7+9a9/pW/fvjzzzDO8+uqrBINBOnbsyCOPPMKdd96Jw+GIq3/OOecwb948HnvsMaZPn051dTW5ubnccMMN/OlPf6JVq1Zx9Tt37sz8+fO59957mTlzJrNnz6ZXr1588MEHlJWVKUlJZCeG2dSE6iIiIiIiIiIiIiLSyMSJE7nyyit5+eWXd3uHvOy9O+64g+eee47CwkKys7MPdXdEROQgWrlyJddddx333Xcfp59+eqx81qxZPPDAA/z973+nf//+e72+yy+/nFAoxJtvvtkc3RU5LK1Zs4YuXbowZswYffZF5LB38MZ8ExERERERERERERHZyZw5c7j22muVoCQiIjH9+/cnKSmJSZMmEQqFGi13u92NylavXk1hYSEjR448CD0UOfhKS0tjo4w18Hg8sWkRR48efQh6JSKybzTdm4iIiIiIiIiIiIgcMt99992h7oKIiBxk7777LnV1dVRU/H/27ju+iip9/Phnbm/pnRQILRCKgIgUQZoi2HtfFcV1Xevqz7K69nXXtbfv2sW1KwoIIlIUpEtvIQklpLd7k9v7vfP74yYDMXRpwnm/Xih37pmZc2ZCcnLPM89jA2DJkiU0NDQAcOmll2KxWPjb3/7GP//5T26++WbGjBlDYmIi9fX1LF++nN69e3Pvvfe2OaYo9Sac6F555RU+//xzRo4cSVZWFnV1dcyfP5+qqirGjx/P5Zdffqy7KAiCsF8iSEkQBEEQBEEQBEEQBEEQBEEQBEEQhKPmyy+/pK6uTnn9yy+/8MsvvwBw9tlnY7FYOOuss0hNTeXTTz/liy++IBgMkpaWRt++fZkwYUKb40WjUX766Se6d+9OXl7eUR2LIBwtZ511FuvXr2fOnDk0NTWh0Wjo3r07d911F/fccw+SJB3rLgqCIOyXJMuyfKw7IQiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCiUtkUhIEQRAEQRAEQRAEQRAEQRAEQRCEP5AtW7Ywe/Zs1q5dS11dHfHx8fTq1YtbbrmF3NzcgzrWf/7zH2bOnMmQIUN47rnn2r3v9Xr56KOP+Pnnn7HZbCQkJNCrVy8eeeQRDAbD4RqSIAiCIAgnARGkJAiCIAiCIAiCIAiCIJyU/H4/5eXldOzYUSywCYIgCILwh/LZZ5+xceNGRo0aRZcuXbDZbEydOpVbbrmF//73v3Tu3PmAjlNcXMwPP/yATqfb4/tut5u77rqLxsZGzj//fLKzs7Hb7WzYsIFQKHRQcygx9xIEQRAEQZR7EwRBEARBEARBEARBEE4q8+bNY968ebjdbjZs2MC7775LQUHBfvfbvn07Xbp0OQo9FAThaBL/tgVB+CPauHEjPXr0QKvVKtsqKyu56aabOPPMM/nHP/6x32PIssztt99Ox44dWbNmDfn5+e0yKb300kvMmzeP9957jw4dOvyuPpeUlDBp0qQDnnv90Z1sP19OtvHCyTfmk228cPKN+WQbL5x8Yz4exqs6pmcXBEEQBEEQBEEQBEEQhKNs7Nix/Pvf/+bOO+88qP0CgcAR6pEgCMeS+LctCMIfUZ8+fdoEKAHk5ubSqVMnysvLD+gYP/74I2VlZUyaNGmP77tcLmbNmsX5559Phw4dCIVCBIPB3933k8XJ9vPlZBsvnHxjPtnGCyffmE+28cLJN+bjYbyi3JsgCIIgCIIgCIIgCIIgCIIgCIIg/MHJskxzczOdOnXab1uv18tbb73FddddR0pKyh7bbNy4kWAwSE5ODv/4xz9YvHgx0WiUXr16ce+999KtW7d9nsNqtWKz2ZTXBxo8JQiCIAjCiUsEKQmCIAiCIAiCIAiCIAiCIAiCIAjCH9zcuXNpbGxk4sSJ+207efJk9Ho9V1xxxV7bVFVVAfDOO+/QoUMH/v73v+PxeJg8eTL33HMPH330EampqXvd/7vvvmPy5MnttpeVlRGJRPY/oD84t9tNUVHRse7GUXOyjRdOvjGfbOOFk2/MJ9t44eQb85Ecb2Fh4QG1E0FKgiAIgiAIgiAIgiAIgiAIgiCcVCKRCKFQ6Fh3QzgMdDodKpXqWHfjmCsvL+fll1+mV69enHPOOftsW1lZyZQpU3jsscfQ6XR7befz+ZS/v/zyy5hMJgC6devGX/7yF6ZOnbrXUnEAF1xwAcOGDWvTx2eeeYb8/HwKCgoOdGh/WEVFRQe8YHsiONnGCyffmE+28cLJN+aTbbxw8o35eBivCFISBEEQBEEQBEEQBEEQBEEQBOGkIMsydXV12O32Y90V4TBRqVTk5+fvM9jmRGez2XjwwQcxm808/fTTqNXqfbZ/7bXX6N27NyNHjtxnu9ZrOmzYMCVACaBXr15kZWWxadOmfe6fmpq6z0xLgiAIgiCcfESQkiAIgiAIgiAIgiAIgiAIgiAIJ4XWAKX09HRMJhOSJB3rLgm/QzQapaamhtraWvLy8k7K++l2u3nggQdwu9288cYb+w0KWr16NStWrOCZZ56htrZW2R6JRAgEAtTW1hIfH4/ZbFaOlZSU1O44SUlJuN3uwzsYQRAEQRBOeCJISRAEQRAEQRAEQRAEQRAEQRCEE14kElEClFJSUo51d4TDJC0tjZqaGsLhMFqt9lh356gKBAI89NBDVFZW8tJLL9GpU6f97tPQ0ADAo48+2u69xsZGrrzySu644w6uuOIKpSSb1Wpt19ZqtZKXl/f7BiAIgiAIwklHBCkJgiAIgiAIgiAIgiAIgiAIgnDCC4VCAG3KVgl/fK0lySKRyEkVpBSJRHjiiSfYvHkzzz77LL17995jO6vVisfjITs7G41Gw4ABA/jnP//Zrt3zzz9PZmYm119/PZ07dwYgLy+Prl27snjxYux2O4mJiQD8+uuvNDQ0cOmllx6x8QmCIAiCcGISQUqCIAiCIAiCIAiCIAiCIAiCIJw0TsaSYCeyk/V+vvnmmyxZsoShQ4ficrmYM2dOm/fPPvtsAN555x1mz57Nl19+SVZWFhkZGWRkZLQ73uuvv05SUhLDhw9vs/2OO+7gvvvu44477uCCCy7A7Xbz1VdfkZuby4UXXnjkBigIgiAIwglJBCkJgiAIgiAIgiAIgiAIgiAIgiAIwh/Itm3bAFi6dClLly5t935rkNLvNWDAAJ5//nnef/993nnnHQwGA8OHD+e2224TWckEQRAEQThoIkhJEARBEARBEARBEARB+MN6/vnnWbJkCX6/n4yMDG699VaGDRt2rLslCIIgCAfsiSee4KGHHsJgMBz0vq+88gpXXXUVmZmZyrHsdjuvvPLKYe6lcLx57bXXDqjd3//+d/7+97/vt91XX3211/cGDhzIwIEDD7hvgiAIgiAIe6M61h0QBEH4o5IkiZEjRx7rbgiCIAiCIPxhPfHEE0iSxIIFC451VwRB+AO74oor+Oqrr5g9ezYPPfQQzzzzDA6H41h3SxAEQRAO2JNPPonf72+3PRwO73ffV155hbq6uiPRLUEQBEEQBEE47ESQknDUPfjgg4wZM4bc3FyMRiPJycn079+fJ598EpvNtsd9XC4XjzzyCD169MBgMJCUlMS4ceOYP3/+Xs9TVlbGbbfdRo8ePTCZTGRkZDBkyBDeeecdgsFgu/Zz587lvvvuY8yYMaSkpCBJEmecccYhj7OpqYl77rmHTp06odfr6dChAxMnTqSqqqpd28mTJyNJ0j7/qNXqQ+rH/Pnzufjii8nMzFT6MW7cOGbNmtWmXWVlJbfffjunn356m7bDhw/nww8/JBQK7fUcH330EYMGDcJisZCQkMDIkSOZOXPmXtuvWbOGyy+/nIyMDHQ6HXl5edx+++3U19cf1NhuvPHGfV6z4uLiNu2P5HU+XObOnYskSQwaNGi/bT/77DMkSRJ1vwVBEITDQswZdjkSc4YpU6Zw5513Mnz4cOLj45Ekieuuu26/+y1dupQJEyaQnJyM0Wikb9++vPLKK0Qikb3uM3PmTEaOHElCQgIWi4XTTz+djz76aJ/nOdh7E4lEePnll+nbt68yp58wYcIeSwwcC8OGDUOSpHZfv3tSUFCAJEmsXbv2KPRMEIQjoWPHjuh0OiD2MEkoFMJqtR7jXgmCIAh/FNMeWcJnd/x0xP5Me2TJPs9/2223ATB8+HD69evHhAkTmDhxIiNGjKB3795A7Oeb3W5X9klNTWXnzp089dRT1NTUcOWVV9KvXz/WrVsHQG1tLeeffz6FhYWMHj2apqamI3LtBEEQBEEQBOFgiXJvwlH38ssvM2DAAM466yzS09PxeDwsX76cJ554gnfeeYfly5eTm5urtG9ubuaMM86gqKiIXr16cdttt+F2u5k+fTpjx47lvffe4+abb25zjpUrVzJq1Ch8Ph/nnHMOF154IU6nkxkzZvDnP/+Zb775htmzZyNJkrLPm2++yfTp0zEYDHTt2vV3/eJms9kYOnQopaWljB49mquuuori4mI+/PBDvv/+e5YtW0bnzp2V9v369ePxxx/f47EWLVrETz/9xPjx4w+6Hw888ADPP/88OTk5XHDBBaSmptLY2Mjq1atZsGABEyZMUNpu376dTz/9lNNPP52LLrqI5ORkbDYbP/zwAxMnTuTjjz9mzpw5aDRtv23cf//9vPjii+Tk5DBp0iSCwSBffPEF559/Pq+//jp33HFHm/YzZ87kkksuIRwOc/7559O9e3eKi4t56623mDFjBkuWLCEvL++gxnn33XeTmJjYbntqamqb10fqOh9OY8eOJT8/n5UrV7Jx40b69Omz17bvvvsuALfeeuvR6p4gCIJwghJzhiM/Z3jmmWdYv349FouFnJycdoFRezJ9+nQuvfRSDAYDV155JcnJycyYMYN7772XJUuW8PXXX7fb54033uDOO+8kJSWF6667Dp1Ox5QpU7jxxhvZuHEjL7zwQrt9DvbeyLLMVVddxZQpUygoKOCOO+6gqamJL7/8khEjRvDNN98c8yDqSZMmsXTpUt577702X7+/tXDhQkpLSxk4cCD9+/c/ij0UhBOP1+vliy++oKioiC1btuByuXj44Yf3+P0yGAzy/vvvM2fOHFwuF126dOGWW27htNNOO+Tzv/TSS8yaNYtgMMjgwYPb/M4tCIIgCPvidQTwNgWO2fnfeust3n77bRYtWkRiYiI33ngjq1evZvHixcTFxe1z38cee4wPPviAL7/8kn79+gEwbdo0VqxYwerVq0lJSeGqq67i7bff5uGHHz4KoxEEQRAEQRAOlizLNG6zs3VRDUk5FnqOzUNSSfvf8Q9KBCkJR53T6dxjbe1HHnmEZ599ln/961/83//9n7L9iSeeoKioiEsuuYQvv/xSWfB69tlnGThwIHfeeSfjxo0jJyenzT4ej4fJkydzww03KNtfeOEFBg0axJw5c1i0aBEjRoxQ3nvwwQf55z//SY8ePaisrCQ/P/+Qx/j3v/+d0tJS/va3v/Hiiy8q21977TXuvvtubr/9dmbPnq1s79evn/JL5G8NGTIEOPhAlHfffZfnn3+eG264gXfeeUd5qrTVb7McDB06lObmZlQqVbt2Z599Nj///DPffvstV1xxhfLe0qVLefHFF+nSpQsrV64kKSkJgP/3//4fp556Kvfffz/nnXcenTp1AsDv93PLLbcQCoX45ptvuOSSS5Rjff7551xzzTXccccdfPfddwc11taMVftzJK7z4SZJErfccguPPPII77777l7rim/bto2FCxeSm5t7zAOrBEEQhD82MWdo70jMGV5++WVycnLo2rUrCxcuZNSoUfts73Q6mTRpEmq1mgULFjBw4EAAnn76aUaPHs2UKVP44osvuOqqq5R9du7cyf33309ycjKrVq1SxvrYY49x2mmn8eKLL3LppZcqY4CDvzcAX3zxBVOmTGHo0KHMnz9fmdvfdtttnHHGGUyaNInRo0fvd0HlSLryyiu55557mDlzJvX19WRkZOyx3XvvvQcc+zmgIJwIHA4HkydPJiMjg65du+4zO9m//vUvFixYwOWXX05OTg4//PADDzzwAK+++ip9+/Y9pPP/7W9/4+6772bdunXs2LGjzUNJgiAIgrAvpgT9cXf8yy+//HfNp8855xxSUlKA2O8wGzduPORjCYIgCIIgHM9C/jAVaxrYsbwO6w4HmT2T6X5mNh0KU477QJ+QP8y2JTVsmVdBU7lL2V6xtpEz/9IHY/yRnaceKyJISTjq9hSgBHDFFVfw7LPPsnXr1jbbp06dCsBTTz3V5on89PR0/va3v3HvvffywQcf8Nhjjynv7dixA4ALLrigzbHMZjNjxoyhqKiIxsbGNu/tvljze7jdbj7++GPMZjNPPPFEm/fuuOMOXnrpJX788Ud27Nix3yc7N27cyPLly8nOzubcc8894D4EAgEeeeQR8vLy9rjYCKDVatu83lOb1nYXXXQRCxYsaHdv3nrrLSAWYNa6oAXQqVMn/vrXv/L000/z4Ycf8uSTTwKxRbD6+noGDhzYZrER4Oqrr+a5555j5syZlJeX07FjxwMe7+91qNd5b55//nkefPBBhgwZwowZM0hOTgZgxYoVPP/88yxevJimpiYyMjKYMGECjz/+OB06dFD2nzhxIo8//jiffPIJ//nPf/b4b+a9995DlmVuvvnmdovEgiAIgnCgxJzh4PyeOcP+gpJ+a8qUKTQ2NvKnP/1JCVCC2Fz6mWeeYcyYMfz3v/9tE6T0wQcfEAgEePDBB9sEFSUlJfH3v/+dm2++mbfeeqvNvPdg7w3Af//7XyCWHWr3ecppp53GlVdeyccff8yUKVO46aabDmrMu6uoqGD8+PFs3bqV999/n+uvvx6IZWp59dVX+fLLL9m6dSuSJNGnTx/uuusurr76amV/o9HIddddx5tvvsnkyZN58MEH253DbrczZcoULBZLm30FQTg0KSkpTJ06lZSUFIqLi/ca/FdUVMT8+fP5y1/+ovzbGzduHDfeeCP//e9/le8xAH/961/3uqh6/fXXM2nSpDbb1Go1p556Kl9//TU5OTmH7fd8QRAE4cR20T+HHesutGOxWNq8VqvVbUo++/3+fe6/+zxdrVYTDocPbwcFQRAEQTjuybJMyBcm4AkT9IQItPzZ9fcwAXeQoCe8a3vET2iogbz+aSRmW47bB4DCwQiV6xrZsayWirUNRIJR5b3tS2rYvqQGS6qRbiOy6T4im7h00zHsbXtNFS62zKtg25JqQr7YHE+tVZHbL43KdY1UrW9k6sNLGHXHKWT1TDnGvT38RJCScNyYMWMGQLunJuvq6gD2GNDTum3+/PltgpR69epFcXEx33//Pdddd52y3ev18tNPP2EymY7Yh5XLly/H5/Nx9tlnt3vaRaVSMW7cON555x1+/vnn/QYpvfPOOwDcfPPNqNXqA+7D3LlzaWxs5J577kGlUvH999+zadMmDAYDgwYNOqixRyIRZs2aBbS/Nz/99BMQezLnt8aPH8/TTz/NTz/9pCxq7etetm5fv349P/3000Etav3www84nU7UajVdu3Zl9OjRxMfHH/D+h3qdfysajXLPPffw+uuvc8kll/Dpp58qHwh88MEH3Hrrrej1ei644AJyc3PZunUr7733HjNmzGD58uVKyZrMzEzOO+88pk2bxjfffMO1117b5jzhcJiPPvoItVrNxIkTD7m/giAIgiDmDMdmznAg9nXNRowYgclkYunSpQQCAfR6/X73ac282NrmQM6zp3vj9/tZunQpJpOJ4cOH73Gfjz/++KDvze7Wr1/PhAkTcLlczJo1i7FjxwKxoKLRo0ezdu1aBgwYwMSJE4lGo/z4449cc801bN68mWeeeUY5zqRJk3jzzTd5//339xik9Mknn+D3+5k0aVK7RSBBEA6eTqdTMjbsy8KFC1Gr1W0eKtLr9Zx77rm88847bbKfvfnmm4fUl0gkQnV19SHtKwiCIAjHQlxcHA6HY4/lqQG6du3KihUrmDBhAt9++y0ej0d5Lz4+HofDcZR6KgiCIAjC0SLLMuFAhJA/QsgXJhQItw0oagk0Cu4efOTeLRjJG0aOygd93pXlJaz8vARLqpHc/mnk9Usjq1cKGt2R/Tx0fyKhCFUbrLHApDUNhPy7ArjjM0zkD84is3si5Wsa2LGsFrfVx9pvt7H2221kFSbTfUQOnQZloDUcmxCZcDBC2a91FM+rpL60WdmekGWmx5hcuo3IxmDR0VThYv5ra3HUeJj1zK/0v6Qr/S7uiuo4zwp1MESQknDMvPDCC7jdbhwOB6tWrWLx4sX07duXhx56qE271NRUamtrKSsro7CwsM17rRmTSkpK2mx/5plnWLp0KTfeeCNfffUVhYWFOJ1OZs6cSTgcZsqUKW0y1xxOrX3p3r37Ht/v1q0bAKWlpfs8js/n45NPPkGtVnPLLbccVB9WrlwJxJ6Y6d+/P5s2bWrz/ogRI5gyZQppaWnt9rVarbzxxhux2peNjcydO5dt27ZxzTXXcP755yvtPB4P1dXVWCwWsrKyDmicqampAJSVle2x33u7n/tz++23t3kdFxfHv/71L/7617/ud9/fc5135/f7ufbaa/n222+54447ePXVV5UMR6Wlpdx222106tSJhQsXkp2drew3f/58zj77bO6++24laxjESo5MmzaNd999t12Q0owZM6irq+Pcc88lNzf3kPssCIIgCGLOcPTnDAdqX3NKjUZDfn4+mzdvZseOHfTs2XO/+2RlZWE2m6mqqsLr9WIymQ7p3mzfvp1IJELnzp3bZDnd1z4HY968eVx66aWYzWYWLVrEKaecorx3zz33sHbtWp577jkeeOABZbvf7+eiiy7i2Wef5bLLLlNK9Z1yyikMGjSIX3/9lQULFjBy5Mg25xKl3gTh2Ni6dSs5OTmYzeY221u/l23btm2vJRr3xO12s2zZMoYNG4ZOp2PRokWsXbt2r/+2rVYrNptNeV1eXn4IoxAEQRCEw+u+++7jrLPOwmQy7fFz65dffpm77rqLRx99lHPPPbdNYPBdd93FpEmTMJlMTJ48+Sj2WhAEQRCE3UUjUYK+MGF/hJA/vCu4SHkd+3vYv9s2X4RQINymnbJ/IAIHH2PUjlqrQmfWojdrWv4f+7Pr7xr0Zh06s4Ztm3cSqlVTW2TDbfWxZW4FW+ZWoNap6NArhbz+6eT2S8OSavz9HTsA0XCU6s02diyrpXxVPUHvruyQllQD+YOz6DI4i5T8eCXrU27/dAZf35PyVfWULqyiepON2qImaouaWPqRmvzTs+h+Zg4Z3ROPSqYoZ72HLfMrKV1QRcAdAkBSS3Q6NYOeZ+WRVZjcph/JeXFc9MxQln1UROnCatZ8s43aLU2M/OspmJP2XLHqj0YEKQnHzAsvvEB9fb3y+pxzzmHy5MntFsHOPfdc3nvvPR5//HG++OIL5an1xsZGXn75ZQCam5vb7NOjRw9WrlzJ1VdfzYwZM5QsTVqtlnvuuYfBgwcfsXG1PrWSkJCwx/dbt9vt9n0e56uvvsJutx9SIEpDQwMQKztWWFjIokWL6NevH2VlZdx///3MmTOHyy+/nAULFrTb12q1tinnIUkS999/P88++2ybdocyzmHDhpGYmMjKlSuZPn06F154YZvxrl+/Hmh/P/dmxIgRTJgwgcGDB5Oenk5NTQ1Tp07lySef5I477kCr1e530en3XOdWTU1NXHDBBSxdurTdohnESqKEQiFeffXVNgFKAGPGjOGCCy5gxowZuFwuJfvWuHHj6NixIwsXLmTr1q3Kgh+IBTVBEATh8BFzhqM7ZzgYh3LdDmQfj8eDw+HAZDIdsXP8dp8D9cknnzBx4kS6du3K7NmzlSyTADabjU8++YSBAwe2m2sZDAaee+45fvzxRz777DMlSAli86Vff/2V9957r02Q0sqVK1m/fj39+/dvU05PEIQjz2az7THjUus2q9V6UMeTJImZM2fy8ssvI8sy2dnZ/OMf/2jzO9Tuvvvuuz0u4JaVlbUpo7M3breboqKig+qjIAjHP/Fv++QRjUaJRqP4/X5k+TCs+h0mDzzwQLt5rs/nU/4+cuRINmzYoLz++9//rrS59tpr2zzk2JpFtHX/m2++mZtvvrnN8U40gUCAUCjEtm3blAdHgXYPPQuCIAjCkbJ1UTXL/7eFgCd0+A8ugdagQWtQozPtPdBo9+16y673DiYDksdoo7CwkJA/TM1mG5XrGqlc24inyU/l2tjfAZJy48jrn0ZuvzTSuyWiUqv2c+QDF43K1BbZ2LGsjp0r65TAHgBTkp780zPpMiSLtK57DzLS6NR0GdqBLkM74Lb62LqomtKFVbgafJQuqKJ0QRUJWWa6jchGzjj8ZXGjkSgVaxopnl9B1YZdn3OYUwz0GJ1LwcgcTPsIONIaNIz4c1+yeqWw5P3N1BY1MfXhJZz5l77kntL+geI/GhGkJBwzrWU86uvrWbp0KQ899BD9+/dn5syZDBgwQGn31FNP8eOPPzJlyhT69evHmDFj8Hg8TJ8+nezsbCoqKtr84gGwdu1aLrroItLT05XFNrvdzieffMKjjz7KtGnTWLly5V4XV44HreVE/vznP7d7b+fOnXv8UPWJJ54AYr9sQ+wp+++++45OnToB0KdPH6ZOnUpBQQELFy5k2bJl7cq49OjRA1mWlfT4U6dO5bHHHmPx4sV8//33JCcnH/KYzGYzr776KjfeeCOXXHIJF1xwAd26daO4uJiZM2fSr18/1q1b1+5+7s1vS5117tyZ++67j4KCAs4//3weeeSR/ZZj2dd1PhD19fUMGzaMHTt28Mknn3DNNde0a7Ns2TIgVtagNWPF7hoaGohEIpSWlnLqqacCsdKAN998M4899hjvvfcezz33HABVVVXMnj2bDh06cO655x5SnwVBEAShlZgzHJ45w/7mZsL+vfrqq0yfPp1hw4bx3XffkZSU1Ob9lStXEolEkCRpj9c1FIp9WLFly5Y226+66iruvfdevvnmG15//XXluO+++y4QKwknCMLRFQgE0Gq17bbrdDrl/YPR+jPjQF1wwQUMGzZMeV1eXs4zzzxDfn4+BQUF+92/qKhILHgKwglI/Ns+efj9fsrKyjAYDBgMJ8aT6EIsaFmr1ZKfny/uqyAIgnBUhfxhlk4uYusvu0qOq7UqNHo1WmMssKg1wCj2/9jfNQYNWqMarb7l/7u9p215T2PQoDNoUOtURyXjz+60Bg0dT82g46kZyLJMU6VLCVJq2NpMc6WL5koX67/bgd6sJeeUVHL7pZFzShqGON1Bn0+OytSVNLNjeS1lK+rwO4PKe4Z4HfmnZ9J5cBaZBUlIB1n2zJJqpP/FXel3YRfqSpopXVhF2Yo6HLUeVn1ZChLULwzQ/cwcOp6ajlp76GXtPM1+Sn6upOSnKjxN/thGCXL6ptJzbB65/dIOKqCr2xnZpHdJ5KfX1mIrd/Hjc6voe34+Ay/vjkpz+ALDjjYRpCQccxkZGVx88cUMGDCA7t2786c//alNqZGsrCxWrlzJ008/zcyZM/m///s/UlNTufLKK7n77rvp1q0b6enpSvtwOMwVV1xBY2MjK1asIDMzEwCLxcJDDz1EfX09r7zyCi+//PIRWThqDXzaWx3w1u17qy8OsHnzZpYuXUpOTg4TJkxo9/7OnTvbZC5o1Tqe1mP3799fWWxsZTKZGDduHO+//z6//vpruwXHVmq1mry8PO6++24yMjK4+uqreeyxx3jjjTd+1zj/9Kc/kZuby3PPPceCBQuYNWsWPXv2ZPLkyTQ0NLBu3bo29/NQnHfeeWRnZ1NdXU1RURF9+vTZY7v9XecDUVdXh9PpJCcnhzPOOGOPbVpLCTz//PP7PJbb7W7zeuLEiTz55JN89NFHPPPMM2i1Wj744AOi0SgTJ07c50KqIAiCIBwIMWc4PHOG/c3NDsWhXLeEhASsVisOh2OPWUp+mwXpUM9xsPsciF9++QVZlhkzZky7ACXYNZ9auXLlHoO+W/12PmU2m7nmmmt4++23+eSTT7jzzjvxeDx88cUXmM3mdmV1BUE48vR6vRJYuLtgMKi8fySlpqYqZUUFQRAEQRAEQRAE4VA1V7mY/+o67NVuJAn6X9qVU87v/LuCXI5HkiSRkhdPSl48/S7sgt8VpGqDlcq1DVRtsBJwh9i+tJbtS2uRJEjvlkRu/zRy+6eRnBu31wArWZZp3GZn+7JYYJK3eddDS3qLlk6nZdJ5SCZZPZMPS6YmSSWR1TOZrJ7JDLmhkJ0r6ihZWEV9STNV661UrbeiN2vpMjRWDm73EnL7Ikdlajbb2DKvgvLVDcjRWLZOQ5yW7iNz6TE6l/gM0yH3OyHLzPlPDuHXT4spmlvBhhll1G1pZtSdpxCXdujHPZZEkJJw3OjYsSOFhYWsW7cOq9Xa5kPDjIwM3njjDWWxq9VPP/0EwGmnnaZsKy4uZtu2bQwYMEAJUNrdqFGjeOWVV1i9evURGUfrk5elpaV7fH/r1q0AdO/efa/HaH1Sf29P9I8cOXKf6Yhb+7C3xaHWhZ8DTfE7fvx4gDalXsxms7KoV1tbS1ZWVpt99jXOUaNGMWrUqHbb//SnPwFt7+ehSktLo7q6Go/Hs9c2+7vOB+KUU07hlltu4cYbb2TEiBH89NNPdO7cuU2b3Rfz4uPjD/jY2dnZTJgwQSlZeNFFF/HBBx+gUqm45ZZbDqm/giAIgrA7MWc4PHOG/c3NDkVBQQGrVq1qk2mxVTgcpqysDI1G02beUVBQgNVqpbS0tF1QWW1tLR6Ph5ycHEym2C+vh3JvunTpglqtZseOHYTDYTQazX73ORDvv/8+//73v3nyySeJRqM89dRTbd5vnU/de++9vPTSSwd17FtvvZW3336b9957jzvvvJMvvvgCl8vFxIkTD2puJgjC4ZGSkkJjY2O77a3BiEcrgGjevHnMmzevXXCjIAiCIAiCIAiCIOyLLMuULqhi6UdFRIJRTIl6Rt5xCh0K2z80eCIyxOnoOqwDXYd1IBqJ0rDNQeXaBirWNtJc6aK+tJn60mZWfVmKOcVAbr9YWbjs3qmodSpsZU62L6+lbHkdbuuuz511Jg0dB2bQeUgW2b1SjmimIJ1RQ/eROXQfmcPqxeuJVhvZtqgaT5OforkVFM2tICk3ju5nZtP1jA4Y49s/UOV3BSn9pZri+RU467zK9sweSfQcm0en0zIOW8CaRqdm6E29yOqVwqJ3NtKwzc7Uh5cw4s996HRa+3iI490fNweUcEKqqakBOOCAkf/9738AbUpstaaGt1qte9yn9cPQ1lTyh9vgwYMxGo0sWbIEl8vV5r1oNMqcOXMA9rjgBrGUwx9//DFqtZqbb775kPowZswYJEmiqKhIKeOyu9ZMVfn5+Qd0vOrqWIrC3y5CjR49GoDZs2e32+eHH35o02Z/7HY7M2bMIC0tjbPOOuuA9tkbh8NBcXExkiTtdYyH4zq3uu666/jiiy+oqalhxIgR7QLUBg8eDMCiRYsO+ti33norAO+99x5z586lvLycs88+m44dO/6uPguCIAgCiDnD0Z4zHIx9XbNffvkFr9fL0KFD22QcOZTrfLD7GAwGhg4ditfr3ePc5mDvZ6vExETmzp3L8OHDefrpp3nggQfavD9o0CBUKtUhzacGDBjAqaeeyoYNG/j111957733gF3zLEEQjq6uXbtSVVXVLji0qKhIef9oGDt2LP/+97+58847j8r5BEEQBEEQBEEQhD++oC/Mgv/bwKJ3NxEJRsnpm8rF/xp20gQo/ZZKrSKzIInTrirg0ufO4KrXRjJsYi9y+6eh1qnw2PwUz69k7otr+PjWeXx59wKmPbqUjTPLcFt9aA1qugzN4qz7BnDtf0dz5m19yT0l7aiWMjMmazntyu5c+dpIznloIJ0HZ6HWqmiudLHik2I+++vPzH1pDeWr64mGo9SXNrPwvxv4/I6f+fXTYpx1XrRGDYVnd+SS587gvMcG02VohyOSUSt/UCYX/2sYaV0TCHrDzHt5LUsnFxEORg77uY4kEaQkHFWlpaV7LA0RjUZ55JFHaGhoYOjQoW1KPESj0T0+2fjxxx/zv//9j6FDh3LRRRcp23v37k1iYiIVFRXKAkQru93OCy+8AMQW5X6v4uJiiouL22yzWCxcf/31eDyediU+3njjDXbu3Mm4cePaZdtp9fXXX9Pc3Mz48ePJzc09pH517NiR888/n4qKCl599dU2782ZM4cff/yRxMREzjnnHGX7mjVriETafwNzu93cfffdAJx77rlt3rvtttsA+Oc//0lzc7OyfefOnbz55pvo9XpuuummNvv8NnALwOv1csMNN2C323nqqafapfffvn07xcXFbUoC1NXVUVVVtcf+3njjjfj9fsaOHUtGRka7NnB4rvPuLrvsMqZMmYLVauXMM89k8+bNynt33HEHWq2We++9d48ZtoLB4F4X3MaPH09OTg4//vijklFg0qRJv7u/giAIggBiznAs5gwH6rLLLiM1NZUvvviCVatWKdv9fj+PPvooAH/5y1/a7HPTTTeh1+uVOWer5uZmnn32WWDXvWh1KPem9byPPvoofr9f2b5y5Uq+/PJL0tLSuPTSSw96zHFxccyePZsxY8bw/PPPK19PAOnp6Vx77bWsWrWKp59+eo9fg9u3b6esrGyPx26dP91///0sX76cvn37cvrppx90HwVB+P1GjhxJJBLhu+++U7YFg0FmzZpFYWHhXr8fC4IgCIIgCIIgCMKxZCt3Mv3RpWxfUoOkkjjtqu6Me2AgxoQjW7b8j8SSaqTn2DzG/b+BXP/OWMY9MJDCs/KwpBmJhKK4rX7UOhX5p2cy5p7+XPvWGEbd0Y+Opx6+rEOHSqWSyOmbxui7+nHNm6MZelMhqZ0TkCMy5avqmfviGv43aR4znljO1kXVREJRUjrFc8YtvbnmzVEMvbGQ5Ny4I97PuDQT5z82mL7nxx66LZpTzozHl+Go3XulgOONKPcmHFWzZs3i4Ycf5owzziA/P5+UlBTq6+tZuHAhO3bsIDMzk3fffbfNPl6vl4yMDM466yy6dOmCSqViyZIlLFu2jJ49e/L111+jUu2Kt9Pr9bzyyivcdNNNTJo0iS+++IL+/fvT3NzMd999R2NjI4MHD273JPzixYuVoKbWoKitW7dy4403Km0mT57cZp+ePXsCtCvv8eyzz7JgwQJeeukl1q1bx6BBg9iyZQvTp08nPT2dN998c6/XqLWcyO99svvNN99k7dq1/O1vf+P777+nf//+lJWVMW3aNNRqNe+9955SNgPgqaeeYsmSJQwdOpS8vDxMJhOVlZX88MMP2O12hg4dysMPP9zmHEOHDuVvf/sbL730En379uWyyy4jGAzy5Zdf0tTUxOuvv06nTp3a7PPRRx/x4osvMnLkSLKysrDZbMyYMYPa2lruvvvudgtnEAsoKy8vp6ysTDlecXExY8eOZciQIXTv3p309HSqq6uZO3cudXV1dO7cuV2Q2u4O13Xe3QUXXMD06dO5+OKLGTlyJPPmzeOUU06hR48efPDBB0ycOJFevXpxzjnn0L17d0KhEBUVFSxatIi0tLR2AW8Qyyo2ceJEnnrqKZYuXUpmZiYXXHDBYeuzIAiCIIg5w9GZM0ybNo1p06YBscApgGXLlilzzdTUVCWYHiA+Pp53332Xyy67jJEjR3LVVVeRnJzMd999R0lJCZdddhlXXnllm3Pk5+fz/PPPc9dddzFw4ECuvPJKdDodU6ZMoaqqivvuu69dGbhDuTdXXXUV3377LVOmTKF///6cf/752Gw2vvzySyKRCO++++4hl1EzmUzMnDmTSy+9lNdeew2/389bb72FJEm88cYbbN26lccee4yPP/6YM844g4yMDGpqatiyZQsrV67k888/32NWrGuuuYb7779fCQwXQd+CcGR88803uN1upXTbkiVLaGhoAODSSy/FYrFQWFjIqFGjeOedd7Db7WRnZzN79mzq6up48MEHj1pfRbk3QRAE4WBF5Chr3DuwhpykauMZYOmMWhLPgQuCIAjCiU6WZYrnV7L84y1EQlHMyQZG3dmPzIKk/e98EtPo1EqptyGyjL3ajdvmJ7MgCa3h+A5T0Vu0FJ7VkcKzOtJU6aJ0YRXbFtfgdwZRa1V0HpJFz7F5pHVJQJKko94/lUbFoKt7kNUzhYX/XY+t3MW0R5YwbGIvup6RfdT7c9BkQTiKNm7cKP/1r3+VTznlFDklJUVWq9VyfHy8PHDgQPnxxx+XbTZbu32CwaA8ceJEuXv37rLJZJJNJpN8yimnyP/85z9lj8ez13MtXLhQvvjii+XMzExZo9HIZrNZHjBggPyvf/1L9vl87dp/+OGHMrDPP7+1t+2yLMs2m02+66675Ly8PFmr1cqZmZnyTTfdJFdWVu61z0VFRTIg5+TkyOFweK/tDlRDQ4N8xx13KH1ISUmRL7roInnFihXt2s6cOVO+9tpr5W7dusnx8fGyRqOR09LS5DFjxshvv/22HAqF9nqeDz/8UB44cKBsMplki8UijxgxQp4xY8Ye2y5btkweP368nJmZqfRp/Pjx8qxZs/Z6/I4dO8qAXFZWpmyrqKiQb731Vrl///5yamqqrNFo5Pj4ePm0006Tn3nmGdnpdO71eIfrOgPymWee2W77zz//LFssFjkpKUn+9ddfle0bNmyQb7jhBjkvL0/W6XRyUlKS3KtXL/nWW2+V58+fv9fzVFRUyCqVSgbkhx9++JD7KwiCIAh7I+YMe3Y452aPP/74PueZHTt23ON+ixcvlsePHy8nJibKBoNB7t27t/zSSy/tsz/fffedPGLECNliscgmk0keOHCgPHny5H3272DujSzLcigUkl966SW5d+/essFgkBMTE+Xx48fLS5YsOaDr0ar1uvz8889ttgcCAfniiy+WAfmGG26QI5GIsv3111+XhwwZIsfHx8s6nU7Ozc2VR48eLb/88suy1Wrd67luueUWGZCNRqPc3Nx8UP0UBOHAXH755fLw4cP3+KempkZp5/f75TfffFO+8MIL5TFjxsiTJk3a48+co6G4uFgePny4XFxcfEDtN2/efIR7JAjCsSD+bZ88fD6fXFRUtMfPh/dlbtN6+az1T8h9V92r/Dlr/RPy3Kb1R6inx97jjz9+0NfpQHz44Yfyli1bDmnf119/Xb7hhhvabT/U+yocfQc79/qjO9l+vpxs45Xlk2/Mv3e80WhU9jkDcuMOu1z2a628cdYOedn/iuQ5L62Wv314sfzVfQvl1d+Uyl6H/zD1+Pdbv3qjPO/VNfK7V8+S3716ljz7PytlnzNwrLt1xJxsX9OyfOBjjoQicsO2ZtnnOr7uv7vJJ898ernyNbrwrfVy0Lf3z+iPh3ssyfJvUsAIgiAIgiAIgiAIgiAIwkmgpKSESZMm8e6771JQULDf9kVFRRQWFh6FngmCcDSJf9snD7/fT1lZGfn5+RgMhgPaZ17zBu7fMZnfLqS0PjP/QucbGZvU97D1MRwOo9Ec++wCkiTR3NxMYmJiu/d+Tx9HjhzJPffcw0UXXXTQ+77xxhusWrWqXcWDQ7mvwrFxsHOvP7qT7efLyTZeOPnGvL/xylEZnyOA2+rD1ejDbfXhtvpb/h/7E/JH9nsetVZFtxHZ9B7ficQOlsM5hIPSuMPB7Bd+JWAPI6klBl1VQO8JnY5J5pyj5WT7moYTY8zRqMy6qdtY++02ZBkSs82Mvqv/HsvPHQ/jPfYzXUEQBEEQBEEQBEEQBEEQBEEQhONMRI7yn8qp7QKUIJYSVQL+UzmNUYm9f1fpN0mSeOyxx5g1axYjR47kscce429/+xvr16/H7/czePBg3njjDXQ6HdXV1dx9992UlJQgSRIXXnghTz/9NA0NDdx2221s3boVWZa58847+fOf/wxAp06d+NOf/qSUvb755pt59NFHAXjmmWf49NNP0ev1AEyfPp1//etfAAwfPhy1Ws2cOXN44IEHUKlUbNu2jYaGBoqLi9sFMqWmprJq1So6derEli1buOeee6itrQXg9ttvR6PRsGrVKu69916eeOIJnn32WSZMmMALL7zAV199RTgcJj09nbfffpuOHTvicrm45ZZbWLduHWlpafTq1euQr7EgCILw+8lRGVejNxZw1BgLPnJZfbhbA5JsPqLh/edHMcTriEs1YkkzYklt/WMg6AuzeXY51h0OiudXUjy/krwB6fQ5txOZPZKPWnCQLMts/rGcXz8tJhqRsaQaGX1XP9K7Jh6V8wvCwVKpJAZc2o3MnskseGM99moP0x9dypAbCikYlXPcBdaJICVBEARBEARBEARBEIQT2Jo1a1i9ejWbNm2ioaEBh8OBwWAgMTGRzp07069fP4YMGUJKSsqx7upRM2/ePObNm4fb7T7WXREEQRCOU/+rX8D7tfOxRzx7bSMD9SE7/674lkc6Xva7zqdWq1m5ciUAt956K8OHD+fdd99FlmUmTZrEq6++yv/7f/+P6667jrPPPpspU6YA0NjYCMCdd95JQUEB3377LQ0NDZx66qmccsopDB48GAC73c6yZcuwWq106dKFm266CZPJxAsvvEBtbS1GoxGv14tKpeKtt97i7bffZtGiRW0yKa1evZrFixcTF9f+qfzdhcNhLrzwQp588kmuvvpqAKxWK6mpqXzyySdtMil99tlnlJSUsGzZMtRqNR9//DG3334733//PU899RR6vZ7i4mKcTieDBw/m9NNP/13XWRAEQdi3gDuEs8GLq+WPs96Lq8GHsyEWnLRMrtjn/pIEpmSDEnwUl7YrCKl1m0an3uv+XYd1oK64mY3fl1GxpkH5k5ofT59z88kflIlKc+iBwfsTcIf45Z2NlK+qByC5wMi59w1Db9EesXMKwuHSoTCFi/89jIX/3UjV+kYWv7eJmk02zrilF7UqO9NsK9gS3EnP6h1clHI6HQ1px6SfIkhJEARBEARBEARBEAThBOPz+fjmm2+YMWMG9fX1yHLsaVadTkd8fDyBQICysjK2b9/O3Llz0Wg0DB06lCuuuII+ffoc494feWPHjmXs2LFKyZED0VztxmcLHeGeCYIgCMcLT8S/zwCl3dnCrt99vokTJyp/nzZtGsuWLeOll14CYj/X1Wo1brebxYsX8+OPPypt09Jii0vz5s1j9erVAKSnp3PJJZcwb948JUjpmmuuAWLZjjp37kxZWRlDhgyhW7duSuDTueeeS05Ozl77ePnll+83QAliJb38fr8SoNR63j2ZNm0aK1eu5NRTTwUgEtlVBmj+/Pm8/PLLSJJEQkIC11xzDdu3b9/v+QVBEIS9i0aieGz+lkAkX0sQklf5f9Ab3uf+Ko2EJaUl8CgtFnwUl2rCkhYLQjInGX5XEJEkSWT1TCarZzL2GjebftjJ1l+qsZY5+fmN9axMLaHXuE4UjMpBZzq8gUMNW5v56fX1uK0+VBqJ06/tCTluEaAk/KEY4/WM+3+nsvH7MlZ+VcqO5bXMkzbww9D1SEhEkfm1bieT637miY5XcmHqoKPeRxGkJAiCIAiCIAiCIAiCcAKZPn06H374Ic3NzXTp0oWbb76ZXr160aNHD0wmk9JOlmWqqqooKipi5cqVLF68mEWLFjFs2DD++te/0qFDh2M4iuOLLMsseX8T9aXNBMu09L+kKwaL7lh3SxAEQTiCzGoDiWrzAQUqpWj2H7izPxaLRfm7LMt88803dO/evU2bg8kA+NuyHgaDQfm7Wq0mHA6jVqtZvnw5S5cuZcGCBQwePJjPP/+c4cOH77ePrcfZPajI7/cfcP9aybLMww8/zK233rrftsdbqRJBEITjVdAbUrIfueq9u2VGipVnkyP7LslmTNQTn24iLt1IXLqJ+AwTcekm6uyVnHJaHyTV0fl+nNjBwhk39+bUy7uxZV4FRXMqcFv9rPi0mDXfbqPH6Fx6jeuIJdX4u84jR2U2zipj5ZelyBGZ+AwTo+/sR2rnBIqKig7TaATh6JFUEn3P70xmjySmTF7CrMHrWsoXx/4bafn/E+Vf0t+ST95RzqgkgpQEQRAEQRAEQRAEQRBOIK+88gpjx47l6quvpnPnznttJ0kSubm55ObmMm7cOAKBAHPnzuWTTz5hzpw53HjjjUev08e5itUN1BU3A7B5djnbFtXQ/9KuFI7NO6KlBgRBEIRj508ZI7k2fQTjNz5NQ8jBnpZzJSBdm8hDeZcc1nNfdNFFPPfcc7z99ttoNBqam5ux2Wx07dqVESNG8OKLL/Lwww8DsXJvaWlpjB07lnfffZd//vOfNDY28u233/L111/v8zwulwuXy8Xw4cMZPnw4mzdvZu3atQwfPpy4uDgcDkebcm+/1bVrV1asWMGECRP49ttv8XhiAV0FBQWYTCY+//zzduXe4uPjcTgcbcb64osvctlll5GcnEwoFGLTpk3079+fsWPH8uGHHzJixAhcLheff/45p5122u+8uoIgCCeOaFSmudJFwzY7DVvt2KvduBq8+F37zgCr0kjEpe0KPorPiAUjxaWbiEszojXsOYSgqaj2qAUo7c4Yr2fAJd3oe15nti2pYdOsMuzVHjZ+X8amH3bSeXAmfSbkk9o54aCP7XcGWfj2BirXxsqndh6cxRm39DrsWZoE4VhI75aE/5YoklVC3sNsVkJiqm0Fd2efd1T7JYKUBEEQBEEQBEEQBEEQTiD/+9//yM3NPej99Ho95513HuPHj6e+vv4I9Oz4MW/ePObNm3fAGSmy+6Qy4LKurJu+nWhIJuAJsfx/W9gyt4LTr+1Bbv80kd1BEAThBKSWVDyQezH375iMBG2Wdlq/6z+QexFq6fAGrL788ss89NBD9OvXD5VKhUaj4T//+Q9du3bl448/5s4776RXr15otVouvPBCnnzySV577TX+8pe/0KdPH2RZ5pFHHuH000/f53kcDgeXXXYZHo8HSZLo1q0bN9xwAwD33XcfZ511FiaTiTlz5uy1n3fddRePPvoo5557LikpKQBoNBqmT5/OnXfeybPPPotKpeL222/nz3/+M7feeiv33XcfL7/8Ms8++yzXXnstNpuNUaNGARAOh5k4cSL9+/fnH//4B7fccgs9evQgLS2NM844g0AgcBivtCAIwh+LzxmgYaudhm0OGrY2Y93hIOSP7LGtIU5LXIapJSNSy/8zjMSnmzAlGY5JsNHvpdGp6TEql4Izc6hc38jG78uoLWpi+9Jati+tJbNnMn0mdCKvf/oBja+uuImf3liHtymAWqtiyJ96UjA6V/xuJ5xQ6mUH7GWqKiNTE2g+uh0CJFmW953PTRAEQRAEQRAEQRAEQRBOQCUlJUyaNIl3332XgoKC/bZfu3wDzrWwdVF1m+3ZfVI4/bqeJOf+/nI/giAcfUVFRRQWFh7rbghHgd/vp6ysjPz8/Dblz/ZnXvMG/lM5lfrQrgxAGdpEHsi9iLFJfY9EV4WDcKj3VTj6Dnbu9Ud3sv18OdnGC0d2zNFwlKaKWJak+q12GrfZcdZ727XTGtWkdU4kvVsiKZ3ilTJtRyIT0PF4j61lDjbO2smO5bVKGbuELDO9J3Si2/BsNDp1u33kqMz673awespW5KhMQpaZ0Xf3IyUvvl3b43HMR9LJNl448cf8avVMPqpbQIRou/fUqLghc6TIpCQIwp6Fw2GsVisNDQ1YrVZ27tyJ1WolFArR2NhIeXm5Uke8ubmZSCSCVqslHA7j9/uJRqNEIhECgQBGoxGv10swGESj0aDRaLBarQDExcVRU1NDfHw8KpWKaDRKUlISKpUKr9eLWq0mPj6eaDSKLMvIsozZbCYYDBIXF0cwGESr1ZKQkIBOp8Pj8RAfH0+PHj3QarUEAgH69OlDp06diI+PJzs7m/j49j/0BUEQBEEQjqVgMIjH48HtduNwOGhoaECWZXw+H2VlZTQ2NpKamkooFGLt2rUYDAays7Oprq5m+/bt5OTkkJiYyNq1a/H7/fTq1YtwOMy6deuQZZkuXbpQUVFBXV0dLpeLrKwsevTogcfjoaGhAaPRSGFhIdu2bSMYDDJw4EAMBgPr169Ho9EwZMgQANatW0deXh5du3bFbrfjcrkYPHgwiYmJuFwu4uLi6NKlCxaLBYPBgNlsRqMRvwYKgiAcKn28hjP/Ukjh2Xks/7iY+tLYE4fVG21MfWgxBaNzOfWybhgT9Me4p4IgCMLhNDapL6MSe7PGvQNryEmqNp4Bls6HPYOSIAiCcPLyNvtjZdtaSrc17nAQCbYPKkjMNpPeLYn0rrHApMRsC6o/YFakwyU1P4FRfz2FQVd1Z9OP5RTPr8RR62HJ+5tZ/VUpPc/qSOFZecrvaF5HgIX/t57qjTYAup7RgWETe+21xJ0g/NFdlHI6k+t+3uN7MjIXp+w78+aRIP61CcJR5vf7KS0tpbi4mJKSEsrKynA4HPz87SKMKToCoQAupwvUMkaLEbfbQyQSPqBjS5KELMvo9XrUajVerxeQSEpKRKVS0WRrRq1SkZ6ZjizLNNQ20iE3C51OR8AbxO8JkJqail6vx2Aw4PcFsDc6iI+PJxgMUl1eg4xMZnYGkUiEhroGEpISkCQJn8+Hz+fHbDYRjUbx+XwHfW0SEhJQq9U4m9yYDEY6dMzCXuuk/7BT0Ov1JCYmMmTIELp3705eXh55eXlikU0QBEEQhH1yu93U19dTX19PZWUlVqsVt9vNO//4CFWcjMvuJhQNIpllQnIQn9dHmNAea3T/lgo1EhI6oxaVSkXYE0Vn0qA1aFm/ZgMhZwRLphG1Ws321TuRUJHUOQ5Jklg+czXmND16g55QKIRer2flrHVokzQYk7V4XB5mrpmNOVuPLMt89s5XyEQxpGiJRqMsmb8MWS2j1ktEIhHCgQiyKko02v7Dq99So0avM2COMxFuBnVUQ2JWPHqNHl9lmLtf/TNut5uCggK6detGSkqKMkcUBEEQYtK6JHLe46dTtqKOXz8vwd3oQ5aheH4l25fW0u+iLvQ+pyNqbfundgVBEIQ/JrWk4rS4rse6G4IgCMIJIBKOYtvpjJVu2xoLTHJb26+r6Uwa0rslKgFJaV0S0ZsPf4akE4E5xcjp1/Sg/8VdKV1QyaYfynFbfaz9dhsbZuyg6xnZZBUms+LTYnz2AGqdimE39qLbmdmivJtwQutoSOOJjlfyRPmXSEhEkVEhISPzRMcryTOkHfU+idV9QTgMvF4vRUVFlJSUsG3bNsrKyqivr6ehoQGbzYbb7abJ1gxSLPPQ3khyMnqzHtkJJq2JgoLuBHxBqjfW0/vMHiQlJ7Luu2I0ES3DbhyATqdn7TulaNV6Rj14KkFniLVv7qDnFTkkdYpn48c7cJX7OfWGbmj0Klb8pwRkOO2q7rgbfGz5tBJDQEfBuTmU/1SPfasHimHc9edSv95OY6UdJOg1pBO+Jj87dtZhytDR57rO1Ky0Ullvpfu4bFK6JrDyzWLC/iin39kDSS2x/NktAAx+pAeuJjfL/28TXS7OxJJmomT5Nqo21NPnom5EIhFWzFhDmDAFhZ1xuVx4mrahNWmwO+zYA3Z++OEH5RpNnjxZ+btGoyESjhAXH0dKSgo6nY6MjAzi4+NJSkpi8ODBdOvWjc6dO9OlS5cjdfsFQRAEQTiKZFnG6XQqgUc1NTXU19djtVqprq6mvLwct9vNhhWbCKoCRKLtg701aDHoDFh0ZmSDhMarJSM3FUuCiYYVLjRoKTg3FzkkUTXHRkq3RPJHZNGwxkHTWi+FV3YiOS+elS+UAtD/5i4EHCGKPqlAq1PT59pOVC2x0bDWTmpqHBmnJlP8ZSWRQJT0hES0Jg3VO6xghbhcEwm9TFQtsZItgdmgJ6N7EuULGohIUXIL0jClGCiZUglA30vy8dsClE6twZJlpPDqPCoWN1C3vJkeV+ZgyTWx7D+biBCm543ZBAJBNn1eBmaZjmelYa92UrWygcQCE5IhSsWaOsIE8Uke7F4bTtzce/e9RH+T/leSJLTo0MkGuvXvTEJCAgMGDCAjI4NAIKAENKWlpZGeno5OpzvyXwyCIBw0l8vFkiVLOOecc451V04IkiTReXAWeQPS2Tx7J+umbyfkixDyhVn5eQnF8ysYdE0POp2WIT70FgRBEARBEISTWDQqU7m2gdotTTRstWPb6SQS+u1nL5CUG6cEJKV3TSQhy4x0EmdJOhQ6o4be4/MpPLsjO1fWs3FmGY07HJT8XEnJz7HP15JyLIy+qx9JOaJct3ByuDB1EP0t+Uy1rWBL4056pnXi4pTTj0mAEoggJUE4IFVVVaxcuZL169dTUlLC9u3b2bx2C4GwnyiRvT5pL6EiMysWNOO3hbDozQwY1Q+/PUTdMjsDL+1NdrdM1r25jbAbBt1SgCQRCyYKwJCzC3FWutm8qYKOhnQ6FKYgrbPg3OkjSZOG3qIlQUqBKER8UQK2EAAVP1kxX27EkKjHVe6nZrmVjH5J6OI1BJ1hqn+1odHGUhH7G4MUfVpBpzEZqNUqbMUupf8ag4r8c7Ko/tWKfZsbAK1BTfNWF9VLmgCIeGVcVT7C9thkKuAI4WsKAGDK0BENyjRv8BInJRIvJ5GSnMDOkibypWQKOnVDpZLwSXpQwZAxhTgrvWRu3knXUVmk90qi6Kud2Eu8DLy3K4FIgPmvLseLi8ILOmNttLFpWRFmgxFJkqisqKSkpETJKPXxxx/vGotGQyQcxaA1kN+tE1lZWRQWFpKXl0dhYSFnn322yMokCIIgCMeBSCRCbW0t5eXlVFRUUFZWxvbt25n+wSz8eAlIXsJy28AjlaRCK+sx6Y0kZSYRtkE6OeT0ySA5M5HqH5vRYeC0ST2JOCRKv67GkmmkxyW5lM2rxbbZRce8DJK7Wlj763YAOiXmEfJG8ElaNFUqLCThCkfQS1Ga1nvQa3Wo9SoigSj1a+3oLLF5RMgRwVbkJhqKzQ+bStxojFo0ejWRQJTGDXaMaQYy+ifRsMHeZhzmTAPmDAPlPzUo6bw9tX4cOzwAaIxqPDV+ZT9JLeHY6cW63gmAuyZAJCCjlXRo0WEMxROp95EspWOKN9C1Qw5lm2tRS4l0zMoguWsca1dtAwn6ntuZsC9C0afl6OLU9LqpI2UrqihfXkviqUY0qVAyZydBAnicXhrrGvl1wSqCBAgTajMOSZLQY0Avm0hKTmTEecMYMmQIeXl5WCwWevfuTXJy8uH7ohEE4YDV19fz73//WwQpAfPmzWPevHm43e7ffSyNTs0pF3Sh25k5rP5qKyULKkEGV4OP+a+sJaswmcHX9ySloyh1LgiCcLw4kAykwh/Hvh4MPpFt2bKF2bNns3btWurq6oiPj6dXr17ccsst5ObmHtSx/vOf/zBz5kyGDBnCc889t9d21dXV3HDDDQSDQd555x169Ojxe4chCCe0aFRmx7Ja1k3bhr3a0+Y9Q5yWtK6JZHRLIr1bIqmdE9AZxTrV4aJSq+g8OIv80zOpL2lm4/dlVKxtpNuIbIbeUIhGL7LeCieXPEMad2efR5GjiMLswmPaF/GdThCIlQH55Zdf+Ou59+HGgQ8PUU2YYCRARI60a280GjEnmInaophUZgaO7U+gKUzjKid9zi4gv38e6/5vO2F3lAGXd0WtVbHypVIIwKn9etC8w4N6eSVSrQ51Nw3GFCMutw93jQ9Dyq4yGn5HkIgv9guzdaOD1IIEDMl6nDt9WDc7yOiXhEoD0TDYtjjRtExePDV+bMVuNPrY6/rVDjQGDfE5JqxFTmqW2Oh6fgdyzkijanEjEX8YnzWA39F2gSnsj+JvDhJyhSEKpjQ92UPTKF/QQDQYRWNQEQlEqFhQD4DGosbbEKD211gdV2OqAW99gIb1dgDkKHjq/ESDu47vqYulrzSn6Qh7w9iKHQBEfDJhXwT7Vm/sdVBGHdWRLmWDBvr26klTqQOTlEXHUzPoMCCZde9vx+cP0u+OzoSiAX5+cyU+3PQ4rxO1VbVsWVeCzqShsbGR4uJi5s+f32a8EhKpqamo0eC3hojXJXLzI9dzySWX0Lt370P74hIEQRAEoQ1ZlrHZbJSWljJp2N34cONX+QhIXrwRDwF8bQLAtZKOhMQEtHo9xkAaHbpmkJqdTN0CJ3oM9Lu2GxGnxI6ZdRjjtRRMyKP853qaS9xkm1NIyY3HJ5UBEG6kTfCPzxZAjsbO5djuwZikQ6VXEQ1Ead7mQp8Ym5eF/VGc5R6QY0+uuSo8WDIN6OK0+AIBmra4SOxiRqWRiIZlGtY1Y8owIKljr5u3ukjtnUD92mbCvggRf4SAM4QcaftBetgX2976JF1y9zjUGhVN5bEgcn2ilqZSF67q2PxJrZGwbnYQ9kWU/W1bYgFLKq2E3x6keeuuQHN3rQ93tT/W1hPGWbHrw7GgI4izMnZcjVlD2CUTqVKRIKWQbU4lKdtCCBNIUDikIwFniO0zatDFa+hxdQ7bFldQu8lKwil6NKkyxfN34sdLSBdg2jfT+Ph/H7e5rxq0mHUWkpKTiDao0EdNJMUn8ca85+nXrx9arUhdLgiHor6+fp/vW63Wo9ST49/YsWMZO3YsJSUlTJo06bAc05SgZ/ik3hSencfyj7dQWxR7uKe2qImpf19CwchcBl7RDWOCKJ8pCIJwrOh0OlQqFTU1NaSlpaHT6US2uz84WZZpbGyMZX89yX6P+Oyzz9i4cSOjRo2iS5cu2Gw2pk6dyi233MJ///tfOnfufEDHKS4u5ocffjigjLivv/46arVY2BeE/YlGZXYsrWHt1O04amOfv+jNWjoPySK9eyIZ3RKJSzeJn0FHgSRJZPZIJrNHMtFIFJVaday7JAgnPRGkJJw0gsEgy5cvZ9GiRaxbt47S0lJKNpUSjAbaZUJSoSIrPYtoQCZoi9CxoCM9+ndj58wGDO44BtzQBZVOzZrXt4EMA/sW0LzDzdbV1ahtRlRRFeZ0Iw63B0+tH3OWUTl2wB6ClvM1b3eTdWoKphQ9rnIfznIvujgtKp2KaDCKp8aP1PKz0lMfIOAKo9HFfgFwVnhILUggLseMY6cHd42f9FOS0BhUhP1Rwr4wcdkGaoFoOIqkljClG6AotnDVtNUVCz4iFuRUtWTPH1ZXLmxU/u61BbCXefA1xqKMDMl69Ak6/PbY68ROFjR6NT5rSyalVAMhb5iwO7bQptGr8dTGFsY0JjXRQBRXVWwxTJ+iJ+SNYG/JFKBSq/DbgrRWGpFDMu662L6WDCNhf4SmluxOapWKsDei9IsQqCM60qUOqHQq+vTqThZ5JK7vSMdBaWSdmsqad7fitDnJvTQJj9/F8u/X4MdDUnISjQ2N2GnGHrTy+OOP8/jjjwMQZ4kjPSOdjh070rt3b/Ly8jjvvPMoKCjY9xefIAiCIJyEnE4nW7dupbS0lK1bt1JcXMz3X/yIV3a1ybyjx0icIY7kpCTiqpMxYqLLGXnoQgaaV/gxJxrpfkkuFQvrcWz3khGfSGpuAkFVOcgQaZaUrEX+5jCB5qCSBttV48OSbUJjUhP2RnBV+zAkxT50lcMynjq/8sGE1+on4Aihi9PgDwTxNgbRmjRIagk5IuNt8KPWx9qGfVEi/ij6BC0+a4CQJ4zGoMaQrMPbECDkj6CL06A1qgm6wwTdYdw1PiWYKOAIEfhNcPietnsa/Kg0uz44MSToiIajrVNJjKl6vI2xeZdKq0JrVMeCqQB9vDY2P2rJcCmpJfzNIaUPsgzulnmZSicR8kbw1LYEKek1+JuDeK2xvshRcLcERgGE/RHc1bFAcq1JQ9gtg01LgpRMlimFpAwzYckCQMGIHAL2EGVz6ojGBUkfFU/5mioaq2xokqOEdH4aow2xhwScEQYNGoSEhAEzqekpnHXeGAYMGEBubi65ubn07t37pFt4EISDccUVV+zzQ25ZlsWH4EdBSsd4JjwyiPJVDfz6WTHOei/IUPJzJTuW19L/4i70GtcRtbbtAl9EjrLGvQNryEmqNp4Bls6oJfEBuiAIwuGkUqnIz8+ntraWmpqaY90d4TCRJImcnJyTLnjmiiuu4LHHHmvzO9Lo0aO56aab+PTTT/nHP/6x32PIssyrr77KuHHjWLNmzT7b/vrrr6xcuZKrr76a//3vf7+7/4JwIopGomxfWsu6absFJ1m09J7QiV5nd0RnEp9pHEsiQEkQjg8iSEk44fj9fn766Sfmz5/PBy/9Dy9uQgSRaZvCV6vRkp6ZjqfBjyFspv/IvmTndGDHJ1ZUkopTr+yGfYeH7d/VkKKNI69DFv40NU6PF099AMtugUd+RwhJankKv8xN2JeqlPxwlHswpuiVjEfuOh+SOvahsM8aJOgJo2opveYo95BcYMGUqsdd48NR7iGlR7yyb1OpE318bALjqQlQv6EZfULsdeNmBz5bAGOqHleVj+qlsWxGrSXeKn5qAFCCmJpayrrp4jXEdzTTtMVBtG3lFIU5y4A+Lvbkfs1ym3Icd42Pkq9j9VtRgXOnB/sOF2F/FJUG3LVe6tc1KefxWQM0bIhlSrJkGQg4gsrT/qYkPf7mIH5rLNBIrVfhafAr54qEZNwtC2e6OA0hdxh3ZWxxDAm8TQEloCkakZVFN2OKjog/gr0s1lYlSYR8YYJNYQySicykDsghGa+kQ2VQcer53ahf20TFz42kjbCgz4MFXy/D6W8mKT0Ol8vFTz/9xE8//QTA/fffD4BBa6RDhw4MOK0/o0aNYsyYMSJ4SRAEQTgpNDU1sXnzZjZt2sSzt7+IGwdeXAQJKG106EmMTyI1ORXJ1oF4fTw9R3fBUxzFszNAan48aX0S2fJVBciQaUhD1oJLaiRgDxN0hJBULcFEDX6CeWY0BjVhXwRPvR9DS8YjOSLjaQgoQUo+W5CAI4i2JUjJ3xREF6dFUknIURmvLaAEAQWdYYKuEHqzFr81iKfWhzFFjy5OQ8Aeonm7m7hsEyptLCiqYb0drUUDUiw7U80Km3LesDdC7a9NIKEEOTl2xj6YMqXHArND7j1PvCSVhDnTgLfR3xLcHqPSSNiKncprtUFF3epmJROU1qymbm0TIVcsCEljVNNU6iTsjb3WmtQ4dsYCvCW1hFqjwtES0KQza4kEonhtwZZzxQLrI4HIruta3xoMJbVc95bXOomgK4yvZQ6HLCtzOIBIIIqn3o8kSViM8aQZ0/H4ZSxSGpl5ycTnmCitrEKWZbLHJ9JY10jZ2iqCRi+SMczXn3zDhx98qDxUoEKFEQspSSnEqRN48q1HKSwspGvXriJ4SRCAuLg4br75Zvr167fH98vLy3niiSeOap9OVpIk0em0DHL7pbJ5djlrp20j5IsQ8oX59bMSiudXcvq1Pcg7NR1JkpjXvIH/VE6lPuRQjpGhTeCB3IsZm9T3GI5EEAThxKPT6cjLyyMcDhOJtM+iL/zxaLXaky5ACaBPnz7ttuXm5tKpUyfKy8sP6Bg//vgjZWVlPPPMM/zlL3/Za7twOMxrr73GZZddRnZ29iH3WRBOVNFIlO1Lalk7bRvOuth6lN6ipc+EfArPzhPBSYIgCLsRQUrCH1Y0GmXp0qXMmTOHX3/9lZKSEip2ViBLslKDWq1Sk5qWRtQrI7k0DJkwkJSUNKqm2InPNVNwSS6OnW6Kv6wi15xJWnYi7r4RrBsdRHxRkvLN6OI1uCp9SJJE3hmpbNpZgbPSS3K3ODJOTaR+tZ1Ac5D4PAuGZB3+piByVCbrtCQaNzjw1PnRmTXknplO+fwGAo4QmQOSMWXp8dYGCPvDZA5IonZFE65KH6hUZAxMwv2dD0+tj8yBSSR0NtNc6kFrVJPQ2axcg4xTEkGSaFhvR6NT0f3iHAKOEJs/KSepq5mcEWmE3BFKv60kZ1gaMjLmdCONm+ykFiZQu8qGSqsie3AqaYUJbPm6AqKgT9KSUhhH4wY7AAUX5xB0h2gqdZGQb6bDoBQkFVi3xIKm1HoVkUAUc4YBGbBtdoBKIntwCkFvmK3TqjGl6UnuEY/GrGHH97VEQzKmDANJXWPniUQi6OO16BI0hD1htGY1Kk1soc+Ypkcfr1GyF8TlGNElaJFaIp4tGQblPZVGhT5ei7choLTV6NWEvbFFPnOWEZV615PDhkSdkvkpPteIWhcL4gJIy0kmLttE10AfkOC0i7sTCURZ8+Y2oklBcs5NpHjdVko3bsWYrMPhtjNlyhSmTJkCgMlkwmQy0alTJ3Jzcxk9ejRXXXUVqamph/ufgyAIgiAccR6Ph6KiIjZt2qT8WTh3EQE5FkQsIZFoTiLJlExSYxpp6al0GdQRT1EEb1mIvIFpxGWb2TazmoAjRHJCGnG9w2zfWYO/OYhKpyKlMB7bZic+a4i0PgnK3CroCZNWmIB9mxufLYhapyK1dzx1K5vx1AdI6ZmAKV2PtyFAJBAhpSCepmIXIXcYrVlDSs8EqhY14qnzk3FqMvEdTTjKPPibg6Sfkoi1yEk0GCUSjGLOMuAo9xD2RzFnGgjYgwTsITR6FRn9Ewk4g3jrA8Tlmsjol0jFgga8jQHS+iRiStfTVOzC2+gnrU8iPlsAQ5IOd50fU7KO+nV24vPMGFrKtjkrvKj1KuLyTOjWawi6w1hyjGQPSaV8Xh0+W5C0PgmodSrUOhX16+ykn5JI8zYXKT0S8NuDaI1qalc2kdw9Dp1Fg6Pci327G1OqHnOmgbCvCb89iFqvIjHfgrPci0qrQkbGkKDDU+NHbVChNqrR6FWE3GBKMygBWJIkYckyKIFHWrMGY7IOlbZlnpakR2NSIRFL8GRM0yMHWwKKtBKGRB0OuSVAK1WP1qIh7I0FaBlTdMp8T5IkUjokIbk0hCQdiR1MdDori9KpVbjrfaSNMBE0+tn84za8uMAYYru1hMsuuwwAtVpNnCaB8684l7y8PPLz8znrrLPIzc0VWWOEk0r37t1xuVzk5+fv8f1IJKL8viwcHWqtmr7nd6briGxWf7WVkgWVIIOz3svcl9bQoVcKwStknnB+yW/vTEPIwf07JvNC5xtFoJIgCMJh1loaTAS6CycaWZZpbm6mU6dO+23r9Xp56623uO6660hJSdln26+//hqXy8Wf/vQnfvnll8PUW0H445OjMqULq1g3bXssgyqx4KS+5+XT86yO6IxiKV4QBOG3xHdG4Q8hGAwye/ZsZs2axadvf4EPDxF2PX0uIaFCTZwugV79eqJy6wkXaek9uitpfRMp+qICj9tPp/ROaDQSVVEnznIfIW+YQEvJM3edn+RuEaUEms/mx5iiJxqMEvZHCTpDBFvKY7irvARcYeSI3LJv7En7sH9XCY/WABpXpQ+/PYjckuXHVuokLntXnVlXpZ9IcNdHkWFvBFXLU/j+piBEJZI6x9Nc6qGp2IXWrCG1MB5rkZPa1c1E/BE0BhXRMDSst9O8PfaEvN8RwrrRgdcaIOyP4q71EY3IeBsCNJfFjhNwhvA1Bgk6gsR3tCiZiCLBaJsn9+vXNWPfHltcCrpCOMo9hLxhHDs9mDOMqHUSznIvxlQ9pnQ9vuYgnlo/AXeQuEwT0bCMs9LHzrl1aE0aNAYViZ0tNGyw428KYEzTkdozEWe1l2ggiindiEarpnlrLNtTNBzrt6sitgga8UVx7HArGZuiYRl3S2S6pYOBSCCKo9LT8sUhE3CG8DfFxhPxR3HXt5Q20aiI+CO4qmL7aowaIoEIjorYNYyEIm1KroT9Udz1sT4kJiaQnZZDUKUmXsqm65AskjrHseylTTTRQMboeGrraiktKmWNbS2rVq1i6tSp3Hnnnei0OjLSM+jbry+jR4/m3HPPFVmXBEEQhONKc3Mza9asYc2aNbz4wOu4aMaLW3nfiBkLCXRNLyCjQwaBLaAPmCk4Oxdvg59qqw2jrCfZkIo/bANCeBsD6OJiGXuQwWf1Ew23lGlzhAi5w8jB2GTE1xQg6A4rmXxi2ZJ0IMd+Hvubg4Q9sTlbyB0m5A4rWYzctX50cVplEb55m0vJwhTyRvDU+Qj7YvsGXWHkCGgMaoLB2HFTesTHsjT5I9iKHOjiY5mXQi3ZkYItcwOfLUDtqial3Jq3wY+vKYC7Ohbc7qnz47UFCDrDRIJRvC0Zj+pWNWHJMRL2tGYpihJyhYmEYmMPOkLULLfia8lq5LMFY2ORY3M0T52fkDtCU4mTSCiqZNmsX2vHlKYjEpRRaSQaNjiIt4cIByKYMw34rEEl21FivhlJJSmB2oZEHUFHaNdc1r7r7yq9hKvSp8yfdGYNnnq/kv1SpVPhawgoGZ1iJXhjx9Wa1fisfmVfVOCtDyhzXzks42l5T61XEXSElUBzGQl/SyYslaTCJMURJyWQ1xJv1GN4Lk2lLqrW1hHNDKDpFKFsfQXfffw9XrWLUCR2n9RoSEtMJ15K4rHXH6Zfv350795dLEYJJ6yLLroIv9+/1/czMjJ46KGHjmKPhFamBD3DJ/Wm8Kw8ln28hbotsazDVUVWPqpehGwBfhNTKbds+k/lNEYl9hal3wRBEARB2K+5c+fS2NjIxIkT99t28uTJ6PV6rrjiin22s9lsfPTRR9x+++2YzeZ9tv0tq9WKzWZTXh9ohidBON5Fw1G2La5hzVc1BOwVABjitPQ5N5/CszuiNYgleEEQhL0R3yGF447X62XWrFncffn/w0ETfrxtApLUKg3JiclEmyQSSGHw+FOJ0yWx/bsaNFoVvfrnU72iEavkxGsNEPJElEUeb50PXZyOaOsCmDVIoDm2gOGt9xNwhgm3LIY5yryo1Golq07zdjfRlsUjny1M2BMh2rLAYt/pIalzXEvGngg1K2zEZZuUPlu3OPHUxT4o9jWGQAZjsh5PjZ/6dc10GZ9FXK4RV6WPos/LMWcYULVk9Cn7sRa/PdZ/V7WPpII4jKmxkibWjQ4y+iXS7cIcSqZWUbXYCkBCvhlPvZ/qZbsm/9aiXeVBAKVsG4C7NoC7dldJlrAngrtm1wfbraXjWq+Zz7rrddDp2vV3dyxwKblHHJ56P66dPlw7fXQ4PYW4XCMl31ZBNFY+zpimp+zHWoLO2L2tWWbF1lKCTlLD+o920HrbO5yeQuNmJ84KLyoNxOeZsBY5CbnDaAyxUiWNLWXkVHqJ+g12GtfGXptTjTRtdcXOo4qVN2ktlWJI1eKu8VG3uhkArVGNs8qHpzp2LaJhlDIoKoOKoDuMbVNsX71Fi98eoqm4JRgqKuGq8aGRdKSTQ++OnciRu5K5pYD4TiY6jEpi+XcrqbZWY8hU4fZ7+P777/n++++57777MBqMRP0Qr07kmjuuYOLEifTtK56UFQRBEI48q9XKmjVruH3cfbhoxoUdH7Gfb2rUJBlTyZRyMHgtJMUn0/30ztT/aifoDJOSFocpQU9l0Borv9oYIOBsDQAK4msKKnMpnzWIMWVXCbFYgMyu8mjuWh+hlsAYf1MQV6VXCfL2NwXR6FtS98uxOZHUsm/AEcJa5IgFPxELFlKpJSRJQkYm6AhjyTbSmurHUebBnGnEUxfAbwuyfVYNekssYMW+w0PQFVYCdNw1ftJS9WiMakKeMM4KL1mnJeOq9uKq8uFvCiKpwJgSK7e7y67ybq0B8P7mXe+6d2sbDYO/Oaj0P+AItQmSdtfsflyU47b2MeyLoE/UErCHcNf4UWkksk5Lxl7mUdrG55iQozLN22KBZo4yD+4aHwFHCJVGwlnpjc2P5Fh2I12chvq1zSCDKVmPSqdSgrrD/gjNpW6CLeXqAo4Q9u0u5ChoLRqiIRl7Wey8WqOGgDOsBC1Fg1FsJc5YoL+EEvQOsfJ0/pYxAEgSOCo8RAItwU+BqJLNSa1XEXCG8NT60EkG4nRJpCYkoA0mI0uQOSARb9jDjrUVuHAgxQepqavguuuui/VLo8UiJ2CJJJKSkMbrM//D4MGD0WjEr8fCH9+IESP2+X5cXBzjx48/Sr05MX0f2sjdG77+fQe5ECLjIwS9YUJSBL8ptNemMlAfsjN6/ePoVIfv+9T1GWfyp4yRh+14giAIgiAce+Xl5bz88sv06tWLc845Z59tKysrmTJlCo899hg6nW6fbd966y06dOjAeeedd9B9+u6775g8eXK77WVlZSdFuUW3201RUdGx7sZRczKMNxqRadzgpmqJk4A99tmIxqQie0g8mafGodYF2Lqj9Bj38sg5Ge7xb51sYz7Zxgsn35iP5HgLCwsPqJ34FFY45tatW8dnn33Gzz//zNpV636TIUmFHgO9Cnqhd1vQVceTXZBJ9uAUtnxVSdgbwRCIQ2OKPU0Y9kYJe8PozbGFJletj4AziClVh7vGj7cxgNay66npoCusPH3uro49/a6L0+Kp9eOu9WNM1aMyqIj6o0RDshJ4FA1HsZXEnqwH8NX7adxsp3UlLRqSsXQworVoCLnD+KwBsgYm46r0EA1GKfmmEo0p9s8v5A7HFuW8sQm5Rqei0+gMrFsc1K+x46zwYs4yoE/U4arwUvFTQ5vr17zNTSQiK4FXqCDrtGTc1T6qlliVdvnnZOGt81G/zq5sS+4eR9opiWydWk00HN3nfco6LRlzhoFtM2uUbfpELR3HZFC5sEF5Mt+QpKPDaSnIEZnmrbGFMFuJk6ArpGRq8tT6Kfm6MtZdDaT2TqShpV8qnYq8EenK+FGBq8qrPOmvMWgonVql9De9XxJakwZ/c+z8cVkm5doCNO9wE265toYkHX57SMkKFZdtQmvSEHK3ZFkKRfHsthAoR2QlSMmcpkclSfiaYv2QtLHFsdbrLssyntrYwpnGpEJSSXitLRkHLFo0ES3JrhwSpQ7k98lEo1NTMq0SK3WkjDCwfesOqmursEbrePXVV3n11VeRkOjYqSMFBQVcf/31XHzxxZhMu4LfBEEQBOFghUIh1q9fz7Jly1i2bBnTPv9OCUjSoCGOJDpY8sjKyCKyXYOJOLJ6pxDyhLFtcaLyq5DCKtR6NRCOBQBlGpFUEnJUxmcNoNLF5mWRgEzYG0HdUs4r5A0jIaE1xcqaeRoCmNMNSt981oCSpTLsj6I1a2Kl0nw+vA3+NiVmPXV+pN3Kt2qNGqKJMv7mICFPBK1ZQ1wHI85KL65qH+46H2qtikgwqgTXtIrPNRGXY6JmmRU5Ggu0iss24qrxEfbHsie1kqOxuUHrvANipdGSuscRcNqUQCNdnIbk7nE0bnQQCe6aY2X0T8Lb6P9NQFN7Ko1E5qnJNG11xTJrtvY1z4TWrMG2xbnbNjP6BC11q2L9jIZlHOVefLZdAehNpbuCyg3JuljWzJZAKEu2sWX8NmRZJuyP4rUGlCxXvqZgLNuRHAv2TuoaR1NLtkuNQY0pRYen1rfr+pS5CbVcY41Rg7PCS2v9IlO6AXd1rK1aJ7UEZIWVY/msAUItGbK0Zi1h324fWMuy0metSU3AEcLfkvlTY1ATdIeVoDZJrUZl15MqZZFpzKZDlxQaPA5cNjdyToBQoocdm8qxUUelYxvDhw9HhZp4kjj32nGMGzeOs88+m4yMjH3eJ0EQ/tjmzZvHvHnzcLvd+2+8Gx9BGkKO398BCTiIRAT2iAcO4zqeJ7L3jFuCIAiCIPzx2Gw2HnzwQcxmM08//TRqtXqf7V977TV69+7NyJEj99lu8+bNzJkzh5dffhmV6uCzOl5wwQUMGzZMeV1eXs4zzzxDfn7+SVFdoKio6IAXbE8EJ/J4I+EoW3+pZsP07bgbY59tGOJ1ZJxmYuS1p500mZNO5Hu8NyfbmE+28cLJN+bjYbwnx3dM4bjhdrv58ssvefiWx3DSTAA/rasWKkmFTtKTJKfRq3chnfO7UjkzlrGnxyk5OGt81NTY8DYEiASj6JN0hL0+gu4gcR2Mu85R61MWx3zWWJk1tVGtvE7vo1WeNrdvd2HK2LVvNCSjMcTa+psCmNIMJHe2YC1yUr+hmYAriEqnIhqMEo1A6zw/GgZLphFTqoGyOXU4K7z47DXozLEgJU+DH2e1F1QqIEpcrpnsISlsm1GDvzlI1WIrlg5GUMUW5XbOq1dKXwCk900EScJV4VW2ZQ5MomGDg6A7jHXjbh+QRmH7rFpC3rYLcIHmIAFX26czA44QrkrvfgOUALzWQJtFNoCAM0SgOYi8q1od/uYgpdOrlAxJECsZ0lo+LqVHHJ7GWOYCgLgcM2m9EnBWePE3BYkGo5TNqcPbsrBmzjDQsK6ZaMvhcoanodJKbPsuFizlqffvWsBSgbPCi6OiJQgpx0iH01LYPjvWVqNXI6kk5ToE7EGqljTGjq2C1IIEbCWxa6mzaGJtWzJtqXQqnFUefI2xflsyjMoCHIBKJSkLZfpEHQFnSFmA1MVriAQjSkCTpJbwN8dKl3Qw5dCjYy4pdXnY69wkF8ah7RHhl2+X0iw3YrfbmTNnDj/++CMAaalp6DFy3S3XcOWVV9KvX7/93jtBEATh5FVbW8uyZcv426UP48CGk2aiRJFQkaBKIo0OJKiTKTi1K4EyGZ81iNliICnbQvXOWNBO0BVS5lbRUJRoOIrWqMYH+O1BAq4wGqOKkCdCyBvBaNj1QWgsy48Od62foCs2J2o9VtgXQVJJqDQS0bBMNCQTn2fGXeNHjshYNzlaY1uIBGQkSYoFGgWiRENRMnonUe9rJugO07DRjiFp15OfPltACUaSozIZ/ZMIeSPYtjgJ2EMEnWF0lliwlKvSh68xoAS4aE0aEvItBN3hXUExZg1akxpvY0DJjtnKU+/Hb9+VCSl2zliGyd/OnbyN/nZBUnsSDct4GvxK1qndrydy27b27W6k33z23Jp9SVJLWLIMbYKi4nNNRIJRJdDJWeGNlZSLxrIbSapYpqXYuNVkDUyJlehtDiK1ZMtqnQOptBK1q5uU7KJJXeOQw1FctJxPQgl2UmklHGUevC2B58YUA4ZEHTZfrB8qjaRkLQWIBCL4m1rLxmli2axazitpVMgRWbnmkkaFt7ElA5MKNHqVMj9UG9REQ1FC7jBaSUeSKRm9UYtZygQgbVAc9Y31VO6owqVtZvrU6Xz66acAmLUWMlOyUNeZ+eTXd+jbty96vX5/t08QjjsjR47k448/Jjc391h35bgyduxYxo4dS0lJCZMmTTrg/YzoSNcmHLZ+BKPhWADSfiSqzYc1k5JZbdh/I0EQBEEQ/hDcbjcPPPAAbrebN954g9TU1H22X716NStWrOCZZ56htrZW2R6JRAgEAtTW1hIfH4/ZbOa///0vffv2JSsrS2lrt9uBWGBUfX39Ph/wSE1N3W9/BOF4FglH2bqwinXTd+C2xj7vMCbo6HteZ3qOzaN0e8lJE6AkCIJwuIjvmsIR1dDQwOTJk5k5cyYbNmzA4dgVTKNT60nRpWH2JdAxsQsDL+pDxcIGHDs9pKriMRl3BQ95GgJKFp6gM4hKrcKcqsdT7cNZ6cWUakRjUhH2Rgl5IujiWr60o7FsSfE5ZhzbPbhr/DRusiO1PNEfCy4yKIFH9m1uEjpbaNxgJ+yPUr+mCWdLaQuikNE3iYgvSlOpi8aNDjL7JykLXA2bHER3W5zKHbYrmCboCFP3qw1zphFXlY/m7S7kaFR5Cl8Xr6HT2AzqVjVhLXIqAUqtxy7/uaFNIJEhSUdy93h81qBSIgMgrW8itmJnm+CZVjUrbO22eer9bYKh9qV1saqNKJT/JrMToAQoJXWzxMq+tATvoIKUwgT0tT5qWkrROXZ68NT5lFIwOosGb0tJEFTQcWQ69nIPNS0l56qWNKI1x+6vxhRbrGrtW1KXOLKHpBCYEcLfHMTTEKBuXbMSWGTO1FO3pkn5WsoamIKj3INjZ+we166yKRmh4nKMhLxhJTuSOcOgnBfAXe/H15IpyZCii2Xgqo9NUFsD3YLOlnHLYC9zK2MyJurxKAFMOgLuEN6W+2CI02IKx1FAP5Cg4KwcHHUuVi1ag11vRWeUqK6p5t///jf//ve/sVgsZGZmcuaZZ3LxxRdz1lln7Tc9ryAIgnBikmWZHTt2sHDhQhYuXMgvv/zCzp07ATBgJNmQTnogmwQ5hY4FeegtOurXNEMU9FETEWPsZ1HAFSLkiaA2xMrYhn0R4lJ3BWa4qn2tVdoI+6JIEqi0KiBC0BEioaNZyXjkqPSgNbb8/JRjJb10cRr8TUECjlAs8DxRh88aaAng2RVQrU/SYUzWUdvUFMvQs9ODLkFL0B0m6ArTtNVFqCUQRWvSkN4nUQmmcVX50MVplACo5q1upTwaQGJnM8ZUPTUrbMhRmZA3ovQ55AlTs9yqBNcAWLIM6OK0u+YoxLL5qA1q/E1tA5QAQp4wTSUufmt/GZR2t6e51+7nbyVHZeRoLMjHmKZX5i4QmzPG55nxNgaUPjZssCNJsRuo1sWyS7XOHS1ZRpK6WKhebosF9ngiNG52KHNWrUUTm9O0XJrk7nFK8Fesz24kVezYmpbgoNagLmOynsQuFrwtJdt8TQGi4agSHGZI0inBVSqtCmOKHm9Dy3glcOzwKAFephQ9QdduweJqiaA7diCVToWvKUigpc96ixYkSQkYk2XwtwShI4FWpcPiTaKjZMKYqCetVwLbllXQHLASSnLT5Gukke0MGjQItUpN/wH9Offccxk2bBinnXYaiYmJ+76RgnAckGV5/42EA3autg//r/DKw3a8iBxl/ManaQg5fhuHGiNDUtjMDz0exWgWgZKCIAiCILQVCAR46KGHqKys5KWXXqJTp0773aehIfaZ/qOPPtruvcbGRq688kruuOMOrrjiChoaGqirq+PKK9vPfx5++GEsFguzZs363eMQhONNJBShdGE167/bjrtlLciYqKfvefn0HJOHRr/vbGWCIAjC3okgJeGwqqqq4oMPPmDWrFmsWrG6Tek2o8pE18wCtHVxZJBD93NykSMyZT/WgQP8jiBa066MRyF3WAk8ioajJOSZqVlmIxoGa7FDqVccdIYxJOkwphpwVXhxlHvIHpKKxqAi7I9i3+Em0hLgEw1HSexiQWvRULmwkeaWUhWGJC3e+limoEggArGER6i0KvLPzqRkShUhd5iSqVVtMhQldDLjawoQ3OrGVeEl/ZREIBb8U7WkUQm8AcgYkExS1ziKv6okGo5i3+5RysEFnWHK5ta1WVTKGZaKJdtI8ZTKXaXcWvibg+226xI0pPdJIOwLK2XWAIxpOuJzTbEyb7sdRqVTEZ9rxFnuUbIU7Y8xTYdKo2rTTwBLByOmdL1Ssi12Asjol4Sz0kvN8pYAqShsm1nTbjyt1yljQCIpBfEUf1MVaxOFsrl1BFqCnrQWDUFnWAmCyuifSHyumS1fVUAUmre6CNiDykJa5oAkrFscSn8SOpqJhmPl5lBByTdVsXtNLFtVYr6Z0unVsa5GaLPgGPZGKF8Q++XNkKQjo08ilYtjr+VIlKatLmXhMD7HhLvWp1xvc5oeT31LJgCTBmeVB0dLVqy4DgZ0Zq2y6BaV2VWeRQVyBILWKDlSF3pm9qHTqAxKp1fR0FwHBV6ag03s2Ladbdu28f7776PX6+nQoQODBw9m3LhxXH311SJoSRAE4QQlyzIlJSVKUNK3n08j0JLBJo5EUo2ZDLCcgcmdQJwljqyBydStaSLoChNyRtBbdi2FBh0hWiOPIv4oOosGfYKWsDeC1xZAbVArAT+SJKGLj/0aIUdl/E1BDEm6WIYiTxhnhYfWKBa1VkVytzh8LRkZrZsdGFNaFlhlWoJUWku8RUjtlYBK68VT58dZ7sFR5o51SwZdghZTql4pFxawh4jLNuKs8BLyhKld1aSUCpNUEml9E3FVeXGWewm0BA63BuU4dnpiwVYtl0CllcgamIx9hxt3rb9NgBLEyuvuXl4OwJxlxJCko66pqc32uBxj7Fr8JmhcH68lGo4qJX73R1JJGJK0+JuDSiBPbDtYsk34rIE25dAMyTqSOlvw24JKQI7PGqCmOaiU0Wu97rIsI6kgY0ASnlq/Ut7WXeMj6AopGY1UWpVSclelkUjrnYhjp1sJtmpYb1euiz5ei8asVuaJungNliwjrpaAf0+DH39zMHZtJcg4JUk5r6SOBRFFQ7F+agwqmkqcu8r5ZhvRx2txVsaOFSupuyvQSmNQx75WiM219PFawoFd839H+a5spOZ0A67q2GuNXkXIEybk2pUZKuAMogsayJBySM9KJBKK0uhoxiXZUXUNUlFUwbOr/kWIICqViniSuf2hW+nXrx9jxowhOTn5gO6vIAhCK7Wk4oHci7l/x+TWH3m7tLwYPKsL3360mIFXdqf7iBwlIFQQBEEQhJNbJBLhiSeeYPPmzTz77LP07t17j+2sVisej4fs7Gw0Gg0DBgzgn//8Z7t2zz//PJmZmVx//fV07twZgPvvv59AoO0DM2vWrOGbb77h9ttvp2PHjod/YIJwDEVCEUoWVLH+ux14bLHPOEyJevqe35keY3LR6ERwkiAIwu8lgpSE38XpdPLuu+/y9P3P4sJBlF0LJXqMdErtQoY6G0N9Igk5ZvKGp7N1ZjVBZxhHuYeEPLPS3t8UVIKJAo4gplQD8blmmkpc2La0PCnfEjyki9NiTjdi2+Qi7I3SsMGO3qLBRayEWcAeK8uGP0okGCVnSCqe6li2nvKf6wm5gsp5M/ol4qzw4q0P4NjpIRqJYk4zxLIM1fmRJJTzWrIMZPRPonRaNdFglC1fV7QJ/EnsYkFSx4KUgs4wKp0Kc5YBT62f+jV2mre6lYxIOouGbhdmU7+2OZY96TeBPw0b7bhqfG2On9Y3EWOyjooFDe0CfYKOMCVTKwl72263ZBpJ7BJH/Rp7m+1x2UZyz0inxFpJ0HFgUUqZp6agUkts/76mzXZzpp6Ejua2QUpR2PZ9dbv+tPY7LsdI+ilJlP1Yp1wTW5GToCvSZmytmY1UGhVdz+uAfbub2pWxxcDqZTaaSl2xgDKNCnOGPrbgSOz6JnQ046nzx8YXhdKp1cpxOwxOwZCoY8esWIpaT70fqeU+A6gNKqpbsj3p4jWk9Uog4AzhcIYJuoJsn1WjlKTLGJCMWqtS9g04Q8piosakwu8I0bg5FixlztATn2OmtiVwK2APUrt6V3anpM4W7Dtii2wag4qgM6iUxtNbNLgbfATsIRKkFDrl9kTSqOi0sw6v7EY7KEjp1mLKyyooKyvj888/Z+JNE9HJBi644jxuuOEGJkyYsL/bLAiCIBzHKioqmDt3Lo/c8gTNNBIkgIREHIlkafLISs5G12BBK+lI655I2BeheauLkCeMrzmAxqCOBSl5woQ8ESS1hByRiUZk4joYcVV6kaMythKn8vNYDslYMgz4GgOxLEXVXuLzzMq+YV9ECTSSIzKGJB1qnYrmbW581iC1K23Kz3p9vJbEfDPeRj/RkEzzNjemtFjQkhwFT51fyeoTDcukn5KIvzmIs8KLq8qLq3JXsInWHAuCcdf6iIZkQp4w+gRty89hmYZ1zYQ8u+amCflmzOkGan61xcrLhXe9Fw3JNJW68DXtmiNKaom03gnYd7gJusJtA32IlVlTaX+zSCzFshHJEbldkFJiZzPhwK4ya/ujMahI651I/bpmpewcxDIBxWUbiQajbYKUvA2x+9Ma6KO0b+l3So84/M0hJYum3Brg7Wzbz9YMRZYORhI6mWP3LyQTDcvUrWlSzqmPjwVZK/c2UYsxZVcmJ29DIBbALccCnDIHJtNU6iLSFCsb56rxKVkntWZNrCRgy2tTmgFDkhZfyxzIvt2NuqVMoFqnIqVHPI2bYnMrSSURcoeV4HKNXoV9u1sZtznTSLCl1K+kknBWeJT5pT5Rhz5RpwQ0yRGZwG/mxT5bAJWkJsWUTmZGEim1uQQIIWcGcJua2bljJ88/+yIhAkiSRJycRLKUzr8/f4Lzzz8fk8l0AHdbEIST3dikvrzQ+Ub+UzmV+tCuDNTJYTND53Qjf1saPoIsemcTxfMqGXJDT9K7JR3DHguCIAiCcDx48803WbJkCUOHDsXlcjFnzpw275999tkAvPPOO8yePZsvv/ySrKwsMjIy9lii7fXXXycpKYnhw4cr2wYNGtSundsd+/y6X79+9OjR43AOSRCOOjkq47UHcDX6sO6ws/H7nXiaWoKTklqCk0aL4CRBEITDSQQpCQclGo3y7bff8tFHH/HjzDmE2LWQY8BEujGTHvmFhIt0qCQV3c7IxlPvp6bBhqfWh6fRjzFZT9AZe2I5vFvWokgwSmphAs2lbsLeKLUrbXhbopSRIKNPEgF7CMcOD1WLrSR0NCv7mtL0ykJE2BvBZwsSn2fGusmBp9aHtcRJtCUIRGvU0PnsLLZOryboDlM6vbpNUEzWwGR8TSGlFJrP5seQqMPfFMRT71ee4AbQ6FTkDEujZpWNoCNM6bSqNkFF2UNSMGcYlOxJrU+DAwTdYepWN9G8Y1cpD41BRdbpqVQvs7bJGNRKDkeVJ9t3l9QtjubtrnYBQQCNGx1KgMzuHGUeSmyV7c6xL5W/NLQpldKqfp29XRAUoPQnLttIwBVqc65IIJYhqzWTEcQyKrVmt0rtnUAksOt1NBylbnWz8uR7bCNKKbe0vvGk9kyg5JtKwv4oQXe4TRBZzhlpuGq8OFqut6fGrzw1jyr29dc6BlOansx+SQSagriqfQSdYbZ8vStzVd7IDJBg59z62LXc4WkpcxMLSjIm66hdFQukMiTqMWcYkFsW8CLBKNt/qFayR2UOTMFTH6Cp2AUqqFvTrGQsSOxkwZhmwN9sjQ03IhPebbFV0qhoark+ycnJdO6WRWJVBzx2P8bOYE+wsX7NOtw4+eqrr/jqq6+QUNGnb28GDRrE/fffT0FBQbv7JgiCIBw/nE4nP//8M3PnzuXDNz/CS+yDwHiS6EAnspKziY8kE3GCPk5LarcE6hxNRIJR3DVeTGkG5VgR/25Zi3wRjCl6fLZgrNRavT8WyNGSwsGYpEdr0VC3KnasujVNqNS7fmgbk3W4a2NlV722AImdzHgaAsgRGXetTwkYkaMyiZ0tRIKxcrnexgA+W1Dphz5eS3K3OAKOEGFfBGelF61514c+XmtAyY6EDMZUPbo4DY4yDz5rIJZ9UMmGpCK9byLN21y4a/1tApSgJUuQM9QmRYU5w4Asy7sCanYjSbGfvdHfBCdpjLGsUkFXuF1AEDKxYOo9JLioX29HpTnwzBchb4TqZVYlK9Lu56hZYWNPNYGioViGJEOyXplPKO+FZeW6t2oNAlJpJBLyY4HSrXNqb4OfaCjaZozh1ixQEqT2isdT78feMrdyVniVebLGpCYhz0TzNnfsvHLseK0BUGqDOpZhqeXQcR2MqA0qJeDdvuP/s/ffYZJUh703/qnq6uqc48Sd2dnZnNjALktYEBlEUgBsP5aulWz/rn2vLWFZVw5XlvTalq588c/ytV5fOeteWwEJIQkhCZBAFhkWWNhlc5qcejrH6ur3j9NdMz3T3bPISICoz/PoQVCnq0+dOnXqTJ/v+X4XnKsUu4X4rgDTB1OAEMSlz+WNc9mDKsVk2XC/Uj1Wcc+mhOtUeiRvzMEdIZXAkIf8jJhblTMVEkfSxjX7VrkMEZdkkdBKVar1OZvVYaEwV6ac1ZAkiYA7TNwVxyt1UavVUIdhfGaUyeQY49Jp7rzzTiySBX8twm9/4jfYv38/+/fvN6L2TExMTJZyVWArV/g3cyB7itlKmrDVyw73avKrizz1r0c487T4+3PmVIpv/fcnGb60h913rsUZsK9wZhMTExMTE5NfVE6cOAHA448/zuOPP77seEOkZGLyVkbXaxTmi2RmCmRmC2RnCmRnC2Rm6v9/rrDMUdsZtLHtpiHWXdFripNMTExMfgaYIiWTFTl+/Dh33303//iFf6bIIoEOVkLE2bhqM/5ClMJMmWC/h9jWAEdPiriu6ZeTeLocAOgaSJKEVH+f52dLxHcG8PQ4yIwUyIzmjd3TIIQtwbUejn9rnOJcmVPfm6BQFy3ZfAq9+8JoRY3MSIFzP5rGGbMZn7X5rdS0RnSITn6yiH/AReJYhuxkkbljGWPXt+KQGbixi3OPzFCcL3Pq+xNNYp/+/TFUn5Vj3xilnNYYr7vrNK7J6hGREg23HmQMUdPEU3PC0amBDINXxUmezjJ/PMvckUxTW6s+K66oDdWtUFy0k78hxpo9vHznvc1vpWdvCElCuAotPp9XxKOxXLsE8KoESrBoYWop+pLvW4xcFwiN5hl9bNb4z/mZkoj6q5dZWkd3zE61siBSAoz/L6syq6+NM/ncPNlx4Zw0dSBJZkS4ZSGLSLaGAxEyqB4Fq31hMpk6syAOC2/0Eb8gIOL8shr5mRJHvj5iXO/ANTHyUyWmX0yKepzMCtclxCKcPWhl5qA4ZvOp2IOqIWiqVqoc+8aIEanXtTtEMVnm3A9FVNyJ744j1636g2s8dO8JcfTeUUDEoliOpY2+GlzrIVmvt6zK9Zic+iKvz0r6XM5wLwjEQ/SEurE9HwLAu8fK0dOHOT11kkOHDnHw4EH+7u/+DgsK+y69iFtuuYXf/d3fRZYX9VcTExMTk587uq5z4MAB7r//fu7+xOdJk6BGDQcugkRZq26lO9xLeaIelToYoDBXIp0W86j8dBHFYaFa1hciwurCo0pOw93toDAnBB3pkbwhANL1GuGNPmZeSlGcL5M8naVWW/iBxrvKhWKzMPX8PNWSzsQzCRR7/Z1Rd7lU7Bbh2DRXxt3toJwV7kO5qSLVRSJrd48Dq9NC4miG4nyZsSfnDBG2xS4T3xVk7nCa/EzJiHZrYFFlFMeiH4dqYHVaqOSr6BWdyQPzC6ImxDzJ1+9i5uUk1ZJOoVRuOp/Nb6WmC9efJiTxjp19ebnQ29PrxB6wMvF0YtlnLFYRJ9dKQESN5aKmFVgmUFp0LgCLTW6KpwXhQhRc62H8qbmmz8+fWIgDXponZLFZsAesIv6sPv/RtZoh3HLF7NgDKnNH0+JzNZh6PmncV8VpEQ5L9XMqNguKQzEEXrVqzRAzAUQ2+yglK8bcde5I2nClsroUgus8zL6colqtoWu6iPTLir8T7EFVRODVz211Wpr6emasYPQBm18lssnH+FNzaNUqhbkSE88ljDYLrfdSSmvGdS5+Jmw+K1aXQnlRhOBiJAlSI+KaLKqFaCSAZc5GROrD6lbQQnlOnz5Fgmk+9clP8Qn9E6jYCRLlo//zd7jjjjvo7u5ueXtNTEzeulgkmd2eNU3/zRN1ctXv7GD80BxP/Mth5kfEeH7838c488wk228dYvP1A1is5uKJiYmJiYnJW42/+qu/Oq9yH//4x/n4xz++YrmvfvWr53W+66+/nuuvv/68ypqY/KzR9Rr5+SLZRSIkQ4A0K/63dAPaUiRZwhWy44k4GNwTZ+1+U5xkYmJi8rPEFCmZLKPhlvQ3f/M3/OSRn1CpiQUBVbHh1QL02AfYsfMC8ucqZEYLrN/bh1ascu6RaZKnMjgiKvEdAcafnMNqs+DuceDpd5I5l2f+ZIbIVj+FuTKlZIVKXsfT5yQzUqCYrNB3WQSL3cLUgXlmDqcJrPGIhYhEmfAWL+6uOIf+7xkKM2XGnp5FVsTimD2osu4dfYw/NcfUgXmmnpvHu8qJrMjomk70ggA2r0LiWAa9rFPOVHDG7aTP5NGrNSx2GUt9oc3mUwlvcpA6k6MwU6aQLJE6uxC/Fd7iwx13cObBSWw+lbnDaTIjYgEtMOwmtNaDxalw/L4x/ENukqfF4oUzYsMeUqlWhIuBf8hFtaiTGSug2GX8Q27SZ/Mc+doIjrBKeKOX2cNpZAU23DlAZizHuR/NgAzhDV7SI3nKabGTe/Zoyljk8Q24jB3mq6/tQtdrnH14ilKygs1vxdPjYPaVNINXxymkyhQmS4ZgJ7zJS7YuclHsEuFNXhJH0+iaiGeT7TKB1W7mj2WxOi3kposUZstY3QqhjV7CG7yM/PsM1aKO4pBJnsyBDonjC22kOGX8g26SJ7NoRR3fkIv+y6Kc+9E0qTM5gmuFm8KZh6dEe2/ykh7JUU5XccZs2P0q6bM5qmUdZ8xGrVYjN1FEVmWcURuVQpXAGjexCwJMHEgw+2JK1OFY2liQ6tkXQvVaGXtcOFZlpwqkzqpGvEzfZRGSZ7JkzhVAFotlSHV7z7gN1WNh5qAQjMV3BAiu8zB3WIiJHEGVsw9PoxV1VJ/C2lt6SZzIMPLIDJ4+BzMvzZMZE+fqf1sUb5+TI187h+pVsLotTDw/RyWr4elx0HNJ2FgcDa33UClolFMVrG6F2AUBquUqufE8ri47vtUurA4xpAfXeVBUC+NPzqE4RSRKZK0PeVZljbQFV6+N2cI0Lxx6nrw9xRNPPMG///u/83t3/R7Da4e55JJL+PjHP87Q0NBrPLqYmJiYmLQik8nwwAMPcN9993HPv36DMkUUyUrIEqOrup2ecD9+j4/0SAFHQCW83sesniY/VWT+WAbvgAurW6GS1bB5rchWmUpOo5Sq4Olx4Ot3kjqbp1KoYpckVI8iXGhqNWLb/Uw8O0+1KIQgikOGeVGv/v1REkcypEeEE6EtaMWiChFOZIsPR8jG2R9OUS3rzJ/MGi5BsiIR2eRDr+gidjWrYQ9Yjcg0xS43OQo5wiqyRSYzmkdCIjtRIF93AbL5rbjjDip5jfQ5EUWXqs+tLDbx7vcPukkcy6AVRHxdpa6FccXs1HQdvapjsVmw+azkp0vU9Bo2vxXZIpE4KuZPzqiNSq5KJafhitsJb/Ix+pMZqiUd1aNgsVkMZ6JSskwxUTKu1REWrkX2gEp0m5/Zwymy48X6tdmolqpYVBlX3E5hriwijss6VpdFzDEa7RBS0Ss1SukKkgzOqB1JEkKb1NkcNo/VcPmxB1V8q5xIssTkgXlcMTvFZJlqURfxtPW5Egjhdq1Wo5QUc/roNj8Wm8zEMwksNhm7XyU3VWTi6QQ2vxW7zUIpVaamizYsZUR8HpL49/x0kZou2l9xWijOl4lu9Qu3rKNpox2zEwUkWUK2SES3+UmP5g0xdW6iSDnfEBJZsQdUI8pPdVuQFdkQQAlXSVEfWZEIb/SRGctTzmSxuhVK6YohMgsOu/EOuBl5dBpdq2FRZSafT6AVq1hdFuK7gqTP5UllNexBlVw9Ik+SRWyzzWdl+oUkikOItsrpihFh6OqykxktiHaI27H5rRSTFRS7BVe3ndTZPMVkGZvfirfPicXmpXZGZVN8OzVVZyo5wVR2nHnLNB/+8If5yIc/QsAS5n2/+15uuukmLr30UtNlycTEpCPdm0Lc9qcXc+ThEZ772nFKuQqVYpVnvnyMoz8aZe97NtB/QfT1rqaJiYmJiYmJiYnJz4RKUePsc9NkpvKLxEh5snNFYyNTOySLhDtoxx1x4Ik4xD/DTtwRO+6wE1fQ1uQgbmJiYmLys8UccU0ASCQS/PEf/zFuyYvFovDud7+bRx99FNVqI84qbttzJ7/5K7/FhdKVbF+3k/49cYLrPQCc+/cp3F0OnBEbugbhjX6iF/gBmD2SRlZkolt9gNhl7x9w4YoLO/Jyukx8ewBkqGQ1rC4F/2oXIOIn4hcIAQiIyAvVZUGpOxNFt/gZvCYOYCz2NCIsXHEbq6/rIrLFW/+sZuwKB7HoNnR9N4pdxuFTUVTFELAEhtz07osQ2eKv/7sHR1jUV/VZiWz2ozgsKC4F36CL6HZRDlks+pSLVUZ/PIPqVujaFcIRVLH5rUS2+IhfEOTcj6ZJnswR2eInMCyubfWN3Qy8LY4jLNygPL1OYjuCgHBrkq0San0RS1FlunaFjB3t7h4HkQ1+49pCG72ENojrHnl8BoffiqfbUW8XO127QkLcVQNvj5PwJp/x2fjOIJ4eUdbms4qy9fYOrvUQ3egTiycyxC4I4O13AiLyJbLBx/SLSTKjBQLDbqJbF+oUXOvFN+gSi1B+G127Qljd4nrccTuKTaZQX+yLbvPjGxJ9wOpR6NkbYt07+nF3O/APuIltD6AVdU5/fxL/oJvgsIfAsBur00LXrhD2gJXpg0kyY3mimxbuTWSzn8Ba0d5Wp1K/r/X27nKK+EDE4lt8Z4CuXaL9ZUXG7lUNd62+iyMMXt1lXJvVbSUzUTQcnFZf30VsR0BcW8xBrVZjpi406t4bYtWVcfSy6Iv+VU6K82W0vI4jZKPv4ii1sujDgbUebF4rlYIo27U3jOqykh7NYw9YiWzy4giLZy447MG3ysXIT4Q7U+yCAMH1HpwRGzafSvyCAFMHkyRP5vANuei5MMzwxiG2Snt5780f4L3XfpBt4d341CBjY2P8wz/8A8NrhrFKNm6++Wa+/vWvY2JiYmLy2nLy5En+8i//kpAUw+f1cccdd/Cdb3yXLvrZKe/nVy9/Pxf3vI1eaYhVW3qIbgtgUWXyMyWKiTL+QfHeUr1Wwhu9OCPinZY+l8M/6MZis1Cr1nB1OfAPuQEhrnHFbHj6nEY9XDE71rozkdVlMeYf1ZJOrSbexQDI0LcvgqvukFluCFfqhDf76Ls0DAjXHK1YNdyRbH4rqy6PGe9aZZGzIRLEtgWIbPGhOC2oXgVPl5OGVsPT7cAVtxuipuA6Dza/FSRQ3QqB1R7mXkmTmyri7rIvzE3CNgLDHiyqhdlDaRS7hdA6L7JVwua30ndZ1JiHgZj/OUKqqL9eQ3UrRtyYM2IX7S0Jpyf/ajeq1woIB6LQOi+K3UIhUSY/U8Lb7zLO6xtw4YzaQZKQFVmUrbe3I2hrqoO3f2GObJR1irJ2v0pw7aKyfU5qNUgczSDJEqF1XlS3qJPNZ8U/6Dba2tPjwNPjNNrbFbOLCLOaiAgMrfMaLkHuLgddu4PG/DC4zoPdr5KfKZGbKhJa58XmV7HYhOjKt8oFNZg9lEJ1KdgDKkjCWanR3rIqYw+oeHsdRv09vQ5s9fr6V7vpvjCExdaIzlWAGtSEc1b/5RECw+J6LHUnyfy0EDsF17rpuyxixOupHiv5qSLVko5slei7JIIjJJ4Ne0BFsVkMp83QOg/+QRdavopkESJ6SZLQtRp2v5XQBh+5SfE9nj4n7m4HFquMJAkRXjmjUZgrYfNZiWz04elzQA08PU5Ut8LMS0nxPRu8xDeFiDt62BLcxbsu+2Wujd/GOukC7A47f3n3X7J//36csps+aQ1f+tKXyGYXuV6ZmJj8zHjooYf42Mc+xuc///nXuyrnjWyR2XjNKt79F5ex4ap+432Znsrzg//xHN/7zLMkx80xxMTExMTExMTE5BeL2dMp7v1vj/HI/3qR5+45zrFHRhk/NEdmukCtWkOySHiiDro3hVh7eS873zXM/t/cytv/eA93/tXl/No/XcMd///LufEP93DZr29lxzuGGb6sh64NITwRhylQMjExMfk5I9UW5ziYvKU4d+4c/+N//A/uvfdexsbGAJCQcOElRi9DnnXoWRlk2HTnKhInMkw8nUBWZGRViGf0sk7X7iCBNR4Of+WsEXemukXsl6zAhttXMXUwaTjCKHYZXRefje0M4Ot3cuzeMaNeNr9V7PSWYe0tPcy8nGL++IKTkaTIVLIa/iEXvlUuzj4ybUSFeXocZOqxIN17Q6TOLsRfKU4LjoBqOBd5+lxNUWLhjV7So8KdaGlsmepT6N4d4twjM0b01mKi2/34B12c+PaYEeu1mMFr4yg2mePfGm95L4LrhXtQo64GLWLQFh/beEc/ydM5xp+ca1Pop2Pzrw4w9WLSiDB7LbC6Fdbd1svkc4mWsXVA6+uVoXt3iMnn5lu2fWDYQ8/eEMe/PWY4BCwmus2Pf7WLE9+eaHvvlsa5qD5FxPcBka1+5k+kDZGS6lVwBG2kzuSQFRlPr8NwopJVmfjOAIkjIr7GHlLRcpoQMCGctnz9Ts48LMREjohKYUYslMkKDN3Yw9yRNImjGRSnBV2rGbFxka1+Qus8HPnaiFGPRh+VFVj/7lXMHEoxczDZ9IyBeBZ8Ay5e+fI547N6WUcr6ih2mfW39zP5/DyzL6VQ7DKFcJIj44eYq05TlTRqtRoOh4OLLrqIO++8k/e+972oqtr6HpqYmJiYtKRWq3Hw4EHuvfdevvGNb/DSSy8hIRMkQoguIpYunJKbWrWGp8eBf7Wb0cdmqek1ZKuEJEtCUC1B774wqXN54TwjLcRQ1ao1PH1OPD2OprmBEQkmQfeeEKnTOcORpyH+0bUarrgdV8zO9MGkEdtldVmo5IRgNrTBS26qaETSyoqEbJXRClWsLgVn2EZ6JGdEbzViuagJl6ByRjPcfSyqjD2kGnMfi10Wwpk67m6H4Za4FFmRiF0QIH0ub1zHYqwuC/GdQWZeTjXH59aRLBLeXieps7llxzrh7haCr/EnZo241dcCT58TX7+zKRb3tcA/5MYZsTH+1Fzr+DlYFvsGQuQkW2XDOWop8Z0BKrkqc0eWz+cki0R8R4D0SN4Q+Cw9HlzrIXkquxBTtygmT3FYUD1KU/yeM2KjkBDxbjaflUpeM2LzbD5rPfJWuDDZvFZK9fhoSRZC+dxUkeJ8GYsqU9Nrxr1zRm14epxMPS+swxS7Ba1YNerUtStIZqxAdryArEjUahg7M909DnyrXIw9MSvEVLaFmD9Jhp59EZKns2THxGeRJGpVEcHoG3ThjtsZa0RI22ukLXOMZ0eYkyYp1HIossI73/1ObrzxRm644QZCoVCbG2hicn787d/+LXfeeSc+n2/lwm9Bjh49ygc/+EG++MUvsm7duhXLHz58mI0bN/4carYyc2fSPPEvh5k8Mm/8N8kisfm6AS64bQjVaX0da2di8ubijfRsm5iYmPwi82rnXm923mrvl9f6emu1Goe+f5an//UIulbDGbTRuzWyyA1J/NMZsCPLr487sXmPf/F5q13zW+164a13zW+E6zXj3t5iHDp0iM9+9rP82798mQr1BSYsBInRxxAh4siSTGyHn/B6H4e+LIRHJ78/Yew61nWdDbeuYvZIiqkDSaZeFP9riEviOwIE13o5/OWz6Boc/caIIdJAhrW39TF/IsPEMwmmnhfRbA0iW/1Et/o5es85tKLeJF4CGLqph8JsyXAjSp5cWFzy9jtZdUWMU9+bIDdVXCbc6b0ojOqzkvnGKFpRbxIoyYpMZIsfi11m6kCySaAEYrei6lFQPYpYbFtCZjSPZJFaCpQARh6dbulb1hBVJY5klh2zuhXW3NjN+NNzRqxJEzqce3SGcnq5MAcZBq+OM/lcgsLs8voqdhmtrLcXQK2A4rSgLXKmWkz3vhDFRHnZNVWyGqOPzxjxd63qPHxzD+mRfFOfQEcsriHEb8g03Z/54xkKs6WWAiWAzHgeyUJLgRKIxSy92nysIVBSnBYim3zUNN0QVpXTmvH9wfUe4hcEyM+WqGQ19LLO+BML/a7v4jDVSo1TD0zU65o1BHeOsMqaG3o49+NpUqdz6Bocv2+hv3ftDuGMqBy9ZxSAmYNJZl5OinrZZdbe0svkgQSzh0Qc3+GvnEWu97HoBQF8/S5e+YoQJY0/OcfsYSHCklXx2akX5pl5KSWes2+OGs9odEcAX18v1q94QQLNWWbGdZaT08f54Q9/yA9/+EN++7d+m23bt/He976X973vfdjt9pZta2JiYvJWR9d1nnzySe69917+1+e+QIEcClbCdLGViwgSQ5HEdLxnb5jMaN4Q3uRnSwsOkTE7vgGXELHUYOLZxILAAyE8anw2O1YgM5o3jrl7HPgH3Yw9MUutWlsmWInvCpKfKZE8mSU3WWwSljgjNkIbvYw/NUe1qDP3SrMoJbzJR60m3lGVnEYqt/B+tthlIpt9zL2SJj9TojDXPB9xhG34VjlF/Fq11iRQAiE0amfVrWs1clNFQ4yylEquysQzCbRC81xFcVjQNR29UmspUPINuLD7rUy9kGx53txkUThEtRAoueJ2FJulrfBJtsqGs9SrRgLZIrX8XqtbwdfvbCkAz4zlheNQG4GSI2wjsMbN5LOJpnOXUgvtulj002DmpRR6m3tTq9bvTZt5mWKTmyLuxIcwxGvOiA1X3E5+pmTUOz+zIFgKrvNQnK8Y8/hSqmLU1+azEtseYPL5eRHTptMkpPIPCefNyfo8Mz9dMsRQFlWm68IgiaMZIXyrwcQzCcOhydPnxBWzG39fZMcK5OvlJFmia3eI5Kks2fECNR3Gn5ylsRXI0+PE3eNg7HEhQkudyRnPmSRL9O6OMH/SiTcXplarUQ0WGE2d47tf+T5f+cpXsMgWAnqUz/z9p7nuuuvo7u5u2bYmJp349V//9de7CiY/I0IDXm78oz2cenKSp//vEXIJEXXx0v2nOfHYOBf+8jrWXNxtxkmamJiYmJiYmJi86Shmyvz4b1/i3AGx6XvVrhiXfmgzdre5gdrExMTkzY4pUnoL8Morr3DFxmuZZYIqdfEFViJ0s4p1+KUQyLDuHb0kjmWZOZhk/kSWYqJiiFicERv9l0c59vVR0GHsqVlyU+JHfb2sM3htnMxontlDaRLHMkIYU/+sI2Qjss3Pqe9NLHy2sQCmQ2xngGpJZ/blFPMn0pTTFUMwoThFtNnE03NoRZ2xx2YpJpp3Vnt6HEy9kCR9Ls+ZhyabdtT7h1xUSzqZ0QKjT8yC3rygEt3mJ3E0jVbUOX7fglADhDtNdHuAyQPzFBPlZYIpq1shtt3P6E9mKcyWl4mBXF12ui8McfrBCcOFZzG+QRf9l0U58d0xw01nMdWiRupcjtxEoe29zY63PqZ6FBS7hXY+aT37wqgea5Mo5nwJrvfQsyfMoX87azj1NH23Q0GztRYwLRaVLUOH9Jkc2RaOCQ369kcBOHl/syNVQzjWdWEQxaEIUVidwkzZaF//kAuLVWZukYBq5Mczxv/3D7mo5KuGa4OWr3Ls3gWRXXiTl/RI3hApzb6cIjteoJIV/x7fHWT6xaTRLqcfmkKxiZgWZ8SGu8fBdH3hszBbNgRKALEdforzFePfJ59LYA+IXa+KXab30gjjT89RTglnppHHZsjV7390ux/FaWH8cbFwNnsotfCM1cVfkwfmKac1dE18trEoF98VwBW1c/K7E8Y15cYb7hqw9ZY1TDwbomtmGE0ukxuc5ejZQzz99NM8/fTT3HXXXVgKKn/5d3/Br/3aryHLpi2qiYnJW5uGMOnOi9/LFKOUKaJiI0IPUboJEEWWZCE8GnQZooe5I2kqdZGPrtWIbvKRnymRHS+QnykJN6OGu5FTIbzRJRxgapA4mqacEZ+t6TX8Q24qeY3cRJHCTAktXzUEP4rdgm/AReJohppeq3/vwnvbEVKx2C1ChDFbQj+YWhAQSUJgXZgroxWqJI5nmuYCsiLh7naQPpenWtSZeDbRJGpW7BZsPiu5qSLZ8QK5qWKTEMnmtSIpEsVE2RD1LsbVJWLKivNlwzlnMaH1HspZjcxoYZlACUS8V7VSY/ZQatkxgEI9PrgdNb3W0pkJhAipEVe2FIsq03NRmJmXk8vEWudDfGeQUrLM/InlbSIhBMgWVV5W92pRXyb+Wkw5XSE3WWwrOFI9CrELAky9MN8kXFrshhXe7CNxNGP0XWDh3kgiyi19Lmc4H1XyVSafTRjHvb1O0qN5o2+nz+XF/LYe9eYIqU1zw6kD84ZwyB4QP0o25oGlVIWpF+YNAb+nz0lxrmREPs+fyKLYZaPu3n4nqTM5dK1Gtawz83LKuE53twMkIUYC8c/GMUkWAr3UmRzljEZNrzF7OGXMB93dDmw+qyHqy04WKGUqxjV37Q6SPJlFK1RFLPChhc96+124okGU55wMSOvR3EUS1knOJc7w/ve/X0TNOeOEcl38++wPTIclkxUpl8umA+pbAEmSGLqoi/4LIhz89ikOfuc01YpOIVni0b85yJGHRrjoP20gPGA6aZmYmJiYmJiYmLw5mHglwSP/60VyiSKyIrHnVzaw8Zp+U3xvYmJi8guCuZr8C8rZs2f5wAc+gCrZ2LhxI1OMICPTxSr2cg2XS7dwSf+VbL+mbuWlQ/JUlvyMWAQopzVsPiveficgfvzPThSQ67K27FgB3yqn8X2VnGbEI5TTGrnJAvag+DFUK4v/rtiFWCN1KtckFlLdVtT6jmotrxvRWQIJV9yOI2QT3zteaBISuXsc+IbcRk9uRL01iGzy4V/trp+72vRZq1shvNGHd8Alji9ZxHFE7ITWeXHFWrvE2ANW3N0OVG9rrV+1pFMpaOht1qJSp3Oc+eFkS4ESiDi98SfmltULhBhn8Np46xMjnICO3zdmuF8tZeZQisnn51seW4nMaIGRn0yD3nrR68zDU0y/mGz7ef+Qi3Xv6m05+ky9kGwZ29Jg7PFZzi0SIC2lktOo5NvYWQGeXieefmfb46H1PsIbvE3/rdH+siIWpALDnqbjjcVKZ8RGaK0HR2hhEUDLV42FM3ePg8Aad9N1L3bIcscdOMK2hWvJamRGRH9WPVZUj9VY4FOcMqlTOaNukgyL5+ZWl2KcW7FbqGS0hQW7bgdaoWoshhXmyuSmF9o8ssVHMVnvN7JM4kSW3LSoR3x9mA2xLVyoXc3beAcX9l1CyBMmS4oPfOADeD1edu3axVe/+lX0Nv3DxMTE5BeRWq3GgQMH+OhHP4rL4uHiiy9mmjFi9LKLy7mUt7NB2sHQmjW4ow4ASpkKmbECUv29oBWqQhhRp5gsG++0aklHr9ZQvUK8Wi1XqeQ1I6qtMFfGUp9ngXgnNH60qZaFqEe21iPh9BpWp8UQ1JSSlSaHH9Vrxe6rR8PUaHKQlKQFAQaI99xiBx6rS8Hb50RxWIzji3HF7WJuWX9nLXVK8vQ6cHc5aIczbDMEvK3QinqTw9RSZl9JM39yuXtlg3K60lIALlkkui4MGqKYVmRG8iSOtT63rgkhSjvnp5VInsySbSNaL2c1pl9IdhRXRbb68fQub9dquT7vbiNqL2e0ZQKlxejVGtVidZkjZQPFbsEZsRl/AyzF5rXiXeXE6mg+3uhT9pCKb8Bl9PPGscZ8yBm1LbuuBSGRhLvLbjwzAHpFN8R8itNi/H3RoFiPlBN1l5vqvVigJlvFxKtRD6vTQilVMe6BXtEXYuMQYqrF9SrMlqnURXT2gNokMCunKk2irHh/lN7qMLuky9mvvJ2d3fvQSzqvcIBIOEJ/dIB//ud/Jp1uE6Vs8pbntttu4+677+bo0aOvd1VMfg5Y7Qo7372Wd372UlbtjBr/ferYPN/8g8f5yd+/TDHz6sWyJiYmJiYmJiYmJj8vdL3GgW8c57uffopcooivy8Utn9zHpmtXmQIlExMTk18gpFqtndeKyZuNRCLBJz7xCf7281+kjPhx24JCmC4G2YBb8jY5xXj6HES3+Dn7wylD7ODqshsuMmtu7iY3WWTi6YTxHbIixDO+ARd9l0Y48Z3xlvFnQzd2I0lw4jvjy46pXoXhm3sZf2q25S754DoP4c0+jt072jKOLLbDD5LUHAm2iOg2P5nxPIWZMrIqL3P7CQy7SZ3Oomu0PO6K2Q2hTKvjNr91IcJCZlkdbf56LEabtSKb34rqVsiMtl5sUpwyQzf2MP7EbNsy/iEXNp+VqQPJ5QdlsPvUlvflfNn8qwNMvZhk5mCL858HsiKjOOVlsXkgFmPCm7yMP51o6cQEov9kJ/Ktr69+fv9qV9vFQBALWy1FWvV7pnqV5fWTQZZldE3HEVYpJctNEX6L+4Nv0EVuolk0t/h414VB5o6km79j0Xf3XBRm7LFZytnlbRTbGcAdW3A3Wsr62/tIn8svizQE0Tf6Loly/DutRWqD13UhSRgRdI1nGsS9Gbw2zrkfTZObKmIPqGgFbSEKbrsfe0Dl3I+EUCy6zU/ieJpyTmPSeYZCOMmZkdPUajVsqo3tF2znU5/6FFdffXXL6zAxMTF5s3PkyBH+9V//lb/41N3kyWJFJUYvMfrwE0axWXCEbYbwJbTeSzFVNuZasiIhKzJasYrNZyW0wcvU8/OG0EaSoVZ/zUS3+amWl0eugYhDje8MMvXifMuYLf9qN46QKuKrliKJc+enSy0FOhabTGDYQ+JoWogyJJpELRa7jCtqN9xzJIvUJD6SrRKq2yrmJXXxVG2RWF2SJSw2Ga1QRZKbjzXqZ1Fl0SZLvruB4rC0dE5q4IzaKMyWjLZcineVE9VtbeuwJCsSvgEX6ZF8SxGUxS7e/+3OvxKePie+fqeI8/sp6RTF6+13Us5qbV2g7AFVxL4dmG8bsWfzW9EK1fYiMEn0lWXOTYvumcW+/Pji/mJ1K4aIeulxySJh91uXOVE1jqseBatLaYorXPzdvlUuqhW9tQhNlojvDJA8lW3pdOWK2QkMuxl/as4QJi0mtqPuCtui/1hdCvGdAaZeSFJOV5qeaRDzSdWtMPOS+KzqUQwhlWyVCW/wkjydpZzRhNOYRaI4X6ZUK5KNzjJWOMN0ZhIZmb7IAB//9O/znve8x4ziNTG4+uqrKZfLwmlnaIgbb7yRq6++Go/Hs/KH30IcPXqUD37wg3zxi19k3bp1K5Y/fPgwGzdu/DnU7D/GyIszPPkvr5CaWNgcY3Nb2XX7Wta9rQ9ZNhd5TEwW82Z5tk1MTEze7Lzaudebnbfa++U/cr25+SKP/K8XmTgsfr8avqyHff9pI1b7GzsUyLzHv/i81a75rXa98Na75jfC9ZpOSm9ydF3nr//6r1m3bh2hUIjPf/7zVKkQoZvdXMkV0q3s8FyMWxLuMNGtfgJDwlkoM1Lg5HcnDAGCf8jF6mu6DAekE98abxIoDVwZo/9tMQBSZ3Ic+fo5QwijOGUGr43jjIgdyWNPznLmh5PGZxWnhcgWYS1eTmtMvThPZmRRTIeM4UhUmCsJ16Y2sVEW1dI2TgMZ/GvcePuEW85SEYzqVujZGya41tvyuD0oRBoNt5xln/cqrHl7D+GNdbedpes0Mqy+tovei8Kt6wfEtgfo2tMhmkGH/HSJwqJYu6UkT+baCnh8q1wM39yDPdR6t79il4nt8KM4f/rH3z/kwjfoant88No4fZdEWh4rzpcZ/clsW4ESQG66KOIG2xDa4KFrdxDF2WZnvt/Kmhu6Ca5r8eO7LoQ5Qzd00703tOyYrukgw6q3xejZ13wNjTrLCnTvCRHdHmh5XHUr9QXh5h36jf5idSkoNhmtTRsU58pkFzlKqb7mSfjkcwkSx4VAy9VlxzewcC+SJ3OceWjSECgNXBklMOw2jp/+3gTnHp0CRGTP+ttXNcWlvPLlc4ZIr2dfmIGrFhy7pl9IGgIle1AlutWPI2hDlmT6pTUMjexgf+0WVrORcCDMs88+yzXXXIPH4+Htb387Bw8ebHm9JiYmJm8mEokEf/M3f8OePXvYsGEDf/apP8dHmAu4hEt5O+vlHYTUKJIkYXUr+Ifcxrxl7kjaECiBcLjxrxZjeClVYfzJOUMEYnVZ6LkojLXuNjl7ONUkUHJGbQTXivdcOasx9XyzQMkRUrG6xWdzU8VlUWGGS0xNOMi0cyKsVWtYrDIWdaH8Ymwe4SxpODUtEbl4+12innXByFIRUmDYTWSzmCMuEyghBFax7YG2AiVX3E7XriAWtc280SYTXOdtcitcSiWrUUq1F3frWo35E9m2Ap3wei+hJU6Mi3GEVGN+/dNgUWU8vQ4kS+vFZNWj0L07hM3b2mUqfS7fVqAEwonScFFshQTBtR48ve3dKANrPES3+pcfqN8zd7eDrl1Bo58Yh+v9xRWzE98RWDbHX3w8tMHX9vP2oNrkRLb4uwEkRUJu035IIuqvXI+ss9hkw+0LxLH5E1lDoLS4vwPMvJQieUo8X6rXSmij17hXlZzG2BNzhqPlUlfO1OncgkDJrRDfEcTmF/dRr+hMH0waoiVX3G442dokO9FUP1uzl3AJN7DWtpV8Jcuv//qv43F4ec973sM3v/lNzP1IJvfddx8f/vCHWbduHSdOnOCv/uqveMc73sEnP/lJnnvuude7eiY/Y/q2RXjHZy5h9y+tM2LIS9kKj/3DIe77w8eZPPrTuSubmJiYmJiYmJiYvNaMPD/NvR/7CROHEyg2C/t/cyv7f2PrG16gZGJiYmLy02E6Kb1JeeSRR/iTP/kTHn3kUWrUAAk/IQbZQEiKGeV8g8Lx6Nh9o5RT2jJnoO49IWSrxOhPZkEWUVAN9x4Rb+Vn/mSWSlbDPyQW0ZInF3bhGW40Mgxd3830wXkjomoxofUeYjuCHPvmCFp++QLP4DVxFIeF4/eNtbzewWvjZMcLxo/4S4lt9zN/Kks5rTU5wzSwB1VjcabJCakF3n6n4QbQiuBaD4kTmbZOSZ5eB4VEqeV1NlDdSksHnRWRoeeiEDMvpVq6FIG4b54+V1OU2GLc3Q4Groxx/NtjbdthJSel1dd3US1VOfvD1tFrzpgNrVilnGp/jeEtPioZbUm83/nT0glpEf4hF8nTubb3qZUT0mKcMRvlTKXtfVTdClpRQ9dauzYt7oexHX7mT2Rb1lexy6y+vouJpxPL4gpBOIt1XxgSz3CLz/ftj2D3q62fHVmIC1Nncswfz6LYhUtUo16qVyG0zms4a4S3+MiOF4xrUZwWrE4LhdkyjrBK78URzv5oyqjH4vFk8LouJBlOLXJ/KtfKnOYwc+oEhUqeWq1Gb28vv/Irv8If/uEf4na7MTExMXkzUKlUeOCBB/jnf/5n7v3GN4EaIeJ0sYowXVikBdFsdLufamnB8WixU4zisBBa72X2lRTVoo7VpVAtLUSmWV0WVI/VcIPxrnKSmygaUVCSRUKShGjGGbVhD6gkjrZ2FYzvClJMlEieWv6eVZwWunYHmX051dI5xua34l/tZvqFZEvhkGK3YA+qhivNUneYxrU23JEki9QUKbcYiyojKxKVNi5AFlVGcVraz90k4QTUSYRjsckdY+A64QipyIrcMY5WcViQZKjkWl9DeKOXGjB3uHUk10pOSlaXQmxHgKkD81Ryrec+9mDdRbPNX3aK3YKry952frgSK7WhRZWx2C2GGGcpkixhD6oUZtuL8Feaoyt2i4hRk+r/f4l7VqMfLu2fS/H0OlA91pauZCCenXKm0vLZsthkunYHmXsl3fLZsQdUPL0O42+Wpe3mCNuoVWsU58tY7DKOgEp2smjcN5vPakTDBYbdVIs66UUbOxrjidVpIb47yPQLyaY4vlwtwwRnmbGNkitlceLmv33q93nHO97xuu+OMnn9OXPmDPfffz8PPvgg8/PzSJJENBrlxhtv5LrrriMWi618kl9QflGdlBaTSxR5+l+PcPLxZrfeNZd0c+Evr8fpby/mNTF5q/BmfLZNTExM3oyYTkq/2Lza661qOs9+5Rgv3X8agNAqD2/7Lxfg62q/Sf6NhnmPf/F5q13zW+164a13zW+E6zWdlN5EJBIJeqXVKJKVK664gkceeQQ7LtayjbdxG7ukywlJMeK7g3RdGAQgM5Jj8tkEWn1BQy/rBIY9KHZx67ViVfzYD6AjBEqNXiHLhDf58PSKXcnJk7kmgVJ4k5e1t/QKRx4dTt4/3iRQim73071PONXMHclw5J5mgZIzZjN2Ck89P8/oYzNtr72UrrTd4S+rYoe8t19MWpYKlBSnhaEbuonUd3cvXfyQFZnhW3oIrhe7mlsJlELrPcau58Sx5QIlWZUJ152iMqOFlsIW34DLcDdqJ1AavK4LT5+j5TEQCx/ePpexC7IVukbHBajseIGXv3Sm4yLQSpx6YKKtQAkgP1XqKFAC8K9y4Yq3j6KQFSGwWewStJiGOK7h0LWU5EkhULKH1JbnSJ3OoRV1FLtM32UR5CWC/PyUEJopdpm1t/Usc44qZzUjMnD1tV107Q42HW/0Q8UuExz2Gu5eyy9UopzWKKZa34/E8QxjT84ZwiD/kKtp5B55dIbT3xc/NNtDKquv71pwmNLhzINTRqxi974wa27qWbiGtLYQ/SNDeMOiesqg5asUZsUCnGSR0ApVo+/6h1woi1wrpp5PGKI21acwdEMXbp+TddJ29lWuZ3/gesLEGRsd5zOf+QzhcBifFOTBBx9s3S4mJiYmbwCOHDnCKmktLtXDLbfcwg++8UPWsJlLuJHt0sXEpF5sDpXIVr/h5JM6kyN9buE9LCuS4aJTLVWplqtGvEolpwmBUt2UxRGyNb0v0mfzhkAJIL4zYLzT8tOlJhGFxSYT2eLDUp/jTb8w3yxQkoTgBsT4Pnc4TaGNsEcrVtHyGlKbvxTsISHEkOrXsVSg5Bt0Edvur4tGassESo6wjdiOAJJFolrWlwmUJItEYI3bON5qzuIIqcINqu4EtQwJ3F1intFOXOMIqcJ1sUPajc2v4oh0XrjVCtW2AiWA2cPptgKl86GS0xj995m2AiWot0GHrSeyKuOO243+0Qp7QF1wC13CgsOXgs233LGpWtYNgZK7y76s79T0miFQcsXsLZ2tGvfZ1WUnus2/7L40/mbx9DiI1/tP83fUr2NJ/2x1Le3+rgCYeyVtOL42BNuLPzv+5JwhUPIPuXF1Lcxni/PlJoFS956Q4TQLUJgtGU60dr+Yo0qNako0CY70co1q/dmRrTKOkGoIHrWiTuJIRkRMI545T68Dl+RhjbSZvaVrudBxBT5CfOKP/oRNmzYRsXexRdpDqdReKGbyi83AwAD/+T//Z77+9a/z6U9/mr179zI7O8s//MM/cOedd/J7v/d7PPLII2jaT7GZxuQNjyto54rf2s7b/3gPwf4FR7cTPxnnax/5MS8/cBq9+lPmlpqYmJiYmJiYmJj8FKSncnz7E08aAqVN167i5k9e9KYSKJmYmJiY/HSYIqU3Affeey/bt28nFAoxxmkkJHoY5DLezsXSdfRLwwSGPMjK8tupa2JhxBBMOC307A0ZC1zTLyaZfHbB4ju43sOGd/eDLARNR746QuLIwgKYp89hiHWSJ7OMPTm7XJBTr4YEyNLC4sDSeK/+y6JiAQLIz5QMMQRgCEMa7k3jT8w1CaRA7EpX7MLJ5ei9o8y+vMRlqV4PLV9l9LEZZl5OLmsf0UY6hblS06LAUjw9Djw97cVD/tUuYlv9RmRdK6Lb/MSXxIMtRrHLSLJYkGhHca7MK189R36m9eKCzW+l//Jo2xi0nyfhLT5i2/1tj5/47jjjT861Pa5rYpFyaazHYlwxO7HtgeXxHouIbfMb/awVtoCKK25H9baOYdHKOoVExVhQWlbPss7IT2aYejEp/sOSx1Ar6hz9+iizh8TiZHC9pylqT8tXOfPwFJWsEF2tvW1BMCe+AObr0W72kHAz8i8RTDXcoKx2C5IsGYt4S8eEyecSTD4nnnfFLhPfFVgoo8ORe0aYrguNui8MseambuOz+akSp38wKQR6MnTtDhHe7Gs63nBhs9oVkCS0+gKgt9+JveRmu3QJV3Arl6y6koAzSJp5rrnmGuLxOO973/tIJpMt29jExMTk50mhUOBLX/oSl112GRs2bGCCs3TRzx6uYq90FauktThtTkOoUa3oYs5Tf1+VkpUmwYqnx0mwPneq6TB7KN0kyontCOCtx2hlRvML4lHEe9Db7zTEFvPHs02uKoBxTK/oSJKExSrG9YY7UwNnxEZ4k8+I08rPlJpELa64ndgOEatWLerMHck0ncOiyobYIjtWYPLZ+eUuS/VXdmYkz+zh9DLxUgMtr1FOV1q6NIF4RzlCtoVIuhb4Bt2GkL4VNp+VwBoPVlf7cwhnKqmjuCd5MsvsodZOngDePieuWHvR9c8LEWvnaRt7V05XGHtyjmobB0mox+1JUttYORCie++q9j8WKnYL/iGPESXbCntA7Xhcy1WF+KbNfcmOF0T/akQLLqludqzA5HOif8pWGWe0WRCVnymRPiueI2d0QTDXoJLTjGfU2+cktLFZEL/4uZAWf/eSejQc1RqCJmfUhrooki83WWT8qQQ1XfTFnr2hJvFW6mzOcFVzhlURd6c0hIE14e7Voo1kRcIRtOEthtgk7Wa/chN7ei5FK2m8zNP43H5+6Zd+iVdeeWX5h03eElgsFi699FL+/M//nHvuuYff+I3foLe3l6effppPfOITvOMd73i9q2jyMyS+Psit/88+9v2njahO8ftFpaDx5JeOcO/HH2PilcQKZzAxMTExMTExMTH5j3PyiQnu/fhjzJ5KYXNZufrDO7jovRuxWF//tS0TExMTk589ZpjnG5TZ2Vm2RXYzxShV6gv9BBliIyEp3lRW9Sr0XRJh/Kk5EkczTD7T/KNScK2H0EYvx785hpavcuze0SYnH5vfiuKwkJsokp0ooHqsyDLouhDwLEa4MFmYP55BK+qGQ0uDtbf1kBktMPFMgqkXksuuK7zRS/JMFi2vc/rBybZuPlpRJzddpJJtvStdccrEtgdAlph9ObVMACUrMmtu6iJxIsvsS6mWzkKumB1ZkciMFUTcXQsakV1nHm7vGgSQOJIhfS6P1iaqBODk/RMdZYFaUW+KylqK6lbQyvqya20q41GwB9WOQqe+/RFjF/hPizNio/eSMGcenmobuaZ6FCwthHMGi3a7L41Ka3D6B5Md65GbKHL03lEh8GnDyI9nO7Z7bqLIkXtGFtyxZJqdsnQYeXTaOBbZ5FsWO5ipu28pdpk1N/cw+VyiSVTXeI5kVfRbq9PC1IHksrrIsnDGyE+3FqEV58qc+M644Rghnqec0e8yYwUjMs7qVhi+qYexJ2eN/l9OaYbDlavbQXCtt0nEuPi6M2N5yg3HBhkCQ+6F512Ho98YNcrGtvtxxuyc/r64X7mpIifvHzeO9+wLkx7JMfbYHLIkYz8XYDMXs5YyU5GTzFWn+cd//Ef+8R//ke5QD5/67Cd53/ve17INTExMTH5WvPzyy9yw5TYmOItGhQARNrOHKN3IUvMPJN5VTuwBlYmnE9SqNUPgCYAEkS1+8jNFchNF0udyy6JNHWGb4SqTmywa87Kloh5ZkfD2OSmlK5SSywWzjrCN4FoPE0/PoWtL6oEQFtn8VuPdUs4k2roKlTNaW0EugLvLgavLTmGuRE1nmcDIGbXhW+Vi8sA8ulZrKf52dzvIjheo5KvMn8guO96I66rkqow/PddRPDT1fAuR1CJKyQrjT801OVEtpdM7F4S4X8tXO9ZDcVo6zjMUh4XQBi9zr6SXxZO9GvxDbqhB8tTydgOoVWuoHquIF2t3zTXRp5Bax++VUhVKqfaCLIDE0TR6tX2DaMUq40/NtY33A5g7suAq1SoqsJSuGA5BNr8VvaI3Cf9qOkZf9fQ6cEbsTL0w33SfGgImV9SGd5WLwlx5QdTUVF+dYqL1MRAOqg1hn8UmY/NZm/rM4n7sG3Bh96tMPb+wAWTxxgJ3l4NKTmuKxFvchzPjBeOY6rUK57X685qdKFKYKxvOa/EdAVJncoYAavHfOo1xYeyJWfRKDblqwTMeY5cUI1dLkwpPcu893+TLX/4yfinM2vgGHjp6Px7PIpG8yVuGYDDIL/3SL3HhhRdy991389JLL5FO//TObyZvDmSLzMZrVjG4N84zXz7GsUfE33bzI1nu/9RTDO3r4sJfWY8r8NOJcKs1nQPZU8xW0oStXna4V2NpZ89oYmJiYmJiYmLylkIrVXniXw5z9EdiDhpbF+CK39qGO9R+I5qJiYmJyS8epkjpDcYjjzzCXXfdxXPPPQeAgko/w6xmE4q0cLvCm30Ehtwcv2+MclrjxLfHmxaW7EEVyQKFmTKlVIXCbBlZkdE1fVnUWO++MEgSJ+8fp5zSmkVOMgxcFSN1Osf88SyjP55dJlyyB1TjuxMnsuSniy2vTbHLRLcFwCIx+1JqmUBJcVoYvCbO5LMJMqMFxh5bLqJxhFUKiTJaXufYt8bailN0TSczWiA/2bougOEW0BB1LMU34KJ7b4hT35toK6YKrhURIYmjmbYCJd+gi8JMqW3EG4jovOJ8hex467oAxHcHsQdUji0ShywlM1IgM9L+OEA5U6HaQcR0PmilKsX5znFx44+vLIIKb/YRvyDAka+dM9yAliKrMvELAkw+N7+s7wFGHwhv9DJ7JL0siq/xGatbIbY9wOjjM8vKNP594MookiIbYpul+PpdRLcFyE4Umpy/GmhlncxYnvxU6wVPvaxz/FujhvuYM2ZrKqtrMPrYgmBuzU3dwsFhUURMQ6AkqzLRbX5kVWa6hSCwWtSZP5Ex+vfi5xQgdSpH5lxBtI8Ma27oZupg0hBcib4kPusbcNFzUZjCXNn4/sViuVKmgmVRBKF/yNUk0jr+zYU+Gd7iwz/g4sT946i6St/sBvrYwCyTnOIQc9lZ3v/+93PXXXfx/ve/nz/6oz/C620dPWNiYmLyH0XTNO677z4+//nP8+ijj6Jio4fV9DCIU3Ib5SQZotsCYoyfLpE6k18epRZUhWCgVn/X1t9rSx2NrG6FyCYfUy/OU0ouf/fbAyKqaualFNWSztgTc8vEOIrdglasUkqVyYzm24p1XHE77m4HhVkhLFoqknF3iditmZdSVHIaqdPL5ypWlyKOncuRGcu3dUcqpSvkZ0ttxR6qR8E/5KaS09q6V4Y3+9HymhB+tDqNJESzqTO5Ze1qFJGFSCM/XWor1pEVCXePg8xIoW3bWVSZrt1B5g6n2zpYAk2Rey2piblKqznMq2ElgZOu1Zh8dmX3i/jOIIW5UkuRWAObT4idWgm4Gu1usclYnUpLYVtDoOSK26mW9dZxfIDVaSG6zc/sobQhSlqKb5WLakVvG5dXSlWEnVGbqW1mrEB+RvRLSZaw2OWmOXs5XTGEQfaAiF+beSm50L9qGM+yMyLiGNsJngqzpYVzS6DYLAux2ggH28YavTNqwxG0GYKtWrVmuDuB6OfVUrVpDtjoz5IsUUpVqNT7hNWtUNNqxnflJouUUhX0iqhjfGeA9IgYu1ySF9eUl3htiGnGmXac4+mJfyfkDfO7H/0dPvCBDzA8PNy6MU1+4cjn8zz44IPcf//9HDt2jFqtht1u54orrni9q/Zz46GHHuKhhx4im20/Jv4i4/DauOxDW1j/tj4e/8dDzJ4WY87Jxyc4d2CaC945zOZrV7V07W7HQ/MH+ezIvUxVFkSvMauPj/bdxlWBra/5NZiYmJiYmJiYmLx5SIxk+OFfvUByLAsSbL9liB3vXINsMQXtJiYmJm81zJH/DYCmafzZn/0ZqiR+EHz++efxEuAiz5X8xh3/mQu696BICr37w6y/ow+A0nwZe8BK98UhQESNrL+9z4i9WHNzDxtu7weEq4nikOneGwRAcSvs+M/DxHaK6LHMWAGre0FgsOptUfrfFjX+PbjGg6tLnNe7ysH62/uQ63qpgatjbH7PAKF6PFV4g9eIb/ANuFh/Rx89+0LIikx8Z5BiqsRs3YVm7Tt7jbgoT4+DNW/vRitoVCs63XtDrL6+y6jD8K09xHcFWH1NF/37o6y/vc+IM4nvDrLm7SKWKrjWw8ZfXkVsZ4CJZxLoeo31t/cZ8SSx7X6Gb+kB4MzDU0gydO8Rbah6Fdbf3oerS+wWtAetqB7FECgNXhune58oqzhl1t/eR3CDB2+vk/BGL+ve3WfUd+CqGH2XRQDo2h1k068O4FstojECwx7W375Qtv+KKL2XRPAOiKiX9bf3GZF6vtUu0d6qzOQzCfRSlYErY8Zn1727j/BGIeDwDDjZcGefESXWc3GIwWsXXLfWvqOX8BYfUweSFOZKrL+9z4in694TYuiGhfZ2RGz4Von6OCM21t/ehz0k7mt8V4D+/VHOPTJNOa2x5u3dxHeLvmUPqKK9Y6K9o9v9rH1nr3He1Td00b233t5uhchmLzOHUmhFnfBmH2vfsVB28Jo4vReHUewygWE3m36lH2+/qFNovYf1i9p7zY1drLoqhn/QhayINmxEBQaG3aL+ASvubjuD18ab+vf62/sIrhPtXc5VcXc7kOtRKb2XRBi4eqG947sCzLycpDBbxtMnngWru96GF4UYvDrO2GNzlLMaa9/Zw9p39iIrMq4uu2hvn4KW1+m6MMjQzd0MXt1FdLuf4Zu7ie3wi7YPizZ0RFWK8xWcMRvDNy/Erg3d2E3X7iB6Wef0D6cIrvXg6rIT3uil95Iww7eK/q1rOvaQjfjOAMii7bf/xpAxRoQ3eRm+VZxXsYs6Np5jxS2ehUYspMUqU6vWjEXGre8bZE39OUKuL3gmxEJm14VB1t3Wh6dffE/f/gi9F4cNEVrXjnrkoS7GiK3vX43qlglLcd5xyR3cuf+9DNjXkp5P87nPfY6enh6uvfZajh8/jomJiclrxczMDH/6p3+Kx+bjXe96Fy/++BCb2cPbh25n76aLcUpuJIvEqrdFccXt1HQhvAhv8GFRZfSKjrfPacxj7H6Vgavjwu0GKMyUCK71GHFl4c0+451cyWqU8xpq/f2hOC107wkZ72RHRMXb5zTip8KbfXjr72SLXRbvgQvFe9cZtuGM2AzhUHiTj9BGL86oDdkq4+52kDiWoaYLB8mu+vsaILTBiyNqp5zVkBSJ7j0h7EHxrndGbHTvCeHtdxLb7ie0wUNw2GO4uHTvEbFUkkUius1P994QerlG6nSOwBo3ofUL4tKuC4M4ozbKGY25IylC671GNJ5/tcuYx4AQejUis1Svle49IcPFxjfgIr4jYMTAxXYEcNejeK0uhe49IRSHBUfIRveFIeK7FiJ2o9v8ePtEGyoOC32XRvAPinvs7nEQu2ChbGSLD9+Ai2pZZ+5IGv+Q24jocnXZie9aaMPIVh/++vxOtoo2tPlFWWfURteFQbRilcSxDIEhD4E1on9IcnN723xWPH1O49qDaz1CCF+ne08IvaKTHS9gD6p07wkZ/SOwxk1og7epbCN+zuYTbSjX58y+QRc1vUaqLoaJ7wzgrs97VY9oQ4tdxPqFN/uIbFmIOYtdEDDmEFaXhcGr40Y8rafPSXRRxG90qx9vvxNHyIYrZhf9u97f3d0OsVEAqBSqWOwWHGHRDhZVFm1Yj1J0xe3INplEXcgT2ug1njG53mdlRSYzkscZtbHqbTEc9flqcJ2HwLAoW63odO8JEdnsJbY9gCMi2rDR3oFhD8F1HmMzR3xn0PjbwR5Q698jiQ0Qc2WC6zzC5azfSdfuIK643bivvgEXFlXGHbczcE2cyKLI4diOAK54vQ0dFvxr3MYY4Rt0Ed26ULZGjUqh7n7ZZWfNTd2oHlHW3WVH9VgNQVTfZRF66n8TWuyyUV8AT48QIjbKxncGCG30IksWutVVXLf1Zq6M3UIXq/if/+Nu1q1bR19ggIcffpha7T+2qcHkjcuBAwf49Kc/zW233cbdd9/N0aNH2bBhA7/3e7/Hvffey8c+9rHXu4o/N6666ir+/M//nN/+7d9+vavyuhJd4+fmT+3j4vdvwuYWY3ClWOXp/3uEb/y3xxg/fH4uzA/NH+SuU//UJFACmK6kuOvUP/HQ/MHXvO4mJiYmJiYmJiZvfGq1GkcePsd9f/g4ybEsDr+NGz5+IbtuX2sKlExMTEzeophOSq8j09PT/NZv/Rb33Xcf5XIZGZn18U2ssW2heE5D0WXSI3kq9cglX7/L2NWbGSsweSBJJScENJIioTgsSPVFn9HHZ3HWFz5ARATo1fqO/qKGVtCo1Xd05yaLIqqiTiVfJbLVT+JIhuxkgcnn50nWd1uX0xrpkTyubgeZcwXSI3l0TWfumNhFnj6XN3bHlzIVCjMlfINuMqMFctMliot2SWdG8lTyGkM3dDH7Spr0SJ7p5+fRirqINmvsGJfF9eamS+QmpyllKoQ3+tBKol0KsyVq9WsTiy+6ER9WLemkR/LGuWRVLLw04jsyowVj57ZeFmVlqxBt5KdLTQ412fGCsUNZ1yA9kidxNEMxWcYVs5MZWdj9nJ0sGrvIT3xnjNiOAOVMvV3SZdKLyuaniuQmCgttOJKnlBb1L2cqRhuXyzqJE1lj0aHRhoX6DnbVpeAM21F9Klq+KGJdFkWxZUbzlFJl7AGVSl7cx4YbTm6miFZa2OldLVYN5yetVG1qw8JsmZpeQ3HKyLJMZjxPMVFpWXbxAi1AdqxAOVtvb00ndTZvxJaU5oUbhFHfiQLVok45rfHKV0eI7wwY8WPFVKWpDZNncqTHC8K9R260YaO9RdnMSIEjYyOE1nqQ5IU2TI/kDSHa/ImMWLDSdVxddvLTRUOwJNq7YLgKBIc9KE6Lsas9P11siiIppSp4e13Y/MKBIj2SN/pEfraEXtaZnp0nM15AskgU63XQivU+m9cZ/cmMiA4JqcLR7Gye7FieYv0Zq9T7RyWn0b0nRLVUbXIGy44XxBihw8i/z+Bf7aKSq+KIqJTzVcMpScsLp45Gf1h9VQxZkY17VUpWmK/fJ1mVqRZ1ivOiHWSluQ1Tp3NMeoQbGgjB22IHhbmjGVJnhfuIpEhYHRYcUQflbI7cdAmLXWZNaStrpK1Ydhc4NHKQH/zgB6xdu5bh4WHuuusuPvShD2FiYmLy0/Diiy9y99138+Uvf5lKqUKXsor1XZuQJ4UQScvoVAtizLL7rahuq+GYMn8ySzmnGVFXsiphdYqpdHG+zORzCSPCrVoRsbW1unpIK2hoeU28Y2qQmygY74yaVkNWZYLDHiafmyc/XUIr6Mb3FudKVDUdxWlBLwuXvHz9eyr5apPLT3G+jKur7p40VyY3VTTeyZWCKOuK2bH5rRTnhRtMfqaEJENuuki1Ps+plqrkpotkRgsUkxWsDsuCYKEmymrFKlaHxYiTaxwvpSqGgAaEKNkeUMlPl6jkxHlr9ddlKa2hFaqoHoVyRiN5OktpfmFeJsqK85YzFap1oQ41IQRrzJF1TZTVNXE9E88kDCEUQGGuZLS3rtVInsmRnSjUY8Q0474BFBJlox2Kc2VyzqLxftTyVfIzCy6ddr+K1amQPJWjVq23Yalxz6vkp0tYbHWhb3LBfadWq9XL1tu7LOrRcAMqJstI0kL9G+2tOCzGvaFFe6tuBVfcTupczjhvbrpouEWVMxrVkr4wH5kpUamLV4w+q9WYP5mlkCijOBbmcPnZBVdQvVJj9kiabH3OUclqRn2M9i6IOaGsSHh6nVTr39nU3jXhRFUtVZGtMpIiNbdhvkphSriAWVQhukvV5yM1vd4u9TbUClV0TccZsVOYK1NKVppENrnpIoXZEpIkoVdF+zeex1JKtHc5o1HOZNAHXEgWicgWH8mzuaY2LM2XkRRJCMt6neSni4YAqNHeerVGbqrI7KEkWkFci81vpTC70Gezk0WQU+hVHXtAJbDGTfLkgpOL6N/ivBJQzmlUS6IOlbxmjAEAMwcXnJ8UuwWLXTauvZytMvdK2rh3FpsFq0thDhE1l5suYs3YWSttY71nG9muGV46+QJXXXUVw8PD3HHHHXzsYx/D5XJh8uZmenqaBx54gAceeIDJyUlqtRp+v5+bb76ZG2+8kYGBgde7iiavM7IsseHKfgYvjPPsV45x5EcjImZ0LMt3P/00qy/qYs+vrMcVbB0BV63pfHbk3pbGdjXEWPbZkW9yhX+zGf1mYmJiYmJiYvIWopSr8JO/e5nTT4n0it5tEfb/xhYcPtvrXDMTExMTk9cTqWZukfy58/LLL/Obv/mb/OQnPwHAhp1VrKOXIeRFP9bYgyr9+yOceXiKclrsuF8aGdYQ2yDDmrd3M/X8vCE8WIynz0H/pVGO3z9GOdU6dswRUSnMiIW52M4Ac3WHm2Xn6ncycEWMUz+YIDfRIk5NhthWP1MHk6ALUYPeNm4DBq7pYur5+bbnGr65h+xYgYnFMXRLUL2KEOTILI/yWlzOpxDbFmDkJy0iv+oM39qDVqi2jfwCsWM5eSZnRGO1wtUlFknaXTsIRyaLamkbJ9dg4MooqXN55o+3t6FXnDL+AXdTLMRS3N0OBq+Oc+K7Y8a9bsXmXx1g6sUkMweTbcusuakbrVjlzINTbct4+hzoWq31vW3U2y7Td1mU6ReT5Kbal0MWzg7totQaePudpDvcF1mV6bskzOSB+bbt7ul1MHBlnNMPTraN4POtdmH3WplqEbW2uM6Nfmb00RaoXoWhG7oZf3KO1Jnc8gIyDFwRY/50ltSpFscb34X4Pv+Qi1K60vYeD9/Sg1Zs38f9Qy60glgIVt0Kuqa3jeMbvCZOrapz5uHp1vW+Kkb6rBD0yaqInFz87C1ul4EroxSSFaaem286TbaW5ozjEGlpnnw+Tzgc5r/+1//KRz/6UVRVxcTExKQTtVqNH/zgB3zuc5/joYcewoaDPoboZhBVav5BxLfKhazKzB8XwmGLKjdFhkkyIEnUqjVccTt2v5W5I63jvsKbvOharW0cWMPdRq/o2HxWIVhtE4vVcFiZbvNeVt0KsipTTJSR5LpepM0M3xmxYQ+oJI5nWpZxhFQCwx6mDsy3jUuz2GRDSNIQerTD2+eklKm0fefaAyrRrX4mn0u0jca1Oi14ep3Mn8i2jWdDEs5BK82pVLciRM8d6mzzWRdcqNrE1wHY6g5L7aLKACJ1t62Zl1Nty3j6nPj6nU2Rr8vq7bUSvyDAxLNzTaLoJiRwRe0U5kpt4/BAuDzZ/SqJY52j6hSHEGN3agNZkVDslo6xxvaAij1gbY5IXEJkqx9JEpFoLZEgsMZD+myubb9slKO2pI+2wDfowuaztozMhQV3q9lDqbZ9RbKIsQAJPN0OMnUB3bJz+a3EtgWYPJCgnFneTrIi4YrbDYF3I2KxFYrTQvyCANMHky3PZQ8IJ7bGWCFbZUOU1qAxrilOC+ENwtW0umieV6vVmGeG2cA5RubPomDlDz7xcd73vvfR19eHyZuLhx9+mO9+97scOHAAXdeRZZldu3Zx4403cskll6Ao5r41gKNHj/LBD36QL37xi6xbt27F8ocPH2bjxo0/h5r9bPmXqUf40tSjLY/pmk45r1FdFFcqSWB1KFjty/tNWddIVtuP8w38Fheq/Nr1u1+N7ec9sctfs/OZvLX5RXm2TUxMTN7ovNq515udt9r7ZfH1Tp9I8sPPv0B2RmzU3n3nOrZcP9C0ifwXgbfyPX6r8Fa75rfa9cJb75rfCNdr/iL1c+Q73/kOd9z0S+QRQhM3PtaxnYAUWSi0SIhRTmuUsxqyIhaxlv74H94kIguOfn0Erahz4lvjzV8ogytiJzdVJDdRInEiY+zmXUp4k5f4jiDH7h2lnNWWiQSQwT/oInlSCHPaCpSgHhHhJz9TIjNWWC7SkaF7b4jZgynKWY1T351o32i6cGbJTrYWioCI2fL1uzj69XPobdZHXF2iHcopjZEfz7T/PuDcI9PtF8AQwirVY8W6aHd5K/ouiZCfKXHukRbijTrRrQH8q90c/vLZ9uKq+oLoSmh5vaNACcQu+DM/mqIw116gdL6MPz2HXu6scWwlmFuKVtSRrTKyrfNuyu49IfwDbg5/pX1bOSIqq66Ice7fp9uLeRALfXa/2nYhMzNa4MyPptoKlABSp3I0lhs9PY4mByODej27dgfxD7k5+o3RlqK1clYjdTZHrl0/10U8YYOu3UFSZ3JN7hmL2ySyyUcpo3HuR6373ukHJ4zFcXtIRZKEQ1aD5MmFtuu+SES0HLt3rOW5EicyRvdU7DKKU1lYZNfhzA8W6t1zURhH0Np0rsXCrVJGQ6svyi0W8LklL5uLF6HJGsd5kYnZs/zRH/0Rn/vc5/jlX/5lPve5z+F0OlvWz8TE5K1LuVzm3/7t3/it//RfyZLCg5/N7CFKT5MoXHFY0Cs6ulZDK1WRF80Blooh4ruCFGbLJE9lyU0WyU02z4WsTgtaSYg6clMlIcxsQ+wCP6VkhcSxjOFC2XQut0JNq4m4sOOZZUKDxXj6nMhWIVKqtSimehRsfpXMSJ78TKn5/bGEUrpCbrJoON8sRVYk4ruCpM/kxLuv1VRAEnOlcrrZ+bAVxfkyUy/OdxS5KA7h/tJJWeQM2wht9DLxVMJwvlxWLVkiuj1A+lyuo6BZskjIDQFKBzqJkxrMn8zyWhhGVLIaUy/Mt53LA8LlqpPgezErTC0li0R8Z5D02VzHexgY9mB1KUw+234zgcUmi/vXQdA2fyzTOV6shiEelGQJq7ONMKq2UPfMaL7tfS7Mltr2ExAOVaWUmOkpdotwqDqba6p/o3/YfFZ8g24K82XDVanpXMlKk0DJEVIpJMrGuXStZgiUFLuF+K4As4fSTQ5fDfSyTma0YFy76qlvYmm4cM2XKdZdVhvxeXNH0k3PfGNckxBubA0xV0PAJyERJEowGaVfWc8Z7Tif+sSn+NSnPk2/YzXfe+7brF27tm3bmbyx+OQnPwlAV1cX119/Pddffz3RaHSFT5m8VchVi0xX2otocbT6jyVY+fXXlmQ1B+2H31dNrnqe7z0TExMTExMTE5OfGzW9xsH7T/PsV49Rq9bwRBxc8dvbia7xv95VMzExMTF5g2CKlH4O/P3f/z1/8Ad/wNSUWKwPEWMdF+CU3MvKdl8Ywj8ohBi6pi9zqVG9CjaflcxIQUQC1GjrcLL0XBNPNy8eyKqMK2YjM1IgcTQtIg7aLBCFNwgRU26qRCWrtRQoBdd7SBzJkJ8qcfSec23rpagy3h4nhZkS5TbOQOFNXqjB7OF0+x3VdaZfTJKbLLYVKMmqzKorYsyfyCxrg8VEtviYOZRacQe+rsHJ+8c7lgE49cAEegexE8Dks3NiwaPDehM6nHmovVsRIIRfF4aYfSXV1ikL6gsbHRblXg0rORo1CG/2iUXKDt97Pu05/WJS7Pjv0FaFmTKnvjfRcYFOL+sc/2Zrwc1iGu3kGxCuRO3cLaxuhVVvizH1wjwzL7X+gXfmpSSFRKm9q5YO40/MAULo070vzOhPZluWlxUZT5/TiO1pxfHvjBviRk+Pg1K20tQvtLxOoyHj2wOo3vYipNHHZrD5VKNu9qCtSby1WAwWvSDQUUg283LScJ2QVRnfKmeTO9ji5zO6NWCMX41zKbrCBmkn62oXkB2c4sj0y3zhC1/gf//v/80VV1zBP/7jP9Lb29vyOkxMTN465HI5/vZv/5a/+Iu/YHx8nDBx1rKNAJGmCC0QYof4zqAhWlkqOoK6eHy2JCJPTmbbuthIFonYjgDpc0IY0UpgYPNZKWc1atUac0cyIgKuDeGNXorzFeaPZxYicBehOCzIioioShzLdBRY27xWnBGbiFVtUUy2SvhXu5k/kUWv1Fq7+tVpuEM1hBCt8PQ48A24GH9yrq2jj9WlIFslSsn2LksNCnPlFQXW+ZkS2nPzHYUnNb3G1POJjg47AMVEue17v4E9qGKxyiuKglrdu5+Gml5rKWZbiuKw4IrajWjVVuSnS0Z8bdvvq9bqbj2dvzN5MstKvrytBH1Ladw3SZZwxmwdXTh9A05cMTtjT8617M+1ao3E0XTH9hLRbuL5c3fZ0au1tm2iehWcERvpkXxL4VopWWH8yVmjrzujtmXnanyXYrcQ3uRj7pV0y3mcVqwyczBFMSn6n81vpZzWjOdb12oLsbkWieg2vzHmLKVa0UkczwhBVP1cWr5qiJQqeREFZ5yrhYDPXnWzXrqANdbNzIdHeWX8ZdatW8dVV13FXXfdxbXXXtuyzUzeOFx55ZXceOON7Ny58/WuiskbEJfFTtTqW7FcrVajkteolJrfaYpqQXUqSLL0ujkpuSyt4+dMTExMTExMTExeH8q5Kt//7LOMHhRu0YN741z6gc2oTuvrXDMTExMTkzcSpkjpZ4Su63z+85/nrt/5PTQqSMh0M8BatqNIzc0e3uKjWqwyfzzL9MGkiN9os3bSvTuE1aOQGRlDKy53znFEVBSHQuZcnumD8x3P1bU7gLfPxStfFQ5Ey37clsHT6yRzLs/soTTZ8SKVNiImT6+D7gtDlFIVchPF1jFxfQ5yUyW0os6Rr490FJs4o/bO0RKqTO/FYUYfm0XLV0md7rCYVtY58/BkR9cAR0Qlui1AOaO1X5iTYeBtMaZfTHY8l+pWKOfbC76a6qbRcREGRLut5Ehk96n4B92kzuY6ipQCwx5kC22jaV4N9qBKcK2H8afnOt7LwGoXuelSR5ESiAUgSZbaLlRq+WrL3elLaSwWqj6lY1sgQ+++yIpuCrEdAQqzpbYOXJWsxumHJjveR62oG+5E0W1+ytlKk1vRYmwBFUdQRXHIlFuIlHRN59g3R4029w24SJ1bInTTMQRO8V1BEV/4g9bRbmd+NIXqEWOS6lawOOSmmDgtr6PlxbVFtvoJrPFw5KsjLd1Bxp+qx9XpwnEsuN7H7KJ4m+JcmWJ9kTm4xk18Z5DcRLHls7JYwCcr0LMvwtQB4bQhSzLeM11cSBfTjDLpO83DDz9MX18/1113LV/4whcYGBhoeb0mJia/uKRSKf76r/+aP/nDT6JRIc4q9nINbsnbVM5ik/H2OZk/KaLDOgkxFLuF0AYvtcPC1WSZUEYCV9xObrJYF3Wk2p5LViQiW/ykzmSFE0oLFx6rW6FaqqJXaswcTKGV2r/3AmvcIEnMHEy2nDNJMth8KsX5MpmxQtsoKlE3GZvXimKX24qwnBEbkkUiN1lsKcBaTGasQClV6Rg55ul1YHUpTB2Yb1vGEVKx+TrHhAFY7DLVon5ec6+2UWl1FIeFml5bUchkD6hYnZaOIiXJIuHtdZKdKjTFaf20uOJ29IreUbBlscm4exxkJworxqLZvNbOQp7zcIoyXHlkkCzLo8UWo3oUPD2OjvNQe8BKYMhDab7SVnCWOpMX7d5BHNVoI1lZEOC1E/KpXiu1DiKl/HTdfaxWj7dzKsvaptHXbX4roQ1etHxrdzCtWGXimYQhXrP56/dgUdUaAkBJlghv8glHqLPL56q1ao2p55NGO9kDKlpp0Xy5RpM4LDjsoZisGI5Uy8+1IOBzRmxIsmT0b6ViJTIxSJB+JjnHM08+y3XXXUeIGN949KtcdtllLdvO5PXnj//4j1/vKpi8gXlP7PJXFZU2cyrF4/9wiJlTC3/jWR0WdrxzmPXX9HHj4f+H6UqqnckiUaufB7b8IZbXwmLQxMTExMTExMTkDcfkkQQvfnGCSraKRZW56L0bWXd577JNgyYmJiYmJuYvA68xuq7z6U9/GtVi43d+53fQqdLPMFdwKxulXcsESgCebgfOqA0QQozikoWHrt1BfAMuAEafmOHkd9rHo8V3BIlu8dfPpS87l81vxdMnPLsnnpnn5HfH2wpMYtv99F8aQbGLbtJqx7wzJuqdGS1w/FtjbYUasirTd0mU2HZRt5bfKYMjLBxbzv1oumMsm82n4AzbsHnb6+zsIZXuvSGg7vqzggPP0W+MdHQOsDoVrG5lxbzcvv1RBq/p6lhGVmD9u/vwD7k6lnNGbAy8LW7c/3YU58sc/rezKwqe3N0OPP2vTSyW6lbwrXJhdXbWOh7/1jjjT86teL7Ba+LEdgQ6F5Jh+NYewps77/b09jtZe0svjojavpAuhFGqu3P9T31vfMWIwEa7O2M24rs6X4MzZsMVb7/bMzdR5Og9o0JgJQsxWKu6g1jM7rs0QmRT+/Y4+cAEIz8RsW/2gIqsLhn2dQwxV2xngFVXxNqea+LpBKe+P4Gu6UKEtM6z7FyNtvCuchG/IIDN33qHxOzhNMe+NWos4PVfHsUeWrjWxQI+e8iGu8sBLRIWo1IvW+cv5ULH5Thx873vfY9169axd+9eTp482fZaTExMfnGYnZ3lj/7ojwj7I/zxH/4xMfrYx3VsknYtEygByBYJR9iGUo9tLaebBQJWl4XAsHC71IpVxp+eayvKsTosBIc92HzWlucC4aqCJEQMUwcSRqzTMiSIbvHh7XMa3730XJJFwlKfl80dyTQJQZfi7nYQ3uRFVurzlhYrhlanBSTh9jPxTKKjgMfmsxrX2Q4xL7BAbcE5ph2JoxlmXkp2LGOxWYz71A7Vo9C9J4Tq7Vw3T4+DaGMe2gHfoItwh/dqg+TJbFsHxQYWq4y7247F+tr8yeUM27D5O8xtEK4+Y4/PdhYoAY6Qjdj2AIq9c/s6Iza6dgdXjIeLbPEvnxcsQZIlFIdw0GpHYa7M+FNzKzpiNfqqb9BlPBOtsNgt2PxWLB1ihRNHM8yfEM6OVleb9qg/P95+J5FN3rbtUUpWmHgqYcxvrC3mmQ2BkkWViW7x424zL6zpNSafSxibFVpdRyWnGSJF34ALX3/7vxkmD8yTOi2u0xFS8fQ1/01QyVUXxFY+K/bA8mfKIlnokQbZlb2SLZa9FCmwf/9+usO9fP/73+8c2WfyhkDTNL761a/yoQ99iOuuu44rrrjCOHb8+HH+5//8n4yMjLyONTR5IxNZ7ePmT17EJR/YjM0txohKocpT/+cI3/qDJ/mQfDWwfIhs/PtH+241BUomJiYmJiYmJr+gZGcLPPgXB6hkqwR63dz66X2sv6LPFCiZmJiYmLTEdFJ6jdB1nc985jP84cf/CJ0qFiwMsp5BNiIv+RFGcVoYuqGL8acTZM7lOf391g4nDZxRsWs6RSOmqZnwZh+l+i75kUen0TosSnRdGMTqEE5Mellv6dTijNjIz5SYeiFJ6my+bWybp9fBwJVxzjw0KXbMt3DAkRXQ664up34wsUw0tRgRT+fiyNdGW7q0gBA76WWdwkyZI1/r/OOpu8uBu9uBrMhtz2cPqPjXuJl8JrGiS08lq51XTNjYk7NYlgpBliLLZMbzIj6mA/mZ0orxZa+GkUenX5PzAPVoiXOv2fnOPTJNKbmCA4IO2fECpWTnCJb0aF4sKs90Lnfqu+0Ffw0az5wrZsfVZWf6hWTbsp4uB55eJ5MH5tuK4s78YCG6r9Gf29F9YQjfgIuj95xrGWdYyWqcfGCcwmy57fn0so5eb4b+yyNUcu1dlUb+fQZ7QDXOpbqUZeLExjPsX+Ohe3eI7ESBcnp55ZInc0Y8JED33hAzL6ea3Nga4ijVp+AIqwsL6UvIT5V45SsLfW34lh7mT2abFuc9hRD7pGvJO1JMRU/z1FNPsWbNGi666CL+9m//li1btrQ8t4mJyZuX+fl5Pve5z/GZP/0MNaCX1axiLTbJsaysu8eBM2xj+sUklXy1o3hWtsjYfCoWVaZa1pc54FhsMu4uB6kzOeNc7QQhisNCaL2XWjVFYa5MpcVcQ3FaqBZ14er0YpJKh3iw8EYvkkVi+oVkW8caySJRq9bIjBYoJMpt3Ywki0TsggDpkdZRUUvP1xBxtC0nSzjCwsml1XU28PQ6KCZEW+iVzoKG7HihKWK0FeWsxtwr6RVdf8o5bUWhOQjBSidBy6tBK1YZe2Jlofb5MtNBlPZqKcyVmHg20VEMBKLd8jMlJEnqKEBJnc5R7eCiBFBKVZh6vr1zVoNG3/atcpGdLLR1tZIsEs6wjUpOI19sPaeuZLWFOFkJcR1tHJUki0Rsez2ycaT1M5E8nSM7IVycJBkRdbfkdIudjaJb/Uw+l2jpqlQt60weWBAHWt3KMtfaxeNPYI2HcqZC4mhrJ6qpF+aRLaKP2/xWLKrc5A5Vq9aMqlqdCqrXSjtPq8XPuyOk4htwMf1i0hhPJEkipvcSpYdcZI7j+UNcd911+Ajyv7/yBW6//fY2ZzZ5PSmVSnzkIx/h5Zdfxufz4XK5KBYX/s7s6uriu9/9Lh6Phw9+8IOvY01N3shIssT6t/UxsDvGs185xpEfjUAN5kcy8Kfwazddznc2PM90deGdFbX6+WjfrVwV2Po61tzExMTExMTExORnhV7V+dFfv0gpV8HVpXLLp/ah2DpvijIxMTExeWtjbmF6DVgnbUe12Pj4xz+OBAyxmf3cwpC0uUmgpPqEJkzLV8lPl9AKrQUZitPCmpu6DZeik/ePM9VBGBEYcuPpbey615eJI+wBFVdM7NAd/fEMJ+9vL8zoujDIwNVx4bai01JUJNelbZnRAucenSYz1n7xaOjGHvouiQCtz7WYyQPzjPx4pq2gCGDo+i76Lot0PE+D2ZdTHPtme8ETiEVL3yrncneZxcjQ/7aocf9WojhXXtHRSC/rjD021zmOrM75CJTWvauXyJaVd/2/HsiqzPrb+wxXinYUZssd71WDiac7uFA00CHxKiLt4ruD+AY7u1V5+hzC0apDV5l6Icnxb411dO1q4IiobHhXn+Fs1orJZ+cZ/clMS4FSg4ZAyRGun6+3/fnO/miasadEFrTcqjsveua7dwcZvDbe9noTRzIcu2/UECgFhpe7JzQW2uwBsbhla+NyUU5pHL1nVDieAYPXxgmtb+PGIItnojAnylrdSlMdnQUfg2e3s5er8RLgqaeeYufOnYSkGJOTnQWhJiYmbw7S6TRD0iaiwRh//qefoZc1XMINrJW2NQmUJFlCrjvYVHKaEF220ai44nZCG4TrUildYfLZREfhkbvLbghZWpVzRuoOmYUq40/NtY3nkmQhimi4J1Xyy92TRDnxz/kTWeZeSS8vUMceEC6SDXecTgLsWrXGzKEUmdH2AiXjfCu4GUHd9eXAfFO81FIkGVxxx4puQI6wreP7rPmLaRvTtZhSstJWeNJ0umptReG6K2an68KV3YVeLzw9jpXdKWviuVgJLV8ldSbXVtjToJSuGA5BK6E4LATXdnZdkhUJV9ze0b2rVq0x8WzivO4/QHCtp+N8uVatMfNyquPfNtQWnJACazxE6g62rSjOl5l6cSH2rZV5SEOgJCtiLOjU76eenzfEQ6pHWe4gVVuInXME6y6UbUiP5Jk9JAQENq+V6FZ/W7F4taRTnF+Ib1z8vZIk4Z4Nsz13Gdu5BFmVuOOOO4jY4uyWrmh5PpPXjy996Uu89NJLfOhDH+Kb3/wmN954Y9Nxt9vN9u3beeaZZ16nGpq8mbB7VC75wGZu/pOLCA8uOFe6vm3ll//6Iv4g+Q7+dNWv8Hdr/388sOUPTYGSiYmJiYmJickvMAe+foKpY/NYHRbW3RY2BUomJiYmJitiipT+A/z93/89oVCIY7xIjRqr2cB+bmFQWr/MPcm32sXaW3qN6KaRH88sd3mpf0QrVqmW9La7vWUFuveFjGikk/ePMf5U+13aPfvCxHYG6ufWWwpBFKf48qkXkpz90VRbdxd7QGXdu/oNYUWneDSAuSNp5o62X0yzuhUGr+vC6lbQy3rnRQFERFSnxTkQAofwxvqPZCuIRWZfTnH0G6Md3WzsPhVHUF3RHSm8ycvwLT0rPlWePsd5CYpcMTtDN3ajOFee0KXO5NougBrIsO7dfStGx70a1tzUveK16GWd9Ll8S6etpcR2+Om9JLxiOUdEFdEjKxDZ4hP3ZAWcYVvrWLVFTD47f34CJF306+FbegyhYSsKM2XmjqXJTbTv87qmG4Ks7r2hhX7d6nyJMonjGTIdHCdKyYoRIzd0Y49YYG3D+FMJzj06La5XpqWQryFQ8g246Lko1DZerzhf5ug95ww3jJ6LQ+3bRhbjlOHgtvRrdRh/cs4QAvZdFmHo+u5lp3FLPi6UruSy4HV4rX4STNPb28sVV1zB+Ph42+s2MTF545LP5/nsZz/L4OAgZzhCF6u4mOsZlragSsvHlOg2vyGQLSUrwi1oqc6iPtXStVpbZyIQgoDG+7OUrDD+1FxbdxfVoxDa6DXEFa3KNcQANb3G7Msp0iPt51O+QZchhNAK1bbfC8KpJjOS7+iO4+524K1Hv5aSFWod3mullGi3TuIT1Wsltt0vIrxWSHqq6TD5XGJFdyTVpawY34YE8Z0BQ4jfCd8q13nNpwLDHtzdK4ujKnlNiMhXuF5P7/nN+c4XR9h2XvOfclYjP72yyN1ik4lu859X27i7HSveE8kiEd8ZMER67ZAVCZuvcwSbrtUYf3puZQFSbaF+DaFhO7LjhY6iPBB9vqbXsNhkwpt8bYU7ANmJAtmxFc5Xn//agypdF4baXrOu1Zg5mDSejVaReLVqzYh28w+5CQy1F3olT2WNOEXVXR+/2l2KBNWKvuC6tqRcOauRPFWPw3OLeMWlcb6SJBGW4uwoX87eyBUUy0We5RH27dvH9773vbb1NPn58sMf/pALLriAX/7lX0aSpJaxC93d3UxNTbX4tIlJa6Jr/Nz8qX1c/L5N2Fz1uU++SvrvM5Q+V6BvLGhGvJmYmJiYmJiY/AIzfmiOF+47CcAl79+MPbjC7zkmJiYmJiaYIqWfigcffBC75OADH/gA84kkq1jL5dzCamlTkzhJVmVjQSt1Jsf4U3MUE62FJJ4eBxtu70f1KqDD6R9MtnXj0XVwxx3GAkArlxWb37ogiHp0mjM/aO+eFNvuZ/jmXiMqqpMLUHG+TOpsznAxaYW330lsux8QkRkNd5RWSBZQbDIWa2cnI/+QaMf54xnyM50XK7RCtWNUCohFqHBj0WgF0YkQWIyuGB1WSlbEgtUK53PHHfhXd3YVArHQo2v6irv5QQhoVlrwkxWZ3HiBcm5lsdD5kp8pUc6svAt//Mm5Fe8bQK1K21iaxThDNnwDLmSl8xBWmCuTnSisONKdemCCqedWjh9BF45oK7l5VYs6WqG64rVMPjuProHqVXB1dV5kVeyW5Tvml9Rt4pmEUcfeS8Ltr1sXi1edHCV0bWEs6N4b6ijAS53JceLb48Yz0sqVqjFOKXYZV8yB6m7jTKaLMashgBy4Mkb/5dG29Rx/Ys6IjrG6FTw9zYvLypyTCwr72cUVxMNdPProo/T09PLBD36QcnkFYZ+Jickbgmq1yt///d8TdIX42O9/DGfCzz6uY520HZvUPHbafFZDVJA8lTUW1lsR2uAlWHeBK8yWOsaZKQ4L9qBqCMhbCXsa865yRsRLlVKt37eSDPFdwQWhULqzUKiYKHd0J0KCwBo3FlWmptc6RrcBWKyy4TDVDpvXapwvs4L7UK1aQyvrnd95EgSG3UKgsfJrntTZHHOHO4vSJUm858sruAE1HHms5+MGVdVXdAwCcY/TZ1d2ZdIK1bb94KehWqoKUfoKDk6lVGVl10mEC1itWkM+jxg8d7cDm7ezq2itWqOQKK8cIZfRmHgm0VFwJ05Y/+4ex4pi8mpZX/F85YxmiPod4RWEVBYJiyp3jAhcfD5vn7OtYyQId8ncZLGzyLA+FshWia4LQx3nhjMvpUgcE66hVqelpfipMa5Y3YpovzZdu5SqGJtAFIeFnr2htvO0SlZj7nB6QXwVUJvaSDgrhdjDVWy1XMSRl49w/fXXE5f6OHnyZNvrMfn5MD09zbp16zqWcTgc5HKdNyK90Xn55ZfZv38///zP//x6V+UtgyxLbLiqn3f/xWWsvbzX+O+Jcxm+88mnePT/PUg+dX6udyYmJiYmJiYmJm8eCqkSP/pfL0IN1l7ey9C+5ZuJTUxMTExMWmGKlF4Fhw4dYuvWrVxzzTWUKNHNIFdwK8PS1mXOSQDxHQF6LgqJWCVdCHaW0hBZ5KZKpEdybR19ZFWm95KI+MFYh2PfGO0YZ9V/eZT4LuGeVM5qHeOi5o5lmH5hvr2bkCzO13BJGX9iDi3fIUKty7HiLnTVqyArIubp+H1jIoKlDeH1Xnr3RYSAqwON+KqRH8+QOt35h1VXzIY7vvLO+/iuwHntLgfIjBUYf7K9o1WDiWcSHP/22IrlsuMFTn9/5XgqV5cdR7jzwg0IR6PRx2ZXFFu9GsafnFvRTQtE/20IzTox/WLyvNpw7kiGI18bWTEeLjteYOLpxHnFr4Fww1qpLW0eK86orWN/1DWd0z+YXIg4XGGk7d4TontPqGOZc49MM3UgCbDiQp0zbMMVt6N0cP+aeSm14Ea0P9rRiWL25RQzLyY7tmPjGfb0OOi/LNp2DNCKOse+MUrypOg3XRcGO44X6bN5MnWXglYRdcX5siHQi2z20XdZpGU5vxRiw/RetssXY8PG3/3d3xGPx/nYxz7W/qJMTExeV2q1Gvfffz/btm3jAx/4AH4iXMS1rJd2YJecy8pLFonIZp8RcVRKVagWlwxcEobAozBX6ii6tvmseOoxbPnpElMH5tsKWOwBlegWP1ZXPdq3g1i6VheKdhIe2bxWAmvcxnV0in6VFRl7UDW+ux2NyLbU2RzJk+0FWQDBdZ6VnRfr7VjJCdFCJ/GRYrdgD6zsSqm6FZzRzuKRBjVdiGQb0aLt0LVax8i9xSRP5ToLwgAkcIRUJMvKwp7CXHlF0diroZypO9qch9DL6lJEJGonajDzcsqII+vE5HPnEbcLpE7nzkvADsLJ6Xxi/ewBtaMACITQsCFKXMmwQ3FYCG/0dhQqVfJVpp6fp1oW7rYd+64k5mad5obVsm7MmVWPIp7vNl1Ir9RInsxS6CDwr1UX3N/8Q25C69u7SOUmi0wdEIJui13Gv9rdto10TSc3VTLEf61EWo2NB5JFIrzRi7tn+T2UJImo3sOOzNvYyC6SzLJ2eC133HEHc3Mrz/VNfjY4HA6SyWTHMuPj4/h8b8wY8fNB13X++q//mvXr17/eVXlLYveqXPahLdz8J3sJDSyMS8d/PMY9H/kxh75/Fr16nn+cm5iYmJiYmJiYvKGp6TUe/X9fopAs4e9xcdF7NrzeVTIxMTExeRNhipTOg0QiwdVXX83mzZt56aWXCBHnMm5io7RzmTjJ3e0wxBiTB+Y58e3xtgKh4HoP697Vi2KX0TWdscfmFiKOliDLdTFKh/gEWZWN2LZzj0xz7pGZtmV9Ay6Gb+1BVmW0fJW5DoInWZax+awrLg6oPvHD/PhTc5z8bnvnJoDBa7vo2dfZjabB7OE0J+4fN6KlWuGM2Fj3rv7zivwAGP3JLGce7Gxjr3oVgsNeXCuJmeoirqWxB+3OCawomlHsctvorKXEdwSJ71w5+kNxigXC1xLFLp+XQMoVt9N3SdSIKFzpnCvFhBhlnZbzGsViO/wri6Rk4aqx0qJsZrTA0XtGO/bHxay+oYu+Szr39XOPznD6BysL0gDsIZU1b+/ueD3JkzmOfmMUraiLcaGDA5Osytj9VhRXezFeOa0Zu/VjOwMMXB1rWzYzVuDk98YN4VDH50IWosZO/SJxLMP8cbHo2L03wpqb2+/GGH9yjlPfm0TXxHXFdviX9Y+QHudS6e3sjl+CLMl85jOfIRQK8U//9E/t62liYvJz57nnnuPKK6/k7W9/O2OHptjN29gi7cEpNTsRSjJ4+pxIsli0nzww39ElLnZBAN8qMX7mp0sdhSuqR8GxgihUsYuxszhfZuK5BJUOrj7hzT5DlJmfLlHtEDVrsclYXUpHFxfZKlxe9IrOxDOJjoJvZ0TEhHV05FvE9IvJjs5SAMG1HkIdYkgXoxWqTDydWFG84gjb8PYtF6AtxRmxnVcsmyS3js1qhepWzkt4pLoUIpv9WM9DxG51Ws7rnK8GxWHpGEHWIDDkNvr6SljP59rrwqhOEW0NFIeFwHD7KLIGNq8Vb59zxXs0+3LqvETxjXN27wkZorxWaIUqE88kKMyen6tHYNhNZKu/fYEaTB9MGiKulZ4zxW4Rbd7hsnOTRXSthqyICL1GfGQrZg8vxGuv5P6kuq04Qirtvlyv1AwhnEWV6d4bEuVbUKvWmHg2YUTeOcK2ZQ5MkiTRLQ2wj+vY2r2Db9xzL/FwF3/2Z39GNtt5jDF57dm0aROPP/44mUzrv/2npqZ48skn2bZt28+5Zq8d3/72t9mwYQOrVq16vavyliY6HOCWT+9j369tRHWKcaGc13jinw9z3x8+ztSx83AxNjExMTExMTExeUPz0gNnGH1xBotV5m2/fQFW+wobpUxMTExMTBZhipQ6oOs6H/7whwmFwjz00EO48XER13KBdAmq1PrH2vAGL6F1YsFGL+stdybL9Z246XM5EsfSaB3ck3ouDgkhUVHn6NdGOjoEDV3fRd+lIhaplKy0d0ZC7MovpSsdxTL2kIrqVtA1neP3jRnOJ60IrvWw9ube8xLqAIw/Mcvkgc4/TMV2+A3BSLuYvAbFVIXUuRyFuc6738Mbvefl6ANCmHHk6yOkTnVeFLEHVJwRW8cFAQBkGLqhm+69nR1zAAJrvQxd3230lU6c/v44Y4/NrlgutMHL0A1dK5Z7NUS3Bxi4Mr5iucxonqNfH1lwFupA90Vh+vavLGCzuhXWv7PPiOrphDNixxFcQfikw/FvjTP57Pn9YKo4LfReEllxFE2fyZFcYWFNL4tYP1mV6dsf7SgqKs6VGXtiruPzKE4q/rHq8iiD17S/R3pZPN+Nft6IH2pHOa0ZER/taEQ8evocDN/c0z6uRIfj940x+1IKgOg2f8dF5/mTGUMshUzLuL/GIr23z0F4va9tXIlvKs62xH5WsY7kfJL3ve99bNiwgaNHj3a8NhMTk58t09PTfOADH2DXrl08/aPn2MY+drIfn9RajGtRLfhWOVHrQupWDkaLxRfZsULH+FGbz2qMWZnRAtMvJtuX9Vvp2hM0xpmVHH0qWW3FGKzGPCo/U2L6xWTH6LHoVh+B4bpoawVnnfxsidnD6eXOUouQrRKBYQ+SLIkYsBViz/LTpY5OLyBcWPxD7vMS1YBwRpp6IbliOatb6SjaaOCM2eneGz6v7w9v9q3sHoVwKB17cva83IdiFwTwnIeY6tXQtTuIM7qyKH/uSJrZw6kVy8lWma6dQZwrxJ+BcOyJbQ+sWE6ySNgD1hXFOvmZEuNPJdAr52ENhRCnrSRkL2c1spNFqqXOz1pjrHCE1BUFb6kzORJHO8cPNp5Bq9NC94Whjq6X+ZkS0y8kqelC0NQQO7Y8bU1cU6exo1atGc92cJ2H8Ob2LjiF2RITzyREzJ9VwjfoauuqVK3oZEbyRmRhKyFbtaQbsXKeXgeurtZtaZEUwuMD7NOvo4tV/MEf/AE98R7uuecearXzu/8m/3HuvPNOMpkMv/u7v8tLL71EtSr6VbFY5LnnnuOuu+6iWq1yxx13/NTfkc/n+Yd/+AfuuusubrzxRi677DIeeOCBlmXL5TJf+MIXuO2227jqqqv49V//dZ555pmf+rtTqRRf+9rXeN/73vdTn8PktUOWJTZevUpEwO3vMf773NkM3/7Ek/z4bw9SMCPgTExMTExMTEzelMycTPLMl8Xv6Ht/dQPB/pXXaExMTExMTBZjipTacM8992Cz2Ln77rsJB0NcNfx29kpXE+2OsOGOfsM1qHtPiE2/uspY1FB9CtlJsYvWGbGx4Y5+w2kmvivA1l8bZO2tPciKzMCVcbHIrguhy4Y7FpyAotv9rL21B2+vC1fczuobuui+SIhbVLfChjv6jXiE8BYf697Vy8QzCcaemGXw2rgQTyBcaTbc0Y9vwIVil1l7Ww8b7uinOF/m3A+n6d8fof9yIWxChg139BsinjVv72bzeweNXtJ/eZSBKxccVDbc0U9wvZh8VDUdSZWp1n9A770k0iSMWPfuPmI7/MR2+PH0Oei9OGIkHHRfFGL1IvHM2tt6iG7344w6CAy72XBHv+EA1HVhkDU3LTipDN/SQ9eeIHpZZ/5YhnXv7DcciGI7/AzfsvBj2NCN3cR2BfD0OFF9og0bC5GRrX7WvqPXKLv+9j56Lw2hl3UUp0W0d128Ed7kZf27+4yy8Z0BclNFiokyslpv70HRhsF1Hjbc0S8K6qAVqziC1qb2buw09w+52HBHP7IiM/Nykvxcif7LIk11CtcdC3wDoqzilNE10V8Gr13U3u/qJbxFLFB4ehxsuKOfzGiOMz+contviKEbF7XhrT3EtvsBcMZs9TqIuxPfHWxyrhm+uZv4brFQbA+q+IdcTL04v9Detza3d0OQpboVhm7sNhaBIvU+20D02TAAs68ksdhkQywT3uhl/e0L7T1wVYy+/REqWY2J5xLEdgSMPhtcW2/vRp99W5RVb4ty+vuTTDyTEH12nWhv3+p6e9eFYH2XRei/PGK07+L29vQ76+0tFpF6Lg6x+to4nh4HjpDK2nf2GjvsXV32pjFC9ViJbhHHFLss2ntHvb2XjBE9e4LEtvux1fv7mpu66bqw3t6Lxoj54xmi2/1s+KV+QvVnsN0YMfFsgvx8qUV7Lx8jXF12hm7sZst/Glho7ytjTWNEfEeAQkL8mNx3eYQt72s/RvTui5AZy5ObKIo+e2e/IcBqNUZEt/nx9jnx9Ik+21j4b4wRuYkiiSMZ1t7Ww/DNPQzf1oOr295yjEiezPHKPSOsuiJGbFeAnotDeHpF2cYY0bUzyA23Xsdl8s1sGtrC8ePH2bhxIzfddJO5u9/E5OdMpVLh7rvvpjvWw7/8w5e4cOBi9nAVEamb8Eaf8a6UZOi5OEx0mx8QYpWaXjMW0YNrPca4CGL8WHV5FHePA3tQxTfoMhb7A2vcxjgPYvwIrHHjjNix+ax07w0ZEU++QReR+nsVCeK7glidiog5k6B7b8gQGnhXOY36OaM2ei+N4OlzkjqTo1qq0r03hLXuXufpcxK7QIg+HCGVwWviBNYJ4ZFit9C9N4TqEWOhu9tBfNeCWEuySIY2qeF40hDuuOJ2ui4MiuhPp4XwBi/2ugBKskh0710QUTijNlEnh4I9YCW8yUNwrce41u69ISMWyxFS6dkXQpKFKNTmVwltWGjD7r0hI67NHlDpvTSMK2ZHVmT8Q27Cmxa19+6gMQ+zB1X6r4hiscnUqrXm9kbMtRqRUqpbwRWzG8463n4n0fo8BiC23W+4MVVyGhZVxmKrt3evg9iOBZFNdOuCIH72cApXl90QvLm77E3tHd7sw79a3JuaLv4GaIjKXDF7U2xraIOXwLCb6ReT5GdLze0dsTUJ1oPrPE0C4e69IUOIYw+qdO8NGeKQwLCbclYjPyNE+d17QsbfDja/6LOyVa5fq5PwpkVtuCuIu97eqrfev20yekUnN1NsciON7QgYf2dYXYro304L2YkCpVTFmDeCmIM26q84RJ+VgImnEzhDNuI7F9o7ssVnzJEtNtFnVbeCrEgEht107V7U3pu8+IdEe8uK6LPefqfYHBC1tWjvxnNfwxWzYw+oyIqEI1xv7/ofHsvGiL0ho78sa+/6GFEt6ZQzGl0XBolu9yMrUtsxopKvMnefZKLAAAEAAElEQVQkjX+125j3qh6l7RgRGPIweG3ciJa0uixNY4S724HVqVAt6SDBwNUxfKtFG7YaI6xuhVQ99i6ydVF7txgjei9eeD7DG71GxKQxRgRU0iN57EHx3HdfKPpQaH3rMWL6hSSlZKneh8V9Cgx7msaIgYu6uSC2h/2+G3ArPt797ncTtsR5/PHHMfnZs337dn7nd36HU6dO8du//dv8n//zfwC47rrr+MhHPsLY2Bgf/vCHWbdu3U/9HalUin/6p3/i7NmzrFmzpmPZP/uzP+OrX/0qV199Nf/lv/wXZFnmox/9KAcPHvypvvuLX/wi7373u/F4zAWSNxIOn43Lfn0rN31iL6FVC/fm2KNjfO0jP+bwg2fRVxBGm5iYmJiYmLTnlVde4e677+Y973kP11xzDe9617v47//9vzMyMvKqz/XZz36Wyy67jN///d9v+u+pVIp/+7d/47d+67e46aabuOGGG/iN3/gNHn744dfqMkzeRJTzFX74+ReoVWsMXBhj/ZV9K3/IxMTExMRkCab/3hJOnz7NltXbyZFGQmY1m9g3tI/cRJEMBSo5jdTZHHpJbBnNTRcJrnXj7hGLJakzOfKzwslDK1RJnc2JyCVF7DifO5YWLkeaTnokbziSaCVx3kpBI7zFRyFRYv6kxNTz80LE5LNSyYsd21pZJ3U2RzmrMXBlDKtHIX02b8QrZUbzRoSIrkHqbI5SpoI9aMPmsZI6t+DAkp0ooFcXfhBKnc0JhyVg9LEZXIt2amcnCsiLdtCmzubwrXKRnypRSlWYO5RC1+rtMlUwfrQH4SajOBS8vU6yE1OiXep1zE8Xm9wHUufyFGbFDmPVqxDe6EMrafWyS+JRpBqhDV6mnk+iFUW7aIX6eWebXXsyo3lmD1dInc2hqLJo73osS3GuRFoV1yYrYPdbKefUehvWRNl6REkhUSZ1VrShK2anMFeinK7vbtb1pjYsJhfKAiSOpBfMDvR6eydFPUspUTdd10GH5PFs087/9Nk8hbpLTCktyrqidgJrPKRGcliSC7uwU2fzhmtRKSvKllMaWlFHcVio5Bd2Y6fP5cjPCdGJlhN9tuEGVpgpoVf0RWXzFBt9tlgleTJHth5tsdSZIj2Sp5wVZfWyjlaqEtzgITteoJgokzq7EMeTGSugFer3YlYjeTJnOBQU5stNER/Z8QK6Jlpx7kgam9dqLE4X5+vtrS+UXbznu5SuUKy3d7nehuiicHaiiMUqYXUr9F0aoZguG+1dydSf+/r35iaLlNIas4dSoEP6bI5ivQ1bjRFasUr3nhCefifJU5mWY0TjvpUzGrmJotGGrcYIEDvha9UawfVe5o5kyIzkW44RpWSF1Mk8erFG78VhZl9Jtx0jinNlzv14Gpt7wZ2i0xhh81ib+kerMaLh/qY4ZewBK6pHQSuWW44RmbEC2fECNr+VUlZDtsuQbT1GaDkNySJRydbbu7p8jNDLOumRHFVNJ7jGQ2Yk33KMUHSF+Mm1DGxYy2Onf8R3vvMduuJdfOJPPsFHPvIRTExMfrY8+OCD3HrNO8mToZfVrHdtw4eXlCTGj2KibLj61GpirHdGbCgOC1qhSna8aLiYFOfLIAkxU02H3ESRnCzGTMkikZssipMAxWQFWZFQ7BYUp4XcZJFiskw5raHYxb83xr9yukK1WMXqUohu9VGYK1PJaZRSFSw2uR7NpNfLaoYzjDNsQ9d0ypn6+7BSE2Xrx8uZilGfwlyZqQPzRgSdrunkJovGmFbJaZRTFXwDLlJncmRGFo3lVXHeammhbG6qiKfXiTJTopAoG+8waqJsQ6yl5av191pFCEuitgVnppp45zVcZ6rlKja/irvXSeZcnlKy3OQkmZsootXnGFqxSvpsnvRInlpVCMkquUVlp4pUcqKs3WcVcWv1w6VUxRC+A+SmS8Z7wOqyNLd3Rmt6T+VnSsY8RyvoJE9mjXeVmFssuG7mZ0tN7ZAdLVAtV+ttWCU/tVC2MFdCL+tCKJTRmts7rxmbFGChz5azGkiiDRvXUymI9jbKzpex2GRsHvHuzU0WqTTauyjKNvp/KVlp6l/ZyYLx7q+W9Kay5WwFV9yG6lEoZzTyi9q7Wq6ft7owr1ns5pOfLhrzML2iG31Wr+jkpopNUXf5mZJxz40+W2/valmntCjirzBbQqu3Wa3eZ7VyFe8qF54eJ8nTCwLhwtxCn63poo65adG/VLfS3IZLxojcZJGqptO1O0huqlR/7hfae/HkcPZQmnw99k2rt/fSMWJxH/D2ubD5VSpZreUYIdqvhGKzUKsJwV12vNB2jEgcTaMVtPMaI6xOi4h4LDXmcMvHiOxowbh3Nq8Vi1UmdTrXcoxInsqJeMya+JtF9dbdn1qMEdlx4U5VmCuLa240y5IxolIfT2x+FYtqIT9dbDlGKFkHW+wXMRAb5uD8M1xyySWssg7zwvTT+HztnaBM/uPceuutbN++nfvuu49XXnmFdDqNy/X/sffeYZJc9bn/p6qrcw4zPXlnw2xO2qRVDrtIgIQC2QYMxpaxCbYRGAMXBzD2FTZc2+ja8IPLJVwMBhFFVM457mp3tTnM7E4OPZ1DddXvj+rumVntdJ1aJK2krc/z8NjaOVV16tSpb1f3eet9/axYsYLrr7+ehQsX/k77j8fj/PSnPyUej7N3717+5E/+5JTt9uzZw1133cWf/dmf8Xu/93sAXHnllbzvfe/jK1/5Cl/5ylcabT/0oQ/x3HPPnXI/73nPe7jhhhvYv38/e/fu5aMf/ejv1H+bl47kUiMC7vk7B3jqlv2U8yrlvMrD39zDvnuOc8EfrqS1z9ytz8bGxsbGxmYu3/ve93juuee47LLLWLx4MRMTE/z0pz/lj//4j/nKV77CokWLhPazd+9efvOb3+ByvdAVdvfu3Xz9619n69at/MEf/AEOh4P77ruPz372sxw7dsx2sjyL0HWdB//PbjKjBQIJLxf98RqkZlnmNjY2NjY28yDptr86YES7fehDH+KrX/0qAAnaWc25KNIpdFwytG+KkR4wHEKQaRqb1r45RrDLy/6fn2jaDow3eJdc1cHAQ2OmMWMA0b4guqY1jX7ytbhnBCQmfU2sCRPs9HHk9iHTvioemUVv7GB81/RMBJMJsktuGkPnCiksuDzJwANjQtFgroBCaIGP8d3NIxhiS4NUciqZE4Wm7WbvVy1rTfsKhpOTWqxy5Lbhpu0Uj0zXxS0MPT5pGpUV7PQSXx6k/4Fx0+OHF/pJrAhx6NdDTduBcW3VvGoeEwasfk8vIztSjO1MNW3nDCi0rA4ztmvaNOamZW0Eb8xF/72j5n1dGcITdXFcIMaubXMMtVhtRIbNR7DbS+/lbRy+faghApoPb8JFYdx8/oExp5PrIww9Odk8PrH25v/kPrF7pefyVkqpMiNPp5ofX5Ebi15m/VxydQfju6eF+hBZ7CexKszh3w43n4e1muKJu4yFv3maKh6Z5MYoJx6ZMK0tYLiB5YaLHH/QfA4kVodJrAix/+cn5u/rrNrXdWEL489Pz1tjigsmeeL4Q5TUEr29vXzzm9/k0ksvNe+0jY2NJYaGhvjoRz/KD37wAyIkWMZ6glLklG2dfgf+pIdU/dlIYt6IM9kp0bYxRupwlvyoeYxIbGkQV1Bh+CmBuE8JIgv9pPvzM6Kfk5vI4HAbAqpm/QTDIaZlTYTUkazp8wEY7ieBDm8tKsr8EV5ySA0hynyEFvhwOGWmDoo5yPmTHoqpckPscMrjyoZLVGagINRPMGJU1Vki6lPhjjhJrosy/NSkadxaoNOLJBmxfWZElwQopStC8yW+PEhxqkJupPmzhMMtE2j3kjk+/1ypE+z2Ee7xCT331COGzY4PRoyqIYhvPrcMJyNDzGs2rorPQbjXz+TejOm1bVkbQQJGTZ4nZUVqxAyK4I44kR1SQ9A3H/52D4Xx8hxB9Xw4AwqxviBju6abthe5pxrHT3oIdnkZeTZlvo0ELWsi5IYLzefhrJri9CuNFy5Oha/FjVbVTWOz621jy0IMPTHR9N6u96F9U4zsUKH5/VXrqzvsxB1yGoKoU6BJVcZi/ewZfxYHTr5087/wZ3/2Zzgc88fg2by0VKvVF2X86yKlT33qU7zhDW+Y87evfOUr/PCHP+SXv/wlfv9M1OZ3v/tdvva1r3HLLbeQTCZP3uW8/PCHP+Qb3/gGXq/hYJbNZnE4HFx66aV86lOfMt1+37593HDDDXz9618XcpLas2cPK1euFO6fzVzy0yWe+P4+Dtx/Ys6/L720i83vXIo3ZB5BamPzUmDf2zY2Nq9GnnvuOZYvX47TOfPS6cDAAH/4h3/IJZdcwt/8zd+Y7kPXdT74wQ+yYMECnn76aRYuXMgXvvCFxt8HBweRZZm2trY523z0ox9l165d/OIXv2g8h4lg9dnr1c5r6fNl3z0DPPD1XUiyxNV/ey7JpS8Umb+WzleUs+2cz7bzhbPvnM+284Wz75xfCedrx70Bt912G26Hh69+9au48bKFbayXLji1QKlGoMOLrxZ9Ybbgnu7PM3kw27RdPe6iOFlm30+PNxUoxZYHGzERUwcyTUUnrrDCoje0N2LZzPpayahUMhXTdrIioxY19v/suKlAaeEVbY1YBTPRDRhv69bfxp33+C4ZWTHeiDcTKIEh5pqJgZgfxecA2divSF8P/WaIE4+YLyg5g4oR1SCwT9kl4/AoQsefPpITEigBBDt9BNrEvyyI4HDKhBf4G5EUzRjbmRISKAFIityIYTPD6XPg9JgfPzNQ4OCvT5gKlICGQKkeN9YMT9hJbElwTkzKqShOlRviIMVn3l81V6VaNJ8DmmpEEvZd09GIhzllu3Ltfq31QVaaj28lXzXcKczmoQbIsHB7G13nJeZtphY1TjxkCJQ8MRe925JNr/GBWwcZfNS4t3xJN3KTS5E9UWDqUKZ5X2t/cgYU/O0enP75d+g5FuMC9So66GXwxCBXXHEF7373u1HV5gu3NjY2YlSrVf7zP/+T7o4efvKDn7GKzWzkknkFSmDEGnli7hlXkybr/VpFJztYaLi+nQpJlhqfXVOHsow8m5q3raxIxFeEcHhk0CF1ONdUdBJZHJyJKjPRJWhVnUp+xlWlWX/BcCwZeWaqqTjEFVRoXWdEUomIKbSyZi5KgEaMWG6kaNreFXQS6vLhcJt/ltdd9cwESmA4CQ09OWEqpKnv1+ESW2SXFVn4zb+JvRkhgZDidhBo98xxkXkxcEecjeg4M0Z3pITEb5qq43DJSIp5X3VNR/E4hK7t5P40Y7ubi8jrx6+WjTgz2Wneh0C7F39b8+cuMFx7tIqG5JBMr0Pd9dNsGtTvKX+7h/jyUNO2uZEiw09PoVd183mgg5pXze/F2i3tb/fQtiE6x5XyZPJjpYZAKbLI34htnK/t0OMzAqV6hNx8fcgMFiiYiZ9qfXUFlaZzVtYdJCcWch5XEne38JGPfITOYA+HDh1qvn8by/zkJz8xbVOtVvnsZz/7kvflwIEDdHV1zREoAaxYsQKAgwcPWtrfNddcw/e+9z2+8Y1v8I1vfIMLLriA66+/ng9/+MOnbD8+Ps6+ffsa/zt27NjpnYjNaeELu7nkT9dy9d+eS6xnVgTcvcf50cce4Pk7++0IOBsbGxsbG0HWrFkzR6AE0N3dTW9vr/Azzm233caRI0e44YYbTvn3jo6OOQIlAEmSuOiiiyiXywwODp5e521eVUwdz/Dwt/cAsOntfacUKNnY2NjY2IhyVse9ZbNZ3vSmN3HvvfciIbGIVSySVpy6sQztG2NMHshQSlU48LMTp25XI7k+QqDDy6FfD5EbKTZdzHBHnCx8XRuDj00wuS9j6kjj9DlwCYhCAMrTKgP3j82JyzoVkcV+Uodyjci6ZnScH8ff4uGAgDMUgFrSGtEOTZGN+IMjtzd3JQLouSiBM+A0+iDAoV8NNhU5NPZ7SSsAh38jJvzRyhplATFRYaxsOmfqTB+ZicgyQ/HIjagwM478VuycrFCcKvP8D/rFN5BBls2df8wcnGYzcN+YcNvCmJg7EkC410/3xS0c/MWg4RA0D/mxEs//cEDIzQggtixI+6YYB35xgnJ6/nt98LGJmf8wcUDTyjpqScPUGK+2j/jyIK3rohz4xXHU/Kl3nBsqNgRdvhY31Yo2/0KnBv33j1JqMk6zcQUUU2FbQ3Akw4JLk2RO5Od1VSpOlRvXKLLYT8uaCId+PXRK0VIlq7LvlplM9vbNMaYOZl9wjWVJZiWbUL15nik/wn/9139x66238s///M/86Z/+qdB52tjYvJAdO3bwJ3/yJzz++ON0spAlrMEpnXrx2ulz4I27SQ/kKUyUKUxMzrtf2SnRujbC1CHDkSjdf2rHjjrRJQHcESdDj08KCXkUjwPF5RASj04fzZEdai7gUHwOQ5RQqJq62zlcMm0bo0weyFIYL5kKn3TdiOjSBJxb0I24UzMUr4O2TTEm9kybuteAEdd24pEJU6cdp1+hbWOU0WdTTUVls6lHlpkh+iwFRnysCJJDMs5JYN20lDbG4MVm6oCY41UdWZFMnZzAEDSJUC1qjDwt4DpWa2uF1rURqmWNieebX4/JfeYuTrNJro9QSqtMHZj/XquWNSb21I5r4oAGhhiyKuDQhG7sL3lOhPxYqWltmu1m5k24jft9HuoRa6LuU4rH0YgRnI/6vvxtHmJLgww+OjHv/rOz3Glb10XIjRbnfREgc3zGccnpc+CJuU7pwOSRfKwqn0tPbDE7Jh9n6ZKlfPRjH+Uf//EfcbttV5UXgy9/+cvEYrF5HUI1TeOzn/0s999//0vel4mJCeLx+Av+vf5v4+PmLwLNxuPx4PHMiBfdbjder5dg8NQvKt16661861vfesG/HzlyhGrV/HMmm82yZ88eS320OTXL3h1l+EmF/vtSVEs6pVyFh/7vbp79zQEWvSFGsMO+/21ePux728bmtcmZdgk4E+i6ztTUFL29vaZt8/k8X/3qV3n3u999yuezZkxOGr/TmEU2j4+PMzEx8/3YFoi/+lDLVe6++VmqZY3ONXHWXi0WI2hjY2NjYzMfZ61I6Tvf+Q7ve+8foqMRJs46LsA1zyIZGMKKUK+fSl4VeiO5MFnG4W6+CF+PaSqlKhy7e6SpXb6syAS7vEwfzZnGPwH0bkuSHSowvidtKjoK9fjouqCFclYlP2Iec5E6lKUsMAZ1Ac3AfQLxXqtCxJYGOfiLISGxx/CzKdxBp2m7QIcXtVSlOFFGEzBBGX5yUujNcG/CRe/2No7eOWwaC6Z4DFegZoKUOrICsss87qTedvnbexh+cpLxPWKLa2eaVe9cwPi+NCMikTqyIWYRGTdk8MZdQiKk3u1JqhXddF5O9+dwPuWgOG2+T03VQIb40iATe5svNqeO5JCdYvMBoHV9hHCvnwO3zi8K1FRtTuSgWaxi+ngBZ0CZV6B0Mh1b41QrelOhW31hSvHJ9G5rY/DRiZmYyZOP359vLNIpPgfeqGv+KEYNjt49TCVjjJdZvF0lW6U4WRZyIlM8MuFeP6V0ZV4hmpLxsZlt9HOAE9pBPvjBDzaiKXw+n+kxbGxsDMrlMv/4j//IP3zuH/ARZBOXEpHmd18DcIWc+Ns8ZAYLpkIiraJTSqumsU6SbIhMUkdyM65M8+COOKlkVTRVZ+SZ5p9brqBCZFGgERVl1o9YXxBd0xkziSoFQziQOVGgZPJ5VI+hqmRV0+cCSYbkOVEyJwrkhs1FSmqhytTBTFPRbh1/0kNutCgkIqnkVSb3Z4QESvHlIXRNF4oYdvodVPJVITGRwy0bQgyBtqFuH/42D4OPvvjio5eCQIeX6OIAAw+ICbodLtkQ3giMheJxoKmaqQDKFVBoWRNm+JkpU9HS9LGckOimPrecfgVJwtRZK3UkZ+rSWkdWJJLnRJk+mpv3OQagMF5qiIhMhWA6hrvbtJgQzx1yklgVYuSZFOX57g2dxnfSQLsHV9DZ9N6YXRM8MRelVBl9nqHODRdR8zMCqHrdPCWSIcgTFQ+6Iy78bV7juW+eXQanEpzHFRxz7eV//a//xTf+45vc/fCdnHPOOULHsJmfNWvW8PnPf55QKMSGDRvm/K0uULrvvvt485vf/JL3pVQqveCNfwCXy9X4++/Cpz/96aZ/v+aaa7jgggsa/33s2DE+//nPs3DhQjvu7QywajXkryvx+Pf2cvBBw4khN1TmuW8Os/yybja9YymeoJiLoI3N74J9b9vY2LxWuOOOOxgbG+P973+/adtvfetbuN1u3v72t1s6Rjqd5pe//CVr164lkWj++87vKhB/tfNaEMEe+vUEUwNZnH6Z9m1ent/7/LxtXwvna5Wz7ZzPtvOFs++cz7bzhbPvnF/K8xX9TnXWiZRSqRQLootJM4mMg9WcS1Lqnrd96/oIk/vTqHmNfT8eaOpmEu0LEGj3MnD/2JxF+FOheGT6ru1i7LkU43vSTQVKAC3rwsSXhcgMFoQW36uqwBv0NdL9eQ79etBUbBPq8ZHuz5MfKZmKmcKL/HRtTXDgVycoT5uLMXKjRVwBp6lAqS6+KE6UKQq8yZ9cHwEQjkRrthgxm2pZIzOQN485ABKrjWv3/A+OmQqlwguDdJ2fYO+PB0wdtTQNTjwyQW6k+dwBY74tflMng4+Okxkwb2+FxVd1kB3KC4nnBp+YpDAhNsa925MoHgcHbzW3i+06P0Gwy8fz/23u6pQdLIi9+a4hFCVYJ9zjp31LnPx4qem9pJU1xncZi9JmYiIwxD+yUxZyLQPo3daKw+1oOucrWZXhJ40Fd3+7h8JEc1HPsXtG0QWdoqAW2yIyxkDbhhiBDg97fzR/fa2Lz2SXzNLrOhl/Ps34PAv7s53rAh1eEiuC9N83fsraohY19s6q6y1rwkwfy51SQNYj9dGjLuA5/5Pcc889hANhvvDFL3DjjTcKnaeNzdnMU089xaWbtpEjTS/LWcgKZOnUgmCHR8YTcZEbLhr/GynOu5AtOSRiS4OkB/JUss1dUgCCnV4CnV6Gn5yqCYnmbyvJkFgRIjtUNBV7gxHbplV1JElI32EIBkzc72SnhMPtoJJVTZ2hAFrXhCnnqqbjAKBrRrTpvAKIWdTFTyJxqa6gQmx5ELVYFRNk6AiJpAAKk+YuUgBI0Lo+SvZEQejatawOU86qpo5WYDyvljNiQpNQjw9X0Mm4QNyZFTwxF9ElAYaemDQdj8JkqRGjZtZW8TjoODfO6M6UqRhNcki0bzGcCLODzZ8rK3mV3EhJ6DlG5EWQ2cT6AlQrmunzWj3yDMmIJGgmoNNUnfx4SShSEAyxdduGKGO7ppv2v+FYJoE77GzatpSuMPzEpCG0E0DXEP7eJzslEivDpA43v3Z14WCgw0uwy8vwU1OnFovqc13LYkuD5MdnYuZOJjtYIDtkCJQcLhlv3HVKNzeHpLCospquyEKennqYjRs2sjS0mqcGH3lBPJiNODfddBMf/vCH+cxnPsO///u/09fXBxgCpX/4h3/g3nvv5brrruMv/uIvXvK+uN1uKpUX3gflcrnx95eSRCJhuphm8/Lii7i59IPrWHZZNw9/azdTA1nQYe/dAxx5fJjN71zGsku7XvQYVRsbGxsbm9cax44d41//9V9ZtWoVr3/965u2HRgY4Ec/+hF/+7d/2xCLi1B/fsxms/zlX/6lafvfVSD+aufVLoI98tgQI08b7lfb/nwjXWuaP0e/2s/3dDjbzvlsO184+875bDtfOPvO+ZVwvuaWMa8hvvGNb5BMJkkzSYxWLuZNTQVKik8msSJEpDdg/IPJj+uSQ0LxOIRGVS1qTB7MkD5usuhU29fIU1Mc/s2p44sa/fXI+NsNi/OB+8ZMF1u6L2khttSwPzcTKLnCCj2XthJbfmq79JPJHC8wvnfaVKBUj2ArjJXnxlvNQ8+lLSx8fbtQHwAO/XaIY/eaOzkFOrz0XdOB4hO7JcppleMPjQstuIzunKb/3lEhJ6fMQI6BB0dNBUoAaDB1ICPsyJMbLAi/5WyF3GiRouCi0tSBzLyLFiczuiPFoGBMyujOFEfuMI8JBGNh2EpUSnJjlJ7LW03bTR/Nsf9nx03vpTrhXj8r3tqNO9LcESw3UmT4CcM6VySycGJ/hrFdgguiMvRc3ErH5ljTZpWsilrUUDwyi97Qjic6/5dWNa9x+DdDxuKbDMGe5m5Dxx8eMyIeNUxrp1bWmDqYIX1MMA7RKyO7HWhas6w84//ILpnEyjCRRYH525ZdrMmdzyo24/F5+PjHP86FF15INmstesfG5myhVCrx6U9/mnPPPRcJiS1sY7G0al6BEoC/1UOox2eIKqCpsELXdBxOGYdT7LO7MFkmc6Jg7vAjGYv+I8+mTEUu7ogTJFDzVcZ3TTd1U3H6HCRWh5EckiGSMnGgCfcGSKwMNe/rLKb78+SGzYXI9eGfPpYzFUE4fQ46z4vjDpu7VwKUMyqDj04ICZTiK0IEOrxC+wXIj5bExOQ6jD47ZSqeqTO5L0PG7Hm8hpqvCsXdAVTyVVP3q9OhWqpSGC8hSeaLtNWiJhQRCKAWq4ztnhZytdKrOqM7UkICM12D1OGscCyZwyWTPCeK02/+0DO+J23JTbR1bYRoX5PP+RrTs52XTIZZzVeZPpYXfh73t3loXRPB4Wpet+r3pj/paf5sgvGsmDpkPIu4Qk4kx/yd1io6w09NztwfJudXmCyRPWHuZgdGbZFdMqZTs7Yrb9xFaIG/aX9dKT9b2MYix0oOZHazdu1annzySdO+2Jwav9/PF7/4RQKBAH/1V3/F4OAguq7zuc99jrvvvptrr72Wj370oy9LX+Lx+JzIjzr1f3u5BER33nknn/zkJ7n55ptfluPZmNO+Isb1/3gB5757OU6v4U5eylZ48P/s4ta/e4Sxwy+u+NfGxsbGxua1xMTEBH/913+N3+/nH/7hH3A4mid9fPnLX2b16tXzxgHPx7/927/x2GOP8YlPfIIlS5aYtk8kEixbtqzxvwULFlg6ns2ZIzOW54Gv7wJg3TWLTAVKNjY2NjY2opwVIqViscill17KH//xH6OWq6zlPDZIF6NIp/7xO9jtRVZk1LzG/p8eb/rjtzOgkFhtZO5O7s3MLLbPQ8d5ccK9xtufI09NNf1B29/uYcXbe/AmDEGA2VvNHVsTdF3Y0rTNbByKZBp1Uqc8rXL4tiEmTaKsFI+M4jPcYUScdXouaWXhlW1CfQCY2J1mcp/5YoTikXEGFNAQik7TdZ1KrioUfxVZ7BcWa4EhrJg3yuok1KJG6pCYACPc6yeyWOxNYrWocfyhcWGBkBWGn5hk+rBYn11hpeFuZUZ+RHAxEkM0JuKsVccdcdKxVSxju1qoogqKu+r3sydm/uZJXcgnshgIxvVe/rYeXKHmi3aZgULDccMTN+mHBkfvGub4I+NCfUCWkJ0SUvPvtw1a10bouailufhPm3FOWPi6NnoubS4IG3k6RTmtIitGrKUrPP94pA7lOPzrIdDAE3U1RJmn7EZZY99PjzP6bAowHDDm+4Rslxawqbid9mAnDz30EMlkkm9+85tN+21jc7axe/duzj33XG76nzexoLqczVxOUIqcsq0kSw0RTLo/z/BTU01FFb5WtxHNqmPq+qJ4HcSXBw0hUaFK1uTzOL4iRHyZUSvM4qEcLpnWtRH8SU/Tdg1kCdkhmS/g10gdygrFwSk+oygXJ8uUM82FEorXQcfWhLDoSC0aAgyRz6p6P6olMTGKWqwKC1fCvX6hON46lZz4vstZVUzELRluXKL9KIyXTJ1ST4dKrkrqcE4oTg/Am3CbCqLrFMZLQmIUgNJ0RbgPYIhtmomc61QrGmqxaiqeARoxfQ633FToUidzoiAsXgNoWRshusRc1JQZyBuiSZd5P3JDRSP6TnB+Sg7x72tIkFgZanzXnI96bXMFFDq3xpsKwqrFme8x3oSb0IL5xee6BuO7phtCvkC7p2nfs0NFhp+cRK/qSA4Jd+jU81SWZBZqK7gociVjhyfZsnkLn/rUp07pwmNjTjwe50tf+hKapvGxj32Mv/u7v+Oee+7h6quvflkdQpcsWcLx48fJ5eZ+j6xbjYssdr0YbN++nZtuuomPfOQjL8vxbMSQFZk1b1zIW794MYvPn3lJbezQND//m4d58Bu7KGZf/N82bGxsbGxsXs1ks1k+8YlPkM1m+eIXv2gq+n7qqad47LHHeOtb38rQ0FDjf9VqlVKpxNDQ0Aue1QC++c1v8rOf/YwPfOADXHnllS/V6di8AtBUjXtu3kE5r9K6JMLGt/ad6S7Z2NjY2LyGeM2LlO666y4SiQT33XcfERJczJtolTrnba94ZHoubqVlrfHmulps/gNydEmAltVhZJO3Yeu4wy7hhaHCRJnMQJ5SSuzN3OMPj3PszhHTdvVFpKN3jZq+fexPemhdFwEwjXgD6LqohYVXiDsdTR7IkhIRuNSGN3OiMCdSYD7aNsZYcnWH8AzPDRU5epf52AEEu3yEF4iJg+LLg3RdKKYul10yXRckTEUodSKL/MSXiTksKD5ZSDhzOljZtzfmJrE6YgjIBEisCRPtExOEhXp89G5PCrV1h5yEe/1CYz2+Jy3k8lWnbXOMRa9vR1aaTz5NrQn5BByEADKDBVKHc8LxI4mVIZa8scP0HAvjZdAMAVn7luaOSmq+ysFbZ6IhFU/zjo8+m+LI7cNC4j8w3Kim+wVdknwKrpBiuNcJEFsepGVtuOlY153qFI9M90UtTQV1iqawMrOVlWxC13VuuOEG3va2tzV3bbKxOQvQNI0vf/nLbNy4kYM7jrCZy1kkzR/vBhDq9pFYFW7EdzQTSUgyRBYGhIVBslPG6VfE3ZbGxQWy1bLG8FNTpm4ystM4r0pWZXRHSsBByY/DJaNruqlQSvE6aN8Uw5sQi8WpljSygwVTMRPQcJTKDORNnXhkRaJtQ4xgp7gz0vSRnOHyY4LidRDo8Jo6z9RJrAwJP2v7Wt3Cc0lxO4gsCgh/7ig+h7i4xCKKV3zfoS4vvhax+aF4HEQWB2hyu84h2hcQnnuGSEnguugw8XxazFUUoya0bYwR6mru3AjG/d2Y+wLDlxsuCH3/qdO6LkJ0sbmoqX5uwS4vTl/z+ZQdLDC533hJRDarYzXh5vQRMYfHSqFKbqSEWhCMtvM6cPrEnuFlp0R4ofn8qNfDYJeXxJpwU5GXM+VnM5fTKy/nC1/4Aps2beLIkSNC/bGZS3d3N//8z//M1NQU999/P1dffTV/9Vd/9bL24dJLL6VarXLrrbc2/q1cLvPrX/+alStXkkyKfa+zeW3jj3q47MPreeNnthDprNVXHfbeNcAtN97PvnsGLAlmbWxsbGxsXquUSiU++clPMjAwwE033URvb6/pNqOjRvrEZz7zGd7xjnc0/jc2NsbTTz/NO97xDn71q1/N2eYnP/kJ3/zmN3nb297Gu971rpfiVGxeQTz1owOMHkzh8ilc9pF1pusdNjY2NjY2VhD7lfFViKZpvP/97+fb3/42EhIr2ECntGje9orPgZqvohY1Dt8+RGGs+VtZnpiL4mSZ0WdTTO5NN41hcwUUHB6ZwniZI78dMu17YlWI6WN5KtlapFgTnAGFrgtbOP7gGJWsSrHcvN+J1WFa10bY/7PjQg5DoR4fgU4voztSpm0BBh+ZwBk0n1ayIqOpWsPxxYzui1pwOGWOCoiwAIafmmR6IC8Ux9ayNkLmRF7YiWfgvjFh8ZPscggL2DxhJ8EuH2O7xezLj909KtyPWF+I1rURdv2/o2IbWKDtnBj+Di/7bhkwbTt9JCckMqsTbPdSzlWYOmDeVpIlZKeM7JKb3o9gOHWk+/uF+yErkFgdIXU4axrnMb47RW6wgKaKu0O0b4lx8Jcnmop5tLLWEEvV75+m/dibRi1VheNHQp0+Qgv8jO1MmYozwYiL9MZc7P/piabt6ov9HefFKacrjO+eXxg5O6KyZW2Eqf3peftSTqtzjh3q8TWtJ4OPTBiiKm1GXDXfvtWixqHfDjXcWZwBZd7F0g6pl6TWxe7go/zoRz+ira2NH//4x1x00UXz9sXG5rXK0NAQ73vf+7j99tvpZglLWIOjifWawyVTLWukB3LkRotNF5kcLhmtqqNXjagiM6GPJ+qiOFWmnK4YzkxNkJ0y3riL3HBRSKAU6PAiKxLp/jyVnEmNlSC5PkphoiQkypadEv6kh3JWFRLwqIUq47unhSLIJFlC13TTCDuoRW5tiDKxJy3koqSpOmO7UkLiJ8XjwBN1kh0uisWQFaqceGRcqK2sSIbIQXC90h1yIisSuRHz2DK1WGXggTGxHQPJdRGyg0WmBSNKhZGgY0ucib1poX6P7EgJj4fkkPAl3GQHC6YCOTCeR0TFUqPPifcDwOlXcAUVUxGgrsH4nmkx4V2NxOowal41vSfzozP3YP3+acbkvgwVgXEzdgj+NkPUV8mbuzs53DLtm2NM7ss0rVP173cOt0y0L2h8T52nXupVndThbKO9O+ycc84nkxmYec5yBhSqJQ2tcupnKa2iM/T4ROPYitfRdE6lj+UpjNWcvCTjXtYqL+y3LMks1lfRlejhiZ0P0rdoKf/x1f/NBz7wgXn3fTbzrW99q+nfV6xYwcGDB4nH43PaSpLEe9/73tM+7o9//GOy2Wwjuu2hhx5qLIK95S1vIRAIsHLlSi677DK+9rWvkUql6Ozs5Le//S3Dw8P89V//9Wkf2+a1ScfKOG/+nxew67ZjPPPjA1SKVUrZCg98fRd77xnggj9cRWJh+Ex308bGxsbG5oxQrVb5+7//e3bv3s0//dM/sXr16lO2Gx8fJ5fL0dnZiaIobNiwgX/8x398Qbt/+Zd/oa2tjfe85z0sWjSznnbXXXfx5S9/mde97nV8+MMffsnOx+aVwfGdY+y49TAAF92wmmCL+YtBNjY2NjY2VnhNipSOHz/Oku5llMjjI8AGLsUjzf+WtKzI9L2pk9ThLENPTJoKlGLLgnRsiXPgFycopSqmC/pdF7XgcEocuHXQtO+yS6ZldQSHU2akFjvUDMkBilt8gaD+Jq6IQAlg6IlJ5GfM2/mSbooTJcpZVcjpZdEb2yhOlE1FWHWygwVhFwRkQ2SQERBAyYrhdiRJCImUXAHFOD9Bs5SxnSmxhhhijud/IC6cAYT7MXkgTW7UfCHrdBh9LoVjv3kE3+lw5PZh4bbTR3NCC6+zkV2GaMVUUCTLJFaEqRarTKSbRx6qeY1MfbFJxvQa5YaN6BFNcG3N2+Ji4fZ2jt07Qm6oyTXVaEQHBjq8pvEm43vSTO5PC/djbNf0vLEcp8LhcuBwi9UdxeegZVUIXdVM3d4AYkuDdGyNc/CXg00jDeu1uvuSVhSPgwM/n19gVa8HroBC37WdjDwzNW9fHGWFteULOcRujk8d5IorruBv//Zv+dSnPmXadxub1wp33HEHV1/xJkDiHC4kLjWPcg10eAkv9DP0mLGIbSaIaFkTppJTmdibMRUoOf0KrWsjjD6XEoo59bW4CS/wkR8Ti7qSnZL422M6pI7kKGfFYom0is7QExPoAp/vrqBCOaMKCZTcYSeJVWFGnpkSEp/omk5+rETZTIQFhiONPhPdadqXqOFmmDURnwANVxXRCDJN1YUi8upMHRRznDkdRndOCwuWLaHD8DNTqHnBD2wLwqBKTrXkHjnxvIXnv1o/6uJEM7wxF/42jyHEMjmHxtyTEDrf4kQJVTCWECDaF0TxyKZzqy7okxwSikduHiOow8jTk0L3OhguaKlDWQqC0c2yQ8KhSDWHOvNB8Sc9+Ns8RuSfQJ/iy4JU8tWmc6Beq50+B22bY3Oi4E5Fpfb9NNzrx9/qYfDxiXm77h4PspXt7Jd38Kd/+qd84dNfYuexpwkEzJ2sziZE44i//e1vz/nv31Wk9IMf/IDh4Znvcffffz/3338/AFdccUXjOn36058mmUxy2223kc1mWbRoEV/4whdYv379aR/bKnfeeSd33nkn2exL93lg8+IgKzJrr1rI4vPaeey/9nL4EeMFwLGD0/zsMw+zYnsPm962FHdA/DuqjY2NjY3Na4H/+I//4KGHHuL8888nk8lw++23z/n7FVdcAcDXvvY1fvvb3/KDH/yA9vZ2ksnkKd0rb775ZqLR6JwXMPfs2cM//dM/EQqF2LhxI3fcccecbVavXk1HR8dLcHY2Z4J8qsS9/7kTgOXbull4rnhyio2NjY2NjSivOZHSD37wA37vnb+Hjk43S1gmrTfdRlM1Rp6ZIn1cTOAweSCDpmrCizH99402IkyaIhtuKQd+ftxU+KR4ZNSyRnlabbrQXifU4yM/XkTNa4zvMl+86bm8lfSxHKlDOXPRggwLLk2SHSowcL/YG+aT+zPCMQ4AUwfEfjT0tbhZsC3JkTuGhURHmgp7f2TuAASADH3XdjK2a1rIWcoVUlCLmqmrz+ngCissuCzJ8QfHGtFbzVDzGmr+pREpiTr11Om+pBW1oDL0+ORL0h9vwiU0JrIis+Jt3YzuTJkuOmlljb23DFhabOzd1oqmQf89o03bqUWN4w+KifUACmNlUoezlKbEFqk8URe925MMPjrRECnOh6bWos4uaWXoicmmi/vFiXLjHov2BZk6lGkqyBq4b2YcmjkTgSGi3P/TWXXQROw1uT9DcbosJEYAOPHIOE6v2MdfOasy8swUkwIL2YulVSyMLOLJ4oN8+tOf5vbbb+dXv/oVPp/9ponNaxdVVfnsZz/L5z//eWIkWc1mXE2E4XXyo0U0VTMVHNWZPJClWhQTOlZyKkNPTZo/Z9TW7rODBfKjRVMhTMP56ZiAC6QE3ribwnhJyBHJ6VcI9/qY2JsREuT42zzElgYZfGyCqoDYopJXyZ4Qc8cBQ1yQOiT27BVfHkJTNeFntdxQ0YjQErj0gXYPoR6/sJOS0+doCB1ebMIL/UiyJDwupi5bvwNlAXerOs6AQmxpkLHnpud1vfldkGtCGBHhUajbR7Dbx4mHzZ970sfzpAfEHFfBOM/WNWFGnk2ZzvNsM5H3KSiMl5rGkJ1MdEkAd8jJ0BPNn3XrYiBfixt3xGl6D9X77XDJKF4Hpen550ElX2288CLJgCQ1rS3p/jzZwYLRJwFd09iuaWHxYCVfZXx3WkhQCZA9UYukNNm9IjlZqW+ip7OHJ048TDLYwSM7HmTt2rVCxzkb+Pd///czctwf/vCHQu3cbjcf/OAH+eAHP/gS92h+tm/fzvbt29m3bx833HDDGeuHjTj+mIfLP7Ke5Zd38/C3dpM6kQMdnr+jnyOPDbPlncvou7hT7Dc4GxsbGxub1wAHDx4E4OGHH+bhhx9+wd/rIqXfhWPHjlGpVEilUtx0000v+PunPvUpW6T0GkHXdO77yg6K6TLR7gBb37PiTHfJxsbGxuY1ymtGpKRpGu9+97v5/ve/j4yD9ZxPXHqhEnw2vduT5MdKjO5ImS7eu0KGKGTggTGKk+WGQ8l8hHv9tK4Nc+i3w0KuRR3nxfFEXRz+9ZBQ1NLCK9qo5KocvUsg/kyGjq1xsoMFMTGEDA5FFv9RR4Ojdw1bEh1N7m0+3nUSa8L44m76720u9KijlqpkBsSi22SXjCzPH/n0AjQ48ei4UBQMQMe5cZw+RUhEhgwr37mAkacnmRAYG0mSKKfNXbzqxJYGkWSE9m0VT9RFbFmQ4SenhEQ8lZx4vwGWv72bib0ZIVeq2PIgnecmeP6WftP7TlM1hp6cJHPCPGKj3h6MWiAizMqcKKBZWCcN9/pJrApz6FfmjmtWXA6KU2WO3TUifp5abfHLM39E02zcESed58UBmDpgPr+CnV4WXJ7kyJ3DTZ2g6nMksthPckOMQ78abHpN8yPGfdm6PoKv1c3R2+evjeW02riGvduT5EZLTedX3UFJ8TlYeEUbg49MzBuxI0942aRv4xke4N5772XJkiXceuutbNq0ad7929i8WhkcHOT3f//3ue+++1jMKnpZjiTN/+zgCjmJLgkwtjOFpupNY4UAgl1enD6Fyf0Zc1GGBIlVYQrjJXLDRdNnEodbJrk+ysS+NKVUxVQs5Y44aV0TYfiZKaHnHX/rLBGRgHhDViRkhwy62KJ/briImq8KCZTAcGgSih2ToHVthOmjuaYCiNkUJsScVwAcHplqUTONzaqTHysZnwcCzRWPg/bNccZ2pYTEEMFuH4E2j6mQpE61pNFkes9BViSCXT6ywwWqFp55RPG3edAqmtB5ahWNSk41hCoi+273EOn1c+IRsWeN1vVRyumK6XcpgPy4oDsXNK657JTRq7rpnKnkVHIjYm5odeLLQxQmS6a1qCgoDK8zfSRnSdQkybX7X9AJKrTAjydiLoKqE18RRpIxF+XX6mDr2gjFqXLTGN167ZEViZY1RiRys5pRF2s6/YZobnz39Ly1sVrWGu1D3T4Ur6Pp/AoMtrKFy3mOx9hwzgY++7nP8j/+x/9oeq5nCy+nI5GNzctNx6o41//PC9n926M8/eODqKUqxXSZ+7/2XCMCLt4bOtPdtLGxsbGxecn58pe/LNTu05/+NJ/+9KdN251KcP6GN7yBN7zhDZb7ZvPqY+cvD3PiuQkcLpnLP7IexSW2RmBjY2NjY2OV14RIKZVKsXnzZg4ePIifEBu5FJfkMt2unFOF3yhXixpqsSocmVDOVShnVWHnleyJQvNIgJMYfmZKfNFDg8O/HRKPhdDEY7aC3V4yAwUh5xqAxW9sJz9WEv5Rnapuyb2mnFaFI+RaVoeILw+z94fHhCOuzMRpsxl8bAKnX+wWk2UY3zNNzmSRpE4pVeHY3WLCLTBidWSH9JKIlJwBB+EFfsZ3TVPOml+r4SenLO1/cn+G3IiYwCZ9NEclpxr3qsi+91kbj47z44S7/UKxfFbHWi1UqVaqhkuawL3tibvo3Zbk2D0jphGVdYGSP+mhMFVu6u6llTUO/sJcKFWnlKpw8BeDwgt4mRMFRp6dah5VN4v8WIncYEE4orKSUylnxL88qcWq8OcAGG4kZgussiSzkUvILBrhmf7HOPfcc/na177GH/3RHwkfx8bmlc5DDz3EW9/6VqaGU2zkEqJSi+k21ZK1+02r6EICHwD0Wh0VFO1Uyxr58ZJwbSlNV5g6KO4CmRspUkpXhPtfmq4wKiDGlZ0SDpcRI1UScNNxBRXiK0KM7kwJPTfKioSmalQtOO6YCTwaSNC2IUbmeL6p+GE21ZJGoSS2f7VUZWTHlOHAIkApVUa38IxpFps6G1mRjeisidJLIlLyxt2oxaqQSKla0iw975TTFaaP5YUFM5P70sL3nVqwVgMkh0THuXFShzLm7kc6pA5bi2vSqmICuDrhhX6cXodpFG3jvpfAHXKaCv5yI8V5xc+nInU4i2xBBJXutxaHXJgoCTul6lqt9grXap1quSr8/a5a1oy5aIJfCnGu43IGWvbymc98hmPHjnHzzTfjdrvF+mVz1mLHvb26cSgya69exOLz2nn0v/Zy5FHjd6zRAyl+9j8eYsUVC9j41j7c/tOLgKvqGk9nDzNeSZNwhtgQWIRDVPVrY2NjY2NjY/MqY2T/FE/+8AAA5793JdGu4BnukY2NjY3Na5lX/bfrxx57jHg0wcGDB9mwdBPXrn87LsmFO+Kk79pOvAlDrJRYFWLh69vxtbgJ9/rp3dZKtVRlcn8GZ0Ch79pO/EkjniS2PMjiqwx7ymCPjwXbWkmui3DktmHUgkrftZ0EO70ARPsC9F0zY2W5+Op2OrbGKYyVGbh/lL43dRLu9QOGU0rftZ2NUe84P86Sq41t0/15Igv9RBb7G8ftu7YT2WU07jg3TvclLSRWGm+CJddH8USNc/O3e+i7thPFZ7Rt2xSl5/JWZJdMx/lxFl/dTqjLh6YacQJ913biCim1/UTo3WY4TrkCChs+tISOCwxXFE/MRd+1nY3jtKwJs/DKtsa5LnpDO0ve1EliTRhXyBhDX4vxQ3BiZYhFb5zJqu25vJXkxijZwQKljDGG/vbaeC8NNsYBoPuSFjrONfoweTCLN+4m2G2Md2RxbQxrdF2YoKPm4tJ1cQsrfr9n/vE+L07XhTOLqKFeP9P9RpxdsMs7Z7zbt8TovqS10XbJNR0se2sXrpAya7wNIURyY5QFl8+0XfSGdhIrQ5TThkit79pOXGFjvFvXR+h93YzD18Ir2mhZE0ZTIX0sT/dFLXjitTm7eu54925LktwQmbnm13fiSxrjHV8eZPHs8b6slbbNMQAUn4w77GT8eWNBJdoXZMmbZo33xS10bDXGUFZk+q7txOExxiG86KTxviBBZ21+gBF/Jysyz/+gvzFfZKU2Z7fG6b54ZryXXNNBtC8AsnGP9V3biVI7TtvmGD2Xzozh4qs6iC03HoJzQ0U6tyZwBWpzdkOE3m0zbRe+vp3E6rBxrn6Ftg0x3CHjR8iWtREWXjFrDK9I0rrOGMN6jei6ME5iZahRI2bGu7Ux3vUaURwvcfyhsTk1AowIu/b6eHvkRo1QPDJL39LFsrd1zYzhhbPH2xjDcK+f3EiRqf1ZFl7ZPqdGdF2QmDPe9RrhDCq4I86Ge0XHuSeN95s6iC01xtDf7qHvuk56X5ekbUO0USMa4/3G9kZtmV0jercl6bu2o1EjABZe2UZijTHe9Ws+e8yWv33mXHu3J2ldb4zh7Box9tw0iZUhlr55pg7UawQYjkX1GlFOq+THSiy5ugNvwoUrpMypEbKrNt61GqFrOv5WY5+BDi/dl7Y0akQ9snF2jfDG3UZUHbD4TR10XTQzhn3XdMzU5C4vC1/XRv+9Y1SyKh3nxVj+9u6ZMbyqg9iyWeN9bSfR4Q7WVy7C7fRwww03cO2112Jj82pH13W++tWvctGFF1Eer3LVmrcQcxj1JNzrJ7ok0Gjbui6CN+Em0OnFHXGSWBlm6mAGTdUJdfsaNQqMZwxfqxsk4xkoeU6UYqrM9NEcwS4v8eUzb8InVoXxtxn3uSuk0HFeHMXrIHUoi+KRG/UMIL4iRKD2zObwyLRvieONu0CHSlad04fYsiDBbiOeUXbKJM+JEujwoPgc+BJufC0zMXbRviChBUZbySGRPCeKO+zE1+ImsshP8pxoQ4wRWRwgvNCoJUiQPGfmGa5ldZhFr29vLMKHF/qJLJ4Zw+Q5UaO/gDvsZMFlSVrXRUGC0AKf8bk6a7zrz2GuoELyHKOmFifL+Fo8jRpVH+/6c6/T7yB5ThSHW0ar6BRTFcIL/LPGO0SgVqsVr9FW8TpwBhTat8RoqX0mgOFMU39GdriNMawLtv2tHvSqRm602BjvUGO8jTF0BY22vhY33Ze0NI4bXRJo9Kkx3hHjs94TcxnnqhvC2fAC/wvHO2aMoSdqtJVkKGdUHG7H3PFeb8xZMMQlyXOiyIoEktGH2fOlda3h3AfGM3TynCiO2nOkN+GilCo3BFOJ1TNz1umrjWHNsTDQ4SXcOxMLGl8ZItBhjKHiqbWtPXP62zwkVocZ3z1N6lCW+PIgwa7aeLuM8a4/L/la3bSsjRjjq0gkVoYI9fga/508J9p4XvIm3I3P60quitPnmBlveZ7xruFrcRPsmun/7PF2R5y18TYmeLjXT2JliNiyIJIsNWoEGE5ryXOiyE6jbajbR3RxgIm9afJjpZkagfFcVp+zwJwa4Ym56LmstTHeim9mzoIRIVivEVMHso0aBUaNMOZsbbyTHlpWz8xvb8KF7Db+Vq8Rs+dsa228wagRbRujtKyJNO4Fd7g23vG5Y1ivEa6gQtvGKG2bYo0aUZ+zs2tEuNdPtawhyRK9r2vD2zJTI5LnRBsuTvUaUc6olDMqresixGvP1/UaITtrY9jta9SIzPECoQU+/EkPnphrTo0ACHR6ia8wxlDXdCQHeCJOkIw5Onu8/e0eEqtmxjDU46eUqqBrRh86z0/M1IikZ049iS0L4nDJpPvzyE6JrotaGnPA1+JuPNODcX9GukL0DK9ipbyJb/yfb9CdXMC+ffuwsWnG9u3buemmm/jIRz5yprti8zvgj3vZ9ufn8IZPbSbcbnx+6Trsue0Yt3zsfg7cfwJd0K2yzp1TO3nDc//AH+//Tz555Lv88f7/5A3P/QN3Tu18KU7BxsbGxsbGxuaMUspVuOd/70DXdBad187SS7vMN7KxsbGxsfkdeFWLlJZK69i6dSsaGqvYzOrExsaCkK7qlDIz8R1qsUolW6F1bZiWtWHK2Wrj7Xld0yhlKlRrb3RWixrlTAVk6DovgS/uplJzIdI0jLa1t0XVYpVSbQHCFVYI9/hxR1xz2qol4zjVsnEcaqICxeUgtMDXWIgoZSqNN5G10ty25byKw+OgbWPMWPhIz7jFaOrctmq+SiWj4m91E+7xGzEPhXrbueNSKVQbriA6hgtJKVWZs1+tOnOu5ezMm8DFqTJDT04w/tw0eu1cG/stVue8gVvJqlQLVUaeTZE+mjXa1t7Sb4xLvW1ORdM0OrbGkeW5410tndQ2qxrXUTYWk7TyjOuCWqqetN8qlfzMf5emKqRr0SfVykn7zVep5Gb+W1N1nD5DEDJzHWtzK6dSnuWsUM6o+No8JDdE0CrGeOvVmWszu20pa0SfhXp8uKPOOeOiFtQ5jg3lnEqlNmc7tsTxxtxolVofStqc/VayKmrtumpqbQwrtXlYqs5xGShnK7OcYYxzqwtftJPGu5xT5zh+lTKVhitPfQw1TauNtzpnvpTTKmpJI9jhpfvCFjS1itaYs3PdacqZSsN5QJeMhSBkfWYMZ/WhkqmgFurnqqFVdTrOjdXGsEppdh8y6gtqhCvgwhV2NmrEzLi8sEbkJ8pkjhdmakS9D3n1lDVCLWs43Y7GdTLaVhrX8VQ1oh5ZBKDmqlRmjcucGlHQmDqYpTxt/L180hi+oEakK/TfN8rg4xONGjFzruopa0Q5ayxqzbk22QrVk2pPvUa4424UjzJnv43xPkWN8ERctG0wrlW9Rhg71k9ZI7oubKFza8KYW/U+afPUCNkQ4Pla3HOcUubU71k1whVWCHX5cAUds9qqM/s9qUa4/E68cXdD8FnOzlyb2TUiJEV5fe+bWbK4j1tvvRW/FLLf1LZ51VIqleiSF/Fnf/ZndLGYLZ7LUCou6lYkaqmKOstRRS1UkRWJyMIATr+DSl5tfL5Uy9oc1zu1UEVTdfxJD9HFAarlavO2tfoQ7PLhi7sbC0/Vij63bbE64x6nGQvpkYWBWtuZ56N622qtHqPrVPIqoS4f4V4/mqpTKczUwmpxrmtTJa+iVXV8rW7cYdec2l0tnaJt7Zmzklfn1JZqSWvU2Jm2xrlpVZ3p/pwR2aTX2568X6OtXjX6rxaqTB3Mop00hpV8teGWpGvGtoE2D+6w02hbmDve1drnmK7pteuoo3gcONzynHNVizOOKvX91mO6qrV4snqf57iv6C9si05DvKCWNNRydW7b2edaUIktC+L0O+aOt37SGKqa8XktS/ha3IZrVGnuuNTnllYbQ103REixZaE5ji6VvNr4fNfq41Kfh2UNtTD3XtAqpx4XraLNmR+zx2X2eNfbzrk2RW2mbW3OatV6W73hohpfEcLb4p7VlrltVW2uq5gMjppYqL7feoyaruqNZ576tXFHnA2B3Jxr02g7t0a4Q04cHrl239f6VNVOWSMK4yU0VW/UiMY1n6eeOFwykiTNjHdVP2luza0R1XIVf4vbEEfVr03tzyfXiPxoieyJmgvYSeNyqhqROVFg5Jkp429zxls/ZY2olozjza4RjTnbaDtTIxSvjNPrwOE0nl3qc7buDnVyjdB1nVCP3xC5N9rW+nSKGqF4HbSuiaB4lTn7na9GBNo8xFeEavV71n4Lp64RwU4fnphrzn3/gv3OqhGuoNIQV1YrWuN5GubWiE5pIduXvYl8Oce6leewWboMGxubs4PONQne/IUL2fzOpSg1UWkxXea+r+7kl597jIn+5k54de6c2snHD3+LkcrcmMzRyjQfP/wtW6hkY2NjY2Nj85pC13Ue+PpzZMcLBFu9XPhHq5BE8+5tbGxsbGxOE0m3+jrRK4T3vve9fOc730HBySYuIyA1z5qvRyjJCoAsbDHvCiuGoEPQwd7X4iY/Jhh7cRrtXSFF2H4fDKcW0SgzK/jbPcJxTWA48FQKKiNPp4TaR/uCJM+JsP9nJ5pGU50u3Re3UBgvmcY1nC4dWw1Xh/57xCLZ+q7rNEQkghFu9TemzWK+Gvu/poOpwznGd02bNwZWv6eXkR0pxkSiZxSZJdd0MPLsFNOHzeMkZJcRgZIbLArdh94WF0ve2Mnh24eE5lyw00vb5hhHbh8WjvGxgiuk0HVBC8cfHmsIhF5MOs6P4424OPTrIaH2nriLrgsSHL1zGDUvdq+4I06qxapQrJwlZIRrJRh1WVMRr8chBbWoCdcET9xlxNAJ9skTdQnH1oHhUlYfc5GYvt08zpDeTyQS4bbbbmPLli3Cx7KxOdOMjY1x/fXX88hDj7CcDXRIvU3bG7FhxiOm7JTmiDXNULwO4UgoSZZwuGXh9rIiIcmScDRR3ZGkLkQQ2whLEVIiOFwySAjHajlcMvEVISb3ZYQjUFvXRyhOloWj2Kzg9DkIL/QzuT/bEI+8mDjcMolVYSb3i0XyuSNOkuuinHhsXCiOTXJIuIIK5fSMkLsZvhY3oR4fw0+JRdwGu32Ee3zCkcWBTi/euFvoOQ0MsZeu68LPRfGVIRxOmdEdYvuPrwhRyaqkB178uQPG9w6nV7Ec5yaCrEi0bYoxuT9DcVLsGSDU40OSJaaPiseouYKKcBShFSQZoTlZx+GWhesIGHOnYhJze9rtJaNWifZHckiGoEmf+xkzHyWpyHPao0wzwRe/9EVuvPFGsX7ZnJXs27ePG264ga9//essW7bMtP2ePXtYuXLly9Azm9MlO1Hgsf+3lyOPDzf+TZIlVl7Rw8a39uHynToCrqprvOG5f3iBQKmxD6DVGeE3az5jR7+9BrHvbRsbG5uXB6vPXq92XumfL8/f1c9D39iN5JC45u+30rI48jvt75V+vi8FZ9s5n23nC2ffOZ9t5wtn3zm/Es5XMW/yykJVVS644AIef/xxfATZwjYUqflptKyNkFgZ4sDPjtcWkZv/ENq2KYo37ubIbcNCIoTkhghIEiNPTQkJjhKrQmhVncm9GaH2saVBZEVifE9aSKAUXuTH3+Zh8OEJIYFSuNdPcmOUw78ZElq88MRcLHxdGycemWDqQMb8ABhv9uoW9CJTBzJGBJPAb9augIIzqFgSTUkOac7b8M2QFRnZhbAABGDw0QnhtgAHbj2B4hL/gUtUnFQnN1ainK6YNzwNNFWjMF5CzYldYK2skbGwAFoYK/P8D44JC2oyJwpkTpwQ3n8dUQGgmleRFQmnTxEWKdWFWSLnPfjohCWhj5ozHAsUt4KaF5gXMiy6sp3sUIGB+8eEjtG+xYgdOXLbcPOGtX772z3El4dMRXr1a+oMKLRtiDLw4FjTc69fH8Un07ElwfEHx5sKnIoTxni4I046tiYYuHek6TyqC5TCvX5a10c48tuhpu3rNaHzgjj+Ni/7f3q8af9XsYUQMY7k97Bt2zZ+8pOf8LrXvW7+DWxsXiHs3buXq666iuOHT7CRSwhL8eYbSJDcECU3UiR9LG8qUJKdMq1rw0wdzFKarpgKjmSnTGxZkKkDGaolzbS95JCILg6QOpytLWo3748kG/FL00dzYuIqCeLLgqSPFwyBjMAmLWsjFCdLZI4XzBtjRDy5Q06GnpgUai8rxmJ+1YIgaPTZlPCzkTvipJxRhcVbslNGdoi/JGBVSFEtaYw8LSYIAiMW7vjDY8LiOb2qN5xGRftTtNDeKmqhSnlafP9WRCYAU/szpgKQ2Uw8b130Lztl9KomJLCRJAmr68CukHOOg9V8aKrO4GMTloSFuk7DUVUEf9KIWxx8bEJoXjvcMq1rI0zuy1AyeX7XNUCCyKIAhYmS6TytH9/f7kErG+5mzajPHX+bB13TyY82/+5abx9e4KdarpJt9v2s5giHZERfFibKZAfnr4n1euNwybRtipE6lCU3Mv/+3bqHDVzM4cBzfOxjH2NgYIAvfelLyLItKrCxeS3xnZF7+X8j9536j5dD9SKNcr7ScLMDkJ6UcPkUFJfjBZuUNZVUdX4Rqg6MVFJcvuPvcMkv3k+q70lewh8kL33R9mdjY2NjY2NjI8Jkf4ZHv/M8AJvfuex3FijZ2NjY2NiI8qoSKY2Pj7Nu3ToGBwdJ0M5azkMW+MV66mDaeHtYUORQmCxbsjN0uByWgvN8SQ+6aoiURPC3e3AosrDrjzvoxB089Vthp6KcrVAYKwm/XV2cLHPsnhEyA2ILa2BNtBPu9TPdnxMWaiRWh4ksDLDnB8eEtxF1OAKILQvQtjHG3h/2C80h2SVbd3/SEJ6fik+mZXWEiT3pORFvzRh8xJpoyiqiYpc6iZUh1FKV1CGxN9BPx/FHxNmmTs/lrXjCTvb/1FzcpKlw8BeDlvrStiFqzNHjAnO09ndvi4tqQTO9xmpRE3Zdqu+///5RS0K3wkRJeGEZQHE7cAcV4WvgCTvxJz2Gy4CA8MsddOFtceMKKkLOR7JTwuGSkBUxq6dSpkIpVUEVvI8n9mQojIs5NnVLS2iNtvDw2N1ceeWVfPGL9pv9Nq9s7rrrLt7ylregTuts5nK8kt98Ix3Sx/IUU2J1RlM1yhnVgpsGOGqOSCIoHhl3xInDJaOp5s86DrcDb8xNbqhIuWJek2RFQvEqyIL9ASilysKf4QBTB7Mo3hcupM1HJV81YuEEcHhkJFkyngNFNFmyRMvqMOljeWHnnNJ0hVFB1x+A1nURChNlUofEnHNEXFVOxoq7lzfhRpIQdj8tpSum4pLfheJkWdj1BwzRS6DNS/p4XkhYZnUsAZCMuSGyf4dLpuO8OBN70kJj2ky4csquOCRa14aZPpYnIzJHdUACd9gpJEYT2ucscqPFWpykWI0zRG5lcZGhbriVVXIOSojNO2/MjVqomoqU6rjDRkScmUipjuyU0HXBL8i6Eck8O9auGdWyxvTRHIUJ877Ikszi7Fr8oSD/9m//xuDgIP/3//5f/H6BzzKbs4I777yTO++8045jfhWTqxYZncf1qIFvnn//HT6qU9UcvIjGzbmq+Et3NjY2NjY2NjYvBpWiyt03P0O1otG1roU1b+g9012ysbGxsTmLeNWIlPbt28eq5auoUqWX5SyRVjffQDYit4afnELNa4wLLNQEe3xk+vNMH84JxVbVF+CtuuaIRnrVGbhvzJIIanRHCnaIty+Ml4VFJnW3GVGBUrQvgOJxCC+UuUIK3Re3oDwuMyEo4hp8dILJ/WKuS2BdBJU6lEW1EI3VsTmGv93Dvh8dF2ofWxYktMDH0dtHhNq7gk6iiwNMHcqCyG+p8qwYqxc/YcXoU0gBDeEF12CPHzWvCouUYsuDhHrEx6hlTZjWdVF2f++o0DmPPZeqCVjEcUecSLIktEg4+uwUY7umxcdfht5tbaQHcpx4SKy+eGIuWlaHhe7luuuYaNya6HWqM300ZykCJXOiwN4fDwiPT26kyL5bBoT3Xxgrc/BWQ1gmKzKapjU9VnGiTP+9Rp32xF1opeZiseJUuSGWalkTJj9eaurs5h4Nc67+Op6U7ubjH/84Tz31FP/1X/8lfD42Ni8X3/3ud/mD9/wBUVo5h60oUnMBtDvkRPE5yA0Xm7pb1HG4ZSRJQi1Wjc9xEyRZQtd1qkWNkWdToqdBJVdl6HExByIwXGoGHxd3VtEqOiPPiLv4AMKRapJDQpIM0YhIjBlAdEmAzPGCcMxbqMuHN+423GQE0DWdoccn5zgSNMPpc6BpulCsWp2JvRlhcawkS3Sen2Bib1pYQJFYHSY3XKQwLtbeG3chyZKwSMnhlg2XmJcgshgMty+HpxaLKHAZHE6ZQIfHEMsIRiMmVoXJDReERSwd58bJDRWZPmb++V8ta4zvTlMSFDICIIEnIhbLqld1hp+eshT7G2jzEO0LcuKRcWEBW6DTi1qomj8L6oZQD8RdwqYOWBNMiH7XqjO+Z9qSe9TkPrHvZXWmDs70X0REOPu50R0xF4vVhWuyIhHs8hnzbp5DSJJEe2YRMi5+fMuPue+OB3h2z9O0tbUJno3Na5nt27ezffv2RuSIzasPv8NDqzMs1FbXdMp5FbU89/PB6VFweR0gSaZOSnUiDv+L6qTkd3hetH3Z2NjY2NjY2Ijw6P97ntSJHL6Im0v+dI3wy4A2NjY2NjYvBq8KkdIjjzzCBedfiI7GKjbTLi0w3cYTdhHu8ZMZyAsJaoLdXnovS3LkjmGht3UDHV4WXNbK0TtHhBbiXCGFhVe0cfyBcaH29Uimsd3TRkSUwBpH14UJSmmVMcE31RMrQ0SWBDj860GhWDhXSGHptV0MPj4h/EO1t8WNO+AU/uG8nFY59OtBChbeDgeE3yb3Jz30XNLK0XtGhCPH1KJmSaQxsT9Ndlj8jW9d0y29zZ8fKbHn+/3C7b1xF0ve2Mnh24csReJZYcHlSUrTFWGHqiO/teD8A2gVzdIYTffnLLkvWY3PA+Ocy9Nljt5lfs4iMZNz0ODoncOW7gOn34Ev6cEVUMTEYjL0XdvFdH9O2GkrsTpMZJG/Ifgxwx1x0nVBC/33jZovrmuGgGjBtlbG90wLCyEXXtlGfrzEyFNiAoFFr29DLVQ5epeY4K37ohbUQtU86q5GZFEAp988ftInBThffiOH2p7me9/7HuVymVtuuUXoGDY2Lwf/+q//yo033kg7vaxgg5BzpbfFjSugkBsW+6yJLQshSTVxtQDxFUGQJMZ3iT1ThHv9KF6HcBSVJ+bCn/QwuS8tFEHlcMvEl4WY2JcWc0iRILk+SuZEXlhME1noxxNzCYusHB4Zb9xtPGsKfuRPHcqSsehUY0V8E17ox+FyWBJyWYuo1Zl4Pt0QgZgiga5qwlF1YF2gEVkUwOGShee2VVwhJ8l1UU48Ni4k/ipnVU5YdNXUq5oRaybI1MGssBMOICwQq+ONuWhZHWHw8QkhoZUVgRIYAuhiqmLNYSvmopSuiH8PqQmhBh+dMI2hg5oj1LoI6f688HgFu7zITpnpIybfXWqn6Ym6CHR4GN8t6NgbchJdGmRsZ0qoDrjDTlrWRBh5dkpIaOmOGHN7+KlJoedZV8iJv81DdqhgWoeTUhexRIRHp+5lSfsy9h3fQ2dnp+kxXq1omsbRo0cJhUIkEok5f1NVlV27drF+/foz0zkbmxeRP0heajkmbeDZMR759h7SIzO/CXkjbs5913J6z0vyxl2fZ7QyfUrtowS0OiP8Zs1ncFjNIrWxsbGxsbGxeYVw6OFB9t1zHCS49EPr8IbdZ7pLNjY2NjZnGa94kdLPf/5zrrvuOiQkzuFC4lLzNx5lxYhjKk6V2fejfiHxDUBmoGBJxJEdLjD+/LSY4AjQyhrFyTKljNiP2LIio+sI/YA9BwurCaVMhfx4SXiMymmVwccnSB0SX6gZfFh8QURWZDRVM2KTBFn21i4m9mWEnLLAWIA4+OsTwqKUcK8ff4fH0nkUxsqWRC9TB7KW35a2QmlKNQQvgm/Cnw4nHhkXjrA4HVKHcpaEYuVplfK0tQXFcK+fQKdH2Lmo/95RymnxMVU8Mkuu6WT4qUmhc6nfB/X7wozMQIF9A+LuQmgw+MQEOQuCuuJkmXxIMZzdBC53tebi4XDJQk76mqqBDrJD/MfewmRZyFWhztjuaWF3EYBj94xYqsOHfnWiUVPNrp2iKfSd2ESKND/60Y8499xzeeCBB3C5XMLHs7F5sdF1nU996lN84QtfYAHLWMLqF0TgSoqCrs48PEiyhK7pRjSXhZeuJveKLYrXyQwULDlLlrOqpajK+mmKCJTAcPDQEY/GkiQjBqySE69B6f68pc/valETdkSCmWsnKujwtboJ9/oZfmpKWOQz8XzGcBYSJLI4QGG8JCw60jXxGDZjA4TdOk+X6aM5Xsp1y3JGZeSZKevxwhawOkZWRUdIEFkYoDAhdq0Lk2WGnhATKNUJdnrxt3kYFhAy6xqNfdfvCzOsuhflx0poqi78XKFXdUrTlZfMkQuMlyXQxc9ZLVYpZyrCTmqldIXpo1kqObEvnKVUheGnxQRKYDybDj0+YdTt+ufP7K7JDtBm5oxzPMAG/WKe5gH6Fizj7gfvZOvWrULHejUxPDzMJz7xCY4dO4YkSWzdupVPfepThMOG20w6neYv//Ivuffee89sR21szhDd61toX3khz/3qCM/+7BDVikYhVeLe/9hB290xPvR7r+fvpn+AxNySUi8zn+i+zhYo2djY2NjY2LxqSY/kefAbuwBYf+1iOlbFz3CPbGxsbGzORl7R36q//e1vc9111yEjs4XLTQVKAAuvaKfn0lYAIfFNy9oI0b4AgJBAyRN14Y44QYORp1PmBwBklxELd+zuUdS82I/MWlnjyG+tOd8cf3Dc0o/lmYGCuPimNlMm92WExlV2yUQW+4X7AtBzaQu925PiG8iQOpwlP2rNHciKgMgZVPBGxVXkvqSb1nURS3eWK2RNK9h1YQs9l7UKt9dUjcyJwku6kJUfKZnGMswm2ONj2du6kV3iAyW7ZBSPePtAh5eWNWK272DE0XijbuFrV5wsCwv8wHBTSvfnKVlwhwj2+Fjxjm5cAfE54gooBLu9Qm2nD+eMmiR4ztnBWs0QnEpqUePQrwaFHQYAjtw+bCkqbviJyUY8p8j8mD6Sa9TVcK95jSpPq6h5DcUj03Npq+mcrc8Jf7uH5W/rxpdsXj9kSWYzl7OkYymPP/4455xzDqpqYWLZ2LyIaJrGBz7wAb7whS/Qx1r6pDVzBEqSorxAoOQKOenYGsfpdxj/YLJuLSsSsaVBJIdEtawJLb57ooZwr5SuCH3WyIrR58J4icxxcSFmYaIs7LoERozc2M6UsFhH14wIWdHFeiTDsUhUiOmOOJGd4p+TisdB5/lxXEHxz5hKvkpuuGjJhUjXdGFhiSSDO6hYOo9Ah9fSOchOCckhrqZzuGTat8QsHUMtVC2J0ayiV3VK6YqwoA4gviIk9Lk3GyviMkk24s+cPofYBjq4QwqKR7x9xaI7UimjCju71UmsDhNdErC0jTfhFhKl6VV9RswlOAVTh7KWnMUyxwvmLkqzKE1XGN+TFhIogVGTJvdl0Kt6o9Y2RTf6hA6KzyE0p8oZo0b6Wt34k+bxR/X7IL48RGJFaO4ftaohVJJn5plfCrGZy/D43Fx28WU888wz5ufxKuMrX/kKiUSC//7v/+brX/86pVKJD33oQ4yPjzfa6Fas0mxsXoMoLgfnXL+Et37xIhZsnPl9Zfj5ScY/O8UHjr+OFmXu7wmtzghfXPQ+tkfXvtzdtbGxsbGxsbF5UaiqGvfc/CyVQpXk0igb3rLkTHfJxsbGxuYs5RUrUvra177G+973PhwonMeVBKWo0HZTB7NMWXD68Sfd+FvFs987zovTfXGLePutcfqu7RQeaW+Li2Vv7cIVFl8I6b0iaUkQFFnsZ+EVbciCh5AVWP6WbhIWBB+xpUG6zm9BEV2owLh2qSMWHIVqQrH8iNib29G+AEve1CF83gDjz01z6Fdi0VYA/qSX+PKQsIjDFVJYdn034UXi1684WbL0trqvxU3b5phw+9Mh3Ou3ND8qWZXcUAHZQgVaem0nbZvEzyPQ6SXaFxRuP74nzcFfDlpKZWtZG2HhlebiyTqDj05YEsnlhotM7M+gWhCYtW+J0b5Z/O0HxSOz/K3dxJaJj1VsaZCFV4ift+KRWfzGdlPBzmy6LmyxVGuT6yP0XdslLHyL9gXovrgFT0zMtcgZVPC1uHELigoLY0VSR7JC7h6yJNM7tJaF4aXs2bOH1atXUyy+NNGMNjbzUa1Wef/738/Xv/51VrKJBdLSxt/q4qRTUcmqZAcLwuIBxePAHXHiELxXnQGF1rWRhlDJDFmRaN8cw98u/mwXWxa0JN5whZwkVoctCV1aVofxxsVd0vxtHto3x5Bk8WPElgYJL/AJt9dUQzwrLJrCuN5pwbhcgJY1Yfxt4tdC12Dk2ZSl55xglxdXyCncPrIwQPIcse8VYJiUFibKltxsAh1e46WGlwhJhlCPz9JztuHiJX6tfS1uOrcmxIQoGNcuvMCPKyh+3iPPpoRdacGIP0uuF68H5XSFzAlrUYb5kSI5Cy9AONwyiZUhvHHxZ5xgp5f2TTFhoZLkkEisDluaU74Wt/GdRBDF66B9cwzFKzanJFmibWOMYLd4zUmsCBFZLC4Ac4dduMPi55wbLjafT7PESh7JxznVi3CpPrZsOJfHH39c+DivBnbs2MEHP/hB2tvb6evr40tf+hJr167lwx/+MCMjRuTxyS6JZyt33nknn/zkJ7n55pvPdFdszhDBFh+v+9hGrvirjQRbjZd99KqO8wfw3q9fyOfKb+d/9r6L/7P0g/xmzWdsgZKNjY2NjY3NqxJd15noT3P///ccY4encfudXPbhdZYSDWxsbGxsbF5MXpFxb//5n//Jhz70oZpA6Qo8ksmPnzJEFvpJHcoxuV9QoFSLKzp6x4ilvvXfPWLJ/WX8+WlKqbKw8EGr6BQny403SM2QFRk00C2+rK2pmrALjKbB1KEMWQtuBOO7pskczwvHhwCW3FNcIYX4shAjO1LCDkFqSaOUrgift+yqRTVZEK2M7UwxtjMl3F7Nq/TfP0puyMLY7rEWj+ONu4gtCTD8xKSl7azgb/fgS7iFY/eKk2WOPzhu3nAWJx6boCJ4X4DhsHM656z4ZGHHs0quQikjvkAIhqDLGVAY32U+VlpZs3wOJx4dt+zwlDqSsxSVUy1rVFVNOPZNLWtoGjgsOGMUp63FE04dzFKtaML1YOpAllKqIuzyVBgrs/cW8Tg9TTVEaWDUK6dfMXXGW5xeS5kK+/btY+3atTz77LP4fOKLfzY2p4uqqrz3ve/l+9/7PqvZQpvUA3BKYVLdRckdcqIWq1TLmqXP73JWZehx8bpWyaoMPTkpLK7QVJ3pozlLIpdyVkUXjGwDkB0SaLqwm5AkS2hVXTgWDgxxRXawIOxuAjDytHmk1Ww0VbckOAq0e6jkq8IxbGC4TVmJg5UVydI4AZbmE0B6IC8skgMjejl1yFosr7/NY0TWWXCZtEqwy0clpwo/a2ctinWKqTKjO1PCsV4AJx629mwH1ByIxKLG9KpOJV+15OQlOSRCXT4ygwWhmDVL0YFAtaQx9PikpSjZYqpsmM4JnoZeNeqNFVGJrumGU87JWUXzUC1plDMV4ZqjazrTx3KW3DLHdk+jVcSv3dSBWd/rBc5jtuucN+Ge+RyouynVqf3/cgE26BfxrPwgF11wEbf8+BauueYa4f69kikWizidMwIvWZb5xCc+wZe+9CU+8pGP8Dd/8zdnsHevLLZv38727dvZt28fN9xww5nujs0ZpOecVjpWxdn5y8Ps+PlhqhWN4mSZ4s1l2lfGWPK+JI6gvYhnY2NjY2Nj8+pB13XGDk1z9Ilhjj4+Qnpk5jegi/5kDYGEWBqDjY2NjY3NS8Er7hv2zTffzIc+9CEUnFzA680FSkBieYiu81uEY7N8STfL39qNx8Ib7W2boigeI7atnDZfKHOFFJCNqKCJveLOTqVUhWN3j4qLmlSNo3eOWFogTB3KGccQpeZYJBo3Uo9cEl2YkV0yCy5vtRR75k96jTdxNfGFr0x/noH7xoTbt64Ns/IdPcLtTwdNNeKn1KL4efiSbkOcJsjE3gx7vt9/Ot0TZvCRCQ7+QtxxCoz4HqeFGLNMf154Dp4u7Vti9F3TJdw+dSgnHplYI9jlJdRjTXiSXB8hsVLsbXg1bwh1ZEUWrvDDT0xaWmSaPpqj30KdQoMjvx2yFLs0/ty0sOgNDJHB+G5DwCfqsFBfiEysCQtvA9C7LWnNUe/cOB3nirlbrZA2smHJZg4cOMCqVasol1/aOW9jo6oq73rXu2oCpXObCpRmE11qzX0otixoyd3O6Xc0Yn5EBUp1B5DsUNHSQnj2RMGSm0txqmxJMKxrOhPPp62Je/JV4ZopyRKSbIiORAU+/nYPAQtuUwC+pMdSrQQjltfKZ3fHuXGCXS/tj2RqwZrQyuGSxSPJaow8PWVJAGYVXTMEQYUJ8bGVHBJOv/hzl1bRjWv3UiZCSdB5fsKS29bk/oyl6FxJMtw1rcT1KR4HsWVBoQg3oCFQEnWdquSqlkVjE8+nLd1LhYkyk/sy4kIoTWdib8aSqDA3XKRa1pBkhIR/1aJmxMQ5ZUv3uTOg0LElLuwcpngdhrtVwsTdSnagSE42yBcTDcR587Vv4eGHHxbu1yuZnp4e9u3b94J//9jHPsbWrVv55Cc/eQZ6ZWPzykdxOdjw5j7e+i8X0bNhJgJuaM8kP/nUQzz+/b1UinY0t42NjY2Njc0rF03TGd47ySPf2cN///m93Pq3j7DzF0dIj+RxOGUWbGzlio9vpHdz8kx31cbGxsbmLOcVJVL65je/yZ//+Z+j4OR8rsQlif1gPb4nzcFfDQqJhwDKmQq5kSJlQacOV0gh1hck0Cn+Y2rv9jZ6L2s1b1gjsthP33WdDYGPCD2XtRK0IHbwJlx0X9xiSeDSdUGC5PqIcHvFI7Pszd0kVonHC3iiTjwxF7oFx6KpAxme/2G/sGOMJ+5qLHaKkjqUY+hJcVcCX4ub5W+3Jn6LLQ9aiupTPDKLX99BxEI83CuVhVe20bJKPCLOFVJo3xKz5GS24PJWui8RF5NMHcoy+Lg10ZHikQkvFL8exx8e5/Cvhywdwx1z4bIQdyErMsve2kVybUR4G0/MxZKrO1B84uMbWeyn3UKUoOyS6d3Wijchfo8k10dY9MZ24fb+dg9L3tQhXhtliC8LElkiHj+SHS6QteB+1n/fGEduHxZuHzu0gB76OHr0qB39ZvOSomkaf/RHf8QtP7yFNWwlKXU1jXabzdjOFFMHxd1lilNlShYc0nytHmMRW9A4xBt30b45htNC/FXruoilWDhXUCG2NGgpgi3c67ck7HG4ZFrXRXBYeB4Mdnlp3xIXHisAp0+xJFgBGH02xfQxcVG8N+4SFm3UmdibpjAuPk8M8Zt4/ZadEqEeH7IFZ79gl4+WteLPK69UfC1uSxFjYLjRmAo9ZuEMKHRsjYuLunSY3JehMGnNvcgVVIRjyTRV58Qj45bE2Do67pAThwVxWqDDuA+t1IdQt8+S2FNySET7gpbqgyfqImrhGUd2yrRtjFqKlouvCJGw8EzviToJdYvfh2qhSmGyJO6eW6gy9MSkmKOe7EDWXaxMnUuQCBdfcAl33XWX0HFeyVx88cXccccdp/zbjTfeyLZt2wynLRsbm1MSbPVxxcc38rqPbSDYMhMBt/MXR7jl4/dz+NEh+x6ysbGxsbGxecWgqRonnhvnwW/s4vsfuptffu4xdv/2GLmJIorbwcKtbVz+5+t59/+3jdd9bOMcMbaNjY2Njc2Z4hUT9/bDH/6Q97///ThQhAVK7Ztj5MdKTB8Vs5qvixvUvGbJUaecVtn74+PCP4wCHH9oDK0s/qNFJVulOFkWdtSRXTJOn2Jp8ccTdeOJudAsuA/p6Fj57UUta4w8O0XKgrNTfqTEvh8dF25fd7SyEsPWsjqCr8Vl6TjFqbKlN5arFY3sYIHytPibdeEFfqpljdQhsfFSyxqHbx+iZKFfbZuieKIuy9GGVogs9tO6NsL+n54Q3qb/nlHKgu4YAIrbQXRxkNThrPACZm6kaCk2pjhRpmjBlQAg2hckuT5K5kRBrEbUmliJleu34nyG8cVkbGeK9HFxFwc1r6JrOopXQc2LjYE77MQTF1+81FQNp1/BFXQKX8NiqmJJmJYbKjL46AQZUQcLDQ7cOmipvtcdm8AQz5kJZLWyhlY26nbXhQkGH50wjedZKq1D8cscOLCPzZs3s2PHDmT5FaUrtnmVo+s6H/7wh/nOd77Das4l6Vxguo3DJRNaFDTiFQXvGYdbplrSyI9aEyFMH8kZTjSCJbwwabgbVURjZiUopSuoOfGIJofbgeJ1iEewSeAKOVFL4seQnTK6pltygsqNFg0nFwvPa1bjy2SnZPRJ8BiyUyKxOszE82lL196KMxAYrp1WFgkVj4Ngt4/8aAlN0IwnczxPblRcLCrJkNwQI3XImouUVRKrwxSnysKOPIWJEsNPTVqaJ74WN+i6cHxitVglP1q0dE2sxqsBJFaFyY+VxOexDkiG65hIVFy1qDFkMW63MFFCUzVLEY06IFlZ49aNZy/nhEK1KDa3ZEVC8TqQZIReCNEqGqW0KhSNV2f6iPj3PoD8aInCRFk4tk+v6kwdMK61rBjRgGbnohaMuuuNu1C8DjKDzcfL4XCzXr+YXf4HufqNV/Po44+ybt06of69Enn3u9/Nu9/97nn/fuONN3LjjTe+jD2ysXl1smBjks41CXbcepidvzAi4PKTJe7+8rN0rI5z/ntXEukUF4La2NjY2NjY2LxYVCtVTuya4Ojjwxx7apRSduZHDpdPoWdDKwu3tNG5NoHisuYObWNjY2Nj83LwihAp/eY3v+Ed73gHMg7O4woxByUZPHE3mqYLR531XNKC06dw4OdiQgpXQCG5IcqJh8eEF7A9MRfFyTL5EWs/uOdGipaiRrSyxqFfWYvXmjqQYeqAePQcwImHrLnKoGEpAsUTdaGWqqYL9rPpOC+BO+QUvo4AA/eN4gpbiJOrxaCMPJ0S3qaUqnD8wXHh9gBHbhN3VwFAM0QYVihnVCPr4iWkkq8aC4sywuIxK/MdjEWsPd8/Zmmb2WISUYJdXnytbuFrP7Evw9ShrCWRS2x5kI7Ncfbe0m8p6i/Q4SU7KLYYaeU+BFCLGocsOjwZY5QS36AmCLLC9NGcpThLMKJgwKgvIgvE9WsXWezH6XcytjMldJzYsiDtm+Mc+MVxIXGi4pHxRF24w06hmrcotwZXp8KuXbu4+OKLefDBB4X6ZWMjwl//9V/zla98hRVspN25UGgbxevAFXIiKxJVASG24nPQvjHG+J5pYfFJsMtLJVelOCW4gC0ZIla1WBUWUgCgW19YL4yXLB9DtJ7UqeRUxixEXYIhqMgXxfvlDjktxWU5XDIdW+OM7xa/jlpFZ/CRCUtC4VC3j2KqbDy3CGL1WaKcUTnxkLVntWpZExblGUiUUmWqFkQep0Mlo1Itij8/axWdcsVaRM3E89aeJTRVJ3XY2n2FBKEuH4XJsnC048izU1QtPD8BtG2MUZwqWxLoOVxGdK7IsU5HjJkZsBYJqGs6w09aE0/lx0qWhWBWvy/OFocqXkdDINQMvaojOSQii/xMH80JCzNb10UoZ1Ujyk4AV9BpxMSZiJQAFMnJuupFPKHfzZb1W9lzcBeLFy8WOo6Njc1rF8XlYONb++i7qINHvv08A88aLzwO7prgJ598kDVXLWT9dYtxel4RP6/a2NjY2NjYvIZRS1UGdoxx9PFh+p8Zo1KY+Q7tCTpZsClJ75Y2OlbFcVhIU7GxsbGxsTkTnPFv0Tt37uSNb7wKCZlz2YZHEozo0eDIb60tqA8/OYUzIK4a9ra48SU9yC4ZTTX/cVp2ySx6fTuTBzIMC759G+0LEO0LcvT2EaFjACQ3RMgOFcXFKjIk10YY2ZkSFpB4oi4CnV7Gd4kvlCVWh/FEXBx/UNylqn1zDMXn4MDPxAVH47umLUeUAJYcjnwJN5HFQUsipXCvn9xoQdgd53QIdHgJdnkZelx8gUL0R/zfhZyV+Vgj1OPDm3BZGuPTIdjppZSpCMdB+pIeQt0+4X7VXXKskO43FvBUC4ue8eVB2rfE2f+T45SzYucS7PGRWBGyJIbztrjwt3gsiZyCnV5wSMLuRbIi07Y5yuiOKeH7JbEyRLDHL1z3FZ/M4qs6GN2ZEhYJ+Ns8uPxOxnYKNSd1KIMkideWclpl/4/F3dwAugZXMM4EDz30EFdeeSW33Xabpe1tbE7Fv/7rv/Iv//IvLJM30OXoE96uNF1h+EnxqEM1X2Vyf4aChZglT9SF5KgIO9AEu3yEe3yceHRC2JWjZW2E3FBBeOHe4ZYJtHtJ9+eEo2k9UReaqlkS3PjbPZRSFaEFfgAkaFkVJt2fFxYdKV4HyXOijO2eFhZcaarG5L4MxZS4sAmwKOwxPn+1qi48Zg6PjMPloGxBcHU6hHp8lKYrlKbFjqNruqUoxNPFSvQeABKEe/wUJkrCzxGng+yUcfodlETniw6BTi/VsiYsUrIqUAKYPpIVv7dqtK6LUEpXLD1LR/uClKbL4oIlCQJtHgqTZaolsfOSZIlAu4eMoIsWGOJEZ0ARFrtLDomW1UZ9Ea3H4V4/gXYPg49NCNVK2SHhibrIj5aE76+pQ9auY0PoLov9BiCVFNbrF/Mkd7N+5QZ27d/JggXmToM2r17uvPNO7rzzTrLZl75u27y6CSX9XPFXG+l/apRHvvM82fECWlVnx62HOfjQIFvfs4LezUmkl/gFMRsbGxsbG5uzi3K+Qv8zhjBpYMfYnN9afBE3vZsNYVLb8iiywxYm2djY2Ni8ejijn1qDg4Ocs24DoLNJuoRz3ryC8EI/AOGFfpZe34lc06J0XZCg+5IWPDEXS9/cxfJ39hDtCwIQ7Pay9PpOFI9xOh1b4/RcPpOruvwd3cRXBilOldFUnaXXd+IMGDtu2xyjd3uy0XbxVR0kVocBqGRVdFVDdhr7TW6IsPDKtkbbRW9op3V9BDAclJZc1c7YcylGd6RoWRth8RvbG20XXtFGcmMUMOKBll7fiT/pQavoOH0OFr1hZr+921pp3xIDjIX2pdd3GiIAILYiSNcFLQSShttUz6WtdJwfBwyR1NLrOwn1GEKvyGJ/Y9uWNREWvi5J14UtxkFkWHp9J5HFtfHurY+3ca49l7fSc3FLY4b0XddJbGltvLtOGu9z4/Rua0WSJSQZllzTQWJlCDAW3JZe34mrPt6bovReMTPeslsmX4vQ8CZcLL2+E0/UBUDr+ggLXz9rDF/fTnJ9hPxYiWKqzNLrO/G2GG0Ta8IsvqpjZgxfl6RtkzHe3RclWP+BxfjbjTFLrAzRd81M2wWXt9Kx1RhDxWOMYTFVZt8tA8SWBum7rrPRtvuSVjovqI23YoxhuNePrMDCK9tY8Y6exph1XZig++KWxrazxzvU42PV7/ew7G1duAIKHefF6blsZs72XdtJbHltvDtr4+2T8cRctK6P0LttZgyXvKmDxKraeCdr4x0yxju5IcLiq9ob12rRG9tpWRsBwBOvjXesNt7rIiyaNWdb1oRJbjDausLGnPW1GNFeidVhllw9d7y7L06ADM6A0TbQUZuzy4P0XTszhj218fYmXIQW1OZobc5G+wIsvX7WeF/cQtcFCeM/ZFj/gcX01f4+X42YPd7RvqBxj2yONa0Rfdd2Eq+Nd3awgCQhVCN8LW6WXm9cq77rOklubF4jll7fiTfhQs1rOFwOFr/evEaAMWejS4McuW2YclZtXiOWzcxZXdUJdvvoutgYw/lqxOzx7t3WRnxlCJTmNaLj/Djdlxhj2LouwpKr2k1rRGMMr26nZVUYf5vXtEYsvqqDljXh2oKqztI3m9cIAIfLAZJObswQTjWrEa7anE0dznHk9mGhGhHs9qKpRnRK33Wd+JLGvTFfjZgz3jL0XNbKyt/raVojll7fieySWS9dyMplK7n99tv5+Mc/jo3N78IPf/hDbrzxRnrlFazsWktL7fMDIL4i2KglDrdM24YIzoCDyCI/bRsjtK4Nz7RdHiK0wKglslOmbWMUd8gJgC/pbtwzuZEisb5g4/lOckhG24jR1ptw01arfWBE9NTrDBK0bYw2Pqc8URdtG6NItT9HFvlx+hyM70mjV3WSG6KNzyl32EnbxmgjFjfc6ye2LIgkG5FU0cWBRo11BRXaNkYN1xQMR5/4iplxadsUI9oXAEnC6XfQtjGK4jEWvIOd3sZnAhifj4FOQ1AcWRygbWMUp89oG2j3ND6DAeIrQ4S6jTF0eGS6LkgQ7DbG35/0ND4/jPEOEl5gjKGsGGPojbtAAnfESXLDzBjGls4ab9loW6+bTp+DqlqlMGEIKCKLA0SXzMSUNPaLsd+2jVGQJHIjRUI9vkadB+aOd6g23k4JySHR+7o2kufM9L91XWRmvAO18XYb4x3s9pFYGWL4yUmygwVa1oQbzxBOX228vbUx7PTSUhvvQJuX3m1Jgl3exhi2bYw2hOz+dg+ts8d7RYiui1oI9/pxuIy2rqDR1tfqJnnOrDFcFmzUbn+bx5iz4VPP2WhfgMiiQG28jc8xf7sHJOOz3xhDo21k0SnGO2GMocNrnKvkmDtnG+N9ThRfq9HWFXIaQv/auYZ65s7Z1nUR/G3GeDtnjbe/zUN4ob/x3AjMGW+l1gelNmfDC/30XTvzvSmxMjQz3u7aeNf+5m/z1K6zm5Y1keY14qTxLk6WG8c0qxHRJQEiiwPElgYJ9vhMa0T9+2Jhokxseci0RjTGu/adY+pg1rRGtKyNNL5nKF6ZxKqwaY2YPd7RpUHjBZFmNcI9M2edPgctayN0bI3NtD1FjajPWV+Lm7YtMfy1+dOsRnjjxhjqVR21WCXY7TOtEfU5Kzkl1EK1IVCar0aAEXkdWeRn6IlJStMVoRoBhnNtbGmQQKcXp9/RtEaAEQ0Y7DLadmyN0bElitNvtPW3eU76XAsS6vbikjycG7kczVFl4+pzyeUsCgJfoVx66aUMDAyc6W684ti+fTs33XQTH/nIR850V2xeBUiSxIJNSd76Lxex/rrFjc+Q3ESRu/7tGX5705NMD702aoaNjY2NjY3NmaOYKbP/3uPc9i9P8t0/vYt7/2MHR58YoVrWCCS8rH5jL2/6+6383v++jPP/cBUdq+K2QMnGxsbG5lXHGXNSyufzrFu3Do0qqzmXsBynMFlGrcUWqMUqhckyWu1HzmK6gixLVMsa5XQFraqh5tW5bWsv35bTFaplYz+yIuNLeAj3+JnYk6Fa1ihMltFrrkXldAX0mTfvC1MlnD6ZjvPiRjzJZBm99rJmOaMiKzNvkhanypQzxlufDq9MYbLM9LEcWlmjnK1QmHTMaVupvRmuqUYfqmWtEVMR6JyJuCukKqi5eluMcSkZnahkVUZ3pBh5NgUwN05C0+a0VQvGf2cGCuy9pZ/o0tDMuWrGfuv2/GqhPt7Gvib3pkkfyzacl4qTZSr18S7NvTal6TLViqPhVtJ1QaLxhna1qNWuTX2850aPFcZL5IaNMahfG612PuVMBcU9M4alqTK+Dg+RjJ/cSKkxhvVxKUzOvLFcTFUab+KX8yqldKXxdnI5q85xdSimyo03srXauNTnYSWvUpzVtjRdbkSXNNoWqmgqHLl92FjQqo/ZdGXOW3RGW60xhvmpEtWCRjmvGnN21lvBhYmZyIvKrPk9vmsaTdXmOEkVJktUctW5Y1jrYzlTxb/eS+f5CY7dPUpxsky5lk+sVU66NtkKxVlztpJXKWeqtba6Md6VWeM9NTPeWkUnsSrC5L4speny3Dlbj4Krj2FtvMf3pBnbmabzgnjj3NV89aRrU0GffX/OitqZr0bMHkM1r3Lo10NILkgsD5+yRhhtS5Tzc8ewWY2o1Oa3Wjb6UMkac0wtanPeNp9dI7SyNmfOamoVd8SFM6BQyarz1oiZMSw16kXTGjFrzmYHC4w8OWlaI2aPd3G6bEQNmdSI8nQF2Wn87djdI7RviZvWiMYYjpUYeXaK9NE8nqireY2YNBwf0v15iqkyyXOiTWtEuTEuOun+PGpeM8Y4P3+NaIx3rUY4PDLOoHNW2+Y1opytsOiKdoafmZq3RjSu42QZNGNMZJc0x5nk5BphtDX+e7XjXIaCw3zpS19i6dKl/Mmf/Ak2Nla5//77ec973kObtIAl8lqqJW2Oo0olqzbqg67plNIVdFWnkleRfe45cTzlnEq11hbdaFut3ceeiAt/qwdZkdBxUCnqaCe1rd8n1bJGKV0h2hcgN1Skkq/O1H0do23tntcqRltdNxbWq2UNtTRTd43aXq+xM22B2me1hq4ZkZCRxYHGuWpq7Vw1o7FarDZEJWDU0lK6gl7V0aontS1pyJm5Y1gtVhl7bhrF6yDY5UWrzrStfyY0xrtWS/SqzujOFJnjhVrb6hwHwHJWbZybXhsXtWAcxx12NsQT9WtTd5XS6+NdG8NquRZJVR+X/NyaW0pXqNaus6bqVApVI47pSM4Yw1lv7J1yvDXDHaWULlOa3f/MrLYnjWG1WKU8a7zLs8al0bY6q21tzk4fyyE7pZnYVK02X6q1cy1plE4ab0k26nZ9fp88Dxttc2pjvg8/OUVksb/xOaWVtTmuL5XczJzVdWPcWtdEGEiNNeZso21BnfNsWEpXjDH1OtBr58pJc3bOtZk13q6QQrwvwMizKWO8ZhmJlTMzz716fX5XYfCxCbwJd0OkYbSduZcb931tvCs5lfx4qfHfxrWp7bc23np9DGvzOzdcJDdSwt/mmbdGVEunGO96NOA8NaLRtlYjFJcDrbafU9WIelvJMTOGkmSI9PNjpXlrRGO8MyrFlBE7aVYjZo/35P4Moe6qaY0A474vTVcY35NGzVfxxFzz14hZc1YtVBl6YgJ3yDXTh1PUiPr5VMsa6WM5pg4YTjFmNaI+3pP7MgTaPU1rRGnWc3Ilo1KtPTc6PPK8NQKMe0HTHMa8lQxhUqFWx5rWCNlBOafha3EbzqfPTs1bI4xxMZ7Pdd2BWtRRC2qjJlfL1bk1Ijczv50FLxd0bufuw7/ine98Jz/96U9RlDNuQv07Mfs7lY2Nze+G4naw6e1L6buok0e+vYfjO40o2RPPjfPjTzzAmqsXsf7aRXYEnI2NjY2NjY0lNFXjga/v4uBDg43vQwDhdj+9W9pYuDlJfGHIdm60sbGxsXlNIOln6NeqgBQmR5olrKZXWi60jazQEBlYwd/uoTBRnrOw0oyWtRFCXV4O/Vo0VsjBsuu7GNmREo5HC3R4iS0Pcvz+ceGYt2CPj3K6Ih6fgPFDfHHCWhaVJ+oStvWvE+0LNgRaovRd08HY7mlSh8TfNFv0hnZyo0VGnpqy1D8rBHt8dJ2f4NCvB4Ujwl7J+JJu9KpOYVz8mq5+Ty8jO8RjsmRFJtDhITtctDQHXql0X9KK4pEtxaRZRfHILLmmkxMPjzcWpc2QFZmFV7YxsdfafRPs9lJKVyxFHio+B5qqW7qenqiL4nRZOFYSGRLLQ5ai5aJ9AfxJr3CspKzILH9bF1MHswxZiOFMrAxz6DdDwucf7PaSGRCPXTm5jyKfA2W9zKPybaDofP/73+fNb37zaR3P5uzk0KFDrOhbRdAR4xwuRJbMo28kGXB75/yblhGIPZIM14xybuYRU1fnrz+yItGyNsL0kZx4rNBCP/6kESuE4JNstC9IYaI0R3xshj/paQhERZBkCdklWYqjqr+F3xBpCKB4HchO2VLUma/Fjb/Nw9iuaeEx80RdRPsCDD85KRx1dzq0rAlTyVdJHXr1x+3IioQzoFCeJcgwI9htxBYef2hc+DiG0EgSjkh7JdOIIXwuZSki0SrhXj+Kz8GEhecOX4ubQIeX0R0p4W1kRcIdcQlHKtZRvA7LkXRWt1F8DhyKLBwRKTkkYn1B0gN54bkW7PQS7vUz+NiEcF1rXRepCdxM6m0ttk1WJBwuGi8OmCF7Zl4IMhz1xM5/XB9ih/YAy7vXsaf/GaFtXqlccsklfPe736W7u/tMd+UVyb59+7jhhhv4+te/zrJly0zb79mzh5UrV74MPbN5paPrOseeHOHR//c82fGZGhZIeNj6nhUs2GRHwL2asO9tGxsbm5cHq89er3ZEP18OPTzIPf97BwCxniC9W5Is3NJGpDPwqnqeOBs/T8+2cz7bzhfOvnM+284Xzr5zfiWc7xnxAHzXu95FjjRt9AgLlNo3x1jypk5LPa5HZuSGrAknxnamhAVKYLi/DD4+yeR+gYW7Gk6/A6dXERYoAbStjzQinkSQFVh0ZbulbRSfzJKrO0isCZs3ruEMKHRujRNd5LfQN5nidKXhGiLK4d8MWRIoeROuRvSZKJWMyvTRnCWBUuv6SCM6ykrf6tEWoix6g7XrCZAfKVkSKJ0OmqqR7s9bus9cYYVlb+tuxGMIIRuiq0YUkAD+pIeFV7RZqh2Z4zmmj1qzaZcVGrF1IqhFjb0/HBAWKIExzpWc2niDXaxj0HVBC4kV4vc0Miy9rovkuojwJorPYdSOVeLHCbZ7adsUszQHHE4ZxScLX09N1Rh8fIKx51LCx5g6kOXAz09Yms91gZInbu2+blkTbsS6meGSXJwf2IZTcfKe97yH0dFR4ePYnN1kMhmuvfZanJKb9f5tQgIlWZFoP68VX8Jp2raOwy2jeBxIDmWOQAlAauJAoak6I09PWRJIZ47njecu0XIogcMlI8niP+q4w05iy4ONOCsRAh0e2jfFG/FHIgS7fbRvjs1xZjE/jpfErLgpEeoOLMJjhuEIOPS4NYGSO+K0dC4A+dGSpesvOSQSK0ONKD3RbZx+xVLf3GEjVs0hUKPraKpOKSUuUDpdKrmqZYFSeKHfiHS1gMMlW35eDS/wGw48gqjFKtnBwozzoyCKx9GI+RJh+mjOkkAJoFoxnr2szBtvi5v4ilBDgChCsMtL28aYpdoRWeQ3Ym4t9C26ONCI4RNB13QcbrkRvSZCbqTIxN60JeHl6I6UsEAJak5veR1kRyPWTgRJhuS6MKHegHljICG1s2nhxTw/8Czf+MY3hI9jY2Nz9iBJEr2b23jLP1/EumsXI9fqeHa8yJ3/+gy3/bMdAWdjY2NjY2Mjxu7fHgPgnOsX8+abLmTDm/uIdgVfVQIlGxsbGxsbUV52kdLNN9/M9773PfyEWC1tEd4udTTL1MGssEOHJ+5iwWVJIovFhTPRviCt6yPC7YHGwvLUgYylBe2pA1kO/WrQ0rEO/XqQ4w+Kv2GtqXDsnhHjjXlB1LzGwANjpA6IC64qWZX9Pz3OhAWRlqZqDNw3RnZQXKBhZZGwTtvGGD2XtlrapjhVZvDRCUvbKG6HpR/vAbovaqF9c9zSNrmhAoUJa29lJ9dH8CXdlrY5HZIbInhbXOYNa2gljdxgwdLb356oi8Wv78DfZu18ZKeM0yc+f1KHckzuE5/PAOGFQXovS1oWxcku2ZLoqv/eUTL9efEDaEbtsDSnNTjx8LglYY+arzLwwBjju8XrTeZEgf0/O05uSNylZHxPmqO3j4i7NWFcT7WoCQmBZuOJu+i+pMXSNr3bkpbu6+n+HFOHxD8/lIyPxfm15PN5NmzYQLn80goQbV79aJrGe97zHvbt3s85gdfhlM3rp+T1ojs9ZEfmRnaZEVkSomWdBcGuBLGlQUsiAyRjkVmr6JYckdBhfPe0JWeT0nSFwUcnhJ06ALKDRcZ3Tzeih0TIHM8zsdeC4ApIHcoy8qw1V8niVNl4lhZEckiWRF1gCFaT66J4IuLPA2CIGqxcT9kpITtlK0NmCI42WRMcVStzY3RFcAUUgp1e84a/I66gQqDD2nEqWdWSIytAZFGA+NKgpW1kp4Rk4dkG3RAQWXEgA0isChFeIP5dr46VOVBKVYz7xsJky48UGXxU3EUIIDdSYmxXylrtOFEwInot9G1yX8bSd0N0Q0Bk5f7UVL0R9WxFdAWGaNMTE68fvlY3retjOHxiQiVdg+xwkeJUBdnlRHaZbxedWkyXaxk3/PGf8NBDDwn3zcbG5uzC6VHY/I6lvOWfL6JzTaLx78d3jPPjv36AJ3+4vxE1bGNjY2NjY2NzMqMHU4weTCE7JFZcseBMd8fGxsbGxuYl52UVKT3xxBP8xV/8BQpONnO50DaKx+hiYaxs/AgrSHGizJE7hi1FInnjLnwt4uIHxSOz/C1dJCy8kax4ZDrOjVsSJciKjOKR0VRDCGCF3FDR8jbTR40FfSuUs6qliKfY0iCyFS2HDEuv7TTeFrbAsXtGOf6AuLALILY8aDi1WGDwsQlOPGRN2NR/7xgjz4rFT9UZeTZlaU4DxJaH8LdacCs6TRLLw/hbrLw1r3H8oXFLi2XFqTKHbx8iNywubsuNFDn0q0FLi8xguCJZqQfTR3Ic+OUJSw5csiKz4u09xFZYW/zztbgtuQ+dTmzh6dSB6aM5S+IhmOmbVXFXuNdPbJn4uMkumWXXd9FqwR3K6XXga3HjsiCQPHbPCCceEnc4Kk+rjDydAmY+78xolTpZwHJOnDjB5ZeLfZbanL187nOf49Zbb2Vt4DICjohpe8nrbbh/ZE6UqJbFV7+nDuaYeF5c4Olwy7jDzsYb5yKEuny0bbLmOuRPeiw5bdT7BlAtWStquqZbjszVKta3AWt9c4WcllyHAALtHjrPi1saazVfZeiJCYop8fNxBRTL16da1BjdkbL0jFtKVRh+etLSuKm1CDpdsyBSCjkJdos71Zwu7rCTYJc1kVJ+rGTpBQEwPtvH91pzH5o6mCUzYEFQjSEo97VaE6GP70kzaeHFCoBQT62GWECSJUvPhLoGmkVXKK2iWRaQVUua8R3MyjZlDXRjvCULX3ckh0S4129JdBTo8NK+OWbZwc7Kc1d+tMTIsylLArfsUMlw85WM8zITKkmSxArfecS8rVx11VXs379f+Fg2NjZnH+F2P6//5Ca2/eU5+GPGd3ZN1Xn2Z4f40V89wLEnR9B1KzJrGxsbGxsbm7OB3bcZLkqLzmvHF37pXzi3sbGxsbE507xsIqVisch5W85H12Ezl6FIYj8+9m5vo3ebNSec+tvLVtw5AAYfneDoHSPC7dWixtjuNCkLsVD+Di+RRX5kl/iPtckNEZZe32VJ1NO6PsKiN7aLbwAkVofp3Z60tE1saZBlb+u25FAS7PTSeV4Cd9TaW/bHHxln6rC4AwCAVtYsLfx5oi46z03gS1iLIDudO6k4VaY8bW1hwWrUGcDz/91vSeB3uuz+3jHGLUZoeKIuSwsRaLX4RuuaG8suOh1bYsQtROloqkZxwuLCtKox+NgE6SPWhGcdW+O0ro1Y2qZ9S4wlb+qwtE1ksZ/FV1nbJrY8SN91nZa26dgaZ/EbOyzdR+GFfsK94u4JWlljbM80qSPiNSRzvMC+Hx23tABYGCujqYbzmzsivuge6PCy7K09wq5nfdJqlvYu46GHHuLf//3fhY9jc3Zxxx138NnPfpbF7nNocXY3/l0OvPDekbxeJK8XV9BB+4YgTgtiXWfQjcPrRK/qVCyIRqpFjaEnJi3dY/mxEun+vCXnEH/Sgzch/gOPJEu0bYwRsiI0kaBtYxRv3NqzTev6CB6Lz0PJDVHL4pRwr5/IIrF4ozr5sRIT+6w5PAHGHLCwTaDTS2Sxtb5ZdWcBQ0BWzlh7gKhHGFohO1iw7Mh5OmSOFxh63JrYXXJIlp1J1WLVssMRGI5nlqL1QgqJFWFLLkdqoWrJeQhq8/p5a8+rzoBCYmXY0jOr7JToODduyRUIyXCHsiTWkqB1XQR/m/h3F8kh0bElZsmJS1YkAh1eXEHxMShMlJg+mrMk8hvfNW3UeAvU72t3xD0nEs6M+LIA8aXG5+F8rkqOkFGbZMnBOaFtVIoq56+5lGrVdkOxsbGZH0mSWLiljbd+8SLWXbNoVgRcgTv+19Pc/i9PkR6xI+BsbGxsbGxsDPJTRY48OgTA6tf3ntnO2NjY2NjYvEy8bCKlyy67jCoqy1iPXxJf+B/ZMWVEYAgS7PHRu73NkstIqMdnyZFjNmM7rb3FPX04x54f9FvaZmxnisHHJywJM0rpiqVIEzAW8a06pxSny2T685ai7jIDBfb9dIDCmAVBh2aMnRVHmMTKEF0XJswbzqI4Veb5HxwjfVz8x/Fwr5/V7+61tOjjibrovCAu7JwChtPM4td3WF6YfCWzYHvSkrMNGNc1sTpsaZve7UkWvq7N0jaHfj3EwP1jlrYJ9/otC/2mDmQsvwXff88oR+4YtrRNfrTE9DFriz7VskYlr1oSxpWmKhTGSpa2GX9+muMPj1tyYeq/b5Qjt1kbg/Hnpk/LVcoVUmjfbM11oXdbko6t4vUnO1xgfFeK/Jh43e46ugoFJzfeeCNPP/20pf7ZvPYZHBzkXe96F3Glg0We9U3bSt6Zz5VKrsr0QJFKXuyGlBSF6BI/8eXmz1GSMvM5GV7gtyRGqKMWq+SGrYnQR3emSFkQOeuazsTzaXIj4seRZIliqmIpwlRySKiFKppq7dkrP1K0LLYZey7FpIVYXjBcWqw+SyZWhiy7Ik3uy1iKFwVoXRshZjGCLNDhteSGAxDq8ZNYJf695ZWOJ+qifWOs4ZYmgsMlE1nktxRrrHgcdF3UgjskPheKU2UGHhwznH4sEO0LWLquaqFq2bmsnK5w4tFxS89rWkUnN1qkWrQgZtGNZy9Lwivd+N6nWjiOXtWZ2JexVEurJY0Tj1hzQK2WNMv1uo4/6Zk7f0zER+6Ik+T6iCGiEhQqZYeKpI/P7V8zVyVH2cMq5yVMlIf5+7//e6Fj2LzyufPOO/nkJz/JzTfffKa7YvMaxOlR2PzOZbz5pgvpWD0TCT7w7Bg//sSDPPWjA6hlW/RoY2NjY2NztvP8XQNoVZ3WpRESi6yte9jY2NjY2LxaeVlESp/73Od49NFHidNGt7RYaJu660lmoEDmhHgsQaY/z9E7hy25KIV7/USXWFvoWHxVBy0WnUyC3V5jxC2+jKwWNcsRX9OHc5bfrp7cn+H4g9ZEGfmREoOPWX9b3KpQoGNr3JLwDEBSZGTn6SyAapauUWG8xPBTk5bixJwBB8FOa1Eg5azK4d8OkbEQ06F4ZPqu62y4i72ULLyizfI9MXDvKCM7Upa28SbclhcZJ55PM77bmpuU1ZjEOrJTtuZ2JRsuR/6khfg2K/GKNaaP5hjbmbK0TWagQP89o5YW0HMjRY4/NG5pm/K0SsbiW/P18/e1uC3FM7pCCkvf3GVpvH0tbiKLA5YcFAYeHGPgXnFnPjQjzhFN3PVLlmQ2cjEOh4Orr76aYvH0FgJtXntUq1Xe9a53kR7PscZ/KZJ0akFC3T2p8d8OI6YoO2S+gC8pSkN0NLE3w9RBcRGQ4nEQ6PSiWIgfc4edtG2MWvpcd7jkmWNYdAMqTpUtiSX0qk7qUNaSk5Re1Zncl7EsOMqcKFCathYLVRc/iOIKOQn1+Cw54ciKdFoOR2AIOqwwfSxHdshabJk77LTkAgOQ7s8xYTHqLNjlJb78pRc2uSNOkhuilq5RKVVm+KlJNCsiGMl49rLkcFSsMrkvY0m0p2tYdkUCIzrX6rxzh5yEFlh7Drca/QhGFLCVmgAwdSBLwaIz5/SRnOWouMJ4CU21ON46IGFZiBjs8pJYZe2H9kCHF48FZ7pSqsLIs6mZeio7TMVKpWm10X72HJrPVQkg5mxnWWgDn//85/nud78r3L9XAr//+79PKPTaEV2+WGzfvp2bbrqJj3zkI2e6KzavYSKdAd7wqc1c/ufr8cWM3zKqFY1nfnKQH//VA/Q/LR4XbmNjY2NjY/Paolqp8vyd/YDtomRjY2Njc3bxkouU9u3bx9/93d/hxMU6zn9hg1MtnMmw5Kp2Os6Pv/BvTajb6VsRNQEM3D/GkdsGxTeQDfv6Ukr8B2TF52DBpUlaLPxAKysYApNuawKTtk1RSzFDYMQ6uULWFm7Ci/yEF4rHLYHhWtV3XaclByFZkQl2eS29jQ2GA1X/PdZ+7Om5vNWyS085rTK+29oCVmagwN4fDlhzrtIMAYgV1yqovV39MrydV8pac5AAI3LDirgLjPvV6nXNnCgwbSGWEYxoj0VvbLckiJo+muPwb4asuWJoEFrgtxwR1L45Ru82a65NrpBCcmPU0jbIRqyjlXsWGRJrwsLRZXUWXtlGYqX44omsQO/r2mhdI35O5bRKcaqMpolfo9ShHPt+1G/JQaE4UUYtasguea7LmsmCmSfmYsVbu08dZXeKbYNSlI0LtjI0NMQ73/lO4f7ZvLb50pe+xL333sta/6W45Rc+Q0jB4BxxEoA3qtCxIYTD3Xyx35GIN8RJDreMJBsCE7Ugfk+pxSqDj1pz5NCrOqW0ilYRP06wy0dyXcSSiCPQ4bUU9QngCiqWopbAEFBZrfsAoW6fZQeqxKqQZRdGl99hfP5Z0DBoqs7Yc9OWBFSukJOW1WFLzj4AxcmyZXHXxPNpUoetPQtUSxqVnLVnm2pZs+Rqc7roVZ1KVj3lV6n50FTd+CyzcF2rJY2hxyctj3duuGjZFSnQ4SXaZy36b+L5tGW3HsXnwJdwW6oNDpdM28aoZaGbN+6yHOno8MjWYuIAxeuwfJ97oi6S51gTugU7vbSsjVgShlXyVcpZayKq0R1TTM+KQ5Zk8+OVai/BKN5Zz0uyA0ek+Xe7yCIfLate+MKS7HIiBV44HxfI6+iI9XDD+z7A1NSUab9eKXzgAx8gHLbfyraxOVNIksSire287YsXs/ZNCxt1NDNW4PYvPsXtX3yKzKjFF3dsbGxsbGxsXvUcfmSYYrqML+amd5O13/ptbGxsbGxezbykIiVN09i2bRsAG7gYWTrpcPVf1U/+dV2DsV1pUgfE38oPdntZcnWHJbcdZ0BpCICsRKmhweCjE6QtOH+o+SqHfjvImAU3F9nloJJVLS0KKD4H0SVBawtfMrRvjlt+6zu6KGA5aqNa0SilKpbEOZqqse9Hx5ncJx5TIrtkYTeS2ehVHd1i7EpsWdCyGON08Ld76DjXmnBPLWr03z1qLVrvNBl8eIKpA9aiZMK9fpLrIy9Nh2YhKzKJlSFLTjiVvLGIJ1lcOAUsHQdg3y0DjO+xJnQrZSoUp61dV3fYSWJ5yJKIUfHIdJwbP7VoZj40iC8PWXbwquRU1JL4wq6mwtG7hhl8wpqbW/891u8JTTXGwtI4AItf30bXBSfFvjURKhUny4zvnSY3fJLYtr7NKbYNHEoSIMzPf/5zfv7zn1vqn81rj507d/I3f/M39LrXEHO2v+DvUtD43JZPWrQtZapMHy9SLc2vXpDcc58tYksDloSFYAjxJIeEbtGUpJxVLX/GpI5kGd05bU1oU7EuMPFEXZbrnTfuIr4ibGmh3+lzEDqNmLxyVrUc55sdKvL/s/fe4ZJc9Z33p0JX59w35zs5SaNRQBFJoEAyNpjg9QIOC7tetOyuX14bA2uvdxE2Nut1AIMNBvQa24CQTQYJiSSUIwozmpxumBv63tt9O3dXeP+oTjf3aUmjkaY+zzOPdLvP6ar61alTp+p8z/c39bjY5LtIOrAaEvbpEXF0UTwy/i4Pyx8rXgyCAz5h4X9+piQsjG6HckZn/nBG7FqS7LGXyy82TmkHLajiTYiNjy3TEu4bQNzFKzdVbd8iYq2ySTmjC+9foM8n7AAa6PES2yL2jKUFVYL9PqE4GCXDTusrUMfuG+aFXK+K82UWBVMO1+LsiWp1EWMrQiV32EXvpSvFZJJn7XOQny2xOL5ykZOcsJ+7lguVJElii3Eluqlzyy23bLhPDg4ODs24PCqX/bvtvPUTV9Ozs5FS/PQTM9zxez/niX9zUsA5ODg4OIjx3HPP8Zd/+Ze85z3v4aabbuJtb3sb//N//k/GxsaEf+vP//zPefWrX82HPvShVb+/7777+A//4T9www038La3vY0vfvGL6LrYghaHBpZl8eydJwHYeeOQWHYGBwcHBweHlzkv6hvqW265hYmJCQbZQlCKNL5Yb8lvNR2a6ERUZqzAxINJoTRviZ0hopuCHPz6qZZFStEtQVx+hZlfpFrfueoxiU6K63mDk/cIpAuq1nnu9tNiqaBMOPRv40LbATh5zzSyYAvKnSkKnSOgrRR58e0hui6M8Ow/nxSqO/YzsXR3AJ0XRlg8lSc/XWq5ztBrOrEshByBvFGN0KBPLL2eDC6fKuxW1A41px2RiVBvh5tAl8dOc9UiwT4v/dd0cPS7ky0fl6zaQjy9ZLTuhmPC8R+caXm/avRfncDf7eHQHeLXlEhbnz8o1keC3U/u/8opoWtCz5sc/sa4kIsQwKF/HRO+bsfvS4pVgMZ1J9hPeDs0EjvCjN3b+jXfeVGU8JCf9Olcy9uafHSeSq4p9UiN2v+bK19ATz+RqpZh9e2sUncf1/KI54f89m//NidOnHDSeZynlEol3v3ud6PpfraELl7yXU2ctCqSLRJZK83bcnGSHAljptLMH8miCLxAkWSI7wiRGcsLCb2jWwJkJgpiaTir6pf69dci+dkSzLZ+PwdYPJ1ncUxsAj57pkhhriw00V/JG0w8MCsskhAVB9SVQ4J0XRQlN1UUEuiUFiuUnhVLx+oOuYhtC5KbaX08qXoVOi+MMPtsWmhM5Eu4wbSEXL9kVcKy2ktdJoQEikvGqJitny8L/N0eylld6NqI7whh6iYLAgtIfB0ePDGNQrL160nUEQnsNF19VyWYP5ghNy1YX7Ctzx8WH3sln00JX7OZsbzwdZufKdn9l8DxVPKG0CIQsNt1vS8WjF+w30slb1Ccb+2ZWFIkErtCpE/myE7Z12BNqGSZq2+4lK4we2CxvshHCTUERjWhklVc2ibLGQNY/5hqQiUra18DHtnPruCVfOUrX+Gyyy7jv//3/97SMZ0rGIbB7OwsyWRyzUmlvXv3nt2dcnA4z4j2BXjDRy/j+ENTPPxPz5FfKGFUTJ644yhH7p3gyt/YycBFnS/1bjo4ODg4vAz4l3/5F5555hmuv/56Nm3axNzcHN/4xjd473vfy2c/+1lGR0db+p2DBw/ygx/8AE1bffH7Qw89xEc/+lH27t3Lf/tv/43jx4/zj//4jywsLPDBD37whTyk84bpwynmTi6iuGS2Xz/wUu+Og4ODg4PDWeVFEyk9++yz/P3f/z0efGyVLmx8sUFOgk2v7yU/W+TMI/Mtb0tWbZcLkRfnAGcemWf+cEbIRckb14TTog1c04nqVThxZ+uCh2CfF8UjkzrW+kSPrMogI5wODNqoU508F4mdFlJxh1xkVlmpuh473j7I/KFFISFL+mSWSq4iJFpQPTKmKR6Lg7ePCXuSZSbFYgCQPLAo7LYT7PEyfEM3R747QXHuxXVTGnptN0bF4OQPWxfWTT3a+nVeo5SpkD6ZwxJI16UXTfb/8wkxx7QqWkilvNh6xbmDi6RPiTkoyJrMjrcNcOaxeaEJMC2g4olpQpP9mAgLekQFSvXtYDvWiUwIayGV8HCA2adTLdcJj/rpe1Wcw98Yb1kkp3oUfJ1uof2benyBmadSQrGrizJlVo+7rKwqVPLENEZu7ObUj6ftScfVaKqrSRoXd1/J/Sd/zFvf+lbuueee1nfS4RXDJz7xCQ4cOMCl/jchSw1R3HoCJS2gEN/iY+ZADqO0snEvFyjZH9r/MYomhsAFYZkw/eQiRrH1+5HilvFENSHxgqLJdF8aI7k/LSQuCfR5KcyWhFJUKZpsl29DjyKaCgsJYbGDJ6pRyelC2/J3eYiMBph4MCl0XHMHF1dtQ+uhuGXhOvmZEoXkrNC+WYZlpx8T3Nb0k+KpnOI7QlgmJAXcU9tBC6h074tx5rF5IcHR5ENi7oNgO+GYgqKr1IksHBfeFJIiIUmtu2tZhkVy/yLlRbF0YqFBH/5uj9AzJ4A74kLPGy1fU/VrVkDQI+IstnRjVZGcoCOVN+HGKBlC7r2dF0QoZ3VSx1t//vZENSSp0rJIyTIsph5fwKisfH8gydKaQqVCslwts/rvSh73CqESQHjYi8urkHxu7WOSAoG6UKlLHmW4a4L//b//N+9617tIJBJr1jtXME2TL3/5y9xxxx1kMus/c/z0pz89Ozvl4HAeI0kSm67oYWBvB0/+21GevfMklmGRmSlw1ycfZ+jiTi5/zw6CHb6XelcdHBwcHM5h3vGOd/BHf/RHuFwNF+DXvOY1/NZv/Rb//M//zB/+4R9u+BuWZfHXf/3X3HzzzTzxxBOrlvnMZz7Dpk2b+Iu/+AtU1Z4f8/l8/NM//RNve9vbGBoaemEO6Dxif9VFadNVvXhCYim/HRwcHBwcXu68aP6Bb3rTm7Asi4u4pvHhBgIlgMx4nvxM6ytuVZ/C9rcPEtkkloKnlo5JZPIK7Bf7IiIMgMVTOdInxQRUkU0BOnZHhOp07A6x/W0DQu5GWkBlx68NCqXJA9jy5j56LxdLPRbdEmTw2k7hVjf7bIrMhJiop7yoCwm8ADr3Rtn2ln6hOnUEJw3nD2bacsIRpTBX4vTPZyinX3wnpakn5m0Bx4tMeVFn8qE59LxY0NsRKHVdHGXLL/UJ1Skky2TGxNqrWTaZPZAmL+A2ANBxYZi+K8QmRNwRF7t+bUg4NdHo63vovULsmu+9Ms6mN6xMN7UegR4vHbvDdWeuVshNFVg4lkVAt0ZmrMChO8aFBFRm2bTdA2SE9g8Ztr6lf+3UhrKyIo1bMVUme6awcfq7pnreUzFCRPnRj37Ej3/849b3z+EVwaFDh/iTP/kTBtVdhNTGtbqugxJgVCwKC5UV4g3Jra0uUAJCvRpde8OrfrcWsksCyRbmiEyeGyWTM4/MC02eW6ZFdrwgVEfRZCIjflyC6Tq7L44SGhSbOIpuDhDfIZgmL6rRd0VCONVbfGdIeIxXXrTFwKLCq1Kqgl4Qc7vqfVWcQK/Y/QjExVpG2SR9ModZaSOXmCDpEzkWBcXK7VDJG8w8kxJOT9gOuemikCMS0JZwD6Dv8jiBHrE2UUiKiQsBigviKcgkWaLzgohwGrvIpgCdF0SE6rgjLvquiNdTnbW0f4pE7+UJfF1i13x42C98TLnpIoV5sTYx+0xa2HWu1qes1vdJsrRmCjhfh5vey2JrprKTPO4VKeBKizqF+Y3fDdRclSRJYrh4KZlUjt/7vd/bsN65wN///d/zxS9+EUVReP3rX8+73vUufuM3fmPVfw4ODmcPzavyqn+/nbf+6VV072ikgDv1+Ax3/L8/58lvHHVSwDk4ODg4rMmePXuWCJQABgYGGB4e5tSpUy39xl133cWJEyd43/vet+r3J0+e5OTJk/zSL/1SXaAE8Ja3vAXLshyBextk5wqcfNSeZ9z1Okfg5eDg4OBw/vGiOCl9/OMf59SpU/Qygl8KtiROqiEqcjDLBgtHs2QFRCz+Hg8jN3Zz4u4podRj4RE/6RPikw4iaS9qjN07iyw4EbVwPEs5ZwiJMSzslAIFQZedhcMZSmkxgdf04wukjmWFBT3J/WLuQbIm031RlORzaWEHnKygw1Fkk5/4thDH7jwjdFzBfi+5mZKQa9PAqzuQZInTP209RZxeNEkff/EnygDxNH7Ycei9IsGx700IiY68HRpmRSz9SseeMP5ONyd/1Hr8Fo5mKAim/QE7lWSlYAj1F0IpJKtMP7nAmUfFXB5KqQpzRzKUsmLXb2aiQFmwzsLhDFlB57T5IxlSx8Qc7vS8KeyEUEMLqShuWSgd55Zf6qOS01tPx2naTn+5jVJCNqdxM2k9FV1Tvb1cxUOuH/Kud72LkydPrmnR7PDKwrIsfud3fgdFdzMa2gtsLE6qYZRMUicb/fdawqRmiimdiiHW58e2BJBkidlnW7+nuwIqZtkUFh+YuiXsaGeUTSYemFvTmWMt5g5mhEUixVRFSHgAoBcNMmN54VicEUkRW6WSN6jkxfpub1xDUiShhQZgixYqeTEVcXxniOJcWSi1l+pVkCT72FpF8ch0XhBh7sCikKNgW+6DbWAZVsuONM3Et4cwygYpgfGhpEhoAVVo7C/JEondYRZP54TGa8kDi8JtQvHIBLq99nXf4iVczuhCQkawBZBnHpkXvuYLcyXKGbExVCVnkJ0q1p3rWto/w2L+0KL4M9qTC8LpCYVT6zXhiWlCbdcddtG5J8TUkykquZWxXy0FXCldITNRwDSVFeWX1G1KAVdsQaBUr1cVKrmzsCNwGbfddhs333wzv/Zrv9byb7wU3HXXXQwMDPC5z30On89xZnFwONeI9gd54/+4jGMPnOHhfz5IIWWngHv860c4cu8EV/zmTgYu7Hipd9PBwcHB4WWAZVksLCwwPDy8Ydl8Ps/f/d3f8a53vYt4fPUFqocPHwZg27ZtSz5PJBJ0dHRw5MiRdbeRTCaZm2u8n2hVPPVK5rm7T2OZFj07Y8QHxRayOTg4ODg4vBJ4wUVKqVSKP/7jP0bFxXYualmg1H1JDElGeKLZ1OGMYMqo3HSRqcfnhUQVoUEfg6/u5Fh+kvxGE801ZBh8dSfTv1gQejmvemT0oimcdqy8qFNeFHPnqWR1xu9PCtUBhNOO1RB1ropuCVDO6kLnyh1WiYwGWDguFotSqiK8f5ZhTxyKCJS0kMrwa7s5fe+MkIilkCzBGquF18IT0wgN+Jh5JiUsDhMlOODF5VOZP9R63Cs5g9xkQXjfBq/rIjdZEGq7RtlEF0zzUk7rbblQhUcClNJlofOremSiW4IsHMm0nLJM1E2qRjtp9kTSr9UoJMsUEJxANcE0qTvCiYiVuvZFKGd0odSfQ9d1opctoXSc008uCE9Czz7bnnOav8tD9yUxTtw9vXEsZAXN9HDR8KU8fOR+fvd3f5e//du/bWu7Di8vvvzlL/PTn/6UiwOvQ5HUlgRKkgKdFydYODBPpSDYN+ZMwAO0LkhJn8wju8TE19FNASzTYvaZ1tNm+TrdyKosJDqWZAnLsoQFSmC7sYgi7EiD7SYi6kAC4mmjZJeMN66Rny0JiRY8MTeKJihSstqLn1kxMXWxNhvs9+EOqUw9LiDsNe37mCHovuTrdGMUTUqC6cdEkWTwd3spzJcwWhw3AJQWK8Lx80Q1OnaFGb9/tvU0bKZlO1cJXlbttAlFUwj0eslNFYUERO6QC9klCS3WaMe5SvT5Aux23s7imDVTxK5D7VqXVUmoz1B9CsE+HwtHWh/j2IKjCFNPLrScoq+0WGH+SFZIZGiUTXLp9QVKaxEe8mL5gmRnN96eFAjQk9nKTOwEH/3oR3nrW996TgvEC4UCN954oyNQcnA4h5Ekic1X9TJ4UQdP/OtR9t91Csu0WJzOc9efPcbQpV1c/q4dBDvEnSgdHBwcHM4f7r77bmZnZ/nt3/7tDcvedtttuN1u3vGOd6xZpiYwWk3EFI/HlwiQVuPb3/42t91224rPT5w4gWG88t0Cs9ksBw4cqP9tVEz23z0BQGiXsuS7VwLLj/d84Hw75vPteOH8O+bz7Xjh/DvmF/N4d+7c2VK5F1yk9Ou//uvous4l/muRCwqyCt4OD4W5MmbZRAuoqH6lLvTxdmgYZdO2a1dsl6NaWVdARfOr9ZWanriGZVTdU2QYvbmH3HSB6SdSqD4Fd9hVF7N4YtqSyQ9/j4fSQhm9aKJqMoWm1ZueqAYS9RWd/h4PpXQZPW+iemTcUY3F03mOfn8Cs2LhiWsU55rLVtDzBrJmT+zkpotg2sKmQJ+37g7l7/JQzulUsnq9bGG2iKk3uXnMldn61gHSp7LMPmM7AcmqjLdDozBbxtRNtJCK6l0aw8hoAD1vMPdcekm8l8fQm9AwKibltI4WUunYE2b6yQX7WJfHsDneTTGMjAYoZSuYFau1eHtkYttDBHq8nPzRNJpfXSXedgxr8a7FsOuiKKVUmRPV7awWw1pZLayiaLYjyoGvnMLX5UYLqJTXiLfqVuov8v09bmJbgkz/IoWe1+0Y1uK9WpstmZQXddKnc+gl+9xvFG9ke/9L6TJHvjuBaVj4ezwbxlsvmqg+mcJCeWm8Wb/N5s4U8Xe66d4XZXEyT3F24zarhVWUpknkdeO9zIEmsSeMVhUprdpmm+Lt63CjlwyKC2UmH07i7fBgbtBHNMdw7N5Zyunyhn2Ev6sRw8Wx/JIJw43abC2GiV0hkCE7Udww3mCn55h4KNlSH1GLdyFZRnbL9LwqjlEymD+cXbuPqMbb1+VGLxhERgJ44hpzzy2u20fU2qysgr/Xiy/uZuFIFgs2bLO1/iQ86scb15iqujdt1GbdYfvcde+NMPVUCoyN413b301v6GXqiQWSz6TX7SPcEReyKlFIlvF1ePBGTbJnihv2EbUYnnl8nvx0ecM+otZmy4s62ck83g4Psipv2EfUY7hgoHplBl/dwewzKdInbQGFN65h6Mv6iHpc7P1AllC9KrImYxkmpZS+ZrxzZ4oEj/fjVXx87nOf42Mf+xixWCNlgMMrj1wux4c//GF6vKN0xLYDoGgSkgx60Z5sdvkkjLKFqdviJJdbwjCwHToUCZdXRjfValkZo2JhViwkGVxemUrBTtGmBWSiQx6ShwsYFQtXQMEsW9VxHLj8KpWcjmWC4paRVanheiE1JvdlTUV12642lmGhaDKKJtfFfy6fgmlazD6bRtYktKBaLyu7ZFSPXHdAUX0KmNXfluxrFSA7WUB2SagepVHWa09Y19IHaUEVvWDg7/YQGvQz+2yq7sC4atmigVmxkFUJV0Al0O0hfbIqHJKx00FWyxol2wFKUiRcPsU+NgsCfR7MilUX8zS7RdXKLo2hjGmYeCIalZyOUTYxSva42eVXqOQMLNOOoazJ9RSWLr9CeCRAIVkiN11EC6gbxtsomvWx4djPZzE2indTDBeOZJBd9rlaN95NMQz0eNBLJvmZkl1WWhpDvWhiVkxkVUL1NmK4OJZHbhJtawHVjssq8a61w/TJLLIqL413PYZL413J2fsvu2QyE/lqvKvtuymGy+Nt6hZGySQ06Ecv6JQP6mvG22pqs1pArRvirYj3Gm3W1C1kTSaxM8T0kwsUiuUN46167WshO1lA9SioPmXVeK+IoUfGKBlMPjKHqVurxnut635xLF9fdLGizS6Lt8uvYuomkiTh73ZTmCu31GaRAMti8uG5lvoILdCIYaDfizvkolB9ob5uvKsx1IsG8e0hclNFyll9/XhXY6h6FFwhFQnIz5TW7SMUj4ys2DGUFInQkI/8dLH+92p9xPIY+hJuLAvKmcq6fUStzSLZC0N8HR4m7k9uGO9afyJJEt6ERnFBo5Asr9tHmLqF7JJsN6rH5qjkjJbabKUAWLZQSfUub7Orx1vWJGRZwgQCXRpaSCF1smjf1xRweRXKOcOOtybZbRb73qEqOopLQpdsIaDLI1EpWFgWKC5byFUpVO+t3qqoKxhkS+U67jv+L3zqU5/igx/8IOcqo6OjG04gOTg4nBtoPheXv3sHW6/t54Hb9jN10H4GP/XoNONPzXLRr2xmzxuHUVzrCzINy+SJ7HGSlUUSrhD7AqMoktjCAQcHBweHlxenTp3iL//yL9m1axeve93r1i07NjbGHXfcwR/90R+tK7Yvl+3x/mplNE0jn19/UdWb3/xmrrrqqiX7eOuttzIyMrLCnemVyIEDB5ZM2B78yRh6YYxAh5erfvniJe84XgksP97zgfPtmM+344Xz75jPt+OF8++Yz4XjfUGfTPfv388PfvADhvtH2L1vBwBaWGP0xm58CXsAE98RYuj6znqdgas66Nob5cyj8yQPLDJ6Uw+Bbg8Asa0Bhm/oaiqboHtfFLBdR2JbgnirYo3opgAjN3bXy/ZdkaDnUntiVlZh9KYeQsN+hl7TyeB1nYze1FM/+p7LYvRe3lCBj97UQ2TUdiEIDvgYvakH1WNPbPdcHKP/ykS97PBru4lvrZbt9TJ6Uw9awJ7oiwwHqOT0+qT80Gs6ie+wrRv9HW67bMje/84LIgxea8dl+ol5IkN+EjvDAHjiLkZv6sETt3MLJ3aG62UBBq/tJLY5iDusoYU0Rm/qwd/pbsT7NY0Y9l/dQfdFdlzCI376r+og2OerxjvI8GsbMey/MkHPxbF6vEdv6iE44COxO0zX3qgdwyq9l8fpuaw6ES7XYmjb4IeG/fRcFseyLMyySfelUfquaMRw5MZuopvssoE+bz3eYLsN1F5gAwzf0EVsa7Vst2dJvLv2Rhm4umF9PXR9F/Gddrx9CTve7ogd7449YQau61xSNrE7gsuv4o7aMfR22GUTu8IMXdfUDq/ppGuv3Q791X3wd9nxjm0LMvzapnhf1UF3NYYun2qX7fZSnCsTHvQzckNTm728qc1qdrxDg37Abkub39CIS89lcXouW9Zmh6vxHvQzelMPsiYzdzDD4nie/lc1xfuGbmJbqm22Gm+Xz45h974Y/Vc1xfC1XcS22WX9XdUYhlyNeF/TiKEnqJEZqwovOuwYeqLVNrs7zGDzdX9dJ517IvY+DPkZvbkHX6KpzV7fFO+rO+rx1gJ2DFW37Ta2UR8xelMPgT57hWF0U4CRm7vrDj1r9REA4WF/vY+IbArQc3FrfQQg1Ed0XxSjv9pmy2kdPa+jhe12t14fAfZ1n9gZxtRNFJe0YR/ReUE1hiGN4dd0031xDH+PZ90+Qqu22WCvHcPeS2MMXN343bX6CIDIaNCOoWXfBwau7li3jxi9qQdZtWPYdVEUy7TIVF1D1usjuvdF6/E+cdcU/m6vUB8R7PPVJ/TW6yMGr+sksdvuk91RjU1v6GHb2/rQwuq6fYQ75Kr3yXrBxBvTlpyb/qvidF8UAexJwNEbOvH3VNvslhB9V3Rw7HtTlDM6fZfH6LmkqY+4oZPQoF02Muxn9IbG7950xRsxDIM3v/nNOLyy+fM//3OmJqd49VU3IVVvl+EelWi/q16mc4uGL2p/qflkOre5wbRIHq0QHIkQ295wXurY5sWfqAqW/AqdO30oLvtlSahXI9Dtwqy6bnRe3EWgxx6zuXwqXXsj9gQ1EOjxkNgZwuVT6LwwTMeeEMFqf6y4FbovSdiiZex7accFkfo+xLaHCA34bXcP07431e49/k43nRdGG2W3BgkP2/2OrEj4Ep56akVvwk33voZIL7o5QGTU7ueR7N/1xDQKc2WKCyW6L7JdPQEiI36imwP1ul37onir9yl32EXPJTHcYReWZREe9hHb2ohh54VRfNVxmDvkontfDKWawrfzgihdFzX2v3NPGH913Ovyq3ZZjx3DYJ+PxM4Q7pCL6OYAiV1hAtX+WPUqdO+L4arFu9dLR7WPAojvCOONaVimheqxy9b6Qn+Xh44Lm+K9LUS4Ot6oZHTMilUfF/g63PX+DCC2JUh4xC4rKZJ9bqr9pje+LN6bAkSqfXct3t6YHRdPVKP7kjiBan8XHvYT29yIYddF0brgTKvGUFZlJFkiMhogtq1hhd55YaQeby1YjaHbjndowEd8RxizYqEXDDr3hOvbdPntuNTGmYFery1MrtKxJ1RvL7UY1uLt7/HQuacp3ttDhKr3v9lnU/gSHrRgNYadbjr3Lo13aKjaZlXZ/t3qteBLaEvaR7Q53rIdb0/UjrcnbKe+rS28iIwG6vdKqMY7Xm2HEa0aQwnZJRHbFqyPBcG+P65os1XRenjQT3RLsC4k6bgggr/LbrNaoBbvapvtt+PdiGGY0KB9rC5fNd5rtNnEzhDBfh+KRyY05Kfn0viGfQSAoslCfURzmy2ly6juxnPGWn0E2OL27n0xLMPCqi5GWa+P6N4XQ1bsvjM87KPzgkh9XL9eHxEa8BPfHqqec+i/IkFkxN7OWn1EPd677T5C9an1fVivj6i1WdWjEB70kztTAGn9PkJxVeMddlHJ6SyeypNoOuet9BE1EdvGfUQCqRbDIT89l0aJbq7FMFx/dtBC9v2nlkYzMuwncWGi/ruRIQ++hN0+NL9C5y4/imaXDfa6iW1quJF0XBDF9ATJzhi4PBKd29yobrusv0MlPtKYlImNaAQ6qs/9wQ62D1/ARz78UcbGxjhXec973sPPf/5zDh069FLvioODQ4vEBoO88Q9fxbXvvwBv9V2BUTZ57PbD/OuH7mP86bVThN+z8DSvf+ZjvPfwZ/iDE//Eew9/htc/8zHuWXj6bO2+g4ODg8NZZm5ujg996EP4/X4+9rGPoSjri1n/5m/+ht27d3PdddetW64mTqqJlZopl8u43e516ycSCbZt21b/NzQ0tP6BvIKxLIv9d54EYOdNQ684gZKDg4ODg0OrSJZliee2WINdu3Zx4MABrov8Eh7db690lMEb0yilypg6qD4Z1aPWHUmC/V4CPR7OPGGn8vBGFEopHVO33TVUv1p3JNHCKhjUV3V6ExqlRR2zbJd1BdT6Kk4tZL8wrK2Ir5XtuTRKaVEnd6awbtlKVkcvmsiazKbXdVNM64z9bMYuK1FPAbW8rDukUpgvo/lUVJ+MUW64jHjiGnpBR8+byKqMO2KXxbRX0isuuS5o8sQ09KJhu6+o9uRCI4YKqkepx9ATtZ1PKlm9Kd7VGPpkVG8jhu6IC0u37Bguc0lZEcOwCtbKGNpuNzKKZ+N4m+WmuLQY7yVlAyoojXh74hp6rlp2lRjKqsTANR1kJvKkT+bRi7V42zGslVV9CqpbacQ7qqGXjJbarDviwtQtKlmd7e8YoJQqc+rHsy3F2xvT0IIuAr0eph9faDneqkdm+zsGmDuY4cwj82IxbLHNYtrxllSJLb/Ux/RTKTITecE2uzTeS9rsKvE2dYtd/26I2f0pZn6xsGG8azH0RDU8EY3ZZ1It9xHeDo2tv9zPyR9Nkz6Re/HabEjFFVAZuKqDiYeS6AVjw3i/FH1EbZ9aabP16z5UdSJqsc220ie/GH2Ey6eQGSus2UfU411ts56Im8HrOhi/b5bF8UJLfYSvQ6P7ohhnHp+nktPXbbO+Dh+ldBmjbK0SbxVLpxHvqEYp04ihO+6lMKfjDdspFecPZevuEN740rIuv1pPWaOFVI5GH+PYqaM89thj7N27F4dXHuPj42zdupUebRc7u66pOycpLkCy3ZMAVI+EWbEwDXvSO9ilUEiZlCU3igpSKoVeqpWVMXULU7edlJSqKBQLZJeELNNUVkKfS9ddl1SP7TJimdWyqu0IEhzwkj6Vw9LtSRXL0HF5FfSiiWXa7hqyS647ZHgiGh17wkw9uUAlVy1bMm2XFFVC1hplFY8Mpv27roAKprWkrKLJ9RRBNeGKUU396fI1fldSJFT3+mWNsmnHZXlZTQaZesot1adg1srKEqpHplKouXZUnWaqdVWvgqmbS2LYXFZSJPSCUT0XtvOJWTFXibf9uzUhiepVsAzb5QqJdeOtehQsc1nZtWLokcFaGhfVpxIZ9TP7dApJltqLoVsGqRHDVcsWDHwJNx17Ikw+PFd3j9ko3pIs4e+uOvIVjTXjvTyGoSEf0U1BTv14uimGS9t3Pd6rxbAW73XabO1YvR1uQv0+Jh+ea7nNttK+V4t3ZNSPv9vL1BPzG8a7uR0GerzkZ4uYht0G7RiuEm+lEcPE7jAun8qZR+Ze9Dbr6/KgBVTmnlvcMN4vRR8hqY00va202ZoTkSugYpSMDfuIRn9y9vsILaBSzhmYFXPVPmK1eMe3h5AUWDia3TCGkmq7ifq63MiSRPpUfsM2q0SC9r3KsJ0szcp69zWpnhJa9ciYnZ2YJoS0AqW8STln2WVVW+hWvwe6Jft60LEdvbx5fnT8/+Pf//tf50tf+hLnKj/+8Y/567/+a6666io2bdqE3+9ftdxGq+5fKdxzzz3cc889ZLNZnn76aT7/+c+3tJr/XFhx6HD+Uc5XePyOIxy46xTNb3KHL+vi8nfvIBBviC7vWXia//f4bSuyrtamQf/P6G9yQ/SCF32fX24417aDg8PLmWw2y3/7b/+N6elpPv3pTzM8PLxu+ccff5zf/d3f5dZbb2XLli31z//Lf/kvDAwM8KEPfYhQKITf7+eHP/wht956K3/3d3+3op/81V/9VXbs2MGtt97a8r4eOnSI973vfS2PvV7uNN9fJvfP8f2PP4LqVvh3n74et9+1Qe2XH+fj/fR8O+bz7Xjh/Dvm8+144fw75nPheF+wdG8//vGPOXDgAAm5D3XRg041vYdJfTIZ7Jezer7xtzvqIjIaYPoXaUx9WdmiiV5s/F2bhNZCKoEeL/OHMmuXrU5u16j97sT9K+3N1yoLYJZN5g5nsIzWytb+7toXxd/t4eDtjZWUtUlpAFM3l9StZHUsj8zAqzuYemKhPtltl10eQ6P+0hjANMy6df9G8a5NztfK1tIrwdrxXu1Yy1kTshvHu3aszS9QWo9hBG/czcm7p+vfbxRDgMxkgeJ8RSiGNSGCXbj1GE48mKSStye8Nipb+11/pwdfh0co3nrR5PhdU/WJhVZjmNgZItDv5eQPpzcsCw1xTz0uG8S76ejwdbgJj8Q5cecZoXifuHuK4nzJfsFPazEM9fvwdYrFsDBb5tRPpslN225PrcawnbLlRZ3smQKVvLE0hhvE2xvTSOzq4Mg3JzaMd3P7llW5OlFj//1Cte/lZZfHYaM223xuMKGc11ctu1a8E7tCYEHywOLaZZfFMDzgo2NPhANfO72ibGV5+67GMK+XSJ3MkU/aYibYOIb56TLH75xqHO96MZxbGm/VYxHd7GfhaK6eum3VskUTc87+PjzkI9DrZeqxVP375WWX3wM789s5Yh7mN37jN3jqqadweOVx66234vf7GRq6EX22UP/cqABNUxI18RKAZdmCcNOAchYMHSg1lzUbZU3QC/bf3phKJWfUJ2drv2tWrHrZSvPYpGJhVuy/555rjNeo7tpaZQEqeZ3MRN4WoSwvq1uYeuPvmshCViW690WZP5KhUh3brChbahybvR0Df48Hy7DTrzVvZ7WyzUE09UYcauKHelyaylqmtfR3yyZGU3dSu6/bZVlRtvm79craopHmXbTqjlcbxbsmhgDbnS51PFcvv1a8a1TyBkh2yk192XfrxdAyrJbj3Vy2lK4w89RCXaAEG8cbwBNx1dPMNsquH8PsRIHiQvUDgRh27ImQncgLxdBT/aiVNlvfB90itj1AfrpIfrbUcgwzEwVy06Ul+7HuuanFMKZRWqxQTpYaZdeId430iSyyIlfLrh/v5vYtEu9a2VK6UhetbNhma79bjWFxrkT2TFGozcqKtOTvDWPYfN230Gbrv9s0dlmvj4CVfYRZdX2C1uKtuGVCA35SJ3JL9nG1eNcwdYv4jhDZqSLpE7kN4107N4X5Epa5tI1v1EdkThdaK1s2sZbd13xxF8W0XnVVa2zTrFiYLLsHVgW9gS4VY1ynbNWuZZb0/c33Qywg72Oo62r++Z//mT/+4z8+J1eHl8tlHnjgAdLpNN/73vcAkKSlK7cty0KSpPNGpHTDDTdwww031CfKHBzOZTSfiyves9NOAfelA0wftlPAnXxkmvGnklz0lk3sfsMIKPDnY99YIVACu7uSgD8f+ybXR3Y7qd8cHBwcXiGUSiX+4A/+gLGxMf7v//2/GwqUAGZmZgD4H//jf6z4bnZ2lne+8538l//yX3jHO95RFzEdOnRoyYRmMplkdnbWcXIXoOaitOWavlekQMnBwcHBwaFVXjCR0n/6T/8JgN2uK1gyk74ByWezzB/M1ifXkRUwjXXrhIcDdOwOkzqWq4tDNkL1yEQ2B5k/mG5sq0XmD2Y2LrSMM4/M4Y6uncd3NbxxN4EeL5a5Uki1HqM395CbLjJ279o2z8uJbQ3ScUGYI9+cbDmGAJve2EtupsjUo/Mt1wn2ehl+bTfHvj9Jfra0cYUqlayB4hI8WcD04wvCdfqv7kBSJMZ+NiNUr5beTITkgcUlootWyU+3HrsaRsVcMeHyYmHqJkZx/Wt3NbKT4jGc/kWK6V+khOuljuWE6wQHvPRenuDItyYwy63Hcvy+pPC2KjmD4nwZWUWonxq+qRujaHLih1MbF66ihe1UbmP3zS4RK25E96Ux/J0ejn1vsuU67oiLrb/cz+l7Z0ifaP0c+Lo8WPpqr1bXZu7wItkzRaFzZZZNJh8Q63dr+Hs8qB5lzeOS1MZtVqra98a3hQj0eFg4un4sZE/DKnnmQJ6pp9fP774cnxwkKnXxzDPP8L3vfY83vvGNQvUdzm1OnjzJF7/4RYa7r0NVPECLfakFU6dllmT8jUdhbp17pwThfo18Umdxcqm1txwJY6bSq1bzxjT0skEla98bLL21js0om6SOi/XXpm4x/eTC0on3FnCHXHWRUqt4427iO0NMPji3QiSwHl0XRcnPFsmMt37fc0dcxLYGmflFSmhbtVRes8+sfm5WQ1IkSosVjIrYuKGS00kdzwrVUTSZzgsjzB1crLvDtYJRNpcINFulnTGDqVuUFwUeamr1ykZdGPJiY5bNhhitRYxSe2PDqcdaH/vXsNN6iY8N49tD6CVDaMzQLN4WoZLTha4tsPuNrouitptitvX2Gx724wqoJJ9t/bqUVYmufVEWjmaFjjG2LYgWUJkSfC7yJtzkpoorRODrMbt/cYlwsBVE+tzavUNSVaSqE3BuurjmdSaHGynwUBRkBaIjHhZOFMknN7im++xU3JYJZ8ZcWJYLidb7t4Guyzk19RAf+tCH+OpXv9pyvbPFpz/9ae6++242bdrEtddeSzwe3zAFiIODw9nhH6d/ypenf9Z6hbeCXjIo53UaBvk/QX5QQvJJLK7zbGAB05UUr3nqf6LJL9hrYd7ddS3v6bruBfs9BwcHB4fWMAyDP/7jP2b//v38yZ/8Cbt37161XDKZJJfL0dfXh6qq7Nu3j49//OMryn3yk5+ku7ubd7/73YyOjgIwMjLC4OAg3/nOd3jzm99cH0N+85vfRJIkrr322hfvAF9BZGbynHrCnn/aefO5t6jBwcHBwcHhbPKCPI3efffdHD16lE55AE32gBvM0gYvHiUZT8xFcb4iLBqafTrFwtFFIXFNcMBH90VRUsczQvV6r4iT3J9e4SCyEXrRRBeY+Ad7ZfNzXzstVAdg7L5Z4ZfrpUyFzHhBKBYA2TP5xqryFslNlTj9sxkhgRLA/GFxcZgWUlG9irCgpzhfQlLE8v9qIZXIaIDkgUUhQUQ7yJpM974ocwcXl7q0bMDCkSwLR8QmDtsldSzXlgio44II5cUK6ZPidUUJj/iRVUkoJpWsQe5MAVmum+y0hOpT8EY1MhOtT0ZnJwttibYmH55busq9BcoZfVXXgI0ozJawDMH+JlVh/IFZoVgAnP6xmGgQas5QYn1vjcSeMKVUWUh82LEzhOpVhSZSp55MYT4qFsPafVKLeTF10BfX30dZs1fi7A1ewX2F7/H7v//7jkjpFcbHP/5xotEoA52XAWB0R1Gm1p+MloIekMAS1f9aMP2smEgOIDTopZzVWTiaa1mg5IlqKJpMblr8OhYRu9RoduVsleJCmeSzaeGxVyFZEpr4B9v9pDBXFt7WwtEsogvjLcNqa8zgDruo5PW6q1arFObFj8vX4caomEJjoXbxxjVkl0xuSqwtzrWxuKFd2hkrqz4Ff6eH9Kkcq1osvIDIqoS/y2M7PQmc63JGXCwHdgpYUYG+yP27RilTYfqpBfS82PVczooLokzdEo4fQGY8v8IhZyOMksnkQ+Ki7XbEfGCnkfN3e1p+BrB0HcWvEdnkRy8aLT+TmgacebqwxAWppe1ViysdAfQySOn1+0ejJ4YK7N52FXfccQeHDh0651JX/PSnP2Xbtm185jOfQVVfOGGCg4PD8ydnFJmptC5iBew1B4H2t5kycu1oidckZ7T3HO7g4ODg8Pz427/9W+6//36uvPJKMpkMP/zhD5d8f9NNNwHwuc99jjvvvJOvfe1r9PT00NXVRVdX14rf+9SnPkU0GuWaa65Z8vn73/9+PvzhD/PBD36Q1772tRw/fpxvfOMbvOlNb2rJuckB9v/wFFjQtydBtO953MQdHBwcHBxeAbwgb6ZuueUWAHa6XtVaBUlG9chsen03s8+kmXm6dVcZWZMxyyZ6XnCy5kiWzFh+RSqK9dDCKpFhP5nTeSGRUv9VCcpZnZmnUi3XkVVAltsSu4i4oDTXaafe9BMp4TqmbgoLUGRNxh1WKcyKrYpO7AwTHvbz3FfFxF7tOBt5424690SYP7goJF4ZubmbSs5g/L7Wna9Uj0x4yE9mLC80MSerMsi86CIqe2OgarLQNQZ2Gqv8TEmojfg63Ay9tstOFSfgqBAd9SO5FKFJ2OJCuS1XpMSuMPEtQfb/yymheqpPRvWoQqvl23HZwkSoDdZIn8yRPim+uecjllN9slCf74lq9F2Z4PTPZoQcDqKbAmQnC0IipdM/TwpfX7XyikcRch+TVdjyhk7mj+SYfsrELG583tWyn4S7mwMHDvDEE0+wb98+oX11ODc5ffo0t912GyM9r0FRWnNttHwegnGZQExi8pDRujhBAkmiLWeY6V+kwTKwBJxe3BEX7pBLSKSkeGRiW4LMH84IiRNklyQsrAFbNNCOm8/imLjQq5IzSB0T7z9FHaXAFq+Y1XRZInReGGHhWJasgBDVKJttHVegx0ulYAiNhbSASseeMNO/SAnFxR124fKrwiIlWZVsd6MXWQAEtvsVliV0fapuWxiSmcgLtf/Y1iCSLDF3sPUxs6RIREYDwuIcUVFzjc69UdKncmQErzWXX0Uv6K3H0aItoVwh2cZ4jfaEVLaLVXtIioRlirXhYL8XWZWFxvOqVyHQ4yE7WWi5fei5MhP3zWAh5v5T69ckTcEqtx6bYFwimJA4c9jECgc2FCoBxHyXosgP8Jd/+Zf83d/9ndB+vtiUy2UuuugiR6Dk4HAO4lc8dLrCbdc3DZNyTsfQTQzFpOjb+D4VUfwvqJOSX/G8YL/l4ODg4NA6R48eBeCBBx7ggQceWPF9TaT0fLnyyiu59dZbue222/jrv/5rwuEw73rXu/jN3/zNF+T3X+lUijqHfzoOwO7XOS5KDg4ODg4Oz/tp9Omnn+bIkSPE5V7bRamK7HavdFNqWtKtF01O/yxJYX6Vl7XrpHzb8st9ZMbyQqs8ZVXG1E1h8UQ5rXPgK+LORogtWgUgujlIz6VxDn79tNB+9l4eJzdVFHsh7JPxd3vtOgIh8fd4MMqmkCgEYODVHcwfyghNOAZ7vQxe28mhb45RTrcuMph6bIH5I4KrymVb9JKfLQnFI30i19akQWY8L7wauryot+Wy1XdlHG/CzeF/GxeuK0piZ5iei2M88/+dEKp39Dutpw2rUc7ppE/kMAVdgE7+SNyZB2zXLEBIrJjcn2L+kLj4bfDaLpDg+PfPCNXrvTxOZiIvJLCRNZnQgFfYAcsT13B5FaGURapHpvuSOMnn0kJ9yOB1nbgjLo58c6LlOnrBPk+qV6YiMAd+5NsTYnZZNARHtftMM9I6E0BaSGXzG3uYeCBJ+lTBngxsojnVW31bOow/nCI3XV5SZrlYqeaiVGNTeR+TnOaWW27hwQcfbPHIHM5lPvWpT4Gl0t95yZLPV3NTsnyNsVl2zqSUk1afeF4j5Zs3ohIdcTP1zNqChtVSvkkymGVxZ6P0iZzwOEpRZSRJXHDUtTdKYb4sJJZxBVT8Xbbzh6j4yiiZYuIhyU6ZV1yorOgj1sMT1dBCKounxIQasa1BjJLJ3HNi967Jh+eEYgG2sAwLYTe/madTQuXBTn2bnSwKj71EUw6CLe7ov6qD5IG0sINoO/RcEiM3UxRLi7ZQbsstp7hQFr42jZLJ2M/FBdGSDC6fKuw8NvXEPIbg857Lr9BzSYzpJxcoCTgCaSEXvoRbONWhy68gSZLQsUmyfV2X0hUhEaE3ruHyqyyebr0vUDSZ3sttJ2FhMaZg+ygulJl4ULwt2jHQkTV1hbBsSaq3ZYQH3biDCjP7q/EwlvXH1VRvzeTSFqW8VXdVssL2auflYiWjJ9bYB8nNQOer+PznvsAf/uEf0tfX19qBnQW2bdvG+PiL/1zo4OAgznu6rnveqdIs0+LIzyd46F8O8vfv/BHZQGnVvlkCOl0RfrDnf6CIWm86ODg4OJxz/M3f/E1L5T7ykY/wkY98ZMNyt99++5rfXXPNNSsclhxa48jPJyjndULdPvov7Hipd8fBwcHBweEl53k/jdZclHa4LhOumxkvCDsizfxigdQJsZfB/a9OMPK6HqE6yFUXmjYYvy8p5KIEdizOPDonLKTyxt1oQTGtWWjQz8DVHaia2PH1XByj55LYxgWbkDUZb8KNKyC22jUzXuDkPVNCAiWwXZtERVTeuMam1/US6PYK1WuX5P7Fs5aCbe65RaafWD/9zwvF4liO8QfEHYfaQc8bTD48Jzx51S5Dr+mi+2Kxtq/nTeE0kQCTj8wxfr/4hJ6/24M75Nq4YHOdLjcDV3fi7WjNiaVG994I3YJ9gV428Xe7cQfF9nHu0CJTgm1YL5oc+96ksBNbTaAkC/aN4VE/O945gOpp1FtPoAS24G12f5p8UmwfM2NFYecmrxxgsGeIJ554gmPHjgnVdTj3WFxc5HOf+xz9nZegKivFbOthGlDKiYlJyjmD9Hh5QwGQHGms/FY0md7LorgjYte7rFZnUQQdaMpZnZmnU0JCHrBToom65KhuGU9UExblxLYECfaLjTO0gErH7ggun9gYSvUqeKJi/TrA/MFMW6lXjZK4+1JkJEB8+9pighcSo2SSPiUmKmsXy7SY3Z8WErs8H+aPZMjPnJ3UKvnZEvmZF194BeAOa3RfHLPFbALoeUO4H6jkDaaeXKCcFTtnqkfGE3UJC3Mim4KEhv1CdWRVpmN3BHdYrE9VvYrw2NAom8wfylASHMNmxgttLd4AhFNug+3gFh5c6tixnkAJoDBXYXFCrA2bOpTbMPbq77wEWYb/9b/+l3jlF5H3ve99PPLII6uusHdwcHj5I8kSW6/t552fvJZfn7va/nCN2+LvD/yKI1BycHBwcHA4S1iWxf477WwLu24eQpLbcDlwcHBwcHB4hfG8nJTm5+e5//77CUgRfPLKHKp1N6VlD76RTX6imwOc+tE05lrvP9dwU2pH3JE6mkVxi03wREb89F3RwZFvjgsJIXwdbooLpbWPaw3KWZ25g4IOQMCx74m70MwfzJCdLAgLoo7fOYniEWsyZtlsy8XH1M22Uj0MXtfJ/GH7+FqltFDm+A/PUJgVm+TpvTyOosmM3SsmKAn2eSkslIQEesFBHz2XxDj+/Umh85afLcFZWMkPtvNYOS3ehvuuiqO4FU7/WMzlyN/loZLTha7P4ICX7otjHPvumRWuN+sxft+ssAMDQP/VHSyezgmtYBcV2dUQcRqqkZkocOgbY8JiqvEH5zAFUmUAYMKhO8T7gnbSUtbwJjRKi7qQqGf4tZ0oHlWob81NFUnuT2MKNpHZplSntYdTy7RWdVFqJr7NT6DbzamfzQNLHZWWuyjVGJb2cLp8ig996EPccccdYjvqcE7xpS99iXw+z4Wjq4vDa25KzQ5KAPFBmXzaopBeZwJ/FTclo2yRmxGbvDfLFdIns5QzYn1Lx54I5WxFaKwnKRKKJreV3qy4IN7fFubKFObmhetNPb6AJDYUpZzRmXgoKXz/yU4WhMZBNXSB9JM1PDENT8Ql7DqUOp4VFibILomOPREWjmSE2pbilpFdslD6T4D4jhB63iB9SuDYrPZTerWDSGrYGopbpmNPhPlDi0JxlF12um7R6zq2NYheMITSHZYWK7YrkqDTljvswtfhZuGowPOiBeU2RGX5mfZEW/MHF4XGoGALhyYeSgrHIzNeEHK9rCHiftuMJEu2i6VAqjnVaztZzTyTEkqhV0sRZ+n6hsLwGuXcsvgp1U7ZMFZ1UaohyRDvk8jMW5Sq3UGzo1Kzi1INzeVnqH8v3/jGN/jUpz6F2y0mKn6xeOyxx9i7dy8f+chH2LdvH5s2bcLvXymakySJ3/iN33gJ9tDBweGFwB1wccuvvpHeQ3H+7+x3WPQ27gXBjIff0q/nNcHdL+EeOjg4ODg4nF+kjhdJn8nh8ipsuebccVp1cHBwcHB4KXleIqWPfvSjWJbFNu3iVb+XPG4or3zZaJkWZtncWMjTJFSSNZn+KxNMPTEvPKEuIhCokZ8tMf3UgrBTy9Bru1gcyzFxf+vW9d6ERngkwMyTKaGX1rImCztq1GjH4cXUwTxLzjXdl8YoJEtCK3JlVcYddqG4xVaDmXp7QohKTseoCK48k2H4hm7OPDpH8kDr6VT0gk4hKS5+Cw76kGWpLWcEUbSQSmjQT/JAWihlVmmhgqyJT4wO39BF8rk000+kWq5jFE1K6QqyilAsC4JuNzU8URfFebFuVvXIdF0cZe5Apq0JdCHM9voCPS9+vmqslhZtI8LDfrSQi1mBND9aQGXzG/uYeDjJvIAAdO5QRthFT88bTP+iad+k1ifeOy4IYRRN5g/bE6pKKIC1yn2zGVM3VxUtyB43cmcCc2ql4M+zEMGNl+9973uYpoksO6tmX45YlsXf//3fEw9tw6OFVy1T7PTgW1wqUEKy+zyrlUu3KwHTtiueL6EiAblka/2E5HZj5nJY0NbEePpUDrMi1j/4OtzEtgWZuD8p5OYT7PNSzulCk+JI9uW9PL1QK1im1VY9UVFCu7j8Cr5OD4un80KOQ4pbxuUXf5xo77gkKjld2LUp0O0l0OsRTitVzlSE91NSJHvBwny5LXGzKN64hqlblNKtt2PLsCilysJx9HW6iY4GhNO36SVDOBaWYQmLocAWUmkB8fbojWuogmls26XddvF8+gJJkYSua0mRCPZ7yc+UhASgkU1+vDE3kw+3fq3pBYOFoxnhsWVzOkVL15F9vpbqqW6JYI/GwqlS3V3EGuxBWic+lsmaQnQrHGBx1E9oFaFmV+hyjp16jG9961u84x3vaGn/Xmy+9KUv1f//8ccf5/HHH1+1nCNScnB4ZfCWbZfzS5sv5dv3P8xjDx5Fm1PonYhiWTr/dtf9XPlbO+ndGX+pd9PBwcHBweEVz5lH7Hmgrdf2o/nE3G4dHBwcHBxeqTwvkdJXvvIVVFzElZWp1KSqs4MSCmAsLl3Nmj6RJ31CTDjkCbvwdYqvQEzsCVNaKAu/dC4v6iSfSQtv78RdU5iGeMq26GiAqUfFVuZvekMPxfmykJOP6pEZvqGbyUfnyE+3vvo3POInOhrg5I+mhfZx+LVdoMDJH4rV83d6sAyT9InW65i6yZFvibvJhEf9uEMuZppFBi0w20b7wIQj35lAz4tNvBRmy4zNiqcAi28PoriUsyJS8nW46bk4Rup4VmiiQUSs1czxu84IuyLkZ0uc/omYYxOAv8dDeNjPpOAE59HviDudmToE+3xkxgpCIqXwsJ/+qxIc+tcxIbet2PYg/i4vYz8Ti8vAtR0UFypCwiFPXGPzG3o5+aNpIZcPf7cHb9wttK1yVufkj6bICLqJtDtBqXpsZ4rZA2n0vIllGEjKxrYp/g73iolYSXOtK1RaOFZg4djK/ZQ7E/Z/uztXFSoNerdypPAUn/zkJ/nQhz604b45nHs8+OCDPPfcc+zb9p5Vvy922uKk/OYovqNNjkgWLEy20C+oS9usyysjq1JLIiWrYIt9XdEA3oBJZrIgnF6rHVeY/EwRPW+ICy463EiyJCRS8kQ0OvaEmXx4TkgwEOz3omgKqeNibqCxbUHbuUnAmUdxy/RcGmP2abGUY6pHwd/pER4v5M4U2xJ6R0b95KZLVHKt38fNip2GSpTMRJ6coFsmtHc/UFwy8W0hpp9aOCsipdCgn0peFxIpmbol5jRUJT9dbOsaXTwlvlgE7OumkjOExkKFZKktJyuXX8Udcgmf847dYfSSycKR1tulJENsW4jsmYJQ/6MFVSKjAWafSQkJHmPbgqgeRSgVuWVaBHu9VLK6kEhpcSxPZkz8usm26ZrpjrhQ3QqFjC28tgpFJK9n/UqyhDukororS8bLliKtK1San1j9u9TuKMCqQiW/t4N4ZID/83/+zzkjUvrrv/7rl3oXHBwczjKqovDWV1/JG/ZdwmNfO8zBiTEAUhNZvn/rI2y6sodX/fvt+KIb9J8ODg4ODg4ObZE+kyN1rAgS7Lxp6KXeHQcHBwcHh3OGtkVKd999N+l0mn5ly4rvpHVS1fi73ehFg1KqxUmJqptSfrbEwdvHhPczuilA7kxR6KWzN6ERGvIz+9SCsHNNO84n84cybU26zD6ToiK46lTWZIyKKbwaV1YlJFU8V27qZBZZEXfsaCeNXbv4Ozx445qwSEkLqbbTluAcVDsTPKpHRnbLlNNiDVJUHPZ8SB3LkTomoCqr0u6xtetupPoUTN0SciFzB10E+30gzwmfb1FM3WyrryskSyQPigu+ZFlCaePatgwLyxQUIMyVmf7FgtDEOcDkQ2LisBrtCo5Cgz7cYZeYEFGG2JYg+WS5PsnfilDp5I8a4kM50Ei3IVXTtq0lVpJVCA14SZ1Y/RhXEyoNmTsY9x7mtttuc0RKL1P+4R/+AY8WIRYaWfFdTaC0Gp6gRDFr1V0jVrBMnFRzU0qPtdbP1gRKYLuYBQdVYYFgoNdLJScmtgDb4UK0TwGWup+1SCWvs3AkIzyGskzbBUsUSZFEjNmq27JYPJWnUhC8p86VKcy119eKIikS3oSbYqpCRUATJSkSkiwJu22ZuoWpizsAqh4Fo2IKie30osFpQdHv82H6yYWNC61CO8fWbhwl2XY4Er1uvAk3SOUX31WS9lx3AXIzRWGBpGVWn6tksYvbMizMiomsykICuNyZovgznIWw8xjYjqXtICkSwb6qc5NA2klvzI0WVClkGm1kI6GSXjCZerrR8Vh9nY3/r6agXEuspGp2e66soalaTai0eXgfDz/6LY4ePcrmzZs3PKYXm717977Uu+Dg4PAS4QloXP0fdrPt+gEe+OJ+Zo/bz7rHHjjD6Sdn2PerW9h105Cwq7CDg4ODg4PD+uy/6xQAA3s7CHevTLXs4ODg4OBwvtL20+fHPvYxADarFy75fD2BEkDPxVH6Lhe0E5ZtIUM7HPnmhJDlPIAv4Sa2OSgsUOq7Kk5sa1Cs0vMgdSwnvHq9vKhz4q4psfQmwMKRLCfumhKqA/Y+zh8WF2C1Q8+lMba9rV+43uTDcxz7/hnhelt/uZ/OCyJCdbSwSv9VCVSfWHuO7wyx5Y2vzHzFnXujbHpdr3C9xO4wiZ0h4Xrb3zZAfJvYdTp/OMOhr48JC5Q6L4yw49cGxSq1STmrM/34gpCLEthOVqIOaQDj9yVJPivuJjb7TFrYAatdVJ/C8Gs78cQ0oXqBXi/hEbGHRj1vsv8rp1e4kFhGa5NtLv/GrkvN+Lvd9F0WwZtY2yJY7u5c+res4i4GOHjwIIuL7TmYObx0FAoFvv71r9PbsRdJWnoPWU+gpPkgMaSgCS6Oll2tTWo3C5QACvMVzvxC3EXJ3+3BHRKzvHb5VWLbgshtCC3bwSiZbTl+ZCcLQulra8wdWFyS0qgVzIrF4lgesyIuimqH/qsS+LvFGpdlWJx5ZF5YtB3o8dD7KvGUJP4eD/4ucXeAroujBHq9wvVeDvRcFsMv6FCraDKRTQEUTWwMG+z30X1xTKgOwMwvUmTGxMVDvZfHCfafnfOWnym1tfhg9pm0cL1K3iB5YFHYoau0WGlrH9vF32W7jwphWQT7fbgEU/WljmdJHll5bMvvS6shqxII3jqiPRLhjvUrLY4uPXa/sgtF1vjqV78qtjGHtviv//W/csMNN3DzzTdz880383u/93sv9S45OJxzdIyGefP/voKr37sbd8Aee1cKBg//00G+8dH7OfOcmMO7g4ODg4ODw9qU8xWO3DsOwO7XDb+0O+Pg4ODg4HCO0ZbyxzRNHn74YbxSAE1uvPRfS6CkhAIooQAAx++aYvw+MdFQdEuI7e8YRPWJTeK2K8GaO5jhua+dFq7n8qsobrGNBnq97Pz1IdwRsYm5YL+X6JaAUB2w3X/aiUs7IjHVIxMe9QuvxIptC7LjnYPC+5mZKDB38OwIogBO/2xGOHWLy6fi7/UKx2ThcLatlfm9V8TpujgqXK8dPHGN0Tf02G1MgORzaU7fK35svoTbXmUvyNi9s21NFrdDdqrA3HPiYpDey+NsfpO4cMvX5cbf04ZNu2y7rIniCqjIgn58nqhG54UR4W0Nv7aL4Ru7hOqYZQNX0IXLK3bvmHxojqPfFnRzW8fuxDKMdcVKQ9cnGLpxZdpUsB2Vaq5KzWTGSxz5wSyFZAW5M1FP9bac5UKlIXUHALfeeuua++NwbnLnnXeSzWbpju1Z8vlaAqX85ij5zVHKeZg6rFNezdhIVVa6KFXpuKSDyNDafaxVKK47ESz7xSapp59YYFFQkCC7JFw+FVNQEJXYHW5LVB7s86IIjockWUJ2ifevkiI+gQ6ghVy4/OJGqV0XRQkN+oTrpU7mKGfEnazaIT9bIrlfXBzrDrmExQ9gC0nyM2KiNNWr0LEnLNxO2iU05CM0JH7eZp5KUZgTE65IioQ3prUsYKyRmymSPNBGiuQ2WTydF3Zkk1WJ3svjeONiomZJkfDGNft6FaQtcaWEsEgM7PSWmrAIVKH/qoSwiFp2ScLPw5YJEw8khVP1yb5q218llOvdoxRNovciP+4tnat+bylS3VWpmfkJi+S4fb9J7Y7WU70tp1mopChuEpGt54xI6ZlnnuHTn/40c2s45yWTST796U+zf//+s7xnLxy///u/z1133cVdd93FJz/5yZd6dxwczkkkWWL7awZ4+1+8mu2vGaj3owtjWb73sYf56WeeIp8ST5/q4ODg4ODgsJTDPxunUjTwJlz07hZfdOXg4ODg4PBKpq036N/61rcol8v0KMOALU7ayEGphqnbjh8iZCYKTD62gC6Y2mzrL/fRc5n4yt12OfnDabH0QEA5W2HhaEY4VUlkNEBiZ1ioDsDo63rov2L1yey1kDWZHe8cEp7Q83d7GbymE9Uv1syKqTKpE1lh15rsZKEtZ5etb+0nsUvckWfxdJ7yolhbzp0pcujrY8L1ylmdzEQbqassoI0UM21hIeycAVBO68KOYACnfzrD2L2zGxdcRvpkTrgPQoZtbx8gukXsGshPl5h5KiW2LSA3VSR1SlxI1b0vRtdF4qK0He8YpGtvRKiOFlLZ/qsDBAfFhAi+Djcdu8PCoqj06ZywKNDUbTe9tq6dNtBCKjv/3eCaDg5rCZXmT+pMP7v++V5NrNRqPyJ3d9bFSh1yP8FgkG9+85st1XU4d/j6179OwNuF32vfw4udnnUdlJrRl2sR1hEn1UhNmeRYvc9ba+LXE1XpvTQsLGJol1KqYqe7Erz15KeL5EUnw10y4dEALp+Y2MUb1+i/MiEsSAgP+ei5VHwMGxnxtyU2yk0X20qbl50oUMmJjc/9XR66LxE/NqNktp1WOXVM7P4BUF6sCKcoA1twIdom28Zqb1uldEXYkUcvGJx5dF74fBtFU9jBFeyFHF37xMc02ckC5YzYOM/ULXJTRfSC2LGpHoWO3RFhYaC/20PfVQlxJ5/NQToEXVzBTmMrKsDSC2ZbrmyZ8UJbaczbJTzkpXPX2gt3VrtfGWWLuayP8gaPH8vFSoZOy9fb4qi/LlYaGdzJ/v37eeihh1qr/CLyta99jfvvv594fPUJkkQiwQMPPMDtt99+lvfMwcHhpcAT1Lj6vbt58/+6gsRI453Y0fsm+foH7+XZH5zENF7kfPcODg4ODg6vUEzTqqd667k0iLTOAlcHBwcHB4fzEfFlxcDf/M3fADCs7GxZnAQweF2C0qLO9BMpoe3peZP5g+KTC/NHspQEJzNCgz76r0pw9DuTQkIG1SMLp1kCe5L5zCPidspj9862JTGbuD9JRfAFPKbJ+ANJsmfEJvrTJ3McSo4JC0Ly0yXy0+KrtoKDPsqLFeGJkOxkQbiOK6AS2xxg7uBiW+ddlPCwH5dPIXlAzJVn8iEx17LnQ3G+3FZKQG9CIzwSYOrRs2MrHt0SwDQs0scFREAmZCbylLOCk2wyhAf95GaKQiLL5SnDWuX0z2Ywy4LXN3Dm0TmKgtdAeVFn7L4ZcpNi/cL80UxbKSAXjojfA2q00z8PXteJ4pZba9PVh8zyos7C0SyldVxFLMNAUpaKQ3Kz7bmQeKIq/VdEGX/OotxCk5G7O2FqhrA7xtGjR8nn8/h84mIGh7NPqVTiO9/5Dl2xy4D107s1o6kWnaMKc2MGhmAzK61harSee5JeMMlMFuuT2rLfj5nbuHF2XBChktOFhSSyKmHq4goN0RRqAGbFZPzns8KigmKqwuyzKeH9zE0XhftlgNlnUm25umQF+3KwHV1cfpViqiwklNELhrBjCtiCL8vi7KSukiA04CM/WxISrugFoy23p3ZZPC2eDg1skYxeNNoSD4kiu2T8nW5y00Wh66CS19tqJ6pXQdFkYTeldsZelbzOxINJYcFXcaFMcr+402Z2Ik9uWvwBcOoJcTGnZVptty+wXaZEFi+oXoWui6LMPpNqSWRWc1EqpipUNhhjW4UiknfpfTPfZtbbUEJCViHVYvnFUT/B41tQFRd33303l19+eXsbfoE4ePAgF1988bplLrzwQh577LG2t5HP5/nqV7/KgQMHeO6558hkMnz4wx/m9a9//Yqy5XKZL3zhC/zwhz8kk8mwadMm3vve93LppZe2vf1PfepTfOpTn2LLli3ccsstbNq0qe3fcnA4X+jcHOHNH7uSQz8Z47GvHqaUq1Ap6Dz05ec4/LNxrvzNnXRvP3sLQB0cHBwcHF4JjD05Q2amgOZT6dgjmBLbwcHBwcHhPKAtJ6XHHnsMvxbE5bNX2HuiKlpQrv+iv9OFotkTJKpXxt9huz8Ylorid+OJNtwg/D2eeiox1ScvSVXkiboIDXrpvSyK6pHx9/lRfdWynqVl3REXnqYVov4eD6njWTITBWStWra6i1pYxZtoKtvlqaeB0EsG+WSJct5+OaqFVLwdjbK+Ljdatays2r8rqzID13ay5Vf68HU0RFu2tX6trL1PNfcQLaDi7/IQ2xZEC9j7o4XVRgybyroC6tK4xDU7PZzZKLtmDGManmhj/03TQq8e2/IYeqIantjSGKo+GVOHzFgOLdhIFbdavGsxbI53Oavb8e5YGm9tWdlayigtpJLYFarHbWkMG/GuxdDX1Yj30HWdjTRSq8Wwq3GszfGefGQO07TqZVWfsnq8m47V16GR2B3BHXOtG+9aDGvx7rsmztZf7W/EO768rLL03FTjHdkcIL6zsbKtuc2uaN/NbVZeq802yq7VZqVaDNeIt7dDa6R2q5X1bBzv5W3W3+OhY1e4vk+e+CoxXKV9d+2LsO3t/au22SUxrFJrs5FNQaIj/iXxbqWPmH06Te5Mcf14szTeLp/C8I3dhKuuFuvFe0kfIUNsa5DgYMORp5U+Qs8bmPqyNttCH1Gcr1Cspn1ZUnaDPqKSN+pxWN5m1+wjzDXi3UIfER71ExzwrhPDlX1E574IO945ZPezq7XZNfqI0mKF3Gxx1bLr9RFnHp3H5VPXjbc71Lj1BkcjqB6ZyLCHjl0+/J2NvsYdVvFEG1pif4cLV9iNpLlQ3DLu/hg6GrIio/nBE278ri8qo1Y3K6vgj9vtSu7upKMyiGVZfPGLX8Th5cF9991np3qLb6XY6UGSLNwuC6k666wqFpramAzWXBaKbP+dj/sobw4jyYCqoHgUXE36cpcblGozkyTQvBCIS3gC9ueuoYb7oiqVG2l8JNACSl0QI7skJEUiM2GLClSv3EgVK4EWVOtuQrJLtscUVUqpMnqhMSm9pKwqLSmrepX6v/6rOgj0eurOTSvKepQlqYK1oIoWduGJ2emZtKBaFx0pHhlXc9mAWk+rVCsryYAFiltekgLJFWik+5XkWlmp+jfoTW48Lr/SVNbep1oMFU2u932VnIFRNBppw6SlZZfHUPUpqB4FywSzYi2L9+oxrOGJuvDGNJDWjveSc1NNX+ftcNtuT1Ij3hvFEMnuX7NThZUxXC3e1OKt4u/22OMfv7oyhnIjhs2p3Vx+hd5XxQn0eFbEsDneYN+za/GWXRKRTYHGvWiNeC+JSy3eWisxbL3N1uK9ZpuV1o93I4aN3w0P++v30uVtthbvRgwb8e69PE54xL8khsvjvbzNqj6F8EjAvv4Ca8RwlT7CMhoimVVjuEYfER72k9gdXlq2hXgr1XHMhvGu/W5ARXHJGGVzjTa7dh+haLIttqv1J8tjuEYfYeoWmI2+vrnNrttHWBu02TX6CMUt4024W+qTm3+3++IYsS2BRtkW+gijYjulGbrZiPd6fURAQZKhlNYppStLy/qV+rsISbbvVZTsMZ3iklBHO5EVCHdIuP2g1IZeEmge6udRVsHlaTgqqW7IjARIDwQBC49qIkv2+VAkC7fa6Os1xcJVvQ9nRiPEI5u46667eKlJpVIkEuu7KsdiMRYWFtreRjqd5rbbbuPUqVNs3rx53bJ/+qd/yu23386NN97If/2v/xVZlvn93/99nn766ba2/Tu/8zt87Wtf44477uCSSy7h937v98jn2xfbOTicT8iyxI7XDvL2v3g1267vr38+fzrDd//3w/zss0+TTzsp4BwcHBwcHFpl/522i9K21wy0lbbbwcHBwcHhlY7w3fHYsWNks1l2795T/6zvkiBdu22bddUtM3RNhEC3PeEcGfYwdE0EgKkns/jiLrovtq37ZRVGb+isp6WIDPkZvaGzvlc9l8XqL8NN3WT0hk4iI/Z2ggN+Rm/qqU8a91wSW5LGbPObeum5zN5OsM/L6E09aNUUHd37YvRf3VEvO/SaLuLbbcGV4pIJ9vrwhO3977wgysCrOxtlr+uqv/j2xjVGb+rBE3Ux+0wavWgweH2j7MC1HXRWLfm1sF3WX50QiO8IMXRDJ72vitvuTVd30LXXXpmkBVRGb+oh2GsLFGKbAwy/pquxD6/tZOevDaGFVVRNZvSmHgJ9dtnIpiAjN3Y3zs3l8XrKu+CAh21v7Sc8bCu3w8PVGFbfM/dcGqPv8ob1+8iN3UQ2BQkP++m6JMboTT2otXhfHKX/qka8h1/TRWxz9dz02vEeuCZBxwURuvbGGFgS707iO2zBjb/DbZ+bWrz3RBi+sbset8HrO0nssuPtiboYvamnnq4gsTvM0HWNuFQKRv2lsqcW785qvLcHGXpto2z/1R1074shqzKhITsOwWoMY1uCjNzQiGH/FQl6qmlJ5Gq8ZVVh/z+dxBu1979G76sa8UaG0Zt6iAzbcQkN+Ulsj9TdCrovjdJ3eSOGIzd2E91st0N/NYa1yQTLtJakWxh+bRexrfbv+rs9dgyrEwZde6P1eG/9lX62v22gLnDydthxcVdFQB17wgxe12izg9d10rHHjrfLr9jxropH4jtDDF3fiOHA1R107bWvMS2osvkNPVzwnhGCA15iWwMMN8f7qg66L7bjonqUJW1WkmT7+Krz032XJ+i+tNZH2PEODdltNjIcsOMtQyFZRvXYk481Rm/q2bCPOHHnGU7+aIaRG7rrKQxb6SO690bQwir+Tvuct9JHaH4XpmFSqDq6JXaFW+ojtIDKyE3dS67lVvoId8TF8E1dDF7bQU+1n22lj+i7Ok7X3ojdJ9/U03IfselNvQxW+6ZANYat9BGjN3ez/W0D9cnKVvuIvssT9F2ZYODaRtmN+oj4thATDyXRyyYDr+6k8wI7Lhv1EaHBxn1A86lr9xGSRP/l8Xq8tbDK1l/pIzhUva+NBBhtinfvZTF6LovZqd9kGLomQqjfjb/DRWzEy9A1EeTqZFnXHj89FzVSmAxdEyEybCuPggM+BvZ6mHy2RHHRpGurm95dDaHX4D430QH7h/wxmaFLPGhVzduF116Opmn84z/+Iw4vD+666y4SiQSRHQMAuF0WvR06NVOusN+kI9pwkuiK6QT9JmVdIp1V6O0w6pPIgZhEfKAx/Iv3ywTiVcGBCzpHZAIR0HwSvohEYtAuaxWKxDb7CfXZ14yiyXRdELQnfwF/p0bfZeH6RHZsk49QvwfZ70dWJbr3xXCH7TbpS2hL0ji5IxqeiN1+Jdnug2uCSE9Mo3tfQwgTGfUT3RzAKJskn0sT2xbCG3fXf8e+t9uFw8N+Yk1pOjv3RolvDRLbGsQdctG9L1Z/URQe9BPb3hADd1wQwd9tX2+aX2X4hu56ys9gv29Jyt2OXWECPfYFpvoUuvfF6sKHzgsidDcda2JnmGC/3T8obrtsrS/0d3vsVE6SfV9K7A4TrqbUVFyyHcNQNYadbjr3Nn43tiVIdGuQ+I4QLr/9u+5qTL1xtx3DKtHNASKj1b5Fsu+7vVckkBWpHu+aYCU84l+S6rTroii+qojXKBmYhoVcFUWEhnxLUgN37o3gq/axWlCtx1v1KkRGA8Sb4t25J1wXdLr8dtnaGCjY5yWxK0Ry/yJzzy2S2BUiUL3/qV77WGsChUCPl44mgUp8RxhJsUW16rJ4+7o8DXE7ENsWIlwdb0hIYIJZdYLxdbiXpFONbQ4SHqmWVez2XRPyjtzYQ8+ljXtlZFOAyKZGX969L4Y3ZsfFE63Fm3q8Y8vjXX12cIerbdbVaLMD13bWx2IdF0bwVcW2WqAaQ7cdl9CAj/iOpWmizbJVjXe1zdb6iN6lMUzsChHsq7rWLJSJbQ7WRUz+bg+de5rivT1EaKDavjW7zUoSjN83i8uv0tmUWja+NUioeq9ctY+4OGqLdySIbgkSqcV7gz5CdklUmlxcu/fFWuojQgN+Bl/dWR8XtNpHBPu9xLYE7bLVeLfSRwT6vbjDLrvN7mqK93p9RI+H/ms66qKm2PZQS32Ey6cwckM30er1WY/3Bn2EN+4msTO0JIat9BHlTJnMRKHeZmvxXrePCKj4Oz31dN+hAd+afYQ7EaDrglBdCBvd5Kfrgsbvxrf5bWEi9nNH1wUhXD4Fq1DE3+kiMSCBBf4wJPolgrHq4ioVuoZltKrI2x+CzsGGM120T8alwEJBQZGhP1LBUxUIB9wm/eFGu0v4deJ++74sSzC8ZwsPPvggMzMzvJQEAoEN92F6ehqvd/XUxa0Qj8f5xje+wde//nX+83/+z2uWO3DgAD/60Y/4j//xP/L+97+fN7/5zfzVX/0V3d3dfPazn11S9pZbbuHVr371qv8+//nP18vt3LkTn8+H2+3m13/91/H5fOzfv7/tY3FwOB/xhDSued8e3vy/Lic+3OiHj/x8gjs+eC/773JSwDk4ODg4OGzEwniGyf1zSBLsvHHopd4dBwcHBweHcxLJsiwh8/ff/d3f5a/+6q+4tu8tePLVCfOgjGVCJWc/qHqiKuWsjlmx3TVUr/0CUS+ZyLIFJhSm7HQ/3rhGKaNjlk1Uj71yt1B19Kg5XpQX9WpZlUpWRy+ayC4Jd0ilkGwqK0E5bZfd9rZ+ylmdE3dOIWuyXXa+DKb9ElRSpXqKA09cQy/o6HmTxK4QpXSZzGQRzOqqTZdMsSoy8MQ09KKBnjeQVftldylVxtQbK1RraSg8UQ2jYtovymXwxjRKKR1TN1F9MqpXte3sTRNXwIWpW6uX9ciofrXudBIa9hHfFuTUT2YxyybehEZpsSmGgWVxqcawa2+E+M4wB+8YwyybjbisUhZs55ZKVqf3igTukIvx+2cbZQMqKI14e+Iaeq56blQZd0QlvjOEUTBJPreIvEa8a2Vr58YVUHFHXBTny+h54wWPdy2G7ogLS7fQQi5Gbuxm/IFZ0qfyq8cwrIK1NC6txLs5hnpxjXg3tdl1y7YQ7+YY1uId2eRHUiUyY/lqvO0Y1sqqPgXVrTTad1RDLxls/9UBpp9JkR3PN8VbRvWo9Xi7I0vbrL/Tg7dDI3UsB6a1pM1qYRUM6qn/1o3hSxnvdfqIgWs6qOR0Tv9kdkW8X4w+wt/rxqhYFGdXj/dqfQQm9F+VYPrpBUrzldbiHVJtIeKFUQ5+/TSugFovu1Ef0X9NgkCPl4O3jwm12a59tjvexENzK9rsen2E6pGRZPlF7ZOb+wh/t4dCskRhvmyXXSuGVWe7ckbH3+Nh0+u7OXbnFLnJ4pptVq/Yk4jeuEqlJGOULWTNFkMUF6pOfgHZbrOZxr1VL5joRRPjwmHcHjCOLOCPypTzJpJMPe2bJ2SnuNPLtiBY88sUM6Z93Xtgf/EbLCwsPK+V8g5njwsvvJA9e/YwntmDaUpIkoWqgK6DhYQiW0gS6IY9mepSLQzTwqVIlHUL2SOj6+A/soisgKyAXs2YpWpgGvY/JPtvowyWZZdTyiX0UjV92+I8plEVzUrg8trtzDLBE1HpvCDImcfSVPKm7QRiWVRSdqN0eWX0kollWMiq7SRSyRu4/Couv0IpXcGoOg65fEq9rKRIqG65ns6n5jDSXNYom5j6GmUlMIpLyyKBZdrC+krBsN1MNBlJltCLdl3Vp2BWTMyKhSRLREZ8lAsGucmiXVaR6mnAVK+CqVuYFfs6VD0KetHAMqHvygTZMwXSJ3L1spZh1ffD5VWqMbSQXVLdQab3VXHmD2VsZ5HmsqvEEKquI16F0KCfueq4a82yy2KoBRQsbGHH84p31QmwFm/Vp2DWysoSqseOd8euMJIqMX8w04i3V8HUa/G2Y1g7N7JLto9nlXg3YmjHW3ZJyKrcKOtRsMz1411Lx7pq2XXijcWKNiurEt64RnmxQjnbegw9cTfhQR9nHptftc0uiXdTm3WHXZiGRXG+vKLN1uJdb98r2uzSeDdi+CLFW5WQtUa8FY8MJvVUac3XvaxKeGMa8R1hzjw2V08T92L2EbLLdkqq5PQ1471aHxHs8yHJErmpwgbxXtpHxHeEKKYqLJ7Or4j3en1E7+UJFo5myJ0pttxmZZdMbFuAzFieUnVctjzeq/URtQUSqkd+YeK9QR/hDqnImkx+prQy3rU2q1fdkaJ+KgUTLOjYHUCSJGaeydT3d7V7lZRIIKsgKxJld1U05rLNqUwdu6wL9ErjHth8v5y5MYoFBCZNJMlCAnRTwrQkZMlClS3KRtVJs+qipJsSYKGWZ7j/3z7Jl770JX7zN3+Tl4qPfOQjPP744/zjP/4jXV1dK76fnp7mPe95D/v27eNP//RPn/f2Dh48yH/8j/9x1XRvn/3sZ7n99tv57ne/i9/fSH/xT//0T3zuc5/j61//+qr7KMK73/1uPvCBD3DZZZdtWPbQoUO8733v4/Of/zzbtm3bsPyBAwfYuXPn89o/B4dzHdO0OPij0zz2tcN1t3mA2FCQq35rF11bo+vUfnniXNsODg4OZwfRsdfLjfv+4VkO/niM4Uu7uOF3951395fz7Xjh/Dvm8+144fw75vPteOH8O+Zz4XjVjYss5e6770aSFKwLLoeHDgONCdQatQlWwJ4kLZqMvCYCBpz4ydIJ0ZogqVG28XdtIhwAy6xP8gKY5aV/LykLHLpjvO6gsqJsdmnZ2qS0K6DSc0mcsftm6qs4K1mdSnPZ+aZ90G03F09cI9jrZXZ/uv7i3Y5DoywmS/ZBz5vo+cbftcn5Vcsui8viyTyLJxu25euVbY7L9C9STP8i1djMBjGsfXf6JytXW64VQwBTt393/N7kinprla1RyepLVj+vFu8aet6ox1sLq3RdFLEnd6DleOtFk+N3nrHTOlXP+YoYplfGJbY9SHQ0wLHvn1m7zcKKNmuUzWp6rfKGZZv/7twbxbJMJu6fs+OyQQxrpI7llmxjvRjC82uzuakiualio/wGMazhDmv0XhHn1D3TlLP6umWbz43qkXF5VXLTxVXLrtW+E7vDBPu8nLhrau2yq7TvsXtnq5Mjq7TZ5rLL2mxoyI/Z47Xd1gTinZtcaqXeah9x9LuTLGejPmL26TSzT6er37fez47/PLl22XX6iOknlt4HKi30J2C3QTA37JPrx1qNd7DPditIHlhsVGyhfY/c1M3ieJ7CA3PrxzBVsfNkAbkzRZ79p9OY1UnXtfpk2WuLlApz9t+S5sIsQ7HciEU5u/a91TRlCnkI74oy1Fvi+INFiouN8s3/b+pQTDf+XhzuIvdUlFTqBOPj4/T3N+z8Hc495ufnefrpp5m4YAeBGxUG7zKxLIlK02VjmNKSOhVdwu2C3g6d8ZRKqdL4vi5IqqI3dUNYoDd1PVamSPPVqRfNJWUr+aY2l9IZuz+FZTTEBGZTipVKU99n6hambv8d6PHgjmhM1e7fy8pahrXk79pEuL/bQyWn22LvDcqu9rvL/64JJerH2rwPpsVC0/10RdlCc9mlvzvxQHLNsnYMm+JSsTAr9t9j984uqbeibFMMwZ70N4omxYVUdR9Zu+yyuNTENCAWw0DVaaqSL1S3uX4Ma3Xnj2aQpIb4ANaPoS28sd0fc9NF8jPNjXTtGALoRQMtoGIa1opjW61sDdWjENseYu7gYjWV6sp4rxYXw7DIThaXfLdeDGv75Im3Xrb+u2WT/GwjFmvFu1a2mWCfF9OwSJ/IrRnv+u82nRvVq9ixNGtl145h87npvDBCZjy/5LlvrRiC3WbzyTKVx+fRC0Z9e63ERZIlQoM+0idyGGWzpf6kdtylpnvlavFuphbv9MmlY+1Vy67Svqceb4yF1or3au17/OeNvmGteMPS696smCSfbRoDsUF/ItIOVykryRKBXi/F+bJQPytrMvEdIQpzybVjKElYJpTmcshVt5/kc7n6vQfWvldJ2GMiU7eQS3nMkA+9eVBpQaW571x2v6xU7brCgwbanMWZTCNFr2lJlI3GvVZfcl+WGL++E/VnMX7xi1/wUvKOd7yDBx54gFtuuYX3vve9XHLJJSQSCZLJJI8++ij/8A//QLlc5p3vfOeLvi9Hjhyhv79/iUAJYMeOHQAcPXpUSKSUyWQ4ePAgF154IZIk8Y1vfINMJrPmC7dkMsnc3Fz971OnTrVxFA4Or2xkWWLnjUOMXNbNo189xOGfTQAwfyrDd/74IbZe28elv7YNb9i9wS85ODg4ODicPxSzZY7cZ98zd71u+KXdGQcHBwcHh3MYYZHS8ePHcXsjYpVMi7EH0vU0QABKwI+RXflSd8nOeWS2vbWPsZ/Psng6v/RLSbKXOK632WUvNzeiktXZ/5VTYIrVC3R56LwgwuwzaaF6nRdG0IIq4/etLuZZCy2sYpbMpS9gXyGoPpmeSxPMPLWwVJSxAYomowVdGxdchqmbS0QurWKUTMo5Y+OCy+i6KIYn6uLINyeE6pWzlRUTNK0QHvVTyehLJrFeLGTVTiWWmSisEJ2sh1ExKaUqmKaQqRuR0QA9l8Z55ssn6gKzlrZXMqi0ce6axTAiaH4VwyV+8roujlLJ6cwfzLS13XMaGTwRjfJiuZ7mrxWCgz46doc5/v0zQpsLD/vxdriXipRa4Oh3J5dMoK2LZdWFShvde+RVUmhY5Qqb39hFbrbM1C+y69av7Bmt/39mEY7obnJhN9pi665IHT17mJl8gi9/+ct8+MMfbrmew9nnkUceAcA9OixUr4DE+IJKSW9MlGa3hAkcWX+sEu6S0DyQfK6w4ju5M4E5s/aYpXmSuFmgBNSvj+Vjt4WjWWTXUpFVK4QGfORnSktEShsiQcfuMOlTecqLrY8xJFlCcctLxQOvIPzdHmRFIjOx8pyvR81BRZTl4pRW0YtG3VGnVWRVovviGLP70xSSrY+FLNN2Lmxu062guGXcIRf5ZAnEqraFFlCRm9wFW0UvGsLHBnbassJcmdTx9e9Tq23PFNyeZVor1WpS/AABAABJREFUBM8tIYHLp9bTkbWK6lMI9vlIHc+2FZtzHVmVkBRphahoI6JbApQz+pKFCBtjEd0UYK6yuFRItQGFZInx+5Krx19aeT7NQgHZ623pfMmdiRWf+SgS3epl8oi10WsFJm5spMM7o6sYYQkjLBEYbz2e7pEhHnzwwZbLvxjs3buXW265hc985jN84hOfAECSJGrm2pIk8YEPfIC9e/e+6PsyNzdHPB5f8Xnts2RS7B2JYRh87nOf4/Tp06iqyubNm/mzP/szAoHAquW//e1vc9ttt634/MSJExjGxu02m81y4MABoX10cHg5k7hGxT3SzfEfzJGbtsfRh382wbGHzzB4XYTufQHhe++5iHNtOzi8MnmpXQIczi8O/WQco2wSGwrSvf2V5zro4ODg4ODwQiEkUpqZmaFQKNDZsx2AwuVbAfBWHZVWpSo8sF0qlr7Ea0WolDyYttMqCRDZ5Ce+LcSxO88IiRdAXNgEkDywKDz5/XwYur6L0mKF0z9e6XC0Hlve3MvC8RzJZ8XEVFt+uY+Zp1KrrhReCy2gsvWt/YzdOytUT3WreGMuZFXs5UZhtsyRb4kJfwCCA1783V6mHp3fuHAT6RO5euoWEaafnEd2iU/qzTQ5YInQfXGM7GT+rIiUVI9K3+UJTv9shrTApFJxvszpn4q1ZYDU8ax9XIKX7MKRLAtHxCbXoP22ssINo0W8EQ1ZEX/Jt/Wt/eSmC3XXrVYZeV0PiyezzAmIomRVZvMv9TD9i5TQ9eCNa2x+Qx/Hf3iG3BmBSS/TdsKQNVmorx6/X2ySo0bLAqUaVaFSYk+IQKeHkz8Sa9epY1nKG4SjWaAEtqNSrtqcywNxtLG1z3t+e2M1ejQxisvl4jvf+Y4jUjrHefDBB5EDftSEPWl3+mb7HjJ419rXgFkV/TQLlGpsJFQqZS30lLgoM77NT2G+Qn62vFKgtAG1lEIinBHsi8GepLdM6mPTVtFCKl0XRpl4OCkksPEm3ISHfEw9sSAkWPF3e/BENeaeExtbRrcE0AIupp8US+OoehWUNsYmqePi4yCA8JCfwkJZSCgGtHXvNg2LM4/PYwgIJcAWo88fFhcJa0EXiZ1hxu6bPStCF3+PB3fIxdTjYtdsZlxMkFYjuT8tLBQDmD/UnuC6nbai5w3hawDsFGDukJ1+1hA4d964RmJ3eG1xzTr1gv0+Zp5KCe1noNeLN+Fm9mmxetGtQRSXLLy9drBMGPu5+PjXXpAh1r7MQgHF7yWxPcDiZJFSqvVnkErRJHOqCJJ73c02C5QAyjT6y2y/vK5Qaeqqxg939/fz2He+TzabXVM4czZ4+9vfzr59+/jWt77FwYMH6/uzY8cOfvmXf5nR0dGNf+QFoFQq4XKtXGSkaVr9exEikQif//znWy7/5je/mauuuqr+96lTp7j11lsZGRlx0r05OKzFTrj0tSbP3TPG41+3U8AZRZMTd86zeFDnqt/aSeeWl/dkrHNtOzg4ODg8H0zD5Lm7bYfO3TcPI62y2MLBwcHBwcHBRkikdPvttwMQ6xJ7YAv2aoT6PUw8IjbZohd0ph9PrV1gDTcly4BK0RAWL/RcGgMJzjwiPvHVDu2+JB6/fxarjcX8uWRJeEJI1mTKmQp6SWyDetlk6skFeyW5AMWFMoe/IS42ahdvzE2wz8vUo2L1mlMJirA8XVarqD7ZTk8guL0j3xgTNQZrm3JWZ/8/n8LUBTcog+ZTKed1oWvWTqPVhvhKttO4iApQ2m0r7XLyR9Nt1UvuT4s5i1TRCzpGRezcmbpJYa4stEoeoLRQ5uSPp5akfWmFzHih7YnVdvB1uem5OMaJe6Zbv/YsC7Nsoa/hVLCai1KN5EF7wl/SxFzhojETn99iYkxpuY4se/D5Ahw/flxoWw5nn0ceeQT30KDwi41YwKBQliiUxcQnpdn1lXJruSmZFRPLsDYWKDWN3RRNJrYtSOpYdkUqthcDs2KR3C8m1AYoZ3Smn1oQdiAxyybFVEXYUccyrBWpjlohP1OiuCA2zgPaEl0/H3ydbvSSIT4mdcn2GEMkntbKlKItIYHikoXPQyFZYuzns1iCQrh2WTiaXc1gZkNkVQJJXCDY7nUqqxKWhbBwq9220g7ljL4kBVvL9bK6LcISPOWmbtnjJwmhunrRoJwWj8eiwKKRZtoRBz4fwiN+zIq5dLy3QSM3cgUM3b/mc8RqLkpgp8XMzhpI5LFCvpb3UcKiS9FJmwoFq/V7rDUyjGkYPPnkk1xzzTUt13sx2LRpE//P//P/vKT74Ha7qVRWtuVyuVz//sUkkUiQSKzeNhwcHNZGVmR23TzEyOXdPPqVQxy5135/N3dykW//z4fYel0/l/7aVrwhJwWcg4ODg8P5x6nHZ8gmi3iCLkav7Hmpd8fBwcHBweGcRmjm6v777wcg1rF9yec1R6UlmFZ9pbrLp+AOr66HUgJ+lIB/6YeWCZZJoNeDt0Nbf6dWeWmZPpkTdhl6Pmx6Qw+JXSHherLWXpqMwmy5rdRTkw/MrUybtwFm2eTUj2fE3E6q9ZLPpNubGGqDrr0RdrxzULjezFMp4dRrAP1XJ9j0evGBZmJXiNi2oHC9kRt76L9K/CWqqSMs1ns+CAuUsFeSb/vVAfxdHqF6Wkil94o4qk/sOoptCbLj7YPC11+7baX70hjb3j4gXK9d5g9lyE6KC3nGfjZL6pj4BNbYvbPi/YMOmbFCW851yHZqQRFUj8yWX+4jONj6BBTYk6mmyZJUpa0wf3CR8VUcBNYTKIGdJigy4sXSK1jlpZM2lT2jK1yUarg0C4/Xvt+WB+KUB1amzmh2Uaph4GduTsxxy+Hs8+yzz+LqW3m/qTkqNWO6pKqLkoXbZaGs0XSzW8Jkt4SXfCbli8jFIp6QhLRBk19twnfu2Tly4y0KgGpjN9nWK4mmM/XENLouim64nys2K9vCDFEsw7JT0AqKEEqLFVLHxCf487OltuqV0hWhlGbPl97L4wT61u/XVuPMo/OCqaNsQVv/lQk80Q2eC1apFx7xC7tYusMu+q5IoHjEx+pnS6Bkb0z8+gGIbgmS2BHeuOAy/F0efJ3ik46de6NERvwbF1xGO20FoO+qBP4esXFluxglk9xUUfi8l9KVtsRNxfky6VPi47VK3mhbZCa14ewZ6PW29Xy8cuOtbTv5VJLC9ErHrrUESjVcXgmXT0JezCMvLn1OnrgxtsJFCexT5pUs1OrJy/bLZPtX9hXNLkoAlf4ekCQOH17Hhfo8Ih6PrzoOrX12tgRE99xzD3/wB3/Apz71qbOyPQeHVwq+sJtrf+cC3vRHryI22HjHdfin49zxwZ/z3D2nMc/mmMjBwcHBweEcYP+dJwHY/tpBVK31xaQODg4ODg7nI0Jv3vfv348kK6jqygmCJUKlZQ+i80cLHL9b3J2o++IYXRe2YBW87OWlFlIFj8zmzKPzbbkolRZ1Kjmxl76yKrPr3w0R2y4mWFF9Cr2viuMKiM3Sy5qMJ6YJx0VW7Ql+UbSwSmST+GRExwURtr9DXNCRPVMkKZgW5fmQfCbN1OPibSXQ4xUW44DdNmefTQnXG7i2oy1RVDvImszwTV3Ck0KltM7pe2eEXXVUt0JowIfqEbsWMhMFTv98pi1BVTtkJwrMHRRvm92XRNn6lj7het6ERnhY/NqTVYQFXwCugGr3uYIkdoaIbhFPdbHznYN0XrRywmg99KJJabGCJZiippAsc+LOM5TbEFuqPgXZ1bg3bSRQAvBEVfoui+CNiTkpzUwpHDu89Bw0C5VWEygBRKM96LrO6dOnhbbncPZYXFxkfHwcV/fq57BZqGS6msdCEmcWVLJFsWva5ZVIjLhQtI0nhZsnfq1SYUl7bwlJwiiaJJ9NC7uxWYZFOasLizNCQz56L1sp4tsIX4cbX4e4MEPxyG2leJVdGwvFVsMT01B94i/Bei6LtSU2Wjydb8vRpR1M3WTmmZSwU6Csyfg7PcJphCtZnZlnUsJiWnfYRXxnqC0xXDv4uzxENonfSxdP50mdEBfCucMuPBExoRjAwpH2BNTtsngy15Z7ad8VcfFxumQL7hX3WbrWJXuMIVpPccuEh/zC14K/x0P/1eJiEaPUnigqfSLXcFESsQmT7GM0C412tpFACSDUrRDqEu03JU7oGhlrab1modJygRKArLlwx2M89NBDgtt7ZbJ582bGx8fJ5ZaK7g4cOFD//mxwww038IlPfIIPfOADZ2V7Dg6vNLq3x/iVj1/J5e/ZgctrP5OWchXu/+J+vv2HDzBzNPXS7qCDg4ODg8NZInkyzdTBBSRFYscN4ovpHRwcHBwczjeEXm+OjY3hcm0w+d3mSpm6m1LTjNPxH0wy/sDKlCKr0vQSc8sv9dG1NyK8D+06G43fN0ta0ELfNE0mHkwKv7DXgirhET+K4L4G+7xs+aU+NEFxU2RzkB3vHEJWxbYXHgrQf2WHUB2A/GyRhaMrV8FuRG66yOzTKeF6vVfGGX7t6pO/65GfLbWVdurkPdOM3bvSYWUjspMFCrPi7lmKKiO3sfq5XRSXgiyLbc8sm6RP5IQnAvOzJQ7ePibsKlbJ6qSP54QdpsLDfra9fUD4WshOFkg+I55eKDddJHVcfKV8fFuI7kvFRDwA/a/uZORGcXew/qsSDFwtfq0HB3wEetpw4HhsntRx8YnV0z+ZaW+CVG7j3iDDjrcPEtsSAMtqSaAEkJspc+g70xSS9qR/zU1pLQellSxt1Ks5KjXTNzAMwB133NHi7zucbWoTddoaIqUa5gqBUGtjsZqbkpS3nUrKOYszB8roxdbqy50JzHwef7eHvsvFxT/tuHOA7UCycER8rJCfaW+M4YlpeOPiIqXE9hDRNgTbnRdGiYyKC0/i24L4O8SF0NnJQltpQrOTBWERp+yS6LkshjssJsa0TNtBxhRMS1rJ6kw+PIdeEBNLmLpFcb4s7lIkITxOeD5IMm2N8yo5va1zPn84w/xh8WuolK60JVhJ7AoRGhJzQQRbkF7JiR9fZqJAuY16HbsjwuIt2SXTf2WHsDuY6lXovTSOFhS7hmSXTKDXIyycLC6UmTuwKCy8K8yV204l2c69ITzoo3ufvbjJLBRaEigBLIzpzJ9snPOam9JqDkorWXmvXM1RqZl4RwdPPvlkS/v2Sue6667DMAy+/e1v1z8rl8t8//vfZ+fOnXR1iT+jOzg4vDTIiszu1w3z9r94NZuv7q1/njyxyLf/54P8/PPPUlwUf5/l4ODg4ODwcmL/nacAGLmsG3/s7Dj7Ojg4ODg4vJwRUqxkMhl8wbWdPfJXbMV3/6EVn2//lQTJQ3mSz62daswql5E1F2apkabC1MHUW3yhbTVeEo79fJZiWuwB2B1xsfWX+zn5k2kyAinRbPcRVXy1rklbL/nz0yWe+6q460VmosDJH00JTyZlxwuMG7PCrjOzz6ZYOCruHpM7UxROHQXg7dCQZZnctFjd4lwZ3SM+aRLZ5MesWMLp89olsTNEKV0hMyEmsjj5o+kXaY9WYpZNjn1vUrierMokdodIHc+2tepdFNWnEN0UYOFIBr3Yersu5yrk2hC5qD4Zf6dXWMiYGSuQGRPf3uSj4g5fAMn9aZQ2JlbPPNbe9k7cNdVWvYUj4gIlsB3hJFUWTkG59Vf6KSRLYuJCE07/fIbCTAlJVbHKZSSthUlIE/T80jZpDfWiLhbRQ+s93JrsusBkekomuSzT6ZZ/neSpj64+yWPIwwBMTIinMXQ4Oxw/fhwAdZ3J1lNvlBj44dLPQl6TaMDk1KzKejPLWkqn3OHHfapx7zQEjHHM5DxyIEAhmUdvQ4AQ3RzA5VOZfnJBqJ6iyVimhSnojlbJGcLOl2Cn0WyH+cOZ5uFpyywcybTl9jf5yLxw6iigLdE1EngiGuVMRew8WLZLnSEoTJZdEr6Em/xsSfi8t4PqUfDENVvcKrC5UqrCbCr1ou3XcrJnitDGuNkddqG4ZfIzZyc9oCdm3wNFheWldEVorFZDC6qYhiXcL7U1rrdg/IFZ4XZp6iazz6YoCY599YLB9C8WhJ/pKlmdiQfFU7waRZN8sb12onhkjJIpdA15YhqdeyKMP5AUimlupkSx6uymRCJY6QxSeGM3WXOVMGa2hAmdNFgcXtthKSbrxBWDI5WVAtZP/ulnePd3//Pq+9nTyeLYmQ336+XOv/7rv5LNZuup2+6//35mZuxB6q/+6q8SCATYuXMn119/PZ/73OdIpVL09fVx5513MjU1xYc+9KGXcvcdHBzaxBdxc937L2Tb9QM8cNt+FsayYMGhn4xx8tEpLn3nVrZdP2CnYHZwcHBwcHgFUUiXOPaAPS+y+3VDL/HeODg4ODg4vDxoeUa6XC5jGAYeT2TV763qM2b+qm0rvps7XCA309pLadltv+hTfQrDr+2sv9Rel2UzQHb6CcEXt3mDiYeSFJJiL/qD/X62vWVAON2RJ6qR2BkSqvN8MMumPQkl+J6/nNXbEwWsMtneCp64hrdDPI1E1wVRel4l7h4zfyjDzFMp4Xrx7WFiW8TTqI3c3E3vq8TdJmI7QgQHxVeSvxyQNYnOPRG8MTGXCnfExba39ePrEqwXdtF1UVQ4ZWJhtsz4/UnhieNgn4/BazuF0yaqHpnggLjTkFk2hV2pwBZAiorgwBb6FQVT9T0f/D2etlJJDlzXxcA14o5P008uMHdIXHCZPp5bMoFolVuLUc/FIRLbq8e3pdWHWpnkrER+WVe966+eAeDCj6++Yt/tsfvMY8eOtbgdh7PN2NgYkUikPjZajqXa45+xm5Z+XqzILGRlWrW+KA3Z9yV/XCbY2VraGzPZECgaJZPigmA/YFlkJwvCAk6A+I4Q0Tbuwd6EW9hR8vlQyRvCDj5QdZ1pQ0xlGRaWqKOpZN8XRVNAKZpM5wURYTcXU7dIHc8Kx0X1KES3BIWdRN0hFz2XxoTruQIq0dHAK3YSzZtwE+wTH1dGRv3Et4s/vwR6vAQE0wGDLaArJMUFMrGtwbaOz+VXUb3iKRPNiiUuELRstyFRdzAsu4+wjBdfrAeAZKcVFE1n5/Ip9L0qIdxHVLI6yQNp+/gEVJ56waCUWqqytdIbC0xdHonYkFpPn5e+uDVX0bwlkzRUlp/4z97yaQC+/KbPrlpPjkYYGxvDakfB+jLia1/7Gl/4whf45je/CcC9997LF77wBb7whS+QyTTOy0c+8hHe/va3c9ddd/E3f/M36LrOn/3Zn7F3796ztq/33HMPf/AHf8CnPvWps7ZNB4dXOj07Yrzl41dx+bu346reV0vZCvd9YT/f/qMHmT2Weml30MHBwcHB4QXm4I/HMHWLjtEwHZsjL/XuODg4ODg4vCxoeaamlnLE41spsLCWvb/PX7VtiaPS7IG1J6BWm7iV3W4UzUT1qhvPry17weeOuIgM+5l9dlFITGCWzbZWyuemCpz+2YzwatZAn5fufVGSB8QmvxO7QkQ3BTjybTHHmvCwHy2oMiuYdirY78XlU4VdnzouiKB6ZM48Iuay0r03iupXOCp4fOP3zyK14QKjhVXMivhK63Ycg8BOZ1fOiE88Hv7X8ba2t+PXBlk4lmWqTXcdEWRNZuevDTL50JxQe9HzBs9++aTw9oyyQW6qiF4Ui2fuTJFn/1F8e8jgjWmUUuVVV12vRfpEntz0mLATQHDAT/+VCZ772imhuv4eDx27w7aLlsAmPXGNUL9PWLTn7/IQGvRxRrCNdewJEx7yc/S7YtdSbEsQb8JN6piYsGH68XmsNixG2k1VEtkcQnZJLBxp1G/FUUl1K/Zk5zKBkrpoC2jXclSaPrN0UrUmUKpx4cef5KmPXrTkM1mW8fv9nDx5ct19cnjpGB8fp7+/n9V61JpAqcbYTdQdlcq6RFlfe6JdS63sxEpDcYKFFHILI8NmgRJAYDiKUbEoTKQ2rgz1sVs76aYAFo5lhSava0Q3BcjNFIXHbF0XRclOFoTdGsNDfvLJopjgSLIFHcX5stD9TVIkYluDLJ7OC6W5UjSZrr1RZp5OCQnNjJLJxENJYYGFJEsoHtkWKQmcwnJGbytdrlExKcyXMQUFHYVkibGfi2/P3+0htjXY1r62Q3jEj6/DLTzeTh1rz5WwnNWRVXEhdHK/eNpbsNsnsu3mI8LsM2lxwR4Q3x6ktKgLp5MMj/jRC/a4VARfpxu9aFJeFLCww36OrGR1Smmxet0XR1k8nSc/27rwS5Ik4ttDJA+kherpRYOZp1PCafeMsrl0O5a1JK37mvupSIS2dFCYr2CUG+d+Q0clCRRVQlZg/qKlAqXQSbsPXs1RqWjJLM+MWhMo1fjymz67wlEpEgiyUCwyOTlJX9/aDtUvd26//faWyrndbt7//vfz/ve//0Xeo7W54YYbuOGGGzh06BDve9/7XrL9cHB4pSGrMrtfP8Lo5T08/C+HOHa//dw/ezzNt/7oQba/ZoBL3rEVT1B8kaKDg4ODg8O5hKmbPHe3nflk1+uGkFp4fnFwcHBwcHAQcFJ69tlnAfAFOpd8vlygVKPmqKT6ZEL9boEt2VQKMke/O7m+Q8cqE1SemEZid6SlSbYl9eIa8e3iq/L1omm7AAi+r08+m+bZfzopvL1yRifXxopiX6ebyGhAuF54OEC8Dccn2SWhesRXIo8/mOT0T2c2LrgMvWgKp3ECGLq2k/4rxJ2N2mX6iZTwxMfzYfbplFD6wueDqZtMP7lAbkY87Ug76HmT8fuSwq5p7eLv8LD5jX144mLOTaZutpXGLn0qx5FvTwiLm2SXjOpWkGWxTjfQ5aHzgohQHQBvQmurbylndPJt9GVj981y+N/ERXv52RKFWXHHJ1+Xm9hW8XtDeNhHdJW4bOSoNPbAAtMFcVc4n88kELTbynKBUo3VHJX8fj+ps5iayEGMyclJent7V3y+XKBUo+ao5HGZuNYosx5Jb4T05PrCmOUCJQB/p4Y32uLAq2ns5ut04/KLjxUqWb0tp6HJh+facm4qpcvoJcHtSRDo9eDyiQ1IJVmy0+AJOj5Jki3okATH20bZZPKROWGxA9hCJUtw/KsFVXovjbc1RmwHvWCQOpY9a64zpcUKC0fbEwC1QyFZaqtNt0t+pmSnwDtLRLcE2nIuNcpmW2kBZ/enSZ8UP3+KJiMp4i+iw0N+vHHxydlAtwctKO4KV0xVhFMtWqbF6XtnhARKdj0oLpTbuvb8XZ6ljlYtiFJlVSLcr63qXLqeo1KlYDF7rML8Ba05KNWQsAhIBkpVbblcoFRjuaOSGrGfq8fH21uA4uDg4PBywxf1cP0tF/LGP7yMaH/1+diCgz8a4+sfvJeDPxlrS1js4ODg4OBwrnDikSnyqRLeiJuRy8WeKxwcHBwcHM5nWn67OT09DYDmCdc/W0ugVCN/1TZ6J0/Re3GIw99NLplsbzX1zZqs8bIyfTxH+rj4y/rwkI/EjjBzB8UEJIFeL96Em9mnU8LbFBU2gZ3KbrEN0YnoCusa4/e1txJ8+vGFtuqJOhrV6NoXwSiZJPeLOVONP5DEamOTg9d1UlwoC7vOuCMujLIhnApv5KZuMuN5Yect0fLPCxNhpy6wV9iNvr6b6ScX7JSELVcET0SjvKgLuaa5AiqD13Zy5pE5oQmXwlyZE3dPUZwTm8jVwipde2NMPz4v5N5hlk2KbfSTmdP5toRpyQOLbbWX5P5F4esOIH0y197Eahv9JtgOU/5Oj/A1GxkJEB7yC7mDSarK6Z8m1/y+FUeltVjLUamrx0JVLbT/vH/d+ssdlVRVJZ8/O0JGB3HS6TSJRGLJZ2sJlGqM3QSXP2ZS0iG5uHSYt5qDkgirCZSg4ZgpBwKY2XUm+JeN3aKbg2TG81RyYm0w2O+lmKq0JU5uw1CNVBvjSiyYeHBOvJphteXCY+pWW+lrsWgrJZ3ikQkN+Fk8lRMSPZSzOlNPLmAIir60oEpkJEDyQFpIfCIpEoomCx+jJ6oRGhR3F9TzBtn82RPxlDN6W45kgR4P7rBL+LlHdslIirizUbDfi+pRhAVcqeO5VrNWLiHQ4wFJEhZUiR5XjXbceAFhF8oaU20+Z7XroNVOvwm241M5XRF2r4ttDzJ/OLP0ut3IUckbYuKxtY9vQ0eldVjNUUkFBl0VTlU0/s/7/3bd+s2OSrmAPUFfqYgLQ19IMpkM999/P6973ete0v04F7jnnnu45557yK43fnFwcHje9OyI85Y/uYpn7zrFk/96hErRsFPAff5ZDv1kjKt+cxeJ0fDGP+Tg4ODg4HCOsf/OUwDsuGEApY1MHw4ODg4ODucrLd81k0l7wtXttlf/bSRQqjHZO8DRO8UFSomdAXa9ewTZvYprSRspPjZi+okU+79ySriev8dDbKu4i0jHBREGXt0hXE/1KWiCq+tfTnTsCZNow7nJHdLQgi7heoVkWSi9SQ2zYgoJY2qM3NhN596ocD29aGBUxNt9eNiPOyIel3aJbPKjhcTbp14whFOxuHwqW36pj+CAV6ieZVoYFQNLsB8xdZPsZEH4vMuqjCfqQtbEHlK0sEr/1R2ovlfmw42syXii4kKd0KCPTW8QX5US6PIQ2yY+OTX50BzPfe10y+UltbX2v+p9cMsQva8fYsvFG99ga2KlGmOnJLT/cGiN0ktpdlTyer2USuKOVg5nh8XFRUKhxj1xI4FSjUcvVpjPLHWqaUWg1Ndn4LkgSmlopcPgWgKl5ciBNcZEq/S5Ew8k2xJehwb9wi4ikmyPMdwh8Xui6lWQ5FemXbfilolsCthptQSQFdk+B4JhsQyL8mJF2IEJCwzdFH4E8MY0ei+LC7vcWKYl7DgDtnjLEzt7aUtUr9LWvdQ0rCUpsVolPOyjY5f4BKJl0pazkV4w2lrAoHpVXD5xt65Ajwd/9+ppVV8JKG4Z2SXel8W2BtuKS2jAh9ZGnzt27yy5M6s4s67RASiRSEu/u5qj0uLF3cRfFyfg3vh6r4mVACrA4bKbT/7OZ9eu0ETNUUly29frwkJ7QrMXiunpaT7xiU+8pPtwrnDDDTfwiU98gg984AMv9a44OLzikVWZC944wtv+z6sZvaLxTD97NM03//AB7v/iforZ57mg1cHBwcHB4SwyczTFzNEUsiqx/bWDL/XuODg4ODg4vKxoeUZibs5eDa65gy0LlGqbKGfFX/Lnpksk96+yKnWD2YnE7jAjN3cLbw9oy6Fj+vEFDt0hbtcuKpCo0XtZnKEbusTrXRln8LrOjQsur3d5nN420qGN3NzN8E3i++mNu/HExNJpAZz+6QyTD4k7FiR2hwmP+IXrjd+fbMs9ZuzeWZLPirsNjd0721aauP4rE0RGxY+vLWQYuLqTUL9PqJqpm5y8Z3r1yYh1qOR1Tt4zRe6M2Cp5PW9w8ofTFJJiL79Uj0zPpTFhEVZxrsyRb05QnBfdnoKvy43sEps4Dg542f3uYbSw2H76uzxsflOvsCgqOOhj61v6hEVYsc0Btry5TzgVKCAsaAOY/kWKg7ePiW9MgGaBUmyrn9HXrd8HriZUWpyDuck2JnJ1GbTWb2I1oZLX6xVODehw9lhcXCQYtMV1rQqUAAxJwhQbrAGQSkkUCivrbSRQ6tzlX5LubYVQ6QUWl088kBS+ZwDiwhjsFEK9l8XxRMUm2hVNpvviqLCYSnHLdF4QERZYuPwKA9d0CAvZZUXCE9WQVLH2UsnpTD+xgFESC6rikQkN+oRFQ+WsztyBReHUUcWFMtNPLgjXK6UrzD0nPs7zxtx07D57LgD+zvYEuPmZEqnj4q4hmbGCsPsSQHay0JZ7ojeu4e8SF8ekjmfbSrvnCrhw+cXF9h17wsS3iy+yiGwKEBoQGzcDxLeHCA2J1+u8IEJosM3ngja68cmH5tpLD7jetpbdT5oFSoltXnzx9c/fcqGSBcxlFUq66D1TQkdCklsPzJff9FncHvs59/Dhw4LbE2N6enrdf7UFaA4ODg4vBf6Yh9d8YC9v+OhlRPqq9yULnrvnNHd88F4O/XRlCjjDMnk0c5QfzD/Bo5mjGO0M7B0cHBwcHF5g9t95EoBNV/TiC4vPaTk4ODg4OJzPtPwWtua0oGgaImqeSNAg+vZhTky68P5k/TQ0zRTmKhSqaZVktxuzVGppkksv6FRy4ituEztDeDs8jP1sRrhuOyTbSIsFMPNUSni1O0A5XcFwicfFqJhtTS4uHM20NSd5+qdnJ/41wkN+iqkS6RNiEyeyCqaJsLAtNy0+qQq26wymiSmY0ePQN8cwz9ZCNBOe+/qpJa5praJ6ZPSyKRZPEzIT7aVUkVVZ2BFJ9apENgVYHM9TXnx+KZNaIT9d4vC/igsgSwsVZp5OoRfEjs80THTB9Dtg97mFOfFGljqZo7RYEb6G2k152S7hUT+xLUFO3DW1brnlDkpG2WopFVU99duWIQCyAgvra25K2/7hCK4pP8rhKMXNrf/AhR97kvve56JYbK9fcnjxKZfLaJqGpZhCE8R9JYP09RKLqsymr7feX+VytUlai9JQDPep+ZYclCoF8/9n7z3D5LgOM923qqtznunJAYOcCBAkmKMCRImkAqlE7toKtqwre3dlr7yS7OvrteSV17LCtb1ea+21vNeyLdmSlRNFUaQkSswJJAEix8mpc66ucH9Ud0+e6VMEQZCo93nwkDNTp6vq1KlTp+t85/usZ+I8mtFvqwwGOi6JkhstUc289LE3pgGzL4iPvQzdZOrZNLWiWL9vGibVbM2We4xeM4QFVbpqkD5VEO7HayWdyafsRU7ZQfG6CPf5KU5W0AWFQ5IsLZmwWgtDM61njSiSJeASvX7FyTKlmfPXp+ZGSuTHxJ+JkgxIkrB4S6vYi2VGspK6RNu1L+7B5XXZHj+LYmdBAFgiLDtzpUbNwBBs0wBqUROOTARIHslh2HBmFYm8PRe0bQ1TSakrxzLXo98WOyhpVaOle7YR/Zbday1sypYb363XLhs5Yz0LPv2ZvyU52k85H8QXav175P9+yz/who9bIvGXkne/+91Iq8Tjmaa56t8dHBwczge9O9u589M38MKPzvDMt06gVXUq+Rq//LuDHP3ZKNf92g4SQ1HuTz/PZ0e+zVRtbizf5Y7y8YE72Rff/TKegYODg4PDxUwxXeHU49b74p1vXPcyH42Dg4ODg8Mrj5ZFSo1JzMu3CbqBKCYeBeIRFbm7r+VykssSEjRXaC+e/VqD+EaxCDYl6MKlyMSGxFaXukMuZLdMNf3ST7CdCzovFY8aA+jcZa8cN9orJoqvzY2pWyvfRQkkvLRtElv97E94MFTxiS930IWumRiCzgOBTi9aRT8v4hiAQJeXgXCC7stsXncRZMsJoJpVhYU17rCCXtbExFsuCHb4KKdV4esAsOEWsagxWQFfm5dKWrU1MWSXLhuxggDb32XvS1VsvXjs5fnE5ZNxBxUqgoIql1fGHXQR6l5jMmmFiZ5oK88Ulww+a4JMlq3JY12gTQceGUSqupA0Gc+0qKPGUcdJ6QJGVVWGh4e5rF3s/oprBhVJouySiK9rvZ9TFBPDAMOw2rMSVjCrrbnChLqWRk6Zqn/VOd9Ap5dQnx9dRNwqQbDbRzVdsy+YOI+E+8TdTsB6LtqhbZO4q44dXF6ZQKePwkQZ04YQq+/ahND2SsBFsNNHbrgoJAaR3RLugCI8PnQHFQIdXlvuP3bwRNz4Ym5k5fz0x764ByXgoiAo9lZ8LiRFakmEOx9/uwfZI9tyQAMYvFnMDdbf7gFZorySyOUCw/Z9u/3cHse5JtBR//6SF28vWkVfdeGRpCjgXvoqY7ln0bKEQyQSVr/gdpnoBkIOhGeev5R8sg1vsIjH13o70zQDOI26XOzvOSQcDvOBD3yAPXv2LPv3s2fP8slPfvIlPQYHBweHVnApMrvfsoGN1/Xw2FeOcPoxa7J3+niG7/4/j1B5h8HfrXtgSbnpWpaPnvoSn9/wfkeo5ODgcNFz+PBh7r33Xvbv38/k5CSRSISdO3fyG7/xGwwMDKxa9tlnn+WrX/0qx48fJ5vNEgqF2LRpE+973/vYtWvXgm0Nw+D73/8+3/3udxkbG8Pn87Flyxbe+973Ltn2YuDI/cOYuknXljiJDefPUdnBwcHBweHVQssiJbfbirn493fcz2f/7k1CO/GOLly5bmbXXskeHQoQ6vIyuT+Dqc17QbmGWElygeSSMdTzY/0b7PPjCSjCK2/bd0ZwB9xMPikWURbo9OJyy8IOMrJHBhkMUZcbF0iAKTgP6Ila7UUVnBTqvDSGVjVIHRGL2Aj3+9FVg9L0+ZmMCHR60aqG8Pl1X9lOJVUlc1IsgiLQ6UUri7/kb98eoZysCtdL/00d5M4WyZ0VW52fuCRKYbxCJSWwv/qEcyWtCk1Uyx6Z3ivbSJ0oCE1CSS4IdPkpz1bPSz8he2QiAwFyYyWh+88TdtOxK8LMwRyqgBhO9sj4Ym5KySqI3LcSyC6E3bokF7i8LrSSWCfhCSsEOn1kTheE3JRCfX7im8KM/HJaqJw/4SXY7bMVt9gqkmtePJMMslteWwjna1gBF6AjTrQTghGJydNrT/rPvqMxme2HEOzuGBc63ndHj/DDcxzD5XBuURSF9vZ2Pvem73L7z97RcrmzXogdstpHtq51CY2uPSHa3W1QLEoUixKekYa7jmw5Iq2CrEhWDOO85mSW5o1TVmhnySNrHtJSJNDKOqWZipBzpqxIdO6Jkz6RF3JukmQIdNafUaLRZh4ZXRN0CazvU9SVRZKt54Za0ITccdxBF7GNIVJH8ugCz0SXR6Y4VaE0UxV247GD7JbIhtxUMqqQq5g35ia6LkjyWE7oOrg8lkC1IrgIwRNW8LV5hMdPwW4fhuojKTj+9cbceEJu8qNi+1P81iILkfEFQKjXjyeskDoq9r3HHXQhuaTzJrb3xtxIsiQctduIIhR1WHUHXZiG1TeJIMn17lHwFpLdEqaJsEDQ3+5BVw3h7xOJnVGq2ZpwO1MLftSCds7d8iSvZ97/zwk6ZZdVn2v1n2ZnG+QNGC9TGgrRH9coVGQK1bVFgt53zwDwTTZAJ/xm37NCx769fsleahejLVu2kM/nWb9+/bJ/13Xddvz8q43777+f+++/n8IaYx0HB4eXlmC7n9f/9mWMvXaWR750iOxEER2Tf2l7yHpOLuo2G7/67Mh3eG3sElySs/DGwcHh4uVf/uVfOHDgAK997WvZuHEjyWSSb3/72/zGb/wGf/M3f8OGDRtWLDs6Ooosy7ztbW+jra2NfD7PT37yEz784Q/zmc98hquvvrq57f/6X/+Lf/u3f+OWW27hjjvuoFAo8L3vfY/f/u3f5gtf+AI7duw4H6d7QaDXdA4/MALAzjc5LkoODg4ODg52aFmk5PFYLwM3DJzk//vM3/DmD3645Z0Ezy58EWpMrv3iN32qiKzIaCUDQ130YtNY+QVw79XtRNcHOfzV4ZaPr4mM8ETS7CGxyYQG1WwN2S0Lr9AeSHQge1zC+x16fRdK0MWJ74lNYq+/pRvZLXPyh2LlNtzag2nC+KNiIixkCb1qCIu+7F6HoX1dVDIqk08JZCwBHLK1O9vHaXd/0aEghckKqSNi9dm9t438WEXseGWIbw6THysJT+7MvmCvXqafzdgqxwHx/XkiCkOv72L0kVlKU2KiLzvH6Q4pIMHMwayQY0F4MEDXpXEm96dRs62Xi24IMnhjJ0e+OSK0v/jmEN2Xt3P4a2JRf/HNIWIbw6SO5ISEUbnREoWxsv176SWmEfvWdVmM9q0hDn115cg+ORQE5oQcphonPQWybKK1MK86Elv487a+1u/zP+l6yNqn2Y6itDwUcDjPKIqC3++nO5Hm6Xf9Peu/83+1XFauuRb8LBXXfnF/+nR94tuU0FLzx1p+jOzK91z/NVEyp8sUpq2Gu6yo6RxOhhYnxd1YJNmK/qqkVSExjuyWiG4IkRsuUUm3LnhweWX6rkkw/XxGqJzid9F7VTtTz6aF3H/cQRdtWyJMPpMSEiC4vDKmAYXJsrDbX25EPGbMG3ET3xxi+vmMDXdB8YjX4lRFWFDzYjB0L+6QIhxPJntkPDbKIVnOs+crDu187adBdCiIyysLX0O7x2kaJpIsCZfvvDSGrhrC3+u6LotTK2nC59e9N041pwl/Xwr1+KiVdeHz02sGRk1c3GS7vUisKNySfT5gfp+qItWj03r3hsiPq+SnV+5zzb4umKdXz1dcHJuSMerPvrXQQgufH+G21r9DXu+TyeSsZ/FLHbV7xx13rLqPrq4ufv/3f/8lPYZXCvv27WPfvn0cPXqUD37wgy/34Tg4vKL5p6mf889TD774D3of1CoaZVWl4l95PGwCU7UMr3vuE3jkc/Od9hZzGzu4eCbZHRwcXh28+93v5o/+6I+aJgMAr3vd6/i1X/s1vvKVr/Bf/+t/XbHsm9/8Zt785jcv+N2dd97J3Xffzde//vWmSEnTNL773e/ymte8hj/8wz9sbvua17yGu+++m5/85CcXlUjp5KMTVHIqwTYfQ1d0vdyH4+Dg4ODg8Iqk5W9xsVgMgKkZg4E+mR988X+2JFTqLyTp2ufnyP1zEwtydyfG5PSq5QwVtMIKQgDZtaJQKXU8b+uFaM+VbcQ2hoTFTbJHRlZAK4mpm0SdkBqM/GLGVrmp59JILvEVmzMHs0iutbdbzPDPpsQLgW2XE3+HB1NDaCIQoJKtCb9wB4htDFIr6bZjK0Rp2xqmklGFxTEn75l4iY5oGQw4/t0x8XIyJLZHyI2UzssKe1mRadsSIjtcEhLjGJpJOSXupCErMsEuL8WpKobWetlaQWP8MUGRH5AfLXH0myOoglEspekqY4/OolfEyuXHSpz92RSaoCtV+niB9HHxFctqTrMlUJIVGdkjCTs+dV/ZRtumMIf+9WxL25uahqQoZE4XVu2PLIHSQqSz45iAtq53zf0M/9FCwcn2KciMbCV249E1yzYESmBNkun6hR+ZdbESDocXrOw/fcfftSRU2ntYp+A1SVbnhnnZDV6ip1Z/hhiGhPfE8s9vORpZUag0e7RIrX5vrei6JElLhEr9N3aQOVUQjpyS3TKmbgi5DZmGvQlzo2Yy9vCscDldNZh6Li0ci6VXDWYPZamVxMrVSrrVh9fE+mK9Ki6sAJBcEp6gglqoCV0HQzOsqFxBfZLLK+OLeShOV4TL2kHxufDG3MKCuPJslfLs+YsYK05WbIn2PGEFl9d13o7VE3EjK+LORlpZFxo7NVACLiRo9kutUrIZDzf7gr3vL5nTBVtOZKljeQwbMYtTNsX9otetgdVXm5iG2LH2X99B9nRhyfdlS6C0FLNcRvL7SZ0oryqYN/uWTh6Ej1rXLr917XgG/3+YW7QjGdA/6uUzpTv5vZ3fXrPs9fVY32rVmmzfvHnzmmVeDDfddNOqfw+Hw9x6660v6TE4ODhcfBT1CtO1c+Rc7ALWSFxvkNGLYi7Sq1BWXto4TgcHB4eXguWi1gYGBhgaGuLs2dbeZ87H5/MRjUYXvI/SdZ1qtUo8Hl+wbTweR5ZlvF7v4o951WKaJi/ca9XrjlsGz1tsu4ODg4ODw6uNlkVK7e3tAExO6Qz0WcXWEioFD09Rjsokz2pLXIrk7k6AFcVKwS4PbZtinH1wZnl3oxWESpWUautFauZMwZo0EaRrT4zYBnFxk6/dg7/NY2uS3g7lWXtftAvj9sRUIo4q8/FEFWRZFhYb9V2bQCvqnHlATBw1+WRq7Y2WoXNPnPJMVViktP6WbkqzFaaeyQiV69oTJ3umKCxSeiWgeGR6rmhHV03UXOsrwpWAi/W3dDP+eFLoOrhDLnqubKda0IQmj7WSzsiD4iJBf7uHoX3dnLx3XOj6yR4Zf9xDcaYi5vBmICxQAksUlTom7jahlQxyw+JuGnbxJzx4o24yJ8Um1Tv3RGnbEuHQv4h9Oc+eKQjH4ZiaRjUD1czy12E5gVKD9i1+XL0wdXr5vy8WJzVIBqDghSfPbOUNQysLleYLlABKpdJF9SLhlUYkEiGXWygMWkuolHjKRcYNqrFUmJzdYF3rlcRK0aiBHHdRSi//ln8loVIlbbX1tWLhFguVUkdztvqrvmvbSZ8oCI9R/AkvtaImHMlkCxNbEUemYdoTSpgIOUQ1kcATVKiVdSGxhCeo0HVZnPEnkkL1WSvptsa+npBC+7YI5ZSKISDE8sbcxDaEmH4uI3R+3qib9q0RS9j2KkxECnT48Ld7hEVKkcEA7oCLpKBDZ6jHhzugCH9Hs+vEE1sfRJIlZg6ITZQqfhemYQoL0u0IhsBeHwHYWmDxYgh0eFEL4n1n79VtZM8UyY+K9dWpY0ufDSsJlBqY5TKVVWazlxMogeWyF++WqCoGqrb8GGu+OGk+2ahGzW3yydNv45Prv7vivhsCJYBC0Wpbiyd3HBwcHF4NBF0+Ot1riz5bRTU0S4C0BjFX8Jw5KflNz9obOTg4OLwCME2TdDrN0NBQS9sXi0VqtRrZbJYf//jHnD59mve85z3Nv3u9Xnbs2MG9997Lzp07ufTSSykUCvzjP/4j4XCYt771rat+/uzsLMnk3GJcO+KpC4Wpo2mSZ3K43DJbXzvwch+Og4ODg4PDK5aWv8V1dHQAMDm18KXtSkKl4GFLLFLJGlSydiZNDDwhBVmRMVaadFlGqOSJKsSGQkwfyAhN7JdnVMoz4kKe9PGCrRXMsQ0h2jaFhSdqOnZFCfX6Of3jSaFy4T4/3jYPs4Iv64M9PtwBl7AgIHFJFJdXZuppsRi1vqsTyIok7AA0/OA0po05RyVgvTQWdcI69u1R4WhAsGL+1Lz4gR7+mo34QmDbuwZIn8wLi6LsICsy2+8aYPyJlFD8hFYxOPCPKygyVsMwqaRrwpOy1UyNA/98Wvz6ydYkqVrQhMoWZyoc/8GYsPAu3Odn8Cbx+LVAl5fEjiijD8+u3Hcugy/uIdTjE3YpCnb5CPb4hCPt2raFadsc5sT3xaIkYxtCxDaEhPuk9ImCLbGm3WdDeNCPS5HJnFp4nKsJlMBy7/BUCkBIaH/T4bn//8kKQqXFAiWw7JoDgYDQvhzOH5FIhGx26XN7JaFS4inL+jBbs2GBCPhnM9Tcq2+znFDJ3+bG0AzKrQxp5gmVStP2hLczB7PUiuKT9O3bIsu6c6xF12VxcsNFyknBfrzfTyWtUisKPPclCHb6qGRVdAHBt6xIxDaEyI+WhNxjFJ+L7r1twvFyaqFmCZQqgmMaCVwe2Xp2C+g6ykmV4V9MCwuGjJppCToEyxWnKrYEMsEuH/HNIUYfEnffskN0XRB/h5fJp8RE95lTBTKnxPenVXRboq3U0bwV4SWI7JYBUzgaMH28YGt/7VvD1Mq6cPxaZDCAXjWE20ygw0utrAs7roV6/ah5cTfYjt0xSjbadvu2CGkbrnezL+SolcX76sXPhrUESmCJjYKdbioZDV1d2F5WEiiB9UhSPBA+lSc52PrEuilDLjrX/60kVJovUAI4M+ar79dGA3VwcHC4wHlv12t4b9drztnn6abBrQc+xXQtu/zww4Roxc83Bj5Kx7pzI446dOjQOfkcBwcHh5ebn/zkJ8zMzPDrv/7rLW3/iU98gieeeAIAt9vNW9/6Vt773vcu2OYP//AP+eQnP8mf/MmfNH/X29vLF77wBXp7V3eF/973vseXvvSlJb8/ffr0K87h/eg3rUXM7TsDnBo50VKZQqFwUT1jLrbzhYvvnC+284WL75wvtvOFi++cX8rzbTUCtmWR0qZNmwA4earGYs/dxUKlhkAJABnCCZlyxkBbZm5nOUclQ62RH66RH27hRegioVIg4aVzd4zU8ZyQ8EQJuIgMBsicyGMIvEutpFVh8QHA5NMppveLu/jUShpqQXzVbajPT7g/ICxSim8MEez2CQsCPEEFxS8+STr2uL1JHTVrb0Xxutd2o9d0ztwnGE9nzyiK8cfF47teDMmjeUoz5yeSzjAMZg9nKSfPj9uTVjEYeXD12MgVsXH9wj1+hvZ1W4IjkYlqA7Ht6+THypy8d1w48kfxuvBG3WCInWS430/XZXFhkVKgy0f7toiwSEmvGEIT4g0mnkjZiiupZmq2HAvCA34wxCM640N+FL+yQKS0lkAJYOp5S+UhkcOcF/u2koNSg/YilBUo1U2RFgiVDIPP/OBeah8Igbzwc0qlEj09Pa2cksPLQGdnJwcPHlz2b4uFSg2BEoBbNnFJJhV9+XaznKOS98QUrcqKFwuVQu0mal6n5bukLlTyRt2W45CgW5nd6KGxR2dtRSvVipotp5TouiBGzRQTKWEJAmYPZylVxJ6n7pCCpMiI5F1oFZ2Jp1PCUZimgS1HKk9IofvyNiaeSokLzWyIY2pFTUg4/WJRCzVb8Xl2qWRUtOr5e6FrV1gI2Lp+7dvCmIZ4nJotVzGscbNoNBmAO+BanGbZErGNIYqTFbKCIqXIQID8WElYpFQrarbqZvThGVvnZ+c7suSS8Ld7qKRUDM1sSaAElqAt1udiJlNCZ05tu5pACazXCNNnrJMLH80uiH1byUEJQNbBo0pUfGZTENcUKpkm0ccrXHLzUhH49Ix1v3Z3d7d0XueS17zmNfzzP/8zAwPOau/53H///dx///0L4kwcHBwuDFySzMcH7uSjp76ExKKhRP2H6+7bzPdOPcrON67j8ndswhNYY8WFg4ODw0XA2bNn+Yu/+At27tzJm970ppbKfOhDH+Kuu+5ienqae++9F03TloiHAoEA69evZ+fOnezdu5dUKsVXvvIV/uAP/oC//uu/JhaLrfj5b33rW7n++usXHOOf/MmfsH79erZu3WrrPF8OCskyjx61FpPfcPce2gbDa5SwOHToUMsTtq8GLrbzhYvvnC+284WL75wvtvOFi++cL4TzbTkw9fLLLwfgxKnlX4b+4Iv/E1gkUMJamThwmY9gojXBiqHasL2X5z47c7LIwX8+I+yM42/30Hd1Ak9YzNrXE1Lo3BND9ghmzxoIiaEaZE4WGXtYXOgy8USKY98aFS43+sgsR78hXm788STDPxcXkKhZzZbgqG1bmM49MeFyE08lmdov5vYE0HtNO12Xi+9PCbhQfOI5xYOv7SSxMyJcbub5jHAknW0MmHomIzx5rPhkNtzWQ7CntUmIJjJ4IopAL2bha/Ow/o3dVlkBijNVzv5sSrh9Bjq89N+QQNR93FANKx5OcC4pN1zi+HfGhPuXmQNZDn75jFghrDYmGncJkD1TZOQX4vF5gJBDVIPYxiDR9WuLhBbTuStG4hLxVZlnfzrNyR/OTW61IlBajHS2dZepbTMwuGgO9ydnrC/5n/3qj/B/Mofnr5ZOvuRyOfr7+4WPzeH80N/fz+joys/g03f8HbBQoAQQ9+h0+1rvBLwnBIW6WEKlBlP7M6RPCE7uSRKRdUHC/SvH86yEv92DLy4exWBHoASQOpa3JaocfXhW3I3HhOFfTAuLQQzNZOqZtHA8JaYV9ykqzJBcErGNIWFBeq2kM/VcWtiBSfG7SOy0XDpFkGSEy4AV99axK4okWLRW1IWjrV4M1WzNlqNrqNdPfJOYYx9Yjl2Wu5EYkcEAkUFx177MqaIt0Ve4348/IR5lqpV14ag3gOSRPPkR8ejb8ceSZM+Kn9/440lb7SxzsmBLOGQaCIvMZEUi1OcXbi+K30ViexTF52pZoASgVw1GH0lTnTdOX0ugtBzho60J4nwVma4pD9Kievnk6bcRf7DM7n83AT9b2iYKhSyyLLNx40bhY3uxmHaUZhcB+/bt48/+7M/48IeXuoM7ODi8/OyL7+bzG96/JEYuIYV5xy+uZNOJLkzD5OCPzvD1j/6SEw+NOf2dg4PDRU0ymeT3fu/3CAaDfOpTn8Llau07++bNm7nyyiu5/fbb+fM//3MOHz7Mpz/96ebfNU3jIx/5CMFgkI985CPcdNNN3HHHHfz5n/854+Pj/Ou//uuqn59IJNi6dWvz37p1617Ueb5cjL+QxDRMOjfHWhYoOTg4ODg4OCxPy28NY7EYkiQxPLrypILhXWpbrlXgxMMlspOrT0bI3Z0LHB5kBXb+uwHatrX4Al22F23SID9W5oWvnBV+ceuNuuncFcMdENt/QyjhDgkqFxrCjPOFTccgu0SHgrbEP764h4CNyYjSVNVWlBMSlhOEIBve2E3P1QnhcnYmB8CKDPNEz1N7ka1JqEaEngimbgq3NV/Mw9Y7Bwj3Ck5wSyDJ4tfOUA1ywyUMTexA3UGFYLcPUTVVqNdP79XtQmVeNOfxfrcr2Ou92p5AML4xTHyz+ITsyXsmOPuATccuwNQ0IYHS1jcn6Ng+byJXktZ0UQJ4qhdOtS39/V/2PIX7m9YkmfubCydCZ5MGpmm2nE/vcP7p7+9nYmKC2ipRR3JlaftIVl2MlNZeRZzd4MUzM9cuwl0uuna0/iyVoxGMF+E8MPtCVti9Daz+Mdgl/syPDAaIDIgLJewKM2xznudVokNBPILjUUkGf5sHl6BI39RNqpmaLcGYJCEc4eWNeui7JiF8nJj1sZfgDl0eGW/s/K3gV/wuPGHxcZ5pmracceKbQnTYEM1j49qB5fxjJ9rRG3ULfzcDq4/wRs+zA8P5ut+lumBP8Dq4fDKJnRFcgmM2l9dFfENI+N6rFTRGfjmDKuhANx+zXG5ZoBSMQe+WhZViuqRVXZQASgGDsT4Vc5nT67/XEjpJP1wqQBseNeju7sbtdpw+HBwcHFplX3w3P9r1X/n7Lf+BP1v/q/z9lv/AfZd/gj/4T+9m77s246qP08uZKj//X8/zw089Tmrk/DlpOjg4OFwoFAoFPv7xj1MoFPj85z9PIiE+BwFW3Nv111/PL37xC6pVawHVc889x+nTpxe4IQEMDAywbt26FV3AX21kx60xfmLIxvdiBwcHBwcHhwUIvTX0+/2Mjq3+oji/Z6l1uVpgzclvY9qK+ZJ91qSTocHs4XzrApJ5kW8bb+uhbYugktlAWHwAlrjp4D+fEY8RMkF2SUiC78/D/QG23jkgPAES7vez+Y4+Ycen8GCADbeJRwEldkXZfvegcDlfm5twv/gE4vijSc7cL+4EER0K0rZNXPU+/miSqafFHZjGH08xcyAjXG7kwWlbE7n9N3SQ2CbuAmMHxSOz7rVdhPvErp9WMTj940lhtwk1pzH84DTlWTG3iUpS5dSPJlBzYpNevjaPJY4RnOfMnily9Bujwv2LL+62osYE6b26nc139AmX67w0Rv8N4l9ee69pZ+CmDuFyg6/pZODmTuFyuOyJzE7fNyke61jHzrNh01t7ia4PIikKRqF1l4TUyRLFaeu5Zw5Z13HwU2vPYFY9oNbnqWXN4M8//3Ve+IvPwrvHkE9bz0f5lI7/7hn8d8/g+80kP/pxDID29vMshnNomXXr1mGaJiPjq/dXqUsWthHdlNDNte+Tjset2Fkzagn4qnmDwlTrfaMxm0T2evEnPHTsEn/W2HU2mjmQJXlEfOJBkiVb/UdiR9SWyLFtS9iWe0x8c6gubhWj58o2wjZEWMEun7AjklEzmXgyJewwJbkkwv1+YcGDVtaZOZhFr4j1x2q+xvTzGfSaWLlqrsbsC1lhhylf3EPXpXFbghw7hHr9tG8TfzlanKiQOSkuMMwNl0jbKXe2RO6suNNQsMtnS/Q1+0KO3LD4/vwJL+6guOir//oEgU4x4aQkS3TsiuKJiJ2f7JbpujwuLE5zBxT6rknYECRKSC5ZWExVK1piIzsiMzsCukCHh/b64iYpGkGaaS1WXS1DbmZuh7kdMQBK/3uNsbQEmtsqJxkmb/vOs/z7Lz/OV3/0RcI/rH+n+X4B/jJl/fuHDBgmjz8bIhJxJjQcHBwcRHFJMleGN3Fr2+VcGd6ES5JRPC4uu3MT7/z8jazbO/duYfJImm//3w/z2JcPo5ZsuPU7ODg4vAKpVqv8/u//PiMjI/zZn/3Zi16QWK1WMU2TUsn6XpVOW/MghrH0u/Vy0XCvVjJ1kVK0V/wdkYODg4ODg8NChN5SdnV1MTV9Ztm/3faffrv5//k93YSfnWz+3L5eQfFITB0V+3I49WymtQ2NhYOgWkkXnowAa9K8OFm2NfElSiWtcvKeCeFy5ekKww9OUyuIDfy0qk41W0OWBc1STBNTN5EVsXi60nSFlFt8hmbqmQxTz2SEy9klMhjAG3GTOg/XHKAwbjMCpDGXJ9isT/5o3FY0lh20isHR74ygFW3sT0b43AzNsBUBYhd/u5fE9igzz2dY5vvYOWf2hRyzL4gL0/LjJdSSjQkhwYnYBrWihq6K3+uTT7c2ebSY8UfE4y7tIiswdEsPU/vTYrGJciM+aa5ejEKxJUelmcPik6rREgzk4EgCNAXacgXe9OghJHPpnKLyyyoSYEpwIGSJtt761rcK79Ph/LB9+3YADh1T2bBu6UT2xq/+ZvP/U5eYtB202pxLMkl4ddKqjGq0LgZRSyZqqbXxhTE7716U3eiizxrTxBt1ExkIMHOwtXidF4vdZ0bmdMFWH6lV7EVHAbbcVfJjZdSCeP8//vj561clCaJDIWusXrHhZCmIoZm24q0AS2gkeB1Ks1Uqj8+eN3ec3NmirZgxO+cG1nes80mo1081q4ovBrHJ1DPiCxCQIHu2SE3w3pPk+thLUJEjSdYYw9DEymkVnennM8LXUCvpzDyfESrzYgj2+PGEFNInChjVKrK3NfGXaZjoqoE0L4pUmklhdixjMzmPWtX6J0o040JTTIohA1+lxvv/4VEi+QqmxNz3tpKB9NmUNR6LyZjvijA9PcuuXbeJ79DBwcHBYUXCHQHe8F/2Mrx/mkf/8RD56bIVAXfPGU49MsHVv7qNDdf2INlwQ3dwcHB4JaDrOp/85Cd54YUX+NM//VMuueSSZbebnZ2lWCzS19eHoljTgul0mng8vmC7fD7Pgw8+SGdnZ/NvAwMDADzwwANcffXVzW2PHj3KyMgIb3nLW16KU7vgyIxbi3aiva275js4ODg4ODgsj5BIacuWLZw+fRrDMJDnRbPNFyg1aDgqhZ+dRPFKuFdYMd1wUJpPw03J7dPxxTxkz6zy8t1Y+qJ1+Oc2o3lkew4dQ/u6KM1UmX4uI75LQfGPVrEnzCjPqAz/TLxe8iNl8iPiwprSVJXSlI03vjbp2BUlvjnMsW+NCpUb+cWMrf0N7etC8bk48YPVowAWE9toDWAzJ8Wu4ea39lHN1oSvoahb0ItFzYrvz5/wsOn2Pk7dNyEkBPFEFOIbQswcygkJsWIbgwzc0Mnhr59FK7VeLn08T/q4uJit6/IYkcEgx78zJlzWDnbv2ZkD9kQCdsvZ7R9E+0wAxSez/o09jD+RFGpjske24n4ENQaSrDD8i6UirLWESt6IC0/ERU5Z6kzVcFMa/q9Ln1EeHUIqGDK8cO1XADC/1wd3j0PRbBp6NOakzaBE8asJjnwmhyRJXHPNNWIn6HDe6O/vJxwOc/iYypvfsLDtzBcoNWg4KiUOgs9l4JKWH3s1HJTm03BT8hkltKqJrq48Ab5AoARUsxrVLMheL0a1hXt73qS8ieWuI+Kq5I26iW0MMbU/LSy0sIQBYmXUvL1nqR0nF4D0cXsReraF0DbpvqKN/FhJqF81NJPRh8THXi6vTN81CaaeSwsJVmRFItjtozRdFRLSeWNuui6NM/bYrJDQzNRNdJsOYXawhCri+2vfFsHlkYW/uwQ6vLaEX12Xx6kVNFLHxMZRU/ttiIaAnqvayJ0tCbt02sKE/Kj4vWdopi0xuq4awvUIVtu0I9iz02eC5eLrDihixypJS6IBWxUqVTQ/lWX0lmsJlXwhS6SU3hxb8reGm1LgQ0vH8Iom0TAs/PzubzF9XwTlP+n4n64h1V9PSHp93HWlD/NvujACEifPlHj/bzjjLgcHB4eXgsHLOund2c7zPzjFc989hV4zKGWq/Oyvn+PIT0e47v07iPeLO6k7ODg4XOh84Qtf4OGHH+a6664jn89z3333Lfj7LbfcAsDf/d3fce+99/K1r32Nnh4rOeNjH/sYHR0d7Nixg3g8ztTUFPfccw/JZJJPfvKTzc/YunUrV1xxBffeey/FYpGrrrqKZDLJN7/5TbxeL+9617vO2/m+XBiaQX7Kes8Tc0RKDg4ODg4OLxohkdLevXv58Y9/zP7nauy9rHVL+6kj9la/JnbGiQ54VxYpLSNQauCJKsKCieGf2hM3qUUNrSK+snjrO/spTJQZe1hsBXvikijVrCosRFACLjBMNMGoDDsuPrICod4ApemK0P7CgwH6rm7nxPfHhMpVUio5OyvJbZI8mkNWBHO/gNiGEJIkCYuUpp/L2HJj6L2mndJMRXh/dpA9Mn3XtjN7KNt6TCPWavCJJ5NUBSdOfDEPiUtipE8UUAUmHkszVSaeTonfBzYpzarWpIsg/Td04PJInBXsl0K9fmolTdh1QPbItly3PFHFmsAXKSpD99420sfzQsfpCSlsfccAww9Oi4k1ZQk1XxN2etFKBqfvFXO8kxQFJSBjaCxbn6sJlWJDPuI7YuQeE9olM2Hr3wKu8GM+ux5p86kl2+ef7YGAzKmzAaJR/wLRscOFhSRJ7Nixg4NHDgmVM5A4W/TY2mf7jhC5U0UKM8uPaxYLlBrISqOfW0OoNE+gVM3WqGbFhY6GblIrasguSchNxJ/w0rEzyshDM0KiKMXvItDhFRcdSZa4RjSiDMSFW2Adp6xIwqKq9h0RtLJO9rTYWKE0XUErnh9nHaNmkDyaQxN0gZHdMtGhENWs2DNAK+kkj+SE3Wo8IYVgj4/0icJ5cVMKdHhR/C7htlkYL9tamBHs9qGrhrDYJXe2iFE7f+Kt0lSVmqCrpMsr03lpjOThnNA9JCsS7pBiRR+KnGKj+gWrRVYsIY9offriHlweWVi4FdsYwhN2C7tMGTVT7LtLfaxcnKiwuCdaS6gkRSO4PNKK4trVhErtfRIToRAI6sySiYVtROtzMfy1drbsnkIqzTuOgIT5zT5wSxw8LFMqm2zatElsZw4vKffffz/3338/hYI9gbCDg8OFheJxcfnbN7Pp+j4e++fDDD9jvU+ZOJTiW//3w1xy6xCXv30Tbp94vKuDg4PDhcqJEycAeOSRR3jkkUeW/L0hUlqO2267jZ/+9Kf827/9G4VCgXA4zI4dO/ijP/ojLr300gXbfvrTn+arX/0qDzzwAE888QRut5vdu3fzgQ98gMHBwXN7Uhcg+Zkyhm6ieF0E476X+3AcHBwcHBxe8Qh9K7vzzjv50z/9U77zwzJ7L/Mu66C0mAXRb4sinZZzUZrP9MECUwfEV5h2Xhqjc3eMg/98Rris4pOFxQvjj9qLyZh+LmPL6aZtc4jCREVYpLT1jn6Sx3JMPiXwklmGXe9Zz8STSWYPtX4t3CE3617bxdmfTQlNnNQKGvnxknCcVn6sTH5MfBVzfHOI9m0RTnxfzBHJjlMNwJmfTNkqJzpx2MAX99gS0NlBlsHf5kHxuoTKaRVDqG01yA2XeOHLZ4TLqTmNWRvRQp2Xxgh0eoWvYX64RN6Gm0Z5toLkFheP9F3XTmm6KuwStv2dA8wezTH1dOv9g6zA1jsGhPsHT0ihbXOY4lRFSKSkqQYTTyYpTotNsGklXVjsBeLCLaluldy1J06o28vRb4n1K5O5GKlnV99m8FPmEjcl2VjootTk6zkWT0FLgPsbJWrvDZFO11i/fr3QMTqcf/bu3csDD2QAqy9fzkFpMY3oNwkTc1ErWM5FaT6TJwx0zY+E2GRd92VRClNVcsPl1h2VACTLxVJEkFMraKSOijuJqLkaySM5YVGAO+Ai3B+gMF4WEq2EevzEN4WE++PouiDBHh/jj4mNLyODAdxBRVhMUM3UMGzEJNt1ikpcEqU8W6U42XpfbhoIbd9AK+u2nJt01bDlwiO7ZbwRN5IknOJlC5fPhSckPslWzdpbQGLXPbGctBe513VZnOzZIpWUWPnsWfFxs2mYlGerwpHh3qibjktijD4yK3Qf2e0fwv0Bgt3i/YMv7sETUYTbdXGyIlz/QOv7WSTklxUx8akUjSDJ0LM7QOp0lVJS7Lv1USUCaxxq6X/3LXRTahyeBF/Y9NXmr/3P1pBLC49dKpkMP5lh4Lo4P3vEOtfdu3cLHaPDS8u+ffvYt28fR48e5YMf/ODLfTgODg7niEhXgFs+upezT0/x2D8dJj9TxtRNDvzgNCcfGeeaX93O+qu7nQg4BweHVwV/9Vd/1dJ2f/AHf8Af/MEfLPjd29/+dt7+9re3VN7r9fK+972P973vfcLH+GqgGfXWE7S16MfBwcHBwcFhIUIz4FdccQUul4uHHhWL6cnv6WTTnTESQ3Mv0dcSKAHoVQNDnYt/W8AqLkqZ0wXOPig+Id22Ncz2u9Yhe8SFAb42cceC9PGCrQmQY98eE34xDTD80Ix4PIAB44/PkhsTm4iqZmoc++4ouVGxcpWUytjDSWFHF1mBYI8PWXCeRqsaqAVxoZgv7iG+OSRczi7hAT/hfr9wuVM/mmD62cy5P6Bl0CoGx749Jhx5oQRk2raGbd13dvAnPEQ3iFuyamUdtWgvzs4TEZ9ATB7JM2tjMvDkPRNMPCXeP0w8lRIWwxkGnPnZFFnBiWo1p3HoX84Ki7cM1RK0iTppeEKKrfbVf0OCzW/ra2nbhkAJYPZQlvFVhCBGYWk9m0PWftQWHgmN6Dfrw+D30hN8tf3hpcf0dau/NztdGF/vxey0BITufyty5KhKoVDgxhtvXHuHDi8r11xzDUePHiWVFmv3rm0aPZtV5ity1hIoAej1bq4R/zaflVyUAJLHChTnxTgucb0wzWVVG91724itF++TZUXCJXhfN4QnpiGmHiknVcYemRV21Sknq0w/nxEqA1CarVhOPIJkThWZOSC+v8J4mdKMeASnyyej+MWEyWA9T+2IovztHlv7s4OsSAQ6vfMcwlqjklaZfDptKx7LDvmRki2htzfmxhtxvwRHtDz+hBfXCtHfKyJBragJ33eSS8ITVlii0l0Do2aSOVUUdj4rp1TGH08Kt+lKWiV5WPzaFSbLtsplThVsfSdQ85otkVlL9+pigZJbpv/6BP72pd+rjWp1ifhVikYA69Eyc7RMJbfyc1KaWfr8y+2IYZgShrl2Y2lEvwFEci4+XDnEX2/86oJtQvdbg7j8G72c/EUH+Vus52DoJ9bvz5yZZMOGDQwNDa25v5eCf//v/z2RSORl2beDg4PDy8W6vV2843M3ctnbN+GqLwIrpar89K+e5Ud/+iSZMcdFzcHBwcGhNbLj1vtcJ+rNwcHBwcHh3CA8a9vT08OJU/6WXJTm72Y8rTCVWN5mfTX6ro6R2B5cXqi0AmpOs+VcUhgrM/boLKI2PrGNQTa/pU94JbMnopC4JCpU5sWQHy7Zcm5KHskLR+eBJVQSioCq4094rGg6AXztXjbc0oO/XcxqMz9cYvhn4oK26PoAvVe1C5fr3BNj6PWdwuU6dsVI7Dx/beV84m/30ndNArfgNY9tDLLprb3C+4tvDtNzhXhflDqWZ/wRcfFP//UdtvYX6PLaEtZoJR2tJH7jpY7lxVfKG9Y9VLMh9LNDuN9PdEj8i2Df9QnWv6FbuFzyhRzTz2XW3G6+QAmgmtHIjwk4hAz1ISuwfjf4F8e2rcFzV/8rl20/Tm/nUuGveVcY4/0RzP3r4IYA5v51GO+PIN8V5fs//b8Aa8LK4cLm2muvBeDJM19oyUWpQV6WGFNcpHYKxlX5ITFoxQktJ1RaiWpWWxLts1o8T4PMqQKFCXHBdseuGFEb4iZfmwfPeRJn6FVDOHoToFbUKc+Ki4aMmmErUktWJNxBcTFtfGOI+GbBTgvInCzYEj20bY0Q6Gj9+wCAJFtjL29M7Jq7vC4S26MovvMjijrfRAeDhGyI3xM7IgR7xG3tEzsj+OKCCzpMa2yi5sTuIU9IofvyNuFr5/LIwt8/ADCx5VqqlXVb4kC9Yth2whJGsiL+RAWhit9F71Xtq993yzhXmLrJ7KEc1RaueUOgZBWEal6s/8vtiBH16bQHxMewn9jxLbp6R5ecQuENPsb/KsbY38WpDSmMfTHO+F/FKLzBx7FakccPbGs+018OPvShDxGNvjq/Tzo4ODishuJxsfedm3nHZ29gYE9H8/fjLyT51u8/xBP/epRa5fy803BwcHBweOWSmbBESlFHpOTg4ODg4HBOEJ4Bv+qqq8jlcqgVsdUmUxmFkiqT39PdkotSA0mmuRJW9nmtvIdVXJQatG0J07ZNbOJELWikjuUxBL+bFsbKnPnZFGpJrKC/3Uv35XFhcVN0fZAt7+gXvnrBLh9dl8fECmE5FNlxDeq+Ik5ih/hqzY239tK2RezaVZJVTt4zTjkpPtHpDinCdTnzfIbDXxsR3pdW0VEFXWAAztw3wemfTAqX2/TmXnqvERdT2cETUdh+9yDhPrFJr/xImRe+clZ4IldXDVvimPHHkxz7ztjaGy5CCbiQFXHR0NmfTzHx1NruJYvZ8MYe2raK3QdKwMXgazuFJ2N9cY91rwqeXnjAT8cu8cmO3qvbbYn12rdHbIn1Jp5MMWnjGhSnKmTPrO4utVig5Akr9FwZRwmsXplGoYip1poOSkr9krXweAMsN6UXrv0KimKwc+MI7bFlnsnvi8GnO60sRrD+++lOeF+M73//+/h8vpd1ssyhNTZu3EhXVxcPPvigULmKLJN2uUCSSF1ituSiBNYwyzRBrs/Vm9EQZi6/qosSgOyRiAz6kd2LnDG83lVzryoplZoNl7r0ibytuLHoYIBQtw2RxY4IkYGAcLlwn19YFCXJ1pjN5RUUBgRctG0JI7nELGSC3T66LosLlQFInyyQOiru6CK5pCXtpBXGH08KX3PTAL2iCzsb1YoaI7+cEXbb9MU99F3bLuzAZJfYxhAdNhY8TB/IkDoifu20qj0h3OgvZ8Xj+iSExTFgOf9MPJUSFg4Fu3107RG/D4LdPltup4EOr62ovshAQFhUKMkSPVe2CY8PFZ/Vp4g6mOlVg6nn0qj5Fe6fFaJ1TMOkNFNds40tECgBgXYFX2ztY5RmUkiVKrkdsXm/XLNYk9L/7uMLm76Kz18m3r70mVq+0kPuDv/c+UkSuTv8lK/0kJpVeOqpp9ixY0frOzyPmKbJyMgIU1P2oskdHBwcXglEuoLc8rG9vOG/XE6ow3p2G7rJ898/xTc+9ktOPz6BeT7yeh0cHBwcXpE04t5ivecvXcPBwcHBweHVjPCb3w984AMAeNX9zd9t6lYZTFgCA0U2uGSwQrS+KjER1tg5UEWRDXriNTZ1V+m71hJNyApsvr2D6KA1WRQd8rP59o7mUfVdHQNg9pA1Sbz59g5iG4MgSUQGA2y5s6/pNNJ7XTuDr52b9B58XSed9cnzcJ+fLXf2NSeNe65qY+j1XXPH/5ZeEjutl52de2Jc8r6hZjxT1944698458Cx8bYeOnZbx+Vr99Q/VyE/XKJzd4wNt/U0t13/xu6mKMgTVdhyZ19zBXjikigdO6Mc/PIZ1ILG0L4ueq603FbcIWvbUK/1pbl9W3hB5FBiZxjFYwkmZI/Mljv7CA9aE2fxzWG23Dm37cDNHfTfkAAg0O1l4KbOpvNAdH3Q2rZe3/3XJxi4eW5V0ZY7+4hvDhPfGKb36nbrXOtRDb3XtDP4urn63vy2PtrrorBQr1Xf/oQXd1Ch58o2ht4wr77f3Nt0kAp0eNlyZx+eaL2+L4+hFmvNiZMNt/XQuade322e+udaK7E7dsfYWK9vQ4Ouy+J0XGpNLngiVh0Gu3z1OosscN0Zen0XPVe1Eejwsv1dA+yYJ65p2xpm8x1zdTj42k56r6u32UZ99wcxNIPYxuDC+r6pg/4b6nUoW3UY21iv76Egie0RJp9MA9B3fTsDN8+rwzv6muKscL9/QX13X9HO0Lz2vfmtvU0BWLDHZ9VhfaKj+4o4Q7dY9Z09WyQ6FGwKSfwdVh02VrN37Ymx/k3z2uybeuiq17c74LLqu6Ne37uibLx9Xh3e0kV3vc16Qgrrb+minKxQzddI7IiweUF9dzbFUoqvXocD9freEmbjm+eOYeDmTvqun+sjttzZ13TPada3bImbdNVk4KaFbbZR3yv2EYYVG7b5jr6mkLGVPmLbuwbpvylBsKte3y32EUOv62qKmzr3tN5HpE7kiW+c+9LTSh+h+Fx4o276r2tv1ncrfcTgazvp3tvWrMNW+4gNb+xpTmyH6/XdSh8hyRAZCloCQWi5jzjzkymK06UF9d1KH1FJqRSnKqy/pZuuva31ERtu62Fzvf0ogXodLtNHmJrG4M0Jeq+xPtef8NB3bRuh+raxjUG2vG3umvff0E7/9e1IHg/IsHkvRDtBLUNqHAa3z2mKejfBwNZmUTZdDvH6qXvXe/nWA9fzzKENjM/Eeey5bTzw2J7mtt/72TW8cGIdAOMzcb71wPXkCtYx3f3ffp3Tp08zMDCALItPADucXyRJ4g1veAPf//736ShaSgu/YbC1WsNdf4neqekMqXNCzw1qjXZNJ2AYdNU0tlZrmJ1WWw+1SSQG5mZl2wckQm3Wz4ob2vpkctMmhgbBWN1VCZA8Htq3Bgn3W58jeyS69kTwhK2J4UDCQ/dlkWYf0LY5SGTQj1GpICsS3XvjzQlyf8JLd/1elBWJ3mvam88/SYbuvfFmjK6vzWNtWz/k2MYQ8U0h1LyGVtbp3hvHn7D6TW/MTffeeFOkE10fXCB67rosTmGyQupYHk/E2lauxz5E1gVo3z438d15aYxgXczkDimE+vwYulX/4X5/c9wI1vOx0R8rfhfde+NNR5b2HRG6Los1t03sjBCui51cXpnuvfFmXxjs9tF5aQyQaNsWpmtPnMg6a1vZbW3bEDwFOr0LhEVtW8JE6/1q43OXq2+A+KYQscbzRbLGbZkzhQX1LdW7htiGhW5J8+tb8brouCTaFOREh4ILxLVde2LNPtYTVujeG8flsSJe+2/ooH2ekL1zd6zp0OMOWts2nHDC/X4Sl0Qxdau9d1wSbfaxjfpuuDGGenzNZ3Cj/mtFHTVXa9ZLY7wU7PI1xzxgPUuj64L1+pbouiyGN1qv7w4vXZcvqu/6s1KSrfbti3ssMXpBaz6XYK7NLqjDepyVL76wvpe02cvjzXGBN9pos/X6XhfE3+amVHfd6pxf36F6fdeFbuGBwIKFAx275rZ1B+ptti5ECfX5FwifEpdEmyKcwliZ6Lo5kUywx0fn/PreHiFSH2+4PPX6DiuYhmnV4fw2uzXcHN8t10f0X5+g79oEis9FfHOY2IZQvb5X7yOi64OEenzNpMtW+4jCRNk6zk5r21b7CMXval7HZn230Ee0bQ3jT3gJ9S4UfK/aR/T46LmqDXfQNVffLfQRkmxd50afJrlW7pNhro/QyjqjD88Q3xRaUt+r9RG+Ng/VTK3ZDpf0EfVnl9VH1Os7rDB4c0ezvUcGF9X37mizj1C0Il07fChe63Pj6zx0bp0TnyY2eQl1WnWmeCVrW58E4SDBNpneiPW8zFZcKDLE/JagTZFNBmI1vEq9r/fq9EXnnq2RQZ3x4QFSswnUiocTR7ZTLFjtMpOOc/LI9ua2Y8PrmByzxoq6LvOfP3cTuq5z22238XLy4IMP8t//+38nn5+LgJ+YmOD9738/73nPe7jrrrv45Cc/ia6LL6pxcHBweCUgSRLr9nbxzs/eyGV3bmw+o4rJCg/8j2c59C/TzUloBwcHBweH+TTi3qI9jpOSg4ODg4PDuUB4+eab3vQmFEXhxNGDrLvxZpSKQVmVqOnWFzsDKFVkNN16c1nTJUpV62/95CmO1CgWdCSvF1OGcqpGrWy9CNTKOuXUXERYNVcDyRI1GAaUpktoZeuFmVYxrKiIejSbmqmheeZeps0ezJI9aw0cahWdclJtOiRVczUMbW5JdSlZpVa0yga7/LjccvPvak5Dkucm88opFbVgvaw0atYxGKpBdEOQQIeXyrz4ikpKba4gNWom5aSKplr7qRU0Sslq81zLabXpCmNq1uc2VgCrJZ1yci4OoDBaIauWMFQDWZGtbctW2VpRWxChUUnXMA3rRfDMgSy+qKf5uVq9XprbZmsLzzVpuRuMPjJD8qiHxPZosw7VXA193grl8my16RDU+NyJJ5JoFYO2rWEMY241UilZbZ6rptavTX3FrJrXyI+U0SpWxVSSKmq+Xt+qVS+6Wr82hRrl1NyqWXfIhbtk/Ww06rBar+/iwjosp6vUSjqVdI2RR2aJ9Pmo1c+nVtIWxKxU0tY1tj7Y+lzZKzF0SxfpE4VF9a3SPFOjXof1eqmVNcopFdknYRSsODxZmavDSkqlVnfjatRhI3nQG3MvWG1dSlabq/v1+r0wv802mDmQxR1U5rat1uuwZm1bzdcWRIpVUlWq9fo26+faiO9RC9qCOqyk1Oa+DM2gNK0ycyCLmtNQG+27Wd8qWr0ejHq9NNqhErImd2TFEptVM3Pn0ti21mjfpXqbNSzxjVpUMect0rbuhXn9yTJ9RPcVcUzDpDxbbbp3tNJH5MfL5IdL6LWl9b1iH6EZuEMK7rBS7w9qVJJzbXa1PqI4XoF5i/ha6SMqKZXj3xmja0+seZ802uFqfUQ5qZI6kp2rwxb7iNSxPOkThXp9awvqcLU+Ink0j+yWMet1WM3VWu4jqhkNiXnHtEYfoVU99F7dzuTTacrphW12tT4CwyDYGbBEbVq9Ha7WR9SPLz9SYuqZDGo9ikUrLazDaqYGLtfctTmTQdNiePxQU6Gcn0vJVMs0JwEBKgUo+b1UEzIuzeD7P91AKLCBX3nLk0RCRTzuuZuhPZYjGCgD4HXXaI/mUFw61/3ub+KtnCGXy/Hrv/7rOLwyeOMb38iXv/xldhYLKHIUwytRkKVmF1GVpDl1G1CSJVRJIqYbbNhfpVyWyBkSWtxPxW8iV+bab60MWr39GiZUSyaGAS436DVQh+cclGpVGb1Sn7A1oJrTMDSrbK2oM/VcDjVf75eKWvO+ME2oZmsY9WePoS6MK/K3eyjX4yab29bvY6O2cNta0epzJZdEZCCAVtGb97xRM61t6xWjlXQMZa4vr+ZqzXGkodU/tz5ZrpUWuu1Uc7Xm88/UTLKni5RmrGPUKgaSPHe/qXmt2W+ahnUMDUHN5NNpvPOclBriKmtb61zNeh3qVYNqzhq3jf5yhlCvfy5Cz7Q+t/HsaWw7v14MzaQ4VUGSG/Vd/1x1aR3OXyNeSanNPqtxbRqLyGulhc+4+dfG5ZVxB5QF2xraXDus5rRmH2to9XoxTPLDJbSShjlvDryar6HXx36GbjS3Bet5LrlqRAYDmLqJmteazxdTr9dLvb61qrEgHqxW0NBUA8klNa/N3Lb6gjpUC1qzLUmyhDfqbjr5LK5DtaA1rzFYn6vXDLSyTvZMsSkAatbhvPquZmvN/eiN9j2vzerz2+y8bRv3QqOd1soahQmj6VCk5mpz9a2bS+tw3kF4QgpaxQ0Tlblt6+ejV/QFDjhqfu6+kVz1Z3ZdsKdXjOa4sVnfi+4FSZZo3xGhnKoubIcFrTkeXa6PKM1UKc1U0aq61WaNRf3JCn2E7JYWRL0trMOV+wijZrn4NO65VvuI4mQFxeci3O9v/r2VPmLmYBZdNfDFPYvqe5U+omIw+Uya0nS1eW1a6SMMzSR9otDsr5vbttBHNI5hcf+9Wh/hb/dg6ia6qi/ZdmEfUUNr1reJy+vCG3Nb172sLxgH1yoSpqEANas/KRjN70nJU1U8/rnPVUsGWtWcO/6CgRkIQA30monncAa531rEo2pz7zFME8o1CcO0ftYMiYomUei1PttrGnzmu+8g4jL4ow/8DYFgAZfLunZud41AaG5S2+cvIcvWAd75Lx+hcPIbrF+/nj179vBy8t3vfpdUKkU4PCcs++u//mvOnDnD5ZdfTi6X4+c//zl79+7lLW95y8t4pA4ODg4vLYrXxd53bWHTjX08+o+HGH3OcvzPnq7wrd97iF23r2fPHRtx+8RdDx0cHBwcXn1UcirVgjVXGe12REoODg4ODg7nAsm04WW7fft2jh49xhXv/jNkWUaptJahEHn4+JIoNbNaXX7jBjJsf0c3qaNFJh6fXvr3c23FKzM3QyxA7zXt+No8nLpnQqhc9xVx3EGFkQdnhMp5QgqSIglHZL0SiG0M4gm5mX4uI1Ru05t7yY9bAoGXmkCHl56r2hl5cFooCqRjV5Suy+Ic/KczQvvrujyGJ+Rm5Bdi7cTX7gHDElGIcMl7hph6LsPM85mWy8iKjL/DQ3lGXSDwWYvwYIDOXTFO/mhc6N7rv6GDYLeXo98Ybb0QNB2Gxh9bPbroXKAEXGy8rYfxx5PkR8otlwt0eIltDDH5VFI4fvJCR1bAF/cuEGm2QrjfT9eeOGfun2yKGFuhbUuYrsviHP7asI2DpeVjXBz7tuJ2Hs/S3WwbYts1MDNi/VuNamJxpIzBff/fP6Ioax/odb/7mwDMPPt1Th1+nGPHjrF58+aWjtvh5WVqaoru7m4633k3kcuvBEDzrz3+kUyT9d+usDjPxp1evT8Kt0tEOiTGjhgwsnRcY6qtPVOMSovxThILJqNbKiJb0ZHJo3kqqdafcS6PTPv2CJmTBbEoL8ly+KkVNeFjvdBpCL6K05WmoLgVfG0e4htDTD6TnifYeemIbQhhaIZw5FvvNe0UJ9eO75yP5JJI7IySPVNcIHpqpZw7qFAr1IQi5sIDAaKDAUYfbj0SG2i6HzVELa3StiWMmq9RmGg9gk2SYeDGTmYPZ5simZaOsR4ZljqeFz5OO0QGA3gjbmYOZoXKhfv91gIGgf7klYLid9VFQ2Jfctu2hqkVNPJjrY9hwXL1qqTUte/V5WLfVngeyF7v0k0Xxb6tSHjpJILrhnaifoPTSTdrZb41REpzh2jybx/5fEu7fsuXP4qp64z+v5/m/Xe9m7/9279t7ZhfIt7+9rdz9dVX83u/93sAlEol3vzmN3PzzTfziU98Ak3T+MAHPkAgEOBv/uZvXtZjPd8cPXqUD37wg3zxi19k69ata25/6NChCza+z8HBQQzTNDn71DSP/fMhCrNzY6Ngu49r3rOdoSu7kFaIKnVwcHBwsIfo2OvlZvJIih/8t8cJdfi5+3+8Rrj8xTZ2vNjOFy6+c77YzhcuvnO+2M4XLr5zvhDO11bOy913341pGmTGDgKg+WQ039oftdxku+T1Ii3z0nGuEIw+lmHmwAqCglW+KG56a28zpqtlbAiUwBI8iAqUwFrxbeeF/cDNnfReLXhuWFFUjXipVlF8Mhtv721GHbVKdCjIJe8ZakZotUog4WvGeIhw4gfjtgRKiR2RZgRDq5Rmqpz84bjYBCdW/NrIQ2JCI4CpZzLCAiWA/usSdM+LJ3kp8Xd42HBLD9642Eqz/HCJkz8UEygBJI9kmXgiJVYI614VFijJdaFYVOzctJLO0W+MCgmUwIp/iQwGhAVKQ/u6FkShtVzulq4FMTCtIHtktr17oBnb1yrB3gAbb+vF37ZUrLMapmG5XogIlMBye7IlUALhNukJKey4u59wn2/Zvy8nUAIwjpxh5Aikl9HhNqgm/MsKlEBeU6B03e/+ZlOgBFDJjtDV1eUIlF5BdHV1cd1113FVZc6lQSlLKOXVX5abksRyM761uJ9afOV7t5Q1mRleXqAEK7dlX8xN3zVz0T4tY0PfYhow9mhSWFCg1wz0miG8S09IoWdv2wJXw1bwxT30XNW21hz4EkI9vmZEpggdu2ML4sJawTRMK7ZqnvtMK1RSKhNPpoQFSorf1YwPEyFzqiAsUAJIHc1TnGpdjAOWQ9PM8xkhgRKAJ6jQfVkcl2Bd2iW2IbQgGrZVUsfyQgIlsNaFzBzMCC+Q0Co6089nhL/veKPuZvSaCLnhkrBACcDf7m3G2LWKyyczcGPHAre0VvDG3HTsji1wIGqFyLrAghi5VmnbHF4QydYqumrMuS8JMP1sprV7dbnFRot+JXu9ywqUGsQGPSQ2r9JOlhEoAZiPJZnMKazWORd65UUCJRMwMVvo0N/y5Y/yli9/FAD3+CjVTJrrr79+zXIvNblcjra2tubPzz//PLqu8/rXvx4ARVG44oorGBsbe7kO8bxz//338/u///v8z//5P1/uQ3FwcHiZkCSJoSu7eMdnb6Tv+giya14E3F/u58efeYrsROtidwcHBweHVx+Z+nMg5kS9OTg4ODg4nDNsiZT+y3/5L0iSxMSRXy74/UpCpdCDxwk9eBwlILP19jbCvUsnt1YTK2WPpVdf2S1Jy4qVMicL5EfFxAEAQ2/oov/6hHA5QLhGZw/YFFo8PsuY4GprgOJMlYrw5IKBUTOETavKqSrTBzLCQovxx+0JvuzSviNCZDBwXval5jSyp87fy43hX0wz/vhL7xgEUJ6pcOKHYwuirV7S/c22sEL7HOEOKCS2R/HHxSfL7JA6lufIv61hqbMM6ZMFMqcKa2+4CL1qNiNXWkVWoDBeXhBR0gr50RJn7p+kPCvWTgrjZc78ZEqojF28MTfb7xok0NH69TY1DcMwSB0vLLkHJI9nRVFHg/xjZ9CWMaZYXpxksW2zTk+Xxuve+wFe994PLLvNfHESQDk3w/j4ONdee+2qx+Nw4fGud72L++67D72ycFyzklBpw7cqbPhWhWjMpKtn+Qf4SmIlXQP16OrP4eXatVrSyNVFmS27KAGeiJvea9qR3TaGpaKLmk1IHso1IyVbRS1oTO5PC4uTtapOeVYVFiMYuoleExcHFCfKlGZad7kBwLQEvOfLQcYdVIgOhZBc52dFeiWtnhcHH7BiRieeTJ63/aVP5Ekdz5+XfWGyIFL1pcbf7iXcf37G5wDTz2XIj4iNK03NJHOqQE30eptWTJ1piN3jtaK+IJatVZJHc7bGh9nTRWGBn3ifbNVBfHNoicByNXESgJnNUcnolJLL9Mvh4IoCJbAWT3keX34ByFJxUv0jZYNNHhUZk3f9xcd41198bNnyDXFSg8kXDtDW1sZdd921ytmcH4LBILlcrvnz/v37kWWZSy+9tPk7RVGoCDzDX+ns27ePP/uzP+PDH/7wy30oDg4OLzNun8K618YtsdKuuUWho8/P8s3f+yVP/duxZrSug4ODg8PFRXbcms+J9joiJQcHBwcHh3OFLZFSKBRiw4YNFFPDGMbCF9WrOSppJYPcuEqtLP5yu/fa9rWFJIuESrMv5MjbEDGUpqsUp8VfzK1/Uw+DN3UKl3OHFDwRsZW75VlVeKIMYPLJlC2RzOn7JimMiwm+1JzG9LMZjPM0mdF5aYwtd/YJlzv6jVFb0V87f3WIjt0xoTKKT6Zjd0zYXaprb5wd/26dUBkANavZaid2MDSrXYq6z/Rc1cb2uwaF9xffHBJ28QEryi6xKypUplbQeOErZ4WiYsCKu7DTJu2SPV0kfVx8EmrkwWnhclrJYPShWfHISQPh2BCAYNfy7kSr4U942Pkr64TERmC5iuTHylQEJwJrOZXJpzML3J7WEicBDFwXJ9Ah5iwFBtmsRLG0cl+yWKAEMH7ofgD++I//WHB/Di8373znO1FVleKhF5b8bTVHpWoFSkXxPDVPyEVsaO37bn4bN1ST/FgFrSB2j2tlXVxYgyVu6r8+gcsrOJyVEHZEwsRy1RHUDWklncypgrDbUGm6SuakeH9emqkKR7y+GHqubCPYLdY/l2erjD40I1wn4T4/fTYWEfjiHvzton0s9F2fEHZ8Mg2olfTzFgmoVw30qvg4e+DGDmEXUZdHJtTjExaXhQcC9F0nft0ypwpMPZMWLmenTdrF0KzxgiEo9K5mayQP59becBHl2aqtBTi6Dedel09GdosLCdu3RWjfLu72VM3WqM5zLltLoNSgPJKmlFp0bquIkwB8YYlIl/hrENWUyOoujFWUWIsFSqauUzj4PO94xzvwtDAmfKkZHBzkkUceIZvNks/nuf/++9myZQvh8JxAbHJyknj8/DjxOjg4OFyIRHuCvOn3r+T1//kygm3WmMLQTJ79zkm+8bFfcubJKUzRVZwODg4ODq9oMuPW+5lYr7iTsYODg4ODg8Py2BIpAfzar/0apqEze/rJJX9bTag0sb9AJb2yaGKxo5JRtl7EBto8eMItTCgtEipF1weFhQzTz2VsTfRnTxeERQwA69/YTffetrU3XET/9QnCog5AsjXJIyuCl1623EVECfb4hCdBlICLbe8eIDokpkwvJ6vkBFdAvximnk1TGBfbnzuk0LUnhjcq9pI6P1xi+jnxiZrEjgiJS8QEOXbxtXnou74d2SPWtnJnbZ7b9gjxjeLRFZP708KCO7uUk1WyNoSSm9/WZyuWMb45JFz/SsCF0kJc52KCXT7xSX6sqErRPsGf8LDhTT3C/Z1WMUgdz1NJi4kf1JzG6EMzYgJL2RKlza/LVgRKSkDGG1NwuSU4dqb5+9UclBo7nJhWyOWXv3bLCZQApMIwnZ2d7N69e81jc7iw6O/v56abbuKS1PKOYisJlSoViXyuEfu2PEsclUYmkBUJT8iF1EJq1fy2Lrsl4XhYo2aQOVkQnuivFTVywyVMQY2Gv81D9942YXGTN+omvkn8hZTLKwvHSAHIiiQsEpBcEv6E11aMVOelMaEyAMWpiiXKOQ9UMqot4VawW3wsCpYjayUtJlaV3RKxDUFx4ZxNQr1+YSEuQOp4nmpGTMymBFzEN4eF4xwrKXvXzS7FqQq1ophA39/uoffqdmEBljfqxm1jLKT4xeMAJZdkfRcW1A352jxE14uv9o2tD9FxSUy4XGm6YsPNzbQWCU1W1ox3m483quBdHMW8hkAJQPFIePxWRUafmXumruSg1KBqyszoK1/vxQIlAO/ZU2ipJHfccceax3U+eMc73sHs7CzveMc7eNe73kUyufTYDh06xKZNm16eA3RwcHC4QJAkifVXdfPOz9/IpW/d0IyAK8yWuf8vnuG+zz1NbsqJgHNwcHC4WGg6KTlxbw4ODg4ODucM22/QP/axj+FyuZg4/PNl/94QKoUePL7kb/H1XoIdq7/QXRz9duKHE8y+0OKK03lCpY6dUeKbxIUMdsQ1qaN5WyKl0YdmbEVy+do9eAVfjPviHob2dRPqFVth3Lkrxua39Am3mK49ceFJL62kkx8rUc2LTQzlR8tMPmVD7LIzwvo3dguXmz2YFY6sKs+qHPynMxQnxJy6SjNVZg+Jr7j2J7y2Jq/s4A64CPUGhCevilMVkkfEo0qOf2+c4Z9PC5ebPZilIhhJ17YtzMbbeoT3lR8pM/W0eJvMjRSF21aw20//dR0ofrGbtPvyNja+Rdztqf/GBF2C4krZI+OLuYUnb8splTP3T1IUFAXWChoTT6SEIidlBdq2hoWFnMEuH527Yij1rrUVgRJYjlQn7pkhPz43obe6OAnAoKdLw+NeqMxoRL6tJFBKjx9iZmaGffv2tXRsDhceH/jAB/jpT39KLbl83GtDqLThWwufMS6XSTiy9mrf+UKlSkZj+mARs0X9SaPNy9SIbQjhDohNwksuiUCnV2gC3tRNcsMlYXFTJVNj8pmUcGyV7JYtcaagSCC2PkTbVvGxaM+VbYT7xMSZik+mY2dUWDih5jVKs+JuVrnhkuUwJUjnpTH8CbHxSa2oU5wUdzpNHs4xcyArXK44KS52aYjEXHaiC23gjbpbW8SxiOKkuLismqkx8osZYeemWlETjwwDOnbHrD5BkNxwSTiKVqsYFKcrwu5e0aEgkQGxe1RySfRe1S7sEOmLuem+vA2XoBjd5ZXxhMUXmmROFkgdEx+fl5MqZcG+xK7YK9TtJdzrw8zWvyO1IFACKCQNZs8sbP+riZMA/JJBWNZZbJPWiHxbTqAEMPXUE/T09HDLLbe0dGwvNa95zWv4yEc+wvr16xkYGOBDH/oQt956a/Pvzz77LMVikauuuuplPEoHBweHCwe3T+HKu7fy9j+7gd5L5iLgRp6d4Zsff4inv3EcTXUi4BwcHBxezeg1nfyMteA55sS9OTg4ODg4nDPE3wbW8Xg83HDDDTz44IOopSyewFK3Fs0ngyyBsfBlXmJLgMK0SnFm9RfIRmXhC05ZAcWvCL14PnXfpK24se7L4hi6Key4Eh0KYmiGkBV/aUp8UgjgxPfGhctUkion7x0X3mfmZIFyqioc5TX84NSC6KNWGXtYXLQFlrhMzWvUBCLOtIpOrSj+UiHY40N2SbZiF0RxhxRCPT7SJwtC12DkFzMv3UEtIj9a5ujXR4TLBbt8yIpkKwJMFCXgItznJ3u6ICRc0auGrdi8cL+fcqqKVhK7B6aeyQjvK3umyOHpYTTBScfpA2m8Z8Qnr07dO4kkOAdrqAbHvzsmvC9bEXEydFwSI30sJ9QHBXsD9F2ToDQtFplUnKhw6GvDGDXredeqhsETUVBz89rWyRFIbFm1jM8Lne0GpZKMOk8b4D+VXFGgBBAtHUCSJL7whS+0eHQOFxrvfOc7+fCHP8yv+mS+tsI2SlkClwTzJts9XojFTUpF0PU1WufkwueG4pXRWhQlGGoNVYXRR2aFJ/vdfheJ7VEmyymhcZ7slgl0eIXGa6ZuCosYwIpaEp18B8icEY97A5g9lEOriPXptaLO6CMzzb6oVSopexFxLo+My+cSFippZR1DE3s2Si4JX9xDNaNiaC99xIY36sbQTaExpV4xmHgi9RIe1ULsRIZJMvjavFSzqnA7sYOdegTQyprw8bm8Mi6PLHx/14oa2dPifcL085mms0KrmIbJ1HNp4e8e5ZTK5NMpYZFYcaIivDgCQFcNYSFnw3VXNAo4us76/iy6ICN5tIjkAsnnhWq1JZGSyw26xgKtUeRIhkLv6sL7iMvALxnkjYUC3NCYvqJASa+UKR09zO/+4R+iKLZfu5xz7rjjjhWdnfbs2cM999xzfg/IwcHB4RVArC/Erf/3lZx+fJLHvnyYUqqKXjPY/60THP/lGNe+dzvr9na93Ifp4ODg4PASkJsqYRombr+CP3Z+FoM7ODg4ODhcDLyoZb7//b//dwDO7v/+sn+P/eRYfS+S9a/OyZ+mmdi/uuOQ3lgRKck0ZsLX39JD/w0JoWNsCpQEz/Tsz6c5/eNJsUJAxyVR4lvEV8v3XtdOfLN4hIisIHxudkRRakEjPyIuItFKhrCwCSxRjmhcDMD6N3QT2yBWj5mTRUYfEhfzdOyK0nlpXLjchtt6iG0UU90Hu7yWS46NWK4LnY7dUbouE6/Hjbf3Et0gVo+hHh/913Uge8QcPrKni7YEX+te20Xb5ohQGU9EIdgjtrq+gahACUDNaraEdrWCtlBc0wKiUXRWIRja1yXsCBbs8tF1aQy3oMNEfrjEkW+OCAmUGohOpkYHfWy+tQNfXAGXy/oHeB8/tmq5SlXmwBGFbN3gwH8qif+UJeyMP7H8c8us5ti/fz+7du0iFosJHafDhUMgEOBXfuVX+D//5/9gasvff4P31SejXXWxElAuweiwtKZAyX14uP4/CrgV3EEX3ZeF8YTF+kzTFL/X1YLG2KOzwuICxe8ivkncuckTVmjfJj5eA4QjofSKYUsMUs3WhAUJIN4XNfCEFWGXlmC3j85d4rGyqWN5YSGDy23PJcqf8NJhI/o2tjFE2EZM3IWO7KnXo2AEYaDTS2Kn2JgGILYhZGtMnz5eEH4WBzp9tmILvVE3sh33KxNxwZxpiXhEHeAwERbMSzLCzm9gXevoOvEVwqFeP5F+wShyYPpAhtRxQdemxnm5xcaHbQMK7YPW88IMeDEDVvnen64uLpzSFIZrc6L+0JhOaMwadyeeXeFaPv0Eqqryvve9T+gYHRwcHBwuTCRJYsM1Pbzr8zex+y3rm98JCjNlfvL/PsOPP/cUuSkx92cHBwcHhwufTD3qLdYTRJJsfMFycHBwcHBwWJYXpXi4/vrr6e3tJT1yAEPAlsSoz0nIraXhNJncn2bs0RYcdsyFL4v7rm9n0229QvuyM9kPlnPT8E/FI6i8ITfugNhkgeKT2fHvhohvFJtkC3b5WH9Lt/DVj28OkxCc5FF8Muvf2C0suui4JMrATR1CZQBO3jNO0kYsmiekCMc7Df98htM/FnezMqp6y/E5DTKnixz+2llhR57ea9ttRdnZIbYxyLZ3DVjCOQGGfzbDmfvFBYF6RReeGMqcLHL462eF729PRBE+L4Bj3xsldVSsPbZtjTD0WvEVeIOv66RNcMLdF/fQe027sHio89IY3VeIC8u2vr2f7ivFIuI8IcWaSBXsrxrORuUZcbGRqNtDfHOI7XcPLhARGuW1hV/58QrjT2WopAVcY2QDMDAMGZFKSR/7MZqm8bGPfazlMg4XJr/927/N5OQk+ef3C5SSME0JJNP61yK1ok7yWBG1sHafqRfmxOcuj0zfdR1NV41WEXXtAFBzNUYfnhWOrpIkCcWvCAsTouuDdO8V7/+i64IEu8XGQrJbIro+KByRGez22RK+d+2J4xcUhBYmykw8Je4cJMmS8HlpFZ3Rh2eExU2mYaKLCkKAmeczpE8UhMrIikTPVW3Cbd8uHbuiRAbFRCF6xbDqMStYj7ppSwA3/VxauB4llyQsmAMojJeZfEY8ZrdjV0z4/vRG3SR2RoRFi6FeP/52sS/BkiyR2BHBHRQTYwY6ffRf34Ekix2jy+sSjg8GSB7KMWvD3QtTXFzZuStCdOMi0dzs2n1RekwjNy0Y9Vm3XTIEFF+mYTDzyEPccMMN9PWJxyo7ODg4OFy4uH0KV/27bVYE3M55EXD7Z/jmx3/JM990IuAcHBwcXk1kJ6z3XVEn6s3BwcHBweGc8qJtWf7oj/4I09QZO/iTBb9vuigt2Nuco1L3pUE27Vt+kqfpojQfSaY4qa49MWEufcFZGKuQOSX2chyg+4o4G27rESpjJ1oO4PR9k0w/lxEqo1UMJp9JUZwSd0FxeWRhUVSwy0dIUGykVQxkl4Qs+HJ8+vkMx78vLgAqz6rC8SFKQGbrOwaIrheb5DFUQygyrMGZB6bJnlndSWzpzrAVm1eerVKcFI94sINa0MiNlYTrxNAMW+d25oEp8sPiq9REhV4AG2/tpfuK9rU3XISa1YTPbXp/ipP3TgjvS4IF0RWt4I25iQ4FwRA7RpdXRvGJTZQBTD6dIntarC9WcxrHvztmywFOtD+Obw6x5c4+YdFWOV0jc6q45FqvJVQyNEifUZsOSvNZyU2pq8Ng1zYNGWOBg9J8FrspGYbG2WP76enp4Vd/9VfXOh2HC5xt27Zx++2303X0BcxFY56mi9J86o5KkmTSP2ASWkG70nRRWvBLhXKeNfuW+QIlsMRGhYkKek3s2S+7JbqvaMMXF5vAtxOlVs3VmNqfFnYzKU1XyZwUH1PKHkncqcWEULdPvL81wY59ysTTKYoTYmNKo2bacnuKrg/SuTsmXM5OzFslpZI6KujSUt+XaYjtzzRMSjNV298HRKmkVVtxtIZmCo8ZykmV1DHxejQN8Xs0kPDSd21COFbW1E1bC00mnkhSnBT8PiVZYkfRc/O3efBExERsjf5jma+5q1LJqKSP54XbcX6kRPKI+LUG8WvdeWmM0DynLaPS2veWUsagupyj5xpCJa0KquRpOijNZzk3JQmTjR6Vdpe1r/kOSvNZ7KZUPHSQQjrVdJ5+ufjoRz/K4cOHbZUtl8t8+ctf5lvf+tY5PioHBweHVwfxvhC3/sGVvPbDewjEreeKXjN45psn+ObHf8nwfvEFrA4ODg4OFx7ZhpNSr/hiMAcHBwcHB4eVedEipQ996EOEQiGKo08J7FUiM1xl5rC4wCDcH2DjbT1CR549U2TWhrtOOaVSnBIXePTf0GHLvUZWLMGMCLMv5IQjl4pTFU78YFzYLWT0oRnO/GRKqAzAyXsmyI+JvfjXSrrw8QFEh4L0Xy8WCaiVDIZ/OU1+TKw9Brt8rH9jt7ADEzLCsW1KwMXQ6zvxCa68Th8vCIvf7FKaqjL+SAtOZ4vova5dPHJHthcd1nV5TNjJB2D04RnhCc7oUJC+68WFTYZmTaiKcvan08LHmD1d5PBXh4WFZRNPpBh9aFasEFZ7LM+KnZsnIm5hFRkMsO3dA8KRQGpBozhdaX1yWZJAkqgkVSaeFHMS6dwdpvdqcTeWdEZmYsaF91TrThE3D8yiqip/+Id/KLw/hwuT3/3d3+XAgQP8ryt2tVzGlGXSKYkWTL6WENsYJNgl9vzJni2hlXWQXda/FjBqJpW0Kux64/LJ9F7Tjkcw3hEQdvOpFTXKSfE+On28QH5EbJxhaCZjjyaFHW+KUxXSotFJWGMv04a2JrYxJOwcVBgvk7QhHIoOBQnZiGCTFUlYtxXs9glHXpmG9WwVdfayS360LDxmcAetqENZERQR2qhD2V13ABKMY6ykVaYPZITbY3yTeFsES1gp6uRTzdSYOZgV3tfMwSzZ02KLFfSKwfRzGWEBll4xhL/Lym7x6wzQsTtmCd8FqaRVasXWB6KSz4vk81KcrlHNt14fkgSJ9QpKm5hbnIkV9ZY35GXFScuW0XUGTxzmpptu4vrrrxfa37kmk8nwW7/1W/zO7/wO99xzD4XC2iLbF154gb/4i7/g3e9+N//0T/9EW5v4dycHBweHiwVJkth4bQ/v/PxN7Lp9LgIuP13mvs89zX3/79Pkp50IOAcHB4dXMplxawztOCk5ODg4ODicW2wEGC3lwx/+MJ/+9KcZP/IgvdtuXt5FaRGVrE4lK/4CX6sYmCa4g25q+dYnbTwRhcSOKOOPtS6iyJ4qkkXQ8QYoTJRQvOIuI5ve1k8lpTL8s9ZX28iKTMelUbKni8KTFJ6IIixwsosnqqBmxfbVd307pekq6eOtOxa4Ay5hBwawrrUdZEVG9khCIo/1+7qR3TInfyjmFKUEFVyCgigl4ELxu6jYmFAVRfHJuEOKsAjF7XOhCbpERIeCDN7YyZFvjgiJ2WRFRhKclANrElAUd1jBFxObCEGGodd1MX0gI+QcpARcGKpuy9lLFCUg23IR67o8RmGiQnGi9ckyf4eHTbf1ceZnYq5ZalEjN1ISFjoWRY6vnkHetiWMaRqkjwv0IS6XVV7cEATpcLqlp1L8iUnSV3VjGCr/8A//QCKR4Dd/8zfFd+hwQfLa176Wq666ij/+4z/GvP3tSJK0vIvSIorlxjNE0B0GQHGBW4Fa6/dVoMOLaZiWqEd2gbH2uM+OS5FeMShNV4RddvztHjouiTH2+Cy6gOudN+LGHVYoCAqwJVlCku25AYkiySC5ZCGnKE/ETbjXT/KImLDfE1ZQBcbkgCVgK4t/D5BcknC8luJ30XtVO1PPpoUEX7JbtiWIdgdd6FXjvFxnd8CFXhMT2MguCcXnEnbl6dgVo1bShATRkiyJi/mxREO6qGBbsiJiRUV9gU4v7oAi7HLq8sq2XMTsYGdf7qD1nagwXhYSe8U3hVF8Lqb2i8XmlWcqaDbqI7fM+M6oVJB9S917JZ8XJIj0eSlOq+hq641YingxPRKGsPOehDECnhaem4lnDWb3yHhOHOWJJ57gK1/5iuC+zj1///d/z49+9CO+9KUv8ZnPfIbPfe5zDAwMsHXrVuLxOKFQCFVVyeVyjIyMcPToUUqlErIs8/rXv57f+I3foKtLPIbawcHB4WLD41e4+le2seXmPh750iEmDlmLmIafnmbs+Vn2vG0jO25fx/PqWWZrORLuCJeHNuAStY10cHBwcDivmKZJpumk5IiUHBwcHBwcziXnRKT0J3/yJ/zlX/4l4wfvo3vLjS2XkxXouzxM5myV/IT1InrZqLd5lJMqp+5dwc1nlbftitdFbH2Q1PG8kGBDCci0b4kw9Wym5TKZk/YELxNPJFHzYpPqhmHQtjlMraAJiZQSOyN0723j0FeHhSIpNr21l0pKFXJRiW0MMnBDJ0e/OSIUSeEJulF9YvUxeyhnyzUrMhjAE3EzK7AiujhVERYaAUwfyAjH32klnRPfE99X56UxIgMBjvzbiHBZUdp3REhsj/LCV84KlTv7U3EL7NJ0lbFHZ6mVxNrHxBNibjdgCWUiAwGrDxCYe5k9kGX2gNgKe3dAwR1wIQm2j4EbOnB5ZE78oPU24okobH5LH8MPTguJsHqvSuBr83DsW6OtH6AMsQ0h9JopJFKqplVGH5klPyq28rCSVBl/VMzVK7o+iFEzWqsLae76RAb8mCYripSMchnZv9T1Y/rg2s8J7+PHqF69pfFJbBzSyedl8jOtN8Sxgw+QTCb5+Mc/jiw7L0BfLUiSxB//8R9z66230rNlJ8Et21ou6/OZBP0GyVmJhl3GslFv88gOryyaXBz1Nh9/woOpmXPOQy0KlbwxN5IkUUm3Pq7J2BAbV9I1Zl7ICk/+eyIKwS6fsEip58o2SrNicXG+uIfEzijjj88KCVE698SpFQUFJZLlSiUrkpDAZlpgjNzclywR6vNTnq1agqUWsSViq+rMvJAVHjOIOl816LmineSxnNDzzi6de+LkR0vLCj1WopqrCX2vaZA5VRCO8tKrBtPPi+8r1OOjVtLFBEcmts7L5RaPsG0K355Lrx1FPo/45jCKT2ZGYHwouyX6rkkweyhLaaZ1Absn7CbcFxAW2mfPFHGJRlMCBdH2LkG4109xqjWBqeSzhP9uv0yoy0NptsaKgtvZFCQWuv/oNZgdWXs/vT9NMf46q2xI1gnLBnnmnpdrYZompx/4Cbt27eKuu+5qqcxLza233sqb3vQmHnvsMe655x6effZZ7rvvviXbybLMhg0buOmmm7j99ttJJMTciV+p3H///dx///0tuUw5ODg4rEW8P8xt/89VnHp0gse/fIRSpopeM/jasw/xUOL/Ix+ce152uaN8fOBO9sV3v4xH7ODg4OCwGuWsSq2sIUkQ6Qq83Ifj4ODg4ODwquKciJRkWeajH/0on/rUp8h+/xu0Bfa0VM7QrJe8LsHoK4Bwnw9DMylOVWlleWhppsqhrw0LiQwAvFEPHbti5MZKlGdanyzzRBXiG0NMPZNpuUx+xEYGiwGHv7r65OJyZOpRFIYmViGZEwWqgu4khbEyw7+YRquIlTt936TQ9guQEbrWoX4/wYRXSKRkd1/nY9KqwewLWdInxONU7JA8kqcwdn7OrVbQSB2zcV6C1wog0O6lfWtU6F62u69aQeO4DTHa5P4ULrfYBJuhGSSP5ihOtz7hBTD9XAa3aKSSAUe/ISBqahTTEI4sCg8GULyykAMbQPu2CIbWgkhJWjhJdeaB6dbjR13WNUps8ZM6VRZyowqOpvF2eMgJzA9HHxvn+clHiEajfPrTn269oMMrgje+8Y1ce+21GIefJ3B63ZK2uSKSNektKRKmQBuUZPC3KZQaGuUWHJWSR/JL55BbECpF+gMYhikkUgLLuUmvGlRzrYkGTMOkPCvWB4LlrmfHYS91LC8kyAErhjJ7tijsvJY5UUAXHONVszVbgiPAmr8XOEbTNImuC6CVdeE6Ed6Xga3rbJfJZ1JolfMT9zb9XEbILevFIOpQBAhfqwahXj+lmarYPm3uy4qkFruf9arB9IGM8OKS8mxVOGbP0ExrXy32aw2KkxWKk+Ljcjv3ZHggQGm6IiT49IQUYhtCVNIqhrZ0f/PdlBoCJYBayWD8mWWeLStgBrx4/IAJqmB1hKYNgl6DvMArE+XeF6iMDvP5//NjXC5xZ+WXCkmSuPbaa7n22msBOHPmDDMzM+RyOTweD7FYjPXr1xMKhV7mIz3/7Nu3j3379nH06FE++MEPvtyH4+Dg8CpAkiQ2XtfLwJ4OnvnWCb574gl+9Obnl2w3Xcvy0VNf4vMb3u8IlRwcHBwuUBpRb+HOgPC7dwcHBwcHB4fVOWe2Cp/85CcJBoOcKD2NYbT+gvL0g1kyZ6sgS9a/Fum+Ik779rD1gyRb/9bCANkj4wm1/qKxOFHh0NeGhQRKAIGEJWxQAmJV3LYtTO/V7UJlmgjsSivpZE8XhUUUs4dyQrFLYEX0ZU8XbUVRyQrCrXTzHX30XStWh+OPJG2JQ7bfNUjPFW1rbzgPb8xNx+6Y8L62vXuA7iviQmXUnCbcdu2ilXSKU2Jv/2UFLnnPEG1bwkLlwgN+YhvFLFZlj8yu96wnvlns5XvySJ5D/yrmDuUJKVzyK0OEB8VWWNiJlQEoz6gUxsUm2LSSweRTaSEnNYBKWhXuA2QbcthAl5eBmzuF6yQ2FKR9a0R4f6d+NMHwgzMrbyBJS0QgvvZ6tORaVehyNQVKgQ43nbvDBBKtxVL6TyXxn0piqHD6cZXCbOvXa9b9MOVymU984hOOi9KrEEmS+NSnPsXjjz9O8sz+lstVyhIz0zKmKYGr/q8FPCEX8SEfSkNY7lasf6tRn0RWAote5Mgu698KzB7OkbThihgeCMzdly0iKxJtW8JLj7EFRNMZKmlVWLxi1AzyIyXh6LBqroZWsieUEY1T87V5GLixQ6ycCaMPzQqLh4JdPgZu6mjV1KSJP+HFE3EL76v/xg6xHQFqXhNyvXox1IoauuBzPDoUpFtw7IpkCYdcXsFn8vogPVcK7guYfDot5A4FEN8UonNPTGxHrRvkLMA0TCopVdhZqpJWhdyQrJ1BJaUK9QF2k2Oi64P4E2JRxS6vTHQwgOIX60PVvMboI7PUVumnJJ93gUDJ5bEiM1sRKJkBL2bAKhuOS0Q7W7/QoTGd0JhOoSozmWt9EGsaGjMHf8jll1/OG97whpbLvRwMDQ1x5ZVX8vrXv54bb7yRXbt2XZQCJQcHB4eXEk/AzZW/spUn33ba+sWiR1HjcfbZke+gi2SzOjg4ODicN7L1qLeoE/Xm4ODg4OBwzjknTkpguSl97nOf4z/8h/9AsvN5dnZey/ShMt6IzMA1EcaeLlBOaiS2+In0eTj1M8uxZvD6MLWijlYxSR2YZeOdvYw9lqI4USGxPUx8U4jj358AYN1rO6iVdcYfSzH8yxnW3dxJeNBPfrhM26YAiZ0Rjn17DICBmzsxNYPRh2eRFdj01n6m9qfpvDSGrEiYBhz7zigY0H9DB5ILRuoT1Fve3s/MgQzp4wUigwG6r2jjxD3jYED33jiK38VwPaJq8x19pI7kSB7JE+r103tNO6funSBzsoi/w0v/dR2cud+Kp9v0ll4yp4vMHswS6PLSf30HZ+6fRM1pdF0eI9DhozRbxRNysfG2HvJjZaafy+Br9zB4cyfDD05TSap0Xhoj3Ofn5D1Wvax/YzfRoSATT6VIH88ztK+b0YdnKE1VSVwSJbY+yInvWwKcoX1dVHM1Jp5IER70s/G2Xk58b5zCeJm2bWHat0U4/h2rDgdf14lW1hl/NInskdn05l4mn0ohuyX87T7C/f5m5NPATR2YBow+NAMybLmjn6ln02RPFYmuD9J3XTuZU0XGH03Sf30CSZEZedCqwy139jH7Qo7UsTzhAT89V7Zz6p5xZI/MJe9dT2G8xLFvWce0+W19pI/nmT2UI9jjo+/aBGfum0QtaHRf2YYv7iZ5JEctr7Hpzb1kzxaZOZAl0OGl/8YOzv50imqmZtV3p5/T91p1uOHWHooTZaaezeCLexh8bScjv5ymPKPSsduKTGtEu62/pZtyqsrkU2mSx3K0b4+QGylZbXZHxGqzdcHT0Ou7UIsa448lUQIyG97US2GiTNvmMKZuEN8cnqvv13Si13TGHk4iKzKb3trL1DNpsmeKxDYGcYeU+mpvq74BRn4x12ann0uTOVkkOhSk6/I4J34wji/uZt1rOylOVRn+2VybTR7OkTqaJ9zvp+eqdk7dO45WMui9un2BiG/zW3tJnyww+8K8+q632e4r4vjbvE3Hq+13D6Lma5z84QT+hIeBmzoZ/vk0lZRK154YwV4/pxpt9k09lKat+k6dyNN5ebw5cZPYFSW2LtiMLhu6pYtqusbEkyk8IYWhW7oxVANJtmIc45vDHP+uVYfrXtdJraRb9e2T2XBbLxNPpcgPl4hvCoJsNoVUK/UR2dNFohuCdO2Ji/URPxjHUA16r23HE1aYfj5Deba6Yh+hlXR6rmrDG3E3+4jLPrSR/GiJY98eW7GPOP1jq74bfUQ1WyM84CfQ4Vu1jyjNVpl6Oo0nojC0r5vSTJXJp1PENoRW7COUgIsNb+ph/LEkhfEy617fSWQwwIF/OLNqH5EbLhHfHKJjV4wTPxhn+7sGqJU1StPqin1E12VxTnxvFEOD/usT1iSZBIZqrNhHaBWD3mva8QRdlqMRVjRS+qTlvrRSH3HmvnqfXO8j0sfzeMLu1fuIN3VTnKzU+wg3G2/tQfG7OPmjCfwJb72PqNf3LV2UkyqTT6fxRDwM7Ysx8WyR4nQNf1yhVtIpTFriwcEbY9SKOhPP5FF8MutfG2fy2Tz5CZW2IQ9tWwxmxhQMHeL9LgwNxl+oISuw4RovUydq5CcNor0yHRvcnHjImvxs78vx8yeeY2BggI985CM4vDp5/etfz+23387Bg09xSXgLU4UgpikRixvIMqSS1kx1d49BLidRKkp4vSZt7QaZjIRhSIQmp1E2BUidsAQBHdv9FGdqlGY13EGZtvU+Zo+VqeZ0CpM1ov0ekiesfrSt36Ts91EYr6AEXCS2h5k9nEcr6YR6ffjbPeRGynTtjlItaJSmq+RHy7h8Mh07wtbzuqAR7PYR7PIx/VzG+twtYWoljcJYGUmW6NgdI3Usj5qrEej0Eu4LMLU/bW27NYyuWmLomQMZOi+1nifVTA1/wkt0KMjkU1bUZ3xzCNOoR4ZJ0L23jczpAp6wQqDTSyDhY/LpFJgQ2xhCkqWmm1v33jjZsyXKs1W8MTddl8cxayajD88QGQzi8srNaLWuy+IUxssUpyp4Im7atoSZeT6Drhp0XxFHkqVm/GjnpTGK0xWKExXcQYX27RFmDmbQKwbhfj/emIf0sTz+hBd/u4dySqUwVkbxu0jsjJI8lKVW0gn1+vEnvMzUo7USOyMofhfp4wW0ik7HrhipIznURn13+5quSe3bImhlnezZIu3bwrRvj3L2gSmqjfruDzD1TLp5bfSaVd+SS6Lrsjj5kRLpEwX8bR4i6+bV9yZrwjt9Yq6+s6cLlJMqvriH2MYQU8+kMQ2T2IYgsiI3XRK798bJDZcozVTxRt3EN4eZfjZNNVtDzWm0bwuTPFyv7z0xChMVq77DCm1bI836jgwG8IQUFL+LSqZGbChIaaZCYaKCO+iifXuU2ReyaGWdcJ8fX9zDTN1VM9TnR81b7jWKz0XikijJw1lqRZ1Qj49Ah68ZZda+I0KtoJEbLhEdChIeCDD9bBo1rxHs8hHq9TfbbPu2sCXgP1NEViQrmq/uUhro8BIZDDD5dLreZq3xYuZUEUmGrsvbyJwsUEmr+Ns9dF/RxujDM9QKutVmpXp9A91XtJE9U2y22fimMFP705RTKr42D21bws367rrcio0rTVfxRtzEt4SbLk2RdQG8ETe+uAetotO+PdB06fGEFNq2RZg5kEGvGoQHAngjCrMvWCJDf7u3GbOnBFwkdkSZPZS1+og+P/42TzP6LLEzSjWrzvURl8RW7CPat0eolTRyZ0u4PDIdu2MUJstUM6v3EY02mz6Rp5qpEd8UontvG0e/OYJRM5fvI04VqNTrLLYhxOTTKaJDQdxBBb1qrNhHxDdZbdbQTKJDQXxxN9mzJWtcvEofERkM4A4qJA/nQIL1b+gmdTxP9nRxxT6i4QTbsStKOaXiUmRCfX501Vi1j1BzGrmREi6vTMeuGKZholeNVfsI2S3ReWmc9LE81VwNb9RNraI3Y++W6yPmt9no+hBT+9OYuklsfXDFPsLf4Se23s3MiRqmAdFBL7FBH6VkjZnDJTovCZIfr1JOaXjDLmJDPmYOW4LOyLoAiidHsmqJ1l1uKOWtqWCPD+I9ErMjJroG4Xbw+CSSY9bfO3oMQiMpipujVGoSnRGdyZxCTZeI+nUCbpOJunCpJ6JRqklkyy7csknt2EOk0tN86R//HqlVd0MHBwcHhwuKH9YO8DvPf/2cfZ5qaGSM4oqiaBOYqmV43XOfwGNnddcKvKfrZt7b9Zpz9nkODg4OFyvZCUukFOt1BP0ODg4ODg7nmnP3DQj4rd/6Lf70T/+UAyf3M2BuwSyCHghRTs+t8lVLOuX0nKVONavj8kgktvooDiuUZ6voVWtFZbWoUU7OucBYK9Ctz6kVDMqz1aaxRW3RttWMilFf3WrUYx60ks7EEylcfplI35zDSSWjIs1zcSrPVqkVrWPQyrolNLi9l9JM1Tq+eRb45dkqatE6H61qbYth7bearmGaJrJixRaVktXmJIRetY6/sSpWzWvILpWp+qRE7zXtVOsTI0atvm09zqGar6Gk5larVlIqum6QGy5iaGa9Dhv1pFFKzq3YLafmzk1yydYCYmVeHc5b0V5NqXOrsw3rGLSyTv/eBFr9+Odfm/mLWhvbguWwo5WtyQhkq75lZW6JbzmpUmvUYcWqQ8MALaeROpZrThA1Pre6pA7rbStbA9MkdcSaLAgPBpoxDJqqL6jvara24BiqGZXErhiVXI3ydHVBHar5GuX5dZhWqWatz00dzeENu9Hr7VJdXN/patPJwNCs408fzzP+aJJwv5/y7ML2PRfZYZ1brWztp1bSyZwoNKPiyml1wTuO8my1uRK5Vq5fR8PAF/PgCSlW5E5z22Xqu35LVrIqes2ayACrzTbqUK8srO9qVlvgLGOaZtOlQFfr26pzbdaVnN9m6xEeBswcyOJyy2hq/fjzC+uwklKbx2Bo1ufOHMxSSamEBwML22FqzqWied/X61DNamROFlFzWvOaL9dHwNx9D5YwTqtqFMbnXddl+oiGm46araGX9eZE2qp9RLbWPAaA7Jki+VFLKLBSH9E8hpRKNV/Dn/AQ6PCu2Uc0ztvQTGrFGm2bQmRPFVbtI6hHIWn1PtnldWEac9d8pT4CoFacq5fp5zO4vDLavBiQxX1E474Hq49QC9pcHa7QRzSuo65a56oEZKuPyK3eRzQoJauYwLZ3DTLxVHLVPqKSUqnmrPo3aia50RKVdI3CeAWX17Xg+WNdGw0kGUM36v2JiScoo5YMitNzfVo1o1ErN9qsQTldQyuqUKtRK8qUUzXa1/kwgWLSmGsvBpSzBlr90mlV62dj3BKxDfeepVKp8A//8A84vLr53Oc+x65du+h7t0byJxVME2ohH7I019arFdAbt7UBlYpEJGKi61A7Y1oOmHVnIzWvo6tWWVMzqeb1ZqquWtQxdBnZLWHUTNSc1hyXmbpJNVtrOovoVQM1p1HN1Jh5IYc76Gr2z2ZNt/rg+r25OKJNLWgoXpm+axNMPpNaddtaQWvet6Zu9QkNdNVY8HOtqGMa8+olo2KohiUoDCm45t3ztaK2YGxYzdaazzSjZlCcrDQn5bWyviByq5qtNftNo2YdQ2O/siIv6PeruVpzDGHo9W3r10qrGEj5Gu6gFSFcmCijN+pQNxc8x7SKviAOSs1r+Nu9uEMKtZK2YFvr2syv71qzLy9MVlD8rmZUnF41FkRuqUUNs+HoYlrHoBY1agUNT1hZVN/a3NjQbPTX9c+tWWLjjl1Rpp/LUCvpSPJcHVYyc8fUrEPTOs/8mCVMmV+HzfrWzAX13XjOzNaduaJDweazqLntvDqszh9zzhu3m8ai+q4aC7at5bVm+/a3ezA1o9kutaq+sA4Lc9+LzHq9NAZ1i+u7VtSa59LYttHWDN3E5ZZRvC5qBZ1aSVswNpxf30bNOn5MEzVXswSAysL23Rj36pqxpA5N3WyKibxRd3Pb5ep7vjajNFNt3q+NNtvsIyr6grg0NV9DqxgEOrxE1wfrMWAr9xHNe6F+bSopFa2k4426V+wjaNah9XMlXSNzstD8edk+olHf9f5EckkEEl6q+VpzbNKoQ2Nxm603aa2so/T4iAwGrPHEKn2EVtabQxXF60JySXPXcYU+olkvOateqtUahmag+F2r9hGN8UejDvNjZbSyji/uWbGPMI1629IMJFmqH//qfYRer8NGnxzfFELxuyhNVZb0EYYhIykKes26F/R8ETkYpFY2SJ+pUKm/R1DzOnr9uumNZ5XsAsWqF0OTwAUuBaolqNXNXg3D+rlRx5pq7Vyq1j+3JCPJ0B7Smcq5KNekxrAdTZeozGvfFU1C0yUiR7MYUpVDI49x991385a3vAUHBwcHh1cmZVSma9nzvt+MXoRzmBZc1MUjXx0cHBwcltKIe3OclBwcHBwcHM49kmnOm7E9B/ziF7/g5ptvJioluNr3JmsnwbUjj6RyvjnR1Sr+dg8bb+1m5BfTZM8UbR1vq8Q2BqlmawtEJWshKzLb3j3A7AvZ5mR7q4R6/cLxTecL2SMLR0SdT2SPTHxDkOyZolCbGripg9TxfFMI1AremJtgt68pjHopCXR5kWRJ6Pjscsl7hph6LtNcbf1Sofhkgj1+8iP24gBFCHb5UAIuK+ZQgN7r2smPlMiPtH4/RjcELbGVaKTHeURW5Obk34WGr92DVtSE7l/ZI7P9nQNMH8g0J1JbKqfItO+wXAlair9sdWX8Mlkr2949QDmpMfLYGsdXqy35lTLUjbHG46chUFLbc/xy4ofs2rWL/ftbjwFzeOXy4Q9/mH/8x3/ksoFfw+e2nCO0uH/VMrJs4jo4tvQPxupvx9s2+FD8MhMPTdg+3rX2ASDJEsEuL8WpCiLpB+F+P5HBIGOPzrYUCdRAViRkt9wUtVxQ1NMmL+QUCE9IQXbLVNKtj5N9cQ/eqFt4DO9v96BVjAUCkZcCySXhjbpRczXhuD1RwgMBooMBRh+efUn3A+CJuDF1Y06Q/BIS7PJRyahNUVMreCNu/B1ey82oRWS3jC/upjyrLhAZXWhILkk4Iu584Ym4FwiTWiEyECDc72fssaRQf+sOKbg8MpXU0v5CUpauoZJDLU4ILCrrjyu07Wlj8pSJtsapNURKzX26IL1z7fjwyFFrTDdavJ+TI/s5fvw4AwMDrR2vwwXF0aNH+eAHP8gXv/hFtm7duub2hw4dYseOHefhyBwcHM4nn3vua9wnHTlnn6camiVAWgNfyY1iyLj9Cm7fi19P7DgpOTg4XOiIjr1eLr76Oz+nMFPmzX90Nd3bxKPMG1xsY8eL7Xzh4jvni+184eI754vtfOHiO+cL4XzPqZMSwE033cRrXvMafv7znzOtjdCpDGAWLWeQ1cRKWsUAGYKdXoqTrU3sN+J08qNikxu+uId1+7oY/tlUy6KjzElxEZShGUw9kyI/KiY2ig4FGby5k5P3jAuJHOKbQ7i8rqblf6u4Q0pzpXgrvCiBkkxrQoA6nohC25Ywk0+lWy6j+GR6r040ozRapRGdJkK4P0D3ZXErLkPgvDbe1sPskRzZU60fX9eeOJJL4tTEi5gYvsAIdvsZvKmTo98eaTr9tMLG23pIHs0J3ZdtW8P4O7zCIqXxR5JC2wN0Xx6nOFkRun9jG4OYJkJtQvR+mo+oQEm0nwDr/k3sjDK9Py0kOOq/LoGhm814wFYwVIOJp1LC4k5DM4TFeBtu7aY4XWHq6WXKLSNOajD2VH71el8kTlICMi63TDWrrSpQaoiTwHJjOqo/icfj4atf/erKhRxeVfy3//bf+PrXv07njnFyxy2RkpK27oWVxEqGIeECFJ+EoZlzQtG6o9JKQqL8pNqyVm8+0XUBlICrGdG1FqZhUrAhyi3NVq3+RlAHkLgkusAtphVkt0RkIEBupLzASakVXB55zoluLcwFJnDiSAjVh7/dg2kgJDgK9fpxhxShMpW0KrR9g/imMMXpCtnTrT+TAh1eAp0+Zl9o/fq6vDKdu2JM7U8vcOZ5pRPbEESvGCSP5FouE+jwEujyCX3HkFwSbdvCJA/lhMZD1VxNuL69EYXE9iijD8+0LuaTINIfoDhVaf1erJcT7V8aCAmUpLqgXLBvCfX60Sr6sgKglfBG3HRdFhdu68XpiuUgJlgftYLG4r0sJ05q4Am6iG/0M3uk2HT6W8AKZStZjdTE6gKlxeIkjx/U8tpa2oY4CSBXnuTIqSf4zd/8TUeg5ODg4PAK53b3Lj62465z9nm6aXDrgU8xXcsu/7g0IVz08d6/uwHZtL5kRXuCXPf+HfTtSpyz43BwcHBwEEdTdQqz1rs1x0nJwcHBwcHh3LPybOqL4Lvf/S4ej4eTvmesCJE6DbHSSnRfFmPodZ3IntYPa/ZwXtiBpZJVKc9Um1b5reLv8LDxth6h40seyaMKTuxnzxQ5c/+ksAtLsMtPqNcnVMbf4WHr2/sJ96/uuLCYoTd00X9Dh1CZ7ivb2PoOsRe33oib9q0RvDF3y2XUnMbhr50VXpkve2SCPWL1lzqS5eBXzggLRfSqIVxm5JfTnLl/SqhMsMfHlnf04w6dcz3iEgZu6mDgJrE2kR0ucvSbYgIlAL2qN6M5WmXkFzOc+P64UBlPVBFqew2OfmOU8SdSQmVi60O0bQoLlencHWP7XYNCZbwxN9vvHiTQ4RUqt/4NXQy+plOojD/hJToYFO6jzzwwxfjj4uKw1DGx/rbnqja69saF91OarlJJL5rxkuRVBUoAxSmVcnKZ46vVlnVP6ro0ytDrE6s+qecLlAAu/51+JiYm+K3f+q0LeiWSw7klHo/zl3/5l3zjG9/gw39y9YK/NcRKyyHJ0LnNT6hrmX5Ods0JluZRKxmoRXF1pFrUhPt6gMi6gNAYpRFNKkr6WJ7k4dZFGwCYllOMO7i0nlajfXuE9h0RoTKesELfte0LYs7WQpKh77oEwS6xsU2o1y/8jEifLDD1TOuC8gaK34XLK/Z1ZOKplLDg2NBNYbGHVtYZe3R2QaxbK7RtCRPb8NK/wFR8LrqvaMMdFBvjzR7Mkj4h5gBqGqbwIgVTNxn5xQwlwfvRE3EjucSUkOWkyujDM0KOV+6Ai8i6oND3OoDeq9sJ94l9b2rbEqZtq9gYzxf30HddO4pPrH/xt3nwRsTGrtVcjalnxcV4etUQ+r4qKxIdu6Io/rlzkhRlVYESgGGYVPPaUoGSoqwoUALLfa60QrcuVbVl3ZM61rsIta3e/uYLlEzTwIg9z44dO/jzP//zVcs5ODg4OFx8uCSZjw/cCcDip4uE5Zb6h1vfxSW3DDUXgmQnivzo00/ywP/YTzF5YTrsOzg4OFwMZCeLYII35MYX9rzch+Pg4ODg4PCq4yVRLkQiET772c/yn//zf+ag/Ai7vTc0/2YWSys6Kk0fyJEbLgm/BI9tDNJ1eRvHvzvWWlkDhn8+LbQPAL1sILkk3AEXVYFjjG0MEl0X5OxPW99nfkz8i+joQ+JOQOUZlYknkhSnxSYQCpMVdMF4vvxoCU0wmiM/WuaFr5wVKgMIRwcCtG8N03VZnINfPtOygMhuRNmZB8TERgBaSfyc9IpBaaqKeR5ivco23BAwEBbxAZx5QPz+BXEXsK49cQIdXo5+Y/Ql39eZ+6eEZaOFsbJwbIhpmORHy0tFNmsw8UQKXbAdZU8VxZyh6mglHa3Uuoo0tjFIZCDI8C+mhcR/kiwhi7ohmCaTTy+aiF9DnNR7TRveiMLZh5eJrllGnNRg4sk0vjbPiue0WKCkByr8j//xP+jq6uJzn/vcqsfk8Orjrrvu4ktf+hL/8T/+RzZF7kJxzYlMlHR5WUcl04DZ4xXU1Z4vsmtZS4mOXRGqmRq5FqMwm86VLUS9zUeSJOG+UZIl4ptDdUFha8+mmkCf08DQTMYeFRdU5kdXF+0vh1bWhcdqpmEJ30UjnGYOZoWdUexGWHVeGqM0XSEj8Kyws69KShVylrF2hJjDTh21oJ2XSC/TMKlmVGFnRDvRdeWkSjlpY5wnuCtZkei+LM7s4SwlwfYuel61os7owzNixyjV76m82Ni1klGtvkwANVcjeThnORUJMCPoqNugmhXrJ9q3RyhOVoTc0GSPjCRLzTa7ljipgTqTJ1NeJPxbpaysQOeOAOkzVZbz41ssTmpg6DB9SkdbpenNFygBpLSnefqJJ3j44YfxesXEnQ4ODg4OFwf74rv5/Ib389mRbzNVm3uOdLpjfHzgDvbFd8P7YOvN/Tz8pReYPpYB4PTjk4w8O8Nlb9/EJbcO4VJeknXGDg4ODg4rkB233lNEe4PC3+ccHBwcHBwc1uYls1f5nd/5Hf72b/+WI0eO0K9vos3V3fzbSvFvhmpQmrFedHoiSmsr7g2d0kyV4oS4qCfY5aNtW4SRB1sTPKgFTdiJBayIDlmRkRUxUcvQvi6quRoTgo4svrhH6IVx8ojYamqAWYE4lAbFiQpFG9EtdoiuD9K5K8rx77V+vdIn8+THy8IOR0Ov7yI3ViIlUo+yFUsnIjyKDAaIbQgJCewqadWWeM0OdtpE25YwvoRHKFJNVmSQBUVAMmy8tZfp59JC8YsTjyeFXai6Lo/hjXoY/pkNIZVg2yvNVIUd19ScZqtNiAonPREFraQJ9XlKwMXG23oY/eUsxanW+wqXW0ZWJOH6G39MTFwQ3xzGG1WYbMS8rSFOalCaqVp1USwhN557q4iT5vcPpemlfflicVKD09FnMHIGX/ziF5Fl5wXmxYYkSfzN3/wNu3fvZsMtaYaf7F7w95Xi3xquSC63hK6Zy0/YL4qA09NZKkE/NUHhMUB0XZBqvtayYETUFREs8YasSMJuLN6Im7atYab2p4UED5IsIStSy4IWUYEDWAKMzMllhI5rIBqBCdiOsmrfFqGaqwntc+ZAxnKXFMAX9xDu9wtF84ElgDENs/U4MCC2MUQ1IybQsVXnNtBVg/QJ8TbRtjVMcaIi5Joju61YSJG2Eez24Y24rUjkFjE0k4knk8Lxa1174mROFYSFNsJt3YTipI0YSkHBFVh1IVpO8bvQymKipuj6IC63LHSdJJfVv5qCOZRaSWf6uUzdPam1Mm2bQ+THyzTPqhVhkwmVjE6tbCDlZjB7LafXlcRJ/z97fx4nx1Wf++Pvqq6u3rfpnn1G0mi3FsuWLa+ybIMxGDBLCBBuApjEwC/rJQuB3IBxgEASckP4JjckkGCCw2Kzg/G+ypZtyZatfV9Gsy89M72v1VW/P6q7Z0aamT4lI2+q9+ulF3jmVNepT506VdPnqecBcDihUobyPKf3dHESQLY4wd4Tj/Hud7+bq666qnG/XgU89thjXH/99Qu2qVQqfOMb3+D3f//3X6Ze2djY2Lz+uSFyIdeH1/FC5gTxcoqYM8hG/1IcM75TiC4JcvNtV3D0yUF2fP8whVQJrVjhue8f5sgTA1z9kbV0rI2+gkdhY2PzauXgwYPcf//9vPjii4yMjBAMBlm7di233nprwzjiXbt28YMf/ICjR4+STCbx+/0sX76cD3/4w6xfv/6M9uVymR/84Ac88MADjIyM4PP5WLVqFX/xF39BS4s1B/5XO4kh8+/tcLsd9WZjY2NjY3MuOKermI888giKovBi6XH0OVaqa2KlytTsL/06Louw7KY2ZMEvL81F97hl5xLZJeNpcqJ4rZXBE1OJWYjpSJ7IcvLBEcuuO/mpkuUv20NLfax4R6fpvmGBzqujRFb4LW3jbXYRXmbtIc0TU2nZELa0TWRFgNXvsxYTpxUqFDOapQgHLadTOIu3xHXd2qINwKItLSx9c7ulbRwuB2rAoq5QNhfzRK+ll4IaUlDc1q4lxeNAtSgCalrpZ+0HFls6JkWV0cs6ukVnA62gT7t/CFIp6pYXiDquiLL0Jmvjwd/hsTQPAah+hejqgLWZXzYFk1ajf7o3N9Pz5g5L28iKRH6yZNmVa+JQ2lIUoivsJLYuZGkfte3qc6ugQAkgcTzL2J4ZeSMLCZSAtouDLL+pddYYrwmT5hMoHS6/wIkTJ/jgBz/IzTffLNw3m9cXPT09/NM//RP/+Z//yXjq6JxtamIl54FphzjJAa3rPPhbGkQEzYh/OxtHNjBjy5wea/FFSOacZyXqLL4/ZTn2rZyvUEyWkWRr4qaWDWHLz1BqQCG62tocLsmmwF52Wuufr81t+V7bsiFMsHtu59P5qJQqll19ytmKZQccQzfQK4aVaRhZkei6uhl3k7V7meJxIDutPdvITslyhN3ZIMnSrNgssY3A6XEgKdbGUOvFEcJLrY1xDPNcWaWcszYmZIdEOadZFBaaz15W/14KdHos19wTc+H0WtvG2+IitMTa31iqX6HjsiiukLWoNy1XoWRRcGpUDOL7khQT4vcAX5vbcu0cqowaUKbnZEHnJb0Cib7irGjohQRKkgytyxwEYrOvi9AeU8w+l0BJN3T29v2cxYsXc8cddwj169XA7bffzt///d9TKMytxhoYGOD3f//3ueuuu17mntnY2Ni8/nFIMpsCy7mpaSObAstnCZRqSLLEymu7eO8/bmHNmxZNR8ANZbn3b3fw6P+3i+zky/Pyp42NzWuH733vezzxxBNccskl/Mmf/Ak333wzu3fv5tZbb+XEiRMLbjswMIAsy7zzne/kE5/4BO9///uZnJzkj//4j9m+ffustpqm8alPfYo777yTyy67jD/90z/lAx/4AB6Ph2zW+gtmr3amnZQs/i1sY2NjY2NjI8Q5lS50dHTw1a9+lT/+4z/mxfJWLnG94Yw2RjZn5lHM+OMsfiBNdqzYWNRzWmRIeJmP8FI/vQ+JLVan+3Kk+6xHbkSWBQh0e4gfSDVuPIPgIi+Voi7sEDJ6eqSQAMneLP3SmOVIC9XnpOSxJqyIXhDEE1VJHBd/CPW1uoleECS+PyEs2iokiqT6csiKLLz4dbauTS0bwujVL95FORvHnPj+pOUFrKmjaaaOWnO9UgMKK97RSe9jo2c11q2w5IY28uNF+reKu/SM7U5Y3k9qIEelrFsS/WkFnZMPzi3umA81qNB6cROjOyctRdLF91ubFwBy4wXLcR7BRV787W5L81BwkZfWiyNMncgKizpVv4LTr2BYVOINPB23vBhVSmn0WYjFBGi+MMzEoZQlkWposY/o6iCTh5KWxtHIc1VXO1nsuCLLfQS7vZx6Ytx0eTJ09EwGuUEcSHx/hsJkeVbf9GIR5hEo6ZEMQ+NHaW9v55vf/KZQ32xev9x666387Gc/Y+fOxwl5O1CVMxe6lan8rGcvo4IZi5NqPA/pyRSSbDrSSLLpiJcdLQgLls4mikiSJUJLfBi6YcnFRFYkvM0uMoLPA3pZt+QmUmPqeIZK0WJcnCTVBTB6WWz+kmSJplUB4gcMSwKs4CIv2eGCpXtZfqJIOWvtmKxEttVwuGVCi3wkTmZmCQoWopgsWxbx65rB+P6k5eg7K8+DNcJL/Ti9CqMvWn+Ot4I74qR5XZiBp8eFa4cBo7sSlvc1eSRt+WWQ7GiBrMV0Y3+HB8MwLD3D65rB5GFr160kS2RHCpZE5ZJDIrjYR6VkTYwe7vGRixdJnhS/PhyqjOK2+AyV1Rjfn7R8bVhxrgRQg04kyWI8nGQ+e6UHc2RGxLerlHRGXkiAw4Es+KJGdLmb7HiZQrJ6jio6Uv8otMzvPGHoMDmoU8rNvo6kZJrg4bn3O1rYRqYwwgPf2UYoZF34/kpx2WWXce+997J3714+97nPsWLFivrv7rvvPr72ta9RLBb5nd/5nVewly+N733ve/z4xz8mk8nQ1dXFv/zLv+D1WhPd2tjY2LzSuPxOrvrIWlZe18XTdxxg7FgCgBPPDtO/a8yMgHvLEtNp3MbG5rznfe97H7fddhtO5/QLC294wxv4yEc+wne/+10++9nPzrvt29/+dt7+9rfP+tm73/1ufuu3fosf/vCHXH755fWf33333ezatYt//dd/Zc2aNb/+A3mVkaiKlMIdtpOSjY2NjY3NueCc+6v80R/9EXfeeSc7duxgQDtGl7J87oa17AVJppTR6gspilc8EqtSNpAkyZKYBUx3jECHuOhoZOcEQ88Jf3ydtksi5CdKlr4MVrwOWi4MM7RjQizKSMeSaKiGVQEHwOCzE5YXLOIHU5ZFHPnxEvlxa7FMYMaCuSIK+XFxwZY7oqKVLC40Ak6/QtnC4p/ViK6zpZTW6H10hOzoud/f4FNxNKuLtGdBKaVRSlmLN1HcMlpJtxQH5vQoeJtVS9IcxetAdkqUktbeSD+ba3bo2QnLXnjxAykSJzKWrttSSuPozwYt9g6KibKlN+ybVgeoFHRL0U6emErrhjCFyaKlGL+x3QniB1PCAiU1pBDs8lqeu+pv/lcE6y2b85ZW0EmcNI9HLy587eq6xu7yNhwOBz/+8Y/tmDcbJEniP//zP1m/fj3exYcpD1yMJM3jmjLj2Ss/Zc7fslLVgDeY/OrjW8Ky8xCAv91NfqIkFOtkVAyGtk9gWHTDU4NOwssD5KdKVAri854nqoIkCQuBrApfattYFbHomsHg03HLzkPDz01adny0MqfORPE4TOdCwT5KSKhBJw6njF628AwhmQ46Vmph1VnrbEn15c7qmrBKMVlmdJe1aMKz3peF+3kNhypbi20DnF4HFhPEcPoUtLxmKcZP1wzLUZJGxbz+sHhqh5+ftDwezOvP4jVoWBvjkgzBRaZwSFjkhjl3Kx4HY1bEbgbm37KA5BD7+sHX5qKQ0i3FQUq1ZFLNEH72qsWxF9IzXJeSC4vepjJ97D/5JB/60Ie44oorhPv3auArX/kKd999dz3O7dZbb+Vtb3sb//RP/8Rjjz1Gc3Mzf//3f8+GDRte6a6eFT/5yU/Yvn07//Zv/0ZLSwsnTpxAEXTgsrGxsXk1EusJcfPtV3Bk6wDPff8whXSZcqHCju8d5sgTg1x1yxo7As7GxmbOWLbu7m6WLFnCqVOnLH+e2+0mFAqRyUx//67rOj/60Y+45pprWLNmDZqmoWkabrf7JfX91YphGCSHq05KdtybjY2NjY3NOeFlWc187LHH8Pv9HChvJ6c3eNN1xjfMrReFWHFzh3BkV7ovV41Vs/aFeNOKANG1IeFq6Bqgm8IUT0w8JuDEAyOWXGYAnD4H4R4/3qjFqKVrm2ndGLa0jayAr138wbIudLAyimqnxuLIU7wOmlYFLG3TfnmEJW9ss7RN3+NjDD1tTRDVtDLA6vd0W4o6U9wyLReFUSzEP6hBhbW/vZjAIgtvguqQ7s9bFpOdDdnRguVFrBXv6qTjSmtfqDStChDo8ljapuvqZla83Vr0WHa0wOEfDVgSn8XWBFnx9k5L49vX6ibQae146p9v5bRWt9EsLNQ7/YrlKBTFK7PinZ14mq1tF1rssxxtko+XOPTjfkuL6cHq9WPlmogs8xNbG5p+S1EXW0ifPJLh1KPiNhIdm8Isv6m5fq4aCZQAXig/zvj4OJ/5zGe48sorhfdl8/qmvb2dO++8k3vvvZfe8Wcab1B99pJkaFnjJdguHhc0eThDXjQqtXrtSA7TGckTFZ8nagIld0R8m8JkiaFnJywJlAC8LW68Fp7vwHQubL04guSwJkZwVsWtotQFKVZ2U1t7tyiucIWcOH3ii7uSDO2bmvC2iD9LaoUKI89PUs5ZEzm3bYwQ6rFmue4KO/HErD1Ph5f5abkobGkbLV+hbDE+62zQNcN0s7Eg6nE3qXRtjlkacw6XjL/DY2lsO1wynVfGLD9DTB3LkDhuTYjeelGYgMVoQm+Ly3JsYv36sSKiksz2VgSWatBp+VoNLvYSXmbtenD6FPydHmSHtT/KJg+nie8Xdxhz+hSz1gbCtZNkCHZ7Z90j9HTjcWFUYOJYgVJK7PqTHdC23IEvMl3wRgKlkpZjT99PufLKK/mP//gPof282njf+97H17/+ddrb2/n3f/933vOe9/DYY4+xZcsWvvWtb71mBUqVSoU777yTv/zLv6S1tRVJkli2bBmqam0esrGxsXm1IckSq67r5jf/7xYuuGFR/TkhMZjh3r/dwWP/uovslB0BZ2NjMxvDMJiamhJ2/cxmsyQSCU6dOsU3vvENTp48ySWXXFL/fW9vL/F4nGXLlvGVr3yFN7/5zdx4443ccsstvPDCCw0/Px6Pc/jw4fq/sxFPvZzkJgtoxYrpqNtiu3La2NjY2NicC16W18q8Xi/3338/11xzDcci21k39Ya628Oci7DVxbKJI2m0gm5ZYBHo9BBZFRCODRreOcnoiwlrC/7AomtbADj+qyGh9lp1AcYTU8lPloT2lx8vceCuU5b7VinqVErWXkVu2xQl3OPnwA/E9xde5qPjshiHftgvLA4LLfHRdXWMwz/uFxZMBLu9dFweJXUqK7zN+N4kE4esx7YApkhAsAapgRz6U2OWxHGyS6ZlfZh8vEg6Jyaw0HI68YNJiglrUX6tl0RI9WUtOUqdDa0bw2QGC5acwqaOpCmmrQmboquD5CdK1pxz9iRwWBCRAZbGwPR+kmSGCpa2i60NogacpAfF3YqWXN+C5JAtOaB1b27G6VM4cd+w8DbN60KEl1qbExyqA61QoZy2tkB78oERS+IuT7NKfrxUn1dFCC31seiaFo79apB8XPx6GH0hwcSBlPA1Hl7mw9eiMmhR8Bg/mCEfL6Hn5xYn6cXirKi4DX/UzoNfGWHLli389V//taV92bz+uemmm/j0pz/NV77yFe744ef5/B/eX/+dNDSHYNrQMSqQGihRTFsTjEgOiXCPj/xEUSj2zagYDD83adkBRg0otFwYZnT3lLAoVi/rIIHT4xAWwkwcSll2HjKfuyrIikRFUJAgyRKtG5tIncqS6hePZG3ZEKaYKluKj2peH0IrVJg6Ki4AiawIUEyUmDomto2hw9iuBKWzEehUxRyiTB3PCMfk1fC1uFHcDktuM/mJIiWLzylq0IkaUMgMnp0blfB+/AqusNPS85CWr5DszVq69pxehchyP7nxAobg1KCXDcb3Jay5jFkcAzVGX7TmJuVwyUQvCDK+Nykcj+1wybRvijK+NyEccyYrEu2XR5k4kKIwJbYfSZZouTBMqi9LykJMs142sGQlhem2Ovh03JJwyOFyoOUrlpyXmlYGqJT1enSioWlIDZxtDMnByO60JXFX01I3maECpax4HfQKJEZ0CmljXnGSPDaF3hIx+2UYFAJP4w+q3HXXXa9p8cvy5cu56qqr+MEPfkCxWCQUCvG7v/u7BALWXgqai1wuxw9+8AMOHDjAwYMHSafT/NVf/RU33XTTGW1LpRL/9V//xYMPPkg6nWbZsmXceuutbNq0yfJ+x8fHKRaLPP7449x99934/X5+67d+i5tvvvklH5ONjY3NqwG3X+Xq361FwO1n/Lh5bz3+9DB9L46x8T0rWHvjYjsCzsbGBoCHHnqI8fFxfvd3f1eo/ec+9zl27NgBgNPp5B3veAcf+tCH6r8fGBgA4Ic//CGBQIC/+Iu/AODOO+/kk5/8JN/4xjdYtmzZvJ//i1/8gm9/+9tn/PzkyZNUKuc+mcEqiRPm39nusINDRw695M/LZDIcOHDgJX/Oa4Xz7Xjh/Dvm8+144fw75vPteOH8O+ZzebyisbAvm/f11VdfzWc+8xm+8IUvUJYf4xLXGxtuo2W1ushE9Sv1CLhGSA4J1a8gq7KYwEk3LSsVrwNfi1vY/n9g27jlN79Vv8Kyt3YwsnNSPDpINyOA3BGncEzY0LPW49HGdieIH0haEljkxotMHktbEhdkx/LED1mLTUocT5M4mbUcU2UZGda8fzHj+5OM70kIbaLlKpbjukpJjX139lraRtd0Rl8Q69NMoiuDVPKVcy5SaloRpFI2LImURCMWZ3L059ajxyzH68mw9gOLGd01ZSniSy/pZIasLUqeenTMkqMWwNTxLLLT2hdPqb4cTov7GdoxQeJkxtKcUEyUTcGRILIq4wpVYxlFU9EU6LmhncTJjKW5Lnkiy4nssLBASXHL+No9JE+KiyPBdEZR/eK311ocYSmlURgXm0uSepyvfe1u2trauO+++4T3ZXN+8YUvfIFt27bxvve9jxXh9+JyNl58zE2UQJKRZJAkQeMwwxQBlQSdL2HaEcgTVSkkykKL0aW0xsjOSeHnwRrhpX68zS6Gtk+ILchX26h+hXJOLEaqUtItR0IausHYrinLop7sWMGSQBNMd0Cr0VtjuxOWhUDFs4i+83d4CC3xmYIJ0f2cRfzY5BHrwvWz2Y8rqOBv95x7kVJAIdDltSxSshrlV5gqWXaCNXRD3GGtSqDLS6DTY/lvGKt/i1WKOoPb4ugWBDBGxSDVl7U09xgGZAbylDLiY8jQDUZ2Tlq+7qw+e1qZ22r42j2El/oZesZa5OT43oQlFy53zE0prVnah6yA4pLMm5YgDgUqGuQS8wuUTufUxJMc2fMsd9xxB52dncL7erUxOjrKF77wBfbt28fy5cu54oor+P73v8/HPvYx/vAP/5B3vvOdL+nzk8kk3/72t2ltbWX58uW8+OKL87b98pe/zOOPP8573/teurq6uO+++/jLv/xLvva1r3HhhRda2u/4+DiZTIb+/n7uvvtuBgYG+MQnPsGiRYtes+5QNjY2NnPRvDTEO/7mSg4/PsBzPzhMMVOmnK+w/X8OceSJAa66ZS3tFzS90t20sbF5BTl16hRf/epXWbt2LW95y1uEtvn4xz/O+9//fsbGxrj//vvRNG2WeCifN//myOVy/Od//ietra0AbNy4kQ984AN873vf47Of/ey8n/+Od7yDq6++elYfv/jFL9LT08OqVavO5jDPKfv7TwFjtCxpEl5oXYgDBw78Wj7ntcL5drxw/h3z+Xa8cP4d8/l2vHD+HfOr4XhfNpESwOc//3kee+wxnnrqKY6Vd7HceVHjjQydUI+P7qtjHLt/lILAF96pvpylt09rtG2M4O/wkOzLCi2W1xYuZFVGVkynm0aUMhp9j4+RGrDWv67NMbwtLg7d3S+8jeKWia4JMrorIXQ8Vhe8wBQCjTw3aWkbLaczunPK0ja6BpZtbTDjtxSfIt5HHcb2JsiOWPuyP7zMhyRLlhwKzgZ/h4dKqWLJBebA918e+9SDd/VZ20A2I76yw3lLAhCrqH6FyEo/EwdSlvYzumvKdEUSxNvsIromxOAzccvub1avPVEh5UvdBh1yo+ICr/AyH1remlCreU2Q5vVhDv2wT/j86Br0PjpCyYJbkzuiUpgqWRLRRdcEia4OkR60EJlo6IzvSTC+R3g3dF/ThFGpcOI+MXFXSS+w17GVSrHCr371K7xe23bYZm4UReGuu+7i0ksvpRjcjpK9Docs8Ohn6MRWeKhoMHlcbA4Yrwp0JFnC0MUWl2WnRPSCEIkTGeF5oyYSUDymo4cI6YGceV+34NIiO2VaN0aYPJomOyw+b7hCTiSHJOzQYlVwBVjqT43cmEWxLlgWSoB5TsM9flL9OeHzU0yUSBw3LDnpyE4JX6ub7GjBkquLVWSnhBpwCp9PgPRA3rIQ6GzIDBfIWBwLTp8DSZYs3T/PBm+zC10zhB2EwIxntPr8FFrio5zVLIvRrbq46Zph+W9Lo2KQPGX92Uv0ugFAMh2EM8MFcdchyXRWy44VLUXrZYbylLPi4iGHKqNXDLO9yDYOB5IMTSt8ZEeLJE+JX0N6UWdsn3itnW5oWeZgYk+KYkZszI0mD3FkcCu33347t9xyi/C+Xm089thj/OM//iPZbJbf/M3f5OMf/zhOp5Orr76az3/+83z1q19lx44dfOpTnyIYDJ7VPqLRKD/96U+JRqMcOnSIj33sY3O2O3DgAI888gi///u/zwc+8AEA3vzmN3PLLbfw9a9/na9//ev1tn/4h3/I3r175/ycD37wg3z0ox/FVXUbveWWW3C5XCxbtow3vvGNPPvss7ZIycbG5nWHJEusfkM3Sza18vxdRzj0WD8YMNWf4Vdf2M7yzR1c9r9W4w1bizq2sbF57TMxMcGnPvUpfD4fX/jCF3A4xF5YXbFiRf3/33jjjdx66618+ctf5gtf+AJA/Vlr3bp1dYESQGtrK+vXr2ffvn0Lfn4sFiMWi1k9nFeM5LD590Wow1qsto2NjY2NjY04L7sH7GOPPUZbWxsntH2MaQNC2yRPZRl5cUpIoDQTd5NKz5vbhK1uh56d5Ng9Q5a1MMve2k7X1c3C7VN9OdBNEZEoIy9McuIB8ZgmADXgJLYmjK/VLbyN4pZZ+RtdhHp84juSzUgxK/uRVZm2SyOW3EYCXR5W/WYXsgWnBsWnoAasafHi+5KWREBgujRYqhnQcUWU7i3i46a2TWytWJb0qx13SGXRlhY8zeJfmvg7PKx4Z6cl5yF3k0psTdjabKdDfL94PAeA06fgaXJaWmDr2hyj+1prY6D5wjC+dvFrDcxx42m2Fkmx4l2dxNZYW5yIXRCiaZW1mIjRPQl6HxkVFijVrv/caFFY3OVrd7P85g4CXR5rfXshwbFfDc59Tk+3lzF0Wi8K0npR2NI+AIa3xxnfkxRqq+s6x6LbyefzfPe732Xjxo2W92dzftHe3s7PfvYzXnzxRQ4O3IthiC0wpwZLpAasC1sCXR4CnR4k+TRHizksmfSywfDzE5ZdQNwRlfbLmnD6xO7vlaJOOWvuX9TRQy/rjO5KWBYE+Ts8+DuszTX+Do/luUP1KwQXWxMouoJOy/ePplUBQkvEn2+MioEaUHBYeFYr5yqmgNSKiMwhE1riR/GIP+M5XDKtF0eExw2Yz9It68OWjufVTLDbS2SZtS9Zm1YGCC6yNtZ8rW68Fp7vAMpZzZKQGEyxosMlfm5kp0T7piZLfxsobgeBrjnmtAVQg07zmUN8E7zNLlo3RiztxxV0ElritzY+DRjdlbAkupIVCQxrzmKRlQGa1wn+zVJdODF0GN2VItk39z1BT88WVUnoRJe6cLgsFBooFyB5JCMsUCpLY+wf+Dnvfve7ue222yzt69XG7bffjtPp5B/+4R/4oz/6I5xOJ2DacH/rW9/ihhtu4KmnnuIjH/nIWe9DVVWi0WjDdk888QQOh4N3vOMd9Z+5XC7e9ra3sX//fkZHR+s//3//7/+xdevWOf999KMfBaC7uxun04k0w1FLsuCuZWNjY/NaxB1Q2XzrOt7xN1cSWzp93z321BA//POt7LuvF71y7l4KtLGxeXWRyWT4y7/8SzKZDP/4j/941qKgmoh969atFIvm90K157umpjOd2iKRCOm0defiVzOJIfNvj3CHtfUeGxsbGxsbG3Fe9m/cFUVh586duFwu9rONrC4QjVEVDGDoeGKKpV4rbgeKT2wDXdPRchVkVSa0VPwBZOS5STNCxAK+Vjer3tMtvFhUSmmUkuZbz6Iindx4kYN391laYNMKOrmxIuWchTesdQj3+PC0WFuMaFoRxNsqvk0xVSY3XjK/KBdk5LlJ+h4ds9QvxS0TWx+yJIbqfWiU3gdHGzecQSmrWYqAAOh9cITBZ6yNtSU3tNJ6ScTSNlZR/Qor3tVpSahWmCpx+Mf9pC3EoegVnXKmjFYQf8s81Zdj///0Cjmd1Yis8FteyE32ZjnyU2tRdIVEmcKUtTEQWeHHb6Fvilsm2O3FFXQKbyMrkB0pkLcg0gI4ds8QA9vE43oUtwy6tZiSZW9po/vaFkv9yg4XGHp2QtjZQg0qdZFBbd5dkGpeisPtwOGxIKALg14skhsvCl8HxuZRBob6+cAHPsD73/9+4X3ZnN9s2rSJ//qv/2Joag83fjAstE0xXTHFg4aO04LmxuGSkZ3mfVpksb1SFSi6Qk7hGMvCVImJAynKFmPSoquDloS+pWp0mZXnjskjaeL7xESHNcpZzZxvLayl1iKKLQkaIk787dYEVOWsZumZ0NBhZOcUxaS1e5sr6MQTFRfTaoUKA0+N18+RCLpmmMciKNQD0+Vp8Jm4pag8V9BJ2yURS+PmbAgt9tG00powePJoxnLUrlaoUClaW9wa35e0FK8nOyV8bW5LsWAAEwdTllyrJFmimLT2HKkGFYLdXmGBJ4AroJjPxBaEd1qhQjFREnaiAygmyww+Exd2X6rVV8tXhJ3SXCEnHVfELEcGTx1LkzjRwKnJ4agLlDxNTiTZjM4UqltFx+GUcaiScJ0lCZzFDFIyTTYuNq8VKzmOTdxHV1cn//Vf//WaF71cfvnl3HHHHVx22WVn/M7r9fKZz3yGv/7rv67HeZxLjh49SldXFz7f7O9dLrjgAgCOHTtm6fM8Hg/XXnst3/nOdyiVSvT29vLoo49yxRVXzNk+Ho9z+PDh+r9Tp14e92EbGxubc0HL8jDv+PyVXP17a3H5zO9+ynmNZ+88yE//z9OMHLLmgG9jY/Pao1gs8ulPf5r+/n7+7u/+jiVLlrzkzzMMg1zOfLlh2bJlKIrC+PiZUeDxeJxwOPyS9vdqIzlUdVJqt0VKNjY2NjY254qXNe6tRkdHB/fffz9veMMb2MEjXK3fhCq78Xe4KSRKaDkdxSvjDqv1uCV3k4rslum5roX4oRTZkQKFqRJaroLilnE3uciM5EEHV9iJrEjk4yWO/nwQX7sbowLljIasynhj023VkPm2d37cXIz3tboJLfMRWeInO1bEHXSSG8uja+aX1IrHUY8/8ra60PIV0oN5ZEXG3+WhMGn2SQ0qOD1K/Y1gb7MLrVShlNSQFfNL4sljafLjJVS/gjOg1MVEnmYVvWyYb6vK4G/zUJgsohV0Vr67E71icOwXQ2bbmIpRoe744u+YbmvW0DxWT9RsB9QjK/wdHgqJolnvWg2H8gw8NY47ouKOqnX3Kl+72/xSf5569z0xNl3DdjeltDZvvRXVQW68yIG7TuFrdqMGFUqp6ba5sSK6pp9Rb8XjYPTFSVNIpoC3xUMuXkQv6QvWGxlCPT7S/WZkk9NvuivV6x1T0bUZ9V7ko/2SCMVEifxECVfIWW/rjqqgN6h3VXDhblJBol7D0+tdmChNt42oSA7qDk4zaziz3qWMZo7vkDKr3uW0Rikzs4bTY1bXjfpCrq/VTTmvmfVWZLwt89fbFXROn5vT633amHVFnWh5Da1YqY/ZWtu56l0bs6WcNmt8K15H9brPT9fbmB6zskNm4Jm46UQmVO/Gc8RcY7Z9UxOpgTzZ4cKcc0Q5O7vehUmzZrIqzzlHzFfv/Hhx3jlivnof+fEAnlYVV9g55xxxer2dfoXeh0fFx2x1jhh6dgJ/hwfFK58xR9TGLLJZb8UtE+j2kh7Mz19vpzRrzCpuma6rW+jbOoahGXPOEWeMWVUmNZQnN2Ye23xz8swxW8pplBJlMiP5ejTQXHPEzDHbvqmJQIeXfd/tBX2OOaJW76I5Zl0htymEemYCd1TFHXHWxWf+Drd5XyjMvq8pbpllb1nE1PE0A09NTLet3QPdMu6mGffAiJP92oucfOQgW7Zs4bvf/S42Nlb47d/+bfbv388nP/lJLlz0btrzLThUCVmRKFdFnE6vjK4ZVEoGkmz+tzuk4G9xMnYgh6xIFKpprU6fA6NimEImyRSravkKieNZHKqMGlAopTUkWcLpdaCXp2OM1KATLWfGBslOGafPQeyCIJmRQt1RZ1bbvIZeNpAVCcWrUEqVyY0XUTwOZFWqiwnNtubie71tugyGKVovJkuUa58bUKgUdSolHckh4fRNt3W4ZWSHTDmr4Qo5abu0iZHnJykmy/W25UwZQ6+JsmTKM2Lo9LKOJEvomoHicVDOahgVA4dLxuGU6xFvTp+CXtEpJssUU2XUgHO6rSrjcMn1WC6z3qaQAckUlY++OIWhmzVU3NNtFa/jzBrmNFJ9OTJDedSgsy7uUarCyvnqXUxps9pKkul8dHoNT6+36ldAMiil5693vYZumeBin/kcNGE+F1fKOpWiWUenX6Gc0TB044x6O/0Ker0tOP2n1VCdrrfilkmeyprCOImF6+11YOhVgU5ZP2PMKh7HdF1Oq7fD46gLu2SnhOJRZtdbmo55rY1ZMAU0atA5PWYXqLfkkJAUiXJVbGOOWanuGDZvvSsGKNX/zs5VwzPrXZgszR6z2gL1XmDMqoHpGp7e1tfipml1kP6tYxiVM+eIueptVAwqJX3eOWKuejtcDhIns7PbzpgjJPnMeufGiuQnS6gB55xzBJjjvVKarncxrZEZnqruc6ExW613VqOU1szj8StnzBFzjVl32IleMYTqXZsjgt1ekCVTPDTHHGG2nT1m9YpBZjg/XZcG9ZadZpxgpVATEclnzhEOB4pbRpIlyrkKslOiZX2QqRM5Uv15c8x6q3NnbZ5VquO7ouP0yehlCa2gM34wZ95jtIrZdp77mp5ME+x0ElrhYfDFHLoGDqeE7JzR1iOhV6BSMuMnZW+FnUMP4JV1nnjiCSKRc/vSx8vBP/zDPzRsc+ONN7J+/fpz3peJiYk5HZdqP4vHxV98qPGnf/qn/P3f/z0333wzoVCI3/u935s36u0Xv/gF3/72t8/4+cmTJ6lUGgv/MpkMBw4csNxHGxubVzev+Wu7HS78eCunHk0wtssUC0/1p7nn89tpXu9j8RsjqH5rwmMbm9cDa9aseaW7cE6pVCrcfvvt7N+/ny996UusW7duznbxeJxsNktnZyeKYi4LTk1NnfGcm06neeKJJ2hpaan/zuv1csUVV/DMM89w6tQpFi9eDEBvby/79+/n5ptvPodH+PJSLmhkJ83vY0O2k5KNjY2Njc054xURKQFcd9113HHHHdxyyy08y0Ns5m303NDG0I4JJg6lCS7y0XlZlP3f60XXoP3SCLIi07d1nPRQnnW/vZiRF6eI703i7/TQvbmFg3edQivotF8SQfEpdSHPkje1IskSJx8YQXE5WHRtC4d/2k8ppdF6UQRPk1p3QFl0fQuJExmO/moQd9BJz5vaOHrPIIWJEi3rzZilwz8yY+oWXdtCqj9nLkxHnFzwvkUkjmc4+vNBYmtChBb7OHhXHwBdW5rJjxfp3zqOGlDpeVMbvY+OoGs6kVUhoquCHPie+fZe11XNFFNl+h4bw+lV6HlTG31bx0iezFLKaAQXTT8cdV4RQytU6H14FFmV6XlTGwNPx5k6mibc46f90igTR1OEF/soJMoYBpy8fxhk6HlTG8PPTRA/kDLrfWWM/d8/hV7S6bomhifmYu+3TgLQc0Mbo7sTjO9J4OvwsOiaFg7+sA8tV6F1YwRXwMnRnw/ijqosub6V+KEkoy8k8LW5WXJ9K4d/1k8pqdG6IYIn5uLITwZAN+ud7s8xsC2OJ2rW5di9g+THS8TWhQh2ejn0w34Aure0kBnOkRstUcqU6XlTGyceHCY7XCC6Okh4qZ+DP6jWe3OM/ESJ/q3j9NzYSvPaMAd/2E+6L0fTSj+xC0Ls/2613lc3U0qXOfXoGIpbpvvKGIPPjJHuz9O8PkTrxRH2fae3Xu9KuULvg6PIilnvwWfjJI6nueB9i1HcMi9+4zjo0L6pCUmWOHGfGdPX86Y2hp+fIL4/RaDbR9dVMY7dbx5r2yURFI+DY7+sjtk3tjG+L8HYrgS+No85Zn/cj6fZxaItMQpJjaM/M8fs4utamTyaYuT5KXwtLpa8sY2jvxikMFWi5cII7ohad5NadF0LyVNZhp6dqNf7+P1D5EaLxNaGCHZ7OXS3We+mVX7AYOCpOGqwOmYfHiE9mKfpgiBNy/0c+L5Z77aLmyhMlSkmyqjB6ph9Yoxkb5am5X5ia6fr3XlVDC2rkejNEuz2ElrsZ+DpcaaOZggv89O+sYm9/22Ou47LoxgVg5MPjJhj9i1tDO+YIL6vOmYvj7H/uyerc0QTsiJx/F6z3ktuaGXkxSmalvspTJUILfbPP0e8oZX4QXPMBjo8OJwO4vvMxaU554jjGYafm8Qbc9Hzpjbih5JEVwZJnsribXHNO0f0vKmNE/cPkx0t0HV1M54mJ/u/u/Acke7PE1kVILoqyJGfDaDlKnRdMf8cEVnmp+XCMPvu7DWFQNc0U05rC84RM+utBhQmj6QZ25NYcI5ouzSCQ3Vw/FdDtGyI0L2lmRMPjTC+a+E5AmDJ9a1MHEsSP5CoXxtzzhHVeidPZhnabo7ZlrVhjp0yP2fOOWIox+C2CVxhlWVv6wDd4Ni9QwS7vfPOEWrArGHvY6Ok+3IUpkoEuzz16M/T54ieN7XR/9QYiRM5Isv8LH5DC8fuGSJxPEvn5VEqZZ3eh0aRFYmeG9oY3D7B5OE04cU+2jdF2fs/vWgFnWKmjDrD4arnhjaGd05W5wgvXVfGOHh3H1pBp7xmilPbDrN8+XIee+yx02+pNjZC/O3f/i39/f3cfffdqFxLz5rV+GJOhnebb4g1LXVTTFVI9BVxOCVaLvAyfiRPIanhaVIItKn0908iyRJNK/yUshWmjmZwOGVaLwozvi9JYaqMJ6bSvC5Iqj/PxME0keV+tFyZiUMpZEWi7eII4/uT5ONFPFGV6KogQ9sn0AoVmteFMAyI70+CBG0XR5g4lCI7WsAdUYmtCdH/5DiGbhBbGyTU4+fEfcOUMxqtF4WZOpomM1zAFXLSvC7MwNPj6GWD4GIvTo+D0V0JAFo2hEn2ZkkP5FEDCq0bIgxuj1Mp6AS7vLhCTtMRKFXG4ZRwRZwUk2WcXgdtF0cYfm6Ccq5CoNODJ+ZieIf5dnJsTZD8RAl/u4fsaJ5Ah5eRFyYppU1Rrq/dzdCzpjAxekGQYqLE1LFM9fm0mdFdU6T783hbXIQW++rudE0rg5RzGpOH08iKTNvFEcb2JihnNbwtbsI9Pvq3mm80Ni0PUCnrTBxMITnMescPJMmNF/E0uYitDXHqUdP9MbzMj4TpfAPVeh82XwZwhVWa14YY3jmJwynja3PjUGXGdps1bL0owtTxTF341LI+zOAzcQwDltzYZt7TnjT71HxhmFRfjnR/DtWv0HpRpH7Og11eHG6ZkeeqNVwXIjtSINmbna7385OUsxr+Dg++FjdD2yfwtbvpvCLG2O4EiRMZHG6z7ciLU5RSZXxtbgKdnroDZXR1kFJGI9mbrR/r6O4piomyWe8lfgaeqtZwZQCtUGHiUJqmlQHCPX6Gn5sgP1HCE1NpWhmg/wmzbWSZH6NiED+QQpIhtjpI/GASXTPwtriIXRCib+sYGBBe6kOSJcb3zq43mOKmtosjDGwbR9cMQot9ONwyY/UxGyF5MkN6MI8r6CTY5WXwWXN8BLt9qAGF0RfMZ5fm9WHSAzlSfTlUn0LrxRGGdkwQ7PbicDtQXDLD1Xo3rw2RHTXrrVTrPbJzklJGI9BpxhcOPBWvj9nCVInE8QwOl9l2dJfpnOVrdRPo9pI4nsHfaTp2lTMak0fSOJzVMbsnQWGqhKfZRXipn4Hq+PDEXGSG83Xhy1xzRN8T5rNsZKkfwzBFOfnJEsFO77xzRKjHh6zIjO9JIDslOq+KMr4nQWZIbI5ID+RI9lbH7DxzhFnvEOmhPKlTOTxRldgFoQXniNx4keTJLIrHrEsuXiB5Mou32b3gHFEbs6WURudVMZDg+K+GF5wjCpMlvM0uIsv9jO5KIDukhnNEdPV0vUNLfLNM3uaaI/qfGseoGISW+Agv9ZHqyzG+NznvHKEDwS4PTq+D0T0p9LKBrhl1FynV76BlfZDh5xNoBZ1Apxt3UGHkhep1s94HEgzsSKO4ZVrWehndm6Wc0/G1qHijCiPV+1p0uYfcaJZ0AvKTGpFFKopLpqTpeGMK/maF4T2mAD+yxEUpq5PoKyEpBodKD1E2prj33m309PRwPtHe3n7O91EsFutxczNRVbX+e6sEAgG++MUvCrV9xzvewdVXX13/71OnTvHFL36Rnp4eVq1a1XD7AwcOvO4XPG1szkdeL9f2hkth7OgU2+44wESv+aw5vjdL8niRS967ggtuWITseH3EGdvY2JjRuNu2beOqq64inU7z4IMPzvr9jTfeCMA3vvEN7r//fu666676894nP/lJmpubWbNmDZFIhNHRUe69914mJia4/fbbZ33Oxz72MXbu3MknPvEJ3vOe9wDw4x//mEAgwAc/+MFzf6AvE8lh828Jd1DF7Rd3fLaxsbGxsbGxhmRY8a4/B9x222184QtfwEeQa5veipYz0Es6cvUt/JorihpQQDJjzwCCPV5kh0TiaObMtn4zEq7W1h1T6bgsytiuBLmxImpIMV1FdPNtVskxHenjblLRChpaTkdWofXiJvNLfN18c9ehyqabBqaTiFY02yJDbG2Q/FiB7GgJxSujuJS6e4kr7KRSMuPkkM1tS0kNb4uLRdc2M/hMnGSvaZ+phpS681O9bVpDL5nuGopvxrEGFdCpv3Hrjk63rdVFL+o4PHI9qqFelzna1j63eX2Q5rVhUxRR0HFHVbSshlY4s22thrELQoR7/Jx4aBgtU22ryGfUW1akeg1X/kYXWqHCiXuHkRVQQ2q97en1doWdyKrMsre0M/DMOIXJMqVkCV3jjHrPrKG33YUnojJ1JIuuVWvoVeruPGpIgcrcNbRS7+5rm8mNFZg4mJ5ue1q9Z9YwuMhL99XN9D4yUndombPtjBo2rTTFKqceH509ZnNz11vxOnAGFLRshXJGmzVma/Weq4brPriEyaOmUGX2mJ3R1j1dQ3dUweFUyI4UZo3ver3nqGFwiY9Ap4fh5ycXrveMGl7wW4vIjRc49cjYmdf9XPXOa7RsiJAezlNOa/PPEQvUcME5olrDSlnH3+ohPZhbcI6YWcM1H1hEdsw8loXmiFoNgz0+OjZFOX7fEJWSLjRHdFwRJbIywNGfDQhd92pQofWiMGpA5fivhhZuO6OGsiITWeUneTyz4BwhMmZPnyNqNeza3Ixe0hnbm1xwjphVw6hKsNPD2K7kgnNErYaugEIxraFlNbE5omyg+mW6r2tlbFfCFDvMN0cUzShRd5OKJ6IycSht3teg7oIw5zwbLzJi9LNf2kFbWxuHDh0iGAxiY3O2lEol3vrWt7Jz507WljcTUpuoKKagQHFJ6DroZdNFQnGZDhiGbsZA+lqcJA+M191vJCQzmkcyHTQqhUq1rYSn2YUroDB5NINDlTHKWj0yS/E6qBR1jIopSJBVue504m5yIsnTTncz20oOCYdruq1DlfG1u0mdytXb6iUdXZu7LbIZL9e0KoBDlZk4mDLbyhIOt2y6ihiz20LVHUnT0cumw5TD7ai3lZ2mg00tPspsa+D0OiimyyjuGXVxSsiKXHcvUdwODN2o17D9siayQwVS/aZrleycbuuoxmPOrKFeNui4PEp6IEd2rDDDLUYGgznr7QqbzlBDz0xQzmpmW6g/I85V70CHB3dENcVJ0uy2Z9S7Whd/h4diukQ5PaMuZX3Oes9dw/nqPV1DV9iJr8VddcaZYxyeVm+HW6ZpRQDZITG6O1Ftq5tuVKfXe0YNm9eHKKbKpAfyc47ZuWoIUClUQDptHM7RVi/p+No9hJb4GNk5OXvMzldvWcIZMB14jKozkciYbbkwTHa0QDFRXrDetRp6W1y0XBim/8lxKkUdxe1Arxin1Xt2DR3Ve11mOD89Zudqe3oN5xmz89VbcZtjyqjWc745olZDb4uL5vVhBreNoxX0BeeIWl2aVgbQNYOJgymhOcKoQOfVUbIjBaaOZRacI2o1VIMKsdVBJo9kKGXKC84RM2voCjsxdKP+fDfXHLFgDeepd60ukmSK3SaPpClntQXniJk1dPoVjIpBMVmePWYVuT5HSE7VjGmTJNxhJ9nRIopHrouVJNl0vdIK1eveQbWGOrLfhzfmxNukED+Sr7aVq/Gk5v1HVsy2Rj6P4jafp8qSl0rZQHFJVEpG/b5mtjWq/ZcwDCiPTXGgvJ0RTvLNb36Tj3zkI9icHYcOHeJjH/sYf/VXf8VNN90063cf/vCHiUQi/PM///Osn/f29vKhD32IP//zP+ed73zny9bXw4cP89GPfpRvfvObtkjJxuY85vV2beu6waFH+nj+riOUZkQ4Ny0OcPVH1tK68rXvEmhjYwN/8id/wq5du+b9/datWwH40pe+dIZI6Sc/+QmPPvoop06dIpPJEAgEWLNmDR/4wAfmdKQ8fPgw//Ef/8H+/fuRJImNGzfy+7//+3R3d1vqs9Vnr5eTY9uGePz/7aZtdYS33zZ3dLBVXm/3l0acb8cL598xn2/HC+ffMZ9vxwvn3zG/Go73FRcpAXzoQx/izjvvJESUTdL1IEkNt1l0XQvusFJ3N7GETN0hYyECXR4WX9/KyQdH6hFBoiheR/0L2wW7osh0XhVleMeE+eWqIMve1kFmMFd/21cUWZHRNfH9WOH0yDURAou8VIqVelyT0H5mxCCcK3ztbro3N3PsV4OmwORcIENokY/0kBlDd65Y8sYWnD6Fo1XXIBHWfXBJ3TlLhKaVgVkuO+cKb6sLXTPq4pdzQfe1LRgVve4acK4wF0Zk4eteVmWaVviJ70+J70M1nS/Sfbmz7abQPqycc8Urs+xtnQw9GyfdnxfeLrYmSKWsM3U0I9S+FldjheXv6KBS0Dn54IjYBg5J6F7CjNtsbG2Q1osiHPnFUOP+GQb51gTPjD2Ky+Xi2LFjdHR0iPXNxmYBkskk1157LaOjoyyfuhyvHEDyL2xh7XBJtK3zEd81Rm58eg6W5MbPbEhglMWux+b1IYC604wotUghEbwtLjCox0qK4G5SiSzzM/LClBmZJYjkkCy1t4or7KSU1iztw9fmJjdeFN5GViQM3VzUP5dEVgQwdIPEcbF5/mxw+kwBUS0W7VzgUGU6r4zVXWxECHR7CS3y1p2zRGi7JEIxVRa+L54NsmJG0Ikex9ngcMm0bAgT35+qx6eds31ZmCfAfElGkiWKybL4NjNiJ88FZzOnBBd5UYNO4vvE51XZab5QUYuGa8SCtT3tb3up6pTjCio0rwsytidJKTPPNanP2LkEsk8sbsHITz9jtm0MUSqrJPobj+PKVIKT6m6OpfbVXZ9fT8wVbzYXkiTx4Q9/+CXvbyGR0p/92Z8xPj7OnXfeOevnO3fu5E//9E/58pe/PMvp6Fzx8MMP8/DDD5PJZNizZ48tUrKxOc95vV7b+VSR575/mCNPzP4OfcWWTi77wCo8Idcr1DMbG5vzlVezSGnnD4/w4k+Ps+r6bq756NzReVZ5vd5f5uN8O144/475fDteOP+O+Xw7Xjj/jvnVcLyvWNzbTL7zne8wOTnJr371K14wnmQj15i/WECsNPDUGLJDYGHsNJa8sQWA3qp7yUKkB/Ic+emAZUHMoutbcIedQgIqXdPr8RxWyI4VyFtcMJgZeyeKGlRQXA6hhbxSSqu/zSvK2YgnzkagFFriw9syHbXQcB9pjexoAVkWVLRhCk587S5x4YVOPXLkXDK6J4GsnFsb59RAjsoTY+dUoARYErMBeJpVKiW97uAjQn6yOHtBpAH+Dg/BRV6GdkyIDhUAdA1LgkG9pFsSKNW2sXKNhZb6SJ4QH5OBLg+LtrRw/P5h8QVMHXJjBfIT1s5l/ID4scfWBGm9OMKRnw9aEiqduHcEWfCu6O/w0HVNjN5HxuYXzc2hAY7vT5Hqyy/cr+p2U8Y4B5I78Pl8PPfcc7ZAyebXRigU4oEHHuDaa6+lT32RxaOX4KnqHOYTK1WKBiN7spTGZ4/3WjzPfGIlp89B89ogY3umhK7HiYOp+meK4nDJtF8WZfJQSuh5JTdmPUKmnNHqTmyiOH0KrReHGdudqDumieBuUoXn1JqTnBWyI9aE97pmXWQlyRLBxV5y40XhebicKVsWQiluB8gIvRgA51acVKNS1hnbk6CUtn5urDB5JI1+DgVwYJ57SwIlCVxBJ6W0tXNZmCpRKYqfm9ASH4WpkiXxEGBJoARYum7r26QsCJr8CpWSbqlfsTVBKkWdySNp8T5lNMvzql7WLQkGWzaEyU+Wztxmgb/niymN4ecTZx7/PH2NrvZjOFQSvfPP4TPFSTXG9qbAv7ALpZ4wBVxDgUMcG9/HF7/4xdedQAngjjvuWPD3kiRhGMavTaS0EMuXL+fFF18km83imyE+O3DgQP33Lwc33HADN9xwQ32hzMbGxub1iCfoYsvHL2TV9d08fcd+Jk6ZzxFHtw5y6vlRLn3fSlbfsAhZ5AUUGxsbm9c5iWrcW7hD7AUJGxsbGxsbm7PjVRNAfc8993DttdcyySi7jWfMHxrGnIu8YC7wawUz2mjJDa04/WIry6n+PEkLi/Y1QUzrRWEz8keA8X0JMyLOAu4mlVXv7cbTLJZzO/LcJCmLAp+p4xkmDloTOXRf00L7ZVHh9rICy9/eQdPqgPA23lYXPW9uszQal72tg/ZNTcLtXWEnvla3cPtyRqN/67glQVSgy8OSN7ThbhLPKg4t8dGyISzcXvHKrP3txYSWij8k58dLZIetLUhaRctVLAuuVr2329I59La6aNvUZGmcdGyK0nVVs6V+xfcmLYmB3BEnvja3sEBJcctc8FuLCHR7hPfRclGYtkst2HDLsPLdnZbGSajHx6JrWvDExMdvfrLIxNG0pQVMraDT/8S4sEPZ0pvazfNugcljGUZfFBNEALRdGjEjSTRd2NmqkCyRGcrPLVqY497VcUWU8DLzfMw7r8zYLmlMsVvZRqVS4ac//emr7q0im9c+ra2tPPzww8iyzHD3XoqG+UxhZLIYmbnn80rZHJ/eZhfB0+Yw02nnzGc2LV8hFy+ha2JfeOua6djjcMkEusTmyUpRZ+pImrxFl73QEh/RNWLxiZWSztSxjCUHk3JWI9WXq0c3iaAGFFrWh3GFnMLbeGIuWi+2FtUQWuzD1y7+XOSOqHRcEUUSfEHA0A08URfOavSZCJnhgmXn0qZVAcJLxO91kiwRXOS11K9Qj4+2SyzU1zBFN2cj7rJCKa0Ji7PAvG67NsfE3M+qBLo8lsai6lNovSiC0y++TaVouiQK10syx6PisXYOY+tCwu0lWSK2NmRpnPja3KYTnIW1vchyP5GV4n8zAaQH82THrF0nhckS6QGxlyjUgEL7piYzPs4CU8cyZIZm7EOS5hUoKR4H/jbTsUFUoARQzDkoJOYe80Y+P0ug5HDJNK30ITmqEabzfKyeSNYFSr3lA+wf38knP/lJ/vqv/3refryW+drXvjbnv7/927/lwx/+MD6fj+uuu+6MCLZzwXXXXUelUuEXv/hF/WelUol7772XNWvW0Nraes77YGNjY3O+0boywjv/9mquumUNqrcaP5/TePrbB/j5Z55m7OjUK9xDGxsbm1ee5JAtUrKxsbGxsXk5eFU4KdV49NFHueyyy9i5cye7jWfYIF1p/sIw5v2SU1Zl1ICC0+cQWpCe+dap6JvqsiITXhHAAMYE4tXyM1wG3FFVKJqqkCiRHy9SKVp4w1eGJTe0ku7LMXGo8du0VhxSavQ/OWYp7kzXoJAoU7awaKJrBopLNmPcBJ2YMoM5ChbcA8Z2JYTO3UxkVSbY7SFxXKxu6YEsR+8ZtCTY8LW68ba4GNst1jctpxM/mLS0D2+rC3+bR3gfZ0Og04Mr7LQk7pk4kLTkBuaNuogs9TNiQQB46tFRHG7xBaaziZOL709ZcziSId2fs+QkpLgcyIr4qpesyBSmypYcNpInsxxLD5KPWxAc5XTh8yGrMsve0sbw81OzF7EakB3NU5gSOw7FLYMsoeUqws5LTr9CZHmAUkoTciVQvA7QDbSczsBTE2c2mEdY6wo6qRQWmBdnbFeKptmfewajaPDoo4++LFEXNucnXV1dPPLII2zZsoWRxftpPbUWt+QFTLHSfK5KikfG6Z37EdLQjVkiCEOHRPX5Q3ZKYIg587jDKoFOL9mRglD7mrjFocroFUNITFTKaJadVVwhJ6EeH+N7EkJOMVYF5aW0xvBzE5aeo7RChVK6jCRLwm4pslNC1sVFCOWc6TApSULJTwCMPG9NsA+YohBJ3PFo8kjaUqyWYRgEOj2UcxXhGhcmS5ZjyPztbkoZ7ayceEQJdHnMvgkeRymjkezNWnLU8ba4QSoKOxaVMtXxa0GY54mqFKbK4v0yYPRFawtopVTZ0t9YDpdcn0tEqZR0U4RsQZs2tjdp6fkOsPQ3gL/djRp0MnlY3HVJLxsUEuL1qkWc10XbArHtnqgTX7OLzGhxdr3mGQOKR0bL6+Qm5r6e5nJPcqgyTo9jwXi8mjgJIB47wZH+F/irv/orvvSlLzU8htcqF1100by/27x5M29605u49dZb2bJly0vaz49//GMymQwTE+az8rZt2xgbM52s3/Oe9+D3+1mzZg3XX3893/jGN0gkEnR2dnL//fczMjLCpz71qZe0fxsbGxub+ZFliTU3Lqbn8jZ2fP8wR7eaKQATvSl+8blnWXldF5t+ayWeoB0BZ2Njc/5h6AbJqpNSyBYp2djY2NjYnFNeVSIlWZbZsWMHl19+Oc8//zy7jG1cJFUXZ2sLuDO/+JQkSiltVqyarMhCEUqhpT66Nzdz/N6hhovyuqZz9KeDlqKZAGJrg7RtbBKLjNOh7/FqBJ1owpgOlYJuOephyZtaKSTKQuKCmmhIVqt1FejXwFPW4usKEyWO/mLI0jajFgVHNZx+RdhdJdjtoXtzC7l4v1BcmK5hSdwCMLR9DpFDA0ZfSFhq72v1EL0geG5FSl1e/F0eS2Idq9Fl8QMpS5FfYLr2iDrjALRtbEKSJY7/Smw8Km4ZrSR2XdT7lNMZ2BYX3wDr40Qv6dPziQC1BSZRgZLqV+h5SxsDT8aFXS9kRUIr6pSygsKp6jxoZbx3Xd2MGlSEojZrlDMah380IDy/L77efKv7+L3D0z+cR5gE1bmzpHPywWrM5umLd6dtO2WMsy/9LIqi8MMf/tAWKNmcc5YuXcrjjz/OG97wBoa69tDRvx63bH4RU3NUmilWcjSFSfUl6v891wLwTLHBTMFS87owlVJFaP7PjhbIjRctRxS1XBSmMFVm6mjjRfl8fIZYVEJIXFAp6egl3ZIgSA06aVoZYGz3lOno0YCa6ER2ykICnHJGY+qYeCwTYLl9paiTPHkWEbUSyA5J2CWnaVUQrVARdv604lIFgAGDz1i7p1qNFAMILvKRHsydU5FSaIkPvWwIi5S0fEXYTafG6AvW36a3IrBz+hw0rwszuntKWFjtUGXL4kKrLmtavmJZCFWYLAkLiCQZkMy5syL4d1yox4fDKVuKedMrhiURH5IpehSZP8GMW2y/tImJg9WoTQGBEkB6oEBmqGDOuQ3mUdWv0HpRkLG9KcozhtZcwiQAyQFGxRR8ju425xE5PNtFa6Y4CeBkeR9H+3fxoQ99iL/9278VOobXK93d3WzZsoXvfe97vPGNbzzrz7nrrrsYGZmOmN+6dStbt24F4MYbb8Tv9wPwf/7P/6G1tZUHHniATCbD0qVL+fu///sFxVS/bh5++GEefvhhMhlr90UbGxub1zqekItr/3/VCLhv72eyGgF35PEBTj03yqXvX8mqN3TbEXA2NjbnFZmJPJWyjqxI+Ju9r3R3bGxsbGxsXte8qkRKYAqVtm/fzubNm3nmmWd40XiSi6VrphvMJVaq0r2lGVfIybFfNhYYJE9kkR2S8KJ8bQG7aWUAT7PK4LbGCxzxgynKuYqlyDBZlVn+9g4mDiSF3JH6t1oTBIEZQSHqWASm8GvVb3QxdTwj7JqiBhVaLoww8PS4sIDD06yCgfA58ba68Da7ie9LNm4MxNYEabukiQN39aELLG4kTmbJjfdbqlWox0dosc+SQMQq3lYXkiwJR7iN70kwvidxzvoDVRHNdvH2ilvG1+Eh3Ze3LP4TJbIigK/VbUk01/vQMMo87iBz0XFlDFfIydGfiYliPDEVX5uH+IGk8HURWeFn6nhGuH1sTZBK2RBfYPI6WPXuLkZ3TVkSjhWnShSTVlyXKpx8YKRxQ8x5cMU7Ohjfk7S0GDe4fQI1IHb+vK0uWtaF6Xti3NIYHHwmjiwYdxRZEaDtkgjH7xk68z4wh7Ap7ZlgV/EppIrE/fffz3XXXSfcLxubl8Ly5ct54oknuP766+nv2EXX0AY8sr/++7nESgAOt0zbxWEmDqcpTDYWGEwdS1Ox4nqjG0gOiaaVAZKnskLRVpOH0pTz1oQhvlY3gW4voy9MNRQeaXlxp7bpbTTKmTLCSijA3+Eh1ONjePuEsMDH2+ICA1MsIIIEnqhrtlirQXt/m5tCoiwsDmq/tIn8ZInEcbHF3/jBpDVXUcy5Nj9RtOQwYwXJIeEOOykkysJxf2cjQrfKwFPWBM+uoBO9Ylh2hbJCdHWAzEhBWHBUzlYY2j6BVhQbTw5VpuPKKPH9KeFx6293U0yVhd25nD4FwzCEo/QkGUI9ftL9OWHxVHCxD1+Lm6EdE8LOS1qugq5YuzZyY0VyY+J18rV7GNs1JeQSB6agaXxf0nRREhAoRZb7KUyVKKQR3kcpoxE/lKGY1JD9jR0dmtcFKSbLJHvPFDGdLk4COKHv5Zi2m9tuu43bbrsNSVBo9XomHA7T19f3kj7j7rvvFmrncrn4gz/4A/7gD/7gJe3vpXDDDTdwww03cPjwYT760Y++Yv2wsbGxeaVoWxXhXV+8ioMP9/H83Ucp5zWK2TLbvrWfw4/1c9VH1tKyPPxKd9PGxsbmZSFRjXoLtftskaaNjY2Njc05Rjzn4WVElmWeeuoprr32WiYY5TnjMfTTv8k0jDNi4CaPpi0taE8dNRdMQkt8+NrdQts4XDJOj6CIQaf+1nloiU+o2npJJzOUJye6YFSle0szzReGhdqOPD9l7S1cTWf0hSni+8XEQGDWKdDpwR1RhbfpvqaF1g1h4faBLi/R1QHhUZzozTL4bFxckKBjSaAEpqBL8TosXVkr39NFbE1QuH3rRRHaNjZZ6terDV+Hh0XXtJjxXIKsfl83TasCwu0dLhnFa22K0zVr53x8r7UYwWCX1zzXgkPQ1+qm66pmAp0e4X34292W2ms50y1g8qj428OljEbvI2NCLlWK2xReuqPic4Gu6aSH8mRGxRwfAou8yIpMOaMJi/ecHsW8VkWQofWSCMimU0IuXpq+By3gopTuzzJ1LD0tUJKkebdJBsfYYzyLqqo888wztkDJ5mWnp6eHrVu3IkkSJ5ufJ6Ofec83MlmMTBZHUxgw3RzTg3mKC7gNGrpR/1fOm9sgmVFVoiguGYdTbD4vpsroZVPc5Ao5hbfJx625Njl9Ci0XhpEERIt62WDikLVYstx4gakjaWGBEpiCI1dY7JgB3BGV2Nqg+FyI+TxrZR9TxzOWIj4rBd1SXBaY93srkVm+Njftm8SfoxyqTPO6sLAI9tVKeJmfYLeF54kOD60bI8LtJVlCVh2z3NNE0AoV4XOuazoTB1IUE+KORcFFPlwh8WeQ0BIv0VXiz+WKV8HX4rJ03JnBvClAtzDWs6MF0oOCz0VdpsjRCsW0Rn6iKCQekmTMeUCSqpG8AscumdeSrEime1Lt3zy4QgqukHnN5eMlZL8PI5+v/5uPzHCB3IzodTkcQk8kzxAoGYbBQGQfx4q7+fznP8/f/M3f4HCIz4WvV0qlEjt27Kg7HdnY2NjYnB/IDpm1b17Ce/9pC8s3d9R/Hj+Z4hefe4Ynv7mPQurcvBBgY2Nj82oiOVRdL2y3o95sbGxsbGzONa/ab9tlWebxxx/n5ptv5p577uFZHuQy4wYU6bQuz1jszQ4X6gvU0dUBkr1ZoZs90HwAAQAASURBVEX05nUhtLzY4vb43iTje80vOUWj5Zx+he5rmnHuUojvbSz0GXq2+va1bNZBZB+GvvBi+Vx0b2kmP1US6lNd1CQYRZcfL3HwLmtvYPY+MmIpFmP0xSlGd4pHMWi5Sl2YJoqv3U3HZVGO3zcs5L40dTQt7GBTIzOYpyD4xjlA/5NjQn2p4W120XlVjFOPjFpy9bJC1+YYumZMj90GJE9kOTzWL94fGVKncsJv5gPE9yWFXbYAOq6MgoHwMYC5aCLq/AVmTOH4PnEHjuxogaO/GDTfUBek9xELLl7V61nUFURxyyx+YxtDO+Lkx8X6JLtkDANhZ4xaPNrQ02LnQVZkuq+OkTiRFXKuqM3byd4syV6x6CJ/m4fY6iCZobx5n2gw18bWBEmcyKAVdEaenzFHzbNdv3GMI6nd+P1+fvnLX3LppZcK9cvG5tfNokWLePLJJ3nLW97Codw2lmc3EZabz2hnZLKgV0B2kOozF4tlp4Q7rC7o4lMTAbmCTkJLfBSmyg1dXYyKMSviVTRmLbTYh7fFZc4LDZpr+Up9Ppgrvm4uas9mskMSjmtS/QqhpX7i+5INj0EvG9O1FDRgmjiUsiR6KEyWGN4xKR6ZZsDQ9klLYq6zcTcKL/WjazqpvpxQeyv3ejDjyLJjYoJWMMfH4DNxSxFj4aV+DMM4u4g8ARSPg+iqABOH08Lnb2x3wowZE6Sc1cRdtjCvbyvOnbJTonldmMkjKWGXI0O34BRWbT+0w5qrVfxACocqXqhyRrMWISiZsZGitQ10enC4ZBInLIwlC/NAbc4rZzThSGx/uymCGto+KSSkrM3btRdeJGdj0Zi/w40kSRSTaYxyCSM//zmRnRLukJNcvERubHrO0QsFSJzZXjd09pefZWT4JJ/+9Kf57Gc/27A/rxfuv//+OX9eqVSIx+M88sgj9PX18Z73vOdl7tkrhx33ZmNjYzONN+Tiuj/YwOo3dLPtjgNM9afBgMOP9dP73Aib3r+SVdd3Wxal29jY2LxWqDkphTts0b6NjY2Njc255lUrUqrxy1/+ko997GN885vf5Gnu5wrjRlRp4S82FbdM68URHG6HkMvJiQdHLEdOucJOlr6lnaFnJxoudJczGsfvG7IkZgDoeVMbGHDywcYRSVYjH+pY+BLb6VdY9tZ2hp+bFF50UdwyvjaPkBigVHViqIkUGlJtonhlU4wmsIniddBxeZSRFybr+1uIclajnNdQ3DIlC4tTildGy4m1tyKKAYQ/t0alrFNKi4t7zoZyvoJhwe0BsCaY0q1Fp8gKIAuOoyqVkm5J6NdxZZTcWIHEcbFrwelXKGc04bmmdh2ICpRUv4Ir7CQ9IOhYIcPKd3UxdSwjvKgoVxftKnnxupaSGsd/1TiCEyDQbTpsnXhw2FIU54kHRiiIuCrIsPzmdtKDeYZ3iEVXAmSG8hz+cb+wc1TLhgiSIgvVNb1iiCNHdxMKhdi9ezeLFi0S7peNzbmgo6ODrVu3cvPNN/PCC0+ySrucZkfn3I2rQiUwnd+CXR7yk6WGIp9isszQs+IxZjVCPT7cYZXRFxsLlJO9VQcfC7tQ/QotG8KM7Uk0FE1XijpjFqNUK5qOBMiKRKUk1rFAlwdvi5vRFwRE2dWPdIWdlLMaernxPmoCF1FxVk2g5FBlYdGOt9mF4nWQOiUmOtI1HV1Q+FVDclTFawKblVJlSilrz0VWBEpm+4rVdwesYZgORKLxc1BzNRPfRTFZppgUr5PslITGXL29Q6ZSqghfC4rXQaDTS/JkRmzukEwRoZV5pnYdiAqr3U0qxaR4DKAn5iK81MfoC1PC/TqbYSTquASmsNp0exMX0acH8xSmSkLH4ImqNK0IMLJzUvhcA0wcypgGlOXGz3e+Vhf+drd5/6meOr0wtxDRcGgcUp8hnh7ie//zPX7rt35LuE+vB7785S/PGWlnVCcsSZJ44xvfyMc//vGXu2uvGHbcm42Njc2ZtK1u4t1fuooDD55i54+OUs5XKGbKPPVf+zn82ABXfWQNzcvCr3Q3bWxsbH7tJIerqSgdtpOSjY2NjY3NueZVL1IC+MY3vkFnZye33347LwYeY136SnzS/Db8WkHn6C+Hpt8GbeD+UxMyuCMqi65vof/JsYYuIcVEmWRvluyI2JfAtQX3QJcHp09h8nBjt53JI9aiQQBaLwrjiapCbir9W8ctfXY5o5Hqt+Zm03JRhNASH8m+rJCIyNvqoudN7fQ+MiLkbOX0K6x6dxdDOyaEaqqXDNwRFVdIFRIplVIavQ+ONu74DBa9oQVXwMnRnw8KtZdVmUCHmJALzHHadmmEwWcmhN54LibKnHrUgrvOWWDF0QqgfVMTlZLO2O6EUHtvswu9Ygg7MoSXB+i4LMqBH/QJC5WsHoMrpAq/cY4My9/eQfKkmNsPwLKb2ikkSvQ/IXadxtaFCPf4OPTDPnTBbqX6smSHxReySikLgqNOD62XROh9cERI3AOQHS0ycTQtJFBS3DLNF4YZ3jEp7tShw9SxDBnBeXvJDa0Uk2WGn5sUOwa5dv8ZFBobsfcrPHLXM3R3d7N7927C4bBQv2xszjXhcJgHH3yQ97///dx33338x9f/g7v+6LG5G+umyCXdlyE7WjAX6wWcf2qL26EeHw6nLBRDm48X0XLijitaoQKS6aqU6s81FBKUsuZzTiN3p5k4VJnY2hCTR9MNr/tKwbqwqZgsW3ZFaV4bItmXI90vJgqKrg4gqw5hwWp4qQ9PzCUs9nS4ZJw+8T85RB2U6p+vynRcGSW+L0l+Qux+4PQ6QELYwacWTygqBBYWDJ8lWqHCxCFx506HWybc4ydxIiMmwJHAHa4KcASds1o2RCgmSkwdE3Mj0QoV4vvFhTGK24ErqAgL2HytbiLLAww9GxcS07hCTprXhxnZKeYuJjkkYhcESfXlSAlea1pOIzdWtCScylgQHEXXBClMlYSjb8Ecq4agos7X6qac0yilNcq5yqzY9fkoJsukh3J1od9CLkqq30HTSj/j+9NomULjqa96r0kPFMiOFqnkFj7uopEns6qX8X0j/Pd///d5J1AC+PSnPz3nz2VZJhAIsHLlSmKx2MvcKxsbGxubVyOyQ2bdTT0svaKd7d87zPFt5ndBoycT/L9v/IrwZX42bV7JFS2rcFix67SxsbF5FWM7KdnY2NjY2Lx8vCZESgCf+9zn6Ozs5GMf+xjPKY+yTrucmNQ+b/vaQlGgy0PnVTFOPDDcUJSi5TVKycbRIzVqDjiKV8Yddplv7DcgvCyA6nMICWpmuhW5m1ShhfhyoYJDcAGvRtumJjCM2bFE8zBkJc4AGHlhylyQE9Ra5UaLxA8kKAq6x5QzGsPPTZA6JSbw0TWdIz8ZEOvMDAKLvKQHckLHMXEwhewQtz72t7lZdG0LR1ODQufYMAwUtwOHU0ZULqZ4ZfQSlh3DRHH6Fco5Tfg8O1yypTfD2zc1YRhw4r5hofbpgTxDTAgLlHztborJkiWXqpP3i/UFMJ2gnp2w5EgwtidhyQlq6NkJJg6lhAVK6Ahd8wBqUKF7czP9T41TSontQNcNtFxFSNwjqzIOVaac0Rh5TmzR29fhIbzUz8SBVENXLlkBf4eXVF+uHtcpQiFRoiggZgTovrYZhyLT+8hoQ6GCbuhMXXySh3/wIuvXr+fZZ5/F6/UK98vG5uXA4/Hwk5/8hD/6oz/i937v9/jUpz7FC18bqDswyG73GU4VelED2UFsTRAtXxGKJ9JyFXRFbK4rpbW6w5E7opoOag1uJorLgb/DY17PjUTWxrRAxuGS0ctGQ4FGpayjFSuWhEQOt0zTigAThxqL0WceswhGxWDkhSnxCDcgMyIuaKi1z1uIcTMFO9ZEO7JTRnHJQq6LlZLO5KE0RcH7E0BkRQC9rAvHncqKbAoiRJHA4RR3m7KK5JCQJITFLrJDMiPMBMep06fQcmHYdB4VHH9Tx9LC/ZFkCTWgWHouKkyWGLEw7vITRYyKIdynclYjeTIjfO0YFYPh5yYtPVuXcxXhlxJCS3zoZd2SK1KlqAs/OyoeB1q+YilS2Nfurs5JmYYCJVfISSldRi/rwi5qlZJOKVuhkm8chad4ZJrXBJg4nKGUqaClz6yT7HbX/3/RneJUaA+FwQKPPfYYV155pVCfXm/cdNNNr3QXbGxsbGxeY3gjbq7/ww2sfkMX//XgQ9y3YTeZgHmvvmPgCZr6/Pz1svdwQ9OGV7inNjY2Ni+NUq5MPmHOb6E2+3taGxsbGxubc81r6lWHW2+9lccffxyHw8Fu6WlOGYcbblNIlMmOFIS+YNcKOr2PjKLldDOmrN3dcBuA9k1Ruq6OCVWz/8kxjlsRNwDN60Mse2sHitfRsO3kofS0kEjw7MqyhOwQHwqK18GKd3Xi7/A0bKuXdNP1QDaFDiKMvpAQdl4BmDiUttQeTBcW0f54YipLrm8ltEjM5jM7XLD0Bn1mKMeRnw8Iu8EUE2WO/XLI0qLC6t9cRPSCgHB7q6x6dxct68PC7QeeiguLUQBOPjzKwDZx569yRmPSgsNA1+ZmOi4Xf2vY2+oSblsj2Zu1dM6SJ7PCC1OusBNA2OVs+ds7iK2Z343udBSXA8khWbrOssMFeh8WcyHr2hyj581twp8NkDyR5fBPBoQWsJsvDNN9TTOKu/E8JyvTjhkjz08xdVRsHGWGCmQEXKkKRoHDndvZtWsX73rXu9izZ48tULJ51aIoCl//+tf5v//3//IP//APBN9WoGJMX3MzF4Dr6BXy8TyF+eYjefazTHa0UJ/rXCGnkBDEoco0rwvha2v8nKYVKgxtn7DkAokELRvChJcK3PcNmDiQsuS+ZFQMJFlCdloQNLe7aV4fEmpbE1ko7sbPjWDeO6zUR8tVrNWzihU3pchyP02rxJ9bsqMFS+6jE4dTTAi8MFAj2ZsVjjoGCHZ5zZcAzhH+djcdV0SF25ezFcZ2J4RFU+WMxtCOCUvRvMVEWdhh0t2k0npRBIfAfRlM0aCsWFGJgV42yI03FrvU22uG8HOXw2WK1iolXShCzx1Rab04YukYJBmQBdtXmyWOZ4TcxBwumfZNTXhbrD3Pju9JkDgu4pRlEF0dILR49vPNfC5KakABvYyWLTKxb/IM17u57jWVok5+qkwpmZsz2m3mNlOOEXYUHkJRFLZv337eCpRsbGxsbGxeCvvbBvnR5h1k/LOfryalDH9+4r/56aFnX6Ge2djY2Px6qLkoeSMuVK/zFe6NjY2NjY3N65/XjJNSjS1btnD48GE2btzI0cm9pI0k66TL5m1fzmj1WDN3k4on6hJadG6/LIqvzc2hH/U3dIcZ3DaO0+8Uc5GptlGDCkve2MrAU/GGX6BPHExSzmnCESdgvn3bvqmJ4/cNN1wwEI2fqqHlKhRTZfSK+GJQz5vaUNwO4Qi0yIoA4aU+Tj4wItQ+ujpAoNMjFHMHsPStHZRSZSERRT5e4vj9Q+RGxRc6wst8KC6H0Bv6uiYuLplFgxjDmfQ/NU4+Lt5/q/Q/NU5+wsLnW+g7mGK3kuDCmhpSiK0OMbZ7SlhUc/xXg6ZLggC+djdLb2yn97FR0gKRNKEeH00rApx6dEzobfumlQGCS7zm2BToftOqAB2XRzn6i0GxcSSb4k0r7gW58SLHfikW89a9pRnF7eDkg2LXLsDwjkncIbE//npubCM7VmBsl7jT1OgLCVJ9OaHx0LwhQmxVkIM/6m/4+YpXJrw0QHxfUui+MmXEeZEnMYZ0Pvaxj/Hv//7vQv23sXklkSSJP/uzP2PZsmX8r//1v1CKHi5ybcEtzS/gqUcNyQ787W5y443jjWSnGeGYOJ5p6ExZKemM7Jw044YEqC14B7u9OH0KE4ca3JsNM3LXivAITFF5KaM1FLPoZUM47rSGVtBNwYhAlB6YcWZtm5oY35sUEkFLskT0giCZ4bxYe4dEdHWQ9EBO6H7iblJpWR9m+LkJofOWOJFpGM83E9kpEej0khnKCwlxKhbF7YBw7cG8b1oR+FglFy8KR9UBlvpew4obl6/dTaWoCwvu8/Eiwzsnhc9DZEUAh1Nm9EUxB8jomiC5saLws2/z+hDpQbGxb7YPU85ojeeSKrqmU85qlmLeRJzowBQctV4UYeJQSvjZrlI0XcREnt3VgEJkhfmsIyRyq0bHje1OmJGbDZBkiK0JkBmUhISA3phKMa1RKepMHlj4hQfDMOivHOFw/nmu2XINP/rRj2hubm58DK8j/u7v/u6st50vGu71xsMPP8zDDz9MJiMWVWljY2NzPlIxdP6h/6fm4+TpGurqc+Y/Dv+c2NM+Nr1vFW7//PGuNjY2Nq9WknbUm42NjY2NzcvKa06kBLB48WL6+/u5/PLL2bdvHyljisu4nnBniHJOo5goIysyvg432ZECeklHDSl0XB5F8TqYOpqe9WW6rICvw0t+rIBW0FGDCslTGeIHkqCDr9VNRdMpTJRAhkDXjLZ+BVeTaooVZFj21g6SJ7PE95uRQoFFXvLxIlquguJ14Im5SFcXyw3dwBlQoCpSCizyUpgsUc5oKF4ZT8xNeiBniliSZbytLlxBlfRgDk9UpZgsU0ppKG4ZT4u7HkfmblJBMsgMF6gUNAJdHoops62syvja3GSHzM91R1QcbpnscIHo6gDRC4L0PjpKKTmjbbWGrrATp1chM5Sn79ExfO1uM25lqnRmvYMKrqCz7iiU6s9OL3acXsOggivkJN1vtvW2ulDcMpWyjqyCr81LPl5Ay+k4/QruWr0Bb7MLAwO9Anpl/noDeJpVJCRy40UGt8VxBhyofoXSafVGB3dUxaHIZEfNhVaHajovzVdvh0uuL8oGOs0YKkmSmDyWqda7gK7ps+oN4O/wUM5p+NvceJpdJE/lZo1Zl99Zf6vb1+6mUtApTJVYdnMHsiJx8r7h6RrOqPfpY1bXjLrgQvUruCKz621UDPLxUn0c1uLk56t3fny6bWGyRPJkFsXrMGPxavWOqUgOqS7uCizyUpws4fQpLL2pjZEXp8zorTnqPXPMhnt8NG8Ic/L+QbQCZ9Qw0OmhmCnXx2z0giDhpT5Gdk7NGrMz6336HKHldNSQTKDTM7vec8wR2eECgzvi9UWYueo9c3wrXgdOv6MuUPI2uzCM2fWeOWbdMRW9ZIA+e8zON0dMHk+jazqyIuFtdU3Xu9sz7xwRP5A0XQCqzDdHBLp8tFwUZmTnBOn+uet9+hyh5bV6DNDMMTvXHNFyYZihHZOUMxpqQJmOtVxgjiimy0gOc3zl4zPanjZHZIcKLLq+mVR/nvxEYdaYXWiOSA/kSPfl0Et6fczON0fELggS6PKSOJbG0+xacE5Otg2z9+jTyLrEd7/7A973vvedeXOzsXkV8853vpMnn3ySd73rXRwqbmNx4iKi7lacbmddIOn0OkCW6uJoT5ODyDIvelmjkKjg9E/HOykeB7JDqgs5nF4H8QNJChMlZEXC6VcopcoYerWtItVdMV1BJ1rJfKZwRZyEl/oZ253A0Mw4VFmVKaXM/agBBV0z0PIVtJKOGjQFNkbFwOGSUVwOinO0LSbLuEJOtHwFV8hJMVlGcTvq/Vf9Sj3WEol6m2KqjEOVUbyO6br4FMCoi0pcYSflbAVDN2heHyY/Uajfk50+ByDVBVKusBMtZ0YylTLl+n4wTGdLaUa9XSEnWqFCpahTKemk+nJmJB5z1HBGW8lhRm/Vou1Ob6sGnaYzZqFSb1tKa2AYODwyLsM5Zw0l2dy2lNYoTJWIH0wiO2WgckbbWg3LmWkhh9M3PV6cfgV0wxQ41dpmNfSyUX9Gq8X6mfuYXW8tV6FS0pGdMk6fg1JaI7LcT2GqRDlbOaPelZJeH4fFZBk14KT9sibGdyfq9+SZNTx9zCLNjtitjdlKYbrepZSGoZtjdqbL1Kx6y5L5/JnWzDHrllFUc8xWCqU5612rocMl18dsbE0Qxe0gfjA1a8zW2542ZmPrQpSSJVLVcVkbs3pZn2N8Owh0eilMFilMlk6rt2SexznmiHJGq19jp9cbY/YcMXk4jSdmPm/PVe9ZY1YyHSBrTmUzx6xROXOOcIWdSLKErhln1nueOWLiYBKjVpc56n36HFHKaGTHCshOqT5m55sjYmuDlHMV0gN59PL0mJ1Z75lzhNNn7rOc1abrPc8c4W12ISkS2eECxURp9nwyzxyhawaVYsV8lk2YEZiKx4HslGfMEQp6UUfxOPC2uqZdjA1mjdnpGupoeR0qJZw+J+N7Jimly2fWsFpv3aA6ZhWCXU6ywxUyIzP6P8ccoQThmPNFjgwc4BOf+ARf+cpXUJTX5FcfL4n77rvvrLaTJOm8ESndcMMN3HDDDRw+fJiPfvSjr3R3bGxsbH4tfGf0ce4cfeLX9nklXSNRWUBMLEEmWOQvVvwPyk4HqldBcYm5us7HB1uv5UOt172kz7CxsbGxQmLIFK2H2sXSNGxsbGxsbGxeGq+puLeZeL1e9u7dyy233EKONM/7H8V3oUxsrRlh5AorLLm+FU/UfHsjuiqIK+TkxH2mG0jX1TGaLzRjMxSf2dbbYtrCR5b76d7cUhcRrHhXJ0tvNKOIFLfMkutb8XeacUChHh+Lr2sBQJZlgt0eomvMeApZMdsGu02r+/ASH0uubzVFIyUdraATXRVEVmTUkNmH0BLzISjQabZVVPMUtW6I0HF5lLZLIsTWhlh0bSvhpaaq29fmYcn1rahe84vXlgvDtGyIMPDUOLoG3de20LTS7JOvxWW2DZh1ia0N0XmVGXNVKev4OzzE1ph18UTMmDN3xHQ4ia4O0rV5OhKr+5oYK3+jk8Air+kMdX0rvmYzNqBpVZDua6bfVG1aGSS4yOyvu/q5vjazhpGlfhZtaam37bg8iq/FTd+jY8iyWcNAp1nDUK2GVdo2NdG2sYmpo2n6to5VY9nMtsFFXpZc34pc/T667eIm2qvRG9nRAl1XNRPsMevtb/fMqnfbRWE6Lp+O6Vh0bQsr3tVFaIkPb4vbrKHf/ODm9SE6Z0RudF3TTDFR5uSDI3hj1XqHzLaxNUEzGrDWdnOM6AVBHC4H7rBZF0+kem4uCNG1ebqGnVfF6lEvqVNZvM2msAnMN8y7Z9bwiigtF4YBcHoVlr+1nZaLIwCEl/lZfN10DTs2RWm9yPydrJr1dlQjYkKLvbPrfWkTbZdMH+uS61uJLPebsTjL/Ga9a2P24gjtl063XXxtC6GlforpMqn+HG0XNdWjaFo2hGfFliza0kJkuTlevK0uwj1+HG7ndL2vnFnDZmKrq2M2qhJbFeLkQyPomk70tHp3Xh07Y45Y8c4Owst8RFcF6ZoxZjuviNK8bu45wulxnDZmm2jdYNb79DlCliVU/7RLUPtlUVo3Vus9xxwRXRGkb6vpCNa2sYm2S6fH4RlzxBtbURSZxPGsOUdcNqOGc8wRK97RSWipj5YLw3RcPt22+5r55wh3SKX9stPqfcGZc4TilYmuDhLq8RPfZ4o0u2bU+/Q5onl9iI7LozRVz3PH5VGaq5GBql85Y45Y8kZzDh56ZoJAp5fWDWYNFXWeOUI2FylbLgzRtrFaQ5k55whPzMnKd3fSdWWM9kua6gvQi69rmXOOUP0KbReF8TSpHP3FAFpBnz1mZ8wRuqFTuHiMJ/c/RlNTE9u2bbMFSjavWTZu3MjOnTtZs2YNL+qPcu1fraF1YwzJYYoBgot9RJZNv3EWuyBEsjdLbqyI6pdpuyiEwymD7CDY7SWyYjrOK7YuhLP6HONpdrH0Le2oAXPuDHR6aFo1HVEZXRPEX50fVJ9CZJkfp8e8n/ja3cQumNF2dRB/u9m2lC7jjblx+hScPge+Vnd9jgLTya4W9+hQZVo3RAj3+ImsCOBrc9fnKIDwcn99LpEdEq0bIpSzpgjWHVVpvXhG26U+QovNuUSSzWc6d8RZXeyXzeeu6hvJoSW+WTFzrRsiuKvPsq6QSueVsfr9PbTIW593wHR38cbMOVYNOAkt8uFwmjFZga7T6r02hK/VXa9h64aIGUs6WcLf4SG6erousQuC9QhkxeOgdUMEp8d0i3S6FaIz4kObVgXrccAOl9lW9SumCMLlILZ2OrIusiJQv/85nGa9a+fcE3PRcWW03j6yzE+wWsNavV2h6n2qSaV5bZjBp+MUE2XCPT5CS6p1kWr1rrYNO837h2Hey4OLfYRnjNmWC8P1vx1cIbOtrEhoOVNUU+uDWe8Q3uo9zek3a1h7Bgot9tJ+WVM93iu2Nlivt9Nr1qUWQervcNfHEpjuoNP1NuvirEY++1s9xNYG8URV3E0qTauCBGrPG9Ux66w+n3qbXfXnmMxQAcXjqNdbVqr1Dk7XuzauwIyr83eZbaVqvd3VaFl3RDVrWBuzPX4qhUrd+ad1Q8R8YQJzzLZuiMyaI1o3hImtM8d8y4VhPLUxGzTr7XCadZk5R+hlnfBS//RzWHXMOqqLX7PmCIO6uAjM82zWe+45omlFgFJao5Qq43BXa1gVjZ0+R0RXm3NEOVvB0IxZY9bb7DpjjmheG6R5fag+vl3VerujKi0bZrStzhGSbGrgm1YG6n9/uSPO2fWeMUfITomW9REKyRK6ZtTrLVfrffoc0XFFzIxnlsw5onVDBEd1zJ4+R7RcFMbX5kbLV0j352lZH6kL3P2dHqKrgmZnDYPYanOOkBymSKr1okh9Tva3eWbPESt8+JoVgh1OomtC5vioOjD4WtxnzBGhpSEkGRxSmeZVXhLHMyRPZfHEXDTPGLMz54iyR+d4+Dl6x47x5S9/ma9+9avnpUAJ4K677jqrfz/4wQ9e6a7b2NjY2LwEspUCY+Xkr+3fggKlGRS8ZTL+ApNy5iXvM1s5M87VxsbG5lySHDbnulCHLVKysbGxsbF5OZAMY4YdyGuUO+64g1tvvRWAlY4NdGnLQGb6TW/dFA6Yb82ab3yueFcnelnn+K+G6221rIaumV/yKx6ZUtJs270lRn6qRHyvaemvhhS0rG66l5zW1uk330TXchW8zS60UmXetkp1waHjsiiemMrJh0bQ8jp6SUdWZBTfzLYykmx+MVzOaGYf6m1NEcXMtrIsm+4fbplV711E/GCS0eenptvOUxc1qNQFVI1qqAYVOq+KEd+fJD2YX7itX0HXdbqvaQFJYvCZ8XnrbdZQR8vpRFb4cQYU4ntSDesN0LIxTGawQG60MEcNZ79NHFsboGllkCM/H0SW5653ra0aUui8IsrEwTSZodyZNVTkuhvErBoq5uLfr6vep7edVUP3mfXWcnp9vJezGr0PjTasoRpSWPnOLkZ3JZg4lJpzzM5s64qoLL6mhRP3D6OVKvPWe/aYPbPetTFbO1atcNr4Fqm3xRq6IwotG0yRW368eOaY1WZ/btOqAKrfycBT8Vl1Ob3etTkiekGA1EAeQ9cXrLeWNY+zbVMTE4dT5MdK89a7VsPQUh/dW1o49stBChOlOcfszDlCDau0XRRhfG+SYrpkrd4NxqFe1ln5zm4mj6aYPJIWHt+uiFp3xJq7hub4br20ieZ1IQ7dfarulmTMUW9d01HDpmAqN1Scv96njUMtr7PoumbGdidMR40Fxqw7pLLo2hZOPTFKYbI8b70Vn0KukudUbA8nT57k0ksv5cknn8TtNhdYbWxey5TLZT75yU/yta99jd/+7d9m6LtZHJKC7JSRJOqRQA63jF42MCoGrrCT1o0RRp6fopQxHVYkQ59u65LRNbOt4pWr8UIpjIqBrEhIDolKcbqtUTFMxx2JuruKQzX3bxgs2BZMgW7iRIZcvDjdVpUx9Nlta9e/XjGQnVI9nsqhyhiGgV42po+1ZLqMBJf4CHZ7GHx6wnRjUWUMwxRanN5WckizPnehGkqyhDvqxNNkRhdLDglJkuZpaz4byIoZBRU/kKCcqcyq91w1lB0SoR4f6YGc6XSyQFsMU3DjiblIVR3p5mqrl3QM3RS7xNYGyU+UyAzm56nhdFtvs4orqDJ5NI3DOX+9Z9VQoh7fOqveM2ooq+L1nt22cb1rdXGFnbReHGF4xyTlrLZgDWVFIrjIi7/dw8C2eMO2kkMyhScGTB3LzDlmazWUFWn2+BapYb2t4JhVZTi97QL19jSpuMJOJg+n567hjHrLDonomhCJ45m6q89c9a7VRVYkFI9CKV1uWMNKUTeFY5IZP9eoLUDrxgiVYoX4/tTc9T6thq6wE3dEnT7WX0e9q2PW1+rG3+lhbG+CSkEXHrOSJNWdt06vd72tZArNc2MFJo9kzqyLUzbrUo1zczc5KaW0BWuo66ZISJZNlypP1IXsksmNFeYds86gB8OASI/p+jp1PL1gvQ3DIN+UZH/peXw+Hz/+8Y/ZtGkTNjYi1JyUvvnNb7Jq1aqG7Q8cOMCaNWtehp7Z2Ni8nLxeru2X3Umpiq/kgtPSZJ0u01nJVCWLYzsp2di8vrH67PVy8KNPPkliMMNbPn0pXRf+emOiXy/3F1HOt+OF8++Yz7fjhfPvmM+344Xz75hfDcf7unil8CMf+QibNm1i8+bNHEq+yBiDXFTZXBcFAOYieWE6dmHomYlpHymdWW31kk6pNN22f2u8/v+jqwNMncjWIxxOb1tbsA4t9dG9uZnj9w3VP/v0trVF86EdE7hCztl90HRKyZltdbOjVVx+Jx2bzGg2XZvd/5lttYLO6M5JEicy1c9lwbqUUhr+Dg8dV0bpfWikYduT949M//dCbat1mTycRi/rC9a7VkMw3+qVHVLDegMgQ9PyALJDJjdamKOGFWaSHS3ibS2jqDJaYeF6l5IaJx8Ynf9YmV0XgCVvbEVSJE4+MDK7beHMtubBYS4I6o3bKm6ZYKfXXDhAP6MupZl1AY7+bHB6NwvVsHZsxtxtT69hKalRSmrs6+3ldOZqC+Yb4FqxUhenmG3nriGYi40i9QbzTfpF17Rw9FeDlJJaw3oXJjT6Hh2b/tkcY7bWtpTU0DIVJKSG9S4lNZx+hZb1YbSCztTRdP13c9Yb8Hd4CXR6GX0xMaMuc9cQID2QZ3zXlBkxx9xjtt59DQrxEr0PT4/h+Wqoa5jOWgb0bx1vWMPafsZ2T5E4kamen/nbhpf5CHR56X9iHG3GGJirhjVGX5ikEC/WRUnz1RCg+2rzj8jjQ0MN24Z6fKQHs+glnd4HRzmduebkUlJj5MUp0n35BdpCf+IkR9270fo1brnlFu64444zPt/G5rWK0+nkn//5n7n00kv5+Mc/zpI1Swge6MJfDs5qV5kxHxQTZSYOpOoRS/ppX17XFqXBnM/Gd5uObA5VRg0o5Ktz3eltMab3E1sTolLW625uC7Ud35c0o9BmSPUrpbnb1n4eWuYnN16kMFWa3fa0Y80M5tFy5kL8GZ97WlujYlCpGDStCqCX9bobzZxtdTNutRZfacazGfO0Nf+7gk6yN0MxodXj3Baqi+SQ8MbM6NCaSGm+tmC6sQS6vGSG8tVYqPnbGhWDUlqrx882qkt2pEh2pCjUtlIxTIeijRHGdiVm3VNOr2GlMOOkGwaV8nw1nN3W6VFAnu7LXPWuUUyU6Xts+vliobro2ml9aNAWzTBFMqczR70rFVPk4omacaq1KL0z+l9tC6aoRKTeNaKrg1QKFSaPpOeoy+wa6mWd7GihHu+7UA1NMZXpYqUVK7Pqckbbal387T68zS6Gn5ucty61tmC6tmn5CtmRQsO2gPn3VO0/56l3vWYlndxYkdxYsWENJVmiZX2IiYMpShltwbY1IVNmpIBWrKBlp58Vz6y3gSQbRNcESfflZl0Xc9fbqB/b+J4k5Zw2d13KOphTOWpAoWV9hNFdU/XouLlraEZ5ukIqubFifQzM5PRjLaeqseG9GnpFX7AuWrHCCQ7QO3qIDRs28OCDD9Lc/OtdWHitks1mUVUVp9PZuLGNjY2NzeuCD7Ve92sV+FQMnZv2foGxcnLmn091JKDFGea+jZ9hZP8kT3/7AMmh6b9r3EGVyz6wihXXdCLJ1sRKNjY2Ni8HekUnNVJ1Umr3N2htY2NjY2Nj8+vgNRv3djrr1q1jZGSEzZs3M8kYW7mHjJGct312tFAXSSy5oZXYDBv6+VC8DtouaarHIi1E8kSW/ifH6wtJC6HlpgUbHVdG8TSrDbeRnTIO1XSfaUT8QAqtoKO45XokxEIUEuYC3EyxQSOW3NA6K7ZgPpK9WdKD5hfOsoBEru+JsdOEFQugw7FfDDIyc2FiAfLxEn2Pjlk6TneTWo/gaMTUyQxTx9KNG1ZZ8a5Ouq6KNW4IuAIq7ZuiuKOvvS+bmy8M0SxwvQF4YioXvH9xPTqmEcVkmYkjqVmCkXmRIbzMZ2kWjB9IMbxDbHyVMxqHf9I/S6C0EKm+HAfv7jtDVDMXsmK+uT+6K9GwreKVWfGuznrMjAj5eJH8ZOO5S1ZkgtWImto807A/Lkc9WqQRXZtjuMJO0M25Q4TBZ+IMbBtv2E5WZTM+c02oYVvVr7D85o565NJMAcTp6IbOYMdh9rIdgO9///u2QMnmdcvv/M7v8NxzzwGwx/sUQ0bvgu1rQgCnX6FlQxjZ2fgLan+Hh8jyAJLAtDFxOCV83y1MmQIlxeuYFa82L5L57FWL71oIvazXhQnuiFqPaVqIUlozneYEUYOmM5VIf9IDedORRWBBoFLUGXx2gmJVTNaI7GiBoe0Ts8QvC5E8ma1HagohUY8Da0Q5XyHVlztDYDMf7ohK19XNdXetRgS6PfW4tNcSqk8hdkEI2Sl2nJEVAaFn+hqZobzwOVWDznrsmgh6WWfiUHqWOGUhkr1ZRl+cEv78+L5k/UWOhahdO8VE2RTiNCDQ7RX6e7GGrukUU2W0QqVhW1fIaToTzZhnFkSScFSdjxqh+pV6NGUxVRa6rktpjbG9CaG6eFvdRJYHhOYtf7ubplWBel/K2flrU3GX2OV8ilPyYW677TZ27NhhC5Rm8La3vY3vfe97s3524MABfvSjH71CPXp18fDDD/PpT3+af/mXf3mlu2JjY2PzqsUhyfxl97uBM/+0qf33X3a/C4ck07kuxm/83WY2fWBVPX63kCqx9T/2cs/ntzNxag6xvY2Njc0rTHosj151wvZHbRd8GxsbGxubl4PXjUgJwO128+STT/LlL3+ZilRmh/wIp4zDC28kQ6VsoBUbfyms5Soc/flgfYFa8S5cvuRJc1E9vMzHkje2Nqy2rMr429z4mhs/CCV7sxy/dxhd0xv2o0bbpVE6r4417IeW0+l7dAy9ZAqbRCjnNcq5xjWssei6Fpa8qb1xw+qahL/DIySyqIkkvM1iC1oAkRV+YeFRxxVR2i6OCLVNnsiSOC4mrAAY25UgfnB+8cNMsqMF9n/3FLlRsUWh2JogPW9uE+6LFaKrA5Y++9gvhuh7Mt64IabQZ2h7XGwRBtO5Z+R5scWp0GIf3ZtbcIcaiwIBWjeGha81d0RFVhAWwMXWhczrUqB5aImPVb/ZhRoSNcIzYz1K2caL37XrPb4/taAQp0bzhhDdm5vNqJdGn12NrosfSNH7UGPhoeKW8bW58UQbn5/QEh89N5pjsDBZopiYf6FMVmRkxXQJO37PkNB40Qo6lbLRUCRRMHIcX7yTg4N7WbVqFYODg/zmb/5mw8+3sXkts2bNGnbs2MH73/9+DvA8HR/0ohkLL1ZLkumuIbIAXhMd1OJ9FroOtVylHvkVWxcyRY4NUP0K7ojaeAHfgPj+ZF2MISL4kJ0ysXUh/O2NhbYzhR4iC/iVYqUetSSC4nXQcUUUV1BA3GyAJIOvTezZqBYzJSo+cagyfgHRPIDTq9C8NoQrJNZvKyKlUrpM/GBSWGA1cSjN+F6x5zSA5gvDwgIrqzSvDwk/6xZTZfqfGkfLi42X9ECO5Cnx59d83Hy5QYTIUp+YKBBwBZ24m8Se0QCcPnP8iZxPNaCg+qvPUQKnv3l9iPAy8bdp9ZI+2xFrASSHhK4Zpttsg75LsvlMXxOIL9zYnEuMisHYbjERkRpQcDepjUWhEkTXBE0RJuaz10LUBKmZwTwjz08KnSO9InaPmDBG2OV+koqvyEMPPcTtt99uOwadhmEYGMbsWm7fvp1//dd/fYV69Orihhtu4O/+7u/44z/+41e6KzY2Njavam6IXMg/Lr2FFufsF71anGH+cekt3BC5sP4zhyKz4eal/OY/XkPPZdPfF44emeJn/2cbz/z3AUo5sZcibGxsbF4OksPVdbx2n+34ZmNjY2Nj8zLxuhIp1fj0pz/NCy+8QCgU4ih7mdp4Es2Y58tTHfqfGKuLSVoviSz4hXjNJt/X7mbVbywSciaSZBkwGgoQ9JLOkZ8PEj9gvlWiBgVECDIse2sHnVdHGzYdenackw+OCAkhwHQ6Wn5zJ+2bmhq2Hdw2Me0YIzCqkr1ZJo+Ivz3TflkTsbVi7juBTg/L3tohdG4AmteHCfWILZgMbB3n+P3DQm1rfYmuFnuTOtmbFRYdAfUIPBG0YkV4ccoqlbJuyY0KqEe9NEIrmG/QixyrO6LSfGFYyKELTBHhkZ8PCC2suSMqsQtCeGJiC7aLrmtm0Rtahdr62t20XRzB3yY2XrNjBRInMsJuUVquwskHRho6NKlBhZW/0W3pzf/RnVMcf2C44fl0R1RWvbvLdK5q1GVVRq5GMB7+yYCQ0K8WYSRy7pe9rZ2uLS3AmRFzp9NxeRSnX0HXdE7eP7ygM941t6/nGccDnDp1ig9+8IMcOnSIpqbGc6eNzesBn8/Ht771Lf77v/+bn/zkJ/Qt3cvfPPWn87YvpTXi+5NggMMlN1xwr4lOmlYFaF4Xbtif2hdKhsCtJjdWZOSFKYyKgaxIQm4j3hYXHZc3NXTg0ctm5G5mKL9gu5n4Wt20XxZtKIKqFHXiB1LmIr7A92darkJmMD8d39QAV0ilaWUAp1dMeBRbE6RJ8HlHDSiEe3xCDkblrMbQ9gkhgQWYgg9/p0fos3XNIDdWrMfyNUK0XY1KsWJ5G/HP1oXFVWCt76W0tqDYdya+NjdqQDw9fGxPgqljjZ2LwLzOaq4+jXBHVNovjeL0ifUl2O21JDrKDOXJx0Vci8z/yY4WhIReoR4frRdHhK5hMOe00V0JIXfJyHK/sCNW7XrJDBcY3TXVeO6sDSeBfrsjKh1XxOpzyUIiQqfPUf/7LTdWJHF8/rFiOCos+1iUF3mKiy++mJ07d/KGN7yhcYdsbGxsbGxszpobIhdy3/rP8p8r/4C/6/kd/nPlH3Df+s/MEijNxB/18MZPXMxb/moToXbzuc4wYP8Dp/jhn2/l6JODZwhpbWxsbF4JEkPm3x521JuNjY2Njc3Lx+tSpARw0UUXMTY2xtvf/nZ27tzJs+4HGTMGFtxGVmXCPT4hcUt2tMD43kQ9umwhpo6m6X1kDDAXnxZ8s7/6vW1gkZeV7+xq7B6kw9juhNCb3bpmxhQgQ/e1zQ3fTtY10zVg4rAFMdGmJpbd1NGwXbJ32mVIRFhw8sERTj06JtSH9GCevq1jQucG4Ng9Qww9PSHUtpTRhEVeAMElXppWiYmrkKFlQ1j4zfi2SyN0XNVYnAaQOJ6lf2vjCKyzIXE8S/8TYufG1+pm6VvbhR2JWjeGheIPwYyFaF4XQrdwfkQX4QpTJQ7+sJ90X06o/anHxhjZKebolB0ucPinA0KL2LJiLjSLRM5FVgRY9Rtdwm5opZRG/ECShMDCV9fmGN5Wc5wWJhqLvApTJcb2JEgJLNgtfXMbi683RUSNrrXICnNBPNWX4+SDI+gCa+9jexKM70k0bKe4ZYKLvQQaRA1qhkbikl4+97nPEQwGefLJJ/nOd77TuCM2Nq9DPvShD7Fr1y5aW1u55ppruPIzF6A3WO12h1V8bW4hcVCqL0eyT0C4WDGI70tSqkaWNbyvVr8Xj64JEbug8T07Hy8xdTwj5JRSc5lUg04hQXR+okiyN4teFruZOVSZ9k1NQo4zyVNZdK2xKxyY8/bQsxPCLpmJkxkmDoo9L+YnSgw+MyHsNCMSgTWTcI8PNSDmpOL0K8KidodLpnl9SFi4NXk4LewwZJXJI+KfHV7mFz5GNaAIR+wCBLq8ltyODH1hkcpMpo5lGBO4X0P1OWNvgrKAaySYro7xA43/dqpdK7nxYmOhnAStF0WEaw1mBGbqVLahm5PT56iLqrR8Rcj9KT2QJ3Gy8XzpCjnpuDw6LTZb4LMVr6PuWDVxINXQQQmgkCiROJ4RmkvcEfN+0Ej8lDYSHO3Yybe+9S3++Z//mYceeoilS5c2/HwbGxsbGxubl45DktkUWM5NTRvZFFiOQ+CPi671MX7j767m0vevxFF14s4nSzzx9T3c8/ntTPaJRXbb2NjYnCsSQ+bfTqEOsRdlbGxsbGxsbF46r1uREoCiKPzyl7/krrvuwjAM9vAs7rcV5l0w00s6R382UBf8RFb4548xqoqDANxRlRXv7BRyPmq/vInOK2MN26X7cozsnCQ7WmjYdupohlJKQ1bMOLJGoh9FlfE0qUIxKPEDqfpniyxaZEbyZIbFhBxQFTW9vVMggs78YtsdFet3LWpPVgTepK8ulgg5V2EKI1a/t1vo6hl8ZoKjPx8U+lx0iF4QxCsar6IbYGHdTvHK5+SKV9wWPlc2F6hEnJdkRaZpZRBPVEy0FT+Q4sAPTgmJyDquiLL0JoG4QaoxZbKg+1O1DsVEWUi8U1uwbuRyBBBbG2Tlu7uFotUA8pNFMsP5hrWWVbkedzi2K9HwOGVVxhN11SM+FqJpVYBAtzlvjO9NComIhp+fZPj5xiKs4CIvnVdGhWIgO66I1t3mkiez5OPzn5vwMl/dyenIT/qZPDL/l2Uf/s472e55gOeff54tW7YwMDDA5s2bG/bHxub1zLJly9i6dSu33347X/rSl0hv6uf/2//5edtnRwuMPD9ZdzJaSPBQzkw7vERW+Al2N448cgWdRNcEUQVizhLHM0JCTUM3yA6bz2fuiCoUS+n0OnCFnA0FQrpm1EWrarBx+0pJJz9Rqj8nNUJ2SrRfFhUSRNfEJCIilHK2YoqOJITcVcyIOLHYPDBF3AGB821UDAa2xcVcbzBFOYFur1Cfdc3AMDDzCgWQZLHoPstI1j7X0I2642AjXEEngS5xkc3I85OkBATckizRcXlUWNBUc/YRcYCqOaeJCGYUj6MeS6iXG0ertW5sEq+HYYoMi6nGAnhXyAmSKTiqxTwuhNOrmPNHAzGn5JAILfHVP1ukJsVkmcnDaUrpxg9pTSsChJc2frNYcTtovTiCwy2DwYJCfFmR6nNoeiDPyAtT8wqldEPn2s9v4AXnEwQCAR555BH+9//+38jy6/orDRsbGxsbm9cFDqeDi965jPf+4xaWbJp2Hh89PMVP/882nr3zoB0BZ2Nj84pRj3uzRUo2NjY2NjYvG+fFN3rve9/7GBkZYePGjdxzzz08wS+IG3NHdtUW0WVVpn1TlOZ1jd+olyTzLW8t11jEcOL+EfqqrjONHE5qsW+BLg/d17Y0PFueqJtwjw93A1GHVtA58tNBkieqQh4B0UPbpVEWXdvSUPST7s8z+kICQMgtJ9mXZep4RtidaPH1LbRfEhFqG1sTZNVvdgkdX3iZj5Xv6hISXuTjRVIDOSEBVP24BK+0g3f3ERdwxQIYfSHB0HYxByhvs4sL3rtYSNBhlZ43t7PouhahttnhAifvHxY637qmc/AHfUweEnijqlZfwXGUHSuQGRZz2lp0bQvL39rYHQxMMcyKd3YKtfW1ulm0paVhzFGN9GCeqROZhiKimmisMFFicFvj8dF2aaR6bTfug6zIppjz54NC5yWyzE94aeP4n+AiL93XNgPmGFlI4FWbV1J9OY79ckhIyKkVKkLCOMUt03lFrO6kMp+oSjM0Djc9z4c//GEMw+B//ud/eOKJJ/B6xc6ljc3rHUVR+OxnP8vTTz9NMpnk4osvptc4NK9IvPZjf7uH6OqgkKuSXjKoCLgNFVNlhndM1l2VZOf8n13OanXRaNPKgCkkaICv1WU6fzQgO1JgbFcCQ0fo+CSHRPP6EIGuxvNK4ngGrVBBkht/tl42RVAiQgoAT1SleX3IFOw27DS0bYwIiccAWi6KEFkuZqWenygKCXoBS1FU2eECQ89OCDnT1By6RN16mlYHia0JCbW1givkpOvq5rrYphHJk1kyw43vlWA+aww/11goDEzXV6B2kgy58YJQ7Zw+Bx1XRIWeyWWnRMcVUTwxMUF7uMdHdI2Yw6mhQ2Y4T15A6FObV1J9uYZiH1kRv7Zr13NuvMhoNZZyIVSf6YTl9DQYG5IpJFf95sNfo2epmihu4mCq/vfpQlTKOpWSjiQg6PN3emhaGZgWZM5ziBkjyd7gU9x222184hOfYOfOnVxzzTUNP9/GxsbGxsbm1YU/5uGGP93Imz91KcFW83nI0A323dfLD//iSY49ZUfA2djYvPwkq3Fv4Q477s3GxsbGxublQsw65nVAOBxm586d/Nu//Ruf+MQn2FXeRtRoZT1XokhnlkEv6Ry7Z5BSyvyi2dfuNr/AnWM9LB8vcfKBEQBUv0JsfcgUj8zRVi/p6CVAhqVv6yA3UmBgW3zBvjt9Cqqv8UJEdrTAoR8OoGvmjhW33HBhvuWiME0rAxz52eCC4oehHRNMHU/XP7sRgW4Pi65t5eRDw+RG539DODdarP9epL+nHhmjlBaLt0gN5HC4ZaE+J05mkR2yUHRGYarE0DNi4iAw3/5vWhXg0N39jRtbiCoDs2a6pjd0qClMlel/aoziOYgdGXl+korguHD6FfFFRgu0XhwhtMTHkR8vHOlYoybQE2Ho2QmURos9tc89maUkGCGXHS1w/N6hhm/Qy4qMrusUE2VGBSLkFr+xjUq5Qu+Do0L9GHp2gqmj6YZjqOPyKP4uD0d+OtBwnNau5ZMPDgu5JykeB06fgqzMLwwC00lt2VvaGdgWJ9mbXfB6DS7yogadxPclGduVWHD/vlY32fECWkHn6D2DlJLzd2LSN8zBygvkJ/Jccskl3HPPPbS1tTU6RBub85LLLruMXbt2cdttt/FP//RPhDe6UZ6P4JfmFm6k+nNkxwtVlx0JxeOYV9SQnBEf6e/wUM5q88YxaXnTZcgTcxFdFWD4+ckFo8Ykh4Tidgi51UwcStfFGrIioWsN3FkcEm2XRMgM5UkPzC+WNSoGY7sSlHPi98zY2hCGbkb1LkTN+UaSMZ2BFuhyfqLEyPOTYk5NBqSH8vVn50YkjmfQimIOUAvV6gwk06kzPZAXilK1ikOVhSLL0v05YdclK5SzGuP7k0K1k2QJSabhuJyFSFPp/8/ef4dJctX3/virQlfn3D09eWdz0Gq1K2kVUUASQkhCIIEvYGPAJhhzjb/YJplrG0ywMRh8L9g/84AN2BgHQGQFlLO0Srur1Wpzmhx7Osfq6t8fp7tmeqbDCJRg6/U8erS7c7r61KdPnTrT513vN/RdECZxIkt2srMAytCrJFa49ipnKyJKbAVrVkOvkh7JUUyubH07dzBtRoy0o34tZ1YQHa35bHSdFWB6z/yK3IgMvcrU7s7XtmyT6D4nRPJk5xrX+1tMlRl/bK6jc5YkCbcjxS5Dpn1/g+u9aF6Vqafn2457SZbwD7lIjeQwytX285AkBFWljE5qOEd2okCrZFBDMhiWDnNKPsRgdJB/+c43uOGGG9p32mIZd9xxB/v37zf/PjYmnH4/8pGPNG0vSRJf+MIXXpK+vdzcdddd3HXXXWQyHS4GCwsLC4sXlIGzovR+4VU8c8sJ9vz4mHCITRS57//3DAfvHeXi39tCsL/zQ28WFhYWvyqFdIlCWnyf5Ou2HkC1sLCwsLB4qTgtnJQW84EPfIDJyUnOPfdc5pjiCfedTFWbi0fqmyyyJjN0RYzuszs7+Lh7HPgGXKidvgA3YHrPPLMHOj+NGj+U5titwn3GEdTaRiXUBTk9O0Osu6GvoztK4niG+KF05ygrA/IzYgOg94Jwx8i19FiemWcTbQVKiwmu97DhpoGOkWuF+RKGLsRgmr9921JKF65OK9HPGLSNdVqGLMRHzmjnp7wz43nmDqRWdLWpLpnNbxk0Y8Dat1XY/JZV+Fd3VvgbukHiWHZFbjLPl/RYfsWf87rreum9MLyithtu6qdre2BFbTPjeeZX+Pl1nxtccdwIiDG30k3O7ERhRU+Y16NDVhLxMXBphLWvW5mTE8D03nkzsrId5nW86NpuR/xImvjBVMfrqduce+SOAqX6OI8fSnP81s6CpsJciZn9yRVtVnsHnPhX4FKlOmSGXtNNbFsAoKVAqVQtkdo5zO7sIwB85zvf4cknn7QEShYWHXA6nXzxi1/kkUceIZfL8ZTtPl71ya0Y1eYCi0rtPuXtdxLbHliR65Aral9RFGxhvkTiRLatQAlqAqFnEuRrrm4d7xlVIT7q2RnC09c+GqpaEaKK3AriyMpZHarifu9f1XldkBrOkRpeuQi366wgwbWd1xDlrPisVuIslZ1YmVsOiJipyvNYl9hcysqit6pibbJStyjfgIvYjpW5dAbXeeg6K7CitqW0bjp4vZAY5aqIs1uBmMgVtdN/cXTF11Hv+eGVOX1JkBzOrajGmlfF0/P8nDxXsj4CoIopimmH6lSQbTJVo4peaC/uUh2KiKZbgZMTQCldJnE801GgZHMppntm/dpuh1Gukh7NmfNQK+pzj7c297QTKNncQphUrcWWdzo2iDV2cgUxmLIq4epyoHk7zxP+VW6i2wLCPalKS/FTqjrPyaE9HK8+x5/92Z/x7LPPWgKlX5KxsTEef/xx87+xMeFSsfjflv53unDVVVfx+c9/ng9+8IMvd1csLCwsTjsUm8KON67jzV+8hFXnLDi0Tx6I88OPP8xj/2FFwFlYWLz41KPePBEHNsdp4+lgYWFhYWHxsnNa3nVDoRBPPPEE//qv/8r//t//m33s4lT1MNu5GE1a/iW6UTI4edeU+UWuM6qJPzf5PnX+SMaML5M1mdBGb8v4rsSxhS9811zbI157pL3Qouf8MKomceSn423bzR1IUc7qHTf9Symd6b0JQESelVJ6240BWZPx9jspJkoU2znGGJjuJc6IRjmjtxXIJE/l0Lzqip++X3VlDL1QMR2s2hE504+3zyVixjrQvTOEM6hx4o4OxzVETAJ0FnjkZoor3mzRcwbJU1lK6c6/hOu5CqOPzJJewVPeAOFNXoop/YV1FZCha1tAbM6s4LMbe3SW0gqdlJInM+RXWLfsRIHsCqJMVIdMcJ2XYrJMoUN8h2/QRfc5QY7/YqJjlGNgrZvwJj8n7pzsKPjzDroYenWM43dMrKjPs/tT2DydnZy8A07SI+2dOeqoDnEdF+Y7XMcyxLYHmNqToBAvdawZQPxQinK63NHBLLjeS9+F4Y59qIuIJp+aJzOeb+uK5Ahr2P02ksezjD3a3M2ujitqJzdTRC8YDN871fY6Gvcc40jhWcqPlznvvPO45ZZbiEQibc/PwsKikfPPP5+nn36aT3/603z2s59l7ca1uA/FCEnN40JTIzkKibKIN5LEBn9dLLOU+joGhFuSWHMsb1utVM17oD1gwz/oZmZ/sm2Eks2tED3Tz8y+ZNs5sFqpkjiRXdmmf23ul2ThAtVp3rb7bDijdlKjubZ9XewkZffbWjpL1UmP5lbs1GQP2IidFWTy6fiK4qwiW/0kT2bb32MQrkTRbQHih1Idj6t5bXj7XGQmCh1jr1bigFOnmC5jdHCeMY87kV/xmk51KDjD2orXaSvF7rehaPKK+lGYL3Uc43XK+QrZyc61hVoU2grPyx7QcMccK4qci57ppzBfWtFaJnqmn9x0cUWxr6H1XpAa54pW6IUKqeHO7kyKJiMpEnq+sqJa2P02XFE76dF8WyGR5lWRVXnFdXg+c094k084VR1sL6h3ddlxRR3M7hfxhuU2GiVPr5PsZIFKyRBOwq1OTQKbU6Gcq5AezZGbKbZ2T7JVOKo/y6h0jPW29dx666289rWv7Xh+Fs35n//5n5e7CxYWFhYWFm3xRl285s/OYWT3NI/++wFSUzkRAXfrSY4/MsH5b9/Emgt7VhQla2FhYfF8SdSi3vw9VtSbhYWFhYXFS8lp56S0mHe/+93Mzs5y9dVXk2Keh5XbOFp9tmnb7FRBbLrLMHRlN33t3GBqX7gG17iJnRnA5mmvBZNV8YW4voKNolP3THHq/mnxujZuTaWMbjq6RLb6TUFNO6JbA0S2No9gqWOUDA79cFTEm9T63olVr47Re0H7DX2jZAjXI1jRk8sjD80wUqtDJ8ppnXKmvKLRXkyUyM2tbPPp4A9GVrTZAcL5qff88Ir6MP7YHPnZlcVWzB9JryyCBTEOfKteWMtSzaPSdWYAZ8i+ovap4dyKhC4AU08nVrSxF9rgXZHzFIBeMDjwvWHmj3S2868UDfLxUkeBEkClXKWU0Ts7kgHp4Rwn75rsKFCqXwfZqUKDoLEZzojGqlfHCKztXAcx34jrOH6ovSjSHXUQ2ezH29PeuUJ1KQxc1oWsypRSujk/NG3rEBfB/JE0x2+b6LiBrZcM9EKFarXzpmnXtgBdZwbEX9p8FJpPZc3reohs8QG0HGfpapKjq57kufRu3G43P/vZz9i1a5clULKw+CWx2+187nOfY/fu3UQiEZ7mAXp/10Wp2uS+W8V0ofH0OOk+O4Rs63wT9Q+5O7oZ1Y9fKRkdBRnlbIXJJ+fNe1e7CLjsZAGjbCApEqEN3o5xcZrPhn/Ijc3VXoianSww+VS8FoPXtikgBAZdZwVQHe2Pm5spmsKvTrGmxUSZqd0rj7PS85UVOVlWSgalVLljPBVAdrrA+K65FYloAJxhDWe485qymCivWHBTzlY6ir/q2DwqgTWeFcUGPh+cETvegZWt5yolQ7gurYByRm+IUWyFJINvlWtF1yOI2LvJp+IraltMlimvZF0riRjHepRjJ2YPJFfkmFq/ZlIjuZYCmjqBtR4iZ7T/vQkwr9nMRIHJp+c7jnVvvwvfCj5fd8yBq0usv+tzT8s+1NyxZvenVlQHo1wV7kYdhq7ikAms8eAI1tyT2pxacJ2HaG2NZujVpo5r1WqVKWmUPZ77mdZG+PznP8++ffssgdKvSHd39y/1n4WFhYWFxUvNwI4ubvq7V3HOm9ej1NaauUSRe/9xL7d+7nHmR5+HA76FhYXFCkmMi9+D/b0r21+wsLCwsLCweGE4rUVKAB6Ph1/84hfce++9BINBTnKQB6o/Z7460/wFBpy6d4qp3fOAEBK0EurMHUxz6McjlDM6yCLSrOkhdRi+Z9rcKO+/OIIr2lz0YZQMM45ozTXdDF7R3IFgMe4uO+5Y55iFY7dNMFwXQKlthkbtO/DQRi8bbhpAdbUfRqfunWL0kdmO7w8i7mzttT1Ea9FLrSjMldALBrIm44q1F8gkT2YZfWh2RZtl80cyTD01v6K+1o+3kugwxSkTXOtZ0WaZrMqENnhNMUc7XFE7sXNWFlFy6AejjD86t6K2K6WU0nn2OydXFAPhHXR1FMHV8a92rziSzb/ajX9oJfF4sqjpCpNlslMFRu5vMQ8sIT2c6yyakzGjODqJr2RNZs3reujeGVrR++dnS5y4c7KjmKn3wjBrrq1Fx7WpQ/36z04VOHTzSMf+am4Vd5e9Y1yju8fBxjcN4K7FvrR0gZDFPOgIaWDAyTunWoq6NJ9q1nX04VmO3TLW8v3r82oppTN833TLaD6janDUt5fHpbsYHh7mpptuYmpqiuuvv77t+VlYWKyMrVu38sADD/CNb3yDn/3sZ+wLPsRo9XhLMWJmIs/0voS5CW9ztxbUTO2eJ3lCCFHrjjPNKCbLppuIza0KsWuLDfn6Zrrdb6P3gnDb9wchdLAHbB1FHMVEmfHH5kxRhiS3UQRUAQm6tgfNyKhW5KaLTO2e7xhrVce/2i2i9TosO+rRXiuJfYsfSq84bi1+ON3SJauB2vCQbdKKhD+uLkfL9fRSbC5lxfFenh7HimqQny0y8uAMhr4yUdVKSRzLMPX0ytaqvkFXRxEciJo6I/YVieBsbhXfgAt5BbFwpvhthSVYsZi9CvNHMx3HmOZRkRQJo1ztKGjyDggHzZXE3YEQW8/ubx+vq2gyPeeFF9b/bepQv/7nDqaYebZzbK89YMPu6zwOw1t8pihbL1RaiqQ0r2qK/gvzJeHu26K/rqgdJBHPOb5rtqWLkyRLC8KvUzlm9iVa9lP3FtjLw+wzHmPbtm3s2rWLj3zkI9hsnc/RwsLCwsLC4jcHVVPYcZOIgBtcFAE38VycH/75w+z67kFK+ZW5wVpYWFishGRNpBSwREoWFhYWFhYvKae9SKnO5ZdfztTUFH/yJ3+CLpd4ivt5snofpWoBe8BmCkZkFYxS1YwuG7q6m1WvWXjSUPOrC+ISGVS7CrKIGei/KIKnf0EspPnUBYGPLARPNo+Mq8uOM6qh+dW2bWf2J4kfTKM6ZOwB25K2CxsSU7sTjD0ixCneQZf51C2IL+/rTk9GycDh13CENDa+uZ/QJm/Dho3No6ItcoUqZXVSIzn0nIGsyg1tVZdits3PlrC5FOxhjf6LIwtt5Xpb2RQ36DmD6X0JksdTZr1btQVYdVUXg5d1NdTFbOuQG2rYtT3Aqqsa29YFZktr2P+qCJEzfObfRdvaGNAW2sbODrDu9X1oi167tK0jqJGfKbH/v09RyRsNzlqOoGY6YtXbqg6Zvgsj+Nd6Gurd0LZWQ1fUTmi9F9WjNNRl6ZhtV8OlY9YR1MyNWtWxpK2vSdsW9V46ZkPrPATXeZrWe+mY7bsobNa/Xhez7aIxCzDxeJzRR2ebtrUtattzbpiNbxpYVu865piVYdUVXXgHncvq3dC2Jo4ZuiqGM9K53tGtAVZdEcPVo3WsoVEyGHtklsSJzLLrfvGYjWxd2HgqZ/W2be0BG8mTWRLHs8vqvXjMqi6Zjb/Vb4rfZFVuOWb9a904ghq5mSIHvz9CpWS0HbOVgsHsgSTZqULDHAGNY1bVZLwDTnOuajdm+y6K0HtxBGQxh8la87auqJ211/YS3eYDWWyENhuzY7ZjPOm7i5PJI6xbt46DBw9y8803o2kr27y2sLBYGbIs8573vIdDhw5xww03cJCnie84TqI6i6RIDc4+ik02XQOdETu9F0TMeWlpW1mRzPksuN5LaKPXFB1I8pK2NhlFk9G8au3+qyxvKy20rZQqJE9mKWcrKA7ZFMpIMg1tK6UK03sTQhQhCWcjU1QjNbYF4UbiX+UmtiMgjmtrbFsXjsiKRGG+aAoCFLu8IIQy24rXlnMVVIdiCmoUTW4QTS1umxnPkziRNZ1jFE1uEHepzoW6qC6F7nNDpvi9XVvZJtO1fcFRVLbJKPZFbR2KWRebR8Tq1e+Hsk1qaGvWW4Le88IE1noWfTZL2tpF27mDKeYOpRs/R1VCcSxpa5Pw9DkJrHU31luVGtyo6vX29Lmw+20NNZSUJW3b1GXZ+NZklEWiq45ttcYathrfikPBt8qN6lKX1XvpmHVF7XRt85vns3h8Lx2zer7CxJNxUwRXr+HitpIsPpfe80L4hhZEda3aurrs+Fa5mta7oS6yRGijF1fU3r4utRpGzvATXOdZUdvMWJ65Q+mGn9XniMVtg+uFO5bptLRojlg6ZqtGlexkgVJGXzKfNI5Z74CT3gvCZm0Uu9x0zMqqhCOsIdsk4ofSzB/LLBuzS8d3brpIaji3bI5YOmbtfltNqCY11NtsW6uh6lKIbvWbc4BRrrYcs6FNXqLb/CiaTKVkiHnJ2ThmcRgcV5/lodztKLEqP/zhD7nnnnvYtm0bFhYWFhYWFqcv3i4XV//ZOVz94XPwRsWDadVKlX23nOAHH36AY49OrMhx28LidODAgQP8wz/8A+94xzu4+uqrefOb38wnP/lJRkZGOr52z549fPzjH+dNb3oTV111FW984xv58Ic/zL59+9q+Lp1Oc8MNN3DppZdy3333vUBn8vKQnKiLlKy4NwsLCwsLi5cSS6S0CFmW+fKXv8zY2BgXXXQRCWZ5WLmN5NoxwjUhgLvHyfob+nD4xYZ1IV7EUXuK1RHWWHd9L13bxea+O+pg/Q19uMJ24ofSpEZy9F8UBSCw1s3qq7vp3iGcUhxBjfU39GH32Tn8ozE0t4111/bStT2A5lMZujJGz04RMaR5VNbf0AcVsbEU3uRj6zuGiJwpXGoGL++ivxZHpzpk1t/Qh2+VE2RY89puNr9l0DzngUuj9F8kjiuriP522UkcyyDbxWvrQof+iyMMXBo1X7v6ym5KGfH0SuycABtv6jOFA/0XhhtcntZd10v3jgCePifBDW7W39BnChR6dkZYdUXMbBs9w09ocwDNrxLeHBD1rglEus8OsfrqBVGYw6+ZbiyusJ31N/Thjoovzbu2B1l7Ta/ZNrY9iK/PLQQcflFvd7f4RTey1c/a1y20jZ4ZMN2c6vX2DtTabvGx/vV9gHDL0gs6veeKz1HWRM3qTyKH1nvEZwVgQP+lUfovqUVFyaLeoZpwJ7Ba1EUvGBy8eQRvn5OByxbV8PW9hDeJcehbJcZh4mSWA/89TN95YVa9eqGG667tXRizvS7W39BHz3khMY7ODTN05ULbta/rNc/VHXPUPnOp9rkGWf3aHrPtmtf2mOIVZ1hj81sG2PimflHvs4INNay/F4ins30DbiZrT/6Ht/hYd+1CWxEJWBuzLgVFVchOi881vMnHuusX2g5c1kXfRbXj+sRnE1hVq/e6Wr1rM1v/xREGLhFjduLJOVS3SqjmaOZfJepdF9H0XxRh8PIuHAEh1Ft9ZYzIZlFD74Cod32jtff8MKuuiKE4ZCRVZvXVvaZL1NI5ovvsMEOv6WbmmQQn7ppk1aXdTecIgK6zg2y8aQAQDmCrLu9aNke4usQ4jJ4ZYPCyLjPypdkc4e0X433VlTHWXddLdqLA7LPJ1nMEEFgrxInJ4+IXtGZzRGCNG3vAxurXdLP5LQMt54j1N/TRdZaf9W/oI7LVy/ob+ph7LiWuhSZzxOrXdmPzqLi7nah2lcy4cHBaOkdsuKGPvlqf5o+k0Zxqyzli4xv76doRJDdTZGrvPN07wk3niFI0w/7Aoxwo7aZarfK3f/u3HD58mPXr12NhYfHiEY1G+fa3v80jjzyCoig8yX24ry/j27YgDAxt8pki10K8hKLKpjtMYLWb3vPC5oZ+cL3HjLid3jOPK2LHFbWjeVRc3Q56zwub97jgWg/hzT6ykwWmnp6n+9wQvkEXnl6ncE06L2zGDARWuwlv9pMeFfNS3wURBi7rqomcRNv6hr9v0E3Xovvq0FXd5rrA5lbpPS+MzS0mTm+/i9hZQXIzBdJjebrODOAbFG1Vh0LveWE0j1hnenqdeHpcprNT30URArXjKppM73lh0+HH3e2ge2cIV9SBI6QR3uwjuFbUUFYles8Lm46FjqBGeKO43zkjdkIbvQvunzVRUN0JRvOoyLJkrr2C6zyENi2IunvOC+GuCUztflU4QzprNVzjNu+rAN3nBnF3i/lY89mIbg2Ya0P/kJvoIvfF7h1BPL1OqEJyOIe314mtJoTwDbjpOitgto1tD4p7Y1U4JPVdEDaP6+1zEdu+4EAZPTOAf5Wb5Ikss/tTot7eWg17nA1ulZEtfgKr3Uw+GSc7WRD1rgmu3TEHPectuB+GN/sIrPPQtS0ghHXnhXHW6u2q/b1OcIMX7yJ3rN7zwrgioobOkEbveWFT1BFY62HVlTFTINJz3oJgzB6ojdm6kHiVi3JGN+PeYucEcdfiW80xaxc1tLlUStmK6foU2x7E2+cyP/Pe88LYXEJc4h10meMboOusAL6B2vh2ijFr89gwylVys0V8i+IXo1v9pvtlfcxqPhs2l4q330X3uYvqvdlHYI1oKwRPYRxhG7Ii4Qxr9Cxym1w8R0iyZI7Z6b0JShm95RwBMHBJFE+vw3QYajZHmJ/NBWECazzY3GrTOaIe/6Z5VfoujODpdZI8mTWv5WZzBIgxbOgGRrnaco4ACKzxsOrVsbZzRPfZITx9TkIbvUTO8OMMaRST5aZzRO+FYXFdAc6wnXJap2pUl80RrqidwcvFmk3PVSgkywvuUEvmCE+Pg/6LIkiyRPJElkqx0nSOqFarZPqn2e26n3HlJO9///s5ePAgN954I5L0wkYkWlhYWFhYWPz6Mnh2F2/64iWc/aZ1CxFw80Xu/eoebvubJ0iMZV7mHlpYvPz853/+J/fffz/nnHMOf/zHf8zrX/969u7dy3ve8x6OHz/e9rWjo6PIsswb3vAGPvShD/GWt7yFeDzOBz/4QXbt2tXydd/85jcpFlcWLf5KpqIbpKZyAPh7LCclCwsLCwuLlxKpaj120JL77ruP3/7t32ZiYgK/309vcj0D9jW4u+xkJ/MYes39w66QnSqw5toeNK/K8dsmKKV0ZE2utS1i6AaaX8XmUlHtCgOXRpl8co7UWJ5SUkdWwd3tJDtdxCgZaD4VR8hO73kh5g6kyE4XMEpVCvMlERvV6yQ/W0QvCOeS/kujzB9JM38kgytqx6hURVzCkraefgeKTSZ5IiccgfwqVUPEpwF4+53k40X0nIHqUnB3O3B3Oxh/bA5HUEOSIT+z0LaQKFPO6Kx/gxC2HPrRKBgiAk1WFjaxvH1OiskypZyOqsk4u+xio8+ou61I5KZEW0+vk1KmTO8FYTS3ysQT8cZ6OxUz+snd46Cc0ymldcIbvJQyekMNbW51oW3MgV6sUEyUm9Zb89hMUYQrZm9bb7vfZkZgNdS7SQ2dIU2cqwxb376K5MksIw/MLmpbQs9VUF0yzpDd3AB1hFvXW3XIOCN20uP59vXOLIxDm0fFFbEz82zSHLNmDbN6w5hddUWMqT0Jkqcy2Fzq8nondWRVpmtHAIffxsm7pp53ve3eFjVcUm+bR8URsJl1cUY1qgaU0jqb/9cgyZMZJp+OL6834IyIDZP87OLPpnW9F2+8Lq7hsnq3GLON170Ys/4hF6pLYe65dMt61+eI2NkBYjtCHPzBMKWkvqTei2qoi3GoeWxkJkWfWo1ZZ5eDoStiTD4ZN+NDmtW7vhmWHss3rXd9jvCvdpGdKqDnDHxDLqp6te2YLWXK9J4fYfbZBEhSyzHrH3LTd3GE6d3zJI5n2tZ701sGqBQqHPnJ+LJ6L54jguu9DF4W5fgdE6SH88iqjLvb3jAODUeJ7IYZHn74YTRN421vextf//rXUdX20XUWFhYvPIZh8O1vf5s///M/J5PJ8LGPfYz7Prkbh8dOtYrppmT32yjndBRNoff8MPNH08IpBEzxUrmhbUW481WFALSYKkN1wSnEjHPz2bAHbXi6nUztmUd1KI1tFUlE+CLmcneXg+lnEkiyhOZRKaXLVI0Fx5q6kNvd7aAwX6JSFG5vNqdCKaNTrVRR7MKppZQWbTWPiiOkUUyVKaXKaF5bY1u7QilVxu6z0X1eiJm9CTGPSqL/5ayOoVdRNFn0Py36b3OrVKtVUcNmbZ0KlbJBz7khEscyFOZLy2polA1km4TNpVJMltG8KpJNwigaZlyb3W9Dz1eolAxkVcLmVtvWWy+0abuo3ppXpVIyqBQNJKVebyGoUBwyim1RDb0qlbJBpWDg7XMS2uRj5IFpjHLzeht6Fb1QQZJpWW8Q7ozVStV0yGpWw2Ky1tatUK0KQXR9bVnO6RjlKrJNiOzMti4FT58Td5eD0YdnW9YbhJA7uNZDZjxPfq7Uud6La+izUSlWltSw+ZhtVW/fgAvPgJOZvYmm9ZZkCc2rthzfHWtYv+aojVnj+dW7Pkf4V7tJj+UwSs3rvXiO6L8kSn6uyNxzqfZjVgK714Zeq2G7eke3BVDsMjPPJFrWW9FExF7yVA6bS1le70U1VJ1KbT0tYQ/YKGcqbces6pCxuVVyM8W29Q6sdqP5bUw+GUd1tq63M6zRfW6I8cfmKCbLLedZo2zQc16IqlFl8sl5c8xKEg1zxGx2Cn1bkqeeeoqrr76af/7nf2bNmjUd7hAWFi8uhw4d4r3vfS/f+MY32LhxY8f2zz33HFu2bHkJemZhYfFSYl3br2xSU1ke/fcDjOyeMf9NViS2XruaHTeuxeawvsexOD3Zt28fmzZtaohKHhkZ4fd+7/e47LLL+Mu//MvndbxCocBb3/pW1q1bx9///d8v+/nx48d597vfzbve9S7+9V//lU9/+tNcfvnlz+s9nu/a68VifizDzR95EJtD4R3/+poX7YGJ0+3+crqdL5x+53y6nS+cfud8up0vnH7n/Eo4X0uktAI+//nP86lPfYpiscjAwADRkdWEpK5l7WRNRnOrFOZLOIIadr+IV2qGI6yZm/7hTV7mDqfBWN5O1mSMkvhBaKOXzFje3EBoRe8FYbKThZbvDTX3lDf0M7M/yWxNuNAM/5Cb3vPDHLttnFKq9fvW3WiMkiFcbJqcy2JWX9ODntMZeWCmZRvVIYMsIuA6Ed7kpWdnmMM/GW3bTxCRd8G1Hobvne543MgZPlKnch1rvvq13eRmCkw9nWjbLrTJS3ayQDFRbtvO5lEZuirG5BNxU8jTilVXdFEpVRl9qHUtny9bf3eIqb0JZp5JvCDHc0Y0Vr06xsl7psxx34q11/aQGskxs6/1uARAhvAGL6nRvLkB1wzVIbP2+l7GHpkzNwpbEdnqF1E+HT5v/5Ab36CLkYdmOo71odfEsLlVjvx4rH3DGo6gJoRGLXDF7Ky6PMape6ZMgU9TFl2H9c2udgxe0YWsSpy8Y6plm5XOG6pDpveiCBOPxzvWMnKGj/iRjBnVVp/vluLpdaIXKhTiJTSfip4zMPTlbVWXjK/fTfywEIW5YnZT3LQYvarjfF2RO+64g0qlwrnnnst//ud/Ws5JFhavAJLJJJ/5zGf46le/Sjgc5tOf/jT/9d7bkOuZRotYPL+5onYK8yXTDWYxkiIhKxKVkoHNrSBJUst5UVIkqhXhJuIM201RbysUu4hrmz+WoVppvaz29jnx9DmZfHLedG1pRvRMP3q+wvzR9k8F1yOURKeBNit6zasSOcPPzDMJU1jQDNWpCJHCCug+N0QpVTbn25ZIEFznJTddMIUirVDsMo6A1rHm9oCN4DovU7vn29ZcscvYfTZys8W29QEhrLX7NWb3t19/aB5Ry6m981QKndeoK8E74MI/6GL04dkX5HgAoQ1eqtUq80fajyNHUMM/5GZmX6LptbMY1SmiWtuuPwDfKhc2p8rcwVT74zlEfG5uuvMTuOFNXjLjBVPE1K6PPTtDzO5PmtGI7VA0GUOvtr0mQxu9SLLE3IH251O/DutxcO2OqToVYtsDzO5PtT0nT58TX7+LiSfjbce6M6xhc6umYLMVil24v9UdtiRZatpPSRbOavXPRnUppgis2XuXMjqVoiEEj0Wj6TF1bwH53JwZ5/bJT36Sm266qW1/LSxebO666y7uuusuMpkMzzzzjCVSsrA4zbGu7V8PTj01xaP/foDMzMJ3fO6Qgwt+dxND53VbrowWFjXe8573APAv//Ivz/u173znO3E6nXzta19b9rMPfehD+P1+3vjGN/L//X//36+1SOnkE1Pc9Q9PE1nj542fvehFe5/T7f5yup0vnH7nfLqdL5x+53y6nS+cfuf8SjhfK+5tBXz84x8nlUrxrne9i7GxMZ7mAR6r3km22rgpY5QMU1wQ2uQVsQ8tKlwXajgjGj3nhfGvam4nWd+wl1WZ2PYgoUWRA02RRTSE5rO1baYXDOKHUm2FTCAcBw58f1gIf2Sx4d+qn0bJQHXIbHzTwEJMSAvSw9mOX6LrBQM9J4QLA5dFTSFUM+YOpjnys7GOAiUQT9nYXGrb44EQXkXPDBBY2zmPuDBfMp8Sb0f8YLqjQAmgnNEppspUmogwlpKdKZKfbb+ZV0d1KS/oVb/S4xl6lexUYUU1ys+XOgpqxEHF595JBCOpMoV4iUKi/QaY6pDpOtNvRvK0w+ZWUJ1KR4ESwMm7pzh1V2vhD0B0W8B833YCJYDCXJn0aI7CfOtxJGsyG97YL5xDoGU9ZVVs6gMM3zfdVqAEC/NGarj9vIEsNj0dgfbzkM2jinmtFtHSSqAE0HdRmGgt0rKU0psKlADCm/10nxNEVms24EsESkbV4Eh1H49ot3LbbbcxNDTEI488whNPPGEJlCwsXiH4/X7+/u//noMHD/LqV7+a9773vUxuOchMdZyl2vr6/CarEqENXlxdjqbHrFaqpqDH2+9qiHtq1hbA1eUgsM5jRj+1wuZS0bydn9rNzRVJj+bbChcAZvYlmT8mhCU2j2rGVC2lfj6ePiexHUGaaLhMyrkKuekieqG9AKkuUHJG7GYUW+t+Jogf6SBQAuEy45DNGLJ2uCJ2/KvdZrxZy37mKpTS5bbnDFApGkJQs4JHMvSC0XFNAaAXKysSPYEQesi2F3CTRFr58YQbV+fzMXTDdMzphJ6vdBQoQe3zyXZ+b2fUTmC1p+PnKKsSil1peS0s7ePE4/G2AiVZlQiu9yDJQrjY6ZrMzxZNUU8rXF12es4NISlSW9GTVrum9XyFscfmOoqu8nNFUiO5tgIlANWlmlGF7fD0OkWMXq2WrfrpDNsJb/Kh1KK8WwmUJFkI4uqxg3q+suyYpWqBg9XdPJS7nb179/L1r3+dp59+2hIoWbwiuOqqq/j85z/PBz/4wZe7KxYWFhYWK2TVOTHe/MVL2HHTQgRcNl7g7v+3h9s//wSJcSsCzsKiWq0yPz+P3+/v3BjIZrMkEglOnTrF17/+dU6cOME555yzrN29997Ls88+y/vf//7n1Z/Z2VkOHTpk/nfq1Knn9foXi+SEmC8CvVbUm4WFhYWFxUuN5aT0PJmdneW3f/u3ufPOOwG48sorKd5txyG5lrW1eVQRzeVS6D47yPjj8aab8JpPNTcRImf6SZ5o7uSiOmT0kgEGBNd7yceLHV1potsC5GYKZgRXM2RVZs3rupnaPW/GNjWje2eI8HovB34w0lpMIEPfhWFm9iVXtDEC4ovtdk/hO8IaQ1fGGL53ekUbI7FzgsQPdRavrATVIaO/QE/J1wlt8GIP2Jh4PP6CHrcTzojGuuv6OHHnZEdHoZU6Ka1/Yx/FRJnh+zq7Ur2QuGMOQhu9jD0211bY8nx5IT/v2PYA88czK7oOVr+2m2K6zPgjcy3bePudFBPllQm4QEQgHUubUXfN6H9VFG+fkwPfH24puJJVWHVlN/NH0ySOtRYnyapM984gk0/Nt/9MZIhtCzD1TAKM9k/mL3YyWzxPLiW43oNiV4S7kwyq1vxzvPAvNvO1r32NmZkZwuEwX/rSl3jnO9/Zuq8WFhavCJ566ik+8pGPcO+993LppZfy2c9+lk9f9pVl7WSbEAdQbXRfa0bdhUhx1Jx2Wji5yDYZoyxirNw9DnH/bLNyllUJb7+L1HCWapup0NVlxxm2C6eZFseTZOi9IEJmPN9WVG7zqDhDWkfxd52l8WjNCK7zIKtyRyccEI4wjqDWcW2xUupOVi8UsirhX+0hPZZreb95sQhv9qFoMtN7E23brdRJyRHU6NoWYOyxWSrFF3Z92gn/ajelVHlF7kTPB1mVViSQ6oRil3FF7B0dSKHmLLbFz/TeRGvhniSEOp3ESXVUp4I75mh7rco2id4LIiSOZ8i06acjqOEbcDG9L9F2vrH7axG3k+0fVrC5FVSHQn6uJARhUvNrTLHLOIKaeTzFLjcdZ7Iq4VvlJnUqa0bHVZqs/fRqmfXv7eK73/0uNpuNP//zP+f973//ijdKLCxeSqy4NwsLC7Cu7V9HkpNZHv23A4zubYyAO/O61Wx/oxUBZ3H6cscdd/DZz36Wj33sY1x33XUd23/4wx/m8ccfB8Bms/G6172OD37wg9jtCw+sF4tF3v72t/Oa17yG973vfezevXvFTkrf/OY3+fa3v73s3z/xiU8wODj4vM7theTIT2eZeSbLwGV+Bi4JvGjvk8lk8Hg6Pwj/m8Lpdr5w+p3z6Xa+cPqd8+l2vnD6nfOLeb4r/Z3KWqk/TyKRCHfccQcHDhzgbW97G3fffbf492o3WzgXTVp46rwuknF3OfD0OpHl5jqA+sa76pDp2uqHKk2jlBZvuke3+sjPldrGpQEEVruxOZUOIiXxNH65Q7zH5FNxMmP5BQFCs1g3A8YenjOP231OmPEn5loKIJxRjd4LwlR0g+Tx5l/qF+ZKHPzByMIx2sTJqS6Z0DovlXyF2efab6w5Ixrd54Y5dddUS1eWes39q92kF597i/fuPjvM5JNzbYUuNpeCI6C17Vsd76CLYryzs5C7x0E5q7cVxBQTJUYemqYQX9lmy0qYfCLedFNiKd5BF/npQkcBkH+1m+xEvmM7zafiCGodBUqx7QEKiXJHxzD/Gjfp0c7vG9seQFIlJp+cb9tO1mSCG7wYBm2FXrIKhg4nfjHZ9nggYhxzMyVG7m8tCPOvcYMhHNDGd7UWPNXfd/LJOeKHbG0doQwdKmWDTnJW1SXijtJjedJtNsodQY3I1gD5eInUcOsN47qTmaTIzDyTaDu2PT1OFLss5k2DZZ/jjGeY/end3PWZHxAKhfjwhz/MF7/4xfYnZGFh8YrhnHPO4e677+a2227jE5/4BJdeeilhYqzhDPxSyGxnlBcmKkdIo5zVW4qU6vcuV9SBt89JfrbYVFRklMU/OoI2Aqs95OeKbSO+NJ8NT4+D9FieqtG6XdUQDjbtBAjV2j2kvj6TZJr2sZzRzTWnM6xhVKptXRsDQx5sboXJp1rfyxZHzbV63zrOsIanx0l2Mt+2HYi4VL1YabsurUftaV5bR3dBR0hDdShtBVJGpYrdp5Kfay2KrSPbJDRP5/eVbcKVs1N8XXokB/IL56RUypSZ2Z/suPZS7DUhWof1o2KXUR1Kx/MA0NxqRycu2SbjG3SZ4pWW7RZ9vu3aSYpEeLOPxLFMxxhCZ0jD2+8iM1loKXKrj+VSWmf88bm2158rYie82cfEE/GW7y3JEr4BF8nhLHq+0nK9WX9fo1xlZm+CYrp9vStlg4ouxJHtI97saB61o0jJ2+/C5hQiJXGNNj+mK2LHO+AiN12kalRbCuEkWcIVFQKuYrK8bDwaisGIcZiT1cM88m9w00038Y//+I+Ew+G2/bSwsLCwsLCweL74u9289qPncOrJaR77znNkZgsYlSp7f3qcow+Pc8HvbmZoZ8yKgLM4rTh16hT/8A//wBlnnME111yzotf8wR/8AW95y1uYnp7m9ttvR9d1KpXG34O++93vous6b3/72593n2644QYuvvjihj5+9rOfZfXq1S9r3NvR/34UgA3bV7N6S8+L9j6nmwj2dDtfOP3O+XQ7Xzj9zvl0O184/c75lXC+lkjpl2Tz5s3s2bOHXbt28a53vYuDBw/ykHwrYaOHMzgHVVoQoSRPZs0vrWVVZu31PUw+FSc90rihohcMDt48agovYmcHKKV15o8st6k9/JMxZFlY2gbWuqlWaPrF+JGfjJlxXKGNXoqp8rKNIb1gNIgkBq/oYmZfgvzMkg0aA3MTqOe8EJ5eJ0d+OtZS4OCOOQms8bR1c8nPlDjy07HOEWi19xi4LIrNrXL81ommzfScwaEfja7IXadaBVWTUF0ypVQb8ZFDpv+iCDPPJjs8CS/h7XOSPNH+Ke6pPe2OsYCswuClXcw+m+j4mqErYsweTDHVZsPR0GnrhPPLsJKn1WVVZtXlXUzunmd233Lx3eJ2A6+KMv1MoqPjwPyRTNPrYimePheSrdD+qXZNpu+CCPHDqY7iI8WuIK1g1jRKBod/PNZ2HPrXuOndGebYbeMrcls6ccdkx83G0AYf1XLrTTKAyFY/kc0+Dv9kTEQqFpqI1mTovyhC8kSW9Fie4XuaC6NkVSZ2doCJJ+OUUjoHvtfckUl1yUS3Bph4PE5hrsShHww3FYRpHpXunSFGH57FKBkc+fFoc+GYDKtf0016JMfsc6mWYs2J6inmukeYnJzEbrfz4T/5OJ/73OfMudPCwuLXB0mSuPbaa7nmmmv44Q9/yF/91V/xxIF7uOH1NzD10xxeKdDQfrHY29PrxO63MXdguXg5PZIjOyHENbJNIrDaQ+JE1hQn1cnPlRh/bFYIKiTwDbqEcHuJwKIQLzH2mBA/SLIQB6RHc8vEO4vjo+wBG46gRvLE8rl7cZxd97khEsczLV2fANzdDqoGbddV8cMpMxKzE6pDIbYjwOyBVMtjpkfzZMYLHQVKIM5DrnR+b2+/C0+Pg/Fdc22Pa/fbsLnU9i5OVdoKshbj6XbiW1VzNGojYHHHHARWexh5aKZtu5W6H64Uo1xdkbOPp8eJp9fJ2CPtnZncMQfeAZdo10GMPNPkAYql2NwKrqid1Kn26013jxP/oIuxx+bainAUmxBbrcT4NzNRIDtdbHu86JkBSukyiePZjuebmylSSsfbCrNsLgVPv5P8XLHlZy3JEDs7RHYyT3o03zLeTfOoeHqdxA8LN9i5Fg9b2P02ZJtMfrZI4kSm5Xk4wxpVQ8QIzx/NtIx1c3XZkVWZzHie9HheiLyatHUENfxDbqb2zFMpGYw/tlwMX6lWGJOOM+k6QS6X433vfx+f+MQn6Ovra95Ji5eFcrnMgw8+yMGDB8lkMhgtBLUf//jHX+KeWVhYWFhY/HJIksTQzhj92yLs+ckxnvn5cQy9SnauwN3/dzf9Z0W48B1b8PdYcU4Wv/nMzc3xsY99DLfbzWc+8xkURVnR69avX2/++eqrr+Y973kPf/u3f8tnPvMZACYmJviv//ov/uRP/gSXa3miSCcikQiRSOR5v+7FpFqtmvGQ/t7TxznDwsLCwsLilYIlUvoVOf/88zlw4AD33Xcf7373uzl+/DgPKpOEKt1s5hw0qdExR9Ykylnd/IK6HglXZ7GowRmxt95EMjC/UAys8YDUXKRUbwsiZqyZSGkxNo+Kw29D1dovYJMnxBPD7RxY0mN5Dt68EA3nCGtN4+nqm17B9R6iW/0cv22ipaNN4kQWzdW+b/X3i5zhwx6wmc5OSynMlTjy0/G2xwIh4jp260THp+r1XKVtbNZSvANOshN5jBb7V4YOR3++AgEXcOz2zv0DUWOjXO3oLLQSVIdMeJOPucPpts4Ehm5w+MedhWOGbnDw5uGW9ajj7XOSnSmuSIh27JZxU6TX8n1LBkd/PraijcR27kQArqid2NlBTt073bF/2ckCyVPZtgKl2NkBPD2utkImWQWbx0YxUebUXRMd65cazqLY5fb9M8AR0Cj4S22FaPaASmidt7ZBnW/tmBa0E1znZf5ohkK81Naxyhmx4wxrZCeWO2+Z86UB5WwFvdh83OVXzXG8eJCJiQm0uMZb3/pWvvWtb+FwOJq2t7Cw+PVBlmXe/OY3c+ONN/Jf//VffOpTn+IYx7jxjTcy9qMUPim47DVG2WgQGiyNJqoLjWxOFbvfRivrOLOdS8Xb7yI/V8Jodu+ovVzz2fDVXEnaCx1UNE/7JbmhV8mM5zuuCWafS1F/SFh1KuJ9l5xO1ag5SUnQdVaA3HSxpchHL1bITBY6RuhWDeF+FNrU3vVmsUNTO1LDOTLjnZ2Zkic7i03qSIqEzaW0jbnLTOTJTLSP9ANxD89NFzu2UzQZV9Te1t3n+eAIaUgSHSPXkqeyZKfau+uAqHOn85AUCZtbpdRCXLOYYqIs1kodTjU9khPuZR1qohcqTO1uLzALrvNQTJbJzXQ+XnaqQLnNmlW2SXSdFSRxLENhvtTyurW5FMq5CqWMzngHoVXVEOOqszuXjM2jdoy/8/Q4kFUhUmpXZ0+vk0rRoDBfats/zaMi22qL5SrL2tYjL/ViBT2vIyvL+2coBvNd40wxzNTUFG+46g188pOfZNu2bW3P2eKlZ3Jykj/90z9lfHy8rfhPkiRLpGRhYWFh8WuHalc4939tYP0lfTzy7ecY2ycE+6N7Z7n5Yw+y7fo1bH/DWlT7ykQbFha/bmQyGT760Y+SyWT4x3/8x19aFGSz2bj44ov57ne/S7FYxG63881vfpNIJML27duZmBAPj8fjcQASiQQTExPEYrFfqwdD86kSpZwuHkSLPX/hlYWFhYWFhcWvhiVSeoG4/PLLOXbsGLfeeit/9Ed/xIkTJ5iTJwgaXWzmbBySWOjouQon75wyX7f6td3kZ4uM3L/cCeTkHQvtYmcHcAY1Tt693NHk5J1TppjJN+jC0+sUEQZLNnaO/mzcbBdY60ZWZOKH0w1tyhmdwz8aM//ee0GY+KH0si/WczNFcjPiSe7ImX6cQa2pm0ldCNF1VoDomQEO/XAYPdd8x6kwXyI3017AsDhGKrjeQ/JErmVUm6TIKLbOv3iqLpmhq7qZeCLeUsBVP39Pr5PcbBuBjCHcZQJr3cQPpZu3QcSVrXp1jInH55g72LrdSgRKQFPxVzNCG3yUc/oLIlKyBzWiZwZIjrSO7KqzEqcgoOXYWEz/JVFSI9mW4jMQzgBVoyrGaJtD+gZdpEZzHfu35nU9JI5lll0vS1E08cR/u/c0o+VylaZPoS8mN1tCVtofr/+SLpxhjUM/GG0pUPL2O4luC3D89glKKb2545YM3WcHSZzIUpgrcfTnzQV8mk8lcoaf8UfnyM+WOPCDkabXg7fPiX+1h9GHZoRg8XsjTa9V/2o3XWf6OfLzcUoZnUPfH2n6vs6oxtprehm+f5rUcI7Rh5bPN8PVI8yGRoifjOPxeHjPe97DV7/6VUucZGHxG4iiKLz97W/nLW95C9/5znf4m7/5G45xjNdd8zpmbssTkBa+jMvNFKG2ZnGGNSJb/CLCaYkAoZgqM/GE+JJNkhFihROZZfficlZn/NE5020kuN5DdrKwTPxSTJQbnGL8q8X8v9SlKTOeN0VCNo+KI2AjPbpcNJSqrYEkWSJyho/kyexywU21prGSoGtbgPxcsbUwqCr6WGoXPVXFdHjqFIVWrdackpTOUQrumANnWGsZzVs1qlRKwrXK7re1Xg/VBWFelapRpZxtvR4JrHHjDNnbCo7biUOWt+vcVrHL+Nd4yM+XOq6VVoI75kCSO4uUqNIxHq1Opwg3V5ed0HovY4/ONkQqNmuXm2kvnJFtEqpDCMXa9c/ut+EfcjO7P9nxM5FVCalNpJ6kSDgCNvJzpY6xaEa5SjHRWpwE4jPtPjdE/FCa7FRr8Vlog5dCoiREgC0E36pLwRWxkxrOUZgvtby2XF12jHKVwnyJ+OEWrkiSiPnOzZYopcrM7k+1dE8Kb/FRmC+RnSgIV6kWhDd5UV0qU0/Po+cqy35n0atlRjjGvG+cxGSCN7/5zXz2s59teArb4pXFV7/6VcbGxrj66qu57rrriEajK3663sLCwsLC4tcFf4+baz5+LiefmOKx7xwgO1fA0Kvs+fExjj40zoXv2MzgOV1WBJzFbxTFYpGPf/zjjIyM8OUvf5mhoaFf+XjVapVcLofdbmdqaoqxsTHe+ta3Lmv75S9/GYBbbrkFr9f7K73vS0my5qLkjTo7PrBvYWFhYWFh8cLz6yNt/jXh2muv5fjx49x9991s2LCBOSZ5WLqNyuVz5KrLN4kmds2Zdv6uqB3/mubWs3quQmnRxottyRP39c1/R1DDGba3FDXU2/kG3PiH2tvcqi4F36ALR8jWtt1KmN6XYPShmbYilPxsyRQeuHscbfunuhR6zwsT3tx64TvzTILh+4SoS3W0Hup6waBSMFp+kV9H1mQGL+8itj3Qtl1gnZve88JovtYawFJK5/htE20FSnWGXhOj+9zlzhCLsQdsDF0d6+jEcOyWcYbvbR7d9XzJThR49jsnOwqkei8IEznT37aN6pDZ+OZ+3D2dxSTHfj7O1O5E2zbRbX76Lmr/tIjqUhi8rIvo1kD7N5SFk0Q531rIVB9f6bE8R38+3lI4J2syfeeH6drWuh6yJptjLD2cMzfMWzH5VJyRB5vHndWplA2ogqq1n/J9q9x4e51t29j9Nvyr3Gh+MdZaCfZUl4IzrCHX3nNpTdSaI1opXaaU0Zv2TfOoRLb4ABENOfl0nMx44wajUTU478838Ez0AQ6zl1wux/vf/36mpqb4xje+YQmULCx+w7HZbPz+7/8+Bw8e5Lvf/S6nTp3iSe6jcvkcH7/z/cucIgqJMvHDaVOE4O52LLiILEJSJPRChUpNOK0smaPqawZZldC8tpbOl3UBg+pS8HQ7UO3t52FHwIY75oA235dLNRGQ0c41pgqzzyVJnsq1bgMNQidvv9M8djO8fS5CG71ILU6hWqkyvSfREFHXikrZEPemDnj7XUS3+tv2CyC00Ye3r/2Tj6lTOSaf7hz7Zvfb6NkZ6vienj4nvsH271lK64w+OPOCCJQA5g6kmN3fXNhVR3UqhDf7UDqMNf+Qm9CGzl8gZycKTD4131agpDoVwpt8OIJayzaw8Hm2G98gBG+VktFWoFQfX3MH021dozw9DkKbfG3HozOsYXOLdc380dZOYACVosHMs0my052dqjptfGkeVcxBbfoGQpzmCInatvx9pSrc22y19dXSdovnsEqh0vLzdIY1c42WHs0zf2T57yqlapE17w3xhPsuRrTDvOUtb+GZZ57hf/7nfyyB0iuc3bt3c8455/B//s//Yfv27fT19dHd3d30PwsLCwsLi19nJEli9XndvPmLl3DWDWvMBykys3nu/PLT3PHFp0hO/uoPcFpYvBKoVCp86lOfYv/+/fz1X/81W7dubdpudnaWU6dOoesL33HPzy//HTmdTnP//ffT1dVFMCj2JN7znvfwuc99ruG/d7/73QC87W1v43Of+xxOZ/vvlF9pJMfFHBCwot4sLCwsLCxeFiwnpReJK664ggMHDrBr1y7e9773ce+99wLgqfrZyHaCUhSg4Un54AYPnh4nySZPtC4Ws4Q2eOk9P8zhn4wuc4CZ3ptgem8CAFfMTt+FEU7dNbUsymr4vmlTouYdcOLpcTLxZLxB3KTnKhz8wYj5b907Q6ROZk0HpTqz+5LmnwNr3ThCdiaXCiuMhTi66LYAgTVujv18rKXzS3izD82ttnT80XMVjvx8jFKys0OPPWBj3bW9jO2aJXGsyfEMOHHHpPlXWaVpv4ySwYk7J8jPtBflxA+myYznO7rzmHWUaeuUU0iU20aTAFRKFWwOBdWprCi27KVEscsopfabL7Imk4+XKCY7O0Kt5PxO3j2F5mo/vem5CsduGyc/2/o9ZVXG0A2G72kj7JJh7fW9pEfzHZ2RjJLB0VvH245b/yo34S1+5o9nWo6h6Jl+Ams9HPv5GKWU3rSdK2YnvMnPyP3T5KaKHL9tosn5Qfe5YWafTVLK6Bz+0WjTsejpdeJf7WLs4TnSI3kOfK95rGHv+WEUh8LI/dPMH8kwf6S5e8fQVTFsbpUjPxkjP1viVIv6+le7iW4NED+awSgZDRuzuqwzEzvBsfgh7vmbHxIKhfjABz7AV7/61V8ra2ELC4sXBlVV+e3f/m3e+ta38pOf/ITPfvazXHXVVZx99tmUnlbpoh9ZkqlWqqagQbZJBNd6qBppEXm1CKNcZe7AwpwT3RaglCovc9Qz9CpTi4Qv4U1eStkK6ZFGcZCeqzD22EIMVmCth9xUYdk9LT2aFzGbVVAcMp6Yk+RwY6SZUTaYWbT2Cm3wkh7NLYuxqq8dJEUitiNIeiTXUsyhOhX8q9yUs5WWbi7Jk1kyE50j2Orn5wjYmGzm3AcU4iUKcfE+kiy1FF6kR3Pk5zrHeM08k2iI8GuG+XOJtm4/eqFCMVlGViQqbd5XVqSmAreXG1kVbkXtREUgnJZaiapNarUqZ9uvvfR8hfFdc1SK7Y+XPJklN1VoWX9JFvFopVSZuTbxcq6oneAGL5NPxDt+7unRvHBBbSN48q1yU0qVW7qOSYpEbHuA9Gie7FTBHLtL8Q+5KSRKFBPL54o6mlfESqZH8+Smi83dpyRxrPxskVJaZ+bZZNOaKQ6Z6Bl+Zp9LoecrTO9JNH1P1anQszPEzLNJCvFSa/ckCYLrvAuRxEvmJ91b4EThENPKKE98B17/+tfzxS9+kcHBwebHs3jFYRiGJSSzsLCwsDitsDlUdr51I+svFRFw48+K7+1G9sww9uwsZ71+DWe9Ya3lomLxa80//dM/8fDDD3PRRReRTqe54447Gn5+9dVXA/D1r3+d22+/nf/5n/+hp6cHgI985CNEo1G2bNlCMBhkamqKW2+9lbm5OT71qU+Zx2gW5ezxCHHP5s2bueSSS16ks3vxSNRESv6e9g/yW1hYWFhYWLw4WCKlF5nzzz+fvXv38uyzz/KBD3yAhx56iKeq9zPQP4BnJEafNGS2HXt4znRk0XwqQ1fGGL5/ZtkX4YmTWWRVMoUJkS0+cxN/KeW0bn7BrDrkxii12h+dYTuuqKO5UKb2b7Iq4xtwoRcqy0RKi7EHNJyh9k9R52YKqHa5pUAJYPieadOBxeZRKef0Zf2rCz28A056zg1x4s4pyk0ELMVEmdnnkqRGmkctLGboyhiSKnHiF5NNf14XKDkjGpWS0VJEUv93V8xObqp1vWLnBPEPuhoi9payTPDVBD1ncOSnzeO5FuMfctN1VoAjP2n9fiul+9wgmtfW0ZmpWZThUkopvb0QCBErGN7o5ciPW8eaqQ4Z2S5TSuptxUz+NW6Sx7NtBUq+QRf9F0c4fvtkyw1bAAzEE/VtIkR6zw+jeVRO3j3VUqCk+VRKKZ35I2nSI9m2sYfZyQI2l9r2GlLtCs6QDdUlt3Ywk2V8gy7ycyVKR9ItxXKaR8UVdSBrsphnFrWTVQAh5iplddRK84P4h9wUk2UK8yVm9iebtgHof1UUQzcYf2yOmf1J5g6lG+a2QjWH71p44K67KI2XiEajfPrTn+bP/uzPLHGShYUFsixz44038sY3vpE777yTv//7v+dO7mRwcJIPfehD/PRP70eVhEOkUa42xLEF1nqoGlUz3mwx84fTpnORzaUga3LTCLJyvkKlKMRCklIT39TFBbX/y6qIn2p5b6m1s/tsuGJ2UiO5ZY5QdRRNRvPZkFQZaO7+UjWq5OeKFNuIPuoik7qQQ7HLTQUn9X+LnOGjmNKXibHqZCbyFJOdI2ttboWus4LMPJuk1Kx/VUwXIkdIaykOqQtVVKdCpWS0FDVJikTPuSESJzLLhGnmsYpGx3hXWIjf60R4k49SuizEZ78CkizRtT1A4limbW1LaZ2p3Z0do9q5D9XpOTdEemwhjrAZmkellNHbCpRUp9j00fOVZWK6xUS2BtDzlabuPYvJx0vIJ7ItBUqKXSa61U/8cJpSWjcd0RqQamL0ssHMM4m2IqZqpSrWSh2E8ppXpVI22sY12/02XF0OU4zYVLBVBYffhl6oCLHhkjayKmHoVSpFg3KuQjPDJlmVcIQ0ctNF9HyF+KF0037Z3CrhTV6mn0lilA0mn4ovq0WyOsfATUF+9KNb8Pv9fOxDH+MDH/gA0Wi0bT0sXnls2bKFU6dOvdzdsLCwsLCweMkJ9Hp43Z/v5OTjkzzyHwc44pwg5yky/MQchx4e4+Lf3cKqc2IvdzctLH4pjh49CsAjjzzCI488suzndZFSM6699lruuecevve975HJZPB6vWzZsoW/+qu/4qyzznrR+vxKIGE6KVkiJQsLCwsLi5cDS6T0ErF161YeeOABpqen+eM//mNuvvlmdEY4XN1DP2tZyxnI0oKISFZlStkFhxR3j4P8TAFDF24ss7WIOM2n0n1OiEq5uuwL/dxUkZNTU2a79Tf0M/bozDI3oek9CfPJW1fUTu+FYU7dM90g+DF0g8M/XnBZiZ0doJgsLzvW1KIn5r39TlxddqaeTjS0yU4UyE6IjZHAWje+ATfDD0wvE0jUhQmrr+6mkCi1FLGUM+KJ93Ku9cbBVO38NI+Ku8fR0uFl/nimYwQFwMBlXZQSJU7e3VpY031ukPBGHwe+P9IyEisznu/4pDsINyhnWGvuBLWIutClFXqxQjFVXhCb/Aro+UrHGAvVpYhInTZvpflVXBF7x3PLTRZQbFJbYU7PeWE8PU4OfL+50w+IyIzBS7o4pU+13WDMTRdIHM+23ERWXTK+ATfxQ2niHWL7CokSlXLrTTl3zMHqq7sZvn+a1HCuqUDJP+QmuN7DyTunyM0Um4oFnVGN4Fov44/NkRrONT2/elTi6COzGCWjwS1tMd3nBrG5VEYemCF+ON18w1aG9TcOkB7JMf7YHLPPthAfyUKolRzOMv7onHn9m+e/aH4r58oL14SxMA/Eq9MkV01wcvQ4lVsrrFu3jg996EP87//9v5u/p4WFxWmNJElcffXVXH311ezdu5cvfelLfPSjH8XtdxNIxuhnLU7J3SBmqRQq1LVAkiKhOhVzLbRY4OPuceIMaU3jOFOL4tX8Q+6mbkKGXm34t9AGL6WsTmaJiGWxy4psk/APeUieyDQICColg8knF/rhX+0mO1VojBersiC8koS4PT26XERUP64zrBE5w8/Ek/GWMWWljI7eZt2l5yrma11ddgrxUlMRSDlXITOe7+jU4wxrRLb6mXiidZ8kGWI7gmQm8k2FZiDEJpnxfFNRe+PBhIi/lCq3d+qRaoKRNms5vVBZUbRdJyQZyhm9o/tRK4HZYpwRO6VMubl4x3xDsU5t53Ip24RL1/zxzLLxu5jAGjeKXWlwHWtGZjzf9vxcUTuFRAmjXG0rnDLKBuWs3vazC2/yoToUpnbPNxcoSRDe6CU7VaQwX2rp7uobcFGYFwKmxQ5ni3FG7CiaTGY8L9zSRpf3XbHLRLb4mTsoXJGmWrgiubrshDZ4Gd8VxygbDY5vDe8ZthNc76UwP4dRNhpEaZIsYXMpNXFZhXK+gqQA5YV5wKgaJH3TjKnHmIxPkHx2A1/4whd473vfi9/fPsbZ4pXLH/zBH/DBD36Q++67j8svv/zl7o6FhYWFhcVLiiRJHNsww7ff8yDT+sK6zZN+lmd+copX37OVC9+xBV+sfaSzhcUrja985SsraveJT3yCT3ziEw3/dtNNN3HTTTf9Uu+7Y8cOHnjggV/qta8EkhNif8hvxb1ZWFhYWFi8LFgipZeYrq4u/vu//5tSqcRf/MVf8M///M+cyhxiVDlKoBLlTN+5OCpuCvESJ++awhHUKKVLrLo8Rnosx8y+pCma0Pwq1QocvHkEvVDBEdboOtNPKaMz+2wS1aUuPHEuQ/zwgptQdJuP9FiBwlwJ1SGjulUKcyUkVQJDbISAEEtpfpVSWscoGciajOatuaoosnAJkhecgxxhDT2roxcMPH1OfINuU6Rk86hIi9uGNGxuVcRlyDJaUBXnZtTaKsItafyxORSHZDpBySpofs1sqxcrTD49DwY4ghreASfzR9PCPUYW/1ZKljB06NoRxD/oZP5YBgxRQ6NcFRtestiErDvd+IdcFFO6WcN6vcsZneH7ppHUhTgw1SE31FvzqSSOZ0mP5TFKBo6wtqyGhbkS2YkC5azeIC5q1ja0wYtvwLW83iENPSfqHdzgZfCSKAe+P0wppTetd3G+xPC908iqjCO8UEPVpSDbJPPcZVVCsUu1PzfWW3XJKJpiRm/ZAzYqJcOs4eJ6D766C9WucPiHo2YNF9fbEdQIrnYT3OAjM5FHdTTWsGpgbiQaRpWZZ8V7Lh6z9bYYMPbIHM6oVrtultcboJzXGb5/QaC0tN6eXge56QJ6zmB2f7Lxs1lU7+iZAcIbvSROZTEKRsOYBXB123F3O5nZkyBxLI3m18xoP9WloCxy4dCLFab3zZMazrWsd9WoIikyzqidclZvWm9PtxP/kJvJp+cxSkbDmK23repVXFE7nh4HpbTeUG8MKNVcy2SbbG4ULq13dHuAZC2ObuaZBHqpYgrf6vWWJOi/OMrYIzPoRYOjt4xTzugNc4Ssybi77ay6PMbkk3GSwznmjy7E3GkBlbnoKCeTR5iamkIdU9m+fTtf//rXOfvss1cy5VpYWFhw1lln8e///u/8zd/8DV/5ylf4+te/zkj6KDfccAMjP50n4ohRyRukx/Iomoxil8UG/zoPU7vna7FYVSRZQnHIJI5nSI/Ioq1DJrjWy9xBcX8yykatrRCo1sVNil3GFbWb4gTVoWBUDIxylYpuIKuSufaSFAlZldHzFTP2TfPYcARtJE+Ke0ilUKFqiPu1bBNtZZuEp8eBnq8JhKSas1DBoGpUxb3dqYh4taroE9VFLkQuhUrRIB8vEV8ifFfsonN18Utupmj+2dPrpJguU67FyymaDJJoK6sS4S0+ksezpIZzSIqEYpdNoZFik0WEXKWKoslCGJbVG+qt5yvk50pM7000xMKpTgVDFzWUZFAcCjP7k5TTZWSbhKzIQii9pN6p0RyqUzGjxWTbonoj6g0S4U0+5o8L95nFNazXG4TTkJ6viDiuRTWsVmptNdkUt7Sqd7Ui+r84Om5pvett44fTQkDnUhZquKjeqkuh/6IIU7vnyc+VGmpItdZWgdB6D+mxPLmZYsOYVRyK2VZWZXJzRVPI1Kzeer7C1N4ElaKO6lCW1LuKUTZAguRwjmql/iBGYw0Vh4zmUsnHS+TnirXPRlpWb0mRCG3ykhnLm3FlS+vt6naQr43NxInGmMSGeisSudkClbyxrIb1tkbJQJLFZ9iq3kjg6XOCJIR7TestC4cl1aFQmC8tq3e9T3UkWVo2ZhWHjCOokatFzSVPZWviOMwaVivg7XOCLBw3c7MF8nEhclSdSkO9A6s92P02xnfNIWsy8YNps95Vt85o5QSZwBwjIyNs2bKFL/zfv+N3fud3LMfK3wAeffRRduzYwac+9SnOOussNmzYgNu9/MlxSZJ45zvf+TL08KXnrrvu4q677iKTaf4Qk4WFhYXFbw53zT/Dh49/e5mRZcZT5LYbnoGfwvhH5zjrhjVse/0aKwLOwuI3GL1UIT0jvp/xW05KFhYWFhYWLwvWN40vE5qm8YUvfIF0Os2//du/MTQ0xByT3J++hWO9TzNZHcER0Fh/fR/uqJNjt41jVAzWXNNNeJOXgcuirHp1jO5zQui5CppHZf31fahOlUrRILzJx9rre4XwABi8pAu7V8MoCUHN6qt7GLysC4DAOi/rr+8DhMuRYVTpuzCC5lHZ/NYBNr1pgOAasVgLrHGz/vo+Tt09ycQTcfouirDhjf30XhAGYN11vQTXewHIzxbRXCqqS8YZ0djwxj5WXd5l1mDt63qQVYmTd0/h6XWw8aYBBi4RsQHd5wQZukLY7GbG8/SeFyG6LcC663vpvTjC+uv7cARFrFz3jiBDV4m2kTP8rLoiRtf2IACusJ311/fhjDoA4cpiVDGdY4au7Kbn3BAgYlXWX9+Hu8eOf8jN2uv7WHdDn9nfVZfH6Nkp2laKBuuu6SO4wYN/yE1oo4911/WabQcv7aL7nCDZiQKyJrP+hj4CQ6KGoXUes94AfRdF2fimfoLrhWp//fV9hNaJPweGRL2n9yU5/MMRei8MM3DJQg3XXddLcIPP/Ltsk6jvyPScF2LVqxesitde00P4DL9wABpysv76Puw+EXnTc26IoSu7zbaOsIavXzw55Iw6RA3Dot5d24Osfk23qL8MQ6/pJrYjINqGtIZ6VwoVNO+CFnLoioUa1sdsdrrI4R+PijH7up5F9e6i97wQyLDmdT1sfGMfvgEnAMH13oZ6D1zaRf+lEQzdID9TYv31fQRWN9ZbdsgE13vpuzBCeMvCE+Drr+8jtEGMWf8qFxtvGjDHXu/5YfM6AVh7bS+hTaLeuakikiKjqrJZw8X13vCGfvovCKM6ZNzdot6OQG3Mnh1izTXdbHhTP55eJ6uv7kZ1qLXaizHritpx9zhY/4Z+Vl/dTWo4x4nbJxi8LEr32WJ8OwKauG4uF++rOBQkacF9qD5HuHscrH99r3ndHPz+CM6gxtprF43Zy7o443eH6N0p+hze4DPdmhbPEY6wxtDlXay+WoyX+JE0qy6NiTlChq6z/Ky/vg+9oKMXKvRcEGHgVVFTbLbuul56L4qw+upufANOhl7dzciD08w+l6L3vBCrLu+iUM0ReBM8UP45uw4/RCaT4R3veAcTExM8+eSTlkDJwsLil6K/v58vfOELjI6O8k//9E8cOXKEp4z7ORjdxRu+chl6VSewxk14s4/MeJ6p3fN0nRXEHXMQ2erHO+Ckd2cYRZOplAx8q9xEtviplA0qRYPYjiD+2r1H89jo2howHYIiZ/gZuCRaE8BA11kBvLX7bG6qSGDIg82l4l/tYfCyLrrOCpj9jm4NYPfbmHg8jqzK9J4XpvvcEDa3iqfHSWyHuCcY5Sp6wTDv7cE1HgYujmIPiL+7Yg66tweZ2Sei1cKbfPRdHKmJbCV6d4bFvb0WQdW7M4w9YKP7nCDhTT6C68S9Ekn8zFVzh4lu9TN4SZcprgis8xDaKO6Vhl5FkiTTncURsNG7M2wKcvyrRQ0Bwpt9DF0Vw90t1hCaTxX1rgl2XBE70TP8uKJ2JFkitj2Ap1esC2xu0bZaNqgaEFjtJnrWwr0+us2Pb0DU2+ZS6L84aq4VPb1OYtsX1fsMP75+J+O75ijES/TuDJvraXe3w7wHQ01YJC/8uXdnGLu/Vu8uh1hj1sRi4Y0+ArX1Xb3e9YhkR0AT/asZVAbXeQnV1tMg6u3pcYgIr6BG784wklKr91oP4drapFI0TBcwEELy3p1hlHq9h9xENvsZ3xUnPZYndnYQT4+ooea11dYACq4uOz07Q0S3LtSl66wA3r56DVX6Lohgc6mUUmU8va7GMXumqLcjpKH5VHrODiGrykK9dyzUsOfcEAOXd6H5bChaYw3dMQfd54h1Y7VSpZyvCOEPQuzUuzOMoza+nV12Bi+NmmMitMFLsF5vWdQwssVH9Ew/zrBGdEvAdGENrveItaAkxmT/xRGcUTuzz6Wo6oYYs2q93m4GLo2iOhRTzFUXGdn9NnOOCKzx0LU9SGSLn+SJLHMHUsR2BM3+aR4bg5d10X9JBFmV8Pa7kFXJnDMWzxHhjT4GL+uqRf1WkRXZrLfikImeGcA36MIoC2FV784wmseGUa6ac0RooxdnxE5kix9Jgqnd8yj1MRuwkarG8b2hyr2Zn3G0sJ+rrrqKp59+mv379/O7v/u7lkDpN4RvfetbPPbYY1SrVfbs2cP3vvc9vvWtbzX973Thqquu4vOf/zwf/OAHX+6uWFhYWFi8iFSqBl8Y+VHTpN36GvzBVx+irFd4+uaj3PzRBxne3do938LC4teb1GQOqqC5VJw+7eXujoWFhYWFxWmJVK1WW+cTWLykHDhwgD/6oz/i/vvvp1KpoKCyyruOwcIGVF1D86jYvCrOkIYr6mBmfwKjXEXzqqTH8ni6nRTiRfSaq0vv+SE83U4O/M8I9oBwVCnMl0AW0QSlZIlCQidypg//oIdjt4wDQoRAVTjwdO0IkJsukJspYPdrlPM6mstmRiw4QhqRM32gw+jDs3h6nRQSJfRcBdUh4wjZyUzmiWzyEd3m5+S9U+SnhBuLu+bkUs7oyJpM34ViU+LoT8fR/CqqppgiCXePg3JWJ3KGn8xEAaNkkJvOY+hiE0t1KsJlCPCvcpKfLwtBkiE2tXKzReEs41OxOVWyMwXWXtNDKaMztXeeUlJHVsHV5TTbhjZ5KSbLZjSVM6phlKvC/UYWrjWhTV6cIY3jt09i9y3UxRnRzHp37wwR3ern0M0jlFI6qkvGEbAv1DCs0X9xhNSpHNN7E7UaFtFzxkIN620jGhKQnxU19PQ6KabKlDN6Q70xxMaUbJPIzyzUu5zWWXNtD5nJAomjGbPt0npve/caZvbNM/H4PLImixpOFzF0UUNnWGPw0hgjD02LyJd8hVJqeQ01n4rNrZo1dEXt6KWKcBuSRf9z06KtzaOiedWGeld1MAyDVVfEmDuQJnUyg14QTgGOgGbWZeg1MdwxB/v/8xQY4rj1a6Feb1dUbG6evHeKSskwXYGWjlnvKjfZiTyllI4jqCEpC/UOrPfQfXaQ0QdnKcSLTeut5w3KGR13j4NqxSA3XVpUw9qY9auoLoXIRj/TexMomkw5r9dqKOPqEvUOrHXTtc3P2KOzpEdrNYzZ0QsVc8z2XdKFw2/jyE/H0FxijjBrGNMwisIxoP+iCDPPJcmO5c05QvOqyKpEeiyPM6QRWOsheTJLbqbYMJ8EN3iIbPZz5CdjAPiGXJQWuYzVx2z32SF8gyK+MTO6MEcgCXcRWREuGTaPQmDIw9hjs2gem1nDuHuCOf8oY1Nj6LpOf38/b3/72/nrv/5rNM36hdHCwuKFpVqtctddd/GVr3yFW2+9FY/HQyDXxYBtLc6CEIhoXpVqpYp/jYf0aI6qISJwqzWnH0lZEBXY/Spd24KkRnKkRnLY3CrlTJmqIZxxbJ4FR7rYjiCp0Rz5maKIXvKolDM6NreC3W+jmChTyurYfTbhSKMbVAoGkizErL5+F7MHkmAIkULdgc7mVqhWoFKq0LUjSDFZJnUyi6FXTZeoUs3xSPOpRM7wEz+UphAvofls6DnhYiTbxHxd1Q08fS7SY+ILvLobi+azoed1jHIV1akg22RKqTKKJiMpEpIkotwW2lawuRVCG7zMH89SmKs5vDgUJAXK2Yq4P7gUSmkR0yUpEja3SildNh2lbE7R5/kjaco50a4uzKnXGyT6L46QnSmYcaw2j4pRE5NJsoQrZsfb52LmmQRIwtGplKnXUMWoiHojif6XM7rp9rS4hvV66wXhXKV5l9dQdchENvuZfDqOoVcba1hr61/tIrDGy6m7RUyz6lRAwnTv0Xw2vL1ObB6V6T3zqDVxUL1tQ7294oGFSkk4WamuhRqqDgVJFVHJS9surqGnz4U9YCN5PGuOb82jmoI8RZPpvyRK/HCa9EgOxS431tCjYugGsbOC5GYL5GZKlLOtaqiieVQRR1ar4eK2gTVuJEVmdn8Sm0uhWh+HtbaVgo5REQ5Emm/hGlNdyrIxq9glbC6VzHge1dlYQyTRNrY9SDFVJjWcE2uXJTW0uRVi24PED6fJzRQba6iK45fSZYJrPRiVKrnp4kINvTWRkSpRzlWw+21oHpX0aA7ZJiPbZCHqliC61U9upkh2soBiF2OplNKpGlWz3nqhQt+FEdITedKjOXOOsHlEDTWPip6voNhlvH1O8vH651CLIUQn7plk0naSqfgkg4ODvP3tb+f9738/AwMDv8LsavFKZc+ePStuu3379hetH69EDh06xHvf+16+8Y1vsHHjxo7tn3vuObZs2fIS9MzCwuKlxLq2Xzn8+9R9fGfq/hfseCVDJ1FpHt+7GEfOhlJZEGermozmspkPZDxffjd2Ge+IXf5LvdbC4jeZ57v2eqE5/tgE93xlD13rAtzw6Qtf9Pc73e4vp9v5wul3zqfb+cLpd86n2/nC6XfOr4TztURKr0AKhQJ/+Zd/yTe/+U3i8TgAZ555JuxzEZMavzB29zhYc3UPJ++ZJF2LcqsjqzLuXgfp4ZxwvLkyxswzSbEJsIjIVj+ebgcn7xIbI4vjrRaz+S2DZCbyjDww07Lv4U1ewmf4OfqzcdPNZaFDCEGMT6X3/DCjD8+amy9LcUY0M7YKo2kTBi7rInUqa8ZoLGXtdb0YusGJX0w2/Xnv+WHxpX4t9qsVgbVuqlVIHl/+PrIKsiaLaLkWqC7hpNPs9c8HV8zO0JXdHP/FhLkBsxRnRCO80cfow7Mtj+PtF7Es9ViyZmz93SGm9ibE5l0TZBXcvS7y0wX0QvNzD23wIttlZvclm/4cxGdUSpfbjqmVoLpk3DEnyRPta9xqbMuaTPe5QcYfm2s53kCcd/8lXUw+FW96HN+gi8HLujh++4Qp+Grop0Om/1VRJp+eX4hiXII75sDT5zBjEpsRPdOPbJPatomdE8TX7zKFRc1wBDXW39DH6COzzC+J9kEWm5l6roJ/yE14i4+Td00tu677XxUhM5EncSyL5lNR7LIpjFvMhpv6KaXK5jxTp1DN4b9O4v777yeTyaCqKjt27OD//b//x4UXvvi/JFpYWFgADA8P87WvfY1vfvObTE1Ncf755/O+972P/3j3z1CkxnTkyBl+FE1mavf8suPYPCpGSQgWXFE7No+67N4kq5JwVzmZpVgT9lTKBksf63XHHIQ2ehl/bM6MCGtG9zlBMhMFU7jbDN+gi0rRWLYGXNomP1cyBRXLzs2t4htwEj+SaYinqqN5VWLbg0ztTZjij8UoDhn/oFtEybX57UOSwbfKTepUriHezTyOXTZjuVrhDGsUk2XTwemXJbTBi2yTzIjbZnh6nVSKIpKuGbJNxuZWKCbLLc/bO+DCP+hqu35THQqyJjetbZ3AWg+Z8bwpzFmK5lGJnhUQMYYt1uArxRmxU5gvNR0LdVqNbRDCdUOvmjHWrajHQ6dHmq/Xo9sCVCtVZvc3X286wxr2gEbiWIsoJ0mM/dxU0Yyra3YegXUe5o+kMcpV8bT9knOSVYnY2UESxzItxwJAaKPXdEZb9j6LxnbkDOFomZtuXE/WBWv1iEl7wEYpJcSQi3GENLrODDDxxJwpYKtT9GWIvcbDHXfcQTqdZufOnbzvfe/jXe96F4pixZpYnJ5YIiULCwuwru1XEv88fjtfm7jj5e7Gr8z7e67mD3uvebm7YWHxiuPlFint/tFRnvr+EdZf2sdl79/2or/f6XZ/Od3OF06/cz7dzhdOv3M+3c4XTr9zfiWcr9q5icVLjcPh4Itf/CJf/OIXueeee/iLv/gLdu3ahYHBc9Un6aKftZyJQ3KQnShw/I4J0zll6MouimmdicfjGLphCnA0l4rNpZqbPZpfRc8aGLrB7LNJZp8VX+x7ep0MXRXjxJ2T5jHrHLtt3NzsCax1Y/fblokk8vMl0iM5U8hgDwg3AMAUf9i9NvGUepuNI0+vC9+qmkipCbIKmlupxZs1Z/Lp5V/+L2Z815z558iZfrG50WTPK7DGA0ZzkZKhC0cFWZPpPS/E+GOi7ovRc4b52lYiGXFS0HVmgPihVFPhT26mSOJ4puXGE4DqUvHUnrSvx2stJT3aehNzpRg6HcVdrqgd1a20FSnNH0sLp4IWRLb4SI/nF8bQElSHjKHXatxCoBQ5w0cprZMazrWsvbvLLjZOD6abiocCa93kZouUkjrD97a2e06N5pjcM99UoASibnXHgJYipR4H/lVupvYkWgqmbB7VjG5ZjKzKKA7xFH5uqgBNNg7dMQfB9V5GH5qhMF/i+O0TTTet17++j3JO5+SdUyRPNooBnRHNdJeyuVVUl7iVLK6vM6IxcFkXJ++cpJTSGXlgmmJC/NyoGmR7Ztk3sZscaaRbJbq7u/njP/5j/vIv/xKHw9H8xC0sLCxeJAYHB/mbv/kb/vqv/5qf//znfP3rX+c973kPHq8HXzpKH6vxEkCSJOYOpswIMtWpEDlDrCH0fKXh3itrMqp9YcPf5lIo5yoYepXpRSLg0AYvyNIyYXB2qkA5q5sCpeA6D5mJPOXsonWABNnpoilcUTRZOD0tuX+ojvbCA0mWcHU5qJSMliIlxS6j2JWmwiGAUlonfjTdUkRTKRjEDwtBrHAYUpoKVFSniqfbQX6maDrzNBynJuJwhDRkVVom4gBMkUg9Eq2VkEZ1KmgeteV9Oz9XBKn9U9POkEYpo7cUphhlg2KivahqJeiFCrQQ0YAQgQnXxtZCtErJIDOWbylQkm0ionnp7wAN71MT0uRnm9dMUiT8Q26SJ7JtxXWuLjtGublISYxHO9nJAoV4qeWaCSB1Krts7d1wTqosxn8TYRGIj9cdc1ApGC1FSlWjiq02ZktlveE4qkNBL4jrOjddbLpO9w26KKV1CvOllutVe8BG11kBJp+cp5zVG4RxkiIhq5I59hWHjGyTFhxea/hXu5FVmfkjYj07+VR8QaBkrzBZHWW4eJRUcp7g3UE+8IEP8Ad/8AcMDQ21rJ+FhYWFhYWFxcuBW3HQZfN3brhCVuqkFFDcaLIqXOBzesPvPrIsobltTb+Pa4Vbsb7fsrB4JZIYF/NBoNf9MvfEwsLCwsLi9MUSKb3CueKKK3jkkUfI5XL89V//Nd/85jeZmD3FBKdYs3oN8nEXg+MbkCXxC1IhWTY3yDSfim+Vm/iBJKWM3uCoMnhZF4Ze5fitEw3vl5nMM/H4nLk5ETs7QG66SHo03yhACNlxhO1AAhAbAIZukJsqmrFr3n6ncP5ZJKICSI/lSY+JvsiazNprexjfNdfQZuaZBDPPJkznpdj2IGOPzZniJ0OHY4v63n1ukPRIvkFssfh4Q1fFyM0Umd6bWFZjR0gjdlYQPaeTOLb8F9aTdy84v8iqeO+l2P0q3j4XznCmpUtBaJOXnnPDHPnpaFOxjM2lEt3qp5yrLHe1ATAQTj9tSA/nONhBPOSMaATWeJo+wb1S/Kvd2JwKs8+1dhZo5wZQpx7D0hRZuFXY3CoTTzTva/+rotjcalu3IN+g2xQpLXuL2ueZHs1z6AfDTT9bZIidHSI7nm96TppfZdWrY4zcL0Q/S0VZsirTfV6QmWeSlJdch3WC6z3Y3CrTexLmf0sZuipGdqrAzL4k4482Hwdrr+tBz1c4ccck6dF8gyCtfo2qLgVXlx3VIaMXFlw16m5S9X5OPh0342AW4x9yM3hZF8duHSc3U2xwKnP3OLB7bcQPpykmdEqJkmmJnZ8tkazOE77GxgMPPEBuIoeqqlz+qsv55Cc/yeWXX970nCwsLCxeSmw2GzfeeCM33ngjp06d4l//9V/55je/yeNjd7N161be+c538tOP3Ie94hQvkKCcKZviBleXnXK2QjmrkxnLk0HMw3afjdiOIJO755eJeOaPZ1BUsY5T7DKeHiepkRzVStUU6SiajCOo1cQ0FSRZEl+YV2lwmAlt9CJJUoMICjDFQSDWZza3SvzQwr9VjSqTT8VN8YW330k5V2kQhywWi9T7mTyVbRBs1NdeNrdKaIOX2f3JpkIVb78Lu09l8qnl4pNyVmd815wptJJklomuQMT5SkpzkVKd2I4gpVS54fwX4+524Azb24iU2rv8AMw821qMbb5PjwM9X2kpul4J/lVustOFlmL1SsFoEOA3bVMyWjqQghBcBdZ4yM8Umz5MoDoVenaGmN2fbFkbza3iitpbOjrVP8/Z51ItnaWcYY3gOi+F+VJT1yzvgAubUxHrjeTymmo+G/ZaHHZ2qrBsbS6rEv7VIuLWKBtinbmkL3a/jcAaD9N7Exh6lcmnlj84YQ/YiJ0VZOKpOOWM3lBb8xoFHAGNqlGlME/D9WAPiAc3MmNCkD93IEU5t3wxGt3qp2pUmdmXpJQqm+tESZZwdzvIzRQxygZ6voKsLBy/mC4TZ4pNbxvg5pt/iq7rXHv9tfz+7/8+r3vd6yxR+GnMvn37uO222zh69CjZbBa328369et57Wtfy7ZtL/6T5BYWFhYWFp14R+zyFzQmrVI1eN2+zzBdTjZdgkpAly3AbWf+BUrtO/ZSrszTPzzK/ttPNYiVVu2MccHbN+ONOl+w/llYWLy0JMeF066/x/My98TCwsLCwuL0ZeXSf4uXFZfLxd/93d8xMzPDQw89xJVXXsnIyAhHeZb7lZ+QvWCM2eokk0/OM1cTfvj6XcTODFD/mDXfgiZt+L5pJmvCD1fUztrrerF5VDAwXw/gG3DjitgBIWKQa5toE0/EOXG7EAl5+5xs/l8DOEJaQ5/To3lGH5k1N6yiZ/qXtVE1GT1XoZQWX8irjkVDsvYduzNsx9Vlb1kbWQXfgKttm1JWXxZ1UKcQL3H4x6OmQEl1LXEbMMR/ml9l45sH8Q8tV9jnZ0oc+P5w2xiVxNE0E0/OtXTzKWd0Dt080lygtIjIGT4iW3xt29Q/p2Y4gmIDStZ++cvf2+vEv7r1Ir7d+4P4nAcujYox1woDDv9ojImnWoupJp6MM9kkbmcxx2+bYPShJnFyMqy9vo/unSHxdks/FlmMeQw4dst4S9GVnjXaRqbIqrgW3bHW49MZaT7GF18P5by+fKNXhq7tAbOOk0/GGXtseT+HXhNj8IooAMkTWQ7/cNR061r8GfgH3Liioh/pkbzpbhA7J0j/xRHx+pNZhh+YNjd0VZeCXDtEcK2XcG1sGrrBybunSc+nWf/+KPu7H+YJ7ub2228nEonwwQ9+kGQyyb333msJlCwsLF6RrFq1ik9/+tOcPHmSW265hS1btvAXf/EXPCzfhvraDO/+zzdRzJbEuqn2nbV/1cI8Wnc/ASimykzvW4hBC6734OkTX2rruQrF2r9rXhvumANqacxK7V5dKQkhRV2QETnDJxyYljB/JEPihPiyTQiJHOIb90UY5WqD8KPuNrT423pHQENrc4+2+224uuymEHUZ1Sp6sSKivpowfyRtCqlkVVrWx7ooyb/aTde2QNNjxI+kmTvQWiwNkDiWEUKqFqRO5Zjq4Lyp2GWC6z2tz7VGu597Yg4cAa3lzzsh22Q8vY62jlid+ufucbRdK4Nw75rYNdfS7VTPV4gfSpNv42xUTJUZ3zXXVKDkDGv0nBcW47rJW8i1p9JzM0UmHp9rGetnlAz0Yuu1lxify8f+YhxBGzZ3rZ6L+lK/ZvViBb1YWbg+athcCu5uIe4pJsrM7E8ucy+1eVT6Lgpjc4traPqZhCkclxTJ/KzsPpv5exYgBHdVMea6zgqgOkX/EscyDaLCupObJAvHV7vfBkB2skB6LE+mmmLdH0R4OngPu3mI3bt38yd/8ic899xz/OxnP+PGG2+0BEqnMV/96lf54Ac/yC233MKhQ4cYGxvj0KFD/PznP+eP//iP+cd//MeXu4sWFhYWFhYvOIok89GBG4HlS8T63z868EZToASguWxc8PbN3Pi3F9O9KWj++6knpvjBRx5gz4+PUSn/ahHKFhYWLz3VapXkhOWkZGFhYWFh8XJjOSn9GnLxxRdz1113YRgG//Iv/8L//b//l8cee4wqVdwuN65sgDVshucgfjQjIhBkWHddH/NH00w8EaeU0ikhvlCXbcJhpf4Fe2Ctm9xUcZn7UveOIP4hNwe+P9wQQ1VIlpk7shCTFTnDR2a8QGG+ZApuZBXCm31IstTwVH4po3PijpoTiwzrXt9H8lS2weUneSJrRiOoDpnBV8cY3zVnHsfQ4fBPxsw+RbcFKMSLDS4yi51nes8Pk50qNDztXD93/2o3/RdHOXbbOIUlT4iXkjrJU1myky3i0mrvP3BZF5VyhfFHGp9mN/QF5yBnVCM/s3yDpy4c8a9xN42XA3DFHFTbROUF1rrpvyjKwe8PN42Nmz+SYf5IpuXrV0Inl6TByyIodqXB7Wox9qCGp8dJ1Wj+xL+n10khXmzafxDuV4VEiWKi3NSVwBnRGLgkyvB9M01jRAAR4XcyS2as+ee5+jXdSIrE8VsnlomQVIdM74URJp4QT86bY7iGrMn07Awy8cQ8esHg4A9GlkW39V4YppTRmW3hjKT5VNa/vo+xx2ZJHMsy9vDyNrIqE9nsRy9UiB9Mk66fS82FKnkiSzmjkzieodrke5PunSGCaz0c+N4wRsngwP8Mm68PrHaLSJiCQVWvYiyKyll8PW560wCTT8WZfS7F+GNzGLqBXtWZj46SCyQ5cuQID/wzhMNhbrjhBr761a8yODjYtOYWFhYWr0RUVeXaa6/l2muvZX5+nu9///v827/9G29729vw+/28+c1vZve/HiZIFxNPxE0BgjvmILDGw9ijs1Qr1Yb1T7VSNSPIFE3GVosBzc8WzRgtSZbo2Rki0eRelRnPm0IexS7jCGjCZadQgZpe2hHS8A+5yU4V6pongAZBtavLTnC9V8QELxIULXYH8vQ5kVWJ1KkFx6bcdFGIVatC1OEdcJE6lTOfMC7nKszV3BYVu4x/lZv5Y5mG2DWjLP4c2eqnUjSaCo7ys0UqrSLOaoeyuRTCm33MPpdaJoyprwEkGRS7suzn9f7KNhnVIZui+aU4w3Yy44WWUXix7QFKWb3l+mqqiUPi88EoG4y1cFEEUePe88NMP5No6dZk99qoGtWWzlOOkEYhXmopUKrHFbYS5AfXeagakDieaemQVEzpZCcLTd21NI9K144gM88kKCbLy9o4wxo2t0pqONe0D/aADdWhCKHOSK7BYQzA5lYIrPYw+1wKQ682dRQNrHHjCNmZfDJOpWCYY7ixH3bc3Q7Rhyrm9aq6atGB00XKGeHgWSk1jjdJFr+HpIazpEfzpIZzptOnYpexucU8UCkZVCtVUyC1OPbQv9qNO+aorbmqC/NLNU+ud45iMM3+/fs5+N8BLr30Uj70oQ9x+eWXI3WILbQ4Pbjtttv4wQ9+wMDAAO9617vYsWMHoVCI+fl5du/ezbe+9S1+8IMfsG7dOq655pqXu7sWFhYWFhYvKFcFt/H3a97FF0Z+xFR54fedLluAjw68kauCzd0EQwNervvL8zn28Di7vnuQfFKs15783mEOPzDKRe/cQv9Z0ZfqNCwsLH5FcvNFygXhUO2NuV7u7lhYWFhYWJy2WCKlX2NkWeZ973sf73vf+0gkEnz605/mu9/9LtPZMWYYIxgIYp/3sprNuA0vIw/PUEzWhERbfPhWuTl+2wSZ8TyZ8QVxQ+95EeJH00w+ERcRUYYBBsweSJKPF4XYQoZVl3cxtTdBYa5kujIhQ3RrAMWWEhtDMmAIgc7BH4yYfe+9IIzqUhi+Z3rhhAyxiVOYF1/2O6MaVZ0GkYnqUlFs0vLNjUV/9a8SERCLRUoLRRObHHqLDa/0SJbpZ2zLBEp16mIS1SET3uJj6unEsjal2i+rrXAENda+rpexR+eauia5YnYGL+li2JhuGsnRULMmZCbyTO6Zx2jdhReduUPptk5N2YnCgiCmCX0XhcnHS83PVa5Fn00WGHmgiUMSQuxVSuuUmmwmuqJ27AFNuDi02TSc3Z9sEOYs7YMzrOEI2JY9PQ9ifPgG3KSGc6RH8ssESgCKTUaxLdkwkkWcWvJ4llJKZ+bZ5LKNaf+Qm9iOAEd/NoZRMjh484gZg1i/3mRVFi5qlSqzz6UaYgx7zw+Tmy2QOJZl/kia/FzR7F89Ak7VZPovijL5dJzZ/amGmMTwJi+BNR6O3TqBXjAYe2yW9EgOo2qQ7p0i6Zzh0KFDVGeqeAteLrroIj73uc9ZbkkWFha/EQSDQXPtdeTIEf793/+d//zP/+Q4x4nFYvzWb/0Wj/3js/gJk5spUClWTGFO11kB0mN58rNFEouEyM6oncBqD2OPzFI1qsiqhKFXqRpV5g6mTIGCK2pHdSikRnINUVvOkIZ/tYfcTE2MJAFVca/NTRepGsK9JbYjyPyRxniswnyZ5PGMKVByhjXhkrPYWUaRkJUmAodam7r7U3o03xCDUMfmUtF8NiSpuXYleSLb9HWAuJfXhEOuLjuljL5MOFwpG5RzFSHKb0FwnRe739YyPja43oPqUJh6erk7Y6VodIzbTY3kqJRbC8hfbKqVKvNH0i1FVkDLyDsQjo6RM3xMPB5v6oDkjjkIbfQyvqu1u1E5V6FabV4Db7+TzEQBo9w6bq6U0Ukcy5iuYkuxuVQ0r631OYTs2NxCpNQMoyKuLVmTqBQW+ll3UNVzFbLTxabxceHNPiE8GsmRGhX/mYO5dr25IkK8VBeB1cVHNreKt99J/FCaqkHDNVh/UL9qCIF+XXxEdZFQUILomQEy42LuyE4WTMGjbiuRicziWqfy8IMPos6oXLD2Am6++Wauu+467Pb2zlkWpx8/+clPiEajfO1rX8PjWXDFDYVCXHnllZx//vm8613v4sc//rElUrKwsLCw+I3kquA2Xh3YytOZ48yWU0RsPs72rGlwUGqGJEmse1Ufg2d38fTNR9n/CxEBl5rMcfvfPcnQeSICzhOxIuAsLF7pJGpRb76YC6VDGoSFhYWFhYXFi4d1F/4NIRAI8OUvf5mpqSmOHj3KO9/5TiRJYpJhHuUX3F/9GY+fepBUQjwRrBcrlNILX8L3vyqCK2YHAw7ePGKKEqJn+dn8W4MgQym18IS43WfDHlyIrXBGNTMu7sD3h5l5Vry+97ww667vFY1qsWkApVSZYqK2wSaDd1Co1uePpMnPin/v3hFi4NLGJ1EK8RJHfjouhCEybLipn9DGxriToz8bZ/wJsZkU2eoncsaiaDQDjt06sXB+2wJ4+xZ+gTR0mKnFj3j7nKy7vrcxgq6Gb8hNeKOvaVzZ1J4Es7Unr53R5dEehfkSIw/OtIx1y00VOXrrWMtNnDreQVfTK1jPGczuSy4IV5ow9JoYvReF2x6/FZpfZdNvDZhxNs1Ij+ZbOkG5exwdo+aO3TreekPQgJEHZ5h4cvlGo+ZTkTWZckbn5F1TTWsQ3tw6Lq/rrACrrugyz6EeVQjCHanv4jCyJqPnDA79YLRBCGcP2Bh8dZd5rRz43rAQKC16/YYb+wiuFxsCIw/MLBO5hTZ4GXhV1IxmnN6bEKIhlyKuTyA/X6SQKJuRevVzDG3ysunNAyCLfzvwgxFzHPoGF54KsQdsZixIMVE2P6funSHWv6EfECKvwz8ZZXZ/CmToOS+Ep1dcJ+VcRWyYy2BUDcbKp3g4fwf3yT9m16kHOXXqFOeeey7/8R//QSKR4OGHH7YEShYWFr+RrF+/ns985jMcPXqUxx9/nN/5nd/hRz/6EU9yH4cHHudQaS9Ts5NUq1UkWaKc1c052x6wmXNzZizPxBNzQqgjQc95YTMKLj9XMkUhqlNpWHfYA2Iuz0wUGN81Z4qRes8P46xFSNUFUrIiUUqXTQGK5lWFGKpskKnd61SnQnRrAOeSaN7UcM4UVbljDmJnB1n8HX5hvsT4rjmMsoEki3tZPY6q/vPJJ+MYuhCJ+Fe7G6LJismyKa4Jb/GZUVoNSCLa1x1b/jOjXGXuQAqjLI6vNFljJE9lzXtiMxJHM+b6rxWyKqF5mz/fkZ8rmVF+zdB8NnrPD5txZs+X4DrPsvXuYgy9Smai0OBUZSJh3vdbkZ8tMvlkc4ESQHa6wMyzyaYCpXpkWma8cd1UR7HL+AbdOALL+yDb5IbY2sx4vkHJZg/YzPGQGskxuz/Z8HpPr9OMsEucyDCzr/Hn7m4xXgEqBYOpPQkqS1w6I1v8+GvXYjmjmwJAx6Lfc8pZfeEBhypmH2M7gnj7xWvTozlTBKfYZWw18ZMkC5eo+rjMzRSplMS10ntBBHe3uNbTIznT3UnzqvhXu83303O6+dmWjSKj5RPsrj7Ig5VbeHryMWRZ5pvf/CbT09M88MAD3HTTTZZAyaIpJ06c4LLLLmsQKC3G4/Fw2WWXceLEiZe4ZxYWFhYWFi8diiSz07uO14XOZqd3XUeB0mI0l40Lfnczb/ybi4htXIiAO/n4FD/4yIPs/ekxKm0enrCwsHj5qUe9+a2oNwsLCwsLi5cVS6T0G8jatWv59re/zdzcHPv27eO3fuu3cPrsjHGCh7iVPeH7eOjovRx88Bgg3FPc3Q5sTrFBYPeruGsClOTxLNN7501x0Zpre/AOOCkmyhy+edR0HOo7P8JgXVBUc04CSI/nSdaeJEYWDko2j8rscylToBFa52XV5V1o/saNnxN3TXLqvilARFAMXdnVIBiSZZnsVJ5cLWZB86kLI7rWX2dYMzfqmuFf5cI70NzW0zCq6MVK08ix+ME0B28epZzRkVWaCpncPQ7WXdvXIBCpU4/LcsXsOELLhUz1KLi6MGQpjpDG0KtjBFY3X0yrLoXeC8NN+wVig6Qw2yIGrRNV4dbUzKUIhPDLP9R6kT9wSZS+C5sLpFxRO7IqREBLnRJAbHyCcIdo9vOhq7oZvKS5xXJd+DPy0AzHbmkeQ6cXK+jF5ht0dXckd1fz8SSrEs6IHYe/9nnWhk19k8soGWSnC5RSjXWLbPHRc14IEOPq6M/Hl7UZuLSLvgsigIgdHL53Gr1gENrkNWudmyqSPJFFlhvFS/7Vbla9OoYzIvpx4heT4tqTYejKGIG14vXJExkmaw4SqktZ2AiuPd3vCIvXx0+l2PXELqbPOMyDtp/xyIl7ySlptm7dype+9CXi8bi5WV/vi4WFhcVvMpIksXPnTr70pS8xPDzMAw88wOtf/3py0Xke5x6ODD7Blj/q5fiRExRqjpY2t9pw/9e8NmRVCHfmF0Xourrs5r0vNZwzI9E0r0rsrKApPlksTslOFEwhen0dVCkZxA+lTafH0EYfwfWNohc9X2H8iTlTpOEfci8TJJfzFQrxkhk1pzqFEKMu2lCdCvaArWW0VN11qX6ujYUU967FsXMmVSECr6+fFougFhPa6CNyhn/Zv1eKhhnV1kxkXSkZGLqI16qLbpYSWOshvKm5yBnE2qypwAqoFCsiHu+XpJTWWzoMKZqMf8jdvKaI8+3aHmhZs7rwqpxdvv6xuVUhtqnSEFdYxxnW6D43ZApyFiPbZJBqTlS75hrcv+oYutFWVO8M29uK4jWvilYX7tXGoIj2E+dazuii34tKI9tkwpt9ZpvZZ5PMHWp8cMDmUujaFjCv0dRwjtxMUUQXLlrj5qYLpjitaiz0IbLZh3+NEIGU0jqTT81TKRk4gpo5PqsGJI5lhEstotb1Pil2BWdIM+PeZkfjHI0fQH5NivvKP+OZ3C62XraJr3zlKxw9epR7772Xd73rXQQCgZa1srBYKVY0oIWFhYWFRWfCgz6u/6vzuewPt+HwiTWjXqzwxH8f5ocfe4jRfbMvcw8tLCxakRiviZR6LJGShYWFhYXFy4m1g/wbztatW/ne975HMpnkscce46abbkLXdSYZ5jHu5AnfnTheW+Kx7+8xnXsiW/z01kQkhfkShXnx5bvqkKlWqhi6+AbeN+gyXYqO3zHJ6CPiFzB3j4PNbxlE86ukh3Pmk+muqJ3gGo/5BXz9qen44TTHfzFBKSk2j1Zf0yM2zgzMf7P7bNg8NvTaRobNo2LoBmMPz5lCqVWXd7H6Nd0N5z9y/wwj94tIsNBGr3C6WcTRn40z/rhw7Alv8i48tYzY5Dt554JIqu/icMMVU99U6bsoytq6W9QishMFhh+cNuMemtF3QYSec0NNf+YIa6x+TbcpIllMIV7i2O3jDTFeSwkMeVoKtKb3JNrGfrSjlNIZfWi2qUgIak4HLTbpQDhZTT61PE4FYPDVXfRdHGn6M2+/k94Lwrh7Wh977OFZxnYtd2CKbguw/vo+IdoyaIiE8Q66iJ0jnn6KH0wz9vDC61WXYn7upjvSIvck/2o3q68WYy4/W+LQ90ca4gm9gy7W39BnCn7GHp4jO1VA1mTTCUl1NTpjFOIlVIfM2mt7TJevsUdnOPELIazSFrUNrvWaT/AX5ktMPBHH0A0GLuti6Eox1pMnshy7dZz8bAlnRKP73NqTXgYggayIflRKBpkJcW6BtR76LoiYjlf7f3qC9W/o5dS6vTyi3cpzuafZv38/mzdv5iMf+QipVIq9e/fyp3/6pzgcrT8fCwsLi990ZFnmkksu4Z/+6Z8YHx/nzjvv5Prrr+f73/8+T3E/z0QfYPV7grzv629jcre438g2icgWnxBEVIWzUIMjzqL9Yt8qF6pToZTWmXgqbsZGRc7wEVjroVqpkjyVNR1vnGE77tjCWqDu5jK9Z57EceGO6QhqRLb6kRSp4d6uOhXzPiApEpIiUUqVzfWi3W+j97xwg7tQOVsRkWE115nIGX7T8QkWXJfqTjKBNYvENVWYP5oxxSy+VS7svoXX1muiaDI9O8NNXZXmj6aJH27tmGQP2Ahv9jXcSxcTWu8lvHm5yAkgeTLL1J7m6xcQdWy17qoUDRKLYvWeL9mpQlOXIhDiFk+vkxZJa+Smi0Ik08QFydVlJ7YjiNJC1B5Y4ya4rrWDU36uxMy+JOWla0IJus8OmoKexeNZkiUCaz3iPasw+1yqITp38QMGieNL3JEksV6vi4fih9IN0YkgYqfrwr5SRhfjtbow9quVKqpTQXXUYt4KFRHX1mUnXHPaLOcqTDwVN4VZdQcsxSbj6XOaEXHpsTzFZFmsFy8Mm/8+dyhtCgrdPQ5zHFeNKlSrpviolNVNZ6fwJh+e2ho3P1vk+NMjvPbz55M89xT3FX7GEeUZdF3ns5/9LAcPHuS+++7jAx/4AKtXr275+VhYLGX16tXcf//95HLNfz/N5XLcf//91riysLCwsLBYAZIksf6SPn7rS5dyxmtXUdf5Jiey3P63T3D3/9tNdi7f/iAWFhYvOcla3FvAclKysLCwsLB4WWn+Db3FbyTnn38+N998MwAHDhzg7/7u77jtttv48Y9/DIDT4cSedzN23xCrvGsAIQZa/dpuJp+MM/tcilP3TpsCD0+/E1fEzuz+FEbJwNHnpJwRUSLpsZwpMOq9IEwhXiJ+OM3+/z5lOswMXRmjnClz8u5pclPiKWJZhUqpYm7iOEIasiKRPJk1N8VUh8yGN/QxtTfB7LMLGxcjD84ia5L5Ok+3oyHaQ1YanwqV1ZrjU60/vlVu9IJhPqW/GHeXHXeXA1kGY8kez9SeeZzh5ptS9Sgtb78T3ypXgwAG4NTdU02dmgAKcyVO3j3ZIIpZTL1mqkNedgw9V+G5/zrV9HUAyCKyJT9TahDsrARX1I6er0V+NeHYLePN31KVMQyjYSNqKSfvnGrpZJQezXP0Z+MNIiAQmz+h9V5GHpghO9V8A2/uYIpKC1csV0TD2+NkSl5wDKtjcyv4BtzMH84IBwSjfi5i7Bj1GB1NNkVrzoiGu0uMvfRwjtFHGvslq7DpTQPMHU4x9dQ8k0/Om8fw9jlJnsiiFwxhD13bM6xfS+4eB6tf082JOyfJThQ4dts4GEK41Ht+iLFdccoZndxU3kxLcUY1KrXryRmyE1zrZfoZEQc4+tCMWZN11/WROJlh/NE54gfSjBwa4UTxMHK/zuTkJA985qfYbDa2bdvGm9/8Zj760Y9aTkkWFhYWbVBVlauuuoqrrrqKr371qzz++OP86Ec/4oc//CHf+MY38Pl8XHPNNez/3glKjxSxGUJ44Rt04YzYGX9sjtx0sUEo4e11Ukrr6PmKEFu4FPRchfxcyRSRqw4F3yoXieNZIUiuLX/sARtdZwWYeCIuxEj6gnCkqldNIYkjpFFMlE2RBSwIkMd3zZluMcVkmZn9STOqzd3joJhYiJSTVQmkBYGKJDe6zdjcKu6Yg8xEAUNvvPdLsrhnVUrGMgehSskgfjhlxgM3/KxoUKkZFgXXe8mM500HJRAxpxNPtI41S5zINIjClh5bdA4kCdNNynztsUzzF9ZQ7DKyKjV1LGqHpEjYXIpYdzURIhXmS4w90vxJbVmVMPRqy7VXbrpIpbA8Aq3O7HOphmi+OoG1HuEilNabOiwJwVnaHBuNJwTOkEYxWSZfWO4u5Yo6gCr52WKDO9LC2JEa1/SSiHUrzJeoFAwSJzLmuqeOt8+Jf8jN2KMiVnGq5hypeVWMchW9IK4noywiF6li1iyyxYesykw/k6CU0UWtq2IdrdhlUsM59HyF7HSRakVEO6oOxRxjnh4n+dkixVSZYqpMKSOi2zy9ToLrPIw+PEu1UmVy9xzzxTlmmEBeU+L48eM89X/u5eqrr+bTn/40v/d7v0dfX1/Tz8nCYqXccMMN/N3f/R1/+Id/yO/93u+xfft2AoEAiUSCPXv28K1vfYuZmRl+//d//+Xu6i/Fa1/72oa/FwoF/vAP/5C3vvWtL1OPLCwsLCxOB+xuGxe+cwsbLuvn4W/vZ/pwAoATuyYZ2TPDjpvWsfV1Qyiq9R2ahcUrgbqTUqC3eQSyhYWFhYWFxUuDJVI6Tdm8eTPf/va3ARgdHeWLX/wiP/7xjxkZGSFRneVg5inWrFmDNGWncnsJf8DP4BVdGEUDd4+D9Eieclrn6ONzyJrM0GtieHtcDN8/RaVoiNiSmnAjuM5DKV0mfjiNzaOy9poeRh+ZZfzxOVwRB0NXxZg5kKTn7BC5mULDU/rr39BHtWLw7L+fwt3jILrVz/C9M4w/HscesNFzXohisowkiUgq8TR1keiZfqJbAyRO/v/Zu+/4OOo78f+vme19V73LTe4FY4wx1WBD6D2UXEI7kly45JLLpeeSIxd+l/JNLkfKcSEkkIQkBEKoMRBMMbiAjXu3bMuyellt77szvz9GWlvIBgMGCfv9fDyEtDOf+cxndrX4s/q85/2Ok09qlM30YXWbOfBSLwCTLq/FVWFj51/aUFSFqpMDtK/sJ5fMUzbdS2CSh2h7gp71YerPLifRnWb3Yx1YfWbqTi8nl8jTtqKPkkkeXFV22l4xsjVNv7GBfEZj91/bsbjN1J5WSvf6ELaAFV+DC5PVVBxDzWmlZON5+rdGsJdamXx5LXuf7STRlcE3zoV/govWF422486vINmfpXdDGNWs0rConL5tERwlVmoWlBLrTNHybDeAkRVI1+lZH0a1QuO5lfRvixJrT+GucVA23UvPphATLqgm2pYgE80VA2XGLa5koNnIsGT3WRi3pJIDr/ShZTXKZ/mwOM24a+xGdi3VyNITaUngKLNSeVKA7o0DpPtzlM3wYvVa6FxtBGXVn1OOzW9FVeHAy31UzQvQ+VqQbDxPyVQP/olu9j3TRTqUpe7McpJ9aQZ2xbB6zUy8qJrwvgRdawdwlNkon+UrPt+1Z5RitpuxukxY/RZqTimhe0OIdDBL5SklVJ8SYOsDLeTTgyU2Zvno3xLBO95F7YJSWl/qoWd9mPRAjnHnVrD/hV6c5TYal1QQ3BGjd2OYXX89QMPZlfRti5DoStN0ZS3OchubfrWP2IEkzjIr5TO9xfKFEz5ShWJW6d8ZxVVpx9foIh3KUDrVRzaex2RR6XpjgHhXinGLKwjtM57DmlNLqTo5wOYH9pGN5ol3pfHUOnFV2rG4zCiqQvRAgu43BtA1jUmX1TDQHGdgZxT/BBf+iR76d8TIxfN4G5yEW4w7pCdcUI1qVdn1aJuxWG2CmlNLyUSyVMz2E2lLkOrNsP+lbtriLdhP09m9ezfBoPHaucNu5s+fz2c+8xkp4SaEEO+SqqqcdtppnHbaaXz/+99n69atPPbYYzz11FNs4w2UvFEy7qyzzmLl3ZsJdJdQMtlDOpSldKqXyIEEFqeZ7vVGRhxXpZ2SKR7yqQJdawewus3F7EVWr5lAk4fogQRaDgKT3JisKsGdMQZ2xnBXOcjGc9gDVgoZDbPDVJx3uaps1C4sp2NVP4meNL4JLvLJAvGuFPlUntKpXqJtCVyVDnKJPDafhVR/BkVVqDwpQKwjRd/mMIpJMcawP0E2nsfmt1B7WhmhPTFCe+J4653ouk7Ha4PZLAfLbw3sjmEyG9lqejaGQDcCTJwV9mLQS+k0L/GuFLqmYw9YqT29lLYV/WQjOdw1DlSLQrwjhdVjpnSah/C+BOmBrBF43OAitMeY55TP8qGoCr2bwoAR1JQeyJAKZjE7TZRO89K/JUIhq+GssGH1WAjvjVN9SgmqRSXUHCuWAPNPcBvBMWljnmx1mQntGbw7c4KLXKKAvcSKxWkml8wTaU2QTxaMrEGlNnKDAS2+cS7ymQKJrjSq2XgOM9EcJZM8BHdGsQcsBHca4/c2ONF1iLUnURSFkikeYu1JsjHjdfHUO7H7LMZzajeBrhcD38tmeEmHssQ70+iDz//Arii6Bp56B74GF51rgmg5nZImD4meNOlQFovbjLfBidluIhvLYXWbMdkO/v40LKog2Z+hf2uEfKqAf6Kb0J44Wl6j8qQAmXiOcHOcrrUDBJqMPwin+jMEJrmxBaz0bQ4T3BXFWW7DP9FNeG8ci9NE4+JK+raGibQkCbfE8U9wk40bwXqOchvVp5TQvS5EvDOFo8xmBOH5AXTsARuJrhTBnVFsfgvOchsDg+Xd6gfnnF1vhEiHczgr7NgDVnwNTuK9aexeK7H2FJqm4210YvVaGNgRRSvoBCZ7yMbyRA8ksQesmJ0mChnjd6VmQSl9WyNEWozsW6VTvNh8Rhavoexn4b1xEpEEIU8fFQs9vPrqq8QyMUpKSjhjxhl84Qtf4NZbb8Xtlj+ci2Pn4osvprm5mb/+9a/ceeedgJEFQh9MxabrOldffTUXXXTRKI7y3XvuueeKP/f39/PRj36Us88+exRHJIQQ4kRSOs7LZd8+jeYVHaz54y7S0axRAu5Pu9i9vJ3Tb5lO7czDZ48XQnwwcuk8iaBxM7GUexNCCCFGlwQpCerq6rj77ru5++67SafT3Hffffz+979n69atJJNJ9sS3E8gGqMrU4AqV0Ng1Hm+dC01TmXFdI92bQqiKQtuKXkJ74/jHu/DUOZh0WQ27H2037kofvKHZ1+DEU+PAZFOJ7E3grLRhdphQFGVwcU1BtSqUz/KR7M2Q6ssQbjUWPqxuE2XTfYT2xAk1x6iaX4LJasJVZcJkVlFtKqpFweo1M7A7ViwvYnaq1J1eRrzzYEYiXdOI96TIhHM4yo2yEooJ0EAxq1g9ZpxlRskF02C/YCwy2kssOEqsmK3G9qHydQCarhsZcDDu+jbbTSgm6N8SQctp+BpdWH1mtIyGyaZiyhr92rxmLG4zFrcFyKBalGIZCtWqUjLZh82bondDGAb7VU0KkdYkrio7FsfBt7LJphaf7ylXN2B2mhjYZSyUqWaj30woy75nu/CNcw0bv8luKl5r8TyD3ZlsKiabapTAM0Hd6eWYLAfLwFjcZpouqaNjdT8mi4rZZir2a7aZSPakSQ9kUUxGv0NZgqwuM4GJbipm+endFMZsUw+Wl1EVrF4LzgojU5XJohRLkrgq7ZisJlLBDK0vhLG4zYPjNcav5zSjrMbgeUxWFVPOeOCrd+IotRazAygmMNmN59DkMGHzWrG4Bp9TTcUesGB1m0gAid40FufBazPZTJRO9aCaVLrWDpCJ5unbZmT4snqNMZntZjy1TuJdSXQNQoOBYCVTvJjsJiPYqzWGs9zIolF5sh+TXcVkVsnG86gmDVvAir3ESu+GCPaABVeVHbPDxMDOKKgKA3tjxDtTlM30UTrNR6Lb+MDVvqqP8hl+FFVh6nX1ZJN5tLRG7+YE0USEXnM7YS1IW6iNdDqNaY2J2tpaFi1axHe+8x1mzJiBEEKIY0dRFGbNmsWsWbP49re/TXd3N8888wxPPPEE99xzD8l8klpvLafNPI3OF3rJ7ahCzVuw+6146pzYA1binSkSvWmirUZAqtlhomSKh0JWIxvLE2tPgm78G+dtcKEXdPq3RUn2ZyirtJFPFyhkNbS8hslqwWxXcZRYKRQ0wi0xEr3GvyHewZKiba/0kRrI4apyYHGYcVXYiLZpxr+tNtXIbtQcK2bC9I134RvnIt5hzL0UVSEbz5HsNzLnmByq8W+wDihgcZqwuMxGhhz1YGkuMDIxOsutpAasZGN5TFb14L/fgxl2CoNZGFWTYmRuzBvZcoYCkYbKuxn9GqlybD4LinIwI4/JqhTLcHlqHfjHu41sUlmjX9Pg/CjSmsBd7Si2VRTFGJOi4KqyU3lSgOiBg1k5VYuKYjIydSpmhcBEd/G8ikkxSokNZZ+yKKj5Q8ekko3l6F4/gMlmQrWahvXrLLfhrrbT/UboTc+LkW0o3JIgHcriqXcWfx/AyO7jqnSQ6E6jvOn5NjtMWL0WTDYTWi6PalVRVIpzU5NFpW9zGC2v46l3HizXB6Dr6EMZOtWh52XwNaywoRwS56xa1GJGJKvPgtVlLmYxUswK9sF5fC5ZIBM+mCkMBex+C455ATpWB1EVhUhLnHhnypg7WVQKZg2734KW1zFZVQp5nVw4R2Cim/IZPsJ742h5ozRiNpbH6jFj81kwWVW0gk4hqxmvuU1FK2jkEgXcNQ7841wku9Okghly8YM3VVTM8aOaFfq3Rkj1ZwkOBkG5Ku34J7rJJfIoJoWB5hhxPUzY2oc2JcO2bdsoxAtM3jOZK6+8ko9//OMsXrwYk+ng6yzEsfb5z3+eRYsW8cwzz7Bnzx4SiQQul4umpiYuvPBC5syZM9pDPCaef/55ZsyYQU3NyLLsQgghxPtFURUmn11H48mVrHtkNzuWHUDXIdKZ4Jn/Wsv406o47ePTcJWMLF0thHj/RbqNz3B2jwW7xzrKoxFCCCFObIo+dNucEIexYsUKfv7zn/Piiy/S12dkr1FVlYaGBnKtCnOmzoUuK9lInsp5Abz1Tpof78DqNWPzWIh1pDDbVaZ+tIH2VX2E9yYwO1XySWMBY9oNDcTak7Sv6Ec1A6hoeY0p19YR3henZ30Ys9OEzWcZzPwSoHt9qJjZRy/ow0q6+Sa4qD+znD1PdxbLT5idJqrnl9D1epB8WsPb4DRKLoRzxf1Tr62ne0OI/i0R3szT4KRqboCW57qKpbGGyn2pVpWaU0vpfiM4opTY4cYH0HRlLflUgZbnug/7nKvmwZJyh3TnrLQNKzd2tAJNbpJ9meK1Hq2ZnxhHz6YwfZvDR3+QCqWTPUT2J45Ywu5IDnd9h5ZQezNPvYNx5xllzw4NPrP6zFSdXEL7q71GKb9DlEzxgAIDO2NG4NIhXVee7MdRajMCsN58WWaYel0j4b1xo8zNIdca3B0DzTg+Hc4Vy/sBTLi4GkVRhpW/swesVMzxc+CVXtCgbJbPKHfSm8ZeYiPemUK1qky7tp7OtUFCzfFiOT+r18yUq+rpeK2fgV0xY3tWAw2mfLSeaGuCrjUDmJ0qjjI7sQNJymf5KJ3qZecjbQD4pzvY1bYTz0wLu3btKmZLstlsTJ06lWuuuYZ/+7d/w+l0Hs3LJoQQ4hjLZrO8+uqr/O1vf+Nvf/sbu3fvRlVV5s+fz/nnn8+y/15FubeSVI/x73rNaaVEWhIketPY/VaysRxaXsc/wY09YKF7XcgoT6Yq6AUdV5WRgaljVT9aTi+WA3NW2AhM8tCx2ihlZfNZyCXyRrCKRSXRkzayI010EzmQGFYerHJugHymQPCQ+Y6jzIbJqhLvTBml28oG/50f/NThn+DGVWkzMikd5pNI2QzfYKafwX/jB4NXwCjtpeUHy4EdQjEpBCa5ibQkKBwyf7D5LVTOCdC9fuDw5ccGjx0qSzd0PovTPKxU3NEwWVVsPosRjPUOPmF56p34Gpy0rzx82bYjMTtMWJwmUsHDlFx7K4e5PkUFXeeI466Y7QeFYuapIe5qO7rGiJK7qkXB2+Ai0pJA1/SDJdswnqeymT5CzYcvCeepc+Ab76ZjVX/xdTE7TJisKplIDpNVxdvgJLI/UQxesrjNVM8roWdjqJitCIwyhAyOT7UoeGqdxNqTmJ1m8sk8Wl7H1+jCUWale13I+F3QdNCN7Fr2gIWuNQPFa9JyxvulZIq3OD6bz0I+ZQT+VZ1SQrwzRbwzhdlhQvfmaOs5wMRLq1m+fDnRaBSn08m8efM499xz+cd//EcaGhrewYsnxLvX09OD2+3G5TryXePJZJJYLEZlZeW7OkcymeShhx5i+/bt7Nixg1gsxte//vXDZmfKZrP8+te/5u9//zuxWIyJEydy++23M3/+/Hd17kPdeuutXH311Vx22WVH1X7Xrl188pOf5Fe/+hVTpkx52/bbt29n+vTp73WYQogxRt7b4ljrb4mw6v7t9O4JF7eZbSZOvnoSM6QEnDiBvdO517Gyd1UnL/18E5VTAlz2H6d9YOc90f59OdGuF068az7RrhdOvGs+0a4XTrxrHgvXKzNh8ZbOPPNMHnroIXp7ewmFQvzwhz9k/vz59PT00KG3sHTHX3kh9Riv6c+zce8bdDcb5cmy0Ty1p5dRNt2LpkH3xhDxLmOhqWJOgEmXG3c07nu2i97BQJjAJA/TbmgwSlP9pZ2ewe2lUz2MW1yFloXO14LFO7btJTbsJUaGHdUMJZM9JDpTdKwOFgOUGhZV4Gtw0ra8rxg4UzUvQOXcQPEa88kCe/7WSf9g9pvKk/2UzfIV9+t5nUwsVzze6jYXA2BcFTY8tQ7Uw3yoPHR8h2p9qYeO1wYXoQ7zDmw8r4rx51cN25bsMQJ47KVWvA0jA0gq5viZdNnIu0RDzfEjBih5G5zUn1N+2H1HEmhyU7Ow9PA7NQjujI0IUCqZ4qHpitoRz5FqVimb4QUOXt+hY5t6bT32kjfd0TDYRawtRetLPcMClIb6dJRasfpG3gnhqXXgrnYUx6qaVcyDWZly8QLZ6MFFMnvAyrgllYPZGKDl+a6DAUqAo9RK9amleGqN/nrWh0n2Zhh/YTX2UuPcPRtCdKzux1FuxV0zeF4FHOU27H4rqlVlYEeE2IEk1aeWUn+W8VpoWY1tD7USao5Tf0454y+sBoz31P4XuhlojlE23UvTlXXF8fRtCRNpSaCaYeLFNcVMT/HuFFs3b2cTK9lS8SqP7fwjW6JrWb16NW63m6uuuorXXnuNdDrNxo0b+da3viUBSkIIMYqsViuLFy/mv//7v9m1axf79+/nl7/8JY2Njdxzzz28lnyRF2NPYrs4RRvNdLR0kollQQeTXaXipAAokOxNEz1gZFlSFCOYyVFmI9GTpndDGC1nBHZUzg3gn+Ai2ZspBiiBESTkqXeSHsiS7MugmIwsOja/pdjG5rMY2Rp3R4vnsrrNlM3wkgkfDDCy+a2UTvMOy7AYbokbwS66ESBUOs1bzJQIkEvmi+XrVLPCIQmPsAesxSw7hzLbTdi8lhFzq0w4R8+m0MFgGGX4/qHyvDbvIX3qFAN4XNX2EceoZoWqeQEcpcPnG4WsNiwY6838E90j5zZvo2SyZ/jYDpFPFQ4boFQ5N4CrauTd2faA1chmecj1DSmb6ad0imfkSQavfaA5RnBndMRuq8eCxT0yOa9iUnCW27C4jNdd1w5mbCpkNfLJPIfeKuOudRTnS/HOtFHe9pDAMd84F/7xruLxoT1xHGU2ApOMcmi5eJ7+7RFyiRzOcltx3LZh41OK2Y8qT/Ib7YBIW4LudUY2qrrTy3AMvkbRtkTxc0rVvEBxHpkJ54ysmLqOu9pOoMlTDIwLd0doG9jPLn0jWwIreK77r+xgHe3t7VxxxRU888wzDAwM8Morr/Cd73xHApTEB+r666/nkUceecs2f/nLX7j++uvf9TkikQgPPPAAra2tTJo06S3bfu973+Phhx/m/PPP51/+5V9QVZWvfOUrbN68+V2fH2Dv3r20tbWxaNGi99SPEEII8V6Vjfdx2Z2ncdanZmL3GHP6fKbAmj/t4rGvr6BzW/BtehBCHEvhTuPzoL9GSr0JIYQQo03KvYmj5vf7+fKXv8yXv/xlwIh4/9///V+effZZ9u7dy7bQBraFNuB0Opk6dSqrXm+jJFkNWTNoOpMurWXnX9qItSfJxo2FkUw0x7TrGuheFyLWmUJZP1DMnjP5slpiHSm61gwQPZBEGywfMfmKWgaaY7Qt7y0uRHnqXNQuLCPRmybUHMPqNpON5427tgfHbw9YcVXa2PO3jmLATMlkD2WzfOx5qrMYJGN1WyjkDmZMysZzHHjRCL6yl1iZdGkNba/0EdmfINaeYscjB4xjVRh/fhW9G8MketLG+AYFmjyYLAr926NkI4OLQio0XVZLtD1Jz7pQsW3/jgiq6fDxg1VzA1icpuJi4JBUMHOwhNqbkg/5J7rw1Dppe6Vv2HaT7ZDFvKNMfGRxmg+7UOYb58Lb6KTt1b4RfWVjeZL96eLrd+i4Kk8KEG1LDgsQAmNxamB3tBhsBkbptIkX1dC+qo9YW+rggqjPTMWsAO0r+kgHs+z6S7txgAr1Z5UT70wRao7T+nLvsLE1XVlDsjdD2yt9DOw2sitZfWaykTxaQcPqtWD1mUkHs6T6slTOC+CpdrDn6U5SfVl2P96OyaZSMtXDwM4YuWQe1aRgsZvQvGYSXUZGgQkXVaMoEO9MkQ5n2fVIG2a7yvTrG+haGyS4M0b3+hC6FsTqNTPp0lraXu0l1pZiYHesuKg7+Zo6Qs1xYu0p4n1pTDujqCpUnlKCu8ZB8+MdaLpG877dmMfD1tB6BgYGyPYaz2FpvpTTTz+d2267jY9//OOYzfK/fyGEGOsaGxu5/fbbuf3229E0jQ0bNvD888/z/PPP02LZwa7uTZSVlXHWBWdx6qkzeP6nK1E0G9l43gj8sanEu9JEDyTIxnOgG6W1/JPc9KwPEdobp5Ax/nG0B6yUTvXStXbACBAZylxUacM/0UPHqj4jo8xg8IdvvItCRjNKomEEoChmBUVVitltXJV2MrEcna8Fi+epnBsg0ZMuBjGZ7UapN92IScJkV4m0HMxM6J/oxuIy07PemCsFd0SLY3BW2LB6LIT3xskl8nStNTLeoEBgoptoW5JCRisGbNtLrJQ0eejZECoGleQSeaIHkmRiI4O6zQ4TgUkeChlt2JxEy+ukw7niNR1KUY2MTonuNJno8D4tThO5xNHfI6KYFMxOE4pZGbGvZLKHZF+GdOhNQUoKpMPZw2aB8k9wkY3ljXnPm8Q7khRyw6OrfI0ubH4LvZvC5AdL0oGRPSk/+Jwc2pfVa8Fb56B/e5RCWjMCvAe7dJTZKJvupfN143chuDNmlBwezJJlBE8ZjXVNR8tpVM8vIbQ3TnogS2hPDK2g46q0kw5nDz73igIKmCwqyb4MFpeZsum+YkalgeYY6MZc1VVlp/O1IFpep3vdALlEAf8EFzaftfg7MTCY3clVacc33kXna8bCUbwrRS5eQDEZAWqhPXF0DdLZFN1tHSz4l9k899xz7Nq1C13XGTduHKfMPZXzzz+f6667jtLSIwT5C/EBOpok2u810XZpaSmPPfYYpaWl7Ny5k0996lOHbbd9+3ZeeOEFPvOZz3DjjTcC8JGPfIRbbrmFe+65h3vuuafY9p//+Z/ZsmXLYfv5xCc+wSc/+clh25577jnOOOMMPJ7DBF4KIYQQHzBFVZiyqJ7GUypZ93AzO144ADqEOxIs/f/WMPH0ak79h6m4AlICToj3W2QwSMlXLUFKQgghxGiTVWrxrk2ZMoW7774bAE3TeOGFF3jwwQd59dVX2bRpE4WCsZhht9tpUpo41X0q8UIU2qD61FIsDhM9G8OE9sXJJbJko3lMdpXJV9Wy+7EOBnbHios7VreFxvMq2fN0Jx2vB8mEjO1l07yUz/Kz6y8H2PVYWzHYpXFJJdlojtbB4CJU8DY6KZ3qJbg7hpbVsJdayURyxDtTxcComgWlBHdFjcw+QMk0H1UnBdj56AHySY10OEv3GwNEDhgT2pKpHtJBI8uA1WnGZFMpDAXjHBL846q0Y7arw0u/acYd2onu4eVKYm0HswNVzS8h1BwrLq4deLnvsNmXYu0pYu2pkTsA1aJidowMYAo1x4y7wN+B3k1h2DRyu9muYnGaDxvsNFTy4s0GdsWIdaTIxQ8uolXPLyG4K0o2mqf7jdCw9tlonlhHknRo+IKf1WXBXWPH6jUbr//QdQ7esW+yGE+YqqqUz/bStzWKltfoXhciFTz43DcsqsAesLL70Xay0Tx7nmynYm4JUTVhLAIGs1DQsXrN5NMa2WiemgWleBqcRgk5YO/fOnFW2phyVT37/t5FoitN26t95JJ5ak4rxV1tZ/djHeTTGl1rg0TbU9SdWYbFbaHl2S5AI7TX+L2vmOMn0OQ2gq5U43lM9Wewus1MvKCatlf7yOby1C8uY/Xq1Wwr38bAwAD5dcbz6ff7mTt3LosXL+bf/u3fKCkpefsXWAghxJilqirz5s1j3rx5fO1rXyOZTLJ69WqWL1/O8uXLufPOO8lkMvj9fs466yzGnVTJeeedx3fP/Rn5ZIHqeSV0vh4kG82hDiY1Sg9kqVlQSqQ1QSaSI9aeRBsM1K6Y7ScTHZwn5aPFUl3V80tIdKXp3RQuBn3bA1bKZ/voWjNA35bIsECmWHuSWHvKyIhkUkj2Z4oBNFaPGZvPQve6gWIwS+WcAKlghtCeOADR1qQxj8HIYOSstJPoSqHroJqUYoZNYFjAi6PURrwrPSyQKJfIk+zLDCsHhw7RNiPw2Ww34Sy3FR/nUwW6Xg8Obz8ovDd+2NdJ13TMdhOqdeSEre8wZYXfil7Q6d0YHrFdURVMNhXlcPFOOsOCvA7VuylslDIbZHaYcJRaibWnDpuRKR3JUsgWRmy3l9rIJfIHA7eGyvFpOqpFLZZFs7rMmOwmUv0Z0gNZgjujxdfDZFONeffOKMneDOG9caweM94G5+DNCTqpYJZCpoDZaSKfLKCoEJjkJrQ3TqInTaLb+Cqb7kW1qPRuCpNL5Ol4rR8tr1N7ehmh5hjJvgzJ3rRRKs6mUjk3MFiesEAqlDVunlCg+pQSou1JI9NTpmDcQKEaAU42v5We9SEKjizTLh/Pvn37WLlyI9u2bQOg6/F9LFiwgBtvvJHrr7+eyZMnoygjg8uEGOv6+vreU2ZVq9V6VEF5y5cvx2Qycfnllxe32Ww2LrnkEu699156enqKJed+8YtfHPX5NU1j2bJl/Nu//ds7H7wQQgjxPrK7rZxx2wwmL6pj1f3b6NtrfDbYu6qLA+t7OfmaJmZ8pPGw2fqFEMdGuMv4HO+vcY/ySIQQQgghQUrimFBVlfPPP5/zzz8fMP44uGLFCn73u9/xyiuvsGPHjuLdjxazhTeWevCqATyZUpy9TYw/v4Zdj7WR7M1gcRtlGfq3RZl2fQMDu6JE25NEO5Jo2QKRfQkmXFxNOpQl1BxDtUTR8kYQS9OVtYT3JehcHUQfXO3y1DloOLuCPUs7jSAhzciQNPHCavp3ROhcHQTVKP/laXCSGsiS7Mlg9ZqJd6ZoT+bJJ40FlXGLKwk1x4vBOGXTfcS7UiT7MmSTefY82Vl8TpouqyXWmaJ77QDtKw4GF/nGufDUOWhf1U/P+nCx/bjzK4l3pIqBTKpVxTfORT6ZLwYpDWUjMttV6s+poGN1/7AsRCWTPZRM8bDnbwczQw3sjBWDaA772lnVYpDWW7/IoKoUS90dKrgzRvBN5yib7sU7zsW+Z7uGBS/VnlFKqs+48/7QACWzXcU33kU2liMYNfqyuM00nldBx6p+Uv1Z2lcYZfK8DU584920Le8l3pli51/aQAOb38KEjxgBPPHOFPuf7yk+72a7StlMP+lwzsiC1Zai4ZwygrtjxNpS9G0Og8ko65LoSqPlKT7/yWDGOMZqZEDq3RKmd2OY7nUhOl8PMm5xJYpJoeXv3SR7MnS83k8ukWPKR+vpXjtAZH+eWFuSbDSHvdTK+POr2L+sm1w8TypoZEFQrSpTr62na+0A2VgeXYHwPuOD0/jzq1DNKrtW7SU3LsruFevpC/cQIcLL//U4iqIQCARYuHAhZ555Jl/60pckKEkIIY5zTqeTxYsXs3jxYgDS6TSvv/56MWjpRz/6Ed/97ndxOp3MmzaPXRsHcOR8+MIl+CdUY7abCe6KEutKgQL5dIFCVqP29DI6X+sn2ZemkNeNgI10gZrTSunZGCJ6IGn8+60bJd/84130bAoT3BEtZtspn+kjP5hJZyhOw13jwNvgon1lnxHQohilwlxVjmKgtdVjpn97pJiJyV5ixVluK2brsfmt+Me7Sfam0TWdeHcaBjMX2gNWSqZ46FkfIp8q0LnmYBafkikeI7NRJFf8t9XqNuOf6DbON5hByBaw4KqyE+tMFUuNDQUoGQHnJiKtBwOAFFWhfObBueCQoRJhh6OoipGp5CiSlSgmZVjJsyG6po8IeFJUo6Ry9EBiWMCR2W7CP9FFcGes+LwOsZdYcVU5iHemi8FLrmo7Nq+FgV1GkHwmnENRwT/BTbIvQyaSM0okD3blG+fC5rXQuzlMNp43AtoHuarsWD0WUv0ZIztSXqdkioeBXTEKGY3+bRFyqTwmq0ohq2FxmnFW2Im1J9F1Yx7ka3ThrnPQsaofXYOO14KYbSp1Z5TRszFMLp4n2pZE14w5v6PUVhyDkUEsj3+iG7PNuFlAURUSvWkKOQ1vgxNXpZ2utQOYbKqRgSqex+I0UTknQNeGIHFzmEihi64dnVjGK+zbt4+XvvYkkyZN4pxzzuHmm2/moosuYubMmW//ggoxCh544IFhjzds2HDYdpqm0dvbywsvvMD06dPf93E1NzdTV1eHyzX8LvZp06YBsGfPnmKQ0juxbt068vk8CxYseMt2/f39BIMHS+y0tra+43MJIYQQ70b5BB+Xf2chu15uZ+1Du8jEc+TSBV7/w052L2/n9FunUz1NsnAKcazpmk6kazCTkpR7E0IIIUadBCmJ94Wqqpx99tmcffbZxW2vv/46Dz74IK+88gp79+7lQHwvsJdtLWsIhANMmTaF7tfCnD55AXVnlNHyXDd928LY/TbyaY1MMMv0G8ex/c8HiLUlUS0KuXieRFea6R9rZN9zXcQ6UmSjGRI9afwTXdSfVc6Bl3sJ7o4WA33GXVBJNppn/4s9ZGNGkEzlSX4CEz3sfKStON7KuQFclXZ2PmxsMztNKCa1uIjjKLPSsbK/uBBUMcuPf6Kb3Y+3gwbhlgTpAWPByh6wopgg1Z/F4jZj9ViGZx1SoZDVyWcO3q2uZTWaH2srBgUNBc+AEVhkdpgwveku/UwsRyaaN4KJ3hR35GlwkolkD5abAxrOrcDmtdD8RMfbvqYlkzzULChl5yMHyKcPdl4yxUN4b2JEObdcskA2khuRXcliN5NzHLxOe8BKPpUnn9bY/de2YUFQhXSeQkZDMQ2/E121KFjd5sG7izQ8dS4i+xNkwjkibQmyCeO1rjzJj2+i28iOFM/T/GQ7znIbYAR8qTbjOVTNxmtTebKf8hl+tv/5AFpWY9cjbVSe7GfqtfXsfLgNLatxYHkvhZzG1Ovq2fdcF9mIRqjFWPCsOa0Um99Ky7NdqGaVRFeKbCLHuPMr0Qs6rS/24q4xFt8KOY36cyqwByw0P96Bf6KLWGeSVDCDp85J6Qw3K596neqLArywcyltbW3kyMF+cDgclJSUcM4553DKKafwz//8zxKUJIQQJzi73c4555zDOeecA0A2m+WNN95g1apVrF69mj3uPeyOGVlfxg2MY/78+Vxxxzk89PWnaTp5HLl4nmw0R7I/g81nJd6Vpnp+CTaPhXiXkc1PNanFzDVaQSfekSIVzKDndZK9GSpm+0mHssS70kZwjW7Mn8pm+AhujxoZMgeDW2pPKyWyP0H3G0aJNtWsUDk3wEBzjERXGkVVDmZKGoqt0XU61wSNoCLFyOoUPZAk0Z0mny6Q6EkXg4rsfivpcBbVpBiZmN6c1EYx5gKHBu4kutIke9LompGJUjFBYXDOY7KqRnmyQ+iaTi6ZL5YJHta9ScFRYh0WvGSyqtScVkrf1siw8nFHUjk3QDqUHZa1yewwYbKoI0rJgUIukSefHp75SDErmKwmVJNCYTDgyeoxk43liXekjKxUhyaWyusjgpl0zSj5a7IZ57Q4zWh5zSilF8kV56+KqlB1SoBoa5JET5pwSwKL04TZYSKfKqAoxuusmpVipqTa08tIdKcI70sY2ZF608XsXomuNPFu43fMP96NalEY2BUjlyoQbU2iANWnljCwO0Y2lsNsN5EayGJ1m6mY46d7fQgtp1HIFsgl8qgWldqFpfRvi6AXdExWtVg+uHSKl2QmQXu0lTmfmMS6zSvZnd1NKpPC1GZi9uzZnH322cyePZvTTz+dqVOnvu3rJ8RYcP/99xd/VhSFjRs3snHjxiO2Lysr45/+6Z/e93EFg8HDZlwa2tbf3/+u+v373//O4sWL37a09ZNPPjkigAugpaWlmBH6rcTjcbZv3/6uxiiEGLvkvS0+UFUw+1OVHHg5TM96Y74fao/zt++uoWymi3GL/Vg9snRzLHwQAdhi7IsHjb8XqCYFT7ljtIcjhBBCnPBkpis+MAsWLBh2R+PAwAAPPfQQS5cuZcOGDaxZswYNjf0v7MRsNqPqZny7A8yZPxvNaSXWCa6OJFUnB+h8Lcjkq2qx+a1G+bWWOK5K487phnPKKZ3mp3v9QDGop/uNEBMvqSHZlybZmyGfMhay7AErEy6so2dzmP6dB0uxTb66joFdUYKD28x2lSlX19P5en9xMaN8ph97qVEeDCATyRLZfzDLksVpItJqLOaUz/bjqrCx85E2+rdG6N9q3P3uqrRTd3Y5LX/vom15b/H89eeUk4nkiiU+7AEj+07H6iCh5hjZaJ7mxwcDi9TBxaaIEbA1dM3DyrupULewjMgBI8tU8TXYFRsR6HQk8e4U3esHhgUoWb1mak4tLfZ16Hkj+xNE9h/MNmAPWEmHsux/oedgpyqMv6CKeFeKtlf60PJGu/qzymh9sZdsPE/Lc90A1J1ZjmpVOPBiL+G9CcJ7jb4rTvJTPtNPojtllGGL5bG5LWQjeWORVAXVrqKlNbyNLqpOChDvMNruW9rF1I/WYy+x0b12gOD2KLGOJJMuqaZ/W5SB3UZJukJGo35RBXpeo31FP6pdJdGTweazMPHCGlpf7CGbyGFxmsinC/jGGwFyO//ShqPESjaeJ9mbxlluY/z51ex/oRubz4rVZaJ3Y5ismiXXqPH6nvXsD+7HrlsI/SGErutsWArl5eXMmDGDc889l6uuuoqzzjrrqF4zIYQQJy6r1crpp5/O6aefDoCu67S1tbF69Wpee+01Vq9ezRe/+EVyuRxvvG5jzpw5dKzppypSRXlZBdqAQmhvHE+9E7VfJTWQpfoUo2RcojeD1W0CVSHWaZQu7d0UJjWQoZDTyYSzWJzmYjmvdChHNpkHDQJNHnRdJ7zfKDEHxnzIXeMw5hkpY57hbXTiKLUVg5hMVtUIdhosD6aaFeJdKbIxow+TTS1mclItKuWzfAzsjpHoTg8rmVY63Us+VSDSkqB/29A8z0TJVA/BHQfLkfknGBmCutYa5x8qAQcUg26AYlk64GDZM8BZbiPQ5CEd7i9maipktRGZJN9KeF98RLZLT60De4mVrjUDw86ra3ox49TQNeXTBXLxPD0bDpbQdVXaKZniofP1IIWMhq6Bt96JalEJ74sbpdH6MpidJspn+ujbGiGfLAzLDlU+y2eUaNsXJ58uYPUaHyl1TSfRlS4GLekFnbLpPpL9Rjm3VDCLYlKoOa2UjlVBIyPU5jBWr5nKkwP0rA8Z5fcGy71Vn1pC76Yw2UQeS8Io6euf4MLsMNO/LYLFaSIVzKLlNCrm+MmnCoT3xY2SfR1J9IJOYLIHs1WlZ2MY/wQ38e60cZNCSZ6ws5d9La0knVHWtyUYGDCe085nmpk1axZ33XUXp556KieddBJut5QDEB9OQ+XZdV3nC1/4AhdddBEXXnjhiHaqquL1emloaEBV3/8yM5lMBovFMmK71Wot7n83vvnNbx5Vu8svv5wzzjij+Li1tZW77rqL8ePHM2XKlLc9fvv27bLgKcRxSN7bYjTMOQX69oZZef92+vcZfy/u35ogsjfDvGubmH5BA6pJSsAJ8V5FOo3P7t4ql7ynhBBCiDFAgpTEqCkpKeGOO+7gjjvuAIwU86+//joPPfQQr732Gs3NzfSHu1m2ogsw/nBavrUct8VLQTeRej7KnI9Mw1vnJHogybglVWRieYI7o/jGu/BUO+jdEmbKVfW0r+oj1pFE13TSwSyapjPjxkbaV/WRCmZJdifJxjXqzy4HhcGMAUbZt5IpHkome+jdEibWYZQjqZ5fgsmmsn+ZEUBjdZupP7vCKGGCEbzjH+8i1p4kG8nTs3EAs80EGCXMxi2upH1lH4WcRrI3Xcxu5Kq0k+hJD7+zX4V0KEvrSz3E2lLF82UHF7hqFpTia3Sx6y8HilmIHOVWxi2u4sBLvSR60qDB3mc6h5WGA4h3po769cpG88XFvEO37X6ifVi/Ey+qIRPO0r7y4N2vNQtK8U9wsfORdiODkVUFzchgcOCVXlJ92WJwUzaRp5DXUa0qNr+FQrpAPq2R6k+jDNZlrz+7nFyqQPfaAfq3RkmHs8XgqcBENzF7ilhHikRPmvqzyzHbTXSuCjKwI4aOzsRLa9j1FyO4rH9bBKvfwvgLq2l5tot8OkuiN43JoTLl2jr2Pt1JPlEwsmgVNMZfUIWu6XS+FsRRYSPWYWRFarqsjlh7koE9McpneOleHwJ0quaXkEvk6V6bYuKl1XRs6mFvcCeWiTpbd0do724nraXRXxgsbWO3EwhUMH/+fK699lquu+46vF7vUb9OQgghxOEoikJDQwMNDQ1cf/31gFEibihQfP369SQS69iw4zW0bg2LxcKM+hmMGzeOA7s7cEQ9mPcrlE7z0rMxhLvah81npX97hFBzzCiT1p7EXePE1+Ckb1uEZH8GxaQQbU1QNt2Hnjcy7+g6xUxC1fNLiLUnSYey5OKD5eJm+8lGc0QPDAY7K0ZQ8sCuGKl+Y+Ha1+jC5rcW50Z2vxWb30KiO42W04xsRSHjHL5xLlAg0mJkXdQGMx+pFgVFVVBMgxmEBoOJUIzgI7PDmLsNZXTUCzqqWaHq5ACR1kSxTB0YwVcmq1KcKyW606QHsgf7HJToTh/1a3a4bEuhPfFhGZ1sXgul0730bgoXA6cUk0LlyQFi7clicP1QSbVEj5F1qpDRikFVmqajDGZZsrjN5OJ58qkC6VAOXdOxuM2UNHno2xJGy+v0bY0Ug6fMDhOeGqNknJYzSgNWzPbTsaofLa/TsylESZMHT51R1m+o5F75bB+xtmQxcCk9kKVkigctpxFuSWCyqWTCOSxuM9XTffSsGzCyW6kK+VQGV6Wd0qle2lf24ap2kI3nSPVlsfkslEzx0rV2AHupFbPTRNvmTtKBOP36fkpqvWyPbKe7qxu6jM8js2bNor6+ngsvvJBzzjmHurq6o36NhBjrTjrppOLPt9xyC3Pnzh22bbTYbDZyuTdnhDOyAA7tfz+VlZVRVlbGsmXLWLZsGfF4/O0PEkIIId4n5RP9XP6fC9n9Uhtr/7zbKAGXyvPa73ew6+V2zrh1OlVTJYO6EO9FuNP4+4JfSr0JIYQQY4IEKYkxQ1VVFi5cyMKFC4vbNE1jxYoVPPXUU6xatYpdu3axr3cPOjr7YztZ/ddleDwe6urqyPWPh0kqyU06ftWNf5KbdCRH5xtBquYG6Fo3gKfWQcVsH3uXdtO/M4qnzkm8K0XtaRWoFtXIAJAtkB7IUcjnmXXzOPp3RchEckRaYqhmhYmX1JBL58kl8mgZDVRoPL+CWFeK6GAQU+XcAJlYrrh41bCoAtWksPuvHZjsxsJSLpknn9SId6fxjnOS7E4z/oIqBpqj9GwIk08WjL7PrcBsN7H3b12Y7SqOKhuNZ1XSvqqPZF+GgV0x4h0pIwtRiZVsNE8qmCXelUJ/U2kTi9uM2a6S6s8abeN5PDUObD4L0bZkcTFMMSmY7QcP9jY4cVU7infiW91mFNUokaZrRlDWUKBSsj9NKmgsIKpmFavXTO+WEImeNKpVwew0M+Ej1cS7UvRtjZAJZfGNd1J5coADL/eR7Euzb2kXVq+JyVfVE9wepWfDABaXmf4dxh1F+WwB1aKAipG16Mwy9j3fRbw9Te+WMLULShnYFSYb1ejeOEDFnAClMz0Et8bIhnNkY3marqql+40B4r1pXDqoqsKky2vIxfMM7IqiqwrpUJayOT7Kp/ppfqqD8lleMpEMid4spdO9lM/wsfVPrUy8oIpYZ4p4b5KK2caibdfGIM6FOv2mTjrjnRyoOsCq50PFP4Cr21ScTif19fXMmDGDk08+mU996lNUVFQc0/eVEEIIcSR2u33E3CuZTLJp0ybWr1/PunXrWL9+PTuz28jredYdUGmggblXzGXSzBrsdjuv3vcGmQEVb4MTdCeJ3hSqWRkMaonQsKiccEuCRFcKs9OEdbB8XO3CMgaao+RSBbLJPHosT+lUD2aHiWwsTzqcRcvrOMpt+AZL1hZyRuYfV7Udq9dCbDC7kWJS8NQ56N9hBAhZPWaqTg7QvS5kBCopoAxOaxI9adw1DlSLgqfOiafGQfeGEH2DWS7NDhNV8wL0b4uSDmUxO0z4Gp1Y3BZ61huBMv07jTLCh5aESwUzWJzmYikzlMHgJtXIaqTljPK1el7HXeMwAqxThWLpOiMAxyitppoVPLVO0pEsmXAOk01F143t+VTBCKxSFXRNp5AtGCXXBsu8mWwq6BDcYZTXMztM2HwWAk0eutcNgA6ZSI6KOX6yiTyxA0nig/PXwCQ37hoH7Sv7sThNZGM5CmkN3aKjazpmp4lsNE/pFE8xWCk9kCWbyOMb7yK0O0Y6bAR7V5zkp/uNEIW0Ebhk81mw+azGuCI5rB4LFo+Zsuk+ejaFyERymJ1GWbqqeQGysTzJvjT2UhuR1gQ6UDHbT7wnRSacw9vgom9HBHuZFXeNg0R3ipwti7m+wKTzZ5Kvj/P666/TubOTWCYGGfAVfFRPOZ3bb7+duro6zjrrLKZNm4aivLkWoBDHp1tvvXW0h1BUWlpKX1/fiO3BoJH1t6ys7AMZx5IlS1iyZAm7du3ik5/85AdyTiGEEOJwVFVh6uIGxs2vYu2fd7Pr5TbQIdQW4+n/fJ2ms2qZ/7EpOH3vbyCvEMerSJcRpOSrliAlIYQQYiyQICUxpqmqytlnn83ZZ59d3KZpGmvXruXJJ59k7dq17Nq1iz179rBt27ZiG+tKK36/H5vioDZQS6yzlKoZVWS7NGw+K01X1rLr0TZm3NgIQNuqIKoCjedW0rVxgIqZAcIH4lg8FgqpAoWUTtNltTjK7HS/MUCsI0X9OeXYfFbMLhNaXsPf6KJvawhnqYPSaV70wUxIqlnFP95FZPBOdpvXTMlkD6F9Mfq3RGk4uxyTVWX9L/bQsqyburNKMVlNpMM5bH4LgYkegruNRbfSmV4qZgfoei1IuCVB02W1aHnNCGByqsz4h0Zi7Ul2P9ZBeiDLhAuq2PXXdlSzQt0Z5ejoOEts9G4OUXlSCR2v9eMst+FtdFF5UoAtv28BDWx+CyWTfXStMYKSJl5cja7p9KwL4hvvoe70MrR8gdDeBFa3GbPDRM/6ELGOFCVNXvoyYTx1DiM4y6Ky65E20uEsNQtKsfksdK8fIB3J0XRlHf1bwwzsjpGJ5mi6rJZ4T4q9f+ukYnYJuqbTtW4Au99Kw7kVOCpstDzTjbfWiafWSXhvnEhLgoZF5Uy8sIZN9+0jM5DDUWZj6nWNbH2ghXQwh7fGiaKCt8aFltdwlNuId6bwNjqpmV/KQHOceGeSfKZA1bwSvPUuQntjg9kJfBx4sdsIpDqphFhXEpvfhj1gQQfGX1xBb6ibA93tmPwa6/f00tnZSSaTQV+mF3+Py8rKmDBhAieffDLnnnsuF154oQQkCSGEGHOcTueIwKV0Os2WLVvYtGkTW7duZevWrdx777309BglXC0WC5Mik6itr6W7f4BqaxWOghvfJCeZaL5Yei0by1M1v4SeDSH6d0YJTHThKLGhZTWsXosRzFPQyPdnAYUpV9fStyVMNpYnlyxQdXLAyBCpGOVhtaxmBMTM8eOpdRI5kCQdzOJtdOEos5EZLAXnn+DGZFUJ70tg91toXFTBgVf6iLYm0YGa+aV0vt6Pf4Ib1aJgcZrJxo1nPAHGAAB6WElEQVRja04rJdaeJLwvjtVjoXJugJ6NIfSCTkmTm9LpPvY/321kAprsQTUbQc56QadqXgnJ/gxWj5lEbxpXuZ2uNwbw1Dnxj3cRbUsR3mdkRvLWG4FQ2WgOd42DqlOMIKtMOEf5TB+qRUG1mOhZP0D1KaUM7I6S7M/gKLPhKLWBDqVTvbir7cS7UgR3xgaDtUro3x4mtDuGu8aBp9ZB2/I+kv0ZvHUOvLUOgrtiJHvTeBudhPbE0Qs6pdO9+Me72fHnA1icZvwT3aBC74Yw8e40DWeXk+hLk+hMoxegZn4JuViORE8ai8OMs9JOzYISQs1xvA0uEl0pcqm8MX/2WOjdEiYXz6NpOtXzS9Dz0PVGkAkX1RDeFyMTyxGY4ME/0U3Lsm5qF5SSTeZxVzlQfdDR0U6uNEW8EMaOjX3JffT29kIvPL/5b0yZMoWamho++tGPcuqppzJ79mzq6uowmUwf9FtKiDFny5YtPPPMM+zZs4dEIoHL5aKpqYmPfOQjzJ49+wMZw6RJk9iwYUPx/EO2b99e3C+EEEKciOxeK2d9ciZTzq1j1f3b6G8x/ibc/GoH+9/o4ZTrmpi2RErACfFOhQfLvflrpJS3EEIIMRZIkJL40FFVlQULFrBgwYJh2+PxOC+88ALPPPMMmzdvZv/+/XT3d9LW0zrsWNcOF+Xl5VROq+SvD2xixoJpVE6sINWWJ9oex1Vm48CKXsqmeUkF01i9VpzldhL9WaIHklhcZiweEyazSj6fJ9+fo29blLJpXmrml6NaFEJ74vRvi+Aot9JwTgXpgSxda4KggrvSTiqUIbzXmBiH98ex2I23os1nwea20ba7H3+jGzSdvUs7SfRn8E90gQ6qSSHangQNutYGGX9+FZXzAvRsCNG7KURhsPxGuCVBeiBL3ZnlmKwKHav70TWweSxEDiRIBbOkBoxMTOb1IRwlVjAOJRvNEW6JFZ+3PU93khrIouUh1pZg/wt5NF0nE8xidprxT3DRuLiSPU91cuClHtKRHIqKkempOYamaUy5tIFwS4yO1RGSPRnGX1BFIVsg0W0sZrW+0EugyU3JJDdWtxmr22xkF9DA4jCR6E3TtXYAgHQ4i9VrJh3KoeU1wi1xfOPclM3wEG1L0fZKH74JLqZ/bBzdGwfoWjdAOpzF4jZTPs1HtC2B1Wkm2JEitCeGltcJTPIw0BwFDQ682oNvvBtdgXBzDHuFhYIvy0tPL8fdaKenp4eedT0kk0mSySS6bgQjWa1W3G43EyZMYMKECTQ1NXHbbbcxc+bM9+fNIIQQQnwA7HY78+fPZ/78+cO29/X1sXnzZtatW8eePXvYvn07B3J72LpxPQAmk4lx48bR6GkkMD3AyXPm8Pefv0Lt5GpsOTOpoJGRUUcnvC9G1bwSBvYk8NQ6SPZn6NsaIdGbxllqRysYk5RsPE82miMbzaGoCvVnV5AeyNC+so90JIerxo6r3EbflogRMK6CrulEBkvHZQbLyGVjRikzd4UxL0NVjECm/QlCexJGwJRJR8vrmGwm0gNGWbJET5rymT46VgWJdaQwO8xG6TSMErKqWaHypAB92yL0bAxRyGgoZgUtp5Hqy6AXdDpW9WN1mynkjeO0jEasM0UuYWSlTPSkafl7N9mY8Ti4K4Ze0DHZVHLJAj0bQ5RM9mDzWwnvjZMZzGaZS+UJ7YuT7M3gG+fCXeugd3OIbCyPalEpm+Ej3BLHUWol3pEysllOcGOyqIOZnNRiRqZcIk/flgjoxnOeieaK48mEskYm0Don2YiRgVI1K3jqnTjK7aTDWSKtcVwVdhzlxp3e2UQei8NEpCWO1WvBWWEEVumaTjqcI3ogSclUL5H9cTKRHK46C32hXvas3E3jkip64gfoCHWwa/MuksnBDFqdCpWVlZw27TQWL15MaWkpp556KqeeeioWi+V9eCcI8eH3s5/9jEcffbT4+UVRFHRdZ9euXfztb3/j2muv5bOf/ez7Po5Fixbx0EMP8eSTT3LjjTcCRqm3pUuXMn36dCorK9/3MQghhBBjWcUkP5d/93R2vnCAdQ83k0kYJeBW/9YoAXf6LTOomhIY7WEK8aERGSz35pNyb0IIIcSYIEFK4rjhdru54ooruOKKK4Zt7+3t5fnnn2fNmjVs27aNlpYWent72b9/P5qmsfflHQCYzWaUN1QqysspKy9n+xqN6tpq6sbVEGrNUDGtlHQog2pWcZbbSIWzxNtT1JxShg546lyE9sRAA5NVpWyaF2+9i0Rvmp4NIRRVZdy5FfgnuunbHiGf1LCXWvE1uIgOZllKD2TQCjro0Pl6kKYrasmnC6hmlfozK2h+uoN4Zxp9MJiofHaA4K4YwW0R0CDWkTICezCyBtg8ZtpX9GGyqsVSbumg8T2XKqAZa03kkwVSZIrPmZbTycaMRSqzXSXWmSoGMNkC1mIZO4B8Okv3QJZETxqzw0T5HD/7nu3CbDeRCmaI7DM+AHS+HsTf5MZkM2H1mulcE6SQ1Wg8txJ0nbYVfVTM9NO+oo9sNI9iUUj1pwHIxHJYbCZKp3rpWNVPcEcMT62LpqtqCTfHaH2xl4ZFUDE7gH+8B1TofmOAypMCOMvsxiJZwEIhD+GWOBaXGS2vU9Lkwea1kOhJE4vFyFREeXX5TggU2LxvgO6ublSrQixmBFoBqPtUrFYrPp+PSZMmUVdXx7nnnss555zDySefjKrKnUxCCCFODOXl5SxevJjFixcXt+m6Tnt7O7t372b37t00Nzeze/duNm3axBNPPEE+n4deI7C3qamJgQ1RSstKsdud9L7eSc3kKpJJMFmNErXOMjuFvIbVYyHcksDmtWBxmbH5LCT70mSiWaJtSXyD2ZPMDhPRjhSh5hjeeieeBgd6QSPamkRRFXzjjblIdjDLUjaRB8WYC0Vak5RO8dK9PkTZDC9aTqPr9SAoxtzO4jajmBSCO6Lomk42nifVn0HXdBQVfONcRFoS9Gw0ype9mcl6cI6QTeRRVGXwOYNCuoBeMOZwuqYXA4JUs1EiLp8ukE8Zc7NMJEf/tgiFnIav0UU2Nhi4FcuDDvlUgXinMVdzVTtIh6Moqk7XGwOg61SdbGSzspdYUVWFaFsSq9eCltPIRIzzKoqCo9yGeZ+JfKpA7ECCwAQ3qqqQ6E7TtzWCu9pO9SklxLtTZAaDxnRNwzfOTbxDwVXpoH9nGJvPjMlmwuQwvls9FkL7Y9jqFdq72shZ0qQDSbbtHSCaiZCzpInsiRSfq21LvUyfPp1Zs2axYMECTj31VObOncvkyZNxOp3H7PdZiOPdM888w1/+8hfq6+u55ZZbmDt3LiUlJYRCITZs2MD999/PX/7yFyZNmsSFF174rs/z6KOPEo/Hi6XbVq5caWQ6A6655hrcbjfTp0/n3HPP5d577yUcDlNbW8uzzz5Ld3c3X/3qV4/J9R6NZcuWsWzZsmJJbiGEEGIsUVWF6ec3Mn5BFWsf2s3ul9sBGGiN8fR3XqPp7FpOvXEKDikBJ8RbyiZzJMPG2odfgpSEEEKIMUGClMRxr6Kign/4h3/gH/7hH0bsa25uZvny5bzxxhts27aN1tZW+vv76ervQtM0dvRsBiMZAKYNJvx+P36/n0AgQL5No7qumnxHgoCvlFw8R2CCi0w0h91vI3wgjqZppCMZGhdVkAxmsPkshPbGycULTLi4Gme5Da0AwR0R7OVW6s6uwOYzF+9iN7tM+Ca46H4jRJcnyLglRrai8UsqyaUK6LmCEUAEuKrt1JxaSrI/Q/RAEkUBxayQi+fJAZhh4kdqSPSk6F4fYvySKmIdSdpX9FMyxUPNqaXsfPQA+aQ27DmqPb0Mq8dC8xMdWH1mxp9fRefrQZK9GRqXVNK+os8I8mlL4Si3opoVzHYVu99qlCexqXSuDBJrS+Ab78RRbmXcuZXsfbaTspleMEHL0i684104yq0UBsvkWZwmvHVOIq0pEr0pIu1Jyqf7cFfbieyLE+tMYrYqVM4JEGjykInm0HWdVDRLYIKbspk+XBUOdC2JalUI58KktDi9kT7UnE44HCYUChEOh8nlcuRyBxcTVVXFZDLh9Xqpqqqirq6OM888kwULFjB//nz8fv8x/z0VQgghjgeKolBfX099ff2w4CWAfD7P/v37hwUvNdcY33d2bDUCmNYabb1eL3V6HV6vl+rqaiZNmsRrj6/HZ/ZhztpwmPxYnGac5Xb0vI4tYCHemcJsM2FxmKg+tQSr20KyJ02hoGMvseKZ4cBeYiXcEkc1qdj9RjbIoYAeXddwVtqxesz0bQ5TcZIfd42DdChLxUl+oxRaXi8GIAUmuvHUO0kNZNByOqpJQSvo5ONG4JPNa6FksofezWHsASslkz10vmYEaVfNKyETzhLaM3xh3GRTqVlQSv+2CKlg1gg691voWjOAb5wLi9tM/7YIuaQxV1TMChixTnhqHFjcZvq2RChkCmSiOUw2I4OSosDA7hiVcwP0bw+TieYon+WlMBiwrhd07KVWymZ4CW6PEm1L4SyzUTU/QDqYJRPJEWk1slxZ3GYcJVbCe2PYvFYUE3jrneQSecwOE9l4HnNApT8SJFOdYHdfG3VzK+genHe172qnv78fre3gnNPr9TJp0iRmN0wnEAhw9tlnM336dBobGykvL5cgcCGOgSeeeILy8nL+7//+D7f7YJmLkpISFi9ezIIFC7jlllt4/PHH31OQ0p///Ge6u7uLj1955RVeeeUVAC644ILiub/xjW9QWVnJc889RzweZ8KECfzgBz/gpJNOetfnfqeWLFnCkiVL2LVrF5/85Cc/sPMKIYQQ74TDa+PsT81iyqI6Vj2wnb7WCJ21IXb3drHix9u5/IwFzFjSKCXgTlA7duzg2WefZcOGDXR3d+P1epkxYwa333479fX1b3nsxo0beeihh2hubiYSieB2u5k0aRI333wzs2bNKrZLp9MsXbqUFStWsG/fPlKpFHV1dVx22WVcdtllY76sdqTLuIna4bdhdUrWXSGEEGIskCAlcUJramqiqamJ22+/fcS+zs5O1q5dy8aNG9m5cyf79++nq6uL/v5+WltbyefzbNx9sL3JZMLpdOJwOHC5XPj9fny6j9KqUtR8lmQmhS/vx17hwD/BDYpCaiCNzWul4iQ/vnEeCrk88a4UgYlu3LVO3JV2Yl0prG4zqlnBW++kfIaXztcHaDivnHxKQytoTL2ugeRAmnxWo3v9AGa7is1vwdvowuoN4a5yUHlygPBgCRA0aFvRS7LPyKoUbU2gmhTyaW3E89C7JYzVZUzes5E8ba/2EmlJggrJ3jSl073UzC+h+clOKmf7sTpNmG1mtJxG94YQ5TP9uCrt5KJ5oq1J6s8qp3tjiHQoR9XJpWTjWcxuM6pZxWw1MfHiKsL7EkQPGHf1Ny6uIBPJY7apxDsTeMe5US0q9oCVYGeIgWQCZ4mDcKGPSDBCNBMlvDpMKpUitjpGPB4nl8sVSxoAWCwWnE4ndrud8ePHU1JSwtSpUzn11FOZMWMGc+fOxW63H+PfNiGEEOLEZjabmTRpEpMmTRqxr1Ao0N3dTWtrKwcOHGD//v20tbWxb98+tm/fzrJly4jFYsP6KikpwZ/wU11dTYm/BHuVnbLqEnw+H+Xl5ax49HU0K5Q0+Ej2pnGW2oi2J3FX2XGW2bB6LEY2yf4MgUlufBPcWBwmdIwSb44yG946J3v+1kX0QIKy6T661w9QMtWLyapgcVkI7ogCCooZLG4znjoHoeY4VScHyMbypENZChmNRHeaQqZwsCzvvngxKH3Y85DVGNgdIx3KFduZncYffDPRHOg6tQvLCO6Mkk8VcFc70DKaUW54b4yK2QECTW5sPgvdbwxg81pQTIqR+ajWQaDJTaQ1YWR1UhR8jQ4K6QKpYIZEZxJnuQ3PkkqibQl0QMtquGsdeBtcpGJpsuYMcSXG5DNn4J5hIRwOo1cn2du9l75EH4neBKFQaNhrZTKZ2BPxM378eKZNm8Ypp5xCVVUVCxcupKGhgaqqKkpKSo7hb5oQ4nBaWlq49NJLhwUoHcrtdnPOOefw9NNPv6fzPPzww0fVzmazcccdd3DHHXe8p/MJIYQQJ4rKyQHcX3Lz0z3PMWA6eLPD0tgmLv7fk7j9IxdQOVlKwJ1o/vjHP7JlyxbOPfdcJk6cSDAY5LHHHuP222/nnnvuYcKECUc8tr29HVVVueKKKygpKSEWi/H888/zuc99jh/84AcsWLAAMNZJ7r77bubNm8f111+P0+lkzZo1/Pd//zfbtm3jm9/85gd1ue9KeLDUm2RREkIIIcYOCVIS4ghqamoOWz5uSDKZZP369WzYsKGYhamzs5NQKEQwGKSjo4N8Pl8sE3Yos9mM0+nEZrMVA5scbQ4KOY1AqR+r10pS9RDca8FmtjHuulLsDju6quOosuFv8uCudqCaFXq3hUhHspRP89G/K0b1KaU4ym04S62E9sYJNHlA0XGUWgntheiBJPVnl+Mos5KN5Glf2ce486voWN0PGqiHlCJRzSqpvizlM/xY3GYykSy1p5fjb0rRvylK3+YIk6+tI9mfpmy2j2QwS8k0L5OvqUXPQcvybtzVdtLRLNEDSSpPCeCstFE61YOzwoau6Fh9Jpo+VsVAR4j2rjbiiQR5d45IKELLNo1UOkUmmyGVSpHJZEiuSpJIJMhmsyOeW0VRMJlM2Gw2AoEApaWlTJ8+ndLSUqqqqjj//POZP38+DQ0Nx/aXRQghhBDviclkora2ltraWk4//fTDtgmHwxw4cIDW1lba2tro6OigtbWVYDBIS0sL7e3tBIPBYYHJANYtVrxeL263m9LSUlwFFza7jYG9EWxWG1afFU+Jm1Q0gkd145piwl8bwGqzkE9olM7w4vBbKJnsJhPNkuhOUzbDi81noW9rmOpTSlDtYDKbiLQkcFXZUVQFT4OT9lf7sPksuOsc2ANW+jaFsXktmOwmwnvjxZJvAIpJQS8YZeTKZ/no2xqhZIoHk91EJpQjvC+O3W/BUWLF4jBhcZrIRnNUzgvgrneQ7Mmg6ToVs/30bgphtpuomOMnEzdKsRWyeRSzQtXpfrLpDIlonPhAiHxFjrglQVjLk+5Mk81nCFT7CQaDxGIxEvsTxOPxYYFHT7xhfHc4HNTU1OD1eqmoqGDmzJk0NDSgqirTp09n5syZ1NTUYDbLx04hPgwURXn7RscRKfcmhBDiw2RZaDNfbvkt+puS1sTdGR5e+DqxB1NcXDeP+TdMxuGVEnAniuuuu45vf/vbWCwHMwSdd9553HrrrfzhD3/gW9/61hGPvfTSS7n00kuHbbvqqqu44YYbeOSRR4pBSiUlJTzwwAOMHz++2O6KK67g+9//PkuXLuXmm2+mrq7uGF/ZsTOUSclXLUFKQgghxFghfy0W4l1yOp2ceeaZnHnmmUdso2kanZ2d7Nq1iz179rBv3z66urro6uqir6+PSCRCLBZjYGCAQqFAJpOhUBh5V/2hzGYzNpsNk8mE1WrFYrFg22jDtsOGqqpYLBZMPSYsFgu5XA6r1YrZbObAJhXNomE6y0SbJYwSVVBUBeVshQ49hb5Ax202oygKq3e9iq/Sh2uCC03T6NPaKDgKFGoKbO/uwmQykZ2WJZ/Ps2b7AVRVJefMkc1m2b1aQVEUstksGVuG3X9bZ/ycyZDen0bTNLLZLNlsltwzucMGcQ2xWCxYLJbidQ1lRpg6dSperxev18vcuXOZNGkSNTU1zJkzB6fT+a5fUyGEEEKMXUNld2fPnn3ENvl8nr6+Pvr6+ujp6aGnp4dgMEhXVxcdHR3EYjH6+vro7u4mEokQj8dJJBJH7M9isWC1WrHZbNh223A4HJgsJmytNsxmM4E5AXZlD6BndaxWK645LnK5HLF8Ho/Tg/cyK/l8mng2irWkhPrpPuLxOIqiM/eq8aTTaeLxOJlMlMlzKrDZbCSTSYLBIDVznFgsKv39feQqc3hmW7E58zR3b0Nr0jCZTOQdDva29xtjrbCQzWbZuM7IIqkFNNYvXU46nTbmXbkcmTcyI4K4hgxlBfX7/RQseRwOByUlJTQ1NdHQ0EAul6OxsZHJkydTUlJCRUUFgYDcqS3Eh8X48eNZvnw5//iP/3jYz0zJZJLly5cPW3w63km5NyGEEB8WBV3jh22PcdiZvALo8Oq5u5hwXwX713RzyvWTmbq4AVU9sQKQT0SHlmUbUl9fz7hx42htbX3H/dntdnw+37Ag7qHP4m921llnsXTpUlpbW8d0kFK407gWyaQkhBBCjB0SpCTE+0hVVerq6qirq2Px4sVHdYymafT29tLS0kJbWxudnZ3s37/fuJM9cbCERiZzMLtQPp8nFAqRz+dRFAVN09B1nXw+j6qqaJqGpmnFAKihn98qQOhIhrIVqaqKohgBSWazGVVV0XW9GFAERukWm82GzTa4kBcIYLfbsdlsuFwu3G53cfu4ceMoKSmhpKSEefPm0djYKCXXhBBCCPGOmM1mqqurqa6uPupjcrkckUiEgYEBQqEQ/f399PX1Fbf39/cTj8dJp9NEo1H6+/vJ5XIkk0k6OztJp9PFedehX0N9D825hr7eCUVRUFUVVVUxmUyYBwPKFUUxAtVtNjRNK2aSHAo8GMoo6XA40DSNmpoaKioqiv2MHz+eqqoqwMgeWl1djcvlOuGyqAhxIrn88sv5wQ9+wGc+8xluvfVWTjrpJPx+P+FwmI0bN3L//ffT19fHbbfdNtpDFUIIIY4Lv+t5md/3LD8mfWW1POHCkW+uQIG4N8Ov/2k5poIKvIi6UsXmMqOa1SMf9zY+UXkON1UuetfHi9Gh6zqhUIhx48YdVftEIlH8/Pvcc8/R0tLCJz7xibc9bmBgAACfz/eW7fr7+wkGg8XH7yZ46r2IDJZ789UcvuyxEEIIIT54EqQkxBijqipVVVVUVVWxcOHCY97/0OJYPp8nm80Si8WIxWLFRbhEIkF7ezsej4eSkhLKy8ux2+2oqlos56FpGlarFavVeszHJ4QQQgjxQbJYLJSVlVFWVva+9K/r+rAgpmw2SzqdJpVKkUgYpdSy2Sx+vx+r1YrH40HXdRwOBx6Ppxg4NBRgJIQQ78bFF19Mc3Mzf/3rX7nzzjsBIxByKLuarutcffXVXHTRRaM4SiGEEOL4kSik6c1FPtBzpp25YY9jOpA7fNujkSik39uAxKh4/vnn31Hw+X/8x3+wZs0awPh8fPnll3PTTTe95TG5XI5HHnmE6upqpk6d+pZtn3zySR544IER21taWt62qsR7pWs64S4jk1JfoovY9r739XyHE4/H2b59+wd+3tFyol0vnHjXfKJdL5x413yiXS+ceNf8fl7v9OnTj6qdBCkJcYJRVePumaEgI7fb/Y6yDQghhBBCiKM3lPloaO4lpWmFEKPl85//PIsWLeKZZ55hz549JBIJXC4XTU1NXHjhhcyZM2e0hyiEEEIcN1wmOxWWt84wc7TeNpPSIL/JhVlTySRyaIWDxeEURcHqNGO2vbObHlwmyXL/YdPa2spPfvITZsyYwYUXXnhUx3z605/m+uuvp7e3l2effZZ8Pv+2wUP/8z//w/79+/nBD36A2fzWy4yXX345Z5xxxrAx3nXXXYwfP54pU6Yc1RjfrWhPgtWFA5gsKnNPm4UyCiUQt2/fftQLtseDE+164cS75hPteuHEu+YT7XrhxLvmsXC9EqQkhBBCCCGEEEIIcQKYM2eOBCMNWrZsGcuWLSMej4/2UIQQQhyHbqpcdMxKpRV0jYu2fJfeXAT9MPsVoMLi55lZ/45JUdEKGtv/foB1f9lNLnUw2KR8go/Tb51O+UT/MRmXGFuCwSBf/epXcblcfPe73z3qTLxNTU3Fny+44AJuv/12vve97/Hd7373sO3/9Kc/8dRTT/GP//iPR1UJ4v3MXPx2wkOl3qpdoxKgJIQQQojDe/cFiYUQQgghhBBCCCGE+BBasmQJ3//+9/nc5z432kMRQggh3pJJUflK/VWAEZB0qKHHX6m/EpNiLPeoJpWZF43joz86m0ln1hTb9u2L8MS3V7Pi11tJx7IfwMjFByUej/OVr3yFeDzOj370o3cdFGSxWDjjjDN45ZVXyGQyI/Y/88wz/N///R9XXHEFN99883sd9vuuGKRU4xrlkQghhBDiUBKkJIQQQgghhBBCCCGEEEIIMUYtCczmRxNuGVFCrsLi50cTbmFJYPaIY5wBO4vumMMl31pAoM5tbNRh5wttPPJvr7DzpTZ07XC5mcSHSSaT4Wtf+xptbW18//vfZ9y4ce+5P13XSSaTw7a/+uqr/PCHP+Tss8/mX//1X9/TOT4okcEgJX+Ne5RHIoQQQohDSbk3IYQQQgghhBBCiONcLpfj1VdfZefOncTjcTRNO2y7r33tax/wyIQQQghxNJYEZnOufybr4/voz0Ups3g52T2hmEHpSKqnlXDVf53BtudaWf9oM7l0gUw8x4pfbWXXi22ccesMyib43rIPMTYVCgXuvPNOtm3bxn/9138xc+bMw7br7+8nkUhQW1uL2WwsC4ZCIQKBwLB2sViM5cuXU1FRMWzfxo0b+c53vsPs2bP51re+hap+OPIfRLqMsr6+asmkJIQQQowlEqQkhBBCCCGEEEIIcRzr7u7mi1/8Ip2dnej6kTMmKIoiQUpCCCHEGGZSVOZ7Jr3j41SzyqxLxjPh9GrW/GEne1d1AdC3N8Lj31rFtMUNzLuuCbvbeqyHLN5Hv/jFL1i5ciWnn346sViMv//978P2X3DBBQDce++9PPvss/z5z3+muroagC9/+cuUl5czffp0AoEAPT09LF26lGAwyJ133lnso7u7m2984xsoisKiRYt4+eWXh51j4sSJTJw48X29zncrXMykJEFKQgghxFgiQUpCCCGEEEIIIYQQx7Gf/exndHR0cMEFF3DJJZdQXl6OyWQa7WGNqmXLlrFs2TLi8fhoD0UIIYT4wLgCds797ElMOa+eVfdvJ9wRBx12LDtAy+tdzL9hCpPPqUNRldEeqjgKe/bsAWDVqlWsWrVqxP6hIKXDufjii3nxxRd5+OGHicfjeDwepk+fzre//W3mzJlTbNfV1VWcL/3kJz8Z0c8tt9wyJoOU0vEs6WgWkExKQgghxFgjQUpCCCGEEEIIIYQQx7ENGzYwb948vvnNb472UMaMJUuWsGTJEnbt2sUnP/nJ0R6OEEII8YGqmV7K1d87g63P7mf9o3vIZwqkYzle/dVWdr40WAJuvJSAG+t++tOfHlW7b3zjG3zjG98Ytu3qq6/m6quvfttj586dyyuvvPKuxjeaIoNZlFwldix2WQoVQgghxpIPR+FYIYQQQgghhBBCCPGuaJpGU1PTaA9DCCGEEGOIalaZfekEPvqjs5hwWnVxe9+eCE/8+ypW3b+NTDw3iiMU4t0bClLySak3IYQQYsyRICUhhBBCCCGEEEKI49j06dNpbW0d7WEIIYQQYgxylTo4719O4qJvzC8GdOg6bH/+AI986RV2L29H1/RRHqUQ70y4yyhR569xj/JIhBBCCPFmEqQkhBBCCCGEEEIIcRz79Kc/zfr163n55ZdHeyhCCCGEGKNqZ5Zx9ffPZP4NkzHbTACko1le+eUWnvrP1wjuj47yCIU4esVMStWSSUkIIYQYa6QQqxBCCCGEEEIIIcRx5IEHHhixbe7cudx5553MmTOHyZMn43KNXLBRFIWbb775AxihEEIIIcYik1llzuUTmXhGDa//ficta7oB6N0d5vFvrmTaBY3Mu7YJm8syyiMV4q2FB4OU/FLuTQghhBhzJEhJCCGEEEIIIYQQ4jhy//33H3Hfxo0b2bhx42H3nUhBSsuWLWPZsmXE4/HRHooQQggx5rhLHSz+wlzaN/ex+rc7iHQljBJwz7XS8loXp35sKpPOrEFRlNEeqhAjaHmNaG8SkCAlIYQQYiySICUhhBBCCCGEEEKI48jdd9892kMY85YsWcKSJUvYtWsXn/zkJ0d7OEIIIcSYVDe7nKu/X8LWZ/az4bG95DMFUpEsy+/ZzM4X2zjj1hmUNHhGe5hCDBPtTaIXdMw2E84S+2gPRwghhBBvIkFKQgghhBBCCCGEEMeRk046abSHIIQQQojjhMliMkrAnV7Daw/uYP+aHgB6doV47BsrmfGRRk6+ZhJWp5SAE2NDZLDUm6/aJdm+hBBCiDFIgpSEEEIIIYQQQgghjkNbt27lV7/6FTt37kRRFKZPn87tt9/O9OnTR3toQgghhPiQcZc5WPKFk2nf1Meq324n2p1E13S2PrOfvau7WPCxKUw8Q0rAidEX7jTK+UqpNyGEEGJskiAl8ZZ6enoIh8OjPQwhxAfE7/dTWVk52sMQQogTlsy9hDixyNxLvJ/27t3LF77wBXK5XHHbunXr2Lp1K7/85S8ZP378KI5OCCGEEB9WdXPKueYHZ7L5by1sfHwvhaxGKpzh5f81SsCdfusMSuqlBJwYPZEuI5OSv8Y9yiMRQgghxOFIkJI4op6eHj569UfBNNojEUJ8UOx2O7///e9lsUwIIUaBzL2EOPHI3Eu8n/7whz+Qy+X4xCc+wTXXXAPAY489xm9/+1v++Mc/8s1vfnOURyiEEEKIDyuTxcTcKycx6YxaXntwB61rjRJw3TtDPPb1lcy4sJGTr5YScGJ0hIfKvUkmJSGEEGJMkiAlcUThcBhMYN7tR02bARVFVUA5+KWoKiiAohrb3rT/yF+Dx6gKMPRYOeSxAqrx49BjfWjbYPtDH+vKwT50dfAChvocajvs+9Bxg+0OOUYf6mcwK62ugK4ecpxysG992DEMO2bY+Tl4XLHtm44tfvHW7Ycdc4Rtb/tzcZs+bJs+rE992GPj/PqI4xnR52A79eB+RdGNzcrQ46GX8ZD9g9+NXQfbqYo+eLx+yGOjjfEroIOiF7erim7s403bFB0V40tR9MFf1cFtyiHtB78Xv9BR0FAHz6Uq2uA+UNFQFB3T4PlMijb4XUdRNGN7cf+hj7Vi36qiFcdgpnCYfRoqoA71N3ieoWtR0Yedx2g7ONbBn00oKIBJAQVl8PHB7yoKqqLS1mHh//uZn3A4LAtlQggxCkZt7qWoY2reVXw8hudeunrIsWNh3vWmNmNx7mVSx9a8y8Tg8TL3EsexzZs3M2vWLG6//fbitttuu40NGzawcePG0RuYEEIIIY4bnnIH5//rybRt7GP1b7cT7RksAbd0P/tWdbHg41OZsLBaSsCJD4yu60QkSEkIIYQY0yRISbwtJWlGTVlBGVooU4sLYsZCmQLqwYUy5ZD9w/YVHw/9rI5cWFMPWRjTGbZPH/ogowwtpRxsox+yaqQPthla5Dq4CHfo4zf9rCojFsGGLQANBikNLeAdaQFt5HdlxGLYkdq+3aLY4dq97X7eru1hFsvevI9D9715cUwfsU8Z+vnNQUrDvhttlKFFrzcvlB2yTy/+rA87TmXo3IMLaYd8KRw85s0LX+oRt2kjHpsOXbAaWoga+lnRjUWsQxa/hhawTIqGqijF9sZ3BtsZC1fG8cbilTq4wGZRNExoxb5Ng4+H+jQWwrSDPw+e++DP+iHnOti/CWXwZ2NRzDS4OGY8Vgd/Nr4LIYQYfR/03EtX1bE17xrWljE59yoGKY2VeVdxDGN37mVWtTE17zrYXuZe4vgVCoVYvHjxiO3Tp09nx44dozAiIYQQQhyv6k8qp3r6mWx5uoWNT+ylkNNIhjO89PNNRgm4W6YTqJMScOL9l45mySRyoICvSoKUhBBCiLFIgpSEEEIIIYQQQgghjjP5fB6HwzFiu91uJ5/Pj8KIxpZly5axbNky4vH4aA9FCCGEOC6YrSbmXj2JSWfWsPr3OziwrheAru0D/PXrK5l54TjmXj0Jq0OWpcT7J9JlZFFylzkwW02jPBohhBBCHI769k2EEEIIIYQQQgghhDh+LFmyhO9///t87nOfG+2hCCGEEMcVT4WTC/5tHhd8aR6eciNgWi/obPlbC3/50ivsXd2FruujPEpxvAoPlnrzS6k3IYQQYsySkHUhhBBCCCGEEEKI49Df//53tm3bNmxbR0cHAF/+8pdHtFcUhR/+8IcfyNiEEEIIcXxrOLmCmpmlbHpyH5uf2meUgAtleOlnG9n1YikLb5lOoNY92sMUx5lwp5El018jv1tCCCHEWCVBSkIIIYQQQgghhBDHoY6OjmJQ0putWbNmxDZFUd7vIQkhhBDiBGK2mph3bRNNZ9Ww+rc7aNvYB0DntiB//doKZl08jrlXTcJil6UqcWwMlXvzVUsmJSGEEGKskpmfEEIIIYQQQgghxHHmz3/+82gPQQghhBACAG+liwu+PI8D63tZ/bsdxPtS6AWdzU+1sHdlFws+PpXxC6okYFq8Z5HBcm8+KfcmhBBCjFkSpCSEEEIIIYQQQghxnKmqqhrtIQghhBBCFCmKQuO8SmpnlQ0rAZcYSPPiTzdSM7OU02+ZLmW6xLtWyBWI9SYBKfcmhBBCjGUSpCTelu7Mo6kAKoqqgHLwS1FVUABFNba9af+RvwaPURVg6LFyyGMFVOPHocf60LbB9vpQPyjoDN1hoaADxn8Y6sDYrx08Rh86bvB0xfZDj4t9Dz5WlUP2GbsZuqtDedMXh7YbPN8h24bOObRNP8zxb9V+2DFH2Pa2Pxe36cO26cP61Ic9Ns6vjzj+8NevD75W+uDzYDzBijL0ePD5OXT/4HeFQ7eDquiDx+uHPB581Yt96IeMTUdHH7w2Ha14LcZ2HR1N0Qd/VXVUdKPPN30vfqGjoKEqDLbVBveBioai6JgwjjMp2uB3HUXRjO3F/cMfq4O/zsZ3BVUBMyomGDyvgqooxndAHepv8DwqevFrWL/FPg/+bEJBAUwKKCiDjw9+N86l0tYh/yQIIcRY8IHPvRR1bM27iuM9+DXW5l66esixY2He9aY2Y3Hupatja95lGpwFydxLCCGEEEKID9ZQCbhJZxol4No3DZaA2xrkr19dwaxLxnPSlROlBJx4x6I9SXQdrE4zDp91tIcjhBBCiCOQWZ44Ik3TMJvN5CeHR3so747OIYtmR09503fx4TP00mujPZC3NLSaqI72QIYxm81o2th+5oQQ4nj1oZ57ybzrhDb2515jc94FMvcSQgghhBAnpoKusdvVhXa7QuW+MmIPxkn2pdEKOpue3MeelZ2c9olpjJtfKSXgxFELD5V6q3bJ740QQggxhkmQkjgiVVXJ5/P8+7//O42NjaM9HCHE+6y1tZW77roLVR17C3hCCHEikLmXECcWmXsJIYQQQogT0bLQZn7Y9hg9uYixQYWK23xc274Ay59By+skgmle+J8N1M0uY+HN0/FVu0Z30OJDIdwZB6TUmxBCCDHWSZCSeFuNjY1MmTJltIfxofbKK6/w5JNPsm7dOtavX080GuXmm2/mgQceGO2hjfDggw/y6quvsm7dOrZs2UI2m+X+++/nlltuGe2hvSe5XI4nn3ySJ598kjVr1tDW1oaiKEyfPp1bbrmFT33qU5hMptEephBCCCFzr/dI5l2jT+ZdQgghhBBCiMNZFtrMl/Y9MCIRb18+wj1Vf+c/77wB68MK7Zv7AWjf3M+jX32V2ZdO4KQrJmK2yecIcWSRoUxKNRLUJoQQQoxlEqQkxAfgN7/5Db/97W9xOp00NDQQjUZHe0hH9O///u+0trZSVlZGdXU1ra2toz2kY2Lv3r1ce+21uN1uFi9ezOWXX04kEuGpp57ijjvuYOnSpTz55JOSBlYIIYT4kJN51+iTeZcQQgghhBDizQq6xg/bHjtspXAdo0Dzz+PPsvQr36TtjT5e+/0OEsE0Wl5n4+N72bOig9M+MZ3GUyrks4Q4rMgh5d6EEEIIMXZJkJIQH4DPfvazfPnLX2bq1KmsXbuWhQsXjvaQjui+++6jqamJxsZGvv/97/P1r399tId0THg8Hn7xi19w880343Id/JDy4x//mEWLFvH000/zl7/8hY9+9KOjOEohhBBCvFcy7xp9Mu8SQnwYLFu2jGXLlhGPx0d7KEIIIcSY9Luel/l9z/Jj1l9WyxMuJI64Xwd6cmEWb74Tq90Mt0MulSeXzhcDm36a+DumVSo2pwXF9PaBSs/P/o9jMnYx9um6TrhrqNybBCkJIYQQY5k62gMQY1dpaSm33HILpaWloz2UUfXoo49yzjnnUFFRgd1up6amhiVLlvDoo48edR+nnHIKM2bMeM9lLTRN47777uPUU0+lpKQEh8NBXV0dl112GS+//HKx3csvv4yiKNx5552sWrWKCy64AL/ff1R3mCxZsoTGxsb3NM4h2WyWn/zkJ8yfPx+Px4Pb7Wb69Ol88YtfJBQKFduNGzeOcePGEYlE+MxnPkN1dTUul4uzzz6b9evXA9DZ2cnHP/5xKioqcDgcXHDBBTQ3Nx/1WGpra7njjjuGLZQBuFwuvvjFLwKwfPmx+9D9YSTveSGEGF3y/2GZd70XMu/68JH3vBCja8mSJXz/+9/nc5/73GgPRQghhBiTEoU0vbnIMft6qwClQ4ULCeOYfISQJUHckyFxyFfUnqJPix7VOcWJIxnOkEsVUFQFb6VztIcjhBBCiLcgmZTEEZWVlXHbbbeN9jBG1T333MMdd9xBdXU1V111FaWlpXR3d7NmzRoee+wxrrnmmg90PF//+tf54Q9/yMSJE/nYxz6Gx+Oho6ODFStWsGzZMhYtWjSs/apVq/iv//ovzj33XD71qU9x4MCBD2ysqVSK888/n5UrV9LU1MStt96KzWajubmZX/7yl9x0000EAoFi+2w2y/nnn086neb666+np6eHhx9+mCVLlrBq1So+8pGPUF1dzcc//nH27NnDU089xSWXXMKOHTve8yKkxWIBwGw+sf+XKO95IYQYXSf6/4dl3vXuybzrw+lEf88LIYQQQoixzWWyU2HxHbP+3i6T0hC/yYVVHfl5oZAtkE3m0bSDBeNUVcHqMmOyvLfPKeLDb6jUm6fcIb8PQgghxBgnfxkW4i3cd999WK1WNm7cSEVFxbB9wWBwVMZTU1PD5s2bcTqH3w0wMDAwov3zzz/Pb37zG2699dYPaohF3/rWt1i5ciWf+MQnuP/++4ctaEUikRELXF1dXZx55pn88Y9/LC5azZ07l69+9assXLiQW2+9lR//+MfFrAR33HEH99xzD0888QRXX331exrrb37zGwAuuOCC99SPEEIIId49mXe9ezLvEkIIIYQQQhxrN1Uu4qbKRcesv4KucdGW79Kbi6AfZr8CVFj8PDPr3zEphy8Ckkvn2fDYHrYs3Y9eONhL/dxyFt40DW/liVXma8eOHTz77LNs2LCB7u5uvF4vM2bM4Pbbb6e+vv4tj924cSMPPfQQzc3NRCIR3G43kyZN4uabb2bWrFkj2m/ZsoX/+7//Y/fu3bhcLs4991w++clPjvi8PFrCnUapN5+UehNCCCHGPCn3JsTbsFgsxTu+DzVaZRmsVuth72AvKSkZse3kk08elYWyfD7Pvffei8/n4+677x4xXp/Ph9vtHnHcj370o2F31d94443F/u66665hZVOG9m3atOk9jfXee+/lmWee4bzzzuPiiy9+T30JIYQQ4r2Redc7J/MuIYQQQgghxIeBSVH5Sv1VgBGQdKihx1+pv/KIAUoAFruZU2+cytXfP5OaGQc/J7Zt6OPRr6xg3V+ayWcLx3jkY9cf//hHli9fzrx58/iXf/kXLrvsMjZt2sTtt9/Ovn373vLY9vZ2VFXliiuu4Atf+ALXX389AwMDfO5zn+P1118f1ra5uZl//dd/JZ1O89nPfpZLLrmEp556iv/4j/94Py/vHRnKpOSvGfn5VwghhBBji2RSEuIt3HDDDXzlK19h5syZfOxjH+Pcc8/lzDPPxOv1Dmv3P//zP4TD4WHbbrnlFsaNG3fMx/O///u/zJw5kxtuuIFzzz2XhQsX4nA4Dtt+/vz5wx6Hw2H+53/+Z0S7O++885iOc+fOncRiMZYsWTKstMhbCQQCNDQ0DNtWXV0NQFNT04g7Mob2dXZ2Frc98MAD7N+/f1i7K6+8kpNOOumw53z66af57Gc/S2NjIw8++OBRjVMIIYQQ7w+Zd707Mu8SQgghhBBCfFgsCczmRxNu4Ydtj9GTixS3V1j8fKX+SpYEZh9VP4FaNxd9Yz4tr3fz2u93kAxlKOQ0Nvx1D3tWdLDw5uk0zK14+44+5K677jq+/e1vD7vZ57zzzuPWW2/lD3/4A9/61reOeOyll17KpZdeOmzbVVddxQ033MAjjzzCggULitvvvfdePB4PP/3pT3G5jExF1dXV/PCHP2TNmjWceuqpx/jK3rmTr2liwsJqbO6RNz4JIYQQYmyRICUh3sKXvvQlSktLueeee/jxj39cvOP8kksu4Sc/+Qnjx48HjMWy1tbWYccuWrTomC+W3X333YwfP57777+fu+66i7vuugu73c51113Hj3/8Y8rKyoa1r6ysHPY4HA7zne98Z0S/x3qxLBIxPmDW1tYe9TFvXoAEinf3v9W+XC5X3PbAAw+wfPnyYe3GjRt32MWypUuXcu2111JZWcmLL75YXHwTQgghxOiQede7I/MuIYQQQgghxIfJksBszvXPZH18H/25KGUWLye7J7xlBqXDURSFCadVUzennA2P7WHrM0YJuFhvir//v3U0zKvggn+b9z5dxdhwuLJs9fX1jBs3bsTn5qNht9vx+XzE4/HitkQiwRtvvMF1111XDFAC+MhHPsLPfvYzXnrppTERpGRzW6icfHQ37gghhBBidEmQ0nEimUzy0EMPsX37dnbs2EEsFuPrX/86F1100TE/V19fHz//+c9Zu3YtmqYxd+5cPve5z1FTUzOs3dlnn33Y4z/1qU/x8Y9//JiP6/2gKAq33XYbt912G8FgkFdffZU//elPPPzwwzQ3N7N582ZMJtOIu8jfL2azmS996Ut86UtforOzk+XLl3P//ffzu9/9ju7ubp577rkR4z/UuHHj0PXDVfw+tvx+PwAdHR3v+7kO9fLLLx9Vu7/97W9cc801lJWV8dJLLzFhwoT3dVzZbJZf//rX/P3vfycWizFx4kRuv/32ERkXDudo329gZCh46KGH6O7upry8nGuvvZZrrrlmWJsDBw7wxBNPsH37dpqbm8lms/z5z38+7GLhz372MzZu3Eh3dzfZbJbKykrOO+88brjhhhEZFo72Gn//+9+zcuVKOjo6SKVSlJeXs3DhQm666abi782Q/v5+7r//ftauXcvAwABlZWWceeaZfOITn8Dn873tcyeEEO8nmXsdezLvendO9HnXWJpnHW2fPT09LF26lNWrV9Pe3o7JZGL8+PHcdNNNnHLKKSP6jMVi/N///R+vvPIKmUyGadOmcccddzBlypQRbZPJJL/97W956aWXCAaD+Hw+ZsyYwTe/+U3sdvu76nNIR0cHN998M9lslnvvvZepU6e+7XMshBBCCCHE4ZgUlfmeScekL6vDzIKPTWXy2bWsemA7XdsHADiwrveY9P9ho+s6oVDoqG/kSSQS5HI5IpEIzz33HC0tLXziE58o7t+3bx+FQmHEZwWLxUJTUxPNzc1v2X9/fz/BYLD4+N0ETwkhhBDi+CJBSseJSCTCAw88QGVlJZMmTWLDhg3vy3mSySSf//znSSQSfPzjH8dsNvPwww/zuc99jt/85jcjAgdOOeUULrzwwmHbmpqa3pexvd9KS0u58sorufLKK+nv7+fFF19kz549b/mH/PdTTU0NN954I9dffz1Tpkxh2bJlpFKpI5Yg+SBNmTIFr9fL2rVrCYVCR1165IMwtFBWUlLCSy+9xKRJx+bD8Fv53ve+x8svv8xHP/pR6urqeOaZZ/jKV77C3XffzezZR05h/E7eb0888QQ//vGPOeecc7j++uvZvHkzd999N+l0mn/4h38ottu2bRuPPvoojY2NNDY2vuWHyJ07dzJ79mwuvvhirFYrzc3N/PGPf2TdunX87Gc/Q1UP3t10tNe4a9cuJk2axHnnnYfT6aS1tZWnn36a1atX85vf/Kb4+5tMJrnjjjtIpVJcddVVVFRUsGfPHv7617+yYcMGfvWrXw07vxBCfNBk7vX+knnX0TvR511jaZ51tH2uWLGCP/7xj5x11llceOGFFAoFnnvuOb74xS/yta99jYsvvrjYp6ZpfPWrX2Xv3r3ccMMN+Hw+Hn/8cT7/+c/zq1/9ivr6+mLbeDzOv/zLv9DX18dll11GbW0t4XCYzZs3k8vlikFK76TPQ/3sZz/DZDK9uxdKCCGEEEKI91mgzsPF3zyVfau7eP3BnSTDmdEe0qh4/vnn6evr47bbbjuq9v/xH//BmjVrACPw6PLLL+emm24q7h8KMCotLR1xbGlpKZs2bXrL/p988kkeeOCBEdtbWlooFApHNcYPs3g8zvbt20d7GB+YE+164cS75hPteuHEu+YT7XrhxLvm9/N6p0+fflTtJEjpOFFaWspjjz1GaWkpO3fu5FOf+tT7cp7HH3+c9vZ2fvnLXzJt2jQAFixYwC233MKf//znEeetr6/nggsueF/G8kF4+eWXOeecc4bdGZ/L5RgYMO7GOPRu5PdbJpNh3bp1nH766cO2JxIJ4vE4FotlzARtmM1mPv3pT/P//t//4/Of/zz333//sAWNSCSCyWTC7XZ/oON65plnuOaaawgEArz00ksfyKLt9u3beeGFF/jMZz7DjTfeCBipcG+55Rbuuece7rnnniMee7Tvt0wmw3333cfChQv57ne/C8Bll12Gpmn87ne/4/LLL8fj8QBwxhlnsHTpUpxOJ3/605/eMkjpF7/4xYhtNTU1/O///i87duxgxowZ7/ga77rrrhF9zpgxg29/+9usWrWKxYsXA7By5Uq6u7v5wQ9+wMKFC4ttvV4vDzzwAHv27GHy5MlHHLsQQrzfZO517Mm86905keddY22edbR9nnzyyTzyyCPDskheccUV3Hbbbfz6178eFqT08ssvs3XrVv7zP/+TRYsWAXDeeefxsY99jPvvv59vf/vbxbb33nsv3d3d3HfffcMyNx0aSPVO+xyyZs0a1q5dy4033sjvfve7Iz6vQgghhBBCjCZFUZh4eg31J5Wz/q97Rns4H7jW1lZ+8pOfMGPGjBE3MB3Jpz/9aa6//np6e3t59tlnyefzw4KHMhkj2MtisYw41mq1ks1m37L/yy+/nDPOOGPYGO+66y7Gjx8/ajcifZC2b99+1Au2x4MT7XrhxLvmE+164cS75hPteuHEu+axcL0SpHScsFqth41kP5zXXnuNBx98kN27d6MoCnPmzOEzn/kM48ePf9tjX375ZaZOnVr8oztAY2MjJ598Mi+99NJhF+iGJrE2m+0or2bsuPLKK/F6vZx22mk0NjaSy+V4/vnn2b59O9deey2NjY1H1c+KFSu47777AKMExNC2W265BYCysjJ+9KMfvWUfqVSKM844g8mTJzNv3jwaGhqIx+M8/fTTdHd386UvfemYPMf33XcfK1asAGDLli3FbUMlPc4880xuv/32t+3nP//zP3nttdf4/e9/z2uvvcZFF12EzWZj3759PPvss6xYsYKTTjrpPY/3aO3cuZOrrrqKTCbDokWL+NOf/jSizbhx44qvybGyfPlyTCYTl19+eXGbzWbjkksu4d5776Wnp4fKysrDHnu077f169cTiUS48sorhx1/1VVX8fzzz7N69erigrXX631P11NVVQUwrC75e7lGoFhq7tA+k8kkwIhsEEP/n/sw/v9ECHF8kbnXsSfzLpl3vVNjbZ51tH0e7r1vtVo57bTTePjhh0kmk8XSusuXL6ekpGRYOUe/38+5557L888/TzabxWq1EovFWLp0Kddccw01NTXkcjl0XcdqtR72eTuaPofk83l++tOfcu2111JbW3vY51MIIYQQQoixxOq0cNrHp719w+NIMBjkq1/9Ki6Xi+9+97tHnQX10BtKLrjgAm6//Xa+973vFW/SGPrsm8vlRhz75s8Oh1NWVkZZWdnRXoYQQgghTgASpHSCee655/iv//ovTj31VD796U+TyWR4/PHH+ed//md+/etfF4MFDkfTNPbt2zfszt4h06ZNY+3atcP+oA7w7LPP8vjjj6PrOo2Njdx0002cf/7578u1vR++973v8eyzz7JmzRqeeuopXC4XEydO5J577uEf//Efj7qfPXv28Nvf/nbYtr1797J3717AWLx4u8Uyl8vFD37wA1544QVeffVVent7CQQCTJkyhe9973vccMMN7/wCD2PFihUjxrpy5UpWrlxZfHw0i2V2u53nn3+en//85zz44IP86le/wmQy0dDQwD/90z8ddU3sY6W7u7u4aPvQQw8dts0555xzzIOUmpubqaurw+VyDds+tHi1Z8+ewy6evZP321A2pKlTpw5rN2XKFFRVZffu3e86q0Y+nycej5PP59m3bx/33XcfTqdz2OLbO71GXdeJRCIUCoVitgGTyTRs8XTOnDmoqspPf/pT/vmf/5ny8nL27t3L7373O84666yjXqgWQojRJnOvoyfzLoPMu47eWJpnvZv365sNDAxgt9uHBcDt3r2bpqamEZm7pk2bxlNPPUVbWxsTJ05ky5YtZLNZ6urq+Na3vsWKFSvQNI0ZM2bwr//6r8MWHo62zyGPPPIIsViMm266iVdeeeWI4xdCCCGEEEKMjng8zle+8hXi8Tg///nP33VQkMVi4YwzzuAPf/gDmUwGm81WvEFrqOzboYLBoAQgCSGEEOIdkyClE0gymeTuu+/m0ksv5ctf/nJx+4UXXsjHP/5xHnzwwWHb3ywajZLNZo9Yexj+//buOyyqY/8f+JsOAgKi0gQMVoqIBYioSFGiqFhQojexxBY7iRLbVROvGpNoVOwNg8Z8FdRoIgEEsWDjqgSjiFiiIGiogtJR2N8f/NjrugssZanv1/P4JDtnZs5n9jDukfPZGSAjIwMmJiYAACsrKzg7O8PAwACZmZn49ddfsXbtWuTl5Yl9E7mxmjNnDubMmVPrfqZOnVrrhzBKSkpYsmQJlixZUmVdJycnCASCGp3H399f4h7RNaGiooLFixdj8eLFldZLSEio8FhF4+jYsWO1xlib96Q2MjMzq5wzklRnvmVmZkJBQUFs1SElJSW0bt1a4j8gpfXgwQOROWBiYoINGzaIrMhU3TG+fPkSY8aMEb5u164dVq1aJZJ41LFjR/j4+GDXrl0i5x86dKhUc4CIqDHgvVf18L6rdlrifVdjus+q7nx9X3JyMiIjI+Hs7CzyjeeXL1+iZ8+eFfaZmZmJTp06ITk5GUDZlm+GhoZYsWIF8vLy4O/vjy+++AKHDh0SPjyQts/y/z906BDmzp0rlgxG1Jg8evQIW7ZswZMnT6ClpYVJkyZhxIgRDR0WERERkcwVFRVh2bJlSEpKwubNm2v9JZWioiIIBALk5+dDRUUFH3zwARQUFPDgwQO4uLgI67158waPHj2Cs7NzLUdARERELQ2TlFqQW7duITc3F66ursjOzhaWy8vLw9zcHH/++Wel7avae/jdOgCwa9cukTru7u6YMWMG9u3bJ9yCgqi5KyoqknrOvN8OkG6+FRUVQVFR8l/nysrKFZ5DGh07dsTmzZtRUFCA2NhYREdHo6CgQCzW6oyxdevW2Lx5M4qLi/Ho0SNERkaK9QmUJS+Zm5vjww8/hL6+Pv766y+cPHkSWlpamDdvXo3HRERUX3jvRSRbjek+q7rz9V2FhYX4+uuvoaKigs8//1wsVknbJ7zf57v3Ulu2bBGu2NSlSxfMmTMHp06dwsyZM6vVJwDs2bMHhoaGTPagRm/dunVwdnbGjh078OjRIyxcuBBWVlb1vpIcERERUX0qKSnBN998g3v37uHbb7+FlZWVxHoZGRnIy8uDkZGR8N83WVlZYl/GyMnJwaVLl9C+fXvhMQ0NDfTt2xdhYWGYMmWK8N8aZ8+eRUFBAZOUiIiIqNqYpNSClH+79osvvpB4vPybsUVFRcjNzRU5pqurW+XewwAqffilpKSEsWPH4scff8SDBw9gbW1d7TEQNTUqKio1mjPVmW8qKip4+/atxH6Ki4tr9VBaXV0dffv2BQAMHDgQ4eHhWLFiBQ4cOIDOnTsLz1+dMSopKQn7dHBwQO/evTFv3jzo6OjAwcEBAHD37l0sW7YMu3fvFm6vMnDgQKirq8Pf3x/Dhw/nAwciavR470UkW43pPqum87X8oUJCQgJ++OEHsa0SVFRUhO0r67M8wah///4iW8pZWlrCwMAAsbGx1e7z3r17CAsLw5YtW8S2hiNqbFJSUuDq6gp5eXl069YNpqamePbsGf/NQERERM3azp07cfXqVTg4OCAnJwdhYWEix93c3ACUrbgaGhqKgIAA4bbzX331Fdq1awcLCwvo6OggNTUVwcHByMzMxDfffCPSz4wZMzBv3jwsWLAAHh4eSEtLQ0BAAGxtbWFvb18vYyUiIqLmg0lKLUhpaSkAYOXKlWjTpo3Y8fJtBc6fP48NGzaIHIuMjETr1q2hrKxc4d7DAKrcf7h9+/YAyrZDIGoJdHV1kZ6eLlZe1ZypznzT1dVFSUmJ2Ldf3rx5g9evX0vcdqSmHB0dsX79ekRERAiTlGo6xnI9evSArq4uwsPDhUlKv//+O3R0dIQJSuX69++Pn376CbGxsXzgQESNHu+9iGSrMd1n1XS+bty4EdevX8eqVavQp08fseNt2rSptM/y85f3/f43ocvL3k2ElLbP3bt3w9raGgYGBvjnn38AQLgqXGZmJlJTU6GnpyfWD7Vc+fn5OHbsGOLi4nD//n3k5ORg+fLlGDZsmFjd4uJi+Pn5ISwsDDk5OejUqRNmzJgBW1vbGp3b09MT4eHhmDx5Mh4+fIi0tDRYWFjUdkhEREREjdrjx48BANeuXcO1a9fEjpcnKUni7u6O8+fPIzAwELm5udDU1ISFhQVWr14ttj10t27dsHnzZuzZswfbt29Hq1atMHz4cLGVYImIiIikwSSlFsTIyAgAoK2tLVzFRBJbW1ts3rxZrFxeXh5mZmaIj48XOxYXFwdDQ0ORb+1K8uLFC2EMRC1B586dERMTg7y8POGKGUDZnCk/Lkl15luXLl0AAPHx8ejXr5+wXnx8PEpLS4XH68KbN29QWlqKvLw8YVlNx/iu4uJikYdnL1++FD7cf1f5SgYlJSU1HgMRUX3hvReRbDWm+6yazNddu3YhODgYCxYswODBgyXG2qVLF9y5cwelpaUiqxndv38fqqqqMDY2BlD20AAo28bhfRkZGTAxMal2n2lpaUhJScHHH38s1ufy5cuhoaGB4OBgiXFTy/Tq1Sv4+/tDT09POD8rsmHDBly8eBHjx49Hhw4dEBISgiVLlsDX17dGK//Z29tj/fr1+PnnnwEAS5YsqTKRl4iIiKip27Ztm1T1VqxYgRUrVoiUjR07FmPHjpX6XNbW1mLbzBMRERHVBNdsb0Hs7Oygrq6OI0eOSNyyoPxbsW3btkXfvn1F/pQbNGgQ4uPjRX75/uzZM8TExMDJyUmsr3fl5+fjxIkT0NLSEv4Snai5c3JyQklJCX7//XdhWXFxMYKDg2FhYSH89nlqaioSExNF2ko733r37o3WrVvjt99+E2n/22+/QVVVVeSBmrRycnIk/j0RFBQEACJzWNoxFhQUoLCwUKzPixcvIicnR2TVJGNjY7x8+VLswUZERAQA1GniFRGRrPDei0i2Gtt9lrR9AsDRo0dx7NgxTJo0CePHj69wjIMGDcLLly8RGRkpLMvOzsaFCxfg4OAg3ObNxMQEnTt3xpUrV0T+Prhx4wbS0tJEVqeRtk8fHx+sX79e5I+npycAYO7cuVi1alWFcVPLpKuri1OnTuH48eOYM2dOhfXi4uIQERGBWbNmYe7cufDw8MDWrVuhr6+P3bt3i9SdN28eHB0dJf7Zv38/gLLVApcuXYq5c+fi3LlzOHDgAPbt24cHDx7IdLxERERERERERFR9XEmpGTl58iRyc3OFy/RfvXoVaWlpAMqWPtfQ0MCiRYuwfv16TJ8+Ha6urtDW1kZqaiqioqJgZWWFL7/8stJzjBkzBkFBQVi6dCkmTJgABQUFBAYGQkdHBxMmTBDW+/XXX3HlyhU4ODhAT08PmZmZCA4ORmpqKv79739DSUlJdm8EUSNiYWEBZ2dn7Nu3D9nZ2TAyMkJoaChSUlKwdOlSYb3169fj9u3bIg+LpJ1vKioqmD59OrZs2YLVq1fDzs4Of/31F8LCwjBz5ky0bt1aWDc3NxcnT54EAMTGxgIom68aGhrQ0NAQPni6ffs2fH194eTkhA4dOuDNmze4c+cOIiMj0b17d5GlgqUdY3JyMhYtWgRnZ2eYmppCTk4ODx48QFhYGPT19TFu3Dhh3bFjxyIkJATLli2Dp6cn9PT08Ndff+HcuXPo27cvt24gokaB915EDaux3WdJ22dkZCR2796NDh06wNTUFGFhYSLj6tu3r3CLSCcnJ5w4cQIbNmxAQkICtLS0cPr0aZSWlmLatGki7ebPn4/Fixdj/vz58PDwQG5uLgIDA2FsbIxRo0YJ60nbp52dndh7Xr7ypY2Njdi2vETKyspSbTV96dIlKCgowMPDQ1imoqKC4cOHY9++fSJbCe7cubPK/p4/fw5VVVVhMmCnTp1gZWWFv/76i0m6RERERERERESNDJOUmpGAgACkpKQIX0dGRgp/Ee/m5gYNDQ0MGTIEbdu2xS+//IJjx46huLgY7dq1g7W1Ndzd3as8R6tWreDr64sdO3bg8OHDKC0tRa9evTB//nyRbUR69OiB2NhYBAUF4fXr11BVVYW5uTmWLl2KPn361PnYiRqzFStWQE9PD2fPnkVubi7MzMzw/fffw8bGptJ20s43oOyhmKKiIgICAnD16lW0b98e8+fPF/tmfk5ODvz8/ETKAgICAAD6+vrCJCUzMzP06tULV65cQWZmJgQCAYyMjDBlyhRMnDhR7GG3NGNs164dHB0d8eeff+Ls2bN4+/Yt9PT0MHbsWEyaNAlaWlrCuiYmJti/fz8OHDiAsLAwvHz5Em3btsWECRPEHsgRETUU3nsRNbzGdJ8lbZ+PHz8GUJbAvW7dOrHYfH19hUlKCgoK+OGHH7Br1y6cPHkSRUVF6N69O5YvXy6yhRtQturTxo0b4efnh3379kFVVRUDBw7E7NmzRbaaq06fRLLw6NEjdOjQQWSbRgAwNzcHUDZHypOUpGFsbIyioiJcvnwZAwYMQGJiIu7cuSOSnPeujIwMYYJx+fkAiK24VpFnz55BQUFB6viIqGng3CZqvkxNTaGqqtrQYdD/V1RUBED6e6+mrqV9vrS08QItb8wtbbxAyxtzSxsv0PLGLOvxSnPvJScQCAQyi4CIiIiIiIiIiFqU+Ph4zJo1C8uXL8ewYcNEjk2ZMgU6OjrYunWrSHlCQgImT56MxYsXV5hgVJEbN25gz549eP78OVq3bo3Ro0fjk08+kVj34MGD8Pf3r1b/RERE1HRt3LgR9vb2DR0G/X9hYWESv6xBREREzcP+/furXNmaKykREREREREREVG9KCoqkrgNqbKysvB4ddnZ2UncolASDw8P9O/fX/g6JycH27Ztw1dffSWMoSKJiYlYt24dVq5cCVNT02rH2dJs374dCxYsaOgwpNKQscr63HXdf237q2n7mrSTtg3ndvVwbjeOczeXuV2TttWd22pqajWKi2TDzs4OK1euhIGBQZX3Xk1dS/t8aWnjBVremFvaeIGWN+aWNl6g5Y25PsYrTb9MUiIiIiIiIiIionqhoqKCN2/eiJUXFxcLj8tS27Zt0bZtW5EyQ0ND9OjRQ+o+TE1Nq/xWIAEaGhpN5n1qyFhlfe667r+2/dW0fU3aVbcN57Z0OLcbx7mby9yuSdvq1pf1vQVVj7a2Ntzc3Bo6jHrV0j5fWtp4gZY35pY2XqDljbmljRdoeWNu6PHKN9iZiYiIiIiIiIioRdHV1UVmZqZYeXnZ+wlE9WHw4MH1fs6WoCm9rw0Zq6zPXdf917a/mravSbum9DPYlDSl95Vzu/76q0376rZtSj+DRERERCSOSUpERERERERERFQvOnfujOTkZOTl5YmUx8XFCY/XNz7slI2m9L4ykaH++mOSUtPXlN5Xzu36649JSkREREQkLSYpERERERERERFRvXByckJJSQl+//13YVlxcTGCg4NhYWEBPT29Boyucrq6upg6dSp0dXUbOhQiqkOc20TNE+c2NbSW9jPY0sYLtLwxt7TxAi1vzC1tvEDLG3NjGa+cQCAQNGgERERERERERETU5J08eRK5ubnIzMzE6dOn4ejoiC5dugAAPD09oaGhAQD4+uuvERkZCS8vLxgZGSE0NBT379/Hli1bYGNj04AjICIiIiIiIiIiWWKSEhERERERERER1ZqXlxdSUlIkHgsICICBgQEAoKioCH5+fggLC0Nubi7MzMwwY8YM2NnZ1We4RERERERERERUz5ikREREREREREREREREREREREREMiXf0AEQERERERERERE1B8XFxfjuu+8wbtw4DB06FLNnz0ZsbGxDh0VEdWDjxo0YPXo0hg4diilTpuDq1asNHRIR1ZHY2FgMGjQIhw4dauhQiIiIiJo9rqRERERERERERERUBwoKChAQEIBhw4ahXbt2uHDhArZu3YqAgAC0atWqocMjolpITEyEgYEBlJWVcf/+fSxatAjHjh2DlpZWQ4dGRLVQWlqKuXPnQiAQwMHBAVOmTGnokIiIiIiaNcWGDoCIiIiIiIiIiKg5UFNTw9SpU4WvXV1dsWPHDiQlJaFbt24NFxgR1Zqpqanw/+Xk5PDmzRtkZGQwSYmoiTtz5gzMzc2Rl5fX0KFQE3D//n2EhoYiJiYGKSkpaN26NSwtLTFjxgwYGxtX2jYkJAQbNmyQeOzUqVPQ1dWVRci1EhMTA29vb4nHdu/eDUtLy0rbp6enY8eOHbh58yZKS0vRq1cvLFiwAIaGhrIIt058++23CA0NrfD4yZMn0a5dO4nHDh48CH9/f7FyZWVlnDt3rq5CrJX8/HwcO3YMcXFxuH//PnJycrB8+XIMGzZMrG5CQgJ27NiBu3fvQlFREf369cP8+fOhra0t1bmuXLmCn376CYmJidDW1oa7uzsmT54MRcX6S0+QZrylpaU4e/YsLl26hEePHiEnJwcGBgZwcXHBhAkToKKiUuV5Fi5ciNu3b4uV29nZYdOmTXU5pCpJe40r+lk3MTHBkSNHpDpXU7nGAODo6FhhH3379sXmzZsrPY+XlxdSUlLEyj08PODj41Oz4GugOp9DjXkOM0mJiIiIiIiIiIhapOr8kr64uBh+fn4ICwtDTk4OOnXqhBkzZsDW1rbC/pOSkpCTkwMjIyNZDoOI3iOrub1582YEBwejuLgYH374IczMzOpjOEQE2czrV69e4fjx49i9eze2b99eX0OhJuz//u//cPfuXTg7O6NTp07IzMzEqVOnMGPGDOzevVuqz4Xp06fDwMBApExDQ0NWIdcJT09PmJubi5RVdX+bn58Pb29v5OXl4dNPP4WioiICAwOxYMECHDx4sNEm+Xp4eKBv374iZQKBAD/++CP09fUrTFB61+LFi6GmpiZ8LS8vX+dx1tSrV6/g7+8PPT09dO7cGTExMRLrpaWlYcGCBdDQ0MDMmTNRUFCAY8eO4cmTJ9i7dy+UlJQqPU9UVBT+/e9/w8bGBt7e3njy5AkOHz6MrKwsLF68WBZDk0ia8RYWFmLDhg2wtLTEqFGjoKOjg3v37uGnn37Cn3/+ia1bt0JOTq7Kc7Vr1w6ff/65SFlDJB9Ke42BsgS6JUuWiJSpq6tLdZ6mdI0BYOXKlWJl8fHxOHHiRKX/pn9Xly5d8PHHH4uUdejQofpB14K0n0ONfQ4zSYmIiIiIiIiIiFqk6vwCd8OGDbh48SLGjx+PDh06ICQkBEuWLIGvry+sra3F6hcVFWHdunX45JNPGv2DJ6LmRlZze9GiRfD29sbt27fx5MkTqR5YEVHdkMW83r9/P8aPHw9NTc36GAI1A15eXli9erXIw10XFxd89tln+OWXX7Bq1aoq+7C3t0f37t1lGWad69mzJ5ycnKrV5vTp00hOTsbevXuFCU729vaYOnUqAgICMGvWLBlEWntWVlawsrISKbtz5w4KCwsxZMgQqfoYNGiQ1CuV1DddXV3hyl3x8fEVXocjR46gsLAQBw4cgJ6eHgDA3NwcixYtQkhICDw8PCo9z65du9CpUyf8+OOPwlVXWrVqhSNHjmDcuHEiK1TKkjTjVVJSws6dO9GjRw9h2ciRI6Gvr4+DBw8iOjpaLHFNEg0NDbi5udVp/DUh7TUGAAUFhRrH3JSuMQCJ44yJiYGcnBxcXV2lOlfbtm0b/BpL+znU2Odw40ndJCIiIiIiIiIiqkflv9A8fvw45syZU2G9uLg4REREYNasWZg7dy48PDywdetW6OvrY/fu3WL13759i9WrV8PIyEhk+zciqh+ymttA2cOcPn36IDo6GtevX5fVEIjoPXU9rx8+fIj4+HiMGDGiPsKnZqJHjx5iq08YGxujY8eOSExMlLqf/Px8lJSU1HV4MpWfn4+3b99KXf/ixYvo3r27yApMpqam6N27Ny5cuCCLEGXm3LlzkJOTw+DBg6Vuk5eXB4FAIMOoakZZWVmq1X0uXboEBwcHYXIDULYllrGxcZXXLyEhAQkJCRg5cqTItlBjxoyBQCDAxYsXaxx/dUkzXiUlJZEEpXIDBw4EgGrN7bdv3yI/P796QdYxaa9xuZKSkmpvedrUrrEkxcXFuHTpEmxsbNC+fXup27158wYFBQXVPl9dkfZzqLHPYa6kRERERERERERELVJ1fkmvoKAg8m1DFRUVDB8+HPv27UNqaqrwl3+lpaVYt24d5OTksGLFCq60QtQAZDG331dSUoLnz5/XWcxEVLm6nte3b99GUlISPD09AQC5ublQUFDAixcvsHz5cpmNg5ofgUCArKwsdOzYUar63t7eKCgogJKSEmxtbTFv3jwYGxvLNsha2rBhAwoKCqCgoABra2vMmTOn0tWgSktL8eTJE7i7u4sdMzc3x82bN5Gfn49WrVrJMuw68fbtW1y4cAFWVlZi2/RV5OOPP0ZBQQHU1NQwYMAAzJs3D23atJFxpHUnPT0dWVlZ6Natm9gxc3NzREVFVdr+4cOHACDWvm3btmjXrh0ePXpUd8HK0MuXLwFA6q0Jk5KS8NFHH+HNmzdo06YNRowYgalTp4okeTQ2hYWFGDZsGAoLC6GpqQlXV1fMnj27yrnZHK5xVFQUcnNzpV4hDQD+/PNPuLm5oaSkBPr6+hg/fjzGjx8vwyil8/7nUFOYw413VhARERERERERETUCjx49QocOHaCuri5SXv7N8MePHwsTGTZt2oTMzExs2rSpUf9Cmoikn9u5ubm4fv06+vfvD2VlZVy+fBkxMTGNdqsaopZM2nnt4eEhsr3Ltm3bYGBggE8++aRe46WmLzw8HOnp6Zg2bVql9VRUVDBs2DD06tUL6urqePDgAQIDAzF37lyR7XgaE0VFRQwaNAgffvghtLS0kJCQgICAAMyfPx+7du1C165dJbZ7/fo1iouLJSYWlpdlZGTAxMREpvHXhRs3buDVq1dSJTJoampi7NixsLS0hJKSEu7cuYNTp07h/v372L9/v9jfS41VZmYmAFR4/cqvr7Kyco3alx9v7I4ePQp1dXXY29tXWdfQ0BC9evWCmZkZCgsLcfHiRRw+fBhJSUlYs2ZNPURbfbq6upg4cSK6du0KgUCA//73vzh9+jT+/vtv+Pr6Vvpv2eZwjcPDw6GsrIxBgwZJVd/MzAzW1tYwNjbG69evERISgu3btyMjI6PSFR7rw/ufQ01hDvM3JURERERERERERJXIzMys8iELAKSkpCAoKAjKysoiKzj88MMP6NmzZ/0ES0RSk3Zuy8nJISgoCFu2bIFAIICRkRFWrVqFLl261Gu8RFQ1aee1qqoqVFVVhcdVVFSgpqYGTU3N+gmUmoXExERs2bIFlpaWGDp0aKV1XVxc4OLiInw9cOBA2NnZYcGCBfj555/h4+Mj63CrrUePHiLbYA0YMABOTk747LPPsG/fPmzatEliu6KiIgAQ25IIgPCheHmdxu7cuXNQVFSEs7NzlXXfX1HFyckJ5ubmWLt2LU6dOoVPP/1UVmHWKWmvX0UJDsXFxSJ132/f0NuhSePnn3/GrVu3sGjRIqk+F5YtWyby+qOPPsLGjRtx5swZeHl5wdLSUlah1tjnn38u8trV1RXGxsbYv38/Ll26JJLI+76mfo3z8vJw/fp12NvbS/25/91334m8dnd3x1dffYXAwEB4enpWa8u4uiTpc6gpzGEmKREREREREREREVWiqKhIqocs+vr6iIyMrNfYiKjmpJ3b6urq8PX1rdfYiKhmpJ3X71uxYoVM46LmJzMzE0uXLoW6ujrWrl0LBQWFavdhbW0NCwsLREdHyyBC2ejQoQMGDBiAyMhIlJSUSBy3iooKAODNmzdix8offpfXaczy8/Nx5coV2NnZSb3l1/uGDBmCnTt3Ijo6uskkKdX2+pX/fVte9/32jf3aR0RE4MCBAxg+fDhGjx5d434+/vhjnDlzBrdu3WqUSUqSeHl5wc/PD7du3ao0SampX+NLly6huLi4Wlu9vU9OTg5eXl64ceMGbt++DTc3tzqMUDoVfQ41hTksX+seiIiIiIiIiIiImjEVFZUm/5CFiMRxbhM1P5zXVB9yc3OxZMkS5ObmYtOmTWjbtm2N+2rfvj1ev35dh9HJXvv27fHmzRsUFhZKPN66dWsoKytL3BKovKw271l9uXLlCgoLC2uVyAA0vWtcvvJcRdev/PrWtL2k1e4ai5s3b+Lbb79Fv379sHjx4lr1Vb6yTk5OTl2EVi9UVFTQunXrKn9em/I1Bsq2R9PQ0ICDg0Ot+im/xg0xvyv7HGoKc5hJSkRERERERERERJXQ1dVt8g9ZiEgc5zZR88N5TbJWVFSEZcuWISkpCd999x06duxYq/5evHgBbW3tOomtvrx48QLKyspQU1OTeFxeXh5mZmaIj48XOxYXFwdDQ0O0atVK1mHWWnh4ONTU1NC/f/8a9yEQCJCSktKkrnG7du2gra2NBw8eiB27f/8+OnfuXGn78u1w32+fkZGB9PT0RrtdblxcHFauXIlu3bphzZo1UFSs3YZUL168AIAmde3z8/Px6tWrKmNuqtcYKIsxJiYGjo6OlSbqSKOhrnFVn0NNYQ4zSYmIiIiIiIiIiKgSnTt3RnJyMvLy8kTK4+LihMeJqOnh3CZqfjivSZZKSkrwzTff4N69e1izZg2srKwk1svIyEBiYiLevn0rLMvOzhard/36dTx48AB2dnayCrlWJMX8+PFjXL16Fba2tpCXL3vMnJqaisTERJF6gwYNQnx8vEii0rNnzxATEwMnJydZhl0nsrOzcevWLTg6OkJVVVXsuKQxS3q/Tp8+jezsbNjb28sqVJkYNGgQrl27htTUVGFZdHQ0kpKS4OzsLCx7+/YtEhMTkZGRISz74IMPYGJigjNnzqCkpERYfvr0acjJyWHQoEH1M4hqSEhIwNKlS6Gvr4/vv/++0lX3EhMTRd6XvLw8sW2xBAIBDh8+DACwtbWVTdC1UFRUhPz8fLHyQ4cOQSAQiPy8NpdrXO78+fMoLS2tcIU0SeN9/fq1yDjL6/3yyy9QUlJCr169ZBrzu6T9HGrsc7h2KYBERERERERERETNnJOTE44dO4bff/8dEydOBFC2bUxwcDAsLCygp6fXwBESUU1wbhM1P5zXJEs7d+7E1atX4eDggJycHISFhYkcd3NzAwDs27cPoaGhCAgIgIGBAQBgzpw56Nq1K7p16wZ1dXU8fPgQwcHBaN++PSZNmlTvY5HG119/DRUVFVhZWUFHRwcJCQk4c+YMVFVV8fnnnwvrrV+/Hrdv30ZkZKSwbMyYMQgKCsLSpUsxYcIEKCgoIDAwEDo6OpgwYUJDDKdaIiIiUFJSUmEig6Qxjx8/Hi4uLjAzM4OysjLu3r2LiIgIdOnSBR4eHvUVepVOnjyJ3Nxc4QpzV69eRVpaGgDA09MTGhoa+PTTT3Hx4kV88cUXGDduHAoKCnD06FGYmZlh2LBhwr7S09MxadIkDB06FCtWrBCWz507F8uXL8fixYvh6uqKJ0+e4NSpUxgxYkStVx+r6/HKy8vDx8cHOTk5mDBhAq5fvy7S3tDQUCQRZNKkSbCxscG2bdsAAA8fPsSaNWswePBgGBkZoaioCJcvX8bdu3cxcuRIdOvWrZ5G+j9VjTknJwfTp0/H4MGDYWJiAgC4ceMGoqKiYG9vjwEDBgj7ag7XWENDQ1g3PDwcbdu2rTCxSNJ4r169isOHD2PQoEEwMDBATk4OwsPD8fTpU8yaNatet7eT9nOosc9hJikREREREREREVGLJc0vNC0sLODs7Ix9+/YhOzsbRkZGCA0NRUpKCpYuXdqQ4RNRBTi3iZofzmtqaI8fPwYAXLt2DdeuXRM7Xv5wWBIXFxdERUXh5s2bKCwshK6uLkaOHImpU6eiTZs2Mou5NgYOHIjw8HAEBgYiLy8P2tracHR0xNSpU9GhQ4dK27Zq1Qq+vr7YsWMHDh8+jNLSUvTq1Qvz589vEttfnTt3Djo6OujTp4/UbYYMGYLY2FhcunQJxcXF0NPTw8SJEzF58mSJqzE1lICAAKSkpAhfR0ZGCpOt3NzcoKGhAT09PWzbtg07duzA3r17oaioiH79+mHevHlSbZHl4OCAdevWwd/fH76+vtDS0sKnn36KqVOnympYFapqvACEnyV79+4Vaz906NAKV6sBAD09PfTs2RORkZF4+fIl5OXlYWpqisWLFzdYcpo019jBwQE3b95EaGgoSktLYWRkhFmzZmHChAnCVdIq05SucXmS0rNnz/DgwQN4eXlJNcZyZmZmMDU1RXh4OLKzs6GoqIguXbpgzZo1IqsS1QdpP4ca+xyWEwgEgjrpiYiIiIiIiIiIqInx8vIS+YXmu9799ntRURH8/PwQFhaG3NxcmJmZYcaMGY12ew6ilo5zm6j54bwmIiIiavqYpERERERERERERERERERERERERDIl/TpWRERERERERERERERERERERERENcAkJSIiIiIiIiIiIiIiIiIiIiIikikmKRERERERERERERERERERERERkUwxSYmIiIiIiIiIiIiIiIiIiIiIiGSKSUpERERERERERERERERERERERCRTTFIiIiIiIiIiIiIiIiIiIiIiIiKZYpISERERERERERERERERERERERHJFJOUiIiIiIiIiIiIiIiIiIiIiIhIppikRERERERERERERERERERERA0iJiYGjo6OiImJaehQiEjGmKRERERERERERERERERERETUTISEhMDR0RHx8fEAgOvXr+PgwYMNHBVw6tQphISENHQYRNSAmKRERERERERERERERFSFwMBAuLi44J9//hGWlT8AbCwP24KCguDk5IS///67oUMhIiKiRiQqKgr+/v4NHQZOnz4t8b6pZ8+eCA8PR8+ePRsgKiKqT0xSIiIiIiIiIiIiImph/vnnHzg6Olb6x8vLq6HDbDRycnJw+PBhuLu7w8DAQKbnunHjBhwdHbF48eIq6/7nP/+Bo6MjwsPDAQBDhw6Fnp4edu/eLdMYiYiIiAQCAYqKiuqkL3l5eaioqEBenukLRM2dYkMHQEREREREREREREQNw8jICEOGDJF4TENDo56jabwCAwPx+vVrTJw4Uebn6tu3L/T09BAdHY3U1FTo6elJrJebm4vLly9DQ0MDjo6OAABFRUV4eXnB19cXd+/eRY8ePWQeLxERETVu3377LUJDQwFAeM8AAJGRkQCA0tJSnDhxAkFBQXjx4gXU1dUxYMAAzJ49G5qamsL6Xl5e+OCDD+Dp6Yn9+/fj6dOnmDVrFry8vBAcHIyzZ8/i6dOnyMvLg6GhITw9PTF69GiR9ikpKSJx2NjYYNu2bYiJiYG3tzd8fX3Rq1cvYZsLFy7gl19+QUJCAtTU1GBnZ4fZs2ejXbt2IuO7dOkSjhw5gi1btiA6OhrKysoYOnQoZs+eDQUFhbp/U4moxpikRERERERERERERNRCGRkZYdq0aQ0dRqP29u1bBAUFoUePHjAyMpL5+eTl5TFs2DD4+/sjNDQUU6ZMkVjv3LlzKCoqgru7O1RUVITlrq6u2LFjB3777TcmKRERERE8PDyQkZGBW7duYeXKlWLHN23ahJCQELi7u8PT0xP//PMPTp06hUePHmHXrl1QVPxfSsGzZ8+wZs0aeHh4YMSIETAxMQFQto3bBx98gP79+0NBQQHXrl3D5s2bUVpairFjxwIAFixYgK1bt0JNTQ2TJ08GAOjo6FQYd0hICDZs2IDu3btj1qxZyMrKwokTJ3D37l34+fmJJFCVlJTAx8cH5ubmmDt3Lm7duoWAgAAYGRmJJEoRUcNjkhIRERERERERERERVcnR0RE2Njb45ptvsHv3bkRFRaGgoACdO3fG559/LvKt93L5+fk4duwYLl68iBcvXkBZWRnm5uaYMmUKrK2tReouXLgQt2/fRnh4OA4fPoyIiAikpqZi0qRJwkSq8m/JP336FOrq6ujfvz/mzJmD6dOnAyhb8QgA1q5di/DwcOzZswcWFhZicfn5+eHQoUNYvXo1Bg8eXOm4b9y4gczMTPzrX/+S+r1KS0vDV199hefPn2PlypVwcnICAGRlZeHIkSO4du0a0tLS0KpVK/Ts2RPTpk2DmZmZsL27uzsOHTqEkJAQTJ48GXJycmLnCA4OBgAMHz5cpFxbWxu9evXCxYsXsWjRIrRq1UrquImIiKj5sbKygrGxMW7dugU3NzeRY3fu3EFQUBBWrVolsrpm79694ePjgwsXLoiUP3/+HJs2bYKdnZ1IP9u3bxdJmvb09ISPjw8CAwOFSUoDBw7EgQMHoKWlJRbH+96+fYs9e/bggw8+EOnb2toaS5cuxfHjx0US7YuLi+Hi4iJM7h41ahSmT5+OP/74g0lKRI0MN3UkIiIiIiIiIiIiIqnk5uZi3rx5SEhIgJubGxwdHfHgwQP4+PjgyZMnInVfv36NOXPmwN/fH5qamhg1ahQcHR3x8OFDeHt74/LlyxLPsWrVKoSGhqJXr14YN24cDAwMAAB//PEHVq1aheTkZHz00UcYOnQo7t27h0WLFuHt27cifXh4eAjbvK+kpATBwcHQ0tIS2fKkItHR0QAAS0vLqt8gAAkJCZg7dy7S0tKwceNGYYLS8+fPMWPGDBw/fhyGhoYYO3YsPvzwQ9y4cQNz5sxBXFycsA99fX306dMHL168QExMjNg5njx5gvj4eHTp0gVdu3YVO25paYni4mLExsZKFTMRERG1TBcuXICGhgZsbW2RnZ0t/NO1a1eoqamJ3YcYGBiIJSgBEElQys3NRXZ2NmxsbPDixQvk5uZWO674+HhkZWVhzJgxIn3369cPJiYmuH79ulibUaNGiby2trbGixcvqn1uIpItrqRERERERERERERE1EI9f/4cBw8elHjM0tIS9vb2ImWPHz/G6NGj8cUXX0Bevuw7sL1798YPP/yAX3/9FT4+PsK6W7duxdOnT7FkyRKMGDFCWJ6VlYWZM2di48aNsLOzE3nwBACZmZn46aef0Lp1a2FZTk4Otm3bBjU1Nezbtw/GxsYAgJkzZ8LHxwcPHjyAvr6+sH7Pnj3RsWNHREREYP78+VBTUxMeu3HjBtLT0zF+/HgoKytX+R7dvXsX8vLy6Ny5c5V17927h6VLl0JRURHbt28XabN+/Xq8fPlSbPWByZMnY+bMmfjhhx/g7+8vLB8+fDhu3bqF4OBg9O7dW+Q8Fa2iVK5bt24AgNjYWIkPEomIiIgAIDk5Gbm5ucIE7/dlZWWJvC5PHn/f3bt3cfDgQdy7dw+FhYUix/Ly8qChoVGtuFJTUwFAeM/3LlNTU9y5c0ekTFlZGdra2iJlmpqayMnJqdZ5iUj2mKRERERERERERERE1EI9f/5cJDHmXePGjRNLUlJTU8Ps2bOFCUoAMHToUPz444+Ij48XlmVnZ+PChQvo3bu3SIISAOjo6GDixInw9fVFdHQ0HBwcRI5/9tlnIglKAHDlyhUUFBTA09NT5GGVoqIiZsyYgblz54rF7+HhgW3btiEiIkIkhqCgIADAyJEjJY77fenp6dDQ0Kgyoen69ev4+uuvoaurix9//BGGhobCYw8fPkRsbCzc3d3FkoaMjY0xYsQIBAYG4smTJ8Jt3wYOHAgtLS1cunQJX375JdTV1QGUbX8SFhYGZWVlke1X3tWmTRsAZdvOEREREVVEIBBAR0cHq1atknj8/cSf95PLgbL7yS+//BImJiaYN28e2rdvDyUlJURFRSEwMBClpaWyCF2EgoKCzM9BRHWDSUpERERERERERERELZSdnR02bdokdf0OHTqgVatWImWKiopo06aNyFYe8fHxKCkpwZs3bySu1JScnAwASExMFEtSMjc3F6v/999/AyjbtuN9FhYWEh9MffTRR9i7dy+CgoKESUovX77EtWvXYGVlhY4dO1Yx2jKvX79Gu3btKq1z4cIF3Lx5E506dcLGjRuho6Mjcrx8K7esrCyJ78ezZ8+E/y1PUipPQjpx4gTOnTsn3MLk6tWryM7OxuDBg6GpqSkxnvLyV69eSTVGIiIiat7k5OQklhsaGiI6Oho9evSQmIAkjatXr6K4uBgbNmyAnp6esFzSlrXSKu8nKSkJffr0ETn27NkzkRU0iahpYZISEREREREREREREUmlfDWf9ykoKIh8S/7169cAyrb+uHv3boX9vb8dCPC/VYDelZeXBwBiyT8AIC8vDy0tLbFyTU1NODs7IzQ0VLhCUUhICEpKSqReRQkoWzGguLi40jr37t1DSUkJrK2tJcZY/n5cv34d169fr7CfgoICkdfDhw/HiRMnEBwcLExSqmqrNwDCeFVVVSuNm4iIiFqG8nuCnJwckSRnFxcXnD59GocOHcKsWbNE2rx9+xYFBQUVJkWXK08WFwgEwrLc3FzhPcu71NTURBLbK9K9e3fo6Ojgt99+g7u7u3BFy6ioKCQmJmLq1KlV9kFEjROTlIiIiIiIiIiIiIioTpUnM3388ceYN29etdpK+qZ/eX9ZWVlix0pLS/Hq1SuJqx2NGjUKoaGhOHPmDLy9vfHHH39AXV0dzs7OUsejpaWF9PT0SuvMmjULV65cwYkTJ6CgoCA25vL4vb294enpKfW5O3XqhO7du+P+/ft4+vQpNDU1cePGDRgYGKB3794VtitPinp/ixYiIiJqmbp16wYA2LZtG2xtbaGgoABXV1fY2NjAw8MDR44cwaNHj2BrawtFRUUkJyfj4sWLWLhwIZycnCrt29bWFkpKSli2bBk8PDxQUFCAoKAg6OjoIDMzU6Ru165d8dtvv+HQoUPo0KEDtLW1xVZKAspW6pw9ezY2bNiAhQsXwtXVFVlZWThx4gT09fUxfvz4OntviKh+MUmJiIiIiIiIiIiIiOpU9+7dIScnh3v37tVJf506dQJQtjLT+wlG9+/fR0lJicR2lpaW6NSpE8LDw9GvXz8kJydj9OjR1VphyMzMDM+fP0dqaqrIFibvUlZWxvr167Fq1SoEBARAIBBg/vz5wuPlW9jdu3evWklKQNmKSfHx8fjjjz+go6ODkpISuLu7V7htC/C/7ePKt44jIiKils3R0RGenp6IiIhAWFgYBAIBXF1dAQA+Pj7o1q0bfv/9d+zfvx8KCgrQ19fHkCFDYGVlVWXfJiYm+M9//oMDBw5g165daNOmDUaPHg1tbW189913InWnTp2K1NRUHD16FPn5+bCxsZGYpAQAw4YNg4qKCn755Rfs3bsXqqqqGDhwIGbPnl3l6k5E1HgxSYmIiIiIiIiIiIiI6pSuri6cnZ1x/vx5HD16FBMmTBBLqomLi4OZmZlUCUMDBgyAmpoa/vjjD3h6esLIyAhA2TYkfn5+lbb18PDAli1bhA/JRowYUa2x2NjY4PLly4iLi6swSQkoS1Rat24dVq1ahcDAQAgEAixYsAAAYGFhAQsLC0RERKB///7Ch4LlSktLcefOHdjY2Ij1O3jwYOzcuRNhYWHQ1NSEvLw8hg4dWmnM9+/fF8ZORERELc+wYcMwbNgw4WsFBQV4e3vD29tbYv2RI0dWuR1uYGBghcf69++P/v37i5W7u7uLvG7Tpg2+//57sXq9evVCZGSkWLmLiwtcXFwqjWvFihVYsWKFWPm0adMwbdq0StsSUf1jkhIRERERERERERFRC/X8+XMcPHiwwuOffPIJVFRUatT3okWLkJSUhN27d+Ps2bOwtLSEhoYG0tPTER8fj+TkZJw6dUqqJCVNTU3Mnz8fGzduxMyZM+Hi4gJ1dXVERUVBWVkZbdu2rXBlITc3N+zZswcZGRno1q0bunbtWq1xDBgwADt37sStW7eq3CZOSUkJa9euxerVq3H8+HEIBAIsXLgQALB69Wp88cUXWLNmDU6cOIEuXbpARUUFaWlpiI2NxatXr3Du3DmxPtXV1TFo0CCcPXsW2dnZsLe3rzRZSiAQIDo6GqampjA2Nq7WWImIiIiIiGSJSUpERERERERERERELdTz58/h7+9f4fHx48fXOEmpdevW2LVrF3799VecP38e586dQ2lpKdq0aYPOnTtjypQp0NLSkrq/kSNHQlNTEz///DNCQ0Ohrq6O/v37Y/bs2Rg/frxwdaX3qaurY+DAgQgLC6v2KkoAYGBgAFtbW1y8eBHe3t5QVlautH55otLXX3+NEydOQCAQwNvbG4aGhvDz80NAQAAuX76MkJAQyMvLQ1dXFz179oSTk1OFfQ4fPhxnz54FIL4iwfv++usvpKamCldxIiIiIiIiaizkBAKBoKGDICIiIiIiIiIiIiKqieTkZPzrX/+Cs7Mz1qxZI7HOlClTkJKSgl9//RXq6urVPkd0dDS+/PJLrFy5Em5ubrUNWabWrl2L//73vzh69Cg0NTUbOhwiIiIiIiIh+YYOgIiIiIiIiIiIiIioKjk5OSguLhYpKyoqwo4dOwAAAwcOlNguKioKT58+xeDBg2uUoAQAffr0gb29PQ4fPozS0tIa9VEfkpKScP78eUyePJkJSkRERERE1OhwuzciIiIiIiIiIiIiavRu376N77//Hra2tmjfvj1evXqFP//8EykpKejduzdcXFxE6p8+fRppaWkICgqCsrIyPvnkk1qdf+HChQgPD0d6ejr09PRq1ZespKWlYerUqRgzZkxDh0JERERERCSG270RERERERERERERUaOXlJQEPz8/xMbGIjs7GwBgZGQEFxcXTJgwASoqKiL1vby8kJ6eDmNjY8yePRsODg4NEDURERERERGVY5ISERERERERERERERERERERERHJlHxDB0BERERERERERERERERERERERM0bk5SIiIiIiIiIiIiIiIiIiIiIiEimmKREREREREREREREREREREREREQyxSQlIiIiIiIiIiIiIiIiIiIiIiKSKSYpERERERERERERERERERERERGRTDFJiYiIiIiIiIiIiIiIiIiIiIiIZIpJSkREREREREREREREREREREREJFNMUiIiIiIiIiIiIiIiIiIiIiIiIpn6f8MMSu151WHwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "title = [\"100-158.489 keV\",\n", + "\"158.489-251.189 keV\", \n", + "\"251.189-398.107 keV\", \n", + "\"398.107-630.957 keV\", \n", + "\"630.957-1000 keV\", \n", + "\"1000-1584.89 keV\", \n", + "\"1584.89-2511.89 keV\", \n", + "\"2511.89-3981.07 keV\", \n", + "\"3981.07-6309.57 keV\", \n", + "\"6309.57-10000 keV\"]\n", + "\n", + "position = {\"l\":184.600, \"b\": -5.800}\n", + "\n", + "i_iteration = 19 # ==>20th iteration\n", + "th = -5\n", + "\n", + "fig = plt.figure(figsize=(30, 15))\n", + "gs = GridSpec(nrows=3, ncols=4)\n", + "\n", + "ax0 = fig.add_subplot(gs[0, 0])\n", + "ax1 = fig.add_subplot(gs[0, 1])\n", + "ax2 = fig.add_subplot(gs[0, 2])\n", + "ax3 = fig.add_subplot(gs[0, 3])\n", + "ax4 = fig.add_subplot(gs[1, 0])\n", + "ax5 = fig.add_subplot(gs[1, 1])\n", + "ax6 = fig.add_subplot(gs[1, 2])\n", + "ax7 = fig.add_subplot(gs[1, 3])\n", + "ax8 = fig.add_subplot(gs[2, 0])\n", + "ax9 = fig.add_subplot(gs[2, 1])\n", + "\n", + "axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]\n", + " \n", + "ax_spectrum = fig.add_subplot(gs[2, 2])\n", + "ax_likelihood = fig.add_subplot(gs[2, 3])\n", + "#ax_background = fig.add_subplot(gs[1, 3])\n", + "\n", + "#plt.subplots_adjust(wspace=0.4, hspace=0.5)\n", + "\n", + "image = all_results[i_iteration]['model_map']\n", + "\n", + "for i_energy in range(image.axes['Ei'].nbins): \n", + " plt.axes(axes[i_energy])\n", + "\n", + " data = image.contents[:,i_energy]\n", + " data[data < 10**th * image.unit] = 10**th * image.unit\n", + "\n", + " hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = \"s-1 sr-1 cm-2\")\n", + " hp.graticule(color='gray', dpar = 10, alpha = 0.5)\n", + " hp.projscatter(theta = position[\"l\"], phi = position[\"b\"], lonlat = True, color = 'red', linewidths = 1, marker = \"*\")\n", + "\n", + "### \n", + " \n", + "plt.axes(ax_spectrum)\n", + "\n", + "energy_band = image.axes['Ei'].centers\n", + "\n", + "err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux = get_differential_flux(image)\n", + " \n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "\n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlim(90, 10000)\n", + "plt.ylim(1e-8, 2e-3)\n", + " \n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {iteration+1}\")\n", + "plt.grid()\n", + "plt.legend()\n", + " \n", + "### \n", + " \n", + "plt.axes(ax_likelihood)\n", + "\n", + "iterations = [_['iteration'] for _ in all_results]\n", + "loglikelihoods = [_['loglikelihood'] for _ in all_results]\n", + "\n", + "plt.plot(iterations, loglikelihoods, linewidth = 1.5)\n", + "plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = \".\")\n", + "\n", + "plt.xlabel(\"Iteration\", fontsize = 12)\n", + "plt.title(\"Log-likelihood\")\n", + "plt.grid()\n", + "\n", + "###\n", + "# plt.axes(ax_background)\n", + "\n", + "# plt.plot(iterations, background_normalizations, linewidth = 1.5)\n", + "# plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = \".\")\n", + "\n", + "# plt.xlabel(\"Iteration\", fontsize = 12)\n", + " #plt.ylabel(\"Background Normalization\", fontsize = 12)\n", + "# plt.ylim(0.7, 1.4)\n", + "# plt.title(\"Background Normalization\")\n", + "# plt.grid() \n", + "\n", + "# plt.savefig(f\"fig_{i:03}.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "71f5f43f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb.txt b/_sources/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb.txt new file mode 100644 index 00000000..5c64fa33 --- /dev/null +++ b/_sources/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb.txt @@ -0,0 +1,2264 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, Crab, Upsampling\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook explains image reconstruction using the pixel resolution of the model map finer than that of the response matrix.\n", + "\n", + "Note that this notebook is advanced. It is assumed that you have already performed the two notebooks (Crab-DC2-ScAtt-DataReduction.ipynb, Crab-DC2-ScAtt-ImageDeconvolution.ipynb).\n", + "\n", + "## Point\n", + "\n", + "In the current implementation, the pixel size of the model map can be differnt from that of the response matrix. The model pixel size is used in the following instances:\n", + "\n", + "- coordsys_conv_matrix\n", + "- image_deconvolution\n", + "\n", + "Thus, make sure that NSIDE in these instances must be the same. In this notebook, I present the case with NSIDE = 16 in the model map.\n", + "\n", + "When we convert the model map in the galactic coordinate to the detector coordinate, the pixel size will be downscaled so as the converted model map has the same pixel resolution matching the detector response.\n", + "Thus, using finer resolution in the model space does not improve the angular resolution in principle, while the reconstructed image will be smoother.\n", + "\n", + "There are three different NSIDE defined in the analysis:\n", + "\n", + "- NSIDE for the pixel resolution of the model (coordsys_conv_matrix, image_deconvolution)\n", + "- NSIDE for the pixel resolution of the response/data/background CDS (full_detector_response, inputs_Crab_DC2.yaml)\n", + "- NSIDE for the pixel resolution of the spacecraftattitude binning (exposure_table)\n", + "\n", + "Normally, these three values are set equal, but in principle they can be different." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e246b643", + "metadata": {}, + "outputs": [], + "source": [ + "nside_scatt_binning = 8\n", + "nside_model = 16" + ] + }, + { + "cell_type": "markdown", + "id": "8d093a5f", + "metadata": {}, + "source": [ + "In this notebook I assume that the NSIDE for the exposure table is the same as in Crab-DC2-ScAtt-DataReduction.ipynb. So the binned data will be reused." + ] + }, + { + "cell_type": "markdown", + "id": "2a7ca026", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5 (please unzip it)\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/ScAttBinning\n", + "- inputs_Crab_DC2.yaml\n", + "- crab_spec.dat\n", + "\n", + "As outputs from the notebook Crab-DC2-ScAtt-DataReduction.ipynb\n", + "- Crab_scatt_binning_DC2_bkg.hdf5\n", + "- Crab_scatt_binning_DC2_event.hdf5" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16.1 s, sys: 1.34 s, total: 17.5 s\n", + "Wall time: 17.1 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside_local = full_detector_response.nside\n", + "npix_local = hp.nside2npix(nside_local)\n", + "\n", + "nside_local" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "This section is the same as in Crab-DC2-ScAtt-DataReduction.ipynb." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 7.329037678543799 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "89da9cbe97d24f3d84d467571c966f7c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(532, 13)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(532, 26)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.955010022713545, -23.741156770888438][45.95764244902919, 66.25906763976249][1.0000000000065512, 0.9999999999969589, 0.999...26359.0263590
22(532, 42)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
33(564, 42)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[49.549399237968544, -29.168814518824405][49.59320571194872, 60.83674837374497][0.9999999999969589, 1.0000000000065512, 0.999...111115.01111150
44(564, 63)[[51.09862804289071, -31.321406880638527], [51...[[51.09862804289071, 58.67859311936147], [51.1...[51.90542254254405, -32.39811966891759][51.917215575378705, 57.603714738909005][0.9999999999969589, 1.0000000000065512, 0.999...57871.0578710
.................................
133133(468, 13)[[40.16189499252812, -13.801710443269755], [40...[[40.161894992528104, 76.19828955673026], [40....[40.89892831460051, -15.138427135287458][40.92208802371745, 74.8623891583036][1.0000000000065512, 0.9999999999969589, 0.999...67576.0675760
134134(499, 13)[[41.655148156368654, -16.49006256585185], [41...[[41.655148156368654, 73.50993743414816], [41....[42.7796358426142, -18.460371889534287][42.82335612555313, 71.54190445396517][0.9999999999969589, 1.0000000000065512, 0.999...99833.0998330
135135(716, 188)[[145.12720043519377, -61.03941171474516], [14...[[145.12720043519377, 28.960588285254847], [14...[145.15270150626816, -61.035193201971055][145.1526970180014, 28.964811462201155][0.9999999999969589, 0.9999999999969589, 1.000...992.09920
136136(128, 128)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
137137(58, 188)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
\n", + "

138 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (532, 13) \n", + "1 1 (532, 26) \n", + "2 2 (532, 42) \n", + "3 3 (564, 42) \n", + "4 4 (564, 63) \n", + ".. ... ... \n", + "133 133 (468, 13) \n", + "134 134 (499, 13) \n", + "135 135 (716, 188) \n", + "136 136 (128, 128) \n", + "137 137 (58, 188) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[45.66020516346508, -23.269427365755966], [45... \n", + "2 [[46.29919922293719, -24.286823740507035], [46... \n", + "3 [[48.1115581160702, -27.07000329743496], [48.1... \n", + "4 [[51.09862804289071, -31.321406880638527], [51... \n", + ".. ... \n", + "133 [[40.16189499252812, -13.801710443269755], [40... \n", + "134 [[41.655148156368654, -16.49006256585185], [41... \n", + "135 [[145.12720043519377, -61.03941171474516], [14... \n", + "136 [[180.0238082643748, 46.67626678787605], [180.... \n", + "137 [[325.1571038593629, 61.0351405587937], [325.1... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "2 [[46.29919922293719, 65.71317625949297], [46.3... \n", + "3 [[48.111558116070206, 62.92999670256505], [48.... \n", + "4 [[51.09862804289071, 58.67859311936147], [51.1... \n", + ".. ... \n", + "133 [[40.161894992528104, 76.19828955673026], [40.... \n", + "134 [[41.655148156368654, 73.50993743414816], [41.... \n", + "135 [[145.12720043519377, 28.960588285254847], [14... \n", + "136 [[180.0238082643748, 43.32373321212394], [180.... \n", + "137 [[145.15710385936296, 28.964859441206304], [14... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.77592919492308, -21.83137450725276] \n", + "1 [45.955010022713545, -23.741156770888438] \n", + "2 [47.169799754806256, -25.642813300423782] \n", + "3 [49.549399237968544, -29.168814518824405] \n", + "4 [51.90542254254405, -32.39811966891759] \n", + ".. ... \n", + "133 [40.89892831460051, -15.138427135287458] \n", + "134 [42.7796358426142, -18.460371889534287] \n", + "135 [145.15270150626816, -61.035193201971055] \n", + "136 [180.01420731505038, 46.68360608975279] \n", + "137 [325.15317939441115, 61.03567974667542] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.79590102793104, 68.17007080261746] \n", + "1 [45.95764244902919, 66.25906763976249] \n", + "2 [47.188380045186555, 64.35902575261872] \n", + "3 [49.59320571194872, 60.83674837374497] \n", + "4 [51.917215575378705, 57.603714738909005] \n", + ".. ... \n", + "133 [40.92208802371745, 74.8623891583036] \n", + "134 [42.82335612555313, 71.54190445396517] \n", + "135 [145.1526970180014, 28.964811462201155] \n", + "136 [180.01420553833427, 43.316394483057174] \n", + "137 [145.15317503922358, 28.964324759952632] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 71072.0 \n", + "1 [1.0000000000065512, 0.9999999999969589, 0.999... 26359.0 \n", + "2 [0.9999999999969589, 0.9999999999969589, 1.000... 71137.0 \n", + "3 [0.9999999999969589, 1.0000000000065512, 0.999... 111115.0 \n", + "4 [0.9999999999969589, 1.0000000000065512, 0.999... 57871.0 \n", + ".. ... ... \n", + "133 [1.0000000000065512, 0.9999999999969589, 0.999... 67576.0 \n", + "134 [0.9999999999969589, 1.0000000000065512, 0.999... 99833.0 \n", + "135 [0.9999999999969589, 0.9999999999969589, 1.000... 992.0 \n", + "136 [0.9999999999969589, 1.000000000001755, 1.0000... 646.0 \n", + "137 [1.000000000001755, 0.9999999999969589, 0.9999... 970.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 71072 0 \n", + "1 26359 0 \n", + "2 71137 0 \n", + "3 111115 0 \n", + "4 57871 0 \n", + ".. ... ... \n", + "133 67576 0 \n", + "134 99833 0 \n", + "135 992 0 \n", + "136 646 0 \n", + "137 970 0 \n", + "\n", + "[138 rows x 10 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt_binning, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5a6488b4", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c4551bcb89a84647981fe0e030c6c158", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/138 [00:00FormatcooData Typefloat64Shape(138, 3072, 768)nnz1695744Density0.005208333333333333Read-onlyTrueSize51.8MStorage ratio0.0" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coordsys_conv_matrix.contents" + ] + }, + { + "cell_type": "markdown", + "id": "4ae2fcdb", + "metadata": {}, + "source": [ + "# 3. Load the binned data\n", + "\n", + "Since NSIDE of exposure_table on this notebook is the same as that in Crab-DC2-ScAtt-DataReduction.ipynb, you can use the files generated before." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f0df301c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 63.5 ms, sys: 274 ms, total: 337 ms\n", + "Wall time: 349 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background \n", + "bkg_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "bkg_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_bkg.hdf5\")\n", + "\n", + "# signal + background\n", + "Crab_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "Crab_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "6952e6a5", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "42ae33b7", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "dc875668", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(Crab_data.binned_data, \n", + " bkg_data.binned_data, \n", + " full_detector_response,\n", + " coordsys_conv_matrix,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "20f9c0be", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "8982e77a", + "metadata": {}, + "source": [ + "## 4-2. Load the response file" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9f4407c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 3.18 s, sys: 12.4 s, total: 15.6 s\n", + "Wall time: 23.8 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()\n", + "dataloader.calc_image_response_projected() # mandatory" + ] + }, + { + "cell_type": "markdown", + "id": "e6091c9c", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a1c17851", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_Crab.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "1b162894", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_Crab.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "4e385143", + "metadata": {}, + "source": [ + "## 4-4. modify the parameters\n", + "\n", + "**Do not forget to make sure that NSIDE of the model map is modified to 16**" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "46c7a9f0", + "metadata": {}, + "outputs": [], + "source": [ + "image_deconvolution.override_parameter(f\"model_property:nside = {nside_model}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "1e5a7300", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 158.489\n", + "- 251.189\n", + "- 398.107\n", + "- 630.957\n", + "- 1000.0\n", + "- 1584.89\n", + "- 2511.89\n", + "- 3981.07\n", + "- 6309.57\n", + "- 10000.0\n", + "nside: 16\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "37d20ae145aa4857a648dad07785cdb5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3072 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.378051295931451\n", + " loglikelihood: 23017854.415656216\n", + " background_normalization: 1.0601294839329405\n", + " Iteration 2/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 23389718.937870078\n", + " background_normalization: 0.9812662983421157\n", + " Iteration 3/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.7177423417891535\n", + " loglikelihood: 23646065.85953915\n", + " background_normalization: 0.9780686891833531\n", + " Iteration 4/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 23746910.686555795\n", + " background_normalization: 0.9775991374802415\n", + " Iteration 5/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 23830530.1976484\n", + " background_normalization: 0.978345437696951\n", + " Iteration 6/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.021476183346016\n", + " loglikelihood: 23967842.15747451\n", + " background_normalization: 0.9793198466237346\n", + " Iteration 7/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24019580.204579435\n", + " background_normalization: 0.981448524626097\n", + " Iteration 8/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.812242608052198\n", + " loglikelihood: 24100330.103994556\n", + " background_normalization: 0.9825545993834066\n", + " Iteration 9/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24136588.0699614\n", + " background_normalization: 0.984296483841905\n", + " Iteration 10/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24168974.532973\n", + " background_normalization: 0.9851397032430448\n", + " Iteration 11/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24198023.705265246\n", + " background_normalization: 0.98587630869807\n", + " Iteration 12/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.031559874472495\n", + " loglikelihood: 24250030.307958953\n", + " background_normalization: 0.9865335818399789\n", + " Iteration 13/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24271140.353945933\n", + " background_normalization: 0.9876964380028733\n", + " Iteration 14/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.4680827707120705\n", + " loglikelihood: 24299097.586975046\n", + " background_normalization: 0.9881862047896464\n", + " Iteration 15/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24315854.264261693\n", + " background_normalization: 0.9888006762468168\n", + " Iteration 16/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.7425947696281046\n", + " loglikelihood: 24342291.21582216\n", + " background_normalization: 0.989170960160712\n", + " Iteration 17/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24355494.445937328\n", + " background_normalization: 0.9897325057623165\n", + " Iteration 18/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24367675.03234405\n", + " background_normalization: 0.9900176796661229\n", + " Iteration 19/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0043049006590876\n", + " loglikelihood: 24378984.30944805\n", + " background_normalization: 0.990272359532349\n", + " Iteration 20/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24389413.438546576\n", + " background_normalization: 0.9905055720767687\n", + "#### Done ####\n", + "\n", + "CPU times: user 56min 5s, sys: 7min 42s, total: 1h 3min 47s\n", + "Wall time: 12min 36s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "8b9266e3", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0601294839329405,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 23017854.415656216,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9812662983421157,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 23389718.937870078,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9780686891833531,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 23646065.85953915,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9775991374802415,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 23746910.686555795,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.978345437696951,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 23830530.1976484,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9793198466237346,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 23967842.15747451,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.981448524626097,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 24019580.204579435,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9825545993834066,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 24100330.103994556,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.984296483841905,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 24136588.0699614,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9851397032430448,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 24168974.532973,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.98587630869807,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 24198023.705265246,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9865335818399789,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 24250030.307958953,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9876964380028733,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 24271140.353945933,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9881862047896464,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 24299097.586975046,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9888006762468168,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 24315854.264261693,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.989170960160712,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 24342291.21582216,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9897325057623165,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 24355494.445937328,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9900176796661229,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 24367675.03234405,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.990272359532349,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 24378984.30944805,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9905055720767687,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 24389413.438546576,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "ebaca93a-b4d2-4d76-9395-56b739d64758", + "metadata": {}, + "source": [ + "**(If you want, you can save the results in the directory \"./results\" as follows)**" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "e6e9207e-cf89-4ab5-88ff-3bc24791e112", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.mkdir(\"./results\")\n", + "\n", + "for result in all_results:\n", + " iteration = result['iteration']\n", + " result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')\n", + "\n", + " with open(f'./results/result_itr{iteration}.txt', 'w') as f:\n", + " paramlist = ['alpha', 'loglikelihood', 'background_normalization']\n", + "\n", + " for param in paramlist:\n", + " value = result[param]\n", + " f.write(f'{param}: {value}\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "ed1e8893", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "4cbb34e6", + "metadata": {}, + "outputs": [], + "source": [ + "## Crab location\n", + "\n", + "source_position = {\"l\":184.600, \"b\": -5.800}" + ] + }, + { + "cell_type": "markdown", + "id": "eef989ce", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "f96c2978", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHMCAYAAADF4Oz/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpZUlEQVR4nO3deVxU5f4H8M+w7/siIIosLizuS6moabnl8ssSrZtrtJrmrTTzlunVyja7bmm2cUu9LnXtVldRMper5A4ugAoBIyLbDOswMMBwfn8gUxMwDgww2+f9evWKOec553wfBpiP5zznOSJBEAQQERERUbMs9F0AERERkSFjWCIiIiLSgGGJiIiISAOGJSIiIiINGJaIiIiINGBYIiIiItKAYYmIiIhIA4YlIiIiIg0YloiIiIg0YFgiIiIi0sBK3wWYErlcjj179iA1NRVpaWmoqKjA66+/jkmTJrVpf0uWLEFycnKz6ywtLXHs2DEdqiUiIiJtMCy1o7KyMsTFxcHX1xehoaFISkrSaX9z5szBlClT1JZVVVXho48+wpAhQ3TaNxEREWmHYakdeXp64sCBA/D09MT169fxzDPP6LS/5gLRkSNHAAAPPfSQTvsmIiIi7TAstSMbGxt4enpq1fbMmTPYuXMnbt68CZFIhH79+uH5559Hjx49NG6XkJAAe3t7jBw5sj1KJiIionvgAG89OHz4MF577TXY29vj2Wefxbx585CdnY1FixYhLy+vxe1KS0tx4cIFjBw5Evb29p1YMRERkfliWOpkcrkcGzduxJQpU/DBBx/g0UcfxRNPPIHt27cDAHbu3NnitkePHoVSqeQlOCIiok7Ey3Cd7MKFC5DJZBg3bhxKS0tVyy0sLNCnTx9cunSpxW1//vlnuLm5YfDgwZ1QKREREQEMS53u9u3bAIClS5c2u97R0bHZ5Xfu3EFKSgpmzJgBKyu+bURERJ2Fn7qdrL6+HgDwxhtvwMPDo8l6S0vLZrdLSEgAwLvgiIiIOhvDUicLCAgAgFZfTvv5558REBCAiIiIjiqNiIiImsEB3p1s6NChcHR0xM6dO1FXV9dk/R/HMTW6efMmxGIxHnzwwU6okIiIiP6IZ5ba2XfffQeZTAapVAoAOH36NAoLCwEAjz76KJycnPDyyy/j7bffxlNPPYVx48bBzc0NBQUFOHPmDCIjI/HXv/5VbZ+8BEdERKQ/IkEQBH0XYUpiYmKQn5/f7Lq9e/fCz88PAJCUlIRdu3YhNTUVNTU18Pb2Rt++fTFjxgz06tVLtU19fT1mzpwJd3d3fP75553SByIiIvodwxIRERGRBhyzRERERKQBwxIRERGRBgxLOqqursaNGzdQXV2t71KIiIioAzAs6UgsFuPpp5+GWCzWdymd4rffftN3CZ2GfTVd5tRf9tV0mVN/9d1XhiVqFYVCoe8SOg37arrMqb/sq+kyp/7qu68MS0REREQaMCwRERERacCwRERERKQBwxIRERGRBgxLRERERBowLBERERFpYKXvAv4sLS0N8fHxSEpKQn5+PlxcXBAREYHY2FgEBga2al/vv/8+fvrpJ9x///147733WmyXm5uLefPmoaamBjt27EDv3r117QYRERGZCIM7s7R7926cOHECgwYNwpIlSzB16lRcvnwZsbGxyMzM1Ho/169fx6FDh2BjY3PPtps3b4alpaUuZRMREZGJMriwFBMTg/379+Oll17ClClTMG/ePGzevBlKpRK7du3Sah+CIGDjxo2YMGECPDw8NLY9d+4czp8/j5kzZ7ZH+URERGRiDC4sRUVFwdraWm1ZYGAggoKCtH6kyOHDh5GVlYWnn35aY7u6ujps2rQJjz32GAICAtpcMxEREZkugwtLzREEASUlJXB1db1nW7lcju3bt+PJJ5+Ep6enxrb79+9HRUUF5s6d216lEhERkYkxuAHezUlISEBRUREWLlx4z7ZxcXGwtbVFTEyMxnZSqRT//Oc/8cILL8DR0VHrWiQSCaRSqeq1uTxAl4iIyFwZfFgSi8X4+OOPERERgYkTJ2psm5OTg2+//RarVq2658Du7du3w9/fH1OmTGlVPT/88APi4uKaLM/KyoJSqWzVvoyRTCZDamqqvsvoFOyr6TKn/rKvpsuc+ttRfQ0PD9eqnUGHJalUitdeew2Ojo5Yu3btPe9Y27RpEyIjIzFmzBiN7VJSUnDkyBF8/PHHsLBo3ZXIadOmYcSIEarXYrEY69atQ48ePdCrV69W7csYpaamav3DZezYV9NlTv1lX02Xqfa3vq4e8jIFKqXVkJdUo7K4GpL0EvRdEAo753vf4d4RDDYsyWQyLF++HDKZDFu2bIGXl5fG9hcvXsTZs2exbt065OXlqZYrlUooFArk5eXBxcUFjo6O2LZtG/r27Qs/Pz9V29LSUgANAa2goAC+vr7NHsfLy+uetRAREVFTdQolKourVf/JS6pRKa1GZYmi4XVxNeRlCkBoum3Fw3KGpT9SKBRYsWIFcnJysGHDBgQFBd1zm8LCQgDAG2+80WRdUVERZs2ahRdffBExMTEoLCxEfn4+Zs2a1aTt66+/DicnJxw8eFDnfhAREZkDQRCgqKyFvFihFoZUgai4GvJiBRSVtW0+RmVxNbxD2rHoVjC4sKRUKrF69WqkpKTgnXfeQWRkZLPtJBIJKisrERAQACsrKwwcOBBvv/12k3YffPABunTpgjlz5iA4OBgA8Oqrr0KhUKi1u3TpEr777ju88MIL6N69e/t3jIiIyEjV1ShRKa2GTFIFmbQKMkk1Ku/+XyatQmVxNZQ19TodQyQC7N1s4ehuBwdPOzi628HRwxYOHnaQlBegSx/N8yZ2JIMLS1u3bsXp06cxfPhwVFRU4MiRI2rrx48fDwDYsWMH4uPjsXfvXvj5+cHX17fZS2ebN2+Gu7s7oqOjVcuGDh3apJ1MJgMA9O/fn487ISIisyHUCw1jhCRVkEmrIZNW//61pAqV0ipUV7T9jBAAWFpbwMHdFo4ednD0sIODx90w5GkHx7vL7d1sYWHZ/Dji2tQy2Dnp5xIcYIBhKSMjAwCQmJiIxMTEJusbwxIRERHdW211XcMZocazQaozRA2hqLK4GvXKZgYJacnazhKOnvZ3g5Dt72Go8T93O9g6W0MkErVjrzqXwYWlTZs2adVu5cqVWLly5T3b7du3T6v9TZo0CZMmTdKqLRERkaFQhaGiKlRIqlBRVAVZYcPXsiK5TmeFRBaihgDkaQ8nTzs4ednD0dMOTp72cPRq+L+Ng5VRByFtGFxYIiIiot/V1ShVQUhWVIWKIjkqiqpQdKsYl2R5qC6vafO+bR2tVaHHydMOjl53/+9pDycvOzhouDRmThiWiIiI9EhZq4RMUq0KQQ2B6PdgVFXWxjAkAhw97ODsbQ8nr7v//SkQ2dgzBmiD3yUiIqIOpqisRUWBHOWFclQUylFe0PBfRaEcMml1s/MKacPBwxbO3g6qQOTsbQ8nb3s4ezvA0dMOllY8K9QeGJaIiIh0JNQLkJdUo7ywShWKygvkqq8VsraNG3Jwt20IP172cPJ2gLNP49f2yCnMRmTfiHbuCTWHYYmIiEgLylolKorUw1Dj2aGKwiooa1s/z5CtkzWcfRzg4nM3CP3pzJCVTcuP+cotNu1B1YaEYYmIiKgZNfJa3EmRIveqFLnXJCgvkLf+ctndcUMuvg4Nocj37n8+DnD2dYCto3WH1E7ti2GJiIgIQL2yHkW/lSH3qgS3r0pQlFEGof7e6cjS2qLhrFAzYcjZ2x6W1pofAk+Gj2GJiIjMVnmBHLnXJMi9IsGdFClq5HXNtrOwFMGju0uTMOTi6wAHN1uILHhJzJQxLBERkdlouLRWjNyrEuRevXtprQVuAY4IiPJCQJQX/Pp4wNqOH5nmiu88ERGZrHplPSSZZbh9VYLcK1IUZpS2eGnN1skaAZFeCOjriYAoLzh52ndytWSoGJaIiMikVBTK74aje19a8+3lfjcgecEzyAUWvJxGzWBYIiIio6Wsq0fZnUqU3K5A5q9SXPvshMZLa67+juga1RCOeGmNtMWfEiIiMnhCvYCKIjmKb8lQcrsCJTkN/y/Nq4SgbPmONVsna/hHejYEpCgvOHnx0hq1HsMSEREZDEEQIC9VoCTn90BUnCNDaa4MdQrlPbcXWYrg29NddfaIl9aoPTAsERGRXihktXfDUAVKbssaAtJtmdaPBrGwFMEtwAnuXZ3gHuiMSlEphjzUjw+HpXbHnygiIupwFUVVyE8rvhuMGgKSvFih3cYiwMXHAe6BzvAIbAhG7l2d4NrFERZ/eFBsamoqgxJ1CP5UERFRu1PW1aPgRglykouQk1yE0lyZVts5eNjCo6uzKhB5BDrDLcAJVracBZv0h2GJiIjaRWVxNXIuN4SjO1clqK1ueYyRjYMVPLr9KRR1dYKdk00nVkykHYYlIiJqk3plPQrTSxvOHl0uQrG4otl2IhHgHeaGwL7e8A5xhXs354ZHhIg48JqMA8MSERFpTV6mwO27Z49yr0hanPDRztkaXft5I7C/NwL6evGMERk1hiUiImpRfb0ASWaZauyRJLOsxbbewa7o2r8hIHkFu/KWfTIZDEtERKSmuqIGuVclyEkuwu3LRaiuaP5WfhsHK3Tte/fsUT8vOLjadnKlRJ2DYYmIyMzVVNVBklnWcPfa5SIUZZRCaGFSbM/uzuja3weB/b3hE+oKC0uL5hsSmRCGJSIiMyLUCyi9I0NheikKM0pRmFGGktsVQAvhyNreEgGRXgjs742u/bzh6GHXuQUTGQCGJSIiE1ZbqcStS4UNwSi9FEWZZaitan5QdiP3rk6qsUe+Pd1hacWzR2TeGJaIiEyEsq4exeLy34PRb2UoL5ADuN3iNiILETy6OcMnzA0+IW7o0scDzt582CzRHzEsEREZIUEQUCmtVgWjwoxSSLPLoayt17idg7ttQzAKbfjPq4crZ8cmugeGJSIiIyHJLEPuNQkKM8pQlFEKeanmZ6tZWlvAoYs1gvr6wyfUFT6hbnD05FkjotZiWCIiMnDSW+W4sOcmcpKLNLZz6eKgOmPkE+oGj27OuH7zOsLDe3dSpUSmiWGJiMhAVRTJcXF/OjJO32lyt5qNgxW8Q9xUZ4y8Q9xg58JZsok6AsMSEZGBqS6vQfJ/fkNqghj1db+nJEdPO/SbGgy/CE+4+TlCxBmyiToFwxIRkYGora7DtUPZuPJTJmqrlKrltk7W6Dc9BOEPdYOVDQdjE3U2hiUiIj2rr6vH9WM5SPp3BqrKalTLLW0sEDmpB/pO6QFbR2s9Vkhk3hiWiIj0RKgXkHk2Hxf33bw7H1IDkYUIvR7oigEzQuHozhmzifSNYYmISA9yr0pwfs8NSLLK1Zb3GNoFg2LC4ObvpKfKiOjPDC4spaWlIT4+HklJScjPz4eLiwsiIiIQGxuLwMDAVu3r/fffx08//YT7778f7733nmp5WVkZDh48iNOnT0MsFkOpVKJbt26YOXMmxo0b195dIiJSkWSV4fyeG8i9KlVb7hfugSGze8En1E0/hRFRiwwuLO3evRtXr17FAw88gJCQEEilUhw4cACxsbHYtm0bgoODtdrP9evXcejQIdjYNL2VNiUlBZ999hnuu+8+zJ07F5aWljhx4gTWrFkDsViMhQsXtne3iMjMlRdU4sK+dGT+mqe23KO7M4bM7oWufb0gEvHuNiJDZHBhKSYmBqtWrYK19e+DGceOHYsFCxZg165dePPNN++5D0EQsHHjRkyYMAGXLl1qsj4oKAi7d+9Gly5dVMseeeQR/PWvf8Xu3bvx+OOPw96es9wSke7kZQok/zsDab/kQFD+Pg2As7c9Bs0MQ8hwf04BQGTgDO5R0lFRUWpBCQACAwMRFBQEsVis1T4OHz6MrKwsPP30082u9/f3VwtKACASiRAdHY2amhrcuXOnbcUTEd1VI6/Fxf03sW/pCaQm3FIFJTsXG9w/rw8e+2gUQkcGMCgRGQGDO7PUHEEQUFJSgqCgoHu2lcvl2L59O5588kl4enq26jjFxcUAAFdX17aUSUQEZa0SaT/nIPn7DFRX1KqWW9laIurhHoh6uAds7I3iTy8R3WUUv7EJCQkoKirSaixRXFwcbG1tERMT06pjlJeX46effkLfvn3h5eXVYjuJRAKp9PeBmdqe7SIi0yaTVEF8sRBXD2ZBVlSlWm5hKULvcd3Q/5EQOLja6rFCImorgw9LYrEYH3/8MSIiIjBx4kSNbXNycvDtt99i1apVzQ7sbkl9fT3Wrl0LmUyGpUuXamz7ww8/IC4ursnyrKwsKJXKphuYGJlMhtTUVH2X0SnYV9PVHv0VBAGyOzUouSlHcXoV5IW1Tdp4RTig22g32HkA2bm/Abk6HbJNzOm9Nae+AubV347qa3h4uFbtDDosSaVSvPbaa3B0dMTatWthaal5mv9NmzYhMjISY8aMadVx/vGPf+Ds2bP429/+htDQUI1tp02bhhEjRqhei8VirFu3Dj169ECvXr1adVxjlJqaqvUPl7FjX01XW/tbW12H3KsS3EoqQk5Sodps23/Uta8XBs/uCa8g/V/SN6f31pz6CphXf/XdV4MNSzKZDMuXL4dMJsOWLVs0XhoDgIsXL+Ls2bNYt24d8vJ+vzVXqVRCoVAgLy8PLi4ucHR0VNvuq6++wvfff49nn30WEyZMuGddXl5e96yFiEyHTFKFW0mFuHWpEHmpxVDW1jfbzjvEFd0G+KDbIB94dnfp5CqJqCMZZFhSKBRYsWIFcnJysGHDBq0GdhcWFgIA3njjjSbrioqKMGvWLLz44otqY5n+/e9/46uvvsLMmTPxl7/8pd3qJyLjJdQLKMosw61LDQGp+FZFs+2sbC0REOmJbgN9EDjABw5uHI9EZKoMLiwplUqsXr0aKSkpeOeddxAZGdlsO4lEgsrKSgQEBMDKygoDBw7E22+/3aTdBx98gC5dumDOnDlqE1oePXoUmzZtwkMPPYQXX3yxw/pDRIZPdXntUiFuJRWhurz5y2uOHnboNtAH3Qb6wC/cA1Y2mocGEJFpMLiwtHXrVpw+fRrDhw9HRUUFjhw5orZ+/PjxAIAdO3YgPj4ee/fuhZ+fH3x9feHr69tkf5s3b4a7uzuio6NVy1JTU/HOO+/AxcUFgwYNQkJCgto2kZGR8Pf374DeEZGhkEmq7oajQtxJkaK+Tmi2nXeIa0NAGuADj+7OnGWbyAwZXFjKyMgAACQmJiIxMbHJ+sawpAuxWIza2lqUlpZi/fr1Tda//vrrDEtEJkYQBEizy5F9vgA3E+8gsbD5aT94eY2I/szgwtKmTZu0ardy5UqsXLnynu327dvXZNmkSZMwadKkVtdGRMZFEARIxeXIOpOPzDN5qCisarYdL68RkSYGF5aIiHTxx4CUdTYf5QXyZtvx8hoRaYthiYiMniAIKBZXIPNsPrLO5DUbkEQiwC/cEz3u6wKFcxn6D43SQ6VEZIwYlojIKAmCgOJbFcg8k4+ss3koz9cckIIG+8L+7uNGzGXWYyJqHwxLRGQ0BEFAcU6FagxSSwGpSx8PBN/nh6AhvwckIqK2YlgiIoP2x4CUdTYfZXmVTdo0BqQew7ogaGgXPrCWiNoVwxIRGRxBEFCSI0PW2Txknmk+IEEE+DUGpCFdeIs/EXUYhiUiMhhl+ZXIOHUHmWfyUHan+YDUpbcHgu9jQCKizsOwRER6VSOvRebZfKSfyEXBzZKmDURAl17uqjFIDu52nV8kEZk1hiUi6nT19QLyUqS4eTIX2efzoaypV29wNyD1GOaHHkMZkIhIvxiWiKjTlOVV4ubJXGT8LxeVxdVN1rt3dULYqACEjPCHIwMSERkIhiUi6lA18lpknsnHzZO3UXiztMl6WydrhAz3R9ioAHj1cOFM2kRkcBiWiKjd1dcLuHNNgvSTucg+XwBlrfplNpGFCF37eaHn6K7oNsAbltZ8FhsRGS6GJSJqN6V3ZEg/mYv0U7mQFyuarHcPdELPUV0RMsKfd7IRkdFgWCIinSgqa5F5Jg/pJ3JRmFHaZL2tkzVCRvij56gAeAbxMhsRGR+GJSJqtfp6AXeuSnDzZC7EF5q/zBY4wBth0QG8zEZERo9hiYi0Vl9Xj8s/ZCLt6C3IS5peZvPo5qy6m42PHCEiU8GwRERaqZbV4JeNybiTIlVbbufceJmtKzyDXPRUHRFRx2FYIqJ7Ks2V4ciHF1FeIAcAiCxF6NbfG2GjuiJwgDcsrSz0XCERUcdhWCIijW5fKcIvm5JRI68DANi52OChlwfCt6e7nisjIuocDEtE1CxBEJB6RIwzX6dBEBqWeXR3xvhXBsHJy16/xRERdSKGJSJqor6uHon/TMX1ozmqZd0H+2LMC31hbcc/G0RkXvhXj4jUNDeQu9+0YAyO6QmRBedIIiLzw7BERCp/HshtYSVC9NNRCIsO0HNlRET6w7BERAA4kJuIqCUMS0RmThAE5J0vx68JtyDUN4zk9ujmjIdeGQRnbw7kJiJiWCIyY40DubOOlqiWdR/kgzGL+nEgNxHRXfxrSGSmOJCbiEg7DEtEZqjpjNzAqGf6ciA3EVEzGJaIzExzA7nDZngwKBERtYBhichMNMzIfQtnvklrMpA7pyhLz9URERkuhiUiM9DsjNx/HMhdpMfiiIgMHMMSkYnjQG4iIt0wLBGZMM7ITUSkO4YlIhPFGbmJiNoHwxKRidE0kJszchMRtZ7BhaW0tDTEx8cjKSkJ+fn5cHFxQUREBGJjYxEYGNiqfb3//vv46aefcP/99+O9995rsv7UqVP46quvIBaL4ebmhsmTJ2Pu3LmwsjK4bwuRViqlVTi/9yYyTt1RLes2yAcPcEZuIqI2M7i/nrt378bVq1fxwAMPICQkBFKpFAcOHEBsbCy2bduG4OBgrfZz/fp1HDp0CDY2Ns2uP3PmDP72t7+hf//+eOmll5CZmYmvv/4aJSUleOWVV9qzS0QdrlpWg8s/ZCL1sBjK2nrV8r5TgzFkFgdyExHpwuDCUkxMDFatWgVra2vVsrFjx2LBggXYtWsX3nzzzXvuQxAEbNy4ERMmTMClS5eabfPJJ58gJCQEH330kepMkoODA3bu3InHHnsM3bt3b58OEXWgOoUS1+KzceXHTNXYJACwtrfC8PnhHMhNRNQOLPRdwJ9FRUWpBSUACAwMRFBQEMRisVb7OHz4MLKysvD00083uz47OxvZ2dmYOnWq2iW3Rx55BIIg4Pjx422un6gz1NfVI+3oLez76wlc2HtTFZQsrS0Q9XAPzPrHaAYlIqJ2YnBnlpojCAJKSkoQFBR0z7ZyuRzbt2/Hk08+CU9Pz2bb3Lx5EwDQq1cvteVeXl7w9vZGenq6zjUTdQShXkDWuXxc2HcT5fly1XKRCAgb3RUDHw2FkycHcRMRtSejCEsJCQkoKirCwoUL79k2Li4Otra2iImJabGNVNowOV9zYcrT01O1vjkSiURtvbZnu4h0lXtVgvN7bkCSVa62vPsQXwyO6Qn3ACc9VUZEZNoMPiyJxWJ8/PHHiIiIwMSJEzW2zcnJwbfffotVq1a1OLAbAGpqagCg2TY2NjaQy+VNljf64YcfEBcX12R5VlYWlEqlxvpMgUwmQ2pqqr7L6BSG0lfZHQXEx0pRllWtttylmy26j3WHc1db5JXdQl6ZDscwkL52FnPqL/tqusypvx3V1/DwcK3aGXRYkkqleO211+Do6Ii1a9fC0tJSY/tNmzYhMjISY8aM0diuMSQ1hqY/qqmpga2tbYvbTps2DSNGjFC9FovFWLduHXr06NHksp4pSk1N1fqHy9jpu69leZW4sO8mss7mqy336O6MIbN7oWtfL4hE7XOXm7772tnMqb/sq+kyp/7qu68GG5ZkMhmWL18OmUyGLVu2wMvLS2P7ixcv4uzZs1i3bh3y8vJUy5VKJRQKBfLy8uDi4gJHR0fV5TepVApfX1+1/UilUvTp06fF43h5ed2zFiJdVJZUI+m7DNw4fls1qSQAOPvYY9DMngi5349TARARdSKDDEsKhQIrVqxATk4ONmzYoNXA7sLCQgDAG2+80WRdUVERZs2ahRdffBExMTEICwsDANy4cUMtqUokEhQVFWHatGnt0xGiVlDIanHlp0xci8+Gsub3uZLsXGwwcEYoeo0NhKWVwd3ASkRk8gwuLCmVSqxevRopKSl45513EBkZ2Ww7iUSCyspKBAQEwMrKCgMHDsTbb7/dpN0HH3yALl26YM6cOaoJLXv06IFu3brhxx9/xLRp01SX977//nuIRCKMHj264zpI9Cd1NUqkHBbjyg+ZUFTWqpZb21ui75RgRE4K4uzbRER6ZHB/gbdu3YrTp09j+PDhqKiowJEjR9TWjx8/HgCwY8cOxMfHY+/evfDz84Ovr2+TS2oAsHnzZri7uyM6Olpt+QsvvIDXX38dr7zyCsaNG4fMzEwcOHAAU6ZM0epMFpGu6pX1uHkyF5e+S4e8WKFabmElQvhD3dF/egjsXFq+UYGIiDqHwYWljIwMAEBiYiISExObrG8MS7oaPnw41q1bh7i4OGzcuBGurq548sknMX/+/HbZP1FLBEFA9vkCXNh7E2V5larlIhEQGh2AgY+G8YG3REQGxODC0qZNm7Rqt3LlSqxcufKe7fbt29fiuujo6CZnnIg62pmv05ByWH1+rm6DfDBkVk+4d3XWU1VERNQSgwtLRKYs+3yBWlDy7eWOIbN7oUsvdz1WRUREmjAsEXUSeUk1/vfZVdXr++b2QcSE7u02VxIREXUM3odM1AkEQcDJHVehkDXc7dZ9sC+DEhGRkWBYIuoEqUfEuH1ZAgCwd7NFdGwkgxIRkZFgWCLqYCW3K3Bu9w3V69HPRnFKACIiI8KwRNSBlLVKHNt6Gcrahhm5IyZ0R9d+3nquioiIWoNhiagDXdifjmJxBQDAvasThjxu+g9bJiIyNa26Gy45ObnNB+rfv3+btyUyRndSpLj63ywADbNyj1nUD1Y2lnquioiIWqtVYemll15q86DU48ePt2k7ImOkkNXixLYrgNDwevCsXvDs7qLfooiIqE1aFZbmzZvXJCylpqbi3Llz6Nq1K6KiouDu7o6SkhJcu3YNOTk5GDp0KMLDw9u1aCJDJggCTn15DZXF1QAA/whPRE0K0m9RRETUZq0KSwsXLlR7ffnyZezatQvLli3Dww8/rBakBEHAjz/+iE2bNmHOnDntUy2REcg4dQdZZ/IBALaO1hj9XBREFpwmgIjIWOk0wPuLL77AfffdhylTpjQ54yQSiTBt2jQMGzYMX3zxhU5FEhmLikI5EuNSVK9HPBUBR08+FJeIyJjpFJZu3LiB7t27a2wTFBSE69ev63IYIqNQXy/g+CdXUFulBACERQcg+D4/PVdFRES60iksWVtbIz09XWObmzdvwtraWpfDEBmFyz/8hoKbJQAAJ2973D+vj54rIiKi9qBTWBoyZAjOnTuHnTt3ora2Vm1dbW0tdu7cifPnz2Po0KE6FUlk6Ip+K8Wl7zIAACIRMOaFfrBx4D8SiIhMQasGeP/Z888/jytXruDzzz/Ht99+i969e8PNzQ2lpaW4fv06SktL4enpieeee6696iUyOLXVdTj+yRUIyoZ5AvpND0GXXu56roqIiNqLTmHJx8cHO3bswKeffopjx47h119/Va2zsbHB+PHj8eyzz8LT01PnQokM1dmd11GWVwkA8A52xcAZoXquiIiI2pNOYQkAPD09sXLlSixfvhy3bt1CZWUlHB0dERgYyLFKZPLEFwtw/ZccAICVrSXGLOoHCys+RYiIyJToHJZUO7KyQnBwcHvtjsjgyUsV+N+Oq6rX983pA1c/Rz1WREREHaHdwtLVq1eRnp4OuVwOBwcHhIWFISoqqr12T2RQBEHAyU+voLqi4caG7oN80OuBrnquioiIOoLOYenq1atYv349cnNzATR8iDROUNm1a1esWLECkZGRuh6GyKCkJdzC7csSAIC9my1GPh3Z5ucmEhGRYdMpLGVlZeHVV19FdXU1Bg8ejAEDBsDT0xPFxcVISkrC+fPn8eqrr2L79u0ICgpqp5KJ9KvkdgXO7vp9otVRz0bB3sVWjxUREVFH0iksxcXFoba2Fu+//z6GDRumtu4vf/kLzp49i9dffx1xcXFYvXq1LociMgjKunoc33oZytp6AED4+O4I7Oet56qIiKgj6XTbTnJyMsaMGdMkKDUaNmwYxowZg6SkJF0OQ2QwLu6/Cam4AgDgFuCIoU/00nNFRETU0XQKS5WVlfDz0/zsKz8/P1RWVupyGCKDcCdViis/ZQEALCxFeGBRf1jZWOq5KiIi6mg6hSVPT0+kpKRobJOamspJKcnoKWS1OPHJFaBhkm4MjukJzyAX/RZFRESdQqewNGLECCQnJ+Pzzz+HQqFQW6dQKPDll18iKSkJI0eO1KlIIn0SBAGnv0pBZXE1AMAv3ANRD/fQc1VERNRZdBrgPW/ePPz666/YuXMnfvjhB/Tp0wfu7u4oKSlRPRvO398f8+bNa696iTrdb6fvIPPXPACAjYMVRj/fFyILThNARGQudApLrq6u2LZtG7Zv346jR4/izJkzqnU2NjaYNGkSnnvuObi48HIFGaeKIjlOf5Wqej3iqUg4edrrsSIiIupsOk9K6ebmhhUrVuDVV1+FWCxWzeDdvXt3WFm12wThRJ1OqBdwYtsV1FbVAQBCR/oj5H7NNzQQEZHpaddnw4WEhLTX7oj0LvfXcuRfLwUAOHnZY/j8cP0WREREesFnwxE1oyizDDknSgEAIhEw5oW+sHGw1m9RRESkF3w2HNGf1FbX4fjWyxAaJulG32kh6NLbQ79FERGR3vDZcER/UFWmwJGPLqIsr2EiVa9gVwx6NFTPVRERkT7x2XBEd5XkynDk/QuoKKoCAFjaiDDmhb6wsNJpOjIiIjJyOoUlbZ8Nd/HiRa33mZaWhvj4eCQlJSE/Px8uLi6IiIhAbGwsAgMD71nPnj17kJ6ejrKyMjg5OSE0NBTz5s1rMn6qvr4eP/74I/7zn/8gNzcXdnZ26NmzJ+bOncuxVmboTqoUP2+4hBp5w51vDh62CHvUA27+TnqujIiI9M3gng23e/dunDhxAoMGDcKSJUswdepUXL58GbGxscjMzNS47e3bt2FhYYHp06dj6dKlmDVrFoqLi7F48WKcPXtWre0nn3yCjz76CMHBwVi0aBFmzZqFnJwcLFmyBKmpqS0cgUxR+slcxL97XhWUPLs7Y/rfh8PR10bPlRERkSHQ6cxSRzwbLiYmBqtWrYK19e93Ho0dOxYLFizArl278Oabb7a47ZQpUzBlyhS1ZY888ghmz56N/fv3q86A1dXV4T//+Q/GjBmDN954Q9V2zJgxmD17NhISEhAeztvETZ0gCLj0XQaS/p2hWhbY3xsPLO4PG3srIF+PxRERkcEwuGfDRUVFqQUlAAgMDERQUBDEYnGra7Szs4OrqytkMplqmVKphEKhgLu7u1pbd3d3WFhYwNbWttXHIeOirFXixLYrakGpz0Pd8NArAxuCEhER0V1G8Ww4QRBQUlKi9R11lZWVqK2tRVlZGQ4fPoysrCzMmTNHtd7W1hbh4eGIj49HREQE+vXrB5lMhn/+859wdnbGtGnTdKqXDFu1rAY/f5yE/LTihgUiYNgTvRE5OUg17QUREVEjo3g2XEJCAoqKirBw4UKt2r/11ls4d+4cAMDa2hrTpk3D3Llz1dq88cYbWL16NdatW6da5u/vj61bt8Lf37/FfUskEkilUtXrtpztIv0pL5Dj8PsXVFMDWNpYYMwL/dBjaBc9V0ZERIZKJAiC0B47qqur65Bnw4nFYjz33HMICgrCli1bYGlpec9t0tPTUVpaisLCQsTHxyMgIABLliyBg4ODqk1xcTG2bdsGBwcHDBo0CMXFxdi1axdsbW2xZcsWuLm5NbvvL7/8EnFxcU2Wr1y5Et26dWtrN42GTCaDk5Nx3iFWcVuBtH2FqJM3zDZp7WiB3jE+cA5o/rKrMfe1tcypr4B59Zd9NV3m1N+O6qu245PbLSx1BKlUikWLFqGurg7bt2+Hl5dXq/dRW1uL2NhYdOvWDWvXrgXQEOyeeuopDBgwAEuXLlW1zcnJwbx58zBz5kw8//zzze6vuTNL69atw2effYZevXq1uj5jk5qaapSD37PO5uH4J1egrG0ISm4BjpiwbDCcfRxa3MZY+9oW5tRXwLz6y76aLnPqr777arAjWWUyGZYvXw6ZTIYtW7a0KSgBDZfhRowYgV27dkGhUMDW1haXL19GVlYWXnzxRbW2gYGB6N69O65du9bi/ry8vNpcC3U+QRBw9acsnPvXDdUyv3APPLh0IGyd+Kw3IiK6N53D0oULF7B3715cv34dMpkMzZ2oEolEOHbsmNb7VCgUWLFiBXJycrBhwwadH5WiUCggCALkcjlsbW1RUlICoGFiyj+rq6uDUqnU6XhkGOqV9UiMS8X1ozmqZWGjAjAyNhKWnJWbiIi0pFNYOn78ONasWYP6+nr4+vqie/fuWo0p0kSpVGL16tVISUnBO++80+JDeCUSCSorKxEQEKAaG1VSUtJkOoCKigqcOHECPj4+qnWNM4EfPXpUbfbxGzduICcnB1OnTtWpD6R/NfJa/LI5GbcvS1TLBj0Whv6PhPCONyIiahWdwtI///lP2NjY4J133sGgQYPapaCtW7fi9OnTGD58OCoqKnDkyBG19ePHjwcA7NixA/Hx8di7d69qFvFly5bB29sb4eHhcHd3R0FBAQ4ePAipVKr2bLpevXph8ODBiI+PR2VlJYYOHQqpVIrvvvsOtra2mDlzZrv0hfSjUlqFwx9cRPGtCgCAhZUIo56JQujIAD1XRkRExkinsJSTk4Px48e3W1ACgIyMhkkCExMTkZiY2GR9Y1hqzuTJk/HLL79g3759kMlkcHZ2Rnh4OFatWoV+/fqptX333XexZ88eHD16FOfOnYO1tTX69u2Lp556yizuajNVkuwyHPngIuQlDZOk2jpa48GXB8Kvj4eeKyMiImOlU1hycXFp99muN23apFW7lStXYuXKlWrLZsyYgRkzZmi1va2tLebNm6fzhJlkOHKSCnF0UzLqFA1jzpx97DFh+WA+DJeIiHSiU1gaPXo0Ll68iLq6unaZU4morVITxPg1LhWN9xf4hLnhoVcGwt6Fj64hIiLd6HRL0DPPPAMnJyesXr0aBQUF7VUTkdaEegFndqYh8avfg1KPYV0w+W9DGZSIiKhdtOp00KxZs5osq6urQ2pqKk6dOgUnJyc4Ojo2aSMSibBnz562V0nUjDqFEsc+uQzx+d+Det+pwRgyqydEFrzjjYiI2kerwlJzcyhZWlrCx8dHYxsDniScjJS8TIGEDy+i6LcyAIDIQoQRCyPQe2ygnisjIiJT06qwtG/fvo6qg0hrMkkV/rv2LCqKqgAA1vaWGPfSAHTt663nyoiIyBRxVDYZlcqSahx8+5wqKDl62mHCssHw6Oas58qIiMhUMSyR0agqV+DQO+dQXiAHALj6OWLyG0Ph6G6n58qIiMiUtSosxcXFQSQS4ZFHHoGLiwvi4uK02k4kEnE+I9KJQlaLQ++eR2luJQDA2dsek1cOYVAiIqIO16qw9NVXX0EkEmHs2LFwcXHBV199pdV2DEukixp5LeLfO49iccPjSxw97DD5b0Ph6Gmv58qIiMgctCosbdy4EQBUd781vibqKLXVdTjyh7ve7F1tMPlvQ+Hs46DnyoiIyFy0Kiz1799f42ui9lRXo0TChkvIv14CALB1ssaklUPh6td0Li8iIqKOotMM3kQdRVlXj6Mbk3DnmhQAYONghUmvD4FHIO96IyKizsWwRAanXlmP41suIyepCABgZWuJCcsHw6uHq54rIyIic9Sqy3CjR4+GSNT6x0iIRCIcO3as1duR+RHqBZz89CqyzuUDACytLTB+2SD49nTXc2VERGSuWhWW+vXr16awRKQNQRBw6osUZJy6AwCwsBLhoZcHwj/cU8+VERGROWtVWNq0aVNH1UFmThAEnPk6DTeO5QBoeNbbuCUD0LUfH2FCRET6xTFLpHeCIODC3ptIOSwGAIhEwJhF/dB9sK+eKyMiImrHx51kZ2dDLBajuroaEyZMaK/dkhlI/v43XP4hU/U6+pkohNzvp8eKiIiIfqdzWEpLS8MHH3yAzMzfP+waw1JycjKWLVuGt956CyNHjtT1UGSCrvw3Cxf3p6teD18Qjp6ju+qxIiIiInU6XYbLysrC0qVLkZeXh5kzZ2LYsGFq6/v16wdXV1ccP35cl8OQiUpNEOPcruuq18P+0hvhD3XXY0VERERN6RSWvvzySwDAZ599hkWLFqF3795q60UiESIiInD9+vXmNiczdvPkbSR+lap6PWhmGKIe7qHHioiIiJqnU1hKTk7G6NGj0bVry5dNfH19IZVKdTkMmZjffs3D/z69qnrdb1ow+v9fiB4rIiIiaplOYamqqgru7ponC1QoFKivr9flMGRCxBcKcPyTyxCEhtcRE7tj8KyenL+LiIgMlk5hydvbW21gd3Nu3rwJf39/XQ5DJuL25SIc3ZQEQdmQlHqPDcR9c/owKBERkUHTKSwNHz4c58+fx4ULF5pd/8svvyA1NRXR0dG6HIZMwJ1UKRI2XEJ9XUNQCh3pjxELIxiUiIjI4Ok0dcCcOXNw/PhxLF++HBMnTkRxcTEA4MCBA0hJScHRo0fRpUsXxMTEtEuxZJwKbpbgyAcXoaxtuBzbY2gXjHo2CiILBiUiIjJ8OoUlNzc3bN68GevWrcN///tf1fJ//OMfAIDw8HCsWrUKTk5OOhVJxkuSVYbD719AnUIJAAgc4I0xL/aDhSUnjyciIuOg86SU/v7++OSTT5Ceno7U1FSUl5fDwcEB4eHh6NOnT3vUSEaqOKcCh949jxp5HQDAP9IT414aAEsrBiUiIjIeOoWlkydPYtSoUQCAsLAwhIWFNdtu8+bNWLx4sS6HIiNTlleJQ++cg0JWCwDw7eWOh14eCCsbSz1XRkRE1Do6/RN/7dq1uHz5ssY2mzdvxnfffafLYcjICPUCEjZcQlVZDQDAO9gVE5YNgrVduz2KkIiIqNPoFJb8/f3x+uuvtzh9wJYtW/Dtt9/yuXBmJi+tGKW5MgCAe1cnTFgxGDYO1nquioiIqG10CksffPABHBwcsGzZMhQUFKit++STT7B//36MHDkSa9as0alIMi43T9xWfT1gRijsnGz0WA0REZFudApLPj4++PDDD6FQKPDKK6+grKwMQENQ2rt3L4YPH441a9bA0pLjVMxFjbwWWefyAQA2DlboNtBHzxURERHpRufbkoKCgvDee++hqKgIy5Ytw5YtW7B3717cf//9WLt2LaysOE7FnGSdzYeypmE+pZAR/hzQTURERq9d7uGOiIjA6tWrkZGRgW+//Rb33Xcf1q1bx6Bkhm6eyFV93XN0yw9YJiIiMhatSjPx8fEa1w8ZMgSpqakYMWIEfv75Z7V1EydO1OoYaWlpiI+PR1JSEvLz8+Hi4oKIiAjExsYiMDBQ47bJycnYs2cP0tPTUVZWBicnJ4SGhmLevHmIiopq0r62thZ79uzB4cOHkZ+fD0dHR/Tq1QuvvvoqfHx4+ai1yvIqUXCzBADgHugErx4ueq6IiIhId60KS++++26zz/ISBAEikQjC3UfJb9iwQW2ZSCTSOizt3r0bV69exQMPPICQkBBIpVIcOHAAsbGx2LZtG4KDg1vc9vbt27CwsMD06dPh4eGBiooKJCQkYPHixXjvvfcwbNgwVdu6ujq89tpruHbtGqZMmYKQkBBUVFQgLS0NlZWVrfm20F1/HNgdNqorn/tGREQmoVVhacWKFR1Vh0pMTAxWrVoFa+vfbzUfO3YsFixYgF27duHNN99scdspU6ZgypQpasseeeQRzJ49G/v371cLS/v27UNycjK2bNmC8PDw9u+ImamvF5B+quESnMhChNCR/nquiIiIqH20KixNmjSpo+pQae5yWWBgIIKCgiAWi1u9Pzs7O7i6ukImk6mW1dfX49tvv0V0dDTCw8NRV1eHuro62NnZ6VS7ObtzVQJ5sQJAw/PfHFxt9VwRERFR+zCKEdiCIKCkpARBQUFata+srERtbS3Kyspw+PBhZGVlYc6cOar12dnZkEgkCAkJwQcffID4+HjU1tYiODgYS5YswcCBAzuoJ6ZLbWD3KA7sJiIi02EUYSkhIQFFRUVYuHChVu3feustnDt3DgBgbW2NadOmYe7cuar1t283jK3Zv38/nJ2d8eqrrwIAvvnmGyxbtgw7duxASEhIs/uWSCSQSqWq120522VqFLJaiC82TEpq52yNwAHeeq6IiIio/bQqLI0ePRoWFhb4+uuvERgYiNGjR2s1iFckEuHYsWNtKlAsFuPjjz9GRESE1oPEn332WcyaNQuFhYWIj49HXV0dlEqlan1VVRUAQC6X4/PPP4evry8AYODAgXj88cexe/fuFsdG/fDDD4iLi2uyPCsrS+0YpkomkyE1NVVtWf7FCihrG+ZWcu9jhxs3r+ujtHbXXF9NlTn1FTCv/rKvpsuc+ttRfdV2zHKrwlK/fv0gEolga2ur9rqjSKVSvPbaa3B0dMTatWu1ngk8LCxM9fX48eMRGxuLd999F2vXrgUAVf2RkZGqoAQAvr6+iIqKwrVr11rc97Rp0zBixAjVa7FYjHXr1qFHjx7o1atXq/pnjFJTU5v8cKXvTlR9fd+MvvDsZhpTBjTXV1NlTn0FzKu/7KvpMqf+6ruvrQpLmzZt0vi6PclkMixfvhwymQxbtmyBl5dXm/ZjbW2NESNGYNeuXVAoFLC1tYWnpycAwMPDo0l7d3d3pKent7g/Ly+vNtdiikpuV6Aos+ExN55BLiYTlIiIiBq1ywze7U2hUGDFihXIycnB+vXrtR7YrWl/giBALpcDAEJCQmBlZYWioqImbSUSCdzc3HQ6njlRn7E7QI+VEBERdQyDC0tKpRKrV69GSkoK1qxZg8jIyGbbSSQSiMVi1NXVqZaVlJQ0aVdRUYETJ07Ax8cH7u7uAAAHBwfcd999SElJURugnZ2djZSUFAwePLide2Wa6uvqkXF3biULKxFChnNuJSIiMj2tugzX3MBmbYhEIsybN0+rtlu3bsXp06cxfPhwVFRU4MiRI2rrx48fDwDYsWMH4uPjsXfvXvj5+QEAli1bBm9vb4SHh8Pd3R0FBQU4ePAgpFIpVq9erbafZ555BhcvXsTSpUvx6KOPAgC+++47ODs7q00zQC3LuVyEqrIaAED3gb6wc7bRc0VERETtr1Vh6auvvmrTQVoTljIyMgAAiYmJSExMbLK+MSw1Z/Lkyfjll1+wb98+yGQyODs7Izw8HKtWrUK/fv3U2gYFBWHTpk349NNP8c0330AkEmHgwIF4/vnn4e3NW9+1cfMkL8EREZHpa1VY2rhxY0fVoaLtoPGVK1di5cqVastmzJiBGTNmaH2sXr16YcOGDa2qjxpUlStw61IhAMDBzRYBfTnonYiITFOrwlL//v07qAwyNr+dzoOgbHhwcmi0PywsDW74GxERUbvgJxy1yc2Tt1Vf8/EmRERkynR63ElBQcE924hEIjg6OsLR0VGXQ5EBkWSXoVhcAQDwCXWDW4CTnisiIiLqODqFpZiYGK1n8HZzc8OoUaMwf/78ZieDJOPxx7mVwjiwm4iITJxOl+EmTJiAvn37QhAEODk5oX///hg7diz69+8PZ2dnCIKAfv364b777oONjQ3+85//4Omnn4ZEImmv+qmT1dcJ+O30HQCApbUFQu7303NFREREHUunM0uPP/44Fi1ahHnz5uGJJ56AnZ2dap1CocDu3bvx7bffYuvWrejWrRt27tyJL774Al9//TVefvllnYunzleSLodCVgsACBriCxsHaz1XRERE1LF0OrO0bds2hIeHY+HChWpBCWh4WO2CBQsQHh6O7du3w8LCAnPnzkXv3r1x5swZnYom/Sm8XKn6Omw0B3YTEZHp0yksXbt2Db169dLYpmfPnrhy5YrqdXh4OIqLi3U5LOmJvKQaJb9VAQAcPe3gH+Gp54qIiIg6nk5hqb6+Hrm5uRrb3L59G4IgqF5bWlrCxoaPxTBGGafuAHffyrDoAFhYaDe4n4iIyJjpFJaioqJw4sQJHD16tNn1x44dw8mTJ9Uehnv79m14evKMhLERBEF9biXeBUdERGZCpwHezz33HBYtWoS1a9di9+7diIqKgru7O0pKSnDt2jVkZGTAzs4Ozz33HACgrKwMFy5cwMMPP9wuxVPnKfqtDKW5DeOVuvR2h4sv580iIiLzoFNYCgkJwZYtW/CPf/wDV69eVT0Et1FUVBReeuklhISEAACcnJzw/fffNxkMTobv5gnO2E1EROZJp7AEAKGhodiyZQsKCgqQkZGByspKODo6IjQ0FL6+vmptLS0t4eTE2Z6NTV2NEpm/5gEALKxF6HFfFz1XRERE1Hl0DkuNfH19m4QjMg3iCwWokdcBADz7OMDart1+bIiIiAxeu33qFRUVNTmz5O3t3V67Jz364yU4n348M0hEROZF57B0+/ZtbNiwAZcuXWqybuDAgXj55ZfRtSvHuBgrmbQKudekAABnH3u4dLPVc0VERESdS6ewVFBQgBdffBElJSXo1q0b+vXrB09PTxQXF+Py5cu4ePEiXnzxRXz66ae8RGek0v+Xq5pbqeeorhCJavRbEBERUSfTKSzFxcWhpKQEL7/8MqZNmwaRSH2Swv/85z/YsGED/vnPf2L58uU6FUqdTxAEpJ+4O+moCAgbFYBbhVn6LYqIiKiT6TQp5blz5zB8+HBMnz69SVACgOnTp2P48OE4e/asLochPSm4UYLyAjkAwD/cE05e9nquiIiIqPPpFJZKS0sRHByssU1wcDBKS0t1OQzpyc2Tvz/KhjN2ExGRudIpLLm5uSE7O1tjm+zsbLi5uelyGNKD2uo6ZJ1pmFvJ2t4KQUM4txIREZknncLSkCFDcPr0afz000/Nrv/vf/+LxMREDB06VJfDkB5knctHbbUSABByvx+sbC31XBEREZF+6DTAe8GCBUhMTMSHH36I/fv3o3///vDw8FDdDZednQ1XV1fMnz+/ncqlznLzxO+X4MJG8RIcERGZL53Ckq+vL7Zu3YoPP/wQycnJTS7JDRgwAK+88gqnDTAy5QVy5KcVAwBc/RzhE+am34KIiIj0SOdJKQMDA7Fx40atng1HxiH9f+oDu5u705GIiMhc8NlwpEaoF5B+9y44kQgIjeYlOCIiMm+tCkvr169v84FWrFjR5m2p89xJlUImqQIABPT1hqO7nZ4rIiIi0q9WhaVDhw616SAikYhhyUikc24lIiIiNa0KS3v37u2oOsgA1MhrkXUuHwBg62SN7oN89FwRERGR/rUqLHXpwokJTVnmmXwoa+oBACHD/WFpzbmViIiIdJqUkkzLzZO3VV/35NxKREREABiW6K7SOzIU3iwFALgHOsOzh4t+CyIiIjIQDEsEoOnAbs6tRERE1IBhiVBfL6gmohRZihA6wl/PFRERERkOhiVC7lUJ5CUKAEC3/t6wd7XVc0VERESGo91m8G4vaWlpiI+PR1JSEvLz8+Hi4oKIiAjExsYiMDBQ47bJycnYs2cP0tPTUVZWBicnJ4SGhmLevHmIiopqcbuKigr85S9/QWlpKf7+979jzJgx7dwrw3bzxB8Gdo/uqsdKiIiIDI/BnVnavXs3Tpw4gUGDBmHJkiWYOnUqLl++jNjYWGRmZmrc9vbt27CwsMD06dOxdOlSzJo1C8XFxVi8eDHOnj3b4nZffvklFApFe3fFKFTLaiC+UAAAsHOxQWB/bz1XREREZFgM7sxSTEwMVq1aBWtra9WysWPHYsGCBdi1axfefPPNFredMmUKpkyZorbskUcewezZs7F//34MGzasyTaZmZn4/vvvMX/+fHzxxRft1xEjkZmYh/o6AQAQOsIfFlYGl5+JiIj0yuDCUnOXywIDAxEUFASxWNzq/dnZ2cHV1RUymazZ9Zs2bcKoUaPQt2/fVu/bFNxUuwuOl+CIiIj+zChOIwiCgJKSEri6umrVvrKyEqWlpRCLxdixYweysrIwaNCgJu2OHTuGa9eu4bnnnmvvko1CcU4FJJllAACvHi7w6Oas54qIiIgMj8GdWWpOQkICioqKsHDhQq3av/XWWzh37hwAwNraGtOmTcPcuXPV2igUCnzyySeIiYmBn58f8vPztdq3RCKBVCpVvW7L2S5DwYHdRERE92bwYUksFuPjjz9GREQEJk6cqNU2zz77LGbNmoXCwkLEx8ejrq4OSqVSrc2uXbtQV1eHJ598slX1/PDDD4iLi2uyPCsrq8kxDFm9UsCNu2FJZAnUepYjNTX1ntvJZDKt2pkC9tV0mVN/2VfTZU797ai+hoeHa9XOoMOSVCrFa6+9BkdHR6xduxaWlto92DUsLEz19fjx4xEbG4t3330Xa9euBQDk5eXhX//6F/7617/CwcGhVTVNmzYNI0aMUL0Wi8VYt24devTogV69erVqX/okvliA2spbAICgwV3Qb1DLUyv8UWpqqtY/XMaOfTVd5tRf9tV0mVN/9d1Xgw1LMpkMy5cvh0wmw5YtW+Dl5dWm/VhbW2PEiBHYtWsXFAoFbG1t8eWXX8LLywv9+/dHXl4eAKC4uBgAUFpairy8PPj6+sLCoumQLi8vrzbXYkgyTt1Rfc1LcERERC0zyLCkUCiwYsUK5OTkYMOGDQgKCtJ5f4IgQC6Xw9bWFgUFBcjNzcXs2bObtN2wYQMA4L///S+cnU1zwLNQL+DOtYZxV7aO1giI8tRzRURERIbL4MKSUqnE6tWrkZKSgnfeeQeRkZHNtpNIJKisrERAQACsrBq6UVJSAnd3d7V2FRUVOHHiBHx8fFTrYmNjUVZWptYuMzMTX3zxBR5//HFERkbC3t6+A3pnGKTicigqawEAfuEesLA0ipsiiYiI9MLgwtLWrVtx+vRpDB8+HBUVFThy5Ija+vHjxwMAduzYgfj4eOzduxd+fn4AgGXLlsHb2xvh4eFwd3dHQUEBDh48CKlUitWrV6v20dycSk5OTgCAPn36IDo6uoN6ZxgazyoBgH8EzyoRERFpYnBhKSMjAwCQmJiIxMTEJusbw1JzJk+ejF9++QX79u2DTCaDs7MzwsPDsWrVKvTr16/DajY2d1IZloiIiLRlcGFp06ZNWrVbuXIlVq5cqbZsxowZmDFjRpuOO2DAAJw8ebJN2xoTZV098q+XAAAc3G3h6u+o54qIiIgMGwermJmijFLUKRrmg/KP8IRIJNJzRURERIaNYcnM3EnhJTgiIqLWYFgyM2phKZJhiYiI6F4YlsxIbXUdCtNLAQAuXRzg5Gm60yMQERG1F4YlM5J/owT1SgEAL8ERERFpi2HJjHC8EhERUesxLJkRtckowxmWiIiItMGwZCaqZTWQissBAB7dnWHnYqPnioiIiIwDw5KZyEstBhqGK/ESHBERUSswLJmJP45XCmBYIiIi0hrDkploHK8kshTBt7eHnqshIiIyHgxLZqCyuBpleZUAAO8QV9jYG9wjAYmIiAwWw5IZ4CU4IiKitmNYMgN/DEt+DEtEREStwrBk4gRBUIUlSxsL+Ia56bcgIiIiI8OwZOLK8+WolFYDALr0coeltaWeKyIiIjIuDEsmjo84ISIi0g3DkoljWCIiItINw5IJE+p/H69k42AFzx6ueq6IiIjI+DAsmbDiWxVQyGoBAH7hnrCwEOm5IiIiIuPDsGTCctUuwXHWbiIiorZgWDJheRyvREREpDOGJRNVX1eP/OvFAAB7N1u4BTjpuSIiIiLjxLBkogp/K0NttRIA4B/uAZGI45WIiIjagmHJRKldgovkJTgiIqK2YlgyUeqDu730WAkREZFxY1gyQXUKJQrTSwAAzj72cPa213NFRERExothyQTl3yxBfZ0AgGeViIiIdMWwZILuXON4JSIiovbCsGSC1J4HF87JKImIiHTBsGRiFLJaSLPKAADugc6wd7XVc0VERETGjWHJxOSlFUNoGK6EAF6CIyIi0hnDkom5w0ecEBERtSuGJRNzJ0UCABBZiNClt7ueqyEiIjJ+DEsmRF5SjdLcSgCAd7ArbBys9VwRERGR8bPSdwF/lpaWhvj4eCQlJSE/Px8uLi6IiIhAbGwsAgMDNW6bnJyMPXv2ID09HWVlZXByckJoaCjmzZuHqKgoVbvq6mocPHgQp06dQmZmJqqqqtC1a1dMnToVU6dOhaWlZUd3s0Pc4SNOiIiI2p3BnVnavXs3Tpw4gUGDBmHJkiWYOnUqLl++jNjYWGRmZmrc9vbt27CwsMD06dOxdOlSzJo1C8XFxVi8eDHOnj2ranfnzh1s3LgRADBr1iy88MIL6NKlCzZs2ID169d3aP86EscrERERtT+DO7MUExODVatWwdr690tIY8eOxYIFC7Br1y68+eabLW47ZcoUTJkyRW3ZI488gtmzZ2P//v0YNmwYAMDDwwNxcXHo0aOHqt306dOxfv16HDx4EPPmzUPXrl3buWcdSxAEVViytLaAT5ibfgsiIiIyEQZ3ZikqKkotKAFAYGAggoKCIBaLW70/Ozs7uLq6QiaTqZa5ubmpBaVG0dHRANCm4+hbRaEcMkk1AMC3pzusbIzzUiIREZGhMbiw1BxBEFBSUgJXV1et2ldWVqK0tBRisRg7duxAVlYWBg0adM/tiouLAUDr4xgStUec8BIcERFRuzG4y3DNSUhIQFFRERYuXKhV+7feegvnzp0DAFhbW2PatGmYO3euxm1qa2uxf/9++Pn5oXfv3i22k0gkkEp/DyaGchbqTkqx6msO7iYiImo/Bh+WxGIxPv74Y0RERGDixIlabfPss89i1qxZKCwsRHx8POrq6qBUKjVu849//APZ2dl47733YGXV8rflhx9+QFxcXJPlWVlZ9zxGRxEEAbeuFAAALG1FKKrOhST1ToccSyaTITU1tUP2bWjYV9NlTv1lX02XOfW3o/oaHh6uVTuRIDQ+HMPwSKVSLFq0CHV1ddi+fTu8vLxavY/a2lrExsaiW7duWLt2bbNt/vWvf2Hbtm146qmnMG/ePI37a+7M0rp16/DZZ5+hV69era6vPUhvlePAitMAgG4DfTD+1Xtfcmyr1NRUrX+4jB37arrMqb/sq+kyp/7qu68Ge2ZJJpNh+fLlkMlk2LJlS5uCEtBwGW7EiBHYtWsXFAoFbG3VHyx76NAhbN++HdOnT79nUAIALy+vNtfSUfI4ZQAREVGHMcgB3gqFAitWrEBOTg7Wr1+PoKAgnfcnCALkcrna8v/97394//33MWrUKPz1r3/V6Rj6lHuNk1ESERF1FIMLS0qlEqtXr0ZKSgrWrFmDyMjIZttJJBKIxWLU1dWplpWUlDRpV1FRgRMnTsDHxwfu7r8/Ky05ORlr1qxB37598eabb8LCwuC+FVqpV9Yj/3rD4G47Fxu4d3XSc0VERESmxeAuw23duhWnT5/G8OHDUVFRgSNHjqitHz9+PABgx44diI+Px969e+Hn5wcAWLZsGby9vREeHg53d3cUFBTg4MGDkEqlWL16tWof+fn5WLlyJUQiEcaMGYPjx4+rHSMkJAQhISEd2s/2IsksQ21Vw8By/whPiEQiPVdERERkWgwuLGVkZAAAEhMTkZiY2GR9Y1hqzuTJk/HLL79g3759kMlkcHZ2Rnh4OFatWoV+/fqp2uXl5akmqfz444+b7Gf+/PlGE5Zy+Tw4IiKiDmVwYWnTpk1atVu5ciVWrlyptmzGjBmYMWPGPbcdMGAATp482ab6DM0fJ6MM4OBuIiKidmecA3UIAFBXo0RheikAwMnbHs4+DvotiIiIyAQxLBmxgpslUNbWA+CUAURERB2FYcmIqV2C43glIiKiDsGwZMTu/GFwt184wxIREVFHYFgyUjXyWkgyywAA7l2d4OBme48tiIiIqC0YloxUXloxGp/qx/FKREREHYdhyUj9cbwSwxIREVHHYVgyUndSG8KSSAR06eOh52qIiIhMF8OSEZKXKVCS0zADuVewK2wdrfVcERERkeliWDJCeSm8BEdERNRZGJaM0B2GJSIiok7DsGSEGgd3W1iJ4NvLXc/VEBERmTaGJSNTUShHRVEVAMC3pzusbCz1XBEREZFpY1gyMrwER0RE1LkYlowMwxIREVHnYlgyIoIgqMKStb0lvENc9VwRERGR6WNYMiIlt2WoKqsBAHTp7QELS759REREHY2ftkaEl+CIiIg6H8OSEVELS5EMS0RERJ2BYclI1CvrkZdaDACwc7aGR1dnPVdERERkHhiWjIQkqxy1VXUAAL8IT4gsRHquiIiIyDwwLBmJP16CC+B4JSIiok7DsGQkGh9xAjScWSIiIqLOwbBkBOpqlCi4WQIAcPKyg4uvg54rIiIiMh8MS0agML0Uytp6AA1TBohEHK9ERETUWRiWjMAfxyvxEhwREVHnYlgyApyMkoiISH8YlgxcjbwWRb+VAQDcAhzh6G6n54qIiIjMC8OSgcu/XgKhXgAA+IfzrBIREVFnY1gycHzECRERkX4xLBm4xrAkEgF+fRiWiIiIOhvDkgGrKlOg+FYFAMCzhytsnaz1XBEREZH5YVgyYHfuPjgXAPwjPPRYCRERkfliWDJgeZwygIiISO8YlgxY43glC0sRuvTimSUiIiJ9sNJ3AX+WlpaG+Ph4JCUlIT8/Hy4uLoiIiEBsbCwCAwM1bpucnIw9e/YgPT0dZWVlcHJyQmhoKObNm4eoqKgm7a9evYrt27fj5s2bcHR0xAMPPICnn34aDg76f/ZaRVEVygvkAACfMDdY2VrquSIiIiLzZHBnlnbv3o0TJ05g0KBBWLJkCaZOnYrLly8jNjYWmZmZGre9ffs2LCwsMH36dCxduhSzZs1CcXExFi9ejLNnz6q1TU9Px1//+ldUV1fjxRdfxMMPP4wff/wRb731Vkd2T2t5nDKAiIjIIBjcmaWYmBisWrUK1ta/3/k1duxYLFiwALt27cKbb77Z4rZTpkzBlClT1JY98sgjmD17Nvbv349hw4aplu/YsQPOzs7YtGkTHB0dAQB+fn54//33ce7cOQwdOrSde9Y6edf/OLjbS4+VEBERmTeDO7MUFRWlFpQAIDAwEEFBQRCLxa3en52dHVxdXSGTyVTLKisrceHCBYwfP14VlABgwoQJsLe3x7Fjx9regXYy8qkIPPzmMAx8NBTeIa76LoeIiMhsGdyZpeYIgoCSkhIEBQVp1b6yshK1tbUoKyvD4cOHkZWVhTlz5qjWZ2ZmQqlUolevXmrbWVtbIywsDOnp6e1ZfptYWlvCr48H/PpwYDcREZE+GUVYSkhIQFFRERYuXKhV+7feegvnzp0D0BCApk2bhrlz56rWS6UN44E8PZuOBfL09MTly5db3LdEIlFtD6BNZ7uIiIjIeBh8WBKLxfj4448RERGBiRMnarXNs88+i1mzZqGwsBDx8fGoq6uDUqlUrVcoFADQ5HIfANjY2KCmpqbFff/www+Ii4trsjwrK0vtGKZKJpMhNTVV32V0CvbVdJlTf9lX02VO/e2ovoaHh2vVzqDDklQqxWuvvQZHR0esXbsWlpba3T4fFham+nr8+PGIjY3Fu+++i7Vr1wIAbG1tAQC1tbVNtq2pqYGNjU2L+542bRpGjBihei0Wi7Fu3Tr06NGjyWU9U5Samqr1D5exY19Nlzn1l301XebUX3331WDDkkwmw/LlyyGTybBlyxZ4ebXtjjBra2uMGDECu3btgkKhgK2trery2x8vpzWSSqUaj+Xl5dXmWoiIiMj4GNzdcEDDZbIVK1YgJycH69ev13pgt6b9CYIAubxhkscePXrA0tISN27cUGtXW1uL9PR0hIaG6nQ8IiIiMh0GF5aUSiVWr16NlJQUrFmzBpGRkc22k0gkEIvFqKurUy0rKSlp0q6iogInTpyAj48P3N3dAQBOTk4YPHgwjhw5ogpQAHD48GFUVVXhgQceaOdeERERkbEyuMtwW7duxenTpzF8+HBUVFTgyJEjauvHjx8PoGFSyfj4eOzduxd+fn4AgGXLlsHb2xvh4eFwd3dHQUEBDh48CKlUitWrV6vtJzY2FosWLcLixYsxbdo0FBYWYu/evRgyZIja5JVERERk3gwuLGVkZAAAEhMTkZiY2GR9Y1hqzuTJk/HLL79g3759kMlkcHZ2Rnh4OFatWoV+/fqpte3Vqxc2bNiA7du3Y/PmzXBwcMDDDz+MZ599tn07REREREbN4MLSpk2btGq3cuVKrFy5Um3ZjBkzMGPGDK2P1bdvX3zyySetqo+IiIjMi8GNWSIiIiIyJAxLRERERBowLBERERFpwLBEREREpIHBDfA2No3PmTOXB+reunVL68fOGDv21XSZU3/ZV9NlTv3tyL52794ddnZ2GtswLOkoPz8fALBu3To9V0JERESt9dlnn93z2a4iQRCETqrHJJWWluLcuXPw8/PT+ABeU9D40OA33ngD3bt313c5HYp9NV3m1F/21XSZU387uq88s9QJ3NzcNE6UaYq6d+9+zxRuKthX02VO/WVfTZc59VeffeUAbyIiIiINGJaIiIiINGBYIq15enpi/vz58PT01HcpHY59NV3m1F/21XSZU38Noa8c4E1ERESkAc8sEREREWnAsERERESkAcMSERERkQacZ8nMpaWlIT4+HklJScjPz4eLiwsiIiIQGxuLwMBAjdseOnQI7777brPrDhw4YHADD5OSkvDSSy81u27btm2IiIjQuH1RURG2bNmC8+fPo76+HgMGDMDixYvh7+/fEeXq5J133kF8fHyL67/77jt4e3s3u+7LL79EXFxck+U2Njb4+eef26vENpPL5dizZw9SU1ORlpaGiooKvP7665g0aVKTttnZ2diyZQuuXr0KKysr3H///XjxxRfh5uam1bFOnTqFr776CmKxGG5ubpg8eTLmzp0LK6vO+dOpTV/r6+tx+PBhnDhxAunp6aioqICfnx/Gjh2L2bNnw9bW9p7HWbJkCZKTk5ssHzp0KD788MP27JJG2r63Lf18d+vWDTt37tTqWMbw3gLAqFGjWtzH4MGDsWHDBo3HiYmJUT1p4o+mTZuGV199tW3Ft1JrPmcM9XeWYcnM7d69G1evXsUDDzyAkJAQSKVSHDhwALGxsdi2bRuCg4PvuY+nnnoKfn5+asucnJw6qmSdPfroo+jTp4/asoCAAI3byOVyvPTSS6isrMSTTz4JKysr7Nu3D4sXL8aXX34JV1fXjiy51aZNm4bBgwerLRMEAR999BG6dOnSYlD6o1deeQX29vaq1xYWhnEiuqysDHFxcfD19UVoaCiSkpKabVdYWIjFixfDyckJTz/9NKqqqrBnzx5kZmbi008/hbW1tcbjnDlzBn/729/Qv39/vPTSS8jMzMTXX3+NkpISvPLKKx3RtSa06Wt1dTXeffddREREYPr06XB3d0dKSgq++uorXLp0Cf/4xz8gEonueSxvb288++yzass6+x882r63QEN4X758udoyR0dHrY5jLO8tALzxxhtNll2/fh3ffvsthgwZotWxwsLCMGvWLLVlXbt2bX3RbaTt54xB/84KZNauXLki1NTUqC27deuWMG7cOOHvf/+7xm0PHjwoREdHC2lpaR1ZYru5dOmSEB0dLRw7dqzV2+7atUuIjo4WUlNTVcuys7OFMWPGCJ9++mk7VtlxLl++LERHRwtff/21xnZffPGFEB0dLZSUlHROYa2kUCgEiUQiCIIgpKWlCdHR0cLBgwebtPvoo4+EBx98UMjPz1ctO3/+vBAdHS385z//uedx5syZIyxYsECora1VLduxY4cwatQoITs7ux16cm/a9LWmpka4cuVKk22/+uorITo6Wjh//vw9j7N48WJh7ty57VO0DrR9b99++21h/PjxbT6Osby3LVm/fr0watQooaCg4J5tZ86cKSxfvlynWnWl7eeMIf/OGsY/FUlvoqKimqT1wMBABAUFQSwWa70fuVwOpVLZ3uV1GLlcjrq6Oq3bHz9+HL1791Y7I9W9e3cMHDgQx44d64gS293PP/8MkUiEBx98UOttKisrIRjY7CI2NjZanfE4ceIEhg8fDl9fX9WywYMHIzAw8J7vWXZ2NrKzszF16lS10/ePPPIIBEHA8ePH21x/a2jTV2tra0RFRTVZHh0dDQCt+j2uq6uDXC5vXZHtSNv3tpFSqURlZWWrjmFM721zampqcOLECfTv3x8+Pj5ab1dbW4uqqqpWH689aPs5Y8i/s7wMR00IgoCSkhIEBQVp1f6ll15CVVUVrK2tMWTIECxatOie45306d1330VVVRUsLS3Rt29fPP/88+jdu3eL7evr65GZmYnJkyc3WdenTx+cP38ecrkcDg4OHVm2Turq6nDs2DFERkY2uWTaklmzZqGqqgr29vYYOXIkFi1aBA8Pjw6utH0UFRWhpKSk2edI9enTB2fOnNG4/c2bNwGgyfZeXl7w9vZGenp6+xXbQYqLiwFA60vEOTk5mDBhAmpra+Hh4YEpU6Zg/vz5nTaGp7Wqq6sxadIkVFdXw9nZGePGjcNzzz13z99DY39vz5w5A5lMhoceekjrbS5duoTx48dDqVSiS5cumDlzJmbOnNmBVd7bnz9nDP131jB/C0ivEhISUFRUhIULF2psZ2tri0mTJmHAgAFwdHTEjRs3sG/fPrzwwgv4/PPP1f51YAisrKwwevRo3HfffXB1dUV2djb27t2LF198EZ988gl69uzZ7Hbl5eWoqalp9l+BjcskEgm6devWofXr4ty5cygrK9PqD6yzszNmzJiBiIgIWFtb48qVKzhw4ADS0tLw2WefaT0uRJ+kUimA5sfceHp6qt5TGxubNm3fuN6Q/etf/4KjoyOGDRt2z7b+/v4YMGAAgoODUV1djePHj+Prr79GTk4O1qxZ0wnVto6npycef/xx9OzZE4Ig4OzZs/j+++/x22+/YePGjRoDnrG/twkJCbCxscHo0aO1ah8cHIy+ffsiMDAQ5eXlOHToEDZv3gyJRILnn3++g6tt2Z8/Zwz9d5ZhidSIxWJ8/PHHiIiIwMSJEzW2HTt2LMaOHat6HR0djaFDh2Lx4sX45ptvOu1OC21FRUWpXa4YOXIkxowZgwULFmDHjh0t3vWjUCgAoNnBhY2/uI1tDNXPP/8MKysrPPDAA/ds++d/cY4ZMwZ9+vTB2rVrceDAATz55JMdVWa70fY9a+kPb01NjVrbP2+vz0tV2vjmm29w4cIFvPzyy3B2dr5n+xUrVqi9njBhAj744AP8+OOPiImJueedop3tzwPRx40bh8DAQHz22Wc4ceIExo0b1+K2xvzeVlZW4tdff8WwYcO0el8BYP369WqvJ0+ejGXLlmHfvn149NFHW3Upr7009zlj6L+zHLNEKlKpFK+99hocHR2xdu1aWFpatnofffv2RXh4OC5evNgBFba/rl27YuTIkUhKSmpxzFXjrde1tbVN1jX+gmpze7a+yOVynDp1CkOHDm3zXXsPPfQQPDw8jOZ91fU9a/yD29j2z9sb8vt99OhRfP7553j44Yfxf//3f23eT+PdUxcuXGinyjpWTEwMLCws7lmvMb+3J06cQE1NTasuwf2ZSCRCTEwMlEpls9NFdLSWPmcM/XeWYYkAADKZDMuXL4dMJsOHH34ILy+vNu/Lx8cH5eXl7Vhdx/Lx8UFtbS2qq6ubXe/i4gIbG5tmT+M2LtPl+9XRTp06herqap3+wALG9b42nopv6T1rfE/bur2hzSHW6Pz583jnnXdw//3363yrdOMZh4qKivYorcPZ2trCxcXlnj+jxvreAg2XrpycnDB8+HCd9tP43nb277OmzxlD/51lWCIoFAqsWLECOTk5WL9+vdYDu1ty584drScQMwR37tyBjY2N2pxCf2RhYYHg4GBcv369ybrU1FT4+/sb9ODuhIQE2NvbY8SIEW3ehyAIyM/PN5r31dvbG25ubrhx40aTdWlpaQgNDdW4fVhYGAA02V4ikaCoqEi13pCkpqbijTfeQK9evbBmzRqdB2bfuXMHAIzmPZfL5SgrK7tnvcb43gIN9SUlJWHUqFEaQ4M29PHe3utzxtB/ZxmWzJxSqcTq1auRkpKCNWvWIDIystl2EokEYrFY7Xb70tLSJu1+/fVX3LhxA0OHDu2oktusuXozMjJw+vRpDBkyRDXpYkFBQZPbrUePHo3r16+rBaZbt24hKSkJY8aM6ciydVJaWooLFy5g1KhRsLOza7K+ub429336/vvvUVpaqtVgYUMxevRoJCYmoqCgQLXs4sWLyMnJURu7VVdXB7FYDIlEolrWo0cPdOvWDT/++KPa5dnvv/8eIpFI68G1nSU7OxuvvfYaunTpgvfee0/jJQexWKz2PamsrGxy6UIQBHz99dcAoPXEh51FoVA0O/7kn//8JwRBUPsZNYX3ttEvv/yC+vr6Fs8QN9fX8vLyJsML6urqsGvXLlhbW2PAgAEdWnMjbT9nDPl3lgO8zdzWrVtx+vRpDB8+HBUVFThy5Ija+vHjxwMAduzYgfj4eOzdu1d16/nzzz+Pnj17olevXnB0dMTNmzdx8OBB+Pj4YM6cOZ3el3t56623YGtri8jISLi7uyM7Oxs//vgj7Ozs1AaMvv3220hOTsbJkydVyx555BH89NNPeO211zB79mxYWlpi3759cHd3x+zZs/XRHa0cPXoUSqWyxT+wzfV15syZGDt2LIKDg2FjY4OrV6/i6NGjCAsLw7Rp0zqrdI2+++47yGQy1Sn306dPo7CwEEDDDO1OTk548skncfz4cSxduhSPPfYYqqqq8K9//QvBwcFqj5QoKirCnDlzMHHiRKxcuVK1/IUXXsDrr7+OV155BePGjUNmZiYOHDiAKVOm6Hz2tT37amFhgVdffRUVFRWYPXs2fv31V7Xt/f391T6c5syZg/79+2PTpk0AGm65XrNmDR588EEEBARAoVDgf//7H65evYqpU6c2eyt3R7pXfysqKvDUU0/hwQcfVN2Beu7cOZw5cwbDhg3DyJEjVfsy9vf2j09CSEhIgJeXV4sBp7m+nj59Gl9//TVGjx4NPz8/VFRUICEhAVlZWXjmmWc67ZKjtp8zhvw7y7Bk5jIyMgAAiYmJSExMbLK+8Ye4OWPHjsWZM2dw/vx5VFdXw9PTE1OnTsX8+fMNcj6e6OhoJCQkYN++faisrISbmxtGjRqF+fPn33PqfwcHB2zcuBFbtmzB119/rXo2XGueWaQPP//8M9zd3TFo0CCtt3nooYdw7do11WBSX19fPP7445g7d26zZ6f0Ye/evWrPuzp58qQq8I0fPx5OTk7w9fXFpk2bsGXLFnz66aeq50wtWrRIq8sYw4cPx7p16xAXF4eNGzfC1dUVTz75JObPn99R3WrWvfoKQPUB++mnnzbZfuLEiS3+Sx4AfH190a9fP5w8eRLFxcWwsLBA9+7d8corr+glHGvz3g4fPhznz59HfHw86uvrERAQgGeeeQazZ8/W6rE8xvLeNoalW7du4caNG6pB7NoKDg5G9+7dkZCQgNLSUlhZWSEsLAxr1qzR6s7Y9qLt54wh/86KBEObnpeIiIjIgHDMEhEREZEGDEtEREREGjAsEREREWnAsERERESkAcMSERERkQYMS0REREQaMCwRERERacCwRERERKQBwxIRERGRBgxLRKR3eXl5GDVqFN555x19l9IuDh06hFGjRuHQoUP6LoWI2gHDEhEZpCVLlmDUqFH6LqNZphbuiEgzPkiXiPTO29sb33zzDRwdHfVdSruIjo5GeHh4pz3VnYg6FsMSEemdlZUVunfvru8y2o2Tk5PqifFEZPxEgiAI+i6CiMxbXl4eZs2ahYkTJ2LlypUtXn5rXN/ot99+wzfffIPk5GSUl5fD09MTI0aMwIIFC+Dq6trs/p944gl89tlnuHz5MsrLy7F37174+fnh5MmTOHbsGK5fvw6JRAIrKyuEhITgsccew5gxY1T7OnToEN59991m69u4cSMGDBigavP6669j0qRJam2uXr2Kb775BikpKVAoFOjSpQvGjh2LJ554AnZ2dmptR40ahf79+2P16tXYtm0bzpw5g6qqKoSGhuLZZ5/FgAEDWvutJqI24JklIjI48+fPR3x8PPLz8zF//nzV8rCwMNXXp06dwurVqyESiTBy5Ej4+PggOzsb//73v3Hu3Dl8+umncHZ2Vttvbm4unn/+eQQHB2PixIkoLy+HtbU1AGDHjh2wsrJCVFQUPD09UVpaitOnT2PVqlV46aWX8OijjwIAQkND8dhjj+Hbb79FaGgoRo4cqdp/ly5dNPbr2LFj+Pvf/w5ra2uMHTsWbm5uOH/+POLi4nDu3Dls3LgRtra2atvIZDIsWrQITk5OGD9+PEpKSnDs2DG8+uqr+OyzzxAcHNym7zERaY9hiYgMzsKFC5GcnIz8/HwsXLiwyfqysjK8/fbbcHV1xdatW9VCytGjR7FmzRp88cUXWLp0qdp2V69exfz585vd5/vvvw9/f3+1ZXK5HC+88AK++OILPPzww7Czs0NYWBicnJxUYam5fTWnsrISH3zwASwtLbFt2zaEhIQAAJ555hn8/e9/xy+//II9e/Zg3rx5attlZGTg//7v/7B06VJYWDTckzNw4EC8//77+Pe//41XX31Vq+MTUdvxbjgiMjqHDx9GZWUlnnnmmSZnc8aNG4eePXvi6NGjTbbz8PDAnDlzmt3nn4MSADg4OGDSpEmQyWS4fv26TjWfOnUKMpkMkydPVgUlALCwsMDzzz8PS0vLZqcasLe3x3PPPacKSkDD5UhLS0udayIi7fDMEhEZnZSUFABAamoqcnNzm6yvqalBWVkZSktL4ebmploeGhqquuz2ZyUlJdi1axfOnDmDgoICKBQKtfUSiUSnmtPT0wEA/fv3b7LO19cX/v7+yMnJgVwuh4ODg2pd165d1V4DDQPiPTw8IJPJdKqJiLTDsERERqeiogIAcODAAY3tqqur1V67u7s32668vBzPPPMMCgoKEBUVhcGDB8PJyQkWFhbIyMjAqVOnUFtbq1PNlZWVABrObjXH09MTOTk5qKysVAtHLU2nYGlpifr6ep1qIiLtMCwRkdFpDBNxcXGtGuAsEomaXf7f//4XBQUFeOqpp5qMGdq5cydOnTrV9mLvagw9xcXFza5vXG4qc00RmRKOWSIig9Q4RkepVDZZFx4eDuD3y3G6aryU98c72xpduXKlxdpac2an8U6+5OTkJusKCgqQm5sLf3//JpfciEj/GJaIyCC5uLgAAAoLC5usmzx5MhwcHPDZZ58hKyuryfrq6upWBanGQeJXr15VW56QkIAzZ840ae/s7AyRSNRsbS0ZOXIknJyccPDgQbWaBUHAp59+CqVS2WROJiIyDLwMR0QGaeDAgTh+/DjefPNNDBs2DDY2NggNDcWIESPg5uaGt956C6tWrcLChQsxdOhQdOvWDbW1tcjPz0dycjIiIyPx4YcfanWs8ePHY/fu3di4cSOSkpLg6+uLjIwMXLp0CaNGjcLJkyfV2js4OKB37964fPky1q1bh65du0IkEmHChAktzrXk6OiIZcuW4e9//zuee+45PPDAA3Bzc8PFixdx48YN9OnTB7Nnz9b5+0ZE7Y9hiYgM0pQpU5CXl4dffvkFu3fvhlKpxMSJEzFixAgAwP33348vvvgC//rXv3Dx4kVcuHABdnZ28Pb2xqRJkzB+/Hitj+Xj44NNmzZh27ZtuHDhApRKJXr27ImPPvoIhYWFTcISALzxxhvYvHkzEhMTUVlZCUEQ0LdvX40TUz7wwAPw8PDAzp07cfLkSdUM3vPmzcMTTzzRZEJKIjIMfNwJERERkQYcs0RERESkAcMSERERkQYMS0REREQaMCwRERERacCwRERERKQBwxIRERGRBgxLRERERBowLBERERFpwLBEREREpAHDEhEREZEGDEtEREREGjAsEREREWnAsERERESkwf8DCyo3UHINcuoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "5e58ab72", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "74e8bf4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAG5CAYAAACQpg7iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABalklEQVR4nO3deXhU5dk/8O8syWTfNxIgIWSBQCDsIiRsShEF24JLvVxQW627rb5W+/ZttaW1P2trsVqrWKVuFVyoWBVFDCAgyhIgEAgEkiGQhSRkmySTzHJ+f0xyMkMSMsuZOWeS7+e6vGT252SSmfs8z/3ct0oQBAFEREREfkQt9wCIiIiIXMUAhoiIiPwOAxgiIiLyOwxgiIiIyO8wgCEiIiK/wwCGiIiI/A4DGCIiIvI7QzaAMRqNKC0thdFolHsoREREJLEhG8Do9Xr85Cc/gV6vl3soXnfq1Cm5h+Azw+lYgeF1vDzWoWs4HS+P1XeGbAAznHR2dso9BJ8ZTscKDK/j5bEOXcPpeHmsvsMAhoiIiPwOAxgiIiLyOwxgiIiIyO8wgCEiIiK/wwCGiIiI/A4DGCIiIvI7DGCIiIjI7zCAISIiIr/DAIaIiIj8DgMYIiIi8jsMYIiIiMjvMIAhIiIiv8MAhoiIiPyOVu4B+BOrVUDpV5XoNJigCwvA+CtGyz0kIiKiYYkBjAtUKuCbf5XAahEQmxrOAIaIiEgmXEJygUqlgi4sAADQ2WaSeTRERETDFwMYF4kBjIEBDBERkVwYwLhIFxoIADAZLbCYrTKPhoiIaHhiAOOinhkYgMtIREREcmEA4yKHAIbLSERERLJgAOMiBjBERETyYwDjIscApkvGkRAREQ1fDGBcpAtlDgwREZHcGMC4SBcWKP6bS0hERETyYADjIubAEBERyY8BjIuCQhnAEBERyY0BjIs4A0NERCQ/BjAucixkx11IREREcmAA46KAYC1UahUAzsAQERHJhQGMi1QqFXShWgAMYIiIiOTCAMYNPVupWQeGiIhIHgxg3NCTB9PVbobVwo7UREREvsYAxg32ibxdbWYZR0JERDQ8aeUewEBKS0vx+uuvo7i4GF1dXUhOTsayZcuwcuVKuYfWp51AUETgJe5NREREUlNkAPPdd9/hiSeeQGZmJm677TYEBwfj3LlzqKurk3toAPpr6Bgq32CIiIiGIcUFMG1tbfjDH/6Ayy67DL/73e+gVitvlYvF7IiIiOSluOjgyy+/xIULF/CTn/wEarUaHR0dsFqVlSirC+1dMjIygCEiIvI5xc3A7Nu3D6Ghoaivr8f//u//orKyEsHBwVi8eDHuv/9+6HQ6uYfIGRgiIiKZKS6AOXv2LCwWC375y1/i6quvxl133YWDBw/igw8+gMFgwG9+85t+H1dfX4+Ghgbxsl6v99oYHdsJMIAhIiLyNcUFMB0dHTAajbj22mvx0EMPAQDmzZsHk8mETZs24Y477sCoUaP6PG7Tpk1Yt25dn+vLy8thsVgkHWPr+U7x39VnalFSIm8QYzAYUFJSIusYfGU4HSswvI6Xxzp0Dafj5bFKIycnZ9D7KC6A6VkiWrRokcP1V1xxBTZt2oSjR4/2G8AsX74cc+bMES/r9XqsXr0aY8aMQXZ2tqRjbI5pQzFqAAChgWFO/aC9qaSkRPYx+MpwOlZgeB0vj3XoGk7Hy2P1HcUFMLGxsSgvL0dMTIzD9dHR0QCA1tbWfh8XFxeHuLg4r48P4BISERGR3BS3C6lntuTimi/19fUAgKioKF8PqY/AkADA1pCaSbxEREQyUFwAs2DBAgDAJ5984nD9J598Ao1GgylTpsgxLAdqtQq6ENssDAMYIiIi31PcElJWVhaWLl2KTz/9FBaLBXl5eTh48CAKCwtx8803+2yZaDC6sAB0tpm4hERERCQDxQUwAPDoo48iMTERn332Gb7++mskJibi/vvvx/XXXy/30ES6sACg1pYDI1gFqNQquYdEREQ0bCgygNFqtbj99ttx++23yz2UAYmJvALQ1W52SOwlIiIi71JcDoy/cOxI3SXjSIiIiIYfBjBu0oXZ9UNqZR4MERGRLzGAcRNrwRAREcmHAYybHJaQuJWaiIjIpxjAuIkdqYmIiOTDAMZNjktITOIlIiLyJQYwbuISEhERkXwYwLiJS0hERETyYQDjJu5CIiIikg8DGDdxCYmIiEg+DGDcpNaoERhi68TAAIaIiMi3GMB4oGcWhktIREREvsUAxgM9eTCdBhMEQZB5NERERMMHAxgP9AQwglWAqcMs82iIiIiGDwYwHtCF9jZ0ZB4MERGR7zCA8QBrwRAREcmDAYwH7AMYIxN5iYiIfIYBjAdYC4aIiEgeDGA84LiExIaOREREvsIAxgNsJ0BERCQPBjAe4BISERGRPBjAeIC7kIiIiOTBAMYDunC7OjBcQiIiIvIZBjAe4BISERGRPBjAeECjVSMgSAOAAQwREZEvMYDxUG9DR26jJiIi8hUGMB7qWUZiR2oiIiLfYQDjIV2YLZHXahFg7rTIPBoiIqLhgQGMh5jIS0RE5HsMYDzEWjBERES+xwDGQ2wnQERE5HsMYDzkuITEnUhERES+wADGQ1xCIiIi8j0GMB7iEhIREZHvMYDxUM82agAwcgaGiIjIJxjAeIhLSERERL7HAMZDXEIiIiLyPQYwHmIhOyIiIt9jAOMhbaAGmkDbj5HbqImIiHyDAYwEejtScwaGiIjIFxjASEAXatuJxACGiIjINxjASKBnBsZissLcxY7URERE3sYARgLcSk1ERORbDGAkwJ1IREREvsUARgKOtWC4E4mIiMjbGMBIIIhLSERERD7FAEYCXEIiIiLyLQYwEtCF9zZ0ZABDRETkfQxgJOAwA8N+SERERF6nlXsAFysqKsJDDz3U720vvfQSJkyY4OMRDY7bqImIiHxLcQFMjxUrVmD8+PEO16WkpMg0mkuzD2CM7IdERETkdYoNYCZPnoz58+fLPQynMImXiIjItxSdA9Pe3g6z2Sz3MAal1Wmg1qoAMAeGiIjIFxQ7A/P000+jo6MDGo0GkyZNwj333INx48YNeP/6+no0NDSIl/V6vS+GCQBQqVTQhQWio6mTMzBEREQ+oBIEQZB7EPaKi4uxYcMGXHbZZYiMjERFRQXWr1+Pjo4O/P3vf0dWVla/j3vttdewbt26Ptf/8pe/xOjRo708aqDoH1XoqDdBHaDCZb/w/uvZMxgMCAsL8+lrymU4HSswvI6Xxzp0Dafj5bFKIycnZ9D7KC6A6c/Zs2dx++23Y/LkyXj22Wf7vU9/MzCrV6/G2rVrkZ2d7fUxfvzUHtSWNgIAbv/XYmgCNF5/zR4lJSVOvdlDwXA6VmB4HS+PdegaTsfLY/UdxS4h2Rs5ciTmzp2LHTt2wGKxQKPpGxzExcUhLi5OhtHZOPZDMiMkyncBDBER0XCj6CReewkJCTCZTDAajXIPpV+OO5G4lZqIiMib/CaAqaqqQmBgIIKDg+UeSr9YzI6IiMh3FBfANDU19bmurKwMu3btwowZM6BWK27IAICgMLt+SNxKTURE5FWKy4H5zW9+A51Oh4kTJyI6OhoVFRX4+OOPERQUhLvvvlvu4Q2IMzBERES+o7gAJj8/H1u2bMGGDRvQ1taGqKgoFBQUYNWqVRg5cqTcwxsQAxgiIiLfUVwAs3LlSqxcuVLuYbjMPonXyACGiIjIq5SZUOKHHGdguAuJiIjImxjASMSxDgxnYIiIiLyJAYxE2JGaiIjIdxjASCQgWAuVursjNQMYIiIir2IAIxFbR2rbLAyXkIiIiLyLAYyEepaROANDRETkXQxgJNQzA2PqMMNqtso8GiIioqGLAYyEHHYitXMWhoiIyFsYwEiIO5GIiIh8gwGMhILC7Ro6MoAhIiLyGgYwEnKYgeFOJCIiIq9hACMhhxyYVgYwRERE3sIARkKO7QTYD4mIiMhbGMBIiEm8REREvsEARkKOHakZwBAREXkLAxgJsSM1ERGRbzCAkZAulNuoiYiIfIEBjIQCQ7SArSE1AxgiIiIvYgAjIZVa1dvQkUtIREREXsMARmLsSE1EROR9DGAk1pPI29lugtUqyDwaIiKioYkBjMR0Yd2JvALQxY7UREREXsEARmKsBUNEROR9DGAkxgCGiIjI+xjASIztBIiIiLyPAYzEHGdg2NCRiIjIGxjASIztBIiIiLyPAYzEgriERERE5HUMYCTGJF4iIiLvYwAjMbEODLiERERE5C0MYCTGXUhERETexwBGYoGhWvHfDGCIiIi8gwGMxNQaNQJDbEEMl5CIiIi8gwGMF/R2pGYdGCIiIm9gAOMFunBbIm+nwQSBHamJiIgkxwDGC3pmYAQBMBnNMo+GiIho6GEA4wX2tWCMrcyDISIikhoDGC9gOwEiIiLvYgDjBY61YJjIS0REJDUGMF7AdgJERETexQDGC7iERERE5F0MYLyA7QSIiIi8iwGMFzg0dGQAQ0REJDkGMF7AJSQiIiLvYgDjBUziJSIi8i4GMF7AHBgiIiLvYgDjBRqtGgHBGgBAZxvrwBAREUmNAYyX6EJ7GzoSERGRtBQfwLzxxhsoKCjAbbfdJvdQXNKTB2M0mCAI7EhNREQkJUUHMOfPn8dbb72F4OBguYfiMrEjtUWAyWiReTRERERDi1buAVzK3//+d+Tk5MBqtaK5uVnu4bjk4p1IgcGK/lETERH5FUlmYCwWCy5cuIDa2tp+/3PHwYMHsX37djzwwANSDNHnHGvBMJGXiIhISh5NC5SWluKVV17BoUOHYDab+72PSqVCYWGhS89rsViwZs0aXH311Rg7dqxTj6mvr0dDQ4N4Wa/Xu/SaUuNWaiIiIu9xO4A5efIk7r//fmg0GsyYMQO7d+9GRkYGYmJicOLECTQ1NSEvLw9JSUkuP/dHH32E2tpaPPfcc04/ZtOmTVi3bl2f68vLy2Gx+D4Hpamtd8nr1PFyNKvPe+21DAYDSkpKvPb8SjKcjhUYXsfLYx26htPx8lilkZOTM+h93A5g/vWvfwEA/vGPfyAtLQ3z5s1Dfn4+Vq1ahc7OTrz44ovYtm0bHn/8cZeet7m5Ga+99hpuvfVWREVFOf245cuXY86cOeJlvV6P1atXY8yYMcjOznZpDFLQnK+EfmsTACA+OhHjc0Z77bVKSkqcerOHguF0rMDwOl4e69A1nI6Xx+o7bufAFBcXY86cOUhLSxOv69kurNPp8PDDDyMuLg5r16516XlfffVVhIeHY8WKFS49Li4uDtnZ2eJ/qampLj1eaj11YAAuIREREUnN7QCmra0NycnJ4mWtVouOjo7eJ1arkZeXh/379zv9nJWVlfj444+xcuVK1NfXo7q6GtXV1ejq6oLZbEZ1dTVaWlrcHbJPsR8SERGR97i9hBQVFYXW1lbxckxMDM6ePetwn66uLhiNRqefs76+HlarFWvWrMGaNWv63H7DDTdg5cqVePDBB90dts+wIzUREZH3uB3ApKWl4cyZM+Ll3NxcfP311zhy5AgmTpyIiooKFBYWurSUM2bMGPz+97/vc/2rr76K9vZ2PPjggw6zPkrGGRgiIiLvcTuAmT17Nl544QXU19cjLi4ON910E3bs2IH7778f4eHhMBgMsFqtuPnmm51+zqioKOTn5/e5/r333gOAfm9TKsdt1KwDQ0REJCW3A5hrr70WCxYsQHh4OAAgIyMDzz33HN58801UVVUhOzsbK1aswOzZsyUbrD/RBmqg1Wlg7rRwBoaIiEhibgcwWq0WMTExDtfl5ubimWee8XhQF3v++eclf05f0IUGMIAhIiLyAkU3c/R3PXkwnW3sSE1ERCQljzsMNjQ04MSJE2htbYXVau33PkuWLPH0ZfxSTwBjMVlh6bJCq9PIPCIiIqKhwe0AprOzE3/605+wdevWAWcXBEGASqUavgHMRYm8Wl2wjKMhIiIaOtwOYF5++WVs2bIFo0aNwqJFixAfHw+NhjMM9uy3UhvbTAiNZQBDREQkBbcDmMLCQqSlpWHt2rUIDAwc/AHDEGvBEBEReYfbSbwGgwEzZ85k8HIJjktIDGCIiIik4nYAM3r0aDQ2Nko5liFHF2bX0JHtBIiIiCTjdgBz4403YufOnX36H1EvLiERERF5h9M5MAcPHnS4HB8fj5kzZ+Luu+/Gddddh6ysLISEhPT72Ly8PE/G6Le4hEREROQdTgcwDz30EFQqVZ/rBUHA66+/3u9tPbZt2+bW4PydLpwBDBERkTc4HcDcdtttlwxSqK8gNnQkIiLyCqcDmDvuuMOb4xiSmMRLRETkHeyF5EWaQDU0AbYfMZeQiIiIpONxL6T6+np89dVXOHnyJAwGA8LCwpCZmYmFCxciLi5OijH6LZVKBV1oANqbOhnAEBERScijAObDDz/ESy+9BJPJsdvyF198gbVr1+Lee+/FD37wA48H6c90Yd0BDJeQiIiIJON2ALN161asWbMGkZGRuOWWWzBp0iTExMTgwoULOHToEN5//33x9oULF0o5Zr/SUwvG3GmBucsCbSD7RREREXnK7QDmnXfeQWRkJF577TWHpaLRo0cjLy8PV111Fe6880688847wzuAsduJ1NVmYgBDREQkAbeTePV6PRYsWDBgnktCQgIWLFgAvV7v9uCGAodqvFxGIiIikoTbAUxYWBiCgoIueZ/g4GCEhYW5+xJDgsNWaibyEhERScLtAGbOnDnYvXs3zGZzv7ebzWbs2rULc+fOdXtwQwHbCRAREUnP7QDmnnvuQXBwMB555BEcPXrU4bYjR47gkUceQUhICO6++26PB+nP2NCRiIhIem4n8d55550wm81oaGjAfffdB41Gg8jISDQ3N8NisQAAYmNjceeddzo8TqVS4d133/Vs1H7EPoAxMgeGiIhIEm4HMIIgQKPRICEhweH62NjYPve71OWhjjMwRERE0nM7gNmwYYOU4xiyHAMYNnQkIiKSAnsheZkulLuQiIiIpMYAxsu4hERERCQ9p5eQ1q1b59YLqFQq3HbbbW49digICNJApVFBsAgsZEdERCQRpwOY119/3a0XGO4BTE9HamNLF2dgiIiIJOJ0ALNmzRpvjmNI04V1BzBtTOIlIiKSgtMBTF5enheHMbT15MGYOiywmq1Qa5l6RERE5Am3t1Hbs1gsaG5uhsnU/xJJYmKiFC/jtxzaCbSZEBypk3E0RERE/s+jAKa0tBSvvPIKDh06NGBPJJVKhcLCQk9exu8FXdTQkQEMERGRZ9wOYE6ePIn7778fGo0GM2bMwO7du5GRkYGYmBicOHECTU1NyMvLQ1JSkpTj9UsOW6m5E4mIiMhjbgcw//rXvwAA//jHP5CWloZ58+YhPz8fq1atQmdnJ1588UVs27YNjz/+uGSD9VfsSE1ERCQtt7NJi4uLMWfOHKSlpYnX9fQ50ul0ePjhhxEXF4e1a9d6PEh/pwtnAENERCQltwOYtrY2JCcni5e1Wi06Ojp6n1itRl5eHvbv3+/ZCIcA+xkYI/shERERecztACYqKgqtra3i5ZiYGJw9e9bhPl1dXTAaje6PbohgOwEiIiJpuR3ApKWl4cyZM+Ll3Nxc7N27F0eOHAEAVFRUoLCwEKmpqZ6P0s/p7HchMYmXiIjIY24n8c6ePRsvvPAC6uvrERcXh5tuugk7duzA/fffj/DwcBgMBlitVtx8881SjtcvMYmXiIhIWm4HMNdeey0WLFiA8PBwAEBGRgaee+45vPnmm6iqqkJ2djZWrFiB2bNnSzZYf8UlJCIiImm5HcBotVrExMQ4XJebm4tnnnnG40ENNYHBWqhUgCBwCYmIiEgKbMrjAyq1CoHdy0id3IVERETkMQYwPtKzjMQlJCIiIs8xgPGRngCmq90Mq1WQeTRERET+jQGMj+hCe7dSdzEPhoiIyCMMYHyEO5GIiIikwwDGR9iRmoiISDoMYHwkyD6AaeVOJCIiIk8wgPER+xkYI2dgiIiIPOJ2ITtvKS8vx+uvv47S0lJcuHABQUFBSE1NxY9+9CPMmTNH7uG5je0EiIiIpKO4GZiamhq0t7djyZIlePDBB3HrrbcCAJ544gls2rRJ5tG5z6GhIwMYIiIijyhuBmb27Nl9+if98Ic/xE9+8hNs2LABy5cvl2lknmESLxERkXQUNwPTH41Gg4SEBBgMBrmH4jYuIREREUlHcTMwPTo6OtDZ2Ym2tjbs2rUL3377LRYsWDDg/evr69HQ0CBe1uv1vhim01gHhoiISDqKDWBefPFFMedFrVajoKAAP/vZzwa8/6ZNm7Bu3bo+15eXl8NisXhrmE4T7NoHNNU3o6SkRLLnNhgMkj6fkg2nYwWG1/HyWIeu4XS8PFZp5OTkDHofxQYw1113HebPn4/6+noUFhbCYrHAZBp45mL58uUOu5T0ej1Wr16NMWPGIDs72xdDHtT+kCp0tZuhtmidenOcVVJSIunzKdlwOlZgeB0vj3XoGk7Hy2P1HcUGMKmpqUhNTQUALFmyBD//+c/x+OOP4+WXX4ZKpepz/7i4OMTFxfl6mC7RhQWgq93MJSQiIiIP+UUSLwDMnz8fx48fR2VlpdxDcVvPVuquNpPDkhIRERG5xm8CmM7OTgAYEjuRBAHo6jDLPBoiIiL/pbgAprGxsc91ZrMZn3/+OXQ6HdLS0nw/KIkEhdvvRGI/JCIiIncpLgfm2WefRVtbGyZPnoz4+Hg0NDRgy5YtOHPmDO677z6EhITIPUS39akFkyjjYIiIiPyY4gKYhQsX4pNPPsFHH32E5uZmhISEIDs7Gz/96U8xd+5cuYfnEdaCISIikobiAphFixZh0aJFcg/DK9hOgIiISBqKy4EZynShbOhIREQkBQYwPsQlJCIiImkwgPEhLiERERFJgwGMD7EjNRERkTQYwPiQ/QyMkXVgiIiI3MYAxoccZmC4hEREROQ2BjA+pNaqERCsAcAlJCIiIk8wgPGxnq3UDGCIiIjcxwDGx3ryYDrbTBAEdqQmIiJyBwMYH+sJYASLABM7UhMREbmFAYyPsRYMERGR5xjA+BhrwRAREXmOAYyP6cLYD4mIiMhTDGB8jEtIREREnmMA42NBXEIiIiLyGAMYH2NHaiIiIs8xgPExLiERERF5jgGMjznOwLChIxERkTsYwPgYt1ETERF5jgGMjwWyIzUREZHHGMD4mDZQA62OHamJiIg8wQBGBj15MEYGMERERG5hACMDsSO1oYsdqYmIiNzAAEYGPYm8VrMAc6dF5tEQERH5HwYwMmAtGCIiIs8wgJGBLpQNHYmIiDzBAEYGbCdARETkGQYwMuASEhERkWcYwMiAMzBERESeYQAjA8d2AuyHRERE5CoGMDLgEhIREZFnGMDIgEtIREREnmEAI4MgdqQmIiLyCAMYGejCeuvAsB8SERGR6xjAyECr00ATYPvRcwaGiIjIdQxgZCI2dGzjLiQiIiJXMYCRSW9Has7AEBERuYoBjEx6asFYuqwwd7EjNRERkSsYwMjEPpGXtWCIiIhcwwBGJqwFQ0RE5D4GMDLRsRYMERGR2xjAyIQzMERERO5jACMTx35I3EpNRETkCgYwMuESEhERkfsYwMiES0hERETuYwAjEwYwRERE7mMAI5Mg+zowDGCIiIhcwgBGJo5JvAxgiIiIXKGVewAXO3bsGDZv3oyioiLU1NQgIiICEyZMwI9//GOMGjVK7uFJRqvTQK1RwWoR0GngLiQiIiJXKG4G5p133sH27dsxbdo0PPjgg1i2bBkOHTqEH//4xzh9+rTcw5OMSqWy60jNGRgiIiJXKG4G5vrrr8evf/1rBAT0LrEsXLgQt99+O95++2383//9n4yjk5YuLAAdzV3MgVGI9uZOWDotCE8IkXso5EdO7a7C4f+WY9I1YzD28mS5h0M0bChuBiY3N9cheAGAUaNGIS0tDXq9XqZReYcu1JbIazJaYDFbZR7N8NZa14EPH/saG36+A2cP18k9HPITJqMZO189goaKFux89QhMRrPcQyIaNhQXwPRHEAQ0NjYiMjJywPvU19ejtLRU/M8fgh0m8irH8a1nYGw1QbAKOPxxudzDIT+h31cLk9ECwHYiot9XK/OIiIYPxS0h9WfLli2oq6vDHXfcMeB9Nm3ahHXr1vW5vry8HBaLxYujc1+HuU38d8mh4wiJC7jEvQdmMBhQUlIi1bAUzRvHKlgFHCs8J16uOtqAom8OQxcp/58H31tlO/qZY8BS9NkJdMU0D/o4fzxWTwyn4+WxSiMnJ2fQ+8j/CT0IvV6P5557DhMmTMCSJUsGvN/y5csxZ84ch8etXr0aY8aMQXZ2ti+G6rKW/cdQd9gWxIxMHI2k7Gi3nqekpMSpN3so8MaxniuuR1frGccra0OQMztD0tdxB99b5Wq7YMTuCseZ3uYKI1KT0hEaE3TJx/rbsXpqOB0vj9V3FB3ANDQ04Be/+AVCQ0Pxu9/9DhqNZsD7xsXFIS4uzoej85xjNV5upZbLya/P9b1uxznkXTsWKpVKhhGRPyjbVQUItn8HRwaio7kLEGzXT16WLu/giIYBxebAGAwGPPbYYzAYDHj22Wf9LjhxBnNg5NfVbkL5dzUAbA02E7Nss2AtNe04f7JJxpGRkgmCgJM7egPfefdOFv99csc5CIIgx7CIhhVFBjCdnZ14/PHHUVlZiT/+8Y9IS0uTe0he4dCRupUBjBzKv6uBpcu2Ayx99ghkLxwp3mb/BUVkr6G8BU3nDACApHHRGJkbh8TuJeCmcwY0lLfIOTyiYUFxAYzFYsGTTz6Jo0eP4qmnnsLEiRPlHpLXcAZGfvZBSmZBCsbMTIJWZ1uqPL2nGuYuZSaAk7zslx0z8lMAAJnd/7/4diLyDsUFMC+++CJ27dqFWbNmobW1FV988YXDf0MJGzrKq/V8O2qONwIAIpNDET82EgFBWoyZlQQA6Go3Q7//vJxDJAWymq04tbsKAKAJUCO9+/dlzKwkaAJsH6mndlfBytpORF6luCTesrIyAMDu3buxe/fuPrcvXrzY10PyGsckXgYwvmZ/lpxVkCIm7Gbmp4gzMyd3nMPY2SNkGR8pU+WhOhi7l3xTpyUiMMT2d6wLDcDoaQko31MDY6sJlYfqkDotUc6hEg1pigtgnn/+ebmH4DOOS0jcheRLgtUuCVMFZMzpLQE/YnwMwuKCYajvwLnDdWhvNCIk+tLbYmn4sA98MwtSHG7Lyk9B+Z4a8X4MYIi8R3FLSMNJQLAWKrXtrJ8zML5VU9qI1roOAEDKxFiExgaLt6nUKmTMtQU0ggCU7aySZYykPEZDF84csC0rBkcGIiU31uH2lElxCIqwLQ2fOXAeRpZHIPIaBjAyUqlU0IXaJsEYwPiW41n0yD63259Zn/xa+dtiBUGAoaGDeRdeVr6nBlaz7Xdh7JxkqDWOH6FqjVqczbOaBXE2hoikxwBGZrruRF7uQvIdc6cF5d9WAwACgjVIm953mj8yKVSsCdN4VvnbYr97pxTvPrANW9cUKT7Y8mcX71rrj0Pwy634RF7DAEZmPbVgutrNsFp49uwLFXtrYOqwbY8eM2uEuG36YvZfRCcUvC229Xw7jnxqa0Cp338e1SUXZB7R0NRc3YbzZU0AgJjUcMSOjuj3frGpEYgZHQ4AOF/WhObqtn7vR0SeYQAjM/tE3q42s4wjGT5O7HDcfTSQ9MvstsXuqoJFocszxZ+Uw37S5dCm0/INZghzWHacO/DvDdBbG+bixxGRdBjAyIzF7HzL0NCBqqMNAIDwhGCxemp/AkMCkNq9vNRpMKGySHk1YTqaO1G67azDdeeK61FfPnhHZHKeYBVQttMWiKjUKoy127XWn4zLR6CnjVbZzioIVi7rEUmNAYzMHNoJcMeC15Xt7G3Al2lX+2UgWQrPZzj6uR4Wk21mKDyhdyfVoY85CyOl6uMXYKg3AgBGTopDSJTukvcPiQ5CyqR4AIChvgPVx7ms5w0ntp3Fpie/wdnDdXIPhWTAAEZmvi5m13TOAEN9h9dfR4kubsBnX/p9IMm5cQiJtn1ZnTlYh46WTq+Nz1VdHWaUfKEHAKg1Kix5fAaCI21J4RXf1qC5hrkXUinrp3XAYDLze2dpyriMJLnmmjZ8/eoRnD/RhMIXDqGrg0vwww0DGJnZBzBGLwcwFXtr8cFjX+ODx77GhTOtXn0tJao71SwmVCaNj0F4fMigj1Hb14SxCDi1u9qrY3TF8a8q0dVu+9DOmJuMyKRQTFiSBsBWv6b4k3IZRzd02Hat2bZDBwRrkTotwanHpU5PRECwrUxC+bc1MHeyr5aUij4sE5fmOg0mHN1cIe+AyOcYwMhM56N+SBazFd++dQyCAJiMFux9t9Rrr6VUJ7b35opkOXkWDVzUpE8hy0gWk0XceQQVkHtNOgBg/BWjERBs21V1YvtZtDca5RrikFGxtwYmoy34SL8sCdrA/netXUwbqBH7apmMFlTsq/XaGIebpnMGnNrlWGCy+JNy5hEOMwxgZOarJN7Swkqx8iwAVB6sQ80wWpc3d1lw+hvb7IlWp0Fa9xeLM6JHhiMuPRIA0FDRoojZq7KdVWhvtC1npU5PRHRKGABbTtX4K0YDsBVSO7JZL9sYh4qTX/d+UTqz7GhP6TlU/urAB2Xizrueysdd7ebeoJ6GBQYwMnNM4vVOAGMymlH0YVmf6/e+e2LYFD07c+C8uNySNiMRgcGutQHLKlDOtlirVcDh//Z+UE9elu5w+8QlaVBrbcnJx748g652npW6q+2CEVVH6gEA4fGX3rXWn8SsaITH25Krq47Uo+0CZ8Q8deFMK07vsZ2MBEUE4upfzYRaY/t9P7K5AsZWboYYLhjAyMwxidc7f3hHP9ejo9n23KnTEhCZHAoAqD3RiMqDwyN7/1IN+JyRPnuE+CFZtvOcrEUH9ftqxVyeETkxSMiIcrg9JDoImfm29gimDjOOfXnG10McMk7tqhLP9DPyB9+1djGVWiUm/QoC+ix7kOv2f3BS/PfkZemIHhmOrPk9v+8Wh+CehjYGMDLz9hKS0dCFw91balUqYPqN2Zh+fZZ4+771J4Z8jYr2pk6cPWQ7iw6NDUJyTuwgj+grKDwQo6fakjc7mrtw7nC9pGN0liAIOGxXqO7i2Zcek64ZA3R/1x75rALmLiaQukoQBMfA18Xlo97H9e5G8oe+WkpWX94M/V5bLlFIlA7jr7Qtl075/lix6GTJF3q0NytntyB5DwMYmQWGBIhfNN5YQjr8cbm4dJJZkILolDCkzUhEfHdOx4UzrTj1jXJ21nhD2a7eQmIZc1PEDuCuUkJrgeqSC6g7bStSF5sajpRJcf3eL3JEKMbMtOX5dDR3cRuvGxoqWtB41gAASMyORkTi4LvW+hOReFFfrQpl99VSsv3v282+XDtWTKgOjQ3GuIWjANh2jR1mNephgQGMzNRqFXQhtlkYqQOYtkajuLVQrVVh6opMALYu2NNv7J2F2f/eCcWWyfdU39ovl66geimjJseLCYP6fbWydBC3bxMwafnYSy5p2M/OHP5vOaxDfKZNalLMvvQ+3nEWhlx3/mQjKotsS96hsUEYt9Cxi/zka8dCE2j7Sjv25Rm0cQfekMcARgF6lpGkXkIq+rBMrNKac2UqwuJ6K7WmTIxD8gTbUkrr+Q6UFlZK+tpK0aBvQWOlbddQQmYUopLD3H4utVaNjO4S8lazICYS+kp9eTPOFXcnlCYEY8zMvl207cWlRyJ5ou09bqltR8V3NV4f41BhNVvFmj+aALW4HdpdYy4b0dtXa3c1rBYGk66yn32xLRk5bmcPidIh58pUAIDFZMWh/5zy6fjI9xjAKEDPTqTONpNk+SjNNW1ij5yAIA0mX9s3V2KG3SxM0cZTMBmHXiVLh9kXN5J3LyZnTRj79gCTrkmHWjP4n+/k5b3v+6FNp5l/4aTKQ3UwtvQkvic67BZ0hy40AKO7C+AZW7rQdHp4VsN2V83xCzhXbOthFhYfjMx5I/u936RlY8Tu8scLK4dt1fHhggGMAoiJvALEfBVPHXj/JITus7yJS8cgOKJv75b4sVFIm2E7i+9o6hTL0g8VFrNV3PWhCVAj/bIRHj9nbFoEYkaHAwDOlzWhqcrg8XM6o7mmDRXd1WCDIwOdDsaSJ8QibkwEAFtOx7kjDV4b41BS5lD7xf1lR3v2wW/dYbZ5cJYgCNj3Xu/sy9QfZECj7f+rKzhChwnfs83CWM0CijZyFmYoYwCjAI47kTzfSt1Q0SJOfweFByB3adqA9512fZbYNffQptOy5HV4y9mDdTC22o5n9LQEj8+ie8gxC1P8Sbm4nXfCkjSnq8GqVCqHWRgmNw6u02CC/oBtp0tQROCAidKuGpkbJ+ZQXTjRPqT+1rypuuQCao7Zim5GJIUgY5CAMveaMWILhxM7zqKltt3rYyR5MIBRAPsv1p4vXE/s23BC/Pfka8fadjoNIDolTDyb72o34/B/h84XnP1OIVdaBwxm7NxkcSdT2c4qryfHtjcaxTYIAcEasdKus1JnJCEiybaDpupoA+pONUk9xCHl9J5qWM3du9bmJDu1VOcM+xwqwQKc/nZo7/6Tgm32pffzbOoPMwZ9P4LCAjHxqjTb4y0Cijb2LeJJQwMDGAXQhdv1Q/Iwkbfm+AWxOF1obJBTX3ZTV2SKlVuPbK4YEv1zjK1dqDxwHgAQHKWT7CwaAEIidRg52fZ8bReMqD7q3WWZI5v14hfq+CtGuzyTpFarMMluR5J9Lg315WnRw0tRYl8tJTt7uB7nTzQBAKJSwpB+uXPLeblL08S/k7Kvz/lsqZd8iwGMAkjVTkAQBOx91+5sZUWGU0sNYXHBvdn7XdYhsW5sv9NDyrPoHr5qLWA2WsVKumqtChO7u027KnNuMkKibHlQFXtr+YE+gObqNpw/2QQAiBkdjtjUCEmfPyY1HNGjunOoTjaJFZWpL0EQsN8+92VFBtRO1nAKDAlA7tVjup8H/bZSIf/HAEYBHNsJuB/AVBbVofZEIwAgMjnUpdoVk69NR0BQb/Z+S61/f7B68ywaAEZP7c2pKf+uxmv9hmoOtMLU0V2IMH8kQqKD3HoeTYBGnFaHAJZbH0DZzt7fmwwJlx17qFQqh6Rg+9eTg8loxrdvH8fe9SdgMSmrWvOZA+dR3120MWZ0uFiY0VkTlqQiKNz2N3rqm2pcqJS/CStJiwGMAkiRxCtYBexd3zv7Mv36LJdmHYIjdJi4tPuMxeJ45uNvGs+2ih98sWkRiOk+45WSJkCD9Nm2XU2WLivKvVBjxdxlQfW33VVbVd3tATwwbtEoBIbYkhvLvj7HxoIXEayC2HlapQIyLvd811p/MuYki9W3T+6skq2Vh2AVsO2lwyj+pByHPjqFXa+XKGabvWAVHOq+TFuZ6XIF7YAgbe/SqQAc+MB/P9OofwxgFECKJaRTu6vEgm1x6ZHi9mhX5C5NE4OpU99Uo0HvnyXPT0hc+2Ug9s/tjXyGk1+fg6nNVohwzMwkRI4I9ej5AkMCxJwoq0XAkc8qPB3ikFJTekGsG5IyKd7t2a7BhEQHISrd9tyGug7UlF7wyusMpug/ZWJfIQA4se0sjm1RRuPPir01uKDv/TzrqaHjqpwrUxHcs3T6XS3bOAwxDGAUwNMlJKvF8Wxlxg1ZLnfNBWxfcHnfH2u7IDjuZvIXVosVp3Z2n0VrVBjrpbNoAIgfGykGFTXHG9F6XrrtmlargGK7ZZ6Bmja6asJVaWJF2ONbz3Arr52TXqj9MpD43N6K0Pav6ysVe2tx4P3uvBC7j4pv3jiGqhJ5awVZrQL2v9+bszJtZaZbn2cAoNVpHMoI7OcszJDCAEYBPO1Iff6gAa3nbWeOyRNikZLr/o6b8VeMRmis7eywsqgONcflOTt017kjDWhvsnWiHT0lod8CflJRqVTImuedZN6K72rE+hXJE2MR191801MhkTpkdVcxNRktKPlyaBUvdJe504Ly7m3NAcFapE53fQbTFTHZwQgItuWclX9bDXOn7/JPGs+2YvtLh8TLM27MxqRl3cvHVgFfrSlCa518tVNOf1ONpnO2JPOEzChxx5+7xi0chdAY22famf3nWUZgCGEAowCeLCGZjGZUft0sXp5+Q9Yl7j04baAGU1dkiJf3rj+hmHVxZ5zcLl0DPmc45DPsOCdJPoMgCA5NG+3PIKWQe/UYsXjh0c16mLuUlbwph4p9tTB12H4O6ZclOV0o0F22/kq22UFThwX6/bWDPEIaRkMXtvz5AExG27GOvXwEJl0zBtNvyBYDBWOrCVv+ckCW1iJWi9UhV2Xade7PvvTQBmp6Z5bh2FOJ/BsDGAVQa9Ri5UhXA5iSL/QwGWwfRmkzEpGQEeXxeDLzUxCZbFsaqS1txNnuujJK19lmEr8IdGEBGDUl3uuvGRobjJTuhomtdR2oKW30+DnPHWkQ1+pDRwSKTTelEpEYgjHdbRWMLV1ikbzhrEzCztPO8nVNGKvFisK/HRRn9mLTIpD/k1yoVCqo1SosuC9PLHh4Qd+KHS8X+/zkpWxnFVpqbONLGh8j2e9+1vyRCIu3NbM9e6he3K1J/o0BjEK405G602ASz9RVKltbACmoNWpMt3uuvRtOyLZTwhXle6rF7ttj5yQP2C9Fag5fRBIsI9mX+0+5PMLjM9D+2OfUHP5vOawWq+Sv4S/aGo29Xb7jg5GYFe2T103Kjha/VM8V16PNywUkv/t3qdgQMSgiEFf+fKrY+BCwfQZd+cg0u6WtGhz6yHdFD61mq0O9lukSzL700GjVmPIDu1kYP95lSb0YwCiE2JHaYHL6rOfwf0+LzR8zC1IQnRI2yCOclzYjUcy7uKBvxek9yi977q3WAYNJm5EkWT7D+bImVHVX9o1ICkFsdogkY7xYbFqEuGRgqOvA6T3SbwP3F6d2Vol9pjLyU1zerusulVqFzLndrQUEiI1HveHk1+dw5NMK2+tqVLji4SkIiwvuc7/olDDMv3eyuCy6770TONNd0drbTmw/i9a67l1gubFIGhcj6fNn5qcgIrG3pYbcycrkOQYwCtEzAyNYBbFw2aW0NxpxZHMFAEClsbUDkJJKpcIMu3ya/e+dhNWs3LP05uo2seR49KgwxI6RtoLqpWh1God8hoq97gcDh+3K/E9alu7VL1P79gKHPz7tV7lOUhEEwbHooZd3H10s46LZO2+8B3WnmrDz1SPi5ctvy7lkcJA6LRHTruv+PBGAwhcPovGcdys3W0wWFP2ntwL4tOukmU22p9aoMcUuv2//eyeH5e/8UMIARiFc3UpdtPEULF22gCJpWni/Z1OeSsmNE9egW2rbUbpNubkSJy/KYfDGssulSNFaoKnKgIp9thyekCideHbuLSPGxyA+o3uW7Uwrzh6q9+rrKVGDvgWNZ21fzolZ0YhI9KzWjqsik0KRkBUFAGisNEhee6m90YgtfzkgLq2OWzTKqf5oedeOxZhZtsq3pg4Ltvx5v8d92i6ltPAs2hpsS2ijpsRLksvXn7GXJyMqpTe/r2fpkPwTAxiFCAqza+g4SADTUtuG44WVAICAIA1GzpFmi21/7Hc1FX1Y5tPtns4SrIJYkl2lgtjx15cSs6MRntCdz3CkAYaGDpef4/B/y4HuE8KJV6VBE+DdnTAqlQqTl/XmBRza5P89sFxV5sPaLwOxz6Eqk7AmjMVkwZd/LUJ7o62sQGJ2NGbfluPUY1UqFQruzkXMaFsV65aadhS+cNArndfNXRYctJ99WSntbLI9tVrlMFvNWRj/xgBGIexnYIyDnOnsf+8khO5GhROXjkFAqPe+6BIyopDaXdW3vakTRz+v8Npruav62AUY6m1nb96soHopth433V9Egm03hSvaLhjFnTCBIVqMWzRK6iH2K3VagrjjrOZ447DanWE1W1HWnXeiCVCLO7N8LX3WCLG4YNmuKkmWagVBwK7XS8TGlKGxQVj08BSXEtsDgrS48pGp4mfT2UP12Le+1OOxXezYl2fE2k2pMxIRN8Z7J2SArap1T2BWd6oZlUX+scuS+mIAoxDO1oJp0Lfg1G5bQq0uLAC5S9O8PbTu3QC2fx/adFpx1VtP+qh1wGAu3hbrypndkc8qxO7Z469MRWBIwCCPkIZKrcLkaxxzYYaLs4frYWyx9R4bPS3B4W/Ql3RhARg91VYq39jShbMSLGsc23IGJ7qXfDUBalz5s6kIiXS9qGN4fAgWPTxFzMU6/HG5GPRJwWQ099Y8UgHTJM7l64/q4lmY9zkL468YwCiEYw7MwA0d7cv7531/rE++6KJHhovJhl3tZhz+r3K+5ExGs9hIMTBEi1Q3e6ZIITwhBEnjbcmRzdVtqDvVPMgjbDoNJhzfautBowlQY8KSVK+NsT9j5yYjJMb25abffx6NZ4dH196L86bkJGVNmKqSBnzzxjHxcv5duR5Vck7OicVlt4wXL3/9SrHYLNVTJV/oxSAyfdYIcWbE21KnJyCuO9G/oaIFFXt9U0iQpMUARiGcaSdQc/yCON0ZGhvkVDKeVKauyIRaazsLO/q5Hu1erlnhrPJva8S8nPTZI7xeQXUwWW58EZV8qRcro2bNG+nWmbInNFo1cpf2dro+bNeDaajqNPQWPQyKCMRID9pvSGHkpDgERdjy4M4cOO/2LGdrXTu2/rVIrNs0adkYSXLCchaPRtZ8WwsKi8mKLX85gPbmTo+es6vdJP6uqVRwqADubSqVyiHX5sAHJ/2i1hU5YgCjEIMtIQmCgL3v9s6+TF2R4dMv6/D4YDFgMnc6bnmUk5LOogEgbVaSWBzs1O6qQcv0m7ssOLrZ1o9IpbKV+ZfDuIWjxN/Bsl1VbiUh+5PT31bDarZ9YWXMSYbaR0UPB6LWqsVAw2Kyin2ZXGEymrHlzwfEz4+Rk+Mw/YZsScanUqkw5/YcJGRGAbDlbG39axEsHuTrHN2sF8c6dk4yoiSsY+WMkXm9u50aKw1+UeuKHDGAUYjBtlFXHqwTEywjk0Nl+bLOu3YsAoJsX87Hv6oUS5LLpbWuHdUltmaTEUkh4oernAKDtUjrTnruajcPWgTsxPazvVPos0eIhbZ8LSBIi5zFtgBVsAhi0bOhSmmBLwBk2O2COuHiVnxBELDj5WJcOGNb/otICsGC+/OglrCOkCZAgysenoKQaNsMYW1pI775V4lbz9VpMKH40+7ZF7UKU37ou9mXHiqVClOvs5+FKRvWFan9EQMYhdDZb6O+aAlJsArYt7539mX69VlQa3z/1gVH6jCxe6lBsAiyN0Vz2AJb4PvaLwNxtrWA1WJ1WK6ZdI20TRtdlfO9VGgCbb9Xx7+qhLF14Fwsf9ZcY1/0MBwxqb7JuxhMbGoEokfZZiHOn2hCc02b04899NFplH9rywULCNbgykemeSUpOSQ6CFf8bKq4a+r41koc+/KMy89T/Gm5QxXxyCTf1t/pkTIxFknjbK0jmqvbcGoXZ2H8CQMYhdCFasV/XzwDc+qbavHMKi49UjzDl0Pu0jRxtujU7io0nJG28JazHCqoqoDMuco4iwaAERNiERpr28p99lD9gLkCp/fUwNBdOn3k5DjEpvmuenB/giN0yJ5v275t7rSgZIte1vF4S9lFlXeVEviqVCqH32Nnt+Lr99di33vdJzgqYP69kyVtK3KxhIwozL1zonh5979KUHP8gtOPN7Z04Wh3FXG1RuXQo8jXVCpVb9VhAAc+VHbFcXLEAEYhNAEaMXfCPoCxmK3Y/17v7MuMG7Jk/cANDAlA3rXdHzgCHGaGfKm2tFFcwkrOifVKJWJ3qdUqZHR/EQlWAaf6+SISBMFhy/Lk5fLOvvTIvTpN3DJ7dLMeJuPgbS38iWAVcLL7/ZCr6OGljJ2bLJYsOPn1uUETSxvPGbDt74fEAojTr8tC6jTvn+BkFqRgYncJB8Ei4Mu/FsFQ71ze1OFPTvcmrc8fifB4eZZNe4wYHytWHG893+Hy8h3JhwGMgogdqe22UZcWVqL1vO2DIXlCLFJk3i0BAOOvHI3QGNsMQ2VRHWpKfV/8zCGHQcbaLwOxr+p6op+aMGcP1YuzagkZUZI3rnNXeHwIxl5uK+jWaTApun2EO2pKG8VZr5RJcbIUPbyU0Ogg8W/cUNdxyb+tzjYTtvx5P0wdtmBgzKwkTL7Wd4HwzB9lIyXX9sVvbOnClr8cGLRSd3tzJ0q+6C0ZMOX78s2+2LOfhTm4sQwWk/IqjlNfDGAUpDeAsXWkNndaULSxd7ePfVl/OWkDNQ5bHvetL/VpIShzl0XsnhwQpJF1SW0gUclhdjscWvv0uLEv2z9pWbpiljEAx1ycI5+WD6kpdSUm717s4gaP/bFaBRS+cBAtNbZZyJjR4Si4O9env0dqjRoLHsgTW2g0VLRgxyvFl/wsOLzptBjkjFs4CqGxypg5TcyKxsjJ8QAAQ71xyAXuQxUDGAXp6YdktdiCl6OfV6Cju8R22oxErzU4c0dmQQoiR/SWoPdlI0D9vlqxY3fazCQEBGkHeYQ87GeG7GvC1J5oRM3x3h1lchbf60/M6HCMmtL7YX7qm6GR2GjutIjbkwOCNT5ZanFH2vREBATblpPLv63udyv+vvWl4t+cLiwAVz4yVZa/g6CwQCx+dJq4O/H0N9UD1hFqu2AUE341gWpMvlYZsy89HGZh/nNq0BIIJD8GMApiv2ugpbZdLLGtUgHTrlfG7EsPtUaN6df3/sHvXV/qs0JQJ7b3BgNZ85R5Fg0A6Zf19rg5tbtanMk4ZJ/7sixdzDlRksnLHNsLDIUiX/r9tXbLLSPEnDOl0eo0GDPLtoxn6rBAv8+xSmzZrioc/rh3C/Kih6fImkcSPTIc8+6ZLF7e+24pKov6lg84+NEpsSt2zpWpCInybcHGwcSnR4onE+2NnWJ1bFIuBjAKYl8LZu+7pQ7bDL25q8BdaTOTxHLcF/StPikE1dliRtUR25lnWHwwkrKVkTvSH11YAEZP6+1xU3moDo1nW3Fmv+3DPTQmCGMVlkTaI2lcDBKzbNtLG88acKafLyR/4w/LRz3sc6jsx11/uhlfv1IsXr7slvFIzon16dj6kzYjsXdZWQAKXzyEpiqDeHtnsxmlX1UCsAVok5bJU7BxMPZ1YQ5+dHrIJbEPNYoLYNrb2/Haa6/h0UcfxdVXX42CggJ89tlncg/LJ+wDmJ7pYbXWsfGYkqhUKky/sbfS5/73vL8Fse5IG3qW2DPzUxQ5e2HPvrXAiR3nHKbXJy5Nc6k7sK/Zf8n0nPH7q7ZGI84dtg98o2Ue0aUlZceIO+vOHa5He6MR7c2d2PKXA+IsRtb8kWLxQSWY8oMMsXN9V7utKnBXu21H5dmdzWKz0glL0hAcoazZlx6xoyMwZlYSANtJR8kWzsIomeI+PZubm7Fu3Tro9XpkZPi+OqOc+is8lXNlqqK2CF8sZWLvFsSW2naUbvde8psgCKg73Fvcy/4sValSJsUhuHuqvPLAebGTry40AOMWjpJzaIMaPSUB0SNtM3+2vB3na30ozaldVb2B79xkxQe+KrUKGXNtv9+CYAt+t/61CG0XbD3IEjKjMOf2HEUlf6vUKsz76SSxGF9zdRsKXzxkKxx4yDYbExCsRe7VaTKOcnBTV2QA3T/Wwx+fRlcHZ2GUSnEBTGxsLDZu3Ij33nsP99xzj9zD8Sn7GRjAtsPGl9si3aFSqRx2RxV9UDboVkp31Z9uRke97YwuMTsaEYnyVO90hVrT2+PGahEgdJ+F5nwvVbHJxz1UahUm2eXC2Ofu+BOHoodw3OWjZPbLXPs3nEBt95bqkGgdrnh4CjQBysvhCQzW4sqfTxVPxiqL6vDf334LoXtiNndpmrhZQamiR4Zj7OW2v9lOgwlHP6+Qd0A0IMV9ggYGBiI2Vv41XTlcHMBMXDpGsVOt9hIyopA6IxH6vbVob+rE12uLETNa+vLs5440iP/OUmDtl4Fk5qeg+JPeJRhNoBoTFqfKOCLnjZ09AvvfOwFDvRGVRXXY//5JaAO9c95Te74ZpjLpm4R2dVjQWGmbAUjIipKtbL2rIkeEIiEzCudPNomzR5oANa742VTF1a+xF5EYioUP5mHzH/dCECDupNSFBmDiVWnyDs5JU3+YgdPfVEOwCij+b7lLPaVc/T0WrLYCi1arAAgCrN2XL/7PahVs9xUuvq378X2ut92mUttONFVq+/9sJyhq9UXXq3pvc7zd8TnUahWgBurqmqFrqhIDPl9TXADjrvr6ejQ09H7B6fX+VwbdPoDRhQUgt7vSpT+Yfl0mzuyrhSDYdtyc2u29hF5NoFpcp/YHMaPDEZsWgYYKWy2Y7AWjEBSh7LPQHmqtGhOXjsGeN44BAIo+LPPq651Bk1efX+nJuxfLzE/B+ZNN4uW5d05UVDmFgaTkxmHWzeOw583j4nW514xBYIj0/Zm8IXJEKDLzk3Fi+zl0tZux913XKo57+/dYSbpq1AxgPLVp0yasW7euz/Xl5eWwWPxjP7/ZaIVGp4KlU0BKQTjKKpxrlmgwGFBS4l5XWCklTA1D7X7D4Hf0UPykUKd/NkoROzUQDRWANkSN4Cyz0++XEt5bIckKXaQGnc3+8Xc0kIAwDUzRLbL/PAHn31dzjBWB4Rp0tVqQPDsCprhmlJQ0+2CEnlONFpCQF4bzBw0IjFRDk9qhiJ+9s8JyAc0e2+cxDayjo90r72tOTs6g9xkyAczy5csxZ84c8bJer8fq1asxZswYZGdnX+KRypLxlwy0N3ciLi3S6ceUlJQ49WZ727hsK2qON4rbv72huu4cZi3Og1rBu3f6lQPkXtYKXWiAS9P/SnlvM5/JQu2JRjGXwRsqz1Zi1EjvJDar1EB8RhRCIpWxJOvK+5r5TCbaGo0ufSYoRU6OgLpTzahuqkRu3sTBH6AwWdmZqD/tWsNaV3+P7ZdsbMs4Ayzv2C/7qByvs/9PfdFtgjDQktRF1wu9y1G9S1aOt1kveo4zZyqROT5dtlYoQyaAiYuLQ1yc/H2CPBUSHaTo9e1LUWvU4o4kb2kvafC/4KVb9Ejp84J8JSg80OuVa9tDG5CWo8zquHIKjtQhWCGBl6tUKhUSMqJQX+JcZ22lCYsNRpiL7Q6G0+9xW3CDrH3c/PObgIiIiIY1BjBERETkdxjAEBERkd9RZA7MBx98AIPBIG6L3rVrF86ft/ViWbFiBcLClNcXiIiIiHxHkQHM+vXrUVNTI17esWMHduzYAQBYvHgxAxgiIqJhTpEBzIYNG+QeAhERESkYc2CIiIjI7zCAISIiIr/DAIaIiIj8DgMYIiIi8jsMYIiIiMjvMIAhIiIiv8MAhoiIiPyOIuvASKGzsxMAoNfrZR6J9505cwYajUbuYfjEcDpWYHgdL4916BpOx8tjlU5qaiqCgoIGvH3IBjA9lXxXr14t80iIiIjIVWvXrkV2dvaAt6sEQRB8OB6faWpqwnfffYcRI0YgMDBQ7uF4jV6vx+rVq/GrX/0Kqampcg/Hq4bTsQLD63h5rEPXcDpeHqu0hu0MTFRUFBYvXiz3MHwmNTX1kpHqUDKcjhUYXsfLYx26htPx8lh9g0m8RERE5HcYwBAREZHfYQDj52JjY7Fq1SrExsbKPRSvG07HCgyv4+WxDl3D6Xh5rL41ZJN4iYiIaOjiDAwRERH5HQYwRERE5HcYwBAREZHfYQBDREREfmfIFrLzZ8eOHcPmzZtRVFSEmpoaREREYMKECfjxj3+MUaNGXfKxn332GZ5++ul+b9u4caMis+OLiorw0EMP9XvbSy+9hAkTJlzy8XV1dXjhhRewd+9eWK1WTJkyBQ888ACSk5O9MVyP/OEPf8DmzZsHvP2DDz5AfHx8v7e99tprWLduXZ/rAwMD8eWXX0o1RLe0t7fj3XffRUlJCY4dO4bW1lY88cQTuOqqq/rct6KiAi+88AKKi4uh1Woxe/Zs3H///YiKinLqtXbu3InXX38der0eUVFRWLp0KW699VZotb77OHPmeK1WKz7//HNs374dJ0+eRGtrK0aMGIGFCxfixhtvhE6nG/R1HnzwQRw8eLDP9TNnzsSzzz4r5SENyNn3dqDf7dGjR+Ott95y6rXkfm+dPdaCgoIBn2P69On4y1/+csnXuf7668V2N/aWL1+ORx991L3Bu8iV7xml/s0ygFGgd955B8XFxViwYAHGjh2LhoYGbNy4ET/+8Y/x0ksvIT09fdDnuPPOOzFixAiH68LCwrw1ZEmsWLEC48ePd7guJSXlko9pb2/HQw89hLa2Ntx8883QarXYsGEDHnjgAbz22muIjIz05pBdtnz5ckyfPt3hOkEQ8Oc//xlJSUkDBi/2HnnkEQQHB4uX1Wr5J1Kbm5uxbt06JCYmIiMjA0VFRf3e7/z583jggQcQFhaGn/zkJ+jo6MC7776L06dP4+WXX0ZAQMAlX2fPnj343//9X+Tl5eGhhx7C6dOn8cYbb6CxsRGPPPKINw6tX84cr9FoxNNPP40JEybg2muvRXR0NI4ePYrXX38dBw4cwF//+leoVKpBXys+Ph533323w3W+PBFx9r0FbMH0Y4895nBdaGioU6+jhPfW2WP91a9+1ee648eP4/3338eMGTOceq3MzEzccMMNDteNHDnS9UG7ydnvGUX/zQqkOIcPHxa6urocrjtz5oywaNEi4be//e0lH/vpp58K+fn5wrFjx7w5REkdOHBAyM/PFwoLC11+7Ntvvy3k5+cLJSUl4nUVFRXC/PnzhZdfflnCUXrPoUOHhPz8fOGNN9645P3++c9/Cvn5+UJjY6NvBuaCzs5Oob6+XhAEQTh27JiQn58vfPrpp33u9+c//1m44oorhJqaGvG6vXv3Cvn5+cJHH3006Ovccsstwu233y6YTCbxuldeeUUoKCgQKioqJDgS5zhzvF1dXcLhw4f7PPb1118X8vPzhb179w76Og888IBw6623SjNoNzn73v7+978XFi9e7PbrKOG9dfZY+/PHP/5RKCgoEGprawe973XXXSc89thjHo3VU85+zyj5b1b+UzfqIzc3t09UO2rUKKSlpUGv1zv9PO3t7bBYLFIPz6va29thNpudvv+2bdswbtw4h5mb1NRUTJ06FYWFhd4YouS+/PJLqFQqXHHFFU4/pq2tDYKCSjgFBgY6NSuwfft2XH755UhMTBSvmz59OkaNGjXo+1VRUYGKigosW7bMYer5Bz/4AQRBwLZt29wev6ucOd6AgADk5ub2uT4/Px8AXPpbNpvNaG9vd22QEnH2ve1hsVjQ1tbm0mso5b119Vh7dHV1Yfv27cjLy0NCQoLTjzOZTOjo6HD59aTg7PeMkv9muYTkJwRBQGNjI9LS0py6/0MPPYSOjg4EBARgxowZuO+++wbNn5Hb008/jY6ODmg0GkyaNAn33HMPxo0bN+D9rVYrTp8+jaVLl/a5bfz48di7dy/a29sREhLizWF7xGw2o7CwEBMnTuyz5DeQG264AR0dHQgODsbcuXNx3333ISYmxssj9VxdXR0aGxv7bfw2fvx47Nmz55KPP3HiBAD0eXxcXBzi4+Nx8uRJ6QbrRRcuXAAAp5c3Kysr8b3vfQ8mkwkxMTG45pprsGrVKp/m/DjLaDTiqquugtFoRHh4OBYtWoSf/vSng/4N+vt7u2fPHhgMBlx55ZVOP+bAgQNYvHgxLBYLkpKScN111+G6667z4igHd/H3jNL/ZpX3F0D92rJlC+rq6nDHHXdc8n46nQ5XXXUVpkyZgtDQUJSWlmLDhg2499578eqrrzpE0Uqh1Woxb948XHbZZYiMjERFRQXWr1+P+++/H3//+9+RlZXV7+NaWlrQ1dXV7xlTz3X19fUYPXq0V8fvie+++w7Nzc1OffCFh4fjhz/8ISZMmICAgAAcPnwYGzduxLFjx7B27Vqncw3k0tDQAKD//I3Y2Fjx/QwMDHTr8T23K92///1vhIaGYtasWYPeNzk5GVOmTEF6ejqMRiO2bduGN954A5WVlXjqqad8MFrnxcbG4kc/+hGysrIgCAK+/fZb/Oc//8GpU6ewZs2aSwZc/v7ebtmyBYGBgZg3b55T909PT8ekSZMwatQotLS04LPPPsPf/vY31NfX45577vHyaAd28feM0v9mGcD4Ab1ej+eeew4TJkzAkiVLLnnfhQsXYuHCheLl/Px8zJw5Ew888ADefPNNn2W4uyI3N9dhqn3u3LmYP38+br/9drzyyisD7rbo7OwEgH6TyHr+oHruo1RffvkltFotFixYMOh9Lz47mz9/PsaPH4/f/e532LhxI26++WZvDVMSzr5fA30YdnV1Odz34sfLtcTiijfffBP79u3Dz3/+c4SHhw96/8cff9zh8ve+9z386U9/wscff4zrr79+0B16vnRxovGiRYswatQorF27Ftu3b8eiRYsGfKw/v7dtbW345ptvMGvWLKfeUwD44x//6HB56dKl+J//+R9s2LABK1ascGkZSir9fc8o/W+WOTAK19DQgF/84hcIDQ3F7373O2g0GpefY9KkScjJycH+/fu9MELvGDlyJObOnYuioqIB83h6tqGaTKY+t/X84TizVVUu7e3t2LlzJ2bOnOn2bqkrr7wSMTExfvHeevp+9XwI9tz34scr+b0GgK1bt+LVV1/F1Vdfje9///tuP0/PzpV9+/ZJNDLvuf7666FWqwcdqz+/t9u3b0dXV5dLy0cXU6lUuP7662GxWPrdNu9tA33PKP1vlgGMghkMBjz22GMwGAx49tlnERcX5/ZzJSQkoKWlRcLReV9CQgJMJhOMRmO/t0dERCAwMLDfacie6zz5mXnbzp07YTQaPfrgA/znve2ZRh7o/ep5P919vBJrHPXYu3cv/vCHP2D27Nkebx3tOTtvbW2VYmhepdPpEBERMejvpz+/t1u2bEFYWBguv/xyj56n53319d/ypb5nlP43ywBGoTo7O/H444+jsrISf/zjH51O3h1IVVWV00WHlKKqqgqBgYEONU/sqdVqpKen4/jx431uKykpQXJysqITeLds2YLg4GDMmTPH7ecQBAE1NTV+8d7Gx8cjKioKpaWlfW47duwYMjIyLvn4zMxMAOjz+Pr6etTV1Ym3K01JSQl+9atfITs7G0899ZTHybdVVVUA4BfveXt7O5qbmwcdq7++t/X19SgqKkJBQcElv8idIcf7Otj3jNL/ZhnAKJDFYsGTTz6Jo0eP4qmnnsLEiRP7vV99fT30er3DtuOmpqY+9/vmm29QWlqKmTNnemvIHulvzGVlZdi1axdmzJghFmqrra3ts/V03rx5OH78uEMQc+bMGRQVFWH+/PneHLZHmpqasG/fPhQUFCAoKKjP7f0da38/p//85z9oampyKiFUCebNm4fdu3ejtrZWvG7//v2orKx0yAMym83Q6/Wor68XrxszZgxGjx6Njz/+2GFZ8T//+Q9UKpXTCZS+VFFRgV/84hdISkrC//t//++SU+Z6vd7h59LW1tZn6l0QBLzxxhsA4HTBNF/o7OzsN5/hX//6FwRBcPj9HCrvLQB89dVXsFqtA86i9nesLS0tfZbFzWYz3n77bQQEBGDKlCleHXMPZ79nlPw3yyReBXrxxRexa9cuXH755WhtbcUXX3zhcPvixYsBAK+88go2b96M9evXi1tw77nnHmRlZSE7OxuhoaE4ceIEPv30UyQkJOCWW27x+bE44ze/+Q10Oh0mTpyI6OhoVFRU4OOPP0ZQUJBDYuDvf/97HDx4EDt27BCv+8EPfoD//ve/+MUvfoEbb7wRGo0GGzZsQHR0NG688UY5DscpW7duhcViGfCDr79jve6667Bw4UKkp6cjMDAQxcXF2Lp1KzIzM7F8+XJfDX1AH3zwAQwGgzhdvGvXLpw/fx6ArcpyWFgYbr75Zmzbtg0PP/wwVq5ciY6ODvz73/9Genq6Q7n2uro63HLLLViyZAl++ctfitffe++9eOKJJ/DII49g0aJFOH36NDZu3IhrrrnG41lKqY9XrVbj0UcfRWtrK2688UZ88803Do9PTk52+NK45ZZbkJeXh+effx6AbQvqU089hSuuuAIpKSno7OzE119/jeLiYixbtqzfra3eMtixtra24s4778QVV1wh7vr77rvvsGfPHsyaNQtz584Vn0vp760zv8c9tmzZgri4uAGDjv6OddeuXXjjjTcwb948jBgxAq2trdiyZQvKy8tx1113+Wy5zNnvGSX/zTKAUaCysjIAwO7du7F79+4+t/f8YvVn4cKF2LNnD/bu3Quj0YjY2FgsW7YMq1atUmytkPz8fGzZsgUbNmxAW1sboqKiUFBQgFWrVg1aWjskJARr1qzBCy+8gDfeeEPsheRKnw45fPnll4iOjsa0adOcfsyVV16JI0eOiEmDiYmJ+NGPfoRbb72131kcX1u/fr1Df5cdO3aIAdjixYsRFhaGxMREPP/883jhhRfw8ssvi31V7rvvPqem4C+//HKsXr0a69atw5o1axAZGYmbb74Zq1at8tZhDWiw4wUgfvG9/PLLfR6/ZMmSAc96ASAxMRGTJ0/Gjh07cOHCBajVaqSmpuKRRx7xecDqzHt7+eWXY+/evdi8eTOsVitSUlJw11134cYbb3Sq3YVS3ltnjhWwzfSWlpaKicrOSk9PR2pqKrZs2YKmpiZotVpkZmbiqaeecmo3olSc/Z5R8t+sSlBSOU8iIiIiJzAHhoiIiPwOAxgiIiLyOwxgiIiIyO8wgCEiIiK/wwCGiIiI/A4DGCIiIvI7DGCIiIjI7zCAISIiIr/DAIaIiIj8DgMYIhpQdXU1CgoK8Ic//EHuoUjis88+Q0FBAT777DO5h0JEHmIAQ0QuefDBB1FQUCD3MPo11AIuIhoYmzkS0YDi4+Px5ptvIjQ0VO6hSCI/Px85OTk+6/hLRN7DAIaIBqTVapGamir3MCQTFhYmdhMmIv/GbtRENKDq6mrccMMNWLJkCX75y18OuHTUc3uPU6dO4c0338TBgwfR0tKC2NhYzJkzB7fffjsiIyP7ff6bbroJa9euxaFDh9DS0oL169djxIgR2LFjBwoLC3H8+HHU19dDq9Vi7NixWLlyJebPny8+12effYann3663/GtWbMGU6ZMEe/zxBNP4KqrrnK4T3FxMd58800cPXoUnZ2dSEpKwsKFC3HTTTchKCjI4b4FBQXIy8vDk08+iZdeegl79uxBR0cHMjIycPfdd2PKlCmu/qiJyEWcgSEip61atQqbN29GTU0NVq1aJV6fmZkp/nvnzp148sknoVKpMHfuXCQkJKCiogIffvghvvvuO7z88ssIDw93eN5z587hnnvuQXp6OpYsWYKWlhYEBAQAAF555RVotVrk5uYiNjYWTU1N2LVrF37961/joYcewooVKwAAGRkZWLlyJd5//31kZGRg7ty54vMnJSVd8rgKCwvx29/+FgEBAVi4cCGioqKwd+9erFu3Dt999x3WrFkDnU7n8BiDwYD77rsPYWFhWLx4MRobG1FYWIhHH30Ua9euRXp6uls/YyJyDgMYInLaHXfcgYMHD6KmpgZ33HFHn9ubm5vx+9//HpGRkXjxxRcdAoetW7fiqaeewj//+U88/PDDDo8rLi7GqlWr+n3OZ555BsnJyQ7Xtbe3495778U///lPXH311QgKCkJmZibCwsLEAKa/5+pPW1sb/vSnP0Gj0eCll17C2LFjAQB33XUXfvvb3+Krr77Cu+++i9tuu83hcWVlZfj+97+Phx9+GGq1bT/E1KlT8cwzz+DDDz/Eo48+6tTrE5F7uAuJiCTz+eefo62tDXfddVefWY9FixYhKysLW7du7fO4mJgY3HLLLf0+58XBCwCEhITgqquugsFgwPHjxz0a886dO2EwGLB06VIxeAEAtVqNe+65BxqNpt9t18HBwfjpT38qBi+AbSlNo9F4PCYiGhxnYIhIMkePHgUAlJSU4Ny5c31u7+rqQnNzM5qamhAVFSVen5GRIS4ZXayxsRFvv/029uzZg9raWnR2djrcXl9f79GYT548CQDIy8vrc1tiYiKSk5NRWVmJ9vZ2hISEiLeNHDnS4TJgS3qOiYmBwWDwaExENDgGMEQkmdbWVgDAxo0bL3k/o9HocDk6Orrf+7W0tOCuu+5CbW0tcnNzMX36dISFhUGtVqOsrAw7d+6EyWTyaMxtbW0AbLNA/YmNjUVlZSXa2tocApaBtpZrNBpYrVaPxkREg2MAQ0SS6fmCX7dunUtJrCqVqt/rP/nkE9TW1uLOO+/sk4Py1ltvYefOne4PtltPIHLhwoV+b++5fqjUwiEaKpgDQ0Qu6cn5sFgsfW7LyckB0LuU5KmeZSj7HUU9Dh8+PODYXJkB6dlBdfDgwT631dbW4ty5c0hOTu6zXERE8mIAQ0QuiYiIAACcP3++z21Lly5FSEgI1q5di/Ly8j63G41Gl4KbnkTg4uJih+u3bNmCPXv29Ll/eHg4VCpVv2MbyNy5cxEWFoZPP/3UYcyCIODll1+GxWLpUzOGiOTHJSQicsnUqVOxbds2/N///R9mzZqFwMBAZGRkYM6cOYiKisJvfvMb/PrXv8Ydd9yBmTNnYvTo0TCZTKipqcHBgwcxceJEPPvss0691uLFi/HOO+9gzZo1KCoqQmJiIsrKynDgwAEUFBRgx44dDvcPCQnBuHHjcOjQIaxevRojR46ESqXC9773vQFrwYSGhuJ//ud/8Nvf/hY//elPsWDBAkRFRWH//v0oLS3F+PHjceONN3r8cyMiaTGAISKXXHPNNaiursZXX32Fd955BxaLBUuWLMGcOXMAALNnz8Y///lP/Pvf/8b+/fuxb98+BAUFIT4+HldddRUWL17s9GslJCTg+eefx0svvYR9+/bBYrEgKysLf/7zn3H+/Pk+AQwA/OpXv8Lf/vY37N69G21tbRAEAZMmTbpkMbsFCxYgJiYGb731Fnbs2CFW4r3ttttw00039SliR0TyYysBIiIi8jvMgSEiIiK/wwCGiIiI/A4DGCIiIvI7DGCIiIjI7zCAISIiIr/DAIaIiIj8DgMYIiIi8jsMYIiIiMjvMIAhIiIiv8MAhoiIiPwOAxgiIiLyOwxgiIiIyO/8f1QEEyg5PsvXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "c49100a2", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "f672d9cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG5CAYAAAB802v0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABiRUlEQVR4nO3deVyU1eIG8GcYmBmYYR0QRMEN3BcsrVxwLbfK6tpiq7aZWl3t1s3ldrvp9abtaYtbXtG6pqbpL02910wkzQW31HBDBXFBdpgZmP39/YFMjAww8M4wAzzfz8cPM+96jgPyeM55z5EIgiCAiIiIiKrl4+kCEBEREXk7BiYiIiKiWjAwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBQMTERERUS0YmFxAr9fj7Nmz0Ov1ni4KERERuQEDkwtkZmbixRdfRGZmpqeL4nYXLlzwdBEaVHOqL+vadDWn+rKuTZen68vARHViMBg8XYQG1Zzqy7o2Xc2pvqxr0+Xp+jIwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBQMTERERUS0YmIiIiIhqwcBEREREVAsGJiIiIqJaMDARERER1YKBiYiIiKgWvp4uQHVKS0uxdu1apKWl4fTp09BoNJg1axZGjx7t1PkajQZLlixBSkoKDAYDunTpgqlTp6JTp04O77Vq1Srs3r0b+fn5CA4ORrdu3fC3v/0NCoXC1VUjIiKiRsZrA1NxcTGSkpIQGRmJuLg4HDt2zOlzrVYrZsyYgQsXLmD8+PEIDg7G5s2bMW3aNCxfvhwxMTG2Y7VaLf785z8jNzcX999/P1q1aoWioiKcOHECJpOJgYmIiIi8NzCp1Wps2rQJarUaZ86cwaRJk5w+Nzk5GadOncLcuXMxZMgQAMCwYcPwxBNPYOXKlXj77bdtxy5btgzZ2dn46quvEB0dbdv+5JNPuqwuRERE1Lh5bWCSyWRQq9X1OnfPnj0ICwvDoEGDbNtCQkIwdOhQ7Ny5E0ajETKZDBqNBtu2bcO4ceMQHR0Nk8kEQRAgk8lcVQ1Rrv2ej7yMEhg0RvS4tx0Ugd5RLiIioubGawOTGOfOnUN8fDx8fOzHtHfp0gVbtmxBVlYWOnTogJMnT8JoNKJ169b4+9//jr1798JqtaJbt2547bXXEB8f7/D6eXl5yM/Pt73PzMx0Sz0u/HoNZ3dfAQC079eSgYmIiMhDmmRgKigoQK9evapsr2ixys/PR4cOHXDlSnkYWbZsGaKjozF79mzodDokJSVh+vTpWLVqFcLDw6tc54cffkBSUlKV7ZcuXYLFYnFZPbSGEtvrc6fOI1jn77Jr15dWq0VaWpqni9FgmlN9WdemqznVl3VtutxV365duzp1XJMMTAaDwWG3WsU2g8EAACgrK7Pt++STTxAQEAAAiI+Px5QpU7Bp0ya8+OKLVa4zduxYDBgwwPY+MzMT8+bNQ7t27Rw+hVdf5gsXcfXX8tAUqY5G+64tXXbt+kpLS3P6m6spaE71ZV2bruZUX9a16fJ0fZtkYJLL5TAajVW2V2yTy+UA/ghQAwYMsIUlAOjWrRtatmyJU6dOObx+eHi4w5YnV5MH+tleG7Qmt9+PiIiIHGuSE1eGhYXZjTGqULGtomuuIvSEhoZWOTY0NBRardaNpaydQvVHK5leWzUAEhERUcNokoEpPj4e58+fh9Vqtdt++vRpKBQK2zxMFd1neXl5Va6Rl5eH4OBg9xe2BnJVpRYmDVuYiIiIPKXRB6a8vDxkZmbCbDbbtg0ePBgFBQVISUmxbSsqKsLu3bvRv39/W1dcbGws4uLisHfvXhQVFdmOPXToEHJyctC3b98Gq4cj8kpPxbFLjoiIyHO8egzTxo0bodVqbV1p+/btQ05ODgBg3LhxUKlUWLZsGXbs2IF169ahZcvyQdFDhgzBhg0bMH/+fGRkZNhm+rZarXjuuefs7vHKK6/g9ddfxyuvvIKxY8dCq9Vi/fr1iImJwQMPPNCwFb6FolILE7vkiIiIPMerA9O6deuQnZ1te5+SkmJrNRoxYgRUKpXD86RSKd5//318+eWX2LhxIwwGAzp37oxZs2YhNjbW7tjbbrsNH3zwAVasWIFly5ZBoVAgMTERkydPthsI7gnskiMiIvIOXh2Y1q9fX+sxs2fPxuzZs6tsDwwMxIwZMzBjxoxar9GnTx/06dOnXmV0Jx+pD2QBvjCWmmHQMTARERF5SqMfw9TUVbQy6TXskiMiIvIUBiYvJ785tYBRZ4JgFTxcGiIiouaJgcnLVQz8FgTAUMpuOSIiIk9gYPJyHPhNRETkeQxMXs5+LiaOYyIiIvIEBiYvZz8XE1uYiIiIPIGBycvJK60nxy45IiIiz2Bg8nKKQM72TURE5GkMTF7ObtA3u+SIiIg8goHJyykqdclx8koiIiLPYGDycvJAtjARERF5GgOTl7Mb9M3ARERE5BEMTF7OTyGFj1QCgPMwEREReQoDk5eTSCS2ySs5DxMREZFnMDA1AnJl+TgmdskRERF5BgNTI1AxF5PZYIHZaPFwaYiIiJofBqZGgAO/iYiIPIuBqRGQqzjbNxERkScxMDUClZdH4XpyREREDY+BqRGw75JjCxMREVFDY2BqBBR2XXJsYSIiImpoDEyNgF0LE7vkiIiIGhwDUyNQeQwTB30TERE1PAamRqDyU3KcVoCIiKjhMTA1AhVLowCAXsMWJiIioobGwNQIKJSVWph0bGEiIiJqaAxMjYCPrw/8/H0BcNA3ERGRJzAwNRIV45g4DxMREVHDY2BqJBS2wGSCYBU8XBoiIqLmhYGpkaiYi0kQAGOp2cOlISIial4YmBoJzsVERETkOQxMjYT9enIc+E1ERNSQGJgaCbvJKzkXExERUYNiYGok7Lvk2MJERETUkBiYGgn7Ljm2MBERETUkX7EXyMjIwPfff48zZ85Ao9HAarVWOUYikWDt2rVib9WsKSp1yek5eSUREVGDEhWYjh8/jjfeeAMmkwlSqRShoaGQSqVVjhMEzhskVuX15Djom4iIqGGJCkxLly6FxWLBm2++iVGjRjkMS+Qadi1M7JIjIiJqUKICU3p6OoYPH457773XVeWhatg/JccWJiIiooYkatC3QqFASEiIi4pCNfHz94VEKgEAGHQMTERERA1JVGC66667cOLECVeVhWogkUggV3IBXiIiIk8QFZimTp0KrVaLhQsXQq/Xu6pMVI2KuZj4lBwREVHDEjWG6Z133oG/vz82bdqE7du3IyYmBgEBAVWOk0gk+PTTT8XcilAxF5MOZoMFFpMFUj8OsiciImoIoqcVqFBWVoZz5845PE4ikYi5Dd1k/6ScCcpQBiYiIqKGICow7dmzx1XlICfYzcWkMUEZqvBgaYiIiJoPLo3SiMg5FxMREZFHuDQwlZWVIS8vD2VlZa68LN1UuUuOs30TERE1HNFryZlMJnz77bfYvn07rl+/btvesmVLjBkzBuPHj4efn18NVyBn2XfJsYWJiIiooYgKTAaDAdOnT8fp06fh4+OD1q1bQ61WIz8/H9euXcOKFSvw66+/4tNPP4VcLndVmZutWwd9ExERUcMQFZj+85//IC0tDcOGDcPkyZMRGRlp25eTk4MlS5Zg165dWLNmDZ599lnRhW3uyqcVKMcuOSIiooYjagzTzz//jI4dO+If//iHXVgCgBYtWuDtt99Gp06dsGvXLlGFpHIVE1cCgJ5dckRERA1GVGDKzs5G3759azzm9ttvR3Z2tpjb0E1sYSIiIvIM0YvvFhUV1XhMUVERFArOF+QKcj4lR0RE5BGiAlPXrl2xa9cuXLp0yeH+jIwM/Pzzz+jWrZuY29BNUl8f+CnKZ/fmPExEREQNR9Sg76effhqpqamYNGkS7r33XiQkJCA0NBSFhYU4duwYtm/fDrPZjKeeespV5W325CoZTPoytjARERE1IFGBqUePHnj77bfxwQcfYNOmTdi8ebNtnyAIUCqVmD17Nnr06CG2nHSTXOUHbV55YBIEgev0ERERNQDRE1cOHToUd955J/bu3Ytz586htLQUAQEB6NixIwYOHIiAgABXlJNuqnhSTrAKMJaaIVdyUlAiIiJ3Ex2YACAgIAAjRozAiBEjXHE5qoH9k3JGBiYiIqIGwMV3Gxm72b41HMdERETUEOrUwrRjxw4AwKBBgxAQEGB774xRo0bVrWTkkN16chz4TURE1CDqFJjmz58PiUSCbt26ISAgwPa+JhUDkxmYXENut54cpxYgIiJqCHUKTDNnzgQAqNVqu/fUcCp3yRnYJUdERNQg6hSYRo8eXeN7cj/7Ljm2MBERETUEUYO+jx8/jhs3btR4zI0bN3D8+HExt6FK7AZ9cwwTERFRgxAVmKZPn47t27fXeMx///tfTJ8+XcxtqBK7aQXYJUdERNQgRAUmQRCcOoazUbtOxcSVAGDQsUuOiIioIbh9HqYrV65AqVS6+zbNhp+/LyQ+5QGU8zARERE1jDrP9L1gwQK797/88guys7OrHGexWJCTk4MTJ07gzjvvrH8JyY5EIoFc5Qd9iZHzMBERETWQOgemymOWJBIJ0tPTkZ6e7vBYiUSCzp0745VXXqlzwUpLS7F27VqkpaXh9OnT0Gg0mDVrltNP5mk0GixZsgQpKSkwGAzo0qULpk6dik6dOlV7ztWrVzFhwgQYjUYsW7YMnTt3rnO5G8IfgYldckRERA2hzoFp3bp1AMrHJo0fPx6PPPIIHn744SrH+fj4IDAwEP7+/vUqWHFxMZKSkhAZGYm4uDgcO3bM6XOtVitmzJiBCxcuYPz48QgODsbmzZsxbdo0LF++HDExMQ7P++yzzyCVSutV3oakUMlQDB1MegssZiukvlzhhoiIyJ3qHJiioqJsr2fOnImOHTvabXMVtVqNTZs2Qa1W48yZM5g0aZLT5yYnJ+PUqVOYO3cuhgwZAgAYNmwYnnjiCaxcuRJvv/12lXMOHTqE1NRUPP7441i9erWrquEW8soDvzVGBIQqPFgaIiKipq/Ogakyd05cKZPJbDOK19WePXsQFhaGQYMG2baFhIRg6NCh2LlzJ4xGI2SyPx7PN5vNWLRoER5++GG0atVKdNnd7da5mBiYiIiI3EtUYKpgMBhw5swZ5OXlwWRyPBC5IdeSO3fuHOLj4+HjY99V1aVLF2zZsgVZWVno0KGDbft3330HjUaDZ555BikpKbVePy8vD/n5+bb3mZmZriu8E+zmYuI4JiIiIrcTHZi+//57rFixAjqdzuF+Tyy+W1BQgF69elXZXtFilZ+fbwtM+fn5WLVqFaZOner09Ac//PADkpKSqmy/dOkSLBZL/QvupOLSYtvr9NOXUCjUPNu6K2m1WqSlpTXY/TytOdWXdW26mlN9Wdemy1317dq1q1PHiQpMe/bswcKFC9G+fXuMHj0aX3zxBQYOHIiuXbvit99+w8GDBzF48GD069dPzG3qzGAw2HW5VajYZjAYbNuWLFmC6Oho3HfffU5ff+zYsRgwYIDtfWZmJubNm4d27drV+BSeq/hkZ+Hy7iIAQERIJDp3dTyI3R3S0tKc/uZqCppTfVnXpqs51Zd1bbo8XV9Rgem7775DaGgoFi9eDIVCgS+++ALx8fF48skn8eSTT2Lnzp1499138dBDD7mqvE6Ry+UwGqt2VVVsk8vlAIDff/8d//vf//DJJ59U6b6rSXh4OMLDw11T2HqQVxrDxC45IiIi9xP1PPrFixcxYMAAKBR/DDq2Wq221/fccw9uu+02h91X7hQWFmY3xqhCxbaKrrnFixejZ8+eaNmyJa5fv47r16+jqKjIdmxtCwt7SuXlUTjbNxERkfuJamEym80ICQmxvZfL5dBoNHbHxMXFYcuWLWJuU2fx8fE4ceIErFarXcvR6dOnoVAobPMw5eTkIDs7G4899liVa8yaNQsqlQrbtm1rsHI7i4O+iYiIGpaowKRWq+1aciIjI3H+/Hm7Y7Kzs906GWReXh50Oh1atWoFX9/y6gwePBjJyclISUmxzcNUVFSE3bt3o3///raxTG+88YbdeCYAOHr0KDZu3IipU6eiTZs2biu3GAq7Ljm2MBEREbmbqMDUpUsXnDt3zvb+zjvvxIYNG/DNN99gwIABOHHiBFJSUtCnT596XX/jxo3QarW2ULZv3z7k5OQAAMaNGweVSoVly5Zhx44dWLduHVq2bAkAGDJkCDZs2ID58+cjIyPDNtO31WrFc889Z7v+HXfcUeWeWq0WAJCQkODVS6NU0DMwERERuZ2owDRkyBAsW7YM169fR8uWLfHUU09hz549+Oqrr/DVV19BEAQolUpMnjy5Xtdft26d3cK+KSkptnmSRowYAZVK5fA8qVSK999/H19++SU2btwIg8GAzp07Y9asWYiNja1XWbyJ1E8KX7kUZoOFXXJEREQNQFRgGjRoUJXZtP/9739j69atuHbtGiIjIzFy5EhERETU6/rr16+v9ZjZs2dj9uzZVbYHBgZixowZmDFjRp3uOXr0aLfOYO4qikA/aA0WDvomIiJqAC6Z6buywMBAPP74466+LN1CrpJBm6eHQWeyTQ5KRERE7iFqWoEdO3YgOTm5xmMuXLiAHTt2iLkNOVAxjkmwCDCVmT1cGiIioqZNVAvT/PnzIZFIMHDgQPz973+3TQhZWUpKClatWtWgS6M0B4pKUwvoNSbIAvxqOJqIiIjEENXCBJSPW/rll1/w6quvoqCgwBVlIifIAznbNxERUUMRHZgefPBBTJo0CefOncNLL72ECxcuuKJcVAsFpxYgIiJqMKIDEwA8+eSTmDNnDkpKSvDyyy9j//79rrgs1cButm8NW5iIiIjcySWBCSifXXvhwoVQKBSYPXs2vvvuO1ddmhyo3CXHFiYiIiL3cllgAoDOnTtj6dKlaNu2Lb744gt8/PHHsFgsrrwF3aSwW0+OgYmIiMidXD4PU2RkJL744gu88847+L//+z8oFApX34JgvzwKu+SIiIjcy6UtTBUCAgKwYMECPPTQQ9Dr9e64RbOnqPyUnI4tTERERO4kqoVpz5491e7z8fHB9OnTMXLkSBgMBjG3IQfkt8zDRERERO7j8i65W3Xp0sXdt2iWZP6+kEgAQeA8TERERO7mli45cj+Jj8Q2jolPyREREblXnVqYBg8eDB8fH6xevRoxMTEYPHiwU4u+SiQS7N69u96FJMfkKhn0GhNbmIiIiNysToGpV69ekEgktjXjKt6TZ8gD/YDrgKnMAovZCqkvGwyJiIjcoU6BadGiRTW+p4Z161xMASFVFz8mIiIi8dgk0YjZzcXEbjkiIiK3YWBqxBSBnFqAiIioIdSpSy4pKaleN5FIJJgwYUK9zqXqsYWJiIioYdQpMK1cubJeN2Fgcg+FigvwEhERNYQ6BaaFCxe6qxxUD/JKXXJcT46IiMh96hSYEhIS3FQMqg85W5iIiIgaBAd9N2K3TitARERE7uGyteQsFguKi4thMjn+xR0ZGemqW9FN8sDKg74ZmIiIiNxFdGA6e/Ysli1bht9++w1ms9nhMVwaxT3kSj4lR0RE1BBEBabz58/jlVdegVQqRd++ffHrr78iLi4OYWFhOHfuHIqKipCQkICoqChXlZcq8ZVJ4SuXwmywcB4mIiIiNxIVmFatWgUAWLJkCdq2bYvBgwcjMTEREydOhMFgwBdffIHk5GTMnDnTJYWlquQqP5gNFrYwERERuZGoQd8nT57EgAED0LZtW9s2QRAAAHK5HNOnT0d4eDiWL18uqpBUvYq5mPRak+3vnoiIiFxLVGDS6XSIjo62vff19UVZWdkfF/fxQUJCAo4cOSLmNlQD+c0n5QSLAFOZ4zFkREREJI6owBQSEgKNRmN7HxYWhitXrtgdYzQaodfrxdyGasAn5YiIiNxPVGBq27YtLl++bHvfo0cPpKam4tSpUwCAjIwM7N69G23atBFXSqpW5bmYOHklERGRe4ga9N2vXz98/vnnyMvLQ3h4OJ544gmkpKTglVdeQWBgILRaLaxWK5566ilXlZduYbcAL5dHISIicgtRgemBBx7A0KFDERgYCACIi4vDJ598gq+//hrXrl1Dp06dMG7cOPTr188lhaWqFIFcHoWIiMjdRAUmX19fhIWF2W3r0aMH3n//fVGFIufJ7ZZHYQsTERGRO3AtuUZOUXkBXk5eSURE5BYuWUuuqKgIGRkZyMvLq3Z5lFGjRrniVnQLeSAX4CUiInI3UYHJYDDg008/xf/+9z9YLBaHxwiCAIlEwsDkJnaDvtklR0RE5BaiAtPChQuxbds2dOjQAYMHD4ZarYZUKnVV2cgJ9oGJLUxERETuICow7dmzB506dcLixYsZlDxEHuAHiQQQBD4lR0RE5C6iBn1brVb07t2bYcmDJD4SyJTlrUych4mIiMg9RAWmzp07V1kKhRqe4ubAb7YwERERuYeowPT8888jNTUVv/76q6vKQ/VQMY7JVGaG1Wz1cGmIiIiaHlFjmLp3746PPvoIs2bNQseOHdGhQwcolcoqx0kkEkyYMEHMragGlQd+63UmBATLPVgaIiKipkdUYCouLsbSpUuh0Whw5MgRHDlyxOFxDEzupag8F5PGyMBERETkYqKnFTh58iTuuusuDB8+nNMKeAinFiAiInIvUYHp4MGDSEhIwHvvveeq8lA9KCqtJ8flUYiIiFxP1KBvQRDQuXNnV5WF6kkeyNm+iYiI3ElUYOrRowfS09NdVRaqJ7sFeNklR0RE5HKiAtPUqVNx5swZbNy40VXloXqQqyovwMsWJiIiIlcTNYbp22+/RYcOHfDZZ59h48aN1U4rAAAzZ84UcyuqgX2XHFuYiIiIXE1UYNq+fbvt9dWrV3H16lWHx0kkEgYmN1Io2SVHRETkTqIC07p161xVDhJBfss8TERERORaogLT8ePHERYWhjvuuMNV5aF68JVJIZX5wGK0skuOiIjIDUQN+n7vvfdw8OBBV5WFRKiYi4ldckRERK4nKjCp1WpYLBZXlYVEqBj4bdAYIQiCh0tDRETUtIgKTAMGDMDhw4dhNHLcjKdVtDBZLQJMeoZYIiIiVxIVmF588UUoFAq89dZbuHTpkqvKRPVgv54cAywREZEriRr0/fzzz8NkMiE9PR2HDh2CTCZDSEgIJBKJ3XESiQRr164VVVCqmV1g0pgQGOHBwhARETUxogKTIAjw9fVFixYtqmyv6T25nqLS1AJ6tjARERG5lKjAtH79eleVg0Sy75Ljk3JERESuJGoME3kPRaX15PQaBiYiIiJXEtXCVJnZbEZWVhZ0Oh2USiViYmLg6+uyy1Mt7NeTY5ccERGRK4lONCUlJViyZAl++uknu+kF5HI57r77bkyaNAnBwcFib0O1ULBLjoiIyG1EBaaSkhJMnjwZV69eRVBQEHr27Am1Wo2CggKcOXMGW7duxfHjx7F48WIEBQW5qszkgLxylxwDExERkUuJCkyrVq3C1atXMX78eEycOBH+/v62fXq9HqtWrcKaNWuwevVqvPLKK6ILS9XjPExERETuI2rQ9969e5GQkIApU6bYhSUAUCgUeOmll5CQkIBffvlFVCGpdjKlH3Bz+isDB30TERG5lKjAlJ+fj+7du9d4TPfu3ZGfny/mNuQEHx8J5MryVibOw0RERORaorrklEolsrOzazwmOzsbSqWyTtctLS3F2rVrkZaWhtOnT0Oj0WDWrFkYPXq0U+drNBosWbIEKSkpMBgM6NKlC6ZOnYpOnTrZjikuLsa2bduwb98+ZGZmwmKxIDY2Fo888giGDx9ep/J6C7nKDwatiYO+iYiIXExUC1NCQgKSk5Nx+PBhh/uPHDmC5ORkJCQk1Om6xcXFSEpKQmZmJuLi4up0rtVqxYwZM/DTTz/hT3/6EyZPnozCwkJMmzYNWVlZtuN+//13LF++HEFBQXjmmWfwwgsvQC6XY86cOfj3v/9dp3t6i4q5mIylZlgtVg+XhoiIqOkQ1cI0ceJE7N+/H2+88Qbuuusu9OrVC2FhYSgoKMDx48dx8OBByOVyTJw4sU7XVavV2LRpE9RqNc6cOYNJkyY5fW5ycjJOnTqFuXPnYsiQIQCAYcOG4YknnsDKlSvx9ttvAwDatm2LNWvWICoqynbuQw89hNdeew1r1qzB448/XmVclrezn4vJBP9guQdLQ0RE1HSICkzt2rXDhx9+iPnz52P//v3Yv38/JBKJbe246OhozJ49G+3atavTdWUyGdRqdb3KtGfPHoSFhWHQoEG2bSEhIRg6dCh27twJo9EImUyG6OjoKudKJBIkJibi6NGjuHbtGjp06FCvMniK4papBRiYiIiIXEP0xJU9e/bEmjVrcPLkSZw/f94203d8fDx69OgBiUTiinI67dy5c4iPj4ePj31vY5cuXbBlyxZkZWXVGIQKCgoAoMbJNvPy8uwGsmdmZoostWvYTS2g4cBvIiIiV3HJ2iUSiQQ9e/ZEz549XXE5UQoKCtCrV68q2ytarPLz86sNTCUlJdi6dSt69uyJ8PDwau/xww8/ICkpqcr2S5cuwWKx1K/gLlBSVmx7nX76IgqsNQ/Irw+tVou0tDSXX9dbNaf6sq5NV3OqL+vadLmrvl27dnXquCa32JvBYIBMJquyvWKbwWBweJ7VasU///lPaLVaTJ8+vcZ7jB07FgMGDLC9z8zMxLx589CuXTu7J/EamuTaZVxOLgIARIRGolPXGJffIy0tzelvrqagOdWXdW26mlN9Wdemy9P1FR2YioqKsG3bNpw5cwZardZhC4tEIsGnn34q9lZOkcvldmvaVajYJpc7Htfz6aef4uDBg/jb3/5W65N54eHhNbZAeYp9lxynFiAiInIVUYHpwoULmD59OjQajW2gtyMNOY4pLCzM4USZFdscDSZfuXIlNm/ejJdeegkjR450exndRRH4R8uaQcfARERE5CqiAtMXX3yBkpISPPPMM7j33nsREREBqVTqqrLVS3x8PE6cOAGr1Wo38Pv06dNQKBSIibHvpvr++++xcuVKPPLII3jyyScburguVTHTNwDo2cJERETkMqImrvz9998xcOBAPP/884iKimrwsJSXl4fMzEyYzWbbtsGDB6OgoAApKSm2bUVFRdi9ezf69+9vN75p165dWLRoEe65554msTiw/TxMfEqOiIjIVUS1MPn6+qJVq1auKoudjRs3QqvV2rrS9u3bh5ycHADAuHHjoFKpsGzZMuzYsQPr1q1Dy5YtAQBDhgzBhg0bMH/+fGRkZCA4OBibN2+G1WrFc889Z7t+Wloa3n33XQQFBeH222/Hzp077e7fvXt3h3M1ebNb52EiIiIi1xAVmBISEnD27FlXlcXOunXr7NapS0lJsbUajRgxAiqVyuF5UqkU77//Pr788kts3LgRBoMBnTt3xqxZsxAbG2s7LjMzEyaTCUVFRViwYEGV68yaNavRBSZfuRRSPx9YTFa2MBEREbmQqMA0depUTJ48Gd9++y0ef/xxV5UJALB+/fpaj5k9ezZmz55dZXtgYCBmzJiBGTNmVHvu6NGjnV7MtzGRB/qhtMDAp+SIiIhcSFRg+vrrr9G+fXssXboUP/zwA+Li4qBUKh0eO3PmTDG3IicpVDKUFhig1xohCEKDz7RORETUFIkKTNu3b7e9vnbtGq5du+bwOIlEwsDUQCrmYrKaBZgNFvgpmtzcpERERA1O1G/TdevWuaoc5CJ2A781JgYmIiIiFxD12zQqKqpe5924cQPXr19HQkKCmNuTA7dOLRAY4e/B0hARETUNouZhqq9t27bVul4b1Y+cUwsQERG5nEcCE7mPwm49OU4tQERE5AoMTE2MfZccW5iIiIhcgYGpibGf7ZstTERERK7AwNTEyFVsYSIiInI1BqYmhoGJiIjI9RiYmphb52EiIiIi8RiYmhiZyg+4uRoKF+AlIiJyDQamJsbHRwJ5QHm3HLvkiIiIXMMjgUmpVKJFixaeuHWzUDGOSc95mIiIiFzCI4Hp0Ucfxfr16z1x62ahYi4mY6kZVovVw6UhIiJq/Oq0llxSUlK9biKRSDBhwoR6nUt1V3ngt0Fngn+Q3IOlISIiavzqFJhWrlxZZZtEIrG9FgShynZBEBiYGpjd1AIaBiYiIiKx6hSYFi5cWGXb2rVrcfjwYYwYMQI9e/ZEWFgYCgoK8Ntvv2Hnzp3o27cvHnvsMZcVmGqnCOQCvERERK5Up8CUkJBg937r1q04fvw4li9fjnbt2tntGzVqFB5++GFMnToVAwcOrHIuuY/95JUc+E1ERCSWqEHf3333HYYPH14lLFXo0KEDhg8fzgHeDezWLjkiIiISR1Rgunr1KoKCgmo8JigoCNeuXRNzG6oj+y45tjARERGJJSowhYSE4ODBg3aDvSuzWq04ePAggoODxdyG6kiu5HpyREREriQqMN199924cOECZs6cifT0dLt958+fx8yZM3Hp0iXcc889ogpJdVMxDxPAwEREROQKdRr0fatnn30W586dw4EDB3Dw4EEoFAqEhISgqKgIer0egiDg9ttvx8SJE11UXHKG3QK87JIjIiISTVRgksvl+Oijj7Bjxw7s2LEDFy9exI0bN6BSqdC5c2eMHDkSo0aNspuridzP/ik5tjARERGJJSowAeUTVI4ePRqjR492RXnIBXzlUkj9fGAxWaHnU3JERESieWQtOXIviURia2XiPExERETiiW5hAgCz2YysrCxotVpYLBaHx3DiyoYlV8lQWmiAQWuyLU9DRERE9SMqMAmCgBUrVuD7779HaWlpjccmJyeLuRXVkeLmk3IWkxVmgwV+CpdkYyIiomZJ1G/RVatW4euvv4ZKpcLIkSMREREBqVTqqrKRCLcO/GZgIiIiqj9Rv0W3bduGyMhILF++nJNTeplbpxZQhft7sDRERESNm6hB3wUFBUhMTGRY8kJcT46IiMh1RAWmqKgo6HQ6V5WFXEhut54cAxMREZEYogLTgw8+iP3796OwsNBV5SEXUdiNYeLUAkRERGKIGsM0cOBAnDhxAlOnTsWECRPQsWNHKJVKh8dGRkaKuRXVEWf7JiIich1Rgemxxx6DRCKBIAhYsGBBtcdJJBLs3r1bzK2ojuSVBn0zMBEREYkjKjCNHDmSEyJ6qcpdcnoNu+SIiIjEEBWYZs+e7apykIvJA9klR0RE5CpcS66JkisrtTBx0DcREZEoDExNlI/UB7KA8gZEzsNEREQkjuhB386QSCRYu3atmFtRPSgCZTCWmtklR0REJJLoxXcd0el00Gq1AAC1Wg1fX65j5glylR9wAzCUmmC1CvDx4QB9IiKi+hCVZNavX1/tvuvXr+Pzzz9HYWEhPv74YzG3oXqyTS0gAEatCYogWc0nEBERkUNuG8PUsmVLzJkzBxqNBsuXL3fXbagGikAO/CYiInIFtw769vX1RZ8+fThppYdwtm8iIiLXcPtTcgaDASUlJe6+DTmgqDTbNyevJCIiqj+3BqbffvsNu3btQmxsrDtvQ9Xg5JVERESuIWrQ97Rp0xxut1gsyMvLQ3Z2NgBgwoQJYm5D9cT15IiIiFxDVGA6fvy4w+0SiQSBgYHo27cvHn30UfTt21fMbaieKo9h0jMwERER1ZuowLRnzx5XlYPcQGE36JtjmIiIiOqLS6M0YXZdclwehYiIqN5cNgW32WxGVlYWdDodlEolYmJiOMO3h3EeJiIiItcQnWhKSkqwZMkS/PTTTzAa//ilLJfLcffdd2PSpEkIDg4WexuqB1+5FD6+EljNAgd9ExERiSAqMJWUlGDy5Mm4evUqgoKC0LNnT6jVahQUFODMmTPYunUrjh8/jsWLFyMoKMhVZSYnSSQSKFQylBYZ2MJEREQkgqjAtGrVKly9ehXjx4/HxIkT4e/vb9un1+uxatUqrFmzBqtXr8Yrr7wiurBUd/JAP5QWGTiGiYiISARRg7737t2LhIQETJkyxS4sAYBCocBLL72EhIQE/PLLL6IKSfVXMfDbYrLCbLB4uDRERESNk6jAlJ+fj+7du9d4TPfu3ZGfny/mNiSCQsWB30RERGKJCkxKpdI2m3d1srOzoVQqxdyGRODUAkREROKJCkwJCQlITk7G4cOHHe4/cuQIkpOTkZCQIOY2JAKnFiAiIhJP1KDviRMnYv/+/XjjjTdw1113oVevXggLC0NBQQGOHz+OgwcPQi6XY+LEiS4qLtWVXMUFeImIiMQSFZjatWuHDz/8EPPnz8f+/fuxf/9+SCQSCIIAAIiOjsbs2bPRrl07lxSW6k5RqUtOr2ELExERUX2InriyZ8+eWLNmDU6ePInz58/bZvqOj49Hjx49IJFIXFFOqie7FiYdW5iIiIjqQ1RgWrBgAdq3b49HH30UPXv2RM+ePV1VLnIRu8DEQd9ERET1ImrQ908//YTCwkJXlYXcQB5Y6Sk5jmEiIiKqF1GBKTo6mnMseTnOw0RERCSeqMA0ZswY7N+/H7m5ua4qD7kYu+SIiIjEEzWGafDgwTh27BimTp2Kxx9/HJ07d0ZYWJjDgd6RkZFibkX15CP1gSzAF8ZSM1uYiIiI6klUYBo/frxtGoFFixZVe5xEIsHu3bvF3IpEkKv8YCw1cwwTERFRPYkKTCNHjnTbtAGlpaVYu3Yt0tLScPr0aWg0GsyaNQujR4926nyNRoMlS5YgJSUFBoMBXbp0wdSpU9GpU6cqx+7duxcrV65EZmYmQkJCMGbMGDzzzDPw9RU964JXUKhk0OSUwaAzwWoV4OPDqR6IiIjqQlQimD17tqvKUUVxcTGSkpIQGRmJuLg4HDt2zOlzrVYrZsyYgQsXLmD8+PEIDg7G5s2bMW3aNCxfvhwxMTG2Yw8cOIC//e1vSEhIwLRp03Dx4kWsXr0ahYWFeP31191RtQYnr1geRQCMOhMUlZ6cIyIiotp5bROKWq3Gpk2boFarcebMGUyaNMnpc5OTk3Hq1CnMnTsXQ4YMAQAMGzYMTzzxBFauXIm3337bduyXX36JDh064KOPPrK1KAUEBOCbb77Bww8/jDZt2ri0Xp5gtwCvloGJiIiorkQ9JedOMpkMarW6Xufu2bMHYWFhGDRokG1bSEgIhg4dir1798JoLB/8nJGRgYyMDNx///123W8PPfQQBEFAcnKyqDp4C7upBbg8ChERUZ2JamF67LHHaj3Gx8cHAQEBiI2NRWJiIoYNGybmlk45d+4c4uPj4eNjnwe7dOmCLVu2ICsrCx06dMC5c+cAoMq4pvDwcEREROD8+fMOr5+Xl2c3/1RmZqaLa+Bati45cPJKIiKi+hAVmARBgMViQV5eHgBAKpUiODgYxcXFsFgsAMrDR2FhIdLT07F7925s3boV7733Hvz8/Gq6tCgFBQXo1atXle0VLVb5+fno0KGDLfQ4aslSq9XVTsr5ww8/ICkpqcr2S5cu2ertTQq1Gtvri2czoFXk1ftaWq0WaWlprihWo9Cc6su6Nl3Nqb6sa9Plrvp27drVqeNEBaYVK1bg9ddfR2xsLF544QV07drVNs1AWloaVqxYAa1Wi6SkJBQXF+Pzzz/HgQMHsG7dOjz11FNibl0jg8EAmazqOJ2KbQaDAQBsXXPVHVtaWurw+mPHjsWAAQNs7zMzMzFv3jy0a9fO4VN4niYvuoZLKAAAqIMj0LVru3pfKy0tzelvrqagOdWXdW26mlN9Wdemy9P1FTWGacmSJTAajfjoo4/QrVs32xQDEokE3bp1wwcffACj0YilS5eidevWmDNnDiIjI7Fr1y6XFL46crncFoYqq9gml8sB/BGUqju24rhbhYeHo1OnTrY/3j4w3G62b3bJERER1ZmowLRv3z7cddddVcYKVZBKpbjrrruwd+9eAOVB5bbbbsPVq1fF3LZWYWFhDrvTbu2Cq9xF5+jY+g469zaKSk/JcdA3ERFR3YkKTDqdrtpuq8rH6HQ62/vg4GAxt3RKfHw8zp8/D6vVarf99OnTUCgUtnmY4uPjAQBnz561Oy4vLw+5ubm2/Y0dB30TERGJIyowtW3bFj/99BOuXbvmcP+1a9ewa9cutG3b1rYtJycHISEhYm5rJy8vD5mZmTCbzbZtgwcPRkFBAVJSUmzbioqKsHv3bvTv39/WFdeuXTvExsZiy5YtdoO1N2/eDIlEgsGDB7usnJ506zxMREREVDeiBn0/9dRTePvtt/Hcc8/hvvvuQ/fu3REaGorCwkKcOnUKP/74I8rKymwDvE0mE1JTU9G3b1+nrr9x40ZotVpbl9m+ffuQk5MDABg3bhxUKhWWLVuGHTt2YN26dWjZsiUAYMiQIdiwYQPmz5+PjIwM20zfVqsVzz33nN09pk6dilmzZuH111/H8OHDcfHiRWzatAn33XefXdBrzPwUUvhIJbBaBC7AS0REVA+iAtPgwYPx5ptv4rPPPsN3332HDRs22PYJggB/f3+88cYbtpYavV6PN998E+3aOfeU1rp165CdnW17n5KSYms1GjFiBFQqlcPzpFIp3n//fXz55ZfYuHEjDAYDOnfujFmzZiE2Ntbu2P79+2PevHlISkrCwoULERwcjKeeegoTJ06sy1+FV5NIJJAHylBWZIBBwxYmIiKiuhK9NMq9996LwYMHY+/evUhPT0dpaSkCAgIQFxeHgQMH2oWawMBAJCYmOn3t9evX13rM7NmzHa5pFxgYiBkzZmDGjBm1XiMxMbFO5WqMFCo/lBUZ2MJERERUDy5ZS06lUmHUqFHV7rdYLJBKpa64FdVTxdQCFqMVZqMFvjJ+HkRERM4SNej7+++/r/UYi8WCOXPmiLkNuYC80oK7Bk4tQEREVCeiAtOiRYtqXKDWarVizpw5dk+rkWfYLcDLJ+WIiIjqRFRg6tGjB+bNm4ejR49W2VcRlvbs2YOHHnpIzG3IBTi1ABERUf2JCkwLFixATEwM3nrrLZw/f9623Wq14p///CeSk5Px4IMPYtq0aaILSuLYtTCxS46IiKhORAUmpVKJDz/8ECqVCn/9619x7do1CIKAuXPn4ueff8YDDzyA1157zVVlJRHs1pPTsYWJiIioLkQFJqB8PbaPPvoIVqsVr7/+Ov7xj39g9+7duO+++/CXv/zFFWUkF7DrkuNcTERERHUiOjABQExMDN5//30UFhYiJSUF9913H/7617+64tLkIorAyoO+2SVHRERUF3WahykpKanG/V26dEF6ejrUarXdsRKJBBMmTKhP+chF7LrkOOibiIioTuoUmFauXOnUcatWrbJ7z8DkeZXnYeKgbyIiorqpU2BauHChu8pBbqZQsoWJiIiovuoUmBISEtxUDHI3H18f+Pn7wlRmZmAiIiKqI5cM+qbGoWIuJnbJERER1Y2owLR9+3a88MILyMvLc7g/Ly8PL7zwAnbu3CnmNuQiFeOYjDoTBKvg4dIQERE1HqIC044dO+Dn54fw8HCH+8PDwyGXy/Hjjz+KuQ25SEULkyAAhlJ2yxERETlLVGDKyMhAfHx8jcfExcUhIyNDzG3IReymFuDklURERE4TFZh0Oh0CAwNrPEapVEKr1Yq5DblI5akFDJy8koiIyGmiApNarbZbdNeR9PR0hIaGirkNuYjdArx8Uo6IiMhpogJTnz59kJqaitTUVIf7Dx06hEOHDuGOO+4QcxtyEc72TUREVD91mofpVk8++SR+/vlnvPnmmxg5ciT69OmD8PBw5OXlITU1Ff/73/8QEBCAJ5980lXlJRHsFuBllxwREZHTRAWm6OhovPfee5gzZw62b9+OHTt22PYJgoCIiAjMmTMH0dHRogtK4tl1yXHQNxERkdNEBSYA6NmzJ9auXYu9e/fi9OnT0Ol0UKlU6NKlCwYMGAA/P7/aL0INwn7QNwMTERGRs0QHJgDw8/PD0KFDMXToUFdcjtzEftA3u+SIiIicxaVRmhHOw0RERFQ/LmlhysnJwbFjx5CXlweTqeovYolEggkTJrjiViSCn78vJFIJBIvAQd9ERER1IDowffnll9iwYQOsVqttmyAIkEgkdq8ZmDxPIpFAofJDWbGR8zARERHVgaguuS1btmDdunXo3bs35s6dC0EQMGrUKLz99tsYO3YspFIphgwZgk8//dRFxSWxKqYW4KBvIiIi54lqYdqyZQuioqLwwQcfwMenPHtFRUVh+PDhGD58OIYNG4a//OUvHAzuRRSB5eOYzAYLzEYLfGVSD5eIiIioZlarAIvRCsEqQOIj8UgZRAWmzMxMjBw50haWAMBisdheJyQkoF+/fli7di2GDBki5lbkIvaTV5rgG8bARERE9SdYBZiNlvL/iN/8z/gfX60wG8zlX6s95pbjHRxnMZUP+4lbHA//YLlH6il6DJNKpbK9VigUKC4uttsfExODw4cPi70NuYj8lqkFlGEKD5aGiIgagiCUt9CYDGaY9RaYDH+EEpPeXP7VYIFZb6n02uzwONv+m9ssRmvtBXARs9FS+0FuIiowRUREIDc31/a+VatWOH36tN0xly5dgr+/v5jbkAtVdMkBnFqAiMhbWS1WmPTlocV486tJXx5QTGXlr69mFqMs7fzNbRaYDWYYy26Gn7JKx988XxA8XSvn+Egl8JVLy//I/vhqMOttD5R5gqjA1L17d5w4ccL2fuDAgVi9ejU++OADDBw4ECdOnMDBgwcxePBg0QUl15ArKwUmHQMTEVFDsFqs0JcYUVpkQGmRAWW3fC0tMqCs2FAecsrMti6o2mSiyL0Fd8AWZuRS+ClufpX7QirzgZ/cF75yH/hWfJXdDD0K+/BjH4h87Pb5+Dp+Hi0tLQ2qcM81wIgKTCNHjkR+fj6ys7MRFRWF8ePH49dff8XWrVvx448/QhAEREVFYcqUKa4qL4lktzyKhnMxERGJYTZYUFqkR2lheeApDz9GlBXp7QKRvsTYoC08Ekn53Ht+Cl/4KqSQ3fxaEW58FVL4VYQW22vfW0JQ1W2+MqnHBl17mqjA1Lt3b/Tu3dv2PiAgAEuWLMHevXtx9epVREVFoX///uyS8yL2y6OwhYmICCgfuGzSm2HQmWEsNZX/0Zlh0JW/NujMMOpMKCs2orS4IgjpYSpz3ZgaucoPMn9f+Pnbhxw/he/NPzdf+5eHnuz862gX19Zum59/+TFSPx+Pdl81RS6Z6RsAiouLkZ6eDp1Oh8DAQNx3330IDg521eXJRW59So6IqKmwmCwwaswovKKxBR+Drjz4lIegmwFIV/W1sdTklhYgiVSCgGA5AkLk8A+VIyBYDv8QOQJuee0fLIe0mq6o6pjTShDTNcL1hSaHRAem69evY9GiRThw4ACESt9tEokE/fr1w6uvvoqWLVuKvQ25SOVB33p2yRFRIyAIAgxaE3SFepQWGG5+1UNXYEBpod72Xn/zQZbDuOr2Mvn5SxEQooB/sAwBIYqboaf8dUUwCgiRQ67ya7ZdWE2NqMB09epVvPzyyygsLETr1q3Ro0cPhIaGorCwEKdOncK+ffuQlpaGL7/8EtHR0a4qM4nAFiYi8iYWs7U89FSEn4Ly8UDlX/947+wg6LqQ+EggV/pCFuAHmdIPsgBfyJV+N99XvK60LcAX/sEy+AfL4adwWQcNNRKiPvElS5agqKgIr7/+Ou6//367/lJBEPDDDz/gk08+wZIlSzB37lzRhSXxbp2HiYjI1axWAQaNEXqNsXztyspfiyq1EBWWD4YWSyKVICBEDmWoAmapAeFRYbeEnkrBR+kHeYAvZEo/+MqlHOdDThMVmI4cOYIBAwZg7NixVfZJJBI88MADOHDgACeu9CJSXx/4+UthKrNwHiYicopgLe8SK9MYoS8pDzllJUaHX/UlhvIHSlw0HkgW4AtlmAIBoQoow+Q3v5Z3gSnDFAgIU8A/UGbr9kpLS0PXrl1dc3OiSkQFJqvVirZt29Z4TPv27XHs2DExtyEXk6tkMJWVwcAWJiICYDVbUXhVi7xLxSi4rEFZkRFlJQZby5BB4/pH4iu3CgWEVXxVQBkqv/m1PBSx64u8hajvxI4dOyIjI6PGYy5duoROnTqJuQ25mELlB21uGQxak0cXMiSihmc1W1F4pTwc5V0qsYUkV4wR8pVLoQiSwT9QBkWwDIpAGfwrvgbJy/cFycpbhYJk/LeHGhVRgenFF1/Ea6+9hq1bt+K+++6rsv+HH37AoUOH8Mknn4i5DblYxcBvQQCMpWa7cU1E1HRYzVYUXNHgxjENCvafQv6lEhRkOR+OpH4+tsCjCJLDP0gGxc0//rd8VQTK2BpETVqdvruTkpKqbOvduzc+/PBDrF27Fj169EBYWBgKCgpw8uRJXLlyBX379sXRo0fRo0cPV5WZRLKbWkBrZGAiagIsZisKr2jKW40ulrceFVwugdVc0ZdWUO25wS2VCG8XBHW7YIS3DYIq3B/+wTIOiiaqpE6BaeXKldXuy8rKQlZWVpXthw4dQmpqKiZMmFD30pFbcGoBosbNYraiMEtj61KrGo6qZxeO2gUhvG0QZAH8TxNRbeoUmBYuXOiuclADqtyixPXkiLyPxWSBrsAAXUEZtPl66Cr+FOihzS9D0VVt7eFIAgRHlYcjS4Ae3frFQ92G4YiovuoUmBISEtxUDGpIdnMx6djCRNSQrGYrdIUG6PLLoCsoD0LagopQVB6Q6jw3UUU4an+z1ahdMNRtAm3hKC0tDS27qN1QG6LmgyP0miGFXQsTAxORqwhWAWXFBmjzKrUM2UJRGXT5epQVGUQ9oi+RShAUGYDwdpXCUdsgyPz5zzmRO/EnrBmSB1Yew8QuOSJnCYIAfYkRmtwyaHLLoM0tvfn15vu8MlGP50skgH+oHKowfyjVCijVCqjUCijV/lCGlb/3D5bDh4/jEzU4BqZmSGG3PApbmIgqVCzyWjkM3RqIzAZLva/vHyKHKkyBALUCqpsBSKn2vxmKFAgIkcNHWrcV64moYTAwNUN2T8mxS46aGWOZGdpsIzJ02bcEolJoc8tg0tcvEPnKpQiM8Icqwh+q8JshKOyPQBQQpoDUl2GIqLFiYGqGbp2HiaipMenNKLlRipJsHYqz7b+WFVd8z1+v0zWlfj5QRfgjMMIfgREBlV6XhyRFoIxzFhE1YQxMzZCfvy8kUgkEi8B5mKjRMhst1Yai0kJDna/n4yuBKrw8DFWEoD8CUQD8gxmIiJozBqZmSCKRQK70g77EyEHf5NUsJgtKcsrswlBJdimKs3XQFeiBOj5t5h8iR3BUAKxyI2I6RSMwvDwMBbbwR0CwnGubEVG1GJiaKUVgeWDScwwTeZHi6zpcPpqDq6fyUHRNB11eWZ0fwVcEyRAUFYDgKKXd16BIpe3R+7S0NHTtGueGGhBRU8XA1EyVD/zWwWywwGKyQOon9XSRqBmymq3IPleIy0dzkHUsF8XXdU6dJ1f5OQhFSgRHBXAmayJyCwamZurWqQWUoQxM1DD0WiOuHM/F5WO5uPJbLoylZofH+fn7IjgqoDwItbRvLVJUetKTiKghMDA1U3aTV2pMUIYqPFgaasoEQUDRNR2yjubg8rEc3Dhb6LCbTSIBIjuFIrZ3C8Tc1gIh0UoOsiYir8HA1EzJlZxagNzHYrYi+0yBraut5Eapw+NkAb5o3SsCsbe1QOte4Ww5IiKvxcDUTFWei4lTC5Ar6EuMyDqei8vHcnDlRB5MZY672oJbKhF7WwvE9I5AVMdQ+HAyRyJqBBiYmim72b4ZmKgeBEFA4RUtso7lIPNoDnLOFzl8zF/iI0FU5/KuttjbWiC4pbLBy0pEJBYDUzMlV1VuYWKXHNXObLSgMEuD/IwS5GWU4MqJPGhzyxweK1f6oXXCza62nuF2XcBERI0RA1MzZbc8CudiolvotUYUZGqQl1GCgswS5GeUoOiaDoK1+kmRQlqVd7XF9m6BFvEhXESWiJoUBqZmyr5Lji1MzZUgCNDl65GfUYLLqUW4uv0I8jNLoM3T13quj1SCqC5hN7vaIhAUya42Imq6GJiaqVvnYaKmz2qxovi6DnkZ5S1GBZka5GeWODWGTSKVILSVCuq2QVC3CSz/2jbYNnM2EVFTx3/tmqlb52GipsVstKAgs+Rml1r5uKOCLA0sJmut5/oppAhrEwR1myCo2wZC3SYIoa1VnA2eiJo1BqZmSurrAz+FFCa9hfMwNRGCVUD22UKk772Kiweyq32svzL/EHl5MGoTiDLfEvQa0BVBkQFchJaI6BYMTM2YXCWDSV+GkhulOPTtWSQ80J7rcDVCxdd1OP/LVaTvu1btU2sAEBQVAHXbIIS3DbK1IAWEyG3709LS+Mg/EVE1vDYwGY1GrFixAv/73/+g0WjQoUMHvPDCC+jbt2+t5+7atQtr1qxBZmYm/P39MWDAAEyePBkhISF2x2m1Wnz99ddISUlBbm4uQkNDcfvtt+PZZ59FZGSkm2rmPcLbB0GbVwbBIuDElos4uzsLvf8Uhy53x0LKyQS9ml5jxMUD13H+l6vITS+ust9PIUXs7ZGIjA9BWJsghMUGcrwREZEIXvsv6Pz585GcnIxHHnkErVu3xvbt2/Hmm29i4cKF6NmzZ7Xnbd68GR9//DFuv/12vPzyy8jNzcWGDRtw9uxZLFmyBHJ5+f+orVYr/vKXvyAzMxMPPvggYmJicOXKFWzevBmpqan4+uuvERAQ0FDV9YhBk3ogMCIAv/83A1azAIPWhAOrT+P3HRnoO74T2t0ZxbW8vIjFZMHlY7lI33sNWcdyYLXYP+IvkQCteoQjbmA02vSJhJ/Ca3+8iYgaHa/8FzUtLQ27du3ClClT8PjjjwMARo4ciYkTJ2Lx4sVYvHixw/NMJhOWLVuGXr164eOPP7b9su/evTtmzpyJrVu3Yty4cQCA33//HWfOnMH06dPxpz/9yXaN2NhYLFiwAIcPH8agQYPcXFPPkgX44c4nO6PriFgcXncOF369DgDQ5JTh50XHEdEhGHc+2RlRncM8XNLmSxAE5JwvwvlfruLSgWwYdFUH6IfFBiIusRXi+rdEABdRJiJyC68MTHv27IFUKsXYsWNt2+RyOe69914sW7YMN27ccNhldvHiRWi1WgwbNsyuZaR///7w9/fHrl27bIGptLR8MdCwMPswoFarbfdrLgIjAjD0lQT0GNMOB9ecwfW0AgBA7oVibJ17EG1ub4G+4zshpJXKwyVtPkpulCJ931Wk/3LN4cK1/iFyxA2IRtzAaKjbBHmghEREzYtXBqbz58+jdevWUCrtB6B26dIFAJCenu4wMJlM5f/7dhR25HI5zp8/D6vVCh8fH3Tq1An+/v746quvEBgYiNjYWFy9ehWLFy9G586dcfvtt1dbvry8POTn59veZ2Zm1que3ia8fTDG/O0OXDmei0PfnkXhFS0AIPNIDi4fy0Wnoa2h6lH9TM8kjkFrwqWD13F+7zXcOFtYZb9U5oO2faMQPzAa0d3VnEmbiKgBeWVgys/Pt7X0VFaxLS8vz+F5rVu3hkQiwcmTJzFmzBjb9suXL6OoqAgAoNFoEBwcjJCQELzzzjt4//338dprr9mOveOOOzB37lz4+lb/V/PDDz8gKSmpyvZLly7BYrE4U0XvJgc6PxOGnN9kuLynGCatBYJVwJldWfBJAW4c1SD6riBIZU3/F7ZWq0VaWprbrm+1CCi6UIbckzoUnCuF4ODbJ7itAhE9lFB3DoBU7oMS5KLkbK7Ly+LuunqT5lRXoHnVl3VtutxV365duzp1nFcGJoPBAD+/qo+3y2Qy235HQkJCMHToUOzYsQNt2rTBoEGDkJubi4ULF8LX1xdms9nu3ODgYMTHx+NPf/oT2rZti/T0dHz77bdYsGAB5s6dW235xo4diwEDBtjeZ2ZmYt68eWjXrh06depU32p7nW7dAdM4M05tz8CJLRdh0ltgNQFZKcXIO6HH7ePi0HFI6ybd0pGWlub0D5MzrGYrirN1KLyiRfaZQlzcf93hWn4hrVSIT4xGhwHRUKn9XXb/mri6rt6sOdUVaF71ZV2bLk/X1ysDk1wut3WvVWY0Gm37q/PGG2/AYDDgyy+/xJdffgkAGDFiBKKjo5GSkgJ///JfPteuXcP06dMxe/ZsDBkyBACQmJiIqKgozJ8/HwcOHMBdd93l8B7h4eEIDw8XU8VGw0/hi94PxaHzsBgc+z4dp3ddhmAFyooM2Lvid5y6+URd7G0t+ERdJRXBqOiqFoVX/vhTnK2DYHHcrakIkqFD/5aIH9gK6nZB/PskIvIiXhmY1Go1cnOrdjlUjBuqKayoVCrMnz8fN27cwPXr1xEVFYWoqChMmTIFISEhCAwMBABs374dRqMR/fv3tzt/4MCBAICTJ09WG5iaI/9gOfo/2w3yODMKD1uQkXoDAFB0VYedHx1FVJcw3PlEJ0R0CPFsQRuY1WxF8Y1SFF3RoPBmOCq6okXxdV2Vx/4dkfr5IPb2FohPbIXWPcLhw/mviIi8klcGpri4OBw7dgw6nc5u4HdF32VcXFyt14iMjLQNDNdoNDh37hwGDx5s219QUABBEGC12q+tZTaXLyfRJMYiuYG/2g+3v9YL2WcLcWjNGeScLwIAZJ8uwP/9fT/a39USfR7riKDIpjWHldViRUl26c1QpEHRFR0Kr2pQfM25YAQAPr4SBLdUIbS1CqGtVAiNUaFlVzXkSs6uTkTk7bwyMA0ZMgRr167FDz/8YJuHyWg0Ytu2bejatastCN24cQN6vR5t2rSp8XrLli2DxWLBI488YtsWExMDQRCwe/dujB492rb9p59+AgDEx8e7ulpNSlSnUNz/zl3ISL2B1LVnUZJd/uj7xQPXkZGaja4j2iDhwQ5QVFrk19sJVgGlRQZockqhyS2DJrcUmWm5OL3ql7oFI6kEwdFKhLYKRGhrFUJuBqSgqIAmPd6LiKgp88rA1LVrVwwdOhTLli1DUVERWrVqhR07diA7OxszZsywHfevf/0Lx48fR0pKim3bN998g0uXLqFr166QSqX45ZdfkJqaihdeeME2LQEAjB49GmvXrsWHH36Ic+fOoV27djh37hx+/PFHtGvXrslPWukKEokE7e6IQpvbWuDMz1k4+n069CVGWC0CTm3PwLk9V9Dj3nYIbxsEeaAM/kEyKIJk8JVLPTI+RxAE6DVGaHPLygNRRTDKKYM2r/yPxWSt/UI3+UglCG6pLA9EN0NRSOtABEcGsGuNiKiJ8crABACzZ89GZGQk/vvf/0Kr1aJ9+/Z47733kJCQUON5HTp0wC+//IJ9+/bBarWiQ4cOmDNnDoYOHWp3XHBwMJYvX44VK1bg119/xQ8//ICgoCCMGTMGL774osOn9MgxH18fdB3RBnEDo3Fi6yWc3HYJFqMVxlIzjnx3vsrxUj8fKALLw5Mi0K/S60pfb772D5RBpvKDj49zActYaqoUgkqhySmztRZpc8tg0te9q1UilSA4Slkeim7+CWmlQnCUksGIiKiZ8NrAJJfLMXXqVEydOrXaYxYtWlRlW79+/dCvXz+n7hEREYGZM2fWu4xkTxbghz6PdkSXu2NxZMN5nN9zBYKDXiyLyQpdgR66Ar1T15VIALnKzz5M3QxUFpPVFoY0uWUwaKs+XekMX7kUgRH+UEX4I7BFAALD/RHYwh95pdnoPaAnFyMmImrmvDYwUeOlDFNg0KQe6HlvO1z7PR9lJUboNTf/2F6boNcYq33EvjJBwM3jTQB09SqTj68EqnB/BEYEIDCiPAypKr1WBMocdhOWphUwLBEREQMTuU9IK1WN688JggBjqblSiLolUJXcus1YbZeaRAIo1Qq7EGQLRxH+CAhVQOJktx4REdGtGJjIYyQSCeRKP8iVfghuqaz9BABmowUGjRFlN4OUxEeCwIgAqNQKjiciIiK3YWCiRsVXJoWv2h/KBlouhIiICAD4X3IiIiKiWjAwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBQMTERERUS0YmIiIiIhqwcBEREREVAsGJiIiIqJaMDARERER1YKBiYiIiKgWDExEREREtWBgIiIiIqqFr6cL0BQYDAYAQGZmpodL4n6XL1+GVCr1dDEaTHOqL+vadDWn+rKuTZc769umTRsoFIoaj2FgcoHs7GwAwLx58zxcEiIiIqqr5cuXo1OnTjUeIxEEQWig8jRZRUVFOHToEFq2bAmZTObp4rhNZmYm5s2bh7feegtt2rTxdHHcrjnVl3VtuppTfVnXpsvd9WULUwMJCQnBiBEjPF2MBtOmTZtak3hT0pzqy7o2Xc2pvqxr0+XJ+nLQNxEREVEtGJiIiIiIasHARE5Tq9WYOHEi1Gq1p4vSIJpTfVnXpqs51Zd1bbq8ob4c9E1ERERUC7YwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBSeubOZOnz6NHTt24NixY8jOzkZQUBC6deuGF154ATExMTWeu337dsyfP9/hvk2bNnnl0xvHjh3DtGnTHO5bvHgxunXrVuP5ubm5+Pzzz5Gamgqr1YrevXvj1VdfRXR0tDuKK8q7776LHTt2VLt/48aNiIiIcLjv3//+N5KSkqpsl8lk+Omnn1xVxHorLS3F2rVrkZaWhtOnT0Oj0WDWrFkYPXp0lWMzMjLw+eef4+TJk/D19UW/fv3wyiuvICQkxKl77d27FytXrkRmZiZCQkIwZswYPPPMM/D1bZh/Pp2pq9VqxX//+1/s2bMH58+fh0ajQcuWLTFs2DCMHz8ecrm81vv8+c9/xvHjx6tsv+OOO/Dhhx+6sko1cvazre77OzY2Ft98841T92oMny0ADBo0qNpr9OnTBx9//HGN93n00UdtS3hVNnbsWLzxxhv1K3wd1eV3jbf+zDIwNXNr1qzByZMnMXToUHTo0AH5+fnYtGkTXnjhBSxevBjt27ev9RrPP/88WrZsabdNpVK5q8guMW7cOHTp0sVuW6tWrWo8p7S0FNOmTYNOp8NTTz0FX19frF+/Hq+++ir+/e9/Izg42J1FrrOxY8eiT58+dtsEQcBHH32EqKioasNSZa+//jr8/f1t7318vKNRuri4GElJSYiMjERcXByOHTvm8LicnBy8+uqrUKlUePHFF1FWVoa1a9fi4sWLWLp0Kfz8/Gq8z4EDB/C3v/0NCQkJmDZtGi5evIjVq1ejsLAQr7/+ujuqVoUzddXr9Zg/fz66deuGBx54AKGhofj999+xcuVKHD16FJ9++ikkEkmt94qIiMBLL71kt62h/+Pj7GcLlAf4N998026bUql06j6N5bMFgLfeeqvKtjNnzmDDhg3o27evU/eKj4/HY489ZretdevWdS90PTn7u8arf2YFatZOnDghGI1Gu22XL18Whg8fLsydO7fGc7dt2yYkJiYKp0+fdmcRXero0aNCYmKisHv37jqf+5///EdITEwU0tLSbNsyMjKEIUOGCEuXLnVhKd3nt99+ExITE4XVq1fXeNyKFSuExMREobCwsGEKVkcGg0HIy8sTBEEQTp8+LSQmJgrbtm2rctxHH30k3H333UJ2drZtW2pqqpCYmCj83//9X633efrpp4Vnn31WMJlMtm3Lli0TBg0aJGRkZLigJrVzpq5Go1E4ceJElXNXrlwpJCYmCqmpqbXe59VXXxWeeeYZ1xRaBGc/23/961/CiBEj6n2fxvLZVmfBggXCoEGDhBs3btR67COPPCK8+eabosoqlrO/a7z5Z9Y7/rtIHtOjR48qiT0mJgZt27ZFZmam09cpLS2FxWJxdfHcqrS0FGaz2enjk5OT0blzZ7uWqTZt2uC2227D7t273VFEl/vpp58gkUhw9913O32OTqeD4GXTtclkMqdaPvbs2YP+/fsjMjLStq1Pnz6IiYmp9TPLyMhARkYG7r//frum/IceegiCICA5Obne5a8LZ+rq5+eHHj16VNmemJgIAHX6WTabzSgtLa1bIV3I2c+2gsVigU6nq9M9GtNn64jRaMSePXuQkJCAFi1aOH2eyWRCWVlZne/nCs7+rvHmn1l2yVEVgiCgsLAQbdu2der4adOmoaysDH5+fujbty9efvnlWsc/edr8+fNRVlYGqVSKnj17YsqUKejcuXO1x1utVly8eBFjxoypsq9Lly5ITU1FaWkpAgIC3FlsUcxmM3bv3o3u3btX6UKtzmOPPYaysjL4+/tj4MCBePnllxEWFubmkrpGbm4uCgsLHS7U2aVLFxw4cKDG88+dOwcAVc4PDw9HREQEzp8/77rCuklBQQEAON1dnJWVhZEjR8JkMiEsLAz33XcfJk6c2GBjeupKr9dj9OjR0Ov1CAwMxPDhwzF58uRafw4b+2d74MABaLVa3HPPPU6fc/ToUYwYMQIWiwVRUVF45JFH8Mgjj7ixlLW79XeNt//MeudPAXnUzp07kZubi+eee67G4+RyOUaPHo3evXtDqVTi7NmzWL9+PaZOnYqvvvrK7n8I3sLX1xeDBw/GXXfdheDgYGRkZGDdunV45ZVX8OWXX6Jjx44OzyspKYHRaHT4v8GKbXl5eYiNjXVr+cU4dOgQiouLnfpHNjAwEH/605/QrVs3+Pn54cSJE9i0aRNOnz6N5cuXOz1OxJPy8/MBOB6Do1arbZ+pTCar1/kV+73Zt99+C6VSiTvvvLPWY6Ojo9G7d2+0b98eer0eycnJWL16NbKysjBnzpwGKG3dqNVqPP744+jYsSMEQcDBgwexefNmXLhwAQsXLqwx5DX2z3bnzp2QyWQYPHiwU8e3b98ePXv2RExMDEpKSrB9+3Z89tlnyMvLw5QpU9xc2urd+rvG239mGZjITmZmJj755BN069YNo0aNqvHYYcOGYdiwYbb3iYmJuOOOO/Dqq6/i66+/brCnL+qiR48edl0XAwcOxJAhQ/Dss89i2bJl1T4NZDAYAMDhgMOKH96KY7zVTz/9BF9fXwwdOrTWY2/9n+eQIUPQpUsX/POf/8SmTZvw1FNPuauYLuPsZ1bdP75Go9Hu2FvP92S3lTO+/vprHD58GH/5y18QGBhY6/EzZ860ez9y5Eh88MEH2LJlCx599NFanyBtaLcOTh8+fDhiYmKwfPly7NmzB8OHD6/23Mb82ep0Ouzfvx933nmnU58rACxYsMDu/ZgxY/DXv/4V69evx7hx4+rUrecqjn7XePvPLMcwkU1+fj5mzJgBpVKJf/7zn5BKpXW+Rs+ePdG1a1ccOXLEDSV0j9atW2PgwIE4duxYteOwKh7LNplMVfZV/JA68+i2p5SWlmLv3r2444476v003z333IOwsLBG89mK/cwq/tGtOPbW87358961axe++uor3HvvvXjwwQfrfZ2Kp6oOHz7sopK516OPPgofH59ay9uYP9s9e/bAaDTWqTvuVhKJBI8++igsFovDqSTcrbrfNd7+M8vARAAArVaLN998E1qtFh9++CHCw8Prfa0WLVqgpKTEhaVzvxYtWsBkMkGv1zvcHxQUBJlM5rBJt2KbmL8zd9u7dy/0er2of2SBxvXZVjTLV/eZVXym9T3fG+cZA4DU1FS8++676Nevn+jHqCtaHjQajSuK5nZyuRxBQUG1fo821s8WKO/GUqlU6N+/v6jrVHy2Df3zXNPvGm//mWVgIhgMBsycORNZWVlYsGCB04O9q3Pt2jWnJxjzFteuXYNMJrObc6gyHx8ftG/fHmfOnKmyLy0tDdHR0V494Hvnzp3w9/fHgAED6n0NQRCQnZ3daD7biIgIhISE4OzZs1X2nT59GnFxcTWeHx8fDwBVzs/Ly0Nubq5tvzdJS0vDW2+9hU6dOmHOnDmiB2tfu3YNABrNZ15aWori4uJay9sYP1ugvHzHjh3DoEGDagwOzvDEZ1vb7xpv/5llYGrmLBYL3nnnHfz++++YM2cOunfv7vC4vLw8ZGZm2j2GX1RUVOW4/fv34+zZs7jjjjvcVWRRHJU5PT0d+/btQ9++fW0TM964caPKo9iDBw/GmTNn7ELT5cuXcezYMQwZMsSdxRalqKgIhw8fxqBBg6BQKKrsd1RXR39PmzdvRlFRkVMDiL3F4MGD8euvv+LGjRu2bUeOHEFWVpbdWC6z2YzMzEzk5eXZtrVr1w6xsbHYsmWLXVft5s2bIZFInB5w21AyMjIwY8YMREVF4b333qux+yEzM9Pu70Sn01XpxhAEAatXrwYApydHbCgGg8HheJRVq1ZBEAS779Gm8NlW+Pnnn2G1WqttKXZU15KSkipDDcxmM/7zn//Az88PvXv3dmuZKzj7u8abf2Y56LuZ++KLL7Bv3z70798fGo0G//vf/+z2jxgxAgCwbNky7NixA+vWrbM9kj5lyhR07NgRnTp1glKpxLlz57Bt2za0aNECTz/9dIPXxRn/+Mc/IJfL0b17d4SGhiIjIwNbtmyBQqGwG0T6r3/9C8ePH0dKSopt20MPPYStW7dixowZGD9+PKRSKdavX4/Q0FCMHz/eE9Vxyq5du2CxWKr9R9ZRXR955BEMGzYM7du3h0wmw8mTJ7Fr1y7Ex8dj7NixDVX0Gm3cuBFardbW/L5v3z7k5OQAKJ/JXaVS4amnnkJycjKmT5+Ohx9+GGVlZfj222/Rvn17u+UncnNz8fTTT2PUqFGYPXu2bfvUqVMxa9YsvP766xg+fDguXryITZs24b777hPdEuvKuvr4+OCNN96ARqPB+PHjsX//frvzo6Oj7X5BPf3000hISMCiRYsAlD+OPWfOHNx9991o1aoVDAYDfvnlF5w8eRL333+/w8e83am2+mo0Gjz//PO4++67bU+mHjp0CAcOHMCdd96JgQMH2q7V2D/byqsm7Ny5E+Hh4dWGHEd13bdvH1avXo3BgwejZcuW0Gg02LlzJy5duoRJkyY1WPejs79rvPlnloGpmUtPTwcA/Prrr/j111+r7K/4JnZk2LBhOHDgAFJTU6HX66FWq3H//fdj4sSJXjtXT2JiInbu3In169dDp9MhJCQEgwYNwsSJE2tdJiAgIAALFy7E559/jtWrV9vWkqvLGkee8NNPPyE0NBS333670+fcc889OHXqlG2AaWRkJB5//HE888wzDlupPGHdunV262OlpKTYQt+IESOgUqkQGRmJRYsW4fPPP8fSpUtt61K9/PLLTnVp9O/fH/PmzUNSUhIWLlyI4OBgPPXUU5g4caK7quVQbXUFYPslu3Tp0irnjxo1qtr/0QNAZGQkevXqhZSUFBQUFMDHxwdt2rTB66+/7pGA7Mxn279/f6SmpmLHjh2wWq1o1aoVJk2ahPHjxzu1hE9j+WwrAtPly5dx9uxZ28B2Z7Vv3x5t2rTBzp07UVRUBF9fX8THx2POnDlOPTHrKs7+rvHmn1mJ4G1T+BIRERF5GY5hIiIiIqoFAxMRERFRLRiYiIiIiGrBwERERERUCwYmIiIiolowMBERERHVgoGJiIiIqBYMTERERES1YGAiIiIiqgUDExF5hevXr2PQoEF49913PV0Ul9i+fTsGDRqE7du3e7ooROQCDExE5LX+/Oc/Y9CgQZ4uhkNNLeARUc24+C4ReYWIiAh8/fXXUCqVni6KSyQmJqJr164Ntho8EbkXAxMReQVfX1+0adPG08VwGZVKZVtpnogaP4kgCIKnC0FEdP36dTz22GMYNWoUZs+eXW1XXMX+ChcuXMDXX3+N48ePo6SkBGq1GgMGDMCzzz6L4OBgh9d/4oknsHz5cvz2228oKSnBunXr0LJlS6SkpGD37t04c+YM8vLy4Ovriw4dOuDhhx/GkCFDbNfavn075s+f77B8CxcuRO/evW3HzJo1C6NHj7Y75uTJk/j666/x+++/w2AwICoqCsOGDcMTTzwBhUJhd+ygQYOQkJCAd955B4sXL8aBAwdQVlaGuLg4vPTSS+jdu3dd/6qJqB7YwkREXmnixInYsWMHsrOzMXHiRNv2+Ph42+u9e/finXfegUQiwcCBA9GiRQtkZGTg+++/x6FDh7B06VIEBgbaXffq1auYMmUK2rdvj1GjRqGkpAR+fn4AgGXLlsHX1xc9evSAWq1GUVER9u3bh7fffhvTpk3DuHHjAABxcXF4+OGHsWHDBsTFxWHgwIG260dFRdVYr927d2Pu3Lnw8/PDsGHDEBISgtTUVCQlJeHQoUNYuHAh5HK53TlarRYvv/wyVCoVRowYgcLCQuzevRtvvPEGli9fjvbt29fr75iInMfARERe6bnnnsPx48eRnZ2N5557rsr+4uJi/Otf/0JwcDC++OILu6Cya9cuzJkzBytWrMD06dPtzjt58iQmTpzo8Jrvv/8+oqOj7baVlpZi6tSpWLFiBe69914oFArEx8dDpVLZApOjazmi0+nwwQcfQCqVYvHixejQoQMAYNKkSZg7dy5+/vlnrF27FhMmTLA7Lz09HQ8++CCmT58OH5/yZ3Vuu+02vP/++/j+++/xxhtvOHV/Iqo/PiVHRI3Sf//7X+h0OkyaNKlKq87w4cPRsWNH7Nq1q8p5YWFhePrppx1e89awBAABAQEYPXo0tFotzpw5I6rMe/fuhVarxZgxY2xhCQB8fHwwZcoUSKVSh9MQ+Pv7Y/LkybawBJR3TUqlUtFlIiLnsIWJiBql33//HQCQlpaGq1evVtlvNBpRXFyMoqIihISE2LbHxcXZuuBuVVhYiP/85z84cOAAbty4AYPBYLc/Ly9PVJnPnz8PAEhISKiyLzIyEtHR0cjKykJpaSkCAgJs+1q3bm33HigfJB8WFgatViuqTETkHAYmImqUNBoNAGDTpk01HqfX6+3eh4aGOjyupKQEkyZNwo0bN9CjRw/06dMHKpUKPj4+SE9Px969e2EymUSVWafTAShv5XJErVYjKysLOp3OLiBVN9WCVCqF1WoVVSYicg4DExE1ShWBIikpqU6DniUSicPtP/74I27cuIHnn3++yhiib775Bnv37q1/YW+qCD4FBQUO91dsbypzURE1JRzDREReq2LMjsViqbKva9euAP7omhOroluv8hNvFU6cOFFt2erSwlPxhN/x48er7Ltx4wauXr2K6OjoKt1vROR5DExE5LWCgoIAADk5OVX2jRkzBgEBAVi+fDkuXbpUZb9er69TmKoYOH7y5Em77Tt37sSBAweqHB8YGAiJROKwbNUZOHAgVCoVtm3bZldmQRCwdOlSWCyWKnM2EZF3YJccEXmt2267DcnJyfj73/+OO++8EzKZDHFxcRgwYABCQkLwj3/8A2+//Taee+453HHHHYiNjYXJZEJ2djaOHz+O7t2748MPP3TqXiNGjMCaNWuwcOFCHDt2DJGRkUhPT8fRo0cxaNAgpKSk2B0fEBCAzp0747fffsO8efPQunVrSCQSjBw5stq5mJRKJf76179i7ty5mDx5MoYOHYqQkBAcOXIEZ8+eRZcuXTB+/HjRf29E5HoMTETkte677z5cv34dP//8M9asWQOLxYJRo0ZhwIABAIB+/fphxYoV+Pbbb3HkyBEcPnwYCoUCERERGD16NEaMGOH0vVq0aIFFixZh8eLFOHz4MCwWCzp27IiPPvoIOTk5VQITALz11lv47LPP8Ouvv0Kn00EQBPTs2bPGySuHDh2KsLAwfPPNN0hJSbHN9D1hwgQ88cQTVSatJCLvwKVRiIiIiGrBMUxEREREtWBgIiIiIqoFAxMRERFRLRiYiIiIiGrBwERERERUCwYmIiIiolowMBERERHVgoGJiIiIqBYMTERERES1YGAiIiIiqgUDExEREVEtGJiIiIiIavH/Fs9Tz8juixMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "0f6be4ef", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "6a3118de", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "b8fa452b", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "e35ad147", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAD//klEQVR4nOydd5gURfrHv9XdkzYvcclRQIFTVFQUBRUMoOKZwMMDc/bErKdnTqdnznoqIgio/PBMiIAgKElUgig5I2mXZfPOTHfX74+e7u2Z6bS7swnez/PMw7JdU10zO9PVn3qr3mKccw6CIAiCIAiCIAiCACA0dAMIgiAIgiAIgiCIxgNJIkEQBEEQBEEQBGFAkkgQBEEQBEEQBEEYkCQSBEEQBEEQBEEQBiSJBEEQBEEQBEEQhAFJIkEQBEEQBEEQBGFAkkgQBEEQBEEQBEEYkCQSBEEQBEEQBEEQBiSJBEEQBEEQBEEQhAFJIkEQBEEQBEEQBGFAkkgQBEEQBEEQBEEYkCQSBEEQBEEQBEEQBiSJBEEQBEEQBEEQhAFJIkEQBEEQBEEQBGGQEkncsmULGGNgjOHyyy9PRZWHJIMHDzbeR4IgCDsuv/xy41qxZcuWhm6Owfjx4412jR8/vqGbQ6QYVVVxzDHHgDGGW265paGbQyRA3z+CSGbevHnG9+Lhhx9u6OaklOLiYjRr1gyMMbz11lspr7/eIonjx4/Hww8/fND9gZz47LPPjNd84MCBhm4OEUOWZcyePRv33nsvTjvtNLRp0waBQAAZGRno1q0bRo0ahc8++wyKolSr3t9++w233HILevXqhYyMDGRnZ6Nv37649957sXXr1jp6NQRBHIpEo1G88847OP30041rWPv27XHuuedi6tSp4Jyn/Jxvv/02fvnlFwSDQdx333225bZs2YJp06bhvvvuwxlnnIHmzZsbN2mDBw+u0blTeX3dunUr7r33XvTt2xfZ2dnIyMhAr169cMstt2D16tU1ap8bixYtwpVXXolu3bohLS0NzZo1wzHHHIPHH38c+fn5dXLOhqBv377G33rOnDnVfv4PP/xgPP+II46oURt27dqFL774Ag8//DDOOecctGnTxqizc+fOnusxy4WXhxcxl2UZkydPxgUXXIDOnTsjLS0Nfr8frVu3xuDBg/HEE09g9+7dNXrd1eHJJ5+Ma7vXAE9hYSGef/55DBkyBHl5eQgEAkhLS0PHjh1x7rnn4t1330VlZaWnuoqKivDss89i8ODBaNWqFfx+P9q0aYNBgwbh5ZdfRnl5eS1eYePi3HPPNd7rd999t9rP37ZtG0RRBGMMzZo1M97jrKws3HbbbQCA+++/H4WFhSltN3gK2Lx5MwfAAfCxY8dalhk0aJBR5lBh7NixxmvevHmza/lD8T2qb7777jverFkz4312evTv359v2LDBU73PPvss9/l8tnVlZmbyyZMn1/GrIw4VqnttqS/ef/99o13vv/9+QzfnoGXz5s28X79+jtevIUOG8MLCwpSds6ysjOfl5XEA/B//+IdtuZdfftmxXYMGDar2uVN5fZ04cSLPyMiwrcvv9/Pnn3++2m20Q1VVftttt3HGmO05W7duzefMmVPrczWG799zzz1ntOGyyy6r9vOvvPJK4/nPPPNMtZ//+eefO37+OnXq5LmuuXPnerpX8Pqeb9y4kR955JGu9WRmZvIJEyZU+7V7Zc2aNTwQCMSd0+7e3cyMGTN4y5YtXdvfpUsX/vPPPzvW9c033/DmzZs71tO1a1e+bNmyWr9e89/xoYceqnV9NWHatGlGGwYOHFjt5z/66KPG82+88ca4Y0VFRTw3N5cD4Pfee2+qmsw551xCCujcuXOdjFoeasybN6+hm3DQs3PnTuzfvx8A0KxZMwwZMgQnnHAC2rRpg2g0iqVLl2LChAkoLi7GTz/9hFNPPRVLly5FXl6ebZ1vvvkm7rrrLgCAz+fD3//+dwwaNAjRaBQzZ87Ep59+ipKSEvz9739HTk4OzjrrrHp5rcTBy/jx42k62SHKgQMHcPbZZ2PNmjUAgMMPPxxXXnkl2rdvjw0bNuDtt9/G9u3bMXv2bFxwwQX49ttvIUm17+pff/117N69G6Io4u6777YtlzgDIxQK4bDDDsPKlStrdN5UXl+/+uorjB07FoqigDGGiy66CGeeeSZ8Ph++//57fPjhh4hEIrj99tuRmZmJq6++ukZtNnPffffhhRdeAACkp6fjqquuwnHHHYfS0lJMmzYNs2bNwp49ezBixAgsWLAARx11VK3P2ZBcdtlluOeeeyDLMv7v//4Pr7/+OjIzMz09t7y8HJ988gkAQBRF/P3vf6/2+RM/fz6fD3369MGvv/5a7brMjBw5EqNGjXIsc/TRR9seKy4uxqmnnopt27YBALKzs3HFFVfg8MMPR3p6OrZu3YopU6Zg1apVKCkpwdixY9GsWTMMHz68Vu1OhHOOa665BuFwGOnp6SgrK/P0vKVLl2LEiBGIRCIAgG7duuHvf/87unTpAlmWsX79erz33nvYu3cvNm/ejCFDhmDVqlVo165dUl1z587Fueeei2g0CgA44YQTMHLkSLRt2xZ79+7F9OnT8d1332HTpk0466yzsHDhQhx22GGpexMagHPPPRctWrRAfn4+fvjhB2zcuBHdunXz/PwPPvjA+PmKK66IO5aVlYWbbroJjz/+OF555RXceeedaN68eWoanlLldOBQjJI11tH+Q5kPP/yQ9+3bl3/00Ue8srLSssyOHTt47969jb/dmDFjbOv7888/eVpaGgfAJUnis2bNSipjHt3t0KEDr6ioSNnrIYjGRGOIZBzsjBs3zniPzzrrrKTrSUFBQVyU8dVXX631OaPRKO/QoQMHwM844wzHstOnT+c33XQTf++99/iKFSu4LMtxs42qE0lM5fW1rKyMt23b1ig7fvz4pDLffvstlySJA+AZGRl89+7dnttqxS+//GJEELOzs/mKFSuSyjz00ENGm/r3789VVa3x+RrL92/EiBFGO959913Pz5swYYLxvHPOOadG5/7xxx/5Nddcw998803+008/8XA4zDnntY4k1jYCZY4EHXXUUbygoCCpjKqq/P777zfKHXnkkbU6pxWvv/46B8DT09P5I4884jmSeNpppxllr7jiCh6NRpPKlJWV8SFDhhjlbr311qQylZWVvGPHjkYZu8jXCy+8YJQ57bTTavJSDRpDJJFzzm+99VajHf/61788P2/+/PnG8/r06WNZZt26dUaZJ554IlVN5iSJdQhJYuOjsLDQUye8atUq428XCoV4WVmZZTnzDdtdd91lW9/FF1+c0ps2gmiMNJab1IOVPXv2cL/fb9zk7dmzx7LcqlWrDDnJy8vjsizX6rzTp083/q41mQZXU0lM5fX1xRdfNMpcfPHFtnXdddddRrk777zTc1utOP/88426XnvtNcsyqqry4447zij35Zdf1vh8jeX799lnnxntOPnkkz0/zywi06ZNS2mbGloSTzrpJKOur776yracLMu8devWRtni4uJandfM9u3beVZWFgfAn3vuubjPi5MkVlZWclEUjcGaAwcO2JY13zsdffTRScenTJliHD/22GMd78eGDRtmlJ09e3a1XquZxiKJy5cvj/sceh0QMk/Bfu6552zL9e/f3xgsq81gk5k6z26qZ+z8/vvvjd9ZLfi1S2ijqio+/vhjjBw5El26dEFaWhoyMzPRq1cv3HDDDVi1apVj2x5++GHjHPp0zjlz5uDSSy9Fly5dEAwGkzIEyrKMmTNn4o477sDAgQONBbWZmZno0aMHLr/8csyfP9/2nHrmQXN4uEuXLkmv2e698pLddMmSJbj22mvRs2dPZGZmIj09Hd26dcPYsWPx3XffuT4/MYlAWVkZ/vOf/+DYY49Fbm4u0tPT0bt3b9x3332pXwjbgOTk5Hh6f/v06YNevXoBACoqKrBhw4akMpxzY2qMW7a/f/zjH8bPU6dOrW6za8WiRYtwww034IgjjkBOTg6CwSA6duyIkSNH4quvvnJ8rlVWsG3btuGOO+5Ar169kJ6ejpycHJx44ol4/fXXIcuypzaVlpbixRdfxNChQ9G2bVsEAgE0a9YM/fv3x4MPPoh9+/Y5Pj/xu6IoCsaPH4+hQ4eiXbt2kCTJMkHBnj17cPfdd+OII45Aeno6mjVrhuOOOw7PPfecsUi+c+fOlgkOvvnmG+Oc5r+nE//4xz+M58yYMcPTc7zglt20rv5uX375Jc4991zk5eUhGAyic+fOGD16NBYtWlTt1xCJRPDuu+/ivPPOQ4cOHRAMBpGTk4O//OUvuOOOO2yztq5duxbp6elgjCE7OxubN2+2PUdhYSE6duwIxhhEUXS8bjcFPvvsM2O616WXXopWrVpZluvTpw9OO+00AMDu3bvj+t+a8OGHHwLQpo7+9a9/rVVdXkn19dX8+1tvvdW2rltuucW4rnz88cfVarOZkpIS4zuflZVlmxgk8bXVR//w008/oWXLlmCMIRAIWL7O2tx7DR8+3Phs/vDDD9i0aZNrm7Zt24a5c+cCAFq0aIFzzz23hq+ucbJ3717jZ6epk6IoomvXrsb/vU4H9cINN9yA4uJi9OvXz/E7kEhBQYExjbdVq1bIzs62LdujRw/jZ6u2m+9PL7vsMsf7sTFjxhg/f/TRR57bW1P0KaCMMQiCYEwTT+Sbb77B5ZdfjsMOOwyZmZlIS0tDt27dcPnll+OHH36wrf/II49Ev379AGjJs/TPuxPmKdiSJOGyyy6zLTt69GgAwPbt21O3fC0VpumUuMYcQXR6WNn9hg0b+FFHHeX4PEEQHMO25qkc3333Hb/pppss6zFH+gYPHuypzWPHjjWmMpgxRxDdnm/3XtkRjUb5Nddc41r3JZdcwsvLy23r0csNGjSIb9y4kR9xxBG2dXXq1OmQjITqozIA+OLFi5OOm0fM7KYA6CiKYozgCYKQ0tFBO0pLS/nIkSNdPyvDhw+3bU/iCNyMGTN4Tk6ObV1Dhw61ncar8/XXX/NWrVo5tikzM5P/73//s63D/F0pKCjgAwcOtPzcmvnuu++Mxd1Wj759+/Jt27bxTp06WT5fURTepUsXDoDn5ua6ThuuqKgwztexY0euKIpj+ergNksh1X83WZYdr2uCIPB///vfniMZP/30k/Fe2j38fj9/8803LZ//9ttvG+UGDBhgGym76KKLjHL333+/43vaFLjwwguN1/Ppp586ln322WeNsk5RODcqKyuNKZ+nnHJKjeqoSSQxldfXoqKiuGmfbt9F83KD1atXe2pvIl988YVRh9vUyb179xplW7ZsWaPzce4tkjhz5kwjcU9GRoblFN5U3HvdfvvtRtkHH3zQte3m6ZhW0xRri12/4EQqI1DmPsprJLF58+Yp6zcmT57MAXBRFI1kMF4jiRUVFcY0bJ/P5xhJ/O2334w6zz///KTj5ujgjBkzHNv8yy+/GGXz8vK8vVALvPwdf/nlF+N9lySJf/jhh0ll9u7dGxfttntcddVVPBKJWJ7HnNjLaSmTjnkK9ogRIxzLrlixIuXfoTqXxAULFvDp06fHXXSnT5+e9Pjjjz/inrdhwwbeokUL4zkDBw7kTz/9NJ88eTKfOHEiv+222+Ju+Oz+8GZJPPvss40P27333ssnTpzIx48fz2+88Ub+559/Gs85/vjjeUZGBh8xYgR/9NFH+YQJE/jHH3/MX3rpJX7ttdfy9PR0xz/Ezz//zKdPn85PPfVUo9xbb72V9JoTsz95kcRRo0YZZYLBIL/uuuv4Bx98wCdOnMjHjRvHMzMzjeNnnnmmbchZL9OvXz/eq1cvzhjjI0aM4G+88QafOnUqf+qpp+LmjVdnysjBQDgcjrup3rVrV1IZ/aLrdoHVMf99lyxZUgetrqKyspKfcMIJxvm6devG//nPf/IPP/yQT5kyhT/++OO8R48exvHTTjvNsjMyX1xHjBjB09LSeCgU4tdddx0fP348nzx5Mr/jjjvivhNONw6ffvqpMW3F5/PxCy+8kL/yyiv8448/5v/973/56NGjjSyGgiDYZvwzv5f69/rII4/kTz/9NJ8yZQp/++23+c0332yUX716tXGjq3/un3vuOT516lT+8ssvG1OBBgwYwNu1a2d7M/Hkk08adUycONHxb/Dhhx8aZR955BHHstWlOpKYir/bjTfeaJTz+/38mmuu4R988AH/8MMP+S233GK8t+bpdXY3qQsXLjTKM8b4WWedxZ9//nk+depUPn78eH7dddfF/a3s6jELk1Xb//vf/xrHTzjhBMs1NE2Nnj17Ov7dzZg/A2effXaNzzlnzhyjnppOv6yJJKby+rpo0aJqnd/8/Zo6daqn9iby1FNPVUsw9MEpALbTiN1wk8SPPvrIuL62bNmS//TTT0llUnXvZZb8zp07u05/69atm1F++fLlNXn5juh111QS+/Tpw/v27cszMjJ4MBjk7du35+eccw5/4403HAfkdcyDNk5rEh944AGj3MMPP1ydl2hLfn6+kZV03Lhxxu+9SiLnnA8fPtwoe+WVV9quSRw6dKhxbZ87d25SGb2/BqoniQD4vn37PL3eRNwk8bvvvjMGmdLS0vjXX3+dVKagoCDuM3rkkUfyRx55hE+aNIlPnjyZ33///ca9g9P7mZ+fH7dkoKSkxLHtZin97LPPHMsqimIMAPXq1cuxrFca5RYYiqLwo48+mgPggUCAf/zxx5bldu/ebYx2CYLAf/vtt6QyZknUL3hFRUWO5589e7bjlz4/P98YFRIEgW/atMmyXKq3wDDP5W7durXlCOeWLVviRujt1meY3xO/38+/+OILy9dprqs2YlNWVmY5OFCTh1tq5VRgvsG3mlfPOY9b9O3lJmDMmDFGeatRqlSSuJbH6oIeiUTi2vTGG28klUlMAd6xY0e+bt26pHJLliwxRhpzc3Mto1Lbtm0zLsQdO3bkK1eutGz7kiVLeHZ2NgfA27dvbzkilzhDYdy4cY4jruZR3BtvvNGybOK1wupmYvfu3cZNltvN5imnnMIBbeR2+/btjmWrS3UksbZ/N/Oi+ZycHMuU5GvWrDG2R3C6SS0uLjYSoOTk5PB58+ZZvr7169cbg1Tp6emWNwf79+/n7du3N97jBQsWGMfWrl1rCHBWVhbfuHGj5Xm88scff6Ts+lXTGx1FUYy/lSiKrtK7adMm42/RrVu3Gp2T8/iBkU8++aRGddREElN5ff3ggw+qJZwPPvigUf6xxx7z1N5ErrjiCsfvQiL69QJA3Ge5OjhJ4ssvv2xEUzt16sTXrl2b9PxU3ntxzvmxxx5rtOe7776zbff3339vlOvXr5/3F1wNaiuJTo82bdo4vj7Okwdus7Oz+bhx4/jbb7/NJ02axJ988knet29f4/gNN9yQsoGtv//97xzQ1qqZpaQ6krhu3bq4GUDdunXjDz/8MJ8wYQJ/7733+L333mtE4gKBAH/vvfcs6zF/L1566SXHc5rveQHwH374odqvnXNnSfz000+N7UCaNWvGFy5caFmHPgDKGOMvvviiZZmSkhJ+xhlnGOeyk2DzDBe794lz7X5e/862atXK0+dBnwnJGHOM+HqlUUqieT+Rl19+2bHs2rVrjcjENddck3TcfOOXnp7Od+7c6ek1ubFx40bXTiTVkmjOWGc10qGzZMmSuM7AaiqW+Yv36KOP2tb1zjvveCrnhvkzUtuHl06+Nuzfv5+3adPG9cbotttuM8q88sorrvVWt3xN+fPPP42RqgsuuMCxbCQS4V27duUA+GGHHZZ0PLGTnD9/vm1do0ePdix3yy23GDe4v/76q2O73n33XaOuSZMmJR03f1eOOeYYR0H86aefjLJ9+vRxTOJhrtfuZsKcJMNKvDjXrkt6meHDhzu+1ppQXUmszd/NnKnQKiOkzpdffhl3TqsbY/Meap9//rnjazRHsOyytc2bN48LgmD8vQoLC3kkEuHHHHOM8dxUDMgkDiDU5mE1uu6FoqIio47mzZunvLwdf/vb34x67AZ23KiJJKby+vrSSy8Zx+644w7Xuqpb3oq//vWvRh1Wg7C1LW+FnSSaM2b27t2b79ixw/L5qbz34pzz1157zajPaWqdWRzczltT3K7rVsydO5czxvhxxx3H77nnHv7ee+/xTz75hL/zzjv82muvNQYzAW2K4rfffutYX3l5Ob/22mt5MBi0vT6cfvrpjtfr6vLNN98YdScu4aiOJHKuScuQIUMc9/y84YYb+Pr1623rMM/wcMvma45eAjVP6mQniW+++abRf7Rr1852avnPP/9sPP/22293PNf+/fuNz8XQoUMty3z11VdGfU5T+M0DZW7n1bnhhhuM59R0sMlMShLXpBp9kXxWVhauueYax7I9evTAcccdBwD49ttvHcteeOGFaNu2bUra2LVrV2PvvCVLlqSkTie2bNli7PPTt29fnH322bZljzvuOCNpwdatW/Hzzz/blhVFETfffLPtcb0eAPj999+r2+wmh6IoGDVqFHbt2gVAW4B/0UUXWZYtLS01fg4Gg651h0Ih4+eSkpJattSejz/+2EhuceeddzqW9fl8GDlyJABg/fr1tslCAKBfv344+eSTbY87fVY455g0aRIA4PTTT3fdC2zkyJHG3m5u3+ubbroJgmB/Kfvf//4XV1YURduyXhbzX3/99cbP//3vfy3LmH9/7bXXutZZl9Tm7xYOh43kG61bt3ZcND98+HAcfvjhjm3Rr+09evRwTUxx2mmnGddru8/AoEGDcO+99wLQrnXXX389HnjgAeOaN3r0aMc2NyUa6nqzdetW4+dmzZrVuJ7qksrX2xDvXWPoHxRFwTXXXIMnnngCAHDiiSdiwYIFlnvXAam/97r00kuN1z5t2rS490SnvLwcn376KQDA7/fjb3/7m4dXVj/07NkTa9euxZIlS/D000/jiiuuwEUXXYSrr74ab731FjZv3oxhw4YB0BIeXnrppSguLratLxQK4ZFHHsG4ceNs+6y5c+fiqaeeMvZBrQ1lZWW47rrrAAAXXHABzjvvvFrV16lTJzz//POO9UyYMAHPPPOM7Wf4oosuQk5ODgAtgdKDDz5oWe7VV19NSqzn9N5Wl0cffRTXX389VFVFz549sXDhQhxxxBGWZfXvBWMMd9xxh2O9ubm5xmdi/vz5CIfDSWXOPPNMo29bsGCBZfI1zjkmTJhg/D9xb0Sn8+uYr901pfY77NYBCxYsAAC0adMG33zzjWt5/aZv69atqKioiLvYmnG6UUqkuLgYkyZNwtdff41Vq1YhPz/fNsvUjh07PNdbU5YuXWr8fMYZZ7iWP+OMMzBnzhwAmsTqF/NEevToEfehSsTcmdQmy2nnzp3BOa/x8+uLW2+91ejwOnbs2CQ3LNe/P4D22fzss88cy5v/rn/88YdlVlBA2/DWCafPyurVq7F//34AQGZmpmubACAjIwMHDhzAH3/84VjO7Xu9bNky4+dTTz3Vsaye7deJU089FT169MC6devwwQcf4PHHH4fP5zOOR6NRI7Nx27ZtU74ZcnWpzd9txYoVxoDDoEGDHAUb0AYA7P5eRUVFxobqrVu39vwZAOD4GXjkkUcwZ84cLFmyJC4zZJcuXfD666+7nsMLDz/8sG0G7oMd/XsL1K8kErWjsrISF198MaZPnw4AGDZsGD755BOkpaXZPifV9165ubk4//zzMWXKFJSVleHTTz9NyvL66aefGkJx3nnnpW4T8BTQpk0bx+O5ubmYNm0ajjvuOKxatQoFBQV44403cM8991iWHz9+PK6//nqEw2FccMEFuO2223DUUUfB5/Nhw4YNmDBhAp5//nnMmDEDixcvxldffYUBAwbUuP3//Oc/sXXrVmRlZeGVV16pcT2AJsHjxo3Da6+9BkmScPfdd2PMmDHo3r07otEoli9fjueffx7Tp0/HO++8g6VLl+Lbb79NysCcnZ2NF154wZCexx9/HN999x0uueQStG3bFvv27cP06dMxe/ZshEIh5OTkGIP2ToPBXlFVFTfffDNee+01AED//v3x9ddfo0WLFrbP0b8XOTk5cffiduhiGA6HsWnTpqTBU1EUMWbMGDz99NPgnOODDz5I6l8WLFiAjRs3AgCOPfZY9OnTx9PrM39/UrEzQaOTxNLSUhQUFADQUp1XN912YWGhrSTajZ4lMnfuXPztb3/D7t27PZVP5eiGHfqXBIhPMWyHuYz5uYk4fTEAIBAIGD9XVla6nrcpc//99xsXjtatW2PWrFmO749+Awt4e28qKiqMnzMzM2vRUmfM0cBLLrmkWs91uqjU5rNibtO0adMwbdq0lLQJcP9e//nnn8bP5tTiVuTm5iInJwcHDhywLcMYw7XXXos777wTe/bswRdffIELLrjAOP75558b6c6vuOIKV7Gqa2rzdzO/d927d3c9l1OZ7du3Q1VVAFoHaB7McMPpMyBJEj766CMcddRRxs2m/rusrCzP52jsNNT1Rr/hEUXRtm+tC1L5ehvivWvo/uHee+9FUVERAG2rgffff9+YnWFFXd17XXHFFZgyZQoATZISJdE8EHvllVcmPd9pMCktLc3ToHldEgwG8c9//hOXXnopAOCrr76ylMR33nnHmFVy++2347nnnos73rt3b/z73//GiSeeiPPPPx+FhYW45JJLsH79ek+R6EQWL16MV199FQDw5JNP1noW3dixY41tKKZNmxYXTQwEAhg4cCAGDhyI22+/HS+88AJWrFiBm266ydi+wczll1+O0tJS3H777YhGo1i4cCEWLlwYVyYzMxOTJk3CQw89ZNzDOgU0vPLyyy8b34shQ4Zg+vTpcd9VK/T7l8LCwhp9L6y4/PLL8fTTTwPQoq8PPfRQ3HYgbt8LO8x9nvmaUlManSTqf7yaoo96W+Glg1u/fj2GDx9uvLk9e/bE2WefjcMOOwzNmjWL+7Jee+212Ldvn7F/TF1iDt2np6e7ljd/6J2mrqRiZOZg4PHHH8eTTz4JQLupnj17tquM61MmACA/P9/1HHoHnPjcVFOb75DT96c2n5W6ahPg/r3WZwBIkhQX8bMjPT3dURIB7QJ///33IxwO45133omTxHfeeQeAJpNXXXWV6/nqmtr83czTw5wiEDpO16bafAai0ajj8RYtWqBZs2bGta5r16445phjany+xkhGRgYkSYIsyzhw4ABkWXa86U/V9UYfRFAUBeXl5Z4+B6kgldfXhrhWN3T/YN77tKyszHUmT13dew0ZMgTt27fHjh07MH/+fGzZssWYrbJ161ZjP7e2bdtaCp/TTXmnTp0cl0jUF+YZKFbTRCsrK41p8c2aNcPjjz9uW9eIESNw5plnYubMmcZMoFGjRlWrPZFIBFdddRVUVcXxxx+PG264oVrPT2Tp0qWGIJ511lmO002feOIJjB8/HoWFhZg2bRr+/PNPS0G9+eabMWzYMLz66quYPXs2tmzZgmg0ivbt22PYsGG47bbb0Llz57jlUPoSr9pQ3e8FUDf3Lz179sSJJ56IhQsXYvPmzZg/fz4GDRoEIH4KdjAYNAYgvGBuayoG9RqdJJrl5pRTTqn1JsDV5amnnjIE8f7778djjz1mu9mn25z9VGIeWfSyuar55q4uo1ZeKS8vd11b5pWOHTvi6KOPTkldAPDMM8/gX//6FwBtpGrWrFmeQvtmifTSUZnnh3uJBtcU/TvEGIMsy41iIMD8vX7wwQfxyCOP1Nu5dXGRZRnRaNRVFL18v5o3b46LLroIkyZNwrfffott27ahY8eO2Lp1K2bNmgVAuznq0qVL7V9AA2L+u5WXl7uWd3rvzHWNGTPGmJKbCm688ca479e6devwwAMP4N///ndK6l+zZk1K1ggBwMCBA12ju1YIgoBu3bph7dq1UBQFO3bssJ0aDqTuemOeYrp///56k8RUXl8b4lrd0P3DU089hSlTpmDhwoWYPn06Ro4cialTp9pe/+rq3ksQBIwdOxZPPPGEMbXuoYceAgB88MEHxk36mDFjGnzWRU0xT/GzGmBctGiRMW37xBNPdL15HzJkCGbOnAlAE7TqSuKiRYuM9eXdunUzBsAT0fNcAMDKlSsNee3Zsycuvvhi45h5beCQIUMczx0KhXDiiSfiq6++Auccy5Yts5XKrl274vnnn7etq7S0FNu3bwegDVLarRmsDrfeeiv++OMPTJ8+HYsWLTKE3Ok+WV/6ovfxqeKKK64wIqjjx483JNE8Bfv888+v1qBRqpcHNDpJzM7ORkZGBkpLS+tlrV8is2fPBgC0atUKjz76qK0glpSUxP0x6hrz3Pj169e7ljeXSVWyntqwd+/eaofp7Rg7dmzK1gq+8MILxtSQ7OxszJw50zWpio5ZJJ2SAwHaPHj9giwIgmuCj9rQrl07LF++HJxz7Ny5Ex06dKizc1WnTTr1/b1u27atsRZu06ZN6Nmzp23ZwsJC1yiizvXXX49JkyZBVVW89957ePjhh/Hee+8ZUyobOmFNKjBfOzZs2OBa3qlMXX0GJk2aZCRFOuaYY5Cfn4+tW7fiP//5D84888y4xDw1ZcqUKSkb2Jg7d66nta9W9OnTB2vXrgWgXXOcJNG8FtfrehYrOnfujB9//BGAdgPSvn37GtdVHVJ5fT3iiCMgCAJUVcXy5cuhqqrj4Fkq3rvqtH/fvn3GzWfLli2T1nHVhMzMTHzzzTc466yzPIliXd57XX755UbynAkTJhjJSswDRYnTUHWaQi4Dtyiwedq+lynw2dnZxs9eBi0TMb9negTQjV9//dX4Do0YMSJOEuu7/Trz5883XsuAAQMcZ054xefzYerUqRg1ahT+7//+z5MotmvXDgcOHMDevXs9DTR75ZJLLsGtt95qRA5fffVVpKen4/333zfKeE1Yo2P2kk6dOtW6jfUWYjBfkN2+9KeccgoA7YbOy41JKtmzZw8ALemBUycye/Zs42bQjuq8ZjfMiWf0SIUT5qidXdKaQ53XXnsNt99+OwCtQ50xYwb69+/v+fm9e/c2bphWr17t2LEuXLjQWLt60kkn1Wl0Vx+NAtwzg9YX/fr1MzqXOXPmuH53Usmxxx5r/Dx37lzHsvrUJy8MHDgQvXv3BgC89957iEajeO+99wBog0wjRoyofmMbGUceeST8fj8A4Pvvv3edWq8ny7KiRYsWxkjw4sWLU7KWe/PmzbjxxhsBaBHjyZMnY+LEiRBFEaqqYsyYMXE3cE2dM8880/hZjzTYYU48ctZZZ9X4nGbZ0QW1Pkjl9TUrK8tI4FRUVITFixfb1rV9+3YjCtOxY8caRy8GDx5sTNWdP3++4/og89+yNn+rRHRRPOmkkwAA06dPxyWXXGI7fbuu7r26d+9uJBjbtGkTFixYgPnz52PTpk0AtOia0+BdY8ccdbWKApvFSo+MOWGOVjWGRD4N1X6zLKVy6YYuihdeeCEAGKJo1yfp91SVlZWYP39+ytqRlZVltKG0tBTTpk3Dli1bjM9T+/btXSO3iehJ3hhj6Nu3b63bWG+SaJ7K4DayMHbsWONnu/S4dYU+lWbTpk22Yqcoim343kx1XrMbnTt3NqZYrlixwlEUly1bhu+++w6ANpLQGNbm6NlNU/FIRRTxnXfewS233AJAu7n8+uuvq51FjDFmjLZxzh2zh7388svGz/qWE3XFqFGjjBv7f//737X+7KUCURQxevRoAFoHYrd1RF1glrXXXnvNUXReeumlatWtpxffvn07xo0bZ9zIjh07NmWjjQ1JIBAw0nnv2bPHcVR6xowZrplo9Wt7eXm5sWi/piiKgtGjRxsd+8svv4zDDjsMAwcOxD//+U8AwM6dO3H11VfX6jyAlt00VdevmkYRAW3qkf7dnjx5spEgKZHffvvN6APy8vLiBo6qy/HHH2/8XB/bPemk+vpq/r3T9/yVV14x+v7qJv4yk5GRYXx3iouLbfstzrmRYCSxnalAF8WBAwcC0BLB2IliXd57mSMi48ePj3s/qhstaUyEw+G4+0H9b27GPNCyePFixymLiqIY69GA+EFOrwwePNjTtcgsYWPHjjV+n5gsyNz+Tz75xLEP3bJli3GdEAShxkuD5s6da7wPXbt2NWQqVUiShClTphhbnC1atAhnnXWWpSiOGTPG+PmRRx5JaR6SxO+FeQr22LFjq7VcSFEUYxZEr169UpO4rXbbLGqYN8q125DzH//4h1Hm+++/d6xPURTev39/o/ytt97Kw+Gwbfny8nL+/vvv88mTJycdM2+C7GUT46FDhxrln3/++aTjkUgkbuNXOGzO+vzzzxtlPvjgA9dzmzfytmLq1KnG8TZt2vA//vgjqczWrVt5t27djHKvvvqqZV36cS8bG1enbFPggw8+MDaDTUtLq/Hm1pxzvnPnTp6WlmZspjt79uykMuYNazt06MArKipq0Xpv3HHHHcY5Tz31VL5r1y7bsoqi8FmzZvHHHnss6ZjdJrRWuJXdvn07z8nJ4QB4IBBw/U7s2bOHP/roo3zFihVJx9y+K4kMHDjQKH/jjTdyRVGSyiRumO5l0+UDBw4Yf3/zY926dZ7aVVPGjh1rnGvz5s1Jx1P5d1uwYIFxPDc3l//6669JZdatW8fbtGkT9x6YN/PWKS0t5Z06deIAOGOMP/PMM5Z/C50DBw7wl156ic+aNSvp2L/+9S/jXBdddFHcsWg0ygcMGGAcf+uttxzfg6bEuHHjjNd19tlnJ11P9u/fz/v16+faB3ilsrKSp6encwD85JNPrlEd5nuE6vQjqby+lpWV8bZt2xplx48fn1Rm1qxZXJIkDoBnZGTw3bt3u74ep2vQL7/8YvQ12dnZlteyhx9+2Kinf//+tnV5wfxeJH7/SkpK4q6DI0aM4JFIJK5MKu+9EikpKTE+RxkZGTwjI8Pog4uKimr0eqtDda7rnHO+fv16/uyzz/Li4mLbMvv37+fDhg2Luz4WFhZalj3++OONcieccAIvKChIKiPLMr/++uuNcq1ateKlpaVJ5bx+/twwf17s7t0553zfvn3G3w4Av+GGG7gsy0nlCgoK4l7nsGHDLOvbtGkT37p1q+35vv32W2NDesZYre7ROHfu46LRKL/ooovi/jZWn8cLL7zQKDNy5EjHz2w0GuXTpk3zdO1VVZV37tzZeK2tW7c2zrN+/fpqvc4VK1YYzx03bly1nmtHva1JPP30043Rvquuugq33XYbOnXqZCxU7t69u5E+XRAETJs2DQMGDMDOnTvx0ksv4eOPP8bFF1+MI488EtnZ2SgtLcW2bduwbNkyzJkzB2VlZXjsscdq3c5bbrnFiNLdfvvtmDdvHs4880w0b94c69evx4QJE7B+/XqceuqpWL9+veMUmNNPP934+e6778a+ffvQs2dPY151u3btqhUOvuSSSzB9+nRMmTIFu3btwtFHH43LL78cAwYMgCiKWLZsGd59911jJOSMM84wpmIRGjNmzMCVV15pjNRceeWVOHDggOuebUcffTQ6duyY9Pu2bdviueeeww033ABZlnH22WdjzJgxGDRoEGRZxowZM4zRMEmS8Pbbbzumszavgd28ebPjmiMnnnrqKSxfvhxz5szB3LlzjZG4AQMGoGXLlohEIti9e7cRld69ezdOP/10PPDAAzU6nxfat2+PKVOm4LzzzkM4HMbYsWONjXkPO+wwhEIhFBUVYd26dVi8eDF+/PFHKIriurehF9566y30798f5eXleP3117Fo0SJcdtllaN++Pfbs2YOpU6fixx9/xIABA7Bt2zbs3LnT0whednY2Ro4cGTciO3jwYBx22GG1bnNjYeDAgbjxxhvx+uuvo7CwECeccALGjh2LgQMHQhAELF26FO+++y7Kyspw/vnnO36X0tPT8dlnn2HQoEEoLi7G3XffjbfeegsXXnghjjjiCGRkZKC4uBibNm3C0qVLMW/ePEQiEWMzY50ffvjBGL1v37493n777bjjkiRh0qRJOOqoo1BcXIzbbrsNgwYNatJT2nQeeughfPPNN1izZg1mzJiBo48+GldffTXatWuHDRs24K233jKmhA0ePLjWa2MDgQDOOussTJs2DcuWLUNpaalryvjE64g5497mzZuTjh999NFxGYJ1Unl9TUtLw9tvv40RI0ZAURRcccUV+Oqrr3D22WdDkiR8//33mDBhgpH98IUXXkDr1q3d3yAH+vXrh7vvvhv//ve/UVRUhBNPPBFXX301jjvuOGN6mb4kICMjI+lznEoyMjIwY8YMDBs2DAsWLMD//vc/XHzxxfjkk0+MWQ91ee+VkZGBiy++GOPHj49LrHfhhRemfKua5557znbrgQMHDiR9/rp06ZI0nbG0tBR33XUX/vWvf2Ho0KHo378/OnXqZGS//umnnzBlyhTjs61vu2OXZOSll17C4MGDUVlZicWLF6NXr14YO3Zs3D6JkyZNMqY6A9pn0Es2+7qmRYsWeOKJJzBu3DgAwBtvvIH58+fjb3/7W9w+iR988AH27dsHQOsbE7f50Pn5558xatQonHzyyRg8eDC6d+8OSZKwY8cOzJgxw1i2wBjDq6++WqvZF25IkoTJkyeDMYZPPvkEixcvNtYomj+X7733HtatW4dVq1Zh6tSpmDlzJi655BIce+yxyM3NRUVFBXbu3Ilff/0Vs2bNQmFhoacpsowxXH755cZsFX3J28knn+xp2ykz5uU0559/frWea0sqTNNLJFGW5bhRrMSH1Qj2n3/+yU8//XTb55gfoijyd955J6mO6kYSOef8vvvuczzXSSedxPfu3WuMiDuNTF166aW29SS+V16iI9FolF999dWu78dFF13Ey8vLbevRyx1qkcTEaJHXh1VUxMyzzz7LfT6f7fMzMzM9jbaan2MVIaoO4XCY33zzzVwURU+vccyYMUl1pDIipbNo0SLetWtXT23KyMjgK1euTKqjupFEzjn/7rvvjEim1aNPnz5827ZtvF27dhwA/8tf/uKp3iVLlsTVM2nSJM9tqin1GUnkXLt+//3vf7d97wRB4M8884xjJMPMmjVr4qJdTo9AIMBnzJhhPLewsNC49gqC4HhdnzhxolFPv379HKMiTYnNmze7vn9DhgyxjWpUl88++8yod8KECa7lq3t9dYpicJ666yvn2mdCj2JZPfx+v+UsIjPVieSoqsrHjRtnRBStHq1ateJz5szx1H4nvHz/SktL+SmnnGKUO++885Iiiqm497Li+++/T3r+d999V9uXnYR+ffD6sLq3+fXXXz0/v2PHjp7uL7/99luel5fnWl96ejp/7733bOup70iizn/+8x/u9/td29+5c2e+ePFi23o++eQT1zpat27Np06dWuPXZsZLHxeNRvkll1xilDv++OOTooVFRUV85MiRnj8X//rXvzy1b/PmzUnXB6e/vx3HHXec8XlUVbXaz7ei3iSRc84rKir4008/zQcMGMBzc3Pjbl6dbmTmzZvHr7vuOt67d2+ek5PDRVHkWVlZ/IgjjuAjR47kb7zxBv/zzz8tn1sTSeSc8xkzZvDhw4fzFi1acJ/Px9u0acNPO+00/s477/BoNMo5554kUZZl/sYbb/DBgwfzFi1aGFNZrN6r6tz4Llq0iF911VW8e/fuPD09nYdCId6lSxd+2WWXeepsnC6OtSnb2KkrSeSc81WrVvGbbrqJ9+jRg6enp/PMzEzep08ffs899/AtW7a4Pr+srCzuRsVqOkpNWL9+Pb/33nv58ccfz1u2bMklSeJpaWm8S5cufNiwYfzJJ5+0FDHO60YSOdcuyBMnTuSXXHIJ79KlC8/IyOCSJPFmzZrxY489ll9zzTV86tSpllNtOK+ZJHLO+e7du/mdd97Je/bsyUOhEM/JyeHHHnss/89//sPLysq4qqo8FApxAHzw4MGe6lRV1Zga06xZM15ZWVmtNtWE+pZEnS+++IIPHz6ct2zZkgcCAd6xY0d+6aWX8oULF3LOvd2k6qiqyv/3v//xsWPH8h49evCsrCwuiiLPycnhRx55JB8zZgwfP348379/f9zzzJ30vffe63gOzjkfPXq0Uf6OO+5wLd9UiEQi/O233+annXYab926Nff7/bxt27Z8+PDhfMqUKSm7SeBc68c6duzIAfChQ4e6lq/u9dXLDWptr69mtmzZwu+++27eu3dvnpmZydPT03mPHj34TTfdxH/77TfX59fkJn3hwoX88ssv5127duXBYJDn5OTwo48+mj/66KN837591Wq/HV6/f1aiaDWAUpt7LytUVY1bDtO5c+eUfk51UiGJlZWV/JtvvuEPPfQQP/PMM3mvXr2Me7isrCzevXt3PmrUKD5p0qRqDT4VFRXx1157jQ8bNoy3a9eOB4NB7vP5eMuWLfmgQYP4448/7rg8hPOGk0TOte/Ogw8+yAcOHMhbtmzJfT4fDwaDvH379vzcc8/l77zzjmOAgnPO8/Pz+ZtvvslHjhzJDz/8cN6sWTPu9/t5u3bt+Omnn85ffvllfuDAgRq/rkS89nGyLMf1L1aiyLk2jXzcuHG8X79+vHnz5lySJJ6RkcEPO+wwfv755/Pnn3+eb9y4sVptPO2004zzpqen85KSkmo9f926dcbzn3jiiWo91wnGeS3TbhIEkRJmzpxpZLb7xz/+Ue0kKkTtWbVqFf7yl78A8P43mD17NoYOHQpA24PpxRdfrMsmEkSD8MILL+D222+HKIrYsmVLvW2FQRAEQTjz4IMP4rHHHkN6ejq2bt2asqy4Db/LNkEQAKr26MzMzKzTtYGEPeYsg17XQr7xxhvGzwfD3ogEYcX111+PvLw8KIqCZ555pqGbQxAEQUDLnvzaa68B0PKqpHLbFJJEgmgk6JJ4++23o2XLlg3cmoOPBQsWOO7P+NprrxmJI9q1a4dzzjnHtc7ly5cbiVqGDBlS4z3VCKKxEwqF8PDDDwMA3n777bgNtgmCIIiG4eWXX8b+/fvRvHlz3H333Smtm6abEkQjID8/H61atUKLFi2wcePGpM2gidrTvXt3VFZW4uyzz0a/fv3QsmVLRKNRbNy4EdOnT8evv/5qlP3iiy9sJfGbb76BqqpYt24dnnnmGezatQuAlnFT37SaIA5GVFVF//798csvv+Dmm2923LuQIAiCqFuKi4vRpUsX7N+/H2+++aaxd3OqIEkkCOKQoHv37ti4caNjmVAohHfeeQejR4+2LWPepkTH6/rFb7/9FuXl5e6NtaBFixbGhtgEQRAEQRB1CUkiQRCHBIsXL8a0adOwePFi7Ny5EwUFBSgvL0dubi569OiBIUOG4IYbbnDdG02XxIyMDPTo0QM33HADrrzySk/7Knbu3Blbt26tUfsHDRqEefPm1ei5BEEQBEEQ1UFq6AYQBEHUByeccAJOOOGEWtdD42oEQRAEQRzsUCSRIAiCIAiCIAiCMKDspgRBEARBEARBEIQBSSJBEARBEARBEARhQJJIEARBEARBEARBGFDiGoIgCKLBURQFFRUVKC8vNx7m/5eVlSEcDiMSiSASicT9bPX/SCQCRVGgqmrcv/pDVdW4Y4CWudbuoWevFQQBoihCkiT4fD7jYfd/v9+PQCCAUCiEYDCIYDCItLQ042fz70OhEDIyMpCWlgZJou6ZIAiCaDioFyIIgiBSAuccJSUlKC4uRnFxcdLPRUVFxu/0f8vKylBeXo7KysqGbn6jIi0tDRkZGXGPzMzMuP9nZWUhJycH2dnZyMnJQU5ODkKhkOVengRBEARRHSi7KUEQBGGLqqooKirC/v37UVhYmPRv4s+KotTqfKIoIi0tLe4RCoWQnp6OYDCIWePng3EACgM4A1QGqABT9Z9N/+cAEPuXQyuv93i86vdM/53pMMyexRAraPo/49qCDcbBBf3/PO4YF2KVi9rjrGtOQ2VlJSoqKlBRUYHKykrj//q/4XC4Vu+f3+83hNH8yM3NRYsWLdCiRQs0b94cLVq0QHp6OgklQRAEYQlJIkEQxCGKoigoLCzE3r17sW/fPuzbty/p5/z8fMiyXK1609LSkJWVhczMTGRlZSErKwvff7QYTGaALIDJAhBl2r8KA1MYoGg/QwUYDl1x4TGp5JIKSBwQVXCJA1LsX5HjvFvPMCKzBw4cMP6NRCLVOlcwGDSEUZfH5s2bo1WrVmjVqhXy8vLQvHlzY6otQRAEcehAkkgQBHGQoigK8vPzsWvXrqTH7t27UVBQ4Dnyl52djWbNmiE3NxfLv/kdLCoAUQEsUvWv8Tt+6EpeQ8ERi2T6OLhPBfepgOnfIVedjIKCAuTn5yM/Px+lpaWe6pUkCa1atULr1q2Rl5eX9G+rVq3g8/nq+NURBEEQ9Q1JIkEQRBMmHA5j586d2LZtG3bs2BEngnv27HGNAoqiiObNm6Nly5Zo1aoV5k9cAoQFsIgIFvsXERK/gw0ucMCvgPvV2EPBJfefa0SQ9+zZg/z8fNdBBEEQ0Lp1a7Rr1w7t27dH+/bt0a5dO7Rr1w5t2rRBIBCop1dEEARBpBKSRIIgiEaOqqrYs2cPtm/fnvTYs2cPnC7joigiLy8Pbdq0wS9frgarFKseEUETwEN4eidhDwcHAip4QDEew245Dbt378aePXuwe/duxymujDG0atXKEMcOHTqgU6dO6Ny5M1q1akXTWAmCIBoxJIkEQRCNBEVR8Oeff2Lz5s1xj507dzrejGdkZKBjx45o37495vz3xyoJDItaVJAkkKgDOLg2pTWkgAcVXPrYCOzYsQM7d+7Ejh07UF5ebvvcYDCIjh07onPnzoY4durUCW3btqXtPwiCIBoBJIkEQRD1jB4Z3LJlCzZt2mTI4NatW21l0OfzGdGYhR/9DFYpgZWLYBUSIDMSQaJRoQkkBw/K4CEFf3v8fGzfvh1btmzB9u3bbadBS5KEDh06oGvXrujWrRu6deuG7t27o0WLFpSJlSAIoh4hSSQIgqhDZFnGli1bsH79eqxbtw7r16/Hhg0bbKMsgUAAnTt3xvr5W8HKJbByCUK5CIRFEkHioICDgwcV8DQZPE3B6deeiK1bt2Lbtm2oqKiwfE52dnacNHbr1g2dO3eG3++v59YTBEEcGpAkEgRBpIiKigps2LAB69evNx6bN29GNBpNKitJEjp27Igti//UIoLlEoRyCagkGSQOTfQ1kGqaDJ4m49RrTsCGDRuwfft2ywQ6oiiiY8eO6NmzJ3r16oVevXqhW7dulCyHIAgiBZAkEgRB1ABZlrF582b8/vvv+OOPP/DHH39gy5YtlklkMjIy0L17d6z6ah1YmQRWKoFVSJQxlCA8wBnXoo7pMs7/5xnYuHEjNmzYgJKSkqSyoiiia9euhjT27NkTXbt2pXWOBEEQ1YQkkSAIwgXOOfbu3Yvff//dkMK1a9ciHA4nlW3WrBl69OiBnz5eBVYmQSiVaKooQaQYDg74VagZUYz+9/lYs2YN1qxZg6KioqSyfr8f3bt3x+GHH44+ffqgT58+aN26dQO0miAIoulAkkgQBJGALMtYt24dVq5ciVWrVmH16tXYv39/Urn09HT06tULyz9bA1YiQSjxgUXFBmgxQRDGdNWMKC55bDjWrl2LtWvXorS0NKlsy5Yt0adPH/Tt2xd9+vRB9+7dKdpIEARhgiSRIIhDnvLycqxevRqrVq3CihUr8PvvvydFCfVpbBvn79BksMQHVkERQoJozBhJcjKjGPHPoVi1ahU2btyYtMYxEAgYkca+ffuib9++yMjIaKBWEwRBNDwkiQRBHHIUFRVh+fLlWLlyJVauXIkNGzYk3TRmZmaib9++WDJppSaFpT4wlYSQIJo6XFDBM2WMfelC/Pbbb1i9enXS+kZBENCjRw8cddRR6NevH0kjQRCHHCSJBEEc9JSXl2PlypX4+eef8csvv2DDhg1JCWZat26NfauKIBT7wIr9WsZRihISxEEPBwcPKeBZUZxx60CsWLECO3fujCtD0kgQxKEGSSJBEAcdkUgEv//+O3755Rf8/PPP+P3335MihZ06dcL2xXshFPsgFPvBwrSWkCAIDe5XoGZHcNYdp+DXX3+1lcb+/fujf//+6N27N3w+XwO1liAIIvWQJBIE0eThnGPr1q1YsmQJli5dipUrVyatKczLy8Pe5QcgFPkhHPBTghmCIDzjJo2hUAj9+vVD//79cdxxx6F9+/ZgjGYiEATRdCFJJAiiSVJeXo6ff/7ZEMPdu3fHHc/NzUXRunIIB2JSGKbMhQRBpAbuV6DmRDD4xuOwbNkyHDhwIO54Xl6eEWU85phjkJmZ2TANJQiCqCEkiQRBNAk459i8eTOWLFmCJUuWYOXKlZBl2Tju8/lw5JFH4teP10A4EKA1hQRB1AscHDxdxpVvXoyffvoJq1atQjQaNY6Loog+ffrgxBNPxEknnYQOHTpQlJEgiEYPSSJBEI0WWZaxfPlyLFiwAD/++CP27t0bd7xt27bYvawQQmEAQpGfso8SBNHgcIFDzY7g/IeGYOnSpdi2bVvc8Xbt2uGkk07CgAEDcOSRR9L+jARBNEpIEgmCaFSUlZVhyZIl+OGHH7B48eK4jbD9fj/69euHZZN/h7DfD1ZJ0UKCIBo3PKDghomj8eOPP2L58uVxMyDS09Nx3HHH4aSTTsIJJ5yArKysBmwpQRBEFSSJBEE0OPn5+fjxxx/xww8/4JdffombqpWbm4uiPyog7A9qawspWkgQRBOFiyrUnAiG3n4iFi1aFLeWURRF9OvXD4MHD8bJJ5+M3NzchmsoQRCHPCSJBEE0CHv37sW8efMwd+5crF69Ou5Yhw4d8OeiAggFAbASH0ULCYI46ODg4JlRjPrPOfjxxx+xadMm45ggCPjLX/6CQYMG4ZRTTkHLli0bsKUEQRyKkCQSBFFv5OfnG2K4atWquGO9e/fGmq+2QigIQKigNToEQRxaqEEZV7x9IebPn481a9bEHevduzcGDx6MQYMGIS8vr4FaSBDEoQRJIkEQdUpBQQG+//57zJ07FytXroR+yWGMoW/fvvh9+mYtYhihfQsJgiAAbR3jNeNH4vvvv8dvv/0Wd6x3794YOnQoTj31VJqSShBEnUGSSBBEyikrK8O8efPw7bffYsWKFVBV1TjWp08f/PH5Voj5JIYEQRBucL+CGyaNxvz587F8+XJjoE0URRx77LEYOnQoBg4ciLS0tAZuKUEQBxMkiQRBpARZlvHTTz/h22+/xYIFCxCJRIxjRxxxBNZ+uQ1ifpDEkCAIooZwn4JrPxyF2bNnx01JDQQCGDhwIIYMGYLjjjsOPp+vAVtJEMTBAEkiQRA1hnOOdevW4dtvv8WcOXOwf/9+41inTp2w4/sCiPuCYGESQ4IgiFSiBmWMfvVczJ49Gzt27DB+n5WVhdNPPx3Dhg1Djx49wBgl/iIIovqQJBIEUW3y8/Mxc+ZMzJw5E1u2bDF+n5OTg5LfwxD2hsBKJcpKShAEUcdwcPAMGec/cXrSYF23bt0wbNgwDB06FDk5OQ3XSIIgmhwkiQRBeEJRFCxduhRffvklFi5cCEVRAGgb3Ms7GYS9IW0fQ05iSBAE0RBwcPCcCE659Zi4af+SJOGkk07CsGHD0L9/f0gSZZAmCMIZkkSCIBzZs2cPvvrqK3z99dfYu3ev8fvevXtj7WfbIOQHwRShAVtIEARBJMIlFTdOGY0ZM2Zg7dq1xu9btGiBM888E+eccw7atWvXgC0kCKIxQ5JIEEQSsixj4cKF+OKLL7B06VIjm15WVhbK/pAh7AlBKKeRaIIgiKaAmh7FiCdOw6xZs1BUVGT8/vjjj8f555+PE044AaJIa8cJgqiCJJEgCIP8/Hx8/vnn+Pzzz+PWtfTr1w+rpmzUooY0nZQgCKJJwhnHA3NuxpdffomlS5cav2/dujXOO+88DB8+HM2aNWvAFhIE0VggSSSIQxzOOX7//XdMmzYN8+bNgyzLAIDc3FwUrwxrUcNKihoSBEEcTPCgjAv+MxRff/01iouLAWhrFwcPHozzzz8fffv2pcyoBHEIQ5JIEIcokUgE3333Hf7v//4vbr+tvn374o9PtkEoCFDUkCAI4iCHCxx3fnk1PvvsM/z+++/G77t27YqLLroIQ4cORSAQaMAWEgTREJAkEsQhxr59+/DZZ5/hiy++wIEDBwDEMpRuFyD+mQahjDZhJgiCOBRR06M4818nYtasWQiHwwC0WSV//etfcf7559M2GgRxCEGSSBCHCJs3b8aUKVMwa9YsY0ppy5Ytsf+nCoi7Q2AyZSglCIIgAC6quPrDi/Hpp58aWa39fj/OPPNMXHzxxejcuXPDNpAgiDqHJJEgDmI451ixYgUmT56MRYsWGb8/8sgjsXrKFm1KKW14TxAEQVjAGcd9396AqVOnxi1LOP744zFy5Egcc8wxtG6RIA5SSBIJ4iBEURT88MMPmDx5srHGhDEGts8PcUc6hFKaUkoQBEF4g4ODZ0Vxwk198MMPPxjbIh122GEYPXo0Bg0aRFtoEMRBBkkiQRxERCIRzJgxA1OmTMHOnTsBxNYbbhUh7kyjLKUEQRCHOnrkz+32jzHLMjwo49ynBuPrr79GRUUFAKBDhw4YPXo0hg4dCp+PBiEJ4mCAJJEgDgLC4TC+/PJLfPTRR9i3bx8AIDMzE+W/qxD/TAOLWqw39HqjQBAEQRxcmKeI2vUBLmW4pGL0W+fg008/RUlJCQCgVatWuPTSS3HOOedQRlSCaOKQJBJEE6ayshKff/45Jk+ejIKCAgCxZDRLKiHuCYGpQnLnnrh+hC4BBEEQhxZW6wjd+gqbMlxUcdUHF2Lq1KnYv38/AC0j6qhRo/DXv/4VwWAwRY0mCKI+IUkkiCZIRUUF/ve//2HKlClGp9y6dWsULKyAsCdUtb+h+evtpcMnCIIgDg3sEs649Rs2ZTjjuGXaZZg0aRJ2794NAGjWrBn+9re/YcSIERRZJIgmBkkiQTQhIpEIPv/8c3z44YcoLCwEAOTl5SH/h3IIe01yqMO5fSevHycIgiAOPdyykrr1HzZlOOO444sr8cEHH+DPP/8EADRv3hyXXXYZzj33XPj9/tq0miCIeoIkkSCaALIsY+bMmRg/fjz27NkDAGjbti32fl8KYZ+FHFYHugQQBEE0LWySytSoTB3BGce4z8bigw8+MPqtli1bYsyYMRg+fDgkiRKpEURjhiSRIBoxqqri+++/x7vvvott27YB0DrZwkVh68hhdXFLWECXB4IgiMZHChLPJJWpI/RpqBMmTDASq7Vv3x7XXnstBg0aRPssEkQjhSSRIBopy5Ytw5tvvol169YBALKzs1G6XIW4Ow1MTVGnSkltCIIgmiZertduZepR0DjjuH7KSEyYMAEHDhwAABxxxBG4/vrrcdRRR9VbOwiC8AZJIkE0MrZs2YLXX38dixcvBgCkpaUhvEbQtrJQLLayqA3615+S2hAEQTQtUpx4pr7gooq/vTkMU6dONfZZHDBgAK677jp07dq1XttCEIQ9JIkE0UgoLCzE+++/jy+++AKKokAURWB7AOL2DDA5xXLoBbo0EARBNG68JCZzK9NA0z25T8GwJ08y+jxBEDBs2DBcc801yM3NbZA2EQRRBUkiQTQw4XAYn3zyCSZOnIjy8nIAgFAQgLglE0JlwsJ+FpNFrtZ9w+jSQBAE0bipL8FjQu37HZs61KCMk+7og3nz5gEA0tPTMXbsWFx44YXw+Xy1OydBEDWGJJEgGgjOOX788Ue88sor2LVrFwCgR48e2DwtH0JxQopwZookOnXUqejIqxpocw5KakMQBFEveLne1ocoeumDvAxiOpR5fvm/8Morr2DNmjUAtOQ2N998MwYMGEDJbQiiASBJJIgGYMeOHXjppZewZMkSALGMpQujse0sEhMLJEw1teqAvUpkdXBKcECXDYIgiPqhsSSfceuLUtBXccZwxxeX46233sL+/fsBAP3798ctt9yCzp0716DRBEHUFJJEgqhHKioqMHHiREyZMgXRaBSSJIFvCULckQGmJoywJna4OuaO1UunXBPckhrQZYMgCKJ+aCzJZ6z6JDdRTCzj8TgXVVz00mn45JNPjL5y1KhRGDNmDILBYA0aTxBEdSFJJIh6Yv78+Xj55Zexd+9eAAArDEDanB2/7pCr9nLopUyqJZEEkSAIouFpDMlnnPomt8FNvUw16+ABGcfe0h0LFy4EAOTl5eG2227DgAEDvLaaIIgaQpJIEHXMvn378OKLL2LBggUAtE4uf14Ywv4gGOqgY6/rpDZ0ySAIgqhfGsuaPLdBzDriwbk34aWXXjIGWU855RT84x//QKtWrRqkPQRxKECSSBB1hKqq+N///oe33noL5eXl2pYWW0PxU0tjMEG7AeBqCr6OtUkq4Kl+umQQBEHUO/UVLfSSeKZWp2COfZ3dcS6ouPClU/Hxxx9DURSEQiFcddVVuPDCC7X+lSCIlEKSSBB1wObNm/Hss8/it99+AwCwEh98m3LByuK3tNDlUMeqY6yWQLolCrArUx3okkEQBFH/NIYspimSxKpT2Pd5dsd5uoyel7XGqlWrAAC9e/fGvffei06dOtW6bQRBVEGSSBApRJZlfPjhh/jwww8hyzJCoRCiv/sh7kkHQ9XoaKIc6iR2iG6dpUUF5ic7H68pdMkgCIJoGBpi7aGX5DTVqt55cNSqfzSXYQIDB8fNn1yKN954A+Xl5fD7/bj88ssxatQoSJKU9HyCIKoPSSJBpIjNmzfjiSeewLp16wAAwv4gfFuywSJah+UmiG5lPEuil8QANYUuFwRBEA1HQyao8ZKcxlP1zoOkXgZRjRk2fhlH3dDZ2E6qZ8+euPfee9GtW7datZEgCJJEgqg1iqJgypQpeO+99xCNRpGZmYnKXyQIBaFqJabhKvckkLWCJJEgCKJpU9eiWJsMpZ6qd26/l74wbpYNOO74/HK8/PLLKC0thSiKuOKKKzB69Ghaq0gQtYAkkSBqwfbt2/Hkk09i9erVAAChMKCtPYymvmOqtSTSVFOCIIjGD2PO19raSqJbchq9TB3iJoo1gfsUHDfuMCOTeJ8+ffDAAw+gbdu2KT8XQRwKkCQSRA3gnOOLL77AK6+8gnA4jLS0NERW+SHuS4uPHjIBEBigcvskAE7H9TIAuKJYHHJfs2hkinOq34tA0qWCIAiiftBF0O66mwpRBNyzYde4eueEa0yP8NU0G7f+/IR+UY8qvvjiiygvL0coFMKtt96Ks88+G6yxbCNCEE0EkkSCqCbFxcV45plnMH/+fACAUByAb3NzsIqEDkgXQMBaAt2O62ViJEoiE1hcR+qaGdWpfpJEgiCIxkOi0CRef1MliUCdZDF1zWBqngbqdn6r4+bnWwygqiGOXn9vgZUrVwLQ9lW88847kZOT49p2giA0GmZXVIJooqxYsQJXXnkl5s+fD1EUIW3PgW9tKyM5DQCtcxPFKgFMxO24Xsamk2YCixdEpzI1qN8SEkSCIIj6w00Ka3tNTsyEXYfTS2vdH7kdF8V4aQQgRCSsfbcQ1157LURRxPz583HFFVdg+fLl1Ws8QRzCUCSRIDwgyzImTJiACRMmQFVVtGvXDvu+lSGUB6oKKUp8dNCMHslzOw7YdoZcUazl0BRFtM2K6lQ3RREJgiAaH3bRQv16nMpoYlz9dZfF1Oir7BLKuJ1bP273fD2qaDr+yvJ/4bHHHsO2bdsgCAKuvPJKXHbZZRAEipMQhBMkiQThwv79+/HII4/g119/BQAI+enwbc0FUxM6GJU7RwfdcEpM4yJ5TtnguFlQnep2gi4TBEEQ9Y+TCHJeO1FswCymXOX2ougFp75WUZIkkgsqBv+zN2bOnAkA6N+/Px544AHk5ubWvA0EcZBDkkgQDqxatQoPPfQQ8vPzEQqFIP+WBnF/elwZvaOzSizjGTtB1DtCPUpph4vouWZGdXo+XSIIgiAahobc7sL1qcyxb2Gi6Ny3iKLz4KgbDqLIRDGpT+bguG3aaLzwwgsIh8No0aIFHnzwQRx11FE1bwNBHMSQJBKEBZxzTJs2Da+99hoURQGrkODb0BJCpc8ow0TRSFVumXmUMa0TdDouCICqgisWHanAwBgD59y6I/WSFdUmoU38i3WJJNIlgiAIomFoxJKoPd0+i2licrUk9GifbQZUPbO3dR/FfFLsuPUArd0ArhqMoM05AWzduhWCIODGG2/ExRdfTNlPCSIBkkSCSKC8vBzPPvss5syZAwAQ96dD2lw1vdSQQ8BSAA05dDqur4WwEsSYHGpPdxBEwD0rKkkiQRBE06WJSCJQwyym5uOWzzdn+E5+vi6K2nGLwVhT/ebjidNPzzjjDNx1110IBAJJdRDEoQpJIkGY2LVrF+677z5s2rQJoihC2JINYXc6GFi8HOqYJDBODu2OJy6UN0uiSQ6rnp4giYnTaxIl0SGpjS0kiQRBEI2XuhTFOkxOA9gkqDH3OVbH456f3D6zLJolsep4lQxanV8/zsFx3Yd/NWYM9ejRA0888QRat26d3CaCOASh1E4EEWPlypW47rrrsGnTJjRr1gzi760g7s6AIEpgkmQriIwx7biNIDIWE0w7QRQYmCg4C6LAnAXRKkU4CSJBEAThhJfEZY5Pt55masij3UwXvb+ymipq6u8so4eiUDUVNSpbHBcdcwXoxxkY3v77Z3j++eeRnZ2NdevW4ZprrqFtMggiBkUSCQLAjBkz8Oyzz0KWZbByPwKb8sCiySOU1cbt66W6JJxxer6HrKUkiQRBEE2cJjTlNBFPWUxdsoK7rhWs7VYWjEH1RdHxr0GsX78eoijijjvuwDnnnFO7egmiiUOSSBzSKIqCt956C1OmTAEACIXpCOzIA+OCY7ZS14ymghYZ5HLyKKdWQWzqaTRq+3yn+h0T2phwzbhKkkgQBNG4aWBJdM1i6rb1k1v9ouA4IMpE0XlA1eezjkjqz5ck+75YL+P3QZUjGHhnd8yePRsAcNlll+Hqq6+m/RSJQxaSROKQJRwO49FHH8WCBQsAANKuHPj2tQATJUBR7BfBi6LtcQixaTAqt+6UYlNPOefWgigIjvWb1zVyRamRJMZlo6upJMayuhIEQRB1TCOQRB3bLKZOeNjqwpg+atOvGNFIO1n0xTKP2w2sSrFMqDayyPza89VoFCNfPAUffPABAOC0007DfffdRwltiEMSkkTikKS4uBj33XcfVq1aBZ/PB7axOaSSnKoCCZJmyKHNcUMOdRIlUV+XGCNJEnU5tDt/QtIbR0GMbY3hJIhADSXRfLNClw6CIIi6pxFJIlALUQRct7swzpHQvyRNWU2URZ8v/v+JWcWl+OUjibKoS6LOrZMuxDPPPANFUdC3b1888cQTyMnJsWw7QRysUAydOOTYs2cPbrrpJqxatQoZGRkQ1rWxFUQmimB+v73ACQKYT7LMwKZVoCW1cVyTkSiISVVYZEW1rcu6o45LJACPghjfiLq/USEIgiAaHYlSmNifVAurJGwWeFqH6NQvJgzsJkmhJMWJY2ICnJdGT8N//vMfZGRkYNWqVbjxxhuxe/du13YTxMEERRKJQ4qNGzfirrvuQn5+PlhUQmBrBwjhhGkkugDaiZuigHNuL4Z6FDEheqhjRBGd5FBRtJFSm04wKZJokfnUEF27FOVeJJFzezmkSwdBEETd0wgS19hJoS6QniOJZly2ujDOEetrbAdb9ahiYjTRjKIkRRPjziHLSdFEAFADYeScHMbu3bvRsmVLPPfcc+jcubP9eQjiIIIkkThkWLVqFe655x6UlpaCVfo1QZQTOgUxlprbZZG7q2C5rRV0WqSvJ6VxSjpj2j7D9vwObax2JNGyErp0EARB1Dn1MYujmlNOq41LhlPX5DSA+4wat3O4vY+BABCNJP1alaLIO4tjy5YtyM7OxjPPPIPDDz/cuS6COAig6abEIcGvv/6KO++8E6WlpRDKQghu7lR9QRQFsIBfK2d5XAR8fueOShQdp9p4EkR9+mltO22CIAiCSAVWe/VWA64otZdAUXCMSMInaQ87wmGtD09AkH3YM0PE4YcfjqKiIowbNw6//PKLc1sJ4iCAJJE46Fm6dCnuuusuVFRUQChLR2BrBzDV1NnE5M92KorpOFdUwGJzX4giIEn24iaKgN9XJaIJMMa0zs1J/GhdIEEQBNGYqeWei9Vda2jZBBtR5JFYsjg3WfT5k2SRKSK2TIvi6KOPRkVFBe666y4sWrTIsR0E0dQhSSQOan788Ufcd999iEQiEEozENjaDozHPvZucqiXSTxunqapRw/1MrIMmBfAm+XQBi0xjds+U/FZRV33PyQIgiCIhsAqquiyBCMJL1HFBFk0JBAeooqAsygCSbLIVAF/TCzFySefjGg0igceeIBEkTioIUkkDlrmz5+PBx54ANFoFGJpFgI7OmiC6FUOHaOLJjl0ih66yCFFDwmCIAhbmvL13yyKNVkD7xZVBOp+CioQJ4tMBZa9V4hBgwaRKBIHPSSJxEHJ4sWL8fDDD0NRFIgl2fDv6ggGZh0ZjMEVFeCqsxwKzJscOkUPBQ9yCDTtmwOCIAiiaVDbKaJudTeSKaieZDEcdigTE0UwLP1vQZwoLl682PH8BNEUIUkkDjp++eUXPPDAA5BlWRPE3R0gSD6wYNBe/iTJQ3RR1I7b7kUogPmcp5bCNSlNrCOrQ0G02giZIAiCIOqMVIio2zILD7IIpz4eAHyS5VYYVcf9YH6/IYqnnHKKIYpLly51rpsgmhgkicRBxapVq4w1iGJpJgIFXSGEQs7TSaTYCKKdmIkiEPADjCVtyKvDnPY81Apogukkf8xDdNFt6o0LKRNE2v6CIAiCqGcYY+5bWTj1xeGw1ue7yKKjKAoMzO+H4A/gp3f34+STT0YkEsEDDzyA3377zbltBNGEIEkkDhrWrVuHe+65R8tiWpGJwIEeVZFBRU3e2kKSgGDAXiB1OZREW7mrih7adEoxOXSc5sIE160xPK3NcICrPDWCyDkJIkEQBNGguMqi16iigywyv89SFnl5pdZfCwyCP4CfJ5bi+OOPR2VlJe655x5s3rzZ68sgiEYNSSJxULBr1y7cfffd2j6IlRkI7j8MzPzxNouNWQ6dooe6HFqUcZVDrVDt5RCg6CFBEMShCK1Ld8VTVLGWU1DtZBGAFlUURKz6JIzevXujpKQEd9xxB3bt2uV8ToJoApAkEk2e4uJi3HXXXdi/fz+ESAjBgh5g3KZT8Dq11CV66GVqqasgepFDK0EURTC3Ti+GoyBWZ40ICSJBEMQhCXPrq7yQijpsqPUUVKDWU1AZk7D5GwldunRBfn4+7rjjDhQWFjqfkyAaOSSJRJMmHA7jvvvuw7Zt28BkPwL5NoIoic5TSwEt4YxD9BCih+ihKNZ99FD1lkqcppcSBEEQjQFXiauPc9RxVJHBh90/ZiIvLw87duzAP//5T4SdsqUSRCOHJJFosqiqiieeeAKrVq0CVBHB/B4QVH9cGe6TwNOC4H6fbWSQSyJ4KADuFGF0ix6KgiagTnLHmNbB+BwWxDPmHOHzIogqr9meVHbtIQiCIA5O6nL7i8RTufUnLvsCM7/P29ZRLudhbks4POydyP0+7b4iAUHxo+jXFsjMzMTq1avx9NNPg9NAK9FEIUkkmiz//e9/MW/ePPh8PgQLukOQQ3HHuc95aqkuh46dgSBonYHkIoii/fRUMBaLHrpsbeF0TFXdBVHl2gPQprzW4fQegiAIog5pSgN01RBNT1ND3Y7HksbUuA5B0PIKpEgWk6qXg3j88cchiiLmzJmD8ePHO5+HIBopJIlEk+S7777DxIkTAQAsvxPEcJZxTI8eugmiZzl0mH4Kn+SyPpFVyaGTRLoJohu09yFBEATRRKhtVBFA7aKKsTX/nmXRAauo4j8v+BB33HEHAOD999/H7Nmznc9BEI0QkkSiybFhwwY8/fTTAACpoh2kypYALOTQonPwHD30IodOkcHaRA9FoWrrjupED2tCPU41IgiCIJoWdTkjxSyKzG4tYKqiih5k0ZEaTEF99Z6FGDVqFADg6aefxtq1a53PQRCNDMZpsjTRhDhw4ACuvfZa7N69G0IkB4GS3mByTKSc1hRGZS0Bi9NFnnNtP0XAup5YEhcmK87nkWVnOZRl8MQ9GxNRVPBIxLGtPOpSB1e9Ja/xsn6RLhMEQRD1Q31NNfUwSOhJEr3U45TQDXBPKAOAuUgaVA44ZCDV6vDZ5w7QB2UDfuvjOlFZG5B2Ok8kquVDAEe/czkWLlyIvLw8/Pe//0VWVpbjcwmisUBhBKLJoCgKHnnkEezevRtMCSJQ2gvw+6DmpIOnB+2nlvpE8DTn6CH3ieA+5+ghD/oct8bgAtOO12btoVGZu7i5drpeSFWCG4IgCCI1HGSDcinpq7wguCR+A7TspXaSGIsqOuYgALR7CRcZVZplQQ36wcDw65cq2rZti927d+Pxxx+H6jFDOUE0NCSJRJNh4sSJ+PnnnxEKhRAoORzwBaEGJHAGcKuppT4RSrofql+0PK6XUUM+TRDtEAVwyfmrwgVt7SF36jy8rLHwsuWElxuImPxR8hqCIIgmSFPZfqgxLVnw+b2JIuCaiZxLoqMscsa0vt6uvxe0hxr0g3EJjz32GPx+PxYvXmzkUyCIxk4j+nYThD0rVqzA+++/DwCQ93cCQs2hBpwjg6rfeTQwLnpohSiAByRHQeSC1pk4djhA/DlE0XobDE/y5yaQavWig147+KaUaY8gCOJgoa5EMVVTTesJ16mmQNXaRF0U3V5jLHJofUJmyKIdnLEqWbQ9hyaKN42ahNtuuw0A8O677+Lnn392bhtBNAJIEolGT1FRER599FGoqgpBaQNBbA9u03eZo4fxvxfA/ZJRJpXRQ1cSBSvx/1YjxqIY3yl6ijDSFBaCIIiDjqYQUawNHtYjVhs9oU0dRBV5esJ2Wx6jii89+BOGDx8Ozjkef/xxFBUVeXghBNFwkCQSjRrOOZ566ins27cPjKdBUnral3WJHnLGHKOH3C+Bh/ypjR56mV7qhl0ZQaha6+EgiI1pNJggCIKoAY1RFFORsKauqWZUkYcCyccSooqWy1s8RhVnf1qKjh07oqCgAM899xwodyTRmCFJJBo1X331FRYuXAifzwdJ7gOG5Cknql+EkpEcPUwso6Y5Rw+5JDhHFxETyaBFJ2Iu47aoXY8KunUOqnsZzrlrBNFThlOCIAiicZMqoWhiU009EXDol2NRRZae5l6Py77HXBKd7yNioqgGre8BGET861//giiKmDdvHmbOnOneJoJoIEgSiUbLnj178OqrrwIA1IrOEHhy2mjVL0INOIud6neJMEqClgBHFGynsWpJaUQtwuj0rdFHHO06WL2TlyTrdYlGo7k25dRu7yjAfQ9FL9AUVYIgiKbBwbg2PBVbX1QHt30V9SzldmsRGQMEuIsiYCuKt1w2GVdeeSUA4MUXX8SuXbu8tZ0g6hmSRKJRwjnHs88+i/LycoDlgEld4o6rfhFyph9qQLQVO9UvQkn3uQqiLoeOgih62SsqBVNLAU0QHY+rhiAyxlw7WcsR4eomuCEIgiAOCVK1N6LrJvcNiZe2OS0pEUzJ7xxQg9ZRxffe346+ffuivLwcTz/9NE07JRolJIlEo+Trr7/G0qVLAQgQpL+AoeqCrkcPzWKn+oW4bKd69NC8dkAJiEYZu+gh94nggdgFXY8eugmi29pDr6nMVe5NEGtLTeXwYBzFJgiCaAqk6vpbj1tWsMbeZyREFXlaMPl4Qv4BNcOUtCaWkCZRFJWs5KmvSaIoCFi9pjkCgQB+/fVXfPPNNzV+GQRRV5AkEo2O/Px8Y5opE3uAsQwAztHDKlmsXfTQ+J1D9JD7RHB9zaHt9hmituGukxyap5zayaF5yqmNIHqJJhpQ9JAgCIKoa7xE6lI11dRpPaJej1MuAfPWGXbHdVG0umtOjCra3BckRhUZSzOmnb722ms4cOCAwysgiPqHJJFodLzxxhsoKysDWDaYoE0ztYoeJqL6haToYSJcYs5rDwFAYM7RQ8YA0UPmUjc416aYOEUPuQquKI4RRNc6CIIgiKZLPUYRUzbVtLHh9h66vW49qmh7HK5rFXXMovjWfzeje/fuKC4uxmuvveb6XIKoT5rgN504mFm+fDlmzZoFxhgEsQ/UkIhIjoRIjgQlaP1xVf0CopkSIlkOZXwMSkhANEOCHLK5iItM20/RKWW3l20tvMC5+9RRrrrKn5d1DCnLbkprJgiCIAiPNLp1dq6iKDiuQ1Qyg67rEKPNglCCIpSgfZlwrh9yugg5XQRjAu68804wxjBz5kwsW7bM9WUQRH1Bkkg0GmRZxosvvqj9h3WAmpYLJVg1LdQqQqj6BU0MGQC7CKOPaRFEfR8jK0QtIylnLGl9o4FJELlPBLfJXKbDJdF6KwyTIDJBAKwymJoEkYmi5bScuA7YZtPgJEGs6QhwY+vsCYIgDgWaYhTRvM7PYZ9f11PVxVRTm/eTp5vXGtq0zfy6bESx6n4F9qJoaoKcJuKmf3yOCy64AADwyiuvQJZl6+cRRD1Dkkg0Gj777DNs2rQJYD7IzY4wBNEKPXpoFzkEqqKHuiBaokcPhaoyPDFayGLrERJ/50ZiGc4Bq6mj5o6Zq7Ey9lLG9WmqDnCVpyaC6DXpDkEQBEFYYNln1WdSm8RzWc0ISvy/S1QRcM9uqouiU1QRTBPFT2eVITs7G5s3b8ZXX33leF6CqC9IEolGQUlJCd577z0AgJpxOLjodxREI3qYgBLUjjlFD9WAoF20TdHDpDJ6NNFhemm1ookO00uNaKLD9FI9mugoh7Fooqsceo0mkhwSBEE0HE08ipiI0X81VBQx6WBsYNgcRUwk1lYlM2hbRBfFaHZyGdeoIqDdy4g+XH755QCAd999V8vLQBANDEki0SiYPHkySktLwcVMqKFOlmUimQIqWvoco4eKj0FOc44ecqYlpjFHDy3LCC7rD71GE72sPwQo+QxBEARxUMM5b9gootVxT2sVnctwnwglZH9vootiaXt72Xzxgw3o2LEjDhw4gIkTJzq3iSDqAZJEosEpKCjAp59+CgBQM3pZXrCVAIMcZLbrDgFNEFWf/fpFAOAioPpjkugogPC296FTtC02vZSLgvXaxFgZrqpaB2Qzcso51zKcIhZRtMK0x6KnEWGCIAii8VLP+yKmZHmCh76HiaJr32nbz5nx+avTMkcc8xXoZUSXpHYx1ICzKHIBiKbblGECbrjhBgDAJ598gr1797qejyDqEpJEosGZMGECKisroQRyIWe2STquBBjkgCaIsi6LiWUMQWRQAgyKRRkuwtjaQp+Waomx56IAJWDRWZk6N+4Twa2S3CRGD606IC9rC71EISkCSRAEcfDQQJvQO65lr4ttL2yT2nh4/V6E1Gmqqd4E01RTO1GUTdNI7UQx3KzqXHaiWNncFzuPvSje+s5iHHnkkYhEIvjoo4+cG08QdQxJItGg7Nq1C1988QUAINLiiLgLvxJgCGcJhiACSIokKj6GaFqVIAL6qGBVGXP0MI7E/sAqQ6pV8hmn43oZ1+0tLARREOOiiZaCyFj8KKtVh86E1EQTG+hGhSAIgkgBNRS7GkUVvUYRk07G3cvUFA99WKIYWkYVE8tYRRUTnqIGhCRZ5Kb/6qKYKItcZMbaxC+//BL5+fmur4Eg6gqSRKJBmTp1KmRZhhJqCTWtpfF7c/TQboqpOXqYeFHXo4nm6GHS8wOmaKJTkpyA8/QYI5pol70U8QlsuKpaRxAT04bXZQTR680DiSJBEET9Uc/TTO2IE8W6iCLGnSxhOyc3PEw1rW4UMelY7O8gWySjMcrERNEcRUzEdfqpRVTx2tfmoW/fvhRNJBockkSiwThw4ICR6jnSrAcAIJzNUN4qIXqYgBxgiGQIcdHDRDhjUCWL6GEiDhLqGcYAFe5SJwiW+x0m1SUwb4luHOtJUTSRIAiCOCTxHFGsaRQx7mTc+1pET5lYqx9FtDzuYa2i2z2EGhCMqabW59FEsbhTbCYRq4omfv755ygoKHA+AUHUESSJRIMxffp0hMNhKIFsqKEWUIKAnKZnFbV+juIHopkMctA5OY3iB1SH/kZfQC6HBMgh546J+2LbYdihcEBk9slpADA1Fol06nBU58X8WmO8TGVVAa46d/Dco4TSNhgEQRD1QyOJIlZVE2uP1/4iFXgRU5cyLBhw7bsct72IIecEtSzoLlKq+AUofuf3PJrOIIcctgdh2j1LNFMrc/0b89G7d29EIhH83//9n2tbCaIuIEkkGoTKykrjwhfN7QElxDRBZNBk0So5jV+bRqrJHYNscY3nIqBK0JLcBBmiFhdl7jV6yLWH7WijwsGiCpiLtDE1JnacA6IAJlkIp8oBVYk9QbDeI8okiEyPOCaVqWqLbSTRS4fvlrmVIAiCSB2NTBCTsOs3UhFFBOL7RTsJNE8z9SKTTstEvG5hpZe3eZ2VLaraZCeK5S2rXpudKFa0EGLtiokiYxg1ahQALZoYDofd20sQKYYkkWgQZs6ciaKiIqj+NJR3aGsIImAtcbogxiWwScwpowsiHMpY1R1kydHEhH5F9SdEExWeJIfcJ8ZFE5nKwWSlShCNA4kr3E2CCNjIn8cIYgJJouhVEAmCIIhDFstBxsT+oy6XNHiNKCaUs1yLmNCneY0iJlVj8XoTf2clijzhV1aD4ElJbTIZbvm/n5GXl4eioiLMmjXLtc0EkWpIEol6h3OOzz//HABQkddNyxSWJG7ahVTxA9EMFi+IMeSgFk00ppdaBN/kQFU0sVoRxMRfmcXOQhCNcjFRjIseJkqXHk1UOSDL8YKoo0cTHZLhxEUTPckfCSJBEESjo7FHEc1Uc+pptaOIZswSaFdGLweXZDXmrauqGUWMq8YkheYoohnz9FNzFLGq7tj9S0wW9Shi3HmYdq6//vWvAIBPP/3Udcssgkg1JIlEvfPHH39g/fr14ExAuFVHyzKcAWqganqppdwxQJWYMb3UEqZN74ikOy8uVwIMSkCwFEQd1S9A9Ymu00uNqJ/TBV1VreVQR++IUnDzQAlsCIIgGimNMIO0a5/B1ZRNM3VN5gZoEugmwB6nn9Y0ihhXjcBQ0Trgaa1iYhTRIDZoLQeZfRkATy3chkAggE2bNuGPP/5wbjhBpBiSRKLe0aOI4VbtwCXrkTjVD4RzOeQ0+3pUCYhmaslubIklqHGMIHKAufQvTOVgURVcZOB+lyQ2iG15YYfemQkuZWqzxUUMx82RkwrTKCVBEES90RQFEfAmdl7P5+U98PtcI5gs4HftM3VBZG59nZfMqII2i8mJstYCFJedOMrbMEQzHM4j+TFo0CAAwNdff+3aLoJIJSSJRL1SWVmJuXPnAgAq2nZOOq76gWgWhxzijnKnSgCXYhdqhyiifkwJANGQxcfdJIhx+yaaq1E5mFzVQVmeT+FgERlM0ZPP2DU8NsUUAJNEa1FUY1NMAcdtM7S9FGONtxhlrZYckiASBEE0Xepjqmk1SFkU0Zw13EkU9T7XaYDV1C/biaJbFBEAKltWDW47iSIXtD2cnURRv8+JZsBWFj8qKgMAzJkzB5WVla7tI4hU0biuKsRBz48//oiKigrIoTRUtm4GxXQ9Vv1IkkM5xOOymKqStl6RSyYBDCVEE1myPFquR0yMILJkUUwUREBbdxgXTVR4lRzqSCK4LyFbWyRqCKJB4qitWRBhP8oaJ4hG4ap2Wwqi1U0EySFBEET9k8ooYqq3vHDCyxpDj5FGT1HERGJbPMXVE7CYkZTQB1pNM00URTkn6DmKGPd/MVkWy1qb+uOYKCbKYnle/H2LLotmKltyRJq1QJs2bVBWVoYFCxa4to8gUgVJIlGvzJkzBwBQ0bZ93H6IuiAmiZxJ7ozoIUsWQDktJorMJtIHUzSRA0y1mWJqvmZbCKJ+PuMcVoKo45M0UTRFD5NOJwhaNFHlQFSOE0SDhGiipSCa2+cUQTTfTJAgEgRB1D8HsSB6prpRxERiosgCfueZOzo2ZZhT5nELzFHEpCbFXlJZayFpvSJnyVFFy7WICaKoDZozDB06FAAwb9481zYSRKogSSTqjZKSEixZsgSAJokAoAQ5ItncWhBjyCGOaEZ89DARbhE9tCqjxJLhOKEEBKh+wVIQjbp8Irgk2AtiDOYgiAYunbOWxVQABMFVED1DgkgQBEEgtcnNvE4zdY0iWu0VnAhX3cVOdU9Wwzj3PM3UKckMEIsqOryfuijGRRGTGqSJYmXLqn76P5u2AwCWLFmC8vJy17YSRCogSSTqjSVLliAajSKakQk5MwtKiCPSXIGcbi+IAKD6gEiOimi6s9jIidNOE2AcAHcWSaZwiBHVURC1RnGAMW3LCzuUWIZTh9TdXFWto4fmMuZtMGoriPo0nUaYMIEgCIJopHiIWDLG3PfzjeFpOweXMiwQcC3D04LeB0Vdyqmi8/0DAJTliVAdAqAAUNYeiGa6Jc8BIs0VRHO1+wM5MwsdOnRAJBLBwoULnZ9LECmCJJGoN/QLW2WrPCghDjVNAQQONV2BnJZ8wVQlaOX8zklsAFSlk7YRRcYBxKaYKgFmuZktUzgEmQM8tt1FIFkAmcIhVsoQoi4JahQVLBqLIEqipSjGCaLALKffGIIIAIIAJtp8ZS3WaViWiXsxJIoEQRD1TipnclRz38JEPEURmeBpywsDVbWXxcSlE1aYo4g2ZVggUNWHOb2fersd2iRnm6KINnXFJauxeSvK8kSosZfnJIpchHa/ks61QXILKtrKVesUcxWAMQwePBgAaF0iUW+QJBL1gizLxlTT8o55miDqF1qGJFFUJWhyaN7DPsSTZTIxIY1FghqzIBrtCcaLolkQjfMliCJTeJUcxuCSEB9NVFSwcLRKEG1IiiAyliSKcYKoYyWKiYv4rTrzWt5IEARBECkk1aJYg2u852mmXvZEtBp0TJQyu4FQM1bTTK3eq8TzWWTp5mkWU0gT2iRnB5OnhybUU9nSb8ifUcTq5SaUUX3JsljezrwGEoYsmqloK8ffncdE8fkNWwEAy5Ytg+IyA4kgUgFJIlEvrF69GiUlJVD8flS2y3JNUKP6kzsFzgAlzSSKdmsYg1o0kXGAKUgSRHN9gLUg6vXHlYlaXJRjU065T6yKHlp1aKZoou0UU1OnZymIOmZRtLkxMDp/t5sHiiYSBEE0DKleG14NUfQsiF6nmdqhS5nDWsXqTj1lAac9JWJ7FacF7eXWJIq26wdN50uUP6OI6R6hLM/+9emiWN6OW2+ZkSiKNgltyjtnIiMjAyUlJVizZo3t+QgiVZAkEvXCr7/+CgCobNsCEK0vympIRTRbtRREHc6gfWpdpp4qQW1aKUvc5sKEEmBQfMxaEPU2+QRwSbAWRON8TBNRl+gh4GENohCLKHpZp5iq6CCJIkEQRMOQSlFM9V6JHqaZetrGwsM6Rc65p2Q1zOdz77M4d49+qmr8NFObepyymeqUthFtRdI4nc95T0VdFCvbOPT9ooBjjz0WAIyZWQRRl5AkEvWCIYmtm1seZ34VUlYEQvMw1HQnIQPkNPt5/ACMLS6cE9QAYlhb66gE7L8GgqKdR/XbX92ZrIKpKrjk0AOoKiDL2pYXTtnf9I2AvYzMOtwQOG6DkVSYMp0SBEE0CA0wSOd5HWKq8LlkcgHAHBK8GWV8Pi3Tt1uymlBASxzngJIZtB0c1gm30ARRcJnZqa8xdKKsPYfiMAAOAGrHSoi5YUhZEdsy/fv3B1B1T0UQdQlJIlHnRCIRrF69GgAQ7ZKddJz5VYh+BYxxCIzbfyr1bS4EhwXfvOqCrgQBOWSVoAYQoxws1ofYyaQgcwgRrRD3CZaiyGQVLFKVoMZSFFUViERtXlQMJVbGlKTG8uZBVeO3wbDoyOME0amjt1jDQRAEQdQTDbBfYrUFUTX1N4nFvLTfw5YYTJK8JcYR3Pf55SFTQhsbUVQyg+CxJRtMcZi5ZGqTnSjGTTO1S2jTnoNLWhZ3J1EURAVMUMEE1VYU79/3PQBgzZo1kN221yKIWkKSSNQ569atQyQSgZrmg7+dCDG96sJmFkQdKT0aH01k+t5DVb+K29De+GXChZwBclp8tlNdEOMT1DAowarKBZlDqlAMQdTOZyGbZkEEtI4pURQtBDEpmqgkT0G1SwJguU+iqUO3jCBa3TyQHBIEQTQcjVUQ7UjoWzwLouChbV4S4/gtpn0mJqoxC6KOhSjyhORvTOFJsqhHEeOamSCKZXli8hRSq7xxUnyyGsWfHFVUO1TGV2MhihmtS8FaBJGVlYVwOIwNGzYkn4wgUghJIlHnrF27FgCgtMmEKABp6ZUQ02VLQQQAxjikzJgoMthuXquYp50mCqJRWdW2GFaCqCMHNFE0oodWQUpTNDFJEKsaXyWKDhFEQxQtBNHAHE20E0Rz+5ymmDL3EViCIAiiiVEX6xDtiPUxngQR8CSInqaZ+v32demJaqwEUcckikqm/TpEXRTDLfy2CW30+wxLQTQqqvqxrL3VwC3ioopqh0oIYvJ9gFkUM1qXQhJUgDH07t0bALBq1Srb10IQqYAkkahz1q9fDwBQWmUCAETG4Q9ELQVRhzEOX1YEaqb9dArOACXIofpd1gww7eJvJ4hGfYLzOkY9mmgriFWN1zoutymmgGPyGVYNQSQIgiAIO1K1DtGzIKZomqmxDtEJ7rKOHwAUFWqaPymKmEg022ef8VRvk+qShAYAGFDWUY2PIlqUCfQsshREo0hMFCWh6l7h8MMPB1B1b0UQdQVJIlHnrFu3DgCgtM4AAKQHIujYrBBZmeW2z2EChyCqjp9QpgBMYZBDHHLIvpwQ1QRPDthf+AWZQww7S5gQVSFEFHCRxe+NmIisgMmKc8rvWCIbJ7iipC7qR/skEgRBNA7qOVlNvSeq8SqIgLfBT7fsqAG/axk1MwgwBkF2LscFBiHq3Kay1qK2vZZTmQ4qVB+3nQmlE/TJyEgLO5bp3W4XuuQWGP9/pUDLbLpp0ybnygmilpAkEnWKLMvYsmULAEBplYH0QAQ5wQr4RQWtM0qRmVGR9BwmcCPC6E+PgKcnyxRTAEHWNzGErSgKUUCITetXgoAcTO4sBZlDqtSijKpPgOpP/loIURVCONYOxsAlwVoUZaVqKwxJtN482CyINinGDUGMdXyMMfsR15gA2t4IJAoibXlBEATRMNTzWsRUCiJzicIBiO/zbMQtaYqpXWIcPSuqqS9MImCaGmpTRhdEvS47UYzkVq1DtBPFUtM0UztR1AVRK2QviuldigAAosBtRfGINnsQlKLwi4ohimrLdADAli1bKHkNUaeQJBJ1yu7duyHLMrjE0LpdGDnBCi2DKQBJUJNE0SyIgDbt1J8ZL4pxgqhjsXeiIYj6skXGkkTRLIg6ij9eFOMEsaphyS9WF0Rz9C9BFJMiiAJLEsVEQaw6pdWK+IQyiTcEdhFEEkWCIIj6pTEKotfTVVcQdTzskaiVS8hNkLhthpUoBizWDlqdL/F9txDFSK4fPGEP50RRLLVYh2glioYgGoWSRTG9SxECUtWTrURRF0QdXRQ7di5DMBhEJBLBn3/+mdwAgkgRJIlEnbJjxw4AgNg8AJ/EDUHUkQQVohBbDJ8giDpmUbQUxBhyUIsmClFAKo8XRB2zKFoJoo4uipaCqNelRxNlBawinCyIxovURNF2iqlJFO0EMa6s0QCbUVq9jNsUUxJFgiCI+qGxCqKXumoqiDqm/swxUY2eGMduX0Vz32gliObzxcqpdolqTKJoJYg6uiiWtRZs1yFqS1+0n8s62A3MVoliWufiOEHUSRRFsyDq+EUFAZ+K9u3bAwBJIlGnkCQSdYouiULzgG2ZFmllyM6ssE1iA2iiKKbJUIMO4iMAqsShigBU2Cap4YxBUGAriFXl4LxeQk9Qo6ruew5y7rwG0dzZeRl5pTWGBEEQTYODXRA94qkut2ynsT7XLbkMAPCQ3/m95xxyumQriDpClEOV3M9X3oYnRxHNMI7sboUI+uzvBXRRPKLNHsdz5eXlAdBmaxFEXUGSSNQpe/ZoF7rMVvYXzqAYRYesQuQ6JLJRZBFcYbab1QJaBFGMMCgBQHFIZCNGtD2RFKdENlEVUqUCLglQbZLUsKgCFlUAQYjfGzGp8bFtLgSnMgq4nqbbJpOb1wynjlthxFforRxBEARRMxpgP8RU1eVZEL0kqtHrchrg9GsRRO7WNwX8YBb7H5rhadqWGMwhUU0kJwAuekhU00qEGHEp056DSxzMZqaTTsgfhV9yXkd4evt1OCJrl2MZXRJ37XIuRxC1gSSRqFMKCrSF1q2bV6JNqCjpuMQUSIIKv6igXUaRpSgqsghVYeCcgYUUKOnJF30hCoiVTIsMMkAOWouiGIlNMQWg+BkUq0Q2MUGEQx/Eooq2DYYaS71tJ4qKCkSjWqcnMGtRTBREi5uKJEG06eC5hzKxCu2PEQRBEI0Lr8llUrXVRSoF0ZcQHfQwE8ZWFINV+yHaiSJPC8QNttqJohFB5NxWFMtaxdYhctiKoi6IAMA4bEUxp/MB42c7UTylzQZkiGEEBBld0/Ity/wlcyf+wP8AVA3EE0RdQJJI1Cn79+8HAKRlcfhY1YVaYgqCYhSSoMYlskkURbMgAgAEDqTLcaIYJ4g6FqJoCKKRyCZZFK0EMTGaGCeIxi8tRNEsiMYJEkTRLIhmTB2cbQQxoaO3jCBa3QyQIBIEQdQ9qYoi1rMgeqYmgqiTKIr+5HWISaJoEkSj/oT+M1EQjXKJiWpyEpbAWIiiIYhGmWRRNAuicS4LUczpfAAhf/waw0RRPKXNBmRJlcb/dVFMlMWgEEVA23YaRUXJg+8EkSpIEok6RZfEQBZDh+B+tAkVGdFDgVknsmmXUYScjIpkQdQxiaKlIOqw2LpCJAuijiGKAeYYQdRF0VIQjfOZRNFKEI32M62skyDqdblNMY11+I5TTM03BSSIBEEQdU8T3gux1olq9HrsBDERC0HUMfpQC0E0zhPrR+0E0SinJ6qJTTO1OFlVoppEQTTKxItioiAa5zKJopUg6kiilsAmURB1AoIcF1X8S+ZOAIA/Q6ubJJGoS0gSiTqlrKwMAOBLZ/AxBYen70KX9IIkOTQjCSqahcoRCEaTBVFH4OCSqmULc/AeJQBw0TlJjX4KpnDnKaacA4qbtDGtw7ITRDNO9Th0dARBEEQjpjEmqmmMgshV90Q1AODzub6nTFE99ZtKus85UQ3nCGfZZzLVymiiWNbeuY9nHEjvUGIriAAgMI4RHVdaCqKZgCDj8tY/IihodfnSSRKJuofuRIk6paJC2wNR8gMBIYpMoRKHhfagXfCA7XPKZT/CigRBsDc2XimChQUoQQ45zf5CLUa01NSKz75TkMIcUoWqRQv91l8JJqsQKmVAZNqWFnYoCiArzh2aomiRRoFZ732ol9GznDrdAHjJcmouQ9teEARB1B0kiN7xxTavdxgwZX6/1ge6ZP3moQDgkKQGAOTsALjAIEbsy1W00LKditZ72xuUt2GWeySaCXYpgV+SEZGdRThXKkO2ZJ+4DwAGZqxFjlCOo0NbAAC+NO33paWlzo0giFpAkkjUKbokpoVkBFlsBIwptqJYLvtRFvVD5Qw5oUqE0pOv1LxSBKsUwFQt26kSshZFMaztlwgASlCbVpqIFOaQylWAaxFF1ZcsikxWIVZEjamaXBKsRVFRwMKxcqIIZjWqqQsirxLAJFGMCWLSWsakNyI2xcYpImklkSSKBEEQqYcEUavLSxRRF0Qdi37MEESjjE0CmlAAXO9vbURRF0QdK1HUBRHQooB2oljelkH1cTAOCGHrv0GwSwkCPu2eR+WwFcXhbVcD0O6L7ERxYMZapLOIVi+L4ujQFoixge9o1D5KSRC1hSSRqDNkWYaiaENtaYH4BdpWomgWRAAQBRXNM8rjRDFOEHUsRNEQRCNJDUsSRbMgGvWb1jECyYJolEsURbMgGo1IEMVEQdQxi6KVIJrKVTWghoJovDASRYIgiJTRGAXR6+kaWhB1TP1ZkiAaZRIS1ZgFUSdBFBMFUSdRFBOnoVqJoi6I5jKJomgWRKPZFqI4vO3qODG0EkWzIBr1syiOzNimvTZZdl/aQhA1hCSRqDPMFy6r/tMsiomCqGMWRUtBNE5QJYqJgmi0xySKVoJolItNO7UTRHM5SKK1IBovICaKdoKoo3dgdoJoLldbQdQhUSQIgqg9jVUQU7XVRX0IorkeO0HUiYmipSDqxETRThB1dFGsbG7ddrMoJgqiuYwuilaCaDTbJIpnt/3dMnJoFkUrQdQJ8KqB95KSEssyBFFbSBKJOsM8jdLOe3xMQV6gCBlSOEkQdURBhV9SAAZrQTROGPtHhUOSGn1/Jacy2jFBVt2zgXIOJiueytVqb6jEck6CSBAEQdQPJIixujyU85KkRuXOghiD+332ghhDCfkcBVEnmiFClezLMQ5EcqwF0VyGtw7bCqKOyoFBrTcgVyqzLeNjCi7JXmYriED8n1efsUUQqYYkkagzbJOymChRgyhVguiQVojWadajYcWVAZRV+CGmyVDT7C+GYiWDVMag+AE1YF1GquTwlXOoEqBarFEEtJFFsVIGFxm4z77jY1EFiES1jGp2yWwUBVxPZOPUiaocUFX39ywmh443Cl6iiABth0EQBFEbSBBjdYnuYidJ3toV8Dtn/gbAgwFtmYaDHCmZWhnBIUkNAIRzfeBCLAO6DeWtGVQRkMrsX2O0QxiiqKK0POh4viHt1yFDDKNUsS83NH0NcgQVbaUK2zKCWNXetLQ0x3MSRE0hSSTqDME0ypfH9icdL1GDKJTToXABPqagU9r+JFEsrgygpCwIrgpgjENMtxZFsZJBKmFaFBGAHEwWRamSw1fGwWIdkOJnlqLI1KoyXBIsRVEXRL2cpSjqgqhLm50oqhxciUUjBcFeFNX4aKTlDQMJIkEQRN1THUF0kyMSRK2ugGkqqo0o6oJoPMdCFHVB1LETxXCuD6r+Mm36xPLWDKoeAOXWohjtEIbk09rBVWYrikPar0O2qImfwgVLURyavgaZsS3CfICtKGYoWpSRMQa/330KL0HUBJJEos5gjCEUCgEAWsml6OArMI6ZBVEnURTNglhVZ7IoJgqijlkUEwVRJ1EUxYgKIRzf6SSKYpIg6phFMVEQq15AfOdrFkRTPUmiqFpPV2UWyWxcIUEkCIKoOTURRDtJIkHU6jILot5HJfSxiYJoPNckiomCqJMoinGCqDc1IZoYJ4hGI+JF0SyIRhELUTQLotHWBFE0C6KOlSg2EyuhVGptSEtL8zRriyBqAkkiUaekp6cDAKIVDJ19B9DBV4ASNYgiOS1OEHXMoqiqQpwg6phF0U4QdeQgwLi1IOrooihGVIgVsmU5XRRtBVEnFj21FMSqF6B1wlaCaKrHuPDbCKJRXXWy3JEgEgRB1JzaRBDd/m9ZxSEmiDoJomgniEYdimIriDq6KFoJon5OXRQtBdEop4milSAaRUyiaCWIOvp9kJUg6phFsZlYCR84Kiu159FUU6IuIUkk6hRdEivKBfjAkSOWI8iiiHL7jsjHFPgF2fY4oIkiOMCisBVEAJAqASEC+4u9Xp+qdSC28gcACgdkxbkMAIiCe+epci1JjZu0uQgiQRAEUU+kYoopE6oerlUcAoLo99kf1Pcm9kmu51PTXDKixpBDorUgms4ZTXe/Z6jIU8ArnN8vrjIc1izfVhB1TgptsBVEHR+AfgEVvljGvcoK7b3VZ2sRRF3gIdUUQdSczMxMAEBpqYgi1YcSNYgO/gIoELArkmP5nF2V2dhTnoXsUCUUzlBRnpyFRi7zQSwVofq1nSXESpsGqFrWMX1/RDGSfCGWKjmkcgVcYlC5oGU1TYBFFQjhKCAK4JyDKTbipsQijYyBi9r2GMll1KrfM2YtivpWGAIDVMFRFI1Mp8y5nOP5CIIgCHtSuQbRUxXVEETBNOvEqkh9ZzHVy3DV8b1g+vIMzq3fX8bAAz7tmKJqA7AWaIIogEUVx2RzkSwt26lUySEHrd/fiuYCuMjgKwOi6db1VLRRwH0ccMq2DqBPuz8REqPYXNECXUL5lmXOzFyFNEFGOQfSGCDsU5A2uQKBxREIZRxqOkN4gB9po5tBbOVDe0nADrkCRUXa68zNzXVsA0HUBpJEok5p2bIlAKCwUIKCiJakBgo6+/ehna8QO6O5cbK4qzIbO8pyIHMBoqCiWVoF9gNxoiiX+SAWi4DKwAVACXIALEkUpUrAV6YLlLUo6oJoJKrxCVCBOFFkUQWCeb9ESQQHkkUxJoh6OUtRjAmisdWFIGh7PpnFLXGvRAdRTNoKg0SRIAgitTQFQQRifUX8tb3OBNFuqwpRjH+/bESRSaKxPEMrlyCKZkHUj1uIoi6IgDYgDBtRjGT5wEW9LliKYkVzATy2FQZTYSmKhiDGiBb74ctK3qqiT7s/ke3XbkpkLliK4pmZq5ApaFtmqJVAxkNFyPq0AixhF43gggj4C6XAyCz4HmsBiMCBA9rte/PmzZPOTRCpgqabEnWKLom7C/w4oFZNi/BBQRoLo7N/H9r4DwCIF0QdXRRDadputmZB1NFF0ZwoTKoEfCU8fipqTBTNsmgWRKM+nwBVMn01VCRLlSSCmzurBEE0TmlOVJMoiDqC4H4TIrCkjtZ2r0QvNym00J0gCMKdpiKIOubMn3UdQUzsgxIFUSdh4DJJEJNOliCIRj0xUdRPbxJE46k8llzORJwgGnXF/9csiEZdMVE0yuSpcYKoNYIhWhy/ptIsiDq6KOqYBZFVcnQYsx/Zk5MF0WhLFGATi8H+9ifaRwM4UKhJYosWLayfQBApgCSRqFP0C9jegoB1oppYVFHlLEkQdeJEUYXlFA+zKFoKok5MFBkHfKX26wt1UTSmmVqhi6KNIBqn1Ds6K0HU0UUxMYoYV6ZKFG0F0TgpiSJBEEStaGqCaC5SX1NM9b7IThB1YqLoKIixaKKlIJrLKKqlIBrtNYmipSDG0JPUWAmiUVdMFCvyVHC/zSwdkyhaCaKOfn9jFkQAaP1QEdIWRxK9NQkOgC2qhP+hQkQrLwJAkUSibiFJJOqUNm3aAAD277XvZLZHmqNUCSDdF7YtIwoqVFUAk+0/slwAmAIIYedkNmCAKjLbjsMopnKto3GamqmPbLpN30zBDQRBEARRT3gVRI9JaNyraYKCCGhtcRNEAMznc48gAto2Ui518aDPtR7GASUgOvfzHJCD9oKoE24Ge0HUURnS08K2gqjT3l8QJ4jiXgXZn2qJbdw+AcbxqcXYvmmTVl/79i7PIoiaQ3euRJ3SqVMnAMD+XaKtR0W5BJULaBksRbbfOgvY3pIMlBUFwX0q1ID1xdpXxuArBbgERNMZFJv9ZaVKDl+5ClViUH3WXwEhokKokLVRTbtOUlbAoloZSJJtp8sVFZBlQGD2+xmpqnWSm7gyVZlOXW8ovGREpXWJBEEQyVRHEFNxOovlBJZ4yCrqac+8BhBEA9Whb/L7XNfM81AsgmiRYE5HzvBBzvCBC9rex3aEcwRwAZDK7M9X2QJQJQ5fkf17kZFXioy8UkiiinUHWtqWG5C9EX6mYE2kqkzO1HLbKaa2RIHt27YBADp06FDNJxOEd0gSiTqlXbt2EEUR4UoBOaUlyBHL445virTClkptuoSPqZaiuLckA6UHQoDCAIGDB61FkSnagzMtqqj6k0VRquTwl8S2umCwFEUhokIoj4LpC+lFG1HkvGqqDWNax5VQzhBEwBgBTurEEwTR68a4tqJIgkgQBFEzGlIQner0IHaNXhCd8FdNMWWq9fZQhiACWv9sIYpyhg+qyKDqEUSbpRnhHMEow1RrUdQFEQCYDEtRzMgrRdAnI+jT+vmIbJ0PckD2RmQJ2r1NuRowRDFtcXLSGzcK/H5UKApEUUS7du2q/XyC8ApJIlGn+Hw+tG3bFgCwb6cfzYWwIYqbIq2wvqI1wmpVJ5IoivtK06sEUcdCFH1lDJJpgTmgyaJZFOMEUSdBFOME0ShjIYp6FDERkyjGCaJRV4Io2kQQk0XSer/EJFEkQSQIgqgZjSGCaFX3wSaIidFEf/IaxERRNAuiUSZBFHVBTCQxmmgWxKrzxYuiWRCNMgmiqAtiIonRRLMg6uiiKDhEMe3YlJYGQFvO4/Mq4QRRA0gSiTqne/fuAIAtmwMQADQXwtivZCQJoo5ZFGVZjBdEHZMo+soYfMVaFDERXRSZgmRB1DGLIufxgmiUMYmirIBForYjlEZHliiIRl02EcWkU5pGQh3kzxBFL4JIEARBJFOPgsgE5jzF1Pz7g00QdXRRtBBEow59ayoLQTTKxETRThC1c3FDFK0Esep82r9WgmiUiYminSACWjRRF0UrQdQpVwNQ06ufQG5dRgYAoGfPntV+LkFUB5JEos7p1asXAGDzJm2PCgFAmhCGJNhLjY+pKIsGEAk7dDQCB5MZWBTgDv0aZ9pxpzJgAFM4hKiDaDEGpqra/ohunTJjzmtH9JsAiuoRBEE0LPUsiJ6S3YhivQoiE0V3QdTrchNEycMW3AE/4JPc33u/e5IaNSTZC2KMaIYIJcBcyyl+e0E06spRbAVRp0PmAQjgtoKoU3h8yPG4FWsyMwGQJBJ1D0kiUeccfvjhAIDNmwIAgE1yNjZFWiFbrEC6ZJ3RdFNpc+wsyoYoKWA2WcWEEgn+A9pHWPUBqk2iGl85h6+cQ/ExqD7rDkIIqxArZE0oJZsRy2hsqwsgFlm0+fqoKrisOIuiooDr00xtOkAet+bRIaurhzIEQRCEBV4kqxoZTI0ooc0xT/V4zHSaSkGEwKoedvjc5Y9JHsQv4NfKuCWpCcY6dYckNUqaD1xgEMP2ZaJZErgAgAG+CvvzhXOZVqbEvv2RFgogqSgoyLAt0y03H+mittZwYUl323IdfAXYc0kmLCZUOaJLoj4ATxB1Bd1VEnVOjx49IAgC9hf4sHxvLlZVdkBY9UFkqqUobiptjm2FuZBlAYxx+AIyfOnRJFnUE9UAsWmlFqLoK+fwl3AwResYrERRCKuQymVtaovAwAUG1S8myyLnVdNV9Q4uURRlGTwSrZr6aSWKZkHUO1O3tOCAt5sL2h+RIAjCG14F0Wt15o3sE677jV4Q3TALot2ewNURRBd4sKqcXZIaXRD1NlmJoiGIehstlomEcxnCucyYbSTI1qKoCyIA8KhgKYpmQQSAMjmQVKaDrwAdfAXwMQXRViL2XaTV42WfxN2BAPYGAhBFET169HB5BkHUDpJEos5JS0szLmYLVubFrUO0EsWwIkE27YfIGIcgqvAFZEMUhRIJvuL4j2+iKCYKok6iKDI1oeOIjaZygRmiGBdFrGpYvCjKshZBTFwb6Dr11CSKMVmMiyLGlU14zR7K2J6TZJEgiEOVOhTExN953gOxsQii+Xc+yTqCmCCKtRJEc4KaoD9OEI36E84XJ4imesyimCiIOuZooi6HictRhITZpGZBNE6XIIqJgqhjjibqcugzJVHY8lAuio8PeNoncenRzQBoU03TYglsCKKuIEkk6oWjjz4aALBnTfIxXRTzAkXYXZmJPcWZlnXoUUVEBPgLBftENbooqkgSRB3FxyCHBEAFxEqbtQUxUQTnQDhik/SmasqMpSCaywksPopoVY+OXVIcwLhxsRTEhDKukCgSBHGoUQ+CmHTMrT4PgsiYe8IzAKmJIArMfXppTNxSEkHkvEoO7crFoomWgmiqR4yqtoIIaIPCvgoeFz20wlfCEGmhWAqicbqodhI7QQS0aOLCku6GICbVERTwxwetUPC3NHCbqafcBxT9LYTfzr4BANCvXz/7hhNEiiBJJOqFY445BgBQsEbRomQJiEzF5vIW2FGS41gPY1z71Dp8cjkDhCgghZ0nb4hhDqlScey4WFQFi8jOnZvXqJzKLV97Il7KEARBEDUghYLotP4wrq4UCaLrsgSLvXot6/IyxdRDghptJo2Hch4kkvt9ronceFAC94n2ghhDDtkLok4knUFyWJ8IAHI6h1Qk2gqiTlgWbQVRJyRGLQVRhwcFLHysK+b+cBjy785A2cl+VBztQ9nJfuTfnYHNi1tiz1PZ+GXFCgAkiUT94CEFFUHUnr59+8Lv96OyMILy3QrS2yR/9CoUH6KKAL8kA4ifcqoTLg5AKhKh+jgEaJlNE/GVA/4iDi4wyEEGQeYQ5OTOgKnaGkMuMQCClrU0sYw+7VMQwAHLMlAUQJbBRAFcgXU0UTHthygIyftEJSIw+2hiKre6ICElCOJQIUWC6Hn6aIrWIMYJol3/IQixGSuxcjZ9TLUF0Sq5jC6Hets4t39vJUk7n0MZ7ve5tkkNVUUPBVmFapNgTs7wgQuAWMmhBK3rDGcK4CIsZyPpRLI5VMm5TDBbWyajqgJW5rfFX1r8aVmuRaAUPqbg+7JeGJRuMZ0KwD4lEwoXUNw8hMKbM1B4c3KZaesOw969e+H3+/GXv/zFvmEEkSIokkjUC8Fg0Igm7l6uQGDxHdi6stbYXKzNtWeMwy/JkBJG78LFAUgFPjBFn1bKoYR40vQMpgCCfmFngOpjUKX4zkKq5JDKq67+XGLgCUloWFgBC5ssVBCSykCJrVXUp92IsZFci5uDuAih1Ygw5/FTUa06zZggOk41NZUjCIIgcHAIomUdQpXUmctZPCclEcSYICZNfbUacNQFUT9uUSZJEBPkljMWJ4hameR65AyfIYiANggsVlokqYkJoo6vNLmMLojGy9ifPAc0mB2GKKoQRa29ldHkge9m/jJDEAGgSE7D92XJGUl1QdTZGM1NKjOnvAc2/qq149hjj0UwGEwqQxCphiSRqDcGDhwIANizQrtg6qK4piwPvxe2RkSuunLrohgKRKtkUY5fh8gZwAVNFnVR9JUDvpLki75ZFKVKDl+pnLTG0CyKLKxAqIwkd0aCAC6JVbKoJnd8jDFNFvWbBHMUMaGuqpNz67WK5o4x1YJIUUSCIA4FDjZBNEcV9TIuU1FrJYjmqGJMEB2RpHhB1EkQRdsIYkwUOWPaFFOLMoIp26kuh4lTTM19fDhTSBJEQBtUNotioiACAJPjRVEXxPiXxrAyv63x/xaBUgQEOWmKaZFclWxmn5KZJIgAUMl9caI4p7wHipQQhHXdAFTdSxFEXUOSSNQbJ554IhhjKNqqomJ/LEspU1Gh+OIEUYcxDkFQ4ZdkRMr92toAC/SoohgB/Ad4VRQxAV0U9WmmlnVJDKpPBESH6Z56p8w5INtvqMt0kVSs12EC8Lb1hb53FRPcBdErJIgEQRwKHGyCaNQhJEcPrcog9RFEWzivkkOHxDLc73OdYuokiAAAlUOQ1bjooRViJTfk0C5JDVM0ObQSRKNMrKu3EkSdiogPK/PbxkUPrfi+rJchh4mCqFPJfZhT3sMQxIr9Ktas0aaqnnDCCbZ1E0QqIUkk6o3mzZujb9++AIA/l2kX0DWlbbC9JMex/youSQM74HPcREiPKrrlkBZkDsFh010AYLKqbXmROLXUjKIAssNiheritkZR5QBXvd+oEARBHOrUpyB6SVADeBNEUXQfQPRQhokCmM8iomdVl9t75SWC6HNfW2gkqHFrkyS4JqhRA6Jrgho5xFyT2EXTGaQyZiuIOiws2gqiGSdBBIDtlc0wvyR52qmZH0t74PfytihSQgCAP3/S6jzqqKPQokUL1zYQRCogSSTqlaFDhwIAdi7RhuW0KKJ2ZbYdMJSZtg5R4rYdgq+UwVeijRTaXei1aaYqIDAoPgGqjQQyRQUUDi4ItqLI9Gmm+miuBVxRtammgkPaclWtWs9ol948JojGuVMhirT1BUEQBzP1LYheiPUFTrLFPGQn9ZbB1EObRDG1ggg4bt/E/b6qc1klgQPA/ZL2YMw6UVwMNaRFGUWHQd9ouiaaTs4WTde2wRAskuDpKGkcShoHVKBsb7ptuZA/ClFQsSi/i22ZYjkIlQsokwO2ZX4s7YEyOQBZrfo7R1Z0AACcccYZ9g0liBRDkkjUK6eddhp8Ph9KdnKsWNcMW0viF2gn9sdFxenAAb/2H6aJouqLX3vgK2XwH9CihJxpoqgEkmWRqRyCvm+iwLSppYnJaiIqhHDVFFJLUVQUIBoro0/3SehAuaJqU1F1uRO0dYrWEhjfyXnZB8vxxoX2SCQI4lCmsQlibPql+dpudZ2vd0H0sn1TdQTRgThBtC0jgQuC1u8CgIX/qSHJEEQglqDGQhR1QTSaWJ4sr7og6viLktunpHFwUXsAAIsmlwn5o4YgAkBZxJ8kisVy0BBEnR9LeyTVtbi0e5xA7g5no3inik2bNsHn82HQoEFJzyGIuoIkkahXMjMzMWDAAABA4dIyI4poxrycQZUZBPOyPwZA4HFRRaYibosLzmDIoi6KUiWHVJbckZhFkUVUiOURQElIaJMgiiwxWY0uiuYRWa5aJ5Ax3yiYooiJVJXh1vUghaJIskgQxMFCIxREt+gh0ECC6FampoKYmBTOThBNkUJdEBMxRxN1OUychmrOMRBNF5IEUasnvt5EQQS0aKJZFHVBTMQcTdTlUBdEo0zEb/ysy6GaMBXKLIOLS7tjcWl3FMuhuDJh1YftP2g3QQMGDEBmZmZSewiiriBJJOqd4cOHAwBKlxUDUft5IEUlaVVRxERiUUWpgsFXbF3ELIpxUcTEcjFR1KeZWpYRBEASNamLWiSr0WVLELQkNQ7TZOJSgjusRay3iKJ2Mu9lCYIgGhteB7waQBBtq2AMTBQbpSC6iq3P5xxBjIlbdSKI1vVoomiOHlo2OawacmhXzlfOEU1nloKoo087tRNEoCqaaI4eWrEov0tS9DARsxwmCiIAqGEV+T9p212cd955tvUQRF1AkkjUO8cddxzatGkDVqlA+n2fbTlVFuKjiIkwABy2mUoBTRTFCIcY5lBF+w5GUFRNEh3KQFXBrAQxrk3uI8ZaMfcythlRq4NXUaRspwRBNFW8DnLVoyDaLi8w47Cm3UBfN+jhfK6kav2h5JLhBQB8kqfzcVG0F8QYqt9ZEAFACbgnulH8DL5ybiuIAKAEAbGS2QoiAHAfR1lhyFEQAaCwPOQoiADw8/6OlnKoU7S8HKWlpWjbti2OPfZYx7oIItWQJBL1jiiKGDFiBABA+mWXpaAUFqcBRT5j6qgVvhIhlqxG29rC6losVQD+UlXLjCrAXhRj13ptaql9ym0jK5tdx6co4LJsbFlhV4+xJ6LT/la6/DpkzUvZlhgEQRBNEa/Rw1QKotMWD/AobGZBtHsNHiJ6TBTi9+W1I5WC6DoF1TQt1G4A0idpDwFgVnsEA1CDEtSgBDBAiNgLmRwSwQUGqdKpjHaP4JTERglq+Q6Yg/txX+z1RAXs2ZNtWSYii4jIIjhn+Dm/vWWZ9cUtsb64JSpkH9YXt7Q+F+fI+FU7dt5550HwsmUWQaQQ+sQRDcKwYcPg9/sh7ilFdFMZZCX+o6jKQtwCcStRZAq0PREZAEGTxURRFBRu7G/EGbMURTGsQKyMFRKsRZEpClgkNg+FMWtRVBTwaLSqUxRYrGO2+ZqZp0clXPwto4jVmT5qVOSerpuiiARBNElSNL1UK1YNQdSxeE61BdEOD8JmyKH+Gq1eayozmFZDEA2s+hefpPXXDjN3dDk0trWyqEcOiYYgAto9gZUo6oJonL40uS4lEJ8Qz78/OdxoCKJOOLmMLoc8dtNSGUmekqvLYYWsHdP/NbNodyf8tDQHa9euRSAQwLBhw5LKEERdQ5JINAg5OTk4++yzAQChpVsRkUVDFPUoYiJmUfSVCMlrEVm8KEoVgK88vsOwFEUV8WsDY6LIfWKVLFomq2FaQhsjWQ237hDNUUVzFNFcFxAvinYRQtNNgGsU0YsgEgRBNEVSuP6wRoKoY/pdrQTR/DsLYUv6f3Wih07vldcENTURRB1zvxgTxETM0URDEBPLRKv6NF0OnRLUyCGWJIgA4paxKIGYIFoksYl7CYmCGMMcTdQFMZFfC9oZP+uCmIg5mrhodydUhP04ZYOW2Gb48OHIycmxPD9B1CUkiUSDcemll0IURQS27oe4u8QQxcQoohl9+qkRRUyEVU0/ZbwqihhfR0wUfQxM5lVRRDMCDFlkqloVRYw7F6uSRc61aaZ2OE0/1esCqhLfOOE5cyl9vQmCOAip7wQ1doJoLpaKCCJjjsKm/95REPX2pipBjSS5C2Js6qjtmkC9T7MRRDN2gghU5R8wRw8tm1ypQg5qcmi/tzI35NBujaJ/vwju47aCCAAIi3HTS60oD/vjppdaof9+yR5NEKW9xVi2bBlEUcTIkSPtz08QdQjdRRINRtu2bXHaaacBANKWbQXnDEWF6WD5fsc1Ab5SBl+pQ8X69FOB2XY2nDFNFgHn6ZYC3DvaamQGdRRAcz1ebl5cT0aRRIIgDjLqUxBF0X39IWMpSxrDqjPF1PFcqZnOasiho0RqhuWYNMYnAaLgKIjGzB2XJnFmn71UR5Xss5ca9Qj2cqjjdB9SdTLETS+1oqQ0hE17WtgKIgDs3JeDbzf2RFmlltH9wl0ZALS9pdu0+f/27jxOivLAG/jvqepjZhiY4RhxkEMEBBMkEAlGiawn4pX1jsrGNW5isvHaJEazvCoJxhg18YpvNMn7bjbZaNh191VXXcUYTxRFPDhEERBQrmEOZpirp7urnveP6qqurq6re3pmeobf9/OZz8x0PfXUM8NQ3b9+rvoQDSEqPYZEGlCLFy8GAMQ374Pa0gmZVKAkBYQmPG/QIi0g0t4L2gBApEsi2qUbTwJeawIkjLmI0mchGtGjAckUrL0Q3cqlM4vVCAVQPF4I6BKwL1YTRtA716UIkkREg0V/B8TA5ojs4mNe9/UQq5MWtA1GmIAYop6SDC+NhOitjAYHTRkNrkePq9Djxu9ITbivPqPFBbS4ETSjne5vyOpR4wMCiHlsnwVkA2TUZW5itjJASIHWfd57F7Z3VEJPC2gp73+XXY210HtUpDqNgKg2d+CVV14BAFx22WXe1yfqYwyJNKCOOOIInHDCCRAAql/fmj0gAaEJKGnvsAjAc/VToQFKOrNPkwrICPLCotABkTYql4p7CBSZeYbW3AevJzv7/EDhHiZzehHdXlBIl/mKrvM7sr8Qzxc7hfQico9EIip35RoQe1tPmHBoLoLmey1lQAOi61ZU0dx6hMs+xM6AqKTyn7v0uJoz+sftNYEZDs3nebd9kfUocoagKimX9jiGn6pJt+d7WAERAEQy//fe3lFpBUQvuxprrYBo99VPItB1HX/zN3+DKVOmeJ5P1NcYEmnAfetb34KiKIhvbUTl9rbsAYnMRrrZoBjtEIi159dhD4qRLolYZ/6ziL1X0exFdNZh71W0ehHtZZxBMZ1Z0dTJIyjmKKceRQZFIipXgyUg2h8rVUAsYe9hYEAMM/8wohbWg2jnmG7h2oPoKGMGRD9WQHQ2wdabaAZEJ3tvouvwU+noTcyEQ+F4d9rem2iGQ2dA3NOcXeTGDIfOgKhv6cTrr78ORVHwzW9+06VBRP2HIZEG3OGHH24t71yz/oP8OYIyGxTNoaZuzHu2vRcxr4zZq4hsL2JeGbNXUYHrfEUrKJo9j34rkSqZJwCPfaCsYUpuvYg55cz5k+5tzlmhr9i5iEFzT4iI+ttgCYiF1hO2BzFIAb2HgQExzPxDnzJCl9n9D73KaBIyqvoOMRVp3Rpe6hUQ1YSWM7zUjaJJa3ip1wI2Skr6Ll4DZHoTHb2HeW3O9Cb69R6aQ07deg8BAFJi4addAIxtwiZNmuTdKKJ+wJBIZeEb3/gG4vE44vtbUNGwN7+ABKIHFMRb/SeTy8xwk6B3HoMWIzDq8X4ytIafBtQTWtATeEF19fK/NYMiEZWDcguIqtp/AbFEPYgiEinN8NIQi+HIgBBplFGCy6hK7uJyrmVyh5e60SP+K5wCAQvuZIi0e++hndqpBA4vFc0x7NxyiHtABFD52T6sW7cOsVgM3/jGNwLbRdTXGBKpLNTV1eGiiy4CANRs3ODa86akMnMIpHdQjHRJRDNDTb3fgZRQu9KZrTA83hVM6RDJtP+7pmkNSGuZd5Z95gZmfhbPJ2pdt3osexMUpXNeZNEVBWzBQUTU10r0ZlVJA2JgIQHfRWzMeoLeXDTL+DFXOfW514tIJKjFRkAE/O/7ZkD0KWMFRN8yRj1eo3gAQI8aP7uS9B5Zo0eNN2kj3T71RASkgO9K6OZrhFibdxmhAZBArMn731/tVIxye+Pe9TTHoCQF1Hb3fy+R1vCFjbsAABdeeCHq6upcyxH1J4ZEKhuLFy/G6NGjEenqRM2mLe77IMJcTMa4eTvDoqLlbpTr9m6k0KUxLCbT4yjV/D2whK4DWqZyr5VNpTQCXqYXULjUYz1hZh73HPKj2xajcSujy8KHkQa8gCAiKjuFDHv3C0j2IfheSrXyqLVnrn84FEHhz2yPWcatrLlATUA4DAyI5vxDP9a1/HoG1WxABFynX8iIYgREn9+PHlWNgCgASAnhkjX1qLACovGAS5mIsAIi4D71xHpdYJZxW1ZAywZEAFCS+WXUTiUbEAEoLovciOaYFRC9xPZGMXLVduzZswd1dXW4/PLLPcsS9Se+gqSyMWzYMFxzzTXG19s3Idra6RsUrbAYIjt5DluxD081g5zZi5hXNvvixexFdB7L6VW09SICyHn32AqBtl7E/MuFfyddes2LBAoLiuxFJKKBUkg4DAiIgfq699D2vWfvof37UD2MHr2Htu8L6j10st//zXDos7CM5/DSnDIeW4TYVh+1wqHz12PrTTTDoXN4qL030QyHzlGh9t5EKxw6yth7E61w6Ne5mgmHwmcpAdFihEO/gBhtiCLa2oXRn34CALj66qtRVVXlXSlRP2JIpLJy8sknY+7cuRC6juEfr4PSA0QSArE24TpsxN6rGO3IDjV1I4WA0mMMNc2vKNurKKTM9iLmlRPZITW6Sxl7UPQKXG5B0YMwF8YpdjEaqyL+VyeiMlaC3kPj8AAExKB6wvRoepUxHw/oPQR6GRBz2lPA/EM3mTct/XoPReb50QqIeRfI9ibm9B7mXSvzydZ76GRth2XrPcwrk8rvPXSKNal5vYd59TTFIFqMD6XH/WJKW8QIhw1RqAmBr4oOJJNJzJ07FyeddJJ7xUQDgK8cqawIIfC9730P0WgU8eYGxPftBnQgkgDUHo8et0yvopIGVJd9j3LKmkNNXQ8i26vo9wQZ9MLACoo+LzKs4UT+Q3CssqV4YUREVI4GY0AMsYiNiEZ6FxBNkUjZBEQZUY0pGgGroAYNL5Wq8A6IACCMYOgbEAFA8Q+IRl3+ARGAsYdjQO9h7AACew/jTQqUHuEZEAGgaq8CNSGgJgTi+3bhjTfeQCQSwfXXX1+6BeyISoAhkcrOhAkTcNlllwEARmx6HyLZA0hjrqGS9L9BQ9qGovaG4h0URVoDUmn/J0ApAV3zfWKX9t5IvxcbZqj1q8tvuCkRUbkq5EWxz4iKfg+IgfWE3LvQNwCp/m82Zq4jAkNbiPmHIfY/lJFMW4ICohCu8wWtetTM9AyfETvG6uGAmvSpKPMrjiR8ymSaGuvwfo4UmvscSLtIwv+1R/SAQPSAcJ3faKpoEahoEVB6jO+VZAKTPtsEAPi7v/s7bnlBZYchkcrS17/+dUyZMgVKKokRm97Prv6ZCYvOm3WkG4h2ZZ4oMu8GOoOimtAR6fJLmMYcCMWcj2gGRbf5FtaCNB7vluoyN9x5BTx7G13qks6wy2GjRDRUFNNr4hIUyykgWqEtqI6gawWEQ/NaOc9Rbr/PUD2MwdeSIcpYAdGvHtU2t9/55mZmyocZEF3LAMYx26/Yde9kx7xDtwVshCaNDx2ABOJteUUQSeQGxPj+/J/PDIdmQIy15Zcxw6EZECElhm96H21tbZg6dSq+/vWvu/wQRAOLrzipLMViMSxZsgSqqqKicTcq93yWc9zZqyg0lycBR6+i0KX3O5cmzTHX0FxIIHDfxRD/lcIGvKC6HKEzVC9ib+c0EhGV0mDb4iLUSqghew+DFBIQ/RQTEB1vTFqrlzrL2MtleiHzAqJtqwupipyAmMfWe+j7yjTM02iIPwkzHNoXvlMc01XMcGh/U9q+yqlX76H9e2fvoWnYpztR0bgHqqpiyZIliEajwY0m6mcMiVS2pk2bhiuuuAIAEN+7DiLVnXPcq1cxh0evYsG8ehVzyoSYX5gJd1LTfResseop1aqlYXBlUyLqD70NiJk3vQIDolBKs8VFKYeXBultQBSisOGlPgrpPQze+N79+VOk9dyA6HaJhLnHREBbXFYtzSti7z304Ow9dOPsPXST13totiHZjfp9xjDTK664AlOnTvVvNNEAYUiksrZ48WLMmDEDQk8hvvcd1yBjLlgTPFcxxAV938EURrBL+w9ZhTkf0YtQwk9OD/EuORetIaJBo796EIXLvrXOIv09/zBIKeYfhvqZgtsrw/xMQcNLFfj3HprX8gmIRgH4HhdSZqeb+Ii36nm9h87ruPUe2kU7ZeDcw3ibdO09NK6hY4HYjfb2dkyfPh2LFy8ObDfRQGFIpLIWiURw8803o7KyEmp3E6LNH7mWM278AUFRl74rlykpHUrCbXKDjTnMJsyGz2HCW5gXTP0VFAvZxJqIqFCluL9khtv3dm/YUG/UhQ2Iftczh6n6hqnMAjU+9/G8+YdFttd39VJz5e4wq3ubW0F5UZBZnMa7jDSnc/j8+oJWJbUu5zLnMHss82Zy0ruM2mN8xPd7l4l2yMDew3irhJLM7z00Vez+COvWrUNVVRWWLl2KSJghwUQDhCGRyt7EiRPxgx/8AAAQa9mEyIFG94LSCIqKS6+i2iOhmkNWvJa51gOGgLopVVB0qSdn0ZqgTZYREBQLGZrKoEhEpVaqgFhIGY8gKULsbxh6gRrzem5tM8NhYED0v7+Hmn8YOGRWCQ6Iwn3DemcZq72eewEjex2XMs5rCJcVTIOGsIalpJE/h9JB7YHVw+gWAKMd0giImfeQYwfy64q3SiMg+gTIql0NqGr4GADwwx/+EOPHjy/kRyHqdwyJNCgsXLgQ55xzDgAgtm8NIp3d1g07hzkH0dGrKNJ6/juapZqCF/giwLk6qp6/aqlZj8krrIYIip5hkUGRiAZCHwXEvN7EsD2IfgEx7AI1fqtWm/U4f27n9269h47vQw0vDRMQ/Z6nbAExh/15yh4QvZiLzvjNT3Ser+dvWZUXDqWxOnkhzN7DoHBoBkQv0U6Zrcs8L5lbJt7m38NY0SJRsa8b9cmPIKXEOeecg1NOOSX8D0M0QBgSadC47rrrcMQRR0DoPYg2roHao3m/a+fTq+gsV9KwqGmQaZf0an+nWJfeIbBEw1hLFhQZFomoN/q4B1EG7SNrC5KhAmJQU4KGl5r1lGB4acnmH4YYXurbe2gOL3UpI6y9fhH4nOF5DfO4T++h61YYDua8xEJ7D13r6pRGQAyYexhvkzkrnjpVtEioPRrm1e5CS0sLJk+ejGuvvTbwZyEqBwyJNGjE43H85Cc/QVVVFZRkM9TW9VBTEvE2HdEOlyRo61VUtPx3K/PKlorvPI3gYaNGuRD/NYvd1iLoHXAiolIYiCGmrs0QvQ6IQojggGiuplqq4aW9CYhBw0uB4OGlmTKBz1sBvYfQZKiA2FtqQpau99CnZzDWoVvh0CsgVu/WULFfQu3Robauw/r161FdXY3bbrsNFRUV4X8oogHEV4o0qEyaNAm33norhBBQO7dDad8GNSmhJnQoXhPkzbAYFBSDMldag0gFLGwTtvctzHYZvRRq9T8ionIVZvho4AqmmTp6GRCNbZB86gizp26YFVdLsdWS+TMHLUDj35Dg4aVmHQHX8X3eDTMyRsrAnkShIbj3MCkRP6B79x526Yh26769h7EOHUrav/cwfkBHtFOH2iOhdG6H2rUDQgjceuutmDhxou/PQVRO+CqRBp3jjz8eV111FQAg0rYeSDUZTyJpCTXpExaRCYqaXty+iVIaQ5fCBMFCwqLrdfTsu999pdieSCKiMHqz92pQ76A5/9qnXM7WFH5D/L3ON3sPwwTEoHt+QEC07vdBATGwhzFor94wbbWV0Qr/veXU4cf2+1CS7vNCgp6rre0qAsKhmjSmnigp93LRbuO1g9cqqbEO3QqIXuIHdMQP6FB7Mvt49jQh3vEBAODb3/42vvzlL/v+LETlhiGRBqXLLrsMp512GgAJ0bkGUnZa7zYGhUURplcxjLBhMUjAO8N9GhSJiMpNiIAYNGw+1N6FPkNQc3oPwwRE78aGCojBC6AFzU9U8gOi8zmukIBY7HGzTBDnAj2OnkIhg5+jg3oP7eHQc9/D7kzvoU/4s3oPPcrYw6EZEKF1YExqAzRNw6mnnopLL73U92chKkcMiTQoCSFw4403YsaMGYBMQUuvgZTGxkT2sNhnvYq5jQk+XmyvolVF4UHRdx8xIqL+UOj9NWxA9CvjFRDN3kRrKGWIgOgn7PDSMAHR8xpKuIAYpJDeQ78ybg+nHb9XP2G2cypR72HYcNjb3sOccAgAegL1Izahra0NM2bMwE033cQ3e2lQEtJ1LX6iwaG5uRnf/e53sWfPHkCMgKoeCyGym9OaG/EqPRrUHu9lTqUwhruIHp/JCKm0/3EASKchUz5lNN1YAdV3bqRRxrOt5rDXgOGioUJi0JBT3h6IqLfCvEAOO/+w2IBoUtXAOX2BC9SYIaeXw0sD6wgKh0BwQDR/Vr9VR4MWuIkEr6IqY/6bwusx/9VcAUCP+19HVxXoMcX3eUmrMH5ev1XNtQrhG/z0iNFOvzLmQjs54RAAZBroXAXobTjssMPw61//GiNHjvRuDFEZY08iDWqjR4/GL37xC9TU1ADyAHTtPUhb8LF6FXUJkdI856UICeOYT7ASuv+k+LB6+75M6He5S4HbYBBRXytFQAyzcnSpAmIJ5h/2enhpIXPjSzE8tDekDO499Bn1A8CYRtKjBfQe6r69h2pCg5rQfMNfpMu/dzHariHaruX3HgLGm65d7wB6G2pra3H33XczINKgxpBIg96ECRNw5513oqKiAlI2QU+vzw9iEoCUxhOR1wIGMMpA8w+LvQ2KvR12YvUkAr0LioUsXMOgSETFKMG9w1rB1OueFWZboTBbXIRdaMXrOaCQ+Yee1wixemmJpjgEbn9h8lq8JozM70p4jOQxpn34vwEr0jJg7qFuBESf5201oRkL03iE0UiXbgTElPfPGm3XoCR1KEmXMlJCtL8PaI2oqKjAz3/+c4wfP96zLqLBgCGRhoTPfe5zWLZsGVRVhcRuyPRG9x67TFD07FWUtiejoKDYi7BY0vkJ/bXvIYMiERWiBMNMA7fyKTQgutz3rdEZfmE0zJZCpZh/GKTQXkGP56lQ4TCgjsBzbOcJt9+75h/+RFpmA6IHMxx6BUSr99Cnp9IMh14B0ew9dA2HACAllPZ1kNgNVVXxk5/8BJ/73Oc8r0c0WDAk0pDx5S9/GT/60Y8ghICOTyFTHwKZm76MKdDjmTkTmScloUkgrfuHxTC9ikWGxZJvccHhp0RULvoqINoDnMvxnDcHVTX8HohewgxjLdX2Fk72n6XYYaMuz08FBcRiBC484997mBMOi+w9tIfDYnsP7eHQHhDTVdm/qciBFJT2DdDxGYQQWLJkCY477jjX+ogGG/+ZxkSDzOmnn45UKoW77roLutgB6ArU5DRAUYzJ+XbmEttSQMIjKJo0CRlRjfKptHvZIsOTGRRLsoaU+aKrr/dAFIKL2hCRu14GxMDeQyDc/EMvug4oSriAGKQUw0sDr1GaOYXlEA6DyoXpOQQQamipm3SVikiXUUeYoaVupCoQbU9DSgmpb4Ku7AAA3HTTTZmtuYiGBoZEGnLOPvtspFIp3HvvvdCVbRC6gJqeCiWZBjQJqPnDcYSWWcbbLeyZT1hBT/ZhQpOqGAHO5QlOCFGaoNhfGBSJyKlEK5n6ChyCGrQ4jRquniC9DYiB9Zdg5Ib5JuQAB0QEzDuEFjy0VKqKbzhUejSoUcV3aKmSkr7hUO1MIaoIz4CodiUz9WhIi63Q1O0AgO9///s488wzPeslGowYEmlIOu+885BKpfDggw9CUz4BdAlFmwShaZBQXYOijCgQmgqRShtPqG5h0fzweuIOE5qEAsBjEr8QkIDxIsdvgZ0QzHfjPbfCEErf9zgS0cGjlIvUeBfwPxwwvDRcz51/+DPCW0CZ3gq7iE4IXgHRDFwSerjfi2vlIcJhAOsNWo+6lKTxfKkNc2+jklkUR6R1z4CodqetbStcj3caW1fJiOIbEEVKg0ilkVa2QFO2AwCuueYanHvuuZ51Ew1WDIk0ZF188cVIp9N4+OGHoSnbgFgKsR4jKEIXkIqSGxbNoUdSQugAIN3DIpDbu9hXzCftvgyL/TU8lYiGtr4OiOa9yq/nLkRA9J0HHqaH0wyIgDEixKU9vZ5rbj/f7U3JEoRTe4+c0CWk14/u9aZomDdEtcyUDsA1oIm07luXGQ79rqX0aNl6XKjdaetaAoBekfs3YoZDkVnB1Vq7wF4m03soUhokJDRlEzTlMwDAd7/7XVx88cWe1ycazBgSaUi77LLLEI/Hcf/990OL7URyuIZY+xEQEt5hEcgu263DePIM6jk0j6tqZsEbn518C+XoVRRCGG3yW1DHhVAEexWJqPQKDUVSzwtkgQExaJ+9vg6I5rlBPZm9HV4apJcB0W+4Zg6/EBiy99AeEGU099/H6j30oCT990S09x5al62MZo8n8o87qZ0pKxy6HreFQwCQkEgN2wpN2QUA+N73vofzzjvP83yiwY4hkYa8Cy64AJWVlbjrrrugxfYgWZ1GrGMaBJTMfERbWHRy9CpKVYGIqEBayytnzh+xhoyWUgmGnwLsVSSiEuuPHsRieg/tPWDFBER7L6G999BHnwbEEvce+vIKZwX2HubIvBHb295Dt3BoNS9iXENJaFBS+W/UmiHS2XuY11RHOASMIbmpik3Q1H1QFAU33XQTzjjjDNfziYYKIQfVShlExXvppZewbNkyaJoGJTkS8fYZEHC8wFAUIJWGcFvB1HwS17T8kGinaZBpl/Ot47pvT6OU0giEXv81M2FRBm1w7BP2PHsUQ5ybW463D6KDVq+HVSp9ExBNmeO+4c2vDnO6gV9AVAK2MgoMf0pwGefK3IVcI+TiNzKi+t/PI/6/a2n+rt223BACiJhvQrpfQ49HjBDrt3BNVPXtGdQzvZVuARHIzs30Cod6PAKlJ50TDgFAQkOyciP0aAtUVcXNN9+MU045xbMdREMF90mkg8ZJJ52En/3sZ4jFYtBj+9EzYj2kSOYW0n0m0JuP69K3V0/aF7gpQuC70cUuMFBQI3hrIKI+FBQQgeCVQ33rF/7lwux/CPTt8FKg9yNEAt/wCz4uVcW/99B3VVId0HQI6dGDiMzUDp96RErzDYiiRzM+PAKiSKQhEmkoKfceRKuMpnsGRKU75R4QRRI9w96HHm1BPB7H7bffzoBIBw2+EqSDynHHHYf77rsPNTU10KMdSNSsha505xaS0nji8+vNM+cdujzBC0UBFDVbzinz4qTXnfhhX+T0pVIs0U5EBw+hhFwgRvEMQFYw8wpYQvi/mRYmnJbq3tpXoy10GW5eem/mFkoJoUvvYaqa/6qk0DPPox7BzFgp1DtAWuFQ1/PmNFplEung44m0EVRdKN0pKN2pzAii3DK60oWeynch1Q7U1NTgvvvuw/HHH+/+sxINQQyJdNCZOXMmfv3rX6O+vh5S7UGiZi000ZYtoCjG0JrMO6R5YVFVskOU3MKi4hgi5XwCtA1fklIOSFgMtVl1QRUyKBJRAEc49F1Iy6uKMD2IvQ2I5S5sOCy2dzBz3NoiwznU1HxuDBMOfQKib+9iJhwK87nVsbicFf6CjmuasfVVLHcJDns4RCoNxKI5x/VUMyoO+xgy0oP6+nr8+te/xuc//3n3n5doiGJIpIPShAkT8NBDD2HGjBmAkkbPyA+QVhqMJzRVMYbfANleRXtYdHsR4tOzmFPG4wmxJFODnS9u+nvIKHsViQ4uhdy3wvYeepQTImDun1Go3wNivy7r0NvewzDTINx6D+1zIt16D6O2AOYSDqUtgOX0Hrqw9x66HreFQ7cyznBotSEzJzIvHJrHzYV1upPQ5G7I+o/R1taG6dOn46GHHsKECRNc20M0lHHhGjqodXd348c//jFWrVoFAIi2H4ZI90TjSTKRzD9B2Hrt0pr/AjSaDugBC9y4vMsqhAhevAYAdN37BYr5BN8fi9e4nsvbCtFBIcwbQ349g9YKoh5lghaGsS/84hIQhQgYaRG0vUaIlU1FbxaWAfwXzwGMkOZ3v7a/qelVv9+CMLZFa9yGlsp4NBv63OqJRbNvkLo8p8nKWHYop9vCNrFIdtsMl+AnYxEgMx/R7bgej1r1uw0rlbFI9vpui9Jl2ojuHqQrP0VqxG4AxvSUpUuXoqqqyvUcoqGOIZEOeul0Gg8//DD+4z/+AwCgdo9EvHUKRBqeQ2UgROYd016ERF36r4Lam5CYqT8o6DEoElGvBPbuBQQspZerhypKYMgKDHGBeywWX7+U0pinXuz1pfTvHZXSmB7h94ah38qkug4ZjXjPO9R1oyfQq+cvrUFWxLyHlZrH/UKqqnr2HAKAVJTg4357EwvhGQ4BY7VTPSKRHL4ZWuV+AMCll16Kq666CmrQ3wbREMaQSJTx7LPP4he/+AVSqRREqhIVDVOg9KjeS5RrGmRa83wRI9Pp7BOn2zvVHj2JlsEeEgEGRaKhrhchMbAXEfAPiWZ4KtOQaN6ffUOilEDEY8tq8/7pdb457NMrBJorhkY96td1o4zfcSlzhovaibQW7nhFzL1+M7h5nI9kKtxxj/abo4Hy5lSaxzPn69EUekZ/DD3ajWg0ih/+8IdYtGiR+zWJDiIMiUQ2GzZswM0334yWlhZAi6Ci8XCoHVXZuS6OFysylTJ6EzNDluwvZqSUQDqdPQ7khkXdmMfoH/T8FwcIDIkAexOJqG+EnYPsEgJzFs/yGWpqXMblOvbgVGYh0Xlf9gyJZjlnSDQf1/XMQmguc+Bzzne0T7cdj6j5/05mr5wecFxKQFWzc/TNnyedHToqo5G88/OOO3//mXAoNKMXM6/9yVS442nNCKjO9plTRTK9pHntM8NlWkO6uhMVUxvQ1taGUaNG4ac//SlmzpwJImJIJMqzb98+/K//9b+wadMmQALR1npEm8dAQOSHRU0zgqLJERZlOm0ERftxIBsWw/QmmsNo3F5olHtvIm8vRENTIYtUOUJg3urKbiHRViYvJDrvhWUUEt3ux3kh0VnGHhLN+ehA9rnG/vM7F41xrqbt3G/Q2ctm9h76Hbedn7PoTDp/XmHgcXsvoi0cWscr49lz/I4DOeHQ7bg9HLq2zxYOJSRSo/YhXbsHUkpMnz4dP/3pTzF27FgQkYEhkchFT08PHnjgATz11FMAALWzGvGGiRB65gnVFhat3kQ7+2IIZm+i87gpTG+i/Xz7C45yD4kAgyLRUFPoKsa2+53r9jvOkOgoI3wWpgFQNiHR616cExKdZdRMT56999C6rq0X0dl7aDJ72XSP42YItPce+h13nG+GLHPoqFPgcTMkptJ5G9lbvYwu4dA6HlFdw6F1bVVxDYcArF5QezgEAKmk0VO3HVpVOwDgq1/9Kq699lrE43EQURZDIpGPZ599Fvfccw96enogUlHE906E2jMsW8DsMfRaxEYoxuI1XpPqhVJ4SASyLxz6Y8gpQyIRmYrd5kYo/vuz+qwyKoK2thjgkOi3OqpvQASMXkR772FOvZmQ6Ld1RUTN7z20M392r3u838qo9lVR3QJgNJINdh7HzZ/LGQCBTIB0CY/W8UzbnOHQYv4tuv3uVDX7vGk7X4t1omfsNshICvF4HD/4wQ84/5DIA0MiUYCtW7filltuwc6dOwEpEGs+FJHWzPDTDGv+odcLKE33D1u69NnOwmcVVUUp/95E3mKIhoYBCIjGZQNCYsDxXoXEoC0w/H4uXUL4rDwqpYSIRNxDjlEgGyJd69f9jwf9e/m1XdONXkavutOasaCM1/FUGrIi5hkAA4+H2M/RU08SiMdywqGERKpmH/S6BmiahvHjx+O2227DlClT/K9DdBBjSCQKobOzE3fddRdeeuklAIDSVY14wwQomjHUJme7C7cnZil9t8uALiE1zXPeoec7zVb1ZRwSAQZFoqGgFyHR+ORxfl+HRL+9Er2ubd4TPVcezdwTvQJm5ny3gGqteuqcb5gtYDbc+zkB8F1523XBG+f5Xquiarr/qqjm0FKvVUdTae/j5oqmqkf7zONebQs63pOE1HQI27V1NYWeuu3QKzsAACeeeCJuvPFGVFdXu9dBRAAYEolCk1Liqaeewq9+9Sv09PQAmop4w3hEumry90R0PnFrmd5ArxcqZkgEvF8U+O3J2B+rnIaow/9c3mqIBrViQmIh8xFdjucsWuN2bww4nnu+y4I5zsfs90FVye9FlLbhlYrqf77L9h32e7XXgjZWiHQGVOe8Qedx53OE1/nmZ2eIM3v1NM041xlw7QvTRNT837cZ4PyOm22scJn/Zz8ed9k2I5W29hYWbudnAiIAKySmq9pQcWQz2traUFFRgeuuuw5nnXWW/96bRASAIZGoYDt27MCyZcuwefNmAECkbTSiDWMhNJf/StYqqPZVSt3ftZZe8w6BwJAI9ENvYm7h8GXzzuUth2jQ6sWqpsZDPiubFhoSA1Y9zV8V1fG9vRfQ7f6Xs+qoI6A5A6L9zTivLZGcbXOsWpoXIJ3PAfY6VNvWFW4jTezHneHQ/NkU2/MTkLuStr0X0WXV0pyAaQ+Hfsftz2H2kOd2PJ6/Kqq0rRSeExJ7Mvsh2oeuxlUkR+1CekQTAGDatGlYunQpJk6cCCIKhyGRqAjJZBL/5//8HyxfvhwAIHpiiO0eBzVRmV9YiNyQaHK8wMgLiUDOAjVlFRKzJxV+DsCgSDRY9WJvROPhgP0R/ba+AHKDU8Bx9/NF9tqK8F/QRSj54dBkBki3kRpCCb/iqaP30Doe8V911Lq+1/OC/Xy3qQpmiHN9brKFRI9VS63zzaGlfsfd2miGPK/j8eyqqPZwaLJCoq330KRVdCE5bhdktAcA8LWvfQ3f+ta3EIu59E4SkSeGRKJeWLNmDW6//XY0NzcDEog0j0a0aQyEdLz40T3mJJovWLxCol05hkTjxOLOAxgWiQabMCHRb6EXZIJiwGIwvsMBvebi2Y77nh+0mql9mKXbPcq+2qnz/hcwvxKAbw+jUUXA9c32e81Tt69K6lbGvtiN1/OKeY2gRXGCjgfV77coG+AaEI3qMyuL2/dUFDpSY/ZBG90MKSXq6upw0003Yd68ee7XICJfDIlEvdTe3o4HHngAK1asAODRq6hp3u9YI/NCwWdhmkyh4hevAfo2KBon9+Jc3oaIBoWgkNjbgIjeb1kh/I57Xd++EI1930In3VxxNGBFUq9zpQ4RifisZh2wIqqmG8c9rh20YqrUdYho1DOcSV3PnwtpP55OBx/3WURIpjXv9ptlUin/f+N0Om9bEq2iC8lDd0HGjd7DRYsW4dprr8Xw4cN9r0VE3hgSiUpk5cqV+MUvfoGWlpb8XsWAkAiECIohgmRvF7AZsJAIMCgSlbte9iIGDjUFrF64PutJdIYPqefem91W9HQsRhO4IqnzGvY36IJWU/XoRbV6zBThuuCNde83Q6bzfGteYojjHquWynQ6+LimGSHU9bgG6BqEx7BPmcpseu/1O0rb5i5GjTqk0JEavQ96XQt0XceoUaNwww034Ctf+YrrNYgoPIZEohI6cOAA7r//fvzlL38BkOlV3Hso1I4qQOrGu8AeL176LSQC5TU/MacO3o6IylIpA6JX2aD5iHZBQ0bdgqK9F9EZDs06vRajMY8767Tfs5wB0R4OvVYkdVzD2UtnhUPzuD2AOcIhkOmFtQ9ntYU/t+NWGdvvwhkCrSGfZh1exzO9k86QKM2FbzIrgDtDohUOzZ/VLYSmbXMXVRVQVGhVHUiO3Q0ZMxauOfXUU3H99dejpqYm/3wiKhhDIlEfeO2113DPPfcYcxUBqK01iO0ZAyS93yXv85AI5L8oKnWvInsTiYaeUgdEt3OCVjZ1CupNhGPYqRkQ3cIhkBsQPRajseYqet2n7IvZuC14owRcQ1Xz59o5jyuKazi0mmnrJXSGP9fjjjqEqlhB1xkOPY87hq6aIdEZDq3jtpAoU6lsODTZQ6LLNWSFgmTdXmg1rQCAMWPG4J/+6Z+wYMECEFHpMCQS9ZGOjg789re/xZNPPmk8oadVRHePhrp/OATyw+KAhETrxBKFRfYmEg0tfRUQ7ed5lAnsTQw77NQZzNxEI/5D8oN6LoUthAL59zEzIPpcQ0Qi7uHQftwjHALZXkK38JetQ/U/Hou6hkPX4y7zGkUkYrQhM7TUjYjF8nsP7WJR93AICa22Hcn6RkDVIITAueeei6uuugrDhg1zvRYRFY8hkaiPbdiwAXfffTe2bdsGAFDaKxHdVQelJ/tuqhCiJIvXGEVCDjl1PbkEYZFBkWho6MuAaJ5bwEqgrnqziI1JcQS8vEqC2xm42qe50Irf/TFMG/zuw2HCcJg6go77rbRt/j14BESjjHAPhz7X0OM9SNbvg17dDQCYPHkybrzxRnz+85/3roeIeoUhkagfpNNpLF++HP/6r/+KZDJpLGzTWItIwygI3fYiS9P8X5j1ZW+iVUEJ5isyKBINfr1cydQoEtCT2JuQaC7g4lPGKySa90nflVR1mT9P0X7MPlfRtw6fa9gXvPE7rvhdQws+7ldH0HHA6Nnz+zlsC+t4l9H8/2bMYGirQyoaUoc0Q45th6ZpiMViuOKKK3DJJZcg4rPKKhH1HkMiUT/avXs3HnjgAbzxxhvGAykV0T22Iai67v+iYbCExBD1BJ/PWxPRgCrVnohB5xYTFJ0rfHqUcZ6bHa6pGwHSeW3n/c252qlzKyG3oOtcJMwtzEiZs6Kp54I4Zsh0+z2b4c7clsPvuF8dZjvc6jCHfXr9HGY4NAOe2+qwmWPG9h1+xzXr38QaWjq2EYgax0844QRcffXVGDduXH4dRFRyDIlEA+DNN9/EAw88gJ07dwIARGccsV11UDpj+eHI/uKhDEKiUYS9iUQHhb7qTQxYtCa3CUWEREdAtIdDAPkB0e2epthWK3XbZ9YZED0Wo8m/h/tsqeE25zBvRVQtt4wzADqPF1OHPRx61aHpucNCnb9TWzg05YREWzi0jkcj0CsSSI7bB70qAQCYMGECrr/+esybNw9E1H8YEokGSCqVwmOPPYY//OEP6O7uBiSgtlQjsnsklJTjydg+3yVo3iKGUG8iwKBINJD6ojcxYPsL92bYjntt1m6WyQTEnPug474poraVSN0EzVMEcgMkkF/WDIg+i83krZiaty1HJrzZ5/g5y1irqrqEQ3sdfmXMOtzCof1nAfJ7D03m79QlHJqskKhpOeEQAPRoGunD9kMb2Q4AqKysxBVXXIELL7wQUY+9F4mo7zAkEg2wpqYmPPzww3j++eeNB3SByL4RiOytzZ2vaOcTFEP9l2ZvIhGFUYKQaBQRwWV9gqKwBUBfOfsUetx/3PZQDNmObINs7fC6z6lquIVmAP+w6ndcVfxDKGAEQK9w6OT1s0Qi3uHQ0Va3cAhk5n9mrm8PiFLRkR7bCmVilzFnH8DChQvx7W9/G3V1df7tJaI+w5BIVCY2btyIX//611i3bp3xQEpBdM9IqE3ZLTMsg2XIaci6guvgbYpoQJSqJzFEkAzVm+gXEs3jXvdHKXP2InQvIoMXswnqZTQXvPGjabnbbuQ1RA/+nUndP4ja5wn6lQn4vVtzCT3CoTmX0H9lbWMOqHRuaTHmAFKH7geixu9y9uzZuPrqqzF9+nTfNhFR32NIJCojUkqsXLkSDz/8MD777DMAgEhEEd09EkprVXZxmxD15CyK4GQfHuX1QoRBkejgFiYgAuGHmwaFnt6ExKDVQQHPgGh/GZSzr6K9jH1enVeIzFmIxqWMPWSFKeMVNO2rgPrUYQXeMGVc5PzMbr83sx3SJxTrtt7HTBkJCb22E6n6/ZAVxn6JEydOxHe+8x3Mnz8/eNsTIuoXDIlEZSidTuOpp57C73//e7S2tgIARGcM0T0jobTGAWsBVPcnU+m2OIKT2yp9OZWUWUgEGBSJ+kupA2LI8kUPOfVaHdTkEhCDFrNxnVPnDJG2e6C1rUbeAi+OHji3cBdUxt4DJ6XRDmcwswU/q70ebbHa6hKKrZ/b/ntxkJqWF8Bz6PlDU6WqQB/RjVR9C2SVMay0pqYGV155Jc455xxuaUFUZhgSicpYZ2cn/vznP+Oxxx4zFrcBoHTEEdlZC6U9bpVzffHjtVqfyW21PiDcXBv7tdibSDR0lCgcGkUCVjV1E3YBG3tQDNrI3hYQvRazsQdEzzl19kBlzq1zXDOn585r7p4ZqPzm9jnqcO3t9Cnj1RbXMhnOcJgto9rK2HoP3X4ml3AIANqIJNLjWqBX9wAAqqqqcPHFF+NrX/sahg0bBiIqPwyJRINAa2srHnnkETz++OPWxH6lrQKRXTVQOvPDYvYd8l4sLhO0sp91OnsTiYaEvg6IYc8vJCjaVw91kwmIzl7DnPqC5tPB4424vHqU4HuuIoLLqKpnqLPaElAGQM48Qs8yquIZDo32OuZ4utWjqp7hUB/Wg9S4Vug1xnYWsVgM559/Pi677DLU1ta6tomIygNDItEg0tjYiH/7t3/D008/jXRmqXKltQKR3flh0bM30akE4Y1BkWgIKPVKpr2oo9eL2ABGcDG3TghYzCZI3pYabu0poTCh1bOMrrtvA2KnaeEW+gkK4bqeE1it6qsTSNe3WeFQVVWcffbZuPzyy7liKdEgwZBINAjt3r0bf/jDH/D8889Dyzw5KwfiUHfXQGmPZ1dDHaohMadO3sKISmKQhETfuYn2wGP2NDrZ7xleYdNZjxvncFUXORvFhygT5lqBZfyCr3ktM9y5NsjW6xpwLWt+JDIL0gxPID2uDfpwY1ipqqo47bTTcMUVV2DcuHHudRFRWWJIJBrEdu3ahUceeQTPPvusFRZFexyR3SOgHKjIrIZ6EARFgGGRqLf6a7hpyDrcgqJrQPQaJhm0mI1bQLQHLcA9SDmv57LvonOj+LBlPK9ltidMm93K2MOheS2v34+9jEd77AvfSEjoNQmk6lshq43pEJFIBGeccQYWL17McEg0SDEkEg0BDQ0NeOSRR/DMM88glTKWFBedMUT2DIfSXJm/z6LTUAiJOdfgbY2oKP3VmxiyHntQzAuIXsMk7QHI615gD1Jec+7sAdHnWlZPmudCNOHKuF7La4EYezm/Ms5w6FbGa76mS5vsLxklJOTIbqTqD0AOM8JhLBbDOeecg0suuQRjx44FEQ1eDIlEQ0hTUxOWL1+OJ598Ej09xnAfkVCh7h0OtXEYhF78nohhlFVQBBgWiQpVbr2JAKCI8HP+guYpAsE9jG5lPK4lhPAOfmZVjk3kveryDH1ebfJqt8cKrjnXspfzC9tu4VDRoY3phDa2HbLCmBtfUVGBc889F1/72tcwevRo9/qIaFBhSCQagvbv34/HH38cjz/+ONra2owH0wrUhmGINAyHSLkMoerP3sQSXS/cdXiLIwqtP0Ni2Hq8Nq+3sebG+YVEc45d0GIsQPDvwVzUpRRlzOuFaVPQIjJ+C9Eg83tyblfhVc6x8I2Makgf0g7tkA4gYpw7YsQInHvuubjwwgu5WinREMOQSDSEJRIJPPfcc/j3f/937Nq1y3hQB9SmYVD3DIeSiGYLD9XeRIBBkSiMQlboDNkL2Oug6NOLmL93YAkWffFa7Ma4YO73YcqFrcuvTWa7wpTzkPe7CiiTU31FEtqh7dBGdwKZZhx22GG46KKLcMYZZ6CysjLw+kQ0+DAkEh0ENE3DypUrsXz5cnzwwQfW40prBdSGaiitmUVuhmpvIsCgSOSnmC0c+ro30SUg5rxk0WW2jNdiLvDpZXSbg+c3pDPMoi9muULqcvIaIupRxr6IjJPzJZ5vGfPerWQXo9EOaYdem7DKzpw5E5dccgnmz58PNcTWIUQ0eDEkEh1k1q9fj+XLl2PlypXZFxcJFeq+aqj7KiHSvX/iL8veRIBBkcipN/v79WVvoi0g5gVDZxmXBWg8exn9et3CLubitihOiRaGcRWwgAyQG/7C7ueYFw4BSFWDNrYLWl2HNd9QCIEFCxbga1/7GmbOnOndTiIaUhgSiQ5Su3fvxhNPPIFnnnkG7e3txoO6gNpUCXXvMChdsaLrLtveRIBBkchUig3g+yIoOss67yceQ1DdXs4UveBNgb15RdUVYpiok9dLNuf8wVBsv1e9KgltbAe0MV2AYjxeXV2NM888E+eddx4OO+ywgttKRIMbQyLRQS6RSOCvf/0r/t//+3/YvHmz9bhojyGydxiUlkoIWfiLSQZFojJWioAI9F1I9Lt/ePUyOqsL8TPmDEX1CG1hyhRVLqBd5s/g+zItM+TWl20YaU6voZDQR3chPbbD2t8QAKZNm4bzzjsPp556KioqKvzrJqIhiyGRiAAYL0o2bNiAxx9/HC+//DLSaWOoEdICamMV1MZhULqi/pU46yznoAgwLNLBq5x6EcNuhQEEByJ7tWEXvCmyjLNc2PpClfMLfy49q4Fl7Icqk9AO6YQ2uguIGvfdSCSCk046Ceeeey5mzpwZvgeWiIYshkQiytPc3Iynn34aTz/9NBoaGqzHRUcU6r5hUJsrIbQQy9IXEhKzJxV+TrF4+6ODVW9DQD9ugWEpoMfMd8Eb89IhypSsXNi22Xv9nNzup35Dc233UhkBtNGZuYbVKevxQw45BF/96ldx9tlnY9SoUfn1E9FBiyGRiDxpmoZ33nkHzzzzDF577bVs76ImoDZXQt1XBdERM1ZG9VBUUMyeXPy5oa/BWyAdpPpoRVOjWD8FRI/5ikEvbcIMV+11OZ+5lEHlPI85uQ3Nzdw3JSTk8CTSh3RBH9UNqEa5SCSC+fPn46yzzsKXvvQlrlJKRK4YEokolNbWVqxYsQJPP/00duzYYT0uuiNQmyqhNFVB6YnknderkJhbUWnqca2bt0E6SA3U3ogF1AcgXHAqYChqnwkT6sKUK5Tt/qjH09BHd0Or64Ss1KzHDz/8cJx11lk4/fTTufE9EQViSCSigkgp8cEHH+Dpp5/Giy++iEQiu4eWOBCD2lSVMxy1ZCHRakAfhUXeCulgU2hPYn/2Ikq9z4ailrxcKe5x5n0tzM/scg+Uqg5tdDe0MV2QI7KL0FRWVuLkk0/G2Wefjc997nOca0hEoTEkElHRurq68Morr+Avf/kL3nnnHduiC4DSWgG1qQrK/gpA86+nYAyKRMUrNigUENp8g6JbPc7/04UERKD4OXy9LRfEL+y63ccKKCuFhD4yAW1Ml7HhfeZUIQTmzJmDhQsX4sQTT0RVVVXh7Saigx5DIhGVRGNjI1544QX85S9/wZYtW7IH0gJKcyXUpgqItrjv/MWCMCgSFa4fFqzJFnW5lv18r//DftewnyOUwufvhSlbSJ1unG30OubkU9YakaEA+oge6GO6oY3qBiLZ9k2dOhWnnXYaTjnlFBxyyCGFt5uIyIYhkYhKbuvWrXj++efxwgsvoLGxMXsgpUBpqTAC44F4Ufsv5mBQJAqnn/dFNIqWaGEcrx63Ug31tCu2Tr/AG/Y+5ShrBkMJCVnTA210AvrohLVtBQCMHTsWp556Kk477TQcccQRhbebiMgDQyIR9RlN0/D+++/jxRdfxKuvvoq2trbsQTMwNmd6GIsNjFzQhshfqeeh9WVQDBOqCh2KGqSQ+Y/2sn1w77GCobAFw1G5wbCmpgYLFizAaaedhlmzZkFRSvz7ICICQyIR9ZN0Oo33338fL730kktgFFBaKqG0VEBpLSIwcqsMIm+DpRcxzPXDzvELszCOs+4w5UrEbUEvKST0mh7oo7szwTBbpra2FgsWLMCJJ56I2bNnIxLJX0maiKiUGBKJqN+l02msXbvWCoytra3Zg5qA0ho3AuP+OEQ65B5e/REUc67HWycNEqUIiSUMiGZAKqqXMbei/i/rw+/n8lrlWUY06CN7oI9KQK/tsfYyBIBRo0ZZwXDWrFkMhkTUrxgSiWhAmYHxlVdeweuvv547h1ECoj1mBMaWCigJnxdJ/R0S867PWymVsQFc0dQtIPXJMNS+LuvC72dz7S2EhKxMQx+ZgD6qB3J4Eva1vMaMGWMFw6OPPpob3RPRgGFIJKKyIaXExx9/jNdffx2vv/46Nm/enHNcdEWg7I9D2V8B0R7LH5Y60EERYFik8lVIUCxi3p9fOHIrF0Tqsm+GrfZCMfu+SiEhhyeN3sKRiZwN7gFg2rRpmD9/PubPn48jjzySexkSUVlgSCSistXQ0GAFxvfeew/pdDp7UBNQ2mJQWjPDUnsyvYwMikS5+qEXMVx14YahhilbqELqdpYtKhjG08Yw0toe6DW5w0ij0SjmzJmD+fPn4/jjj8fYsWMLrp+IqK8xJBLRoNDR0YHVq1dj1apVWL16Nfbv359zXHSrEK3GwjdKawRCL4MV/3h7pYHUz3MRg6vKbY9X+CpFT6NfsAvbjkJIRYdek4Rem4Cs7cnrLaytrcWxxx6L+fPnY968edzgnojKHkMiEQ06uq5jy5YtWL16Nd566y1s2LABmmZ7UaYD4kAs09MYg+iIQmCAhnDxFkv9bQC3vHA/vffDUIPmNYYJemHbEYaEhKxOGauR1mbmFtp+TaqqYubMmZg3bx7mzZuHadOmcasKIhpUGBKJaNDr7OzEu+++i7feegurV6/G3r17cwtkhqaKNiM4is5I/4dG3mqpr/XlXLZS703oeolwoa/YIaC9ISEhh6Wg1yQha3qgD08Ckdw21NfXW6Hwi1/8IoYNG9avbSQiKiWGRCIaUqSU+PTTT7FmzRq8++67eP/999He3p5bKO0IjV39FBp5u6W+1FchsR8CYrmRkJBVaeg1PZA1SegjevJCYXV1NWbPno1jjjkG8+bNw/jx47noDBENGQyJRDSkmUNT33vvPbz77rtYu3Yturq6cgulBZQDMYgDUSjtmeGpeh++2ONtl/pKKUNK2HBoLhY1WMOk1DMrkKagj0gZK5EOT+ZsZg8AVVVV+MIXvoA5c+Zgzpw5mDp1KreoIKIhiyGRiA4q6XQaH3/8Md599128++672LBhAxKJRG4hHRAdUSjtUWNu44EYRLoPXgDz9kul1teL1bitHjzYwqHUIaMa9OEpyBFJ43N1KmdOIQBUVlZi1qxZmDNnDmbPno0jjzySG9oT0UGDIZGIDmrpdBpbtmzBunXrsGHDBqxbtw4tLS155USXCtEehdKR6WnsjOTv01gM3oKp1HoTFO2BL8x2Mn0ZEKVeeP3OXk2zl7AqbfQUVhvB0Ln6KACMGjUKRx99NI4++mjMnDmToZCIDmoMiURENlJK7NmzB+vWrcP69euxfv16bN++Pb+gDojOaCY4Ro3g2K0WP7eRt2Lqrf6eD+cV4IrpbXSeI5TgkOhyHQkJWakZK49WpyCHpyCH5fcSAsDkyZMxc+ZMKxiOGzeOcwqJiDIYEomIArS1tWHjxo348MMPrY8DBw7kF0wLY5iq2dPY2YvgyFszhTWQ4TBMb2Mx5zjDoVcgrNAgh6Ugq9NGKKxO5S0wAwDDhw/HjBkzMGPGDMycORMzZ87E8OHDw7WdiOggxJBIRFQgKSV2796NDz/8EB999BE+/PBDbNq0CclkMr+wJjKBMQKlMxMeu4pcGIe3azIdZD1eUpGQVSnIYWnow4zPclgaUPP/T8TjcUyfPt0KhUcddRR7CYmICsSQSERUAul0Gtu2bcOHH36Ijz/+GFu2bMHWrVvR09OTX1jC6GHsjBrbb3RFoHRFgAR7HSmEIRx2JCRQoUGvTBvzCIeljZ7CSg1u/zVisRimTJmCadOmWYFw0qRJnEtIRNRLDIlERH1E0zTs3LkTW7ZswebNm63P+/fv9zgBEN0RKziK7gLDI2/nB4chEBKtoaJVmTBYmf0Mj10lRo0ahalTp2Lq1KmYNm0apk6divHjx3MbCiKiPsCQSETUj6SUaG5uxpYtW7BlyxZs27YN27dvx44dO9yHqwLZ8JiIGD2Q3ZnPiYj71hy8rR8cBkFYlBEdsiJtLCZTmTaCYSYQui0mAxi9gxMnTsThhx9u9RJOmTIFo0eP7t/GExEdxBgSiYjKgKZp2LNnD7Zt24YdO3aEC48AkBK54TGRCY8J1VhIh3f4oa0MgqJUdSMEmmHQ9tm5Ib1dLBbDpEmTcPjhh2Py5MnW1/X19RwuSkQ0wBgSiYjKmBket2/fjp07d2Lnzp347LPPsHPnTjQ2NvqfnBYQParxkVCMYas9aiZIqhDaINsEnfo9FEpIQM0MDY1rkBUaEM98bX7vspqoXV1dHcaPH299TJw4EZMnT8bYsWM5VJSIqEwxJBIRDVLd3d3YvXu3FRrNz7t27UJLS0twBVaIVICk8Vkk7V9neiOL3fuReq8PQ6GEBCISMqZBxnQgpkHGdciYBsR0KwgGhUDAmC9oD4Ljx4/HhAkTMG7cOFRWVvbZz0BERH2DIZGIaAjq6enB3r17sXfvXuzZswd79uzJ+b61tTVcRRqM0JhUMh8qkFIgUiLzORMsU2px23pQvmKDoZRG8FMkEJOQUR0yqgP2zzEjBMq4EQq95gU6jRo1Coceeqj1UV9fj7Fjx1rfV1RUFNdmIiIqSwyJREQHoe7ubjQ0NGDv3r1oampCY2Nj3ue2trbCKtWQDY4pBUgrEGkjTFpfu32WDJcWW0CUQgciOqQqjc8R4zMiEtL+ORMCzSDotTqol5qaGtTV1WH06NGoq6vDmDFjUFdXh7q6OisMMgQSER1cGBKJiMhVT08PmpubreDY1NSE1tZW7N+/3/q8f/9+tLS0+C+uE0QDoCmAJiA0AWQ+hC4cjynG1zoAXRgfUkDkfG98LfRMOZl5DM6vjU9BQ2lltqDtszQ+Cxi9dkJCKubXmc+KhLR9DQVG2FN0Y46fasz1gyohlezX1rGIHrqXz00sFsOoUaNQW1uL2tpajBw5ErW1tRg9erQVAs2vY7FY8RciIqIhiSGRiIh6RUqJ7u7unODY2tqK9vZ26+PAgQNob29HR0eH9X1HRwcG/ClIIjc45oRBuG7g3p8URUF1dTWqq6sxfPhw68P8vrq62gqBZhCsra1FZWUlRBmsfEpERIMTQyIREQ0IXdfR2dmJ9vZ2dHd3o6ury/Wz8+uenh4kk0mkUqmcz26P6brepz+DqqqIxWKIRqPWh/178+tYLIaqqipUVlZaHxUVFaisrMx7vLKy0gqBVVVVUBSuQktERP2LIZGIiIYsTdMgpYSmadB13fVr+2chBBRFsT6bH87HhRCIRCLcwoGIiIYkhkQiIiIiIiKycAwLERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgsDIlERERERERkYUgkIiIiIiIiC0MiERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgsDIlERERERERkYUgkIiIiIiIiC0MiERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgsDIlERERERERkYUgkIiIiIiIiC0MiERERERERWSID3QAiokJIKZFIJAa6GUREBamoqIAQYqCbQUQUCkMiEQ0qiUQCp59++kA3g4ioICtWrEBlZeVAN4OIKBQONyUiIiIiIiILexKJaNCKrT4EQmbe6xIKhCIAoQCKAISAUMxjmceFABQBYZaxjgnrHOsDsD2m5B43TrQek0Jk33Kz1WE9LrLXsj8mhVGNdUwx6jUeF9Yx8xyZecw6DmTrUDLlzePIvUbOOZnmS8XlWE555LQx+5jIO5Z3DuztcByHx+Me9Xm1I+8cv3qtx2X++bZzrOO2umTmcdjOM45JW3uM48J+zCprHpNWncJeXkjrmPUnZj5uVpcpY/wpSOt78xwl871xzPjePM86JiQEsucpmcesD0jrPEUg53HjfD17HszyOlTznMz32bp0qz7VVr8K43HVrM8qq0M164TZDj1bHtm6jTp1KDCubxwz6lMzjwnoUM3zbeeogHEejOuYvw/ze+NaMvM1MscklMzvRYWAAkDN/GMrEJnHBFQhoECByPzLpZIqLvjWoSAiGmwYEolo8NJE5uUajJCITKDLvPrOHhOAkk1EwkhcmUrMtKAgLwVkE1huMjHrzEsNcDxmvwZcHnOeh2w4tIXEvMdsoc7+vbOJueVdzlF8jnn9GHnt8Pix/Y55/aqKrc9Wp1uA7NOQ6HYczu+lVbe9HfZruh2zQiVsZezl886RLteSOR/2kJgNnpkPr2Mwg6RRpT1QmmESMMMerJBlP2aERD0bsoQ9ZBlfK0IYAS7zGdbXwjrPqAeZOs1zkTkv87jbMds5aibgqlY7zZAoA0OivT7V/H0g9zEF9jba/g2JiAYRDjclIiIiIiIiC0MiERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgs3CeRiAYvVUJKYwNtY98/YfssHBvcm59tX8P+mLR9HeKYbdO87JbnXo9nP8ucr5FzngQAaT6erVNCABLWufbjVh05m/vZ2+LyvcxpkuP34fHhLBtmL0S/Y6GvFfKY/ZK+58mAOqVHGz32SXTUK+zHrLKOfQ/Nr83ywr4/ofmYrX6rPmmrr7h9EiWy50khcz9gfDaOIedxXUhA6Nk6YV5Lt+3nmCmTOS6FbtWHnPozn81rZb5XMmXMzwDyHtNt/63Nr3UB6Mjuk6hnHhPw2icxs/E9jP0YzX8z83slc45z70XFOiasvR0BWHUpEMZ+jxAQmT+SVNLt/yURUfljSCSiQSs5b99AN6FvmK/Bi+TMOEQm+5+WPpANKZo9pXMwFBFRX+EdloiIiIiIiCxCStmL96uJiPqXlBKJRGKgm0FDSCKRwN/+7d8CAJ588klUVFQMcItoKHD+XdXW1kII9u0T0eDA4aZENKgIIVBZWTnQzaAhqqKign9fVHIVFRUMiEQ0qHC4KREREREREVkYEomIiIiIiMjCkEhEREREREQWhkQiIiIiIiKycHVTIiIiIiIisrAnkYiIiIiIiCwMiURERERERGRhSCQiIiIiIiILQyIRERERERFZGBKJiIiIiIjIwpBIREREREREFoZEIiIiIiIisjAkEhERERERkSUy0A0gIiIKq6urC8uXL8crr7yCvXv3QlEUTJgwASeffDIuuOACRKPRoutuaWnBo48+ilWrVqGhoQHxeByTJ0/GokWLcNZZZ0EI4Xrezp07sXLlSrz//vvYunUrWlpaoKoqxowZg1mzZuG8887D9OnTi24X9b1y/Lvy8sMf/hBvvfUWAGD27Nl44IEHim4bEZEXIaWUA90IIiKiIHv37sV1112HvXv3AgAqKiqg6zqSySQAYNq0abjvvvswfPjwguvetGkTbrjhBrS1tQEAKisrkUwmoWkaAGDevHm444478sLC+vXrcfXVV+c8VlVVhVQqhVQqBQBQFAVf//rX8Q//8A8Ft4v6Xjn+XXl59tlncccdd1jfMyQSUV/hcFMiIip76XQaP/rRj7B3716MHj0a99xzD55//nk8//zzWLp0KaqqqrB582bcdtttBdfd0dGBm266CW1tbZg4cSJ++9vfYsWKFXj++efxT//0T4hEIli9ejV+9atfubZLVVWccMIJWLZsGZ566ik899xzeP755/Gb3/wGs2bNgq7r+MMf/oCnn366FL8KKqFy/bty09zcjAcffBDV1dWYNGlSwe0hIioEQyIREZW95557Dp988gkA4LbbbsPcuXMBGL10p5xyCm644QYAwJtvvol33nmnoLqXL1+OlpYWxONx3HXXXZgxYwYAIBqN4vzzz8eVV14JAHjqqafw2Wef5Zx72GGH4Y9//CNuv/12nHjiiaipqQEAqKqKo446Cvfeey+mTJkCAHjkkUeK/Ompr5Tr35Wbe+65B+3t7fjud7+LkSNHFtQWIqJCMSQSEVHZe+655wAAc+bMwcyZM/OOn3LKKaivr88pG9aKFSusOsaNG5d3/Pzzz0dlZSU0TcNf/vKXnGOHHHIIJkyY4Fl3NBrFwoULAQC7du1Ce3t7QW2jvlWuf1dOL774Il577TXMnj0bZ511VkHtICIqBkMiERGVtUQigQ0bNgAAvvzlL7uWEULg2GOPBQC8/fbboev+9NNP0dDQAADW+U5VVVWYNWtWwXWbYrGY9bU5F40G3mD5u2pra8P999+PWCyGH/7whwUvdENEVAyGRCIiKms7duyArusAgMmTJ3uWM4+1tLTgwIEDoeo2hxoG1X3EEUcAALZv3x6qXrv33nsPADB69GhrOCoNvMHyd3X//fdj//79uPzyy317rYmISokhkYiIylpTU5P1dV1dnWe5MWPGuJ7jp7m5uaC6Ozs70dXVFapuANiwYQNWrlwJADj77LPZC1RGBsPf1euvv44XXngBkydPxmWXXRbq2kREpcCQSEREZc3+4jkej3uWq6iocD1noOpubW3FsmXLoOs6xo8fj0svvTTUedQ/yv3vqqOjA7/85S+hKApuvPFGRCLc2pqI+g9DIhERUYl1dXXhn//5n7F3715UVVVh2bJlqKqqGuhm0SDyv//3/0ZTUxPOPfdcfP7znx/o5hDRQYYhkYiIypo9XPX09HiWSyQSruf0d93d3d246aab8MEHH6CyshJ33XUXpk6dGqo91H/K+e9qzZo1eOaZZ1BXV4errroq1DWJiEqJIZGIiMqafU5YY2OjZzn7fDH7OX5Gjx5dUN3Dhg3zDQpmQFy7di0qKytx5513WitYUnkp57+ru+66CwDwj//4jwCMnmn7h7ngjq7r1mNcOZeISokD3ImIqKxNmjQJiqJA13Vs27bNc7uCbdu2AQBGjRqFESNGhKrbXF3SPP/www93LWeuVul1HMgGxPfffx8VFRW48847MXv27FDtoP5Xzn9Xe/fuBQAsW7bM9zrr1q3DokWLAAC33347TjjhhFDtIyIKwp5EIiIqaxUVFdZG52+99ZZrGSklVq9eDQD40pe+FLruCRMmYOzYsb51d3d3Y926db51d3d348Ybb8T7779vDTFlQCxvg+HviohooDAkEhFR2TN7S9577z1s3Lgx7/hLL72E3bt355QNQwiB008/HQDw4osvYs+ePXllHn/8cXR3d0NVVZx22ml5x82AaB9iyoA4OJTr39Wrr77q+2H+fc2ePdt6jL2IRFRKDIlERFT2Fi1ahCOOOAJSStxyyy145513ABhzsl566SXcfffdAIBjjz0WxxxzTM65//Iv/4IFCxZgwYIFri/WL7nkEowaNQqJRAI33XQTNm3aBABIpVJ44okn8H//7/8FAJxzzjl5m5knEgn86Ec/sgIiexAHl3L9uyIiGmick0hERGUvEongjjvuwPXXX4+9e/fie9/7HioqKqDrOpLJJABg2rRpuPXWWwuuu7q6GnfeeSduuOEGbN++Hd/61rdQVVWFZDKJdDoNwBgOeM011+Sd+/LLL+O9994DAGiahqVLl/pe67bbbsPRRx9dcBupb5Tr3xUR0UBjSCQiokGhvr4e//qv/4rly5fjlVdewd69exGJRDB58mSccsopuOCCCxCNRouqe/r06fjDH/6ARx99FG+88Qb27duHiooKHHHEEVi0aBHOPPNMKEr+4BsppfV1MplES0uL73XMcEDloxz/roiIBpqQ9mc4IiIiIiIiOqjx7SsiIiIiIiKyMCQSERERERGRhSGRiIiIiIiILAyJREREREREZGFIJCIiIiIiIgtDIhEREREREVkYEomIiIiIiMjCkEhEREREREQWhkQiIiIiIiKyMCQSERERERGRhSGRiIiIiIiILAyJREREREREZGFIJCIiIiIiIgtDIhER9Zn7778fCxYswLXXXjvQTaEB1tHRgbPOOgsLFizAq6++OtDNISIiH5GBbgAREeXr7OzE5s2b8dFHH2HTpk3YtGkTdu3aBSklAODf//3fUV9f3yfXllLiwgsvRGNjIxYvXoxvf/vbRdWzefNmPPHEEwCAq666qoQtHFiffPIJVq9ejfXr1+OTTz5Bc3MzNE3D8OHDMWXKFBx33HFYtGgRqqurB7qpZaW6uhqXXHIJfve73+FXv/oVjj32WMTj8YFuFhERuWBIJCIqQ9dddx02b948INf+6KOP0NjYCAA44YQTiq7noYcegqZpOPbYY3H00UeXqnkD6rrrrsP777/veqylpQUtLS14++238ac//QlLlizBvHnz+reBZe7CCy/EY489hoaGBvznf/4nFi9ePNBNIiIiFxxuSkRUhsweQ8DogZkzZw5GjRrVL9d+7bXXAAB1dXU46qijiqpj3bp1WLNmDQAMqSBghufhw4fjzDPPxJIlS/Dggw/id7/7HZYtW4bjjjsOgBEYlyxZgrVr1w5kc8tOZWUlLrjgAgDAo48+iq6urgFuERERuWFPIhFRGTrzzDNRW1uL6dOnY/z48RBC4LrrrkNLS0ufX9sMifPnz4cQoqg6/vznPwMA6uvr8YUvfKFkbRto48ePx+WXX45TTjkFsVgs59j06dNx4okn4pFHHsFvfvMbJJNJ/PKXv8Qf//jHAWpteVq4cCH+5V/+Be3t7XjmmWdw0UUXDXSTiIjIgT2JRERl6MILL8Spp56KCRMmFB3UivHZZ59hx44dAIofatrY2IhVq1YBAE4//fR+bX9fu/vuu3HGGWfkBUS7xYsXY9q0aQCA7du3Y+vWrf3VvEGhvr4es2bNAgD893//9wC3hoiI3LAnkYiILOaqk+YQ12K88MIL0HUdAHDyySeHOiedTuPFF1/EypUr8dFHH6G1tRWapqG2thZHHHEE5s6di1NPPRWjR4/OOW/BggUAgEWLFmHJkiX49NNP8Z//+Z94++230dTUhGHDhuHII4/EZZddhtmzZ1vn9fT04Nlnn8WKFSuwc+dOJBIJjBs3DqeddhouuuiiXi+o8sUvftGaU/rZZ59hypQpRde1fft2PPnkk1i7di327NmDRCKB6upqDB8+HPX19TjmmGPwla98BRMnTiyq/nQ6jeeffx4vvfQSPvnkE7S1tUEIgREjRqC2thZHHXUU5s6di/nz5yMajeac6/z9b9++HY8//jjWrFmDpqYmdHd34/bbb897w+Hkk0/G2rVrsWPHDnz00UeYMWNGcb8cIiLqEwyJRERkMYeaHnfccYhEinuKeOONNwAY8/YmTZoUWH7Lli249dZbsXPnzrxjjY2NaGxsxFtvvYWtW7diyZIlnvW8/PLL+NnPfoZEImE91tPTgzfffBNvvfUWbrjhBpxzzjloamrCkiVL8NFHH+Wcv23bNvz2t7/Fm2++iV/+8pe9CorpdNr6WlGKH7Tz5JNP4r777oOmaTmPt7W1oa2tDTt37sTbb7+NrVu34pZbbim4/tbWVvzgBz9wXSTJ/N1v3rwZ//3f/41HH30U48eP96zr2WefxS9/+Uskk8nA69oXMnrjjTcYEomIygxDIhERAQCamprw4YcfAih+qGkymcQHH3wAADjqqKMCh5pu3rwZ11xzDbq7uwEAc+bMwcKFCzFp0iREo1E0Nzdj48aNgfvqbd26FS+++CJGjhyJq666yrr2O++8g3/7t39DIpHAvffei9mzZ+OnP/0ptmzZgnPPPRdf+cpXUFtbi127duGPf/wjtm7dinXr1uHRRx/FN77xjaJ+BwDw7rvvWl9Pnjy5qDo++eQTKyCOGDEC55xzDmbPno3a2lpomobm5mZs2rQJb775ZtFDeu+77z4rIB5zzDFYuHAh6uvrMWzYMHR2dmLHjh1Yu3atNXzYy6ZNm/DCCy9gxIgRuOiii3D00UcjGo1i+/btOPTQQ/PKT548GZWVleju7sa7776LK6+8sqj2ExFR32BIJCIiAMDKlSshpUQsFsOxxx5bVB1bt261etGmT5/uWzadTuPWW2+1AuL1119vrXxpd/zxx+Ob3/wmGhoaPOvavHkzpk2bhvvuuw/Dhw+3Hv/c5z6H8ePHY+nSpUin07jmmmtw4MAB3H333Zg7d65V7sgjj8SXvvQlXH755WhqasITTzyByy+/HKqqFvTzA8aQ3W3btgEwgvKECRMKrgMAXnrpJasH8d5777XmOdqdcMIJ+OY3v4m2traC6+/p6bHC9wknnICf/vSneWFz9uzZ+Nu//Vt0d3f79ohu27YN48ePx4MPPpizCq/X6riqquLII4/E2rVr8fHHH0PX9V71uBIRUWnxjkxERACyQ03nzp2LysrKouqwDxkN2rLjhRdewK5duwAYq7m6BUS7sWPH+h7/0Y9+lBMQTSeeeCLq6uoAAPv378f555+fExBN1dXVOOOMM6xy27dv972em6amJtxzzz0AACEE/vEf/7HgOkzmSrbV1dWuAdGupqam4Prb29utQD979mzf3sjKysrA4bff//73C9qmxSybSCTQ1NQU+jwiIup7DIlERISOjg689957AIofagoAzc3N1tcjRozwLWuGUgC49NJLi74mYAxf9ApSQoicYwsXLvSsx15u9+7dBbUhkUhgyZIlVrhzLpZTKDPYdnR04KWXXiq6Hi81NTXWKq1//etfe7VnYV1dnWvw9mP/+7D/3RAR0cBjSCQiIqxatQrpdBqqqmL+/PlF19PT02N97darZ/fxxx8DMHqUwixw4yfofHtb/FYBtZcrJDSlUincfPPN1mI4X/nKV/DNb34z9PluFi5caPXeLV26FFdffTUeeeQRrFu3zhqi2xvRaBSLFi0CAGzcuBEXX3wx7r77bvz1r38tOCAXs3qrPSTaFxsiIqKBxzmJRERk9erNnDkTtbW1Rddjn8MXtMpla2srgGyPWW9UVFT4HrcPpfQbSmufF2du4xEknU7jlltuwerVqwEA8+bNw49//OOi5jPajRs3Dj//+c/xs5/9DI2NjVi/fj3Wr18PwPg9z5gxAwsWLMDZZ58dGMi9XHvttUgmk1ixYgUOHDiAp556Ck899RQAI7zPmzcPZ555ZmCPaFCvsRv7GwrFrqRLRER9gz2JREQHuWQyibfeegtA74aaAsb8OdOBAwd6VddgkE6nsXTpUmvbj7lz5+L222+3hnH21jHHHIM///nP+MlPfoIzzzzT2oJC0zR88MEHeOihh3DppZdaAbVQ8XgcS5YswZ/+9Cf8wz/8A774xS9aIbqlpQXPPfccrrvuOtx88805oc6pmEVn7Ivt2P9uiIho4PGtOyKig9yaNWus4Yu9DYn27Q6CQmJtbS0aGhoG7aIlZkA0e2G/+MUv4o477ujV/opuYrEYTjrpJJx00kkAjB7Yd955BytWrMCbb76JAwcO4JZbbsGjjz6K0aNHF3WNCRMm4O///u/x93//99A0DZs3b8Ybb7yBJ598Evv378err76K3/3ud7jmmmtK9nO1t7dbXwctSkRERP2LPYlERAc5M+RMmzYN9fX1varLvifgp59+6lvW3CKjubk5sGy5cQbEOXPm4Oc//3nJA6Kb2tpanHLKKbjrrrtw7rnnAgC6u7uxcuXKktRvDmW98sor8fDDD1tDeV944YWS1G/asWMHAKC+vh5VVVUlrZuIiHqHIZGI6CCm6zpef/11AMZiK701duxYjBkzBgDw4Ycf+pZdsGCB9fWjjz7a62v3l3Q6jR//+MdWQJw9ezbuvPPOwHmRfWHevHnW1+Ycz1Kqr6+39nksZi9GL62trdb2J5///OdLVi8REZUGQyIR0UFs/fr1Vriwh7beMIPLjh070NnZ6Vnu5JNPtgLI//zP/+C//uu/fOttaGgoSft6I51OY9myZdYm9H0ZEF955ZXA4GfOJQWAww47rKD6d+/ejTVr1viW2bNnj9XjN27cuILq97Nx40br6y9/+cslq5eIiEqDcxKJiMrQzp07rZUsTeb+ewDw8ssv56xCWllZiRNPPLHg65i9YePGjStqGwM3J510Ev7nf/4Huq5jzZo1+Ju/+RvXcpFIBD/5yU9w9dVXo7u7G/fffz9effVVnH766Zg0aRKi0Siam5vx0Ucf4eWXX8b06dOxZMmSkrSxWLfddhtefvllAEYo+853voM9e/b4njNy5EiMHDmy4Gv913/9F2677TYcc8wxOOaYY3D44YejpqYGqVQKDQ0NeOGFF6xe4EMPPbTgrUsaGhrw/e9/H+PGjcP8+fNx1FFHYezYsYjH42hra8PGjRvxxBNPWKvUXnDBBQX/DF7efvttAMZ8y+OOO65k9RIRUWkwJBIRlaH169fjjjvu8Dz+0EMP5Xx/6KGH9ioklmKoqWnu3Lmoq6tDY2MjVqxY4RkSAWDq1Kn41a9+hVtvvRW7d+/Ge++9h/fee8+1rDmHcSDZN7XftWsXvvOd7wSec8UVV+DKK68s6nrJZBKrVq3CqlWrPMscdthhuOOOO3y39vCze/duPPbYY57HFUXBpZdeivPOO6+o+p3S6TT++te/AjB6r4vdvoOIiPoOQyIR0UFqy5YtVi9Yb1c1tVNVFeeffz5+85vf4M0330Rra6vv3otHHnkk/vSnP2HFihV47bXXsHnzZmv+28iRIzFlyhR86UtfwqmnnlqyNg4GS5cuxerVq7F27Vp88sknaGlpsYaf1tTUYOrUqTjhhBOwcOHCorbcmDVrFh588EGsWbMGGzduRENDA/bv34/Ozk5UVFRg3LhxmDVrFs4+++yS9TIDsP4mAODCCy8sWb1ERFQ6QkopB7oRRETU/37/+9/j97//PUaOHInHH3+8qL3uvHR0dOCSSy7BgQMH8O1vfxuLFy8uWd00uN10001YtWoVjjnmGNx7770D3RwiInLBhWuIiA5S5lDT448/vqQBETA2RzeD4fLly9HV1VXS+mlw2rhxI1atWgUhBK666qqBbg4REXlgSCQiOgilUimccMIJuOKKK3D++ef3yTUuuOACjB8/Hm1tbfiP//iPPrkGDS6/+93vAACnn346jjrqqAFuDREReeFwUyIi6jMffvghVq1aherqalx88cUD3RwaQB0dHXjssccgpcT555/vO0+ViIgGFkMiERERERERWTjclIiIiIiIiCwMiURERERERGRhSCQiIiIiIiILQyIRERERERFZGBKJiIiIiIjIwpBIREREREREFoZEIiIiIiIisjAkEhERERERkYUhkYiIiIiIiCwMiURERERERGRhSCQiIiIiIiILQyIRERERERFZGBKJiIiIiIjIwpBIREREREREFoZEIiIiIiIisvx/bhFQHD9vr/kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADO70lEQVR4nOzdd3gU1f4G8Hdmdje9AAlFuoCAooCKXVEB9YqKvfeOP3u71971WrnqtZcLWAAbeFERRAG5KkVEmvTea0ISUrbM+f2xmcns7rRNNslu8n6eZx9C9uzsbJLdM++cM98jCSEEiIiIiIiIiJKc3Ng7QEREREREROQGAywRERERERGlBAZYIiIiIiIiSgkMsERERERERJQSGGCJiIiIiIgoJTDAEhERERERUUpggCUiIiIiIqKUwABLREREREREKYEBloiIiIiIiFICAywRERERERGlBAZYIiIiIiIiSgkMsERERERERJQSGGCJiIiIiIgoJTDAEhERERERUUpISIBdt24dJEmCJEm4+uqrE7HJZunEE0/Uf45ERFauvvpq/bNi3bp1jb07upEjR+r7NXLkyMbeHUowVVVx2GGHQZIk3HbbbY29O5Qi+LlAFKspZ6dQKISePXtCkiQ88MAD9fIcDTYCO3LkSDz++ON4/PHHG+opG92ECRP011xcXNzYu0PVgsEgpk6din/84x84+eST0a5dO6SlpSE7OxvdunXDxRdfjAkTJiAUCsW13cWLF+O2225Dr169kJ2djby8PBx88MH4xz/+gfXr19fTqyGi5sTv92PevHl49913ceONN+Kwww6Dz+drkIDw7rvv4o8//kB6errtQcm6devw5Zdf4oEHHsApp5yCVq1a6ft34oknun4+Y/Bxc5s+fbrjNsvLy/Hee+9h6NCh6NChA9LT05Geno799tsPp5xyCl599dUG6a9vvPHGiH13e2y0ZcsWPPnkkzj++ONRWFgIr9er910XXHABxo0b57rv2rZtGx577DEcddRRaNWqFdLS0tChQweceuqp+PDDDxEMBuvwCpPLwQcfrP+sf/zxx7gf/7///U9//IEHHhj344UQ+OWXX/DEE0/gtNNOQ8eOHZGeno7MzEx07twZ55xzDj766CNUVVU5bmv69OlxvS+cPhNKSkowffp0vPzyy7jkkktwwAEHQJblej1JunXrVkycOBGPP/44zjjjDLRr105/vi5dusS9vUS+rysrK/HWW2/htNNOQ9u2bZGWlobCwkIceeSRePbZZ7F79+649y9Z3XbbbfrP/ZFHHon78eXl5cjLy4MkSfB4PNiyZQsAQFEUPPzwwwCAV155BatWrUrofgMARAKsXbtWABAAxFVXXWXaZuDAgXqb5uKqq67SX/PatWsd2zfHn1FD++mnn0TLli31n7PdbcCAAWLVqlWutvviiy8Kr9drua2cnBwxZsyYen511FzE+9nSUP7zn//o+/Wf//ynsXenSTr00ENtP7fq6+e+b98+0bZtWwFA3H777ZbtXnvtNdv9GzhwoOvnNP49ublNmzbNdntz584VXbt2ddxO69atxeTJk13vZ7ymTZsmJEmKeM7HHnvM8XEjR44U2dnZjvvft29fx8+F0aNHi8zMTNvt9O/fX6xevbrOrzcZPhdefvllfR8uv/zyuB9/7bXX6o9/4YUX4nrsX3/9Jfbbbz9Xf8MHHHCA+P333223N23atLjeF3Y/8+Li4pi/xehbovuY//73v7bP17lz57i2l8j39e+//y66dOniuJ3vv/++Dj+BMDfZqb7NmzdP34dOnToJVVXjevzo0aP1x59++ukR9wWDQXHAAQcIAOLiiy9O5G4LIYTwIAG6dOkCIUQiNtWsuTl7THWzefNm7NmzBwDQsmVLDB48GEcddRTatWuHQCCAOXPmYPTo0SgpKcHcuXNx0kknYc6cOWjbtq3lNt9++23cd999AACv14srrrgCAwcORCAQwOTJk/HFF1+gtLQUV1xxBfLz83Haaac1yGulpmvkyJGcitdMRY+uaSME9T3L480338S2bdugKAruv/9+1/uXkZGBHj16YOHChXV6/ttuuw0nn3yybZs+ffpY3rd+/XoMHjwYe/fuBRD+uV199dXo0aMHPB4P1qxZg9GjR2Pt2rXYsWMHzjzzTMyePRv9+vWr035Hq6iowA033AAhBLKysrBv3z5Xjxs/fjyuueYa/VirX79+uPDCC9GpUyfs27cPS5YswciRI1FSUoIFCxbg5JNPxsKFC5GdnR2zrY8++ghXXnml/v9TTjkFw4YNQ2FhITZu3IgxY8bg999/x/z583HKKafgt99+Q2FhYWJ+AI3k8ssvx9///ncEg0F89dVXePPNN5GTk+PqseXl5fj8888BhEeWrrjiiriee/fu3frIVFZWFgYPHoxjjjkGHTp0AAAsXLgQI0eOxPbt27FixQoMGjQIv/zyCw466CDHbV900UW4+OKLbdsceuihlvcJISKO3yVJQvfu3bFr1y4UFRW5eXlxi/6M8Hq96NOnD+bPnx/3thL5vl6yZAlOPvlklJSUAAAOOuggXHHFFejatSuKi4sxadIkfP3119ixYwfOOeccTJ06Fcccc0z8P4Akcuihh+KQQw7BwoULsWHDBvz0008YNGiQ68cbj0OuueaaiPu0vuL666/HZ599hkceeaRWsxcsJTwSW2iOo4vJOkrSnH300Ufi4IMPFp9++qmorKw0bbNp0yZx0EEH6b+7K6+80nJ7W7Zs0c9iezwe8cMPP8S0MZ597tixo6ioqEjY6yFKJskw0tLU3XXXXeLRRx8VX3/9tdi8ebMQQojHHnusXn/ugUBAdOzYUQAQp5xyim3b8ePHi//7v/8TH374oViwYIEIBoMRIw21HYGt6+syjqCdeuqpory8PKZNIBAQV155pd5u2LBhdXpOM/fff78AINq3by/uuusu1yOw+++/v9720UcfNR0p2bVrlzjkkEP0diNGjIhps2PHjohR3Lfeeiumjaqq4s4779TbXHPNNbV9uUKI5PlcGDZsmL4fH3zwgevHGUeZzjjjjLifd+bMmaJLly7i7bffFiUlJaZtioqKIo6TTzjhBMvtGUdg3Yzc2yktLRUXX3yxePHFF8VPP/0kiouLhRCRx+yJPn795ZdfxA033CDefvttMXfuXFFVVSWEELUagU3k+/rII4+MGKUPBAIxbb744gshy7IAIHr27Gnaxq1kGIEVQogRI0bo+3HFFVe4ftz69ev10ftWrVrpv0ejvXv3ivT0dAFA3HDDDYncbcEAW48YYJNPUVGRqykSixYt0n93GRkZYt++fabtjJ38fffdZ7m9Cy64QG/373//u9b7T5TMkuVAtbmp7wA7fvx4ffujR4+O+/HJEGDbt2+vb2vJkiWW7YqKioTH4xEARMuWLev0nNHmzZsnFEURAMSXX34Z8XuzCyIrV67U27Vp00aEQiHLthMnTtTbnnvuuTH3//Of/9TvP++88yy3EwqFxMEHHywACFmWxYoVK+J6rUbJ8rkwYcIEfT+OP/541487+eST9cd9+eWXcT9vaWmp8Pv9ju22b98eMa17zZo1pu0SGWCt1GeAtVKbAJuo9/WsWbP07bRv3952oOGWW27R277//vuu9zVasgTYHTt26JfAZWVlidLSUlePe/LJJ/X9v+222yzbace/GRkZlidwaqPeqxBrlXVnzJihf8/sInOrAgaqquKzzz7DRRddhK5duyIzMxM5OTno1asXhg8fjkWLFtnu2+OPPx5T4OHHH3/EJZdcgq5duyI9PT3mIvVgMIjJkyfjnnvuwXHHHYfWrVvD5/MhJycHBxxwAK6++mr8/PPPls+pVQgdNWqU/r2uXbvGvGarn5WbKsSzZ8/GjTfeiJ49eyInJwdZWVno1q0brrrqKvz000+Oj48uqLFv3z689NJLOPzww9GiRQtkZWXhoIMOwgMPPFBv00gaQ35+vqufb58+fdCrVy8A4SlfZhegCyH0aUVOVTlvv/12/etx48bFu9t18ttvv2H48OE48MADkZ+fj/T0dHTq1AkXXXQRvv32W9vHGotFaO/RDRs24J577kGvXr2QlZWF/Px8HHPMMXjzzTddF/0oKyvDv/71LwwZMgT77bcf0tLS0LJlSwwYMACPPvoodu7cafv46PdKKBTCyJEjMWTIELRv3x4ej8e0EMT27dtx//3348ADD0RWVhZatmyJI444Ai+//DLKy8sBhC+JMCsk8f333+vPafx92rn99tv1x0yaNMnVY9xwqkJcX7+3b775BmeeeSbatm2L9PR0dOnSBZdddhl+++23uF+D3+/HBx98gLPOOksvaJKfn49DDjkE99xzj2XhkOXLlyMrKwuSJCEvLw9r1661fI6ioiJ06tQJkiRBURTbz22y9tFHHwEITwc+55xzGnlvamfHjh361z169LBsl5+fr0+XdTu9141gMIjrr78eoVAIZ511Fs4991zXjzXue7du3SDL1oduBxxwgP612f4bjw/spsLKsozLLrsMQPg4bOzYsa73t7bmzp2LwsJCSJKEtLQ0fPbZZzFt6nJMOHToULRu3RpAuCjTmjVrHPdpw4YNmDZtGgCgoKAAZ555ZtyvKzs7G16v17Fd69atccIJJ+j/dzq+pcS9r43viwsuuADp6emW2zJOv//000/j2t/a2LlzJwYMGKD36XfffbfpZZu1PdYrLCzEGWecASD8szF735kxZpzo6cNG2udIRUUFvvjiC1fbdiURKdjuLILxLI7dzews0qpVq0S/fv1sHyfLsnjkkUcs9814hvOnn34S//d//2e6HeMZphNPPNHVPl911VWmQ+bGkVenx1v9rKwEAgFxww03OG77wgsvNJ1KodHaDRw4UKxevVoceOCBltvq3LlzsxxBHjBggP4zmDVrVsz9xlHaPn362G4rFAqJ3Nxc/W82kWehrJSVlYmLLrrI8W9l6NChlvsTfaZ30qRJIj8/33JbQ4YMsZyarfnuu+9E69atbfcpJydHfP3115bbML5Xdu/eLY477jjTv1ujn376SbRo0cLyOQ8++GCxYcMG0blzZ9PHh0IhvVBEixYtHKeCV1RU6M/XqVMn21GTeDnN7kj07y0YDNp+rsmyLJ5//nnXIy1uim74fD7x9ttvmz7+3Xff1dsdffTRIhgMmrY7//zz9XYPPfSQ7c80ldXnCGxlZaU+KmQ3rdFOMozAdujQQd+W25Gafv361ek5jZ577jkBQGRnZ4sNGzYIIYTrEdhVq1bp7dq2bWv7WfLNN9/obe+8886Y+419/dKlS233+auvvtLbHnXUUe5eqAk3v8fJkyfrU5uzs7NNL8dJxDHh3Xffrbd99NFHHffdOMp0xx13uH3JtWacrTV27FjTNhyBrZGo97VxVNVsWr3Rnj179LaKoljO0HPiZgR27dq1eiEkAOK5556LaZOIYz1jYS03n/M///yz3r5v3762bY2FwhJ5WUa9B9iZM2eK8ePHR1xTOH78+Jhb9AfpqlWrREFBgf6Y4447Tvzzn/8UY8aMER9//LG46667Ig5Grd7Exg7ib3/7m94B/OMf/xAff/yxGDlypLjlllvEli1b9McceeSRIjs7WwwbNkw8+eSTYvTo0eKzzz4Tr776qrjxxhtFVlaW7QfavHnzxPjx48VJJ52kt3vnnXdiXvO8efMiHucmwF588cV6m/T0dHHTTTeJUaNGiY8//ljceeedIicnR7//1FNPtZwuq7Xp37+/6NWrl5AkSQwbNky89dZbYty4ceK5554TnTp10tvFM92mKaiqqoo44N+6dWtMmzFjxjh++BgZf7+zZ8+uh72uUVlZKY466ij9+bp16yYefPBB8dFHH4mxY8eKp59+OuJD8eSTTzY9KDJ2lMOGDROZmZkiIyND3HTTTWLkyJFizJgx4p577ol4T9gdPHzxxRf6FDqv1yvOO+888frrr4vPPvtMvP/+++Kyyy7Tp7LIsix+/PFH0+0Yf5ba+7pv377in//8pxg7dqx49913xa233qq3X7JkScTUrP79+4uXX35ZjBs3Trz22mvi2GOP1cOQNiXJrBN99tln9W18/PHHtr+Djz76SG/7xBNP2LaNVzwBNhG/N2Pn7vP5xA033CBGjRolPvroI3HbbbfpP9uzzz7b8UD1119/1dtLkiROO+008corr4hx48aJkSNHiptuuinid2W1nfPOO892399///2Ig++6XKuU7OozwP7444/6tu+9995abSMRAXbAgAGiZ8+eIjMzU2RmZorOnTuL888/X3z88ceufrfGk9d218oZ31sjR46M52VaWrFihX4d2L/+9S/9+24DrBBC9OnTJ6Kt0zWwaWlpYtmyZTFtevfurW8nngCbk5MTd4VSjVOA/fTTT/XP/cLCQjF37tyYNok6JjSeeO7SpYvja+rWrZve/s8//6zNy4+L8QTDb7/9ZtrG+Pnep08fcfDBB4vs7GyRnp4uOnToIM444wzx1ltv2Q5iOEmVAJuo9/Xw4cP1++MJsABM/17dcAqwCxcu1KtXK4piet12oo71AoGAaNOmjd4vO1UfN157bPxMs6J97mRnZ1uecI5XUi6jEwqF9KUC0tLSxGeffWbabtu2bfrZOFmWxeLFi2PaGDsI7UNv7969ts8/depU2zf+rl279BEfWZYtr1NI9DI6Y8eO1e9v06aN6dmmdevWRYxsWF1vafyZ+Hw+MXHiRNPXadxWXULXvn37TE9c1OYWHfzrgzF8HHrooaZtnnjiCdcHH0KIiCICH330UYL3OFL0tblmB3h+vz9in8w+tKPL9Xfq1Mn0WqjZs2frZzdbtGhhOpq3YcMGfRS6U6dOYuHChab7Pnv2bJGXlycAiA4dOpheOxQ9s+POO++0HZUwjtDecsstpm2jPyvMOtFt27bpB1pOB+InnHCC3vFs3LjRtm284gmwdf29Gc+05ufnmy7xsGzZMn2JFbsD1ZKSEr0YUH5+vpg+fbrp61u5cqV+Ai0rK0vs3Lkzps2ePXv0s++KooiZM2fq9y1fvlwP57m5uXVeCmTp0qUJ+/wyey11VZ8B1njS5vPPP6/VNhIRYO1uPXv2FAsWLLDd1s6dO0X37t31x7Rt21Y88MAD4sMPPxSjR48Wjz32mN7fybIsnnrqqVq91miqquqfBYcffnjEwVs8AfZ///tfxAmnfv36iWeffVZ88skn4t133xV33HGH/vmal5cnvv32W9PtGE+s281yESLyelkAYtOmTXG/fiHsA+xrr72mj8507txZLF++PObxiTwmFEKIww8/XN+fn376yXK/Z8yYobfr37+/+xdcSzNnztSfr7Cw0PJA3+0yOu3atbN9fXZSJcAm6n1tPJ676667bJ/TeL0s4Hwy24rT4J82iJKeni4mTJhguo1EHesJIcS9996rt7GbnbBv3z59sMzr9brq066++mp9206f1W4lZYD98ssv9bavvfaabdvly5frIzpmFa6MHURWVpZetbGuVq9erW/X6g2R6ADbv39//f7vvvvOcjuzZ8+O6BDMPgSNb74nn3zSclvvvfeeq3ZOjH8jdb3V98Xue/bsEe3atXM8aDNWkHz99dcdtxtv+9rasmWL8Pl8AjAv4mHk9/v16pY9evSIuT+6o/z5558tt3XZZZfZtrvtttsEEA4b8+fPt92vDz74QN/WJ598EnO/8b1y2GGH2YbXuXPn6m379Olje/bPuF2rTtQ4xcuqsMny5cv1NkOHDrV9rbURb4Cty+/NWLnTbkTKOHXR7EBViMi1GP/73//avkbjyN8zzzxj2mb69Ol6RcjOnTuLoqIi4ff7xWGHHaY/NhEni6JPbtTl5rRWaV33L9EB9tJLL9W3bXXSyUldAqzH4xEDBw4UjzzyiBg1apT4/PPPxZtvvikuv/xyfVQTCI8QOh0Y7d69W5x//vn6MYPZ7cILL3T8fIrH22+/rX/u/fHHHxH3xRNghRDizz//jLi0Jfrm8XjEQw89ZHuc8/DDD+vtzz//fMt2xiJO2s0qEDqxCrAPPfSQ/v2DDjrIMiAn8phQCCHeeOMNfXt2qwxcc801rp+3rqqqqiIqSL/44ouWbbV1hI844gjx97//XXz44Yfi888/F++995648cYb9RPA2t/ElClT4t6fVAmwQiTmfT116lS9bfv27W0vqYm+FLG2hTmtstPXX38tMjIyBBA+GTVjxgzTxyfyWE+I8Ew1bX/sZieMGjVKb+f0vJrnn38+oX2yEEkaYLVpaLm5ua6WHDn66KMt/+iNHYTdB1VtaCMOVmXVExlgjT/jgw8+2HFbgwYN0tubjZxq9ymKIvbs2WO5HWNQr8tCxKkSYIPBoDjllFP057ILH8Zrkd977z3HbT/44IN6+2effTaRux3hX//6l/48v/76q2P7Bx54wPLv1BiEnM5AG0Nn9LWLqqqKli1bCsB5GQ4hwtd0aCODZr9v43vlww8/tN2W8YDNaWqQccqcVSdqDFb333+/aZv77rtPb+M0ylEb8QTYuvzeKisr9Q6yTZs2jlN/jNMTzYKUNjpywAEHOL5GIYQ+fcou9BjfVxdddJG+TAkAcdlll7l6HifNOcBq0+uB2o/A1TbArly50jaMbdiwISLQ9erVy/FvdPXq1eL666+3/P34fD5x4YUXRlxWVFubNm3SR0XvvvvumPvjDbBChKfgm13zr91atmwp7r//fsuqt6tXr9Y/W+36LuNoTDz9iZnoABsMBiN+B8ccc4ztcUgijwmFCJ+k1k5+WFVdNY4y+Xw+sWvXLtevtzauu+66iM9ss/oqmi1btthWhd6zZ484/fTT9e21atXKceZhtFQKsELU/X0dDAYjRnKvuuoq08+SCRMmxATl2h7PmWWnDz74QN9+27ZtbaetJ/JYT3PEEUc49lXGWRxmszfNGOtWPP30064e48SDJDRz5kwAQLt27fD99987tlcUBUB4QeOKigpkZGSYtjv++ONd70NJSQk++eQTfPfdd1i0aBF27dplWZFw06ZNrrdbW3PmzNG/PuWUUxzbn3LKKfjxxx8BhCsWH3HEEabtDjjgALRo0cJyO+3bt9e/rks14i5duphWTUs2d9xxB6ZMmQIA6NSpU8QizalCe/8A4b/NCRMm2LY3/l6XLl1qWr0XAI466ijb7dj9rSxZsgR79uwBAOTk5DjuExCu3FhcXIylS5fatnN6X//+++/61yeddJJtW60qt52TTjoJBxxwAFasWIFRo0bh6aefjqgwGQgE9Op8++23H4YOHeq4zfpUl9/bggUL4Pf7AQADBw7UP2utDBo0yPL3tXfvXixcuBAA0KZNG9d/AwBs/waeeOIJ/Pjjj5g9e3ZEhe+uXbvizTffdHwONx5//HHLSvlNnfa+BYCWLVs26HN3797d9v6OHTti0qRJ6NOnD7Zt24Zly5bhiy++wEUXXWTa/rnnnsPDDz8MVVVx/fXX4+abb8aBBx4IAPjrr7/w9ttv4/3338dnn32GWbNm4Ycffoio6huvW265BSUlJejcuTOefPLJWm8HCFcHvfLKK/HVV18hKysLzz33HM4//3x06tQJ5eXlmD17Np577jnMmDEDL7zwAubNm4f//ve/yMzMjNjO/vvvj4ceeghPPPEEAOCGG27Al19+ibPOOgsFBQXYvHkzxowZgzlz5qCwsBCVlZUoLS0FANvqx25VVlbiggsuwPjx4wEAp59+Oj7//POY/TRK9DFhixYtcPbZZ2Ps2LHYt28fvvjii5hVIb744gv9dZ911llo1aqV69cYrxdffBEffPABACAvLw/jxo2Dz+ezbN+uXTvb7bVo0QJffvkljjjiCCxatAi7d+/GW2+9hb///e8J3e9kkYj3taIoeOutt3DaaachFAph1KhRmDdvHq644gp07doVxcXF+P777zF+/Hh9lQKtUn4i3hcA8Pzzz+Mf//gHgHC18SlTpmD//fe3bF8fx3rXXnutnjdGjhwZc0y0fv16fUWXtm3b4rTTTrN9To3x/ZOwlU0SkYITOQJbWlpap7Pb0WdrjWc47abdGv30008x13PZ3fbff3/T7SRyBNZ4puWdd95x3JZx3b4HHngg5n7tPjfFmbS28Zw5T0XGkZw2bdqYXotjlKxTiI3TJ+O9RU/XNY7k2RX5iW4bPZpgXJsw3pvZdBfje8WpUIVxWpabtfi0607szgK/9NJL+jaj1wX84osv9Pvqq/JtPCOwdfm9GT9HHnzwQcf9Mn5ORY8EGounxHvzer22z7t69eqIAnYej8eyAEpTVJ8jsNq0M0VRar2N2o7AuqVV+AUgrrjiCtM2xs93u+mgr776qt7u8MMPr/U+jRs3Tt/ON998Y9rG7QhsMBgUxx9/vADC14DOmTPHtF0oFIoobmZVdEtVVfHAAw/olxqZ3dq0aSNmzZoVURjJqU+0YhyBNU5vvfzyyx0LcCX6mFAzefJk279J4yiT2bGj3XXukydPdv2zeeedd/TnycrKEr/88ovrxzoxFpqMtxBnqozAJvp9/cUXX+jVsM1uPp9PvPPOO+Kcc87Rv+fmmNyM8XPR+L7o27ev2LZtm+PjE3mspykuLtanL5vNTjBeK2w1A83MDz/8oD/ulltucf04O4k5bZBAe/furdPjtdECM1Yjs0YrV67E0KFDsW3bNgBAz549ceedd+KNN97AmDFjMH78eP2mrSkVCoXqtM9uaGcCASArK8uxvTZyEf3YaIk6c5Tqnn76aTz77LMAwmu9TZ061fHMe35+vv71rl27HJ9j9+7dpo9NtLq8h+zeP3X5W6mvfQKc39fazAmPx+NqLT4376+rr74aaWlpAID33nsv4j7t/5Ik4brrrnPcVn2ry++trKxM/9puhERj97Ory99AIBCwvb+goCBidHD//ffHYYcdVuvnoxra33koFNLXSk42xlGCZcuWxdy/efNmvPjiiwCA3r1749Zbb7Xc1m233YbevXsDCM/emDVrVtz7s2fPHn1d8AsuuKDOszC+/PJLfbTlmmuuwYABA0zbybKM1157TX/Pv/POO6bvHUmS8Oyzz2L+/Pm46aab0LNnT2RlZSEzMxMHHnggHnzwQSxevBiHHXYYSkpK9Me0adOmTq8DQMSa0/v27XOcmVVfx4SDBw9Ghw4dAAA///xzxLrTxlGm/fbbz3TW2znnnGN5u/HGG13t2+jRo3HzzTcDCPdjEydOxDHHHBPHq7Pn9L5IdfXxvj7vvPOwatUqPPLIIzj88MORn58Pn8+Hzp0749prr8Xvv/+OG2+8MeJ4rm3btnV+Lcb3RUVFhatcUR/HVXl5efpa3/v27cOXX36p3yeEwOjRo/X/2639Gs24r26ymBtJN4XYGLxOOOEEzJgxo0Gf/7nnnkNFRQUA4KGHHsJTTz0FSZJM295www0Ntl85OTn6124WVzceeBof21jKy8v1qbl11alTJxx66KEJ2RYAvPDCC3jkkUcAhKfe/PDDD+jTp4/j44wB19j5WVm/fr3pYxNNew9JkoRgMJgUJymM7+tHH31Un77WELRQFQwGEQgEHEOsm/dXq1atcP755+OTTz7BlClTsGHDBnTq1Anr16/HDz/8ACB8gNS1a9e6v4BGZPy9uQkvdj8747auvPLKiEXQ6+qWW26JeH+tWLECDz/8MJ5//vmEbH/ZsmUJOwA87rjjUFBQkJBtNQTjiYE9e/a4OpHR0IzT04qLi2PunzJlih7kBg0aZNmnA+HPzZNPPlmftj5nzhzHafjRJk6ciB07dgAACgsL8fTTT5u2+/nnnyO+1todeeSRGDJkiH7ft99+q389ePBg2+feb7/90Lt3byxZsgSlpaVYunQpDjnkENO2ffv2xdtvv225rSVLlugH0j169EBeXp7tc7vx3HPPYezYsfj1118xfvx4XHTRRRg3bpzl53J9HRPKsoyrrroKzzzzDIQQGDVqFB577DEAwKhRo/RgfeWVVzpeOlEbY8aMwTXXXAMhBNLS0jBhwgTHS1zi5fS+SHX19b5u06YNnnzySdtp/3/99Zf+tdUJpXicf/75yM3Nxeuvv44VK1bgpJNOwrRp07DffvtZPqa+jvWuueYafPrppwDC04ivuuoqAOEpy6tXrwYQvjSpV69errdZH5eiJF2AzcvLQ3Z2NsrKyhrk2tJoU6dOBQC0bt0aTz75pOUborS0NOIXUt+M1zysXLnSsb2xjd0boKHs2LFDP6tTV1dddVXCrk0dMWKEfl1IXl4eJk+ejH79+rl6rDHkzps3z7atqqqYP38+gHDHqZ0JrA/t27fHn3/+CSEENm/ejI4dO9bbc8WzT5qGfl/vt99++rWXa9asQc+ePS3bFhUVue7ob775ZnzyySdQVRUffvghHn/8cXz44YdQVRUAXJ+FT2bGz45Vq1Y5trdrU19/A5988gk++eQTAMBhhx2GXbt2Yf369XjppZdw6qmn4uSTT67zc4wdOzZhJ12mTZvm6lrrZNGlSxf88ssvAMIHIdqoVTJxmt2yZcsW/evc3FzH7RmDmpsTWtGMo4pur8OeNm0apk2bBiBci8EYYBt6/zXGsBhPDRE7OTk5+P7773Haaae5CrH1eUx49dVX45lnngEQHg199NFHASDi5Fr0tbEap5FjO59//jmuuOIKqKoKn8+HL774wlVtk3g11KyvxtJY74u//vpLn3XXrVs3x2uS3XrttdcgSRJee+01VyG2vo71Tj75ZHTq1AkbNmzAjBkzsG7dOnTp0gX/+c9/9DbxjL4CkQG2c+fOCdnPBhuaMZ4ZcHrjn3DCCQDCB5tuDpoSafv27QDCBUDszmZMnTpVP1C1Es9rdmIswqSN8NgxjnZaFXBq7t544w3cfffdAMKd6qRJk+I6k3bQQQfpB3NLliyx7Vx//fVXfSrWscceW6+j4gMHDtS/TtSod131799f72B+/PFHx/dOIh1++OH619oBohVt2pgbxx13HA466CAAwIcffohAIIAPP/wQQPgE2LBhw+Lf2STTt29fvZjIjBkzHKc1aYXjzBQUFOiFNWbNmqW/H+pi7dq1uOWWWwCER9rHjBmDjz/+GIqiQFVVXHnllREHcRQ/44m65cuXN+KeWDMGLbPZLcaD240bNzpuzziaX5/Fe9yKd/83bNigf12X/TeeKE7k5RBaiD322GMBAOPHj8eFF15oealAfR0Tdu/eXQ/ma9aswcyZM/Hzzz9jzZo1AIBjjjnG9oRnbUyYMAGXXnopQqEQPB4Pxo0bhzPOOCOhz6Fxel+kusZ6XxuDXKIvE3r11Vdxxx13AAjPJDrxxBMjgrpRfR3rabMTgJppw1qxMyA8BdiqUJ4VYyFGqxkhce9nQrbignEaiNOZD+0HB0A/I9ZQtOlRa9assQydoVBIv17STjyv2UmXLl30abMLFiywDbG///47fvrpJwDhMx3JcC2YVoU4EbdEjL6+9957+jVKWVlZ+O6773D00UfHtQ1JknDBBRcACL/JX3/9dcu2r732mv51vG/8eF188cV66Hj++efr/LeXCIqi4LLLLgMQ7kTef//9BntuY5B84403bEPYq6++Gte2b7rpJgDhzvPOO+/UT2JcddVVrq63TXZpaWk4/fTTAYRP7mnTisxMmjTJsWK09tleXl6Of/7zn3Xat1AohMsuu0wPwq+99hp69OiB4447Dg8++CCA8DVS119/fZ2eBwhXIU7U51cqjb4C4emsmtmzZzfinpjbs2dPxPtW+3s1Mobwb7/91rYuRElJCSZNmqT/33gCzK2rr77a1d+CNmUVAB577DH9+//6178s93/s2LG2z/2///1P/xxq0aIFunXrFvf+A+GD9Llz5wIIn3SNt390ooXY4447DkA42FmF2Po8JjSOJI0cOTLi+CLeUSYn3333HS666CIEg0EoioJPP/0UZ599dkKfQ1NVVRVxnGr2vkh1Df2+BsKXk2jHevn5+QnpX6L961//wp133gkgPJvSKsTW57He1Vdfrc9AHT16ND7//HP90sRzzz037ssJtL4jJydHP5FdZ4moBOWmCvHtt9+ut7FalFcTCoUi1na74447bNfEKi8vF//5z3/EmDFjYu4zVvlzs/7ekCFD9PavvPJKzP1+vz9icWvYVEx75ZVX9DajRo1yfG6nSs3Gqobt2rUTS5cujWmzfv160a1bN72d1QLL2v1uKkLG0zYVjBo1Sq++mJmZWad1GTdv3iwyMzMFEK58OnXq1Jg2xgqMHTt2dLWOXV3dc889+nOedNJJYuvWrZZtQ6GQ+OGHH8RTTz0Vc59dhdp4227cuFGv8JuWlub4nti+fbt48sknxYIFC2Lui2ddaSFExLqJt9xyiwiFQjFtotf6dFMJsbi4WP/9G292a/QlQjxViOv6e5s5c6Z+f4sWLUwXg1+xYoVo165dxM/ArBpuWVmZ6Ny5swAgJEkSL7zwgunvQlNcXCxeffVV8cMPP8Tc98gjj+jPdf7550fcFwgE9LUgUYcqkamiPqsQV1ZWiqysLIFaVDLV1KYK8a+//iree+89UVlZadlm48aNEesW9ujRw7Sqrd/vFx06dNDbDRs2zLR6eXl5uTjrrLP0dn369BGqqsa0M75narNmpcZtFeLFixcLWZb1tlbrTq5fvz5iLUurap9LliwRO3bssHy+jz/+WF//OT09XSxbtiyu1xUteh1Yo9LS0ojP52HDhsVUi0/kMWG00tJS/e87Oztbr0CbmZkZ99qpdn744Qd97VlFUcSnn35aq+2sXLlSvPjii6KkpMSyTfQ6sC1atBBFRUVxPU9tqxAb+4B4qxfH+55K9Pt6+/bt4q+//rJ8vnnz5omOHTvq2xk5cqTr12bGKTvdeeedEZ9tZutwJ+pYz4zxb8DYv5sd59opLi7Wj7nPPvvsuB5rp8GugR00aJA+CnXdddfhrrvuQufOnfWL47t3766v+SbLMr788kscffTR2Lx5M1599VV89tlnuOCCC9C3b1/k5eWhrKwMGzZswO+//44ff/wR+/btw1NPPVXn/bztttv00c27774b06dPx6mnnopWrVph5cqVGD16NFauXImTTjoJK1eutJ02OmjQIP3r+++/Hzt37kTPnj3h8YR/7O3bt8fBBx/set8uvPBCjB8/HmPHjsXWrVtx6KGH4uqrr8bRRx8NRVHw+++/44MPPtBHJE455RR9eh2FTZo0Cddee60+un7ttdeiuLjYcf2sQw89FJ06dYr5/n777YeXX34Zw4cPRzAYxN/+9jdceeWVGDhwIILBICZNmqRPu/B4PHj33XeRnp5u+TzGa67Xrl1ruSark+eeew5//vknfvzxR0ybNg37778/zjvvPBx99NEoLCyE3+/Htm3b9NH8bdu2YdCgQXj44Ydr9XxudOjQAWPHjsVZZ52FqqoqXHXVVXjllVdw1llnoUePHsjIyMDevXuxYsUKzJo1C7/88gtCoVBCClu88847GDBgAMrLy/Hmm2/it99+w+WXX44OHTpg+/btGDduHH755RccffTR2LBhAzZv3uyqIEJeXh4uuuiiiClFJ554Inr06FHnfU4Wxx13HG655Ra8+eabKCoqwlFHHYWrrroKxx13HGRZxpw5c/DBBx9g3759OPvss23fS1lZWZgwYQIGDhyIkpIS3H///XjnnXdw3nnn4cADD0R2djZKSkqwZs0azJkzB9OnT4ff78dHH30UsZ3//e9/+uhChw4d8O6770bc7/F48Mknn6Bfv34oKSnBXXfdhYEDByZ8OmBjmD9/fkRlSCCyGNBXX30VM83yuuuuq3VBsbS0NJx22mn48ssv8fvvv6OsrCxidpGZ6M8RYwXKtWvXxtx/6KGH4txzz4343vbt23HDDTfgnnvuwamnnorDDjsM7du3R3p6Onbv3o1ffvkFX3zxhV50MScnB+PGjdP7VyOv14vXXnsN5513HoQQ+Prrr9G7d29ceeWVej2CpUuXYvTo0fo0Q6/Xi3//+9+2hWEaykEHHYTbb79dH5l98MEH8d///ldfB7aiogKzZs3Cxx9/rI9CdezYMWKE1+i7777DQw89hMGDB+O4447T+5l169ZhwoQJ+jqQPp8PY8aMqdf3TXZ2NiZNmoTTTz8dM2fOxNdff40LLrgAn3/+uT6LpT6PCbOzs3HBBRdg5MiREcUvzzvvPFfXVbrx559/YtiwYaisrNS3nZGR4Xjc0atXr5hCOWVlZbjvvvvwyCOPYMiQIRgwYAA6d+6MrKwsFBcXY+7cuRg7dqz+nvN4PPj0009tr4H96quv8Mcff0R8b+3atfrXL7/8csyIm1VhMrdefvlly/VAi4uLYz4junbtGjNdN9Hv6w0bNmDAgAE44ogjMGjQIPTq1QsZGRnYtm0bpk6dim+//VafwXX//fdHzAyoDyNGjIAkSRgxYoSeO6ZNmxZRT6I+j/WuueYafRr61q1bAYRndcZbV2L69On6MXdCZxwkIgW7GYENBoMRZ9mib2ZnH7ds2SIGDRpk+RjjTVEU8d5778VsI94RWCGEeOCBB2yf69hjjxU7duzQRxLszhZdcsklltuJ/lm5GVUKBALi+uuvd/x5nH/++bbrY2rtmtsIbPQom9ub06jGiy++KLxer+Xjc3JyXJ0NNj6mrmuvVVVViVtvvVUoiuLqNV555ZUx20jkSJ7mt99+09eWdLplZ2eLhQsXxmwj3hFYIcLrO2sjwGa3Pn36iA0bNoj27dsLAOKQQw5xtd3Zs2dHbMdqfbVEasgRWCHCn99XXHGF5c9OlmXxwgsv2I60GC1btkz079/f1d9AWlqamDRpkv7YoqIi/bNXlmXbz/WPP/5Y307//v1tR21ShfFn7PZWl1kmQggxYcIEfVujR492bB/v/pkdNxjXIHa69enTx3SmRrSPP/5Y5ObmOm6voKBAfPvtt5bbaegRWCHCoyf33HNPxEis1a1v3762a7a++OKLjtvYf//9xY8//ljr12bk5nOhrKxMnHDCCXq7s846K2YkNhHHhGZmzJgR8/iffvqpri9bV5v3rNXfxPz5810/vlOnTq7e+8b+xO3NirGN3TGM9hnu9mZ3/Jmo9/XcuXMdt5GTk2O73mw83GQnIYS4++679Xbdu3ePGYlNxLGembKyspg1cR999NG4X+eFF14oAIiMjAzbmQPxarARWEVR8MMPP+DVV1/F119/jWXLlqGkpMT2erR27dph6tSpmDFjBsaMGYP//e9/2Lx5M0pLS5GVlYUOHTrg4IMPxoknnohhw4YlrBLYs88+ixNOOAH//ve/MXv2bOzduxcFBQXo3bs3LrnkElx99dWmZ3nNfPTRRzjhhBMwbtw4LF68GMXFxRHrPcXL4/Hgvffew3XXXYf3338fM2bMwNatW6GqKtq2bYtjjz0W11xzTUIqb5J79957L0477TS8/fbb+OGHH/QRvM6dO2Po0KEYPny4Y+U14zIlPp+vzmd/fT4fXn/9ddxxxx344IMPMG3aNKxZswZFRUXw+Xxo06YNevfujeOOOw5nnHFGXLMB6uKoo47C8uXLMW7cOPz3v//F3LlzsXPnTlRWViI3Nxf7778/+vfvj8GDB2Po0KGu1mV146STTsKyZcvw0ksvYeLEidiwYQPS0tLQvXt3XHzxxRg+fDgyMjL0anluS70PGDAAeXl52Lt3L1q2bInzzjsvIfubTBRFwejRo3HhhRfi7bffxpw5c1BSUoI2bdrg2GOPxW233Yajjz7a9fXpPXv2xLx58zBx4kR89dVX+O2337Bt2zbs27cPOTk56Ny5M/r27YuTTz4ZZ511Flq0aKE/9uabb9bPpt9///2215RedtllmDRpEj755BPMnz8fDz74IF566aW6/CiapTPOOEOvSvnRRx/hiiuuqPfnHDx4ML7++mv89ttvmDNnDjZt2oRdu3ahpKQE2dnZaNeuHY444gicd955GDp0qKsZE5dddhmGDBmCkSNHYsqUKViyZIk+CtSyZUscfPDB+Nvf/oarr7466aq2yrKMl156Cddeey0+/PBDzJw5E6tWrUJJSYn+eX744Yfj/PPPx7nnnmt7jHLxxRfD6/Vi2rRpWLp0KbZv346qqiq0bt0aBx98MM4991xceumltrOFEk2rRXH66afj559/1keYP//8c/06v/o6Jjz++OPRrVs3fYmQLl26JO216r1798b333+P3377DbNmzcL69euxa9cuFBcXIzMzE61bt8bhhx+OM888E+eff77+s2vKEvW+7t27N0aOHIlp06Zh3rx52LZtG/bu3YtWrVqhW7duOPPMM3HVVVclZN3XeLz88suQJAkvv/wyVq1ahRNPPBHTp0/XR2Lr61gvKysLF154oV6cUpIky6rcVkpKSjBx4kQAwOWXX57QAqaSEHUsj0tECTF58mScdtppAIDbb7897oJCVHeLFi3SK+S5/R1MnTpVX/LijjvuiCnAQtQUjBgxAnfffTcURcG6deuScjkdIiJKHh9++CGuu+46SJKExYsXJ66AExqwCjER2dPWIM7JyanXa1HJ2r///W/9a7fX3r711lv6101h7VciMzfffDPatm2LUCiEF154obF3h4iIkpixr7jooosSGl4BBliipKEF2LvvvhuFhYWNvDdNz8yZM23Xn33jjTf0YkDt27d3tTbfn3/+qRfiGDx4cMI/oImSRUZGBh5//HEAwLvvvmu5NiEREdGYMWOwfPly+Hy+hBTZjcYpxERJYNeuXWjdujUKCgqwevXqhF4nQGHdu3dHZWUl/va3v6F///4oLCxEIBDA6tWrMX78eMyfP19vO3HiRMsA+/3330NVVaxYsQIvvPCCXp3vf//7H4499tgGeS1EjUFVVQwYMAB//PEHbr31Vtu1r4mIqHkKhUI46KCDsHz5cvzjH//Ac889l/DnYIAlomahe/fuepEOKxkZGXjvvfdw2WWXWbYxK7/v9nrZKVOmRBTrikdBQQGOO+64Wj2WiIiIqKlggCWiZmHWrFn48ssvMWvWLGzevBm7d+9GeXk5WrRogQMOOACDBw/G8OHD0aZNG9vtaAE2OzsbBxxwAIYPH45rr73WVRXULl266BV04zVw4EBMnz69Vo8lIiIiaioabBkdIqLGdNRRR+Goo46q83Z4zo+IiIio8XAEloiIiIiIiFICqxATERERERFRSmCAJSIiIiIiopTAAEtEREREREQpgUWciIioSVFVFRUVFSgvL7e8VVZWwu/3w+/3o6qqSv/a7P9+vx+hUAiqqkb8a/Y9VVUBhKtVW920itWSJEFRFHi9Xv3m8XhMv9Zu6enpyMjIQHp6uuXXGRkZyMjIQFZWFrKysuDxsKsnIqKmg70aERElHSEEysrKUFJSgpKSEpSWlpp+bfxeWVkZKioqUFFR0di7n1QyMjKQnZ2N7Oxs5OTk6F8bb7m5ucjPz4+4ZWRkmK57TERE1JhYhZiIiBqEEAJ79+7Fnj17UFRUFPFvcXFxzP8DgUCdnk9RFGRkZCAzMzPmlpGRgR9G/gxJAFAlww2QzP4vAKD6XwFAaN8zfC0Q3p6hqfY1Ir4WNd+TEH6QHP5XVP9r/B5kQMjV31MAyAKn3XgSKisrUVFRgcrKSsuv68Ln8yEvLw/5+fn6v/n5+WjZsiUKCgrQqlUrFBQUoKCgANnZ2Qy7RETUIBhgiYiozlRVRVFREXbs2IGdO3di586dEV/v3LkTu3btgt/vj2u7GRkZyM3NRW5uLnJycpCbm4ufx8yGFJSAoGz4VwaCEqSQBIQkICSHwyeab6gSkgAUAXhUCI8AlOp/PQLCowKKwLA7T9VHtIuLi/VbVVVVXM/l8/n0MGsMtgUFBWjbti1at26NgoICKIpST6+WiIiaCwZYIiJypKoqdu/eja1bt2LLli3YunWrftu+fTt27tyJUCjkalu5ublo0aIFWrZsiQVT/oIUkAG/Uv2vDCkg13wtmm8AbUxCFoBXhai+aV/Do2LIDSdg165d2L17N3bv3o2SkhJX21QUBYWFhWjbti3atGkT82+bNm3g8/nq+ZUREVGqY4AlIiIAgN/vx5YtW7Bx40Zs2rQpIqhu377dcfRUlmW0atUKhYWFKCwsxP8+nRsOoVUKpOp/GUqbHj3s+kIQPhUiTcWFD52BXbt2YefOndi2bZurExySJKFNmzZo3769fuvQoQM6dOiA/fbbD2lpaQ30ioiIKJkxwBIRNSOqqmLnzp3YuHEjNm7ciA0bNmDTpk3YuHEjtm3bplfRNaMoClq3bo127drhz+/+glSphG9VSk04bcZTdsmagAB8KkR6CCItBJGmYujtJ2P79u3Ytm0btm/f7njNbmFhITp06ID27dujY8eO6NKlCzp37oy2bdvqlZ2JiKjpY4AlImqCVFXF1q1bsXbtWv22bt06bNy40fb6xszMTHTq1AkdOnTAtA9/C4fT6qCKKgZUqh8CAvAKiPQgREYIlz59NjZv3ozNmzdj06ZNKCsrs3ysz+dD586dI25dunRBhw4duIQQEVETxABLRJTChBDYsWNHTFBdt26d5YiWx+PBfvvth44dO2LWuPmQKhRIFR5IFQoQYEil5CJQXXgqIwiRHsLlz52LDRs2YP369di4caPl1HZFUdC+fXt069YN+++/P7p3747u3bujdevWrJhMRJTCGGCJiFJEMBjEhg0bsHLlyoib1eiUNjK1+peNkPZ5IJV7IFcoQKXCkEpNgoAA0kNQM0MQGUEMGX4c1q9fj3Xr1lmuB5yTk4Nu3brpt+7du6Nr1668xpaIKEUwwBIRJaGqqiqsXr0aK1euxIoVK7By5UqsWbPGdLRJURR07NgRG+ZuhVQeDqrSPk946i+DKjVD+jW3mUGoWUEMuukYrFq1CuvXrzctJiXLMjp27IiePXuiV69e6NmzJ3r06IH09PRG2HsiIrLDAEtE1MhCoRDWrVuHpUuXYunSpfjrr7+wbt060wPtjIwM9OjRA0u+XwmpzKuPrLKyL5EzIQmIzCBEVhDnPnwaVq9ejVWrVmHv3r0xbRVFQZcuXdCzZ0/07t0bPXv2xP7778+lfoiIGhkDLBFRA9u5cyf++usvPbAuW7bMdLpjfn4+evTogT++WgJpnxdSGUdViRJNG61Vs4K48uVzsWzZMixbtgx79uyJaev1etGtWzf06tULBx98MPr06YO2bdvymloiogbEAEtEVI+CwSBWr16NBQsWYNGiRfjrr7+wc+fOmHYZGRno1asXFk5cDqnUC7nUy2VpiBqJHmqzA7jkubOwbNkyLF++HCUlJTFtW7VqhT59+ui3Hj16cJSWiKgeMcASESVQZWUl/vrrLyxatAgLFizAkiVLYkZXZVlG165dsfaXLZBLPZBKveFpwAyrRElLQABpIag5QZzzyClYvHgxVqxYETPV3+fzoWfPnnqg7du3L3Jzcxtpr4mImh4GWCKiOigtLcWCBQuwcOFCLFy4EMuXL485oM3KykKfPn3w+7glkEuqpwKrciPtMRElipAFRHYA175xIRYvXozFixfHXE8rSRK6d++Ofv36oV+/fgy0RER1xABLRBSHyspKLFq0CH/88QfmzZuHFStWQFXViDYFBQXYs7QUcokPUkl1oSWOrhI1eQICIj0EkRvA3+4ZiAULFmDDhg0RbaIDbb9+/ZCTk9NIe0xElHoYYImIbASDQSxdulQPrEuWLEEgEIho06FDB2z5fTfkvV7IJT6giteuElGY8Iag5gUw9O8nYv78+ZaB9vDDD8cRRxyBPn36cE1aIiIbDLBERFE2btyIOXPmYPbs2ViwYEHMNayFhYXYvbgU8l4f5GIfJL/SSHtKRKnGKdCmpaWhX79+GDBgAI444gh07tyZVY6JiAwYYImo2ausrMT8+fMxe/ZszJ49G5s3b464Py8vD6WrK8NhtdjHpWyIKGGENwQ134/BdxyDuXPnYvfu3RH3FxYWYsCAARgwYAAOO+ww5OfnN86OEhElCQZYImp2hBDYuHEjZs2apY+y+v1+/X6Px4ODDz4YC79aGQ6tvIaViBqAgIDIDOKG9y/G3LlzYz6bJEnCgQceiGOPPRbHHHMMunbtytFZImp2GGCJqFkIBoNYvHgxZs6ciV9++QVbtmyJuL9169bYtaAUcpEP8l4fpBCrBBNR4xKygMj147ynT8OcOXOwZs2aiPvbtm2LY445Bscccwz69evH9WeJqFlggCWiJquiogJz587FzJkz8dtvv6GkpES/z+PxoG/fvvjzi+WQ96RBquC0YCJKbsIXwm3jrsIvv/yCP/74I2J0NiMjAwMGDNADLacaE1FTxQBLRE1KUVERfvnlF/zvf//D77//HnGAl5ubi7KVfsh70iAX+bgWKxGlLCELqPlV+NvfT8Cvv/4ace2sLMvo27cvTjjhBAwcOBAFBQWNuKdERInFAEtEKW/37t2YMWMGpk2bhoULF8L4sdauXTvs+H0v5N1p4TVZOcpKRE2MgIDICuKyV8/Cr7/+ihUrVkTc36dPHwwcOBADBw5E27ZtG2kviYgSgwGWiFJSUVERfv75Z/z000/4888/I0Jrz549sWrKpnBoLWcBJiJqXkRaCDeMvAjTp0/HkiVLIu7r1asXTjjhBJx44ono0KFDI+0hEVHtMcASUcooLi7Gzz//jGnTpmH+/PlQVVW/78ADD8TybzZA2Z0OqYrrshIRAeHrZod/chlmzJiBhQsXRnxu9urVC4MHD8bJJ5/MacZElDIYYIkoqVVUVGDmzJmYMmUK5s2bh1AopN/Xq1cvrJy0CcouhlYiIifCG8Jtn12FGTNmYP78+frnqSRJOPTQQzF48GAMHDgQ2dnZjbynRETWGGCJKOmEQiHMnz8fkydPxs8//4yKigr9vgMOOACrJ2+BsisNUpWnEfeSiCh1CY+KW8ZehqlTp2Lx4sX6930+H4466igMHjwYRx99NNLS0hpxL4mIYjHAElHSWLNmDSZPnoypU6di586d+vfbt2+Pbb8WQ96ZDrmSoZWIKJFEWghXvXsOfvjhB6xbt07/flZWFk466SScfvrpOOiggyBJrCdARI2PAZaIGlVxcTGmTJmCyZMnY+XKlfr3c3JysG9FEMqOdEilrB5MRFTftGrG579wasyJxE6dOmHo0KE45ZRT0KpVq0bcSyJq7hhgiajBqaqKP/74AxMnTsTMmTMRDAYBAB6PB+p2BfKOdMh70iAJhlYiosYgICDyAjj53iMwffp0VFVVAQAURcGRRx6JoUOH4uijj4bHw1kxRNSwGGCJqMHs2rULkyZNwrfffostW7bo3+/ZsydWf7cF8s50SEG5EfeQiIiiCUXFneOvwbfffhuxLE+LFi0wZMgQnHnmmejcuXMj7iERNScMsERUr0KhEObMmYOJEyfit99+06teZmVloWKVCmVbBuR93kbeSyIickPNCOL8l07B5MmTsWfPHv37/fv3xznnnIPjjjuOo7JEVK8YYImoXhQXF+Obb77BhAkTsGPHDv37ffr0wbKvNkDelQ5J5RRhIqJUJCSBJ36+C9988w1+++03fX3ZVq1a4cwzz8SZZ56JwsLCRt5LImqKGGCJKKGWL1+Or776Cj/++CP8fj8AIDc3F/uWBiFvz4BczjPzRERNiUgL4aLX/oZvvvkGRUVFAMLXyh577LE455xzcOihh7KCMRElDAMsEdVZMBjEjBkz8NVXX2HRokX693v16oVV/62+tpUFmYiImjQhCTwwZTgmTJiABQsW6N/v1KkTzjvvPJx22mnIyMhoxD0koqaAAZaIaq2oqAj//e9/8fXXX2PXrl0AwmfdxVYvlK0ZXP6GiKiZUjODGPrk8ZgyZQrKy8sBhGfjDBs2DOeccw4KCgoaeQ+JKFUxwBJR3DZu3Ihx48bh+++/16cJt2zZEnv/rAoH14DSyHtIRETJQCgqho+9FJ9//rlefd7j8WDQoEG48MIL0aNHj0beQyJKNQywROTaX3/9hTFjxuDnn3+G9tHRu3dvrJywOVyUidOEiYjIhIDAo9Nvx2effYaFCxfq3z/00ENx0UUX4cgjj4Qscxk1InLGAEtEtlRVxezZs/Hpp59GXNMk7/FB2ZQFqYTThImIyD01O4CB9x6KadOm6Uurde7cGZdffjkGDRrEZXiIyBYDLBGZCgaD+OGHHzB27FisXbsWQHjal7rZA2VTFuQKHmAQEVHtibQQzn15MCZOnIh9+/YBANq2bYtLL70Uf/vb35CWltbIe0hEyYgBlogiBAIBTJ48GR999BG2bt0KAMjMzETVCkDZkgnJz+tbiYgocYSi4ur/nIPPPvsMxcXFAMJ1FS666CIMGzYMmZmZjbuDRJRUGGCJCADg9/sxadIkfPzxx9i+fTsAoEWLFij5IwBlWwakEK9NIiKi+iNkgeHjLsGYMWOwY8cOAEBOTg4uvPBCnH/++cjKymrkPSSiZMAAS9TMVVVV4dtvv8Unn3yCnTt3AqiuKPy7H8q2TEgqr28lIqKGIySBuydei08++QQbN24EEF6C5+KLL8a5557LEVmiZo4BlqiZCgaD+O677zBq1Cg9uBYUFKB4dhXk7RkMrkRE1KgEBB74YTj+85//YMOGDQCAvLw8XHrppTjnnHOQnp7eyHtIRI2BAZaomVFVFT/99BM++OADbN68GQDQunVr7Pm1IhxcuRQOERElEQGB+7+/Ef/5z3/0fqtly5a49NJLMWzYMBZ7ImpmGGCJmgkhBH799Ve8//77WL16NQAgPz8fpfNC4WtcGVyJiCiJCQjc8+11GDlypF5ksG3btrjuuuswZMgQriNL1EwwwBI1A4sWLcKbb76JJUuWAACys7NRsViEqwqr7PCJiCh1CEng9vFXRlwC0717d9x8880YMGAAJIknZImaMgZYoiZs8+bNePvttzFjxgwAQFpaGoKrFCibsyAFGVyJiCh1CVngmlHn4JNPPkFZWRkA4NBDD8Xw4cPRs2fPRt47IqovDLBETVBpaSlGjRqFr776CsFgMDytaksaPOuzIAW4jisRETUdwqPi7FdOwvjx4xEIBAAAQ4YMwU033YTWrVs38t4RUaIxwBI1IYFAABMmTMCoUaNQUlICAJCKfPCszYFc7mnkvSMiIqo/Ii2Ekx4+DFOmTIEQAunp6bjssstw8cUXs9ATURPCAEvURMydOxevvvqqvtRA165dsWliEeRidtpERNR8/Hvp03j99dexcOFCAOFCT8OHD8eJJ57I62OJmgAGWKIUt337dvz73//Wr3PNz89H2dxQeEkcsKMmIqLmR1tD9q233sKOHTsAAIcccgjuuOMO9OjRo5H3jojqggGWKEX5/X6MHTsWH330EaqqqqAoCrAhDcqGLEghFmgiIiISssBl7w3Fp59+iqqqKsiyjPPOOw/XXXcdMjMzG3v3iKgWGGCJUtCcOXMwYsQIfUF3aa8XntU5kMu9jbxnREREyUf4Qjj27wdj2rRpAICCggLcfvvtGDhwIKcVE6UYBliiFFJUVITXX38dU6dOBQC0atUKe38NQN6ZzunCREREDp6ZdV/ECeAjjzwSd955J9q3b9/Ie0ZEbjHAEqUAIQS+//57vPHGGygpKYEsy5A2pnO6MBERUZyEJHDpe6fjk08+QSAQgM/nw1VXXYVLLrkEHg8r9hMlOwZYoiS3adMmvPzyy5g3bx4AQCrzwLMqF3IZpwsTERHVlpoeRN+bu+L3338HAPTo0QP/+Mc/WOSJKMkxwBIlqVAohM8++wwffPAB/H4/fD4fQst9ULZkQhKcLkxERFRXAgL3f38jXnvtNZSUlEBRFFx++eW44oor4PP5Gnv3iMgEAyxREtq0aROee+45LFq0CAAgFfvgXZUDqZJTm4iIiBJNeEM4+v6D9CXpunbtir///e848MADG3nPiCgaAyxRElFVFePHj8c777yDyspKZGRkILDQwzVdiYiIGsBDP/0fRowYgaKiIsiyjEsvvRTXXHMNvF5etkOULBhgiZLEtm3b8M9//hN//PEHAEAq9sK7Mg9SldLIe0ZERNR8CI+KEx7uq1f8P+CAA/Dwww+jS5cujbtjRASAAZYoKUyZMgWvvPIKysvLkZaWhtBfPshbOepKRETUWB766f/w0ksvoaSkBD6fD8OHD8e5557LdWOJGhkDLFEjKi8vx4gRIzB58mQAgFTihWdFLmRe60pERNTohC+Evv/XFXPnzgUQXjf273//OwoKChp5z4iaLwZYokaybNkyPPHEE9i8eXN4Xdd1GeF1XTnqSkRElDQEBIZ/fgneeust+P1+5OXl4aGHHsJRRx3V2LtG1CwxwBI1MFVVMW7cOLz33nsIBoNo3bo1iqYGIJewXD8REVGyem/Ni3jqqaewcuVKAMBll12G6667Dh4PZ00RNSQGWKIGVFJSgqeffhqzZs0CAMi70uBZmQspJDfynhEREZETIQmc/uIxmDBhAgDgkEMOwaOPPorWrVs37o4RNSMMsEQNZMWKFXj44Yexbds2+Hw+qH+lQd4WVahJKwxRH29Lp23X53MTERGlIkky7RcfmDocL7zwAsrLy5GXl4eHH34YRx55ZCPsIFHzwwBL1AC+/fZbjBgxAn6/H6hU4F2aB3mfYU05Y0VDs7dkfd7v9FitDT8qiIioObI4wSvSg+h8SUt9SvG1116LK6+8ErLMWVVE9YkBlqgeVVVV4dVXX8U333wDAJD3pMGz3DBlOLoUv124bIz7jW34UUFERM2Vxcne6CnFxx9/PB566CFkZmY28A4SNR8MsET1ZNeuXXjooYewdOlSSJIEeV0WlI2Z4SnDVmvIaW/Hxr7frA0/KoiIqLky6zcN/eJd31yDl19+GYFAAF26dMEzzzyDjh07NuAOEjUfnONAVA+WL1+Om266CUuXLkVubi48i/Ph2ZgFSZLtw6PkEG7r+37AvA3DKxERNWdWM5Sq+8sRZ/wHr7/+OgoKCrBu3TrcdNNN+O233xp4J4maB47AEiXY9OnT8cwzz6CqqgpSuQLv0haQKlOgxL4WcK3uIyIias6s+kgD4Q3hgGvbYPHixZAkCf/3f/+HCy64AJKLxxKROwywRAkihMCoUaPw4YcfAgCkIh+8y/ObzhI5/KggIqKmzKlgocsQKiSBU587AhMnTgQAnHvuubj11lu5XixRgjDAEiVAIBDACy+8gMmTJwMAlC2ZUNbmRC6RY0aSAaE23v3xYIEnIiJq6uz6tThGUQUErvv4XLz11lsAgKOPPhqPPfYYizsRJQADLFEdlZeX45FHHsHcuXOhKAqk5VlQtjt0UJJhVNYsYNb3/fGqzdI9REREycbtmugap+r9Dh768RY8/fTT8Pv96NGjB55//nkUFBTEtQ0iisQAS1QHe/bswf33348VK1YgPT0dwXkZUIrTrB8gRU0njg6X0fdHt3G6381z1AarExMRUVNQ24DqVMXfxr8WPoYHHngAxcXFaN26NV555RV06tQp7u0QURgDLFEtbdy4Effddx+2bNkCBGR4/2oBucxr3tgseAI14dLpfqs2TvdHt6ktu46bHyFERJRKnPoyu5BqV/DQhkgLou25mdiwYQPy8vLw0ksvoWfPnnFvh4gYYIlqZdWqVbj77rtRXFwMVCjw/WVSadgqUDaGRF0Ha7ptfoQQEVEKqYdR1sjtm9efEB4VXa9sgeXLlyMzMxP//Oc/0a9fv7o9F1EzlERH2ESpYenSpbj99ttRXFwMqcwD36KWtQqvkmzfQTrd75pTkSciIiKyXys9HkI17V+loIy1o4rQv39/lJeX495778Uvv/xS9+cjamZ49EoUh0WLFuGuu+5CWVkZpBIvvItbQgooNQ0k2TEUSrIESZYgVOuRy4SFV+snYHglIiKqTyZ9rRSSseSNLTj22GPh9/vx8MMP48cff2ykHSRKTTyCJXLpjz/+wL333ovy8nJIe33w/tWiZo1Xl4HQzair1sYp4NY65Ca6QjERERFZizpGkISEuS+swqmnnopQKISnnnqKIZYoDgywRC7MnTsX999/PyoqKiAVpcG7tGU4vMYRXO0Cp9tAWufgylFXIiKixmHohyVImPbYQpx++ulQVRVPP/00fvrpp0beQaLUwCJORA4WLFiAe++9F1VVVZD3pMGzvCUk4S5E1mUqcPQIrNm27EZpDY0apkIxERFRKkjEda6unsfmpHF13ywgMOipfpg0aRIURcGjjz6Kk046qWH2jyhFMcAS2fjrr79w9913o7y8HHJRGjzLWkKu7pCswmMir18VqrDcnqvw6u5JErANfowQEVEKqadKwzFtbO8O18MQEDj5yb74/vvvoSgKHnvsMZx44ol12z+iJowBlsjCqlWrcPvtt4cLNu31wbesIGLk1SxASrLk3Km57fRcBEun62Rdj9DWFT9GiIgolSRiFFYLqFb9qIsAq1FVVQ+xHo8HL7zwAg4//PC67yNRE8QAS2Riw4YNuPXWW8NL5ZT64FvaCpJa0xGZTu91Ko7kpnhSnAWWLEO0zf0mG3Fu47gNfowQEVEKSWSA1UT3p3EWdxQQOOaBnpg2bRoyMjIwYsQIHHjggXXfT6ImhgGWKMru3bsxfPhwbNu2DVKZF76lBTXVhqtpwTAmuNY0iPx/bTq5OANsna6RrSt+jBARUSqpjwALRPaptVidQEgCB//ffvj999+Rl5eH119/HV26dKnjjhI1LSxJSmRQXl6Ov//97+HwWqHAt6xVTHjVWIbXyEbu2tRRna67ZWViIiKixKhjxX9JSFj05mb07t0be/fuxT333IPt27cncAeJUh9HYImqBYNBPPDAA5g9ezYQkOFbXAi5ymPeuKFCXwJGRzkKS0REFKW+RmDj3oRFoUZPCG3O9WHDhg3o2rUr3nzzTWRlZdX5+YiaAg69EAEQQuDll18Oh1dVgm9Zq9jwKsmAojh3WLIUvtWF0+O1M7zJMnrK8EpERMlCkuwDagMto+Nq7XaLvlwKKtg+oQqtWrXC2rVr8cQTTyAUCtXTnhKlliQ5+iVqXGPGjMG3334LWZbhXdEC8j5fZANJdg6VboKr1saund19yRRaiYiIkllDrffqwHWQjf6W34Nnn30WPp8Ps2bNwptvvllPe0iUWngkTM3e7Nmz8c477wAA5DW5UIozau7URl3dBFOn++vahsGViIgoPk6jsQ2oNqOxd/R9Eg899BAA4PPPP8fXX39dX7tHlDJ4DSw1axs3bsRNN92EsrIyKDuz4FnTApIQ9iOuxmtK7TojrZ3TduzuF6pzcK3jerFut+H8JPwoISKiJGAVWLV+KlGBNo51XmN2RVvNQFGsN6D1zYqCy985Be+//z4URcGIESPQr1+/ePeWqMlggKVma9++fbj55puxfv16SGU++Ja1gaRdXlKXYJooboovAQywREREmoYaba3FEjnRhCrsA2y4EaAoEBA44cFe+OGHH9CyZUu8//77KCgoiGePiZoMzkmkZkkIgWeffRbr168H/Ap8qwohQ4bk9UBSrN8WkiSF77fplCRJgmTTgYa3odi2AVD/AdmI05OJiIhquBhdrc11rdHbcOrrJY8nfNwACT//cyn2339/7NmzB48//jiCwaD98xM1UTxqpWbpq6++wsyZM+H1euFbVQA56AFkp+CqJKSN3f0R25JsOrZEVDpOFCE4+kpERE2HFjwTMMrqqviimyArSZBUGU899RQyMzOxcOFCvPvuu477R9QUMcBSs7NixYqaSn6rs6FUZtY5dDq1cRNu9XbxjMzKUuOOnjK4EhFRU+YigCZiNBaAqxB7fc8H8cADDwAAxo4di59//tl5u0RNDK+BpWalvLwc119/PTZt2gS5OBO+Na0hIarDUFUIIexDqVOb6vsBm3BraKO3iyKEcC4apRV7cpDw62D50UFERMkmEdfAWoVNQz9pde2qsa+1vL7VUJzJkl7kyXxfznrxKIwbNw45OTkYOXIkCgsLrbdF1MRwBJaalREjRmDTpk2Q/Ap86wtiw2u1Oo+6ynL4OtdEjrrW95RhtyO5nDJMRETJqL4LOMUxGmtbnCkBo7Ff3/8bevbsidLSUjz33HNQ1QQUYyRKEQyw1GxMmzYNkydPhizL8K5tDSlk0rlIUvW6rzZvDbdtHEOp7Fh9UC8a1RASUYmYiIiosSTi5Kqb616dKge7fB5XJ68tnksSEh5++GGkpaXh999/x1dffVX3fSJKEQyw1CwUFxdjxIgRAAB5cw6Ufemxjdxcp+rUxk241dol6kyxy+tgHa/PISIiSnUpNkPIMcQCliH2xt4P45ZbbgEAvP3221i3bl0C94woeTHAUrPwr3/9C8XFxZAqfPBsbxl5pySFy9TbTvdx18ZNheEGW6MuXm6nECfr/hMREQEpGWIdg6yimAbZt67+L4488kj4/X4888wzXFqHmgUGWGrypk+fjp9++gkQgG9ja0jC0ElIsdepSFLUlB2rNlpnYzXqKsuRYS+Ro65ERERkrTHrNbiahhzbJjrESh5P7AOjj0cgYcGH25GdnY3ly5dzKjE1Cwyw1KSVlpbqU4c9O1pArqieOpyIUVctoNZl1DWOdWFtJWoacWMuyUNERJRo8YTYJLgcpzajsVLQg+HDhwMAPvjgA2zfvr0+d5Go0fFolZq0999/H0VFRZAqDVOHXRdPclGkIcWmDDsupeNWEr0mIiIiWyk2pRiI/9rY1y//CocccggqKiowYsQIcJVMasoYYKnJWrlyJb7++msAgHdTAWRZgeTzQvJ5rddekyXA6wnfrM6yVlcFDI/Omr+F9DOoDRVwExVMWYmYiIiobhyWvpO8nvDxgc0xguTz1SzHZ9fG4wnfIOHee++Fx+PBr7/+ihkzZtTpJRAlMwZYapKEEBgxYgRUVYVSlA1PZbb9guFAbLl6s6lELqbqGs+aug6xdZlGbAyvLtans8TwSkRETZGbE8WJmj5sPI5w095N/+9iRpjk8eCmvk/isssuAwC8+eabqKqqcn5+ohTEAEtN0uTJk7F48WJAleDd1dY+vGqjrk5tFMW2g3N13Yr1g+N/jCoSM/Iq1NqFV04jJiIisucwGhtuYz8aC8BxNBYIh9jP/v4bCgsLsW3bNnzxxRfx7i1RSmCApSansrIS7777LgDAu6sActBr3dhmkXC907EbdZVkSIr9YuT1MgprF1zjGYXlqCsRETVljTX6Gq368ZLXpLKw3ia8H5LPZ70fTiFWyLjpppsAAB999BGKiops2xOlIgZYanK++uor7Nq1C5LfC8+eluaNfF4gLc2hs1EAj6fhKvO6HdHk9a5ERESpx+2UYqeQqiiQsrMs73/5ks/Rq1cvlJeX48MPP4x3L4mSHgMsNSmlpaX45JNPAIRHXyVh8ifu8UCSZfuORFZcTPmRAEW2D7jVI7i1nlpstc1aEqqoqUTMJXOIiKgpS8ZLXdyuCe9mJQSf+QwzCRJuueUWAMDEiROxfv36ePaQKOnxCJaalLFjx6K0tBSSPw3KvlaxDbTwCoT/NVskvDq8SlL19GKzSsOyoQNSLM6WGoOmnMBleWopYUvoAI27QDwREVGiNMT0YW07xmMOixArpaU5bzMjveZrixD7wNAPcOyxx0JVVXz00UeO+0aUShhgqckoKirSCxb4ivaDBEPn4PGEy83bBURtyrBhxDRm5FQfdbUbvXVRsMFKos4WR3XIluG1NqOwDK5ERJTsknH0NZqb0VhFcQ7HPm9skJVlXH311QCAqVOnYuPGjbXfT6IkwwBLTcaXX36JiooKyFWZUMrzau4wjLpaMoy6xoRWbRRWtulotFFY22nJiRmFDReFct8xJ3zklYiIqJmol9HXmDurT5obR19r8RzRIfbOwW/i6KOP5igsNTkMsNQklJeXY/z48QAAb3EbSJAgpadBys6yDa+SLEPyem2vU5Wk6irESXQ211WITfQ1rgyvRESUCtz218lUC8LtdbHG6cNmfF5ILWpO4l911VUAgB9++AGbN2+uyx4SJY0keucS1d63334bvvY1kBYeffUoEHal6oFwR5DmC4/Q2nUcTiOrejvnyoGuRmFdLLsj3IRJVhkmIiKyloh+0u3oq4u1XsPHEQ6zsHw+22V2AEDIUvj4BsA9p76DI488EqFQCOPGjXPcV6JUwABLKS8YDOKzzz4DAHj3tobk8ejhVXg95gUOFAXwVHc6HsW8mJNWxAnVnY+b6TsNICK8WgVrQ6fsOP3J7RnoJBqBJiIiMhVvX2UTYl1NH3bDGFwtQqxkHFm1CLFSVmbN1xYhVmtjDLEXX3wxAGDy5MkoLS11vdtEyYoBllLejBkzsH37diDkgcff1t3Iq6fuo6CWj6unUVghROOPvDLEEhFRUyPU2vWdtb321c3xhVmIjeqDzUKsMIRuLcQ+dNEYdO3aFRUVFfj222+dn5soyTHAUsr773//CwDwVLQJF2OKoo/C6lOGTTocbRRWC6AmnUuDj8IaQqxtcNU6K5sOOGGjsERERMmqridZ45m95JZVWDV8X7K6rtUwpdg4+mpknFJs1kbI4WOJCy64AADw1VdfIRQKud17oqTEo1ZKaRs2bMD8+fMBAXjKW1s3lOWEjLpKHo99JUFtO06BUHY/wus46qoKXu9KRETNW6JmCAm1YSoPA4AsQ8o0D6aRz+VcSFLy+SJGX6O9fvd05OTkYNu2bZg3b57zcxIlMQZYSmna6KscaAlZtSg/ryhQszIgLBb7Dm9AhkjzOofcRFAFoIrqSsI2b8Hq4GpbYErjEJgdl9JxG4BZiZiIiJoySXbuMyVZ78sdqS76V4c+XMrNARwuj1JbZENkWi/DI0HGkCFDAADfffed8z4RJTEGWEpZwWAQU6ZMAQB4/O1iGygKRHpaeAqxDOuzl7Jcc9bSZRl7x7OqimzeIbnp7IRwHxSN27PoABleiYioSauH+gxCFe7WUbdoE3GcYBFipXTD1GGbECtkKXycYhdipfBa9SIzzTLIfvPpRgDAzJkzUVJSYr0toiTHAEsp648//kBxcTEgvJCkwshqw4pSE1yr/8qF1xM5CivLEB4lsuCBx0WBJ7eiQ6xJJxczCmsREmNGYV2e+WV4JSIicskkRMb0oy5OTpue5HY7Ehu1fSk3p2ZftBAbFWTVFtmGB9QE2Yg2OZmQRQ569OiBQCCAH3/80Xl/iJIUAyylrKlTpwIAlFBrSLLh+hBjeDUyjsIaR12jCK/HOcS6GYU1cjvyaqY64Ooh1m5b1R2fqzPHDK9ERJTqEjX6ajcCWoeR2Mg2qh5kI0ZfLfZFys2JOVYxHY01+xlEh9jql6dNI54+fbrz/hIlKQZYSklVVVWYOXMmAEAJtQEAqD4PRFa6eXitJrweiDT7QgcAXE8ldiziYDWVOOKpXDyXNkrrpoNMJIZXIiJKVg24tJtQhXOBRlW4OrltG171RtYn2oGa0diI0deYbYRDrJpTUyjqg1fmAwAWLFiAPXv2OO8HURJigKWUNH/+fOzbtw8QaZDUPKhpHgTz0qCmWYdXAIBHhpqdpi/ubUqSwlOJndaTdZoOJAQQcl5bztXarqoabucUvF2PqrJqMREREQBXS8k5rt+eaPk5jqsVBNrmIZTjEIYlCf5W6fC3CLeTRAZ69+4NVVXx888/J2pviRoUAyylpF9//RUAoIQKINK8UNPC17KGsrxQ002qDcsyhFeBUKqvDbE6ayvVFHOyDbHaFCBZNh+FFYZrVCXZNHgKISBCIecgrIVX/bVY7Ht9rF9HRESUjBpg6nDcm3I68Q24WzZHC68OqxUIWYKQgFB2GkLZ5oWbqgozIRQJQpH0EHviiScCAAMspSwGWEo5Qgg9wEpy63B4re7IhGQSYmVZD65ahyfSlMhRWMN9Ed8zExU4Y0KsMCmwFBVihRCxwTWmUJMKEQq5G6E1GVG1DbFuO+wGnJ5FRETkSgP3TW5GXyWvx3mt1gwXU4eByNCqhdioIBsszNW/FhL0IGukhVe9XXWI/WDEHwCAhQsXorKy0t0+ESURBlhKOWvWrMGOHTsAIUP4CmNGU4Uk1YRFY3g1kiSo6Z5wiLXpcCJGYQ3FF6wf4Fwd2DS8GvZLey7b4GoMp7WdDswQS0REqSaRfVIipw4nYM12AOHRV7NtG0Zjg4W5EcFUEx1iTdsoEgJ5LdG6dWv4/X4sWLDAeZ+IkgwDLKWc+fPDBQgkuSUgm0/XCWV4EMpKMw+vGrupxIY2Zmc+Y5rJcs3C5taNwv+6KKXvatQVqPu1rAmcOkVERJQyGnrqsJvRV6frXquPScyCqUYLsVWFNlOVPTKOOOIIAMDs2bOd94soyfDolVKOFmAhtzK9X/VKCGYo8LfwIZRtU6wJ1VOJfSbXzOoNqoOk3XRcISBUNdxGsXlLaWHTrnOqHp11rEycqGrEbgIwKxETEVGySESf5DK8SrLk2E9Kdv2+1ia9elTUqc91OFkOAFUd8hFKtx8VLu2cjvI2XlQUWAfrAQMGADAcUxGlEAZYSimqqmLhwoUAgFBWQez9XgnCIwESAAmuRljVdI95iBUCkhYUZRkwK40vhPtrVKu3JVkVZYiaWmwZYl2E14StA8vwSkREyaYB+ibJxaU6kmKYoWW3T5KLy37Mpg5HqWqfFz7GkSXbEKt6JL1wk1WI/ft74Voia9euDa/qQJRCGGAppWzYsAF79+6FkBRUtWyFQG7NB7geXg2CmQpCWTYjrID5VGJjeK1uA48SGWLNwqskR47CChUIhZxDp8V1sTEh1qw4VPSm3IzOMrwSEVEqq20f5ea6V7NZV2b9ZvTJaCFi9ksffbXbloslcwBEHuNUh9joIFvWKXKqslmIrSj0QE3LQLt27aCqKpYuXer43ETJhAGWUsqKFSsAAGpaPoQioypHQSBXMQ2vAAAJCGR5HENsxFTi6PCqb8sQYq1GXmWpJsQaRl1jNyVFnrW1uS5WD7FWwdTQGTO8EhFRsxFvX1Xb8Ko/n2GWlO0lQ9UzrtLTrOtwaNtyGV6r2ufFflOOHI0t65QO1eRYyBhiKwo9UKuvoe3Tpw8AYNGiRY7PT5RMGGAppdQE2PAHuZCBkFV41bgJsZIE1ecBPIp5eDW0AxyKLMWzBqtDeNWfy+W0YReN3O4ZERFR8mvoE66iuuaFU3FHF8vqhLfl5rrXPPvjHFnCrkMyTcOr/lTVIVY1FIDq3bs3AGDlypWO+0CUTBhgKaXoAdaXDwAIpQHlbRRUtrC+FkRIUnixb7tgGRKQVBXCq0DYVRNU1fAIrV2HEwoBITeh1EVRJzfchlLX7Tj6SkREKSKBy+rYjr5qtGV1nFYUkGTHYwEpNyd8zGCjqkMeVK8M4VTbMQ2oyrdvtLebjNLONW1e+GIegPDyhESphAGWUoYQAqtXrwYQHoENpQGhdAmqAlS2kE1DrPHaVsvrYavDK4Dw9bBpHvMQq6o1nZGimIdYY3iVZNPRWD28GoOiRYh1HH2tDqUJKdgUfkJ37YiIiBpbvOHVpi+MK7zCfk13yVgY0iLESjnZNSfWLUKsFl7DD5AsQ2xRj/CKC0KxDrElXSQIj4DwCD3Eqr5cAMCWLVtQXl5uvnGiJMQASylj7969KC0tBQBUtcpGKL3mw1zIsSE2ujCTkCQEsqOmEhvDq0aSYoOnFl6NAS86xJqNvEaFWNPwaoHhlYiIKMFM+kRX4dVsUyYhVvJ5Y6+1jTo2kHKyIaKvoTUJsXp41R8YG2KLevigGlYMNAuxWnjV21SH2NL909GqVXhJwnXr1sU8P1GyYoCllLFp0yYAgOrNgPB4Yj7EhQz9bKbV8jkRIdYsvGrttKnEqgoEgrHhVaOFWLtpw9Uh1jG8VodhoRWIYnglIiIyV5epw8ZiTG7Dq2J+qZIxxJqGV031MYJpeNXbhPQgW9XBpGgTEBFio8Orvk9RIdYYXo3fEx6Bjh07AgiPwhKlCpuL/YiSixZgQ+lZlm2q8iRIqoK0YuvgJiQJwXQFkt8Dpdxv3kiSwpWEJck53AnheJ0LAFcjr24LNgEMr0RE1Ewl4rpXobqqShx+Pvt2QghIiuK8vZBqHV4NAq1zYkdfI/ZHwu4DHVZXqA6x/jwAsO7n27ZtCwDYtm2b434RJQuOwFLK2L59OwAgkGcdYIUMVLaUUZVv/acthQSkkADsChcHVSAYgvAogF1Rp1AoHDpty+mrEKHqSoM2na7Qpg85nQ12G0xdd8yJK4BBRERUrxLcZzmeDLaoZxHRxFc9DOpQkEnKyoQUCNq2CbTLh/BIkP32fX0oDQiZjL4a7e3nR2W3Kts2WoDdunWr/caIkggDLKWM3bt3AwD8LX2oLLBaE9U+xEohATmgQhJAKN2DUGbsp78UrJ42DISn6liF2FAIQi/+JJuHWC28OhDRnZ5VZ1mbaU9uMMQSEVGyS2Rf5WYNdRfh1UgIYRlipazM8P6rwjLEauEVACQhLEPsnt7Vo6+SdYgt6eOHkhaC7FXh72Q+26yqbRAvrfoDQM0gAVEqYICllLFnzx4AQCjTBxGdJyVEjKiahVhjeNUeE8qIDLER4VX/pkmINYZXINzBRYdYs/BqMgobE16N24xoWIvCE25HYQGGWCIiSl71FF41MSHWZXjVR1+17ZiEWD28akxCrDG86o8zCbF7ensRSjM2ig2xJX38UNJr9kELsTFB1iOgZoQfvHfvXquXSJR0GGApZWgBVs1IQ6AgWDMKazVYaQixMeFVYwixpuFVb2d4kujwqjGGWLuRV0OItQyvxm0CdSv9zxBLRESprJ7Dq0YPsbUMr/p2DCE2JrxqokJsdHjVn8MQYmPCq96oJsRGh1eN7FUjRmOr2oafO5TGAEuphwGWUsa+ffsAAGqaF1AE/O0CqGjjUBRJBvzZEkIZcmx41UiAUCQIxb6zEh4FUGTz8KrROjw3hZicFkHXtuP2mtdEYEEnIiJKJg0UXjVCFe7Cq0VVYn07QgA+r/3+V4fYQLt8++cSAnu7eszDq94ICBxbYhpejWSvikNOXgFUVyZWGWApBTHAUsqoqKgAAKgeBZIsIPlUBNoGUNHaOnTJfkAOhIOsdRsVsj8E4fNA+Kyr+kkhNdzZyDYbC4WAYBCQJUhWnZahGrFlmziwGjEREZEDl7ORJEVxPAmth1ebE9FSenr4i0DAdluhlrmQA/ahc0/PNIR8EpRK22bIzaxEXu4+2zbHd1uF/TL24vjeKwBUDwogfIwVDNoXmCJKFgywlDK0AIs0BZCrA6DHOsTKfkCpEpAE4M+W4c+LLcQk+1XIVcHw6KwkQaSbh1gpGApPLxaiZu3XaFp41TduEmK18Gro9KyDrmEqkwWGVyIiarISNfoaT3jVWPSvEW2i+nO9TXq6PoorhLAMsaGCPMATvsxJqTAPj3t6piGUpl1OBMsQKwaER1C9imoZYo/vtgp53vCxVEtfOY7vvSJiWR8GWEoVDLCUMqqqwqXgo9dGMwuxxvAKhEdgq3IjQ2xEeNU3FhtiI8KrJjrERodXMybhteZpo4OuSTGJKAyvRETUZDVmeNVE9bOmbcz69agpyGYhVguv+rZNQmxEeNU3FhtixYC9yMmoWS7HLMQaw6umpa8cxx64Wv9/wGG0mChZMMBSyhBa0DLp1IwhNjq86o83hFjT8KpvrCbEmoZXjRZi7cKrNgprE15rntbh+lk3Jf9rGtjfr7djeCUioiSTDOFVU93f2rYx9O/61OGYJjUhNjq86vthCLGm4VXfWE2IjQ6vGmOINQuvmpYZ5frXXAuWUgUDLKUMPeBZhC7JoyKYpyKYDcuCTUIGQt5wwSbLok7hJwu/O4RwDnluQqBDeA03Ea6KPzmGVyIiolTVwNXw3ayp7qpehRCQPB7HAlAiI800vOrPFRKoKPRZh1d9Q0DFQRWm4VXjVVQ8O+Ary/AKRL42TiGmVMEASynDqQMR5R7IlRIqWwpUtjRv66kQ8JarCGYqCGXGXhOrP5c/CKkqGLv+q1EoBBEMhTtbq7O8qqhZKseu+FN1W1tCTWx45egrERElkwauOCy5WapOu0bU4SS0lFZdItgiBEqSBJGTBUgS5H3WobO0SyZUD5C+x76PLj2sEt60IErKzUd8AeAfPb5HF+8unJk/37KNMBwLtG7d2vY5iZIFAyylDKV6+k67FsUx94lyD5R9MqBKEApQWRAbYj0VAr4yFZIqwuXmszymIVbyByFVBsIBT5LMQ6wWXrVOT5HNr1ONnvZsEWIt14zVG8QRXt1MH2Z4JSKiZNJY4VVj0ndKStR2LEKsHl4B05PRenjVjgFCqmmILe2SCdUb3i85JCxDbOlhlfClB6p3STINsf/o8T328xQBAHLkSssQ20aqWT4n3WL6M1GyYYCllJGRkQEAGJCzBh3aFOnfN4ZX/XtRITYivGpMQmxEeNW/GRVio8OrJjrEqlHThi1CLMMrERE1a40dXjWGPjQmvGqiQmxEeNUYRmFjwqsmKsQaw6vGLMQaw2vNLkWGWGN41ZiF2Ha+vZCqapbwyczMjH0tREmIAZZSRlZWFgDA56/CoLbL0aFNkWl41RhDrKQiMrxqDCHWNLzq7apDrCSZh1eNFmKNU4ejtgNA78gYXomIqFlLlvCqEap1eNVoBZvMwisQPoEdDFqHV011iDULrxpjiC09NDa81uxS+PFm4VVjDLHtfHvhlUIIVoW3nZGRAdnpUieiJMG/VEoZWoANVgA5SiW65e2CnBUwDa8aoQCqL/yvJQkQkuRYsEkKhsKdlouCD8IuKFZXJbZto7d1+RZ1W3WYiIgoWSRbeAUAu2rD8bRTBeDxONa/CLTKQtpekxPeBnJIoLK1gC/DepkbSQKu6DLbMrxqcuRKPNx6BrxS+DmD1dWMtVluRKnAuooNUZLJyckBAPj3CaypKMTW8ly0K9yLLaoEeYf5WVBfiQRfCeDPliCpCnylsZ2EUqFCKQ9AeBVABSS/RQdRXUlYkmUIILx8TrSQav79qO3o4VWW7Is3CRWSLNmPwjK8EhFRMnFYNSCiTUKeL0HjMdXbEULYF470Vq8VHwpZBlkpMwOQJEiVVRDp5scogdY5UL0ypKD9Ce2iXhJUD6BuzoK3/b6Y+yUJuOnAmWjr2YttwTy09eyFd2cIhePKkDu7EkqZilC2jJKj0lF4eTbSWmfhmrzF+M/ePqgqCT93ixYtbPeBKJkwwFLKKCwsBABUFguoqgchISPDG8B+bYrhL1Cwa1dORJD1lUhIKwqXpBcKUJUrAYgMsUqFCk+Zv7qwkwSRFu6IokOsFAiG14PV/m8WYqvDa004lWMLPgiTqcVWIdZ4LY5ViI03vGojzURERPXBGPys+pxGCK+Oo6+SHDHDyjLEauFVa2MSYqXMjJqRV1WYhlgtvGoydgVRURB7WF7US0Ko+qGyX0IgKsRq4bWjdw8AIFQho+3Tpej01R7IUefj82dWQvyrGLgoFy2eKgAAVO4N/35atWpl8kMhSk6cQkwpQwuwO3alYXN5nv79DG8AeemV2K9NMdTW4YIIxvCq0UKsPyfc0USEV011iBW+mg5KCgQBfyC2cIMs13Ra0eFVEz11yKoMv5tqiC7auNLAa+wREVEz4aZ/SYHwqonp0w3h1apNRHjVVIdYTXR4BQApKJC+O3IJnqKesh5eNVqIBWLDq1yp4vjrVqHLuNjwqj9PAJA+LoF06RZc41uEyuLw/hcUFJg/gCgJMcBSytA+XPfulhFQY6fsaKOxaroaE141xhArqcKisFNNiLUKr3pTvSS+SXjVaG2MU4dN27lYj85FG1cYYomIKJGs+pXoEdmEPV/9hleN3m+bhFdd9cwq0/CqqQ6xZuFVIwdqQmxRTxmhdPNjBtkvxYRXAOj/9Ea0nlMGp3lWAoD0WyVaPrEPPaWhADgCS6mFU4gpZbRr1w4AoO7xw6p0wo7ibMhVEgLZgG+veRuhAEIyD7g6SYJUfc2r0+Llrq+9cdqOKng9KxERpZaGHnWNQ13Dq86hEJMQIly52KldVoZleNWfKiAQTJcsw6smP7s8Irym7Qygy5fh/zu9Iv3+cSXYmLMaANChQweHRxElD47AUsro3Llz+Is9VRBB86AXCiqQVAn+fAF/rvlHuK9EIG1vCKE0GaF083M4UmUQUkVVuDNK84UrCZoQqhpe702WrAs+qC4KO7kMr/p1sHUtWMHrYImIqK4aI5hKsus+0LYAolRzjaplE0WBpF0qZHMSWkrzAZIM4fdb70tOJoRHhreo0rJNWQcfyjr4ICQge731zza7VxG8sor/bDlW/17Xz3dBdigGFbPfAWDjqlUAgI4dO8b1WKLGxABLKaNVq1bhpXQEcJK8EPvn7Iq4f/3OFsDO8MUiQgb8LWJDrK9EIL0oVF3YSUIoXTENsZJxSR1JAjxKTIgVqhqeXqwFT7MQGxVebasaOojpiBNVdZGIiChejRVe42QaYqO3Y9JGiq4ubHHiVwuv2nbMQqwWXgFACoVMQ2xZBx9CXiBUPVNZqTJ/vuxeRchJD19PW1KVrofYwjllpu3tVMgydlaG96VTp05xP56osfAImFKGJEn6B6y6vQKH5azXQ+z6nS0Q2poJOWCoIBgVYo3hVW9jEmL10ddohhAbE141xhBrMfIaG3KdR18tzyLXJsRy9JWIiOoiRcKrJqIPtdqOoU1MeNXbRBVzNIZXw3aMIdYYXvXHRYXYsvY+PbgaRY/CGsOrpqQqHaO2HgPvvvgvQVqbmQkAyM/PR25ubtyPJ2osDLCUUrp37w4A2LVeRpZchcNy1qMi4I0Jrxo9xOZJkFSrwk41IVaqDEIur7QOeZ7qTs0svGrsphNXqwm5CbjuNZ5OneGViIjqIsXCa1zbUYV1eAX09eABi/Bq2A5gHl71XakOsWXtfQj5zDejVAk9xJqFV01xZQYCWfH/jFbk5AAAevbsGfdjiRoTAyyllN69ewMAdq4Nf6BnyVVomVEONc06BAoZkEKA4rcOb0KRwlWJhYBQHN4WssuiDwyLRETUlDT1CvYu+vbwdbEursOVJcvwqgnlWodXTVUrQA7CMrxqFvdvb78hE8uyswEwwFLqYYCllNKrVy8AwM71EoQKTC06ECt3FELODSCYbV4oKW2PhIwdAiGfhFCG+Z+8Z18QSll15+D1QHgszsAGghD+QLgTt5xiJCAcijYJIWqmKzl0grZFKMIN7O+veVJ37YiIqPmRJPuAmsLh1dUSdNrsKbtiTR5PTcgNWBdsktLD9Tjk0grLNsEWGVAVGdlbgpZtyveTEPIJQAW2LG5j2a5Py63437AeCHni+x0t4wgspSgGWEopXbp0QXp6OgIVEiYt64ZZG7sgEFAgycI0xKbtkZC5VUAOCggZCGTIqMr3xARZSRU104slyTzEBoIQVf6aDtAsxGrhVQuLsnNZ/fC2zNskLLwSERFZcVqrtbHDax36upildMy2FX3pj0mIjQivVs+VnhYOr3JNLQyzEKuFVwBQqlTTEKuH12pKeexz92m5FX1abkWWUoXSgnTMOasLALhaB7bU48HarCwANbPbiFIFAyylFI/Hgz59+gAAls3LQCBQEyDNQqwURERZeSEDqiccZLUQGzH6qj8wKsRGh1djO0OIFcbqxUaGEBsx+hqxrci3o2N4jQdHX4mIyIxTYG3s8KqJM8RKsuS8DixgXbfCEGItw2uwJnjqwTW6XVQYNoZXTXSIjQ6vGuMorBZcs5Sa45cJ9/XHqsMKXa0DO+PwNhAIVx8uKChweARRcmGApZRz6KGHAgA864tj7tNCbKhNFeQqIGOneXDTRmMlAXhKKk2LO8WEWKvOU5JqltixmXqkh1gX69K5Cq+cOkxERHXhFE6TJbxqXPZ7jsHVbvk7I1W1H3kV4bXgI0ZdTcilFQi2yDANrxqlKrxPVuEVCI/CblncRg+v0YLpCt779/FYcEEHqCZVjQFA9UhYfVEB1lx4DwCgf//+lvtNlKxiF8AkSnKHHXYYACBty55wGIzqNCRZADvSkL5LgpBtCjfJgKpI4WBpdc2qJIUDYND6GhUAQEiFCDl0rKoaHn1tSAyvRETNhxbG7D773YbSZAuvgKtqxK5GXSXZ1YoBUBTnwk6KDAQCQJp1NSaR7oNnbxX8LTNsN+UtF45FnVQPTMOrJpiu4Ik7zkDbq/di+I8zUDi7FN59KgJZMnYemYO1F7RCVYEXfzy9AAADLKUmBlhKOQcccACys7NRVlaG9J1FqGzTMqaN7JcgB4FQOgBIphWI00pU+Pb6IbzhEVYpYBJi/QFIlX5AkiB5POEA6lCgSQ+9Zlxc05rQ0VciImoe3ATOZAylbiU4vALhS3osQ2z15UEipIarDpvxeABJDrexeDqRmQ7IsvkxRrWqFuHDcUkF8lYBe7ubtwvkCsAj8OWi/jjv4PmmbdbuawW/6sGGnFZYNrwtlg1vG9PmxXknIH3NPMiyrM9qI0olnEJMKUdRFBx99NEAgIy1OyDLkWFObEtH5vbqzkmWEEoHQr7IriWtREXa7ipIQRVCAoRXgZrh1cOsRgqpNYFVkiDJcmzhppAKoY3QatOEoztEN6OvbsMrERGRUXSfk4yFmOqiHsKrJUWJ7OdVixlW1eFVVxVblVgLrxrfntiCTlUtPFA9EtTqCsKeytjjgECu0MMrAKDMiy8XxY6cri9vCb9aMzb19e5+MW1eWj0E/iVlAIA+ffogPz8/9rURJTkGWEpJxx13HAAgbfUOyJKqh1ixLR3ZG2XIhn5EC7H+HEkPslJIQArWdEhCCrcTXqUmxPoD4VuUiBBrDK+a6BCrhddEhVNe+0pERBqrYJqMhZjiJblYbxV1C68RJ5ctl8cz9LseT2x4RXik1hhio8MrEJ7pZQyxWniNlre65ms9uHqi+vSymotc15e3xPrylqgMRV74WuzPjAixL60eguKyTJxcFl4+59hjjzV/vURJjlOIKSUdeeSR8Hq9wN4KeIr2IdgyG7IcQigoRYRXjajutELpAmmlAr5i8/XbhATAq0CqCkCqqLKcLizJcrhMvdV1r7Ic7vCk6mtsAw7X0CZ66jDDKxFR05dqRZjikajgqm3Lpq0QIlysyYYIqZDSfLb7JUIqkJke/o/FEnraVGKr8AoAngqBvNUSdvU3Ca4GXy7qj8O7rY8JrkbF/ky8tHpI+OuyTEiVAfz5558AGGApdXEEllJSZmYmBgwYAABIX74NkgT4t2cifacEu/rxvhKBtCL7MCkkuFu7VXW4HlaWAVG9LqzbTpaIiJo3SWr617PaSeSoq7Y9p/VbXfwsJUmyPmmttUnzhU9+OxxDKBVBy/CqE7ANrwAg7fZh7uJutm0Wre6AbRtaorgsEwCQvnI7gsEgunfvjk6dOtnvA1GSYoCllDVkSPiMYsaybYAQ4cJNfkBVYBli5SAgB1UIrwzhMf/zlysDkMorw5UFLaYTiWAICIRHcd10fOENO3Sgbsv+u+H2AIiIiJKH22m/qfr5roVTq4DqIriGm7mcMqxtz2aGk96H28xckrRqxDb9cHh01j7kqhleqBleSCEVWVvsKglLEDKQt9RiSjMAqUqCpAJKmfXPbNHqDpAqFEjBmjbH7QqXOdaOoYhSEQMspazjjjsOWVlZUEorgcWVyNhe8+dsFmLTilWk7665plV4ZahpnoggK1cGIJdW1Fzvosjha13MgqyhQzQNsaFQ7LqwZp2uoUO07JRrW3U4VQ9yiIiaG7ejrk3lcz06rCY6vDo1kaKW0VFV0xArRS+lY7Ksnh5etf/viy3WpGZ4w7U2qrclV8VuJ5gu6eEVADz7REyIlaokPbxqFi2NHUnVwqumck865JIKLFy4EJIkYfDgwTGPIUoVDLCUstLS0jBw4EAAQPaqjZCjTmaqCiAMQVYOAkogOlAiYjRWCgnz0GkYjTWOvhpFdITV4dW08rCLkVjXU6PcaCoHO0RETVVTLsSksQuVDRFenU46AxH9v6QoseEViDmhHB1eAQAhNSLEauE1mnEUVguuImr3PfsM+10dXKWowxTjKOyi1R1iwisASEEZGUu2AAiv/VpYWBizP0SpggGWUtrQoUMBAJmbNkEKmpSwl8JB1lciIkZfY9p5ZUgBNTx12IpxSrHFdCRjp2i7bI7WkdlNR3LRxrVUP/AhImqq3BRiSuXPcKcpww058qrarPuqEaImuFo9ZzAYvt7VLLxqqqcSW4VXoGYU1jjqaiZ3mRIz6hpt0dJONVOGK8xmjanovLoEAHDmmWdab4goBTDAUkrr06cPunfvDklV4du93rKdHBKQgwmozBsKAaqLokyqat9JqiIxwdQtViUmImpYzbkQExBXOG0wrkKwTXDVKDJEIGD/+/MogD9gGV6B8Br0GTsDtuEVANL2CtvwCgBZaz3mwbVaxuZt2L17N1q0aIETTjjBfmNESS7JPlmI4iNJEs4++2wAQNqOtaZBLb1IIH13ENDWejXpcJTyIOR9leHOSFHMKwj6AxB+fzh82lU1NE5BqsPBib6sTl0PABheiYgalvbZ3xQLMbmRwODq+rIau+c0jKbazo7SLhWyqzasrwNvswqBRwEkCZLNdoRXgZAA2R9Czkbzpf3kUPgGAeSuMv8ZpO+Ukb5ThuIHMjZZB9jTKsKve+jQoeFlCIlSGAMspbwhQ4YgOzsbin8f0nduhRw1U1gOCsgBASFVh1cJsSE2qEIKGjojbf1WIyEipw6bhFghRExgjAmxLkZfY9aETcYz2UREFCv6M98sqDK8utxUnNWGzbjZhqJEFmtUVfMQqygRvzvhNwmensg2yt7Ygk5aeNXbVMaGYS24ovpwwFse+1RacFWqd8NjchVUzgoF+fNLMG/ePCiKgrPOOiu2EVGK4RExpbyMjAwMGzYMAODbuQKKX9VDrD76ahAdYvXR12jGEBsMhacLxbSJCrGqGlsECibVDmsr3gMDjr4SETUMrt/aOOHVjsU2IkZhLZbLi+jLtYAbU6zJEDw9Skx4BQApEHUMEhVeNTmba44x9PAa8cDIUVgtvEYzjsLmrFDgLRMY1i78uEGDBqFt27axDyJKMQyw1CRccMEF8Pl8UCqLoJTtghIQkAM1o6/R9BArS+HrVYMWU4G0KcWA9TpykqG4k5vAGO/oq9nzERFR8nBbiKkph9eEbq7+wmsEq/BaTYTUmuBq8bsTfn9NcLVoo+ytCAdXi/AKVJ9MD1mE12refZFThs1oo7BaeJX8ZZgxYwYA4JJLLrF6qUQphUfC1CS0bNlSr0js3bMCUIGM3SoytwcgWQRCIUlQKoKQy6psiywAcFfUATAdfY1XQpfQISKi+tVUQyngLpgm2/WuCSQlalRdVSEkWIZXAJC06cI257B9ZSry1oQswysAZG9WUTBHhrcsvKGL+2RAVVUcffTR6Natm/1+EqUIBlhqMi6++GIoigJP+U7IFXug+AXkqhCkoGoZYqWgqk8BsgyxgSBEVXVvYdUmFIIIhcyLP1UT2jW0Dh2v4whsQ1YvJiIia6kcXp1CoHZ/AtZvdbc7DfOzjLikx2LWlL4GLAAEg6ZttGnFkiQBVdaJUigyIEnwFsVeC6s/nwjvS/YW6+34ylTIQQFPpfUxQvZmFUqVivTi8HGNFNiH77//HgBw6aWXWj6OKNUwwFKT0a5dO5xyyikAAN/OvyI6JimoQg5YB1mNkKXYICuqiy5pHZ7V2nDa88mybZAN71ADFGXi9a9ERPWnKYRXs37IrH+yapew3YnzZ1nLE7mxRRVNalZETys2O26oDq769kwqEgtF1sMrACAQG4QlURNeAfNiTr4yVQ+vVrI3q3p4NTq3h4xAIIDDDjsMffv2tXw8UaphgKUm5dprr4XP54OnYhe8RVsj7xQiYjTWUx6AXGpSvAmG0Vjj6CsQeY2LXNNxCbNy+oYQK6IrGOvbi3wLOo6+EhFR40vV8Op08tTtlOFUGHmN6k/dFFKMCa8a4yisNuoazXCsoAfXqHbGUVg9uBpPNkeNwmrBNTq8Zm9WI75WqmLDa/rOYkyZMgUAcOONN5q/LqIUxQBLTUqbNm1w7rnnAgDU0DIIk4tJtBBrnD5sRshSzehrzEaiQqzVaKfb0Vi33J515ugrEVH9SOXwavd9N1OKG+N6Vysu+0PHVQCEiJwybEYVkVOGzYRCsaOu0QLBmFHXaNoorN2oq6ci/NqztsQGV80JvfwQQuDEE09E7969rV8bUQpigKUm5/LLL0d2djaAMghsMW3jKa2CXGJ9PYor2tlVFx2w45lfVhYmIkp+yRZeEzVi2sB9UEJGXRtyn2XJ3XJ4TkWftBFXm5PMcmXAccqwr8iPVkv88FRahPjAbvz6669QFAU33HCD/T4TpSAeNVOTk5ubi8svvxwAEBIrIWBy3UlQhRQIQjJbqFxrEwiar/1qFAxCmFzXEsFqQXQjoXL6MBFRMmvo8Op2um8DFVlKlAYLr26eRw6PlppeBhS1HcfjAUmCVG5+WVJ4A+Hg6im2PnkuVwUhhQQyt1q38RX5IftD8BZXWTyPiu4F2wAAQ4cORceOHe33mygFJd8nG1ECnHfeeWjfvj0gVUEEVkAO2gTVUPWU4ugAGbKfYhy5kSQ6K8/pw0REidMY67c6hdIGnu6bKHUOr25eV1ShRWHWJ2qX99j9XqMLNtodD9gUc4oZdfXHBmG5KqiHVwCQqkyKORX59fBqJWN7Jbw7V2HNmjXIzc3F9ddfb73PRCks+T7diBIgLS0Nd955JwAg5NkE4d9rG2KdpvS4YnaQk8jRVy6fQ0TUsJJh1NX4f6frWO3aNKI6X+8a3ohzmzhGXaN/txGjsBbbiRmFNdlOxCismynD1cFVC69mtODqFF6lqn1Iz90EIFy4KT8/37I9USpLvk85ogQ58sgjceKJJwKSQDBtOVAVhFIRgKekElK5+dQbfTS2KuA8XSikmk8fbszRWI6+EhElRjKNurq5322bBpYMU4aFcZk7p9+r3f4aQ65NMSen4OoprogZdTWShED6zkrHUde03X5kbK9ExvZKyJVBnHBONvbt24devXph6NCh1q+DKMUl3ycdUQLdeuutyMjIgKrshapsCZ/lrAxAMpnCoxMivDac0/RhuxHRxphypj0vERHVTaI+SxuyyFKShdeEjLqGN+TcxuF5JEmqe3g17ksdCzVJ5ZWOo65KUbnjqKt3ZxnkyiDkyiBCyh5MmTIFkiTh7rvvhmJXVZkoxSXXpx1RgrVu3RrXXnstACCQtgqqVD21J6QCwZDpIua6REwrduJ6WZw4pg8zxBIR1V6iw2uKFVmqq4QF1/DG6r4J7fdp199Xs73kp3pfbGdnuThmkIIh+3Bb4YdU4bc9ia7srYCytwJS9SwwgQDyOoVXXTj33HPRq1cvx/0gSmVN75OTKMr555+PPn36AFIIgTTD2rBChINsdKcWCEJUGaYYm3U0VtOHI9qEzItHRKmX6sONNQJMRJTKGnrktYlJWHANb8x9W5N+1NWyNzHbMVv3PWqE3KzPrj7hrfX5UkXsZUpSMBQRXqWy2ErDenCtDq9KaWxVYy24SoZjkEDaKuzcuRPt27fHjTfeaPsSiZqCpvfpSRRFURQ88MADSEtLg+opQsi7ObJB9Gis2chr9Pfcjog29tI4DLFERO7UZ3iNLrLE8Oq0sbo9vCFPRFQHVy28CiFiRk/14Go4jjAGUMtRV0Ob6FFXjRrcipB3GyRJwgMPPICMjAy3r44oZTW9T1AiEx07dsTNN98MAPDnbYLqiTqraTUaGy0ViyQxxBIR2UvE52SirmVNMQmfMlyf4dX10ngu9iNq1NV0M1GjrqZtokZdzZiNugKAkAPI7rYTAHDBBRfgkEMOsd9noiai6X2SElk455xz0L9/f0BWUVW4DgImYTWkQgSD9iOnQoTvb6gwy+VziIjqT6LCayLapJhkGnUFEjPy6rj0HQDh90eMuprui8moawR/wPFaV6miynTUFQAEBPqek4bdu3ejU6dOuOGGGxz3m6ipaHqfpkQWZFnGgw8+iNzcXKhp5fC33GzdWKjupv9adUwOHVvN06TgiC4RUVOQqFoBTTCYAs7hNKHhta4SuS+2xR3V8M1uJFcVECEVoiL2+lWdPwDhsNqBVFEFhEKm4RUAglnb8Ntvv8Hn8+Hxxx9HWlqa9fMRNTFN81OXyEKbNm3w4IMPAgCCuTsRTN9j3VjrpKJDZigUueC52RlW1WUAbgipOO2ZiKg+NeQ1kilIC6dmITWhU4brSpYiwqubE8e15mY2lCrsQ64/UBNeYVHsqaJKD69WQqHdCFWfhL/tttvQvXt3d6+BqIlomp+8RDaOOeYYXHLJJQCAqsINCIl99mdTo0djraYPMygSESU/hldbduE0aYIrUPtR13j7ai2Q2lFFTXi1Uh1chWGEVwQjR1f14Gp1TFJRCVFVhvwBZQiFQjjppJNw1llnuX0lRE1G0/z0JXJwww034KCDDgIUFVXt1kMNBZxDrNlobEy7Brw2loiI4sPwaslpZLXew2s89R7qsi9u1oPVgmW8o65mokZdzbgZdUVFJdRgEAdfnI1t27ahXbt2uO+++xJXcZkohUiiXudbECWv7du34/rrr8fevXuhlOTBt7UDJCGAoP36riLkcP0LAKiqu0IQTttJRAEnvsWJiHi9q42kGVl18/N1ujbXze9ZUZx3xeuxb+D1hf+16aclr9c2uMIfgJSZYXtMIYLB8HaCIfgLtyHYchfS0tLwxhtv4IADDrDfR6Imqml+EhO50KZNGzz11FNQFAWh3L0IttwVrkIccnH9qoszuI4aqrowz84SUXPXxMKrm+tQ3YyoJtX1rMnE6cSvKoCqKut+PBgEgkHH8OpUEEpU+cOjt8EQgjnF4eMUAP/4xz8YXqlZS55PY6JG0K9fP9x5550AgEDBdgRzSsOjp0I4B1nVxbqxNhqsAjFHYImoOWuC4dXp/pSqIJxgdZ5YaPf46mtdbZfQcVqKr3pKsd1JbFHlD4fX6nAbSqsAuuwAAFx++eUYNGiQ48sgasqS5xOZqJEMGzYMZ599NiAB/g5boaZX6eHUdZAlIqLk04TCq1kwdfq/1XbIhF0NC7fB1U14tbleNiK4VodX1RtAzuF74ff7ccwxx+D666+P51URNUnJ8alM1Mhuv/129O/fH5BVVHXbBtVbfR2sIcjW52gsERElWBMLr7VtY1wSh+HVgsOoq+vganWc4HLUNboCsVBCaPs3YNeuXejSpQsefvhhyHJy/E0SNSYWcSKqVlpailtvvRVr166FVOFF2sr9IIUMhR60TsNh8XEAzoFXqO6mELOIExFRfJpYpeFmFzqdfu5uwrzT34Ash/9ObPpHyRMu4mR3mCwpsnVfL0vhYlFOy+torzfquEJIKqq6boaaXYnCwkK8+eabaNOmjfV2iJqR5Ph0JkoCOTk5eOGFF1BYWAiREYB//20QkqHT0UZZ7c7EEhERueC2yBIlVvjSoJDjyV3bUVfteMDmRLQIBMOh1Gq6cCBY0yY6vELA33E71OxKZGVl4YUXXmB4JTJggCUyaNOmDV566SVkZ2dDza6Cv8sOCJh3UAyxRERJJlHThut59JXBtQ7qUADRdb9td0lQ9YlsqwAsQiHHgCwCQcttCAj42+5AKL8MHo8HzzzzDLp16+Zuv4maCQZYoihdu3bFc889B5/PBzW/HIHOO21DrGWHaLewORERJVaKXPPqFF6plmyuQbXtqyO2YVPPwjALy4oeXK3CrTbqanU/BAKtdyLUugQA8OCDD+LQQw913m+iZoYBlshE37598dhjj4XXiG1ZhkBHQ4iVpJjraxyDLBER1R+G1+atrsEVcBdcaznqGhFcjW2UmjobIhhEoGAXgm33AgDuueceDB482N2+EzUzDLBEFo4//ng8+uijkGUZoYIyBNrvhNDCqEUVQNejsZLMgxUiokRIgfBqNy2YU4brwGHU1d02HEZdrYKrokQGV5vwanW/JEkQwWA4vLYuQnC/YgDArbfeimHDhrnbf6JmyNPYO0CUzE466SQEAgE888wzCLUuA4QE78YWgEC40zQ56LCtQKyF2CSpbklElNJSILxSPbBd1k5AOPxKJUmyvc5VCAHJYbqw03RiqKr9dGGtcJOqIti6BMEOxQCAG2+8ERdeeKH9CyBq5vipTeTglFNOwf333w8ACLUpRaBjUc10Yrvy+XYHRZxWTEREFL967D8jphw7VSB2ut9mGyIUqh49VhFouxeBTkUAgKuvvhqXX355XV4CUbPAEVgiF4YOHYpgMIiXX34ZoTalgKzCs6YFJEg1IZZTwIiIiOpHIoKr1l8rFrOnbB+rRrSL2UL0/YbrW/Xn0EddBQQEgvsVI7hf+JrXK6+8Etdcc42LF0FEDLBELg0bNgw+nw/PP/88QoX7IGQB7+qWkER1N1YfQVaSOVpLRGRFiMRMI6bkFlVDIm5267VaXJta81jVsp2xjd39xuAKhKsNhzqXINg2XG34xhtv5MgrURwkwcUsieIyffp0PPnkkwgGg5CL0uFdWVATYqO5CJ/CaU27ugZYvsWJqClLketgWajJJePvwqz/c/O7Mv6sTfpYSZFtA6c+emoRTI33AxYhuLrIU/Q+CAgEuxQh1GYfAOD222/H+eefb/tyiCgSAyxRLcyaNQsPP/ww/H4/5L1p4RAbsuhUHQJovQdYgCGWiJq2uoZYBtjkof0urPo+p9+VHDUryq6N1S5U/z1ZHSK7ud+soKOQBALddkNtVQFJknDffffhjDPOsN0XIorFAEtUS/Pnz8cDDzyA8vJySOVe+JYXQPJHzcqva3h1sQ1X+DYnoqaMAbb5cCqQqCj24RWwDrBuLgWyWIEg5v7o8Kqo8B+wCyK3Ch6PBw899BAGDRpkv59EZIoBlqgOVq5cifvvvx+7d+8GqmT4lhdCrvDVNBCqHlLNDl4YYImI6iiFpxAb+wC7gCtU4Xi/3Tbqer/bfWiQkG72u3J7jaxQw/eb7acqnO/XtmFSoCni/qh9EL4g/D13QmQGkZWVhaeffhqHHXaY9X4SkS0uo0NUBz169MDbb7+NLl26AGkq/AfuQCinPKKN1qELVcQEVledPdcoJCKylogTdI1QLM/VCUxDO6v2TttJxP113Ua9cvO7E2pNu+h+VxU14dXpfpNw6nS/mlGFnCEBiMwgCgoK8O9//5vhlaiOOAJLlAClpaV48MEHsWDBAkAFPGvz4dmZpVcRNuvcjcHWEQs5ERFZS4FRWOMJS7s+wW2b2myjoe9POKcCT9FtzNrpBZhE/dxvuIY3lF8BT/8KVFRUoEuXLnjxxRfRpk0b8/0mItcYYIkSxO/349lnn8VPP/0EAFC2ZsGzPg8SpLqfneY0YiIiaykQYMNPYd8fOJ3YTJX7643T0nLxVDCuj/ur2wgRQmi/MoQ6l0IIgf79++Ppp59GTk6O9b4TkWsMsEQJpKoqRo4ciZEjRwIA5OI0eFe2BAJ17NQZYImI7KVAISfnXXAOuMl+v5W6XkPr6hpbNwG3Pu9HdaXh/YugFlYACK8hf8cdd8Dj8dg+jojcY4AlqgfTp0/Hs88+i8rKSkgVCjzLWkKu8No/SOsUnQpU1Bbf6kTUVCViBBZIihCbyuqriJSbIlP1ye3+IU2F/4DdEDkBKIqC22+/Heecc05D7SZRs8EAS1RPVq5ciQcffBDbt28HghI8K/OhFGVYP8DqOhqz+2qDb3UiaooSFV4BBtg6srtGtjZVmBNZpbk298ezf2pOFXJPBHbv3o2cnBw8+eSTLNZEVE8YYInqUVFRER555BEsXLgQAKBszoayLguSZFKCH7C/5oYhlogoUiLDK8AAWwfxFHhKRIGq6HaJvD+e/RMQCO23D+i2D6FQCF26dMEzzzyDjh07xmyDiBKDAZaongWDQbz99tv47LPPAADSXi+8y/MhBRTnaomJxrc7ETUViQ6vAANsHTRkgaj6qp4c774JRUWwezHUVpUAgMGDB+Pee+9FZmam6XaIKDEYYIkayPTp0/HPf/4T5eXlgF+Gd0Ue5L1p4TsTPV3YDt/yRJTK6iO46ttmgG0M8RSHqs2ydHEtW+dy39TMAII990BkhODxeHDbbbfh7LPPhlSff59EBIABlqhBbdy4EY8++ihWr14NCEDZmA1lYxYkVHd4Lioc1gnf7kSU6hhgm526VkeuNaHG/E0ICKhtyyH3qoDf70fr1q3x5JNP4sADD0z88xORKQZYogZWWVmJESNGYNKkSQAAqcQL74o8SFUNVGKfb3kiSnUMsVTfTFYGEJ5QeMpwyyoAwJFHHomHHnoI+fn5jbCDRM0XAyxRI5kyZQpeeeWV8JTioATP6lwou2yqFMdDe1ubHeTxLU9Eqa6+p2kyxKY+u6XpnO43zoSqvl/Nq0LuCeEqw16vF8OHD8d5553HKcNEjYABlqgRbdmyBU899RSWLFkCAJB3pMOzJhdSqI4HT8a3dXTnyrc8ETUFHIUlKyYB1NX9JpfwCFlCqFMp1A77IIRA586d8dhjj6F79+4J3GEiigcDLFEjCwaDGD16NEaPHg1VVYFKBd5VuTUFnmrD7G2tHezxLU9ETQFHYSma3VJ0Tveb3KdmBRDssRciKwgAGDZsGP7v//4P6enpidhbIqolBliiJLFo0SI89dRT2LZtGwBA3poJz7psSGotDqKs3taSxABLRE0HQyxprAog1mItdSEJhDqUAV0rEQqFkJ+fj/vuuw/HH398AnaUiOqKAZYoiZSXl+Ott97C119/Hf5GpQLvyjzIJb74NsS3NRE1B8kaYE2q1zY4p31oCvfXAzWzetQ1OzzqeuKJJ+Luu+9moSaiJMIAS5SEfv/9dzz//PPYvn07AEDZkgllfZyjsXxrE1FT1xAFdOIJok7XXjaEuhQvMt5v1aau9yd6HxNESAKh9vsgdatEMBhEbm4u7rrrLpx88sks1ESUZBhgiZLUvn378Oabb2LixInhb1TK8KzJg1Lk8tpYvrWJqDlIhhAbHahqG8y0Nm5GHqPbOO1DvPdHt3G6vz72wc0+JoCa40ewewlEZnjU9dhjj8W9996LVq1a1cvzEVHdMMASJbk5c+bgpZdeqrk2dlc6PGtyIAUU+wfyrU1EzUFjBlg3oc6sXSJHNusaPJ2uHU3ENurr/joSiopg51Ko7SoAAPn5+bj11lsxZMgQjroSJTEGWKIUUFFRgQ8//BBffPEFQqFQeN3Y9TmQt2VAgkUny7c2ETUXDR1i7QJVIsOlWRs3oU6S63Z/IrbREPtQSwICaqsqBPcvAXzh7Z9++ukYPnw48vLyEv58RJRYDLBEKWTFihV46aWXsGzZMgCAVOKFZ00u5H3eyIZ8WxNRc5JMo2WJCHZAvY06NnciPYhg11KoLasA/H97dx7eVJX4f/xzk27pAq0FoVA22VWwCBQVQRQERHAU1BFRdBx/6ozKPI9fRx2+OszoKC6Po87oVx2/o44L4vYVxA1FAWWRRdkUQdbK1tKFlpY2TZN7f3+kuU2hLW0pTdK+X8+TJzd3OTk9lppPzrnnSOnp6br77rt19tlnh7hmAOqLAAtEGJ/Ppw8++EAvvfSSysrKJEtyZLsU9UuSDG/ggw//rAG0MuEUYhF2LIcpX/oROU7zqKKiQlFRUbr22mt1/fXXKzb2BNZdB9DsCLBAhDp48KCee+45LV682L+jwlDUL5XDivlXDaC1IcAiwLLs3wd7uHCPw1Ksv1d76NChmjFjhrp16xbKWgJoJAIsEOHWrVunp59+Wrt27ZIkGSVRitrVRo6i6ONcCQAtDCG2dQv+SGsYMl0V8p5WLCvZI0nq2LGj7rzzTp1//vlM0gREMAIs0AJ4vV7Nnz9f//73v1VSUiJJcuTGKmp3oozyqBDXDgCaCaGkdTrqo6wV7ZO32xGpU7lM01RMTIymTZuma6+9luHCQAtAgAVakMLCQr300kv66KOPZFmWZErOA/Fy7kmouj8WAFoyQmzrEvQx1nJY8nU+oph+pn+OCEkXXHCBfv/73ystLS1UNQTQxAiwQAu0fft2Pf/881qzZo1/h9eQc0+CnPvjZVh8uAPQwhFiw1PQvamNOh58TnBwlSXzVLe83Urs+1xPP/103X777RowYEBT1BxAGCHAAi3Y6tWr9T//8z/auXOnf4fboaisRDly42pfPxYAIh0BtvnVFT4DHzWPd7y+5wR2yZKZ4pGve4msBK8k/32ut956qy666CLucwVaKAIs0ML5fD4tXLhQ//u//6u8vDxJknEkSs5fEuTIjyXIAmiZCC/No65wevRHzMacU8vHVLOtR95uJbLaVEiSEhMTNX36dE2ePFkxMTH1qTmACEWABVoJt9utd999V2+99ZY90ZNRHKWorEQZhTEEWQAtCwH25KoreNb20bIh59QWXBMr/ME1xT+zcGxsrKZMmaJrr71Wbdq0qU/NAUQ4AizQyhQXF2vu3Ll677337EkujKJo/9Diw3xrDaAFIcQ2vbqCZ10fKY93/DjMhAr5uh6RmVouSYqKitJll12m6667Tu3atWt0uQAiDwEWaKUOHTqkN998U/PmzZPH4/8m2yiMVtSeRBlF0fTIAmgZCLGNFzw8OEQfF83ECvm6lMhM9f9/yuFwaNy4cbrxxhuZWRhopQiwQCuXm5ur1157TR9//LG8Xv8kGEZRtKL2JDC0GEDL0FpCbEMnQ2rAhEnNzWzjkbfLEXuosGEYuvDCC3XjjTeqe/fuoa0cgJAiwAKQJOXk5GjOnDn6+OOPq3pki6Pk3JMgRwGTPQGIcA0NscebObcp1ee9GjJZUk3nNfacZmTJktW2Qt4uJbKS/ZMzOZ1OjRkzRtdff726du0a0voBCA8EWADV5OXlae7cufrwww/ldrslVc5avDdejrw41pEFELnqs8ZoQ84/USfSY3q8+03re87xzmsG9nI4XY7YswpHRUXpkksu0bRp09SpU6eQ1g9AeCHAAqhRYWGh3n77bf3f//2fPdmTyh1y7o+XM9slw+cIbQUBoKEaMmT2ZIXXE+kJrc+9qCG8X7WhLMOSeWqZfJ1LZcX7JEkxMTGaOHGipk6dqg4dOoS4hgDCEQEWQJ2Ki4s1b948vf/++yooKPDv9BpyZrvk3B8vw+MMbQUBoCHq0zsZfN7RGjO0uL7v1Uo+kllRpnxppfKllUkxpiQpISFBkyZN0tVXX82swgDqRIAFUC8ej0dffPGF5s6dq6ysLP9OU3Lkxcm5L16OI9GhrSAANJX63GcaxhMghSszzitf51KZp7olp7+dOnTooCuvvFITJ05UQkJCiGsIIBIQYAE0iGmaWrVqlebOnat169bZ+43CaDkPxMuRz4RPACJYfe4NDbPJj8KZf2Imj3ydymS18yjwsbNPnz665pprNGrUKEVFRYW4lgAiCQEWQKNt2bJFb7/9tpYsWSKfz3//ksod/uHF2S4ZFQwvBhBB6nuPqURoPQ7Lacp3qltmWtX9rZJ03nnn6de//rUyMjJktJbljQA0KQIsgBOWk5OjDz/8UAsWLFBhYaF/Z2B48QGXjOJoemUBoBUw4yvkSyurNkzY5XJp/PjxuuKKK1jDFcAJI8ACaDIej0dLlizRBx98oB9//NHebxRH+YcX58XJMAmyANCSWIYlM7VcvrRSWW0r7P3du3fXFVdcoXHjxik+Pj6ENQTQkhBgAZwUW7Zs0QcffKAvv/xSHo/Hv9NryJEbJ2eOS0ZJFL2yABDBTJdXZocy+U5127MJO51OjRgxQldccQXDhAGcFARYACdVYWGhPvnkEy1YsED79u2z9xtHouTMdsmRGyfDy5qyABAJLIcps125fB3LZLWp6m095ZRTdNlll2nSpElq3759CGsIoKUjwAJoFqZpasOGDfroo4+0dOnSql7ZwL2yOS4ZRdwrCwDhxpIlK6lCvg5ume2r7m11Op0aNmyYLr30Up177rnMJgygWRBgATS74uJiff755/r444+1ffv2qgNup5wH4+Q4GCeHmw9CABBKVoxPvvZumaeWyUqomkm4c+fOuvTSSzV+/Hi1a9cuhDUE0BoRYAGEjGVZ+vnnn/XRRx9p0aJFOnLkiH3MKI6S86DLP/FTBUOMAaA5WE7TPyHTqW5ZbT0KDIqJjY3VqFGjdOmll+qss87i3lYAIUOABRAW3G63li1bps8//1xr1qypWlfWkhyHYvy9sgXMYgwATc0yLJkp5TLbu2WmlktB3xkOHDhQF198sUaPHq3ExMTQVRIAKhFgAYSdgoICffXVV/r888+1ZcuWqgM+Q468WDny4uQojJFhEWYBoDEsWbLaVPiHCLdzS9FVHwe7deumsWPHasyYMUpLSwthLQHgWARYAGEtKytLX3zxhT7//HNlZ2dXHfAacuQTZgGgvixZstpWyJfqltmu3F76RpJSU1M1evRojR07Vr1792aIMICwRYAFEBEsy9IPP/ygRYsWaenSpSooKKg6SJgFgBrZobVd5fDgoNCamJioESNG6OKLL9agQYPkdDpDWFMAqB8CLICI4/P5tGnTJi1ZskRLly5Vfn5+1UGvIUdBrH+ocWEs98wCaHUsw5LV1iNfarnMVLcUU/VRLykpSSNGjNCoUaM0ePBgRUdHh7CmANBwBFgAEc3n8+mHH37Q4sWLjw2zPslRFOPvnS2IlVFB7wKAlslymjJPKfc/UjxSVNXHu7Zt29qh9eyzz2a9VgARjQALoMUwTdPumV2+fHn1e2YlGYej/b2zBbEySp0yRO8sgMhlxXnlqwytVtsKBf9JS0lJ0fnnn68LL7xQGRkZhFYALQYBFkCLZFmWdu7cqWXLlmn58uXVZzOWpDKnnAWxchyKkVHEfbMAwp8lS1ZShd3TaiX4qh3v0aOHhg8fruHDh6t///5yOFhDG0DLQ4AF0Crk5eVpxYoVWr58ub777jt5PJ6qg5VDjY1Dsf5JoMronQUQHqxYn8xk/7BgM7n60GCn06mzzjrLDq2dOnUKYU0BoHkQYAG0OqWlpVq7dq1WrFih1atXKy8vr/oJbocch/y9s46iGBk+ejEANA/LYclq4/EH1pRyWfHVe1nbtGmjzMxMDR8+XJmZmUpKSgpRTQEgNAiwAFo1y7K0a9curVq1SqtXr9bGjRtVUVFRdYIpGcXRchRWhtniaIYbA2gylixZCV6Zyf4eVqutRwr6zszhcOj0009XZmamMjMz1bdvX5a7AdCqEWABIEhpaanWr19vB9p9+/ZVP8EnGYf9YdZRGCOjJIrhxgDqzQ6sbT2y2lbIbFt9WLAktW/fXsOGDVNmZqYGDx5MLysABCHAAkAd9u7dq7Vr12rdunX6/vvvVVRUVP0EryHH4WgZgR7aIwRaAFUsWbJcPlnJHplt/Q9FV//oFR8fr7POOkuDBw9WZmamunXrJsPg7wgA1IQACwD1ZJqmdu3aZYfZ9evXq6SkpPpJXsM/5PhwtByHK4ccm3wQBVoLy7BkJVbIbFMhq02FzCSPFFP9o5bL5dKAAQM0aNAgDRo0SH369GGZGwCoJwIsADSSz+fT9u3b9f3332vdunXauHGjSktLq59kSsaRKH+YPewPtkYF968BLYUVZfrDapKn8rmi2j2skhQbG6sBAwYoIyNDgwYNUv/+/QmsANBIBFgAaCI+n087d+7Uxo0btWnTJm3atEm5ubnHnljmlKM42t9TWxIlo4SJoYBIYBmWrHivv4c1ySurjeeYWYIlqW3bthowYIAGDBigM888U3379lVMTEwIagwALQ8BFgBOEsuylJOTY4fZTZs2aefOnTrmz25lL61REm0HW9aiBULLkiUrzicrqUJWoldmUoWshAqphgEUXbt2tQPrgAEDlJ6ezj2sAHCSEGABoBkVFxdr8+bN+umnn+xHYWHhsSd6DRklUXKURNvhllALnByWLCnOJzPB6w+riZVDgaOO/YiUkJCgfv36qV+/fjrjjDN05plnKjk5ufkrDQCtFAEWAEIo0EsbHGh//vlnlZWVHXuyTzJKK3tqj0T5g+2RKBmm49hzAdTIclQOA06o8AfWykdNYTUmJka9e/dWv3791L9/f/Xr10/p6elyOPg3BwChQoAFgDDj8/mUlZWlzZs36+eff9b27du1Y8eOmkOtJX/P7JEof7gNPOitRStnyZJiTZnx3srA6g+tVrxPNf3TiImJUY8ePdSrVy87rJ522mlMtgQAYYYACwARwDRN7du3T9u3b9f27du1bds2bdu2Tfn5+bVcIBllUTJKnVWh9kiUDDfBFi2LP6j6ZCb4ZLkqw2rlo6b7VSX/JEu9e/dWr1691KtXL/Xu3VtdunQhrAJABCDAAkAEKygosEPtrl27tHv3bmVlZcntdtd8QSDYljkrH1H2s7wG4RZhy3KaslyVITXO59+O98py1R5Uo6Ki1KVLF3Xv3r1aWE1NTWWSJQCIUARYAGhhTNNUdna2du/ebYfawKO8vLz2C71GVah1O6ttE27RHCynWRVOg4OqyytF1/5xJSYmRl27dlX37t3VrVs3de/eXT169FCnTp3oVQWAFoYACwCtRCDYZmVlac+ePdq7d6/27t2rPXv26ODBg8cu7xPMZ8hwO2SUOyW3U0a50x9yK7cJuKgPO6DG+mTFmVKsr+p1rK/OkCpJqampSk9Ptx+B0JqWlkZQBYBWggALAFB5ebn27dtnB9rA8759+2q/zzaY1/AH2XKHDI9Dhscpo9wheZz+14TcFs2SJTktWbGmFOOTFWvKivHJigl6Heercabfo6WkpFQLqYFH586dFR8f3ww/DQAgnBFgAQB1Ki8v18GDB3XgwAFlZ2fbz4HtgoKC+hVkyh9oAyG3wiFV+LdV4X8d2CcfYTccWA5LijZlVT4C24qp3BdbFVJruw/1aMnJyerYsaPS0tLUsWPHao8OHToQUgEAdSLAAgBOiNvtVk5OjnJycpSbm6u8vLxqz7m5uSosLGxYoT5VD7VehwyvIXmrbx/zbBJ6a2IZlhRlyoqq/qwoS1bw81Fhtb6hNKBNmzZq166d2rdvr9TUVLVv317t2rXTqaeeqrS0NHXo0EEul+vk/JAAgFaBAAsAOOk8Ho/y8/OrhdvCwkIdOnRIhw4dsrcLCwtrXu+2vnySfIbkqwyzXkMyDRk+o3J/YLuyl9eUZPrPkSX/NUGvZRr+fZXbCvwf06oMypbsfcfrMbaqTgx6tvzPhiSHf9tyWPa2KretoG05Ks9xWpLT9A/ddVYeC2xXPixHZVBtYBANFhMTo+TkZKWkpCg5Odl+BAfUQGCNjY1t/BsBAFAPBFgAQFgpKyurFm4PHTqk4uJilZSUqLi4WIcPH1ZxcXG1R0lJiUzTDG3Fg8KsLB0VVIOeQ8QwDCUmJioxMVFJSUnVHoF9wQE1JSVFKSkpcrlcLDkDAAgbBFgAQMQzTVOlpaUqLi5WaWmpSktLVVZWZj+CXwe2S0tLVV5eroqKCnk8Hvs58KioqKi272QHZKfTqejoaPsRExNT67PL5ar3IxBOExIS5HA4TurPAADAyUaABQCgHnw+nyzLsp9N06xx2+fzyTRNORwOORwOGYZR57ZhGIqKipLTeQLjfAEAaCUIsAAAAACAiMBYIgAAAABARCDAAgAAAAAiAgEWAAAAABARCLAAAAAAgIhAgAUAAAAARAQCLAAAAAAgIhBgAQAAAAARgQALAAAAAIgIBFgAAAAAQEQgwAIAAAAAIgIBFgAAAAAQEQiwAAAAAICIQIAFAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACICARYAAAAAEBEIsAAAAACAiECABQAAAABEBAIsAAAAACAiEGABAAAAABGBAAsAAAAAiAgEWAAAAABARIgKdQUAIFQsy5Lb7Q51NQCgQeLi4mQYRqirAQAhQYAF0Gq53W6NGzcu1NUAgAZZuHChXC5XqKsBACHBEGIAAAAAQESgBxYAJMWsPlWGVfmdnuGQ4TAkwyE5DMkwZDgCxyr3G4bkMGQEzrGPGfY1MoL22/uqyrSPqeq4ZRhVXy0aVeXY+4OuC95nVRZjH3NIUmC/YR8LXGNV7rOCrwmU4ag8376m+nG7TEmWKvc5ajhW7XxVq2PVvqPrUcM1qn5NteOq47qgMmu6trYyq6nzGqva9UeXZx8PKsuq3K+jrpNhBV3vP24EH7PPtexrDPu8oPMryzEMq+pXsHJ/1X9qyz7ukGW/9h+THJWv/cf8rwPX2ccMS4aqrnNU7rMfCt6vavurrjHtfQ5ZchimnIFjla/t45XbkuS091lyyr/faZhHXWfKWbktyd62z1dVeQ75r3fI//7+Y4Hr/PsMmXIGrlegHqackv86+d8v8LMFXvvfy6rcVlVd5P9n5pRh/3N3GoYcMir3GZWvHZW/OoYqPE5N+X8dBQCtHQEWACTJZ1R9lDQcMlQZNiuTQdUxQ3JUpTXDnwYrCwmkHYeOSidBycZxbLqqShlB+3XUvuD3UA37jr5OVcE1KMAes++Y/aohEB99XEFBuurHqvVYbT9GjfWozzX1aKomKPP4obeJA2xNx3X0a6uG/Va196zpWCBYVR0LPm4FXRe0T1YNZVY9ggNsVSiufKj2/XZwNBQUUKuCrhQIorIDYPAxf4A1qwKg4Q9//usqg6Bh+MNl5f7Atn2+jKCwLDmNqmenFBQ2azhW2Yz+11ZlALbswOq/zjpugK2pPIeq9vlfB9cx6L8hALRiDCEGAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACICARYAAAAAEBFYBxYAJMlpybJM/7Yh/0KQ9rNR9XVftXVUg7YVvM+q2q62v5ZjQYuCWrUsblq1v+rZqratatdZkmTZq3HaRywZkiX7WuvoayqvO9bR+wILn1ar0lHtUcvj6HNPZK3Xuo7VVWY93s+o6Xi1fTWt51rD8WPqWMs6sKp+3Ag+Zp9bVaYRvMZr4Pxq67IG/3rVsg6sGr8OrKWq6yzDqv5Q8H5V22/a5ZlV7yNLMsyg9Wqtasctw5QVVA9LVuXryudAPSpfOyrPcQTtD97nr4e/OIck06h6NlW1DqxZuc9QbevAGnLIv76sU1X/zQKvHZXXHL22rMM+ZgSVV1WWQ4b92v+fxVCFp6Z/lwDQ+hBgAUCSJ/NgqKtwcgTywQk4OjoDUvVfLTOUFWm04N9sBqQBQKTgLzaAVsvtdoe6CgAAAGgAemABtFqxsbH29vz58xUXFxfC2rQ8brdbv/rVryTRvicD7XtyhXP7hlNdAKC5EWABtFqGUTUoNi4uTi6XK4S1adlo35OL9j25aF8ACB8MIQYAAAAARAQCLAAAAAAgIhBgAQAAAAARgQALAAAAAIgIhmVZJ7hCIAAAAAAAJx89sAAAAACAiECABQAAAABEBAIsAAAAACAiEGABAAAAABGBAAsAAAAAiAgEWAAAAABARCDAAgAAAAAiAgEWAAAAABARokJdAQCoj9LSUs2dO1dLly5Vdna2HA6HunTpoosuukhTpkxRdHR0o8suKCjQnDlztHLlSuXk5Cg2NlY9evTQ+PHjdemll8owjDqv37dvn+bMmaM1a9aooKBALpdLffr00aRJkzRq1KhG16s5hWP77t27V8uWLdP69eu1Y8cOFRQUyOl0ql27dho4cKCuuOIK9e3bt9H1ak7h2L61+eMf/6hVq1ZJkjIyMvSPf/yj0XVrLuHevnv37tW8efO0Zs0aHTx4UD6fTykpKerZs6eGDh2qK664otH1A4DWxrAsywp1JQCgLtnZ2ZoxY4ays7MlSXFxcTJNUx6PR5LUu3dvPf3000pKSmpw2Vu3btXdd9+toqIiSZLL5ZLH45HP55MkZWZmavbs2bV+AF65cqVmzZolt9stSUpISFBZWZlM05QkTZgwQffee2+DQ0RzCsf23bRpk26//fZq++Lj41VRUaGKigpJksPh0PXXX6/f/va3Da5XcwrH9q3Np59+qtmzZ9uvIyHAhnv7vvPOO/rXv/5l1ycuLk6GYaisrEySlJiYqE8++aTBdQOA1ooACyCseb1e3Xzzzdq5c6dSU1P13//93xoyZIhM09TixYv1xBNPqLS0VOecc44ef/zxBpVdUlKi6667TgUFBeratavuv/9+9evXTxUVFVqwYIGeffZZeb1eXX755brrrruOuX7//v36zW9+o7KyMg0YMED33XefunTpYvcGvfrqq5Kk2267Tddee21TNEeTC9f2Xbdune666y6dd955uvjiizVo0CC1bdtWPp9PP//8s5577jlt3LhRknTPPfdo4sSJTdYmTSlc27cm+fn5mj59uizLUmpqqrKyssI+wIZ7+7799tt67rnn5HQ6NXXqVE2cOFGdOnWSJBUXF+unn37SmjVrjvmyBgBQO+6BBRDWPvvsM+3cuVOS9NBDD2nIkCGS/L1vo0eP1t133y1J+vbbb/Xdd981qOy5c+eqoKBAsbGxevzxx9WvXz9JUnR0tCZPnqybbrpJkrRgwQLt2bPnmOtffvlllZWV6ZRTTtGjjz6qLl26SPL3FN50002aNGmSJOn1119XcXFxI376ky9c27dz58567bXX9PDDD2vUqFFq27atJMnpdKp///566qmn1LNnT0nSm2++2cif/uQL1/atyd///ncVFxfr97//vVJSUhpUl1AJ5/bdsWOHXnzxRUnSrFmzdMstt9jhVZKSkpKUmZlJeAWABiLAAghrn332mSRp0KBBOvPMM485Pnr0aKWlpVU7t74WLlxolxH8wTJg8uTJcrlc8vl8+uKLL6odKysr09KlSyVJl19+eY3DE6+77jpJ0pEjR/TNN980qG7NJVzb99RTT7W/EKhJdHS0xo4dK8l/D3I4f0EghV/7Hu2rr77SN998o4yMDF166aUNqkcohXP7vvHGG/J6vRoxYkTE3AsPAJGAAAsgbLndbv3www+SpHPOOafGcwzD0LBhwyRJa9asqXfZv/zyi3JyciTJvv5o8fHxGjhwYI1lb9q0SeXl5XVen5aWpm7dujW4bs0lnNu3PmJiYuztwD2J4SRS2reoqEjPPPOMYmJi9Mc//jGs79cOFs7tG/wFV+CLFgBA0yDAAghbWVlZ9mRIPXr0qPW8wLGCggIdPny4XmUHhh0er+zTTjtNkrR79+5arw+cU9f1u3btqle9mlM4t299rFu3TpKUmppqDzEOJ5HSvs8884wOHTqk6dOn19nrHW7CuX1/+ukneb1eSVLfvn21ceNG/elPf9KkSZM0ZswYXX311Zo9e3a19wEA1A8BFkDYysvLs7fbt29f63nt2rWr8Zq65OfnN6jsI0eOqLS09Jj3SUpKUmxs7HGvD36/cBHO7Xs8P/zwg5YtWyZJmjhxYlj2GkZC+y5fvlyLFi1Sjx49wnaisdqEc/sG3xO7ePFi3XnnnVq+fLk8Ho+cTqeys7P16aef6uabb2YGYgBoIAIsgLAV/IGwrpAYFxdX4zUns+zAEhjBx+u6viHhrLmEc/vWpbCwUA8++KBM01R6erqmTp1ar+uaW7i3b0lJiZ588kk5HA7dc889ioqKrKXhw7l9g+/JfvHFF9WrVy+98MILWrhwoRYuXKgXXnhBPXv2lNfr1RNPPKHNmzfXq14AAAIsACCClJaW6k9/+pOys7MVHx+vBx98UPHx8aGuVkR67rnnlJeXp8svv1xnnHFGqKvTogSvUBgTE6PHHntMp59+ur3v9NNP16OPPqrY2Fj5fD69/vrroagmAEQkAiyAsBUcTAITJtXE7XbXeM3JLNvlch1zvK7rwzFkhXP71qSsrEz33nuvfvzxR7lcLj3++OPq1atXveoTCuHcvmvXrtXHH3+s9u3b65ZbbqnXe4abcG7f4O0xY8ZUG8Yc0KFDB40ZM0aS9P3334flRGQAEI4IsADCVvCHvtzc3FrPC76vraYPijVJTU1tUNkJCQnVPpQG3qe4uLjOD7iB64PfL1yEc/seLRBeN2zYIJfLpccee8yeATZchXP7Pv7445Kk3/3ud5L8PdvBj8DkSKZp2vvCLWCFc/sGv09gJvKadO/eXZL/97u+E0wBQGtHgAUQtrp16yaHw/9nqq5ZfAPHTjnlFLVp06ZeZQfPHFxX2YFZQgMfNGu6vq6ZRAPH6prJNFTCuX2DBcLr+vXrFRcXp8cee0wZGRn1qkcohXP7ZmdnS5IefPBBjR8//pjHxo0bJUkbN260961YsaJedWsu4dy+PXv2rNf7BA81DseJyAAgHBFgAYStuLg4nXnmmZKkVatW1XiOZVlavXq1JGno0KH1LrtLly7q0KFDnWWXlZXZH+SPLnvAgAH25C6B9z9adna2srKyGly35hLO7Rt8zj333KP169fbw4YjIbxKkdG+kSyc2zc9PV2dOnWSJPtvQE0Cy+8kJCTUO1wDQGtHgAUQ1saPHy/Jv+ZnTTN1Ll68WPv37692bn0YhqFx48ZJkr766isdOHDgmHM++OADlZWVyel06uKLL652zOVy6YILLpAkzZs3TyUlJcdcP2fOHEn+++FGjBhR77o1p3BtX6kqvAYPG46U8BoQru379ddf1/kItHNGRoa9Lxx/h8O1fSXpkksukSQtWrSoxuV7cnJy9OWXX0qSzjnnHLs3GQBQN/5aAghr48eP12mnnSbLsvTAAw/ou+++k+S/N2/x4sV64oknJEnDhg3T4MGDq1378ssva+TIkRo5cmSNH0CvueYanXLKKXK73br33nu1detWSVJFRYXmzZunf//735KkSZMmqUuXLsdcf9NNN8nlcik/P1/33XefvfZjWVmZXn31Vc2fP1+SNH36dCUlJTVRizStcG1ft9ut++67zw6vkdTzGixc27elCOf2vfrqq9WxY0f7+uCAvXnzZt13330qLy9XbGysbrjhhqZpEABoBQwr+AYMAAhDBw4c0B/+8Af7vr24uDiZpimPxyNJ6t27t55++uljQuLLL7+sV199VZL09ttvKy0t7Ziyt27dqrvvvltFRUWS/L2lHo9HXq9Xkn9o4OzZsxUTE1Nj3VauXKlZs2bZs5EmJiaqrKzMnvBmwoQJuvfee8P6/rZwbN/PPvtMjzzyiCT/MiSJiYl1/gwPPfSQBgwY0MCfvHmEY/sez4wZM7R+/XplZGToH//4R4OubW7h3L5ZWVm666677ImgArOXB9aRdrlcmjVrls4777wTaQIAaFUia9VyAK1SWlqaXn31Vc2dO1dLly5Vdna2oqKi1KNHD40ePVpTpkxRdHR0o8ru27ev/vOf/2jOnDlasWKFDh48qLi4OJ122mkaP368JkyYUOfQvnPPPVevvPKK5syZozVr1qigoECJiYnq3bu3LrvsMo0aNaqRP3XzCcf2Df5u1ePxqKCgoM73CQSKcBSO7duShHP7duvWTf/5z3/0zjvv6JtvvtH+/ftlmqa6du2qoUOH6te//rU6duzY2B8dAFolemABAAAAABGhZX8tCwAAAABoMQiwAAAAAICIQIAFAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACICARYAAAAAEBEIsAAAAACAiECABQAAAABEBAIsAAAAACAiEGABAAAAABGBAAsAiAjPPPOMRo4cqTvvvDPUVUGIlZSU6NJLL9XIkSP19ddfh7o6AIBmFBXqCgAATq4jR45o27Zt2rJli7Zu3aqtW7dq3759sixLkvT2228rLS3tpLy3ZVm68sorlZubq2nTpunWW29tVDnbtm3TvHnzJEm33HJLE9YwtHbu3KnVq1dr06ZN2rlzp/Lz8+Xz+ZSUlKSePXvq3HPP1fjx45WYmBjqqoaVxMREXXPNNXrppZf0z3/+U8OGDVNsbGyoqwUAaAYEWABo4WbMmKFt27aF5L23bNmi3NxcSdKIESMaXc7zzz8vn8+nYcOGacCAAU1VvZCaMWOG1q9fX+OxgoICFRQUaM2aNXrjjTc0c+ZMZWZmNm8Fw9yVV16pd999Vzk5OXrvvfc0bdq0UFcJANAMGEIMAC1coKdV8vdcDRo0SKecckqzvPc333wjSWrfvr369+/fqDI2btyotWvXSlKLCimBYJ+UlKQJEyZo5syZevbZZ/XSSy/pwQcf1LnnnivJH2ZnzpypDRs2hLK6YcflcmnKlCmSpDlz5qi0tDTENQIANAd6YAGghZswYYKSk5PVt29fpaenyzAMzZgxQwUFBSf9vQMBdvjw4TIMo1FlvPXWW5KktLQ0nXXWWU1Wt1BLT0/X9OnTNXr0aMXExFQ71rdvX40aNUpvvvmmXnzxRXk8Hj355JN67bXXQlTb8DR27Fi9/PLLKi4u1scff6yrrroq1FUCAJxk9MACQAt35ZVXasyYMerSpUujQ2Rj7NmzR1lZWZIaP3w4NzdXK1eulCSNGzeuWet/sj3xxBO65JJLjgmvwaZNm6bevXtLknbv3q0dO3Y0V/UiQlpamgYOHChJ+vDDD0NcGwBAc6AHFgBwUgRmhw0MW26MRYsWyTRNSdJFF11Ur2u8Xq+++uorLVu2TFu2bFFhYaF8Pp+Sk5N12mmnaciQIRozZoxSU1OrXTdy5EhJ0vjx4zVz5kz98ssveu+997RmzRrl5eUpISFBffr00bXXXquMjAz7uvLycn366adauHCh9u7dK7fbrU6dOuniiy/WVVdddcKTC5199tn2Pcx79uxRz549G13W7t27NX/+fG3YsEEHDhyQ2+1WYmKikpKSlJaWpsGDB+v8889X165dG1W+1+vV559/rsWLF2vnzp0qKiqSYRhq06aNkpOT1b9/fw0ZMkTDhw9XdHR0tWuPbv/du3frgw8+0Nq1a5WXl6eysjI9/PDDx3wZctFFF2nDhg3KysrSli1b1K9fv8Y1DgAgIhBgAQAnRWD48LnnnquoqMb972bFihWS/PeJduvW7bjnb9++XX/+85+1d+/eY47l5uYqNzdXq1at0o4dOzRz5sxay1myZIkeeeQRud1ue195ebm+/fZbrVq1SnfffbcmTZqkvLw8zZw5U1u2bKl2/a5du/Svf/1L3377rZ588skTCrFer9fedjgaP3Bq/vz5evrpp+Xz+artLyoqUlFRkfbu3as1a9Zox44deuCBBxpcfmFhof7rv/6rxgnDAm2/bds2ffjhh5ozZ47S09NrLevTTz/Vk08+KY/Hc9z3DZ7Ua8WKFQRYAGjhCLAAgCaXl5enn376SVLjhw97PB79+OOPkqT+/fsfd/jwtm3bdMcdd6isrEySNGjQII0dO1bdunVTdHS08vPztXnz5uOuG7pjxw599dVXSklJ0S233GK/93fffafXX39dbrdbTz31lDIyMvS3v/1N27dv1+WXX67zzz9fycnJ2rdvn1577TXt2LFDGzdu1Jw5c/Sb3/ymUW0gSd9//7293aNHj0aVsXPnTju8tmnTRpMmTVJGRoaSk5Pl8/mUn5+vrVu36ttvv230MO2nn37aDq+DBw/W2LFjlZaWpoSEBB05ckRZWVnasGGDPSS8Nlu3btWiRYvUpk0bXXXVVRowYICio6O1e/dudezY8Zjze/ToIZfLpbKyMn3//fe66aabGlV/AEBkIMACAJrcsmXLZFmWYmJiNGzYsEaVsWPHDrv3sW/fvnWe6/V69ec//9kOr3/4wx/sGWqDnXfeebr55puVk5NTa1nbtm1T79699fTTTyspKcnef/rppys9PV2zZs2S1+vVHXfcocOHD+uJJ57QkCFD7PP69OmjoUOHavr06crLy9O8efM0ffp0OZ3OBv38kn8Y9q5duyT5Q3yXLl0aXIYkLV682O55feqpp+z7aoONGDFCN998s4qKihpcfnl5uf3FwIgRI/S3v/3tmCCckZGhX/3qVyorK6uzJ3nXrl1KT0/Xs88+W2227NpmsXY6nerTp482bNign3/+WaZpnlBPNQAgvPEXHgDQ5ALDh4cMGSKXy9WoMoKHAR9v2Z9FixZp3759kvyzLtcUXoN16NChzuP33XdftfAaMGrUKLVv316SdOjQIU2ePLlaeA1ITEzUJZdcYp+3e/fuOt+vJnl5efr73/8uSTIMQ7/73e8aXEZAYMbpxMTEGsNrsLZt2za4/OLiYvvLhoyMjDp7cV0u13GHVN91110NWuopcK7b7VZeXl69rwMARB4CLACgSZWUlGjdunWSGj98WJLy8/Pt7TZt2tR5biAwS9LUqVMb/Z6Sf0hqbSHPMIxqx8aOHVtrOcHn7d+/v0F1cLvdmjlzph08j544qqECobukpESLFy9udDm1adu2rT2b8pdffnlCa7K2b9++xi8F6hL8+xH8ewMAaHkIsACAJrVy5Up5vV45nU4NHz680eWUl5fb2zX1hgb7+eefJfl74uoz2VNdjnd9cF3qmq03+LyGBLqKigrdf//99sRQ559/vm6++eZ6X1+TsWPH2r2es2bN0u23364333xTGzdutIddn4jo6GiNHz9ekrR582ZdffXVeuKJJ/Tll182OLw3Zpbl4AAbPPEWAKDl4R5YAECTCvSGnnnmmUpOTm50OcH3jB5vNtrCwkJJVT2NJyIuLq7O48HDY+saHh18H2ZgKaDj8Xq9euCBB7R69WpJUmZmpv7yl7806v7ZYJ06ddKjjz6qRx55RLm5udq0aZM2bdokyd/O/fr108iRIzVx4sTjfllQmzvvvFMej0cLFy7U4cOHtWDBAi1YsECS/4uFzMxMTZgw4bg9ycfrba9J8JcdjZ3xGgAQGeiBBQA0GY/Ho1WrVkk6seHDkv9+zYDDhw+fUFmRwOv1atasWfbSQUOGDNHDDz9sD809UYMHD9Zbb72lv/71r5owYYK9jI3P59OPP/6o559/XlOnTrXDc0PFxsZq5syZeuONN/Tb3/5WZ599th3wCwoK9Nlnn2nGjBm6//77qwXOozVmAqbgiaeCf28AAC0PX1MCAJrM2rVr7SGpJxpgg5dMOV6ATU5OVk5OTsRO4BMIr4He67PPPluzZ88+ofVjaxITE6MLL7xQF154oSR/z/V3332nhQsX6ttvv9Xhw4f1wAMPaM6cOUpNTW3Ue3Tp0kU33HCDbrjhBvl8Pm3btk0rVqzQ/PnzdejQIX399dd66aWXdMcddzTZz1VcXGxvH2+CLgBAZKMHFgDQZAIBrHfv3kpLSzuhsoLXPP3ll1/qPDewzE5+fv5xzw03R4fXQYMG6dFHH23y8FqT5ORkjR49Wo8//rguv/xySVJZWZmWLVvWJOUHhiffdNNNeuGFF+zh2YsWLWqS8gOysrIkSWlpaYqPj2/SsgEA4YUACwBoEqZpavny5ZL8Ew+dqA4dOqhdu3aSpJ9++qnOc0eOHGlvz5kz54Tfu7l4vV795S9/scNrRkaGHnvssePeh3syZGZm2tuBe4qbUlpamr2ObWPWmq1NYWGhvYTSGWec0WTlAgDCEwEWANAkNm3aZAef4EB5IgKhKisrS0eOHKn1vIsuusgOR5988onef//9OsvNyclpkvqdCK/XqwcffFBff/21pJMbXpcuXXrcUBq4d1mSOnfu3KDy9+/fr7Vr19Z5zoEDB+ye0k6dOjWo/Lps3rzZ3j7nnHOarFwAQHjiHlgAaOH27t1rzzgbEFhfVJKWLFlSbbZgl8ulUaNGNfh9Ar2InTp1atRSKDW58MIL9cknn8g0Ta1du1YXXHBBjedFRUXpr3/9q26//XaVlZXpmWee0ddff61x48apW7duio6OVn5+vrZs2aIlS5aob9++mjlzZpPUsbEeeughLVmyRJI/MN522206cOBAndekpKQoJSWlwe/1/vvv66GHHtLgwYM1ePBgde/eXW3btlVFRYVycnK0aNEiu/e8Y8eODV7+KCcnR3fddZc6deqk4cOHq3///urQoYNiY2NVVFSkzZs3a968efZs0lOmTGnwz1CbNWvWSPLf33vuuec2WbkAgPBEgAWAFm7Tpk2aPXt2rceff/75aq87dux4QgG2KYYPBwwZMkTt27dXbm6uFi5cWGuAlaRevXrpn//8p/785z9r//79WrdundatW1fjuYF7ZkNp8eLF9va+fft02223HfeaG2+8UTfddFOj3s/j8WjlypVauXJlred07txZs2fPrnN5oLrs379f7777bq3HHQ6Hpk6dqiuuuKJR5R/N6/Xqyy+/lOTv9W/sEkAAgMhBgAUAnLDt27fbvYcnOvtwMKfTqcmTJ+vFF1/Ut99+q8LCwjrXlu3Tp4/eeOMNLVy4UN988422bdtm32+ZkpKinj17aujQoRozZkyT1TESzJo1S6tXr9aGDRu0c+dOFRQU2EOK27Ztq169emnEiBEaO3Zso5btGThwoJ599lmtXbtWmzdvVk5Ojg4dOqQjR44oLi5OnTp10sCBAzVx4sQm652XZP9OSNKVV17ZZOUCAMKXYVmWFepKAAAi2yuvvKJXXnlFKSkp+uCDDxq1lmdtSkpKdM011+jw4cO69dZbNW3atCYrG5Ht3nvv1cqVKzV48GA99dRToa4OAKAZMIkTAOCEBYYPn3feeU0aXiUpMTHRDq1z585VaWlpk5aPyLR582atXLlShmHolltuCXV1AADNhAALADghFRUVGjFihG688UZNnjz5pLzHlClTlJ6erqKiIr3zzjsn5T0QWV566SVJ0rhx49S/f/8Q1wYA0FwYQgwAiAg//fSTVq5cqcTERF199dWhrg5CqKSkRO+++64sy9LkyZPrvC8aANCyEGABAAAAABGBIcQAAAAAgIhAgAUAAAAARAQCLAAAAAAgIhBgAQAAAAARgQALAAAAAIgIBFgAAAAAQEQgwAIAAAAAIgIBFgAAAAAQEQiwAAAAAICIQIAFAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACLC/we6Dytf3icDWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADF70lEQVR4nOzdd3wUReMG8Gf3Snqn9w5SVBQLgoIIKiIiiqCigF3symvBLlYs+LP7yisCgogNO4o0FaSoiKB0CL2HkJB+dzu/Py637N3t7u0ll+Queb6fTz6E3NzuXHK3s8/O7IwkhBAgIiIiIiIiinJyTVeAiIiIiIiIyAoGWCIiIiIiIooJDLBEREREREQUExhgiYiIiIiIKCYwwBIREREREVFMYIAlIiIiIiKimMAAS0RERERERDGBAZaIiIiIiIhiAgMsERERERERxQQGWCIiIiIiIooJDLBEREREREQUExhgiYiIiIiIKCYwwBIREREREVFMYIAlIiIiIiKimBCRALt9+3ZIkgRJkjBmzJhIbLJO6tu3r/p7JCIyMmbMGPVYsX379pqujmrq1KlqvaZOnVrT1aEIUxQFp556KiRJwp133lnT1aEYsXjxYvW48OSTT9Z0dYiiRqtWrSBJElq1alXTVYm4G2+8EZIk4ayzzoIQIuLbr7Ye2KlTp+LJJ5+sUwevL7/8Un3NR48erenqUDm324358+fjoYceQr9+/dC4cWPExcUhOTkZbdu2xZVXXokvv/wSHo8nrO3+888/uPPOO9GpUyckJycjLS0N3bp1w0MPPYQdO3ZU0ashorrk4MGDmD59Oq6//np0794d6enpcDgcyMrKwmmnnYZx48Zh/fr1VbLv9957D6tWrUJ8fDzGjx+vWyaSx1ftBRErX4sXLzbdXk5ODubNm4fnnnsOl19+OVq2bOn3/Kqwfft2fP755xg/fjzOP/98ZGVlqfvr27dv2NvLzc3FpEmT0L9/fzRq1AhxcXFITExEixYtMHjwYLz//vsoKSmxtK28vDy89NJL6Nu3Lxo0aACn04nGjRujT58+eP3111FUVBR2/aLV4MGD1d/7+++/H/bzd+7cCZvNBkmSkJmZafl37LN//3588sknuP/++9GvXz907NgRWVlZcDgcyMjIwMknn4yxY8di6dKllrfp8Xgwc+ZMXHrppWjWrBni4uKQmZmJk08+GY8++ih27txpeVtCCHz33Xe4+uqr0b59eyQnJ8PhcKBevXo466yz8PDDD2Pr1q1hvWYz+/btwzfffIMnn3wSF198MRo3bqz+fSoa5nbs2IGHHnoI3bp1Q1paGpKTk9GpUyfceeed+Pfff0M+3xcmw/0KddyJZp9//rn6Os4+++wKbaN///7qNmbPnq3+/JFHHoHdbseyZcswY8aMSFX5OBEB2dnZAoAAIEaPHq1bpk+fPmqZumL06NHqa87Ozg5Zvi7+jqrbwoULRWZmpvp7Nvs67bTTxJYtWyxt96WXXhIOh8NwWykpKWLWrFlV/Oqorgj32FJdPvjgA7VeH3zwQU1Xp9a58847hc1mC3nskmVZjBs3Trjd7ojtu7CwUDRq1EgAEHfddZdumUgfX7XvJytfixYtMtzWmjVrQj4/0l5//XXT/fXp0yes7c2dO1fUr18/5Oto3bq1+PPPP0239cMPP4isrCzT7bRp00b88ccflfgNeC1atEjd5hNPPFHp7VXE559/rtahd+/eYT9/woQJ6vNvu+22sJ//4IMPWn4fX3bZZeLYsWOm29uyZYs46aSTTLeTnJwspk+fHrJuhw4dEn379g1ZL6fTKSZOnBj2aw/09ddfm+6nZcuWYW9zxowZIjk52bTukyZNMt1Gy5YtwzreABCSJInt27dX8DdxfJ8Vec2RUFpa6nccsHrO67Njxw4hSZIAIDIyMkRJSYnf49dff736+kpLSyNZdWFHBLRq1apKuofrmli+ihMr9uzZgyNHjgAAMjMz0b9/f5x55plo3LgxXC4XVq5cienTpyM/Px+///47zj33XKxcuRKNGjUy3Oa7776L+++/HwDgcDhw7bXXok+fPnC5XPjxxx/x2Wef4dixY7j22muRnp6OCy+8sFpeK9VeU6dO5RDdOmjdunVqz2WXLl3Qr18/dOvWDenp6Th48CC+++47zJ07F4qi4JVXXkFeXh4mT54ckX2//fbb2L9/P2w2Gx544AHdMlVxfPW588470a9fP9MyXbt2NXwssMfXZrOhU6dO2LZtG4qLi0PuvyIC95mQkID27dtjzZo1YW9r5cqVGDJkCMrKygAAbdu2xbXXXovWrVvD7XZj8+bNmDJlCg4ePIjs7Gz0798fa9euRdOmTYO2tWjRIgwePBgulwsAcOaZZ2LEiBFo0qQJDh48iDlz5mDhwoXYtm0bLrzwQvz2229o3759BX4D0WPw4MGoV68eDh8+jCVLlmDr1q1o27at5edPmzZN/f66666rUB0cDgdOPfVU9OjRA+3bt0eDBg1gs9lw4MAB/Prrr/jiiy/gdrvxxRdfICcnBwsXLoQsBw+U3LdvH/r27Yvdu3cDAFq0aIHrr78enTp1QlFRERYtWoRZs2ahoKAAY8aMQWJiIi6//HLdOrndbgwcOBB//PEHACA+Ph6jRo3CSSedhIyMDOzatQvffPMNlixZgrKyMjz44INITk7GbbfdVqHfARD8uXA4HOjatSv++uuvCm3vu+++w+jRo+HxeCBJEoYNG4YLLrgADocDP//8Mz788EOUlZXhvvvuQ0pKCm688Ubd7bz33nuWRh3MmTMH06dPBwCce+65aNmyZYXqHQ2cTidGjhyJ119/HYD33OLpp5+2/Pxp06ap+e/qq69GXFyc3+Pjx4/HlClTsGPHDkyZMgW33npr5Cof0Thsoi72LkZrL0ld9uGHH4pu3bqJjz76KOhKkc/u3btFly5d1L/dqFGjDLe3d+9ekZiYKAAIu90ufvrpp6Ay2l6E5s2bi+Li4oi9HqJowh7YqnX++eeLkSNHmvaKffrpp8Jut6t/hwULFlR6vy6XSzRv3lwAEOeff75huUgfXyP5ftqyZYsYNWqUeO2118TSpUtFYWGhEMK/1yXS5syZI26//XYxZcoU8ffffwu32+03Yi2cHth+/fqpz7vuuuuEy+UKKlNYWCj69++vlrv77ruDypSUlIgWLVqoZR566CHd/b366qtqmX79+lmup55o6IEVQoi7775brcdjjz1m+Xm//PKL+ryuXbtWaN/Z2dkhe1VXr14t6tWrp+7r448/1i03fPhwtcx5550nCgoKgsosWbJEPTfJysoSubm5utuaPn263/mJUW/ie++9p5arV6+e7vvPqqVLl4qbbrpJvPvuu+L3339Xe+Z82w+nN7KwsFA0adJEfe7UqVODysybN089JiYnJ4v9+/dXuO5CCHHGGWeo+5sxY0altlXTPbBCCPHXX3/5/e4VRbH83LZt26rPNWqXzjrrLAFAdOzYMaxth8IAW4UYYKNPbm6upQ/Q2rVr1b9dQkKCerIT6J577lHL3X///Ybbu+KKK9Ryb775ZoXrTxTNGGCr1pEjRyyVGzdunKWAaNWcOXPU7ZkNSYz08bU63k9VGWD1VCTAlpSUqEPH7Xa7OHr0qGFZ7e/2lFNOCXr8448/Vh/v0aOH6d/roosuUsvOnz/fUl31REuAXb16dYVO1H3DIAGIV155pUrrOGnSJHVf1157bdDje/fuVYdsJiQkiAMHDhhu68UXX1S39eijj+qWGTlypFrmrbfeMq3bqaeeqpZds2ZNeC/MgooE2P/7v/9Tn3fFFVcYlrv//vvVcv/5z38qXMd///1X3U5aWpooKiqq8LaEiI4AK4QQJ598ctgXPbUXdrp162ZY7q233lLL6XXyVFSVz0Lsm1n3559/Vn+mdxO00eROiqLgk08+wYgRI9C6dWskJiYiJSUFnTp1wtixY7F27VrTuj355JNBN1ovWLAAV111FVq3bo34+PigmTzdbjd+/PFHjBs3Dr1791YnN0hJSUGHDh0wZswY/PLLL4b79M0Qqh1y0rp166DXbPS7sjKZxIoVK3DzzTejY8eOSElJQVJSEtq2bYvRo0dj4cKFIZ8fOIlEYWEhXn75ZfTo0QMZGRlISkpCly5dMH78eOTm5obcXqxIT0+39Pvt2rUrOnXqBAAoLi7Gli1bgsoIIfDpp58CQMhZOe+66y71e+1N7tVh2bJlGDt2LDp37oz09HTEx8ejRYsWGDFiBL777jvT5+rNHrlz506MGzcOnTp1QlJSEtLT03HWWWfh7bffhtvttlSngoIC/N///R8GDBiAJk2aqJNPnHbaaXj88cdx6NAh0+cHflY8Hg+mTp2KAQMGoGnTprDb7boTQRw4cAAPPPAAOnfujKSkJGRmZuL000/HK6+8og4dMpoV8IcfflD3qf17mrnrrrvU58ydO9fSc6wINQtxVf3dvv32WwwePBiNGjVCfHw8WrVqhZEjR2LZsmVhv4aysjK8//77uOSSS9C8eXPEx8cjPT0dJ554IsaNG2c4u/LGjRuRlJQESZKQlpaG7Oxsw33k5uaiRYsWkCQJNpvN9LgdCzIyMiyVu+KKK9TvQ7WRVnz44YcAvENghw4dalguksdXOi4nJ0cddtmgQQOkpaUZlu3QoYP6fWFhYdDj2vODa665xvTvNWrUKPX7jz76KKw6V4RvWK8kSZBlGa+++qpuuR9++AFjxoxB+/btkZKSgsTERLRt2xZjxozBkiVLDLd/0kknoXv37gC8E/4sWrQoZJ2KiorUdt5ut+Oaa66pwCuzrnPnzur3+/fvD3p88eLF6pDNCy64AA0aNDDclvbvN2vWLN0yBw8eVL8PNUw81HurJmjPp+6++27Dcnfeeaf6Xv/kk08qvL8PPvhA/f7KK69EQkJChbdllcfjUWf09Z235+XlBZXbuXMnHnnkEZx++umoX78+nE4nGjVqhAEDBuCdd95Rbz/Qox0Wb/X2JG05s2H1I0aMgN3uvWPV15ZERCRSsNkkTtqeV7MvvatyW7Zs8bsqoPcly7LpUJAnnnhCLbtw4UJx++23625H20Nq5WZ232vVuylZ2/Ma6vlGvysjLpdL3HTTTSG3PXz4cNMrQ75yffr0EVu3bhWdO3c23FbLli3rZA/yaaedpv4Oli9fHvS49kp3qGFFHo9HpKamqu/Z/Pz8qqq2qqCgQIwYMSLke2XQoEGG9Qm8cj537lyRnp5uuK0BAwYYDh30+f7770WDBg1M65SSkiK++uorw21oPys5OTmid+/euu9brYULF4qMjAzDfXbr1k3s3LnT8Iqox+MRrVu3FoB3soJQQ8GLi4vV/bVo0UJ4PB7T8uEINboj0n83t9ttelyTZVlMnDjRco/Z77//rv4ujb6cTqd49913dZ+vHc7Ws2dPw8mKhg0bppZ75JFHTH+ntYm2l6BTp06V2lZJSYk6FPGcc86JUA1DH1+FYA+sT3FxsToE0uFwmPbA/vPPP+r2L7300qDHtb2qc+fONd3vqlWr1LKNGjWyVFc9VnpgV61aJRo2bCgAby/zhx9+GFTm4MGDfkOpjb5uuOEGUVZWprsf7cRaVkYnaIfYDhkyJJyXXSHa3iq9Hlhtr+qDDz4Ycnu+8w4AYsOGDUGPX3PNNerjoXpge/ToIQAIm80mcnJyrL8oi4zabiN5eXlqb3RaWlrINlZ768K///4bdv1cLpf6HgUgVqxYEfY2AoXqgS0uLhaXXHKJ32da79zjueeeE3Fxcaafi/bt24uNGzfq7ufw4cPC6XQKACIpKSnkcPfCwkKRkpKiHpMOHjxoWr579+4CgMjMzIzYuVCVB9hff/1VzJkzx++NM2fOnKCv9evX+z1vy5YtfvcC9O7dW7zwwgti1qxZYsaMGeLee+/1Oxk1OihqA+zAgQPVA/FDDz0kZsyYIaZOnSpuu+02sXfvXvU5Z5xxhkhOThZDhgwREyZMENOnTxeffPKJeO2118TNN98skpKS1G3q3WPy559/ijlz5ohzzz1XLfff//436DUHzhJoJcBeeeWVapn4+Hhxyy23iGnTpokZM2aIe+65R31DARAXXHCB4RAZX5nu3buLTp06CUmSxJAhQ8Q777wjZs+eLZ5//nm/+2TOPvtswzrVRqWlpX4n/Pv27QsqM2vWLMP3vR7t3zcSBz4zJSUl4swzz1T317ZtW/Hwww+LDz/8UHz88cfimWeeER06dFAf79evn+5BRXviMWTIEJGYmCgSEhLELbfcIqZOnSpmzZolxo0b5/eZMLug9Nlnn6lD4RwOh7j88svFG2+8IT755BPxv//9T4wcOVKdzVmWZcOhLNrfpe9zfdJJJ4kXXnhBfPzxx+K9994Td9xxh1r+33//VU/Cfe/7V155RcyePVu8/vrrolevXmoYatq0qWGD8txzz6nbCHXvy4cffqiWfeqpp0zLhiucABuJv9ttt93mFyxvuukmMW3aNPHhhx+KO++8U/3dXnrppSEDx2+//aaWlyRJXHjhhWLSpEli9uzZYurUqeKWW27x+1sZbefyyy83rfv//vc/9fEzzzyzUvdsxZrZs2f7tQOVsWDBAnVblRl6p2Xl+CqEf4A97bTTRMeOHUViYqJITEwULVu2FMOGDRMzZsyo1N82FgKsEEIMGjRIfd71119veA/sgAED1M+W3qzMvuMlEF6ABSAOHTpkub5aoQLswoUL1aCVmJgovv/++6AyOTk5fvfbnXTSSeKpp54SM2fOFLNmzRKPPPKIeuw2a5PDPVHXBuYvv/yyIi/fsi1btvi9hjlz5gSVmThxovp4uAH2008/DXr8008/VR+3eg/smDFjwn5tVvi2bzXALlu2LKzPkrbdnD17dtj1++qrr9Tnd+nSJezn6zELsLm5ueLss89W93nDDTfoXqzV3sqWnp4ubr31VvH++++ruUWbRRo1amR4vNW2qVOmTDGtt/bCjt6FskBjx45VyxtdsAxXVC6j4/F4xCmnnCIAiLi4OPHJJ5/oltu/f7/aQyvLsvjnn3+CymgDLOANwnl5eab7nz9/vmnv5eHDh9UeH1mWxbZt23TLRXoZHe29Kw0bNtS9grR9+3a/ng2j+y21vxOn0ym++eYb3dep3VZlQldhYaHuhYuKfIVaHiAStOFD7z4iIYR46qmnTBvlQKNGjVLL611djqTAe3P1TnbKysr86vTOO+8EldGeeADensRNmzYFlVuxYoXaQ6A3lboQQuzcuVNtTFu0aGF4D82KFStEWlqaACCaNWumeyU9cGTHPffcY3pVT9tDe9ttt+mWDTxW6DUo+/fvVwN2qAbznHPOEYD3avWuXbtMy4YrnABb2b+b9j6X9PR03YkaNmzYoC6xYhY88/Pz1cmA0tPTxeLFi3Vf3+bNm9ULaElJSbonzkeOHBHNmjVTf8e//vqr+tjGjRvVcJ6amiq2bt2qux+r1q9fH7HjV0VDQDjOO+889e/w+uuvV2pb2os2eifAFWHl+CqE9WV0OnbsKP7+++8K1SVWAuymTZv8Rq60bdtWPPnkk2L69OliypQp4qGHHlJ7h+Li4gxPQK+77jp1G6+99prpPrXnHADEkiVLwnmpKrMA+9lnn6k9R5mZmeK3337T3Ybv4pgkSeL//u//dMscO3ZMnH/++eq+jAK6dmSG2Yn69u3b1R6+Bg0aROwiWHZ2tno8+Oyzz8S7774rxowZIxISEtR6XXfddbrPnTZtmlpm6NChpvvZv3+/39/vmWeeCSqjKIoYOnSoWiY+Pl7cfPPN4u233xazZs0SL774ol/7OXTo0JChv6LM2l492t+FlU6Exx9/XC3/9NNPh12/IUOGqM+P1L3QRgF27969olu3bur+jCZb+/LLL9Uy/fv3F4cPH9Yt9+6776rlRowYoVvm22+/VcuEGm2jDcVmo+V8pk6davm4Y1VUBljtel2hGt+NGzeqPTo33XRT0OPak9KkpCSxZ88eS68plK1bt4b8IEQ6wPq64AHoXqH0WbFihXrQbdmype4VG+1BbcKECYbbmjx5sqVyoWjfI5X9snKgqowjR46Ixo0bhzxpu/fee9Uyb7zxRsjthlu+ovbu3ateYb7ssstMy5aVlYk2bdoIwDu8JFBgEPrll18Mt6WdDEKv3J133qmGjb/++su0Xu+//766rZkzZwY9rv2snHrqqabh9ffff1fLdu3a1XRtTO12jRpR7YRceqFQCO9xyVdm0KBBpq+1IsINsJX5u2kbbb0ZHn20jR+gH2BfeeUV9fGvv/7a9DVqe/6effZZ3TKLFy8Wsiyrf6/c3FxRVlbmN9lIJC4WBV7cqMyX2VqlkaAdGdKwYUPdGUrDcfXVV6vbi8TELVaPr0J4A6zdbhd9+vQRjz32mJg2bZr49NNPxdtvvy2uueYaER8fr24nJSWlQiE2VgKsEN5A1b9/f7V91/saO3as2Lx5s+E2tCMTTjvtNNOJjLS9vgDEt99+G1Z9fYwC7Lvvvqt+fps2bWo4rPPPP/9Un3/fffeZ7uvIkSPqBdABAwbolvnuu+/U7ZmdqGsvUofabzjeeecdw79fu3btTIfybtmyRS2bmJhoOnTzpZde8tu20QgKt9stHn74Yb8RfIFfp5xyivj2228jOotsoFBtb6DXXntNfc64ceMiXl7rwIEDfsP4Qw2ZtUovwG7atEm0atVKAN4LNq+++qrh80888UQBeHvPQx3rr732WvUcbOfOnUGPu91u9dgsSZLhhV/thZ2GDRtaurCzYsUK9Xd/ww03hCxvRUQmcYo0302+qampuOmmm0zLdujQAaeffjoAYN68eaZlL7/8cjRp0iQidWzTpo26dt2KFSsisk0z27dvV9fI6tatGwYOHGhY9vTTT1fXy9uxYwf+/PNPw7I2mw133HGH4ePadffWrVsXbrVjjsfjwZVXXol9+/YBAAYNGoRhw4bpli0oKFC/j4+PD7lt7c3+x44dq2RNjX3yySfqzfr/+c9/TMs6HA6MGDECALB582bDiXMAoHv37jj77LMNHzd7rwghMHPmTADAeeedh5NPPtm0Xtqb/kN9rm+//XbdtfJ8vvrqK7+yNpvNsKzZJBA+2nXM/ve//+mW0f785ptvDrnNqlSZv1tpaak6+VTDhg1NJzAZNGgQTjjhBNO6+I7tHTp0wODBg03L9uvXTz1eG70H+vTpg4ceegiA91h366234tFHH1WPeSNHjqzySVeiybp16/zeb2+88QaSkpIqtc0dO3ao32dmZlZqW+EcXwGgd+/e2LFjBxYvXowJEyZg1KhRGDZsGMaOHYsPP/wQmzZtwmmnnQbAe0wdMWJE0BqTtUnLli0xadIkXHLJJYZlpk+fjhdffNGwjRk2bBjS09MBAL///jsef/xx3XJvvvlm0CR/+fn5Fau4jgkTJuDWW2+Foijo2LEjfvvtN78JjLR8xw1JkjBu3DjT7WZkZOCiiy4CAPzyyy8oLS0NKnPBBReox5Zff/1VdyI4IYS61idQ8bVfw+FwODBgwACcccYZhmXatm2Lc889F4B3gqmRI0fqrl26fPnyoMlRjf5+NpsN999/Px5//PGgdTx9Vq1ahRdeeKFCE/ZVleo8B/vwww/VyQ4vvvhi1K9fP6znW/Xnn3+iV69e2L59O+x2O6ZPn4577rlHt+zff/+trik9duzYkMd6X1vo8XiwYMGCoMdtNhuuvfZaAMHvfy3t2q/XXHONeq5mRjsBobZNqYzQe60Bv/76KwCgcePG+OGHH0KW952Q7tixA8XFxYazgpmdxAXKz8/HzJkz8f3332Pt2rU4fPiw4axrvsWkq9LKlSvV788///yQ5c8//3z1DbpixQo15Afq0KGD6cyW2kXQKzMbcatWrdQ3fDS7++671ZPlFi1aWJ6NLZr4Pj+A97355ZdfmpbX/l3Xr1+vO3sv4F3s3ozZe+Xff//FkSNHAAApKSkh6wQAycnJOHr0KNavX29aLtTn2rdAOwC14Tfim5XbzLnnnosOHTpg06ZNmDZtGp555hk4HA71cZfLpc5A3qRJEwwaNCjkNqtSZf5uf//9t3oxpE+fPqbhH/BenDD6e+Xl5amNbcOGDS2/BwCYvgeeeuopLFiwACtWrPCbkbJ169Z4++23Q+7DiieffNJwpvxosX//fgwePFg9Mbvtttv8ZiOuKN/nFqh8gA33+NquXTvTx5s3b465c+eia9eu2L9/PzZs2IDPPvtMvShXm7jdbtxzzz146623YLfb8cADD2DUqFFo164dXC4XVq9ejUmTJmHOnDmYPHkyVq5ciXnz5gXNUpuWloZXX31VDWTPPPMMFi5ciOHDh6NJkyY4dOgQ5syZg/nz5yMhIQHp6enqBQezC4VWKYqCO+64A2+99RYA4LTTTsP333+PevXqGT7H16alp6f7nQsZ8YXW0tJSbNu2LejCms1mw6hRo/DCCy9ACIFp06YFfb5//fVXbN26FQDQo0cPdO3a1fJrDOXWW29VL4SWlZVh3759WLRoEV588UW88847+O9//4tnnnkG48eP133+66+/jjPPPBOFhYX46aef0KVLF1x//fXo2LEjioqKsHjxYnz00UdwuVxo06YNtm3bBsD47/fDDz/gyiuvRF5eHvr27Yvx48fjjDPOQEJCAnbu3IlPP/0Uzz77LJYsWYLzzjsPH3/8MYYMGRKx30cs0M4+fP3111fJPubPn4+hQ4eioKAAiYmJ+Oyzz0w7q7TneqWlpSHb1D179qjfG7Wp1113HV588UUA3othTzzxhN9M5RW9sJOVlaV+H6mVTaIuwBYUFCAnJweAd7kEsyn79eTm5hoGWO2JmplFixbh6quv1p3CXE8kr0oa8TUggP9U5ka0ZbTPDWTWaADwuxpXUlIScr+x7JFHHlEb1YYNG+Knn34y/f34Tq4Ba7+b4uJi9fuUlJRK1NScthd1+PDhYT3X7MBSmfeKtk6ff/45Pv/884jUCQj9ud67d6/6fZs2bUzLZmRkID09HUePHjUsI0kSbr75ZvznP//BgQMH8M033+Cyyy5TH//666/VpQmuu+66kKGvqlXm76b93YUKE6HK7Nq1C4qiAPA2vNrGNxSz94DdbsdHH32Ek08+WQ1vvp+lpqZa3kcsO3LkCM4//3z1RHXYsGF4/fXXI7JtXxiw2WyVWjIi3OOrVVlZWbj77rvVk/3vvvuuVgbY0aNHq0vZfP755369sHFxcejduzd69+6N++67D6+++ir+/vtv3H777eoSMFpjxoxBQUEB7rvvPrhcLvz222/47bff/MqkpKRg5syZeOKJJ9RzCKvLOJl5/fXX1SVA+vfvjzlz5vi1pXp87Udubm6Fzgn1jBkzBi+88AIA/RN17cUVvcAyb9483Z5Pn0svvdRS/ZxOJ1q2bIkxY8bgyiuvxMUXX4wFCxbg4YcfRlpaGm677bag53Tt2hVz587FsGHDcPDgQWzfvj2oJ12SJDz++OM4duyYuhyR3t/vhx9+wKBBg6AoCoYNG4bZs2f7Bd127dph/PjxOO+883DOOeegpKQE1157LTZt2qSOQqwp1XUOtnLlSvz7778AvB1rZqGyog4cOIBBgwahrKwMGRkZ+O6779CzZ0/T52jPq5566qmw9mf0uejUqRN69uyJZcuWITs7Gz///LPfhX3thZ3TTz8dXbp0sbQ/bVus/TtURtQNIdZb2ygcZuscWWl8N2/ejEGDBqnhtWPHjupVz1mzZmHOnDnql28IQXUMWdIOd7AyJEz7wTYbKhGJK6q1wTPPPIPnnnsOgPeEf/78+SEvFPiGYQHA4cOHQ+7Dd2Em8LmRVpnPkNnnpzLvlaqqExD6c+0bOWG32/16So1Y+XyNGTNGDX6TJ0/2e8z3f0mScMMNN4TcVlWrzN9NO0QrMTExZHmz311l3gMul8v08Xr16vn1DrZp0wannnpqhfcXS/Ly8nD++eer670OHjwYH330UcQunPje5x6Px/SE3UxFjq/h0J5gbdiwIWLbjRYrV65Uw+uFF15oOoT42WefVYPK559/7ncRSuuOO+7Ahg0bcO+996Jbt25ISUlBfHw82rVrh7vuugtr1qzB4MGD/dqtSAQW7ZrThYWFlkZmVUX70bFjR5x11lkAgOzsbL81oouKivDZZ58B8A5Nveqqq4Kef/PNN2Po0KGGXxURHx+PKVOmqMfsp59+Wr3oF+jss8/Gpk2bMHHiRPTu3RuZmZlwOBxo0qQJRowYgV9//RVPPfVUyL/fuHHjoCgKZFnGa6+9ZthenH766RgzZgwA7zllNIxOq65zMG3v66hRo6rkorQQQs0SZWVlIc97gKo7r9L2qvpGk/lYXfs1kLaukVo7N+p6YLXB65xzzsHPP/9crft//vnn1asDjzzyCJ5++mnDhb5D3Z8bSdqrRVYWkNaeeFZlb59VRUVFIe9ltKpFixY45ZRTIrItAHjxxRfx2GOPAfBeofzpp58sDRfSnoCZ3Tvqox33H8mTt0C+z5AkSXC73VFxkUL7uX788cfDvlpYGb5Q5Xa74XK5QoZYK5+vrKwsDBs2DDNnzsS8efOwc+dOtGjRAjt27MBPP/0EwNu70Lp168q/gBqk/btZCS9mvzvttkaNGhXUMFbGbbfd5vf52rRpEx599FFMnDgxItvfsGFDxIJR7969I9LzCHhPJC+44AL1nt8LLrgAn376qaULNVZpLwwcOXLE0oUMrYoeX8OhHZ5mNnoiVmnvRe3fv79p2YSEBJx11ln47rvvIITAH3/8YRh427Rpg0mTJhluq6CgALt27QLgvYBldI9qOO6++26sX78ec+bMwbJly3DBBRfgxx9/ND1P8d1O4jvGRsp1112n9jxPnToVffr0AQB89tln6oX/Sy+9tEovOAdq0aIFTjjhBPz777/Yv38/Nm7caDi3QFpaGh544AE88MADhtvTzmvgu1/cJzs7W328c+fOIeeI6d+/P/773/8CgKWh3FWtOs7BSkpK8PHHH6v/r6rhw40aNcLEiRMxcuRIFBYWYtCgQfjuu+/U96QebZu6cOHCkLdIWTVixAjcfffdKC4uxmeffYY333wTSUlJKCwsVEd0xMfH48orr7S8zUjeiuITdQE2LS0NycnJKCgoqJZ7SwPNnz8fANCgQQNMmDDBMLweO3bM7w9S1Ro3bqx+v3nz5pDltWUiNXFVZRw8eLDCVyUDjR49OmJX/1599VU8+OCDALzvvR9//DHkBEM+2pMws4myAO99P75JuGRZDjnZTWU0bdoUq1evhhACe/bsQfPmzatsX+HUyae6P9dNmjRR773ctm0bOnbsaFg2NzfX8gnwrbfeipkzZ0JRFEyZMgVPPvkkpkyZol4xr+nJmyJBe+zYsmVLyPJmZarqPTBz5kx1grBTTz0Vhw8fxo4dO/Dyyy/jggsu8JukqqI+/vjjiF10WbRokaV7rUMpKCjAwIED1UkE+/Xrhy+//NJwEpaKatWqFZYuXQrAexLSrFkzy8+tzPE1HNU1uqWmaHtRrQyLT0tLU7+3ckHOyC+//KL2kPbs2dPSZC2hOBwOzJ49G1deeSW++OILSyG2adOmOHr0KA4ePGjpIqRVw4cPx9133632uPpO1LU9bka9TFYCU0Vpfw+VuSCTm5urtn1JSUno3r273+M19b6KlM6dO0OWZSiKgtWrV6s9yUa082FYvYj2xRdfqH+DXr16VWnnw4gRIyBJkuUQW1VtampqKi6//HLMmDEDBQUF+OyzzzB69Gh89tlnaufY0KFDwzrWavNSy5YtI1LPauua0b6pQg0ZOeeccwB4TzatnDRF0oEDBwB4JwAx+yDMnz/fcGiHTzivORTtJEy+Hh4z2t5Oowmc6rq33noL9913HwBvgzF37tygK5RmunTpop7M/fvvv6YHkN9++029V7pXr15V2iuuPdhFqte7srp37642kAsWLAj52YmkHj16qN8vWrTItOzixYstb7d3797q/R9TpkyBy+XClClTAHgvgNWGSS5OOukkOJ1OAMDPP/8c8nYJvZkNferVq6f24CxfvjwicwdkZ2er94glJSVh1qxZmDFjBmw2GxRFwahRo/zCTW1RVFSEiy++WA2W55xzDr755htLM3GGS3uit3HjRsvPq+zxNRzakVpVeYJZU7Thwtcjakbb06TtnQ6XNshF8nYIX4i9/PLLAUANsUbHBF+bVlJS4jfUt7J8J+qA94LQ559/ju3bt6vvp2bNmoXs8Y40IYR6jyEQeg4DMx999JE6VHTkyJFBx4eael9FSmpqqjpJYV5eHpYvX25YdteuXWpvc4sWLSyPJvC16UDV9b5qDR8+HDNnzoTdbkdhYSEuuugiw5GoVXmupzeMuKLDhwH/SaNOPPHEylWuXLUFWG1Xd6grN6NHj1a/N5rivar4hkdt27bNMHR6PB71fh4z4bzmUFq1aqUOm/37779NQ+wff/yBhQsXAvBe6YiGe8F8sxBH4isSva+TJ0/GnXfeCcB74vv999+HvGE+kCRJ6iyfQgi88cYbhmW1E6pU9QQjV155pRo6Jk6cGBVXSm02G0aOHAnA2wgaLT9TFbRB8q233jINYa+99lpY277lllsAeBvHe+65R72IMXr06IgO46wpcXFx6pIUBw4cUO/D0zN37tyQM0b7ju1FRUXqBCoV5fF4MHLkSPWk9/XXX0f79u3Ru3dvPPzwwwC8sy7eeOONldoP4J2FOFLHr8r2vpaUlGDIkCHqSU2vXr3w3XffhT201yrtkh5Wl4yLxPHVqiNHjvh9bn3v19pEexHh008/NT2Gbd++Xf07ybJc4dttFi1apN4H2qZNGzXoRYrdbsfHH3+sLqO0bNkyXHjhhbohdtSoUer3Tz31VETnHdGeiE+dOtVviZDRo0dX+y04X375JQ4dOgTAO9lZ27ZtK7SdgwcPqqNGHA6H7lIs7dq1U0Ptrl27gibyCqQdSqu9MFyTtOdTZu33G2+8of5drU5uuWPHDvVcOjk5OexJMStq+PDh+Oijj2C321FUVISLLrpI9+J6jx491Ivos2fPVieaioRzzz1XXZFi8eLFWLx4sdrmNG/eHOedd15Y29O2HWbLRIUlEovJahfmHj16tG6Zu+66Sy3z888/m27P4/GI0047TS1/9913i9LSUsPyRUVF4oMPPhCzZs0Keky7AL2VBeQHDBiglp80aVLQ42VlZeK6667zW+DZaNHlSZMmqWWmTZsWct99+vQxXVB99uzZ6uONGzcW69evDyqzY8cO0bZtW7Xcm2++qbst3+NWFlIPp2wsmDZtmroIc2JioqX3hZE9e/aIxMREAUDY7XYxf/78oDIffPCB+jts3ry5KC4urkTtrRk3bpy6z3PPPVfs27fPsKzH4xE//fSTePrpp4MeM1qAXk+osrt27RLp6ekCgIiLiwv5mThw4ICYMGGC+Pvvv4MeC/VZCdS7d2+1/G233SY8Hk9QGe2xwuxzrXX06FH176/92rRpk6V6VdTo0aPVfWVnZwc9Hsm/26+//qo+npGRIf7666+gMps2bVIXQPd9ffDBB0HlCgoK1IXbJUkSL774ou7fwufo0aPitddeEz/99FPQY4899pi6r2HDhvk95nK5RM+ePdXH//vf/5r+DmJFaWmpuOiii9TXdcYZZ4i8vLwq3WdJSYlISkoSAMTZZ58dsnykjq+//fabmDx5sigpKTEss2vXLnH66aerv4/27dsLl8sV1n5878dwToe05zzhnkZpn2u1TT106JD6NwAgxo4dK9xud1C5nJwcccYZZ6jlLrroIt3tbdu2TezYscNwf/PmzRNpaWnq57QybaQQ5scYl8slhg0bpj5+5pln6r6nL7/8crXMiBEjTN/3LpdLfP7554bnP1qKoohWrVqpr7Vhw4bqfjZv3hz2a9WzefNmMXHixJCf1Z9++kltI82O3UVFRWLFihWG29myZYs48cQT1e08+eSThmVHjBihlmvXrp3h++LZZ59Vy8XFxYldu3bpltN+LvTaJjPhtL0+hYWFokmTJupzp06dGlTmp59+Ena7XQAQycnJYv/+/Za2/eSTT6rbve666yzXKRy+44/ea/7000/VehsdS7/++mu1ji1atBArV6403d+///4rbr31Vkt1054Tadv3Rx991NLztbp37y4AiKysLNM2PxzVdg/seeedp/ZC3XDDDbj33nvRsmVLdTavdu3aqUswyLKMzz//HD179sSePXvw2muv4ZNPPsEVV1yBk046CWlpaSgoKMDOnTvxxx9/YMGCBSgsLMTTTz9d6Xreeeedau/mfffdh8WLF+OCCy5AVlYWNm/ejOnTp2Pz5s0499xzsXnzZtNho9orFA888AAOHTqEjh07qveRNG3aFN26dbNct+HDh2POnDn4+OOPsW/fPpxyyikYM2YMevbsCZvNhj/++APvv/++egXz/PPP152CvS6bO3curr/+evVK3PXXX4+jR4+GXD/rlFNOQYsWLYJ+3qRJE7zyyisYO3Ys3G43Bg4ciFGjRqFPnz5wu92YO3euehXbbrfjvffeMx3mp73nOjs723BN1lCef/55rF69GgsWLMCiRYvUK+g9e/ZE/fr1UVZWhv3796u9+fv378d5552HRx99tEL7s6JZs2b4+OOPcckll6C0tBSjR4/GpEmTcMkll6B9+/ZISEhAXl4eNm3ahOXLl2Pp0qXweDwRmZjgv//9L0477TQUFRXh7bffxrJly3DNNdegWbNmOHDgAGbPno2lS5eiZ8+e2LlzJ/bs2WPpyntaWhpGjBjhN9Sub9++aN++faXrHC169+6N2267DW+//TZyc3Nx5plnYvTo0ejduzdkWcbKlSvx/vvvo7CwEJdeeqnpZykpKQlffvkl+vTpg/z8fDzwwAP473//i8svvxydO3dGcnIy8vPzsW3bNqxcuRKLFy9GWVkZPvzwQ7/tLFmyRB0F06xZM7z33nt+j9vtdsycORMnn3wy8vPzce+996JPnz6m9z/HgjFjxuD7778H4B2WO3bsWLWHwIzVJT30xMXF4cILL8Tnn3+OP/74AwUFBYbLnkTy+HrgwAHcdNNNGDduHC644AKceuqpaNq0KeLj45GTk4OlS5fis88+UyddTElJwezZs03v03z//feRnZ3t9zPtPYaBx7+MjAyMGzfOtO6hBG5TOxtndnZ20OOnnHKK37JcgHcY6bPPPqv2or3zzjv45ZdfcPXVV/utAztt2jS19y4tLQ2vvPKKbp3+/PNPXHnllTj77LPRt29ftGvXDna7Hbt378bcuXPVWwEkScKbb74ZkXu2jdjtdsyaNQuSJOHTTz/F8uXL1XtitUNcp0yZgk2bNmHt2rWYPXs2fvzxRwwfPhw9evRARkYGiouLsWfPHvz111/46aefkJuba2nYsyRJGDNmjDrKwncb2dlnn21p6TArCgoK8OCDD+KJJ57Aeeedhx49eqBVq1ZISUlBUVERtm3bhnnz5vn1gPbq1QsPPfSQ7vYKCwtxxhlnoEuXLrjwwgvRpUsXpKSk4PDhw/jll18wZ84cdVmZq666yrRdf+655/DTTz/hyJEj2LJlC7p27YprrrkGZ555pt86sNoetCeeeCKse+H1vPLKK4ZLuRw9ejSozq1bt9b9eyYmJuK9997DkCFD4PF4cN111+G7777DwIEDYbfb8fPPP2P69Onq7NevvvoqGjZsGLJ+onx9YJ/qGD4caNiwYZAkCVdeeSWKioowaNAgfPvtt37nRIMHD8bjjz+OCRMmYOfOnTjjjDNw/vnno3///mjWrBkkSUJOTg7+/fdfLF68GOvWrYPNZsM777wTcv+jR4/GhAkTIITwW47TNxu1VTk5OX6z5EdsVEMkUrCVHli32+3XCxL4pXelae/eveK8884zfI72y2azicmTJwdtI9weWCGEGD9+vOm+evXqJQ4ePGh65cTnqquuMtxO4O/KSq+Sy+USN954Y8jfx7Bhw0RRUZHhdnzl6loPbGAvm9Uvvd4krZdeekk4HA7D56ekpOiOEAikfU64Vy8DlZaWijvuuEPYbDZLr3HUqFFB24hkT57PsmXLRJs2bSzVKTk5WaxZsyZoG+H2wAohxMKFC/2ubgd+de3aVezcuVM0bdpUABAnnniipe2uWLHCbzszZ860XKeKqs4eWCG8x+9rr73W8Hcny7J48cUX/UYbmH1mNmzYoF6RDfUVFxcn5s6dqz43NzdXPfbKsmx6XJ8xY4a6ne7du5uO5IkF2t7CcL4q68svv1S3NX36dMNykTy+zpkzx/Lzu3btqjtSI5D2uGHly6htD6cHNtzfhdE5lBBCvPzyy8LpdIbcRqtWrcTy5csNt/Ppp5+G3EbDhg3F7NmzQ/5OrbByjHG5XGL48OFqOb3RBXl5eX49hqG+HnvsMUv1y87OVkcN+L6mTJlS2Zet+uuvvyzXWZZlcfPNN4uCggLD7R06dCjkdpxOp3j00Uct9Xb9+eefon379iG3abfbxTPPPGO6LW15s3OYcI9loc4/Z8yYIZKTk01/H3qjKo0sWLBAfW6HDh0sPy9cVnLE559/7tcTu3DhwqAykydPFqmpqZU6ruk599xz/Z57zjnnhP0a3377bfX5eqMUK6raAqwQQhQXF4sXXnhB9OzZU2RkZPidWJudZC1evFjccsstokuXLiI9PV3YbDaRmpoqOnfuLEaMGCHeeecdsXfvXt3nViTACiHE3LlzxaBBg0S9evWEw+EQjRs3Fv369ROTJ09WhyhZeeO53W7xzjvviL59+4p69eqpb0K931U4J+XLli0TN9xwg2jXrp1ISkoSCQkJonXr1uKaa64RCxYsCPl8qweFcMtGu6oKsEIIsXbtWnH77beLDh06iKSkJJGSkiK6du0qHnzwQbF9+/aQzy8sLPQ72Obk5ETgFXuHLz300EPijDPOEPXr1xd2u10kJiaK1q1bi4suukg899xzuiFRiKoJsEJ4T1ZmzJghhg8fLlq3bi2Sk5OF3W4XmZmZokePHuKmm24Ss2fPNmzEKxJghRBi//794j//+Y/o2LGjSEhIEOnp6aJHjx7i5ZdfFoWFhUJRFJGQkCAAiL59+1rapqIo6nC7zMxM0yGPkVLdAdbnm2++EYMGDRL169cXcXFxokWLFuKqq64Sv/32mxBCWA6wQnh/b1999ZUYPXq06NChg0hNTRU2m02kp6eLk046SYwaNUpMnTpVHDlyxO952hPYhx56yHQfQggxcuRItfy4ceNClo9mNRVg3W63aNGihQAgBgwYYFguksfXY8eOia+++ko89NBDol+/fqJDhw4iMzNT2O12kZ6eLk444QQxevRo8fXXX1sekhbrAVYIIbZv3y4ef/xx0bt3b1G/fn3hcDhEfHy8aNasmRg8eLCYPHmy6cVrIYQ4fPiwePfdd8WIESPECSecIDIzM4XT6RRNmzYV5513nnj99dfF0aNHTbcRDqvHGLfb7ff5Nhoiv2rVKnHPPfeI7t27i6ysLGG320VycrJo3769uPTSS8WkSZPE1q1bw6pjv3791P0mJSWJY8eOhfsyDSmKIv7880/xwgsviKFDh4oTTjhBpKSkCJvNJhITE0XTpk3FgAEDxFNPPSW2bNkScntut1vMnj1b3HLLLeLkk08WDRs2FA6HQ9SvX1/06NFDPPbYY5a2o1VcXCymTZsmhg4dKlq1aiUSExOF3W4XWVlZ4swzzxQPPfSQpd+p9r1cnQFWCO9n44EHHhBdunQRKSkpIikpSXTo0EHcfvvt4p9//gnjtyHENddco+77+eefD+u54bCSI4TwhlhfJ4lRiM3NzRWvvPKKOP/880WTJk1EXFyciIuLE40aNRLnnHOOuP/++8WCBQvCGsI7ffr0sM+FA5111lkCgOjYsaNQFCXs5xuRhKjk9LhEFBE//vgjLrzwQgDAXXfdFfaEQlR5a9euVWfIs/o3mD9/PgYMGADAu8bh//3f/1VlFYlqxKuvvor77rsPNpsN27dvr/QQQiIiqt22bt2qDsV/5513cOutt0Zs29U7vRoRGfKtQZySklKl96KSsTfffFP93uq9t9p7SWrD2q9Eem699VY0atQIHo8HL774Yk1Xh4iIotzzzz8PwLsiSqTvI2aAJYoSvgB73333oX79+jVcm9rn119/NV1/9q233lInA2ratCkuvvjikNtcvXq1OkFN//79La8tRxRrEhIS8OSTTwIA3nvvPezdu7dmK0RERFErOzsb06dPBwA8/fTT6vKOkcIhxERR4PDhw2jQoAHq1auHrVu3IiUlpaarVOu0a9cOJSUlGDhwILp374769evD5XJh69atmDNnDv766y+17DfffGMYYH/44QcoioJNmzbhxRdfVGfnW7JkCXr16lUtr4WoJiiKgtNOOw2rVq3CHXfcYbr2NRER1V033ngj3n//ffTs2RNLly71W2UjEhhgiahOaNeuHbZu3WpaJiEhAZMnT8bIkSMNy+gdhK3eLztv3jwUFRWFrqyOevXqoXfv3hV6LhEREVFtwQBLRHXC8uXL8fnnn2P58uXYs2cPcnJyUFRUhIyMDHTo0AH9+/fH2LFjQ64R5wuwycnJ6NChA8aOHYvrr7/e0tpmrVq1wo4dOypU/z59+mDx4sUVei4RERFRbWG84jcRUS1y5pln4swzz6z0dnjNj4iIiKjmsAeWiIiIiIiIYgJnISYiIiIiIqKYwABLREREREREMYEBloiIiIiIiGICJ3EiIqJaRQiB4uJiFBUV6X4VFxejuLgYpaWlKCsr8/vS+1lZWRk8Hg88Hg8URQn6PvBfwDtbtZUvm80Gh8MBu90Oh8Ohfhn9Pz4+HvHx8UhISPD7PvD/8fHxSE5ORlJSEhwORw3/RYiIiCKHAZaIiKKOEAJFRUXIy8vDsWPHkJ+fj/z8fN3vff8WFBSoAZXzEx7nC7N6XykpKeq/6enpSEtLQ3p6OtLT05GcnBzxxeeJiIgqi7MQExFRtRBCoKCgADk5OcjNzcWRI0eQm5sb9L3v/2VlZZXanyRJSExM1P1KSEjA/Om/QlIAKJLmC5AC/g8hectBAgTKv8q/h+Z7AUi+n2kehjYDSoD6iOT7Et4beiQBIQGQhd/PIAPC939ZADaBi249D8XFxSgpKUFJSYnaqxz4/8qw2+1+gVb7Va9ePfUrKysLaWlpDLtERFQtGGCJiKjShBDIy8vDwYMHcejQIfUr8P8lJSVhbTc+Ph4pKSlISUlBamoqUlJSsPTT3yG5ZcAtQ3JJ3n/dMuCWAI8EySMBHtkbRlF3Q5WAAOwCsCkQdu/3wq4AtvJ/7QKX3nshCgoKkJeXh6NHj6r/hht+HQ4HsrKykJWV5Rds69Wrh0aNGqFhw4aoX78+7HYO/CIiosphgCUiopCEEMjNzcW+ffv8vvbu3Yv9+/fj8OHDlntMk5OTkZGRgYyMDPyzcCNQJkNyyZDKZMDl+97m/V6puwG0JglZAHYFwqEADu+/vu8vuKUvcnJykJOTg8OHD+Po0aOWtinLMrKystRAq/dvfHx81b4wIiKKeQywREQEAHC73di3bx927dqF3bt3Y+/evWpQ3b9/f8jeU0mSkJGRgQYNGqB+/fpYOvsPSKU2SGWy+i/KbAyltYyQBOBUIJweCKcCOBVc+cQQ5OTk4ODBg9i/fz8OHjwIl8sVclv16tVDs2bN0LRpUzRt2tTv+8TExGp4NUREFO0YYImI6hAhBHJycrB7927s2rULO3fuxK5du7Br1y7s3btXnUVXjyRJqF+/Pho3boy18zZCKrF5g2n5vyiTIQmGUwomILw9ufEeiDgFIs6Dwff2x4EDB9SvwsJC021kZmaqgbZZs2Zo2bIlWrVqhSZNmnBoMhFRHcIAS0RUCwkhcPDgQWRnZ6tf27dvx86dO1FUVGT4vLi4ODRv3hzNmzfHL9NX+IVUlNoYUKnKCHt5wE1wY9TEYdi9ezf27NmD3bt3Iy8vz/B5drsdzZs3VwNty5Yt0bJlSzRv3hxxcXHV+AqIiKg6MMASEcUwIQSOHDmC7du3Y9u2bX7/GvVoybKMxo0bo1mzZvjji7WQim3lX3ZvL2odnviIopOw+cKtB6Nf8oZb3wUZowmnfO/z1q1bo127dmjTpg3atWuHJk2aQJblan4FREQUKQywREQxQlEU7NmzB5s2bcLmzZvVL6NJdGw2G1q0aIEdK/dCKrIf/yphTyrVDgICiFMgEtxQEt0YeFdf7NixA9u3b8exY8d0n5OQkIA2bdqgbdu2aNeuHdq2bYu2bdvyHlsiohjBAEtEFIVcLheys7P9guqWLVt0e5skSULTpk2x9+9DkAo1QbWYQZXqJvWe20QPlEQ3LrjzbGzduhXZ2dmGs2U3bdoUHTp0QKdOndCxY0d07NgRSUlJ1VxzIiIKhQGWiKiGCSGwe/durF+/HuvWrcO6deuwdetW3VlbnU4n2rZti40Lt0MutEMqcHjDKmf2JQpJQEAkeCCS3Bjx9MXYsmULtm7disOHD+uWb9GihRpoO3XqhPbt23OpHyKiGsYAS0RUzY4ePaqG1fXr12P9+vW6wx2Tk5PRvn17rPl2I6QCO6RCB6QiG+9RJYowYVcgkly47o3h2LhxIzZs2IADBw4ElZNlGa1atcIJJ5yArl27omvXrmjRogUkiZ9JIqLqwgBLRFSFFEXB9u3bsXbtWvz9999Yt24d9u7dG1TO6XSiffv22DAvG9IxO+QCB1DCsEpUU4RDgZLswqhXLsOGDRuwYcMGHDlyJKhcamqqGma7du2KTp06sZeWiKgKMcASEUWQy+XCxo0bsWbNGqxZswb//PMP8vPzg8q1aNECu38/CPmYwzsMuNDO+1WJopiAAJzeUDv8mUH4559/sGHDhqB7am02G9q3b48uXbqga9euOPnkk5GVlVVDtSYiqn0YYImIKqG4uFjtXV27di3WrVsXdEIbHx+Pzp074+8vN0LOd0A65oDk4TIeRLFOSAIiyY1b/nc1/v33X6xdu1b3ftoWLVqge/fuOPnkkxloiYgqiQGWiCgMLpcL69atw6pVq/Dnn39i3bp1cLvdfmXS0tJwbFsJpHwH5Dwne1eJ6gjfsj5KigtDHumPNWvWYMuWLQg81WKgJSKqOAZYIiITHo8HW7ZswapVq7Bq1SqsWbMmaCmbBg0a4PA/+ZDzHJDynd7la3jvKhHBO0GUklqGoU+cj9WrVxsG2tNOOw2nnXYaTj75ZK5JS0RkggGWiCjAwYMHsXLlSqxYsQKrVq0KmiE4LS0Nx7aUQD7qhJzn5GRLRGRZqEBrt9vRrVs3NdC2b98essxbDoiIfBhgiajOc7lcWLt2LVasWIHly5cjOzvb7/HExESU7HZDOuqEfNTpXXeVgZWIIkDYFShpZRj0UF+sXLkS+/bt83s8LS0NPXr0UANt/fr1a6imRETRgQGWiOqkAwcOYPny5VixYgX+/PNPv2HBkiShc+fO2PD9dm9gPeZgYCWiKicggHgPbp85Cr///jtWrVqFoqIivzLt27fHWWedhZ49e6JTp07snSWiOocBlojqBEVRsGHDBixduhRLliwJ6mVNT09H/qYSyEeckI/GQXLzpJCIapaQBESKC1e9PBi///47NmzY4DfcODMzE2eeeSZ69eqFHj16ICEhoQZrS0RUPRhgiajWcrlc+Ouvv/Drr79i6dKlfstbyLKMzp07Y/132ZCPxHlnCmYvKxFFMWFXMO6rG7Fs2TKsXLnSr3fW6XSie/fuOOuss3DWWWehYcOGNVhTIqKqwwBLRLVKQUEBli9fjiVLlmD58uV+J3gJCQko3aVAzomDnMteViKKXUISEKlluOTJ8/Dbb78F3Tt7wgknoE+fPujTpw+aNm1aQ7UkIoo8BlgiinnHjh3DkiVLsHDhQvz5559+67JmZmbi6L/FkI/Eee9n5XqsRFTLCAiIBA9umHwFfvvtN6xdu9ZvqHH79u1xzjnnoE+fPmjVqlXNVZSIKAIYYIkoJhUUFGDJkiVYtGgRfv/9d7/Q2rJlS+xecghyTjykAg4NJqK6RTg8uPOT0fj555/x119/wePxqI+1atVK7Zlt27YtJInHRyKKLQywRBQzioqK1NC6cuVKuFwu9bE2bdpgx6IDkA/HQy6212AtiYiih7AruHfO9Vi8eHHQCJUWLVpgwIAB6N+/P4cZE1HMYIAloqjmcrmwfPly/Pjjj1i+fDnKysrUx1q2bIndvxxmaCUiskDYFDzw3S1YvHgxVq5c6Xc87dKlC/r3749zzz0XmZmZNVhLIiJzDLBEFHWEEFi3bh1+/PFHLFy4EPn5+epjzZs3x96lR7yhtYihlYioIoRNwbivb8RPP/2EVatWQVEUAIDNZsOpp56K/v374+yzz0ZSUlIN15SIyB8DLBFFjb1792LevHmYN28edu/erf48KysLR/8uhnwonsvdEBFFmHB4cMuMqzB//nysX79e/bnT6cTZZ5+Niy66CKeeeipkmTO3E1HNY4AlohpVVFSEBQsW4Mcff8SaNWvUn8fHx6NsJ2A7GA/pqJOhlYioGoh4N655ewh++ukn7Nq1S/15w4YNceGFF2LgwIFo0qRJDdaQiOo6BlgiqnZCCKxfvx7ffPMNFi5ciOLiYgDwzoZ5xAHbwXjIOXGQFF7tJyKqCQICItmNQU+eg/nz56OgoEB9rHv37hg0aBDOOeccxMfH12AtiaguYoAlompz7NgxzJs3D9988w22bdum/rxFixbY8/MR2A7FQyqz1WANiYgokJAExs8bi++++w5//vmnusZsUlIS+vXrh4svvhgnnHBCDdeSiOoKBlgiqlJCCPz999/49ttvsXjxYnXWS6fTCfduGbb9CZDyHRwiTEQUA0ScB9e8cwnmzp2Lffv2qT/v1KkTLr30UvTr14+9skRUpRhgiahKFBUV4YcffsAXX3yBnTt3qj9v27Ytdsw7CPlgPCQPhwgTEcUiAYEX/3gY3377LX7++Wd1Xe6UlBQMHDgQQ4YMQfPmzWu4lkRUGzHAElFE7dq1C1988QXmzp2LoqIiAEBCQgJKs+HtbS3gLMJERLWJsCu47oPL8NVXX2H//v3qz3v06IGhQ4eiZ8+esNu57BkRRQYDLBFVmqIoWLFiBb744gusWLFC/XmLFi2wd1Eue1uJiOoAAYGnl47Dl19+ieXLl6v3ytavXx9Dhw7FJZdcgtTU1BquJRHFOgZYIqqwwsJCfP/99/jiiy+wZ88eAN6ZhKUcB2x7E7n8DRFRHSXiPLji/y7At99+i7y8PADe5dEGDhyIK664As2aNavhGhJRrGKAJaKwHT58GJ9++im+/vprFBYWAgCSk5NRvFGBbV8CpBIOFSMiIu8MxuO+vQGffPIJtm7dCsB7obN379644oorcNJJJ3mXUCMisogBlogs2759Oz7++GPMmzcPbrcbANCyZUvsWXDEO0yY67YSEZEOAYGJv4/HJ598gmXLlqk/79SpE4YPH46+ffvyPlkisoQBlohMCSGwdu1afPTRR/jtt9/Un0t5Dth2J0HO5TBhIiKyTklwY+BTvfDDDz+oS6s1aNAAV111FS6++GLExcXVcA2JKJoxwBKRLkVRsHTpUnz00Uf4999/AZTf33rICdueRMjHnDVcQyIiimXCruDayZdgzpw5OHLkCAAgIyMDV1xxBS699FIkJyfXcA2JKBoxwBKRH0VR8Msvv2DatGnq/UpOpxPuHTZvcOX9rUREFEFCErjzi2sxc+ZMdRme5ORkXHbZZRg2bBjS09NrtoJEFFUYYIkIAODxeLB48WJMmzYN27dvBwAkJSWhZANg25sAyWWr2QoSEVGtJiSB+7+/CTNmzMCOHTsAeGcuvuSSSzBy5EhkZGTUcA2JKBowwBLVcW63GwsXLsT06dOxc+dOAOUzCq8TsO1J5PqtRERUrQQEHl98Fz788ENs3LgRgDfIDh06FFdddRV7ZInqOAZYojpKURT8/PPPeP/999XgmpKSgqJ/FO8argyuRERUgwQEnl12P6ZMmYL169cDABISEjBs2DCMGDECqampNVxDIqoJDLBEdYwQAitWrMDkyZOxefNmAEBaWhoK/vZ413BlcCUioigiIPD00nF4//33sWnTJgDeW1yuuOIKjBgxAklJSTVcQyKqTgywRHXImjVr8N5772HNmjUAgMTERJSul9jjSkREUU9A4Imf78aUKVPUSQbT0tIwevRoDBkyBA6Ho4ZrSETVgQGWqA7Ytm0b3n33XSxfvhyAd1ZhzzY7bLuTILkZXImIKHYICDyy4Ha/W2CaNGmCm266Ceeeey5kme0aUW3GAEtUi+Xk5GDKlCn47rvvoCgKbDYbxG4n7LuSIJVxVmEiIopdAgJ3fTkKU6ZMUdeR7dixI2699VaceuqpNVw7IqoqDLBEtVBJSQk++eQTzJw5E8XFxQAA+XAcbNuTuY4rERHVKkIWuPb9wZg1axaKiooAAGeccQbuuOMOtGzZsoZrR0SRxgBLVIsoioKffvoJ7733Hg4dOgQAkI7ZYc9OgZzvrOHaERERVR1hVzD4pXPw1Vdfwe12w2az4bLLLsOYMWOQkpJS09UjoghhgCWqJTZs2IBXX31VXWqgYcOGyPm5GPLheEiQarh2RERE1eODna/irbfewtKlSwF4J3q68cYbcfHFF8Nm4+0zRLGOAZYoxuXl5eG9997Dt99+CyEEEhISULbe5p1ZWGFwJSKiuum5FQ/gjTfewPbt2wEAbdu2xV133YXu3bvXbMWIqFIYYIlilMfjwbfffovJkycjPz8fACAfjIc9OxmSi1eYiYiIBATGfnoVpkyZgmPHjgEAzj//fNx2223IzMys4doRUUUwwBLFoHXr1mHSpEnqgu5SoR32rbzPlYiISI+wK7johV746quvIIRAcnIybrnlFgwePJjL7hDFGAZYohhSVFSEyZMn44svvlAb4JK/Jcj7EnifKxERUQiv/zsBr7zyinoB+IQTTsC4cePQoUOHGq4ZEVnFAEsUI3777TdMmjQJBw8eBMDhwkRERBXhG1Y8efJkFBUVQZZlXH755bjxxhuRkJBQ09UjohAYYImiXE5ODl5//XUsWrTI+4MSGxxbUiAfjavZihEREcUw4fSg90MnYuHChQCAJk2a4IEHHsApp5xSwzUjIjMMsERRSgiBH3/8Ea+//joKCgogyzKknfGw7Uzm7MJEREQR8syy/+Cll15SRzgNGTIEt956K5KSkmq4ZkSkhwGWKArl5OTg5ZdfVtewkwrssG9OhVzoqOGaERER1T7CpuCiib3w5ZdfAgAaNGiA+++/H2eccUbNVoyIgjDAEkWZhQsX4tVXX0VeXh7sdjvElnjYdidykiYiIqIqNvGP8XjxxRexd+9eAMCgQYNw5513IjExsYZrRkQ+DLBEUSIvLw+vvvqqei+OVGCHfVMq5CL2uhIREVUXIQsMebUPPvvsMwgh0KRJEzz66KPo2rVrTVeNiMAASxQVfv/9dzz77LM4cuQIbDYbkB0P264kSCKg11WSALOPbKjHiYiIyJKXVj2CZ599FgcOHIAsy7j22msxevRo2O32mq4aUZ3GAEtUg1wuF/73v/9h1qxZAACpyAb7pjTIBTq9rlJ5mDX6yFb2cSIiIvIjbAr6PtEd8+bNAwB06tQJjz32GJo3b17DNSOquxhgiWrI7t27MWHCBGzYsAEAIO9LgD07JXiGYSng/4Ef2VCPB5bhR56IiCgsD/10K1555RUUFBQgPj4e9957LwYOHFjT1SKqkxhgiWrAjz/+iEmTJqG4uBgpKSkoXinDlhMfXDAwnAL+AbSyjxMREZElM/e/heeeew6rVq0CAAwcOBD33HMPEhISarhmRHULAyxRNSotLcWrr76K77//HgAg5Tng2JgGqcwWXFgvfFolBMMrERFRhAkIXPvBYHzwwQdQFAWtWrXChAkT0KpVq5quGlGdwQBLVE327t2Lxx57DJs3b4Ysy5CyE7wTNWmXx6lMaLWK98gSERFZYzA54sQ/xmPChAk4cuQI4uPjcd999+HCCy+sgQoS1T0MsETVYNmyZXj66adRUFAAuCQ4NqRBzos7XqA6gquP2T20ZuGWhwoiIqqNKjgJonB4cOLtrfDHH38AAC655BLcfffdcDi4/B1RVWKAJapCHo8HU6dOxbRp0wAA0jEHHOs1Q4arM7gClZsAiocKIiKqrUJdzDV43DekeMqUKRBCoFu3bpgwYQKysrKqsLJEdRsDLFEVKSwsxIQJE7Bs2TIAgLwvEfZtyd61Xas7uPr4Pu5G+zebAIqHCiIiqq0qOSnihKX3qSOt6tevj6effhqdO3eugooSEQMsURXYu3cvxo8fj+zsbDidTij/JMB2ML7mgitgPLGT9nGAkz8REVHdFOribojHp+yYhIcffhg7duyAw+HAuHHjcNFFF1VBRYnqNgZYoghbvXo1HnvsMeTl5QFlMhzrMyAXxMD9MGYBl4cJIiKq7SJwkVnYFJxxf0f8+uuvAIARI0Zg7NixkGW50tsmIi8GWKII+vbbbzFp0iS43W5IBXY41mfoL5ETi3ioICKiWBZqQsIIjZISEBj5v4vwwQcfAADOOeccPProo4iP11nvnYjCxgBLFAFCCLz33nuYOXMmAEA+HA/75jRISg0OGY40TvBERESxzuqMwxHw4I834/nnn4fL5cIJJ5yA559/HpmZmRHbPlFdxQBLVElutxsTJ07Ejz/+CACw7UyCbVey//qusS6MGRmJiIiiVqgJCiM8V8XLqx7BI488gvz8fDRq1AgvvvgiWrVqFdF9ENU1DLBElVBUVITHH38cK1euhM1mg7QhCbaDiTVdrcjj7MRERFQbVHSipkqYsv0VPPDAA9izZw+Sk5MxceJEdOvWLeL7IaorGGCJKig3NxcPPvggNmzYAHgk2DemwZZbS+9v4QzFRERUW9RAiBV2BR1uaIB//vkHcXFxeOaZZ3DGGWdEfD9EdQEDLFEF7N+/H/feey/27NkDuGQ41qVDLnD6F5LKZxwUSvVXsDrrwEMIERHFkhpa0k7IAt3vaYUVK1bAbrfjkUcewXnnnVcjdSGKZQywRGHas2cP7rnnHhw4cAAoscHxbwbkErt/oVDBUdJMp69XJtTj4eyjqgM0DyFERBRLanBNdiEJnP1YVyxYsACSJGHcuHG45JJLaqw+RLGIAZYoDDt27MC9996Lw4cPQyq2wfFPpv8yOVLAOm+B4THU45HYhpV9RBIPIUREFEtqMMAC3mV2Br54Jr766isAwNixY3HVVVfVaJ2IYglXVSayaOvWrbjrrru84bXIDsdaTXiV5ODgGMjK42bhMxL7ICIioholQcLcB5bj2muvBQC88847+Pjjj2u4VkSxg2e7RBZs2bIFd999N3JzcyEV2OH4JwuSy2Y9VJqVqarwS0RERFFJgoRPxi7AmDFjAABvv/02Zs+eXbOVIooRHEJMFML27dtx11134ejRo5COOeBYlwXJE0NhkUOIiYiIjqvhIcSq8gvPV713PqZOnQoAuOOOOzB8+PAarBRR9Iuhs3Ci6rdnzx7cd9993vBaEIPhlYiIqK4JFVCr68KrxZFRH938I0aPHg0AePPNN/Hpp59WZa2IYh7PxIkMHDhw4PiETUV2ONZlWgqvkmzecIZ6PFLbCLEBDjkmIqLaK8p6WU2LQMKsW+apIfaNN97ADz/8UNU1I4pZPIMl0nHkyBHce++92L9/v3e24X+zILltpsFRkqVKPR6pbYTYAYMrERHVDZIUHUHWQtvrC7EjRowAAEycOBFLly6tjtoRxRzeA0sUoKioCHfffTc2btwIlNjg/KceZPfxdV6F4v+R0QuUocpUxTYM+e6B1Ws8I3F/LA8hREQUTYxCq7a9qo5gaxRaA1cY0D4EgX4TTsIPP/wAp9OJl19+GSeffHLV1ZEoBrErhkjD7XbjiSee8IZXlwznuiy/8Bqosj2qkdpGiA0YN6KR6I2NhqvbREREoURLe2XS9kqQsPDxv9GrVy+UlZVh/Pjx2Lx5czVWjij6sQeWqJwQAi+99BK+/fZbQJHgXFcPcoGzpqtlyHIPbOgNRWAbPIwQEVGUiIGgGoqQBU64pQH+/vtv1KtXD//9739Rv379CFaOKHaxB5ao3PTp073hVQCOzRkVD6/VdI9ppXtmiYiIqOIi0N4bteWSImH9ewfQunVrHD58GOPHj0dxcXGl90dUGzDAEgFYsGAB3n//fQCAfXsabLkJ+gXNGisrEyRxEiUiIqLaI0Ltum6I9ch4/vnnkZaWhk2bNuGZZ56BolTx2u5EMYBn0lTnbd68GS+88AIAwLY3GfYDyfoFQ4VXMwyuREREtVcE2nm93tjRLe7Dc889B4fDgV9//RWTJ0+u1D6IagOeUVOddvToUTzyyCMoLS2FfDQO9p2pwYVCTYJkJbzWdtFyvxEREdVtNd0eVcGw4nGnPocHH3wQADBz5kzMmzev0vsgimV14MyaSJ9vxmF1rdfNmZCgafhChVMrw4krE3yJiIgoOlX2liJLuzh+TvLyxR/g2muv9X7/8svYtm1bpbdPFKt4Bk111jvvvIO//voL8EhwbMqCpNhDB0+gesJnrAVczkJMRETkJxITLUo2m3o+8MntC9CjRw+UlJTgscceQ2FhYaW3TxSLYugMmShylixZgk8//RQA4NiSAbkkLvSTZMn7VdkyoWiDa1WH2MouoSMEwysREZGBiK0YIMmQIOHxxx9H/fr1sWvXLkycOBFcDZPqIgZYqnMOHDhwfNKmfcmwHU0K/SQrjU8kgmsFAmuFG8ZIhFciIiIKKVIhdnjD2zFhwgTY7XYsXrxYvRhPVJcwwFKd4na78fTTTyM/Px9SgQP2XenmT9DrUdX7fyR7XauaUBheiYio9qnpCZxCCOyNrWiovfeU53D77bcDAN59911s2bIlIvUjihUMsFSnTJs2DWvWrPHe97olC5IwaTwq0+tqNdRW972ulQ2uAMMrERFRCGbhNBK9se9e/Tl69eqlXpgvLS2t9DaJYgUDLNUZ//77Lz788EMAgCM7A3KpI7iQL3hWx72u4YTcSIhEeCUiIqrrIjXDsJXtGJwnSJDwwAMPICMjA9nZ2VwfluoUBliqE0pLS/H8889DURTIhxNhy9G571WWIFkYfhSqjCSF2E4kwm/gPqszCBMREUWbKB8+bKgSIXZEozvw0EMPAQA++eQT/Pnnn5GsGVHU4hkt1QkffPABdu7cCbhkOHZm+D8oS5BscuWDKUKH20gH1xoRqycJRERE0cjK7UQGF7+fPO9tDBkyBADw/PPPo6ioqCpqSBRVGGCp1lu3bh0+/vhjAIBzRxYkj+34gzq9rnohNFQZvXArSZrGpgp6XYmIiCj6VHhUVODPbLbgMjrb/vGJVWjSpAkOHjyI//3vfxZrSRS7GGCpVnO5XHjhhRegKApsOUmwHU30PhBNva4RGv7LYcRERFQnVefIoKpuRyvQGyspMsaNGwcA+OKLL7Bhw4aqrCFRjePZLNVqn332GbZv3+43dNhqKI1EGSIiIqKwhXlv7KN9XseAAQOgKApeeukluN3uKqwcUc1igKVa6/Dhw5g6dSoAwLE7A5JweIfj2GyAbPDWl2VrZbRfJhhwiYiIyI/NFvLWIt8oMbPzCMl3rlJ+LnLHHXcgNTUVmzdvxmeffRbxahNFCwZYqrXefvttFBcXQy6Igy03JfQQI1m2ViZMlkJsrA0jZjAnIqJoEGXDh8Ne49VCeWvnETKubHoXxo4dCwCYOnUqcnNzw6sLUYxggKVaafXq1Zg/fz4gAMfuepDMGh1fr6vp0jehe1uJiIiIwmZhokdLty3JMl4bMRudOnVCUVERpkyZEsFKEkUPnpFTraMoCt58800AgO1wCuTiOOPCZr2ukmQtuFoItuyFJSIiimGRan/1Zhb2KX++ZDPeV8j5OSDh9ttvBwB88803yM7ODl0nohjDAEu1zuLFi7Fp0ybAI8GxL1O/kM0GOByhe10Z0oiIiKJTbWyjZcnS/BqS02n4+AO9JuGcc86Boih4++23I11DohrHAEu1itvtxvvvvw8AsB9M91/z1UcOvXyOpeHCkmTtntlIDz2OlqVwhKjpGhARUV0mRO1siyRrIdasN/fWW2+F3W7HihUr8Mcff0S6hkQ1KkrOhIki44cffsCuXbsAtw32wxnBBTThVTJqIMp/pj6uF1K1PwuxncD9mgp38oeaUFtPGIiIKDZVdZtUHcOHfdvxlTELsQ5HeRHjEHtj1ycwZMgQAN4JnQTbbapFGGCp1igrK8MHH3wAAHAcyoSkBARIm808RGp6S/1CrlZN9bqGqcrug2UDSERE0ai2tE96F8gDzim05yZqiA0MsrKEkSNHwul0Ys2aNfjrr7+qstZE1YoBlmqNefPm4dChQ5BcNtiPpB1/IIwhw7qz/Pl6Yc22YWXCp0j2wtbEMOLacnJARES1U1W0UzXR++r3QynkkGL13CXg+dd0eAiDBg0C4O2FJaotGGCpVlAUBR9//DEAwH44A5KQIdntkJxO80XAJUltMIzKGQ41Di4YfsWrUNhr0REREcW6WL7YauVCefnwYf0i3hArJSaoPxs5ciQcDgdWr16N1atXR7CyRDWHAZZqhaVLl2Lnzp2AR4Y9N817xdQmm/dm2myAww7IIdZWCycIWujpra57YYUSohEXSqX3QUREVGtVY+8rgNAjuSQJkt1uuj1Jkrz1ttsBAKM6PYyLLroIAPDRRx9ZqwdRlGOApVph1qxZAAD7kXRIwuENr1L50F+9A73Ndjwkar8PpF2TrYbvaw1i0rAyvBIRUZ0UZaOhrJLKAycAw/MNv6VzjEKss7yHVhNihw8fDkmSsHz5cu9El0QxLsrOyInCt27dOvzzzz+AIsFxtN7x8Ap4/w0Mp2aBVauivaA13AsbMrxWVIyeFBAREYWtJnpfzf5vddvaepeH2JtOfRY9e/YEAHz++efW6kMUxRhgKeZ99dVXAADbsVRIijO40dHO0Fc+ZDiINtTKkm6ZGumFDdU4al6rUIS1ntfK9L4yxBIRUbSKVBtVzRMl+vW+amlXR9D2vmppZyB26twfK3kv6g8bNgwAMHfuXBQUFFS2ykQ1igGWYtqxY8ewcOFCAID9aJZ+ISv3w/rKhSgj2WT9WQLDZbUX1qIq63UlIiKKBdV8gTViMw87naEvjlvtjTUJ3o8Meh8tW7ZEcXGxet5EFKsYYCmmzZs3D6WlpZBK4yGXJOgXkiVIDod6L4guSfIfelyVFMX7BeOZj4+XtXYva7XMOCxEbM/uSEREFEqkhg5HkBQfb34OA0BKSoQUZ9BLC0CCpC6p8/3330e0fkTVjQGWYtrcuXMBAI78TEgIXL9VgmS3QbIwq5/2OSHJUuheWKNgqkRw8qSAocCWGtSKBnQGVyIiilbReHuL1d5XK3y3NoW6EC9JkOKchkF26iNLYbPZsG7dOmzfvt3avomiEAMsxaydO3di06ZNgJBgL6kPya5pLGTpeHD13T8iy/4Hf9/i4Fq+6ecjIXDbBuFVtxdWEca9r5W9jzVcDK9ERFQXVPfETRZI8fHH/+MLsQFBVkpK1PzneJD1304cJMWBs846C8DxDgCiWMQASzFr/vz5AABbSSokaCYu0IZXLe3/za7WWhlKbKUXViucnlezYcMhgmvEe2EZXomIKJrF6sRNFnpfpfj44JFher2xer+DwBBbvp0BAwYAABYtWgTBNp5iFAMsxSQhBBYsWAAAsBdlen9ot3uHzpgMGQ7qhTVi9f6WUBMrhNuwcjImIiIia2J54iYrzPZXHmL9el+DdlQ+pDg+Tv3RC9fPQXx8PPbv34+NGzdaqwdRlGGApZi0Y8cO72LcQoKtOB2w2SAS4sqXyTF5W9tskJxO76RORiT5+NI7lVXNVzctzUZcncOPiYiIol0UTtwkJyWGnugxPQUiMd68jCRBSUuGkpLk/a+wqWvCLlq0KBJVJap2DLAUk5YtWwYAsJWkQJKdEA47IEkQToc3xAaSJG+wDdUY+BqxUCG2PChKvu3q0YZXgzJCiPCG8Jg0sgyvRERUZ0Tj0OEI9b7KSYnH72U1e53l5zUiIc57EV+HkpbsPduXoYbYvn37AgB+/fXXkHUhikYMsBSTli5dCgCwlWZ6w6uGiHP6h1i9yZrsdv9eWEnnvlejRi0gKOqGWL1QGlBGN7hW8ApvlYXXaJzZkYiI6rZaPHRYCjxnKQ+xQUE2NdmvjC/Iaqnh1ac8xE68YQ5sNht2796NvXv3hqwTUbRhgKWYc+zYMfzzzz8AANmTpV/Id6DXC68+vhBrdvVV2wtrNjOwloUeVdNe11ANZUB9q7znlSGWiIiiRSTbpCgcOiwl6qxpH9gbm5qsP7IrMMTqvTwZEMlp6NKlCwDg999/r3yliaoZAyzFnL///huKokByJ0BW9O/9EE4HEOesfEPnG0ocopFTe2ErG17DxGHDRERENSzSQ4cNNyKZ37pUXkYkxEGkJpnsCDj99NMBACtWrAhZL6JowwBLMWf16tUAAJsrVb+A3QYRZ4eSGA8RH6LBsNv9148NJJTwQqmFwBxyUoZQoVQTSKvlyjCn2SciomhQAyOCQl4oluSQ7bZkZfUDwNLrU+plQMSZb6+sSRrKGiTBlWU8Q/Fpp50GwHtOpYSz1B9RFGCApZjjC7CSTWf4sN0GYStvAGRYa+yMQqw2vMrGEzpZ7lHVNBCGITaM8GpZZSaoYHglIqJoUBXh1WKbahhite1rqPZbUUzXhJfNlsPxbSIrHbCV3+9qEmKFTYKQvV9GIfb2sZ8jPj4eBQUF2LlzZ8h9E0UTBliKKUVFRdiyZQsAQEloCCVZc6+HNryWE/GO0L2wevR6XnVCbFB41ZvpOESjdbxcxcJrlfXCMrwSEVE0qMqe18qGWC2duTKCel91zgdCDh320Z7jlIfYwCBb1th/dJpeiHVnJAA2G0444QQAUOcVIYoVDLAUU7Zs2VI+1CUekhwPd0qcN8TqhFcfkeAMbyix2bBhTYg17HnVhliT4OrXC1vJnteQITbcXliGVyIiqisqEmLN2lXfUntGQ4c15wZWw6uSlR78Q8m/N7ascaruuZA2xLozEiDKzxm6du0KAFi7dm3I/RNFEwZYiimbNm0CAEhS+RVGCRAO4/DqYynE2mzegBoqvAklohMxWZrZmIiIqC6qrvtewwmxVmYvDjWxky/EWgmvDTL8e1+DdibhWJcs03MhX4gVmgvevh7YzZs3h6wDUTRhgKWYEhhgPU4ZpVlxcKfqz0bsx6yREAIQwnu11MJkC6YTMSlhTvwUqvfUQqMacmhTOPfOsveViIiiQRQu4xYymGqFaE+l+HiIELcYKQ0yIGQZwmzmYQAeh4SSTPPzl7xWcchrdfzWq8ce/xEAsGPHDrjdbtPnEkUTBliKKVu3bvV+I6XC45ShOGUodgll6c6QIVY4De6HLQ+vPqYh1uPx/ivrLCoOBIdXgwYn+N5Zg0aa4ZWIiOqi6g6vkehV9ZVzaM4hDNpVKTFRbfuNQqwvvKqbMjinONYutfxx4xCb38IJYQeEHZoQm4CEhAS4XC7s3r3b7CURRRUGWIoZQgj1AOtJTIXilCHK38HChtAhVgZEXMBQ4oDwasoXXtXtBYRYo57XgAbH8vBjhlciIqqLojC8Wt6UQydABrSv2vCqFtEJsXqBNfBnx9qlQrFLmseDQ6wvvKplykNsfut4tGnTBoCmg4AoBjDAUszIyclBcXExBADhSFLDq4+wwfweEcA/xJqEV79eWEUEh1d1e+UhNtSw4fIGxzS8+hozoTC8EhFR3RSl4dVK76tuePUpb2f1wqtaRFHUIKs0yDDeVPk5RWB4Pf64f4gVepm6vDe2efPmAIB9+/YZ150oylhcWZmo5qnDW+REwwanLMUBeATs+SXGG5IBOOyA2wOUuQyLSZIEAVgLguHc82okjMmcLE3nb3ljDK9ERERGrCxXJ9ksBGEhQs97AUBkpIa85/VolzRIBtfWgeMhtizZfDuNGjUCwABLsYU9sBQzDh48CADwxCcZF5JCDyWWPALwhAilHg+ERwFkW9Dar34U4Q2moa4YK0qIiZ8sTs0Pi+E1nN7XKJwkg4iI6qAo7H2VtKOjjMr4wmuICZmkuDgg1GRJmWkQsgzJZZJOAXicEtzx5r+vQ91l5HU0313jxo0BMMBSbGGApZiRk5MDAHCnxKOofnColHzthgS40hy6IVbyCG/PKwDhsHt7YgP5wquPUYj1hVfAf+3XoHIhwqReIDVoVCMeXtX9McQSEVENiubw6mOlfTVo86W4uOO9r0YhNjMNQnO+YRRi805IKS8AwxB7+CQJSpyA4hDIb6u/u6KGEu7/4VcAxzsJiGIBAyzFDF+A9cTFee93LScpmvBaTshSUIjVhlfvDyQIp8M/xAaGV5/AEKsNr2oZnRAb0JAF9cKaBdKAxrXKwqu6P4ZYIiKqAbEQXn0C2lndocOBbb82vPoEhtiA8Ko+NyDE5p2QAo9Tsy2dEOsLr2p1ykNsYJAVNkBxemckzsvLC34dRFGKAZZixpEjRwAAijMexfUlFNW3BQVXLW2IDQqvPtoQaxReA+mFVx9tiDW6Cqs+biGQljeyVR5e1f0xxBIRUTWKpfDqU97emt73Wn4OoBtefTQhVi+8qvUpD7FB4VUtAHjivD8PDK9qdRz+vbFFDcqX8HF4V2bIz8+Hx2jCSqIowwBLMaOwsBAAoDgcEDagqLGEwkbmswIKWYIn0Q4l3mS+MkkyHwLsI9sASba2DE6oYcNWCSWyEzaF3B8ndCIiomoSheHVMguTMcFmC13O7QYy00JuqrB1sn54LSdkYF8/j2541VIcAp6Lc9WZiZXyACuEQEFBQch6EEUDBliKGcXFxQAAYbMDEqDYgcLGEgobGodY2SUgu5SgtVj9eDzeL7sdkt0kEJcvb2M+GVP5cjom+xNCWOt99V3htdJIEhERRZNQ4TRKw6ulNre8t9T0grbD4T1fcJlP2iSlJIcsU9A+DR6HBHuJ+bmDLdkNpV6ZaZn6nQ+hQXIBUk4/5P2BLEMpfz0MsBQrGGApZpSUeJfGEXY7hG9SQBtQ2EQ/xMouAVupdziMJ9EOJTkueKMeDyRfwyFLxiFWKMdnLvat/RoocC1YvQXIwwyvPpYa1MpeWWbvKxERRYKvjTQKqbUgvProhlhfePUxCKhSSjIgy5AUAamkVLdMQfu04z2vAoYh9tBZ3n3IdmEYYut3PoRUp3c/GfHFmhDrfU0ul/HSgkTRhAGWYoYaYAMbD50Qqw2vQPlQ4mSnf4jVhlf1iToh1hdetaEyMMQGhlcdFQ2vPlUaYhleiYgoEgLDaaj/V7UqDK8+gSFW9yJ3wPmGL7yq/9cJsX7hVd1ZcIg9dJYbtqTj29cLsdrw6uMLsaL8d8QAS7GCAZZihq+BEAhuGNR7YhvagsKrWkYbYvXCq482xOqFV005SZLMw2t541TZ8OpTJSGW4ZWIiCIhVI9rLQyvPmqIdTiMC5WfdwSGV7UemhCrG17VnR0PsYHh1UcbYvXCq09GfDFsZd4Ogr/++su47kRRhAGWYobviqYE/cCl2IHSdAmuZJP7T2UJwmEzvycW8IZYWfaGu1Cz+1ZjAIz4hE4Mr0REVFmSFH33vEaS1QvDsmw+TwYAyeEwPQeRFAF3VoLphE0AAAHknCR0w6taHbvAvQO/MwyvgdxG69MSRRkGWIoZoRoFezFgLwGKs2SUZOpfAZVLPJBL3BBOh3f5HCNuD4TbHbz+q5YiIDwe80ZZUazNWgyEDMqWw6vV5XQYXomIqLKiNZhGasZh33ZCtMGSzeZdms9sKZqE8rXpS40nWiprkg4hS4jPMR/Oe/B0QIlX4DlmfC4z/pS56BS3F9c1W2q6Ld/Ati5dupiXI4oSDLAUM2zlQdJVL/hKor0YcBQAUADFJqG4XnCIlUs8sBW7vEN+ZUDEOfVDrC+8+horvRDrC68+VhpwsyFKDK9ERBRrakl4NWxjA7djUM4XXk0lxB+/EO/x6IbYsibpEA7vPmWPMAyxB08HPInl7b2Abogdf8pctHJ6J2mqb883DLEZ8UWQk7znOElJSeavgShKMMBSzEhMTAQAtM48gNIWx0OsNrz6BIZYv/DqoxdiA8OrWlYTYgPDq09g46XX+6oXYhleiYgo1tSS8OoT1NYabSegnF54DTpH0IZXn4AQqw2vPnoh1i+8qjv0D7Ha8OqjF2Iz4otglxSIUu/2fOdZRNGOAZZihu/AGucuw0ltdqO0RaluePXRhlhJCP/w6qMNsUbhVS1rAyTZfHiQr4EyGzqsDbFWQ2coDK9ERFRdall49VFDbKjtlJcz63lVzxX0wqtPeYjVC68+2hCrG17VHXr/0QuvPtoQq4ZXj4BweZ/MAEuxggGWYkZycjIAQCn2INlRioysAriShW549VFsEjxxEoTN5K0uQxM8TQKe4vE2NqEmgEKIxc3VQhEKr0RERNWllobXsHdnZeIqmy3k/B0iNQn2Y+aTLMkegaIGsnF4LTey60rD8OpT356Pye0/hl3ybkuUHd8mAyzFCntNV4DIKjXAFnmwPT8TxwoS4G7igqQ4kLBfv4FwHhNw5itwJdsBEQdbQXAjIZW6IZW5vLMH2m0QbpMeVngbLSHL+j265T29kiQZh9gwZhK2NHw4nCAsSeyFJSKiiqnl4dXScjoAJN9FcY/HcKJHyeE9xRYul3fmYR0iI9V77uE2b8ePdIqDsANJ2+0obKU/U/BVZy5HU2cudrmy0NyRA+chN5p+koeMFUWwFSrwJMk4ckYimlwbh4SGyXip2be4f/fF8BzznvMkJSXB6XRaeflENY4BlmJG/fr1AQCefDfKPDYoHgmyw4PSZkBpQwlxB+x+QdZ5TCA+1wPJIyBkCa4UbwOiDbFSqRtSaZk31PnWfwWCQ6yv99X3PL0QGzBMWTfE+gKphdAZ8fB6vGIMsUREFJ66FF6FYrhdKXBEl06IlRx2v9mL9UKsL7z6OI4Uw5WZELS/I53i4In31s1Wph9irzpzOVrFH/ZWp1hCi8eOov2cA5AD5oDKWlIE8TqAEalo/HQ9b/l877aysrJ0Xy9RNOIQYooZvgBbkCMhN+/4THmywwM50Y3SZi4UN/IGM2149fGFWE9yHICA8KpurDzE2jWNkS+8Bk7cIEnHGx+De2x1hw7VZHglIiIKV10Krz46bWxQeNXblja8+pSHWHXTAeEVACS3AseRYr+facOrjy/E+gw/c6UaXm0lHgy66R90/CQ4vKr7cQHSjHxIV+/FxKxvoDDAUgxigKWYofbA5rqheIIbG29vrAvuZASFVx+/ECuEfk+kNsQahFcfSTNpkxHJyv212jpWR3iN1pMRIiKKLtHaXlTHsGFNW2saXstHaOmGV5/yEKsXXtV9aEKsXnj1sZVPXjz8zJVoG39Q/XmvZ7eiye95CHUWIQBIy0rQbEIxrki7BABQr169EM8iih4MsBQzGjduDACwHys2DIO2I3bYSgBXsvFbW8gWJl6QNaEzVKC0MKnT8Z1HaMkcIiKiyrASTKMxvEpy9d7zKhTzddx95ND1kuLjQ54zSG4FnjibYXhVd5fi8guvCYfK0HHOAe82QlRVfXx2PnZt2gQAaNq0aYhnEUUPBliKGQ0bNoTT6YTkUWA7VqxbRnZLkBSgJENCWZr+xAqOArf3PliHHcJhcBt4mcs73EeWAIfdcJIGIUTImYmF0IRgk8Yt4uu9mm6DQZmIqM7yBVOzgBqt4TVim7Lw+mzH14A3XV3AV8atP8ESAEiJCYAkQSooMixT2igZpY2SISQgLdt4W/ldyyDLAm9t7KP+7ITP98PmDq9tl1zA7tWrAQAtWrQI67lENYkBlmKGzWZD8+bNAQA9k9ejcf08v8elA3FIOOBtkIRN0g2xjgI37PklgEdASBIQ5zQOsYH3xgaEWDW8qmWCP05+4VWtaCU+drzvlYiIKiMwmOoFVYZXwwvXuuU07b9eiPWFVwCAR9ENsaWNkuFxyvA4vduSS/XDaH7XMtgTvPsoKopTQ2zjlUet1TfAztxcAFDPr4hiAQMsxRTfFUL74QL0bJCthljpQByS9sh+kxYEhlhteFXL6IVYX+9rIE2IDQqvahlNI6YXXn0CGuJqnbSJva9ERHWTUTDV/pzh1XzUVWA5vYvXmhArxccF/04DQqwvvAZK3e5/nqENrz6+EOsoNF8CUE+uw4Gj8M7VwQBLsYQBlmJK+/btAQDHdrmRbCtFzwbZABAUXn20IVZShF94VctoQ6wvvBqFPF/Dpxde1TIWP1blDTLDKxERVblYvuc1YpuqfM+rGmINwqvf/uLjjLdXHmKNwisA2EoUNcTqhVefoqI4uJIs9hhrbExOBuDtfU1MTAz7+UQ1hQGWYkqnTp0AAPk7vAf0ZFspklJK4I43fo6weRssyWUcOoXf1ecQHwuLC52HnPyJw4GJiKiyQoVOycLEhVa2UxOqO7xa2J+6hF6oi9U6tx4FEonxhuHVpyRDhlwKw/Dqs6xbG/P66PAFWN+5FVGsYIClmNKxY0cAQMlhBa4CBT/t64SC3akoSxcoS9F/TlyugoRDLihxdoh4/ftdpdIySMWl3u/tNkA2umLqgfAo5g29ophP9gD4T80foUY1JPa+EhHVLlbCa6yqqfBqcvHZb/13k5FYkt17riFKSgzLiJREQJaRsK/QsExhYzs8TkBSBOJXGfeQtm10CD9c1BVue3i/s/WpqQCOn1sRxQoGWIopKSkp6n0aP69qjL1b6kMukSBsQjfExuUqSNrvguxWABnwJDjgSYsPDrJC+K3lqhtifeHVV07vxMAXXsNcDqfaQiwREdUOoe5bZXgt31QF2ledNtwvvBptxm73hlffPoXQDbG+8Ap4R4fphVhfePVxFATXqW2jQ2jb6BCSHaU4mpWIhQO9QdTKOrAKgH/q1wcAdO7cOcQziKILz4gp5px88skAgMLVZZBLjjdMeiFWdsMbXtUfAMIuwZPgUEOstvdVyy/EBoZXtZBeiK3Y0OEqDbHsfSUiqj1CBVaGV0iyVLl2VdOWG4ZXTS+sGlwD9xnQ/oqkhKBtBYbYwPDqo+2FbdPwMJIdpUh2HD9/mXJPL/xzcmNL68AuO70R8j0eJCQksAeWYg4DLMWcU045BQAQvz8n6DFfiC1sKiB5BBIO68zsBKi9sQAgFZUEB9NyfiHWoIz2/qKQQ4dDqJIQy/BKRFR7hFq7leHVWltqZX+KCN3z6vH497rqECUlEEkJ3vBq179FyTdPh1F4Bby9sPGrEtGm4WGkOIN7dsvi7HjmlUFYcllbeOz69fHYJfwzvAn23P0KAODEE0+E3W6wnCBRlOI7lmJO9+7dAQDOvDzIpaVQ4uL8Hhc2gfgcGQmHPd4JnIzmPZAB2MsnYjAKpz4he1UFhNnMxGo5TtxEREQVEMvB1IrqDq9WyKGHDcNm8/bEysan1JLDARSVQKQmmW7KUeCGx2l+ai5s0A2vPmVxdtx9wwg0GXEUDy+bi6Yrj8JR6IEryYY9p6fj38uboLieE3umrgFw/JyKKJYwwFLMyczMRJs2bbBt2zbE5RxEcZPgtcvkMsDmEnAneBseW2lwuLQVuiAVlhy/Gqqz+LhwewBXGQBAstnK728NEUJlKex7YNX9RXpJHfa+EhHFvtocXqv7fler+/RtS1GMQ6xmbXijPUtOZ8gL5e5U71IKkiKQvqUMR9vpd8GWpUkQNuDvpe1xUq/NumV25GWizG3D9vgs/HFLK/xxS3CZV1eei7Z//gIAOO200wzrRRStOISYYlKvXr0AAAn79kEEXIZJOCgjea9voiXAnSDDE+c/ZMdW6IKcVwTJXR5s7TYgzgkEDqMRSuj7YPRCrV4jGiJ4WgqvRERUtzC8WtxUhMJrwH2shheuA5fIcQVfBJccDr9zBik/eLImd2q83z7txcEX3MvSJDW8AoAzX8Lfv7UPKucLrz6zd/UIKjNpVX84N+ehtLQUDRo0QLt27YJfG1GUY4ClmNS7d28AQPy+gxCyWw2xCQdkpG5XYCvTNDblIbYsxaEGWcmtHA+vajnJG2R909+7Pbq9sn4htrxh0733VduYRmroMHtfiYjqDoZXi5uKYHjV4dfG22y667sKIfxCrORwBJdTFL8Qq4bXAOlbytTvfcFVBGzKmXf8eTvyMoPCKwDkFcf7hdhJq/pDyXfghtSGALydAVJtfo9RrcUhxBSTOnbsiPr16+PQoUOIP3AIJU0aQdgBSYF/ePWRAGEH3DYZ9kK3d+iwEbvNG1xdZYZDgSVJgpBl7+zEZkHR4nBiDh0mIiI/tTlY1MT9rhUMrypFARwO0yJCCMi+MjohV90OjMMr4O2FTd/mwsHuzqDgqvX3b+2R3iUnKLhq5RXHY9Kq/t5d5zsARcGSJb8BOD6ajSjWsAeWYpIsyzj77LMBAEnb90BIAvH7bUg8oECYNELOfDdseSbhNVyh7oclIiLysTJLcCzPJBwqJEpyzaxpHol9ll+0Nt2NTYZwuYzDq09pWcjALHmEaXgFgPhDEgp+r2dapnhDOhzb4r3hFUD8/sPIzc1FWlqauqoDUaxhgKWYdf755wMAEnbvh+RyQ3YBtjJAscEwxEpuAcnjAWQZwmAqe7jc3gZIks2HE5U3ZJIkGQ/BUUTNzDwcyydARES1kZV1WmP1uK0NpkZhMcLBNaze10q2w1KoQApveIUkm4+6ctgBhx2SR4H9cIFhMU+8DcImIXO9cWCWywBJAA7jzaB4QzrshRJk1/Hf1ai4dABAv379uHwOxSwGWIpZJ5xwApo1awbZ40H62oNI3uObuEnSDbHOPDfsucXe/5RPjS+cDv8g63JDlJR4h+DKkrcxstmCg6yiBPW+VvQ+kogPH9aK1ZMhIqLaxMqxOFaP13rBNPBnNRlerTK6ZSgwvOr0wqrhtZwo0Rnp5bD7XVyWyoLXqffE29TwCgCOQg8yN/jvTy47Hl59yv7KCNqWL7z6xB22QXK78csv3tmHBwwYEFxHohjBAEsxS5IkXHDBBQCA+H07YCvzexCKDVDskhpk1d5XH9+sf9reWCH87x/1ldH0xorAMgF1UkWq97Wy24jVkyIiotrASm9rrB6na2DIcIXDq5W2VLvqgM0WXs9rwHb8QqwvvAbQ9sL6gqsvvKpPLTh+3uILrlLAKYi2F7Z4Q3pQeAUA2SUhccdeFBcXo0mTJujSpUvI10YUrRhgKaZdeOGFkGUZzrzDgOuY/4OSN7wqNsBe4IE9r1h/I76FyhUForTUuIwvxOr0vvrvVrIcXqtt6ZxYPTkiIopldf1+14jvspK/K4sXhEMGV48Hkk3WD68+vvbdILwCx3thtb2uejI3eIJ6XQOVrc5Qg2tgePXpnec9xxk8eDBnH6aYxgBLMa1hw4Y466yzAAByUbZ+IUmCpHiXzjEkWziJ8M0oLITxoubQTLcfovGu1nVfOSsxEVH1itWAYCV41sBETBEZNhypeksShEcx355NhnC7Td8Hwm6DPbfINLwC3lugzMIrAKRuFYbBFQDsx3KxYcMG2O12DBo0yHxjRFGOAZZi3qWXXgoAkIt2AUrwuq1xR91wHin2NiKyrNuYSCVlEMUl5cOdDMKsxwPhNwS5Ghr5mpgAioiIKicWw6uViZhCPVYFJFmqfHi1OpRZLp+U0WyFAe1a8EYsTOgk7DbvttwexO3Vn4lJ8ghIHgEIIGNT8PkNACQcFEg4KGArE0jeaby/axsmAQD69u2L9PR08/oTRTkGWIp5PXr0QLNmzSAJN+x52yG7/Q/gkltAcmmCp15AFeJ4Q+Nr6ALLKDr3vgY0YkK7HXV/wR+zKp24KWg77H0lIqo2sRperZSpgfAagY2ELlM+34X/PBZ6a8r7h1fh1gmVgcOKi4MndFLDq2+zOhM6+YIryptwe2Hw5FG+4Gor8xaylwS39+mbFKSvL8S8efMAAEOHDg2uM1GMYYClmCfLMkaMGAEAkEq2Qi71qCHWmVfe+xpIOxNgSRlQonPvqzbEBva++lcgdCVrau07IiKqHrF6P6uVZW9q85Dh8uBqek+o729r1t7b5ODwCniHGmv/HxBefbS9sGp4DaDthfWF10DaXtj0TQqcBR6MPjcLLpcLJ554Irp162b8GohiBM+oqVa48MILkZWVBYgSSGW7IJcJyG4B2RXQ+6qlaYwCG5jjZTQh1qwn09eoWehZZe8rEVEtE4vBFaiRWYStqO7wakhRjp8rGIRX4XYfD65G+ywugbDbDMMr4O2F1Q4Z1mMv9PgNGdYtU94L6wuvEC589dVXAICrr77a+LUSxRAGWKoV4uLiMHz4cO9/SrdCUhTE55TBebjQPMSVlukO7/HD3lMiIjISjeE1SidiMuO71zVqwqtaznxbkiSFnrRRiNA99MJ/yLAee5ELqdnFhuEVAJL2lqLh7y5veAVw85UtUVRUhNatW+PMM880rSdRrIiuoxdRJQwZMgQpKSmAUgi49kFyKZBK3YBHMV631aN4GxazBtPtDjmTIBTl+OzDRjghExFR7RJt4TVKJ2IKJSKh9fjGLBcN2W4DgMHtQ37Djl1lumUAqOcXUqHBUn7eigAA4g7oT+YEeMOr5FZgK9GfzAkAkvaXQi51w3mk/MK8cGH27NkAvL2vspVbnohiAN/JVGskJiZi2LBh3v+UboSAJjB6ytduNR0GHGIYEWB+BZXDh4mI6o5oDK9WytT18Fo+YZNlOpM5BfXc6rXtAfvRnfBJBEwOqTOZk73IpYZXI0n7S73htdh/H2Mua4y8vDw0b94c5513nuHziWJNdB3FiCppxIgRyMjI8PbCFm/3f1AR/r2xpTqTNwU2bL7e10ABMxWy95WIqA6JlfBawxMxmYnYcOHjGwxdpqL70/TCGg471vbCGuzHrxfW4LxB2wvrC66B4TVpz/Fbn3zBNTC8Oo4WqL2vN910E+x2u369iWJQdB3NiCopMTERo0ePBgC4EnZAQGfoT3mIlTwKhNFab7J/QNWl7Y1l7ysRUd0QK+FV+3gUhtcIbzB0GYN9WhpGDISeqVgRIXt3hdsd3OsaqLwX1qzX1TeMWK/X1Wfw5ZkoLi5Gp06d0KdPH+P9EcWg6DqiEUXA4MGD0bRpU0B2wZ24R7eMVFzqnbzJLFRG+MpwxBtsIiKqXtUZXmNwIiYrIt7rGup3EO6Q4apk4UK25HKHHDIsHytB2sZ8w/AqUISvv/4aAHDLLbdYm6yKKIbE3pGPKASHw4GbbroJAOBK3ANF1lnjVVGODw02alCMhg9rCRF6EihA7VkN2XDH4MkIEVGdEMkQYKXXNFS5GGwvIn4h18qoJSujn8yoy+0ZLMmnpXMPa2A9pIIiwyKSy9tDazt8zLg6x0oAjwdSgf6kUAIC3c/2wO124/TTT8epp54aut5EMSb2jn5EFpx77rk48cQTAUmBK3Gr4SyCauOniOBGThHGw4fVMprHLV7lDXnfT2WHe3H4MBFR5IRa/iTs7ZmEUyvH/ygcEhxKxO93jTDdYcSBa79WdMbigPML4Q4uI7ncanj1/T+oOsdK1PBqxJZbCBTtxooVK2C323HXXXeFrjNRDIqtIyCRRZIk4b777oPNZoMnIRcee455iNUG2coKbKQNrhCzN5aIKMpFOrhWpEc1iidisqLKg2tV9MIaLDcTdi+sxSHDoe6LVYNrqPDqKkFmpzwAwJVXXokWLVqEri9RDIq9IyGRRW3atMEVV1wBAChL3wm4XZDKXJCKSiACZx8G/ENsOMOH9YTRGxuiQMhtBNaJiIgioDqGDFsZKhxqG1EsmntdA6ntudlaqVZ7YfVGdWlIBUVBva6B5KOFIXtdbXnFsOUWwpZbCKnMhWEPd8P+/fvRsGFDXHvttaHrShSjYu9oSBSGMWPGoH79+hD2UrhS9nqH/LpcgFE49fXGejyhhw9Xl3BOWjhRAxFR5UXqWGp1SLCV7cSYaguvkfzdmIXXCBJlZSF7XaWCItNeV0kRkPILvBfmy1xQHEX46KOPAAB33nknEhISqqTuRNEg9o6IRGFITExU7wFxpe6Dx1HofSBwTdgaUiVL6zDEEhFVXCTDay1lFk6r9X7XCP6OJUmydOHa0jBiM0qI55eWAaVlEB6D248U4V1PtrhEvZ9WQEGzs11wu93o1asXzj777MrVkSjK1d6jK1G5Pn364LzzzgMkoDQrG0LSNAqKzhVQj2LYcKiECN2IKSJy67qGK9KTjhAR1QUMr6a04VQvpFbrkOFwf8dmQ3rD+btbufDtKtPZv8cvvIqikuAy5cHVdw4iFfrPNCwpQg2u2smgXKn7sXnzZqSmpuI///kPl82hWq92HmGJAtxzzz3IzMyEcJSgLH2v/4O+EOtrlIQSPcOHK4uNGBGRNQyvpkKF02rtdY3Q71iSpKoJe0GrGujNTqz5mUGvqy+k6vW6+nhEHpTMAwC85zpZWVmVrz9RlKudR1miAGlpabj//vsBAO7MI/AkBqzD5ptwoTZOgsQQS0RkLhLHyRhc3saqWjtkuKoF9LrqCuh1DWTU6woAQlLQ9FwFHo8H55xzjne0GVEdUDuPtEQ6evXqhYEDBwISUNZ0L4TNZL22UEE2Aj20lu5/JSKiqhWp8FrL+IJpqPBajRWq/DbK213T8Bqp+2BDBVePx/ReVwDeocg6va4+Fz7YEVu3bkVaWhruu+8+Dh2mOkMShuuAENU+hYWFuPHGG7Fnzx7Y8pPh3NUUEvwP+MLtPj7rn1Fj4PF4Gx2jxtvC/a9VMoGT4Xb4MSci8lOHhwxLsmTaBkXt8jcR+F1LNoM1XoUm3FqYjViy20Nvx6FfRl1qJy7OeAeuMtMy7uQ8lDXdBQB46aWXcMYZZ4SsM1FtEXtHXaJKSEpKwpNPPgmHwwFPagHcmUfMn6A3zb12/ddY6EVleCUi8lfHw6v2X6PH65JI9eUIIbw9uIqi30vrWxbHd+6gN9mTq+x4eDWgoACODt7zl6uvvprhleqc2DvyElVSx44dcccddwAAXI0Ow+MsDN3TqW3cFMW/YQmxYDkREUURhlfDx+pCeA0Mq5EIr8J3Ydts+LEvuAaeP2i53ebnFK4yCHcpWg2JR2FhIbp06YIbb7yx0vUnijWxd/QlioBLL70Uffv2BSSBspb7oMBlLcSaNXQMsURE0Y3hNezHap3ytlpoR1NphAyiRuWNnhPY66rH7fZ+md1b6yqD4vGg/0OdsGHDBqSkpOCJJ56A3WAoM1Ftxntgqc4qKCjATTfdhD179kAuiIdzW1NIHmsTOIVcJxao/D2wkVxDlh9zIqrr6mh4rXXhNBK/fwu/E8lmMy/ge9wk7EoOu2lwFR4PJKfTNLgKISDZZAiPAndWHlzNDkGSJLzwwgvo2bOneR2JaqnYOgoTRVBycjKef/55JCUlQUkugavpIQhRft+KSYNUbdd8YuwkiYgoatXC8GplXdZaF16jhaKU96oanCv4RmyFCK8Qwjy8ut2AywXhUeBJKoLS0nvf6y233MLwSnVa9ByJiWpAq1at8Pjjj0OSJHiy8uGpfwyAhSFBlVStS+iw95WI6rI6Fl4ZXKuQ9rzALLyaEB7P8fBqVMbt9obX8n0oDhcSTi2Ex+NB//79cdVVV1Wo+kS1RfQcjYlqSM+ePXHrrbcCAFzNcuBJLQYQMClDFQVZIiKqQrU8vAYGVQbXKmLlPCDUPBnQ9LoalPMLruX7EzYFTQbJyMvLQ4cOHfDggw9yvVeq86LniExUg6688kpccMEFgAS42h2GknB8antLswsSEVF0qWXhNVTPKsNrFYlQcLXS6xoYlIUkcML19ZCdnY3MzEw8++yziDNbO5aojuAkTkTlysrKcP/99+Ovv/4CymQ41zeCXOY/u58kSeVhtnITMFkeQhyJiZz4ESeiuiSSvVNRFF6pXHVN4mTlfSSHqItvG1ba4YCgLCDganMYnswiJCYm4o033kD79u1Db4eoDoiOIzNRFHA6nXj22WfRtm1bwKnA1fEghN1/cgU1vEZyhmAiIoqcSF20i4LwyvtZq0gl56EwWoLHr0yo4cK+XlmD4cnuZkfhySyCzWbDM888w/BKpFHzR2eiKJKcnIyXXnoJDRs2hIh3o6z9IQjZaKKG0L2s1TpZExER1QoMriaq+gKyEmL2YKvDhUOUMeNqkAd3o3wAwPjx49GjRw/T8kR1DQMsUYB69erh5ZdfRmpqKkRyGVztD0FIJiE2UsOFiYgoMiLRC1tDI20YXCvIQntsykJwtdTrGuLxkOG1Xj7cLY4C8C6Xc/7555uWJ6qLGGCJdLRs2RITJ05EQkIClNRSuNodhpDKGy5ZCh5aFqLhZG8sERGFwvBaQVV4scFqcDULpkaPa++zFULAlXUM7la5AICRI0fi6quvrmCtiWo3BlgiA126dMGLL76I+Ph4KOklcLU9BBGqkeSwYiIiqgCG1wqobK8rYNrzahZcJUmKyHBhX0D2ZBTA08YbXq+44grcfPPNXC6HyAADLJGJk046Cc8//zycTieUjBK42uVAhJxSP0JXgjlRFBFRrcf7XSvALLhabTsre69rqGHqijAPrx6POjGkJ60QSsc8CCEwZMgQ3HHHHQyvRCYYYIlCOPXUU/Hss8/C4XBAySyGq30OBMyvqAK8mk5EVGMicfJfDbMQs52oZlZ7bM3KhAi+IR8HAF+wVQQ8WYVQTjgKj8eDgQMH4t5772V4JQqBAZbIgjPOOAMTJkw4HmI75By/J5aIiKIHwysFCie4GpXzBVOjMoGP6/19PZ7j4RWAu34B3O1z4fF4cOGFF+KBBx6AHGptWSKCJEKOgSAin5UrV+KRRx5BaWkppHwnnBuyICnGjU2l73eNxDBifsSJqK6IgfDK4FoNtH9DvXZU72+sLSfJxwOorx0P3I7Ndvx7vfXhtY/rDCV2NyqEu9VRAMCll16Ke+65h+GVyCIGWKIwrVmzBg8++CAKCwshHXPAuaEeJI9+o8MAS0RUTSobXtnrWntIsnn7GSrg+sKnXjD1PV+WjMOtbxsG98C6mxyDu4V3ndcRI0bgtttu47BhojAwwBJVwMaNGzFu3Djk5+dDKrTDubEepDJbULmoCLAAQywR1W4Mr+QTKrxaKeN7PxiVsfK4zmMCAu6WefA0LgQAjBkzBtdddx3DK1GYGGCJKmjbtm0YN24ccnJygFIbnBuyIBc7/MpYCrBCMT55YoAlIgotxgOsUESlHqfoJyQBV7tcKFnFAICxY8fiqquuquFaEcUmBliiSti/fz/uv/9+7NixA3BLcGzKgi0/Tn3ccoD1CTyJYoAlIgotRu991bYRRgE1nDIVfdxXpqofr+o6VoeK/B6ETUFZhxyItDLY7XaMHz8eAwYMqOqqEtVavFucqBIaNWqEt956CyeeeCJgF3B1Ogx3ZmF4Gwm8F8cs0BIRUa0Q6gKnUISli6BWtlOZ/Viph9XHrYT0itahqvnqYPYa9B5X7C40viIOIq0MSUlJeOmllxheiSqJPbBEEVBaWornnnsOixYtAgDYdqbAtjsZsiyH3wurZeVeHiv4MSei2i7KhxFrg41Ru+ArE+pxozJBPX8BZWrb49WhonUUioCSXIaUvgqOHDmCevXq4aWXXkLbtm2rtsJEdQADLFGEKIqCt99+G5988gkAQD4cD/uWdNNldvxEariw4fb5USeiWizKA6x3F5LpRU0rjwOVD8BV/bhRmUg+XtUqUj9fGaEIeOoXQe5ShLKyMrRu3RovvvgiGjZsWGX1JapLGGCJIuzrr7/Gq6++Co/HA6nAAceGTN0ZioMwwBIRVVwM3AdbWZEIwLH+eFWrTP0A70zDnhbH4GlWAADo3bs3Hn30USQmJka0nkR1GQMsURVYvXo1HnvsMeTl5QFlMhwbMyHn270PhlpAvarwo05EtVWkliGJ8gBb11XVJFaRur9W2BS42+dCySwFAFx77bW44YYbIMt8XxFFEgMsURXZt28fHn74YWzduhVQAPu2VMgHEiChvAGtqhmHjfCjTkS1USTX0GSAjWpVfY9thQkFSqIHjYckYOfOnXA6nXjwwQc5WRNRFWGAJapCRUVFeP755/Hzzz8DAOSD8bBvTfW/LzbUguiRxI87EdUmkQyvAANsFKvq+2srpLzd9tQvgf3EEpSUlKB+/fp4+umn0blz58jsg4iCMMASVTEhBGbNmoXJkyd774sttMO+MR1ysd2/YKRmHDavTNVun4ioukQ6vAIMsFHMygRSlb1/1bLytlpIAu7Wx6A0LgIA9OjRA48//jjS09Mjsx8i0sUAS1RNVq9ejSeffBJHjhwBPBLsW1JhO5xQ/RXhR56IYllVBFd12wywsSii4dSM5iKziPPA1fEoRIoLADBq1Chcd911sNksTNpIRJXCAEtUjXJycjBhwgT89ddfAAB5XwLs21MhKdW4th0/8kQUyxhgqboIRXd0lCerBPE93CgoKEBKSgoeffRR9OzZs4YqSVT3MMASVTO3240PPvgAH374IQBAKrJ5hxQXOaqnAvzIE1GsY4itO3whsiq2CxhvW+eWHiErcLc5BqVhMQDghBNOwJNPPonGjRtHvn5EZIgBlqiGrFy5Es8995x3SLEC2LanwLYv8fgsxVWFH3kiinUMsHWDWXi1GkBDLV1ncWk7JcmFRoMTsWvXLkiShGuuuQbXXXcd7HZ78POJqEoxwBLVoKNHj+KFF17Ab7/9BgCQcp1wbE6D5KrCe2j4kSei2oAhtvYKJ2CG87jeRIkhHhcQ8DQpgtS+GG63G/Xr18cjjzyCU045xeQFEFFVYoAlqmFCCHz11Vd48803UVZWBrhk2LemwpYTX1U7rJrtEhFVJwbY2qcCAdPy40az/Js8LuLdcLXLg0jzTtR09tln44EHHkBaWpr+toioWjDAEkWJ7du3Y8KECdiyZQsAQD5cvmasO8InUvzIE1FtwRBbe1QgYFp6vCJVgYDSqBj2LmUoKSlBQkICbr/9dgwePBhSVb7niMgSBliiKOJyuTB9+nTMmDEDHo+n4r2xQhif2PEjT0S1RVWHibocYkNNnhSpx6t6/fMwiTg3XO3yIdLLAADdu3fHgw8+iCZNmtRwzYjIhwGWKApt3LgRzz33HLKzswEA8qF42LeF2Rvr+2jrneDxY09EtUF19IZVJMRW1cy51aGq7j81KhMlfL2ujq4uFBcXIy4uDrfeeiuGDh0KWY7RvyVRLcUASxSlysrKMG3aNHz00UfHe2OzUyAfirc2U3HgR1t7osePPRHVFtEUYiszM662TKjHK7MPo8cDQ2WoxyO1jSigJLjgbpcPkeq917Vbt24YP348mjVrVsM1IyI9DLBEUW7Dhg144YUXsG3bNgCAdNQJ+9ZUyCUhpu7X+2j7TvT4sSei2iIaAmy4y7JURc9mJGfmtVImnG1EaXAVkoCneQGk1qVwu91ISEjAjTfeiMsuuww2WxWuBkBElcIASxQD3G43Zs+ejQ8++MA7U7EC2HYlw7YnCZLgva5EVMfVVIityllzjcqE2zNq9LhZqLQSPK1sI0qDKwAoqaXeXtcEDwDgrLPOwr333ouGDRvWcM2IKBQGWKIYsnfvXrzyyiv4/fffAQBSkc3bG5sfF1yYH20iqiuqa2bY6gh2kZh1N8rDY00SDg/crY5BaVACAMjMzMQ999yDPn36cIZhohjBAEsUY4QQmD9/Pt58803k5uYCKF9yJzsFUplNW7CGakhEVM0YPCgEIQl4GhchrosHRUVFAIAhQ4bg5ptvRkpKSg3XjojCwQBLFKPy8/Pxv//9D19//TUURQE8Emy7k44PK+ZHm4jqAoZXCkFJK4W7zTGIRDcAoFOnTrjnnnvQuXPnGq4ZEVUEAyxRjNu8eTNee+01rFmzxvuDEpt3tuIjcZD46Sai2ozhlUwIpwfu1seg1PMOF05LS8Mtt9yCiy66iEvjEMUwBliiWkAIgQULFuDtt9/G4cOHAZTPVpydDLnQUcO1IyKqAgyvZEDYFHiaFcLWxoWysjLIsoyhQ4fi+uuv53BholqAAZaoFikqKsKMGTMwe/ZsuFwuQADywXjYdyT73x9LRBSrGFzJgJAElIZFSDpFRl5eHgCge/fuuOuuu9C2bdsarh0RRQoDLFEttHfvXrz33ntYuHCh9wcKYNuTBNvuREgeDpsiohjGAFu3CRH0HhAQUDJL4Wl1TF0Wp0WLFrjtttvQs2dPzi5MVMswwBLVYuvWrcPbb799/P7YMgn2XcmQ9ycYrx9LRBTtGEhqJ51w6veYj6aMklIGd8tjEGkuAEB6ejpuuOEGDBo0CHa7vSprS0Q1hAGWqJYTQmDJkiV49913sWvXLu8PS2TYdyZDPhgPCTwRJKIYxBBbexiE06DHNGWUJBc8LY5BySwDADidTowYMQJXX301kpKSqrCyRFTTGGCJ6gi3241vv/0W06ZNQ05ODgBAKrLBtjMZ8uE4Blkiii0MsLVD4Gmo7+9qcHqqJLjhaVkApV4pAMBms+Giiy7C6P9v797DoyoPPI7/zkwmyYSEJFwkgSAgIKBAQSCUq3jhIupWQLtaV9uqte1q7W7XVpenSgu1VH28re7jWp9tt64ilVql1gssCioIRJSbcjHcr4m5kHsmk5lz9o+ZOZnJjdzIZML38zzzzJnzvuc9bzIR5zfvOe/73e/qggsuOJc9BdBFEGCB84zH49Gbb76pV155xZ7kwqiMk/Noj8DSOwRZALGCEBu7mhhZbSq4Wok++QZWSplemaYpwzB09dVX6/vf/76ysrLOcWcBdCUEWOA8VVVVpVWrVmnlypWqrKyUJBkVcXIe7yFHEUEWQAwgwEZfc/et1q/Tho+cptsn/8BKGZm18vsDEzRNnz5dd955JzMLA+cpAixwnisrK9PKlSv1+uuvq7q6WlJwRPZ4Dy4tBtD1EWLPnTZMqtRknVYyk2rlH1gp6wKvQh9Vs7Ozdccdd+iSSy5pc7sAYh8BFoAkqaSkRKtWrdJf//rXuhHZKqecJ3ow2ROArq25AEXAjRT62Nfc76W5Ok1d+nu2Oi0UmJypUmbvGnvf9OnTddttt2nUqFFtbhdA90GABRChvLxcr7/+ulatWqXy8vLATo9TcSeT5Mh3yzD5MAigizlb0CLENj1ZUkvrNPVxsSV1ztY1WbJ61sqfVWnPKmwYhmbNmqXbbrtNw4YNa1O7ALonAiyARlVVVemNN97Qn//8Z5WUlAR21hpynk6S87RbRq0zqv0DgAhnmb32vAyxLf1dtHJCpTbVa4QlS2afGvkHVMpK8UmSHA6Hrr76av3TP/2TBg8e3KZ2AXRvBFgAzfJ4PHrnnXf02muv6dSpU4GdpuT42i3nySQ5qlkoHkAMaGmA7YqXHbdmoqTQdnPaETo7guU05e/nkb9/pZRoSgqs4zp37lzdcsstzCoMoFkEWAAt4vf79fHHH+vVV1/V3r177f2Oong5T/aQUebiPlkAXVdL7vk8W73Odo4nSupsVrxf/swq+TOrpbhAv1NTU7VgwQItWLBA6enpUe4hgFhAgAXQKpZlaffu3Vq5cqU2bdpkzw5pVMTJeSpJjsJE7pMF0LW0dTKixo7pqDrt6VeMfXQzk2vl718lR3+ffL7ApcJZWVn6x3/8R82bN08JCQlR7iGAWEKABdBmx44d02uvvab33ntPXm9g4g3VGnLmu+U8nSSjhvtkAURZSycZ6sjlYjpqgqTW1OtiLIcls49H/swq+/5WSRo7dqxuvvlmTZ06VQ6HI4o9BBCrCLAA2q2kpERvv/22Vq9erby8vMBOS3IUJwQmfCqJ5/JiAJ2vJfd6dvQoaEdOkBSDrITgZcL9qiVX4Gd0uVy68sortWDBAtZwBdBuBFgAHcbv92vz5s3661//qm3bttn7jSqnHHlJcuYnyvDzjTuALqSjJz7qxuG0KZYsmelemZlVsnrX2reWZGRk6B/+4R903XXXKS0tLbqdBNBtEGABnBPHjh3TG2+8oXfffVdVVVWBnabkKEyUM98to5RJnwAgllkJfvkvqA6MtgZnE5akSZMmacGCBZoyZYqcTm4lAdCxCLAAzqmqqiqtXbtWq1ev1sGDB+sKqp2Be2W/TpTh5QMOAMQCy7Bk9qqRP6Na6lU32pqcnKxrrrlGN9xwgwYOHBjlXgLozgiwADqFZVnav3+//v73v2vdunV1o7KW5CiOlyPfLUdxAqOyANAFmUk+mf2q5b+g7t5WSRo/fryuvfZaXX755cwmDKBTEGABdLrq6mpt2LBBb7/9tnbt2lVX4HXIWZAox9eJMirjCLMAEEVWnBmYSfgCj6yetfb+Pn366JprrtH8+fM1YMCAKPYQwPmIAAsgqo4ePap33nlH7777rkpKSuz9RqVTjgK3nAWJLMcDAJ3EcgQuETb7emSm10jBefecTqemTp2q6667TpMmTVJcXFx0OwrgvEWABdAl1NbWKicnR2vXrtWmTZvq1pWVZJS65Pw6UY5CZjEGgI5myZKV6pX/Ao/M3jVSXN1Hw+HDh2v27NmaM2eOevXqFcVeAkAAARZAl1NRUaEPP/xQa9eu1fbt2+sKzMDaso6CRDnOJMgwucQYANrCkiWrh09mX4/8fT1SQt0swhkZGZo9e7Zmz56twYMHR6+TANAIAiyALi0/P1/r1q3T2rVrdfjw4boCvyHHmXg5ChMDkz8RZgGgWZYsWcm+wH2tfWqkRL9dlpKSoiuuuEKzZ8/WmDFj5HBwtQuArokACyAmWJalAwcOaN26dVq/fr3y8vLqCv2S40xCMMzGyzD54AUAUv3Q6olYrzUhIUFTpkzR7NmzNXnyZMXHx0expwDQMgRYADEntCTP+vXrtWHDBp0+fbquMBRmixICI7PcMwvgPGPJkpVSK7NPjfy9I0Or2+3WlClTNGvWLE2ePFlutzuKPQWA1iPAAohplmXpq6++ssPsqVOn6gpNySiLl6MoQc7iBGYzBtBtWQ5LZlqNzN41MtO9UnxkaJ02bZpmzZql7OxsJSYmRrGnANA+BFgA3UYozG7YsEGbNm3SkSNHIsqNyri6kdkK1pkFENuseH9gyZteNTLTvPaSN5KUnJysqVOn6vLLL1d2drYSEhKi11EA6EAEWADd1vHjx/XJJ59o06ZN2rVrl0yzbkRCNY7AjMZn4uUojedSYwBdnj1zcDC0Wim+iPLMzExNnz5dU6dO1Te+8Q3WagXQLRFgAZwXSktLtXXrVm3cuFFbt25VdXV1XaEpGWWuwL2zJfEyKhmdBdA1WC4zcGlwujcwyhp2abBhGLrkkks0bdo0TZs2TYMHD5Zh8G8XgO6NAAvgvOP1erVjxw5t2rRJOTk5OnnyZL0KjsDIbCjQ+hidBdA5LCM4AVN6ILRayZGjrG63WxMmTNC0adM0ZcoU9erVK0o9BYDoIMACOO+dOHFCOTk5ysnJ0eeffy6Px1NXaElGRZwcJcFLjcviWXMWQIexZMlK8stKDYywmqleKS7yo9nw4cOVnZ2t7OxsjR49Wi6XK0q9BYDoI8ACQBiv16vdu3dr69atysnJ0aFDhyIrmJJR7pKjND4wOlvukmERaAG0jCVLljsYWFO9MlNrIy4LlqTU1FQ7sE6aNIlRVgAIQ4AFgGZ8/fXX2rZtm7Zv367PP/9cBQUFkRX8waV6SuPlKHXJqCDQAqhjyZIS/DLTaoOB1SslRAbW+Ph4jRkzRpdddpmys7M1fPhwORzcugAAjSHAAkALWZalEydO2GF2+/btOnPmTGQlv2RUBEZojXKXHGUuZjgGziOhmYKtnrUye3pl9qxtEFhdLpcuvfRSjR8/XuPHj9cll1yi+Pj4KPUYAGILARYA2siyLB09elSfffaZtm/frh07dqisrKxeJcmoigvMclzmkqMsXqpxMMsx0E1YTjMw6VLPWpkptbJSahvcwxoXF6dRo0bZgXX06NGsywoAbUSABYAOYpqmjh07pi+++EK7du3S7t27G85wLAXWoC0LXG7sKHfJqIiTYTJKC3R19v2rKbUyk2tl9ayV1cOn+t9H9ejRQ6NHj9bo0aM1ZswYjRo1Sm63OzqdBoBuhgALAOdQUVGRdu/ebYfa3Nxc+f3+yEqhUdryODkqXIGJoariuJcWiKLAvatmIKiGAmuyr8HoqiRlZGRozJgx9mPw4MFyOp1R6DUAdH8EWADoRNXV1dq7d2/Eo8HEUFLgXtpKlxwVcYGJoSrjCLXAOWLJkuJNmck+WT1CgdXXYHZgSUpMTNTFF1+skSNH6tJLL9WYMWPUp0+fKPQaAM5PBFgAiLLCwkLt27fPDrT79u1TRUVFw4pmcKS2Mq4u3FbGMUkU0AqWYcly+2Ql+2T18MnsEbwM2NXw45DT6dTQoUM1cuRIjRw5UqNGjdKgQYMUFxcXhZ4DACQCLAB0OaZp6uTJk9q7d6/279+vAwcOKDc3t/FQK0kehxyVYaO0VXEyqp2M1uK8FhpVtZJ8MpMCYdXq4ZOV5JMa+c7H6XRq0KBBGj58uB1Yhw0bxmRLANDFEGABIAZYlqX8/Hzl5ubqwIEDdqjNy8tr4gAFQmxVXOSDYItupkFQTfLJSvIHgmoj96tKgUmWhg0bpmHDhmn48OEaNmyYBg8ezFI2ABADCLAAEMPKy8vtMHv48GEdOXJER44cUWVlZeMHmJLhccqoDobZ6uC2xyl5Wd4HXZflMAMzALv9shJ9ddvNBFWn06kBAwZo0KBBGjp0qB1WMzIyZBj8rQNALCLAAkA3Y1mWCgoK7DAbCraHDx9WVVVV0wf6jQah1qh2BsJtLeEW557lsOrCaaI/cK9qMKg2NqFSiNPpVFZWloYMGaLBgwdr0KBBGjx4sAYOHMioKgB0MwRYADhPhAfb48eP68SJE/bj9OnTMs2mA4L8klHjlGoCgdbwOGXU1D2r1iDg4qwshykr0ZSV4JcS/bISgkE1IfBQfPMfSVJTU5WVlWU/LrzwQg0ZMkQDBgyQy+XqpJ8CABBNBFgAgGpra3X69Gk72IYH3MLCwubDrRQZcL0OGV6njBpH4LLk4D5Gcbs3y2nKijeleL+shMC2Fe+XEgLPVqK/0Zl+60tJSYkIqeGPlJSUTvhJAABdGQEWANCs2tpaFRQU6PTp08rLy7OfQ9uFhYVq0f9KTAUCrTcYaL0OGbWBh0LPwX3yM6LbFViGJblMWa5gOA1uyxUWUOODZU3ch1pfSkqKMjIylJGRoczMTGVkZKhfv37KzMxUv379CKkAgGYRYAEA7eL1evX1118rLy9PBQUFKiwstJ9D28XFxS0LuSGmIkOtzyH5jLM8OwKTVBF8G7AMS4qzZMWZUpwpK86S4kzJGdoXfHZZgbAaDKktDaUhycnJ6tOnj/3o27evvd2/f3/169dPycnJ5+inBACcDwiwAIBzzufzqaioyA60RUVFOnPmjM6cOaOSkpKI7SZnUG4JU5LfCIzg+h1h20bkthm2bQVfm5Jhhl4ruM+QYaquTuj/mJYkBV8H950tOFt1Fes9W4Ftw5IcgYmM5Ajuc1iSYcly1G3LoUDwdFqS05KcZuCY4GvLGTw+tB1nSs62/0rj4uKUnp6utLQ0paWl2du9evVqEFLdbnfbTwQAQAsQYAEAXUpNTU2DUFtWVqby8vJmH36/P7odDw+3oW1DDQNrFCUnJys5OVkpKSn2c/h2amqq0tPTIwJrcnIyS84AALoMAiwAIOZZlqXq6mqVl5ersrJS1dXVqq6uVlVV1Vm3a2tr7YfX67Uf9fed64DscDjkcrnkcrkUHx+v+Pj4iNfh2263u8WPUDjt0aOHnM52DMUCANAFEGABAGgB0zRb9PD7/TJNUw6HQ4ZhyOFw2I/w16FtwzDkdDoVFxcX7R8RAIAujwALAAAAAIgJjmh3AAAAAACAliDAAgAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATIiLdgcAIFosy5LH44l2NwCgVRITE2UYRrS7AQBRQYAFcN7yeDyaO3dutLsBAK2yZs0aud3uaHcDAKKCS4gBAAAAADGBEVgAkBSfc4HkN2Q4DMlw2M9yGFLwUj3D4QhsG8FnhyHDCH4PGKoX3G9vS/X2RbYZeK4rt0L7HaprI7Q/9JVj/X2GISt0NaERfO0IvLAMhZ1L9jGWYQRf17VpBbsS6IvCjoksjzgmVMfRSFl4/Yiy8H31+9HEMarbF14uye5DU+eKqN9EP+q3aWvsfPYxVuQx9dqzy1W/3Kqro7q6dW1bdpnRoH54WWC77rmuHcOw6v4Ew/fbZYFyhwLb4cc4guWBssC57H3hz6o7zlH/ESwLvFaD/YFjTHufQ4HXkuQ06l47jMgyh2GFlVtyKlAncJwZdpwpZ3ibwe1Q/fDjHLKCx5pyBssC5wrUdxqWDJlyBl+HH+OUAscpcL7QzxZ6HTiXZZc5jGBf7G3D/s/aaRhyyAjuM+QM/vIdcsiQoVqvU4t+kCEAON8RYAFACoRXM/BBUUbdc10yUOCjpmFIjrq0Zn/8jEhCDql+QqlLh2qQeoywYyMSVEv2q4lyBYOuIgJsxL6IJsJeNwjE9csbOabBj1yvfmPdbbQfTTyaKmvqV9XW9sLabDIw1w+ojb3N4eWqX95EgK1fXq+sfoCt229FnLOxslBIrSsLL2/sGKuRc0U+wgNsg0dTZY0FW1n2a7tMdeVORZYFAqxZFwCDZYEAGHw2jEC4DP7th7ZD9Z0y5LQDrOQ06p6dCp0rsN1omf3aCobZ8JBaF1qbC7Ch9uoCbLDdsPYD5wrVD3sPAeA8xiXEAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGIC68ACgCQ5LVkyAws1Gqr3bC/IWG8dVaPeuqehh1W33ZKysEVIrSYWN21sf92+0Oqainxt2atx2iWWDMmSfaxV/5jgcQ01sc8KK4pY29QI734z668azZTVO21byppb67W5stBms8c1tp5rI+UN+tjEOrBqeJzRoH54Wdgar0ZYXYXWXw3/82piHVi1fR1YS3XHWfUfwTIruBZu/f2mYUmGWXceBV+Hfi5FllvBMivs3JZdFtaP4GtHcNsRLAtthz+bYf9Zm0bdsxn8kR3BbTP4J9r4OrCGHAqsLxsqM4L7nQpbSzaszdA6r/Y6tsGywDq2Rl2bwX8jAqtSG6r1NvbfIACcfwiwACDJm/11tLtwboTyQTsY9Z4Bqe7PylJd6Ist4X/ZXJAGALGCf7EBAAAAADHBsCyrnd/NA0BssixLHo8n2t1AB/J4PPrWt74lSVq9erUSExOj3CN0BN7XSImJiTIMrokAcH7iEmIA5y3DMOR2u6PdDZwjiYmJvL/dEO8rAJzfuIQYAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJjALMQAAAAAgJjACCwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADEhLtodAACcn6qqqrRy5Up9+OGHysvLk8Ph0MCBA3XllVdq0aJFcrlcbW67uLhYK1as0ObNm5Wfn6+EhAQNGTJE8+bN07XXXivDMBo97sSJE9q4caN27NihgwcPqri4WE6nU3369NHYsWO1YMECjRgxos39Oh90xfe1KT//+c+1detWSdK4ceP0H//xH23uGwCgcxiWZVnR7gQA4PySl5en++67T3l5eZKkxMREmaYpr9crSRo+fLiefvpppaSktLrt/fv36/7771dpaakkye12y+v1yu/3S5Kys7O1fPnyBkFq9+7duueeeyL2JSUlqba2VrW1tZIkh8Oh2267TXfeeWer+3U+6Irva1PeffddLV++3H5NgAWA2MAlxACATuXz+fTggw8qLy9PvXv31pNPPqm1a9dq7dq1WrJkiZKSkpSbm6tly5a1uu2Kigo98MADKi0t1YUXXqjf//73WrNmjdauXat/+Zd/UVxcnHJycvTss8822i+n06kZM2Zo6dKleuutt/Tee+9p7dq1euGFFzR27FiZpqk//elP+vvf/94Rv4pupau+r40pKirSc889p+TkZA0aNKjV/QEARA8BFgDQqd577z0dOnRIkrRs2TJNnDhRUmB086qrrtL9998vSdqyZYs+++yzVrW9cuVKFRcXKyEhQY899phGjhwpSXK5XFq4cKHuuOMOSdJbb72l48ePRxw7YMAAvfTSS3rkkUc0a9YspaamSpKcTqdGjRqlp556SkOHDpUkvfLKK2386buvrvq+NubJJ59UeXm5/vmf/1np6emt6gsAILoIsACATvXee+9JksaPH6/Ro0c3KL/qqquUmZkZUbel1qxZY7fRv3//BuULFy6U2+2W3+/X//3f/0WUXXDBBRo4cGCTbbtcLs2ZM0eSdPLkSZWXl7eqb91dV31f6/vggw/08ccfa9y4cbr22mtb1Q8AQPQRYAEAncbj8eiLL76QJH3zm99stI5hGJo8ebIk6dNPP21x28eOHVN+fr4k2cfXl5SUpLFjx7a67ZD4+Hh7O3TvJWLnfS0tLdUzzzyj+Ph4/fznP2/1pE8AgOgjwAIAOs3Ro0dlmqYkaciQIU3WC5UVFxerrKysRW2HLl89W9sXXXSRJOnIkSMtajfc9u3bJUm9e/e2LzFG7LyvzzzzjM6cOaPbb7+92dF2AEDXRYAFAHSawsJCe7tv375N1uvTp0+jxzSnqKioVW1XVlaqqqqqRW1L0hdffKGNGzdKkq677jpG78LEwvu6adMmrVu3TkOGDNF3vvOdFp0bAND1EGABAJ0mPFgkJCQ0WS8xMbHRY6LVdklJiZYuXSrTNJWVlaVbbrmlRcedL7r6+1pRUaEnnnhCDodDv/jFLxQXF9eicwMAuh4CLAAAzaiqqtK///u/Ky8vT0lJSVq6dKmSkpKi3S20wn/+53+qsLBQN9xwgy699NJodwcA0A4EWABApwkPfjU1NU3W83g8jR7T2W1XV1frgQce0Jdffim3263HHntMw4YNa1F/zidd+X3dtm2b3n77bfXt21d33313i84JAOi6CLAAgE4Tfg9kQUFBk/XC748MP6Y5vXv3blXbPXr0aDZEhcLrzp075Xa79eijj9oz3SJSV35fH3vsMUnSj3/8Y0mBEfXwR2jyKdM07X3MMA0AXRc3gQAAOs2gQYPkcDhkmqYOHz7c5JIrhw8fliT16tVLPXv2bFHboVloQ8cPHjy40XqhWW2bKpfqwuuOHTuUmJioRx99VOPGjWtRP85HXfl9zcvLkyQtXbq02fPs2rVL8+bNkyQ98sgjmjFjRov6BwDoXIzAAgA6TWJiokaPHi1J2rp1a6N1LMtSTk6OJGnSpEktbnvgwIHq169fs21XV1dr165dzbZdXV2tX/ziF9qxY4d92TDhtXmx8L4CALoHAiwAoFOFRrm2b9+uPXv2NChfv369Tp06FVG3JQzD0Ny5cyVJH3zwgU6fPt2gzhtvvKHq6mo5nU7Nnj27QXkovIZfNkx4bZmu+r5+9NFHzT5C7++4cePsfYy+AkDXRYAFAHSqefPm6aKLLpJlWXrooYf02WefSQrcg7h+/Xo9/vjjkqTJkydrwoQJEcf+4Q9/0MyZMzVz5sxGg8zNN9+sXr16yePx6IEHHtD+/fslSbW1tXrzzTf13//935Kk66+/XgMHDow41uPx6MEHH7TDKyOvrdNV31cAQPfCPbAAgE4VFxen5cuX66c//any8vL0r//6r0pMTJRpmvJ6vZKk4cOH6+GHH25128nJyXr00Ud1//3368iRI/rBD36gpKQkeb1e+Xw+SYFLTO+9994Gx27YsEHbt2+XJPn9fi1ZsqTZcy1btkxjxoxpdR+7q676vgIAuhcCLACg02VmZup//ud/tHLlSn344YfKy8tTXFychgwZoquuukqLFi2Sy+VqU9sjRozQn/70J61YsUKffPKJvv76ayUmJuqiiy7SvHnzNH/+fDkcDS9AsizL3vZ6vSouLm72PKHghDpd8X0FAHQvhhX+f2wAAAAAALoovqoEAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATCDAAgBiwjPPPKOZM2fqJz/5SbS7giirqKjQtddeq5kzZ+qjjz6KdncAAJ0oLtodAACcW5WVlcrNzdW+ffu0f/9+7d+/XydPnpRlWZKkP//5z8rMzDwn57YsSzfeeKMKCgp066236oc//GGb2snNzdWbb74pSbr77rs7sIfRdejQIeXk5Gj37t06dOiQioqK5Pf7lZKSoqFDh2rKlCmaN2+ekpOTo93VLiU5OVk333yzXnzxRT377LOaPHmyEhISot0tAEAnIMACQDd33333KTc3Nyrn3rdvnwoKCiRJM2bMaHM7zz//vPx+vyZPnqwxY8Z0VPei6r777tOOHTsaLSsuLlZxcbE+/fRTvfzyy1q8eLGys7M7t4Nd3I033qhVq1YpPz9ff/nLX3TrrbdGu0sAgE7AJcQA0M2FRlqlwMjV+PHj1atXr04598cffyxJ6tu3r0aNGtWmNnbt2qVt27ZJUrcKKaFgn5KSovnz52vx4sV67rnn9OKLL2rp0qWaMmWKpECYXbx4sXbu3BnN7nY5brdbixYtkiStWLFCVVVVUe4RAKAzMAILAN3c/PnzlZaWphEjRigrK0uGYei+++5TcXHxOT93KMBOmzZNhmG0qY1XX31VkpSZmalvfOMbHda3aMvKytLtt9+uq666SvHx8RFlI0aM0KxZs/TKK6/ohRdekNfr1RNPPKGXXnopSr3tmubMmaM//OEPKi8v19tvv62bbrop2l0CAJxjjMACQDd344036uqrr9bAgQPbHCLb4vjx4zp69Kiktl8+XFBQoM2bN0uS5s6d26n9P9cef/xxXXPNNQ3Ca7hbb71Vw4cPlyQdOXJEBw8e7KzuxYTMzEyNHTtWkvS3v/0tyr0BAHQGRmABAOdEaHbY0GXLbbFu3TqZpilJuvLKK1t0jM/n0wcffKCNGzdq3759Kikpkd/vV1pami666CJNnDhRV199tXr37h1x3MyZMyVJ8+bN0+LFi3Xs2DH95S9/0aeffqrCwkL16NFDF198sb7zne9o3Lhx9nE1NTV69913tWbNGp04cUIej0f9+/fX7NmzddNNN7V7cqHLLrvMvof5+PHjGjp0aJvbOnLkiFavXq2dO3fq9OnT8ng8Sk5OVkpKijIzMzVhwgRNnz5dF154YZva9/l8Wrt2rdavX69Dhw6ptLRUhmGoZ8+eSktL06hRozRx4kRNmzZNLpcr4tj6v/8jR47ojTfe0LZt21RYWKjq6mo98sgjDb4MufLKK7Vz504dPXpU+/bt08iRI9v2ywEAxAQCLADgnAhdPjxlyhTFxbXtfzeffPKJpMB9ooMGDTpr/QMHDujhhx/WiRMnGpQVFBSooKBAW7du1cGDB7V48eIm29mwYYN++9vfyuPx2Ptqamq0ZcsWbd26Vffff7+uv/56FRYWavHixdq3b1/E8YcPH9bvf/97bdmyRU888US7QqzP57O3HY62Xzi1evVqPf300/L7/RH7S0tLVVpaqhMnTujTTz/VwYMH9dBDD7W6/ZKSEv3bv/1boxOGhX73ubm5+tvf/qYVK1YoKyurybbeffddPfHEE/J6vWc9b/ikXp988gkBFgC6OQIsAKDDFRYWau/evZLafvmw1+vVl19+KUkaNWrUWS8fzs3N1b333qvq6mpJ0vjx4zVnzhwNGjRILpdLRUVF2rNnz1nXDT148KA++OADpaen6+6777bP/dlnn+l///d/5fF49NRTT2ncuHH6zW9+owMHDuiGG27Q9OnTlZaWppMnT+qll17SwYMHtWvXLq1YsULf//732/Q7kKTPP//c3h4yZEib2jh06JAdXnv27Knrr79e48aNU1pamvx+v4qKirR//35t2bKlzZdpP/3003Z4nTBhgubMmaPMzEz16NFDlZWVOnr0qHbu3GlfEt6U/fv3a926derZs6duuukmjRkzRi6XS0eOHFFGRkaD+kOGDJHb7VZ1dbU+//xz3XHHHW3qPwAgNhBgAQAdbuPGjbIsS/Hx8Zo8eXKb2jh48KA9+jhixIhm6/p8Pj388MN2eP3pT39qz1AbburUqbrrrruUn5/fZFu5ubkaPny4nn76aaWkpNj7L7nkEmVlZWnJkiXy+Xy69957VVZWpscff1wTJ06061188cWaNGmSbr/9dhUWFurNN9/U7bffLqfT2aqfXwpchn348GFJgRA/cODAVrchSevXr7dHXp966in7vtpwM2bM0F133aXS0tJWt19TU2N/MTBjxgz95je/aRCEx40bp29961uqrq5udiT58OHDysrK0nPPPRcxW3ZTs1g7nU5dfPHF2rlzp7766iuZptmukWoAQNfGv/AAgA4Xunx44sSJcrvdbWoj/DLgsy37s27dOp08eVJSYNblxsJruH79+jVb/uCDD0aE15BZs2apb9++kqQzZ85o4cKFEeE1JDk5Wddcc41d78iRI82erzGFhYV68sknJUmGYejHP/5xq9sICc04nZyc3Gh4DZeamtrq9svLy+0vG8aNG9fsKK7b7T7rJdU/+9nPWrXUU6iux+NRYWFhi48DAMQeAiwAoENVVFRo+/btktp++bAkFRUV2ds9e/Zstm4oMEvSLbfc0uZzSoFLUpsKeYZhRJTNmTOnyXbC6506dapVffB4PFq8eLEdPOtPHNVaodBdUVGh9evXt7mdpqSmptqzKb///vvtWpO1b9++jX4p0Jzwv4/wvxsAQPdDgAUAdKjNmzfL5/PJ6XRq2rRpbW6npqbG3m5sNDTcV199JSkwEteSyZ6ac7bjw/vS3Gy94fVaE+hqa2v1y1/+0p4Yavr06brrrrtafHxj5syZY496LlmyRPfcc49eeeUV7dq1y77suj1cLpfmzZsnSdqzZ4++/e1v6/HHH9f777/f6vDellmWwwNs+MRbAIDuh3tgAQAdKjQaOnr0aKWlpbW5nfB7Rs82G21JSYmkupHG9khMTGy2PPzy2OYujw6/DzO0FNDZ+Hw+PfTQQ8rJyZEkZWdn61e/+lWb7p8N179/f/3ud7/Tb3/7WxUUFGj37t3avXu3pMDveeTIkZo5c6auu+66s35Z0JSf/OQn8nq9WrNmjcrKyvTWW2/prbfekhT4YiE7O1vz588/60jy2UbbGxP+ZUdbZ7wGAMQGRmABAB3G6/Vq69atktp3+bAUuF8zpKysrF1txQKfz6clS5bYSwdNnDhRjzzyiH1pbntNmDBBr776qn79619r/vz59jI2fr9fX375pZ5//nndcsstdnhurYSEBC1evFgvv/yy7rzzTl122WV2wC8uLtZ7772n++67T7/85S8jAmd9bZmAKXziqfC/GwBA98PXlACADrNt2zb7ktT2BtjwJVPOFmDT0tKUn58fsxP4hMJraPT6sssu0/Lly9u1fmxj4uPjdcUVV+iKK66QFBi5/uyzz7RmzRpt2bJFZWVleuihh7RixQr17t27TecYOHCgvvvd7+q73/2u/H6/cnNz9cknn2j16tU6c+aMPvroI7344ou69957O+znKi8vt7fPNkEXACC2MQILAOgwoQA2fPhwZWZmtqut8DVPjx071mzd0DI7RUVFZ63b1dQPr+PHj9fvfve7Dg+vjUlLS9NVV12lxx57TDfccIMkqbq6Whs3buyQ9kOXJ99xxx36r//6L/vy7HXr1nVI+yFHjx6VJGVmZiopKalD2wYAdC0EWABAhzBNU5s2bZIUmHiovfr166c+ffpIkvbu3dts3ZkzZ9rbK1asaPe5O4vP59OvfvUrO7yOGzdOjz766Fnvwz0XsrOz7e3QPcUdKTMz017Hti1rzTalpKTEXkLp0ksv7bB2AQBdEwEWANAhdu/ebQef8EDZHqFQdfToUVVWVjZZ78orr7TD0TvvvKPXX3+92Xbz8/M7pH/t4fP5tHTpUn300UeSzm14/fDDD88aSkP3LkvSgAEDWtX+qVOntG3btmbrnD592h4p7d+/f6vab86ePXvs7W9+85sd1i4AoGviHlgA6OZOnDhhzzgbElpfVJI2bNgQMVuw2+3WrFmzWn2e0Chi//7927QUSmOuuOIKvfPOOzJNU9u2bdPll1/eaL24uDj9+te/1j333KPq6mo988wz+uijjzR37lwNGjRILpdLRUVF2rdvnzZs2KARI0Zo8eLFHdLHtlq2bJk2bNggKRAYf/SjH+n06dPNHpOenq709PRWn+v111/XsmXLNGHCBE2YMEGDBw9WamqqamtrlZ+fr3Xr1tmj5xkZGa1e/ig/P18/+9nP1L9/f02bNk2jRo1Sv379lJCQoNLSUu3Zs0dvvvmmPZv0okWLWv0zNOXTTz+VFLi/d8qUKR3WLgCgayLAAkA3t3v3bi1fvrzJ8ueffz7idUZGRrsCbEdcPhwyceJE9e3bVwUFBVqzZk2TAVaShg0bpmeffVYPP/ywTp06pe3bt2v79u2N1g3dMxtN69evt7dPnjypH/3oR2c95nvf+57uuOOONp3P6/Vq8+bN2rx5c5N1BgwYoOXLlze7PFBzTp06pVWrVjVZ7nA4dMstt2jBggVtar8+n8+n999/X1Jg1L+tSwABAGIHARYA0G4HDhywRw/bO/twOKfTqYULF+qFF17Qli1bVFJS0uzashdffLFefvllrVmzRh9//LFyc3Pt+y3T09M1dOhQTZo0SVdffXWH9TEWLFmyRDk5Odq5c6cOHTqk4uJi+5Li1NRUDRs2TDNmzNCcOXPatGzP2LFj9dxzz2nbtm3as2eP8vPzdebMGVVWVioxMVH9+/fX2LFjdd1113XY6Lwk+29Ckm688cYOaxcA0HUZlmVZ0e4EACC2/fGPf9Qf//hHpaen64033mjTWp5Nqaio0M0336yysjL98Ic/1K233tphbSO2PfDAA9q8ebMmTJigp556KtrdAQB0AiZxAgC0W+jy4alTp3ZoeJWk5ORkO7SuXLlSVVVVHdo+YtOePXu0efNmGYahu+++O9rdAQB0EgIsAKBdamtrNWPGDH3ve9/TwoULz8k5Fi1apKysLJWWluq11147J+dAbHnxxRclSXPnztWoUaOi3BsAQGfhEmIAQEzYu3evNm/erOTkZH3729+OdncQRRUVFVq1apUsy9LChQubvS8aANC9EGABAAAAADGBS4gBAAAAADGBAAsAAAAAiAkEWAAAAABATCDAAgAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMSE/wc9PpBRKQ1l6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADaUklEQVR4nOzdd3wUZf4H8M/MbElvEBIg9CqgAoqCcoIgoGBB5UBPBeud+lNEUSwHNtQTURHs2BBQEUXxLCAgoKB09Og9dEgCpJC6uzPP74/NTGZ3p212k+wm3/frlRch++zM7CY7z3zmaRxjjIEQQgghhBBCCIlwfF0fACGEEEIIIYQQYgUFWEIIIYQQQgghUYECLCGEEEIIIYSQqEABlhBCCCGEEEJIVKAASwghhBBCCCEkKlCAJYQQQgghhBASFSjAEkIIIYQQQgiJChRgCSGEEEIIIYREBQqwhBBCCCGEEEKiAgVYQgghhBBCCCFRgQIsIYQQQgghhJCoQAGWEEIIIYQQQkhUoABLCCGEEEIIISQqUIAlhBBCCCGEEBIVwhJgDx48CI7jwHEcbr/99nBsskHq37+/8j4SQoie22+/XTlXHDx4sK4PRzFr1izluGbNmlXXh0PCTJIkXHDBBeA4Dg8++GBdHw6JEnSNSIi2SK3Lw2Hu3LngOA4pKSnIzc0N+/ZrrQV21qxZePbZZ/Hss8/W1i7r3MKFC5XXXFBQUNeHQyp5PB4sW7YMTzzxBAYMGICmTZvC6XQiISEB7dq1w0033YSFCxdCFMWgtrtt2zY8+OCD6Ny5MxISEpCcnIxzzz0XTzzxBA4dOlRDr4YQ0lC43W4sX74cU6ZMwYgRI3D++eejefPmiImJQXx8PFq3bo3hw4fjk08+QVlZWdj3P3PmTGzevBkxMTF48sknNcvs3LkTH330Ee6991706dMHbdu2RVJSEhwOB5o0aYK//e1vmDRpEg4cOGB5v4WFhZg6dSr69++PJk2awOFwoGnTpujXrx9mzJiB0tJSy9sqLS3FBx98gGHDhiErKwsxMTGIiYlBs2bNMHjwYEyfPj1s9TVjDHv27MHnn3+O8ePHo3///khKSgo5zK1ZswZ33nkn2rVrh7i4OKSlpeGCCy7ACy+8gFOnThk+Vx0mg/2KZg8++KDyOiZNmhT080tLS5GcnAyO42Cz2XD8+PGQjqe8vByffPIJrr32WrRp0wZxcXFISUlB586dcf311+PNN9/EsWPHdI9l8eLFmDx5Mq699lp069YNmZmZcDgcSExMRIcOHTBq1Ch89dVXQV3HuN1ufPDBBxg4cKByXZSVlYVrrrkGX375JRhjIb1mf6Io4rPPPsPw4cORlZUFp9OJtLQ0dO/eHRMnTsThw4ctbSeYv2Gjz5w6TAbzFc25JicnB3a7HRzHIT4+HmfPng16Gy+88ILyXtx3333Kz2+++WZ07NgRhYWFuvVFSFgYZGdnMwAMABszZoxmmX79+illGooxY8Yorzk7O9u0fEN8j2rb8uXLWVpamvI+G3316tWL7du3z9J2p06dyux2u+62EhMT2RdffFHDr440FMGeW2rLJ598ohzXJ598UteHU+/s3LnT0rkLAGvdujX7/fffw7bvkpISlpmZyQCwsWPH6pa7+OKLLR2f3W5nzz33nOl+Fy9ezBo1amS4rbZt27KNGzeabmvDhg2sTZs2psfWpEkT9vPPPwf1/mh55JFHDPejd72kR5Ik9vDDDzOO43S3mZGRwX755Rfdbaiv14L5atOmTbXfByvXiDVt06ZNyjG0bNmSSZIU1PNnz56tPH/o0KEhHcuyZctY27ZtTd/zadOmaT5/0aJFln9v5513Htu5c6fpMWVnZ7MePXoYbuuKK65g+fn5Ib122b59+9j5559vuL+EhAQ2e/Zs020F83ds9PenrleD+fr000+r/T5EQl1+zTXXKMfw4YcfBv38du3aKc9fv369z2Py54bnebZjx45wHTJjjDEbwqB169ZhvzPTEK1cubKuD6HeO3bsGM6cOQMASEtLwxVXXIHevXujadOmcLvdWL9+PWbPno2ioiJs2LABl19+OdavX4/MzEzdbb733nt47LHHAAB2ux233XYb+vXrB7fbjZ9//hlff/01zp49i9tuuw0pKSm48sora+W1kvpr1qxZ1EW3AWvbti0uvvhidO3aFS1btkRcXBzOnj2LrVu34ssvv8SxY8dw8OBBDBo0COvWrUO3bt1C3uc777yDkydPQhAETJgwwbBscnIyLrroIvTo0QPt2rVDamoqRFHEoUOH8NNPP+G3336D2+3GM888A4/Hg+eff15zOytWrMA111wDt9sNAOjduzdGjRqFZs2aITc3F99++y2WL1+OAwcO4Morr8Qff/yBDh06aG7r0KFDuOKKK1BYWAgAyMzMxO23344OHTrAZrPhwIEDmD17NrKzs5Gbm4trrrkG69atQ/fu3av9nvm3fiUmJqJFixbYsWNHtbb35JNPYtq0aQCA+Ph43HXXXbjoootQXFyMBQsWYOnSpcjJycF1112HVatWaR57kyZN8O2331ra3+TJk7F582YAwB133FGtY44UPXv2xHnnnYctW7bg8OHDWL58OQYOHGj5+erzbSjvxTfffIObbroJbrcbPM/jqquuwoABA9CsWTMwxnDs2DGsW7cOixcvNt1Wly5dcNFFF6Fz585Kb4KCggJs3rwZ8+bNw5kzZ7Blyxb069cP//vf/3SvYwoKCnDVVVdh165dAIBzzjkHd955J7KysrBv3z7MnDkTR44cwbJly3DDDTdgyZIlsNmqHx9OnDiB/v374+jRowCAli1b4s4770Tnzp1RWlqKFStW4IsvvkBxcTFuv/12xMXF4cYbbzTdbteuXfHCCy8YlmnZsqXuY2PHjsXw4cNN97N3717lHJiYmIgRI0aYPieS3XHHHfj+++8BeP/O77rrLsvPXbVqFfbv3w/A+/736tXL5/F//OMfmDRpEg4dOoTnnnsO8+bNC9+BhzUOG2iIrYuRcGeF+JozZw4799xz2eeff87Ky8s1yxw9epR17dpV+d2NHj1ad3vHjx9ncXFxDACz2Wxs6dKlAWXUrVItWrRgZWVlYXs9hEQSaoGtWcXFxezAgQOGZUpLS9m1116r/B6uvPLKkPfrdrtZixYtGAA2ePBgw7I7duxgbrfbsMzcuXOVVkSbzcaOHj0aUKa8vJy1bNlSeR1PPPGE5ramTZumlBkwYIDuPu+8806l3JAhQ1hpaanm6xw9erRS7rrrrjN8HWbef/999vDDD7PPPvuM7dq1i0mSxFasWFGt1sjNmzcr71lycjL73//+F1DmmWeeUbbdq1evoFsZ1fLz81lMTIzSenL48OFqbysSWmAZ8/1bue222yw/79ChQ8p736hRI1ZRUVGt/W/bto05nU4GeHsNaP0OZeXl5SwnJ0fzsVOnTrHjx48b7uv06dM+vSHuvfde3bLjxo3zOV/4X6OcPn3ap3X2rbfeMty3mZEjRyrbGjhwICsuLg4os3r1auXaqlGjRoYtv/K2+vXrF9JxWfX4448r+7z77rtD2lYk5ASXy8UaN26sHIfVnoeM+Z5XX331Vc0yTz31FAPABEFghw4dCtdhMwqwNSgS/jCJr/z8fEuV+tatW5XfXWxsLCspKdEspz7xP/bYY7rb+/vf/x62kz8hkYoCbGTIzc1lgiAoAbG6F9yyb7/9Vvm9WunSZ4U6ZH/00UcBj8+bN095/MILLzQ8bw8dOlQpu2zZMs0yzZs3V8ps375dd1v5+fnMZrMxACwtLS34F2aiugF2+PDhyvPefvttzTKSJLGLLrpIKffDDz9U+zjffvttZTuDBg2q9nYYi5wAm5ubqwz1iY+PZ2fPnrX0vOeff145/gcffLDa++/duzcDwJKSksJ6Ia9n8+bNPjfPteTk5DCHw6G8J3qheevWrUqIz8zMZB6Pp1rHdPz4cWU7sbGxuvtjjLFXXnlFOf6JEyfqlqvNAOvxeFjTpk2VfYY6TCNScoL6WnbSpEmWnlNSUsISExOVeubkyZOa5bZv365s+9///nfYjrnGZyGWZ9b99ddflZ8FMwhakiTMnz8fo0aNUga6JyYmonPnzrjvvvuwdetWw2N79tlnlX3IXXR/+eUX3HzzzWjTpg1iYmICZv/yeDz4+eefMX78ePTt21eZNCIxMREdO3bE7bffjt9++013n/JA8E8//VT5WZs2bUwHkwczC/G6devwz3/+E506dUJiYiLi4+PRrl07jBkzBsuXLzd9vryf/v37AwBKSkrw6quv4sILL0Rqairi4+PRtWtXPPnkk8jPzzfdXrRISUmx9P5269YNnTt3BgCUlZVh3759AWUYY/jqq68AwHRWzrFjxyrff/nll8EedkjWrFmD++67D126dEFKSgpiYmLQsmVLjBo1Cj/++KPhc1euXBnwGT18+DDGjx+Pzp07Iz4+HikpKbjkkkvwzjvvwOPxWDqm4uJivPHGGxg0aBCaNWumTN7Qq1cvPP3008jLyzN8vv9nRRRFzJo1C4MGDULz5s1hs9nQunXrgOfl5ORgwoQJ6NKlC+Lj45GWloaLLroIr732mjIRTOvWrcFxXMDzFy9erOxT/fs0MnbsWOU5ixYtsvQcK8xmLqyp39sPP/yAa665BpmZmYiJiUHr1q1xyy23YM2aNUG/BpfLhY8++gjXXnstWrRogZiYGKSkpOC8887D+PHjdWdk3L17N+Lj48FxHJKTk5Gdna27j/z8fLRs2RIcx0EQBMPzdn2Snp6O9PR0AN76zGxiHzNz5swBAMTGxuL6668P+fgAb/dH2cmTJwMeV9djt956q+F5e/To0cr3n3/+uWYZ9SyYet2MAW8dIb93JSUluuVq09mzZ5XzR1JSku5ENP71UCh1zSeffKJ8f+edd1Z7O8HIy8tDr169lHPXI488ojk8rbp1Wnp6Oq6++moA3t/t/PnzLR2X+lquut2HV61ahbVr1wIAxo8fb9iVNVzMPmOAd7JRl8sFwDvpTpMmTTTLdevWDQMGDFC2pb6mD8bKlSuV3+mQIUN09wf4fq6/+OKLau0v3BYvXowTJ04AADp37oxLLrmkVvb74YcfwmazgeM4ZGVlYfv27QFlQrmuUv9dz54929Kw0AULFiiTPg0dOhQZGRma5bp06aIMZ5g7d274hpyGIwUb3V1Tt7wafT3zzDMB2923bx/r3r274fN4nje8W6DuUrN8+XL2f//3f5rbUd/56N+/v6VjHjNmjOadbasDwY3eKz1ut5vdc889ptseOXKkZhcpmVyuX79+bP/+/axLly6622rVqlWDbEHu1auX8h6sXbs24HF1K223bt0MtyWKIktKSlL+ZouKimrqsBXFxcVs1KhRpn8rw4YN0z0edWvBM888wxYtWsRSUlJ0tzVo0CDdrtmyn376iTVp0sTwmBITE9l3332nuw31Z+X06dOsb9++mn+3asuXL2epqam6+zz33HPZ4cOHWatWrTSfL4qiMgFMamqqaVfwsrIyZX8tW7Zkoigalg+G2V3bcP/ePB6P4XmN53k2ZcoUyy2wVibTcTgc7L333tN8/syZM5Vyffr00W0NGDFihFIunHd+I11BQYHS0mS320MatlBeXq505bvsssvCdozqXilaLbDqVtVFixYZbkvd0pSZmalZJisrSyljtQW2e/fuwb0oC6rTAvv9998rz7n66qsNy+bm5ipl09PTq3WM6rotNTXV9JxuxkoLbHZ2NuvYsaNS7j//+U9AmXDUaf/973+Vclb+nn/77Tel/Pnnnx/My/Zxxx13KNvZv39/tbcTDHXLl14L7I033qiU+frrrw23N3XqVKWsUY8zI+pW1ccff9y0vHzdBIDt2rVLs4z6eram3XDDDcr+pkyZEvL2rLTAvvjii0qZTp06abbeh+O6qmfPnkrZ5cuXmx77gAEDlPLffvutYdmHH35YKfvnn3+abtuKsEziZESe1n3ixInKHQOtCQTk1i7Z/v370bt3b+XOcd++fXH11VejVatWEEURmzZtwqxZs5Cfn4/JkyeD53nTqaynTp2KRYsWKZM3dOvWDR6PB+vXr4fT6VTKlZWVISEhAQMHDsQFF1yA1q1bIyYmBidOnMD27dvx2WefoaSkBJ9++ilSUlLwxhtv+OxHHgg+Y8YMrFixAgDw/vvvB9xpqs4duNtuu00ZBB0TE4MxY8bgkksugSAI2LhxIz766COcPXsW8+fPR2FhIRYtWmR457qoqAjDhg3D7t27cd111+HKK69EWloaDhw4gHfffReHDx/GoUOHMHr06AbTegF4W4f27t2r/L9Vq1YBZbZt26Z8f8EFFxhuj+d59OjRA7/++iskScLOnTtx0UUXhe+A/VRUVOCKK65Q7vi2a9cOo0aNwjnnnAO73Y59+/Zh9uzZ2LNnD3788UcMHz4cS5cuBc/rd8r466+/MHXqVDDG8K9//Qt9+vSB0+nExo0b8d5776GkpARLly7Fiy++qDspy4IFCzBq1CiIogi73Y5rr70W/fv3R0ZGBoqKirBixQrMnz8fZ8+exfXXX4+lS5cqd3313HrrrVi9ejXOP/983HzzzWjdujWKioqwZcsWpcyOHTtw9dVXK62sPXr0wK233oqsrCzk5OTgyy+/xO+//45Ro0bptkbyPI977rkHTz31FPLz87FgwQLccsstusf19ddfK70X7rrrLsP3tiaF4/c2duxYpRXC4XBgzJgx6Nu3L3iex/r16/HRRx/h8ccftzQBxpo1a3DFFVegtLQUHMdhyJAhGDx4MJo3b46ysjKsWbMGc+bMQWlpKe699144nc6AFqd77rkHP//8MxYsWIA1a9bgueeeCzj2jz76CF9//TUA7+Q/0bzUQTA8Hg8eeOABZeKjoUOHIiYmptrb+/3335XPTbjOWT/++CO++eYbAN56bOjQoQFlWDXv0p88eRKnTp1C48aNfX5+3XXX4e233wYAPPLII/j2228RGxvrU8bj8WDcuHHKOWDcuHHVOoZwC6auSU9PR6tWrXDo0CHk5eUhNzfXsJVLy8cff6x8/49//MPn+qgmbN26FVdeeSWOHz8OQRAwc+bMgFbfcNVpV111FTIyMpCTk4NVq1bhwIEDaNu2re6xhWvyJvn6qVGjRmjbti2OHz+O6dOn47///S8OHToEh8OB1q1bY/DgwRg7diyysrKqvS/A28Ks7il0ww03aJYL5m/rwgsv1HxeMKr7uQa8fyedOnXSfXz37t3o27cvdu7cibNnzyI1NRWdOnXCwIED8a9//ctwMk4rTp06pUx2ZLPZfFqIawJjDOPGjcOMGTMAAL169cJPP/0UcG4L13XVHXfcoUzaNmvWLFx++eW6x3bo0CEl36Snp2PYsGGGr6V3797K9z///HNIk+MpwpGCw72MjiiKyp0Ap9PJ5s+fr1nu5MmTSgstz/Ns27ZtAWXULbAAWN++fVlhYaHh/pctW2bYennq1CmlxYfned1JNcK9jI56TFBGRobmXeSDBw/6tGzojbdUvycOh4N9//33mq9Tva1169aZvgY9JSUl7Ntvvw3L16ZNm6p9HFbNmTNHed09e/bULPPcc8/5tHKZUU8OMmfOnDAfsS//sblak6q4XC6fY3r33XcDyqhbCwBvS+KePXsCyq1bt05ptdC7Y3/48GHlbmrLli3Zli1bNI993bp1LDk5mQFgWVlZzOVyBZTx79kxbtw4wxZOdQvt/fffr1nW/1zh3wLLmPecI7dsmd3tveyyyxjgnbjgyJEjhmWDFUwLbKi/N3ULREpKiuZyJbt27VKWWJG/tFpgi4qKlMmAUlJS2MqVKzVf3969e5UJfOLj41leXl5AmTNnziitaoIgsFWrVimP7d69m8XHxzPAO94s1BaPnTt3hu38pfVaqkMURZ/tzpkzhz311FM+Sxq0bt2aHTx4MKT9vPTSS8r2vvrqq6Ceu2HDBuX4vvzyS/b666+zq666StmeIAiara+M+bZYTZ8+3XA/6roRAFu9enVAmby8PNa+fXulTGZmJnvyySfZxx9/zGbPns2eeeYZpb7jeZ5Nnjw5qNdqVXVaYNXvhZWx5fK5B4DP58IKl8vF0tPTleeHo741ukZctWqV0jskJiaGLVy4UHMb4arTGGPs0UcfVco8/fTTusetHuNnt9ur/dnNz89X9te9e3f2888/G/YGiomJsbw0y9mzZ5XP2DfffMNmzZrFHnnkEZ9xmt27d9ecBEkUReX8LwiC6eRrBw4cULbZrl276rwV7NNPP1W2cf311xuWPXnypM/78sILL2iW03sf1V9Op5O98cYb1TpmmXoSsGuuuSakbcn06nKXy8Vuvvlm5bFBgwZpjtkO53XV6dOnlUnGzMaIq69/H374YdPXefDgQcu/d6siMsAuWLBAKTtjxgzDsrt371Ymq7jnnnsCHldflMbHx7Njx45Zek1m9u/fr2xXr6ILd4BVzwL3008/6W5n3bp1yiD5Vq1aaXavU3+wn3/+ed1tffDBB5bKmanu2nNaXzU9CcSZM2d8Tv56F23qLhFvvvmm6XaDLV9dx48fVyZluOGGGwzLulwuZT26Dh06BDzuH4R+++033W3dcssthuUefPBBpaI060Ly0UcfKdv67LPPAh5Xf1YuuOACw/C6YcMGpWy3bt0MJ59Qb1crwDLm2/VRKxQy5j0vyWWGDRtm+FqrI9gAG8rv7brrrlMenzVrlu52fvjhB599al1ov/baa8rj//3vfw1f4y+//KKUffHFFzXLrFy5kvE8r/y+8vPzmcvlYhdccIHy3HDcLPK/uRHK14oVK0I+Hsa8XdT19pGQkMDuvPPOsITlf/zjH8p29S6O9Bh197z00ksN1yv98MMPlbJmM+oOGzbMZ9t6kxedPn2ajRgxQrlm0PoaOXJk2Lq4aalOgL3++uuV52jdbA61vNo333yjPDeULrNqeteI3333HYuNjWWAd2blX3/9VfP54azTGPPtWtu6dWvdvy112DLbrxH1+s3NmzdXbq717NmTvfbaa+zLL79kb7zxBuvTp4/P3+KCBQuC2rb/V1paGnv44Yd1J6EsLCxUyjZq1Mh0X8GW17Jv3z5lG3FxcSw3N1e3rLrLMgD26KOPapYDvIH6vvvuY++++y6bP38++/TTT9mECRMC1ts1umFh5rzzzlO2Y9Zl1iqtury4uJgNHjxY+fmoUaN0J+IL53UVY77XNx9//LFmGUmSfG6UWq0X5M96dW9++IvIACvPtpeUlGRp7I78ode64FRfeBgth1IdcouD3piUcAZY9Xt87rnnmm5r4MCBSnmtllP5MUEQ2JkzZ3S3ow7qN910k+l+9URLgPV4PD4nDqPwoR6L/MEHH5huW55KHAB76aWXwnnYPt544w1lP3/88Ydp+SeffFL371R9sdWjRw/D7ahPjv5jFyVJYmlpaQwwX4aDMe8JXL4zrPX7Vn9W9E6ysokTJypl9e7Iy9QXb3oBVh2sJkyYoFnmscceU8oYjTmprmACbCi/t/LycuXCMSMjw3TmyXPOOUfZllaAlXvMdOzY0fQ1MsZYs2bNGGDc2q3+XI0aNYpNmDBB+f8tt9xiaT9moi3A9u3bl82dO1fzLnuwLr30UmW7WsvdGNELsBkZGey5554z7JlQUFDgM25bbxbSN998M2D7n3/+ue529+/fz+6++27d987hcLCRI0eaLlNSXdUJsIMGDVKeo7VUmz/1TQej90LL1VdfrTzXrOXbKq1rxI8++ki5kZCZmcn++usv3eeHs06TqWdr1vtMXn755UqZYG8EqK1Zsybg70yvJ9ATTzyhlGnUqJHmEjNqRgH26quvZgsXLtQN6MeOHVPKNm/e3PR1uFwun89Jdanf10GDBmkG7DVr1ihBX/765z//qbk9vRsfjHmv6dTXAEDwvRIYY2zjxo3K85s0aWLaWm2Vf12el5fn87f5f//3f7o36MN9XcWYdyytvG+9evfXX39VylxwwQVWX6pSnzscjpCW+JLV+BjY6li1ahUAoGnTppYWcxYEAYC3T3ZZWVnAuBbZ3/72N8vHUFRUhM8++ww//fQTtm7dilOnTunOSCgvxlyT1q9fr3w/ePBg0/KDBw/GL7/8AsA7Y7He2KWOHTsiNTVVdzvNmzdXvg9lNuLWrVuHb+axGvTQQw9hyZIlALxjlNXjX6KF/PkBvH+bCxcuNCyv/r3u3LlTc/ZewHcMgxajv5Xt27fjzJkzALwLf5sdEwAkJCSgoKAAO3fuNCxn9rneuHGj8r3RmA4AyqzcRi6//HJ07NgRe/bswaeffooXXngBdrtdedztdivjRZs1a2Y6NqSmhfJ7+9///qfMUNmvXz/lXKtn4MCBur+vwsJCZVxyRkaG5b8BAIZ/A8899xx++eUXrFu3zmfW1TZt2uCdd94x3YcVzz77bMSNoY2JiVHOqYwx5Ofn46+//sKHH36IL774AqtXr8bMmTPx9ddfK7PqVof8uQWAtLS0oJ47b948Zc6G0tJSZGdn4/vvv8crr7yCZ555BtOmTcO8efMwZMiQgOcmJydj2rRpyrjDF154AcuXL8fIkSPRrFkz5OXl4dtvv8WyZcsQGxuLlJQUZXZQvfHm//nPfzBx4kRIkoS7774b9957rzJT644dO/Dee+/hww8/xPz587F27VosXboUHTt2DOo1R7OTJ08q11wOh8NwjH8opkyZgieeeAKAdyzrkiVLDMeh1kSddueddyrXVbNmzQo49x86dEhZuSIzMxNXXnml4T6NSJLk8/9zzjkH06dP1/w7femll/DLL79gw4YNOH36ND777DP885//1N12586dlfOAKIo4ffo01q9fj7feegs//PADfvjhB4wYMQKzZs1CfHx8tV9DOM2YMQO9e/dW5l/o2rUr7rzzTnTq1AmlpaVYuXIlPv/8c7jdbrRt2xYHDhwAoP+5vuyyy3T3JQgCJk+ejJycHHzwwQcAgBdffDHoVQHUs3LfdtttsNnCH58OHz6Mf/7zn9i9ezcA4JlnnjGsd2riukqej+LYsWP47bffkJ2djTZt2viUqe648EaNGuH48eNwuVwoKSlR6vdqCzkCs/C2wJ49ezaku9v+XYTVd86Nut2qLV++PGA8l9FX27ZtNbcTzhZY9R3I999/33Rb6nX7nnzyyYDH5cf+9re/mW5LLltbi0TXFXVLTkZGBtu9e7dh+UjtQqzuPhnsl3+3EnVrgdnaYP4z36qpZ9EM9kurG5j6s2I0Xp0x324/Vlqk5FYfvRZYxhh79dVXlW36d/P6+uuvlcdqaubbYFpgQ/m9qc8jTz31lOlxqc9T/i2w6plNg/2y2+2G+92/f78yVg3wrkm3Zs0a0+Otr9RDPy6++OKQ7nbLXfAEQQjb8R08eFBZl9Vutxu2vr355pvKuHOtr8TERPbf//7XZ4jNzz//HLAd9fndaGjS9OnTlXIXXnhhWF6vWiR3IZ4yZYryvL///e+Wn2dGfY0oj8MDvF2U9daOVAtnnSYrKChQujRqjfdTj/HT6mmzatUqw7Hu6lbFLVu2+BzTK6+8Yvh633//faXsyJEjTd8fPeqWR63fZ110IZb99ttvhrPmchzHnn76aZ/rJq1rWauOHTumDK1zOp2m1w1q5eXlPmOWjWYxD5a6Lpc/GxzHsXfeecf0ueG+rpKpezD4XxOox4U7nU7DHpz+1L15jLqOW1U302IaKCwsDOn5cmuBFr2WWbW9e/di2LBhyppZnTp1wrhx4/D222/jiy++wLfffqt8yXe1RVEM6ZitkNdaAmDpLpr6zob6uf7qambUSPPCCy/gpZdeAgA0btwYy5YtM73znpKSonxvZZ3F06dPaz433EL5DBl9fkL5W6mpYwLMP9dyzwmbzebTUqrHyufr9ttvV2bmlO/qyuT/cxyHu+66y3RbNS2U31txcbHyfVxcnGl5o/culL8BeUZdPY0bN/ZpHWzbtq3pjJr12d13342BAwcC8PbAsdKTSY/8dy6KojIbcahatWqFl19+GYD3dyufe7U88MAD2LVrFx5++GGce+65SExMRExMDNq3b4+xY8diy5YtuOaaa3zOr/6zjR47dgxTp04F4G39euCBB3T39+CDD+Kcc84B4O29Ic96W5dqq66pjbVf1bO8l5WVWbp+qon6Izk5WVnTuKSkBAsWLFAeY4xh9uzZyv+1WpkmTpyI66+/XvdLve6w/+/A7Nykfnz//v2GZY0899xzynXMV199hR07dvg8npCQoLQkFhQUmK4HHs5rmL/97W/Ys2cPpkyZgr59+yItLQ12ux3NmjXDqFGjsGrVKjz33HOGn+tgNGvWTHkvKioqDNcP97dw4UKlVf/iiy/2WV83nOT3nzFmaQ3qmrquUs/6778m7Ndff61kiuHDhxv24PSnPl4recxMxHUhVgevyy67rNqLJVfXf/7zH5SVlQEA/v3vf2Py5Mm6y9Dcc889tXZciYmJyvdW/rDVF57q59aV0tJSpWtuqFq2bImePXuGZVsA8Morr2DSpEkAgNTUVCxduhTdunUzfZ464B48eNC0/KFDhzSfG27yZ4jjOHg8noi4SaH+XD/99NN47rnnam3fcqjyeDxwu92mIdbK56tRo0YYMWIEPvvsMyxZsgSHDx9Gy5YtcejQISxduhQAcMUVVwR0vYk26t+blfBi9N6ptzV69Gilm3U43H///T6frz179mDixImYMmVKWLa/a9cu7Nq1Kyzb6tu3b8AyCDXhyiuvVIaRrFy5EldddVW1tqO+MXDmzBlLNzKsHp9M7qqpp23btnj99dd1Hy8uLsaRI0cAeG+0+F9gLlmyRLkJMnDgQMOl5TiOw4ABA5QuduvXrzfthl/TaqOuWbNmjfI3npWVZWmoUnWMGDECSUlJePPNN7Fnzx5cfvnlWLFiBZo1a6b7nJqq0+644w58/vnnALzdIseMGQPA22VZDo69e/cOWOYxWFlZWYiPj1fOj8nJyYbl1Y+HElJ4nsegQYOwZ88eAMCvv/7q89ngeR7t2rXD7t27IYoijh49qjuECAj/NUxycjImTJiACRMm6JZRh+5evXqFtL9GjRop3xcUFFh+nnpZqZq6sQMA8+fPxx133IHc3Fw89thjAIBHH31Ut3xNXVd17NgRl156KX7//XdkZ2fjt99+Q79+/QCEtqyU3N3Z4XCEpTt7xAXY5ORkJCQkoLi4uFbGlvpbtmwZAKBJkyZ4/vnndSu6s2fP+owNqmlNmzZVvlevT6pHXcaoYqgtubm5yt3OUI0ZMyZsY1OnTZuGxx9/HID3by+Y9anUIXfTpk2GZSVJwp9//gnAW2nId/hrQvPmzfHXX3+BMYZjx46hRYsWNbavYI5JVtuf62bNmiljLw8cOGC4jlx+fr7liu3ee+/FZ599BkmS8PHHH+PZZ5/Fxx9/rIx3Mhq3FC3U5459+/aZljcqU1N/A5999hk+++wzAN6Wi1OnTuHQoUN49dVXMWTIENN1hK2YN29e2C4OVqxYYWmsdajUNy6DuVjz17p1a/z+++8AvBcgoa5PKQvX8QHeNTblVoI+ffoEjE87fvy48n1SUpLp9tQBwsoNrZoWTF2Tl5enBI309HTLa8CqW1/HjBlTozc+Z8yYAY7jMGPGDEshtqbqtAEDBqBly5Y4fPgwfv31Vxw8eBCtW7f2eS/0LtLNbrqocRyHbt26Yd26dQDMQ6n6cbOwa8bsc9atWzdlzOWmTZsMA6x6PgkrN/lDlZ+fr9Td8fHx6NGjR0jbq04L8tGjR5VcEBcXh5tuuimkYzDSpUsXrFixAgMGDEBOTo5piK3J66o77rhDOe/PmjUL/fr1w8GDB5W/+6ysLAwaNCiobcqZqWXLloY3Ea2qtaYZ9cmQmUzmIw/IPnDggKWLpnDKyckB4J0AxOgEvmzZsoCB+f6Cec1m1JMwyS08RtStneFafL6+efvtt/HII48A8J7kFy1aFNQdvq5duyoXc9u3bzc8gfzxxx8oKioCAFx66aU12iou3ykDELZW71D16NFDuXD85ZdfTD874aRefF1eeFtPMBclffv2RdeuXQF479C63W7lTm2TJk1w3XXXBX+wEeb888+Hw+EA4L17b9bdT27x09K4cWPl7v/atWuVz0MosrOzcf/99wPwXuB88cUXmDt3LgRBgCRJGD16tM9FS0OirjtDafFVX6jKF7rhEK7jA3zDl1a3fXVolVtqjahbmtStNnWlf//+Slfu3377TeklpuXnn39Wvrc68VBpaakyARrHcUG3rFTH9OnT8dBDDwHw9pjo37+/z40GtZqq03ieV1pd5W7DJSUl+PrrrwF4uzmOGjUqLPtS94AwuwmhfjzUlk6zz5l6AjX1344W9VCEUCa1surzzz9XurrecsstiImJqfa2Tpw4obREOxwOtGrVytLzZs2apVyv3HjjjZZugIVCDrEZGRkAgMcee0wZ/uCvJq+rRo4cqfS2+frrr1FSUoJPP/1UyTKjR48O6ibXwYMHUV5eDgA477zzwnKMtRZg1U3dZnc05RMK4G0Wr03yL+zAgQO6oVMURcMxO7JgXrOZ1q1bK91m//e//xmG2I0bN2L58uUAvGONImEsmDwLcTi+wtH6+sEHH+DBBx8E4L3w/emnn9CnT5+gtsFxHP7+978D8FZ+b775pm7ZGTNmKN+Hq0LUc9NNNymhY8qUKRHRgiAIgjKj5aFDh/Dhhx/W2r7VQfLtt982DGHTp08Patv/+te/AHgviseNG6fcxBgzZoyl8baRzul0YujQoQC8N/fk7nZaFi1aZDpjtHxuLy0tVcZAVpcoirjllluUIDxjxgx06NABffv2xVNPPQXAO/bx7rvvDmk/gHcW4nCdv2qj9bW4uNjnd3XJJZdUe1sXX3yx8r3cghQOM2fOVL4P5fhWrFihBI62bdvixhtvDCijDuE//vij4bwQRUVFPjOUqm+A1ZWEhATlc1hUVKRbBzLG8NZbbyn/t1rXLFiwQPkcXXbZZWjXrl1oB2zRG2+8gXHjxgHw9hrTC7E1WafdfvvtSmvQ7Nmz8dVXXylDsG644YaQW0BlN910k7KfTz75RHe8KWPMp34MJSgePXoUP/30k/J/rc/Z8OHDlff2iy++8Bm7q7Zt2zblujIzM9PnpkJNyM3NVXq92O125e+kuuRzOOC9IWK1C6v6s1aT3YfVzjnnHKxYsUIZ8zthwgTNEFuT11WJiYkYMWIEAG998vXXX/uMC1ePk7VCXXeo65SQhDwNFLM2C/HYsWOVMkZrNjHGmCiKrFevXkr5hx56SHcRX8YYKy0tZZ988gn74osvAh5Tz0JsZf099Xprr7/+esDjLpeL3XHHHT6zeenNVvr6668rZT799FPTfZvN1Pzll18qjzdt2pTt3LkzoMyhQ4d8Fhh+6623NLclP25lZuFgykaDTz/9VJmNLi4uLqR1GY8dO8bi4uIY4J35dNmyZQFlPvnkE+U9bNGihaW1jUM1fvx4ZZ+XX345O3HihG5ZURTZ0qVL2eTJkwMeM5qhNtiyR44cUWb4dTqdpp+JnJwc9vzzz7P//e9/AY8Fs640Y4z17dtXKa+3/p7/Wp9GsxDLCgoKlN+/+mvPnj2Wjqu6gpmFONTf26pVq5THU1NTNRdL37NnD2vatKnPe6C1DmxxcTFr1aqVMtPiK6+8orvGHWPe93f69Omaa19OmjRJ2deIESN8HnO73cr64IC1mdujwfPPP8+2bdtmWObkyZM+64B36NDBsP40U15erqzHaDZr/Xfffcfmz59vuEaiKIrs1VdfVc7BANjy5cs1yx44cIAdOnRId1tLlizxmblT71zucrlYVlaWsr/rrrtOcxbS0tJSdu211yrlunXrpjmDs/ozY+U8offcYNY037x5s/KeJScna54Xn332WWXbvXr1srzt/v37B3WtEiyza8Rx48b5/L1qrTccrjpNi7o+UZ/HtOrzUNx2220+9ZDW35Z6BtgWLVpofnYnTJjADh48aLivffv2sfPPP9/S9Zv6/b/qqqsCrlHOnDnjM8u33nUlY77vpVYdwJj3c7Zu3TrDY1evHvDss8/qln3iiScMzxEej8enrgDAVq5cqVtebeXKlcpz2rVrF5a1S/0Z1eU7d+70WRFlypQpAc8P53WVP/W5Sv256Nu3b1CvkTHfVTiMZp0PRq2NgR04cKDSCnXXXXfh4YcfRqtWrZR1Bdu3b4/27dsD8HbrWLBgAfr06YNjx45h+vTpmD9/Pv7+97/j/PPPR3JyMoqLi3H48GFs3LgRv/zyC0pKSjB58uSQj/PBBx9UWjcfeeQRrFy5EkOGDEGjRo2wd+9ezJ49G3v37sXll1+OvXv3GnYblWeBBLx3UPLy8tCpUydlfE7z5s1x7rnnWj62kSNH4ttvv8W8efNw4sQJ9OzZE7fffjv69OkDQRCwceNGfPTRR8qd1MGDByvd64jXokWLcOeddyp34u68804UFBSYrp/Vs2dPtGzZMuDnzZo1w2uvvYb77rsPHo8HV111FUaPHo1+/frB4/Fg0aJFSuuAzWbDzJkzDbvBqMcFZGdnG45HMfKf//wHf/31F3755ResWLFCaZno06cP0tPT4XK5cPLkSaU1/+TJkxg4cCAmTpxYrf1ZkZWVhXnz5uHaa69FRUUFxowZg9dffx3XXnstOnTogNjYWBQWFmLPnj1Yu3Ytfv/9d4iiaLp2qxXvv/8+evXqhdLSUrzzzjtYs2YNbr31VmRlZSEnJwdffvklfv/9d/Tp0weHDx/GsWPHLHWPSU5OxqhRo3y6MPbv3x8dOnQI+ZgjRd++fXH//ffjnXfeQX5+Pnr37o0xY8agb9++4Hke69evx0cffYSSkhIMHz7c8LMUHx+PhQsXol+/figqKsKECRPw/vvv48Ybb0SXLl2QkJCAoqIiHDhwAOvXr8fKlSvhcrkwZ84cn+2sXr1a6QWTlZXl05oHeD9rn332Gbp3746ioiI8/PDD6Nevn+H452iwYMECPP300zj//PNx2WWXoUuXLkhLSwNjDDk5OVi3bh2+++47pYUqISEBn376qdLCUh1OpxNXXnklFixYgI0bN6K4uFh3/b4DBw7g4YcfRuPGjTF48GB0794dTZs2VT7bO3bswMKFC31mVh0/frzuZ3zTpk246aab8Le//Q39+/dH+/btYbPZcPToUSxatEjpss5xHN566y3d1m273Y4ZM2bgxhtvBGMM3333Hc455xyMHj1amY9g586dmD17ttJ92G6346233gpprFZBQQFeffVVn5+puyf/+eefAefcAQMGaI7b7tGjByZMmIApU6agsLAQl1xyCe6++25cdNFFKC4uxoIFC5TutQkJCQGfCT3Z2dnKZJlJSUlKq0ttmjZtGjiOw7Rp05TrqxUrVviM8avJOu2OO+5Q3gN5LeFWrVqFZfy82tSpU7F69WpkZ2fjnXfewdq1a5V66OTJk/jiiy+wZs0aAN5z2Jw5czQ/u++//z6mTp2K3r1745JLLkGnTp2QkpICj8eD48ePY/Xq1fjpp5+U7reZmZmGrXPPPPMMFi9ejF27dmHRokXo2bMn7r77bjRv3hz79u3D+++/r3S979+/f8jzO5SUlODiiy9G165dceWVV6Jr165ITEzEqVOn8Ntvv+Hbb79VupvefPPNhr/Dd999F1OmTMEll1yCSy+9FB07dkRycjLKysqwY8cOzJ8/X1lHFvBOzmq19Vhdr6tb6mtL586dsXLlSlx++eU4ceKEMl+LetKrmryu6tevH9q0aYPs7GzlcwEEP3kTUDV8q3Xr1jj//PODfr6mcKRgKy2wHo/HpxXE/0vrzv/x48d97iQbfQmCwD744IOAbQTbAsuY7x0wra9LL72U5ebmKi0JRndgb775Zt3t+L9XVlqV3G43u/vuu03fjxEjRhiucyWXa2gtsP6tbFa/9O4kyqZOnWq6VqFWDwF/6udYWTvYSEVFBXvggQeYIAiWXuPo0aMDthHOljzZmjVrlLUlzb4SEhLYli1bArYRbAssY971neU7lVpf3bp1Y4cPH1bWpzzvvPMsbXfdunU+29FbdzCcarMFljHv+VvdeuD/xfM8e+WVV3x6Gxh9Znbt2uVzR9/oy+l0skWLFinPzc/PV869PM8bntfnzp2rbKdHjx4htURGAnWLitlX9+7d2aZNm8Ky34ULFyrbnT17tm65adOmWT6+xMRE9sYbbxju96uvvjLdTkZGBvvyyy8tvY65c+eypKQk0202btyY/fjjj7rbsdoCq742svpl9HmVJImNGzfOp/Xa/6tJkybsl19+sfR+MObbk+Gee+6x/LxgWLlGZIyxRx55RCnXvn37gJbYcNRpWoqLi1lCQoLPc59++ulQXrKuvXv3mn6OU1NT2eLFi3W3oV5L1+yrf//+bN++fabHlZ2dbXpOvuKKK1h+fr7hdqy0wObl5Zket8PhYBMnTjTsoRPMexEXF8fefPNN0/dBVlRUpPQ84XmeHTlyxPJzg2FWlzPmrS/VLaAvv/xyQJlwXFdpUa+HDGivmWxmx44dyvMnTpwY1HON1FqAZYyxsrIy9vLLL7M+ffqw1NRUn5OQ0Ul75cqV7F//+hfr2rUrS0lJYYIgsKSkJNalSxc2atQo9u6777Ljx49rPrc6AZYxxhYtWsSGDRvGGjduzOx2O2vatCkbMGAA++CDD5TuUVYCrMfjYe+++y7r378/a9y4MbPZbLrvVTAX5WvWrGF33XUXa9++PYuPj2exsbGsTZs27NZbb7VUecn7oQBr7csswDLG2NatW9n//d//sY4dO7L4+HiWmJjIunXrxh5//HHT7j6MeReIVp+8T58+HYZX7K0wn3jiCXbxxRez9PR0ZrPZWFxcHGvTpg0bOnQoe+mll3RPZjURYBnz3oiZO3cuGzlyJGvTpg1LSEhgNpuNpaWlsQsvvJDdc8897Msvv2TFxcWaz69OgGXM273y0UcfZZ06dWKxsbEsJSWFXXjhhezVV19lJSUlTJIkZXH7/v37W9qmJElKJZqWlsbKy8uDOqbqqO0AK/v+++/ZsGHDWHp6OnM6naxly5bs5ptvZn/88QdjjFkOsIx537fvvvuOjRkzhnXs2JElJSUxQRBYSkoKO//889no0aPZrFmzAhZKHzVqlLKPJ554wnAfjDF2yy23KOXHjx9vWj6SnThxgs2aNYvdc8897KKLLmLp6enMbrczh8PBGjduzC644AL2z3/+k/3888+mF37B8Hg8rGXLlgwAGzRokG658vJytnTpUvbUU0+xQYMGsdatW7O4uDilzm7Xrh27/vrr2TvvvGPp/Hbq1Cn23nvvsVGjRrFzzjmHpaWlMYfDwZo3b84GDhzIZsyYwQoKCoJ6LTk5OWzKlCls4MCBLDMzkzmdTuZ0OlnTpk3Z4MGD2bRp00wv0usqwMr++OMPdvvtt7O2bduymJgYlpKSwnr27Mmef/55lpeXZ/m9EEVR+b0CYGvWrLH83GBYvUZkzLersFaIZSy0Ok3PnXfeqeyX4zh24MCBoJ4fDJfLxT788EM2aNAg1qxZM2a321laWhrr06cPe/HFF03//rKzs9l7773HRo8ezXr06MEaNWrEbDYbczqdrEmTJqxPnz5s7NixbPXq1UEf18yZM9mAAQNYRkYGczgcrFmzZmzYsGFs3rx5lrrQWgmwHo+Hffnll+xf//oX6969O8vIyGB2u52lp6ezCy+8kE2aNMlS6GaMsbVr17LXXnuNjRgxgp133nmsadOmzOFwsNjYWJaVlcWGDh3KXnvttaCvpz788EPldQwZMiSo5wbDSoBljLHdu3ezZs2aGYbYUK+rtBw8eJDxPG/586vlqaeeYoC3odGou3ewOMZCnB6XEBIWP//8szJhw9ixY4OeUIiEbuvWrcoMeVZ/B8uWLVOmk3/ooYfwxhtv1OQhElInpk2bhkceeQSCIODgwYNhW06HEEJI/SSKItq3b4+DBw9i1KhRmDdvXti2XWuzEBNCjMlrjSUmJtboWFSiTz2Dp9Wxt++++67yfX1Y+5UQLffeey8yMzMhiiJeeeWVuj4cQgghEe6LL77AwYMHwfM8nnnmmbBumwIsIRFCDrCPPPII0tPT6/ho6p9Vq1YZrpP29ttvKxOfNG/eHFdffbXpNv/66y9l0qIrrrhCWeeUkPomNjYWzz77LADvEjh6a3YSQgghoijihRdeAOCdBEueMC9cqAsxIRHg1KlTaNKkCRo3boz9+/cjMTGxrg+p3mnfvj3Ky8tx1VVXoUePHkhPT4fb7cb+/fvx7bff4s8//1TKfv/997oBdvHixZAkCXv27MErr7yizM63evVqXHrppbXyWgipC5IkoVevXti8eTMeeOABw7WvCSGENFxz587FbbfdhuTkZOzZswdNmjQJ6/YpwBJCGoT27dv7LN+hJTY2Fh988IGyOLgWran0rY6XXbJkCUpLS80PVkPjxo3Rt2/faj2XEEIIIaS+oABLCGkQ1q5diwULFmDt2rU4duwYTp8+jdLSUqSmpqJjx4644oorcN999yEjI8NwO3KATUhIQMeOHXHffffhzjvvtLRubOvWrX3WgQxGv379sHLlymo9lxBCCCGkvrDV9QEQQkht6N27N3r37h3yduieHyGEEEJI3aEWWEIIIYQQQgghUYFmISaEEEIIIYQQEhUowBJCCCGEEEIIiQoUYAkhhBBCCCGERAWaxIkQQki9whhDeXk5SktLla+ysrKA/7tcLlRUVMDlcilf/v+XvzweDyRJgiiKypckScrP1I/JeJ4Hx3GGXzzPw263w2azwW63K182mw0Oh0P5ufx/p9OJmJgYxMbG+vyr9X18fDwSEhLgcDjq8LdBCCGEhBcFWEIIIRGprKwMRUVFKCwsxNmzZ1FUVISioiLd74uLi5WgKklSXR9+xHA4HEhISEBCQgISExOV79VfiYmJSElJ8flKSEiwtDwUIYQQUptoFmJCCCG1pqSkBGfOnMGZM2eQn58f8K/6+/Ly8pD3FxcX5/MVGxur/Lt87u+ABHASByhflf9nHCDC+6/EgWOV3zNUfnnXA/b5PwM4+Weqh+XvoXzPVN8D4CufyDPvZlX/B8cAHmCV/4JngMAw9N6BKC8vR3l5OcrKygK+l4N8KARBQFJSkk+oTU5ORmpqKho3bozGjRujUaNGaNy4MVJSUijsEkIIqRUUYAkhhISMMYbi4mLk5uYiNzcXeXl5ypf6/8GGKrvdjqSkJCQlJSExMRFJSUn4Y8FGcG4e8PDgPJz3XzcHiDwgcuBEDqj84nzSY8PC4A27sDEwm+T9V6j818YAQcINjw5FcXExCgsLUVhYiIKCAhQUFKCkpCSofQmCgLS0NJ9Q26hRI6SnpyMjIwMZGRlo0qQJdWcmhBASMgqwhBBCTDHGUFRUhBMnTmh+5eXlWW4xjY2NRVpaGlJTU7Fj5V7AzYNz8+BcvPd7l/f/cPHe1s8GHELrCuMYYJfA7BJg8/7L7N6fDf2/ATh9+jROnTqFU6dOIT8/H1YvJRo1aoTMzEw0adIEmZmZyMjIUP5t2rQp4uLiaviVEUIIiXYUYAkhhAAARFFEbm4ujhw5giNHjuD48eM+IdVK62lycjKaNGmC9PR0rF3wJ7gKHpxLAFfBA5X/chJ1Na1PGBjgkMAcEphDBBwSbpl8A06dOoW8vDycPHkSOTk5qKioMN1WamoqmjdvjubNmyMrKwtZWVnK/xMTE2vh1RBCCIl0FGAJIaSBKSgoUEKq+uvYsWNwuVyGz23UqBGaNm2KHcv3gSsXwFUIlf/yQIUAjlFrKQnEUNmVOUYEc3q/hj82BDk5OcjJycHJkydx9uxZw20kJyf7hNtWrVqhdevWyMrKoq7JhBDSgFCAJYSQeogxhjNnzuDgwYM4cOCA8u+RI0dQVFSk+zy73a60fP3xxSZw5YI3mMphVaKASmoGEyRvwI0VccdrI3Hs2DEcPXoUx44dw+nTp3WfJwgCmjVrhlatWimhtlWrVmjZsiV1SSaEkHqIAiwhhES5oqIin5B68OBBZGdno7CwUPc5GRkZaNGiBTb/dzu4Mhv4MgFcmQ2o4GnMKYk4jJfAYkWwGBF3vXETjhw5gkOHDuHQoUMoLi7WfV5GRgZat26N9u3bo3379mjXrh2ysrJgs9EqgoQQEq0owBJCSJRgjOHkyZPYu3evz1deXp5meZ7n0axZMxz/Kw9cqa3ySwBXbqOWVFIvKONvYz1gcSKuHj8Qhw4dwsGDB5Gfn6/5HIfDgTZt2qBdu3Zo166dEm5pjC0hhEQHCrCEEBKBRFHEkSNHsGfPHuzZswd79+7Fvn37dMcJZmZmInfHGXAltqqwWkZBlTRczCaBxXnA4jwYNn4A9u3bhwMHDqCsrEyzfJMmTdCxY0d06tQJ55xzDjp16oTk5ORaPmpCCCFmKMASQkgdY4whJycHO3bswM6dO7Fz507s3r1bc9ZWm82GNm3aYP/qI+CL7d7AWmIDJ9LMvoSYYWBAjAgp3oNbp1yPffv2Yd++fTh58qRm+aZNm6Jz587o1KkTOnfujI4dOyIhIaGWj5oQQogaBVhCCKllxcXF2LVrF3bs2IEdO3Zg165dOHPmTEC52NhYtGvXDjuW7AdfYgdXXNmySjP9EhJWTJDA4j3418xbsGvXLuzatQtHjx7VLNuyZUt07twZ3bp1Q7du3dCmTRsIglDLR0wIIQ0XBVhCCKlBjDEcO3YMW7ZswZYtW7Bt2zYcPnw4oJwgCGjXrh32/XoE/Fk7uLN2cGUCTahESB1hggSW4Madb43Crl27sHv3bs2W2ri4OHTp0kUJtF26dKFWWkIIqUEUYAkhJIxEUcS+ffuwdetWJbRqta5mZmYid2s+uLN2b2AtsdN4VUIiHLNJkBLduHXqcGzbtg07duxAaWmpTxmO49CmTRsl0Hbv3h2ZmZl1dMSEEFL/UIAlhJAQuFwu7NixA//73/+wZcsWbN++PeCC1mazoXPnzti56AC4sw7wZ23g3NTlkJBox8DA4jx4cO7t2LZtG7Zt24bjx48HlMvMzESPHj3QvXt39OjRgwItIYSEgAIsIYQEQRRF7N27F5s2bcLmzZuxZcuWgMmW4uPjUXrEDb7IAb7IDq6YWlcJaSiYXYSU5MaI567Cli1bsHv3boii6FOGAi0hhFQfBVhCCDHAGMOhQ4eUwPrnn3+iuLjYp0xqaioK95SCL3KAK6qcGZjGrhJCADBeAktyY+R/huGvv/7Crl27NAPthRdeiF69euGCCy5AUlJSHR0tIYREPgqwhBDip6CgAOvXr8f69euxcePGgDGs8fHxKDvsAVfoAF/gAFdKky0RQqxhggSWqB9oeZ5H586d0atXL/Tq1QtdunSBzWarwyMmhJDIQgGWENLgiaKIXbt2Yd26dVi7di12794N9anR4XDAnQPwcmAtphZWQkh4MEGClOTG9c8OwoYNG3Dw4EGfx+Pj49GzZ08l0DZv3rxuDpQQQiIEBVhCSIN05swZrF+/HuvWrcOGDRtQVFTk83j79u2RveI4+AKnt1swrb1KCKkFzCHikW/uxoYNG7Bx40YUFhb6PN6iRQtccskluPTSS9GtWzdqnSWENDgUYAkhDQJjDNnZ2Vi9ejVWr16NXbt2+TyekJCA0oNu8PlO8PkOcC6aJZgQUrcYGFiCB7e/fSM2bNiArVu3+nQ3TkhIQO/evdGnTx/07t0biYmJdXi0hBBSOyjAEkLqLVEUsW3bNqxatQq///47jh075vN4hw4dcGD5cW9gLbJTt2BCSERjgoR/L3kAf/zxB9auXevTOisIAs4991z06dMHffv2RYsWLerwSAkhpOZQgCWE1Cvl5eXYsGEDfv/9d/z+++8+F3gOhwOekwB/2gn+jJPWYiWERC0G5p0M6pWh+OOPP5Cdne3zeJs2bdCvXz/069cPbdu2BcfRDTpCSP1AAZYQEvXKysqwdu1aLF++HGvXrvVZlzUxMREl+93e0JrvACfxdXikhBBSM5hTxH1zb8Hvv/+Ov/76Cx6PR3ksKysL/fv3R79+/dCxY0cKs4SQqEYBlhASlcrLy7F27VqsWLECa9asQXl5ufJYZmYm8jYXgj8dQxMwEUIaHCZIePT7e/Drr79iw4YNcLlcymOZmZlKy2yXLl3A83RTjxASXSjAEkKiRkVFBdavX48VK1bg999/R1lZmfJYs2bNkLOuAPypGHAltMwNIYQA3jD75OL78euvv2Lt2rU+N/syMjIwcOBADBo0CO3atavDoySEEOsowBJCIpooiti8eTOWLFmCVatWobS0VHksMzMTeRuLwOdRaCWEEDOMZ5j0y4P49ddf8ccff/icT9u0aYNBgwbhiiuuQGZmZh0eJSGEGKMASwiJSPv378eSJUuwdOlSnDp1Svl5kyZNcHpzsbeltZhCKyGEVAfjGSYuewBLly7F2rVr4Xa7lcfOPfdcDBo0CP3790dKSkrdHSQhhGigAEsIiRinT5/GsmXLsGTJEuzdu1f5eWJiIkr2eCDkxoA7S8vdEEJIODFBwrhv78DSpUvx119/Qb40FAQBF198MYYOHYo+ffrAbrfX8ZESQggFWEJIHauoqMCqVavw888/Y8OGDZAkCQBgs9kgnRTA58V4l7yhiZgIIaTGMYeIu2eNxLJly7Bnzx7l5ykpKRg8eDCGDh2Ktm3b1uEREkIaOgqwhJA6kZ2dje+//x5LlixBUVGR8nOuyA4hN8bbRdhDs2MSQkhdkWI9+PtrQ7B48WKcOXNG+Xnnzp0xdOhQDBw4EImJiXV4hISQhogCLCGk1pSVlWHFihX4/vvvsX37duXnTZo0wemNJeBzY8CX2+rwCAkhhPhjYHh+9SP48ccf8ccff0AURQCAw+HAZZddhmHDhqFnz560viwhpFZQgCWE1Lg9e/bghx9+wNKlS1FSUgLAO7aK5drAn4wFn++gca2EEBIFmF3CP+eMwo8//ojs7Gzl5y1btsTw4cMxZMgQapUlhNQoCrCEkBrhcrmwfPlyfPPNN9i1a5fy82bNmiHnjyIIOTHg3EIdHiEhhJDqYmB4c/tk/Pjjj1i6dKmyLndMTAyuuOIKDB8+HB07dqzjoySE1EcUYAkhYZWXl4fvvvsO//3vf1FQUAAAsNvtEI/zEE7Ggiuk1lZCCKlPmCDhga9uw7fffuvTKtu1a1cMHz4c/fv3h9PprMMjJITUJxRgCSEhY4xh69atWLBgAX777TdlfFR6ejrObCjzBleakIkQQuo1BobX/pyEhQsX4tdff4XH4wEAJCcn45prrsENN9yAxo0b1/FREkKiHQVYQki1VVRUYNmyZfjmm2981m3lCu0QjseBP+2k1lZCCGmAmF3EmA+vx3fffYfc3FwA3uXRBg4ciJEjR6JDhw51fISEkGhFAZYQErSzZ89i4cKFWLBggbK0gtPphPsQD+FELPgSWuyeEEKIt1X26ZVjMX/+fGzZskX5eY8ePTBq1Cj07t0bPE89dAgh1lGAJYRYlpOTg/nz5+OHH35QJuzIyMjAqbUlEHKomzAhhBB9M7Y/j6+++gorVqxQhpq0aNECI0eOxJAhQxATE1PHR0gIiQYUYAkhpvbv348vvvgCv/zyi3LRwRXbIByLA38qBhyjbsKEEEKsYQ4RN04bhO+//x7FxcUAvONkR4wYgRtuuIGW4SGEGKIASwjRxBjDn3/+ic8//xzr169Xfs4VOGA7GgeugGYTJoQQUn1MkHDvFzfjq6++wokTJwAAcXFxuP766/H3v/8daWlpdXyEhJBIRAGWEOKDMYaNGzfi008/VcYr8TwP5NghHI2n8a2EEELCioHhiSX3Ys6cOcoyPA6HA1dffTVuvvlmZGRk1PEREkIiCQVYQggAb3Bdv349Zs2ahe3btwPwXkB4DgqwHYsHVyHU8RESQgipzxgYnlv1MObMmYMdO3YAAARBwJAhQzB69Gg0a9asjo+QEBIJKMAS0sAxxrBmzRrMmjULu3btAuANrmK2d4wr56LgSgghpPYwMEzZ8CTmzp2LTZs2AfAG2aFDh2L06NHUIktIA0cBlpAGijGGTZs2YebMmUpwdTqd8OwXvMHVTcGVEEJI3Zq25Rl88skn2LBhAwDAbrfj6quvxq233or09PQ6PjpCSF2gAEtIA7R9+3bMnDkTf/75JwAgNjYWrr0chGPx4Nx+S+FwlRM10amCEEJITeI43brmtb8m4eOPP8bmzZsBeHsKXXvttbj11ltpsidCGhgKsIQ0IPv378eHH36I33//HYD3TrZ0yA7hiEaLK6eaYVjvNEHhlhBCiFVW6gyTMq9segofffSRMslgbGwsbrrpJowaNQpxcXHhPFpCSISiAEtIA3Dy5El88MEHWLZsGRhj3lmFTzhhO5wArkKnxVXN/zThX4ZOI4QQQsxYqTsslGEc8PK6x32GwKSmpuL222/HNddcA5vNFq4jJoREIAqwhNRjxcXFmDt3Lr7++mu4XC4AAH8qBsLhBPBllRW8fArQCq4y9WnCSsAlhBBC/FXnBqlWucoyDAz/XnY/Zs6ciWPHjgEAsrKy8M9//hP9+vUDZ1SvEUKiFgVYQuohj8eD77//Hh9//DEKCwsBAFyBA7aDidVbx5UxaxcVhBBCiBGzusQsdGrUR4xj+L+v/oFZs2YhPz8fANC1a1c8+OCD6NKlS6hHTAiJMBRgCalHGGNYu3Yt3nnnHRw6dAgAwJUKEA4mgs93gkMN3Y2m0wghhBArarBVlAkS/vHeUHz55ZcoKysDAAwZMgT/+te/0Lhx4xrbLyGkdlGAJaSeOHLkCGbMmIF169YBAJKTk1GyWQKfEweO1XA3KrNxTHSaIYSQhsFsoqZa6Nb7Rc47+PDDD/HTTz8B8E70dOutt2LkyJFwOp01vn9CSM2iAEtIlCsrK8OcOXPw5Zdfwu12w2azgR10QjgaD07kzTcQKivjl+g0QwghDUN1JmqqITO2PYcZM2Zg+/btAIDMzEzcf//9ND6WkChHAZaQKMUYw8qVK/HWW28hLy8PAMDlO2A7kAS+vBZnYDQbt0SnGEIIaVjMbmTWYnhkYHh88T/x3nvvKXXlxRdfjHHjxqF58+a1dhyEkPChAEtIFDp8+DCmTZuGTZs2eX9QLsCWnQj+TA2Oc60uOsUQQkjDYjarfR20fjJews3vXYXPP/8cbrcbDocDt912G26++WY4HI5aPx5CSPVRgCUkirjdbnz++eeYPXu2UgGL++wQjiWAkyIsuMroFEMIIQ1LBHfP/fjga5g2bRo2btwIAGjZsiUeeeQR9OzZs46PjBBiFQVYQqLEtm3bMHXqVGRnZwPwdhe2708CVxHhC7YbjX+i0w8hhNRPERxiGRie+PlfeOutt3DmzBkAwODBg/HAAw8gJSWlbg+OEGKKAiwhEa6kpAQzZ87EwoULwRgD3DxsBxLBn4oJ7C7MVU7axKTaP1AtZhM80emHEELqpwgOsDImSBg25VKlfk1JScHDDz+Myy+/vK4PjRBigAIsIRFs7dq1mDp1qjLxBJ8bC9vBZHBuv4Kc32zDkRZgaYInQghpeKIgxALA9K3PYsqUKUoPp379+mHcuHFo1KhRHR8ZIUQLBVhCIlBJSQnefvtt/PDDD94flAmwH0gBX+gMDKf+4RWIjABL4ZUQQhq2KAmwAMA4hn/MvApz5syBKIpISkrC2LFjMWjQIFpyh5AIQwGWkAizadMmvPzyy8jJyQEACMfjIRxOBCf5dQ/WCq7qxyMdnXoIIaR+i8Lg986uF/Hyyy9j7969AIBLLrkEjz/+OFJTU+v4yAghMgqwhESIsrIyvP/++/jmm2+8PygXYN+XAr7IGfzGoiHE0qmHEEKiG8eZn8ujMMQyjmHMJ9di1qxZcLvdSElJweOPP45LL720rg+NEAIKsIREhN27d+P555/HkSNHAAD8yTjYDiZVtboGSyvAqltsq/N4OOmddqxcDBFCCIkcZrPK13WANZvc0ODx9/b8B5MnT8aBAwcAANdccw0eeOABxMbG1sSREkIsogBLSB2SJAnz58/HzJkz4fF4gAoe9v0p4AtiQtuw2TjZYB8PN1pahxBC6gd1QDU6t9eVEG/eMp7D8Gl/w/z58wEAWVlZmDhxIrp06RLuIyWEWEQBlpA6cubMGbz00ktYv349AIA/HQPb/hRwnmq2uqpZHSdbF+NojZbWodMRIYREH6Ml0iIpwMrUdZzFx19e9xheeukl5OXlQRAE3H333bj55pvB82GoswkhQaEAS0gdWL9+PV588UXk5+fD4XBA2hkLPicucF3X6mKSfjg1e7y2Wl+1LmrodEQIIdHHbLb5ugyxod7IVT3+Tf4HeO2117B8+XIAwMUXX4x///vfSElJCdPBEkKsoABLSC0SRREff/wx5syZAwDgSmyw7UkFX2av4yNTqcsJoOh0RAgh0ccooDIWmQHWCo2bvQwMD317K6ZPnw6Xy4X09HQ8++yzOPfcc0M8UEKIVRRgCaklBQUFeP7557Fx40YA8kRNyeCkqoqd473fM6kOP5bVmOgifPum0xEhhESlug6pRnVTCCGW4znNOvndXS/gmWeewZEjRyAIAu655x7cdNNN1KWYkFpAAZaQWrBjxw48/fTTyM3NBUQOtv3JEE7FKY/LwRXQDq9mj6vLGD1uKRgbTfBUV7MTE0IIiWx1HWAB8xuw1d68dv3KeAmXTeyGZcuWAQAuvfRSTJw4EfHx8SHtjxBijAIsITWIMYaFCxfizTffhMfjAVdmg213KvhSb5dhdTAFAitHs8f9yxg9HnJ41Xo83Oh0RAgh0SmSJmsym224WpvXrmv9uxS3atUKL730Elq0aBHS/ggh+ijAElJD3G43Xn/9dfz4448AKmcZ3pcCTuQDgqlMrhTNHtcrY/R4UAG2rid4IoQQEl0iKcDKzGYbDmrzxnXu9C1PY9KkScjLy0NCQgImTZqEPn36hLRPQog2CrCE1ICCggJMnDgRW7ZsAc/z4LMTwB+LNxwbwySmG1zlxwHzcGtWyVYbhVdCCCFGIjHEAuY3Zy1v3rj+nZfzNp5++mls3boVHMfhrrvuwm233Qaurt8XQuoZCrCEhNmBAwfwxBNP4OTJk4CHg31fGoSCmLo+rNBDLAVYQgghRuo6qIUYUM03b/76GMdw5Uu98N133wEABg4ciCeeeAJOp7NGj42QhoSmSiMkjNasWYP7778fJ0+eBFcuwLE9HUJhnPGTON680q3hSjmi1fUFESGEkMhQQy2oVh+3tA8I+PnJjXjssccgCAJ++eUXjB8/HgUFBSFvmxDiRS2whITJt99+izfeeAOMMXBFDjj2pIETK9d3NZtQorpL15gtHaBsvnozF/ttJPjjC4bWqUgOr3SaIoSQyFfTNxyDqTd1N2E+Y7+Vx02PkUn4z5pHMWnSJBQXF6N58+Z45ZVXaHInQsKAAiwhIWKM4cMPP8ScOXMAAEJuHGwH08AxVSVnNpFEsLP/Brm0jdHsxiGHV4vHYL4P1XH4XwTRaYoQQiJfbfSYCaZ+1Hx6aLP/Ww6wlWbufhETJkzAyZMnkZycjBdffBHnnXee8TYIIYYowBISAo/Hg6lTp2LRokUAANuRJAjHk8BBI7xamdm3OhNQBBlgQ5qdWOsYwjU2Vj4VaV0A0WmKEEIiX10EWCCo2YZrahUAo2Ocd+JNPPHEE9i1axfsdjueeeYZXHbZZcbbIIToogBLSDWVlZXh6aefxrp16wAG2LJTYctLCH5DTDKucEMMr95i+jMch7y8Tk1P7gRQgCWEkGhQVwFWZlafKpuoXoiVywQbYAGA8RIueqQtVq1aBZ7nMWHCBAwdOtT0WAkhgSjAElINZ8+exWOPPYYdO3YAEgf73kYQCmJ9C8kVXDiWsDFiFCBDHCMb8v7DhU5ThBAS+eo6wFreRA0fpyBo1v0MDAOfOw8//fQTAOCBBx7AyJEja/ZYCKmHKMASEqSCggKMHz8ee/fuBTw8HLsbgy/2mx7fLLyqK0+zMmbhMsQJnrybiPAAC1CIJYSQumZlYr3anMip2psI8RitTGBoEGKvn9YX8+bNAwDcdtttuPvuu2mtWEKCQAGWkCCcPn0aDz/8MA4ePAi4eTh2poMvc1QV8K8U/Ssvs8e1ymmVUYfbECd48hajAEsIIcSEOmTpnZMbQoD1Pw6telAQqr73q2MZGMZ8NBQzZ84EANxwww146KGHKMQSYlEDXlySkODk5uZi7Nix3vDqEuDY0aQqvPJcYDj1Z6XC9N+OVgA22k41KvaQwishhJCGiePqZp3u2rppGgyzutev7ubAYfZdizB+/HhwHIdvvvkG06dPB7UpEWINBVhCLMjJycGDDz6II0eOABUCHLuagC+3Ww+u4Sqjh+PDcleaEEIICQq1GnpZqYf96vq3b/oKEyZMUELsjBkzKMQSYgFd8RJiQu42fOLECXDlNjh3ZYCvsFtvUTV7PNQyFFwJIYTUJbk1lsJsVZAVRf0yqjp9+ogvMGHCBADAggULKMQSYgFd+RJioKCgAI888giOHj3qbXnd3QS82244ToXjONNxLGZllMeMgquVrr81HW4jsSsXIYQQYsDS0Bmj+pPjzW8+W2iNlet6/xD71ltvUYglxAAFWEJ0nD17FuPHj0d2djbgEuDcnQHebQd4/Y8Nx3Gmj3OVEzvoVU6WJ3Go6WUAzNR2eKU7+4QQQmqTXghlkvcmspVeVGa7qLyhPePv85QQ+9VXX2H27NkhbZeQ+owCLCEaysrKMGHCBO9SOW4ezj0Z4D1ObziVpIDwqQRTnfBq9rhSJhpCGpOo5ZUQQkjDUI2xrVapryU4jsObI7/EQw89BAD46KOPsHDhwqC3SUhDQAGWED8ejwfPPvsstm/fDnh4OPc1Be9yapa1GkzrRXAFKLgSQkhDFS31VE2xGmRDNPO2hbj99tsBANOmTcPy5ctD3iYh9Q0FWEJUGGOYNm0a1qxZA0gcnPsyfNd5VbHcXdgs3NYxy+vhUXglhBBS1+p64sIaao1Vm/fAcgwfPhyMMbzwwgtYv359SNsjpL6hAEuIypw5c/D9998DDHBkp4MvjQksxPOmwRQ8b/w4zMNrJIRbBYVXQgghxMtKiA4hxHLgsHjiZgwYMAAejweTJk3C/v37q709QuobCrCEVFq8eDE+/PBDAID9SCMIhfGBhawsE2CljEm4NX0ccgtwBIVcQgghJAJwPGfYu8hyz6NQj8PKECGdG94cOPwxdR969OiBsrIyPPHEEzhz5kwNHSkh0YUCLCEAtmzZgldeeQUAYDuZDNuppMBC4QiuYQi3dTJmtq67bBFCCCFBqq2gasZykPV/HuMwefJkZGVlIScnB//+979RUVFRQ0dJSPSgq1LS4OXk5GDSpEnweDwQ8uNhO57qW8BqMDV7vJp3YX03ExmVMSGEEBINzFpja1N1WmP/nvl/mDJlChITE7F9+3a8/PLLtEYsafAowJIGraKiAhMnTkR+fj64UgfshxqDQ2UFE64W1TAF12qH1/rUekoBnhBCal8UnXv1wmokhdhgg+zdXSZh8uTJEAQBv/zyC+bMmVPDR0lIZKtHV7aEBIcxhqlTp2L37t2Ah4cjOwOcVPmRsFJZhxJu5RmMrY51JYQQQkhIwtoaG+J2LNXtqmuEJ/vNwCOPPAIA+Pjjj7Fx48aQ9k9INKMASxqsr7/+GkuWLKmccTgDvMcJzmYDBEH/SXLoNKp4rARTs21UlqHw6oe6TRFCSO2LlHNvbfYoMgmo1R3X6r8N02sBu13Zzlv/WIBhw4ZBkiQ899xzyM3NNX4uIfUUBVjSIO3atQvvvvsuAMB+rBGE0njjiqhy6ZyQy1SWMyVvw0rZ2lLXXZEj5QKKEEIaooZ0DpbrOwutrNWdZdhvI7pBVgnKldsYN24cOnTogMLCQjzzzDNwu92mx0hIfRNBV8eE1I6SkhI899xz8Hg84AviYTuTah5Mw9FaarHLsFKJWWh9bRBL6TDWsC6cCCEkUjWUc7G6XuXN69lwtMZWbshwH+B5XNvkPkyePBkJCQnYvn27cjOekIaEAixpUBhjeO2113Ds2DFwLhucxzKqJm3yp9Oiqr4TGvZWV+oy7KuhXCwRQki0iOCbijU6UVNNtMZqDVmy0Bp7xzkT8e9//xuAdzjU2rVrTY+NkPqEAixpUH766ScsW7bMO+71cCY4UWe8a4itrkrIDbbVtaaYdP+1XOnXZjfiCL1AIoQQgto/R9f1MBYgqNZYzmw+DTMmrbGTh32MG2+8EQDw8ssvo6CgwHybhNQTEXA2IKR2HD9+HDNmzAAA2E82glAaG1iI58AJJuHVShlYvBMrCMbhVd3aGwommTxs8ULEZDuEEEJIVDMKnpU4IQw3pit7cJluwyAw33vvvWjdujXOnDmDqVOn0vqwpMGgAEsaBEmSMGXKFJSVlYEvjoEtLzWwEM9VBkqDjwXPmd8FDtd4mWCYtaAaHLPl8FrbqDs1IYQQiyJlnVcfFoYGmYZYQLeOvy7jfkycOBE2mw2rVq3CokWLqnOUhEQdCrCkQfj+++/x559/AhIHx/FM33GvcnA17O5jIdzK5UyEM7iGcreVSSz48BoJXbgIIYQ0LNFe91gIsaZBVufm+Ng+r+Kuu+4CAEyfPh05OTnVPkxCokWUnxEIMXfixAm88847AAB7Tjp4l6PqQTmYGs04qNXqyvHmsxTyvq2s4W51DTW8RgVqhSWEkMhE52d9ViZn0ijjH2I5uy1wOxohdvbYlejWrRvKysowffr0oA+XkGhDAZbUa4wxTJ061dt1uCQWtjOVXYfNWl3lgFrDra6clTGufmUYY9rh1WI34qgJr4QQQoiF1tewdR+2Mv411OBe+Xzd64JqtMZy4PDYY4/BZrNh9erV+O2330I7RkIiHAVYUq/9+uuv2LhxY2XX4abersMcH9jqqsWs0vRvhdUrVlutrmbBlCZgIoQQEg4R1voadTdmrazzHuTY2Psu/A9uvvlmAN6uxCUlJdU+PEIiHQVYUm+VlZXhrbfeAgDYTqWBF2MAm837pVd5cBzAC94yerMM8pz3MYE3bsG1GHBNVYbWkGYXDFd4re0QTDMqEkIIsSCaQiwn30Q3ukaw28zn55CvaWzersajR49G8+bNkZeXhw8++CDMR01I5KAAS+qtuXPnIjc3F5zLDnt+uoUWVYszDJvdOVVvw0KINexGrApw5svy6DzuFzqr3dWKwishhJDabH0NcvKmkEJsuLoPBzursJU62ehmucxmw3XNHsSjjz4KAFi4cCGys7PNt01IFKIAS+qlI0eOYN68eQAAe15TcNCYCEEmt7qaLZ8j8CZrtvLhmymRscAAF+x6sEwKT+gM13Ys70/jtRNCCCEWVGuG/bpmYfk909ZYALDZ8O+hH6Ffv36QJEmZwJKQ+oYCLKmX3nvvPbjdbvDFCRCKE/ULGrW6cpXdhI1aXTkLEz0F2wprEN4st8KaBE7LrbDU6koIIUQWwa2v/oIKsbXY+mo4tlWum7VmHw5iH/feey9sNhvWrVuHdevWmZYnJNpQgCX1zo4dO7Bq1SqAAY48vzVfK3E2Gzi73bzVlTNpdQ23hhzgGvJrJ4QQ0jCY3UDmK3uFGREEcDExug/f1fNF3HDDDQCAd955Bx6PJ9ijJCSiUYAl9c7MmTMBAEJRCnhX4AmeM5p8SSav4WplpuIwBFzLEzTxvPFdYPmOc7i6Mkf74vGEEELCI4paX4Pel8TMZ/KvbWYhluPA2fTLjBkzBklJScjOzsbixYvDfHCE1C26OiX1ysaNG7F582aAcXDkZwY87hNeBcH7f39yeEVllyGzyROszDZsUMYnvIZygRBplS8hhBASTXTq0bB1H7bbzOfLsDuqvtcJsZzdXvW9Togd2WUiRo8eDQCYPXs2tcKSeoUCLKk3GGNK66utqDF4T1UlwAk8OIfduILhOW85K7MM+1c+1QyeAS2vwU7UJNOqdE3uYFseB1tbd8IjbF1BQgghlaKw9bXaM+7X5M1g/1UKrOCFwCDr9/vgbIJmkL322muRmpqKkydPYsmSJcEeLSERiwIsqTc2b96MXbt2ARIHR0GG8vOgugxr4NQTPRlN+BREKyxjTL/bsOlETaqQHYndnkJBIZYQQiJLfT4v69Xpqro1rK2vWvtXH4O69dWfWZdiBLbGXt/hcdx0000AgDlz5lArLKk3KMCSeuPzzz8HANjONgIn2QG7HVyM07hiEbx3LS3N7mtlHVkLLI93rQUR1wpLCCGk4arN1lcr+wrnDWKz1Qqs4AWf7sOam7IJ4BLilP8PHz4cycnJOHbsGJYuXWptP4REOLoqJfXC3r17sWHDBoAB9qIm3q64NsG4VZTjKssYVSreJXQs3YGVl90xKaM57laNN5kYSgrf0jaWlxmoreV0IijcE0JIg1efW18tMK2vAQs9vHhwDoOWVWVnvLX1YO12wGawzI7M4Q26N3R8QmmFnTdvXkTdRCekuijAknrhiy++AAAIJangpVhvMAW8YVAroHJcVdi06SwOLq/NWhkoLVVkNU0VXi3PkqwjqDXyaqMFlipVQgiJHLUdXiOt9bW2OezgOOMVELgYZ1XI1QuxMU6fbQLAddddh9jYWGRnZ2PTpk3hPnJCal0EfoIJCU5ubi5WrFgBALCXNqsKrzL/ikAdXtU/8/+/OvhanVypplphJaluWl7VaqrCZ4zCKyGENGQRGCjD1vpqpbUUvmNtdUOs+mdGIVbNYcffz38WV111FQDg66+/tnQ8hESyyDtjEBKkH3/8EaIogq9IhOCODyygakX1trZq/NnLEz1VdhnWa7Wt1VZY+ZgNgmuwrbBMYtULrzWFgishhESeKO06HK7W11rvceUIHNeq1O+Vr4lTt6zK5BArB1mtMpVuvPFGAMCaNWtw9OjR0I+ZkDpEAZZENY/Hgx9++AEAYC9J1y8oWGkZ5fS7HAPen+utHeuzHWszElsaVxsu4bq7Hc675BReCSGE1PWyOdVlZeZhC0GYczoMV0HwD7IBzLoUV/pn/+m4+OKLwRjDTz/9ZHpchEQyCrAkqq1btw55eXmAZINQlqZZhgk8mNkasFYmdAoXJnm/DJbuAVDV8mrlmMwq7nBMwiQfNyGEkPorGm+uhnN/VoKwhfBqeX8W3m8uLtZ0nywxDixWvwUWAIYNGwYAWLx4MS2pQ6IaBVgS1RYtWgQAsJWng/P7c2YCD2a3VXUN1iN3G7ZaaVtqhdW5W2olAAYx3tVnNkG9Sle1z2rfoQ53cKXWV0IIiTwNvOswYHHdVyvb0Vr31b+M0yHv1KRg5eNmN+I5DizWqRtkXxq7FMnJyTh16pR35QZCohQFWBK1iouLsXbtWgCAzdPUG1YrMfWYVvln/rMNawVXwaALcTA4PjDEaoVA/1ZYreCqMSaXMWZtKvxwtbyGE4VXQgiJPFE663BYhan1lbPbgm991Xv/Y2MC9+93DCw+1nc7lUHWp0xcDDjwGDx4MABvKywh0SoCzx6EWLNq1Sq4XC5wYhwgJSg/V8KrP/+KQqvVVZ6h2CzEWh0LqxyUxZZX3W1VhVjD4CpXvgbdfYNqhQ1neKXZhgkhhABhDa9ha301G9YTDCsTRTk11ob1vy6JjdEPtv435DW2pQ6xrLKMHGDXrFmDsrIy0+MkJBJRgCVRa9myZQAAwdUEHDjAbgOLcRjeHWU2wdtSa9al2ApLMwBbKBNEoAzXAuS1PtkFBVdCCIlc1HXYWni12vpqVsbpsHYdYnZMggAWF6P/uNylWFXmwb/PQdOmTVFeXo5169aZHishkYgCLIlKxcXF2Lx5MwBAcKcDNh5SnAPMblK5CDzgsHu7Exsxm9DJyhhVJnmDm9myNfLjRvurDICmFazFJXJqdSkdCq+EEBK5qOswwHPmN4iDGV5kpfeSyf5YYry3R5kBMTUeUrzxxE3gOHiSYyAmectx4NC/f38AwIoVK8yPk5AIFIFnEULMbdiwAaIoghPjwPMJYHYBjAOY0w7m1Lj7yVd2DQ5mwia9ECupJ0XSWTJHDq/yvrUqbKkq3BoGU79KTresOpSaXCDUWgsshVdCCIlcURxew9l1WGYaYk0e92l91RvGo+46rLM9lhBXNZbVKMRWrhcvxdohxQauJQsAnuQYMJ4D4zklxMoBdu3atXC73frbJyRCUYAlUemPP/4AAAhiIyW8AtAOsTwXGFxtgnkrrBaNlteAEKsOrz7HoPq46bWAqgOz1phRvTvAWtsLR4gN5WKDwishhJAaUJP1l+YkiWZ1M3S6DvuFWM1xr1p1pd+cHUzgA4KsmBrvW74yyKrJ4VXZVWWIfWjUZ0hLS0NZWRm2bt0auH9CIhwFWBJ1JElSZh/m0UQJrzLGoerkz+u0uHKVY2atdiW2urSNVngNeAHajystqzxvfpfXZ+bi6gfFGrsIoPBKCCGRLUpbX8Pag8hgW0qI1btxbLWes9qduHJ7LCEu8HG/1lgxNV77uPxCLNN4fYznICXFoFevXgCA9evXW3gRhEQWCrAk6mRnZ6OwsBBgAoBkzTLMYQOLsRt3F7balVhvVmP1puRWWCszBBtth+PMgzJvoSW36sBM9xl2FF4JISSyRWl4Dev+LNTJVrsUm07cxCTt1lf/YnLXYT1yiDUaj1sZYj3J+pM7MZ6jAEuiGgVYEnX+/PNPAADHUsBp/AkzgYfkECAmOHXHhCjMuhJbWfqFMTA5dPLV6JbssykL4U+SVHeGTSpgkzu/liZzCnYpnSidzZIQQhqEKA6vNTHu1XBTVmYdFgTzm8lOp7X12y38bjxNkiA6jY+rrGkcytOdqGikH5rlALtv3z4UFRWZ7peQSEIBlkSdv/76CwDA2RoFPOYdJ8J5x8KquxLrMepKrA6veq2wViokmWQcOhljVa2vuhM1Sdb3VxfhVUYhlhBCSCSGV6v7sxJebaqWV6urAOhN3JQYr/lzNU96ordbMMcZhljJxikTN+mF2GvHfIgWLVoAALZv327hyAmJHBRgSVRhjCkTDohx6RDjVWM9KsOrmuS0QYox6dqj1ZVYq+XVP8RqTvTABbbCyrMNq8OgX0XsE17Vx+WzHZ3w6l+pM6luwyshhJDIFKU3F2tr3KuyPwvhVZNqdQGFM3CZG/+6nCXGW/rd+IxprQyx/kG2LDM24Dn+IdaV4gATgHPPPRcAsG3bNtN9ExJJKMCSqJKXl4f8/HwwcGCOZLjjbRDj7ZrhFfC2wkoxdvMQq+5KbNRtWA6xRi2v6hArB1eDMKgZXmVyhWbW8ipXahZCZ62F1yi9UCKEkHopirsOh21/YQyvPq2v/uR6ViO8yuQ63Wp49aQnahyEb2tsWWYsJJv2xE1yiJXDKwB069YNAAVYEn0owJKosmfPHu83QiLACWACIAmcZniVWQqxHOedcZgzmYgJCK7bsFEQlBdOtzC7seX9mR4OTbBECCENThSH17C1voazFddKyDUKuJUYY5Z+N+4miZozCis4DvnnJGiGV2VflSGWqQ79nHPOAQDs3bs3bNcZhNQGCrAkqigB1uadfViycyhvbIc7yXiyJtPxsJIESAzMbjOumCoDIGc0A6B/d2GTbRnOJijPcGhWwVkMpmHthmWGKkNCCKl7DSW8hqHnkKWVACqvEcwnZOJN62YuPs50f+4miWA27V5maqIdKE8xfu/PtrDhbIuqYD1m/NcQBAHFxcXIzc01fC4hkYQCLIkq+/fvBwAwIQmSnYNo58B4wJUkmIZY3fGwleFVxmyCdoiVKrsWcxzA89ohVh1eOU4/DEt+wVRrW36Vo26IVVeQFi4camUiDAqvhBBS9xpKeJWFEGJ911fX2Y5fna4bYh2q6xG9td/jYqtaVXX2J4dXZX86IbawrXfJHMbrh9ji5gIkGyDZUBViOR4tW7YEABw4cED7tRASgSjAkqhy9OhRAIAnLhGinQPkoZ8WQqxmV2K/8ArAu86af8Uph1dVmYAQq9XyqhViJQvBNGByKF67rFbFGK4LiOpuh8IrIYTUvSiehyCk3kJaIdZke5r1sIXhPYBGiHXYA+tP/3o/Lta7nqvJ/tThVfmZX4gtbBsDSXVZoxVi5fCq7MpW1Rrbrl07ABRgSXShAEuihiRJOHbsGACA2ROU8CpjPAJ+5s8nxGqFVxlfOVmTxABR0g5l6hBr1G1YHWKNuhPxvPEEUv4h1mhbJuHT8sVBsCGWwishhDRMYbp5GpahLgaz/gfsz3R4UeW2DIYXKSFWK7wq26rseaUVXjX2526iMWmTvL/KEOsfXpXH/UKsVhm5NTYrKwsAcPz4cd39ERJpzEeYExIh8vLy4HK5wMABtljNMq5EAWCAvcitux3GAcwugNkFcBUe7UIcBybw4EQOEI2CYuWkTyGOveE4ztoECjxvHLzrEoVXQgiJDFHcdTiswjXvg5X3UxDM3weJ6YdXFTEtXrP1Ve3MOTHgRP3H5RDriTc+9qZNmwIATp48aXpchESKCD3jEBIoJycHACA543QrCaUrcaJ+V2JOrFynzeSuKydKlS2xBh8TUaycRdBkIibRoJaBaikd08maKpfTMauUw7EOrIXt+Iji7mqEEFJvRHF4DdtEg/IxmU2iZDWYmu3OZvPWy5JxXc/FOMF5jMuIjb0zDvNu4/pXsnMQncbHf+Y8hsIOxtvJzMwEAJw4ccKwHCGRhAIsiRqnT58GAIhxMShrrP+nyzjAlawdYjmRgRMlcKyyFdapPakTJ6omYtILsaJY1erIc9qVeDDhVTlIvcma/NaC1avo6yK8yijEEkJI3Yni8Fpj9CZRCja8Go2JVdfHOiGWi3F6yzGmG2Ll8AoAYEw3xOZ3rFxfloNuiM3vxiA5JTC7hOLW2tspT2cY9d0PAIDc3FxaSodEjSg48xDidebMGQCAGOPUHM8BAKg892qFWHV49f6AA3PYfEOsOryiqlxAiK0MrwGBUl2Za4VXv9Cpuw5swGRNknbF4h9i6zK8EkIIqTtRHl7D3vqqZmXyRH+aqxEE1o2c1nqvfiFWCa8yjRDrE15V5fxDbH5HJyS7qpxGiJXDq3I4Dm+I9Q+ykgBIDm8YdrlcKCsrC3wthEQgCrAkaigB1uFERSPm2wrLoIRX5UeqEBsQXmXqEKsVXlXlFFrhVSaHWKOW18oKSje8+u9TL7z6bS9iwiu1whJCSO2i8CpvSP8x/+XrjBiuB19VRypdhzXLea8BAsKrzC/EBoRXVTk5xBZ08AuvyoFUhdj8rr7hVTkch6QEWcDb+goATBDAKieJLCws1D4GQiIMBVgSNYqLiwEAksMBSQBKMxlK0/mA4KrGOMATx0OKEQLDq0xuYTWr1OQyeuFVzUpYrO4U/dGAQiwhhNQOCq/yhsKzHSskCZzAm89wbBOMy1SGWLGx/ozDcrmzLZ0QHQbb4oAz/SogxZiMnXVIiBuSA0nO6BwHye4AABQVFRkfByERggIsiRpy1xZWeWeUCUBZJkNpE/0/Y97DwHsYmFEF75G8X3YbmM3grqu8xI3h5E/Me9dVb0xsZRnvREwmH7/KFlrTu8VyWDaovGu963A0hm5CCIk2FF7lDZmX4Tlrra9mdTMAzl7ZbdhgjgvO4Q2FMJm0SUqKA1dhXKawXRxEOyBUGNetzlg37GnlhmXadjyJjLhiNO9ZNWmT5PAOt5IbCgiJdBRgSdQoL/eelJnNpqz3ynj9EMt7GAQXAycBnjgBnniNmYk9Eji3CE4OXHohVpKqKiFB8K79GlCG+Y570Qqxkv+4WZ2PoF/3Yt1K1z+YalTiFF4JIaQeovAqb8i8TDDh1aScEl5lGiFWCa+A7/WDHyk53ruePGPgy7SX9StsFwdR3hzTD7GFF3uvkQSB6YbYth1PItFeAQBIcZYpIZbx3usel8ul+TxCIg0FWBI1lADrNzZFK8SqwysAgAPcCTbfEOsfXmX+IVar8vEPsf7hVYt/eFUO1u9jqDM2NqDy1QumqsqcwishhNRDUT5Mo96EV5nJagNa1xFyeFW2rRFifcKrTCPEFl5cDmesW/m/VohVh1eZHGLlMbAej3aIJiTSUIAlUUMJfxoVjDrEBoRXmTrE6oVXmRxiDe6cKiHWKLzKrbB64VUpx8sv0nBsrFIJWwimFF4JIaQeqovwGslrvRqpjfAqqwyxPq2vaqrrCf/wquxDFWI1w6tMFWL9w6tMHWK1wqssxVkGZ753kszFixfr7JCQyEIBlkQNpRLSCUqMB9xJgDuODwyvykYAycYBAqcfXqt2WP2DrSHemYspKBJCCKkl0RpeYXHGYSvh1WhWYp9tmZSTJDCH3XCcLccYKtKc+uFVxoCCcz2a4VUmCAwTL/+vbnj1R12ISbSgAEuiBm8ysYJQzkGoACrSOJSnalcivEuCUCFBctogxRjcTfWI3rup/uu/qokimNxaajRGtbKF07AilSTrLZgWLwAsXyiE4+KEWl8JIaTmRfG411qfbZjnzGfxV/d+0tudHF7Nbh5XzuTLDHpRsfhYgOPAlekHxbJm8WACEJtv3Dvq9AUi4BRRUaoxv0elief9hA7Ok7i92e/Gh97Yu43LL7/csBwhkYICLIkaSoBNCbyTKJRzsJcAkLwLc5c3CgyxvEuCrbRyDVcOkGLs2iG2MrxycmUlCIEhVh1e5W7CFiZa0gyx/uFVJ6j7Tv5kNC2/avKn2gixFF4JIaTmUXgNKrzKdEOs1vwT/rvzb3nVC7F2h2kZFh/rE5i1QmxZs3hlnVdOZLoh9vQFIhDr7Y7MJE4zxE487ye0sJ8GAKQJxbohtpGzBHyc97gSE02W8yEkQlCAJVEjLi4OANAy/hRYizLl5+rwKvMPserwKtMMsf7hVdmJKsSqw6tMK8SqWl/VfEKsXsurX8WqPfmT1sLoGvuryRBL4ZUQQmoehddqhVdZQB1qtAKAvDu9bsP+1wf2wL6+/tcIPuFVtS91iFWHV+UYNEKsOrxW7c83xKrDq0wrxDZyloDnGFiFdx/x8fEBr4WQSEQBlkQNOcDa3S5c2OowWIsyzfAqU4dYjkEzbPmEWL3wKpPXn9XrHqQOsXJ41dkWx3Hm3YYrKzvjyZ9UlZ3BZEw1EmIpvBJCSM2j8BpSeJUpdamFNdhNx7zKdbtGeJUfl68VNMOrel9lLs3wKuNEhpgC77a0wquyKcn7fK3wKlOHWDm8AoBU7t2+fJ1FSKSjAEuiRkJCAgDviTbRVoGMtCJ44iXN8CqTBEB0ApJgUKlxUC4QdMMr4B0Ty5jxWFa58jQIr4BJKK2OcM0kTAghJHJQeA1LeA2K1QmbrIRcm800MIvJsbCfNV6+hhcZytM53fAqu73zWt3wKksTivFWmwVKeAUAqXJGYwqwJFqYzAlOSOSQx2aIJRIOFqehoCQWaFaOcikWMbnaFZe9mMFxlsETz4NjdtiKA2fr410iOJcHsAlgjIHTWzZHxnHgoBNCRREQJW+Fy2uHWGayVI5CksyDrsUZiWtkSR2Oo1ZYQgipDpNZ9X3K1JZ6Hl45jjNvfZV7WpndrJaX1JFE3ZmHuRindxkfl9s787AGMSUOzMaDEw3qXg7Ib2+DJADOw05UtNSeUfiuC35HU3s+jrtT0cyeD3ueB02/LELKujIIJRLEeB4FvWPR9LY4OJsk4PmmP+PpE0MguSWlBTY1NVX/OAiJIBRgSdRo3LgxAMBT6IFbFCCKPGw2EZ6sMpRk8BBynD5B1l7MEFPgXQ+W8RzcCTwA3xDLu0Tw5W5AAhjHgbPbwIDAECuKVevB8jwgSYEhVg6vMo0QGxBe9UJgMOHVJHTW6HqwFGIJISQ46mCkdw6l8Fpn4VWmG2L914PVCLFyeK3ckGaIlcOrzHnGjYo0v6BbGV5Fp/e/vEs7xN51we9o6Tjl3W4Zh6yJhWj7bR54v3v2aavLwKafAUYloelk7zWVWOS9tnE4HEpPN0IiHXUhJlEjPT0dAFCWz5B3tmqiAZtNhCPWDZZVhvIm3gsBdXiVySHWk+CtINThVSnDcYDdBmZTVUbq8CqrXDdOqdz8w6uM480rV/8KMozh1bJQthOB6+USQkhE0jpf+v+Mwmudh1dZQF3sH1619qcOr1UbAueqSpP+4RUAOFGC84wqcfqFV5kcYmW391yjhFehXMKge3ai/fzA8Kps1g1wc4vA/eM4nk9ZDE9lgG3UqJG1dXMJiQAUYEnUkAMsK3JD9ASeZG02ESyrDJ54BIRXmTrEchLTHD/rE2K1wqtMvfi5Yfcfvmo9Or2uw/J2rIRX5UDNQ6el1tdwhGCq9AghxJjReVJ+jMJrxIRXmVInG4VXyXudoBleqzYEzuXWDK/K8cohVie8yvjKyYtv77kGbZy5ys8vevEgMtefhVnNzwBwa8rR7Pky3NXoHgBVvdwIiQYUYEnUaNKkCQRBAOeRwJdoLwIu5TvBuwBXgsGkTTznnbjJAFMCpcVF0MNVcYeR5a7DhBBCag7HWQumURpeOZ6r3fDKc+ELr1bfcyv7E8x7XDGnQze8KtsRJYh2Tje8ymISXD7hNTbPhfbf5Hm3YXas8jdfFuHorl0AgObNm5s8i5DIQQGWRA273Y6mTZsCAGz5JZplODcHTgIqUjhUJOlM7FQiwn7WDckugDl1Jl9we8C5Pd61X22CfiUnepfeAWdQoTIJzKiFFvCOgapsneXUXZO1yME0HBcfYeuCTGGZEEICRGrvlDCG17CxGl6tbErVq8mgkGkZTuC9wRQwvKHN2SvHrrp0+u0CYDFOQOAhFGlPwgQAZZkxKMuMATgOiYf19+fqUgZBkPBudj/lZx2+zoPgCa4u5tzAkVWrAAAtW7YM6rmE1CUKsCSqtGrVCgDQXdiLVo3yfR5z5cXBmVe5dqqgHWLtJSLshW5v92EOkBw27RDLWFUo4zjtECuKYB7V1PdaIdY/vJrdDVbRDLH+FahBhW96YUHhlRBCag6F12A2Zl4m2PAq0wqoFsoowVWmU2cq4RXw1ocaIVYOrwDASZJmiC3LjIFk4yDZvMdmq9CuW11dyhAT6+2FdrYsRgmxGRuKNMubOXziBACgRYsW1Xo+IXWBAiyJKvIdQi6vDJc0PqCEWFdeHGKOC+BVedI/xNpLRNiLPL5rvWqEWKX11Z9NqAqg/uFVebIqxOq1vPqHWIOxsT4Vsd7d31BCbKgovBJCSKB6Hl7DqibDq8x/9n+TMgHhVSnjW+f5hFeZX4hVh1fleX4hVg6v/vxbYdXhVSaHWHuJyRKAGkQAhypft9xAQEg0iMAzGSH6OnToAAAoPCwhTqjAJY0PgDEuILzKfEKsBO211lQhlnN7vDMF6gWzykpIM7wq27MwPkcOsZbXhDUJisGG2HC1vhJCCPHVAMJrrY95tbKpcIwzliT98Ap4687K+lgzvCrlvGW0wqtyKJUhVi+8At5WWDnEaoVX2dmyGLjjjSej0nIkNhZlHIfY2FhqgSVRhQIsiSqdO3cGABQdkSB5GOKECqQmlkKM1Q94rPKczruNFwqHBG+lY1bBcZx5pSsx89BZi2qkJZZaXwkhxFckhleOj+4Jm8w2YzZvRBA4kxmJAXgDqdWwbBSGAUgJDt3wKqtI5SC4oBteZRvPa21+TH52JyYC8DYOCFZeOyERggIsiSrNmzdHYmIiJA9w9jjDL7mdkXM8Be5kCe5E7UDlzGeIPS1BcvIQY7SnwecrPODLXQDHeZfP0Rur6hEBj8dbqepVvqKktHAadmeSA6DBuNhwLakTMCNxJHYjI4SQaBap4TVsm4q8Ma+WgytvHjqV8Gp089lWdQ1hODmj0+HdZpn+hE1iUgwYzyE2Vz+YlmTyEB0AGCD+laxbrnN6DpZcfQ48JmHY366kJABAp06dgnoeIXWNrmJJVOE4TmmFXftXOnYfaAq4eDCBaYZYZz5DXJ4E3s3AOA5iLA9XsiMwyEpQze6rE2Irw6sSKrVCrBxeVRWgpbvDGiHWJ7waVeTV7Q4cyoUNtb4SQkgVCq/BbMy8TF2FV5lWiLX5XTdo1b1Oh/dL3h9jmiFWDq8AwLtEzRCrhFd596WBu+ucnoPO6TmIs7lQ2CgOvw3zDrOysg4sAGxp3RoA0KVLF5NnEBJZKMCSqNO9e3cAQOF2N+Cq+hPWCrGcCPDuqv8zjgMTvEFWDrFK66uaf4j1D68yrRCrc/fWZ1p/rQCoCrGaLa/VvIAwXA+2Ohc4FF4JIaQKhVerG6rd8Mrz1QuvMnXd6R9eK/m0wsrB1X9/fnWmOrwqh+oXYv3Dq/JcVSusHFzjbFXPm/Nwb+zskWlpHdg9vVKxz+V97vnnn2/yDEIiCwVYEnV69uwJAIg5cTqgYpBDbFlTCZwIxJ7Rbp2UW2PBceBLXdqh0y/E6nbn5TlArgCttIYaBUCzZXY0lukx3FW4x+FSeCWEkCoUXq1uyFq5cIZXrTDpvy2zcZ8S0w2vAKpWG1C3umrtp9wFMSlGM7wqh+zyziKsF14Bbyus+L9kJbz6c8fY8Mq0wVh3Y2vdsbWijcOuURnI+c9XYIyhZcuWaNy4sf5rJCQCGXwqCYlMnTp1QlxcHEpLS+HIL4QrLcXncSYwOE8LiDnNvBM46awrzjgOzCZXcHpL1HDe0CaaTE8vit7uwwaY1RmHzfCct1IN10zCHE+zEhNCSLAovFrdUHi2Y5WV9datrsluYWIjTuC9vbTs+pfUzG4DX+yCmOQ03JatVILoMD42JjDN8Cpzx9jw2L0j0OyWAjy6agmari+EvUSEO17AiYuSsWdEE5Q3duDsom0AqhoFCIkmFGBJ1LHZbOjevTv++OMPxJzMDQiwAMC7AN4DeJzeClgoDwyotlIRQrELzC54u9toBFDO7QHcHoDnvWUYM59YSQ6YeuRQrEWSzLcfzvAKBLct1bgeQghpsOoivMpBUO+cHe3hNRytr0GGV8aY/jaVnlX6qxNwNpv3MYOb08zpAHgOnMGNcHeiHeA4cBJDcraIwjbawdmd5L0xv3rDOejba6dmmcNn0+CWeByKT8OWe7Ow5d6sgDKvbB2E8//4AwDQq1cv3eMiJFJRF2ISlfr27QsAiDt6EhB8w1RMrg2xOZVrsPEcPE4OYoxv5WMrFWEvLAcneismZhfAnLbAKe8Z850tWBACKzt166tcWftVxAGtr1qVoZXwGgRL3YerPQFUBLY8EEJIbajL8Or/vdHPqrWbWl4mB/DWlzURXk3mmtAlCL4trxLT3JYSXmXuwPXh5fCqbLoocEInd6IdTODAKg/NVhZYL7uTmBJeAcB+lsfqjecElDtSnAq3VPUa55+4MKDMK9sGw3PYgxMnTsDhcODCCwPLEBLpKMCSqHTJJZeA4zg4TxVCcJUqITYmx4b4IwyCqneNHGJdSbwSZHlR8oZXGccBPA9mF5QQq7S++lOHWK2uw34hVrfrcHUugiy2vtZoeJVRiCWENDR1HV61fhbG8Bo2YRzzCoTQ8uozm792GZ8bxxYmdOJstsDwCnjredU1g394BQBOFH1CrBxe/SVnV7XWysGV+R2avajq9RwpTsWR4lS4RN9ChRUxPiH2lW2DUVYUg2cae5fNueCCCxAbG6v9mgmJYBRgSVRKS0tD165dAQCxh3IAOwOcEjgJPuFVxngOkuANspzIIBTrjB+pbI0FY4DLrd9VVqsl1mc7VSHWuFzVJBO13nU4HCjEEkIaikgJr8E8bnk3kRleTZehk2caNt2XybhSxszHuzJWFVwN1nhnTodmeJXJXYn1wivgbYVNzhZ9Wl21rN54jhJc/cOrrLAiBq9sG6yEVwD47bffAHgbAwiJRhRgSdS67LLLAADxB44DAOy5dsTkMaUbjhZHiQRHkc6sTjILMxcqjEInxwOShTGzwUzuZOHCIOwzDxNCSENXm+FVXm6GwqvJNsI45td/+JBmIc68PrfZwLncpq+Pr/Dohldldyyw1dWf85SAo5ubGZY5sScdroMJSni1FRZj9+7dEAQB/fr1M94BIRGKAiyJWldccQV4nkdMbj5sRSXgXRwEl/eErxdieTcDJ0pgAq9beXAVbm8FJBisHyeKYJ7KrkJmFbHFcGp5UfbantHRCE3mRAiJZlbOu7UdXmtRra/xCtReeLV4M1oJr0Y9nAReuSmty2arnMTRYEInhw3MYQMnMjhPleuWE2N4MB5I2a2/O97FAQywlei/xhN70mEr5cF7qso8ldAaAHDRRRchJSVFfweERLAIuhImJDiNGzdWpn9P3HIScSerKhatEOs8K8JeWNn6ynNgAg/JIfgEWa7CDa7cVVUBCdoLoTPmN6mDVoUsikG3vupW2v6Vps7FQlCtr6FeKFF4JYREM/l8azbMo7ZEc3i1qjbDq5pGqOQEPrDlVSvECr71LdMKqHJ4lbddHjhMiTl8ux/L676qiTG8El4BwF4qBYRY3sUp4VWW+7+MgG3J4VV5GWdsAGNYtmwZAGDQoEGBr4OQKEEBlkS1IUOGAADijhwJWCqHCYBkqwqyvJuB96gqnsqZD31aYyWN7rw859saK4ra68KqK2Y5vFZj3deAyttwSZ4QP8KR1JpLCCG1xf88qxWaKLxa2ZD1snUVXrWKWOkyLPAB4RVAYJ3sF169ZSSfEKuEVz/qVlg5uPrffLeXVl1HKMHV/xBUrbAn9qQHhFcA4D0cnCdP49ixY4iNjcWll14acDyERAu6eiVR7bLLLkNCQgJsZSUQSnMDC3DeIOsokapaX/1Vhlh4JG/XYT2VITag9dVvWwqz8GoQcE0nrtDaXHXHvlbnwolaXwkh0crKxHoUXq1syFq5mlomR3sj+o9V1rem4ZVJVcFV5zUySfIGV63w6rc/vfAKVLXCqltdtSTvQUCrq7/cLRlKcPUPr7Kby+MAAIMHD6bZh0lUowBLolpsbCyuvPJKAICtIFu3HCcx32Vz/PGc99Ngqcuv/qLmvts0+XhVo3W2xlBLLCGkIYiU7sLKPmvv3Ftna7xa2Vw43nsrLa+Wxjybj+flOA7weIxfnyB4l9Ux2Cez8XAUuAzDKwA4z0qG4RUAErOhG1wBgC8vV2Yfvu6664w3RkiEo6tWEvWGDx8OALCVnATnLgl43FkkwZnv9rbG8hyYRmXCl7nBlbmqpuTXqnA8qombOIMJnphUNfbVytp0Opgclg0LqcbPhnJxEuzyPLR8DiEk2kTaeauWw2sYN2atXDj3acRCizknCODkZXLMhuXwHCBpDBNStiVP+mSwncp9cQb7YjbvdQTvlhB7skKzDCd5v8CA5P3a9XRsHkNsHgPvBuKP6r8P/27VHKIoomvXrmjfvr3+sRMSBSjAkqjXsmVLXHihd6Fux6n94D2+j/MeBs6tOvFzCAyxzDs7sfdxTj/EqisjrRAraYROrRBr0vpqKbzqCOuFiuGOIuxikBBC9ETa+Soaw2uYZxpWM53wENCuN8PRGwqoem0+w4ACQ2xA92OtYUd+68lypYHhVA6vylMqNPZVGVzllld7aeB7JAdXvvIw/OcCAYCkvUDSbhELFiwAANxwww2Bx0xIlKEAS+qFm266CQAgFB8CX1GuhFhnkQRHgSfwCaoQq7S++lOHWHXrq892/EKsuvXVf1u8hbu2wTBoNQ3qgiXY1lefHUXYRSEhhPiLtPNUtIZXq6q5T0shVs1ieNXsNux/M9pknK7mjMWAb30uCAHhFQA4j2849Q+vMnUrrBJe/ahbYeXw6k/dCpu01xt8J13dHgUFBcjMzMTll18e+CRCogwFWFIv9OrVCx07dgTHRAhnD4D3MPAeb+ur1lT1AJQuxQCqWl/9qbsU67WIcqrHrbSa1mDrq+9hRU73LUIIqRORdG4KpgUzLLuLzMmaQiKpekqZHo9OeFXzb3UN2J9oPumTy60ZXH12U1oBZuN1wyvgbYVVdxnWYi9liDkFxJyCZngFqlph5fAKJmHevHkAgFGjRsFmsxm/HkKiAAVYUi9wHIdbb70VACCczQZEN2LyRThPuQwnPuDLPNqtr74bt3AAJpVgHaj2rMTV2hnNSkwIiSCRdmOtIcw0HOquwtUduPLGs7XtmQXcMB0TY+Z/k4xpLpGjZisVkXzIDcGlXyj+pIj0zUzpcvzinT1w4sQJJCcnY9iwYebHSkgUoABL6o2//e1vaNGiBTjmhlB80Lvuq0v0tq7qNZ5KEiBJSkusJlE0n21QqlobVrfSlCRvBaXuTqzHrFINpdsvIYTUZ5EUXIGwh1ejCfsieaZhw12FM7yallG1FGut6e49IOXviOn10FJ3GXZrDDGqJF9f8MXlumXkm8CxudqTOQHe8Mp7GIRy/fo//qQIwSXBKQ+dYgyzZ88GAIwYMQIxMTH6x0BIFKEAS+oNQRBUrbB7wVhVyyonSt7ZAA3ubDKe0w6yElPNKmzQRUrV4mlpHVcrIbamW3XDEYSp9ZUQEinqcXg1C6fRMFmT5u5qKLxqz0dhpUeV/ySPGvWkf5dhjaFByjWFai6NwEK+68rzFYFB2FYqKuFVT/xJUQmvas/c2gUHDx5EUlISbrzxRt3nExJtKMCSemXw4MFo06YNOMkNvniP74MS82mN1es+7BNiRRFwaww08Z+pUOcurlIxy62vAdsJU4Xrp1a7DxNCSCSo5+HV6GfRNFmTsisrN3oB7fDqX1dabXk1PyjNH/u0wuqNd1W1wirB1W97Pq2wOjd/1a2wcnD1D68JJ6r2JQdX//DqLHDh448/BgDccsstSEhI0D5uQqIQBVhSrwiCgHvvvRcAIOEwGAK77MghVu4+rEUJserWV3/qFlKDwMjJy/LoCbZLcbi6D1M3ZEJIfdHAwqv6sWicrMlycDWtG43LMMbMj1cULYxPlXRnGVZUDkfyaXX15xEDWl39ya2wRq2ucjdirVZX2f23tUFubi7S09Np6RxS71CAJfVO7969cf755wOcBI+wX7OMUOoCV1phvMh4hE3KFGmTRBFCSESop+E1rOHUfGfWykVSl+Fw7cvKa7dURrvV1YeFITec27zLsO2sC6l7y3XDK2NuzJ07FwBw5513wul0mu6XkGhCAZbUOxzH4b777gMASMIJSFxhYCGReddmY0w3xHJuj3b3YZ/tVHYfNqjUvcvimLR2Sjrrx/qUsdYtmLoPE0IajHocXsPGbExrNIZX9fAcs30Z1YnyazeqfyvLaK4F73c8XLnBqgaV++DP6k/mxLlFQGRwnirTLWM76wLnliAU6e/ruiFxKCoqQuvWrTFkyBD9YyIkSlGAJfVSly5dMGjQIACAh9+lP9MgoITYgCBr1H1Yi1E3pXBNdBRp3YdpAidCSF2IxGVywhBew97qahZcaym8Wp7Y0Cy8Wvi9W9qX/2vXCrmWyvgdj1ad6N9lWON6hHOLSngFAK4isIztrEsJr3ocp8tgO5OD7777DgAwbtw4WveV1EsUYEm9df/99yMhIQFMOAsJR71jX/VUVjBGXYotU1X01PpKCCFhFknBFYieVlf1/yNxvKv5hrR/rqpj9ZexU9WNeq+dmZfxaYXV2RfnUvXcsthlGCJTwqsWObiahVdUeNC+ZykYY7jiiivQs2dP0/0TEo0owJJ6q1GjRrj77rsBAO6YbMBTBr7CA6HEBa5cZ601uTXWavdhvS5F6kqfWl8JISQ8KLxa2Vhoj8sisctwqPsyeu1yyLVUxmhSKMl8oqaz5QGtrv7sBeWmra72ggo4TpfBcboMXIWIsS/1xo4dOxAXF4f7779f/xgJiXIUYEm9dt1116Fjx44A54Hbud9bUbg93vGvehgDRAutorUtXLNahm07EXYhSQghtYnCq/GuwhFerXQV5/nwTNbEc9YnazJipdXV5TZtdfWGXONWV6GgFFyFCK5CBOMq8O677wLwTtzUuHFj0+MgJFpRgCX1miAIGD9+PHieh+jIhWg/pQRU3bVZwy2cQc+kcrV8IUQhlhASbSLpfBNp4TVMY3AB1O36rsGq3IbpDWeeM+59pCyJZ3BzW2Y0mZOV8CoaX3twLrc34BoMP+JLysGXlCs34xkYel7F4+zZs+jYsSMtm0PqPQqwpN4755xzcPPNNwMAXLF7wLjKrsESq+rqo+ap7BosMf2xp6Lofa4RSTX+Ve8ucnXGv5pcqFCIJYTUO5F0nomk8Bru4Fob412B8HQbthqAjV5TNV6zZp3t12WYqwgcgsSJkk945Us11qmXg2vltQNfGjjcSQ6u6p5koj0Hf/zxB2w2G5566imauInUexRgSYNwxx13oE2bNgDvhithPxjUMwL6tcYyBqYOp3oh1mQsqWYlV0utsZZnsgzXxU+kzQhKCKk/IuncEkkzDYcruAK112UYCD28WpmtGDAPp+Fq/daq6/1aTzmtcbHqyaf0Wl1VMxb7t7oqu3efhTPjGABv1+G2bdtW84UQEj0owJIGweFw4KmnnoIgCBDj8iHG5fsW0GuNVT8erhl+wxn2qEsxIaQ+i5RzShiXyQmLCAqvQXUZDnXMq8HzfW4a6y5pJxk/HgyTiZqAwFZXzTJ+ra5atFpdAW/X4fOvtqO4uBidO3fGTTfdFNxrICRKUYAlDUanTp0wevRoAEBFo8OQbBozEYuS8ZqxUlUrbbQI6wQhhBBSWyIpvIZlM/UzvFrbT4R0GbbyuNk4WImBma1SAJ1WVzWPaDrWlatwa7a6ysZMvgDr1q1TbtJT12HSUFCAJQ3Kbbfdhq5duwK8iIrGB8CgU3EYdQ+20hKrHv9qIOJmOiaEEFIlksJrtI53DRcLdWrYugWbMboOEEXvl95yfYB3rg2TdeK5Cm+41Quvov0sZs6cCQAYO3YsWrdubeXICakXKMCSBsVms+HZZ59FUlISJGcpXClH9QszSTvIsspWWoMKzGowtdz1KgQsXF2fCSGkNtX1Db5IC6/hUltdhutCXdd36h5cWn+/HrEqvALgyl0BRbgKtxJe9TB3KZK7nYYoihgwYACuueaakA+dkGhCAZY0OBkZGXjqqacAAJ7kPHicp43v7PqHWKYaDxumsbHVvhgwmUiq1tX1BSchpH6pq3MKTdakqdp1lZXW0zCwdPPYaJhQdcmtrkbk4Ko+Rr/jVYKr3vtV4QKrqMAFt6YgJycHzZs3x2OPPRa5NxQIqSEUYEmDdMkllyiTHVSkH4YklJmH2FC7FZvQvKtd13eTCSGkoaHJmjTVeEiKpBugVtaDlVkJrqpWVy1WWl1R4QJEEbf+5yKsWrVK6VEWHx9v/VgJqSc4RoPwSAPl8Xjw0EMPYevWreBcTsQe6wB4OPPKyGyiJ57zLsNjdsfZYPyL8rE0C7AWWmAtdSEOV0sunU4IITWhtlqY6mN4rc0lcgyPIwwTOVnYDidY2I8gGD8uMcBkQiRL+7HZDOtF5nKDi3EaXy+Iovd4RRGeuCK4mh8CYwzjx4/HddddZ34MhNRD1AJLGiybzYbnn38e6enpYI4KVDQ5BCZJxsvpWGFlpmKzyRuoOxAhhETdGtMROVlTJLA6g3AksDRRowjm8eg+zETJeyPbJLyCGd/sZi63dz+iCMleDqF9LhhjGD58OIVX0qBF0RmFkPBr1KgRXnrpJTidTojxZ+FOP+l9wGxdWKsaWotklF1sEkIiWG2fS0IMjfVtvGvY1HZ4NQqgRvNWWJnTQhKruhfr1O/e4Ko/7Ii53FXhVYd/GcZ70OjSUpSWluL888/Hgw8+aHychNRzFGBJg9epUyc8+eSTAABP2ml4UgqqHgxHkLWw2HlNqbMZiCnEEkJCUZvnkDC0eEZUeA3DEjn+qj3arA5aXnWP1SzYGlEHV739Kq2uxsHUcriVwysYzvl7LI4ePYqMjAxMnjwZdrvd+HgJqecowBICYMCAARgzZgwAwNXsJMSEYt8CUhhCaB0G2TpBIZYQUh21HV5DenqEzTQcKa2uQOR0Gw5Hq6sBn+AaYqur/zYYGPo+mIVNmzYhNjYWL730ElJSUoyPl5AGgCZxIqSSJEl48cUXsXTpUkDi4cxuAaE8NrAgk0wrPMaY+WRQJpM8MWahYo20SZx0t0+nGUKIBVEWXuv6GHzUcHi1PDdDqMHVbD8Wtq9MsKRX//Gc+Xtv5f3kBeP6U95HNcu40nPgaXQagiBgypQpuOiii8yPiZAGIEJujxFS93iexxNPPIELL7wQ4CVUtDoKyRG4yDgkBsaYcZcqsxmIJcl8G4QQQmpGOINjJKgv4TVczFpWQ705LG/fqJxJq6x3RQP9Mu7UM/A0Og0AmDBhAoVXQlQi5ExDSGSw2+144YUX0LFjR8AmoqLVETBBY6bByoXGwxFAIyLE1reLOUJIdKqt82GIvU4irvW1hmiuT17XzG4Qh0IOk2bh12ow1WMSbj1x+fBk5gAA7rnnHlx11VVWXwEhDULknz0JqWVxcXGYMmUKmjZtCuZwo7z1YTBBpztwmFpSI6I1NgoupgghJBKEPEFeFJxvIy641jQ5uJqNlw1Xq6sOT2wBxDbe5XKuu+463HrrrUG8CEIahsg/gxJSBxo1aoTXXnsNjRo1AotxobzVYTDO7X2Q58CpF0FXtcZGfZAN5/qDhBBSHVHSClttUXCObVDh1azVVR1cqxtM9boLq68lPB6IMYVg7fMgiiKuuOIKjBs3rmH9LgixKPLPooTUkaysLEybNg2pqalgsRWoaH0UjGmMiZUF062Y5w0rJWqNJYSQyBZ0K2xN3iAM05JpEdlluKaog6tReNULroJgOo4VgPHjHAd4PN7wGlsC1jEPbrcb/fr1w1NPPQVBHXAJIQq6SiXEQOvWrfH6668jKSkJUlwFKtocB4NobQKnmhynUxvCebHVUC6ICCENRlDjYOmmoFdt1ItW92EQXJVVAIxa6U1aZZlJqywTJW94lRjEmFLw3c7A5XLhkksuwdNPPw2bzWbtdRDSANEZlRAT7dq1w2uvvYaEhARI8eWoaHMMDB7zbm48r7TK1phouSiq6xZlQkj0qK0bXiGcP8MyiVN9ZFTfhasuDGEFALNhOj6PGwRPZhJMmSh5W7KNwqvkbf0V40vBn3saZWVluPDCC/Hcc8/Bbrcbvg5CGrooufolpG516tQJr776alWI7XDcO7ETY9bCWU0HWUIIqQ9qI7yG2LuEwmuQwlX/GdW3JvtQgqlBObOhO0pwtfq4xt+JUqbyGMTEErBz8lBWVoZevXrhpZdegtPpNDwOQggFWEIs69KlC9544w0kJyeDxblQ0fEEmK1yiZ1ggiwhhJBAtRVeQ3o6hdeg1ESrq//fiYVWV7Pg6h9e1eOAzYKrXMbs8apW18rwmloKsUMuXC4XLr30UvznP/9BTEyM4XYIIV4UYAkJQseOHfHmm2+icePGYLFuVHQ8AcnhripgJcjKFZjJRE4AanxxekIIiQj1PbzW1YzHdaUmW1153tI+fFpdjR7XUvm71gumct1tuVXW71g9qWchtsuDx+PBgAEDMHnyZDgcDt3tEEJ8cazOpzslJPocP34cDz/8ME6cOAHOJcCxLxN8uV/lw3HeitfK3WEjRrNLWrwoCmnNwnBceNFphhCip76H1zAdg6kwHGOtzEDMm7wP8jHo1RumN35VAbe6xxAijuM0wzMDg6dJITzNzwAArrrqKkyYMIFmGyYkSBRgCammvLw8PPzwwzh8+DAg8nDsbwKhODawoMkdYkNmwTNaAixAIZYQoq+mg1NDCLBAyCHWbHm3sARcvfAo15VWA64WxrzL2+jVu3I9pBcYrRxDZQ8qXaKoeQwMDO7mpyE2KQIA3HjjjXjwwQfB13CYJqQ+ogBLSAiKiorw5JNPYuvWrYDEwX6oMWz5CVUFVOvCalX8ylT9RhcdYQixERFgAQqxhBBtER5gvZsI8RijNMCqLxNrLMCqw151AqzRGFmtx/WOgTH9x0Wx6nutACw/LkkBjzNOgrtVHsTUEgDAfffdh5tuuqnhrLlLSJjRbR9CQpCUlITXX38d/fr1A3gGd5s8uJsUgKGyslSNc9WdKILnjBdSr0+osiaE1IWGNgY1TMLexuEfDMMxVtbsGPXG0PofA2PGj8v86zFR9H6p5rfw2T3vQacxyRBTS2Cz2TBp0iTcfPPNFF4JCQG1wBISBpIk4e2338ZXX30FABByE2A/2hgcOJ9WWDV1sA0Ir+q76HXdAmtxH8Fvk049hBCVCG+FbUgtsHqXhiGHLnW40wquVrrTWh0jq/e43Doq79+/nNXH1S2uWo8zBsnpRpMrORw5cgTx8fF44YUXcMEFF2gfFyHEMgqwhITR/Pnz8fbbb4MxBr7ICUd2Bjg3Z+0utlbIlFtnzZgEzIgMsMq26RRECAEF2HAIQ4A1qq/CEmBDmVxJnhwxlMdlWuWsPC7/XO91CALAGMSEEjh6lqK4uBhNmjTBlClT0K5dO/1jI4RYRgGWkDBbvXo1Jk+ejLKyMnAVNjj2poMrs5s/sYbHqUbMOFjN7dNpiJAGr74H2DAcg6kaXnotlEmeLE0CFeoET2ZCDcDqY9HBeA5i40KIrQshSRK6du2KF198EWlpadU4YEKIFgqwhNSA7OxsPPnkkzh+/DggcrAfaAShIM74SVa7CmtdAFGAJYREu5oMsJEQXsNwHKb0jlM+/9fQLMVGkxVaeVwuw2lNjmRlgiezgBuux3Uol9I84G55BmJ6MQDgyiuvxKOPPkprvBISZhRgCakhhYWFeOaZZ7B582YAgO1YMoSjieB0K8gguwqrL4SidRyssm06DRHSoDWE8OrdWPi2pcX/WI3mV6gG/wBqNkOx1RmMldbZYMfImoXbYB432L5e67HPJbRDRLt/pGD79u3gOA733XcfRo0aRZM1EVIDKMASUoM8Hg/eeustfPPNNwAAvjAG9n1p4DyC9oVEdSZski+IqBWWEBKNIjS8hjW4Vm00/NtUM5oAsAbDa3Ue9y/D+U+e5C+YcBumx/UCuP9rk5LKEXtRBQoLC5GQkIBJkyahT58+2q+DEBIyCrCE1ILFixfjtddeQ0VFBVAhwLGvEfhip/fBYGYcBkIKkhRgCSERpabCayS1uvpuuGa2C1TVJXrn+VqaodjKDMaaM/MLgrUJnozCp1n4Ndu+RnAF9F8bA4PYtAhiiyIwxtDh/9u79+ioykP948+eySSZkEACRAj3W7gKglysIogoiChtBW1tbdFy/Fl7WvUsj2fpoV5rrT26bO3SU+tx1dKqqK03pFWoKKgoV0VAMZSLILeEkPttMpmZ/ftjMpPJZSYzk0lmJvl+1sqayX73fvc7r+MwT9693zc/Xw8++KAGDRoU/DwAOowAC3SRQ4cO6d5779WxY8ckU0o5mi1rUaZ3qR2p/S8fPh0MkgkbYvkoAnqWnhZevZV3Xt3tzVrfyRM8hdJueO3s2Y3DFKxtbW03rW41jCqRJ9shSbriiiv0H//xH0pLS+twOwCERoAFulBNTY0eeeQRbdy4UZJkKbXLdjhHhruNiSuCidcIbAfPHV79fBwBPUKCXjbsPTxx29YhoV6Xx+zUgNuR5XliMrtxCCG/BgfpF3eWQ9lzTBUXFys1NVW33367Fi9eHHUbAESGAAt0MdM09dprr+l///d/5XK5JKdVtkN9Za1MD9jJE/yLTncdgfWfg48koNvriQG2vc/0eMxQ3N7sxLGYvTiMcBzN7MXhTiDVXt1BtfHaTcOUa1CFPIOrZJqmhgwZogceeED5+fmh6wIQUwRYIE7279+vX/ziF/5Liq2nspRyvI8M04jZkjltfRFjFBZA3PWENV9bV9r892CzyrcU6g+a4Yp0duJwJ4AKJwCH0ZcdmSAqaHj1/Ttobd13geXtTqjYWO5Jc2nMtdnat2+fJO8lw7fccosyMtpZIg9AzBFggTiqq6vTE088ob///e+SJKPaJtvBfrI4WlxS3IElc1p+ESPAAkgIPWkUNtRneFeMzIY7O3Fb/z6EGfAiKg8Qyf2xYZcH/hsYEGDbKm/v9ZsWydOvVraz61RbW6vMzEzdcccdmj9/fvAXBaBTEWCBBLBp0yY9+uijqqqqktyGUr7uLWtRr6YJnqQOL5fj+0KW8AFWIsQCPUFPGoU1LME/O6MdmQ1XuLMThzN7cXsBN9wAHCBWsxs3G1UNLG8MsMHKQ71+M8WthlFl8uTUSZKmTJmiu+++WwMHDgzxigB0NgIskCBOnz6thx56SLt27ZIkWSpSlXI4R5b6lKadQn0JChAspBoWgwALIDF0doCVEivEtn2Cpueh1vnuLJHMXBxNeG25T2eKNqAH4e5bq4wZLlVUVMhqteqGG27Qddddp5SUlPYPBtCpCLBAAvF4PHr99df19NNPy+FweEdjj/aR9XRG89HYdnQ4pLZ/gs6tXyLEAj1BAl9G7K2iCwJsqM/Tzr43tj3hBNxol+5p7/7YcMo7qo0+NFPcahhRJk8/76jr6NGj9fOf/1xjxozp+PkAxAQBFkhAJ06c0MMPP6w9e/ZIkiwVabIdypbhDP8vv50aYgmwAGIhwQOst5r4rZ8aciK/eC7JE66OTP4UTnm02rhM25QpT06dMs/zqKysTFarVT/4wQ+0fPly2Wy2jp0PQEwRYIEE5fF49Nprr+npp59WfX29dzT2WJashZlhjcYmfYCVCLFAd9dZATbG4S4uITbUvbFtlbfcL1R5V4XfWM9+HO6/a+HO5O8Lr6ku76hrjkOSNGLECK1cuVLjx48P73wAuhQBFkhwx44d0yOPPKLdu3dLkowam2yHs2WpSQ15HJcRA0gKsQ6xnRDOujzARnNvbHuTP8Vj5DZWE0hFGlx92ulH0zDkHlAt24R61dXVKSUlRd///vf1wx/+UGlpaeGdE0CXI8ACScDj8eitt97SU0895Z2p2JSshb2Ucqy3DE/bX0a6RYCVCLFAdxfLANuJ4axLQ2y0sxa3tU+4I7ex1tH7Z8PdxydYPwTpR09GgxpGlcvMdEqSzj77bP3Xf/2XRo4cGd75AMQNARZIIqWlpXryySe1YcMG74Z6q2xH+shSlt7qsmICLICkEYsQ28nBLK73wgYKZ0m1SAJwsvJdCh3hv0Wm1SPXkEppiENut1u9evXSzTffrCVLlshi6SZ9A3RzBFggCW3fvl2/+c1vdPLkSUmSpTxNKUf7yFLnnWii08OrDyEWQEfFagQ2TgHW93mbMAG3PR2Z2Tic+2s7+xyB+0TAlClP/zplzTJUWloqSbrooot02223qX///hHXByB+CLBAknI4HHr++ef10ksvyel0Nl1WfLy3DLela0IsARZARyTB/a9NVQe/yqW98Gp6zMQJuB25fzZWdcTiHCG07G9PhlMNIytkZnkvFx46dKhuu+02zZo1K6z6ACQWAiyQ5E6ePKknn3xSmzdv9m5wWpRyrLcsRfaI1o6NSlcFWIkQC3Q3nTEDcScF2MAw1PKPg+2NzIbap8t19P7ZRKqjDS373ExxyzW0Sp6BtTJNU3a7Xddff72uueYalsYBkhgBFugmtm3bpieeeEJff/21JMmotinlSG9ZKjt5JkVGYQFEojPXfpU6ZQmdUFe0hBqZbas8rtq7ZzTc+2tD7dNVdQRo2eemYcozqEZpE92qqamRJF166aX6yU9+otzc3LDqBJC4CLBAN9LQ0KBXXnlFf/7zn1VbWytJspSmyXq0t//+2JhjFBZAuDo7vPrP03WT8fgCalshN6HCayxEMWlSp9QRILDfffe59p+brsLCQklSfn6+brnlFk2dOjVm5wQQXwRYoBsqLS3VqlWrtHbtWrndbsmULEUZSjmWJaPBGnmFoSbdIMACCFc3DLChhAqwCXVfbIIIp098+7T8g4Gnd71cwytlZjVIknJzc3XTTTdpwYIFzC4MdDMEWKAbO3r0qJ5++umm+2PdhqwnMmU92Svo+rFtCjX5RlcGWIkQCyS7HhRi2wpjXX1vbCyCciTBMtr6fcK5pziQJ6NB7mFV8vR1SJLsdrt+8IMf6JprrlF6enpU7QGQ2AiwQA/w2Wef6fe//70KCgq8Gxossh7PlLWolwxPGF842psdklFYAOHqIQE21MRPLctbam9pnnCW7gl3n3Dq6My2tHfPcLDgaqa75BpaJfMsh0zTlNVq1ZVXXqkf/ehH6tu3b9C2AEh+BFigh/B4PNq4caP++Mc/6vjx496N9RalHM+S5XSGDDPEl8oYTbQRM3xsAcmtm4fYUPfFBpYHCmfyp0j3iXYEuDPa0nKf9vomaHBNdcs1pErG4HrvLTKSLr74Yq1YsULDhw9v8xgA3QsBFuhhXC6X1q1bpz//+c8qKirybnRYlXIsS5biEEvvdHVIDYWPLSC5dVWAleI+EttSOCOMke4TTlCO9jyxPFdH1ic3bW65B1fLOqLBu/a5pG984xu68cYbNXbs2KjrBZB8CLBAD+V0OrV27Vo999xzKi0tlSQZdVZZj2fJcsbeekQ2kQKsRIgFklkPD7DtBbnuuk80zFS3XIOrlTK8Kbiec845uummmzR58uSYnw9A4iPAAj2cw+HQ66+/rtWrV6uioqJxo1UpJzKbX1qcaAE2EB9jQPLpwSEW7TPTXHINrpZliFMul0uSNGnSJP3oRz/SzJkzZXTl+wdAQiHAApAk1dbWas2aNXr55Zf9I7Kqt3hnLT7dONlTIodYiSALJJOuDiCE2KTgSXfJPaRKRp7Tf4/r1KlTdf311+vcc88luAIgwAJorr6+XmvXrtWLL76o4uJi70anRdZTvWQttMtwJcmXQD7agMRHiEUjT0aD3IOrpQH18ni8fyydOXOmli9frnPOOSfOrQOQSAiwANrkdDr19ttv64UXXlBhYaF3o9uQtcgu68kMGfUp8W1guPiIAxIXAbZHM2XKzK6Xa1C1zGynf/sFF1yg5cuXa+LEiXFsHYBERYAFEJLL5dJ7772nF198UYcOHfJuNCVLSbqsJ3rJUm2LbwPbw0cckNgS7V5Y00PQ7WSmYcrTv07uQdUye3nvb7Varbrooot03XXXKT8/P84tBJDICLAAwmKapnbu3KmXXnpJO3bs8G83KmzeIFuWFnwJnkTARx2QWOJxL2OwYBp4fz/hteOC9KeZ4pF7QI3ceTVSqncfu92uK6+8UldffbXy8vK6uqUAkhABFkDEDh48qJdfflkbNmzwT7Jh1FllOZUh62m7DHcCfgHkow5IHIkQXtualK698MrobFO/tdUPQfrUY2+Qe2CNUkd65HA4JEm5ublatmyZlixZoqysrE5sMIDuhgALIGqnT5/Wq6++qjfffFM1NTXejW5DltPpsp7KkKUuwS4v5uMOiL94htdQM6kzOhtay74L7Is2+tWUKU8/p9x5NTL7NN3fOmbMGH33u9/V/PnzZbMl2L8RAJICARZAh9XW1uqf//ynXnvtNR05csS/3ahI9QbZkgS6vJiPPCA+EnX5kwhGEnucYIHfsAQtM21uuQfUyT2wVkrz7mOxWDR79mwtXbqUpXAAdBgBFkDMmKapzz77TK+99po2b97sv7xY9RZZCzNkLbLLaLDGu5HxPT/QUyVqaOnI6GygcC4vjvUlyLE8Z+ClwRGu+W3KlJnVIHderSx5Lrlc3omZsrOztWTJEn3zm9/UgAEDIqoTAIIhwALoFEVFRXrzzTe1du1alZeXezeakqU0TZYie3wnfeJjD+h6iRpgw9GRy4tjfQlyuPVF2rZompLikfusOnkG1MnMcPm3T5o0SVdddZXmzZun1NTUDp0DAFoiwALoVE6nU5s2bdKaNWu0d+/egAKLd03Z03YZjjisKctHH9D1kjHERjP5U6hLb9vSXtgM95LmcM/bgeBqypQn2ynPgFpZBrr9o61paWm69NJLddVVV2ns2LFR1w8A7SHAAugyR48e1T/+8Q+tW7euaVRWklGeKutpuywl6TI8XfQFl48+oOslW4AN53LacC5BDtzPp72wGevzdnS0Nc3lvbf1rDr/va2SNH78eF1xxRW65JJLlJmZ2aFzAEA4CLAAulxDQ4M++ugj/eMf/9D27dvl/xhyGbKcSfeOylbZOv8SYz7+gK6XbCE2VqK4tzTeTItHnn71cp9VJzO7aSbh3r17a8GCBbryyis1evToOLYQQE9EgAUQV0VFRXr77bf11ltvqbCwsKnAYZW1OF2WYrssdZ14iTEfgUDX6qkBNkmYRuMlwrl18vStl6xNn5EzZszQFVdcoQsvvFBpaWlxbCWAnowACyAheDwe7dq1S++88442bdqk2tpaf5lRnSLLabusZ9I7ZxZjPgaBrkWITSimTJmZDXLnOuTJrZNsTZ+JQ4YM0YIFC7Ro0SLl5eXFsZUA4EWABZBwHA6HPvroI73zzjvatm1b03I8ZuP9smfSvffLumO5HAUfhUCXIcAmBI/dJU//OrlzHZLd7d+ek5Oj+fPna+HChRo/fjzrtgJIKARYAAmtvLxc7777rt555x3t27evqcAjWcrTZClJi12Y5eMQ6DqEorjwhlaHPP0cMns1LX2Tnp6uuXPnasGCBZo+fbpSUuIwOzwAhIEACyBpHDt2TBs2bNCmTZv01VdfNRV4JEt5qiwl6bKUpstwRRlm+TgEuhYhttOZMmVmuOTp55Cnv0NmRtNIa0pKiqZPn64FCxbowgsvVEZGRhxbCgDhIcACSEpHjhzRpk2btHHjxlZh1qhIlbUkXZbStMjvmeUjEeh8BNdOZcqU2asxtPZrHlptNptmzpypefPmafbs2crKyopjSwEgcgRYAEnv6NGj/jB7+PDhpgJTMqpsspSmeUdm66zhLc3DxyLQeQivncI0TJl9nHL3rZenr6PZWq2pqamaNWuW5s2bpwsuuID1WgEkNQIsgG7FF2Y3b96s/fv3Ny+ss8rqC7OV7awzy0cjEFsE15gzUzzy5HgDqyfH2WzJm7S0NM2aNUsXX3yxzj//fPXq1SuOLQWA2CHAAui2Tp8+rS1btmjz5s369NNP1dDQ0FTYYMhSlub9KU9rfd8sH41AbBBcY8aUKdPu9odWs3eDAv8O169fP11wwQWaPXu2pk+fzlqtALolAiyAHqG2tlbbt2/XRx99pC1btqiysrKp0JSMapssZaneMFvVODrLxyMQG4TYqJlWjzzZTnmy6+XJqW92abAkjRkzRrNnz9bs2bM1duxYWSwxXF4MABIQARZAj+NyufTFF1/oo48+0rZt25pPAiV5R2cr0ryBtixVhjPCiaAAtEaIDYspU2Zmgzw53tBqZjUfZU1NTdU555yj2bNn64ILLtDAgQPj11gAiAMCLIAe7/Tp09qxY4e2b9+uHTt2qLq6ulm5UZMiS3mqjIpUWSpssVlzFuiJCLGtmDKldLc8fZzen+x6ydb8q9mwYcM0a9YszZo1S1OnTlV6enqcWgsA8UeABYAALpdLX375pbZv367t27eroKBAzT4mTcmo9gZaS0WqjMpUGR6+lANhI8TKTPUF1np5+jil9OaXBffq1UvTp0/3h1ZGWQGgCQEWAEIoLy/XJ598ok8//VSffvqpTpw40XwHT+NSPRWNgbbKRqAFgumh4bUpsDrl6e2U7O5m5VarVRMnTtS0adM0a9YsTZw4USkpKXFqLQAkNgIsAESgqKhIu3bt0q5du/Tpp5+qqKio+Q6exgmhKm0yKm2yVKa2nuEY6GnCCa6BX0eSNeiapvce1gyPzN5OebKcMns3yGwjsI4bN07Tpk3TtGnTNHnyZNnt9jg1GgCSCwEWAKJkmqZOnTrlH53dtWuXSkpKWu1n1Fq9YbYqVUaFTYbDGnoNWqC7CBZEg331SLbgapoyLY2TLvVuaAytDa3uYbVYLMrPz/cH1ilTprAuKwBEiQALADHiC7R79+7Vnj179Pnnn7ee4ViSnIY3zFalyFJt8152zMRQ6G58YTSSrxmdFWBNM/K6fe0OeB3+CZcyXTKzGuTJapCZ2SC1+N83LS1NEydO1Nlnn63Jkydr0qRJysrK6vjrAAAQYAGgM1VWVuqLL77Qnj17tHfvXhUUFMjpdLbaz6izeoNslU2W6hQZ1TYZZpKNRgHRimSktr0g2vIYw2g/wAb5KmTa3PJkubwjrL6wamu9b79+/TR58mR/YM3Pz+ceVgDoJARYAOhCTqdT+/fv15dffqmCggJ9+eWXrSeGkrz30tZ4g6ylOkVGjU1GbQoTRKF7CQyV4X4difSYlsE1RFg1e7m8o6uNgVVpnlb72Ww2jR49WhMmTNDEiRM1efJk5eXlyUi2y58BIEkRYAEgzioqKlRQUOAPtPv27VN5eXnrHc3Gkdpqm3dt2saAyyRRQPhMmTLt3rBq9mrwBtZeLim1dVg1DEMjRozQ+PHjNWHCBI0fP16jRo1SampqHFoOAJAIsACQcEzTVFFRkX+U9uDBgzpw4EDboVaS6i3eMFuT4h2lrU2RUcdoLWDaPDIzXDIzXPJkeEdWzQyXZG29r2EYGjp0qMaMGaNx48ZpwoQJGjt2rDIyMrq+4QCAoAiwAJAETNNUSUmJDh486A+0Bw4c0IkTJ9Tmx7gpyWGVpTbFOwsywRbdlClTsnlkZribgmrjT1v3q0pSenq6Ro8erTFjxmjMmDHKz8/XyJEjWcoGAJIAARYAklhtba0OHTqkAwcO6MiRI/rqq6905MgRVVRUtH2AL9jWWb1hts7q/XGkSPUWlvdBwjItpsx0t0y7q/Gx8XmIoGoYhvLy8jR8+HB/YM3Pz9egQYNktbYxDAsASHgEWADoZkzTVFlZWbNA63usrKwMfqBb3jVq61KaHuusMhxWyUm4ReczjYCQanc3BdV0l3dCpSBvQcMwNGjQII0YMUIjR47UiBEjNHz4cA0bNoxRVQDoZgiwANBDBAbbY8eO6dixYzp+/LiOHz+ukydPyuVyBT/YI6neKqPeG2gNh6XpeT0BF+ExLabMNLeU1hhO/Y+exu2tJ1IKlJmZqSFDhvh/hg4dqpEjR2ro0KFKS0vrolcBAIgnAiwAQC6XS0VFRTp+/Lg/2B47dkwnTpxQUVGR3G536Ao88gbZeosMp1VG46OcjUHXaSHkdnOmxZSZ6g2hZqpbZqrHG1RTPd6fdHebM/22lJGRoSFDhmjw4MGtwmqfPn1YrgYAejgCLAAgJJfLpZKSEp06dUqFhYX+R9/z4uLi9gOu5L3/1mmR4QwItw3eH99z+X53GYTdBGAajRMk2Tz+R//zxmCqVO8IqlLC+zpht9uVl5engQMH+h8HDBjgf967d29CKgAgKAIsAKBDXC6XiouLVVhYqOLiYp05c0bFxcXNnpeWloYXcn08agqzDRYZLkNyWbxr3rqMoI9yE3zbYsqUUkyZKY1BM8UjM9ijzSOlNj6GGUp97Ha7+vfvr/79+ys3N1f9+vVTbm6ucnNz/YE1KyuLgAoAiBoBFgDQ6dxut8rKyvyB9syZMyorK1N5ebnKysqa/VRXV0d/Io8kd2OQdRuS2+J97jFabA94bhqSx/BeBu3x/a7GbYYMs+m5fP9impLU+HvjtvaCs6mAf24NNU1IZJiNv5uSxXspru+5Gp+b/ueNj1bTu5+18bnVlKyeINvNiINoIKvVqj59+ignJ0fZ2dnNHn1B1feYkZFBOAUAdCoCLAAgoTQ0NPiDbXl5uUpLS1VZWanq6mpVVVWpqqpKlZWV/ufV1dWqrKwMPQlVVzHVLNQ2hVQFnUG3K9ntdmVlZTX7yczM9D/v3bt3q6CalZUli8US76YDACCJAAsA6AZM05TD4VBVVZVqa2tVW1ururo6/2Pg88BtdXV1amhoUENDg5xOp5xOp/95y22dHZANw5DNZlNqaqpSU1Nls9n8P4G/p6amym63h/WTnp7uD6iZmZlKSUnp1NcAAEBnI8ACABAGj8cT0Y9hGDIMQxaLRYZhyGq1NvvdYrE0K/OVAwCA4AiwAAAAAICkwE0tAAAAAICkQIAFAAAAACQFAiwAAAAAICkQYAEAAAAASYEACwAAAABICgRYAAAAAEBSIMACAAAAAJICARYAAAAAkBQIsAAAAACApECABQAAAAAkBQIsAAAAACApEGABAAAAAEmBAAsAAAAASAoEWAAAAABAUiDAAgAAAACSAgEWAAAAAJAUCLAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAkgIBFgAAAACQFAiwAAAAAICkkBLvBgBAvJimKYfDEe9mAEBE0tPTZRhGvJsBAHFBgAXQYzkcDl122WXxbgYARGT9+vWy2+3xbgYAxAWXEAMAAAAAkgIjsAAgKXX7WZLbkGExJMPif5Sl8TI9w5BhsUhG43bD8JcZvv0Mo2m70XRcs20t6vTu11Ru+o6zBJQH2W4aRtPvkszGqmQYMi2SZHi3+c8l/zFm4+9NxxlNx1uayrzHNC8PrNP07WNR0Pr89Qa0semxZTtaljf9N2qrXJK/DcHO1Wx7kHY0f11N52yrrOkYs9n5Wp3HV66W5WazY3z7NrXL9JcZgfsb/lfbWGa2ePTVacowzGZvL1+d3v80TeWWxvqabWt83lQWsC3g0Vtf0++BP5K3bu/vaioLOJ/F8Pi3eff1SJKsRtPvgcf4fm8qN2WVp7HMlNXwBBznkTXgOGvjdqs8rY6zyHesR9ZmZd79rYYpQx5Zfe2Tx3+MVfIeJ1+Ztz+s8p3T9LfD+3vjo9T43GjsK8lqGLLIkFWNj4avzCJDhhqcVi37fwMFAD0dARYAJG949Xi/KMpoevQnDcOQIV9wbdzemE4MbyJUU9oJOK5VgrK0SErNUkbAcWqxLdh2BX8MCIf+5y0f/dUZAdUarZrYvLxlnWoM0sHqa90dreptsyzUcWF0VbT1NT4GC7edFmCN1gE2sKxlgG3abrZov9mqzPDV2VZ5m8eYbZyrxY/kD7Atf4KW+UNlQLANCLr+MjWVNwVRBQRYT/MAaPgCYOOjYcgqX33e595Ho9lx3rokqyH/Y9Nx3ueBZZIaQ6tvX18ADgyp3ja3F2CbnSvwPGp+Pot//4D/hgDQg3EJMQAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAkgIBFgAAAACQFAiwAAAAAICkwDqwACBJVlOmPN7FHw01f5S865Va1GIdVV9ZwO+G0bhOZsBx7ZUFLERqBlnctK3tTdu8j2ZAuSlJptFsm3cfQzLVrD4z8JjG41oLss0MKGq2tqkR2PwQ668a0a/1GqqsvfraK/M9hDyu5fqrQcpbtTHIOrBq/dxodZ7AMrPFo69O37qrgW+vIOvA+uuLbh1YU97nZosfX5nZuBauv6yxTo9hSoYn4DyNv6vx9ahluWQaHm/djfWYzcqab7cEnMv3vOWjtx3e/60DHz2N3WRpfO5pfIu2vQ6sIYuMpnVl5e1zq3xrzzat9Rr4u8X/3Hucf/3axrosMmQ1fGWGDBlqcLb1/yAA9DwEWACQ5Jx1Ot5N6Bxmi8cotMyngI8vQnra2zFh+RI+F6QBQLLgExsAAAAAkBQM0zQ78Hd5AEhepmnK4XDEuxlJw+Fw6Fvf+pYkac2aNUpPT49zixIb/RU5+iw86enpMgyuiQDQM3EJMYAeyzAM2e32eDcjKaWnp9N3EaC/IkefAQDawiXEAAAAAICkQIAFAAAAACQFAiwAAAAAICkQYAEAAAAASYFZiAEAAAAASYERWAAAAABAUiDAAgAAAACSAgEWAAAAAJAUCLAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKKfFuAAAgcrW1tXrppZf0/vvvq7CwUBaLRUOHDtX8+fO1bNky2Wy2qOsuLS3V6tWrtWXLFhUVFSktLU0jR47UokWLdMUVV8gwjJDHnzhxQqtXr9aOHTtUWloqu92usWPHasmSJZo3b17Q42699VZ99tlnIevOzc3Vq6++GvFrSsT+Kikp0e7du/Wvf/3L/1NZWSlJ+t3vfqdp06aFdf79+/frr3/9qz777DOVl5crKytLkyZN0tKlSzV9+vSoXlN37K/OfH8BALoOARYAkkxhYaFuvfVWFRYWSpLS09PV0NCggoICFRQU6J133tHjjz+urKysiOvev3+/7rjjDlVUVEiS7Ha7amtrtWfPHu3Zs0ebNm3Sww8/HDTAbNmyRffdd58cDockqVevXqqqqtKOHTu0Y8cOLV68WHfeeWfIEGy322W329ssy87Ojvg1JWp/rVmzRqtWrYr4nIH+/ve/67HHHpPb7ZYkZWZmqqysTB9++KE+/PBD3XDDDVqxYkVEdXbn/vKdM5bvLwBA1yLAAkAScblcuuuuu1RYWKh+/frp5z//uWbMmCGPx6ONGzfq0Ucf1YEDB/Tggw/qkUceiaju6upq3XnnnaqoqNCwYcN09913a/z48WpoaNDatWv15JNPavv27XriiSd0++23tzr+5MmTuv/+++VwODR58mTdddddGjp0qH80b9WqVXrrrbc0bNgwff/73w/aju9+97sRh65gErm/DMPQWWedpbFjx2rcuHHq169fRG34/PPP/eF1zpw5uu2223TWWWepoqJCzzzzjN58802tWrVKI0aM0Pz588Oqszv3l08s318AgK7HPbAAkETWrVunw4cPS5IefPBBzZgxQ5JksVh0ySWX6I477pAkbd26VZ988klEdb/00ksqLS1VWlqaHnnkEY0fP16SZLPZtHTpUv+X/rVr1+rYsWOtjn/22WdVV1envn376te//rWGDh0qScrIyNCKFSu0ZMkSSdJzzz2nqqqqKF595BK5v5YvX65XXnlFv/rVr3T99ddHfLnvH/7wB7ndbo0aNUoPPPCAzjrrLElSnz59dMcdd2jWrFnN9gtHd+4vAED3QIAFgCSybt06SdK0adN09tlntyq/5JJLlJeX12zfcK1fv95fx6BBg1qVL126VHa7XW63W++8806zsrq6Or3//vuSpG9/+9ttXl76gx/8QJJUU1OjDz/8MKK2RStR+0uSrFZrROcLdPLkSe3Zs0eSdO211yolpfUFVb7+Liws1O7du8Oqt7v2FwCg+yDAAkCScDgc+vzzzyVJ3/jGN9rcxzAMnXfeeZKkHTt2hF33119/raKiIknyH99SRkaGpkyZ0mbde/fuVX19fcjj8/LyNHz48IjbFq1E7q+OCqwv2PknT56sjIyMsM/fnfsLANB9cA8sACSJo0ePyuPxSJJGjhwZdD9fWWlpqSorK9W7d+926/ZdNtpe3aNGjdK2bdt05MiRoMePGjUq5PFHjx7VV199FXSfd955R+vWrVNJSYnS0tI0ePBgzZo1S1dddZX69+/f7mvxSeT+6ihf/+Xk5CgnJ6fNfaxWq4YNG6aCgoKQ/e3TnfsrUKzeXwCA+GAEFgCSxJkzZ/zPc3Nzg+4X+CU88JhQSkpKIqq7pqZGtbW1rc6TlZWltLS0do8PPF9LJ06c0JkzZ5Senq6amhrt379fzz33nH74wx/qgw8+COv1BLZJSrz+6ihfO9sLXL62hervlnUGHteWZOyvQLF6fwEA4oMRWABIEoFf6EOFxPT09DaP6Yy6fZeo1tXVtSoPdXxb7Zo6daouv/xyzZw5U/369ZNhGKqurtaHH36oP/zhDyorK9P999+vJ554QpMmTeq01xSOjvZXR/nO315/+9oWzuvqzv0lxf79BQCID0ZgAQAJYcWKFbr88svVv39//zqxmZmZuvzyy/X73/9emZmZcrlceuqpp+LcUiQj3l8A0D0QYAEgSQSORvkmTGqLw+Fo85jOrNtut7cqD3V8pCNrgwcP1lVXXSXJO2FURUVFu8ckcn91lK+u9vrb17Zwzt2d+6s90by/AADxQYAFgCQReO9hcXFx0P0C70sMd1Kafv36RVR3r169mgUM33mqqqpCBhTf8YHnC5dvWRfTNHXq1Kl290/k/uooXzvbuwfV17Zw+rs791c4In1/AQDigwALAEli+PDhsli8H9uhZpX1lfXt2zesGWKl5jMHh6rbN5vsiBEjgh4fOONssONDzUQbK4ncXx3l67+ysjKVl5e3uY/b7dbXX3/dbP9QunN/AQC6DwIsACSJ9PR0/yjRtm3b2tzHNE1t375dkjRz5syw6x46dKgGDBgQsu66ujrt2bOnzbonT57sn5zHd/6WCgsLdfTo0Yjb5vPFF19I8q5FOnDgwHb3T+T+6qjA+oKdf+/evf7Jk8I5f3fur3BE+v4CAMQHARYAksiiRYskSbt27dK+fftalW/cuFEnT55stm84DMPQZZddJkl677332ryE8vXXX1ddXZ2sVqsWLFjQrMxut+uiiy6SJL3xxhuqrq5udfzq1aslee9tnDNnTrMy0zRDtu/kyZN6/fXXJXkv9czOzg7rdSVqf3XUoEGDNGXKFEnSyy+/LJfL1WqfF154QZI0cOBAnXPOOWHV2137q7PeXwCArkeABYAksmjRIo0aNUqmaeqee+7RJ598IknyeDzauHGjHn30UUnSeeedp+nTpzc79tlnn9XcuXM1d+7cNgPEtddeq759+8rhcOjOO+/U/v37JUkNDQ1644039Mc//lGStGTJEg0dOrTV8StWrJDdbldJSYnuuusuHTt2TJJ3ZG3VqlVas2aNJGn58uXKyspqduwLL7yghx56SFu3blVVVZV/e01NjdatW6d///d/V1VVlVJSUnTzzTd3i/7yeDwqLy/3/wS+7urq6mZlTqez1fE//vGPZbVadfDgQd1///3+e0srKyv1m9/8xj/SefPNN8tqtfbo/uqs9xcAoOsZZnt/lgQAJJRTp07ptttuU2FhoSTvpZ8ej8f/pT0/P1+PP/54q5D47LPPatWqVZK8o3Z5eXmt6t6/f7/uuOMO/yysGRkZcjqd/hG+mTNn6uGHH1ZqamqbbduyZYvuu+8+/2yymZmZqqurk9vtliQtXrxYd955p38Zk7ba5jtvSkqKqqur5fF4/HXdeeed/pHecCVqf506dUrf/e53w3oN//3f/63LL7+81fa///3veuyxx/z9m5mZqZqaGv+I4w033KAVK1aEdY7AdnW3/urM9xcAoGulxLsBAIDI5OXladWqVXrppZf0/vvvq7CwUCkpKRo5cqQuueQSLVu2TDabLaq6x40bpz//+c9avXq1Pv74Y50+fVrp6ekaNWqUFi1apMWLF/sn+mnL+eefrz/96U9avXq1duzYodLSUmVmZio/P1/f/OY3NW/evDaPu/jiiyVJn3/+uU6cOKHKykrV1NQoKytLw4cP18yZM7VkyRL17ds34teUyP3VUVdeeaXy8/P18ssva/fu3SovL1dOTo4mTZqkpUuXtholDUd37K/OfH8BALoWI7AAAAAAgKTAPbAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAkgIBFgAAAACQFAiwAAAAAICkQIAFAAAAACQFAiwAAAAAICkQYAEAAAAASYEACwAAAABICgRYAEBS+N3vfqe5c+fqlltuiXdTEGfV1dW64oorNHfuXH3wwQfxbg4AoAulxLsBAIDOVVNTowMHDqigoED79+/X/v37deLECZmmKUl6+eWXlZeX1ynnNk1TV199tYqLi3Xdddfpxz/+cVT1HDhwQG+88YYk6aabbophC+Pr8OHD2r59u/bu3avDhw+rpKREbrdbWVlZGj16tM4//3wtWrRImZmZ8W5qQsnMzNS1116rZ555Rk888YTOO+88paWlxbtZAIAuQIAFgG7u1ltv1YEDB+Jy7oKCAhUXF0uS5syZE3U9Tz31lNxut8477zxNnjw5Vs2Lq1tvvVWfffZZm2WlpaUqLS3Vjh079Pzzz2vlypWaNWtW1zYwwV199dX629/+pqKiIr3yyiu67rrr4t0kAEAX4BJiAOjmfCOtknfkatq0aerbt2+XnPvDDz+UJOXm5mrChAlR1bFnzx7t3LlTkrpVSPEF+6ysLC1evFgrV67Uk08+qWeeeUa/+MUvdP7550vyhtmVK1dq9+7d8WxuwrHb7Vq2bJkkafXq1aqtrY1ziwAAXYERWADo5hYvXqzs7GyNGzdOQ4YMkWEYuvXWW1VaWtrp5/YF2NmzZ8swjKjqePHFFyVJeXl5Ouecc2LWtngbMmSIli9frksuuUSpqanNysaNG6d58+bphRde0NNPPy2n06nHHntMf/nLX+LU2sS0cOFCPfvss6qqqtI//vEPXXPNNfFuEgCgkzECCwDd3NVXX61LL71UQ4cOjTpERuPYsWM6evSopOgvHy4uLtaWLVskSZdddlmXtr+zPfroo7r88stbhddA1113nfLz8yVJR44c0aFDh7qqeUkhLy9PU6ZMkSS9+eabcW4NAKArMAILAOgUvtlhfZctR2PDhg3yeDySpPnz54d1jMvl0nvvvafNmzeroKBA5eXlcrvdys7O1qhRozRjxgxdeuml6tevX7Pj5s6dK0latGiRVq5cqa+//lqvvPKKduzYoTNnzqhXr14aO3asvv/972vq1Kn+4+rr6/X2229r/fr1On78uBwOhwYNGqQFCxbommuu6fDkQueee67/HuZjx45p9OjRUdd15MgRrVmzRrt379apU6fkcDiUmZmprKws5eXlafr06brwwgs1bNiwqOp3uVz65z//qY0bN+rw4cOqqKiQYRjq3bu3srOzNWHCBM2YMUOzZ8+WzWZrdmzL/j9y5Ihef/117dy5U2fOnFFdXZ0eeuihVn8MmT9/vnbv3q2jR4+qoKBA48ePj65zAABJgQALAOgUvsuHzz//fKWkRPfPzccffyzJe5/o8OHD293/4MGDuvfee3X8+PFWZcXFxSouLta2bdt06NAhrVy5Mmg9mzZt0q9+9Ss5HA7/tvr6em3dulXbtm3THXfcoSVLlujMmTNauXKlCgoKmh3/1Vdf6f/+7/+0detWPfbYYx0KsS6Xy//cYon+wqk1a9bo8ccfl9vtbra9oqJCFRUVOn78uHbs2KFDhw7pnnvuibj+8vJy/ed//mebE4b5+v7AgQN68803tXr1ag0ZMiRoXW+//bYee+wxOZ3Ods8bOKnXxx9/TIAFgG6OAAsAiLkzZ87oyy+/lBT95cNOp1NffPGFJGnChAntXj584MAB/exnP1NdXZ0kadq0aVq4cKGGDx8um82mkpIS7du3r911Qw8dOqT33ntPOTk5uummm/zn/uSTT/Tcc8/J4XDot7/9raZOnapf/vKXOnjwoL797W/rwgsvVHZ2tk6cOKG//OUvOnTokPbs2aPVq1frRz/6UVR9IEmffvqp//nIkSOjquPw4cP+8Nq7d28tWbJEU6dOVXZ2ttxut0pKSrR//35t3bo16su0H3/8cX94nT59uhYuXKi8vDz16tVLNTU1Onr0qHbv3u2/JDyY/fv3a8OGDerdu7euueYaTZ48WTabTUeOHNHAgQNb7T9y5EjZ7XbV1dXp008/1YoVK6JqPwAgORBgAQAxt3nzZpmmqdTUVJ133nlR1XHo0CH/6OO4ceNC7utyuXTvvff6w+ttt93mn6E20AUXXKAbb7xRRUVFQes6cOCA8vPz9fjjjysrK8u/feLEiRoyZIjuu+8+uVwu/exnP1NlZaUeffRRzZgxw7/f2LFjNXPmTC1fvlxnzpzRG2+8oeXLl8tqtUb0+iXvZdhfffWVJG+IHzp0aMR1SNLGjRv9I6+//e1v/ffVBpozZ45uvPFGVVRURFx/fX29/w8Dc+bM0S9/+ctWQXjq1Kn61re+pbq6upAjyV999ZWGDBmiJ598stls2cFmsbZarRo7dqx2796tf/3rX/J4PB0aqQYAJDY+4QEAMee7fHjGjBmy2+1R1RF4GXB7y/5s2LBBJ06ckOSddbmt8BpowIABIcvvuuuuZuHVZ968ecrNzZUklZWVaenSpc3Cq09mZqYuv/xy/35HjhwJeb62nDlzRr/5zW8kSYZh6Cc/+UnEdfj4ZpzOzMxsM7wG6tOnT8T1V1VV+f/YMHXq1JCjuHa7vd1Lqm+//faIlnry7etwOHTmzJmwjwMAJB8CLAAgpqqrq7Vr1y5J0V8+LEklJSX+57179w65ry8wS9L3vve9qM8peS9JDRbyDMNoVrZw4cKg9QTud/LkyYja4HA4tHLlSn/wbDlxVKR8obu6ulobN26Mup5g+vTp459N+d133+3Qmqy5ublt/lEglMD3R+D7BgDQ/RBgAQAxtWXLFrlcLlmtVs2ePTvqeurr6/3P2xoNDfSvf/1LknckLpzJnkJp7/jAtoSarTdwv0gCXUNDg+6++27/xFAXXnihbrzxxrCPb8vChQv9o5733XeffvrTn+qFF17Qnj17/Jddd4TNZtOiRYskSfv27dN3vvMdPfroo3r33XcjDu/RzLIcGGADJ94CAHQ/3AMLAIgp32jo2Wefrezs7KjrCbxntL3ZaMvLyyU1jTR2RHp6esjywMtjQ10eHXgfpm8poPa4XC7dc8892r59uyRp1qxZuv/++6O6fzbQoEGD9Otf/1q/+tWvVFxcrL1792rv3r2SvP08fvx4zZ07V1deeWW7fywI5pZbbpHT6dT69etVWVmptWvXau3atZK8f1iYNWuWFi9e3O5Icnuj7W0J/GNHtDNeAwCSAyOwAICYcTqd2rZtm6SOXT4see/X9KmsrOxQXcnA5XLpvvvu8y8dNGPGDD300EP+S3M7avr06XrxxRf1wAMPaPHixf5lbNxut7744gs99dRT+t73vucPz5FKS0vTypUr9fzzz+vf/u3fdO655/oDfmlpqdatW6dbb71Vd999d7PA2VI0EzAFTjwV+L4BAHQ//JkSABAzO3fu9F+S2tEAG7hkSnsBNjs7W0VFRUk7gY8vvPpGr88991w9/PDDHVo/ti2pqam6+OKLdfHFF0vyjlx/8sknWr9+vbZu3arKykrdc889Wr16tfr16xfVOYYOHarrr79e119/vdxutw4cOKCPP/5Ya9asUVlZmT744AM988wz+tnPfhaz11VVVeV/3t4EXQCA5MYILAAgZnwBLD8/X3l5eR2qK3DN06+//jrkvr5ldkpKStrdN9G0DK/Tpk3Tr3/965iH17ZkZ2frkksu0SOPPKJvf/vbkqS6ujpt3rw5JvX7Lk9esWKF/vCHP/gvz96wYUNM6vc5evSoJCkvL08ZGRkxrRsAkFgIsACAmPB4PProo48keSce6qgBAwaof//+kqQvv/wy5L5z5871P1+9enWHz91VXC6X7r//fn94nTp1qv7nf/6n3ftwO8OsWbP8z333FMdSXl6efx3baNaaDaa8vNy/hNKkSZNiVi8AIDERYAEAMbF3715/8AkMlB3hC1VHjx5VTU1N0P3mz5/vD0dvvfWWXn311ZD1FhUVxaR9HeFyufSLX/xCH3zwgaTODa/vv/9+u6HUd++yJA0ePDii+k+ePKmdO3eG3OfUqVP+kdJBgwZFVH8o+/bt8z//xje+EbN6AQCJiXtgAaCbO378uH/GWR/f+qKStGnTpmazBdvtds2bNy/i8/hGEQcNGhTVUihtufjii/XWW2/J4/Fo586duuiii9rcLyUlRQ888IB++tOfqq6uTr/73e/0wQcf6LLLLtPw4cNls9lUUlKigoICbdq0SePGjdPKlStj0sZoPfjgg9q0aZMkb2C8+eabderUqZDH5OTkKCcnJ+Jzvfrqq3rwwQc1ffp0TZ8+XSNGjFCfPn3U0NCgoqIibdiwwT96PnDgwIiXPyoqKtLtt9+uQYMGafbs2ZowYYIGDBigtLQ0VVRUaN++fXrjjTf8s0kvW7Ys4tcQzI4dOyR57+89//zzY1YvACAxEWABoJvbu3evHn744aDlTz31VLPfBw4c2KEAG4vLh31mzJih3NxcFRcXa/369UEDrCSNGTNGTzzxhO69916dPHlSu3bt0q5du9rc13fPbDxt3LjR//zEiRO6+eab2z3mhhtu0IoVK6I6n9Pp1JYtW7Rly5ag+wwePFgPP/xwyOWBQjl58qT+9re/BS23WCz63ve+p6uuuiqq+ltyuVx69913JXlH/aNdAggAkDwIsACADjt48KB/9LCjsw8HslqtWrp0qZ5++mlt3bpV5eXlIdeWHTt2rJ5//nmtX79eH374oQ4cOOC/3zInJ0ejR4/WzJkzdemll8asjcngvvvu0/bt27V7924dPnxYpaWl/kuK+/TpozFjxmjOnDlauHBhVMv2TJkyRU8++aR27typffv2qaioSGVlZaqpqVF6eroGDRqkKVOm6Morr4zZ6Lwk/3tCkq6++uqY1QsASFyGaZpmvBsBAEhuf/rTn/SnP/1JOTk5ev3116NayzOY6upqXXvttaqsrNSPf/xjXXfddTGrG8ntzjvv1JYtWzR9+nT99re/jXdzAABdgEmcAAAd5rt8+IILLohpeJWkzMxMf2h96aWXVFtbG9P6kZz27dunLVu2yDAM3XTTTfFuDgCgixBgAQAd0tDQoDlz5uiGG27Q0qVLO+Ucy5Yt05AhQ1RRUaG//vWvnXIOJJdnnnlGknTZZZdpwoQJcW4NAKCrcAkxACApfPnll9qyZYsyMzP1ne98J97NQRxVV1frb3/7m0zT1NKlS0PeFw0A6F4IsAAAAACApMAlxAAAAACApECABQAAAAAkBQIsAAAAACApEGABAAAAAEmBAAsAAAAASAoEWAAAAABAUiDAAgAAAACSAgEWAAAAAJAUCLAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAksL/ByKJ7lCTN8+DAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADi3ElEQVR4nOydd3gU1frHvzPb0kkIIdTQO4hSFBVBBRXl2vsVwXb9WdFruXbF3kWxXr0iTRGBC4qIXLABiiBFRUR6CS0hJKQnuztzfn9MZjK7O22zs5vd5P08Tx6WzLtnzm52z3u+533PezjGGANBEARBEARBEARBRAG+sTtAEARBEARBEARBNF1IdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRwxbRuWfPHnAcB47jcN1119nRZLPk9NNPV95HgiAIPa677jplrNizZ09jd0dh2rRpSr+mTZvW2N0hbEYURQwePBgcx+HOO+9s7O4QCYQ8Lpx++umN3RWCiIimPFd/5plnwHEcunbtipqaGtvbj1mkc9q0aZg0aRImTZoUq1s2OgsXLlRe87Fjxxq7O0Qdfr8fy5cvx4MPPogzzzwTbdu2hcfjQVpaGrp164arrroKCxcuhCAIYbX7xx9/4M4770Tv3r2RlpaGFi1aYMCAAXjwwQexd+/eKL0agiAIwOv1on///spkiOM4fP/997be4/3338eGDRuQlJSEhx56yNJzdu7ciUmTJuGkk05CmzZt4PF40LZtWwwaNAi33nor5s6dqzvW7tmzB7NmzcJdd92FESNGoEePHsjKyoLL5UJ2djZOPPFE3HPPPfj999/Deh179+7Fgw8+iAEDBqBFixZIS0tD7969ceedd2Lz5s1htWWFw4cP44knnsCwYcOQnZ0Nj8eDDh064JxzzsHUqVPh9/tN21Av6Fj5Mfrbh9OO+ieeFrjC5dVXX1Vex7XXXtugNnr06KG0sWbNmrCfX1VVhdWrV+PNN9/Eddddh/79+8PpdEb0ffX5fPjggw8watQoZS7ToUMHnH/++ZgzZw4YY5bbYoxhzpw5+Nvf/oYOHToo39VRo0bhP//5j6XPqZqvv/4aV155JTp16oSkpCS0bt0ap556KiZPnozKyspwX6opdr4X8cz69euVz0ynTp0a9LpuuukmpY0XX3xR+f3EiRORlZWF3bt34+WXX7az2xLMBnbv3s0AMABswoQJmjYjR45UbJoLEyZMUF7z7t27Te2b43sUa7799lvWsmVL5X02+hk6dCjbsWOHpXZffvll5nK5dNtKT09ns2fPjvKrI5oL4Y4tseKjjz5S+vXRRx81dneaFZMmTQoZd7777jvb2q+srGRt2rRhANjEiRNN7f1+P3v00UeZ2+02HWtLSko027jyyistjdUcx7Fbb72V+Xw+037NmjWLpaWl6bbldrvZa6+9Fu7bo8uMGTNYSkqKYf9POOEEtnPnTsN21N8tKz9Gf/tw2pF/0tLSWGVlZYPfB7mdkSNHNriNSDh8+DBzOp0MAEtJSWFlZWVhPX/FihXKa+jbt2+D+mA29wj3+7p79252wgknGLY5evRo3e+XmuLiYnbmmWcatjVo0CC2d+9e07ZqamrYVVddZdhWt27d2G+//RbW6zXCzvfCjHiYqw8YMEDpw/Lly8N6bmVlJUtPT2cAmMPhYAcPHgy4/tRTTynz1iNHjtjZbeaEDXTu3LnJrCA0JnavShOhHDhwAMXFxQCAli1bYvTo0Rg2bBjatm0Ln8+HtWvXYsaMGSgrK8Mvv/yCM844A2vXrkWbNm1023zvvfdw//33AwBcLheuvfZajBw5Ej6fD0uXLsW8efNQXl6Oa6+9FpmZmRgzZkxMXivRdJk2bRqlrxIKf/75J5577jkAQGpqalSiCO+88w4OHz4Mh8OBf/3rX4a2fr8f48aNw5w5cwAAOTk5uPTSSzFo0CBkZWWhoqIC27dvx/Lly/HLL78YtpWSkoIhQ4Zg8ODB6NGjB1q2bAmO43DgwAEsX74cS5YsAWMM7777LioqKjBjxgzdthYvXowJEyZAEARwHIfLLrsM55xzDlwuF3744QfMnDkTXq8X99xzD9LT03HTTTeF/0apmDlzJsaPH6/8/+yzz8aFF16InJwc5OfnY/bs2Vi3bh02btyIs88+G6tXr0ZOTo5pu3feeSfOPPNMQ5v+/fvrXluwYIGl/v/73//G119/DQC44oorkJKSYul58Uhubi7OO+88fPHFF6iqqsJnn32GG2+80fLz1ePt9ddf36A+BEf08/Ly4PV6cfjw4bDbOnbsGM4991z89ddfAIA+ffrghhtuQIcOHbBjxw68//77yM/Px/Lly3HJJZfgf//7H5xO7Sm/1+vFhRdeiJUrVwIAOnbsiJtvvhndu3fH/v37MXXqVGzZsgUbNmzAueeei9WrVyMjI0O3bxMmTFC++9nZ2bj55psxYMAAFBUVYdasWVi7di127tyJMWPGYM2aNejYsWPYrz9a70WicP311+Oee+4BIH02R40aZfm58+fPR3l5OQBgzJgxaNu2bcD1u+66Cy+++CLKy8vxyiuv4IUXXrCv47ZKWAPiYWUg1sRrNKI5M3PmTDZgwAD2ySefsJqaGk2b/fv3s379+il/u/Hjx+u2d/DgQWUV2+l0smXLloXYqFeoO3bsyKqrq217PQQRT1CkM/YIgsCGDRvGALDzzz8/wNfaFen0+XysY8eODAA7++yzTe0feeQRpQ/XX389Ky8v17U9ePCgboRy27ZtuuO0zDfffMM8Ho9yv59//lnTrrKykrVr106xmzZtWojN//73PyUalpaWxg4fPmx4byMKCwsDIqrvvvtuiI0oiuzuu+8OeK/0iPV3y+/3B7xfq1atiqg9uZ3GinQyxtiCBQuUfpx22mmWn6eODDmdzgZ/LsaPH8+effZZ9vXXXysRJPU8MZzvq/pzM2bMmJB5xdGjRwMif2+99ZZuW6+//npANLO4uDjgenV1NTvnnHMUm/vuu0+3rYULFyp2eXl5IZFRQRDY9ddfr9hcdtllll+zHna+F1aIBz1TWFioZNeFG7lXR7TnzZunafP3v/+dAWBZWVmsoqLCrm4zEp1RhERn/FFSUsJEUTS127Rpk/K3S05O1k0rUg92999/v257l19+uW0DHkHEKyQ6Y88bb7zBALDU1FS2d+/eqIhO9WR9xowZhrabNm1ShNtFF11ky/3NmDhxotK/xx57TNNGPbG+/PLLddu6//77LU2uzXjhhReUdi699FJdO0EQlFQ5nufZtm3bNO1i/d1avHixcr+ePXtG3F48iE6v18tycnIYIKVkm6U0y8yYMUPp//nnn29rnxoiOgsKCpS09dTUVFZQUKBpt2nTJsZxHAPA2rRpw/x+f4iNz+cLeE/++OMP3XumpqYyAMzj8bCioiJNu+OPP155PYsXL9a0qaqqYnl5eYrdpk2bLL1uvX7Z9V5YJV70zEUXXaT048MPP7T0nL179yrvQ3Z2NqutrdW0U3//P/jgA9v6HPXqtXKVpx9++EH5ndYGdb0CQ6Io4rPPPsOVV16JLl26ICUlBenp6ejduzduvfVWbNq0ybBvkyZNCtmk/c033+Dqq69Gly5dkJSUFLJB3u/3Y+nSpbj33nsxfPhwtG7dGm63G+np6ejZsyeuu+46rFixQveecmXJ6dOnK7/r0qVLyGvWe6+sVMRas2YNbr75ZvTq1Qvp6elITU1Ft27dMGHCBHz77bemzw+uJFdZWYlXXnkFQ4YMQVZWFlJTU9GvXz889NBDKCkpMW0vUcjMzLT0/vbv3x+9e/cGAFRXV2PHjh0hNowxzJ07FwBMqzlOnDhReSynncSK1atX49Zbb0Xfvn2RmZmJpKQk5OXl4corr8TixYsNn/v999+HfEf37duHe++9F71790ZqaioyMzNxyimn4J133rFcaKCiogKvv/46zjrrLLRr1w4ejwctW7bE0KFD8fjjj+PIkSOGzw/+rgiCgGnTpuGss85C+/bt4XQ60blz55DnFRQU4F//+hf69u2L1NRUtGzZEieeeCJeffVVVFVVAZC2C3AcF/L8r7/+Wrmn+u9pxMSJE5XnLFmyxNJzrGBWvTZaf7cvv/wS559/Ptq0aYOkpCR07twZ11xzDVavXh32a/B6vfjwww9xwQUXoGPHjkhKSkJmZiaOO+443HvvvbpFS7Zu3YrU1FRwHIcWLVpg9+7duvcoKSlBXl4eOI6Dw+EwHLcTkb179+KRRx4BADz99NPIy8uLyn1mzpwJAEhOTsbFF19saDt58mT4/X5wHIfJkydHpT/B9O3bV3msl6qoHnfvuusu3bbuvPNOZVz57LPPGtwntR82KlzD8zyuueYaANJ859NPP23wPe3ko48+Uh43NJ00XKqqqjB27Fhl7Lryyivh9XpD7DZv3ox77rkHxx9/PFq2bAmPx4P27dvjggsuwMcffwxRFDXbd7lcGDduHADJf1vdomBHaq2dLFy4UHlfrr76arRu3VrTrn///koa9uHDhwPm4TLffvut4m9HjRqFfv36abbVunVrXHXVVQCA2tpafP755yE227dvx6+//gpAKrp03nnnabaVnJyMf/zjH8r/I/me2fle2I1af/Tv3x8HDhwIsSkqKsKzzz6L0047DW3atIHb7UZOTg5OO+00vPTSS6ioqNBtX/1ZtPpZnj59urId8pprroHb7da0O/vss5VUf3n8twU7lKtRISH1ioDRzxNPPBHS7o4dOwJWTbR+eJ7XXdlkjLEnnnhCsf3222/Z7bffrtmOOhJ5+umnW+rzhAkTNFcJ1CtXZs/Xe6/08Pl87B//+Idp21dccQWrqqrSbUe2GzlyJNu5cyfr27evbludOnVqlpHaoUOHKu+BVsqWOhrav39/w7YEQWAZGRnKZzbcIgYNoaKiwlIhjrFjx+r257vvvgv4ji5ZsoRlZmbqtnXWWWeZpsN99dVXrHXr1oZ9Sk9PZ59//rluG+rvytGjR9nw4cM1P7dqvv32W5aVlaV7zwEDBrB9+/axTp06aT5fEATWpUsXBkgpJ2Zp0tXV1cr98vLymCAIhvbhYJZFYfffze/3G45rPM+zF1980XI05pdfflHeS70ft9vN3nvvPc3nv//++4rdySefrLtqfdlllyl2jzzyiOF7mojIKW+DBg1S3gO7I501NTXKFoIRI0YY2lZVVSm24aQvRoo6Oqk1HygtLVVW91u0aGH6XVRvr9i8eXOD+qT2qVu2bDG0/e9//6vYDhs2TNMmlpHOoqIiJXqkVWikIajnHFocPXpUSRMHwG6//faQv5PP52MTJ05kPM8bjh0nnXQSO3TokOZ9fv/9d8Wuc+fOpplP6shQq1atmNfrbdDr16Mhkc5LL71UeY5eeqTMyy+/rNhqZWPde++9yvVXXnnFsK25c+cqtlrZAm+++aZy/Y477jBs65dfflFshw4damhrhJ3vhVXM5uqCILBbbrlFsTnllFNCUpYZk77Tctq23k9ubi776aefNO/j8/lYbm4uA6xH7rt166a0vXHjRkPbiy++WPHvepHtcIn6TtpnnnkGRUVFePTRR5VS5Fqb2OWokszOnTsxbNgwFBUVAQCGDx+Ov/3tb+jUqRMEQcD69esxbdo0lJSU4OmnnwbP86bHsbz88stYsmQJ2rRpo5Sr9vv9WLt2LTwej2JXXV2NtLQ0jBo1CoMHD0bnzp2RlJSEQ4cOYfPmzfj4449RWVmJ6dOnIzMzE6+//nrAfSZOnIiLLroIU6ZMwXfffQdA2pAfvALTkFXpa6+9VlkJTUpKwoQJE3DKKafA4XBg3bp1+PDDD1FeXo7PPvsMpaWlWLJkiWFkr6ysDGPHjsXWrVtx4YUXYsyYMWjZsiV27dqFd999F/v27cPevXsxfvz4JhclMMLr9WL79u3K/zt16hRi88cffyiPBw8ebNgez/M44YQT8MMPP0AURWzZsgUnnniifR0Oora2FqNHj8bPP/8MAOjWrRuuvPJK9OnTBy6XCzt27MCMGTOwbds2LF68GBdddBGWLVsGntdPfvj111/x8ssvgzGG//u//8PJJ58Mj8eDdevW4b333kNlZSWWLVuGZ599Fk899ZRmG/Pnz8eVV14JQRDgcrlwwQUX4PTTT0dubi7Kysrw3Xff4bPPPkN5eTkuvvhiLFu2zLRgxrhx47Bq1SoMHDgQV199NTp37oyysrKAYxT+/PNP/O1vf1OimSeccALGjRuHDh06oKCgAHPmzMGPP/6IK6+8Ujfqx/M8/vGPf+Dhhx9GSUkJ5s+fr0QotJg3b56SJXDjjTcavrfRxI6/28SJE5XMDbfbjQkTJmD48OHgeR5r167Fhx9+iAceeAAXXXSRaX9Wr16N0aNHo6qqChzH4ZxzzsHZZ5+N9u3bo7q6GqtXr8bMmTNRVVWFW265BR6PJyQr5B//+AeWLl2K+fPnY/Xq1XjyySdD+v7hhx9i3rx5AIBhw4Y1ueO6Zs6ciaVLl8LhcOD999+Hw+GIyn1+/PFH5XtjNmatX78+xPbbb7/FO++8g9WrV6OoqAhZWVkYOHAgLr/8ckyYMAEulyui/q1btw7vvvsuACnjRCsS++effyqr+8cff7zpd3HIkCHKfOWPP/4IiKRaRb5fuGzevBmMMUO//c477+CFF15Afn4+AKlQ09ChQ3HRRRfhyiuvjLhIyscff6xEj7QKjdhNfn4+zjnnHGzZsgUA8MQTT4R8XxljuOKKK5T5Y9u2bXHVVVdh4MCBSElJwd69e/Hpp59i/fr1WLNmDUaNGoVffvklpPjRgAEDMHjwYKxfvx579uzB999/jzPOOEO3b+rI0Lhx4yL+vNpBOHOPIUOGaD6vsds6/vjj4XA4IAiC8v1syLmXdvbfDmpra3HNNddg/vz5AIDzzjsPc+fODfkcvvHGG7j77rsBSMXSLrvsMpxyyinIzs5GUVERvv76a3zxxRcoKCjA6NGj8csvv4SMQ06nE+PGjcOrr74KxhimT5+OJ598UrdvK1euxM6dOwFI7//xxx9v+FqGDRuGBQsWQBRFLF++HFdeeWWY74YGdihXu49MEQSBDRo0iAFS7vhnn32maXf48GElEsrzvGYuujrSCYANHz6clZaWGt5/+fLlhlHCoqIiJbLC8zzbtWuXpp3dR6Z8+umnAasfWiuwe/bsCYgg6O0fVL8nbrebLVq0SPN1qttas2aN6WvQo7Kyki1YsMCWn/Xr1ze4H1aZOXOm8roHDRqkafPkk08GRJPMGD9+vGI/c+ZMm3scSPBeU61CHV6vN6BPWoUu1BEzQIrYae05WrNmjbKPKysrSzNqtm/fPiXam5eXx37//XfNvq9Zs4a1aNGCAWAdOnTQXFkOzqC4++67DaMX6kjobbfdpmkbPFYERzoZk8YcefO+2d6kESNGKJGC/Px8Q9twCSfSGenfTX1UQGZmJlu3bl2IzV9//aUcpyH/aEVjysrKlII0mZmZ7Pvvv9d8fdu3b1f2/KSmpmqWbS8uLmYdOnRQ3uOVK1cq17Zu3arsP8rIyLC8d0uPLVu22DZ+2VGCvrCwkGVnZzMA7J///GfANbsjnc8995zS3ty5cw1tJ0+erNhOnjyZ3XHHHYar+P369dP1n8Fs3rxZeQ/nzp3L3nzzTXb55Zcrn18AbNKkSZrPnT59uukcRc3jjz+u2D/99NOW+hfMGWecobRhlLXBWOD+TwBs//79ITZWj0zp1atXxEdRqDPM5s+fH1FbMnJ7wePmn3/+qYwJPM+zd955R/P56j2548aN06yzIIoie/jhhxW7Bx54QLOtt956S7ExKhQoimJAZMjOIz5kwo10CoKgfOYdDofpMUG7du1S2u/WrVvIdfUcz2ye6vP5mMPhYIBUUCk4Sqz+zFt5Lep9nQ3xkXa/F1bRm6uXlpYGvAfXXnutZp9++eUXpd/HH3+87jE0ixYtUuYbJ510kqbNH3/8odzPLHKvLuD0xhtvmL7O77//XrEP9jMNJS5F5/z58xXbKVOmGNpu3bpV+RL84x//CLmunkimpqayAwcOWHpNZuzcudPUKdktOtXVt7766ivddtasWaOkg3Tq1Ekz9UztpJ566indtj744ANLdmaoPyOR/liZNERCcXExa9u2relE65///Kdi8+abb5q2G659Qzl48KCSGnXJJZcY2nq9Xta1a1cGgPXo0SPkerB4WbFihW5b11xzjaHdnXfeqTgHs7SODz/8UGnr448/Drmu/q4MHjzYUHCq03j69+9vWEBA3a6W6GQssCiUXtGPrVu3KjZjx441fK0NIVzRGcnf7cILL1Sua1X8lPnyyy8D7qklOl999VXl+hdffGH4Gr/55hvF9tlnn9W0+f7775VUu06dOrGSkhLm9XrZ4MGDlefascATvCARyY8dQlA+A69jx44hlWHtFp1yFUMAugtFMg888IBi27NnT+X7Pm7cODZ16lT2ySefsIceeoi1atUq4HumlXpm1Hbwz8CBA9mcOXN0nysXWwLA7r33XtN7hWuvxaOPPqq0YVShU11ISP7RWkD/6KOPmNPpZCNHjmSPPfYYmz59Ops7dy5755132Lhx41hSUpLy/PT09AYLpA0bNijt5OTk2JZOKrepFp2rV69Wzq50u926AYbq6mplS8bQoUNN06NPO+00BkgLTlrbIIqLi5WKx6mpqbrVlX/44Qel33qLz5ESrugsLS1V7LOzsyO2V285MaoybcVePUe1UhwoXPtg7H4vrKI1Vy8oKAh4Pffcc4+uADz//POV76nWApOaxx57TGnzxx9/1LRRbwX79ttvNW3UFZjdbreldNmCggKl3VGjRpnaW6Fx8r1MkDetZmRkBGw21qJnz55KGs///vc/Q9tLL70U7dq1s6WPXbt2Vc5uXLNmjS1tGrFnzx5s3LgRgJQecu655+rannjiiUpK4t69e7F+/XpdW4fDgTvuuEP3ujq18c8//wy32wmHIAi46qqrcOjQIQDA2LFjcdlll2naqjd4JyUlmbadnJysPJbPSIoGn332mZIadd999xnaulwuJWVi+/btusVbACkl9bTTTtO9bvRZYYzh448/BiAVKzBL61CniJl9r2+//XbDdDl1wYPbb7/dMA3RqMCIzC233KI8/s9//qNpo/79zTffbNpmNInk71ZbW6sUQMrNzVWKcGgxduxY9OnTx7Av8tjes2dPnH/++Ya2Z555pjJe630GRo4ciQcffBCANNbdcsstePTRR5Ux75prrjHscyLy5ZdfKlss3n77baSlpUX1fnv37lUet2zZ0tD22LFjyuNt27YhKSkJy5cvx8yZM3H99dfj6quvxnPPPYc///wTAwYMUNp/+OGHG9y/9PR0nH322Rg4cKCuTWOM1ddff70yhs2bN093rHjggQdCCiKWlZWF2A0fPhx79+7F999/j6eeegrjx4/HZZddhltvvRUzZ87Etm3bMHToUKXP8jaGcJk6daryOJrppF9//TVGjRqF4uJipKWlYfHixbj88ss1bZcuXYrCwkIAwD//+U/T9Gj5O19WVqZsMVGTlZWFCy+8EIBURFFOww8m3goIAfZ/lu1sL9bfs3iZg+3atQunnnqqMkd//vnn8eqrr2qmC5eUlCgFHK+++mq0b9/esG21/9Lzg+rPprqAqRr5vHgAOP/885GdnW14X0D6nsio/UAkxOXpqPIBtW3btlUOJjZCnkTu3bsX1dXVAR8sNUYTr2DKysrw8ccf46uvvsKmTZtQVFSke+D2/v37LbfbUNauXas8Pvvss03tzz77bHzzzTcAJFGstxenZ8+eAR+sYNRfiEiq2Hbu3LnBe1xiyV133aV8sfPy8ixXBIsn5O8PIH02Fy5caGiv/rtu2bJFs+orIOX3G2H0Wdm8eTOKi4sBSJNEsz4BQFpaGo4dO6bs89HD7Hu9bt065bHR3h0ASjVnI8444wz07NkT27Ztw/Tp0/HMM88ETMx8Pp8y8Ldr1w5jx441bTOaRPJ3++2335QFjJEjR5ruGxw1apTu36u0tFTZZ5ubm2v5MwDA8DPw5JNP4ptvvsGaNWsCKpR26dIF77zzjuk9rDBp0qS42BNaXl6OW2+9FYC0iGom3O1A/t4C5qIzuGroo48+qvmdysnJwccff4yBAweCMYaPPvoIL774ouGB8y+88IJySHltbS327duHpUuX4sUXX8TLL7+MKVOm4N///jcmTJgQxquLHl27dsUjjzyi7LH6xz/+gfnz5+OCCy5Aq1atcODAAcyePRtr165FTk4OampqlEmhlqjq3r274f06duyIJUuWoH///jh8+DD++usvzJs3L6x9WLW1tfjkk0+U/99www2WnxsOs2bNwg033ACfz4ecnBx89dVXAfvtglH7tJKSEtOxQ10ldMuWLZqfwRtuuEGpmjpt2rSQfeNVVVWKGPV4PPj73/9u8qqI5shvv/2GMWPG4PDhw8r+eqPvzY8//qiMkw6Hw/Sz7PP5lMd6fvDqq6/GPffcg5qaGsybNw9vvfVWyGJkQxZQXC4X0tPTUV5ebtspFnEnOisqKnD06FEAUml8s/LswZSUlOiKTrMVBZnvvvsOf//733VLrwejtSppN3LkDZCEohlqG/Vzg2nVqpVhO+oCSzU1Nab3TWQeeeQRvP322wCkSfGyZcsM3x/1l9rKe1NdXa08Tk9Pj6CnxqijlVdccUVYzzUaWCL5rKj7NH/+fGWTfaR9Asy/1wcPHlQed+3a1dA2KysLmZmZARGbYDiOw80334z77rsPBQUFWLRoES655BLl+hdffKGsyl9//fVRK/BilUj+bur3zmzSa2aTn5+vONuVK1cGTCTNMPoMOJ1OfPLJJzj++OOVSbv8OyMRk4g88MAD2L9/PzIyMjBlypSY3LO2thaANEHS860yweOaUabSgAEDMGzYMKxevRq1tbX48ccfDTN41Hg8HvTo0QM9evTANddcg5EjR2LTpk247rrrkJOTE3JUQ2ON1U888QS8Xi9eeOEFMMbw9ddfhyyk5+bm4vPPPw947UYLwUZkZ2fjrrvuwkMPPQQAWLx4cVii8/PPP1cWGYYOHYr+/fs3qB9GbNiwAePHjwdjDHl5eVi2bJnpnEbtP26//faw7qc3dpx11lno0KED9u/fjxUrVmD37t3o0qWLcl0dGbrwwgtDFlw2bNiAffv26d53+PDhpmNvQ7D7s5yWlqa8RzU1NaaZE0btxfp7Fg9zsJEjR6K0tBQejwdz5sxRIuh6qD/L7777rlIEzQp6n+XMzExcfPHFmD17thK5Vy+iyBkSgBTMGzNmjOV7ZmRkoLy8POC9i4S4S68tLS2N6PlaZzrJmDlMQEoxHDt2rCI4e/Xqhbvvvhtvv/02Zs+ejQULFig/8hk2DUlhCRd1KkBqaqqpvfrLaJRG0FgVNeONZ555Bs899xwAaZK+fPlyU0eYmZmpPJarLBshL6YEP9duIvkOGX1/IvmsRKtPgPn3Ws5QcDqdllLFrHy/rrvuOkWsffDBBwHX5P9zHIcbb7zRtK1oE8nfTZ2+FFx9Twuj9y6Sz4B6tVeLVq1aBUwKu3btalrJMNFYuXIl3nvvPQBS+pZdW0XMkD/ngiAolWn1UI9rHTt21D0zT0b9N5KrKoZLVlZWQERbq3pjY43VHMfhueeew8aNG/F///d/6NWrF1JTU5GSkoK+ffvi4Ycfxh9//IHBgwcri9ccxyE3N7fB91RH9f7666+wnqs+mzNaUU5BEJSsp5qaGktnBEfDf/A8j/HjxwOQtn/MmDEj4LpZZGjKlCm4+OKLdX+iVR01LS1NSds+duyY6ftn9lkO57vh9/uVz6nL5QoZ72P9PbP7vWgI8j39fr8l4RutuZBRiq26AvP48ePDWgiX+2tFP1kh7iKdarE0YsSImBzgqub5559XFP0jjzyCp59+WreMs9l+UztRr8ropfmqUU8WoxlVs0pVVZXp3jyr5OXlYdCgQba0BQAvvfQSHnvsMQDSBGbZsmWWVnjVotRoL6SMOifeSrS6ocjfIY7j4Pf742JhQf29fvzxxw3LetuN7Bj9fj98Pp+p8LTy/crOzsZll12Gjz/+GP/73/+wb98+5OXlYe/evVi2bBkAYPTo0QEr54mI+u9mJjgA4/dO3db48eN19540hNtuuy3g+7Vt2zY8+uijePHFF21p/6+//gp7Aq9HQyMgU6dOBWMMycnJKCoqwjPPPKNpp34fZs6ciVWrVgGQsh4aMu6oxXxxcbHh4kOvXr2Uxy1atDBtW20TyWTs1FNPVdLAfvnlF1RWVgZMiBt7rB44cKCyYKDF5s2blcXrHj16WHrv9FDv1TLK2AjmwIEDio9OTk7G1Vdf3eA+GDF06FD87W9/w/3334/CwkKcccYZ+O677wyPpVGPHbt27bJtXL3uuuuUxeYZM2bg8ccfB8dxylEqgJRJc9ZZZ9lyPzvgeR7dunXD1q1bIQgC9u/fr7slBjD/LPfs2RO7d+8GIH03jNrav3+/8jnt3r17yNy4Z8+eyjGBZt8zv9+vpEGnpqZazkRUY/d70RAWL16MsWPHorKyUjlCzSi7QP1Znjp1qm17hUeNGoWOHTsiPz8fP/zwg/K3ZHVHqcgEp5Eb4fP5FC1htrXCKnEnOlu0aIG0tDRUVFTEZK9kMMuXLwcAtG7dGk899ZSu4CwvLw/Y6xJt1Odkqc+P1ENtE6sVcSMKCwvDTpXWY8KECbbttZw8eTIeeOABANJnb+nSpaZFbmTUwtSoWBMg7XWSN5nzPG9acCUS2rdvj19//RWMMRw4cAAdO3aM2r3C6ZNMrL/X7dq1U/YS7tq1K2BiHExJSYnlidott9yCjz/+GKIoYurUqZg0aRKmTp2qpJA2dgEhO1CPHTt27DC1N7KJ1mfg448/VopUDR48GEVFRdi7dy9eeeUVnHPOOabnvFrh008/tW2h5LvvvrO0dzgYeaW6uroaTzzxhKXnqIvC9O/fv0ETrc6dO+PHH38EIInODh066Noed9xxymMrIlJtE4nQ4jgOqampKC8vB2MMZWVlAaKzb9++4Hkeoiji119/hSiKhotx6n3g0UgxDUa9uB5O7QktGhrNmT59ujJ2XXLJJRH9Pcy47777wHEc7rvvPkV4fvvtt+jXr5+mffDYYZfo7NGjB4YPH45Vq1Zh165dWLFiBUaOHGkpMjRt2rRGq/nQv39/bN26FYA09zASWmaf5f79+2Pp0qVKW0Zjk5W2ZNavX28ocH799VdFwPbt27dBZ3TK97TrvWgII0eOxFdffYXzzjtPEZ6MMVx11VWa9tHygzzPY8KECXjmmWcUofnEE09gxYoV2LVrFwDg5JNPRu/evS23qdY4WmfVN6iftrRi5UaqAd6soMyIESMASBNEKxMdOykoKAAgFaEwckrLly8PKZoQTDiv2Qx1ISA5kmKEOqpodqB3c+Xtt9/GPffcA0CKBi9ZskSp/meFfv36KROwzZs3Gw4gP/30k5KWIq/KR4uRI0cqj+2KLkfKCSecoOyv++abb0y/O3aiLlAhr8LqIa9uW2H48OHKJGnq1Knw+XzKJL9169amezsSgYEDB8LtdgOQJsZmWwnk4mVatGrVSolm/Pzzz7bshd+9ezduu+02ANJq+ezZszFr1iw4HA6Ioojx48cHTMKJ8FFPzuTJnR69e/dWBEF+fr6yt1kP9WJdJJGH0tJSHDlyBIAkQIMrM2ZkZCgFtUpLSzUrmsrk5+crVZzz8vIMI3B2oRYvkabkqwVsOO+pug/RSq1Vc++99+LVV18FIC1Kn3nmmdi8ebOmbTR9WnBaYnCqbTiRoVhxzjnnKI9lwaiHeg+x1l6+eG3LKo1xz2BGjBiBJUuWIC0tDYIgYNy4cUqFcS1bWWDb/VlWf1ZnzJgBxlhEFZjVhYvUC4oRYce5K1bO6ZTPpYGFs4DmzJmj2F599dUR9U19vpqVM5AyMzOV86n0ztjx+/1syJAhAeeMaSGfSwiLZxCZndM5aNAg5fr//vc/3XZ++eWXgLPrjM7pNDvgPlzbROH9999XzjJNTU0NOFg+HNRnb/7rX//StVOf7fjWW281tNuW2Ldvn3JOZ48ePVhFRUWD21Kf9/jEE09EZHvrrbcq1//97383uE+MhXfur93ndKqZMmWKYn/bbbcpj++///5wXk7YhHNOZ6R/t4suuki5PmPGDN12vvrqK8UO0D6n88UXX1SuP/TQQyav0hi/389OPvlkpb0PP/xQuaY+2+yiiy6K6D6Jht3ndH777bdKe1bOrHzooYcU+2eeeUbX7vfff1fG4LS0NFZZWdngPr722mvKPYcMGaJpoz5784orrtBt6/7771fs7rvvvgb3ySpTp05V7nfqqadG1NbRo0cDzpjWOuNYixUrVijP6dKli+EB8w1Fbx6h/tu1bt1a84zSiooK5WzXli1bsoMHD9rWr/LycpaamspQd26iehyL9O9hhXDP6WSMscLCQsXHp6WlsYKCAk27TZs2Kd+xNm3aaPo+n8/HcnJyGADGcZzm+8+YdGaj/D4lJSXpnvNo5Tz56upqlpeXF9b8WA873wur6M0/VqxYwdLS0hggnU/8ySefaD7/3HPPVZ6/dOnSBvdDixEjRgS8/3J/kpOTWWlpaVhtvfDCC0pbRucgh0PMROfEiRMVmx9++MGwPUEQAg47veuuu1htba2ufVVVFfvoo4/Y7NmzQ66FKzrPOussxf61114Lue71etn1118fMLnSm5yqB9Pp06eb3ttsIq0W423btmVbtmwJsdm7dy/r1q2bqcBpzqJz+vTpyuCTkpIS0cTswIEDLCUlhQFgTqeTLV++PMTmo48+Ut7Djh07ah5WbTf33nuvcs8zzjiDHTp0SNdWEAS2bNky9vTTT4dcs1O85OfnK4s6Ho/H9DtRUFDAnnrqKc1DzsMRnYwxNnz48ABxqHW4uHqssCo6jx07pvz91T/btm2z1K+GEkvRuXLlSuV6VlYW27hxY4jNtm3bAia7eqKzoqKCderUSZngvPTSS4YHvR87doy98cYbbNmyZSHX1MLysssuC7jm8/kCBGmkixyJhN2is6amRplsnnbaaab2RUVFyvc8KSlJsw+FhYVswIABSj+1Fux+/PFH9v7775uOlx9//DHzeDyGnzvGpMPR27Vrp9hNmzYtxGbZsmXM6XQqE9jDhw9rtqWe8xiNQZs3b2aFhYW612fNmqVMmJOSkthff/2laffTTz+xDz74gNXU1Oi2lZ+fz0488USlTz169GA+n0/XXs11112nPO/JJ5+09JxwMZpHTJ48Wbmek5OjKXzefPNNxea4444zHWN//vlny4t/6vFUPY795z//sfT8SGiI6GSMsbvvvlt53rnnnhvyPSkuLg4QgEaL3a+//rpiN2jQIFZcXBxwvbq6mo0ZM0axMVqMWbhwYYAP3bt3b8B1QRDYDTfcoDt2q1H7ZD1tYfd7YQWj+cfKlStNhef69euZy+VSfOqSJUsM77dnzx5277336gpqNer5pvqzPG7cOOsvsI6LL76YAWA8z7OjR4+G/XwtYiY6P//8c8Wme/fu7O2332ZffvklW7JkCVuyZAnbvn17gP2+fftY+/btA968iRMnsg8//JDNmzePTZs2jT311FPsggsuUByi1qQ5XNH5xRdfBDiTCy64gL399tvs008/ZU8//TTr0aOHMpHv0KGD4eT0t99+U9rJzc1lr7zyClu0aJHymn///fcAeysT6auuukqxSU5OZrfeeiubMWMG+/jjj9k///lPlpGRoVw/++yzdVcsm6vo/Oqrr5jD4VBe0x133MEWLFhg+hM8cKp59913lfZcLhe78cYb2YwZM9jUqVPZ5Zdfrghcp9NpOrioP3taYsIqXq+XjRo1KuCzMm7cOPb222+zzz77jM2aNYu98sor7Nprr2Vt2rRhANioUaNC2rFTvDDG2Ndff61MsgCwgQMHsscee4zNmDGDzZ07l/3nP/9h//rXv9iIESOUv5NWFDpc0bl58+YAcXjCCSewV199lc2ZM4dNmTKFnXrqqQwAO/nkk5Vxp0uXLpbaDl6EOv300y09LxJiKToZYwFRXI/Hw26++WY2Y8YMNmvWLDZx4kRlDFZHRfUm/xs3bgwYp7p168b+9a9/sWnTprF58+axqVOnskcffZSdffbZymdl5syZAW2sXLlS+Xx06NAhZJLEGGO7du1S7pOSkqI7oW9q2C06GWPs0ksvVcYRs0wlxhibPXu2Mu45HA527bXXKgvDDz/8sBJZkceAqqqqkDYWLFjAACn6dOmll7Jnn32WTZ8+XfH/Dz/8MBs4cGDAd++yyy4zjNJ9+eWXyueG4zh2+eWXs6lTp7IZM2awG2+8UZkIAmAffPCBbjtWRefLL7/M3G43O++889hzzz3HPvnkE/bJJ5+w5557LkAgut1utmDBAt125PciIyODXX755eyFF15gM2fOZHPnzmXvvfceu/baa1lycrLSXnp6OtuwYYNue2rUkT6e5w19XSSYzSPUwicnJ0cz+jV+/HjFxul0sksuuYS9/vrrbM6cOeyTTz5hb7zxBrvppptYly5dlLHFCt9//33A31MeM8rKyiJ5ySF888037JFHHgn4Oe644wKEQfD1kpISzbZKSkpY7969lef26dOHvfrqq+zTTz9lzzzzDOvYsWOAT/J6vbr9qq2tZaeddppi37FjR/bMM8+wTz/9lL3yyiusT58+yrW+ffuyY8eOGb7OK6+8UrHPzs5mDz/8MJs9ezZ76623Aj73bdu2Zfv27dNtx6rotPO9sILZ/GPVqlWmwvM///mPMkYCUlT9mWeeYR9//DH77LPP2HvvvcfuvvvugKzK/Px8075VVFQo91b/fPPNN2G9RnUE3M45TcxEp9/vD4g2BP9oTXYOHjwYMHE2+nE4HJpOIlzRyVhgepDWz6mnnsoKCwuVFXujiMjVV1+t207we2VlIu3z+dhNN91k+n5cdtllmo5cxswBNNQ23gmOZln90ZtAy7z88ssBE5bgn/T0dM1IfDDq50QiOhmTHMkdd9wRILKNfsaPHx/Sht3ihTHGVq9ezbp27WqpT2lpaSGLM4yFLzoZk9IE5QiM1k///v0DFruOO+44S+2uWbMmoB2rKW2REGvR6ff72bXXXqv73vE8z1566aWAVVaj78xff/0VsPJs9OPxeAIWa0pKSpSxl+d5w3F91qxZSjsnnHCCYcZMUyEaolMdvTBKsVbz0UcfKWJG72fkyJHsyJEjms+XhZaVH7fbzR555BFLkb1Zs2ZpTsrUbWllOakJR3Sa9b1r166mE8Jw3ov+/ftrZofo8eGHHyrPPeussyw/L1zUf3M91CnQWsJTFEX29NNPB0S2zT5fVhBFMcQnafnDSGnI/MNoHrB7927TcXT06NG6wlVNcXExO/PMMw3bGjRokKVFiZqamoAAidZPt27dTD+nVkWn3e+FGVbmH6tWrWLp6ekMkPSJ1rzgiy++YLm5uZY+B9nZ2bpjZTDBC+GdO3cOO2VenWZuZ8Q/ZqKTMSlE/8ILL7CTTz6ZZWVlBUyGjSZG33//Pfu///s/1q9fP5aZmckcDgfLyMhgffv2ZVdeeSV79913dXP8GyI6GWNsyZIlbOzYsaxVq1bM5XKxtm3bsjPPPJN98MEHimOzIjr9fj9799132emnn85atWqlpO5ovVfhTKRXr17NbrzxRta9e3eWmprKkpOTWZcuXdi4ceMsrWiEMyiHO4DHM9ESnYxJewZuv/121rNnT5aamsrS09NZ//792QMPPMD27Nlj+vzKysqAiY9d6Qzbt29nDz74IDvppJNYTk4OczqdLCUlhXXp0kVZgdcSdoxFR3QyJi2ezJo1i11xxRWsS5cuLC0tjTmdTtayZUs2ZMgQ9o9//IPNmTNHdz9qQ0QnY4wdPnyY3XfffaxXr14sOTmZZWZmsiFDhrBXXnmFVVZWMlEUlYiB1dU9URRZixYtGCDtNzJKgbOLWItOmUWLFrGxY8eynJwc5vF4WF5eHrv66qvZTz/9xBhjlkUnY9L79vnnn7MJEyawnj17soyMDOZwOFhmZiYbOHAgGz9+PJs2bVpIFFO9iv7ggw8a3oMxxq655hrF3sqexEQnGqLT7/cre7DCESZ79uxhDz30EDvuuONYZmYmc7vdrH379uySSy5h//3vfw0nQn6/n61atYo9+eSTbOzYsax79+4sLS2N8TzP0tLSWKdOndjYsWPZyy+/zA4cOBDW69mzZw/717/+xfr168fS09NZamoq69mzJ7v99tt197SpsSo68/Pz2euvv84uvPBC1rNnT9aiRQuWlJTE8vLy2NixY9mHH35oabtFeXk5+/zzz9mDDz7IzjzzTNazZ0/WsmVL5nQ6WWZmJuvTpw+bMGEC++KLLwzT1bVQBwOsLIw2FKvzCPU+eb2I58GDB9lTTz3FRo4cydq0acPcbjdLSkpiHTp0YKNHj2aPPfYYW716dVj9e+qppwL+pnZ9d9TYLToZk7Ka3n//fXbmmWey3Nxc5na7Wbt27djYsWPZp59+GpbYEEWRffrpp2zs2LGsXbt2zO12s9zcXHbmmWey999/33K6tsySJUvY5Zdfzjp27Mg8Hg9r1aoVO/nkk9lrr71mqdZEOKKTMXvfCyOszj9+/PFHU+FZVVXF3nvvPXbBBRewjh07suTkZOZ2u1lOTg47+eST2Z133skWLVoU1oKpeo+2Fb+uxd///ncGSOm/kdQFCYZjLMKyqgRB2MLSpUuVimoTJ07EG2+80cg9an5s2rRJqdJm9W+wfPly5Ry3u+66C6+//no0u0gQjcLkyZNxzz33wOFwYM+ePYZHpxAEQRCJSVlZGdq1a4fKyko88MADeOGFF2xru/FPjScIAkD9GbHp6el49NFHG7k3zZO33npLeXzGGWdYes67776rPG4KZ3MShBa33HIL2rRpA0EQ8NJLLzV2dwiCIIgoMGXKFFRWViI9PR333XefrW2T6CSIOEEWnffccw9ycnIauTdNj5UrVxqeD/r222/j/fffByAd4Py3v/3NtM1ff/0VCxcuBACMHj06Jmf6EURjkJycjEmTJgEA3n//fRw8eLBxO0QQBEHYSllZGSZPngwAuP/++9GqVStb26f0WoKIA4qKitC6dWu0atUKO3fuRHp6emN3qcnRvXt31NTU4Nxzz8UJJ5yAnJwc+Hw+7Ny5EwsWLMDGjRsV20WLFumKzq+//hqiKGLbtm146aWXcOjQIQDAqlWrcOqpp8bktRBEYyCKIoYOHYoNGzbgjjvuwJtvvtnYXSIIgiBs4plnnsFjjz2GLl264M8//0RSUpKt7ZPoJAiiWdC9e3fs3LnT0CY5ORkffPABrrnmGl0bjuNCfmd1/+f//vc/VFVVmXdWg1atWmH48OENei5BEARBEERjQqKTIIhmwc8//4z58+fj559/xoEDB3D06FFUVVUhKysLPXv2xOjRo3HrrbciNzfXsB1ZdKalpaFnz5649dZbccMNN4DnzXcrdO7cGXv37m1Q/0eOHInvv/++Qc8lCIIgCIJoTJyN3QGCIIhYMGzYMAwbNizidmidjiAIgiAIIjwo0kkQBEEQBEEQBEFEDapeSxAEQRAEQRAEQUQNEp0EQRAEQRAEQRBE1CDRSRAEQRAEQRAEQUQNKiREEARBJAx+vx9VVVWGP7W1tfB6vfB6vQGPtX7n9/vh9/shiiIEQQj5V/1YLoHAcZxSrVj9mOd5pboxz/NwOp1wOp1wuVwBP/LvnE4n3G638m9ycjKSkpKQlJSk+Tg5OVn5SUtLQ3JysqWqyQRBEATR2JDoJAiCIGKK3+9HWVkZysrKUF5ebvhY/reyshLV1dXwer2N3f24ged5pKamIi0tLeAnPT094P8tWrRAZmYmMjMzlcdut7uxu08QBEE0I6h6LUEQBBExfr8fxcXFKCkpCfk3+HFpaWnER8/IkcGUlBSkpKQgNTVV+X9SUhKWTv0enMgBIgCRU3449f9Z3f8ZACZFKJXHrO4xpMec8n/lVwCn6pDymNU/5gDw0v8ZX9eI/DseAMek2/JM+nEwMJ7hnBtPR01NDaqrq1FTU4OamhpUVVUFPPb7/RG9fykpKYoQVQvS7OxstGrVCq1atVIeezyeiO5FEARBECQ6CYIgCEO8Xi+Kiopw5MgR5aewsBCFhYXK/4uLi8MSkhzHIS0tDRkZGUhPT0dGRgYyMjLw7Ywfwfl5wM9J//p4cH4OEDhwAg8IdY8ZZ36TJgpDnWh1iGBOBjhFSbDWPWZOBjhEjL19NMrLy3Hs2DEcO3YMpaWlKC0thSAIYd0vLS0tRIi2atUKOTk5yM3NRZs2bZCRkaGkFhMEQRBEMCQ6CYIgmjlerxcFBQU4dOgQDh06hIMHD+Lw4cM4dOgQCgoKUFJSYqkdh8OBzMxMtGzZEllZWVi36Hdwvjrh6OWlx14enM8B+DhwIJESaxjqIqouEXCJqn8Z4BIx8tphKCoqwtGjR1FUVITa2lpL7SYnJyM3N1cRocH/Zmdn0/5TgiCIZgyJToIgiGZAeXk58vPzsX//fuzfv18RmIcOHUJRUZFplNLtdiMnJwetW7dGTk4OvvlwFTivA6jlwdU6wHnrxCUJySaDIlDdIuAWwNwimFvERfedg6KiIhQWFqKgoADFxcWmbbndbrRr1w7t27dHhw4d0KFDB7Rv3x7t27dH69at4XA4YvCKCIIgiMaCRCdBEEQTwev14uDBg8jPz0d+fj727duH/fv3Iz8/3zRamZycjDZt2qBt27ZYM28jUOMAV+OQBGWtQ0p3JUFJaMB4BuYWgCQBzCOAeUSM/sdwHD58GAUFBThy5IhhSq/T6US7du0UIZqXl4dOnTqhc+fOyMzMjN0LIQiCIKIGiU6CIIgEo7a2Fvv27cPu3buVnz179uDw4cMQRVH3ea1atULHjh3Rvn17LHnre0lU1glLSnclogUDAzwCWLIAliTgkofPxf79+3HgwAEcPHgQPp9P97ktWrRAp06dFBEq/5uTk0N7SAmCIBIIEp0EQRBxit/vR35+foC43L17Nw4cOKArLlNSUpCXl4cOHTrguw9Xg6t2gquuE5cC7akj4gtJkIpgSX6wZAGXPnIe9u7di7179+Lw4cO6ad8pKSno1KkTunbtiu7du6Nbt27o1q0b0tPTY/wKCIIgCCuQ6CQIgogDqqqqsHPnTmzbtg3bt2/H9u3bsXv3bt2jMTIyMtClSxdsWrINfJVTEpdVDtpXSTQZGM/Akv1gKZIgPXXcYOzduxf79+/XTdfNzc1Ft27d0L17d0WMtm/fnooYEQRBNDIkOgmCIGLMsWPHAsTl9u3bsX//fs2oTnJyMrp27Yot3+wCV+UAX+kEV+UkcUk0WxjHwJIESYym+nHSVQOxa9cuHD58WNM+KSkJ3bp1Q+/evdGrVy/07t0bHTt2pOJFBEEQMYREJ0EQRBSprq7G1q1bsWXLFmzZsgV//vknCgsLNW1btWqFHj16YO2c38FVOsFXuKTqsCQuCcIU5hDBUiUhes7EEdi5cyd27doFr9cbYpucnIyePXuid+/eihht37497RMlCIKIEiQ6CYIgbEIQBOzduxd//vmnIjJ3796tmQrYoUMH9OjRAys++gV8hRNcpUs6x5IgCNtgYFIBozQfLn70HGzduhXbtm1DTU1NiG1aWhp69+6Nfv36oX///ujbty/tESUIgrAJEp0EQRANpKqqCn/88Qd+//13bNq0CX/99Reqq6tD7Fq1aoU+ffrgpxkbwVe4wFU4qagPQTQSDAwsRRKif/vXmdi6dSt27NihWUW3S5cu6N+/v/LToUMHioYSBEE0ABKdBEEQFjl69Cg2bdqE33//Hb///jt27NgRUkU2OTkZvXr1wqYvt4Erd4Evd4Hz0t4xgohnGMekPaLpPoy6/RT88ccfOHDgQIhdixYtlEjowIED0bt3b7hcrkboMUEQRGJBopMgCEKHgwcPYuPGjdi0aRN+++03zUlomzZtcNxxx+Hbd1aDK3OBq3LSHkyCaAIwlwgx3YvLnz4Pmzdvxl9//RWyP9Tj8WDAgAE4/vjjccIJJ5AIJQiC0IFEJ0EQRB1Hjx7Fhg0bsGHDBqxfvz6kGibHcejatSt2rzwIvswNvoyimATRXGAcA0v1Q8zwYvj1g/Hrr7+itLQ0wIZEKEEQhDYkOgmCaLaUl5fj119/VUTmnj17Aq47HA706dMHW5bsAieLTNqLSRAEVHtDW3gx/MbB2Lhxo6YIPe644zB06FAMHToUXbt2pT2hBEE0S0h0EgTRbPD7/diyZQt+/vln/PLLL9i2bVvAnkyO49C9e3fs+u4AuFISmQRBWMeKCM3OzsaQIUNw4oknYsiQIcjKymqk3hIEQcQWEp0EQTRpioqKsHbtWqxZswa//PILKioqAq537NgRB9YWgT/mBl/qBucnkUkQROTIIlTMrMWQq/vh119/RW1tbYBNjx49lCjogAED4Ha7G6m3BEEQ0YVEJ0EQTQq/348//vgDa9aswZo1a7Bjx46A6+np6TjxxBPxw7u/gD/mpj2ZBEHEBMYxsAwfLntuDNatW4ft27cHXE9OTsaQIUNw6qmn4uSTT6YoKEEQTQoSnQRBJDwVFRVYs2YNVq5cibVr14ZEM3v37o3t/8sHX+IGV+6i6rIEQTQ6zCVAzPRi1MST8csvv6C4uFi5xnEc+vTpg1NOOQWnnHIKunXrRntBCYJIaEh0EgSRkBQWFuLHH3/EqlWrsHHjRvj9fuVaixYtMHToUHz/9lrwxzzgfJQySxBE/MLAwNL8uOb1C/DTTz9h27ZtAddzc3Nx8skn45RTTsGgQYMoDZcgiISDRCdBEAkBYwy7d+/GypUr8eOPP+Kvv/4KuJ6Xl4cDPxaBL/ZQNJMgiISGuQWIWbU4ccIArF+/PmAvaGpqKk4++WSMHDkSJ510EpKSkhqxpwRBENYg0UkQRNzCGMOOHTvw3Xff4bvvvsOBAweUaxzHoV+/ftiyaA/4Yg/4amcj9pQgCCI6MJ5BbOHFeQ+NwE8//YSioiLlWlJSEoYNG4aRI0fi5JNPRkpKSiP2lCAIQh8SnQRBxBWMMezatUsRmvn5+co1t9uNIUOGYO30TVJE00dFgAiCaD4wMLB0Hy5+9iysWLEChw8fVq653W4MHToUI0eOxKmnnor09PRG7ClBEEQgJDoJgogL9uzZg2+//Rbffvst9u3bp/ze7XZj2LBh+On938AXu8GJtD+TIAiCgYGl+nHFK+fihx9+wP79+5VrLpcLw4YNw+jRo3HKKafA4/E0Yk8JgiBIdBIE0YgUFBRg2bJlWLZsGXbv3q383u1246STTsLqD34DX+IBJ5DQJAiiCcNxgJXpmFzBNshWOhPUj2umXIDvv/8ee/bsUa6lpKRgxIgRGD16NAYNGgSnk7YiEAQRe0h0EgQRUyorK/HDDz9g6dKl+PXXXyEPQU6nEyeeeCLWfvSHlDpLQpMgiOZC8HEoRlMzC7Ziig9XvHouli9fjoKCAuX3LVu2xBlnnIGzzjoLffr0oWNYCIKIGSQ6CYKIOn6/H+vWrcPSpUuxatWqgEqMJ5xwAjZ9thP80SRwfpoAEQTRTNETgMHTNCOhGBwB5QCW7sPYx0fgu+++Q2lpqXKtffv2GDNmDMaMGYPc3NyG9pogCMISJDoJgogaO3fuxJIlS7B8+fKAg8/z8vJwYGUxHEeSwdWqigHRcEQQRHPGLPIoj5FWIpSMBdgxjkHMrMXpE4dg1apVqKmpqWuKw5AhQ3Deeedh+PDhtP+TIIioQKKTIAhbqaqqwrfffotFixZhy5Ytyu9btGiBii0+8EeSwVU4tc/RpOGIIIjmTgxSXhkvQsyuxYAru2Ljxo3K79PT03HWWWfhvPPOQ8+ePaPeD4Igmg8kOgmCiBjGGLZu3YpFixZh+fLlqK6uBgA4HA6ceuqp+Om938Ef84BjFlfxgwlnvxNBEES8olMISNcuBrAkP6564zwsWbIER44cUX7fvXt3nHfeeTjnnHPo+BWCICKGRCdBEA2moqICy5Ytw5dffont27crv2/fvj0O/1gKR2Gy9bM0re5boiGLIIhERWtc0xrTGqHADwMDy/TitDtPwMqVK+Hz+QAAHo8Ho0ePxkUXXYRevXrFvF8EQTQNSHQSBBE2O3fuxPz587Fs2TKlKJDb7caIESPww+T14Mrc2umzRljZq0TDFUEQiY7VMa4RK8syp4hbP7kaixYtwq5du5Tf9+nTBxdddBHOPPNM2vtJEERYkOgkCMISfr8fq1atwvz58/Hbb78pv+/SpQv2fVMkFQXyR/mYExquCIJoCjSgEFBjwMDA0n0Yec8gfP/99/D7/QCAjIwMnHvuubjwwgvRoUOHRu0jQRCJAYlOgiAMOXbsGBYtWoSFCxcq+30cDgdGjBiBVW/8Bq7cFX5UsyFY2QNFwxlBEIlCgp2RyVwCrvvPxfjiiy9w+PBh5fcnnXQSLr/8cgwdOpTO/SQIQhcSnQRBaLJt2zbMnz8f33zzDbxeLwAgMzMT5Zt8cBxOAee1uFfTDqwUGKKhjCCIRCMBRRoDg5hVi8HX98LatWshTyO7dOmCK664AqNHj6bUW4IgQiDRSRCEAmMMv/zyCz755BNs2LBB+X3v3r2x44tD4IuSzCvQRqdj9Y+tFuIgCIKIdxJQdKphSX5c8PzpWLx4sVK1PCsrCxdffDEuuugiZGZmNm4HCYKIG0h0EgQBv9+Pb7/9FrNnz8bOnTsBSCm0Z5xxBn54dQO4ihil0GpBBYYIgmjKJLjwBADmEHHj9Esxb948ZRuG2+3GOeecg8svvxydO3du3A4SBNHokOgkiGZMVVUVvvzyS8ydOxcFBQUAgOTkZHh3cHAcTI1tCm1DoSGMIIhEpwkITwBgHIOYXYPuF7bFX3/9pfz+lFNOwfjx49G3b99G7B1BEI0JiU6CaIYcO3YMc+fOxcKFC1FeXg4AaNmyJUo3eKX9mkKUq9DaCQ1hBEHEM7KgtFIMrYkgV70ddns/rFq1Stn3OWjQIFx77bUYNGgQFR0iiGYGiU6CaEYUFxdj9uzZ+Pzzz1FTUwMA6NixIw59Vwq+MLlx9mtGCg1hBEHEO1aKnjVRESYm+3HWoydi6dKlEAQBANC3b1+MGzcOp5xyCng+gRY5CYJoMCQ6CaIZUFRUpIhNuRJt7969sWPBYfDFnsbbrxkpNHwRBJEoWCmC1kSFJwAwt4DzXxiBRYsWKX6oa9euuO666zBixAgSnwTRxCHRSRBNmMLCQnzyySf48ssvFSffr18/bPvsILhj7sQVmwAJToIgEg89UWlWobsJwVwCLn/jbCxYsABVVVUAgG7duuGGG27A8OHDKe2WIJooJDoJoglSUlKCmTNn4vPPP4fP5wMADBgwAH/N3g+uNMHFpgwNXQRBJBokqBSYQ8Tf3zsPc+fORWVlJQCgZ8+euPHGGzFs2DASnwTRxCDRSRBNiPLycsyZMwdz585VzkwbOHAg/vx4n7bY5OrSmZho3DDHm9vEEqNhy2rRDoIgiMagKYopKz5Cx4Y5RVz51jmYN2+e4rf69OmDG2+8EUOHDiXxSRBNBBKdBNEEqKmpwfz58/HJJ58o1Wh79+6NnfOPgDvm1BebgP5EIRybWAtSrWHLSqEOgiCIeKApCqkIfQZzirj09VFYsGCBUuhu8ODBuOWWW9CrVy+7e0sQRIwh0UkQCYzf78fixYvx0Ucfobi4GADQuXNn7P+6FHxxEriQIhUahRqCnX9DbGIpOq3sfaJhjSCIeKepCU+bfAdzM1z40ggsXLhQ2R4yevRo3HTTTWjXrp1dvSUIIsaQ6CSIBIQxhp9//hnvvvsu9uzZAwBo06YNilbWgD+SXB/ZlB261mRAaUzl9PXsjNppDMFpNFmjIY0giESgOYhOIDwfo7JhHj9Of+h4LFu2DIwxOJ1OXHjhhZgwYQIyMzPt6TNBEDGDRCdBJBg7d+7E22+/jXXr1gEAWrRogYqNDI6C1Iads8lEc1FqVbQ2NjScEQSRSDQX4QmY+xIdGzHFhxNu7oK1a9cCAFJSUjB+/HhcdtllcLvdkfaYIIgYQaKTIBKEoqIifPjhh1iyZAlEUYTL5YK4xw3H/nRwQiOdbxZPghMg0UkQRHzBcebjUlMSnmaiMgLEFrXocnE2tm3bBgBo3749brvtNjpmhSASBBKdBBHn+Hw+zJs3D9OmTVMq+51xxhn48ZXN4Gqdjdw7xE+RIRrKCIKIR8wqaseLYLJagRawVoAuCjAw3L/4Brz33ns4evQoAGDIkCG444470LVr16jemyCIyCDRSRBxzPr16zF58mTs27cPgFRGfsdnR8CXx1FKkVGhiMYqMEQQBBEvBItKs+rbjUm4olLLLsrCEwAYL+LKt8/CnDlz4PV64XA4cMEFF+DGG29ERkZG1O9PEET4kOgkiDikoKAA77zzDr777jsAQGZmJirWAXxhcujxJ42JWYEIinISBEFoi8qQ6uJxMLY3VFRaKRYUBZjHj2H/7I0VK1YAkHzlbbfdhnPOOYdSbgkiziDRSRBxhM/nw5w5czBjxgzU1NSA53lwB5Lh2NeI+zaNiIeqtjSEEQSRCJhV3Y4XkRSJqLRSLCgKiBm1aP+3dKWa+/HHH4977rkHnTt3jnlfCILQhkQnQcQJmzdvxksvvYTdu3cDAI477jhsmXEIfJWrkXsWAbEQnjSEEQSRCMSLqDTD6FiTRhCUVmEcw/XTLsC0adNQW1sLp9OJq666CuPHj0dSUlJjd48gmj0kOgmikamqqsL777+PBQsWgDGGFi1aoHIdF3jeZh0cL/2fidpfW7PrVm1swUhwWilYYekeJoU5aHgjCCKeSHThGdMucKa+TOs68/gx5M7u+OmnnwBIZ1jfd999OPHEE6PWV4IgzCHRSRCNyI8//ojXXnsNR44cAQDwR5Lh2tsC8AY6fFkoygQ7WrPrwXaRiFbLGO0FsisCarQnioY2giDikUQQnnEiOmW0fJLZdTG7BlmnOVFYWAgAOO+883D77bcjPT09Cr0lCMIMEp0E0QgcO3YMkydPVgoFtWvXDke+qYWjVEoBkh1osJiUUTtYLZtwRamZ824Q0a5qqx66rFSHJAiCiAdIdFrsQniLrcE2HM+B8SLOf+lUzJ8/H4wxZGdn495778Xw4cOj02mCIHQh0UkQMWblypV45ZVXUFJSAofDAeQnw7k/HZwoOXkzwSnbmF03asPouu1RTivVEBt0D4PCGzSsEQQRz5DwtHD78P2X+rraRkyrRe65ycjPzwcAjB49GhMnTkRmZqaNPSYIwggSnQQRI8rLyzFlyhQsXboUANClSxcc+KICfKX9Z25aEaVWHHYEHTAuRhFNaEgjCCIRiHfhGaeiUyZcP8c4hkvfOB2ffvopRFFEZmYm7r//fpx22ml2dZkgCANIdBJEDFi7di1efPFFHDlyRDoGZX8KnPkZ4Fh8TTqiXlyo/kZRbp+GNYIg4pzGFp1mBd3iMMXWDsRUL9pfkKZUiv/b3/6GO+64AykpKbbfiyCIekh0EkQUqa2txTvvvIMFCxYAANq3b48jS2vBV3hCjc2K7Fi5boOYMyoyFLUCQ3ZCQxpBEIlCPAhPwNzvRO321orbRXAD1N0g4NeMY7h48gjMmTMHjDG0b98ejz76KPr16xfZ/QiC0IVEJ0FEid27d2PSpEnKaqrjcBqc+S3ACRrGZkV2rF6PkuiMelVbO6EhjSCIRCFeRCdg7nuicnvrFWobeIP6xxqvT2jhRdZIDoWFhXA4HLj22msxfvx4OJ3OyO5LEEQIJDoJwmYYY/jiiy/w5ptvwuv1IisrCxWrHXCUJtcZGBTZifS6zaLT6lEsYTQe2fNN26fhjCCIBCOehCdgXHnc9lubV6CN8Aahvwvyocwh4rQH+2D58uUAgH79+mHSpEnIzc2N7N4EQQRAopMgbKSsrAwvvvgiVq5cCQA48cQT8du7+8H5HfVGssMzK7TTkOsRirqYVrWNBjScEQSRiDSm8GyoL7Lt9vr+JiqiU7pByPV/Lb4er732GioqKpCRkYGHH34Yp5xySmT3JwhCgUQnQdjEli1b8Pjjj6OgoEBKzdmZBsfhNHAIPkPSoLJrJNgU5Yx6VdtoQUMZQRCJSjyKzpjdvuHHg1loXP+ahi8WPX50vaoF/vrrLwDAVVddhZtvvpnSbQnCBkh0EkSEyOm0U6ZMgc/nk4oFfe0HX6VxFArPAdGsENvQIkSWm4+g7xTlJAiC0CbeUmxtbdq4CJ2pqIy0SJ7Ra9PwyYxj+NuLJ2H+/PkAKN2WIOyCRCdBREBNTQ1ee+01fP311wAAvjgZrl0twQlBTk52qnqO10yMWhWrRntxGlNwGt3fpqq7JDoJgkhomnC006gYnSXRKT05sut66PhnIasKnkG1qKioQIsWLTBp0iQMHjzYuC2CIHQh0UkQDeTAgQN47LHHsGPHDvA8D35vBhwHg9Jp1c5US7RZvR6p4NS6Hia2i04bBTEJToIgEp5mIDqBCIWn1EBk17XQ8cWix48uV2Zg69atcDgcuPXWW3H55ZeDa+zINEEkICQ6CaIBrFu3Do8//jgqKirqqtO64ChVnb2p5UDVjjbc6+GITrPCCQ3EVtFpp+AESHQSBJH4NBPRKRNWlVq7K70HY+CTGSfi9Mf6Y+nSpQCAc845B/fddx88Ho3ztgmC0IVEJ0GEyYIFCzBlyhQIgoB+/fphx8cl4GrrqtPqOU7ZuTbkulXBaVYwIQJsE5xRqLgrtUHDGEEQCU5jR88aQXgCYRQLikbFdzUG/pmB4eZZF+Odd96BIAjo1asXnnnmGdrnSRBhQKKTICzi9/sxZcoULFy4EADAF6XAtScbHIvBRKGRz8e0RXRGKQIrtUHDGEEQCU4zFZ2AReEZ7Sq7FoSvkF6DlJNqUVpaiqysLDz//PPo27dvdPtFEE2Exq2TTRAJQnl5Oe6//34sXLgQHMfBmd8C7j2twJt8hTiOi+7eD56z5Ch1iVWp/EYuyU8QBEFEl0iONuF4LnI/YXZ/k+tWfLWzIhnVK1LRvXt3lJSU4K677sKKFSvC6SVBNFso0kkQJhw6dAj3338/9u3bh+TkZPh/T4WzNFW5rvUVUjsvva8Yx3G61wKuN6QAUTARFvGx5YxO/cZtaIOGMYIgEpwEj3RGvVhQsI0WVirFG1znHFL7Rn4bAEROwPG3tceaNWvAcRxuu+02XHHFFVRgiCAMoPADQRiwfft23Hrrrdi3bx9ycnIgrssMEJzBWIlsmtkYXm9IZDOaVWMJgiAIIgizwkGaBBf+iUQEm/lKk+tmfppnDvz29iFcdNFFYIzh7bffxuTJk+H3+xveZ4Jo4pDoJAgd1q9fjzvvvBPFxcXo0qULype7wVe7A2zk1VA9B6VeLY1IbAKRpdECDXbiUY1yEgRBEE2CYF/B8VxEKbd1jUT2/DDFJxMCF2KD/XKATweHrx/dgNtvvx0cx2HhwoV47LHHUFtbG1mfCaKJQum1BKHBN998g2effRZ+vx98uQfuHa3BCQ0QbIwZCkm1aNW8JjJzsRmJKGzs1FqLfTBvg4YxgiASmHhIy7Rh771RhVqj65b6YFalXaahVeTrbOQUW80u6Ph0IbMK6FsKr9eLE044Ac899xxSU/WzogiiOUKikyCC+O9//4vXX38dAOAoToFrd6vQCrV8nVMSo5eeavmrSaKTRCdBEIlNExedtvWB58x9XoR9MN2XyfOavl9Iq4FzUDmqqqrQq1cvvPzyy8jMzIyoLwTRlKD0WoJQMXv27HrBWZAO164GCE6er//Rw+haHZYKEhg530idfyIRDxM2giAIIrpYyf4xwXwri4n/FkXN646KJAjrMpCZmYmtW7fijjvuQEFBQUR9JYimBIlOgqhj+vTpePfddwEAzkMt4MrPAgeVY+J5wOHQFzjBjspIlEaTSI9RIQiCIIh4xgY/pyc8mSDU3cPC4nHQdb7Kg+qVKWjdujX27duHO+64AwcPHoyonwTRVCDRSTR7GGP44IMP8OGHHwIAnAcz4TqQWS84zcSmbGOG2kFFKy033KNUCIIgCCJeCHe7RQOEZzgF/qR7mKX8BopPvtaF0uUu5OXloaCgABMnTiThSRAg0Uk0cxhjePfddzFz5kwAgPNAS7gOZ0kXrYrNMB1SVKDoJkEQBNEcsSnqGVHKbZAN73WicDGQl5eHwsJC3HXXXSQ8iWYPiU6iWTN16lR8+umnAABXfjZchZnSBZ7XF5vyKmk8iE2AxCZBEEQiQ3vS7SGW4tMoW6nO73P+euFZUFBAwpNo9pDoJJots2bNwvTp0wFIgtNZ1EK6wHHGkwCzCYLZ8wFLYtSoeq3iFElwEgRBEER4mPlgKz7cgjiVhWfHjh1RUFCAu+++G4cPHw6/vwTRBCDRSTRL5s2bh/fffx+AlFLrLGphPX1GD46T0nEB4yM8IkzhibiqLSDtm7HjqBI7sKFMv9QOCXCCIAjChr2agmBtAdnCPTjRjSNfcejYsSMOHz6Me++9F8eOHTN+HkE0QUh0Es2OxYsXY8qUKQAA56FMuIpaRpYqK4tNKyunVivfaj7dghMVmTXBSRAEQRBNHFv2alrJftK6LlfBBSThudSB3Nxc5Ofn4/7770dVVZVJ7wmiaUGik2hW/PTTT3j55ZcBAM6CFnAWZgcaBO/TMHNIHBe5w7JDbAKJFd0kCIIg4idDw66MkzjFUtQz0pRbE1/P+Zw49r0HLVq0wNatW/Hwww+jtrbWuE2CaEI07VGGIFRs2bIFkyZNgiiKcBSnw3m4VeA5nMFYSaWNxEnZmUobxegmR/tGCYIgCBNs8RVRFL+2HI8SYcot73Wj5pd0JCcnY8OGDXj66achqCKiBNGUIdFJNAsOHjyIBx98EDU1NeDLUuDKb60tOGUhGOaB0CFYcUwm2BLdBBIjukn7OgmCIIgY0NhRT746CcKmLLhcLqxYsQLvvPOOcVsE0UQg0Uk0eY4dO4b77rsPJSUl4Ko8cO9tEyI4OY4D5+ANnZG8ShrxSqnUWORtNCXsEsZGBZwIgiDiCVokiwqWFmytYJaJ5HCAk4sHGvRFqz+OyhRw26XtPXPnzsXnn3/e8H4SRILQzGa2RHPD7/fjsccew/79+5GbmwvP7rbgxMCPPccZn+2lOA2TM8As770kAiHBSRAEQcQjVrbBGInPunmDpvAsTcNNN90EAHj99dexbt26iLtLEPEMiU6iSTNlyhT89ttvSElJQekKDzi/U7kmRzfNhCSJzShhZ2EjEpwEQRANo4kXEbIFi+JT//namVKz7vwOZ599NgRBwOOPP469e/fa0VuCiEtopCGaLF9++SUWLlwIjuPg35IJvtYDwLrYNIuAynaNhZX+2XYvu+9j5z5TEpwEQSQaTWyhMmYF5xq7sJ1NUU957sCBw8rJuzBgwABUVFTgwQcfRHl5ud29Joi4gEQn0STZtGkTXnvtNQCA83BLOMvTAFgTapFGNzkrx6g0Z+yMbpLgJAiCIOwm0srzJlFPdcotx3js+KwSbdq0wYEDB/D888+DkW8jmiA0MyaaHEePHsVjjz0Gv98PR2kanEdaSulDLqd0zIkeHF93DIpZkR/zlVbTw6htwLJTsiF1ilmpkhtLyCETBJGoxFOUM55Sa2PZFzuK+ZktYDscxq+J58C5XYDDAU5womSVGy6XC6tWrcLs2bPN708QCUYcjTYEETmiKOKZZ55BcXExunTpAveBNuA4EyFpVWxyfOROUXZkPN/giQdjjFZBCYIgCKIhyIvPdoh/k6wo6T4W5g4OBxw1SZg4cSIA4P3338fGjRsj7x9BxBEkOokmxSeffIL169cjKSkJh/4HcJzLXHBa2SNih9gMN8KpYd9YYjNm+3WsEk+RAoIgiGZMPPmHsOss2HCmNgB75hEOB965aTHOOecciKKIJ598EkVFRZH3jSDiBBKdRJNh06ZN+PDDDwEA4q4s8P4kfWO96CbPBToGO6ObEWAY3Ywjh2+JeErnIgiCiCXxtGCWaGNxNH1dNKKeWtt5TOYUHDiseGMPunbtiuLiYrz44ouU2UQ0GRJsxCEIbcrLy/HUU09BEAQ4SjPgKG2hbxxpdNPq8xsS3dTAFoeTaJMLK8TT5I0gCIJoOPHgo8KIenIO472a5g0YCE/G4+AywO12Y82aNViwYIGlPhFEvBMH33KCiJzXX38dBQUFaN++PdyH24CDxqDPcYDJUSmQK9eaOUCz6zqHQQfaNHxfZwBWivzYeURJvECrvwRBJBJNcKEsnlJrLWFUTLAOzuk0tbEyB4CRMJXb4LX7w3s9uOWWWwAA77zzDp3fSTQJSHQSCc/KlSuxbNky8DyPolUucKJWSgtn7mw4C2LTrGiAlaIC4cDzFsRr9J1+3FWvBZrkBI4gCCImxENkMRwirRofJkbHotUbWSkQZKUKrvbc5INb/4ehQ4fC6/XimWeegc/nM2+LIOKYBBt1CCKQsrIyvPrqqwAAvqglHN60QAOOA5xmR6Vw1gVnJNcbkwZOMJjI4lNwEgRBJBJNcJHMtihnHAtgS0LWivA0E5+8I0R8cuCwaU45MjIysHXrVsyaNcu8LwQRx8TvN50gLPDmm2+iuLgYnNcDV3Fu4EWt6KbDEej8ZbEZUDwoKFqpFb3kVW3bHd2ME6IqNu2aZDTBiRxBEERUiWORF48ERz0102+D5xFaNsHCU8smSHjyggs1W6UaFbNmzaI0WyKhoZGHSFhWr16NpUuXgud5uAs6gGN1H+dIo5vq30US3bRrX6ddKbZhTDQoukkQBGETtDimjxW/ZFdqrZX9nAY2jRX1dFS0wLBhw+Dz+fDqq69SNVsiYSHRSSQktbW1eOONNwAA/NGWcNSkSBd4jehmMPKKpJFzCI52RgvRQoEfKzYEQRBE/BFvgpOinBFhi/AEwtrryYHDr7NLkJSUhF9//RVfffWV+XMJIg6h0YdISD799FMcPHgQOTk5cB1tLaW/OJ3Sj45T4DgOHM+Dc2qcz6lGFq7RnizYKTgTrYKtXX2hFV+CIIiYk3BVa+3EbEuN2yXNIYyipi4XOKdDmo/o2bhdyryG97txww03AJCq2ZaUlDS4+wTRWJDoJBKOQ4cOYebMmQCA0t+TwCMolVZDLHJWz98Kx5FaOVpFL8W2AYJTd4U1CoIzqhMKEpwEQTQHKMppTAKl1iq4VPswrfhJS0e0WDvG5aN/rkCPHj1QXl6OqVOnmt+bIOKMOBuBCMKct956C16vF3xVKpw12cariXXRTfN9kzFMp9USnOr+6dmEtMXMBScT4yfCaVdfGCPBSRAE0Ug06yhnMFbmDiZRTwCmUU8A4J0u5P8gPV60aBF2794dTk8JotEh0UkkFL/++itWrlwJh8MBT3FHcNAf7I2imxzP1zsKPYdhJcU2nGinDem0yopuDNJpbZ1YUHSTIIjmBEU5jUn0KGcwcl/dLtN+cC59GzPh6ahNw8iRIyGKIt555x1DW4KIN+JsFCIIfRhj+Pe//w0A4EqywPuStQ2dTmlQN3JGPB8oPPWIM0fNmIXoJmCLyKMKtgRBEA0g3gSnjVCU0wCr6bZaR6Wo4JwOcKk68xsAa2cdgdPpxJo1a7BmzZpwe0kQjUZ8zagJwoCffvoJmzdvhsfjgetYG20jK0LSSrotLK6gWkFk1kqcc5zUN7M+2Xw8CkEQBNGEiTd/EGdRTstYqA0RfKanLibCE4BuZJX3e3DJJZcAAN59912IVOGeSBDibCQiCG1EUcQHH3wgPS5qCZ55Qo1kwclxdWdhaTgbteB0OKRopwaK0+C5kMOaQ9s0SLGtixZyFgRlvMBEFr9RziYcQSAIgrAdGwVnU41yhp1aq7dtR5U2q1tFX51aqyc8PW7t+6r48vUdSE1Nxa5du7BixQrtdggizkiMWTDR7Pnmm2+wa9cupKWlwVXeNnAVlOcB+RgUeaAPHvB53tIezeBVyoiinVESbtGMdkZNbMbbSjtBEEQ0oIUxY2IZ5bST4Ps1NOoZ/H+n0zzq6XKGiE+OOXHZZZcBAKZPn07RTiIhoJkgEfcwxjBr1iwAQO3BFuCYumS5Krqp5wCM0mlV0U5dJxZutFOnqqylaGcjRkSjHt20S3jSpI4giHgk3sam5h7ljEUBobq/uWFxIAs2DUm3nfv8JqSkpGDnzp348ccfzZ9PEI0MiU4i7lmzZg12796N5ORkuCpyAQDM5ZRSUHgDsengpYE8wv2bYa2oxjIt1cZJQNym0xIEQRCNim2C0yYRbMkn27l4a3Y/q3MMMzunMzC1VguXEywtRWqTOXHppZcCAKZNm2atdgRBNCIkOom4Z/bs2QAAX6EU5WR1+zWZkeDkuLqzsWyKLFqNdpqdxWV2PwtOI2EdCx2bQhBEUyaexiYbo5wxXZS09agu435bjnKatSNXyzcTlQ7edE7C3C4wo2NXAIDnwJIkcTr/pT+QnJyM7du3Y926dcbPI4hGhkQnEdf8+eef2LhxIxwOB1wVbRTBCUASnlpnWqkHf95gkA+wsSAWo43asekI0xDBadORL1FPnSLBSRBEcyAexqgo7KGPuMBcY0U57fp7MGatLb3+JamKH+rMSVhyvY2e8AywSXKDE10477zzAADz5s0z7x9BNCIkOom4Zu7cudKDiixwjhTzPRpaq41aTqAhItKmaKdkF+QU4yDCGRXhyUQSnARBNC+a8FjVIOFpVXBGa/FTw8c2eC9ncDta+zQtHeVi/p6YRjwhCc/F/9kDjuOwevVq5Ofnm9+bIBoJEp1E3FJSUoIffvgBAOCqaa89kMvRTjltVctGHe3US4GJYbSTU0dYjSYndcKUMZNzPm2KdtqOXWITaNKTOIIgmiCNNWbFYLxvrBoAEe/lrPubWBKcRoQb8UzSOOINCEi3ldNlQ26lSrdVRznV8GIyhg0bBgD473//a943gmgkSHQSccuSJUvg9/vB+9LA+9P0Da3spbBiY0F4GhYuUtuYCEGO44BYljiPlzTbhkCCkyCIRCTWY1c8Hk3V2FHOhmJUsRYAGDOuRgtIc4XkJPN7OQwq7Mu3M4l6blhaBgBYunQpamtrze9JEI1AHI5QBAGIoohFixYBABy+dvqGDh7M45aq2erAeE6Khmrt/wwDS+mt8nEpHG/oRBljxke5qLAlwmpn1DGW9yPBSRBEohJvR6jYRFQWJ+2InloqCsib+3IzwRkOFooVstRkU1EppidBTNGvbMv7MpGbm4uKigqsWrWqQV0liGhDopOISzZt2oQDBw4AzAGHv3WogYMHcznBzAZzszM8g9GJdgY4KYdDuz0LTtM0VTagvXrhFpHwJMFJEAQRW2ItOBM5yilj4kONt5mEd6+wfLEGnNvkaBMgMK3WoH+s7rNiKDzr5jFiiltTfHLgUHRAOkpl8eLF5n0jiEYgDkcpggCWL18OAHAIrQFXUCTTwYeITeZyBtgwnpMq3aocP3PwDYp2ajqmYOGp5SyDop2a7WhFO0Ux/NRbvZXnBgjAiFaxSXASBEHElhgKzqhvwYhEeJphtqAMWIpyWhKcQKhv5/kQ8clSkwP/r3FkipiuStFVic8AmxQ3HEJbAMD69etRWFhorY8EEUNIdBJxh9/vx/fffw8A4MXcuvSUuosagjMY3fM7Oc6a8KyLdlpeCbUY4TS8n9xfA7EZdrQzAgEY9sSCqtQSBEFIxDLKGa+CM5J+hSs8rUQ5Deo1RKUyvF7xIKC+SGBqshLlDOmTWnjqzGcChCfHgWfJOO6448AYU4owEkQ8QaKTiDvWrVuH0tJSgLnAi1kAAOZygCW5DAUncznBPC5jh291MsBx4MwcmV6abUA7YXzFIi0spJ4QxDql1i5IcBIEkcjQPk57hLAF4anURrABxpi1KKdZ8SBAEpwWChfqCU6lT25XYJQzpDOh6bZ/rq8BAGXhniDiCRKdRNyxcuVKAFJqLQcezMlDSHaBuU0cAg/JxsRxMFWZcm2DMAoGmdkyEeA54yilLDYjdZ42lrFvrJL4TXXCRhBEMyCB93FyPGdf6my8LXpaOCKFczqt+1Azv2/hcyCmJwNO47+fPysZgkHxIPlevhZJ8GVIkVWHkANAqotx5MgR034QRCwh0UnEFYwxrF69GgDAizlgTh5i3cAseBxgSRqCkoc0eFusBgvOoJqt2pnwvHa0U3ZMTKxL/dW4p9V0U3V000KVO/12gpxgBJORqB7+baktEp4EQSQYCS44tR4b/c6USIWnhXtaOm8z3DM55QVlrfupo5x6wtMorVa+RXpy/efFQHgyBwfm4CAkuyAka0dYfRkeMB5gvPSYQxL69+8PAFTFlog7SHQSccW2bdtQVFQEMAc4PlsRnDJCkjNQePII3ZjvcpinyWhNEIKdSJ0IDBCeasEZYGee2hoQ7WxIsaDgNoL7FGIc/tc7oghnPFZPJAiCaGpEeaw1E6GWaajwtEtwWoRzaswXgnyhZlpt8JzBSlotEGrj5EPEpz+rvsCQWnyqkQWnYlcnPP/aWA0AWLt2rXlfCCKG0CyRiCt+/vlnAADPssG0HAFQP2BrCE75uhXhqaTZMoM0Wa0KtUaOVO9anRPlOM5YbFqIdnJafdI1tvYVZyKzJ6XWrskQRTsJgkgUEni80hOVtqXbhltkzs7quFbTavWw4hPVcwerabV61AlPf1YymCO0rWDhyTTcLeMBMbkNAGDDhg3w+XymfSKIWEGik4grNmzYID3gW+naCB4HWLLLWJyFk2ZrtL8TkKKdcnt6zlMvzTagHS46VfLiiXjby0MQBBFNmkhabSJhKcpp199FZObFgxizllabkWLeLyevKTiVW9UJT3kPp7ZNBjIzM1FdXY0//vjDtF8EEStIdBJxg9frxebNmwEAPLI0bZiTh+h2wJ+mv8dBsTWLdjIGzmwlkzEpMmlFVALGE4JwVk1tqsgXUxFo572aujgnCCLxIcFpL1bSas2yhSQj6V8TO87Bm/stp9N8sVgWnCZ2jOMMK9YyjkNt6xQIScaiurKdB9U5LtRka8+BOI7DkCFDAAAbN240bIsgYgmJTiJu2LJlC7xeLxjvgT81M+Q6c/LSGZyQBmeY+SejNFu14HToRDtlwWkFRSxy2hMDUXXmp56gtCC0Qs4OtWniEPEEhAQnQRDNiQQWnDHHSt+tCk4Zq3URdGw4tc/X819Op9IvQ+Gp7peOnZiRUm+i8dlhHAdvTjJEBwfGwVB4yoWDGA9d4bl0bQEAUKSTiCsSeBQjmhqbNm0CADB3NvzpUjRTRi04ZUSPwzTaqVcwKCTCGSw8NQQnx/Ohe0SM9oMqHWWhDitYeGq1EVwgKVwxFqYQbLDwJMFJEERzIsEFZ0yjnDYJTl2CRaVmsb0gX665yKzhx4L6FbLoC2in1QbZiBkpIUJTS3iKqrRaWXgGi8/q1oFHqGgJT2+mE6InGwDw559/QhCE0D4SRCNAopOIG7Zu3QoAYO4sMJ6DL42HP82lKTgBadAWk8yFZ0C00yilVhaeBhHOAOGpJ5DU0U4twanY8cbtqGwMBafekS0NIOzJCAlOgiCIhCHuBKfVpqycdW3BRlNwyqj9mUGBIcUfG1WrrbPREpyKCVefueXNCS0wxDgERD2rW7shap30phKe3kynNF9yZiAlJQVVVVXYvXu37mshiFhCopOIG7Zt2wYAYK4W0r88B9HJaQpOGVl4ilrnd8pwHFjdOZ6mezgB830gVle5jQRnNInVPk4SnARBNDcSNMppWzVa6ze0ZhduWq2+kbmNlXRcJkqLz2b9crnM78mY4R5OoG4fZ25KQJQz1AYo6eXRFJyKTZ3wVOZLHIdevXoBALZv327cT4KIESQ6ibigvLwchw4dAgAwVyYAQHQCNS0d8GUYb6o325wv7f0A4HRI1Wp1G1Lt8TSwMRWSIpMcF89ZF6i6bcW2GqzlY1OoSi1BEM2NBBWccYtdgtMinMNhXtBPjnBaSUk18c9iajI4E5uaNilgDpjOxgU3h5osY6PyjjzKO9bbrNtWCgDYuXOnceMEESOa+IhGJAryoMgcKQDvgugEBBcHxgO1GebCUzfaKQtO1KWyuJzawlOdUuvQ2LtZZ8MYk5wWx+vsHWGBgsxIeJqlBKmclXFqUZATbeBEpdEEJ0U5CYKIdxJYcMa8Um00CgcZtmV+v4BjVvR8XXBKrY7w5Nzu+nZ0RKWYmgzURS/1hGdtbkrgLFznZZR1kvrFHNAVnpXteDCHtFgvC0/mzAAA7Nq1S7thgogxJDqJuGD//v0AAOZKgy+Zg+Cqr05rRXgyjoOQ7AwUnirBqbYLmTxo7eEMFp5qwSkTLDyDBacRZsUPNJyUpgO2KhRNIMFJEAShAwnOcG5obmNnn3idBWAVmud6WvV5QcJTEZzqdoL8tVpwKs/T8OlMa0oT9PaVdXJCdKkKDGkIz8p2PET11KdOeFZ2kLYqkegk4gUSnURckJ+fDwAQ3KmS2AzWhTwM93YCQcJTQ3AqyGm2jEkORS/9RRaeWoJTRhaeRoJTHe00KvNu4WwxLljk6hpa/2qT4CQIgtCBBGc4NzS3sdgnS1HOhgpOGVHl1w0KB8nCM0RwBrQj+Uctwan0RRQV8Vmbm6JpA0CZmQcLTplg4SlqJXk5AX9aGgCguLgYNTU1+vcjiBhBopOIC5RIpztN18abxlva3ym6HFLFWgMbOMydlWRsIDgbk3jrT7iQ4CQIIt4hwRnODe1ryibBaRkjYVoHZ5bCKwtPg4JAMt7sJO0op4qSXi5NwSkjC8/Kdvr9Yk430uqE5+HDh037RRDRhkQnERcUFhYCAGqyU3VtGA/Uphun2fKCKFWoNXBGnCgCgihFO81WQWHBATIWeEyKRjtK8SEjx2VBiNW3Y9Yna1FJy1FOoOkXtSAIgpAhwRnODa3Z2bWP08pxY3V2poX/zI5AA8C5XNI9TYoCsSQPOJ9xASJvqxQwBwfOpE6R6AYEjSNA1Rzr70d5d7+hTZs2bQBAKdRIEI0JzSKJuODo0aMAgJrcJFS30jv3ylh48oIIzl93NpbbAeYJteFEEfDXj/a6wlO9T8Ph0D/bSzTzHBrVbrWEp9pGR5haPn4lGoJTxq6JUawndARBEM2AJi84gzE7BxsGvtPhCOyXhbb0hCdLSZLaYkxXeHpbpUB0ysUqmK7wLOlRd/Y4ry88S/v4AbcIuERUdtYWnrXZDJsqKgDUL+wTRGNCopNodERRRElJCQDAn+IOTTthdT/yfzWEp1pwAgA4DqLHGSA8gwWn0l6w8NSqSKclPIMFZ3C00+icTrUT07IJEp6a7Wg58WgKTrsh4UkQRDySoFHOmAtOq0S7Uq2Fhd0QHxosOHXa4lyuUJug+YEiOFVtBAvPAMGptguaRpT0cEFUbx3VEJ6K4JSpE57B4pM5GASP9ORjx46Fvg6CiDEkOolGp6ysDELdRn3R40FtNquPdupoI7XwDBGcMirhqSc4QzAogR4gPPUinLLwNBKcii1vnB5U5zgN2wlwdDESnHam2ZLwJAginkhQwdkoxNPRKBa2sCi+VE9wBrWlpNVqUTdPCBGcqjbUwjNEcKrt6sxCBKeMSniW9RYCBaeMKzDqWZstZ31Jorm0tFT7/gQRQxJ4tCOaChV16R+i0yntwXAw1LRm+mm2dTAe8Cfx8CcZ7MvkODALRYOY01FXhdaCcLOriquVexEEQRCxIYEFZ1ym1dp9NIoNNkyuwWCGw2HenstpKl45nwBvK4NKtXV2ZXlObcEpwwNVp1aAeUwWz10iWo06COaQRafUaFlZmfHzCCIGkOgkGp3q6moAAFOluIpOhupchuoc/QHd4WPgBJOiQYIIThClarYug5LosgA0cjKiKDms4PM5A2zqjk5RH5PSUKyI0uBzQxMNqmJLEEQ8QIJTbsy8b41xNIp5Q9bu5+DNq787nVK/BAOB53FLx7iZZFD5M5PBe419eWkXqVItX2vcrbSUWqRlVxna9Ol2EK1TytHl+AMA6kWnvLhPEI1JAs5SiaaGfH6UWHdOFpMzax36wtPhY+B9DBwD/Ck8/KmhgpITRCm9RZSOSdEVnqIkTKWGeW0HJ4pgijDltIVn8FmdRsJTbsvsOgycst65oSZEPEGxK9JLgpMgiHiABKfcmPZjPRs9Yh3h5DhLdpxDJaj1hKcsOGW0hKcsOAHJj+kIT39WimTHGJxV2jalXVwQ3VJbHIOu8PQOlkSjyyHoCs8+3Q4izSU1kOWpkoRn3fvi9Xq1GyaIGEKik2h0ZNHJHA5FcMpoCU+14ASkNFtfmiNAeKoFp9KWlvCUBadaAAULT7XglNEoGqQpxrSEZ3BbZtehITyNVmqjKTxJcBIE0ZQgwSk3Zv47mwWnaZQzWoJTJtiPBgtOmSDhyYJfo4bwVASnyiZYeKoFp9JPDeHpHVyB1OT6X2oJT7XglMnyVCGn6zGpP37jo1UIIhaQ6CQaHWVzv44DUvZ45nAhglOxUQlPLcGp2KmFp5bglJGFp5bgVMNx+oJTRi089doyu44wy8lHQ3iS4CQIoilBgtPKjQL/NSKRBKeMLDz1BKeMLDw9OhsvVcIzRHCqbGThqSU4lf6qhGew4JRRC89eXQ+FCE4Z9z7pZIBff/1Vu98EEUNIdBKNTv1Ary9GRCeDL4PBl8qFCE4ZxgOii5MGewN9xDgOTL6nmQCyWjnWCjYUDop4n2hDsUtwEgRBxAMkOOXGYrqHE7DRj1kRnBxn4fVZrMHA89piUoYxMI/L1KY2y6krOJUuMaCyb62m4JRxOQQ8c9oCZLhrDBoyvA1BxBQSnUSjw9c5Ds6pL2wcNRz4Wg41LTnUZGp/bB21DHytCCHJCTFJv2gQJwjgBAFwOKSqtVoIoiQSHQ7jPZVyJTwjpyYfn2JW7t2CKDU9hkUxtNBWOEenJGKRIoIgCC1IcMqN2dNOmH2ydJyYGRaqzXMcJ/XNyB/WRUGZYOIzXS4pa8mnn6bKUpPAOA6Oap+uTWX7JIgOwHPM+D0oPaEWTo8fldUeXZtHei9BN1chJrT5Ub/bnaXKue3atTO8H0HEAppJEo2OLDqTHbVwtg/dIO+o4eCs5MCJUjSzJjtUeDpqGRzVghQF5QAhWVt4coJQl3pbf15XiPCUBafSuI7wDCoapOnAg8/r1DvYOp4Fp4xdExQ6m5MgiMaCBKfcmD3tNLBPuv4s3Eq1Or5TEZzKDTXsgtJudYVnneA0gqUmgcl9F6EpPCvbJ0Gsm5ZwAtMVnqUn1MKV5K/rNqcpPB/pvQTtnVLqbDZfqSs8U51SpDQ3N9ew/wQRC0h0Eo1OSkrdGVa1Ik7K2xMgPNWCUyZYeAYIThkN4RkiOJWbqIRnsOBU2QQITznKqUajuJCmY1U71YYKTj0HGC3BKUPCkyCIRIUEp9yYPe1E2KdQv9bAo1GCfGiI4FRuqF5M1k4rDhGeGoIzONoZIDiVPgUKT7XgVNrREJ5qwVnf7UDhqRacMlrCM8tdBdRKr0eZZxFEI0Kik2h05MFQrBGR5vQqwlNLcMqohScnhhYWAgBwgJjkgJjk1BecMg6HebqOLDxFBog6Z3PJwlNPcCp28opoBBHOkAp6Mdp3ScKTIIhEgwSn3Jg97dhdyCjSszjrfKmu4JRhoq7gVExk4WkQ4ZSFp6bgVPokCc+qdqGCU2lHJTy1BGd9t6V+aAlOGbXwzHJXwcExiLVS2yQ6iXiARCfR6KSlpQEAxFoGJjKkOb1om1UGfyrTFJwyjAcEDwfRpe9gGK9yQEYRPrGuiq0Vx2enuLNyP8Pnh7mXJpIoZ30jkbdBEAQRK0hwyo3Z0068CU7FxERwAnULzFYr45q3pSs46/BlJsFVobNILd9KYKhpxXQFp8yN3X/SFZwy2Xwl3sj7HI66lXiBIp1EHKFfbYUgYoQsOgFAqBKxHzkorkqGq00VasQUJBVqD+quSsBVweBL4QEGzYGdrxXA1/qlY1LE0LQYBTma6DCIQAqCtALK8QB0jlpRHZ/CcZx+lFJUPb/uaBbtbpmIxDBFJMdzkQlPOwUnHZ1CEESkmFUiJ8EpN2ZPOzb2KeAoMSPxZrGyrNQW0++jo24bjSgAvE4RQQCc0yG15xcAnWKDrO7oFL7WB9Hj0rTxtUwCc3DgBJOiQd15iE4GcX8K+A6hdS0A4LbjfkB7VwkKhXS0dpTDdURA6znlaLGmGo5KBiGVQ+mwZLS+NhWe1mmY1OYbTDo8CkK5NC/Kysoy7ANBxAISnUSj43K5kJmZiWPHjsFfKsCX7oAo8nC5BKBdFWpbO8AKPQHi01UJuEsZeIFJZ3SmStfUwpOvFeCo8SuTEeaRnEeI8BRFcOqDnbWEpyw4ZbSEpyw4VaJOU3iKGoJVQ3iGLTg53pIojFh42gEJToIgIkUtRjgudFwhwSk3Zk870RCcMnrC06LgDKm5ENxXR5B41BGeiuCU0RCezOOu75cgagpPWXAC0vEnSSUCarJC71fanYfgkT63vA+awvO2435AZ3eR9J8aoN3Tpcj7bzH4oFpFmatqwN4oAa7MQOunW0n9KJPmNtnZ2SH3JohYQ+m1RFyQk5MDADhwOBmF5fWRT5dLQFKyF852VahpLQkqteCUkYWnL00a1IMFp2LncYC5VGstoqgd/XTw9Y4nWHDKcHyoQ9QQc1xwpT0LVfssV6rV6pMlswZMHuyKcpLgJAgiUrTESLAIjSUkOC2jfwxZA3xMsOBU2lL5mWDBqdgEZkeFCE4NAgSnTJ3wlFELTqWbfoakksD7qQWnYlcnPGXUgpOvEXHqDTvReU6o4FRegw/gZpWB+/tBPJaxDP5SEp1E/ECik4gLZNFZXOCEIIZ+LF0uAc52VfCnshDBKaMWnhyDrrhRhKee4JSpi3gant8lC09VWq2mmVykyILgsiQ4jSKV0RCetI+TIIh4wUhQchwJzvrG7GknFoJTRi08zWz1BKfSFtMXnIqNJMoMBWddJpSm4JSpE55aglPprkp4aglOxa5OUAZEOAEMfPoActZWwmyGwABwq2vQ7qlqpFRKi/itWrUyeRZBRB8SnURc0LZtWwAAV1Kja+M95gHv5eBLNSocVFc8yAwe1iJuVooJACFptQ3GzIkSBEE0VxpDUJpBgtMylnybLPwiFZyA9b7znHkxIwufPTHZpSs4lWYEBtHF6QpOmfS06gDB6TniQ6f5xVIbxj1VrlfOq0RxsfSc9u3bmzyLIKIPiU4iLsjLywMApJcf0zcSOHAM8GYCtRk6xYWqGFzlfohuHqJHe8sy5xPA1foBnpcinnrORhABQQDH88bnYsrFhQwcnBK9NHNc6rLvujYm4tZiVNLyvk6KchIE0djEm9gESHCGQViCEzBeFK6zMz6WrP74Ml2cTukHAASDCrMuJ8BxhplRYpoH4Hm4yrya1xkHVOa6UNXaBcYBafsMbterDA6e4d19pyu/6zz3KHh/eAvbB5zJAKQiQunp6WE9lyCiAYlOIi7o1KkTAMBTXIELumxC55bFAdcrj6TAc0RyDsyhLTxdVQyuMj84EWAcB9Hj0BaeIuodGseBaaXVCCLgr3cwmsJTFpz1RppOmjEWulfF6gHXITb27IdsNMFJ+zkJgggXEpzhNGZPO40pOMOw0xSesuCU0fJ3zsC5ga6ArROcdUaawlMWnIAUyQwWnowDqlq7IDqhnNfpqNW5Xa8ypCZJzy+pSVaEZ6s1ldpPMGBfsiQ6O3bsGPZzCSIakOgk4gI50llVJCIbpTil5S5FeFYeSYHnsAu8aqwPFp7O6nrBqdhoCE/OJ2g6jQDhGSQ4leeqhWew4Kw3su6sgwsMaZoEVeQzw4JIJMFJEETCQIIznMbsaSdeBKdWlXdNM5VdsOCUUfs9p87BDcHRTrXgVPVJPYdQC04ZtfBUC85ggqOdasEpIwtPZ6XxWZ9a7K47m1Ne1CeIxoZEJxEXZGdnS+dIMaB0P0OKoxantNwFACGCU0YtPHmBBQhOxUYlPJW0Wr0CQ3JZdA3BKWOYaltvpNhoRjmDMblueY9nPKfBkuAkCCJcSHCG05g97cSL4JRRn2dt2paO4JQRmb7gRJ2/loWnluAM6pOW4JThBAZnuU9XcAJStFMWnlqCU6akJhn+VJOCSBpsrUup7dmzZ9jPJYhoQKKTiAs4jkPv3r0BACV7pAE9xVGLlqlVEJL0BQurG4c5gyK0THYcHFd/BqcePG/NudlVhdaCU27w8SlabTX2+ZwEQRBWIMFptaGmKzilhqzd0ExwAub+H5Cq3VopWGWh+JCQ7NQVnDK1WRwctZyu4JTZcHyecUNBMABb06TKtfLciiAaGxKdRNwgD4zH9koRu2+LemN/QRb8LQT40rTFkvsYkFQiQvBwEJK0P86OWgF8taRKmZMPOehZhvML0iqngfBkolRcyLCqbXAlWyPHxJjhdcuCM56jnEB8TiAJgohP4nG8iFfBaRcW+8RxnPJjZGN+P4uC08JCMCeLSSM/KNsYLLxyTlV006+fzsrcLgAAX6UvFH3pbjAeSC3QXxGvasOBOQFOBI5t0j/SpF/2Yfxwfi8ITuufm0NJSShzueByudClSxfLzyOIaEKik4gb+vTpAwAo3ini26Le+GNvO7BaB+BgmsLTfQxILhLB+xkYD/iTeXgznaHiU2Tg5BRWjtMUnorgFFWpPMEFC2TBqTypTnjqFQ9So+U0mbEwDW0jsolK2FFOOyc0QHxOJAmCiC/icZwgwSnd0sLfxnbBaWYWHL3UEp5qG53jzQIEJ6CZzcTcLklwyu+XKGoKT1lwAgDvFTWFpyw4ZZyVoe9bv+zD6Jd9GKkOL8paJWP1+d2kfoS+wsB+Avg9IwMA0KNHD7jdbpNnEERsINFJxA0DBgyAw+FA5RFgy+YsSXDKaAhPTkBACXHGA6JDEp+y8HTUCuBrggb8IOEZIjhlrKTaymk46gJDeuLOrBy81T0rWlV0TWhwWq2dqVtAfE4oCYKID+JxfCDBKd1S42+j/p1Z9LP+fvYITsv300qpDfLTIYJTRhXtVMRm8PsVVJNBLThleK+I1ML6eUiw4JRRRztlsZnqqBe1c+8djG2DWls6p/On7lJbxx9/vIk1QcQOEp1E3JCamopevXoBADx7S0IN6oRndVs/OEFKq9VCjnqCA/gqX32UU01wxNNIKDrqbIzO8ZIdlsjMU2IjPX8MCBS5Jtiyj5OEJ0EQ0SQexwUSnNItTVJpLRe7s1Fw6mUZAaj3i0Z7OOuEp67gBCRf7RcCo5sa8FVe+NLdmoJTsamV+qQnOAEp2nlsUytFcAbjS3Li7SlnYMNleRBd2m0ITg7br8zBX+36AgAGDRqk22+CiDUmW5wJIrYMHjwYf/75J5IKilDZXeNsKQeDq9gJTwnTHdyBuqink5OWVfR0mSIUTYQbY1JqLcfrizzGrO2r5Hlj8WoVWUga9QmyCRe58Iz3PaMEQSQuJDitNmRPO4AlwWlZTFq6n42C07Qdi0eX8RYKBjl4cD4/mEdH5QFgLgecFV74MozTWF1VDMxkXybjoSk4ZXxJTjx8x0VoO/4Y7vruG+SuLYerUoAv1YGCE9Ox6/IcFDI3Dj9YAIfDgf79+xu/PoKIISQ6ibhi0KBBmDlzJpIPHAF4QcqXDYL3ceD9DP4kafB2eEMFlatShLPSD+aSU2hDRRPnEwCvT3I6TockHLXO3lRuzAGijshT9oJy4ESDSKWF41PCrlYbbeFJ53USBBEtmrDgjMsjUYDYCk4rYlO6ofSvKOofQxKu4GRM//PlcEjt+f36x6g46yrZGvgs5nGBcRw4n76f9GVI7fMCQ8ZuEWVdtF+fL42BORgWbzgOYwf9rmmzqyIbtYITe1Jb4c9b2+HPW0Nt/vNxP6RgBwYMGICUurM6CSIeoPRaIq4YOHAg0tLS4Kj2Iqm4GHAGDuSuIieSC+v+wwP+JA6CJ9CpuCpFuMp84AQGxnFgLumcTuYMLjjAwImsfl+m1pEqogimPrdTqyx7cJST10k3EkV7BJeWeLQwIbF1AtRQSHASBCFDgtNqY/a0Y5SSqr5dYwlOGY3F2ZA+6flBs9fncNQLThmts7llwSk3XesLMZEFp4yrTCMlNsMJxkPJzHLWhPbbl8YkwemUrjkqHFi88bgQO1lwyswrHBxi8/yWMeC3StuTTj311NDXRRCNCIlOIq5wOp0YNmwYACBlbyF4l6gIT9cRJ1L3c4GRTR7wezh403lFfHKidDCzDOM4MAcP5nIowpPzCYAvtMBQgPAMFpzKPVXCU32YdJBNyF4XM8FlJcppFK20KDzDmgxRWi1BENGABKfVxuxpx8YKtdbuZzGdVu9+KuGp2ye1P9QTnGqfWic2DV+j0xEiOOV21MIzWHACAOcTA4SnLDiDSd9T3ydZbMqCU+lqeX2W166K7BDBCQAltSkBwvP5LWNQVexA6uFjAIBTTjlF/3USRCNAopOIO0477TQAQNLuAnBg4F0i+CQ/OFE7lRY8wByS+OQFwFkRuiIJQIl6AgC8PinKGYxexDPknhYOolavKpul1SKMMzmNsPuYEzuhKCdBEAAJTuuN2dNOvApOUxOLRYrMIpyMhUY3g/H768WmQWEh5nFpCk6lK3VptnqCEwBc1SLS9wRGN7VYvPE4RWwGC06ZktoUPL9lDJ7fMgaVlUlI3nsEgiAgLy8PHTtq1MUgiEYkjmeoRHPlpJNOgsfjgau0Cq4jZZIPKPQg6ShnWDzIXcngKtM/iBmQhKeps5P3cJgV/DE6HkUmjH2UthZtIAiCiEficZxr5oIzrAq0pvezR3BaTs0FzF+jldfncBjXdADAnA5wtT5dwak0VSMYzlUAgBONBScAuI468dfveYY2u3a0QXl+BiorkwAAKdsOAgDOPPNM4w4QRCNAopOIO1JSUjB8+HDp8bYDAOqKB3kB0aEvPHk/Ay8wMCcP5tB2CrzXL6XI8DyYXjRTEKTzuTgOHM+bOyuzyYEc5TRqp87G8F5WBGysjlBpCFYEP0EQTZd4/P4nsuA026MZrxVqLbRj2i/5tXO8ybYTyYYZCUqHhYJBchTUoB0xyQkxyQlOZEgq0s64AqSsLMZzaLHN4BgWLwcw6RgVPXbtaAO+mgfnl2z4qlqkHpT2c5511lm6zyOIxoJEJxGXnH322QCAlO2HwQ65kFxQN/By2sLTXc7gLhMUG+bkIXocAeKT9/rBV3klB1UngJjTAablmNXpsFqrpCILdFBakwStMzv1CgwFmDRw1dn2KrO0n5MgCJsgwWmlofAEp9Zjo98F3y6RBafZe6UUCKy30RSejqD9m/7QDCcWtMeTrwktGCQmOQEO0g8A3hvajt/DKYITAJxVCBGevJdTBKfM7s3tQtqSBady/2I3kncehiAI6NOnD6XWEnEJiU4iLhk6dCiysrLgqPEiZX8hePUYXyc8BVe9+OT9DLy6ZHnd4K+OenICCyo8wCnnginCU45yBqMWgiIDRCF0dVVTeGo4OYsRvwDHa1N00nKUM5qCMx4nnwRBRI94/M7Ho+C0ipnIjHWF2sYQnMGE+HYTUVpXxVarYFDAf7WKCgligPBUBGcQ6minLDaDF7mdVfWPFbEZ5KbV0c5dO9qECE4A4HxA6pb9AOoX7Qki3iDRScQlTqcTY8aMAQBkbNsdalAnKkUHB1elKsqpYcecPDhB1Cx5LtkECU+9oj+y8DTay6lydJYKA1koMJTwabVaxOMklCAI+4m373o40UTTpuJEcIZzHXFUoTaorQYLThkli0nfhglivdjUu59fkLKgtASnTF3UVE9wAvXRTnV0U4sW20Kjm8Hs3txOEZvBghMA3MUlcB8th8fjIdFJxC0kOom45YILLgDHcXCVFYKvrdA24gAwgPMb7emwcDOOk6rZiszQkSpC0rBSnoUCQ3X3JAiCaLLE2xhnY3XvmAtOK2dsxqPgtNKOHYIzLBvze3F1dR10cTqko9eMpgIOHp4Sv6HgBKTtQUaCEwDS9mqLTeX6LmlxftSoUUhPTzdujCAaCRKdRNzSvn17nHjiiQAAz5FdmjbuMgbPMaHu8GVOs6ocXyOAr5GKB8GhU1pdqDu3kzEl8mmKgSOpF6cG7TBjgRtwHzuLVFghno9eIQgi/iHBaaUha3Y23C/eK9TqZgap/Z9eRk/A8WQGVefrzs+G1vnbMqpzunWpi4ByRoWHHDzAA7xfRGqBdpYVL0jFDwEgY6d2O0lFHJKKODi8QMoB7fedr61F1uFCANJiPUHEKzSzJOKaSy65BADgKtkLR5UXfFBEU72Xk3GQxGfwgc2CKO3nBOoFZZAT50IKA4UKTyaK9ceoyPcIngxoRTm1HLT6XjoOPMQJ6008opVaS8KTIIiGQILTSkPW7GwSnLYRyyNRrLx2qzZ8kOjWEp5BFe05n4ZNUMqto6I2xEQWnIpNbagQlsWmjKs61EfLYtNRt33UWRPanYydPLJ/2Q2v14vevXujT58+oUYEESfQrJKIa0466SR07twZnOiHu3g3OD8U4SlHOYNRC08lyhmMWnjKUc5gzCKeauGpcnyaK7ZmxRasFmNoKhFPK/tdCYJIPJqo4OR4rnkLTpsLBmkR4DutLLLq2aijnXVi0/B9cPAhglNqR3UvpyNEcAKoX9CWuxckOGXU0c5gwSmjjnbKgjMYdbQzYycPZ7kPOVXS2Zx///vf6bxvIq4h0UnENTzP45prrgEAuI7tBOcXFOEZUrFWhZxuC4Q6BVXj9Y5GTwRxnFR0gLH6KGfw9XCrzBoJLt5CESK1o41FASG7hScJToJomsTbhDfeCgZJjVmzizfBaX4zC3slbVxctWhj+B74/dpiUwXn89eLTZ22HBW1YA5eV3ACUrRTnU6rhauaBaTTaiFHOzN28nBWMjhL96C8vBwdOnTAaaedZvhaCKKxIdFJxD2jRo1CmzZtwAm1cJbtBScCnmMMyUf94Iy0Wa0AR5VXc5+ngnKWl4kDi/R6tLAwgbF1wkQQBKEFCU6zhqz1yaY9/PG8f1O/GQvthPF3NW3P6ntkZidCmk0bdc1CoXpXlYiMfYKu4ASAlEIRrTZycFYygInowBUAkKKcDofD/CYE0YiQ6CTiHqfTiauuugoA4CrZDogCHD4G3iuCE5mu8OREBtStKuoKT59fWsk0qmgnCGB+wdjZCaISdYyoYIMoWjtqRU2iCc94m5wSBBEZ8fadjkfBaYaNBeMs+x8r2z7Mb2btPqbN2CQ4VYvITNA//kzpt9a53EDge1OrrwLluYWjzEAp1nUjRaegECAJTs4POGr0/X9KoQiHV4Sn7og4Z+leHDlyBNnZ2XRMCpEQkOgkEoKxY8ciOzsbvL8aztI99ReYJC55QV98KqacRnVbpiogxHNSqo1hZNTkjDC1aXA7omhPaqlWumw0haeFFN6wibdJKkEQDSPevsuJKjjtuFU4C55qIaglChtTcFrxcZo2nHlEWcsvBxPUZ05DvAbPJzifhngV637q5hm8N7QdV5WoCE49UgpFRXDWt+1HWyEfADBu3Di43W79BggiTiDRSSQEHo8H119/PQDAXbwVztLq+osMiviUhaejRoCjSntVUXEUcpQzGHXUU45yqgl2aqooZzAx3dSfiBHPeJuwEgRhnXj7/jZzwWkJO4ra2bh/094Ip4V+a6H28Xp9VkU79TKnAqKdKrGpRh3tlMVmsOBMPVzfH1lsOoIEa1LBDhQXF6Nt27Z0TAqRMJDoJBKG8847D3l5eeBEL+DVOLdTJTw5kQF+/Qgd4zhNh6Bg5QBp2cHxnGEBIcWpmkU5G5Jaq9cnQ5MwJjnRiHIGE28TV4IgzIm37y0JTgv3s6GCuo3RTcN+i8w8aikyVV0GnYq4gmgukkXR9PVzgqidLaW28QmB0c2QztRHO42im3KKbUh0U+mvFxlMinLeeOONcLlcun0iiHiCRCeRMDidTtx8880AAMZ2gzGNQ6sY4Kjyw1FpsL9CxnSl1uTIFCBQeEZ8v9h9HeMq4kkQRGLRRAWnbSSa4LR+M1vuY6nPVivYmglTS+3YJLYB48VsALxPME2ndVX4kbnDpy04AXBV21FZWYnu3btj9OjR1vpFEHFAnI3UBGHMaaedhn79+gEQIQpbNW04QQTnF8EZDPycXmqtGkEE8/uNnRYT66OcRnbyvhGT1VZTZxzp8Sd1WD5GJRaTOTpChSCIhmLjGGXLYhwJTpNmwhCcRpk2so2oUwhIBdPat6m0U1fHQa+gEKC8ds6goBAAcIzBWaFvw/ul+ULSEX0bV4UfvE+Eq1yn6JC/HE7fXgDA//3f/4GP4WI1QUQKfVqJhILjONx5553gOA4MB4HaI+AM0mg5xrTFp7waaeQALR1UzUIPqw6yDUmZNUn1iaj6bTSItygCQRCNR7yMTVaPILHcXISvy0p/bDwOJWaC06b9m5b6bOX9Cec9NLKT+2y0/SXotWsVFFKu1T1fq6AQ7xcVwaln46rwK4JTD3eRF45jv0MQBAwfPhwnnXSSri1BxCM0myQSjr59+yob5wV+Czi/31B4AjCMelouaBPs7NRRTi1bGb1VVs7YxlJFv2As7MG0HOUM6Iy9E7z6zlCUkyAShngSnLY1xdkjOM2It4JB1m5m7T6mzUSQThu8qKtFcLRTa/FX7WNlsRncL3W0U6fPwdFO3YVt+Vay2DTwu7LYNBKcnqM+QDgAhmK43W7ceeedurYEEa+Q6CQSkptvvhmZmZlgXCUEbp+0klgrwFnpA1+jnZYiOwfd1Fq1k5FTa7XgVSujJuk/poWBTJxxXEU8AYp6EkRzJV7GoniKbkqNmNtQOq1JOzbZWLFTRzeDkf21USaSKtqpJzadFd6Q6GYwnhKvaXTTXeqH56gPnqM+cL5atGh9CABw7bXXom3btrp9JIh4hWaQREKSnp6OW2+9FQAg8LvAUC0JSq9f+7wsNaJoHH2UK9saYaW6LewRjXEnPAmCaF7EyxiUiILTJuJOcNqF2d+B4y3YcNbaMhKcwW0ZmZhEN7lan2l001FRaxrddJXUgPcJ4H0C/Px2HD16FO3bt8fVV19t2keCiEdIdBIJy5gxYzBw4ECAE+DjN4OhboAXmZQmY1Q8ADCtMmcJk3LuppFOxkz7qbRBFWcJgmiu2CzwGrTNQI3V/ti0h9PavWKwf9Oue1lBfo+N/lbKnkwLx3sJ5kWHYFZg0MLRZ0b95Wv94Gv9gGAgSCu9UgX+um1DIncUIr8fAHDffffB7XYb94Eg4hQSnUTCwnEcHnzwQSQlJYHxJRA56dwqRUyKGoJOK7U22In4BXPnJAiAnGZjKDxtPufSqIhCtPZzEgTRvGnsvdfxltYfI8FpuWBQrPZv2nUvNXo+yew9Dkcg12HpHGwjG/maVhVbOYOq7vVoHdumiE1B30YRm3WCk8EPH/8nAOCiiy7C4MGDzV8DQcQpcTaSE0R4tG/fXkmz9fPbwfzl9Rdl4amOeupFN9W/ZxYilMFEq9COHo0V9bSymmy5LRLABJEwNNb3NYrjaoOLqlnBBsFp7T4xTKdtwL2i4ktjne4dNG8IqWIrahQLUhUl0o1uqgogBkc3ZQTxL4CrQdu2bXHLLbdE/loIohEh0UkkPBdeeCGGDBkCcCK8advq02wB46inFtFMt20Ahg47zEkNRTkJgkgoYrCQF9aZxVaLBiWK4IyXdFr5b2CyXUWyMeivlfTZcDHywUHRTS2Co5taBEc3ZQTnUQhuqXjQQw89hJSUlPD6ThBxBolOIuHheR4PPPAAUlNTIbrK4UvNDzWqE56cYOwgbKHOcYa9wqvVlJVzzay2RXtCCYJIFGKUOWJpXGyq+zet3ifa+zd5ztp7bEeEU68qvRqf37zmg1Z0U40gmO7d5Gq1o5sAwLhaJLeX5jKXXnopjj/+ePN+E0ScQ6KTaBLk5ubinnvuAQD4U/ZDcB0LNZKdCDNwFFYQWf1+TiMbwJrDtsuhW3DacSU846UiJkEQ5sTy+5qIgjNCLO/fBGInOCPE0mtSjiCzuf5BJBhlRdXNIbgajX2dMoIATjSObnK1XmkRXEtwgsGbugWlpaXo0aMHpdUSTQYSnUST4ayzzsL5558PcIA3YzsYavSNWZ1wDBafRudzKs9tgHOMlvAM7r+FFDASngRBhAUJzqgSlthMIMFpSri+KNr7is2imwEL1xrzAEGoF5yQhGUwXK23XnDq4HfuhOgsRXJyMiZNmgSPxxP2SyGIeIREJ9GkmDhxIrp27Qrm8KG2xXYplcZs1VIt3KLp1MwmDBrXGpyia0F4hi0+o7US3YAqhARBxAgSnNZpQAZNXO7fVNOACuyWopsNWfy08v42NIvJqtjUo05scqr7BwtLWWzqCU6uphaiWAgh/SAA6XiUjh07Wn8NBBHnkOgkmhQejwdPPfUUkpOTIXrK4UvPr9vHaSI8Y7HXU0aePGg5MDv3z1C6LUEQkUCCM6o063TaaGFlcVSdzRROdFOLoOimFlaim1xNLRiqkdTlIBhjGDt2LM466yyzV0IQCQWJTqLJkZeXh/vuuw8A4Es/BH/yUWl10eszPvhZTpmJhyqvsTh4uw4SngRBhECCM6rE3fmbEWJLOm0M9nUy9ZFoUYhuBuDzm0Y3+YoqcDW1gOhDbcvtKC0tRc+ePXHXXXdZfEUEkTiQ6CSaJGeddRauvvpqAEBt1m4IrkopmikI1g5/jkR4MtGWyrWWiKVgjPVZpARBNA9iIDbiZXEtrIJBkd8s8jZiuAAaU8wq08oVbLUQREAQDaOb8vONopvw+aUfQUBt5m6I7ipkZWXh2WefRVJSkrXXQRAJRBMdTQgCuPnmmzFs2DCAE1GbvQ2iw1cfzTQSn/IEyKgcOhP1J0qxjJQ2RlSWhCdBNG2aUMZB2PvXGyqALexTjJnYlG4W2fNjcVRKQ4jmgq6o2oqjtyVHEI0joLKQNOqnbFN3D1/aIQgpxXA6nXj66aeRm5sbwYsgiPglDkcUgrAHh8OBxx9/HJ06dZIKC+XsBONUDsNIfKpFpZGwi6cy77EkWsIzVhFigiC0aSzBGYWxNCbRTYtFcRokOBtQxKfuZg17nkwDxGbMsnuisdAqmtR9AJTopqmYtCJIVffzp5TAn3kAAPDPf/4Txx13XENeAUEkBCQ6iSZNWloann/+eaSnp0P0VKI2dx8YVPs5ZPEZrahnAsAa6sQp3ZYgmhZNLMLZYKyO5xbvkXARzmgRD/USgglHbEYa3QwSt0JSBVhHqXDQJZdcIh35RhBNGJoxEk2eDh064Nlnn4Xb7YaQVgZvzoF64QkERD01V2uDo55GAtUu8SnGcF8oQRBEPGDT+Nls929Gcq94TadtCJaOVrEY3bQqNq1EN9W3d1WjJncXvF4vTjvtNNx5553mfSaIBKeJjDAEYczxxx+Pxx57DBzHwd+iGL6swkADJeoZI1EZK2IRibTzHk0o0kIQCUU8fPfiJXPCSj9ikrpr8f2Ih79dvMAYIArGNiailIkimFEGFFC/NUfPxu+vPyc8WHA6vKhpsxPgBfTv3x+PP/44HA6HcZ8JogkQJyM8QUSfkSNH4u677wYA+LIL4Es/qm/cVKKMiSaSAZpAEURj0NhjXqIIzmju4Qy4T5y8H7EmEp9l9hmWt8kY3IPJx6bpCdO6czkNM5H8/sCjWdTt837U5O4Ec/qQl5eH559/Hh6Px7jfBNFEaKajGtFcufjii3HttdcCALytD8CXWqJvbHZGFxE9SHgSRPPBZsEZ0T51I2K1hzNcwWmHn2po0aKAbjSSv7Tiq2WxqSM4leim0WenTmzqvs666KbedcYJqMndAeapQcuWLfHyyy+jRYsWxv0miCYEiU6i2XHTTTdJG/Y5wNsmH77kEsVJcA4e4IPSXEh8Ng6R7lEiCCI8GmOci4cIp5WiaLEQnE1pX2UssCo2DaKbAWKzodFNldhU23Cqv6Uo1KImdwfEpGq0aNECr732Gtq2bWvcd4JoYtDoRjQ7OI7DvffeizFjxkjCs10+/MmlYIJJ8R6rEzI+hsUjmgP0XhJE0ySKgtNytNOm/ZsRFw0isRke4YhNA8GpJzY5pyNAbBoJTt3rPA/m90MUvKhtuxdichXS0tLw6quvomvXrmavkCCaHDTKEc0SnufxwAMPYNSoUZLwbJ8PIaW83knpHo/CjFdE7esgCVc19F4QRNMiXiKcZtD+zfiCmRT4ASR/YVT4jzHzVNo6IakrNgXBMJUWfj+Y3w/GBNS22QsxtRIpKSl45ZVX0LNnT+P+E0QThUY6otnicDjwyCOPYMSIEQDHUNthH4TU8rqUHQOHJBeSMBOfVkqyxwEcz8XNEQOGkPAkCMIiCTGmEaEYCkETf2rmk9XpuCbnbhuKTUEAON443VZkkuBsvxdiWgWSkpLw0ksvoW/fvsavgSCaMCQ6iWaN0+nEE088geHDh0vCs/1e+NPLpIvMYJ+HeoWcxGfsohYkPAkiusRqX2eUKmtbHsesjlnRzmoBEsI/RB0jP2p2XJmV7COzz7V8D719orLYlK9rfcaUY1IYGC+gtsMeiKmVSE5OxosvvojjjjvOuA8E0cQh0Uk0e1wuF5566ilVqu0B+FuWSxdlR2TFqZlebwTx2QAxSMKTIIhExPLYFQ+pvXaTyMXu1L4z+G9oJbpphJaIVBcLNBObQBhnckrzBOYQUNs5H2KKtIfztddewwknnGDcT4JoBnCs0WpcE0R8IQgCXn31VXz55ZcAANfB1nAVZwYaqScrgvEB1IwxfZHJ89I1o6+faFLYCLC2Ch9BRKHBRw/E6nxQGr4IIjrEanHHJgEYVcGZKPs646APpu+D+r3U8i+OOkFo5EMcDmPf5+CNfQOvuodmASCH1E/Zx2vZOJ2S0AQC+sIcftR0zgdLqkWLFi3wyiuvoFevXvp9IYhmBIlOglDBGMNbb72FuXPnAgBcBdlwHmkJDkGOlOON933CRHTWG+lfsyI6AQsrvY0gOiO8b3j3oSGMIGwngUSnrem0WpDoDKMLFkWnUc0EI8wEp5U25D7q+Q6z67wDEIWQfohuL2o75YO5fWjZsiUmT56MLl26GPeFIJoRTTDHhCAaDsdxuOOOOzBhwgQAgC/3KLztCsAQ5HzqBGdEazayKG2q+3msnH1HEETzpYkIzmZBhH5KqQQbSfV300JBJns/g/dl6tmYXdcQnEJyNWq67AVz+9C2bVu8+eabJDgJIgiKdBKEDgsXLsTrr78OURTBl6fAk98OnBhYQCjgIOigFV7LkU7ZJniVue73EafYNlak04b7W2ufhjCCsJVYRDljJTgjuV8Y7TfpSKeej9LsQmgfjPxkaB80rqv9kMMRel32MSKTrmu1IafKcrzxdb17yNfle6gvpVWgtuMBgGfo1asXXnzxRbRs2TK0DYJo5pDoJAgDVq1ahSeffBK1tbXgqjxI2tcenN9Zb6AR7ZSdqiI6GdOfDGgJU7Vjt2NfZ4SiL2LhSaKTIBKHpig4G3LPMNu35VzlSIWn3aLTyDfpdqG+D1q+K2zRGex/ggVh8DYXlzPwenDtheDnB18PFqVqsanxfH+LYvjziiCKIk466SQ8+eSTSElJAUEQoZDoJAgT/vzzTzzwwAMoLS0F53XCs7sdeF+SdNEgxZbjOOma2qkFO1wLxYYStpiQDfe21j4NYQRhCwkgOGNSXbsB92hSotPIJxne3kbBqed3ggsNBdvJolOv0J/8fKvXdUQvE/zwtS2CP+cYAOC8887DfffdB6czSPQSBKFAopMgLLB//37cf//9OHDgACDwcOfnwlmRbm1fp1aVWrXztZCGm9AptiQ6CSL+acqC0+q9I2i/yYhOI19kQXQa+SpLotPI31ipfGvkb+QCgFauG4hexryozTsMMaMKAHDdddfh+uuvt+czQBBNGBKdBGGR0tJSPP7449i4cSMAwHU4G87CLATXGArB6GgUjot70Sk9nYQnQTRpoj1hboyU2nDvH2HRoEbf12l0f6NtHlYx6p8oml7ntPZK1sEYs1eUNhQTXye6vajtfBAsyQePx4OHHnoIZ555ZuT3JYhmAIlOgggDv9+Pt956C//9738BAI5jaXDtaw1OztTRcrpm53HKNgaQ6LRyDxrKCKLBkOhsuqJTHhsjFaUNLTRUd11PdMr+Te/9s3zdoX1/JojWrpu0L6ZVo7bTIcApIicnB8899xydwUkQYUCikyAawBdffIHJkydDEARwVR64d7cG73XVGwQVA4q66ASad4ptwL1oSCOIBhHnwjPq+zmbmug02tYRbGel70aFhvQWXFXXNSu819lpCVKzqrch14P+frKYtHxdp30mCvDnloF1PAZBENCnTx88++yzaNWqVchzCILQh0QnQTSQ3377Df/f3p1HR1El+gP/VnVn6SxkIYEEieybCrIrIoiCgIgiCCjqcUGf43sqjI7vp5MRcdQRlccIbzw6DjPoMIrwXIBRR3BQFoWwySpLCJAgW0L2he6k0131+6O6K91Jp7d09Zbv55ycdGq593aJ1fnm3rp3wYIFqKqqUp7zLMqErjrB+cPbcWIG9na27Xyf6uJtjchn0Rg6NZ5AyKmqcAqd3gROx2N87eX0MOt6i6Y5hErHsGk/15dJiFzud+jFdAyTXu93Vb4kQdZZYe5WBinlMgBg0qRJeO655xAXF9eiDCJyj6GTqA1KSkrw8ssv48iRIwAAfXEK9BfSIEDw/Ffn5rTu7WxPoRNg8CTyh5bBM9ihU+NlUlpUF8rQaa/b3fwBjrztBbXzdmbbVvbbQ6fL9asdQqe7wOlupniIgssw6fV+tAzDkqEB5h4lkOMsiImJwbx583DnnXdywiAiPzF0ErVRY2Mj3nvvPXz22WcAALE2HrGFmU3rebr767MjDrHVBm9xRN6Lht5Of+sIZegMRC+nu3udr6HUF77MettKL6inWW+1+lXVqWyHtlnSa9GYUwaIMrKysvDKK6+gf//+mrSBqL1g6CQKkM2bN+PNN9+E0WgEGnWILcqArtZhkWjHmWo9TcjQCg6x9bde3uaIvBLGoVPTwAmEdsmUtswM6w13obQtbfd2AiJ/l2IJxHtvjdWqLLPi0DZZlNCYUwZreh0A4LrrrsOLL76IlJQUbdpA1I4wdBIF0NmzZ7FgwQKcPn0aAKAr6YCYC+kQZMf1xdzM9MfQqR3e6ojci/TA2cY6wi50ejMrbCACmb+z3gZiVlxZVoJfc95OUuTvjLpW25TzDm2TEuph7n4JcpwFOp0OjzzyCB544AGIWoVeonaGoZMowBoaGvDuu+9i7dq1AADBGIvYokyI9bHKAe4+TCXJ7fTwHGLblrp5qyNqVRgHTuV0H9oX5ODpLnB6tf4k4NvMsO4m8Wl+nDeBydfnPb2dgMibwCkIrt+fvY7WAmlb9tsDp639MmRYOldBzqmB1WpFVlYWFixYgIEDB7bediLyGUMnkUZ27NiBRYsWobq6GpAExJxLh64sGYKr4OYwCYO7aeJDHTqV0xk8iaJKNAXOANTna/B09wdCnwOnp0DpTeD01MvXnLvnPT3NSeDPrLiO+x1Dob3dWu13DJv2U2KtaOx2CVJyPQBgwoQJePbZZ5GUlNSy3UTUJgydRBoqLy/HokWLsHv3bgCAWG1AbFE6hEZ9y4Ntz734M3ufE4ZOD/XzlkekirbAGYh6fajT0x8GPYZOb2eFbe0YX9fObM7bCYa8eR7Un9BqD4WtLSsWqP3NAqcMGdaOdWjsWgHoJBgMBjzzzDOYNGkSZ6cl0ghDJ5HGJEnCZ599hvfffx+NjY2ARUTM2TToyhOVpVWacTctfJuf6QRCHzoD0Ia21c1bHhGA6A2cgajfi7p9WVvSvza0IZAG6llPT/fLQIVWrfa7IMdYYL6yDFKKCQBw9dVX43e/+x26du3qdRlE5DuGTqIgKSoqwuuvv47jx48DAMQqA2LPtOz1bPP/kpEQPNnbSRR60Rw6gzDE1tMfAgPyrKc7Ws4Kq+WssYHi43uQIcOabuvd1EuIjY3Fo48+itmzZ0Pn6tlPIgoohk6iILJYLFi9ejU++OCDpl7PX9Kgq2jq9WwXoTMAbWh7/bz1UTvH0OlaW3tY0Xrg9OlZz7byNEO6P/sdjwvVfm9nrnU4Ro6xwJxTDinVCADo378/cnNz0b1799bbQEQBxdBJFAKFhYV4/fXXkZ+fDwAQq+MRcyYdojmm/YTOpsICV5bPdfP2R+1YmIdOpQg/2hjkiYRaVO9h5vGQBM5ATFDU/Li2hkJf9/syiZKNLAqwZtSi8YoKQCdDr9fjkUcewZw5c6DXu5hbgYg0w9BJFCIWiwWffPIJ/v73v8NsNgOSAP2FFOhLOgBtyWFBCJ1KEQG+dYQifPL2R+1ZMMJPlM9c67IJHiZ+C2roDNQERc2Pa+t+V8e42++pjS72SwnKs5tyUgMA4KqrrsJ///d/o1evXi3LIiLNMXQShdjZs2fxP//zP9i/fz8AQDDGIKYoHeLlOP8K9DYMhlNvp3PB2pTban28BVI7Fm29nSEeVutJ0AKnN896evs8qB+Br8377cd4aqOL/bIgwdKlGpasGkAAEhIS8Pjjj2PatGl8dpMohBg6icKALMvYsGED3n33XWVdTxnQlSZBfy4FgtXHD8kghU6lCA1vH8EMn7wNUnsVTb2dYR44gSCFzkDwM/D5tB9wf4wfrClGNOZUQo63AADGjBmD+fPno1OnTgGth4h8x9BJFEaqqqrw7rvvYsOGDcqGRhH68ynQlSY5L69iD3ut/aIUqUNsW1agbflqPbwNUjsVTT2dWoROT/daH7RlciFPxwR1giKNeZrZ19V7leIa0ZhTCSlVWQYlIyMDv/71rzF27FhtG0tEXmPoJApD+/btw7Jly1BYWAgAEC7HIOaXdIh1DkNuHQNf81+IGDr9rI+3Q2pntAwpkTy01t391U/+rOvpaQIiXyYo8ibMtSX4trUMX96r/RhZlGDJsg2lFQG9Xo9Zs2bhoYceQkJCQqvtIKLgY+gkClMWiwXr1q3DihUrUFdXBwAQyxIQcy5VWdvTVeCz/3IULUNslQq0Ld9lnbwtUjuiRfCMpJlrRRejSFztc+RjKPU0uZDjMa6Oax7CvA2tjsd62q9lGe72e3ovLq+ZAFjTjLB0rYQcZwUAjBgxAvPnz8eVV17pso1EFFoMnURhrrKyEsuXL8fXX3+tfPhaBegvdoDuYhIEycUvWKLA0Bmwunl7pHYgkKEzAGFTKcbPNvlav6f7padRJF4GTk+/ank6xp8ZcX0NrsEuw9/3KyU2wHJlFSTbrLRZWVl4+umnceONN0bF8GKiaMXQSRQhjh07hmXLluHo0aPKBrMO+nMdoCtNdH7e0xeREDqVSrSvw2MbeKukKBWoX9RD1bupQTtU7kaPBHHyIW9CK+BdKA3EMW0pw5PW3q8UZ4GlaxWkdCMAID4+HnPmzMF9992HuDg/Z3snoqBh6CSKIJIkYfPmzXj//fdRXFwMQFliRf9LCnTVBv8KZfD0DW+ZFG2iLXQqBQWmHHfctVWSgxZKvRGI3tZA1eOWi+sm66ywdKmBtVMtICp1TJkyBY8++igyMjLa1F4iCh6GTqIIZDab8cUXX2DlypVNz3tWx0H/SypEY6xvhUVK6FQqCk49btvAWyZFkTAbWhvxoVODCYiihrsg7uK6yaIEa6c6WLJrAL1y7x8xYgT+67/+C7169dK6tUQUYAydRBGspqYGK1euxNq1a9HY2AgAECsM0J9LgWiK8a6QAAU59nYSRRCtnn1rL8HT3eRDzfc3F8BlWMKCp15dH2dal3WANbMOluxqIFa55/fo0QNPPvkkRo4cGYgWE1EIMHQSRYELFy7gb3/7GzZt2qQMbZKVmW7151MgNujdnxxJoVOpKDj1eMJbJ0WqMF8mRSkmjIOnp1nCPfWAtnZMpPGmV7e19+0qbEKGNcMIa9dqdUbarKwszJ07F7feeit0Ol0gWk1EIcLQSRRFTp8+jRUrVmDbtm3KBhnQXUqE/kIHCOZWwmekhU6lsuDV5QlvoRQpgjWzZzj1diqFBa4sT7xZMznSA6c376m1Y1oJm1K6CZau1ZANFgBAx44d8eCDD2Lq1KmIifFy1A4RhTWGTqIolJ+fj7/+9a/YtWuXskECdKVuwmekBc9wCp0AgydFhggKnUoxYdzb2Rpfl2AJJW8mO3I8xtP78vH+L0OG1NEIyxU1atjs0KED7r//fkyfPh3x8fE+lUdE4Y2hkyiKHTp0CH/9619x4MABZYOshE/dhWSIDba/HgcwwLG3kyiMBSN0BjDgabp8iuP9I5Q9oXa+DlUN5jGBIEvqdZYFGdaMy7B2qYUcr4TNpKQkzJw5E7Nnz0ZSUlJg6yaisMDQSdQOHDhwACtXrsTevXuVDTIglidAf6GDMuEQg2fb8VZK4S4CnuVsKk6DwOnqfhHMwAn4N/w21Me0hf2aC6ISNjMvw9KlBrA9s5mSkoLZs2dj+vTpDJtEUY6hk6gdOXLkCFauXIm8vDxlgwyIlQboLyRBrPNxqZVWBDV0KhUGtz53eDulcBbGM9Y2FaXBkNrW7hGhCpzeDL8N1DHujvPmGH85XHNZlGDtbIIluxaIVcJmeno67r33Xtx5551ISEgIbN1EFJYYOonaofz8fKxcuRI//PCDuk2oiYX+YhLEyngIaNsvfu22txNg8KTwFujgGa6B09N9IRSB09N9MVDHhJJj2IyxwpJdB2uny4BeaXNmZibuu+8+TJ06FXFxcaFqJRGFAEMnUTtWWFiINWvW4Ntvv4XFojxbI5h00F1Mhq40AYLs3y+B7bq30463VgpHgQyd4Rg4va+w9X0Ozx+SlxzuwVJCIyzZtZAyTLD//TInJwf33nsvJk2ahNjYwIyqIaLIwtBJRCgrK8MXX3yBdevWoa6uTtnYKEJfnAhdSSIEi+/rozF4gsGTwocWQ2sjNXR6mlyIgdM9F/daGTKklAZYs+sgpTao26+99lrcc889uOGGGyCKvK5E7RlDJxGpjEYjvv76a3z66acoLi5WNkoCdGUG6IoTIRq9/ws1Q6cNb7EUahEygVBQgqenyYU8vR9vekHDtafUm1Dt7hhXYVOUYM0wwdq5DnKiMlpGFEWMGzcO99xzDwYMGNDWVhNRlGDoJKIWLBYLtm7ditWrVyM/P1/dLtTGQl+cCLHC4HHobdBDp1Jp8Ov0Bm+zFAoRti6nUlQQArKvEwt5E0xDtQSLJ96GanfHubheUrwF1s51sGYa1ec1DQYDpk6dipkzZyI7O7strSaiKMTQSUStkmUZP//8M9auXYstW7aoz33CLEJ3KRH6kkQIja0PvWXwdMBbLQVLsMKmWl+EhE73FTv/7G0w9bWnNFi8ab+7Y1obQptWD2vny05DaK+44gpMmzYNt99+O5KTk9vSaiKKYgydROSV8vJyfPXVV1i/fj3KysqUjTIgVsRDV5IEsSa2xay3IQmdSsWhqdcbvOWS1iI4dCrFhSB4ejPjrTfHeXMtvB1+6+m45r2rgWi/q2r0Vlg7GWHpfFldX1MQBFx//fWYPn06Ro4cyec1icgjhk4i8onFYsEPP/yAtWvX4sCBA+p2oV4H3aVEZdZbh97PkAXPpgaEtn53ePslLUR46FSKDFGPZ1u1ZYiut8cF4Z6mTgzUyQgpzQTYmtGhQwfcfvvtmDZtGrp06aJ5O4goejB0EpHfTp06hbVr12LTpk0wGo3KRhkQK+OhK02AWBkPhFPmYwCl9iACn+V0XXyEBc9ADdF1dVyQ7l1yrAWWTkblWU1bryYA9O/fH9OnT8ctt9zC9TWJyC8MnUTUZiaTCVu2bMHXX3+NQ4cONe0wi9CVJkBXkgChXh+6BrrCAErRKhihMwjPLkZk6PR0X/E0mZEvZQWILMiQ0k2wZhohpTSoa2smJSVh4sSJuP3229GnT5+gtIWIohdDJxEF1JkzZ/D1119jw4YNqKqqUrcL1bHQlRoglhsgWMPk+Z9wDp52vEWTP7QKnkGeKCfigmeEkCFDTmyENcMIa4YRiGm6zwwdOhRTp07FmDFj2KtJRAHD0ElEmmhsbMSOHTvw1VdfYffu3VBvNZIy/FYsNUCsjPe49EpQhHv45G2afMHASa2Q4iyQMoywZpggGyzq9szMTNx2222YMmUKn9UkIk0wdBKR5i5duoRNmzZh48aNKCwsbNrRKEAsN0BXaoBQ23L226AK9+AJMHySe1oPqw1i6GwtcDpOTMZQ6p4syRBEQZl9tqMJ1gwj5ORGdX9cXBzGjBmDiRMnYsSIEdDpWl/+ioiorRg6iSioTp48iW+//RabNm1qWnoFAOp10JUZIJYZIBj1oQmgDJ4UiYI5W20InuVsbQZshs6W7NdKFiXIHRtgzTAqa2raLpUoihg2bBgmTpyIMWPGICEhIYStJaL2hKGTiELCarXiwIED2LhxI7Zu3QqTyaTuE0w6iOUhCqAMnhQpgr00ilqvNsHTVYhk4PRMDZo6CVJaPaSO9ZDS6tVlTgCgX79+uPXWWzF+/Hh07NgxRC0lovaMoZOIQq6+vh7bt2/H999/j127dsFsNqv71ABaboBwOUgBNBKCJ8Dw2Z6FKnACmoZOb9b19SZw2oeWhjtf2ul4bIugmVEPKdU5aF5xxRUYP348br31VnTr1i3gbSci8gVDJxGFFaPRiB07dmDz5s0tAihMOujKDRAr4iHUxWgbQCMleAIMn+1RFIZOz9W2/p4j6VnP5sHa2/elbtPbezRNytBZh/8cV155JcaNG4dx48ahV69eEEL574SIyAFDJxGFLaPRiLy8PGzevBk7d+50DqBmEWJFvDITbnUcBEmDX64iKXgCDJ/tSajDRAiCp2M4a8uwW/u5gTzWU+j1tr2tHSfFW5SgmV4PuYMZjn9v6969uxo0e/TowaBJRGGJoZOIIoI9gG7btg27du2C0Whs2mkVIFbFKQG0Mg5CY4BmYYy00AkweLYX4RAsghQ8mw8p9XRcc67O0/pYX4YJu+zNhAw52QwpvQFSWj3kBIvT/p49e6pBs3v37h7rIiIKNYZOIoo4ZrMZBw4cwPbt27F9+3ZcunSpaacMCLUxtgAaH5iJiBg+KRyFOniGaJhtawIV+NpybFvIOglSSgOk9HpIaQ1ATNN9R6fTYciQIRg9ejRuuOEGZGdna9oWIqJAY+gkoogmyzJOnjyJH3/8Edu3b8eJEyecDzCLTb2g1XEQLH7+ohyJwdOOt/noEuqwCYRd4IxEMmTIiY2QUhsgpTVATnYeNpuUlIRRo0Zh9OjRGDlyJJKSkkLXWCKiNmLoJKKoUlJSgh07dmDXrl3Yt28f6uvrm3bKgFAXo4ZQnycjYvCkUAqHsAkwcLaBHGNVQqbty7E3EwBycnLUoDlw4EDo9foQtZSIKLAYOokoapnNZhw+fBi7du3Crl27UFhY6HxAowCxOk7pAa2JhWDyYihuJAdPR7z1R4ZwCZoAw6YfZFGC3MEMKcUMKbUecqLzs5kJCQkYNmwYRo4ciREjRqBLly4haikRkbYYOomo3bh06RL27NmD3bt3Y8+ePairq3M+wCzaQmgsxOo4oEHnOoRGS/Bsjh8H4SGcgibAsOkDWbRNANShAVJKA+SkRqclTQCgX79+asi85ppr2JtJRO0CQycRtUsWiwXHjh3Dvn37sG/fPhw5csR5SRYAqNdBrIlt6g01u5gVN1oDqB0/IoKPoTNiyIItZKY0QOpgVp7LbHa5OnfujCFDhmD48OEYMWIE0tLSQtNYIqIQYugkIgLQ0NCAI0eOYN++fdi/fz+OHj0Kq9Xa7CBbCK2NVYbjupoZN1pDKD8qtBduYdOOoVMl6yVIyUq4lJLNkJPMQLO/RWVmZmLIkCHqV3Z2NtfOJKJ2j6GTiMgFo9GIn3/+We0JLSgoaBlCLQKEWiWEijWxysREkotf0KMpiPIjI7AiJYy0w+ApQwbirZDsAbODucV6mQCQnp7uFDK7du3KkElE1AxDJxGRF4xGI44dO4ZDhw7h8OHDOHLkCEwmk/NBEiBcjoFQFwuxLgZCbSyEeofnQhk+CYicoOlKFIdPWScpS5gkmSEnN0JKNgOxLf+fzcnJwcCBA9WvnJwchkwiIg8YOomI/GCxWHD69GkcPnwYhw8fxqFDh1BWVubiQEFZpqUuFkKt7bs5yn5B5ceIdyI5mERZ2JQFZY1MOckWMpMaIRssaD5aPiYmBv369cPAgQNxzTXXYODAgUhNTQ1Jm4mIIhlDJxFRAMiyjOLiYhw5cgTHjh3D8ePHkZ+f33JyIgBoEJXwWaeHcFkP8XIMYBZ9WzM0HPHjxL1IDJ1REDZlQYac0Ag50dIUMBNazioLKJP+9O/fHwMGDMDAgQPRt29fxMXFBb/RRERRhqGTiEgjFosFhYWFOHbsmPpVVFQESXIxzLZRgHA5RhmWe1mvDNM1tbJkSyTgR0tLkRI6IzhoynqrEi4TG21B09aD6eItpaSkqAFzwIAB6NevH9LT04PfaCKidoChk4goiEwmE06cOIFjx46hoKAAJ0+exC+//NJykiIAsAKC0RZCjXqIRj0Ekz7yekX5MRN9gdP+fHKIAqosyJANFuXLFi6lxEYgzvVz0x06dEDv3r3Rt29f9O/fH/379+esskREQcTQSUQUYg0NDSgsLMTJkydRUFCAgoICnDp1quVERXYWQVmuxegQRo16oDECwqi7j5zmASAaPp4iKdQ0D5DuJr4KUtiUBRlyvDJrrPJlVUJmvLXF85d2V1xxBXr37o3evXujT58+6NWrFzp16sSASUQUQgydRERhSJIknD9/HidPnsTJkydRVFSEoqIinD9/3vXwXEAZomtSekOFep3ttU557Wopl1Bz/PjxFAgi5aMqmoONr72gXp4nQwZiJSVcxluV3st4qxIy3YTLpKQkdOvWDT169FADZs+ePZGYmOhdO4mIKGgYOomIIkhDQwPOnj2LoqIiFBYWqt8vXLjQehgFgAYRQr0thKqhVAehIUwDqSfNA2uoPsqiOWQ25xgefVz+RxYEIEZSAmVcI2SDFXK8Rf0OXevnJicno0ePHujWrRu6d++OHj16oHv37ujYsSN7L4mIIgRDJxFRFLCH0TNnzuDcuXPq19mzZ1FTU+P+ZLOohM8GW69ogw6wfVdCaQT+Yu/po80xrPjzMciw40SGrITKeCvkONuX7TVsP7sLljqdDllZWejatav61b17d3Tv3h3p6ekMl0REEY6hk4goylVXVzuFUPv3ixcvoq6uznMB9lBqFgGzDkKDCMHc7Odw7y0N9FDedhSC1OGvsRLkWKvttVX5ipOaQqWHfwKiKKJz585OwdL+lZ2dDb1eH5w3REREQcfQSUTUjtXW1qK4uBjFxcW4ePEiLl686PSz0Wj0riCL0BRCzSKERhFodHzt8F2O0MBm/7iMgsApQwZ0MuRYSemh1EtKmIxRvhBrdQqZ3sxPJYoiOnXqhKysLJdfnTp1YrAkImqnGDqJiMglWZZRW1uLixcv4tKlSygrK0NpaSlKS0vV12VlZd4HUzuLoARQswjBIgIWEYJFsH0Xlf22707bwn1m3hCwh0foZCU46u3fJch6Wfmuk5uCZYzSYwm95LFn0pEoikhPT0dGRgYyMzORkZGhftlDZWZmJkMlERG5xNBJRERtYjQa1TBaWlqKyspKVFRUoKqqCpWVler3yspK1+uRessqAFYBgu278lpUXksutksAJAGQBUCC8myqrBxr3yfY9kEWAPunodNr5ZunwCs3HejwXVa+CwBEGRBlyIKshD1RBmyvZVF2PsYWIpXXUlOoFGXn13rbvjaMbE5MTERqairS0tKQlpaG1NRUpKamOoXKzMxMpKWlQadz81AmERGRGwydREQUFLIso66uTg2glZWVqK6uRm1tLWpra1FTU6O+dvzyuSdVk8bDOYg6hssw6IDV6/VITk5Wv5KSkpy+JycnO4VK++vY2NhQN52IiNoBhk4iIgprFosFdXV1qK2thclkgslkgtFo9PjabDbDbDajsbGxxWvHbWazWfP3oNfrERMTg9jYWMTGxiImJkb92f46JiYG8fHxMBgMXn/ZA2V8fDxneCUiorDF0ElERO2aLMuQJMmnL1EUnb4EQVC/63Q6p5/1ej1EMcxn9yUiItIQQycRERERERFphn96JSIiIiIiIs0wdBIREREREZFmGDqJiIiIiIhIMwydREREREREpBmGTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPQSURERERERJph6CQiIiIiIiLNMHQSERERERGRZhg6iYiIiIiISDMMnURERERERKQZhk4iIiIiIiLSDEMnERERERERaYahk4iIiIiIiDTD0ElERERERESaYegkIiIiIiIizTB0EhERERERkWYYOomIiIiIiEgzDJ1ERERERESkGYZOIiIiIiIi0gxDJxEREREREWmGoZOIiIiIiIg0w9BJREREREREmmHoJCIiIiIiIs3oQ90AIiItyLKM+vr6UDeDiMgn8fHxEAQh1M0gIgoohk4iikr19fWYNGlSqJtBROSTjRs3wmAwhLoZREQBxeG1REREREREpBn2dBJR1Ivd3QmCLAKCCEG0DVsTREAUAEGAIIqAICjbAOW1KEBwOMZxu3Ks0PSzfZ/j8YIAwLbPtk0WBOVPfYJzmc23y/Z9on2/rShBgKz+qdC+XQAEOJ0jq9sczoetDFGwldW0H4Bah3qO/XhAqbN5efZ9TufBqS7ndrRyjsPPTefZvsPNeS7qa9EOF2U6cXuO3LIep7rkZu+16Tw4nAdBVquThab9guM+tWz7PlmtS2h2vCDITv8c7XUItmMFW5nKPylZ3ab8U5XVMpV9yjZBkJ33CTIEOG8Xba9F27nKazjvU8+Rms6D/XgJOqHptXoemo6377fv08G+XXLYLill2ct0KE893vZdhHKu0g6lfmWfBJ3tZ+XyS9DZttnP0dn+m4mwHWt7b/bXTW2UbW1A03bA9rMAEYBOECDa/oMq2wTbNhECBOgEEfUNAu7+jywQEUUrhk4iin5WQfn1T1B+yQNgC5i20Alb6BTtiU5JEYKS4OCcXmznuUw9onMiEhz3tUgtbl47pqPm++0v7eHR4bt6uOBQlNCseME5BDqd5+J8wBZ+W9knuPhy2Q4P5/hyqdpYpndBNYCh07Fep/2uQ6fjOS2Od7FPUMuRm5UpO5/jeJxTXbLzPofQ2RRiHQJsa/scwqhT6HTYJsI5rNoDW1PotAdSW0AT7KFNoRMEiIIAHeD0HXA4HoKtLEBnr8v2WqeW3co+9XVT+3VqO5tCpmP7XYXO5uWp7XfaZm9j0x8miIiiFYfXEhERERERkWYYOomIiIiIiEgzDJ1ERERERESkGYZOIiIiIiIi0gxDJxEREREREWmGoZOIiIiIiIg0w9BJREREREREmuE6nUQU/XQyZFlS1iW0LxJofy3YFtFzWs9SaLYOpuCwXXbY72Ffs4Ui5VYWn2y+veln+34Xr2X7a+VY9Ry56bXc4nw4LCjZVGZLgnKy0Oyw5mtvOm1v8bbg1Tqd8HOfuzI91Ke+LbfnNF9vs3l5csvyXZ7ncPUdzhPcrNMpOJQtNDteWRPTvq9ZHc3X6YT/63TKtnNl23bZ9lq27ZMd1il13C4JMiBIDu/bXpdkW9fTtt+hHbIgKfXY67WVCVs9zbeLtp8dvys1NW2TbP9bSw5rcUoCIEH5315y2CfA1Tqdgu08QVn303a97a8Bh/U+HV7b61LXGYV9nVGlPGWboG4TbK/rG1z9f0hEFD0YOoko6plHXgp1E7Rh+x3eX80zJZGd/Z+WFOqG+M2eyDmgi4goHPBuTERERERERJoRZFluw9/JiYjCkyzLqK+vD3UzIkZ9fT2mTZsGAFi/fj3i4+ND3KLwxuvlO14z78THx0MQOPaAiKILh9cSUVQSBAEGgyHUzYhI8fHxvHY+4PXyHa8ZEVH7wuG1REREREREpBmGTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPZa4mIiIiIiEgz7OkkIiIiIiIizTB0EhERERERkWYYOomIiIiIiEgzDJ1ERERERESkGYZOIiIiIiIi0gxDJxEREREREWmGoZOIiIiIiIg0w9BJREREREREmtGHugFEROTMaDRi9erV2Lp1K4qLiyGKInJycnDLLbfg7rvvRkxMjN9lV1RUYNWqVcjLy0NJSQni4uLQo0cPTJ48GbfffjsEQXB7/vnz57Fq1Srs2bMHFRUVMBgM6Nu3L+644w6MGzeu1fNOnTqF7du34+DBgygsLERVVRViYmKQlZWFoUOHYsaMGcjJyfHrPUXj9XLFYrHgsccew+nTpwEAkydPRm5url/vK9qv2YkTJ/Dll19i3759KCsrgyAISE9PR9++fXHjjTdiwoQJfr8/IiLynSDLshzqRhARkaK4uBjz5s1DcXExACA+Ph6SJMFsNgMA+vTpg6VLlyI5OdnnsvPz8/Hcc8+huroaAGAwGGA2m2G1WgEAI0eOxKJFi1oNHHl5eVi4cCHq6+sBAImJiTCZTJAkCQAwZcoUPP/88y1CxbfffovXXnvNaVtSUhJMJpNad0xMDObNm4dp06b59J6i8Xq1ZsWKFfjwww/Vn/0NndF8zWRZxp///GesWbNGPSchIQFWqxUNDQ0AgN69e2PFihU+vzciIvIfQycRUZhw7Mnq2LEjfve732H48OGQJAmbN2/G4sWLYTQacf311+Ott97yqey6ujo88MADqKiowJVXXokXX3wR/fv3R2NjI7788ku88847sFgsuOuuu/Dss8+2OP/ChQt45JFHYDKZMHDgQLzwwgvIyclRe8zsYeiJJ57Afffd53TuN998gyVLlmDcuHEYP348Bg0ahMTERDQ2NuLQoUP43//9XxQWFkIQBCxZsgTDhw9v19fLlVOnTuE//uM/0KlTJ9TX16OiosKv0Bnt12zZsmX4/PPPYTAY8PDDD2PixIno2LEjAKCqqkrtaX/44Yd9em9ERNQ2fKaTiChMbNiwQR06+eqrr6rhSxRFjB8/Hs899xwAYOfOnfjpp598Knv16tWoqKhAXFwc3nrrLfTv3x+A0sM4Y8YMzJ07FwDw5Zdf4uzZsy3OX7FiBUwmE9LT0/HGG2+oQ2ETEhIwd+5c3HHHHQCAf/zjH6itrXU69+qrr8bq1avx4osvYtSoUUhMTFTrHjZsGN555x2kp6dDlmV8/PHHXr+naL1ezVmtVrz55puwWCz4zW9+g9jYWJ/ei6Novma7du3C559/Dr1ejz/+8Y+YM2eOGjgBIDU1FTfddBMDJxFRCDB0EhGFiQ0bNgAAhgwZgmuuuabF/vHjxyM7O9vpWG9t3LhRLaNLly4t9s+YMQMGgwFWqxX//ve/nfaZTCZs3boVAHDXXXe5HHb5wAMPAAAuX76MH374wWnflVdeiYyMjFbblpycjLFjxwIAjh8/7vV7itbr1dyaNWtw/PhxTJo0CSNGjPDpfTQXzdfM3hM6ffp0XH311T61nYiItMXQSUQUBurr6/Hzzz8DAK6//nqXxwiCgOuuuw4AsGfPHq/L/uWXX1BSUgIA6vnNJSQkYNCgQS7LPnz4sPo8XGvnZ2dno1u3bj63zc7ee2d/Ds+T9nK9zp49ixUrViA1NRVPPfWU1+/BlWi+ZmfPnsWRI0cAABMnTvS63UREFBwMnUREYeDMmTNq4OrRo0erx9n3VVRUoKamxquy7cMpPZXds2dPAEBRUVGr59uPcXd+YWGhV+1ydODAAY/lO2oP10uWZbz55pswm8146qmnkJKS4rHt7kTzNTt8+DAAQK/Xo1evXti+fTueeeYZTJkyBRMmTMB9992HpUuX4uLFi169HyIiCiyGTiKiMFBWVqa+zszMbPU4x2Gqjue4U15e7lPZly9fhtFobFFPcnIy4uLiPJ7vWJ83vvvuO5w4cQIAMHXqVK/OaQ/X64svvsChQ4cwcuTIgPTeRfM1sz8jmpycjOXLl+O3v/0tfvrpJ8iyDEEQcO7cOXzxxRd4+OGHsWvXLq/eExERBQ5DJxFRGHD8BdzdL93x8fEuz9GybJPJ1GK/u/O9bReghIUlS5YAAAYNGoTbbrvNq/Oi/XpdvHgRf/nLXxAfH+9ypld/RPM1s08sVF1djU8++QRDhw7FypUr8c0332Djxo1YsmQJOnfuDJPJhIULF6rLxRARUXAwdBIRUUiUl5fj//2//4e6ujpkZGTgpZdegijyYwkAFi9eDJPJhLlz57qclIec2Vd/kyQJGRkZeOONN9C9e3cAysy8I0aMwCuvvAJBEGA0GrFmzZoQtpaIqP3hpzsRURhISEhQX9snVHGlvr7e5Tlalm0wGFrsd3e+N+2qrKzEM888g/PnzyM9PR1vv/02OnXq5PE8V+2Ltuv11VdfYe/evejbty9mzZrlVZu9Ec3XzH4+oMx+66rHdMCAARg6dCgA/ya7IiIi/zF0EhGFAcfn6EpLS1s9zvEZO3fLkDhyXKvQm7ITExOdfqm311NbW+s2UNjPd6zPlcrKSvz6179GUVER0tLSsHTpUnVWUm9F6/Wqq6vDu+++C1EU8fTTT6OhoQFGo9Hpy96rZ7Va1W3ezPobrdcMcH6O1N2/JXvvp32mXSIiCg6GTiKiMNCtWzd1aKm72V/t+9LT09GhQwevynacDdRd2fYZRO2/mLs633GW0dbOdzd7aWVlJebPn4/CwkI1cDavzxvRer1qa2tRV1cHSZLw9NNPY/LkyS2+7IHp3//+t7rt1KlTHt9XtF4zAOjVq5dX7bQHdkEQvDqeiIgCg6GTiCgMxMfH45prrgGAVmfXlGUZu3fvBgCMGDHC67JzcnLQuXNnt2WbTCYcOnTIZdkDBw5UJ4ex199ccXExzpw547ZtFRUVmD9/vlMPp7uA6k57uF6BFs3XbODAgeoQW/sxrtiXasnOznb3doiIKMAYOomIwsTkyZMBAPv378fRo0db7N+8eTMuXLjgdKw3BEHApEmTAADff/+9y7UK165dC5PJBJ1Oh1tvvdVpn8FgwE033QQAWLduHerq6lqcv2rVKgDKs3Zjxoxpsd9xSG16ejqWLVvmd+C0i8brlZ2djW3btrn9ysrKUt+TfVufPn28em/ReM0AZcbcm2++WT3f1bOhx44dw/79+wEAN9xwg9fvjYiI2o6hk4goTEyePBk9e/aELMtYsGABfvrpJwDKjJybN2/G4sWLAQDXXXcdhg0b5nTuihUrMHbsWIwdO9blL/z33nsv0tPTUV9fj+effx75+fkAgMbGRqxbtw5/+9vfAAB33HEHcnJyWpw/d+5cGAwGlJeX44UXXlDXRTSZTPjwww+xfv16AMCDDz6I5ORkp3OrqqqcAqe/Q2qbi9brpaVovmaPPvookpKSUFZWht/+9rdqr6YkSdi7dy9eeuklyLKMtLQ03HPPPf5cPiIi8pMg2x9wICKikLt48SLmz5+vriMYHx8PSZJgNpsBAH369MHSpUtb/NK9YsUKfPjhhwCANWvWuBw+mJ+fj+eeew7V1dUAlB4js9kMi8UCQBmyuGjRIsTGxrpsW15eHhYuXKj2IiUlJcFkMsFqtQIApkyZgueff77F83IffvghVqxYAUDp0XKcadSV999/Xx2q6Uk0Xi9PZs+ejeLiYkyePBm5ubk+nQtE9zU7ePAgfvvb36o9pUlJSWhsbFQnJ0pLS8OiRYtw1VVXeXexiIgoIPShbgARETXJzs7Ghx9+iNWrV2Pr1q0oLi6GXq9Hjx49MH78eNx9992IiYnxq+x+/frh73//O1atWoUdO3bg0qVLiI+PR8+ePTF58mRMmTLF7TqZo0aNwgcffIBVq1Zhz549qKioQFJSEvr06YM777wT48aNc3me48yqJpMJJpPJbTu9mYnVLhqvl9ai+Zpde+21WLlyJVavXo2dO3fi0qVLEAQBPXv2xOjRozFr1iykpqb69d6IiMh/7OkkIiIiIiIizfCZTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPQSURERERERJph6CQiIiIiIiLNMHQSERERERGRZhg6iYiIiIiISDMMnURERERERKQZhk4iIiIiIiLSDEMnERERERERaYahk4iIiIiIiDTD0ElERERERESaYegkIiIiIiIizTB0EhFRyC1btgxjx47F008/HeqmUIjV1dXh9ttvx9ixY7Ft27ZQN4eIiAJAH+oGEBGR/y5fvoyCggIcP34c+fn5yM/Px/nz5yHLMgBgzZo1yM7O1qRuWZYxc+ZMlJaW4v7778evfvUrv8opKCjAunXrAACPP/54AFsYWqdPn8bu3btx+PBhnD59GuXl5bBarUhOTkavXr0watQoTJ48GUlJSaFualhJSkrCvffei+XLl+NPf/oTrrvuOsTFxYW6WURE1AYMnUREEWzevHkoKCgISd3Hjx9HaWkpAGDMmDF+l/Pee+/BarXiuuuuw8CBAwPVvJCaN28eDhw44HJfRUUFKioqsGfPHnz00UfIzc3FyJEjg9vAMDdz5kx8+umnKCkpwWeffYb7778/1E0iIqI24PBaIqIIZu/RBJQeoiFDhiA9PT0odf/www8AgMzMTAwYMMCvMg4dOoS9e/cCQFQFC3sYT05OxpQpU5Cbm4t33nkHy5cvxyuvvIJRo0YBUAJobm4uDh48GMrmhh2DwYC7774bALBq1SoYjcYQt4iIiNqCPZ1ERBFsypQpSE1NRb9+/dC1a1cIgoB58+ahoqJC87rtoXP06NEQBMGvMj755BMAQHZ2Nq699tqAtS3UunbtigcffBDjx49HbGys075+/fph3Lhx+Pjjj/H+++/DbDZjyZIlWLlyZYhaG54mTpyIFStWoLa2Fl9//TVmzZoV6iYREZGf2NNJRBTBZs6ciQkTJiAnJ8fv4OePs2fP4syZMwD8H1pbWlqKvLw8AMCkSZOC2n6tLV68GLfddluLwOno/vvvR58+fQAARUVFOHXqVLCaFxGys7MxaNAgAMA///nPELeGiIjagj2dRETkM/usovYhvf7YtGkTJEkCANxyyy1enWOxWPD999/jxx9/xPHjx1FVVQWr1YrU1FT07NkTw4cPx4QJE9CxY0en88aOHQsAmDx5MnJzc/HLL7/gs88+w549e1BWVobExET07dsX9913HwYPHqye19DQgG+++QYbN27EuXPnUF9fjy5duuDWW2/FrFmz2jzBzdChQ9Vncs+ePYtevXr5XVZRURHWr1+PgwcP4uLFi6ivr0dSUhKSk5ORnZ2NYcOG4cYbb8SVV17pV/kWiwXffvstNm/ejNOnT6O6uhqCIKBDhw5ITU3FgAEDMHz4cIwePRoxMTFO5za//kVFRVi7di327t2LsrIymEwm/OEPf2jxB4xbbrkFBw8exJkzZ3D8+HH079/fv4tDREQhxdBJREQ+sw+tHTVqFPR6/z5KduzYAUB57rFbt24ejz958iReeuklnDt3rsW+0tJSlJaWYteuXTh16hRyc3NbLWfLli14/fXXUV9fr25raGjAzp07sWvXLjz33HO44447UFZWhtzcXBw/ftzp/MLCQvzlL3/Bzp07sWTJkjYFT4vFor4WRf8HH61fvx5Lly6F1Wp12l5dXY3q6mqcO3cOe/bswalTp7BgwQKfy6+qqsJvfvMbl5NW2a99QUEB/vnPf2LVqlXo2rVrq2V98803WLJkCcxms8d6HSeW2rFjB0MnEVGEYugkIiKflJWV4dixYwD8H1prNptx5MgRAMCAAQM8Dq0tKCjAU089BZPJBAAYMmQIJk6ciG7duiEmJgbl5eU4evSox3UdT506he+//x5paWl4/PHH1bp/+ukn/OMf/0B9fT3efvttDB48GK+99hpOnjyJu+66CzfeeCNSU1Nx/vx5rFy5EqdOncKhQ4ewatUqPPLII35dAwDYt2+f+rpHjx5+lXH69Gk1cHbo0AF33HEHBg8ejNTUVFitVpSXlyM/Px87d+70ewjz0qVL1cA5bNgwTJw4EdnZ2UhMTMTly5dx5swZHDx4UB0u3Zr8/Hxs2rQJHTp0wKxZszBw4EDExMSgqKgIWVlZLY7v0aMHDAYDTCYT9u3bh7lz5/rVfiIiCi2GTiIi8smPP/4IWZYRGxuL6667zq8yTp06pfby9evXz+2xFosFL730kho458+fr85s6uiGG27AY489hpKSklbLKigoQJ8+fbB06VIkJyer26+66ip07doVCxcuhMViwVNPPYWamhosXrwYw4cPV4/r27cvRowYgQcffBBlZWVYt24dHnzwQeh0Op/eP6AMUS4sLASgBO+cnByfywCAzZs3qz2cb7/9tvqcqKMxY8bgscceQ3V1tc/lNzQ0qGF+zJgxeO2111qE18GDB2PatGkwmUxue2wLCwvRtWtXvPPOO06zLLc2+7FOp0Pfvn1x8OBBnDhxApIktalHmIiIQoN3biIi8ol9aO3w4cNhMBj8KsNxiKynJV42bdqE8+fPA1Bm63UVOB117tzZ7f4XXnjBKXDajRs3DpmZmQCAyspKzJgxwylw2iUlJeG2225TjysqKnJbnytlZWX44x//CAAQBAH/+Z//6XMZdvaZipOSklwGTkcpKSk+l19bW6v+gWDw4MFue0sNBoPH4cbPPvusT8v62I+tr69HWVmZ1+cREVH4YOgkIiKv1dXVYf/+/QD8H1oLAOXl5errDh06uD3WHnIBYM6cOX7XCSjDNVsLZoIgOO2bOHFiq+U4HnfhwgWf2lBfX4/c3Fw1LDafvMhX9qBcV1eHzZs3+11Oa1JSUtRZeL/77rs2rZmZmZnpMsi74/jvw/HfDRERRQ6GTiIi8lpeXh4sFgt0Oh1Gjx7tdzkNDQ3qa1e9jo5OnDgBQOnx8mbCIXc8ne/YFnezvDoe50sIa2xsxIsvvqhOTnTjjTfiscce8/p8VyZOnKj2Li5cuBBPPvkkPv74Yxw6dEgdktwWMTExmDx5MgDg6NGjmD17NhYvXozvvvvO58Dtz+y8jqHTcfInIiKKHHymk4iIvGbvdbzmmmuQmprqdzmOz0B6msW0qqoKQFOPXlvEx8e73e84dNTd0GHH5wrty754YrFYsGDBAuzevRsAMHLkSLz88st+PQ/qqEuXLnjjjTfw+uuvo7S0FIcPH8bhw4cBKNe5f//+GDt2LKZOneox4Lfm6aefhtlsxsaNG1FTU4Mvv/wSX375JQDljwEjR47ElClTPPbYeurVdsXxDxT+zpRMREShxZ5OIiLyitlsxq5duwC0bWgtoDx/aFdTU9OmsiKBxWLBwoUL1WVihg8fjj/84Q/qsNW2GjZsGD755BP8/ve/x5QpU9QlS6xWK44cOYL33nsPc+bMUQOvr+Li4pCbm4uPPvoIjz76KIYOHaqG8oqKCmzYsAHz5s3Diy++6BQSm/NnEiDHyY8c/90QEVHk4J8MiYjIK3v37lWHa7Y1dDouj+EpdKampqKkpCRiJ5GxB057L/HQoUOxaNGiNq3v6UpsbCxuvvlm3HzzzQCUHuKffvoJGzduxM6dO1FTU4MFCxZg1apV6Nixo1915OTk4KGHHsJDDz0Eq9WKgoIC7NixA+vXr0dlZSW2bduG5cuX46mnngrY+6qtrVVfe5okioiIwhN7OomIyCv20NSnTx9kZ2e3qSzHNSl/+eUXt8fal1QpLy/3eGy4aR44hwwZgjfeeCPggdOV1NRUjB8/Hm+99RbuuusuAIDJZMKPP/4YkPLtQ3fnzp2LP//5z+rQ5U2bNgWkfLszZ84AALKzs5GQkBDQsomIKDgYOomIyCNJkrB9+3YAyuQ3bdW5c2dkZGQAAI4dO+b22LFjx6qvV61a1ea6g8ViseDll19WA+fgwYPx5ptvenyuVAsjR45UX9ufkQ2k7OxsdZ1Rf9YCbU1VVZW6XM7VV18dsHKJiCi4GDqJiMijw4cPq2HFMQS2hT0InTlzBpcvX271uFtuuUUNNP/617/w+eefuy23pKQkIO1rC4vFgldeeQXbtm0DoG3g3Lp1q8cgaX8WFwCuuOIKn8q/cOEC9u7d6/aYixcvqj2SXbp08al8d44ePaq+vv766wNWLhERBRef6SQiimDnzp1TZyq1s6//CABbtmxxmmXWYDBg3LhxPtdj763r0qWLX8teuHLzzTfjX//6FyRJwt69e3HTTTe5PE6v1+P3v/89nnzySZhMJixbtgzbtm3DpEmT0K1bN8TExKC8vBzHjx/Hli1b0K9fP+Tm5gakjf569dVXsWXLFgBKyHviiSdw8eJFt+ekpaUhLS3N57o+//xzvPrqqxg2bBiGDRuG7t27IyUlBY2NjSgpKcGmTZvUXuqsrCyfl7opKSnBs88+iy5dumD06NEYMGAAOnfujLi4OFRXV+Po0aNYt26dOgvx3Xff7fN7aM2ePXsAKM+rjho1KmDlEhFRcDF0EhFFsMOHD2PRokWt7n/vvfecfs7KympT6AzE0Fq74cOHIzMzE6Wlpdi4cWOroRMAevfujT/96U946aWXcOHCBezfvx/79+93eaz9GdBQ2rx5s/r6/PnzeOKJJzye8/DDD2Pu3Ll+1Wc2m5GXl4e8vLxWj7niiiuwaNEit0vBuHPhwgV8+umnre4XRRFz5szB9OnT/Sq/OYvFgu+++w6A0rvu73IvREQUegydRETk1smTJ9VeurbOWutIp9NhxowZeP/997Fz505UVVW5Xfuzb9+++Oijj7Bx40b88MMPKCgoUJ8fTEtLQ69evTBixAhMmDAhYG2MBAsXLsTu3btx8OBBnD59GhUVFepw25SUFPTu3RtjxozBxIkT/VqiZdCgQXjnnXewd+9eHD16FCUlJaisrMTly5cRHx+PLl26YNCgQZg6dWrAesEBqP8mAGDmzJkBK5eIiIJPkGVZDnUjiIgofH3wwQf44IMPkJaWhrVr1/q11mJr6urqcO+996Kmpga/+tWvcP/99wesbIpszz//PPLy8jBs2DC8/fbboW4OERG1AScSIiIit+xDa2+44YaABk4ASEpKUoPm6tWrYTQaA1o+RaajR48iLy8PgiDg8ccfD3VziIiojRg6iYioVY2NjRgzZgwefvhhzJgxQ5M67r77bnTt2hXV1dX4v//7P03qoMiyfPlyAMCkSZMwYMCAELeGiIjaisNriYgo5I4dO4a8vDwkJSVh9uzZoW4OhVBdXR0+/fRTyLKMGTNmuH3Ol4iIIgNDJxEREREREWmGw2uJiIiIiIhIMwydREREREREpBmGTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPQSURERERERJph6CQiIiIiIiLNMHQSERERERGRZhg6iYiIiIiISDMMnURERERERKQZhk4iIiIiIiLSDEMnERERERERaYahk4iIiIiIiDTD0ElERERERESaYegkIiIiIiIizfx/F3Koj/CiuZIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADkDklEQVR4nOydd5gUxdbG3+6esHmXZYlLzkkRFAETCBgx60WvARCv+XJVDB9mTBivKOaEiHoRIwZEkoigEhQVJEhmESRujhO6vj9mu7dnptPM9Mz07J7f8+zDsl1dVRO6Tr11Tp3iGGMMBEEQBEEQBEEQBBEH+GR3gCAIgiAIgiAIgmi8kOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4oYlonPXrl3gOA4cx2H8+PFWVNkkGT58uPw+EgRBaDF+/Hh5rNi1a1eyuyMzc+ZMuV8zZ85MdncIixFFEcceeyw4jsPEiROT3R0ijnz33XfyszxlypRkd4cgbEFj1jt+vx89e/YEx3G4++6749JGwjydM2fOxJQpU5rU4DV37lz5NZeWlia7O0Q9Pp8PixcvxuTJkzFixAi0adMGbrcbWVlZ6Nq1Ky677DLMnTsXfr8/onr/+OMPTJw4Eb169UJWVhZyc3Nx1FFHYfLkydi9e3ecXg1BEE2JTp06yZMeo5/hw4db2vbrr7+OtWvXIi0tTXdSsmvXLnzyySe4++67cfrpp6N58+Yx98nK8XX37t2YPHkyjjrqKOTm5iIrKwu9evXCxIkTsWHDhojqOnToEB555BEce+yxyM/PR0ZGBrp27YoJEyZg5cqVEdVllqZia84991z5e/PWW29FfH9RUREEQQDHccjPz0dtbW3EdRw5cgQLFy7E1KlTcfHFF6Njx45Bz5hZlGLFzI+ZuTJjDPPmzcPll1+O7t27IysrC06nEwUFBTjhhBNwzz33YPv27RG/ZomSkhK0bt06qF9WLnJWV1fjjTfewOjRo9GuXTukpaUhLS0Nbdu2xemnn47nn3/e9Ny5trYWr7zyCs4880y0bt0abrcbLVq0wODBgzF16lQcOXLEsn4nm4kTJ8qfx/333x/x/dXV1cjNzQXHcXA4HNi3bx8AQBAE3HfffQCAZ599Ftu2bbO03wAAZgE7d+5kABgANm7cONUyw4YNk8s0FcaNGye/5p07dxqWb4rvUaL59ttvWX5+vvw+6/0MGjSIbdu2zVS9Tz/9NHM6nZp1ZWdns9mzZ8f51RFNhUjHlkTx9ttvy/16++23k92dRknHjh1NjV8A2LBhwyxrt6qqirVu3ZoBYP/5z380y02fPt3yPlk5vr733nssKytLsy6Xy8WeffZZU3UtWrSItWzZUrMujuPYHXfcEfHr1SNRtmbp0qVynQ8++GDsHY+CTz75RO7DSSedFPH9Dz/8sHz/TTfdFPH969atM3zGzKKcJ5v5MXrPDx06xIYPH25Yj8vlYk8++WTEr50xxsaPHx9Wn1X2Zs2aNaxz586G/W/ZsiVbsGCBbl0///wz69Spk2E933zzTcz9NqN34s0vv/wi96FDhw5MFMWI7p81a5Z8/9lnnx10zefzsR49ejAA7LLLLrOy24wxxhywgE6dOoExZkVVTZrvvvsu2V1o9OzduxfFxcUAgPz8fIwaNQpDhgxBmzZt4PV6sXr1asyaNQvl5eVYs2YNTj31VKxevRqtW7fWrPPVV1/FnXfeCQBwOp246qqrMGzYMHi9XixYsAAff/wxKioqcNVVVyEvLw9nnnlmQl4r0XiZOXMmha82cVq0aIHXX39dt0xBQYFl7b388svYv38/BEHAXXfdpVkuNEIkPT0d3bt3x7p166Jq18rxdd68eRg3bhz8fj84jsMll1yCM844A06nE8uWLcO7774Lj8eDSZMmITs7G//617806/rll19w/vnno7q6GgBw2mmn4eKLL0ZWVhZWr16Nt956C1VVVXjmmWfgdrvx6KOPRvX64/VepALnnnsuCgoKcPjwYaxYsQLbt29H165dTd//zjvvyL9fffXVEbcf+l0WBAG9evXCjh07UFNTE3F9Eqeeeir+85//6Jbp1auX5jWfz4ezzjoLP//8MwAgLS0NY8eORf/+/dGsWTPs2bMHX375JVasWAGPx4P/+7//Q1ZWFm666SbTfVy0aBFmzpwJnufhcrmi8hJrsXv3bowaNQplZWUAgNatW2P8+PHo3r07HA4HduzYgVmzZmHnzp04ePAgzj33XKxatQrHHHNMWF0bNmzAiBEjUF5eDgDo27cvrrrqKnTu3BmlpaWYP38+Pv/8cxw8eBAXXnghFi9ejBNOOMGy15IMBg4ciKOPPhrr1q1DUVERvv32W4wcOdL0/cq5Q+hzIY3v//rXv/Dhhx/i/vvvR58+fazqeuJcak3Ri2dXb0RT5t1332VHHXUU+9///sdqa2tVy/z111+sb9++8mc3duxYzfr27dvHMjIyGADmcDjYokWLwsoovT/t27dnNTU1lr0egrAT5OmMP5Kns2PHjglr0+v1svbt2zMA7PTTT9ct+9lnn7Gbb76ZzZgxg/3+++/M5/MFeQci8XRaOb5WVVWxtm3bymVnzpwZVmbhwoXM4XAwACwrK4vt379ftS5RFNnAgQPluqZMmRJW5rfffmM5OTkMAON5nq1bt87061Yj0bbGDp5Oxhi75ZZb5H7cf//9pu/7/vvv5fv69esXVdvbtm1jY8eOZc8//zz74YcfWFVVFWMsONrALFZ6yJSeqvbt27Ndu3aplnv99dflcgUFBczr9Zqqv6qqSvZCTpw4Mej1WjGXnTBhglzfGWecwaqrq8PKeL1eNnbsWLnc+eefr1rX4MGD5TJXXnml6mv8+OOPGc/zDADr2bOn6fdBDTt4OhljbNq0aXI/rrrqKtP37d69m3EcxwCw5s2bs7q6urAyZWVlLC0tjQFg1157rZXdZiQ64wiJTvtRUlJiKhRh/fr18meXnp4uG5tQbr31VrncnXfeqVnfP/7xD7nciy++GHX/CcLOkOiMP8kQnZ999pn8uc6aNSvi+6MVnVaOr88995xc5h//+IdmXXfeeadcTis0du7cuXKZwYMHa9qUl156SS53ySWX6LxSYxJta+wiOn/77Te5Hx07djQdSqgUNv/9738t7VOyRecVV1wh1/XSSy/plj322GPlsmYXPm677TYGgBUWFrLy8nLLRWdhYaFc34YNGzTLlZSUyItA+fn5YddXrlwp11NYWKi7yHLTTTfJZd98882o+24X0Xnw4EE5zD4zM5NVVFSYuk8Zcj5x4kTNctI4kp6ezsrLy63qtjWiU+9DUIpNvR+tQc3v97M5c+awMWPGsE6dOrH09HSWlZXFevbsyW644QbDh+jBBx+U21i6dCljjLHFixezyy67jHXq1Im53e6wB8nr9bJvvvmGTZo0iZ144omsRYsWzOl0sqysLNa9e3c2btw4tmzZMs02lWJT70fvvTJi5cqV7Nprr2U9evRgWVlZLCMjg3Xp0oWNHTuWLVmyxPD+0AlAZWUle/rpp9mxxx7L8vLyWEZGBuvTpw+bPHkyKy4uNqyvMdKrVy/5ffr999/DrouiKA+eHMexoqIizbqWL18u13XyySfHs9th/Pjjj+yGG25gvXv3Zrm5ucztdrP27duzMWPGsK+++kr3XrWJx+7du9mkSZNYz549WUZGBsvNzWVDhw5lL730kukVxIqKCjZt2jQ2atQo1qZNG+ZyuVizZs3Ycccdx+6//3528OBB3ftDnxWfz8fefvttNmrUKNa2bVsmCILqpHz//v3szjvvZL1792YZGRmsWbNmbNCgQeyZZ54JW8UOvX/+/PmmBmslEydOlO/5+uuvTd1jBqMFrXh9bl9++SU755xzWKtWrZjb7WYdO3Zkl19+Ofvxxx8ZY5GJzrq6Ovbmm2+yc889l7Vr14653W6Wm5vLjjrqKDZp0iTNyc3mzZtlj09OTg7bsWOHZhvFxcWyh47ned1xO1VIhui86KKL5AmI2cmNkmhEp9Xj69ChQ+UyK1as0KyrqKhI9gR06NBBtcw///lPua733ntPs66qqirZ25mens4qKys1y+qRDFtjVnRu27aNdenSRe6b1n7Y+fPns3HjxrFu3bqxrKwslp6ezrp06cLGjRvHli9frtuXAQMGyH0xM7+pqqpi2dnZDAh4hQ8cOGB4TyQkW3Sedtppcl0LFy7ULav8rv7000+Gda9atUr2Cn766aeMMWa56FTuSfZ4PLpl27RpwwAwt9sddm3q1KlyPbfeeqtuPUqBOmLEiKj7bvZzPHjwIDvuuOPksrfddpvqgkks87MLL7xQrv+tt94y1f+uXbvK96xdu1aznHJhbcaMGabqNoOtRee2bdvYMccco3sfz/O6IRdK0fntt9+ym2++WbUe5YNkZnO29FrVXNPxFJ1er5dde+21hnWPGTNGNWRBQjkB2L59O+vTp49mXR07dmySntpBgwbJ78HKlSvDriu9oUbhO36/PyjUysqVIy0qKyvZpZdeavhdGT16tGZ/Qice8+fPZ3l5eZp1nXbaaZphyxJff/21bvINIJAM4/PPP9esQ/msHDlyhJ100kmq31sl3377LWvWrJlmm0cddRQrKirSnNT7/X455KhZs2aGoWs1NTVyex06dGB+v1+3fCREKjpj/dx8Pp/uuMbzPHvyySdNi04zSSRcLhd79dVXVe9Xho0NHTqU+Xw+1XKXXHKJXO7ee+/VfU9ThUSLztraWlnkn3LKKVHVEY3otHJ8LSsrk4Vkbm6u4bOo3F6h5olp3ry5fP3QoUO6dY0ePVouO2/ePN2yWiTD1pgRnWvXrmWtWrViQEDcvfvuu2FlDh48yEaMGGFoh6655hpNAaJMTqW33UVCGX6qFZYZC8kWnVdeeaVcl5GnUxI+giCwI0eO6Jb1eDzsqKOOCnvfrBad7dq1032+JJSezmOOOSbsutJ7+corr+i2WVxcLJcVBEEzes0IM5/jzp075WQ8ANjjjz8eVsaK+dkXX3whlzMzNitDzvv3769btrS0VB4zrXyG4i46ly9fzj777LOgQfyzzz4L+9m0aVPQfdu2bWMFBQXyPSeddBJ74okn2OzZs9l7773HbrvttqAJpNagqBSdZ511FgPAWrduzSZPnszee+89NnPmTHbTTTexffv2yfcMHjyYZWVlsfPPP589/PDDbNasWezDDz9kzz//PLvuuutYZmamXOctt9wS1uYvv/zCPvvsM3bqqafK5V577bWw1/zLL78E3WdGdF522WVymbS0NHb99dezd955h7333nvs1ltvlVf3gECsvFYoilRmwIABrFevXozjOHb++eezV155hc2ZM4c9/vjjrEOHDnK5RHvnkk1dXV3QJP3vv/8OKzN79uyIjIjy8121alUcet1AbW0tGzJkiNxe165d2T333MPeffdd9sEHH7BHH300aFAcMWKE6kRMOfE4//zzWUZGBktPT2fXX389mzlzJps9eza7/fbbg54JvUWgjz/+mAmCwAAwp9PJLr74YvbCCy+wDz/8kL355pvsiiuukFdBeZ7XXNVWvpfSc92/f3/2xBNPsA8++IC9/vrr7N///rdcfsOGDfLEWfre//e//2Vz5sxh06dPZyeeeKIsYCSPgtqkXrmyqufhYCywf1gq+9BDD+mWjZRIRKcVn5vSuLtcLnbttdeyd955h7377rts4sSJ8nt7wQUXyOW0ROePP/4ol+c4jp155pns2WefZXPmzGEzZ85k119/fdBnpVXPxRdfrNv3N998U74+ZMiQmPbx2AlpApiVlcVGjhwpR+IUFBSwQYMGsbvuust01m0zLFmyRH4fo83EGo3otHJ8/emnnyJqX/l8zZkzJ+ja33//LV8zI/yVc5Bos4gmw9YYic5vv/1WFrcZGRmqkRxHjhwJ8qz079+fPfTQQ+z9999ns2fPZvfee29QqKXWazt8+DBzuVwMMBdKqBS5c+fOjebl6xKr6OzSpQs77rjjWG5uLnO5XKxNmzbstNNOY08//TQrLS01rOujjz6S6zK7p3P8+PGG9Uqhl9nZ2WzPnj2qr9cK0al0/ujt6VQ+h2p7sG+88Ub5eiSiEwBbs2ZNVH03Ep3r1q2T944LgqDqgbRqfub1euVFH47j2Pbt23X7rgw5f+655wxfa+/evWVbo7WwGym2PDLF7/fLm/Tdbjf78MMPVcvt379f9oTyPM/++OOPsDLKAR8IiNeysjLd9hcvXqzrJTx8+LDsWeF5XjO8y+ojUz744AP5eqtWrVRXiHbt2hXkQdDa06F8T1wuF/vyyy9VX6eyrliEUlVVlepiQzQ/oWI9HigFw8CBA1XLPPTQQ7pGORTlpni1FWErCd3/ozbh9ng8QX1SG7SVEw8g4LHbsmVLWLlVq1bJK5LNmjVT9ZoVFRXJk5QOHTpohsavWrWK5ebmMgCsXbt2qqvfoREUt956q673QukJvemmm1TLho4VWuG5kig2mryecsopsuFRGnAriER0xvq5KVdH8/Ly2M8//xxWZvPmzfJxGnpisby8XA53zcvLY999953q69u6dau86JWZmanqTSouLpZXzAVBCArR+/PPP2VBnZOTY2iMjdi0aZNl45eRZ8wIM0emCILAJk+ebMlEQbnQ8tFHH0VVRzSi08rx9Z133olItD3wwANy+UceeSTo2rJlyyJ6LTNmzJDLX3PNNYbl1UiGrdETnR9//LG8NSk/P18Orw9FWoTiOE5zkltRUcFOP/10ua358+erllNGLeiF++3atUv20LRs2TIui02xik69n9zc3LCFjlBEUQwKrUxLS2PXXXcde/nll9ns2bPZU089FWTzLrzwQkOhvnHjRvkzff755zVfrxWi89ChQ6xbt25yna1bt2Z33303mzFjBps1axZ78MEH5bknz/Nhz6CE8rm47bbbdNtUhtcCxovGWhg52SRnRVpamuaCh1XzM8YYu+OOO+QyDzzwgGa/lSHnTqfTlB1SHpmjtsUsGmwpOpVnM02fPl237J9//il7TtSyLCknkpmZmWzv3r2mXpMR27dv1zRKElaLTuW+Br39YatWrZIH3Y4dO6pOPJQP38MPP6xZ1xtvvGGqnBGRnlGl9xPvzdvFxcXyPgK9iZa02R4Ae+GFFwzrjbR8tOzbt09eFb7ooot0y3o8Hnk/Tvfu3cOuh4qX77//XrMuZXIDtXLS/kZBENivv/6q26+33npLruv9998Pu658Vo499lhdwblmzRq5bL9+/XQn4sp6tbwYykQdakKOscC4JJUZPXq07muNhkhFZyyf2/nnny9fV1ttlvjqq6+C2lQTnf/973/l61988YXua1R62B577DHVMt999528/6hjx46spKSEeTyeoOQZVizwhC5IxPIj5RaIlo4dO7K2bduyCRMmsOnTp7M5c+awd999lz344INyaJyVY+Xll18u1xdtBtZoRKeV4+vzzz8vX7v99tsN69Ir//nnn8vXLr74YsO6Ii2vRjJsjZbofPXVV+VnrrCwUDM8UnmW4KRJk3TbKi4ulhcaTzvtNNUy8+bNk+vTCyVUChGjdqMlFtHZr18/duutt7I33niDffTRR2zGjBnslltukT1W0o/RPjqfz8fuueeeoOi20J+BAweyr776yjD5kt/vZyeccAIDwI477rgwe2q16GQs4AW/5JJL5Pm72s+YMWN05wqLFy+WyxYWFupuEQndWhdtki0tvfP555+z9PR0BgQWDrTyB1g5P2MsEMUl9adTp06an7Vy4c2oXYknn3zSUjvKGGM8bMi7774LAMjJycG1116rW7ZHjx44/vjjAQALFy7ULXvxxRejbdu2lvSxS5cu8tmNq1atsqROPXbt2oVff/0VAHDUUUfhrLPO0ix7/PHHY8SIEQAC5yH98ssvmmUFQcC///1vzetSPQCwcePGSLudcvj9flx22WX4+++/AQCjR4/GJZdcolq2srJS/j0tLc2w7vT0dPn3ioqKGHuqzYcffgiPxwMAuOOOO3TLOp1OXHrppQCArVu3YteuXZplBwwYgJNPPlnzut53hTGG999/HwAwcuRI1fO2lFx66aVwOALHCBs91zfffDN4Xnso+/zzz4PKCoKgWfaWW27RbQsAbrjhBvn3N998U7WM8u/XXXedYZ3xJJbPra6uDvPnzwcAtGrVCldeeaVmPaNHj0bv3r11+yKN7T169MC5556rW3bEiBHyeK31HRg2bBgmT54MIDDW3XDDDbjvvvvkMe+KK67Q7XMq8t5772HPnj146623MHHiRIwZMwZXXnklpkyZgnXr1uHll1+Wn4d33nlHfu6iZffu3fLv+fn5MdUVCVaOr3atyyx2sTUPP/wwbrjhBoiiiJ49e+LHH3/UPMNPetY5jsPtt9+uW2+zZs1w9tlnAwC+//571NXVhZU544wz5PFg+fLl2LlzZ1gZxhhmzZol/z+asznjRfPmzbF27VqsX78e06ZNw7/+9S9ccskluPrqq/Hcc89h586dQf294YYbVF+jhCAIuPPOO/HAAw/A7Xarllm7di2eeOIJ/PTTT7p9e/nll/Hjjz9CEAS8/vrruvbUKvLz8/Hkk0/qfkZz587F448/Ls/HQhk+fDi6desGIHAG+/XXXx92tioQmAO8+uqrQX+TzvW0ghkzZuCiiy5CTU0NWrdujWXLluGUU05RLWv1/KxPnz6yBtq1axeWLVumWpfe2ZxaNGvWTP5daQdiwWFJLRazfPlyAECbNm3wzTffGJaXJpG7d+9GTU1N0ICrRG/iFUp5eTnef/99fP3111i/fj0OHz6Mqqoq1bJ//fWX6XqjZfXq1fLvp59+umH5008/HUuWLAEQEMXSlzKUHj16BH2xQiksLJR/LykpMdvdMDp16gTGWNT3J4pbbrlFnuB26NAh6EFNFaTnBwh8N+fOnatbXvm5btq0CZ06dVItN2TIEN169L4rGzZsQHFxMQAgOzvbsE8AkJWVhdLSUmzatEm3nNFzLR2gDQQO5dZj+PDhhv069dRT0aNHD2zZsgXvvPMOHn30UTidTvm61+uVDyVv27YtRo8ebVhnPInlc/v9999lAzls2DBdwQ4EFhS0Pq+ysjKsW7cOQEDAmv0OAND9Djz00ENYsmQJVq1ahTlz5sh/79y5M15++WXDNswwZcoUTJkyxZK6YuWkk07SvX7jjTeipKQE9957LwDg0UcfxRVXXBF1e9JzCyRWdBL2QRRF/Pvf/8ZLL70EABg0aBC+/vprFBQUaN4j2aG8vLyg+YsWktCsq6vDjh07whawBEHA2LFj8cQTT4AxhnfeeSfsmVy+fDm2b98OADjuuOPQr18/068x3mRnZ2PAgAGa19PT0/HWW29h3759WLBgATweD5566im88sorquW/+eYbXHbZZSgrK8Pw4cNx9913Y/DgwUhPT0dRURE++ugjPPbYY1ixYgVGjhyJDz74AOeff35YPUVFRbj77rsBALfeeqtuH63k8ccfx3333QdRFPGvf/0LN9xwg7yAsXHjRrz66qt488038eGHH2LlypVYtGgRevToEVSHIAh45ZVXcOaZZ8Lv9+Odd97BL7/8gquuugqdO3dGaWkpvvnmG3z22WfgOA6dOnWShZtVwvrJJ5+UFz67du2KhQsXokuXLprl4zE/mzBhgvyMzZw5M2wes3v3bnz33XcAgNatW+PMM8/UbVOiefPmqv2IBduJzsrKShw5cgQA8Oeff+LCCy+M6P6SkhJN0amcXOmxdOlSXH755di/f7+p8laumGihXOkJffDUUJbRWiUCoGs0AAStoNXW1hq2m8rce++9slFt1aoVFi1apPv+SBNiwNx7U1NTI/+enZ0dQ0/1Ua6GjRkzJqJ79QaWWL4ryj598skn+OSTTyzpE2D8XO/bt0/+Xc8YAIGVvby8PJSWlmqW4TgO1113He644w4cOHAAX375JS666CL5+hdffIGDBw8CCKwoGgm1eBPL56Z876QVZT30yuzZsweiKAIIGF6l8TVC7zvgcDjwv//9D8ccc4zs1ZH+lpOTY7qNxsSkSZPw1FNPoaysDJs3b8aOHTsMv/taSGJAEARN2xoPrBxf7VqXWZJta6ZPn46ysjIAwKhRo/DZZ58F9UkNacwvKSmJah6nxvjx4/HEE08AAGbNmoUHH3wQHMfJ15WLxBMmTAi7f+HChaiurtZs94ILLoion1bDcRymTJmCBQsWAADmzZunWu6bb77B6NGjIYoiLrnkEsyZMydIRHXr1g133303Ro4ciVNOOQW1tbW46qqrsGXLFjlCT+LGG29EZWUlOnbsiIceeih+L07Bvffei6lTpwIIfLcmTpwYdP3YY4/FG2+8gaOOOgq33HILioqKcMUVV2DNmjVhdY0aNQpz5szB+PHjUVlZiT/++AP/93//F1TG5XLhhRdewDfffCN/L/WcLWaZO3euvMDcv39/LFiwAK1atdK9Jx7zs8suuwy33XYbampq8PHHH+PFF18Mej7feecd2ekzduxYOYrMCKX9VI4psWC78FppYIsWaVVeDTMGc+vWrRg9erQsOHv27Ilbb70VL730EmbPno3PPvtM/mnRogUAqLrzrUYZIpOZmWlYXvmF0wuvSUQYRSrw6KOPyoNgQUEBFi9ebCju8/Ly5N8PHz5s2Ia0mBJ6r9XE8gzpPT+xfFfi1SfA+LmWIhQcDkeQR1ILM8/X+PHjZbH2xhtvBF2T/s9xHK655hrDuuJNLJ+bMqwvIyPDsLzeexfLd8Dr9epeLygoCPLCdenSBccee2zU7aU6aWlpQR7uzZs3R12X9D33+/26E3arsXJ8tWtdZkm2rfH5fPLvVVVVpqKW4jHm9+zZEyeccAIAYOfOnfj+++/la9XV1fj4448BBL7///znP8Puv+6663DhhRdq/tiB448/XrZpe/bsUX3mbr/9doiiCJ7n8fzzz2uO8ccffzzGjx8PIDAPDI3ckqL5gECIrRnbFyt79+7F008/DQDo3bu37vauiRMnyh7vn3/+GStXrlQtd/HFF2Pbtm24//77cdxxxyEvLw8ulwsdO3bEhAkT8PPPP+O6664Lei5CxXc0KJ+LmpoaU1ogHs9Fbm6u/P2tqqoKWtSPJeRc2VerFhxt5+lUiqVTTjlFMz45Xjz++OOyor/33nvxyCOPBK2kKTHab2olytVKrTBfJcrJYjy9amaprq423Jtnlg4dOmDgwIGW1AUATz31FO6//34AgdWvRYsWmQrLUYpSvb2QEsqYeDPe6miRniGO4+Dz+WyxsKB8rh944IGEragCDULI5/PB6/UaCk8zz1fz5s1xySWX4P3338fChQtRVFSEDh06YPfu3Vi0aBGAwAps586dY38BSUT5uZkRHHrvnbKusWPHyivEVnDTTTcFPV9btmzBfffdhyeffNKS+jdv3hyTcFNy0kknGXqfrUAZGqXnuTdCKeaLi4tNLT5YgZXjq13rMkuybc0tt9yCTZs24bPPPsNPP/2EM844AwsWLNCdW0jbI6Rx0Squvvpq/PjjjwACns1hw4YBAD7++GN5gf2CCy6I68JuPOF5Hs2aNZPnoaWlpUHP3M6dO+W993369DHMUzJq1Ci89tprABAW5izlHmjdujXWrl2LtWvXqtahFB8vvvii/N5ee+21hp69UBYuXCgvIo4cOVJzfg0E5jAjRoyQt1esXr1ac7tIq1at8PDDD+Phhx/WrE+Zs2DQoEER9VuNSy65BDk5OXjhhRewZcsWnHrqqVi6dKnuZxKv+dnVV1+N//3vfwACz8W4ceMABIecDxkyBL169TJdZzy2VthOdObm5iIrKwuVlZUJ2SsZyuLFiwEALVu2xMMPP6z5QFRUVAR9IPGmTZs28u9bt241LK8sY1XypFg4ePCgZSuJ48aNs2yv5bRp0+RQjNzcXCxYsMAwyY2EUpjqJWsCAntipERQPM8bJlyJhcLCQvz2229gjGHv3r1o37593NqKpE8SiX6u27ZtK+8l3LFjB3r27KlZtqSkxPQE/YYbbsD7778PURQxY8YMTJkyBTNmzJBDSJOdQMgKlGPHtm3bDMvrlYnXd+D999+Xk+Uce+yxOHz4MHbv3o1nnnkGZ5xxRlCipGj54IMPLFsoWbp0qam9w7FilberU6dO+OGHHwAEJiHt2rWLtWumsHJ87dOnD3iehyiK+O2332QvkRbKfeChC5CtW7dG8+bNceTIERQVFeHw4cO6iwh6dZkl2bbG6XRizpw5uOyyy/Dpp5+aEp6FhYUoLS3FwYMHTS32mWXMmDG45ZZbZM/miy++iMzMTLz99ttyGS1vjhnBnmxEUQwKowx9dpVbHsxsH8jNzZV/D10UlDzW+/fvlxfejfjvf/8r/37OOedELDqt7H8kbNy4UY4S6Nq1a9CcOhamT58OjuMwffp0U8IzXvOzESNGoEOHDigqKsKyZcuwa9cudOrUydRzoYVS43Ts2NGSfibMBaIc4I1CM6SsTzt27DA10bGSAwcOAAgkodAzSosXL5Ynl1pE8pqNUCYCkjwpeii9ilpJhJo6L730EiZNmgQg4A2eP39+RKtfffv2lSdgGzZs0J1I//jjj/Le3xNPPDGu3mdp5RcwzvyaKAYMGCAbmCVLlhg+O1Zy3HHHyb8vXbpUt6y02d4MJ510Evr27QsgkL3O6/VixowZAAKLVmpJG1KN/v37w+VyAQCWLVtmGD4kJS9To6CgQE4UsXLlSkv2wu/cuRM33XQTgIBHe/bs2XjvvfcgCAJEUcTYsWODxFdToa6uLigULRZvl1Lw/PnnnzH1KxKsHF9zcnJkD0lZWZlmmB4QCGmUPCIdOnRQzc56xhlnAAjYdb0xtrq6Wt67nJ6eHjQ2R4IdbI0kPC+++GIAkIWn1nMsvdba2tqgMNhYycnJkftQWVmJTz75JChrZ7t27TBq1CjL2ks0a9askb2chYWFYZEFSqG2Z88ew/qUXmZl9EOySFb/leLL6m0vzz//vJz5fsuWLRg+fHiQuFYSr/kZz/Oyd1MKqa2qqpJDztPT0+VMuGZRJvA7+uijremnJbWYQBlaZbRaIb1xQCAUL5FID/iOHTs0haLf75f3/+kRyWs2olOnTnJI6e+//64rPH/++Wd8++23AAKrE3bY2yRlr7Xixwov5xtvvCFvXs/MzMTXX3+NoUOHRlQHx3H4xz/+ASDwkL/wwguaZadPny7/HumDHymXXXaZLBSefPLJmL97ViAIgpxBc/fu3ZpHjcQDpfh76aWXdIXT888/H1Hd119/PYCA8bz11lvlyeC4ceMsW9lPJm63Wz7K4MCBA3L4jhrz5883zDQsje3V1dVyQpBo8fv9uOKKK+RJ7/Tp09G9e3ecdNJJuOeeewAE9g/961//iqkdIJC91qrxKxFezmeffVYOievevbupJFBaDB48WP49EceDSVg9vir/rvecv/DCC7Lt10r0oaxr+vTpmnOFmTNnyt/P0aNHR71nzi62xuFw4IMPPpCPEfvpp59w5plnqgrPsWPHyr8/9NBDlua+UHpsZs6cGZQoZdy4cbbYUhINjDE8+OCD8v+lsVdJt27d5GNz9uzZI4caa/HBBx/IvysXYIHAIquZMUvp5dq5c6f8d7NRYUqUi1jz5s3TzTlSXl4uH9ml1n+zbN68WX5m8vLyLLEJoTz33HO49dZbAQQiDbWEZzznZ+PHj5ejM2fNmoWPPvpI3mp30UUXBXmNzSCN99nZ2ZpHI0VMTKd81qN1WKqS//znP3IZrUNTJfx+Pxs0aJBc/pZbbmF1dXWa5aurq9nbb7/NZs+eHXZNeai3mUO5TzvtNLn8s88+G3bd4/Gwq6++OuiQWa1D5J999lm5zDvvvGPYtvJgejXmzJkjX2/Tpg3btGlTWJndu3ezrl27Gh6AK103c1B3JGVTgXfeeYdxHMcAsIyMjJgOa9+7dy/LyMhgAJjD4WCLFy8OK/P222/L72H79u1ZTU1NDL03x+233y63eeqpp7K///5bs6zf72eLFi1ijzzySNg1rQPC1TAqu2fPHpaXl8cAMLfbbfhMHDhwgD388MPs999/D7tm9KyEctJJJ8nlb7rpprDDrxkLHiv0nmslpaWl8uev/NmyZYupfkXLuHHjdA/rtvJzW758uXy9WbNmqod1b9myhbVp0yboPXj77bfDylVWVsoHjXMcx5566inVz0KitLSUPf/882zRokVh1+6//365rUsuuSTomtfrZUOHDpWvv/baa7rvQarw6KOPso0bN+qWeeWVV4IOXJ85c2ZMbdbW1rLMzEwGgJ188slR1aGcI0RiR6wcX6uqqljbtm1135dFixYxh8PBALCsrCy2f/9+1bpEUWQDBw6U63rooYfCyvz+++8sNzeXAWA8z7N169Zpvk7lc6P2PFv9XphBb1zwer3skksuka8PGTKElZWVhdVx8cUXy2UuvfRS1TLKOj/55BPNOYsSURRZp06d5HGkVatWcjtbt26N+LVGijSGmbU/FRUV7N5772WHDh3SLFNTU8MmTJgg1+t0OjVfy6WXXiqX69atG9u9e7dquccee0wu53a72Z49e0z1NxTl69X6fqqVVZtbeTwe1q5dO7nM+eefz6qrq8PKVVdXs/POO08u169fPyaKYli5AwcO6I6Jv/zyC2vfvr1l46GR3rn11lvl6927d2d//fVXWBmr5mdqKOdGSpusNl7oUVpaKs+TL7jggoju1SNhezpHjhwpr8Bdc801uO2229CxY0f5OIFu3brJq7E8z+OTTz7B0KFDsXfvXjz//PP48MMP8Y9//AP9+/dHbm4uKisrUVRUhJ9//hlLlixBVVUVHnnkkZj7OXHiRNmLOGnSJHz33Xc444wz0Lx5c2zduhWzZs3C1q1bceqpp2Lr1q26YS4jR46Uf7/rrrtw6NAh9OzZU05XXFhYiKOOOsp038aMGYPPPvsMH3zwAf7++28MHDgQ48ePx9ChQyEIAn7++We89dZb8qrj6aefLoeeEQHmz5+PCRMmyKuiEyZMQGlpqeFZSQMHDkSHDh3C/t62bVv897//xY033gifz4ezzjoLY8eOxbBhw+Dz+TB//nw5vMHhcOD111/XPdxbuYd4586dmmdmGvH444/jt99+w5IlS7B06VJ06dIFF198MYYOHYoWLVrA4/Fg//79std8//79GDlyJO67776o2jNDu3bt8MEHH+C8885DXV0dxo0bh2effRbnnXceunfvjvT0dJSVlWHLli1YuXIlfvjhB/j9fsOzNc3w2muvYdCgQaiursbLL7+Mn376CVdeeSXatWuHAwcOYM6cOfjhhx8wdOhQFBUVYe/evaZWy3Nzc3HppZcGhe4MHz4c3bt3j7nPduGkk07CTTfdhJdffhklJSUYMmQIxo0bh5NOOgk8z2P16tV46623UFVVhQsuuED3WcrMzMTcuXMxbNgwlJeX46677sJrr72Giy++GH369EFWVhbKy8uxY8cOrF69Gt999x08Ho980LzEihUr5GiTdu3a4fXXXw+67nA48P777+OYY45BeXk5brvtNgwbNkx3P28q8NFHH+G+++7DgAEDMGzYMPTu3RvNmjWDx+PBtm3b8Omnn8r7lwHgyiuvDIociga3240zzzwTn3zyCX7++WdUVlYaHpcROo4oE5Hs3Lkz7PrAgQODjh2SsHJ8zcjIwOuvv47zzz8ffr8fV199NebNm4ezzjoLDocDy5Ytw6xZs+SMlNOmTdPcr8ZxHF5//XWccsopqK6uxoMPPogffvgBl1xyCTIzM7F69Wq8+eabshfj7rvvjsjWq2G1rYkFh8OB2bNng+M4fPTRR1i5cqW8x1MZPjljxgxs2bIF69evx5w5c7BgwQKMGTMGxx13nJwsZ+/evfj111+xaNEilJSUmAp95DgO48ePlyMQpG1RJ598ckxefTXeeust7Ny5M+hvyn3/od/lZs2a4fbbbw/6m8/nw2OPPYYnn3wSw4cPx5AhQ9ClSxfk5OSgoqICv//+Oz744IOgY/pefvllzdcydepULFq0CMXFxdi2bRv69euHK6+8EkOGDAk6p1MZmfDggw8mbD+2Hk6nE9OnT8fFF18Mxhg+//xz9O7dG2PHjpX3H2/atAmzZs2SQ2udTidefPFF1RwrRUVFGDRoEI4//niMHDkSvXr1Qnp6Ovbv34/Fixdj3rx5spf9rrvuink8NGLatGngOA7Tpk2TtcLSpUuDchrEc3529dVXy6Hm0nGJHTt2jDi3geQFByw+SsgK5WrG0+nz+YK8DaE/aivs+/btYyNHjtS8R/kjCAJ74403wuqI1NPJGGN33323blsnnngiO3jwoLyio+cR+ec//6lZT+h7ZcZ74/V62b/+9S/D9+OSSy5RXT2SkMo1NU9nqDfL7I+a10bJ008/zZxOp+b92dnZqp74UJT3GK0oGlFXV8f+/e9/B3k99H7Gjh0bVoeVHjOJn376iXXp0sVUn7KyslQ9BJF6Ohlj7Ntvv5U9rWo//fr1Y0VFRaywsJABYEcffbSpeletWhVUz/vvv2+6T9GSSE8nY4Hx+6qrrtJ873ieZ0899VSQp0Xvmdm8eTMbMGCAqe+A2+1m8+fPl+8tKSmRx16e53XH9ffee0+uZ8CAAboRM6lA//79Tb1nDoeD3Xfffczr9VrS7ty5c+W6Z82aZVg+0vFVa94gYdX4yljgO5GVlaVZl8vlUo1yUmPRokWsRYsWmnVxHMduv/12VQ+N1vtlNO5b+V7oYWZc8Hq9bMyYMXK5wYMHh3kzy8rKgjxzRj/333+/qf7t3LlT9sRIPzNmzIj1ZYehtDVmftTmgyUlJabvb968Ofvoo48M+/XLL7+w7t27mxoLHn300ZjeAys9nRLvvfcey8nJMex/QUEBmzdvnmY9a9asMawjOzubTZ8+PcpXH4wZvcMYY5MmTZLLdevWLczjacX8TI3Kysqw8e2BBx6I+HVKz3V6ejorLy+P+H4tEiY6GQuEDzzxxBNs6NChrFmzZkFvtt7E6LvvvmPXX38969u3L8vLy2OCILCcnBzWp08fdumll7JXXnmF7du3T/XeaEQnY4zNnz+fjR49mhUUFDCn08natGnDRowYwd544w3ZkJsRnT6fj73yyits+PDhrKCgQA7dUXuvIplI//TTT+yaa65h3bp1Y5mZmSw9PZ117tyZXXnllWzJkiWG90vtkOg092MkOhljbP369ezmm29mPXr0YJmZmSw7O5v169eP/d///R/btWuX4f1VVVVBE58jR45Y8IoZ27p1K5s8eTIbPHgwa9GiBXM4HCwjI4N17tyZnX322Wzq1KmaoV/xEJ2MBSYr7733HhszZgzr3Lkzy8rKYg6Hg+Xn57PjjjuOXXvttWzOnDmssrJS9f5oRCdjjO3fv5/dcccdrGfPniw9PZ3l5eWx4447jj3zzDOsqqqKiaLI0tPTGQA2fPhwU3WKoiiH0eXn57Pa2tqI+hQNiRadEl9++SUbPXo0a9GiBXO73axDhw7sn//8J/vxxx8ZY8y06GQs8L59/vnnbNy4caxHjx4sJyeHCYLA8vLyWP/+/dnYsWPZzJkzWXFxcdB9ygns5MmTddtgjLErrrhCLn/77bcblrcz69atYy+++CK74oor2DHHHMPatWvH0tPTmdvtZm3atGEjR45kDz/8sGpIVyz4fD7WoUMHBoCddtpphuUjHV+NRCdjsY+vSnbt2sXuuusu1rdvX5adnc0yMzNZjx492M0338z++OOPiOo6ePAge+ihh9jAgQNZXl4eS0tLY126dGHjx4+XnwsjlO+FmcVGK98LLcyOCz6fL+iZVBOejDG2du1aduutt7IBAwaw5s2bM4fDwbKyslj37t3ZBRdcwJ599lm2ffv2iPo4YsQIud3MzExWUVER6cs0xArR6ff72dKlS9nUqVPZeeedx/r27ctatWrFnE4ny8rKYp06dWIXXnghe/XVVzVtnho1NTXsnXfeYRdeeCHr1KkTy8jIYA6HgzVv3pwNGTKETZ48OeL3VI14iE7GAqGxTz75JBs5ciRr3bo1c7vd8lh2+umns2nTprGSkhLdOiorK9nMmTPZuHHjWL9+/eQ5e+vWrdmJJ57InnjiCd3w1Ugxq3cYCw6jVROejMU2P9NCGabNcRzbsWNHRPeXlZXJ86Brr702onuN4BjT2AFPEERCWbBgAc4880wAwH/+85+Ik9oQsbN+/Xo5S5vZz2Dx4sU47bTTAATOs3vuuefi2UWCSArTpk3DpEmTIAgCdu3aZYtQPYIgCMJaZsyYgWuuuQYcx+GPP/6wLokQEpi9liAIfaQzYrOzs+O6t5LQ5sUXX5R/N7uX9JVXXpF/bwxncxKEGjfccANat24Nv9+Pp556KtndIQiCICxGOb5feumllgpOgEQnQdgGSXROmjQJLVq0SHJvGh/Lly/XPR/0pZdekhPSFBYW4pxzzjGs87fffpMT54waNcryAZog7EJ6ejqmTJkCAHj99dc1z6EjCIIgUpPZs2fjzz//hMvlsiQ5aygUXksQNuDw4cNo2bIlCgoKsH37dssO9CYa6NatG2pra3HWWWdhwIABaNGiBbxeL7Zv347PPvsMv/76q1z2yy+/1BSd33zzDURRxJYtW/DUU0/JGeJWrFiBE088MSGvhSCSgSiKGDRoENauXYt///vfuudFEgRBEKmD3+9H37598eeff2Ly5Ml4/PHHLW+DRCdBEE2Cbt26Yfv27bpl0tPT8cYbb+CKK67QLKOWtt3s/s+FCxeiurrauLMqFBQU4KSTTorqXoIgCIIgiGRCopMgiCbBypUr8cknn2DlypXYu3cvjhw5gurqajRr1gw9evTAqFGjcOONN2qezSchic6srCz06NEDN954IyZMmGDqXM9OnTrJZ49FyrBhw/Ddd99FdS9BEARBEEQycSS7AwRBEIlgyJAhGDJkSMz10DodQRAEQRBEZJCnkyAIgiAIgiAIgogblL2WIAiCIAiCIAiCiBskOgmCIAiCIAiCIIi4QaKTIAiCIAiCIAiCiBuUSIggCIJIGTweD6qrqzV/ampqUFdXB4/HI/+r/An9m8/ng9/vh9/vhyiKqv9Kv0spEDiOk7MV8zwPjuPCfniehyAIcLlccDgccDqdcDgcQf+XfhwOB9xuN9LS0pCeno60tDTV36X/Z2RkICsrC2lpaapH+BAEQRCE3SDRSRAEQSQUj8eD8vJy+aeiokL1d+n/FRUVsqj0+XzJ7r5tEAQBWVlZyMrKQnZ2tvy78ic7Oxu5ubnIy8tDXl4ecnNzkZubC4eDzD9BEASROCh7LUEQBBEzdXV1KC4uRklJSdi/oX+rrKyMuT23242MjAzVH7fbjW/eXAqOcYDIASIAkQOn+F364RgAxgEMgR+E/J8FPImc9P96xyJDw++Qf2eK3+v/5RnAMTC+vpKQf+W/CwzgGZjAcNr4U1BbW4va2lrU1NSE/VtTUwO/3x/T+5ednS0LUeVP8+bN0bx5cxQUFKCgoAD5+flwOp0xtUUQBEEQJDoJgiAIXWpqanD48GEcPHgQBw8exKFDh4J+Dh48iLKysojqFAQB2dnZyMnJkf/NycnB4hnLAR8HzscDPg7w8eCkf/0cUP/DoemGlTIEBCocDMzBAIcIJgT+hYOBCYF/z7phBMrLy1FaWorS0lKUlZWhvLw84rNm8/LyUFBQECRGCwoK0LJlS7Rq1QqtW7dGRkZGnF4tQRAE0Rgg0UkQBNHEqampwd9//636c/DgQVRUVJiqx+VyoVmzZmjWrBny8/Ox8tO14LwC4OHBeQM/0u/wNW3hmCwY6sWqUwScYtC/zCnipMsG4ciRIzhy5AgOHz5sOpw5OzsbrVu3RqtWrWQhKv3epk0b5Obm0v5TgiCIJgyJToIgiEYOYwwlJSXYs2cP9uzZg7179wYJy9LSUsM60tPT0bJlS7Ro0QItW7bEgleXgavjAY8Aro4H5xFISDYyZIHq8gMuEcwtgrn8OPeW02QP9/79+00tSmRkZKCwsBDt2rVDYWFh0O/NmzcnQUoQBNHIIdFJEATRSKipqZGF5V9//YWioiL5d6N9lNnZ2WjTpg3atGmDFe+vAVcrAHUCuLp6UemnE7YIdZhQL0jdfsDtB0vzY9jYIThw4AD279+PI0eO6N6flpYmC9HCwkJ06tQJHTt2RMeOHZGZmZmgV0EQBEHEExKdBEEQKUZVVRV27dqFnTt3YseOHdi1axd2796NQ4cOad7DcRxat26N9u3bo7CwEF88uwhcrdDwQ6KSiBOMY2BpfrB0P1iaD+dOGoW9e/di79692L9/P0RR1Ly3RYsWsgCVxGinTp2Ql5eXuBdAEARBxAyJToIgCJtSW1uL3bt3Y+fOnUEC88CBA5r35OXloX379mjfvj0WvPR9QFDWOMDVCIFsrgRhIxjHwNySIPXjvDtGoaioCLt27dL1kObm5qJTp07o2rUrunXrhq5du6Jz585IS0tLYO8JgiAIs5DoJAiCsAGlpaXYunVr0M+ePXs0M40WFBSgc+fOWDt3A7hqB7jqenHpI48l0ThgggiW4QPL8IOl+zDokqOxe/du7N+/X/W54Hke7dq1CxKiXbt2RcuWLWnPKEEQRJIh0UkQBJFAGGM4ePAgtmzZEiQwDx48qFo+NzcXXbp0we/zNoOvdgQEZpWDwmGJJgvjGVi6LyBIM30YcEEfbN++HSUlJarls7Oz0b17d/Ts2RO9e/dGz5490bp1axKiBEEQCYREJ0EQRBwpLy/Hpk2bsHHjRmzatAmbNm3SPNOysLAQPXr0wPdvrwFfWS8uvUKCe0wQqQlz+sEyfRAzfTj12iHYvn07ioqK4Pf7w8rm5uaiV69e6NmzJ3r16oVevXqhoKAgCb0mCIJoGpDoJAiCsAiPx4Nt27bJInPjxo3Yu3dvWDlBENCpUyd0794di17+oUFgkveSICyFcSzgEc3y4qxJw/Hnn39i+/btqkK0oKAAPXv2RN++fXHUUUehV69ecLvdSeg1QRBE44NEJ0EQRJSUlJRg/fr1WLduHdavX49t27bB6/WGlSssLESfPn2w9NWV4CqcAYFJSX0IIikwjoFlBoToaRNPwubNm7F79+6wLLqCIKBHjx7o16+f/NOiRYsk9ZogCCK1IdFJEARhAsYY9u3bh3Xr1skis6ioKKycFLb384d/gK9wgqt0UnIfgrA5jGdgWV6I2V6cNP5YrF+/HsXFxWHlWrVqJQvQ/v37o0uXLuB5er4JgiCMINFJEAShgiiK2LlzJ3777TdZaKod4dC5c2ccddRR+Prp78BXOIFaARzIi0kQCUeZGMjs1Ea6J6Q8AwPcIsQcD86dPBJ//PEHtm/fHuYNzc7OxjHHHINjjjkGAwYMIBFKEAShAYlOgiAIBDyZe/fuxdq1a/HLL7/g119/RWlpaVAZh8OBnj17YvOCXeDKneDLyYtJELZDKyut1nTHZHnGi2DZPog5Xhz7jz5Yv349ampqgsqQCCUIglCHRCdBEE2Ww4cPY+3atbLQPHDgQND1tLQ0HHXUUVj78Sbw5a5AqKzImfeiEASRHMwch6J8jqMoH9gb6oWY68Fxl/bFunXrwkRoTk4OBgwYgEGDBmHQoEFo06aNyRdAEATRuCDRSRBEk6Gurg6//vorVq1ahTVr1oTtyXQ4HOjTpw82fLUDfJkrkPQnNOEPDZkEkRok+BxOMyK0Xbt2OP744zFo0CAMGDAAGRkZCe0jQRBEsiDRSRBEo4Uxhr/++gsrV67EqlWr8Ntvv8Hj8cjXOY5Djx49sG3JXwGRWe4EJxqEwtGQSRDJJdK9mwkWnxKyCM3zoO+5XbBhw4ago1oEQUC/fv1kL2jPnj0pFJcgiEYLiU6CIBoVNTU1+PXXX7Fy5UqsXr0a+/btC7reokULDBkyBPOfWh4ImY1kTyYNlwRhH9TEZKT7NhMIE0SIuR6cc/dwrFmzJuwM37y8PAwdOhRDhw7F8ccfT15QgiAaFSQ6CYJIeQ4fPowffvgBK1aswK+//hrkzXQ4HDj66KPx+ydbwZe4wNU4ossuS0MlQdiPSPZi2kB4KmFpPoh5Hgwd3x9r165FVVWVfM3pdOKYY47BCSecgBNOOIH2ghIEkfKQ6CQIIuVgjGH37t1YsWIFVqxYgY0bNwZdb9WqFQYPHoyvn/w+EDbrjzFkjYZJgrA3NhOUkcI4BpbjwYUPn4YffvghzAvauXNnWYD27duXwnAJgkg5SHQSBJES+P1+bNy4EcuXL8eKFSvw119/BV3v06cP/vy6CHyxO3pvphpGQ6TGOX8EQSSYFBeeEgwMLN0PsVkd+l3QBX/88UfQXtD8/HyccsopGDZsGPr37w+Hw5HE3hIEQZiDRCdBELbF7/dj3bp1WLp0KZYtW4aSkhL5mtPpxMCBA/HL+5vAl7jBeQTrO6A2PEayj4wgiMTSSISnEuYQIebVYfjNg7By5UpUVlbK13Jzc3HyySdj2LBhGDhwIJxOZxJ7ShAEoQ2JToIgbIUoili/fj2WLl2K7777DsXFxfK1rKwsDB06FEtfWAO+1IKwWSPM7AWjIZQg7EUjFJ4SjGMQcz04464TsGLFCpSVlcnXsrKycOKJJ2LYsGEYNGgQ3G53EntKEAQRDIlOgiCSjiiK2LBhA7799lssW7YMhw8flq9lZ2fj5JNPxqKnfwJX5go/NzOZ0PBJEPalEYtPoD4MN9eD0fcNw/fffx+0QJeZmYlhw4Zh1KhRGDBgAAQhDpEgBEEQEUCikyCIpLF9+3YsWLAAS5YswaFDh+S/Z2VlBYTmMysDiYDsJDSV0PBJEPamkQtPCQYGluPF+Q+NwLJly4LG0/z8fIwcORKjRo1Cr169wDWR94QgCHtBopMgiIRy+PBhLF68GAsXLsS2bdvkv2dkZODkk0/GkmmrwJe67Ss0JWjoJIjUoImJLEmAnnXvSfjuu+9QXl4uX2vXrh1GjRqF0047De3bt09iLwmCaGqQ6CQIIu7U1NRg+fLlWLhwIX7++WeIogggcIbmCSecgB9fWxdIBmR3oSlBwyZBpBZNTHhKMI5BzKvDsInHYsWKFairq5Ov9erVC2eddRZGjRqF7OzsJPaSIIimAIlOgiDiAmMMv/32G+bPn49ly5ahpqZGvtavXz9s/rwI/OE0cL4UO2+OhkyCSF2aqPgEACaIEPPrcOxVvfDzzz/Lx7C4XC6ccsopOOuss3DsscfSGaAEQcQFEp0EQVhKcXEx5s+fj6+++irogPM2bdrg4KpyCIfSwdWm6LlyNFwSRGrThEWnEub0w19Qi46jWmDHjh3y31u1aoWzzjoLZ555Jtq2bZvEHhIE0dgg0UkQRMyIooiff/4ZX375JVasWCGvoKenp2PUqFH45rEfwFU4wSGFJ3xGQyXHkSgliGSjFJVazyMJTxkGBpblw+gHT8bixYuDzgAdMGAARo8ejWHDhtHxKwRBxAyJToIgoubQoUP4+uuvMW/ePOzfv1/+e58+fbDl878C4bNiIwjVMjN5paGUIOyBmqgMfT5JeIbBeAaxeR2OubwbfvnlF0jTw9zcXJx99tk4//zzyftJEETUkOgkCCIiGGNYu3YtPv30U/zwww9yUqCsrCycccYZ+OK+78BXO5PcS4tRDpNmJrQEQSQXPVEpPa8kPMPhAouEzO3DFS+Oxrx583Dw4MHAJY7D4MGDceGFF+L444+nsz8JgogIEp0EQZiipqYGCxcuxKeffoqdO3fKf+/fvz82fLQL/JE0cGIjnMQxZm4CSxCEvSBRGR1cQ3QKA4PYrBYDxnbDmjVr5L+3bt0a5513Hs455xzk5eUloZMEQaQaJDoJgtBl7969+Oyzz/D111/L+33S09NxxhlnYN4DK8DXqCQFkiYtTNSu2EyZVICGUIKwL6kuPDne3BhpZTlOfUuEmObDRU+eiq+//hoVFRUAAKfTiVNPPRVjxoxBjx49jNsnCKLJQqKTIIgwGGNYs2YNPvnkE6xcuVLe21NYWIj9KyogHEgD5w+ZmIROVLQmNpGWs7MopeGTIFKDVBafyjHTzEKeXrlIy6gQ2PtZg27ntsbmzZvlvw8YMACXXnophgwZQseuEAQRBolOgiBkfD4flixZgtmzZwel0R88eDB+eXsr+FJ3IAOtcrKiNUGJtIxWWRKdBEFYQWMRnhKhY6OZMrHUpYKY5cGwScdg6dKlctby9u3bY8yYMTjjjDOQlpZmqh6CIBo/JDoJgkB1dTW++uorfPjhh3LSiPT0dJx99tn44t7l4JXnakqTE6NJCRPNldGriwQnQRBWkqrCU28sNbPApywXaxm121x+XPzfEfjyyy/lbRg5OTk4//zzceGFF6KgoCCi+giCaHyQ6CSIJsyRI0fwySefYO7cufJEIT8/H2W/eiHszwwPobWSSESp3aBhkyBSl8YoPCPBzNgbbdW8CLFlNVqelIV9+/YBABwOB84880xcfvnlaNeuXVzaJQjC/pDoJIgmyJ49e/DBBx/gm2++gdfrBQB06NAB+74tA38oAxyzyaTMjqKThkyCSH2auvCMMwwMYn4tev+jHdavXw8A4HkeI0aMwBVXXIGuXbsmuYcEQSQaEp0E0YTYvXs33n33XSxevFg+X7Nfv37Y/NFe8CVpgf2adsGOmW9puCSI1EASlXrPbCoKzxQRnUrE7Doce213rFy5Uv7biSeeiKuuugp9+vRJYs8IgkgkJDoJogmwc+dOzJo1C99++62cifaEE07Amtf+BF/hTnLvNDBKbEGCkyAIPZSiUuv5JeGZMMQML066rR++++472Q4de+yxuPrqq3H00UcnuXcEQcQbEp0E0YjZvn07Zs2aFWTkTz75ZKx8cRP4KleSe6eDUWIMEpwEQZhBTVSGPs8kPBOKmObDafcdhwULFsgZbwcNGoQJEyagb9++Se4dQRDxgkQnQTRCioqK8NZbb2Hp0qXy34YNG4Yfn98IvtqZxJ5ZSCKFJw2TBJG66IlK6dlONeGZwqJTgrl9OPOhIZg3b54sPocMGYIJEyagV69eSe4dQRBWQ6KTIBoRBw4cwMyZM/HNN9/A7/eD4zgMHz4cK6b9oSo2OT4w0WKi/jDA8ZxhmYRCgpMgiEhIRVFpNM4lUHga2QAzNkKrDHP7MOr+YM/niSeeiGuuuQbdunWLreMEQdgGEp0E0QgoKSnBu+++i88//1zORnviiSdizStbwVU6wspLYhPQFpyRlEm4IE2U6KThkSAaD6koPAHt8S7BolMiXjaDpflw6t0DsGjRIoiiCI7jcPrpp+Oaa65B69atY+k+QRA2gEQnQaQw1dXVmD17Nj788EPU1NQAAAYMGIAN7+4BX+kOM+zKSYGEFWUSKjpJcBIEES2pJDzN7GdPkPBMpO1gGT6cNKkfvv32WwCA0+nERRddhCuvvBK5ubkR950gCHtAopMgUhC/34/58+fjzTffRHFxMQCgV69e2P7pIfDlbvnoE8mgq00GJJRGX6ucXj0kOAmCSBlSSXQC2qLSKNlaXLoSuX1QXo+0jJjpQb9x7bF27VoAQFZWFq644gpccsklcLttmnWdIAhNSHQSRIqxevVqvPzyy9ixYwcAoLCwEAeX1oAvju6cTSYyQ1FqVrTGHRKdBEHESmMRnkBgTEyy6GzoSmy2RK0MA4OYW4cO5+Rh+/btAIAWLVrghhtuwKhRo8Cl2mdJEE0YEp0EkSLs3LkTL7/8MlatWgUAyM7ORs16HsKBTHAseYbXKLmEUZkIG9NqSP96RG0YHCZPQyZBpD6pJFYSKCrNJANKBgwMYkEN8k904cCBAwCAfv36YeLEiejdu3dS+kQQRGSQ6CQIm1NRUYEZM2Zg7ty58Pv9cDgcuPDCC/HFXSvA+ZOfNl9tkmJ2z2dEWXHVBKVyMhZPwSlNUGm4JIjGAwnPkCYiSxaUDBjHMO6tc/Duu+/KeQzOOussXHvttSgoKEhq3wiC0IdEJ0HYFFEUsWDBArz66qsoKSkBAJx88slY9cJW8LVCknvXgNF+HSNRGpXoNJNgIxqUw2HohJSGSoJofKSK8ExSCK2ZZEHJgLkYht99FBYsWAAASE9Px1VXXYUxY8bA5XIluXcEQahBopMgbMiff/6J5557Dhs2bAAAdOjQAX8vqIFQnhYokMhzKnWINVFRxILTTFKNaNE7JJ6GSYJovJDwVDQRfTKghFL/XoiZdeg2pgAbN24EELCVkyZNwsCBA5PZO4IgVCDRSRA2oqKiAm+88QY+//xzMMaQnp4O758uCPuzG/Zt2kRwAuaTDJmZyMTQCQvqYPoTTxomCaJxQ8JT0UR0WWoTTv17EdjvWY3sQZCzuZ9++um46aabkJ+fn8weEgShgEQnQdgAxhiWLVuG5557Tjaao0aNwvKnNoDzOkIK20d0xkLckwtZBQ2RBNH4IdGpaCI13wsmiDj7seMxd+5cMMaQlZWF66+/Hueeey54Pvn5DwiiqUOikyCSzMGDBzFt2jT88MMPAID27dtj/8LahlBaNaLN4mom8Y6VmWANiFl4JkKA0xBJEI2fVBGdQMzC00xW8ZiFJ8frj89m7IzZOkIQM+vQ6aI8bNmyBQDQu3dv3HXXXejatatRrwmCiCMkOgkiSfj9fsydOxdvvPEGqqur4XA4wHZlwLEvx/gIlFBDHGp8o8n0GkkdFog924TW6tZPwyNBNBlSRXha4O00SuZmiehsaEC/TLSLpDrvAwODv1UlXH08sn296qqrcOWVV8LpdBp0niCIeECikyCSQFFRER5//HE5UVDfvn2xdfYR8DUmjWEkmVxjvR5axiKhR15OgiBsRxMRngnJUmu0kGn1dRWY049B/+mCFStWAAC6du2KyZMno2fPnob3EgRhLSQ6CSKBiKKIjz/+GK+//jo8Hg8yMjLg2eiCcCALHCIw8kzUN7hWXAfidjQJeTkJgrAtqSA8LfZ2SliapdYo23i8rocWB4OYX4OM43woKyuDIAj45z//iXHjxsHtdpuqgyCI2CHRSRAJYt++fXj88cfx+++/AwCOO+44rH9jLziPw+DOJKAnSu0gOklwEgQRL1JBdAKWezuVGGUmN9mA9rVYF0bNllEWd/hx4p298O233wIAOnbsiPvuu4+8ngSRIEh0EkScYYzhiy++wMsvv4yamprAMSgb0yAczIzMu2kH7B5aa5R4wnT9NCwSRJPGDsIzykQ65qtPwGtMQLbdSPE3q0b2EIbi4mIIgoBrrrkG//znPyEIQrK7RhCNGhKdBBFHSkpKMHXqVKxatQoAcPTRR2PzrEPg60K8m0rjrybIjK4ry+hdj2dYq0nBpyU4OZ4zJ0bjnOCIBCdBELYQnUBkyXaiqt4ib2ac+mfKrkVxnTn8GHxbN3z//fcAArb5nnvuQdu2bWPrL0EQmpDoJIg4sXr1akydOhXFxcVwuVwQt2VAOJANLtQ2hxr9UONpdD20jN71eInOCESfXqbEiEWnmYy7kUJDIkE0bewiOAFLkunoVx/nLLVWiU4gNtuncp2Bwd+iGs6+NaipqUFGRgZuueUWnHnmmeDs9B0giEYCiU6CsBiv14s333wTs2fPBgB07twZe7+sAV/jChSQDJ+WsTd7XauM3nWrRWeEWW31MiSS4CQIwhbYTXDYWXhGkx09EiK1cVFcF90+9LyiOdavXw8AGDlyJO68805kZGRE2WmCINSwX7A9QaQwe/bswc033ywLzgsuuAD7PvI2CE4JIyNvZhIQaR1WCk6Oj2kywfFc9BOdGNvWhAQnQRB2E5xqxGsMjAYt76aVWx5CidV+hlzn6xzYMqMU1157LQRBwJIlS/Cvf/0L27Zti7GjBEEoIU8nQVjEd999h8cffxw1NTXIzs5G7Vo3hNIEr5SKzJyHNFrilNXWFtlsaSgkiKaNnQVnrJledatOYpZaM8Qr4ZGKvRSz6pB7iohDhw7B5XJh4sSJOO+88yjcliAsgEQnQcSIz+fDa6+9hjlz5gAIJCT4893DYUehSEYrqY9ctMkYjIhR9CX93E4aBgmCsLOwiLNn0/IQ20gwSnIXxyy7HMeF2WQm+DHw5g746aefAACjRo3CHXfcQeG2BBEjJDoJIgaOHDmCKVOmyGdvCn9nw/FXXtBRKMoVUrXHzei6VEbvUTW6DiD6rLhmSaanM8b2SXQSBEGiM6YKYrtfb+HToG9GC7rRXGdg8LeuAOtUAb/fjw4dOmDq1Kno0KGDbl8IgtCGRCdBRMnvv/+OBx98EMXFxcjIyIBvXSb4knT5emg4TuijZnQ9tIzedVOPcTRZcSMhlcNraRgkCMLOohOIq/C0jegEYhKeQGy2NPS6Mtw2MzMTDzzwAIYOHarbF4Ig1CHRSRBR8Pnnn+O5556D3+9H586dse+LOnC1gXBarb0f0qNmdF2tTDSCNYxIsuJGQ5TCL+leToBEJ0EQJDpjqyC2+6PJQqtsXuWz07OpkVxnDj96jmuOdevWgeM4TJgwAVdddRV43ibJnAgiRSDRSRAR4PP58NJLL+GTTz4BEEit/sPTWwA/p5togDFmeB2ITrCaFpx6RjuVvZwxth+4n4ZBgmjyNGHRGajehsITMF4wlZqPccFX7zrjGM569FjMnTsXAHDKKafgnnvuoX2eBBEBJDoJwiQVFRWYMmUK1qxZAwBw/JUHx/6coP2bySLmx5hEZ+x9IAgitSHRGWsFsd0fY/uJyDDrK6gAulfA6/WiS5cuePLJJ9GqVau4t0sQjQGKDSAIE+zZswc33ngj1qxZg7S0NLi2tYDzYDNwvKB/I88HfozKxAlK804QBGECGivjT7JFpQW22FGcC35dc+Tn52PHjh248cYbsWXLltj6RRBNBBKdBGHA+vXrceONN6KoqAgtWrQA+6UZhPIs/ZuUYlPU8MJJZfSum0ArKULsBpqLa6p6giAIookRg12RtqmYyYugiijqLwQbXa+Hr0lH1Xfp6Ny5Mw4fPoyJEyfixx9/NPMSCKJJQ6KTIHRYvnw5brvtNpSXl6N3796oWJIGvi5N+waznk29Mmbq0CAqsRlFpsBGB3k5CIIg4otRYqAItlrEvLAaox3mfS78/ZmI4447DjU1Nbjnnnvw6aefRt8fgmgCkOgkCA0+//xz3H///fB4PDjhhBOwc3Y1OJ8juJDkpdQyUEovZhzFJhBDkqGgPoSsQlux35IgCIJo/ES6t96CaBpLQm6Vdjc08kjnOify+OP1wxg9ejREUcRzzz2HV199NfYcCwTRSKFEQgQRAmMMb7/9NmbOnAkAEA5nwVlUEF3CIClcR+86YCxYoyTmo1TMis5UTyQEUDIhgmjKpEK0g90TCQUq0b9ulEU9ygy1gHEW2oY+GNjkCK8zMPhalcFXWAIAOPfcczFp0iQIgkHOB4JoYpDoJAgFoihi2rRp+PzzzwEAjr/z4Pg7L1xwSkYt3o+PnvDU2w+qIKZH3IwgtEDwxSQ8rRCcAIlOgmjKkOhMvug0U70Vn1Osyfs4TtVe+JpXwN+5GKIo4tRTT8W9994Ll8sVW1sE0Ygg0UkQ9fj9fjz55JP45ptvwHEcHLvz4TicE17QSHAqjaJeGVNeSJ0kQyY9oXYXneTpJAjCFthZeMZZcAaaSL7olESlnt0y5cnUs4+SB9LIhuvZBA0b7s+rAutZAq/Xi0GDBuHRRx9Fenq6fn8JoolAopMgAPh8Pjz66KP49ttvIQgC+O3N4SjODC7EccEZaUMfnVBDGItBk1DbX6J1TYOoHvFIhGBjEJ00DBIEAdhXeDYx0SmhlZ1dvw0DO6kMe4128Vjnuj+7BsLRZaipqUHfvn3xzDPPIDMzZD5BEE0QSiRENHk8Hg8efPBBfPvtt3A4HBC2FgQLTo4LGCm9kBwzExWOiy0sN4qQoLgLToIgiMYELUAllVCbZXmiIADw+5UNGNtvM9cVZYSKdIi/5iE7OxsbNmzAHXfcgaqqqgg7ThCNDxKdRJPG4/Hgvvvuw/Lly+FyucBvaQGhrF5wmhWbERqkiIkxq61pRNZ0BaddvRsEQSQeEp62wppzpw1sqJGdjtDW89Vp8PySKwvPO++8E9XV1RF2miAaFyQ6iSaLz+fDQw89hJUrV8LtdgObCiBUKASn3gHSUhk9YhWbQGqIzQSEfREEQSQUEp62Iy5ez/BGzIlPo/2eAPiagPDMysrCH3/8gTvuuIOEJ9Gkodki0STx+/2YOnWq7OFkG5tDqMwIXDRznqYeZg1brCRCkBIEQTRVSHjaDk5vQdgsZu43YcM5vSNR6r2zfE0avGvzZOF55513oqamJrL+EkQjgWatRJNDFEU888wzWLx4ceAcrc0BwWkmhEf3ulJsGh11ot1Akwv1jDl5BWWuJQiiMUPRJOEYnaUZqy2VzuM0EJ+6whOBOYNQmy4Lz/Xr1+P++++H1+uNvm8EkaLQSEY0KRhjeOGFFzBv3jzwPA9hews4KrNMiU3NMmb3XOqVa4Ji0xJIcBIEES9oTLY3VoTLWtAOJwiq4lOZFEmoTYf3tzykpaVh9erVmDp1KkSTGegJorFAopNoUvzvf//DJ598AgAQdhXAUZ4ddF0tc56hd9MII8NIE5voIMFJEARhCZYcl5IsbLKlJUx8hohKoTodbGM+HA4HlixZgueffz62c7QJIsUg0Uk0GRYuXIjXXnsNAODc2wLO0lzd8qZDafVIcihtzIkX7AgTrTmXk4w9QRBaNMaxM95YEAYck82ygdcT0A+5FSozwW8vAMdx+OyzzzBz5szY+kMQKQSJTqJJ8Msvv+CJJ54AADgO5cF5JE+1nOTZ1DN8poxirMecNLEJj+lVdvJuEgTRlKD9nJFhV6+nAkdZNhx/FQAA3n77bcyfPz/2/hBECkCjGdHo2b59O+677z74fD4IpVlw/l0QXoiXzuQ0MEYG102v0poRpE1IeLJEng/ahN5XgiCIJodFC8OG9pznjOcMghD4CcF5JA+OA/kAgKeffhq//fabfj0E0Qgg0Uk0akpKSjB58mRUVVXh6KOPhmtPK3AIMRI8Z7yabGBclN7RlAtpTfJenogEJ636EwQRb1JtDE8V7Lhv1ITwtEx8huA8kI9TTz0VPp8P9913H/766y+j3hJESsMx2sVMNFJ8Ph9uu+02/P7772jXrh2OLHKD8yoMjJrYZCIQKoJCjYnI5M3/WsbI1GNlJnOdUT0m6jDXlxiHgSjCXqP2blKILUEQ8cQuojNBi2yWJREys3hrVIVZL6V+JdHVEWJPjTLScoJaHSG2RS3E1u9vqI8T0fEfTmzevBkdOnTAK6+8guzs7PB7CKIRQG4DotHywgsv4Pfff0dGRgYOL3WC89cP/lIorQXezaQT6yHZSSKh4bRq2OGzIwjCftDYEB2JikKJp81LQsgtx3js/tyHFi1aoKioCA899BD8ClFKEI2J1JyxEoQBX331FT777DMAgG9zM/Aed+CCmVBaqZzONTPnejYpIphwxCw4KcSWIAiCiBc8r5uB1nTIrRGS8PQ5ULEyE263G6tXr8Y777wTSW8JImWg2RvR6Ni4cSOmTZsGAHAeLICjIjtgABwO9VAXJRyvbyxiFaxE7FgRXksQBBGKnRYLUy201gISuVhriccyxmgpAIDLCQg8+No0sO2BxELvvPMOVq1apX8fQaQgJDqJRkVFRQWmTJkCr9eLk08+GY5Dzeu9mzEaGI63THDKq6R2Co2NZeJhxbmZBEEQROMlkeLW5Dma5vaPmhCeVohPgYejLBfnn38+GGN45JFHsH//fuP+EUQKYaNZL0HEBmMMzzzzDPbv3482bdrg5zcPBIxLrGEwZsWmieNUIl7JtdPKuxrJEJsUXksQhNXYaaxNtTHOTv2VPkeTZ2Vblp3WikVpgcfCp/5Er169UF5ejgceeAAej8e4XoJIEWw0UhBEbHz55ZdYunQpBEFA8U9ucMyhf4OaIVHu+bTYu9noiFJw2iacqzF+JgRBECaxzVhsFjPRQaFlTEYUxcXrqbadxyhBIeOxa54POTk52Lx5M2bMmGHcL4JIEUh0Eo2CHTt2YPr06QAA/u/mEGoz9G+IZdVS2vcZL+9mpMSabS9S7BBOa6eVdYIgUhs7LUA1xrEt2QuzEQhP015PvfwQMS5W814XajfmAABmz56N3377zbg+gkgBGuHoRjQ1fD4fHn30UXg8Hhx//PFwFDdXL8jxAC8Y7N00EUYj1aWH2Qy3VuzrNHPeZ2Mj2aKXIAiCsJ9I1rKH9eG2ellpJTiHQZQUAKid0RlUSf18Qw8d8eqozMHZZ58NxhimTp2KyspK4z4RhM2x2WhBEJHz3nvvYdu2bcjJycH690vBQUXsGWWlBUweKG1SlFqJ4cqr/mOsPMxak2SfmxkJVglOM+8LQRCNGzt5ORNIowytlT5LKxZizWyvEXhj8WkkPAFN4bn0ue1o27Yt9u/fj+eff964HoKwOSQ6iZRm27Zt8plWtX/mghNdwQU4PjCgG3k3JWOlZ2RSzEgzxowFp8giF5zJXNkmwUkQhFXYTXDazWtohJ1zHlgVAWTmNZoRnkbiUxDCxCcnCjiyKg08z2PBggVYvny5cV8Iwsak2AhHEA34fD48/vjj8Pv9ECpz4KjKCy6g5t3kueDBXyk25QRCId5Mo4RDNsTu3s2oVtmtEJyMkeAkCMJ+JNCepJyXM1pEMT5eTzXPZKjXUy1EN1R4qpUJqdtRlwXhSGDL0HPPPYfq6mqzvSYI22HfWTNBGDB79mxs3boVOTk5cB0qbAirjdW7qfx/LMbZ7ApvJGFDmm011GF3wRkxViUuIrFJEISE3bycTRRzWWNjtJH1wtNUW2YSBOnVEwevp7O4FQoLC3Ho0CG88cYb+vcShI0h0UmkJPv378esWbMAAHVbcsH7nYELkey51NuzYTahkBEGdZgSiIGC+tfrjWqjE5wEQRCNnVT0cloUWptyWBFuC0S015NjPI6sDmwd+vTTT7Fp0ybjewnChpDoJFKSF198EXV1dTjmmGMgVOYFRKIggHM4wGmsikrp0DmB11/NBOoFaXwNpmnBaUSis9da4HVkJHwJgiCIVMQgyRDncIAT+MBcQ7NM/XxFJ1Mu53DIXk+hJhunn346GGN4+umn4fP5YnoJBJEMSHQSKcfq1avx/fffQxAE/PlFNTiON3dWpfJHD7Pe0hj2dYYJTqPwIa0+hwhOSw641iMZgtMqLwCF0xEEAdhrLGjCXs6EhNbW1xFzaK2EUiSaeB80hafidWkKT+WcRRCw4tW/kJOTg23btmHevHnGfSUIm0Gik0gpvF4vpk+fDgDgjjQD78/UNUryYc9mJxnxCAdS1Gkqo6wZrEqQYBYL9lUykZGHkyCI5GInwUmkPiaOVjHyegIw9HqC48BxbtTuyAEAvPXWW6iqqoq4uwSRTEh0EinF3LlzUVRUhPz8fLhK2+qW5XQ8mxwfktlWzbtpJsQ2Am+nodg06+00EJuWezvtEE5L3k6CIBob5OU0qMfGXs6wfgT6qhsuK0hltNsyEp6Oyhbo0KEDSktL8d577+n3lyBsBolOImWorq7Gu+++CwCo3JIJjmkM3PV7O42MkWyItAykzY9FSQhWnYtJEASRbOy06NTUbUuiSGREkNlwWz1hiXqvZ3qa+jVwOLAmcP9HH32Ev//+O/J+EkSSoFGPSBk++ugjlJaWorCwEI6K5uqFOC6QOc7sESOpkl1Peb6kmdVfq7DLxIjEL0EQsdJEj02ym5cTsGiriYlFBM6MB9NKzG7nMRPZpOERFWpyMXDgQHg8Hrz55ptRdJIgkoNNZpQEoU9ZWRk++OADAMDhdW5waunGJcEJ1B/UrGFspMFeEIzDbnjOOLW5GY8oz5kL8VGjiU6UZKwUnE39vSSIpo4dxoBUDKuNE7rCM1G5C2INra0nKGxWy947nQ2/awlPp6OhDhXhyYHDxvm1AIAlS5Zgz549hn0jCDtAopNICf73v/+hqqoK3bt3h1Ab4uWUBmbDQ5mNs9zaDi2DbCZbrxGRnGcaI1FNfCxIXhRcnw0mmwRBJB8aCyInjudyGno81YSnnUKltTCVLV9lXqK8R5rfhIhPwZeFE044AaIoymeWE4TdSbEZONEUqaiowNy5cwEARSsDq3wySu+mHloizW7eTqmfynDaRkJEwtNqsdnI3kuCIGIkWWNCKno5E9DnqISnAaZCa+Ph5Qy7WP85KL2coegtJEviNaSNtXNLAQCLFy/GX3/9ZdhHgkg2JDoJ2/P555+jpqYGnTt3hlCbF/ij0wG4nPqCUwqxjfYMzGTBm9iTallbifN2JgUSmwRB2IVUHUfNkIgw3kiEp92imszu83TqZ6+FQwDLTAcACN4sDBkyBH6/X06ySBB2xmZPJUEEU1dXh48//hgAsPcXLuDl5Dgwo2RBHGdOvEVyfqcV3k6YCH21YA+LqQQNIgv8JAg6o5MgCNtgt8VGi0klL6eE6cRCJj87w/qs8nK6nOa276iEyYbCXE4wI+HJc2CugNf0ty/KAQALFy7EoUOHDPtKEMmERCdhaxYuXIji4mK0bNkSjpr8IMHJBI1BXrmPwqHj6ZTKCELg3M5EYDQRUApOs6G4IZgWnGaxYG9lxIKTzuUkCCJeJGNcSMWw2kiwYBHT9PYTIxTlYs6QGylafUxzN/yuITxZmqvhdw3hKYlNSXgK3iwcffTR8Pv98jYkgrArJDoJ28IYw5w5cwAApVvTAIcz2MOptklf7W9qBjiaSUc8vZ0WZemLi+CMASay5Hs4SXgSBJFMUjWsNpp+x3u8j2I8Vz2exUovZyhmxLGa8Ax5barCUzmfqReem5fXAQC++OIL1NXVGbdNEEkiRUdCoinw+++/o6ioCOnp6RDqWqkKStnbqRdOqwx70comlwRvpyw89cSmyZVf02eeJVhwxkSqTtQIgrAviV6ESvA4Zouw2ijG/nh4OUORbWQizu5U9sPtUi+jCLdVejmVMKdDFp9MVeByEHwFaNWqFcrKyrB48eKYuk0Q8YRmdYRt+eKLLwAAniPZ4KCR9c3M/k6g3gNpUMaM8DRTj8lMtgAsO4Ms6jNAtbAye6wdIG8nQRCNHFudyRmB8DRtvywYx02H20br5VTC80B6mnG/HYJhGeZ0aG7P4cCheEcgudBXX32l3xZBJBESnYQtKS0txbJlywAATl+hdkGOA1xOMIPN+RBMnONpFiNBacbYSmVi9a4m4uDsKLAkpJbO6CQIwkoauZfTMqzodzwEsNE4bsKecgJvbFvMzhVMnMPJ+PqFcb0yGWn6WWsBiJlpEDW8oQDgqGsJQRCwYcMG7Nq1S7cugkgWKToiEo2dJUuWwOv1gvNngfdnhxeQzqwSFGGzWij3gBoRq7dTKbbUDHc0yRY02xJDiplJyR7/SRcJToIgmjxNMaw2mubMHiUioTWeR7qAq5cgz0xeBqWXU+s1KMJq9YQn4zgwjtMXnnzgR0xzqYpPjrnA6poBAObPn6/bd4JIFiQ6CVsi7Utw+FqDOYXgwZjjwlciHUK4tzN0FZLnrfN2CirhMEZiS+U6J+1FjZRYPJxmJidRTjxsJTgZI8FJEESARhxib6uwWsD04mbU20KiHNc5Nfsfam9MzBE4l1M9iWFo1SHvAxP4MPHJMtIafpeEZ4j4FDMbyijFZ1A9bicc3tYAgAULFsDv9xu+DoJINCQ6Cduxb98+bNiwATzPQ/C1DL6oJjiV19R+V2ImzNZsUiGlMNMSW1IZHTFmSngqkw7pCE5L93ZGKDxtJzgJgiCARh1Wa6ngtGNYrZZtVC4qmg2r1UJpd8y8B1rfJ+VCt1byIDR4PVlGWkBoKq+peT3VuqQiPHl/c2RnZ6O4uBjr1683fBkEkWhIdBK249tvvw384skFxwJnWzGnEMjcpmc4HEJgs73RBMPqMNtEHglixrgmYUU/6ceiEARBqNGIBaelWNVvk7Yg4rDaeMNE815OI9yuMC9nWHMCHyY4g67XC88gL2co9cKTuQN94sCjujgTALB06VLjfhJEgknR0ZFozCxfvhwAZC8nc/AQ0xyBMFs9uMCZVVqHKsvwvObhzDJGnrJI92bqGCBT2fQi8Nwl/DBsq2hsGXMJgkgujVxw2nIfp4k+Wb4warDdxFR7JrLVyhjYWCPBCQAsMw1w6L/vvrx0+DONMuQC3rw0ePMC4lSaNy1btoxCbAnbQaKTsBXFxcXYtGkTAEDwNw8ITqcAxnEQ0xwQ3SoDMMeB8fqrhmHoCU9FyI6qtzM0WZDZsB3VphR16YURKYll9TeaREYmiHnyQ4KTIIhUJlUFp5VY2SdTW1wU7WkIz8D2lQj6pZNgiFPOGbSEpwlPKMtUHKOiIzxZfTSVP90Jf7p6vb5sN8AB4ALik/c3Q1ZWFoqLi7Fx40bDvhBEIiHRSdiKn376CQDA+bMBIR1iiHczTHhK+x8UKA9TjhgVgRckPNUEm5rwVDNcCsPHGIvNw6ljkDVXdaMRmxFMpKKaBOllEIyFRpw0hCAIEzTiMcB2+zgjac6qsFq1etSEp5n3Ss3LGWKXOIcQ3q9Q++xymvJyhvXdwYeJT39uWnD5evGpRBaccjnAl5eBmpIMAMCaNWuM+0IQCYREJ2ErJNEpiAVhgjMMFcEpYUp4Kr2dZjKdmhVteiKK5/TFppnU8CYIM+wJ2nMZ0WQo3t7NRjzpJAhCh0YeVmsZdgyrtfDs6pjDapU2ykQkkumwWs2+BNrw56ap1xUqPNWa4wDmDoTYrl692rA/BJFIUnSkJBojoijit99+C/yHb6FZjrkFiOlO43BaMwLIzDEqPG9svDg+0J6RkDIj/ixKniD3OVbBmaoTKoCEJ0E0NRq54KR9nDD+jEUx8rBaLZgYHFarWoaZC6vNSjfuu4PXF6/1wtOX7dYuwhcAADZt2oSysjLDfhFEokjh2STR2Ni5cyfKy8uRnp4ODjnqhXgOolOAP90JprHHQYIJgrG304w3URQDhkLPEEhi08yh0iYMZn1B477pIHtUE7j3x3ZZbFM1qRJBEJFDgjPxJHMfp1YRoV4kGtkjQTC0EZyZBEP1gpMzaI/pRGdJ1BWkw5+uL3JrWrlRW+BEbXP1ORDHpaNTp05gjOH333/XrYsgEgmJTsI2SF7Oal8WxAyVM654LrACyAMQODC9sbv+AGXdMFvlGV9aK5kGWfEC9YiKujjtiYjCIGnvuzTRnsFZnYBKBttoJwYR7LmMWHDGe8JGgpMgmg4kOCOpzJp6TPYprvs4jTA6QxvQtBWy4GRM3+Yq+qUlPFlWesPvGq+jriAdrH5uoyc8mRCYCzGe0xSeO/8O9HfDhg3a/SaIBEOik7AN69atAwAwZ3N4swX4M5SHIysEZz2i2xHu7awXm8H/Vxng1TLChgrPECPD8XxwXZIgMyPwVAxR+L5LFaNmpkwImntGI520RLDnMmoPZ7wmbiQ4CaLpQIIzksqsq8tMcwk+j1P2cioJtU8cH24PjWyGJDxDbbBKWG2o8GRZ6eEJD1XeFyYokg3WC89Q8VnTMnhBXk14enIcYK7mAIA//vhD4wURROIh0UnYhi1btgAAmLMZGMc1CE8VwQkA4AF/mkJ4au3zDw2z1csIKwlPrfTrkvCUxKZWXUrDriPIGvZdmlhFjUVwRkoiBKeE1ZMgEpwEQRDhNOZ9nNAQnBKSnVITnBIK26EaVivZfMkWu5ya/ZKEp5rglKtT/L2uIF3lOoK8njUtXUHCVC6nEJ6eHEfAC+psBgD4888/4fF4VNsniERDopOwBRUVFdi7d2/gP45cAIEBWXRoCE6JUOGpUQYOAcxhvH8jcI6liYOmjYy3ZNSM9ngYhe1EgCnBaeGKOROZ/fZwEgTRtCAvp9mKrKkHsOU+TlP1iMy474wF9noalXEIhv3iRGa4h5NxHGpbZ6qKyYYyQEnPNP0y9cJTTkLEZyI7Oxsejwe7d+/W7QNBJAoSnYQt2LZtGwCA8RkAHwgfER1AXTMHvDlGR59Af3+npOkcBomFWL1B0jM4Zs/XFJn+iqoSI2Np0nNnalXZjEg06eW0bDJk5dEp5OUkiKYDCc7EY+U+TsB40TWCz9jQNguCsQ3kBXN1cZxh38WsNHC6R6QBda0ywHjoCkoAEJ1AbTP9MpVtBVS0F+T+ldcG5lI7duzQvY8gEgWJTsIWbN++PfCLI5C1VnQAopODKAB1OQK8WfrCU3Q7wNwq3k4RgUFfGvglj2coyjICry48lYKT52TjFN6mwsjoCM8go2biDDAzK7m6ht5CwSm3F+ukiAQnQRDRQIIzksqsqSdeIlhLvJn9jBW2UVMsKm26li3khaDXqFmXW7GvUqPvYlZaoP+MqQtPHqhrERCccnsawrOiQ2Buw3ht4VnVmg/MmxxARbt64SxkAyDRSdgHEp2ELdizZw8AQHRmwZfGQXQ2ZKdlvAnhKYXZKoVnqOCUCDVkamVChaeah1NNeJoMN1U1ZqGi0kwZs8RBcMYMCU6CIKKBBGcklVlXl9kmo8oyG6U9ULGJYfbVTHIhQFVUh9Xldhkm+JMFZ0MlqsKTqXw0ocKzooMTojIlhYrwlASn3L4zIDxrW+QBINFJ2AcSnYQt+OuvvwAAojsrEGoSqgt56B+YDAQLTy3BCQTv7xRVss9KSMJTL6RWKTz1UrPX950ZhedKBtRMGQ3Cs+LGV3BGNUEiwUkQRDSQ4IykMuvqsjqsVg2leItxH6dsZ42SC0n2UStySVmXmuCU6wr0PUxwNlQCThKf9V5OzfbqhWeo4JSv80BtXkMbamVEJ+DLzAIA7Nu3T7MtgkgkJDoJWyCLTmemZhlPFm8YZgseEF0CmNMgaRDPm/Mamt3DaRV6Ijiq+hLj4YxookSCkyCIaCDBGUll1tWVCMEZKSbst2nbzXHGr9HhMP7+iaJ+mfqFcG9emqqXU0lJD5eqmJSrEgLCs6q1dkWiOyBsDxw4ANGihIUEEQskOomkI4oiDh48CACobZGtWc5UmK2fGQut+oGfae3dlDsWqMdwnyQT9Y2WQmSZMspmDJsOwXtFzbQX+zBgOout1SG8iZ6EEgSRHEhwRlKZdXUlK5lRDNE+EpzAG9scob4uv1+7Hun4FJ92GQBg6W5wPv32PAUZEB0cOL++zRRdgD9N/70v6ctQ3k27T6IrHYIgwOPxoLi4WLcugkgEJDqJpFNeXg5//YBf3daF2uY6ITN6wtPP5IGcuQWIaomFGAP89UaB47SFp/LoFEFQF4uS4NRDuq4QZZrC00xoUSSCUyLOwjNpglOChCdBNG7oGTdPEgVnzFFBZvIamIQTFHVp2R4hpD0t4an8/mkIT5bubkgcpCE8JcEpV6shPEu7NiQO0hKepb0YmEsEczJUdlLvU11zDnWuQNKjAwcOqJYhiERCopNIOkeOHAEA+F0uMCcPZnRElprwVAhOIHD2VZjwVApOCTXhqXZWZ6jwVBOcod5OFcHZUFQ/EYFcn1EZBfp7ReMjPJMuOCVoUkoQjZNkPNup6uW0gYczauFpJoO7XjkFXKiYBMJtkFoZIEx4yl5OJSHCUxac8h/ChWeo4JTrDxGepV2dEBXJcdWEpyQ45TL1wjNUfDIBEF1uAEBZWVn46yCIBEOik0g6UtiHNDjWNme63k4gRHiGCE65jFJ4qglOiVAxqSXuJOGp5+GUhKeO4GwoWt+unpg0UwYmDb3FwtM2glOChCdBELGSqoLTSmLsU8TC0+xZ1dEKTrkeKXrJoJ564cnp7eOsF55hglNuK1h4qglOuc/185dQwSlXpRCeZT2DBadcxsmCvJ51+YE6xXpPJ4lOwg6Q6CSSTlVVFYCGwZEJQE0rhpoCY+HpzeAhunWyznEcIHCGxooJvKnDniMSNgaijDEdgUsQBNHUoX2ckVRmTT2JFsHRHgOmgqmcCSYXQTmOM/z+MYdgmDiI84nwFGhnqpWoaO9QFZxyVTxQflItRLfBArSTIWPUQTliTHSS6CTsA4lOIunU1NQAAJgU4soBognhyfsA3q99oHKgjAj4WSCbrUMnbtfMSqqUWZbntA08q09kpDgmJSZM9Mv0qrKFmWxNezmBxE3kKJMtQTQeUlhwmhGTjVlwWp7F1kTET0PkkIEdEAwy20Ph4dRJLsTS6o9P8fp06/LlpoH36NvV8k5OiE4OvEe3GNIz6pBWUKNbpmPXgyjIqELLAYE9nMwZ2GJUWVmpXzlBJAASnUTSaRCdDoADGBD4V0d48j5A8DKAAb50Hv6M8H0XvE8EfKJ8KDNzOdSFpyiC8yvCbtQEXr3glAWemvCUBKeEjvBkZkSuib0sthecEvEWniQ4CaLxkMKCs6FKnXBKEpz1bZrou4ncBqbPplbmbtCwGWEhtSrCUxacEhrC05eXHjhfnDE4qtUFrCQ4AYBj0BSeNcdWAwAcDr+m8OzY9SCyXHUAgLy0GrQccACs/vxRr9erXjFBJBASnUTSqasLDJLMIciCU0JNeCoFJwAwnoM3SwgSnqGCU64vVHhKglNZLlR4hgpONUIFp4SK8AyrR83warWlKJsygjPekOAkiMZDigtOpaBUE5e2FJwWEXfBKaEQntrZ4EPsglqW+hDbobmHM1R4qpUJEZ6y4FS0FSo8lYJTrlpFeNYcW4209IY/qglPpeCUyEurQUabQDkSnYQdsNeIRTRJJPHEwAUJTvm6QniGCk65jEJ4aglOuawkPNUEp4QkPPUEp+Tt1BKcEgrhqSkUlQbYhIhKScEZjwkSCU6CaDw0IsGp9jfbCk4L+pUwwSkhisZtSjZL7zzuehuimzQIkIUnS9PZeFkvPMMEp6ItSXiWdwwXnBJK4VkdIjgllMJTTXBK8Gv+BgB8/PHH2v0miARBopNIOpLh4EKVpAImAN4cwJvJhQlOuQzPwe/iITp4TcHZULb+q2/imJGYzx6LBCvbslBw2hISnATReGiEglN5jQSn1J4FgjMSzLxXHG+uTcG4HHM51AWnXIChLs8B0aVfD8eAij4epKsITgmHw4/7hn+hKTgJwm6Q6CSSjmSwWIb2pn2hlgPvBeqacajNU//aCnUihDoRoluAmKZytpaETwTn9wOCEMg+p4Z0xArPg9MyktLRKaHnc4bVJcoC0NA4mzS2poy8xUekxDxpSmWBSxBE/EhhwWm5oDRu0Lq6TPab4zhNm5M0wWmmLsnDqbcAywsAz4EZZZJ3BRLycDqJg1iGG4zjINRoh7JWt3GD8YC7VL+90mM8ENJ9qK3R9qxO7rMA3d378a/C5ZplnMflAwBGjBih2x5BJAISnUTS4euNR7O0SrB2tWHXhVoOjhqAEwMez7r8cOEp1IkQautDajnAn+ZQF56S4FSE3YQJT0lwKpL9aApPCS3hqRCcDUVVyikNnp7RNbOXRYndhKeV0LmcBJH6pLjgTChJEpxqv6v9X789awWnYduhIbVqwrNecEpoCs96wRkopLFtJ8PdEEElQlV4Vrdxy+d1cn5t4Vl6jAdCRkDcMkBVeE7uswDtnUcAAPlCpabwdNcfsdK8eXPV6wSRSEh0EkknIyNwhpXg9eGYDnuChKdScEqECs8gwSmhJjxDBafciEJ4hgpOiVDhKXk5lYQKTxXB2VBUUU7N0BkJU7V6tLCD8IyXl5OEJ0GkLiQ4I2nQurqiEJyhf0spwSmhtMchglMiTHgqBWc9od7OIMEptxUsPJWCU65HRXgqBadcP4KFp1JwSqgJzzxXDbi6QF2ZmZlhr4MgEg2JTiLpSIOhWCsi21knC081wSkRJDwZ1PdwKoWnluCUEOoPedZKLAQ0CE81wSm3WS88dQRnEHohPUbCVC6WeOEZEfEOqyXhSRCpBwnOSBq0rq4YBKeZa+Ht2URwSohMU3BKyMJTRXAGCjBZeKoKTrmtgPBUE5wSSuGpJjjlJuv/VROcEvlCJa5u+wOAgOB08n6IdYE709PT1ftIEAmERCeRdCTRyWoDA2+2sw4t8svhyxJVBacEEwDRBTCNwRwAwAUSDIGHvgiUjIwdBYzRXhM7k6h9nHb83AiCUIcEZyQNWleXib7r7d+MvL0EC04zn42gfX52aHu6MAbwvLbgrMebmwZXhb4d5PxAbXNoCk6J63r8oCk4JVo4yvFyl4/g5Ouz7dYF2pYiyggimehkWyGIxJCdnQ0A8NenEi+qbIayqnSgTS1qxHSkH1I3EI5KwFnF4M3kAeaAsyp8wOY9IniPH0wQAKdOEgDGAj+CtCdDxUiIYmAFlOcAkVcXVMrjU3jO2NspHcui1ScTmMqua6ejU+IBZbIliNSABKeywsC/mpEziRec1rVnfdIgxph2H6XXx0Tt902y7/WJBDW75aifGvvFhntCYO5AuCtf64GocYyKt1kaGA9wPhGAdntlXXmIDgauKB2sQ41qmZuO/h6tnKUo9mehVXEp2swpR96qGghVIvyZPEqHpOPvMTnoXyjCzWXgkbbzcf++s+CvDMx5mjVrptk+QSQKEp1E0mnRogUAwF/hB/MzeP0C/H4egiDCX1iDqpY8+IPuIPHpqATc5QFPKOMBbxYPIFh48h4RfJ2vfkUSYM7AoB8mPKXzOiXUhKckOOXKVYSnUnBy9dc0hGeQUFQTnkbX1erRIlmCM1FeThKcBJEakOBUVhj8e1iOABKcanWpCs/Q16cmPEPFo4bwlAVnoDFV4cncrob+i0xVeEqCUyKtxI/aZuHtlXXl4XcHbBjvBUQV4XnT0d+jnesIhFoR/R/9C50/OQLeF2z38lfUoPPzxRAvzYb4cHO0SQt4Nn1lgcV8SiRE2AEKryWSTrNmzSAIAiACRQeycLiiYcO7IIhwpvmAwhrUtAgMskrBKSEJT29mwGAECU6JeuHJnAqjIorgfP5w4SLwDcYuVHDK9XH6EwPpWohBVBWKSsNqdD0SknVWJwlOgiCUkOBUVhjb9UhoRIJTvYxGXUxlITkUf/AxbUGCU64n2MYECU6JeuEp4ctzBwlOIODtTCsJbk8pOCV4L8AVNey/vP7o5bLgHHbNVnSdczhMcMpteAHhvQoIV+wHakQ81Ho+/BWBRfaCggLVewgikZDoJJKOIAjIzw+cJXV4rxN+f/jXUhBEoLAG3sxwwSkRJDylcNlQlMJTS3DKjQYOgtY9v0sSnkovp5IQ4anrmTQysCorvrpYHAZr2stJ53ESBKGEBKeyQv2/k+A0rEu2fUavj2mHx8rUC09VwSmXCdg0VcEpUS88fXluiIJG0iCF8FQTnBJ8fdLb649ejo6uwwCAgY/uQcvVlTCywgwA/1Mt+AePIL0qC/AHPmNpjkUQyYREJ2EL2rRpAwDgSsLP6ZTwl7rAewBPlk7WOT6QYEgX6VuvJUyVWJFUgWvYjxIzvIV1RQDt4yQIIipIcEqVWefhNJUIJ0UFJ89HH9kTilEm23oM3wfGAn03KCemuTQFp9yWT4To5DQFp0RmRp0sONMOedHpk0ACIaN3ULrOz6nAX5sC/2vVqhWcTo1MvASRQEh0EragY8eOAIDmtdqZ2TgfB44BnjwOdTkayYVqGJyVfoguAaJLfeWS8/oD+zp5HszlbDijMxTGAnspBUHbKOkdnyLXEzg+xTAroKhzXIuyDEwYyWR6JeN19ApBEKkFCU6pMuvqauyC0wRc6JnYagiKs7f1ykjlQkJtg3A6AgvQWokIAYgZbkDg4Cz3aJapaelETUsnGAdkF2k3x/eqhMCLeGX3cABAl48OQ9AIqdWC8wJ7vwq8pvbt20d0L0HEC5odErZAEp35FYdxXvf16FBQEnTdU5wG9+GAcWC8uvB01DC4yn3gRAZwgOjWEJ4iwhL1hAlPxgCfwgipCU9JcJoN9alH1dhHIDh164mEeGarjbfwJC8nQdgbEpxSZdbVpeyXVh9JcIZ7ONXsRb1NN3wv6gWnVI+a8JQEJwBwIlMVnjUtnfA7OfidgXK8hjble1Ui3R24WFaThld2D0fL1RX6fdRg89aAd7NDhw5R3U8QVkOik7AF0qBYu9+Hlq5ynFCwQxaenuI0pP3tAK8Y60OFZ5DglFARnrKXMxSl8AwVnBJK4RkqOOV6VLLoqYi2IEMXheBUrUcua5PjUeIlPElwEoS9IcEpVWZdXWr9Cv0bCU7tkFql3dCKXgr1dioFp6Ie5RxCKTjlfoYIT0lwhhLq7eR6NghOibKaNBwpzlJ5Qcb85UsDQKKTsA8kOglb0K1bNwBA5X4GXx1DllCLEwp2gOdZmOCUUApPTmTBglNCITw5rx9caEZbJXwgcZCq4JRQGivNehTnhemINsN6TBIsYG0iOCWsFp4kOAnC3pDglCqzri69fknXSHAa7+FkTH+7DNAgPNUEp7IeqAtOub/1wlNLcAIBb6ckPLmelchIU3d/lrvTtPurAQOwwxE4NqVnz54R308Q8YBEJ2ELCgoKAud1MqC8KCCKsoRa5GVVw5+uLTSktORaKcQBNOys5zjjTHYmkgUEGrZwL6SlEwETdSVyz6XVe0YTPaElCMI8JDilyqyphzchtKRyBlgmOM0m+rFIcMohsEav0cx7zhsITiAgXM3OAwySBvkztAWnRF0zDkIdpyk4AeCXfpF7Kg+6XCjnHBAEAV27do34foKIByQ6CdvQq1cvAEDp7oBQWXqoJ/bvz4M31w9vtrqodJUBaSUMfjcPX5r6Kidf54dQE8hBzhw8oJU4SBTrEwfx2gbH7wfz1x88bSa5kI6hZFKiIkDfwOkd2SLVo8Qi4Wn5UQFWQcKTIOwHCU5zGWrNYuH4a6ngNNegJXWZjuKR3nPdMoG6mF/HnkqCEwB0kgZJZ33z1dpC0ZflAhM4ZB7QrqemFQfRAXAiULVe+0iTDZcVwueI7Hu1MS8HANClSxe43e6I7iWIeEGik7ANvXv3BgCUbBex5GAvbNrVBqgTAB6qwtNVBqQfFsH7GBgH+NN5eHId4eKToSEsk+PUhWfomZ1qwlMSnBIcD/CCsYFVmTwECU65Po0EQ9FgB+EZz/M6SXgShH0gwZn4DLUmaRSCU7dgSF2q22y4oHKqwlMwtuXM6QgITqmcX1QVnr4sFxjPAQzgvaKq8JQEp4SjKrztPgUH0KfgAHytBPx4TpdAH3R72HB96YC2ABrmVQRhB0h0Erahf//+AID9fwJ/7moVEJwSKsKT97GgsFrGAaLAwZ/e4PVUejllQoVnqOCU0PN4BtWnKKd1hIpiEqEqOBV9iwTd8zotFJ4RT8ziKTglSHgSRPIhwUmCM9BY/AVnUKJAk17lEMEpESQ8tQSnIr+DLDbDFqODbZ0sOOUbw4VnqOCUUHo7+xQcQKajDpmOOgDAB7cPwp8DW5k6p3P/8dlYlx/wdA4YMMDgDoJIHCQ6CdvQu3dvpKenA9V+OA9UhReoF541bfzgRMBdqi64JK8n4zgI1V715DMK4cmJTDtBjdCwf0U3LEcyanpiSzJERt5LzmQ5qzA5YTI9QUuE4CQIIvmQ4LSl4DR1FIhZrNq/abIuU2dQG73nYkNkk15Z5hf1PZz1meyZXlIhBMJsfVmucMEp1xMQnoC24AQC3s6q9fmy4FTiTXPg+edHYNmF3eF3qPfF7+Cw5dKWmDe9F0r2Bl73Mccco9lvgkg0Gl99gkg8DocD/fv3x8qVK5F28BC8zXLDC/GAs5iHu4SBCQA0tkswDmAODkzgwGklGTKbPZaxQEY7ntPeMyJlquV4Y9HF85YISl0vZxwwnc3WzHtAEERqk8KC0zJsKjgtw0rBaQJTfee5gH3Re++l99Lg8+HMRDMJPDhJeGrAnAIclR54c/T3TjqrRVRp5ZSQ6hIQJjglvGkOvHfPELx05TCc9806jNi4Gc4qEd5MHgeOz8G2f7REbYETe3/hwBhDx44d0bx5c/3XRxAJhEQnYSuOPfZYrFy5Eun7DqKibxfAF240eG9ASPrSAsZCqAsXQ45qEY4qH5gzMMBzvnARxHn9gMdbn9VWMDwvk+O4QLZcI/GlJbpE1iAU9YSnmTJWYkIgRnx8CglPgmi8pLjgtMTLSYIzsu+BQX2mBaeZMvKCsrY45aRM9n6/9lErii04WrA0J8BxqnOMQEOAN6t+u48fyNkloryTep+8OQyMBxauPQqnD1yvWmZ3ZT7qch1449KTwTqovx9fLWuPNOzHoEGDNPtNEMnAhkuHRFPmhBNOAACk/V0MXqwDHMEDueuwgPSDAQHEOMCXxsHvDh54HdUiXOXegMjjODCnANHtCITThhB0tievsurpF4MOjFZN3c5UxKpKcoPwLLMmUs9rXDfl5bTwzM6oiLdngs7sJIjEQ4KTBGegQfN1xUNwauVOMKiLE/gGwQk0RDKFEuKR5FSy2UqCU8JZHuKhrBecTAhEXQGAozbcbnlzmCw4AcBRLmDh2qPCyu2uzEedv8FX9MmBgWFlnvjjdDi3FwMATjzxxPDXRRBJhEQnYSvat2+PTp06gRMZ0v86BM4pysLTdVhA5t7AgcoSkvD0ZPOy+OREFiS4GMeBCTyYU5CFp+zlDEUpPCXBGSJugoSnJDhVM+aZTHTAhxhAveuwUHCaJGIvp5J4CU8SnASReEhwkuAMNGhJXab3nmq9T0rhqSU4FWU4rXO6lfbEIagfqyaKQcIzVHACgYgqWXgqBGcoObsa+iSJTRbSNUd5Qx92V+aHCU4AKKnLCBKeT2w8A97ttRBqPcjKypKTMxKEXSDRSdiOk08+GQCQsfMAwAGcUwSXFkgexKscixXIWhsQn5wIOCvVN3pKXk8AgMcb7OVUohSeGuKG47j6/SC8KYFnSijqZqKNw6Maj7BaNawWniQ4CSLxkOAkwRlo0JK6TIvNSENq1WCituCU8Pu1z/CWEEWwNKeq4JTgfKKu4AQC3s6cXWKQd1ONhWuPksVmqOCUKKnLwBMbz8ATG89AVUUaMnYdAAAMHjwYDgftoCPsBYlOwnaccsopAID0ooPgPF6AA/hDLriPcIHkQRo4qxhc5T4wPdsjpTw3Y/AMxA1j9cejGBlFkVk7MSAIgkgkJDitw6yQMoGlGWoTnKXWuI4IXptRv8xGHPlUwmwVMIcArtZr2J5Q49MUnA2VhXs3Q3EdEbD19/a6ZXZta4WqPdmoqkgDRIaMbfsAACNGjNCvnCCSAIlOwnb06NEDHTp0AOcXkbFjPwCA9wKCJ5CxVkt48j4GTmRgDl5zwOc9PnAeH8DzYForn6LYYHxMHBgNtX2eEsrQHjP1mMBUSJJVkxor6rF63ygJeIJIHCksOKM6Y1i7stjraOxncJqszxL7pdy+ordAzJk48kxKJKRTD3PUzwV0kgqJLgGiK3AMW9ohlbCsenxuDuCA3C3aXeK9AFjgGBUtdm1rBaGaB+8NlHH/XQxHdR2ys7MxePBg7coJIkmQ6CRsB8dxOOOMMwAAmdv2gT/oQvrBhoFXTXi6KhlcZfVhtRwCwtMVLD55jw98jbfhMGeeB3MI6uJTaXxUEgyx0OQDWsJTVNkPGlZGVBYIvx5aRq8uJUaG2+rzORMJCU+CiD8pLjgtrCz2OlJZcFpYn2WCU4nJnAqq21xCM9eqeDtlwSlVXRMuKEWXEOTF5r3h9fjcnCw4AcBZzZC7NbgM720QnBJFf7QJq0sSnDKlTmTWezmHDx8Ol8sVdg9BJBsSnYQtOe200wAA7n3FcJZWhx2LwgRAdDaIT97HwPsVZTiA8VyQ15PzswbBKZfjgr2eSi+nEoXwDBOcQXUpDKaGhy/IU6m2ahrBqnIihWdUk7i4Zscl4UkQcYMEp1RZ7HWQ4KyvLg6CU0IpKLXKKMWpIKgflRIiTEMFZ6AeMUh4yoIzBKW3UxabIcWcVQ3tyWIzRBsrvZ27trUKF5wAhGofMrb/DQA4/fTTw18XQdgAEp2ELWndujWOO+44cAByN+9SL8QFRKezWuHlVCvj4MH5xUBYrRZK4akVYqN2pEpYewrhGWsSHj1hGlQsMcIzUDSCSUgizumMJOyLIAhzkOCUKou9Dgv3b9pScJrcDxpXwQkE7C1jhp8ZY0z7XE4Jnz8QBaUmOOX2AvZNS3ACDd5OpXdTjdyt4d7NUIo2tMGu7QGxGSo4ASBjz1/gfX507NgRRx99tHZFBJFESHQStuXCCy8EALgO7QZE7Q3+HAM4PX1j1k4zyWgZJwYyrstEgiE7Ee8zNQmCSA1SWHBais0Ep2UkIWGQJf1P5PeE48D5/Prvg0MIHL2m8xkzgYe7xGs4B3FWMl3BCQBZu3gIVdpe3syduwAA559/PiUuJGyLTUd7ggCGDh2Kli1bgvd74CzZq1rGVc7gKvM3hNOqDLZ8rR+8lHHOIQBqezj9/sAZXCLT955JXlCzBlDDIMV8hEokdSXrzM5ETRLoCBWCsIZGIDgtOeYpUFFs99tNcNoxQ60Src/NzHnX0l5KjtP/3Ph6b7Ha9hi5DB+oS8+uSEer6EQhMYEH4wDOKyLjgMqZ4AgslnNiYOE8Z4d6PWmHOaQd5sB7gYx96u+D60gxXOXlcLvdcj4MgrAjJDoJ2+JwOHDeeecBAFxHtkOoZeBCbAXvB3ivCMYFzusEhzDhyfnFwH5O+Q9cmPDkRBZs9NSEpygGZ8BTM4Ra+z2DijC5PkMMypgSr2aIVyhsvIUnCU6CsIZGIDgtJ9px0Y6C07ixuAnOqO2UqaNOOOO+14vSoPdTzU5LglNq3quyJSfkLE++MjypkCQ45TJ14W2FRmc5q8Pfo7QjXENiIQBCbXh3snfwaPb7NgCBvZzZ2dnhhQjCJqTAqE80Zc4//3ykp6dDqCuDUHkQvBey8HRV1Hs5FYQKT9nLGYpSePr92omBlEZKzXBGsgqrnIgYCU6rxJTZUGATRO1BMPMeEQSRPBqZ4LTM2xkNqSo4raxPBVPCM2jhNwLBGdaYGFTGcD+s5AUO/eyUfXYIYYITALiQuUOo4JRQeju1tgMpvZ1pRzjwKqeuKL2d2Tt4uIrL4CzfD47jcNlll6lXTBA2gWaChK3Jzc3FueeeCwBwlmwBxyALT94X8HKGIgtPXpG1Vg0p3JbjdEJ7ONnI6hpNjjfl5YyIRHk5E4XVE81Ue/0EYUcameC0HLPeztCFxRiwpeA0G55rBbEIzpAyuu+l398gNjU+O87rUxWbQc1UegJiU0NwAvXeTpXMtEqc1QxpRzhNwQk0eDuzd/BwVjE4SwNnrpxyyilo3769bj8JItmk2OhPNEUuvfRSOBwOCLVHwNccAceAtFKGtGKf5ooh4wKDvFDjVd3nGYTWGZuhGK2e0+Z9giAIbVJNcALmBZBVzdlVcMaIqddl9n00IzjNtGnW9hu1w1jDFh/dcoEfLRw1IrKL/JqCEwAyDvrR/DcOzioGzlsNd3XgbM7LL788ip4TRGJJQQtANDVatGiBM888EwDgLPkTQP25nB4RHGOawjOwT1ME+PB9njK++gRCesZHFOtXRHUsChMDZ4DqhZKKrME7qbdqbKZMgrEkXM3qfaN0XApBpA4JFJyWHZuSQMEZ0ZEoRrahsQtO3cYabDALPZe7oUMNr1/tXO6QMlydeiKgQH8CbTkq6rS7VC820w9q1+OoEcH5EXYmuZKMg34IHgZ3eaDPjpIt8Pv9GDhwIHr37q3dR4KwCfaY0RKEAZdffjkEQYBQfRB8zeGGCyywysj7tcUnAFl4holP6ZgUoEF4qhi1BrFocmXUdHZbM5OaKB9TC/dzxkw82yHhSRDRk4gwdRKc+k1ZKTaN7EUcEwapNxeF4NSyF8pyWjkWjDsU/H+1bSxmyoS815wvvEyoZ1NQSSjkqBFlwalFxkG/LDjluj2VSKvaAwCYMGGC9s0EYSNIdBIpQbt27eS9na6Df8BRplgxrN8nofR6CrV+CNUhq4o8gr2ekpdTiWSQJeMmeTlDCTJ+9V7OUJQGUOnlDKsrcuGZyP2cSU3KYRYSngRhT0hw6jcViwBU/s0mCYMamjLpubXSw2ncKfW/K72dGmWCvJ0a743S26kVRqv0dkpiM1RwZu5v+IMkNpWCEwDcBzbC7/dj6NChOProo9UbIwibQaKTSBnGjRuH9PR08N5ScN6/wwsohKccWquGJDyVXs5QJOHJcTpi0YTXUwr1MSonGTE9MRnJJMBOXs5EQcKTIKIjXotYJDj1m7LC4xiP8zctEJzG7RjYz5AMtOplmGF2dOYXjb27oskyBu8N5xMN921K3k4976YUYptxSAwTmwAAXyn4un3gOA7XXXeddmMEYTNIdBIpQ/PmzXHppZcCAERxC5iaaGKAUOuDUOUBDMJtDY2wWSOdiskxCIIg4kljFZwWYU6YWbSv3+7htKoV6WeVtRSrvcR61fiNw2mdlT7kbfdCqFOb4zBwVZsABM7l7Nq1qyX9IohEQLNlIqW47LLLkJeXB6AazL9LtQznExv2V2jlEfCqhNaG4g+E1uoaUZEBookkQyKzLishTBh2C/edWjahIwjCnlgdJdCYBacV2U7NCk4riOSzNTo/2rApCwUnYE3EDs+B6b0u6X3WSigENLyHdTppZQGAMQiVOgmFvH5wfoa0w9r1OCt94L0inBUaSYc8f4PzHYbL5aK9nETKQaKTSCkyMjLkcBIR28B5qlQ38AOBUNv6guHiUy/8VkIRfmtqf4qJVVnNekQx4hA34wOvIwj/NWqL56Kf3DW2MF6CINQxOZ5Y01QMY1JwRQkTnOb3OVrk3UzQlgOr7GNU3x/dLSl69jHEi6yamCj4PeS0suEq7ldNKOT1B36kfISecIHrrPTJglML15Ea8JV/AAgkV2zTpo12fwjChpDoJFKOs88+G3379gXghx9/gvMzXeEZJD5jJMiwSl7OUEKTDKms1kbl9dQQyeT1rCeByZUIotFglTBp7N5NCwSnubYSGE6rRoTeTsu9m2H9icLbqfJ5BXk7td5jEwmFwryderkhEBCqRvs8JbGpJzjdxV4wcRuAOrRp0wZXXHGFdoUEYVNIdBIpB8/zuP3228HzPET+ABgOg/Mz8B4/HFVe8HXhYbNK4RlJaK0apld1DZDriMLLqVlXDP2Ji/AkLydB2BcSnMYkKpwWSL7gjLipOAtOsyjtp9mkfXr16LyuIG+nmt2uD7Hl/GL9j7ptd5d4DL2brjIf3MVeuIu9gLcMcAaOSLnlllvgdru1XwdB2BQSnURK0q1bN1x88cUAAB+/CWA+cCKTw1jUkL2eftHcam6snjOzwpPnEzNRsLOXkiCI1IQEp35TdkwYZNQXU03ZaMFC6kssgjO0Lj2MvJseXyACS0NwAoBQWWfo3XSW1oKvXyT3CZvg9/tx4okn4oQTTjDuI0HYEBKdRMoyYcIEtGjRAoyrgZ/f1nBBEpXJDrcUmWFoEGOKvaVG6dqt6E+iSeAeL4IgIsAK0dCYBScQ85iZUvs3TQrfiM7fNPOZxRoNI/XFTD0a0UtB6CUUMgPTt/ucxwfO4wP0BGmVJ5CBv37bkJ8rAuNKkZ6ejltuuSW2/hFEEqHZIJGyZGZm4q677gIA+PkiiChuuCjWezRDhafPZGitT78MYyw+oaMJTP6QUBIxOW2s7x1BWA0JzriTUMEZK1Z7N62OqlETcVGM95pnbge1ZcKue1Qyy0rez/q+8tXhGWplsVkvOIWq8DKy2KwXnCKq4BcCi+r//ve/0bp1a+P+EYRNIdFJpDSDBw/GueeeCwDw8RsAT21wgVCvp0FYjIxRGdFkPdFitXiyIvW8XCzK152oCR8JT4LQhgRnZEQ43pnb89+Iw2mj+bwiXcBN8hgflsVWEpvK74rCY6rp3VQkQAz1bgIAA4OPWw9AxKBBg3DOOedY+TIIIuGQ6CRSnptvvhmtW7cG42vhTd8RXkDL62l3lImGDDC1gmsHEhVuS8KTIMIhwRlXbHv+phbJCKeNFb2+mAmftZIQ76Yaod5NNUK9mxI+9x4woUKO6rLyrG+CSAYkOomUJyMjA5MnTwYA+NIPwOc6ol7Q7F5PKwScaBx+G7SfM94kIoOg3SADTRANpNjz0CgFp3WNxV6HVeIXiF1smv2MrHjdZoSp0RYcQN27GdKO0d5NzuMN827KtwtlYFlFAICJEyeiVatWxn0iCJvTyGaZRFNl4MCB+Oc//wkA8GRvhcjXqpbjJCMRg7A0vZ8zGYl7tLAwvNbWZ3USBBGOlYIoAccg2WqMieT4K8O6YpxyWbVvPdEZanUbMdEXC78PpqKC9MrUeze52vD9mDJ+f2CuYSA4IYZ7NwGAcV54MwPZakeNGoWzzjrLuM8EkQKQ6CQaDddeey369u0L8H54sjeDiTqrlVohtzrncwbdm8hwVoMJQjJCa2OaFNLZnQSROOIhHOL4DFvq4YzVy2k3wWkFqSQ4Q0N2k72NRAqn1YpS8vsbBCcArk4tmZC3QXCqNQEGr3sTGF+HwsJC3H777RRWSzQaSHQSjQaHw4EpU6YgJycHoqsK3szdASOgF8IaKiDNJhpKBEEHXluUeMJCbOWNUMMunyNBJIsUm6zaKqTWoC/m9zpaMHZb5d20cg+nkkijeswsCET7XYhHhJFSbGpRLzY5RfuhCYdksakxJ+HqPPDzRfCnlcDpdGLKlCnIzMy05CUQhB2w1yyWIGKkVatWuOeeewAAvqz98LsOBwZ+I+GZ4ERDUe/njJfwjNJzwfGc/cUnQTRF4i04LfZ2pprgNFcPhdOGNxLncFqrzuuU6zMQnCHeTTWMvJtAQHCKQinEZnsAADfddBN69uxpvp8EkQKQ6CQaHSeccIK8v7Ou2Q74nVXg/GJg0NdLEFDv9bR9JthIV84TsLeUhCdB2AjycEaHiQysFE4bAwnev6mF6X2dUXg3w64beDf5qhpwdR4w1KC22Vb4/X6MHDkSF110kYlXQhCpBYlOolFy3XXXYfDgwQAnoi5/CxivGPhNGJyYhKeJzLWmMHPWm1XEOFmL6OxOOq+TIFKfxpbt2sr9m7GSwHDaQHM0VgYhioEFak3vpgj4RV3vZmBrj35EE+f1BdoRvajL3wIIPvTo0QP/93//R58J0ShpZFaDIAIIgoAHHngAHTp0ABM8qM3fAgaF6DQhPlksXs9EZK61+riVRE4iSXgSRPyId7QGCc74YbfjUOxGPL/bSo+kln31G9jd+nBb3bM7vb6A4PSLYGCoy9sB0VmNZs2a4bHHHkNaWlqUL4Ag7E0jHpmIpk52djYef/xxZGVlQXRVwpO/Gwws2ONpUnzaFcv7ZkXGR7u1ZdW+KIJIJeI1btlZcEYTYWIXwZng/ZtKLLEjdjoiLFJ0wl9l6r2b+mUk76b6e6EUm1Jd3ry/4U8vhsPhwCOPPELncRKNGhtbD4KInfbt22PKlCngeR6+zCPwNjvQcFEpPuPp9UxFyOtJEEQocXpWIwrPtxKrMtSqEUkkSoLDaZOGHY/LskpsmvBuhtblzToMb95+AMCkSZNw9NFHm+42QaQiNh+hCCJ2jj/+eEyaNAkA4M0/AG/O4eACSq+ngQFKqPBMtshNtNczIe2Q8CSaEFaOIXb2cCoxK2ysShgUKxROaz1mFjHMejd1r/sj824q8KWXwtO8CAAwfvx4nHPOOcZ9JogUh0Yqoklw3nnnYfz48QAAT8Fe+DLLggsEhdxqGxAA9lyt1YMyyxIE0VSwizgmIRg5ZmyrGUFpVI9RHWbO6zYQm/D5Aj8qnlK/qwp1LXYBHHD22Wfj6quv1m+LIBoJNCoSTYarr74a5557LsABda12w++uDCvDWH3mWSbqGyYjYZogzB9QHqXwTDWBbQbydhJNBSu/63EcCxJ6ZIqJY1GAGKNaSHBGjvT90rKrZm2unmA0U0f9VhrNz1/ybup9P3w+zX6IzlrUttoG8CIGDx6MO+64gzLVEk0GGhmJJgPHcbjttttw4oknAhxDbdud8LuqtG+QhKeR+LQBpoUneT0DUHIhorGTIt/vhAvOeBOp4Ez2Nop6kpZMSFrkVf4/2nr1XoNJ76bu+yCJTa0ykndT47roqEVtqy2A4EevXr3w0EMPweFw6PeLIBoRJDqJJoXD4cCDDz6I/v37A7wYEJ7OatlIcDwPCELDDUqvZ6wrsHEm7l7PxkiKTMwJIiLi9b222Ntpd8EZkRBLZiIfq4/PShRmwmDj7d1UiM2ovZtKsakso5hLiKhGbautYA4fOnfujKeeegoZGRkGL4wgGhckOokmR1paGp588kn07dsXEPyoLdwBv7NG33BFGnKbRGFnSnzazeuZzDBeEp5EYyJFvs+WCE6zyc7iPdZROG1khHo3Q7FBKC3ncASLTT3BqXWd4wCfDyKrQW3bHWBOLzp06IBp06YhLy9Pv28E0QihkZJokmRkZODpp59Gr1696oXnTvgdNQHjY5REyCbhUAnBLkk54k2KTNQJQpdEfI9TbZ93DIKT9trFAau+P3p22Ohzq7fjup5sg+PUmF/UDaVl9d5PkfegtnAHmMuDtm3bYtq0acjPz9fvH0E0UprIjJIgwsnKysIzzzyD7t27Aw4fatvthOiqNRaWkkGL9+QrhSY8MXstEnk8i2YfUuf9JoikYcFzapmXM44kRHDS3vLoMFr41fpuSB5WPcEpeUh1xCbzi4HFDD3ByRj8Qh1q2+0Ac9WhZcuWeO6559CiRQv9vhNEI4ZEJ9GkycnJwX//+1906dKlXnjugOiuaTA6WoaJVwjPVFv5jxOpMJHUpSl5sAkiGix6Plmse+Abi+AkEgfT91w2iE11my6Lzfrrat8R5vPJglN0elDXLuDhbN26NZ5//nm0bt3a6ldFECkFiU6iyZOXl4fp06ejd+/egVDbDrvhz6oNXvE0EiQRCk+O4xrlPiCO56zxehIEERnxFjF2eS5JcKqTqsmEQrH681V4N2V4RbJAA7EJIEhsql5XiE0wBtFVh7qOu8GcXhQWFuKFF15AYWGhla+KIFISm1gRgkguOTk5mDZtGo455hhAEFHXfjf8mfXHqZgVn0qjxPFJT9STzP1IjSLcliBShRQUnFF5O6PpRwTtxH3MpHDaxKEUm6F2W7JPWmKzPutskHdTrYkQsQkAorsWtR13gzl96NSpE1544QW0atXK0pdGEKkKzeoIop6MjAw89dRTGDx4MMAz1HX8C76c8oYCoXs9jPaNxBube0rJ60kQCSAFBWdUxLEfpo+b0sKMl5HEpjWYsSmRhNJqXNf1bgpCmNgEAH9GFWo77gYcfnTv3h3Tp09HQUGBiRdFEE0Dm1gTgrAHaWlpmDp1KoYPHw5wDJ52++BtXhxcyOzKuWiQHc8I2mOYWGhSSBAJI6IFqVgEZyIiTmy+AGgLrDjP2uy5nlHu2wQAGITSwi+qntnpyylDXYc9gCDi6KOPxnPPPUfHohBECByLaVZMEI0Tv9+PF154AZ9++ikAwHGkGZz7W4KDYgKjPLdTbWITIjpDV9IDx7MYGFGjx9PgfsPH29RZaLF5bWNOGmJBHyJvj4ZFIkVIQU9nxBEQ0fYhgnai8nRGIjYTsagVo/jVew8YY+beIw1bqHtdWU4Qwv+uHP/Vrkv1M1H9urIMrxHi7Fe2ofI+StdD2mBg8OUXw9vqIABg+PDhuPfee+F2u9X7QRBNGBKdBKEBYwwffPABXnnlFQCAUJYF19624JjCICmFJxBuUFW8nUrDbSg87SA6gZhEX0qKToCEJ5E6pJDwjDrkPtI+RNhOxKIzUoGXwqJTsiMRi061sd9IlIaKRo39lkH36onS0D6ECkp/SP2holQpNkPqZ2DwtjwAX/MSAMDFF1+Mf//73xC0hC9BNHFIdBKEAUuWLMHUqVPh9XrBV6XBXdQWnOgKXAwVnRKKRAVajxjHcckXnUDcvZ0pKzoBEp5EapAiojOmPd5m+xBlGxGJzmjFXbw/J4tFp96CqXr7EQrO0DI81/A5a435kqBTejf1rofdX19/qNjUuq6VZAg+eAr/hj+nEgBw00034dJLL01qAj+CsDskOgnCBL/++ivuvfdeVFZWgvM44C5qC74uQ1t0hqD7mDXyENuUFp0ACU8iNbC58ExIUrEY2jDnxYtRfKeI6NRbKNVvn9O3J0aiVBD0x3ouJMpI7X6j9s1e1xG9olCHug5/gaV54HK5cPfdd2PkyJHa9RIEAYBEJ0GYpqioCHfffTf27NkDiBxcf7WGozybRKcJYhaeyRSdch9oqCRsDInO1BadjMX+Ger1TxQN+y9H3+hc18JozydjDJzAmxelqh3gzYvSaDGwNf7MWtS13ws4/GjevDkee+wx9OnTJ/Z2CaIJQCnXCMIkHTp0wKuvvorjjz8e4Bk8Hf6Gp+VhMARCaLWMtRxCaxRGayRMde7Xa79RYIdjGyhsirArNhecKd9+vIn32G3mSBeY3I4RxX3ydR3Bqb8wa3zEia6YNTrGzO/XL1Nfv69ZKeo6FQEOP3r27InXX3+dBCdBRAB5OgkiQnw+H1577TXMmTMHACCUZcJZ1BKc2JA8wDBTbeiKsygGTzyU98sGW+P++r9rZcq1w77OwO0pHmYr94GGTMJGpIDgTMheTiD++zmt9nSGjiVWezpDxWYc93yqvYdG15XlOI7T3/NpJitu6HdFshciM3ddo34RfngLD8PfPHBu94gRIzB58mSkpaVpviaCIMIh0UkQUTJ//nw888wz8Hq94OqccO1qDb42OE160B4ZtdVmaRIQKjobKkB9BYb3qz3KRnt0ZFJFdDZUZl1dUfeBhk4iyZDgDCaKthKSQKihsYbf9cb7aFFZjFS9FgWRJBnSs0VadXDKrLJGSYi09oPKFYvh5Yyuq9TPGIPo8sLTaT9Yeh04jsM111yDq666ihIGEUQUkOgkiBjYvHkzHnjgAezfvx8QOTj3toBQnB18nidMZKrleW3hqSSK/ZtG+3QC9aaY6AxUaG19UfWBhk8iSZDgDMdO53KqNxr4V2vciOUzVS5g6l2PErNJhswkIVK1U5LoNMgGr4rkxVQTk2avK/4u9c+fUwVPhwOAICI3NxcPPPAABg0apN4HgiAMIdFJEDFSXl6Oxx57DD/99BMAQCjOhvOvFsHnef5/e3ceHkWVqI//rV6SdDaSQAhBFhFZBS47IgYREDDooCCjjF50lJ/jnXHAcbxXv8wgoo44Olxx9Bmuy7igoo4joMyMAyoggmGHALKFJWEJhOxrJ71U/f6o7kp30nt39Zb38zx5urpO1anTRdLdL6fqHEeRniLFbd0xMIqt64rVqdfn4/MtlCJAzdAZycAZzLF9PGbAvVTBhk5PQtHL6enzQcW2+zMAka+9oE58HRXXUyh1V+5Qt71tEiRYulXBkiPPvzl48GAsW7YMOTk5nttJRB4xdBKFgCiKWLNmDd5++22IogjBmICEczntLrcNeqRaL3VEc+iUd4/D4Mm3UAq3KO/lDHsPp50Pxw3qsshIhU61R7YNRoRHxQ2GvW7Htol6M8y9yyCmNAMA5syZg1/+8pfQ6/WqtIGoI2HoJAqhAwcOYNmyZaiqqpIvty3tDG1lp9bLbe2X0Lr7EA0ydMpVBPgnHcuhU65cvbq9HptvoxRGDJ3tqd3LCbgOV/b3YzWmU7G/r4Ti3zuQtgdbbt/Gh1Dalv1zzN2/V0jK27TNklEPc49yQCsiOTkZ//3f/835N4lCiKGTKMSqqqqwfPly7Nq1CwCgqUtGwvmuECw65/s2PX3J8ISX2LqrXL26fTo+30opjKL48tqwzMnZVrjv5/Q0GnkgPI1sG+5Rbf0pDzJwAqEfFddx/ATBcQAhF+XQaCBpRJivKoc1qx4AcN1112HJkiXo3r2717YTke8YOolUIEkS1q5di1WrVsFkMgFmLRLOd4W21uD5y0Sch055dwZPoqCxt7OVn8fyO3R6GhW2bXkgPI1qG8peTm9tD7bc1XZeelj9ud/T53KH4zuGTlflYooJpt5lkBLNEAQB//mf/4kHHngAOp2ufbuJKCgMnUQqOn36NJ599lmcPXsWAKAtT4f+YiYEsc0HsbdRDR0xdHqqXL26fTo+304pTOI5dPpzfLXn5gQ8D9ITzSPaAr6PahtsubttvEzjEqpRcd2NDm8PnW3LJUGCpVs1LDk1gABkZ2djyZIlGD58uMvjEFHwGDqJVNbS0oJVq1Zh7dq1AAChRQd9SRdoGwzOGwpChwidchUMnkRBYegMOHAqh4jWwXns1P439mXEW2+D3wUTWkN5/vw4vmhogal3OSSDCQAwefJkPP7440hPTw9de4ioHYZOojDZt28fXnzxRZSVlQEAtFfSoS910evpibcvADbRHjzjOnTa8a2V1BKOiekZOn04fvD3M3rkbcA5tUe8VVuw58+X0eAdL7+FBEtODSy51YAAdOrUCY8//jhuvvlmPxpNRIFi6CQKo6amJvzlL3/Bl19+CcBNr6e3D1sfgmeHDp3yAdSt36c28K2VVBLvodOfYwdxHNVGsnVX7i9v9/wHM+Ktt1CqdjngeVRcSQJcDAKklHviYtwE0dACU69ySMly72ZeXh5++9vfIisry3NdRBQyDJ1EEbBnzx788Y9/xJUrVwAA2oo0+V5Pq+1D1tNQ9HEQOuUqGDyJ/MbA6SxSvZ1e7lV0y9ceUE+DC7Utd7VNoL2kvpYHW4cguB8V175/29DZttzbCPCCAEkQYcmthqVrLSAAaWlpeOyxxzB16lTV5v8kItcYOokipLGxEX/5y1+wYcMGeYVZA/2FztBWp0BwDGTehrN3Ieg/a/Z2hg7fYilUovw+TrmK6J2j0+1hAx3N1p/BhfztBfV2j7+nAYh8mY4rmF7UUJW3PY9t2+AYOh2nG3N1DBfnwZpuhLlnBaRECwDgpptuwqJFi9ClS5f2bSMi1TF0EkVYYWEh/vSnP6GkpAQAoKk1QF+SCY1J77yhty86DmIhdMpVMHgS+YSB071whk5fBt+xU2vwHF8DKRBYL6m/dfhbbi+zn0t3r0WrdR9I7fW4WC/prDD3qIQ1qxGAPDLtb37zG9x4442uj0NEYcHQSRQFTCYTPv74Y3zwwQfyvJ6iAF1pJ+jK0iFI/n+hCkvoBKK/t1M+iPrH8AXfaikQMXA5rVxFhAInEHToBEIwqJCdmtOr+CqYXlJ/6gi2PNg2tCFBgrVLPczdqwGdCEEQMGfOHCxYsADJyck+10NE6mDoJIoi58+fx5/+9CccOHAAACA066A/nwVtrcHLnu3FSm+nXA1HsyVqpyMEzhC1IeIj2fpC7dFuOzBrSjPMPSuVgYKuvfZaPPHEExg8eHCEW0ZEdgydRFFGkiRs2rQJq1atQlVVFQBAU2OA/nwmNC16L3u31hG0MIbO1upUejuK5uDpy//4U8cUroFOIj09SrBtUDFwSpIU2l5QR2oMQBQPfBnB3VYu6SwwX1UNa+cGAEBqaioeeughzJo1CzqdLhytJSIfMXQSRanGxka8//77+Oyzz2C1WgER0JWlQ3epk9e5PcMWOgFVAl3Iw2e0hE7A78EwqAOLkdApVxGh3k6VAqf9PVSVwOnPvZ6eRjKPN94GW3Iol7QCLNl18pybWvk/BvLz8/Hwww8jMzMzDI0lIn8xdBJFuZKSErz22mvYvXu3vMKkhb60E7QVqRDg+QtTUCIYOp2rD9FbVDQGT18G9KCOraNcYhtIO1QInG3fO0MSOoMd7dbdNvHCWwh3DJuQIGYYYe5RDSlJHpV24MCBeOyxx3gpLVGUY+gkigGSJGHHjh14/fXXUVpaCgAQmvTQX8iEts71/Z6xeomt60PEYfB0h2/J5Ii9na6FMHC6e68M2zyOgYTSeODL63XYRkxpgblHNcS0FgBAVlYWFixYgPz8fGji9RwRxRGGTqIYYjKZsHbtWqxevRoNDfI9LJraJOgvZEJjTHDa1uc/bVFy/wXOn7CnYqAL6eW2sRA8AYZPkjF0thei0Wo9vUd6C5whvdfTm2AvvfXlHklv9fhyT6mvx/GmzQjAYoIZlh41sGY1AQASExMxb9483HPPPRyVliiGMHQSxaC6ujqsXr0a69atg9lsBiRAW5kCXWkGNCZ58AS/Qqdd2y9zgYQ9lUIdgyd1SDESOsN+T2coLuf1wNult2ENpYEOQOTHPZI+bROq43jgeN4knRXm3FpYs+sBjXzOb731Vjz00EPIzs72uU4iig4MnUQxrLS0FG+++SY2b94srxABbXka9JfTAZPWt0rahrlQBE8guke2jZXQCTB4dnQxEDojMoiQiqGzbVj05z7PsA9A5Ms23kJrqLYJInA6nWOdBEtOLSw59YBWXj969Gj88pe/xLXXXutTfUQUfRg6ieLA0aNH8eabb2L//v3yClGA7koatKVpEKxewqe7MGf/Uhds2AthwGPwpA4nXKETCCj8RXSOThWCp9LL5sd9nqoMPgS0u8zU7TaA5+1CsU0owq8LjudO0oiw5jTA0q0O0Mn7Dxw4EAsWLMCYMWPCdzkzEamCoZMojuzbtw9vv/02fvzxR3mFVYD2chp0l9M9T7Oi1vyYjkIU8hg8qUOJ0tAZ8bk57UIYPP29z9PVtmENRr6G0nBt4wensCmIsGY3wtK9FtDLx+jTpw8eeugh5OXlMWwSxQmGTqI4I0kSdu7cibfffhtFRUXySosGurI0aMvSIFhdXQIVO6FTrorBkzqIKAydURM4AdXv7XQU7OBD8cqX+1ft27Tr2exq69m0hc3u3bvjwQcfxJQpU6DV+niLCBHFBIZOojgliiK2bduGv/71rygpKZFXWgVoy9KgK0uDYHH4QA9H6ATY2xkKfMvuOKIwcMqbhqhdMRg8PXEXvHwZgMifQYpCxVNYDFWbXX3FlC+jrZfv2bSFzZycHNx3333Iz8+HXq/3+TUQUexg6CSKc1arFdu2bcPq1atx+vRp20oB2vJU+bJbsy18srczdvBtO75Fadh03o3Bs61ABiAK9SBFodjGW5j05bJil2FTa4Ulpx7WnAblns2rrroK9957L6ZPn86wSRTnGDqJOghRFLFjxw6sXr0aJ06csK0UoK1IgfZyGjRGXXgawuAZOnz7ji/hvjwzkiPWhqAN7UQwePozAJE/gxS13d7XHsVAAq63MBnoa5P0trDZtXU02l69emH+/PmYPHkydLowffYQUUQxdBJ1MJIkYffu3Xj//fdx5MgR20pAU22A7lIaNA2JKjcgSkOnXGFo6wsHvoXHhxjo3XSuIoTtjaPeTle8BdK223naNpDwGmjPpD/tdrWNaDDBmlMPa+dGwPZP3LdvX8yfPx8TJ07kPZtEHQxDJ1EHJUkSCgsL8fHHH6OgoEBZL9QnyOGz2gABKn2JY/AMPb6Vx64YC5ytVUVZb6e39tjfK6I4nAYa8PzdRi0SJIjpLbDm1EHMaFbWDxkyBPPmzcOECROgcTWfJxHFPYZOIkJxcTE+/fRTbNq0CWazGQAgNOugvZQGbUWy5+lWAhHiYBfy4NlasTr1qoVv57Gpo4dOubLg63DVnrbvDVEaOGOdJEgQs5pg6VYHKVn+DNFoNMjLy8Pdd9+NIUOGRLiFRBRpDJ1EpKisrMTatWuxfv161NfXyyvNGmjLU6AtS4XGFMJ7b2IleLYeQN36Q4Vv6bEnhu7ldK4mikKnY1vcvRf40hPKUOqdQ4+xpLPCmt0AS9cGIMEKAEhKSsLMmTMxd+5cdO/ePYINJaJowtBJRO00NTXhq6++wt/+9jdcunRJXikBmpokaMvSoKlNDP7S21gLna0HCs9xgsG39dgSo6FTrioKgqdG8D76trt2Ou7HwOmZ7VxJkCClmmDJaYCY1aTcr5mVlYU5c+Zg1qxZSE9Pj2BDiSgaMXQSkVtWqxUFBQVYu3Yt9u7dq6wXjDpoy1KhrUiBYA3iC2ysBk/5YOE7VqD49h4bwh06gfgLnt546wll4HTPHjY1Iqydm2DNaYCUYlaKBw4ciDvvvBNTpkxBQkJCpFpJRFGOoZOIfHLu3DmsW7cOX331FZqamuSVVgHaimT50ltjAF82VAhuDJ5t8C0+usV44JSri+LQaW9boD2hdr5cehvNl+f62jb7dg7nS0y0wJrTAGt2ozK/ZkJCAiZPnow777wTgwYNUqvVRBRHGDqJyC9NTU3YtGkT1q5di+LiYmW90JAA7ZUUaKuS/e/9jOUeT/mA4T2evzy9zdtDDz8Kwi/GA2dIw6ZzxerU644vl9662y7Sl+d6CpO+DqLk4v3SPjCQNbsRYqcWZX23bt1wxx13ID8/HxkZGQE2mog6IoZOIgqIJEk4ePAg1q1bh+3bt8NiscgFVgHaKgO0V1IhNCT4du9nrPd4ygcM7/EC0fbtvm3o4cdBeMR42JSrU/k1hCt4tn0dvgxCFMhARb5O1xKK7Xy9fNjFdmKyCdbsRli7NCm9moIgYOzYsbjzzjsxbtw4zq9JRAFh6CSioNXU1GDjxo34xz/+gZKSEmW9YNTJvZ8VKRAsXr6oxHpvp3zQ8B/TX45v+a7CDz8S1MOw6e/B1K3flwGIfN0uxOHP7+lffG2fq15Nre1eza7O92p27doV+fn5uPXWW5Gbm+u5fiIiLxg6iShkJEnCkSNH8M9//hObN29Gc7NtcnAJ0FQboK1IhqbGAEFyFXbioLdTPmj4j+kvSfIegPjREDqRCJtAbAdO+YDhPV4w/L13NFTbBUiCBLFTC6xdGiFmGQGNfBydToe8vDzMnDkTo0aNYq8mEYUMQycRqaKxsRGbN2/GP/7xDxw7dqy1wCJAW5UMbUUyhPo2U68weEYXfjwEL04Cp1wlQ2cskyBBSjHD2rkR1s5NQELr+1SfPn0wc+ZMTJs2jfdqEpEqGDqJSHVnz57Fpk2b8PXXX+PKlSutBS1aaCuToa1IgcaoVy2sRSR4ygeOzHFDjR8T/otU2HRqQwz3dDJwhoyYaIHYWb5PUzJYlPWdOnXCzTffjBkzZmDQoEEQouF3lojiFkMnEYWNKIooLCzEpk2bsHXrVjQ2NiplQqMe2spkaCqToGnRhfzYDJ4hwI8L76Lpi3us9nZ6arfj3xODqVuSzgprVpMcNNNMyvqEhATceOONmDZtGsaMGQO9Xh/BVhJRR8LQSUQR0dLSgh9++AGbNm3Czp07YbValTKhQQ9tpQGaKkPIAmjEQmdrAyJ7/FDix0Z70RQ2HcVS8HTXVld/Owyc7Uh6K6yZTRCzjBDTW2C/c0Gj0WDkyJG45ZZbMHHiRKSkpES2oUTUITF0ElHE1dTUYOvWrdiyZQsKCwshiq1fMoUGPbRVBmgqQxNAIxo+GTzjT7SGTbtYDJ2e/k4YNp1IeluPZpYRUlpr0ASAgQMHYsqUKZgyZQq6dOkSuUYSEYGhk4iiTFVVFbZt2+Y5gFYlQWjW+TYHqAccZChEOuLHSLSHTUC1gBb2AYVaD+y+zP53FW+h1MXlxFKCBdZMI6xZtktnHf45Bg8ejJtuugmTJk3iNCdEFFUYOokoalVVVeH777/Hli1bcPDgQecAatTK07BUJ0GoT4i9ANqRwqc9oEX7x40/7Yzm0BmG4BWR4On4utz9/cRC6PQUkF28LmXU2cwWiJlGp7k0AWDIkCGYNGkSbrrpJuTk5KjRYiKioDF0ElFMqK6uxrZt2/D9999j//79sFhaR2GEWQNNTSK01QZoahIhiMF/8WQIDYLjx4qrcBatHzv+tDUaQ2eYA1fYgqcvl906bheNPN2X6ipoCvI8mmKmEdaMZiCxdRuNRqMEzYkTJ6Jr165qtZqIKGQYOoko5jQ2NmL37t3YsWMHCgoKUF9f31ooApraRGhqkuSfIO8D5ai3Koq2jx9PQbJtW6MpdEYobEXsMlt3oil0BvD3K+mtsGY0Q8xshtipBdC2/s4ZDAaMGTMGEyZMwPjx4zmXJhHFHIZOIoppFosFR44cwfbt27Fjxw5cvHjRqVwwauXwWZsETV1CQL2gHPk2TCL9cRRNQdJXDJyyUN3v6c+ULEH+XUqCBDHNBDFDDpltL5vNzs7GhAkTMGHCBAwfPhyJiYlBHY+IKJIYOokobkiShJKSEmzfvh27du3CkSNHnKZigQho6hKVnlDB6PtgRBEPnnIjIt2C8PD0seQYDP259zLW79N0JwKhM6oCZ9vX7+/It/5sH4K/PzHRIofMjBZ5WhOt8+/lgAEDcMMNN2DChAno168fhFj8nSQicoGhk4jiVmNjI/bv349du3Zh165dKCsrc96gRQNtbZIcROsSIZi0Hutj8AwzVx9Pobjv0td6Y0WYgmdUhU1Aft2+/j34el+ov9t6IemsENNNENNbIGY0Q0qyOpVnZWVhzJgxGDt2LMaMGcPLZokobjF0ElGHIEkSzp07h127dmH37t04ePAgTCaT0zaCUasEUE1dIgRz+xAaFcHTriMFUF95G8TI1baxHDgB1UNn1IXNKCZpRTlg2n6kFItTuU6nw9ChQzFmzBiMGzcOffv2hUYTRfeiEhGphKGTiDqklpYWFBYWYt++fThw4ABOnjzpNCULAAhNOvlS3LpEaOoTIFjkEMrgSVGFoTNiJK0o35ephEwz2l6x36dPH4wYMQKjR4/GyJEjkZycHJnGEhFFEEMnERGA+vp6FBYW4sCBAzhw4ABOnTrVbhuhSQdNfYIcQOsTAaMm6PlBQ4bhs+PpqJfVRpCUYIWY1gIx1QQxzeQyZPbq1QsjRoxQfjIzMyPTWCKiKMLQSUTkQk1NDQ4ePIj9+/fjwIEDKCkpab+RSSMH0DpbEG3UQ5Ai/AWd4TO+RXBakI4WPiVIkJItcshMk0MmEq3ttrvqqqucQmaXLl0i0FoioujG0ElE5IOamhocOXIEhw8fxuHDh3H8+HFYLM73a8EqQGjQQ9OQAKFefoQpgr2hDKDxIYrmn4zn4CnprBBTzRBTTZBSTRBTTYDO+SuSRqNB3759MWzYMAwZMgRDhw5F165dI9RiIqLYwdBJRBSAlpYWnDhxAocOHcLhw4dx5MgR1NfXt9/QpHEIoXoIDQkQrGEMEQyesS1KAme8hU1JI0JMNUNKkcOlmGp22YuZnJyMwYMHY+jQoRg6dCgGDx7MezKJiALA0ElEFAKiKKKkpAQ//vgjjh07huPHj+PMmTPO84TaCEatHD4b9NA06iE06SFYGETJhQiHTn/Cpn2ArWgLqCKskFLMkFIsENPkoCkZLO3uxRQEAT179sSgQYMwaNAgDB06FNdccw20Ws9TKRERkXcMnUREKmlubkZRUZESQo8dO4aLFy+63rhFC02jTr4vtFEOo2jRhu/SXAbR6BXm4GkPjZIouQyQ7kZvjnTYlCDJl8immG0h0wwp2QzJ0P4/fgAgJycHAwcOxMCBAzFo0CAMGDAAKSkpYW41EVHHwNBJRBRGtbW1OHHiBI4dO4aioiKcOnUKpaWlrje2CHIAbdJDaNLJP0b2inY4EQydvm6rJsd2KG3TiBCTzJAMFkgpZojJcsiE3nWbs7Oz0bdvXyVkDhw4EFlZWaq3nYiIZAydREQR1tDQgNOnT+PUqVMoKipCUVERiouLYTabXe9g0sjTtzTpIRhtYbRJr/69ogyg4RUl93N6EsrQ6SrkSlpRDpbJFkgGszyabLLF5f2XAKDVatGrVy/069cP1157Lfr164e+ffsiIyMjZO0kIiL/MXQSEUUhs9mMc+fO4eTJkzhz5gyKi4tRXFyMsrIy9zuZNHIINeogNNsftfJyqKdyYQANvRgImXbuwqYvl9623UaCBCRa5XCZZIFksEJMskBKNgOJ7n/PsrKy0Lt3b/Tp00cJmVdffTUSExMDeEVERKQmhk4iohjS1NSkBNCzZ88qj1euXHG/kwT5/lCjDppmnTyQUbMOaNZBaNEGH0gZQAMXg0HTl8tu21KCpS1USkn2gGmBlGgFPJyGzp07o0+fPujduzeuvvpq5adTp06BvhQiIgozhk4iojjQ2NiIkpISnDt3DhcuXMD58+dx4cIFXLhwAUaj0f2OEuQe0hZbAG3Wyo8tci8pTAGEUoZQ72IobPpCCZWOP0kWZRkJnoNlQkICrrrqKvTo0QM9evRAz549lZCZlpYWvhdCRESqYOgkIopjkiShsrJSCaD2MHr+/HlcunQJLS0tXiqAHDxbNBBMWggmWxBt0UIwaVqfuwumDKDuxUjwlAQJSLBCShAhJVghJVidnyda5XssvfzfhF6vR25urlOwtC9nZ2dDo4mN80FERP5j6CQi6qAkSUJNTQ0uXbqEy5cvK4+OyyaTybfKzBrnEGrWyOvMGghmrbIMs0aeBoZhNKKhU4IE6ERIehHQOz5a5WVbuJQSRCDBt38rvV6PnJwcdOvWDbm5uejWrRtycnKU5c6dOzNYEhF1UAydRETkkiiKqK6uxuXLl1FeXo4rV66goqICFRUVKC8vVx59DqaA3HNq0TiFUlg08si7FkGeDsaigWARbI/yc1ik8M1ZqqYQB00JEqC1BUidCGgl+VEnQtI5rG8bMHWi155JR3q9Hp07d0aXLl2QnZ2NLl26KD/2kJmVlcVQSURELjF0EhFRwCRJQn19PcrLy5UgWlVVherqatTU1KC6ulpZrq2thSgG2MMpAbAKgFWQA6poXxYAqwawwrYsPxdEARAhbycKgCRAsD+XWssEUZDrlmyPaLsMn8KuZN/Bvql9tFYBgEYCBAmSpnUZGtgeJUgaqXU7jQRJKwFa0WHZvl4OldDa9rGFzGCyeHp6OjIyMpCZmYnMzExkZGQgIyPDKVhmZ2cjPT2dgZKIiALG0ElERGFhtVpRX1+P6upqJZjW1dWhvr6+3U9dXR0aGhpQX1+P5ubmSDfdFkzRGkYFh8co6IBNSEhAWlqa8pOamur0PC0trV2w7NSpE3Q6XaSbTkREHQBDJxERRTWTyYT6+no0NDSgubkZTU1NMBqNMBqNHpdNJhPMZrPTo6t1ZrNZ9deQkJAAvV6v/Dg+d1xOSkpCcnIyDAZDu5+kpCQYDAalPDk5WQmYnJuSiIiiGUMnERF1aJIkwWq1QpIkiKLoctlqtUIURUiSBEmSoNFooNFoIAiC8qjVap2e27fR6XQQhCjoDiUiIooQhk4iIiIiIiJSDUcFICIiIiIiItUwdBIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIiIiIiIVMPQSURERERERKph6CQiIiIiIiLVMHQSERERERGRahg6iYiIiIiISDUMnURERERERKQahk4iIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESqYegkIiIiIiIi1TB0EhERERERkWoYOomIiIiIiEg1DJ1ERERERESkGoZOIiIiIiIiUg1DJxEREREREamGoZOIiIiIiIhUw9BJREREREREqmHoJCIiIiIiItXoIt0AIiI1SJKE5ubmSDeDiMgvSUlJEAQh0s0gIgophk4iikvNzc2YPn16pJtBROSXjRs3wmAwRLoZREQhxctriYiIiIiISDXs6SSiuJewuysESQMIGggaARBs/9+mEQBBgKDRAIJtvf2yNo0AQdAo20AQ5GWg9bl9nX2fttvDeR9JEOT/6nPcH2i3Xnmu7CdXBUGApIHtCWzrBUCA0z6Ssq7N/sprRvtytFlnf65xUea4v1OZ46PQrszlPnAud3xub4O7Yzktu2lH2zoVHveR2rWrbX0QJBdtklrrdlWXbT8ovx6Sc52wlzk82uqzby8IkuOvjnIM+Z+mtRwANJCc1mlsy61lreucygQJAlrXaxzWawQJGtjXw7lM2UdUntuPpRFEaJV9xdb9HJ5rHeoGAC3s60WH7URbma1O5VFU2mHfTwP7vrZ9lDJ5e60gQVDK5HX2fbRA636QjyPY9tc6tVGyPbe1yfbPIj8XoAGgFQRoIEBr+4fWQLCt00CAAK2ggalFizv/v64gIopXDJ1EFP+sgvz1T5C/5Cmh0/ZtXi4TAI0GjilFgKZN8nDYz2XqabO94Fjmatnxuav1rvaDQ8iFEjqVRziua7NsK3MKUE77udin3UsW2jdTcPUjuC9zu4+PpyrIOr0H1RCHTqF96HQsaxs6W9e3rU9yWdYaTh3KnZ5Lzvu3O5bkXOYQOu0/AFqfuytrE0aV0NlmnWNY1To8l0OnqPw/jRaCHN4Eh/Bm+73SAtAIgsOjYDuWvJ9cF6AVWn+FtYJ9P/nRZZmy3Np+OaxKtkAr+RQ629ansbUZTuvsbWw9FhFRvOLltURERERERKQahk4iIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESqYegkIiIiIiIi1TB0EhERERERkWo4TycRxT+tBEkSbfNOOsxLqRHk+SQ1cJ7vEm2eKz+SQ1mbH8A216HjOucJISU3k0+2Xd/63L5fm2XJvp99H1sdtg0lOJc7zQAoOdbdun+7dVKbIsf5N32aH1NwXwYP+/ta5qlOL8cT4G0fV/Nttq1PclGHm3k60X4/wWk+TlsZ7GUOj7Z97dvLc2O2nl7nY7SZpxOBz9Mp2faVbD8AlGUJ9vVwLoMEUZAAQbTV5Xgs0fZ6HMvlMkkQ5Xoc6m4tc15vnx9Tss2V6fgIQFkWbX/W9kfYlkXIf/ai7bn9VLWfp1OAxlaqhTwfqCC0LrfOJeo896f9WBqlDvs8ow5ziUJQ1gm2ZVOLq79DIqL4wdBJRHHPNPZKpJugDsfv9QEQ2jwS2dl/tcRINyRg9jTPC7qIiKIB342JiIiIiIhINYIkSUH8PzkRUXSSJAnNzc2RbkbcaW5uxqxZswAAX3zxBZKSkiLcovjA86qOWDyvSUlJEARef0BE8YWX1xJRXBIEAQaDIdLNiGtJSUk8xyrgeVUHzysRUeTw8loiIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESq4ei1REREREREpBr2dBIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIiIiIiIVMPQSURERERERKph6CQiIiIiIiLV6CLdACIi8l9TUxM++eQTfPfdd7h8+TI0Gg169uyJyZMnY86cOdDr9QHXXVVVhTVr1qCgoABlZWVITExEnz59MGPGDMycOROCIHjc/+LFi1izZg327NmDqqoqGAwG9O/fH7fffjsmTZrkdr9Lly7h8OHDOHHiBE6ePImioiI0NTUBAD799FPk5uYG/Jr8EY/n9vTp09ixYwcKCwtx9uxZ1NTUQK/Xo1u3bhg5ciRmz56Nnj17Bvy6fBGP53XTpk04duwYTp48ifLyctTU1EAURWRkZGDAgAG45ZZbPO5PRNRRCJIkSZFuBBER+e7y5ctYuHAhLl++DABISkqCKIowmUwAgH79+mHlypVIS0vzu+4TJ07giSeeQG1tLQDAYDDAZDLBarUCAMaOHYvly5e7DQgFBQVYunQpmpubAQApKSkwGo0QRREAkJ+fjyeffNJlCHjhhRfw73//22W94Qqd8XhuN23ahOeff95pXWpqKoxGo3JsvV6PhQsXYtasWX6/Ll/E43kFgOnTp8NoNCrPU1NT0dLSArPZrKwbM2YMnn/+eRgMBr9fGxFRvGDoJCKKIRaLBQsWLMCZM2fQuXNn/O53v8Po0aMhiiK2bNmCl19+GU1NTbj++uvx0ksv+VV3Q0MD7rvvPlRVVaFXr174/e9/j4EDB8JsNmPDhg14/fXXYbFYcMcdd+Dxxx9vt39paSl+/vOfw2g0YujQoXjqqafQs2dPpYfrvffeAwA88sgj+NnPftZu/xdffBGFhYXo378/+vfvD0mS8OabbwIIT+iM13P71VdfYcWKFZg0aRKmTJmCYcOGISUlBWazGYcOHcKf//xnnD17FoIgYMWKFRg9enTA59CVeD2vAPDnP/8Z/fv3x5AhQ9C1a1ckJCRAkiRcunQJn332GT7//HMAwE9+8hM88cQT/p88IqJ4IRERUczYsGGDlJeXJ+Xl5UmHDx9uV/71118r5Xv37vWr7rfeekvKy8uTpk6dKl28eLFd+QcffCDl5eVJkyZNks6dO9eu/LnnnpPy8vKkWbNmSXV1de3KX3rpJSkvL0+aMWOGy3KLxeL0fP/+/cprKS0t9eu1BCJez21JSYlUXl7utm11dXXSrFmzpLy8POmxxx7z63X5Il7Pqy+WLVumtM9sNvu9PxFRvOBAQkREMcR++emIESMwZMiQduVTpkxRegTdXarqzsaNG5U6unfv3q589uzZMBgMsFqt+Prrr53KjEYjvvvuOwDAHXfc4fIyyfvuuw8A0NjYiO+//75duVar9au9oRav57ZXr17o0qWL27alpaVh4sSJAIDjx4/78ap8E6/n1ReDBw8GALS0tKCurs7v/YmI4gVDJxFRjGhubsaRI0cAANdff73LbQRBwLhx4wAAe/bs8bnuc+fOoaysDACU/dtKTk7GsGHDXNZ9+PBhtLS0eNw/NzcXvXv39rtt4dDRz21CQgIAKPcxhkpHP6+HDh0CIN9nmpmZ6ff+RETxgqGTiChGlJSUKKGgT58+brezl1VVVfncu3LmzJl2+7tyzTXXAACKi4vd7m/fxtP+Z8+e9ald4dLRz+3Bgwe91h+IjnheGxoacPz4cbz44ovYunUrAODuu+/2OoIuEVE845QpREQxoqKiQlnOzs52u53jpZQVFRVIT0/3WndlZaVfdTc2NqKpqQnJyclObUtLS0NiYqLX/R2PFw068rn99ttvcfLkSQDAbbfd5te+3nSU8/rtt99i2bJl7dYnJCRg7ty5uP/++z28EiKi+MeeTiKiGGGfsxKAxy/JSUlJLvdRs277tBGO5Z7297Vd4dJRz+358+exYsUKAMCwYcNw6623+ryvLzrKeU1ISEBWVhaysrKUe5O1Wi3mzZuHu+++O+L3KxMRRRp7OomIiDqgyspK/M///A8aGhrQpUsXPP3009Bo+H/RgcjLy0NeXh4AeYqYkpISfPTRR3j//fexYcMGPP/88y4HUSIi6ij46UJEFCPslwUCUAZAccU+yX3bfdSs2z7xvWO5p/19bVe4dLRzW11djd/85je4ePEisrKy8Morr6Br165e9/NXRzuvAKDT6dC3b188/fTTmDNnDqqqqvDMM894bCMRUbxj6CQiihGO972Vl5e73c7xPjpPU2U46ty5s191p6SkOH0Jtx+nvr7e45dr+/6Ox4sGHencVldX47HHHkNxcTEyMzOxcuVKZYTWUOtI59WVuXPnAgCuXLmCnTt3+r0/EVG8YOgkIooRvXv3Vi5/9DSSpr0sKyvLpwFZAOfROz3VbR/x8+qrr3a7v+OooO729zTaaCR0lHNbXV2NRYsW4ezZs0rgbHu8UOoo59UdxwGOLl686Pf+RETxgqGTiChGJCUlKfeF7dq1y+U2kiRh9+7dAIAxY8b4XHfPnj2Rk5PjsW6j0ajMO9i27qFDhyqDudiP39bly5dRUlLid9vCoSOc26qqKixatMiph1Pt8N8RzqsnpaWlynK0XVJORBRODJ1ERDFkxowZAIADBw7g6NGj7cq3bNmifNG1b+sLQRAwffp0AMDmzZtx6dKldtusW7cORqMRWq0Wt9xyi1OZwWDATTfdBABYv349Ghoa2u2/Zs0aAPKXb/ugK9Ekns+t4yW1WVlZePXVV8PW2xyv59VisXht44cffqgsDx8+3Ov2RETxiqGTiCiGzJgxA9dccw0kScKSJUuwb98+AIAoitiyZQtefvllAMC4ceMwatQop33feecdTJw4ERMnTnT5Bf2ee+5BVlYWmpub8eSTT+LEiRMAALPZjPXr1+Ovf/0rAOD2229Hz5492+3/4IMPwmAwoLKyEk899RTOnz8PQO5teu+99/DFF18AAObPn4+0tLR2+1ssFtTU1Cg/jiGgvr7eqcyXL/z+itdzW1NT4xQ41b6ktq14Pa8fffQRnnvuOezcuRP19fXKeovFgqNHj+J3v/sdNm7cCACYOnVqWM85EVG0ESRJkiLdCCIi8t2lS5ewaNEiXL58GYB8CaMoijCZTACAfv36YeXKle2+JL/zzjt47733AACffvopcnNz29V94sQJPPHEE6itrQUg9/CYTCYl5I0ZMwbLly9HQkKCy7YVFBRg6dKlyoifqampMBqNsFqtAID8/Hw8+eSTEASh3b4HDhzAokWLfDoHr776KkaMGOHTtv6Ix3P73nvv4Z133gEg9+7ZR21154033lAuWw2VeDyvjm0D5HObkJCAhoYGZV8AmDx5Mv7f//t/HucSJSKKd5ynk4goxuTm5uK9997DJ598gu+++w6XL1+GTqdDnz59MGXKFMyZMwd6vT6gugcMGID3338fa9aswQ8//IArV64gKSkJ11xzDWbMmIH8/HyPczmOHz8e7777LtasWYM9e/agqqoKqamp6NevH37yk59g0qRJAb7q8IjHcyuKorJsNBphNBo9ttNx+1CJx/M6c+ZMdOrUCQcPHsTZs2eV3nmDwYCuXbviuuuuw/Tp0zFs2LCAXhcRUTxhTycRERERERGphvd0EhERERERkWoYOomIiIiIiEg1DJ1ERERERESkGoZOIiIiIiIiUg1DJxEREREREamGoZOIiIiIiIhUw9BJREREREREqmHoJCIiIiIiItUwdBIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIgi7tVXX8XEiRPx61//OtJNoQhraGjAzJkzMXHiRGzbti3SzSEiohDQRboBREQUuMbGRhQVFeH48eM4ceIETpw4gYsXL0KSJADAp59+itzcXFWOLUkS7rrrLpSXl+Pee+/FL37xi4DqKSoqwvr16wEADz/8cAhbGFlnzpzB7t27cfjwYZw5cwaVlZWwWq1IS0tD3759MX78eMyYMQOpqamRbmpUSU1NxT333IO33noLr732GsaNG4fExMRIN4uIiILA0ElEFMMWLlyIoqKiiBz7+PHjKC8vBwDk5eUFXM+qVatgtVoxbtw4DB06NFTNi6iFCxfi4MGDLsuqqqpQVVWFPXv24MMPP8TixYsxduzY8DYwyt1111347LPPUFZWhr///e+49957I90kIiIKAi+vJSKKYfYeTUDuIRoxYgSysrLCcuzvv/8eAJCdnY1BgwYFVMehQ4ewd+9eAIirYGEP42lpacjPz8fixYvx+uuv46233sKzzz6L8ePHA5AD6OLFi1FYWBjJ5kYdg8GAOXPmAADWrFmDpqamCLeIiIiCwZ5OIqIYlp+fj4yMDAwYMAA9evSAIAhYuHAhqqqqVD+2PXROmDABgiAEVMfHH38MAMjNzcV//Md/hKxtkdajRw/Mnz8fU6ZMQUJCglPZgAEDMGnSJHz00Ud44403YDKZsGLFCqxevTpCrY1O06ZNwzvvvIP6+nr885//xNy5cyPdJCIiChB7OomIYthdd92FqVOnomfPngEHv0CcP38eJSUlAAK/tLa8vBwFBQUAgOnTp4e1/Wp7+eWXceutt7YLnI7uvfde9OvXDwBQXFyM06dPh6t5MSE3NxfDhg0DAHz55ZcRbg0REQWDPZ1EROQ3+6ii9kt6A/HNN99AFEUAwOTJk33ax2KxYPPmzdi+fTuOHz+OmpoaWK1WZGRk4JprrsHo0aMxdepUdO7c2Wm/iRMnAgBmzJiBxYsX49y5c/j73/+OPXv2oKKiAikpKejfvz9+9rOfYfjw4cp+LS0t+Oqrr7Bx40ZcuHABzc3N6N69O2655RbMnTs36AFuRo4cqdyTe/78efTt2zfguoqLi/HFF1+gsLAQly5dQnNzM1JTU5GWlobc3FyMGjUKN954I3r16hVQ/RaLBZs2bcKWLVtw5swZ1NbWQhAEpKenIyMjA4MGDcLo0aMxYcIE6PV6p33bnv/i4mKsW7cOe/fuRUVFBYxGI/7whz+0+w+MyZMno7CwECUlJTh+/DgGDhwY2MkhIqKIYugkIiK/2S+tHT9+PHS6wD5KfvjhBwDyfY+9e/f2uv2pU6fw9NNP48KFC+3KysvLUV5ejl27duH06dNYvHix23q2bt2KF154Ac3Nzcq6lpYW7Ny5E7t27cITTzyB22+/HRUVFVi8eDGOHz/utP/Zs2fx5ptvYufOnVixYkVQwdNisSjLGk3gFx998cUXWLlyJaxWq9P62tpa1NbW4sKFC9izZw9Onz6NJUuW+F1/TU0Nfvvb37octMp+7ouKivDll19izZo16NGjh9u6vvrqK6xYsQImk8nrcR0Hlvrhhx8YOomIYhRDJxER+aWiogLHjh0DEPiltSaTCT/++CMAYNCgQV4vrS0qKsKjjz4Ko9EIABgxYgSmTZuG3r17Q6/Xo7KyEkePHvU6r+Pp06exefNmZGZm4uGHH1aOvW/fPnzwwQdobm7GK6+8guHDh+P555/HqVOncMcdd+DGG29ERkYGLl68iNWrV+P06dM4dOgQ1qxZg5///OcBnQMA2L9/v7Lcp0+fgOo4c+aMEjjT09Nx++23Y/jw4cjIyIDVakVlZSVOnDiBnTt3BnwJ88qVK5XAOWrUKEybNg25ublISUlBY2MjSkpKUFhYqFwu7c6JEyfwzTffID09HXPnzsXQoUOh1+tRXFyMbt26tdu+T58+MBgMMBqN2L9/Px588MGA2k9ERJHF0ElERH7Zvn07JElCQkICxo0bF1Adp0+fVnr5BgwY4HFbi8WCp59+WgmcixYtUkY2dXTDDTdgwYIFKCsrc1tXUVER+vXrh5UrVyItLU1ZP3jwYPTo0QNLly6FxWLBo48+irq6Orz88ssYPXq0sl3//v0xZswYzJ8/HxUVFVi/fj3mz58PrVbr1+sH5EuUz549C0AO3j179vS7DgDYsmWL0sP5yiuvKPeJOsrLy8OCBQtQW1vrd/0tLS1KmM/Ly8Pzzz/fLrwOHz4cs2bNgtFo9Nhje/bsWfTo0QOvv/660yjL7kY/1mq16N+/PwoLC3Hy5EmIohhUjzAREUUG37mJiMgv9ktrR48eDYPBEFAdjpfIepvi5ZtvvsHFixcByKP1ugqcjnJycjyWP/XUU06B027SpEnIzs4GAFRXV2P27NlOgdMuNTUVt956q7JdcXGxx+O5UlFRgf/93/8FAAiCgP/6r//yuw47+0jFqampLgOno06dOvldf319vfIfBMOHD/fYW2owGLxebvz444/7Na2Pfdvm5mZUVFT4vB8REUUPhk4iIvJZQ0MDDhw4ACDwS2sBoLKyUllOT0/3uK095ALAvHnzAj4mIF+u6S6YCYLgVDZt2jS39ThuV1pa6lcbmpubsXjxYiUsth28yF/2oNzQ0IAtW7YEXI87nTp1Ukbh/fbbb4OaMzM7O9tlkPfE8ffD8feGiIhiB0MnERH5rKCgABaLBVqtFhMmTAi4npaWFmXZVa+jo5MnTwKQe7x8GXDIE2/7O7bF0yivjtv5E8LMZjN+//vfK4MT3XjjjViwYIHP+7sybdo0pXdx6dKl+NWvfoWPPvoIhw4dUi5JDoZer8eMGTMAAEePHsVPf/pTvPzyy/j222/9DtyBjM7rGDodB38iIqLYwXs6iYjIZ/ZexyFDhiAjIyPgehzvgfQ2imlNTQ2A1h69YCQlJXksd7x01NOlw473FdqnffHGYrFgyZIl2L17NwBg7NixeOaZZwK6H9RR9+7d8eKLL+KFF15AeXk5Dh8+jMOHDwOQz/PAgQMxceJE3HbbbV4Dvju//vWvYTKZsHHjRtTV1WHDhg3YsGEDAPk/A8aOHYv8/HyvPbbeerVdcfwPikBHSiYioshiTycREfnEZDJh165dAIK7tBaQ7z+0q6urC6quWGCxWLB06VJlmpjRo0fjD3/4g3LZarBGjRqFjz/+GMuWLUN+fr4yZYnVasWPP/6IVatWYd68eUrg9VdiYiIWL16MDz/8EA899BBGjhyphPKqqir8+9//xsKFC/H73//eKSS2FcggQI6DHzn+3hARUezgfxkSEZFP9u7dq1yuGWzodJwew1vozMjIQFlZWcwOImMPnPZe4pEjR2L58uVBze/pSkJCAm6++WbcfPPNAOQe4n379mHjxo3YuXMn6urqsGTJEqxZswadO3cO6Bg9e/bE/fffj/vvvx9WqxVFRUX44Ycf8MUXX6C6uhrbtm3DW2+9hUcffTRkr6u+vl5Z9jZIFBERRSf2dBIRkU/soalfv37Izc0Nqi7HOSnPnTvncVv7lCqVlZVet402bQPniBEj8OKLL4Y8cLqSkZGBKVOm4KWXXsIdd9wBADAajdi+fXtI6rdfuvvggw/i//7v/5RLl7/55puQ1G9XUlICAMjNzUVycnJI6yYiovBg6CQiIq9EUcSOHTsAyIPfBCsnJwddunQBABw7dszjthMnTlSW16xZE/Sxw8ViseCZZ55RAufw4cPxxz/+0et9pWoYO3assmy/RzaUcnNzlXlGA5kL1J2amhplupzrrrsuZPUSEVF4MXQSEZFXhw8fVsKKYwgMhj0IlZSUoLGx0e12kydPVgLNv/71L3z++ece6y0rKwtJ+4JhsVjw7LPPYtu2bQDUDZzfffed1yBpvxcXAK666iq/6i8tLcXevXs9bnPp0iWlR7J79+5+1e/J0aNHleXrr78+ZPUSEVF48Z5OIqIYduHCBWWkUjv7/I8AsHXrVqdRZg0GAyZNmuT3cey9dd27dw9o2gtXbr75ZvzrX/+CKIrYu3cvbrrpJpfb6XQ6LFu2DL/61a9gNBrx6quvYtu2bZg+fTp69+4NvV6PyspKHD9+HFu3bsWAAQOwePHikLQxUM899xy2bt0KQA55jzzyCC5duuRxn8zMTGRmZvp9rM8//xzPPfccRo0ahVGjRuHqq69Gp06dYDabUVZWhm+++Ubppe7WrZvfU92UlZXh8ccfR/fu3TFhwgQMGjQIOTk5SExMRG1tLY4ePYr169croxDPmTPH79fgzp49ewDI96uOHz8+ZPUSEVF4MXQSEcWww4cPY/ny5W7LV61a5fS8W7duQYXOUFxaazd69GhkZ2ejvLwcGzdudBs6AeDaa6/Fa6+9hqeffhqlpaU4cOAADhw44HJb+z2gkbRlyxZl+eLFi3jkkUe87vPAAw/gwQcfDOh4JpMJBQUFKCgocLvNVVddheXLl3ucCsaT0tJSfPbZZ27LNRoN5s2bhzvvvDOg+tuyWCz49ttvAci964FO90JERJHH0ElERB6dOnVK6aULdtRaR1qtFrNnz8Ybb7yBnTt3oqamxuPcn/3798eHH36IjRs34vvvv0dRUZFy/2BmZib69u2LMWPGYOrUqSFrYyxYunQpdu/ejcLCQpw5cwZVVVXK5badOnXCtddei7y8PEybNi2gKVqGDRuG119/HXv37sXRo0dRVlaG6upqNDY2IikpCd27d8ewYcNw2223hawXHIDyOwEAd911V8jqJSKi8BMkSZIi3QgiIope7777Lt59911kZmZi3bp1Ac216E5DQwPuuece1NXV4Re/+AXuvffekNVNse3JJ59EQUEBRo0ahVdeeSXSzSEioiBwICEiIvLIfmntDTfcENLACQCpqalK0Pzkk0/Q1NQU0vopNh09ehQFBQUQBAEPP/xwpJtDRERBYugkIiK3zGYz8vLy8MADD2D27NmqHGPOnDno0aMHamtr8be//U2VY1BseeuttwAA06dPx6BBgyLcGiIiChYvryUioog7duwYCgoKkJqaip/+9KeRbg5FUENDAz777DNIkoTZs2d7vM+XiIhiA0MnERERERERqYaX1xIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIiIiIiIVMPQSURERERERKph6CQiIiIiIiLVMHQSERERERGRahg6iYiIiIiISDUMnURERERERKQahk4iIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESq+f8BYoE08cIv3wkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADycElEQVR4nOydd5gUxdbG3+6esHkX2CWzgGREERQR5YpEvXIVE2IEc/rMOeecMFzFfEFFwARGJEgQFRAM5Jxz3GXzTuj6/pjt3p6eTjPTM9uze37PMw/L9Omq6pnprnrrnDrFMcYYCIIgCIIgCIIgCMLh8HXdAIIgCIIgCIIgCIKwAglYgiAIgiAIgiAIIiUgAUsQBEEQBEEQBEGkBCRgCYIgCIIgCIIgiJSABCxBEARBEARBEASREpCAJQiCIAiCIAiCIFICErAEQRAEQRAEQRBESkACliAIgiAIgiAIgkgJSMASBEEQBEEQBEEQKQEJWIIgCIIgCIIgCCIlIAFLEARBEARBEARBpAQkYAmCIAiCIAiCIIiUgAQsQRAEQRAEQRAEkRKQgCUIgiAIgiAIgiBSAlsE7NatW8FxHDiOwxVXXGFHkQ2S0047Tf4cCYIg9LjiiivkZ8XWrVvrujky48ePl9s1fvz4um4OYTOiKOL4448Hx3G45ZZb6ro5RIpAzwWCiKQ+a6dgMIguXbqA4zg88MADCakjaR7Y8ePH4/HHH8fjjz+erCrrnGnTpsnXXFxcXNfNIWoIBAKYPXs27r//fgwaNAgtWrSA1+tFVlYWOnTogIsuugjTpk1DMBiMqtyVK1filltuQdeuXZGVlYXc3Fwcc8wxuP/++7Ft27YEXQ1BEA2Z6dOn46qrrkLXrl2Rm5uLzMxMHHXUURg0aBCefPJJ/PPPP7bV9d577+Gvv/5CWlqa4aBk69at+Oqrr/DAAw9g2LBhaNKkiTxQO+200yzXpxQ+Vl7z5s0zLbOiogLvv/8+hg8fjtatWyMtLQ1paWlo2bIlhg0bhtdffz2u/vrXX38Fz/Nym9q1axdzWVrs3r0bTz75JP71r3+hoKAAbrdb7rtGjhyJKVOmWO679u7di8ceewwnnXQSmjRpAq/Xi9atW+P000/HRx99hEAgYGvb65JjjjlG/k5+/vnnqM//9ddf5fO7d+8e9fmMMfz222944okncMYZZ6BNmzZIS0tDRkYG2rZti3PPPReffPIJqqurTcuaN29eVPeF2aRBSUkJ5s2bh1deeQUXX3wxOnfuHPYbjmaStKKiAgsXLsSbb76JK664Aj169IDL5YrqHo0FO+/rqqoqjBs3DmeccQaaN28Or9eLgoIC9O3bF88++ywOHTqUkGuoC2655Rb5u3nkkUeiPr+iogK5ubngOA4ulwu7d+8GAAiCgIcffhgA8Oqrr2Ljxo22thsAwGxgy5YtDAADwMaMGaNpM2DAANmmoTBmzBj5mrds2WJq3xA/o2QzZ84c1rhxY/lzNnr16dOHbdy40VK5L730EnO73bplZWdns0mTJiX46oiGQrTPlmTxv//9T27X//73v7puTr1m8+bNbODAgabPsREjRthSX3l5OWvevDkDwG699VZduzfeeMOwPQMGDLBcp/L3ZOU1d+5cw/KWLFnC2rdvb1pO06ZN2YwZMyy3U6Kqqop17do1rKy2bdtGXY4e48ePZ1lZWabt79mzp+lz4eOPP2YZGRmG5fTq1Ytt2rQp7nY74bnwyiuvyG247LLLoj7/qquuks9/8cUXozp39erVrGXLlpZ+w507d2ZLly41LG/u3LlR3RdGn3lxcTHjOM7w/Gj6GLPxldk9Ggt23tdLly5l7dq1My3np59+irvdVrRTovnzzz/lNhQWFjJRFKM6/+OPP5bPP/PMM8OOBQIB1rlzZwaAXXTRRXY2mzHGmAs20K5dOzDG7CiqQZOomSmill27duHw4cMAgMaNG2PIkCE46aST0KJFC/j9fvzxxx/4+OOPUVJSgiVLlmDgwIH4448/0Lx5c90y33nnHdxzzz0AALfbjcsvvxwDBgyA3+/HjBkz8OWXX6K0tBSXX3458vLycMYZZyTlWon6y/jx4ykUrwGzbt06DBo0SJ7tPuGEE3DWWWehffv2SEtLw/79+7Fs2TL88MMPttX59ttvY+/evRAEAffee6+undr7l56ejk6dOmH58uVx1X/LLbdg0KBBhjY9evTQPbZt2zYMGTIER44cAQA0b94cV1xxBTp16gSXy4XNmzfj448/xpYtW7B//36cddZZWLx4MY477jjLbXzqqaewdu1aZGZmory83PJ5Vpg6dSquvPJKeax13HHH4cILL0RhYSHKy8uxatUqjB8/HiUlJVi2bBkGDRqE5cuXIysrK6KsTz75BKNHj5b/P2zYMIwYMQIFBQXYsWMHJk2ahKVLl+Lvv//GsGHDsHDhQhQUFNh6Pcnmsssuw3333YdAIICvv/4ab7/9NrKzsy2dW1FRgS+++AJAyLN0+eWXR1X3oUOH5Hs1MzMTQ4YMwcknn4zWrVsDAJYvX47x48dj3759WL9+PQYPHozffvsNRx99tGnZo0aNwkUXXWRo07t3b91jjLGw8TvHcejYsSMOHjyIoqIiK5cXhvr+LywshM/nw969e6Muywp23terVq3CoEGDUFJSAgA4+uijcfnll6N9+/YoLi7G9OnT8c0332D//v0499xzMXv2bJx88skJua5k0bt3bxx77LFYvnw5tm/fjjlz5mDw4MGWz1eOQ6688sqwY1Jfcc011+Dzzz/HI488ElP0gi62S2IdGqJ30alekobMJ598wo455hj22WefsaqqKk2bnTt3sqOPPlr+7kaPHq1b3u7du+VZbJfLxWbNmhVho5x9btOmDausrLTtegjCSTjB01LfqaioYJ06dWIAWEZGBvv88891bUVRZDt27Ii7Tr/fz9q0acMAsGHDhhnaTp06lf3f//0f++ijj9iyZctYIBAI8zTE6oGN9/ek9KCdfvrprKKiIsLG7/ez0aNHy3bReK+XLVsmR+EovX12eWCPOuooucxHH31U01Ny8OBBduyxx8p2Y8eOjbDZv39/mBd33LhxETaiKLLbb79dtrnyyivjartTngsjRoyQ2/Hhhx9aPk/pZfrPf/4Tdb0LFixg7dq1Y++88w4rKSnRtCkqKgobJ5966qm65Sk9sI899ljU7VFSWlrKLrroIvbSSy+xOXPmsOLiYsZY+Jg9mvHr6NGj2TPPPMN++uknduDAAcZY+FjYbg+snfd13759w7z0fr8/wubLL79kPM8zAKxLly6aNlZxggeWMcbGjh0rt+Pyyy+3fN62bdtk732TJk1YdXV1hM2RI0dYWloaA8CuvfZaO5vNSMAmEBKwzqOoqMhSiMSKFSvk7y49PZ2Vl5dr2ik7+XvuuUe3vJEjR8p2//3vf2NuP0E4GacMVOsz9913n/wZT506NSl1Tp06Va7z448/jvp8JwjYVq1ayWWtWrVK166oqIi5XC4GgDVu3NhS2YFAgJ1wwgkMADvrrLPCrtcOAbthwwa5vGbNmrFgMKhr+91338m25513XsTx559/Xj5+/vnn65YTDAbZMcccwwAwnufZ+vXrY26/U54L06ZNk9vxr3/9y/J5gwYNks/76quvoq63tLSU+Xw+U7t9+/aFhXVv3rxZ085OAatHrAJWi0QKWLvu60WLFsnltGrVytDRcNNNN8m2H3zwQcxtd4qA3b9/vzz5lpmZyUpLSy2d9+STT8rtv+WWW3TtpPFvenq67gROLCQ8C7GUWXf+/Pnye1qLzPWSO4miiM8//xyjRo1C+/btkZGRgezsbHTt2hU33ngjVqxYYdi2xx9/PGLx+M8//4yLL75YDrdSL1IPBAKYMWMG7rrrLvTv3x9NmzaFx+NBdnY2OnfujCuuuAK//PKLbp1ShtAJEybI77Vv3z7imvU+KytZiBcvXozrrrsOXbp0QXZ2NjIzM9GhQweMGTMGc+bMMT1fnVCjvLwcL7/8Mk444QQ0atQImZmZOProo/HAAw/EFEbiVPLy8ix9vj169EDXrl0BAJWVlZoL0BljcliRWVbOW2+9Vf57ypQp0TY7LhYuXIgbb7wR3bt3R15eHtLS0lBYWIhRo0aZhhgqk0VI9+j27dtx1113oWvXrsjMzEReXh5OPvlkvP3225aTfpSVleG1117D0KFD0bJlS3i9XjRu3Bh9+vTBo48+igMHDhier75XgsEgxo8fj6FDh6JVq1ZwuVyayVP27duHe++9F927d0dmZiYaN26ME088Ea+88goqKioAhJZEaCVf+emnn+Q6ld+nEbfeeqt8zvTp0y2dYwWzLMSJ+t6+//57nHXWWWjevDnS0tLQrl07XHrppVi4cGHU1+Dz+fDhhx/i7LPPlhOa5OXl4dhjj8Vdd92lmzhk3bp1yMzMBMdxyM3NxZYtW3TrKCoqQmFhITiOgyAIhs/tVKC8vBzjxo0DAAwcOBDnnHNOUur95JNPAITCgc8999yk1Gk3+/fvl//u1KmTrl1eXp4cLms1DPi1117D0qVLkZWVhbfeeiu+hmqgbHuHDh3A8/pDt86dO8t/a7VfOT4wCoXleR6XXnopgNA4bPLkyVG1ORaWLFmCgoICcBwHr9eLzz//PMImnjHh8OHD0bRpUwChpEybN282bdP27dsxd+5cAEB+fj7OOuusqK8rKysLbrfb1K5p06Y49dRT5f+bjW8J++5r5X0xcuRIpKWl6ZalDL//7LPPompvLBw4cAB9+vSR+/Q777xTc9lmrGO9goIC/Oc//wEQ+my07jstlBpHHT6sRHqOVFZW4ssvv7RUtiXsUMFGswjKWRyjl9Ys0saNG9lxxx1neB7P8+yRRx7Rbdtjjz0m286ZM4f93//9n2Y5yhmm0047zVKbx4wZo+kyV842mZ2v91np4ff72bXXXmta9oUXXqgZSiEh2Q0YMIBt2rSJde/eXbestm3bNkgPcp8+feTPYNGiRRHHlV7aHj16GJYVDAZZTk6O/Ju1cxZKj7KyMjZq1CjT38rw4cN126Oe6Z0+fTrLy8vTLWvo0KG6odkSP/74I2vatKlhm7Kzs9k333yjW4byXjl06BDr37+/5u9WyZw5c1ijRo106zzmmGPY9u3bWdu2bTXPDwaDcqKIRo0amYaCV1ZWyvUVFhYaek2ixSy6w+7vLRAIGD7XeJ5nL7zwgmVPi5WkGx6Ph73zzjua57/33nuyXb9+/VggENC0u+CCC2S7hx56yPAzTQUmTJggX080IZDxUFVVJXuFjMIajXCCB7Z169ZyWVY9Nccdd5xpuZs2bZI/Hylk124P7MaNG+Xymjdvbvgs+f7772Xb22+/PeK4sq9fs2aNYb1ff/21bHvSSSfF3H4r3+OMGTPk0OasrCzN5Th2jAnvvPNO2fbRRx81bbvSy3TbbbdZveSYUUZrTZ48WdOGPLC12HVfK72qWmH1Sg4fPizbCoKgG6FnhhUP7JYtW+RESADYc889F2Fjx1jv22+/le2sPOd/+eUX2b5nz56GtspEYXYlFWTMphBioy9hwYIFbOrUqWFrCqdOnRrxUj9IN27cyPLz8+Vz+vfvz55//nk2adIk9umnn7I77rgjbDCqdxMrBey///1vuQO4//772aeffsrGjx/PbrrpJrZ79275nL59+7KsrCw2YsQI9uSTT7KPP/6Yff755+z1119n1113HcvMzDR8oP35559s6tSpYRki33333Yhr/vPPP8POsyJgL7roItkmLS2NXX/99WzChAns008/ZbfffjvLzs6Wj59++um64bKSTa9evVjXrl0Zx3FsxIgRbNy4cWzKlCnsueeeY4WFhbJdNOE29YHq6uqwAf+ePXsibCZNmmT68FGi/H4XL16cgFbXUlVVxU466SS5vg4dOrAHH3yQffLJJ2zy5Mns6aefDnsoDho0SHNQpOwoR4wYwTIyMlh6ejq7/vrr2fjx49mkSZPYXXfdFXZPGA0evvzySyYIAgPA3G43O//889mbb77JPv/8c/bBBx+wSy+9VA5l4Xme/fzzz5rlKD9L6b7u2bMne/7559nkyZPZe++9x26++WbZftWqVWGhWb169WKvvPIKmzJlCnvjjTfYKaecIoshKSRJa+D57LPPymV8+umnht/BJ598Its+8cQThrbREo2AteN7U3buHo+HXXvttWzChAnsk08+Ybfccov82Z5zzjmmA9Xff/9dtuc4jp1xxhns1VdfZVOmTGHjx49n119/fdh3pVfO+eefb9j2Dz74IGzwHc9aJadw9dVXy9e0YsUKVlVVxV577TV24oknstzcXJaRkcE6dOjArrzyStueMT///LNc59133x1TGXYI2D59+rAuXbqwjIwMlpGRwdq2bcsuuOAC9umnn1r6bpWT10Zr5ZT31vjx403LHTx4MAPAjj/+eHkixW4ByxhjPXr0CBvvmK2B9Xq9bO3atRE23bp1k8uJRsBmZ2dHnaFUwkzAfvbZZ/Jzv6CggC1ZsiTCxq4xoXLiuV27dqbX1KFDB9n+n3/+ieXyo0I5wbBw4UJNG+XzvUePHuyYY45hWVlZLC0tjbVu3Zr95z//YePGjTN0YpiRKgLWrvv6xhtvlI9HI2ABaP5erWAmYJcvXy5nrxYEQXPS0q6xnt/vZ82aNZP7ZbPs48q1x6+99prptUrPnaysLN0J52hx5DY6wWCQ9e7dW34I6yWp2Lt3rzwbx/M8W7lyZYSNUsBKD70jR44Y1j979mzDG//gwYOyx4fned11CnZvozN58mT5eLNmzTRnm7Zu3Rrm2dBbb6n8TDweD/vuu+80r1NZVjwDovLycs2Ji1heauGfCJTio3fv3po2TzzxhGlnqUSZROCTTz6xucXhqNfmag3wfD5fWJu0HtrqdP2FhYWaa6EWL14sz242atRI05u3fft22QtdWFjIli9frtn2xYsXs9zcXAaAtW7dWnPtkDqy4/bbbzf0Sig9tDfddJOmrfpZoTXw3Lt3rzzQMhuIn3rqqXLHY0ciHSXRCNh4vzflTGteXp7mFg9r166Vt1gxGqiWlJTIyYDy8vLYvHnzNK9vw4YN8gRaZmamnAxEyeHDh+XZd0EQ2IIFC+Rj69atk8V5Tk5O3FuBrFmzxrbnl9a1WKVnz55hg2nlxLDW6+abb457sKCctPniiy9iKsMOAWv06tKlC1u2bJlhWQcOHGAdO3aUz2nevDl74IEH2EcffcQ+/vhj9thjj8n9Hc/z7KmnnjJt34cffij//pT9UiIE7K+//ho24XTcccexZ599lk2cOJG999577LbbbpOfr7m5ueyHH37QLEc5sW4U5cJY+HpZAGznzp0xtd1IwL7xxhuyd6Zt27Zs3bp1EefbOSZkjMnrlYFQZJ4e8+fPl+169epl/YJjZMGCBXJ9BQUFuveu1W10WrRoYXh9RqSKgLXrvlaO5+644w7DOpXrZQHzyWw9zJx/khMlLS2NTZs2TbMMu8Z6jDF29913yzZG0Qnl5eWys8ztdlvq06644gq5bLNntVUcKWC/+uor2faNN94wtF23bp3s0dHKcKUclGZmZrJdu3ZZuiYzNm3aJJerd0PYLWB79eolH//xxx91y1m8eHFYh6D1EFTefE8++aRuWe+//74lOzOUv5F4X4le7H748GHWokUL00HbHXfcIdu8+eabpuVGax8ru3fvZh6PhwHaSTyU+Hw+Obtlp06dIo6rO8pffvlFt6xLL73U0O6WW26RB3t///23YbukgSEANnHixIjjynvl+OOPNxSvS5YskW179OhhOKBXlqs38FSGeOklNlm3bp1sM3z4cMNrjYVoBWw835syc6eRR0oZuqg1UGUsfC/Gb7/91vAalZ6/Z555RtNm3rx5ckbItm3bsqKiIubz+djxxx8vn2vHZJF6ciOeVzwDOGmGHIA8q96yZUv2yCOPsEmTJrEPPviAjRw5MmxfR6PkGla45JJL5LL0Jp3MiEfAulwuNmDAAPbII4+wCRMmsC+++IK9/fbb7LLLLpOzWwIhD6HZwOjQoUPsggsukMcMWq8LL7zQ9PnEGGN79uyRPX7qAW8iBCxjjP3zzz9hS1vUL5fLxR566CHDcc7DDz8s219wwQW6dsokTtJLTxCaoSdgH3roIfn9o48+Wlcg2zkmZIyxt956Sy7PaJeBK6+80nK98VJdXR2WQfqll17StZ07dy7jOI6deOKJ7L777mMfffQR++KLL9j777/PrrvuOnkCWPpNzJw5M+r2pIqAZcye+3r27NmybatWrQyX1KiXIsaamFNPO33zzTcsPT2dAaHJqPnz52ueb+dYj7FQpJrUHqPoBOVSFrN6JV544QVb+2TGHCpgpTC0nJwcS1uO9OvXT7ejUA48jB5UsSB5HPTSqtspYJWf8THHHGNalhTWBGh7TqVjgiCww4cP65ajFOrxbEScKgI2EAiwYcOGyXUZiQ/lWuT333/ftOwHH3xQtn/22WftbHYYr732mlzP77//bmr/wAMP6P5OlULIbAZaKTrVaxdFUZQ3ODfbhoOx0JoOyTOo9X0r75WPPvrIsCzlgM0sNEgZMqc38FQKq3vvvVfT5p577pFtzLwcsRCNgI3ne6uqqpI7yGbNmpl685ThiVoCVvKOdO7c2fQaGWNy+JSR6FHeV6NGjWL33nuv/P9LL73UUj1mOEXAer3esLL69u0rb3uh5LvvvpPvH0A/FNEKUng9ELsHLlYBu2HDBkMxtn379jBB17VrV9Pf6KZNm9g111yj+/14PB524YUXhi0r0kIKYS8sLGRlZWW612ungGUsFIKvteZfejVu3Jjde++9ullvN23aFPbb0Ou7lN6YaPoTLdQCNhAIhH0HJ598suE4xM4xIWOhSWpp8kMv66rSy+TxeNjBgwctX28sKJcH9OrVSzO/isTu3bsNs0IfPnyYnXnmmXJ5TZo0MY08VJNKApax+O/rQCAQ5skdM2aM5rNk2rRpEUI51vGclnb68MMP5fKbN29uGLZu51hP4sQTTzT9rpRRHFrRm1oo81Y8/fTTls4xwwUHsmDBAgBAixYt8NNPP5naC4IAILShcWVlJdLT0zXt/vWvf1luQ0lJCSZOnIgff/wRK1aswMGDB3UzEu7cudNyubHyxx9/yH8PGzbM1H7YsGH4+eefAYQyFp944omadp07d0ajRo10y2nVqpX8dzzZiNu1a6eZNc1p3HbbbZg5cyaA0Abcyk2aUwXp/gFCv81p06YZ2iu/1zVr1mhm7wWAk046ybAco9/KqlWrcPjwYQBAdna2aZuAUObG4uJirFmzxtDO7L5eunSp/PfAgQMNbaWs3EYMHDgQnTt3xvr16zFhwgQ8/fTTYRkm/X6/nJ2vZcuWGD58uGmZiSSe723ZsmXw+XwAgAEDBsjPWj0GDx6s+30dOXIEy5cvBwA0a9bM8m8AgOFv4IknnsDPP/+MxYsXh2X4bt++Pd5++23TOqzw+OOP62bKTyaiKMp/u91uTJ48Gbm5uRF2//nPf3DbbbfhlVdeAQC88cYbpr8DPaT7FgAaN24cUxmx0rFjR8Pjbdq0wfTp09GjRw/s3bsXa9euxZdffolRo0Zp2j/33HN4+OGHIYoirrnmGtxwww3o3r07AGD16tV455138MEHH+Dzzz/HokWLMGvWrLCsvhJTp07FV199BQB46623kJmZGeeVmlNeXo7Ro0fj66+/RmZmJp577jlccMEFKCwsREVFBRYvXoznnnsO8+fPx4svvog///wT3377LTIyMsLKOeqoo/DQQw/hiSeeAABce+21+Oqrr3D22WcjPz8fu3btwqRJk/DHH3+goKAAVVVVKC0tBQDD7MdWqaqqwsiRIzF16lQAwJlnnokvvvgiop1K7B4TNmrUCOeccw4mT56M8vJyfPnllxG7Qnz55ZfydZ999tlo0qSJ5WuMlpdeegkffvghACA3NxdTpkyBx+PRtW/RooVheY0aNcJXX32FE088EStWrMChQ4cwbtw43Hfffba22ynYcV8LgoBx48bhjDPOQDAYxIQJE/Dnn3/i8ssvR/v27VFcXIyffvoJU6dOlXcpkDLl23FfAMALL7yA+++/H0Ao2/jMmTNx1FFH6donYqx31VVXyXpj/PjxEWOibdu2yTu6NG/eHGeccYZhnRLK+8e2nU3sUMF2emBLS0vjmt1Wz9YqZ86Nwm6VzJkzJ2I9l9HrqKOO0izHTg+scqbl3XffNS1LuW/fAw88EHFcOmYlOZNkG83MeSqi9OQ0a9ZMcy2OEqeGECvDJ6N9qcN1lZ48oyQ/alv1mmDl3oTRvrTCXZT3ilmiCmVYlpW9+KR1J0aek5dfflkuU70v4JdffikfS1Tm22g8sPF8b8rnyIMPPmjaLuVzSu2BVSZPifbldrsN6920aVNYAjuXyxWX19GpSFEMANiZZ55paKsMY2/WrFnMdUphZ4IgxFxGrB5Yqzz33HNy+ZdffrmmjfL5bhQO+vrrr8t2J5xwQsTxoqIieYmJXgiu3R7YQCDA/vWvfzEgtAb0jz/+0LQLBoNhyc30km6JosgeeOCBsFBz9atZs2Zs0aJFYYmRzPpEPZQeWGV462WXXWaagMvuMaHEjBkzDH+TSi+T1tjRaJ37jBkzLH827777rlxPZmYm++233yyfa4Yy0WS0iThTxQNr130t8eWXX8rZsLVeHo+Hvfvuu+zcc8+V37MyJtdC+ZxQ3hc9e/Zke/fuNT3fzrGeRHFxsRy+rBWdoFwrrBeBpsWsWbPk82666SbL5xlhz7SBjRw5ciSu8yVvgRZ6nlklGzZswPDhw7F3714AQJcuXXD77bfjrbfewqRJkzB16lT5Je0pFQwG42qzFaSZQACWZnslz4X6XDV2zRylOk8//TSeffZZAKG93mbPnq05864kLy9P/vvgwYOmdRw6dEjzXLuJ5x4yun/i+a0kqk2A+X0tRU64XC5Le/FZub+uuOIKeL1eAMD7778fdkz6P8dxuPrqq03LSjTxfG9lZWXy30YeEgmjzy6e34Df7zc8np+fH+YdPOqoo3D88cfHXJ9TUT43zK6vc+fOcj+wb9++sO8yGqTfeTAYlPdKdhpKL8HatWsjju/atQsvvfQSAKBbt264+eabdcu65ZZb0K1bNwCh6I1FixaFHb/nnnuwZ88e5Obm4o033rCh9eZ89dVXsrflyiuvRJ8+fTTteJ7HG2+8Id/z7777rua9w3Ecnn32Wfz999+4/vrr0aVLF2RmZiIjIwPdu3fHgw8+iJUrV+L4449HSUmJfE6zZs3ivhblntPl5eWmkVmJGhMOGTIErVu3BgD88ssvYftOK71MLVu21Ix6O/fcc3Vf1113naW2ffzxx7jhhhsAhPqx7777DieffHIUV2eM2X2R6th5X0ucf/752LhxIx555BGccMIJyMvLg8fjQdu2bXHVVVdh6dKluO6668LGc82bN4/7WpT3RWVlpSVdkYhxVW5urrzXd3l5uRxpAgCMMXz88cfy/432flWjbKsVLWYFx4UQK4XXqaeeivnz5ye1/ueeew6VlZUAgIceeghPPfUUOI7TtL322muT1q7s7Gz5byubqysHK8pz64qKigo5NDdeCgsL0bt3b1vKAoAXX3wRjzzyCIBQ6M2sWbPQo0cP0/OUAlfZ+emxbds2zXPtRrqHOI5DIBBwxCSF8r5+9NFH5fC1ZCCJqkAgAL/fbypirdxfTZo0wQUXXICJEydi5syZ2L59OwoLC7Ft2zbMmjULQGiA1L59+/gvoA5Rfm9WxIvRZ6csa/To0WGboMfLTTfdFHZ/rV+/Hg8//DBeeOEFW8pfu3atbQPA/v37Iz8/P6Zzu3Tpgs2bNwOAZuiwmtzcXLkvOHLkSNh3YBXlxMDhw4ctTWQkG2V4WnFxccTxmTNnykJu8ODBun06EHpuDho0SA5b/+OPP8LCrz/44AMAQPfu3eWwTzXKNhw5cgRPP/00ACAtLQ133323tYtS8MMPP8h/DxkyxNC2ZcuW6NatG1atWoXS0lKsWbMGxx57rKZtz5498c477+iWtWrVKnkg3alTJ0u/OTOee+45TJ48Gb///jumTp2KUaNGYcqUKbrP5USNCXmex5gxY/DMM8+AMYYJEybgscceAwBMmDBBFtajR482XToRC5MmTcKVV14Jxhi8Xi+mTZtmusQlWszui1THzvtaSbNmzfDkk0/iySef1C1v9erV8t96E0rRcMEFFyAnJwdvvvkm1q9fj4EDB2Lu3Llo2bKl7jmJGutdeeWV+OyzzwCEwojHjBkDIBSyvGnTJgChpUldu3a1XGYilqI4TsDm5uYiKysLZWVlSVlbqmb27NkAgKZNm+LJJ5/UvSFKS0vDvpBEo1zzsGHDBlN7pY3RDZAs9u/fL8/qxMuYMWNsW5s6duxYeV1Ibm4uZsyYgeOOO87SuUqR++effxraiqKIv//+G0Co45RmAhNBq1at8M8//4Axhl27dqFNmzYJqyuaNkkk+75u2bKlvPZy8+bN6NKli65tUVGR5Y7+hhtuwMSJEyGKIj766CM8/vjj+Oijj+R1ilZn4Z2M8tmxceNGU3sjm0T9BiZOnIiJEycCCHklDx48iG3btuHll1/G6aefjkGDBsVdx+TJk22bdJk7d66ltdZaHHvssZg+fToAa7PvkvcMsCZ4tWjXrh1+++03AKFBiOS1chJm0S27d++W/87JyTEtT/lZ6U3KLFy4EAsXLjQtq7i4WJ4gzc3NjUnAJqL9VlCKxWhyiBiRnZ2Nn376CWeccYYlEZvIMeEVV1yBZ555BkDIG/roo48CQNjkmnptrISZ59iIL774ApdffjlEUYTH48GXX35pKbdJtCQr6quuqKv7YvXq1XLUXYcOHUzXJFvljTfeAMdxeOONNyyJ2ESN9QYNGoTCwkJs374d8+fPx9atW9GuXTv873//k22i8b4C4QK2bdu2trQzaa4Z5cyA2Y1/6qmnAggNNq0Mmuxk3759AEIJQIxmM2bPnh2WUEOLaK7ZDGUSJsnDY4TS26mXwKmh89Zbb+HOO+8EEOpUp0+fHtVM2tFHHy0P5latWmXYuf7+++/yYPKUU05JqFd8wIAB8t92eb3jpVevXnIH8/PPP5veO3ZywgknyH/PnTvX0FYKG7NC//79cfTRRwMAPvroI/j9fnz00UcAQhNgI0aMiL6xDqNnz55yMpH58+ebhjVJieO0yM/PlxNrLFq0KExcxcqWLVtw0003AQh52idNmoRPP/0UgiBAFEWMHj06bBCX6vz73/+W/zabNFu/fr28fKRFixYxeV+B8Im6devWxVRGolEKLa3oFuXgdseOHablKb35iUzeY5Vo2799+3b573jar5wotnM5hCRiTznlFAChpFgXXnih7lKBRI0JO3bsKAvzzZs3Y8GCBfjll1/kKIeTTz7ZcMIzFqZNm4ZLLrkEwWAQLpcLU6ZMwX/+8x9b65Awuy9Snbq6r5VCzu5lQq+//jpuu+02AKFn+GmnnRYm1JUkaqwnRScAtWHDUrIzIBQCrJcoTw9lIka9iJCo22lLKRZQdp5mMx/SBwdAnhFLFlJ41ObNm3VFZzAYlNdLGhHNNZvRrl07OWx22bJlhiJ26dKlmDNnDoDQTIcT1oJJWYjteNnhfX3//fdxyy23AAgNfH/88Uf069cvqjI4jsPIkSMBhG7yN998U9dWuVYq2hs/Wi666CJZdLzwwgtx//bsQBAEXHrppQBCnYgUhpcMlELyrbfeMhRhr7/+elRlX3/99QBCneftt98uT2KMGTPG0npbp+P1enHmmWcCCE3uSWFFWkyfPt00Y7T0bK+oqMDzzz8fV9uCwSAuvfRSWQi/8cYb6NSpE/r3748HH3wQQGiN1DXXXBNXPUAoC7Fdz69Yva9AyAsmTZrNmjXLcOnCe++9J/9tNVOkFn379pX/Xrx4cczlJIrDhw+H3bfS71WJUoT/8MMPhnkhSkpKZC83ED4BBsDSd7xlyxbZvm3btvL7sYZxKts/efJkQ9tff/1Vfg41atQIHTp0iKnO//3vf1iyZAmA0KRrtP2jGZKI7d+/P4CQsNMTsYkcEyo9SePHjw8bX0TrZTLjxx9/xKhRoxAIBCAIAj777DOcc845ttYhUV1dHTZO1bovUh0772urrF27Vh7r5eXl2dK/qHnttddw++23AwhFU+qJ2ESO9a644go5AvXjjz/GF198IS9HOe+886KO6JH6juzsbHkiO27syARlJQvxrbfeKtvobcorEQwGw/Z2u+222wz3xKqoqGD/+9//2KRJkyKOKbMQW8l+NnToUNn+1VdfjTju8/nCNreGQZbBV199VbaZMGGCad1mmZqnTJkiH2/RogVbs2ZNhM22bdtYhw4dZDu9DZal41YyQkZjmwpMmDBBzr6YkZERV1a8Xbt2sYyMDAaEMp/Onj07wkaZgbFNmzaW9rGLl7vuukuuc+DAgWzPnj26tsFgkM2aNYs99dRTEceMMtRGa7tjxw45w6/X6zW9J/bt28eefPJJtmzZsohj0ewrzRgL2zfxpptuYsFgMMJGvdenleyhxcXF8vevfBnt0WcH0WQhjvd7W7BggXy8UaNGmpvBr1+/Xs7MKr209oEtKytjbdu2ZQAYx3HsxRdf1PwuJIqLi9nrr7/OZs2aFXHskUceketSZ4P1+/3yXpCII0ukE1Hu23vSSSeZ7gPL8zxbsWJFzPVVVVWxzMxMhhgymUrEkoX4999/Z++//z6rqqrStdmxY0fYvoWdOnXSzGrr8/lY69atZbsRI0ZoZi+vqKhgZ599tmzXo0cPJoqi5euUiCYLsXqPdC1WrlzJeJ6XbfT2ndy2bVvYXpZ62T5XrVrF9u/fr9umTz/9VN7/OS0tja1du9bwGsxQ7wOrpLS0NOz5PGLEiIhs8XaOCdWUlpbKv++srCw5A21GRkbUe6caMWvWLHnvWUEQ2GeffRZTORs2bGAvvfQSKykp0bVR7wPbqFEjVlRUFFU9TshCLPUVeufZfV/v27ePrV69Wrc9f/75J2vTpo1czvjx4y1fixZm2un2228Pe7Zp7cNt11hPC+VvQNm/a41zjSguLpbH3Oecc05U5xqRtDWwgwcPlr1QV199Ne644w60bdtWXhzfsWNHec83nufx1VdfoV+/fti1axdef/11fP755xg5ciR69uwpJ6bYvn07li5dip9//hnl5eV46qmn4m7nLbfcIns377zzTsybNw+nn346mjRpgg0bNuDjjz/Ghg0bMHDgQGzYsMEwbHTw4MHy3/feey8OHDiALl26wOUKfeytWrXCMcccY7ltF154IaZOnYrJkydjz5496N27N6644gr069cPgiBg6dKl+PDDD2WPxLBhw+TwOiLE9OnTcdVVV8ne9auuugrFxcWm+2f17t0bhYWFEe+3bNkSr7zyCm688UYEAgH8+9//xujRozFgwAAEAgFMnz5dDrtwuVx47733kJaWpluPcs31li1bdPdkNeO5557DP//8g59//hlz587FUUcdhfPPPx/9+vVDQUEBfD4f9u7dK3vz9+7di8GDB+Phhx+OqT4rtG7dGpMnT8bZZ5+N6upqjBkzBq+++irOPvtsdOrUCenp6Thy5AjWr1+PRYsW4bfffkMwGLQlscW7776LPn36oKKiAm+//TYWLlyIyy67DK1bt8a+ffswZcoU/Pbbb+jXrx+2b9+OXbt2WUqIkJubi1GjRoWFFJ122mno1KlT3G12Cv3798dNN92Et99+G0VFRTjppJMwZswY9O/fHzzP448//sCHH36I8vJynHPOOYb3UmZmJqZNm4YBAwagpKQE9957L959912cf/756N69O7KyslBSUoLNmzfjjz/+wLx58+Dz+fDJJ5+ElfPrr7/K3oXWrVuHeRuB0L02ceJEHHfccSgpKcEdd9yBAQMG2B4OWBdcccUVmDp1Kr7//nssWrQI3bt3xzXXXIPu3bujvLwcM2bMwBdffCE/45566ilLSen08Hq9OOOMM/DVV19h6dKlKCsrMw1HVj9HlOt1t2zZEnG8d+/eOO+888Le27dvH6699lrcddddOP3003H88cejVatWSEtLw6FDh/Dbb7/hyy+/lJMuZmdnY8qUKXL/qsTtduONN97A+eefD8YYvvnmG3Tr1g2jR4+W8xGsWbMGH3/8sRxm6Ha78d///tcwMUyyOProo3HrrbfitddeAwA8+OCD+Pbbb+V9YCsrK7Fo0SJ8+umnsheqTZs2clIiNT/++CMeeughDBkyBP3795f7ma1bt2LatGnyPpAejweTJk1K6H2TlZWF6dOn48wzz8SCBQvwzTffYOTIkfjiiy/kKJZEjgmzsrIwcuRIjB8/Piz55fnnn29pXaUV/vnnH4wYMQJVVVVy2enp6abjjq5du0YkyikrK8M999yDRx55BEOHDkWfPn3Qtm1bZGZmori4GEuWLMHkyZPle87lcuGzzz4zXAP79ddf46+//gp7TxlF8Morr0R43KTEZGrmzJkjRwBKSPk/AODDDz+Uc81I3H333TGt0bX7vt6+fTv69OmDE088EYMHD0bXrl2Rnp6OvXv3Yvbs2fjhhx/kCK577703LDIgEYwdOxYcx2Hs2LGy7pg7d25YPolEjvWuvPJKOQx9z549AEIRJdHmlZg3b57cH9kacWCHCrbigQ0EAmGzbOqX1sz/7t272eDBg3XPUb4EQWDvv/9+RBnRemAZY+yBBx4wrOuUU05h+/fvl2eHjGZYL774Yt1y1J+VFa+S3+9n11xzjennccEFFxjujynZNTQPrNrLZvWl5U1S8tJLLzG32617fnZ2tqXZYOU58c56VldXs5tvvpkJgmDpGkePHh1Rhp2ePImFCxfKe0uavbKystjy5csjyojWA8tYaH9nyQOs9erRowfbvn07a9WqFQPAjj32WEvlLl68OKwcvf3V7CSZHljGQs/vyy+/XPez43mevfjii4aeFiVr165lvXr1svQb8Hq9bPr06fK5RUVF8rOX53nD5/qnn34ql9OrVy9Dr00qUVFRwUaOHGnaJ+p56qJl2rRpcrkff/yxqX20z1etcYNyD2KzV48ePTQjNdR8+umnLCcnx7S8/Px89sMPP8TyUTHG7PfAMhbyntx1111hnli9V8+ePQ33bH3ppZdMyzjqqKPYzz//HOtHEIaV50JZWRk79dRTZbuzzz47whNrx5hQi/nz50ecP2fOnHgvW0Z5/dG8tJ7Hf//9t+XzCwsLLY17lf2J1ZcesYyx9MY6Zh5YCbvu6yVLlpiWkZ2dbbjfbDRY0U6MMXbnnXfKdh07dozwxNox1tOirKwsYk/cRx99NOrrvPDCCxkAlp6ebhg5EC1JE7CMMVZZWcmef/551q9fP9aoUaOwD9tokDVv3jx2/fXXs6OPPprl5eUxQRBYTk4O6969Oxs1ahQbN24c2717t+a5sQhYxhibPn06Gz58OMvPz2dut5u1aNGCDRo0iL3//vtyiJIVARsIBNi4cePYaaedxvLz8+WwLq3PKppB+cKFC9nVV1/NOnbsyDIzM1l6ejpr3749u+yyyyx1OlI9JGCtvcwELGOMrVixgv3f//0f69y5M8vMzGTZ2dmsR48e7L777mNbt241Pb+8vFyuz+PxsEOHDtlwxaGQo/vvv5/17duXFRQUMJfLxTIyMlj79u3ZmWeeyZ599llNkchYYgQsY6GJmE8//ZRdeOGFrH379iwrK4u5XC7WuHFjdsIJJ7Brr72WTZkyhZWVlWmeH4uAZYyxvXv3srvvvpt16dKFpaens7y8PHbCCSewl19+mZWXlzNRFOVNvE877TRLZYqiKG9C3rhxY8OQR7tItoCV+O6779jw4cNZQUEB83q9rLCwkF188cXs999/Z4xZG6hKiKLIvvnmGzZmzBjWuXNnlpOTwwRBYHl5eaxnz55s9OjRbPz48ezw4cNh540aNUqu4/777zesgzHGLr30Utn+rrvuMrVPJX766Sd28cUXs3bt2rG0tDSWnZ3Njj76aHbrrbfaGsYeCARYYWEhA8CGDh1qah/t81Vr3FBaWsq++eYbdv/997NBgwaxzp07s8aNGzOXy8Xy8vJYt27d2JgxY9i3335rGIauZt++feyFF15ggwcPZs2bN2der5d5vV7WokULNmzYMDZ27Niowy3VJELASqxatYrddddd7MQTT5Q/D+l5PnLkSDZlyhTNMGolO3bsYK+99hobMWIE69y5M8vNzWVpaWmssLCQDR8+nH344Ye2LnWx+lzQErFak07xjAm1EEUxbOlVu3btYgod18NOAVtVVcV++ukn9thjj7HTTz+dde3aVR5b5uTksI4dO7KLLrqITZw40fKEXaoLWMbsua/LysrY+PHj2ZgxY1iPHj3k8X/z5s3ZKaecwp5//nnDEN1osaqdGAsPFdYSsYzFN9bT46qrrpLr5TiObd68Oarzjxw5Io+prr322qjONYNjrMavSxBEnTJjxgw52cqtt94adUIhIn5WrFghZ8iz+h3Mnj0bQ4cOBQDcdtttcpgfQdQnxo4dizvvvBOCIGDr1q2O3E6HIAiCcA4fffQRrr76anAch5UrV9qXwAlJzEJMEIQx0rqQ7OzshK5FJfT573//K/9tde3tuHHj5L/rw96vBKHFDTfcgObNmyMYDOLFF1+s6+YQBEEQDkbZV4waNcpW8QqQgCUIxyAJ2DvvvBMFBQV13Jr6x4IFCwz3n33rrbfkZECtWrWytDffP//8IyfiGDJkiO0PaIJwCunp6Xj88ccBhLbo0dubkCAIgiAmTZqEdevWwePx2JJkVw2FEBOEAzh48CCaNm2K/Px8bNq0CdnZ2XXdpHpHx44dUVVVhX//+9/o1asXCgoK4Pf7sWnTJkydOjUsU+J3332nK2B/+ukniKKI9evX48UXX5Sz8/3666845ZRTknItBFEXiKKIPn364K+//sLNN99suPc1QRAE0TAJBoM4+uijsW7dOtx///147rnnbK+DBCxBEA2Cjh07YtOmTYY26enpeP/993HppZfq2mil37e6XnbmzJmoqKgwb6wG+fn56N+/f0znEgRBEARB1BdIwBIE0SBYtGgRvvrqKyxatAi7du3CoUOHUFFRgUaNGqFz584YMmQIbrzxRjRr1sywHEnAZmVloXPnzrjxxhtx1VVXWdo3tl27dvJ+dNEyYMAAzJs3L6ZzCYIgCIIg6guRO34TBEHUQ0466SScdNJJcZdDc34EQRAEQRB1B3lgCYIgCIIgCIIgiJSAshATBEEQBEEQBEEQKQEJWIIgCIIgCIIgCCIlIAFLEARBEARBEARBpASUxIkgCIKoV4iiiMrKSlRUVOi+qqqq4PP54PP5UF1dLf+t9X+fz4dgMAhRFMP+1XpPFEUAoWzVei8pYzXHcRAEAW63W365XC7Nv6VXWloa0tPTkZaWpvt3eno60tPTkZmZiczMTLhc1NUTBEEQ9Qfq1QiCIAjHwRhDWVkZSkpKUFJSgtLSUs2/le+VlZWhsrISlZWVdd18R5Geno6srCxkZWUhOztb/lv5ysnJQV5eXtgrPT1dc99jgiAIgqhLKAsxQRAEkRQYYzhy5AgOHz6MoqKisH+Li4sj/u/3++OqTxAEpKenIyMjI+KVnp6OWeN/AccAiJziBXBa/2cAUPMvA8Ck9xR/M4TKU5hKfyPsb1b7HofQSXzoX1bzr/I98ADja94TAPAMZ1w3EFVVVaisrERVVZXu3/Hg8XiQm5uLvLw8+d+8vDw0btwY+fn5aNKkCfLz85Gfn4+srCwSuwRBEERSIAFLEARBxI0oiigqKsL+/ftx4MABHDhwIOzvAwcO4ODBg/D5fFGVm56ejpycHOTk5CA7Oxs5OTn4ZdJicAEOCPCKf3kgwIELckCQA4J8SHyi4YoqxjFAYIBLBHMxQKj518XAXCIgMIy4/XTZo11cXCy/qquro6rL4/HIYlYpbPPz89G8eXM0bdoU+fn5EAQhQVdLEARBNBRIwBIEQRCmiKKIQ4cOYc+ePdi9ezf27Nkjv/bt24cDBw4gGAxaKisnJweNGjVC48aNsWzmanB+HvAJNf/y4Px87d+s4QrQuoTxDHCLYDUv6W+4RAy99lQcPHgQhw4dwqFDh1BSUmKpTEEQUFBQgObNm6NZs2YR/zZr1gwejyfBV0YQBEGkOiRgCYIgCACAz+fD7t27sWPHDuzcuTNMqO7bt8/Ue8rzPJo0aYKCggIUFBTg18+WhERotQCu5l8SpfUPWex6gmAeEcwr4sKH/oODBw/iwIED2Lt3r6UJDo7j0KxZM7Rq1Up+tW7dGq1bt0bLli3h9XqTdEUEQRCEkyEBSxAE0YAQRREHDhzAjh07sGPHDmzfvh07d+7Ejh07sHfvXjmLrhaCIKBp06Zo0aIF/vlxNbgqIfSqFmrFaQMO2SX0YWCARwRLC4J5g2BeEcNvHYR9+/Zh79692Ldvn+ma3YKCArRu3RqtWrVCmzZt0K5dO7Rt2xbNmzeXMzsTBEEQ9R8SsARBEPUQURSxZ88ebNmyRX5t3boVO3bsMFzfmJGRgcLCQrRu3RpzP1oYEqc1QhXVJFCJxMDAADcDSwuApQdxydPnYNeuXdi1axd27tyJsrIy3XM9Hg/atm0b9mrXrh1at25NWwgRBEHUQ0jAEgRBpDCMMezfvz9CqG7dulXXo+VyudCyZUu0adMGi6b8Da5SAFfpAlcpAH4SqUQcKDMRRzO8UGcwVpzLUJN4Kj0AlhbEZc+dh+3bt2Pbtm3YsWOHbmi7IAho1aoVOnTogKOOOgodO3ZEx44d0bRpU8qYTBAEkcKQgCUIgkgRAoEAtm/fjg0bNoS99LxTkmdq0287wJW7wFW4wFcKQJVAIpVIPEYiUW/oYSYsVecxMCAtCDEjCJYRwNAb+mPbtm3YunWr7n7A2dnZ6NChg/zq2LEj2rdvT2tsCYIgUgQSsARBEA6kuroamzZtwoYNG7B+/Xps2LABmzdv1vQ2CYKANm3aYPvSvbJQ5SpcodBfesITdU203k7GYjtHUZ+85jYjADEjgMHX98PGjRuxbds2zWRSPM+jTZs26NKlC7p27YouXbqgU6dOSEtLi64dBEEQRMIhAUsQBFHHBINBbN26FWvWrMGaNWuwevVqbN26VXOgnZ6ejk6dOmHVTxtDYrXcHRKrepl96RFPOIk6Dt1lXE0ocmYA5z18OjZt2oSNGzfiyJEjEbaCIKBdu3bo0qULunXrhi5duuCoo46irX4IgiDqGBKwBEEQSebAgQNYvXq1LFjXrl2rGe6Yl5eHTp064a+pq8GV1YhVq+G/9GgnnIyD1qBK3lox04/RL5+HtWvXYu3atTh8+HCErdvtRocOHdC1a1ccc8wx6NGjB5o3b05ragmCIJIICViCIIgEEggEsGnTJixbtgwrVqzA6tWrceDAgQi79PR0dO3aFcu/Ww+u1A2+zB37tjT0WCdSBYcKP1nUZvlx8bNnYe3atVi3bh1KSkoibJs0aYIePXrIr06dOpGXliAIIoGQgCUIgrCRqqoqrF69GitWrMCyZcuwatWqCO8qz/No3749tvy2G3yZG1xpTRhwvImV6HFOpCoOFbJKGBjgDULM9uPch4dh5cqVWL9+fUSov8fjQZcuXWRB27NnT+Tk5NRRqwmCIOofJGAJgiDioLS0FMuWLcPy5cuxfPlyrFu3LmJAm5mZiR49emDplFXgSz2hcGCRt7ch9CgnnEYsW+qkgJBVwngGluXHVf8diZUrV2LlypUR62k5jkPHjh1x3HHH4bjjjiNBSxAEESckYAmCIKKgqqoKK1aswF9//YU///wT69evhyiKYTb5+fk4vKYMfIkbXInHHu+qHvQIJ5yOnig1+u2mmJCVYGBgaUGwbD/+fdepWLZsGbZv3x5moxa0xx13HLKzs+uoxQRBEKkHCViCIAgDAoEA1qxZIwvWVatWwe/3h9m0bt0au5ceAl/iAV/iBqqTtM8qPb6JVMKKKFVth1MfYO4gxFwfht97Gv7++29dQXvCCSfgxBNPRI8ePWhPWoIgCANIwBIEQajYsWMH/vjjDyxevBjLli2LWMNaUFCAQ6tKwRd7wR/xgPMJyW8kPbqJVKWeCNNYMRO0Xq8Xxx13HPr06YMTTzwRbdu2pSzHBEEQCkjAEgTR4KmqqsLff/+NxYsXY/Hixdi1a1fY8dzcXJRuqgJ/xAuu2GN9K5tEYPbIjmXdIUHUBSTKANQI2jwfhtzaD0uWLMGhQ4fCjhcUFKBPnz7o06cPjj/+eOTl5dVNQwmCIBwCCViCIBocjDHs2LEDixYtkr2sPp9PPu5yuXDMMcdg+dQN4Iu94MoTuIY1GrQe11oigB7rRCpBQlaGgYFlBHDt+6OwZMmSiGcTx3Ho3r07TjnlFJx88slo3749eWcJgmhwkIAlCKJBEAgEsHLlSixYsAC//fYbdu/eHXa8adOmOLi8FHxRTVhw0OYswfHCWPRrCAkilSAhFgHjGVi2D+c/fTr++OMPbN68Oex48+bNcfLJJ+Pkk0/GcccdR/vPEgTRICABSxBEvaWyshJLlizBggULsHDhQpSUlMjHXC4XevbsiX++XA++yAuusg7Dgu2AHuVEfYBErCHME8Qtk0fjt99+w19//RXmnU1PT0efPn1kQUuhxgRB1FdIwBIEUa8oKirCb7/9hl9//RVLly4NG+Dl5OSgbKMP/KE08MUe+/dirUvoUU7UF+q7iOVqnjtMNLYzsWW8CDHPh3/f+y/8/vvvYWtneZ5Hz549ceqpp2LAgAHIz8+3o+UEQRCOgAQsQRApz6FDhzB//nzMnTsXy5cvh/Kx1qJFC+z/8wj4Q2ngStyp7WXVgx7jRH2kPgtZTmPyTEvQWrRjYGBZQVw69j/4/fffsX79+rDjPXr0wIABAzBgwAA0b9481lYTBEE4AhKwBEGkJEVFRfjll18wZ84c/PPPP2GitUuXLtg4cxf4w15wFQ5JwJQo6BFO1Gfqq4jVEqZKlCI1BlvmDeDaj0Zi3rx5WLVqVZh5165dceqpp+K0005D69ato2k1QRCEIyABSxBEylBcXIxffvkFc+fOxd9//w1RrB24de/eHet+2AHhYFrd7MuabOjRTTQk6qOQNROmEky0bqt1uieIGz+5CPPnz8fy5cvDnptdu3bFkCFDMGjQIAozJggiZSABSxCEo6msrMSCBQswc+ZM/PnnnwgGg/Kxrl27YsP0XRAOecFVu8JPVA74rK41s2LnBOixTTQkUlG8WlnnGocojRXmDuKWyZdh/vz5+Pvvv+XnKcdx6N27N4YMGYIBAwYgKysr6W0jCIKwCglYgiAcRzAYxN9//40ZM2bgl19+QWVlpXysc+fO2DRrD4QDJqJVIpoBZCoIWHpkEw2NVBSwgLXnSx2IWAnmCuKmzy7G7NmzsXLlSvl9j8eDk046CUOGDEG/fv3g9XrrrI0EQRBakIAlCMIxbN68GTNmzMDs2bNx4MAB+f1WrVph78IS8AfTwVe5Yl8fZmRP4pUgnEeqilcJK8+bOhSxEswbwJh3RmDWrFnYunWr/H5mZiYGDhyIM888E0cffTS4VP8+CIKoF5CAJQiiTikuLsbMmTMxY8YMbNiwQX4/Ozsb5RuCEPZngCuLMXuwNEiMVuQ6DXpMEw2R+iKWrDx/HCBigZpsxhkBXPDCkIiJxMLCQgwfPhzDhg1DkyZN6rCVBEE0dEjAEgSRdERRxF9//YXvvvsOCxYsQCAQAAC4XC6I+1zgD6SDL0oDx5IwgCXxShDOpaGIWAfCwMByfBh01wmYN28eqqurAQCCIKBv374YPnw4+vXrB5fLZVISQRCEvZCAJQgiaRw8eBDTp0/HDz/8gN27d8vvd+nSBZum7wV/MB1cIIkDPavrY+tK5NLjmSCcL2KtJGxS2qUgTBBx+1ej8cMPP4Rty9OoUSMMHToUZ511Ftq2bVuHLSQIoiFBApYgiIQSDAbxxx9/4LvvvsPChQvlrJeZmZmo3MQg7MsEX+6um8Y5eX0sPZoJopZUEbESes+MFBaxEmK6Hxe8OAQzZszA4cOH5fd79eqFc889F/379yevLEEQCYUELEEQCaG4uBjff/89pk2bhv3798vv9+jRA2un7gR/KA2cWIeDOSevj6XHMkFo42QhmyIJm+yCcQxPzLsV33//PRYuXCjvL9ukSROcddZZOOuss1BQUFDHrSQIoj5CApYgCFtZt24dvv76a/z888/w+XwAgJycHJSvDYLflwG+so68rbFA4pUgnEcqilgJByVsshPmCWDU66fj+++/R1FREYDQWtlTTjkF5557Lnr37k0ZjAmCsA0SsARBxE0gEMD8+fPx9ddfY8WKFfL7Xbt2xcbvata2aiRk4ngOTHToI4jEK0E4E6cLoSQLVKvPUTvt9GwYx/DAT9dh2rRpWLZsmfx+YWEhzj//fJxxxhlIT083bQNBEIQRJGAJgoiZoqIifPvtt/jmm29w8OBBAKFZd7bPA2F3pub2Nxxf+3+jQZJkF69NTFhJ7mS3wKVHMUFYw+kCFqgTESth5ZlpZGdXWWKGH8MfPwUzZ85ERUUFgFA0zogRI3DuueciPz9ft2yCIAgjSMASBBE1O3bswJQpU/DTTz/JYcKNGzfGkeV+uPZlgvMLEQMa5WBHwszGygDLyC5mzJI7kXgliLohFcQrUCdhwrE8Y7Vs7CyL4zkwXsQNEy/EF198IWefd7lcGDx4MC688EJ06tRJ42oIgiD0IQFLEIRlVq9ejUmTJuGXX36B9Ojo1q0bNn67F/zh2jBh5SBGa5AjIdnp2VgpJ2HiNVkZiekRTBDWSBXxKlGHXlg1dj2To7VR2jEwPDL7Jnz++edYvny5fLx3794YNWoU+vbtC56vf+uDCYKwHxKwBEEYIooiFi9ejM8++yxsTRNflAbX7ixwpZ6IMGErMJHFPUhS2tmCWYIVEq8EUXekmoAFHCVio8Hs+WzVRg8x04dT7+iJuXPnylurtW3bFpdddhkGDx5M2/AQBGEICViCIDQJBAKYNWsWJk+ejC1btgAIhX2x3R4Ie7Ick0046Umg7BKx9OgliOhwooDlePNngo0i1mqCpVSBeQI498WB+O6771BeXg4AaN68OS655BL8+9//htfrreMWEgThREjAEgQRht/vx4wZM/DJJ59gz549AICMjAxUb+Th2pMFzi/UcQtrSXqCp0SLV2mATo9lgtDGqSJWQu8ZYZOIjTYJU6rABBFj3j8Ln3/+OYqLiwGE8iqMGjUKI0aMQEZGRt02kCAIR0ECliAIAIDP58P06dPx6aefYt++fQCARo0aofSfIIT9meCCzlubFGsSqBgrs6kcVZvUA3J6JBOEMU4XsRJmyeBiriq2BEupgJTwadKkSdi/fz8AIDs7GxdeeCEuuOACZGZm1nELCYJwAiRgCaKBU11djR9++AETJ07EgQMHAIRmvkv+CkLYnwFOdJ5wBcyTkjhevGoNwulxTBDWcZqQtZL4LYEiNlSVtWRNTodxDHdMHY2JEydix44dAEJb8Fx00UU477zzyCNLEA0cErAE0UAJBAL48ccfMWHCBFm45ufno3iJP+RxZak7+AEcKmAN66BHMUFETaqIWNurcdh1JwgGhvunX4v//e9/2L59OwAgNzcXl1xyCc4991ykpaXVcQsJgqgLSMASRANDFEXMmTMHH374IXbt2gUAaNq0KQ4vrtYWrtKAzEjEmdlYKcNmbBOwSWwziViCiAEnidgkZh22TcRaTUQVr00cZTAw3PP9Vfjf//4n91uNGzfGJZdcghEjRlCyJ4JoYJCAJYgGAmMMv//+Oz744ANs2rQJAJCXl4eyfwBhX4a+cAW0Bx3qgVqsNko7G8WiUYITy+KWxCtBpAYkYuMppPZvK0mokmWjI2Tv/GYMxo8fLycZbN68Oa6++moMHTqU9pEliAYCCViCaACsWLECb7/9NlatWgUAyMrKQtUaAcLeLHBBlbFZMpJ41nkZJTVJoHiNKbkTiVeCSC0aoIi11QurJJYJyVgTWZnZaAlZnsMtn18UtgSmY8eOuOGGG9CnTx9wTvotEARhOyRgCaIes2vXLrzzzjuYP38+AMDr9SKwxQPX7mxwwZrtcKTBgdGAy6qNlTL0yrFJMNqW3ClZApYewQRhH04SLqkkYu2amDSzsbkexou44oP/YOLEiSgrKwMA9O7dGzfeeCO6dOmiXQ5BECkPCViCqIeUlpZiwoQJ+PrrrxEIBMDzPLi96XDtzK27fVyNBK7N3lcrGTpNCrGtPcb10OOXIGyHRGyshegfs2MS04pNjGUwVxAjXuiPqVOnwu/3AwCGDh2K66+/Hk2bNjUujyCIlIMELEHUI/x+P6ZNm4YJEyagpKQEAMAXp8G1PRd8pSfyBJ4D7MzWGw/xJImKqhqT6403CYnlhjjkcyeI+ohTRGx9EbB2Yke/o1OG6Alg4P3HYubMmWCMIS0tDZdeeikuuugiSvREEPUIErAEUU9YsmQJXn/9dXmrgfbt22Pn9FIIR9IjjaXBjtEgwsxGOWAysonH62nzGtmY177anWSKHrsEkTicIl4lSMSGY7XvMDpuYvPm8kfx5ptvYvny5QBCiZ5uvPFGnHbaabQ+liDqASRgCSLF2bdvH/773//K61xDmYV5CAcywWnpLbPBg3oQpLYxO26lDjWxJPqIgagFrNUsylE3hB67BJEQnCpOkiAMU0bAAknpZxgP3P/9VRg3bhz2798PADj22GNx2223oVOnTrG0miAIh0ACliBSFJ/Ph8mTJ+OTTz5BdXU1BEEAdmXAtTsXXLBmEKLs1LUGN9Ecj6WMaL2vCVwjG5V4TWCSKRKvBJFAnCpgARKxShLR3+gcZ7yIS/47FJ999hmqq6vB8zzOP/98XH311cjIyIih8QRB1DUkYAkiBfnjjz8wduxYeUN3rtQL97ZG4etcpY7caEAjMvPj8ZRhVTRaSdoRB5aTNyWo/tpy6HFLEAnDyeIVSJ1Q4roSsBIJ6ruYJ4CTb++CuXPnAgDy8/Nx6623YsCAARRWTBApBglYgkghioqK8Oabb2L27NkAgCZNmqDkD4A/nAEODu2AHSAe4xawdrSDHrUEkVhSQYSQF7YWu/awjZKn598aNgHct29f3H777WjVqlWdtIcgiOghAUsQKQBjDD/99BPeeustlJSUhLbF2Z0J165ccGLkQIPjOBjd2vEet0w8CTok9ISjxYzAjhevHEfiliDiJRXEq0QqiFgrbTRL0mfleJzE2pcxjuHi/w7GxIkT4ff74fF4MGbMGFx88cVwuVxxt4sgiMRCApYgHM7OnTvxyiuv4M8//wQAcBVueLY2AVceuS2OMgxK69Y2Oy7ZmA0IjM4PI5bEHEpsyEzsiPBhrc9K+i7oEUwQ8ZNKAhZIuIhNihc2moSAVhIGxkC8fR5LC+CYK1ti6dKlAIBOnTrh/vvvpyRPBOFwSMAShEMJBoP4/PPP8eGHH8Ln88Hj8UDcnAHXvhxwLFxkaq3fUd/aahuj47GK3zDMkm2obbSIMyOwI72vyu+BHr8EET+pJl6B+uGFjSURk5VETVEQTb+mZcNxHBgY7p42Gm+88QZKSkogCAIuu+wyXH755fB4NPZPJwiiziEBSxAOZOfOnXjuueewYsUKAABfkgb3tsbgq90AIjtgLSSbWI5HK441MUvEYVW8xpGZuM69r8rPSf050qOXIOwhFQUsUP+8sBLRTF7aLGAlrPZ/ShvmCqLvbR3kLenat2+P++67D927d4+rjQRB2A8JWIJwEKIoYurUqXj33XdRVVWF9PR0BNakQziYFZakiTFmmDXR7LiZTTSdf8zEIy5TQbwCIZGq9z3Qo5cg4idVxauE00VsLAJWwkqm4AQJWIlY+soHfrwaY8eORVFREXiexyWXXIIrr7wSbrc7rrYSBGEfJGAJwiHs3bsXzz//PP766y8AAF/ihXtrPnif8xJKJDzBUzzJneTDOmt8eS66PWETBT16CSJ+nC5gzZLNxSlgzZ5npgI23vbVUSZhJYnYAoe5guh/d1c543/nzp3x8MMPo127drbXRRBE9JCAJQgHMHPmTLz66quoqKiA1+uFuD4DwoHsyK1x+JrBhKgz4LDjuN4xBXGvkTVK6JEg8SoN5Ei8EkQ9IxVELGCcUT2u4o2fbZZEbKgA/WNG2ORFNUosaOW4LnH0iw/8eDVefvlllJSUwOPx4MYbb8R5551H+8YSRB1DApYg6pCKigqMHTsWM2bMAADwZV64txWArxQijXnFQEKrI7breAwC1iyRRgRGiTxsFrDqwVudC1h65BKE/ThdUBhlT7dJwNYWzwyPaxSgPNn4uBY2hgHHMjlqWcACMfWNzCvimKuaY8mSJQBC+8bed999yM/PN66XIIiEQQKWIOqItWvX4oknnsCuXbvA8zz4XTlw7ckLeV2VnSivMXhI5PEoBGxMa2SNEnzUd/EKkIAliEThZBGrJQKNsqxHXbyNIjZUgP4xLeIQsfEmEoxKwEpE2UcyMFw/YQTGjRsHn8+H3NxcPPTQQzjppJOM6yYIIiGQgCWIJCOKIqZMmYL3338fgUAATZs2RfECAUJ5mtIo9K9Wx5rI4xbFq1lSDEOMEnfYJGD1BmumApbEK0GkLk4WsIB5RvU4RKzZMy9qAVtbgPFxiTrIJmw2kVrbNvv6yXdXPoGnnnoKGzZsAABceumluPrqq+FyOS9XBUHUZ0jAEkQSKSkpwdNPP41FixYBAPiiDHi254MLqkKGRVG/U40Xo7ItCFgz4nqkJFBg1rn3lR61BJF4nCxi6zDjsNHEnqKA2CtPYDbhuLPux9OXavSXjBNxxhO9MG3aNADAsccei0cffRRNmzaNvR6CIKKCBCxBJIn169fj4Ycfxt69e+HxeMA2ZkM4qErUJHXCibotOc687FgTQNUQ8yMlwQKzTgUsPWYJInk0UBGb8C1zzDCon+M4w77BkhfVqO+xcjxWdPrN+74dgxdffBEVFRXIzc3Fww8/jL59+8ZeD0EQliEBSxBJ4IcffsDYsWPh8/nAVbvg2dwUfKW31oDjajtgrVvSynEJvVvaSBwrO2j1IMAsAYZkI4qGCTYsPWrq0gNL3leCSH2cLF6BBitggQRnEzabYBVqopxi6R8NjotePwrPSZdDiq+66iqMHj0afKIiqAiCAEACliASSnV1NV5//XV8//33AAD+SAY8WxUhw5IwBbTFqZXjQHziVtkxG4lXqQ1qFO0zSqxRlwKWwocJooHQgAVsqPg4rj9JAhaom2zCsogNNUCrgTEdV4cU/+tf/8JDDz2EjIyMyDIIgrAFErAEkSAOHjyIhx56CGvWrAHHcRB25cG1NzcUMqwUphJKAWrlOBDZYStvZ63BgNFxpYC1skZWo31WEm4YYiQ0UzV8GCABSxDJggRsvAXEfm4UAlYiqdmEBY3t6eLpM1XHb/t8FF555RX4/X60a9cOzzzzDNq0aRN5DkEQcUMxDgSRANatW4frr78ea9asQU5ODtwbmsG9Nw8cx4c6UT1xynHmxyVxqyVepeNGHa3WcemYulx1G/RsasQrx3GJEa8EQRCEszF5hut5XS0vM9HzupqFFkvHg8HI48r+UM/ravH46xdOwZtvvon8/Hxs3boV119/PRYuXGh8TQRBxAR5YAnCZubNm4dnnnkG1dXV4Krc8GxpAd7nib/gRGYPtiQwY6/f8etf4yzfvGx6zBJEUiAPbLwFxHd+DF5YCdNswkD82fkT/fvgeTBXAB1HZWHlypXgOA7/93//h5EjR5pfG0EQliEBSxA2wRjDhAkT8NFHHwEA+JIMeLY1AydqhC2pMMvQaIk4swfHJbJIwJqUTY9Zgkg4qSAQSMCanG+STVgQjJ+nZpn2BSGubMacIIBpeXJVNiJEDH2oO7777jsAwHnnnYebb76Z9oslCJsgAUsQNuD3+/Hiiy9ixowZAADhQC7cu/PB1wwGzLIuGh0323qAaSVfAqxlD1ZiluDJCBKwBuXSI5YgkoLTBWyCxWuoinogYCW0kgrGm3EfqF0LG+OkL1dzvp6QlY6LTMSV7wzDuHHjAAD9+vXDY489RsmdCMIGSMASRJxUVFTgkUcewZIlSyAIAvitjeEuyguzUd9mZhl6o8nWGCFgzRJZKLGSvdhqeLEBDVbA0uOVIJIHCdjUF7BAdCIW0M/Or3dcncwpyuz7nOp8tZBVH79/2uV4+umn4fP50KlTJ7zwwgvIz88HQRCxQ0mcCCIODh8+jFtvvRVLlixBWloaXBubGYpXrSRHZseVmB23vD7IKFmTXhIoPeJdf1tfIfFKEMnD6eKVAGBxMlOJUV8lYfbdW/H6GtWhOq4lWJWiVX38+XM+weuvv468vDxs2LABN9xwA7Zv327cJoIgDCEPLEHEyI4dO3DPPfdg9+7dQECAd0tLCJVpEXZmiSmMjpttMSB7X806eJPtb+QMxtqNsF62DinhgY2zjtoy6JFKEEknFQQseWBDVcSbqMnofKO+TDoOaG+pA5hvJVdjo/ayhlURDGoeF91+ND1dxPbt25Gbm4uXX34ZXbp00a+HIAhdyANLEDGwceNG/N///R92794NrtqNtI2tI8UrzwG8iccUxp255HFNitc1QTSoObKGdK0EQRBq6no7NK091NXHzfpTsz7V5DgnCJpCnve7cWC6gC5duuDIkSO47bbb8M8//xjXRRCEJiRgCSJK1qxZg1tvvRXFxcXgKr1I29Q6cpscqfPS68x5ab9XnY60Rvzasp4IiH/rgRQnbq8EQRDOJRW8r0mAnnM1WIhKMp1YFnhwglFYsUn/LDLN41zQhe1f+dGrVy9UVFTg7rvvxm+//WbYFoIgImnYo1qCiJIVK1bgjjvuQFlZGfiKNKRtagUuoEiLLwlTvTAs5XEmagtcK4MQk87T1GtLJAb6zAmC0CIJ4cOEChNvqpV+Uk/EsqAUamwiZDWOc6KAtR+X4JRTToHP58PDDz+Mn3/+2bAdBEGEQ09UgrDIX3/9hbvvvhsVFRXgy9Ph3dyqdo9XM+Eq2ZgdV3eEaoFrp1cWoARMBEGkNjRp1PCIJRGUAZrJFYO1faOpNxYwn3hW9d0c4/HXuH04/fTTEQwG8dRTT5GIJYgoIAFLEBZYsmQJ7r33XlRWVoIvy4R3aytwIm9duJp5Za16XQ0grytBEARBaGBhbWvCw4pVNhw4/PLqVpx55pkQRRFPP/005syZY3w+QRAASMAShCnLli3Dgw8+CJ/PB740E97trcAx3tijKmWzNRKuHN8gwoWd3LYIKMyPIAgidpy+DtemsGJLQtYooZVCxM59aRP+/e9/y57YuXPnGtZPEAQJWIIwZPXq1bjvvvtQXV0dEq87WoPjBOvrXGOF480FroVsjyklHp2AHdvo0GdOEIQSmhhLOmZ9n1l2fI4zWfIDmB+XxgKGx3lw4DDv5c0444wzEAwG8eSTT2LevHnGZRNEA4eeqgShw8aNG2vXvJZlwLurNTheMEnBb5KiX7IB9MWS1cGOE2a6k7mGNo5BoOV9YAmCSC1o6yoANmUgrmdC23y/WQshv0afCRNrJ5uNMBKxQEjECgLmv7IlTMQuXbrU+DyCaMDUr6cVQdjE9u3bceedd9ZkG06Hd1chONR0QoxpJ1cSeHNxa9RZWukInYIopkwCKBKvBFHPIRFL6GBpiU08fbN0rln/LQjaQjYsWZSA+a9tw8CBAxEIBPDQQw9h9erVxm0niAZKioyWCSJ5HDp0CHfffXfNPq9p8O4sDK151cKKcJXs9Egl4QokTrgmwKMctXi163ugMGKCSC5OFbGp9Gyvx1gWsoaFWBSyRqiFrCoSiwOHRe/swQknnIDKykrcd9992Lp1q3GZBNEAoScrQSioqKjAfffdh71794LzeZC2s7B2qxw1VsOFzcRrXWKSlTGCFPK6kueVIBoYThWxhIwteRniKCPhYcVWvLGAYVgxx3ismliGbt264ciRI7jrrruwb98+4/IIooFBApYgaggEAnjsscewfv16ICDAu6MQXNAVachZ8LpyFjY3r2vxGg1OCRm28JmRcCWIBkwDFLG0/jU6HOuNVRbPeGz9NojCwkIcOHAA9957L8rLy43LI4gGRMN5YhGEAYwxvPLKK1i8eDEgcvDuLATv94Qbcbx5dmErM6+ciefW6gyw1W144sGmwaClWff6JDwb4CCaIAgVDUgUAnBGYkGrWNkpwFJfbNaXC6GXWVs0hCwXdGH/HC+aNGmCLVu24IknnkAwGDQuiyAaCA3s6UoQ2kyaNAk//PADeJ6HZ3drCFXp4QZmYlEtXLU6RjPhCsQ362snjIWLsGhDjeuQuLwRdmyjQ+KVIOoOWn+e2iS7r7HSp1oRsaZ9u0Uhqz4t4Mazzz4Lj8eDRYsW4e233zYugyAaCKkzKiWIBLF48WK8++67AABhTzO4yrJrD0pe13jWsVoVrvGsu7GTuhJgdTl7z0QSrwRB2EeSnte2hA8T9nljrQhZIzS8sXcMeB0PPfQQAOCLL77AN998Y1wGQTQASMASDZodO3bgiSeeAGMMwpFGcBU3Dh2wKlytiFcjogkXjhHLSTPUXlenYvfA0C7hmgqfHUHUZ8j7GhvJEttJ+n44s31XdU+06I2NJ6wYiCms+IVLvsQ111wDAHjttdfwzz//GJ9PEPUcjjEadRENk/Lyctxwww3Ytm0b+MoMeHe1Bxes6XiMOiirazWtCCOj289KPUy0ZGd4m4uiNfFlQxIn08eN1Wu2UpeNZRmXQY9QgnAEThGwSVz76pgEThbaYUnAWgkhNinHkoA1s2GiuY2V6zH7bMUg4NJIFqkkGAQEAQwM/W9qgVmzZqFx48b44IMPkJ+fb94GgqiHkAeWaJAwxvDss89i27Zt4AIuePcUgocAzuMGJ+jfFhzHGR4HEN+m6OpybMBUvAJJGfglc66MMhETRAPDKeKVSCzJ+p45C/u7W+jLzccLAjgT0c653eBcLnDg8Ou43TjqqKNw+PBhPP744wgEAsblE0Q9hQQs0SD5+uuvsWDBArjdbnh2twUvempnWzU6LY7jQp2MScZBTuCNZ5mjnelO5PqmaD2qMSbXYIxZE6/J8pjaDQ2cCaJuacD3YL3a89pJyQIl4WllxwALItZMyHI8ry9ka97nXC5wjMdTTz2FjIwMLF++HO+9955huQRRX3HQ04IgksP69evlTH7c7gK4gjnGm4pbTMJkKlwTEVYW61Y6SdrT1bLX1WwAFmWSJcthdQ1tmwuCIBJLHT1TYhaxTgofThbRrpG1svWdHd5YwNwb63LhupNfxgMPPAAAmDx5Mn755RfTcgmivkFrYIkGRUVFBa655hrs3LkTQnkuvPvbg4OqYxJFMFE0Fq6MgQVFXeHKGAutWwH0OzVmde2pBXFnYiPf5kbC1eZ1sHXtdbU8oLPLq0uPUoJIPk4SRkCdT4pFvSbWSQLWKetfgVoPrBrlc15r7arIwvoUTmd9KwuKNcf128JEyUa7jP/c3xlTpkxBdnY2xo8fj4KCAt2yCKK+Qe4HokExduxY7Ny5E1zADe/BwkjxWkO8XleO46xtlJ5MzMSnTQNBp4QMkxeWIIik4oBnScqGE9sgXpNCFN5YPeEJ2OON/e75dejSpQtKS0vx3HPPQUxSZBVBOIG6f9oSRJKYO3cuZsyYAZ7n4d3fDpyo0bnIwtOogwqthY07JMpKkgggefujJtODmIT1rkn3wDphcEUQDQm65+qeVAsftoIFcWmYOVheG2vmLeZNvcEcz+uKew4cHn74YXi9XixduhRff/21abMJor5AApZoEBQXF2Ps2LEAAOFwAYTqrEgjS15Xm2+ZeGfsJfFlMIiQvaHxtj3Zs7txfDZJF68EQSQXJ4qiKNfqJ4KoQ4jr0TPQtvBhK3XVTGIbinMp8aPZb9VKm3T67xv6v4qbbroJAPDOO+9g69at5mURRD2ABCzRIHjttddQXFwMzpcOd3GL8IMcV9vR6GEwC1pnWBh42LLEXRSjEq91PdtO4pUgiDol1Z4tCWxvsta+1iWmItZsfAGERKyZkNUZh7x75y/o27cvfD4fnnnmGdpah2gQOGxEThD2M2/ePMyZMwdggPdwO3DKn73W7KgURiyh1bla6JA4zmQ/2FixMMtveR2qEq3rSZTXNUHrU+tcvDp4kEUQ9YZUuM/qQMRG7X1VEkt7k7W8JQVQe2Mj1q9qeWO1wpDVIlbLRlU2Bw7Lv65EVlYW1q1bR6HERIOABCxRryktLZVDh90lLSD4M0MHnOR1jWYdrNEgo8bGULhGcz0plBAiqr0QU807QhBELakgXiVS7VnjgBBoTSx85wnPPmyxHFnE6k18J8gby4se3HjjjQCADz/8EPv27TM+nyBSHBKwRL3mgw8+QFFRETh/GtwlNaHDVtakWCGZIcWq1Px6NqZeV6uiNBnitS5m7504OCMIgkg1GrD31Sws2jRs2oqIBaJeG/vWrXNw7LHHorKyEmPHjrVnCRFBOBQSsES9ZcOGDfjmm28AAN6iQnBczaym26U/y8pzoWMuQV+gSgJYHWqsYVPX60GjwqbOznKnmYRMxARB1CNS6XkKOGJbHcfjtNwSdmE2Ue5xh8YaRh5ftys0FjHYKzY0ngmNbThwuPvuu+FyufD7779j/vz5sbefIBxOPX1yEA0dxhjGjh0LURQhlDeG4Ms17ygtpL23NIBS2nCc+X5vVrbTkfaWM7GxNPOrhVp0xjioqCvx6pg9X2nGmyASA4lXk+ps+nystDuKuuL2AtqVBMpKm63szWq0fY6E0saSp9XCZLmOiGU8J78gCLhx4Bu49NJLAQBvv/02qqurzesniBSEBCxRL5kxYwZWrlwJiDw8pYXGHZzkdTXqaKyEHdsVmpxMGLNFdFlOGiUyc/Hq1HVYRtj0ORIEQdQ3dPsGm7yvliKd6tIbbmkrHRNvrCRiDbyxkoj94vlVKCgowN69e/Hll1/G2GiCcDYkYIl6R1VVFd577z0AgLusFXjRq29s5HUVLCRckMKITWwc6YU1E1wWBxdOCRmuMy8sCVeCSCypNjFI3tcIbMuMH9EeB3tfIwqoaYdRSLDUDrdGOSbeWKBGxHIuXH/99QCATz75BEVFRWatJoiUgwQsUe/4+uuvcfDgQXABD9xlzTVtmKtmLayZOG3AiSpshda7EgQRC04Tr2Yij9a9GiKL2IbifVVjMaSYaQlYZRkuASwjTdfklZtnoWvXrqioqMBHH30UQ0MJwtk46K4miPgpLS3FxIkTAQDu0tbhe77WwPjQFjrMSJxKnUy8YcV2IolAvc7YSniuKNbN9jhWJgLiHGRY3kaHIIjUwGniVcJBgiip3lc7qpG+Uzv6IZ439+zynPmyFCtb51jFyrjAbIu+mvOZkadWmmDXEbocONx0000AgO+++w7btm0zbhNBpBjOeQoThA1MnjwZpaWl4AIZEHxNI45L4hWAfieiSsKk2bkpbazsF2vFm2sURmwqTK2sP1V14E4dHMZA1OLVzsFaPfocCYIwQPnc0HqG1OfQYcD+iCSjCdUon6uWwpPjWaJiJXzY7VacoNN+KfKL43THH8xTW46eiGVeRV06Ivb+Sz/HKaecAlEU8cknn5g2nyBSCRKwRL2hqKhITljgriwEp+iUGc+FOgJVhxHmhdWbOVUL2hgFS8xb6sQgXiPqinW220KYl+XrSoAXlonMGZ5XErEEYS9Ou6fMBKuDvLJORbeviKV/0uibIkSsVp+TzKUqWuMF9XjCwgQ4cwnG3lggJGI1hOwVV1wBAJg9ezZ27NhhpdUEkRLQE5eoN3z11VeorKwEH8iC4Gsivx/mddXDNFGTSZKlRHhhjUKCOd5ayDBgPDhI9iDRRhEbt3ClASdBOBOniVcj6ug5kvLeVzXKfiqO79+yJ1YSsnYlb1J6XyMKqLkeo8RMNQkjld5XNaYiVqOO286bgH79+pEXlqh30AiOqBdUVFRg6tSpAABXZWtwCK0NYWkeky10eGudQrIHVFbEmcmAImaPb0Q9NnphneAtTRSpNOgmCKfixPvIYYmbbBOvVklWfVY9sWYeS8astTmZn6NZ9JbF6C7mEsLDh7Vwu8Cy0uX/jhkzBgAwa9Ys7Nq1y1JzCcLpkIAl6gU//PBDaO1rMC3kfeV5MMHCvq127P8qYeaFZSwk9JLUsVqbiY4/6VNM2yMYFpikEC8766F9YAmiflKfIzWsXpsNE49RTagm81lqVpdgxetpIigRWrPKeM48eaTJXq8AwDwuMI+xV5hxnCx07xz5Kfr27YtgMIgpU6aYtpUgUoF6/GQmGgqBQACff/45AMBd2RocL4TEK8eBuXjtzkApJPXWl6gTNcWaqdCquDHLlKiG43WFbpig1BPVVsSrCVHtAWvzVjpxeSHsFq8EQdQ/HChe6yzrcDKiZ5R9ld5z1UpEkJW+WilMDZ7htkUyKdATsSzNU/sfveRN6R55Yl1PxErCVSliL7roIgDAjBkzUFpaGmvTCcIxOO/pTBBRMn/+fOzbtw8Q3eDFFrJ4BaCflMl0LWqMnZbaC6vRMWp6YdWCKo49aG3zvNpRD2B94JOqnleCIOzBieHDDiLpocNqrE5EqrAkArWEabI9ser6bPS+Rrxn5bs0m1jXEbFMYSOJ2Aeu/Qbt27dHZWUlfvjhB/O6CcLhkIAlUp5vv/0WAODytwTHCRGDINkLK4UMa3UckhfWKGQ4Wi+s1c5XT1BZTfpUY2MYyisNDqx4g5MtXqP1PCuIekBH4pUgnInTxKsDva+2Ee+1JTOXgZVoIgVRe1/16hOEhHhfw6pS9F9h3lclipBilq5hUyNiJSGrKZY5DuB4jBw5EgDw9ddfIxgMxtl6gqhb6vETmmgIbN++HX///TfAAMHfQttIzvJng9fViojV298tzISr3WDdBmxdg2oXNocMOwonft4EkaqQeDWlzkKH9bAoYmP2viqx+Ly1TXBK+SrMiNH7Gnac5yBmpJnX5YqcnJdRhBQzg3a//thiZGdnY+/evfjzzz/N6yQIB+O8pzRBRIHkfeXFfPBMpxPgOIhpLjC3STiQlb3WzLDY0cqCM97BRI0ATPRMsRprgxL7931VU2d7wDptwE0QqYyTJoTqs3i1EwttskW8KrGSpdisT7Dy/bpc5pPCVrbWAawlguRrIsUMCGZ5IXqMxyfBLC/EDH3BzEHA0KFDAQA//vijcZsIwuE470lNEBYJBAKYOXMmAEAQW0Ua1CRxMs1GXGNrGT0vrLLD4zjdMCXLa1QlO72BgtJ7yXPWBgt2DyjsIMYBY52JVwkSsQRhH04SsQ7CVvFqlzhPtqBWPmt1RGxY/2e0f3oUbTfNsG+yJCfM+6rTX7A0b+3fRiKWD0VtGYlYxoVeYoZbV8h++9UeAMCCBQtQUlKiXx9BOBwSsETK8tdff6G4uBhgbkAoCPewclyEcGVuIdILq54djdULq9WJaYjYiM6Q5yIHFWYDuVjXjEYjTO3a+zVBA52YxasDvSsEQdRQ1yK2Pj8fkr1XrV2TpVrlxOqJtZQ4SSMpkvp3qbbR+N0yrzuy7VrXou7+XXyEkA1meRX2IRGrFrLBzNr1sUohq0RMd4FHDjp16gS/34+ff/45sj0EkSLU46c1Ud+ZPXs2AIBH8/DkTRriVRO9DtaKiJW8sFHs/xlXdmCp4zUSrnZ6YS1SF6HEcXte7RzIkReWIOylrkSsA8Wr49a9AnUTOqyFQsTq1qfMmmwxdFgP0/5bfdxkvSoQ7n2NKK5GxAazvJGfuYY3lmlUFyFia+qVwojnzZunWz9BOB3nPbEJwgLV1dVYsGABAIBHKHmT6OYhel2G4lX2wtohPKSsxmY2HGfc+Ule2GQM3KRBg03Cy5HJo5INiViCsI+6uJ/qs3i1E7vEq1XMyhJFi5O20YUO68EYM177WtMfmiVuAgCW4TUdgTOXSbtrRKzS+xpRhhRSnF7b7vffWgkAWLZsGQ4fPmzaVoJwIs57ahOEBf7++2+Ul5cDzAsOeWAuDkEriZpq9kQztRN4Yy+s5S1yohB4VjtiPax4Jq2EXtmN07IRp2rmY4Ig7CfZobU8ZypO6/2611hDh+PBrB/iBVMbzuWysMSHhf+rW5h5cqdgdhpEk+ROvsZp8GebZDrmAF+eB77ckB2HdHTr1g2iKOKXX34xbidBOBQSsERK8vvvvwMAeDQFXDxEgQc4IOgVIHo1ZkilrW0UYcaG1HhXNUWsel86PS+snISJB6fXYVvdGF5pozUgURzXD6eyKNxE0b69YG0Wr3GHD5N4JQjnUs+jGZTCNCke1lRd92oVK2Up81Do9R+8BRslRkuHPO5wO63Tlfu56nxmwew0OSzYSMRK610DWW4EsrSFrD/HDcZzYDwni9jTTjsNAEjAEikLCVgi5WCMyQKWE5rK4jX0BhBMc4WLWI2ZTs2ETmq0OhatDklLxEYka9IQseqOkuMj67QicDWORwwktARprMkxQOI1gno+8CaIhNMAQ4e1RGy9XvdqFYtC2LROrZ0ArE4Yq+w4rdBhdT/oCQlFIxuW7rGU3Em9plV08RFC1pfnDbOXhKwSSbzKdjUi9oO3lwMAli9fjqqqqoj6CcLpkIAlUo7Nmzdj//79AHgwIb9WvEpwCPe06qWv91gIOZa8sFEka7JkZ5TmX2qvUUcrDU7iDRu2sD2BEtNtBeSy7BOvTGTOFq8EQcRHAxCvesJUGVJc79e92hU6bEW8GqHsT3iDMUCNnaZ4lVD0hxHiVcPGSnKnYLbOnvao9cb68ry6iZuUIlarTYzn4M/JQ9OmTeHz+bBs2TLd+gjCqZCAJVKOv//+O/QH1wScTucT9AoQ0zTS2KuxGkpslqxJCk82TNZU0+lGGzIcI1F18HaujbVZvKYM5IUliNTAIeI1WpsoKrSnnGSve7WIpb5NZx92GZFZe2ZbDSn2mCRuYiw8dFiHQE6apjANa5KLN7SRRKw/R79NTOBx4oknAgAWL15s2i6CcBokYImUQxKwHN9Y8zjjANHNIZDpQjDNYOYUNXuuGXlhGTPv6BgLCUCeM+6kRbFmLa4NW89YEIBRZQi2c12SFZI5gCTvK0E4l2RP/DhQvNpcYXKrq4PQYdO+jefMn/vSpLSJHecSzCd43RaSO3k9gAggaGInmCd3qmrqRSDD+HuuaOpCZb4LVY31xzd9+vQBoHAKEEQKQQKWSClEUcTy5aG1G2JGfsRxxkHeRodxMP+Fc5z+elhJvAKhTlPLC2s1tFi9Z51uqJEot8vUBtC0iQjzNRKnVu0gNcsG8S0XZqG+eAd/Sc1unELeYoJwAiRe7a7QvrLsXvdqR5SPoo/SFbHKdjPRWh+gY8Mpkzjqtd/tkn/HXFC/Lqb8rHREbCC7Zk0rD917o6qpF4wHwMFQxIpC7UtPxN7/biiXyJYtW0K7OhBECkEClkgptm/fjiNHjoBxAny5jRHICN/IW70HbCBNMPXC6iZrUocOCUK4iNUSr2ovrFZGX47T7vjVnaiWiDXpjKPyuuolpDIhZUQsiVeCICRIvFonUUmbjDLcm5Wn0TdZ7u/UfYHmZHS4Dae1A4GFZIhcUIwUsl6N0GGViA1ke0PeVwkdEcuUTa8RsWohW1kQPubRErG+bB7MnYYWLVpAFEWsWbMmso0E4WBIwBIpxfr16wEAzJMLJvDwZfEIZAia4lUikGEuYsO8sFriVUISsUaeV0nEms04q2eKtVCKWD0bPmRj2JmrO/84BZetYWNW6ot2MJgs8RpNci+CIGqhNePOJBnCW2NSN1bCo42MlvrU1GmUz6LGRlO8Sijb7tYfV8gi1usJ974qqRGxEeJVQiViq5p6I204hHljKwtcELW0t0LE+rJ5WQj36NEDALBixQrdayEIJ0IClkgpJAErevIAhGYjRRenK14lgukCgl6DTonjQuthed560gYzjLyZSi9sHCFOUSG1x3T9UIo/FmjNK0E4GwodtrtCe8qx2G5bJjBFxXIZM0z6JMueWCvXZ6X/EEXAJZi33e3SF68SQaYtXiVqRGxlc2+491UNBxR1cWuKVwlJxCrL6datGwBgw4YNxu0kCIeR4iNVoqFRK2BzQ/+6OFQ14uHPNs44yJRb62ghiqEECy4ezGBWFawmoVO8Ik9ap8pzxoMPqWM2G6CIzHxQYXXAYHE7HbP22ElU2YiTNVglzytBRA+J12gKM2+/1evjLSYQNGuSXd+f1QlVC0TVJrP6BMHcRtpWx0JfyZnYBLO94ALG9VU090AUOIgmE/WiB6hubGxT1opDWZva38zLU5YCCG1PSBCpBAlYImVgjGHTpk2hvz25EF0cRFfIC1udYy5idb2wjIXEK2oSLeiJWEW4KBN4fREriS09oRuRZElHxFqxUdZnhNWQrWSLVyvZlGMRw4ketJJ4JYjoIfEaa8HRva9G2S69NiZq3asVoln+oiKsTUZ9hXJbHb36BEERGaVj43KFf1Y6fSaTttVhTFfEBrO9cll6IraywBO2l6ueiC1tE7o+JuiL2IrmXChqTYAsYkV3DgBg9+7dqKio0DyPIJwICVgiZThy5AhKS0sBAP6sLIguhNZ/wJqIZRwQzHCFi1jGIpIpaIb8qNc6cpy2iBXDbSJErFq86jZWK8GShohVddiaAwyr2R/ri3iVSNTglcQrQUQPiddoC4zu/3potUv9XrLFq87EriU7M7T6DK09YdX1KcWrYZvM+1jmcatyXESKWKV4ldASsVqCVf1eaRsBomLLVy0RK4nX2jJCIrasXTqaNGkCANi6dWtEXQThVEjAEinDzp07AQCiKx0QXLJ4lWA8wmYqtQgTsRriVUbywkp7vGp1ZGoRq9VxKkWskXiVxKlZUiCliNURd+Ez0gYi0apdDSklXhMFiVeCiB4Sr9EWaPx+POJVfcwJ4lXCrm3dlH2HlnhV16clXpU2kp3LYHlRTR8aIV4V5UgiVku8SnABJgvZygKN7MVSdTUiVi1e5epUIlZr/ay0zU6bNm0AhLywBJEqmOwvQhDOQRawnkxdG18WB04U4C4N6towDhC9ArggAx8M6Nhw4AQulLEwoF+WPDAzElvRdP4cZ3Ff2RjChuOwi2p7HtPCKMkSQTQYSLxGU5g9NlZxkniVYMxYdNZgnvPBWjlgFvJHAKGyzCbIXSY2koi18LlXN3Kbrnkt6iSANxieSCI2qK+DAQDNmzcHAOzdu9e0XQThFMgDS6QM+/btAwAEsvUFLOOA6mzjUGIuyMCJLMKDG2YjikCQgQlCKNugboU1ws6k05KSPxnOGFvKflhjZ2XQZDZYkNtuw2PAqrfUonh1pPcVoK0/CCIaSLxGU5h9ZQHJ2Q4nGqz2MxxnOqlqWXAC5n0TL5hP0Eplqfd3VSDnzTCa8AYgZnjA+Y1tqgpCSZt4k+ROogcIauyso6S0qx8VHXyGNpKA3bNnj3FhBOEgSMASKcOhQ4cAAL48L6rytUJ0av7h9UVsyOsaMhQ9AkSN/WEl8SoXqydiGavd643ndcOG5DBkPdTi1arI1RmgxLTGNppEGVrtskIUnldbBoaJ8vSSiCUIc+q5eLUVh4pX2zMOm1dY+7dOnxlTm/T6KL5W5Or2m4Jquxw9Eau00RGxYqY3NJHNoCtiJfEqN1FHxB45KvSZMl5fxJZ18oPzBMG5RVS21xaxvsYiXl35D4BaJwFBpAIp/MQnGhqHDx8GAATTVfuhMcjiVX5LQ8QqxWvojVAosVLEqsWrXJ5axCrFq4RaxGqJV7UXVs/zqu6k9exUA5WITthqsgw927AmaSWvsF+8yvXFMwhLdJgyiViC0KcBiFfbvK/1XbxarzDyPZWItdwmrdBhdV/FCxHHI/pPtXiVUPX9mrsWqESsJF4ltESsWrzKTVWJ2CNH8RAVYcFaIlYSr3J9NSJWLWSZAAS9oZOPHDkSeR0E4VBIwBIpgyxg09JQ3UREVRMuQrgqUYrYCPEqoRCxeuI1smAN8SohiVgjz6skYs3ChpXra43sagYs+gmiwrMgG2LXlgVK4hCTMQ0Sk7XGlkQsQUTSAO4LEq9RYMX7arZHO+IUr3JZ0rIZHRuliNUTrxI1YwDmdunb1YhYMcOjaaMWsUZrXiURqxavEkoRqxavcn1uMcwb62scugbREyqQBCyRSpCAJVKG8vJyAIDocYMJQFVTEVUFJkkVeMCfziOYZtCpcQATODCX8e3ABAHgeX3xKpcnCU+bhJSVjL2xbs2TaJKdsIkSRBFEwyJV173anYypPorXqOuzUJaF5E+sJmeFeX28qR1zC4afgyRiqwwyDkuUtdYWr3JdPIB+xZriNaxOt4hWg3aASRHUJGCJFIQELJEyVFZWAggJScYBoguoNBGxfAAhz6tRwqYAAxdkYG4BzGuQ/KlGADKzpE5S52cwE8wY097XVbNiExvRJIuiJKStdMgmojtMKFsaLMT3iHFsMieAttQhCDX1PHTY9u1y7MDGNjlZvJpO0kqfg9EkpsCb2wDgeB4IGotAaUkRZ5C0iXlDwpDzae92IOHP84KvNr6+krah7XJ443xMyEmvQpMmZYY2x7bbhWbppejSczuAkFMACI2xAgHjthKEUyABS6QMkoAVFetNmKAvYvkAIPgZwAB/Bo9AhkZSpwADF6gJBeI4XRHLKcOBeV5bxMphwzUdkY6IZUqRaCRilR22no1C4GmvUVV11FaErg6aA4gEitiYxGuyBrQkXgkiHBKv0RRmTzkNQbwqyjLcR12JlkAVeHMbAJyyb9cTsa7w8GItEcu8ntoRNmO6ItbXyAvGhxI7uSq021TSVpA9rxzTF7HuXkUAAI8roCtij223C1nuagBAY28FuvTcHoouq4EELJEqkIAlUobq6tBDV1SJRy0RqxSvQCi0xpclhIlYpXiVy9IQsbJ4VQoqtYhVi1cdmJZI1BKxWp5OtY1GXeFrVC1kSzSzlZtjcF0JELFxeV4TPbAl8UoQ4ZB4jaYwe8ppYOJVIjJRoU5ZSoGqFq9aNlCJVwm1iHVpr42NELHqKjVErCRe5TI0RKxSvCrt1CLW3asI2WnV8v+1RKxSvEo09lagU8+d8v/9fr/60gjCkZCAJVKG2o4rsvNQili1eJVtFCI2FDasLdqUIlZTvEpIItZIvCq8sJriVS5LIWKNPJ2SjYHAszQYsSJ0ITXHgmCzUcTaEjacqAEuiVeCCIfEazSF2VNOAxWvEnKfZPY5MFFfvCptoCNeJSQRqyNeJSQRK4UOR9ZVK2J9uZ4w8SqXoRCxWuJVaSeJWLV4lVCKWC3xKtE4o1L+m/aCJVIFErBEylDb0WqLCCYAvhwGf6Z+duJQpj4ezGWSwZjjQgJVyhZshl1rNa14Op28LpQgiIZDCotXM2HK8ZwzxauNpKJ4TQhWkz9ZTexk1HzGIHoEw6SRHAOqc4wTNkl2gS4VmuJVwuMK4Pl+X+mKVyD8d0AhxESq4LwnKkHoID9k9fYbr+Ig+DhUNwaqGmn/tAU/A+9jCKQJEA0yE/MBEQiIgIsP3/9VieR55XmDECUmi1LjREs1W+VYsTHpbO3MSGypLMCaqLaSTdm2iYAEZSNuAFuEEIQl6oF41ROotidrsjvjsA2ksnjlOItZlwXBvK+T1n8a2blq8m6YRSvV5OdQ7++qJJjlBeMAV7m+UCxv7gITAG+RcdurjqmEx+tHSWWars19HX5CB/cBjG76m367FdfetGlTwzoJwimQgCVSBqGmo0kriExOIFRxcFWGvKpMgKaIFfwMQhULhQXz0BWxkniVsw67hUgRWxNazMn7yhmIWOm4tP+rGvU+r1ZsdDrvmMSrzoAh2eLVNhJdF4lYoqFTD8RrrMdjqNC+ski8RideJfT6MoUNU0w2h+GqTRoJUWdvd6j2g9XpE4NZ3tA4gIXapCViy5u7INZUyQX1RWzVMZXwpoViiEWR0xSx93X4Ca1cxQCAJkK5rojNRYX8d1qavhgmCCdBApZIGdLT0wEAxzbagbRWtSJWKV4l1CI2TLxKaIhYtXiVy1OKWLV4lU9WiVh1h6glYtXCVMKKjaoTj0xuoXF762Zx5FVmyRevtnhfkyWUScQSDZV6Jl6V75F4jZJUEK8S6j5Na4cAdZ+tFK8SGiI2TLxKbVV5YSXxKh/XELFK8SrbaYhYpXiVm6USsUrxKqElYvPclYCvtq0ZGRkgiFSABCyRMmRmZgIAvP5q9Gu9FWmtyjTFq0SYiGWIEKUAwkSsnniVy3MLIYGqJV7l8mpErN5srlLE6glTCTlk2iT5E4y2F1AJaiOiXXfkNPGabEjEEg2NeiZelcdIvEZJKolXCakPNNujnTFt8SqhELFa4lWykUSsWrxKKEWslniV7RQiVku8ylWKoTq0xKuEUsTmuSvBcyKCNXvQpqeng0/2+mOCiBH6pRIpgyRgg1UMma5qtGlUjEB20DgZkwCIXkB0G3R8PMB4DozTEbkSoli75tUIs0472g4i3oFQIjokJwrOZIYpE0RDo56K14RA4rVuxKuVz92SjYW6RGae2Elk8qS1Eb5cNzylxv0XFwSq85iueJUY03aRrniVaCKU46XW34PnQnWKVaF/pSg3gkgFSMASKUN2djYAIFAuYmdFHg5XZiCzeTmqm+onTHBVAK4KBl8mB3+m9qwr72fgfSJEjwDRYzB7K/UvgmoPWCXStjtGHZsohmZ5tfZ/jSirRijq2VnKkGxR2CnsTAc7VgYTUQjKpA8w7YC21CEaCiReo6nQvrJIvNa23ayvs7DFHHjB1Ibj+VC7zPpNaQyg3idWAUtzg3Ec+CrtvVUZB/jyPGAugA8aX19p+5rtAndm69rc1O0XNHWVYG8wJ9TEA0G0+O8RdL58P7qduxedL9+PFm8dQY8jIlq4svBws3kAgECNeG7UqJFhGwjCSRjESBCEsygoKAAABI4E4RNdCIocPK4A0KIMgQIevgMZ8O6vFZauCsBTwsCJAHigOpsDIMBdXtvh8H4GoTIoixFJwPI+VackiuCUHZrAg0G1eTmrDSsCz9UKXqXQEcXw/WB5DhD5SLGnta8sp7JTHOc4TjuMWKrLTGxpdNa6ZYa1XW+/oui9oRzPxR5KnGzvK4lXoqFA4jWaCu0ri8RrZNtFpv25qD93LTteMLWRxatsI2q3U7EfLCcyMAQjwpJZmhtMOlcE+Co/xDR37XGFeJVIKxI1d1AobQ8Ea7bU4X0cKndmI711aZjNTd1+QSt3EQAgWMmj6VOlaPN1EXiVds5dUAX22hFgVA6aPpUPAPCXhMYxTZo0ibxWgnAo5IElUgZJwBYfFLCvrHYW0uMKICPNh4wWZbI3Nky8StSIWMkTqxavEhGeWFEEFxA1kkDwYFLSJqV4levjIj2xmutiVZ5YLfEqYTDLrDtQiUG8mpYpYfMAMaYBJ4lXgkgMJF6jqdC+ski86rdda2LXtD6diCnlJLBavMo2qv5FIV7lc1VtChOvcjmQPbFa4hUIeWHTisLrU4pX2a5GxErc0PVXWbzyVSJOuWoT2k6JFK9ye/0A92kJuEt24+GcufAfCY2b8vPztU8gCAdCApZIGaSHa/lhIChGdm4eVwAZLcoQyGSR4lVCKWJFnURLUIhYPfEq4RLAeE5fBCpFrBQ6rGvHG4tXC4RnOLYg7KyGFxuhHmzFKSijGniSeCWIxEDiNZoK7SuLxKt5282W1iht9MSrwk5XvMo2Nf2MhniVqQkl1hSvcjkhEaslXiWUIlZLvMp2Pg4cFxKvbTyH5Pd7PrULBX+UG6UGCbUTALewCs2eqMBJ7oEAyANLpBYkYImUoUWLFgAArqhK16aiJA1cEPBnGSdtEgWYDxSk41ay9xp1uFbLsYrJYIkz8/hGW100AyEbBGVKZiQmCCJ2SLyGIPFqre1WPycLZXGCiXhV1mlQHlcTkqwrXmsQ09y64lWuKsjABH3xKpHu8YeJV+8BP9p+dTjUHuNTa49PKcGOTZsAAK1btzY5iyCcAwlYImVo27YtAEAorgQCOpuJB0Jb6lTnMfhytB/hrgoGd6UI0c1B9OokdgqI4KqDAM+DeVxgemn3g2JoHayRiA2KodlZ9R6wSqQtdaRsi0YdNBMNjzNlOLMNAxnTPWGVgtPOwZwVkl5fCiabIohoSebv3MnileON20fi1bniVV7eY7BERrIxSMQEpXfWKGGTO6RK+WqduF0AYoYbjOfgORLQtaloIqCiSWi8kbVD/1rTOx6BwIsYt/00+b12XxwCH4huApjzAzs2bgQAtGnTJqpzCaIuIQFLpAxNmjQJbaXDgGEZ/+CoRofCjhcfzoLrUChJAhO0RayrgsFTLoILhrbOCabxuiIWABhXM6Pq4iNFrCReJbRErCReJYxErMJGFrIRDVIlgFIf1lqLa5AN2YyoxKtcX+yPlZi8ryRiCcI+SLxKBWr/bfRerJB4jU286olTgTe149Q2WuKU580nlFEjXhWRVloiVhKvAMAFmKaIrWgigLkge2iFau3+ML3jEWR6Q9vpHKlOk0Vs/uJyw3ZqUcnzOFAVimorLCyM+nyCqCtIwBIpA8dx8gPWdaAMJzfaLIvY4sNZEPZ5wCmTAqtErFK8yjYaIlb2vipgHBcuYtXiVT5ZIWKDOmtn1SJW8r5q2IV1nFo2iuOa4lVZVpTEJF7l+qJ/tMQVOkwiliDih8SrVKDxeyRe6168Rmun6D8jxKtEUDUhrVWWSuiGiVf5zXARqxSvchtUIlYSr2rUXlileJU4Up2Gd3YMgKvcwJOsw5aMDABAXl4ecnJyoj6fIOoKErBEStGxY0cAwOFtQJZQhZMbbQaACPEqoRSxnAhtmxoRG0wTNMWrbFcjYsFx2uJVQiliDQQlx3H64lVhF6rcwCaW9UAm3ldT8WqpPuuPF1vWvZKIJYjYIfEqFRjf8Wgg8Rq/eFVHJZmUpyteJYJBffGqtIGOeJXbVbM1n4Z4ldtSI2L1xCsQ8sJKIlZLvEoUV6UjoLPXvRHrs0PZjLt06RL1uQRRl5CAJVKKbt26AQAObQ39P0uoQkFmOYLp+oKMCaG09ZpZiSWbmg6G8TUiVc+uJqSYmXWCdpLspCRJhpI2EUQDwqni1Wy9q2RjF/VZvJpl9ZWLssnzKoX52vFZCIJ5nVIklokdx5iueJUIpOmLVwlfNuCqhK54lVjas61xQRqszcoCQAKWSD1IwBIpRdeuXQGEPLBMZJhzuCu2HGgM5AQQyNJWqJ4jHLxFDEEvh0CadmciVIsQqkKJlkQ3rytiuWAQXM0Mra6IFcVQ+DCg34kzVuvlNBoUSdvqmGwXIJdlNGhQelWtDFSMsCI6k77FDW2pQxAxk4zfs5PFa7KwsKbSKpbFqyQojZ77dopXC9gmXpW5KYx+w1zIq2oYXaRYImSpPr9+MibmCalSoUJfdPqzXAAPZOzXr68ynwNzA5zI4dCKAl27jnkHMeesrgi6ovttrSUPLJGikIAlUop27dohLS0N/kpg5tr2+GtHawT9AjhB1BSxniMc0g4y8EGA8UAgnUd1Lh8pZEUGTurXdEQsFwyC8wcV+8tpiFileJWSMQmCzgbpJtl71XvCatkoxauEVXFqYGc4uHCix5TEK0E4GyeKVyteVzuxUXRHJV6N/q/3XmSF0delW1QCxKthheEhwZoiVi2EtUSsqj5Ooy9kHldIvNZcIxdkmiJWEq8AIPhETREriVcJV2XkZ9Ix7yA65h1EpqsaJfnp+O0/HULtiGx9eDsBlLpc2JKZCaA2uo0gUgUSsERK4XK50KNHDwDA5qUeBP21HYqWiOUDAB+WtAkQXRwC6bUiVva+KlGJ2AjxKldgEk4siViOq+3cmYboBMIHUmrxqmVjhHq2XU9wRStirYpXi4KSwocJwkEkamLGqeI1mThBvMZqY5N45axk4QfiE69MNemrEq+Wy1KLWL36FF5YWbiqrpELht9XSvEqF68SsWrxKnFoZa0XVhKuma5q+b3Jd/XBut7NLO0DO++EZmAIZR/Oz883OYMgnAUJWCLl6N27NwDAvaMo4pgkYv3N/OCCgKdYe0AmeWMZDwgVgVrva1hhChErQl+88TyYyyT0SNGpMT1xCtQOqqxk+NXyvmoRx6A0pvVVyRav5H0lCPuw+/dN4tV54tVKSHFthfHVJRcTZxZhJWaeV8ZqhatOeXLfaVSWJGINbDiRAf5AmNdVs8kVPvizXJriVbbxhfoyPfEKAK4KDodWFsjiVY0/zYXXXx+EpRe0hahTRtDFYcOoAmy58C4AQK9evXTbTRBOxWTpOEE4j+OPPx4AkLbncEjoqdPTCyK4w154izkwgQE6CYMlbywEDtDb/FsKAzIb1DEWevGcvviUbGyE40zW9ISMjOvlecOsxJbqIAiCUNPQxavNCfhs9bxaqzB5dQHWPi8r35+Fdlv+LC1+Bpw/KK971YK5BbhL/fDn6qjKGtxlDBUtzOvUEq8S/jQXHvy/c9Di8mLcMW82mv1RCnd5EP5MAftOzMbmkQWoynfjr2eWASABS6QmJGCJlKNz587IyspCWVkZvAeLUN20cYQN7+fABYBgGgeAQdDIo+CuYHCXiwi6eQgQwWmIWN4XBOcLhLbQcbvAKde4KpHEKceFZlcNvIscx4EZ2ZgKYTHsWNwiNpotdaQBhpmH2IJXlOO51AwhNpsQIIhUxq6stg1BvBo9D6NsM6eM0DE4bt4m54lX07Zb3gpOEaGkd07Y1nPantPwfdhF/euQttMJBnW9sMwlhOo0SPwkprnAOC4ilFiJv2YLHD4IZG9lKG2nfX2BDAYmMMz8uweG9VqpabOtrDH8ooDtWU2w+saWWH1jpM3YP/sjffNS8DwvR7URRCpBIcREyiEIAvr16wcAyNi6D5yg6hQOeJF2sGYwwIVEbNATbuKuYPCUBMEFQp2O6ArtA8vUGfwYAxSdDuN5QCNxE6fsvDiNsCVRDNsAndOyAQBRuZG69WyV2utVRbWRuY0KXWFs1i6LA0VbBqbJDgcE7BvkE4STIPFqHWW71G2Mos3qdaFaz/KkileNNZzx1GW7eJXQzBERmZzRtD1afZwcYq2wDUaGcsniVSrbF5mVWBKvEu4j/ggbf6YAxoeiwgDAVRXZpkAGk8UrAAhlAmb+0yPCThKvEl/uPz7C5tWNQ+BbWQoA6NGjB/Ly8iJsCMLpkIAlUpL+/fsDANI27wfPBWtF7AEvMvbw4BUeV0nE+rNqhSwXZLJ4lWwYBwTdvCxieV9N4iYVYSJWFMEFgpGdoFKgqsRrrQkX2lRdstPzWio7UZX3VV2ejJ4wtWJjFRKxya+TIBIFiVfraLVLei9K8WqHTahem8SrjXXZIl6NMkWHZenXKEsjWkm7HEVfKAlXg7YxlxAhXgEAQTFMxKrFKxAaeyhFrCRe1WRvrW23JFyZarJeKK0VqtvKGkeIVwAoqs4IE7GvbhyCI2XpGFwR2j7nlFNO0b1OgnAyFEJMpCR9+/aF2+0GjlTCXVQOf+MsoGYpJ68RLsw4gAkAS+PgrhDhLtcXb0E3D5c/EOqIdEJ+GM+HsvwFNcSrBFezvtYk3JTjODCYrI+VQopNQm5tWRNrJ8kMJ7ZYl61QODFRHyDxah2jdtkkXqXnOIlXG9a71oQSG7aHsdDgweUyblcwCOb1GNcZFCGmhYbWavEqN7lmXKEnXoGQFzZ7K1DUHRHCVcnMf3qgS8fdEcJVSVF1Bl7dOAQAcKQsHVyVH//88w8AErBE6kIeWCIlycjIQJ8+fQAA6ev3guOAwMF0eA/xhr9qdxmDp8xc5DArnStjmvvAqW3ktbG6JizUydq1vUC8ntUaUjJxU114YgkilSHxah2b2pWynlfLxSUpOsXOJFnqkGEdGy6gkxVSwiWAr/TrilcJoVLUFa8SnGgsXgHAfdiF9SvaGNps3twMB7Y3wpGydABA+sZ9CAQC6NixIwoLC40bQRAOhUZ7RMoydOhQAEDauj0hMenjwPtr1pHo/LK5IMAFQtmHmUvbKLQvbKAmVFhnBlUUgUAwJHR5Xn8AIAlcI5uwgg3KkbyLRqFNjJlvj8AUbUo0tKUOQTgXEq/WSaJ4tYTVbXDMiEYoJ6PPkDD7/uSlNwbPYEGQky8ZTsgKJtvgAdau3SWEhKtBsibm4sFcPDiRIe1g5HpYiaCHA+OAnI363w/v5wARcJXr22ze3AxcFQ/OX2vzr0OhTMjSGIogUhESsETK0r9/f2RmZsJVWgV+dSXSDoR+zozTFrGeUgZvSW0HJbo4iF4+TMhK4jWUCTgUKszcQqSQVWyJw3gOTNAQqFJYkoSGiNXcE1YrEYVamFlJ8KTV4ao7cZ1O2ZL31dT7nGwxmeT6CCKVIfFqHSeKVztIkJc37v7DqnitrTDSxmyvWMlGaSft+xpRHx9mw/kjkzXJ4lUquiJyLRNz1USI8QDHGHiNnQ+CHk4WrwDgqogUsbyfk8WrxJZVLSPK2rwlJF4lfIfTIJRUYvny5eA4DkOGDIm8DoJIEUjAEimL1+vFgAEDAACZm3aAV0xmSiKWuSD/yrkgwPvDOwzGceHe2AjRCVnISiJW8r6qCROxjGnaaHpitYSX5UyQtTaagwYrAw+VjS3iNQps8b7WhXgl7yuRqpB4tY6TxKudXtAEhyjH3I9EK1610NvyRtkmPYEbtm2cxc9bJV4BAEEWJmJl8apC6YWVhCtTFeWqUDRJEq6qLk/phd28pVlIvFaGV8j5OaSv3g0gtPdrQUGB+bURhEMhAUukNMOHDwcAZO7YCS4QPuMpdQSMB9zl4d5XNaKLAx9kEKp11rcoRazC+6pGFrFGokwpYq2INwvizHCwwCvEuZlNkknJfWABEq9E6kLi1TpOEq92kuw9Za0Sj3iVnskmZTDGzL2zQYO9YaW6gkHAJWiLV7mcmigtHfGq9MIqva5a5GyM9Lqq2bK6hSxc1eIVACCKaLf5CADgrLPO0i+IIFIAErBEStOjRw907NgRnCjCe2Cbpg3jQskQtMJ1wu1MMsryqPHQGidlkjGxsZwkKRUTE1E4L0E4D6cJKThUvEaxB7cZjvK8Wo3skeqMq6oor9sOzytnnojJUrvMbKTP0R8wTtYkcOB9Ad2RNuM4MJ6DtzhoKF4BwF0GQ/EKAJnbBW3hWkP67r04dOgQGjVqhFNPPdW4MIJwOCk4MiaIWjiOwznnnAMASNu7RVOAeo8weI+EMv4xAYBGRyFUBSFUBgyTMnH+ILjqQG1WYb2OS9kGSzZ6vZtifWw8gzMrWYkVNqYdvI1eU1sGr3Uhlh0oBAjCEDt/szaJRceKV5uwTbzaQTRtSZZ4tfpZm+45ruiPDfZJl9tl1CdK126wlzoTLEQ1CaE2cXpb8dWIVwDgfSIy9musq0Vo8p0TQ97anC3aVXkPc/AeDiWxzNil710+ozrUluHDh4e2ISSIFIYELJHyDB06FFlZWRCqy5G2b0/YWligZu2rwvvKeESIWE4EuJrkDaGwYw2BKiJSnEZsUi7WJoGQjkWUI9Z6X6WOWT0A00zupLGhe41NWOesRZQhr8kMeeN4zr6BbDIhEUukCiRerdHQxasNnt6YxaveRKQl8arRNxq1SS9fhPLaRRYpYpXiVXrLp5FJWAgfGwjl4TZK8Srb+CKvXxKuXE17XZUaE/Q1wlUa9whVkc3J2iogd1UJ/vzzTwiCgLPPPjvSiCBSDBKwRMqTnp6OESNGAADS9q2HUC3KD3NPScj7qkYpYiXva6RNbSfE+YPamQfVIlbdMSpFrDLBkxKliLW0cXsUHXWU3lfDsgDb1uxq1hfL4LGuQ5VJxBJOh8SrNUi8xlmNySRqWF16kUka2faNK9X+DSj6Kd02qXcI0LSRIqA4MJcQIV4BhPfnAhchXgGAC9TWpSVeQwcQ5oWVxKua7K21f0viVY3SC5u1VYCrguGcpqE6Bw8ejObNm0eeRBApBglYol4wcuRIeDweCJVFEMoOQvCx0KxkQH/tqxRSzLFa72ukjSKkWM+LyYVsOFEnBX9YeJOoky1YtebKTChyvGGoVPhFxB7yGx52lfjERVENbOtavEpEs66MIJIJiVdr2LjetSGKV8tEs7Y4VvEaZmIhKsns2kVRW7gq6/H5a4WrTp1CuR+iwGuLV8nGJ4aFDGvhrmDwFnHwFmmLV6DWCyuJV766DPPnzwcAXHzxxYbXQhCpAglYol7QuHFjOSOx98B6gAFpRQzph4LgdBILA4BQJWp6X5UwDvaIlBqha4jVzt1EvIV13LbtPegwkZaKya0IogFT38Vr3KTQNjnhVVmoy2oSJiu2ZuLVzr7KatInMzudtbBhsPCQYS1cVQzZO0TwkdvMyqQfFNF4GQ9XRaici7umQxRF9OvXDx06dDBvB0GkADQCJOoNF110EQRBgKv8AISKw+D9DLyPgROZrojlA6HjRh0e5xfB+QIhG6NwJFE07jhFEQgGjTt7sWaLHqOZaiZG7w2NY3AV5jGOZhASS11RXxc9wghCE7ujAuKMeHCkeAVsiSxxnNc1mvZYWWZiWJ3N4tW8wvjrEoTarXT0rl/gQy8AnNae7lJbpGVGPv2JcClTsavMQHUiJF7TD+rPuLuqQmMZoVr/N5t+UITgq902kPOV46effgIAXHLJJYb1E0QqQaM/ot7QokULDBs2DADg3be6NkSIAZzIwPv1hSwAXdHIKfd9lUSseo2LqLKxkMpfs+OPdg2QDoxpJ6CIIJbBS4JEbMx7wlpdO5xIaF9Ywkk4LKTdseJVIg4R6zjxmkQSJl71vo+wfBMafZeqLs3lOmZ7wAKycFUUpN0W5VhAY/kQ47iwbXY4v35/K3ldtfaid1UxWbzqkX5QlMWrkgva8/D7/Tj++OPRs2dP/QIIIsUgAUvUK6666ip4PB64yg/CU7y39gCDLGSlTkA3fJgP73AiZlYlgapMya8lBMPWtIa8r2rCBgBKEaxXTrxEOcDR3avWylqmZAvLuhKxJF4JJ5FIERODF9bx4lUiBhFbb8RrlBOZltb62t1H2OV5NbXRbk+YF1bHy60cK+jtD6v2wmqFDCu9sJJwVYvXzH2iwj4kXNXiNe3gEcycORMAcN1112m2hyBSFRKwRL2iWbNmOO+88wAAXMWaSHGhELFy+LAWNZ1hmPdVy0Yvs7DSxo6N1ZXlmAy0NL2v4RXWlOOQJEgEQdhDMjxwUYjYlBGvMVBvxGvUVSUpZFjZz+nupy6a9rGMsfCQYc26xLCQYZ2CIr2uaoJihNdVjdILq7fWVfLCGnldpTBiLa+rxGlHVYMxhtNOOw3dunXTbRNBpCLO6xUIIk4uu+wyZGVlAWIpENgZacAAV0UQQkXAWAxa6YStDtBMOv2oBkN2CGIrCaVsaEuorgbghSWIhkKy7zEH3tMkXg2wa9JCZ7lOtFjuD63Y2JRx3ixRE+cXTUOG3eVB5G0O6IpXrvoQfv/9dwiCgGuvvTbeJhOE43Bez0AQcZKTk4PLLrss9J/qtQCLDBPmRAY+IIJj0N+OpjpomJgBABAIhrbgMerUgtrhw0oYY6HZZNMETzWzt2YzzmaDI6tbCJiRwH1hY6IuttZx2HpDogGT6HD2KMSkLd7XZIrXKNqru7TCcl0OE68W2mOLaJcLs5iN3+xzNthODlC02aj/NVjDqrbR3AteCc+Br9bZ20aBq0zfhvOHxiVph/Rt3OVB8H4R7jKd9jARnfP2AACGDx+ONm3amLaJIFINErBEveT8889Hq1atAFYNrmIteIMU9qF9YFlER2gYPiyhtDGbnTUTp0q7aMOKNY9b3JJBxy7uQVoUxJzAySnQXrAEIRO3eE3m+vlo9iaNuy6btsmx63ljoT1R7W0bb0RONN+FQTmW2qz+DI0SNRnZKNHLY6EmECmWOb8oi1cA4H2RNu7yoCxe9fAWBeA5uAmbN29GTk4OrrnmGvP2EEQKQgKWqJd4vV7cfvvtAAAmbgNXXWwoYgEYemOjQtnhqb2vGgMP2ftqVI6oYwOEdfiaolM9QNFdrxvl44C8r5GQiCXqmkRNPFkUlLaI12QRR1ujnuCrz15XOxI26W4bp/qctcpR9EW6bVb3w5o2oqmNqRcWsOSFDS8zJFw5g5+UJFzNxCvvq0CGdzuAUOKmvLy8qNpCEKkCCVii3tK3b1+cdtppABjE4Cpw1UG4qoJwlwUgVGl3QpI3NqrwYc2CovDGGglBu2a+rQ6eauzI+0oQKYzd9y+JV00sPyfru3g1LcxiyHCc5cS93lUZTWVmo4dFL6yrzB/hdVXjLfabel09JUF4iwLwFgUg+EUMGuJBeXk5unbtiuHDh5u2gyBSFRKwRL3m5ptvRnp6OhiKAXFHzX6wQXB+4zWpnCgar4mRMF2jY0HEms5c2xTiFsUgypb1Tk7wiNYF5IUl6ppkrleUzRqWeAWsJjVKPfFqvawkJvGLV7xaCbu2KzTbwqQsV+039bq6Sn2mXldPUTUEvwjBL0JkBzFz5kxwHIc777wTgpVtgwgiRSEBS9RrmjZtiquuugoAEGRrwVglgBovqz+ov5WMJEzFyLWxdhLa8sbCOlszGyttjGGvP0OshIxZqYfnUi/hC0E4lToQr46qxzQ3QAMVr1Gsv7U1YVOSMPSGR5PMyUo/aZKU0QzO5Hy+OgC+OmA4QS5UBiBUBuStABnzo3GTbQCA8847D127do2rjQThdGjER9R7LrjgAvTo0QNAEEFxJRiYnHwplLwpvMPitDy0aoEYCIZvbK5FULTWGVr1VJoM8iyFs5mGP6k+CztEbLI8OFJ9dU0Sw68JIow6FK8xLwWwW7xq/W30XgwkTbzamazJUnVRJGwCEjq5G4aVZ6pWW2LxulrxnlqIztJaB8sFg2Hila+ItJGFa801C+WRNkJlAFxABKdIBhVka3HgwAG0atUK1113nWn7CCLVccBojyASiyAIeOCBB+D1esFwCGJwe+3BGhEb5o0VRe1OTO2NtdSp2hxGm8zsnFKVZoMaqwk8rNRVX0QsQSQbB3heoxaxiRKvsRy3SFLFqx3UtdfVygRtIhIC2rX/a6yoRK6W1zVMzPqC4H3BiHGFUizLXldVFmNWtReM7QLHcXjggQeQnp5uxxUQhKOhkR7RIGjTpg1uuOEGAEDAsxEiV1F70MAbq4kTkg4pB352hQ+b2CQzpDhu6krEkveVqAscIF7rtB69Z4b0vg3PFEveSTu3ybGDuhavdmLh2cqsJGGSRGOSrlntddWC99VMoBv0wVpeVwBg8CG3+Q4AwMiRI3HsscfG32iCSAFIwBINhnPPPRe9evUCOBG+9DVgUHUWkjc2GOX+r7FiZW0roG8jDQB5zjx82Op+sImmIYhYgiCSRxI8rym33hVwlni1I6Gf1Xba4Xm1MOFrZTsdM+HK+YO14lUHvkrb6woADAy9BwZw6NAhFBYW4tprrzVtE0HUF2iERzQYeJ7Hgw8+iJycHDChFH7vpkgjSZhaFah6NlbXvwLGQss0y3HoXMuDECM7u8OdGyKp4Mkg6hcO+s3ZMvEUDUmoL6neySQna4q/riR9NtLnYiSE7WyLpZBmA5sabypXrS9yQ8uWjKO++KrQelgt8QoAQWE7Fi5cCI/Hg8cffxxer9e83QRRTyABSzQomjVrhgcffBAAEPTsQpA/oG0oCVhRjOyogqoETnpiNxpBaIO30DDETdkWuxKDJJCU3hvW4Z8tUY9w0G8tavEar1fOSeI1XsGY5GRN8ddj09ZuSnQjjSx42BVtYXU9EausX6MtcpLImuvlKzUSOVUFZPGqB/MdAkvbAgC45ZZb0LFjxzgbThCpBQlYosFx8skn4+KLLwYA+DLWggXLgaBGR2HkjdXqWOINKY4lQROLTDhlizc2FhKRiCMe6nIf2hSYJCBSnLpMuqOiQXte7RCvdlAfva7x5l3QIxEi12QNK6D0uir6SlWyJ1m46own+Eo/uKoKNOq8F8FgEAMHDsTZZ58dd/MJItUgAUs0SK699locffTRABdEddZqIOjTFrGAsTdWzzYeok3QpFWE1e0Qohg8WdqmhwiHRCyRCBL9u4pCxMYlXmOZZCLxGtmGONoR1XM9Wd+1pTXHcbTFhqSG0diqva6aNtVBU68rX+kHE4M49nQRe/fuRYsWLXDPPfekRhIugrAZjtGolGig7Nu3D9dccw2OHDkCoTofnrIu4ESYbnbOBYJAIGjcgQZF883OGQMz2k+OiRGzs5o2JiKXSeLboB0ATDthS48Km7ywtoQQ16UHVg09Zgk7ScaA1YkJ10i82tuGGqwlqUrC98xbjFwRBJNqLHwuLpfxccYAt7ENcxm3I1SPYNwvBoNgaV5wRv1vIBhqiyjCl7EFgfRd8Hq9eOutt9C5c2fzNhBEPYQ8sESDpVmzZnjqqacgCAKC3oMIpO0MJV4IiuD0OhylEIlHZJmJ1/qKk0QlQaQi9c3b4qBs4ZazDScrXDfBWI7UibsiC8tjkh2GboTFBI5GmYi5YGgsYSZeOZEZi1efPzRpLooIePYjkL4LAHD//feTeCUaNPXjKUwQMXLcccfh9ttvBwD4M7Yh4D2s2BfWQMhKqNezKDEIJ05W4EN04WFxDsxsTLxU77bRqW+ig6gbkvU7SsW9YOPAspBz0lY5cbYlaWGnVr5ju8VrrP2rlSVAFnYq4IKicVnBoCxedfH5Q+K1xiYolAJNtgIALrvsMgwePNjsagiiXuOM3oMg6pARI0bgnHPOATjAl7sRorsirIOyLGT1qOvw0WgTVjjEu8DxXPxCNpbEWImCRCwRD04SHApiDveP5b5MQHbypIUMhypLXfEay2dvxeuaAM9rTBPENglXWbzqIXtddWwUwlWyEflqZHfcBZ/Ph5NPPhnXXHONlSsiiHqNQ0Z2BFG33HrrrejVqxfABVGVvx6iUB06oBSyCfLGOhKVN7Yul8rXK28sZScmYsGh4lUiahHrkPsx6eI1XmwIX3Z8yHCy+5pova4ahAnXOL2uanHLuACanVSMgwcPol27dnj44YfBO2SSmSDqEkriRBA1lJaW4uabb8aWLVvA+dOQvr8bOKZI4iB1/KJ54iSIxkmcQomVzDpNkyROdiRwChkZHxdFexI4xbn+lRI7EQ0Sh4vX2tOtbt9lw+DbhkmtlBSvcTcjznZY+dztWOtq1k6TJE6hZpi1gzevR0rSZPSsFgTj/VqFUDuMhCur+UzUNgwiqpqshegtRUFBAd5++200a9bMuM0E0UCgaRyCqCE7OxsvvvgiCgoKwNxVqMrfAAaF4JG307G4pY4ZTHSGoLIwqLFl1t4JXhcntEGCPLGEU3DSfZEESLw2cBiztEuAsUe1ZoLZaBwQMAkXVnhlI8UrQ3WjTRC9pcjMzMSLL75I4pUgFDSsXosgTGjWrBlefvllZGVlQfSWobrxJjAkOCy4rkWsxWuoFyK2rj9rNTSoJMxIAU+9LWH+VnFStloieuyIpIlzBwDT42Y2ZjsISFvtGZYR1F12xMDgy9qCYPphuFwuPPPMM+jQoYNxeQTRwCABSxAq2rdvj+eeew4ejwfBjGJUN9psLGJ1vLGMMetrR53ijTVBV8RGM6CoaxHrNEjEEnVJskKHJeJ5ziUzdBiIPgGeFnZMQNjQDltWiyUgiVZMxPIbsrrW1YigybIewJpwlcSrVhPA4M/chkDOAQDAgw8+iN69exuXSRANEBpJEoQGPXv2xGOPPRbaIzbzMHx5W8CkTlPQWDtjImQtkwJC1pa9A52UHdgJkIgljEiUFzbZ4jUeki1eifpBNEma9LAqXI3Eq1K4KsWrS7Ge1x+AP2MH/Ln7AAB33XUXhgwZYlwvQTRQaARJEDr861//wqOPPgqe5xHIOgRf3nawYDDU0ekNhHQ6QrU3luM448Gjw0UsUE9Cip0EZSgmjLBbxNaleI32+UbilYiFRIcLu4S4w4XBcYA/APgD8GXvgT9vDwDg5ptvxogRI4zLJYgGDI0eCcKAgQMH4sEHHwTHcQhkH4Cv0Q4wUazJRKzTsRlk/g0TsmaDMrOOleOtDewSmHJfHhTGM8AkERsODbSJRJNK91yc4tWWiBEidZCEomn/afKbCAbNva6mXtmAYbgwAiHhCsbgz9oHf+PdAIDrrrsOF154oXHZBNHASaFejCDqhmHDhuHee+8FAARyJBEbNBSqQI2401vnYmUbHRuoFZhx3OpWz02F5CqpMnCnATehxs7fRF1HeKTKfeiULMSAPetxdZAmVm1ZJ2v220rkb89Cnypfp953K4X6GmFmEwiEXoJgLF5rPMC+nL3wNdkJALjiiitw2WWXmV4HQTR0XOYmBEEMHz4cgUAAr7zySk1yhSDc+1qCBx/qyDguvEPk+doOTjTwuEoDhmQIFql9CRwIydfolGQfWnB83Q/grcBxKZGBlkgCDpzQYCKLLYw4yeKVMRabBzZe8erE70zjs7BFtFpugMlzV+o3hCg/O4vC1RQrwjVUmPbxQCD8/1q/AcmGsVDCprzd8OftBQCMHj0aV155pXk7CYIgAUsQVhkxYgQ8Hg/+v707D4+qPNQA/p6ZyTLZQwiQCLIomxoWQRARiqCACC5grUprLddb7VXxuZZee6kKLlVb6/bUVlta9VpFqFpBtBWKLG4goAhRBMIW2RKy75PJzDn3jzPnzJnJLGf2OZP39zx5MjnLd76ZSWbmzbf95je/gSOvHpIgIr2qPwQIEADfQVZLlPy3UvoKsoIg95GIdhg0mTxDbCyCksl/63NSUD5EJ3uQZYilWAUhSYx/S2g41wv0uhkrKRhefYlbeNUbXPXS/h5FI7z6Cq5mc/f9Add8dfjfp93vKkOCBHtxNRz5ZwDI3YbZ8kqkHwMsUQiuvPJKWK1WPPzww3DkNsIuOJFedTYgyW+oHkHWF+2HMZMAwAyImjfPeLXIsjVWZoTWWIbYnivWrwMRhtiQWmET2G1YdytsMnUZjqGkbHUNhc5/kIYVXBXK86hM3OjN4vr4HGJwBZTwegqO/DoAwOLFi3H99dcHLoeIPAhSXF/JiFLD9u3bcf/998Nut8PUno2M0wMhiO7/2CoflgKOdVXehEU/b6JKcAn0Ri2JQd/Ig/6J+1n+p9sxYZcfwlq4AXfH8KUq2UOsgi/XPUs8wlA8ZiOONLzGYxZiI4TXGE7Ipwj+OOl8vgO9pgYaGwrIS9UFKz8QHXUMej+V/f5ec4Odbzb7DL+SIKKzz3E4c5sgCAJ+8YtfYO7cuUHrS0SeDDKTAlFyufjii/Hkk08iKysLYlYbbP0PQ7TY1f26/i8kSoHf5JXwGo21YWPY0hqVDzx6rhPLboRGmVTGAK07ZCBG+b2PEGchjhMllMai1VURdGkcHdcOcH3JKUJyigGX2An4/i5J8koFvsKryQFb6VE4c5tgsVjw4IMPMrwShYktsEQRqKiowP/8z/+grq4OQpcFGacGwWS3ug/wDqneHxglPa2fmjJ8na8c44fkPVuy93/xI2yBVa8RTLAPLSGE9Ji0xhqlFRZgS2xPEOvQFYXwGtI/lcK9XhSW0dF/LQOMfY1xK2zY/5AMNFlht4sEuQ++WmC1r3kms4/9mtdvs4/92nBtNvu8n5JrWRzBTwuw+j4nShAsZu+dnvu9yhAtdthKjkLK6ER2djYeffRRjBs3zud1iCi4nvHvV6IYGTp0KF588UUMGjQIUpoDtv5H4LS2ug8wCZ5v1t4hSdkXSjfbQIFYj1iOe42TqLfGGim8AmyJTXUGeH5j2iNCEcE1uP5rnARp0ewm1PesAC2h7mN0tLpq3ju7zcSstLr6rYLkHg7kHU5dLa7a/d6/t05LO7LH10LK6ETv3r3x/PPPM7wSRYgBlihCffv2xR/+8AeMHj0aMIvoPOsYHDn1/k9Q3kjVVlXNZEfhBtlQiWL3mYgjkIgPioJJiM+H6GQlCIYIOhSiVBn36i3U16sIwyvFWKjBVS/t8+4ruGqf22Dvg0od/RwTanD1qIOv4KruFtTyuzIbIYw8idraWgwaNAgvvPACzjnnHP91JiJd2IWYKErsdjsee+wxbNq0CQBgqS9CWl0JBBE6Fnf38WFA+0YebLyscozf4qXgLa+x7kYcxS7E3U+N8GXMaC2w3vgynjqSvOtwRP800nvtRIVXTuSkrwtxoNfbYM+dnu7DgV7PTObAr9eBejwBwSeQ8n7f9S7ebPLoKuyzCmYTRKcTjsIaOPrWQJIkjB07Fo8++ihyc3P9X5uIdGOAJYoiURTxyiuv4JVXXgEAmNpykHFqAARnkDd1PbMVM8AGOb2Hh1iAQdboUjm86r1+PMe8drt2jAOsJEX+HAeqoyhGfB8CPX66liOKJMC6xqf6JUr6ZijWG3B90RPQg6wMIJkAe9+TcOY3AZDXkL/nnntgsXDlSqJoYYAlioEtW7bgscceg81mg2BPR8bx/jDZ0l1jYn28wQdbLgeQZzUMMIFGoA8XDLC6C4m8jETjS7oxxavba6JCbBxaX4EodB+O1URO0Vrj21/9lNfnGAVY5fU9ZgFWee31F2CV13d/ATbY46vs9zUBFCAvZycI/uunZz8AyeJAZ/8TEK0dMJvNWLx4Ma677jrf5xBR2BhgiWKkoqICS5cuRXV1NeA0If1UKSzNOfJO7yCrXTIn0Bt8oJkeRSngh4yIQ2ySzUTc/dQovZSlaohV1hWm5BPPMZuJCLChXDMVA6z27y7a9fN+XY5ygNW+rkcUXpXJjfzNpA/I+7zL0L6u+/oHsLY7b7DZi30FUO1KAP72K+X42q+s4y5KcOZ0IOfCVtTV1SE3NxcPP/wwJ2siihEGWKIYamhowAMPPIC9e/cCACy1RUir7g0Brjdh7RuyM8gMw9oAq/Aar+P956z9wMFW2JALi15ZieD9XCi/C3zJTz7xnnQoniE21GulUoANNglROLT18/V6HMUAG+j9xCc//1hV9+kZn+p9nsd+z9l/ux3na79H/TTl+1rCznu/dzna/ZrgKkGCo7gRYkktnE4nBg0ahF//+tcYMGBA9zoQUVQwwBLFmMPhwIsvvoi///3vAABTmxUZJ86C4NCMh1He+H2NdfV+0/f1xq4539eftDorYrAQywDrXWB0y0sEX13r+LKfPBIxY268AmwC1n5NmgDr728sWvWLYXj19zoecoDt1nrqqp+/11UlwPp7HVcCqq8hN9p9viitp76CaSj7NcEVACSTE/azTsOZJy+fd/nll2PJkiXIysryXQ8iigoGWKI42bJlC5544gm0t7cDXWZknCiFuT3b86BAEzYpb65BQlqgDx8J70ZstAArFxr9MuPN1+QxfOlPvEQu9xJBiNUVYCMJyUYPsIH+tmL5nEchwAZ6DdcdYAP9k9Vv4TomV1L4a53V87gH+8dCsOEXmmuLGTZ0DjgJKaMLFosFd999N6699lou40QUBwywRHF0/PhxPPjggzh8+DAgAWk1vWGpKXJ3KVZEMOMwECRIpnA34pgEWHfhsSs7GfCtIP4S9UE3Hi2wPTXABpKoJXaiMMFT5I9rFGYnjmT5nnA5nd2uLUGCo1cjhIENsNvt6NOnDx5++GGcd955sakDEXXDAEsUZzabDc888wz+9a9/AZC7FKefLIGpK10+QGllDTYhRgCGDrBqQeEFxpiFWAZYiqZUbn2N8BrhhpGkDq9A/Gco1r5Wx3B5HV2CvZ/5m31Yed0NpYVWW26gawfb73R2u7ZkdsBeWqV2GZ44cSJ+9atfoaCgIHD9iCiqGGCJEmTDhg14+umn5S7FThPST/WDpTlP92zDwdbrCyiZx8F2KzC04MhW2Ajw7SB+DNj6GtPJmxSJan2NdXgFAnfjj3T92HAnd9LZOhvR8jrRmJ3Y58UDLL2jHYoTzn4lvGqu78xuQ864dtTV1SEtLQ0/+9nPsGDBAnYZJkoABliiBDp16hQeeeQRfPPNNwAAc2Me0k8VQ3B4vWH7mW042IcKv4zSCutRqP7wyBAbAb4lxIfBJm+K+fI5QOp2HQYCT6IWjZbZUCd3CqF11u+ybAH2e14/QOso4Bkg/c3/0K0CmuN8zV4c7n5tcFUuZQK6+tTCWdwASZIwcOBALFu2DOeee273ehFRXDDAEiWYw+HAq6++ildffRWiKEKwW5B+vC/MbV6zGAaYaTjQ2n0+GTHAArrDIwNshPi2EHsGWjonrPAa6jVTObwCgSd3CrdlVmEyBX5NjnDt2EBL63jv9339YBMwuQKkv9dWvcvv+JsAUe9+H+FVzLShs381pMxOAMA111yDO++8E5mZmb7rSkRxwQBLlCTKy8vxyCOPoKqqCgBgqc1HWlVvCGL3DxdBl8oJJFh4lQuJqAxdLysMscmNbw2xFc8Am4jwGsp1Uz28BpLk68ZGHF6BwLMTa/f7rUSQ5Xci3e+DJEjoKq6DVNIEp9OJgoIC/OIXv8CUKVN0l0FEscMAS5RE2tvb8cILL2Dt2rUAAKHTgvQT3VtjI/6zTXQLLBB+gAV0fRCJaYDVWQfD49tDbBgkvMqnxzjARjh7bEwDrCjGp2txuMvu6B0bG0rrbLfLh7+0TrC5GuTr6xgfG+7+MMsQMzrR2b8KklVudZ02bRruvfdeTtRElEQYYImS0K5du/Cb3/wG1dXVAFytsad7Q5DkDxv6AmKAD1+RBlgdZcSsG7F6gQSH2J4QYAGG2GgzUNdh+fQI6xvO7LGhXiIWITYKS89Eha/7FqtZixWJHh8LRD6DsM79kiRBMLveVwUJjt71kM5qgsPhQF5eHv77v/8b06dP50RNREmGAZYoSbW1teGPf/wj1q1bBwDy2NiTfWBuydYfYBXBxkB5i0eABdgKaxR8m4icAWcdlk+PcYAFkrMVNopL0IQt0NhYX/tDFeHYWLkKgedfCDnAer9mR3u/6xiPiRBNApzWDtjPqoaUaQcATJ48GUuWLEFRUVHg+hNRQjDAEiW5HTt24He/+506NtbcmIP0U8VAl5918xSBPoykQoAFGGLjiW8V4TPomq/y6ckfYIEoh9gwxopGXaLHxnof40Ncx8fqGT/r6xgf+z3qmiahq28tHEVNAICCggLcdddduOKKK9jqSpTEGGCJDKCjowMvvfQS3nrrLTidTsBpQtrpIpjr8iDAXxepAB9KojGRU6BrqEWkeDdinXVIGXy7CE0yfACOMMDKRSR/iI1K2Aj02piIAKt31uJwBFp2R7s/gEjGx8rXEAK/BwQLr3rL8BFcJUgQ89vQdVYNpDR59uE5c+bgZz/7GfLz8wPXm4gSjgGWyEAOHjyI3/3ud9i/fz8AwNSWibQTxTDZMrofrCekBhKF2YzZCpuC+JahHwOs/jokQytsMIkeD6uIx+9VFO5rsrRger8Piel2dJ1VCzGvHQDQv39/LFmyBBdeeGEiqkdEYWCAJTIYp9OJd955BytWrEBHRwcgAea6PKRVFUFwKuvd6QxUgWaxjEILrFxM4lth5cMYYqOGbxv6JMMH+EQH2DgspaNeKlEBVs+ET9Gc0TjYa3asZ2YOdgwim53YY3xqhGV4bDOJcPRpgNC/FV1dXbBYLLj55pvxox/9CBkZPv4JTERJiwGWyKDOnDmDP/zhD9i8ebO8wWFCWpWmW3Go3YR9TRgS7MOKgVph3YdyZuKo4FtHcMkQYIHEjYMN9brJHmIDTXoUbCIof8doj9UTcAPNSuxvv/Y4XeNSI5jUynWcYO4+R0Ow2Yn1TAClHiOKga+heTzV7sKltZDSHQCAiy66CIsXL8bAgQP93xciSloMsEQGt3v3bjz77LM4evQoAEDoSEfayWKYW3T8RznQ5CDaDwKKUGczRvIFWPcpMXjp60kBFmCIDSZFAqxcRIj3JZxrJnOADTTpkZ7XxUhab7UCTe6kpzdNqAE2zPsS6gRPwY6RfLwfaQOsr/0wmSBmdMrdhXM7AAD9+vXD3XffjUsvvTRpujgTUegYYIlSgMPhwNq1a/HXv/4Vra2tAABzQzYsp3rBZE/zf2KgP39lEpFwPqx1u0xyhlj3qVF8GexpIRZgkPUnWT4gxzvARnK9ZAyxwSa+C2dCpHCW6Qk0sZOyXyucZXcivS9wB0s9Ezz5O6bbfh/18biO137J4kBXaSOk4laIooj09HQsXLgQN998M7sLE6UABliiFNLY2IgVK1bgvffek9/UJcBck4+0qgL3+FitSMa5Bvug43GZ5A6w7iKi9HLIEEtAzwywkV4rCgEWSJ4JhKKxXI0uwZbd8T4mXFFafkf3R08919AcI5lEOIqbkHaOTZ4jAsD3vvc9/Nd//RdKSkr0XZOIkh4DLFEKOnToEF544QXs3LlT3uAwwVJdAEtNHgRJ88Yf6YcIneISYIGIgyNbYiPUk95OgrWGKcckAyMFWCA5W2HDpbf11p9QxsaG0jrrLZTxsbG8P8r+YO85XsdIkODs1YquknogXV4W57zzzsOdd96JsrKywGURkeEwwBKlsB07duCPf/wjjhw5AgAQOi2wnO4Fc0O2PNFTMgVYgCE2FfSUt5R4tXhFQzwncUqSAAv4D7F6ZrmNm2iNjQ0m0pmLI5kACgh9wiuddZEgQcxrR1dpAySrHYA8zvX222/H9OnTk+M5JqKoY4AlSnFOpxPr16/HX/7yF9TW1gIAhI40pJ3uBVOjVQ6ywUS6piyM0worF8EQG5Ge8LYSbDZYf8fEUyJmH07yABtsJty4C3fCpFAF+4dLLCaAAvTNxCyK+oK0V12cOR1wlNRDzOkEAOTk5OCWW27B/PnzkZ6eHryuRGRYDLBEPYTNZsObb76JN954Q53oSWhLR9qpQphaggTZeAVYIClCbNRnKO6JIRZI7SAbrQ/8sZKopXOicG0AMQmxembDjatwJkwKh/fM8v72a0UyARQQ2tjVYH8zXnURszvRVdIAMU8e45qRkYEFCxbg5ptvRl5eXvB6EpHhMcAS9TAtLS1YtWoV3nrrLXWSC1NLBiynC2Futfo+yWgBFmBLbLJI1beYaHW5jLZEBtco1QFA1AIsEHzSoKRoifUWzfAayljtSLrD6xm7qhUsJHsHV2snukoaIRa0AwAsFguuvvpq/PCHP0Tv3r31X5eIDI8BlqiHamhowOuvv441a9bAbpfHDplaMmE5XQBTa6Zni6zODyWSJAUdd6ZLErTCuotJnkBtWKn4NpOMoScR6736LyjyMqIYYoMJFmIDvbbFRLQCrB7xmABKOUZPmPYOrlmd6OrnDq4mkwmzZs3CrbfeypmFiXooBliiHq6mpgavvvoq3n//fTgcDgCAqTUDlqoCmJpdXYtDCLCKYOPPAkqi0MhW2Cgx0luNkWYYVkQjMCLJAiwQlxCr559uCQ+vesaSxkok3eVD+sel5wzFzmwbHP0aIeZ3uC4h4LLLLsOtt96KQYMG6S+XiFIOAywRAQCqq6uxcuVKvP/++2qLrNCWjrSqApiasiDoDHLeLynBxqD5lYqtsHJh0SvLiPxNIJNMb0XBxgxqj0kWqRpggZiGWO9gGuo42ZjMaBzJxE7Rnr0YCNq1V/cx/mjqLEGCmGODo6QRYq4NAGA2m3H55ZfjRz/6Ec4+++wQKk5EqYoBlog81NbWYtWqVXj33Xdhs8kfIISONFhO58nL70jBu9r5onzAM2IrrFwMQ2zUBBr7lgxvSeF8YE+0KAbGpAuxMQqwev65FvfW2XDXWQ22TE24Qh0fG05whWs5nIJOucXVNauwxWLBlVdeiYULF6K0tDSUWhNRimOAJSKfGhsbsXr1avzjH/9QJ3uC3QxLdS4stbkQnL4/JEX1JYUhNrX5GzuX6LelZJ9h2B+2wuoWbGIn5RitpJjFONSZfuMh1B4U2uAqSHAWtcLRtxmSVR7Ckp6ejrlz5+Kmm25C3759o11bIkoBDLBEFFBLSwvWrFmDt99+G/X19fJGpwBLTS7M1bkwdVm6nRO1l5UkC7ByUVxiJ26i/fZkxLGtoUjlAAvEdVInIElnLw63hTZUXuNRwz7G+3gXyeKEo7gFjj4tQJq8PTs7G/PmzcMNN9zAWYWJKCAGWCLSxW6349///jdWrVqFyspKeaMEmOuzYanKg6nDvXB80gVYIDlbYT0Ljk25qUDP71Mo4dRIY1tDkWwBVi4semXFOcAGE6x7ccICri96uxjrGUOrpyw/IVvM6IKjbzOcvdsAk/w49e3bF9dffz3mzp2L7Oxs/9clInJhgCWikIiiiM8//xyrVq3C7t271e2m5gxYzuTC1JgFAcG75+m/YA8Kse4LxLZ8o9ITPEMJp0YY2xqKVB4Hq0iSEBuse7GeZXn0HBcSPbMX+zpO70RRemZC9lGWBAlirg2OPi2QetnU+z5s2DDceOONmDZtGiyW7j15iIj8YYAlorDt378fq1evxpYtW+B0OgEAgt0Mc00OzGdyIDjMkV8kCQOsXFScXjoZZj3pDZ2BJooKdCwDrKuoJG2FBRIeYvVMSKdnGbGot9AqgVJvF2M9Y2gjKEsyi/L41uIWdXwrAFxyySX4wQ9+gDFjxiSmlZqIDI8BlogiVl1djXfffRfr1q1DY2OjvFEETA1ZsFTnQmhLl9eTDVdPD7HuC8b3esks1DUo9XxQ9jeplJH0hBCbJK2w/iTl5E+hCDbONgjRaoejuAXOojbALN93q9WK2bNn47rrruMarkQUMQZYIooau92OLVu24J133sE333yjbhfa0mE+kwNzfRYEMYwPskk+cRKDLCWFZA2vcoHRLS+JQ2w0Jn+SJCm5Q64XSZDgLGiHs08LxNxOdfugQYNw3XXXYdasWcjKykpgDYkolTDAElFM7N+/H++88w4+/PBD2O12eaNTgLkuG+aabAjtIbbKJmkrrLtIhlhKkGiHQ8QgwMqFRre8JA6xgcR9bdkYEjO74OzdCkdRqzqbsNlsxpQpU3DdddexmzARxQQDLBHFVGNjI/75z39i3bp1OHnypLpdaE+Tx8rWZUFw6hwrm8QtsXEPsPJF439NSh4xCK5ysTEKHLGob6h1Vf5OExR+o9G9OJoTQOkNzR71NEtwFrbDWdwKMcfd2tqrVy9cffXVmDdvHoqLiyOuGxGRPwywRBQXoihiz549eO+997B161Z3q6wowNRghbkmB6aWjMCtskkcYOXiGGIpDowWXD0vEt3y9NTZ++8ygS23wboXK8d4i/Y4Wr0TSinHSZAgZdvhLG6Ds5d7bKvZbMbEiRNx1VVXYdKkSZxNmIjiggGWiOKupaUFGzZswPvvv49Dhw6p2wWbGaa6bJjrsmHqTPN9MkOsvwsn5roUX0bpLuz/YtEv01f9/f0dGqDbsZ5ZjrXH6aV3XK72OCnNAWdRO5y92yBZu9TtZ511Fq666irMnj0bvXv3DqkeRESRYoAlooSRJAkHDx7Ee++9h40bN6KtrU3dJ7Smy+Nl67M8l+OJRUBMlRArXzxx16bYMnp4dV80/tc0QHANhe7uvmGQzCKche0Qi9rkCZlcl8rIyMC0adNw1VVXYfTo0RzbSkQJwwBLREnBZrPhk08+wYYNG7Bz5051XVlIgKkpU26VbbTKsxgzxAa7eOKuTbHDABu+FAqwersYh0ISJIj5HXAWtUMsaAc0T9GoUaNwxRVXYMaMGcjJyYnoOkRE0cAAS0RJp76+Hps2bcKGDRuwf/9+9w6nAFNDFsy1VpiaMyFIUf5QyhBLyS7K4S8hAVa+cPyu5e8+av8+DRJw/XX1DYcECVJOp9xFuFc7YHG/ZgwcOBAzZ87E5ZdfjpKSkoiuQ0QUbQywRJTUKisr8e9//xsbNmxAVVWVe4fDNflTfRZMTVEKs6mwvI7nxRN3bYoNtsKGxvu++fp7NFB4jUZoFXM7IRa2w1nYDqS7XyOKioowY8YMzJw5E0OHDmUXYSJKWgywRGQIkiTh66+/xsaNG7F161bU19e7d0YzzMYo9DHIUsSMPPuw7wvHtnyTEHy4gUHCayTU0NrLFVrT3K8HOTk5mDJlCq644gqMHTsWZrPOJc2IiBKIAZaIDMfpdKK8vBxbtmzB1q1bUVdX596phNkGqxxmxTA+JMc48CU0zMoVSOz1KTypFGATMQ5WSwm3KdS9WEsSJIi5NoiFHd1Ca25uLqZMmYJp06Zh3LhxSEvzM+M7EVGSYoAlIkNzOp34+uuvsXnz5u5hVhRgasqQA22jFUJXGK0LcQh7DLQUUBzCnuGX0gmVnq7Fvo5LRq66S2muiZgKOiDmdwAW933Kz89XQ+uFF17I9VqJyNAYYIkoZYiiqLbMfvrpp55jZuFamqfBClODFUKHBQJC/HAap6DHQEsA4hr04hJgkyG4Avq6FivHJSNN3cUMB8TCDvlLs+QNABQWFuLSSy/FZZddhjFjxjC0ElHKYIAlopQkSRKOHDmCTz75BJ9++qnnbMYABJsZpgYrTE1WmJozwhs3m+pdjeVKJLoGPUsCQ17MQmyyBNdQJTrAars4K62skCDl2OEs7IBY0AEpy+FxyuDBgzF58mRMnjwZI0eOhMlk0MeeiCgABlgi6hFqa2vx2Wef4dNPP8UXX3wBu93u3ukUYGrJgKkxUx43awuxdTaGIS8pQizAIBtrSRDyYtoKmwT3LySBHotQxseGe6yGlO6AM98GscAGMc/m0TXYbDZj9OjRamgtLS0NfA0iohTAAEtEPU57ezt27dqFzz77DDt27EBtba3HfsFmhqkpU26dbcrQNxEUW2MpEqnY8tr9QvG5TiR8PRaB/vb0jqUNoWxJECHmdUJ0hVbJ6tnKmpeXhwkTJmDy5MmYMGECcnNz/V+TiCgFMcASUY8mSRKOHj2Kzz//HDt27MDevXvR1dXlPkAEhNYMmJsz5NbZtvTA3Y3ZGkvhinPA65GzDwfi1V03ascGOV6CBCmrC2Keq5U1txPQPEwmkwnnnXceJkyYgAkTJmD48OFc7oaIejQGWCIijfb2dnz11VdqoD158qTnAUp342b5S2hL797duCe0xioYZqMnTuEuYeu+uiuQ2OsnmDuwdsqhNbfTo1swABQXF2PixImYMGECxo0bx1ZWIiINBlgiogBOnDiBXbt2Yffu3fjyyy/R1NTkeYBDCbSZcqBtT5MDbU9Yfscbw2zoUm2m4eCVSHQN4k6CBMnqkMNqXqccWNM8/1aysrIwevRojBs3DhMmTMDAgQMhCEnwfBERJSEGWCIinURRxNGjR9Uw+9VXX6G1tdXzIIcAU2sGTC3pEFrSYWpN0zeGNgKGCbLa8NKTw26CQlxCA6ze+6z8Xhg46EqCBCnbDjGnE2Ku3WdgtVqtKCsrw9ixYzF27FgMGzaMy9wQEenEAEtEFCan04lDhw7hyy+/xO7du7F37160t7d7HiQCQnsaTC3pckttSzqErtiOX0uaQKsNqYECSU8Is0kSyOIeYkN93pPkcQqFZHFCzJGDqpjTCSnH7jGGFQAyMjJQVlaGMWPGYOzYsRg5ciQDKxFRmBhgiYiixOl04siRI9i7dy/Ky8tRXl6OmpqabscJNrPcOtuWDlNrOoS2tPDWoQ1B0oTaQFItyCZhGItrgA2lxT0JHytfJEGCZO2CmG2H5Aqt3rMEA0B+fj7KyspQVlaGCy64AMOHD0d6enoCakxElHoYYImIYkSSJFRXV6thtry8HEeOHEG3l12lldYVZk2t6RA6QlyLNpz6pUqoFUyxD7/hXCMJQ1lSjIPVSsLHSCFBgpThkINqth1ijh1Sdhdg6v53c/bZZ6uBtaysDP379+cYViKiGGGAJSKKo5aWFuzbtw/ffvut+tXY2Nj9QKcgj59tS4epLU2eHCoGodYQIRYIHB69Q1Aswmw410iScJZ0oRVImsdGIUlOSBlOSNldELO71NDqPTswAGRnZ2PEiBEYMWIEzj//fFxwwQUoKCiIf6WJiHooBlgiogRSWmm1gfbgwYPo6OjofrDSUusKtGqwjdIkUYYMs8GCULTCbDjXSWBIS8rQCrhbshP42EhwysvYZHXJgTWrC1JWl8+wmp6ejqFDh2LEiBEYOXIkRowYgf79+8NkSq4ATkTUkzDAEhElGafTicrKSuzbtw8HDx7EoUOHcPjwYd+hVgIEm0UOtO0Wd0utLbLWWsOE2XCFEmzDCVsJCGlJG1q19Dwm4cxE7OOfGhIkSOldkKwO17hVOahKVgd8/Wmkp6dj8ODBOPfcc9WwOmTIEE62RESUZBhgiYgMQBRFnDx5EocOHcKhQ4dQUVGBiooK1NXV+TkBcpDtSIOpI7Jgm/JhFtC39E+SS9oA6+sxDLcLto/z5LGqTkjWLkhZDohWJbQ6ALPv3938/HwMHToU5557Ls4991wMHToUAwYMYFglIjIABlgiIgOrr69XQ+3Ro0dx7NgxVFZWwmaz+T5BCbY295fJ9TMcJoZbILQuykkmaUNsKPxMmCWZRUiZDvVLzHRAypJv+wuqFosFAwYMwKBBgzzCalFRESdZIiIyKAZYIqIUI4oiqqqqcOzYMTXUKl+dnZ3+T3QIPoOt0GlmuDUQI4dYySzKM/9aNSE10ymH1DT/rbbp6ek4++yzMWjQIAwcOBCDBg3C4MGDUVpaylZVIqIUwwBLRNRDKMG2srISx48fx4kTJ3DixAkcP34cZ86c6b68j5ZTgNBpdn1Z3N9t8nc4haABl4E2PpI5wMoB1SmHVI/v8m1fEylpFRUVoX///uqXElpLSkoYVImIeggGWCIiQmdnJ06ePKkGWuX7yZMn/Y+z1XIIEOxm9Qua24LdJG/TtOIyzMZePIOsBAkwS5DSneoX0p2Q0kVIafoDKgAUFhZ6hFTl66yzzkJWVlYc7g0RESUzBlgiIgqos7MTZ86cwenTp1FVVaV+V27X19frK0iEO9x2uYKtwwR0moAuk7ytS74NMXiLLgUWjQArmURIaSJgcQXRNBFIEyFZRM+gmib6HYfqraCgAP369UNJSQn69evn8dW3b1+GVCIiCogBloiIImKz2VBdXY3q6mrU1NSgtrbW43tNTQ0aGxtDK9QpyC22SsjtMkFwmgCHa7vD5Pqu+dlpgiAaP/R6B089rdXBwqokSHIINbvCqMX7ZzmAqiHVIoYUShV5eXno3bs3iouLUVRUhOLiYvTu3Rt9+vRBSUkJ+vbtC6vVGlKZREREWgywREQUc3a7HXV1dR7htrGxEQ0NDWhoaFBvNzY2+l7vVi8nANEkj8l1CoDTdVsU5FDsNLm2C+7tkgCI8pcgwuNnSJCPcd2G5AqKEgAo2+RNQccAuw+Uv5kEQJDkn13fJZMk3zZJgEneLpkk+VxBgmB2HWOWj5HMonysWYJklgCTKH/X3raIcllhSk9PR0FBAQoLC1FQUKB+aQOqElgzMjLCvxAREZEODLBERJRUOjo6PMJtQ0MDWlpa0NraipaWFjQ3N6OlpcXjq7W1FaKoY23RWNKEWUiucAqogTXRPaIFQUBOTg5ycnKQm5vr8aVs0wbUwsJCFBYWwmq1cskZIiJKGgywRERkeKIoor29HS0tLWhvb0d7ezs6OjrUL+3Pyu329nZ0dnaiq6sLdrtd/a58dXV1eWyLdUA2m81IS0tTv9LT0/1+t1qtur+UcJqdnQ2TyVjr2hIREXljgCUiItLB6XRCkiT1uyiKPm87nU6IogiTyQSTyQRBEALeFgQBFosFZrM50XeRiIgo6THAEhERERERkSGwLxEREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZgiXRFSAiShRJkmCz2RJdDSKikGRmZkIQhERXg4goIRhgiajHstlsmDVrVqKrQUQUkvXr18NqtSa6GkRECcEuxERERERERGQIbIElIgKQvqMPBMn1Pz3BBMEkAIIJMAmAIEAwKftc2wUBMAkQlGPUfYJ6DgTNdnWbu0x1H9z7JUFw/2tRcJejbtecp90muYpR95kAQNkuqPuUcyTXNkl7jlKGyXW8eo7nfrVMABJc20w+9nkcD486urd518PHOfA8x2M/ApynKdPXuf7K9BDwHMnjfO/y1P2asiTXdnidB0HSnC/vF7T71GMl9RxBPU5zvKscQZDcv4Ku7e6nWlL3myCpP8v7AJPrZ3mf/LNynrpPkCDAfZ7JtU39gnY7PLa7zxHVbSZIMAkizMo+18/qftdtADCr2ySYIW83C6LXeSLMrtsA1Nvq8XCXZ4J8vgny9eV9ynnyNgEizMr5UOohwgzI50G+nnLflJ/la0mu23DXBfKfmRmC+uduFgSYILi2Ca6fTa5fHQFddjMW/Gc/EBH1dAywREQA4BTcHyUFEwS4wqYrGbj3CYDJndYEOQ26ClHSjgle6USTbEzd05U7ZWi2w2ub9hrwsc37PLiDqybAdtvWbTt8BGLv/dAEaffd8rvP393wWQ895+h4qKJQZvDQG+UA62s/vH+WfGyXPK7pa58SrNz7tPslzXmabZB8lOn+0gZYdyh2fcH/djU4CtAEVHfQBZQgCjUAavfJAVZ0B0BBDn/yea4gKAhyuHRtV26rx0PQhGXALLi/mwFN2PSxz/Uwyj9LrgAsqYFVPk8KGmB9lWeCe5v8s7aOmueQiKgHYxdiIiIiIiIiMgQGWCIiIiIiIjIEBlgiIiIiIiIyBAZYIiIiIiIiMgQGWCIiIiIiIjIEBlgiIiIiIiIyBAZYIiIiIiIiMgSuA0tEBABmCZIkyrcFyAtBqt8F97/7PNZR1dyGdpvkvu2x3c8+zaKgkp/FTd3b3d8lj9vwOE8CAEldjVPdI0EAJKjnSt7nuM7rznubsvCpR5W8Hg8/X97HRrLWa6B9gcrUcT3B136Pbb7Wc/Wxv1sd/awDC8/9gnafeqy7TEG7xqtyvMe6rNpfLz/rwCL8dWAluM+TBMnzC9rt8NguquWJ7utAAgRRs16t5LFfEkRImnpIkFw/u74r9XD9bHIdY9Js126T6yEXZwIgCu7vItzrwIqubQL8rQMrwAR5fVkz3M+Z8rPJdY732rImdZ+gKc9dlgmC+rP8tAjosvv6uyQi6nkYYImIANgnnEl0FWJDyQcR8I7ORIDnr5aYyIqETfubzQ5pRERGwVdsIiIiIiIiMgRBkqQI/zdPRGRMkiTBZrMluhqkk81mwzXXXAMAWLt2LTIzMxNcIwqEz1fsZGZmQhDYJ4KIeiZ2ISaiHksQBFit1kRXg8KQmZnJ585A+HwREVG0sAsxERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQJnISYiIiIiIiJDYAssERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERmCJdEVICKi5NPe3o5Vq1Zh69atqKqqgslkwoABAzB9+nQsWLAAaWlpYZddX1+PlStXYtu2baiurkZGRgYGDx6M2bNn46qrroIgCAHPP3nyJFauXImdO3eivr4eVqsVw4YNw7x58zBt2rSg1z9w4AD+/ve/46uvvkJjYyNyc3Nx/vnnY/78+Rg3bpzf82644QZUVVUFLLusrAx/+MMfgtYh2lLx+Tp9+jTKy8tx4MABHDx4EBUVFWhvbwcArF69GiUlJbrq/+WXX+Ltt9/GN998g5aWFhQUFGDMmDG44YYbMHz4cN2PAxERJQdBkiQp0ZUgIqLkUVVVhcWLF6thLTMzE6Iowm63AwCGDh2KZ599Frm5uSGXfeDAASxZsgRNTU0AAKvVCrvdDqfTCQCYMGECHn/8cb+Ba9u2bVi2bBlsNhsAIDs7Gx0dHRBFEQAwZ84c3HfffX5D1XvvvYennnpKvV5OTg7a2tqgvBXeeuutWLRokc9zlQCbnZ2NjIwMn8eMHDkSjz/+uJ6HImpS9fl67LHH8MEHH/gsV2+Afemll/DKK68AAARBQHZ2NlpbWwEAZrMZP//5zzF37tyg5RARUfJggCUiIpXD4cBtt92GI0eOoKioCL/61a8wfvx4iKKIzZs348knn0R7ezsuvvhi/Pa3vw2p7NbWVvzwhz9EfX09zj77bNx///0YMWIEurq6sG7dOjz//PNwOBy49tprce+993Y7/9SpU/jJT36Cjo4OlJWV4Ze//CUGDBigtj4qQeWOO+7AzTff3O38r7/+GnfffTecTiemTJmCe+65B3369EFTUxNWrFiBd999FwCwfPlyTJ8+vdv5SoD93//9X1x55ZUh3fdYSeXn64knnsCePXswbNgwDBs2DJIk4c9//jMAfQF206ZNWL58OQDg6quvxn/+538iPz8fZ86cwXPPPYePP/4YZrMZv//973HBBReE9NgQEVHicAwsERGpPvjgAxw5cgQA8Mgjj2D8+PEAAJPJhBkzZmDJkiUAgO3bt+OLL74IqexVq1ahvr4eGRkZ+O1vf4sRI0YAANLS0jB//ny15XPdunU4fvx4t/NfeukldHR0oFevXnjiiScwYMAAAEBWVhYWLVqEefPmAQD+9re/oaWlpdv5L774IpxOJ4YMGYKHHnoIffr0AQDk5+djyZIlmDBhgsdxRpDKz9cvfvELvPHGG3jooYewcOFCnH/++brr7nQ68eKLLwIAJk6ciCVLliA/Px8A0KdPHyxfvhyDBw/2OI6IiIyBAZaIiFRKl82xY8f6bJWaMWOG2vLlr3unP+vXr1fLKC0t7bZ//vz5sFqtcDqd+Pe//+2xr6OjA1u3bgUAXHvttT67w/7whz8EALS1teHjjz/22Hfq1Cns3bsXAHDjjTfCYuk+BYRyflVVFfbs2RPSfUuUVH2+ALmLb7i++uortUv1woULu+1PS0vDjTfeCADYu3cvTp06Ffa1iIgovhhgiYgIAGCz2fD1118DAC6++GKfxwiCgIkTJwIAdu7cqbvs7777DtXV1QCgnu8tKysLo0aN8ll2eXk5Ojs7A55fUlKCgQMH+jxf+7O/88vKypCVleXz/GSUys9XpHbt2qXWsayszOcx2sfMCM83ERHJGGCJiAgAUFlZqU6uM3jwYL/HKfvq6+vR3Nysq2ylm2uwsocMGQIAOHbsmN/zlWMCnX/06FGP7crPhYWFKCws9Hmu2WzG2Wef7fN8rVWrVmH+/PmYPn06rrrqKtx555147bXXfHaDjaVUfr4ipZQ3cOBAvy25hYWFKCgoANC9/kRElLwYYImICABQW1ur3i4uLvZ7XO/evX2eE0hdXV1IZbe1talLpmivk5ub63cGYO352utpz9fW3Relbt7nax09ehTNzc3IzMxES0sLysvL8ec//xk/+tGPUF5eHrD8aErl5ytSoT7feh8XIiJKPK4DS0REAOARQAKFjszMTJ/nxKJspUtvR0dHt/2Bzveul/JzsPOVuvm6X5MnT8aoUaMwduxYteWusbERGzZswF//+lfU19fjvvvuw1/+8hefY0ajLZWfr0hF4/kmIqLkxBZYIiIiHe655x5cdtllangFgIKCAtxwww145plnYDab0draipdffjlxlSQiIkpxDLBERAQAausZAHUCHl9sNpvPc2JZttVq7bY/0Pne9VJ+Dna+Uje990tx3nnnqWvHfvrpp4jHEuup/HxFKtbPNxERJQ4DLBERAfAcL1hTU+P3OO14wWBjDBVFRUUhlZ2dne0RKpTrtLS0BAxUyvna62nPDzbWUamb9/l6KOuUtra2oqmpKeTzQ5XKz1ekQn2+9T4uRESUeAywREQEQJ6x1WSS3xYCzQqr7OvVqxfy8vJ0la2diTZQ2crstYMGDfJ7vnaGW3/ne8+cq/zc0NCAxsZGn+c6nU589913Ps9PRqn8fEVKKa+yshJOp9PnMdrfBe/6ExFR8mKAJSIiAPKENxdccAEA4PPPP/d5jCRJ2LFjBwDgoosu0l32gAED0Ldv34Bld3R0YO/evT7LLisrUyfcUa7vraqqCpWVlT7P1/7s7/rl5eXqZD6h3DfFvn37AMitkfn5+SGfH6pUfr4iNX78eADy5EzKWrnetPcr2tcnIqLYYYAlIiLV7NmzAQC7d+9WA5nW5s2bcerUKY9j9RAEAbNmzQIAbNq0CadPn+52zDvvvIOOjg6YzWZcccUVHvusViu+973vAQDWrFmD1tbWbuevXLkSgDyeccqUKR77SktLMWrUKADA6tWr4XA4up3/+uuvAwD69euH0aNHe+wLNqb122+/xaZNmwAAl1xyCQRBCHh8tKTq8xWpMWPGoF+/fgDcz6uWw+HA6tWrAQCjRo2Ky6zRREQUHQywRESkmj17NoYMGQJJkvDAAw/giy++AACIoojNmzfjySefBABMnDgR48aN8zj3pZdewtSpUzF16lSfgefGG29Er169YLPZcN999+HAgQMAgK6uLqxZswZ//etfAQDz5s3DgAEDup2/aNEiWK1W1NXV4Ze//CWOHz8OQG4JfOWVV7B27VoAwC233ILc3Nxu599+++0wm804dOgQli9fro5/bG5uxtNPP622yN1xxx0wm80e5z733HN45plnsHv3bo8lV5qamvDWW2/h3nvvhcPhQFZWFn7yk58Ee5ijJpWfL4fDgcbGRvVLG4JbWlo89nn/Q8JsNuOOO+4AAGzfvh1PP/00mpubAcjjXpcvX47Dhw97HEdERMYgSPGYKpGIiAzj9OnTuOeee1BVVQVA7qoqiiLsdjsAYOjQoXj22We7hY6XXnoJr7zyCgC5lbOkpKRb2QcOHMCSJUvUSY6ysrJgt9vVAHLRRRfh8ccfR3p6us+6bdu2DcuWLVNnl83JyUFHR4c6znHOnDm47777/LaAvvfee3jqqafU43NyctDW1qa2sN56661YtGhRt/Mee+wxfPDBBwDk1sns7GwIgoCWlhb1mKKiIjz00ENqS2+8pOrztXv3btxzzz26HoPnnnsOY8eO7bZdex+V500JwmazGT//+c8xd+5cXdcgIqLkYEl0BYiIKLmUlJTglVdewapVq7B161ZUVVXBYrFg8ODBmDFjBhYsWIC0tLSwyh4+fDj+7//+DytXrsRnn32GM2fOIDMzE0OGDMHs2bMxZ84cdWIiXyZNmoSXX34ZK1euxM6dO1FfX4+cnBwMHToUV199NaZNmxbw+nPnzsXQoUOxevVq7NmzB42NjSgsLMT555+P+fPnd2ulVFxzzTXo1asX9u3bh9OnT6O5uRldXV0oLCzEkCFDMGnSJMyZMwc5OTlhPS6RSOXnK1KLFi3C6NGj8Y9//APffPMNWlpaUFxcjNGjR+MHP/gBhg8fHtPrExFR9LEFloiIiIiIiAyBY2CJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYjIEJ577jlMnToVd999d6KrQgnW2tqKq666ClOnTsVHH32U6OoQEVEcWRJdASIiiq22tjZUVFRg//79OHDgAA4cOICTJ09CkiQAwOrVq1FSUhKTa0uShOuvvx41NTVYuHAhbr/99rDKqaiowJo1awAAP/3pT6NYw8Q6cuQIduzYgfLychw5cgR1dXVwOp3Izc3FOeecg0mTJmH27NnIyclJdFWTSk5ODm688UasWLECv//97zFx4kRkZGQkulpERBQHDLBERClu8eLFqKioSMi19+/fj5qaGgDAlClTwi7nhRdegNPpxMSJE1FWVhat6iXU4sWL8dVXX/ncV19fj/r6euzcuROvvfYali5digkTJsS3gknu+uuvx5tvvonq6mq89dZbWLhwYaKrREREccAuxEREKU5paQXklquxY8eiV69ecbn2xx9/DAAoLi7GyJEjwypj79692LVrFwCkVEhRgn1ubi7mzJmDpUuX4vnnn8eKFSvw8MMPY9KkSQDkMLt06VLs2bMnkdVNOlarFQsWLAAArFy5Eu3t7QmuERERxQNbYImIUtycOXNQUFCA4cOHo3///hAEAYsXL0Z9fX3Mr60E2MmTJ0MQhLDKeOONNwAAJSUlGD16dNTqlmj9+/fHLbfcghkzZiA9Pd1j3/DhwzFt2jS8/vrr+NOf/gS73Y6nnnoKr776aoJqm5xmzpyJl156CS0tLXj//ffx/e9/P9FVIiKiGGMLLBFRirv++utx+eWXY8CAAWGHyHAcP34clZWVAMLvPlxTU4Nt27YBAGbNmhXX+sfak08+iSuvvLJbeNVauHAhhg4dCgA4duwYDh8+HK/qGUJJSQlGjRoFAHj33XcTXBsiIooHtsASEVFMKLPDKt2Ww7Fx40aIoggAmD59uq5zHA4HNm3ahE8++QT79+9HY2MjnE4nCgoKMGTIEIwfPx6XX345ioqKPM6bOnUqAGD27NlYunQpvvvuO7z11lvYuXMnamtrkZ2djWHDhuHmm2/GmDFj1PM6Ozvxr3/9C+vXr8eJEydgs9lQWlqKK664At///vcjnlzowgsvVMcwHz9+HOecc07YZR07dgxr167Fnj17cPr0adhsNuTk5CA3NxclJSUYN24cLr30Upx99tlhle9wOLBhwwZs3rwZR44cQVNTEwRBQF5eHgoKCjBy5EiMHz8ekydPRlpamse53o//sWPH8M4772DXrl2ora1FR0cHfv3rX3f7Z8j06dOxZ88eVFZWYv/+/RgxYkR4Dw4RERkCAywREcWE0n140qRJsFjCe7v57LPPAMjjRAcOHBj0+EOHDuHBBx/EiRMnuu2rqalBTU0NPv/8cxw+fBhLly71W86WLVvw2GOPwWazqds6Ozuxfft2fP7551iyZAnmzZuH2tpaLF26FPv37/c4/+jRo/jzn/+M7du346mnnoooxDocDvW2yRR+x6m1a9fi2WefhdPp9Nje1NSEpqYmnDhxAjt37sThw4fxwAMPhFx+Y2Mjfv7zn/ucMEx57CsqKvDuu+9i5cqV6N+/v9+y/vWvf+Gpp56C3W4Pel3tpF6fffYZAywRUYpjgCUioqirra3Ft99+CyD87sN2ux3ffPMNAGDkyJFBuw9XVFTgrrvuQkdHBwBg7NixmDlzJgYOHIi0tDTU1dVh3759QdcNPXz4MDZt2oTCwkL89Kc/Va/9xRdf4G9/+xtsNhueeeYZjBkzBo8++igOHTqEa6+9FpdeeikKCgpw8uRJvPrqqzh8+DD27t2LlStX4ic/+UlYjwEAfPnll+rtwYMHh1XGkSNH1PCal5eHefPmYcyYMSgoKIDT6URdXR0OHDiA7du3h91N+9lnn1XD67hx4zBz5kyUlJQgOzsbbW1tqKysxJ49e9Qu4f4cOHAAGzduRF5eHr7//e+jrKwMaWlpOHbsGPr169ft+MGDB8NqtaKjowNffvklFi1aFFb9iYjIGBhgiYgo6j755BNIkoT09HRMnDgxrDIOHz6stj4OHz484LEOhwMPPvigGl7vuecedYZarUsuuQS33XYbqqur/ZZVUVGBoUOH4tlnn0Vubq66/bzzzkP//v2xbNkyOBwO3HXXXWhubsaTTz6J8ePHq8cNGzYMF110EW655RbU1tZizZo1uOWWW2A2m0O6/4DcDfvo0aMA5BA/YMCAkMsAgM2bN6str88884w6rlZrypQpuO2229DU1BRy+Z2dneo/BqZMmYJHH320WxAeM2YMrrnmGnR0dARsST569Cj69++P559/3mO2bH+zWJvNZgwbNgx79uzBwYMHIYpiRC3VRESU3PgKT0REUad0Hx4/fjysVmtYZWi7AQdb9mfjxo04efIkAHnWZV/hVatv374B9//yl7/0CK+KadOmobi4GADQ0NCA+fPne4RXRU5ODq688kr1uGPHjgW8ni+1tbV4+umnAQCCIOBnP/tZyGUolBmnc3JyfIZXrfz8/JDLb2lpUf/ZMGbMmICtuFarNWiX6nvvvTekpZ6UY202G2pra3WfR0RExsMAS0REUdXa2ordu3cDCL/7MADU1dWpt/Py8gIeqwRmALjpppvCviYgd0n1F/IEQfDYN3PmTL/laI87depUSHWw2WxYunSpGjy9J44KlRK6W1tbsXnz5rDL8Sc/P1+dTfnDDz+MaE3W4uJin/8UCET7+6H9vSEiotTDAEtERFG1bds2OBwOmM1mTJ48OexyOjs71du+WkO1Dh48CEBuidMz2VMgwc7X1iXQbL3a40IJdF1dXbj//vvViaEuvfRS3HbbbbrP92XmzJlqq+eyZctw55134vXXX8fevXvVbteRSEtLw+zZswEA+/btww033IAnn3wSH374YcjhPZxZlrUBVjvxFhERpR6OgSUioqhSWkMvuOACFBQUhF2OdsxosNloGxsbAbhbGiORmZkZcL+2e2yg7tHacZjKUkDBOBwOPPDAA9ixYwcAYMKECVi+fHlY42e1SktL8cQTT+Cxxx5DTU0NysvLUV5eDkB+nEeMGIGpU6di7ty5Qf9Z4M/dd98Nu92O9evXo7m5GevWrcO6desAyP9YmDBhAubMmRO0JTlYa7sv2n92hDvjNRERGQNbYImIKGrsdjs+//xzAJF1Hwbk8ZqK5ubmiMoyAofDgWXLlqlLB40fPx6//vWv1a65kRo3bhzeeOMNPPTQQ5gzZ466jI3T6cQ333yDF154ATfddJMankOVkZGBpUuX4rXXXsN//Md/4MILL1QDfn19PT744AMsXrwY999/v0fg9BbOBEzaiae0vzdERJR6+G9KIiKKml27dqldUiMNsNolU4IF2IKCAlRXVxt2Ah8lvCqt1xdeeCEef/zxiNaP9SU9PR2XXXYZLrvsMgByy/UXX3yB9evXY/v27WhubsYDDzyAlStXoqioKKxrDBgwAD/+8Y/x4x//GE6nExUVFfjss8+wdu1aNDQ04KOPPsKKFStw1113Re1+tbS0qLeDTdBFRETGxhZYIiKKGiWADR06FCUlJRGVpV3z9Lvvvgt4rLLMTl1dXdBjk413eB07diyeeOKJqIdXXwoKCjBjxgz89re/xbXXXgsA6OjowCeffBKV8pXuyYsWLcKLL76ods/euHFjVMpXVFZWAgBKSkqQlZUV1bKJiCi5MMASEVFUiKKITz/9FIA88VCk+vbti969ewMAvv3224DHTp06Vb29cuXKiK8dLw6HA8uXL1fD65gxY/Cb3/wm6DjcWJgwYYJ6WxlTHE0lJSXqOrbhrDXrT2Njo7qE0vnnnx+1comIKDkxwBIRUVSUl5erwUcbKCOhhKrKykq0tbX5PW769OlqOPrnP/+Jt99+O2C51dXVUalfJBwOBx5++GF89NFHAGIbXrdu3Ro0lCpjlwHgrLPOCqn8U6dOYdeuXQGPOX36tNpSWlpaGlL5gezbt0+9ffHFF0etXCIiSk4cA0tElOJOnDihzjirUNYXBYAtW7Z4zBZstVoxbdq0kK+jtCKWlpaGtRSKL5dddhn++c9/QhRF7Nq1C9/73vd8HmexWPDQQw/hzjvvREdHB5577jl89NFHmDVrFgYOHIi0tDTU1dVh//792LJlC4YPH46lS5dGpY7heuSRR7BlyxYAcmC84447cPr06YDnFBYWorCwMORrvf3223jkkUcwbtw4jBs3DoMGDUJ+fj66urpQXV2NjRs3qq3n/fr1C3n5o+rqatx7770oLS3F5MmTMXLkSPTt2xcZGRloamrCvn37sGbNGnU26QULFoR8H/zZuXMnAHl876RJk6JWLhERJScGWCKiFFdeXo7HH3/c7/4XXnjB4+d+/fpFFGCj0X1YMX78eBQXF6Ompgbr16/3G2AB4Nxzz8Xvf/97PPjggzh16hR2796N3bt3+zxWGTObSJs3b1Zvnzx5EnfccUfQc2699VYsWrQorOvZ7XZs27YN27Zt83vMWWedhccffzzg8kCBnDp1Cm+++abf/SaTCTfddBOuu+66sMr35nA48OGHHwKQW/3DXQKIiIiMgwGWiIgidujQIbX1MNLZh7XMZjPmz5+PP/3pT9i+fTsaGxsDri07bNgwvPbaa1i/fj0+/vhjVFRUqOMtCwsLcc455+Ciiy7C5ZdfHrU6GsGyZcuwY8cO7NmzB0eOHEF9fb3apTg/Px/nnnsupkyZgpkzZ4a1bM+oUaPw/PPPY9euXdi3bx+qq6vR0NCAtrY2ZGZmorS0FKNGjcLcuXOj1joPQP2dAIDrr78+auUSEVHyEiRJkhJdCSIiMraXX34ZL7/8MgoLC/HOO++EtZanP62trbjxxhvR3NyM22+/HQsXLoxa2WRs9913H7Zt24Zx48bhmWeeSXR1iIgoDjiJExERRUzpPnzJJZdENbwCQE5OjhpaV61ahfb29qiWT8a0b98+bNu2DYIg4Kc//Wmiq0NERHHCAEtERBHp6urClClTcOutt2L+/PkxucaCBQvQv39/NDU14e9//3tMrkHGsmLFCgDArFmzMHLkyATXhoiI4oVdiImIyBC+/fZbbNu2DTk5ObjhhhsSXR1KoNbWVrz55puQJAnz588POC6aiIhSCwMsERERERERGQK7EBMREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSH8P7NdrpgaaJENAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAD29ElEQVR4nOydd5gTVffHvzOTsn2XsvQOAgIKqKgoP0BBLKigoNjBLioq6GuviK9gF/XFgkpRAUXFBigdQakqHekdlrbL9pLM/f2RzOwkmZZkkp3sns/z7MOyc3LvTZtzv/ecey7HGGMgCIIgCIIgCIIgCJvDV/UACIIgCIIgCIIgCMIMJGAJgiAIgiAIgiCIhIAELEEQBEEQBEEQBJEQkIAlCIIgCIIgCIIgEgISsARBEARBEARBEERCQAKWIAiCIAiCIAiCSAhIwBIEQRAEQRAEQRAJAQlYgiAIgiAIgiAIIiEgAUsQBEEQBEEQBEEkBCRgCYIgCIIgCIIgiISABCxBEARBEARBEASREJCAJQiCIAiCIAiCIBICErAEQRAEQRAEQRBEQkACliAIgiAIgiAIgkgILBGwe/bsAcdx4DgOw4YNs6LJGknv3r3l15EgCEKLYcOGyfeKPXv2VPVwZCZNmiSPa9KkSVU9HCIGDBw4EBzH4aqrrqrqoRAJAs0RCUKd6jzvHzNmDDiOQ6tWrVBaWmp5+3GLwE6aNAkvvvgiXnzxxXh1WeXMmjVLfs55eXlVPRzCj8fjwfz58/Hkk0/i4osvRsOGDeF2u5GWlobWrVvjhhtuwKxZs+D1esNqd+PGjRgxYgTat2+PtLQ0ZGZm4owzzsCTTz6JvXv3xujZEARRU1AuXITzY5Xf/fXXX/HDDz8AgGabjDEsX74cL730Ei677DI0bdoUSUlJSElJQfPmzXHNNddg6tSpKCsrM+xv8eLFYT1Po0WT/Px8LF68GG+++SZuvPFGtG3bFjzPR7QYVFxcjD///BPvvfcehg0bhk6dOsHhcMhtLV682HRb4VBcXIxPPvkE/fv3R5MmTZCUlISkpCQ0atQI/fr1w7vvvmt6vlFaWooJEybgsssuQ4MGDeB2u5GdnY3zzjsP//3vf3HixImYPIeqYMSIEfJ789xzz4X9+OLiYmRmZoLjODgcDhw6dCisx+fm5uKHH37As88+i8suuwwdOnRAvXr14HQ6kZmZiY4dO2LYsGGYO3duWO3+/PPPuOGGG9CiRQskJycjMzMTHTp0wMiRI7F58+aw2lq6dCnuvPNOdOzYERkZGXA6nahduzbOOeccPPLII1i/fr1hG+Xl5Vi7di0+/vhj3HPPPTj77LPhcrnisrB57NgxvPzyyzj77LNRu3ZtpKSkoHXr1rjjjjuwYsUKw8crxaSV9x07s3btWvl5NG/eHIyxsNu466675DbGjRsn//2hhx5CrVq1sHv3brz++utWDtsHs4Ddu3czAAwAGzp0qKpNr169ZJuawtChQ+XnvHv3bkP7mvgaxZuFCxey2rVry6+z3k+3bt3Yjh07TLX7+uuvM6fTqdlWeno6mzZtWoyfHVFTCPfeEi8+//xzeVyff/55VQ+n2qF838P5mTx5ctR9i6LIOnfuzACwq6++WtVm8+bNrFGjRqbG1LZtW7ZmzRrdPhctWhTW89T7zOXl5TGO43QfH853yciPLFq0yHRbZlm9ejVr2bKl4etQr1499uuvv+q2tWbNGtaiRQvDdubOnRv1uM3MEWPN2rVr5TE0a9aMiaIY1uOnTJkiP/6KK64Iu/8JEyaY/hz37NmTHT58WLe9nJwcdvHFF+u243Q62bhx4wzHVlxczK6//nrDcfE8zx5++GHm9Xo12zrrrLMi/o5Gw7x581i9evU0++U4jj322GO6bSjn4OH8LFmyJOJx22Hef8YZZ8hjmD9/fliPLSoqYunp6QwAEwSBHTp0KOD66NGjGeCbAx87dszKYTMHLKBFixYRqXYikFit2BKVHDx4ECdPngQA1K5dG3379sX555+Phg0boqKiAqtWrcKUKVOQn5+P1atX46KLLsKqVavQoEEDzTY//PBD/Oc//wEAOJ1O3HrrrejVqxcqKirw66+/YubMmSgoKMCtt96KrKwsXHbZZXF5rkT1ZdKkSQm96ktExkMPPYSBAwca2m3fvh2PP/44ACA9PR2DBw+Ouu9vv/0W69atAwA8/fTTqjYnTpyQI1Opqano27cvLrjgAjRp0gQAsH79ekyaNAk5OTnYtm0b+vTpg+XLl6Njx46G/Q8ZMgQ33HCDrs1ZZ52leY0xFjBP4TgObdq0wfHjx5Gbm2vYfzDBGTrNmjVDeXk5jhw5EnZbZti7dy/69u2LU6dOAQAaNGiAYcOG4bTTToPD4cCuXbswZcoU7N69G0ePHsVVV12FlStXokuXLiFtbdq0CRdffDHy8/MBAB07dsStt96Kli1bIi8vD3PmzMEPP/yAo0eP4pprrsH8+fNxwQUXxOR5xYuzzjoLZ555JtavX499+/Zh4cKF6NOnj+nHK++3t99+e0Rj4HkenTt3Rrdu3dCuXTs0aNAALpcLx48fx6pVqzBjxgwUFxdj6dKluOiii7B27VqkpKSEtFNYWIh+/frJ38e6devizjvvROfOneHxePDnn39i0qRJKCkpwRNPPAGn04mRI0dqjuumm27CrFmzAACCIGDIkCE477zzUK9ePRw6dAgLFizA7NmzIYoi3n33XbhcLrz22muqbQV/L6TIfiyz0NauXYsBAwaguLgYAHDJJZdg0KBBSEtLw6pVq/Dpp5+iqKgIb7zxBtxuN8aMGaPazpgxY3D8+HHD/pYvX4433ngDANC6dWv83//9n3VPpgq4/fbbMWrUKAC+z3k434tvv/0WBQUFAIDLLrsMDRs2DLj+8MMPY9y4cSgoKMAbb7yBsWPHWjdwS+WwDnZYZYg3do2S1GSmTp3KzjjjDPbVV1+x0tJSVZsDBw6wjh07yu/dbbfdptneoUOHWEpKCgPAHA4HmzdvXoiNMirVtGlTVlJSYtnzIQg7QRFYe/DEE0/I78Ndd91lSZvnn38+A8DatWunafP777+zFi1asA8//JDl5+er2uTm5gbMB3r27KnZnjIC+8ILL0Q1/oKCAnbDDTew119/nS1cuJDl5eUxxgLnJuH46dtuu4298sorbO7cuXJkQenzrY7A3nHHHXLbl156KSsuLg6xqaioYLfddptsN2DAANW2zjvvPNnmlltuYRUVFSE2M2fOZDzPy++5mo1Z7BCBZYyxt99+Wx7Hrbfeavpxe/fulaP3derUYWVlZWH3ffDgQXbixAnDftq0aSOPcezYsap2jz/+uGxz5plnsqNHj4bYbNmyhdWvX58BYC6Xi23fvl21raVLl8ptZWRksL///lvVbs6cOUwQBHmuoxVNGzlyJHv++efZDz/8wA4ePMgYY+yFF16ImV8QRTEg6vviiy+G2Pzzzz8sIyNDjiKvX78+qj6HDBki9zdmzJio2rKDNjp69KicQZiSkqJ571ZDmQUwc+ZMVZubbrqJAWC1atVihYWFVg2bkYCNISRg7Udubq6p1KENGzbI711ycjIrKipStXvkkUdku//85z+a7V133XWy3fvvvx/x+AnCzpCArXo8Hg9r2LCh/D4sX7486jb//vtvub3Ro0dr2hUUFLDy8nLD9nJycuSFPwBs165dqnZWClgtIhWwasRSwDZu3Fhue9OmTZp2ubm5zOFwMACsdu3aIddXrFght9O4cWPdBdX7779ftp04cWLEY7eLgFVO1FNTU1lBQYGpx0lpkADYiBEjYjrG7777Tu7r//7v/0Kul5eXyymbHMfpirGvv/46YKFCjWeeecbUHIYxxgYNGiTb/vjjj6afUywF7KxZs+S2zzvvPM353QcffCDbDR48OOL+Tp48ydxutyyG9+/fH3FbjNlHGw0cOFAex6effmrqMWYXdn755Re57U8++cSyMce8CrG0KXrJkiXy38IpMiGKIr7++msMGTIELVu2REpKCtLT09G+fXsMHz4cGzZs0B3biy++GFJUYcGCBbjxxhvRsmVLJCUlhRRv8Hg8+PXXX/Hoo4+iR48eqFevHlwuF9LT09G2bVsMGzYMS5cu1exTKrQxefJk+W8tW7YMec5ar5WZamQrV67EPffcg3bt2iE9PR2pqalo3bo1hg4dioULFxo+Xuqnd+/eACCnV5xzzjmoVasWUlNT0bFjRzz11FMRpVfZlaysLFOvb6dOndC+fXsAQElJCXbs2BFiwxjDN998A8D3eo4YMUKzvYceekj+fcaMGeEOOyr+/PNPDB8+HB06dEBWVhaSkpLQrFkzDBkyBL/88ovuY5VFVKTv6L59+/Doo4+iffv2SE1NRVZWFi644AL873//g8fjMTWmwsJCvPPOO7jkkkvQqFEjuN1u1K5dG926dcPzzz+PY8eO6T4++Lvi9XoxadIkXHLJJWjcuDEcDgdatGgR8ricnBw8/vjj6NChA1JTU1G7dm2ce+65ePPNN+X0oxYtWoDjuJDHz507V+5T+X7q8dBDD8mPmTNnjqnHmMGoCnGs3reff/4ZV111FRo0aICkpCS0aNECN998M/7888+wn0N5eTk+/fRTXH311XKhn6ysLJx55pl49NFHNQvq/Pvvv0hNTQXHccjMzMTu3bs1+8jNzUWzZs3AcRwEQdC9b1cX5s6di8OHDwMA2rdvb0nq59SpU+Xfb775Zk27tLQ0OJ1Ow/bq1auHnj17yv838uMEcPToUfn30047TdMuKysL2dnZAHx+PRjl/OC6665DUlKSZlu33Xab/PtXX30V1ngj4dixY+jWrZt87xo1apTq9rRIfVp2djauvPJKAL7X5uuvvzY1LuVcLtL0YbN06NBB/l0tHX3NmjVyymbnzp1xxhlnaLZ17bXXIi0tDYCvqGhJSUmIjdnPFQC0bdtW/l3ts1UVKOdTUqEuNYYNG4aMjAwAwC+//BLx+L/66iu5AN0ll1wib4+INUot06lTJxw8eDDE5vjx43jllVfwf//3f3J6enZ2Nv7v//4Pr732GgoLCzXbV36uzW5Pmjx5svz9vPnmm+FyuVTt+vXrJ9+TlL4kaqxQwXqra2Y3Rautru7YsYN16dJF93E8z7PnnntOc2zKlZ+FCxeyBx54QLUd5cpr7969TY156NChqisOZgtt6L1WWlRUVLC7777bsO3rr79eNcVIQrLr1asX27lzJ+vQoYNmW82bN6+REeRu3brJr8GKFStCriujtJ06ddJty+v1BqSwhJOiESmFhYUBqS5aP/3799ccT3AEZM6cOSwrK0uzrUsuuUQzNVti9uzZusUWAN+G/x9++EGzDeV35cSJE6xHjx6qn1slCxcuZLVq1dLs84wzzmD79u1jzZs3V3281+uVC6jUqlXLMBW8pKRE7q9Zs2a6hS/CxSi7w+r3zePx6N7XeJ5n48aNMx2BNVOMxuVysQ8//FD18R9//LFs1717d+bxeFTtBg8eLNs988wzuq9pdeHaa6+Vn7OZAi5maN26tfw5tgplVsr06dNVbSgCW0mTJk3kts1GYLt06RJyXRlVnTBhgm6fJ0+elG0FQdDMRDLCTAR29+7drG3btrLdq6++GmJjhU/78ccfZTu99HUJZYpt586dw3naEaGMVqlFYJVR1SFDhhi2d+aZZ8r2agW5nn32Wfm6UQRWeT/9559/TD+nWEZg69SpI7dtVCSof//+su0vv/wSUX/KdOUZM2ZE1IYSo3m/1+tl9913n2xzwQUXsJMnT4bYff7553JkXuunfv367I8//lDtp6KiQk455ziO7dy503Dskl8AoJl6LnHNNdfIc4Xjx48btm2GmAvY33//nX3//fcBewq///77kJ8tW7YEPG7Hjh2sbt268mN69OjBxo4dy6ZNm8a++OILNnLkyIDJqJZzU35xLr/8cgaANWjQgD355JPsiy++YJMmTWL3339/QOWs8847j6WlpbEBAwaw0aNHsylTprCvv/6avfvuu+yee+5hqampcpsPP/xwSJ9r165l33//Pbvoootku48++ijkOa9duzbgcWYE7A033CDbJCUlsXvvvZdNnjyZffHFF+yRRx4J+ABfeumlmukUkk3Xrl1Z+/btGcdxbMCAAWzChAlsxowZ7NVXX2XNmjXTvZFWZ8rKygIm/GoVAadNm2bolJUo39+VK1fGYNSVlJaWynvWALDWrVuzp59+mk2dOpVNnz6djRkzJmCycPHFF6sKLOUEcsCAASwlJYUlJyeze++9l02aNIlNmzaNPfroowHfCb0FpZkzZ8r7aJxOJxs0aBB777332Ndff80mTpzIbr75ZjnFi+d5tmDBAtV2lK+l9L3u3LkzGzt2LJs+fTr7+OOP2YMPPijbb9q0KSBlsWvXruzNN99kM2bMYOPHj2cXXnihLIakVL1gAcsYY//973/lNr744gvd92Dq1Kmy7UsvvaRrGy7hCFgr3jflpNflcrG7776bTZ48mU2dOpWNGDFCfm2VaUhaE5U//vhDtuc4jl122WXsrbfeYjNmzGCTJk1i9957b8B7pdWOMp1NbewTJ06Ur59//vlR7eFLFI4dOyZ/fxwOh2ElUzPs3LlTfh2jSb0LRrlo+ueff6raKD/HnTp1YmeccQZLS0tjSUlJrEmTJuzKK69kEyZM0F2sNSJRBKxy8V1vD6xyDJMmTQqxGT58uHw9HAELgK1evTqisRsJ2PXr18vVqwVBUE1htMqnhTtRV+49fueddyJ6/mY5evRoQEXYt99+O8RmxowZ8vVwBezrr78ecn316tXydbN7YHv37h3W84qVgD18+LDcrpq/1htHJIt769atkx9fu3Ztw8V6M+jN+0tLSwP83BVXXKG6iPTOO+/INikpKey2225jH374Ifvmm2/YhAkT2IABA+RU35SUFM0FsEcffVRu5/nnn9cdt3JhR22hLJhx48bJ9loLluFiy2N0vF6vvMrhdrvZ119/rWp35MgROULL8zzbuHFjiI3yAwv4hPCpU6d0+58/f76uQzx+/Lgc8eF5XnP/jtXH6EyfPl2+Xr9+fdUP4Z49ewIiG1r7LZWvicvlYj/99JPq81S2FY3oKioqUl24iOQnWPjHAqX4OOuss1RtXnrpJdnGTHRAWVxj6tSpFo84kOC9uWqT9/Ly8oAxqU1mgo+xaNasGdu2bVuI3cqVK+VV/1q1aqne2Pft2ydHoZs1a6a5d2flypUsMzOTAWBNmjRR3VMXnNnxyCOP6EY4lRHa+++/X9U2+F6h5hCPHDkiC4RevXpp9scYYz179pQnZNHukwkmHAEb7fumdFRZWVmqR59s3bqVNWjQIKBPtYlKfn4+a9q0qdzW4sWLVZ/f9u3b5QW01NRU1ZX1kydPylEpQRDY77//Ll/7999/ZXGekZFhajVZjy1btlh2/7L6KAElyiI1V111lSVtfvXVV7oT4Ej4/fff5Tazs7M1I+hmj9Fp2LAhW7hwYURjSRQBe+zYsYACPw0aNGBPPfUU++yzz9iUKVPYCy+8IPtrnufZyy+/rNqO0m+NHDlSt0/lflnAeNFOC6Mgh7RYnJSUxGbNmqXahlU+jTHGHnvsMVMTdeURIU6n07Lvbk5Ojnw/+Pbbb9nEiRPZ8OHDAxbN+/Xrp+r7lixZItt07dpVtx+Px8PS0tJke62CbsrXVhAEdtNNN7Hx48ez6dOns7feeisgctmjRw+Wk5MT1vONlYBVvhZG/pgxxj777DPZ/s477wy7v4cfflh+vFV7obXm/adOnQoIgt16662qn/nVq1cHZFzs3btXtZ+ffvpJnrucd955qjYbN26U+2vRooVuvZjbb79dtn333XcNn+fixYtN33fMYksB++2338q248eP17X9999/5VWhu+++O+S68ouTmpoqV0WLFuWqtJajsFrAdu3aVb4+e/ZszXZWrlwpr7Y0b95cdXKgdEp6RTk++eQTU3ZGKD8j0f7EugjEyZMnA4qgfPPNN6p2I0eOlG3ee+89w3bDtY+UQ4cOMZfLxQCwa6+9Vte2vLyctWrVigFgp512Wsj14Ank0qVLNdu6+eabde1GjBghO0ijdJNPP/1UbuvLL78Mua78rpx99tm64lW5wtypUyfNyXJwu1orusrURzVRyJjvviTZ9O/fX/e5RkK4Ajaa923AgAHydbWIjsTPP/8c0KfaROXNN9+UrxsVAVmwYIFs+8orr6jaLF68WK6U2rx5c5abm8vKy8vZ2WefLT/WisWi4MWNaH5icT6ohDLa8v3331vS5tNPP236PTNDWVmZYVRIYtGiRYzjOHbuueeyJ554gn322Wfsm2++YZ988gm755575IUuwBdx/u2338IeT6IIWMYYO3HiBBs8eLA851H7uf7663Xvr/Pnz5dtGzdurBtFCt5yFWkBQq054g8//MCSk5MZAJaZmal5nqaVPo0xX0aONB69ifrkyZNlO6N+w2HOnDma71/jxo3Z6NGjNf1UUVGR/FpwHMc2bNig2c8333wT0LZeBsU777zDsrOzNcfVqlUrNm3aNFNF2oKJlYD94Ycf5HYHDRpkub2S8vLygKxQozmMWdTm/Tk5OQHz/VGjRml+Rq+66ioG+LZdHThwQLev5557Tm5Tq7ifcuuc1qKgcmHH5XKZSgnOycmR2+3Tp4+hvRksKeJkNdIm34yMDNx99926tm3btsW5554LAPjtt990bQcNGoRGjRpZMsZWrVrJZ4OuXLnSkjb12LNnD/7++28AwBlnnIHLL79c0/bcc8/FxRdfDMB3dtzatWs1bQVBwIMPPqh5XWoHADZv3hzusBMOr9eLG264QS6C0r9/f80zFJUb4vUKYUgkJyfLv0tFGGLB119/jfLycgDAY489pmvrdDoxZMgQAL6zI7UK5wBA165ddc870/usMMbw5ZdfAgD69OmjejahkiFDhsDh8B1TbfS9fuCBB8Dz2reyH374IcBWEARN24cffli3LwC477775N8nTpyoaqP8+z333GPYZiyJ5n0rKyuTi0/Vr18ft9xyi2Y7/fv3x+mnn647Fune3rZtW1x11VW6thdffLF8v9b6DPTq1QtPPvkkAN+97r777sOzzz4r3/Nuvvlm3TFXJ9auXYv169cD8BVJkorVRIvy/MbatWtH3d79998vj7Nr1666BdHatWuHf//9FytXrsTYsWNx++23Y/Dgwbjrrrvw0UcfYffu3bjiiisA+Iov3njjjfLZptWR2rVrY9y4cbqFhGbNmoVXX31V9mHB9O7dG23atAHgOxf93nvvDTm7E/DdNz/88MOAv1n52n722We49tprUVJSggYNGmDJkiUBhb2UWO3TOnToIM8b9+zZE1BkVIkVZ7+Gg1RYs0ePHpp+KiUlRS6kxhjDrbfeqnp26bZt20K+W3rv3913341XX30VWVlZqtd37dqFsWPHYu7cuSafTeyJ5xzsxx9/lF/nrl27Gs5hImXXrl248MIL5fn+q6++ijfffFO1OFVubq5ctOzGG29E48aNddtW+kItn6r8nCuLlymZOXOm/PpdddVVqFOnjm6/AFCrVi35d6vOBHZY0orF/P777wCAhg0bmvqySF/0vXv3oqSkJOBDqiScw4bz8/Px5ZdfYvbs2diwYQOOHz+uWbXswIEDptuNlFWrVsm/9+vXz9C+X79+WLBgAQCfwJZu1sG0bds24IMVjPILEU014hYtWqhWE7QbDz/8sPzFbtasmelqbHZC+v4Avs+mdEC5Fsr3dcuWLarVewHg/PPP121H77OyadMmnDx5EgCQnp5uOCbAV9E0Ly8PW7Zs0bUz+l6vWbNG/v2iiy7StZWqcutx0UUXoW3btti2bRsmT56MMWPGBFReraiokG/8jRo1Qv/+/Q3bjCXRvG/r1q2TJ469evXSFf+Ab3FC6/06deqULFzq169v+jMAQPcz8NJLL2HBggVYuXJlQEXKli1b4n//+59hH2Z48cUXNSvl24XPP/9c/v3WW2+VF4CiRfreAtEL2Ndffx2ffvopACAzMxMzZszQrFwJ+OYAetSqVQvffvstzj33XGzYsAEnTpzAhAkT8MQTT0Q1Trvy6quv4tlnn4Uoirjrrrtw3333yVVrN2/ejA8//BATJ07E119/jRUrVmDevHkBlWMB33xpwoQJuOyyy+D1ejF58mSsXbsWt956K1q2bIm8vDzMnTsX33//vVyNXRKBeguF4TBu3Dh54al169b47bff0KpVK037WPi0O+64Q55XTZo0KeTev3fvXvnkigYNGuCyyy7T7TMcLrvsMnk+5PF4cPToUSxbtgxvvfUWvvzyS3z55Zd48MEH8fbbb6t+j1955RW52vg///yDDh064M4770Tnzp3h8XiwYsUKfP755yguLkarVq2wa9cuANrv35o1azBw4EAcPHgQXbp0wfPPP4//+7//Q2ZmJg4fPoyff/4ZL774ItatW4eBAwfi/fffx/Dhwy17PRIB5f31jjvuiEkf69atw2WXXYYjR45AEAR8/PHHun0tX74coigC8H2vjb4XFRUV8u9aPvXGG2/EqFGjUFpaipkzZ+L999+X/bBEJAs7TqcT6enpKCgosOxkE9sJ2MLCQpw4cQKA77iEa665JqzH5+bmagpYo9UJiUWLFuGmm25SLWGuRjxWfJWrqcEOSQ2ljdZKLADUrVtXtx232y3/XlpaathvIvPMM8/ggw8+AOCbYM+bN0/39VF+qc28NsoS9unp6VGMVB/livP1118f1mP1bizRfFaUY/r222/x7bffWjImwPh7fejQIfl3vUkS4JsQZ2VlIS8vT9OG4zjcc889eOyxx5CTk4OffvoJ1157rXz9xx9/lI8muP322w1FX6yJ5n1TvnZS1EYPPZv9+/fLzvb3338PmJQaofcZcDgc+Oqrr9ClSxd5VVj6m3RsQnWnrKws4JgTKydY0pERQHT3rY8//hiPP/44ACA1NRWzZ882PLbDDElJSXj66adx4403AvAdkVEdBewzzzyD//73vwCA8ePHhxzbdvbZZ+OTTz7BGWecgYcffhj79u3DzTffjNWrV4e01bdvX8yYMQPDhg1DYWEhNm7cGPKauVwuvPfee5g7d658/9Zb7DbLrFmz5AW+zp0749dff0X9+vV1HxMLn3bDDTdg5MiRKCkpUZ2oK48Iue2220KE5LJly1QjnxL9+vVDSkqK4fgcDgcaNWqE66+/HoMHD8btt9+OKVOm4P3330dycjJee+21kMc0bNgQ8+bNw8CBA7Fjxw4cO3YMY8eODbG7/fbbceaZZ2LkyJEA1N+/9evXo2fPnigpKcEFF1yABQsWBEQzmzVrhvvvvx+XXXYZzj33XJw4cQIjRozABRdcgM6dOxs+v1gSrznY4cOH5WCa2+3WPUosGnr16oVTp07B7XZjxowZGDBggK698nsxYcIETJgwwXRfWt+LrKwsXHPNNZg2bRqKioowc+bMgCM/lQs7DRs2DGthJyMjAwUFBarHOUWC7VKIT506FdXjpWiBGlrCVsn27dvRv39/Wby2a9cOjzzyCD744ANMmzYN33//vfwjnWukln5jNcp0h9TUVEN75RdbL1XCqhXVRGfMmDHy5KBu3bqYP3++4UKBMtVGz5FJSAszwY+1mmi+Q3rfn2g+K7EaE2D8vZYyJxwOh6kzKs18v4YNGyYLv08++STgmvR/juNw5513GrYVa6J535QpWmYmY3qvXTSfAeXKsRp169YNiA62atUKZ599dsT9JRqzZs2SJyTnnXdewFmS0aJc4Ih0sXbKlCly6n1ycjJ++uknS86nlVBGz7Zu3WpZu3bh4MGDeP311wEAp59+uu62nxEjRsip/GvWrMGKFStU7QYNGoQdO3bgueeewznnnIOsrCy4XC40b94cd9xxB9asWYN77rknwG9J26aiQXnmdElJian5Uyz8R2ZmphwgKSoqClhUZYxhypQp8v/VokzPPvssrrnmGs0f5fmqZuF5Hh988AEyMzMB+BYqtIRGx44dsWHDBvzvf/9Dnz59kJ2dDafTifr16+PKK6/Ezz//jM8++yzg8Wrv35NPPikLirfeekszFbdVq1Zy+rbX6w1LLMWKeM3BpkyZIn9OBw4caMlCjhrSd8Pj8ZgS5LGaV+mlEQcv7ISzQC+N14wWM4PtIrBK4dWzZ0/NvQmx4tVXX5W/zM888wxefvllzYORjfbnWolytcjMAczKiWcso31mKS4uNtzLaJZmzZrhrLPOsqQtAHjttdfw3HPPAfCtUM6bNw+dOnUyfJxS4OrtHZVQ5v2biaJHivQd4jgOHo/HFosUyu/1888/j5deeilufUuiyuPxoKKiwlDEmvl+1alTB4MHD8aXX36J3377Dfv27UOzZs2wd+9ezJs3D4AvytGyZcvon0AVonzfiouLDe31XjtlW7fddpvm/ppIuP/++wO+X9u2bcOzzz6LcePGWdL+1q1bLRNGPXr0MIyKh8tnn30m/251eptyYUCZTmyWadOm4fbbbwdjDG63G7NmzTJM5Q8X5R4sveyJROW3336TF3H69OmjOScBfPf9iy++WE4RXLVqleY2gvr162P06NEYPXq0ZnvKffHdunWLZPgBDB48GBkZGXjvvfewbds2XHTRRVi0aJFufZJY+bTbb79dzlyYNGkShg4dCsCXIbJz504Avi0Y7du3t6Q/M6SlpaFHjx745ZdfUFZWhhUrVmjWPElKSsLw4cN103n13r+ysjLMnz8fgG+eqLXVTKJv37546qmnAARua6sq4jUHi0f6MODLHunfvz+KiorkKK+0n1sNpU/97LPPLNun3adPHzRt2hT79+/HkiVLsGfPHnkboNJvKyOzRlRUVMi6xIpaCoANBWxmZibS0tJQWFgYl72lwUhf5nr16mH06NGajqKgoCAiZx4pyr1A27dvN7RX2lhVuCoajh49GnY6uBZDhw61bG/q22+/LadOZWZm4tdffzW9OV8pcvUKZQGAKIrypnye5w2L3URD48aN8c8//4AxhoMHD6Jp06Yx6yucMUnE+3vdqFEjee/lrl270K5dO03b3Nxc0xPg++67D19++SVEUcRnn32GF198EZ999pmcJlvVxZusQHnv2LFjh6G9nk2sPgPSnjHAl0Z5/Phx7N27F2+88QYuvfTSgCJVkTJ9+nTLFl0WLVpkaq+1WQ4cOCD7rZSUFNxwww2WtQ0gYP9guD7vm2++wa233gpRFOFyuTBz5kxTNRzCJV7ZLVWFMpXfTFq8FMEDzC3IabF582Y5stW6dWvDPclmGT9+PDiOw/jx402J2Fj5tIsvvhjNmjXDvn37AibqSsGiJQqkNMpYoAw6RLMgI4oili1bBsAn/i+88MKA68ePH5cXRtLT03UXRgDrPldW0aBBA9SpUwcnTpzAvn37cPz4cd3FQWU9DDNBCgD4448/8O+//wLwBU/69u0b3aB16NWrF2bPno0rrrhCFrGMMc17eqx8Ks/zGDp0KMaMGSOL1hdeeAFLly6V91N37949rIUdpe9o3ry5NeO0pBUzHSlWzIyK+UiV6Hbt2mVq0mQlOTk5AHwFQPRW+ebPny9PVLUI5zkboVwZkyI8eiijnUarajWVDz74AKNGjQLgu3nPmTMnrBXmjh07okmTJgB8RYr0biB//PGHnH534YUXxjQq3qtXL/l3q6Le0dK1a1d54rVgwQLD746VnHPOOfLvixYt0rUNZ1LSo0cPdOzYEYBv9bOiokKOhNWrV89w/0oi0LlzZ7nIzpIlSwzT/aTCcWrUrVtXTm1dsWKFJbUDdu/ejfvvvx+AL9I+bdo0fPHFFxAEAaIo4rbbbgsQN9WRSZMmyd+nQYMGWb7vVznRkyZyZpg1axZuuukmeL1eOBwOzJgxw7LKyMEoM7Vimd1SVSjf0/379xvaKyNNZiqEaqEUclZvh3j33Xflqu/btm1D7969A4S6klj5NGmiDlSmDUv7/gBfqqNeBCxWKOe90WRrzJkzR94Od8kll6BZs2YB15Wfq+PHjxumrVr1ubKSSy+9FIDv/dP7bBQXF8t1F5KTkwM+U3oos1uGDh0a84y2nj17Ys6cOUhLS4PX68Utt9yC6dOna9pKiw5Wz/WU0dUpU6aAMRZVVW5l0agzzzwz2uEBiKOAVYa6jVZupBsK4Es3jCfSPq9du3Zpik6v1yvvl9QjnOdsRIsWLeS02XXr1umK2DVr1mDhwoUAfCsddtgLJqUfWPFjRfT1k08+kYtgSAVFunfvHlYbHMfhuuuuA+C7eb733nuatuPHj5d/j7VDvOGGG2TRMW7cOFuslAqCIKfE7N27V/P4mVigFJIffPCBrgh79913w2r73nvvBeCbVD7yyCPyIsbQoUNN7be1O263Wz6mJCcnJ6BQUDBz5swxrBgt3duLi4tVi46Eg9frxc033ywL4fHjx+O0005Djx498PTTTwPw7R286667ouoH8FUhtur+ZWX0FQisCBmL9LbzzjtP/t3skXGzZ8/GkCFD4PF4IAgCvvrqKwwcONDysQG+NEilP5Y+r9UJ5SLCL7/8olvXIj8/Xz76CghcwAuHrVu3yj4tKyvLku9RMO+88w4eeeQRAL6sMS0RG0ufNmzYMFkETJkyBd98842c6njttdcGRB3jwV9//SVndDmdzojTtouLi/Gf//xH/r/yd4n09HRZ1JaXl+O7777TbVMppCL9XFmNcj41fvx4zXn7pEmTZF/Rv39/U7UuiouL8fXXXwPwzfficZQS4DtZYfbs2QEidtq0aSF29erVk4soLVu2zFIR27p164Bg4ty5c6Na2FH6DqVPiQorDpPVOqRayUMPPSTbaB1WLeH1egMO03344YdZWVmZpn1xcTH7/PPP2bRp00KuKQ9QNnOw+CWXXCLbv/XWWyHXy8vL2e233x5wwHPz5s1V23rrrbdkm8mTJxv2rXagsZIZM2bI1xs2bMi2bNkSYrN3717WunVrw4PHpeu9evUyHFc4tonA5MmTGcdxDABLSUmJ6sD5gwcPspSUFAaAORwONn/+/BCbzz//XH4NmzZtykpKSqIYvTkeffRRuc+LLrqIHT58WNPW6/WyefPmsZdffjnk2qJFi+R2XnjhBd0+jWz379/PsrKyGADmdrsNvxM5OTls9OjRbN26dSHXjL4rwfTo0UO2v//++5nX6w2xUd4r9L7XSvLy8uT3X/mzbds2U+OKlKFDh8p97d69O+S6le/b77//Ll+vVauW6gHu27ZtYw0bNgx4DdQOrC8sLGTNmzdnABjHcey1115TfS8k8vLy2LvvvsvmzZsXck15KPvgwYMDrlVUVLDu3bvL1z/66CPd1yBRWbx4sfwcW7durXnYfbRIPqVp06aGtvPmzWNJSUkMABMEgX311VcR9bl9+3b2+uuvs/z8fE2bkydPsiuuuCLg85mbmxtWP8p7idp3KRyU38tw/Ir0ndB6XHl5OWvSpIlsM2DAAFZcXBxiV1xczK6++mrZrlOnTqqfiZycHLZ582bN8axdu5Y1bdpUbmfSpEmmn4saRnPERx55RL5+2mmnsQMHDoTYWOXT1FB+BpT3MTV/HgkFBQXsqaeeYkePHtW1W7t2LWvWrJnhfJoxpjuPPnLkCLv44ovldoYNG6Zp+8QTT8h2devWVfW3jDE2depUed4EgK1atUr3uShR+lY1v6CF8n3Repwoiuyss86S7V566aUQm3Xr1rHMzEwGgPE8z9avX2+q/0mTJgV85mKB3lzm999/Z2lpabr30rVr1zKn0ynf/+bMmaPb3549e9ijjz7KcnJyDMemnLsqvxe33HKL+Sfo55prrpFf/xMnToT9eDXitge2T58+chTqzjvvxMiRI9G8eXO5glWbNm3kIxh4nse3336L7t274+DBg3j33Xfx9ddf47rrrkPnzp2RmZmJwsJC7Nu3D2vWrMGCBQtQVFSEl19+OepxjhgxQo5ujho1CosXL8all16KOnXqYPv27ZgyZQq2b9+Oiy66CNu3b9dNG+3Tp4/8++OPP45jx46hXbt2cjn2xo0b44wzzjA9tuuvvx7ff/89pk+fjsOHD+Oss87CsGHD0L17dwiCgDVr1uDTTz+VV5n69esnp9cRPubMmYM77rhDXqW74447kJeXZ3h+1llnnRWSfgP49gi++eabGD58ODweDy6//HLcdttt6NWrFzweD+bMmSOvWjkcDnz88ce6B24r96Ds3r1b80xWI1599VX8888/WLBgARYtWoRWrVph0KBB6N69O7Kzs1FeXo4jR47I0fwjR46gT58+ePbZZyPqzwxNmjTB9OnTcfXVV6OsrAxDhw7FW2+9hauvvhqnnXYakpOTcerUKWzbtg0rVqzA8uXL4fV6LSn48tFHH6Fbt24oLi7G//73P/z555+45ZZb0KRJE+Tk5GDGjBlYvnw5unfvjn379uHgwYOmUoUyMzMxZMiQgFS73r17W3I8iF3o0aMH7r//fvzvf/9Dbm4uzj//fAwdOhQ9evQAz/NYtWoVPv30UxQVFWHgwIG636XU1FTMmjULvXr1Qn5+Ph5//HF89NFHGDRoEDp06IC0tDTk5+dj165dWLVqFRYvXozy8nJMnTo1oJ1ly5bJUbcmTZrg448/DrjucDjw5ZdfokuXLsjPz8fIkSPRq1cv3f3PiYjyc6eMJFnNwIED8eabb2L//v3YtWuX5nFU//zzDwYMGCCnIg4aNAjJycmG99f27duH7KcqLCzEf/7zHzz33HO45JJL0K1bNzRv3hypqanIy8vD6tWrMX36dLmypXR0kt4e2O+++w5//fVXwN92794t//7mm2+GRNzGjBmj2tbChQvlTCcJqc4BAHz66afy3mSJxx57LKI9uk6nE+PHj8egQYPAGMMPP/yA008/HbfddptcT2HLli2YMmWKnObpdDrx/vvvq34m9u3bh27duuHcc89Fnz590L59eyQnJ+PIkSOYP38+fvnlFzlT5fHHHw/IiosFb7/9NjiOw9tvvy3PrxYtWhSwxy+WPu3222+X09ClYwebN29uyf55wFdA8NVXX8Xrr7+Onj174rzzzkObNm2QkZGBsrIy7Nu3D4sXLw7Ymta+fXu88cYbmm1eccUVqF+/Pq644gqceeaZqFWrFnJzc7Fy5Up888038jzwoosuwvvvv6/ZzhNPPIGvv/4au3fvxvHjx3HuuediyJAh6NWrFzIyMuRzYJXRvXvuuUczMvz333+HHJO3dOlS+ffvvvsuZGvgnXfeGXHBQ47j8PHHH6Nnz54oLi7GCy+8gOXLl2Pw4MFITU3FqlWrMHHiRDlq/9RTT5med8ereJMWPXr0wNy5c3HZZZehsLAQt956KwDIR4YBvrnphAkTcPfddyM3NxeXX345LrzwQlx++eVo2bIlnE4nTp48ia1bt2LZsmXyPmAp80GP6667DiNGjEBhYWHAcZzhRqI9Ho+8F7tnz56WFXGKWwTW4/EEREGCf9RW/g8dOsT69Omj+RjljyAI7JNPPglpI9wILGOMPfXUU7p9XXjhhezo0aPyqqlepObGG2/UbCf4tTITVaqoqGB33XWX4esxePBg1RVaCcmupkVgg6NsZn+MVg1ff/11eRVM7Sc9PV01QyAY5WOijQaUlZWxBx98kAmCYOo53nbbbSFtWBnJk/jzzz9Zq1atTI0pLS1NdbU03AgsY4wtXLhQjgCr/XTq1Int27ePNW7cmAFgZ555pql2V65cGdDOl19+aXpMkRLPCCxjvvv3rbfeqvna8TzPXnvttYAVW73vzNatW1nXrl1NfQbcbnfAqnJubq587+V5Xve+/sUXX8jtdO3aVTeTJ9HIz89nqamp8uuwf//+mPX1zz//yK/j6NGjNe2U7384P2qfu7///tv045s1a2bKvyu/N2Z/tIjEl2jd040isBJffPEFy8jIMOynbt267JdfftFsZ/Xq1YZtpKens/Hjxxu+pmYwM0dkjLFRo0bJdm3atAmJxFrh09QoLCyUI13Sz/PPPx/NUw4gNzc3rM/JoEGDDCNk0ndf755833336c4DJXbt2sXOOeccU2N78MEHWUVFhWZbkdwDtD7zZiKwEvPmzWPZ2dmafXAcxx599FHTWSo7duyQI86ZmZmmXsdIMDOXWbZsGUtPT2eAT+uozTF+/PFHVr9+fVOvd506ddixY8dMjS8447RFixZhZ/rMnj1bfvzEiRPDeqwecROwjDFWUlLCxo4dy7p3785q1aoVcBPSm2QtXryY3Xvvvaxjx44sKyuLCYLAMjIyWIcOHdiQIUPYhAkT2KFDh1QfG4mAZYyxOXPmsP79+7O6desyp9PJGjZsyC6++GL2ySefyF9eMwLW4/GwCRMmsN69e7O6desyh8Oh+VqFMyn/888/2Z133snatGnDUlNTWXJyMmvZsiW75ZZb2IIFCwwfL/VDAtbcj5m0lw0bNrAHHniAtW3blqWmprL09HTWqVMn9sQTT7A9e/YYPr6oqEjuz+VyWZZmsX37dvbkk0+y8847j2VnZzOHw8FSUlJYy5Yt2RVXXMH++9//aqbUxELAMuZbiPniiy/Y9ddfz1q2bMnS0tKYw+FgtWvXZueccw67++672YwZM1hhYaHq4yMRsIz5Uqsee+wx1q5dO5acnMyysrLYOeecw9544w1WVFTERFFkycnJDADr3bu3qTZFUZTTk2rXrs1KS0vDGlMkxFvASvz000+sf//+LDs7m7ndbtasWTN24403sj/++IMxxkwLWMZ8r9sPP/zAhg4dytq2bcsyMjKYIAgsKyuLde7cmd12221s0qRJ7OTJkwGPGzJkiNzHk08+qdsHY4zdfPPNsv2jjz5qaJ8oTJw4UX5el156acz7u+CCCxgA1rZtW00bKwVsaWkpmzt3LnvhhRfYpZdeytq3by/70IyMDNamTRt2ww03sC+//NL0wkSiC1jGfOm/48aNY3369GENGjRgbrebud1u1rBhQ9avXz/29ttvG6ZRFxYWskmTJrGhQ4eyTp06yfOcBg0asAsvvJCNHTtWN0U3XMzOERkLTBVWE7GMRefTtLjjjjsCxM6uXbvCerwRmzdvZu+88w674YYb2BlnnCHPZZOSkliDBg1Yr1692BNPPKGZwhvMzz//zB5++GHWrVs31qhRI+ZyuVjt2rXZmWeeyR599FHT7Uh4PB723XffsRtuuIG1adOGpaWlyffjs846iz300EOm2qwqAcsYY0ePHmUvvfQSO+uss1hWVhZLSkpirVq1YsOGDZN9lFmeffZZue977703rMeGg9m5zPLlyw1FbHFxMfvwww/Z1VdfzZo2bcqSk5OZy+Vi2dnZrHv37mzEiBHsp59+Cmshd+nSpYb3aiNuuukmBvhSnLXmdJHAMRZleVyCICzh119/lTfkP/TQQ2EXFCKiZ8OGDXKFPLPvwfz583HJJZcAAB5++GG88847sRwiQVQJ33//Pa699loAvqrq4Ra9IwiCIGoW+fn5aNSoEYqKivDEE09EXbxRSdyqEBMEoY/yQPFY7kUltFHuFTK793bChAny79Xh7FeCUGPgwIHyGdmvvvpq1Q6GIAiCsD3jx49HUVER0tPT8dhjj1naNglYgrAJkoAdNWoUsrOzq3g01Y/ff/9d9/zZDz74QC4G1LhxY1NnVv7zzz9ygZq+ffvK55wSRHWD4zh59fynn36Sj/ogCIIgiGDy8/Px9ttvA/Ad4xTNmcZqUAoxQdiA48ePo169eqhbty527tyJ9PT0qh5StaNNmzYoLS3F5Zdfjq5duyI7OxsVFRXYuXMnvv/++4AKoj/99JOmgJ07dy5EUcS2bdvw2muvydX5li1bhgsvvDAuz4UgqoqBAwfihx9+wJVXXomffvqpqodDEARB2JAxY8bgueeeQ8uWLbF582bdEzgigQQsQRA1gjZt2mDnzp26NsnJyfjkk09w8803a9qoHUthdr/sb7/9huLiYuPBqlC3bl306NEjoscSBEEQBEFUF0jAEgRRI1ixYgW+/fZbrFixAgcPHsSJEydQXFyMWrVqoW3btujbty+GDx+O+vXr67YjCdi0tDS0bdsWw4cPxx133GHq3NgWLVrI5zSGS69evbB48eKIHksQBEEQBFFdcFT1AAiCIOLB+eefj/PPPz/qdmjNjyAIgiAIouqgCCxBEARBEARBEASREFAVYoIgCIIgCIIgCCIhIAFLEARBEARBEARBJAQkYAmCIAiCIAiCIIiEgIo4EQRBENUKxhhKS0tRVFSEkpISFBcXh/yUlJSgvLxc/ikrK9P9v9frhSiK8Hq98o/0/+B/JXieB8dxuj88z8PpdMo/DodD9/9utxvJyclITk5GUlISkpKSNH9PS0tDWloanE5nFb4bBEEQBGEtJGAJgiAI28EYQ0lJCU6dOoX8/HwUFBQE/Kv2e2FhoSxORVGs6qdgG9xutyxmpZ/09PSQ/2dlZQX8pKWlqZ57TBAEQRBVCVUhJgiCIOICYwyFhYXIzc3FyZMnA/5V+1tZWVlU/XEch+TkZKSmpiI5ORkpKSnyT3JyMhZMXQaIACdygPyj/D8A5vudY/7fGfw//t8R+HcO/ut+3cdQ+Tvk35nidwC8/4E8A+MC/w+OATzA/P+CZ4DAcMV9fVBSUoLS0lKUlpaG/C79RIMgCMjMzJQFrfR77dq1UadOHdStW1f+NzMz09RZyARBEAQRLSRgCYIgiKhhjCE/Px/Hjh3DsWPHcPToURw9elT+v/QTrqhyuVzIyMhAeno6MjIykJGRgeXfrAbn4QEPD87DARX+f7084OHAeTnA6xeeqLkRRAaf2IWDgTlE37+CGPD/a0ZdjoKCAhQUFCAvL0/+KS4uDqsvQRBCRK30U79+fTRo0ADZ2dmUzkwQBEFEDQlYgiAIwhDGGE6dOoVDhw7h8OHDAT9HjhzB0aNHUV5ebqqt1NRU1KpVC7Vr18bGhf8C5Ty4Ct+P/Hs5D1QIvmgoEXcYxwCnCOYU5X+ZkwEOEZcN740TJ07gxIkTOH78OPLy8mBmKsFxHOrWrYt69eqhQYMGsrCV/m3QoAGSk5Pj8OwIgiCIRIYELEEQBAEA8Hq9OHLkCPbv34/9+/cHiNUjR46Yip7WqlUL2dnZyM7Oxp/f/AWuXABXxoMrFwD/vyRKExjlnlj/9EEWuy4RzOUFXCJufGkgTpw4gaNHjyInJwc5OTmmFjhq166NJk2aoHHjxvK/0u+pqamxelYEQRBEAkECliAIogbBGENeXh727dsnC1WlYK2oqNB8rBRBa9iwITbO3wauVKj8KRN80VNG4rTGYKbAkyRy4Re5bhHM7QVL8mLAo/1w5MgRWeAWFhbqNpWVlSWL2SZNmqB58+Zo0aIFGjduTKnJBEEQNQgSsARBENUQxhhOnDiBXbt2Yffu3di9ezf27NmDffv26QoFl8slC4TlX62RBSr8IpUEKqFKJNWKg6YfTBDBkn3idujrg3Hw4EEcPHgQBw4cQG5urmYzgiCgcePGaNGiBZo3by4L22bNmiEpKSn8cREEQRC2hgQsQRBEgpOXl4fdu3fLYnXPnj3YtWuXplDlOA4NGjRA06ZNsXbWBnAlDnAlArgShy/NtwYXPiKixKpjd9TEbZJP3N7x9hDs27cPe/fuxZ49ezRT26XPecuWLdG6dWu0bt0abdq0QePGjSEIgjXjJAiCIOIOCViCIIgEgTGGQ4cOYfv27di+fTu2bduG7du34+TJk6r2UmTqwF854Iod4IoclWKVIqlErInFGbLBwhYMcIlgKR6IKV70f+Qi7NmzB3v37sWpU6dUm0hKSkLLli3Rpk0btGrVCm3atEHr1q2RlpZm/XgJgiAIyyEBSxAEYUM8Hg/27t0ri9Tt27djx44dKCoqUrVv1KgRjmw4Aa5YCBSrJFSJqiYWQjYY5VTG3x9z+IQtS6nA5Y/0xo4dO7Br1y7N84UbNGiAtm3bon379mjfvj3atWuH9PT02I+dIAiCCAsSsARBEFUMYwyHDx/G5s2bsXnzZmzZsgXbt29XrdrqdDrRqlUrbF+yD3yhX6gWOcCJfKWRSqVYgrAF8RCzOjAw3z7blArc+MrV2LlzJ3bs2IGjR4+q2jdu3DhA0LZt2xYpKSlxHjVBEAShhAQsQRBEnMnPz8fWrVsDBKtaumNKSgratGmDTXO3gyt0gitUiapqCQK6tRN2poqFbDDMIYKlVuCuD27A1q1b8e+//+LQoUMhdhzHoXnz5jj99NPRqVMndOrUCc2bNwfP8yqtEgRBELGABCxBEEQMYYxh37592LBhA9atW4dNmzbhwIEDIXYOhwNt2rTBtoX7wBc6wRU4fRWAlXdos5N+uq0TiYLNhKwS5hDB0iow9O1B+Pfff7F161YcO3YsxC4tLQ0dO3aUBe3pp59OUVqCIIgYQgKWIAjCQjweD7Zt24YNGzZg/fr1WL9+vWp0tXHjxjj8zwlwBU7wBU5wRc7o96vS7ZxIVGwsZJUwpxdiWgVufPUqbNy4EVu2bEFpaWmADc/zaN26tSxqu3Tpgnr16lXRiAmCIKofJGAJgiCioKysDBs3bsS6deuwYcMGbNq0KWRC63K5cPrpp2PjzzvAFbh8gtVjccoh3coJuxHJXuwEEbISDAws1YP7P78FmzZtwsaNG3HkyJEQu8aNG6Nr167o0qULunbtiuzs7CoYLUEQRPWABCxBEEQYeDwe/Pvvv1i7di3++usvbNy4MaTYUlpaGor3VYDLd4LPd/n2r8aqGjDdwgm7E8k+7QQTskqYywsxvQLXPt8P69evx7Zt2yCKYoANCVqCIIjIIQFLEAShgyiK2L17tyxY//nnHxQXFwfY1KlTB7lbi3xiNd/pO8YGcT46hCDsjhlRqnIcTqLDBBFiRjkGj74M//zzj6ag7datG7p164auXbvSmbQEQRA6kIAlCIII4sSJE1i1ahVWrlyJv/76C3l5eQHX09PTUbS7HPwpF7hTbnAlQnwEqxK6dROJSjURppFiJGgFQUCHDh3QrVs3nHvuuWjXrh0EQajCERMEQdgLErAEQdR4PB4PNm3ahJUrV2LlypXYvn17wPWkpCSUHRbBn3KDz3P5zl2Nt2CVoFs2UV2o4UJWggkixMxyXP3MxVi9ejX2798fcD0tLQ3nnHOOHKFt0KBBFY2UIAjCHpCAJQiiRnLs2DE5yrpmzRoUFhYGXG/Xrh12zD8APs/tO9ImVntYw4Fu10R1hIRsAMztwUPTh2H16tVYu3ZtyL2pZcuWuOCCC3DBBRegQ4cOFJ0lCKLGQQKWIIgaAWMM27dvx7Jly7B8+fKQKGtGRgYKd5aDz/VHWStsNimkWzVR3SEhGwIDA0urwK3vDsTq1auxefNmeL1e+XpmZibOP/98XHDBBTj33HORmppahaMlCIKIDyRgCYKotng8Hqxbtw7Lli3DsmXLkJOTI1/jOA7t2rXD9t/2g891+yoFV1VasB50iyZqEiRidWEOEU/8fC/+/PNPrFixIiA663A40LlzZ1xwwQW48MIL0ahRoyocKUEQROwgAUsQRLWiuLgYq1atwrJly/DHH38ETPDcbjcqDgH8STf4k0nWn8VqNWZuzxxHIpeofiSakOX89xIm6ttZaMs4BpZegWvHXII//vgjZO/saaedhl69eqFXr15o3ry5cV8EQRAJAglYgiASnqKiIixfvhyLFi3C6tWrA85lzczMRMG2cp9ozXODExNkYqx1aw6e2NMtnKjOJJKQ5VQWxLREqlnbMNoUk0Xc8+l1+OOPP7B+/fqAVOMWLVqgd+/e6NWrF1q1agUukV5XgiCIIEjAEgSRkBQXF+PPP//EwoULsXLlygDR2rhxYxxZlQv+RJKvAJMdU4P1MHsWJt2+iZpAIoktNcEpoRSeenYW2DKHF4/MHIolS5Zg7dq18Hg8skmTJk3kyGy7du1IzBIEkXCQgCUIImEoKSnBihUrsHDhQvz5558BorVp06Y49MdJ8MeTwBVX4TE38YBu20RNJFGElpHgDBcmRtUmE0T858c7sWTJEqxatSpksa9v377o27cvpRkTBJEwkIAlCMLWeDwerF69Gr/99huWL1+O0tJS+Vrjxo1xZEWeumhVTvjM7DVLFOiWTdRE7CBeze5dtVrAWgjjRTw1514sXboUf/75Z8D9tG3btujbty/69OmD7OzsKhwlQRCEPiRgCYKwHYwxbNu2Db/++isWLFiA3Nxc+VqjRo2Qsyof/HE3uCId0So3pjPZTDSRS7droqZiBwErEXyfMbt31WYwXsQTv9yN+fPnY9WqVfKeWY7j0KVLF1xyySXo1asX0tPTq3ikBEEQgZCAJQjCNuTk5GDevHn47bffsGfPHvnvWVlZKNhcAf54su+4m4A9omHsD9OyJ/FKEPbFTuJVQuu+E87eVRvBHF48OP1mzJ8/H+vXr5f/7nQ60b17d/Tv3x/dunWDw+GowlESBEH4IAFLEESVUlpaikWLFuHXX3/F33//DemW5HK54DnEgz+W4qsezCKYxEqTSbOFVewI3aKJmowdxauEmcWzBBKxEsztwbCPBmLevHnYvXu3/Pc6derg0ksvxRVXXIFmzZpV4QgJgqjpkIAlCKJK2LZtG37++WfMmzcPRUVF8t+5Uy4Ix5LBn0gG543x5I/EK0HYGzsLWCAhBWo4iCkVuOa/F+HXX3/FqVOn5L+fccYZuOKKK3DRRRchJSWlCkdIEERNhAQsQRBxo6ioCPPnz8fPP/+Mf//9V/57w4YNcXRlIYRjyeDK4piiZqYYS1WKXLo9EwSJWBvAOIbn5t+P2bNnY+XKlRBF330xOTkZvXv3xpVXXolOnTrRkTwEQcQFErAEQcQUxhi2bNmCH3/8EYsWLUJJSQkAwOFwQDzigJCTCu6Uq2qOvTFTfKWqBCzdmgmiErsLoxogYiWY04vbJw7E7NmzsX//fvnvrVu3xsCBA3HJJZdQVJYgiJhCApYgiJhQWlqKefPm4bvvvsPOnTvlvzdr1gwHl+ZBOJoMziNU3QDNFFsh8UoQ9sLOQrYGiVgAYGB4++9n8csvv2DBggUoKysDAKSkpODSSy/FwIED0bJlyyoeJUEQ1RESsARBWMrhw4cxa9Ys/PzzzygoKADgL8h0QICQkwKuoIqirUrMFFch8UoQ9oRErO1ggoh7pg7GrFmzcODAAfnvXbp0wYABA9CzZ084nc4qHCFBENUJErAEQUQNYwx//fUXvv32W/zxxx/y/qiGDRvi6J9FPuEa64JMVlMVApZuxwRhjhoiYjmeAxP17wtmbKy207JhYBi74j+YNWsWli9fLp8tW7t2bQwYMAADBw5ErVq1DMdAEAShBwlYgiAipqSkBL/99hu+/fbbgHNb+Tw3+MOp4HPdIdFWjvf938wEyYxdTCDxShCJgV2FrMUiVkLrfmjGJt5tMZcXN71/OX788UecPHkSgC8bp1+/frj++uvRokULzbYJgiD0IAFLEETY5Obm4rvvvsP333+P/Px8AL5qlOW7eQhHUsGXOkMmNMrJDqA+4TFjExfiLWDpNkwQkWNHERsjASth5v6pZhfvtjieA+MYnpx9N2bMmIGtW7fK18477zxcf/31OOecc6h6MUEQYUECliAI0xw4cABff/01Zs+ejfLycgBA48aNkbO8EMKxyjRh5SRGbZITiU3cIPFKEImHHQVQjEWshHSfNGNjZVvh9sfA8NbaZzBjxgz8/vvvkKafrVq1wpAhQ9CnTx+4XC7NNgmCICRIwBIEYciWLVswbdo0LF26VN7fyhU64TiUDv5kUthFmcKdAMUNEq8EkbjUYBEL+O6ZRjZmMdNWNP2Jbg+uGtMDs2fPlo9Wq127NoYMGYIBAwbQMTwEQehCApYgCFUYY1i1ahW++uor/P333/Lf+Vw3HIfS41JN2Mz+K8uErp54VU5CrRK5dOslCGuxo4AF4ipiEw0miLjjs4GYOXMmjh07BgBIT0/HoEGDMHjwYGRkZFTxCAmCsCMkYAmCCIAxhj/++AOTJ0+W9ysJggB2xA3HoTTwJfE5CiHaPbJhC1w1YRo88STxShD2xK7iVcIiEVvdBKwE4xhGfn8bvvzyS+zfvx+Ar67CgAEDcP3116Nu3bpVPEKCIOwECViCIAAAoihi+fLlmDRpErZv3w4ASEpKQsUuBxxH0sCVC3EdTyR7ZCMuAqUUploTTRKvBGFf7C5gARKxJmBgePrXe/HFF1/IfsjlcuGKK67Arbfeiuzs7CoeIUEQdoAELEHUcERRxNKlSzF58mTs3LkTgL+i8A4BjsNp4DzxFa6ANUVJwhavepNLEq8EYV8SQbxKkIg1BQPD6CUPY+rUqdi4cSMAn5C96qqrcMstt6BOnTpVPEKCIKoSErAEUUNhjOHPP//EJ598IgvXlJQUlG0T4DiSWiXC1UosLQJlhYClWy1BWE8iiVeABGyYMDC8tvIJfPrpp1i/fj0AwO12Y+DAgbjppptQq1atKh4hQRBVAQlYgqiB/P333/j444+xadMmAEBqaipK/+V9EVdv0ARLmnCZKXJkZBPHKr9xKe4UVjs64+E4ErgEESl2ErFG9zk7FnQyc2+2wiaKNhgYxv75H0ycOFH2W0lJSbj22mtx0003UbEngqhhkIAliBrEli1b8Mknn2DNmjUAfCvZnt0uOA7qCFcgugJHZir4mhHAYWKJgI21eJUm3nQbJojosJuIlTBz74yqKwuedzj36HjaaAjZMb+PxKeffioXGUxLS8PNN9+MwYMHw+12q7dJEES1ggQsQdQA9u/fj48++ghLly4FADgcDrADSXAcygBXHjQBUptcRVLkyKidYJuaIl6DJ9p0CyYIa7CriAXM3R8j6sbCKKySSBYtw73nm7VRE7Ich5cWPRiwBSY7Oxt33nknLr30UghCYm+BIQhCHxKwBFGNOXXqFCZNmoRZs2bB6/WC4zhwR5PhOJgJvszhMwqniFE0NkYi2CLBaKvUYeXtVW1yTbdfgrAWO4tYCTP307C6sTgKqyTcxctIn3OE/TAwPPbjUEycOBE5OTkAgJYtW+Lee+9F9+7dwdnp80AQhGWQgCWIakh5eTm+++47TJkyBYWFhQAAPjcJjv1ZsTnHlYnGkzE9m+oYfWVMfzJNt16CiA12Ei0WpgvrdxNDEQuYX8SMxg9E0QbjGO6cdDWmTp2KgoICAEDXrl0xYsQItGnTRr89giASDhKwBFGNYIxhyZIl+PDDD3Ho0CEAAFfkhGNfFoT8pCoenQHRFomCvniVJniGAjcehabotksQscUuIra6CFgr4Tkg2oVGjTaYIGLQW70wc+ZMlJeXg+d5XHnllbjrrruQlZUVXZ8EQdgGErAEUU3YtWsX3nnnHfzzzz8AgDp16uDUahHCsVRwCJrcmJlAGNlIEyYjm3DPY1US5h5ZNXGqnNiZis7qFRah82AJwv7YRbxK1DQRa+QblOM0sonQB03d9xY+/PBDLFiwAICv0NOwYcNwzTXXwOmMQRYSQRBxhQQsQSQ4hYWF+Oyzz/D999/D6/X6KgvvcsNxJAOcR2VCE+3kIpzJh56NkkgKfag2U9mX2mQuouhrLApN0W2XIGKD3cSrRBxErCkBG49jfoLHYeRH1GzCbUPj+usr/oPx48dj+/btAICmTZtixIgROP/88zUGTxBEIkACliASFFEU8dtvv+HDDz/EyZMnAQD8yWQ499cCV+4v0KR06lZPGCJtQ41wCnxoNsH8TahP4sIWr2aPCQoXuuUSROywq4AF7CFiI6k2HAlq49DzR8HXrWhD2jYChoe/uRGffPIJcnNzAQA9e/bEQw89hHr16mk9A4IgbAwJWIJIQHbu3Ik333wTGzduBABwJQ449tWCkJ9caSQ5cq0JjdnrVrWhhdmiHVFgOnU41kWm6HZLELHDzuIVsE8qcaRHpYWD3hhEZnw9Bm0wXsTA1y7EzJkz4fV6kZycjDvuuAODBg2Cw+HQbosgCNtBApYgEoiysjJMmjQJ06dPlx1wxTY3hJx0cMymk7doi3VYIB6jrkxs9ZE6BEFYj90FLGDPKKwSMwuKZrDqfNoYMGHjS3jrrbewYcMGAECbNm0watQodOrUqYpHRhCEWUjAEkSCsHbtWrzxxhs4ePAgAH+68L5a4CqsXznmOA6W3BqiLdAhMv2iSkDUlYmjKuxkFrrNEkRsSQTxKmF3EWsWs4X+IkQ6w1XPFxn5Kq3rUlrxhx9+iPz8fADAVVddheHDhyMtLS2qcRMEEXtIwBKEzTl16hQmTJiA2bNn+/5QLsC5txaEvJQQWyOHb9WEwHQb0eyz1RKvYe5N1atMHBfxCpCAJYhYk0gCFoi5iI2bgJUwUzMheAgmfYmeDad439VsjK7DKeLip8+U/Wt2djYee+wxdO/eXXfsBEFULSRgCcLGLF68GG+99Rby8vLAcRz4nFQ4D9QCvIETAy5o8haJI496IoCgyUY4e2jV7IIFbASViYMFathH6pjow/jxdIsliJiSaOIVqB5R2EgLMSmHEIbfUbMJ93qwjXR93B+PYty4cXKG06WXXooRI0YgIyNDd/wEQVQNJGAJwobk5+fjnXfewfz58wEAXIkTzj21IRQlReygY3VdzSZAwEZSJEopXo32a+mgV5mYUocJopqQiAIWqH5RWAkzi5fSECLwP0qbaK8rbRgvYsC4C/DNN99AFEXUrl0bI0eORK9evXSfA0EQ8YcELEHYjD/++AOvvfYaTp48CZ7nwR9Ig+NwllykKVrHbUUb4UwONNGrImmBuGQii/xIHRPtm4JurwQRWxJVvEokuoiNplIwovdjetfN2Khdf2v1kxg7diz27t0LAOjTpw9GjRqF9PR03b4IgogfJGAJwiYUFhbi/fffl/ficCUOuPbUBV/kruKRhYdlt5Rwz20NA4q+EkQ1oYYLWL1CdIbi1YL+rag2bCRCqwLGMVz3Ti989dVX8Hq9yM7OxtNPP42zzz67qodGEARIwBKELdiwYQNGjx6NnJwccBwH4XAaHAezwLGgyQXPA6KOsKrq63709siajs7qdpCg4pXjSNgShNXYUACFhQUiFtAvWBfL/qMt1hS1gOX949fyTVFcf3vNUxgzZgwOHDgAALj++utx9913w+1OrIVlgqhukIAliCrE6/Vi6tSpmDRpEkRRBFfmgHN3HQiFSaHGMXTSllxXoFeMo9oLWLXnJ03Q6HZLELEhkUWsRQJWQnmPs5OABcwVagq/f8X41fxTlNeZA+j3fGf8+OOPAICWLVvi+eefR+vWrSMdMUEQUUICliCqiJycHIwZMwbr1q0DAAgnUuHcXxecJ8iQD5pcBDvYqr6uglYRjmovXoFAkRo8MaPbLUHEDhKxMnYSsZEWajLft8rYlX7KouvP/3oPxo0bh7y8PDidTjzwwAO45pprbJkCTRDVHRKwBFEFLFmyBK+99hoKCgqQnJwMz5ZUOE76C0TEwPGavh7OYzXQK75hewFrlXhVm9DQrZYgYkuiC4koRKRewbqqFrBAdMWajPvWGLvkryy8Pn3/Oxg3bhz++OMPAEDv3r3x+OOPIy0tLdxREwQRBSRgCSKOVFRU4H//+x++/fZbAABX5IJrTz3wZc5KIyOnGg1WOXQd9Ko+Ri1g7R591WyXbrMEERcSWcRaHIWNa/8RCljAXDVh4/5jVM1ZFEPaZmC467MrMWHCBHi9XjRq1AgvvfQS2rVrF5sxEAQRAglYgogTx44dwwsvvICNGzcCABw5mXAcqiUfjyNj90I/entkdQRuVUdffQ+PcQRWs10bv58EUd2ooSK2SgUsEHYaceBjoywgKAixu89q+OS3Vz2BF198EUeOHIHT6cSDDz6IgQMHUkoxQcQBErAEEQf++usvvPTSS8jNzQW8PFx76kI4lRpoZFTox8x1va+z3nWzolmvAEYU1Ykr249QYHK8KfGpK2CjbFu/Y7rNEkRcSHTxUE0FLGBSxAKRFRIUBN+/0fjPCK4zwYtzHmiGZcuWAQD69u2Lxx9/HElJKoUYCYKwDBKwBBFDGGOYNm0aPv74Y1+V4RIXXLuCUoaVTl2vgq3R9Vg5bsmGMf0CT1UhYJUTLgORGVH0VWqfBCxBJAY1WMD6Hh7F87eLgAXCrxbM89b50jCvB6cUn3baaXjllVfQoEGD0DYIgrAEErAEESNKS0vx6quvYtGiRQAA4UQanPvq+M521XLkehVsja4Hf5WjvR5spxSwURZ40iScCGkY4tVnEjtxbNw53WYJIi6QgK26/q0UsBLhFBaUorBKovGpYV4f+/sjeP7553Hq1ClkZmZi9OjR6Nq1a+hjCIKIGhKwBBEDjh07hmeeeQZbt26Fw+EAtysLwvE0cHqTA70KtkbXrXTSanaSeI2yuJMuZgWm2mtopYCNsH39tuk2SxBxgQRslfYfExELmCswGByFVRKNfw3j+pSdr+Hpp5/G9u3bIQgCHnjgAQwaNIj2xRKExZCAJQiL2bp1K5566imcOHEC8PBw7aoPoSi5qoelTyQCV0m8BKzW5MoqARtF+/pt022WIOJCogsFErDa1/QWUSs70L8eBxgnoufjbfHbb78BAK666iqMHDkSDoejikdGENWHGNUdJ4iayYIFC/Dggw/ixIkT4EqccG9vCqEkVf9BPK/vlI2uSzbRIDl9LecfzaTDKqKdWEXafqwqExMEYS02EC9VjanjwhIVvQir0qYqrwPgeSeWjtuOBx54ADzP46effsITTzyBoqIiw8cSBGEOisAShAUwxvDll1/i448/BgDwp5Lh2tcQPBN8kUeNghQcx+lel4mkKqN03ehoAr3HK4kyCht1BFa3cQsisBG2q/94ur0SRNyoDgLWooW6iCOxdo7A+hqo/F3r/irthY3Gb0ZxnfP3z7xePDfnLowePRqlpaVo1aoVxo0bh/r166u3SxCEaUjAEkSUeL1ejB8/Ht9//z0AQDiWCdfhbHDwOdoQgeoXrhJq10PQq/5rdD1Scawk0iN2AppIMAFL4pUgEotEF7AxyDIJW8hWtYAFwk8TDr7XBhdzisZ/RnCdC+r/3ZWP44knnsDJkydRp04djB07Fu3atQNBEJFDApYgoqCsrAxjxozBkiVLwHEcHAfrwHm8lnw9QJwGCVe165qYKWAhEa1zVsMOe2B1G7dQwFqRMky3VYKIL4kuXoGYbZMIS8TGWMACFkdhJZT3XLVqxEaLxEqbSPxs0PVgETv53//i8ccfx+7du5GcnIwxY8agW7du6v0QBGEICViCiJCCggI8/fTTWLduHcA4uPbVh+NUeoCN9PXSctimvn5mnaoVTlmLmiJgKepKEIkJCViDpk2+PokqYCUYUxewEtH6S8nG4HqwgAUAxnvRcVhtrFmzBg6HA88//zx69+6t3Q5BEJqQgCWICDh58iRGjRqFXbt2AV4e7j0NIRSlRNRWlX8F7bD/FSABSxBE5JCANdmFwetkxRjiuQ82ksfHAU7gVX0a40Sc/1AzLFq0CDzP47HHHsOVV15ZBSMkiMSm6r/lBJFgHDt2DA899BB27doFrkJA0s4m6uLVaKKgc53jOHBCaMpxiI0VkzYbOPt4EPXxEgRB2JPqIF4J6zCxKGvkOzmB94nQCK8zr6jq4znGY8W7+3HVVVdBFEW89tprmDZtmuF4CYIIpGbMXAnCIo4cOYIRI0Zg37594ModcO9sAr7UHWjEc/riVbouMtXIJMfpP96McLVM3BLhQa85QRBElWPG/5nypRoilXlF+bqekFWbD3DgMP+VLbjpppsAABMmTMDEiROrPhuLIBIIErAEYZIDBw7gwQcfxKFDh8CVO33itdxVaWAkXCUbDaSoq2wTJHDNitKwhauZFGKCIAg7QotGNQ+TQi8cnxlSYNGrLMhkIFKhLXRlguYHHDjMenI17rvvPgDAlClT8Omnn5KIJQiTkIAlCBPs378fI0aMwNGjR8GVOeHe1QR8hdN30axw1bAJEa4aNkbU6KhrHPaOEQRBxAw77H+tppj1i7FOKwYQMheY8uBCPPjgg77fp0zBZ599RiKWIExAsz6CMODw4cN45JFHcOLECXClLiTtagreoxCvWohMX9zy5oRrdUgXtvv4ZEgIEwRBRI5NRXI00dgQG7NCVq9woOJ1+uy+32QRO3nyZHz++eeG4ySImg7N1ghCh2PHjmHkyJE4duyYT7zubgJOdPmEjpaj5nj960obPSyYCFgiHC04QifmWHF2K0EQiUWiLIwRtiGsrThGPlrvuB7A58P1bBTXP7vvNzzwwAMAgEmTJpGIJQgDSMAShAa5ubkYOXJk5Z7XvU3BwW0sTI2uSw5NT3TpOU4pqmvTle64YzfxSpNqgiDCwU6ZH0y03z1VDZ6PvoK+GT+q9954vT5/biRkzVwXBHw+fB7uv/9+AMDnn3+OmTNn6j+OIGowNrprEoR9KCgowKhRoyqrDe9rBl70F2wSWaiDl4SpXlRW77rSTsthkmgNJFEmWgRBWA8tFMWWRLm3xkPImsmYMhKyWte93gCbSSMW4c477wQAjB8/Hr/99pt+vwRRQyEBSxBBlJeX4+mnn8bOnTuBCgHufc3BV7jUjc0IU6OorGRjFHWt7oTzHGM5ubJTNIQgCMICIirglCgiFrDmPPNo/TRgOtqqx1ePLcegQYMAAK+++ipWrFih3yZB1EBopkYQCkRRxH//+1+sW7cO8PJI2t9MX7yaSReOJkUpHlHXqFev43wbSYRJFUWHCCJ20Pcrflic6WJJXQYtAWiHtGIg6rRiDhxmj9mESy65BF6vF8899xw2bNig3x5B1DBIwBKEgg8//BALFy4EGAf3gSbgy5JCjaTCC3pOzqwT1HOE8YoE2qEIU5yI2zESdAwCQRBmSJSMj0RYOJSoBtFYDhyWjd+P888/H2VlZXjqqadw4MAB/fYIogaRIHdOgog93377LaZPnw4AcB1qCKE4NdCA4wBe0F/9N2MDmDs31ggzqck2oqqP0mEiA9M71qDSMPaDIQgiMij6al8SyB9BEEwIUN73o4ehrxd8P3o4HL6f4KbBYd2kXJx++unIz8/Hk08+iYKCAv22CKKGQAKWIACsWLEC48ePBwA4j2bDkZ8ZaMAZRF1l4WrC2UUrbs2s/FoBY9UmkmhKuPoMLeiserxmBEHEmDhFX+OWeWIF8d6SYiqSapApZcqvmxSywc0zHq+88gqys7Oxb98+vPDCC/B4PPrtEEQNgAQsUePZv38/Ro8eDcYYhLxacJyoU3lREqZ6qUBmzoszK1yj3XtjFVUlwmIw0TIddSXxShD2hqKvVUeipDpHSjTRWEkEmxWyeqhEY285/RmMHTsWycnJWLNmDd555x0w8jVEDaea35EIQp+ioiI8/fTTKCwsBF+SAldOQ3DgAoWrFVFXPazYL6vbfTjVfSOMusZz1dzk6xDXlOFqFK0mCIKIBfHaRhJxP2ajsWaErB4RpBWP6PkOnnvuOXAchx9//BHff/+9/uMJoppDApaosYiiiJdffhl79+4FV+GA+3AzcOCN04UB46ir0Wosx/mcoNm9rvEgDgKsqvfBhkBRV4JIDOx274iW6pY+nEhpykaYeW8MhawF0VggQMSOuW4a7rvvPgDA+++/j82bNxs/niCqKSRgiRrL5MmT8ccffwCMg+twc/CiC5xDAKeyD0WCk8RtNEffmI2m8iZSk01gp1QjS8ZCRZYIomZR3cRromGn9GGOs6ZyvlVVhjUztHyP54yKQPECOIMMJs7lkm0mjfodvXr1gsfjwfPPP4+8vDz99gmimmKjuxJBxI+//voLkyZNAgC4chrDUZ6qO0niOM7nQDhOO4rIc+AEXj/KGO5EINar2lZMBEQxvkfx2GkyBdDkmiCI8LDbPcwuhLMVxSoRq+VjpYVss4vNOnCCsZDleN5YyPI8OHB48skn0bRpUxw9ehQvv/wyvF6v8RgJoppBd1GixpGXl4cxY8aAMQZHfi04i+oYilcz+1gNhWssJi3RHKVjlXgNA9ulENNEkiDsjd3uGQmEndKHY3Lvj9SHBRdltCIaa6KWhWE0FjAlYge3fRKjR4+G2+3G6tWrMXnyZMN2CaK6QbM3okYhiiL++9//4vjx4+DK3XAdb6xpq4y6Bl2odESxiLpaTMjYrIqYxirqatGkK65HR9AkmyCspzp+rxJt0czu4w3yZ6aEsppvsKoeRZjRWM4Rug/WTDT2wZ7v4D//+Q8AYMqUKdiwYYPx2AiiGmHzOxNBWMs333yDFStWAIxDUk5zcEy9iEK0UVdTe2WrAj3RaXayGO+UYTWsfF3t9h4RBEFESUKd/QqYSx/W81GxTimWx2A+GqsXcbUiGvv27T/h0ksvhSiKGDNmDIqKigzbJIjqAs3ciBrDrl278NFHHwEAXMcbgS9PDjUS/Efn6DlKo72wfgxXgjneXBVCqyYiRg7eRsWeDLGykBMVhSIIIh7QYpk28cwKMjpeTaeQowTndBr3o3d+PPwi1qAvjte3efjhh9GgQQMcPnwY7733nvGYCKKaQHdTokbg8XgwduxYeDweCEXpcOTXCTWShKsJ8aq7WmwyemuJMJXEl05bcuXfeJ7VqjEOwyrEIjOeXJgUnHE7AxZILPFPEIkCfa8iwrLoq1nBbeK+baoCfZQiljMQjAAqRaUZ/2DUn1Gqr5SJZTQuI8HMc5o217V7Cs888ww4jsPs2bOxZMkSg1ETRPWABCxRI5g+fTq2bt0KiAJcJ5uDg8LBC4LPORgJV6PILGAuDdeqyYUJ8RXWsTVmU4gjEMLmJi/WCc64iVfGaJJNELGkuny/akL01YSINV7E1NiiEpMiUNZ8tgxFrCRk9XA49IWsJGJVbJ68ehJuuukmAMAbb7xBR+sQNYIacEclajp79uzB559/DgBw5TYF73VVXlQTpcHORqOQU8Df1KKuXNAeGCujrgbiy9REIU7YTryaeP3MdWSP15cgqj30XTNN3KOvwZi4l8cjGmsaM1k/JgiOxoacJ68WjVVLQw5+nPL/0hwi2Ibn8P3YLWjVqhVOnTqF//3vfxE+C4JIHEjAEtUaURQxduxYVFRUQCjJhKPYnzpsRdRVclbRRF15Lrx9sHrCy2+jOzkwip5auMptacqwmWizyMyJVyugCTVBxJdE/s7VhOirEqtTik34pbDSh1X7krbaGLejVjlYvqY3L4gkGqtVMTkoGsuBx+OPPw6O4zB37lysXbvW6GkQREJTw+6qRE1j9uzZ2Lx5sy91ONefOmxmj6oZG8nOCCtWxEVmLL5Ek+lZethpZZwgCEJJIovYOFDl0dcwsVUkFohPSjFgTsQCxinFQdHYR/tPxMCBAwEAb775JsrKykyMliASExKwRLUlPz+/surwqUbgRbfPaTgdgFYJe54DHILvR8uG43zXHAbFGaq4aFLYWDiZsEv6MkEQ1YhEPBe2pkVfq4i4+hyzR/7ofV6djsq5hp6NURGoIJt77rkHdevWxYEDBzB16lTjcRJEgkJ3VqLaMnHiRJw6dQpceTIcRfWNnQ5vUF0Y8FcgNhN19bcjCMbH6ZhJI+Y5U2fPGfel0UZViVerDo83i1VtJeJEmiASmUT8zsVRvNou+mpiPIb+CjAnFv02ur4n2oinHzl9WG9cDkdlhFTrOSr/ridiJTTGz3hO/oEgYHCn5/Dwww8D8BWvPHz4sHHbBJGAkIAlqiXbtm3Djz/+CABw57cApycQpairYTl83tgp83xiRV7NVNHVqgoZ0lTVFo6ybAJHEARB2IMwFy5i7oOU/l3L1yt9kSRijZ6HUTQWMIzGSiL21Tt/wtlnn43y8nJ8/PHH+m0SRIKSQDNtgjAHYwwffPABRFGEUFwHQnmGtrFe1JXnfaJVL+oq8JUORasdu0Zh7ZIyTFFYgiD0SMTvGkVf9buyOPqqJGQx1eroa3D/yjGotRMcjdUTqtI1p854jEQsz+OBBx4Ax3FYsGABNm7cqN0WQSQoJGCJasfq1avx999/A4yDq6Cpqg1zOsDcTuOoK28i6gokVtTVYmi/K0EQMYPEa80lyvfect+k5+ela3rzhTCisUxPwAKAIIClJGlefvCKj3H55ZcDAD744APy00S1g+6yRLWCMYZPPvkEAOAoqg/e6w61EXj1s12VcP49JWaIdoIlHTlgosqwrz+Nr62ZI2mU6cAWrYCbWknXHZN1Z8Cawsq2CIKIHYkoXuNMtY6+Gm1xMRWh5YyPYhN4c8e1GW2nkeYVusfzcWAC75uHGGAoYjlON1J71113ITk5GZs2bcKSJUsM+yOIRIIELFGtWLJkCf7991+ACXCWhEZfZfEKALyGE1GI1wB7LUwWf1J12krxxumIakNharPjCMxg9gB5k4LT8AzYMNoyDU2wCYJQUpNTh2OFVdFDM/d/DZuA9GEtX6q00fANSlGqJWKZy6lqH2Djdlb2o2FzS6+3MGTIEADApEmTINptDkAQUWDzuxZBmMfr9WLixIkAAEdJI3BM4QQE3ucIgoWm0slw/pXRWBQDUhO4Zs+ci0C8hohlLcdVVVFYs2LTxISDiaxqxKsEiViCsJ5E/F7ZXQjGmljufQ0WsWb8kppAjELEBqDmU4Ofm4l0YTPRWOZ0hArZoLkLnA5VIXvdddchJSUFu3btwrJly3T7IYhEoobfbYnqxO+//459+/YBogPO0sby301FUXVShi2PwupFHpVRWCM7sxFMu626VkXUldKGCSJxSETxGmdsF32NRxV4KyOxkk/QEo8KG9XiTUBgSrFeYSb/51kvJVgSscroa4iNXkqxJJaDbK47/1UMGjQIADB58mTaC0tUG0jAEtUCxhi++uorAICjtCE45gBzOcGS3YaFF5hDiE3UVaUv05gRZgZjjnpvapjEu78qjboGQxNugrCGRP0uJWLqcJyxpPKwSQFmri8TNmajsUb9mRiP2X2xcvqwVj9OB8T0FPlP119/PZKTk7F9+3aKwhLVBhKwRLVg3bp12Lp1K8B4OEsbggkC4ODBDIopmDr/1UzVQKk9PTvJyZmqahz9BMWyldZ4HKUTK+IxqTRzli5BEImL0X0kUVOH7Va4KRysyiwyuHdzDofx/d3lNLRhLqepc+JV04WDEJNcEI1ELO+zA4AhF4zDtddeCwCYNm2abtsEkSgk6F2XIAKRo69l9QA+GXD4P9oOXj21R5ny69A4HFzhcJnyvNdwCapcqOnIw0115bSP+AkQkyZSmzWpKvFqYmJlOgoRy8klCVeCsA47Rl+l+4dNRKrtUoetxEyWkvIzouGfOOU2HC2U/tzMfdzMQqXZxUyN58mSKk9N0BKxYkqljZaIlf+uELGDBg2Cw+HAxo0bfYv9BJHg2PAORhDhsWfPHqxYsQJggOBtXile/YREYU3uV40IgTd2sGpR2GDhajZSq4LtI68Jmv4WAolXgrAOO4tXrf9r/S1G2DJ1OJaFm8xg5KfMFktUEZ+cQ0VEBt/31fasBtmo7ms18XwNj9GBhojlA38Xk1y46dL3cfHFFwMAZs6cadguQdgdErBEwvPTTz8BAHhvXfAsJdRAisLqpQxLUViddOGwo7A6jjXAoWtFXc2IWEUUljGmLSbDFeyxjryamYjZOQpL4pUgrMOO4lULjrddVDZsEqlwkxLNY+Yqs5wMj6sD9P24/96uKl6DbHQJJxLLcQHR14BmFCnFLNmlaiO6nbKQ1RS0PDB48GAAwMKFC3HixAnj8RGEjUnQuy9B+CgrK8PcuXMBAI6KRpp2TDARdTXhjM1WNDZEEqcWFRmyNIU3kfe86pGok02CqM7YVbzabN9roqYOWxZ9NdGObl9mq/YD5gWqTsVgycYwisrzYCnq4jWgKadDv6YH/OJV56V86Nbp6NixIzweD3799VfDPgnCztCMjkhoFi9ejIKCAoAlgffWVrVhAgfmdoI5tVddGcf5Cz+ZiLCaFaianflSlTiOi34ywXRWncNqJ85i1KIKwqYqEUtt0VE6BEEYoYyw2gRKHbYQ6Qg6PXjBeIHW6TQnis3OFxz6r4M33Q0xSV8Me9Nc8KaoR2kl+vfvDwCYPXt24i1CE4QCe92lCSJM5syZAwAQvI3AIdBRMIGD6BJ8B4VzKnthJTt/xT7wMF/qXsvpSs6M04j4hhzGrlXQSbEfR9NGIch4zniyoDXmCA6Ij4qqEK9WY9eoEUEkEvQ9MsRS8VrdUoeVJma29yht9PyHmW05SjTa0jvTVbZRpgXriVjO96MrYv3zGG+KtpB967W/kJSUhH379mHjxo2G4yMIu0IClkhYjh8/jr///hsAwDkaQ3RVOicmcCFnqjEnHxCF9UVduYBvAeM1qhYHY2afTXDJfC1HGDypMKx0aGE0MdI9s4gw6lsdxKsETb4JInLs+P2xWeTVUqpx6nDEqEVQ+VD/HyJinSrCNKgd5nJGlq3l4EOErDddkWLsF7HBQtabphCsCiEbYJPsBMc5cNFFFwGAvP2KIBKRany3Jqo7CxcuBGMMHLLAcany39XEq3zN7yzkqGswPEylEjNlJWO9NCLJOWkIRS64UJOmoJTa0RFk4UZhLUgfMi1ize4/ShTxShBE5JB4NYUt973aMHU47OhrMJJP4QVzR9MZtQOYy+bSKMoEQBax3nQ3ENyUWjRWYz4TIGL9Y+rXrx8AYOnSpfB4PIbjJAg7Yr87NkGYZMGCBQAADg0BAKJLgDfZqSleAV8UVnQ59D/5Zr4VnF8kGzkprVTiEDs+fvtQzU4c4r03yUrBGS/xaseJOEHYGTt+Z6qzeLWSRE0dNjNukRnaMcbUo69B7ZhOHTZ6fg4+VLwq8YvYgOhrMFJKcXLlmP4zcg4yMzNx6tQp/PPPP4ZjJQg7Yr+7NkGY4NixY9iyZQsAgEcDMAcHb4oDzGVcaVhMcugWdIJoIgrLGDijSKC0j9VkVd+oJ3ZmIpOK4wasIJr9QYENmax8bDb6asMJKUHUeEi8mqJG7Hu1yA+Z3qdq5GME4+JOnMNhftxGYzLxXfCku8Gc+u9feS0XKtKNKh377MqznP6uefTs2RMAsGjRIsNxEIQdsd+dmyBMsGLFCgAAh0zAmQSvy1eoyesWILpVbua8L2LKeM6ffqN1nlzlr5oiVileed7n+FRs5H959UgtYwzMK5oUnlJxKIPiUdBJ37JQuJqmKsSrRDwmplTFkSAIu1JF4tx0dVs9nxRmGrL2GegmzlyXfDgz64+1F4KZ21m5eK0xJt3UYT+edLc8Q9cTsYznwHgOFakOVKSqC9nyDCcYDzAesojt3bs3AGDZsmUQq2JuQBBRQgKWSEiWL18OAOD4+vAqoq6MA7zJQSLWf4NXpuKITiEwCisiQLxqohZ5DRaxSvGqtFE4ZMZU9oRyKkJXbe9o8KRExeGGiFg1BxVlNMRwklKV4lUilhM4Eq8EYR6KvpoiUfe9BmOJiNVDZYtLSJ9q4zbyOZKIDfI5nENFHAaNnbmDUodVRKyp1GEgZHbuK0IZ+MfyrEohrBSyATZ+8Vpp5xOxTzz6K5KTk5Gbm4sdO3YYj4cgbIb97t4EYUBZWRnWrl0LABDd9UOuMw6Vn2xJvAbDAaLLn0qs48/kKCxj4LyiubRh5b+qJnpFnxQiNpzIrK5NFKvcGvtg4yVemcgiF6+xQmdlnSAIFUi8mqK67XsNS8Qq/VSkR8KZ7VPpe1QzqMSAaKyqeJUwEuDB/sJk6rBmc34RW57lUp3bBItYpvb0eKCilhtdu3YFAKxatcpwTARhN+x3BycIA7Zs2YKysjKAcwNcuqqN1y1ATHaoi1cJvVRiJcHH4Wja6FccDqhabITh4egm9utYNWkMStOKZ+TVEmw4USWIGgOJV1NU132vpkWshAWfF8aMCzIBMLYJI6U4JPoaOCCAMXOpw5luw5k5c/K6cxtJxJZnaI+J8cC5554LgAQskZjY7y5OEAbIVfP42qoijfEcvC4eFWkOePUO/Wb+VGK3drEmzky0TSrUxHEmqxJb5FjNVEy0gnBTvMw8v3hOIK0Wy3ackBOEHbHjd4XEa1wJeyHVyG9ZdUa50YKz1JbAA16vfltOBzivvp9hbpepoo6M5+Tj/rQoyXbBk6xvU1TfgeJsASV1tOc33bp1AwBs2rTJFxQgiATCXnc6gjCBJGDF5Loh1xjPgQmKs1617vEKnyW6HKoiNkC8OgQwjYJOptNJ/Y4r5OzXgPb8zs2MjQYhUVI9h28YTQ3sy/RkxCIRG/XEjs6CJYiqgcRr/Knifa/BhCVezZxRbla8hjt2rXPalanDWiLW6ZA/67oiVjl0DRHryfSnDnPQFLEl2S6Igm9rlJ6IZQLkwk1aIvbaZ75GrVq1UFFRgW3btmmPnSBsSDW/mxPVDY/Hg02bNgEAyjOz4UmtvDErxauEN4kPjMIyBIhXLVQjr8EiVs1GUEk3Vtnfo+rYg8WWmiMOtgm6HlbUNUzxWjms+EYLIhaxsRSvdpycE4RdsOP3w6bitboUbYquP51K/no2qm2ZGLva2bFB/anue1UTsUGfdc4rhghZlqSypzXIv3oy3YFpwRoiVlTMcSQRGyxki7MDn5+aiC3LEMAEDp06dQIAbNy4MXSMBGFj7HlHJwgN9u3bh7KyMjDOAdGdjvJUHp5UQVW8Aj4H4E32i1gdvaaMwuqmDUsiVs9GKWL10oXMlPdXilgtG/91XfEa7PwjFK+Vw7IgDToMwp7kxSPyasdJOkFUNfS9ME11K9qkxHy2ThQZQpH0qSZeg/rTLdqkFLFObTtJxLIknT2tfj8bIl7lRgJFbEl26B5aqfqwJGKLswUwNX2uELFlGYJc3IkELJGokIAlEgopzUV0ZwIcB8YDokNdvErIIjZZ/7BvJvCAwJlzmob7dIz3wsrO1ozYslKQVfcKupQ2TBBVg13Fqw2jr7bc92qHyGsw0lnqBphKHTbzOpnxj16v5vnuATgdxrNsUTQsNsk4DkUN3AHR12AYz+Fke4eqeK20AUpqCwGViU8//XQAwPbt2w0GShD2wn53dYLQoVLAZvn+dQCltTiUp+t/lHX3w8IXdeUYwKSjdTQb8js3o1VjE8ftyJUS9Zyq1Fa0E5RwjigwUbTJVKqyhcff2O4oHaD6LwQQRHWgCsSrkTi1pXi1EGu3mXDmM4KsqPDPC8b+TYrQegyKOwHgPPpj96YngfPo91dc3+Xb06ozNQEA0QmU1jEo7tSYQ2GTSpu73poLADhy5AiKior0OyAIG2G/Ox9B6LBz504AgOjKhOgARJf/YO4MYxHrTVKPwnKMgfNWOhBNEcsYIKUFOQTtfTuSg+Q4TZvAIksaIjbYiWpNVKSz6rQmDWrOPxzbkGFZKF5NngUbFvGY0JF4JYhA7Bh9rULxqiVSbSte7ZQ6XNlY5e9mazLonbFuZMMLxltyHI7AcWmIWObyH2HDmKaI9aYn+c6tZ0xTxBbXcwUIVy0RW9DM9/wYry1iixtwPiHsQKWIFVzIzs4GAOzatUu9cYKwISRgiYTiwIEDAABPehpExXYQMyJWLZU4WLxWXggunlQpXuU/BYvY4MirdKxOkI25g9b9NsGONnjCEnQ91JmHkU5bHcSrRCwnriReCSIQEq/+Lrmw/h9lZ9a1ZcfUYbXPlFl/ZuQ31WwU4lVC1d+pjStIxDKXM6jGRaiIlcVrgE1of6r7WYP+VtCMh6isVakiYiXxKtv4RWxhEw6tWrUCQAKWSCxIwBIJQ2lpKY4dOwYAEN1pIdelkvF6KEWspngFwJyCLworCVeN8viyiNVKG1aKWD3xKkVhlcWhjFaSNa5XplMZOHsTq9tKEka8xhISrwQRCIlXf5dxiLhWNmpdW1YW2zNV3C9C8Sqh8FW6/cmZUDr9STYq4lUi4Fg6veJOfhEbIl4rG5JFbIh4DbCpFLLF9UKLNsmmfjEaLF7l6zxQVpsLsQ+wcfh+mjZtCgA4dOiQZn8EYTf0q9oQhI04ePAgAIAJTjCH+o29Io0DJ/JwFWgLJMZxEF08xAoBgtejbefgwXl4QMdGRk9shTvBM9w/K1q6v7TaileOp4JOBBFLSLyaEqg1IfJqmXg1gyha2BYDHCarFxs8Rybw+q+pX8SqileFDQCU1nYZ7nnNa8uD05meiIJPxHq1dTAAoEGDBgB8+2AJIlGgCCyRMOTk5AAAPMmpmjZmUok5LwNnJJBEEZyXgTl4wGGiqJNgUIjJ69U+/xXwOVEmqp/9Giay2DRy8GbtrCSegpLEK0HULGwoXi3u0Lq27CperWrL7PMTePXzXZVDMnEsHnP797waFHYSU1zgy/VtSuq7wQQOvMHaudfF4E3Wn8sUnl6G0jZlujYNGzYEABw+fFi/Q4KwESRgiYThxIkTAABPuhultbWdk56I5bwMvD9t2Ovm4XWriFO/eJUEHnMK6iKWscoDyzlOXcRK4lUPSbzKg9QRsZKdTrqTKcI8JN5wgmJxum/UE8NYiVc7RpwIoiqw23fBhtV4bUs1Ea/m6kno+AKlz9bw0xzPB47fKGOJMU0RK6ZWnveqJWIl8SqhJWLz2viLNnHQFLHFbcsguETwThFlLdVFbFltEXcs/Q0AcPToUfXOCMKG0B2fSBhOnjwJAPAmu8EMkt/VRKxSvAIAeA7eJCFQxAaJV7m9YBGrFK9A5V5XpUNUE6/BUdhg8apsL3iSEWxnpuCEVqVkNSIVsRamDgf0F+kkK9aRV7tN3Aki3tjtO2CjPa8x7NCaduItXs03Zmyj4qPU/Z6B7wTUF5yD/HWIeJUIErFy9LVyUCEiVile5WEGidhg8SrbBYnYvDY8RKfi5AQVESuJV7kNv4gNEbICg+j25RifOnXK/CI4QVQxJGCJhEGKwHqT3CirLepGYYFAEauZNqwUsRriVUZysMHiVXldErF6kVdJxGqJV2V7ksPTsjMq+Q+EVkrWI1wRGyPxKvcX7mQrXmnDdpvAE0S8oM9+4opXC4nZcTkRtBNyLJ2qkcI36G358fttTfEqIYlYp8ZqukLEqolXebgKEasmXmU7v4g91TpQvMqPVYjYYPEqt+EMjMaW1fYXlfILWK/Xi8LCQs0xEISdsN9dkSA0kA7ZFl0uQGAore81PLSb8YAn2Vd5mNPSWjwH5uR9BRh0BB5z8IDAq4tXiVhM7qwSZVavrMZYvBIEYTPsJl45nva9hoPdz3qNoh3GmPHzY6K510Bk5sYu8JrC1D8o34kGBn3y5V6U1nMbdpffnIfXpTNH4YGkC46riteA/pwiWvbeAwhSDQ8BouDLMMvPzzccB0HYARKwRMJQUlICwH90DQdAAErr6YtYvgLgvNCt+ieVrWdOAcylk5vsTz9mRgWbGPNHYjWKP0ll+aWjc/TaEpmpCYz+cQKKfbpGGOzvMbXSbSFhVSMmoUwQsSWe6YVG4pTShsMjUcWrSTg9vywh+WTDTCTOuHaFf0sRp1O0iSX5RClfpl+Nqbx2Evhy/TGdasWDOQC+Qv81q51SgkZ183RtujTbj/rJBTjzjD3y30SXLw2aIrBEokAClkgYSktLAQCiMmVHR8TyFX4By4CKFB4VqaGCkvMw8BWiT1RygOjSELFeBk4Sdw5BXcQyVikAeU5dxAafBaslYoPPldWayChsVCcWwYLU5Pl6apjaa6RGhJMwW4tX2idE1FTi8dlX3jPU7h8kXsMjkcWribbCEq8SWp9jQah8nloi1hF4pI6aiGVJ7soZNmOaIra8dhIYD3Aig6NY3Y+dasVD9G+z5ZiGiOWAzK7HAQBuh0dTxHZpth/pTl8KcS13sSxipTlNeXm56uMIwm6QgCUSBknAsmBHpCJileIVAMAB5WmBIlYpXiVURawkXpUOL1jEKsWrPIjgQhJMWwRywW2p2AVPaFRsAgtEaYg6M0I3CP09ttaLWBKvBGFjYvkdMBKsJF7DI95jTwTxKhH8OVaKV4lgEetQPw82RMQGD0tFxEriVW5DRcQqxatsFyxi/eI1M6lU/pOaiFWKVwlZxPpfa4/HxLn3BGEDSMASCYMsotR8n0LEhohXCQ6oSOVQkSqoile5H6WIVROvEpKIVROvcp/+KKyWeJWQRKyWeJXbk86j07YxtUpuRuj6MVWV0EIRS+KVIBKAWHwXjFKGSbyGhx2Py7GLeJWQz3JXEa8SkojVEK/yePwiVkodVutLErHB4lVuQyFi1cSrbCeJWA7I6HIiQLxKKEWsmniVqOUuhjPflzq8bNkyradHELaCBCyRMMjORWveJAAVGQwVqZxmwSbGcxCdHJiD0y/YxPkrAvLQn6gZOeNYTH6sPHPV6Ew7ohISrwQRO+xYaZfEKwCbildLj/DhjduTThkwguf1Z9aM+RbI9dZqRIbSLE5TvMp2DHB2yEdWcommjdvhwVvnztAUr8FUVFSYsiOIqsZ+HoMgNOBlp6YuJPhSDnw5UF4LKMtSdzRCOQNfweB18/Amaa/Mcl4GziP6Cjs5NexEX+SVCTrl9r2iXNRJv9CS/0gdtfNflZioosj0IsKVRr5/DSYKps+EMyOqTURLw4q+AvGd9NqtAitBVCUWC4h4wvGc/KNnY2GH8S1KVVPEq5G/4HhjG97n33V9ncO/pUjvBAIAzOX0+Xqdok3e9CSA4+As0rYpbOwAEwBXnm534LqcQlpSGQrLXZo2T7aYjdbOE7i93u+6bQmpvte9W7du+p0ShE0gAUskDJKAdWeGrjbypRyEEg5ggCgwlNUOFbFCOYNQxsAxBiYA3mRBVcRyXga+wiuLPFURKwae86orYn2D1xaxwefBaolYpY3GBMWU4Ay20Rh3vMVrxJCIJYj4kuDi1QqbMDrU/7/W3yKlpohXCS3/o3xNtWx4IcBG1ec5FPUwGNMUsZJ41cObnlR5pI4IVRFb2NgB0d8l72GaIpbrcgrpyWX+YXGqIvbJFrPRQPClBtfhSzRFbLqjFA6/gE1PT9d9DgRhF0jAEglDSkoKAKBNSg5SGlaWeleKV4lgEasUrxJqIjZYvMq2ShEbJF4r2wsSsd6gvbNqIjZYvMoDCRKxajZBExXZ+epFX7VEadDEoSrEa9jRVyUkYgkiPlQz8Rr8t5iKV7W/k3g13ZbmmIJ9h9prGmzDq2RWBYtYh8qJBCoiVk28BkdhA8Sr3F+giFWKV3mYKiJWKV4rhxUoYpXiVUJNxKY7SsFzDN5S33OS5lkEYXdIwBIJg3RjdVSUo3vjPUhpWKgqXiUCRCxDgHiVUIpYLfEq2zoFn5PVOR9OFrHB4lVCKWK1xKuEJGL1bPwOMSrxqhxbONhFvFYFJGKJmkgCi1c9JNEaF/Earo1Zaqp4lZB8iN5rKtmoiVeFDWNMXbxKKESsXuRVErGq4lXuD3AUe1XFq4RSxKqJ18ph+fpQE68SShEriVcAEMt8/5KAJRIF+3gQgjAgLS0NAOAtYUh1lKFJVh68qaJ2USf4RKzXDd1iCEwAmIP3VTfWEXmcRzrjNcqvTbSP1yKeBZkSTXASBBEdCbxoY7TfVbKxsENrbMxiR/FqIdYWbDKRQm6mP39tC6P2mCBoi1c/5VkOuPL1fSrnBUrripriVeKBZos0xatEHb4ELzeaI4tXJjKI5SRgicSCBCyRMEh7M7zFIvYV1cLJkhSk1S9EeV3tiKiziIOjGKhI4VCRov5x58sYhDIvmJOH6NJZdQV8TsshaDpwziv6hKTAazs2UfSt8Aaf/6rWl8gMV5SZmYJMZlKCFQLY0IGbmTDF+4ibeEIViYmahNXiNY7R14SuJGwGu4pXi6KvpsWrmddBOnZHxzdxku/WybQCADh9cwWuQrsYE0v2pfQKJdqVfcvqOCEKHHiP3qkIHApai4CDIedALU27UW3mIVvIR4Ho69dxzIvs9wrQ4pbjaD3wKFrcchzZ7xegVS7QUEjBE9mLAQCeQl8ggOM4ZGRkaLZPEHbCYLZOEPahbt26AICKPC+8ogMeLw+n4EVag0J46gooPZ4M1/HK1CBnEQdngW9fK+OB8jQOAA+n4qBwvozBUeoFmM9JwMVDhAN8eaBT4jxiZQQW8IlYDwJFnyReJQSVVGJRBFPa8Bwg8qEONfg8WE7FRq3oBM+HRmLDFK9ylxxnfHatViQ2TPHK8Vx0acTxFMskXomaBInXcDqMb38kXv3tBNWLUHsfgs+MVbHjgheevV71c2SdgYWduAoPmDNwOs2SXb45BQB4GYSSCniTA1PBJPEqkXSSobR2UG0Lv3gVk3x+h6vgkXOgFuo3yQ2wG9VmHho7fH9jpQzZL+Wj3rcF4IO0c/rvZWDv5EMcko56o+sAACryfWK9Vq1acOilThOEjaAILJEwZGdnAwAKT3I4WpQm/90peJHsLkdag8porFK8SkgiVorEKsWrbMNxYK7ASKx0pE6IcFFEYkPEq0SwQ1TdFxsUiQ0Wr/JAAqsqaorLsPey6qxGx/Gc24gnmyReCSI2kHgNp8P49kfi1d+OQcV+IFS8qtiFiFeJ4EisU6Owk/K/Sc5K8Sq3wwIiscHiFfDtdU06qZizBIlXeax+ESuhFK98qYiOw46gwfRQ8Vr5eED4ogDCzUfwn7RFqDjlex3q1Kmj/gCCsCEkYImEQRKwnjwPPN7Qj64UjfUmsxDxKqEUsRyD6v5ZpYjlvAycTmEnOASf09Pbfyo5Ril1WA1JxGqJVwn/JMmwSrA0OTCys2LfbPAEIgpBGfakk8QrQcQGEq/hdBjf/ki8+tsJI21YCyZqi1cJScSqiVc/UioxS3KCaZ4L7xOxauJVQhKxWuK1sj9fH0rxCgCtXjqBrJWleqVBfOMEwP9Zikaji3Ft+jAAlVluBJEIkIAlEoaGDRsCALiiCqBcfX9KUX4SOA8HT6p2O4wHRIED0/FXjOMqizoZCReOM+fgLRRAlha1sJLqvO+VIGoKJF7D6TB+ffEaZ4RHSJUUbLKiPbOvgymBK5j7vBvZ+OtaaIpXP95kbfEqwXsYmAOa4lUiK6kkQLw6j3lQ/9sC33D1Rytf52cUYP+//wIAGjdubPAogrAPJGCJhCEjIwNZWVkAAP5ksaoN8/DgAJRnMlRkqN/CHSWAs1iE6OLgdWsUdqoQwZd7wRw8RLfTV6VYDSl1WE/ESvtgg8+AVaI8UkfPOStTnvQcqhRZNWMTLcF7daMg4Y7TIYjqho3Fa1wrCZvB6krCevd+i59bTMRrhPUWQpsxqL1gBMdX2um15d/fynQzqITKfbA6dszl29/Kl2kXbPKmucAEDu487cJPRfUFFNUXwDggda/2cT+NWh+Dgxcx4cjF8t8azNBOG9aCqwAOrFwJAGjWrFl4DyaIKoQELJFQNG/eHABwDrcNLbJOBlzLy02FcNLnRJigLmIdJYCrUAQnAozn4E3i1UWsMvLK+86ADRGxXlFOLWI8py5iJfGqEJS6EwdlWX6t1FyFyFNtK9jJRjEhNUxVNtqrG05fkYjXeEY/7Br1JgirSADxqiVSE168hvP/KKnyo3IiFbHhitfKxkLtgoozqYpYKTorvV4aPoq5nAGCWU3ESuIV8G1vUhOxRfUFMAfAHADHAF7jxJxGrY8hK6kEAJBXniyL2MyVpeoPMGDf8eMAgKZNm0b0eIKoCkjAEgmFtELIjpbgnKx9sojNy00Ff9QNXpFZHCxileJVtlERsVL0NZgAEasQr8q2AkRssHiVCBaxyuirwsY3GMkphorXSlNlWxoTg+AJS7Sr4BpjqewvvFtLVJFXErEEET0JIF7N/j/mxOMMV57Tvx4hMRevZrfKhOuDIhWvauNSqyyMIBGrlVocNO4A8aroSylileJVHmqQiJXEazDBUVileJXIK0/GRzm9IRSFn1VVyvM47H9OUoCAIBIBErBEQnHaaacBAPL2MqQLpTiv1h4ACBGvEkoRy4kIEK+yjULE8hUi+DKPphNmTkH3jLgQEasjKDmOUxevCpsAdESeqUmJvIpsgXg1Q1yFJYlYgoiYBBKvwX+vluLV7PUwiVvk1eqCd9GKVyUa4lWCiaL+vlixclFaVbzKDfleAzXxKg/ZL2K1xKsUhZVErJp4lThZlgpvavjv3Y7UVHg5DrVr16YiTkRCQQKWSCjat28PAMjd6ztGJoUvR53UYohunb0pfn/Fq1Qllm38wpNx0N7vKrfH6U74mJWTDs7aoh0AYpsaFgGW7XslEUsQVQ/teTVHHIsxcUZbVySs8g1W3x+NfISlnzmDisSA73Uy6Zu1xKuEJ0VdvCopz2Tgi3lN8SrxT9fwU4D/TU8HUDm3IohEwV4zWYIwoHXr1nA6nSgvAoqOA0tOnoa9R2sDGR54UtRFrPMUB1ceg9fFwetWdyZCqQhHiS+dR3TwvkirCpxH9J0Jq+PkOK8IeLz6hZ2Y4hxXPeerPFZHx1nKbelNQALSsbTtTEVfzYjOeFckpiN1CCJ8rBYbFn0P4ypOOb7yR8/GCuJcSdj8kTRxFq8m+jOXWRR4PrpOYz5bvUwmo8wpoPLoPACo0C7GxNy+ehyOwnJNm4p0B5gApB5R749xQGk9BtHhyx7bvFG7yFKb9GNYPqANvI7wPltbMzIAAO3atQvrcQRR1ZCAJRIKp9OJNm3aAACWr6+H9Qcaw1MhADxTFbHOUxySTjDwHt/xOZ4kDmUZfIiQ5UQGKCK0aiKW84iVZ8LynKqIlcWrBM/70pHUnLVR9V6leJWuq0x8QgSn2YlIpBMWCysFWxZ9JfFKEOETq0yCKL+PcROvaqJV7V5spXi1EKXAUxN71Uq8RlMwUBKvOm1xyjGJorqIdQSmFnMq7TC30/cj2XmZqoiVxCsACOViiIhVilcJoSj0+bZJP4Y26ceQwpejsG4S1lzt28dq5hxYAFjfqBEAoEOHDgaPIAh7QQKWSDi6dOkCAMjZAJ94lZBEbGqlI+C9AK9YJGW8L6XYk1QZjRVKRThKQ/e0KkVsgHiVG1cRsWriRorESg5SGX0NsFN8HZXiNfi6qfPv+MBJgpboCppIRFW4KaAhE/ts6cgcgqg6Yp0GH6GIjat4NXMtAcSr2t9sKV6D/ZJmUzr7T2UjjXYCbLhQ8arWn+oCc5CIdWjsi1VEYSXhyoLtgrYvKcWrhFLEMg4ozQ4UrxLKKKwkXFP4SoH80+OdsevsuqbOgd1wbm0crqiAIAg444wzDB5BEPaCBCyRcJx11lkAAPeBk6EXeQake1CRXQHOA7jyNIox+aOxAOAs9oQ4GAlZxCqP1Qnoj6uMsgK+ysNa+J0kUxOnEpKjNbrunwyZSvc1GTG0pHATEH/xStFXggiPeO3hDvO7aQvxGomdEXEsxhTWftd4i1dTTRm0JTLj90VklcLVQOiqilfZxi9itcQr/FHYCk9g1FUFR2E5KtIdquJVQigXK8WrU8OmiMfmjc1k8RqMJ0nAZx9ciA3XNdJsw+vgsH1INg488zkA3/7XlJQUzbEThB0x2DpOEPbjzDPPhCAIQEEJhPxieDOCbrw8A3/SCVceB8brFW4CRIev6BKnU+DJV3VQZ0A8B3hFX/owz2mLT6vED8dbK9p43lRlYivheI4isARR3TEpAOO+39VKOyPiuN/VNFYW8ouneAVMZiBZZAPo1ruQEQRw5R5536saolOAs8CD8iz9abergKG4kfGw1MSrhCdJwAsPX43soQUYvmAx6q8qgLPIi4pUATnnpmPXddkorevE7q83AAC6du1q3CFB2AwSsETCkZycjI4dO2L9+vVIOXgUBRktQmz4Cg68F/40YQZB5V7vLGZwFokQnTx4AFxFqIjjPf4zYXmA8YJP6KqJPbkgE+fLa1ATZ/4oLsdxYJo2YuUeW00hLFauHnOcceSU4/TFs//5mGpLb1xyf+YEtmUi1mpBr9uXwWtJEIkAY7GPwsazKnhwn5pHk8V5TCRerSvWBASei671Xso2DJp5tMr3Re+74PBPkb1e7bNjnQ5fezp+QUzy2fAqcwyJ8jTf8+G8QMYuIL+Vup03VQTjGaZvOAc3nLFG1WZbYT2Uep3Yn14bm4c3wubhoTZvbeuDhitWAAC6deumOS6CsCuUQkwkJBdeeCEAIGVPDnhHoFPgTriQdMLvkHifiPW6Ah/vLGZw5XvBeRkYB4hOHt4kAcwZ9JUQWaWD4zhfSfxgh+wVwUmFm6Q9NyoHmyuFL6dqI6rssTV27Nr7hUSlkbGNXltKzJ7JZwLLIi/xPkKHjtEhEp1YLsSE8X2M2z2AxGv1EK8SaosUEdioLto6HJXiFfDNA1TOfpfFq9R0WUWIjSReJVx5oZWLy9N4iAIHUZDqcoQOyZsiyuIVAFihAzM2nh1iJ4lXiZ9PdA6xeWtHXxTvKMOpU6eQnp5O+1+JhIQELJGQ9OjRAwDgOpgLh6dMFrHccRdSDvPglX7EL2Ir0iqFLCciIG2Ycb7z2kQnL4tYOfqqJFjEekVwwaX0g0Us8zu/IEfJcRw4wcTh6wGrxaJqBDS0YqOK4zZjI43L8By8Gi5iARKxROITCxFrB/FqprJwLCHxap141VvIVQpUNRvGjG0kOwmHRmKiwu8ypyNEvErtKEVssHgFAL5CDBCxkngNJmNX5e/eVBFMYCFbosSCSqG6rbBeiHgFgLzyZPx4vIv8/7d29MWpwmSMcJ0GADj//PPh0HrOBGFjSMASCUnTpk3RokULcCKDe89xCIIIh8sDTkSgeJXwVx/2ujnwHsBZGLqaCkCOxgIAX+rRrCosi1itCaAkYgXeMO1UduJ6k0nJCeqdYSe1o7efNYzoIYlYM/2RiCUIGTuIV+Xfjc52jQUkXq0Vr2Zs9OzkM9K1bZhUpNFIyHm9lcJVRwyLSQ5V8SoP2Z9KrCVeAV8UNmMXAqKuaszYeLYsXIPFq0R+RRLe2tFXFq9gDEuXLgUAXHDBBZptE4SdIQFLJCw9e/YEACT/ewQA4DmRDPdJ3re/VANnEYOrUH+/JOPgE6l6DlYSpXqiU2mj05acwhS3yqBxrkpcnaHXiCB8xFu8VoU4NcIi8Wq6krAZrKw0bDfxauX7b/a5qaQSK2GCAKGkwnD8jmJRU7zKQ/JCV7wCAI65sXaTxoZZP5t2NcaxA1k+8QrAmZOPgwcPIikpCd27d9dvnyBsis3u/gRhnn79+gEA3PtOgC8uA1fOga/wn/WqVd/B40sdZoI/iqqCUCaCL/MAAgem4Yw5jyif/8akKKsWjJmrZAjo7FX1p0KZPQNWbyxm7KzCZHElyyoS05E6BGEeq0RSVYhXu2GheLWMRDrjNaCtMMSrnu/gBd+PgR0njV0ve8nhPxNe56g8Jgj+Io7aNqKLh+jiwXkZUo6G7oeV7Zy+eUzGNu2oMF/KgxMBoVD7dd+0qzFQygPeytf0XrEpAOD//u//6PgcImGxoRcgCHM0a9YM7du3B8cYnH+fRNKxyo+zmoh1FjC4CsTK6wIH0cUHCFmhTIRQXOE72w3wiVgHHypklVFTjgPjVVanRTHwXFgVERtwJqzkkEPaUdnHo+LgWbA4NTN50bAxFX01Ep3xFJNV0R9BJDJxFq8cz5F4NSChxauppmIUeVXzRbzGYasBzfCV4lVuS8WPOILaCq57AYV49SMUhR59ILp4MN4/X4Dv3NcQG2eleAUARzELEbF8KS+LV4lNW5uGtLVpdyOfePVTnucGRBELFy4EAFxyySUhjyGIRMGGnoAgzHPppZcCANJ27QdfHujEKs959f2f9wC8hwVcl4SsJGI5xirFqwTHBURjldFXpU2AiJXEa7AQNIrEKkWsFXtQlY5ZS5QGTT4sEa9hYEn0Ne5imaKvRAJTBeI1nv3FFRKvJpoxmRJtVdqwlnhV+BpZuOqN3yGEileERmGDxauvLzFAxEriNRhlFFYSrsGL747iynFLwpULcnnKKOym3Y184rUkaOxeDu7dx5Gbm4tatWrhnHPOCRkPQSQKNvQGBGGevn37wuVywZV3Co7CXFUbxgOOosroq9p1JnDgPQx8iXZKjyxidQo3BYhYPcEo6KQ1Be/t0hNnfoeoKzqjiMTGGstShwmCMAeJV+uwm3g1m3ljBrtUGg5oTKc/yZcYRV5FFhp1DbERVYVrABUeMEFQF6/KdqAtXoHKKKwy6qpGxjZHSNQ1mE1bm1YK12Dx6qffUV+hpyuuuIKqDxMJjQ09AkGYJzMzExdffDEAIOnILk07TgR4r7ZYYry/eJMBnCjqF2WSCjeJ+oWbIIrGkU45Ghvfr6klkylK5yUI+1EFe14Tsj8z2FG8WoWFacOWYLZgl2mxbNCWyXoVXIVHdxbNBAF8mUdTvPpsOCSf8OqKVwBw5TNd8QoAKXsdmsIVABwFRVizZg04jsNVV12l3xhB2BwbegWCCI+BAwcCAFwnDoKrKAu57ixgcOczMDlCGtqGUCrCUeIFeGnPa6gR5xHBVXgrxamRk4s2DVh55ms0Ezi9whQaNrqTKgujppZEZ6pCLNPxOUSiUUXiNeosC7uJV7PRQhPYTrxaWGnY15wFacOmUoYV74mWP/DbcBynX0lYeg10/CZzCJWL1Vo2UmRW14YD43zH6qQdVh+Tb+uT7/f03eqvhfsED/cJHrwHSD6oHVUdlZINADj33HPRqFEjTTuCSARs5hkIInw6dOjgL+YkIvngLnBBfkDe+8oB4OA7HifIZ3JeX9SUScfnKAotyDAWWJRJxdlzXjHQ8alNCEQRTGmjegB7UAEoQH0VWmTm9qxGsGcz4slVmILSsuIu8YZELJEoVHHkNWIRa0fxahG2FK9m+rKjeDUS3n7hqjsmLqgdkamKWFm8Sg8rMy7o5CgILegkiVd5iCoFnfigph0lod8jSbhKtkJoV0jb7UD6dhE//vgjAODaa68NNSKIBMNm3oEgImPIkCEAAPfRneBLPbKIlaKvAQSJWDn6qiBYxMrR12CCHaeyqrDSxqh4Uzir+uFM6iKIvgZ0pVYROUZEJGKrOlWZRCxhdyht2BpIvIbRXJzFazBBVftVx6OMwgaLVwmFv2MOIUS8+i4obDT2xIYWfeJUtywpo7DB4lVCGYWVxGswyihs2m4HHCXAE10aoaSkBC1btsT555+v3jhBJBA28xAEERm9e/dG48aNwXsr4D6+G3wFwHlDKw/L+EUs4zlwDKrCTBaxDv/XROv8N0mgMvUV2wA7IDD6GgzPqUdfQ9riYxp9DehKuSJt2Fd0gjIsEVvV4lXCbNodQcQbG4nXsKKw1VS8mq7GawYbildLqg2b3e+qJV6DbAzHY3T/FsVK4aphx5V5KoWrxtAdBeXyiQda9Tb4cjEgmqraTgkLSBlWQ4rCSuIVohczZ84EANx8883WVrwmiCrCZl6CICJDEATcfPPNAAD3sR3gvF64cxmST4qhx+JIcL7oq1Cs7S2klGJJzFqBsUPljfsKR7xZNmEyU9gizoU9CIJQx8pJajwXi+z2vbbbflfAtuLVFNH6NilbycRxdIZjEkVralkAhrNpTmRgnH6xSM5ojYcBzmKG9P2irshNPsZQe53gE68AXurbBrm5uWjQoIFc9JIgEh2beQqCiJx+/fqhbt264CtK4Tq5z7eSWcHAeaEpYjnRf+6rXnZvhdeXPqwnYkXRlyakZ6OI0GquVIus0oGbSCs2veIdxeQpIMobYxEb9l45u012CcIOxCLCEo/sCrt9n+0mXuN9TE4YmMoGiharPkMBe101PtcC7/sBfNWG9drhOfClOorS35czv0LbxJ8Jlpqj0Q4DnCW+SsRq+1wlko8xCOUMrgL/+yF68eWXXwLwbbWio3OI6oLNvAVBRI7L5cKNN94IAHDnbAXESkfAef1iVk8g+Ys8heBlvuNzAJ8jElQipIxVpupq2Uh2yi5V9+8EjTGkLzEknVddDAcXgbJ3JDaqQi92m/gSRFVhw/RAEq8WEO9KwxH0aUrERroVRc3nBhP0GWJqW3FUiiqGIAQ9b9W+uMBFZrV2gl5rXqWOBscQsI2JLwtqxx91lcSrFsnHmCxelTzTsxlycnKQnZ2NK6+8UrsBgkgwbOYxCCI6BgwYgAYNGoCvKIX7+M6Q68porFAiwlGkstqprAwoRV9DbAIdV3CRhhAbxjRL9wfsMdU7AsCAiCKxBkWeNCckZopOxVtYVuUEOB7RB4IwItbiNYIoLIlXC4h31NXKSK8VWBl5NSJYvEoPVUZhNTKtAqKwGn0po7CycA0S9XIUVhF1DRavKUcqHyMJ12Dx6sorx9SpUwEAt99+O9xut+qYCCIRsdEdiiCix+Vy4a677gIA8MXbATH0XFhJxMrpw2pIvkcZfQ2x4SqdnZaAMWMDxURHTwiFI2JNFJOyBLsdf1MVE2ESr4QdoMirNZB4jaobS6OwRguljBkulDJpa49BoSZlyrB2X5ymeJXbMeiLr/CGRF1DbMrEAPGqhqPM91i1qKvEvT3r4NSpU2jWrBkuu+wyzTERRCJiM89BENHTt29fnHbaaQDzAKXbVW0cxSKchR5Az49y8H1DzBR5MMJM2paZqoomiPWe2LCx2wSVIKobJF6NMRpPOEeZGVBTxauvKzMFj+IYUTXVl0kbKz4j0lF7OiKe9xinDDsLvcja6dUUr/CU4OuvvwYA3H333bT3lah20MySqHbwPI97770XAMCV7QG8BSE2nJeB84rgGNMUsXyFCK7Mn/ar5eC8IjiPV98BesXKiKiGHVOeH6vXlrLAk5YJY8YTEWmVPNoJSxyO1gmLqjhax4bigahB2HAxKqIznWOJNB6tcdX0M14t6s9y8apbs0LKWjI4lg7Qz5IRBN+/ekfXSQvQWsWclF2WaBdqksbhLNS24T0MHGNIOq5t4yz0gvMyOIrUtyWBAf07iCgtLUXHjh3Rs2dPw3ETRKJBApaolnTr1g3du3cHwMAVbgBXoe2cZBEb7ONEv8CVDVUipMHFm7QcuDKlV8uOGdgEO3Oj1WCz+5g07OJSVVLqK9ICTnaBzoIlqjtWi9d4RF8N75HWRl0tEa9W7T+NYbGm0K5MPHer6iaYzWZS9KXqywShUrz6jLT78venWwRSQm37jnKeAKjW1eA9TBavACCozFmchV5ZvKrCAHeuF+7jOZg/fz44jsMjjzxC574S1RISsES1hOM4PPzww3C5XIB4AlzZQXAenT2ojOlGY4MaN39dGX3VsAuIvuq1ZaLAk6qjDp6caBZmCvN2QNHXUGiiQMQTm33eTKcNx0u86v2doq6WiOWYpwyLQYvIaijv/XrH2EkohasSr8oicnCf4UZhTSwES8KV07GVhKuueM3zgi/zoEX9IwB8RS3btWtn2D9BJCIkYIlqS6NGjXDbbbcBAFjFFnDlZRDKfHtfhRJ1JySJWL7cW5k+rGrIVaYPa10Pp6CSnvjiOGOxaLi/y+RX3W9H0dcosJmoIKopNksdttWeVzP7XS0iocVr1F0lzn5X2adpiVefUWVfGv2ZjsIGRV2DcRZWhERdg3GfrDCMurpPeX1R1zwvhHIR993VCnv27EFmZqZc0JIgqiMkYIlqzQ033ICmTZsCKAMqtvlWMCtEcB6DlGK96sMSBg4KgD+VSf9rxnGcsQO3YsIVxoSFUo6ihF4/orpglXi1gjgWYjIDiVejfqzwWyZShjmNc9eVJhynL159RnHbDsKXekxEXSv0o64AXHkVEMpFCOUiGCvG559/DgAYPnw4MjIyLB83QdgFErBEtcblcmHUqFEAACbuBRNP+ErYe/0i1mg11YxINYPWhIGxysPWtSaKUopxtNELI0EehKk9TYaNmJv8WjIBjve5s0bovX60Z5aIhnh9duz0fYpjISYzmBavRmm68RavUXdj0V5fwPiebaYIk4SOL5fHq3EWu9/I344JP2kijVgPzqs/r+DLvODLvLrPyVnogbPQI59BzxjDmR3yUFJSgi5dutCxOUS1x0beiSBiw9lnn40BAwYAAMSK9WCQDgn3VSIOdhJchRd8eZCDCnY2Hq92+rCEKAbuqTGz38jIoWtdF5m5tN8wxXi8RKzPzMJJkV2w4ggmglBiM/Ea1vc20n3qwX0Y/T/GhCVeo7lubjDhfybCXMys7Mrs8zZZsMmoDVOD0m4nRGzrFWqSMJEirJtG7D8ihy8NFblyNFUq1FRYHmIjC1d/H86C0GrEknDlFPML5t2Lf/75B8nJyXjyySfBW7UwQhA2hT7hRI1g+PDhaNiwIYASiOLWgGucyAKjsSLUHZ0yGms2MmumqJIahpUYY/TVVZnYGK64WzFZkc1qgIg1+j9BaJHI4lUiXBEbx/2sZohYvCr/b2Wl4TgRlng1bMwg6qrWhqr41BevxuOw8PULPts1yJfKwlVZjVixlYkrF1Wjrkqb4KirBF+aD5djJwDfXKdRo0ZRPx2CsDs2muURROxISUnBU089BY7j4BUOwsufqLzodyqcweHiAfbRYlU01iwRrrgHdBdtNNZkiq+lKcV2wShKQiKWMKI6iNdwidMROGYIK3U2EVKGTfqE8J53lD4gnKirRiYSYOCrvAZnu0eCXvpyUNRVDb7Mq5oNpkQt6goADCLanZGHsrIynH322bj66qvDHz9BJCA2muERRGzp0qULBg8eDACocG0GQ1mggV/Ecl6vNSLVCFE0TvtlBvt0zYo0SieyB7QvloiEmihebUS13O9qpU+wScowYFHkVW+vrESFJzTqqkRkqlHXgGF4RHDl+j6eL/fCURQadZUYcnsjbNy4ESkpKXjiiScodZioMdAnnahR3HPPPWjdujXAVaDCtQks+OBXydGIURZvYixw/6uWjYVHyMQ9ZYqIDfQeEUpsJl7j1o9NRLJl+13Nd6h/zW7i1SqMfKEVz9tsG3pjkTK29Py7ZFMWun9VHopHNGyHL/cCoghe49QEkTuBL774AgDw+OOPo0GDBtpjIohqhg3vYgQRO9xuN1566SUkJydDFPLgFXZrG4t+ERpJASerqheHiWa6lzJdTGsSZEGasVVUu7Nhw4VELAHYVrxG/P0k8WrUYeC/ateixY7i1Qwm/alqVpNVwj/cuhcq4pTziLJ4BQC+NFTk8uVeWbxqwZUWIq3ubjDGcPXVV+Piiy82HhtBVCMS9E5GEJHTrFkzPProowAAj3MPRPG47jlrqtHYKhCnqmikGFM0FpFXPLUL1f39IfSxqXiNeT81UbzGa498BGM1Vd3eVO2ION2Pg8dixWKtmQVpEzaycNUo5ARURl21xsiXVIArKUeHnmXIzc1Fq1atMGLECHPPgyCqESRgiRpJv379cOWVVwIcUJ68BaK32FjEqkVjYwmLrj9TxTfCmBgZTmTsNImpLpCIJWJJFOI1rCgsiVe9zqK7bgarqh7HGiszb/QWBcwIWGkfrAXH0wVHXdUwE3XlSyoAL8M19zTCX3/9haSkJLz00ktwu93GYySIagbHTC2vEUT1o6ysDMOHD8eOHTvAedLgLuwCnvGAUXqw159CrDexEEVT7TDdfTSiiX20BkWe4Beeeg5b3ver31c8V+ItSSGuTmKZbtM1i3gsXFgQeTVVzInEq15n0bdhhAXjNPWaWPVZ0GtHTrE2KOTkEIz7cTj0rzMGOPVtmMF1AL429O7fHi9Yils/XdjLwBw84GXwOHNQkeo7CvCFF15Anz59jMdAENWQBFiSI4jY4Ha78corryAzMxPMUYiKlH/BRK9v5TXaVVcjAWamAnG8MZjomJ7YWUC1O0YnWigSS9iM6liJ2JxQS6AzXOMlXq3CjHg1erwVn0uT/p+r8Ghfl9KADcQrDBaYuTKPr+Kxl0EUCsDV2gUAuOWWW0i8EjWaajTDI4jwadiwIcaMGQNBEOB1HYMneb/vgpHzkf4eabEmiysQa3djEH0NxmBylpAitroIWTpmp+YQj8WtKDIUTH83E+S7Z/qsUzsdg6OHRSLbsvNfo2nD7H1P8XgWaUHCcPe6atmKou9IPi0f7/FWilcNuDKPT7z6bRhXjoxW+1FeXo7u3bvjzjvvNHo2BFGtSQzvQhAxpHPnzhg1ahQAoCJlHzzuk74LkvjTErJmHFmiEomINSvIwxCVHM9RNDYYErE1A5uK2JiJ1yqqPG6rYk1WYJFwNZ02HM79WevzpidezRCPqKsZceufL2gKV6BSuGqdDfv/7d15lBTVoT/wb/U207MPMMIAw6bIJgRkExEEUSC4A+bpM1FcfmqecXnRPA1RQY1CVBSjJyYxQY9RhGgiuKAQFBQVZBGBiBB2gWHGWZi9p7eq3x81VVPd0129L9Xz/ZwzZ7q7qu6trunp6m/fW/dqg6sSXuHFgAn1qKqqQp8+ffDwww/DbA6jmzRRBsugT3VE0bv88ssxZ84cAICr6CC81sb2hUqQTVRrbLrS+RY/7A84eiL4gMsQ64chltJZtP9rSQ6xvN61o6S3ugYqJ5JW11j3I9xWVz2a4Bprq6v//kiQMOoqM/bu3Yv8/HwsWrQIeXl5+vtD1AlwECeiNh6PBw899BC+/PJLQDQju2YYTN4c35UEQZ543BtkgCblpOsNPgy+vDzEAE5AeIM4BdsPpYhwuhCHc3IOVQcQ/YfPCFqBOLhTAHwLz1xpNpVOXAdtCiZJ19ZmVHiNU9fmpIRX5fURy/WuginkPgihjonJFLqeMAaDkixm3RZXSSlD731a2Ve/dSRIcOcfhsdeCZvNhueeew7Dhw8PuU9EnUEGNUkQxcZisWDhwoUYNmwYYPLC2WUfRJPTdyXl29FgJyxleaTXnkYjXkEsxg9X6oeeaD/UZNJ1qqmQjGk4iDJIRoVXIPHnGkWsLZ5K8Iz1S4p4tLqG+PI35BeDXvkLZt3uwkrPrWDdhT1tMxoEWceTcwIeeyUEQcAjjzzC8EqkwU+NRBrZ2dlYvHgx+vTpA8nsgrN4HyTBb6TBSFocdSYkj1m8Ql+MLXg+nTgycGRSQ2CIpWjFs/U1HhLcjTipo+ry/66d8jqLx983VPjUE49rXUP1jApjBGK94AoAHms53HnyoJL33HMPJk+erF8nUSfDAEvkp7CwEM888wy6du0KyeqAs/i7jiFWIYY5mnCyviFPB9F8w55p3XpTIdCHZe1j/DBtLGk0F2xE4TWN/5cjDq/Rvm9n6ojh0YTPdOlhE49rXb1hXNYTSatrsGosFXB3OQYAuP766zF79mz9Ook6oTR4VyFKPz169MAzzzyDgoICiLZmOIv2AVJbiDWZALPfv044QTaRrbHpiK2xyceW2Mxg1PAaLwlohU1ayyv/x9oZKbjqrRNucNVpdQ3WXVjSXGcruD3wmn+Ap+QYJEnCVVddhdtuu02/XqJOKg3eXYjS05lnnoklS5YgLy8PYlYTWov3A6Jbf6NwW2OFeIyeaIAwHK+J5cEBnMKmtP4E+yDND9jpLRPCaxr9n8VlxPTwK0tOPYHE4cvRuI3pmU6trqGWx9Jd2GL2Da464TXocpMJgtsDwe2BJ+s0PGccgdfrxaxZs3Dvvfcmt8s7kYGkwTsMUfoaNGgQnnnmGdjtdojZjXB2OQBJ7DjUvQ9RCuvEGJdpaDKllTNZH3bS4UNVOsjULo5GlwnhtbPi/5MsHd5jxTCCaai/lxhGq6sU4lzvFfW7C3u8ENzy5wmPrQ5i6VF4vV5cfPHF+NWvfgVTnEaXJspE/O8gCmHo0KF4+umnkZ2dDW92A5zdDkCS9AdgUAOCzjqSJKVVS0VQIU6iyfqGWDAJnA823vihO31k0t/CIFPphMQAEblUn9NC9NSRJEk+9wb724YxAFPIdZQux2aTbnhVPh94susg9jwCt9uNyZMnY/78+TCbQ0/hQ9SZ8d2ZKAwjRozA4sWL1RDbesYBSJK7fboc/5OUIPieIPXCriSm/qRvIHELsQyyskwKTqQvgtd81F320yy8Rt0tluHVWEKMQ6EGV90y9LsCq8E12HgWSnBVygj03urxtodXAB57DTzdD6vhdcGCBbBYLPr7SUQMsEThOvfcc7FkyRLk5uZCzG5Ca6/DkOBqP+mF+tYW0F/uH2ST1UXYgAEmbt0bGWJlBnwNZJQ06jqc0jrY8krh8H+dhdHqqitQi6o2RIYKroBvcA1EG1zb1nEXnIa7RO42fMkll2DhwoWwWq36+0pEABhgiSIyfPhwLF26FIWFhRCzWuDoeQiS2e17AgwVZNtOYIIgAIG6CfmE2DT5QJeG2KU4zvhaS400Dq8RtcKmcXgNuxXWZGJ4NQLltRJrq6veAEzK/2Ww4KoEXG2rayABgisAuPOr4Op6FKIo4rLLLsP8+fPZ8koUAUGK27BzRJ3H0aNH8b//+7+oqamB4LIh+9QAmDxZ7SsoH4JChFlJkvQnZZdCTM8jieF9+xxqhMpwvqEOVYfu9mG8zcTQjZojFMcZTwvJkcbhtX3zMPYxjcOrIuS1+vEIrunwJVCMzyP0cYrD6yFUGSGnAwsxLoPZFPKcJJh0rk8F2r9cDnbuU5YHK8NiDhhsJUhwF1XAXVwBAJg7dy7uuusujjZMFCF+1UgUhX79+uHFF19Ejx49INlcaO19EN6slvYVlJNeyG+AO0lQSPAHVLbExpnehyl+0IqPZB1HI3wxk+D3QYaDNBFqvIdw5lMPeZmOGPqcqzNKsdpqq9ddOOTow96g4dXV7Xs1vN54440Mr0RR4ic2oij16tULL730Es4++2xIZg9aex6CJ6ehfQXl5CdKkLw6J1W9k22o+WIzbSqdVIfIVNefThhiCWH2bkjjkMxwkGTB3kNDvUbCCa6RjCERqHyljiDnTKmtx1PQ10zbPgQ9l3u9gNfbNsOAX3gVvHCecQie/FqYTCbcd999uOWWW/j6JIoSP60RxaBr1674/e9/j/HjxwMmEc4eR+AuqGlfQRtAAwVZkwCYzOGdnNNYXE/CqQ6Rqa4/nTDEJkayj12av38kgiAIkb0vhbrMgvQFC6CBBif03073Mpkw5nSNMBz7vy7aW10lZYWA+6CsJ/h309YE10DLJbSibIYT3txGZGVl4YknnsCVV16pv89EpIvXwBLFgcfjwTPPPIM1a9YAAKynS2CtLYUAeS5YKdCE6Cb5A5bkFQHR7zpY7QnU/zpZ/w8AIa6DDesaWKUePcm4DrZDoeF/qIzLdbAx1J/RpCAf7LTLKDypCv6d6FrYqL9Qi/U62HT4UifZ18CKfl/Ial8Dgd4/tQMXBnrPNgntxzHQe4ugqSPY+7N6/Wrg9ybBbGorXgq4nmDxvb7V/9wmqAM4eUMu99ocKBzbgMrKShQWFuJ3v/sdhg4dGni/iShsDLBEcSJJEl599VW88sorAABTcz6yK/tCEE2BA6w//xALyCdr5V/Uf7An/w8KsYbYdAywQNghMiEBNoL6M16weQ2VZRSeVIacGAKmUQJsTL1BMmEgp2QF2KDh06T/nmk2658LzCEGVzKZ9cuPZACpAPuhhFsg8DlNO/hTsHOeYLEAXi/cOXUwn1kFh8OBXr164amnnkJZWZn+/hFRWBhgieJs/fr1WLx4MVwuFwRnFrJO9YXJaQu9YaAAqxVstGLlA0O6B1ggoSE2YQE2zPo7PZ5K9KU62AAMsCHrT3CA1fsSKF70noMohnyOYQVYvffakCMMxzBCsSjJATfW8nX2P9QIxoIghD7XCYC76Ae4u1UCAMaMGYOFCxeioKBAfzsiChsDLFEC7Nu3D7/5zW9QVVUFeM3IKi+DuTlHXhjoBCu1zSUX7OQtSiFDlOQVg374SJsACyS0KzFbYdMATymBpTrAJqMLcaz1xBhgUx5e5Z0I/LheN3ztOrG+ToI9D+X9O8oAq7y/xzzNTrQBVnlvDxZgleNrCjC3OtD+BXGw5cp7fKC52YH2L5BDLJcsAlzdT8CbXw8AmDNnDu68807O8UoUZwywRAlSXV2Nhx9+GN9++y0gAdaq7rDUFENQTuAdBrPw6o+SGCrEipLuh4y0CrFAZEGW18IaC08rvjpLeI21rhgCbFqEV3lHOj6m/X+IJeCGw/+5+L9nRxhgte/pKQmvHa6xDTDAUvsOBj6vqtsHCJ/Ke7skycv998F//Amd5aLNjd7TJRw8eBBmsxn33nsvB2siShAGWKIEcjqdWLJkCT766CMAgLkxH7byUgiiuf1ErB2Qwv9aWf/rdcJohdXSfuBIuwALJCzEyqvH8a2NATZyPLW0M+h1r/LmUex7tHVGGWDTJrwCHQfg01seaL14BtgIw6tcvd85I8iywHVHEWCV91b/cBjo/Vvb+uo/AJMyor+6fYBLbrTLtcFVoW0lDXTJjrb11W+5J78JtkG1aGpqQlFRER599FGMGjWqYxlEFBcMsEQJJkkSVq9ejRdeeAFutxuCy4qsE71hcmbLK/h/4Ak2OAYQUSuslvLBI2SITXaAVcsNY7soQmTcQiwDbHR4ejF062tU4TXGOiMNsSkbcTgYvRF0tcuDrROPABvsfTrM1teggxPFM8D6v6dqA2yw920lwPqfJ5WWWcEUfCwJJbwGCq7KcpOgP9ZEgOUSJLhLfoCnqzx93jnnnINHH30UJSUlgcshorhggCVKku+++w6PPPIIKisrAVGAraIHLPVF7StoP/jozosXeYCVixfSsxVWLTfGuf50N43D2xxDbHQ68ymmM4bXGOuNJMCmXXgFfEeOD7YcCC/gRkovvCrLdYQaoCimABtOeA13cCj/9ZTWV72BEGM57kFGVpbMHjh7nYCY0wIAuOaaa/Dzn/+c17sSJQEDLFES1dfX44knnsCWLVsAAOa6Qtgqu8tdirViCLBAiBCZrgEWYIjNVJ31NMMAG7kw6o2pyzCQ2AAbi1QN8ASEHKE4pvAqSnL322inv5HE0NPvxPR61dnWKwYcOMqb24icEU04ffo07HY7HnzwQUydOjX6fSCiiDDAEiWZKIpYvnw5/vKXv0AURQguK2wne8Hcam9boa2bcLATunbKnCCDXmRsgAWiDpEMsCmm1/KRqaehznbtazzqD7PetLruNV6SPcATEPPoxO1lhxg9ONoBnrTXyEZaf6i6Q41srIwpoZ0bVhDlLsNdagEAAwYMwGOPPYY+ffro7x8RxRUDLFGK7N69G48//rjcpVgCrFUlsNR0hSBC/6TtP+er/8k5VIAFEnodrFxEel0L274pQ2xK6V3zl4mnos7aAhtt3cnoPqzWlYYhNtQIu4GE2zIb59GJO5bf8TwUdFmHwnUGdwq2XLtOoKltQtWvXR4owGoHRGxbLtqc6D1dwMGDBwHIU+TccccdyMrKCrx/RJQwDLBEKdTY2Ihnn30WH3/8MQDA1JwD28lSmFx+J2T/64dCDPQUU4AF2AqboPoJ+h/KM+10ZOAAK2+exG7EUdSVUa2weoM7xRpegZhGJw7rOOsNwBTL4E7+ywOtpw2woeoPNbqx/0wAACSzAE9RHUx9a+F0OlFUVIRf//rXmDBhQseyiCgpGGCJUkySJKxduxbPPfccHA4H4DXBdqoE5roCCNCceLXT7QQLYm0DYTDA6m3KVtiU0+sSmUmnpM4cYCOpPxXT5wDpE2IjHWAo0ml3lOcZ4+jEwcsPMXpwuAE22PtqqICrBNhQ9Yca3ThAeBUtbrh6VUDMawYAjB07Fr/+9a/RrVu3wGURUVIwwBKliZMnT+K3v/0tvv32WwCAqSEXtvLuMHkCjGgYIoQZOsACDLGdgV7rUaaclhhgQ68TYx0ZE2KDiaZlNhLxaH0NWUecXkfhBNw4kSDBW1QP26AmNDU1wWaz4bbbbsPcuXNhSvfXDFEnwABLlEY8Hg9WrlyJZcuWwe12t7XGngFzXX57a2ys4RVIeIANez+Cls8A2+llwqnJ4AFWLiLB3YjTOcCGGJk3KcKdlidaMQRYSZJiH504luVA6NeY3oCIQZZLFg+cPU9BzJdbXYcOHYpf//rX6Nu3r35dRJQ0DLBEaejIkSNYtGgR9u3bBwAwt7XGCh6L2kU41AcLXbEG2DDK6BStsHHYDwpDup6mEh0u4iHdr4ONtXUOCQqx2ve3aEJsMsJvolufRRFCgAGStO/tCRudOJzRi5XpeQIJNQiUslxThgQJ3sIGZA1pQmNjI6xWK2666SZce+21nNuVKM0wwBKlKY/HgxUrVmDZsmXweDyA1wRrRTdYThdCENs/RAT6AMEAG564hli5wPiWR+3S8VQV6bWLqZCqABtJvenYChvhQEcdtktGy22s0+4E20fNc9AeW//39GDH3efcpDc6MRD5cv/1/AOsNpgGWq6sow3IggmizQVXaQXEvBYAwNlnn4358+djwIABgesnopRigCVKc4cPH8bixYvV1lhTSzZsx8+A0GpT1/H/IJEOATas/QhZh4FaYX0LTky5nV26na5CjaLcWQNsEkYg7lBlPENsoPe2MForw143HkINgBZNePV73trW10Dv5XpfnqrLwh2dONwBoPzX0wbUQAMc+i/3K0Mym+DpVguhrB4ulws2mw3z5s1jqytRmmOAJTIAr9eLVatW4c9//rM8UrEEWH4ohqWyGILU/kFE+dAQc4CVCwm9DlthQxWeuLI7q3Q6ZcUaIpIhmdfBxlJXqlthATnU6b2nhdNSG2y9eApn+qlIAmyQ5yAIgu57eMjW2bZR8YPvQxjL1X0MNoKwOWAwDWe5N8cBV+8qSNlOAMDo0aNx3333oXfv3sH3iYjSAgMskYH88MMPeP7557Fp0yYAgOC0wHqyBObG3MgKSlKAlYthiKU4S5fTVjoE1FCSFWBjrScdWmHDEWpKGu06iRKPruvRhPUO1QQOuHH7O4Sa/kZZJ8LlktkLd48aeLs1QJIkFBYW4s4778SMGTOS8xoiopgxwBIZ0KZNm7B06VJUVVUBAEz1ObCWl8DksravFOpaLHYj1mye4LdBhtjESPXpywgfdhlgk0vv/TbUiMd620ciDaYWinn04hDCHcjQp5UYEjxd6mEf6kRDQwMAYMaMGbjzzjtRVFQU0/4QUXIxwBIZVEtLC5YtW4Z//OMf8Hq9gCjAUlUEyw/FEMQArQT+H0pEUX+wj3QJsABDLAWXylNYOgSmcCTjOtg0CLCA/sBCCQ+4gd5j9Zb7r5Po8Ko397JWHKYWCjW4YKThM9wygg005c1xwNWrCpJd7i48YMAA3HvvvRg5cqTOsyCidMUAS2RwR48exe9//3ts375dfsBlhvVUN5jr8iAEHDhDE25DDToTj2tpYYxWWLkIhlhDStVprJMEWLmIGOfjDEeCWmH1AlHchLqmNNQ6iQyvsQ7uBEQUtMMZVDDScBqqjGDLJYsHrh7V8HZpBADk5eXhlltuwZVXXslBmogMjAGWKANIkoTPP/8cL7zwAioqKgAApuZsWE90gaklu+MGyvVPoa6h6mStsHIRDLGGlczTmVHCK9CpuhEDYQwuFG/hXheb6Otm4zEqdjStyB12Q38wwUhaTsMZRCrQOpJJhLekDpb+DjgcDgiCgEsvvRS33XYbuwsTZQAGWKIM4nQ6sWLFCrz++utwOuWuUubTubCUd/G9PlYr5tZRBtgoKkl8HZ1Vsk5pDLAJqSeeITahAwzFU7zDa7SDO0XaihylUC2n4ZYRMLhCgrdLIwpGelFTUwMAGDZsGO666y4MHTo0uh0morTDAEuUgX744Qf89a9/xUcffSSf5CXAXFUIa0URBK//xO+JD7ByNUkKsUD6Xw8rV5L4OjqrUK81QYhtnXQMQXriESxhrFbYUNIqyMbhmtOQr+l4jEysrBNMBNfHBj0fhFNGkHW8eS1w96yGZHcBAHr27Inbb78dU6ZMSa+/NxHFjAGWKIMdPHgQL730ErZt2yY/4DHBUlkES1VB+/yxcQmWadQK61Np9CGRITYDhDM/ZjTd6I32YdhIARboXCE21DWn8ZqSJ25T2yRoIKpwygiyjmhvhbu0BmK+AwCQn5+PG2+8EVdddRVsNlt0+0NEaY0BlqgT2Lp1K/7whz/g8OHD8gNuM6wVRTDXFECIR4ZKx1ZYn4ojf5JJCbByRcmpp7MK5zrASNdJh+ATCQbYoCIJsQkZDCpUt91kjEwcap1g+xLJ9bF6gTxUOUGOi5jlhLtHLcSiZgCAxWLB7NmzccMNN6CgoCD4vhCR4THAEnUSXq8Xa9euxSuvvILKykoAgOC0wFJRDHNNLgTE8KEs3QOsz06EHxgZYjNIOB/UQ60TyYf9dBKnACsX1flCbLjTv0Qs1OBPiQqv0QzupN2fSPZXL5yGKifIctHmhqe0DmLXJnV6pOnTp+Omm25Cz549dZ4AEWUKBliiTsblcuH999/Ha6+9htraWgCA0GqFpbwI5roog2wyAyzAEEuJE+5cmUbDVlhd0U79kjCJ6DocyzXdkV4fG6w1OZwyggVXqwee7qeBHi3y3OcAJk+ejFtuuQX9+/fXL5eIMgoDLFEn1drainfeeQfLly9HfX09AEBwWGGpKIL5dIAgG2pwDSO1wgIMsdS5JDPAxqu+FITYcKZtCUZpDYyLeAbYWAZ3iuQLnXACahR1iTY3PN3rIPRwwOPxAADGjRuHW2+9FYMHD46+PiIyLAZYok6uubkZb7/9NlauXImmpiYAbS2yFYUw1+a1B9lQg2wYrRUWCDswMsCSoSU7vMaxzmSHWD2h5i9NeHiNx2BJ/kJ1l9dbR7tuLOsEqUvMcsHTvQ44w6G2uI4aNQo33XQTRo4cqV8fEWU0BlgiAgA0Njbin//8J9566y00NDQAUK6RLYS5Nh+CJER3PVMAbIXVrSg59VDmS0VwTUD9QUOsKKVsxGL/9zC98Brx4E+xDJYUiVivj431uvIgI3yL2S54epyG2KVFPXbjxo3DDTfcgBEjRgSvi4g6DQZYIvLR0tKCVatWYeXKlTh9+jQAQHCZYf6hEJYfciGIAT48hRrcw48RW2HlVRliyQCSPWhTovfDfx/8/w8THGKV4BnsfStYMI2qdTYZAzspor0+NtaRvYPUJeY64e5eB7GoRX1s4sSJ+NnPfoahQ4cG3j8i6pQYYIkooNbWVrz33nt48803UV1dLT/oFWCpyoelMh+C2xJT+WnTCgswxFLmSHWrq28hsZehUPYn0P9fCrsZx3Xwp0gHSkq0cOZMjmRe5QDLJEgQC1vgOaMeYr6zbVUBF154IX72s59h4MCB0ew5EWU4Blgi0uV0OvGvf/0LK1aswPfffy8/KAHmmlxYKgtgckQ3UXxatcICDLFkfOkUXtsLi19ZelIUYmMd+ClioQbSi3cLbaj3aeX5Rfh+LgkivF2b4DmjAVK2G4A8j+u0adNw/fXXo1+/flHsMBF1FgywRBQWURSxZcsWvPnmm9i1a5f6uKk+Ww6yDdkRT8Fj5BDbvkmC30IZYilc6dJ12Leg+JQTrjQf9CkmoQZ3SmbrbJQkixeekgZ4ujUAVnm/8/LycOWVV2L27NkoKSlJ8R4SkREwwBJRxPbu3YuVK1fi008/hdj24UloscLyQz7MtUGukw0grm8/KQyx7Zsm8O2UQZZCSccAKxcWv7LCkQYhNpwpd8JZTxVqYKdA6wRaP1kh168+0e6Ep6QB5p4uuFwuAECPHj3wk5/8BLNmzUJOTk5y9ouIMgIDLBFFrby8HG+99RY++OADtLa2yg96BZir82D5IR8mp1V3+0wLsO1FJOhtlSGWQmGITdsAG8nIxT7CGe09nKl39NaLF019kiDB28UBb0kDxDyn+vjgwYNx3XXXYdKkSbBYYhtLgYg6JwZYIopZY2MjPvzwQ7zzzjs4efKk+ripPlsOsvX2oN2LMzXEysUk4O2VIZb0MMDKMmVgp3CE0zobaL140tQpWj3wljTCU9KkdhM2m8248MILMXv2bAwfPjz+3auJqFNhgCWiuBFFEdu3b8c///lPbN68ub2bnNMM8w/5sNTkQfCYfbaJ+1tQZwixcsGJKZeMjQG2Xaj9T9A8sikZ2CkeoxeHOwiUsp62tRUSxPxWeM5ohNDNBa/XCwDo1q0brrjiClx22WXo1q1b6LKJiMLAAEtECVFeXo5Vq1bhgw8+QGNjo/ygCJjqcmCpzvMZ9CktW2GBuIZEtsZSUqRrgJULjG95wejtt/b/MAWttClreYy1i3GQgCxZPfB0bYa3WxOkbI/6+KhRo3D11VfjggsuYDdhIoo7BlgiSqjW1lZ8/PHHWL16Nfbt26c+LjjNMNfkwVydB8Fp1ikhCgyx1FnFOSQarhU20P6m0dyxegE24oGdIhHtIFAB1pMECWKhA55uTRC6tre22u12zJgxA1dffTX69+8fj70mIgqIAZaIkubQoUN4//33sW7duvZWWQkwNWTDXJUHU50dghSnD28MsdRZddZWWO2+6v2fpVF4jXpgp0gowTTcbsZB1hOz3PB2a4KnazNg86qPn3POObj00ksxdepUjiZMREnBAEtESed0OrFp0ya8//77+Prrr9sXuE0w1+bAXJMLodkW8byyPtI0wMrFMcRSAnX2VthQUhxgk3p9bIwkswhvcTO8XZsh5rePJFxcXIwZM2Zg1qxZ6NevX+p2kIg6JQZYIkqp8vJyfPDBB/jwww9RXV2tPi60WmCuyYWpJifkdDxBdbYQKxecmHLJGBIQEA3VChtKONfHplELrVZCuxhr61G6CHdphljkAExyvSaTCePHj8ell16K888/n9e2ElHKMMASUVrweDzYsWMH1q1bh02bNrXPKwtAaLLBXJ0L8+mcDqMYhyVNgyxDLMVNgkJh3MNre8GJKTeYcK6NTfH8sfHqYixJUtghV1lXggQxzwlv12Z4i1sAS/t7SL9+/TB9+nTMmDEDJSUlYZVLRJRIDLBElHZaWlqwadMmrFu3Djt27ICoXJMlAaY6O8y1OfL1smIUH4LjERoZYildGC24+laS+DqA8K6NTaPwGuxjWTgDQEWyrgQJyPHA26UZ3i7NkLLar2vt1q0bLr74YlxyySU466yz0q5rMxF1bgywRJTWqqur8fHHH2PdunU4cOBA+wIRMNWnMMwaoUsxQ2zmMnJwba8seXXpSYPwGs5HMf8QGUnQ1YZWye6Gt0sLxOIWSPb2qW9yc3Nx4YUX4pJLLsHIkSNhNsd5dHgiojhhgCUiwzhy5AjWr1+PjRs34vjx4+0LlDB7Ogem00kMs0YIsXLBiSmXki8TgqtvxampVyvFATZckQZdn9CaowmtmvlabTYbxo0bh0suuQTnn38+srKyErPzRERxxABLRIYjSRIOHz6MDRs2YOPGjfj+++/bF6ph1g5TvT2ya2bTIMTKRSbwbZlh1rgSGPZSFmDlylNXd7Dnrf0fNEjA1ZIgQcp1wVvcArHY0SG0jh8/HlOnTsWECROQm5ubwj0lIoocAywRGZpumJUAoSlLDrN19vBGM06TbsUJDbG+FSWnHopeEgJeSgOsvAPJrc//+abptbGRkAQRYoETYpED3iKHz1ytWVlZmDBhAqZMmYLzzjuP87USkaExwBJRxlDC7MaNG/H555/j0KFDPssFhwWmuhyY6+wQmnTmmU2TgZ6SFmJ9K01+nRRYkkNdpwmxJiG8//FUH48wSBYvvEUOiEUOiAWtgLn9edntdpx33nmYOnUqxo8fD7vdnsI9JSKKHwZYIspYp06dwpdffokvvvgCO3fuhNfb3iIBtwnmOrmbsakhG4JX8+E5jQZUSkmIba88dXV3VinsTttpAmy4Un08AlAGYVJaWaVcF7Tfw51xxhmYOHEiJk6ciJEjR8Jms6VuZ4mIEoQBlog6haamJnz11Vf44osvsGXLFjQ1NbUvVLoa12fDVJ8NocUGIVHZLYZQyDCbwdIgvDHAaugdiyRfHyuZvRALWyEWtMJb2OrTNRgABg8ejIkTJ+L888/nlDdE1CkwwBJRp+PxeLBr1y588cUX2Lp1q+91swDgNsHUkA1zXTZMddmRDQQVDiNeKytXlry6Ohu2vKaHQMci0P9YuMdM2Tac9dvWlUyAlOeCt8ABsbC1QytrVlYWRo0apYbWkpKS8PaFiChDMMASUad36tQpbN26FVu3bsWOHTvQ0tLis1xotsJUnw1TQxZMjVnRTdMTiNFGMG6vJPF1dEa85jW1lOMR6n8o3NbZMNeXIEHK9sgDMLW1tMLiW07//v0xfvx4jBs3DsOHD+d0N0TUqTHAEhFpeDwe/Pvf/8bWrVvx1Vdf4cCBA74riIDQbIOpQQm0NghSjB/EExQIEx5mGWTjK0mBjsE1RtrjF+lgUEpgzfJCLGiVQ2uBs0O34Pz8fIwZMwbjx4/H2LFj2cpKRKTBAEtEpKOmpgY7duzA119/ja+//hoVFRW+K4iAqSlLDrMN2fLoxlIUASGBYZBT8hhAZ5gqR6H3XLWvIaMHXQ3JJrewettCK7J8A6vVasWwYcMwatQojB8/HoMGDYLZHOdLF4iIMgQDLBFRBMrLy7Fz507s3LkTX3/9Naqrq31XEAGhySaH2sa2FlpvBB9EMz3IKqGEYZddhsN5nRiQOlJwvgtivhNSnhNStm9gNZvNGDp0KEaNGoVRo0bhnHPOYbdgIqIwMcASEUVJkiScOHFCbZ395ptvcPr06Q7rCS0WNdAKjVkQnObgc9AmONildNCnYKGkM4XZFAezlIRYwRT+39iAwVUyiRDzXJDynHJozXN2uIbVbDZj0KBBamAdPnw452UlIooSAywRUZwogXbPnj3qT4cRjgHAZZIDbZNNvp622eY7D61aYOKDXUqn5vGXqUE2jUJZylthg0mjY6RHGXBJynVBzJPDqpTrhv/3UXa7HcOGDcM555yD4cOHY9iwYcjJyUnNThMRZRgGWCKiBKqrq/MJtPv374fH4/FdSQKEVktb1+O2QNvSdi1tZwux/sJ5/pG08EUrmjrSMJSlXYBVjmsaHisAkKweOajmuiC1/fZvXQWAkpISDB8+XP0ZMGAALBZLCvaYiCjzMcASESWR0+nEvn37sHfvXuzbtw/fffddx4GhAPla2hZbWyutBaYWK4QWa3QDREUoLQNtJNdLJiLMRlNHmoSytAutWqGOkXKcE3wsJUiAVYSY44KU64aY55TDqq3j39lms2HgwIEYPHgwhg0bhuHDh6N79+4J3T8iImrHAEtElGKnT59Ww+x3332Hffv2ob6+vuOKEiA4LPK8tM1WOeC2WCB4Ej9aaVqF2khGqo1XmI2mnhQG2LQOrUDgY5OkYygPsuSBlOOCmOOWuwPnuAFrx/rNZjP69euHIUOGYPDgwRg8eDBbV4mIUowBlogozUiShFOnTqlh9uDBgzh48GDgUAsATrMcaB1tLbUO+XYyWmuBNAu34Yok2EYTolLQLTbtQyuQuAGdAnypobaq2t2Q7G5IOW65hTXHDQQo2mQyoU+fPjjrrLMwePBgDBkyBAMHDkR2dnb4+0FERAnHAEtEZACSJKGqqgoHDx7EgQMH1N/l5eVBNmi7rtZhgdBihclhSUqwNWSYBYKHqjTpBhwOQwTYcIQ7T6zykNr91y23rNo96m1YAv9d7XY7zjrrLJx11lkYOHAgzjrrLPTv359T2RARGQADLBGRgTU1NeHQoUM4ePAgDh8+jKNHj+LIkSNoamoKvIE22La2/5haLYDLFHx6nygYPswaKLwqDB1itcc7UFA1iZCyvfIowG0/ot0Dye4OOLASAAiCgJ49e6Jfv34488wz1cBaWloKk8l4f18iImKAJSLKOJIkoaamRg2zR48eDR1sAcArQGg1dwi2QqsFcMcebg0baA3GyCFWEiSfgKoG1WwPkBW867HZbEavXr3Qt29f9OvXD/369UP//v1RVlbGVlUiogzDAEtE1Elog+2JEydw/Phx9fepU6fg9XqDbywCgtMMwWnx+y3fjjTgMswmTjoHWMkkQrJ55ZbULA+kLG/bjweSzRtw1F+tgoIC9O7dW/0pKytDv379UFZWBpvNlqRnQUREqcQAS0RE8Hg8OHXqlE+wVX6qqqr0wy3QFnAtEFxmuSuyy9zhJ1jIZZhNjGQHWTWc2kTA5pVvW9t+twXVQCP9+svLy/MJqdqfgoKCJDwTIiJKZwywRESky+PxoKqqChUVFaioqMCpU6dw6tQp9XZ1dTVEMYyRZSUALjMEJeC6zYDHBMFtApxtv91mmLxmwCsACZjO1WgEkxB1wI9HgJUEeYAkyeKFZBXl21b5tmSVW0yVoBrsOlR/ubm5KC0tRY8ePTr8lJaWIi8vD4KQvq3IRESUWgywREQUE7fbjaqqKjXMVlVVdfhdW1sbXshViGgLt2Y52HpMEDxtv72Cel/wmACvCYJHgOQSAFGI+VpdbfBLRetwoOAZaj9ChVVJkACzCMkiAhYJklkELG33zVLb4/J9ySoCSmANM5QqcnJy0K1bN5SUlKBbt27qzxlnnKGG1Pz8/IjKJCIi0mKAJSKihPN4PDh9+rQaaqurq1FXV4fa2lqcPn0adXV16m/dgaZCEQF4TXKQ9QrywFRt9+EVAI8AQTTJt70CBFEOvfIPIMAESAIEEfJjUlsoFgW5BbltCiLJKwFQHpOrDhWcJWhOt0Jb6BTUjQGTBMkkyY+Z0PZbksOn9r5J/g1z222z6HvbJEEyK8vbQqg5+lO92WxGUVERiouLUVRUpN4uLi5Wg6ryOycnJ+p6iIiIwsEAS0REacXlcvkE2traWjQ2Nvr8NDQ0oKmpyed+yOt0k0ETaFWC3+8UysnJQX5+vvqTl5fn81sJqNqQyi69RESUThhgiYjI8CRJgsPhQGNjI1paWuBwONTfyk+wx91uN9xuN1wul/qj3Nc+nuiAbDKZYLVaYbVaYbPZ1Nv+9202G3JycmC3231+srOz1dvK8uzsbDWc5ubmwmKxJPQ5EBERJRoDLBERURhEUYzoRxAECIIAk8mk/ij3tY8LggCz2cxwSUREFAYGWCIiIiIiIjIEU6p3gIiIiIiIiCgcDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIllTvABFRqkiShNbW1lTvBhFRRLKzsyEIQqp3g4goJRhgiajTam1txYwZM1K9G0REEVm7di3sdnuqd4OIKCXYhZiIiIiIiIgMgS2wREQAbFvPALwCBJMACCb1N0wC0NZVTzCZ5NtC22+TAEFo+x5QWa/tcWWbDo8pZWqXoX25pGxn0ixXHle+cvR/TBAgKb0Jhbb7JvlO++MCIEDdRmq7D0BeRylDUJ5Le3n+y7VlSso6pgDLtOv7LNM+5r8fQbYJshyAug/B6vJZP8h+dNgGAbbvsI3ksx/+5anL4b9cal8H7eu2P0dJXSZ0WF9StxHaHm//rZQnQRAkn5eXUr78p2xfboJ8G+rjgKltubxMLlJ9TPNbLq/9vvYHkMuW76N9GdrrMgmi+pi8rggAMAvt902C7zKTIGmWSzBDVOszC6JmOxHmtrqU2/JvUd1OKc8EqW1bEWafZfL6ZkGCABHmtvvKc5PvQ94O7fUJbWWY1X1s2z/Ix8IMCSag7bbQVh5gFgSYIMCMtt+CsswEAQLcLjPm/L8eICLq7BhgiYgAObyK8gdFCO2/tclAgBJc29OaoKRKnyTUtrxtK99kY+qYrgTNtoHSk+7jCLIcamj1ue3/W91c0BTrH4j9l/uXibYgHWRZsN0NuB/hbBPGoYq2TM3hCx164xxg/Zf7LfMPsO2P+5cndVimhNTAyyXN49rHpABlSj7bKAHW/yfoMjVUaoKtJuiqy9C+XAl+yjI5wIpqAFSWyQGw7bcgwAxlG/m2/FvwCY5yWYBZgPq7fTv5dsBl6n0lAEuawCzfDhVgA5VnAtpCsXxfXqasr/kbEhF1YuxCTERERERERIbAAEtERERERESGwABLREREREREhsAAS0RERERERIbAAEtERERERESGwABLREREREREhsAAS0RERERERIbAeWCJiADALEGCKE/+KMDvtzoho988qv7zrCo/Uvs2Po8HWaaZiFQKMrlpoMfbH1Nm14TvfUn7uLyuBAGQ4FOepN2mbbuOgjwmaRb5zEUqaHdfZ/5VIcjjftsEWx5qmV6Zeo8rv3S3CTSfa4DlHfYxyDyw6Lid0GH99vUE7Ryvmpcp1HlXtS+vIPPAIrZ5YKW27SW/H2WZ1DYXrrqsbf9FQQIEsb0etN1H2/OB73KpbZnUVrdSNtBen/Zxk6Yu5bb/b3k/5H9r7W+x7Smb2m6LbS/RwPPACjBBnl9WWSa0PW5G+1yyAHzum9Tbgqa89rJMEGAWlGUCBAhwuwL9DxIRdT4MsEREAFzjfkj1LiSG5Pc7Cn65jkilxE8x1IppS0n47JBGRGQUfMcmIiIiIiIiQxAkSYrhe3kiIuOSJAmtra2p3o2M0traiiuvvBIAsHr1amRnZ6d4jzIDj2v8GfmYZmdnQxDYJ4KIOid2ISaiTksQBNjt9lTvRsbKzs7m8U0AHtf44zElIjIOdiEmIiIiIiIiQ2CAJSIiIiIiIkNggCUiIiIiIiJDYIAlIiIiIiIiQ+AoxERERERERGQIbIElIiIiIiIiQ2CAJSIiIiIiIkNggCUiIiIiIiJDYIAlIiIiIiIiQ2CAJSIiIiIiIkNggCUiIiIiIiJDYIAlIiIiIiIiQ2CAJSIiIiIiIkOwpHoHiIgoOi0tLVixYgU+/fRTVFRUwGQyoaysDBdddBHmzJkDq9Uaddm1tbVYvnw5Nm/ejMrKSmRlZaF///6YOXMmLr30UgiCoLv9yZMnsXz5cmzbtg21tbWw2+04++yzcfnll2PKlCkh69+/fz/+/ve/45tvvkFdXR3y8/MxbNgwzJ49G6NHjw64jSRJ+Pbbb7F582bs2bMHx44dQ0NDA7Kzs9GrVy+MHTsWs2fPRklJSdB6eUzD09jYiBtuuAE1NTUAgHnz5uHmm28Ouj6Pq76dO3dizZo12L17N2pra2G1WtG1a1cMGTIE06ZNw/jx48Mqh4ioMxAkSZJSvRNERBSZiooK3H333aioqAAAZGdnQxRFuFwuAMDAgQOxdOlS5OfnR1z2/v37cf/996O+vh4AYLfb4XK54PV6AQDjxo3DokWLgoaOzZs3Y8GCBWhtbQUA5ObmwuFwQBRFAMCsWbPwwAMPBA0W77//PpYsWaLWl5eXh+bmZiinq2Bh6bXXXsNf/vIX9b4gCMjNzfXZNjc3F7/5zW9wwQUXdNiexzR4APX35JNP4qOPPlLv623P4xr8uLrdbjz11FNYu3at+lheXh6cTifcbjcA4IILLsCTTz4Z9jEhIsp07EJMRGQwHo8HDz74ICoqKtC1a1c8++yzWLduHdatW4cFCxYgJycHBw4cwOOPPx5x2U1NTXjggQdQX1+PPn364M9//jPWrl2LdevW4d5774XFYsHWrVvxwgsvBNy+vLwcCxcuRGtrK4YPH4433ngDH374IdasWYN58+YBANasWYM333wz4Pb//ve/1UAwadIkvP3221izZg3effddXHHFFQCAV199FZ988knA45Kbm4srr7wSS5cuxbp167BmzRqsW7cOjz/+OLp3747m5mYsWLAAR48e5TEN45gGsnXrVnz00Uc455xzQq7L4xr8uEqShEceeQRr165FUVER7r//fnzwwQdYs2YN1q9fj3/+85946KGHcO6550Z8bIiIMhkDLBGRwXz00Uc4fPgwAODxxx/HmDFjAAAmkwnTpk3D/fffDwDYsmULduzYEVHZK1asQG1tLbKysvDUU09h8ODBAACr1YrZs2errUnvvfcejh8/3mH7ZcuWweFwoEuXLli8eDHKysoAADk5Obj55ptx+eWXAwD+9re/obGxscP2f/zjH+H1ejFgwAA8+uijOOOMMwAAhYWFuP/++zFu3Dif9bQmTZqEv//977jvvvtw7rnnIisrCwCQlZWFCy+8EM8//zyysrLgdruxcuVKHtMwjqm/lpYWPP3007Barfi///u/kM+dxzX4cX333XfxxRdfID8/H3/4wx9wxRVXqK3QgiCgW7dumD59OubOnRvRcSEiynQMsEREBqN03Rw1alTAVrBp06ahtLTUZ91wKV0Zp02bhp49e3ZYPnv2bNjtdni9XvzrX//yWeZwOPDpp58CAK666qqAXUJ/+tOfAgCam5uxadMmn2Xl5eXYvXs3AODaa6+FxdJxmAZl+4qKCuzatctn2cCBA3W7ofbs2ROjRo0CAOzbt89nGY9p4GPq749//CMqKytx/fXXo1+/frrrAjyuQODj6vV68dprrwGQuxn37t079BMmIiIADLBERIbS2tqKf//73wCA8847L+A6giCog75s27Yt7LK///57VFZWAkDQQWNycnIwYsSIgGXv2bMHTqdTd/vS0lL07ds34Pba+8G2Hz58OHJycgJuHw6bzQYA6jWOAI9puMf0m2++werVq9GnTx81nOnhcQ1+XL/++mtUVVUBAKZPnx5weyIiCowBlojIQI4dO6aGr/79+wddT1lWW1uLhoaGsMpWunqGKnvAgAEA0OE6Uu32yjp62x85csTnceV+cXExiouLA25rNpvRp0+fgNuH4vF41ECl3T8e09DH1Ol04ne/+x0A4Fe/+pX6RYAeHtfgx3XPnj0AgB49eqCwsBAffvghfv7zn2PmzJmYMWMGbrzxRvzpT39CXV1d0H0jIuqsGGCJiAykurpava03HUy3bt0CbqNHmRIl3LKbm5vR0tLSoZ78/Hz1+lO97bX1abfX7nsgyr75bx/KypUrUVtbCwC47LLLOtSrLTuQznxMX375ZZw8eRKXXXYZfvSjH+mW5V+3tvxAOuNxVa7JLSoqwsKFC7Fo0SJ8++23MJlM8Hg8OHLkCN544w3MmzcP+/fv162DiKizYYAlIjIQ7YdwvQ/e2dnZAbdJZNkOh6PDcr3t/fdLuR9qe2Xfwn1eALB7924sW7YMAHDxxRf7zM/JY6p/TPfu3Yu3334bXbt2xR133KFbTqC6teUH0hmPqzIo1H/+8x988sknuOiii/DWW29hzZo1WLt2LR599FHk5+ejtrYW8+fPj+i1TkSU6RhgiYgoox07dgwPPfQQ3G43+vfvr458S6G53W4sXrwYoijinnvuiWquVupI6VotiiIGDhyIRx55BN27dwcAWCwWTJ06Fb/61a8AAFVVVXj//fdTtq9EROmGAZaIyECUQWEAqIPQBNLa2hpwm0SWbbfbOyzX295/v5T7obZX9i2c53X8+HHce++9qKurQ58+ffDss88GrVdbtt5+h1t3PMpO9TF99dVXcfToUVxwwQWYMmWKbhn+eFyDH1ft/f/6r/+CydTx49iUKVPQq1cvANENWEZElKkYYImIDER7zZ0yimkg2msJQ12np+jatWtEZefm5vp8EFfqaWxs1A0Vyvba+rTbh7oOUtk3/+39HT9+HPfccw9qampQVlaGpUuXBtyGxzTwMT1x4gSWL18Ou92OO+64Ay0tLR1+FB6Pp8NjPK7BX6va63aVkY4DUZZVVFTo1kNE1JkwwBIRGUjfvn3V1hq9UXiVZV26dEFBQUFYZWtHY9UrWxnB1X8eUO322lFeg23vP3qscv/06dNBR1/1er34/vvvA26vpYTX6upq9O7dG88//3zQcMRjGviYVlVVwev1wuFw4Kc//SlmzpzZ4Ufx+uuvq48p13fyuAZ/rZ555plB6wxEEISI1iciymQMsEREBpKdnY1zzjkHAPDVV18FXEeSJGzduhUAMHbs2LDLLisrU6/DC1a2w+HA7t27A5Y9fPhwddAapX5/FRUVOHbsWMDttfeD1b9nzx61lS/Yczt+/DjuvvtuVFdXo6ysDL///e91W/Z4TEMf02jwuAY/rmPGjFFvK3UEoiwrLS0Nug4RUWfDAEtEZDBKy9fOnTuxd+/eDss3bNiA8vJyn3XDIQgCZsyYAQD45JNPcOrUqQ7rvPPOO3A4HDCbzbjkkkt8ltntdlx44YUAgFWrVqGpqanD9suXLwcgXwM4adIkn2U9e/bEiBEjAMhT3ng8ng7bv/HGGwDk+TMDTeeihFel27Bey6sWj2nHYzpq1Ch89tlnuj+KefPmqY9pB3ricQ38Wu3RowfOPfdcdXtJkjpsv3HjRpw8eRIAcP7553dYTkTUWTHAEhEZzMyZMzFgwABIkoSHH34YO3bsACCPaLphwwY8/fTTAIDx48f7TBcDAMuWLcPkyZMxefLkgB/6r732WnTp0gWtra144IEH1Dko3W43Vq1ahb/+9a8AgMsvvxxlZWUdtr/55ptht9tRU1ODBx98UJ3v0uFw4NVXX8Xq1asBADfccEPAEW1vv/12mM1mHDx4EAsXLlSvIWxoaMCzzz6rtnbdcccdMJvNPtueOHFCvea1T58+YYdXHtPgxzRWPK7Bj+v//M//wGq14sCBA3jsscdQWVkJQL6eeOPGjeqx6dOnD3784x/rHmcios5EkAJ97UdERGnt1KlTuOeee9TBXbKzsyGKIlwuFwBg4MCBWLp0aYcP3suWLcOrr74KQG75CdQ1cf/+/bj//vtRX18PQG6BcrlcaivT2LFjsWjRIthstoD7tnnzZixYsEAdoTUvLw8OhwNerxcAMGvWLDzwwANBr+t7//33sWTJEnX9vLw8NDc3q61U8+bNw80339xhu8WLF2PNmjUA5EF79OYHBeSWNy0e047HNJTJkyeH3J7HNfhx3bBhA5544gn1WOTn58PpdKr3e/Xqhaeffhq9e/cOWgYRUWfDAEtEZFAtLS1YsWIFPv30U1RUVEAQBJSVlWHatGmYM2cOrFZrh23CCQUAUFtbi+XLl+PLL7/EDz/8AJvNhgEDBmDmzJmYNWtWwGk/tE6ePInly5dj27ZtqK2thd1ux8CBA3HFFVeENR3L/v37sXLlSuzatQt1dXXIz8/HsGHDMHv27A4tdYonn3wSH330UciyFdousAoe08iEE2ABHlc9x48fx8qVK7Ft2zbU1NTAYrGgT58+uPDCC3H11VeHPbUQEVFnwQBLREREREREhsBrYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiMgQnn/+eUyePBl33XVXqneFUqypqQmXXnopJk+ejM8++yzVu0NERElkSfUOEBFRYjU3N+PAgQPYt28f9u/fj/379+PkyZOQJAkAsHLlSpSWliakbkmSMHfuXFRVVeH666/H7bffHlU5Bw4cwKpVqwAAt912Wxz3MLUOHz6MrVu3Ys+ePTh8+DBqamrg9XqRn5+PM888ExMmTMDMmTORl5eX6l1NK3l5ebj22mvx8ssv44UXXsD48eORlZWV6t0iIqIkYIAlIspwd999Nw4cOJCSuvft24eqqioAwKRJk6Iu56WXXoLX68X48eMxfPjweO1eSt1999345ptvAi6rra1FbW0ttm3bhtdffx3z58/HuHHjkruDaW7u3Ll46623UFlZibfffhvXX399qneJiIiSgF2IiYgynNLSCsgtV6NGjUKXLl2SUvemTZsAACUlJRgyZEhUZezevRvbt28HgIwKKUqwz8/Px6xZszB//ny8+OKLePnll/HYY49hwoQJAOQwO3/+fOzatSuVu5t27HY75syZAwBYvnw5WlpaUrxHRESUDGyBJSLKcLNmzUJRUREGDRqE3r17QxAE3H333aitrU143UqAnThxIgRBiKqMN998EwBQWlqKH/3oR3Hbt1Tr3bs3brjhBkybNg02m81n2aBBgzBlyhS88cYb+NOf/gSXy4UlS5bgtddeS9Hepqfp06dj2bJlaGxsxAcffIBrrrkm1btEREQJxhZYIqIMN3fuXFx88cUoKyuLOkRG4/jx4zh27BiA6LsPV1VVYfPmzQCAGTNmJHX/E+3pp5/Gj3/84w7hVev666/HwIEDAQBHjx7FoUOHkrV7hlBaWooRI0YAAN59990U7w0RESUDW2CJiCghlNFhlW7L0Vi/fj1EUQQAXHTRRWFt4/F48Mknn+Dzzz/Hvn37UFdXB6/Xi6KiIgwYMABjxozBxRdfjK5du/psN3nyZADAzJkzMX/+fHz//fd4++23sW3bNlRXVyM3Nxdnn302/vu//xsjR45Ut3M6nfjwww+xdu1anDhxAq2trejZsycuueQSXHPNNTEPLnTuueeq1zAfP34cZ555ZtRlHT16FKtXr8auXbtw6tQptLa2Ii8vD/n5+SgtLcXo0aNxwQUXoE+fPlGV7/F4sG7dOmzYsAGHDx9GfX09BEFAQUEBioqKMGTIEIwZMwYTJ06E1Wr12db/+B89ehTvvPMOtm/fjurqajgcDjzxxBMdvgy56KKLsGvXLhw7dgz79u3D4MGDozs4RERkCAywRESUEEr34QkTJsBiie508+WXXwKQrxPt27dvyPUPHjyIRx55BCdOnOiwrKqqClVVVfjqq69w6NAhzJ8/P2g5GzduxJNPPonW1lb1MafTiS1btuCrr77C/fffj8svvxzV1dWYP38+9u3b57P9kSNH8Oc//xlbtmzBkiVLYgqxHo9HvW0yRd9xavXq1Vi6dCm8Xq/P4/X19aivr8eJEyewbds2HDp0CA8//HDE5dfV1eG+++4LOGCYcuwPHDiAd999F8uXL0fv3r2DlvXhhx9iyZIlcLlcIevVDur15ZdfMsASEWU4BlgiIoq76upqfPfddwCi7z7scrnw7bffAgCGDBkSsvvwgQMH8Itf/AIOhwMAMGrUKEyfPh19+/aF1WpFTU0N9u7dG3Le0EOHDuGTTz5BcXExbrvtNrXuHTt24G9/+xtaW1vx3HPPYeTIkfjtb3+LgwcP4qqrrsIFF1yAoqIinDx5Eq+99hoOHTqE3bt3Y/ny5bjpppuiOgYA8PXXX6u3+/fvH1UZhw8fVsNrQUEBLr/8cowcORJFRUXwer2oqanB/v37sWXLlqi7aS9dulQNr6NHj8b06dNRWlqK3NxcNDc349ixY9i1a5faJTyY/fv3Y/369SgoKMA111yD4cOHw2q14ujRo+jRo0eH9fv37w+73Q6Hw4Gvv/4aN998c1T7T0RExsAAS0REcff5559DkiTYbDaMHz8+qjIOHTqktj4OGjRId12Px4NHHnlEDa/33HOPOkKt1vnnn49bb70VlZWVQcs6cOAABg4ciKVLlyI/P199fOjQoejduzcWLFgAj8eDX/ziF2hoaMDTTz+NMWPGqOudffbZGDt2LG644QZUV1dj1apVuOGGG2A2myN6/oDcDfvIkSMA5BBfVlYWcRkAsGHDBrXl9bnnnlOvq9WaNGkSbr31VtTX10dcvtPpVL8YmDRpEn772992CMIjR47ElVdeCYfDoduSfOTIEfTu3Rsvvviiz2jZwUaxNpvNOPvss7Fr1y785z//gSiKMbVUExFReuM7PBERxZ3SfXjMmDGw2+1RlaHtBhxq2p/169fj5MmTAORRlwOFV63u3bvrLn/wwQd9wqtiypQpKCkpAQCcPn0as2fP9gmviry8PPz4xz9W1zt69KhufYFUV1fj2WefBQAIgoCf//znEZehUEaczsvLCxhetQoLCyMuv7GxUf2yYeTIkbqtuHa7PWSX6l/+8pcRTfWkrNva2orq6uqwtyMiIuNhgCUiorhqamrCzp07AUTffRgAampq1NsFBQW66yqBGQCuu+66qOsE5C6pwUKeIAg+y6ZPnx60HO165eXlEe1Da2sr5s+frwZP/4GjIqWE7qamJmzYsCHqcoIpLCxUR1P++OOPY5qTtaSkJOCXAnq0rw/t64aIiDIPAywREcXV5s2b4fF4YDabMXHixKjLcTqd6u1AraFa//nPfwDILXHhDPakJ9T22n3RG61Xu14kgc7tduOhhx5SB4a64IILcOutt4a9fSDTp09XWz0XLFiAO++8E2+88QZ2796tdruOhdVqxcyZMwEAe/fuxU9+8hM8/fTT+PjjjyMO79GMsqwNsNqBt4iIKPPwGlgiIoorpTX0nHPOQVFRUdTlaK8ZDTUabV1dHYD2lsZYZGdn6y7Xdo/V6x6tvQ5TmQooFI/Hg4cffhhbt24FAIwbNw4LFy6M6vpZrZ49e2Lx4sV48sknUVVVhT179mDPnj0A5OM8ePBgTJ48GZdddlnILwuCueuuu+ByubB27Vo0NDTgvffew3vvvQdA/mJh3LhxmDVrVsiW5FCt7YFov+yIdsRrIiIyBrbAEhFR3LhcLnz11VcAYus+DMjXayoaGhpiKssIPB4PFixYoE4dNGbMGDzxxBNq19xYjR49Gm+++SYeffRRzJo1S53Gxuv14ttvv8VLL72E6667Tg3PkcrKysL8+fPx+uuv45ZbbsG5556rBvza2lp89NFHuPvuu/HQQw/5BE5/0QzApB14Svu6ISKizMOvKYmIKG62b9+udkmNNcBqp0wJFWCLiopQWVlp2AF8lPCqtF6fe+65WLRoUUzzxwZis9kwdepUTJ06FYDccr1jxw6sXbsWW7ZsQUNDAx5++GEsX74cXbt2jaqOsrIy3Hjjjbjxxhvh9Xpx4MABfPnll1i9ejVOnz6Nzz77DC+//DJ+8YtfxO15NTY2qrdDDdBFRETGxhZYIiKKGyWADRw4EKWlpTGVpZ3z9Pvvv9ddV5lmp6amJuS66cY/vI4aNQqLFy+Oe3gNpKioCNOmTcNTTz2Fq666CgDgcDjw+eefx6V8pXvyzTffjD/+8Y9q9+z169fHpXzFsWPHAAClpaXIycmJa9lERJReGGCJiCguRFHEF198AUAeeChW3bt3R7du3QAA3333ne66kydPVm8vX7485rqTxePxYOHChWp4HTlyJH73u9+FvA43EcaNG6feVq4pjqfS0lJ1Htto5poNpq6uTp1CadiwYXErl4iI0hMDLBERxcWePXvU4KMNlLFQQtWxY8fQ3NwcdL2LLrpIDUdr1qzBP/7xD91yKysr47J/sfB4PHjsscfw2WefAUhseP30009DhlLl2mUA6NWrV0Tll5eXY/v27brrnDp1Sm0p7dmzZ0Tl69m7d696+7zzzotbuURElJ54DSwRUYY7ceKEOuKsQplfFAA2btzoM1qw3W7HlClTIq5HaUXs2bNnVFOhBDJ16lSsWbMGoihi+/btuPDCCwOuZ7FY8Oijj+LOO++Ew+HA888/j88++wwzZsxA3759YbVaUVNTg3379mHjxo0YNGgQ5s+fH5d9jNbjjz+OjRs3ApAD4x133IFTp07pblNcXIzi4uKI6/rHP/6Bxx9/HKNHj8bo0aPRr18/FBYWwu12o7KyEuvXr1dbz3v06BHx9EeVlZX45S9/iZ49e2LixIkYMmQIunfvjqysLNTX12Pv3r1YtWqVOpr0nDlzIn4OwWzbtg2AfH3vhAkT4lYuERGlJwZYIqIMt2fPHixatCjo8pdeesnnfo8ePWIKsPHoPqwYM2YMSkpKUFVVhbVr1wYNsABw1lln4YUXXsAjjzyC8vJy7Ny5Ezt37gy4rnLNbCpt2LBBvX3y5EnccccdIbeZN28ebr755qjqc7lc2Lx5MzZv3hx0nV69emHRokW60wPpKS8vx1tvvRV0uclkwnXXXYerr746qvL9eTwefPzxxwDkVv9opwAiIiLjYIAlIqKYHTx4UG09jHX0YS2z2YzZs2fjT3/6E7Zs2YK6ujrduWXPPvtsvP7661i7di02bdqEAwcOqNdbFhcX48wzz8TYsWNx8cUXx20fjWDBggXYunUrdu3ahcOHD6O2tlbtUlxYWIizzjoLkyZNwvTp06OatmfEiBF48cUXsX37duzduxeVlZU4ffo0mpubkZ2djZ49e2LEiBG47LLL4tY6D0B9TQDA3Llz41YuERGlL0GSJCnVO0FERMb2yiuv4JVXXkFxcTHeeeedqObyDKapqQnXXnstGhoacPvtt+P666+PW9lkbA888AA2b96M0aNH47nnnkv17hARURJwECciIoqZ0n34/PPPj2t4BYC8vDw1tK5YsQItLS1xLZ+Mae/evdi8eTMEQcBtt92W6t0hIqIkYYAlIqKYuN1uTJo0CfPmzcPs2bMTUsecOXPQu3dv1NfX4+9//3tC6iBjefnllwEAM2bMwJAhQ1K8N0RElCzsQkxERIbw3XffYfPmzcjLy8NPfvKTVO8OpVBTUxPeeustSJKE2bNn614XTUREmYUBloiIiIiIiAyBXYiJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQ/j9D9cx6wr00pgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5gURfrHv909M5t3YWHJGQREPEVBQVFQwazgoaJi9tQzIIY7451nFhOGM2MAE2CCn3ogKigIkgUEBEFyjhvYPDNdvz96urenp0PNTM/szO77eZ55WKbfrqpJVfWt9623BMYYA0EQBEEQBEEQBEGkOGJ9N4AgCIIgCIIgCIIgeCABSxAEQRAEQRAEQaQFJGAJgiAIgiAIgiCItIAELEEQBEEQBEEQBJEWkIAlCIIgCIIgCIIg0gISsARBEARBEARBEERaQAKWIAiCIAiCIAiCSAtIwBIEQRAEQRAEQRBpAQlYgiAIgiAIgiAIIi0gAUsQBEEQBEEQBEGkBSRgCYIgCIIgCIIgiLSABCxBEARBEARBEASRFpCAJQiCIAiCIAiCINICErAEQRAEQRAEQRBEWuCKgN2yZQsEQYAgCLj22mvdKLJRMnjwYO19JAiCsOLaa6/V+ootW7bUd3M0JkyYoLVrwoQJ9d0cwmXKy8vRrl07CIKAF154ob6bQ6QJP/30k9YvPPLII/XdHIJIGRryvP+JJ56AIAjo0qULqqurXS8/aR7YCRMm4JFHHmlUnde0adO011xSUlLfzSFCBAIB/PDDD7j//vtx+umno3Xr1sjIyEBubi66du2Kyy67DNOmTUMwGIyq3NWrV2P06NHo2bMncnNzUVBQgKOPPhr3338/tm7dmqBXQxBEY2Tu3Lm44YYbcNRRRyE/Px9erxeFhYXo27cv7rzzTvz222+u1/nEE09g586daNmyJW655RZTm19//RWvv/46rr/+evTr1w+dOnVCbm4uMjMz0bp1a5xxxhkYO3Ys9uzZw13vnj178J///Af9+/dHs2bNkJGRgXbt2uGss87Ce++9h0AgwF1WcXExxo0bhyFDhqBVq1bIyMhAdnY2OnTogAsuuADvvvsu12Rr9+7d+Prrr/HII4/g/PPPR+vWrbWJaKdOnbjbEwvffvstRo4ciY4dOyIzMxMtWrTAySefjBdffBEVFRW29+rFZDSPRL+mRHPBBRdor+Xdd9+N+v5t27ZBkiQIgoDCwsK4J+SlpaV47bXXcOaZZ6JDhw7IzMxEs2bN0KtXL1x++eUYP348Dh06ZHpvcXEx/u///g//+te/cPbZZ6NXr15o0aIFvF4vCgoKcNRRR+Haa6/Ft99+G1WbKioqMG7cOJx88slo0aIFMjMz0bFjR4wcORIzZ86Mqqyff/4Z1157LY444gjk5uYiNzcX3bt3x0033YRFixZFVZYdegcaz8NOg+jFZDSPdF6sXbZsmfY6OnbsCMZY1GX87W9/08p45plntOfvuOMONG3aFJs3b8Zzzz3nZrMVmAts3ryZAWAA2DXXXGNqM2jQIM2msXDNNddor3nz5s2O9o3xPUo2s2fPZoWFhdr7bPfo168f+/PPP7nKfe6555jX67UsKy8vj02aNCnBr45oLETbtySL999/X2vX+++/X9/NaZBUVlaySy+91LH/EkWRjRkzhgWDQVfq3bFjB8vMzGQA2Lhx4yztWrZsydW/5ubmsrfeesux3g8++IBlZ2fbltWnTx+2ceNGx7JmzJjBioqKHNvWuXNntmzZMstyvvrqK9v7O3bs6NiWWKiurmaXXXaZbd1du3ZlK1eutCzjxx9/5Pp8jI/TTjst5nbr6/zPf/4Tcznx8MUXX2htGDhwYNT3P/bYY9r9t956a1xtmTx5MtfvZOrUqab3v/HGG9yf26mnnsp2797t2KZff/2VdenSxbasUaNGsZqaGttyysvLHb+jgiC41jfp9QfPw+77p5+DR/OYM2dOzO1PhXn/0UcfrbXhhx9+iOreiooKlpeXxwAwSZLYrl27wq6rv5u8vDy2f/9+N5vNPHCBTp06xaTaiXB++umn+m5Cg2fnzp3aqmZhYSGGDBmC/v37o3Xr1vD7/Vi8eDE++OADlJWVYcmSJTjttNOwePFitGrVyrLMN998E//85z8BAF6vF1dddRUGDRoEv9+PmTNn4vPPP8fhw4dx1VVXoUmTJjj77LOT8lqJhsuECRPSetWXiJ0rrrgC06ZNAwBIkoSRI0fixBNPRIsWLbBr1y7MmjUL06dPhyzLePnll+Hz+fDss8/GXe/TTz+N6upqNG3aFH//+99tbZs3b47+/fvjmGOOQefOnVFQUIDa2lr8+eefmDZtGpYvX47y8nLcfPPN8Hg8uP76603L+fDDD3H11Vdr/z/zzDMxbNgwFBUVYfv27Zg0aRKWLl2K5cuX48wzz8SCBQtQVFRkWtbixYsxbNgw1NbWAgC6du2Kq666Cp07d0YgEMCGDRvw3nvvYd++fdi8eTOGDBmCVatWoW3bthFlGaNzvF4vevfujeXLl9u+L/FyzTXXYMqUKQCAZs2a4aabbsLRRx+NAwcO4KOPPsLixYuxceNGnH322Vi0aBHat28fUUbv3r0xdepUrvpGjx6NHTt2AACuu+46915IPXDBBRegefPmOHDgAObNm4eNGzeia9eu3PdPnDhR+zue9+K///0v7rjjDgCAz+fD8OHDMXDgQLRs2RKBQABbtmzB/PnzMWvWLNtyRFHEMcccg379+qFHjx5o1aoVfD4fDhw4gMWLF2PKlCmorKzE3Llzcdppp2HZsmXIzs42LWvr1q0455xzsHfvXgDACSecgCuvvBLNmzfHqlWr8Pbbb+PgwYP4+OOPIQgCPvzwQ9NygsEgRowYoXlrc3JycN111+HEE0+EKIpYvnw53n33XRQXF+Pll18GYwwvv/xyrG9lBKeddpr23lrRs2dPy2tPPPEEDhw44FjP/Pnz8fzzzwNQ+pFTTjkluoamGNdddx3uvvtuAMrc4owzzuC+94svvsDhw4cBAGeffTZat24ddn3MmDF45plncPjwYTz//PMYO3asew13VQ7bkAqrDMkmVb0kjZkPP/yQHX300eyTTz5h1dXVpjY7duxgRx11lPbZXX311Zbl7dq1S/MOeDwe9v3330fY6L1S7du3Z1VVVa69HoJIJcgDm1jmzp2rvb/5+fls+fLlpnYzZsxgkiRp/VK8K98HDx7U+rmbbrrJ1nb16tVMlmVbm6eeekp7HU2aNDHti/ft28dyc3M1uzfeeCPCRpZlduedd2o21113nWWdp59+epid3++PsKmoqGBDhgzR7MaMGWNa1vz589mNN97I3nzzTbZkyRLNK6XelwgP7LRp07TyO3TowLZu3Rp2PRgMsuuuu06zufjii+Oqb+3atWHftYqKipjLSgUPLGOMjRkzRmvHv//9b+779L+73r17x1z/999/r5XTt29f23nh4cOH2aFDh0yv7dy5kx08eNC2rq1bt7Ju3bpp9Y0dO9bSdvjw4Zrd9ddfH+EZ3bJlC+vQoYNm880335iW8/rrr2s27dq1Yxs2bIiw2bVrF+vZs6cr3kvG+CJA3WbkyJFanU888URcZaWCNtq3b58WQZidnc3Kysq479X3q59//rmpzRVXXMEAsKZNm7Ly8nK3ms1IwCYQErCpR3FxsePkijHGVq1apX12WVlZloO3fvL0z3/+07K8Sy65RLN79dVXY24/QaQyJGATy0MPPcTV3zDG2IgRIzTbr776Kq56X3zxRa2suXPnxlWWyl/+8hetzFmzZkVcHzt2rHZ9xIgRluUEg0EtBE4URbZ+/foIm+rq6jBBX1JSYlmevu8/7rjjonpNiRSwxx57rFb+//73P1ObysrKMKGxatWqmOv75z//qZVz4403xlwOY6kjYFesWBH2GfHMBRhj7Prrr9fue+GFF2Kqu7q6mnXs2FFbgCgtLY2pnGj48ssvtXafcsoppjb696RDhw6WC+z/+9//wsS3GXph+vXXX1u2a9GiRZpdLOHcepItYA8dOsQyMjK0/mb79u1xlZcq2ki/iPHuu+9y3bN161YmCAIDwJo1a2YZXq7/7owfP961Nic8C7G6KXrOnDnac9FsrJZlGZ9++ilGjhyJzp07Izs7G3l5eejZsyduueUWrFq1yrZtjzzyiFaHGqI7a9YsXH755ejcuTMyMzMjMnkGAgHMnDkT99xzDwYOHIgWLVrA5/MhLy8P3bt3x7XXXou5c+da1qlmCNWHnHTu3DniNVu9VzzZyBYtWoSbbroJPXr0QF5eHnJyctC1a1dcc801mD17tuP9aj2DBw8GoGzef/7559G3b180bdoUOTk5OOqoo/DAAw+guLjYsbx0oUmTJlzvb+/evbVQk6qqKvz5558RNowxfPbZZwCU93P06NGW5enDWtQQsGSxYMEC3HLLLejVqxeaNGmCzMxMdOjQASNHjsT//vc/23vNskdu27YN99xzD3r27ImcnBw0adIEJ510El5//XXuZCrl5eV46aWXMHToULRp0wYZGRkoLCxEv3798PDDD2P//v229xt/K8FgEBMmTMDQoUPRtm1beDwe06Qje/fuxb333otevXohJycHhYWFOOGEE/DCCy+gsrISgLIlwixpybfffqvV6RSmpHLHHXdo98yYMYPrHh6cshAn6nP75ptvcMEFF6BVq1bIzMxEp06dMGrUKCxYsCDq11BbW4t3330XF154Idq3b4/MzEw0adIEf/nLX3DPPfdYZlf+448/kJOTA0EQUFBQgM2bN1vWUVxcjA4dOkAQBEiSZNtvpwP79u3T/j7iiCNsbbt376797ZTYxwk1ZLBDhw4YOHBgXGWp9OrVS/vbLKGTfhy76qqrLMsRRRGjRo0CoMwXJk+eHGFz8OBBLey3RYsWKCgosCzPzffNLTZs2IAVK1YAUD73c88919QuKysLN954o/b/Tz/9NKb6gsFgWJioVYi326hhvYIgQBRFvPjii6Z23377rZYgKC8vD9nZ2ejatSuuvfZazJs3z7L8Y445Bn369AGghM3++OOPjm2qrKzUxnmPx4Mrr7wyhlemfBZqMsfHH38c+fn5MZUTDU6/MSB8PnLTTTchMzPT1O6cc85Bt27dAABLly7Fpk2bwq7v3r0b69atA6BszzrvvPMs23XCCSdo86v58+dj27ZtHK8mNfjkk09QU1MDABg6dCjatWuXlHr1WqZ3797YuXNnhM2BAwfw5JNP4pRTTtFCyouKinDKKafg2WefRXl5uWX5+rB43u1JEydO1LaPjho1Cj6fz9TuzDPP1LZ2WIWfx4QbKthuBYR3U7TZqtyff/4Ztupo9hBF0TYU5D//+Y9mO3v2bHbbbbeZlqP3kA4ePJirzddcc43pioPe8+p0v9V7ZYXf72c33nijY9mXXnopq6ystCxHtRs0aBDbuHEj69Wrl2VZHTt2bJQe5H79+mnvwcKFCyOu61fqncKKgsEgy8/P176z0YRoxEp5eXlYqIvV47zzzrNsj3HlfMaMGaxJkyaWZQ0dOtQyNFtl+vTprEWLFrZtysvLY//3f/9nWYb+t3Lw4EE2cOBA0++tntmzZ7OmTZta1nn00Uezbdu2aavkxvuDwSDr3LkzA5RQGKdQ8KqqKq2+Dh06uJZMhzHn6A63P7dAIGDbr4miyJ555hluD+ySJUu099Lq4fP52Jtvvml6/9tvv63ZDRgwgAUCAVO7iy++WLN76KGHbN/TdOBf//qX9nqcPLD6175ixYqY69y2bZtWjt12imjR969mHlj9mLR27VrbsvSepv79+0dcr6qqYh6PhwFgXq/X1gO7evVqrazhw4dH9Zqs+p54+e9//6uVffvtt9vaLlmyRLPt169fTPXpk1T16tUrpjL08Hhgf/31Vy2xkcfjYR9++GGEzb59+8JCFq0eN9xwA6utrTWt55VXXonq+/zBBx9o9sOGDYvmZYdx2mmnMQAsIyPDdm7mJnrPl5UH9vjjj9dsli5daluefv782muvhV1bvHixdu3EE090bNuFF16o2Vv18zwk2wN73HHHafVNmTIl7vKc5v3BYJD9/e9/12xOOukk09Dy999/X0umZPVo2bIl++WXX0zr8fv92u9PEASupHhdu3bVyrbazqJy0UUXaXOFAwcOOJbNQ8IF7M8//8ymTp0atqdw6tSpEQ/jAPXnn3+y5s2ba/cMHDiQjR07lk2aNIl99NFH7K677gqbjFp1inoBe8455zAArFWrVuz+++9nH330EZswYQK79dZbwzJnnXjiiSw3N5cNGzaMPfbYY+yDDz5gn376KXv55ZfZTTfdxHJycrQyzfbILFu2jE2dOlXrsACwt956K+I1G7Mc8ghYfXa3zMxMdvPNN7OJEyeyjz76iN15551hX+CzzjrLMkRGtenTpw/r2bMnEwSBDRs2jL3xxhtsypQp7Omnnw4LRbLq/BoqNTU1YRN+syx+kyZNiqrj1H++ixYtSkCr66iurmb9+/fX6uvatSt78MEH2YcffsgmT57MnnjiCda9e3ft+umnn24qsPQTj2HDhrHs7GyWlZXFbr75ZjZhwgQ2adIkds8994T9JuwWlD7//HMtlM/r9bIRI0aw//73v+zTTz9l77zzDhs1apS2F0MURdOJLWPh76X6uz7mmGPY2LFj2eTJk9nbb78dNtFbs2ZNWCbTPn36sBdeeIFNmTKFvfLKK+zkk0/WxFDbtm0tJ6H6vXsfffSR7Wfw4YcfaraPPvqorW20RCNg3fjcbr31Vs3O5/OxG2+8kU2cOJF9+OGHbPTo0dp7qw9DshKwv/zyi2YvCAI7++yz2bhx49iUKVPYhAkT2M033xz2WVmVow+RNWv7O++8EyZqzPY8pht6ccK7B3bw4MFx1fnuu+9qdbq1/UGfRbVly5amiydHHnmkZhONgM3LyzMd98477zzN5vrrr7fcAzt06FDtu/njjz9G9brU8t0WsDfffLPj70HF7/drn31OTg53mKwedbIJgD333HMxtroOJwE7e/ZsbYE3OzubTZ8+PcLm4MGDYRPmY445hj366KPs448/ZpMmTWIPPfSQ1nfbjckHDhxgPp9Pe38OHz5s23a9YJ42bVosL5/V1tayrKwsBoAdf/zxjDHG/vjjD3brrbeyrl27soyMDFZYWMhOOOEE9sgjjzjub+Vh3759YdllX3zxxQibYDCotcvj8Tj2kfoFyltuuSXsmj4sOFoBe9ttt0X12vTo9UeXLl1Y3759WUFBAfP5fKx169Zs6NCh7LnnnrNdtOJl5cqVWl2FhYWOi/U82M37q6urw8a5c88913Q720svvaTZZGdns6uvvpq9+eab7LPPPmNvvPEGGzZsmBbqm52dzdasWWPalnvuuUcr5+GHH7Ztt35f+LHHHuv4Op955hnNfvLkyY72PKTkMTrBYFBb5cjIyGCffvqpqd2ePXs0D60oimz16tURNnoBCyhC2GnvwQ8//GC7QnbgwAHN4yOKItu0aZOpndvH6EyePDls0Df7Em7ZsiXMs2E14dC/Jz6fz3S/woEDB8LKikd0VVRUmC5cxPKwO97ALfTiw2of1KOPPmo7KBu5+uqrNXuz1WU3Me7NNRuYamtrw9pkliTFeORChw4dTPeYLVq0SPNwNG3a1LRj37ZtmzZJ6dChA/vtt99M275o0SJWUFDAACURhNlKujGy484777T1cOo9tLfeequprbGvMJuE7tmzRxPYgwYNsqyPMcZOPfVUBiip5ePdJ2MkGgEb7+emH6iaNGliukq/bt061qpVq7A6zSbaZWVlrH379lpZP/30k+nr27Bhg7aAlpOTY5qE6NChQ6xdu3bae/zzzz9r1/744w9NnOfn53OtJtuxdu1a1/qveBMq6X/bkiSxK664gr3yyits8uTJbNy4cWFCbeDAgWzv3r1x1XfTTTdp5S1ZsiSqe+fMmaO97smTJ7OxY8eG/RazsrJMxQpjLGwB2C4ag7Hw/bIA2I4dOyJs1q9fHxb50bVrV/bII4+wDz74gL333nvs/vvv1zwQGRkZ7L333ovqtTKWOAGrfy94RLV+8Tnavkef0MXj8bA9e/bE2Oo67ATs559/ru0pLCwstPQQqYtjgiCwl156ydTm8OHD7Mwzz9TqmjFjhqmdPjrB7nPesmWLNvFv0aJFzItgy5cv1+obPnw4++CDDzThaPZo0qQJmzlzJlfZe/fu1X5jX3zxBXvnnXfYLbfcErYAf+aZZ5qOo1u3bo3qOzt79mzN/owzzrAsq7Cw0HHhRL9fdsiQIVyv1QzeY3QKCgri9pjqk4CNHj06rrJUrOb9paWlYb/7q666yvT7t2TJEm0MP/bYYyOSu6l8/fXX2u/aaoFBH33SqVMn289QnzDu5ZdfdnydP/30k2Z/1113OdrzkJICVn9e1yuvvGJr+8cff2irjWaJBvST0pycHLZz506u1+TExo0btXIff/xxUxu3BWyfPn2061aDPmPKpFTtdDt27GgaXqf/YT/22GOWZY0fP57Lzoloz+qyeyQ6TOTQoUOsdevWWn2fffaZqd1dd92l2fz3v/91LDda+1jZtWuXtsL817/+1da2trZWO/vtiCOOiLhuFEJ2CVxGjRplazd69Ght0u0UbqL3+nz88ccR1/W/leOPP95WvOq9Vr1797YMNzWWazWg6xNymYlCxpR+SbU577zzbF9rLEQrYOP53IYNG6ZdnzBhgmU533zzTVidZgL2hRde0K47JRaaNWuWZvvkk0+a2vz0009MFEXt8youLma1tbVhYXFuLBYZFzfieUTr1TPjpZdesj3PtEuXLmzSpEmWYZTRcNJJJ2nlRrv14cQTTzRtnyRJ7KyzzmK//vqr5b36cGm7jLr6JE7qw2wxmzFFkAwZMkQbH80et9xyi2n2VB6c+o5Y0Y/9PImZorXXM27cOO3eeEJm9VgJ2DfffFP7/bZt29bSM7Rs2TLt/rvvvtu2rkOHDmkLoEOHDjW10YfWnnrqqZZl6Repneq1Y8aMGVo5Xbt2DYuOePXVV9mUKVPYM888Exap6PV6Tbcu2ZVtfLRt25Y99thjlmOe3qOoeobtcLJXFxQB60zFjIWPyYB1Uige1Lll79692Z133snGjx/PPvvsM/bee++xMWPGRJy3G8vCFGPKXEkfFeo0h+HFbN6/d+/esN/w3XffbSkmL7jgAgYokSdmC3d6/v3vf2tlzp8/39RGv7Vj9uzZpjb6s199Ph9XSPDevXu1co2LH7GSkgJWXWnLz8/nOnJkwIABloOGfuLh5v4dxpjmcTj//PNNr7spYPXv8dFHH+1Y1hlnnKHZm3lO9RMJq1TtjIUL9csuu8yxXivSRcAGAoGwFVw78aHfi8yTWe3BBx/U7J966ik3mx2GPpzEajVbzwMPPGD5PdVPPPr06WNbjl50Gve0yLLMCgsLGaCsBjtRXl6urSqafd7634rTgKSfCJt5mfXoQxGtJqF6YXXvvfea2ugzeDp5j2IhGgEbz+dWXV2tLYa0bNnSVvwzFh72aSZg1YiZ7t27O75Gxhhr06YNA+y93frf1ciRI9m9996r/X/UqFFc9TiRagK2oqKCvfPOO7b7mo855pi4sw8zxrSwTK/XG/W9VgK2S5cu7IUXXrCd+GzcuFHrA+z62H/84x8R5dv1e7/99lvYoozxkZOTw2688caY8hQ49R2xcsQRR2hl84hr/aIDzxigR78Y4FbfZSZg9eKwR48elp4jxuqiDgRB4HJCXH755QxQPOlmUSWBQEDrWwRBMI2ik2U5LGQ5nozO+u1G6sPsWBu/3x+2oHjkkUc6ejKtBKwgCGzUqFGWIoQx5Tgo1f7kk092fB3r16/X7M36cP1n2r59e9PIlz179kTkXOEdD8woKyuzXQirrKwM8xb6fD7LqEk7Pv/8c+4xNRqM8/6NGzeGHX/09NNPW9576NAhbQHI6XgzxsIX1q2iBvVHIVnNtSdOnKjZ2GWI11NbW6vd061bN657nPAgBfn5558BAK1bt8a3337raC9JEgAlq1xVVRWysrJM7aI5bLisrAwff/wxpk+fjlWrVuHAgQOWGQnVg74TyeLFi7W/zzzzTEf7M888UzsIe9GiRTjhhBNM7bp3746mTZtalqM/xD2ebMSdOnXSspWlMmPGjMF3330HQMm4yZuNLZVQfz+A8t2cNm2arb3+c127dq1p9l4A6N+/v205dt+VNWvW4NChQwCAvLw8xzYBQG5uLkpKSrB27VpbO6ff9dKlS7W/TzvtNFtbNSu3Haeddhq6d++O9evXY+LEiXjiiSfg9Xq1636/X8tA3qZNG9tsjMkgns9t5cqVqK2tBQAMGjRI62utOOOMMyw/r9LSUvz2228AgJYtW3J/BwDYfgceffRRzJo1C4sWLQrLqNm5c2e8/vrrjnXw8Mgjj1hmyk82S5cuxfDhw7Fz504ce+yxePjhh3HKKaegoKAAu3fvxjfffINHHnkEK1euxPDhw/Hqq6/illtuibk+9XdrN05YsXDhQu3viooK/PHHH/jss8/w8ssv45577sGLL76IadOm4fjjj4+4t0uXLnjooYfw6KOPAgBuvPFGfPHFF7jwwgvRvHlz7Ny5E5MmTcLixYtRVFSE6upqHD58GICSmdhIIBDAnXfeiddeew0ejwf33nsvrr76anTr1g1+vx8rVqzAuHHjMHXqVIwfPx6LFy/Gd999hxYtWkT9utOVpUuXaic7tGrVyjLbcTzIsozbb78dr732GgCgX79+mD59Opo3b255jzqmNWnSJGwuZIWaJbampgabNm3CkUceGXZdkiRcffXVGDt2LBhjmDhxYsTv++eff8bGjRsBAH379kXv3r25X6MRWZbD/j9kyBDcd999EXYejwfjx4/HnDlzsGPHDqxduxbff/+97Zzv7LPP1uZWgUAA+/btw7x58zBu3Dh8/PHH+Pjjj3H77bfjxRdfhMeT2Cn/3XffjU8//RRr1qzB9u3bceyxx+K6667DCSecAFEUsWLFCrzzzjs4dOgQunTpomUyNvu98pKXl6dlljYjKysL7777Lnbt2oWZM2eitrYWzz77LN54442o6nn//fe1vxOVlXvlypU4++yzsWfPHkiShLffftu2rvnz52vfLUmSHMdUv9+v/W01pl5++eW4++67UV1djc8//xyvvvqqNg6r6OfF+uzFdni9XuTl5eHw4cPunWzihgp20wN7+PDhuFa3jatz+pVzu7BbPbNnz47Yz2X36NKli2k5bnpg9V61t956y7GsqVOnavYPPPBAxHX1Gk9yJtXWac9fuqP35LRs2ZL98ccftvapGkKsD5+M9mEM19WvnDsd/G63z+nrr7+OuU1moc3634pTRkf9eZM8IZWqV8vOi/L8889rZX7xxRdh1/QrtYnKfBuNBzaez03fjzz44IOO7dL3U0YPrD5rd7QPJ+/fxo0bwxLYeTwetmDBAsf2phsrV67U9s6ddNJJlhFKGzduZM2aNWOAEmUTTxZidYW/a9euMZdh5Ndff9U+ryZNmlh61WRZZg888IBtyG/Lli3ZwoULw5I6mvXdV1xxhXbdzrOo76ftQpfNUO9L1xDiW265RbvPKct1NOj7GDW8F1D2PjolUWKMad/lWB5WoZLr1q3TbDp37hzh6dR77V5//fWI+2fOnGm7112PPqszAMu8Lir6qCirKB8ngsFgWI4Ls8/T7RBixhjbvn0769u3r+1ncvbZZ4fldBkwYEBMrzEaFixYoNXXvn37qO7dtWuXFvadkZFhG7UYLfq5jPrbyMjI4EoYps9OHu3DKryesboIBrNxXL8vvHXr1o5RWXrUaJ7s7Gzue+xw5RxYNyktLY3rftVbYIaVZ1bPhg0bcN5552lnZvXo0UNbtZ00aRKmTp2qPdRzjdTz5RKJurIMADk5OY72+hUT/b1G4ln5akg88cQTeOqppwAAzZs3xw8//BB2HqAZTZo00f4+cOCAYx0HDx40vddt4vkN2f1+4vmuJKpNgPPvWo2c8Hg8YZ5SK3h+X9deey0yMjIAAOPHjw+7pv5fEATccMMNjmUlmng+N/25cdnZ2Y72du9dPN8B/cqxGc2bN0dhYaH2/y5duph69dKd+++/H1VVVQCAcePGWZ7Z2KVLF/zjH/8AoIxP0Xob9Kjf87KyspjLMNKnTx/ce++9AICSkhK8/PLLpnaCIOCpp57C8uXLcfPNN6NHjx7IyclBdnY2evXqhQcffBCrV6/G8ccfr7VPEAS0bNkyrJzFixfjk08+AaB4rC688ELLtj355JOat/mLL77Arl274n698ZKMsaa6uhqTJk3S/p8oL5P+zOmKigquyKxEjB89evTASSedBADYvHlz2BnRlZWV+PzzzwEAmZmZuPzyyyPuv+mmm3DRRRdZPvQYPwOnvkl/XfUCR4soinjttde0M49feeWVCM9XIr5X7dq1w8KFC/HRRx/h/PPP184jbdasGU4//XR89NFHmD59unbuOqB4+xPNCSecoM0Vtm/fHla/Ex988IE2zx8+fHhM0Sg8qL+NQCCA6upqR/tEzav0XlU1mkz/f/U3e/XVVztGZelR28ujxXhIuRBivfA69dRTMWfOnKTW//TTT2sThIceegiPP/44BEEwtdUfGJ5o8vLytL95DlfXTzz199YXlZWVWmhuvHTo0AHHHXecK2UBwLPPPot///vfAJQwue+//54rXEgvcLds2eJorx5ibrzXbdTfkCAICAQCKbFIof9dP/zww1pYYDJQRVUgEIDf73cUsTy/r2bNmuHiiy/Gxx9/jO+++w7btm1Dhw4dsHXrVnz//fcAlDCxzp07x/8C6hH958Yz4Nu9d/qyrr766oiBMR5uvfXWsN/X+vXr8a9//QvPPPOMK+WvW7cO69atc6WsgQMH2oZLWlFTU4MffvgBgNKnW20LURkyZAgeeOABAOAKu7SisLAQO3fudC/sK8TZZ5+t9bs//fSTre0xxxyDN9980/L6mjVrtAnmEUccoU3aVf73v/9pfw8ZMsS2rqysLJx00kn43//+B8YYli5dait4k0H37t3x448/AnAeawKBAHbu3AlA6fv0WwTsmDp1KkpKSgAAAwYMQM+ePWNurx1jxozB2rVrMXXqVCxYsABnnXUWZs6caTtPUbeTqH2sW1x33XX45ZdfAChhkYMGDQIAfP7559rC//Dhw+NecO7Ro0fY/43fTyP66/GIlNzcXAwcOBD/+9//UFNTg4ULF+Kcc87Rrrdr1w5ZWVmoqqrCzp07EQgEbMOMeecwkiRh1KhRGDVqlKXN77//rv3dr18/3pcUM6IoomnTptr8vqSkhGtRFkhO+DCg9FPnnXceKioqtPdu5MiRlvb6MfW9997jDud14owzzkD79u2xfft2zJkzB1u2bNG2AerH7WuvvZa7TL/fr+kS/WJzPKScgC0oKEBubi7Ky8uTsrfUiDpBaNGiBR577DFL8Xr48GFtb1AyaN26tfb3hg0bHO31Nm3atElIm6Jh3759EauSsXLNNde4tjf1xRdf1PaiFBQUYObMmTj22GO57tWL3GXLltnayrKM5cuXA1A6UuOeHDdp27YtVqxYAcYYdu7cifbt2yesrmjapJLs33WbNm20vZebNm2KmEzoKS4u1iZxTvz973/Hxx9/DFmW8d577+GRRx7Be++9p+1Juemmm+Jue32j7zv+/PNPR3s7m0R9B9R9XoDiuThw4AC2bt2K559/HmeddRZOP/30uOuYPHmya4suP/74I9deayMHDhzQPNF5eXmWY5OKfhLMsyhjRadOnbTJbVlZGfLz82MuS49esPD+5qzQL3Sb7YnXe1F52u/We+cWxrHGbuK4YsUKTcz36tXL8XuikqxJutfrxZQpU3DZZZfhyy+/5BKxbdu2RUlJCfbt28e1CMnLpZdeijFjxmge11dffRU5OTlh74WVKOBZtFZp0aIFWrZsib179wJQRGmzZs0s7fWi1UnsOmH3OxNFEb169cKyZcsQCASwcuVKW++wPp9EPHuCAeffrNvIshy2CMe7KPHLL7/gjz/+AKA4T5wWwOJh0KBBmD59Os4991xNxDLGcNlll5naJ2pMFUUR11xzDZ544glNtP7nP//B3LlztX3L0S5y6fVSx44d3WmnK6XwVKTzAjmFjJx66qkAlMkmz6TJTdQOpnPnzraeqx9++CFiY76RaF6zE/rVdtXDY4fe2+m0Ut9Yee2113D33XcDUDr5GTNmRLUSeNRRR6Fdu3YAFA+AXQfyyy+/aCFuJ598ckK94uoqMgDXvN7x0qdPH23iOGvWLMffjpv07dtX+1v1Yljh5AnSM3DgQBx11FEAlNVPv9+P9957D4AyYRk2bFj0jU0xjjnmGPh8PgDKhMNpu4SaOM6M5s2bo1evXgCU5D5uhKRu3rwZt956KwDF2zRp0iR89NFHkCQJsizj6quvDgt7S2f0wuvAgQOOIWZ6b4ndZNkJ/URVnci5gX5sj8UjrUe/oGkWtq9/77Zv3+5YnlvvnVucddZZ2t8zZ860tdUnvjz77LO5yt+2bZv2283JybH1+riBKmJHjBgBAJqIteoT1DGturo6LNQ3XvLz87U2lJeX44svvsCWLVs0cdWuXTvXBIve8+m04K2/Hm+0ltPvjPe7xRgLu8773TJjzZo1WLJkCQDFOz1w4MCYy+JlyZIlmve1bdu23N5XdUwHFOdJoiPaTj31VMyYMQO5ubkIBoO48sorMXnyZEtbdYHK7bmefpHsgw8+AGMspuRNKvqkUX/5y1/ibR6AJApYvavbaUXzmmuu0f5++OGHE9YmM9Qv9aZNmyxFZzAY1PZL2hHNa3aiU6dOWtjsypUrbUXs0qVLMXv2bADKSkcq7AVTww/ceLjhfR0/fjxGjx4NQBmwp0+fjgEDBkRVhiAIuOSSSwAonft///tfS9tXXnlF+zvRk4PLLrtMEx3PPPNMSngQ1JAiQJkcvvPOO0mrWy8kX3vtNVsRZrUXz4qbb74ZgDIpvvPOO7VFjGuuucY1L0F9kpGRoWUi3bt3r7aP0IwZM2Y4ZoxW+/bKykqMHTs2rrYFg0GMGjVKm/S+8sorOOKIIzBw4EA8+OCDAICdO3fib3/7W1z1AEoWYrf6r1i8r4CyyNahQwcAyv6lL7/80tZeP+nRL+JEy4knnqj9vWjRopjLMfL2229rf6t7EWPh/fff1ybDJ598smk/rhfhn332mW0fsGXLFu11iqLo6naVWDniiCO0TKsbNmzAjBkzTO2qq6vD9uRfeumlXOVPnDhRW1S8+OKLk7LtyOPxYPLkybj44osBKCL27LPPNhWxV199tfb3o48+6mreEf1EfMKECWF7/NwULPp9tPrvvpGqqip8+OGH2v/jEYq//vqrJoa9Xq/pAr3+O/LWW29ZLozNmDFDE8N9+/ZFly5dYmpTMBjEHXfcof1f3aufSBhj+M9//qP9nze7dmVlJT799FMAynzPrRBdJ0455RRMnz49TMTq96ertGjRQvt+zJs3z1UR27Vr1zBn4rfffqvtC8/Kyop6HqsfO/RjSly4kQmKJwvxHXfcodnMmTPHtrxgMBh2mO6YMWNYTU2NpX1lZSV7//332aRJkyKu6bMQ85y/N3ToUM1+3LhxEddra2vDstPBJuOg/kDwiRMnOtbtlKl5ypQp2vXWrVuztWvXRths3bo17OyyV1991bQs9TpPZuFobNOBiRMnalnUsrOz4zqXcefOnSw7O5shlPn0hx9+iLB5//33w7Lf8ZxtHC/33HOPVudpp53Gdu/ebWkbDAbZ999/zx5//PGIa3YZaqO13b59u5bhNyMjw/E3sXfvXvbYY4+xlStXRlyL5lxpxhgbOHCgZn/rrbeyYDAYYWM865Mnk2hJSYn2+esf69ev52pXrESThTjez+3nn3/Wrjdt2tT0APf169ez1q1bh70HZufAlpeXs44dOzJAOafw2WefNf0sVEpKStjLL7/Mvv/++4hr+kPZjdli/X6/dj44wJe5PR247777tNfUvHlz098GY4x9+OGHYZl7Fy9eHHOd27dv18q56qqrbG3ff/99NnPmTNuzK2tqasL6J5/Px9atW2dqu2bNGrZv3z7Lsj766CPtnOLMzEzLcvbv389ycnK0Om+55RbT7JkHDx4MO7v23HPPtX29RqLpO1T0vz+7+6ZNmxZmZzw3NRgMsuuvv97yN2GFLMusS5cu3POzWLDrY/x+P7v44ou16/3792elpaURZYwYMUKzGTlypKmNvswvvvjCcv6jR5Zl1qlTJ61PatmypVYPz5m70XDKKadoZZudAxsIBNiVV16p2ZxwwgkRNocPH2YPPPCA7e+CMcaWLVvGOnTo4Dg3Z4yx4cOHa3Y33HBDRJ+8devWsLK++eYby7J+/vlny8y0paWl7LLLLgubm9j1Ffpx3mw8OXz4MHvooYfY/v37LcuoqqoK+114vV7uz3XChAlhbU0EdnOZn3/+meXm5jJAySb/ySefRNgsW7aMeb1ebXyeMWOGbX1btmxh99xzD9u7d69j2/RzV/34fuWVV/K/wBAXXXQRA8BEUWQHDx6M+n4zkrYH9owzztC8UDfccAPuuusudOzYUctg1a1bN3Tr1g2Asur5xRdfYMCAAdi5cydefvllfPrpp7jkkktwzDHHoKCgAOXl5di2bRuWLl2KWbNmoaKiAo8//njc7Rw9erTm3bz77rvx008/4ayzzkKzZs2wYcMGfPDBB9iwYQNOO+00bNiwwTZs9IwzztD+vvfee7F//3706NFD2yTftm1bHH300dxtu/TSSzF16lRMnjwZu3fvxnHHHYdrr70WAwYMgCRJWLp0Kd59911tBfPMM8/UwusIhRkzZuD666/XVlivv/56lJSUOJ6fddxxx2neDz1t2rTBCy+8gFtuuQWBQADnnHMOrr76agwaNAiBQAAzZszQVq08Hg/efvtty8yhAML2K23evNnyTFYnnn76aaxYsQKzZs3Cjz/+iC5dumDEiBEYMGAAioqKUFtbiz179mje/D179uCMM87Av/71r5jq46Fdu3aYPHkyLrzwQtTU1OCaa67BuHHjcOGFF+KII45AVlYWSktLsX79eixcuBDz589HMBh0PLuVh7feegv9+vVDZWUlXn/9dSxYsABXXnkl2rVrh71792LKlCmYP38+BgwYgG3btmHnzp1cK+8FBQUYOXJk2J6pwYMH44gjjoi7zanCwIEDceutt+L1119HcXEx+vfvj2uuuQYDBw6EKIpYvHgx3n33XVRUVGD48OG2v6WcnBxMmzYNgwYNQllZGe6991689dZbGDFiBHr16oXc3FyUlZVh06ZNWLx4MX766SfU1taGeSQAZbVZjYJp165dhEfD4/Hg448/xrHHHouysjLcddddGDRokO3+53Tgvvvuw6efforNmzfjwIEDOOGEEzBy5EgMGjQI+fn52jmw+pX4m266Ka4kKe3atcPxxx+PZcuWYc6cOWCMWe6rXLFiBa677jq0a9cOQ4cOxV/+8he0aNECPp8Phw4dwm+//YapU6eG7Ul9/vnnLT+X6dOn46GHHsKQIUMwcOBArT/csmULpk2bpiWn8vl8mDRpkmU5zZs3x5NPPok777wTAPDGG29g7ty5uOKKK8LOgZ04cSL2798PQPltv/DCC5bvywsvvGCZ2KqkpCSiL+3cuXNcWcmHDRuGkSNHYsqUKdi6dSuOO+443HzzzTj66KNx8OBBfPDBB9r70bp1a4wbN46r3Dlz5mj72rp166Z5XZKFx+PBpEmTIAgCPvvsMyxcuFDbE6sP/X7vvfewfv16rFq1ClOmTMHMmTNx6aWXom/fvlpynp07d2L58uX4/vvvUVxczPV+C4KAa6+9VouyULeRnXLKKdqc1C3efvttnHzyyTh06BDuv/9+fPvtt7jkkktQVFSErVu3YuLEiVi9ejUAJeLCLNFdIBDA008/jeeeew6nnnoqTjzxRHTr1g35+fmoqanBtm3b8NNPP4Vtc+vZsyeef/55y3a99NJLWLBgAfbu3Yt3330Xq1evxlVXXYVmzZph1apVeOutt7StGKNGjbI92/zvf/87Dh06hPPOOw/HHXccioqKUFZWhhUrVmDKlCnYt28fACUqYvLkydx7tM0IBAJ48skn8cwzz2Dw4MHo378/unTpgvz8fBw+fBgrV67E5MmTtVNFAOD111/n/lyTtS/cioEDB+Lbb7/F2WefjfLyclx11VUAwr35xx13HN544w3ceOONKC4uxjnnnIOTTz4Z55xzDjp37gyv14tDhw5h3bp1mDdvnraPWe0L7bjkkkswevRolJeXY/fu3drz0XqiA4EA5s2bB0AJe3YriVPSPLCBQCDMC2J8mK3879q1i51xxhmW9+gfkiSx8ePHR5QRrQeWsfAzuMweJ598Mtu3b5/mSbBbNdWfp2R8GN8rHq+S3+9nf/vb3xzfj4svvtj2fEzVrrF5YI1eNt6H2eqfnueee05bBTN75OXlmUYIGNHfw3N2sB01NTXs9ttv184vc3pcffXVEWW46clTWbBgQdiKv90jNzeX/fbbbxFlROuBZUw531n1AJs9evfuzbZt26adVfaXv/yFq9xFixaFlWM8SzcRJNMDy5jSf1911VWW750oiuzZZ58NW7G1+82sW7cu7KxKu0dGRkbYqnJxcbHW94qiaNuvf/TRR1o5ffr0sY3kSRc2bdrkeM6i+rj99tuZ3++Pu079+b5z5861tBszZgx3n9qiRQvHPvG5555zLKdLly5s1qxZXK/j+eef1zy2do9OnTqxhQsX2palfgd5H1bjJ68HljHGqqurwzxYZo+uXbtaeubN0P+un3zySe77ooGnj/H7/ezSSy/V7E488cQIL2tpaSkbOXIk93vudAa2yubNmyPOGn7vvffifdmmLF68mHXu3Nm23e3bt2dLly41vb+4uDiq792IESO4vG2//vqr47h8xRVXOPahRx11FFeb7LymKk4e2Gjei2bNmrHPPvvMsU6VP//8U/tOFBQUOJ43Hys8c5l58+Zp52ZLkmQ6x/jqq6/Cogec3gue958xFhFx2qlTJ1uvuRnTp0/X7n/nnXeiuteOpAlYxhRX/tixY9mAAQNY06ZNwybWdpOsn376id18883sqKOOYk2aNGGSJLH8/HzWq1cvNnLkSPbGG2+wXbt2md4bi4BljLEZM2aw8847jzVv3px5vV7WunVrdvrpp7Px48drEwIeARsIBNgbb7zBBg8ezJo3b848Ho/lexXNpHzBggXshhtuYN26dWM5OTksKyuLde7cmV155ZVcg7nToBqrbaqTKAHLGGOrVq1it912G+vevTvLyclheXl5rHfv3uy+++5jW7Zscby/oqJCq8/n87kWZrFhwwZ2//33sxNPPJEVFRUxj8fDsrOzWefOndm5557LnnrqKVORyFhiBCxjymTlo48+Ypdeeinr3Lkzy83NZR6PhxUWFrK+ffuyG2+8kU2ZMoWVl5eb3h+LgGWMsT179rB//OMfrEePHiwrK4s1adKE9e3blz3//POsoqKCybLMsrKyGAA2ePBgrjJlWdYOIC8sLGTV1dVRtSkWki1gVb7++mt23nnnsaKiIpaRkcE6dOjALr/8cvbLL78wxhi3gGVMed/+7//+j11zzTWse/fuLD8/n0mSxJo0acKOOeYYdvXVV7MJEyZEHBqvn8Def//9tnUwxtioUaM0+3vuucfRPh0IBALsyy+/ZJdddhnr1q0by83N1d674447jt1xxx1RiRgniouLtRDcG2+80dKuvLycffXVV+zuu+9mgwcPZu3atWOZmZlMkiRWUFDAevbsyS677DI2ceJEy9+2nu3bt7OXXnqJDRs2jHXv3p0VFBSwzMxM1qFDB3beeeexd999N+otGVu2bGEPP/wwGzhwICsqKmJer5dlZmaydu3asQsuuICNHz+ea7JaHwJWZcaMGeySSy5h7du3ZxkZGax58+ZswIABbNy4cVzvq0pZWZm2BUIURbZjxw7ue6OBt48JBAJhv28zEcuYIrbuvPNO1qdPH9asWTPm8XhYbm4uO+KII9jw4cPZuHHj2MaNG6Nq4+mnn67Vm5OTww4fPhzty+SmvLycvfTSS+yUU05hLVu2ZF6vlzVv3pyddtpp7OWXX3b8/v3+++/spZdeYpdddhk7+uijtXlxZmYma9WqFRs0aBC77777ou4DysvL2QsvvMAGDBjAmjdvzjIyMlj79u3ZJZdc4hiaqjJnzhx23333sZNPPln7fhYUFLAjjzyS3XLLLWzevHnc7XESsMFgkP3444/sqaeeYhdeeCE76qijtPczNzeXderUiV100UXszTffjOp3wRhj//rXv7S6b7755qjujQbeucz8+fMdRWxlZSV788032YUXXsjat2/PsrKymM/nY0VFRWzAgAFs9OjR7Ouvv45qIXfu3Llh/ZjTHMGMK664ggFKiHO0n4MdAmNxpsclCMIVZs6cqW3Iv+OOO6JOKETEz6pVq7QMebyfwQ8//IChQ4cCUM44fOmllxLZRIKoF8aMGYNXXnkFTZo0wa5du1w7jJ4gCIJomJSVlaFNmzaoqKjAfffdF3fyRj1Jy0JMEIQ96hnEeXl5Cd2LSljz6quvan/z7r194403tL8bwtmvBGHGfffdh6ysLJSUlIR95wmCIAjCjFdeeQUVFRXIy8tzPeM0CViCSBFUAXv33XejqKionlvT8Pj5559tz5997bXXtGRAbdu2xfnnn+9Y5ooVK7SkRUOGDNHOOSWIhkabNm0wZswYAMCzzz6LysrKem4RQRAEkaqUlZXhxRdfBAD885//jPu8byMUQkwQKcCBAwfQokULNG/eHBs3bkzKOXyNjW7duqG6uhrnnHMO+vTpg6KiIvj9fmzcuBFTp07F8uXLNduvv/7aUsB+++23kGUZ69evx7PPPqtl55s3bx5OPvnkpLwWgqgPKioq0KNHD+zcuRPPP/887rnnnvpuEkEQBJGCPPHEE/j3v/+Nzp074/fff7c9gSMWSMASBNEo6NatGzZu3Ghrk5WVhfHjx2PUqFGWNmZp/3n3y3733Xcxe66aN2+OgQMHxnQvQRAEQRBEQ4EELEEQjYKFCxfiiy++wMKFC7Fz504cPHgQlZWVaNq0Kbp3744hQ4bglltuQcuWLW3LUQVsbm4uunfvjltuuQXXX38917mxnTp1wtatW2Nq/6BBg/DTTz/FdC9BEARBEERDwVPfDSAIgkgG/fv3R//+/eMuh9b8CIIgCIIg6g/ywBIEQRAEQRAEQRBpAWUhJgiCIAiCIAiCINICErAEQRAEQRAEQRBEWkACliAIgiAIgiAIgkgLKIkTQRAE0aBgjKG6uhoVFRWoqqpCZWVlxKOqqgq1tbXao6amxvb/wWAQsiwjGAxqD/X/xn9VRFGEIAi2D1EU4fV6tYfH47H9f0ZGBrKyspCVlYXMzExkZmZa/p2bm4vc3Fx4vd56/DQIgiAIwl1IwBIEQRApB2MMVVVVKC0tRVlZGQ4fPhz2r9nf5eXlmjiVZbm+X0LKkJGRoYlZ9ZGXlxfx/yZNmoQ9cnNzTc89JgiCIIj6hLIQEwRBEEmBMYby8nIUFxfj0KFDYf+aPVdTUxNXfYIgICsrCzk5OcjKykJ2drb2yMrKwqyP5gOyAEEGIAOQhdD/hbD/QxYgqCMlEwCG0CMk7ljd84L6f90l6DWgoBty1efF0I0CA1P/DvuXgYmheyUAEsO5N5+OqqoqVFdXo7q6OuJv9REPkiShoKBAE7Tq34WFhWjWrBmaN2+u/VtQUMB1FjJBEARBxAsJWIIgCCJuGGMoKyvD/v37sX//fuzbtw/79u3T/q8+ohVVPp8P+fn5yMvLQ35+PvLz8zH/82UQAgIQECEERN2/APyAEBSAYEh4IkoPYjQex3iHTzfrMimLgQESAzwymFcAJBnMIwMSU/71yLjorrNx+PBhHD58GCUlJdqjsrIyqpciSVKEqFUfLVu2RKtWrVBUVEThzARBEETckIAlCIIgHGGMobS0FLt27cLu3bvDHnv27MG+fftQW1vLVVZOTg6aNm2KwsJCrJ79B+CXIPhFCLUi4Bch+D0Q/CJQGxKjycYoBpM9TLpVfxzhv0wUAK8M5pUBTwDMGxK/Xhln/30wDh48iIMHD+LAgQMoKSkBz1RCEAQ0b94cLVq0QKtWrTRhq/7bqlUrZGVlxdxmgiAIonFAApYgCIIAAASDQezZswfbt2/H9u3bw8Tqnj17uLynTZs2RVFREYqKirDg8+UQakQItZIiTmsk5W85JKyEUMgpk2MTafUtNJOB/jW68R7Fi6ALE2bKPmMmMEXs+oJgPhnwybj8kWE4ePAg9u3bh71792Lv3r1cCxyFhYVo164d2rZtq/2r/p2Tk+PuayEIgiDSEhKwBEEQjQjGGEpKSrBt2zZNqOoFq9/vt7xX9aC1bt0aq39YD6FaglAjQaj2QKgRgVoJAjOIU8uGOIhWHuHV0Icvp/cghrBiV3H6jIE6kYuQyM0IgmUo/w67Zyj27NmjCdzy8nLbopo0aaKJ2Xbt2qFjx47o1KkT2rZtS6HJBEEQjQgSsARBEA0QxhgOHjyITZs2YfPmzdi8eTO2bNmCbdu22QoFn8+nCYT5nywLCVQJUMUq04kiHgET1iidaI1FXDWm4Sqe96c+MgdH+10ANHGr3sskGSwzAJYZxDXP/hU7d+7Ezp07sWPHDhQXF1sWI0kS2rZti06dOqFjx46asO3QoQMyMzNjeTUEQRBECkMCliAIIs0pKSnB5s2bNbG6ZcsWbNq0yVKoCoKAVq1aoX379lg2bTWEKglClQdCtQeoEa0TH0UjUphLx9jQEFU/gjRWYhGyHCjiNgiWGcD1L1yCbdu2YevWrdiyZYtlaLv6Pe/cuTO6du2Krl27olu3bmjbti0kSUpIOwmCIIjEQwKWIAgiTWCMYdeuXdiwYQM2bNiA9evXY8OGDTh06JCpveqZ2vHrPkWgVnggVIZCflkUoshKlLglUiPKpWHJEhKzYTAwwCeDZfkhZwdw3pjB2LJlC7Zu3YrS0lLTezIzM9G5c2d069YNXbp0Qbdu3dC1a1fk5uYmvL0EQRBE/JCAJQiCSEECgQC2bt2qidQNGzbgzz//REVFhal9mzZtsGf1IQiVntDDq4hWJsQuNAUxcSLVCA1FsZEOgjYJQtYM5gmCZQfAsgM4Z8yp+PPPP7Fp0ybL84VbtWqF7t27o2fPnujZsyd69OiBvLy8JLeaIAiCcIIELEEQRD3DGMPu3bvx+++/4/fff8fatWuxYcMG06ytXq8XXbp0wYa52yFWeCGUexXBKifZS+oWNAS5RzLFrD6DdCz31RMMTAlFzvHj8ifOx8aNG/Hnn39i3759pvZt27YNE7Tdu3dHdnZ2kltNEARB6CEBSxAEkWTKysqwbt26MMFqFu6YnZ2Nbt26Yc23GyFUeJVHFWf4byoLVxp2Ek99iFk9Tt+/ehayRphHBsv242+vXYp169bhjz/+wK5duyLsBEFAx44dceSRR6J3797o3bs3OnbsCFFMrddDEATRkCEBSxAEkUAYY9i2bRtWrVqFlStXYs2aNdixY0eEncfjQbdu3bD+x+0QD3shlPuUY2qsEirZVpqi4pWGm/ohWWI2imN1orqnnmAeGSynFte8+Ff88ccfWLduHfbv3x9hl5ubi6OOOkoTtEceeSR5aQmCIBIICViCIAgXCQQCWL9+PVatWoXffvsNv/32m6l3tW3btti94hCEw16I5T7FuxpNYiUzSLgSTiRDzMZyvFIKC1k9zBuEnOvH5U+dh9WrV2Pt2rWorq4OsxFFEV27dtVE7bHHHosWLVrUU4sJgiAaHiRgCYIg4qCmpgarV6/GypUrsWrVKqxZsyZiQuvz+XDkkUdi9f82QijzKYI14PKEPRXFKw0vqU2ixWwSRKkg1r0GJjt/36K1199jZs/AwHL8uPW9UVizZg1Wr16NPXv2RNi1bdsWffr0wbHHHos+ffqgqKiIq26CIAgiEhKwBEEQURAIBPDHH39g2bJl+PXXX7F69eqIZEu5ubmo3OaHcNgHsSxDSbQUr3fVChKuRLw0MCGrx0qkJtKe+YJg+X5c9K8h+O2337B+/XrIcvjvlAQtQRBE7JCAJQiCsEGWZWzevFkTrCtWrEBlZWWYTbNmzVC8rhJimQ/CYZ+SFTiWvavRkmrilYaT9CeRYjbBQtZKZOrRC85k2TNJhpxXixGPDMWKFSssBW2/fv3Qr18/9OnTh86kJQiCsIEELEEQhIGDBw9i8eLFWLRoEX799VeUlJSEXc/Ly0PFFj/E0gwIpT4lM3AyBKueVBKvNIw0PBq4kK1PnAStJEno1asX+vXrhxNOOAE9evSAJEn12GKCIIjUggQsQRCNnkAggDVr1mDRokVYtGgRNmzYEHY9MzMTNbsZxNIMiKWhhEsGwWq3T85VeIRrrGd0Rt0WGj4aJKmUtTjmolNbxOphkgw5vwYXPDAYS5Yswfbt28Ou5+bmom/fvpqHtlWrVvXUUoIgiNSABCxBEI2S/fv3a17WpUuXory8POx6jx498OesXZBKM4CyyD2sZhPkehOvRiFAwpWIlWSeH6vVSUJWj5wRwB0fX4UlS5Zg2bJlEX1T586dcdJJJ+Gkk05Cr169yDtLEESjgwQsQRCNAsYYNmzYgHnz5mH+/PkRXtb8/HyUb/JDKslUQoP9yqSQdw9c0sSr02Q/keKVhouGT30IWK3uxAjZdBSxKgwMLNePK8ddgCVLluD3339HMBjUrhcUFKB///446aSTcMIJJyAnJ6ceW0sQBJEcSMASBNFgCQQCWLlyJebNm4d58+Zh79692jVBENCjRw9s+GEnpJJMJVNwjPtYEy5e+RqR4PJT4DUSiaU+xavWBvLG2sEkGfd+9TcsWLAACxcuDPPOejweHHPMMTjppJNw8skno02bNvXYUoIgiMRBApYgiAZFZWUlFi9ejHnz5uGXX34Jm+BlZGTAv1uAWJwJqTgTQsCd0Dve8ycTKnQTJWBpiGh8NGAhmzARG82+c5dsmcDAcmtx0WNn4JdffonYO3vEEUdg0KBBGDRoEDp27OhcF0EQRJpAApYgiLSnoqIC8+fPx48//oglS5aEnctaUFCA8g1+iMWh0GDZ3Ykx77mRaSdeaWggGqiQTbiI1cO7b93KNooy5awgbnx7BH755Rf89ttvYaHGnTp1wuDBgzFo0CB06dIFQip8tgRBEDFCApYgiLSksrISCxYswOzZs7Fo0aIw0dq2bVvsWVKqeFkP+xJ6xA3PHlkSr0RaU99iJ91FrIr+txrNXvYYbJkniDFTrsScOXOwbNkyBAIBzaRdu3aaZ7ZHjx4kZgmCSDtIwBIEkTZUVVVh4cKFmD17NhYsWBAmWtu3b49dC0ogHcyqn3NZLUiYeCXhSiSb+hY66SJk3W4nk+Mqk0ky/jH1WsyZMweLFy+OWOwbMmQIhgwZQmHGBEGkDSRgCYJIaQKBAJYsWYLvvvsO8+fPR3V1tXatbdu22LOoDNKhLAiVBtGqn/AlOsGRDQkRsCReifqgvgUsUL8iNpa9qykGE2Xc/83fMHfuXCxYsCCsP+3evTuGDBmCM844A0VFRfXYSoIgCHtIwBIEkXIwxrB+/XrMnDkTs2bNQnFxsXatTZs22Lv0MKQDmRAqvdaiVSvMZrKZYJGbFuKVhgCCl1QQsCouC8SoPLG85y67LWL1bXShb2GijHu/uh4//PADFi9erO2ZFQQBxx57LIYOHYpBgwYhLy8v7roIgiDchAQsQRApw969e/H999/ju+++w5YtW7TnmzRpgsNrA5AOZkOo8EHQd1vRnosarciNERKvRIMilcSrSiqJWBWe/iYezNrohpj1BHHbx5fhhx9+wG+//aY97/V6MWDAAJx33nno168fPB5P3HURBEHECwlYgiDqlerqavz444+YOXMmli9fDrVL8vl8COyWIB3IgViaCYHFMIFWJ5O8iVVcwnXxSiHDRH2TigIWSI2QYit4+p9YsGufC32P7Avg2jcuwPfff4/Nmzdrzzdr1gxnnXUWzj33XHTo0CHuegiCIGKFBCxBEPXC+vXr8c033+D7779HRUWF9rxQlgHpQDakQ9kQgknYR+ayOEx58UpdPhEtqSpeVVLRE5toeNsYZ38kZ9Vi+BODMHPmTJSWlmrPH3300Tj33HNx2mmnITs7O646CIIgooUELEEQSaOiogI//PADvvnmG/zxxx/a861bt8b+xRUQD+RArDUJUVMna06TMV47FZf3x9qJV3VSHJXAJfFKpAKpLmCBqISkXqDynuPsVt1c8PRjsWRP5i3PxI4JDP+aeTOmT5+ORYsWQZaVvikrKwuDBw/G+eefj969e9ORPARBJAUSsARBJBTGGNauXYuvvvoKP/74I6qqqgAAHo8H8j4fpH25EEtNzmo1TtCsJl+8dqaN49yvxiEkzSbCxkkwiVci7UgnQRKjiFUx/j7rTcTy7HON9/gfs76Ic38tywji2jcuwPTp07F9+3bt+a5du2L48OEYOnQoeWUJgkgoJGAJgkgI1dXV+P777/Hll19i48aN2vMdOnTArnllkA7mQAhIypP6SZLVxIxnAheLQIw2CZSlGQsVZ95+Eq9EWpJOAhaIW8SqOP2e463bEZ59rm6cYcvT91rYMTCMW3w//ve//2HWrFmoqakBAGRnZ+Oss87C8OHD0blz5/jbSBAEYYAELEEQrrJ7925MmzYN33zzDQ4fPgwglJBplwee/bkQyjPCva0yc56I8U7YUnT/ab2JV+reiXhIN/Gqh1NMRiVQXayXC7fb5gRPX2xhxyQZN743HNOmTcOOHTu054899lgMGzYMp556Krxer9stJgiikUICliCIuGGM4ddff8UXX3yBX375Rdsf1bp1a+xfVAXpQK5pQiZBEOBqF+TmHlknIalOVGMML46pzmigrp2Il3QWsEBqi1hR4O+vnKrj7EfdtLOyYWB4+ue7MG3aNMyfP187W7awsBDDhg3D8OHD0bRpU8c2EARB2EECliCImKmqqsJ3332HL774IuzcVrE0E9LeXIilWRF7W/VJPuy6H9WOu4uKd4+sXtxaCUnjxJTEK9GQSWcBG4Mn1FUhyytiVXj7L6vqouxX7ezcKot5A7j8pTPx1Vdf4dChQwCUaJwzzzwTl156KTp16mRZNkEQhB0kYAmCiJri4mJ8+eWXmDp1KsrKygAo2Shrt3rg2ZcHsdobMaExy07pZBNV9xTLPlozW6OAjSOxk2Lmgrc3GqhLJ9ygkYnXultdet28bXDayx9Fe2LpY81s3CxLEAQwgeG+r67DlClTsG7dOu3aiSeeiEsvvRR9+/al7MUEQUQFCViCILjZsWMHPv30U0yfPh21tbUAgLZt22LfgkpIB+vChPXdit3ERLWzsona+xrvXlpVvLqc2MmNsvgqpO6ccIl0FhRx7kNNCRGrwrsvFXx9La+dWzZ6OwaGFxbdhylTpuDnn3/WbLp06YKRI0fijDPOgM/nsyyTIAhChQQsQRCOrF27FpMmTcLcuXO1/a1ChQ/e3fkQS7Ijj8DhgDHGPQFyBaeJoMuhviReibSlEYvXumJSSMRGU51Ln51T/8xrY4Wc4cf5jwzA9OnTtaPVCgsLMXLkSAwbNoyO4SEIwhYSsARBmMIYw+LFi/HJJ59g+fLl2vNiSRY8e/IhGrMJA4AoArKDKBNDEzonO7izR5Y7UZSLAjap4pW6cCIaBMH+O5PO4hVwNQtwUkWsiwmbuEQlb1/tVn9uURaTZFz39vn4/PPPsX//fgBAXl4eRowYgYsvvhj5+fn25RIE0SghAUsQRBiMMfzyyy+YOHGitl9JkiRgXxY8u/MgVpuEeIm6CZrVRCYaG1nm2pcVb7KSMFwSnXGJ1ygyGyt21H0TUaL/DZl9f9JdwAINWsRGm4TJvj6X++04bJjAcOdnV+Djjz/G9u3bASh5FYYNG4ZLL70UzZs3Ny+XIIhGCQlYgiAAALIsY/78+ZgwYQI2bNgAAMjMzERgqw+efQUQ/J7IiYdoMilzw8YgYHn3yPImKIlsj42NetxFosRrDJmNFTvquokoMfsd6b9HDUG86knHcOIoRawKT18YWVeC+u84bBgYHvj6Onz00UfaOOTz+XDuuefiqquuQlFRUWQ5BEE0OkjAEkQjR5ZlzJ07FxMnTsTGjRsBKCvf/s0h4RqQVMO6m8wmI27Z6MRrvElJYhavxuMtEiFezSazJF6JRGInahhreAIWaFQiFuBP1lRXVwL78jhsGBge/f4WfPjhh1i9ejUARchecMEFuPLKK9GsWTPzsgiCaBSQgCWIRgpjDAsWLMD48eM14ZqdnY3ajV5FuAal8Btk2XoC4qYNx95YXqIWsFZHWrghYJ2yG5N4JRJNQxSoPKSKiHUxoZNrx84ko0+Pw4aB4Zmf78K7776L3377DQCQkZGB4cOH44orrkDTpk3tyyQIokFCApYgGiHLly/H22+/jTVr1gAAcnJyUPOnF559+ZHCVZ0o8SR+sbLhKUPFTsBGkTCEBYOWl3kTQAEAbMqBIAJMthWvgijweWcBPhFLXTZhhlNyJtWmseKCiOUSsKE+Ie52uCVieRIxSRLfdydemzjKYGB4es4YvPPOO9q4lZmZib/+9a+44oorKNkTQTQySMASRCNi7dq1GD9+PJYuXQpAWckObsuEZ4+Jx1UQ6iY/Vsle9IKSJyEMj8A1m2yJorONaqdWZSI8o07sZCZe9RNQC/Gqn+i6Kl41W+q2CR1OiZmMNo2VZIpYFbPfdTJFLE+CJUnX9/N8f5JlYyFkH591G959910tyWBubi5GjRqFiy++GBkZGeZlEgTRoCABSxCNgO3bt+Ott97C3LlzAQAejwdsTw68uwsg+C2Eq4pRnBqvW9mYYexujJMZs8QfTjaqnb4anfCMeX+sUbyaJFsyilPj5DYh4lW7h7puIoRTciYrm8ZIfYhYwDl5mxUOdcW0z9WsD5UM40AsC5Kxfg+dbMyErAA8MvPmsC0wRUVFuOGGG3DWWWcpmfMJgmiwkIAliAZMaWkpJkyYgGnTpiEYDEIQBIgHc+HZWwix1hsuPM2EKRCdjVOSGBWrSYw6sTIKVysbs2pCwpM3AZQlwaD1JFMnXq0mswkVr9q91H0T4FswIgFbR32JWBX1N5/ghE7h5TgkULISfNEuTDrZuFGGzoaB4Z7Pr8A777yDvXv3AgA6d+6Mm2++GQMGDHBvrzBBECkFCViCaIDU1tbiyy+/xAcffIDy8nIAgFiWDe+uZhBrdCFWDmKQy4Y36ZKdwFWFqZVwNdrY4dAeV86EdRCdSRGvAAlYQsFpkt5QMwzHQ32L2GhwO5TYDFm2FrGAswBVbeL9LsZYBhNkXP/2ufjwww9x+PBhAECfPn0wevRodOvWzb48giDSDhKwBNGAYIxhzpw5ePPNN7Fr1y4AgFDlg3dXc0jl2RH2giDwCTon4s0czJNoBHAWbE4JoAzny5qXEcNZrqYm8YlgLqj7bvjwJMYhoidZmYldqichocSRhfCVEWd/L0iSbZK9eMpgUhB/HXsyPv/8c9TW1kIURZx//vn429/+hiZNmsRVJ0EQqQMJWIJoIGzatAkvvfQSVqxYAQBo1qwZylZIkA7lQUD4xIQnC6+TTdh1i32pmkDmSLpka2OVJEppSN3fZpMiXaIpp9ertDV+4UnilXAN3gzfBD9uiUqtuCSI2GR4YZVC+Mtw6tctrgs6T6+VkFVtbLPJ29h88OczePPNNzFr1iwASqKna6+9FhdddBG8Xq9lmQRBpAckYAkizSkvL8d7772HqVOnIhgMhjIL58C7vykQjJyMOGXiNU6CjDYR95skXuKxCcMpMRNPkijjJMakDufXEr/3lSt8mEKHCV7sEtqQeI2NZAtYt+pMJS+snhj6d8EQrmwUoU7XjTYR10Pj0DNz7sArr7yCDRs2AADat2+P0aNHo3///hHlEQSRPpCAJYg0RZZlfPfdd3jzzTdx6NAhAIBUmgPvriKIfmWFWf/zNpvcRHPdzCZMnBqEq9l1mxdT97ddhmO7yZU6gbFIMmX3WtNKvAIkYBsTdllbScBGj8vita7YNBGxbnth9dj144brRoEKOItYo43tdd14xMAw+qO/Yvz48SguLgYAnHrqqbjjjjvQokUL89dCEERKQwKWINKQjRs34oUXXsDq1asBAEKNF76dRZDKczQb9aftlI2XJ1uv01E0ttedEi+5kSQqGLS9n6+dFDpMpCB2Sc1IwEZPggSsUnQDCSV2I6uxQ59vJj5VtEzyDjaOZRijgcQgLny8Hz7//HMEg0FkZWXh+uuvx4gRI+DxeKzbSxBEykECliDSiJqaGkyYMAGTJ0/WBuDApmx4DjSFwFJzMht3F5Pg5E5J876SeCVigUSqeyRQvCrFkxc2GurriJvXlj2IcePGYdWqVQCAbt264e6770bv3r3rpT0EQUQPCViCSBOWLVuG559/Hjt37gQQGS6soU5urAQVz3VBVARXrGWEbFjQIolHNEmkrJJ4OCV3UuEQwKbt1L9GEq9EInBK0KS3IdwhTgGpilSr37wrIpa3D7eroj69sLo22Pbxkug4hgBwtrG7Lkmmyf3UsOI333wTZWVlAIALLrgAt9xyC3Jzc63LIwgiJSABSxApTmlpKd544w1Mnz4dACD4PfDuagFPaU64oSo8AXPx6XRdb+N03amMEEZhKAhC2KTEKYmUqXg1TprMbPTCwOlcWKN41U8O7cRr6H2ipE1EzOhFgtlnTOI1MbgkYoFIIcslYHnaYOyH7K6bFZ8EL6yWBdghU72VjSDpE/XFseBqV4YaZmwxXjEfw2l3d9fG16KiIvzjH//AgAEDzOsjCCIlIAFLECnMTz/9hHHjxqGkpASCIEA6WADv3iIIQd2qs15UqhgHa6ON29dVG30TdMIwTLiqmAjYiORKenFqNuEyilejIIhGvJpNCI0C1uR9Trj3lbrohotdhmGz64Q7uBDGaxSq+n7AVS+sHoc+N6KKBHthIzIFx5LVXjK0wek1RnvduE/WOHaFro+ddSueeeYZLcLprLPOwujRo5Gfnw+CIFIPErAEkYKUlZXhpZdewg8//AAAEKp98O1qBakqO3wANhOvQJ1Noq+rbTBBFYc84tU0A7JdVmEV1cYqUyuPgLWaBOrFq8V7QKHDRFzYJWiyu07ETwJELFAnZBMmYgHHvlcrPoleWBWnRUmjXYSAVXF6jbzXzRI9WYhYJsi48NE++OyzzyDLMgoLC3HXXXdh0KBB5nUQBFFvkIAliBTjl19+wbPPPotDhw5BFEWIe5vCu78ZBKYL3QWsJz9O190oQy9wrbC7HhKwPBmQLQkG7QWAk3i1K18Vrzavn0KHibixEweUZTjxuBhKnLA2xNrHqsUn2Qurwp0F30rAAvGNMXobq2zF6jhmuP7C3DEYO3Ystm7dCgA444wzcPfddyMvL8++LoIgkgYJWIJIEcrLy/Hqq6/W7XWt8cG3szWkqqx6bpkJbngW7fY0WeyPDb/foQ0OyZ+cy7e5Ho+AVfcYO95LXXODhwRq/VPfIjYeActTfD0JWG7cWARwIobPmAkyLn76RHzyyScIBoMoKirCgw8+iOOPPz4BDSQIIlpIwBJECrBq1So89thj2Lt3r7LXdX8TePcV1XldgVA4rxDyLlolWIrzuopTwgzTxEliXUZIh8RHtvXbiFctq6WVeNVnJjbaqBO1BIpXQRTqrhnfA0E0f94O6p4bByRk6weXjtUhEesgYu0SMRkTA5qhlm+1KMl7PYZEUeN+vhNPPPEEduzYAQC49NJLceONNyIjI8O8LIIgkgIJWIKoR4LBID788ENMmDABsixDqPXCt6sNpAqD11UVn4C5AE30ddWmruHh11TxClgLWKcMySoO2YlNBax+AibL4e0zTs4SIGAjjtawSvwUi+eauujGAYnY5OLymbBxidjGImAB++z4gHkfqS/fTKRGcz2GxVvmAYb+szu++uorAEDnzp3x8MMPo2vXrpFlEQSRFEjAEkQ9sXfvXjzxxBNYuXIlAEAqLYBvbysIQd3ZeHphqaIXmG5cB0yy9xoyEBvRkieJkdftMveaZTc23GuXBIRLvOptEixeTTOROiR+ihrqohsPJGKTRyoJWKUA++vpLGLtMirbJQpUMStbL1Rjue40xoUleVLa9++pV+GZZ55BSUkJvF4vbrvtNlx00UXO7y1BEK5DApYg6oE5c+bg2WefxeHDh5GVlYXgxqbwlDVRLqoC0kx8Jvq6mbg1EgyaC1eAK3MvT3InwCIzsZ04Beq8r1aTMScByyle7bKP2t0fM9RNNy5oQpxYXBavdcWmrohNKS+sHrts90Bdv2knUq3qdrrOncm4rm2T/ngazzzzDH755RcAwODBg3HvvfciNzfXvAyCIBICCViCSCJ+vx+vv/46vvjiCwCAWJUJ3652EP2+OqNEHqGh/7k7iVsrHASobfZewFnIWQhBTbzaiFNboRev9xWwbbutgKVsxES0kIhNHAkSsErRDTSUOFECVivAYcywKz8YtL8eDzILE7AAwMBww6tn4I033kAwGESbNm3w6KOPokePHolpA0EQEZCAJYgksX//fvznP//B6tWrAQCeg83g3d8CAnQDeyyJfnjhKVsQAdkiEYZ+j6wd8Qg5BwFp7z11ELDQnS0bS/2xileHe7mhrrpxQQI2MSRQvCrFJ9ALm85hxJJk3w9Kkn3/6/FYj00AIEr21+PB4zHdWzvupzvwyCOPYM+ePfB6vbj99tsxfPhwCikmiCRAApYgksCvv/6KRx99FMXFxUBQhG93W3jKdWfKOWXwTcZ1wHwCIAh12YOtugu77MZAfNmJdSRCwNZlNk6Q99XhXm6oq04vnBZ8eK8T7pLOAhZI7zBi9bpTtmGr/tTjCV03GadEyfqa/t5AIPrrgmCZ6ZiJQRx/fRHmzZsHABgyZAjuvfdeZGZmmtdDEIQrkIAliATCGMOkSZPw9ttvK1mGqzORsVMXMuyUvTfR11UbFePgr4pXwFrAOmU31sq2aJ9KggWslXjVyiUBS0SDnQA121sez3XCPUjA2pSdJAELmPeJqoi06o/V64C9iLW6rr/fKFT1IpXnum48MYYUH3HEEXjyySfRqlWryDYQBOEKJGAJIkFUV1fj6aefxo8//ggAkEqbwLenlXK2q1P23kRfV22MqIO+XriqGAWsXQIoIPr6HQSs297XyOzGJGAJToxZu+2um9mQgK0/GrGABep5H6zZdX3fqBeY6m9C37fqr6vohapolm1Yd93sfr1QjeW6blx5eubNePjhh1FaWoqCggI89thj6NOnT+Q9BEHEDQlYgkgA+/fvx0MPPYR169bB4/FA2NECnpICCIJkn73XKbtvvNcB6wmSHDQXrkC4eLVL/gTEl53YBrcErHV2YxKwBCd2AtRqku+UnC2RyduIOkjAOpSfRC+sHrWPNIpEo5A1E5FAnVA1E7H661b3BwKRXtZorofGl4mrHsWDDz6IDRs2QJIk3HbbbRgxYgTtiyUIlyEBSxAus27dOjzwwAM4ePAgEJSQsasjpOqc+m4Wn0CzO8qAMfvJdzzZiZMkYK0mESRgCW5oIprekIB1KL+eBCyg9JNWAlPto62u8xLv58MBE2SccmtbfPfddwCACy64AHfddRc88badIAiNxPbkBNHImDVrFm6//XYcPHgQQk0GsrZ3g6c2z/YeQRBsJxXxXldtLBEF+3P4AOWaXRmCYD8xcCo/CdiKVycSkRWaSD9IvKY39dwHuYLTYlk6YzsGCXVjlV0Rkk0ZogDBQaDHe12pxoOfX9uF2267DaIo4uuvv8Z9992HiooKx3sJguCDPLAE4QKMMXz88cd4++23AQBiRR4y93SAIPqU80flSAEkCIKWvdfsZxjvdc0GFh5GUbC/HrIB4JwAyi5DsYrTETUJ9sDC5DMIKzNVj9ChLjq1IBGbvqS691UphM8uxroS6oEVRefyHT20DvXr77foe1URy4KGvjf0nqki1Gxcdvv6vz67HI899hiqq6vRpUsXPPPMM2jZsqXpfQRB8EMCliDiJBgM4pVXXsHUqVMBAJ6S5vAVt6s739UgYDXhCSiThWAwTEiFXQciBKrTdc1GR9hALoZ7bOMWr0BaCtiI8mIQoiReGykkYtOTVBew0bYvhvpSXsAC0YlYIKLvNnphI8Y/w2s0ClG3r780+3bcd999OHToEJo1a4axY8eiR48eIAgidhpAPA1B1B81NTV45JFHMHXqVAiCAN/Btsgobm8qXgUhNHAKgjJJEEXlekikhF03wem63s4S0Tnc2DFMSxCjF68pBLPxWEdVDolXgiDqE5lj736qYXKcWdzEE1YMRXDahQYbr5sJVrvrd57+Kt566y107twZBw8exB133IElS5bYtokgCHvIA0sQMXL48GE8+OCDWLlyJcAEZOzvCE9F03Aj1TOo97jqCeqOrTEjJLYivK6G60oR1oO4VobFNa4ETIBzhmI7UsAD69jdcYQRU8ImAgB5YdORhuaB1cNZd717YAF3w4iNyMxWsGrjpcXr1Bacbd4HJssxXWdiEL0uycTSpUvh8Xjw8MMPY/DgwZblEARhDQlYgoiBQ4cO4e6778amTZsAWUTm3i6Qqg3JmtSBPBi0nhRY7KGJCrufsNoGpwy98Qq7eO5Xy0jSMTq2OLxOEq+NiND+ckcbIj1IQgKnehWwKk7eyARnIQbizEQMxCdgAQgej7OnN9G/XY8n/AzZEAwyTvxbc/z4448QRRH/+Mc/cP755ye2LQTRAKEQYoKIkv379+OOO+7Apk2bIAQ8yNrV3Vq8MmY+IVDDiK0GYvWa3WRCDUO2gke8NqIJuOPELcYkTkQaYhXREG0ZBJFKJOGImKRg3KZivOyQeZ8FAhwi2eG6x2N/ZI/Tddn8SCABIha9cxAXXHABZFnGs88+i0mTJtm3hSCICEjAEkQU7NmzB6NHj8a2bdsgBHzI3N0doj+rzkAVplaDq/46Y+arxE77XFVxa1eHk/h1YwLfGGBydOK1IRzT0Ziw+w3xXCfSg3TwvhKROHxujkfISZK9UHW6DliLVDV6ykrI2lwXIGDWS1txxRVXAADeeOMNvPPOO67kZiCIxgLNtgiCkx07duD222/Hrl27IPh9yNx9BMRAhnLRSbiqNtEIU8bCQ4ydhKu+HXY4ZDAmQtSX15XEUWJxen+N153+TxBE4jDxxjJDaG78R/eYCFl9HWYi1bj9x84ba1KGAAH/9+Ra/P3vfwcAfPDBB3j33XdpPCYITkjAEgQH27dvx+jRo7Fv3z4I/gxk7ukOMeDjF652NjzClKeOxux15cjOHBUW4pW8LGmO2XdE/1xD/X00ZtIlKiIZXuJ0/n4n2hur2tgRb1ix0UaW8eEDS3D77bcDUETse++9RyKWIDhIk56dIOqP3bt3484778TBgwch1GYia08PiEGfvSBUByCncGIe4epk4yRc1brqk3QQfmobab9rwySe6AinkGKCIABwJHCKq3D7vbEApzfWjbBiHiFrl6RRd//7/1ygidiJEyfi/ffft6+fIAgSsARhx/79+3HXXXdh//79EPyZyNrbHYKQAXhsRKUk2l8HOM5a5fDs8qzSuu2ZTFXcyObsFm54UhrDZ5ZM3Hg/6TMhEgktnPHDI2Kdfq9O46ckOWdD9jgIXVG0t/F4tOvv/3MBbrvtNgDAhAkTSMQShAMkYAnCguLiYtx11111e17394AgZjp4Q50SMAl1g2LQYsIiOIhb1SbavXyJwGnS5WLYsuXKOo94Vc/2s2uL0xE5ajvSwZtM1EHCs/GSxPBhxyO2+AqJ/V43+iWnSJ50w9EbK9qLVEGwvx4IKgLUScjyXPdImHDvQtx6660AgPfffx+ff/65/X0E0YhpYL0VQbjD4cOHcffdd9dlGz54JESWUZc92Lh66+R1VYWr4z5W0dkzyyNcEz1p58nOm+g2yHJU4tX6OuMWr0SaQeKVSCL1LmKJSHjGQzshq47LPN5YW2+rxfVAMMxm4kNLccMNNwAAXnnlFXz33Xf29RJEI4UELEEYqK2txYMPPoiNGzdCCHqReaAnRNngeVUnKrzhwvEKV9XO6Xq6el0Fjtevx0qUGuvlEa9mbYkXCiOuf+j9a9zUU/KmVBWxriRwSuffFK+QtbuXV8g6XXewmfTYbxgxYgQA4Omnn8bChQvtyySIRggJWILQIcsynnrqKaxcuRKQJWQe6AFRzjI35g0XdsxQXI/hwk6ZG41YTaySmeSG1+sai3glCIKIEyaz+IVstGdQpwsuJHkSnESk7c1xemOdwoqBuMOKBQiY8co2DB06FMFgEP/+97+xatUq+/IIopFBApYgdLz55puYPXs2wARkHjoCYjAn0kgQnL2uPFlNnbyuPJ7bZHhdZZYaIcM8GM/OtSJdxGsqvKfpCL1vjZsUOTonad5Y2pcfHfF4Y9X7E+yNFSBg/oRi9O/fHzU1NXjggQewY8cO+/IIohGRGr08QaQAX3zxBSZPngwAyCjpAqm2IOw6EwUwjwTmMLAxN8QtT/ZgJ4GbDDiONVDsODzNDrhxNp4rZaSL+G2s1PdvgiBCuJLwLUXEOBei6NzH8iyGJsPz7DROA2CSaD3eh8Zx5iBSmdcD5rU/G9bKRoCI377048gjj0RZWRnuv/9+HD582LYsgmgspFHPSBCJY+HChXjllVcAAN6ydvBUNQ+7zkTBPkOjwCduHYUpz8qw0xE8biMK5pOoZGb4dJwU6RJrWXxOJF4bASReiXQSfEmCe5uIS8eRMcb4hKwZ6hiarBBqjjGXZ9HaLSEbUTyT8OSTT6KoqAjbtm3Df/7zHwQCAdtyCKIxQD090ejZvn07HnvsMTDGIFW2gLe8jXZN9bo6ilc3hCuv17W+4fW6xlKu4fXxTYScRWVEGTG8j1GLV7feIxJlfND7RKQQSTtuy+16rPIHxPD7ShtvLOCaN5ZHyDpdN9pcdeJYjB07FllZWVi6dCleeuklVxZkCSKdIQFLNGoqKirw4IMPory8HGJtHnxlnSBA4BeuPF5Xt4RrLBMVwcFzHHV5VgO4+12J5QCtfz0OgziXADbD8HrI85rikHglgIbnfa3P1+OiN1bDagzjEbHRCFmPvUi0hNMbWx9hxaMveBf//ve/IQgCvvrqK0ydOtX2foJo6DSw3p4g+JFlGY8//ji2bt0KIehDRlkPCBCdw4UBR6+rVobVYCgISjZGnol3KnhdgfgnU1Hsg40qZNgMnr1YPO2IN5soeWETS7KOjiKIKEia95WDuI7PiUbE2oyZcYUUR2vjBhzvGZNEa6HqkjfWaPPE377B3//+dwDAq6++it9//93xfoJoqJCAJRotEydOxC+//AIwAb7SHhCETCDDB9gNKiHhGY/XlYmK+GU8k5xET4R4RB6PgOOafDD7spjMVxfvMTrxEHo9cU9EG+IxGMnEKXqBIFQao/eVo39yLdQ0GSGrTHauRxSSEz7LszjmkZyP3OHZ9+pkk52p2Ux4dAUGDRqEQCCAhx9+GCUlJfZtJIgGSgPr8QmCj19//RUTJkwAAPgOd4XEChzDhW0HK9VG9bpaDHwsmszBifYuuSFeufYwMSDoIE6jFa9W7wvv+a9ObXEDt8VrYxNsJF4JXhqaeHWZmLdSRBYUfxl2qGfExpLXwGU0zydPX+N0nI6DSGWq0LWwYYKg2QgQcP/996N9+/bYt28fHn/8cQSDQec2EkQDg3p9otFRUlKCJ554QknaVN0SnmAbZ/HqNEBxel1dn3jHepSO0+DvJPIAd7yuajlONlzCNPy6aeicG6/JiURmz2wswk3/Oo2vubG8B0RaksrJmxImYjnyLAhOY6hZPRw5DmLC6XxWI7znxvIIWQv0ItXOBl4PRvR/Go899hgyMjKwZMkSTJw40b5egmiAkIAlGhWyLOOpp57CgQMHIASz4KvqZm1s5XWVxLoBmyMJU1Re10SgT+TEMSlIashwMGhqEyY+3QoZjlG8RjUhpZDh+DH7rajPkXgljDRE72sCX1NUos9KmPKMI24RbaK+WBM48ZAIb6xBsPJ6Y28b/j7++c9/AgA++OADrFq1yrltBNGAaIA9P0FY89lnn2HhwoUAE5FRcSQEWCdhiMvrqs9QnCqTbpuJgCYY3RCviQgZNkNrs7WNIAjueZOdSKEEI2kLhQ0TaUwqe1/1pOS+WMnGK6rWY2OTtGNlovHG2u1tDV1jJmXxemNf+MfPOOussyDLMp544glUVFRwvQSCaAiQgCUaDZs2bcJbb70FAPBWdoEYzI2wYZIAJnHsdfU4ZBDm8bo6nR+r1hXvxJ0xRw8l9+CfTA+jk1fVrdfV0Lym6ZiZNx3bTCQWJy9kos6jjhHXxGuSXhNX3+jSUTpxZUKOAuaSZ5gnOzAyfM7leJy9scxrI8pDIpZlWNuMGTMGrVq1wu7du/Hf//7XsU0E0VBInd6fIBJIIBDA2LFjEQgEINYWwlPbOsKGSaFQW7tfhSAodlaIIc8th3h1bcJuJ5b1g7lVYinVxq09r05lOJSjhYTZ7atS63E4ukGxidNbkYpnwNodz+Rko15LFcGYKu0gUo8knjtt3wxBezQUuEQlzxnivOeMx9uPcghTQQ0ftrPl2f+q9o+O57OLjq+feURHIesoYgFLETvipGfw0EMPQRAETJ8+HXPmzLFvM0E0EEjAEo2CyZMnY926dQDzwFfbAwLqBiYmCcoA4pDIiXlEZ/HKMylI1oQ97AD5yNcWsXfI7pB5nrBhp7I4BDCfx9TFDJVOYjqaSVd9e4OiyW6dKqRSW4jUQf9bqufflVG0monYdPO+JpPwfAYW2zm4jgyKMvGSWyHFLgl9HhFrJ2QBRcSaCdl/Xj8VV1xxBQDg+eefp6N1iEZBw+stCcLAli1b8P777wMAvLVHQGAZ2jXN66pHNKyYmnhdmSTUreRaeV0lw+pssrxebmZvdMPralWOYdJn2ibjZ8NhY15OdIKaySw1Pa96eLytThl86zu5GEEYMRMzKSRolSbU43fXhbpd877G+hs29q2JOhPdrWRTMXhjmS8yDNnojZXNbAwi1kywmj33+ds70aVLF5SWluL111+3bytBNADqfyQgiAQiyzLGjh0Lv98PMdAMYqAVgBTyuoqiO/tg1XY4DdaCwyHw+klCskOGneqJNhtljG2KS7gme3LN891wyuBbH0KSxCthht3vpx72vNoJVfVaUr2vqRbCzBs+bEY0/SyH91Wwyz6sjgsc4cO2+1/VfsvntbapJ2+sABH33nsvBEHAt99+i2XLljm2gyDSGRKwRINm+vTp+P333wEmwVvbEwIEMI59K457XXV2tiTrCB2Zc6WZ9widaEOG04WGlrCJl1QSjKnUFoKIg3QMHU6m99WxLpm599p5kv655I01yxwchgsiFrDfG6vZ6ETsnVd9iuHDhwMAXnjhBdTU1DjeTxDpCglYosFSVlamZR321HaBIGVpq5ZWgweTQl5Xr6RkIzYjdK4q84iKGLYiWRN13uNo3Dj/FeCbBMjMWSzGe4xOVDZpKLaTSbLC20m8ElakQGiwnpRM2JRq/ZhLWYr5xgKXxgu38iw49GVOyZvkDI/lnlbNJssDOUN52JUjZykPALjpppvQvHlz7NixAx9++KHDqyCI9CW1RgyCcJF33nkHpaWlEOQcSGjv6FFlEmc4pj4k0+oXpNqIovN5svGEEesHdUubcPFquipunBxYTSZ5xatdGWb1mdroJiNWn4vOxnK1P+w9cu7y4pq4pruHN5ECk8QrYUVjFq/RvvY4RGxCvK8WopGrLv0isdXrMiaBMjPRt9lKxOptLMaxsPBhq7FOZ2MlYuVMnY2ViNV9x+xErFamjYjVbLI8uOjU5zBmzBgASvLK3bt3O95HEOlIao0aBOES69evx1dffQUA8LCe9gegh7yujseOiEk+HscOq2yOYTYyEAzai06ecgC+8CuuNkXaREx0ZNl5JZ3LhvO1uQFPpubGDIlXgnCPZPZtPPD0x1zlmLwuo8DnHfuM7TEuSvCMaSY2RtHKOEKKuY7ScfDGAnD0xgKKiH3sobk4/vjjUVtbi7ffftvWniDSFRKwRIODMYbXXnsNsixDlFtCZIXWtnZeV0lQwojtRKmoCyO2sXHVC2s3eGs29iHDglM5QN3EIRqvq1UZdjZh5dhMgtT318ZGE8O275HLXtiGJlzdFpskXgk7yPsaO1GI2KTsfQ31zVF7XyPKUaN47OpSbAS7NqtjBceZ4rbJm9Qx0MZGFbFmmYU1m5CItROhqohVQ4LNcBKxAgTcdtttEAQBs2bNwurVq23tCSIdSa2RgyBcYMmSJVi+fDkAAR75CFMb2SchmOV19rryhBWLSK1JulvH6DCOfbNA8vYvMeZow1iKeSbSFTe+z8mKRiDSl4YqXnlel2vJi1Ksv3NzX6zTe8Q7rjh9rpz7Yh09rXbbilQbj+jYHpYhQebwxvoLMi2v//3ayTjnnHMAAK+99hr/0XkEkSak1uhBEHHCGMP48eMBAJLcHgKyIm1EgcvbyZOF2DEbIQ/RhjJZDX56G5t2MadygDqvIk8WSTs4vJN8YjqaIxecJiscbUq1SWF94LS443SdIOyohyNx0sq7Cih9mVObOV5TUs995SmH53OQRMetGYIkOo+fkgQEZeVhZ8MxDguMQeA4qs7pfWISR8QV4ChiIQDBTGtv7N/+9jdkZWVhzZo1mDNnjmN9BJFOkIAlGhRz5szBH3/8AUCCIHaNuK4Xr8wjQjZLU68Tr3Z7VzTxKjqcFRuyMQ0j1g+GVgMfr8ALE7kWbeb1vPJgJ/LcOv9VMaz722ZyFFaWpchPgHhNMS9SwuE9d5YgUhArEZsQ76tV3xBtn2HVtmSKV0646ov29btxJjlgK2IFmUGwO45Od/arlYhlejFpmeDJCyZAeViI2KAufNhKxGo2NiL20pHjMXLkSADAhAkTILvlHSeIFKCRzbyIhkwwGMQ777wDABDEzhCEDO0aEwXIHodVTyF0hI5TtmJD0oaYvbAmgyAzSzTBU46ZnTHZhJlNRH0mA1xEkiWHMF2zMkSethg+G85z+/iFcAI9rw1VxBo/+2j/TxBm1IP3NZr/x1GR83O8r93Ypvo+1ifZ3lcjhv5bcFoQBsz32dp5YgF7Eau34xlzTBalmRD+N483VnYKKQ6JWKOQZYKASy65BNnZ2di0aRPmzZvn3GaCSBMa6KyLaIz8/PPP2LZtGwAvBKmz9rzmdXUIebQSrnovrKVYjcYLayfM1AHPyUbU2VjZ6SYTrnle4wkZDk1cbNuitpnHxrEs/UzBwRssMwobtkJ/bFQs1wlCTz2LV+PzSQkrdus160OKUzB0OCHeVz1uemJVIWsicjURq5al876G2elCiplNKK/6/smZkeUYvbFB2+RN9iLWzBt74UWvYcSIEQCAiRMn0l5YosFAApZoEDDG8MknnwAABLEjBMGLYIaIQLbXdnWTSQJknxT3fldX9sJGiyp0HWySJl6TjOPrkhlXKDPBAYUNE26QIuKV93qUlTlf53n9Lu17TTZ8YjlG76sexpmUKU5h7hhSrLfl9MYym2bbhRTrkTMk232vqoitKayLQLv00kuRlZWFDRs2kBeWaDCQgCUaBCtXrsS6desAiBCkjmAeAbJXVFYlrRAB5hUjw3YNMN5sqk5eWMagnSdrV5/oUB/vCqpb+11463MSim5kIua1UUnWhJlEMkGkFGmXsMllku19dVxQVD8Pp74yiq0jHEb213kWgb0eRxvZTlCG0E49sF0IB4I+EUGf/ecSyJEQyLb3xjJJsQOA4SPewF//+lcAwKRJkxzbShDpQOr1ugQRA3Xe13aANxNySEgGfSJks8FArNtvyrwiZIdETbJHBJwOIrcamDgHZK4swsZERVYTEJ3IiyusiycxEmA/KeE5eB4IF6ZWbeZ9Xfr63D731QiJV4JwJokiL6ni1U1candSxauOuPMRhG37sChHF/JrWZc+LNjKxsNhA9S9B07bepwQdQ8L+0CORxO5ViLWn1Mnlq1ErPo8E+tE7IgRI+DxeLB69erQYj9BpDckYIm0Z8uWLVi4cCEAgGV11cSrJTrxakdMYcFGL6zZgCeJ5gmL9P81emF5RTAQ6aF0PMeWQyzb2TqJVwMRkytZdtfzGmOoc0yTXhKvBJFSJF28urm/NR0xEcIRwpJn3DC1SaAn1jgOmYyxLMNk76vBhtv7qsdKxOqfsxKxhtsCWZEilonhfwdyJFx0w/s4/fTTAQCff/65Y5sJItUhAUukPV9//bXyh6clIOZEXNe8sCLAPIKpeNV7YY1ZhlWi9sJyh95apORXE085JSpSJxA2QjBqL6wbYcM2QlJrj50o1dvwvi6rOhPh/SHxShB8pGCIrSukoHhNlTNfXcu9oC/HLKswDJ5fC5swgeqxCb9VkzJlePkioXi9r2bP6e4N5JgI4ZCIVYWs39RGEbGqkDXzyjJReVx88cUAgNmzZ+PgwYPO7SaIFKaBjipEY6Gmpgbffvut8h9vB0s7JpkL1zAshKseHhELUXT23vKIU14Yc/ZORuOFdWsvU7Jx8ry6GUqcaq+dIFKVhho6nIKiPNlnvjrBGONIuMSZlInn/eZ5/WouChdsuLyvdjYiAEmAP99GLOtDiq2aFMpAHMiSwryvRv72wNc46qijEAgEMHPmTMe2E0Qqk3o9MEFEwU8//YTDhw+DiVmA1MLUhkkCAlkigjYp6JmgJH1iTuLUAYEn1JcxJYW/Q0InQRVkPHs9nSYljPHvGbWDez+rvQ3jEd0cNtxHAnBmI+Y+SicFJ68E0Zihfa9uZlR2RwibntVqxMpjaoYbiQA9kvO44vUAgaC9jc8DyACCHIminIaeUNIlO2oLPPBn27+fNQUianPtbc477zwAwPTp0+lIHSKtoVkYkdbMmDEDAMCyOkQeGC4JkH2C48CgZBmG8uD4RVh5YcPEqySAmQ3wzFkACjKDEJSdhbA+xb+dGOYpR6vc5rxcXuHqlnh1ICrxymUW5WBOIpYgnElCtALte+WtL/GhwwlB1A3iFv20oG+T1fiiDx3myakQCFoK2bAoKwsRG+Z9tahOHxZsN1dRj+CxE7FMVCLNanOthezjH69GZmYmtm3bhtWrV1tXSBApDs3AiLTlwIEDWL58OQDAn98ewcy6rzOTIoVrMEMI88IyIRRWrBuHZE9sXlhTz6tRxJqJV4PwND13zph6XxWJZnZGDDZce0bNRKyVnZNNRHOiEK82dqbiNdoEU5oJi168EgTBTwJFbNqKVxepr6zDtkW55X0VTWzcPJLNYMe8JiG/BhHLfCY2BhEbzPSYjKMmbTDmkpIihWxtfvgT/mwxQsjW5OvmPzohqyeQJQKiF6eddhoA1G2/Iog0JPV6YoLgZPbs2WCMQfYVAp4cbSAwE69GNK+rCbLPWcSqXliBMf6wYQ7Pq22afkGoE65WduokhadN0YQNW6FO5ji8rgkVryphe3ldDBm2IgUnswSRknCG8ac0bv7eU+3IHF7qI3TYDF3fLdgdJ6eOJXaJm0I2puJVRSdiLXNc6EWsZSQTNCFrmpRJrSPU3Np8SfO+GtGLWNPklAYRq5Zz5plnAgDmzp2LQCBg2QaCSGVo9kWkLbNmzQIABLPbAgACGQIC2aKteA1mCAhkStbJEFQ4fhmKUHZIxCTphKcVqjh162B2B7gzEju1W4VbCMcvXrlJ5kSZRCxB8OHybyVtkzZxtJunn07Jfa9utsnM+6pHZtbiVQ9PmzhDik29r3qCzD5xUwh/jsdxHsIkWIpXrUlZYpj3NaKMkIgNZNXZ3PrCbBQUFKC0tBQrVqxwbCtBpCI08yLSkv3792Pt2rUAADm7DWSPgECmANlr39szUUAwU0Qww8HDKtl7YQXVo8qTzdAJNW0/z6q1C/VxH2/gUgbJmM/pi6UsLfFVEru2dPcqEUQySFXxKoh1j3gRBec+Mwrx6ooYrI99ry5khHcUryo80UY8i7ESR3Inn5dL6ApMl4TR0sj+MhMEVDeVEPTZGApAVTMBNQUOx/uJAqqaiaguDNkJIk499VQAwI8//mjfEIJIUUjAEmnJwoULAQCyrynkjCzIXgAC4M8SwlYaVZgY8paqyZqcxmsBllmJBV04MBMFa6EbZIAcCjcyE6dqSG00Ak8UrCcbmo11IiZHAaiG+UV7hp/FpCysvliTTJmVZUbE/mIXj82xgsQrQSSdhHlerfoMLsElmP9tZcPbJIu+PCX3vRpzNZga8W074apPP65ajQ+ScwIoSFJdCK6dQFX1XzAIIWie3EnOqvO+WolYf569h5YJAmqaiFqODjsRq9rU5gmozTO3qy0QtL21qogdPHgwAGDevHmQ3Yh6IogkQwKWSEvmz58PAAjmtFLEq4qJiDUmagKgHA7u4IU1y0qsF69a+WbeWkNCByaK4SLWbNVYECK9sEY7wWKF31iWiYiNEIDGclTh6mSn2jpgnmjJ5PU52IQdUm+F02TJhpgnwyReCYIPF72vropXs3YZn4tWvFo9x9luM2FqfC4l972atclJpFpd5/C+mu6zjUikKHElJIzYP2qW3MnnhRGjiJWzIhM3GUWsP885dDiiTSERGyZkBaC6afj/VSGrp7ZACDsbVhWxt7/4E7KyslBcXIw///zTuUEEkWKQgCXSjpqaGixbtgwA4M9vFWkg1O0bMROvqk0wgz+UWGCho20shZJzSn0Nu5AnvYi1E236+uIJG1YHSSeva5idhXDTDbj2iZY4Xl/Ihiv82I2V/GgmxQ0hGQ1BJIt0Eq/Ga7GKV+O1OMSr8Vra7Xs1HtNmdx2IXbyqGBd8ndpkl0xKTe7k81rOlsNErJW3POw9sK4OqPO+RhaCOm9sSLyaJW4yilhmpvMloLqZB3369AEALF682L5RBJGCkIAl0o61a9eipqYGspQB5ss3tQlkCkqGPrvBgjOUmHlMPKMGlLT1oq14ZaKoTGQcRJltNmIg3AvrJAIFwdU9qDw4e0s5Q5TdgpIsEUT9kI7iNRobHlwQr9HYKHWm2HmvMrN/P9Wj4dwU505ZjmUGiKK5CAyzkx1nykIwGBY6bGojM8fQYQB1ocOWBQFBr4V41dnU5gmoLbAJPZaAE044AQAJWCI9oZkdkXaoWfPk7OamAx4TAdkL+HMF+LPsByfHUOKQzrLLBKglbJAEwCnxk+Hc18j61CRENhXqE0i5lnXYaRDnF5zu1Mfp4eRpl9vH6ZAgJggFHi9mqpGuR+HwUp/7Xq2I5sgch/6a64genvcgVI4QdBgfvB4IAYfkThleR5tAjgeCDAjmW2fryuL4TlW2FBDItrepaglUFQHVzaxt+vXrBwBYs2YNampqHOsliFQiRUcYgrBGFbC1TZpHXGNi6Pw0IfS302BgF0rMQqKTAcwjgnkjB2GBgcubGHZWrCSaD7CM1YUaWYlTjvNkAYTv4REE60mGPmsvT7iV1eRPDm+XdX26QZ7Dhjs0zYpknAVLEI0RuzDbVM447BbJPMKHl1TY92qEV7yG5Ygw77e5z5dV2+WwXUf700rEqufCMmYpUFmGV1vgFvzW6lQ/F7ESsdVNnd+rqiJBmbkLsBWxTGLaw0rEnvnmZ2jatCn8fj/Wr1/vWDdBpBIkYIm0IhAIYM2aNQCAqpbN4c8N3+thPAM2kAVHL6xpGLFOvKrI3nARayZemUcM88IKjEHgCZnVi1ftZoOINROvZkI3Vu+lmYg1E3fGSWA858BytD2m5CBAYsVrqnqXCCIZ2CU6IvEaFa55X3nFayqe92qakCm8/+YSr4D1wq9DfREi1msI97UQscboLMEfjBCygZzI0GGjiK1uKnF5X8PmOCERaxSyVS2M90SKWH8uwCQBvXv3BgCsXr3asW6CSCVoFkakFdu2bQvtf/UgmJOH2jwlVNhMvAIABMCfwxFKrPfCmohXFVXE2nleVREr2K3+6r2wZuJVa39IoNp5XvUi1kq8Gr2wXF5cu324zkchhNfHIaptbKJuezI8ryRiicaI3VEzqSpe3SQVxSt/hc42bnpxebyvtgmZokyWZ1efPgLKKtmSKmKN4lVXhl7EsozIzMRaWSERG8jxWApTVcTyiteqIvOkTXpvbFULRbBGNF0nYv25dcmdSMAS6QrNwIi0Qg1zCeQWhIQbIHssxKuKAASyHUSsAMg+AbJHsBSvYTh4VJkgKOe/2hEasBwPPOcNG+ZBdihL9cI6tskmI7Nqop5zG6d4DbdLEfFKEI2RJC3aCKKQ/KRNPCRbvPKKySQnbeJrO094MWd90YYO27XJwcZxT6wqYkXRNjcGAMg+5yRRQpB/36vTPKe0R9BUvKqoIlafmfjII48EAGzYsMGxDQSRSpCAJdIKTcDmNQGgJGuqacpQm28/ADCHjMNK5l9lwAn67BMxMQGR576GVcYUEWz369IlYrLNcKwKZbsBzs7Tq7NhjDlPKtTjdGzri+IMWKcJEWc2Yq5MysmGjtIhGhNJFK8uF+hueTxVOomkaDyvTn1oKiZtEgVXFw0c+3/V88p17JpDQiaPBDiIWOZTPLSC33kMEGvtbWoKJIgB+3ZXthIgewDZwaHNvAz+pg71tfajqr1f+//lU2YCAPbs2YOKigr7CggihSABS6QVGzduBKB4YGUvIHsZmATUFtiI2NDYEMgy98Kq4lUI9fuyRWZigTFAtfGI5iKWMQjBOvHGLJI1QX9UjpWIZeE2pqIyGvGqYjVBNJ4Fa1qfbH8dJmLTaoIVVpd1V8TVdj0cE6e4J8kkXonGBInXqI/DsRJ6MR2FY9U/uile3dr3yiteeb2qISxFrDFs2G7bjoqFiGUenRfXQsTqw4YFxixFbDDbq9lYidiaAknxhjJYitjKlkKYcLUSsRXtlXhkJlqL2NoWAUBigIdpIpZ5fSgqKgIAbNq0ybxwgkhBSMASacWOHTsAALVNciF76zp8JlqIWN2YwExCiY3ite5CeDmaeNUNjhEiVi9eVTwGEWsUr1aYCVOjiDWzMU5CjOLVsj6LRFNh9ZkMioZJHben1LSuyO7ItLz6FrEkXonGBInXmM9ydfq/dX0mbTc+l4riFUiIeFWJeXwxq88gYsPEq4pTODHMRWww2xsW8WUmYjXxqjXAXMTKJttxjSK2on0QzKOfD0WKWE28qoREbFV7P7p06QKABCyRXpCAJdKG6upq7N+/HwDgz82NuK4cm6N/IrIMvYi1FK8AZK+AYIaSiEkIRopXzU4VsWbiVUUVsXbiVfXCqqLULvW/KNjb6JJDWQ74RmFqNzEQBXvRFirLdnJhFPEcdvbl1ZOIJfFKNCZIvMYsXp2et67Ppu3qtVQ8Lgdwb9+rTTKmsHGBN2mTFSERaypeVYKyJmStkjbpRaxRvOptVBEbIV61NisiVhWylS2t309ZUuYzRvGqFWUUsWZ7Yz2KN7Z9+/YAgF27dlnWRxCpBglYIm3YuXMnAED2esF8PlMbf17IC2ujfZgABDMEBDJEU/Gq2XkEyHpRaYOleFURUZdN2LYgDhuAe++oczkcR/y4lfAoiklXSu55JYjGRCpm2eZpU5LFq2B3znYUNkp9HG1P1eNyeEKHXVqoYIzxvT4eG96yON4r5hHtc22ERKypeNUKUR7VhYKp91VPReeAqXjVigqJ2NoWAdtyWrVqBUDZB0sQ6UIKjlAEYc7evXsBAP4869O7mQjU5tsndRJkKIOEU1InWdkPK/usV3mF0NjhlNQJMpRB0mo1OCSSmSjYD5S65E+W6M6dtZx8yKzOm2hbls7OxoZLcPKch5vkbMRRk4qTeoJIBEmKNuD2vjr99tw+xodTvLpXXxTC1KneZB+Xw/MZqjaOi7g8kTPqMW52kUHOR71pdk7jjtejnCpgcg4sADBBgJypqE2npE3+fAlSrUPSphYimAhItfbNgk9WHja07rofbTsctLdp3RoAsHv3bocKCSJ1oNkYkTYcPBjqhAu88BcGTW0EBsBqPywU8SoEFbtAhoBAlkmyppB4VcWplYgVGBTxJghgNkmdEPLOMquJh8HDayli9cfpWJXFJRJNRKlpWTyi1H3x6liei+I1puN0SMQSjYUEi9iYxKvZ78/t32Syz5+NxatqJVLr87gcq++L8f203CIjOr73grHtXMe02SeAUsZ8i3JU8apiIWK1BXGbpE21BcqZsAKDpYitbCHWHZfDrEVsZcdAXb0WIrZN5wPI9vqR5fWjbdtDpjbZTapw+7ovAQD79u0zr4wgUhCaiRFpw6FDSgfMcr2AGN75C6xOcAIwFbF68ao8AfizwkWsUbyqGEWsKl5VTEWsTrzW3WjwwlqEJ0eIWLOzYI0i1kIkhk1C7DyqRjvAfgLbGMWrColYorGQIBEbl+fVSdDGQ5x7XqOvL472G9uQCme98n5fIpIUxiBeVYzi08zO2N8b9s+ailijeFXRiVi997XuyUgRq4pXrT4TERsmXrWyIkVsZcdAuGg1EbGqeFVRRaxRyEqSDDlb2ZJVWlpK23eItIFmYUTaoHpgWY4XWYVVmhfWKDY1dCI2Qryq6ESslXjV22r1mYifMBFrJl5DNhBFRcQ67K3VRKyZeNXaFBKxDiJREAS+cGDVDiDx6gSJWKKx4LKIdSVsOBG/v1QWr04e1/o469UKjuPWFDs1oigO8aqiik87O7Xft0j+FCZircSrSkCuE69mZjoRW5sfLl61+gwiNkK8ahfqRGyEeNUKg/a8UbyqZBm8sdlNqpTisxQBHgwGUV5ebtEIgkgtaAZGpA3qIdss0wuPJ4jsogrLUGINEQhkA8FMwVaYBn1K5mFLGwCyNyRObcSPZZiwmQ1vggkXxFbUxw+4MWHlEa9atUlKJAWXxCtBNCZcFIuu7XnltQGchakopK54dWvPK2edcYtXFSbzZ4t3Eq/cR/jEn9hJFbG24lVFEmxzaYAxBH0imGSTkyMkYitbOHw2DKhq5bDnVQD6Hb3RVLzqyfL6cXGfZZCkUFkeSYseKysrs28HQaQIJGCJtKGqKrRa6FWWKSVJRnZRBWqbWYtYISBACMI2658QBMQAEMgQEcy0S/6kJFmyHYyCsjL4eURlcDMtJ5SW32FiIqhH7jitYDOmTEwsymJhe2c5EkQ5ITskiNLjZBNa7XYsi3fClEzoSB2iMZCq4pUXtU6ruqPY7xrVOa5uJElKcpIo18QrYH/EjVZWyMaNRUW1PrvFUHX7jtOCqSRBCNovjrMMpT7Rbz0OBHK9gCBAqrIfK6qbiJBq7NtU0UEG88pAjf3n2NRXiQ45xbY2A5tvRGtfKS7stFp7joXCoMkDS6QLJGCJtKG6uhpAnYAF7EWsEBAg1iornP4cwJ9rEsITBCS/Ku6sRawgMwihs9mY13xFVQjKioANYSZiNfGqYiE8w0KZ1LNfjRhDkE3KYmai1GxyaLSzmkAayrLOcqzfn8NhY1eWCm/Img2ueV9JvBKNgYYiXnn/b0NU4tXsbysb6wr56uMhlcWrikXfrLXLVpgayjKz5cg9AQDM69HaYyViWYbu3FjGTEVsINerhQ0LDJYitqqpsu9VkAFPpXmbKjrIkFXPK4OliD2xxyYAgEcMWorYgc03Ik9S5lKFngpNxKoe2Npap9THBJEakIAl0oY6ARv+tTUTsXrxqjwB1OaFi9gw8Yo6O6OI1YtXILTX1SBijeLVjAjxqmIQnqbJJIwi1moA1pVlKl618hwSRBltAOcJhmZntj+Hw4aHOJKGkHgliChoaOLV6XkbYhKvVs+lq3jlJRbxquK0QGoqTC3K0tuaHV9nMoZq4lXXHqOIDROvurKMIta459VMxKriVbMxEbFh4lUrHBEi9sQem1DgrdL+byZi9eJVRROxoe9JIGB/ZixBpAokYIm0QdsnaTLY6kVshHhV0YlYU/Gqs1NFrFG8am3RiVg78ap6YS3Fq0pIeNqm81dFrEPyJ+7z7wSHBFGqDUdZ2kTDTphy2Lh2bIMBEq8EEQUNVbzqr7u959VOKKrX0lm88rxf8YhXFactKmHC1KEsxqzPXlevMzWyymNuoxOxpuJVV5YqYgO5XlMTvYg1ilfNRidiTcWrVh80EWsUryp6EWsmXlUKPRWQDlUCAObNm2deH0GkGCRgibTBKZRIkmRIeX4Es5h9wqYMQLYYq/R2siSYZg5UYYJguc/V0HBnm2js3IJXjHGIP8Xb61Aej00CoKRNBFE/cItXN3GxTr4FNc79riRe3Xt9at4Hl8qyG+cBKGOgCOf2MwYmibblCQwIegXrjMNQRKw/H9biVasP6NZxr6l4VfGIQTzS+f8sxasRv98+ARRBpAokYIm0QVQHLAs9Ul3tRbBWRKBJALUF5kaiHxBrgUCWgIBNwiYxwCAGGGSvANln/jMRgzKEAFOOzrFY5RWCoYyG6tE5VujFnd3Ks5aMyWYg1Y4TcNgzqi4EONk5DO6aZ9yFSRzf0Twce3WhN3FxUkhH5xANHZe+41H97tzMJuwS3OLVvQr57HgEc7LFK1fGaIHPThSc28aTsAmoO67OBuZRE0lZi0XVOyv47RM7BUOJkKRqa7vafAkQAF+5dbsqWwlgIoOv2H5RoEv3PcjzVuNgTY6lzU1Fc9BGqsSQ3N9ty8rIVf7t16+frR1BpAo0GyPSBlXAtsqOTPNeXe2Fv8oLyAIgMQSaRopY0Q9I1crqJgTAn20uYsUAg+hnih1gKmJV8QoAUM9/tRKoau4FKxGrE69MFMyzE6viVT8Ymw3yoaNrmJ041YtX7QU57C21mMRECE6riZMx2VSs8OzVNYFELEFwkA7i1cW9rVaktHh1qr8+xKuTXSLEq4qVQDUmbTJBE6+qjYmIZV5P3UyZMUsRG8z0aJ+jYHIGPKCIV/VEBEE2F7GVrQQwTyiMOghLEdul+x4U+BTPq8wEUxF7U9EcFIpKUqY8IWApYnOlavhCt+fl5ZnaEESqQTMxIm3Izs4GABzh3Y1uhQe058PEq4pBxIaJVxUTEWsUryp6ERsmXrWyIkWs6n3VEyFiTQbNCBFrJl519dY10iBetRdl2DNqNeA77S01TFIsvaXGCZRVsikYzRxW03n26tpAIpYgbEgH8cr7/zhwNaERX4V8di4liGpQ4lXFOHZYLRTr/+sxKcswHoeJV52NUcTqxavWBIMXVi9eVYwiVi9eNRsTEasXrypGEasXrypmIjY3FFocCEUYq/Msgkh1aBZGpA1qxypUB3Bqsw3oVnjAXLyq6ESsICNClCqF1YlYK/GqInsFMBGmSZ2UsupErCZeTcrSRKzNnlBNxALW4lVXr6V4VREFe/Gqt+O47ig2tXBvjmRTPOW5tI+VRCxBJI6khg2riZjqQ7y65X1NcoKoBileVdQxxGmrDizEq95Gls3Fq85GFbFm4hVQFrBVEVubJ1qeRa+KWDPxWlcW4C1R2mwmXlVkprTDTLyq6EVsrm5frJ8ELJFm0AyMSBtyc5VNGv4qIFusReecg8jK9JuLVxWJQc5g9kmbBECWACZYiFzVLKgOfjb16Y+7ccpX5LQ3Ry9incqxE6/RIDN3Mu3KHGI5hCvtJggidlxYjHFdvLooTnmEW1qK1yhs6kW8ctbn2DY3EyHy1OWRnGfHjJlv99EXFWRgIkzPjddTUyDAF7kzKgwxAIj5fkvxqnJh4XJL8aqSJwRwXcFq7f9MZgiEbiEBS6QLJGCJtEHdm1FTAWyraYa9Nfno3PQQcgsrLe8RKiVIlQIC2UDAIs+BVMsg1QJBn4Bghl1CIyWDoOwRLUWsEJQhBGRlwLIYtLQjdZwGP9Xz6iRkZaUs20mAepZdvOFxModQ5hWvIe+z4+TFxSzCrmYkpiN1iIZAqopXl1D7F7t+xnXx6tC3uypeobTfndfnYsImFbt+kieih+eINoDv+LiQjWB5PnpIvAIQAvb1sQwvmACINomdAjnKyrm33Lqs6qYCmCRAdDh+tbZDLQSRYe3eVpY2V7degCZiJfbLGQAAaX8QTf5bjtajDqHt8INoPeoQmrxajnbFPjSVsjEyb6PShnIo8xtBQH5+vn1DCCJFcDpMhCBShubNmwMAqooBP5MQYCIyPX50LTyI2iYl2F7SBOWH6lYPhUoJnsMiBBlgEoM/RxkIPRV1ZUq1TNkbyxiU818VG6nGuA8l/KBy2SNCRPheWFW81oUpiRAgA7qEDmHnwYYN8ob61PNg9cmY5Eg76A9ZFwQIMJkMGA5ihyCYC0wn7yuPeOXFMBkRBMG8bF7BySEmSbwShIFGIl71/zf2MwkRr/q/jf1aAsSr/u/YX1+U4lVm5vfEWB9jLLKtxv/LMt9eYLO26W2YslUo7LgbnXjVbAKycpa7AVW8qnWJ/iBkb3hYciDHo0vYxOAtl+HPDS9LFa8qGYcE1BRGjlO1HWoh+pRx3O+XsHZvKxzZck+YzdWtF6BIUty4wSoBuY+Vo8Xn5RAMp+Jk/1wL9mI5MDIfBY+H5lQlyrWmTZvC4yFZQKQH5IEl0oaioiIAQOkhCTurmmjPZ3r8yPdVo2vhQc0bqxevKoqIrfPEholXFSHSEysEGcRaOeJsWb0n1ihetTo9ov1ZsepKvX4SYhSvKkZPrFGYhsrjmrBETAxcEq883leLlfSIdpN4JYjE0cjEq9nzCRWvZs8lULyaPZdwz6uxX7U8As7QZ/Jktbcqyzh+xJoxmrE6T6xRvOptDJ7YMPGqtSn8fdCLV62ZIRGrYhSvgBImnHEo/Dm9eFVRRayKXryK1TKOunYPWk6KFK9aW/yA8FEZhCt2YaTnT03ANmvWzPwGgkhBSMASaYMqYCuKgYBJRgTVGytlBiPEq0qYiGUG8araiHUi1kq8qsgeUdk7ayJetfJCIlZgrM77qkcnYi3Fq4oqYs3Eq648beLiYKe8COd9r66JVweizgBK4pUgoifZCchSRLzqrydFvOqvJUG86q8lLWyY52xyoK7v5DlX3HFbiS6KyVLocpxPropYh6ROqog1Fa8h1FBiM/GqoopYM/GqlaMTsWbiVcXvV9qsF68A0OXRg2iyqBpOox4DICyoRpNHytHXdw+Auig3gkgHSMASaUPr1q0BAPLhIOQacyGxpyIPckBAMMu6+2YSsxxgNBtRSeqk7nu1RRLCQ5HMsArb1V8HtIRMjvBMcpyEm3o8DweuHS3htI8pAbiaeZgg0p1kH5eTYuI1Knj62WjEqQv1RSVOHetLwJ7XOOE+g5fnfecoy/L89jAjRVRbiVcAobBlOM4tAtmiY1InMaCUYyVeVTKlQJh49e4PoOUXhwEATq9cuz6lDNv/+AMA0LZtW4e7CCJ1IAFLpA35+flo0qQJACC4v8bUxh9UlKecH0Agx1yceSoEeCpCXlafeTcv1SohxkwSEMwUIXvNfypCkEEIMDBJtBwIhSADAqGkTVYTBlmGoHpn1cHZ1E4ncK0mO/qMxDwr55x2thML/Yq4k40NYZ5eNye1JGIJIu3Fq3vJitzJ7OumcHM1kzBXfS6JVx4BqJblUGdU4hVwOKbN2UY7TscsMkq18XnAfMq+ULHWWlDKGYqNp8raxp+rnAWbUWKT1Km58gAAYXuWpV2vtnsgCgyTDg7Qnms15TBEi7BhKwQ/sGPRIgBAhw4doruZIOoRErBEWtGxY0cAQK+qTeiSfSDs2taypigpUTa4ChIzFbGeCgHecijhxQIQyLQQsaEkDxCURA+yR4gQsVpip1ACKDMRq4pXQS867QZx/Z5Y032qhnAt46RHFa9O4tRsUOfY42Q6wYhlT5IJpmHKjp5t/i7MFRFLZ78S6Uqahw077e2MWrzynK1q3yC++ngg8Rr++iy30Ngs7obZGcZPs61ChoRNZiJWFa5O7ZIz6s6MFWRmKmJV8QqEwoRNRGx1c0D2MMih82CtxGivtnuQ71UObi3xZ2kitmBRtfkNDmw7oMyl2rdvH9P9BFEf0GyMSCvUFcLqPX78JXu7JmK3ljXFvgP5YMG6r7RRxIaJV80oUsSq3tcwBISJ2DDxqrPRi9gI8apiFLF676tWlkHE6sWr3kYtDzAXr5qtSZZGM4xZJs1MhPC2WxgZ6otjjy2JWIKIDxe/s1y/oQSKV7PnYva88mS0NW8QX308kHg1f31m4yaXnUVosc6OWSRs0otY5jXfF2v0wurFq4pRxOrFq1aOQcRWN4MmXMPKMnhh9eJVRRWxUkX0W3SqRRG7Q+Oz6iAgiHSAZmJEWnHEEUcAAPZtkZApKiK2NihFiFcVvYgVGEwTO+lFrFQLSDWypZ3sEUJnv1kkLDKKWLuVZFEwF69aWbqB2Koco4i129OqTkpswqU0HPbGRpXp2I19ry6KWFcgEUukCw1QvEZzva5Oi3bpnyfxmhriVUUfucRl57wv1lS86ssJyop4tcyozDQRayZeVdQMx2biVUUVsdXNANlrPuaKfkXECjAXryol/iwEc6L/rf+Zk4OgIKCwsJCSOBFpBc3CiLSiZ8+eAIC9myUwBmSKfhRllsNjk+xAkJiSjMnuoHBVJwqwT7AQum6bzEG9xpmR1zYBFG+iClnmyxTMLM7uixLF0+tOQibXzpZNNiRiiVQnjcUrT7Ii7j2TTkKRx0ap0NlGLc8FG77XZ5NbQX89mZ+fILq355UHtRwXkjrBYyNeQ2jeWae3i9kndWICEMgSLMWrSiAviEClx1K8qqw5ro1DgyL5Iy8PQN3ciiDSBZqBEWlF165d4fV6UV0hoGy/gAXl3fBHSUvk51TDm2WxYaTUC1+JCNkLBDPMTaRqBk+VMogoocLmA5gQYBD9DMwjWgpPISBD8CtJmyzFsCzXeUIFmyzG6tE0TqvP6iHwdhMGWSfynSYhNte5BadTsqlocMyoXA/H29CROkQqk+bilQseYeoWbrbJTfHKc10VlLYVcn5+jiLReRsKEEUUj9N7xbN3FgjbamOJV9nzajz7VQ/zebQFbLHGeuE8kKWUpT/7NawcAfDnCmAikLXX+r2oLQwCEgOCAn75s4ulXdec/VhyUScEPdEtCqzLzwcA9OjRI6r7CKK+IQFLpBVerxfdunUDAMxd0waL9ndCdcADSZTNRWypFxkHRQjB0PmuGUBtfqSQFeS68GImmItYIcCU8GI1aZOJiFXFqz5pE/NK5kLWcGh7hIhVxavdOXuMhZ31ailizcSWk53J9fAswXZLyyb7l0zNeM6XdU+8unYmLIlXIpVpTOKVJzQ4XmIRr7Hur0WM4tXq//rPxupzSoR4tTOLRbyabtkxjpk2W3bUW8zySQCaeFXrMhOxevFqVV8gy4NAVp2dEGQRIlYvXgEl54aZiNXEq3pfVWT4c9ec/eiasx8ZQgAVzTOxclg7xTbyFYa3IfTvb20Ur22vXr0c7iCI1IIELJF2HHvssQCAjb9loDpQN+iYiVgxAAi6RVIm1glZVcRK1Qye6vDu3ihiw8SriomIFZjFvldRd/ab3vuqRy9ijeJVZxOGSRivJmL1ExrLvbh6G3uRa54lOIouxGDriniNAtfEK0GkMo1JvPL+Px7i8bxGu78WcXpe1efNxKtWgTHjUILFq67f5T7D1srzalj0NcW4yGpSjmAcC7yeCBujiI0Qr2oVOi+sKlyNdkJQJ0IN4lXFKGKN4lVlwcbO2t+dsg8iQwggQ7c/6rv7j8LWvoVc58D+fmIT7Pb7IUkSjj76aIc7CCK1IAFLpB3HHXccAEDeXBZxTRWxTQrLwWpFeEstPH8hEQsGeCuZadImvYi1FKaqiFWP2LEJPdIG0qBFAiggPGmTZaZgnY1FOWETBdn+MHSlLLt2O4Wpic4r5XpbJH/fq6vilbyvRKrSGMWr8flUEa/6a8kQr8brdp+NGlKcLM+rzPg/X6ewYactNaqH1ek9V8cgM/GqsxECsqV4VesTa4JhXlczvOUyavMEU/Gqop5+YCVeAUCu9GDBxs7olH0Q2WJtxPVApoRJb5yA3y9tBdlr0WQvsO2yptj64EQAyv7X7Oxs68YTRApi88sliNTkL3/5CyRJAkprIBRXgzXNDLsuiTIOleRBKg1lCLTQb0wEmKT8a5p1GIqIFWTzcCINAUAgZGNTH2TZtcRHWnk2aCJRELgTSiULQRCcRWwqekxJvBKpDJNdEbEpKV5dSozkmNndaBdvfZy4Il4B/s9fFJz7WB7xylkXYxwiNto9r3Y2TkKX87NjHtE+aSMA2SNCqg4ikGWd4Vj2CvCVMdQ0sS/MWy6gtsh57DMTryqBTAmv3DsERTeW4cpvF6JwUQU8FTICOSIOnZiD7Zc2RW1zD5ZPWgUA6NOnj2N9BJFqkIAl0o6srCwcddRR+O233+DZfAj+ppGZ91hAhBQEghkMEgQIJvmdvJWAt4JB9ggAGESTLMVSLYNUrWTulUUBQpBFhh9BDR2GEioMOSxkKLJQ0doLq3pVBUERw2YTDL3n1UmcqoIrHhErMw6xqW4g5rQDp4jlQRAdhaUgCu54YdXJIQlZIlWJU8SmrXjlqyz8b6dImCS0id/z7LJ4Vf+13DfKKV6d6jRsQzF9vcazxa3eW/3ig1Xb1CN+bGzCjtIJypbHAqnZhgW/XBdlZUD2KVmL7cb8YKYIJgJigAEWwb3+nNB2pSCQtc2Lqg7mSSnF7AAEiWHypuNwWZdfTW121DRFTdCDHfmF2HhrETbeWhRh89aOUyAvXAgA6Nevn2XbCSJVoRBiIi05+eSTAQDiH4cgieFiYv+hPIgHQrEzgiJimSGUxlsJeMtCocOhUOFghgDZsKQjhMSiuq+FSZHJlgS/DMGvz/ArRiZtkuVwL64kRg6ujClnwurFqWRxFIHe+2oySDOe/bNAKNzKRozxiNe6Su2vW+3XtSKa4344Jm5cE3MX6yOIdKPRiNdonzPSEMSr3fUEiFfrMhzGNys7s/HGKERNbCLOgTWz8Up1R+UAEOTQyQLGZvrCj9zxVEWGX6niVSWjJLI+f46gRIOFqpRMnKtidkATrwBQWZmByZuOi7BTxavK96VHRdi8vetUFP/JUFpairy8PNr/SqQlNAsj0pKBAwcCAIStZZBq/JqI3X8oD8KeDIgB/Uq7ImIDOXVCVggCon6sEZRQYtlTJ2I176sOo4gV/DLE2qDifdVjSNokBEw8rlJob1RoALTMjqjPLGy171U3iGri1UyYhq10O4hXXnjCom1sHEUsr/AkEUsQCjH8rhudeI3VrqGJV/1zqnBNoHgNWxDlDQfmSdhk5kU1jJcR4lVFl1RRL1zDmqEbw2SfFCFeASVZk17EGsUroHhh9SJWFa9GsrbVrbqrwlUw7IutrKw7TmFHTdMI8QoAJf7sMBH79q5Tcag6B5fXHAMA6N+/PzweCsYk0g+agRFpSfv27dGpUyclgcKfxZAEBp8UBAsK4eJVRQAghkKK/YCnwip0TBGxgszgqTIP89WLWC102IzQETq2oWqiEB7yZEVYcieLyWnYeXh2e3YFZxu1GLe8rw44TuZIxBJEdEQhYhu1eFWvN0bxqr8WzX7XOD2vzGl/KqCMczztkUTLEOBQZco/VuJVtQnKluJVRfDLdcLVom1CkCGYKZqKVxUllNhavAKKFzZrmzfM62rG5E3HacLVKF5VSvzZeHvXqZp4BWOYO3cuAOCkk06yLJsgUhmafRFpy6mnnqr8seogRIFhz6F8CMU+24QLnnIB3sPMWnQCitgVBNty1OROjkkwZBkIOgzWQVkJHXaCV3jx7vV0M3NkY4X2whKNBafverLFK4+nsB48r06vjztZk5uLCrGG8sZap2NVnO+308KoxGEDRJ6xblWWo40AsdY+q7/sE+GpDFqKVxVPJSzFq4ogw1a8AkB5STZ+2Njd1mbx7g5Yu7eVIl4BYGcFdu7ciczMTAwYMMC+EQSRopCAJdKWM888U/ljYwlQ7kcwIELwC0o4sMV4JQaV8GHZA8sBxlOtnPkK0XrgE/0MYq0yoZM9JnteVdTcRrpQYUucQqWCoRVpq4kUC+1XFQXYHpGg3x/L47G0PbJAlyQqDlw7VieZgpLEK5HKJDM6gEMgcJ8BGk0m4XhteEm2eOWqzD2PuLvvFed7wHHcmi16wWkZ4aQ7wshuq0vIO2t32oAaTWW3+C37lIzFtgmdfAKCPiXKK2u/tZ06R5E2ZVnb1EpgDPBXWZyXA0W81lR7EQzUvV8jSnsCAE455RQ6PodIW0jAEmlLhw4d0LNnT4ABpUsqgIPKfhAmwFTEeg4L8OqOjpU9ynloeiHrqVZCh4UgwEKZgJnHJHGTli1YrUswT9wUrFutNRWxQcPROmYiVhWvehunswW1kDATm4jkTs42phMv44TAahLkxtFBPF5lTkHp6pmwBJGKRCleuX8TMS7axH3Ga3hh9v+3ei5WYhCvZq/X1WNy6lO8Wn0HODy9Ee+BmfA0vt88yZpM2yOCiZFjdxgeSROval1mIlbbCqQWXRN5ZIEqXlW8FZHlBH3KGbDqnEP0R7422RO+wC5VCREiVq6VNPGq8vOWLhFlqeJVZV9ZLiAzzJ49GwAwdOjQiHsIIl0gAUukNWeddRYAIGvtbgi6zH2aiBXrhKwYrNt7orcL88YyxUNbd12oE7KhgVDvfdUwilg5lJnYYGYmYiOO5VEFqt3EQhW66mDPLLIFG0Ws5bEROhuLySzXBMwowDnEqyvnwSZbvJL3lUhVYvS8xixioxUtVsTjeTUej+MWcXhenQRtZF1J2u8aVp5L7xXHdyAu77tTsiajTUi8RqAfj6z2xOqTPqnZiI1jtuGnYhSvgOLN1YtYVbwa0Xth1bmI0U6qqitcFa7GYVPvhV28u0OEeAWAgF8C1hejuLgYTZs2Rd++fSMbRBBpAglYIq0ZMmQIfD4ffAfK4CsuDrumHn0DIbT3tcy8DEAZOEQ/g6faXJjoRaxgNnoA4SJWRoR41criDWtSB027/bEhG1sRqBexdpPUaMKJ3fCqwsXQYYIg4g4bjnqBJxXEq/66a4LMIcIlrFrrOvmFW5L3uwLxvVf6RYx4vwOM8b/fUXheLZFla/EaQgjIdcLVov1iTQCyTzQVr/pyAGvxCtR5Ye22NQFKKLHsF20jr3/e0gVL9rRHTbU3Qryq9N1UAAA499xzKfswkdaQgCXSmoKCApx++ukAgJzNm01tlIRLgGizL0VFsNFlTBAgBhmEgE1SptD+F4Ex+1+XMSw4GZBYJIiGixvJdVzM0J1U8cpbluPWC37hqjTLhfcrmRmgo8m4zIMb35d4j9Ix2DkmbOL4fJnkXB+TRIg1Qftkjx4RnmrZVpgySUDGIeac9KlCAJPt2xTclY3qKp/ldamkEkuXLoUgCLjgggvsKySIFIcELJH2DB8+HACQvWsnxJqaiOu+MgG+spBHVoSyb9WApxrwVimDCJPMbUS/DKlGiS9WPLt2I1dI5Fr9wrQ9tDYDrs7Gth7G7Ff69ee92q3Q622c4J3kxXvshIvhw4CLE3Q6PodIJZIpXt3abgAkX7za2UbZVzVq8coT0cNVDkdEj168WtWns7HM6K9fnLBZPGYeZfuO4LfONix7RGWx2ub1M0/IM2u3KB7aciT5gex9Fr8luW5hPWNbhqmNWOxVHn4Bwb3WSZ/uCLQFAJxwwglo06aNdcMIIg2gWRiR9vTq1Qs9e/aEIMvI+3MzRMO4IwSheE1DqGHF4TZMGYx0e2fNbLTBSD1mx7g3JiCHD3wmIlaQ5YikTBEiVj3vVcsWzLcCbTmpMnpfHVepza8zwz4jvrrM7eorfJhELNGg+P/27jxOiurQF/ivqnt6dmbYIsMmoAiCGBAEUcEdvLgGjU+f9xq3q/FjXF70PQ03isZ45cYlGPN53iT3qs8oajRXTYwKV+MaQVwRRQiLILI5+97T3VXn/VFdNdXdtXV39Tbz+34+85mZrlOnqme6u+pX59Q5hQqvOi8DvlnJVXjNJJym2epasuE1W1YDSLmEWNvPeb9aXvUyTuU8DAwlgrIRXvUyViFWD6+6QDi1jBFe48o7LAaGShr0MZB67T2lR1ggnFpGD65yVKtP7kv9O4ivq4BtQfzpT38CACxdujS1IqISwzMwGhD+x//4HwCA6l3bEeiJGSG2rFNrfU1mDrF662uCpBArR1UEoqmj7iaHWEkg9eAoSUDAFGSt7qGVJIiA6d4d81Q3yXUZT0IASurBM+Hkytz6msx84mNVJunEyHqQqDRaYk1lPYVXn1tfzRhiaUAodHhNLlLo8Gr1mN229Mfz3WUYKN3w6hevo9pblhOuZRJaYe3+v6YyRnB1GCVZDcop4RVIbIXVQ3DqgE5Jg0faTLtnboW1u53J3Aqrh9dk5lZY8XUVAmEJy8ePQW9vLyZOnIhjjjnGunKiEsKzLxoQTjzxRIwZMwZyNIrKb3ZCjuijDqcePHR6l2JJFdZdgeLLjcnGrQ4o8RArZG1eN6duR9occi73vnqZIy/dlli3AZ6ceBkUxBxO/WpVzWF41THEUknL5+uulMKreZnPLa9Z8zrIUqmFV6+tsG4tparqrUXVS12A8/83vk8Jra5Wm4kq/cHVplggrBjB1e6e2PIOFSJgMd2euZ6+xC7D1ttK7DJsRW+F1cMrFAXPPfccAODiiy/270IMUQHxzIsGhEAggIsvvhgAUL1rG6CoCLVqgyM4HQyCvUAwufXVTD9oeZnSJt+8jgSc7b55CZNe98Vzi61PJ3lEA5UPUzl5uojj5/vMr/Ca5mBL2ch7l+FSC6+A/6NRO3YH9nAvbzrP3W2wJkmyDa6J5Vw24+mirHuRYA9QvUe2Da8AUNEsIfhFtRZeAfxi5qFobW3FqFGjjEEviUodzwBpwFi0aBFGjBiBQF8YlXu/hhwD5Gj8Hlibcz0voxPLEaEN3uTwbtHvfRVOYVYR7leY9XtfAfur9eYuyJ6uVDtfYTbK+MFtO/Hnlvd5ES34NicsUQnyLbzG63G9LcDP8JonRdll2K2udC6ougVmP8Orl9ZS1zLegrvrSMQB2ZiSR5/qJpmQZW3KOwByxLpnlZDj25IkBHsdel/JWhAOdTqN6KR9q7QZzAnQwqusAHLEtggqmiXIfUBZZ/wBRcGTTz4JQLvVilPn0EDBAEsDRigUwkUXXQQAqNmxGVBixjJJ706cQaOF1qUnflCRYfmukUT/AE9CkrQDX/IAT+b7Wm1CrGQ1aJPbhOx6eRORfA+tXYhNLuOw3H6UY+d9sSvnOcS6nrB5bLXIFR9awogykst7wDMIL7YhluHVZWMFaHV1C66FDK+W4y3Y359q2mBieLXqGRRIut/VakCn5NeZxUVuPbj2j35stc8wzhckIYw5XxMrQkLLa8AinAZ7+sOrnYpmyQivZj+fNh4HDhzAyJEjceaZZ9pXQFRiGGBpQDnnnHMwatQoBPrCqP56e+JCkdgaG+wFynqcTwCN1teUBf0/pow8rG/OfJBUhPXBNPlAahcG/Th58aEl1vNJXRqjJheiNda31leGVyq0NF+DuQqvxu54HIU8cXsMr9nXk0Wrq/l3H1qCEz7X3UYHzrTl1WogRC8tr25dhm1eZ+ZWWCO8JklohbX5Mya0wtochsytsEarq3lyAwFUftu/fT24JofXUGsUv//97wEAl112GcrLrafhISpFDLA0oIRCIVx55ZXaz01/B2KpY9PrIdZL9+GE1tdk5tZYm3NIozUW8DSHne1yoP8g7mWAJ9ttma4+O5ax/2hI654wY3+cT7I5qARR7uU6vKaWY3h13lgBwqvTMj//927HNVl2LiOEew8cfZ50p/Cqqv1dhm22JcXUhC7DlhSR0GXYsh5F2PbSAkytsEmtrsn0VlinVle9G7FVq6vuxmnD0N7ejvHjx+P000+33yBRCWKApQHn1FNPxeTJkyGpMYRa/m5ZpqxbINSleho0wZUE93eS23IvITafg3J4qaYYQ2e+uxJzICkabIowvHr5LPKrjKtiHGnYr9ssPOyP5HV0YC+jDLtvrD9UOtXjx/Ez4KEeLy95DyP1B6LCtctwqFNgyI7UVldjO5Fe/OEPfwAA/PM//zPvfaUBh2dfNODIsoyrr74aAFDWugNSX2dqGQWQo/ERiu0aWO26D5tIMQFZnx/W7qqrqmoDRTgdZFVVm7vO6eCoqP2tr3YndUJoXfgcr1qr/Ve3ncq48DSXq87lJDStuhwr8tad0rcpdIgKzdf5Od2mnfExBPocXp22m04Z931yCKjGCLku+53v8OqHdP73jlO3eZhyLY3XhuQ2LZ0kATHn6e2EJEGymFPdEJ/6Ru6L2ZeJP61Ar8sxSADlnfbbCsTPSyqb7Osp6xKQYwJl3fZ/w/MPiiEcDmP69OlYuHCh8z4RlSAGWBqQjj76aMyfPx8SBCr3bUAgYvNBL+LdhBWkBFnH7sPG+kn3rVp1HzKPGux08uNlZGHzQd9tKglPc7i6lPFyEuVhrj2jXB67ArrxdR5YtsRSCXC899uH17ARYJze515b6Fw+K7zcyuBXmf79cgiuyeHV6u/p5bPCr5GG/Wx19TBYk+vf0Mvnf/Lzsnq9plOPh15NwrjNxaJMQDLCK2BzPpB0zJedArV+GmBxPhKICiO8ar+nrl7WJYzwaqeiRaBqz7d47bXXIEkSbrzxxuLsLUWUJZ510YAkSRJuuOEGhEIhyH1NCLZ/Y3lAAGDcj+LUGps2/RxGb31NWW4+SKvWV5GTR2V0G+FTb3112pZQretJLpO8zG200XTCaVI5T62vnubQS39AJUmW/A2yRPmUz9ec1xFn3cKr63Yy7zJsfjybMqn7ZBHi9N/NwTXHU9Jo9RRpq2uy5IuXbmWyeG0kBEu78GpuhY0HV5FUJqEVNmC9PwmtsDZPK6UV1u2e13hwdZolQQ+ujuG1VSAQUTClYg8AbVDLKVOm2FdKVMJ4xkUD1ujRo3HJJZcAAIJtn0Pui6CsVyDUJRAMWxwpTK2xcl+a3Yet6O8u2+CZFFAtN6JfHXYIsID7SZ+nllQPrbWudZj2I5v9zTOGWCo5Gb7WLFths+w6XAzh1bw8L62u5mV2fz891A628JpQT5b3QhtT2Hno6eOpZTo1uPZvK/7dJrwCSJxSz0ZCK6zNYbC8U0lpdU0p06a6trqGOgQqWkU8vArceM447Ny5E3V1dcaAlkQDEc+2aEC78MILMW7cOEhqH4JtX0JSgWCfatmFB4BxpVRWRPrdh+04Dvrg7YDruZwTWfJ2oupUJtsuxZmU82vKm3xhiKVcy/I1Jtzmf85EEYRXX/k5GJOXbblupwTDq3sl3vYlF12GLbcFx/Bq1OPlz+zW6tqrura6hjpV11bXylYFgYgWXhHrxqOPPgoAuOaaazBkyBAPO0pUmnimRQNaKBTCj3/8YwBAoPsrSOFGAICkaAcFx5CqwnZ6nLTZXvGNh2Cng6oQ/SHOth6ta7DjSYUqtG62RXY/jGtriOdpG/hxRoOAH/eqOt0ykMxr66t9Afcd8jO85qu3CeC9ZTXbcQbyFV79ut/VY0uop/2RJG8DPnmaXs79gG41p3tyPbJL7yy38wZJEZCcwm2fikCf6hhcQ10qQl2qNi0PAAiBuaOa0Nvbi5kzZ3LaHBrweMZHA97s2bNxzjnnAACCrZ8AahSS0LoCSRYtrXJU1boP6/edWt2e6tZ9GPGDlPn+V6uDujBt3+6gn3z/q8vJgecTDCvGvvjw0eB2EpN0MuEaYvPVGuKHYtkPGlj8Dq9u0gmvVuGgUOHVS2B0G0nYdad86BZcbIM1ufD0f/CrTJq9jiwvRnsZFMrYXvy7VRBOqkdymj8+/jYI9qaGXEkRCeG1rCu1jB5c9fAa6kp9X+nB1QivAOSuHfj0009RWVmJW2+9FXKR3aZD5De+wmlQuOaaa9DQ0ABJ6YXcscl4XBKprbGSAGA+QOkh1nwc8dJ92G7gJT+uTHsol/VVcquTIi/deZP/Lmm0+LqPZJmbEOs4OmumGGLJT7kMr1atsJm0vKpJF+zc5LLl1Wr/3crkMryaf/c60rAf++FFvsKrl0Cu/20sLvamVY/n1w2cz4S91pN0jiAltZ7qwdXc8mpuYbVrdTWH1JRW17hgVweqw1sBaOc6o0eP9rbPRCWMZ1g0KFRVVeEnP/mJdhCOfQ2hfGssc2qNNTi0xmbE4/06nupRbUYWhumkQ+8+bFeHXiZlWerV/YzmbC3iEJuT8JrBfhDZykfLq/nzgd2G7WXb8lpMXYaB3HcZ1i9quN0mo++Ll2OjHQ/bShhp2C24phNebbcnPHUZdrvX1arVFQAgVBw5thF9fX2YPXs2zj77bG/7TFTieHZFg8bMmTNx/vnnAwBE3wYIEU5YbrTGRlX7g008xLoO8OSFonobBMptWx7mS3QdnEkvY7s8vm42o/WaTwhcnnc+Q6xvIxA77QeDLGUq36+dbMOrp234FF693F/qtYzjzngYTdjrttwU0f2unvg1poIfAxWmsz9Oh0On+2D11fsU13EyrFpdE+qIut/rGghbt7rq/umc4fj8889RVVWFW265hV2HadDgK50GlauuugqHHHIIgAhE36cprYmSPnKg6nDFVF/H7cBlNf+rVXVOJxFepwfw3O04y7e8KrxdkXeT7UHW51bTnIfYDOaoJfIrvHp6ffsSivrnpM6G5/CaD35NgQP4FNDyNOoxfGhp9zI/eDotnQ6vK8fjaMp+Zb4dndN9sJKq9eYK9tgHYTmqQlKdW10DYTV+Ud2mTLQRTzzxBADg//yf/4NRo0a57jfRQMEAS4NKeXk57rzzTlRWVgJqM9D3d/vC8YNQcpCVFNF/hdbuCqzd/a82PB98MwixwjyKMWDdkmDuwuWRLyHW5uQmo27KWcp5iCVKR6HCq8vFIdv3ZvJ72Wu55F0ZjOG1yAZr0nYpy/1Nd/5XLxclLV5TQpYSj59OvXvy8Lox986y6qklR1UjvALadDrJAmHVCK92At3dGFr+dwghcPbZZ+Pkk0/2Ye+JSgcDLA0648ePx0033QQAEOo2IPxtyoALBovWWMnqXlgfGthSDsR2zAf95MGk0rmabXcylMsQa3VSm6suTxm0euYkxLL1lQok45bXdHs4+DT386AIr8nPsYjudzU2l21vn3TDa4Ysj5eWx5jE7tJee0elQ291daIHV3M5WUncFz242oXXYI+CQHcM3z2yHa2trZg0aRKuu+667J8AUYlhgKVBadGiRTjzzDMBAKq6AVKs2z7EAratsYll4FuQ1X5waMXNdZfi5PujhGp7UpvQpdjLPb2W20vjoyiXgy6BLbFUBPI1XU6G20lohXV673othwEaXv34nM7j/a6ut4dk02XYy+0wuei15DXkJvFyH6xR1kNwNbe6WvHS6hrsUSDFBC74/lB8/PHHqKiowJ133ony8nLP+0o0UEiiEH31iIpAX18frrnmGmzbtg3AEATleZBU2XmONwByTIUUVSBcRjp0vcqrqIBif5CUFBWIuRxEhXCsAwCEah8+4wWcD+j6ug4hVtsVD1MLaQUdtqX21+XEU3ez7K4m+Do6MVthyatiCq8O9RhBx8s9jgMpvPp1v6tX2b4e8nm/q+u+ePjbetgPEXCpJxBwfd6iLOBcBwBRXua4XA2516GGZMfgKkVVKJVBx/MOOapq9cQEVLEXCj4DACxfvhynnHKK6z4QDURsgaVBq7y8HHfffTfq6uoAdEBRNwKKCjmqaOHRTrxlVHILWU4tqC7h1eDDSVv296pK1j9bbcdt0A6P18t8Gek0S762xHIUYvKimF4nXsKrG4/liuY6uh/hNZ3bOLLdHy88XIjL+eet1/lfvdTjRT4udqgq5IjzBWhJcW51lSKqMYWfHblPgRxR4uG1HYHQZgDAP/7jPzK80qBWREdLovxraGjAz3/+cwQCAQjshyp9pYVTVTgHWT3Eqqq3IGvxmOepeLKZ7kAI7eTQrykT9P2x3JT37oK+7IPXqS8y5Pv8sMUUTqj45HPQJjd+h9dMby0wy/V8zX6F1xLkywUEu/9x8pgNVlw/yz1eFNDLufVccuP0clVN09/ZPGdJifdWsrvtJqpqXw5/d7lP0b5ieq+kPgwbuQ2RSATz58/HFVdc4empEA1UPKOiQe+73/0ufvzjHwMAFHkbFPlbU0B1CLJ6C2sWrbFeBn4w5PjENO163OpKN8QmnQx4mq4nX9OD+KWY9oWKRyHCq1239nTDq9VJfAZBrmCtsH7e7+q3Yrr1IJP/j5fPby/h1Y9teeE0joU5uNrtQrzV1elii2QxkJOZObga4RUKDpt2AI2NjRg/fjxuu+02BALu3ZeJBjKeTREBOOuss3DeeecBAKKhTVDlNm2BKcj61hqbTZD1oyU13fVVkdHJrrbcwzyALlyDbCmG2GLaHyqsYnotZPrZkjwSulsZG77c+56OYg6vfsrxwHcpsuky7HXu8+TtZcut1dVp8+bg6tbq6vC/SA6uACCgYvZJfdi0aRNqa2txzz33oKamxnF/iAaDIjpyEhXWtddei2OPPRaQVERCn0GVuvsXmlpjYXW/irk1VlUzHo047dbYTFst8tClOIXbvmYTdH3uUux792ErxRRcqORl1HXYfGHKZX1PXYfdyvjRldgvfoRXP+93HSjy3eqa4d/fGGTRh1ZXr8HVS6urmYBALLgF7733HkKhEFasWIFx48Y57g/RYMEzKKK4YDCIO+64A9OnTwekGCKhTyEQ7i9gbmlVLOaCNZcR9gc0o5wNz62xXkf9dSJL+QtSWZ7s5XNgp7xNpcMQSz4omqmfimUwJide73ctmr9pfkJ/1l24cz3uQTKn44GXlnzF+UKz22wExlytWXQXlvoUSBatrjol8BWUwB5IkoTbb78dM2bMcNwnosGEZ09EJhUVFVixYgXGjx8PyH2IhDZAIJpa0AipNhXpLbJO98P4cbKX7UmD3j042y66bsz7WcgWizROBiVZyk8wYIgdvHz632fcY8C8/Wx6HfgUXnI/Gq5PXYYBtrya5Xkeb9sLvE4j/3vcvuRhTAtJEY7b8jJIk9SnaBfDbS5CK2I3YsEdAIAbbrgBCxcudNwnosGGZ05ESerq6nDfffdh+PDhEIHueIiNpRaMH+hsW2NN5Yo6xOoybSFVRfpX73Nx8pejbr8MsZQTPv/P0w6xVtu3aylyvMCVVI9rgLAZuTXXc8EyvOZGuscfP455NiP7O3Lo5qvzElyN8GpXJh5c7erSW13tgisAKGIPYpV/BwBcfPHFWLp0qeN+EQ1GPGsisjBq1Cjcd999GDJkCESgA9GyDYCitcQKWYYIxt86pi7DjkHWqTXWy1VjNz4MlmTI18lZcmAupvvjkuQtxDLIDg6F/j+nsf20wmuGGF5d+NGN2I8LfMlTpeW727AVt+Onx+Dq2FpqDq4Ztrqag6s5vIqy/tGEpagCVd0HtfrvEELg3HPPxVVXXeW470SDVRF8+hAVp0MOOQT3338/ampqoAbbEanYCMSi2gEq+SQm4d5Xh0r1ICtJEMFA6rJiCbL5HJzE43YKNs1GHO+LJV/k8P/ry+BjpjoyDq9ptMKWTHjlgE39SiG4AjnvLizKAgnB1TG82nUXliRIUQVSVIEiN0Kp2QxFUbBkyRLceOONeR37gaiUFMGnEFHxmjJlCu677z5UVlZCDbYhUvk5hBrTRjC06cYkCecrta709dwGgnI6ocpna6zsYb5WL7Ld5zwETIZYKnkeX1v5OHHOeXj1YiBMk+MTTxcJiyW8OpA8tLoi4PI89MEanbalCOfgGnXuLizFVEhRBVBVKFITRN0WKIqCU089Ff/7f/9vyMXwtyYqUnx3ELmYNm0a7r33XlRUVEANtiJS9TmEiMUHQLLpEqyHS9Um6OrlnJbp7A7G+omX3VD/fh78PHRvdTwZ9do9ONcH7FIKhqW0r1QUfLnA4kcdrlOp5Gvk8wH0HsrTaMRZy2VPGQ8Xhl1H8NfrcJqvWD9e2QXTmKp9OQRXxFSIgOQYXvVtKcEmiPrNiEajWLhwIZYtW4ZAIGC5HhFpBtCnO1HuHHnkkVixYoURYvtqP9dGJ9aH47c6kOkHSH26m0yCrJnbgdnDnHVZcwmykuRDa2yu760qpZPaUtpX8iZHQcTv8OraGpfpZ43pvV3o2wKKZqoccuchuDqGV3PPKLu63OZ8jQdXuzr0rsDGfPAWx0Kjjvi2YsFvodT2h9fly5cjGAw67gcRMcASeXbUUUfh/vvvR3V1NdSyDvQN3QSBSH9XX7sgq3MLqsnLJYu5CL10jUrnxDLTeWCzaY31Kt0Qm879fxkOmOTLPYbpYogdeHwOsZ7Dq9Nrya8w5/egT9m85+z+zunO81rooO2XQnx+ZcvquJn0OvLc6uoUXJOOm8LUAuoWXAEALssTgmt8W9GKRig1Wrfh0047DXfccQfKysqcnwsRAWCAJUrLjBkzsHLlStTV1UENdiE89AsIKdJ/4HILsubWWEmyPqFLDrFW3ILsQGqNzaVSCYccoXjgyXeX0AzCa9qtsBmE17y3wrLVtXTYvDZE/H+YVqurFafjZCC+DZtgasxEEFOBmP18rlbBFQCi5fsQrd4CVVVx5plnYtmyZWx5JUqDJAreh4eo9OzcuRP/63/9LzQ3N0OKVaC8fRpkpaK/QHL3YRvaYBMOJ7JuAzkJASiK884Kl3laVeF8Mu26DzbTAxmruzxH83Zs91H1cDKdg5aalGJF8HFZKvfCkTsfLkp4an3NouXV9SKUHkyzaHl130aWoVN//lmNZlwEwdePi1jZ/r+93JvpWofL88jyHmpjhH+nY0byLAB227AN0dpyu+AqgnJ8ar2kll0IRCu/RqxqNwDg/PPPx3XXXcfRhonSxEv6RBmYMGECfv3rX2PUqFEQwTDCQzdCCXb2FzCNJOzpCrETr4M9FSnJrqU5k3qcpNstMKFyjyOzFkPrDVtiB4Zi+T/6cVEmy5PvnF6cGijh1U0xXNiyue/T+/oebpFxYx7F326548jCan8vKrtyimo/LQ4AxBSb8KoiUr3VCK8/+MEPGF6JMlQkR1Ci0jNmzBg8/PDDOOywwwA5ir6hX0AJtfQXMHVfkhQ1syBrnirHbvkgGmrfU7fkHIdMSZYKH2Ttwg+7GpPPHMOlSyuVIde3M9gxvxcyDUbFFC7sQqr+eCFDrNdeNrbdeT3+f7wEU7vZAfTH7Y6ZenC1ayE2h1srMUX7suh1JKCgr2YTlIpvIcsybrrpJlxxxRUMr0QZ4pkOURaGDx+OX/3qV5g3bx4gqeir24xoxf7+ArKcEEBTgmzyXK6WA1ZIiQdmq3tk3a4q+3Fl244k5/2+skKHWKAIWmOTg6r5dwbZ4ubj/8ZTt3a3YJPJZ0O+L5zlYZC21HqKPFwItfAtr17HW7ALj16PTdn0REpenhxQk4Np8v89uVU2eX1zcBUi5TkKtRfjj22BWt6G8vJy3H333TjnnHOc95mIHPEeWCIfxGIx3HfffXj55ZcBAMGuBpR1HwxJkuMTolsc4CUJQpa0ZXYnAFI8vMaUxMfMP6tq4n2wyQdfISDM27cKXsVwH6zLPbCOdTvxfGU/sxPBorkv1u6EvdAnuJQoBxcWsr4PFkjv3ki78JrFvYueWqJyfL9v0g55L5tP+vOze1/7+X+2ot8Dazv4UdK9pcmfz+Z7T+3mN0++qJuwPPGisBXXe2DL4oMl6cfF5HJuy/X69eOyw3I12I26aQdw4MAB1NXV4d/+7d8wbdo06/0iIs8YYIl8IoTAY489hkcffRQAIIfrUd4xGZIasA6wiSt7aEF1GPHTajCnpOUieR/MJzIlHGCN+p340UrluGqRf4wyxBaPHLWM5zrEGsHGqeU1y8F3su5ZkWV4i++Ee5lCkmTn93M+AqzT57E5wFp9LgcDzp/H5tZNq/UDAcdjhXAbIEp2qd+8f5bbl+2DrbmOmIJYqBmB0bvR29uLMWPG4Be/+AXGjRvnvH9E5AkDLJHPXnvtNaxYsQKRSARSrBLlrVMQiIScV8okwOr0Vlq70Yjjy1MCrE6W4vUr9idvhQ6wQO5DrA8hr6iDLENsYeW4S3deWmHdRqAt9gDrqQ6H5fr0Z4Va7kU2/2NVQHIIgEIISE7/QyGAYND5s9x1fYeAqgrX0YM9BVi3/Uu3S3LSMiEBsao9iNZqgzXNmTMHd9xxB4YMGeJcLxF5xgBLlAObN2/Gv/zLv6CxsRFQA6hoORSB3trUe151avweG8lmJF0l3k3Y7uCvzy1rQ7gFUEALsID1/jHAela0IZYBtvByGGKLogVWK+hQfx6m08m2FdbpIl4hl+tl3P5GTs9fqPbT4MQ/t+wCrP75ahtg9f13usihqlrAdVzf7hgXX24XYOPrC5vlei+ojJbHx68A7AOyFO9OrAaASN12KJXNAIDzzjsP1157Led4JfIZR/kgyoGpU6fiN7/5DaZPnw7ICsLDtyBaewBCqNZhUw+2QmhhNTkE6aMN2w2YET+psAtxkl0wTt6GVol7mExZ13kgJ09T6RR71z2PCj64ExWvHF1EyPVrzreRUgs1GnG2smmR82O51zKO69v87V0GURKifx5xy9eB+XjhFl6tlpvXt7y4a9o/q/BoGu3fan1JiY9BIYRl+ExYnvw+EgJSTLFfDi24SvEBnNRgH8Yc3wKlshmBQAA33XQTbrjhBoZXohxgCyxRDvX19eH+++/Hq6++CgAI9NajvHECJCl+QDO3yOqtsGbm4Km3wpqZQ6GqQphOEJNPNtJqhU3eB62CgX0fbA7CRVG1xrIFtjj43AqbdnhNs4XSMrTkqBW26FpgrT5T8rncqky6LbDm933yhcbkzyc5cZqy5M/UlNbXlNF9LQKq+XPbHOTs7i+12zcgsfXVPDK//lBZf/2SxX2qnpebWlwTlpu2LyUN4BSrakPZ+H3o6upCfX097rzzTsyaNSv1ORCRLxhgiXJMCIEXX3wRDz30EKLRKKRoOcobJyEQreo/mZBMIdXppMalBRaKknrSkXxC4hSqrAKsvv1CB1gguxBbgACrVVskH7EMsMXDpxCbUctrGgHPNlBm25vCZn1fRiL2K8DafZbka7ldGae/kVN4BUwjCNv01Am49ORxm/c3OcAmf14H+wOi9fqy4/7BPLqwxejEIiBbBk8gHj4lyX55QPa2PCm4CghE675BtFabPu+II47AnXfeiZEjR1o/ByLyBQMsUZ58+eWXuP3223HgwAFASAg1j0dZ9whtYcqIwDZvS7cQaOrulUySJPcAK5zvpfUUAm3KFDzAAoM7xDLAFhcfQmzGXYc9hDzHMJmjAKutWuCRiPWLdbla7sYp4HptfbV7rwecRwCWArLjZ2hWU+xkOwCYy+jEoixodPW15Ba+Hf7udsFYlaPoG74danknAOD73/8+rrnmGnYZJsoDBliiPGpvb8fdd9+NdevWAQCCXcMQahkPScQP7saIwKr9YEpAxiFWWzeLAOtl/VLuRgwM3K7EDLDFJcsAm9V9r9kGWCBn0+kUPMAWM7cBnuSA8/s80wGe4OH/4jXcWm5b+DM6sZdW7XTFFMu6YxVtqJrchNbWVlRWVuLWW2/FSSedlPl2iCgtDLBEeaaqKlatWoX/+I//gKqqkKIhlDdNQiBSrRVwG9Qii1ZYbQeEdrJidTLjpQXWbl19/WLuRgwwxJqZ/48MuPlTAl2IswqwWgVpr5d1F2Kvf9dSDbFOFzUzHZ1Yf9/bDcTnMjqx476Z2QVYff9dRze2WK5/pso2o/u71a0fS+yWxwdnMt97K6AiUvcNYrUHAACTJk3Cz372M4wfP966DiLKCQZYogL57LPPcNddd8W7FANlbaNR1jEKkkBiiLMa1ENxnvLGU4AF7O+ZynZ9p27ERj02gakYAqxRmb+hruAhlgHWX5Kc/t/Nx0GccjmAU04CbC7DK1C8AVYVrvOvehugymGAp2wGdwIs7l9NGksh0+l1AO3/7rbvbsuT/z7m/bMbndhp6h1VdV6uh1fTcjXYizHHh7Ft2zYA2hQ5P/zhD1FeXp66PhHlFAMsUQF1dnbigQcewOuvvw4AkMM1KG+cADlWllrYfI+OeTRiiwO/5wBr1JEUZLJd360VNqE+iwBQTCEW8C3cFTzAajuhfbdrgSfv3O45tCrr6+bTCGIZdK31tRtxsYRXr/X5wfx+d2jdTDu8pjsyMeB8scrc+mr1GWXRpdz8GesYXoHEcGz12WxeP5PRia3ujzWXMwdU1eIiq3l50iBNACCCMmLVjZBG7UdfXx/q6+vxk5/8BPPnz0/dFyLKCwZYogITQmD16tX45S9/id7eXkANINQ8BsGuYZCQdGJizBXrPN1N2gEWSDwZz3b9dAKsUa9qLmS//eSy6WzDWD/Djz0fAl7RhFi3LoXkzq1Vy66cb5v3GMIyvC/Ut1bYYguvXurMhsX0NGktT5bOyMWWyz0M7mS1X/rqpoBo9dnqOcBmOsCS2+jEAdP6TtPvqDbHJn25udU1Tg1EEBn5NZSKDgDA0UcfjZ/85CcYMWKE9b4QUV4wwBIViT179uDnP/85vvjiCwBAoGcIQk3jIStJrbGqQ8CMB9yMAqxZtuu7hDSG2CL/2GWI9catFTtHwbW/+tzOi+pLgC3G8Oq17nTZtF56Xp6JbAYoAtIa0Cuj8ApkP2q114G97D5X3ZbrzK2uEIjVtCA0oRldXV0IhUK46qqrcP7550P28pyJKKcYYImKSCwWwzPPPINHHnkE0WgUUAIItYxFsGtof2usU4CN8xTenEJKtuvrZWyr9xBOizXAAgyxpMlxQHXffO5H5M16Oh2XMjkfddhNNvem6sud3stelmezfbvBlbId3Elf7Da1jtvowU6vAVW1vj82eX275fr6TvQ67FiM+K8GoogM3wWlSmt1nTZtGn7yk5/g4IMPdt4WEeUNAyxREfrqq69wzz33YPPmzQCAQPcQhJrjrbH5CLBaJdmt73U0YqsTEC8BVi/ngCHWBwyy9oo9wGqFnJe71JH1fbC5DrBAbkKs2/2ryWVysW237VqNvpvOwE5AVlPrQBWQrAZAMu+D3fr6Z7fT6MSqCtjNqeo2grDb38G4F7b/OQoIxKpbUD6pBZ2dnSgrK8Nll12GCy+8kHO7EhUZBliiIhWLxfD000/jkUceQSwW0+6NbRmNYOdwSKpwD7H6xOt2J0jF0I3YHEDNJyL648XcCgtkHe5KIsACDLF2GGCzDrDetlGAVth072P1Y7teB33SWQ1eZObUsglo88ZaLncJl+apdZwCtFUdyZ/ZycuT5zpPDo7J6ye/vkTSsdHuAqk5AEsS1GAYfcN3Q63sBAAcdthhWLZsGSZNmpS6PhEVHAMsUZHbsWMHVqxYYbTGyuFqlDeOgdxX4bieEWB1yfdiZRNgvdaR7pywySGWrbDFgyE2VYEDrLYLue1GnOv7YL1tI8+tsJncy5rp9tzu23TaH31QPytO86Lqy7OdWifoMrqw+X9v9Tlt7j6cHFx1eoC1+5y3uvDpttxUTgRkROsOQDqoCZFIBKFQCJdeeilbXYmKHAMsUQlQFAUvvPACfvvb32ojFQsJZa0jUNZ6ECRhMz9fcoAFEk+aijHA6mQ5f62wAEOsVwyxiQZBgAUGSSusvo1s7mf1Szrh1o7TtDtAYuur1fvaJbwC8QDr9PkaCDh/PgcC9sFVXy5JznXIcn8ddlP0WARXAFDKu9H3nW8gQmEAwOzZs3HTTTdh7Nix9tsjoqLAAEtUQr799ls8+OCDeOeddwAAUjSEUONoBHuGJJQTdtMJJBTyEEby3Y043X0wtlPaXYm1Kkrko5ghtt9ACLAAW2FLjdcA69Q6K8nO72WXqXWs5oa13I4Tc7i0W+7G6XnqkrYh5Bgiw/ZDqW+BEAJ1dXW49tprsXjxYm8jYxNRwTHAEpWgd955BytXrkRjYyMAINBdi1DjaMixcgAeAyzgPhKx0yiYev25aoVN3hfHbRS4FRYYPCGWAbZfEQSmkrgP1q2Ml20A2bXC6q9bt/mPM/mfelnXae7ldLfvZXAnJ1mOTAwkzg1rpn/Wehqd2Gk54DyAlKK4LwcStiMgEBvSjIpDOtHRoY0wvHjxYlx77bWor6+3r4uIig4DLFGJ6unpwSOPPII//vGPUBQl3q14JMpavwOoXue98xBgdZkOBsVW2DSqKJGPY4ZYTSkM4qQVdF6ebYAFrAOqeb18dCMGMpubN/n17PX/6rael3rTmTfYblRgLyMmG9vw54KH1f/K/BlrGWDjy4UQrssBQLK6BzUeTIUQ7stNU/Ao5d2IjNwDtbwXADBp0iTceOONmDlzpvVzJKKixgBLVOJ27tyJX/3qV/jwww8BAFKsDKGmBsidQyC55Qwv98E6nRzlK8Dq++K4Hfc6GGJ9xBA7aAIskEErrFX5QrTCWr1OMwma6dRp995wKuPWMqyXcRrcKd17Y9320a5IUutr8ueqOTjGC6SUSwmwQqQuN5cxBVOjjDnAWi2XZaiBKKLD9yFW2woAqKmpwRVXXIFzzjmHgzQRlTAGWKIBQAiBd999Fw899BD2798PAJB7q1D27SgEwlUOK6YZYHXJg4wMlFZYgCE2HYM9xA6ULsSAv92I7crmuxU2kyBpVcapnJft6WW81GG3PT28ug0y5cTn1le7z1MjnFoE14TlTmX0cGkRTK3KJC8XkorYsCYEx3Sgt7cXkiThjDPOwFVXXcXuwkQDAAMs0QDS19eHp59+Gk888QT6+voAAIGOIShrGgU5GkpdIdMAq9NPqNgKm7SRQRRigcEZZIsgvAJFFGCBxGlRnMpkvR0fBtpxC5Rey/ghk0CdLI+tr26foZ4Crk1wzbYOAQFlSCtqp4XR3NwMAJg+fTquu+46TJs2zXG/iah0MMASDUDffvst/vM//xOvvvqqdnAXEoKtw1DWPBKSauo25XUk4mxHNM5XgAUGTCusVk0JfTwPthA7yAIs4LEVNtsRiz1tx2W50+BzfvGyDa/7kW7rrBWn7ej74TZwkuwwKJK+f04DJ3n8mziG4CzqUKo6ERmxH6JcmxZn9OjRuPrqq3HiiSdydGGiAYYBlmgA27ZtGx5++GF88MEH2gOKjLLm7yDYNkybP1ao/aHQ7gDvx4jGQGm1wgIMsZkYTCG2VO5/7V/BeXm+AqxeLpvtAO4j8Xopk+7fMJ26vdSfTsBNljxqsd0gezqbUYMTPv+9DDLltB27QabMZbyMau9WR1IZpbwH0eEHoFZ3AQBqa2vxgx/8AOeeey5CIYueR0RU8hhgiQaB9evX4//+3/+LHTt2AACkWBDB5pEIttZDSv4ESD55LLUACwyorsRaNSX0MT1YQmwBA2za4VVbyb2MH/fB+hBgPW0LsB5Uzmm51zKZrJNOvekE6ExCpdW+WAyqlFgmKTRavY+Tg2XyGAhOIyTr0wh5Gc3ebTvxMmoojOjwA1BqtClxgsEgli5diksuuQRDhiTOjU5EAwsDLNEgoSgKVq9ejUcffRQHDhwAAEiRMpQ1j0SgbQgkJJ1Y6Cc8fgVYoKhCbF5aYYHBdz8sMDhCbAECbEbBtX9l9zKl3Apr9x5Jt0y+6stkBGmnUOm0L+bPcsttmFpfne7BdRu8zxw8rcrYjaJsV4/NcjUUQ3TEt1Dr2o3pchYtWoTLLrsMo0ePtt5/IhpQGGCJBplIJIKXXnoJjz/+OFpaWgAAUl8IZY0jEeisTQ2yusHYCgswxGZjIAfZPAfYrMKrVoF7mSIKsJ62BbiPzJtOGcDbKL/pjATsNIq7m3RGU7YTkN0/L+WA+3s1EHAfdd6pjNUoynaB3C64BqOIDW+CGNGhzX0OYOHChbjiiiswceJE5/0nogGFAZZokAqHw3j++eexatUqtLe3AwCkcDnKmocj0GHRIpuHAAsM0BA7GLsS6wZqiM1jgM06vPZX5LzcjwAL5LcVtthkO9WNVz5dkNDqchncSW+hzWbUZn2QKKc6bMqoZRFEhzdBGtGFWCwGAJg7dy6uvPJKTJ061XmfiGhAYoAlGuS6u7vx3HPP4ZlnnkFXlzYIhtQX0oJse11/kB2A3YiN7bnWUxytsFo1JfiRXWoh1uvJep7kLcAC/s0Hm4dWWP29W1JB14/Bn4Ds/pfpDO4EOA/wl8MyaqgP0eFNwLAuo8V11qxZuOyyyzBz5kzruohoUGCAJSIAQGdnJ/7rv/4Lzz77LDo6tEExtHtk40FW8XBS5UOABRhi3aspwY/tUgqxbl03zWXyoCQCrFUYzVGItXq/2u1XNiHXy7pp15/JwFPJnP6P+mBJXrdlNWhfwrYs9idXZeLl1PIwosOboNZ1Gn/fuXPn4pJLLsGRRx6Zug4RDToMsESUoKenBy+88AKeeeYZtLa2AgCkaBDBlmEIttRBUh3mAQSKrxUWYIgtJqUQZJMDgtU+D9IAC1iENbsQmoMAa/c+tQqQyWW9hEyv65jLpR1e0xn8KZnd/9BuWh2nzwlz66vTAE95KqNUhhEb3gSlttN47LjjjsM//dM/Ydq0adb1EtGgxABLRJbC4TD+/Oc/46mnnkJTU5P2oCIj2FqPYPNQyLEy6xUHcisswBDrh2IPsW4hwalMDvgWYLXK3Mt4bYV1C5+eg523EOv2HtX3y6mcl0BqVzadlt+0+TUqsdVgSZluT5LcP1/dRjh2qUtAQKnpQmx4M9Sq3nhRCSeccAL+6Z/+CZMnT3bfTyIadBhgichRX18f/vu//xtPP/00vv76a+1BAQTah6CsaRjkvorEFfIdYLXCHrZZRK2wgO8hbtCH2WwHmTGXKUK+hFivz81rK6yH4OlXK6xfvLTmmstmEoYzkk6AzbZru9e5b93KeSljQ0gqYnXtiA1rgSiPANDmcT3llFNw8cUXY8KECRnVS0SDAwMsEXmiqirWrVuHp556Chs2bDAel7uqtSDbXaUN+OQ1kHgNsdrG3Qp63CZDbFHyekLupZxfZYpMMQVYzy2wWmGP23SoS3/f5jHoeuHrfbfF8v/1MphUFmVEIIbo0FbEhrYCQW1gppqaGpxzzjlYunQpRo4c6bb3REQMsESUvk2bNuGZZ57BW2+9BTV+cimFyxFsqUewvQ6S4qGSdAJswnoO0zS4btNbYGSILRAv95p6vR/Vz7qKQDHMA2sZyHLZCpv8fi2iAOvWvdi38JpOK6fb4E56mUznqk2enzVgMR5Ccpn49tTyMKJDWxE4qAeRiNbiOmrUKFxwwQVYsmQJqqqq7PediCgJAywRZWzv3r149tln8Ze//AXhcFh7UJERbB2CYEs95EjIfmWPQcv2Iyr55DbfrbAAQ2wueL3P1Es5P+sqsIwDrN+trinreaw/3RBr9z4tghCbzb22KZyColOZlA16eA8AiaHTy3y15jJe6jKVEZKAUt+N2NBW4/5WAJg6dSouuugiLFiwAMFg0H4fiIhsMMASUdY6Ozvxyiuv4Pnnn8eePXuMx+XOKpS11EPurO6fT9Ys01bYlHpUvbC3HWaILX7m6UCyLednXQWSUYDN57yvrvuSRldit/dnEYRYJxmFVz9HJrb7LEnnYoZFIPW6TbUsitjQdsSGtRvdhAOBAE444QQsXboUM2bMKK25e4mo6DDAEpFvVFXFhx9+iP/6r//C2rVr++8FiwS17sWtQyAppivu2bbCJm5cL+y9rB/bNeosntGJ+6vjx/tAkVaAzdV0ObZ1+Rxi/dymE1X1PQy7/c2EEPEBsHwaKRjwb3Ay8wWcNAdEExBQq3sRG9YGDOuFomjBdcSIETj77LNx5plnYsSIEe77QETkAQMsEeXE3r178cILL+Avf/kLOjvj8/oJINBRg2BrHeSuKkhp5LWSCLFG3Vl8rOZgihkG2dLnOcD6ONIw4DHE+hFg9fdZWveOZhA+ze/7HLTkus1Hm/eBnQDt88jqflUg688bEYwhVt+B2NB2iPKo8fisWbPwve99D8cffzy7CROR7xhgiSinwuEwXn/9dbz44ovYvHmz8bgUCSLQNgTB5iGQIv0nOOnM05gi3fticxlijW1ksC5DLCUpRAsskKdW2OT3l98h1up97rZeBiMfe5miJ6t7YwFvIwAnl5Ul+y6/XuszlRMyoNR2QxnaDgwNG62tlZWVWLx4Mb73ve9h4sSJzvtGRJQFBlgiypvt27fjpZdewpo1axJaZeWuKgSbh0DuqIYktJMot5YMW+mMUpyPAJuwvTTqYYilJEXdCgukPyKx3fvKjwDr9N72uk6a4dXLvLKeeBnYyWs5c3g1f6Z4HSjKVE4NRRAb3oFYfQdQ1j/U/BFHHIEzzjgDJ510EkcTJqK8YIAlorzr6+vDO++8g5deegkff/xx/4KYjEBbLYKttZB6yo2Bn7yM+pkgnXljiznEArwvlgwDIsBqFbr3jkg3xHp8HxvldXka7TijrsNe75H1MppwhuWErECp60JsaAfUmrDx+NChQ7F48WIsWbIEEyZMcN5PIiKfMcASUUHt3bsXf/nLX/DKK6+gqanJeFzqK0OgtRaB1lrIkbL0K/ZyQpv88ZfPMMvWWEqD712IgbTusfQ9xHrbqH91paMAAzt5KZcvQlKh1PZAqe+EMqQbkLX9k2UZ8+bNwxlnnIFjjz2W97YSUcEwwBJRUYjFYvjoo4+wZs0avPPOO/3zygKQuyu0MNtWA0mxGYzESiYhNp11kef7Y/PUGquHJYbcwsr53K9A4VphvSpEqPNyf2yG98bqkj83vPx9jRGMfSpnLquNIhyGUt+BWF0XEOz/rJkwYQIWLVqExYsXY+TIkZ7qJSLKJQZYIio6PT09eOedd7BmzRp89NFHUI3RhQG5owqBtloEOqohqR4HYnFTyMGeiizEJocmhtj8yzi4JlbirVyxt8JqG/a3PjtO+53h6MXZDuzkdQTjdAKxXlZAAJVRxOo7odR3QoRiRpkRI0bg1FNPxWmnnYZDDz20aFqHiYgABlgiKnJNTU14/fXXsWbNGmzdurV/gSpB7qxCoK3GOcz6FWLTrC+nc8jmsEuxXXhikM09X4Jrf2Xey/rdCguUXohN3t9MRi5OkunATl6DbjqB2BxaRUUESn0XlLouiIr+qW+qq6txwgkn4LTTTsPMmTMRsJt6h4iowBhgiahkfPXVV3jttdfw5ptvYvfu3f0LnMJsOoO7FDLEAgW/L9Z9kzxc5IKvwbW/Uu9lB3uA1fc1k5GLs5TOAHVeArFVnQICorIPSl0XlPruhPlaQ6EQ5s6di9NOOw3HHnssysvLM3kaRER5xQBLRCVHCIEdO3bgjTfewJtvvomvv/66f6EqQe6sRKA9HmaVQG5CLDBgW2O9bZaHDr/4HmBzEF6BIg6w5vdXLoJujsJrLhmhVW9pLe/vHhwKhTBv3jycdNJJmD9/Pqqrqwu4p0RE6WOAJaKS5hhmhTYAlNxehUB7NeQ+j6MZ+9wSq++nZ5mEQwbZklMqwTVhE/kOsVbbs3ov5aOF1o7+OeBn0E1noKj49kUAUGt6odR1a6MHm+ZqLS8vx/z583HiiSfimGOO4XytRFTSGGCJaMDQw+ybb76Jd999F9u3b09YLoXLEGivgtxeDbm7f55Zm8q8bbSYQmzCxvIXaBlivSuV7sKOm8tXiNW34+ecsemy2n8f7o+1lFyvXZ2mciIYgzKkB0p9L9TaHmPKGwCorKzEMcccg5NOOgnz5s1DZWVl9vtIRFQEGGCJaMDat28f3nvvPfztb3/DJ598AkXpb5FAVEago0oLtF2VqdPz5KArsVZtDu+Ltd1ofsIsg6y9gra2Ar4EV2PT6QbGXHbBLfS9scll05FOvXorKwRERVRrZa3rgajqg/k63He+8x0cd9xxOO644zBz5kyEQqH094uIqMgxwBLRoNDV1YX3338ff/vb37Bu3Tp0dXX1LxSA3F2uTdHTUQWpN6S1zhZLiAX8CbIJO5H7UDvYA21OWlu1itMrX8jwCuQmwBbTtC4eWkqzIQIKlNpeqEN6oNT2AiElYfnUqVNx3HHH4dhjj+WUN0Q0KDDAEtGgE4vFsGHDBvztb3/D+vXrE++bBbTW2c4qyB2VCHRUQoqlMZ1Emietee1WnLLxwoZYc8ArlbCbzj7nLMBqlXsvm+9uwynbL0CAFSI/IVfOcMRzBwICanUf1NoeKEN6U1pZy8vLMWvWLCO0jhw50pftEhGVCgZYIhr09u3bh/Xr12P9+vX46KOP0NPTk7Bc6gkh0FkJubMCcleF/ZyzulIKsUBBgmypzjdrtd92+1w0ARbIz6BNjtv3KcTa7U+uRyJOJsu+BlZRHoVaE9ZaWmt7gWBi3RMnTsS8efMwd+5czJgxg9PdENGgxgBLRGQSi8Xw+eefY/369Xj//fexdevWxAJ6d+POCshdlZC7yiEJjwO9OCjIvbEpO5GfIOsl2BVjkE13v0s5wOakG2q2Ida8T3bvlxLoPisgIEIxqLW9WmitSe0WXFtbizlz5mDevHk4+uij2cpKRGTCAEtE5KC5uRkfffQRPv74Y3z88cfYv39/YgE1PlVPZwXkzkrIPeWQRPwkOosWmoIG2gJNyePES6DVA6PX8JtuF+acBlKv0g2uukIH2HzMpVrE4VUt0wNrL9TaMEQolrC8rKwM06dPx6xZszBv3jxMmTIFgUAaty4QEQ0iDLBERGnYu3cvPvnkE3zyySf4+OOP0dTUlFhAlSD3hCB3ad2N5e5ybYTjLLsbFizQllCYTad7r135dOvPi0xDK5DV/a++hNh8BFcgd+E1nXtp4+9RAQFRGYVa0we1Ogy1OgxRnhhYA4EApk2bhlmzZmHWrFk44ogj2C2YiMgjBlgiogwJIfDNN98YrbOffvopWltbU8pJvWVaK21XuXYPbSQIyYeAmddQW+RBNlfde/PWJThZgUJrwi4U28BNVvwOrsnvKQ+DRQlZhVrVB7UmrA2+VBMGAon1BAIBTJkyxQisM2bM4LysREQZYoAlIvKJHmg3btxofKWMcAwA0YB2H63+1VOuDQxVKl2OizDMDhh56iLsVdFMm2MnndbR5LJe3zOSlNi6Wh7TAmu11sIqqiIJowQDQGVlJaZPn44jjjgCM2bMwPTp01FVVeVte0RE5IgBlogoh9ra2hIC7ZYtWxCLJXYnhACkcBnkHlOg7Q1BUtL/eGZX4xJWROE149bXYmh59fG0RpSZwmpVH9SqSMoIwQAwcuRIzJgxw/iaNGkSgsGgb/tBRET9GGCJiPKor68PmzdvxqZNm7B582Z8+eWXqQNDAYAKSL3lkLtDkHvKIPeEtFArPHZ9zeajfYAPCFVUsukqrPMxwBZ9cAW8jUacJgEBlClQKyNQqyLxsNqXMjowAIRCIUyePBlTp07F9OnTMWPGDBx00EG+7AcREbljgCUiKrDW1lYjzH755ZfYvHkz2tvbUwuK+P20vSFIPaZgq9iPVurbRzxDrT/8CKxWCjlYUz7Dqw8EBERFFGplBKIqArWyD2plBChLfV0GAgFMmDABhx9+OKZOnYqpU6eydZWIqMAYYImIiowQAvv27TPC7LZt27Bt2zbrUAtA6gtA6g1B7i3r/x4uS2mtzcnHfbbBNt9hVpLzu81cBVZdoYKrl9Cq39NdoIArIICgArUyClER0VpXKyMQlVFATn3dyrKM8ePH49BDD8XUqVNx+OGHY/LkyaioqCjA3hMRkR0GWCKiEiCEQGNjI7Zt24atW7ca3/fu3WuzAiD1BeMttmWQwnkKtvkKtHowTCeM2oVJtzrM6/mxvWwUeoTh5DDqNPBYnoKrgAAC0XhQjUKtjEFURqBWRC3vVwW0QZYOPfRQHHrooZg8eTIOPfRQTJw4kVPZEBGVAAZYIqIS1tXVhe3bt2Pbtm3YsWMHdu7cia+++gpdXV3WK+jBNlwGOax9l/qCkMNlQDQAyTScataHh1yEWadQ6BQuvYbJQmzTTaFDazpyGFqFpEKEIhDlUagVMYjyKERlDGpFBAjazN0rSRg9ejQmTJiAQw45xAisDQ0NkEus6zMREWkYYImIBhghBJqbm40wu3PnTvdgCwCK1B9u+0zhti8IRAOAH0cLP++ldWMOl7nuyuv3Nn0IrXkJrLpMwqBFF2MhqRDlMYhQBGp5FCIeVNWKmOWASrpAIIAxY8bg4IMPxoQJEzBhwgRMnDgR48aNY6sqEdEAwwBLRDRImIPtN998g927dxvf9+3bB0WxDwhQASkS1AJuXxBSJND/c18QiMkJrbee5DPMlppSCLCy7H6fa1IXYyGrECEFIhSLB1Xtuxr/bjWQktmQIUMwduxY42vcuHGYMGECxo0bh1Ao5MezIiKiIscAS0REiMVi2LdvX0Kw1b8aGxudwy0AqJI2mFQkAETjATcaSPie3EU5cX0eilIUQYg1nyK41SVkFaIsHk7LFC2olpl+9hBQAaCmpiYhpJq/hgwZktXzISKi0scAS0REjmKxGBobG7F//37s378f+/btw759+4yfm5qaoDoN5qMT0EJsJP4VCwBROR5wZe13RQu8UCQt7BYi2MoF2q55+3GSJGV1L7JT6LSr17yOkAREIAZRpgJlKkRQ0X4OKlDLFKAsFm9RVYCAt/2srq5GQ0MDRo0alfLV0NCAmpqa/HZ/JiKiksIAS0REWYlGo2hsbDTCbGNjY8r3lpYWbyFXpwKIBSBF48E2JkOKyYCS+F1SZG1Z/DtiSL8rs5lVq2euwqxNC2tyeMv2MC1JEoQkgIAKEVCBoPbd/LPxWFDpD6pBxXZwJDtVVVUYMWIERo4ciREjRhhf3/nOd4yQWltbm9XzISKiwY0BloiIci4Wi6G1tdUItU1NTWhra0NLSwtaW1vR1tZmfHccaMqNCkCRtS7NSd+hWDymypBUAIoEQNIeExKk+Hftd/T/LqT+wawUoa0T/z0hOFuEU2EeBUsCpPgmtd8FIAsIqf9nSAJC/64/JuvLVYiA+Xs8oMoWywKq59ZRK4FAAPX19Rg6dCjq6+uNn4cOHWoEVf17VVVVxtshIiLyggGWiIiKSiQSSQi0LS0t6OzsTPjq6OhAV1dXwu+u9+nmg4h/GclUmEJqQfYoQVVVFWpra42vmpqahO96QDWHVHbpJSKiYsIAS0REJU8Igd7eXnR2dqKnpwe9vb3Gd/3L7vFoNIpoNIpIJGJ86b+bH891QJZlGWVlZSgrK0MoFDJ+Tv49FAqhqqoKlZWVCV8VFRXGz/ryiooKI5xWV1cjGAzm9DkQERHlGgMsERGRB6qqpvUlSRIkSYIsy8aX/rv5cUmSEAgEGC6JiIg8YIAlIiIiIiKikmAz8zgRERERERFRcWGAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkMMASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkMMASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkMMASERERERFRSQgWegeIiApFCIFwOFzo3SAiSktFRQUkSSr0bhARFQQDLBENWuFwGIsXLy70bhARpWX16tWorKws9G4QERUEuxATERERERFRSWALLBERgND67wCKBEmWAEk2vkOWgHhXPUmWtZ+l+HdZgiTFrwPq5eKP6+ukPKbXaV6G/uVCX082Ldcf1y85Jj8mSRB6b0Ip/rus/dL/uARIMNYR8d8BaGX0OiT9ufTXl7zcXKfQy8gWy8zlE5aZH0veD5t1bJYDMPbBblsJ5W32I2UdWKyfso5I2I/k+ozlSF4u+sugv2z/cxTGMimlvDDWkeKP93/X6xOQJJHw8tLr1/6V/ctlaD/DeByQ48u1ZVqVxmOm71p9/b+bvwCtbu139C9D/7ZkSTUe08qqAICA1P+7LCUukyVhWi4QgGpsLyCppvVUBOLb0n/WvqvGenp9MkR8XRWBhGVa+YAkIEFFIP67/ty036Gth/7tSfE6AsY+xvcP2t8iAAEZiP8sxesDApIEGRICiH+X9GUyJEiIRgI4759HgYhosGOAJSICtPCqaieKkPq/m5OBBD249qc1SU+VCUkovjy+VmKykVPTlWRa1yo9OT4Om+UwQmvCz8nfjdUlU7XJgTh5eXKdiAdpm2V2u2u5H17W8fCnyrRO05/PPfT6HGCTlyctSw6w/Y8n1ydSlukh1Xq5MD1ufkxY1CkS1tEDbPKX7TIjVJqCrSnoGsvQv1wPfvoyLcCqRgDUl2kBMP5dkhCAvo72s/ZdSgiOWl1AQILxvX897WfLZcbvegAWpsCs/ewWYK3qk4F4KNZ+15bp5U3/QyKiQYxdiImIiIiIiKgkMMASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCZwHlogIAAICAqo2+aOEpO/GhIxJ86gmz7Oqf4n+dRIet1lmmohU2ExuavV4/2P67JpI/F2YH9fKCkiAQEJ9wrxOfL1UNo8J06KEuUgl8+47zL8q2TyetI7dcrdlTnU6Pa5/c1zHaj5Xi+Up+2gzDyxS15NSyveXk8xzvJpepjDmXTW/vGzmgUV288CK+Poi6UtfJuJz4RrL4vuvSgKQ1P7tIP474s8HictFfJmIb1uvG+jfnvlx2bQt/efk79p+aG9r83c1/pTl+M9q/CVqPQ+sBBna/LL6Min+eAD9c8kCSPhdNn6WTPX11yVDQkDSl0mQICEasXoPEhENPgywREQAInO/LfQu5IZI+p6BpFxHZNDjp+pWsGjpCZ8d0oiISgU/sYmIiIiIiKgkSEKILK7LExGVLiEEwuFwoXeDCiwcDuOcc84BALz44ouoqKgo8B5RIZXC66GiogKSxD4RRDQ4sQsxEQ1akiShsrKy0LtBRaSiooKvCTLw9UBEVHzYhZiIiIiIiIhKAgMsERERERERlQQGWCIiIiIiIioJDLBERERERERUEjgKMREREREREZUEtsASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkBAu9A0RENHj09PTg6aefxltvvYX9+/dDlmWMGzcOJ598Ms477zyUlZVlXHdLSwtWrVqFtWvX4sCBAygvL8fEiRNx+umn44wzzoAkSY7r79mzB6tWrcIHH3yAlpYWVFZW4rDDDsNZZ52FE0880XX7W7ZswR/+8Ad8+umnaGtrQ21tLaZPn46lS5di9uzZtuvt2rULn3/+ObZs2YKtW7di27Zt6OvrAwC8/fbbaf0NSg1fD4mEEPjiiy+wdu1abNy4Ebt27UJHRwcqKiowZswYHH300Vi6dClGjhyZyZ+EiGhAkIQQotA7QUREA9/+/ftx/fXXY//+/QCAiooKqKqKSCQCAJg8eTJWrlyJ2tratOvesmULbr75ZrS3twMAKisrEYlEoCgKAGDu3Lm45557bAPR2rVrsXz5coTDYQBAdXU1ent7oaoqAGDJkiW45ZZbbEPPSy+9hPvvv9/YXk1NDbq7u6EfYi+99FJcfvnllutef/31+PTTTy2XDeQAy9dD6uvh8ccfx3/8x38Yv0uShOrq6oR1q6ur8S//8i84/vjj0/67EBENBOxCTEREOReLxXDrrbdi//79GD58OB544AGsWbMGa9aswfLly1FVVYWtW7firrvuSrvurq4u3HLLLWhvb8f48ePx29/+FqtXr8aaNWtw4403IhgMYv369XjooYcs19+7dy/uuOMOhMNhzJgxA08++SReeeUVvPzyy7j00ksBAC+//DKeeuopy/U///xzI6wsWLAAzz33HF5++WX86U9/wtlnnw0AeOyxx/DXv/7Vcv1AIIAJEyZg0aJF+NGPfoQLLrgg7b9BqeHrwfr1EIvFUF1djXPOOQcrV67EmjVr8PLLL2PNmjW46667cNBBB6G7uxvLly/Hzp070/7bEBENBAywRESUc6+++ip27NgBALjrrrswZ84cAIAsyzjllFNw8803AwDWrVuHjz76KK26n376abS0tKC8vBy/+MUvMHXqVABAWVkZli5darR0/fnPf8bu3btT1n/kkUfQ29uLYcOGYcWKFRg3bhwAoKqqCpdffjnOOussAMDvf/97dHZ2pqz/7//+71AUBZMmTcKdd96J73znOwCAuro63HzzzZg7d25CuWT33XcfHn/8cfz0pz/FBRdcgEMOOSSt51+K+Hqwfj0sWLAAf/jDH3DTTTfhqKOOQnl5OQCgvLwcJ5xwAh588EGUl5cjGo3imWeeSevvQkQ0UDDAEhFRzr366qsAgFmzZuGII45IWX7KKaegoaEhoaxXq1evNuoYPXp0yvKlS5eisrISiqLgv//7vxOW9fb24q233gIAnHvuuZbdVf/xH/8RANDd3Y133nknYdnevXvx2WefAQAuvPBCBIOpQ0vo6+/fvx8bNmxIWR4IBFyf40DD14P162Hy5MmOXaZHjx6NWbNmAQA2b95sW46IaCBjgCUiopwKh8P4/PPPAQDHHHOMZRlJkjBv3jwAwAcffOC57q+//hoHDhwAAGP9ZFVVVTjyyCMt6964caMxYJLd+g0NDTj44IMt1zf/brf+jBkzUFVVZbn+YMTXQ3avh1AoBADG/bhERIMNAywREeXUrl27jJPtiRMn2pbTl7W0tKCjo8NT3Xo3VLe6J02aBAAp9w2a19fLOK3/1VdfJTyu/z506FAMHTrUct1AIIDx48dbrj8Y8fWQ+eshFosZ4d9p/4iIBjIGWCIiyqmmpibjZ6fpP0aMGGG5jpPm5ua06u7u7kZPT0/Kdmpra437DZ3WN2/PvL55363o+5a8/mDE10Pmr4dnnnkGLS0tAIAzzzwzrXWJiAYKBlgiIsopc0BwCgUVFRWW6+Sy7t7e3pTlTusn75f+u9v6+r55fV4DGV8Pmb0ePvvsMzzyyCMAgFNPPdVxbmEiooGMAZaIiIioiO3atQs//elPEY1GMXHiRGOUZiKiwYgBloiIckofsAaAMUCOlXA4bLlOLuuurKxMWe60fvJ+6b+7ra/vm9fnNZDx9ZDe62H37t248cYb0dbWhvHjx+OBBx7g64iIBjUGWCIiyinz/YCNjY225cz3ObrdQ6gbPnx4WnVXV1cnnPzr2+ns7HQMPPr65u2Z13e7R1Pft+T1ByO+Hry/Hnbv3o0bbrgBzc3NGDduHFauXMnXEBENegywRESUUwcffDBkWTvcOI26qi8bNmwYhgwZ4qlu80isTnXro8tOmDDBdn3zCLR26yePbKv/3traira2Nst1FUXB119/bbn+YMTXg7fXgx5em5qaMHbsWDz44IOegzwR0UDGAEtERDlVUVGBI444AgDw/vvvW5YRQmD9+vUAgKOPPtpz3ePGjcNBBx3kWHdvby8+h+0OMgAAE4dJREFU++wzy7pnzJhhDKijbz/Z/v37sWvXLsv1zb/bbX/jxo3GYD3pPLeBiq8H99fD7t27cf3116OpqQnjxo3Dr371K4ZXIqI4BlgiIsq5008/HQDwySefYNOmTSnL33jjDezduzehrBeSJGHx4sUAgL/+9a/Yt29fSpnnn38evb29CAQCOO200xKWVVZW4oQTTgAAvPDCC+jq6kpZf9WqVQC0+xUXLFiQsGz06NE48sgjAWhTnMRisZT1n3zySQDAqFGj8N3vftfzcxvI+Hqwfz3o4VXvNsyWVyKiRAywRESUc6effjomTZoEIQRuu+02fPTRRwAAVVXxxhtv4N577wUAzJs3L2V6kEceeQQLFy7EwoULLQPJhRdeiGHDhiEcDuOWW27Bli1bAADRaBQvvPAC/vM//xMAcNZZZ2HcuHEp619++eWorKxEc3Mzbr31VuzevRuA1lL32GOP4cUXXwQAXHLJJaitrU1Z/+qrr0YgEMC2bdtwxx13GPc3dnR04IEHHjBa4n74wx8iEAikrB+JRNDW1mZ8madWMT/e1tYGVVWd/swlg68H69fDN998Y9zzOn78eIZXIiILkhBCFHoniIho4Nu3bx9uuOEG7N+/H4DWlVRVVUQiEQDA5MmTsXLlypRQ8Mgjj+Cxxx4DoLVqNTQ0pNS9ZcsW3HzzzWhvbwegtY5FIhGjBezoo4/GPffcg1AoZLlva9euxfLly43RY2tqatDb2wtFUQAAS5YswS233AJJkizXf+mll3D//fcb5WtqatDd3Q39EHvppZfi8ssvt1z3lVdewT333GO5LJnd8y9FfD2kvh5WrFiBl19+GYA2wJTTXLaA1kpMRDTYBAu9A0RENDg0NDTgsccew9NPP4233noL+/fvRzAYxMSJE3HKKafgvPPOQ1lZWUZ1T5kyBf/v//0/rFq1Cu+99x6+/fZbVFRUYNKkSTj99NOxZMkSY+AgK/Pnz8ejjz6KVatW4YMPPkBLSwtqamowefJknH322TjxxBMdt3/mmWdi8uTJeOaZZ7Bhwwa0tbVh6NChmD59OpYuXZrSikh8PVgxt7B3d3eju7s7o+dPRDSQsQWWiIiIiIiISgLvgSUiIiIiIqKSwABLREREREREJYEBloiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsERERERERFQSGGCJiIiIiIioJDDAEhERERERUUlggCUiIiIiIqKSwABLREREREREJYEBloiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsEREVBIefPBBLFy4ENddd12hd4UKrKurC2eccQYWLlyIt99+u9C7Q0REeRQs9A4QEVFudXd3Y+vWrdi8eTO2bNmCLVu2YM+ePRBCAACeeeYZNDQ05GTbQgicf/75aGxsxMUXX4yrr746o3q2bt2KF154AQBw1VVX+biHhbVjxw6sX78eGzduxI4dO9Dc3AxFUVBbW4tDDjkE8+fPx+mnn46amppC72pRqampwYUXXojf/e53eOihhzBv3jyUl5cXereIiCgPGGCJiAa466+/Hlu3bi3Itjdv3ozGxkYAwIIFCzKu5+GHH4aiKJg3bx5mzJjh1+4V1PXXX49PP/3UcllLSwtaWlrwwQcf4IknnsCyZcswd+7c/O5gkTv//PPx7LPP4sCBA3juuedw8cUXF3qXiIgoD9iFmIhogNNbWgGt5WrWrFkYNmxYXrb9zjvvAABGjhyJww8/PKM6PvvsM3z44YcAMKBCih7sa2trsWTJEixbtgy//vWv8bvf/Q4/+9nPMH/+fABamF22bBk2bNhQyN0tOpWVlTjvvPMAAKtWrUJPT0+B94iIiPKBLbBERAPckiVLUF9fjylTpmDs2LGQJAnXX389Wlpacr5tPcAed9xxkCQpozqeeuopAEBDQwO++93v+rZvhTZ27FhccsklOOWUUxAKhRKWTZkyBSeeeCKefPJJ/OY3v0EkEsH999+Pxx9/vEB7W5wWLVqERx55BJ2dnfjLX/6C73//+4XeJSIiyjG2wBIRDXDnn38+Tj31VIwbNy7jEJmJ3bt3Y9euXQAy7z7c2NiItWvXAgAWL16c1/3PtXvvvRf/8A//kBJezS6++GJMnjwZALBz505s3749X7tXEhoaGnDkkUcCAP70pz8VeG+IiCgf2AJLREQ5oY8Oq3dbzsRrr70GVVUBACeffLKndWKxGP7617/i3XffxebNm9HW1gZFUVBfX49JkyZhzpw5OPXUUzF8+PCE9RYuXAgAOP3007Fs2TJ8/fXXeO655/DBBx+gqakJ1dXVOOyww/A//+f/xMyZM431+vr68Morr2D16tX45ptvEA6HMXr0aJx22mn4/ve/n/XgQkcddZRxD/Pu3btxyCGHZFzXzp078eKLL2LDhg3Yt28fwuEwampqUFtbi4aGBsyePRvHH388xo8fn1H9sVgMa9aswRtvvIEdO3agvb0dkiRhyJAhqK+vx+GHH445c+bguOOOQ1lZWcK6yX//nTt34vnnn8eHH36IpqYm9Pb24u677065GHLyySdjw4YN2LVrFzZv3oypU6dm9schIqKSwABLREQ5oXcfnj9/PoLBzA437733HgDtPtGDDz7Ytfy2bdtw++2345tvvklZ1tjYiMbGRrz//vvYvn07li1bZlvPm2++iX/9139FOBw2Huvr68O6devw/vvv4+abb8ZZZ52FpqYmLFu2DJs3b05Y/6uvvsJvf/tbrFu3Dvfff39WITYWixk/y3LmHadefPFFrFy5EoqiJDze3t6O9vZ2fPPNN/jggw+wfft23HbbbWnX39bWhptuuslywDD9b79161b86U9/wqpVqzB27Fjbul555RXcf//9iEQirts1D+r13nvvMcASEQ1wDLBEROS7pqYmfPnllwAy7z4ciUTwxRdfAAAOP/xw1+7DW7duxY9+9CP09vYCAGbNmoVFixbh4IMPRllZGZqbm7Fp0ybXeUO3b9+Ov/71rxg6dCiuuuoqY9sfffQRfv/73yMcDuOXv/wlZs6ciZ///OfYtm0bzj33XBx//PGor6/Hnj178Pjjj2P79u347LPPsGrVKlx22WUZ/Q0A4OOPPzZ+njhxYkZ17NixwwivQ4YMwVlnnYWZM2eivr4eiqKgubkZW7Zswbp16zLupr1y5UojvM6ePRuLFi1CQ0MDqqur0d3djV27dmHDhg1Gl3A7W7ZswWuvvYYhQ4bg+9//PmbMmIGysjLs3LkTo0aNSik/ceJEVFZWore3Fx9//DEuv/zyjPafiIhKAwMsERH57t1334UQAqFQCPPmzcuoju3btxutj1OmTHEsG4vFcPvttxvh9YYbbjBGqDU79thjceWVV+LAgQO2dW3duhWTJ0/GypUrUVtbazw+bdo0jB07FsuXL0csFsOPfvQjdHR04N5778WcOXOMcocddhiOPvpoXHLJJWhqasILL7yASy65BIFAIK3nD2jdsL/66isAWogfN25c2nUAwBtvvGG0vP7yl7807qs1W7BgAa688kq0t7enXX9fX59xYWDBggX4+c9/nhKEZ86ciXPOOQe9vb2OLclfffUVxo4di1//+tcJo2XbjWIdCARw2GGHYcOGDfj73/8OVVWzaqkmIqLixk94IiLynd59eM6cOaisrMyoDnM3YLdpf1577TXs2bMHgDbqslV4NTvooIMcl996660J4VV34oknYuTIkQCA1tZWLF26NCG86mpqavAP//APRrmdO3c6bs9KU1MTHnjgAQCAJEm45ppr0q5Dp484XVNTYxlezerq6tKuv7Oz07jYMHPmTMdW3MrKStcu1T/+8Y/TmupJLxsOh9HU1OR5PSIiKj0MsERE5Kuuri588sknADLvPgwAzc3Nxs9DhgxxLKsHZgC46KKLMt4moHVJtQt5kiQlLFu0aJFtPeZye/fuTWsfwuEwli1bZgTP5IGj0qWH7q6uLrzxxhsZ12Onrq7OGE359ddfz2pO1pEjR1peFHBifn2YXzdERDTwMMASEZGv1q5di1gshkAggOOOOy7jevr6+oyfrVpDzf7+978D0FrivAz25MRtffO+OI3Way6XTqCLRqP46U9/agwMdfzxx+PKK6/0vL6VRYsWGa2ey5cvx7XXXosnn3wSn332mdHtOhtlZWU4/fTTAQCbNm3CBRdcgHvvvRevv/562uE9k1GWzQHWPPAWERENPLwHloiIfKW3hh5xxBGor6/PuB7zPaNuo9G2tbUB6G9pzEZFRYXjcnP3WKfu0eb7MPWpgNzEYjHcdtttWL9+PQBg7ty5uOOOOzK6f9Zs9OjRWLFiBf71X/8VjY2N2LhxIzZu3AhA+ztPnToVCxcuxJlnnul6scDOddddh0gkgtWrV6OjowN//vOf8ec//xmAdmFh7ty5WLJkiWtLsltruxXzxY5MR7wmIqLSwBZYIiLyTSQSwfvvvw8gu+7DgHa/pq6joyOrukpBLBbD8uXLjamD5syZg7vvvtvomput2bNn46mnnsKdd96JJUuWGNPYKIqCL774Ag8//DAuuugiIzynq7y8HMuWLcMTTzyBK664AkcddZQR8FtaWvDqq6/i+uuvx09/+tOEwJkskwGYzANPmV83REQ08PAyJRER+ebDDz80uqRmG2DNU6a4Bdj6+nocOHCgZAfw0cOr3np91FFH4Z577slq/lgroVAIJ510Ek466SQAWsv1Rx99hNWrV2PdunXo6OjAbbfdhlWrVmH48OEZbWPcuHH4wQ9+gB/84AdQFAVbt27Fe++9hxdffBGtra14++238bvf/Q4/+tGPfHtenZ2dxs9uA3QREVFpYwssERH5Rg9gkydPRkNDQ1Z1mec8/frrrx3L6tPsNDc3u5YtNsnhddasWVixYoXv4dVKfX09TjnlFPziF7/AueeeCwDo7e3Fu+++60v9evfkyy+/HP/+7/9udM9+7bXXfKlft2vXLgBAQ0MDqqqqfK2biIiKCwMsERH5QlVV/O1vfwOgDTyUrYMOOggjRowAAHz55ZeOZRcuXGj8vGrVqqy3nS+xWAx33HGHEV5nzpyJf/u3f3O9DzcX5s6da/ys31Psp4aGBmMe20zmmrXT1tZmTKE0ffp03+olIqLixABLRES+2LhxoxF8zIEyG3qo2rVrF7q7u23LnXzyyUY4evnll/HHP/7Rsd4DBw74sn/ZiMVi+NnPfoa3334bQG7D61tvveUaSvV7lwFgzJgxadW/d+9efPjhh45l9u3bZ7SUjh49Oq36nWzatMn4+ZhjjvGtXiIiKk68B5aIaID75ptvjBFndfr8ogDw5ptvJowWXFlZiRNPPDHt7eitiKNHj85oKhQrJ510El5++WWoqooPP/wQJ5xwgmW5YDCIO++8E9deey16e3vx4IMP4u2338bixYtx8MEHo6ysDM3Nzdi8eTPefPNNTJkyBcuWLfNlHzN111134c033wSgBcYf/vCH2Ldvn+M6Q4cOxdChQ9Pe1h//+EfcddddmD17NmbPno0JEyagrq4O0WgUBw4cwGuvvWa0no8aNSrt6Y8OHDiAH//4xxg9ejSOO+44HH744TjooINQXl6O9vZ2bNq0CS+88IIxmvR5552X9nOw88EHHwDQ7u+dP3++b/USEVFxYoAlIhrgNm7ciHvuucd2+cMPP5zw+6hRo7IKsH50H9bNmTMHI0eORGNjI1avXm0bYAHg0EMPxUMPPYTbb78de/fuxSeffIJPPvnEsqx+z2whvfHGG8bPe/bswQ9/+EPXdS699FJcfvnlGW0vEolg7dq1WLt2rW2ZMWPG4J577nGcHsjJ3r178eyzz9oul2UZF110Eb73ve9lVH+yWCyG119/HYDW6p/pFEBERFQ6GGCJiChr27ZtM1oPsx192CwQCGDp0qX4zW9+g3Xr1qGtrc1xbtnDDjsMTzzxBFavXo133nkHW7duNe63HDp0KA455BAcffTROPXUU33bx1KwfPlyrF+/Hhs2bMCOHTvQ0tJidCmuq6vDoYceigULFmDRokUZTdtz5JFH4te//jU+/PBDbNq0CQcOHEBrayu6u7tRUVGB0aNH48gjj8SZZ57pW+s8AOM1AQDnn3++b/USEVHxkoQQotA7QUREpe3RRx/Fo48+iqFDh+L555/PaC5PO11dXbjwwgvR0dGBq6++GhdffLFvdVNpu+WWW7B27VrMnj0bv/zlLwu9O0RElAccxImIiLKmdx8+9thjfQ2vAFBTU2OE1qeffho9PT2+1k+ladOmTVi7di0kScJVV11V6N0hIqI8YYAlIqKsRKNRLFiwAJdeeimWLl2ak22cd955GDt2LNrb2/GHP/whJ9ug0vK73/0OALB48WIcfvjhBd4bIiLKF3YhJiKikvDll19i7dq1qKmpwQUXXFDo3aEC6urqwrPPPgshBJYuXep4XzQREQ0sDLBERERERERUEtiFmIiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsERERERERFQSGGCJiIiIiIioJDDAEhERERERUUlggCUiIiIiIqKSwABLREREREREJYEBloiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsERERERERFQSGGCJiIiIiIioJDDAEhERERERUUlggCUiIiIiIqKS8P8BIexEJ19vkaEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5gV1fnHv2fm3u10liZVFBExVixRg10jarBrVGzRaGI3tojGlvxsCdHYYkXArlFjF6yoNEWjgggqIII06VvvnXl/f8yd2Zm5p92yyy6c7/Psw7LnnfecO/femfOZ9z3vYUREMDIyMjIyMjIyMjIyMjJq5bI29gCMjIyMjIyMjIyMjIyMjHRkANbIyMjIyMjIyMjIyMioTcgArJGRkZGRkZGRkZGRkVGbkAFYIyMjIyMjIyMjIyMjozYhA7BGRkZGRkZGRkZGRkZGbUIGYI2MjIyMjIyMjIyMjIzahAzAGhkZGRkZGRkZGRkZGbUJGYA1MjIyMjIyMjIyMjIyahMyAGtkZGRkZGRkZGRkZGTUJmQA1sjIyMjIyMjIyMjIyKhNyACskZGRkZGRkZGRkZGRUZuQAVgjIyMjIyMjIyMjIyOjNiEDsEZGRkZGRkZGRkZGRkZtQgZgjYyMjIyMjIyMjIyMjNqEigKwCxYsAGMMjDGcfvrpxXC5WWrfffcNzqORkZGRSKeffnpwrViwYMHGHk6gsWPHBuMaO3bsxh6OUZHlui522WUXMMZwwQUXbOzhGLUh+deFfffdd2MPxcio1ai13suLoQkTJoAxho4dO2L58uVF999iEdixY8fi+uuvx/XXX99SXW50vfjii8FrXrNmzcYejlFG6XQakyZNwlVXXYX9998fPXv2RGlpKaqqqjBw4ECceOKJePHFF+E4Tk5+v/rqK1xwwQUYPHgwqqqq0KFDB2y//fa46qqrsHDhwmZ6NUZGRpujJk+ejNNPPx1bb701qqqqUFVVhUGDBuGcc87BtGnTmqXPBx54ADNnzkRZWRmuvvpqrWO+++47XH/99dh9993Ro0cPlJaWomfPnth5551x3nnn4dlnnxVeaxcsWIAJEybgoosuwq9+9StsvfXW6NSpE5LJJLp06YLddtsNl156Kb744oucXsfChQtx1VVXYfvtt0eHDh1QVVWFwYMH44ILLsCsWbO0/TiOg8cffxwjR45E7969UVpais6dO2PHHXfE6NGj8cMPP+Q0LpnCD4d0ft577z2hr1z8hH/a8gT773//e/A6Tj311Lx8bL311oGPfL5jtbW1mDJlCv71r3/h9NNPx9ChQ5FIJLTeM5FSqRQefPBBHHDAAcFcpnfv3jjiiCPw9NNPg4i0fRERnn76aRx++OHB57lnz5444IAD8NBDDyGdTuc0tjfeeAMnnHAC+vXrh7KyMnTr1g177bUXxowZg5qampx8TZkyBWeeeSYGDhyIiooKdO7cGbvssgtuvvlmrFy5MidfOir2uWitWrZsGZLJJBhjqKysxPr163P2cfPNNwef4fPOOy/4+0knnYRBgwZh7dq12veLnERF0Pz58wkAAaDTTjuNazN8+PDAZnPRaaedFrzm+fPnK+03x3PU0nrnnXeoc+fOwXmW/QwbNoy+/fZbLb+33347JZNJoa927drRk08+2cyvzmhzUa7XlpbSo48+Gozr0Ucf3djD2SS1YcMGOvHEE6XXLsYYXXTRReQ4TtH6rampoR49ehAAuvDCC5X26XSaRo8eTSUlJcpr7erVq7k+TjjhBK1rNWOMzjvvPEqlUspxTZgwgaqqqoS+SkpK6B//+IfSz7fffks77LCDdFxVVVU0btw4pS8dhb9bOj/vvvuu0FcufsKvpaamJu/x+36GDx+et49CtHTpUkokEgSAKioqaN26dTkd/8EHHwSvYciQIXmNQTX3kL1nPM2fP5922mknqc8DDzxQ+P0Ka9WqVbT//vtLfe288860cOFCpa/6+nrlNWrgwIH0v//9T+nLdV265JJLiDEm9NW9e3d6++23dU6Zlop5LlRqDffyI444IhjDQw89lPPxAwcODI6fPn16pG3cuHEEgCzLotmzZxdryERElEAR1L9//5ye8hjxlc/TN6PctHjxYqxatQoA0LlzZxx44IHYY4890LNnT6RSKUyfPh3jxo3DunXrMGPGDOy3336YPn06evToIfR5//334/LLLwcAJJNJnHrqqRg+fDhSqRTefPNNPPfcc1i/fj1OPfVUdOzYEYceemiLvFajTVdjx441KbqboRzHwTHHHIM333wTAFBZWYkzzjgDu+++OyzLwmeffYaHH34Yq1evxp133gkiwp133lmUvu+9914sXboUtm3jiiuukNqm02mccsopePrppwEA1dXVOOaYY7DzzjujU6dO2LBhA+bNm4dJkyZhxowZUl8VFRXYddddscsuu2DrrbdG586dwRjD4sWLMWnSJLz++usgItx3333YsGEDxo0bJ/T16quv4rTTToPjOGCM4dhjj8UhhxyCZDKJ999/H+PHj0djYyMuvfRStGvXDr/73e+4fn766Sfsu++++PHHHwEAffv2xZlnnonBgwejtrYW7777Lp588kls2LABp59+OioqKnDMMcdIX2cuuuCCC7D//vtLbYYOHSpse+GFF7T6+fe//4033ngDAHD88cejoqJCf5CtTN27d8dhhx2G//73v6itrcUzzzyDs846S/v48PX2jDPOyGsM8UyDvn37orGxEUuXLs3Z15o1a/DrX/8ac+bMAQBsu+22OPPMM9G7d298++23eOCBB7Bo0SJMmjQJRx99NN566y0kEvwpf2NjI37zm99g8uTJAIA+ffrgnHPOwVZbbYUff/wRjzzyCL7++mvMnDkTv/71rzFlyhS0b99eOLbTTjst+O536dIF55xzDrbffnusXLkSEyZMwPTp0/Hdd9/h0EMPxbRp09CnTx+hr6uvvhpjxowB4F3vzjrrLOy2227YsGEDnn/+eUycOBHLli0Lxr/jjjvmfC6b81y0BZ1xxhl4+eWXAXif81y+F5MnT8Z3330HANhuu+0wbNiwSPtvf/tbXHvttVi4cCFuuOEGPPXUU8UbeFFxWKLNMbrYGp6sGEU1fvx42n777emJJ56g+vp6rs2PP/5I2223XfDejRo1SuhvyZIlVFFRQQAokUjQxIkTs2zCT8779OlDdXV1RXs9RkatSSYC27y69957g/Pbu3dvmjdvXpbNkiVLaPDgwYHd+++/X3C/qVSK+vTpQwDo4IMPVtpfc801Qf9nnHEGrV+/Xmi7ZMkSYeR07ty5wuu0r7fffptKS0uD/qZOncq1q6mpoV69egV2Y8eOzbJ56623gihdVVUVLV26lOvr+OOPD/wccMABtGHDhiybDz/8MLg3dOnSRSsKJlNLf7fS6XTkfH344YcF+fP9bKwILBHRCy+8EIxjn3320T6upqaG2rVrF9znRZ8LlUaNGkV//etf6Y033qAVK1YQUXSemEsE9uKLLw6OO/TQQ7PmFT///HMkOnv33XcLff3zn/+MRBZXrVoVaa+rq6NDDjkksPnTn/4k9PXiiy8Gdn379s2KUjqOQ2eccUZgc+yxxwp9zZw5M4i8dujQgRux/ctf/hL4GjZsGLmuK/Sno2KeCx21Bk5obGykrl27BuPQzTwkIjrzzDOD4+644w6uzZ///GcCQLZtFyVq7csAbDOqNXwwjaJavXq11gXuyy+/DN678vJyYepU+CZy+eWXC/0dd9xxWjcSI6O2LAOwzaswmL788stCu2nTpgV2e++9d8H9hif+qpTYL7/8MoDAkSNHFty3ji688MJgfNdeey3XJjwxPe6444S+Lr/8cunkdMmSJcGkury8nJYtWyb0ddtttwW+Ro8enfsLC6mlv1uvvvpq0N+gQYMK9tcaALaxsZGqq6sJ8NLOv/vuO63j/DRIAHTEEUcUdUz5AOyyZcuC1PzKykrhZ/DLL78MPqs9evSgdDqdZZNKpSLn5KuvvhL2WVlZSQCotLSUVq5cybXbcccdg9fz6quvcm1qa2upb9++gd2XX37JtRs5cmRgc88993BtXNel3XbbLbB75ZVXuHY6Kva50FFr4YTwXFZ0DY1L98HOrFmzAt/XXHNN0cbc7Gtgw+Aq+/nLX/7C9e04Dj399NN0/PHHU//+/am8vJyqqqpom222oXPPPZe++OIL6djCT2f8i8OkSZPoxBNPpP79+wdPbsMfnFQqRW+88QZdeumltNdee1F1dTUlk0mqqqqirbfemk477TTpU+3wB1L2IztXKk2dOpXOPvtsGjRoEFVVVVFFRQVtueWWNGrUKK21APGbyYYNG+j222+nXXbZhTp27EgVFRU0ZMgQuuqqq7KeQG0uCk8WeU/+XNelLbbYIrjY/fDDD0JfkydPzuvJbzH08ccf07nnnkvbbrstdejQgUpLS6lPnz50/PHHKy/27777btZ3dOHChXTppZfSNttsQxUVFdShQwfac8896Z577tFag0ZEtH79ehozZgwdeOCB1LNnTyopKaFOnTrRrrvuStdeey0tX75cenz8u5JOp+nRRx+lAw88kHr16kW2bVO/fv2yjlu6dCldfvnltO2221JFRQV16tSJhg0bRnfccUfwkKJfv34EIOv4119/Pejzggsu0HqdF1xwQXDMa6+9pnWMjlQ3veZ6315++WU6/PDDqXv37lRaWkr9+vWj3/72t/Txxx8TUW6T7IaGBnrooYfoiCOOoN69e1NpaSl16NCBtt9+e7r00kuFN/M5c+YEka327dvT999/L+xj1apVQeTQsqyiRCM3lpYsWRKc286dOysfxPnXL8ZYwU+9jz766ADYZNFUoqYn8oyxFpuQ3X///cG5Ofvss7k2e+65Z2Ajiyb+8MMPwaS/b9++We1PPPFE4EcF6EuXLg1sBw4cmNuLiqmlAfbYY48N+vu///u/gv3pAGxNTQ0ddthhge3xxx9PDQ0NWXZfffUVXXLJJbTDDjtQp06dqKSkhHr16kVHHHEETZgwQbr2+5JLLsl5oh5eD/mf//xH6xhd5QOw//73v4Njfve730ltDzjggMCWNzd88803g/YDDzxQ6uuss84KbB9++OGs9rlz5wbtW2+9tdTXTTfdJH0f1q1bF8zP27dvL11/PX78+MDXqaeeKu1XpmKeC13pAuyDDz5Itm0TANpiiy24cF3IvOp///tfMI5+/fppBXrCD3aOPPJIqa3/YEPXt45aNcB+++23kac5vB/LsqQXoTDAvvPOO/THP/6R6yf8wdl33321AZR3cW1OgE2lUnT22WcrfR9//PFUW1sr9BO+mXz33Xc0ZMgQoa9+/fptlhHkYcOGBeeAl5YWjtIOHTpU6stxHGrfvn3wmc21gEQ+2rBhg1YRlBEjRgjHEweh119/nTp27Cj0ddBBBylT/l577TXq1q2bdEzt2rWjl156Segj/F35+eefae+99+Z+bsN65513qFOnTsI+t99+e/rhhx+EAOs4Dg0YMIAAUKdOnZSp4HV1dUF/ffv2LWpBnVwBttD3LZ1OS69rlmXRrbfeqj3JnjFjRnAuRT8lJSV0//33c49/4IEHArs999yTG1kgik7Ci/nkd2No+vTpwWvZfffdlfZHHnlkYC86jzqqr68PHhj86le/ktrW1tYGti35oC4cNeXNB9auXRtJRVR9F8NLSGbNmhVpC0dVr7zySuXY/Os+AJozZ05uLyyklgTYlStXBhE+27ZpyZIlBfsMzzl4+vnnn2mPPfYI7P74xz9mvU+pVIouvPBCsixLeu3Yfffd6aeffuL288UXXwR2/fv3V06mFy5cGHx2unbtSo2NjXm9fpHyAdhjjjkmOOa5556T2t5+++2BLS9L7LLLLgvaRSmgvp599tnAlpfF8K9//StoP//886W+ZsyYEdgOGzYsq/3ll18O2g8//HCpr+XLlwe21dXVUluZinkudKUDsH/9618Dm2222Yb7QLIY86qdd945sH3nnXeUYw8/2HnhhRektuEHR5999pnSt46KUsRJJr/E9ejRo4Py9LwCAoMHD478/7vvvsMee+wRlMfee++9cfjhh6Nfv35wHAeffvopxo4di9WrV+Omm26CZVnKLXpuv/12vP766+jRo0dQwjydTmP69OkoLS0N7Orq6lBVVYUDDjgAu+yyC/r374+ysjL89NNPmDVrFh5//HHU1NTgscceQ8eOHfHPf/4z0s+FF16IkSNH4q677sK7774LwCuG0K1bt4hd3759tc5hWKeeemqwCLqsrAynnXYafvnLX8K2bXzyySd4+OGHsX79ejzzzDNYu3YtXn/9dem+suvWrcOIESPwzTff4De/+Q0OPfRQdO7cGd9//z3uu+8+/PDDD1i4cCFGjRqFDz74IOfxtlU1NjZi3rx5wf/79euXZfPVV18Fv++yyy5Sf5ZlYaeddsL7778P13Xx9ddfY7fddivegGNqaGjAgQceiKlTpwIABg4ciBNOOAHbbrstkskkvv32W4wbNw5z587Fq6++ipEjR2LixImwLPHOWp9//jluv/12EBF+//vfY88990RpaSk++eQT3H///aipqcHEiRPx17/+FTfeeCPXx/PPP48TTjgBjuMgmUziyCOPxL777ovu3btj3bp1ePfdd/HMM89g/fr1OOqoozBx4kRlsZJTTjkFH374IXbYYQecdNJJ6N+/P9atWxfZWmP27Nk4/PDDUVtbCwDYaaedcMopp6B3795YtmwZnn76aXz00Uc44YQThOXxLcvC2WefjT//+c9YvXo1nn/+eZx88snCcT333HNYvXo1AOCss86SntvmVDHetwsvvBCPPfYYAKCkpASnnXYa9t57b1iWhenTp+Phhx/GlVdeiZEjRyrHM2XKFBx44IGora0FYwyHHHIIDj74YGyxxRaoq6vDlClTMH78eNTW1uLcc89FaWlp1v7iZ599Nt588008//zzmDJlCm644YassT/88MN47rnnAAB77LFHm9/CjQoolPjll1/mfexHH30UfG9U16xPP/00y/add97BvffeiylTpmDlypXo1KkTdthhBxx33HE47bTTkEwm8x4bAHzyySe47777AHjbwxx11FFZNrNnzw7O34477qj8Lu66667BfOWrr77CkCFDgrZC34dtttkm7+N93XvvvbjllluwaNEiAF6RrGHDhmHkyJE44YQThMV6dPX444+jsbERAHDooYeiZ8+eBY9ZpkWLFuGQQw7B119/DQD4y1/+kvV9JSIcf/zxwfyxZ8+eOPHEE7HDDjugoqICCxcuxFNPPYVPP/0U06ZNwwEHHIAZM2ZkFZ7afvvtscsuu+DTTz/FggUL8N5772G//fYTju2xxx4L3vNTTjml4M9rMZTL3GPXXXflHrexfe24446wbRuO4wTfz/BcNRdf1dXV6NevHxYuXIgVK1Zg+fLlWfNtHRXzXBRDRISLL74Yd911FwBg2LBheO2119C1a9eIXbHmVWeccQZmzpwJwCvmJPteLFy4MOCb6upqjBgxQvpa9thjj+D3N998s+BiWwDQKrfRcRwneBJQWlpKzzzzDNdu6dKlQYTWsixuSD0cgQW89UBr166V9j9p0iRp9HLlypVBxMeyLGEKW7G30XnqqaeC9u7du2c9GSYiWrBgQSSyIVpvGT4nJSUl3PVUK1eujPiaNm2a8jWIVFNTQy+88EJRfj799NO8x6GrcErKzjvvzLW54YYbAhtRCnxYo0aNCuzHjx9f5BFHFV+by0sRbWxsjIzpvvvuy7IJR/IAL5I4d+7cLLtp06YF6946derEjeb98MMPQTSib9++wvT/adOmUYcOHQjwCtXwnnjHMzsuvvhiaVQlHKH9wx/+wLWNXytEKcj+dkmqtVy/+tWvggjGokWLpLa5KpcIbKHvW3j7iI4dO9Inn3ySZTNnzpxgixX/hxclWrduXZDS27FjR3rvvfe4r2/evHnBGqnKysqg4ElYq1atot69ewfnePLkyUHbN998E6xRat++vfZaN5G+/vrrol2/eK9FRwsXLgzObS4pxIA6HU6mv/3tb4GfZ599Vmo7ZsyYwHbMmDF0/vnnSyMC2223nTQFPKxZs2YF5/DZZ5+lf/3rX3TccccFn18AdP3113OPfeyxx5RzlLCuu+66wP6mm24S+jrqqKOkfsIpxADo5ptv1nqtPOluo7PNNttobU8iUzjz7fnnny/Ily/fX/y6OXv27Eia/7333ss9PryG+ZRTTuGmlLquGxSMAcQR8rvvvjuwkRVpdF03skVIoeeVp1wjsI7jBJ9527aVyz++//77wD8vjT08x1PNU1OpVJDGmkgksq5B++23X06vJbwONn6PDBd60sk48O+3ACL3glxUzHOhK9G9vLGxkU466aSg7aCDDuIu3yjmvOrnn38O0rYrKyuly0XC899LLrlE+ToXLFigfd3UVasE2Oeffz6wveuuu6S233zzTfAh4q19CU9KKysrafHixVqvSaXvvvtOeIPzVWyADVeUk62nmzZtWpDy0q9fP256XfiGd+ONNwp9Pfjgg1p2KoU/I4X+6ExACtGqVauoZ8+eyklbOCXiX//6l9Jvrvb5asmSJUH619FHHy21bWxspC233JIA/pqVOAh98MEHQl8nn3yy1M5fD2rbtjKF5OGHHw58Pf7441nt4e/KLrvsIoXXcKrS0KFDhemmcb88gCWKFuTiQSGRd13ybUaMGCF9rfkoV4At5H37zW9+E7TzKrf6euWVVyJ98iYdf//734P2//73v9LX+Pbbbwe2f/3rX7k27733XpBO2K9fP1q9ejU1NjbSLrvsEhxbjIdF8YcbhfzkutdjWD6wA/JiJeHPPADadddd8+7zt7/9beBHVXPiyiuvDGwHDRoUfN9POeUUeuSRR+iJJ56gq6++OlLxsl+/flp1FsK+4z877LADPf3008Jj77zzzsD2sssuU/Yls//222+DtoqKCum6snD6JlBYxdJHH32UEokEDR8+nK699lp67LHH6Nlnn6V7772XTjnlFCorKwv6adeuXd6wNXPmzMBPdXV10VJmfZ9hgJ0yZUqwN2pJSYkwWFFXVxekRw4bNkyZAr7PPvsQ4D284i31WLVqldZE/f333w/GLXqQXahyBdi1a9cG9l26dCnYPrysRrW+XWUfnqOKCjPp2h911FFBm6xgXb72PBXzXOiKdy/fsGEDHXzwwcHfTzjhBO5yRaLizquIovObRx55hGsTf7Cjui/4Ki8vJ6DwegC+Nk5Om0Ljx48HALRv3x5nn3221HbQoEFBqtJbb70ltT3mmGPQq1evooxxyy23DPYGnTZtWlF8yrRgwQJ89tlnALwUmF//+tdC29122y1ID1i4cCE+/fRToa1t2zj//POF7eE0g9mzZ+c67DYnx3Fw4okn4qeffgIAjBgxAsceeyzXdsOGDcHvZWVlSt/l5eXB7+vXry9wpGI988wzQfrXn/70J6ltMpnECSecAACYN28eFixYILTdaaedsM8++wjbZZ8VIsLjjz8OADjggAOU6SPhNDjV9/qPf/yjNCXwpZdeitjati20veiii6R9AcC5554b/P7QQw9xbcJ/P+ecc5Q+m1OFvG8NDQ14/fXXAXj7KJ5yyilCPyNGjMC2224rHYt/bR80aBCOOOIIqe3+++8fXK9Fn4Hhw4fjqquuAuBd684991yMHj06uOadfPLJ0jG3NYXvh+eddx6+//77LJtly5bhtNNOi/xt3bp1efe5cOHC4PfOnTtLbdesWRP8PnfuXJSVlWHSpEkYP348zjjjDJx00kn429/+htmzZ2P77bcP/P/5z3/Oe3zt2rXDwQcfjB122EFoU8xr9cCBA4PUutraWpx88slB2nRYU6dOzUqDLeR92HvvvbFw4UK89957uPHGGzFq1Cgce+yxOO+88zB+/HjMnTs32INx/fr1QUphrnrkkUeC35szZfaNN97AAQccgFWrVqGqqgqvvvoqjjvuOK7tm2++ieXLlwMALrnkEmUKuP+dX7duXbCMJqxOnTrhN7/5DQCgpqYmWGoQVzH2fi22ij3vKKa/1upLV61hTrdy5Ursv//+wT3vj3/8I5544gmUlJRk2TbHvCr8OfeXDcUV3vt1l112Ca7lKnXq1AmAt2SACliK4avZ18DmI38D4Z49ewabaMvkT0gXLlyIurq6yIcqLNkkLq5169bh8ccfx2uvvYYvv/wSK1euRE1NDdfW38y8OTV9+vTg94MPPlhpf/DBB+Ptt98G4AG2aO3SoEGDgg8VT1tssUXwu7+eLx/179+/KB/Y5tZFF10UfLH79u0buYG1FfnfH8D7bL744otS+/D7+vXXX6N///5cu/AaBp5kn5VZs2Zh1apVALwJp2pMAFBVVYU1a9YE66JEUn2vP/nkk+B32ZoOANh3332V49pvv/0waNAgzJ07F4899hhuvvnmyCQvlUoFF/5evXop14Y0twp53/73v/8FD0OGDx8uhX/Au4mK3q+1a9cG65K7d++u/RkAIP0M3HDDDXj77bcxbdo0PP3008HfBwwYgHvvvVfZh46uv/76VrGG9tJLL8UzzzyDWbNmYdGiRdhxxx1xxhlnYLfddoNlWfj888/x0EMPYdWqVdhyyy0DwC1k/bX/vQXUAOu6buT/o0eP5n6nqqur8fjjj2OHHXYAEeHRRx/Frbfeivbt2wt933LLLbjlllsAeA9WfvjhB7z55pu49dZbcfvtt+Ouu+7Cv//97yx4bw7ddddd2GOPPYL149tttx3OPPNMbLPNNqitrcV7772HJ554AqlUqmjvw1ZbbSVt79OnD15//XUMHToUS5cuxZw5c/Dcc88FDyh11NDQgCeeeCL4/5lnnpn3eGWaMGECzjzzTKRSKVRXV+O1116LrCmMK3xPW716tfLasXjx4uD3r7/+mvsZPPPMM/HMM88A8EA1vs6+trY2ANvS0lL89re/VbwqI6PC9MMPP+Ccc87BN998A4C/Fjys5phX+fUoFi9ejA8++ADz58/HgAEDIjb5Ptjp0qULlixZgsbGRtTU1AT393zV6gB2w4YN+PnnnwEA33zzDbcgg0yrV68WAmx4oibTu+++i9/+9rdYunSpln0hT1V15UcEAQ86VQrbhI+NK74YPK5wcav6+nplv21Z11xzDe655x4A3gR74sSJ0vMT/vLpnJu6urrg93bt2hUwUrnCUdTjjz8+p2NlDykK+ayEx/T888/j+eefL8qYAPX3esmSJcHvW265pdS2U6dO6NixYySSFBdjDOeccw7+9Kc/YdmyZXj55Zdx9NFHB+3//e9/g2jBGWecoYS+5lYh71v43Kkm0CqbRYsWBYAzefLkyKRUJdlnIJFI4IknnsCOO+4YPAX3/yYDoraoqqoqvPHGGzjqqKPwySefYP369UGBj7AOPfRQnH766TjxxBMBQPqQUqWGhgYA3oNi0b3VV/y6Jsug2n777bHHHntgypQpaGhowEcffSTNLAqrtLQUW2+9NbbeemucfPLJGD58OL788kucfvrpqK6uxmGHHRaxL/a1eujQoXj99ddx7LHHYvny5ViwYAGuu+66iA1jDNdddx3Wr1+PMWPGACjsfdBRly5dcNFFF+Hqq68GALz66qs5AexLL70UTIiHDRuGoUOHFn2MM2fOxKhRo0BE6Nu3LyZOnKic04TvH3/84x9z6k907TjooIPQu3dv/Pjjj9yJ+nPPPRdcT37zm99kPbyZOXMmfvjhB2G/e++9t/Lam4+K/VmuqqoKzlF9fb0SKmT+ijm2jTG/Kua5yEdHHnkk1q5dC8YY7rnnHpx33nlS++aYV9m2jVGjRuH//u//QER47LHHIhBdyIOd8P3YL5ZbiFpdCvHatWsLOt6PFvCkuvkCXhrliBEjAnjdZpttcPHFF+Oee+7Bk08+iRdeeCH4qa6uBoC80nRyVTg9obKyUmkf/mDIUhs2VmXU1qabb74Zf/vb3wB4E/5JkyYpb6odO3YMfverZcvkP5iJH1tsFfIdkn1/CvmsNNeYAPX32s+cSCQSWulwOt+v008/PQC/Bx98MNLm/58xhrPOOkvpq7lVyPsWTqmKV/PkSXbuCvkMpFIpaXvXrl0jE8wtt9xSWUWyrap3796YOnUqJkyYgMMPPxw9evRASUkJunTpgv333x8TJkzAa6+9Fklr9Ze75CP/c+44DjdVNqzwda1Pnz7KSqDh98hPSctVnTp1ikTab7jhBum4inWt3meffTB37lzceuut2HvvvdG5c2ckk0n06tULJ5xwAiZPnowbbrgh4quQ90FX4WjjnDlzcjr20UcfDX5vruir4zhBNlZ9fb2w6ntYzXH/sCwLo0aNAuClYo4bNy7Srooy3XXXXTjqqKOEP81VmbaqqipIA12zZo3y/Kk+y7l8N9LpdBCwSSaTWdf7Yn7PNsb8qpjnIh/57yURCTM+w2queVU4G2HcuHGR7Mnwg52RI0fm9FAuPF4dHlOp1UVgw+D1q1/9Cu+//36L9v9///d/wVOVa665BjfddJNwGxrV+txiKvx0R+eDHZ54Nme0T1e1tbXKtYy66tu3L3beeeei+AKA2267Dddeey0AbzI0ceJErSfPYcCVrR31FV5LphNFz1f+d4gxhnQ63SoeUoS/19dddx13ktlc8m8s6XQaqVRKCbE6368uXbrg2GOPxeOPP4633noLP/zwA/r27YuFCxdi4sSJAIADDzwwK/WmrSn8vqngBZCfu7CvUaNGCdfX5KM//OEPke/X3LlzMXr0aNx6661F8T9nzpycYUCkYkRmbNvGySefLN3GKbye2V8bmY/CDwZWrVolfZAR3iKmQ4cOSt9hm0ImY3vttRfatWuH9evXY8aMGaipqYlMKJvrWt2hQwdcccUVuOKKK4Q2xXofdNWlS5fgd1kmSVyLFy8O7tHl5eU46aSTij00AN45OPzww3H55Zdj+fLl2G+//fDuu+9GtiqKK3zt+P7774t2XT399NODB9fjxo3DddddB8ZYsL0O4GX4HHTQQUXprxiyLAsDBw7EN998A8dx8OOPPwqX/QDqz/KgQYMwf/58AN53Q+brxx9/DAI2W221VdbceNCgQcHWKqrvWTqdDlK9KysrszKpNsb8qpjnIh8988wzOOOMM7B8+XJcfvnlAOR1TJprXjVo0CDstdde+OijjzB//nx88MEHGD58OIDC1oX72R0lJSVFAf5WB7AdOnRAVVUVNmzY0CJrS+OaNGkSAKBbt2648cYbhR/K9evXR9YGNbfC+7CF9ycVKWxTrMJVhWj58uU5p4OLdNpppxVtbeqYMWNw5ZVXAvA+e7nsTxWGXFmhLMBbG+YX4bIsS1nsphBtscUW+Pzzz0FEWLx4Mfr06dNsfeUyJl8t/b3u1atXsPby+++/l+7DuHr1au1J37nnnovHH38cruvikUcewfXXX49HHnkkSJPd2MWbiqHwtePbb79V2stsmusz8PjjjweFLHbZZResXLkSCxcuxB133IFDDjlEuY+wjp566qmiTQ7effddrbXWhSr88DeX+g9x9e/fHx999BEAbwLSu3dvoe0vfvGL4HcdIA3b6ACvSIwxVFZWYv369SAirFu3LjJBGjJkCCzLguu6+Pzzz+G6rvTBXnjdfCFptKtXrw6uPZWVldhpp53y9qWrfCNRjz32WHDtOvroowt6P1T605/+BMYY/vSnPwUQ+84772C77bbj2sevHcUC2K233hp77703PvzwQ3z//ffBRD289+uoUaO4y0DGjh270WpkDB06NFgn+emnn0pBS/VZHjp0KN58883Al+zapOPL16effpq1rjiszz//PADAIUOGZM21c5lfrVixIgDY6urqvPaA9fss1rnIR0OGDMG7776L/fffH8uWLVNCbHPOq84444zguj927FgMHz488mCnd+/eOT/Y8Zmpb9++RQH+FgvNhG8WqmI+v/rVrwB4k02dSVMxtWzZMgBeARDZDW7SpElZBSviyuU1qxQuwuRHeGQKRztVm89vrrrnnntw6aWXAvCi1K+//npOT8i32267YDI3a9Ys6QXk448/DtJN/GhBc8l/UgaoK/i2lHbaaadg/cPbb7+t/O4UU+HiIP7TYZH8i7OO9t5772DC9cgjjyCVSgUVPLt16xZUuWzL2mGHHYLqh++//75yuYRfOI6nrl27BlGWqVOnFqV2wPz58/GHP/wBgAcITz75JCZMmADbtuG6LkaNGhWZ0G8umjVrFmbMmAHAi4ruvffeefsKT878SbNIgwcPDuBi0aJFwVpwkcIT00KyUtauXYsVK1YA8GA2HIUEvLVXfjGztWvXcivT+lq0aFEQNe3bt680MqjSE088EaTqnXzyyVqVTQtV+MFFLuc0DGPNlT4c1mWXXYa///3vALwH3Pvvvz9mzZrFtW3Oe1q86mo8nVgGYRtLhxxySPC7D1wihQuhHnrooW3G17777hssX/jggw8i603jCvfF86WrYo4/X/kQ2717dwDA5Zdfjttvv51r25zzquOPPz7ItnnuuedQU1OT9WAnl+y+BQsWBGuZww86C1Ix9uLR2Qf2iCOO0N4v6emnnw5sTzrppILGFt6/T2ePrY4dOwb7n4k2Jk6n07TrrrtG9rHjyd+fCZp7Yqn2gd15552D9rfeekvoZ8aMGZG9EWX7wMY3FecpF9u2ogceeCDYK7eysjLvja/De7teccUVQrvw3lp33313vsPW0g8//BDsA7v11lvThg0b8vYV3k/0L3/5S0G25513XtD+73//O+8xEeW2r3Sx94EN66677grs//CHPwS/X3755bm8nJyVyz6whb5vI0eODNrHjRsn9PPaa68FdgB/H9hbb701aL/66qsVr1KudDpNe+65Z+Dv4YcfDtquvfba4O8jR44sqJ+2pnQ6Tfvvv3/w+h988MGC/L3zzjuBL509VK+++urA/uabbxbaffHFF8E1uKqqimpqavIe4z/+8Y+gT9Get+G9XY8//nihr8svvzywK2Tf1mXLllF1dTUBoGQySbNnz87bl65+/vnnyB7mor0e4/rggw+CYwYMGCCc+xQi0Twi/N5169aNvvrqq6xjN2zYEOwd3LlzZ1qyZEnRxrV+/XqqrKwkwNs/N3wd22uvvYrWj0i57gNLRLR8+fLgHl9VVUXLli3j2n355ZfBd6xHjx7ce18qlQo+p4wx7vkn8j7P/nkqKyujlStXcu3Ce7u+9tprXJu6ujrq27evcn4c3tv13nvv5dq4rku77757YCfbH1ulYp8LHYnu5bNnz6YePXoEbbfddhv3+GLOq+IaNWpU4Hvs2LG05ZZbBv+fO3duTr6eeuqp4Nhbb721KONrMYC98MILA5v3339f6s9xHBo2bFhgf9FFFwk38SUiqq2tpUcffZSefPLJrLZcAfaggw4K7P/xj39ktTc2NtIZZ5wRmaiJJrrhC/Njjz2m7Fs1KQ+Dfc+ePenrr7/Oslm4cGFkg2ERLG3OAPvYY48FF/WKigrtmwZPixcvpoqKCgJAiUSCJk2alGXz6KOPBuewT58+3I3Vi63LLrss6HO//fajn376SWjrOA5NnDiRbrrppqy2YoLQokWLggdEpaWlyu/EsmXL6MYbb6T//e9/WW25ACwR0d577x0BTcdxsmzC1wpdgF2zZk3w/od/cr2456qWBNjJkycH7Z06deJulj537tzIxFkEsBs2bKB+/foFE4TbbruN+174WrNmDd155500ceLErLYwpB577LGRtlQqFYHbYt/YN6YmT54sfAizdu1aOvHEEyPf/UJhpL6+Ppis7bPPPkr7lStXBt/zsrIy7vV1+fLltP322wfj5D38++ijj+iBBx5QXi8ff/xxKi0tlX7uiIhqamqoV69ekQlZXBMnTqREIhGAwdKlS7m+amtradq0acIxffvtt/SLX/wi6Ov666+Xvobw94b3ff7444/pwQcfpPr6eqGPRYsW0W677Rb42XrrrSmVSkn79XX66acHx91www1ax+Qq2TxizJgxQXt1dTUXHP71r38FNr/4xS+U19ipU6dqP0gMX0/D17GHHnpI6/hClA/AEhFdfPHFwXG//vWvs74nq1atisCk7MH5P//5z8Bu5513plWrVkXa6+rq6NBDDw1sZA92Xnzxxcg9dOHChZF2x3HozDPPFF67w5o5c2YwV+vQoQN3LnD99dcHvoYNGyb0FZ6HyeayxTwXOpLdy7/++usIxPLAr5jzqrjCc4Pw92LvvffO6TUSRYM9n3/+ec7H89RiAPvSSy8FNltttRXdc8899Morr9Drr79Or7/+Os2bNy9i/8MPP9AWW2wROXkXXnghPfzww/Tcc8/R2LFj6cYbb6QjjzwyuLnyJuC5Aux///vfyM3kyCOPpHvuuYeeeuopuummm2jrrbcOJga9e/eWTnT/97//BX66d+9Od9xxB7388svBa/7iiy8i9jqT8vDkpLy8nM477zwaN24cPf7443TJJZdQ+/btg/aDDz5YOHnZXAH2tddeI9u2g9d0/vnn0wsvvKD8iV+Ew7rvvvsCf8lkks466ywaN24cPfLII3TccccFF+BEIkGvv/66dHyqiYyuGhsb6YADDoh8Vk455RS655576JlnnqEJEybQHXfcQaeeempwgTzggAOy/BQThIiI3njjjeDJMQDaYYcd6Nprr6Vx48bRs88+Sw899BBdccUV9Ktf/Sp4n3jR8VwBdtasWRHQ3Gmnnejvf/87Pf3003TXXXfRXnvtRQBozz33DK47AwYM0PIdf6C17777ah1XiFoSYIkoEl0uLS2lc845h8aNG0cTJkygCy+8MLgGh6O1IpD47LPPItepgQMH0hVXXEFjx46l5557jh555BEaPXo0HXzwwcFnZfz48REfkydPDj4fvXv3zppkEBF9//33QT8VFRU0Z84c6XloK9puu+2oZ8+e9Lvf/Y7uvfdeevbZZ+nhhx+mCy64gLp16xac16FDhwojM7nqmGOOCa4jqgwqIqInn3wyuO7Ztk2nnnpq8JD5z3/+cxDl8K8BtbW1WT5eeOEFAryo2DHHHEN//etf6bHHHgvu/3/+859phx12iHz3jj32WCmwv/LKK8HnhjFGxx13HD3yyCM0btw4OuussyiZTAa+ZJHrFStWEADabrvt6LLLLqNHHnmEnn32WbrvvvvopJNOorKyssDPSSedJM36IFJf9/1z0b59ezruuOPolltuofHjx9Ozzz5L999/P5166qlUXl4e+GjXrh3NnDlT2qevcATSsizpva4QqeYRYXCorq7mRuXCEaFEIkFHH300/fOf/6Snn36annjiCbrzzjvpd7/7HQ0YMCC4tujovffei7wH/jVj3bp1hbzkLL399tt0zTXXRH7CDzpOOeWUrPbVq1dzfa1evZoGDx4cHLvtttvS3//+d3rqqafo5ptvpj59+kTuSY2NjcJxNTQ00D777BPY9+nTh26++WZ66qmn6I477qBtt902aBsyZAitWbNG+jpPOOGEwL5Lly705z//mZ588km6++67Iw9ZevbsST/88IPU15VXXhnYV1ZW0kUXXUSPP/44/fvf/6aDDz44aKuqquI+XPWlC7DFPhcqqe7lc+bMicAjD2KLNa+Ky3Xd4LsU/glnO+lqxx13JADUv3//nI8VqcUANp1OR6Ig8R/exGnJkiWRSbjsx7Zt7g0nV4AliqZA8X722msvWr58eRBJkEVqTjrpJKGf+LnSmZSnUin63e9+pzwfxx57LHdS4Evni5yPbWtXPMqm+yOajPu6/fbbI5Of+E+7du24GQJxqSYyuaihoYHOP//8CLDLfkaNGpXlo9ggREQ0ZcqUSCqK7KeqqirrQQ9R7gBL5KVC+k8qeT9Dhw6NPDj7xS9+oeV32rRpET+6aXuFqKUBNp1O06mnnio8d5Zl0W233RaZJMi+M3PmzIlEB2Q/paWlkQc/q1evDq69lmVJr+sTJkwI/Oy0007STJ62ou222055zo455hhasWJF0foMR1VkaeRhPfroowEYiX6GDx8uHKcPbTo/JSUldM0112hFHCdMmEBVVVVSX7zsq7B8gFWNafTo0dIMA1+q634u52Lo0KFa0RVfDz/8cHDsQQcdpH1crgq/5yKF07x5EOu6Lt10002RiLvq86Uj13Wz7km8+2Ghymf+IZsHzJ8/X3kdPfDAA4UQHNaqVasiSw94PzvvvLPWA476+vpIsIX3M3DgQK3Pqeu6dPHFFwcPxHg/3bp1o7ffflvqRxdgi30uVFLdy4myIfaWW27JsinGvIqnG264IXJsZWWl1kPMsGbPnh0cP3r06JyOlanFAJbIC73fcssttOeee1KnTp0iE2vZJOu9996j3//+97TddttRx44dybZtat++PQ0ZMoROOOEEuu+++4RrIvIBWCKi119/nUaMGEFdu3alZDJJPXv2pP33358efPDB4CapA7DpdJruu+8+2nfffalr165BehLvXOUyKZ8yZQqdddZZtNVWW1FlZSWVl5fTgAED6JRTTlF+kYkMwOb6owJYIm+9yR//+EcaNGgQVVZWUrt27Wjo0KF05ZVX0oIFC5TH19TURCY/P//8cxFeMdG8efPoqquuot13352qq6spkUhQRUUFDRgwgA477DD629/+JryYNQfAEnkPYiZMmEDHH388DRgwgKqqqiiRSFDnzp1p1113pbPPPpuefvpp4frdfACWiGjp0qX0pz/9ibbZZhsqLy+njh070q677kp33HEH1dTUkOu6QSRDN5Lqui516NCBAG99lizNr1hqaYD19fLLL9OIESOourqaSktLqW/fvnTSSSfRxx9/TESkDbBE3nl76aWX6LTTTqNBgwZR+/btybZt6tixI+2www40atQoGjt2bFZ0Nfx0/6qrrpL2QUR08sknB/Y6azhbu95//3268soraa+99qI+ffpQaWkpdejQgbbddls677zz6MMPPyx6n+l0OlizlgvkLFiwgK6++mr6xS9+QR07dqSSkhLaYost6Oijj6b//Oc/0mhpOp2mDz/8kG644QYaMWIEbbXVVlRVVUWWZVFVVRX169ePRowYQbfffjstXrw4p9ezYMECuuKKK2i77bajdu3aUWVlJQ0aNIj++Mc/Cte9xcf29NNP0+9//3vacccdqXv37pRMJqm6upp23XVXuvbaa+nbb7/VHo8KWNavX08vvfQSXXXVVbT//vvToEGDqHPnzpRIJKhjx4607bbb0mmnnUb//e9/tYA5rHBgQecha77SnUeE6wqIIrFLliyhG2+8kYYPH049evSgkpISKisro969e9OBBx5I1157LU2ZMiWn8d14442R96GQpUUiFRtgibxsqwceeID2339/6t69O5WUlFCvXr1oxIgR9NRTT+W0hMB1XXrqqadoxIgR1KtXLyopKaHu3bvT/vvvTw888IB2Srqv119/nY477rjgOtW1a1fac8896R//+EfOtTk+/vhjOv3002nLLbeksrIy6tixI+2888504403aj2sywVgiYp/LkTSAVgiom+++SayBIIHsYXOq3hasGBBUFNHxXgi/fnPfybACzQWM8ODERVYHtfIyKgoevPNN4NqdhdeeCHuvPPOjTyizU9ffvllUCFP9z2YNGlSUE7+oosuwj//+c/mHKKR0UbRmDFjcOmll8K2bSxYsEC6nY6RkZGRkZHjONhqq62wYMECnHDCCXjqqaeK5rvFttExMjKSy9+DuF27dhg9evRGHs3mqbvvvjv4fb/99tM65r777gt+3xT2fjUy4uncc89Fjx494DgObrvtto09HCMjIyOjVq4nn3wSCxYsgGVZ+Mtf/lJU3wZgjYxaiXyAvfTSS1FdXb2RR7PpafLkydJ90u655x488MADALwNwg8//HClz88//xwvvvgiAODAAw8saM9II6PWrPLyclx//fUAgAceeABLlizZuAMyMjIyMmq1chwHN998MwBvP+Vtt922qP5NCrGRUSvQypUr0a1bN3Tt2hXfffcd2rVrt7GHtMlpq622Qn19PX79619jp512QnV1NVKpFL777ju88MIL+OyzzwLbl19+WQiwb7zxBlzXxdy5c3Hbbbfhp59+AgB8+OGH2GuvvVrktRgZbQy5rothw4Zh5syZOP/88/Gvf/1rYw/JyMjIyKgVasKECTj11FPRoUMHzJ07F926dSuqfwOwRkZGm4W22morfPfdd1Kb8vJyPPjggzj55JOFNoyxrL/prpd96623UFtbqx4sR127dsXee++d17FGRkZGRkZGRpuKDMAaGRltFpo6dSqef/55TJ06FYsXL8bPP/+M2tpadOrUCYMGDcKBBx6I8847D927d5f68QG2qqoKgwYNwnnnnYczzzwTlqVekdG/f38sXLgwr/EPHz4c7733Xl7HGhkZGRkZGRltKkps7AEYGRkZtYT22GMP7LHHHgX7Mc/8jIyMjIyMjIw2nkwE1sjIyMjIyMjIyMjIyKhNyFQhNjIyMjIyMjIyMjIyMmoTMgBrZGRkZGRkZGRkZGRk1CZkANbIyMjIyMjIyMjIyMioTcgUcTIyMjIy2qRERKivr0dtbW3wU1dXl/X/xsZGNDQ0oLGxMfiJ/9//SafTcF0XjuMEP67rBn8Lt/myLAuMMemPZVlIJpNIJBJIJpPBTyKRQElJSfB3//+lpaUoKytDeXl55F/e75WVlaiqqkJJSclGfDeMjIyMjIyKKwOwRkZGRkatUnV1dVi3bh3Wrl2L9evXY926dVi3bp3w9w0bNgSg6rruxh5+q1FJSQmqqqpQVVWFdu3aBb+Hf9q1a4eOHTtGfqqqqrS2hzIyMjIyMmpJmSrERkZGRkYtppqaGqxatQqrVq3C6tWrs/4N/15fX19wfxUVFZGf8vLy4N/3/jMTIAZGFsgBGFkAMYAsMGKAa2XaGQCWafP2Afb/bWqD96/fxghwQ7dXFrvVMiBzEIiR1575IebG/p/53SLABshy8etT9kB9fT3q6+tRV1eX9bsP8oXItm20b98+ArUdOnRAp06d0LVrV3Tt2hVdunRB165d0bFjRwO7RkZGRkYtIgOwRkZGRkYFi4iwYcMGLF++HMuXL8eKFSuCn/D/c4WqZDKJ9u3bo3379mjXrh3at2+Pqa/NAtwEmGODuTaYkwBzbcCxgNoU4FhgrgW4DMyHyswYEUrxzRJjYFWVegNzHLjrN+T0WqJdMbB27fSMyQXV1sn9JbITqggEWC4oSUBVCWA5oMyP//vIc/bBhg0bsHbtWqxduxZr1qzBmjVrUFNTk9PrsW0bnTt3jkBtly5dUF1dje7du6N79+7o1q2bSWc2MjIyMipYBmCNjIyMjJQiIqxbtw4//fQT92fFihXaEdPy8nJ07twZnTp1wtcfLwBLJ4C0DZZOgLkJWCj3oDRtg2oaIhCay3ilsCpSHGILAVVXcXu1sl9XFthqwKtIPKjVksWAynKQnQaxFMipA9kOKJEGJRz8+sxf4ueff8bKlSuxcuVKrF69GrpTiS5duqBHjx7o1q0bevToge7duwf/9uzZExUVFfmN2cjIyMhos5EBWCMjIyMjAIDjOFi+fDkWLVqERYsWYcmSJRFI1YmedujQAd26dUN1dTWmvzIbLJUASyU9OE0lwNJJLzpqMbBMNI5cF6jLI13Ytpt+JxfkhNa95gGvPvAREaixMffxyKSCWV8xqGXhiGU+QJ45R4wxIBkCWjcPwLcYWHl58F+qb/D+BWXgNg1Kev/+9upDsXLlSqxYsQJLly7FsmXL0NDQoOyiU6dO2GKLLbDFFlugd+/e6N27d/D/droRayMjIyOjTVoGYI2MjIw2M61ZsyaA1PDP4sWL0agAty5duqBnz574+uNFYA0JWI1JsMZkE6RSFE5FUkJrGE75DqLAypMC0GQRymaBWJ5EYKtxDpUAKjmHWUArGpuojxjMihSGXNgO3GQKlEyBStM48g/7YNmyZVi2bBmWLl2K9evXS3116NAhArf9+vVD//790bt3b5OabGRkZLQZyQCskZGR0SYoIsKqVauwYMECfP/998G/ixYtwrp164THJZPJIPI15b9fg6VKYKVKMoBaAuYwIJ3WA6z4mMLQqgLU7IPVwCpSBsJyTaltMYgNy6W8zi2AJtjM9dxCE2jj8gFXE2bjovoGL+LsR74tB5RshJtswGnXHYrFixfjxx9/xOLFi/Hzzz8L/di2jV69eqFfv34B1Pbr1w99+/Y1KclGRkZGm6AMwBoZGRm1ca1bty4CqQsWLMD8+fOxdu1a4THdu3dHnz598Pmk78EaS2GlSsEaS70U39CaU8ZCKa0sh7WoRE3ASS6QD3wWAq1AE9AxBqYJdQVDqyhimQdU+soJZsP959lnXjDrK/SQgBVQlZhi2yARy8BtSSPOuP7XWLRoERYuXIiFCxdiwwbxGuXu3bujf//+2GqrrbDVVlth4MCB6N27NxL5rg82MjIyMtroMgBrZGRk1EZERFi6dCnmzZsX+VmxYgXX3rIs9OrVCz/NWQfWUAarsRRWYylYqtRL9Q2JyeBU1BaG1Ky2jQCtqgrDAqArCFrzWZcK5A+XMpgtIKVY2F+RYDbLb55wmwW2IK/YVEkDqLQBh529GxYuXIgFCxZg9erVXB8lJSUYMGAABg4ciIEDBwZwa9bYGhkZGbUNGYA1MjIyaoVyHAeLFi3C3LlzMXfuXMybNw/ffvutcJ1gjx49sOK7GliNZWCNZbAaymClSgE3VhQolygqY3JI5SkfcG0uaA0rBLAbBVhVKgbQ5jK2loTZHKOd+cBtGGz9zzhZabglDXBL6vHrs3fFt99+i++//x51dfyqzt26dcOgQYOwzTbbYNttt8U222yDDh065DwWIyMjI6PmlQFYIyMjo40sIsKyZcswe/ZsfP311/j666/xzTffcKu2JhIJDBgwAPM/XQmroTzzUwZG+aeoxseiXTE3OKiFo615QiTlc1y+fWXOIeNslaOlfAAz3zTlfPryoTTX15dH6m5e0Vr/mNj7R6BMKnI9Trp6P3z77bf49ttvsXTpUq6bnj17YvDgwdhmm20wePBgDBo0CFVVVbmPx8jIyMioaDIAa2RkZNTC2rBhA+bMmYPZs2dj9uzZmDNnDlatWpVlV15ejoEDB2LOhz81wWpjKRjyX1voi3vpbwlw3UShlTTPXV5AqwLMeN+W/prfnPviiFscS/U6Wxpkw+K8v2Q5cEvq8LtbDsOcOXMwZ84c/Pjjj1yXffv2xeDBgzF06FAMHToUAwYMgF3AGmcjIyMjo9xkANbIyMioGUVEWLx4Mb744gt88cUX+Oqrr/DDDz9k2dm2jYEDB+L7GT/DaqiAXV8B1lgSKahUyBik2sTANWdobUZgVakoQCsbS74wWyyQ5YwnopYAWR37+GeAMQ9qS2tx2g0HYc6cOfjmm2+4kdqKigoMGTIkANohQ4aYKK2RkZFRM8oArJGRkVER5TgOvv32W3z55ZcBtPKiqz169MCKefWwGypgNVTAaijPKqyEPC7POV/ScwGxlgLX5oZWl7zXkmsfRYJWkfKCWZYDzLUQzOa6XVF4Kx3tPooVjZXJzf6MkJWGU1aLk64ejq+++gqzZ89GbW1tdGyMYcCAAQHQ7rjjjujRo0fu4zUyMjIy4soArJGRkVEBamxsxOzZs/G///0PX3zxBWbNmpU1oU0kEhg8eDC+mbwMVn0l7IYKMCeZ7cyyvEmzzmU5VowpXp012zxm3xoLM+UEoW5+sJ4juEbAWAWLMt+5gCbygFld/yG/OcNsawTZsL3iOwAg+hp0Pz/+d4eXegwCldTjvDGH46uvvsJXX32FJUuWZNn16NEDO+20E3bccUfstNNOBmiNjIyMCpABWCMjI6Mc5DgO5s2bh08//RQzZ87EF198kVVsqbKyEvUrLFj1VbDrvAhrVnSVFw0SwaukcjAPXGWVhjc7cC0UWsPiQWIekdyNBrMCP5scyIYlglrRaxB9tkTfKc5nxbVTcMvrcNRFu+OLL77AN998AydmZ4DWyMjIKH8ZgDUyMjKSiIiwcOHCAFg/++wzbNiwIWLTqVMnrFtEsBuqYNVXwmos99auhifPqvTFMLxqbnXjw6vu1jjNCq+5gKtulDlkv9GgNSwfDPOBVpVPbfMCYFbj2OaE2ZxAtpgQG1b4O6kz9vDnTud7Fv4cZb7zxBw4ZTU49rI98Pnnn2POnDlcoN11110xbNgw7LLLLmjfvr26LyMjI6PNVAZgjYyMjGJas2YNpk+fjunTp+OTTz7JWsNaWVmJ+uUJ2PVVsOvagaXKCi+2pJP+CAi3B5Gp1YAr0HairRtDOcBsziCba9S0tYAsAJRw0u2L5d+y8lprri2ObxXQWpaFwYMHY9iwYRg2bBiGDBmCRB7FroyMjIw2VRmANTIy2uzlOA7mzJmDadOmYerUqfjmm28i4FRSUoL02lLYdR6wWo0VUWBlrCk6Q6Q3IfZBlEgOdZYV9a0VKWyyzwku02m1jQ9ObnQsyltJc4Frc0NrLhE42Zg1o+RN9kWG2RwjscFhbRRkc09bDp0f1WfPDtnqfL/C9mnOOlrmwCnbgCMv2AUzZszAggULIu2VlZXYeeedA6DdYost1H0aGRkZbcIyAGtkZLRZatWqVZg+fTqmTZuGGTNmYN26dZH2rbbaCgs/XQ+7rj2s+tga1jCwhiWDV14KMQ9Iw8Cqsg2PJ2arDa4W8yCQB6880HHF4+DeTloJuOYcadVdC5nPLTQXmC1GinGOa2K5flsLyDZ3NJYn3ntsC2xF3zuRPQdo3WQaF909AjNmzMAnn3yCtWvXRtr79OmDX/7yl9hrr70wdOhQE501MjLa7GQA1sjIaLMQEWH+/Pn48MMP8eGHH2LOnDmR9qqqKtQtS8Cu6wC7vj0spyQKpCJobeogOtGVrXkNw6gIWEX2GrZSeA1DSxxcZUAjAddo96FzoAuNrQVcc6n+XIxbZ0tFZVXHNRfINmexp+aKxupstRN+70Vg6iv8XVTZpjnrZ0FwS2px6nX7YMaMGfjyyy8j6cZVVVXYY489sOeee2KPPfZAu3bt1OM3MjIyauMyAGtkZLTJynEcfPXVV5g8eTI++ugjLF68ONK+9dZbY8En62HXdYDVUFn4OlZd5XLZ1QUwH1z9iKovEZy4BLi6gKmZuowMwG6K4NrcaqaobE7A2QpAttVHY7m2zXTd4Ow7TMzBlY8ehY8//hhTp06NRGdt28b222+PPffcE3vvvTf69OnTPOMyMjIy2sgyAGtkZLRJqb6+HjNmzMBHH32Ejz76KDLBKykpgbOmDHZdR9h1HWHF92K1WFNRF1UKbr62nJTBiBiTp/VG/Gait0SgdNo7RmcyrbPWFWg+cEUOgJkruPqTfp1jWtPtr7kA1v886ByTC8D6480F9DRBljGWW/Q2DKaK15ATxCYyY+CAZET+9xvQK8aWjy1v7SwIbmkNjrlsV3z88ceYP39+pH3AgAEYPnw4hg8fji233FK7WrmRkZFRa5cBWCMjozavuro6TJ06Fe+88w6mTp0a2Ze1Xbt2qF1agkR9R9g17cAoNjEOTz598aBU105my4NXH1jDEq5J5aQb+/CqKx3btgyu0T9y/tZKb3nNALDNth6WN9aNDbI8MBXte5sPxIbF+6zxvvOAGFJ1bXl2godgbkkK59yyHz766CN8/vnnSIe+671798a+++6L4cOHY9CgQQZmjYyM2rQMwBoZGbVJ1dfXY+rUqXj33XcxZcoU1NfXB209evTAynkuEvWdYDVUgcFqAk3RRNNXGEqLZRuGVx6whhWGV9X62FzgdSNHXVsUXJsaQ7+38ludLlAUqzpx3I8mwCrBRxdkWyIaG1foNRYMsWH5n0HV9SLXfaF1bcNAa/t7z6Zx8T2/xvvvv48ZM2agsbExMOnRo0cQmR0yZAisXB4+GBkZGbUCGYA1MjJqM2poaMD06dPx7rvv4qOPPkJdXV3Q1qtXL6yY48Ku6wwrxdnmRkd+IaZiTuh8yNWNcOlUD25DUdeNAq5NRq0fXH21NMCG/RUafeVpY4KsLpxaTB9kVRAb8VtkIHRdfZ+CfWcvf+AIvP/++5g6dWrkYV/37t1xwAEH4KCDDsLAgQOLNWIjIyOjZpUBWCMjo1Ytx3Ewc+ZMvPXWW5g8eTJqa2uDth49euDneYBdy4FWywLZ3rpTpoJCxkC2BaaxPpUStudTZpvxByKwlAIeWWh9rMrW9iLJlEopXHrnQWUX9K/TNzLg6keGdG4dukWacli3qgWuYV9t4RbXUunDMp8a9jmlneoCl+Za2qDvXKKxJUmt9avaEJvM2Ol8pvxxKmwpA8bKa0/GVtcOAPfaQ8zB1Y8chffffx8ff/xx5Ho6YMAAHHTQQTjwwAPRo0cPZT9GRkZGG0sGYI2MjFqlvvvuO7z11luYOHEiVq5cGfy9W7duWDXfRmJDR1ipSj60+pLBqw+jYVvBGlVtu3jfPChksTRDFTyGfToukE5nQSGLb/FDJIbXmJ0OuHqmlL1GT3T7iNkJbzNxuNCMwGqnDXuda/ncqNqYAJtDKnFe6yZlYBr3J7HN6lsXZOOVigXrV3NKKU7GbEWfsfgYBXYUi+6KIFXXjmvLhVnCVQ8fiYkTJ2Lq1KlIha4Z22+/PQ466CDsu+++6Nixo7AfIyMjo40hA7BGRkatRj///DMmTZqEt956C/PmzQv+3q5dO9Qtq4BdXw2rsRJWOro+jET7K8YBNg6jYbvwZDAXO17fcXiNQ2vILgsgRa8lBq9Z0BrymQWvAruco648H2FJqqpm3WpEEJpvFFZ0XFu4xW2s9GGZz9jxBRf94X3+RT5jtsK+84VYX7HtpgqCWF/xz5tojDE77vUG0LvexO0k/gBkXZsoYYNYGhfcsR8mTpyIzz//PPi+2raN3XffHYcddhj23HNPJJO5bV1kZGRk1BwyAGtkZLRR1dDQgMmTJ+PNN9/EjBkz4GYgKJFIgDa0h13fFXZDJ68QE+DBoUtiaPXlw6sIRsN2aSc3O1nfPryKoDVkFwCkzF8GXAGoQceHVw27guE17AtQ2gW3GlVKZ65R2La2XQ5PRQbYguE1rIyvolStDX8fNItBKfstFGLDymxDlXNKsUj+5041xoyd9PoD6F1/0ASzKn++bdzOtRpw5l/2wKRJkzB37tzg7x07dsTBBx+Mww47DFtuuaXSt5GRkVFzyQCskZHRRtH8+fPx8ssv46233sK6deuCv1uNVbDrq5Go7wJGeT7tb44tIjQvlcr1tr4vnT0gdfaCzfjTKurkF1/SWEeqVXxJ93XAh2HNwks6/nIp+rSxbnP++mKVLFvrtTDb1loDzGw9f9pArHpYlIt8iNX5jlqWHjhbTB/GNeG0aBAb9K13DpUP5lpYrl2Loy/cDm+88QZWrVoV/H3w4ME47LDDcMABB6Bdu3YbcYRGRkabowzAGhkZtZjq6urw7rvv4uWXX8asWbOCv3fr1g2rvk8iUV8NyymPHmRZTRVAXVe4ByIsC5SZTDKZnW2BbBtMY+0p2bbnS2ZnWV4ElQisQVw0ifwtNlxXXdgpY4dGSREmf0Lsqos6eQOIVQ6WgFCzwKuiT8+wGaKv3gD07Iqt+HpjkazwGmvxa2KZSJ4KYllQQEhxfmxb66FC0QA2DnEyOA3ZakNsONIpel0bEWIpmQgySIQ24deh+n75/cquJ+GxyezCUVjOtZNA+MujI/Hqq6/i448/hpO5RpSUlOBXv/oVRowYgZ133tnsL2tkZNQiMgBrZGTU7Jo7dy5eeeUVTJw4ETU1NQC8tVWo64hEXTdY9R2yijFlbVvBg9IQtPriwmsGRiN2gvWnWXY8gPWh1ZcAXim+L6QIXuMTexG8cuzygldAOMFXwms+4Krqt5DiTa05hVi09jgui7feOvt1sdhnUwSycTvuOYrbCH01Q/Q1qxPOedJdBxs5RrDVTvy1bWyIDf6TDbMkfA2c95DXJ+/6omvHSznmwWzSwVnX7YZXX30V8+fPD/7et29fjBw5EocccoiJyhoZGTWrDMAaGRk1ixobG/HOO+/gP//5D+bMmRP8vVevXljxbQkSDd3BqMRb4+lPznjg6isMphxwBWLwyoHRwC62/lRoF4bXOLSGFQLYLGgNjT8Cr6LJfBxeJXZ5w2vgo+ny32xRV0W/BW+d05qjsDLoCo+HB7CBnff6sqA0YtLkS2YXOVciu9i5brboa1ws9gBLaKZaO6vYL9Z/fRsJYnnXLa+hCWaFEOsr/B2U9Rm+3ojswjayNbNhkM3YEQj/fG4UXn31VUycODHYl7usrAwHHnggRo4ciUGDBol9GhkZGeUpA7BGRkZF1YoVK/DSSy/hv//9L9asWQMASCaTcDd0QKKhB6x0x6Zoq79eVFVsxHUBl8STv4yY63rrQSWTP5aBMJlN4Mtx5QWWgKaCSLIJug+vqkm8D68adkp4lYFrxBcVFV61930txpY5noGWn1YHsL6I5AALAOTKwTQwIy07kKsuLORSy0Rfw1IVPgvMCojGxtWaIDYw0Cz+BHjfSZW/VFovQpxKq6/FgAezMTtCGuf99Zd44YUXIlHZ7bbbDiNHjsS+++6L0tJStW8jIyMjDRmANTIyKlhEhC+//BLPP/88Pvjgg2B9VHV1NdYsrECioYcXbQ0fY1mAzcDSYgAhOzOhldgAAGwGsiywlALEdOxsb3sa1ihfp0qWBVgAq5eAZGaizWRrWcNS2WWKAlFDg8TG8gBFp6jTxoJXoPDIa9RQw6ZItzrdwkyMNb0XKlON4kzNUVlY6Uqz0BIA+edDs4BRplOlvfY6y7YMsWFfssJwFgMlbel1tKlPW32N9O1k1z/GQAn+dZRAuO2JE/Hiiy/i/fffRzpzHerQoQOOOOIIHH300ejatatyDEZGRkYyGYA1MjLKWw0NDZg0aRL+85//RPZttdIdkKjrCTvVNbK2lSwLlPQmlMx1hZMuslmTnUN8gA3ZwCHxxEzHLtxf2vVsOJdGsiwg0TRh58IrY03RibQjhVe/4ihzJAWb/Mm6DFzD0KIDr7rgmunXOyaHPV4l/TYd1IoANnSOlTa52MXfF9EhIcgSrmtt7QALiD8jugCrmUbcZC4rAhVq091qRwNQNxrE+uLBrBW6xgHyh4JhO8E1M2IjAlkW6pP411VijTjlyh3w0ksvYfny5QC87dEOOOAAHH/88dh6662F4zQyMjKSyQCskZFRzlq/fj1efPFFPP/888HWCqWlpUhv6IxEqjesdEVkEhUGV19xgA1DayCXM8ni2cXBVMdGYMfSbmTSFoHWYFwceA2Dqy8OwMa3yeDCa3xizoNXHqg0F7wGx2ZPjHOKukYOLFIKcQ6+sl4P5zxzpVOMiWcjeo/CJhy44r1mLYDV3BZHB2D1o5z89d7Sdn6Her6zDuMdx/lbS0NsPkWdcvEVB1mLc81DNsxybXjwybMLwyzj9McBWSpJgEAYfedBeOaZZ/DFF18EbTvttBNOOOEE7LHHHrByidIbGRlt9jIAa2RkpK1ly5bhmWeewSuvvBIU7OjevTt+/qEKiVRPMCQ9uMtMmnjg6ssHWC64+jZ+9FViEwFTHTtZf5noKzGWDa2+wvDKg1ZfIXgV7e0YgVcRMIThVQYoxYRX0W0hBrB5w2vgYCNFYSXnOiKdIkwyG9X7hRyKMxULYJsr+hqX6+aeOpxPP+CMVfQaNzWI9eW4QoD1FXlYKLPLXEulNo1pPsAGHURBlkqaxv7PJ07Cs88+i3fffTdYatKnTx8cf/zxOOSQQ1BWVibs18jIyMiXAVgjIyOlvvvuOzz55JN4++23g0kHc6qQSPWFna4GQ3SCSYrJb1BsSTJJguvZSW105ZDSF0u7HiyLwBXw4LVBo9CJau9YhOBVAUmks362JeA18OPmlzLM7auFo7BEhUNpLtIASh0wJZdaFGALir7mo0JhGaExq17fpgqxgPqa6kvjfLOUo/SlYyOSy+px9NkD8PLLL2PDhg0AvHWyxx57LI4++mizDY+RkZFUBmCNjIy4IiJ89tlneOKJJzB9+vTg71a6ExKpvrCcTtH1rTYD2RZYSgISCQtuiQ3muNJiImRboIQFq1Fik7BAFivcxmKAxWDViwGQGAMlLTDHVdoxIqChUWjjFwFi9WobkvmxmAeIPrgqAI7C2xUJjdTw6pkVCWCB4kVhddOIiyGN4kx+ZFVZnMm21WO3bXXlZmY1fSak/VnK96/g6GuuKlJ/jDE1wPqQb1vqz7sOxCaTaj8662FLkplfFOurkwllf1SSUH7XqSShLOikU/QpqB2Qpy9CGudcszOeffZZ/PTTTwCAiooKHHXUUTjuuOPQuXNnqV8jI6PNUwZgjYyMIiIifPLJJ3jssceC9UqWZQGpaiQb+sByo0/GyWZwMyliHphyJk4ZcAUAuASLUySJ7CYb5hIXOilhwQ2KO7mwUi6/2FLcjufLCheK4oOpD64qG9iZasNplw+v4cqqjuPtGctLV/Un347Lh1eLBXBBTizqKoEbCq+XE01sNeG1ybzA9OHAUQsArA8thUKuTlGmjE08YioszhSOCIp82k3fHa6ND6++JOcrvDWO6D1sUYAtJrwG9ppp3eHUftHnWRdiVX5ygViZHw2bcMqutPhayE6roFMz2hBcXHH7vhg/fnywDU9JSQkOP/xwnHTSSejevbvwdRgZGW1+MgBrZGQEwJvMTp8+HWPHjsWsWbMAeBOIdF03JJx+sNyyrKJLbkl0UpYFsGFw9eUSrHCRJDvbJg6wYSAN95WzDWedWBxMw9Aqs/GhNbCJwytvO5A4vPIiRjx4DYErwIHXoCEGmbyKpbwJbY7w6h1SJIAFmg9i4ym1+QKsRjGmuI0o5Tf+OrhrYOO+4zZxkI0DbNgu0lf264i/j206+pp1XOxvvPcxfk54n+tcIVbkK1eI5fnxo7CKvqiEYxN/CMWxySrCpFH0qWg2mYJP1//jQIwfPx6zZ88GANi2jUMOOQSjRo1Cr169svwYGRltfjIAa2S0mYuIMGXKFIwdOxZz5swB4IGrU9cdttMfDKVgLjUVZuKAKxCDVx64ApHoKw9cgSi88qDU78uPvkptfD+iCp0hMOWBK88mDq5ADF5F+1iG4VWU6hiG1xi0+hLCa2DgNtmJ5E9k8wDXSFetNQorWguaK8BqFGES2ajWrPqvR1bEKehDZOODrAhgw3bgA2zQVea9bPPR16zjM22y91J0XsKf73whNu4nX4gN+xFBbKwvLsQCke+1yCZShElU9K45bDLjIRBuufdwTJgwAZ9++ikAD2QPO+wwjBo1ykRkjYw2cxmANTLaTEVE+PTTT/HAAw8E4FpaWop0bXfYTj8wlAa2zCWAiAuugY3jghH44OrLJTDHldowl8Bc4kJpTiICU13diKR7JgbjUazv8iocS6DSh1cZZDguKJWSTsaV8AoA5MrhNTQmpdoiwOpAp45UBZEUfWkXZ1IVFSJXXnjIPy+q/lySAizgvZ+tCmALhVdfOoWbFOcGRIVBrC9VAThIADYsBQhLK6mH7RQ2xSrmpG3Ducf84+Gj8eijj2LGjBkAgGQyicMPPxynnHIKqqurpT6NjIw2TRmANTLaDDVr1iw88MAD+OyzzwAA5eXlaNzQLQOuJRFbSlhecSYJ6JHNvKJLggJOlGBwbY2iTDaD1SjpJ8Hg2gx2g2IsFoPdoCrcBFh1Ehi0GIgx2LWKYksAWJ3ExjetbxA0MO/HFayfDYlSKTUQOo4aLF3+2uEsG4VaEmA9syLcrnTWyirELCYdC7OY3rrbIhdeKrg4k2Wp33cdeM0UIVPaqFQsgA2/H1IbRfX0DMBK1w7rViZWFmJSQyyVJL2icaJ2xkCltrcdmURuWUL5IM8tsaXXbzAGNym/xit9+DaC+8gdD47EI488gpkzZwLwMoWOPPJInHLKKabYk5HRZiYDsEZGm5G+++47PPTQQ/joo48AeE+yncaeSKSiEVcgk75b4k1+eJMbshncUr8IEnEnHZRgcHybtLgwk1PqTS6tNHEBNurH5QIs2azJT4q4AEtWZpLluHx4tRjchF+0ifjwylgQtWBpVwyvfkTHcfnwykITZhm8+hWJU6HtdETAE4qqCi/tYUDR3O9VpNYCsH60s6A9Y5mlB6aSsbA4KPn2BRZf8iOnOkWXhDZBISjJuQ4Do8hOF2C9wahtdMYidKEJr8EBxYNYgH+uc4LYJkecjpjW1jo+6PJA1gfYwKUAZN2yUDEnAciGs2a4EMpYkw3xr/VaNqG+RCB76/1H4OGHHw6KDJaXl+PEE0/ECSecgIqKCu4xRkZGm5YMwBoZbQZaunQpHnzwQUyaNAlEBMuyQG5PJGggrFR2xDU8WYkDbBhcwzbhyUYYOAObdHZhJh84AT68xv3w4JUSDE5J1I9dHy3c5MbWtmYBbAhc/deTBa8hcPXHwoXXcCpiHF4ZZ4LMg9ewTRxeg+Nil25OSnDW5T0OJbzLvya8CvvgqRn3g1VBpbK/DLiqfKiqCmfBK5ANp7zCT/HUX95rjKW36hReyrIJp9HqwinPTgWWPADkVdxWqRgAy0urLjLE+gqf77wg1nMS60gNsbxIbRhm4xAL8EE2DLEAH2TjSz8iABqG06DzbEh1S7Nfs9Am8zp4IOuUWLh1zKGRJTCdOnXC6aefjiOOOAIJnfNvZGTUZmUA1shoE9aGDRswYcIEPPfcc2hs9CCJoQdsbAXGqiLrO+Pg6isMsDx49W2slMsFVyAKr3Fw9RUGWLEfD2Dj0Br24cMrD1yBGLzGwDX8euzaxixoDY8jAq+89XNheOWBK5ANr4LJPxdggSbYEaxnjVzedbbPyRFes/oQqRnWwfLWmOYMsDF41e0nbMMFV1+iysDhAlCitauKwktZwKSy4a0Djb/fImj07XKJvmYPRm2jGkekmxyjr5GDJf41ABbgQywQK4aVD8Q2OfL+0Uwl5o7R98GB2MAmA7NxgA3aQyArql0QACgPYoEIpGYBbKyda8MBWb8fAmH0jXvhgQcewOLFiwEAvXv3xjnnnIPhw4frfU6MjIzanAzAGhltgkqn03j55ZfxyCOPYO3atQAAhs6wsQ0Y6xDYNRVnkhRVcjI2kgkQI+ICZ2CT9goz8cAVaIJXEbh6PlxYDnHBNfCT8kCaB65ABl4bHC60hl+PXZeSFjcJAFZU+MVxwRoa5RNhH15lNjJ4BTzIURRjIiI1mOrYqPqQqchpxLpb1MgkK7IUgVO5E3m7RmVglU0xCi8RSYpF6cKp6xYGsN5AihJ9LQheAyfNB7ERqWx00oQLqVzst0uuz4B33RNBLNAEsrJ7hZWSF+gDkdjGh9RGhw+5YRuOD4KL8y8dirFjx2L16tUAgO222w4XXHABhgwZIh6TkZFRm5QBWCOjTUhEhKlTp+Lee+/FwoULM3+t9MAV1ZGJn5u0QAl50SSwTMEjgdykBbI9cJSOSzanTTC4CQa7QVKMxPbGIRsrIw+UZf0AgF0rLtwU338228DzYdU2itf3+YWdauvFfojkBZsyE3iql/gAPHiVQFtLwGvQj46KlEqskgpktcBUNRYNeNUprCTtwt+SqcD3B7atV1Sp0OlAMaJdzR19DZxoPHywbGURLtUDBiST6vNaorZRphKXJQHZx8SCsgqwW5rwHmrKbJI2mKrKueL9cUss8bVc8yGHU2rz6xwgjZPP6IOnn34adXV1AIBDDjkEv//979G1a1elXyMjo7YhA7BGRpuIFi1ahLvuugvTpk0DAHTo0AHr1/aChT5gocmam7TgllgZWBMU7EgwuKUW4AI2x8ZNWnBKMzCXJi7AujaDU2YFUdG4vGhrqGASB2DJBpzSjA/BWMlicEuZV7ipjt+Pm2BeerEIXu1MlWTHhV3DiXgyL9XYSrtCeCXLAmyWic428Nez2ZY3+asTgKllBSBBjZlxuAKgDkdeBZPO4PLeTOnD3L5kKiQSqwOVgQv5WlmpVNWDbVv9OjJ9+aAlOzd+ZJQ4kfQAYAH5++MDqsjGj77qFFVSPJgpqDCTjjZ29DXsg2lUk2YWWEJxfv2tdWTnrkRuQ4p2IAOxgBBkqSy6tpQnP/opAlm31A78i0DWz9YR3l/CNQsENk6pDUbi675vA4ALsk+98Hs89NBDeO211wB4hZ5OOeUUHH/88SgtLc2yNzIyalsyAGtk1MZVV1eH8ePH4+mnn0YqlUIikUAafWGxgbDT0SfuPrwSAywne3IQgCu8dVPMoQjAhsEV4MOrD64Rm5CPMLgCfHj1wTXwEQNYH1rD7Xa9C4Tc+OAaHkcEYDPQ6g0CsNIceGWhNbLMS12zapqKMvnQGpjz4DUDrk2vNwawPrQGTkPw6isOsXHY4Uw2cy7g1JqjsGHgyGPPWC14jUMNr59IISTO64j1E4ctaWElZENsBGCDfmPjCvsQQWw8fVhVVElQFTcnH/mouQo3ZTnJIfU7DLG+4kXA4nu78s5ffH/YuE08BZj3kExhEwCsr/hHwUL2PqsxH/H0XR7IBstJBCAbX27Cg1A3thQkbhMp3icA2bBNHGKJeeO4967f4K677sKsWbMAAD169MAf/vAHsz7WyKiNywCskVEbFRHhvffew913340VK1Z4f7SqwUqGgFlVXuGkTOTTB1egKZ03DLBxcAWghFcgCrBxcA3aI4WZBAWTMgAbB9egvT7jIwauQT+h6GscXP1xBPDqgysLt8fgNQauXh9N0dc4uAIceI2Bq/daQvAaB1eAD6+AGmCBCFBxL+tF3D5HpGapSKwDllkuNNewivqI9yNcPxp6LZy+VNWBRetSfZDlAiwQfZ94PuIgK7JpGqi8XcdmU4u+RjuWf0Z4EAtkn8M4xMZteOtY45CqsMmCWCACsiRa5xrywVuDGgbZrHoIHJDl1UwIQ2gcYOPtALIr2cdAllcvwQdZH2AB7zt3zZW74v777w/ulbvvvjsuvvhibLHFFlk+jIyMWr8MwBoZtUH98MMPGDNmDD799FPvD6wcLDkEsLuDMRbAKw9cfVkOAS5lgasvH2B54Br4SBNA2dAZbm8qziSGVx64Bj5SBJYmLrj67Xa961VITnDg1odXDrg22biwa9PR4k5hwM3AKzGWBa6BeQZg49Da9Foz8MoDV0AMr758iBUVbcpMMKWXdNeVpzG2BoAFPDAQgYYmwBYEr+F+RPAKeK9F0o8MuKSFleBBrBBggab3SuQjDLEyG2+gwnEo1yTq+NBRa4y+RjuXf1ZEEBvYEB9gw+0AH2JDNtJiTX7VYR7EAh5o8qKwMR/CIkpoAlluUT+3CWJFRf8AD1R5ABtuB/iACjSBrKxwoN3gRCAWAIjSOPWknnjiiSeQSqVQUlKCU089FSeddBJKSkqEvoyMjFqfDMAaGbUhpVIpPPHEExg3blxwA250+4ElB4Kx0I2aIZhQCgsoMe8nDq5hkazmh+LYSD/5ihDZ05Dr3gF3X8Og3Q092eeMhTmZwk0kHitLu7AaxMWf4JBXdVg4RhdIpeXwqAJYcoG0ZAwASFVcRQWwvk2eKloasbKjAosa5ROFy6ebImwXo9FJ4T5ag1pD9FV2vAxgQ8cz1XvaAlWJSQKggAJgM5JWEwZAgkrvASQX4fujdX9RieNi3CMnY8yYMfjkk08AAH379sWll16KnXfeufD+jIyMWkQGYI2M2oi++uor3H777Zg/f773B6sarGQomFURsXMTDGQzYUXeoKiRoHKwm2RwSpiXYiyyyfQhbgfIZrAbxce7NpAQVB52bXhjSAOJBkEhEJsBDEjUCoo7ZSKliVrBHqmZiK3V6CLBK+7EvH1krZQLe0NDdnvGBgBYjaAok9/OK+rkt9sW4LhAKiUH0HRaDm7FiMD6NgWqoG11LFZ4sSdVu6oPxeRbVZwpp+JLniNZZ+J2nSrFOu2qcbZUHxIVHH0txkMLy26yEX1+LOZtryN7rSVJ+edPBag6kFsgxAZRWGnBJ1tatdgptbkF/MLtvAJMgAevflaOLbgHeD4seXsZv52IMPqqYbj77ruxatUqAMDBBx+M888/Hx07dhT6MzIyah0yAGtk1MpVU1ODBx54AC+++CKICMRKwMq2A0PP6LY4oTRdK01ZAEsJhnRZpnKwA1gcuHSTDE4pE1cWTrAgnZg5yAJUN4FQdWJeO0M6VL04DrA+uPpjTNRzin/YDG4y5CMGsGSzwIfdSFkAG0415sJrBlwBiOGVMVDC8tKGa/kVh4M9Yh03e0udWDsye716297w1q9mXoNLfDBTrX8N7DQA1reLSwdCdMYASCf/SpugkxzXyvrgqvDvb4sihVO/i3hRJp2U37DiBZhE7aL3Ld6f7H1rrvawjapdpw+ONnr0FfDg1XdlW6EK37H3xQdYX6Jz4qcCiz7nBUJsUaKwYR+cz184PZcHsuEUXx7IyoowAXoQG156wrMJ12XgtadLXRx9QHlwf+3YsSMuueQS7Lffftz+jIyMWocMwBoZtWJNnToVt99+e1B4gkr7gCqGwHKTTcWTwutLg4JDUYANwyuQDbB+1DU4PgawYXAFsuE1DK7e8fH2JnBtsokCbBhefR/h6GsYXIPj65oqD4fBFciG1/ga2Sx4DYFrYBMG2Ay0hsXSbjT6GgZTxoC0k1XYCeE1siF4BQQAGy/gxIPY2DFFj8LqQExMOUNsHCByAVhVEaY4vHL8x/fz5I1fVlVYCq9Bn5IKwp5DeXv8vdOpUtzS7XEbVbvIJqRmj77qpLtasYJC8QcdsYJeLJ4qHH/NvLWsYR+tIJU4ay1sVsXi7DTjOMjG16nGQTbeHgbZMMA2tcePV7SXZb/3YZt0udf/v28ZgVtvvTXIcBo+fDguvvhidOnSJet4IyOjjS8DsEZGrVA1NTW455578MorrwAAyKoAVf0CSFZHK//68Bov0JQB2Di4Bu0ZgI2Da9Ce6SMOrr58gI2Da9PxTQCrgtc4uPrj86OvcXCN+Kh1s8DVlw+wwuJOPsBywBUIwSsHXAFEo69xcAWi8BoHVyALXn1FIJY4sBkHWJ0tdCLH5xiF1QEQjrQBVgQPugCrKsLEg9dYH3F4BThwyuuCSA9cs/rVLK7Ea/ffP91ob6GAqeqjudozam3R14jb0OcmC2R5EAtEz62oIJPvo7VFYYMDQw8eFRArKrTkg6yo3SvCxC/+57X7xyvaOQAbbicGOGV+Kr+DM47qhvHjx8NxHLRv3x4XXnghDjroILPljpFRK5MBWCOjVqZPP/0Ut9xyC5YtWwYAoLIBoIrBAPMmElmVfznwCnhgKSrgZDnI+FBVFxZU3HW8SYr4eK94klPCL8RhpQlWmrjg6R9vpYkLrv7xdoP4eLuRYDe4XHAFMvBa53DBFfCrDqcUFYcboxPf+Ov0AVZQlVgEsEAIYuPRV18+xEogryhR2FzSYXPpH4Cqgm/BhZ58KfrgwSvQNP5mK8TkuvIKx0SS7Xs04E/2/um0F8NHEcaw0aOvAngFNB58qAo2ua686rBLGx1iZRWJvYrFkvPjkrRSsJWSVxL2Kg2L3z+7Qd4e2Agg1m/3o7C+Hvn7SNxyyy2YN28eAOCXv/wlrrzySnTq1Enal5GRUcvJAKyRUStRXV0d/v3vf+M///kPAD/qugOQ7Bo19Kv/CuZdxACS3dMZk7ZTpjpxvu2ejbyyMVkI9n7NbvfGl6gXF3gCxO1kAYwkxZ0sBkaERI0ADhkAAhIb+FWFyWJgLsGqaRBXgCXy4FWmenE7EckrDrsk3k4n7EN4vGYUVqZiQKyyD8VaWZ21tAJpganqNRZaRbglqhS3YbXm6GvgXvIAhDHmVR2WfQ9kW+8A8occ0ADYZAKQXe9VAFtiSz+nsu1wAhtRxWJ/DIr3QFhJX1eq+xWvf3JxzvG9MHbsWKRSKXTs2BFXXnkl9tprrwIHY2RkVAwZgDUyagX65ptvcOONN2LRokUAACrtB6ocEkRdgaZ1qn50Mi4/VdePbvLanVLmpf9yCzQhc7yoncEp5RdvirSnAZvDfmR7EdkgvZji7aypvYHA4pmztteHlSYuvJLV1J6s4VSdtLxUZLvR5cMr8yZaVqOLRE0qa9JJFgPZFqyUA6tWBLcWmOOI4dWHIn/LHc7llygEp7zLcziFWABwSnhtMhTb6UgBeLJCSHnvGasqxFQseAX0ihLJO/L+Fb1W25afQwOweobNBbF+/4rjRRAbyI/Eij4HLQGxgBBkpRAbXmIheD9UEOtk2uPX9Hg7774FAE4ZA4hfeBBAsEe4JXgo6kdghYWgMu08/2PHHI2bbroJ33//PQDgiCOOwPnnn4/y8nL+izEyMmoRGYA1MtqIcl0XzzzzDB544AGk02mQVQa3w45gVnXULtm0zpMHsJHqvpztb7KqB2e1I1QdmNfuwSmx7AJN4XaAD7A+vAb+YxMNH1799jigujaaKg+nogDrg6uvOMD64OorC2BZNEJgNbqR6KsPrkE7B2ApAxpCeA0DUSothMgIvHLai1LASeQ7H+UBsKotaKL+cyz0VEx4BfivLxeoDPelqjKsGstmqJzWHRYbYuN9FwtigezPQksBrK94wW6dKKwvznuiC7AAH2LD7TyIdfw6DgKIdcMFBOMQy3KrVMzz75S6+O3wSjzzzDMAgN69e2P06NEYMmRI9osxMjJqERmANTLaSFq1ahX+9re/Yfr06QAAt6wn0p12hEWhCsPJ7AJFYYDlFkhy4kWeou1hgA2Da9i/HTne+7ufxhUv0OS3B/5DABsG18ixfo2iELgG7aHoqx91DVdXLhq8xsAVQCT6GgdXz7/rpQ4H/mNVieMAy6vg2hCn++IBbE7wyvOfq3JMI5ZV8RX3ISn2FKv8qlLO61lzrJbL6TD7b+HXHAaTQmF5E1NeRXMKgdiWBFhf4c9Ca4ZYXqG72PmRQazDaQuDLK89DLJOvBBhDGRdXiFBH2QZv9BTGGR5a2TD/v3+/3Xlfvjb3/6GFStWwLZt/O53v8NJJ50EazP+nhoZbSwZgDUy2giaPn06/vrXv2L16tUoKSlBbcVguBX9AcYCAOXBKxAqcMSBV6AJYKUVhFPEh9egunA2uPp9x9sjvjPwGgfXyPENlAWu4fZEPWWBa9CeAdg4uDYd7wFsHFx9BQArgVdiyAJXz3cTvMbBFYjBq6iyazz66ouID6+hduEesEAAci0OsDK/gXtxMSRtgFUVeyoUXguslCvplP93VZVh1bg2A7U4wIaPF/XdHBALNH0eCoDYnAHWV2bIOUVhw8qcq1yisJHDSd7ug6wMYnkAC2QgVgCwgLpSse8/3PebD/8ef//73/HOO+8AAHbffXdcc8016NixI9eHkZFR88gArJFRC8pxHDzyyCMYP348AMBNtIPTeVdQsn1gYzmZm6agwq5XpEkyUZMUcWIOwIi44AtkqgcTgnRhbrsLLrwCHsBaDh9egcxkRXLFYa43Rl7RDStFATzzx05I1IkrF9uNLuw6FySpTGzXprjw6vl3wer4VYO9sbtg9fy1sVJ4BTyAlRVtclwxvAKAS/nBa6j/giTxHxSzEbQ1twqqIqxTqVfeubit0CrDm7AK2rKkGBAr678QiFVVJVYBcLGjsGFZcogVAqzfLqkmDIgBFcjccyTtVpqyAdZXBmRFEAvIiwp6AxA3WY2cvolw9ajBuPPOO9HY2Ijq6mpcf/312H777eX9GBkZFU2b593RyGgjaM2aNbj88ssDeHUq+yPdbXgEXt0k0FhpNQu8ukkgVZkddQ18J4BUFRPCq5tgSFXyI69+u1POj6wCmvDqgjuZIMsDehG8+hFZEbx6EVcmhFcgU/24OeDVl0a6rVDKSqmFlumUqMD9D5lk0s0Ya7b9FRlj0r4BKIEASckWJ4VKERFWjV0GSt5rb77bu+o9K6Td21e3GT/PsvNisbyrDgfHy9432UMqwHtQJZGqWm9BciF9kGU1yqueW435j12UMRMMLcHEgMu8CGxaslUOUz0okz37K2FIlWenT//f+G9w//33o0+fPlixYgUuvPBCPPHEE3ALuc4bGRlpy0RgjYxaQLNnz8Z1112H5cuXg5gNp+OOcCt6B+1uUl4B2El64GilAYvDUW4SGu0MLE1Z7ZRAUJ04XvwJyIBhUF1Y0J7MpCZzqkBSpgCT6PigerBDsDn1j8jyfDBOcaemdpa1PjZQBuqtNHG31iGLwUq5sOvS/IkMA6yUAmAdB6xB0E7k/cTXvsZspBFYWXoxswByQYLJb1DxV7TGUraljqqKri9VEaICqhVL2zNVfIXFomw7k37N6d8HDVmFYIB/3jNwLEz7DsEzCd63oF342ixpZN0Hqfj7HgZA3mciDI95n/dC2yWvLQKwom2SbBvcfZB9gJSl2/tRUN73JQywguP9vV253zeLNe39Kvq++g9FVBWJee2MgTLtjHNuCorAAiA/iiqsNqyIspZ5/kXAmC4Tjx2MIZ0BRd59CADSFZlqwhxY9gE2Uc9/39JBJWKB73KWOZ5zXhmQyvSdrIvXIEjj0F80YtKkSQCAvfbaC6NHj0ZlZSW3HyMjo+LIRGCNjJpRRIQXXngB559/PpYvXw43UYl09a8CeHWTQGMVE8Krk2RorBLDq5sEUlUItrfhtlcyJbyK5MOrtL0E/Kip7a0dCp6sx7OwwlFVQdTVTXp+ePLaGcgWR139PWdl8Nr0H76PgtSczweZJU1nVEY3fbi0LP6ENfy3vNYjFnZ7UUbxFJFdZf+WJX7tYd/xfkJwGkCyoF00zkg7p/8gymfx30Pd6KrKrjkjqcp2zmvLir7yonb+uWOWOFLrg6ws3de25NHYQte7qqL7yrRW3kUxXMCO87lIKSK8uvIfuuV7OGP8tF2GzANF+WuXRWMBfrqxD67pMosbjbUbCMS8+x3vnpeo89rTZQzpWMowIyCZuX+kyq1oRNZK4I0vy3H55ZejpKQEH330Ec4999xgSzwjI6PmkQFYI6NmUiqVwm233YYxY8YgnU7DqeiJdLWXMhwGV57C4MpTGFx9has6hsGVC4cJIF3Jv5EDmerGlWJ4dRMM6fIMvHLkR11FCoowZSY0vPYwuLI0kGigWHvTgVl7w0pSqZt85L8uSqkCJ4BKqSbXhaz79BzkNp64P9X/s7rjgIzs/2E4sKxIewCvwR6eHJiNHV9omnRLKg5O4f/z0m+z2uP+cj33xfy/ANAjki6ZkECsf6xqzasKYmUPiWxLDrK2LQdZxuSfPcW5yTWlWAW4rEFSAT0PCdeeZiBWNn43KU8rdkos6brZOMj6UWFikIKs3x4H2fj2PxGQZQx/m/AN7rrrLlRXV2PhwoX4/e9/jylTpgjHZ2RkVJhMCrGRUTNozZo1GD16NL744gtYloWGDoNB5VvBLRFUDs5EX52kB4XxNah+9NVPFY6LOV71XzeZKf4UO96Pvooirn76sCjiykLVh90kOP796sJ8cPXTiyPVg8Pz2LSXPhwH17B/v/owL+IapA8LwDUcgeVNmqyUC7s2nTWucLt2CjHvklrMFGLehDqUQiys9isrDBROI1ZVzhVJVXiogGrFkXZB5d6gWBQPSMOv37b52+XIKgMD3vkXrKsNUokl6279VGJhe/D6eO8PydvhpbTK1o8G7QJpn/9C2yWvT7r+1ZW8P346sWgNajilWFRIyXHla2AzxzPB8ZQ5XtQefH9F66pVlYh9ABOkAftpuUVLI87qwHtfpGnEjMERHO8DZLo81u5fdlyKpBHH5acV+2nEcflpxaK1sIl6F8T40VWgKbU4VcFvT9RTJJU4rmSdC2LAK/eegeuuuw5ffvklGGM466yzcOqppzbbWn8jo81VBmCNjIqs77//HldddRWWLl0KshJo6D4MTrvu3MJIgfzUKpGNIqJITBzN9NrFbYAHmCAII64sU31YFHFl/tY+gifmYUDmAqIP2KK5UwagRenCVoqQyAAytz0DsKIn/gHAijISdQFWdDktFsCKokEZgJXCg05F3Y1YrVhLOmnJhUafpa6beRLanEV6APGa0paUDFALqSBMoQcUIv/kyisBE8mLOJErBlR43zNZOxxHXhiMSL6VDpEUQJkrbwcKAFgAYEx7HSz3cKJsgA069mBRBLCAd50XAWzgRpV5IwoKZ74arugeFLQrouI2AHJx0lCGl156CQBwwAEH4KqrrkJpqWQ9jpGRUU4yKcRGRkXUlClT8Ic//AFLly6Fm6hAbf9fIdVZDq9+1FRk41VglKRaSdaheu1eH+LjgXSFGF5dG3DKxfBKltcmgld/LasIXsG8NuFaV5ZZyyqZOJBVQMowkRcFELknSMGLEWW2uSkADnhrKXNph3xNntaa0EKkSoVUyV+Pmm+7zhgUPgpd79km1NyAXEj/hY6NWfLviMXU29goKhArv4Oqz4hfVEzsQH684jtAFlNeh5QVeWXPmPxrZZ7+iTHx8Ux9HXeTDK7iLZTdK2XtQWqxql3BoMzx9pV9chbD5ZdfDtu28fbbb+Oyyy7DmjVr5AcbGRlpywCskVGR9MILL+Cqq65CbW0tnLIuqB2wL9LtOgjt3SSQrvDWAfmbtUfaE8xrt6HRzvGfANLl3oSAcQpiBuAqAFPXBtJlYvj1ijB5fnjwnVWESQCv8siy5hP1fOe+RFlrm6LtAJNsbcH8yKZtiSMbfnqqaPKsWi+rbN/I2zYUCnbhSTlvgt6CUdeNCqktBZcbG2LbuIgkey4z5n3fRQ+8dKt6F6rmhFhAC2KlfZDchxJkExCCbKKe4JSIH/omGhTtquPrCE6pGmSdUuCGF+bhjjvuQFVVFb744gucd955priTkVGRZADWyKhAEREefPBBjBkzBkSEVId+2LDV3nAq+Hc4H1zdJD8i6YOpECyV7R64BuDJogUo4uDKnGwAdu2m4y1OdWNvLSu/f79dFFH1x+RXCOYez7wxKOG2kLm4JrwyAmBZWal1AbzKVGhKrgpcWxpe44Cn+n9cORZ3Kgq8aiirCJSkvVnU0lC5MSB2EwNn5eqrfL77xdy7V/HgSwmZLhTRWBQUjQ18xJQIbVPDu/6Hi/XJQBaAFESL0q4AWacU+N1D7+Pee+9Fjx49sHjxYvzhD3/AF198IT7IyMhISwZgjYwKUDqdxi233ILx48cDAOq7b4vafjsFExHmUBD9zAJX1rR2FCgcXD0bdbqw9Pgcoq6+wtv3qLa+UYErkEPUNV8RgbkSeCWApd0meOWoVcBrjtKCsFzSjIsZeeX9vVgpzzlWQM613aiFpKomvBEAuVkgtthqiWisLCs6Bsp2Q8xhrtFYjm0x0opzAdlEXWy7uxjIJuqixx91639w//33Y/DgwVi7di0uueQSfPDBB/JBGxkZSWWKOBkZ5am6ujpcd911mDZtGggMdb13RKpL/4iNlfYqF4r2QmWZyKewOJKTKY6U4IOrHz2VgStz4RVokvQBEh/vR2BFUVe/ArIs6uqPUwSmfpEncRGmTB+iIksOcTegbzqeYNeTNOpqpVxY9Y4YXF0XVn1aPCl1XG+bClG7S4BfqIlz2Q0q2Qram/rh5IPH+xFI63KvM+lWQV1L3VYKTB1WVeVtEXjdmJHJlirqVIzXWCjAKvdd1XhgIugj+Jyo1mCrtsyRbunDQDoRWtFn3u9bUiSKGAMlZeuIAbdEQosMcCVFoPxtdZxS0Ri9f2SFnJgLpMvF59FKI6vScFh2Y6aasWALuaBd4UM2BrvBy3LKkpvGYV3XYvLkybAsC1dccQUOO+wwoR8jIyOxDMAaGeWh9evX4/LLL8fs2bNBzEZt/2FIt+8ZsXGTHrBZKeRdHVhnjajseDeRGYOCeWQRTaZ6wu5mIFnWruifuQDjrPP1ZTmAJSniqwOw/jY6QpuUC7smJY7Mpl1Y9ZJBpB2wRnGlYjhuE8AKRERKm0IANuhDpUKrBbfEbaUZ4dU7njU/4LWGtNqWgNhiFGgqtI9CAVbhn+kUMlMWalMUaZJVKPYl+9wzJq9yDAWgAnAlVYabbOR9pGXtTA6wAH8ruKh/xq0LEZYqi0eZBaR4K9IVLNiaJ3qgixP6p/Haa68BAM4//3wcf/zxcmdGRkZZMinERkY5as2aNbj44os9eLVLUDNwbzG8piFY56oooJRZx+oUmC4sg1eyvLQnYfoVAyihuJEXWIQpqDCs6kM1/1Vl41pM/NTfJW+bnLQsrZjAZFDnKgotyfawRKgwjAomigAbBUcVC1mX6k/ylTChiFQ1N7zqSFVR1//J5/iWVHOPoxj+VT5a4FwyxoSfG+ZXCdeplN2cUkV5NR4sqdbGehkqua9tjfahbpfZqOofJOpJmVYsW0rjt8tsnFImBWmv2BOnnVl4ekESJ554IgDg7rvvxoMPPqj3YNHIyCiQAVgjoxz0888/48ILL8S8efPgJkqxYeA+cCo7B+3eOlcFmGbaGac4km/jJiGMrLqJzDpVUdHbeBGnmAJwlcCvv1ZV2m6JJxE+mMquMMTk7X4/hcqPDnMh2SVYjqICcNoFZDZuZj2saKsbBdzmNHGx2MZdC1jIulTdybssHdPfDki2JU4x1s7651B0LmXt8b/p2GxsbczxMKs4EVZpH4rvDbPUDxwCV3k+PPGrkDcnxOqkMuu6UjyQ04JY6dpYPZCVdqEAWVmRJ2JySPV9i9r9dbBCkCVktt3htDOGB7+owznnnAMAGD9+PO68804DsUZGOcgArJGRppYvX44LL7wQCxYsgJssQ83AfeCWtwcQA1cJeLol4ptuBDyZB17hNKgIuApSh1VRWb/Iki/mxNJ7/airCl5lD/kVYKoDt34/hUiV2qwFrypwTTuRdNusvWZzhVeLqfeiLILymoSrtrvJ7oT/e65/C7epqhhrjEsrdbiQ/6vU2uDVV3OMKxefIsAM/z3fhwG+D1EfYR8cf/E9lvOG2CYHzR+NLUIfSojdSNHY+HIRVYaODGJFIJuob7Lhgm5sTKJobNP+sTGQZQx3fLwcl112GRhj+M9//mMg1sgoBxmANTLS0LJly3DBBRdg0aJFcErKsX6bfeCWtdMGV99GB1wDP7Gtb1TguklFXXOcd7kJFinKoQTXlJszvJJlgfz1YX7UVdIHHLd4kddcVWwYacnIK+9vPHiNqzngVVeFRGxbk1p6fHGg5AFmoQ8MsrZ6Kk60VwtidVOKNda/5q3wOHXW0MYPV263s2lEY7OircRvzzetmAeyjIBrJn+PK664IoDYu+66y0CskZGGDMAaGSn0888/45JLLsFPP/0Ep7QS67f9FdzSKrhJMbiyzNrXMLjGb65CcI3bhKOuMZEtB1cgO+qaPVh51NVfx5pv1JVsby1vS0RdgfyjrpRgcEpt/ZRhWbtoApJJMy5ogqKTRlwMqbazKcYerTopjyp41YTrguBVB0BbwTrNoqhY48zXT/izrRMxzcVf+G/hnzz7CNbFyoozFWldrFYBJ1kfBUZkdaOxVCJ7gqnqQ3791gFdnWhsMdKKdUA2WcupNh8CWV9XvjsXV1xxBQDg+eefNxBrZKQhA7BGRhKtWbMGl156KX788Uc4JRVYP3hvpKsq5OtcQ1ApeipMthxcyQYcRbqwsoCSDbilpIRbVTVFFVSShYKirsE5KmDe7E98pJMfB4qoK8Ak7YwILOXI4RVQR1JUx1stkF4IDaADCo966sClbPKv60NiwxjLSgHNS6pxqh4q6Kz1bIkHEzpqCdhWrUn116WKZBUpaqnooyifnYSiolAbEZNsQxZIa99Yxd60imJ1hUZjAQirFEchVR5NVRWCckrE+7Y3RWO9/8ch9u677zYQa2QkUSu5WxoZtT6tX78el112GebPnw83WYa12++Nxk4V8sq/dlNUVgSuThmaKhRz5EUsSQG3BDcpSU+1AUqQON3XAtwESeFVZxIgg05i3vkoZBugwM4STxY8eJWDqZXy9/YThZm9bXREYpliTmRZQFL0+N6LQkiltYVNkSYtBUCIrOKqfv+KCK6qTacd8rEyxvTSe5VbsGiCp846TpXaAsS2RLRZ14es4nUx1pO3xHrVlnjAoiFKWN41SgWYqkiqQ9KHgV5naoiVXdeLEY0lW555BIghFgDsOlJGYyEBXb8Pp9T7ueq9eQHEPvvssxg3bpz8BRgZbcZqJXdKI6PWpbq6OlxxxRVeteFkCVbvuDfS7SoB5kfyovZB1FWQUhxEVGXR0AyYOiWCFNcwuIrANBN1pYTAhw+ulmKvUB1wVcCr1vY6uvNCXpo2eRFVLXgVbo8DsJSrBa/iPggs7ejDq2WB8cDM1dhGx1eR0oh54JczuKoKPukcl6eP8Fjj447Aq3AMfgqzJDqqk9Iqstf5f779tIRkRZMKqgpchNenKhKmo5xSkQUgWwRwbJXSgFgdkFX2UYRobL5b7hBj3o8EZAEPYmUg69lIQFaSdpyobfrdKQUunzIPF110EQDg4Ycfxosvvijt18hoc1UruUsaGbUepdNpXH/99Zg1axbcRBKrd9gbTlU78RrVMLjK0oUFCoOr8EZrowlcRX1IwBXIpAtrgOvGiLpSwku30hUv6kpWzEco8sofiBd1jUx+LAYqbZrJaMFrHFwZyy6Wooq8xidpzCpO1CdHyOBCYM59asBoMxdkEsIrr9qsKpVV9bd8YEzHR2uGWFlbS0Zfw4oDbTEe8PA+h8V4wJOjClr/6isfH7HrFiWzfbSGaKzOOHRBViZdkOUPEFKQDWv0zB9w+umnAwDGjBmDd955R36AkdFmqFZyhzQyah0iIowZMwZTpkwBWTbWbP9LOO06cG0j+7UWEnVVgKtO1FUFrqKoK1lNacRKcAWEa3FdWx11DfoocH4rTBn2JygZcNWBV/4YWdN611zhlWPDnZyFo7D5pgwXOQpbUMqwTrpw3LYAH9KUYWX/TAyvuudTN2VYB45bC6jKlMu+tyoVO/qq83eeCt1XFth0o69hFSGlGGiKxrqiIk8ayyv86366TPD9LzCtWCcaC8jTir12PZCV6fZv12DkyJEgItx8882YPn26/AAjo81MbeDOaWTUcho/fjxefvllEBjWDtkV6Y6ds2zcZKx6MEek2o81QdJ0YQBwbSo46uoVelJEXS0xQPs+lFvbFDtlmOfD8n6k66Jcecow2QxOiSVPGXZcKbiSZQEJu/nXu7ZgFFYZzdTqRyOqqrBhGkCgGo9W6jAgh89iFFzKJ904Hx8tJVUkVmctcaH96Kg5o6/xfooh1fpXnX6Ktf5VaqABsaooqaO412imFDNHatL6o7GAOhrLGB5cCey///5Ip9O49tpr8d1338kHZWS0GakV3R2NjDau3njjDTz00EMAgA1b/wKN1b0i7W6SkK4guJICS26CkFaAKSUoqFDMbbcBtxQgGSBbHiC7ogIUViYqWmCFYZX8KsbKyKssjdqvICxjORfqSYsLWGkZ3BLsekcemc2kqvFS5QBkIrNpb49XmYjksObK94j1fKjKefqDav7LeMEFnYrQh3ZhKZ2CTMU4Zzrra4sBdK0JYgtVUc67rfajOPfMtorz0EZll7A1Po+CtbWZNmqu/WGbQZS01QCqkVKsutbr2KiisU4pk97/iDHpljuBH0UkVepDlVbMGJ5uaIeddtoJdXV1uOqqq7Bq1Sp5h0ZGm4nazpXRyKgZ9cUXX+C2224DANT03Rp1vbeMtLtJkkZcfXAV7dcKNEVdZTdELx1Y0p4BV2n1YKvwIkwRf4zfnx8R1YreCp1rrKHy4VW0taoL2I1eVWevWnF2h8wlWI0eEAr3M3QJliTy6q2HzcyaGBOvS5PuEesCjhNM8oRbdOjAay6px0UAqZaAWFE/wd9UUFhoNWFd6VQ21h2TjjYFiNV5DYXu7wpEo5EKfwV9pv1+dKoUi8YRvoY05/erGGtoNRTcC3QiqQKI9VOMmaMBqTo2omGw0L+KU68DsSKQDbbc0YBhLsRaFm666Sb07t0by5YtwzXXXIOGhga5IyOjzUCbwF3RyKgwLVu2DNdeey3S6TTqum+Bmi23C9qCqKsCXmX7tUbAVZoOrIZXFbj6a1GlaqGoq7KfGLx6Udqmg7x0YDW8WmlEJkzx1x+GVwBwbRZdh+USrEbHg1fBpCsCrzKF4dVi0SisTtQVyIZX3sSWV/SpBdRcECsrHhWBV5laYu9SXj+q/4v+lqs2BYiVSeccxbfFyQOK4w+NuJ/pfD7n8WPi0KiV1p5Hvy20DleUlSI/qG1EYz0jebNuNFYHZKX9cKKxu9/6MG699Va0a9cOs2bNwi233GL2iDXa7LWJ3xGNjORqaGjA6NGjsXr1aqTatce67XYGGMsGV0m6sCrqWgxwzTfqSizmuxjwyusrvgZWFXXVTRkmRODVK0jFApsAXrk+MinDjbKIKDWBa9iPzYIJmxa8uq468ioaZ3hCrYq85rLVTlwtBXg5SiuVMx9ozHLWjGnDLXVu2yrENue4w75FMKcRic2pmJmoH51IrE5KcebflkofVq5/BfKPEIeue04pvx8diNWJxvpKl/LHqgWxRQJZkXKJxoZBdv/xz+Kmm26Cbdt4++23MX78eLkDI6NNXG30bmhkVLiICLfffju++eYbb6/XnXYH2YlounC+UVe/erAAbr1UVzm4+nbSdawsh6hrkeCV2+b7l/TjwWfhKcOgppRhHhSS5Z1XKbgCUXjljcNf7yqCV8vy0ohl4Gpl0gvzibxGBsPU4NoGo7B5wauvXAoHtcSaV5VNsSC3rUKsTPlEX8PSjMQKU/Z9NzrpwCrxttHijEVqU8xMhxZKH3ZLZE9Y808pjtqo25kL6b2uGNFYoGkLPZGKEY0FohB7whvv4dJLLwUAPPLII/jkk0/UDoyMNlFtgndCIyM9Pffcc3jrrbdAjGH1jsOQal+JVDsXThnE4KoAUwAgO1MZWAi31LQ1jkCUqUAsjbrGo575yB9CgdvfsFikVNSXdALiVxAOjyvejwvYjSSdEFkOYDVqRilFkyoiD0xlkz8iMGVkVj1xIyL1BL5Y6WItkIarU2xJqyCTVrRKo4pvMdZeFgqvudhsatJJcZV9FhiTw2ux+vElK75mWUAiofaj04/ChhK2+ry0ZPqwsuiczjY4inZHvd+rm2CwZLCrus+E7OSD0StOqCqUSLLdCPxorKToIwA0dqQAZC/9ch5GjBgB13Vxww03YPny5fIBGBltojIAa7RZas6cObjvvvsAAOu2GYr67tXBTYQXzfTBlaTb2vhgKo6Iki0v4uTb+DdGsjkRRpb5u2J7HKVCT6J19oDl2bBMOrB0MkDeWlYrLbHxwVQiH17DacRhWQ6QqCMPXgWuLEcjrdjfA1Y22fLhlTHxhFcXXnVU6NYwYRUhDVZnH9aC92pVDkJzL1bdvloqPXhzWg/rA5bsNftR0YL2IWbKhyLBtjiyfmxb/p2OOCwAYsMFoArtp0BppQ8Hxhpb3Ki20nHFIBsUcNJYJiGFWKjTjhlR1hKVsJwy71/l9nBMD2JFIOvfV90SEoNsYOP9e/HFF2PrrbfG2rVr8Ze//AWpVEo+ACOjTVBt5C5oZFQ81dTU4IYbbvCKNvXohXXbDpA+AXVteOAqkRcxlbc7paoKxN4NLHwzjEMjMUTB1ZJHacWdaaRRKZQVdWUcyKUYuDLO1j8KeGUukGggqY0fdWXk/cAC3KQVs/GKOQWv22Jw44VJcoFXkVzyttnxJ3uCSEkWvKqiKboQm4/yqJorK7yke4xyLEJHVm7/z7evljjf+aqtQKwv3muOp/TGPx+ae7rGH5woP2e8djsU8eRBLG8fY56feGXh5ojW6kJ2c6QPcyA2fq3lAWg8xZgLsSzcroZhFcQCfIh1SjNt/v2C4yZ8L5Mtn/FtC43G+lJFY90SYMi/7sFNN92EqqoqzJo1K3gYb2S0OamN3QGNjAoTEeHvf/87Fi9ejHR5OX7edQfhBCISdQ37CEVGw1FXYZ85RF2lNnF41VTkCbFGASUd6aYMq6KuVkM2vPprWIFwyrDYTRhexTakXhPLgVcKr2fLrInNgtfwZFIj6uq5asYKkrlGYYtQNbeQiGzO/aoiroXAa0um+G7qEMt7IJNLJV5NeBX5jHz2eLDHg8L4/4sRiY3b8M5LDHS5W3S10DZWcXGrD+usadWIoqpSinX8WA5FQNbhFHDSjsYq1BzRWKeCB/uSaGxG+zzxFK655hoA3nKoqVOnyjs2MtrE1IrvfkZGxddrr72GSZMmgRjDz7vtCirhV1lQRl2ZPOpKNuCU5hd1zbJphpThLDHSuhoUO2VYBp1MEpn104il8GoBZDN5yrDFQBYDa0zLI6+FrncNRWGl8NrSUdgCfRVtvavuWHTWvOpIp9hSW1mv2hohVvY59s+rrKBSDrCmVQhM1o9sLakPsbzoa9wOKLwwk+54ixR9zSl9mOugeCnFka3NOH4APpz68iFWthymkJRiX7lEY/00ZK5dEaKxo6ZMwzHHHAMAuOWWW7BmzRq1UyOjTUSt8M5nZNQ8WrJkCe666y4AwNohg9HYpXOWDSUJbrkrhVdKENxSedQVNgEJRdpxUv2UlTTSl1Vi0Ii6EpOnzWZ86NhYqkqRrgJu4U00VCnDyTpXGnllDmA3uPLX7RJYyvVel0Y0oNmV7xY5cRWrcNHG2luVp5Z8Tc21Z2c+/eioJSFW1hez9AoL6WwPo+FHVVUYAFhCo9SrCk513uukuh8qko3O55yKBcwKxdOHedICZcWlj7mkLM5kOQQrrbE2VnCt9+8lMvD0la4UtwVVhlVLj5I62+nI5wnnnnsu+vfvj1WrVuH22283+8MabTYyAGu0Wch1Xdx6662oq6tDfZcuWD9o6ywbSmanC2fZJEIVhnmyCVTqejYiWQRKul5UVeDHqzCsGXWVrINlAOBCXrGYmLo6pKTwRmAjmRj47Xa9F52V2STqPMAlm39yrAzcEmPCbYiYAy/qygDiFHwC4G2j0ygnaa09YP2KxbJ2x5HbZMbjdSp7vJ+xaamtY1pCxYbXQosx+cCiqgCr60eltgSxuaZpy/wU+EBCB16bikhJbH3AlRZdsjSrYqvfcyrWwxHp9lLe65VBbJAaLLJhrPAIbeAL0mybQDopxZLLsVPivRYZxAbrX1X3M506ERbks2jmb7knz+ZSLjFi4mjskH/dg9GjRyORSGDy5Ml4/fXXFYM2Mto01EZmOEZGhenll1/GZ599BrJtrNotuu5VO+papgBTf/scmSxqAlcJvMKSQLKmfHgVihiYE4JXTn9+tNS34a19ZY4HpZEob3w5mW8jmRR4UVfZK2qCV9F4g74a3WDCxJ3EheHVAsCZqEXglTFQfMIcB1OLM3mNw60onTYeeeVN7jfWk/XmjMI2V+RV9X9hXznChWTyn5PPtgCxOoWzct3PVTTecPS1WOcm3/Ws8e89bzzxdF2On/C6VsosXZDZCD83CfW5CV/zCorE6jzMUShcvCkompRlEzrHgmwYJ2QjWtMaTh8WQmz4q6kDzDqXXQXE+iArs3ETcpD1IZYHsge//V+cddZZAIA777wTy5Yt0xi0kVHblgFYo01eP/30E+69914AwOodBiPdripoC6KuoZtaEGUV/B/IrEn1/yaIukZsih11lchPGVbCaxGjriow9eE1PMjwBI4Hr95aoiYbi5NWTIzBTUb9hOE16MuPwroEqz6VFXklmwUQyzLFmrIir+FJnCrqqmuTGZNS3DW+LRiFbQ6Ibcm0YR3xJumqQj/52vDUmiFWp3BWrvAq8q1R/Cmn6GvET+w4Xnpx0dZrq22U0dg4PPLWtYYjw6Hoa6Sf2Fi4hZliD12yoq+c1xOvLMwV7+tA8es457gCo7GAB7HKlGKd+1we0VinPP5QMjsamy6P3qd40dh0ZWguwsCNxhIj/HntYgwdOhR1dXW48847FYM1Mmr7MgBrtEmLiHD77bd7qcPVnbF+mwHe31tJ1JUybbKoK+lslZOxkUVdg+ITMnjN9J8rvIra/ZRhmU2iThB59edkDpCsE2yj44/XAew6NxteMyLGlCnDxJg8ZdiPwsrA1I/CymzCUVgZvPoTe1nkta1CbEvAay5reHXShYtlI1Nrhtjm7Mv3oVH8KW94DfxkjpetjfXfK1lf/nulUbiJW1U4Ix9iZTa5fHZEEVdiGutiw8Cc74MYTeWSUuzICjw5vo14bD7E+unDXD+ud46ccolNZsgym2BWzRtOPBorsAlHY3lwz43GWgyXX345EokEPvzwQ3zwwQeSQRoZtX0ZgDXapPX+++/jk08+AVkWft59h8yT5eyoa1y8qGuWjQa8UhheebKKWGHYgfSpNXMRTRkW2sjhlbmclOG4/NRjWWTWJXUxJ5fAVHv9UcZOkJ4GZKKqjpzImcbWENoTuOaMvLZ1tVTkVVfFKHaja6OjloRYnarOxXoveNHXXMai24+OirU9TrEisTqFm3QKQGkUvuJGX3OxyUCuTvSVFAWeGJG4RoEvF+pKxoptcgAPYnWKQOlEY5VSfbw0UopVa2N50dh933wOJ510EgAvlbimpkZjsEZGbVMGYI02WdXV1eHuu+8GAKwdshXSnSqBMtf7sQU3D5uAUsf7kdmUuN6PyMYiIOHK17LqzMV0bpYEMFfuzI+oym6+ftqxvFqxFxGVplS58kJNAMAc0rDR82M3kBQGmUtgij1gmUNAWmOfWFVBp4yd1gS5uYu5RPy0kihsW4TXYkq3v5aAWFVBpmJsSRTY6FUUVm7JZFnqc5hIaNjY6nEnbPn3mDFQMpG9Nj4mStit7yFJC4kYU29Lw9SACujZKB+IEsAUNv5e6YXK30pHpHQlwU2StFJxup0DKnFBJeIBuVXppvkIgFGjRmGLLbbAihUr8OCDD+Y9fiOj1i4DsEabrCZMmIDly5cjXVmOddsP9C7wMvKyPegMsqh4dhkbqR9/HSvL2POiq+F5iB+FjSv0J2EacRheBfvTBenAxLx0JF5mWA7wKlUIXkWVj8PwKrbx94mFN1EU+LEbvKgp2Qwup2qxD6+MSLg+zIdXRuS98bwJaRheZfsw+lFemU0mqsp093RtSxCbb5uvTRlec+23OSFWpyCTjooIr8HvgvPDwt8nYYGjhIaNRoGoiA3v/LFoUSYBxGoVZbI1bDT86ERfecXqsvxoRGi1ts4J2wjuK2E/IkANR2hFNuH0YRHE+nvIyiA2Xc6C8YogNl3B/3vEJrxuVXQ6WdOPEGJDb7UQYkN+UOJi0KN34U9/+hMA4MUXX8T8+fPVAzYyaoMyAGu0SWrRokV46qmnAACr9hgCqpBMtPyoawZehTYlrgevIvGirnF/AoCMiKCOvBIy6cBiZ5EKwoLd3ZmbuZnL4DWTniyFVxewGuQRU+YQ7PpY5DU2LCtNSGTWu4bHEx4+cwiJWjeA16aDoxMdq95pgleBH9bgNMErT5mCTsrIq+M2watIOinKcbWVrXCAaCEZUZuRpzYWSWtpMVG17qiR+jzq2OislbYsZVYF2ZYyGlu0MRdYGbgllLXelnNfi9+WmEtZkBp/eMmzictKy6OxPsRKo7EUevhboFTRWB9ilfvGKqKxPsQe/b9JGD58OFzXDQpYGhltampDsyMjI33df//9SKVSqOtdjbp+3cSG8agrpw02eT88wvPbw1FXnh/Vtjh+FFZy/wqisLKU4UwUNhx1jc8S/ChsOOoqg1c/ZVgoScqwH2GVpQw32UC81U4mChuOusZhkBjg2iwSdc0CU8srxBSOumbZ+FFYWcpwOMIqAtewjWht7qYQhVUBgHYhpc0g+pqrmiMKq1NRWEfNEH3Nasu8T0yRygtAryiTrFCSTlGmTAqztChT5vVoFWWSRU11xuwXiWrN0desRrUfH1Bl62N9G3nxJu9fP/oaOZ6i0dh0GcdPBrp9iM01+prlzvb9CLKyQtHYdJX4oakSYhlw7rnnIpFIYNq0aZg2bZp64EZGbUwGYI02Oc2ePRuTJ08GMWD1boO5k1WrLA2rMiWNuloJF5a/FlZGcCpAZSjeN01nvat/wxVEXX0/xU4ZFo5HtZaVIZoyLDJzkR115djEo67ZNiSPuvoqRgGlYoBSABatEGJF/fltrQ1eW1PkamOkEusUbdJRC8BrYCMDU19aNhqQp1MoScemJCk3YEyrLy2b1vJ5DklZ7ZjktyfAu07zlo7EbVRS3cMCiJWNR3NdrOo1ARmIldn5ECuDVHgQy7o0CNt/+dYEHH300QCAe++9F+m0avGvkVHbkgFYo01ODzzwAACgZqstkOrULqvdSriwk443nxPcSJjtwvLXpQqoilkEK+mCKeFVAcA6Igbm+E/bRQuKEFRZFN34GYXSikVjzqQMK2/YrrpohuV4acGyGzbL2MgmK8whWI0aNilXOrlmDoGlXfmVT7aVTthGp9KwI/dDOpBMRchha81qSXgtlnSr8xZDOtWqW1K2RiGlIsFrEKFUFUXTLYDUksWUdMZchOwLSlgAZ/1/0zi8yKoMKomxjI18KAVHX30/Caa8JVKCKasLu0kGyyFYkkr1TpIpU4qdUrWN/9BXtT+tagUQAepdDvxMrqSi+KBFsMvEJ+i0005D+/btMX/+fLzxxhtSX0ZGbU0GYI02KX3yySeYOXMmyGJYt9tWWe0+vAKAZTtgnDWtYXi1bILFs7EILGPDEm7we9QITeDqpyPLZAHgFmqSb30DoCmaKrl7MpJPBry+ouAq2mDeapTf7C0HSNQTrJQkEuogWO8qU5A2DIAsBuIVa3IIdoMbsuEXa2KpzAmwLK6fCLwyvp8seBVNDMPwyrEhwfrdqFHsjW9tUdhC1Vbhlfd7rtLaB7OF4VUVNQ9/H4RP/5opIigCQh9yZf0WqZiSdlGmYD04vwBUcB5lEKtTuCkRepjAu55Z0fRiHsQSY0DCCq71UojVeAigjL4CwWuWLV8J+1HetwAxxIZXO4juWQzBvVNkky4PjZdzPyYGOKHUYN5oCIBT2XSwCGLdqnTTuAQQa7XLpDUxMcTu9NqdGDVqFABg3LhxJgprtEmplcxijIwKFxE1RV+H9obTrmm3cSvhIlmWDuDVV/hey2wXVonTFHnlKIi6xm3Cd+ECoq4UPyZXePUPi1U25sIri0VqddKkeFHX2HzFcpAFrvHqx37KcMTGAtzwnM0hJOrcAF558go6OQG8yuwCeA3+GBt4vpFXizOp40VeQzbcyGt8IiuKvG4qENvW4VX2N5VaK7zyfpeJd241zkdO0dew4kBox7ao4Y2Hlzoct+P1FbPhrmnl+YkXM4tXT45HsAuJxGb1r/ZDjGVBZhxaOaUTotFXAcjqRl/jyrrt8Wxil1Q3mW0Th1je+lhV1pAQYsNvmQhiOf/P+hbHzzUvGstivyfdLJBl4d0NMhCbBbKMcOSRR6JTp05YunQp3nrrrexBGxm1URmANdpkNHPmTMyZMweUsLBh1wHB361kJuoqAUo/6sq7/ftR2HDUNfv4TFs46hpXLlHYTMowDygDOM2kDMfhNWtseUReI03+SdFNGeZFXVkTxPLgNegrA7FNxZp4Nl4UNhx15dt4xZqs+nQ2vAKZCCvzYCKV5sNrOAorSxsOT0BbIm24rUPspgKvOm1xtUZ45Sl+/kXQGT7HxU4d5o7LarJRQV2xCinJFHn98ad5Aojl+bA0xh0CRxIVZbKZ9xOLvsYVgKykuJN/7XeTgrTx8EO5pJVT9DXLVfgBrGgrpVwjsYLhhNOFRcWbIjbl2SYBxLrZ0VeOu6zoa5ZNBmLdSt59CNJobDAgTjR26H9vx4knnggAGD9+vInCGm0yMgBrtMnoiSeeAADUbLsF3IpSlJalUN6uAXZCfNezbAe2IuoKePNTEbw2OSvCWldAu2CEb1sQvGb6Kni9K/N8yFKGwTw/qpRhy4E06gogU9BJMWiXE3XlSQsoNda8MqaEV60tPTZ1bWrwmotNa5WqGJfO9jAqeLUYmKqQEmN6BZksxTrcIq93lVYU9v2IYDEMsbLzmInOUqlOkaiEeuyan3/VulfvwaP6XOvAKy/6GnFF8srDgHc/4y7/CMlyBPumZ40HQsiNpBQLbIJKxo583WvTAfJmShC4+8aHj0+6TenDgkHZZQ7ad6kJ/jRy5Eh06NABixcvxsSJE3VGamTU6tWG77hGRk2aN28eZsyYAWIMNTv1QzLpoDSZBpMAZSLhoqwshURSDB3McpFIOrAsMbx4u6V4UVreetmILHiRWJEIXrRSlsbsAtCuRCwx0gBXlqkyLKvkyDLAaaVJOhliDmCnvOioSH7RJ9nkwy/WJJvEMJdgpeU2cF2voJNMRGCq/V0BL2JGJI/m+P60Js0teGlubX21JLyqijE1R7GmYkXPiyGdStG6n1fFVkrBVjjFAMuErR53QhChDYkStvR65NtICzL5FYVlcGoxUDIBsm2QqrgT1IAW9CvzkbQ1ijsp3jffj0I6xZ3chGaqNKCuEA+9h7xMUtzJl5WW26TL1ZlHTgUpx+NUuU2RVIlYwuXW5mgyAErLUigpkW90a1suKssbAQDbv3xHEIV96qmn9LKAjIxauQzAGm0SevLJJwEAdVt1h9WlBCWZqGtJwkGSA6iJhItExiaZTHMhllkubJvAGMFOuLBtTjEnhgCSpfcl3qKiSDsyKcMKMM3AKyPA3/M1y8aPupK3dyq3cm8IXuPrU8N9sXDmNc/GUU8AmAPY9YDdKDXzIq+NXtqwlwLM80WwG92QDWetlEuwGhXFmsLwGi6qElYYXsN7umb5InUUl7NvrdCXL+WWJ0UEoZaA2GLCqyzClgu88n6X/S0Xn1K7VgCxxdp/OOyroLWzsSimqO9wNLSgAkh2U/RQ4IeSoUinBnjqRn5FEBtOCxZBbAQoRa8tbCMs7mQp3zcdeM1JLknT48MRWhHEhte+iqDRX/vq3Qv5fpzSzC+kuIf5p0hSpdi/tUuzmZjg97CqmjoQQWxZ+wYw5s1LRBBbWeFtr8MYBRD7m9/8BuXl5Zg/fz4+/fRTwQCMjNqODMAatXktX74c7777LgAgvccWAbyKFIZXkcLwCmQgNRbNDcOrL27V4ji42hSNwhKywdWOFWFyAZZmTfAqGncIXoXSjLxG4DVoCP3Kg9cYp/t7wEb8sGgU1nKApF+NOGYXcR2CV6FNGF5F4kVe4xDLi7zyIJYHr/EoLGcixo3CNte6x9YAscWGV97vvP/nMp5iVRcu5nlsLogtpt/46+WsA2Wiarzh3zUKKXHXhsb70ym2xOlfFYn1+oq9Dsa0+uOtRY1DLG9NaxxiuUCp85nnQmz2+5SPtKOvkT9kX+vcBMu+nvMgNuuaL+9bBLGRW2QGYuP3s3RFtr84xKYrOdf32JicKs4geac7PsfgQGw4G0wEsXbMprK8EXu9eyt+/etfAwCee+45TudGRm1LBmCN2rxeffVVOI6DdO8OoB5VWe1+FDZIGebAqx+F9VOGw/Dqy7YpiMLy4JUr5QIjDrwGHXoQG466ZnWZibAG+7ty4DWIwroAS/Nv+OEorBBeQ9KNvGbBa9DoQWw46hpPdybmRWG9asRONrwGNpmn7SJ4DUdhC00bDkOsLPLqT1glUdcAYmVRiWJEYYGNC7HNBa/xvxUCr+G2YpwDrTWzRX7vdFXIuc6yEaSghiJ7XHgN9yFbPxoeh2wdao7RZFFF4TDECte9WlbTGlyNIlHSQkqZcyMsyITc04mFUVPfjx995SmUUl6s1GHxwdkPP3kKQyyv8jAQjXzyKg/7EOuDbBB9DStY8+rZpCvEYwpDrOgWH7nPit7C8N+r+NHUcEpxWfuG7PYMxPog60df4zaMEY455hgAwJQpU/Djjz8KBmVk1DZkANaoTSudTuOVV14BADTu0FNol7DVUVfbboq68uCUMUKyJI1kiXxtbVCRWAavtlesQZUyDMox6qoCZmlfTRAs7c9Vp1z5a2dlfiyHE3WNu3LQBK4yu7Qrj7xaXoVMKbxmJtPKNa9E+mnDxVCxILaY0k6VbWZ41WnLdTzFUktDbFGjqgXAa2g8Unj1pVo3rjseSwGUGT8kWxubqToutfGV1Cg2VUA6ccTGZmqgZBo2NoNbklB/Vor4WZIWbspArLq4E4FkBZd8d7K6CEHBJXmthgBiVacozY++Rvp0AbdMcR9gANopbpbwQFZUiyOcUmxL6nUc8b9/Y/fddwcR4bXXXpOPy8iolcsArFGb1rRp07BixQpQeQKpQdVcm9JkGh3K61GWFBc9SFguyktSSEpsGCNYFmnWIFEUakr7T+cldv5TZVlVwkyhJu46V38sOhHV0BNsoZ0LWI2eL1nFSeZ4kV6ZvEJM8omEn9KlLNbU6MiLfrguWGMazHXlk8VMpWFpKqG/llU1wSNSTl61C2mottQptpTA3MLwqltRthjjKaZa+n0DigMmWimp6iJKWvDq96dTtEllI9pWJyRlQSa/L1sB58hkfyh8KQspAd42Nhp+VJFYSnoFqZSp0ExeSA8A3ISlfBbqba2jsFEVbrJYE7zqXA5VNoyfYRQczrwIraooU7qMwVLUbEiXAVaKwW5UfU4AqIrhhzKgRKrqUIcEpw5HWF3b1aB9WXYENqwRI0YAAN544w2zpY5Rm5YBWKM2rddffx0A4P6iOms/u9JkGu3KGlBiO7Bk1YgtFwnb9Z5iCmx8eAUykVpBNDeod2QTvwgDAXBUd32Apbx9YJV2fheMD8M+vAIZyOVlYPp+MkFjUdEn1U3fL9akirwyP/Lqj5vTn5X2ABfkQS53Y/tQynA4lTg67kzKsKqIElHTPrCi9XDxrXREaXh+P5KtPiLwKprgkasHQc2xr6gI9nTXiRYTXouh1gyvxYjChttkW+IUYyw6EVNd5Vq0SWSj4ScSVdXZgodJ4Cs0JmFBJlUhJQBIWE37sWr4kUFsGDhFgOqGfYlsElbw+kUQG4FX2UcmXCRK5/MnuEz5qcOMxBk7jqK4kw+v4aJMQvk2jRCDbOjtEkFssDcsMTHEVoW2xJF9LDP/yiDWtrx5TPuyBiHI3ph6ER06dMDKlSsxY8YMcYdGRq1cBmCN2qw2bNiAqVOnAgCSO3VGWUnTjaA0mQ7A1YfXskQ6EoVNWC5KE07khlCScCKpxj64WqEoqJeukz2erOWp8XL4PHi1KAqeLjxwDaXMkoVsm9haVt5EIwyvIoXhNewrApU8eGXRKGx4vWu4anF8XBF4FYw7DK+RMYUrVMbXuzIOxIbhNXAem3D64JpWnCidfWB9u8iLyYZYbuQ1PrnTBaDmgFdfcejTrdRr4DX3YwqBWJ2/tTC8aqcOq4pw6RRk0in+xPsbzybeHw9iE3ZWBkrkmiJK5eXAZ9iPDGIjx9jZD+t4/cUB1U3aWYCUZZOIXa9EEBv/G+/ZIS8tOPaghWsTu1zF170KITb+9vK+hvGvBaeycLo8e0xxiE2XZbuOQ6xTEcswEkEs71zG/lbVoS7y/4TtZoFsl6raJheZlOI4xHaqqANLWDj44IMBeFFYI6O2KgOwRm1WkydPRmNjI1BdBqtHWQCqYXgNK/z/cNQ1LMbIg9qEE0oZzr5bhqOwsuWZwbG6kVcfXmMKIFZRpt8v+hQUdOL4iRRr0tgrVvikOgONymJNzAPXRH0UXiM2mSsRD16zzEXFmsIQy4NXXz7E+vDKrXQZisLK4DVWuVgladpw0F8rgFdfPvzpRFt1CyAZeOUrH4jVicq25PlGAfAaH4tGgST5QEJwKPIV9iNKUw5DLAdegz60Xne4P07V4RjEyta0+hBLSVsYKfWvYTx4jdsAEL7+sH9h4aYQeElThzPRWOm6V9Wy0RjEOnkWdwqGlLnHpcuZ8DxFIFZwCsIQy31PfIj1b1/h6GtcmeOrOtQJA7NhiOWtfY1DrD8H8gF2ypQpqKuryzrOyKgtyACsUZvVpEmTAADW9p3BGENZwlvrKksZLkukUVnaKE3DYYxgs2jUlWeTSLiwFGtSmE1gFsnh1SIQIyG8BnKZcn1PQNOybFmfNyTw6t98VWnDlkPqlGEfggXARcw73m5wpfAajElWrIkBcEkMr2HpwJ1O5JUxeV+ZKGxRN49vCXj1pVWMSPNWsinDazGUC8QWq7CTbp8a0VcteE0k1H2qijEBUFYvztgoCzIx5hVkUthQaUK69h/wIFZWURiAB7GZ1GGujwzEUmlS7geAW5ZQF7q3xFAWtnFl48480HNKxSAcjKlEvX5YSySuOgw0QayTVL8+3hY9cVlpqG0a+dHXsOxG1pQ6zFOm2CKVOcr+oB42ErYbib5muWCEqtJGdKpoAtXzFt+Pnj17or6+HtOmTVP0YGTUOtUG7/BGRl768MyZMwEA1tDOKE+k0KWsBhXJRul616TtoENpPcoSYjKzGKGsJIWkLQYlyswaZMWayGVw0xZIVWnYZWAuA8mAOSjoJHbDHMBSRHmD6Kwi8hqkH8vmdA55xZqkNoCdIkU1Yg9eAcFT61B/liMvssTczBY4sommCzBHnTIcVCNWTbY1CjZ5blSfgxyAU7cqa2uS7niKCfptUUUDeKYZqdSInBcTXnWkMXZK2MpiRJRMqNNyfXhVnSvGlDMmr5CSRkEmBeQGUVWVr0zVZPWYVOfJUhab8iOvKojXkQ5QupKIaViMJFlJYTvFJd8p9TKJpDZlahsAYCkGS1HcCRaBFPfrdu3rpPMZAOjZfh3al9ZLbWzLRffy9agu2+CNjzHsu+++AIB3331XPk4jo1YqA7BGbVIzZsyA4zhA1zJUdLdRkfDAtX1JPSqS2VUXbMtFWSKFpBVdFxuXFdpCpzSZ5kIshSgrkXCDvWEjNi7zbk4EMNsFEpz+XAaWspTFmpgLsLTniwDutzYCr/6+rzw/oaJPXD8uYDc2RV6Fe9xlIq++Dbe/DLz6xaF4E8QwvKpg2U65XtVlQZEl5hJYKpPWbTP+5C8Mr5bAJr4PrGzCpmPnNkWDhRAbhtdiRg5bC8TmOo5CIXZjRV+L1W+hkBBbx6hnJ8qLLBK86kqjaBMl1MWIKLzNjfY2S6L+rKZ2Ue22ZJEKO6HpuiuD2GhxJ7FN4Et4nkLHar6NIojV2Rc2Aq8FfMyJsUiEVgSxfupwsN0cz6Y085pIDqhBFlCD98NTupyCWhAiiKXQnq8iiG3Xvi4oyqQqQgkAlclGVHLmPgDQs2IdEpaDhOUEEOsD7NSpU5FKaVC5kVErkwFYozapjz/+GABQsm07VCSiF+04xNqWmwWuZYlUJAprMQpuFmHF/08coksmnQjEBvAa9hOHWJdlFWtCrFgTc70boA+vInEjrzGIjcCrP04LkStAkOobcY6sSUYYXmVj8uE16C8GsRF4DfUXnmh5a2edJngV9ReC16C/OMTyIq9xiI3Da9ABZ5Kh2i8WiMBrk6uYL17ktaX3EG1O5dt/vhC7sVOHWwvEqnwx1nKRV0Av+qpRtIm3njUOZ8Tbo5V3DjTsiFPYKD5z4hdRynFNrK9YdJYHsR6YxsZp82ziY9LJ3EDW6+OBabx/HXgFkA2tnCGpoq/EGFzeWxe7JMfXvYogNvJaMhAbv8c5nNThOMSmyynyengQS1VpxLfG40FseE2rD7FxkO3Zfl3WcXGI9eHVlw+xf1zyADp37oy6ujp8+eWX2S/OyKiVywCsUZuT67pB9eGqIRVcG/9CH4bXeHtFshFliXQk6hpXScJB0nZAxLjw6ss/ngev2S+Aide7ZiA2HHWN24WjsLppw6Kn0z7EcuE1bMMyUdAGPryGo7A8eA3bgTE+vAIBMJPFolHXuGkoCsuD16b+MudGljbsQ6wIXjP9BZNYl8TwGp4IceC1ySzkS6RiQuzGUqHwnCvEbmx49bUxIVZVHMn/XVVBujXAa9CRN3ZhMSZowln4HPDgNas/wVZYIYiVFlrSKchksyaQFey/GoZYHrwGdiGIVRV28nxJ3r9MkwxM/XHowquwcFPoQak2vArOgSqdOA6xTimvE0SisU6Z+HxGIJb3UYlDrGCpEDlNc4d27bMLK/mVhf25TM/264Loa1xhiA3Da/hv3SpqMOz/2fvzONmO8r4f/1Sd7p7lrtLVRbrakNAuIYtNMpYIGIIwDiZgY7PYGIzjOIafbezETr7GyzcOXr7ek7AFJ/Er3mKwY/zCxDYOJCYYhBEWwqwSSCCh7S7S3e8s3X2qfn+cU3Xq1Hlq6ZmeudP3Pp/Xa14z0/Wcquqenj7nfZ6nPnXzzQCAO++8k+yHxdrK2iJnexYrX1/72tdw7NgxiIFE/8kLZMz2/ip2zq2Q8GoUyrr6MhAbU1EoSBFf0yIKVYNgKqOazrpC11sARM2h6v5SicKMPV6hq4xp1BxKVO0heDWqQDiWTq1P+qWOZl3NBUwIXt24ida8xqTiDslN3JRMpHK0VdfDbvaYWwVejaYJsessge30lXKVnuZer+uF11pkVtWPkSIdZ0ybUn0N0sZOqXWj1ZxkFHKNUoZMWlSAmjSSKtLjVa9TRrnvIGNbn8z35rTWvYoMzwGh4q7DBmJ1kZh/DbEpoyy5WmdfI+PJoWiVDoe0sG2VdBS2fdUQG4JX209vhH2L3QytUU+WDLCsmdYWO+OzWGndfffdAID+ZQsQxAXEQI6xo7eK8+dPYOcgbG4ghca2OgubUgxylRIoSwkhNSS11rWWLmW1HjRi1oSydhqOXTdpVOZJiJ9YRVmdyFMxssyIGaVhS9aZ12hfSkOOdfSiQZSAHKo4BCsNuTqu3IZjfWkNlDpuhmKgNMesSU4AE9Gu9PQAbyuaHk3ruWWD2xY8la1nSx1KOXCa7CPDsCnzbzc106Ycx2E7aAIo+73k/HU/7SacNR7qrGoCYnVfJrPDZpubHEOm5PPrydae2bE5xeal6+1zKH8DV6of2CvWi8lZ75rzdwltmdOOqc4R0TkNqvOeHMfjssydFtLLasrtJTCSwGr8/S6lxqiMxzx59xHMF/EBr9u5HxctHMX5cyeCMQZg77vvPhw/HoZdFmsrague9VmsuD7zmc8AAHZe2d1mYCDHmJMlpFD1Vzj7ar7HINaUDfcKRWZhDbza8uLAeLqUgMmqSt1a62pVinq7mRpyqQq/Gl6j29aUld2/cDKm1AWGKJ3Mq4zE1PCqnTIvV7IEeiu6gdzARY8sq31gDaBTFysWXk0/xMVhp2Q4VEpWamBs3I1FwNRJ22ypjsFpaisdIwOTMlB6CLS300nBQgo2JoHXzcqIMrxOH16NcsqDg8dOaY9ebD686pSxkxDtvmLGTvWyiRgstTKYof/jDEMm3a+3lEnAomtqlDJkqsqJA+P1ZHPeiJpEieYr1JdzfAhiKzCtvkIQG9sKh4qL/V3KfuQz2sbAvp5C6SDIuvMNQWw5j6YiKMCL5YK21UeS9lCqJ+P8HIDYxZ3NDfcQxF6666gtC45BbE8qu242BLG/8vUfwCWXXAIA+MIXvhCZPIu19bQFz/wsVlhaa2s4cME1wK5+s1bEhVejHb1VbO+3N/J24dV/rD2WaB3X90qJDby6KgrVysLqUkKvFg28GvnnYAde7bEexJLwKtoZT1E64JqCXJ/ZPYilMq9mPaw9pI4xroshVfvF6nY5swexLXhF3eZBLGnWJNC5qHHhtdVfy9RJd0p9SYj14TUEuj5MEhBL7gW7FojVmaXMk461XjG8bhy8GvmvzbTgNXf4aW6XkyFy3au/npeKoYyd3KnLBuTacRlGUlRM4cfI9hwCEKv8vgiI9Q2ZKIhtwWtgTnZe7u8ExCpiLa4PscqHyQjEplRlcR1gJt7TOfBazYN4yINYat2rD7EGXm0fAYhtPecaYn2QHe8glrB4ELu4c6Wz9zwFsf6a1vli1AHZa3YcaP1OQezF80chhcaNN94IAPj85z/fnSOLtYW1Bc/+LFZYhw4dwpEjRwAJ7Ly0wJ7+KezqL5PwCgBSKOzqr2B7fzUKrAueKzFl2ORCLAWvRkWvhOzpdtbVZw3hZGEJeLXzqCE2mnmtIbYFr4RskpiCV9uXExMoGzYQ68Ir1Y+54CHh1Q/34LWZcwOxUbMmByopeO2IgFeqr2Dm1Y3JhEkSXt3+YnIBZL0lwxsFsQyvGw+vRuY1mia8Zvz9pgqvOeteU8ZOIXg1agEk1Y5WNja6djQnxgVG6vWsIdYAoykd7o7VQCzlJgwQEBv607iZ1D69htZAbGWQRBtJAR7EBjLh7rE52VcfXt05+X2nVHaLsprDa4ittsyhYwzE+vBq+/AgtqTWvRoDqGE1znhHGS6friGWglcjF2Iv3XU00FGTjb1mxwFyfawLsQZeAeCpT30qAAZY1uxperdJWaxN0Je//GUAwOK+ArJf1e0sFCMoLTvwaiSFwjmDJfSEwskxZTlYfbgv9EbQWmBlHP63kEJD6TC8WhmqSxgxibGIQieAykE3VTasq7ho1rU++UZNnUwpVGrNq65O9tE5KdQlwxF4FdW8KXi1QwkBqVSW6ZEYq2rNa6QvIQSgyjQI5oBiKkZKQCno3BLkWdWswqsU0zPT2mxtIryKHCMpKeNrzd2xUnFCVPAa+/8y8Jr8HxTQKVMqCaiiV62ZD0gLAfQzxisS5cIuvEafH6DmetEYLQCRKk+u56R6Mnp+0EJA99P/D1rSSzuaeQto6OQ6XCAMr+6cAJBb5vhyS4eD4/XC8Gokxxpl1FehOo/GQBgAoFHdpE69DKtFEF6NRmWBS3YfJR2FXd18zoNYUoNgu4FY9wb+ddddBwD4yle+Aq11eK9yFmuLaQvewmaxwjIAu/3i6oy2KIe4dO4w9g7CRgWF0CgSm4Gr+kzk7w/rq1SycgDshU8kqpRQ45TzReU0nDLJEDmmTkpkAW6u8ZMcx0+6ogSK2FofE+OsiQ3G1aZOsRhZKohRHACF0hW8AtFPtcrUKW78BCB9kZpr/FRneZMXBSmIcjN7673A2MrAtpmGVOaif5oZ6c3KChszppSbcE5XhYy+P4UQlStxLqDGZOA1YcZkM6+5rsqxvga9DKOlosrEpuIEsgyZUmZMJsuZBE+J5NzVIG3a1IwXH06L9GugMkypdK9ZYxsfLwNyI1vmGMUyr+3xQO4D2+prTthzZXBONSMWq6n3JyBX4i96sXOI1dU4oV+y+ygGssRYxW/ELBarOLd3Khpzw+IjuHK+KTH+z8d+AkVR4OTJkzh48GD0WBZrK4kBljVTuv/++wEA2y7uYVEOsVisQgqF8/onsbvf3TutMGXD0NjZX8H23monRmlhv4AwxJZKolRVzKBXkhCrSolyXN3pFoUCKFdiJSBGwpJkdUe7GybKKjsrNFolua2YGl6hzVpQIsYvPxY0xNqy4VhfDrwal0oyxtlKRwtBPz9VGz8pHTGIcuDVL5lz+rHwai5oSQMsDYzLJi5wMS5Kp7SYunDyt9KJGT85cUFImAReU2OmtJXh1Sgr8z3ljPbp2GZorZrmelYHtKj3p4VXV9T/TQ7c+vAaKkH1S4JTpk0hiBVicjMm0ACnhQB6zh6rgfeLLQkWYThTvfbrFDRRcteqRkyiUmZMfklwCGJdCA5BrLvfa7DM2NuaJvg65JQXTwqvkY8Od1udEMSWcwLGtCkEsa3Mqw5DbLnYVGGFILbYOaxurGsRhFgDr0YhiH3arocBVBVnIYi9buFR9EWJvigtxMqewKWXXgoA+OpXv0oex2JtRTHAsmZKDz9cfUiff+EIi4VrzqRwfv94C2JdeDXfdw+WWxDrw2tIBl7dtbE+xLrwaiR6HsR68BpSC17tg+2LDxdejXwQzHEtrsZr4DXYF5F5rdZNeTGJfWCruTfwGhqPyrzq2tHT7Uf4610JiG3BqxvnXXS34NWNMwrtA0sZPxFxHUhYC7yGxkxpI+F12n1vNMQG1idORRuZhaX6zn3MDyGyhO77k4RXSmuB12aQ1s/BNa+UaZP/mN/XWs2Y0AY4A69dU6P2A531rATE+vAa6ovco5UwifJBMceMqRrP+73XvRnpQ6wi5kSvzQ3cAGj1lc7O5sArKeKjoxx0n58PsQZebXsAYjvPmYDYclG3X2MCYi28Oh1TEDsgyoZ9iH3arocx5yzOpSDWwKuRgdgr5w/giiuuAMAAy5otMcCyZkZKKTzyyCMAgB3nd9ulUPYD2odXG+NAbAxeTRa2VBLDcdGBVyMDsRS8GlmIjcCrycKKUkAOCXi1nVWxFLzavmoQjBs/NdOg4LXTV6Rs2EBsDF7dLCwFr/54sbJhA7EkvNrn11zQkvDqxtUX3yS8unEhePUVgNemq/qFXw+8TqrNyLzOCsRmrE9ctzYCYnPLhdcIr7bNrBOPwasB1vXAazNgHF69uA68+u0heHXjMqQLEYRXG5NjxpQ7Xt0XCa9GRRMTM2Nqfo+NV38n4NXGFOb5hefUyu5GXna7nnWK8BosHXY+Oih4NTI858OrbTfn0LGJC49nILYDr06MgdgOvNqYCmINyF6y+2hgwAZifXg18iG2T6SdTTb24osvBgA8+uijwfFYrK0mNnFizYwOHTqE4XAIIYGFc+mYc3unoLTA0fFiB16NJDS29YYYqgInR6EzElBIhUIqjMv4v4lSYXh1JVQ88yoUktvRAHV2NgCvVhphCHbGq0yd4hnTrDWvtalTyiRE6DC8unOPGTE1cZnAFIJXRyIXTqOdCKx5e5v1jrlVpPR0y3Fz1hlPopy5TcvYScjp3YTIAeLMfV6zTFqmmXnN6StHKcfhOkbnGC0JUW07k5CeK5LvhZTRkoHY5HpXAGquCO5bCtT9zKXNmCDDpcmuyjkZHQ+o1timzm2VI3Ia1nPgFUDW/3zS2EnH4dUOVYK++WDa6+euikThlK7Lp2Nvqxpi5a7oHxAAsHNhhcy+urpx56MkvBoZiD2/fyzaz759+wAA+/fvj8axWFtJnIFlzYwOHKjWbOw4T0MG1uj0RYknDY7j3H7YyGBUn2Fipk6lliiVxKAoMdcPOzqMygJKCcgictExlsBIVlviBOLkGBAjUTnwR02dwut3bIyqtrgBwidcdyud2AWFNHGxpFWpUQw1zNqvYNy4MmyKmkgpQE5g2BS9GNIaQqk4tGjdbJUT66vMiDF9pYxLzMVudF6Z4JOVEd5EwJ32WtKkic+Ep7Dc12IrrYmdxEk4kV2eqsNor0hnszPhVfd78b+1END9XtoUqF/UsBj7EK2NnVIxpq9ItloNiiwzJt2XGWZM1XgqMF61xY2oMsOJt0Q5kFApY6e+rCt6Uv9jSF4p6l4a0HPhNcdxOMdNuBwIW4kU7WuQPqeada/B7edQr3kVaWMnta3EaDnuOrVn90kIAEdXF6Jx87LagSGmZy1+FZf1H4/GXHDBBQCAxx57LBrHYm0lMcCyZkZPPPEEAGD37hH29rquwwW0LSM+r38Cu/tLnZiRlvYDf0dvFdv7XVOnUku795oUOgixo7LAaFTHFdXer74MvMbuYBt4tccIGmJFiWrbHY0gLFp4TWRUW/vOBi5iqn1eq7iwyZJubblj9ojtxI01hNkoXgjSJMTCa8RAycKrhcAAxCrVNnaiLq5q4LQZiNDFVUmssQ30FY2BA68xMbxWmja8Gm3ma7JZrsSt/UCpf8AJ4DUHOt1MaGg98STwahQ0Y2piQhBkgNP+TgGqX14cgFjd89aXJlyFq/FC82qMlkIQqwbt1yoEsa5zdohbVN8ppY6ZMZmmCMS23I0zzJ9CNzBzDJuAvNLhHHj1z48hiFWD+v2kwxBbzrXPxyGItTHEmlg73ra6LEojCLF7dp+0S6DGSgYh9qbdDzf9Bt4Mz1h4APNihL4Y46LeETLmgt5RPDB+DQDg4MGDeecoFmsLiAGWNTM6fPgwAGDHrhJ9x12hgLbwakRBrAuvQAWnu/orLYh14dWN8yHWhVegZiQPYil41UU7C+vDq43zILYFr/ZBtE/SFLx6VcsdeHXjnIsYF17dObVNlip49S8O/IsLA6/tubcvrjrwasdzYzx4tQN4F7UuvDrjtS60fXh141z58ErF+fAa6Iu8MPAvHBleK20UvBrlvDZbYT1sZllw9LGNhNfAeGuCV6OOGVM3xodYH17t4y6ghtbGehAb7MuDSh86q/H8eXWNlnyIpfoB2hBrsq/teXch1sKrEQGxLXi1ccTcqQwuYf7U0Rr/baYGrwBKApj985SFVyMCYn14NfIh1joOO335EKu2lYDZ71WDhFgXXo0oiL1p98NYlO11PT7EGng1MhDrg2xflNi2szrvDIdDLC93d3NgsbaiGGBZMyMDsNt2KTypOIG9vRMWXF14NXIh1odXIxdiKXh144xGZYExsc+rC7GxzKuBWFHS8Grjaogl4dUOWn1FM681xAbh1Y2TgoRXd06VyRINr+6cgAC82rjq4oqC1/Z4Igyvvih4dcaDFGF4NTHmoiYEr25sCF7dGCQyr+bCkeG10kbDq9FWh9i1wqvbthnw6o23Lng1cg2bQsf7YBiKqw2kosZONcSG4NX2VUNlCDqr8er/+YjRkoHYWD9ABbEWXgM3KsxprQOvRj7Ehp6eA7HRfWUd86eg3PuJU9ouJxte69JhclpmPasPr0YOxIbg1chAbMy0yUBsC16ddh9ifXg1ciGWglcjc43jw6tRX4xb2dgLekerxwcavX419rFjx8i+WaytJgZY1szo5MmTAICFbRWwXtQ7gvP7R6PH9EWJXb0lbC+6pcJGUmgMZImCgGBXg6KEEBrjsSQdiYGGaVCKaBlvdaJMn42j8GpicsqGVX1iTnmbKJ2ME0pXmeOYD4UEhI7Aq+lLI8tASZSJmPqTLAivrcnppHFJngNuHiROtSRrq8Hr6Rhv2nvApjRNiM0F2fXCq+km1zAnBZ05BkqZ0pLOqrYkBfRcxprXFJjWSoGiFpUZU9Yazbn0Ik01lwBhIVDO572e5ZxM3qgo5yIuz4CF2JibcBVXmzYlpAY576vNh9cK4uMxuhe/4WEgNrXO2PaVMG3She7Cq9NuIHbP7pPRscZK4vyF40F4Nbp54WskvLrqizFunX/QOhMLASxsrz5Xjx8/Hj2WxdoqYoBlzYxMactgrjoZ9MUYF/SOYW8v/IG7qvoYqV7UsGm57GOoCiz2hpjvhT/4h2WBUknI0MkIQDkuoIZFVSYciBPjaqucyro32FVtoJQ4G9dgGlqjCqBl2BR1Wyx1MPNqY2rnYiB+QWG35omo2k6nhpHAWi2hATEqa5fLyIulACgVN2/R2mZVg4YjrotwyvwpE3KTEGHX4E7h43izYXIjxt3oPWBd5cx72q9p6u88TXh1KwrooApeY3FCAEUCkIyKImrmo02GNmY4JR0oTZkHzRXBdZ5uDGR4PagWVeY1uFbejR3Iqp/ImMaMKWmOFFnHavuqs6qxvqrsbBq4VF+mX6vaICo5nsgYr5eGydztcnLhVQtEz1+qX1cjJVyj1SBu2ATUW+oIVOfygMa1sZNYid+smNu+ipMr4R0RAOCa3QfRFwqPDXdF4xblKorEneon95awTQo8pddA88Ji9ZlqEgUs1lYXAyxrZrSysgIAGMxrFKg+bAuoIMSuqj5WVFWes6u3jJ297tqO5bKPlXqbHCl0EGJXxj2sjqq4Xq9EUXQvoMtxgXK1aE6gvS7EWng1S2EkDbFVGW99YhSBE7hqn2QpiPXhNQS6Fl5NHOV/olC5Ddux6C0Kqm136tdH0nO38GpeB2JtmIHX1vOjAFUBoiyb8agYA6+OQVTnIs1AqXtxEzJ/asWE3E2amCDEdtbgJgA8ptMFrxsx/laB2I16TUN/5ynBa9WXoH92H8vJvLrwGoMNB14pAGrBq5EfJ4mMaujfa84B71iM+7v3GWPh1ZsD2deALgl25Wd6QyBo17PmmDFF+mpBYgQq3fWzQcMmx904BLETjefE0THIgtcsV+K+dy4i/m0NvJp2EmKFKS+uYkIQW86hqfrRNMSOF53zvw5ArADmdqyiKBSUEji2PE+Od83ug1goqhP0WBVBiP3GxfsBAFKoIMQ+ubeEQf26D0QDsaaEeDhM7JnHYm0RMcCyZkYGYOcG7QtXCmJdeAUACY1z+kstiHXh1cYREGvgVdVnP4EuxHbg1ci9hvTg1ciH2Ba8mj58iFX0ydUF1Ba8On35ENuCV6ePlomUA6/tuPaFQwte7RNqz92HV0o+vLbGdIHRhVd3PDfGh1c7iAOxFLza/pzJB2N8d5NuTPZaRApitjq8Gp1JELvRr6n/d54ivJLvNR9oKXjtxBCZV6pvIvPq/k7Cq5HrrBsqB/b/vQy8unOiYgilspCtOZljBms3Y/Jfl8561hwzJqIvMsNJQCW1nU7nb0VszUNCbO54RFw7Btnwmsq+duDVSLsxRD8+xLrw6sR0DJsceLWHUhBLrHltQawDr3aeBMS68GpEQew3Lt6PRdkslaIg1oVXIwOxRX0pNB4nUs8s1hYRAyxrZmTWEpLXTw7E+vBq5EIsBa82zoHY1bJowauRC7FBeAVsKXEIXu1zqyG2A6/ugAY+A/Bq+xJ1qW8oxoFYH17dPszFCQWv7TjRmESFyoalmVcYXs1FYQheW2NKScOrO56UYXg1MhCbKgl2QTcYI5MxLbCIAZLwADymrQKvRmcCxG7Wa2r+ztOG11g5cCrzamMiZcPu45GyYS1FHF6NYvBqY+o+fXh15+TGRKQLQWdfvTkB4czrJGZM5vVZlxmT01e0PNeBythesDZbHtlX1oXYYF/+eJF5VTHYeHg10gF4ddqF1jS8OjHWsImAVyMXYse+K7E73kpBwqt9Tg7EUvBq5EKsD69GLsRS8Go0EAIP3TcAAHzwgx+k585ibTFlFGewWFtD5uI/dE1bQGGnXMGiXCUBFqggtidp1+JWnNDQWmBcFh14tfMBoLWAGofBtJqwgEjFAHY9a1AGEhObrmfJgHCkLy3MOtz4xLUApKriYmuLhEa1F2ysO4U8eNDxsarxdNXXtAyZMhyQc42dks/RQNms7smn9PTMj3KkVR4EpnQ6bgZME15ja8CN1us2bAcT0DlxKcOmXAkBnTI+EgJqvkh+NmghoOeKqJmbFqjGi3SlhYCal0icTgBRmTHFDO0gBcp+3LDP7S89nkieT9QgfV7SElA9mV43mmPYNMF+sOuG11rJGJ0xngZ0gWTKR+ga5iM+GdCAKDQJr0ZKCSz0R0F4NRqrAhcPDpPwaiSFwnX9MVZzXixwCTFrdsQZWNbMSJqtDgLnhlNqDiu6j3N7J7Grt0TGnCzncGo8h4VihPkinMY8OZrDqdEAvaJEr6CvAoajHkbDHoTUEEVgUiMJMTTGGOHnJsYiaY4kygTgunGJKqBWtjQwniyBIhFTxWnbV3CNmNkqRxBlaXZOGsJsXRO5YBcaQNmsZQ31Zbe3iTpO1mOmLvzLvL5S0gaqo0HOhU1O2fG0QHHa7r5nujvxZmkrwiswVXjVg178vW7chhOmVGpQRD9jgBpee7Ku0ghkjgXsNjhpAyWR3FJG9WWTjY72FT9PmLjkWlxjtBR6+UXTT8psSsu6r9jrbjLaka5i2eB23PTgVfWRvCFgHJVjNyHK2l8pYe6L8XyVzZUr4T+i3ladxJdPhU2bnrTzJCQ0Hjh1bnS8Z+34GvpijEfH5wRjrumPMS962C7om/pG+y6owPX5z39+NI7F2ipigGXNjAzALqgunZ1Sc1jScyi1RAGNvb3jHYg9Wc7h+HgBCgKF0NjWWyUh9uRoDieHc9CoMrGDXhdiDbyaa2ZRqDDEalOqRV+cGHi1J1qhOydnA6VNDD2UMHu4Ig7CrT1cRbc/WTplw+bChKp8M/vBmpM/daGjvHWxiQtM2wcRIzSAsWqyAcQFrYVXFY4BgM52OiEA8PeDpfoKlTK3hpsQXmPj+VovxNqM7xaE2Emy0GcaxJ4t8GoU2se0T6x59ZRjoOTCKwDyCsiF11hffjkwCbEGXoXT9zTMkSJA6ZfxdiBWdGEyVgKeNGMijLHIOWVo2vBq/SACHyFq4PSlaYg1bsOmnxDEjucbL4vQeHpbCWGys0qQEPuknScxqEujRmURhNhn7fiazbwOdUFCrIFXACiECEJsHwLbt1VPfseOHfTkWawtJgZY1sxocXERAFAMBc6VK/ZxF16NfIh14dXGEBDrwquRD7E+vBp1ILbOvrryIbYDr7ahgdgOvNoY71cHXu14ZAyxN6sDqC14ddp9iO3Aayu2DvTh1Y1xLppa2Ve3DzfGh1fb0ABqB16JGAANvPp9+SDgw6vbn43ZQHilxgtprRDrj8sQuzW02fCaqQ2DVyMPVDvwSsTlGCh14JWM6cIrFQeA/Pu0INaD19YYazVjEl6MN8/QGlQLsQS82hjKhKszd2+8yNZErTllaKPg1cg/57Xg1ciDWBde3X58iHXh1cjPwrbg1U6iDbEuvBpREOvCq5EPsS68GlEQ26+f4HI9323btoHFmgUxwLJmRgZgV5Yl9hYa58oVEl6NXIgtIVvwamMciKXg1chArNKChFcjC7EGXomzrYHYILzaznS1LpaCVxtTf6Mch814bgwFr25fAuE1UQ7EBuHV7UsH4NXtT4ouvLbGqyA2CK821gAzAa9ujBBhePX7CsGrG6fSsLRuePXnFdOkEBsadytC7CSadYg9HfCaAaZJeBViffDq9hODVycux0ApBK8AbClxDF7dvoCEOVINkRS8+prIjImKcyA2te+q7qVhsrUNUmq81J6yEVj2tdHwamTOfSS8GtUQS8Gr24+BWApeTYyBWBJe7YQriKXg1ciFWApejYa6+l+g4NXIhdi+8wSXl6u5mussFmuriwGWNTPavn07AGBpSaKAwLxQGIiShFejAs2escEYoTHWEqtlL+pnsTrqYTQqIjRZSZfGtCl8thW1gVKWYUdC1nE45rFhTZYy+ipjHVXjiJIut2r60RBltxS6E+eX8VLjAYCKwCtQr2XVeZBXx0e11Zx9py2t0pCXE7OZmlVDq0m1nq1yfG02vOaaP8XgtY5Rc/F1sVoA5VzYAbndVxG/2pGAmiuSa0uByowp9Tcq5+LwqgVQDmQUOAHAmDFF4zL7UhG34VZcAoRjWVy/nxzgLGMuwaavKcCrkc6Ylxqk+xEaUAUNr24MJMLwWmt+cYjDp+LgOCoLzMlR1LAJAPbI1SC8GhVCYI9caD22vFI9YQZY1qyIAZY1MzJrM06cKHBKKyzpArvlMnYXp4LHHC0XcXi8HYtyiG0F/cF/dLiA48N5DGSJvgxfsJdKQmsBKcPrXdWoAIb1xUTgpCXH1VY5migTcyVKYbOq0fWsCcMmWaJy/430Y/vKWD9rjJ104FpVKA1hYFmGLxaE0hAjZbfiCfel6jllwmkR2hMi39gJUqRh2JQOxy6yDXTFLnhzITEH4DYCvDdyr9VJlPv3N9pK8G00JcOt6FY5RtOG19T2PKmYOi5pxmSyqlIE92zVwhg2pcdTg7SBUtmX0e1kjHL6sgAY6UsXwlagRMczZkyRP1G17U68L1WPl4S7AmT5citGInnucgE3ds4p475CVV9ThFfTV+zmq5pDMgYAxgu1YVPE2KlcVNBCQ6+E/4Dz21chpUap4m++q3YeAgB8dunSYMyNg8cgARwq62udQyV6/+EYBq8+gLmXPobBqw+g9x+PYe5xgUJI7JTVdj3DocDSUjXHc845JzoPFmuriAGWNTM677zzAACHj/SgAJQQkEJjj1zCZf3HOyB7tFzEgdGu2rRJYXux2oHYo8MFHB0u2JPHXDEmIXZ52MfqsLqrKQRIiFWjAliVgAa0qO/MehArx2jtBxtyJxZl7UrsHE6uZ3Uzr8TJ28Cra9hEXQwYeG3MkejxipFu5i5EGGLbi4i7fdXw2npuvhmTgVcLgQGI1Q3k2j58iHXhFaZEjujLLQmOQay/7pVaM9dZX0vN/TTA61rA7nRD7KTwarSVINb8/RP7oaZ02uC1mYA/oQZeQzH1Y0kzJgde7fiESZCFV/MY9boZeDXbrwUcd8u+bP1tggZKgwnNmADaJKpox4TAs2PGRPyp/G1pyDl1xiOH6/RPxRl4jcXklg2fLng1ogDVwCuAznpYVwZeTRwFseWiqvZ3BwAFEmINvBrtP0EbKF218xDm6kGWyz4JsTcOHsN8PeHxskb5Ewcx/6yH0f+Voyg+ugJ51xDFR1fQ//+OQjzzAYifPAhzOXTkaDW3wWBgK91YrK0uBljWzGjv3r0AgENPFDihmpOBFBp9obBHLlmIdeHVyIdYH16NfIhdHvaxtDKAds5+PsS68GpEQqxGp9TXh1gKXps+TUygbJi6jiNiWidyH16JOB9em/m0IdZkXztyINaH19ZzM2ZMPrzafjyIdeHVTsKDWA9e7aE+oFKQSEFsyLTJvaAOAedaMnCnG16ncayrSSF2rfBqtBUgNsMAaCbgtZlI8z0VU/+cNGMi4NXOozAQ2oVX279sj+fCq+3Hi2vBqxEBsS68hhQsvXX68uHVPu7NIVnGiy68Un358AqAzLCGbkS6cT68UjFBgyj/I/Q0w6uRC6gteDUiILYFr06cqxa82gHaEOvDK1BVefkQ68KrkQ+xLryKFY19rzuM7f99OeiYLEaA+IPjEN/9KHauDnD4SHVzfs+ePXlLE1isLSAGWNbMyADs4SM9jImzkcnGlhAdeDVyIVZBBMt2DMRS8GpkIFYr0YFXIxdiTekwJQOxMXi146bWvJpkglM6TMVoEYFXJ04oGl7t3GuIbZUOU5KiuiAg4LXpC83FaRACa4il4NXO28l2RYyWWhAbg05r7JTpOByTucDMAautAq/T7AM4u0ydQmDqPj5L8NpMKAyvbswkZkyx/VtNJjZSemz+nyl4tf3UcSS8GjkQG4JXNwubBE4ZhlfbX0ZfBjRD8Or2RcKrkQOxsfLkpr94KbCWGQZR5iN0i8CrkVABeDVyIJaE11qGMUl4tZOpIJaCVyMXYil4NVquX0gXXgHgvP/3OBb+bhT186ifFsQnVtD7fw9jVf92dWxd5cZizYIYYFkzoyc96UkoigKjocTxo/RZ9wm1iCU1h/nIwpRCKKyqHlbG8TPpallgZdgn4dVICCC1tkgLDVEKiJFIgqlImDFV/cXbm77ipk1CVQCbUmqD+iqo6is6XqkhS5W+CDeGTCmlYrSunIRz7ijngOJmmwhtVdOizYbBrfg65GTSpUjH5cQgE15zHImB8BpxR0l4BSq34VSMMWyKmjEJqPle1uugFtLmT+V82oypnCsqV+KYpEA5Px0zJtUX3f1YqXll9FUOMl6nXnj9sJVIg7DtK/WRnYBzo2nBq+5VX8nXPcewKcNECrpySo6OpwEtdRhejQYqCK9Gpap2TQjBq9FI91rwWhwsseN/LAOJqbba33scD99zDwDgoosuShzFYm0dMcCyZkb9fh/79u0DAOx/hD4TjnQPpZbYXqxgUQ7JmMdH23FwdQd6skS/oAnu5GiAU6sDSKnR65XBE854VECv1s7Egf8mMZLVulcgHFPW2VmBzl6xrbg6++rvydrpK5R5bY1XA6dA8ILPuBfHjD2EqrbUiYGuKDWkyZZKBC9oXdOm4AW5AkRZhtfEkh2Hx0tuheNuuZOAhGT21fQHACLx8Zvz3E6XW/I0IHaSua8XYlOv9SSa0lrWXGXDa5YrcTpuInjNMGzSQsSzoXPxGCPjEhwDs3IubcZkMqpZzrdSxM2YeqL+vA53VgFZBijmmDEZU6dMA6WY7NZBCfOnVIw2MYkbuRYAYzE1UMduhOqec1M1Emdeq1hfJoMbu5GrBrUrMcIVVEC97Q66+7+2NK8gpMbyqUEw5NxtSzh32xKUFvjS8QuCcdcs7kepBT69eqF9bMd7w2XDIYkR8NDf/i0A4NJLwwZRLNZWEwMsa6b05Cc/GQBw7LECfW97nEPlNuwf7wIAFFAkxD4+2o79KzuhdGUANV+MSIhVWkDV5cVCAEXRvWs6HhVQy726FgckxIqRRLEqbIwGgnvGtU7GxEWKXzpMXTCYvV5bMZS0d2InIFYotPeNJeek2+NFXIdbIiDWwGvbAMpfjFbDq9MPeXGoVLOPq7tezxuvBa9kPzW8ugAVgti1lPtOA2JzNU2IA2YHYjcCXkO/hx5bo7YkvFYTo392HjPwavum1qPOxWOM/C1uKIhtbW8TMGPyy4GDBkoOdFZ7UXdjdK8ZQ0u6L7+fULlulhlTz48h+unEBG4cOJ/TQUMq3zwrsDa59XoG3jqd7CX1Ueu9BhR46oz9Yqvx2hlhqi+3/FhoGmLVwKtACnwEVXvGVo1CBSC2hlcA0KUkIfbcbUvoF82N9dWSTttfs7gf86K6tjmlBhZiF/6Ovmmf0tcfewwAcMkll6zpeBbrdIgBljVTMncIH3t0gHmhLMQeKrfhodGe1p6wPsQ+PtqOgys7oJwzIAWxJvvqy4XYFrwaeRDbglcnxodYm3315QBjaN2rC7GhzGvQvZgaz5ooefBKzqkNr3Y8D2JFGSgJdiCWhFcbZxajefDq9NO68HXh1U6iDbHBzGurHwJe/TkZaZ3OvoZgba0Qu5bs61aE2InGm9QAagPhlXp8s+G1CkzHTBNe+8RFNWHYRMFoC+YC+676j4X2Z3Uhltyb1YNYai0rBW9UxtSHWBde7WMexIb68SE2y4wpZI6UY6DkPT/qJqP/OvjwSvXlw6uV91iw9Nb9qA28Bu75IAivvldSYA2x2xe1dtaHWAOvvvxztQuvti8fYh14tdP2INbAqy8/C+vCq5GBWHlq8nNCCeDB+lxoEgQs1iyIAZY1U7rqqqsAAA98bQ6FAOaFwlE134FXIxdix6rAmIhxIfbkaIATK3M2+9rpr1AoS9mFVyMHYjtZVSfGQKwogcLZVofsD3HTJgOxwfHQnIhbpcOh8XQAXt35y+okHRyvvkgy8Bo0iapfpyC82rjUerX6IpOCVztvD3JDSjkT+3NaD7zaMSeE2PWUDm81iJ30uZyONbE5a1mnqGx4zVn3Om14jZgoxeDVjhWBVzcGCMOrKxJejaSA7omoi3DLjCmj3JeCV9tWQ2ysHxdic9egRueTY6BUP79YhYx5PASvbl9BeEVzPgIy1o0i/RoInZF51WY8Gl7b44XnZCA2BK9mLAOxFLzavszHIgGvtqsaYkPwClRZWAOxFLwanVIDqG2Tfw49tLCAZSGwsLDAGVjWTIkBljVTuvbaawEAX39wDuMxkPKpACqIPVHO4/h4LhgjhcZq2cPyMMNlIiWByrSJynI6MVCALKd04auQND7KMW0SStPZWaqvDPBIxpS6ApgUAGgNkVir2uxhm7ggmrKx07rhFZgMAk/XuteN1CTPKXvd85ROb7lwOiWIzd7GIqd0OANes82fMiA3Ba+QgJrvRddUAgAEUM734n0JYLwYdy4GKkDKccgt58LOxVWMgJqLr6+146UgUIikGZMWQJlyGxa1UVFqTkXVV6r8NjVeyqPBjtfLhNeM9bo5Jkuql3BdrqWLjDnljNfXzc3qiIQWQXg1KvphLw6j3YNlHB8vBOHV6NFbdkbbKd27o3Y8vuoqFLku5izWFhADLGumdNFFF2HHjh0YjSQefmgO+8s5HBrvRF+UKAK7jj822o1HV3ehLxR6gZgjq4s4vLQArQUKoSElHTdc7aFcLQCpw3dxRxJi1aQ8AzFO5lXLeFyWaVPCuKHaUgeOaVMg0KyNFeGLHVNeXP0SitGtmNiFoQHPoDmL2S4nlpVSqLKqKgGxLmzGYlL9ADaLK4RY3955k26ns15Q2oiy3/X2mfucJnmdp/E8p5xZTan1PsrM/gdVZMRI2cBkLM7AayQmC14HveYzIxQq6syrFGHQFbWTcCwGjhFTQmpQmzFFrt9NVjXH0CgmM46//3crRtR9RZ6fjYl9nqOCV2OeFANPA3fB16A+PjWePT4FgRnAqXJci10Ijpo61dOKfCyUxqwpchNXDbR9HWKmTmquPq8th99UvfkRpNQ4cHxHMOb8hROYK8YYa4k7T1wRjNtdLOGr37Un6zVzdc/OCnqvueaayQ5ksU6zGGBZMyUhhM3C3nXvdjw02oORLlBAkRD72Gg3Hlo5B2NVnUQWihG29YYdkB0r2SobpiB2uNrDaKUHqPqkRUCsgVfTvZYauiDivHJfCmLtWtWkaZObfURQXdMmr93PvhIQKxQgh7o9HjGm0GiXDVMQS6yN7UCsv9crBbFmbWzHIInoKyOm5TpMxQAVvHoX8yTEpjKLa90LNnP7lTWNt1atte+NhMT1PN/TCa9GmeuvO/K3ygn0kwN3ncwr0dfE8BqSgVfXsMmfo4FXw92CiEEXXqkbZGogoAYOSAUAzjgEm7gsQyPK+KloA6AmoNIF09Dz82NC4yk/4xiAWP85d14DB17dx1L9hDQpvIYSnZ0MbjCuHUNBbDlox1AQa+A1Np6a0xW8Wq8IQUKsgVcAGI8lCbEGXo1OlV1vjt3FEnYXS9X2gHv7eOg7zglNrSXT/tnLLgMAXH/99YkjWKytJQZY1szpaU97GgDg81/YiZFzxqQgdqQLC69GEhoLxchC7JHVRRxf6ZYXuxDbgVfbmQengZOjduJCpk0uxPrwamM8YOyAItCBSpN97ci5kKoypsSFggOxHXh1x3PnrjQEtY2PC7GRtbH2QtOHV2dO7gW1cDOmVKzpq+xCpx/TgVc/xk4ysO7JN4GKaa3w6moSyNoMw6VJx5hk/mvNcm+20dQaNFHZMCX3fRLa59Vz0ibh1X+/hcqGnbh1wasHREHDJjNXD15tuwd5ncyr+Rd3INaCqz+cB7EWXv2+MgyNXNgx8NqJEe2fqb7c5xePceYdKpf1jwtAp5tJ7cCrmbcg4iNSRV6pL5VF9M9NwfJj16ypqF+HSAzgwasT40JsB15ruedyC64dt/72XF14NfIh1odXIzcLa8DVveb5/M/tw+PfuJi1D+xjz17AfcOqLPmmm25KHMFibS0xwLJmTs94xjMAAA9/qehcmxqInZcjPD7egf2r4TUhC8UIJ0dzOLy0EDZtqiFWa9GFVyOpgUIDpYAYhk8bWlbGSDHTJmOOlGXaFAJTI1H1ZUuHAzGVKUUspr5YomDZH88aQIWAEna9bqyv2F6PZk72wjq1jysQhldXIXh1x8wYTwhxZq5TzdVGAON6txPaSLBep5LwmrkHMYAwvLpKZV7NeNNa85rKvNafZ0nDpgC82rmIGpBCZcMOxLayrhF14NXvK2FoVMWE4bUVEwBTGyPS4xmIDcKrP6cUdAbg1R0vWnbsyILrGuDVTsc1awqprm5yS6fJvuqPBBJenb7kOAyvNmYkWllXMmy5QG9+RMKr0XhcdRCCV6DKwt554goLr77UvMQnf+cyPPKaXdCB11L1gce/exvu+4UPQGuNSy+9FOedd1548izWFhS9yRSLtYV1zTXXYHFxEUtLS3j8IYG9T26fDAooPDo6B4+s7oZKuU1kaDjsoRwmztAjCbkaH0uMRdYm4zn73AlVZVZTMSnTplwJjbQhkwKdMfVlsrWx7pSuDJ5S8yp1fZEdon2dBbjZIkqHu0NuQXidgSzkhmrazsubrRS8TtO1GEjDa4bbcH7ZsEA5l/h8FcA4FQNAzVWDBT/3RON6G/08E0A5J+IePaKCpNiaSqBdURKMERk37VCXwqY+hjPWehoAlInP2KzxChG/sYkEcPrjRaRzYDkXqDOvflWPLrtuzasA5FBAzcfWpGuMlvuY2xY3YjqxOodLtx+Jxkgv6+pLzUv835+/GrvevISn/+lD2P53qyhOapTbBU4+ew6HX7UN470FPv1nnwfQJAVYrFkSAyxr5tTr9fC0pz0Nd9xxB7722R72PrlLhSuqj7EuIIUCIFt7vxo9sboNx1bnUUgNQJFZ2JVhH8PlfnXtIXV9BiUmZda0iiaL6kugAkEtdVVSRFWqlhWYxrapaZUEC0AjcAGh0Zg2gc6wVtlenYjRdn9Zk9noXPwpQI5Uck5uebGWgr6IVHW5rwS0Cj03r7y4kOHtc+xYoC8i3b1eY0Y1Zg9aEb4gtfAqE1nYaZQPA1sz0zsJLOY4UAPVa7HWLOyk8LqVsq9VULrdVgdEXk/HYVQoHc7Cmn1eQ6/5RsCriaPezqLeKsfEBP511FyzdY0IUJdynXhDnz9ogEuLMAia0tTQ5z3QzqgK0J8tBlx1XcESvBdXZ3EF4jEpuQ7JqhBBiLVxIgz7Wor4OQiZTsPmSjSWWBXmNYhn6c1rIHT4ZrC7lY5QYUA1cXIkKudhal5mix8VvpGq+6q6fojsOrAwV13HlErgy0f34urdh8i4bcUQUmh84uRV+KbtXyFjTpQLKCFx+NztOPjDO3Hwh7sxn125CHfccQcA4Oabbw7Oi8Xaqprx29Kss1XPec5zAAAP3F1g6J21Hx2dg/3DqnS4EBpSKEiPzJ5Y3YZDy9swKqtjC6nR75Ud4yalBLRbOix09yQ7khBD519JdE+IfvZVUwZQvmmTWUvjj2fAtB6LMkjqZF9F92TuugnbUrBOTA2vzpzMXoch6eCcanh118/5/Rh4Nar3d+1ctFAmS5RxjZN9rS62iH78NbTUBVJJpHSS25OE6u42GV43M/u6lkxn9vPYBFjfivAay5qSpmbUXa9uHySU+NtodNa7byC8At1jfHit+/flwitAg5zytpEJmj95wBU2R2pee9oYqTteKMY1bAqZI+XEpOedAZNFdxsg0rRKimYexOc9MAG8Bp6THWtCeG0OJMbz9oGlbtqqfhdySd8Kb39auULEGHittXqqW7O8MDeClMpef6yMurmlbcUQ24ohenXp1clyDp84eVUnzsCr0VdH3dLgz61ehEcfHuCxxx7DYDDAs571rE4Mi7XVxQDLmkndeuutEELg8IPA4Sf6FmIfHZ2DB1b2YOyaO9UQ25OlBdmxlhZeXRWyMW5aGfYr4yZfLsSOJMSq7N6BdyBWjAW5xrTjUEzcfbfGHHWMLInyOA8Yg+tenQul1lY4zlidNU+BjEALYt3sq9+XnVMXXpu+UiAIC7LVAV334g7EBkqHWxBLwavfX0ruRXPILbg1gSnBa65mpXR4oyB2EqA+E+CVUmS/2BbEFoE9VZ3qhA2FV9vWfO/AqzOOkQ+vQH3TyzNiShkoAWHg6pojuQTUhdjgOtUWZOfNiVo/m2ug1J43/dz8jGyOWvBq5EHsRPAaGkfUJbxrgVd0M9o+vNo4RcQQN3ztvHpdeK0OFi2I9eEVAFCKFsQaePX15aN77c8GXHveuqGTZWM+eaJc6MArAJxScy2I/dzqRTil5nDRI/8cAPDMZz4TCwsLnfFZrK0uBljWTOrcc8/FDTfcAAB4+B+AFT3AKTWHE+V8C16NCqEtyB4ZLuDISvgDu5Aaq6MeVpf67eyrKwOxOlw+1oLYWDWp1Mk1raZMLWjI5AKjjownECyXAtBkAwQAraNrpEw/Pry6fbUuamJrwOqSWxEpA7bbEoTW2ZpxpIiue21BbHQdXB1DZV/9PqN7bZrnP821uBkgt9nwut51ptOG2DMZXk1MSKmKAl8heHW0KfBqYyLw6o5HwKudrxBQPRGEVxtXP+8s4PLh1c63gdj1GjFV/dXxEfMn7cTEVJk6xZ8blXXt9iOa76FQ87E6BXgFGnCNve90L/4aWOOnALyaGKHiMUCVhTXgGvz7KQHdVzS8GtWlxCF4Baos7JeP7m1lXSl94uRVFlx9eDU6pebwudWLLLwCwEc/+lEAVTKAxZpFMcCyZlbPfe5zAQAPfLL6/eHhuXh0dRdGpG9+pSdWt+Hx5e0oA67DE2kk2qXDhORYVGtaYzePSxF3E7aB6XahddJURKg68xKbU4ZJlFWqnBhIGzLZ9brhvkRJZ1XbQaL9PTpmDgTqfOObkCZZp3o2rHsNaZP3XT0dmsqa19wYIO+9K2X8ta8zrynpfgJK675S8KoFUM7H4VULgfG8jIOSqDKvqZiyL1AO4q+TruOSxlaFoLdtcfsq4jcRgQruFJXh8+P6CegUaTAFTEVNOkb1IvBq5pR9IyAjJqGcNb9+FVMwLitGJ8/Vuq+r64IQvNYaDXtBeHUVg1cAODpaxF2nLovG3LdyPr68coGF1+P7Ne69914URYHnPe95yTmwWFtRDLCsmdULX/hCSCnx+P3AiYMaI11gqHpVeXDg7DdWBUotUMjuulij5WEfw9V+BYShk9CwLh2uTZKC0rCmI8GLEe20h+4QG+OmyJ1fUWq7b11o6wNr2qTj45l5aRG+YBF1ObMWCF4AC6e8WMvA9hYakCarmiqLVIlSMqUaM6dY2aQB4diFuwvLOftvprSZTrizUjq8FmUB3oSv9SbcFJgYXkM3azIqGuCXygekjdtwZB/lLHidK+JLAYRAOd+rtsFJbMtSzhfhzwpU///lXAKkRAVS7vY0ZEy9tUssS2nXysaybgh/5rZiCq/KJRgj4plONJne2OtkoCxadWPALfHcmiqfcIx9vWMfqwZeI2/fHMC18BoytBJN+TEEoo78ZrwYnKpeddM3doNY93X13CNmTaKvIPoKWgkcO7EYjJvvjyEAfOHovmDMWBVQEDhVdvexN7pv5Xysql7rmmjPfa8HANxyyy3YvXt38FgWayuLAZY1szrvvPOs/fvn7pjHoeF220ZB7MGV7Ti80pwwCqk6ILs87GN5aQ5aAaIuExaF7oKsFu3NyYnzlRyJ1kbo9WEtibJaH9tq78R4+7SKwMWSv16VupDwYqjxZAnrOlzFdC+khInRjgmUdyFl4ZUwgomKgFg/+0pCrIFXyuDJzkl3t8KRIi/7F8lmBeHEB4MYWE0r+zprpcNAfvZ1I+DVaAMhdsMyr6F11/7/ELX23N8qp/NeFdA9d2EnvXdzFrwacHW7859KDa+ttZ1evxS8drJwDrya3zufgw68dh7z5tQ1K+o+Rf/zmDZ18mKoflJrPVGDq1OCTEGsC6923tScvKxjTgxpIEWAK/X8OmBKGSh5MeR7LmHWZLfbSYC5KtrjCU1DrIFXI0lsh2fh1cx7pXvjR/RVa05q3H3B5/tjC68AsDzqdyB2rAoLr0afOXVppy8Dr0aPDM+B1hof/vCHAQC3335794mwWDMiBljWTOtbvuVbAAD7PznE6rh9whhridWyufNosq+upNAtiC1L2br+F0I3IGsgdighhvQdfdvvqAZTgiV04gTulzyJ0JpW54JBlJou+XVjFL3vnwuxFl47FwSie1HhXVhYiDVb7RAxzXjm6svJvrbm3VyAW3j1wrSfrfLh1e2rdWAAVKTXHxnTvqBvD+ONE8xqUVeJXDqcHmsD4dVoA17jdcGrUukY/2ZMqIrBdf8O7fNqnr+BV+J/xwWKSeCVnLoDYT682hiz9jKSebVA48NrK0Y0MT682vm25xY2K3LnF4Zad360qZMf0wXRdozogKKZq3sMWQ7rQeyaY/zxMjLPPijG4kiTJfc9lyrRduHV78c5R6oA4LrnWtXTHXgFullYH14BAKVoQayFV09uFtaAqx+2POrbnw24Ki/KzcLet3J+B14BYKQKHLwXeOSRR7CwsIDbbrutOyEWa0bEAMuaaT33uc/F9u3bsfK4wvKXlzrtCgJjLbF/eUcr++qrkAoro15VOkyoBbF+9rUVWH93SocpadHNvpIxir4j3BpPtbffoWK0QDdD643VmjsZI+x+qqFyLHNxVd3JjpQuGmAOGTIBzcUzAa/unJpfMgyZUmtoc2MCY2XBCtAGrVl1Hd7MkujNgNcN0FQyr7nvxxi8uqEheG3FhJ2LDcQm4RWIwqvtLgKvNkamy4Z1EYZX8xmoeiIMr7WMoVGOWVEK3ipTp3CMNbqLZF4NxKaMn7Q080bWvGMxNlseixEZz1+EQbEJygfcKLzqOLzaqZfpscTYyboG4uSoBlcKXo3qUuIQvAJNFtbNulL6wtF9nayrr8+cuhRfW92LVdXrwKsd79PPBwC86EUvYvdh1kxr653xWawJtLCwgBe/+MUAgBN3HAvGDVUPo4Rxk9Yiev0vhIYeSYhR/EJCjLulw75kAl4nUs41cswt2UgDQunoBadQxBY2fkxZx6Q+XUTCiXMSKR2/KNcJh2MnLtsgJ6BsiGXlZ1+zDLfO4HW/uUqWn0bA1MYkUlxCQA3S62JVymm4VhpegfF8Al4FUA4EAtfslURjjhSTu24yGZcBXMnsZC/usmtjMoyfUvPWMu20C+Q9/5znltsPEI/Thci7Wo2B8gRzIvdfJ2LkMHEO62lgFDckk4XGiVPzyeGWRv0ovALAg0vnYqns7jNrNDyurPvwy172ssSILNbWFgMsa+b18pe/HACw9KUljA53qfDI6iKOrixAa4FSSSjijHNyZQ4ry4PoCVCtFlVJkAYgwndd7d5zsXNNJBtqVJXzolOy1hqrLvmNOS0Kk6FFoCTOxpjyQWRlTZIXwkIAAWMUoWGBMmxuVYOw6YeYk3D3e42UTooyEdPpeO0QGt1SxwZ5paFZ+3lusSzkeoFxUtfhzYDYKTohZ9/ISD2vHCdhA6YxwyZ3j+RQTL/X/J8FyvHVoNlyRwRKrpWTnY1tIVbOF1FXXi0rMI2bOjX7vEbNg8y2LSYrSMUUTZ+hOZlsYSwGcLKqCTBLmem1jJ8yYmKvZVaMbH4OjuesL47NKaU8CE7/H+miGS90o7YVE9uyrp6THIfH1b369B37uOlpaNFdjuNKFtX6IKUkDh3bTsa4lwr3HnsSGfP46jY8vroNYyXxwNKe4Hg3ffXlKMsSN9xwA6688srI5FmsrS8GWNbM69JLL8WznvUsQAOH/u9JrJbtW+xDVWDsZF+1Fh2IVVpAa9GwBHXuUqJ9wiIgVoy8zCrRT072VdbGTfbMFSvXSpgydY2buhdVnXW2xEWOUBpy5EAuAbHVWlzPAMq7AHHhFXZ9G/Hc/DW0InAX3t/zcg0mUQAa92I3rjNWYJ2tnbLuzqkTlHCXjelMgdi1guJGQuzpgFej4LrsjFJzH0xJ0xsn8xpam+7CKyUPXu3D3ntdEaXFFMQaeLXje2O78AoY8Gr368JrqB+AAFbqX9uLCZoQeQobNpl50xDrGzGF1va25pERk2UyFYhJidxuJzCnZF/+c6P8IIhzR3KsnJjQfNw5KRpiLbzWKlaJF8DAqzlmqZv2N/BqVJbdP4D/VFbG3X4MuJprnJWyG3Pfqb34ytE9+NM//VMAwHd8x3d058xizZgYYFlnhF796lcDAFbvPIKTx6SF2COrizi+Ot+JdyHWZl8d+RCrVgt6z1cPYoUHi9WD7b5ysq/BGAf0hOcWbA91xgvt5+peVFVrWqlsS3Ox0oJXfy4doxdirCKcjXWNn+xrqQOlyg7EtrKvfoxzsU6WDvsQGyov9o2iNtps6WyC2DWPtwEQezrh1ch/XlTm1Y8pfOrrQixZNuxBbBBeTUwAXn1R8ErJh1c7nJP9c+HVtjsQS8FrE+PMKVAy6sJoKCPb6SehBoL8eXu/E+tZfYilspM5Mf68s0ymIhnZVEwr3slyJuNSN2MzM6+U3CwsFVPdRO3OpzMnt59eF179GPR0B147MejCq9Hjx7c143WnDaCdhTXw6svNwt53ai9Wyj5ee/hbcfToUVxwwQV4/vOfH+idxZodMcCyzgjdfPPNuPrqq4GRwsonnsDSeIDVstfJvroyJcWlktDE2dRCrEB9tRQYvIZYMabt9Zu4vOyrW/Ib6qcBPTrEXuhEjZsqiA26HJuxssw8BISmXY7NWOYiLrgW1Vysag0xjsBiy9wpHhNd9zpJOXEuvE5DZzrEThEWo8qd01aAVyPzHouVDZsYH179dq3ja15riE1mXoFqL9jY66TT8Go+Y0LwarsKwKttrz9vKHh1Y5LGQG5MaC4ZMWbOdv/W0Ost0NkCJ9hfyvgpI8bdlzUVE51LRowxokqpk+UkY0QUXs37KGXolIxx5xSZjxwLC66hM0CxKiy4duDVjLPUgyx0EF4BYDwukve3V8a9VskwGVPfwP/q0nlYKfvQpcZ73vMeAMCrXvUq9HqJheAs1gyIAZZ1RkgIgde+9rUAgOEnHke5qnBgeQcOndqOMmLetDTsY3WFdh6u+jUgm4AXYSwQExPNyL6mhgIiWVNvLKEQXadk5hM1pTJ3qyMXglVMzsQThiXGSTWlLEOPzL5yM6apNb/TAtzNAuVpags6AGfPaUpb52yqeVfW/0je2llqn01Xrb1gQzGDvNdazck4VAignJNpd+NB/DMLdXY2bvwkoHo5Wb44UBkw9feQ9VU5IMfnbUymksZP/XRM1vrSzLLhqcRkreXN+HtkQneWEuc+IPO0LhAE15aid4vztDLq4evHzwnCKwA8vrwdnzr8ZCyNq8qyHx+/HI899hh27dqFl7zkJesan8XaKtqCVx0s1tr0j/7RP8Ill1wCrJQYfvIJjMoCw3GBcSmDEKuUhFIiygzlagGxGnfKlP7aVypmLOJb4gDtbXO8cjE3xpQOR7Oj5i50oB/AOZ/GHIEt5EYuCOsXMBZTuROrJi4QA6XqfsKZI2vuFLrQzTR3cksks/bZnEZ2dBqwlwNdm1XaO+nzWS8wbgQornNOU4NXIdLgmWrP6QMAzHY6oXJ91JnXREzLsCnyOpbz0m7DRc8bKAcyCRQpU6fKbbj6PAsBqrtXagxik9nSOhs8FZh0jaFCH0WmRDfymQ5ZfWmB+BWeNPOPzCnX0Ck2H+Q+//gNBzNWFpSnbgA4xmGhaqfmtdZ5MSuRF6luKk+Fb5YD1bSfcMqIfa2MetBaYDgO3wV6fHk7hmWBE6vVvrBaafze7/0eAOA7v/M7MT/fXVLFYs2iGGBZZ4yKomiysB89CCxXZx2lBcalxOqoF83GBrxNqtJhc9EVOlGryIWZHQDJGPIGrT+el8WlANVf+0rH6LYbIwGxLXdi0IDacTCmYkrXCdjpy4tx93ytLjIDJZAueBYyCI2tC13SlMlf1+vFUOtsiX462de1Quy01thuVXg1mlLWc6pa45ymCq9AfN9XF0yp+XrwKlTgQy1nL9h+OoY0bCLmZeC1ifHnnQ+v9rOlhke/HwOvAEiIdeHVPcaXb7LUyQ6Kas/YlIHU1IyYfHClXivHaTjUjwHc6HyILCf53HxYzHhulNYEr5RZkz8f4l+pUw4eMn1yTsbUeTsnpvNal+EnaVpKAk5XRj0LryE9vrzdwqur/9+pf4IHHngAO3fuxCte8Yrg8SzWrIkBlnVG6UUvehEuv/xy6OUSo4/ut4+r2rTJzcaGyofd6z2bffXlnEc2JPsaGY9SB1CJUmU/hoZl0b1IIEyZWtvx+BfIgojx5UBsC2SpC4WOKVPowr2J8SGgA7HBuxVOTExOTLB0eFKInTV4Xa/WAoy5sLhJYD11eLXzIP6GVFbVd+AmYjoQS8Gr939FwqsXk2/YlCgJXgu8Osc2/9tteLXTdgC1A69OPy7EhkyWLMTW8EqpZXy0DiMmP4b8LHUfC2UnZeDn0JwncSOO/M0mWu86KbwGYih3fVe5RlxUma+bhQ3GuFnYwOvoZ2GJe8utLKwBVx9eHz25y/5swNWH18Mn5vE7v/M7AIDv+Z7vwfbt9FY9LNYsigGWdUapKAr80A/9EABgcNejEMdXWu0uxJryYUr2es/NvvoyZ56MzOqas6/eeH5GtDWEqE7ilZlSYBr1nIXW4b3wDHzq8FhVX5GYepyocZN75lZEptMfC3WWNsfcierDvYjWOg4rZk/NWDZsq5QTny5tVim0HW+D4XVCbRi8GrnvvVhJTgtu3AAAijFJREFUsHkNIzEWYmOZ1xpQo5nX+v8madhUzykGr2Z9/prh1XaEILzaadubakjfVMssG05pGkZMJib13IPwavrxM4FEPxMZOlHU5faVu9411o8zXmx5SxKmVdqIS47RKgemJFReTPK1drKwoSmbLGws62rKiKmsq9GPHn8mDh48iL179/LWOawzTjN89cRi0Xr2s5+Nm266CaJUWPj4A512pQVOLs9heWlAlg8ZbVkvnXXOK3WxOJESFylNuVs8A5PnqpsJjJE4nWsSxWIlNBXTrgmz/aTMezq2P7Gks7P+OLonwzfsTEw/I42FtBmTlkAZcRKuxgPKuXiGTgtgPJdeh1oOkMz0lYN4P1pkzjllMoU8IybVRzo7uYlmTSngNP2k55OfdU2eX1JzyvgXqwA4fgc5JyZnLBMWC1WlSJYML68O8JUn9gbhFctj/MEf/AEA4Pu///sxNzeXNzkWa0bEAMs64ySEwBvf+EYAwOAL+1E8drwTo5SALgW0EkEgVMNA+bAjORSQw/hZK7t8uEycrE2JcYwF636qXxIxkYsDoTRkqaN3toUpKYyYmFTrbOu9ckPGTco1ZQqPlWPuZPdzjYwFpRA1gDJ9AVnbmUQzcakMo1vuO7WM3iZ8rE9rjNwtbCZ5bdZTQj3hljrrgtgkmDrrv2Nl6l6JfWeOBl6FqN6PVF8GXk0/gTJ9NagzrwpRw6bxfFFXjASqRWR8q5xqvAYoo9vl9FFlIGPb4fSqGBXZPcRm+2L9FIkY0WzdEzU+6tXtsZicfgzkpbKrqX7M2ydnrFTGNBdeYzeP6z5SFUkAopVN5vwVjan/lmIcv9kCUS0XSs0nauZUaxwxc1JlVS587MRiMGZ5dQClBIbD8Bv61V/bh+PHj+Oyyy7Dt3zLtyTnxGLNmhhgWWekrr/+etx+++0QABY+dB/GkROPVgGQjZUP24PjJ8fcGOGsNQ1dJFQ3fxuzJAoshT8WESe0bi4MRGA8dz4SdBmbezNaRvY3tA7FaF9sEzGVKVMAZHPMnUwf5ns08yuiBlD2WCmT2SshxHRKSlNzlgnwtv3IzQHZ9Wgj4PVM1pTWbCf3Tk5lcm0/dMx4voiutRzPizi81lnXKgbk51yVCfUylFRcUcMrIjFemWrIQMnNdHZiRL0Fjvs5SfXTq78yxlpXaa0ZXyTGSmU4635yS4vjcJvwRXDnk/G8moPC87GQGzBqcm9EkEZNfj/Ue96bT3BpjivCzEmVwsIrAKhx90VfXh1YeA3p2KkFnPrqCO9///sBAD/2Yz/G+76yzkht8SscFmvtetOb3oTt27ejf/A4Bv/wGMZl7PYyotnYtWqS7GtnSu45KmTw5J44A/24cWSMd6Fjsq+d+bQuCAJmSk42VigN4a2PbS5QRBMTNGVqxqLWovrmTii9bKYLsnCyr+RYzgvpb5vjgiwV0+oqAxRsH+tYX5sNfxvwEb/VwRhYWxZ2wuyrHWotWdhJsq/BmMTNIDjZ10iMzb76KtsxatBNO/oZVgpeTYybdY3Caw2uHRdcB8RM1tUHHRdIdK/bDrSzsKGsYqufwHpOGyMccPVj3I+MXgAYPdMnsh/34yk0Z/f1CtyYbM0n8CfwDZ1C4JuaT7tPQd90dd4+Fly9mBZ8ht42zr97aI1uKyaQQXezsKF+WlnYwHxysrCuDLimSoaVElF4Pb40j3IM/KPPnoTWGi984QvxjGc8Y6K5sFizohm4EmGx1qY9e/bgB37gBwAAOz5xH9TxEqvDHpaXBxgP6TOYycaqlemUD0+afe0c7txBDmZG3Jjo+jUv+0q0awFQzsN2PuakHlsK5JYUB+bcKimOZZbMJ1TgeUVLik0f7vdYXLSckYDYmDZjm5jTAbFbuXTY1yQQu0Z4tUNNArHrgVdb2i7i2Xqt26XDvkwpsV86bKZoxqlL+23pcKefBlBjmVfoCUqGqT7MR4VMrAsVRNaViFG9eMZQm34SJku68LKukfms26wJGVlXM2ZqrIy3e7YbceoUmLPelYJbX7F2p1oovOSljomc1s35M9qPu6VeqJ+MLOz4VL+TdfV1/ORCMut6fGnefo3HEv9+2zPwxS9+EYuLi3jTm96UngiLNaNigGWd0XrZy16Gq6++GnJ1jB1/ey+UEhiPCqhRbKETqhKf1Ekop3w4U7G1PlmmS4E77t2+chw2kb5Y0PGxKpjOuKjP2hZmnf2kQDlXmTAlUjA85fFmTmdz6fA0n1POTZnUXq+RGAOxqpfYBkcBqi+jVxPlXPp5l/0AvNoJ5RkxqfDyQgB1BjcClLafnJiUyVLuWBlmTTn95Bg6ZW8lk4qZArzaPmIxGXCbta2PSD+vnH6AjPaMU40YymTWtVzqJbOuKyfnMB5LjMcS8tQq3vWudwGojJvOO++89ERYrBkVAyzrjFZRFPhX/+pfQUqJxS/vx/xXD1Ynl7GAHhbQ0bJiAcTKiqdg5+vu/RqCWFGiNngKj5dnzOSU80VipBkrAaidPWMpFfEsEWAuchIdhdbFtiaVkY1dV0bPKUGOOR27WbKYUtnMadlgz8q+sL7WfcNhgtPbOjPmWeufs1y0M+ac4zpc1P1EY+qMabBKQkD30/Mp5+Lb4IznZTKbZzOvkT9DOXAAIxTTr7K8ZZ+ekM2sShEFXWuglDCGikKRyDR0qucTi1GFiH7+A3UfKbf3FAzW7ZOsrQ3OJfH5l5XhNV3EbvCapSYxo6Z6ztHMaD2WjJg5mb6iZk458EqsgW11MZLQo/gdgtFyH6PlPrTpS2t8x71jnDhxAldffTVvm8M648UAyzrjdd111+E1r3kNAGDX33wJcmVYNRiQ9SBWDwuIobdYyDspyaGAHMXHleN0jO/KT7n0tw2eQjCItDGT6StWRqZ1e6zknejY3ov1BZUEUaLYztCSLsX+OlvCpdiuj3XNjch+HPAMgayZTy7onu59YLOy11OE12mUD0+amd7MvazWCLEbAq+h5+2DKeU6XDglwSE47fea/yWqjxpeDQiT+zijhtdC1DHddh9eqaqMTtkwMWUDr9XcaPgp+87nlUAHYi281q9NCGJbpbyhz7aEEVNrXWysH3c+xHtEywpem9+pGA8WA/Px+6ViWueNQD9Z610Tmghec/uhjJrMXM2pgfp38IE8BcKhGG/pjVzuPklRiha86qVurbseyerGeZ11HZ4adGIMuGqnr4V7H8Mdd9yBXq+Ht7zlLWzcxDrjxQDLOiv0hje8AZdffjmK5SHO+egX2hdtfjZWwZ48rPxsrBJZ7sNrNYWKlxSn78Yn75I7F1+N6VKVfe2M5ZSBVZlen7BrYxZ7cm+DJwmxWneAIQSx/ljRT60QxPp9+JBKXaB35huIceLItZBrgdgUuG3GGltXpwNejdZkkrTG+U74um5q5rXwYlLwGohrwSsR48Nr9WAXYl14NX24EBvKvLoQG1zz6kzZhddmju3fW/BqB2rHu7BIxQAg16H6GVZqPWsrxodXE+OZNVHz6Roo0cBK/WwfSzxH8jHiXEE5LWeVDEfbA/DqmTnRN1cz+nHDDbjGppQB5NE5EXOzXZf+790OWjBrsq7+tYcT08m6mmOfKHHJ3z0IoCodfspTnhKZLIt1ZogBlnVWaDAY4C1veQuKosC2B/dj8YFH2wGBbGxHRDZ2o5TaM91cqKTch7UIgSfa2Vgn+0qOJYCoeVOdjSW3LDDgGSsphsmumIxO3Nwp5E7cglg3+0r1kyjFzC45znGMjRrYZGTfJtW0sq9bwXV4IpOkdc43E2I3HF7d5+zDKxFHwqtpNzEUvDoxJLzamAZiO/DqzWWisuFoTBhUzOMkvNZSTpkvCYOiycIGTZTM8d4WOO1+qrjOVjpeP2ac0E3IJjtMz7cVmzDEan0nj29iojc6UzdD67kE5+MaLCW0XnMpcx6MrZt190nPGi8FromPCz/rSnbjZV0pUVnX6mCN7/jqKZw8eRLXXnstXv3qV8cnxGKdIdoCVyYs1ubommuuwete9zoAwJ6/+xx6J051g8YCYizj2VUtos7BuZIl0lvslBE4RX2RkwDdaPmU045EyXBWSTHoMkFzvL0oS712GQY10Qu8nEysac+J2QxtBVDcKE3D1GqLaU3b5/jKybzG3n/u/snJdeRxoyVoDRSChldHQXit56FSZkxoXICDEpWxUXTtqKjNoRJgVc6l14bGHICrbXtEMgtXDkQ046fNa5P4O6le3nrXaHvW8g+kwTQnQzmlf+2pOSOnsq5A8nnLUfrvndyBAHTWtdU+EnTW1Y1ZlWTW1ej/W3gyPvnJT9qb9Fw6zDpbdAZfMbFYXX3v934vbrjhBsjRGOd99NNASW3AWoPjOra/kWMBOUxMxrgYx2C4XitabX+z9gvm1MVBa01q6NpUaQilo+6T7jrc5EVE1kVY6Gqwfj1SF+31diLh7IBjuJSCrAzYiGblcveFnRYwTwOIz2SoDmmrwHbuzRXzvoxtR5WAUgDQ/SI5nhoU0QoMVa879ZcitPqoY4KfrwZeE089CcoiD5SrtbD0YFX2VtSQG56Q7tV71wZiTAVKEsBSDrgyI8aCafp9nJxPDgSn2nPOBUjchDUxiW3iUnPK3kYotkV3fcM4dmNZKAGhBORyBExH1c3nFLxCIQivg4NH8Nu//dsAgB/90R/FZZddFp4Ui3WG6Sy8OmGdzer1evi3//bfYufOnZh74hjO+ft7grGiBOS4e9Ks9n+tYwx8+ifftVRv5pzA1wCx1drWFDxVX1EDDxNXtyfNm2L9mLhCdoBBaNjS4BTEVgdE2t21fSmIBWh4abVLGmSdmKzS0pTWA8KtftbxEb/Ze77GNMlrup7S6WnDa+z/NXZDxH/fU39zF15j/TilxaGyfAuvoZJ7Aai5AhDVjSw57q5NV31h14IKpUmINZlMIPBZ5sFrCGqUUzYcMiSypbwC9L6wwvvy5MKrjSekeyIKRhZeTRs1X+k9Hopx505JZMTkKgOSk8dnwiuAvIqmiAmT/ZW6J53KImcqeL53Y4xXhqYzsGIkGngFICizp1Vp4TUkebzE0/7+fpRliRe84AV46UtfOtFzYbFmXQywrLNO559/Pt7ylrcAAHbe+zUsfvVAyyihJSIbKzTx+xRKis14yTU1zoWfLHX0TrDpc5L9alsQm7iIaV0UaMK8yT+k7F4gVxd4Xqzy2lPZKL9NaRIeWhCr6ZjOXMiY+EenEKINsrnZ13Yn8WNyJeTkMDqr8Gq0SVsHZZURr+H9Q8p9DxHwKvz3vAevZi4+xPqZV6G8/1FRZV5bnwVuFx68kjFow6tpb30uUZlXYnmE8te8ej9T61ApQyL/s63l9uvDq3ncy7C68OrHVDfoPHil5pLzVghAevR35GVhScVAmOiyczOCeH1zMqwTi5qL969PgatMLN3p9JlxjjdZ12iMAVf339S79rDgGrJuWCkgliW+++ApHDhwABdddBF+8id/cjo3TlmsGRIDLOus1K233mrNDvZ88m70j5wKQyzC2dhWTMbd2WwZcA7AqS0pTq1/XevwLpyKarxO1qVuMyXF1AnersUKXfy6cRHYsVldmyUKZKTc7UNCW4i4JcUhAMkBr1TpJqaQjaXAfM19nWUf95NC7Bphe2KIzcmapm7WBPqwEEvBqzMX8/8TKht2lwJ04BXO50EIXk1M/fnVgVdnvkKBhlc73+bHDryakLqs1s26tgdysrChG3PS7LdKw6s91oxJwCtgPjsbcCWfk/S+xxSKybnRmPOW9mE1lXlN9TVJ1tU/fJKPt8QY0axrxjhFvcZ10qwr2e5lXcmYjKyrWCmAscAv7NyHv/3bv7UVZdu2bUs9HRbrjNNZdkXDYjX6wR/8Qdx4442QozH2/u2dkEtjyFMFuX8bgDZUBs6MKefgSSQUgoZI01SsxNjPhoQ7ySgpFoh+4liIjQCBC7HhuSQAwHa2xuzZZss8l2m8F3Igdtazr2vROue65kwspVT5eE4/Gf8D0TWvdSkxBa9NTH3zioBXNya2VzRQgW5qzavQYXitAhqIDU7FtMdeFrOONfYn6IsgvLb6ic0l8Vlo+kjGTPPfIwdOU+3rgFcAWWBpbnhEu5nGR0+5cVlXKw3IVVHtOx/JuhZHexZeFx7dj//8n/8zAODNb34zrrnmmsxnxGKdWWKAZZ216vV6+Hf/7t9h79696J84ifM+cRfECJCjbllPS6b0LXKWNGXGIZiV42qcdLlwOmbdGd/EGMl1sUZJQyUApc67wEntZiQD2SUboKPtjWFVpI9cJ+McTQPmprU+Mwao08zSTgO4N+sGwmbsq5u77U503Wz8Bo6W4eysO4buxTM9Jia4ZlYIqEF8HC2E3cYmPE6V9YxuA1ZU8Bmrfsla46gTsG36id1kk4ia2JkYlRgHqXFynk/dT1Q6s4w4FpL7rxGLm1ZlUmoKua9bQva8HYVXQK6GY5qb3YEOdOWnITSAyDKgYkVCjgQwFugdP4En3/05aK3x8pe/HC972cuSz4XFOlPFAMs6q7Vnzx780i/9Eubm5rCw/yB2feEL1mFQjiL7txlALQNnTJ2AWLctdZc3pzQ5dBJVoEt/16rAyyEUIMYqeQde1BmZ6kI8No4gP52Eu6dlKMvkmjvFQNcaTQXa/TWHsbnmXCQGTaQmKHXNcUvO0WaVE59OiJ30Oa5jrhOVilN7F1edND+H1mZH3msWXt0yemIM3atihNbVDSUiRvVl1R+1jryGVwNg1FZgBl7NXEhX4hpeIUB/fvmQF/jzZFWJaCLW68NuvxKKccE1EpMs6Z0ge7hmGMsFxtS5ZYJ/iaDBoPsxut6Pg1RWu9aka1xt9xkVVFVlVDWgCDgIG98M8qZLnXW18BpQsSJRrDRb+onhELd84ctYWlrCTTfdhB/5kR/Jek4s1pkqBljWWa9rrrkGP/VTPwUA2HH/fVh4+MEGPmMgW5/4k9lYFc/GtgwicmJCotqnWNLcTCbwsE7HtA9oQ6zw17YaiPU/pSiDp+Q4XozvYByLcftJjeOpU1q6FvjMMZpai3zA2yioPR0Qu9bnsoa5ZsFrZy2zircD7edMwWsAUJsxvHJjB17tQ8R73MKreci5AebDK1BVM7gQ68Mr+bnlwmsd04KOQIbSz9RmAZ43tt8vBa4dY6aUEZPpV3i/u8qY6zSyhxuWMV3Lv/E0+gCS4N953dYwziTgGlxCVKJj+ujPy4BraDwXXG0/SuHlDx/Eww8/jPPPPx9vfetb0e/3c54Wi3XGigGWxQLwghe8AK9//esBALs+/xnMHToAAC2QXXM21u0nF2QDWk82dq2qsqv+g0hfkK0BYkloDGRj7SFCtEuKQ1uOmAtqv90Fg0kglcqk5WZirYnUad7y5UzMxK73OU0w1zXBqx0nc9/fWObVVCOESocdUycfXq3MTSMCXs0YLYilwFI1VREuvLaehoFPD16bPmqIDcFrbVpn5xF62XTgZ+I4C6+dwZyYUMmwcNqp9bci8LM7F+d5rhleMzLQnTLijT5/5GaACXXgLwGu64X+3KxrLriuN+va6UNrvH60jLvuugsLCwv4pV/6JezevTvxrFisM18MsCxWrTe84Q24/fbbIbTGOXffif6xI7bNlhWPA+u1nGxsBbL0GKm1sSYmJxsbcyme5poj63hMNqYOrr6E1lWJMRkj0jCWgFjAuUgLzrW6yA/uB+tCbAxiMiE3y9hnvZoWxG4GyG7GOlNgfTcFjDLmui54nUQ5VQaxUnmlw/AKA4aahlcjrZPrXsUYQXgVzucjBa/NODS8tvoqM6Al8flnoTTRT2y9q10vG+knZSxl+5kku0gGYbKS4Vj7eqSm0IfRpFnXCSXHE2ZdQzExcEUbXHOyrr523PNFfOhDH0JRFHjrW9+Kq666Kj5pFussEQMsi1VLSon/5//5f/CsZz0Loixxzt9/AsWpk7bdQmwpwlvqtMqKI4MlYvKs+6usRhKGN1prKOMjQ3Kdg2OfWqmLfa3jzs6b5Xqbq63ggryVlPt6bALEbsoNimqgeLNMvOcLSa91dRW7sWMUyIzaeRSBta5eHymn4Nj6RT8LS8dkfu6lMnsJs6Z1O+5mKvlcFMI3GE0fKv66+Xubr2keSM8j+28Xe111Gl6zwDTxXrW7DQQGk6P01npylADXVYFiVQQBeNvX7seO+78CAPjX//pf45ZbbolPmsU6i8QAy2I56vf7+IVf+AVcffXVKIZDnPupOyBXV9pBBlJja11QtwUg1c1IZF1YhGJ0E7cWmS101gW6xsApOlD1LXnXPAag7hDJ7SUSF/W52bOoS/EUPj7Ptr1ZNysLu0lKQmzUUTi9j7DNsKeMn0LtdYzQGgj8j+qehBaAjPwP676s1+/RMXaLm2AJawOEIVM5C8exzGnMFArOZ+U6Klx0zmfVOjPArbjQENqZa0gJeK322Y1/vmf7L6SUmd0NnTOzx0Dk759bDhxrT7kHw9lBIJR1HYkKXiNjFat1NVcgZvHBR7D7i58HAPzzf/7P8a3f+q3xibNYZ5nOsqsnFiutxcVF/Mqv/Ar27duH3vISzr3zDojhkIytyorjJ+UkpKqMmNjFgQOxIcfj2LHW5XCtEJx7gWOGpC7+6n0nm04z4NP3INK6upB315hOCrGOy3HWXCiI3SzDIWA2gXA9c54kQ75JpcRrglj/fZMyZKIkRJM1Ne99X0UzDgU6uudkXpUmIVb3pQVH6v/c3Z9VaN0BVLfUNvQ51sp2ajoL26rQoJaf+75YkRuHIU1r65qsPieBSio2B14Tn81ZngutPgOBKXDV3u+JcZJ9UH//nKxrBrzGzpc5298ZcA2NZbOukQzw4kP7seeLn4bWGi972cvw2te+Nj5xFussFAMsi0Voz549+I3f+A3s2bMH/ZPHsefOj0OuVBCr+hq65wTrDJCNZGNtHwmQjcKwc9KNgmxCk8LoWtWpzKLGzYXY0KdYLsR2HGInhAkCYpNQ0zGSItahnsnlw2uB2LWUd28ViHUVytx7jsGd9c2qfYOHMltqqSDWvTqA2oJXO4YHnw68Vg+0M6guvLox9kd3nagj6ZlCpVxkqeUFbhYuuJzDEQlr3lyjyikZzn0brAMqUZ9LcuC106/z86TwGlRG1jU2Rha8rqOPXHCNZV3luL6pEjk/p7KuLrgaeNUCUHNNh8WKwMIjB7H3i3ehLEu88IUvxI/92I9Ntk0Xi3WWiAGWxQro4osvxm/91m/hnHPOQf/EMZx71ydQLI0hFOi1YDXIJrOx9fGqRwTlZGwnANlYe0ybsnYWE5QUaw1BbT0SyMZa+RAbM3hKKdaHlJtfUjyL2VdXZ5ipU3wOExwfMzUzjsKhdvM/QsErmioFEl5rmSxsB15NH/V6WhJe0WRhQ/DqglNwnamThQ2ujTeVI7HqaZ0Ha1nwmlLOnzgHGhPwGjLVE/X6/vWUDLder5Ric804z0ycdSWOn2q5cARezU0DX2rQBtcYvIZMF3VRgWuxIjB4/BDO/8LfYzQa4XnPex7e8pa3oCiK+JNgsc5SMcCyWBFddtll+M3f/E3s3LkT/eNHsPvuOyBXSshRBFTL2lwpsk6n+iE8bnUy1MH1Meb4oKlKrPTMPJ5RXrZZ2dh1maEY19/Qha6MAIHfzxr2emWtQ7lguN7XfSuYOuVCbOy9qnXcbMnf35hSDIAB+zyjpmoa8f9ZTcNraxoqDY4pY7eY4ZMZI+lIvN5/6ZybgrkwlgGvwT5U/DPbut8nspUx2fZ1ZV0zPBfWCb85WVctEQfX0oHXxDjBrXOGiJYLF6sVvIoSGDzxBC689y4Mh0Pceuut+Lmf+zn0etRdbhaLBTDAslhJXXHFFfiN3/gNbN++HYPjh7H7Hz4OORxFS4a1rO6sinEEZFWdzQhdcJi74SGjB5NcDG3Loye4WFjnBUXqWBEwbmmFTQFic8qOY1uFVC7HmcAbnU4aEFgTKAZ/m+lMvB7l3hxJuGS31or7yqkCEAJiFDFs6sX7UL3KWVWOwvPUMmy0k3XDyhRWRD43TMYx3I6NrzbJyQLmtEfmarOqseea4bOQNGrK6QOJPjQSf5Pw+c72PY2sa6yP2PZzqMHVnHNDJk3jyJKhGlzlqKqyCo0lh81c+kcO4cJ7PoXl5WU861nPws///M+j3++HJ8lisRhgWawcXXPNNfj1X//1CmKPHcbOz38MYrhqTR38E5lZ42nv0AZA1pzwgyDrZkqDpcnmAicGspklW6n2NVzsmX0mc7RmiHVLjDOydVoGslDuPFPtCQkh1rd2Kbn35xmQDZ7kOWwFiF1rFrZlQJRKDSX68A3PjNy9YANjGDgNZfLMfrEVoHb7qMqGzRj0NM0+rxTIGHjVQrTKhFtyADeYTUxtG+N8Vq3ncy96rPOZGjKMylpnGoVGnYDbCeA1NM9ck8GI/PW13XYdh9eMc0sa9OPPxcBibB/2ScC185o44GrbiStsOWzgFQAGT+zH+V+8E8vLy7j55pvxS7/0S5ibm6MnwGKxrBhgWaxMXX/99fj3//7fY9euXeifPIod9/wtxOpKtRVNAGQBwDVoCkIsAbKqEI1ZVCobi+budmztq9/WWYu70dnYDEW23gvLf00ywTG592XKKCdDE0GsD1g5EHsmgGyu/Nff/X2LZGKzDJ2o9dytdh1v9yW9Na9Kd8YwcGq7HMXb/ddT99ol9lQW1sCrnZYDqC14dfpoicjOSm8PWx9eSfdhN2SNn1ci1kfihmD21jQ58BpsT4xBAZ3/tsotGQ6152REDbjG4DVnDBMnquqmzjxjr0WJKIi3sq61lJMAjYJr/Rxa4EqN4YCruQ7oHXsE533xUxgOh7jtttvwy7/8y5ifn6c7YLFYLTHAslgT6Oqrr8bb3vY2nHfeeegtn8DOL30UcnXJQmoWyNbZWF3UGY1arRIsDXTWuDoQGgJZC7GZ2djqopLKNCZeiDVmYyfRutem5axpRSbE5kBiJLO27kzsmZiNXeucDcBQoLgZzs2TloAHTYgiFQNaN+ME2pPbTjnz7MAp6qxYDbF0e5OFVf1AxYJ7we/BK9BkYSl4rRocyA2UFrufpaR5kfM8Q1A4aZlvNKOYC6+p9iB46nx4TbXHAHoK8Bpv37isqzkvTpJ1pRQrFzZjhMBV9dHJupJjEOAKAINDX8e5X74L4/EYL3jBC/DWt74Vg8GA7oTFYnXEAMtiTajLLrsMb3/727Fv3z4Uq6ew40sfRbF0vGp0QBaifRfXbY9tq+NmY4PbQ3gg2j6+uXDQQnTdjv3jQxf9iQstG7OBshCbBLhImxBkRqo1jsyD3fgcZBSghJlHTDEX4jMRYteq9ZYTb1Yp8XpMwTJMoYTS8XWvteNwaByhdbQdWncyr+3jqywsBa9G5rMwZMgk6pt1UcOngPOubS8T4JhzQw6JjKLzuRmeZ3ysDS8Z1on2rDnE4fW0ZF1DcwzEqH4i66rXuc4VzXk+NEY5qMHWX3OrNeYf/Qp23F9tlfOt3/qt+Nmf/Vk2bGKxJhQDLIu1Bl144YV4+9vfjksvvRTFcBk7v/RR9I4fagIMqIbu/lqQpe9QuyfwaDY1ckFjLviCFxwtkI1cHCbu5tu+Qk1CJI1hYsqG2Jhy9oRNtedALpf8zo42w9QpBqGJGx5J5RqXleExdCEgxuHXQWhkGbClTJlSbsIxU52s9pQ5UIZyHNljcDvJWlSyPWLoB9TAFYO6xF6m2etlY0qBp6o/r2OZ3wTAJyE+43Wwf49Ae2wpTrJcGAEwdduH9U4E/hpvrbH44Oew7eufBwC84hWvwL/5N/+Gt8phsdYgBlgWa43au3cv3vnOd+LGG2+EKEfYce8dGDzxcBNgIbbaFzF5QiVOyFpWXyGIbbUTFydNSXFif0Adz3LY40gQ1uE2IJldmUixctpUqa1pz4mJtfvrDV2ZtlC2yRg7xSB2kr1gO+PPECBvBTfmtULsNF/jDNMmss1shxOqLCiMIRPdvy4EjGFTcGq98PGAU2YZcCQ2N5+CbsKGwUN/hlTWM6dKxAyVmYWdeIwE3KbKdUVZV9tkwGtwjDIxh9z1siFpBCuGOmOE2nOzz5H+s8qFA6+3W07sr6E1MuAabB9llgsrAl5ViR33fgoL++8HALzxjW/Ej/7oj0JOY/9wFussFP/nsFjr0M6dO/Gbv/mbeN7zngehFbbf/ynMP/Jle9Gpe9VFIDQNstoYNekAyDrrYK0RlNOuBZq1aYksgC1NTlyohUC2BbHuHKSoniPRtmHK2C4n2k5Bplv2GYNUtw9KUiaP31CIBc5uiJ00U78BmdjWmue1ZFlj7w8XXk3/PsQW3vuPyrK6rsajbipJ90TjFkw4Erv7vFKZKHd9PXnBn/oz6fbPnTH8m3Wp99Ja3moZ0LuukuIaXGOuuNI9J/jP2YG24BjrXC+bA67J847p3/d1QHNzda3lwkAGwHvlxP4c/HLhTrsDrkJ1lwa1wJVo7y0N8YLVBzE4+gh6vR5+9md/Fq95zWvW543AYp3lEjrLMpHFYsWklMI73vEO/Mmf/AkAYPW8y7F06TdA92R98vOvPGrwk1V2Qg5BtFffxRgoRu3mxhSlvsih+q9jRAkUXru5uNSiOunLce2A3OmjysCIcTuL0pT11t9KTc7B/qh0dO9JoXS8lDHWXm/T05m/71BLbT3ibPFDbk3ibgFEXSCntghSKtquXbMeMsB3FlnDx/VWyHSmNE3gXutFYe5Ng8Rcgxel7uNU1sUtCabGcG68kIZKbhlir5tC0v3mMZN9dftWA6fdwKttB8o5p92BVyPVE9aUjjKHU0UVY/rzpQq0XNc7Eo5jeuAtrYv438YHE2qMJjjd3nF1d1+yTHgNHS8jVTnV8TSwuTc8zTxb7UWkXTjZx8D8zd8o1L/rudB5DYTzHgCRdRX1TV03M+/Pv9d+Dew4jsqB1+59jJb1LjXGQCzYPkq0D+PtxRCQKydww4l78dBDD2Hbtm34hV/4BTzzmc8Ei8VanxhgWawp6o//+I/xjne8A1prjLefh5NX3ALIuWCJnYFEWepuyZF7MWTuxHuyJXqlptfjOBkSfzsKd22pUASA+sdTEGzCQsfXfWwowAKAUl2AtRPVYYB12kmAdY8PgWAOxJo48vAIIANtiF3rx/XZArHrcnvOANi1wmsTEDddEqLKngbHl9ChdtO3n32tpYUAerILr6ZdCuh+0YVX014IqL4k4dX0X86LoLO5FkA5EMHMqxaAGiAMfQZgY/d7pgWwkTm4hk/xwSLDREqGzU3JIKTLeNbVLCkJQ36k3QBsBL51L96/6qFdreP1r3qiyZYH2wPHo3qPhMDVjG//RsRHuuo3jwfbA+Br2wPga1TOVfDaP3oA5x/8LE6ePIknPelJ+JVf+RVcccUV9EEsFmsicQkxizVFvfKVr8Qv/uIvYmFhAb2Tj2Pnlz5SORSHrqs0wqVvGtELCSBeNtXqg0ro1MdWJVygAVg7c/T3X3TGjhpBmT4SF3zJC8K1ar3GS7nrZkNrEWtgCd0rTENP/TGdgtdZgNSYZn3+09B6XYsD8ApU/58heK3aicyr2650EF7tFALw2nQSbqo6WF97cK1tfWzMDKoyrIqPIcbxz1xrxBRoN5UuwePHcXhNlQxb08DQ+In2lEFS8nizxCXQRzW/8Gtky3iD7TpZLmy9JyLuwdH2xJ6xImHwJBRQrGrM7b8fOx74O5w8eRI33HADfvu3f5vhlcWaohhgWawp6znPeQ7+03/6T7jwwgshh0vY/pX/i/7Rx6pyosAFVFXmG2lXVQY0lGWsLP0jRlExR2QAdu1r4gKPgiihUcFHDGLd2LW2x/oWIg14qeOnochWPdUUYhfYU1iLuZEQuBmuvbH55zy39Wyvo1X6OeZun7PmOazzPRyqIkCVIQ1WKaCCz1iVBJAARDh7ulLT02GzJ8B8hkU6T7Snt5fRwZuF1WdY/PNLjnWniqXVR+Tz1xwfdJRHA0Zh+EX8+Ax4XQ+cJl2Qc42iYv1Hn398vbAY6+jfQI6qKqGwAZOGHK69vVjVKFY1oBQWH/wMFh79LJRSePGLX4z/8B/+A84991z6QBaLtSYxwLJYG6DLL78c7373u/GMZzwDQo2x8NAn0Tt8D8RIV2tiPVC0bsIBkNWyKu0y6139C9Hq+KoUmQLZxq1YkyCrZV26pbW9y91uF1CFsBlb/0JaF6LK7pgLRf9CsF7zCwTungsBVW+1E7+7nnGBn4KYjV41MasQmwNwsfac43O0Voi1ZYlEjI60dWJCpeT186PmoLT9Cv197eNl4C6RWS8dgdDgeyvmWAw0WdXA8fZ/M/T6mvXwAYA1/acAN+o2nGhP7guagtfQsQZeI++t2M1BAGkX4dTxkf1GjcFQMisbOt43gvKPV/F29/jOnuJog6mOtAtFH2/7J8yPgPrGQQ2vZb97o9EFV6qE3AVXst0B01i7LEGuPTfgKkoA5TJuVfdhcPgBCCHwpje9CT/1Uz+FwWDQfWIsFmtd4jWwLNYGajwe4+1vfzve9773Vb9vexKGT3omdG+uKseTlXkJUBlG9Farf0ctBIyRk2kvRkAxbP5dtTBgW188jnTTLky7aLa6GPvtzRhADc+ryrabeRhTDznWkKZdds1axFi1L2AFWuWIQmnIoVlc5BzvtnsZIGvmoVGtc3XXwfpZ07GCUIF2pYCxBw6eU6zw21sTSYCF1jSYmPWOSkET8GDKh7V/vL8eU8fNoKoxvHb3Yisre+m+dsS9zfW2T6rY/Km1qCaG2vO3c0OFWsSpmzbq9bfHyu747vyk6JSFu6dZIUTbcAlog6WUpAmT295aB+s/F+/4VkmwrI939mVuXZTLyiDKNXTy/4+1Y9bU6R+A6rfbfakC7Xb3TyMaAx633cChFl3IceG1am/37cKr396BV89kyHyeuXDYOr4k2hPHu+twqbWU7hYuFLi67RS4upDog6ku2p+5frvqtefXaSde+1S7Oz/3b2tv0rrtc8Rrp+l2Qby2reNHRPu80z7Ma3dvJo+d9qI+V9v1sqsHceGRL+DYsWPYvn07fvZnfxbf9E3fBBaLtTFigGWxNkEf/OAH8Ru/8RtYXV2F6i1geMHNUPPnWgiFrC4siqHv9ttAphaVm7BfRmfaIGq7/w5E1hepor4b7bfXkNsC2NbxFcS2ANZINqYtHYD1+mgBLNC68NaCBli/vbPdhw+hxHYgtry4VN0MlLuVyEYALFABRQBgqymILsDaRrP+dQ0Aa8cXkwOsOzbVNmn7WmXgipp/DuDGSstDgGvdgCPPz4XYwNxciO0ALNCGWB9gJzFz8gFWCKBfUQy5nlUCelC3UzcCpEA5b6xm6T7KBRnuXwDjhfDctXBAg0qWF2234Y5Tr2zaqW3FVL+pBAHodgOuVR/tz0MDoKGsqQFYUQbaE8fbG4aBrGtzwxDB16cav3u8AVQLXd7xndfNazeAGTy+3xyf095x53X7J567eV+YjGuonSoVVv3a1Z8AV9te1O060k6AK1Blf3XRBVdojf4T92L+8L3QWuOqq67CW9/6Vlx44YXdJ8BisaYmBlgWa5N0//334+d+7ufw0EMPQUNgdN5TMd71FJjtbGymtOyW4hmQFaUOrpM1EBqCSFVUEOlmcU2buRAl3YTda1SFLmQ6F8GijKzT1QEnYtGAgIw5DYcA1fSRaqeysH7/MSfitQKsCUmUFgePF3J9AJujUNmsC9Drad9IhQBdijyApdpdiF3rc6shljrFtiCWel+ksrAAdL9HZ5Kd40MACynbWVZv3loKqLnA8agANtSWDbCht6vJwhLwamRBjAK8+oYe2SaqDHKwZLgG2FjJr+qLILxWc4sfjwDctaYRKJe2DsOB41UvXg6cai8HCQdkd4udSHtobvZvQt4YcJ4bBa/9xr2Y6r+cE9E1rsZdOdjunH+psW1G2G0vh5h/7C70Th0AALzkJS/Bj/3Yj2Fubo4ehMViTU0MsCzWJurUqVP41V/9VfzN3/wNAGC8bR+GT3o6UFS3pqtMYw2h1PWh7mYduu2Bk7jpe6Tp7SREfVc/NLYADbBGsrqwk2NFXtwKrYEybKQC1HMPGaX4JcS+dGKrHa3XB7A5W+lEIHVLAywQBrX16HQD7HqUY+yVAbHh7kUcQGNZWCEqgA13Dj0gFhQaFQJqLny8LiTKhXB7VSYcfu6pMuLxXPy1LQfxzzhqrWWrPc7+rTJaX0KB/vwzx8owBLX6oB6PwGH0uPpzvboJGTpWWx8CSrLUNQSGjzfZazog/rrFXjNR1lskRdbpBv/mujq+nAu/PnJcH7/Gj7Do+uVhPbb38VwsHcKlK1/GoUOHMBgM8C//5b/EP/kn/2RtE2CxWBOLAZbF2mRprfG+970P73jHOzAej6GKeQzPfybU4l4ATRY1tGWFzbIKQYJoBZEgLzjstjn1ydg/3o4tAmPXABu6kDHtVUk0AbFlDZnB4x0I9Y+3ABy5Skm2E2XETv9iXIahwgXg0BrKWBZWhw1+ANROzokrMM7CdpVbZjypNhBgbQaWzJA6fYaysDX8aqrdrKsOAaysYoIAK6utdGIAW2VZI5SYysJK2pAHqG50aSlIwx+g+owxpnYd1W/BEOCaNZuhvk3ZbvB487kZeuqBrHFTbhoY1/RLfeaacmhNl3y763epz1zjnKwDn8mmXRX0+cS0h/5eZu7Bv1dd6txZ2+wcL1QFiR3V8Co0fbxZTmNMCkPtwb/3qD4+1D4k5q4VBo/fg7kjX4HWGhdffDF+/ud/HldddRXdCYvF2hCxCzGLtckSQuAVr3gF3vWud+GSSy6BLFcw/+jH0X/8Cy0IiO63p1EBV/COvabXj5mLnLpEjVxDJc1FU3d8LQBt3IhD5XumRE8TbsQ2MPzcmhiNztrE1CdWsj2WJhAVPMQg0WTEQm7GMjIB0TX36cyNAiIhm8entd0PpRSMrbd9I+QZEAXbtpCC7wEp4+8fX7HSZwCCNBVzQqlKio1+zer/m+jnFhCu0tDe94CC24HVx1FlotJZk0od7+6RGtoz2/9MNA7BwX1NIw7BQlfwaPdNJW8oamuU5MOpLOttf+qxk+3eW89vD809tD2R644ccx8m2zWqNcKx4539WEPwGtuvVY4S7cNumxiewi29+zA4/GVorfGSl7wE/+W//BeGVxbrNIgzsCzWadTy8jLe9ra34X/+z/8JACjndmO091kQYlsTZDKpJmlTVmZOgHPH3snGilI77aLdB0yW1AXD6pvrRtw2kmrHCQXIoWof61wb2SyskWE+UW3TI8ZEKa57/FgF1qeJjc/CAlUZsWmnssDUelh3PeW018L6ZkKbWUq8FdyIY8pxI16rppyBJcHVPBYCVz/D6rsbu2XEhJlTq90fws/COnOtjNtEeJ1svVY0WEZs2505EVtvlS1HYK/dz8J6gNjJwvo34zzo6Tjmeu3F0DlWEMf75nlU/+bnzIyrbXc/n03GtdPuvFbeWtDKvKlpt+CJvHbVc9zqS2/sTnt7Dn67deV1Xg/KfbjtHmwmShwvvOMJ5+aJ2kfdduW2D4nj+xq94w/j3ONfwtLSErZv346f+ImfwAte8AKwWKzTIwZYFmsL6CMf+Qh+7dd+DSdOnIAWBca7boDaflnrotSUFLsAa9sELMS6ANu0C3uR1AFYI4GoEZSB6BbAuse2AJnK7tQQWwbWqtrjI2tZazOmDV8Lm9hyJ3V8dC/YSUqJQ9u5bBbEhgBtve3TUghSld5SABvMupqsf0guwBJ9WEANwLFtJ9e8OwBLvFZTLSMOZIvNWthQpUY5MDeGutnNFmRS/25OWSlZzSKcLcw8R2DzWec6/lLHu6ZGws3M5oKr+dVWvXThsWqvX6eAiZF1PibgM6fdvM4+2HbbQd5cNO2h/Whd92HagAkWXjvtDsD6f6dO/6n2Ed1uAJbKuqJcRf/wZ9A7+RgA4Bu+4RvwMz/zM7jgggu6HbFYrE0TAyyLtUV08OBB/OIv/iLuvvtuAICaOw+jc58O9BabIAOQQcCsjZQIIyTXaThYYifi7c12NzQA2/4pJ2SgupBW9UVQzMypDGRhjWJZVq3rMaaUhW01iHAWtjOHdUJs8NhNhNgYoK23fRrayJLXKQCsiG2FA3T3g/VlADYwl6gTsQHY0BQMwAZew6kBbMQFejwnwssMUINRYLkCgGYLscgcIBAuOa7byO1snKqX6PFi7eBq+giBqztHIDBP6bw+xPG6cI4j2lXP+RuQx3czv/7xsfmZOcTaVaI9dXzrRgXVLuLtRn67PPUInrT6ZRw7dgxFUeD7vu/78D3f8z3o9WIuYiwWazPEAMtibSEppfBnf/ZnePe7342VlRVo0cN49/VQ2y6zF6qyrLKsYSOkeDuAeg9CTZuCaF3fCafboXW9TYQObqUhSwWUOnhxXUEy7VYM1ABbqvDFeamrNX5rbldVqW7EsGld+8KamFmH2Ji2AsACpxdiY89PJtY8A3kAG+kj6jQsBHTEaRhSQs2H26dRRqyLsPkPUJcJR54C0GQPySEUUAaON+v4QwY+0FXGLuZYLMrI8YiDozHSC7Wbz1mzvQvVtxk/uE7TzC8Czql2s2VRaPxyTgRvJspx5Sgdnp+O//0S7anj5TjeDlTVRrGYYki0l6voP/FZ9E49AgC44oor8NM//dO48soro2OxWKzNEwMsi7UF9cgjj+CXf/mX8dnPfhZAOxtr9on116Za1RdurjulL3e7HBJiS125DReCvIAWY2W3+iHdhpVuuxV7MUI5e7bWrqft8VVlMiPp46stbxxAXEM7EmtdqyxxIosb+/g062EjkLxugDXjxLSREBvTZgLuRpUSbxDAaq2rthTAxrbKQQJggWov2B5lDFbNS/ckdL87B3ftfBmB3GQWFsB4IXCTqn5bjuepm2Swe6GWgS13KnfaamsZHzINfAldZecokyBTbhpyNLaOxNTxZhxqpYRdg9m9AWigtTUV3wneLUV2lma0xnBci2nn4Mx22WQ/qfGF0uTr764zpbZEMqXIlXtw6O+na4ff0E3QRPs40T5qzn+q6MaY/dBl6TwHrSGXHsUFo/tw5MgRFEWB1772tXjd616Hfj/xv8ZisTZVDLAs1haVUgrve9/78O53vxurq6vQokC561qobU+BLJu73tSWN+46V3sB48RYgHUedy+2DMACsADQajcA6x7vmYy462BNeXPzQAWYrX1XHZAVZh2rKYWmQLZ0ITjUPm4DTKtdEYZJ/hwTkJoLsX7fTvuaINbfsuZ0QGwOoALhmGmvk/VB1X3OGwWxEwKs+7eeBsBCSnornWaQbhZWtP8f/Cxs62bSOgBW6KpCgwJYA6eAyeK6E2i366KbhTXwaubrmvRYeA2YALnwakRlgQ3g6NpboAPJfrmpA65m3NbnmWdO5G/94oOjLkQHXl0DJS26r4tvsORnv/12Fz798YFqP193jr5BUtnv3gCVY90q+fYB0+zzbfsY+HNMtI8T7aMGTP3naFQMdWv7H1UIiPES+k98FsXSfgDAZZddhre85S249tprO8ezWKzTLwZYFmuL66GHHsKv/uqv4h/+4R8AAKq/C2rXTRByt40hnYJ9IydnX9kWwKJ9rJaiDbBGLsiaMmJ3ra0HsrJUrTH8bGwrC+uMYS/6TBa21e70YbKsrmET2d5kepu5im4WtvVaNHfkp1JK7IIyke0NfgxT4Entt5rzMT5NiJ3EiTgU58dMA2Tdv7H/fDfC1GkCgPX/xlMBWExYRkw4FbsA26mmSAEsKsjxy4hduNQ9eG7DaJesCicLq4l2tLOwLrzaOdRZ2A681v23AFS3HYeBbhZWjh0QBQHJqh1bPdb+LLSu64TrLoDWfJt+tdPePGfS+bdIOAOn2nsCqqDB1ch93SmDJBcO3ayr+xytAZUHpmYOvvuxP4Y1kBrH24HqnOdvkeTO0c262vYBUBz/KnYt34fl5WX0ej1893d/N773e78Xc3PU5rQsFmsriAGWxZoBKaXwl3/5l3jXu96FEydOABBQC5dDb7sWkO4FaPVdaNpp2DW7CBot1Rld4QOqkQEBpUkzKXfdF+VG3NouwgdYt3+gnYVtxdTfVagPt93b/8IHmRxDp2llYVsdt7O9WRBLgaE7TkrTgtgUfIbmaeJS7euVFPRznTbEZgBs6O+aBbBSNnsPB5QFsBGjJwOwofXo0XWwQCsLSxkyuVlYCk6BGqZ64XaThaXg1Yyh+gS8OnM0az1DTrUGYn14Nf0bCDbHkuDqjBcCVzOW3XOWON5kXynwBBo4DbUD1U2DaPtABMEVaLKv1LY0RuM5EQTPZox4e+x4A7imXJhSORCdrKs/RwpcAQCjYyiOfQZyeBQA8NSnPhU/+ZM/icsvv5wejMVibRkxwLJYM6TDhw/j7W9/Oz784Q8DALSch9r+VGBunwdEtFOxKxHYMqFqNJAbATsNGnDdmLEKOohWc1BhqKozwYhtiQNUbsOReVTt1GK1BsRTe7dGIVbreuubGOSW4fY6G5xVShwDWDOXmKYBsGuF01xtdeOnVolt/j6w3W4yABZY3zpYIaDn42v3dE9CDeJlwjllxCE3YZOFdd1qyTEGkXZ4brnkQN1yVrd/LauYqBOtCACpGUI2cwwaG5Ww25WRQ2jTHvtgbKpUgvOItJuY4PEi3g7Aug/HnH1bDseEVKI9dXzKXdisUabA1Z1np12NIE/ci8HKAyjLEtu2bcMP/dAP4aUvfSlkbFsrFou1ZcQAy2LNoO6880785m/+Jh599FEAgO6fB7XjRqC3A0AFlpXRk4C/PtbIbJcT2obCbpcj6Bizb2HMjbi1zpWKURqyBtTQGFAKooyMUe8LG2xP7dsKM4YKXgALF3IDa1lhTJ+C7YlMLbplps38MrOwZqyYNhJip6HNAFhgetnYRBY2fPgUANbd6zWkXkEaNbl9lAsxCE6XEeuegAq5Deuqj/F8+HUSml6raNqM2VLMEViOwoY+QHNDj3KkFVrbTGNsjJBbrxyj8SII3Y8bV+taQ/+frrFSSNa1ONIOhGNMe/R1LBPOz/XNQvLvrZtS4Jj7tHVHDrVn/C3kSLe2+KHaAbRjtIZYfghPkg/i8OHDAIDnPe95ePOb34zzzjsvPBiLxdpyYoBlsWZUKysr+IM/+AO85z3vwXA4RFNWfA0g+narGwAkyFZwadIJlGGIt58rAbLVWtvGLbjrJqybLK5AF+5qsyahtG3rjlGvlbXt3hg1HJrnQroil2XC1be71rVlWmUyrG6pMeVs7IOyVyacgljy4zh3Haw/l5A2qox4WtosgDVaK8jmlBMn+hY5+0muF2BTWdgUwCJeRmzMmsoFai108+OYakeTXaO23DHwat7PIUfitmNwN0aOtc2MdkyFanh1zZVIcPL+bQy4Vs+hchzufIY6n5+hLX3cMl9VUJ/T7bmSAO6bP/nOxu4YvW67P49y0A1wS4FVD114NPBaP2XqZoIsUX3W6kC7eT3rbeDIGKdcONRuqoNUTzTzHB5FceyzkKMjAIBLLrkEb37zm3HLLbd0+mCxWFtfDLAs1ozr0Ucfxdvf/nZ87GMfAwBoMYDefj3Qv7hTOuWCbAtgjRyQFbouAfYNUdwKSgOwRh7IVm7CuoEmc6x78a80pLuO1QNZm4UdK6/dBUzVKXfuwnRZlRKH1gPWWVhfrXI9CkAdwyebhfXVipkQYtcCsGaskLYyxG42wAJrg9gcU6czBGBDWdiWE7APqN5bTBeiC4+q3Ye7pY4Pr6YPHwINvBpRrrXu56DyXI2F1h1Tp5ZrsfdcfHAF0IFXynBIF+3PTn99qg+vnfWpddlvy7nYi/HhlVrj2nX99ebREx1Hev+5tG4kOFnXxjlatLbnccE1OI8xnBuq9Tpftw9inatv4FT14zzXOQmUq5An7kFv+UForbGwsIDXv/71+K7v+i7eGofFmmExwLJYZ4g++clP4m1vexu+/vWvAwB0sQti/jqg1y6NMhBLAqyRMCYimjZ7qkHW3Onu9OOAbCsL6xxvxmllYb05VH04WVii3crJwnaeL+oLZdfQiSxppiEWcNaMJdbLBiHWjBkydXLHMh/LuXvBhjsKt22UK/F6dToAFpgMYnP3h00B7GZtpbMB62Dd9ajVOlenjDjw1jJZWGtg5PdRZ2EpeDXynXE7oOxkYX14rcZpwMfPvrb7ML+0obWaf3tQs89oyCnXwKs7l04f9ZxJYyUHXkOuxUBT1hsyZ7KmSJE+TPY1ZL5ks68EuDZ91K8HAa7uPAAv6+o8X9tHxKDJjel4PugSevQAdqoHcerUKQDAC1/4QrzxjW/E3r17u52xWKyZEgMsi3UGaTQa4X/8j/+B3/3d38XS0lL1YO98YP5aoNjRPUB1L2BcVVnYyEdEveaLchsGUIFsFJTr7xrtLGwrpoY+TYCwFxMznQJQgSUFqLnb5pg+ctaZRpyNs9fDpiBzvethga21JvZ0waurXJDNgdiMvpJZ2JwMaypLmwDYScqIY2ZN5YIMwqvtI2LGpIVAOSeC8Gr6MDfPQmP528f4UgUcx+FwH6oAilH1e+hzUiinWoRyHHaMikJ9qEIkY1LGTQYqkzGxefTcPsiQlnNw8PWv1/qGDPzKgaDB1cip9An+DXuNw3ELXrUGho/iwu2PYv/+ak/Xq666Cj/yIz+Cpz3taXRnLBZr5sQAy2KdgTp8+DD+23/7b/jABz6AsiwBCGBwKTB3NSCdve1UdRc9aORkMqwxoyZVg2Pogl7Xa3FjHJwDnzkxpa5chyNzyTJ0SkFdCkBTAJvTBzIgdr1ZWDuXLQKxWwFggTyInQLAJjOwQgCx7GodkwJYFHJ9Rk611Hx8LqoQUMT6SQD2/18F1rHaMNkuP3VlMrMxgyDzmRUz+KkG0vG/Yd0edBse65YrcShG9cN9iDGge3WlSigmYdxkxikHMjpX1euur/XnYm8eBPrQss7yUsxZv+6pcexcAzc1zVxj7vVyqFHOiW7WdfQExKkvQpRHAQB79+7FD/7gD+L2229nd2EW6wwTAyyLdQbrwQcfxLvf/W67PhYogLkrgLmnAKJnAdaIdAIutRfTNUGpSmvNrXvCZERVbsQhCAZQuRHH4BOoADax52oLcimjJa3pLKyrFMS6IExBijF9SmZqtwjEbqU1sbMCsSmABZLlwRsOsM4ck2XE/QIqALnGqCkKsBpw94T126qMqY46FpvSV3ctbDMH2H1gVZ3JpWKMeV21hpIex8RQZkXVfOnsoQ9M1OdZJ4Z4OYSzhjb1WoT6cMcx5dfBGA2ogEOzmYsuQLqwu33oXlMubY/X7XLjsNGWbuZKmUiNm2xqOUf/XWS9n6sodfv5jI9DLN0DMToAAFhYWMBrX/tafNd3fRfm5+fJvlgs1myLAZbFOgv0mc98Bu985ztxzz33VA+IATB3JdB7MuTY1Go5F7stMxFnfZGptPUhVlHrXF2jD2233KGOr8bx1p8GtqOxa2FDAGGysJG5ILavqxknBrkhEHYvAKcEsVMpJa46Cow/5VPAmVBOPI0MLLB+gAUAKYEitrdKAGC9+a2ljLi7RlVA9yNuwxTAOvBqx/EA1cKaYaVeO8vqwquRD7EuvJr5UnDYipEBEPb+J+zaVmebGv8zrFn/2vTtQqUg1tAGTZd0U7HiPwf7WawAuzbWe8ld6LTjhOZiHJ49mPf7ANpw2gLXusincv2l5yLGVQztPtxew+oDrAuuRmoggPIUxNK9kKNHobVGURT4tm/7NrzhDW/Aueee2xmHxWKdOWKAZbHOEiml8Dd/8zf4r//1v+Lhhx+uHhRzQP8qCHExBGE8o4UHsECrPMwaJFEAa+OdGA/4uheBqlt668NyRgwJsW7sNEqJY9lc8xpudYidNrxOMpccbWVDp80C2FQW1gfYwLwmBVhqnSqZhfXfUr26jNiAK9B537lZWFF2+6j2jTVGS114NRrXoOPDq52Ll4WlYjoQW2dfW1vgeNlQ87nV3ibHgX0HKsW4217108CrfX7eU3T7aYGrHbQB3PY6UG8cfy7ea+k6D1PgCjTZ1w64OnNpG2w54OrGDLoxftbaACwFrgCgxQqw+mX0xo/US2SA5z//+fj+7/9+PPnJTwaLxTrzxQDLYp1lGo/H+OAHP4jf/d3fxYEDVckVxAJE7ypAXlRdVAMtCBOU2ZN7nWwuaiIfJ9WFT8Dh10Cun4VtdeAYLcUMn0xMcr1sjhnTOiCWikuMtekQu1EAa8eaUZCdNYAtZJWpjc2pV0D34pnccqEfNFgCCIClQgUwni/aWVdqrHlBw6vpumeMemh4BRpApcB0khgDsULpTra1FVfDq59t9ftqbbtDxRQZMdIzu/L/lYQXEyqwGIgguBqVAxkE11Y/FLg683HXpbbAtW43r7FRZw0rKiAXIYMntQIM78dAPFLvfQ48+9nPxg/8wA/g6quvpifOYrHOSDHAslhnqYbDIT7wgQ/g93//93H48OHqQbEIUVwJFBe2MrLRLXcAQJgsbNwQCkpHL5CB+qIlYYCUHZP6eNtMiM0wddJKNTcQOsOYDMyUIHaj4dWONYMQO0sAW8foQSLDKgV0dKscAd2TUci1ZcQxEAas23A0RobXqBqpftix2O0nZbqWFSOqsUg4A1rGUMG+VPXcpzEfCHSh1W0z31MfBz4IB2JC/ZjnrYsAuLoxPQJcnRg1IIyX3JixhuoTBk9quQbXRy243nTTTfjBH/xB3HjjjdHnxmKxzkwxwLJYZ7lWVlbwZ3/2Z/jv//2/49ixY9WDYgGiuAIoLoIQRatsLKTKSdgpo6MMoUypcQwQiFLjbgwgkvuxIlxGbCfplBLHXJTdcuPA2txkSXIqC1tnYN2PZB9mz2qInTWAnYYLsRknkYEFsH6ArftS8/EYLQTUXHg+BpbGEcMn81lSxmKUbpXIdidSO+OKCpxCMvuIxvoJOe92PvNIkzunKxGIcfqnDIz8sSgzpaofJyYA/62xqJfXe76hGw2NMVMFlWuNcbPVQcMq18DJXYurloDhfejpRzEeV2R8ww034A1veANuvvnm4M0+Fot15osBlsViAQCWlpbw/ve/H+9973ubjCzmIXpPAYpLUKj4Ho8A7JY7rlqGUCYLawA1dKGWchvGGjK1IfD0t7wJOBd3oNo3hppGKTEBsc1wNahMC2I3s5TYjrkOkD3DANZefK8VYP2bG6cZYDvrKgvZARbz/2/76skOQJktt8z6WV148KkDRkbEtOVI2yymyRC2n0wXXl2QNG1aogOmjfGUrmNEN8bb21XLrgOvhUDzfKXo3Pwzx7di/H68sVQhqn24jdznauZciA4su1C6nhi/zLozH7TBFXDW4qqTwOp9KPRjdo3r0572NLz+9a/HM57xDAZXFovFAMtisdpaXV3FBz7wAfzRH/0RDh06VD86gCgug8QlEGIQPNbPwroyF2Wk4ZN/oT+tLCwI0KUANbRvq7OmNupMbIyhNhhiq6HE9DOxOX1NS2uB2FlcAxsA2M7F96QAGyoxTwEskLUONlVGDAC6kK2MW6hE1c3Chio4Si/G375GC2fvWAOvxHpQd1sVMa7n5MW1INaDV3crmNYxDry2Smhdh2YHXlt9+sZO1rTJgWTn+brw6h7biTH9BMaysOgDun+Twf0belC61pjQ+mD3JoQPrkZlcRIY3gep9kPVn8c333wzXve61+Gmm24Ci8ViGTHAslgsUsPhEH/1V3+FP/zDP8T+/fvrRwsIcTGkvAxCLHaOiQFsSyFAbRlHJUAPeVnYKOi6gBorAXYANQnWmwCx7diMmNxs7GZBLDAZyJ4BABvMGk0CsJExdSEztuSZbhY2tbbSAKyfeW31VWdhKXi1MUWVnSPhFWhlYd2sKxWnBsKCHZVtbY0r4wBYxYjWvMPGTjSQujFadLOtviojpPBYfkzocybLSCozRsvm7xecU1+Q4Kq1BvTjUOOvAvoJ+/itt96K173udbj++uvJ/lgs1tktBlgWixXVeDzG//k//wd/9Ed/hPvvv98+LsQFkPJyCLG7eUzragub1KdKhktwddGbAacJ914gE3RzDJ2A9nrYkKYIsVXoFEB2K0IskAeyW618GMgG2GS5Yw7AGpfhRBy5H6yrKQEsUAGzzjBqUn2ZfE+pvkx/ZoBeVz+x6swkQEMrUC1h0IVoblz57RqNcVGWQVQYSCtju2YtaiguZzxR6qqfwLxbc0rM26xHjcaMNMo5GQVXAIDS1gnajq9LaPUYdPlVQJ8EABRFgec973n4nu/5Hlx11VXR+bNYrLNbDLAsFitLWmv8/d//Pd7znvfgU5/6lNNyDqR8CoTYCyEEuQ6W6KzKgiQgb6pZWD0liM3JwtZx04TY5pD4hWJ8vC1m7mTHjMxrmvAqRfq55QKsrMEzNHchIYqMuccA1oXfFJymAFaKOibDECpVRqw0IONmTiYLavb07AylYUFSS0THE6p6T4aMggBAltqCUtAEKfKn92+oUSZJrpmdFgiv4TcxIZdlRZRKh0yZJhlPhPtx4THmEG3ion2NzB2AWEzzerp/D62H0OXXocsHAawCABYWFvBt3/Zt+M7v/E7s27cvODcWi8UyYoBlsVgT67777sN73/tefPjDH7YmG8A2SHkpJC6EUL0GYqPuvpuXhc1dMzt1iE0B4RogtjmUeHyj18U6Zd5TFzW3aQMsEJ/7pABr5M99PQBL/c+sFWC956OLAqCgwxuTzML6Bm09CU1BpUJTPUAZNdXwakqQtRBQg24/tpy2BjRr8uPJwKsdnpgTBa/u5481SPKgrOPArut1sQFjIzPvzjZBLrS6z53YTmjS8cyNAMrl19/fVcsudLpwa17zkvh7GHC1xkxkTPWamnJhXf/NtDoBXX4dc4MDWFlZAQDs3bsXr3jFK/DSl74UO3bs6PTFYrFYITHAslisNevgwYP40z/9U/z5n/85Tp06VT9aQOJCSHUJJLY3wYR5UgpggdOQhQ0ZOvnKhVi/Lwqe1gGxTRdO+zQg1szL7Ysw25q63LlNu3Q4Z/65619DczPzzwVYIdrlwaEbPjkA65caU8/Fz8KGTKH8LGzgtWplYQPrLl2I9eHVHurtLysUvfe0D7E+vALoZGFba1QJaLXH1fBKQav90YFJH1qbfkRTXm3AlXjOLryGxgPQKtW2cX6MA6YtcyQvzoXcoOFS0czLZlupOAdgfXAFAK0VVO8QVPn11vrWK6+8Eq961avwghe8AP1+hvkYi8VieWKAZbFY69bS0hL+1//6X3jf+96HBx54wD4u9Dko9KUQ2Ath9lBwjJNMaWBMU8/CTquUGMiD2Bicus89B2JNXHS4SPa0FTghxIbAbqPKjbXamOwrpRikk30l1q3WygJYoMrCptbKpgAWaLKwsedgADZjKxI130tmqy3AOllXakw1aLbhCpk/GYgNwStQQabq1zEaYXMos15Ux6HV9Nlpo+KkB8Ohsd3XnwDXTkxgPGrMnHnl9hWafzmQnWxrp6+ivYa2Da6rUHgICg/BlAlLKXHbbbfhO77jO3grHBaLtW4xwLJYrKlJa43PfOYzeN/73oePfexjTXmxnkOhL4HERRCYcw5Ir4MF8rKwE0FsVtwUM7EpODXj5cQByYxsNsQCk5UUJ+e1hU8nk5gzpZ7vNAFWiLXvBetJFzILdHVRAImtcgBADTLG7Mlq3NRrFlmb2nRWZfVC8NoKzflz1mueybWvNVhq0WyBEwI/UxIMEQY6e7yoMrBBh2aNZtudSFfumMk4zy241V7fKKy234kbN4lxnjGVGCvovvSgVUPjKBQeRNF7HOPxGACwe/duvPSlL8U//af/FOeff374ibBYLNYEYoBlsVgbogMHDuDP//zP8YEPfABHjx6tHxUQ+jwU+iIInAcBmZWFBSaA2NQ6V5OFdfuKZUhzIdY8h+CF62mCWNNvTJNkY5Pz2qKnlEndhSPZxNzM8FQA1swnBrDGfEmK/Extyo0YdRYz4znEQNeFR2rNZDNYDZQyDrrV5wAAUe93GhkvNEbroUAmsANwoSn541Fxut2eNWZuHIhsLhpwBQAoBB2j/W3PgmZS/nIP857TQyg8AoVHAJy0zTfccAO+/du/Hd/8zd+MwSC8dziLxWKtRQywLBZrQzUcDvGRj3wE73//+/G5z32uadBzkLgQhboIspxP9pNdSpy1zpWAWDsvf9FYBlTqgPOyf8wmQ2w1JGdjs+EVINdqd9qnAbDuODlGToXsPub9rmW9njY0rhOfA7BAZha2kEHXXn9+JEh5YElBbHODyH2wDbGxTKv/c7XvamAMOHFuhtbp08aVGpBEnBvjPDfl/W3IMVNzc1yO22t9vc+hUtdro7vPQRDrX0nzqxpc3ay4KgQ0HofCwyh6T9hs69zcHF74whfi27/923H11Vd3+mKxWKxpiQGWxWJtmh588EH8xV/8BT74wQ86WVlAqHNQqAsh1ZMgEMnm5GZhcyE2FWPG8kuEA+DLEOtpq0DsNPZ2Nc95vQBLjVGkTZUANFnYSAyZhSXitZRZZcS5WVgXYmNZ0FYW1rykxPtJeYZOoRJZcv/UALTaZgcQKYC0cQZK/XsYbomzpOPIda+iW55LPvf69aagtRXXlzS02oPa8CoIt2E7N9dQyl0z7PSnsYRSPgolHgWwYh+/9tpr8ZKXvAT/+B//Y2zf7hj3sVgs1gaJAZbFYm26RqMRPv7xj+Mv/uIvcOeddzaApXuQ6nwUah+E3gXhpQ2ysrBA9pY5osyARGNiFCsNdn6Or5Fzyow3GWKrYfX0ILbqMC/udIPsNAC2FbcGgI31nWPiBFQAm4hrAWwqdopZWBMXLeGFk4UlwLITZ2Av1qdAd81mqm/Rzlqm4oJrcqUXl7qRNGlcai2weXuF4iJZ3O6YTlwLWsdQ4iCUeBRaHLaP79y5E7fffju+7du+DVdccUV8niwWizVlMcCyWKzTqgMHDuCv/uqv8Jd/+ZfYv39/06DnUagLIMt9kNhmH54oC+sCY0BTgVg3LgWxTlwWAOY6Ik/bpdgeMMWM7CTj5qg26cmKy1EuwJqMacpBmyr7pdTLAEmZYfaEKhOaA7qd7XSifeZnYZOvdb3OldyL1sg4GhfdUlpfZt1s9H9OoYG9mAy4FaLZEoiSduJiMn2kxs4c1zxHLeNGY25c6oYClO5kjzUUNJ6AEo9BiUOAaG4GPutZz8JLXvISPOc5z8Hc3Fy3PxaLxdoEMcCyWKwtIaUU7r77bnzoQx/CRz7yESwtLdk2oXZAqn0o1PmQei4vC4sAnFIfebE1se5xpwtirRlL5r6z08jGunA4bYgFwmO7AJSa36T9pTQpwMbGlgJCJsjFtIfi3Ln7+8V6smshTVwOcOaWEQsBTayPBNqlu1ogDsW6zqaKap7ketgaXk2/bmlrd+xQXTHxGDV9KnMZeg9Qa6GpPt2xtQ7HuXvI6joDSozdzixX/VEOzH4GGoH+qjm6pcmqKv+GhsaxGlr3A2JkYy6++GLcfvvtePGLX4x9+/bRfbJYLNYmigGWxWJtOa2srODjH/84PvShD+GTn/xksx0PAKH2oCifhGJ8HgT68Y5S61xbTr3eBXHI4Ol0QSzQHTt4Ab9OiA1B5EZnYyfZazYndiPgFQhnQr2xgwDrP975PTAX2c3otsDVVfa+sWvPwnZMmgQASWRrnfWozcFoQ7Gzjyxp/uRBbAdezVtTt7fNqYytnDgPHFtx1Jy9WAuabp8+tNqDMsf2YLMDrU5/rVJfH1pdRW7wuNt+KbmEUu6HEo8BYtk+fs455+AFL3gBXvSiF+Haa6/lfVtZLNaWEgMsi8Xa0jp69Cj+9//+3/jQhz6EL37xi02DFpDqXMjySSjKMMxmlQgD1YVvaC2ZD43ThFgnNjsbG4LrVtwEEGv6BdJgOO31sTljTxpnYjcbYL2xOwCbAtrUfJ0sbBBcjXIBVoiJs7CxslQtnFJiClzt2GiysF7WleyzZ8Y271c3gD6WKrUNxtX9hOJCGVL/uKaDGl4D0Or3G4RWb55RaLUD1eOHoBUnoeRBKHkAWp6yj8/Pz+O5z30ubr/9djzzmc9EL6e0ncVisU6DGGBZLNbM6KGHHsKHP/xhfOQjH8HXvva1psHC7F4U5d4uzOY4DgNAqZMGK611tb47cSh+EpDNKhPOBGhg8mxsDKImzca689jKMs7COc8pYx2q7TZVImwkM9aOAjXwpZ2IbZ+Z+9BmZ2F7eWt6LXDm/OlllVXMMX9qfgnDrj+P+L6w7ZLcFJgn9wh2+sjpszOXYJvpHMnXVGjtmECp+nANLU5ByQNQ8iC0aKC11+vhmc98Jm6//XY85znPweLiYuaEWSwW6/SJAZbFYs2kHnjgAXzkIx/B3/zN3xAwe46TmR0A8Bw9k2tdqx+jMGsyphmZEz+7mnQqzikTBvJB1ofimPPqpM7CMehzoTDVr2gDSjIuZ56T9Ok6C4eek5AtZ+HUayVyM1hCxGHTPA8XYHP6jMXWfWqTKYytr3Vfx4xsLVCXHGfArjFhmigD3hnMK9tdb5x/WCox7r4NzLrX1PgJdba5icxXEDfSKmg96UBr4ynQ7/dx880345u/+Ztx2223YceOHdnzYrFYrK0gBlgWizXzevDBBy3MfvWrX20aNCD0ThTleZCjvRB6EQKiC6bU7941IQmzPmzGYNbN3HrqAG0MYDulwpkAbeMJOPOOm+i0oDQNfP5WMzGQnbQ0MxUT65cy4wlti+M/Lw9g290Sf9cUwLrzi+0Z68aJhCNwCzYJgHXB1RUBpiQ0FfmwGYNYam/WbKjs/E8Adset2E0L82tOttscS5gmdYC11Rh5f7qhKSMmp1zefw19YLWuw0JDySMo5SEoeQgQqzZmMBjglltuwTd/8zfj1ltv5f1aWSzWTIsBlsVinVEyMPuxj30M9957b6tNqAXI8rzKAErtgoC3rg5oLjgTezAmt+mhoDRn7SoQ3yqIhO0JYoF0mXIdt+ZsbGyfVB9kc6AlJzYFEqFjYgDbilVRgG26dDLtFMCG5mX69WCVHCMCpp0+PQgOZvKcLGwyc7pOiKVuBlWZ4MwbGf7hofJe6u2bOwZg4TUKrF58cq42lrhxRfwfm5sVLrS6x2mMoOTjKIvHoeQTcLe8mZubwy233ILnP//5+KZv+iZs29ZsR8ZisVizLAZYFot1xurgwYP4xCc+gY997GP49Kc/jdGo2RoCugdZ7kExPg+yPNeumxUulCYg1sbnGDApp99UabLpe5K1rjGQ9frNBlknNutUMcker7lraCdVrIQzpByANaE560qN3PWyqTnlrm0F8tfBAtbMKaecN3ctLIDsUmIAUL4BU2j8IFwmBnAPi8VmrmNt4gkgpeRmgFOV8vUaVZH6fwWa7XXgZFmhocWShVYtjrae/549e3DrrbfitttuwzOf+Uzeq5XFYp2RYoBlsVhnhZaWlnDnnXfi4x//OD7xiU/g+PHjTaMGhNoJWZ6LotxT/azRhb7Ycs/ctau5W+HUbTnupK32UElzKhaIA63WWRArhOg6G4dkgCVUhmw7DZQj58TnxLrziMl3Fk5l41KGT6ly30B81jpY03chq/1eU5LVMVmxwGRZWIGsst0UZLsAnAPkzYFoQyY5uBOb0gRXTa1yX3dvZSrWbzI3jzCCkkeg5BMoiydapcEAcOWVV+K2227Dbbfdhquvvhoy92/IYrFYMyoGWBaLddZpPB7jC1/4Aj7+8Y/jk5/8ZNsECqizs+dClueiNz4XQs9lw2wrg9vqM1AumIpzHiPNn3LW5vpjUseT8bT5U+i04e8VGdxnFqhg0ACZC7yh9bTU3rQhOHXBMRZb99uZh3ucP2e3LFgl1vWGANa8Tu5zCkEHAWraLQ3O6FunQNpl8glclqcFsbnrZI1Ldq45lO3bD09laTsTDM8ruT7VvP1Cfy6iPLnKsh6vgfUwtDjeChwMBrjppptw22234dZbb8UFF1wQeUIsFot15okBlsVinfU6ePAgPvWpT+HOO+/Epz71KZw8ebLVLsptkOU5KMpzIMvdENq7yPeANmj4RP2eKhP2ADO5HY8PpLG+/exuVpmwIkHWh9emWyIb60BjMNZfT0vBDwWnPuz6sW58jimTY6YjpKRB0wV9d71uqISYmp/wYDACaVqK9jwy+iYzq9RTnyQLC6wLYl34I/9nfCfeSPl2xxTKrv1FfsY0UAYcXLOLMLC2YyPtWtfAulxnWQ9DycOAGLfCLr30Utxyyy245ZZb8LSnPQ3z8/M5z4jFYrHOSDHAslgslqPxeIwvfelLuPPOO3HnnXfinnvuaWfmNCDUDguzFdB6ZaUqvd6vk9HN3VO2/p69ryyQv7es/TlzfWosA9mZShp2W7Ee8MbnMUGsGx8A6c5cUM85JzvpvnZutjZnXpnZTy29ueSU57biE8GbCLFWsfez7BpQJdfTTlBi7O6dmuzbm2dyn1d/TbbNsq5UjsHFESh5BBArrcO2bduGZz7zmRZaOcvKYrFYjRhgWSwWK6KjR4/irrvuwqc//Wl8+tOfxiOPPNIO0AJS7axh9hzIcmcFtDlZWVc+NMaAlsjmJveW9Y/LuUjPjp/yXq+EctffThSfu57VyAXSrPgJ1qoC0b1Y7bBmuxkZyDQH+tdSpsHVnY/IK9UFkNxH1ii1nyrQBkJdTGjGZcfJLEmuY6cOrNTDWK0zrNWXlsut9qIocP311+PpT386brnlFlx//fXo5e4jzGKxWGeZGGBZLBZrAh04cAB333037r77bnz605/GgQMH2gFa1BnaXZDlTshyF4Tq5+0rC4RLf6cNtDllzkB4rS71WGpNqAs5VNktdQwRE1yDGwDSYDy1njU0n1gGNjT/EMBSgOWXELvdu6DqbosTKqkN9B8EwuC4meZPpo9QPznrP22wht17dcLMe852Pcls/XqB1ZYEL0EVx6DkMWhxlATWa665Bk9/+tPx9Kc/HTfeeCMWFhYSg7FYLBYLYIBlsVisNUtrjccee8xmZ++++2488cQTnTihFiDHuyDLXTXQzkOo7sVz0AAq9FgIagPHrwtqJzGQckHWmgpFYIgC34w9XztlyaFjCJgNrmd15+Mem1tC7D6H3gTb6HjzJ6HVl5uFzei/2mvVGzPnmM644Xj3e3TtJ9B9/xhwBbpwGTEDiyp2HNEWBdbA+12jhJbHoeQx++WvYZVS4qqrrrLA+g3f8A28LyuLxWKtUQywLBaLNSUZoP3c5z6Hz372s/j85z/fdTgGANWvsrNqJ2S5A7LcAaF73Sxtai0q5dKayux6P08MtTFn4cg4Wcpde+v2bzK7uceaOeW67Zp+J3HnNcopITaqAVbnAqmJmXAMPcF6VXuMvQmReQx1YyCzvFwX8a1mumMR7tRU9+beUAqqXQWzq8vQ8gSUOA5VHIMWJzqdzc3N4frrr8dTn/pU3HjjjbjhhhuwY8eOjCfEYrFYrJQYYFksFmsDdfz4cXzhC1/AZz/7WXzuc5/DPffcg+Fw2IkTaqGG2QpqRbkdQsluGWTqI5vKysagNlRem9pyh4LnkHIcke3AHlyVZTzeZFLdMVIw68No7nrWSfbkjZX4+nHOzzGn3c4xOWO4WV2TgZ0EYLGG9bPRzrwsuxAVGAYyqSlX39xjkvLfM2ZeWIWSJ6Dk8TrLeryTXQWAPXv24MYbb7TAetVVV/EaVhaLxdogMcCyWCzWJmo4HOLee+/Fl770Jdxzzz340pe+1DWGAuq1tNsqqB1vhyy3V9v56AmzW6GMaSpTSjwmYuZOoTlQ0Bdb8+pDkImlQFbK+DEUzFKlwzk3CfxMp/+aEuWwJFz6c/X3zk0d4x8viefvQ6uvSSGWKj8Ozc8OHHo/tMd3wTVaZtx6Ts7QqdJkam7EDQ5RamgxrGC1OAlVVBlWyNVObL/fxxVXXIHrrrsO119/PW688Ubs27cv6WjNYrFYrOmIAZbFYrFOs44dO4Z77rnHAu0Xv/hFHD16tBuoAaEWa5jdDllugyy3Q6o+EbsGqAXi2csQ1EYyuUFjKBcyvbWTyX7KMgyvoeMMzBZF/jHuz6lSXer1LGQSWDtDG4DNeU2ABmBT0No5LqNvV3Zdq5PFjbr3JsbMhV4T575PUsek2ktVmyydhJYnoeovSKIyQghcdtlluPbaa3Hdddfh2muvxVOe8hQMBoP4uCwWi8XaMDHAslgs1haT1hoHDhywWdr77rsPX/nKV2ioBQA1qEC23FZladUi5HgBAhOWyvpga4xuMtbiikkyrVTbJOse7drXNayXNOXGOfvuumMZsJzklCkJgA0N4659zd2DVTaxk+x72hyP9WdiIy+j3V/VdyrOXA/byr4mS+fd9607v1UoeQpanoKSp6DkCWh5ChBEFlYIXHLJJbjyyitxzTXX4LrrrsPVV1+NxcXF+NgsFovF2lQxwLJYLNYMSGuNJ554Avfdd58F2q985St45JFH6G1iNGq3422Q5SJEuQ1FuQhRrhFsKYXg1jj9Trj1T6vfkHyTowmO0/1qTaLwza5iQEuV6Ibm7Sti/BRa8xkFWNlta22NM6EHVtWnM25oPmYsIia0HVQHXCP9dg+OvKZlt01DQ+gVqGLZgmr1fQkQI7Kb+fl5XHHFFbjyyitx5ZVX4qqrrsLll1/OW9mwWCzWDIgBlsVisWZYS0tLuP/++/GVr3wFDzzwAL72ta/hgQcewLFjx+gDDNiWi5BqoTaPqr4LNQcBByxytrUJZWeVbq1b7ZhCRctPnT79jPAk4OMe2yuCBknCL2l2YTbHVCk0Bwdgg8DamYxXEuxBa3AvV2BtAGuUKu8NyXuPtOaXm0mm+iJBtQRwClouQ8nl2g14Cao4RRorVVMS2LdvH5785CdbYL3qqqtw4YUXoliLszSLxWKxTrsYYFksFusMk9YaR44caQGt+X78+PHIgRJCzVugtWBbzkNoB26Vylt/6oOo1hDjhKtw9QTonyeVe6yUWQ6/HZhdh/QkW9y0JiGAQbOuOQqtRqrZdklPCo5AHGBTGVEJ6H79XHPH1hpiVL0X3PlqlNBiBcCpClLlErRcrr7EKhBMFAtceOGFuOyyy3D55Zfjsssuw5Of/GRceumlnFVlsVisM0wMsCwWi3WWyAXbhx56CA899BAefvhhPPzww3j00UcxHtNZrOpgUWVo1TxEOQdZfze/Cz1oADcEt252Mxdm/eNjv6eU4/jrhpdq7RCbuyWOf5iqt5Tp9xoopOQAq5V5betxkyDrN1N/MyITao7VRVHNQQh6rg6k2odQQotVaLkCjeXqe7EKJVcqcCWMlFxt374dF198sf265JJLcPnll+OSSy7B3Nxc9FgWi8VinRligGWxWCwWxuMxDhw4gIcfftiC7UMPPYRHHnkEBw4cQJnaj1WLGmgHFehq83P9u/nZTaE52/JMDLP1cdHfU4oA7brgte47O+NLqAOxMWANqZBtiPWnk1Fy7I8Zg+oGTlehxRBargJ6BVpWPyu5Akh6TaqrxcVFXHzxxbjooos6sLpr1y7erobFYrHOcjHAslgsFiuq8XiMJ554Ao899hj2799vv5ufDx06lAZcoF5/O2i+9ABQfYiyDzEuIFS/yuTKOUD3IBQgRpGscKf/dZYe15ljPddvZ4onmYPTVwuIM92StfTKh3sSYlzPJdc52chfP+uBXweI3XnUoKp1CZSrgBxBixFUfwwtRoAYQaOGUwOrMu8mxMLCAvbt24cLLrjAfj///PPtzzt37mRIZbFYLFZQDLAsFovFWpfG4zEOHTqE/fv349ChQ3j88cdx6NCh1s+HDx/Og1wjLSB0vwJc1YfQPQjdA1Sv+Vn3IJTzc1lADHWT5V1DhlbPDaDnes0DChBDImuYA7aREl4fVFttg17rdzEqgVSGmjKJciBQ9QUgxtAYV9/rL4hR/b1qq+B0CF0Da8gcKaSFhQWcd955OO+887B3717s2bMHe/fuxd69ey2w7tixgwGVxWKxWGsWAyyLxWKxNlxlWeLIkSMWaB9//HEcOXIER48exZEjR1pfJ0+eXPtAWgC6gNBF+3u1aBNCuY9L+x1aAJBAr4/KKUhCaFk9pmV1PEQdJwAlarCtfwfa5dHu3rFmatDt3waF/blOT0ND2Z+B+nehIMYltNTQQtVtJbQoAVFW7rxCVT+LsmlD3S7GgFhDiXatoiiwa9cunHPOOdi9e3fruwFV831xcZHhlMVisVgbKgZYFovFYm0pjUYjC7ZHjx7F4cOHcfz4cZw8eRInTpzAiRMncPz4cfvzyZMncfz48bgJ1WZJAy7UwkKrDjrobqYWFhawY8eO1tf27dvtzzt37uyA6o4dOyDX4mzMYrFYLNYGiAGWxWKxWDMvrTVWVlZw4sQJLC0tYWlpCcvLy/a7+7P72PLyMkajEUajEYbDIYbDof3Zf2yjAVkIgX6/j8FggMFggH6/b7/c3weDARYWFrK+5ufnLaBu374dvV4vPREWi8VisbawGGBZLBaLxcqQUmqiLyEEhBCQUkIIgaIoWr9LKVttpp3FYrFYLFZYDLAsFovFYrFYLBaLxZoJ8aIWFovFYrFYLBaLxWLNhBhgWSwWi8VisVgsFos1E2KAZbFYLBaLxWKxWCzWTIgBlsVisVgsFovFYrFYMyEGWBaLxWKxWCwWi8VizYQYYFksFovFYrFYLBaLNRNigGWxWCwWi8VisVgs1kyIAZbFYrFYLBaLxWKxWDMhBlgWi8VisVgsFovFYs2EGGBZLBaLxWKxWCwWizUTYoBlsVgsFovFYrFYLNZMiAGWxWKxWCwWi8VisVgzIQZYFovFYrFYLBaLxWLNhBhgWSwWi8VisVgsFos1E2KAZbFYLBaLxWKxWCzWTIgBlsVisVgsFovFYrFYMyEGWBaLxWKxWCwWi8VizYQYYFksFovFYrFYLBaLNRNigGWxWCwWi8VisVgs1kyIAZbFYrFYLBaLxWKxWDMhBlgWi8VisVgsFovFYs2EGGBZLBaLxWKxWCwWizUTYoBlsVgsFovFYrFYLNZMiAGWxWKxWCwWi8VisVgzIQZYFovFYrFYLBaLxWLNhHqnewIsFot1uqS1xsrKyumeBovFYk2k+fl5CCFO9zRYLBbrtIgBlsVinbVaWVnBt3zLt5zuabBYLNZE+uu//mssLCyc7mmwWCzWaRGXELNYLBaLxWKxWCwWaybEGVgWi8UCMLjzSUApIKQAhLTfIesyPSEgpARE/bgQtk2YOCGax0VzXOsxr88qrmnX5jjptAce10I0vwPQdVcQAloCgKges2PBHqPr35vjRHO8bNqqY9rtbp/axEgE+7P9OnNsvvvz8NubvxHVDsDOITRW6/HAPNrPqxmTamuO0a3xOuOYdvjtunWMiW3mpW2bcOOFfbZ1m/a+mz41hNCtt5fps/rTNO2y7q/1WP1z0+Y85nyv+mt+d7+Aqu/qdzRtznhSKPtYFasAAIVofnePMb837RoFVN2mUQjlHKdQOMcV9eMFVOc4CXOsQtFqq+ILoSGgUJj5QdljCqA6Dqatej0KmDG1nUf1e/0dqH8W9WsFFEJAQqBA/V2YNgkBgdGwwCv++QVgsViss10MsCwWiwVU8KqqC0WI5rslDSEgYMC1frymE1ERIRracY7rEJT0SKlFGc5x8B4LPY7wdwcO7c/+d9udcLoVnSm22/0+UYN0qL/uy9Hpl2yLHZfxUq21v/p7CG43DGBFF2DdNh9gm8e1N3/daROmT6qdPEYTY3lfgAVY/yvYZqHSAVsHdG0bmvYGROEArGoDoDAAWH8XAgVMf9XP1XfROq7qCygE7PfmuOpntw1ADa0m1gCwC6nVnFMA2xrLHQft8aSNd/6GLBaLdRaLS4hZLBaLxWKxWCwWizUTYoBlsVgsFovFYrFYLNZMiAGWxWKxWCwWi8VisVgzIQZYFovFYrFYLBaLxWLNhBhgWSwWi8VisVgsFos1E2KAZbFYLBaLxWKxWCzWTIgBlsVisVgsFovFYrFYMyHeB5bFYrEAoNDQUNXmjwLt70C1X6mEt4+qaXN+F6LeJ9M5LtXmbESqA5ubUo83j1XftdOuAUCL1mNVjAA0Wv1p95j6uK4Cj2mnqbW3qXCnH9l/Vax9r9dYW6q/VJv5Fj3O33810N6ZY2AfWHR/Fp1x3DbtfTd9mn1X3bdXYB9Y29/a9oHVqH7W3pdp0/VeuLat7lMJDQjljFP/jvr5wG8HtFBV33U/utXWflw6Y5mf/e/VPKp/a/e7ql8mWf+s6rcovQ+sgIRo9pVF9ZoXMHvPNnu9ur9L+3N1nN2/tu5LQqAQpk1AQGA0pP4HWSwW6+wTAyyLxWIBGN5y8HRPYWOkve9rkM+nLJaRQUiVCtyyMoTPBWksFos1K+JPbBaLxWKxWCwWi8VizYSE1nod9+VZLBZrdqW1xsrKyumexlS1srKCl73sZQCA97///Zifnz/NM5p98Ws6ffFruj7Nz89DCK6JYLFYZ6e4hJjFYp21EkJgYWHhdE9jwzQ/P39GP7/TIX5Npy9+TVksFos1ibiEmMVisVgsFovFYrFYMyEGWBaLxWKxWCwWi8VizYQYYFksFovFYrFYLBaLNRNigGWxWCwWi8VisVgs1kyIXYhZLBaLxWKxWCwWizUT4gwsi8VisVgsFovFYrFmQgywLBaLxWKxWCwWi8WaCTHAslgsFovFYrFYLBZrJsQAy2KxWCwWi8VisVismRADLIvFYrFYLBaLxWKxZkIMsCwWi8VisVgsFovFmgkxwLJYLBaLxWKxWCwWaybEAMtisVgsFovFYrFYrJlQ73RPgMVisVjr08rKCj7zmc/g3nvvxZe//GV8+ctfxoEDBwAA3/d934fv//7vP80znD0dO3YMH//4x3HXXXfZ17MsS+zevRvXXHMNXvziF+O5z33u6Z7mTOnee+/FHXfcgXvvvRcPP/wwjh49ilOnTmHbtm249NJL8exnPxsvf/nLsXPnztM9VRaLxWJtYQmttT7dk2CxWCzW2nX33XfjzW9+M9nGALs2Pf/5z0dZlvb3wWCAoiiwvLxsH/vGb/xGvPWtb8X8/PzpmOLM6bd+67fwZ3/2Z/b3wWCAXq+HpaUl+9iuXbvwy7/8y3jqU596OqbIYrFYrBkQZ2BZLBbrDNCOHTtw9dVX26+3ve1tOHz48Ome1syqLEtcd911+NZv/VbccsstuPDCCwEAjz32GH7v934Pf/EXf4FPfvKT+PVf/3X8zM/8zGme7WzouuuuwwUXXIBv+IZvwKWXXoodO3YAAJaWlvDRj34U73znO3H06FH89E//NP7wD/8Q27dvP80zZrFYLNZWFGdgWSwWa8ZVliWKomg99spXvhL79+/nDOwa9elPfxrPeMYzgu2//uu/jj//8z8HAPzJn/wJzj///M2a2hmrO++8Ez/xEz8BAPiZn/kZvOhFLzrNM2KxWCzWVhSbOLFYLNaMy4dX1voVg1cAeMlLXmJ/vvfeezd6OmeFbrjhBvvzoUOHTuNMWCwWi7WVxQDLYrFYLNaEGgwG9mel1GmcyZmjz372s/bniy666DTOhMVisVhbWbwGlsVisVisCfWZz3zG/vyUpzzl9E1kxjUcDvHEE0/gjjvuwO/8zu8AqOD11ltvPc0zY7FYLNZWFQMsi8VisVgT6MSJE/iDP/gDALCGRKzJ9MIXvhDD4bDz+I033oif+7mfa2W4WSwWi8VyxQDLYrFYLFamlFL4xV/8RTzxxBMYDAb48R//8dM9pZnUueeei+FwiOXlZbs10dOf/nS88Y1vZEMsFovFYkXFAMtisVgsVqb+43/8j7jjjjsAAD/+4z+OK6644jTPaDb1x3/8x/bnI0eO4K//+q/x+7//+/gX/+Jf4HWvex3+2T/7Z6dxdiwWi8XaymITJxaLxWKxMvSOd7wD73vf+wAAP/zDP9xyImatXeeccw5e/epX49d+7dcghMDv/u7v2psELBaLxWL5YoBlsVgsFiuhd73rXXjve98LAHjTm96EV77ylad5Rmeerr/+etx4440AYPfYZbFYLBbLF5cQs1gsFosV0Tvf+U685z3vAQC88Y1vxKtf/erTPKMzV3v37gUAPPLII6d5JiwWi8XaqmKAZbFYLBYroHe84x028/rGN74Rr3nNa07zjM5sPfroowCAxcXF0zwTFovFYm1VcQkxi8VisViEXHh905vexPC6DpVlCa11NOauu+7Cl770JQDA0572tE2YFYvFYrFmUZyBZbFYrDNAJ06cQFmW9nelFABgdXUVR48etY8PBgPObmXIXfP6wz/8w7zmdZ06ePAgfvqnfxove9nLcPPNN2Pfvn0QQgAADhw4gA996EP4/d//fWitsXPnTn69WSwWixWU0KlboiwWi8Xa8nrlK1+J/fv3J+Ne/OIX4y1vecsmzGh2deDAAXzXd30XAEBKid27d0fjX/WqV3F2NqHHHnsMr3rVq+zv/X4fi4uLdi9Yo3379uGtb30rrr766tMxTRaLxWLNgDgDy2KxWKz/f3t3HhT1ff9x/AkISgSBGoog1qYGkKQaFDRVxKAYPJqM1is11iPWGhuPzthObZl6NGpMxhpNk9Sq42QmRtJUrZpYDR08gkZAUKKMHCIIClLKISgIwgK/P+hul8ghyyquv9fjr3X38/183yw7Dq/9XGLGOHptfFxWVtZme/MAJi178sknefPNN0lJSSE9PZ2SkhIqKiqwt7fHy8uLAQMGMGrUKF588UW6d+/e1eWKiMgjTCOwIiIiIiIiYhO0iZOIiIiIiIjYBAVYERERERERsQkKsCIiIiIiImITFGBFRERERETEJijAioiIiIiIiE1QgBURERERERGboAArIiIiIiIiNkEBVkRERERERGyCAqyIiIiIiIjYBAVYERERERERsQkKsCIiIiIiImITunV1ASIiIiL3o6amhm+++YbMzEwuX77M5cuXKSoqAmD+/PksWLCgiyu8f4WFhbzyyivttpszZw6/+MUvHkJFIiK2QQFWREREbEJ6ejq//e1vu7oMq3Nzc8PBwaHF15544omHXI2IyKNNAVZERGzCe++9x/79+3nuued4//33u7oc6SKurq4MGDCAS5cuUVdXh4uLC5WVlV1dVqfs2LEDb2/vri5DRMQmKMCKiDzmqqqqyMrKIiMjg8zMTDIzMykoKKCxsRGAzz777IH98dzY2Mj06dMpLi5m9uzZvP766xb1k5WVxcGDBwFYtGiRFSvsWjk5OZw9e5bU1FRycnIoLS2lvr7eFNJGjBjBhAkTcHFx6epSHwmDBw/mn//8JwC7d+9m586d3Llzp4urEhGRh0kBVkTkMbd8+XKysrK65N4ZGRkUFxcDEBYWZnE/27Zto76+nueff55BgwZZq7wutXz5cr755psWXysrK6OsrIykpCQ++eQToqKiGD58+MMt8BFkPs12+vTp7N27l/Ly8g71kZOTw/79+zl//jwlJSXY29vj7e1NaGgoM2bMwN3d3bpFi4iIVSnAiog85owjrQAuLi74+fmRl5dHWVnZA7/3qVOnAPD09CQwMNCiPi5evEhycjIAs2fPtlptXc0Y7F1dXQkLCyMoKAgfHx+6d+9OYWEhR48eJT4+nrKyMqKioti8eTPPPfdcF1f96HB2dmbatGns2rULgLq6unaviY6OZseOHTQ0NADQo0cPDAYDOTk55OTkcOTIEd555x38/f0faO0iImI5BVgRkcfcpEmTcHd3JyAgAF9fX+zs7Fi+fPlDDbChoaHY2dlZ1Menn34KgLe392MV4Hx9fZk7dy4RERE4OTk1ey0gIIDw8HD27NnD9u3bqa2tZfPmzXz88cddVO2jKTIy0hRg25tlcPjwYf7617/i7OzMz372MyZNmkTv3r2pr6/nypUrbNu2jfPnz/P73/+e3bt3P9TNk9auXUt+fj7V1dX06tULf39/IiIiiIiIoFs3/akmImJO58CKiDzmpk+fzrhx4+jXr5/FIdIS169fJy8vD7B8+nBxcTHx8fEAjB8//qHW/6Bt2rSJiRMn3hNezc2ePRs/Pz8AcnNzyc7Ofljl2QRvb28cHR0ByMzMbLXdnTt3+Mtf/gLAunXrmDNnDr179waapiUHBATwpz/9iYCAAIqLizl8+PCDL95Meno69fX1dOvWjbKyMhISEtiwYQNLliyhpKTkodYiIvKo09d6IiLyQMTFxQFN05aHDBliUR+xsbGm6Z5jx469r2sMBgPHjx/n9OnTZGRkUF5eTn19Pe7u7vzgBz8gJCSEcePGmQKM0ejRowGYMGECUVFRXLt2jX379pGUlERJSQk9e/bE39+fV199laCgINN1d+/e5ejRo8TExJCfn09NTQ0+Pj68+OKLzJgxg+7du1v0sxsNHTrUNLp4/fp1BgwYYHFfubm5HDp0iAsXLlBYWEhNTQ0uLi64urri7e1NcHAwo0aN4nvf+55F/RsMBv71r39x4sQJcnJyqKiowM7Ojl69euHu7k5gYCAhISGEhoaagqfRt9//3NxcDhw4QHJyMiUlJVRXV7Nhw4Z7vgxxdnamrq6OiooKMjIyGDhw4D11ffXVV1RWVuLn59fqWuJu3boRERFBZmYmSUlJzJw506L34H45OTkxZcoUxo4di7+/v2nE9/r16+zdu5dDhw6Rnp7OypUr2b59u0ZiRUT+S/8biojIA2GcPjxixAiL//g+c+YM0LROtH///u22v3LlCqtXryY/P/+e14qLiykuLiYxMZHs7GyioqJa7efkyZO89dZb1NTUmJ67e/cuCQkJJCYm8pvf/IaXX36ZkpISoqKiyMjIaHb91atX2bFjBwkJCWzevLlTIdZgMJge29tbPnHq0KFDbN26lfr6+mbPV1RUUFFRQX5+PklJSWRnZ7Nq1aoO919eXs6vf/3rFqfyGt/7rKwsPv/8c6Kjo/H19W21r6NHj7J582Zqa2vbva95ED5z5kyLATY1NRWAvLw8pkyZ0mpfd+/eBeDf//53s+cLCwt55ZVX2q2lNa+++iqLFy9u9lzv3r1ZsWLFPW379evHihUr6Nu3Lx9++CFZWVnExMTw4x//2OL7i4g8ThRgRUTE6kpKSkhPTwcsnz5cW1vLpUuXAAgMDGx3+nBWVhZLly6luroagCFDhhAZGUn//v1xdHSktLSUtLQ008hwa7Kzszl+/DgeHh4sWrTIdO9z586xe/duampq2LJlC0FBQaxfv54rV64wZcoURo0ahbu7OwUFBXz88cdkZ2dz8eJFoqOjee211yx6DwDOnz9vevzUU09Z1EdOTo4pvPbq1YuXX36ZoKAg3N3dqa+vp7S0lMzMTBISEiyepr1161ZTeA0ODiYyMhJvb2969uxJVVUVeXl5XLhwwTQlvDWZmZnExsbSq1cvZsyYwaBBg3B0dCQ3N5c+ffrc0978y5Hz58+zYMGCe9oYp+HW1tbe19pvY5DtSjNmzGDfvn0UFRVx6tQpBVgRkf9SgBUREas7ffo0jY2NODk58fzzz1vUR3Z2tmn0MSAgoM22BoOB1atXm8Lrr371K6ZNm3ZPu5EjR7Jw4UKKiopa7SsrKws/Pz+2bt2Kq6ur6flnnnkGX19f1qxZg8FgYOnSpdy6dYtNmzYREhJiaufv78+wYcOYO3cuJSUlHDx4kLlz5zY7AuZ+xcXFcfXqVaApxPfr16/DfQCcOHHCNPK6ZcsW07pac2FhYSxcuJCKiooO93/37l3TFwNhYWGsX7/+niAcFBTE5MmTqa6ubnMk+erVq/j6+vLBBx/wne98x/R8a7tYm9/n8uXLNDQ03NO/+TT0tWvXduhnA/Dy8uLzzz/v8HVGPXr06PA19vb2BAYGUlRURGFhocX3FhF53CjAioiI1RmnD4eEhODs7GxRH+bTgM2DTEtiY2MpKCgAmnZdbim8mvPy8mrz9d/97nfNwqtReHg4np6eFBcXc/PmTWbMmNEsvBq5uLgwceJEdu/ezc2bN8nNze3w2tWSkhLeffddoCmk/fKXv+zQ9eaMo47GY5Ta4ubm1uH+b9++bfqyISgoqM1R3Pv5PKxYsaLd33lLampqKCkp4bvf/W6z5419tfXFRVvs7e11PqyIyCNCuxCLiIhVVVZWkpKSAlg+fRigtLTU9LhXr15ttjUGZoBZs2ZZfE9omqbbWsizs7Nr9lpkZGSr/Zi3u3HjRodqqKmpISoqyhQ8v71xVEd5enoCTb+bEydOWNxPa9zc3Ey7KR87dow7d+5Y3Jenp2eLXwrcL/PPjdGgQYOApunJtrKrb0NDg2kavre3dxdXIyLy6FCAFRERq4qPj8dgMODg4EBoaKjF/ZivQ2xpNNTc5cuXgaaRtvvZ7Kkt7V1vXktbu/Wat+tIoKurq+MPf/iDaWOoUaNGsXDhwvu+viWRkZGmjaTWrFnDkiVL2LNnDxcvXjRNu+4MR0dHJkyYAEBaWhozZ85k06ZNHDt2rMPhvTO7LAPNNt4yCg8Px8XFBYPBwIcffkhjY2Or1zc0NHD79u1O1XA/2qoBMK1/habPgIiINNEUYhERsSrjaOgPf/jDTk27NF8z2t5utOXl5cD/Rho7o731iubTY9uaDmu+DtO4BrM9BoOBVatWcfbsWQCGDx/O2rVrLVo/a87Hx4e3336bt956i+LiYlJTU0078zo4ODBw4EBGjx7NSy+91O6XBa1ZtmwZtbW1xMTEcOvWLb744gu++OILoOmLheHDhzNp0qR2R5LbG22/fft2s52Uv/3e1tTUUF5ejpOTk+loGldXV5YtW8bGjRs5duwYlZWVvPbaawwcOBB7e3saGhq4du0aCQkJHD58mLlz57Y5um4Ny5YtY9iwYYwcOZKnnnrKtBlVQUEB+/bt4x//+AfQFOiNXw6IiIgCrIiIWFFtbS2JiYlA56YPQ9N6TaNbt251qi9bYDAYWLNmjenooJCQEDZs2GCamttZwcHBfPrpp3z99dckJiZy8eJF8vPzqa+v59KlS1y6dIk9e/awevXqVs9KbUv37t2Jiopizpw5HD9+nJSUFNLT06murqasrIwvv/ySL7/8ktGjR7Nq1apWjxZq76ign//85/ccc2Nu5cqVwP/OkzWaOHEitbW1/PnPfyYxMZHExEScnJxwdnamqqqq2XFFD8N//vMfdu3axa5du3BwcKBnz57U1dU1GxF/5plnWL9+vc6AFRExo/8RRUTEapKTk01/gHc2wJofmdJegHV3d6eoqMhm1jd+mzG8Gkevhw4dysaNGzt1fmxLnJycGDNmDGPGjAGaRq7PnTtHTEwMCQkJ3Lp1i1WrVhEdHU3v3r0tuke/fv2YN28e8+bNo76+nqysLM6cOcOhQ4e4efMmcXFx7Ny5k6VLl1rzR7svkydPZvjw4Rw4cIDk5GQKCwuprKzkiSeeoG/fvjz77LOEhoYydOjQB17LG2+8wblz58jIyKC0tNT0Gffy8sLf35+xY8cSHh7e6dF3EZHHjQKsiIhYjTGA+fn5dXrjGfMzT69du9Zm24CAAIqKiigtLeXatWttrk191Hw7vA4ZMoS3337b6uG1Je7u7kRERBAREcG7777LwYMHqa6u5vTp00yePLnT/RunJw8cOJCJEycyb948ampqiI2NtTjA/v3vf7/nuVmzZlFQUIC3tzefffZZm9d7e3vzxhtvWHRvawoPDyc8PLyryxARsTnaxElERKyioaGBr7/+GrDOpjNeXl48+eSTAKbdWFszevRo0+Po6OhO3/thMRgMrF271hReg4KCeOeddyw6N7SzzKcNG9cUW5O3t7fpHFtLzpptTXl5uekIpWeffdZq/YqIyKNJAVZERKwiNTXVFHzMA2VnGENVXl4eVVVVrbYbO3asKRwdOXKE/fv3t9mvpeeBWpPBYODNN98kLi4OeLDh9auvvmo3lBrXLgP07du3Q/3fuHGD5OTkNtsUFhaSl5cHNG0qZS1paWmmxz/60Y+s1q+IiDyaNIVYROQxl5+fb9px1sh4vijAyZMnm+0W7OzsbNHURuMooo+PT6ePQjEaM2YMR44coaGhgeTkZF544YUW23Xr1o0//vGPLFmyhOrqat577z3i4uIYP348/fv3x9HRkdLSUjIyMjh58iQBAQHNNvjpCuvWrePkyZNAU2BcvHgxhYWFbV7j4eGBh4dHh++1f/9+1q1bR3BwMMHBwXz/+9/Hzc2Nuro6ioqKiI2NNY2e9+nTp8PHHxUVFbFixQp8fHwIDQ0lMDAQLy8vunfvTkVFBWlpaRw8eNC0m/S0adM6/DO0JikpCWha3ztixAir9SsiIo8mBVgRkcdcamoqGzdubPX1bdu2Nft3nz59OhVgrXlmZUhICJ6enhQXFxMTE9NqgAV4+umnef/991m9ejU3btwgJSWFlJSUFtsGBARYrUZLnThxwvS4oKCAxYsXt3vN/PnzWbBggUX3q62tJT4+nvj4+Fbb9O3bl40bN7Z5PFBbbty4wd69e1t93d7enlmzZvGTn/zEov6/zWAwcOzYMaBp1N/SI4BERMR2KMCKiEinXblyxTR62Nndh805ODgwdepUtm/fTkJCAuXl5W2eLevv788nn3xCTEwMp06dIisry7Te0sPDgwEDBjBs2DDGjRtntRptwZo1azh79iwXLlwgJyeHsrIy05RiNzc3nn76acLCwoiMjLTo2J7BgwfzwQcfkJycTFpaGkVFRdy8eZOqqip69OiBj48PgwcP5qWXXrLa6Dxg+kwATJ8+3Wr9iojIo8uusbGxsauLEBER2/bRRx/x0Ucf4eHhwYEDB9o9y7MjKisr+elPf8qtW7d4/fXXmT17ttX6Ftu2cuVK4uPjCQ4OZsuWLV1djoiIPATaxElERDrNOH145MiRVg2vAC4uLqbQ+re//Y07d+5YtX+xTWlpacTHx2NnZ8eiRYu6uhwREXlIFGBFRKRT6urqCAsLY/78+UydOvWB3GPatGn4+vpSUVHR4jmg8v/Pzp07ARg/fjyBgYFdXI2IiDwsmkIsIiI2IT09nfj4eFxcXJg5c2ZXlyNdqLKykr1799LY2MjUqVPbXBctIiKPFwVYERERERERsQmaQiwiIiIiIiI2QQFWREREREREbIICrIiIiIiIiNgEBVgRERERERGxCQqwIiIiIiIiYhMUYEVERERERMQmKMCKiIiIiIiITVCAFREREREREZugACsiIiIiIiI2QQFWREREREREbIICrIiIiIiIiNgEBVgRERERERGxCQqwIiIiIiIiYhMUYEVERERERMQmKMCKiIiIiIiITfg/Q3mPA5PrNLUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "cdd4d9e0", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at 20th iteration. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixel at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "c5d1fe59", + "metadata": {}, + "outputs": [], + "source": [ + "energy_truth = []\n", + "flux_truth = []\n", + "\n", + "with open(\"crab_spec.dat\", \"r\") as f:\n", + " for line in f:\n", + " data = line.split('\\t')\n", + " if data[0] == 'DP':\n", + " energy_truth.append(float(data[1]))# * u.keV)\n", + " flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "4e252b9b", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a126d61b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACKIElEQVR4nOzdd1gUxx8G8Pfu6EUQVFBQqiIYFY0ajYqoWDH2Eo0t9hJ7TTeJiRpjN9FookRNFKNGjWLF3mIJxkJRAbFSlXK0g7v9/YHcLwSkHAvHwfvJ4xNvdnbme4cLX2ZmZyWCIAggIiIiohKTajsAIiIiIl3FRIqIiIhIQ0ykiIiIiDTERIqIiIhIQ0ykiIiIiDTERIqIiIhIQ0ykiIiIiDTERIqIiIhIQ0ykiIiIiDTERIqIqAqQSCTw9vbWdhhElQ4TKaIyoFQqsXnzZnTo0AFWVlbQ19dHrVq10KRJE4wbNw4HDx7UdoiFOnPmDCQSCRYtWqTtUMqVt7c3JBIJzpw5k6fc0dERjo6OWompuHQhxvKSmpqKX3/9FcOGDUPDhg1hamoKc3NztGjRAitWrIBCoXjtucHBwRg8eDBq1aoFIyMjuLm54fPPP0d6eno5vgPSJXraDoCoslEqlejVqxeOHj0KS0tL+Pr6wt7eHgqFAnfv3sVvv/2G0NBQ9O7dW9uhUhUSEhICExMTbYdRLs6fP4/hw4fDysoKHTt2RN++ffHy5UscPHgQc+fOxb59+xAYGAgjI6M85/3111/o1KkTsrKyMHDgQNStWxenTp3Cl19+icDAQAQGBsLQ0FBL74oqKiZSRCLbuXMnjh49iqZNm+Ls2bOwsLDIczwtLQ1//fWXlqKjqqphw4baDqHc2NraYseOHRg0aBAMDAzU5d999x28vb1x6dIlfP/995gzZ476mFKpxPvvv4+0tDQcOHBA/YuOSqXC4MGDsXfvXqxatQoLFy4s9/dDFZxARKKaPHmyAEBYtWpVsc/ZunWrAEDYunWrcOjQIaFNmzaCiYmJYGlpKQwYMEC4d+9egeelpqYK33zzjdC0aVPBxMREMDU1FVq3bi389ttvr+3r2LFjQq9evYSaNWsKBgYGgr29vdC7d2/hxIkTgiAIwqhRowQABf45ffp0vniPHDkidOjQQahWrZqQ+y0lMjJSACCMGjWqwBg6dOgg/Pfbz+nTpwUAwueffy5cu3ZN6Natm1CtWjXB0tJS6N+/v/Do0SNBEAQhPDxcGDJkiFCjRg3ByMhI8Pb2Fm7evFnsz7owuXHlvs/cmAr689/3FhISIowaNUqwt7cX9PX1hVq1aglDhw4VQkND8/WT+xmHh4cLa9euFRo3biwYGRkJHTp0EARBEDIzM4V169YJPXr0EOrVqycYGBgI1atXFzp37iwEBAQU+LkVFSMAdfv/lpiYKCxcuFBo0KCBYGhoKFhaWgpdu3ZV/3soqK/PP/9cCAoKEnr27ClYWFgIxsbGgpeXl3Dx4sUSfd7a8OuvvwoAhF69euUpDwwMFAAIXl5e+c4JDw8XAAgODg6CSqUqr1BJR3BEikhk1tbWAIB79+6V+Nx9+/bhyJEj6NevH7y9vXHz5k3s3bsXp0+fxqVLl+Dm5qaum5iYiE6dOiEoKAjNmzfHmDFjoFKpcOzYMQwbNgx3797F4sWL87T/+eef48svv4SZmRn69u2LunXr4tmzZ7h06RJ27NgBHx8f9O3bFwDwyy+/oEOHDnkWKP93Dc6ePXtw9OhR9OjRA5MmTUJUVFSJ3/N/Xbt2DcuWLUOHDh0wfvx43L59G/v27cOdO3dw4MABtGvXDg0bNsTIkSMRFRWFffv2oUuXLoiIiICZmVmp+/83R0dHfP7551i9ejUAYObMmepjnp6e6r8fPXoU/fv3R1ZWFt555x24urriyZMn2LdvHw4fPozTp0+jefPm+dqfMWMGzp8/D19fX/Ts2RMymQwA8OLFC8yYMQNvv/02unTpgpo1a+L58+f4888/0bNnT2zevBnjxo0rUYwFSUxMRNu2bREcHIyWLVti5syZiI+Px+7du9G1a1ds2LABEydOzHfe9evX8e2336JNmzYYN24cHj16hL1796Jz5864efNmnn+nFY2+vj4AQE8v74+/U6dOAQC6d++e7xxnZ2c0aNAA9+7dQ0REBFxcXMo+UNId2s7kiCqbv//+W9DX1xckEokwfPhwYe/evcLDhw8LPSd3hAeA8Oeff+Y5tnr1agGA0KlTpzzluaMay5Yty1Oenp4udOvWTZBIJEJQUJC6/NixYwIAwcnJSXjy5Em+GB4/fqz++79HHgqLVyKRCEeOHMl3vDQjUgCEHTt25Dk2ZswYAYBQvXp1YfHixXmOffnllwIAYfXq1QX2VRL/HZHK5eDgIDg4OBR4zosXLwRLS0vB2tpauHv3bp5jt2/fFkxNTYVmzZrlKc/92tWpU0eIiIjI12ZGRkaer0euxMREoVGjRkL16tWFtLS0YscoCAWPSE2YMEEAIEyYMCHPSMu9e/eEatWqCQYGBkJkZKS6/N9fo61bt+Zpa+PGjQIAYfLkya+N4b9WrVolfP7558X+88cffxS77dfp3r27AEDYuHFjnvKBAwcKAIQ9e/YUeJ6vr68AIN+IIBETKaIy4O/vL9ja2uaZZrGyshL69u0rHDx4MF/93MTkv8mSIAhCdna24OLiIgBQJ2Tx8fGCTCYTWrRoUWD/N2/eFAAI8+bNU5f16tVLACDs27evyPiLm0j17du3wOOlSaTatWuXr/7Zs2cFAIKjo6OQnZ2d59jDhw8FAMLo0aOLfF9F0SSRyk10169fX+DxmTNnCgDyJFm5iZQmyd+KFSsEAMLZs2eLHaMg5E+kMjMzBRMTE8HMzExISEjIV/+TTz4RAAhffPGFuiz3a9S2bdt89RUKhaCnpye8+eabxX4vDg4Or52WLOjP6/49Fde6desEAIKnp6egUCjyHOvSpYsAoMApTUEQhGHDhgkACp02p6qJU3tEZWDw4MHo168fTp8+jQsXLiAoKAgXLlzA/v37sX//fowcORJ+fn6QSCR5zuvQoUO+tmQyGdq1a4fw8HAEBQXBwcEB165dg1KpfO0WBVlZWQBy7tTKdeXKFUgkkgKnLjTVqlUr0drK1aJFi3xlderUAZAzVZU7/ZXLzs4OAPDkyRPRYymOy5cvAwD++eefAr8WuVO8ISEh8PDwyHOssM/v7t27WL58Oc6dO4fnz58jIyMjz/GnT5+WKu6wsDCkpaWhbdu2sLKyyne8U6dOWLx4MYKCgvIdK+hrpK+vDxsbG7x8+bLYMTx8+LBEMZfGvn37MHPmTNja2mLv3r3qKT6i0mIiRVRG9PX10bVrV3Tt2hVAzl1Be/fuxZgxY7Bt2zb069dPvR4pl42NTYFt2draAgCSkpIAAAkJCQBy1hNdu3bttTHI5XL13xMTE1G9enUYGxtr/J5eF5eY/nuXI/D/9SyFHctNHstb7tdi8+bNhdb799ci1+s+vytXrqBTp07Izs5G586d0bt3b1SrVg1SqRQ3b97EgQMHkJmZWaq4c/8t1a5du8DjueWJiYn5jllaWhZ4jp6eHpRKZaniKgv79+/Hu+++i1q1auH06dNwdnbOVyf331bu5/JfueWve+9UdTGRIionMpkMgwcPxu3bt7F48WKcOnUqXyIVExNT4LnR0dEA/v/NPvf/s2bNwsqVK4vVv6WlJRISEpCeni5aMvXfEbVcUmnOXr/Z2dkFHi/oh7Ouyv1a/PPPP2jSpEmJzn3d57d48WKkp6fj9OnT+XYjX7JkCQ4cOKBRrP+WG3fuv63/ev78eZ56ZWH16tUl+rfg6emZ75opyu+//45hw4bB1tYWp06dQv369Qusl7tA/nU3idy/fx8A0KBBgxL1T5UfEymicmZubg4AEAQh37GzZ8/mK1Mqlbhw4QIAoFmzZgBypoSkUinOnz9f7H5bt26NQ4cO4ejRo+jXr1+hdXOnzzQdXahevToA4PHjx/mOJScna3RHozbJZLLX7obdunVr7N27F+fPny9xIvU6Dx48gJWVVYGPdCno30hRMRbEzc0NJiYm+Oeff5CYmJhvpOX06dMAUODdhmJZvXp1ie70HDVqVIkSqV9//RWjRo2CnZ3da0eicnXq1Alff/01jh49ig8//DDPsYiICNy7dw8ODg6FtkFVEx8RQySynTt34sSJE1CpVPmORUdHq6eAvLy88h0/deoUDh06lKds/fr1CA8PR8eOHeHg4AAAqFWrFt577z1cv34dX331VYEJT3h4OCIjI9Wvp02bBgCYM2dOgetr/l2Wu4XDo0ePiny/BTE3N0fDhg1x8eJFBAcHq8uVSiVmz55dLo/bePjwISQSiSiPTbG2tkZcXFyBcb///vuwtLTEF198gatXr+Y7rlKp8j1ypiiOjo548eIFbt26laf8559/xrFjx0ocY0EMDAzw3nvvISUlBZ9++mmeY+Hh4Vi7di309fUxYsSIEsVeEg8fPoSQc9NTsf74+fkVu+1ffvkFI0eORL169XDu3LkiE6AOHTrA3d0d586dy/MIJ5VKhQULFgAAJk2a9NpRRKq6OCJFJLK//voLa9asga2tLdq1awcnJycAQGRkJA4fPoz09HT06dMHAwcOzHfuO++8g379+qFfv35wdXXFzZs3ceTIEVhZWeGHH37IU3f9+vW4f/8+PvvsM2zfvh3t2rWDjY0Nnj17hpCQEFy7dg07d+5U99+1a1d88sknWLx4Mdzd3dX7SMXExODChQto3bq1+geVm5sb7OzssGvXLujr68PBwQESiQQjRoxQJ3NFmTdvHsaOHYu2bdti0KBBMDIywunTp5GVlYWmTZvin3/+KcWnXLTcRPa/+wVponPnzrh27Rq6d+8OLy8vGBoaomnTpnjnnXdgbW2NPXv2oF+/fmjdujU6d+6MRo0aQSKR4PHjx7h8+TISEhLyLRYvzMyZM3Hs2DG0a9cOgwcPhoWFBa5fv44LFy5g4MCB2LNnT4lifJ2lS5fi/PnzWL9+Pa5du4aOHTuq95FKSUnB+vXr1f9+dMnp06fV+6p17NgRW7duzVfH0tIyz55bMpkMW7duRadOnTBw4EAMHDgQ9erVQ2BgIK5fv462bdti1qxZ5fguSGdo52ZBosrr0aNHwvr164W+ffsKDRo0EMzNzQV9fX3B1tZW6NGjh7B9+3ZBqVTmOeffO4X/+eefQuvWrQUTExPBwsJC6N+/vxAWFlZgX7k7YLdp00a970/dunWFTp06CatWrRLi4+PznXP48GGhW7duQvXq1dU7m/ft21cIDAzMU+/q1atCp06dhGrVqgkSieS1O5sX5qeffhI8PDwEAwMDwcbGRpgwYYIQHx9f5M7m/1XUdgooYI+k/fv3CwCEjz/+uNAY/+112x/I5XJh0qRJgp2dnSCTyQqMJTIyUpg6darg6uoqGBoaCubm5oKbm5swfPjwfPsf5W5/8O89mv7rzz//FN566y3BzMxMsLCwELp06SKcPXv2tZ99UTEW9BkJgiC8fPlSmD9/vuDq6ioYGBgIFhYWgo+Pj3Ds2LF8dYvaFqOoLRjKy7/3ZXvdn9fFeffuXWHgwIGCtbW1YGBgINSvX1/47LPP8u3bRZRLIggFLNQgonLl5+eH999/H1u3bsXo0aO1HU6lMHv2bPz444+IiopCjRo1tB0OEVVSnNorhuXLl+PixYvIyMiAjY0NJkyYgLZt22o7LCIqxNmzZzF+/HgmUURUpphIFcPgwYMxY8YMGBgYICQkBLNnz8auXbvK9LZgIiqdGzduaDsEIqoCeNdeMTg4OMDAwABAzr4vWVlZiI+P13JUREREpG06s0YqLS0Nu3btQnBwMEJCQpCSkoIPP/wQPXr0yFdXoVDg559/xvHjx5GSkgIXFxeMGzcOLVu21Lj/lStXIiAgAAqFAq1bt8ayZct4GywREVEVpzMjUklJSfDz80NUVBRcXV0LrbtkyRLs3r0bXbp0wfTp0yGVSjF//vx8e7KUxOzZs3Hs2DGsWrUKLVu2ZBJFREREurNGytraGn/88Qesra0RGhqKCRMmFFgvODgYgYGBmDx5MoYOHQoA6NatG0aPHo0NGzZgw4YN6rpTp07F7du3C2xnxIgRGD9+fJ4ymUyGN998E7///jvs7e3Rpk0bkd4dERER6SKdSaQMDAzUuy0X5uzZs5DJZOjdu7e6zNDQEL6+vti0aRNiYmLUD4b9/vvvNYpFqVQW+8nrGRkZiIqKgoODA4yMjDTqj4iIiComnZnaK6779+/D3t4epqamecrd3d0B5DzDqiTkcjlOnDiBtLQ0ZGdn4/Tp0wgKCkLTpk2LdX5UVBTGjx9foudJFVd4eLjobRJRyfA6JNIubV+DOjMiVVwJCQkFjlzllpX0bjuJRIJDhw5h1apVEAQBdnZ2+PTTT1/7BPH4+HgkJCSoX5dFApUrMzOzzNomouLhdUikXdq+BitdIpWZmQl9ff185bnbF5T0Azc1NcWaNWuKXf/gwYMFPlgzMjKywAfLloZcLs/zQFgiKn+8Dom0qyyvQQ8PjyLrVLpEytDQEFlZWfnKFQqF+nhZ6t27d55dz6OiorB48WI4OTnBzc1N1L6Cg4OL9UUmorLD65BIu7R9DVa6RMra2hpxcXH5ynOn28r6cRE1atTgIymIiIiqiEqXSLm6uiIoKAipqal5FpznDvsVtQeVWE6ePImTJ09CLpeXS39ERFR+lEplgbMfVP5UKhUyMjI0Pl9fXx8ymUzj8ytdIuXt7Y1du3bh4MGD6n2kFAoFAgIC4OHhod76oKz5+PjAx8cHYWFh+fajIiIi3SWXy/HkyRPoyINBKj2VSoXIyEiNz5dIJLC3t4eZmZlG5+tUIrV3717I5XL1NN3FixcRGxsLABgwYADMzMzg4eGBjh07YtOmTUhMTISdnR2OHj2K6OhoLFiwQJvhExGRjlMqlXjy5AlMTExQs2ZNPuWiAsjIyNB4n0ZBEBAXF4cnT56gfv36Go1M6VQi5e/vj+joaPXrc+fO4dy5cwCArl27qrPJjz76CDY2Njh27BjkcjmcnZ2xbNkyeHp6aiNsIiKqJLKysiAIAmrWrAljY2Nth0PISYZKs+F1zZo18fDhQ2RlZVX+RGr37t3FqmdoaIgpU6ZgypQpZRzR63GNFBFR5cWRqMqjtF/LSrezeUXh4+ODpUuXYtq0adoOhYiIKrlFixZpvOB69erVeWZ7Fi1ahJkzZ4oUWeXHRIqIiEjHffHFFwUmUtnZ2UWe+99EikpGp6b2iIiIKK9JkyYBANq3bw+ZTIY6derA1tYWDx48QGxsLEJDQyGRSPDy5UtYWloCyNnz8Pr169i2bRuePXuGIUOGwNjYWP1kjufPn+Odd95BeHg4bG1tsWfPHlhZWWnpHVZsTKTKCNdIERFVfkNDViI+K6XM2q+hb46d7rMLrbNx40b8+OOPOH/+PCwtLTF69GjcuHEDFy5cgLm5eaHnfvbZZ9iyZQv8/f3VN2Tt378ff/31F27cuAFra2u8++67+PHHH/Hhhx+K9bYqFSZSZaQ89pFSCqoyaZeIiIonPisFsVlJ2g4jn0GDBhWZRBWme/fusLa2BgC0adMGt2/fFiu0SoeJlI66kBSCbzL3YUWaJdxN7LUdDhFRlVRDX/NkpSzb/+/mkjKZDEqlUv26qIXp/95OQCaTFWutVVXFREoHvciS47OHu5AgpGB46BpMrdMdo2w6QibhvQNEROWpqGm38mJubo6kpCT1Gqj/cnV1xV9//YWePXti3759SE1NVR+rVq0akpIq3qiaruBPXh2UpspELQMLAEC2oMSap4cx4d4GPFe81HJkRESkDXPmzEGXLl3g6empfuLHv61atQozZsxA8+bNERQUpJ62A4Dp06dj/Pjx8PT0xM2bN8sx6spBIvBhQWXi34vNb926hc2bN8PNzU209rNU2fjy9q/4M/sWBOR8Cc1lRvi43iD0sGomWj9EVLjg4GB4eHhoOwwqJxkZGYiMjISTk1OpdtMm8aSnp5dql/nSfk05IlVGynpDTn2pHobqt8RPDSajtkF1AECKMgMLI7fjw8gdSFGml0m/RERE9H9MpHRcC3NX7Hafi55WzdVlAS/+xqDg73AjJVyLkREREVV+TKQqgWp6xljiNBxLnN6DuSxnWPK54iXG3vsBa58eRpaKd1sQERGVBSZSlUhPqzex230u3jRzBgAIEPBzdCBGhq3Fw4z8iw+JiIiodJhIVTJ1DK2wucEUzLDzhZ5EBgAITnuCISErsTfuMnhvARERkXi4j1QZ0eYjYmQSKcbYdkabam74MHIHIjNikaFS4MtHv+N8cgg+dxiM6npmRTdEREREheKIVBkp67v2isPdxB473WdjUI231WWnE+9gUPB3uJJ8T2txERFVNSqVgGfBCQi/9AzPghOgUnF2oLJgIlXJGUsN8InDQKx2GQNLmSkAIC4rGRPvb8SKJweh4EJ0IqIyFXk1Gv7TzyBg8VWcXv8PAhZfhf/0M4i8Gq3t0MrMokWLinwMjSb8/PwQGhqq0bnr16/H6NGjxQ0ITKSqjI6Wb2BPo3loU+3/m4JuizmD4aFrEJEeo8XIiIgqr8ir0QhcHYTUF3mTitQXGQhcHSR6MlVRnon3xRdfvDaRKk2MpUmkygoTqSqkpn41/OA6HvPs+0D/1UL0sPSneDdkBXbHXYQgCBx+JiISiUol4Mq2kELrXNkeUurvsxKJBJ9//jlatmyJDz/8ECkpKRg/fjxatWqFJk2aYMKECVAoFACAp0+fYuDAgWjcuDGaNGmCTz/9FAAQGxuL/v37o3HjxnjjjTfw448/qtt3dHTEZ599hjZt2sDJyQmLFy9WH1u8eDHc3d3h6ekJT09PREVFYdKkSQCA9u3bqx9ZM3r0aIwZMwZeXl5444031HEnJiaq26pRowYePnwIAAgJCUG3bt3QpEkTNGnSBBs3bsRPP/2E69evY9asWfD09ERAQAAAYPXq1WjVqhWaN2+O7t27IyoqCgCQkpKCIUOGwM3NDe3atcPt27dL9Tm/DhebVzFSiRTDbTqgpbkrFkbuQERGDDKFbHz9aC9uX36Ihsdtkf5Coa5vamWE1iPd4dTKVotRExHpnst+d/ONRP1XakIGfp0cCM/eLmjs66RxXzKZDNeuXQMATJgwAe3bt8fmzZshCALGjx+PNWvWYN68eRg+fDi6du2KPXv2AADi4uIAANOmTYObmxv27duH2NhYvPnmm2jatClat24NAEhMTMTly5cRHx8PFxcXvP/++zAxMcF3332H58+fw9jYGGlpaZBKpdi4cSN+/PFHnD9/Ps9DlG/cuIELFy7A3Ny80PeSnZ2NPn364IsvvsDQoUMBAPHx8ahRowZ27NiBmTNnom/fvgCA3377Dffu3cPly5chk8mwfft2TJkyBYcPH8aXX34JQ0NDhIaGIjk5Ga1bt8Zbb72l8Wf8Okykqig3EzvsdJ+FVU8OYVfcBbjcr4V6B6sjDZmQQKKulzv83HlmMyZTREQlkJakKLoSgMyULCjSSzclN2bMGPXf9+/fj8uXL2PlypUAcp5FJ5PJIJfLceHCBRw7dkxdt2bNmgBy7jS/ceMGAKBWrVro378/Tp48qU6khg0bBiBn1MjZ2RmRkZFo06YN6tevr07OfH19YW9v/9oYBw0aVGQSBQBhYWHIyMhQJ1G5/RZk//79uHr1Kt58800AgFKpVB8LDAzEqlWrIJFIYGFhgWHDhiE8XPwnfjCRKiPa3P6guIykBviwXn+0MWuAfzY9AIA8SdS/XdkeAocWNpBKCz5ORER5mVgYFKueobk+DIxL9+PYzOz/W9oIgoC9e/eiQYMGeeqU5OeRRJL3e/2/H+Yrk8mQnZ0NmUyGK1eu4NKlSzhz5gxat26NnTt3on379kXGmNvOvxMfTRanC4KAuXPn4oMPPiiy7n/fk1iYSJURHx8f+Pj4ICwsDOPHjy+TPp5dScbNH06Vuh1llgqmKYaF1skdfpbpl35ZXeMeTqUawiYi0gVtRjfCo7/jCp3eM7U2wpA13qL+ktq3b18sW7YMP/74I/T09PDy5UskJCTA1dUVXl5eWLFiBT788EMAOVN7NWvWhI+PDzZv3oyvv/4acXFx2LdvH37//fdC+0lJSUFKSgrat2+P9u3b4+7duwgKCkL79u1hbm6OpKSkPFN7/+Xq6oq//voLPXv2xL59+5CamgoAcHNzg4mJCXbu3Jlvaq9atWpISkrK816XL1+OYcOGwcrKCllZWbhz5w6aNWsGHx8fbN26FV5eXkhJScHOnTvRsmXLUn66+XGxuQ7LzlQh7UVmqf9kpmQVq7/MlCxR+ivtEDYRkS6QSiVoPdK90DqtR7iLPtK/atUqGBsbw9PTE02aNEHnzp3Vi7i3b9+O69evo1GjRvD09MT69esBAGvXrkVISAgaN26Mjh074uOPPy5yPVFSUpJ6gXqTJk2QlZWFUaNGAQDmzJmDLl26qBebvy7OGTNmoHnz5ggKCoK1tTUAQE9PDwcOHMDWrVvRuHFjNG3aFHv37gWQs/7rm2++US82f++99zBixAh07NgRTZs2haenJ06dyhlg+PTTT5Geno6GDRuiZ8+eaNeuXak/24JIBD4zpEzljkht3rwZbm5uRZ9QAie3XEHs32mlbkeZpSpWMiWpDhhLCh+5Kg6OSFFlEhwcDA8PD22HQeUkIyMDkZGRcHJyyjPdVZjIq9G4si0kz8iUqbURWo/gjTxiSE9Ph7Gxscbna/I1/TdO7emwOq2rwWdM61K3o1IJ8J9+5rXDzwIEyM0zcHT8HSxxGY7m5s6l7pOIqKpwamULhxY2iA59gfTETBhbGsK2oRXXnFYSnNqjYg0/n+94D9HKRIy99z02PjuGbEFZaH0iIvo/qVSCOh7WcHm7Dup4WDOJqkSYSBGAnN+YOs9sBlOrvMOaptZGaPGBG6o3y7llVQUBG54fw/h7GxCteKmNUImIiCoMTu2RWmHDz5uEyfg5OhAbnx2DEir8LY/AoODv8LnDEPhUb6Lt0ImIyhWXF1cepf1aMpGiPHKHn/9LJpFiQu0uaGnuig8jd+C54iWSlemYE+GHgTXaYG7dPjCWFm/PFCIiXaWvrw+JRKLeNqCs9iai4svMzNT46yAIAuLi4iCRSKCvr69RG0ykyogubMipiWZmTtjtPhdfPdqN4y//AQDsib+MIHkkljmPQH3j2lqOkIio7MhkMtjb2+PJkyfqLQVIu7KysjROgoCcjTrt7e0hk8k0O5/bH5Ststz+QJu3XQuCgD8S/sKyR38gQ8jZOsFQooc59n0wuObb/C2Nqgxuf1A1KZVKZGUVbw8+KlsPHjyAq6urxufr6+trnEQBHJEiDUkkEvSv0Rqepk5YELkN99KfI1PIxjeP9+JyShi+cBgCCz1TbYdJRFQmZDJZqX74knikUqlG+z+JRZRE6u+//8aNGzdw584dxMbGIikpCUZGRrC0tISzszM8PT3Rpk0b9a6lVHk4G9tgR8OZWPXkT+yMuwAAOJ14ByGpT7DUeQSamXHjTSIiqrw0TqTS09Oxd+9e/Pnnn4iJiVGvejcwMEC1atWQmZmJyMhIhIeH48SJE9DT08Pbb7+NwYMHo3HjxqK9AdI+Q6k+Ftbrj9bV3PDZw51IUqYhOisRY8O+x+Q63TDGtjNkEu60QURElY9GiVTuM3BevnwJFxcXjB07Fo0aNULDhg1hYmKiricIAp48eYLg4GBcu3YNFy5cwPnz59G2bVtMnToVderUEe2NkPZ5WzbC7x5z8WHkDtyQR0AJFdY/O4KrKQ/wjdN7qKlfTdshEhERiUqjRGr16tXw8fHB0KFD4ez8+seFSCQS1K1bF3Xr1kW3bt2QmZmJEydOYMeOHTh+/DhGjx6tadxUQdkYWGJzgynY9Pw4Nj0/ARUEXE25j0HB32Gx41C0syh8B3UiIiJdolEitW3bNtStW7fE5xkaGqJXr17o0aMHYmJiNOmadIBMIsXkOt3R4tWeU3FZyXiZLcfUB5sxysYb0+r0hL6U9zkQEZHu02jhiiZJ1L/JZDJO61UBLc1d8bvHXLS3+P+t4b/EnMGosHV4kpmgxciIiIjEwRXAVKaq65lhnctYzLPvAz1Jzq3Cd9MeY0jwCpx4taEnERGRrmIiRWVOIpFguE0HbHebjrqGOVtgyFUZmBvxC75+tAeZKm5qR0REuknURColJQVHjx4Vs0mqRDxM62KX+xz0qN5MXbY77hJGhK7Bw4xYLUZGRESkGVETqZiYGCxdulTMJqmSMZMZYYnTcHzuMBiGkpwF52Hpz/BuyEocTrih5eiIiIhKpkS3ThV1p118fHypgqlMKutDi8WQ+3iZxqb1MC9iGyIzYpGuUuCjh7/iWsoDLKjXD8ZSA22HSUREVKQSJVKDBw8u9GG0giDwYbWv+Pj4wMfHR/3QYsqvvnEd/NZwFpY83oeDCdcAAH8k/IVbqVFY7jwSLsa2Wo6QiIiocCVKpMzNzTF27Fh4enoWeDwqKgqLFi0SISyqKkxkhvjKcShambti8aO9yFApEJ4RjWEhq/BhvQHoY92SyTkREVVYJUqkGjRogJSUFDg5FfwgWqVSqX7mHlFJvGPdEm+8muq7n/4cGUIWPo/ahWspD/BxvQEwkRlqO0QiIqJ8SrTYvG/fvrC1ff10i42NDRYuXFjqoKhqcjKywY6GMzCgRmt12aEX1zEsdBXupz/XYmREREQFK1Ei5eXlha5du772uLm5OXr06FHqoKjqMpIa4DOHwVjqNBwm0pxRqMiMWAwPWY198Vc44klERBUKN+SkCqmHVXPsdJ8FN+OcRwllCFn4Imo3Pn74G9KUmVqOjoiIKEepEylvb288fvxYjFiI8nA0qoXtDWdgcM231WWHX9zA0JBVuJ/+TF2mUgl4FpyA8EvP8Cw4ASoVR62IiKh8lGixeUE41UJlyVCqj4/rDUQLM1d8EeWPVFUmHmbG4r2Q1VhYrz+aRTjgyrZQpL7IUJ9jamWE1iPd4dSK2ycQEVHZ4tQe6YRuVp7Y5T4bDY3tAACZQjZ2nDyDk6uD8iRRAJD6IgOBq4MQeTVaG6ESEVEVwkSKdEY9o5rY1nA6htRsC4kKaH/KrdD6V7aHcJqPiIjKVKmn9ohK6vbhSNw+Eqnx+Y6ojkHWrWAuNyq0XmpCBn6dHAiZful/X2jcwwmNfQveP42IiKouJlJU7hTp2Uh7Ubo772xeWBSrXmZKVqn6yaVIzxalHSIiqlyYSBXTnTt3MHXqVIwZMwajRo3Sdjg6zcBYDyZWpdupXJmlKlaSZGiuL8qIlIExLxUiIsqPPx2KQaVSYf369WjYsKG2Q6kUGvuWfppMpRLgP/1MvoXmuQQIkFpKMWxdJ8hkXApIRERlo9Q/YYYNG4Zq1aqJEUuF9eeff8Ld3R0ODg7aDoVekUolaD3SvcBjAnIWmB/2uomFUTsgVxacbBEREZVWqROpiRMnwsKieOtVNJWWloYtW7Zg7ty58PX1hZeXF44cOVJgXYVCgQ0bNqBfv37w8fHBxIkTce3aNY37TkpKwu+//44xY8Zo3AaVDadWtug8sxlMrfIuOldZAEd630J4/Vgcf3kT74asQEjaEy1FSURElZnGU3sKhQIGBgZixvJaSUlJ8PPzg42NDVxdXREUFPTaukuWLMGZM2cwaNAg2Nvb48iRI5g/fz7WrFmDJk2alLjvzZs3Y9CgQTA3Ny/NW6Ay4tTKFg4tbBAd+gLpiZkwtjSEbUMruCTZY1HULqQoM/A4MwEjQtdgrn2fnK0TJBJth01ERJWExolU7ohPz5494eZW+H4+pWVtbY0//vgD1tbWCA0NxYQJEwqsFxwcjMDAQEyePBlDhw4FAHTr1g2jR4/Ghg0bsGHDBnXdqVOn4vbt2wW2M2LECIwfPx737t1DaGgoZs2aJf6bItFIpRLU8bDOU+ZTvQkamthhfsQ23E17jCxBiSWP9+F6Sjg+dxwMc5mxlqIlIqLKpFQjUvv378eBAwfg4uICX19fdOnSpUxGbgwMDGBtbV1kvbNnz0Imk6F3797qMkNDQ/j6+mLTpk2IiYmBjY0NAOD7778vsr2bN2/i8ePHGDBgAABALpdDJpPh2bNn+PDDDzV8N1Re7A2t8YvbNKx+egg7Ys8BAE4k/oOQ4CdY7jwSHqZ1tRwhERHpOo0TqQMHDuDEiRMICAhAaGgo1q5diw0bNqB9+/bw9fXFm2++KWacxXL//n3Y29vD1NQ0T7m7e86i5AcPHqgTqeLo3bs3OnfurH69du1a1K5dG++99544AVOZ05fqYV7dvnjT3AWfPdyFFGU6nigSMDJsLebY98a7Ndtxqo+IiDSmcSJlYmKCPn36oE+fPnj48CEOHz6MEydOIDAwEKdOnUKtWrXg6+uL7t27lyh5KY2EhIQCR65yy+Lj40vUnpGREYyM/r+Q2dDQEMbGxoWOusXHxyMhIUH9OioqqkR9UtnoZNkYbu45U3130h4hS1Bi6eM/cC3lARY5vItqepzqIyKikhNlHylHR0dMnToVkyZNwqVLl3D48GFcvXoVW7ZsgZ+fH1q0aAFfX1+0a9cOenplt3VVZmYm9PX185XnLorPzCzdbtofffRRkXUOHjwIPz+/fOWRkZFQKpWl6v+/5HI5goODRW2zslsgdMZOvWsIyL4DAAhMvI3bSQ8x3aATXKQ1tRwd6SJeh0TaVZbXoIeHR5F1RM1qZDIZ2rdvj/bt2+PFixc4duwYAgICcPXqVVy7dg3VqlXDwYMHxewyD0NDQ2Rl5d/tWqFQqI+Xtd69e6Nt27bq11FRUVi8eDGcnJxEX5QfHBxcrC8y5dUEjdEt8Q4+fbgTycp0xAopWKQ4hNn272BYzfac6qMS4XVIpF3avgbLbMtnKysrDB06FIsWLULjxo0hCAKSk5PLqjsAOVN4/55Wy5VbVqNGjTLtP7cPNzc39R9u4lkxeVu+AX/3OWhimvP1yRaU+PbxfsyO8ENydrqWoyMiIl1RJvNsaWlpOHHiBA4fPox79+5BEAQYGRmhY8eOZdGdWu4eU6mpqXkWnOcO+bm6upZp//928uRJnDx5EnK5vNz6pJKpY2iFLW4fYN3Tw/gl5gwA4FTibYSmPcW3ziPQ2JRJMBERFU7UROrvv/9GQEAAzp8/j8zMTAiCAA8PD/j6+qJTp04wMTERs7t8vL29sWvXLhw8eFC9j5RCoUBAQAA8PDzKbdE7APj4+MDHxwdhYWEYP358ufVLJaMvkWG2fW+8aeaCTx/uRJIyDc8ULzA6bD1m2fXCe7W8ONVHRESvVepEKjY2FkeOHMGRI0cQHR0NQRBgaWmJ3r17w9fXF46OjiKECezduxdyuVw9TXfx4kXExsYCAAYMGAAzMzN4eHigY8eO2LRpExITE2FnZ4ejR48iOjoaCxYsECUOqpw6WDaCv8ccLIjYjn9SHyJbUGL5kwO4nhKOLx3fRTW9sv0lgIiIdJPGiVRgYCACAgLw999/Q6VSQSqVomXLlmV2d56/vz+io6PVr8+dO4dz53I2WezatSvMzMwA5NxZZ2Njg2PHjkEul8PZ2RnLli2Dp6enqPFQ5VPboDp+dpuK9U8D4BdzGgBwOukOhoSswDLnker1VERERLkkgiAImpzYoUMHAEDt2rXRo0cP9OjRA7Vq1RI1OF327zVSt27dwubNm3nXng45lxSMTyJ/Q5IyDQCgBylm2PfCiFodONVHefA6JNIubV+DGg8bde7cWWs7mOsCrpHSbV4WHtj9aqrvZupDZEOFFU8O4sarqT4LPdOiGyEiokpP4+0PPvvsMyZRVKnZGlTHT25T8b5NJ3XZmaS7GBKyErfkD7UXGBERVRii7SOVnZ2N3bt3Y8KECejevXuerQ7u37+PlStX4vHjx2J1R1Qu9CUyzLTvhfWu42ApyxmFeq54iffD1uOXmDPQcGaciIgqCVFWhGdmZmLOnDm4c+cOLCwsYGpqioyMDPXx2rVrIyAgAObm5lVmmov7SFUu7V9N9c2P2I6bqZHIhgornxzE9ZQH+MpxKCw51UdEVCWJMiK1fft23L59GxMmTMD+/fvh6+ub57iZmRk8PT1x7do1MbrTCT4+Pli6dCmmTZum7VBIJDYGlvjZbQrG2nZWl51LCsaQ4BW4KY/UYmRERKQtoiRSp06dQrNmzTBs2DBIJJIC72qqU6cOYmJixOiOSGv0JDJMt/PFD67jUf3VKFR0ViLGhH0Pv+hTUAkqLUdIRETlSZREKjY2tshb+42NjZGamipGd0Ra19bCHf7uc9DczBkAoIQKq54ewvQHP+NlNqdziYiqClESKWNjYyQmJhZa59mzZ7CwsBCjO6IKwcbAEpsbTMY4Wx912fnkEAwJXokgTvUREVUJoiw2b9SoES5duoSUlBSYm5vnOx4TE4MrV66gffv2YnSnE7jYvGrQk8gwza4nmps54+OHv+FlthwxWYkYG/Y9PrDrgdE2HSGV5P99RaUSEB36AumJmTC2NIRtQytIpdzok4hI14iSSL377ruYOXMmZs2ahRkzZkCpVAIAMjIycPfuXaxevRpKpRJDhgwRozudwA05q5a2Fg2x230OPozcgevycCihwpqnh3EjJRyLnYahup6Zum7k1Whc2RaC1Bf/v7PV1MoIrUe6w6mVrTbCJyIiDYkytefp6YmZM2ciIiIC06ZNw44dOwAA3bt3x5w5c/D06VPMnj1b9EekEFUktQws8GODSRhv2wUS5IwuXUgOxeDgFfg7JQJAThIVuDooTxIFAKkvMhC4OgiRV6PztUtERBWXaE8W7tu3Lzw9PXHgwAGEhIQgOTkZpqamcHd3R79+/eDk5CRWV0QVlp5Ehg/seuBNc2d8GPkrXmbLEZuVhHH3fsAU224w2SYr9Pwr20Pg0MKG03xERDpCtEQKABwdHTFjxozXHlcqlZDJCv9BQlQR3T4cidtHSraAfJhxa/zZIQiPaidACRX2XbuC/i9aFHpOakIGfp0cCJl+6QeLG/dwQmNf/gJDRFSWREmk9u3bh/79+xdaR6lU4osvvsCXX34pRpcVHhebVy6K9Gykvcgs0TlSSPDOzma41joCV9tEwERuWKzzMlOyNAkxH0V6tijtEBHR64mSSK1duxZWVlbw9vYu8LhKpcIXX3yBc+fOidGdTuBi88rFwFgPJlbFS4T+q2OYB5ySa+G6S0Sx6hua64syImVgLOqAMxERFUCU77SNGzfG4sWLUa1aNTRv3jzPsdwk6uzZs0WOWhFVVI19Sz9NFpeZhN1nzsEgWaZejP5fptZGGLLGm2ukiIh0hCh37S1duhR169bFJ598gvv376vLVSoVvvrqK5w5cwZ9+/YtdP0UUWVX09AC3ce0ACCBAKHAOq1HuDOJIiLSIaIkUqampvjuu+9gZmaGefPm4dmzZxAEAV9++SVOnTqFPn36YNasWWJ0RaTTXFrVhs/MZjConncwOMU8A8pRUtRrWUtLkRERkSZEW0RhbW2NFStWYOrUqZgzZw7q16+Ps2fPolevXpg9e7ZY3RDpPKdWtnBoYYN7d57gl/un8Y8sCs/sXkKQAn/fj8Q3Tu/BWj//EwKIiKjiEWVEKlfdunXx7bff4uXLlzh37hx69eqFefPmidkFUaUglUrQsEldLO4/HH3eeguSV9N5V1LuYXDwd/gr+X4RLRARUUWg0YiUn59focfd3d3x4MEDWFtb56krkUgwatQoTbokqpRkEikm1u6K5mbOWBixHfHZKYjPTsHE+xsxqXZXjK/dBbICntVHREQVg0aJ1NatW4tV75dffsnzuiolUtxHikqipbkrdnvMxUeRv+JKyj0IELDh+THckEdgidN7qKFfTdshEhFRATRKpNasWSN2HJUO95GikrLWN8eG+hPwc3Qgfnh2FCoIuJpyH4ODV2CJ03t4q1oDbYdIRET/oVEi5enpKXIYRAQAUokU42t3QTMzJyyM3IG4rGQkZKdg4v0fMaF2F0ys3ZVTfUREFQi/IxNVQC3MXbHbfS7eruYGABAg4MfnxzHx/kbEZSVrOToiIsrFRIqogrLSN8P3ruMxvU5PSF/thH4t5QEGB3+HK8n3tBwdEREBTKSIKjSpRIqxtX3wc4OpqKVvAQB4kS3HpPs/Yv3TI8gWlFqOkIioamMiRaQDmps7Y7fHHLSr1hBAzlTf5ugTmHhvI2IVSVqOjoio6mIiRaQjquuZYZ3rOMyw84Xs1aV7XR6OwSErcCk5TMvRERFVTUykiHSIVCLFGNvO+NltKmz0LQEAL7PlmHJ/E9Y/DeBUHxFRORPtWXuUFzfkpLLUzMwJuz3m4JPI33A+OeTVVN9J3JBHYKnTcNgYWGo7RCKiKqHEI1IqlQoRERGIj4/Pdyw7Oxs3b94UIy6d5+Pjg6VLl2LatGnaDoUqKUs9U6x1HYtZdr3UU31/yyMwJGQFLiaFajk6IqKqoUSJVHR0NEaPHo33338fAwcOxMKFC5GU9P+FrsnJyZg5c6bYMRLRa0glUoy27YQtblNhq57qS8WUB5uwjlN9RERlrkSJ1IYNG1CjRg3s2rULmzdvRmZmJqZOnZpndEoQBNGDJKLCeZo5wd9jDtpbeKjLfoo+ifH3NiBGkai9wIiIKrkSJVL//PMPpkyZgtq1a6N+/fpYsWIFmjRpgg8++AAxMTEAch5MTETlz1LPFGtdxmC23TvQyzfVF6Ll6IiIKqcSJVIZGRnQ19f//8lSKebPn4+WLVti2rRpePr0qegBElHxSSVSjLLtiC1uH/xnqm8z1jw9xKk+IiKRlSiRqlevHsLC8u9XM2fOHLRu3RoLFy4ULTAi0lxTM0fs9piDDhaN1GVbok9hbNgPiFa81GJkRESVS4kSKS8vL5w4caLAY7Nnz0bnzp25RoqogrDQM8UalzGYY99bPdV3MzUSQ4JX4nxSsJajIyKqHEqUSA0fPhzLly9/7fHZs2fj7NmzpQ6KiMQhkUgw0sYbW90+QB2D6gCARGUqPnjwE1Y9+RNZnOojIioV7mxOVAU0MXOEv/scdLR4Q13mF3MaY8O+x3NO9RERaYyJFFEVUU3PBKtc3sc8+z7Qk8gAAP+kPsSQ4BU4m3hXy9EREemmUidS3t7eePz4sRixEFEZk0gkGG7TAX5uH6COgRUAIEmZhunhP2PFk4OFTvWpVAKeBScg/NIzPAtOgErF9ZBERKV+1h4XlxeMz9qjiqyxqQP83Wfjs6hdOJ14BwCwLeYMbsojscxpBOoYWuWpH3k1Gle2hSD1RYa6zNTKCK1HusOplW25xk5EVJFwaq+M8Fl7VNFV0zPBKuf3Md++r3qq71ZqFIaErMCZV8kVkJNEBa4OypNEAUDqiwwErg5C5NXoco2biKgiYSJFVIVJJBK8Z+OFX9ymqaf6kpXpmBG+Bd89PoDM7Cxc2Vb4ruhXtodwmo+IqqxST+0RUcV0+3Akbh+JLHb9QQYtcaTtP7jnmDPCtD32LP4JjECHFw0LPS81IQO/Tg6ETL/0v5c17uGExr5OpW6HiKi8MJEiqqQU6dlIe5FZonO67n0Dtp4WuNDhHlR6AtL1sop1XmZK8eoVRZGeLUo7RETlhYkUUSVlYKwHEyvDEp/X5lF9OAXUxAHvv5FmVrxEzNBcX5QRKQNjfksiIt3C71pElVRj39JNk41X9sAXEbuRYpYBM7khJJAUWM/U2ghD1nhDKi34OBFRZVbqXyGHDRuGatWqiRELEVUg5jJjLHcdiZqDch4tI6DgBeWtR7gziSKiKqvUidTEiRNhYWEhRixEVMFIJBIM7+IN98kOyDDPuw5KaSGgw4wm3EeKiKo0Tu0RUZHatW+EJq2d8d3Z/QiOfow0s0w8s3uJM2ahWJ45CvaG1toOkYhIK0RNpJRKJeLi4hAfH4/s7ILvvvH09BSzSyIqJ9X0jfFF53fxe/xlLH+8H4IABKc9wZDgFfjCcQh8qjfVdohEROVOlERKpVJh+/bt2LNnD1JSUgqte+bMGTG6JCItkEgkGFzzbTQ2rYf5EdvwKDMeclUG5kT8gndrtsMc+94wkHKgm4iqDlG+4/3444/YtWsXqlevjh49esDa2hoymUyMpomoAnI3scdO99n4Kup3HH0ZBADYFXcB/6Q+xHLnkahrWEPLERIRlQ9REqljx46hbt262LRpE0xMTMRokogqODOZEZY6DUdLc1cse/wHFEI2QtKe4N3glfjccTC6VvfUdohERGVOlEQqPT0dXbp0qbRJ1PTp0xEcHKweZWvSpAmWL1+u5aiItE8ikWBgzTZobFoP8yK2ISozDnJVBuZFbMP1muGYY98bhlJ9bYdJRFRmREmknJ2dkZCQIEZTFdb8+fPRtWtXbYdBVCG5mdhhp/ssfBX1O468murzj7uIf+Q5U331jGpqOUIiorJR+mc6ABg5ciTOnz+PsLAwMZojIh1kKjPCEqfh+KzeIBhKcn5HC01/indDVuLoiyAtR0dEVDZEGZFq06YNPvzwQ8yfPx9t27aFi4sLTE1NC6zbvXt3jfpIS0vDrl27EBwcjJCQEKSkpODDDz9Ejx498tVVKBT4+eefcfz4caSkpMDFxQXjxo1Dy5YtNeobANatW4d169ahfv36mDp1KlxcXDRui6iykkgkGFCzDRqbOmBuxC+IyoxDqioTCyK344Y8HHPt+3Cqj4gqFVESKYVCgUuXLiEpKQmHDx8GkPMN9d8EQYBEItE4kUpKSoKfnx9sbGzg6uqKoKDX/4a7ZMkSnDlzBoMGDYK9vT2OHDmC+fPnY82aNWjSpEmJ+540aRIcHR0hk8mwd+9ezJs3Dzt27Ki0a8KISquBSR3sdJ+FxY/2IODF3wCA3XGX8I88CsudR8KBU31EVEmIkkitX78eJ06cgIuLCzp06FAm2x9YW1vjjz/+gLW1NUJDQzFhwoQC6wUHByMwMBCTJ0/G0KFDAQDdunXD6NGjsWHDBmzYsEFdd+rUqbh9+3aB7YwYMQLjx48HAHh4eKjLhw0bhoCAANy9e7dUI1xElZ2pzAjfOL6HluauWPpoHzKFbIS9mur7zGEwelg103aIRESlJkoidebMGbi5ueGHH36Anl7ZbMZnYGAAa+uiH0Nx9uxZyGQy9O7dW11maGgIX19fbNq0CTExMbCxsQEAfP/99xrFIpFIIAgFP8CViP5PIpGgf43W6rv6IjNikabKxMLI7bie8gDz6vaBkdRA22ESEWlMlMXmCoUCzZo1K7MkqiTu378Pe3v7fGu03N3dAQAPHjwoUXspKSm4du0aFAoFsrKysHv3bqSkpOQZpfq3+Ph4hIWFqf9ERUVp9kaIKpH6xnXwW8NZ6GXVQl22J/4yRoauxcOMWC1GRkRUOqJkPm5ubnjy5IkYTZVaQkJCgSNXuWXx8fElak+pVGLTpk149OgR9PT04OrqimXLlsHMzKzA+gcPHoSfn1++8sjISCiVyhL1XRS5XI7g4GBR2yQqS8OEprDTN8HWrItQQImw9GcYcncFxum3Q1s93byBg9chkXaV5TX4ukGTfxMlkRo/fjxmzZqFS5cu4e233xajSY1lZmZCXz//XUEGBgbq4yVhaWmJzZs3F7t+79690bZtW/XrqKgoLF68GE5OTnBzcytR30UJDg4u1heZqCJphEbomt4a8yJ+QURGDDKQhfVZp/HcIh3z6/bVuak+XodE2qXta1CUROr69evw9PTERx99hObNm792+wOJRIJRo0aJ0eVrGRoaIisrK1+5QqFQHy9LNWrUQI0afM4YUWFcjW3xa8OZWPJ4Hw4mXAMA7I2/gtupUVjuPAqORrW0HCERUfGIkkht3bpV/fcbN27gxo0bBdYrj0TK2toacXFx+cpzd15nkkNUMZjIDPGV41C0MHPBN4/2IkPIwr3053g3ZCU+rTcIvtZvajtEIqIiiZJIrVmzRoxmRJG7x1RqamqeUbHc+VNXV9dyiePkyZM4efIk5HJ5ufRHpKv61GiFRqb11FN96SoFPnr4K66lPMCCev1grGNTfURUtYiSSHl6eorRjCi8vb2xa9cuHDx4UL2PlEKhQEBAADw8PNRbH5Q1Hx8f+Pj4ICwsTL0fFREVLHeqb+njP3Ag4SoA4I+Ev3A7NQrfuYyCk1H5XLdERCWl/f0KSmDv3r2Qy+XqabqLFy8iNjbn1ukBAwbAzMwMHh4e6NixIzZt2oTExETY2dnh6NGjiI6OxoIFC7QZPhEVwkRmiC8d30VLcxcsfrQXGSoFHmREY2jIKnxcbyDesW5RdCNEROVMlETq9u3bOHv2LIYOHVrg1gPx8fHYtWsXOnbsiEaNGmncj7+/P6Kjo9Wvz507h3PnzgEAunbtqt6S4KOPPoKNjQ2OHTsGuVwOZ2dnLFu2rFxHzji1R6SZd6xbopFJzlTfg4xopKsU+OThb7iW8gAf1uvPqT4iqlAkgghbdH/yyScIDw/Hzp07X1tn2LBhqF+/Pr744ovSdqdTcqf2Nm/ezO0PiEogXaXAskd/4I+Ev9RlLka2WO48Ei7GtlqMLC9eh0Tape1rUJSdzUNDQ4t8GHDTpk25aR0RFZux1ACLHIfga8dh6lGo8IxoDAtdrd4ygYhI20RJpBITE4vcVsDKygovX74UozsiqkJ6WbfATvdZcDXKGYXKUCnw6cOd+PThTqQpS7bBLhGR2ERJpMzMzNSLvl8nJiYGxsbGYnRHRFWMk5ENdrjPRP8ab6nLDiZcw3uhq3E//bkWIyOiqk6URMrDwwPnzp1DTExMgcdjYmJw/vx5vPHGG2J0pxNOnjyJhQsXYt26ddoOhahSMJYa4HOHIfjG8T31VF9ERgyGh6zG/virEGG5JxFRiYmSSA0ePBiZmZmYOnUqjh49qn4wcHx8PI4cOYIpU6ZAoVBgyJAhYnSnE3x8fLB06VJMmzZN26EQVSq+1m9il/ts1DeuDQDIELLwedQufFLAVJ9KJeBZcALCLz3Ds+AEqFRMtohIXKJtyDl16lT88MMPWLp0KYCcx8Hk/oYokUgwbdq0CrVxJxHpLkejWtjRcAaWPz6APfGXAQCHXlzH3bRHWO48CvWNayPyajSubAtB6osM9XmmVkZoPdIdTq0qzl1/RKTbRNuQc9CgQWjevDkOHDiA0NBQyOVymJmZwd3dHX369IGzs7NYXRERwUhqgE8dBqGFuQu+jPodaapMRGbEYnjIasx66Qv5z6n5zkl9kYHA1UHoPLMZkykiEoWoO5u7uLhg9uzZYjaps7ghJ1H56GHVHO4m9pgfsQ1h6c+QqczCc/8EmMEQEkgKPOfK9hA4tLCBVFrwcSKi4tKpR8ToEj5rj6jkbh+OxO0jkRqd20vWFMat9BFnmgxzuVGhdVMTMvDr5EDI9Eu/TLRWcxNwP06iqouJFBFVGIr0bKS90HxvqPaHG+C5bWKx6mamZGncz79lZxaetBFR5cZEiogqDANjPZhYGZaqDcfUmshE0UmSobm+KCNSeoai3PxMRDqKiRQRVRiNfZ3Q2NepVG2oVAL8p5/Jc7fef5laG2HIGm9R1kjx0VdEVRt/lSKiSkUqlaD1SPcCjwm5//WRQsJ15kQkAo5IlRHetUekPU6tbNF5ZrN8+0jJzTNwvuM9hFePxT+Rj/CpwyCYybjGiYg0x0SqjPCuPSLtcmplC4cWNogOfYH0xEzoV9PDr2YXEJ6Q81zQoy+DEJz2BMudR6KhiZ2WoyUiXSXq1F5KSgqOHj0qZpNERBqTSiWo42ENl7froN4btfChY3985zwKZtKcUahHmXEYEboGu+Mu8ll9RKQRUROpmJgY9SNiiIgqoi7Vm2KXx2x4mNgDABRCNr5+tBfzI7dDrnz9AnUiooKUaGovJiam0OO5DysmIqrI6hrWwC9u07HyyUHsjLsAADj+8iZC0h5jufMouL9KsoiIilKiRGrw4MGQFHKriyAIhR4nIqooDKR6WFivP1qYu2JR1C6kKDPwODMBI0LXYJ59Xwyu+Ta/nxFRkUqUSJmbm2Ps2LHw9PQs8HhUVBQWLVokQlhEROXDp3oTNDSxw/yIbbib9hhZghLfPN6LaykP8LnjYJjLjLUdIhFVYCVKpBo0aICUlBQ4ORW8YZ5SqeSCzVe4/QGR7rA3tMYvbtOw+ukh7Ig9BwA4kfgPQoJz7urzMK2r5QiJqKIq0WLzvn37wtbW9rXHbWxssHDhwlIHVRn4+Phg6dKlmDZtmrZDIaJi0JfqYV7dvljl8r56FOqJIgEjw9ZiZ+x5/pJIRAUqUSLl5eWFrl27vva4ubk5evToUeqgiIi0pZNlY/i7z8EbJvUAAFmCEksf/4G5Eb8gRZmu5eiIqKLhI2KIiP7DztAKfm4fYHitDuqyk4m3MCR4Be6mPtZiZERU0TCRIiIqQM5UXx+scRmDaq+m+p4qXmBk2Fr8GnuOU31EBECERMrb2xuPH/M3NCKqnLwt34C/+xw0MXUAAGQLSnz7eD9mR/ghOZtTfURVXakTKf5WRkSVXR1DK2xpMBUjbbzVZacSb2NIyAo8UMVqLzAi0jpO7RERFYO+VA9z7HtjjctYWMhMAADPFC+wKPMQfo3hVB9RVcVEioioBLwtG8HfYw6amjoCAJRQ4dsn+zErYiuSs9O0GxwRlbsSbchJxccNOYkqr9oG1fGz21SsfxoAv5jTAIDTiXcwJG0FvnUeicav1lMRUeXHEakywg05iSo3fYkMs+zfwTyDrv+a6nuJ0aHrsD3mLKf6iKoIJlJERKXQXFYPuz3mwPPVVF82VPjuyQHMDN+CpOxU7QZHRGWOiRQRUSnZGlTHT25T8b5NJ3XZmaS7GBKyErfkD7UXGBGVuVInUsOGDUO1atXEiIWISGfpS2SYad8L613HwVJmCgB4rniJ98PW45eYM5zqI6qkSp1ITZw4ERYWFmLEQkSk89pbeLya6nMCkDPVt/LJQUwP/xmJnOojqnTKdGpPEAQ8fvwYMTExZdkNEVGFYmNgiZ/dpmCsbWd12bmkYAwJXoGb8kgtRkZEYhMlkTp79iy+/vprpKSkqMueP3+O0aNHY8SIERgyZAgWLVoEpVIpRndERBWenkSG6Xa++MF1PKrr5Uz1RWclYkzY9/CLPgWVoNJyhEQkBlESqQMHDuD+/fswNzdXl61fvx4PHz5Es2bN4OLigjNnziAgIECM7oiIdEZbC3f4u89BczNnADkbeK56egjTH/yMl9ncZ45I14mSSD18+BDu7u7q12lpabh8+TI6deqEVatW4ccff4SDgwMTKSKqkmwMLLG5wWSMt/WBBBIAwPnkEAwJXokgTvUR6TRREqnk5GRYWVmpX9+6dQtKpRKdO+esD9DT00OLFi3w9OlTMbojItI5ehIZPrDriR/qT0B1PTMAQExWIsaGfY+fowM51Ueko0RJpExNTZGcnKx+HRQUBKlUiqZNm6rL9PT0kJGRIUZ3REQ66+1qbtjtPgctzFwA5Ez1rX16GB88+AkvsuRQqQQ8C05A+KVneBacAJWK2yYQVWSiPGuvXr16uHTpEsaNGwepVIqTJ0+iQYMGedZMRUdHo3r16mJ0R0Sk02oZWODHBpOw8dlx/BR9EgIEXEwOxez9W9DxjDuyXmar65paGaH1SHc4tbLVYsRE9DqiJFIDBgzA559/jgEDBqhHnsaNG5enTnBwMBo0aCBGdzqBDy0mosLkTPX1QAtzF3wYuQPVQ0zQ9qArFMhSr6MCgNQXGQhcHYTOM5sxmSKqgESZ2vP29sasWbPg5OSEunXrYuLEiejRo4f6+M2bN5GamopWrVqJ0Z1O4EOLiag4WldrAP+Gc9D5TCMAyJNE/duV7SGc5iOqgEQZkQKAvn37om/fvgUe8/T05B17RFQpPbuSjJs/nCpVG8osFQxTCv92nJqQgV8nB0KmX/rffxv3cEJjX6dSt0NEIiZSRERVUXamCmkvMsulr8yULFHaUaRnF12JiIqFiRQRUSnoGUphYmVYqjaUWapiJUmCNWAqlK4vADAw5rd+IrFodDXNnTsXY8eOzbMJZ3Glp6dj7969MDExQf/+/TXpnoiowqjTuhp8xrQuVRsqlQD/6WeQ+qLgLWIECJCbZyBg7C184zIcLc1dS9UfEYlHo8n2xMRETJ48GTNmzEBAQECx7ky7e/cuVq1ahcGDB2Pbtm15NvAkIqrKpFIJWo8s/BfT8x3vIVaZjAn3NuDH58eh5AaeRBWCRiNSP/30E44cOQI/Pz8sW7YMy5cvR926deHm5obq1avDzMwMCoUCycnJePz4McLCwpCWlgapVIrOnTtj3LhxsLGxEfu9EBHpLKdWtug8sxmubAvJMzJlam2ERsMccd36EcJTYqGCgB+eHcXfKRH4xuk9WOubF9IqEZU1jSfKe/Toge7du+PKlSsICAjAzZs3cfz48Xz1pFIpnJ2d4eXlBV9fX9SoUaNUARMRVVZOrWzh0MIG0aEvkJ6YCWNLQ9g2tIJUKsEPwgT8FH0SG58dgwoCrqTcw+Dg77DEeThamdfXduhEVVapVhxKJBK0adMGbdq0AZDz8OK4uDgkJyfDwMAAlpaWcHJygpmZmSjBEhFVdlKpBHU8rPOVyyRSTKzdFc3NnLEwYjvis1MQn52Cifc2YmLtrhhfuwtkElG2BiSiEhD11g1HR0c4OjqK2SQREf1LS3NX7PaYi48if8WVlHtQQcCG58dwQx6BJU7voYZ+NW2HSFSl8NcXIiIdY61vjg31J2BqnR6QvtoJ/WrKfQwOXoG/ku9rOTqiqoWJFBGRDpJKpJhQuws2N5iMmq9GoRKyUzDx/kb88Owo7+ojKidMpIrpt99+w4ABA9CtWzeMHTsWaWlp2g6JiAgtzF3h7z4Hbaq5AcjZc+rH58cx8f5GxGUlazk6osqPiVQx7Nu3D3/99Rd++OEHHD16FB999BH09LgzMBFVDNb65vjBdTym1empnuq7lvIAg4O/w5Xke1qOjqhyYyJVBKVSie3bt2P+/PmwsbGBRCKBi4sLDAwMtB0aEZGaVCLFuNo++LnBVNTStwAAvMiWY9L9H/H9syOc6iMqIzqTSKWlpWHLli2YO3cufH194eXlhSNHjhRYV6FQYMOGDejXrx98fHwwceJEXLt2TaN+4+LikJmZiTNnzqBPnz5477338Oeff5bmrRARlZnm5s7wd5+DttUaAsiZ6tv0/AQm3NuAWEWSlqMjqnxESaROnz5dZB2lUokNGzZo3EdSUhL8/PwQFRUFV9fCnzO1ZMkS7N69G126dMH06dMhlUoxf/583Lp1q8T9xsXFQS6X4/Hjx9i9eze+/PJLbNq0Cf/884+mb4WIqExZ6Zthves4zLDzhezVt/nr8nAMDlmBS8lhWo6OqHIRJZFatGgRli1bhoyMgh+4+eTJE0yePBn+/v4a92FtbY0//vgDv//+OyZPnvzaesHBwQgMDMSECRMwZcoU9O7dG6tXr4atrW2+RG7q1Knw8vIq8M/mzZsBAIaGOU9aHz16NAwNDeHi4oLOnTvjypUrGr8XIqKyJpVIMca2M352mwobfUsAwMtsOabc34T1TwOQLSi1GyBRJSHKiulWrVohICAAt2/fxueff4769f//uIIjR45gzZo1yMzMxPDhwzXuw8DAANbW+Xf7/a+zZ89CJpOhd+/e6jJDQ0P4+vpi06ZNiImJUT/n7/vvvy+yvbp160JfXx8SiURd9u+/ExFVZM3MnODvMRufRu7E+eQQCBCwOfok/pZHYKnTCNQysNB2iEQ6TZQRqeXLl2Pq1KmIjo7G5MmTsWvXLqSkpOCLL77AsmXLYG5ujtWrV2PcuHFidFeo+/fvw97eHqampnnK3d1znqz+4MGDErVnbGyMDh06YNu2bVAoFHj48CFOnTqF1q1bixYzEVFZqq5nhrWuYzHLrpd6qu+GPAKDQ1bgYlKolqMj0m2i3cM/ePBgNGvWDF9++SU2btyILVu2QKFQwMvLC/PmzYO5efk8oTwhIaHAkavcsvj4+BK3OWvWLCxbtgzvvPMOLCwsMHbsWDRt2rTAuvHx8UhISFC/joqKKnF/RERik0qkGG3bCZ5mTlgQsR3RWYk5U30PNmGcrQ8m1+kGPYlM22ES6RxRN0NydXXF22+/jV27diEzMxMWFhYYM2ZMuSVRAJCZmQl9ff185bnbFWRmZpa4TXNzcyxevLhYdQ8ePAg/P7985ZGRkVAqxV2TIJfLERwcLGqbRFQyunYdGgD4UtYLG5RnEaR6DAD4KfokLsTewQcGHWEtMS28AaIKpiyvQQ8PjyLriJZIxcTE4KuvvsKdO3fg6uqK1q1bY+fOnZgwYQKmTp2KPn36iNVVoQwNDZGVlZWvXKFQqI+Xpd69e6Nt27bq11FRUVi8eDGcnJzg5uYmal/BwcHF+iITUdnR1euwpeCJ7TFnsfbpYWRDhVBVND7JOoivnYahnYW7tsMjKjZtX4OiJFKnT5/Gd999h9TUVAwcOBATJ06Evr4+2rZtiy+//BKrVq3C1atXsWDBAlSrVrZPJre2tkZcXFy+8tzptho1apRp/zVq1CjzPoiISksqkWKUbUd4mjlhfsQ2RGclIlGZiqkPNmOMbSdMrdODU31ExSDa9gf6+vr49ttv8cEHH6in1jw8PLBlyxb4+PjgwoULeP/998XorlCurq548uQJUlNT85TnDvsVtQeVWE6ePImFCxdi3bp15dIfEZEmmpo5YrfHHHSwaKQu2xJ9CmPDfkC04qUWIyPSDaIkUm+99Ra2bt2KVq1a5TtmYmKCTz75BB9//DHS09PF6K5Q3t7eUCqVOHjwoLpMoVAgICAAHh4e6q0PypqPjw+WLl2KadOmlUt/RESastAzxRqXMZhr3wd6r34s3EyNxODgFTiXpDvrv4i0QZSpvW+//bbIOl27dkXjxo1L1c/evXshl8vV03QXL15EbGwsAGDAgAEwMzODh4cHOnbsiE2bNiExMRF2dnY4evQooqOjsWDBglL1T0RUWUkkEoyw6YCmZo5YELENzxQvkaRMw7QHP2G0TUd8YNcT+pzqI8pH1Lv2ilK7du1Sne/v74/o6Gj163PnzuHcuXMAchI1MzMzAMBHH30EGxsbHDt2DHK5HM7Ozli2bBk8PT1L1T8RUWXXxNQB/u5z8NnDXTiddAcA4BdzGkHySCxzHoHaBtW1HCFRxSIRBEHQdhCV0cmTJ3Hy5EnI5XLcunULmzdv5l17RJVQZb0OBUHAb7HnsfLpn+rHyVjITPCl41B4WzYq4myi8qPta1CUEamC9k0qiEQiwahRo8TossLz8fGBj48PwsLCMH78eG2HQ0RUIhKJBO/ZeKGpmSPmRWzDM8ULJCnTMCP8Z4y08cZ0O19O9RFBpERq69athR6XSCQQBKFKJVJERJXBG6b14O8+B59H7cKpxNsAgG0xZ3BTHollTiNQx9BKyxESaZcoidSaNWsKLJfL5bh37x727t2LFi1aoF+/fmJ0R0RE5aianjFWOo/GzrgLWPHkILIFJW6lRmFIyAp85TgU3pZvaDtEIq0RJZEqbBF3u3bt0KVLF4wbNw5eXl5idKcT/r1GiohI10kkEgyr1R5NTB0wP2IbnipeIFmZjhnhWzCiVgdMq90TCfeSkZ6YCWNLQ9g2tIJUKtF22ERlrlzu2qtbty68vLzw22+/oXPnzuXRpdZxjRQRVUZvmNbDLvc5WBS1C4GvpvouXQyB0RkJjJL//5xTUysjtB7pDqdWttoKlahciLIhZ3FYWlri0aNH5dUdERGVkWp6xljhPBoL6/ZDg/u26HGwCQyT8/5envoiA4GrgxB5Nfo1rRBVDuWSSCkUCly9elW9zxMREek2iUSCITXa4Z3zzXJeo+BpvCvbQ6BScZcdqrxEmdo7evRogeVKpRLx8fEIDAzEo0ePMGDAADG6IyKiUrh9OBK3j0SWuh1llgqKlOzXJlEAkJqQgV8nB0KmX7rf2xv3cEJjX6dStUFUFkRJpJYsWQKJJP+FlLvXp0QiQefOnTFx4kQxutMJXGxORBWVIj0baS8yy62/zJSsUrehSM8WIRIi8YmSSC1cuLDAcqlUCnNzczRo0AA1atQQoyudwcXmRFRRGRjrwcTKsNTtKLNUxUqS7rR8ijcjHSFTaT4qZWBcrk80Iyo2Uf5l9ujRQ4xmiIioHDT2FWeaTKUS4D/9DFJfZBR4XIAAuXkGzrQLRmz3FHzrPBL2htal7peoIim3u/aIiKhykUolaD3S/bXHJZDgcscHEKTA3bTHGBK8Aidf/lOOERKVPY1GpJYuXapxh6+bBiQiIt3j1MoWnWc2w5VtIXlGpkytjdB6hDvavtEY8yO24VFmPOSqDMyJ+AXv1myHOfa9YSDldB3pPo3+FR85ckSjziQSCRMpIqJKxqmVLRxa2CA69EWBO5vvdJ+NL6N249jLmwCAXXEX8E/qQyx3Hom6hlVr/SxVPholUv7+/mLHUenwrj0iqkqkUgnqeBS8/slMZoRlTiPQ0twV3z7eD4WQjZC0J3g3eCU+dxyMrtU9yzdYIhFplEjZ2nLL/6Lwrj0iov+TSCQYVPNtNDZ1wLyIbXiUGQe5KgPzIrbhes1wzLHvDUOpftENEVUwGi82T01NRVZW6fcGISKiqqOhiR12uc9Cj+rN1GX+cRcxMnQtHmXEaTEyIs1onEj5+vrit99+y1MWHByMPXv2lDooIiKqvExlRljiNByf1RsEQ0nOxEho+lO8G7ISR18EaTk6opLROJESBEG9c3muv/76C+vXry91UEREVLlJJBIMqNkGOxrOhINhTQBAqioTCyK34+tHe5Cp4owH6QbuI0VERFrTwKQOdrrPQk+r5uqy3XGXMCJ0LaI41Uc6gIkUERFplanMCN84vofPHQarp/rCXk31HeFUH1Vw3A2tjHD7AyKi4pNIJOhfozUam9bDvIhtiMyIRZoqEwsjt+N6ygPMq9sHRlIDbYdJlA9HpMqIj48Pli5dimnTpmk7FCIinVHfuA5+azgLvaxaqMv2xF/GiNA1eJgRq8XIiApWqhGp48eP4+7du+rXT58+BQDMmzevwPoSiQTffvttabokIqJKzkRmiMWOQ9HS3BVLHu1FhpCFe+nPMTRkFT51GIieVm9qO0QitVIlUk+fPlUnT/929erVAutLJJLSdEdERFWERCJB3xqt8IZpPcyL+AURGTFIU2Xiw8hfcS3lARbU7cepPqoQNE6k+JgYIiIqa67Gtvi14UwsebwPBxOuAQD2xf+F26mPsNx5JJyMbLQcIVV1GidSfEwMERGVBxOZIb5yHIoWZi745vE+ZKgUuP9qqu+TegPRy7pF0Y0QlREuNiciIp3Qp0Yr/NZwJpxfjUKlqxT4+OFv+PzhLqSrFFqOjqoqJlJERKQzXF5N9fWxbqUu259wFcNDViMiPUaLkVFVxUSKiIh0ionMEF86vovFjkPVC84fZERjaOgq/PlqHRVReeGGnGWEG3ISEZWtd6xbopFJPcyN+AXhGdHIUCnwycOduJYSjg/r9Ycx7+qjcsARqTLCDTmJiMqes7ENfnWfiX7Wb6nLDiRcxXshqxGeHq3FyKiqYCJFREQ6zVhqgEWOQ/C14zD1KFR4RjSGha5Wb5lAVFaYSBERUaXQy7oFdrrPQn3j2gCADJUCnz7ciU8f7kSaMlPL0VFlxUSKiIgqDScjG+xoOAMDarRWlx1MuIb3QlfjAaf6qAyIttg8KysL58+fR2hoKORyOVQqVYH1Fi5cKFaXRERE+RhJDfCZw2C0MHfBV1F7kKbKRERGDN4LWYWP6g1Anxqtim6EqJhESaSio6Mxe/ZsPHv2DIIgvLaeRCJhIkVEROWip9Wb8DCpi3kRv+Be+nNkCFn4LGoXrqU8wEf1BsBEZqjtEKkSECWRWrduHZ4+fYquXbvC19cXNWvWhEwmE6NpIiIijTka1cL2hjOw/PEB7Im/DAD488V13E17jG+dR6rXUxFpSpREKigoCG+++SY+/vhjMZojIiISjZHUAJ86DEILcxd8GfW7eqpveMhqLKjXD/2s34JEItF2mKSjRFlsrlKpUL9+fTGaIiIiKhM9rJpjp/ssuBnXAQBkKrPw04UT+ObAHkTeiYZK9fqlKUSvI8qIlIeHB6KiosRoioiIqMzkTvWtPXIIegcAc7kRACAQQTCoro/2o96AUytbLUdJukSUEamJEyfi77//xpkzZ8RojoiIqMw8u56A6r8aqZOoXJkvFQhcHYTIq8+1FBnpIlFGpC5fvoxmzZph0aJFaNq0KRo0aABTU9N89SQSCUaNGiVGl0RERCWmUgm4si2kwGMSSCBAwNGtNzC8WWeY6xuXc3Ski0RJpLZu3ar++82bN3Hz5s0C61WlRIoPLSYiEs/tw5G4fSSy1O0os1TITMl67XEJJNBPkmGc/3q0CauPWi+radxX4x5OaOzrpPH5pBtESaTWrFkjRjOVio+PD3x8fBAWFobx48drOxwiIp2mSM9G2ovye8yLEgK29boAr1NuaHTbDhKU/K4+RXp2GURGFY0oiZSnp6cYzRARERXIwFgPJlal30CzqBGpXGlmmVDqqXC6awiiXZPQ7VJjGGbpl6gvA2PRHh5CFRi/ykREVOE19hVnmkylEuA//QxSX2S8to6JlSHaezbCroQLAIAQ52dIdVfgW+eRcDexL3UMVLmImkjdvn0bR44cwYMHD5CamgpTU1PUr18f3bp1Q5MmTcTsioiIqMSkUglaj3RH4Oqg19ZpM9IDwxxt0cLCBYse+kOuysCjzHiMDF2LeXX7YFCNt7mBJ6mJlkitW7cOe/fuVT9rTyKRQBAEhIWF4fDhwxg4cCA++OADsbojIiLSiFMrW3Se2QxXtoXkGZkytTZC6xHu6n2kulRvioYmdpgfsQ3BaU+gELLx9aO9uJYSjs8dBsNMZvS6LqgKESWROnLkCPbs2YO6deti9OjRaNasGaysrPDy5UsEBQVh69at2LNnD1xdXdG9e3cxuiQiItKYUytbOLSwQXToC6QnZsLY0hC2Da0gleYdaaprWAO/uE3HyicHsTMuZ6rv+MubCEl7jOXOozjVR+JsyHngwAHUrFkTGzduhI+PD6ytrSGRSGBlZYXOnTtj48aNqFGjBvbv3y9Gd0RERKUmlUpQx8MaLm/XQR0P63xJVC4DqR4W1uuPFc6jYf5qFOpxZgJGhK6Bf+xF9UwMVU2iJFKRkZHo0KEDzMzMCjxuZmaGDh06IDKy9HuAEBERaYNP9SbY5T4HjUzqAgCyBCW+ebwX8yK2IUWZruXoSFtESaSKgwvziIhI19kbWuMXt2kYXstLXXYi8R+8G7wSwamPtRgZaYsoiZSTkxPOnj2LtLS0Ao+npaXh7NmzcHLiDq9ERKTb9KV6mFe3L1a5vA9zWc5jZJ4oEjAybC12xp7nVF8VI0oi1bt3b8TFxWHy5Mk4c+YMEhMTAQCJiYk4c+YMJk+ejLi4OPTp00eM7oiIiLSuk2Vj+LvPwRsm9QDkTPUtffwH5kT4ITmbU31VhSh37fXs2RP379/Hvn37sGjRIgD/3/4AAARBQP/+/dGjRw8xuiMiIqoQ7Ayt4Of2AdY8PYztsWcBAIGJtxGa9hTLnUehkWldLUdIZU20faRmzJgBb2/vAjfk7N69O5o2bSpWV+WuW7dueV5nZGRg8uTJePfdd7UUERERVRT6Uj3MrdsHLcxd8OnDnUhWpuOp4gVGhq3FbPt3MKxme64TrsRESaRiYmJgZmaGpk2bvjZhSktLQ0pKCmxsbMToslwdO3ZM/ff4+HgMGjQIXl5ehZxBRERVjbflG/B3n4MFkdtxKzUK2YIS3z7ej+sp4fjCYQiq6ZloO0QqA6KskRoyZAh+//33Quvs2bMHQ4YMEaM7rTpx4gQaNWqEOnXqaDsUIiKqYOoYWmGL2wcYZeOtLjuVeBtDQlbidmqU9gKjMiNKIlWcOxRKexdDWloatmzZgrlz58LX1xdeXl44cuRIgXUVCgU2bNiAfv36wcfHBxMnTsS1a9dK1X+u48eP55vqIyIiyqUvkWG2fW+sdRkLC1nOKNQzxQuMDluPHTFneVdfJVNu+0jFxcXBxETzYc2kpCT4+fkhKioKrq6uhdZdsmQJdu/ejS5dumD69OmQSqWYP38+bt26pXH/ABAeHo7Hjx/D29u7VO0QEVHl18GyEfw95qCpqSMAIFtQYvmTA5gVvhXJ2QVvF0S6R+M1Un5+fnleBwUV/CRtlUqF2NhYBAYGwsPDQ9PuYG1tjT/++APW1tYIDQ3FhAkTCqwXHByMwMBATJ48GUOHDgWQs1h89OjR2LBhAzZs2KCuO3XqVNy+fbvAdkaMGIHx48fnKTt27Bjatm0Lc3Nzjd8HERFVHbUNquNnt6lY/zQAfjGnAQCnk+5gSMgKLHMagSZmjtoNkEpN40Rq69at6r9LJBLcvHkTN2/efG39GjVqYNKkSZp2BwMDA1hbWxdZ7+zZs5DJZOjdu7e6zNDQEL6+vti0aRNiYmLUC96///77YvevUqlw8uRJzJkzp+TBExFRlaUvkWGW/Tt409wFn0T+hiRlGp4pXuL9sPWYYd8LI2p14F19OkzjRGrNmjUActY+zZw5Ez169ED37t3z1ZNKpahWrRrq1asHqbTsZxLv378Pe3t7mJqa5il3d3cHADx48ECjOwdv3LiB7OxsvPXWW6LESUREVYuXhQd2e8zBgogduJkaiWyosOLJQVxPCcdXju/CQs+06EaowtE4kfL09FT/ffTo0WjWrFmeMm1JSEgocOQqtyw+Pl6jdo8fP47OnTtDT6/wjyw+Ph4JCQnq11FRvEuDiIhy2BpUx09uU/D90yPYGnMKAHA26S6GhKzEMqcRaMqpPp0jyj5S77//vhjNiCIzMxP6+vr5yg0MDNTHNfHxxx8Xq97BgwfzrR8DgMjISCiVSo36fh25XI7g4GBR2ySikuF1SJroCmfUNNDHD4ozkCMTzxUv8X7YOryr1xI99RpDyqm+YivLa7A4a7tF29kcAG7fvl3gzubdunVDkyZNxOzqtQwNDZGVlZWvXKFQqI+Xpd69e6Nt27bq11FRUVi8eDGcnJzg5uYmal/BwcGlWsBPRKXH65A05QEP+CjewoLI7QiSR0IJAb9mX8VjUzm+chwKS071FYu2r0HREql169Zh79696v0xcp+1FxYWhsOHD2PgwIH44IMPxOrutaytrREXF5evPHe6rUaNGmXaf40aNcq8DyIiqhxsDCzxU4Mp+OHZUfwcHQgAOJcUjCHBK/Ct80hO9ekAURKpI0eOYM+ePahbt656vZSVlRVevnyJoKAgbN26FXv27IGrq2uBC9LF5OrqiqCgIPWIWK7cYb+i9qASy8mTJ3Hy5EnI5fJy6Y+IiHSTnkSG6Xa+eNPMGR8//A0vs1MRnZWI98PWY7pdT4y08YZUUm7bPlIJifKVOXDgAGrWrImNGzfCx8cH1tbWkEgksLKyQufOnbFx40bUqFED+/fvF6O7Qnl7e0OpVOLgwYPqMoVCgYCAAHh4eJTbs/58fHywdOlSTJs2rVz6IyIi3dbWwh3+7nPQ3MwZAKCECqueHsL08C14mc1fyisqUUakIiMj0atXL5iZmRV43MzMDB06dMChQ4dK1c/evXshl8vV03QXL15EbGwsAGDAgAEwMzODh4cHOnbsiE2bNiExMRF2dnY4evQooqOjsWDBglL1T0REVJZsDCyxucFkbHx2DD9FB0KAgPNJwRgSvBLLnEegmZmTtkOk/xB1sXlhxNhszN/fH9HR0erX586dw7lz5wAAXbt2VSdyH330EWxsbHDs2DHI5XI4Oztj2bJlFWJ7BiIiosLoSWT4wK4nmpu74KPIX/EyW46YrESMDfseH9j1wGibjpzqq0BESaScnJxw9uxZjB07tsDn6aWlpeHs2bNwcipdJr179+5i1TM0NMSUKVMwZcqUUvVXGlwjRUREpfF2NTfsdp+DDyN34Lo8HEqosObpYdxICcdip2GorlfwLBCVL1FS2t69eyMuLg6TJ0/GmTNnkJiYCABITEzEmTNnMHnyZMTFxaFPnz5idKcTuEaKiIhKq5aBBX5sMAnjbbtAAgkkKiDybgzm7tmKszfuQKUStB1ilSfKiFTPnj1x//597Nu3D4sWLQLw/+0PgJzHyPTv3x89evQQozsiIqIqI2eqrwfqP7BB6G+PYJqSsx/ifTzGfYvH6PS+J5xb1dZylFWXaGukZsyYAW9v7wI35OzevTuaNm0qVldERERVSuTVaDz+MQamyLuptJAkIHB1EFKnZaJxG0ftBFfFibrYvGnTpkyYXuEaKSIiEoNKJeDKtpACj0kggQABp/xuItMjGy0symevRPq/crtrr6rx8fGBj48PwsLCMH78eG2HQ0RE5ez24UjcPhJZ6naUWSpkpuR/9FkuCSQwTTHE54E74RRfC21uuUICze6Ub9zDCY19ucVCSTCRIiIiKgOK9Gykvcgst/6M0wxx/s0wRFnHo0vAGzBJNyhxG4r07DKIrHITLZHKysrC+fPnERoaCrlcDpVKVWC9hQsXitUlERFRhWVgrAcTK8OiKxahqBGpXGmmOUnbI8cE+I++gnfONkO96JI9+9XAmOMrJSXKJxYdHY3Zs2fj2bNn6jv1CiKRSJhIERFRldDYV5xpMpVKgP/0M0h9kfHaOqbWRvis4xB8FPUrErJTIDfJhH+PvzCpTjeMs/WBjBt4lhlREql169bh6dOn6Nq1K3x9fVGzZk3IZDIxmtZZXGxORERikEolaD3SHYGrg15bp/UIdzhZ2mK36Rx8FPkr/kq5DxUE/PDsKP5OicA3Tu/BWt+8HKOuOiRCYUNIxdSzZ080bNgQK1euFCOmSiV3sfnmzZvh5uYmatvBwcHw8PAQtU0iKhleh1ReIq9G48q2kDwjU6bWRjlJVCtbdZlSUOGn6JPY+OwYVMj5EV9DzxxLnIejlXn9co+7rGn7GhRlREqlUqF+/cr3xSEiIqoonFrZwqGFDaJDXyA9MRPGloawbWgFqTTvHXoyiRQTa3dFczNnLIzYjvjsFMRnp2DivY2YWLsrxtfuwqk+EYnySXp4eCAqKkqMpoiIiOg1pFIJ6nhYw+XtOqjjYZ0vifq3luau2O0xF63NGwAAVBCw4fkxTLr/I+Kzkssr5EpPlERq4sSJ+Pvvv3HmzBkxmiMiIiIRWOubY0P9CfigTg9IX+0tdTXlPgYHr8Bfyfe0HF3loNHUnp+fX76yZs2aYdGiRWjatCkaNGgAU1PTfHUkEglGjRqlSZdERESkAalEivG1u6CZmRMWRu5AXFYyErJTMPH+j5hQuwsm1u7Kqb5S0CiR2rp162uP3bx5Ezdv3izwWFVKpHjXHhERVSQtzF3h7z4HHz/8DZeTwyBAwI/Pj+NveQSWOA1HTf1q2g5RJ2mUSK1Zs0bsOCodPiKGiIgqGmt9c/zgOh5bo09h/bMjUEHAtZQHGBz8HZY4DUfrag20HaLO0SiR8vT0FDkMIiIiKg9SiRRja/ugmZkzFkRuR2xWEl5kyzHp/o8YX9sHk2p341RfCZTqk7pz5w5mzJiBbt26oXv37pg9ezaCg4PFio2IiIjKSHNzZ/i7z0Hbag0BAAIEbHp+AhPubUCsIknL0ekOjROp8PBwzJw5Ezdv3kRGRgbS09Nx48YNzJw5E5GRpX/aNREREZUtK30zrHcdhxl2vpC9Sgmuy8MxOGQFLiWHaTk63aBxIvXrr78iKysLI0aMwP79+7F//36MGjUKmZmZ+O2338SMkYiIiMqIVCLFGNvO+NltKmz0LQEAL7PlmHJ/E9Y/DUC2oCxV+yqVgGfBCQi/9AzPghOgUpX6gSoVisY7m9+6dQuNGzfGuHHj1GVjxoxBUFDQa+/aIyIiooqpmZkT/D1m49PInTifHAIBAjZHn8QNeQSWOg2HjYFlidss8LE2VkZoPTLvY210mcYjUi9fvkSjRo3ylXt4eODly5elCqoyOHnyJBYuXIh169ZpOxQiIqJiqa5nhrWuYzHLrpd6qu9veQSGhKzAxaTQErUVeTUagauD8iRRAJD6IgOBq4MQeTVatLi1SeNEKjs7G8bGxvnKjYyMkJ2dXaqgKgMfHx8sXboU06ZN03YoRERExSaVSDHathO2uE2FrXqqLxVTHmzC2qeHizXVp1IJuLItpNA6V7aHVIppPlEeWkxERES67/bhSNw+8v8bxgYbtsLh9jcRXjcWAPBzdCCO3QzCO2eboVpa/sGUXMosFTJTsgrtKzUhA79ODoRMv3RbLdRqbgIPj1I1USqlSqSOHz+Ou3fv5il7+vQpAGDevHn56kskEnz77bel6ZKIiIjKiCI9G2kvMvOU9djdBEEtonC53QOoZAKe2L7A1t7n0CXgDTg+rFGq/opKtoojO9Oo1G2URqkSqadPn6oTp/+6evVqvjKJ5PVPqSYiIiLtMjDWg4mVYb7ydhFucEqphQPeN5BiloEM4yz8OSAIrW+5oP3fbpAKeUeVijMiBQCG5vqlHpHSM9Tu5qEaJ1L+/v5ixkFERERa1tjXCY19nV57fEJ2d3z6cBfOJuXMRl1pEo6MNioscx4OW4Pq6noqlQD/6WfyLTT/N1NrIwxZ4w2ptHSDLNreCFzjRMrWtnLctkhERETFY6FnijUuY7A99izWPDmEbKhwMzUSQ4JXYrHTULS3yFmsJJVK0HqkOwJXB722rdYj3EudRFUEfJgOERERFZtEIsFIG29sdfsAdV6NQiUqU/HBg5+w6smfyHp1V59TK1t0ntkMplZ51zCZWhuh88xmlWYfKd61R0RERCXWxMwR/u5z8NnDXTiddAcA4BdzGkHySCxzHoHaBtXh1MoWDi1sEB36AumJmTC2NIRtQ6tKMRKVi4lUGTl58iROnjwJuVyu7VCIiIjKRDU9E6xyeR+/xp7DqqeHkC0o8U/qQwwJXoGvHIeig2UjSKUS1PGw1naoZYZTe2WEG3ISEVFVIJFIMNymA/zcPkAdAysAQJIyDdPDf8bKJwfVU32VFRMpIiIiKrXGpg7wd5+NTpaN1WW/xJzBmLD1eJb5QouRlS0mUkRERCSKanomWOk8GvPr9oWeRAYAuJUahSEhK3Am8W4RZ+smJlJEREQkGolEgvdqeeEXt2mwezXVl6xMx4zwn/Hd4wPIUlWu5/EykSIiIiLRvWFaD7vc56Dzv6b6tseexfv3KtdUHxMpIiIiKhPV9Iyxwnk0FtbtB/1XU323Ux9hcMgKnE68o+XoxMFEioiIiMqMRCLB0Frtsc1tOuwNcrZBSFGmY2b4Fix/vF/np/qYSBEREVGZ8zCti10es9HFsqm6bEfsOYwKW4cnmQlajKx0mEgRERFRuTCXGWO580h8WLe/eqrvbtpjvBuyAoEvb2k5Os0wkSIiIqJyI5FI8G6tdtjecAbqGuZO9WVgdoQflj3+Awodm+pjIkVERETlzt3EHrvc56BrdU912W+x5zEqbK1OTfUxkSIiIiKtMJMZ4VunEfi43kAYSHIe/xuc9gRDglfg5Mt/tBxd8fChxWWEDy0mIiIqmkQiweCab6OxaT3Mj9iGR5nxkKsyMCfiF7xbsx3m2PeGgbTipisckSojfGgxERFR8bmb2GOn+2x0+9dU3664CxgZthaPM+O1F1gRmEgRERFRhWAmM8IypxH45F9TfSFpT/Bu8Eocf3lTu8G9BhMpIiIiqjAkEgkG1XwbOxrOQD3DmgAAuSoD8yK24ZtHe5GpytJyhHkxkSIiIqIKx83EDrvcZ6FH9WbqMv+4ixgZuhaPMuK0GFleTKSIiIioQjKVGWGJ03B8Vm8QDF9N9YWmP8W7IStx9EWQlqPLwUSKiIiIKiyJRIIBNdtgR8OZcHg11ZeqysSCyO34+tEeKATtbuDJRIqIiIgqvAYmdbDTfRZ6WjVXl+2Ou4TPMv9ElBan+phIERERkU4wlRnhG8f38LnDYPVUX5SQgHdDVuJp5gutxMREioiIiHSGRCJB/xqt8av7TDgZ1QIA+FRvAjtDK63Ew0SKiIiIdE594zr4reEs9NFrig/r9tdaHEykiIiISCeZyAzxrn5LmMgMtRYDEykiIiIiDVXcpwBWIPfv38eqVasQEREBCwsLjBgxAr169dJ2WERERKRlHJEqhsWLF6NVq1YICAjAl19+iXXr1uHhw4faDouIiIi0jIlUMURHR6Nz586QSqVwc3ODg4MDHj16pO2wiIiISMt0JpFKS0vDli1bMHfuXPj6+sLLywtHjhwpsK5CocCGDRvQr18/+Pj4YOLEibh27ZrGfQ8YMAAnTpxAdnY2goODERsbCw8PD43bIyIiospBZxKppKQk+Pn5ISoqCq6uroXWXbJkCXbv3o0uXbpg+vTpkEqlmD9/Pm7duqVR32+99RaOHj2KLl26YOrUqZg4cSJq1KihUVtERERUeejMYnNra2v88ccfsLa2RmhoKCZMmFBgveDgYAQGBmLy5MkYOnQoAKBbt24YPXo0NmzYgA0bNqjrTp06Fbdv3y6wnREjRmD8+PFITk7GggULsHDhQrRv3x4PHz7E3Llz4ezsDDc3N/HfKBEREekMnUmkDAwMYG1tXWS9s2fPQiaToXfv3uoyQ0ND+Pr6YtOmTYiJiYGNjQ0A4Pvvvy+yvadPn8LIyAje3t4AABcXF7zxxhv4559/mEgRERFVcToztVdc9+/fh729PUxNTfOUu7u7AwAePHhQovbq1q2LzMxMnD9/HoIg4OHDh7h16xacnZ0LrB8fH4+wsDD1n6ioKM3eCBEREVV4OjMiVVwJCQkFjlzllsXHx5eoPTMzM3zxxRfYuHEjFi9ejGrVqmHw4MFo0aJFgfUPHjwIPz+/fOWRkZFQKpUl6rsocrkcwcHBorZJRCXD65BIu8ryGizOjWWVLpHKzMyEvr5+vnIDAwP18ZJq1aoVWrVqVay6vXv3Rtu2bdWvo6KisHjxYjg5OYk+FRgcHMy7B4m0jNchkXZp+xqsdImUoaEhsrKy8pUrFAr18bJUo0YN3tFHRERURVS6NVLW1tZISEjIV55bxiSHiIiIxFLpRqRcXV0RFBSE1NTUPAvOc+dPi9qDSiwnT57EyZMnkZycDABlsuj80aNHkMlkordLRMXH65BIu8r6GnRwcICRkdFrj1e6RMrb2xu7du3CwYMH1ftIKRQKBAQEwMPDQ731QVnz8fGBj48Pjh8/jjt37mDx4sXl0i8RERGJZ/PmzYWucdapRGrv3r2Qy+XqabqLFy8iNjYWQM5jXMzMzODh4YGOHTti06ZNSExMhJ2dHY4ePYro6GgsWLCg3GNu1aoVPvnkE+zfvx8zZswo1jnr1q3DtGnTCq2Tu4j9k08+gYODgxih6rzifG7aVN7xlVV/YrVbmnY0Obek5/A61Ayvw/LpT4x2y/saLOl5FeUaLKpdnUqk/P39ER0drX597tw5nDt3DgDQtWtXmJmZAQA++ugj2NjY4NixY5DL5XB2dsayZcvg6elZ7jFbWlqia9euOHXqVLHv2jMzMyt2XQcHB24M+kpJPjdtKO/4yqo/sdotTTuanFvSc3gdaobXYfn0J0a75X0NlvQ8XbkGdSqR2r17d7HqGRoaYsqUKZgyZUoZR1R8Pj4+ZVKX/q+if27lHV9Z9SdWu6VpR5NzS3pORf/3VFFV9M+N16E4bWh6bmX8WSgRBEHQdhBUcmFhYRg/fnyRc7dEVHZ4HRJpV0W4Bivd9gdVhbW1NUaPHl2s5w8SUdngdUikXRXhGuSIFBEREZGGOCJFREREpCEmUkREREQaYiJViSkUCixduhQDBw5E9+7dMWnSJNy5c0fbYRFVKcuXL0ffvn3RvXt3jBo1ChcvXtR2SERV0p07d9ChQwf88ssvorbLNVKVWHp6Ovz9/dGjRw/UrFkTp0+fxurVq+Hv7w8TExNth0dUJURFRaF27dowMDBASEgIZs+ejV27dsHCwkLboRFVGSqVClOmTIEgCHj77bcxatQo0drmiFQlZmxsjNGjR8PGxgZSqRSdO3eGnp4eHj9+rO3QiKoMBwcHGBgYAAAkEgmysrIQHx+v5aiIqpY///wT7u7uZbL7uU5tyFnZpaWlYdeuXQgODkZISAhSUlLw4YcfokePHvnqKhQK/Pzzzzh+/DhSUlLg4uKCcePGoWXLlq9t//Hjx0hJSYGdnV1Zvg0inVVW1+DKlSsREBAAhUKB1q1bw9nZuTzeDpHOKYtrMCkpCb///js2bNiAdevWiR4zR6QqkKSkJPj5+SEqKgqurq6F1l2yZAl2796NLl26YPr06ZBKpZg/fz5u3bpVYP3MzEwsXrwY7733nvpROkSUV1ldg7Nnz8axY8ewatUqtGzZEhKJpKzeApFOK4trcPPmzRg0aBDMzc3LJmiBKozMzEwhPj5eEARBCAkJEdq3by8EBATkq3f37l2hffv2wm+//aYuy8jIEN59911h0qRJ+epnZWUJ8+fPF7744gtBpVKV3Rsg0nFldQ3+24IFC4RLly6JGzhRJSH2NRgWFiaMHTtWyM7OFgRBEL7++mvBz89P1Jg5IlWBGBgYFGt31rNnz0Imk6F3797qMkNDQ/j6+uLu3buIiYlRl6tUKixevBgSiQQfffQRfxMmKkRZXIP/pVQq8fTpU1HiJapsxL4Gb968icePH2PAgAHo27cvTp06hd9++w1LliwRLWaukdJB9+/fh729PUxNTfOUu7u7AwAePHgAGxsbAMB3332HhIQEfPfdd9DT45ebSAzFvQblcjkuX76Mtm3bwsDAAOfPn0dQUBAmTJigjbCJKo3iXoO9e/dG586d1cfXrl2L2rVr47333hMtFv5k1UEJCQkFZuy5Zbl3BEVHR+PQoUMwMDDIk7V/++23aNq0afkES1QJFfcalEgkOHToEFatWgVBEGBnZ4dPP/0U9evXL9d4iSqb4l6DRkZGMDIyUh83NDSEsbGxqOulmEjpoMzMTOjr6+crz73FOjMzEwBga2uLc+fOlWtsRFVBca9BU1NTrFmzplxjI6oKinsN/tdHH30keixcI6WDDA0NkZWVla9coVCojxNR2eE1SKRdFekaZCKlg6ytrZGQkJCvPLesRo0a5R0SUZXCa5BIuyrSNchESge5urriyZMnSE1NzVMeHBysPk5EZYfXIJF2VaRrkImUDvL29oZSqcTBgwfVZQqFAgEBAfDw8FDfsUdEZYPXIJF2VaRrkIvNK5i9e/dCLperhycvXryI2NhYAMCAAQNgZmYGDw8PdOzYEZs2bUJiYiLs7Oxw9OhRREdHY8GCBdoMn0jn8Rok0i5duwYlgiAI5dojFWrw4MGIjo4u8Ji/vz9q164NIOeOhNxnDMnlcjg7O2PcuHFo1apVeYZLVOnwGiTSLl27BplIEREREWmIa6SIiIiINMREioiIiEhDTKSIiIiINMREioiIiEhDTKSIiIiINMREioiIiEhDTKSIiIiINMREioiIiEhDTKSIiIiINMREiohIS3bv3o1OnTrh+fPn6rIjR47Ay8sLR44c0WJk/3fo0CF4e3sjPDxc26EQVUhMpIhIFM+fP4eXl1ehfwYPHqztMCuMlJQUbNu2DT179lQ/O6ysXL16FV5eXpgzZ06Rdb/88kt4eXnhxIkTAIDu3bvDxsYGGzZsKNMYiXSVnrYDIKLKxc7ODl26dCnwmJmZWTlHU3Ht3r0bycnJGDp0aJn31aJFC9jY2ODGjRuIiYmBjY1NgfXkcjnOnz8PMzMzeHl5AQD09PQwePBgrFmzBrdv30bjxo3LPF4iXcJEiohEZWdnhzFjxmg7jAotOzsbhw4dQuPGjWFnZ1fm/UmlUvTo0QN+fn44evQoRo0aVWC9kydPIjMzEz179oShoaG6vHPnzli/fj0OHDjARIroPzi1R0Ra4+XlhenTp+PFixf4+uuv8c4778DHxweTJk1CUFBQgeekpaVhy5YtGDlyJHx8fNCzZ0/MmTMHt27dyld3+vTp8PLyQmZmJjZv3ox3330XHTt2xJYtW9R1zp49i/Hjx8PHxwd9+vTBt99+i5SUFAwePDjPVORXX30FLy8vBAcHFxjXzz//DC8vL5w8ebLI93316lUkJCTA29u7yLq5YmNjMWrUKPj4+ODMmTPq8pcvX2LdunUYOnQoOnfujHfeeQeffPIJIiIi8pzfs2dPSCQSHDlyBIIgFNhHQEAAAMDX1zdPuaWlJZo1a4YzZ84gLS2t2DETVQVMpIhIq+RyOaZOnYqHDx+ia9eu8PLyQlhYGObOnZsvGUhOTsbkyZPh5+cHc3Nz9OnTB15eXrh37x5mzJiB8+fPF9jHp59+iqNHj6JZs2YYOHCgek3S4cOH8emnn+LJkyfo1q0bunfvjrt372L27NnIzs7O00bv3r3V5/yXUqlEQEAALCws1FNihblx4wYAoFGjRkV/QAAePnyIKVOmIDY2FsuXL1cnYE+fPsW4cePw+++/o06dOujfvz9at26Nq1evYvLkyXmSPltbW7z55pt49uxZgUlqREQEQkNDUb9+fTRo0CDf8UaNGkGhUODOnTvFipmoquDUHhGJ6unTp3lGfP6tUaNGeOutt/KUPXjwAH379sXMmTMhleb8bte8eXN8++232LdvH+bOnauuu3r1akRGRmL+/Pno1auXuvzly5cYP348li9fjlatWuWZlgKAhIQEbN26FdWqVVOXpaSkYO3atTA2NsamTZtQt25dAMD48eMxd+5chIWFwdbWVl2/adOmcHR0RGBgID744AMYGxurj129ehVxcXEYNGgQDAwMivyMbt++DalUCldX1yLr3r17FwsWLICenh7WrVuX55yvv/4aL168wHfffYdWrVqpy0eOHInx48fj22+/hZ+fn7rc19cX169fR0BAAJo3b56nn9eNRuVyc3MDANy5cydPX0RVHUekiEhUT58+hZ+fX4F//vrrr3z1jY2NMWnSJHUSBeTcKSaTyRAaGqouS0xMxOnTp9G8efM8SRQAVK9eHUOHDkViYqJ6tOff3n///TxJFABcuHAB6enp6NmzpzqJAnIWV48bN67A99a7d2+kpaUhMDAwT/mhQ4cAAO+8887rPpY84uLiYGZmVmTSdfnyZcyaNQvm5ub44Ycf8iRR9+7dw507d9CtW7d8iU3dunXRq1cvRERE5BnVa9++PSwsLHD27Fmkpqaqy7Ozs3H8+HEYGBi89kYBKysrADlTjET0fxyRIiJRtWrVCt99912x69vb28PExCRPmZ6eHqysrCCXy9VloaGhUCqVyMrKKnDE68mTJwCAqKgovP3223mOubu756ufuy9SkyZN8h3z8PCATCbLV96tWzf8+OOPOHTokDqZe/HiBS5duoQ33ngDjo6ORbzbHMnJyahZs2ahdU6fPo1r167BxcUFy5cvR/Xq1fMcz522e/nyZYGfx6NHj9T/d3Z2BgB1orRnzx6cPHkSffr0AQBcvHgRiYmJ8PHxgbm5eYHx5JYnJSUV6z0SVRVMpIhIq0xNTQssl8lkUKlU6tfJyckAcqbFbt++/dr2MjIy8pXljqb8W+6IzH8TFCDnLjcLC4t85ebm5ujYsSOOHj2KiIgIODs748iRI1AqlcUejQIAQ0NDKBSKQuvcvXsXSqUSTZo0KTDG3M/j8uXLuHz58mvbSU9Pz/Pa19cXe/bsQUBAgDqRKmpaD4A6XiMjo0LjJqpqmEgRkU7ITbiGDBmCqVOnluhciUTy2vZevnyZ75hKpUJSUlKBo0Z9+vTB0aNH8eeff2LGjBk4fPgwTE1N0bFjx2LHY2Fhgbi4uELrTJgwARcuXMCePXsgk8nyvefc+GfMmIEBAwYUu28XFxc0bNgQISEhiIyMhLm5Oa5evYratWvnWzf1b7mJm6WlZbH7IqoKuEaKiHRCw4YNIZFIcPfuXVHac3FxAYACR7dCQkKgVCoLPK9Ro0ZwcXHBiRMncPXqVTx58gRdunQp0UiNs7MzFAoFYmJiXlvHwMAAX3/9Ndq0aQN/f3+sX78+z/Hc6UpNPo/ckafDhw/j2LFjUCqV6u0RXid3qjB3mpCIcjCRIiKdYG1tjY4dO+LOnTvYuXNngXshBQcHFzi1V5B27drB2NgYhw8fxtOnT9Xl2dnZ+Pnnnws9t3fv/7V3/yCp9XEYwJ9XyIKTDRVBRbQUgQ1FIUIl0UEkiF5oMCIhWwKH0moOQ2woGqM/i0sNUYk1RHWsJGgxyDAQamvQwY4NWlNL5x3iBuGf7j33Xu7l9fmsHvV3toff73ue8y+en5+xuLgIAFnD719pb2//WG8hWq0WCwsL6Orqwu7uLlZWVj4+0+v10Ov1OD8/zxp+B9531aLRaM7fNZvNKCsrQzAYxNHRETQaDfr7+wuu5e7u7tPaiegdj/aI6JcqVH8AADabLaue4HvNzs4iHo9jfX0dkiShtbUV5eXlSKVSuL+/RyKRwP7+/nftDul0OkxOTmJ5eRkTExMQRRGCICAcDkOr1aK6ujrvDo3FYsHGxgaenp7Q0tKSs3epkJ6eHqyuruL6+vrLI8GSkhJ4vV643W7s7e1BURQ4nU4AgNvtxvT0NDweD/x+P5qbm1FaWgpZlhGLxZDJZHIWhAqCgN7eXkiShHQ6DaPRmPe1MQCgKAoikQgaGxs/PeFIRAxSRPSLfas/yMdqtaoOUhUVFVhbW0MgEEAoFMLZ2Rne3t5QWVmJpqYm2O32nEPi+QwODkKn02FrawsnJycQBAHd3d1wOBywWq15X98iCAJMJhOCweAP70YBQG1tLQwGAy4uLuByub6sQfgWpubn5+H3+6EoClwuF+rq6uDz+bCzs4PLy0scHx9Do9GgqqoKbW1tBZvTBwYGIEkSgPfW80Jub2/x+PiIqampH75Xov+7f5R87wogIipSiUQCo6Oj6Ovrg8fjyXmN3W5HMplEIBDI++RhIZFIBDMzM5ibm4PFYvnZJf9WXq8XV1dX2N7ezluPQFSsOCNFREXr5eUlq4bg9fX1Y7DbZDLl/F44HMbDwwPMZrOqEAUAnZ2dMBqN2Nzc/FTz8LeJx+MIhUIYGxtjiCLKgUd7RFS0otEolpaWYDAYUFNTg0wmg5ubGySTSXR0dEAUxU/XHxwcQJZlHB4eQqvVwmaz/dT/O51OnJ6eIpVKFZxR+pNkWcb4+DiGhob+9FKI/ko82iOiohWPx+Hz+RCLxZBOpwEA9fX1EEURIyMjWbNcw8PDSKVSaGhogMPhyGpQJ6LiwyBFREREpBJnpIiIiIhUYpAiIiIiUolBioiIiEglBikiIiIilRikiIiIiFRikCIiIiJSiUGKiIiISCUGKSIiIiKVGKSIiIiIVPoPe+IBPjsCkBwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "5a6e2660-d0df-4dc4-8d8e-dbc13d62f306", + "metadata": {}, + "source": [ + "## check the discrepancy between the model and reconstructed spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "6bac3746-0895-476f-8014-b720ae91d40e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy Center: 125.8924143862528 keV, Truth: 0.00037509332308051504, Reconstructed: 0.000372443360635917 1 / (cm2 keV s)\n", + "diff: -0.71 %\n", + "Energy Center: 199.52617227070743 keV, Truth: 0.00013100640643159297, Reconstructed: 0.00013752711756448815 1 / (cm2 keV s)\n", + "diff: 4.98 %\n", + "Energy Center: 316.2279229021369 keV, Truth: 4.5008043531443166e-05, Reconstructed: 5.046801422979159e-05 1 / (cm2 keV s)\n", + "diff: 12.13 %\n", + "Energy Center: 501.1869894550339 keV, Truth: 1.5462910559040303e-05, Reconstructed: 1.7623484148658698e-05 1 / (cm2 keV s)\n", + "diff: 13.97 %\n", + "Energy Center: 794.3280178868179 keV, Truth: 5.312405290582567e-06, Reconstructed: 5.767412265132285e-06 1 / (cm2 keV s)\n", + "diff: 8.56 %\n", + "Energy Center: 1258.924143862529 keV, Truth: 1.825139915500053e-06, Reconstructed: 1.8325489081869999e-06 1 / (cm2 keV s)\n", + "diff: 0.41 %\n", + "Energy Center: 1995.2617227070734 keV, Truth: 6.270348197761169e-07, Reconstructed: 5.962884413278615e-07 1 / (cm2 keV s)\n", + "diff: -4.90 %\n", + "Energy Center: 3162.279229021372 keV, Truth: 2.1542244490397355e-07, Reconstructed: 1.9482232171230163e-07 1 / (cm2 keV s)\n", + "diff: -9.56 %\n", + "Energy Center: 5011.8698945503365 keV, Truth: 7.401022931546242e-08, Reconstructed: 6.505555070939067e-08 1 / (cm2 keV s)\n", + "diff: -12.10 %\n", + "Energy Center: 7943.2801788681745 keV, Truth: 2.5426787880752837e-08, Reconstructed: 3.552391422512448e-08 1 / (cm2 keV s)\n", + "diff: 39.71 %\n" + ] + } + ], + "source": [ + "import scipy.interpolate as interpolate\n", + "\n", + "f = interpolate.interp1d(np.log(np.array(energy_truth)), np.log(np.array(flux_truth))) # log-linear interpolation\n", + "\n", + "for idx, e_center in enumerate(energy_band):\n", + " truth_value_interpolated = np.exp(f(np.log(e_center.value)))\n", + " print(f\"Energy Center: {e_center}, Truth: {truth_value_interpolated}, Reconstructed: {differential_flux[idx]}\")\n", + " print(f\"diff: {(differential_flux[idx].value / truth_value_interpolated - 1)*1e2:.2f} %\")" + ] + }, + { + "cell_type": "markdown", + "id": "68fbca47", + "metadata": {}, + "source": [ + "## Plot All" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "0e82c2c1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAATBCAYAAADddYOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVfrw8e8zfSbJpPdKekIVkN5BUcSCK2tX7A2xd117111dfd1VWRF7F0SqSJHepBN6Cum9T2YmM+f948kMDAmQZFH3t3s+15Xr2nnqmWfGnZv7nHMfRQghkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ+o1o/ugGSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0300OUpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6TclBylJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSbkoOUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TclBSpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/abkICVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkn5TcpCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEm/KTlISZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk35QcpCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0m9KDlKSJOm/2lNPPYWiKKxYseKPbookSZIkSZLUDR9++CGKovDhhx/+0U2RJEmSJEn6r5eXl4eiKEybNu2PbookSZIkSdJ/PUVRGDNmzB/dDEn6XclBStJ/jW+++YY777yTkSNHYrVaURSFq6666pTnrV27lkmTJhESEoLZbKZPnz688cYbuFyuE57z448/MmbMGAIDA/H392fw4MHMnj27y212Op28+eabXHfddfTr1w+DwYCiKMycOfOE53g6aU70989//rPD83bu3MmVV15JamoqZrOZ2NhYxo4dy5dffonb7e5y2z3279+Pn5/fSZ+3y+Xi008/ZeTIkURFRWGxWEhPT+e6665j9+7dHZ5TVlbGnXfeSY8ePTAajYSHhzNlyhR+/fXXbrf1dBo+fDiKorBgwYJTHpuRkYGiKGzduvV3aJkkSZIkHdXV+MjTIXGiv8suu6zD88rLy3nwwQfp1asXAQEBhIaGMmDAAF599VUaGhq63X673U6vXr1QFIW4uLgTHrd69WouvPBCkpKSMJlMJCQkMGnSJBYtWtTh8Q6Hg1deeYW+fftisViwWq2MGDGCr776qsttPHDgAC+//DLjxo0jPj4eg8FAZGQkF154IcuXL+/wnO7Ecxs3buSRRx7h3HPPJSoq6pTP5GS6e6358+dz9tlnExcXh9lsJjk5malTp7Ju3boOj29oaOCxxx4jMzMTk8lEcHAwEydO5Oeff+5Wu0+3K6+8EkVReOedd0557Nlnn42iKHz//fe/Q8skSZKk/4uqqqqYOXMmU6ZM8eZeAgMDGTFiBP/61786zL10J/YqLCzk+eefZ+rUqaSmpqLRaFAUhYMHD3a5zd29VldzTEII3n//fQYPHoy/vz9+fn4MHDiQf/7zn13OSdXX13P33XczcuRIYmJiMJlMREREMGjQIN544w2ampo6PK87eabTlUvrbuxVWFjI9ddfT0xMDEajkaSkJO6++25qamraHeuZpHeyv5SUlE63+bfw/vvvoygKf/7zn0957AsvvICiKNx1112/Q8skSZKk/4seeughxo8fT3x8PGazmZCQEM444wyefvppqqqqOjynO3mK3Nxcbr31VjIzM7FYLERGRjJ06FDee+89HA5Hp9ubk5PDk08+yYUXXkhCQoL397m1tfWk51VXV3P33XeTlJSE0WgkJiaG66+/nsLCwnbHnirfpCgKWq22020+1s8//8yUKVOIiorytmPixInt+siOHDnC7bffzuDBg32OHTlyJLNmzcLpdJ7wHrNnz2bQoEH4+/sTGBjImDFj+PHHH7vc1q7GfdOmTTvpM9u7d6/P8b/lcz5dfvrpJxRFYdCgQac89rPPPkNRFC688MLfoWWSpNL90Q2QpNPlueeeY/v27fj7+xMXF9fuR6Mjc+fO5U9/+hMmk4lLL72UkJAQ5s2bxz333MOaNWv4+uuv253z9ttvc+eddxIaGspVV12FwWDgm2++Ydq0aezcuZPXXnut021uamri7rvvBiAyMpKoqCiOHDnSqXMvvPBC+vXr1277wIED222bN28eF198MRqNhgsuuIBLLrmEyspKvv/+ey677DKWLl3K+++/3+l2e7S2tnL11Vej0Zx8vOMVV1zBV199RVxcHBdffDEBAQHs3LmT2bNn89lnn7Fw4ULGjRvnPT4vL49hw4ZRUlLCoEGDuPjii6moqOC7775j/vz5zJs3j4kTJ3a5vafTTTfdxNq1a5k5cyaTJk064XErV65k//79DBw4kDPOOON3bKEkSZIkdS8+Aujbty8XXXRRu+29evVqty0vL4/BgwdTXl7OmDFjOPfcc2lpaWHJkiU8+OCDfPLJJ6xfvx6z2dzl9j/66KPk5+ef9Jh//OMf3H777fj5+TFlyhTi4uIoLCzku+++Y+HChTz33HM89thj3uMdDgcTJ05kxYoVJCUlcd111+F2u1mwYAGXXnopu3bt4plnnul0G5944gm+/PJLsrOzvQPf9+3bxw8//MAPP/zAm2++yYwZMzo8tyvx3Geffcabb76JXq8nOzubsrKyTrfxdFzroYce4pVXXiE0NJSLLrqIsLAwDh48yNy5c/n222/56KOPfAbA1dTUMGLECPbs2UPPnj259dZbaWxsZO7cuUyYMIGZM2dyww03dPs9nA433XQTn332GTNnzuT2228/4XF5eXksXbqU6Ohozj///N+xhZIkSdL/JV9//TW33XYb0dHRjB07loSEBMrKyvjuu++48cYbWbhwIV9//TWKorQ7tyux1+bNm3n88cdRFIUePXoQGBhIbW1tt9rcnWt1J8d01VVX8dlnnxEREcHll1+OxWLhp59+4rbbbmPt2rV89NFHnW5zdXU17733HoMGDeK8884jPDycuro6li1bxj333MP777/PunXrsFqt3nO6k2c6nbm07sRehw4dYtiwYZSXl3PhhReSmZnJxo0befPNN1m0aBFr1qwhNDTUe/zJZt/PmzePX3/9lXPPPbdT7f2tXH755dx7773MnTuXyspKwsLCOjxOCMG//vUvAG6++ebfs4mSJEnS/yF/+9vf6N+/P2eddRYRERE0NTWxfv16nnrqKd577z3Wr19PfHy89/ju5Ck2bdrE2LFjsdlsnHPOOVx44YXU19czb948brnlFr799lsWLVrUYXx3vMWLF/PMM8+g1WpJS0vDZDLR0tJy0nOqqqoYNmwY+/fvZ9y4cVx22WXs3buXWbNmMX/+fNatW0dycrL3+H79+vHkk092eK1Vq1axbNmybsUDDz74IK+++ipxcXFccMEFhIWFUVFRwZYtW1ixYoVPH9mhQ4f49NNPGTx4MBdddBEhISFUVVWxcOFCrr/+ej7++GOWLFmCTuc7ROH+++/n9ddfJy4ujptuugmHw8EXX3zB+eefz1tvvcX06dM71dZ/p3/xrrvuIigoqN3242OW3+o5n04TJkygR48ebNq0iZ07d9K7d+8THuuJaWXcJf2uhCT9l1i2bJnYv3+/cLvdYvny5QIQV1555QmPr6urE+Hh4cJgMIhNmzZ5t9tsNjF06FABiM8//9znnNzcXGE0GkVISIjIzc31bq+urhYpKSkCEGvXru10m+12u1iwYIEoLi4WQgjx5JNPCkC8//77Jzxn1qxZAhCzZs3q9H2ys7MFIFasWOGzvaSkRERERAhA5Ofnd/p6Hk8//bQwGAzizTffPOHz3rhxowBEz549RVNTk8++Dz74QABi7NixPtsvuOACAYgZM2YIt9vt3b5v3z4REBAgoqOjRWNjY6fa6Hmmy5cv7/L7O5nm5mYRGBgo9Hq9KC0tPeFxV111lQDEe++9d1rvL0mSJEmd0dX4KDc3VwDi2muv7fQ9br/9dgGIp556ymd7a2urGDdunADE7Nmzu9z25cuXC0VRxD/+8Q8BiNjY2HbHOBwOERgYKEwmk9i7d6/Pvj179gij0SjMZrNoaWnxbv/rX/8qADF06FCfeKKhoUEMGDBAKIriExueyqxZs8Svv/7abvuKFSuEXq8XBoPBG+sde05X47mtW7eKX3/9VdjtdiGEOOEz+S2uVVJSIjQajYiMjBRlZWU++5YtWyYA0aNHD5/tM2bMEIC4+OKLhdPp9G4vKysT8fHxwmw2iyNHjnSqvd15Xp2Vnp4uALFly5YTHvP4448LQDz66KOn/f6SJEnSf4+ff/5Z/PDDD8LlcvlsLykpEfHx8QIQ33zzjc++7sReR44cEb/88ouoq6sTQggxevRoAYgDBw50uc3duVZXc0zfffedN1aoqKjwbrfb7WLy5MkCEN9++22n29za2iocDkeH+6688koBiJdfftlne3fyTKczl9adOO7ss88WgPj73//us/2ee+4RgLjllls6de/W1lYRFxcnALF9+/ZOndOd72Vn3XTTTQIQr7/++gmPWbp0qQDEsGHDTvv9JUmSpP8eNputw+2PPvqoAMRtt93ms707eYpJkyYJQHz44Yc+2xsbG72xwsqVKzvV3r1794r169eL5uZmIYQQiYmJAvBpy/FuvvlmAYh7773XZ7unT27ixImdurcQQgwZMkQAYu7cuZ0+Rwgh3nvvPW9c4IlljnV8XGa329vFw57jxowZIwDx5Zdf+uxbs2aNAERKSoqorq72bs/NzRUhISHCaDT69MmeTHfivmuvvVYAnb7HyXTnOQNi9OjR//a9j/f8888LQNx5550nPObAgQNCURQRHx/f4ecmSb8Vudyb9F9j7NixpKWldWrEMqjLn1RUVHDZZZf5zFY3mUw899xzgDoz/1gffPABdrud6dOnk5SU5N0eHBzMo48+CnDC5dY6YjAYOPfcc4mOju70Od1x+PBhrFYro0eP9tkeFRXF4MGDAaioqOjSNTdv3syzzz7LE088QZ8+fU56b4Dx48djsVh89nlKBx5775aWFhYuXIhGo+G5557z+TzT09O5/vrrKSkp4dtvv+1Se49XUFBAz549MRgMfPzxx97tzc3NvPjii/Tr1w8/Pz/8/f0ZOnQon3/+uc/5ZrOZq666CqfTyYcfftjhPWpra/nmm2/w9/fn8ssv/7faK0mSJEnd0dX4qDs8v/UXXHCBz3atVst5550HdD3OqK+vZ9q0aYwfP55bb731hMdVV1dTV1dHeno6GRkZPvuysrJIT0/HZrPR2Njo3e5Zruuxxx7Dz8/Pu93f35/HH38cIUSnlv/ymDZtWofVEkePHs2YMWNwOBysXbu209c7kX79+nHGGWdgMBh+92vl5+fjdrsZPHgwERERPvvGjh1LQEBAu8/Y85yfeeYZn9lxERER3HvvvdhsNj744IN/633U1NQwatQoNBoNL774ond7a2sr77zzDkOGDMFqtWKxWDjjjDN4++232y3NctNNNwGcsBKCy+Vi1qxZKIrCjTfe+G+1V5IkSfrvNm7cOM4///x21aajoqK88cyKFSv+7fvExcV5l/L9I67V1RyTJya47777fGahGwwGnn32WUCtWt5ZWq0WvV7f4b6pU6cC6nK8Ht3NM53OXFpXY69Dhw6xZMkSkpKSuOOOO3z2Pf300/j5+fHxxx+fcGm7Yy1YsIDCwkKGDBly0vxdZ7jdbu666y4UReHiiy/GZrN59y1evJhJkyYRFhaG0WgkJSWFBx54oF1lLs8M/ZkzZ57wPnI2vyRJktQZJpOpw+2eZUWPjQege3mKE+W8/Pz8GD9+PND5eCAjI4PBgwd3utJ4Y2MjH3/8MX5+fjz11FM++6ZPn05iYiKLFy/2tvFkdu7cyfr164mNjfXm6jrDbrfz2GOPkZCQwHvvvddhLHN8XGYwGDpcfUWv13srhx7/2Xj6VR977DGCg4O92z2xkN1uZ9asWads7+/Vv3gi3X3OJ/Lqq6+i0WgYPnw41dXV3u0bNmzgkksuISoqCoPBQHx8PLfccgvFxcU+519//fXodDo++eSTE1btmjlzJkIIbrjhhlOumiNJp5P8tkn/s5YtWwbAOeec027fqFGjsFgsrF27Frvd3qlzPKX7PMf81rZt28Ybb7zBSy+9xMcff9zh+rMePXv2pL6+ntWrV/tsLy8vZ+PGjURHR5Odnd3pe9tsNq6++mr69evHww8/fNJje/bsCajP5djkBeBdS3bChAnebdXV1TidTsLCwggICGh3PU/pypOtEXwq27dvZ+jQoRw5coQFCxZw9dVXA+qgohEjRvDoo4+i1Wq5/vrrufbaa6moqOCKK67g8ccf97mOp1PLU4L6eJ4f/ssvvxx/f/9ut1eSJEmSfm/FxcW8++67vPDCC7z77rvs2LHjhMd6fuvnz5/vs93tdnsTA8cu69oZM2bMoKam5oS/sR4RERGEh4ezf//+dgkOz7Z+/fr5LIVRWloK4FMO2+N0xBnH8iRqji9h7dGVeO6PlJaWhsFgYOPGjVRWVvrs++WXX2hoaPCJ5+C3f84FBQUMHz6c9evX89FHH/HII48A4HQ6mTx5MnfccQe1tbVcccUV3Hzzzbjdbu68806uvfZan+tce+21GAwGPv/8c5qbm9vdZ+HChRQVFXnLZEuSJElSd5wqJuhK7PVH62qOqTMxwapVq3A4HP922+bNmwfgMxinu3mm051L64rly5cDcPbZZ7frLAoICGD48OE0Nzezfv36U17rvffeA/79AT8tLS1MnTqVv//979xxxx1888033k7Wp59+mnPOOYcNGzZw3nnnMWPGDFJTU3nttdcYPnw49fX13usMHDiQfv36kZOTw5o1a9rdp6qqijlz5hAYGOjtZJYkSZKkrugoHoDu5SlOlPNqbm5m2bJlWCwWhg4denoafpz169djs9kYPnx4uxhGo9F4lyzzxA0n44kHbrjhBrRabafb8NNPP1FRUeFdAnf+/Pm8/PLLvPnmm6xbt64L70adBLZgwQKg/Wdzuvpe/93+xYULF/Lyyy/z2muvMWfOHJ8YpjO6+5yP53a7mTFjBg8++CBTpkzh559/JiQkBFCLaQwfPpyFCxcyduxY7r77bgYOHMjMmTMZOHAgBQUF3utERUUxefJkampqOhyY1drayuzZs739oZL0u/qjSzlJ0m+hM8uZDBw4UABi8+bNHe7v2bOnAMSePXu828LCwgQgKisrOzzHz89PAO2WNeusriz3dvyfVqsVt9xyS4clLn/55RdhtVqF0WgUf/7zn8XDDz8sbrzxRhEWFiZSU1PFxo0bu9TOGTNmCKPRKHbv3i2EOPXz9pSiTkhIELfffrt46KGHxOTJk4VOpxOXXXaZT2nF5uZmodVqhUajEQ0NDe2udddddwlADB48uFNtPX65t59++klYrVYRHR0ttm3b5nOsp6Tj8WXBbTabmDhxolAURWzdutVn36BBg064nFzfvn0F0KUlYyRJkiTpt9KV5d46+hszZkyHS1qUlZWJjIwMAYhx48aJ+++/X8yYMUNkZmaKoKAg8cEHH3SpnZ4lQWbOnOndxkmWxPjqq6+EwWAQAQEB4pprrhEPP/ywuPrqq4W/v78YMGBAu+VKPMv6zp8/v921vv/+e+/79ZTf7q68vDxhNBqFxWLxKVUtRPfiueOd7Jl0VWeu9be//U0oiiLCw8PFTTfdJB5++GExdepUYTQaxVlnndVuGbjo6GgBeOPF468FiMjIyE617/jl3rZt2yaio6OF1WoVP/30k8+xnthv+vTporW11bu9tbVVXH/99QIQc+bM8Tnnz3/+8wmXk/OUCf/666871VZJkiRJOp7T6RS9evUSgFi0aJHPvu7EXsf7d5Z76861uppjuvzyywUg/t//+3/trrV161bv+83JyelSW51Op3jyySfFk08+Ke68807Rr18/AYixY8f6xFLdzTOd7lzasU4Ve91///0CEK+99lqH+++44w4BiHfeeeek9zly5IjQarUiMDCwS7nK45d7q6qqEsOHDxeKooiXXnrJ51jP0r9Dhw4VNTU1Pvs8Mdzdd9/ts/2dd9454XJynqWZ77jjjk63V5IkSfrf9uqrr4onn3xS3H333WLEiBECEH369BHl5eU+x3UnT5GTkyOio6OFVqsV559/vnjooYfEbbfdJuLj40V0dLRYsGBBt9t9quXe3n77bW9+oyOvvvqqAMSDDz540vs0NzeLoKAgodVqRUFBQZfa+Je//EUA4uGHH/bGs8f+jRo1qt1z9qioqBBPPvmk+Mtf/iJuu+02kZqaKgBxxRVX+BzX2NgoAOHv73/C6wAiIiLilO3tbtzn6Rs8/i8gIEC8/fbbp7yv597dfc4cs9ybzWYTF198sfezP3YJtn379gm9Xi9SUlJEYWGhzzWWLl0qNBqNuOiii3y2L1iw4ITLyXlysOedd16X2itJp4McpCT9V+pMJ1xaWtpJEy/Dhg0TgFi7dq13m16vP2nQEBMTIwBRXFzcrXZ3ZpDSihUrxFtvvSX27dsnmpqaRHFxsfjqq69ESkqKAMTll1/e4Xm7d+/2Drw69gf2+eef71RHmMfSpUuFoig+A3k687z/+c9/CrPZ7HP/AQMGiIULF7Y7dsKECQIQ99xzj8/2AwcOiICAAAGI9PT0TrX32EFKH3/8sdDr9SIrK6tdoq+yslJotVoxcODADq+zbds2AYgHHnjAZ/vMmTM7fO8bN24UgDjjjDM61U5JkiRJ+q115ve6rKxMPPHEE2LLli2ipqZG1NTUiJUrV4qxY8cKQKSmprZbt10IIWpqasSUKVN8fucVRRE333xzl/5hXlpaKsLCwsS5557rs/1UHTmrV68W8fHxPvePjIwUb7/9drv11J977jkBiGHDhvkMRGpsbBRnnnmm9/zuxnNCCNHS0iKGDx8uAPHKK6+029/deO5Yv/cgJSHUQVzBwcE+zzk1NVV8+umn7Y698cYbBSAuueQSn8FC5eXlIiEhQQDCYDB0qn3HDlJasmSJCAgIEDExMe0GnLtcLhESEiKioqI6jNdramqEoihi6tSpPtuXLl0qADF8+HCf7cXFxUKn04mIiAjhcDg61VZJkiRJOt59990nADFp0qR2+7obex3r9x6kJETXckyffPKJAERKSoqoqqrybnc4HN7BwMfn3zrDZrO160i6+uqrO+yQ6m6e6XTl0o53qtjrpptuOml+8NFHHxWAeOGFF056n6eeeqpbA36OHaSUl5cnMjMzhV6vF5988km7Yy+66CIBiF27dnV4rX79+onw8HCfbXV1dcLPz09YLBZRV1fnsy87O1sAYvv27V1qsyRJkvS/KzIy0ue3+pxzzhGlpaXtjutunqKwsFCMHDnS5x56vV488MAD7SaldcWpBik9//zzAhCPPfZYh/vfe+89AYibb775pPf58MMPuz0Q5dZbbxWgTqrr3bu3WLVqlWhoaBA7duwQZ5999gkHvwihDvA6Pk94//33t8uvFBUVnTQ2cjgcXcohdSfu+9e//iW+/PJLkZ+fL2w2mzh06JB47bXXvMe/++67p7zvv/OcPc/x2IHhxxdTEEKIu+++WwDixx9/7PA6F110kdBqtaK+vt67zeVyeb9r+/fv9zl+0qRJAhBz587tcpsl6d/VcY1hSZJOixUrVrBixQqfbUlJSUybNq3b1xw9ejSjR4/2vrZYLEydOpUhQ4bQt29fPv/8cx566CH69u3rPeann37isssuY+DAgXz00UdkZmZSWlrK22+/zWOPPcb8+fNZuXLlCcuOe9TW1jJt2jQGDx7Mfffd16n2CiG46667eOedd3juuee46qqrCAoKYtu2bdxzzz2ce+65vP3229xxxx3ec9544w2GDx/O3/72N9atW8fw4cOpqKjg22+/JS0tjW3btnV5bdQ333yTuXPnMnz4cH744QefdW0BNm3ahMvlQlGUduv7grp0CEBOTo7P9ssuu4x77rmHb7/9lrfeest73ffffx84uiScJEmSJP1fEBERwTPPPOOzbdSoUSxZsoQRI0awYcMGZs6cyV133eXdn5eXxwUXXIDNZmPBggXe5Sfmzp3Lfffdx9y5c1m3bl2nlsq66aabaG1tZebMmZ1u8yeffMJNN93ExRdfzBNPPEFiYiL5+fk8++yzTJ8+nZUrV/LVV195j7/rrrv4+uuvWbt2LT179mTSpEkIIZg/fz6KohAYGEhdXZ031uhqPOdyubj66qtZs2YNl156Kffff3+7Y7oTz/3RXnnlFR599FFmzJjB9OnTiYqKYu/evTzyyCNceeWVbNu2jVdeecV7/DPPPMPixYv55ptv6NevH+PHj6epqYm5c+cSGxtLQUFBl+O5b775hiVLlpCWlsbChQtJSEjw2b9//36qq6tJS0vjueee6/AaZrO5XTw3btw4UlJSWLNmDTk5OWRlZQEwa9YsWltbmTZtmneZHkmSJEnqir///e+8/vrrZGZm8vHHH7fb353Y64/W1RzTZZddxscff8zixYvJzs7mwgsvxGQysXTpUkpKSkhISPCJC7Zt28acOXN87hkUFMTdd9/ts81kMiHUCbgUFxezdOlSHnnkEQYOHMiiRYtISkryHtudPNPpyqX9Udxut3fp5FtuuaVb19i3bx9Dhw6lqamJhQsXMn78+HbHrFu3Dr1ez9dff83XX3/dbr/D4aCiooKqqirvEsxWq5VLL72UDz74gE8//ZTbbrsNgLVr17Jnzx4GDRrUbhkYSZIkSToRzzJuZWVlrF27locffpgzzjiDH3/8kf79+3uP606eYuvWrVx00UVERESwatUq+vXrR21tLZ988gmPP/44c+bMYdOmTQQGBv6u77krPEuQdRQP5OXl8eGHH7bb7ukjc7vdgLpk8Q8//OCNr3r37s33339PRkYGK1euZN26de2WvcvMzEQIgcvloqioiO+//56//OUvrF69mvnz53uXLzvduhP3Hb/UWXJyMvfddx8ZGRmcf/75PPbYY6dcwu1kz7kzysrKGD58OIcPH+aTTz7hiiuuaHeMZ4m9lStXsmnTpnb7y8vLcblc7N+/nwEDBgDq0oA33HADf/nLX5g5cyYvv/wyAIWFhSxatIiYmBjOO++8brVZkv4tf+gQKUn6jfynLPfmqeJz7N+JRhUfe/zJKimdzJVXXikA8fe//927raqqSgQHB4vY2NgOSzt7Zjx1tLzF8a677jphNpvF3r17fbaf7Hl7Zr4fP2pZCCFKSkqE2WwW/v7+7Wa6HTx4UFxzzTUiOjpa6PV6kZiYKB5//HGxatUqQVsZyc7wPNOQkBABiCeffLLD4zwz+071N2bMmHbn3nLLLT7PvbGxUQQEBAg/P792M8IkSZIk6Y/SmfjoZN5//30BiIsvvthnu2fGfUeznd944w3vLOxTmT17tgDE7Nmz2+3jBDOqPGWOBwwY0K5iksvlEgMGDPBWVDxWQ0ODeOSRR0RaWpowGAwiNDRUXH311aKwsFD4+/sLnU7nndnVlXiutbVVXHbZZQIQf/7zn084G+5kOornOnKiZ9Idp7qW57szZcqUdvuamppEbGys0Gg04tChQz77SktLxR133CESExOFXq8X0dHRYvr06eLAgQMC1KWAO8MTT3riueuuu0643e52x61evbpT8VxSUlK7c1988UUBiHvvvVcIIYTb7RbJyclCUZTTUplCkiRJ+t/z1ltvCUBkZ2eLkpKSLp9/otjreL9nJaXu5pgcDod46aWXRK9evYTRaBSBgYHiwgsvFDk5Od782+HDh4UQHS+Lm5iY2Kn2r1u37oQz2LuSZzqdubSOnCr2Oh3Lvf34448CEEOGDOly+zyVlDyxV79+/U5YKUKn03Uq/srLy/M5z/NZ9e/f37vtuuuuE+C77LMkSZIkdVVeXp4wGAyiZ8+e7fZ1JU/hdDpFamqqMJvNHcZynqo2J+pzOpXfY7m3Xbt2CUDExcX5VI/y8OR7jv/zePDBB08aT9xwww0CEG+88cbJ3qrX559/LsC3yuPpXO7N43T1LwohRGxsrADEjh07TnjMqZ7zqQAiKChIaDQakZCQcMIlnz1L5p3qb8WKFT7nFRYWCq1WKyIjI735zqeffloA4vHHH+9yeyXpdOja1FVJ+i+SkZEBqDOuj9fa2kpubi46nY7k5OROnVNSUkJTUxNxcXFYLBZAHW0s2mZ1ef6On4l/OoWHhwPQ1NTk3bZ27VpqamoYPHiwt13HGjt2LABbtmw55fV//fVXbDYbmZmZKIri/fNc49NPP0VRFPr16+c958cff/S5z7GioqLIzMyksbGRffv2+exLSUlh9uzZFBcX43A4yMvL49lnn/U++zPPPPOU7T3Wv/71LwYPHszTTz/NX/7yl3b7PSPd77nnnnaf2bF/y5cvb3fuzTffDOCt+vDFF1/Q0NDApZdeitVq7VI7JUmSJOk/VUdxRkNDAytXriQkJKTD2c5djTMArr32Wp84Q1EUAIqKiryva2trAViyZAlOp5PRo0e3mwWl0WgYNWpUh/f39/fnhRdeYP/+/djtdiorK/noo4+w2+00NjbSt29fb+WczsZzTqeTyy+/nC+++IIrrriCzz77rFsz6zt6zn+0k8VzFouFQYMG4Xa72bp1q8++yMhI3n77bfLy8nA4HBQXF/PWW29RUFAAdD2ee+GFF7jggguYNWsW119/vXdGn4cnnpsyZcpJ47nc3Nx2177uuuvQ6/V89NFHOBwOli1bxuHDhxk7diypqaldaqckSZIkvfHGG9x555306tWL5cuXExUV1eVr/CfGBN3NMen1eh566CF27txJS0sLtbW1zJkzh6SkJA4cOEBYWJi36ua0adPa/Xbn5eV1qn1DhgwhKCiow1itK3mm05lL646T5R8BDhw4AEB6evoJr/HvzuYHOP/883nhhRfYtm0b48ePp6qqqt0xgYGBBAcHnzT2EkKQmJjoc96QIUPo06cPv/76K7/++isNDQ189dVXWK1WLrvssm63WZIkSZISExPJzs5m9+7dVFZW+uzrSp5i7969HDx4kKysrA5juf9L8cCJqgCNGTOmw9/t49sQFBTU4fU9K4vYbLZTvBvVueeeC+ATq/n5+REbG0tjYyMlJSXtzunM+zze6exf7ExMfqrn3Bl9+/Zl9uzZFBUVMWrUKA4fPtzuGE/eq66u7qRx17HV2wFiY2OZNGkSZWVlzJs3D7fbzQcffIBGo+HGG2/sVnsl6d/1n1mPVpJ+B+PGjePTTz9l0aJFXH755T77fvnlF5qbmxk1ahRGo9HnnDVr1rBo0aJ2pQsXLlzoPeaPsmHDBgCfgVV2ux2AioqKDs/xbDcYDKe8/sUXX8zAgQPbbS8pKWHBggWkpKQwZswYn6U3Tuf9AW959I5KHZ5MUFAQP/30E+eddx7PPvssLS0tPkuSDBo0CI1Gw6pVq7p0XYD+/fszYMAAtmzZwsaNG72DlTyDlyRJkiTpv8H69esB3zjD4XAAUF9fj8PhaPd73pXf+aFDh9LY2Njhvn/9619YLBZvzOaJz053nPHRRx8BXY8zHA4Hf/7zn5k7dy7XXHMNs2bN6vJSZh4dxXN/tP+U52w0Gvnmm2+48sor+fDDD7Hb7Xz00UfewWCZmZkEBQWxfv16nE5nl5Zoi4yM5IILLuDbb79lzpw5fP/994CM5yRJkqSue/nll3n44Yfp168fP/30E2FhYd26Tkex1x/tdMcEX3zxBQ6Ho11errsaGhqor68nICCg0+d0lGc63e+zqzydnkuWLMHtdvvElQ0NDaxZswaLxcKQIUM6PL+4uJj58+cTGBjIpZde+m+15ZFHHsFsNnPPPfcwZswYli5dSmRkpHf/kCFDmD9/Prt376Znz55duvZNN93EnXfeycyZM+nbty9NTU3ceuut+Pn5/VttliRJkqTi4mKATg8Y6ShP4YkHjh/o5PFbxwNDhgzBbDazZs0aGhoafOIbt9vNkiVLgI4nlAG0tLTw8ccfo9VqueGGG7rVhvHjx6MoCnv27GkXkwDs2rULwDvY/FSKiooA2k3qGzduHB9//DGLFi3iuuuu89l3Ovteu9q/WFdXx969e1EU5YTv8XQ8Z4+rrroKk8nEFVdcwahRo1i2bJnP4KwhQ4awZcsWVq1a1eUl2m6++WbmzZvHzJkz8fPzIz8/n3POOafdQHJJ+t38FuWZJOmP1pnlTOrq6kRYWJgwGAxi06ZN3u02m00MHTpUAOLzzz/3Oefw4cPCaDSKkJAQkZub691eXV0tUlJSBCDWrl3b7XZ3Zrm3Y9vq4XK5xAsvvCAAERYW5rPEWFFRkdDpdEKj0YjFixf7nFdQUCDCw8MFIObPn++z7+DBgyInJ8db+u9kTva8X375ZQGInj17itraWp99//jHPwQgoqKifEogtrS0iJaWFp9j3W63eO655wQgLr300lO2ycPzTD3LvDQ1NYnx48cLQMyYMcPn2KuvvloA4plnnumwJOPBgwe95ceP989//lMAYuTIkQIQffr06XQbJUmSJOn30Jn4aMuWLe2WTRNCiKVLlwqj0SgAsWbNGp99WVlZHZYHttlsYsyYMQIQDzzwgM++4uJikZOT0y42OBFOsCTGhg0bBCDMZnO75ea2bt0qTCaTUBRF7Nq1y2dfR8uxLlmyRJhMJpGSkiIaGxs71S4h1Lhl0qRJAhA33HBDh8/veF2N5zpyomdyrM7Gc6e61pdffikAERkZKQoLC332LViwQCiKIkwmk8+SyC6Xq91yvkII8dFHHwlFUcSwYcM69ayEOLrsi2dJldbWVnHVVVd5l8A59v098cQTAhC33nqraG5ubnet4uJisXv37g7vs2jRIgGIQYMGCaPRKMLCwoTdbu9UGyVJkiRJCCGeeeYZAYgBAwaIqqqqUx7fndjreJ1Z7q2zsdeprtXdHFNHcc3WrVtFWFiYCA4OFkVFRSdt17F27NghbDZbu+12u11cc801AhBXXHGFz76u5pl+61xaZ+K4s88+u8MlgO+55x4BiFtuueWE53q+hydaHuZUPMu9Hbtk8z/+8Q+hKIrIyMjw+byWLl0qADF06NAOP8fGxkaxbt26Du9TU1MjzGazCAwMFH369BGA2LJlS7faLEmSJP1v2bdvX4dxjcvlEo8++qgAxLBhw9rt60qeoqWlRQQFBXXYZ1dTUyMyMzMFIP7f//t/Pvvy8/NFTk5Oh0vGHutUy70JIcTNN9/sszS9x5tvvikAMXHixBOe+9FHHwlATJ48+aTtOJULLrhAAOKvf/2rz/bFixcLRVFEUFCQz2exZcuWDvvXGhoaxIQJEwQgHn30UZ99a9asEYBISUnxWWI2NzdXhISECKPR6NMnK4S6DFxOTo6oqKjw2d7VuK+kpEQcOXKkw/Z6lvg966yzOngyqtPxnAExevRo7+u5c+cKo9EooqKifHKaOTk5Qq/Xi7S0NLFv375217Hb7eKXX37p8B6tra0iLi5OaDQaMWzYMAGIb7/9ttttlqR/lyLEMXXbJOn/sDlz5jBnzhwASktLWbx4McnJyYwcORKAsLAwXnvttXbnXHLJJZhMJi677DJCQkL44Ycf2LdvH5dccglfffWVd4kRj7feeosZM2YQGhrKpZdeisFg4JtvvqGwsJD77ruv3T1O5aWXXmLv3r0AbNu2je3btzNs2DDS0tIAGDFihE+5PUVR6NWrF3379iU2Npa6ujrWrFnDrl27sFgsfP/995x99tk+93jmmWd48skn0Wg0TJ48mczMTEpLS/nuu+9obGxkypQpfPfddz7nJCUlkZ+fT25uLklJSSd9DytWrGDs2LFceeWVfPLJJz77GhsbGT58ODt27CAiIoILLriAoKAgfv31V5YtW4ZWq+Wrr77i4osv9p6za9cuRo4cyVlnnUVSUhJOp5Off/6ZnTt3MmLECObPn9/pZdSeeuopnn76aZYvX86YMWMAdWTzn/70JxYsWMDNN9/MP//5TxRFob6+nokTJ7J+/XrS0tIYMWIEkZGRFBcXk5OTw6ZNm/j88887LDvd0NBATEyMtwLEW2+9xfTp0zvVRkmSJEn6rXQ1PhozZgwHDhxg2LBhxMXFAbBjxw6WLVsGwLPPPsvjjz/uc4+lS5dy3nnn4XA4GDx4MMOGDcNms7Fw4ULy8/NJTU1l/fr1hIaGes+ZNm0as2fPZtasWUybNu2U70NRFGJjYyksLGy37/rrr2fWrFkYDAamTJlCYmIieXl5zJkzB4fDwd13383f/vY3n3NiYmLo06cPmZmZmEwmfv31V5YuXUpUVBQ//fRTl2aBX3fddXz44YeEhYVx++23t4sdQX2unjjE8366Gs/t3buXl156yft69uzZWCwWpk6d6t322muv+VRrOFE819Vrud1uJk6cyNKlSwkICGDKlClERUWRk5PDjz/+iBCCN954g7vuust7fmNjI5GRkZx11lmkpKSg0WhYs2YN69atIysri6VLlxITE9OpZ/zhhx9y3XXX+Xxf3G43t9xyCzNnzmTy5Ml88803GI1GnE4nl1xyCT/88AOxsbGMGzeO2NhYysvLOXDgAGvWrOH555/n4YcfbncfIQTJycneJWW6E9tLkiRJ/7tmz57NtGnT0Gq13Hnnnd7lGI6VlJTkE/t0J/YCfK6xaNEiysrKuPjii70z7G+88UZGjBjhc/yJYq+uXqs7OabBgwdjNpvp1asXAQEB5OTkMH/+fMxmM/PmzWu3JMXJ3H333cyaNYvhw4eTmJhIUFAQxcXFLFmyhNLSUjIyMli+fDnR0dHec7qTZzqdubTuxHGHDh1i2LBhlJeXc+GFF5KVlcWGDRtYvnw56enprF271ie+9nC73SQnJ5Ofn8+OHTvo3bt3p5+tR15eHj169ODaa6/lww8/9G7/8MMPueGGG+jRowfLli3zVlJ/+eWXvRWXJk2aRI8ePWhsbCQ/P5+VK1cyYsQIFi1a1OG9rr32Wm/1igEDBrB58+Yut1eSJEn63/PGG2/wyCOPMGLECHr06EFoaChlZWWsXLmSw4cPExUVxc8//0x2drb3nO7kKWbPns11112HEILx48dzxhlnUFNTww8//EBFRQVDhgxhxYoVPiuyjBkzhpUrV/r0SYFaken+++/3vv7mm29oamrimmuu8eaSHn74YTIzM73HVFVVMWzYMPbv38+4ceMYNGgQOTk5zJ07l4iICNauXUtKSkqHz2jkyJGsXr2aH374gfPPP7/bz7qwsJBhw4Zx5MgR7zPIzc1lzpw5KIrCF198wZ/+9Cfv8RdddBFr1qxh2LBhJCQkYLFYOHLkCAsXLqS2tpZhw4axePFi/P39fe5z33338de//pW4uDguueQSHA4HX375JVVVVR32t3n6/p588kmeeuop7/auxn0rVqxgwoQJDB06lPT0dCIiIigqKuKnn36itLSU5ORkli9f7rOCzOl+zoqiMHr0aJ9l8BYvXsyUKVPw8/Nj6dKl9O3bF4BPPvmE66+/HiEE55xzDunp6TidTgoKCli1ahXh4eHePufjPfnkkzzzzDMAREVFceTIkXZVrSTpd/NHjpCSpNPJUzHnRH+JiYkdnrd69Wpx7rnniqCgIGEymUSvXr3EX//61w5H+nr88MMPYtSoUcLf319YLBYxcOBA8eGHH3ar3Z5Zaif6O3bWkhBC3H///WLUqFEiOjpaGI1GYTabRUZGhrjjjjvEoUOHTnifOXPmiHPOOUeEhYUJrVYrAgICxNChQ8U777zT4Xv1jOI+fnRyR05VmaGhoUE8/fTTom/fvsJisQidTieio6PF1KlTxYYNG9odX15eLq644grRo0cPYTKZREBAgBg8eLB4++23TzqqvCPHV1LysNvtYsqUKd5n7Bkhb7fbxVtvvSWGDh0qrFarMBgMIj4+XowbN0787W9/86kQcLwbb7zRW82hpqamS+2UJEmSpN9CV+OjmTNnivPOO08kJiYKPz8/7+/gn//85xPOxBFCiO3bt4urrrpKxMfHC71eL0wmk8jOzhaPPPJIh7+J1157rU9lnFPhJLPN3W63mDVrlhg9erQICgoSWq1WBAcHi3HjxrWriulx//33i169eomAgABhMplERkaGeOihhzpV8eB4p4rlAPHkk0+2u39X4zlPvHWyv+PjthPFc925lsPhEH/729/E4MGDRUBAgNBqtSI8PFycd9557SoMeI6//vrrRXp6urBYLMJisYi+ffuK559//pSzCY93fCUlD7fbLaZPny4AcfbZZ3srJ7ndbvHRRx+JcePGieDgYKHX60VMTIwYPny4eP7550VBQcEJ7+WZWQeIvXv3dqmdkiRJ0v+2U8VdHDdDWojux16nus/xv5kni726ei0hup5jeuWVV0T//v1FYGCgMBgMokePHuL222/vcNb6qaxevVrccMMNIjs72yf2Gz58uHj11Vc7jDO6m2c6Xbm07sReQqhVm6ZNmyaioqKEXq8XCQkJ4q677vKpMHC8BQsWCEAMGTLkxA/xFDqqpOTx2WefCZ1OJxITE33i1lWrVompU6eK6OhoodfrRVhYmOjbt6+45557Oqwi6rF69WrvM3j33Xe73WZJkiTpf8vOnTvFHXfcIfr27StCQ0OFVqsVVqtVDBw4UDz55JMd5ne6m6dYuXKlmDJlioiKihI6nU74+fmJ/v37ixdffLHD6o6ePNHxfVKe39eT/R1/jhBCVFVViRkzZoiEhASh1+tFVFSUuO66604aR+3Zs0cAIi4u7qR9nZ1VXl4upk+f7m1DaGiouOiiizrs3/vxxx/FlVdeKdLS0oTVahU6nU6Eh4eL8ePHi3ffffeksdesWbPEwIEDhcViEf7+/mLUqFFi3rx5HR7rib2Pz7l1Ne4rKCgQN998szjjjDNEWFiY0Ol0wmq1ijPPPFM899xzor6+/oTtPV3PuaN/JwihxpD+/v4iODhYbNy40bt9x44d4tprrxUJCQnCYDCI4OBg0bNnT3HzzTeLn3/++YT3KSgoEBqNRgDikUce6XZ7Jel0kJWUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TWn+6AZIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvTfTQ5SkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpNyUHKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9JuSg5QkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfpNyUFKkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9puQgJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSflO6P7oBkiT952hububJJ59k48aNREVFkZ6ezrPPPvtHN0uSJEmSJOm/0pNPPsnBgwcpLS2lf//+PPPMM5jN5j+6WZIkSZIkSf91WlpaePbZZ9m6dSsREREkJiby9NNP/9HNkiRJkiRJ+q/07rvvsn37dkpKSsjOzuYvf/kLRqPxj26WJEn/IRQhhPijGyFJkq/m5mb++c9/8uOPP3Lw4EFqa2sxGAwEBASQn5+PEILU1FQcDgcFBQUYDAbi4+OprKykrq6OsLAwjEYjRUVFAISHh+Nyuaiurkar1WI2m3G5XNhsNvR6PW63G5fLdcL2aDQatFotTqcTAH9/fxRFoaGhAX9/f8xmM83NzTQ1NREZGYler6ewsBCA1NRUXC4Xubm5BAUFkZqaSkFBAeXl5WRkZBAUFMSOHTvw9/cnNTWVpKQk7r//fvr37//bP2hJkiRJkiRg06ZNzJo1iy1btlBUVER9fT0hISE0NjZSXV2N1WolJiaG3NxcWlpaiIuLQ6vVkp+fD0BsbCwOh4OKigr8/f0xmUw0NTVhs9kICAjA7XbT1NQEgF6vx+Vy4Xa7T9genU6Hoig4nU4sFgtarZaGhgYAQkND0Wg0VFRUoCiK997l5eVEREQQHBzMwYMHcblc9OzZE71ez7Zt29BoNAwePJiKigqqq6uJiIggJSWF8ePHc+utt8rBUZIkSZIk/S5aWlr47rvvmDdvHjk5OZSVlSGEwN/fn/z8fFwuF8nJybhcLvLy8tBoNCQnJ1NVVUVNTQ2hoaGYTCaKi4sRQhAWFobb7aa6uhqAgIAAWltbvTkvIQStra0nbM/xOS8/Pz80Gg0NDQ34+flhNptxOBzU19e3y3mlpKQghODw4cMEBASQkZFBcXExpaWlpKamEhwczIEDBwgMDCQhIYH09HRuv/12+vXr95s/Z0mSJEmSJIBDhw7xxRdfsGHDBvLy8qiursZgMGCz2aiqqsJsNhMbG0tBQQFNTU3Exsai0+l8cl5Op5Py8nIsFgsWiwWbzUZTUxMBAQEIIWhsbAQ6l/PSarVoNBqcTidmsxmdTkdzczMul4uQkBC0Wi0VFRXee7e2tlJWVkZYWBihoaEUFBRgs9nIysrCZDKxY8cOdDod/fr1o66uDrvd7h2QPnHiRK688ko5OEqS/gPJQUqS9DtYuHAhr7/+Ojt37qS1tZW6ujpcLhd+fn4YDAZqamoAsFgsOByOkyZPPCwWC3q9nrq6OvR6PXFxcQghyMvLIyMjA5PJxK6du3C5XZx55ploNBo2bNgAwKhRo3C5XKxZs4Zhw4YREBDAzp07KS4uZtKk8ygrKyUwMJB9e/dRVFzExIkTEUKwZMkSNIqGUaNH4XA4WLt2Lf369cNoNFJcVMyRwiP07dsXIQQ7duwA1EFKLS0tFBYWegc3eQKOk1EUBT8/P1qdrbTYWwgLCyMwMJBDhw4B0KdPHwBaW1sZP34806ZNkwObJEmSJEnCZrPx4osvMm/ePIqKinA4HNTV1QHqAJ+mpiZaWlrQ6/To9DpsNtspr6nT6TCbzd4Or7i4OEwmEwcPHgSOxiU7duwguUcy4RHhNDU1sWvXLoYNG4Zer2flypUAnHXWWSiKwpIlS8jIyCAmJobGxkbCw8NZsGABPbN7Ep8QT11dHevWrWPkyJFoNBrv+UOGDMHlcrFp0yZCgkNISEzAZrOxb98+kpOTATh8+DAAgYGBOJ1OmpubT/kejUYjRqOR+vp6AHr06IHNZqO0tJTQ0FDS0tIoKSmhf//+XHbZZUyYMIGQkJCufDSSJEmSJP0X2rhxI2+99RYbN26krq6O2tpaHA4HZrMZk8nkHTxkMVtwtjq9g4FO5ticF6hxCUBubi5paWlYLBby8/Opra3tMOcl3IJVq1cxZMgQAgMDKSosYtfuXZx77iQqKsqxWq0UFxezd+9en5wXwJgxY3A6naxZs4bevXtjsVioqqri4MGDHea87HY7R44c8Q5ustlsp8zreXNera20tLQQEhJCcHAwhw4dQlEUevXq5Y0/x40bx5VXXklmZmb3PiBJkiRJkv5r2O12PvjgA+bNm8e+fftoaGigurraO8DHZrNhs9nQ6XTo9fpO5by0Wi0Wi8U7wS42Nhaz2eyT81IUhe3btxMXF0dsbCw2m40dO3YwdOhQDAYDq35ZhVu4mTBhAhqNhp+W/ERUVBRZ2Vnegd4L5i+gR3IP0tPTaWxoZPWa1YwYMQKtVuuT83K73WzcuBGdVkev3r1oaWlh79699OjRA0VRKCwsxOFwEBQUhMPh6FTOy2AwYDKZvDmvxMREnE4npaWlBAcHk5qaSnNzM0OGDOH8889n9OjRWK3Wf+OTkiTpVORyb5LUTc3Nzbz88svMnj2bkpISHA4HoP7Y6fV672x5rVZ7wgE5Go2GgIAA7yClnj17YjKZWLVqFaGhoUycOBGn08mCrxdz9a1XEBgYyJ6Fh7DthKH3ZaEoCmuf3QMGGHZ1Nm63m/XP7+XMKWnoDXpGDxrHnplHGHqOemzAxngAho5WX5vXRmM5oKHfbZn06tGb7e/m4VgI5z1xHo4GJ5rlIYwZHEjKoFhstS24f7KSNS2e4PgAGiubsKyLYcjkTDQaDVv/sYcMZTDDLswGIGJnOoTBsCuOtmvQjHT0ej2VJZVsfS+X0Y/0xeFw8P7rH2KnmUuvmUptbS0//PADffr0wWq1cvjwYYqKivDz8/MJNjwJIYA9e/bwzjvvoCgKra2tBAcHExgYSF5eHgAZGRkoikJiYiJvvPGGTOxIkiRJ0v9BBw8e5N5772XNmjXU19d7O3/8/f2x2+04nU40Gg1CCE40D0Ov1xMaGkpRURFRUVEkJiVSUVbBvgP7uOCCCwgMDOSbj7/DTADX3XclOp2O1S/vYvDtGQQEB+BwONj00gGGTFPjn7XP7gFg2EXZCCGI2JmO2c/MGRN74Gp1EbU7k74DeuAXbCYjtDeHvy+lX1YKpgADwSUxVO1q5Mzz0tH761j77B4mKJfQd3QSfmEW1r6uvh42Vr22/pdw9V5nq68DNyfS9yr12nabnS2vHWLIFce16y712HXP5RAzNYDoHhFUV1fzxfvfMPnyc1AUhS8+/wK3cDNkyBBsNhsbN25EURTcbrc39qqqqqKqqgqA/Px8vv/+ewwGgzf+TUhIoKWlhfLycgIDA+nRowctLS3ceuut3HXXXb/dl0KSJEmSpN/M+++/zz//+U8OHjxIU1MTbrcbnU6H0Wj0zpY/Vc7L39+fmpoahBD07HU056VVtFx6+aW4XC4Wf7mMqTddREhICIX7Symb0+Sb88I359V/cgqmACN15U3sfjefoROzUDTH5bxQMK6JhO0w6L5sGuKaiNqTiXMRTHpiEvY6J1uWH6B31mAy+sfTUu/A/ZOVHudFEN0/jMZKG+a10QyenIFWr+XXLw+TpPRj6AVquyJ2pqvtOibndeaMNAwGA/VV9Wx6+wAjHu6F0+nko9e/pJl6/nTNRdTX1zNnzhwyMzMJCwujoKCA/Px8AgICvJ2IQgh27tzpfY5r167lhRde8FZ7CgoKIjg4mNzcXBRFISUlBYvFQnZ2Ni+++CJJSUm/1VdCkiRJkqTfSGFhIS+88AJLly6lpKQEm83mLXTgdDpxOBwoigJwwpyXQW/AYrFQWFhIWFgYqampVFdXk7Mnh/MmTyY4OIi5H8/Hgj9X3jcVvV7Pmpd2k31pAlFpYTidTja+uJ8h17Xlll7ZA3Y15wUQviMNYwMMmJiNy+kiYmc6mamxhPQIJDOkN4fmlJIdl4A1ykJgYQw1OY30Pb8HflFm1j63h/HKn8gYHEdwcgBb385hgnIJQ8dkg3JczsstsG5KIO3P0YSnBWO3OYjbd5AhVx6T81Jg2IyjOS+/LMg8P4Xa2lq+efcHJlw6Cq1Wy9KfllJRUcGQIUOw2+3eQe2g9vG63W6fnNfOnTt5//33fXJe8fHx3urpVquVpKQkzGYzN9xwA1dddZWs0iRJ3SQHKUnSCRQUFDB9+nRWrVpFfX09iqJ4Ey86nQ6Xy9VhMKDX6wkJCfEOUhoyZAgWi4WlP/1MWFAYV067Ar1ez9bXchk8IwOdTsfBlQWUrWzwDiYyro6EanVGltvtpkYRBPoFYTIZSR4Sz+6dR3xv2qwGJp4gJffnYtLPTcTsb1J3V7XgF2YmclAgZRvraCprwRCoIzDNQt2BZrb9Yy/9bstk0P0ZbHxtn/eygWkWUibG4mhwsvVtdUa+waLF5XCz4x9qqUcF9Z62SsCinucp5ZhxdiwALXV29VhFQQjBvvfLsCjqrDi9Xs8gZSzmOEhKSsLlctE8z8Cg89LR6XSkBWdTUFzF0GuOJqiaRTPDH+hJWVkZn370KQMGDiAoJIhdu3ZRXFxMQEAAdrvd+z727VPf0969e8nKysLf3x+n04ndbicyMpLQ0FAOHz5McnIy1157LQ8++GA3vjGSJEmSJP07Pv74Y15//XUOHDjg00mj0WjQaDQnnJHu5+dHgH8AJaUlREdHk53dk9KSEnJ27eXq664iNDSUda/lYFbMDLv5aAIjY0IsoQmBOB1ONr18gD591GTHcOVc73UBzIqZHTMLGHZ/NhpFA4CjqRVTgIH48aEc+bkK4RIo2raYaLcNpoDiVl9vfzuXQQ9mYAlWkxZb3zrEmfekkzElga2Vh33ey6D7M9CZtax9bQ/YICTLgqPJSXO5mhiJGxUGQF1h29JxRvWfc3u+UZf49cRax/K8Do9Ul0YJMAQyWBlPamoqiqIwjovV5M5o9dlYNyWQ8udIojKPJqj6P5BMS0sL7/79fZzYOfucs2lsbGT16tVoNBoURfF+ZnV1dWzbtg2Au+++m/vvvx8/Pz9vJYSsrCwaGxtxOp0MHz6cl156idTU1M5+TSRJkiRJOg1qa2t58MEHWbJkCaWlpbhcLm+sdbKcl06nIzg4mKamJoQQDBo0iIAAKz8v+RkDJm6+6waMRiO/vnqYQXemozfoKd5dQe635b45L9SclxCCKsWFn9aKyWQiIjKMMpoQ7qOxFfjmvPZ8W0T/ackYzXoAqnMbCE2xEjM0hOJ11dQcaMQv2khQmpnaAzbWvb6HYQ9kc+Y96Wz6237vNU0RJrKmJmKvc7LtHTUms4SacDa3suMfuepBLkALLftbADXWcrvU5xI3Vq0o2VKrxmkaoQ6W3/mvI5gUEwaDAYPBQF9lCKDmvNxuN41zdZw5OQ29WU/FoVoOFBT75LxaRAtDH8iisrKST2d9Rna/LCIjI9mbs5f8AnVAU0tLi/e5eKoc7Nixgy+++AI/Pz/cbjc2m42wsDAiIyMpLCwkOzubq6++mttuu+3f+epIkiRJktQNixcv5s0332Tr1q1UV1fT2tqK2+1GURS0Wu1Jc15arZaSkhLCw8Pp27cvVVVV7Pl1L3++5hIiIyNZ/+pejIqRYbcczXlFZQaRPCoGp72VmJxs+vbJQKvTMjJiHPaKozkvo2Lk0OdlRD4RiuJSY62GkmYCY/1JHBtJ/qIyXHY3WqMGjGCvB3erUGMkYO8nRQyYYcHgp8Zle2YX0PfGHmT9KYEdHx7yeS9n3J6COcTIlr/vxV4P/nFGWmpaaK5UY6nQnlYQUJvbAIAl0AzA4XnqMruK6CDn1baqXHy/GEwmE366AM5QhpOWloZGo6H8c4ea8xqjPpuAjfGEDPQja1ISrc5WNry4jzPu74HT6eTLD76msr6S8eeMpampiVWrVgHqoHybzYbb7aa2ttab81q3bh233nqrT84rIyMDu92O0Whk5MiRPPzww6SkpHT9CyNJ/wPkICXpf9ratWu55ZZb2Ldv3ynLTXvWUgV1zXmr1cqmTZuwaC3cNP0mzGYzm18+yKC71GpBuauOULy8nqHj1ESDWBoIdWC1Wr2DeFoaHPgH6wjPCKZsZUOH9/UkYfYtL6bP5CTvwCNbrR1LsAlrtoX6Pc24nG60erXjrHJzEylnuTBY1P/Et/8jl6GPZZE8IYayjXXseD+XYU9kk/3nRNY9n0NzpZuaw41U7q7xuXfdgWYaS2wcXFACQNrFsfiH+XmDhJQLo1E0CmU71FHGaeeog5KKN5YD4B9lQQjBtg9yve/l+CDC3ao+i8QxcQA0V6uJFo1GfS8F86ranRvWNwyLxUJ8XDxjlSkMPjsDnV5HSH00lSVNDL3Wd0DTiAd7UVBQwJdffElWZhbWICu7d+/GbrfT0NBAeXk5Qgj27NnDQw89xOOPP47T6cSgN6gVFioq0Gg0TJ06leeee46wsLCTflckSZIkSWrPZrPx+OOP8+mnn1JRUeGzPv3xMYKiKOj1ehwOBxazhazsLCrKKyjIP8LlV15GTEwMW19T44tjkzCJg8KI6xOJw+YgcncGsTGxaLQazBYz2I5eG2DfV0UMuz8QrUartq/ejl+QmYSJ4RQsrsDtEmg8nWM2386xnC8K6XdjD0IzrRz5uYrS7VVEnxFGwoQICpaWU7anmsieIcSNDadweQXN5Xas8X7e/bu+OkLy+AhspS0+zyh/RRnWRD9vWzMvTgIFNn9yAID4EeG4HW72fFgAqIOUXHYXtryj13G2qImtyKFBgJpcAjWWFUJwYG7BCT8j0dbp5h9p8TnXaDRiMpkYqZwHwKBB6jM3rYkidWokkZlhOGwONr16gAEPpmCz2fjH39/FiZ3BgwdTW1tLXV0diqJw6NAh72y0b7/9lu+//977XYiMjMTf35/i4mL69OnD448/zuTJk0/YXkmSJEmSTmzbtm3cd999bN68mYaGhhPOugd18JFHcnIyQUFBbNq4CQNmbplxIxaLhc0vH2Tg9DSMFgMlOys4/H05Qyeo+Rf3TwGAutSscKv3aShuJiQpEGu4Gle4WwVavdL+5sDBuUfof1MmerMBgLojTQQnBRA+wErFlnocTa3eHFfLkRZaW1wYTOrrfZ8VMviBDBJGR1C8rpq9Xx5h2GPZZF2SxLoXc6AFyrbXUJvX6HPPlvIWag42kLu8AoC40WEEJQVQc0jNecWMCEVr0lKyXc1LxY8NAwHFm9XjQzMCEUKw99M8ABSNor73Y8I7l1ONceLGqXmk5mo1yFN0as7rwHfF6mvl6HMxmU2YzWZio2MZpZzPwLPUZx6tT6LwSBVDp/lWmTrj/h6Ulpby2cdfkJqWTEhYCHtz9mKz2WhubmbPnj1qrLxuHevWrWPGjBm0trai0+lISkqipqYGPz8/LrnkEh544AGioqJO+D2RJEmSJOnE3n77bd555x3y8vJ8llnrqF/MU6nHZDLRq1cvqqqqOHK4kIsvnUJCQsLRgUe3Hs15BUWb6DksBYfNQcjWZGKj4jCY9Vh7WLHn2X3yVqUra0keFeN9XVfQSEhyINGDI8j7sRxnSyt609H4z+0SoFGP3f1pAUMfyCIo0UI+kLeyhOTxMSQMD6dgWQVFG8qJHxZJ3OgwCldWUpfbSOQZISSMU/fvnVNM0thwGgvtPu/58JISQjOs2OvV+Kjn5UloDVq2tg0WTzknGpfdRc5n6qAkY4AeZ5OLmn1HgytHo9qP699DnQhYX9TYdqxRzXktVfsyEQocF/p6BpqHpwUB0FimfkYGvRGz2UzPhqGgHM15GVdHEj7Qj/RJSThanGx6RZ3EZ7fbmf32R9S76jnzzDNpaGjwDlLKy8vzFlDYt28fH3zwgbfie0R4BAFWdWWdwYMHc9999zF+/PiTfKMk6b+bHKQk/dcrKCjgqquuYtOmTd6ZRtA+MNBoNJjNZm8FpNGjR+NwOPh13Tam3XQNkdGR5G0oo3hJFUP/rCYEAjcngltNwngHHtXY0YXrCE4JoXh5vU9gcOy9AQ6tLqPP5CRMfuoPqr3OgSnISGCmibq9LWpHkZq3oHFrM0zGO5OsaHUFaefHE9kzmPo9zTQV2whM8sc/2ULj4WZam1wY/DXee9rrHBwbB+WvKKO58miglPNpxx1WO2bmev/3ge+KQAsHvlZn69fnNxKeHcShn8oAMAboQEDBmmoAtBqNWmmpbZU2jaLB5VCfU8QQdaR2Y4n6mVhC1Gdw6Af1Wp4KTcfydJwl9AlFCEFjVduFFbXjsHJD09Fj295sQt8QTCYTyUnJjFf+xKCL1QpN4VVx2BrVZfNcLhf/74X3aaSaiZMmkpeXx549ezAajZSUlHjLmL/77rvMmjXL27GWmppKa2srDoeDp556iptuuqnDZyhJkiRJ/0v+9a9/8dxzz1FYWOgzE+z42MtkMuF2u3E4HKSlppHUI4llS5YTSBi3PHIdWq1Wnf01IIjkMTE4ba1sem0/SYlJaHVaCAGqfctc58+pJLZ3hHewc3NtC/6hFpLGRZI3v6zdwCO1YW3nLi4l+9IeBCX5UUAFzWUt+MeYMaeYsR2y4XYePddW2oIiFHQa9Z9TucvKiT4jDHOw2rFWvKKcsLQgGtuSJbs+zCPlomgKlqoDuW1FNnZ/lN/u2ZVtrqVsc6339b65BWgMR+O5lloHLrvb55yWWjVBE5JlQVEUag6q9wyK9wcg72e1I03RqgkaW5Hb+3l44rKo4cEANFaocZneoEMIQd4Phe3a6OGJyyyhfgghvIkhvV6P0WhktHI+AMPGq8md6D1ZpFweTWRqMAX5BXw5+2uGjh0MCixbtgwAp9NJXl4eLpeLDRs2cMEFF3gHqwUFBREXF0d+fj4jRozgk08+ISQk5ITtkyRJkqT/BbW1tdx2220sWbKE2tpan0Hgx1IUBT8/P2/Oa9SoUbjdbrau3sHUqy4mITmB0r2VHP66nKGXqjkv66YEAIKCgrzXrc1rICIrBL8wdWa72yXQ6o7L37S9zP2hkOA7rehM6sz6htJmguL9CR8URMXGWlptLnQmdbB4S6kb3KBpy5flL68g+LoAghL8qdhST83BBqL6hnirI9kq7fhFmry3bCqzozUdjZn2zTuC23H0WRz6oaTD55Lz+dFK5YUrK9H7a8mdr+almkqaaG1xUfKLGkuZAg0IAQW/VAKgVbTgVmipbbuPwBun+aeaQEBjsRpwBiepObD8Jeq1NUpbx1kHA5oSRqsDmpraBjR5ljMunF/lPdYb/waB2WwmPjaBscqFDLwwHYNFR7KSTdm6Oobel4Xb7eb95z+ilgomTBpHQUEBu3btwmQyUVpaSmNjI1VVVfz1r3/l7bff9ua8UlJSvBMHHn/8ca644ooOn6EkSZIk/S+ZP38+zz33HLt27fIuFwYd57yEENjtdpKTk0lJSeGXJasJIoLrHrkcnU7HuudyMIbCgHOzcTS3svn1/STFqdUiw1MCqT/c4nPN2h0tiAuFt8p3XVEjYSlBxPYK4nBeGa12l8/AI+E+2heZu6SSkFsCCYhQY7jag02E9wwktKeJqt0tOBta0bcNCMcOwnn0PmXb6ugxNgajVY3pyjdXEdkvlIYitX/u4LwSHC2tFCxTYyZ7pZ19X7fPJ9UdbKbuYLP3dc5XeRiDjo3nbPh0pQq1vxXAHG0EFOoOqbFsSKpadamwLU5TDBqEC2z7jw6McjarOUlrknqPxrK2iXgBBrUa5crj4rJjuNqKKwSlqIPSGwrVcw06AyaTiYHu8WqFprPUnFfU7kzCR1hJGxtHcUEx33w4h76je6LT6fj5558BaHW1enNeCxcuZNGiRd6cl9VqJS4ujtraWs466yxeffVVwsPD2z1DSfpvIgcpSf81mpubufLKK1m9ejWNjY0+A5I8FEVBp9PhdDoJDgqmT98+FB8ppvpQIzc/PA2dTsfuL/KoO9DsXfLCb0cspla10yciK5DiJVXegUfBWRZqcpqPDkSywMEFR+h3bSaWtk4qe70Dc5CJmAlWipfW424VKFowhx0deKQ1qkmZ8l11JIyIIHF0FDv25uFodGIMNBA+0I+KzU24nQK9Wf3PtmJbAynnCsLSrRygiN0fFzDwvjSy/xTPxlf3se/HYqIHWOk/PYVf3z5EyeZq3G43fW7swYE5uej9ddjzIW1qLOEZgVTur2H/V0eTNhr90eTOoIcy0Gg0rH8xh6INNSSdG4lfmJHC9ZXk/lxM9BnB4FLPKd5SRWCshYA4C1qjhtJdVWCBrCkJoEB1Xj0AicPUqktlOWoQYQxQn1dzbVsJbY3i7fwK7K3OumtpUBMlllD1WG8A0kH1BU/Vq/C+oQA0VarBiSewsh08eqxWq+VMZTQREwJIOzOBPr36EpOTzeAZagnMH17/iT1NWxlz9ihqqmvYtHmTev/CQu/37Oabb+bee++lpaWF1tZWUlNTiYqK4umnn2bcuHGn/P5KkiRJ0v81CxYs4K677qKqqora2lpvPHTsb7Jer6e1tRUhBL179SYkNITtG3YyIGEgwy8bgtPRysaX9nHmxekYTHqiW+MpWl7nnc1vjjVTuqqW5DEx3oqRTRV2rNEWMs6LZd/HRQiXQKPT4Jdopinfpt5fDa3IW1RGryt7EJziTx5l2Krs+EWYCB1ooWpzs3quVgNmqN2vdgRZQtSEzaGlpfS9pgfZk2PZ8uZBjqwvJWlUDClTojn0fQl5q4pJHBFNeH8rFb/WU/BLOWG9Awjt5U9zcSMlW6rR+StkTI2jYlc1tio1jhnycBatjlZyl5RQtevojH5zCNiqIW5CGAlDIijaWEn+knKih4YQOcSfsPRQts46RMLwCMwhGjIv7cHBxYUYrWqyJfW8eJqrW6g7rF4zNM2Ky+HCbRdgBr1Z5+38CusTgKIoOO1tA5ySrQDUHFBnfnkGedmqj37ennPDzwwCoLlGjYGM/m1VDL5X48gOl5zzVGgKM6EoCqbmAIYr5zJ0hNoJqlmuDjYaNj0bp9PJzBdnE5qpJmh2bN9BeUU5TqeTPXv24Ha7WbhwIREREfj5+VFfX49er+fMM88kKiqKTz75BLPZ3IlvsCRJkiT939HS0sK9997L3Llzqa2tpbm5ud0xngElTqeTQGsg/c7oR0VZBdV7G7nu4SvR6/Xs/uwwdYdavEtemLZEYajzUyfixfgD5bgcbnRGrXdAkCfGMwXBwR9LicgKwRik5mWaipuxJviTeE4Y+YsqabW1ojVpMQVp1ME7AnV5EKB0YzVB8f5E9VYHKdmq7Vjj/IgeaqVkXT0OmxODvx5M0FzYgrO5lbDsIA58X8zheaUExltIuyCeTa/v58DCUiL7BdD3ph5sfz+Xsh1qZfCsy+PJXViEOdhI9aFG4seGETc0goq9NRz87tic19EesAH3pqHTa9nw8l5KNtURNzoMc6iBip01HJxfRGBqIOZGBwarnvyVZQTGmtD56TEE6ijZWgkm6DEmEo1eQ+U+tR0p42NAgcp9amxlCVXjNXvV0erhntn8pij1+bTUq7GiNV4d0FS8Rh3crmhpn/PyVCUf2jagqW0SoqZtwFjZujrvsVqtlj7KYExJJgacmUKfnn2J2p3JwNvUCk0rPl7L5sMbGHbWYOrq6ti4caN6/+JibxWIK6+8kptvvhmHw4HT6SQlJYW4uDieeOIJWQFAkiRJ+q+0bds27rjjDg4cOEB1dTUul6tdvkOnUyftu4Wbntk9CQsPY8/6fSSQyqQHx9Jqd7HxlX2ccW4yllAzMdoeFC6qQqfRoSgK5mgjtqK2fqu22KT+cCPhvYOJHRFG/eFCWm1u9BYt/nFGGgvt6pK4OgWMkL+kirDbgrAmqLFDfV4zoZlWwoZYqVxfT6utFZ1Zpy7TVqHexxKu5ksKfi4hvFcgCWNiqdp9iNzlRWRelETyBVEc/qGUA/PzSD0vifC+gVRsr+PwT+rxoT2tVB2sp3hdJW7FRer50ZTvqMZRpw4IGnhPOu5WN4cWFqsDkhRAAaNVg73eTegZVtLOiaV4QyUFyyoItRoJ6eNHeEYwuz8pIGZoCMYwI2nnRrJ/SQmWtpxT1sXxNFXYqDrYVvGyfyjOllbsjW0T6IKMtNrVNvjHGdFoFex2tY8wrGcQAHW56gAnrVEDAuyH1GciAJdDPdY/US2mYGuL2fyC1Rgu95ej1S/brRbjVF+HJKu5Nl2zhYHKGIYMz0Sj06AsUycGDpueTWtrK5+88DWa+FbSMlPZtWsXJSUltLa2snfvXtxuN7Nnz+aTTz7x5rx0Oh1nnnkmqampvP/++xiNxi59lyXpP5UcpCT9n/TSSy/xwgsv0NDQ8RJpno6VsLAwMjMzqamu4cieEu589DZ0Oh17v88jJDOI8MxAANY+uwdNW8mijAvj2fjaPu91YgeEkru2in7xAVjaOoEcjU5MViPpFyawIUf94dDpdPQYG0nu/DKEEN4Ry6W/1tBjXDSJg2LVQUpuN3q9jvjxsez/sgghhLfTrXB5JQkjIvBrCxTK9laROCSGhJExVGw+0Pbjpw6GollNPnh+EIOzLBj9DN6R25nnx2JoG9nsn2yhx1nRagCjUeh5dRrGAAPBPfxpqXOCAuGZIey3lHirHnlms4G6lIjnuunnRuEXaVYHcEWZ0Ro0KBoFd6tAo1PwjzYTnhWIrdqBolGI7hNGY4ENW7WdoB5+hGcEcYBiDi8vImNyIj1GxlGxYR/CrXYSxg0Ow9mkdph5qkaljI4GwOSvJsGM/gYURSEsI5i6vSUoiuIdER7aWw3IPIOR/KLUAWatLWqQoWg6Li0OEJWpdpC5W4XPsWHNsYxSYhkyRE3iBW5JpMdF4cT0iaCoqIgPZ37EwCH9cbvcbNykJnMOHjzIwYMHvcma2NhYnE4n1dXV9OrVi88//5zMzMwTtkWSJEmS/lNUV1czefJktmzZ4p1ZfTxP7NW7V2+CQ4JZt3IDV1x1GQnJCbhdgvUv5DD0oiw0Gg19Ewew+6N8hBDo9Gq8UV/cTGgPKwnDYihaXte2HIiG9HOj2T5TLfus1WvBDMVrS7H+KZnQpECgiKbKFqzRfqSfH8PWt9X17nU6HeZYM/WH1Y4Vc6D6D/jSLdWknBtD2lkJVG3ei6NZjelih4RStLxKjUfaOnea8j2dPep7C4j0V5MNFrXNCcOiULQKIanqIKWE0REApJwTS2VOPdEDQnA5Q9HoFAKT/NCZtBSvUge7G/z0pJ4XR9WuvSgGNY6JHRPDwe+Kie4bAgro2xIxPSZEeTsHE4aHED8snMAeFsxhRlLOiUWj0VC4vAKdUYvOrCVtchyVO3JwtrRi8NOTcm4Uu77Iw+V0qc8QCE6zqh2TbdU8/aPVwUNhmcEUraxBZ9KqsZUZ/CLMagdXW8IsNEN9Dp5YV9GpSRprtPq8j60gGjkkyOd7YvZX79dQrCaGjq82CqDVaumrDOPMC9MwmAxkxmSz9+Niht6bhRCCt5/7J/VUM2LECI4cOUJ9fT2tra2sXbsWAIvFgp+fH2FhYRQUFBASEsK9997Lo48+2uF3V5IkSZL+03z22Wc88MADlJaWdlgZyRN3hYSEkJWVRX1dPUW7yrnt0RvR6XQcXFCM1k8haZS6bNfaZ/cgnIAe0i9IYNPf9oNQrxM/NIzi1WVEnRGKuS3n1VJtxz/aQvqUBDa+sg+3y41OryN6+NGcl6GtOlLRhiqsCf5E9w9XBynZXegtepLOj2Hvx4UIBDqDGn9U72mEP4F/dFvn2LpSek1NIWZQBCXr6tt1+OjNOkTbtHZTkAZLmNl7TPrkaAJiLAghCEozk3puDCgKihYsV6dgCjYQmmmlobgZRQORvUIo3lhDc2Fb1UjL0ZS40U/vvW7S2HBCM9Q4KSjRH41eg1avwdncit5fR2CiH/Y6J/VHmtDoNcSeGY6jthVbrVNdxqNnMAe/L+HwsmJ6X5ZMwrAIyjbU4nYLdIpC5JkR1B6uBw1o2nJOyRPi1PfYNnnPEqLGZUHJQVTtsqHRarwxkynK8x1QXwenqJ1hngFP2mMmHHp43lt820Bz1PQY2rZqnfrcQIYqZzN0aDYA1k0JmNJNDLgshYryCj74x2z6DOqJoihs2qRO2jt06BCHDh1i5cqVAMTExOByuaivr2fIkCF88MEHJCUltWuLJEmSJP2nsdvtXHPNNSxevJiGhoaTxl49e/YkLCyMTSt+5cJLzic1OwWXw82Gl/cy5KJMtDotfeP6s7tt1RK9SR0gVJ1bjznERPyACAoXVeG0t2L0M5B6TjQ7Z+Wpxxp0GMONHFhWQnjvYIIT1Mlk9UcaCc0IJPX8WLb947AaU+i1BMZbvFWJPIOhSzZXEpppJWVMDJXr62mpt2P115M4LoL8heW0Olzo2gomeJZc8xQr8AvzQ9EoGPzUGClpQjxag4agZH8qtteRek4MaMAcYkTvp6XHWdE4bU50Rh3WRD9MQQZKN9aAAFOQgfQL49n0+j40BjWOSRgXxYE5xcSfGYZGp6Azq+1ImxyLolHzQ+H9rfQ4K5rAtHqsCf5kxljQGDQUr6tG76fFFGwg44I41ufspaXWgV+kmdSJkez+ugB7oxOT1YDRCiFZVoT7aGGE4GR1WeLgHgEULq/CHGhE0Sj4xxlx1tvRaBU0WrU94b2C1M/DrMa6hkB1QJklwIKdRm+fJYC1bUCTZzWcgDC12IK9rfrTscd6aDVa0pW+nHFBCpYwE9kJvdn9QQFD71NzXjOfm00V5QwfMZTCokLq6+txuVzeZXs//vhjLBYLERERFBYWEh8fz/3338/tt99+0u+5JP0nkoOUpP94Dz/8MH//+9991nA9ltFoxGAw0NDQQFhIGFP+NIVAv0C2vZnH4Bsz0Ro07JuTT7TShFarxe12U3WoiapDTYRlWGltGyFrq7HjF26mfJ9aPlm41aXWirZUeQfueGaBl+2oJWF4BE016o6WWieWEA2lG44uVeZJApSsUQcpeXIth1cUknZWAoqhbWT0kUZMEQbvwCOX0427bUZU4eoaEgZHY2irnnR4cRGpk+MYelcW617MoXhzFW7RSs+rE9j9bQHlObWUbFFnbeUuKyYkLYjaw/U0Hm6mcG0FbrdAtAqKtlSRdl4s5dtqqDvQTGCahYh+wd73CXifC0B5Ti2Vu9TrHvyplOgBwdgq7RQuryR2ZChas5aCJeUEZ1kIywqm+kAtVTubsCRYiB0cjN3ZSnCgnrzlpRitBpInRxF1RghNlS0Ur6sgeXIUGp2Gljo7VTsrCe8bjhCC8rYZaE2VNrQmLQW/lHnb5LA5KVlTRni/tkoALeoo6Yje6kCjirbZarjB7XZzZHnl0ffWtvRMRH810LM3qx2uep2amCpYcfQ+xyfJPBWazMFquU6Tw48xygUMnZCFolGwblbLofe6K479+/ezYMECzGaz+r2rrMLldrFt2zb69OmD06kOxkpLSyM8PJy5c+cSFhaGJEmSJP1RioqKmDx5Mjt37vT+5h1LURQCAgJobGjELdxMnHgO2dlZHPyiAltpC8OmZON2CfS/hBNAEAD1peqAFLfTjWJQyFtZ7r2eJ/lTtrGKsORA7E3qb3JLgx1LsImStvjD5XSpg4VsUL2nBTFFeGdI1exrJCDKgq2tso+jwYnRaqBtJTZamhwY2zrSyjbXkjA6goZytdpQwZpKUs+OPiYebFFnt40MpXhVFU3lNvwizMSNCqPgl0o1oWPWYo41k7u0FFOIgfwl6vsp2aLOrCtYXIE5RIOih+JfygjuGYyzyekdhL7h5b0kTYzEVtU2Y8shEAZB0Vq1bFHuTyUExPmRu6BU/Uw2VNLS4oBmKNtdi97fSPGmWizBagIlqIeabFn7/B7ixobjanGRfVUiuz7fT8ygaEq31jL0niyEgLKd6vMMy1BjoLy22Mptd+NUWsn9qQRziIbmKhtuN2CD+CFhCLegaIdawTIw1h8hBIcWqMv/6jQ63C439SU2MKuxU0ud+t5CM9VOvsLNnthKjZHLttYf/Q60xdexY9uqX5a3xfwuBbfbTf78o7PVAAYqYzCHaDhjdCbOFiebXj1A79sSaXDUMefbOVTWVBIUGOSt7lVVVcVjjz3Gs88+S0tLC2azmZ49ezJ+/Hheeumldt9xSZIkSfo9vfPOOzz99NNUVFS0yz8AGAwGTEYT9Q31WP2s/PnyP+NvDGDXO0cYMC0Vo7+BfT/mE6k0oVHUZcHKdtVACySOjPTGOPWFzYSlB3qrW7fa1aXWKrZW0lKLWgXApcZlR9aWkXlxkje2qj/STFCSPyU71DyLcEHbvDBq9ja1bVPbvn9RLr2nZiDawsjKPXVY4y2YgqClVs3l0Nb3V5fbgnALbyfQoR+LyJyaxJC7M1n/0l7yfi5FGCDz0nj2fnmE4i2VVO5S25D7UwlhvQKpPdRI7QEbucvL0CjgtLmo2FtHj/GRVO+to+5QC6Vba4nsG+gdoAR4c0gAJZuqqDmkPpe8lRXYGx3Y6p2UrqomvH8gxgA9hSsrCUozE9TDSl1BIzV7mziypproMwNpqGgmqncIB38sxhSsJ2ZoCEkToqgvbqJkUzVRQ0LQW3Q0V7dQtqmSgOQA3K2C8j1qXGarbsEUauDIyqPVwu2NDorW12CJUwcsOdom80X3iwSgIqdWbbzQ4Ha5yV2knosbXG2jkAIS26o3tVUlNwWor/PXtN1HKGru8xieKgIxGerSJjqbgRHKuQwal4HOoCVgYzwo0PvueA4dOsQPP/yAwaB2AFZVVdHa2sry5ctJT0/35rySk5OJj4/niy++ICoqCkmSJEn6o9TX13PFFVewYsUK7xK4x7NarTQ3NeNyuRg/YQK9evXk0FcV2ErsDLs4G5fThW5lGKZ6Na/SWK52qjmbXGisGvLblhBTcx1usEPpxgZiB0Rgb6ua2Fxux5Ckp7KtmrWj0YnerPNWO3I53bS2xSrlO+sIzQj05pCayluwxlgQWjWgaqpsxhyo/sbX57bQUuPwtil/WRnZl1qwVav3rT/STEhqALEjQilaXUXN4XqCe1iJHRFK+a9VKHrQmTT4xxk5vLgES6iRotVqf2n+yjK1v/SXKoxWOBKoo2xrPYGJZhwNTgJi1AE6m9/YT8zwEOz1avvdDrfa57ZGvU7uslICE/y8S8Pl/VyKy+0GJ1TsrcccWk7FrnqK/aoQThdB6epz3vDKPqIGBuEWkHp+NDmf5xE5OJTqnHrOnJ6BRqtwZF059nqI7KP2EeYtVatoOpqcaAwK+T+XgBHqixvVZXkr7CSMCsfldFOyXW2Pp9L4oQVtuSih4G51U9NWtdzd6sZWoz7PsN5BCCHUypoAQs15lW9U36uCgqtt+eGgTLW4QkPp0U5Yt9vNwXmF3nM1ikIvZTAYYdjobJy2Vja9tp+0K6JptbSw8MdFFJYcIShIzXm1traSm5vLHXfcwX333UdLSwsmk4m+ffsyefJkHn/88Q6/45L0n0IOUpL+ozz55JO88sorHS7V5hEUFERWVhZb120ni0FMfnAkAOueywE7REdHe//x7mhyYDGa1ZKGqAkXjVbjMxjHM4G7al8DfuFmzAHmtnNbMQboMVvA1gytjlaUtixM0fIqEkdEQqt6cnOFHf8wM3FjYznwdRF1RxoJTPD3DjyqP9KMy6X+KFduaCL9LAW9tm3Ztp11pJ4Xx4AbUtny1kE2/H0vg6dnkjA+nIKfK8j5Jo+aHLXBFdsaiB/h9C63kbewjEEPZKAzabEEmTjwtdpZNOSRLBpLbexqG4UNagKmZE2N9/WBr4sITLMQOzKUolVV1B3wLRXutrt9jrWEaehxnjpr7sBh32ML2jrnanKacdqh9+WJ5PmVUrK+hgMFzQx5JAuNTmHfD4XQDOH9AojoHcz22YehWX1fdfkNVO1UA8PoAaEUbaxSr2uB0LQgXA43ZRvrsISpI69tlQ6aK90EJKsdaft/VIM/a5wfwiU4+I0aRBgseoRb0Fzcon4eAuzV6mcRnBmgdrK1BSuexFjlVrVCl0aj8VZVChugdgA2lqrfTXOwOkp677dFbd8j31HRVquVvtn9cCy00PuqJAKiLRRvqWDe/B/JGpNCQ30DW37doj7fAwc4cOAA4eHhaDVaEpMSqa2tJSoqipUrV8qBS5IkSdJvorq6mvHjx7Njx44OZ4p5ZGVlYTFZKNtaw+SLzyOiZzCVB+rY/0UR/fumozfpsJUe8R7v+UUsXFtMcLIVfVt1xqbqFgIiLbhRB6EIl/DORqvdry4lotWpx5ZuqaTHuFgsoepvs73WiTnEeMw9FPRtA48Kf6kkfkQ4ARHqP/gPLSwifnQkpgAtTYCr3g0mwAzY1MpIIUlBQDEVm2qxBBtIGBJB2Zpatr2TS0iWheq22Gv/17n0uSmTxtImbKUtFP9Sxhl3ZBIY6+etvBkzMpTEkRFs+yAXW1ucYKt201hiw1btxrZKTU5UUE/SxEjKNpWRt/jogGgPz7mVOxqo3NFA3KgwavKbvIOgQH0PjYU2bEU2bGoIQszgcAbdn8HG1/ZRuLwCa7KZHhOi6Dk1jc1vHgCgucoOAg7NUWOedS/kEJRupna/jaSJkSgahY0vq+9n4J1pGIL07Po0FwCdRYuCQsE8NelSX9gILoXa/TbMUSbQQOXeerBB1mXxaDQaqnLU5I1Go0ERCoU/eWJQgbPZBTZ1KT+Allo10RYY5w9A8Tr1eWl0CgjfJefcbTFwaN9QFEXxLudrtBgICIuhX+0YUGDoDeoMtAXPreWQbisDR/dn9+7dlJaW0tLSwubNm9m8eTMvv/wyISEhBAUFUVFRwbPPPstdd93V7rORJEmSpNPh/fff5+GHH6ampqbDAUmg5hJ69uzJ3k37SWk9g3MeGIKiKKx7Pgea1Yo19sa2Dq4qO6YAI0Y/E9BEq8OF3qgDT0rNDUpbiFexvZaw9ED0BjV+stU5CDCZwWQCWnA0tXqXGanZY4OLFFwOtY2NRTZCkq0kDgpl35EiKnJqiewV7F3SrWpPnTfD3HjADUJB2xbjlW6pJrxnENmXp/LrPw6y+bUDDJiRRsK4cAqWVbD7c3X5OYDaAzaaSmzeYLJ4XTX970jFFGIgINFE7nw1fjrznnSaq+zs/ijf+9xcLS5Kt9V5X+fOL8MSZyJmaAjF66rJLfTNM7rtR59/7qIyTEF425Q73/fYwpWV3va11An6XZ9E3opyStdXkzu/hTPvSUfvr+PI8lIqtrkJTDHR2uLi4Lf56gAwoKXKRu0BNQbuNSqCovUV3sl00QPCaLW5qNhWByY1T9lS6aSlvIXgTD/qCpsobBtYHpJuxe10e5euMwcZwQ0tbXGkcAtsbR2cwen+CLegcI16rinQgBCCio1qoxSNxptfNMerA83ri9UY2L+to/HICjW3plHUuMwjICCArJSeNCsG0s6PJrxnMKXbqln8wxISR0Vhs9m8VZcOHz7M4cOHiY6ORlEUkpKSaGxsJDU1lQULFhAUFIQkSZIknW6eAUnLli07YQEEgIz0DPwD/Knc0siQwUPJmJhA5b469n9VRL/0FCxWI7YSdSCJcAkUoQYqBb9UEDck3Fuxuv5II+HZwWj8DICd1haXNx9mr7SDGzRtOa+CtWVY4/0wBahxWVOJHWuCFoyAHXALDBZ1X01OI63NLvwj1d/mQwtK6DEhAm3bzDxbuROz1YTRCvZ6dXWQsPQg9huLqT/cQt7PpcQPDqd8Qy17Pz+CtYeJ+lw1bsj5ppCBd6TTWGrDXu+m4JcKhj2QTUhKIJvf2E8NjYT2tJJ6XjQ7Ps7DVqLGGPZ6sJU7sFfaKW/Ly9TubyJmeAhVO2spXnNMIkeof54BWHUHm6k72EzEgCCay2xq9aVjNJXasZXY8XxikQMMDLw7nc1v7Kd0cy3GMCOp58ZgTfDj1/93EICGomZ0Bg0FP6kDjTa9vg9ropH6fDtRA4Mw+OnZ9PZ+sEPvaxMJiPVj9+d5YG9btQWFgoVqLqo2vwFNoVatUmVUP7OKnBqwQ8JZ6uddc6it/9CkRbigYJEa0ykasDc4sdeDUR3rhK2tqlJIWzWnss216rl6DcIN9oqj+VjPajChqVYURaG5Qn0KfgFmLBHBZNYMJlMZzNBpWaDA4uc3cEjZTr9xvdi7dy9FRUU47A42bNjAhg0beOKJJwgOCiYkNITm5maeffZZbrjhho7+M5CkP0T7GrCS9DspKCggJSXFu1SXoig888wz3gFKnpk4iqJw1VVXcf9dDzJBuYRpU2/grLPO4uIRlxGqhHkHkQBHlyozti21tq0SIQShGeqybrZqu+867ijo9OqxhW3JAc+I3+LNlbhaXfinqj8euBSfssnCLbBGq51hB74uor60CU1b+b7aw00IlyAwVr2W0aojOMnqXYpsx2d5mEPU91f+az11eY1s+Zf6g2qxaNAaNYRlqb9iNTnNDHogg0EPZADw69sH2f7uYW87Nv6/fRSurVAH4QBYQKNVMAb4jkHsMS6aIY9k+WxLmxRL4phILGGn/r+CvjdnEN0/1GdbwvhwEsdE0vv6JO82vVENhAIS/bzb1r+ZQ8Hqcu/nU7GtgfUvqgm26OHBDHsi2xvMWRIsaI0aQtt+tGmGkl+rOLxY7YnrcW4cNYcbvAOwks+KwRJqprlAvXirrdU7OhmL2vF1aIV6bq+piSgahfLtauDjF6IuX1K3Qz3X5XRha5v5b4lRR583t609G5mtrhtbtVtNemkURZ0p6BmvpRytPhU7Uu0484xQ17eVyMxbUEFvZTAjR45k0nmTmKBcwgS/S5g+fTqDzxystsnfj8rKSqqrq9mzZw9RUVFERESoJSUtFu65555TflaSJEmS1JGXXnqJgIAAb9wVGhrKtm3bvMvWattKGw88YyB33nmn+julXMIll1zCpEmTyFT6U7SirUMkUI1jHDWtKIpCSJYa87Q6XN7lUhty3Qi38P7G1x5sVpc1GxADQFNli9oJpY5VoaXeTqtT/S0t3VavViiMUuOJyn0NKFqF1IvVcw8tL6S52u59b612F44mdRBy7X4bAVEW0s5Tl87YPvMwtYcbyZisvs77uZSC1RXec0NSA9BbdJjViVbo/QwMezybsD4B2KrVyke1+9XEgK3aTcHKcu8AJQBrjEV9z8eUce57czIpZ8cQ3la10SNmUCh9bjr1cq9+iWYSx0SSdm60z/ah92SRcm6Mzzajv867XAdA/WEbBasrvAOUALa/e5jt76nx46AHMhh4V5r3PQWn+qtLy7V9DptnHqB6f8PRpfKCDGz9UB2wFDkwiOBkK4ZANVlmCdMhXIKafWr1AbdbUJ1XT8HScu+z8VRKAtBoNbjb4rTgVCMup4sjv6jH+keaQEDVLnWAk1avPdoZ1lahqb5txllQDz+1QtNa9XPUGdrPvXG1uAlRQpgy/lKGDx/OxaMvZYJyCfdMv5err776aJs0GvLz82loaODuu+8mMDCQoKAgtFot/fr14+DBgx19RJIkSZJ0UrW1tQwfPhy9Xu+NvW6++Waqq6vV5dLacl6gcNlll3HP7fcyQbmEKyZcy1lnncX5o/5EkBJEq+24ypYCbx6rZIOa8wpMUuOw+qJmNedlajvULdC25cdq9jYh3OoSrwCFv5TjsrsISlYHgbtaji4LC+oscc8A4iPLK6k8UIe7repOzf4G3K1uTOHquYZAPaHpgYT3U3NvW2cd9k7sashvoXJ3Hb/Oavs9NYHRqic4Tc351B1qof8dqZx5bzoAO2flsfODPG87fv1/B8lbXkZD/tGBQ1qjBmNbp55H2uRYhjzsG2OlnhNNj7OiscSZTvg5efS5MYO44eE+28L7BZJ2Xiy9r0vybtMY1HjGGmP2btv0t/3kLS2lpdbtfU8bX91HSy2EZPsz9LFs9H7q520K0mDw1xOSdjRGzFteRu5StYJm2jkx1BxoYNdH6jNIvyCewDg/70AuR4PT24EF0FRh4+BSdbJA8vlRaPQaKvepHWfWaHWJ3vK22MrV6sJW3fYcTWpHWlOF+jq6X5SaH8tVYy2tVp2015DfthSMVkOrXb1vUJqaS3PUqBNETSHq8y1eVUqa0odRI0ZxzsRzvP+WmDFjBsOGDgPAz8+P6upqKioqWLduHWFhYd6cV0hICI888sgpPytJkiRJ6sinn35KbGwsWq26fH1gYCDz58/HZrOh1WrRtRUN6Nu7L9OnT2eCyZPzmso5Z59LmtKbqu1qhR1PnNFc3qLmz3qrv9uOJufRJbzsag5Mo1NfV+9rAgUi0tX4SV1yVsFoVfM19SVN3t/SxkN2NIrirbhdvrsWrUFD6tlqDmjfgkIaStRBMgBOWyuOtipMthI7QQkBpE+OBWD/t0WU76olfrR67qFFxeQtL1UHOwGhaQEYrXqMbXGbRq9lyCNZ6nuyw+a/7vcuG4cdDi4sZvM/9nufq3+cCY1Og97g3UTG1DjSLoglamCQz2eQNCaKPjemnvKzMlo1pE6KIXmib35r4L3pZFwY57PNFKRXl6hrexb2SjuHFxXz68yjuZq9XxxhV9vg9f53pNL/jlTq89UHEJZlVd9/2/k7v8hXV5hpe89+4Ua1mAJg7WEisk8IpmD18/cPN+JyuKhrK9qg0Wqo2FvjHQwVlhqIaD06yEhr0OJuUV/7J/nhtLVyZH1bVfIEtbhCxXa1f1Fv0sIx+TLhFtQXqUUcglL9EG5B2Ta1H1Pnp1MrkbZ9pkIBh60Vq2JlXJ9zGT58OBcO/5Mad91wN9dccw06RX0PWp2W/Px8SkpKuPHGG7FarYSEhGA0Ghk5ciTbt28/5eclSb8VOUhJ+t08++yzmEwmb3ImMTGRw4fV//NXFIWw0DBMBhN+WHnkwUd4+OGHmaBcwnj+RHJyMiY/9VekaLNaAju0h5r8aG1WO8dQczK4W4V3sFDJ6nqES3jXN7XVOFEUhR7nqeWRGyuPztACaLW5aK5RO2Tq9tah1WlJGKQee2hxIcItiBurVrWpL2ii/sjRkpABERZCU9VgpWhVFS3VDlLbOpFyPjtM1YF6b6WgpJHh6P103mvt/raAwdMzCe3tR3Olm7Wv7+HXtw+d8FmG9vZj2BPZJE+OgmYo+PloRxvNsPa5PWz5u2+HSsXuOoo3Vvps2/P1EaoO1NNceeLqCR4Fq8rVgUbHbvu5AluFnZ1f5Hm31eQ0s/bZPez/stCnTZ5BYEMfy6L/9KOBiilIjW4aK9WOxeaCZta+voet/1Tf/6D7M1AUhYptbUmWBD/vGrIAe77Kp6Jt4FBobz/0/nr2zVUTNL2mJmIKMmIyqd+d8p01OJtaKVmv/rgbAvQ0lR8d3KU369C1jWb3jzXgsrup2FELgF+kWQ0MNrYFERa9z3dHuAVNxZ7OPrVCU8lO9Xl5Rr17jxXCm1SKPiOYkJAQhvQexgTlEm67/nbuvvtuUpVsFDRkpGd4z7PZbLzxxhuYzWpCyGq1MmzYMAoKCpAkSZKkY1VXV9OvXz+1kk1b7PXII4/Q2Kh2UhiNRiIiItCipbdlII8++ih333wfE5RLGDlwNMHBwUcHHtldCEX9h7Onqo1nXfeKvWrnWHgvdYRPY2mLd6kQUAeEm/zVYwuXVyBcAmvbgPDKnHqcza2EtC1FodVqMVnbsh42tYS1KfTouc7GVqrblrawBFmwhBpJ+5OalDkw7wimYIO3Ok/Zzhq2f3J0dn1wagDBqUdnLRn9dQy8Kw2Are8cYu1re7zvzV6v/qvfFHS0clP/6anewd6Fv/jGU3u/PMLa5/ZgKzo6M2//N4dpLLZR8Wu9z7EFqyvI+7m0g0/MV1O+jcqcOvZ9leezvWhjFcVtZaM9Nr95gHUv5PhsK1yuxoYp50cz7PFsrMlHO9JQ8A4kA9j6/9T3jw3C+1sZdEcGe39QY6nEsyPQ++uIG6J+vmWba6naV8/2j9QYvsfYaBpKbFTuUOO00HQrwfFH47S6gibvDLPEsyMQbsGB+erg8dj+EWj1WqoOqd/J5poWHHVqZ5dnwFRdW4Im9dwYdRZZ26w9jV7B5XRTv0995hqt4k32mWPbOs4a1djSGm1BCMGRX9Tn5me10COph7fj7Pbbb+e+GffjTxCREZFERUXR1NSE2+1m+/btZGdne/8bysjI4KmnnjrBpyZJkiT9L/vwww8JDQ31/mYEBwezdu1aWlvVnFVoSCh+Zj8CCeWBGQ96c14TlD+RnpqOxarGR4Vr1CpL1mj1taPeiaJRMEWp8ZKzpVVdAheo3WfD5XChNaqvbaV2FI1C8lnqklo1BY1q2qJtjI692uEd5F2T14TWqCV2QAQABxcUIVxu4tvyVNUH6qk93OB9fyFJAYRlB6n79jRSX9hM8gQ1Dtv5WR4Vu2rVSkBA7KBgjEF677X2LyjizNvSCe0TAC2w9rU9PpPvFI3ik18JSDQx9LFsepyj5uOKV/vGPutf2uudOe9RtKGSwnW+Mdr+b/Ip31Hjs8zbieQuLSVvuW+ly4ptddTnN3Pg+zzvtubCFtY+v4f93xX5HFu8Tg0kBz+USb9bU7zbTZ6B/Q3qc2+pdavvv23weP87UjFYdN5nF5JhJSQz0Hv+9o/yKPlVff+WOBPmMCMH5qlxWsoF0fhHmrEEqYFT9d467LVO7/MyRxhoKGr2VtYyBRm9VUuD4kw4GpxU7lFjVWusH26n8J5rCjT6VAx3udzUF6oddOE9g9WKTHvajm3ryPVUjUIBZ7MahwWlmQkKCuLMrCFMUC7hpstv5a677qKfeQh69GSkZ6Bpq1pfU1PDSy+95JPzGj16NHl5R5+/JEmSJAHY7XYmT57s09941VVXUVxcjNvtxmg0EhkRiQETWcoAHnv0MWZcfzcTlEsYlj6KkJAQQtuWEXPUOVE8Y0XstA1SaiswsLsS4RaEtOWT6g43+ea8hPqbCVC1ux5Xiwv/aPV3uXJnPfY6J6a2gc16gw5LiNE72Kb6UAOm0LZzd9bTXN5CZdsEMJNJjzXOj7S2/sUDPxRiDDVi7dE22HxdhVoJqE1E72BC24oe1O5vQlEUzmiLR3Z/WsDa1/Z4KxnZG9TfaKP16GSvXtckMvhBtR+qfEutdzAMQP7icta9kOMd9AOw74dCag40UtpWFcjj4KJi8n5uXzn8ePZ6N8Wbqtg3t9hne+Ev5d7JaB47P8hj/cs5Pm0q3ay2MXZEKEMeyfI+F8AnpgTY9XHb+69XByENuDmNg0vUCZgRA4Kw/H/23ju8sfJO+/8c9WZ1ufduT/X0mdBDJwRCJyEEAgQIkAAhtCS7v2STLAkpmwALG9IgDdIJJaGHNo0ZT3fv3ZaLLNsqtiX9/nikI8mSBrLvvu9usrqvi2uwjs45Tzt6vuf73M995+oo3irEGby9AUb2TdHxW7HeVnFmAfPDfplYlL/ejr0yHqdNtc0y1eaVrxUJhemOii0Ubc5FrVfh6xPx08KUn0BU1AAAhYSnX+TDCj9gR6FKED0wKFkOhJg8JI6r1Iq4VbEWFApJzp/Zyo2EQxHGDkbjP4uOstJyTuECkfO66dPccfOdOCnAYXNQWFDI/Pw8i4uLvP3222zevFl+hurr63nwwQczdVsWWfyXI2v3lsX/Ndx1111873vfY3l5Oe3xgoIC8l35LByO0LRmHXUXljE94KXtiSGWfWHUOjA4FfgmwywGllFGF1NmDvqQzpcwOsXEM9YyRdn2AspPzqPvz+P4p4NoElSEJKWEKVcEAh1PD2G5q1Y+1z+xiNGuw1Cok5WIzIXCps03Gabr1SHMuYL5PNW9IBSCogtrE0dmqDm/hNrLi+l4eoj2Z/qZ6o6TlrQ2DdH3bHyTYUKBMFs+X8feB9s5+kQ/pkoD81EGrqPKiFKroGhbLlNHesEHuRvM5G9wcPiHvex9ML5bHyC4EIEIsmIAgN4JTTc1MnHUQ9cfkyd3gM4VCRQA30iA9qeGUj5Ph+G3ptJ+HiMTpcAA229vYGEiwOEf9sY/DyPLSYOQ4I5JdltqDFScls/BWLLKACq9EketmR7Egt6ur7ViKBV9UHNpEbYyk6xmkLfOITPXAY4+0U/uBjMT0QXC6vOKCc7GAwGFUkIVVR5w1eYwvHccd4xIdkoBSq1CJjQtB5aRlHGyUXg5wmSbSEI1fKwUhVLB4oJYHAstLxNejjC1T/SvpBBsdxBjWqFQsBQUf+cU6QiHw/S+Kto3Rmgqp5FyqZEdlzQSWgzz+jeamSzrxlXslNnNc3Nz7Nq1i7KyMnFOeTkul4sXXnghaxGXRRZZZPG/DNPT02zfvp2Ojo60xzVqDfV19cwMz1I6s5pT7mhCoZQEuSXKrdGaxRw0uGeC+g+XYa4QtmeRQASFTiHbpS35llFqxALHyNteSj4QJhyOzoF+sQu/8rwCep4fZaJtCnuVVS5HOBQhFN1VNLJvivJT8qg6p5Tptg6OPj2Ic5VBtiFTaRQoVQkqlssR6i8qZ+fXWuh9YYy5oQWZHKPUKFFqFBRttdH1ez/dL46y+dO1uI/O0vfiOId+1stCf5xEZK8R6kmxOuGHdTdW0vHcKJ4OPzu/2pLUfuFloQqViHU3VqK3atj9jbaU9vZPw+Ef9aZ8HiMPvR+0/yY1RospFKVD9UWF5DZY2fmdFrlPl/whiMCSL172vd+Mx5Vrrqtg8K0xWVWpcJMTlV6JMVfPQr+f/pcmmGyfk9tuy+frGD80I19fnaNCoY/30c5vt2AtEXF348dKsZQaOfpL0Q7GXD2SQsI7Kk6e7ppjdmReWL/ZwVxoZNEjkizmAkEOnx8W8bnWpGZxfkm2vjO5EkhXiB1kMWuTwg1WiMDwAdHWRrtIWsbs9MKhMMs+MV5j5K1Fb4ht0uk0nFuCrTSHA4/30D56jPyTcpiYmKCtTfRxR0cHX/7yl/nyl7+MTqejsbGRM844gwceeCBjv2SRRRZZZPGPie9///t84QtfkAngK5GXm0dRQRH+Qwqq8uvZcEMlU91e2n85RNCzjN4qyDhz/QEC3iDKqB1IILpj3+gUc9TIwUlq80spWG+h9y8B5of9GPPjCzEKlZKcqPLkwGtuHKssaE3R3f+jAWylJnLydLISkbXMhM4qCCVtzw5giZ47Nx5AUiowRvNnY83TrLmqkrqLi2j/3TCtv+3DMxiPpYx5urjaeAACnkU231HLu9/toPtPo4w2x8lBBqcOtUlF4UYHU4fnIACWKh3FH8jj2JP97H8orv4IsOQHwhERx8Sgg+13NDJ+dJqeZ1MJ3/0vp8ZIAU+YzjT5sXRwJ1jFJSKmaJQOWz9fh28yyJGfxL8TCUUILcbLPbJrWiYw6fJ11JyTH/++TmzcczaY6XtJ5MX2fKNNJqSVnuYid62VfY+J9slvsqLSKVFEFa+6/zTKTNcc0y1iDDZcWkFwJp7zUqoUqKLjylKlo/+tMabaRJ6q6pwSNDlqxg6KsoX8IcKmBLuRpWUm2zwAlJ+Zh0qjJBTdbBeKhFgOhBh7NxqHaxUszi/JdVIoFYQC4m9LhYlwKMzQbtE/eqsWIuAMFHOyVMy2CxsILYd468HDjOS3UlhdwJHDRwgEAszNzfHmm29SUVEBQFlZGUVFRfzud78jPz8/Y79kkUUWWWTxjwev18sFF1zA22+/nXa9UaVSUV9bj98dpNBdz44bV6M2qtj9gNjQFQ5H0EY3xQ28NY2jxoKxSMvUEVheWEZv16I1Kwh6w/hmAnIs5WkLsji/TDgk5sDFhWVUWhWV5+bT88IYI/umyFtrl8uxHAyzHF0Hmjrmpe4jxVR9sIDmti5afjuEo86ApcTAbJcPtVYhr00BhJbD1F9cyu5/bWVsn4eAdwlPR3y9UWNQ4Vplw9s7ysBrbppurmKqy8vAy24O/KhHJiEBuBot6GKEqKD4r/HKUgbeGmd+KChcThKwvBhOdqwB6i4rxlJqZO9D7UkEIRDXa30qdeP8xH5Pmt5Lj76/pJKZVpKeElFyiouibU4O/Hsrweh+wCV/CMKwFIiXvfnhOJG97tJixg5My6pJBZudaC1qzIXC8m5iv4e5Eb9sY7fxthomjngIekVMZHBoCSWoHe3+bivmqANL2Vm5OBsttPxabJA05euQVAq80XXmme55BvZMiGtpwVlnxT8l7qN1agkvhfFNiL+NLh2+mSD9L4p4yVpqSlJrD8wvEZgSMV7hBjuRcISxoyKGM+caUSgkvJ3iWuFwhIAnmkszK0CCxdll1ksfoPKkPPLXOjj6s246+3qwnaRmamqKY8eOAdDe3s7dd9/N3XffjUajYdWqVVx44YX80z/9U8Z+ySKL/xNkSUpZ/Jfhhhtu4Kc//WlGUpLD5uD0M09n6rkF8OnYdm0DkUiEPUfahMLQheIHFWDk8CTlJ+ZjqjHim5xDgSQvhoFQPIolcIZ3zlC6NV8mBIUCITR5eopPdTL0+iQDOyewJFiPqfUqpFzxA9/5+2Gc95up+3ARBx7rZmT/lGBFR9UNK04oRKlV0PXSiFAo+pcWqi8U7GX3wTmqz40QDooJa6p7gR13NhLwBGl+uDtloreUGFDplDLxar7HR9NNVbT/tpepIwvs7G6JW4cBFWcWioSPgfjnBjA4Bblp5eKZqThHTDi+5PZfd2MlxlwdBx5twZ+wqaxgm43y0/LpemFIVil6L2y6XSgO7Pu35ATSps/WoMlRJ5fJB0jIO/pi2JXQLo41RlldCqDughJUeiWGUoOwb/OJxa5Y/dfeUEHPq+MyuctaYpRVsgBafh4PjPROaLq5kdm+eUFSMghyVIyNnLfFIohl0ftXnl2EUq2g/y1Rh+Hdk7gao6xog9hxNtkpop+iEwUZSpKivr/TQTzqiEwEs5UlW7uElyIsz4tANn9bLkRg4F0RhFlLzSgUCtmuLrQckhfODKUG0acLSxgkA6d/4Cyc1VZcY1XML/iouM5Gd083r732GiAsFPv6+nC5XKhUKmpqalhaWuLVV1+ltLSULLLIIoss/nHQ1dXF6aefTn9/f8bvbN26lbUNa+l9YgZnYw61Hy5hpHmSvhcmWJxfQm/XorcLQk3Auxi3re3yo1AosFda6WOSoYNuKk8qpHCTg5G3plhaCMVtuAClWoGr3kYno7T/egjl1Qo5HlGpNKi0Spxrc5g8PMds34K8Aw0/LIwHGDsUlTDy+ynZWsHSmmXe/XYH+x/qwrk2B8dqE1NH5/HPLqJIiCvyNzio/XAJO7/dwtTReXYeTY6N1AYVtmoTfS+Os9Dvx1qrp2hbLsee7Ofd73TECUqAtVaPMVdHw0eKkhIa9gZB1Dr4WA8roVBKIEkpn+/4YiP+qSAHHk0mcm++o5blYIgD/55ZLTMReZusVJxeQMcz/Uy3xoNEY5medR+vwNO3QEuCWlSM/GUu0MtWbQOvTMSt1yr1giAUrbPeDjmFemo/XCoTvg/9oEduF2OZnorT8mSLXWOZHpVOiaUkHlcnKjhtuLUanUXDzq+Jflj0C9J2rCzB2UV2flWUV5+vI2+9DXt1DpP75/D7YX7ELwhQQNVZhURCEbnsxlydkPeOYnZ0gekOEb9WnJuP1qjG0ysW6MKhCJFwhMm94rhCo2Bxbkk+V6lRxtuqXEdoOcTIPnGfnFxBhPePBSiVqti6vY5IGPa2t6PKA9upat568y2GhocIhUI0NzfT3NzMN77xDfLz87HZbJxzzjl8+9vffu8OziKLLLLI4u8KX/nKV/jGN76Bz+dLe9xqsXLGmWcw90aEZTdsvqoWSSmx93A7gShR1pwv5pmRA25yCvTkFGuY6w8goUCti6doAzOLMrlkcv881WeEZfvUxYVl7Dkays7Ipf/lCXpeG8VeZZLP1eVoUEVJ3oOvT1K4yUHlmQUceryXwV1u8tbaCESVdSpOLEBrVTPaPEtgIsCur7XI6kVz/QFCS2GWooQbT6ef7fc14J9Z5OBj3bz77WRivKXEhNqowlCswzcUwDcUYNXVZXS/NC7Uhx5skRV9AGo/XIrapJIJU6LwyISqXStyajl5OpDi8U4M9ZeXYKvO4cCPeuR2BqHgU/eRMnpeGs1IQFqJdZ+qRKVVppCm1t1QgSFXz66vJceaSBIKdXLOK9ES2Fqjx9MZJ3bVX1iEwaXFUqUT9m2BaM4rWuyGK0sY2euWrd1sNTloTPHNcj3PjsUJWjrY8blGPH3zMklp2b+M3yMWqOyNJjr+NCQfqzlfkJKmDoo6DLwzQf46m3xvU5GBqbZZ+Vy1XiXbCi76lpnqnKXzD4LwlddohwRVzmV/3HY5f72dSAhGDogEpK3SjEKpYLZX3Ci0GGLJH7WJswp1TP/MMjpJx6lNZ1K40UXhTDXTLfNUXGOjd7CXV155BYDBwUH6+/spKChAqVRSW1uLUqnk2Wefpby8nCyyyCKLLP5x4Ha7Oe+882hubiYUCqX9zsaNG1nX0MTALzyYCrSs+Uglo/sn6XvRTWAmiNYqLM6C7iALE3451gq6gyjUChzlZgZwM/Cum4YCA861NobfnmJxZhmlMp5/UOmUuBptdP9pjIHX3GisagJRUrCEhMakwrXOgvvQLFMdXvLX22VykKd7HneLmF+Dc0HKT60iOLfE/u91cuSJfswVOmwNJmZa5/G7g2jMavlcV6OFhktKaX64lfmhYMp6oM6mwV6RwwBugu4g+gItpSe6aP/1EAd/0BMnKAFalxZrlQmtRZ0kOmCuEGSdtqcGU9pXpVGINdcVBKVt9zTgmwykbMxbf30lESIc+mHqhr10sFQbqLughO6/jDJ1LK5CrjVD0y0NeHrnk8q15FsGCXS5BoJeEY9P7PfIxCitSyuU0WPl1YKjzoypSM/+6Hpm+6+H5HbRmhVUnVdMy68GovdVoMlRYyk1ELvrngTxiNVXl2EqNLD7u1HiWzBCaDEsE6CWFkLsjuXItFBygovg7BL7j3ZCEKY6vMxElcSrzhDx9sBrYnNdTpEBTYKV8XTvHJ5esW6Zv8mK0aFjIaberhAbKd2HRJspjUr80/FO0prUBGbEe4O5QsdyIMTIYZF3tUaVz739QfKkIjZurEFCoqClAbRB8i+x8Pbbb9PX10ckEuHAgQMcOHCAf/7nfyY3N5fc3FwuvfTSLGkpi/8yZElKWfyn8dRTT3HttdcSCAQyfueyyy6jqqiad/+tg9KNLopqnHStHcK9e47wUjiJYOKfCRCOKuzMdQdRnqKkeGMeE7vm6HtriIpTSrA1GJiJLdLE8hI+IAL5a+30Pj9O9/P91F9SxdQR8ULsrDZjzNNT8AEbo+/MsPNfWlj18QTChgREizH0+iRFW51suLWa5oe76PrzIMZcg0yS2fiZarQWDbN9c7gPzrHr663onfFyhEMRFufjQVPDx0rJKdCz91vt7H8oWYo6d4MZvUtLw0crhTVbAhEJH+z5fhuOKmMScWn77Q1ISomd/7IiMYIgTbkPpn6+7BMLRP5k1WtyyoxISgm/N32Qlw4qffqfjODcEsqEvoxh19da03xbYONt1WitGjqVgzJJau+32sndYJYJO4Bcf4NTgSlfT+PFJbKy1Lvf6ZBt/opPdVK0xcmeh9rABxqbgUg4wnRUnlxvgD0PxJUOKs8oRFJI7Dwi2uzwD9soPqkIfOJeZSfnMbJfqBu5asXkvegViRSNWUXns/FyF250JMlIjh2cFj6xQPk5eSi1CqaiBKfY5+6o8kMkHGFuLF5flU4lTGUBY77EUnCZoXfEwpmtRJCfYiQtp9WFa2MuitftGAp1VF3m4s/P/5m2jjY0ag0dHR2EQiHKysqw2Wy4XC6cTifvvPNOxn7JIossssjifyb8fj9nn302b731FpFIJO13Kioqufiiizj4aB/4YctJdYQWQ/Qyw+ThOWovAFedlb4XJhja5abs1DzUeXr8035UamU8LvPD3KhPTuDMHvPAyYWyFdvswAIFG+3kbbLK9l/+hF3b1jITlmIjQ6+7aXt6ENcGMzqHDpiTrR/MlYJI4x3yUXV6IeOHPfinhU1b94uj8rVqLyghvBRh6mgrx6L+8jFilXfIhylfj96uxz/sR2+HtTfU0/fqGOP7PLKFmXytC0sF0SVBPSkGT4efjmcGZWUmgLytVqrOLGRhNMChH6aSlNKSjfTJpOhEKLVKJFUqqSkTQoshFGoJS4U5iaS00O8nvBwhFEyO4XpfGKP3hQxWcnpY/bEKQoth9kSVn/zT0P6HAaaOzsvfSWyXhguL0ZjVsrLVQr8/qU0331nLdM8c3X8U/bW4sJwU2w//dYSu30cXs7ZayVtvw1So59B/9OAfCzC0a1K2kdlwXTUqnZLx2K45iSQC2Pyon5ZfiMRR2Zm5WItMRIIw+tY0Y7snMBcb6PqzuFf+epu8kBtDbEega4OZ5UCIzteESlXeKgdKlZLpTtG+Ae8iEW9Ebg+lViknH521VioqC6BDj3vEy/qbKhicGODpp58GxM7OsbExWltb+e53v0tlZSWLi4s89thjnHvuuen7JYssssgii/+xePXVV7nsssuYnp7O+J2LLrqE8vxyDj/ah6M8h5rqInqHRhl3z7LkD2FwaYXVWgC8wwvEEgeeLj9KrZLcNS5G3vHS+cogdeeU4libw9ThOSIr57FQhIKNdvpfnqD7pVEMDi3j70ZJIKUm7JVmik92MvTGJLu+3kL9ZcXxk6U4qdp9cJbyU/NYf00VBx/rpuNPg1jKTQQmRF5vzSfLySkyMD8RwN08y55vtqGzxi+1vBiKK+YAFefl4ag2s+97nUJxKFpXEMo9ljIjjRcXC2u2WOow+p13v9uBrd4YJygBW26tQ6VTpizCgSBN7fp66uehYIjwUjiJoARgKc9BqVEkqRq9FzQmlWyll4jA9CJaiyapfgB7vpmqphnDmk+Uk1NqoPP5YdzNYnHy4GPd2BtNMglJXDz6r07YE5uK9Lz7LUEAO/QfPfI9XestVJyez+EfthPwgM6qE9a3UQs2nVW0aQw1HypGqVWws0W02b7HOqn4YJ5obx1Un1XIyD6R88op00WVN6MK4C4d7c8MCtUroPQEV1K7DO50o7WIhTTXegsas1pegNWZ1SDBbJTwJEkwO7gg11Nr0bAUteRVu3QE5xYZ2iUW6Jy1ViQFMrHKarCzea0LXrWCDtbfXM4Lf3mBlpYWNJp4zquiogKr1UpeXh5lZWU888wz6HQJti9ZZJFFFln8XeCaa67hV7/6FYuLqfkUgLLCMi669CI6fjlBcDJI07YqIpEIA3iYHxKWt45aK30vuhnaPYnWosHglAi6QaVWorNq5GtNdc6ij9q0zXaLuVRlFPmM6e45KqtM5G+xMbZ3htEDUywvxOMJZ50FaiyM7Jpm4DU3swMLGPPEvBOz4IqpJXn65qk6uxBv7xxBb5ihnW7G98UVtld/tJLQYog9re10PStyK1ozBIPg6V0QKuDmKPlGCxtvrGHwHTcT+z3s+nayBVrDxSXorBpZESrxWNAdpOXX/UnKTJZqA6uuKGducIEjT6RugDz281SlJBDWwwFPah+pcv42usHiQgiVTompWJdEUgp6RXy3vJAsxjC2d4axvTMZr7fhhkpCwTB7vx0lFgXh6C96ZGWjRFUpgNpLSskpNGCtNeLpWCDoDSfFmk03VTE7uEDP8yLPFpxbRhcMyedPNLsZ/KvoS0u1gZITXVgrjRz5cR8EoecvI/imojH2J8rQ2DSCJAVIyuQ9j96BBbn/XessuOqtKBVKJt71MNPhYabGzMBrIudVtM1FJBSvB2HktXJzmZbg/BL9bwoxhbx1LlQ6Jb5hMS79M0EC8/G+05rU+CfFhSxVNsqKSsClo7rfw/prKhlZGOJXv3yKCGEWFhY4evQoR48e5Z//+Z+prKxEkiQeeeQRzjrrrIz9kkUWx0OWpJTF+8bAwABbt25lbCzD4gdw5qlnsu3EbTKJpqaqVt657D7kpniHi9Itebh3zzGyfwrXWgt6J/gnQZujla26fCMBprs8qDTipTc4FUGpVpDf5GCm1cfg2xOUfzAfS42B2U4fi/NL8mKEfxJ0Dg3rP9XArq+3cvBnPZSfnMfoO2ICW/PJcszFRsrPEfZwu77WSt6WuI+oQiGhjMosTh1ZwHG5jaZbqjjwSDctv+yi5IPFMjmlYJuNijMKmO2b59jPBlLUk3IK9EmLNYBc5olmL5JqmPG98R1d1RcWkrvGytCeSQZemkhSGQIY3jOJudSY9BkG2H5HA6PN0/T9OVUi8djP0gcTHU8Pkd4QJjNW1i+GIz/uy3ySAbbeVs/8iC+pLK3PjNBwYWGKilPMmm37FxogHFde8k2Gk4hBsgpTdM0ud5UFpUaBwaDA5wsz2+lLIkk13dzIsj8k72o78qt+8tZY5GtVnVXM3n8Xx+xr7CCBPxpEKDSKpCRZwQYHbHDIpLCDj7WJcxCkpPwmu5zsWZoXJLGBaNLFWmLEPxOUy602qpCiyhWONUZ8kwE6XhIBR8VJxai0ShaGxDjwji2g0avldlUbVLJ9nSlfg8loYnPuiRR3rmbLrXX4l3x8/9++TwgRRHd0dNDR0YEkSZSXl7O0tMR1113Hl7/85cz9l0UWWWSRxX8bvvKVr/C1r30tY4JGhYY7PvdZpEUlzQ93UVqdi16nx1oiSCXhpbBYUIliYTSAf068fPqmltAY1FSdVsiB1m7anh2g4pQCjGXC5ktv16KKWkn4p8E/FcRebaIHGNs9Qe4aK+GweAte8oUo3u4kOLfI+B4PA29MMHU0zo6uObcYIsLqrPvZUbqfHcW5VhCAl+bFTqi8VYLwNPLmOJtvqqXl94Ms9PsZPzjDyLvxJMSWu+KLV4kqQQDo9Sg1CnLX2QTZJUqmiakh7X2oHXu5IYmctP3+BiJh2P1AaxJBCWB8j4fCTQ46ft+X9Pnqa8oxOLVJO+Vl+JFJQCsRkxl/v5g8PMfk4dTFuPe6VsW5+eSttSV/xy9IXe4WT9J3YwSlinPzKdhoZ2jXpNym+77XiWuDWVjB6ZEt4ADQizjEmqCqdDTB6mT1teWYiw20/baP6VYf43s8WEtNtD8nEjJNN1cxO+CTVZaUaoUcDwEMvj0h90fV+QXYqnKou6yY9l8PyZZvsX/X3yTUjmL9GvAsytZ8zrU5SJJE/1/F+4ur0YZKp2TRHX1v8CwxO7Qgn2vK1bMctTLR5+nwTfkZjSbBije4kJQS7misKoUVVJVWc7p0CeiFmsGbr77FX3e+jtFgZGRkBL/fz3nnnUdOTg6FhYWEQiH27NmD3R6Xg88iiyyyyOJ/BjweDyeddBJHjx7NQAiXOGnrKZxyxomy+k1dea2sIDN1eI66CxQUbXQxvnuW4d2TFGy1obMqCIyF0du0wmoWIABjB6bQmESctjglcgOuBitTh+foe32M2g+XYKs3MtO2QGA6iKSMW6sZXDrW31TL7gfaaHt6kJJTBUEJoPaiIhz1FirOXqL3L+Ps+WYb9sa40pKkiue85voDOOosrLuhgkOP93Lkl33UnF0ok2qsNXoar6jA0ztPy88HUtSTbKVRpZ8YeSeAUFKaDDDbHUgiugAUn+yk9KRcht5xM/Cam5m25JxX72tjcUXrBGy9u57RfVPybvNECDu3VEu3/pcn0lrAHQ/vfid9lqz9d8PHPW/zHbUsTARkQjVA5zMD1F1eLrdlDDECzta765EUsDu2mS4ALU/1ypZ6sgpTdF0td62wekMnGjswFkgiSW24pZEl37JMVDr00z4KNoi2NBTraLiohGNPCoK9q94CCilOFjKq2PWv8ZizZIcLFBK7DifkvBpE7JK3yUbpSbmM7JmSv78cCMmkOXtNDr4Jv0w+01k1qAxKuRxzwz563xRxWeVphWhzNPinRd54dnge/axWvq7eoSUQJf5binTotDq25J5EYWsj66+pAl2Yh777MEH8SJJER0cH7e3t6PV6ysrKALj55pu55557jtd9WWSRRRZZ/Dfhpz/9Kbfffjuzs+kVD3UYuPHWT6EJaTnwWDcOpxmDzoDeriI4GWQ5ECKn0CCTT6a75liO2o0GJgLobBrKTy5iprWblmeGqDw1T1YOMrr0ceWaIMwNLWCvyqGfCcYOzVB8gotQ1EFlybtM+QfziYQijOyapuelUWY746SahkvFnDPyzrRs82prELFX0LsMSrDUmJnY72HgHTdN11bR/eIw3t4Ag++4mWyPX6vp5ip0Ni27vt6C+9As7kPxttFqFWhz1OQ2imvFSCqxOjU/3IWl2iBblYHYXKZQSez5ZnsSQQlgtsvH3IiPjueT13trLizEXGpk/390ptq8Afu/15n6IbDvu3/baqN/NCgrca9EppgMoHC7nZITXOz5frIN3VS7F29/ch29USXH/C02Ks8sYPDtOLHoyI/7sDWY5HYxFWuZH0pQJLJpsCQQiTr/EI8Hay4sxLXaSvsfhpg65mW2y8fw3knGdonYc9VVpcy7A7J9nVKrRKmME75H9k8z0zov1yevyY5Co6Djd8O4D82iNigZaRYbJdbdUIekQLa480/4kaLkcVOxFpVOQddrYl3YudqG1qQmOCPGQNC7xMiBKYJRIpKtMkdWvte6wDuywER0jJVuy0WpUTLTIcq8FFimJLeMD0oXAbDt9gZ2v7GX195+Bb1Rx9jYGD6fj7PPPhuTyURhYSEGg4GXXnoJl8uVsf+yyCIRqdtDssgiAXfddRcKhQJJkigrK0shKOkxcf999/P5W+7hdOkSqlwNREIRDFFfzvBiGL1dvGD6J4XNg/vYbPRvP3qzlvrLqwDoeXGYgXcmZGUcW4VFJuTMdvpo/W0fy1GlpcWFRSSFhGuVFYD250ZQG1SYKsXJwdkl2d8TH+SusrLtvgZATD6jzVMyoaf0zFyqzipi9SdEMLHr661Jk6C9MiepDh1PD8n1G909QygYZrI9HiyUnpnLhltFnfZ+qz1Z9cgAq64oZ+vd9QBJBCWAscMewssRJpuTZY8qzssDAwy86k5aAALIW21BSiBWJaLppirKz8lL+TxWlv800pxrcCrY+JlqYVGWCJ9YeIq1ofzxgE8oSAFVFxSkXG/Ru4RvOjkKSiSH1V1YRtNNVfKx5oe72fntFnyTYRxrjGy+vTblejE1I0OhjvkeH93PCHZy6Yn5qPRKTFHp9aHXJ9n5Ly1y/1SdVSSPH4CDP+qh/6/jctnX31yPfzJqZTKzSHg5Qt8b4nh+k02oOUVJSUqtQk5MmioNTHV6ZWWospPzMTh1KCKiL3tfGWG0eQrfpBj3trIcdAmLzUHPIuNHPOLck/KRFJJMxlsOLGPQGjlV+ginS5dw2223ceEZHwEkTEYTU1NTDA8P85WvfAWj0Uh1dTWlpaUZpeuzyCKLLLL4v4/p6WnKy8uRJAlJkvjnf/7nJIKShIJLz7ucf/riP3G6dAmnSB9GrdKw7BekCnfzBJJSovw0YU07cWwWnzsgFHIQJG5nrVisWOj3M7J3ioHofKVWKzHm6qg8PR+Avd9sZ6rTi94u5iR1jkpWVPRPh/H0zlO8Vbx0ju4aJbQYJhQtR3B+kaZPN1J8kpCb7HtjnAOPxhdRtt/fQO2HSwAYenOSnV9tkRV09Hk61CYVFaeK+KX72VH8YwH0+SL2mu6ZS5IxBmE7a64Uako7v9XCkQTJ6aZPV1F/STmO1Sbwk6RIJOoSlHcNydBD+Vni/gce6cY/nWwrordpkqzHYrA3GGj6dBX6dPwTfZrP3i8ynFt+Vh5rrqtI+VylV6JQS9gbkmOyoz/pY3yPB/RQenpu0rGxQ7OEFsO4j3qTPo8RcrZ+pp51V1fEy+KHnV9tkZVCmz5dRcH2eMXdLR6WFpbl9tbn62j/zVDcas6hxdkYt8d997sdMrlrzXUV1F5QQt4mKyDGwMi+KXnH2bZ7G3DVxRcwfVNBeUzYG4S9cvsfxWKlrcaMQi3hmxFjc9G3xKEne/FH1Ras5UYc0WdCb4f+N8foek4Ie9efV4TBocc7Kq49cWw2aazoHVqW/FFlsAI94eUIVTkNnC5dws2fuIU7PnsHBkQdtVotnZ2ddHV14XA4KCkpoaSkhAceeIAsssgiiyz++/D9738fnU6HJEnYbDaOHDmSRFDKwcp9d9/P5z71eU6XLqbaVE9oKSysxxA2WLGd8wALY34mjnoAmBsLYso1UHdBOQCdfxqk59VRWZnI2WCVLXADEwGOPNnDoi+6y9kTQqlRYK8V80jHs2Oo9UqsNWIi9rkDLEzE1Xhc9VY5z9Tx+2GGdrnp/YuI8VzrLdRfXMqqq0XOa++D7ez/fnxxybXagjE3OsEHBOlHlyvq5On0s+hdklVyQJBU1t0g4o/mR7vE4lKCGtD6ayrZcmsdQBJBCWCydZ7lQIiJluTPi092gg7czbO0rNi1b60RJHS1KXWf7aqryyg9LcMiyP+JkE6ac3VWYQdnqUo9qNIpU3JeAU9YKCGBKOOK03zjyX0IyKQkW72Rxisq5HYGOPZkPzu/1UJgLEBOmY4Nt1QnnbvgDjDVJeI2Xa6OwERAHgPlJ+eitajRuUQZ3Qdn2fW1FkZ2icWv+o+Usu3eevlaBx5tp/dVkf8t3G6n6ZZGggtibC75llj2hxjbK65duNnOTNccAY+Il9VGlbzoq7MqmGyblcltFaflkVNkQK0ScfTAG+MMvj2Bb0i0Q26jDX20jOhgfsTHWNQKuPy0AhRqBZOHRL405A+hVqo5UTqP06VLuPWW27j47MtQoMKgNzAzM0N/fz/33nsvBoOBmpoa6urq8Hg8Kf2XRRZZZJHF/xsEg0G2b9+OUqlEkiSuvfbaJIKSChUfPvEjfPH+L3G6dAknSOeiU+hZis5BU0e8KNVKyk4S+YzxQx7mBuOkFKNLR+5qkZcIesP0vT5Gzyti/UetAFuFidITxLnND3cxdmAafYGYd7RWDZqoAwZBcB/zkL/RBsBI8zSL88uCcAQEpgM03VIn4heg+4URDjweV9/edGctDRcJJ5epY152f71VtiTT27XonVpKdohyDP7VjX80iNYZnaNbZlkYT9hZh7BRM1foCHrD7PxWC0cThABWfayU1R+rxLFKxIwx67EY5kb8+MZTnXBiZT/y4z6ZwBKDwRkl1q9IlWldWtZ8shytOQ2tQJv60ftGhnMLt9tpuKI05XOlVolSo8RWaUr6vON3w4IUpIXCDyQn5mbaZln0LScRwgCZKLTxthrWXlOVVJbd/9rKgUcFwXv1x0vJ32KTj022ewnOLskKUFqnlv4XJ2QiUU6JEVejVf7+wR/0yApPNRcW0nBJ/Hoju6bpe22MjigpftOdteSts8ntPzfsZyHah/oCLRqLhq6/iHFtqzaj1ChZmhdfXl4McfRn3TLZytloIbc+Wg4tdL04TNdz4j7VZ5ViLjISmBbXdh/2MDfik+tgKTPJeV6tU0s4GKbUUMlp0ke4/iM38plPfxY7eYCETquju7ubgwcPkpubS1FRERUVFXznO99Z2X1ZZJGErJJSFknw+XysWrWKvr4+dDqdbOWmUqkoKChgZHCEay+/loLaApZ9Id79TgdKpRKVQ0XNRUUMvz6Kq97C+usq2fkvLcwO+7BXm9hyVx17v9WOUqukeIcLY56O1l8OsnzOMnqbVia9lH4gl+LtTnZ/rY2W3/Sz6vJyVn28lGM/G6D+4jIkSWK4cIqpIwssnbGMo95MFyNojRIqnZLGS4rZ+80OPH3z5K+3k7fDyvhODwqtlCSfl7fOhmuNhT3/Gt8BP9ktXnw33laNxqImML3IgX/vRpKQFz4KPmCj4jRBqJk44iGnSI9CJclklm33NUSl+iRyN5ipPreYob1CFWndjZUYnFr87iDDe91svbeekD/Evu91Un9lIfYqK2MHp9n9r62s+WQ5pgI9u74m7OQKNjjIb7Kz66utGAp1rP9kJe72WTp/MyzkJSPIhJstn6+DiCBI6V1a8Z9dS+svBmj4aAm2yhx2fqeFHZ9rJBwOE16MyCSZHV9sxBsN7JRaJTu+2MjBJ/vwDfgE61qtQKlREJxdRJOjZmE8wOEf9lJxXh4FTcLyrPrMPNQGJWqjWlZeioQjMvO89IMuire76H5JqEhtvKMGrUmNtczI/u93sf2+BoJzi+x/qIuCbTZ2fLERvyfAgYd7aPp0FTqrhl1fb6VwiwOtTcPGz1Sz//tdONYYqbugjJH9UzhqclDnqNj+hQZZTUmpV2KvyKGbUdZfVyn3YdcfR1jyhdDZIsz3+DA4Fay7qY7wUoQ932iT7fyCUeWJjZ+tRmvWyOSz2C6/mOpVxRkFeHrnwQe1lxejtWhQRhcyt9wlrhtr7zUfFWPa1mDAUWdFZ9XS//Y48z0+Nt1egyZHTWgxTO/z42z/QgPLgWWGd09Rfk4ehZsc0ftOsvEz1agMSnmRevv9whbQNxGg6EQHZSfnEYlEyDeVcPdtd6O1aoiE4KGvP0Z+nZ35uXn6+/tZXl7GYrFQXCyk4e+//35uuOGGv+UnJIssssgii78RP/rRj/j0pz9NOBwmEokQConfcpvNhl6rZ3Esws1fuB5JKdH+hwHsegsRKcLWe+rZ8402Fr1LmAr1rPtUJYd+0MNyMITBqSVvqxV36xzF251s/1wDu77ayvCuSUpOcNF0cxUHHu0mf4ONwi0OBuwTDL05ie/kAMboopRrgxlHnRlbtYndX2+j448DNF5aQfm5efS9MI69JgdJIYIr/zREQhEqzi5g8vAc89OLIIFztZmhNyexlhopPzmPgXfcDL3uFgpM4WhgFlWgiRBh17dbca22QxiOPt0HiJ3pKqMSKSKx82st5DZY8fRFPdwvLCBvlQ0UUHF6AWq9EoVaISscbb+/gbkJP0wFySkyUndBKS2/6cXT4WfrvfUQiasebbuvAd9EgMM/6mXzrbWodSrC4TADL7tpurkKjVktf1epVcqSzXlbrVSdXkjva2PkrrGid2hZf5NQ8wTYek89i3NLKNUKNGY1hBGKma9MsOa6Ckx5Onn+3nJ3HSF/iP0PdWEs07PuqgpCyyGUGiWevgUsJQb5ulvuqkOpExsJ9HYFTTfXM9Hqoev3IyhVCgjHCVmb76yFSNwCZMddjQAMvDNBzblFuOotHHi0hT3faGPzHbVIaomx5hkGXplg+/0NzA746Ht1jJKTXOy4s5FDP+9lod/PpttqUOgU7H24Hb1DS/kH83DUmzn6kz60ORrUehX2BgOORhuuRgvh5YgcG4aXIwSjMuib7qxBY1TT/ecRxvd5UGokIpGITFzb/sUG2XLNtUGQjmJvses+XYnBqpXbpe6iMjEulYKk5aq3MLxnEv+wn9XXlGMuMeCoMbPnG21s+Xwdi94lWv84hL5IT9MnxULg0V/00nhVGTqLhtn+BfzDfjZ/rha1QcWidwm9XSh0hpbCeHoXqLusGEedGcLQ/9YEm++oRWlQEFmGHdKZ7PhCIxEpQs+hQd4++DpKlZKZ6RlmPDPcd999fOMb3yA3NxeNRsPevXvR6/9PGG1ZZJFFFlkcD4FAgNNOO43du3ej1WrlnJdSqaSwsJCxwXEuPftKqjaXsji7zP6HOpGQMObpqbmwkM6/jFC8w8Waj1ey81steHrm0Ts1bLq9hn3/1olSo6T0pFyMTi3tvxsm4FnEYNeiy9URWoxQ+cECIqfks+vrrRz9VT9rryqn4coSWn81yKqPlqNQKcQCQX8A32QQR63IYSg0oDGrqb2ghL3f6mCqc46yk/IoOtHB8FtTqC1KWZkcIH+DnfyNNvY80C62p0ZgqscDCHVxU6Ee33iAQ4/3IiklFtyiHWz1RpF7U8D4oRmhgqNXympAm++qRaUVC4s5NTpWX1LByL4p+l+eoOHKEixlRmYHFpg47GHzHbWEFsM0P9JF6RlOija7GDs0zd4H26m7uAh7rVkoZ+ug9KRcSk50seur4u/tdzQw2TZL5x9GcDRYiYQidL8kcl4bb6tBUsK+f+vEUmrEUmbE4NLR9vQgFWcLZesDP+llww2VhENhQoGwvBFx2731eAdFfKTQSmy/r4HW3/bh6fSz7sZKtDlqVHolgelF1EYVvvEAR57oI3+bnYpT85BUEqUn5SOdKqGzaeTcTng5zFKUYOZab6H6nEJ6Xx9nbPc0a2+swJSrx9lgofmRLrbcVUdwbolD/9GDtUbP9vsaWJgOcvg/emi8qhRzsYHdD7SxMB5AY1az4eZqmh/twlCsY93HKxjdP01OkR6dXcO2+xrk2EpjVGErzwHGaLq+Ekkp+rD7T6Ms+0NEliOCBKWD7Xc1sBwM8e6D8Q2agahK9+rryjHnG2h+RMS9RSc4kRQw1SGIZbUXluDpmSfggfIz8zDm62Xl1qZPVxEOxdu76ZY6JIXEdPccepsWc5GB/rfGmGlbYN2nKjFG4+DB1yfZenc9wflFRndPk7fJRtXZBSBBx/NjrL2uHL1TR3B2iYBH5D1VOiXzIz4ca3OoPa+YSCSCQ5PLZz5xOznFesJLYX70zZ9hqdUzvzBPX18fy8vLuFwuioqKUCqVfOlLX+Kaa675P/5dySKLLLLIIjOef/55Pv7xj+P1CuZDLOdltVoxGAyERzR88u6PodQo6fjTEAaVFkmBvJ7ocwex1ZhY84kyjjzRT2BuCYNLR/4WGzNtM1SfWyhyXl9vZeDNCSrPzmftdRUc/lEvhZudaHJU9L8+zvDbU8wOzGEqEAuR5jIthZsd5K23seeBNo49NUjTdRWUneOi/89u8tfbUGqim9OCEF4KU3FWHlPHvHhHAihUEo66HIbemCSnSE/1eYUM7Jpg+PUpIMLSYtyqbNu9DaCAAw+342owE14K0/WiIPuu/1Ql+lwtkZAgxRRtdeDpFetMhR+wU3pCLgq1grJT8uFU0Jo17Ps3Mc9uuauOuTE/cyM+1HoF2+6pp/1PQ8y0zrPpjhqQJPZF5+TNd9bidwc4+rMB1n+6CoNDi1KnoP/FCVZ9rBRjvl4m0ahz1DJRylJtoOHiUgbenCCn2EBOkYH1N9XKao4bP1vD8sIy4XCEnEID4aUww3umGPyrm5qLirBXm2RVxI231RBeCnPgsW60ZgVNN9eyvBRCY1AzfnAG1yoLu6N5tw23VKO1qpGiVsnb7qnHfWyW7udGUeoUhJfD+IZFbrDppioUagX7HxIk/O2fb0CSJKaOTJO7wUXRVgeHnuxl33c6WH99JUqTkrF90wy/PcXWz9fh6V+g+8URyk/PY9vt9bT8ug9vb0AQsiwa9n23g5wSEzllRuxVObT8agC1QYXaoMSxyozBpaXkRBehxbCcN1wOhgjMiPXEtTdUYMrT0/XnESb2e1CbVIRDEdm6btv9DfgmAwy/PYW5QofGqCIYEmupDR8vwVxoiG/qu7oclUaJWicRdmkp2upgaJcbb3+Qmo8U4VptoWC9nT0PtrPh1moCM4t0PjuE1gwbbmtEUkDL0/1UnpdPTpGBqQ4v3t6A2HCZoGC57Z56loMhpnvnKDsrl8JNTiLhCON7plj/qUq0dg2RpQgbpBPZencdkkrBYPMofz30CkqtAs+sh5GRET73uc/x5S9/mcLCQmw2G6+//jpa7f8Joy2LfzRklZSyYOfOnej1eiRJwmg00tfXB4BarcZisVAklXPfffdx7bXXcqr0Ecxmm9jhH12YmndHmb1KYcmVuOtsaNc0kiSJxQRgbiz63ShjSFJKROcZJpq9YoEu0S5eAmOBWCybH/dBguK2Uq9AqY7bshGBwIxICiiNCpCg7ESxCz7kT72uUqXEUmNAoZQgAmFf/BgQl+GWBOlI7wSFQgERCC2FGXl7DEmKlt8gFHUkSSj2HExQC1AoJZpuqULvFC/tBx7rFlZvkiTbWtirrSAhe7xLSqGgAEK9KRKKk3wSr7vxtmrU1mSuoVwmYOejLRABhUI+KP41CBWeSAj5PvELS0ntIF9XIfo8OLuIuy25/LFr9L89xuEf9spjI7G9UcKm22vQ2kVwp4gVKhQhEonIqkqx9gZxDhIY7HpWf0IkymLl2v/9LiSEFdv2+xtQW6JtpxDHfDMiyWZwKig/J09cM3pL35RfrpPeKc6J3dO5wZnaJhEIROWnZRnQ2KEQct9YaqJBbon4VxkdW0eeEgGeQiuh1Cpk4pOERHB+kZlWn2gzCQrW2+WyRcIRRg9My+2i0qmYbp0S7YAIdvyTyHWTlSUkiEQiBOeWkFTR8RCGrpdG5LpJCtgsncxll1zGJ6/7JJecdik2s43iomKmp6fp6+vjU5/6FCaTicbGRs444wyyyCKLLLL4r8FFF10kqyVdf/31LC4uEgqFcDldqFDz8bM/ya233sqV51/FeukD8rwqKSSGXhc7XmILUYtzy0QiEfk7ywFhn6ZQKPAP+wUhKBo/TXUvICklNBYRO3gGxAs90flcZ9XI13U3ewmHIiwvRHfN2FSgANcqQc6dG/PLnucASp0CtVYlFI8CQBjmo2o1RGOToi2CYBtZFmqbiZAkScyBiVOwHjGnhWGmO2HHvUKi/Kw8OQ5pf36EQz/oEW2gAH2RXhB2JQlCCNJ59LsKpcSa6ypS7MUkCfnv0WaRKJBVOaNxgmO1iaZbqpJilVg8I6kkDv2gJ0UFMhYzu1tnCc4tRvsxVg0p7XcBlNFcmH9mEZ87iCIhNoyVadkXSlLslMsU7cPik5ysv6lSbhcZYUSyxC9sjldCpVVSvM2ZUCYY3+dhpkeMl8ZLSlh9bTmSKlpePxx4vAcpIqFQSFSeVyDH/pJSwdDuaRHjRy3Y9PZo7BUtk5z4S6hHJJrPi9m1acyqeHuHYWy/6CODXSv6LcrrEeSnRfzDflCLdsprskXLIol46HmhyKTUCuJYOBhBoQIisORbFhZ00fEQex+QFBLhcBhPbJemQrTz2O4xuQ3Dy2GhFBUdL7N98R2dkiRhN9o4d8uFXHXVVdx0/c24KKS8rBy9Xk93dzdHjx7FYDBQVlZGXV0dR44cSembLLLIIoss/na0tbXhcDhEXkevZ9euXUQiEVRKFXarnXxKue+e+7j2mms5WfowNpM1mu8Q53v65kV8IgEB5PkMYPzdCSRJQqkXX47FVjELBqVGId7JEdZq4VCYUFQhPLwICrWCnGKRP5ju9hIJI+YkQOdQCxVLHfiGAoSXwvinRCyhUIvyFUXn68DMEuHFeLkUKgmlWom90YRCoSAShkggljMR5dGYRG4jlkPSWaPHIsLeYXjvTDxW0QlCioRE0LNE8w96YBGIxrONV5ViKTMiSRLHnuzHfXBWzIfR2Kp4Sy6SUkKhjMVNinh+KgChxRBLvvhiHpKIKdZeV44xVxv/LrEYQvy986stItcXO6xE/u78qJ/QYjgpP5WUx4Kk6yqiOZmF8QDuFo+IU6JjQCGJ7w68PcaRn/Ql5exiX5CUCrE5sUCUV77tcoRIKELzj7piVYvnZZQKUEiYcnU0XlUaz5OBiG0lCUkryFU6u0a0twKO/KQPz9A8EhI6a1SpKTZGgenu2WguUAJdtJrRe+attsnvITFEIhCIji1Trj4pbgwHI6JvAkKhSaGUsJYb5b6IhKD1mX4AtFY1aoNKVuKKhCIEPEGmDs+JflNJFKx3RM+ViIQijO4XtnEKtYTWpGG614ekkohEx2FgLCDykUoIepbkfoyEIyzOLUfbUfw9/OYokgo5v7pa2sLFF17CJz/5SS4/5SrsJgfFRcV4PB56enq49tprMRgMNDQ0cPHFF5NFFllkkcV/DW6//XY0Gg2SJPGhD32ImZkZwuEwTqcTLTou3X4lt912G5edcSWrpU1iXkXMW4O73GIOi677Bb2LIucVzTEEvYtIKgmFUiLoFbmlWGzm7Z1FqVGKORNwt3qIhOPxiCHXIG8m9/YHWfIvsxidW1QGsc6U2yjyB9Pd84SX4rGV1qJGY1RjKhYEi/BShPmRWM5L3KOwScxx4WCEcCBhIVMSdbPVW0Q9orGX1hzNNSyFme6I2spHY5XC7XZURhEvdb4wzJGf9KFUKEABWrOCLXfVidgKoYaEQpLn+poLhZ1qovNKbG0PYPAtN5Ew+CfjOSpJIazD1l1fkfTdaKFAAe2/GcIzOE/iIm3su+6jsyxM+uVYBYjmsRKCCgXJuSlJwjcZZG5wQeSxkuI9iaB3iZ3fapG/GzusiNbVXG9mzSfKxDUTihtZBt9kkKAXJDVJ10UBGpOKspPzEvpGgadjAffhWZAkqs4tYtVVpSgU8Xs2P9xGOBhGoRIqVApt/LoTzVOEl8JEQqJdtGaR74u1odqoEvdJWHaNRN8HTMVaFEopSZEzvBSRc17mQiNKjUJWrwoHI/jdQdnGTqFRyIpfSOLcjqhSktqoQu+MXzcSihD0LuHpWEChkFBoFLJ6WCwui20KlVQKFBoF4we9cswYWQ4T9IbFuFNJco5QkiQUkoQpx8RpdefwsY9+jBs+cSMVUi3lZeWYTCY6OzvZtWsXOp2OkpISVq1axcGDB8kiCymS3mg9i39wPP7443z6059meXk55ZiEgrM2XsTaHdU0Pyxeond8qZHg7KJMJFl/YyXTXXMMvOpmw63V6Gwadn67BXxCbaigyU7zw0IKb8cXG/EO+Tj60z4A1t1YyUzvPAMvTbD2+goMLp288ydvi4XibS75Plvvrsfd4qHnuTH5vv7ZRdqfGqL0zFzsFSYORuWTXetzqDyriD0PtYEPGj5WSv+LQ7JVVmxXVGx3va3BwEx0h7nBqWD9TfXM9s9zLEEuMYaGj5Zgq8qh/6/jDL81lXJ86731KNUKDjzagn8y5TBb761HoZRkVZ+VKDrRweywn/meZDnG2suL6Xh6KO05GITywLI/JNdp5XH+k85dO77UyOLcEvv+Lb2/7Hsizb1tDQYaLinHPx3kwCPdaU8r/aCL2YEFZjuTT665qIjO3w+nPSfWN53PDsp2cInYek89So2Cg4+2yWMhEdu/IGzc0vaNAXbc2Yinbz5JctyxxsjUkQUKPmCj7KR8Dv+iH9+AKHPdFcUM7pzGN+Cj6ZYqlnwh2aKv+FQnuass8rOx5a46ul8cEiQ7A2y5pY6pDi/dz4xSc2kRuhy1CDKB1Z8oI6fQIHYaAhs/U83Am+O4D86hd0LTTY14h30c/UkflR/Kx5irk8/d+JlqtJa4+tPGz1QztNvN+N5ZTJUG1n6snLlhH0d+3EfVBQUYXTp+8PgPmGcWm82Gx+ORyYfV1dW4XC527tyZtj+yyCKLLLJIj02bNrF///60x2y4uOb6a5jtX2DglQl5Z/GBR9rwT4fJ22qloMnBwcfisdWCOyBbSKy+thxP3wJDr7tZe10FxjydrCzj2mCmeKtLlijedl8DM91zsnXW6mvLWRgP0PvCGNUXFWIrM/HuYx3gB8dqE5VnFMoKPE03VzHSPCUsw6LnKhQSh3/Ui7VWj6POSvezYpe7uVJP42XldD43yNTReRyrTUwdnZfr3HhVGdYyY0b/+R1faCQcjivvJMJYpmfd1RUsLSyn9anP22Sl6pxCxg/OyOVZiarzC1KO2RsMaK06RqPWFyvRdEsVeruWAz/uFSSYROiRrcz+Vmy+oxa1SZVsEfy3IMO9t9xVh0qvFEmdDGWrurCA7j+mtoPaqJGVjFZi+/3R3fffTm37mCJRpr4pPV2opmbqm9XXlpNToGfXd1vlMtsbDEmqUL7JIMeeFIth+nwdpSc6af/NEHo7rLmujo5nBvB0iJPX3VjJxGEPo7umqb+8BJVeKb+TVJ1fgL02R67Hxtuq6Xt9TIxTvbC48/Yv0PrUIOVn5WEq0Mvnrr6mHHORQR6/TTdXMbTHjbvZK5SWPt3I3KifIz/qpezMXHKKDHI8uOm2GjQWNTu/Gj3301UceL2d11qeRa1RoVKrWFgQBCeTyURVVRV33HEHn/jEJ9L2RxZZZJFFFqn485//zKWXXir/niZCiZpT685j3Sm1HPqBiKW2f6GR4PQizY+KXFTjVaV4B30MvTHJ6qvLySkxcOCRFgIecKzNoXirk0OPC3vZ7fc1MDuwQMsvRM6g8WOlzI34GHx9kvrLijGXGdn7ULts41V+ar4cl22+o5bJ1lnZlqvxY6Us+0N0/H6YvE02ctda5Pd6S5WO2gtKOfLjDgIesQA1uHOaQNQyrOHKEoy5OvZ9T+RxrDV6oZwDoINttwsVoVg5E1Fxdh4Fmx0MvDnB0BupSa1Nn61BY1bT/HgPgRgJPQGb76hFqVWw+4G2lGMg1IWWFhbj5Ynd97w8ep8fT3sOOqH+uLSwLMeiK4+TWpT3BZHjXEqyvfubkObeunwdG26oZGEiHqOvRN4mG8HZQGo7nJ0nj4GVqDg7j4JNDjqfGxbkrxWI9c3Bn/TItmmJ2HZvPZIkybmkldh+XwMzPfO0PT0ofxYbO/ZGEzUfKqbl6T7m+gNyeSZbZ5nrD7D66nLC4bCcL3NtsFC40S4/Gxs/U0PPSyPMtC2ADjZ+qoaZ3jl6nh2j7IxcjHk6+dyajxRirzHLygzrbqhgaM+ksAyMjt+5ET/Hnuyn8AQH1nKjfK5QozewKxqXrb2+gtHmadzNs+isCjbcWs/coI8jT/RRfLITS5mRXzzxSyYZxWazMTs7KzZ2AJWVlRQXF/Piiy+i0/2feAZmkUUWWfzvwkc+8hH+9Kc/yb+niXBSwOWXXc7CRIChNyapvbgIZ72FAz/uxj8axNZgoniLgyNPiPf8bfc1sDDm50j0Hbr24iLmx/yMvDNNzUVFOGpyOPBoG0GvUPopPSlXjpc2f64OT/ccnVEL+NqLiwh4Fxl42U3JKS5cqyw0/7ALgmCu0FF1ThEH/j1u6TXR4pWt2WouKkJjUHLs5wNoXVoKNlrpi87XWpeWNR8vo/flMaaOeDFX6GTiCEDVhwpwrbay+7utKbZpAFs/XwcS7Plm6rqe1qxg42fqRazyUGqsYqk2sOrycsYOTNPzwlja/ig9zcXAa+6kz0zFWkz5emGJlgarrirFUm7i6M+68fav9HojbT3eD9ZdX4ExXy/nQP5mZLh306dFjm7ngy0Zy1Z2Vi79L04kfWYq1qJ36HAfSo2rQPTN8lKY/WnWRrVm2PiZRoLe9HGka52FmvOLGGtO3zfV5xfgbLRw4NEOgl7xrJjLtHJ7N91Uhd+zSNtTg9H7KSg6MZee58dACxtvrKHrhWHZ1q/hilJmeuYY2ztD+dl56K1aWp8S8VHRCcKdJzaG1l5XweBOt2xxt+mOWuaGfLT/Zoj8LTaslSb5vjUfKcJRZ2b3AyJ+XP3xUkYPepg64gUtbLuzgfmhBY7+bID8TVZs1Wb5vms+WY4pXy/npVdfXUbb3n5ea32OsHIZnV7H/Lwog8FgoLa2lnvvvZfLL788bX9k8Y+NrN3b/yLce++9fPOb3yQdL02Lnot3XE7EL+E+OMf6k4TVlN4plHx2/ksLpWfmyt835OrQ5KgZeNVN88NdGJwKDE4DvgEfxVtdUZZm9NyvtmAojL/YGXN1aHPUDLw0weEf9kYvCPigaIsTrUWDpcbAbKdPfjlNvK8uyiodeGmCAeITjKnIgFKjoPK0fHqeG6N1ReJFZ9HIu7oBmaAEcQWoGEN7JfpfGsZ8XS0z3akJLoAjP+yg4AN5KQSlvC0WxvfOsidNosbgVLDmulr2PNSWlvhU8AEbzlozxluq0pN6fAjijS818HOsMVJ3YRme3mRyTQwNHy1BoZTSErLeCyuJZCux40uNhILhlL6bafVx+Bd9KUQsGQYo3uGicIszZUEyRlBa88lyJIUUHzdA6y/jiRS9EzQ2QxLJ6fCP2ig+qSgtQQlgYSKQpNCVCFO+2NG4OJ9M5otZuznrLILl7YsHoO1PxUllepsWnSVBWez1SYZeF4Ok/Jw8VHol9nqruJ4PWSocwFFtTpJrP/qbfpn45VhjRGvRULwtF/fBOSSNLinIc62yJjHlB9+eYKJZsPFNlQa0Fg1FW5yM751Fb1Zy7Kk+uc2cDRaUagXbJKGcVHtWMS8+/SLdtKJSqejr66OrqwtJkrBYLNTX1/PrX/+a0tJUf+Asssgii//N8Pv9NDQ00N/fn/b4amkDJ1x0Al2/F4mTnEI9OouagVcmOPSDHqy1erROLf5pP0WbnehsGvR2Bf7pMDu/2oJzbY58LXOxAb1Nw9Drbg7/SMyRse8Wb3Ohd2jRF+nxD/vFHJvgJmUuNmBwaul9YUwuSwy5q22oTSrytloZ3+ORF9RiyCmIX8jT4ZeJIQBLQbEjOne1jamj80kEJYAlv5hb9fk6/GkWuxbGAywFQimfAyz0+xk/MkP3i8kkF2utHs+gn/F9nrQEm3XXV7I4v0TrU4NpCTK1F5ShUEsZSUoHHunGWKZPJSghCC1KtSJj0qXplioG3hhPaYf3g8aPlxGcW0whE8WOWcuNaYlTR37cjt9PRoJSjHTl6ZpLKpcgBPlk0s+RH7XjT2iSWKIBBAnOHY0xAPzDfsYPzjDyTnpymLt1jvwmG92vpD8uKzsllHk6IWZX61UYHPFj/rEA7b8RsVfhSQWodEr0Dj2e6AUSFwmtFaak2Kr72VG6EeVwrDahtWoo2OyU2yImpw2Qu8aKSh9XfOr+y5g8bvVFevROLcVbXbibvShy9Bz49xa5zfLW2pLOHTvqYeh1d/xch5b1J9dBqwrXGjPL4SWePfA7AviIRCIcOnSIa665hmuuuYb6+no+9KEP8eCDD6ZtvyyyyCKL/814/PHHufXWW1lcXEw5ZiCHc9dcgFKhZurwHGtPEqRuXb6OwFiAXV9rofCE+ARjrTBhdOkYemOSo0/2obOCwqQDT4Diba7kc/+1VVaOAbBWmjDm6hh8fZK2KCmc6OHCLU70Ti22eiMzbQsp5BtLuYlwdGf1+L4ZxvfNyMd0Nj1qo4qCDwhiT2zxTa6jU4faGFd+TiLCREOtmJLRSvT+dRxno4XJ9vRxytEnOinYlpdCUHKszWHq8FxaEpHOCms+WcuRH3ekJdfYG00UbHBgLjamJ/UEYOe3WkjHE4kRgqY75+TFlERUnJeHNkeT9th7wVZvpPTkvIxEo+1faCQUTN0sGBgLZCQKxVB1TkHafFmMoFR3cREak5ojT/QlHZMJTDqwFOmY7Y7fY99/dFLxwbyM9/X0LqDWKdMei43bWFwunxMdO64GC0qNgqWEhb9EMpWpMLlz3M2zsjVg3iYbWosaV6NVkJQCJC3m5a6xxhXsgc4/j8AfxJjW5esw5usp3uZi6vAcOl0yAa5wo13YKEcxvHuS6RYxdnVWBaYCPYWbHbibZ9E6NBz7VY/cZvlNNjQ5atZLHwCg8sR8dj+7myPsR6FQMDAwQE9PD3q9npycHNasWcPvfvc78vPz07ZhFllkkcX/VgSDQU477bS0G5kllNRL69lx1laZIOKoNWMq1DP0xiQdvxtmpHgSjVGJHyjaZCenxIi+QIt/NMjuf23FWmuUr+dssJBTZGDknWk6fz9MJ6B1CuZK8VYnOYUGmejx7rfbBaklCkedmaVAiIGX3Qz+VfwXg7U6B71dS+F2OyO7pjm6Yq3MlpBDCLqDMkFJfLCERq/CUZvD1BFvEkEJoutJEdDbRZ1WwtOffp0RIOgNM7TTzfi+VJLRkjfIbJcv7Ya/ukuLiYQjdPxuOIWgBFB/aRkao4qxI560pJ5jPx+Q+2AlNn6qBnWOit1fb009EbFuN7RrUibA/C2oPr+A5aVwcvtGUfWhAvLW29ISpw78qBvtcchTq64qxVJhYn4kIMg1UcwPBZkfCsqkn6M/7ZYJQwB7EtbobA2mpDoFvTDw1gTuA+nzht7hAEHvEsNvT6Q9rtAohANKwv0S66W1qGUVVnG/sCAoAUWbHWjNaowunUxSihGDQDwn6oTc0/DbUwy/LdadTcVaTAV6ijbZRX20sC8hfi/c7EBn08h/D7w1SecfxJqs1gzmMhMqrYqpI160Zi0HHmmX61CwyZGk2OQ+OiuTBrVmMJcaaVRXsNz2ISyVBhS6CC8f+TMeJpEkiYMHD3LFFVdwxRVXUFtby+WXX85XvvKVtO2XxT8eskpK/+B45JFHuO2229ISk0xY2WY8XRAfoqo8sZdlvRP8Yn0CiO/EjqnRxEhEMSQSU2JWVjHCTtNNVehdWpmgknLuFxsJh6I75Q1gMChkQknpB10U73AxtGeSgZcmMBTq8I3EJ/yNt1WjtcYVYlYq+Gy/v4HlQCjtTm5bg4GGi8vFItczqQslpWfmUrzVmVGhp+FjpdgqTRmPx+rd+9ooo+/MZDx/4O0JmbiyEnVXFCeRXmJwrc/B7w1lJPxYagzUXVhC+x8HU1SJQKgHSQop44794ykprb2hAlO+nvY/9stknURs/Ew1vslgEnloJcrPyaPvz6lBR/WFhQy/PZJWjSpWbsigesR712vbfQ1Iisznb7uvgfBSOL0yVfT6/smgrN6VCEuNgVVXlDPaPJW8EzA6JmO+rolqW4njeccXG1kOhpKISoZSQfyLPQfjh+Nj1VCow+cJgE+Mc0mZXO/YcxYjrPndQQ5EFTgMToUgt/lEnRWq5HNNlQbme3yy+pWsomYAn2WavWNvshxeRqVSJamxbdy4kX379qVtuyyyyCKL/w3w+/1s2LCBtrZUcrKEgjVsJddQBP74rucDj/fgHwtgLNOz0B9fTNrxpUaWA2Je0Nuj14++A8fmlENP9rLQ78dcqRcWVbFzv9hIaCnqha4HvV4QlgBqLi7C1Wih8/kh3M3elPtuuasOlVYpJzxiZCcQhKKm6yuZHVgQSjYrFHwqzysgv8nGgR/2pCUerb+pEr1dm0RyScSWu8ROssS5MBE7vhCdKzPM0zu+1Eh4Ob36Uuz8TOpMsfrlb7DSm2a3U+npuQy8kj7JANBwRQlaq0ZWu0pE3lYrVWcWMtM5R2uaxbL3UlLa8cVovR5ILbdzbQ4VHyzg6K8H05KnQJC3FEopiewDgB6qzylMIafFUHZmLkVbM6sexVSRZvsXZGWjRMQUrSaOedLeI2+TlaqzC+l9dSwtMaz6okJyG6wc+nlv0hiNYfOdtSjUiiQyUeKY3PHFRqFm8IN43BYjxVWdLxJd3X8ekQltiYS57fdHY86EsRp7zhyrTdR9pBRP3wItP4sqOtkV+P3C7i2m4pnYn7FzYypgicqiejsymSzlXD105jTTP96DQlIQjoSFxUkkgtVq5e677+a+++5LaZssssgii/8teOaZZ7j88ssJBlNXJ6y42KQ/WSbo7PhSghK1DnQ6CHjEsXU3VmLM1ckkk5wynawcA9H39UDiuQoCHhEfNVxZgq06h9bf9DPTtpBy7rZ76wFkkoUuVyerH7nWW6j5UBEje6foe2k86RjAmmvLMRXGFWJWKvhsuauO8FJYVk9KhKFYx7qPVzJ+dJqeZ1Njm7xNNirPKqDr+fQKPZXn55O/zp5RwSdW777Xxxl5O3XjXcV5eRRscDD49gSDGXJelefn0/PyWIoqkbVGTyQcSSLjJEKXr2PVZSX0vjIqk1MSsfXuKHk8k2LncZSU6i4uwtFoofP5YZlwk4h1N1QQmF6k/Xfp1b5B2ICkU6QqOyOX8UPepD5OKvc99SgUmVWPtt5zfFL85jtqUemUGc/ffGctREivTIUYqwsTAXlhKRG6XB1NN1Qy+q4Yq/EDQECogFnKTRx4vEeun84af0623xfNzybc21CswzcUEM/B+UWMHYyPVZ1VQSAQhkDq+wkgP2eGYh3rr61kYTwe8+ms4jsBD2z+XC1qQ3KcHbuvLlfHhhsrCUwv0vxIF+ggaPWyd/wNguFgSs5r8+bN/OlPf8oSlrLIIov/1TjrrLN46aWXUj5XoWI123Hq8iAoSCs5RQaOPinIJSvJLzu+2Miib5l93+kALWi1Cpn00HhlKdZqE0d/3oO3N4CpWCtIJVFsu6+B8GKYvVFCkjZHS3BSHC8+2Unpibn0/GWEsX2elPtuuKUaTY5azq9onfFztWZouqWBuYEFjv1iIEXBp/ADdkpPzuPokz1J5Ymh4YpSzKX6tOpIIBSYlTplEjkkEVs/X0doOZLx+Lb7GoiEwhmvv/XuOiC9OlOsfrkbXElErRjyt9gY25u6hhlD5bn5GPN1aWMEc4WO1VdVMtXmlTeRJeK9lJS23ddAZDmcRA6Sr12mpfpDJXQ8M5i2zQH0BVo0RqVM3ElE+dl5aclPALkbrVSfUygUqZ5PjZUda8zUXVCMp3uell+lij3IilYH059vqTbQcGkZfa+OpW3b4pOdFG930fKrnlTlKmD9pypRm1TJa9sJY3LbfQ0sjPhkBTKIj+fC7XbKP5gvPwcgVJmCwTAERUyoVCvYnZBPiz1n+gItTddVMdM1L5OgtGbxnaAXNt5WgzZBHTzx3JgKmH8yvhYpnu8V58bUr7QwaGmhfbxFznXFYLPZ+Kd/+iduv/32lLbJ4h8HWSWlf0D84Q9/4LLLLktr5eakkPXSDgA23FqFzqaVbdomjngYflssIPgnRaCw5BNWDd0vDuFcZZPJQ446M6suL2fnd8S586N+3Ec98rlrb6hAqVRw4LFu+t4YpfqsYkJeMUnMdvpYf2MlHc+O4BsJEPAsxpVqfODzhWUSy8AuN0VbnYT8Yid9jNBhcAoiU8CziNqkjpOTVsxD4XCE8HJ6BZ2ZfvHlxJ3NiZgbnIctTlTG9I/J5LEZrGVGFobSs57bfttN45XVaQlKAK2/GJDrsRKlZ+Yy8NJEWoISQPV5xccl48x2+jIu8IEg6RhW7Hh6vzj8i6iKUQZBpEwKSzHEFmVn++aS1KwAuqI7AR1rjCwHIikEq4P/0ZqRwAQw2jyN1qLOeDwwHUSVYQcZCF/WTOMlRr5bzqDqYMjVQgQ8PSsIa9EqLC0so7Vo4gQlpyKJcLccCOGfFhGGY42R8HJEbh//VIDQYpjul8UC4epryxnd58YXXe+b6p5DF91FZqo0sOqSUtr+MBA9toB/Kkj7C+LczXfWIikkeYG3/Y/95Ef9kg2lBtZ/opypTi/tPT5mWn2MNk8xfkAk5mIqEYZ/sYMEU9pJpgt66R8UgdD+/fvR6/UEAgE2bNiQ0dYoiyyyyOIfDTt27GDXrl0pnytQsoWTMUmCZbTjS9HY6tsdtP5xCFulSSZFlG53Yrs6hwOPCAWWqXYvo/vEgo9/WiTYQ8EwzQ930fvKCKUn5rMwIdgYCpVI3h/5cSf+6TALYwHmRqNMDT8Ya4xUnGun5ef9DL0+iq3SxNL8EiBUiRyrTSz5Qnh7/ARmFtEk7Gr2T4dlopJ/LEB4ORKfC1fwRuZGF8hfb8OYq05LUloOholEyGhPFglFknzkV2LJt4xvKrO+9HTHHN6RzF63O7/WkqQiFYO9wcByMIK3x5+WoOTaYKZ4uxN7tYmDj6XfVZ+OfBTD+B4P3k6PIKL8J5CJ9AUweXiOycOpZPlENF5eQWgxzJ7WFeQ5PzJ5qPhUl6zuE0P/SxNM7JuUSWorMfDKBI7aHI79Jr1amHc0SHgpwuTR9LGw2qCCCHhH0jeMWiNitnQEJYDIUoSIYsVGjOhX9XYIL4WZjz4jiWMYIDi7RHgxLBOUVpLQ5kb9KKNqE+ZKPaUn5clWb77JZRa9S/S+LBJd62+qZHEhJBOWBt6cwFadI9+36eZ6Bna68fb4Wej3M9XuZWiPeLY33xldTIySoQ4/3kH+NqFeq88Xi4FrRio4ElVIm1s7RPOx/SyFlvB4PHzpS1/i/vvvR6PR8Ktf/YqLLroobVtlkUUWWfwj4e233+bss89Oa+WWRwlrpK0ArL66HHOZgeb/EKSJ4d2TjL8bfSEPwPrb61n2h9j3vU56/jJC/ga7rEZjKTex+qMVHHi0nYAnzHTXHDNd8/K55RcWoTEqOfyjPnpfd4td8tMiPprrD9D4sVL63pjANxRgYTRAKBSfSwMTAZnE4j44S+UZ+SzOLcnHIE7uWJgMYHBq0VmjhKoV4UAkFCG8mH7vqahLRJ5PV2JuzA8RknZcJ2KqxYOrwcrcSPrYq/UPg6y7ujItQQmg9/lxRt9xyySVRBSe4GDk7am05CmA2gtLUemUGXNegbHAca3a9nyzLUnd6m9B+/PD6F4dlglsKxGzMsuEtdcJYpl/JiisyhLQ/7KINXLKdCg1Uort257vtR3Xwq7/jQnMhWmC2SgWJgLo7dqMxyOhCJH0YR3oIBKB0GL6LxicKgiDd2UONFreJd8y4aVwWoISQNCzxOKCyP3mlOlQ6ZVCYQlYnAuytLDMyFuifeovL2HiyAyBKAFt4rBHVnDVWRWsubaajj+JnJdvMoC338fgO2Isrb+pCpVOIW+6bPvtAPkb7NFzYcOtjUy1ztI+NExgIkDf6+N4+kQ5Nt1Ug8akRvtVM0iwsOxhvKyHnn4R/7/77ruUl5ezuLjIiSeeyBtvvJGxrbPIIoss/pFw5ZVX8utf/zrFyk2NliZOxiwJBsO2+xtYWlhm//c66fjTKI46o0y+KGiykf9JO/v/o5vgZJCx5mkmj0VzBUFo/GQFkVCEgz/oofuVcaoV4E0SK6jh6FMDBN1BZrrnCMwuyudqCyVKTyqi8/fDDO2eJG+dDb9HHPePBjGXaUEh4e0NMD/mxxiKx07BSUGsCHrDBL2wHAzJ89VKhZ75oQUIg9amTUuYWQ4I9SStWRAyViK8FEahSq9qCRCYWWRxPv3aE8DYgWkWZ5cyHt/zzXaZTJIIU7EWhVrUPx1ByVympfLMAlyrLWlJSEBGWzkAb2+And/8T1q5AQce75GJYinX7g8KIvFx0PTJqowbGmMEpXQkrIn9HmY7vUmqRomYOuJlbsMCLb9P70YTmBAK8FPtaTobUOlFzss3nj5PqdIrIRLBO5a+7qHlMMrQijg/9lWtWE/0TYlxLo/haDsu+UIs+UNCNQtktbAYPL0LaE3iHUDr1FJ5ep5MSAovBPGNBRh8O2pHfWUpoVCY9qhCbN9r4zgbzXI5tt1ez+A7buaHggS9YUb2TTHdLtYT13+qEp1NI5Ohjj7RiavJKZ7bqHWet7+Ukp81AuCvn2B/z7sEFv3MzMzwuc99jjvuuAOz2czTTz/N2Wefnbatsvj7RVZJ6R8EAwMD1NfX40+z+mHBxWbpZECwK5fml9j/UBdFJzoo3Ozg6JMd+CehYJuN0pPyZNnhrXfXE5hdlCWOHWuMWMpy6HluTFZ26X15lNHd4sc9URXmeIo3uRvMVJ9XnLSDOBGb76xFbVRltAbb/oUGJElKy7zVO6HppkZx7X9Pvbah1MC6q8roe2MsPXnIAFtuqePoL/qTCCSJ2PiZalp/2ZPRPqzplirGDk5nJCetvaECvU2bIu8cQ0zBaX7Mz+EMyQ9bg4Hcdfa0JCZTpYHGi0po+f1gZmu198DxlJTeD1ZfU45ClWzLFoOh1ED5Sc60NnSJ948sRzLu/qq+sBDXKktGRSQQ4+jYk12Z++nTVQztnEirggWin6c659IqPoF4lryDC2nrYXAqWH9zPbN982kt9WIqWkM73Qy8mhoYplNGil88WfVsJRqvKsVaYZKVrmJqTDFsvbseFAgLQgM0XlQq18G1Pofqc4vp/sswE81e1t1YSSQckcdhw0dL0Nu1ND/cJT9rMSWyScMYihofh48cZjkkAnmr1YrH4+H666/n8ccfT9uOWWSRRRZ/r7jxxhv5wQ9+kPK5hIImTsEu2WUlmJ3faQG/iBG8wz7Ztmvd9ZUsL4Y49mQ/BdvtlJ2cR9vv+2TbtIYrSmTyy9Z76gkvhZN20MQs3N5LsSadskv8IrDjrkZBYvlG6rxSflYehVscjDXP0PN8qprOqqvLsJQaBek9DZek8aoyTAW6jOTpyvMKMJfoM5J/8jZZyV1nk0kaKcUv0rPqomL2PZQhZtHD9jsaGNk3Rf9L6ZWQjjvvJtSj94X+JNuzGNZeV8Hi/DJtT//tliLw3kpK7wVzpZ66C0o4+kRXWkJR3aXFjO6fSlLbSkRMPSJRVWgltt5Tz9ywn5afpyckFZ/kxF6TI9sNroS+SE/9hwtTLANjMJbpaby4JK36aez6xTtcHPpBe9o6Nt1Shd6qlZ+1lTieGlVMGSnTu0nMFq/l6d4kS0P52l9oJLScqFwWVz0rPNFB+cl5dL4glMsqzytgutMjX2fdpyrRxHbG6cV7SM9LI0wenkOfr2P1laX0vjrK5OE5Ntxajdqokp9T7/phRtyDDA2J9wG1Wo3JZCISidDd3Y3dbk/blllkkUUWf4/weDzU19czPp76fu4gnybpBECQthfnlzn4WDf2RhMVHyzg2NODBCYC2BtNVJ1VyLuPdkBAbKAKepc48pM+ACxVOmxVFvpeGsexNofa80vofXWMsd3iR11nhUAACIid7gqVIm3OwlKlY9VHK4WaXxoV5ti82/JUbwpJBcQ7u0KlYNfX08QFOhHX+KaDaa+tsypY96laBt+aSFqISMSmz9bQ8rvBjPZg626ooP3Z0RRrtxhWX13OdKc34/XrLy/BXGLIqHwZU82ZG/ZlXAjLKdOR32RPsbQDUcdVV1fR8cxgkmLV34LjKSm9H9ReVITapEqrJKmzQvlZJceNC0VcEk6yMEtEyalOirY62f1vmUlLG26upuUPQxn7adXVZYwdnE4hSsWw9voKZvsXZOLUSmy+s5a5YX/6euhg++ca8fTM0fqrNHZ7Z+dRsNnB0DvutHYzMbX+nQ+2pK1fkurZClSen0/+ejvtzwwKK7io7WIMmz5bg0KjkN896i4uklWvLFU66i8up++1ccb3zdBwZQkqjVK216s4Ly9uP6iD7Xc2Mn5EqDt5dB5CdVMcO3aMxSWxIGi1WpmdneXWW2/l+9//ftp2zCKLLLL4e8U3v/lN7r//fkKhZNKMCjUbOBGzZJeVYA78eytBL6y+ugzfZFAmtNRdJjbatz01iLXWSO2Hi4XzR1TxpupDBWJTdhA23l4DIdifkNvRurQE3UGh1POxSqHy/FxqXipFnWUFEsUYViJ/k5XKswsZa55OS8SpPr8A1xorzQ+3piUeVX2oAFt1Dvv+LX0uo3C7HUe9WY43V8JSbaBoszOtUg8I8knDFeUc/EH6nBmIuHTk3em0BCSIrrcaVBmVjGL1GNo9nZYsVHdpMeHliGz/9bfivZSU3gv6Ai31FxTT9sxQWiu68rPzmG71pFUjAjEOHXVmel4czagWtfG2GubH/TIRZyUca8zkr7NyLMOaptappfbDBRljW61Ty6rLS2j+YVfaMepYY6bqzAIOPdlH0J36hVVXlZJTbGT3d1vTnr/tnnoikUhaFa2YMpJvIpB2HK26Sqhhtvy6H09H6iaQrZ+PKnRFY6sYIQrAscpMzYeL6Ht5lLF9HopOcDA3vCDbH9ZfUYLRpZOf64231dD32jhTx7xozdBwRSXDe6ZwH5plzSfK0Dq0Ql0NmFs1wph3mP4BEW+rVCrMZjM6nY6DBw/icrlSGyKLvztklZT+ztHQ0JDWUsSIme3SmRhKDTRcWCir20gS8g714bemGH5rCluDAf+kD1OJAaVWQfGpToZen0whQNRdUAYS9Dw3xsCryeQK1/ocas4vkYk1u77bmqS003hVKdZyEzu/2sJEsxelJk5uAqj8UD7GXCEX2PrHIUq2OZIINqZKA+Fl8A34mB/1i532aeCfhHAowpIvA+N4OYyklHBUm9OSiAqabKh0SirPzJd3Sycib4sFrUVD3eUVaRcxMAif2dIP5GUkKeksGhTqzDIBAy9NYC01piX4xDDT6ktRIYqh/EQXKr0SrVEinQNs0YkOyk7Jo/+v4wy/lX7H23th6731REKRjAuOOUV6JCl9HX0DvuMSlABmuucYeTdz2TQmFZJCSrEOjKHgAzbURhXVHylLS/TSO0Hv0FJxRiHug2nqYACtRUPeGltakpLeCQqVhM6aXrVJYdYRCUfk3VgrMdY8SU6hXn6GCj5gSxovR57qp2iLWFgyFOpovLSEfY93ymphh3/RRzhK6N/4mWrURrVsXdPy84Ek28P1nyhPSu4kPtfrPl6JKU8vP/Pug3O4D8aTrAZn8g68iSPTssWftdoGEgSmRXLmxI9sYWlhGfuhSoboQdkQZHRcvDT88Ic/5LnnnkOr1fLjH/+Y0047LW27ZJFFFln8T8err77K2WefnaJWKSGxhm3kSkVUXViApJDo+v0IS1GlSEeViamj8xx4pBt7g0E+z5inIxyNaUZ3TSdZXlWcm4+91kzjx0pp+cVACoFITu7/Swvj+zyMH/MkkTO23dtAwBPk4GM9HH2qn3AwIXbSw6brazj2i06h2tTmZWBn8rybt9XK+B4PfS+O41plYTyqmLkScyN+zMUG9HZ9WrsxnVWNSqPMqJ7kWm1Bqc68k6zstDxU2szn151fgMaqxrk2J62ikKPKhKSQUJsyv/a0/6Efe4M143EgIzkHwJSvl/sxHbbcJV7oMy3WvRdKT8+leJuTjj8Npq2jMU+P2qSi+NQCOtNYj6ST207EoSd7aLykLCNBCUCpUmSMewCKtjtRajL3Y/2FhejtWqy1+rREn8rT81EbVRn70VppQqGSgPTk8yVfCLUxlHaMAMwOLBCOKgMYy/SEl5HH69TReaZXzdH/smi71deW4x30ycpKBx7pJm+TVZRbDzvubGSiNU4ITFToWv+JSgwunWzFOPLWFCMJ8XZ+k4389TbZriTRiq7sxFxUeiWGXD0wh96mSLJEUSiTY+uTd5xE2++HqZcCdLjeRWfV0tXVRTgcJj8/n9LSUpxOJ7t3707fKFlkkUUWfwc444wzeOWVV1I+z8HOVuk0dLk66i4sjP+eSvHfy+mWeaZbOrHW6AlMiLhLbVJRst3J4OuTKRZpjZdVICkk+l4aZ+rwHLsOJ1tLrbm6UibW7HmoPYlcUXl+Pnlr7Oz6Tguz3QE6n022SCs+2Ym5xEDLzwdof7qP0tMKkghKunwdCpVQP/J0z6HINKcGYHkpJMeYqQijVCuwVprSkojsjSY0ZjUVp+WlJdhYqnQY8/XUXVCYlgQFYC41YMjVZiQp6WwalOrMCtbug7M46s20/TEziWeuP8Bcf3o72qKT8tBa1Ogc2rQkJXujIB8Pvj2R1nLt/WDzHbVAZls0W00OCmX6Pgp4eE/i+vjhGaZaPRmPq00qFEoFtnKjrDaUCHujCZ1TQ825+ekXw3RgKTViyNVmJCkZ8/TorJr0JCUdqHQqtBliP51VRyQUZi6DGub40VkcdWaZoOTaYEmyzjv8835KttkhIEhdjVdW0/yTLvmZav6PHhQa8f9rrytH79DJuayeZ8eSLAI3XF/J0sKy3FeJz3X9ZcU46i34ZxYZeM3NbHcgKSdmLjEm9eNMh5fe50UO0FZuBJCftY1nNhAOhXEcqmKSMRYbp5mYmCASifDQQw/x61//GqPRyA9+8AM++MEPpm2XLLLIIov/6Th48CCnnHIKs7PJdqcKlKxhGy6pgJJTXKiNSnqeHyPoWQIJTCVmgse8HH2yH3NFXMnQWm6EaKrE07GQlBPJ32Qlf4MdtUlF21OD7F+xWb7p02Kz0M6vtgilnhUEpE131BKcXeTIj/s4+tQAChVJKjNrr6qg/ZkRgpNBRvZNMX7Ik3R9xxozU0e8jO3zULjVGVd1WoHZAR+OejMKoxa8qewQvU0t1uIyqCcVbHKgyVGnWMfFUHV2ITqrJuP5FecWYcjVyeVdCVOxFkmtQHOcnFfrr/vJXWvLeBxIS/6KwVZp4nhaJxtuqUZSSyl9+H6Ru9FK5ZkFdL8wgvtQqtWuxqhE79RStMlO17Op5cxk5xZD+6+HqLu0+Lh2diq9AsNx1CjLT8lDa87cj9Vn55FTaMDWYGKmNXVVtvREJzqbBkdt+n60V5lQapXy87ISiwshlhdDae8NQo1fir4DaV1aFCpkQpd/VCiXjR4Q9a+9uIiF8QDDUTXUYz8fwLHKLBOUtt3TwMTRGdnCbs+DwlYRooSvWjPHnupjtsvH1DEvU8fi9Sk5MRciyBsE2xJU53M3WtFa1BgLtUwdE4pkSaQppZS0prxjyw46nhulRtpMr/0wKqdEV1cX09PTFBYWUlZWRklJCa+//nr6Rsni7wJZJaW/Q9x22208/PDDKZ+r0LCF0zFIBlnVKKaqMrRnkoE0u8d3fFHIqMks1gRyg63BQMPF5bhbZun8/TBFJzqY6ffLqiyWGgPV58QJUJvvrKX/r2NMNMd/lGIqLtUXFpK72sqxp/vSkkq2f6HhuPZlO74U3f2cZpdazKLK0zufkfyy+fZaOp4fSntvEMSdGGEnUREqHRxrjDJRIx1MlYb/tILRStWbdNde+7Fy3G2zdP4mM3NZ7ySjLVrpmbkUb3HS+ru+jESn91JS2vL5OiKhSMbd7se7fwzbv9BAKBg+7oKdwanA5wtntJY7HjIRmGJ4r35MtOIr/aArreJRDBs/U83g2xNJYz9+IaF8lGmXYEyVLJNy1vobKzHk6uh6fijt9TfdXoNKr5KfjZVjaMOtVUx3z9P353FqLipCpVfS+ov4c1J1QQHdz4jgbscXG5P9YqPlxycW7MzFhozktpW/JbHnqC1yAJ91BhQwPS2SmFarlYqKCt5++20MBkPKtbLIIoss/ifB7/dTXl7OxERqHFVBI1VSo6xoBOL3MBKOyPZNiSg7M5eirc64T/sK4s36m6rQ2zXyuRXn5ifZjzV+rBT/zCK9L4xRcW4+5mJDEskhsRzb7m0g6F1MqyxZsN1Oxen5ePoWZIuqRMR2+Hc+L9RfVmLtdRWY8vUy0WIl8jZZKdzsyKiaA0JhZuStqRTlmXTIRGyJwVypz6gSdFzE3DKOc+qWu+pQahRp+zPpUvbMdXivha73UlJybTBTfXYRfa+PJxHZ3u/9Ib5z7MAjbRnt2yB5DP2teK9z7Q0GpjPEniDszfxjAdBD3lpBkksHx2oTpSfnpd8wgFD0NBcZOPBo+rpuu7cBhfo47x3vpbp0Qal4t3plIqXOeZuslGx3ycpeTbdU0fHciGxZZ67Uo7drGd/nof7yEuzVORz4aW/8Ggm/Ccf7Lak8r4D8DTaxk/TZUbkc/oifvbxCbpGT8fFxmVDZ0NDA6aefnt3ln0UWWfxd4Pvf/z533HFHiqWIBj1b+CA6SSerp1Scl0fBBgcje6boeyl1gWLbvfVISgW7YjGLDpncoMvX0XRtJZNtHjr/MIJrvYXATFAmvhiKddScFyfrbLi5msFd7iTyUawcxSc7KflALq2/yayOpFQrMsZOO74YVbVMo5assypo+nQ9nt70qjUgYsj+v46lJbRAlCTSMitIIbk62ZIrHaw1+rR1kMuzQrnmb8F7navL1bHhU5W4j4k+yfg9Kxnt2PI22ag4PY/OF4YzEnTeS0lp42dqADIeP979Y9h2bz3LgdDxFcpj67j/iebMKdMdV0nKUqVjtvs4bW2NK4Plb7PLimHpsO6GCkbenU4a+4nYfn8jc0M+jj7Zl3LMsTaHugtKMubE6q8owV6TQ/efRxnfl7p4uO5TleisGvnZWDmG1lxbjnfIR//LE5SdkYvOrJaVkwDKzsiViVjb7q3HNxlM3hQa/U2oubAQ1xorg29PMPh6akJz5W9JrBx9kXYmzYMo1UqmpkSuzGKxUFNTw1tvvYVO95+zHcwiiyyy+H+FYDDI5s2bOXLkyIojElWsokKqR+vUygo72+5pAIm078uudUItMbaeuJLQ0XhlKeZSg2z9FLO/jaHyvHyW/SEGXnNTuN2OvdrE0QSXipiyEsCmO2tZ8i5xKM1Gf2utkcbLypjpmpctrBIRy490vTDCxH5PyvHai4uw15rZ/Z30qjXWWiMlJ7gyquaAIGGNRTeCJSrPpIO5Qicrz6SDqTi9vdx7QgtabXryUwxNN1ehyVGlVeBJulQGEhUISy+FWpHRlu29lJTMZVoar6ig7/XxjESi490foPQMF8VbXBz4cXdatSX5Oglj6G+FvkB73Gu/Vz/Kz5EWXPWWtIQsEP1dfXYRB3+YfsNA9fkFOFdbOfDDnrR12XRnLZrjKGdtu6+ByHJYVkZaee/VV1UyvHuSwb+6U9rLWmuk/JQ8mVy05tpyel8elcen1qXFXKjDfWiW0jNcFG50cvTnPfHxm/CbsO2+BghH5N+DRORvsVF5VgHjB4R6WqwcwUiQZt7EWmhiwj3B0pKwP6ytreXDH/4wDz74YNo6Z/E/F1klpb8TTE5OUlZWhs+Xmthfzwk4pXz570SyQMvPB5LIGLYGA/UfKWN4zyQDr7qZ6vKm+NfXXl5Mx9NDMoFFpRO7SlYSEyrPLEBr0cjXX0lYSbTO6PrjCF0rZJq3fL4O32SQoz/p49DP+vFNJtet+FQnQ3smwQfeQR/jB9Mr6/gGfETCETLR7WwNBtQ5KqrPLmR/Z+pEaSjUUXZKHkXbnOx9sD0tQWn7FxogDLv+tTUtsaX8nDwKNzo4+GR6izoQSalQMJSyWy8GS42BVVeUE5gJ0vxw+kUXg1VFJBxh8mhm1i8cnyA08NJEWsLa34JMCkrv5/4xhBbDx9n9J4hO62+uzyjxDEKBqOLUgrTkt9jfGz9TjUqvSlGgiPVjzUVFuFZZGHh7gqGERESMoORan0PxDheuVRaZkJcIQ6EOrUVD2Sn5aUlEBqtQVfJHFYdWYuBVN456M4d/IQLq8nPyktSbDv5HT5xwZYDttzcwuMstlzUx4bX2+gpMBXq6XxxmfK8IchLHkrPeLDOqY4gRlDBAJBxhKShUyAo+YCO8FJav0/fGBHXnFcq/A9vua2Bh3C8H4zu/2oItqg7S8NESbFU5DO10w6tNEI233uEv+JknEAhw4MABjEaxM+3qq6/miSeeSNs+WWSRRRb/Xbjnnnv45je/mfJ5Dja2SvHdsSvt0Fp+nWwJtfa6CnQODXu/2U7/SxPYq3MYeCs63/iFYlF4KYy72UtoKUwkIW/Ru0Jq2lppImcxTO8LYynHCk90UH5KHjOdc7Q+NZiSMCo9PZfCTQ52P9DK6K5pFsb9KcSe4lNdDL3upuM3PdReVJmWoAQQ9C5hyNVlJMaUnpSL2qjKeDxGypkf9uHt8bPSrbj09FyKtzsZ3jNJ/0sTaQlKW++pJzi7yMHHetISlGJkks4/pydaAWy+WVgM7/xWeoswgMX5JdT6935lOh5BKBM56f3C3ezNWIf3c3+A6S4vtqoc9Hk6/NPpY9WYrdmBx3sEWSgNNn22BkkppSWq+4f9mCv1rL6ygt7XxlIIVTGC0vb7GwiHIimxWeyeW26rQ6VVMn7Yk7Zfyk/NR2vVZCRFhZfChMORjGSs7peGcdZaANDbFZhrzEmEqJ3fbkFvEQtKa66rQGdWy304dXSenUfjiZ6maysILcWtEsf3eWRFqrytVvR2LRWn5XE0Ku3u7Yk/dwqVRCQSketQc3FRkhLWRIuHSFi84FScm0/eWhuHftaHf9hPz/OjzPbPMXV0Xi5HjNB0MufDCLgioxxiJ1qdlra2NlpbW3nooYcoKipiz549FBUVpW2fLLLIIov/DgQCASorKxkdTd4dLSGxjg8k5by23VuPpBB2aL3Pj+PpnpfJOYZiHWs+Ws7YgWn6X55g/MgMkiLhHTgAVR8uoPtPws4sEgnLio4rCRjlp+RizNXhWm/BfXCW5keT8wFbPl+HSqNk59daGHpjMkW1Z+NtNQRmFzn2ZD+HftpHwJs8t7o2WJjrmSPgCTPVOou7Nf1CRcATJhwKZ1QU1+XrMLi0lJ+az0xbmlySDmrOK6L81Dze/XZHWoLSls/XoVBK7H6gLS1BKW+TjcozCzj6i56MxJhNn60hvBzJuECly9Wx4YbMNngAOotEaCnMdHd6clEMxyMIje+bSUt2+VvwXjZw70VQAqHyuLSwlPkLOmG5vDi3lDFP6FibQ+2HSmj7fX8KAS3WD2uvK0dn06bkzWIEpZJTnZSckMvAm8nKUrE65JTpqDwjn6LNjiSLHbmYVjDm6yk7OTctSUlnhXAojN+TftFu6vAcc00+Op/pA6DwBAcjb8fzu21PDSYRrrbeXc/wnvjzlLgho+7iIhyNFnpejtswJtrn5K23CQVW4vFUolJUJCxykSDaVqFSyApPgzunMeTqZILS5s/V4ncvysSr3Q+0YakS8WH5mXkUbhV2drwG5XNCNXU/bzCDm8XFRfbt24deL1Tmb775Zh555JG07ZNFFllk8d+FRx99lNtuuy3Fzs1KLpukk+S/V9qhtTzVk2SrVXdpMTnFBvZ9twP3oVny11sZ2hWdb4JgazChUCmYOuJlKRgSKtRRosLK2ClvnY1QMMzAa25Gdk0nqTbaGkw0XFzKVLvY9LdvRU4id6OV8lPy2PtwO56OBQ7/tDuF2FO43c7Irmnanxli1SWlaQlKAP6pRSLLYbQ5WoLBNPZip+RhyNUlkbcSseaT5eQUGvB7Fpnt8qUQlHI3Wqk+p5ChncIWNR2xZeNnalicX+LIj/vSEpTMZVoar6yk8/nhtMo8AE3XVqF3atn//ZaMBJ+gZyk5Vs6A4xGEjmdF937g7Q+mJaq83/sDeDq8FKy3o81RZSQSrf54KeYyU9qxEcPa6ypQG1RpYyL/aBCtS0vTJysYeDPVWjnWj5vvrEWhlFJIQLGxsuGGanRWDd7hQNrxU/HBfAz5Osxl2rQWduFwhMhyOCPZqvNPQ+SuiSpnaSF3tTVprO/+Titas5BGqrmoiJwCvRy/zw8Fk/LJTddXEl6KC014OhY42CH621yhI6fIQNkpebINXtAdxB0tl0qthEhEbuuys3LpfzEel43smZTVY/M3WSk9JY+23/Th7Q8ytncGn9svt2nTJytE2b/RxnbOgFEoikzTzJsotUo6Ozv51re+xbe+9S0qKip48803KS4uTts+WfzPQpak9D8c1157LT/96U9TPi+gjFXSZiBKPLqwjJ5XRxjfO4t3yEd4OT7xTR1ZkJWCZvp9SEoJc7EgE7Q/lWz/sPlTtahzVIxE1YBWsi23fL4OhUrB7n9t5cAj3SlqNaVn5hKYDDDR7MXTv4BSlXmCU2mVGBzix3ClepCp0kDpCbkUbnSw91vtKdZrhlID6z5exvihGXqeG2PX11KZ2+Xn5DH+7jgzrT4O/yIzecg3EsA76KPnpVTP2RgWvUvHtfHQWtTCRm85MyNaUkoojmNnMjvsY2lumd5XM0srTjR706v1RFF3RTGOGjO9Lyfb6SXC1mBgpt/3n1InSoRrfQ7ug5kTR9vvF6z6dH0D74/oFJxdZGR/Ztu35YVlkISMdSbVJKVGedxAa+LIDM56M9NH0q/uuQ/OUbDJT+cf09vv+UYCSeOr+sLCJEKebySQ1Abbv9Agdpg9EVeuiCkBmCoNFG5ykLvKmpRgitWtaKMDSSmhNqSXTh/eM0HlGUUysajxqtIkdbFdX2+ViUSlZ+ZSvNUZV2jykbRTv/zkfCSlJF9rvsfH/oeiyUaDkNBXG8QUYqkxsBREJjZOHJnGlB+3s9t6dz0L7gD85GzRJgEfna59uN0iKPn5z3/Ob3/7W5RKJWNjY1l1pSyyyOK/DdPT01RVVeHxeJI+V6JkG2ejl4T0zupry9HbNLz7nQ76XhzHWW9mMmrZ4OkQRI1QCBb6/aj0SvFiFsVKZaOqMwsJLQqS0pEfJc81eVutVJ1RSPfLI4zv8dDydG8KYaf+8hLanh5k5K0pijY5GN6bnimsNilRqCVcG8y4m70pxJ7NnxMe9VOHpvBPhzm0YsfOqqvLyCk0sPuB1oz2YZXnFdDz/CjvfqdDEEgyEGeOPtFFxXklGdWP3K1zFG5yMHEsc5whKaQU4m0icoqMIImESyaM7pvGtcpyXCWlg48dP9my4wuNhJbDKYQbGXqwlx9fQej9QG8HrTOzolTxSU5KT85lZO8UfS+mKkm8H6LT0C43xdtdGQlKgIhlM4ezhEKAJOyPMyHgWUzZJJGIY08PULrdmbFf9j/UhbFMEJT0+ToctSaG3oyP+5YExcjqiwpx1Vs4+Fi7TFpKbIs1n6xBpVfi7Q/E6+0Hv1/8v86qRq3L/Mo8O7BAcF6MsbytVpQapWzvNr7HQ3AmKPfZtnvqCS2GZcJTYjkdq024Gi2YcnWyAlnMTg7AmKtDoZJkQlPBdnsSCczTO094WbRp8UlOirY7OfqUHmd/AQTBt3acnYfeAmB4eJi6ujoWFha48847+fa3v52xfllkkUUW/7fxla98hf/v//v/UiwkiqmiXmoCBPFo9ZVlDL0tFqymO+aiFqACM20L5G2yMb5vBt9QAIVagTFXkAli1k0xrPtUJcY8HdMdXmbaFtj9QPL8vfG2GlQ6BXsebKfl5wMpajT52+yEAiHcB2eZbJtFa8pshSps6sX/ryQG6XJ11JxXxNK8sKlqX2HXqrMqWH9TLeNHZuh9fjxtnFG43c50t4/AWICDP+nBN5Rh/g7AVMssg3sy51b8E0EU2swTvN6uASk6z2eApJY43hpXYCLAwkSAwbcyb5rzdPozx1QIVZyibU76XhnLaDdnqdIRnAq8LyLR8WCt0eMZ9GdUOdpyVx1KtZJd/5p+l/p7DmvPdAABAABJREFUEZ0IwMK4n/Ej6clpAMsLURudAn1GlSxJpThuTOxunadws5PJ9lTrERBkp+nOOfr+kl6tPeCB5sd7ZPWi8jPzklTLAh6S+mzr3fV4BxeSVL+OPNEHiHFdfmoehZvsSRvuYgQlx9oclBoFalP6nNfIvimM+XqZoFR7UREdv4+Xe++D7TKRyLXBQvU5RXT9eVgmIiUqlVWdVYhKp5SPBSYCSYQolUaJKpp7MxSLa8Z+C6baZ7HX5Mh2dps+W4NvKgg/P1lcyx+gO7eZ0YkRIpEIjz32GE888QR6vZ7Ozk6sVmva+mWRRRZZ/N9GMBiksbGRnp7kPIcGLVs5E60UJy6Yiwzsf6iTsX0e8jfY5ZyXt18QNdRaQWhQ65WCIBolHh1JWPMAaLiolOVAiKkjXqGulABbg4m6C0voe3WMsb0zHPtFTwopo+pDBXQ/N8pM6zy+iQCj+9LnvFQ6BSqdUlaoWUlCabpJEHZm+hbwjwY59otkhaWaCwux1+Sw58F2Bv/qZvCvqa4aJae4GPyrm4M/6EFfkJ6gBNDx2z7Kzypmtit9Hmi208vSKXlMd2TO0ShUEipNZvtcQ54BJFj2ZxYBGHjHTeFm+3EJPi2/Su9ME8PWu+sIh+Ddb2dey7NUGzLW9X1DC+b89KQcAMcqM3UfKWZk31RaezdvfzCtMlAiBt4cp/IMFfPHUVJSqhVI6uMEtBFAIaGxZH4H8I0Hkt5VVuLYU4OUnujMOH6OPNEvqzZpzeBYZU+Ke3ueH5Ot2IpOcFC8w8nBn/TJpKXZLp/cHzGi2tyIP07eCiJ/15SrE3aEGTDVOktoSeTSrLVGdFaNrHbl7Q0kEb423VFLeDEsE556XhijJ7rBVl+gpWizE1uJSVaIisVRADnFBpQaBd4xcS3XumSlKfexWXlt3bHKTOVZ+bT/rh9z/4WwCMF6N2+1vgFAb28vdXV1BAIBvvCFL/CVr3wlY/2y+O9H1u7tfyB8Ph8ulytFNUmJkq2chUGKkgyiFlQGp4L1N9cz2zfPsZ+lTiqb7xS7xA8+0ZfWSmzjZ6oB2P/9LgyFOvI3WOl5Lk7YMRTqiCwG8E+Ka0lKKSPB5D1t2a6O28elQ8EHbIy+I37kVn28lJ4/D6RX5YlaaHkHFpLIHvLhaJuEgunlskEkFIDj2o01fLSE1l8e30v+/xUaPlaKWq9MliVegeJTnRRtcR43qbPjS40QIaPcX+w7x7N7a/hoCfZqM4O73RlVmZpuqgIlGa04APK2WCg9IS+jbdz/a+RuMKM2qtPamUFcuSmTVZ5rfQ4155cQnF1Mr7rkVLD+pnq8Q74U4l0MDR8rpf/1CXwjgaTnIR22f6GBuWF/2msVn+qk9IRc/O4V9m1RxCwYd36nBXxR8lpCnQxOBfnbcul5bkxWYOt4diCtkti2+xpQqI5v1xgbT5YaAwpVnNA0Xd3PHB46O8VY0+v1FBQUcOmll/LAAw9krHsWWWSRxX8lMqkmlVBNnbQeECQC30wI/7BfKAEZVOktO/RiV/RyIJQ2XnJtMFN1VhGHnhSKKBXn5jO2eyyJ0BOzN9PboenmRobfFYpCK9H06Sr0Di0dzwwymcbOYvU15eQU6o9rVZa3VdhqGcv0FG6yJym5JGLNdRXk5OvFvJGGPLLpszVozGqO/qL3uMpGHc+mLysIcsX82MJxrd3+X2LzHbX0vDwiq9WkQ9PNVSwFQrJSzkpUnV9AfpOd0f3T9Dyfnoj+XnZvIMhQQEabGPRCgaj/jfGMNmkg+tE/E0wiwPx3ou7S4oykNxDxeigYihOlV2DrPfUoNYqMalgx67dM41ZvV1B2RhFtT4t4P2+TVVZCSinrZcXYq3OSCE+JeC8buS131bHkX+bAI93o7QognPTcV55XQM9ro+AXz9NyMJSWJGet1dN4eQX+6WDaOHvV1WVYyoxymxSf5JRJXP6IH/+6Ubp6u/B6RaayqKgIlUpFa2srer0+5XpZZJFFFv/VCAQCVFRUMDaWvFFMjYatnIlOEoSA2G73mOLMTHd6u7OYTe2xX/aktbdae105Kp1KJMx1UH5SMslCZwVQEPCEWXdjJRqDKqMK4nvZsq2/qZapdm9Gq7KYKhMIgsXAa6MEPGk2u+lg+52NzPbPJ5FaE4/v+HzjcZWnm26uQqVTHlfRsebCQjr/+D8jJqg8Px+9TcuxJ1NzfDG4NliEItQjHRnJQ9vvawBJYtfXj5/zOp7dW/mZQm19ePdkWhtBEJvC1Holhx7PnKOz1RupPKMw7W78/w5Ya/QYnPqMBC97o4m6C0vTKjeBUF1ac3UlgenFtIpZOis03dzA7OBC0oa5RFR9uIDRZkEodG2wyCShdNh2bz3eQd//z957xjd23Of+3wOARCGI3gmCJBrLdnILuUXSVm1VsWxLtpqr5CYXSS6y7Hvv5zrNjkuua+zYSdwSOXbiKhcVq2/vfZfLuuy9A2DD/8UAILHEAahE18k/l8+rXXI4Z85z5szM+c0zzy/jO2Cp0lNxl4/xrkjGZ1C81Ya31s6pb10iOrQw/Z3GBM51IhWcxqVh1YOlXPtd5hSBycMcB//6YsZ+V/dEFZNjU5z4Wj0alwatSZnib6ykkyF1P5evJNLVaTR4PB7uvffepU2zJSxhCX8yfO973+Phhx9e4JpUSgVBaTkgnHlmZ4TwaNV7ytDaNRn3+ECshyYnphe4GYFwV6l4UwmXfyYcUYo2W+k7O5jmJpRyiFFD7UcraD/Sn1EUVPU2H6agnvpftWdMjRW6swhLSJ81VZl1hYH+cyOobWqKNphT4o5MdVnLDZz65pWMqdmS7kgXnmrOKMhJORv9up3+C5lVQfZVRqYi0wxdzSw8/lNj9UN+Wl7pYfCSfMxr2X0+4jPyYibXejOB3R46j/enBCk3Ile6NxCHulBIsn0OoOYjIa6/2ivrgAUixjQ1Pi3blj81/HtdWduy5v0BiJNx/w7EAQq1MY8TX72csV+G7vBgrTTKpiZUG6D4ZjfXfi3ikcn3IRN82+x41lk59fdN/640ctUfDDIbm+X0dxtRGwDS0xwWbbbSd3mMWF+Mle8uIx6PZ0yZqLarqXk4wERPNKNLV/CAG8dKMye+JjiZn1oxFo8xtrqdpqZGhobFzzweDwUFBZw7dw61Wv5A5RL+c5DlHOwS/tT4u7/7O/R6PQUFBSmBkl6nJ1ywnB3Sm7kjfC8VO0oAcTLFu9GOvbaQib5ZDn7pIqPdUXQ28UjXPR5m7eMih3rjs+1MDETQ2+ZOAZfsd6DziMBPvj4vpZac6Igy3hPBuV6kQEAHq9/tZ8W7hKDnws/a6DozJ5pwbjSy/uPl6P1CODXaGeH8r0RAQefR4NvlSJXV21QggdogruXbbscYEn+nsymoeHsRZdvc1Hw4iH11IQONoymBkm+7HXOljvWPl1O0zYxvs4ODX7rI+e+3YF1RQNEWa+o63q02tG4t/fUjnP2ny/h2OdDaxO/MlTq8W8V/JIVwNrKuKEjdq2+XI8Vh9SMBzIFCfNvtgBCo2FcXppWte6KSuk9XCueneffqrjXjqDaIZ/WpCmoeDab41vnSyzrXG6l7spJ1j4bFve5yoPPpFpQ1+grQu7W4a82pv/XtcqS413k0KPIUKYGSfXUh7k3zyib47r08TF/DsKg3YVhzI4dA6iSW1saCsrGxGKMdE/SdH6Foi3UBh1qbmFib/9iZ4jsTh8VbRDoYc6UOY0iX4jpZ1lFtwLvVxsbPVlH1Dl+Kwxv5Dtzhou7JyhTnmTisfHsxGz9bhf8O91z/voHD4F4vJbc4U79zVBvS+LZVmkASSnadTZHGi311IaoCFYONY5z47rUF/du3y8HExCwH/+winSd6KdpiZf3j5TjXG/FutaUcjpr/0IptuQFjSEHZNjfrP1mexmGSb51HgyRJ5BUqU/17PodtL/Qx0jlO22GxqV39oaDgMNG/ey8M0XZUpFO0riig8s2l1HwsOHev1Ta6Tg6JZ7FBODjFxhMn9Leb0jgcahlhpFMsrm1rCql7sjLFm3O9kaZnO1OCt8o3l1D55lLQiT672r+Okmur2MhezAYzdrudpqYmPv/5z6PX67n55ptZwhKWsIT/WwiFQqjV6pRASalQYjc72MQ+dkhvZvu2nRj8WrQWKL/Tx4r7fKAV6buu/LIV5wYTIFKt1X26EtMKLUSEu8pA4xAk9vstlTp8O8U8Ozs5i0IlUXKLBYCmF7qwrrKjFf+l5iNBqu4uE04xA9D0xy5GrycCBlqofNDHqvf5AWh4oYOh9rGU6Me5wYR1uT5VNs8gTl1pLVBQosW7dW6eda41seFTFQR2eUALZr+etteESDdZ1rnBxNqPhLBXG+g61S8EMhGRFk5bJG5OWyTKHv9OPf2XR8jXq3CuNaWu491qp6BEKyx8JbCvnptXrcv1KQ4BfDc7xByBEI94t9pTHFqX6wm91cPGz1YROODGs8WKKaxN3V+yrHODibpPV1K2f96aos6CJTHPooWqd/jY+Jkq7NUGTGEtnnlrIHedRbjaVBvI06vwbXUkBCVg8Gvx3jQ3Jzs3mGh9pTslUPJutaN1adI47Do7xPD1caJjEWwrC9N4SXJ44xeZvdqAPbGmSZYdaB6h6/QgWpcm7TnaVhYKviNw9AtXyNPlUVCS5GUhh4UeLZagaIf3JhsG/8Ky6x4NU/fpStx1ltR1buS75mPBlOA/E4eWSh11n65k/SfKxb0mqjKF5zgs2+vCVmlk1cNlqWcjys7xrchToFCJ/zvXmhZwWP/rZrrPDVLgWNi/7dUGzv9jMwf//CLeWjtlex3UPBJM9VmAyMAs/fXDONeKvh7Y4yFwp3OOw3l85+lUSJKEwZ/+bJIcXvjJFYauj4FW3Ofaj4XS+nfH0X6anhUbwSveE2LNB6vSxojIQCwlpMorUKE25Cd+Cd5dcxyKdke5+htR19pHQ9R8NJjicPj6BKe+cRkiYK8pxHezg3UfE98ZpbVuQrMrWT+6izKpnLKyMkZGRmhpaUGn0xEKhfjiF7/IEpawhCX838Avf/lLDAYDOp0uJVAq0BZQrl3FDunN7C99K/4tIhVlzSMhSne4cNcWQlQcshq+PoEm4ZC05oOB1NhX/3QHo10TqArmTgF7tlrRlIqyGrOa/EQciiiMdk1gXz33PVv9SBUr3y3iZ1d+3kH7sblDS5YqPWs/Gkq5sww0jXDp182iXpMCz2YriF+hdWmRlIqU47Cr1pL6O40JyvY7CB0oovqDQUwhLcOtEymBkqvWgimkZc37A7i2WPCstXLqmxe5+GPh5uSqnZsEnGvNmIq1dJ7s5+xPWvBstqIxibmysESDJzF/K/IUKPIVmCsS8RqNSLWV5HDZO3w4VprxbRPznH21EUuVfo7DzVbWPRam9lMVaFwaca8JWFcWYk3Myes+Fqb6wwE0iTWQxpFe1lKlp/ZTldR8OJSqN+lMkyqrAWu5AaOvAHv13LPx1FkoLElyKLhNCpRMIS3OtXPryiTfnScG6Lk0kPZsTCFtGocAUtKcIMmLSfzXGNAwNTXFYOMoPReHsVcbF3JoUnDxR600PtOZ4jsThyVbHahNeVhXFqLzpvNiX23EurIQ+2ojG5+souI+7xyHN/DtvcVK7ROVKW4ycVi228nGz1RRut+R1r89m60pDivuKqV0hyvFi7kinW/7SiOSBIp8BRoTCzjU2bX0nhvi5PeuLejfyfYe+stLtB/qwVVrofqDQezVRtFnQ2LR0/BMJ6bSAjQuBaF9Rax/vDydwwTfyeeRb1Sl9+/EdQYujjFQP8L1o2JTe8W7Sim/15vq3/31Y7S80kN0SDghLXu7n+oPB1LXsSy30p3YpPNuNKPMVzCTcKPwbDKkcdhXP8RgyyhEQVOsofaJylTfs1TpufaH9pQQbcX9PirfUoLGJPpsuHg53tblbGY/1kI7DoeDpqYmPve5z6HVarnllltYwhKWsIT/W7j55ptRq9W85z3vYWZmJhHzcrKFA+yQ3szmdZsxlKhBDcvvD1B5Twmo4cx3m7j4VBP2VWIstC4zsOGTFak9oJ4Lg/RdGU4IEYRAx7NFjItT0TgqrRLXBvHd336sH3OFEbVBjOUr3lPK8gcCGMo0EIP633Yw0pYQ7agheKeL5e8Ue6BNL3Yz0DCSEihZlxkwhQtS96c2qZAUCtQ2NWq7Gtf6uXWBuVLP2kfDlN/uRW1QYPbraE84wCTLmiv1rHlfAFO4gIGroxz+q0tC9LDejNYtxAxqmyh77sfNdJ0SIl/rirmYgGutCb1XDQoJFGBbVihcpRAOQ0kOAYL7PVTc5RP1GoTAJ1nWUKah5FYHG5+swr/XhX2VUXCU4MW13ozaINxsNnyyAt/OufiHfZURY1CXxmHdpytx1Ii2uebF6KwrBIeGEjU6h4aSWxyobaIRWnc6h9ZlBtqP9qcESq71ZtR2dRqHg40T9F0aZqIvgrlybg00n0NUiCw0CZjCBViXGdLK9lwcouN4H2qDIo0XY1CX4vvE/6lHISH4hgVlDWUaLOFCLBWivKPGJPr3DXyvfsjPhk9W4KiZ4+VGvlc9XEbNR8Xa1VCykENjUOxVr300nHg2on/rvXMcutaacNVYWPme0rR7nc+3qkCZ5hB0I4eXf9NKx/F+UOct6N/WZQbqf9HB4b+8hGuVGfcmM6sf8qf6LIg0eX1XRrAuM4i10u1eSnY7M3KoNuaDQkLvmhPyuNbOcXjuh1fpvzoMatH21R/0Y18717/bDvfR+Kw4+Lrs/iA1H65AneimhhI1U5GZlHuUxpI/58CuBveWOQ7z1DDSPk5jIn626uEyqj8UTJUd646mBEraEjX+PR5qHkl8Zyy3E4isYO3IDspZQ1lpGePj49TX16PRaAgEAksxr/9iWBIp/RfAmjVrkCSJhx56iPHxcYwGI0qU3LvlnTz28cfYedsOAKruLsG7UbzVzS8K5WNwm8ir6FxupLjWjn+/mORUGiX5WhGE6T83js6iJbBHBHscdSa81XZWPCgm+8mxKRTKua4Q2FVE4Nai1P8lSWJmSqisyw+4Ka61p0QRgW1FqDRKgjtdABS6tVTsEH8b3CfKbvxsFUVbrKnrJ11fvBvtlN9ejDGko2yPF2vQRHR0kov/dI3gHi9l29ypNng32gntL0alVeJd76S41o5vsxCphPb7UsKSuk9X4tvsILivmCtPteFe7aK41o73JnHt8AFf6u+OfOEyCpVEKMFZUY2V4lo7JbcKTlVqEVhKpqwq2+YmuFf8zh4upLjWziyzTI5NUXmbF++GuU2rsp3u1P0qVQo0ejXlt4n/V97uobh2bhER2FWEpJCYjgqOi2vtVN7uEXzvFRzqPEK5Hp+NU7ZzHi8bbFQk6g3eJsq6N4tJOLh3IYfltxdT/9N2lAolxbV2imqsCzhMQqUVERvvTUUU19op2+pMPNdiXKtsnP1uExMdUUpucRLcVwxA6c3i2Xi3ijaV3zHHd4rDPYJD90oz6oJ8hq+PMXhpgvLbi1P9O1k2sKeI/nN9xGfjmH2FBPeK+6k4UJTGt3OFBUkhYQoZ0NkUFNfaKd+fKHub4Lvn6gDxmTiu5WYCu+b6tygr+I6MxJAkKSVaCuwpSuO70K1lanya/nPjBO7wUVxrx1GRzvelH7fChOB72T2l+HY5KNklOPTV2dP4VmmVFK0XfTl8QPRDzybxHG1VTkZax1FIEr7NjpTgqeQWJ6H9PiY6orQd6kVn1uDb4aXuyUoq3+pL49DgLhB9Vgcacz5mX2FqjAgfmOuzSXekfJ0YM6reUUxxrZ3QAcGL1qBGkiSR0k4Hvo2euTFCB9agifxEKpTSHS4xnuSLYGtgVxFlO+Y4VKgkkY5yQqiei2vtlN/jRifp+NCHP8Q73vEOXHHRxtnZWV5++WUUCgV5eXmcPHmSJSxhCUv4j+LcuXPk5eUhSRLXrl1DkiRUShXFBPn0E5/m/R96H1pJS+mtTnyb7YRv8xIZgKmJKfLUKuyVYtwP7S8msNOTqldSSoT3ivFrcmwa5zJxeheg/K4SvLVO0JJy5TF4xIdn6U1OSrY4CN8jguZKtZh/x1uEWqFsh4vQbYk5Yq0VS0khBXbx4Vy+uxhT0dwHbGCnh/AdxdR+qhJbqBCdScPw9QkiA1B5hxffZtEeg19LYLcHhUKi/8oIWouWki0OQvvEeB3e56Fki4OidTbyDXmE9ngJJeZvtFCyxUH5AQ+ltzpZ864ySrY40GoVXPlpG6H9XgK753jxbbZTcUeRSDHXNoGltDAlGAodSOcQYHpSrIdKdhZRssWBc6UJgOA+L/ZyE7NTcbrODlF6i5PQAbH+8NzkpmSLA98mB6YSPZJSwr1m3ppih4tgomzJFgdmXyHxeJzeSyOEDhRTOm8NVLbDRXCfl96TIzS93IHOrKVkZ2Jdc3sxvpvniaR3eQjfLuq1VOoo2eLAv0vUVXFbEb7NdsZbIpz/h2ZKt3gI7Rccal0a8cwTfCs1CiRJSglW0vhOtFlrVNP4dCehfeJekwKn+Xxri7T4NtupvFP8bdm+Ykq2OLAG9ImyxRAXYiYQorDyRPt928Uz96y1Mh2ZAYXgIonSW5yEE/3QXedGU6hGmUgLE77dt4DD0G0+pkanmY5Ni750iyfVhiSHTb/tIh6PozUn0nJUGijZ4qAsce/hA14UKinlABHYPcehwS/6rGeDi4ZfdBLe78G32c6GT1aIsrd6UhxqLYJD5xoLalM+5QcSHFrm+A7c6uHCDxsYaZvAudxKeL9HvCd7XJRscWDwazn/j83E43ECuz2U7HKw8TNVYow4IK5TvNGL2VeIvdJA2XYP+fq8tP7tu9khngEQGYwiSZIYI7RQfmdJGt+SUkqlPlr/nnJKah14tibez9t8aC2a1BiRX5BHfiLdkGetVbwL28V1S28Sf9Pwe+FWFdglxgiADSs38sADD3DfgXeiRElBQQENDQ186lOfQpIktm7dyhKWsIQlvBG4/fbbkSSJO+64g9HRUQyFBlTkcXvoPh7/xOPsvH0bAMvuK6U0EXdo+H0bxKHkFjEH67wayra5COwWv9eY89EYRGB7oi2K3q4jvE+MxxqXgrItLla/rRSAyEAMZZ4iJXQI7/MS2l+UEl8AKWcB/04HZdtcKfFF+DYv+YV5lCTGYIvfQGhHYk2x3U3ZNhcbH6vCe7ON8AEvkjSXztO/00XoQLEQVmxx4am2ExmMcfHHjYRv9xHYPfed7N/pInRbMVqrmuINNsq2uXDXOhNt8OFPxNzWf7ycwB434Tt8ND3djdGppWybi+Kt4vfh24uFCAWRbkypUqTWKubSAsq2uShLHGxSa/OJx+OpVAvBfUWEb0tw6BB8SwqJyeFpyg+Ie00ivK+YcCIOpFQr0Jo0lB8Q9xPa46JsmyslFgnf5kWRJ6XSkZRudVKRmDvLttsp2+bCXFrAsS9eZWZqltCeuXhN6Q5Xqv2+naLe4k0ijhW+YyGH4dt8ND/TzWwkLsrWiZhH6LbiFIdJ5BWIGIY3wbdni/h9aH8xJZtdXPxRKxNtUUJ7i1Jzvb3CSNk2FyXbE/Gmt/pSfN/IoTGgocCuY6h5jP6zo4T3F6X6d6rsPi+9l4eZnYlj9RsJ7U08x33iXpN9tLjOgUIlYSoRG7Nl21yE9om5PrDbSdk2F8PdMWYmZ3EttxLcN4/Drc7U+mm0axxJkrCGCxPPpjiNb2vIyOTYFP1nRylO9G/PGrFgSvbZ+l90QFTwveztfnzb7DjXiffGuc6RqFf0WY0ln6L1NgK73YRvT3zPrLGIZ1Provf8ELOzs5TucKWEVKE9RYRvKyY6BFd/1UaBTUvprUVs+EQFy+4tTePQHDAQTqz3Cj06bAFjaowI7fOk+uxEWxTioNYLAXjZAcFZOBE31JpEzCvaGxNua9u8hA7M8eJeZUOtE39bsd+NMk+B1pGXuFcvwXkc5mlUzEzNEB2Ckp2Cw4o7vGgkDe97/0O848F3UBavBEChUPDSSy+hVCrRaDScPn2aJSxhCUv4j6KtrQ2TyYQkSbz88stIkoQ6X00pFXzi0U/xvg88jFpS46mz4N/jEbGSGIz3R8nX5eFaJcQN4dt9Yr2EiNEr8xUEdov/R3onKaqx4agWa4pl9/opvcUNakRKqTgYisSc5VhuIrDbQ8U9Yi9SldhDGGkS1nThA0WpuISxWIdzhRWDtwDUUL6vCMu8Q0Kh24qofIuPDR8vR21XYyzWM9w8TqwvRni/OxUb0XvVlN9ejCpfSe/5IWKxWQK7PYQT82xwl5PAbg9FtVa0NjXldxQTum1uLPfvchPe58G13kzN+wMEdnsweDQ0Pt0lys6bI/y7PYRu8zLSFKX37BC2ChPWcCJueJs3bU6WJImpxHrIucFOYLcHz1oxz4ZuL6ZonY3p6Ax9l4YI7S8ilODFU20hsNuDc4MdY1kBynwF3g1zMa/gviJCifWHNWzAucJKHBiuHyK034t/XowudKCI8tu9jLTEuPSvjRTYtZQmDmaF93nw3zq3tgrf4aXiLtEGtUFBYLeHYCLmFdrjIrDbQ2w0xpWftlG61Z16jiDiN8HEOk1tyBf9MCFwKr/Du4Bvg1tH67O9+HaI55hc85TfXkw4wbfaJgQpoURMo2izg8BukS1EtNeHhJRy+Aru8aTiqY5qwXfROitT49Mo8iSCe+bxsr+I8B2irGuVGb1Tlzp4ENxfnMZh+EAR4duLiQzEmBqfIrDbgy+x5gjuLcK/S9x31/Eh4rOgNYv71nvVBHZ7KE0cEAjucZOvy0sJncO3FVGeeI5qg+CwbLOT5t93E7xV9NnkYcHy29LXKv5b3ZRsdqJzaCi7VfCSFCKV3y74vvqzZgaujVK01kpwbxF6rxrfNvEcrUED9T9vZ2ZylvABL44aE7WfrsS/20MwEcdyVTuwVZhwrTJTdosTnUVDaJ6OILjHQyix3htun0BSSDiWiXutvKcsjW9VvpLZGRHzWvPuAP6tHny7Emvx27wYigpSY0SBQ4vaJNZdxmKd4Dux31ieiNc2Pif0EuV3eql8q2hD0FHFAw8+wNtufQANOnQ6HU1NTamY1+23384S/vOhyl1kCf83MDExgcPhYHw83dpv3fJ1VBSupvPwICOXRxmpHON6wp6fOMxMi43/7qPD6OwaokOT4ndqiMfjKNRCknrtN22YQnMTeMfxfsyBhNL5zBD+W1z0XBTK4eYXOrFWzakwR7siGDw6lr+jlPP/2EzvlWF6zwqVcOMznXi32Fj13koO/59LtB3qJd+k4Nq/Cvvjvqsj9CfqbXy+G+9GC5ZScRK99eUe8vRzXa73wjCzxFl2TykTg1F6rwxz9ddtMAHNL3ehMYkPwNI9Tvobhxm8NMpY6xjk5+PdYqP3pHCIaXmhC51TfMxOR2dABW0viyBL1+EeVAUq2l8Wg9TMzAxKFDiqDfScHKHr1ACRQaHeHLjUT4FHS4FdTeXbi2n+YyfG0rnT2p0n+5kcEYuIsb5Req8M03FsgLHGCawrCrBUmNL4ToqODv7ZRcJ3e+k+meDwuQ7sK+dOCbUdEm1NiqHS+H6+E2f1XNnrB3tTylqA3svDDFweItVBgNlZ0QdaX+kh35DO91R0ivWPl3P9SA8z07O0nxAnBFte7kpNlkkk299+uB8pT6L7SKKdL3ajc2pY9bCfmclZus8OMtEtJozuY93kG/JoTzgxzBe/AWl8d54dpLCkgLZDA2ht0PRcByZ/ep+dGpsm0geHvnKJ8AEvHccEL01/7Ejrs21H+pidmqXthb4Uh0m+m54XfPcfH+fQ8Uv4ttuRtHPS7d4rw3N99neC79mRKBs+UcH1Y72olHO5f3svDzNUL05a6Z1a4vE4PZdHMvI93DaGwVNA3/kR+oCZmTi9ZwSHLS90obWp6Trcw0TfLIHb3ehcor93vtaNUqOk87VuJvpmca43ovfqWHZPKdPRGcFhQnHce6YXjU1N2yt9mMsKmYpMM9I6l8uk82S/GCMm4NQ/XKR4s5e2gwPUPBJkanKaoetz48/8PmsqLmR2dpbmP4rTrTeOEdOTM4x1JTbPtzoZahul45Dgvv4X7TirLXS+nLBglUjlrYX0MWKscwy9Q8t47xQA/fUjTI5Os0xaxzLW4dpq4OjVV7l67SrT09Ns3rwZi8XCww8/zGc/+1mWsIQlLOH14H//7//N//yf/zPtZ5p8DW/Z9nY6XxqBCLS80kOhR8yHSYFAX2LcP/9UG0UbzPReEv+PEwdJzCcdr/SjMeQzknA8anutn/xCJcrEfDPYOEphkS7lktJ5YoCxLuGa2X2sF/c6CwVWcd2m5zopdM+dDOs42o+5XM+qh/xc/VkjBS41bcn58PlOjCVzIqX2o33YlhtRKhX01Y9iOj9I54nBVFlTsJD1nyhHpVbSdqSP6cgMHYkUp93nB+k5LcpGR2OMdkW49m8daC0KrKuskPh4JCLK9p0fZHYa3DUWBq+PpNJftbzSk3K+SSI/4WzQ9EI37hozA83i3lte7EZtUbH+8XKOfuMK3acHGWoSrlAtr/YxPTVD99khAFoPd6HWqGn+g1hzdp0cZDTh4tdxeBBJIdF7sofIgHDR0Tnmdh47Twww0SPWKj3H+8jTq2g/OAARaH6hawHfkdEYaKHz6BAFVh3tRxLrhGc7MJXNrQ3nY6B5gu75fD/XgbncyPJ3lhKfidP6Wq8Q6QKRrmga3zOxWRRaRap/tL6Sntqv+/wg0ZFJ1n0sTPNr3UwMxoi0R1J8qxLCNmtYjyRJRIbEvba83MPk+BT9DaJftrzUTX6hWKtoXRq6Tw8y3DKWuGYfMzOzDF7op+OVfpwbTGhNc2vD+Xx3HupGoZZof1GsE5qe70Tv0qVz2B+j+/gQWgsU3eKhO7G2bXquE0PxvD57pI/o8CRV9/pQqBV0nx9M8Z3ssyDcmZAgNi7WDCOdkTS+W/7YSfBAMVPjYq3eerA31WcjA3N9NtYXQ21T495gxbzMSuSVfsG3UiIyMMv5f2gm+CYPBq+O5feW0fRCF9HhSUY60/lW5isgDt0XBhmqF3226cVeJiPT9F4aoffkCKW7rcRnlWgtCla+N0x//RD9F0XZa7/upmjjFP1neln59jIkpcRw29y6bP4Y0XW2H9cqKx0viL4fG4vRd2nOervjaD+RIfF/e6WReDzOUOtwikNjiZ6BRJrdmalZFAoxLvXVj+K6PkrHwUG2Sndi9esZcHXw8ssvMTMzw4svvojb7WZycpK2tralVHBLWMISXhei0SiBQICOjvRUYqvDNSwzVtN9fJDxtiiDTSM0v5RI7zEjpcRCQ/URWl/pYTom5s68wvSY16WfNGOpmDu52/JyN/bEiexo1yyTkSl6LwwB0Px8F/aVppRr0UDDCNZyI8vfWsr5HzTTdXqAgcti3Gx+qYfp6RnK7yzh7HfraXquG50zj6anxdzceayfoebEvPpaP1NTMziXCReWxue70Bjn3Jw6jvQzPT3Nigf8jHVH6DzVT8crXUSHoOm5LnSJjRpXrYXeC4MMNU4w2izmCc8WB52HBS+Nz3dSmJhnJ0enmZ2ZpeVF0Z7u84MUuNV0HBP3OjM9A+ThXGum+/gg1w/2MDkqOB1sHqfzVD86u5qKt3ppfK4dc3guBtPyUjez04n13mSUzlP99J4dYrQlijGgwVplmiv74lzaisN/dRn/ARf9FxN8v5jgO7H2an6xB5VaQdtLImbQebKfwatiPd3ySi+xsSki4zOJZ9VNfuFcDKbzWD/DrWJ+TLp9J1pI0/NdaBNxwyTfUxMxah4Jcf1QB52nJHoTjgfNz3en+E5iOiKu2Xemj3yDio5EutzGZzsxeAuofFsxklLi+ms9RIfF+qP38jCFxdoU30qVcq5BwPVXe5hK3Mtwu+Cw69QQaKD5lQ4s/nl99qVusVaJwuG/uoT/gIvexLq35cUuwXc0yXc3KCU6XhXr9s5T/ak+2/pSN5HBGAOXhjhyaghXrQVV4dxavPNkP0OJtWDD73vwrJukv3WUdR8L03Kwm7y8zHxbgmJNMXApuYbrQmuZ47v3wiDWchODDaNMDU+i1CjoPiaecePzneidWrqP9REdmsW3zY7eK9YRA5cG0Njy6TgyRLQniqVKj7GkgBX3+5mKTqf12YHGMfHeHBtixdu1TI/PpN6/JN/JMeLg1y8SuMVFz6khVryzlPjsLJ2n5lzRml/sTq0N3aus4j16oTPRP9LHiNjoJGO9gnzvzTYGm0bpPCLu7eqvO3GtMdH8R/EOKlSK1CGLJIfJNo52jWMtNzLeL+rqOj/IbHQWv1SFnyqcGwo43nGYK1euEIvFqK2txW6386EPfYhPfvKTLGEJS1jC68GPf/xjHnzwwbSUbmqlljfV3k3vkTGQxN6eqUysKaYnZyGOcEYBLv+0HVeNkcHLySwq8ZT7zeClMVpf7mE8Mbf3nR1E51SDUoybnaf6sJWbUtdteak7NXcO1w8xM+WiwC7mgaZnOjF4dWllreUGVjxYwrmnWmg72kt//TDEoOnFLoxlc/Ga1he7sa80kadTEeuN0Xakl/4Lov0tf+zEXGGk+kNBNKZ8Gv/YAZOk0kC1HellMDF3TkamaDvSS8sfelAbFBhDBhTKuf2itiO9DF0bJTYWZyY2y2DTKCMd4t6bnu0iTz83dwKpLDVtRwaYnpqhP7HOaXq2C401j5pHQpz/fj3XX+1lrFvEFrpPjSApJPrPifa1vNKNRp+fWi+1vtpDpE/s/fZfGCDPoKL71AixvhgjrRPonXPf560vz/Hdf3WEtiO9dJ0cJjYixBtG3zwOX+hmamIGtQEGG6O0Heml5+xc/CAZgwFgNk6yE8RGZtP4bn2pC3O3kfD+IhR5Cpqf7xJuUvM4TPE9OoVKrUylEGt6vhtVviKt7OTYFGveF6D1SC+T41MMtYj1SNNzc3zrnUJUHBsWvLQfHWRmZpbh+qFU2eRaXG1Tp/Hdc7IfhVqi7+wg7a/2Y67UUzAvbtjyUjfRQcHh4OVB2sx5dJ0Q7W98tpNCT3qfjY1Mi7Rpaii5xUFf4j1q+mN6n235YxfTk7P49wrx9ny+W17oSq3FTeECJJVEbGAywXc6h9df6UZjVTMTSa6Z0/luP9rH4NURYv2TKArymBqfwlBawFhbjMZnusjTKYmNwOWnruPbacdYrGPlOwI0Pt/B5JFp+q+JPtv4TCdqg0o8n5k47Sf7GG5MxKYSfAxeHqTr6CDuTWYUkgLUsPb9YbrPDzJwRXzLtP2xi+nIND0n+wndWYRKrWSwaS7N3Pwxou14L6VbXLS+JNZt0ZFJ+i/PlW3+YxdTY+K+HavNxONxRhPxsuQYkUxZGBubTAkhY70x+q4M03VogM3SXgwONROBIV4++AITkQl+9atf4XQ6yc/P59q1a0up4P6TIMWTOzBL+JPg5MmTrFu3jtnZ9PyRK6nDIRWl/SxwuxvnSjODDaNc+qfrC+rS+XSU73Wn8lWuf7yc5j920nNyYU7J5e8oxegroOvMAA2/7Fzwe/vqQsp2eFK57Ev3OGn+Xea866V7nHjWWuk6NUDjbxbm0/RuteHb7ODKL1pSDi3ZsPajIS7+WzsTrQtzuaKDjY9VMTsdl81Hal9diGeDnTPfXpifMlN9y+8uTaXlyISNn6kiPhvn0F9kvp7WBmveX8XU+DTHMuTdTWLdo2EmeqNc+GHmfK0gnrGlrJBj37kKGW4/1abPVjEdmUk9HzmYK3UMXpKvKHy3F1vYQMuL3bS/0i9bbuNnq5gcnUql6MpY5jNVxONxDv25fJ5YY0jHcH2WG0OkGiu/o4TxnmjWZxi43Y0lUJiVc2NIR+WbSzj745bM/QmRwi24z8tYZ4Sz312Ytx4geIcHxwoTPeeGuPaLjoxlHNUGDD697O/nw1ypo/Rmt2xu2eQ7E+mNyZZZ84EAXWcG6HxtMOPv56P2iUpmIjMc+5vMXG38TBWzM/LvlLlSh0Il0X9unKr7fKg0SlmuNn62CuLI56L9UJCh5jEaf9OFf78LZb6S+n9rl60rPpP53av3HkdSQnNzMwAmk4n169fzhz/8IWNdS1jCEpaQxO7duxeMFToK2SjduqBs3acrkRSS7JgWfJOH6OAUbS/0ErjDjd6h5UyG/NggxlriiBRpGbDy3WVMDMa49m8d2FYWEhmeTjmjZGoXILs2WfexMJJSyrlOAJGeyuzXc+57mcf1NR8IoLWqqX+6jd4Ma0qAVQ/7ufb7Ttn2zkfwTR4GLg2lRBI3InRXEfYqI22H+mh9ridjmVUP+Slwajj/4yZGGjNf0xTWig3FH7WkBDyZsO5jYbrPDcleC2D1+wLo7GpO/X1T1rpApHXLxkOuZ5dsU55excHPZe4rAKW3OvGst9JxtD8l1MoEg18ry1ES6x8vR6VVZr0eWlj7UIius0O0vdArW6zq/hK0pjxOfO2abJl1j4bJ06k4+KWLKSHWjaj7dCWSJMm+L0DqAMVisOohPy0vdjJ0NfMFa5+oRKGSZDkw+LUE9xZx8uvy95WEvdpAaK+Xht930J0IgM5H4A43zhVmGp7poPvIwt8D+HY4Un1y3cfC1D99PWPbQ3cV4VhmoufCEPX/unA95VxrwrfFkXKfEuLG5pSIcD6q7i/BVFpA60s9tCUPxSTQE29nqmKI1uutqUM1y5cv56tf/eqSw9ISlrCErGhubqaqqopIJH0MW8lGHFK6e6KnzkLpDhcDV0e5/JOFMS+NSUHoTh/nEvGbmkdCtL7SQ+/p4QVlA7e5ca220HV6gIZfLYx5GQMagvuKOfFVEePw3mxLbQLdCOdaM4E9bjpP9tP09MI5177aSHBfEVd/fZ3+RMrdbFj9vgANv2tntCWa8fcbP1PFzOQsR75wOePvjQENvs0uzn2/Oee1AKru9aXcnDKh7olK4vE4h/8q8/XQwMbHEzGh/yMfE1rz/gCRwUkuP7Xw2SXh2WzFtcrMye9dSwluMmHjZxIxtq/Ix3tApPuS4xHAt82Od5Odttd6Uw5RGa/32Spiw1Op/pAJtZ8S7oyyPCEcvibastwYInVb9Xv9jHVMcPZ7zbLlvDfbcK40p07Ty9W18r4Srvy8heGGzNc1BkRqs9G2idS7k+lavpscdJ8ZzPi+gEjvZqkw0vjrhXHfG6HzagjscnHu7zNfz7qykPLbixnvjsp+Oy17oITBxrGUECsb1n0szOxMXPb55Xp2Oq8GjUHFwMUx/Adc6Mwazv8gc9vrPl0FEhySWaOueGcpYz0Rmp7uFqkAzXmynNU9WUV8ZjZju67YjqMqkGhqFt9oBoOBLVu28Jvf/CZjXUtYwhKWkMQHPvABvvWtb6X9rBAzG6TtC8pu+Hg5ijwlh/4i85jm22ZnZnKW9lf78d5sw1RSwPkftGQsW/upSpCQ3V8of4uXqYlpGp/uEmm0ZuOMtMQyll37aBhVnoLDn888bq9+jx+VXsVxmb2O+bCvMuJYbuSCzFqo6m0+TEE9137bQc+JIdkybQe7Zds7H75tdkbaJhi6mnkftPgWO8Wb7Vx/tZfrL2Zem5S/xYu13MDFf2mRrUfrVrPsnhIu/7SFsTb5dq1+yE/flRHZdS5AxT3FWIKFnP9xY8qtRg56rzrr9TZ8vBxJoeDw5+VjXqveU0aBSysbawWRmi24x0P7sT5a/iAfrzOUqHM+lzXvF3HNbNdDDavv99NXn52r4AE3ereW0zLrFxCc6+waTnztIrHMYVTWP1aOIk/B4b+S5yl8VxFXf9MOubsdFfcU03m8n+FrmWOtax8Nk69TcfCvL2asT21XU3G7hzMye37zYSjTUHVPGY3PdGZ8Z4o2Wym5xUnjM510Hc28d+mps9BxSAjf17wvQONznRnb7r3ZRsnNTnrODVH/84UxL1O4gLLtLk59S+yhVr3NR8Nz3SkB3Hz497pw1VhofblnwTMeiQ8wWtFJW3sbo6Pie66qqopvfetb3HTTTdkJWcIbiiUnpT8RvvzlL/PYY4+l/UxCQR270UlzKsz5QoyGX3ZiLNbR/EzmD/7KOzyojflYVxTQf258wcaUf78La9jAsS9f5fw/NhO8w5NRoATgXmdDpVWmHIZuFCiV7nHiXmPh0F9covl33TS/1C0rqhlPqBgLHDr6WTipJkUpw81jXPhhq7wQRgdMQPfZQTpfk9+M8e8qEvbSNojIzCfrP15O18kBWp/vzSpQAjj45SyTF+Ia05EZus8PZS2XV6CiQJn9xLElUCgsprPreIgOxhhsGsteCLIKlACu/qSN3Eu5xSHrJJ9ALoESiFRjUzun6TmTXXyT4irRLzJBXahCoZIo2Wzl0j9lLtRzcoSyHbN0nZQPfFz7RQcdr3Yx0bdwQ2d+PUlB4IZPVND0XEdGgSBAaJ9IVajzaJjoWLjwa3uhjwKnhitPiVQcme7x1DcbUr/b+FgVsaHJrBuC2XDwzy6KayAWBXl6Vdr4Mb8fGX0FqROLmXD2x80YEyln5o85Sczf3HOuNCMppXSRkiRBQivbe2GY2ZlEmrjb3ZjL9Bz/Tj1MQKhtLQATTNNDG+Pj4zz77LNIkoTb7V5wQncJS1jCEoqLi2lra0v7mRc/FVL13A9uEGL0nBtK2c1mgmOZiZnJWdpe6KXhFzesqbSw7n1hOk8M0PZyH80vdTNYLy/W1ru1aG1qrtFBX4YNrnUfCzPRH+PCD1o49JVLsuKOxaDmkSBqYz4H/+wibS/0ZhadaIGImG+Cb/LICpQKSrQUODRU3uGV3bhybjDh2+zg2Jeucu3fso/P9f/aTtsLnRlFFEl0nRnAt8mRVXzjWe9Ama8gTy1PldaiIE+vwhoqzCpS6j4ziGetJadACcgp1MomTno9aP5Dd1ZxUhK5BEoAfZdGKCzK7YqTb8jDXmXIKlLSuzWo8pSyvwfouzyCNVCYtQ8f+kpunpICpZJdDhzLTLIbmVqXhgKnhtC+Yo5dzVzmzD804ViZcI9I9P35GGmMpNYwy99RisGr48wPmzI+b51NnL4b6cwcSWr4RScNf+hMXaP2U5W0HexNEwYl+6O7zkKeXoW72sbQ1YXfgPX/2s5MdJbGp8X4c6Porvv4UEoo5VxrosCpIfymUs58d2FArenp65S/tTTVjvl1OaQiuFKEJe7nEL8nX53H+fPn2bVrF9PT0/zgBz/g/vvvz3i/S1jCEv7fxM9+9jPuvvvutAN5SlTUsRuNNHdKeb4Qo+PQALYqA81/yHyIJXSnj0KvDvtqI72nhxeIN7w323CuMnPiq/U0/KqTmegszc9knitdq62ojXMOQzcGqj11Foq3ODjyhct0Hx+k+/ygrKhmtEuM9zqrmn4WruF0Xg2rH/Qz2DjKpX++zmmZg0hogCi0Heyl57y82Cm4rxi1MQ+NQ5NyJ7oRNY+E6Dk/yPUX+rIKlGARc24Uov2TqRPVctCY1ai02dcA9mVGNPPcd+Qw2j7B6CLWXdkESgCtf8wuTno9yCZOSiKXQAkg2hUl0hej+8xCcd18WMsNqE15aEyKlKPPjchTg0qrxF1jY7ihLWOZ4YYokyNTdJ2Sj7G1vdRH35kB2euAcDMbqhfPZO1HQ7S83EPvycz3UHG7F40lX1a01X92lK6SgTnxTqLvz8eFeZvgdU9WEemPyb87OXD4ry6nUuVVvq1YbBzOEzRNtEVTITdbuTHlSpoJp77biMkvAmieOgvutVZO/F19qv3zhWDeOhsqtVJWpNRxtC/l1HGjgK+8by30wSxqWrhMNBLl6aefRpIkAoEA1679++J/S1jCEv77oq6ujsOHD6f9rIQwIWnl3A/UsOr+MvrrR2l7qY/2o/1pjkE3wltnZzo2Q/ur/bS91Ecb6eul1Q/56b04TPur/TT8roMxmXUJgDlYyMzkLI1Pd2UUwqx5X4Do0BSXnmrl+DeuLkqYIYcVD5ZQUKTj8Jcu0XtmmN5Mc64aiMHFf26ldLdTVqCktqkxBfSozXlz+zE3wBQuIHCrhxNfq8+57rj+Yi89J/uJjcjPud1nBtG7tLICJQD3GjP5BSqUmixrLzXo7Bpss2QV3vSeG0ZjyMspUAKyCpQAjvx17sOSi0HPiSHZZzIfixGOdZ8dxOLXZy8UA51Tg02RnSuDr4B8Q57s7wG6Tg/irrbICpQAjn49N09XEwfRXGtNeDbYOPmNzHO/2gCWYCEFdo2suP3cd69hX2MR71Wi789HrDeWEigFD7hxrDRz/p8yi9Z0VrGomujOvFZvf7Wf9mP9qWuse6yc9oO9KVESkPq3KVyA1qbGVW3JKFJqe6kPSZJSgr75Yw7A0NVxTl0V76WhTIMpoCesUWQU5re/2oXOOudONl/AZ5AsGK5YsMWDHOVZUMe5ePEi27dvJx6P8/3vf59777034/0u4Y3FkpPS/2U8/vjjfOlLX0r7mRotW6R96QUT6ULWfSREXmHipHEGjUX1hwKoNHOCAvvqQnpPZw5mrPtoOGtdlW8vprBIx9HERCInoEiWNQcKqf/19YzXc6434t/p4cw/NMnWMR91n66k89SArFtT3ZOVEM+xsTNPyJEUamUs5tGw+t1+JkfkT4HpfDpWP1BK26HeVNq1TMgmhPp3I4voZtFV+HSsfrCU3svD1P80c4Dv9WAxTkqLRd2TlUxHZrI6IC0Ki+Xp9fC5iLK1T1QSG56UXZQmRXcTPVFOZ3GCSr2rOa6ZdHHqON6f+f3QQe1HKum7NLwoF6f1j5czHZ2RdQLY8IkKFHlSVkes5NgQuN2NrdzIka9fzngP6x4Nk1cgP+YAKSFk0RYrvi0Ozj3VwlhTJCVUmt9ulVbJwT9LtOuG34+7e7k0foah4SFRr8OBWq2mtTV7QHYJS1jCf29EIhGKiooYHEwPyi9nAy6peOEfaMVJ8ejgZMZx0hTWUvnmUup/00bf2VFsKwszCorm1xUZiHHqGwvnDK0FVrynnI5jA7S90IvWpSHSJb9m2vhkFVMT8ifK13wwgEIhLUqwWv4WL8bSgtSa70aU7XXhrrFkdTMSNwFEyM4Dc05EZ36QWdQBwrEpT6/i6BeyfKgndTSLFWhlEJv8u8osAus+FkapVmY9BfV66srlpLRYlL/VizVsyOpatGi8QVylVWkR6dfkULLLQdE6G6e+dVlWuJbi64vy92hdrqf/fELgn+M+6j5dSXwW2WdZtteFY4WJIzKnOuejoETLyntLufqr63PXnwfnWhOBPR66Tg6mhEY3Yv7YsP7xcvqvjSwURSbKrXmvn0hfLHWK7EbMf1fXPRYmNjTF2Qwuaoupq2dZPWfPnwFApVJRXFzMQw89xKc+9amM5ZewhCX8v4FvfvObfOhDH2J+aFGLnk3S7ozlk+6IJ7/dmFFws/yBUjSWvFQswlKlZ+Bi5gNbqx7yU+DQcPI7mesq2+fEFjam1lLZRD5lu52411qp/017Rqcmc0UB5XcUc/ZHzYsSpqz/eDndpwdpeTbzumrDJyqQFDmEMPOEHOaKAgYvy2xcJZyPYsNTshsVGpOCNe+voO1wD9dfkA9qaUwQHZJv0r8LGQQpr7sKE1R/sIrei0PU//w/fkBpMU5Ki8WGT1QwHZ15Q+paFFevh8+kPjBL+XWPhZkcnZZ1ONJ5Nax+h5+xLnk3cpj3ruZoX/FWG8WbHbQf7pN9P9Y9Gmbg2qisy9N8rHl/gNnZuKwze82HQ+QX5HHoL+XX2cmxwbPZStEGK+e+dzXje7DqYTHmHPzri7L3mOTBUqUnfJuXSz9tzuh6lfxekqtrTNPDFc251Het3W5Hr9dz8eJFNBrNwj9YwhKW8P8MwuEw9fXpc84K6nDekKUliY1PVjHRG83oBKN1q1nx9lKanuui98wwpnCBvFBGLdYbcnWhhpqHQnSfFWJwtU1NrC+LA88nypmOzMquXZY/UEKeTiWbdWI+im+x41xt5vi3MoudPHUWSre7sroZJe+BGBiDOlmHGoDKe3yYg/qsTkTL7vWhdWo4nmtPLIOA5D9c9vXUKYPVD/lRG/PeEBHSYpyUFgvfTjtF62yc/LvGjO45rwtvAE8LqjSQVazkWmuidIebU9+Tb//Kd5ehd2k58e0G2XfIUKaZ63s57mP9Y+VISjgiE3/11FkoqrMtav9WbVOz+p2lXP1NeyrF2nwYgzqW3V0qsjD9NrNoe/7YUP2hIEONYxnLqg1Q80gVE91RTmc4eJe8XvJdXfOBAJMjU1z4UYb9weT4laWu/qomTl04AYBSqaS4uJhHHnmERx99NGP5JbwxWHJS+r+E+++/nx/96EdpP7PiZo20Kb2gJFH36Qpmp+Mc+fzlnGm/VFoVynn5Om8UDK17NIykEOk+jv3N1ayCiAK7BpVGmSpzo7iobJ8TxwozR/7qcsZ0c2ntUquQFBK25QZaZURKGz5ZQe+FIRp/05XzVHl0aJKZSXl1sX+/C9caS0rIkS2t3ERHNKtoAqDQlQcSzM7Ka/aSYpSxrghn/07+w3zZ/T4ig5MZU+HNR9k+p7AOzyaSSQhSWl7uyprmS29TEZ+NM9aRXXGz4ZMVSApJ1obz9SApXDv9vcaswrTZqTjTsRnZ3yex9iMhoiNT8k5XiVtzVBuIjU7LuzRNCDHZsvtC2UVWCUeiXGn0JAUoVPInDPrPjXOwIXv/grl3deOj2VOt9V4YwlZpFG5lmTCRbqNa+0QlbYd7aZMJNCrzFUgK+fbPt5Svus+H3qVdwEfy+ZpKClCqFcjh2JfnxhzneiOBXUXU/yZd2Jh0mzIHCpGUEjMjE4CUEmoCEI+LNuiAODjXmwjc6qH73GBqk66g085adjDBBH3ha3R1ddHT04MkSQSDQZ5//nl8Pp9sW5ewhCX890IkEsFmszExMTcYS0hsZC9aKd0xJvgmD45lJi7+pImhq5GsQofYSBxJKWGtMNJ3dnSBMMe5VoxPl/+tmYFLE5z6xkVZAUYkAiq1Emu4kLYXejMKlNY9GmagcZSGX3RmTXsFkK/PfpLHt8OBu8bCkc9f5spPM5+0TqLrcA+OFSZ6L8kLj2o/VYmkEALybAIlQJx6ziEMUeYpUEjy8xPA+g+Wo9IocwYyah4JcuK717Jez1IpTkDLpZ1LYvk7S8nTKmXFyUlMR2cge/OxVOqouKtUpNL4de5Nllyo/VQlM5PZhd/jvTHMgTimYq1sqjMAzxYr3jpbdpFY4s9LdjloeSaLeA0IHHCj0iq58i/yfS25sZMtbV98FpBA59ERGci8KX3sK1dz9q+kQMi/z42r2pwxpVkSE32xrA5qTb/toikRMAnc4cYaNMiuHR3LjEhKSXbtNd/pCMTavP1QX1rbkmOD1qJApVFS6MrsehXpiqaNX5mE6fPfVZVaCYbM93hjXRs+WYEkSWnCLceFEDukEKfir2H0aWlqauKJJ57gf/2v/8Xdd9/N97///cyVL2EJS/hvif/xP/4Hn/vc59J+ZsfLKql2QdkNn6ggPiu+8c58pzGriEFtzBNxqgRuFCitfl+APK2SY1+5mrOuQreOPJ0q5Uxzo0DJU2fBu8nO0S9eoen33TT9Xt6xUJGvQKFSYK800CIjUlr3sTB9V4dperpbVhiexFhXJKuTQTIVXseRfpqf6ZYXKAFEEWN4FmGI1qUFRWKelUFhiYYVD/gZbZ+QTdsFELrTw3RkJitfIMQo11/oyymoWfd4mOuv9tF1WF7FrLZqmJmeZTzHZtTaj4RQqpWyqfNeD8p2O3HXWLn4L00pR6FMmJmcYToynbO+VQ/5mZqY5mKmjZMkoiLNGiB/zSiggTXvDMgKi5PY+Fj2Qw8ACqUCZZ58nGeiLZqzf8Hcu1r70Qris8g+g95LY7hrrHQfkxfLzV/rrn+8nI5j/bIuB3l6FWQ5fj1fPFa2z4k1aFhwgDU5NljDheRpVURl7vXMtxvRmEg9p8o3l3Ltdx1pwsYkD9ZyAwqVgpjMZ9Ppv21IjV/JFH1dp+fcpvRRBzXR7USJ0hO+Sk9PD01NTWi1WgKBAK+++ioul0v+xpewhCX8t0IsFiMQCNDePnc4XYGSWrajk9I/8rw32/BtcXDpX1sZvDQmxnCZ6XN2PIZSrcTk19N7ZniBQMkY1FF5l48rv2rLWRdAfqEKs19P20t9GcUVa94XYPj6OI1Pd8kKJpJQG/PT9kFvhGutCe8WB8e/cpXrL2YXH3WcHMBTa2Mwi0vk2o+FUeWLlHPZBEoAl55qzSkMUagVKLOs9UDwobWqc/K66j1lXP6XpqziF71XjUqnEs8wS12hNxWhNednPLw0H1MT0yizOA2CEJtUPxSg+7S8IOX1YO2jYeLT8ulcAca7YsxOzaI1q7KKlKwrDJRtd8kK14DUzz2bLHS8luU0HSKlmdacz7Ussb3kocFs4rXZOCLmZcuTbf/Z7zXl7F/J+pMCvJYXu1NuQzdi+Po4qizvUsehgZTTUdFmK65qi+wzsIYKUOYrUagy1zd8bSItnl3zkRCdx/vT+E2NDWrIL8xD784c84qNkPZurPlAgPh0PE0kOf9dzS9Qye+DxhDtUifa9eEQKo0ibRyyXixjh1TG1fgZ8kpnaWpq4rHHHuOJJ57gwQcf5Dvf+U7mupfwH8KSSOkNxm233cavf/3rtJ+5KWOZYm2aE4h3m422I/0wITY5picSIo4b578bhBS5Ah0KlQLmjw831FfzSBClWsnRL17JmlsewOgtQJmnQO/XMda4cGLW2RQsf2eIo9+4Qvsr/bS/Ip8+S2sTYglzFps99yYznhorJ756LaMDwXx0nRzCscJMTxa75DUfDKC1qDn9rctZ03YBdB8dpvtoduvl/oZxpqMztLyYPRBjLNVjLCGrSMm+uhB3tRVLoJATX5V3QPBtdqBQSWhM2e2x56cey4aZ6AyKLMGH14PI4CSmmTh5BdnrW2xwKN+Ql3Phgw6C+7zMxGaz1lu6q5j8wjz8+13yz2ECpkan6b2S/blncxiaXxeIgFi+IS+rKC42MklsVD6ANVw/kRIhzX8nMsG6ogCFSsJUol9gv5pq/zxB4Jr3BRjrj8q6beld2qx27fPb4d5kpvQWFxf/pSVdMJb4p6FEDxKM90xlrCuZsgXAGNKx7J4SRlrHOf+D1rkUcPOqjc/E6Tw2CJKEb6ed1sRmqU7S4bu2CttsiIP8FoVC4tq1a1RWVjI5Ocnw8DA6nY4lLGEJ/z0xMDCA2+1mcnIy9TMFCurYs0Cc5L3JRtvLfXSeGMQWNqLMT4x3N8T/l79TpHY69XeNYuM+i7vNWG8MJDCWGRi4NLFAoGRdrid8W3HKVSWXU06eToW5RH6tVP4WL3kFKs7/Y3NOVxdjSQHKfAUFJVpZN6O1j4RofqmLvrOjOeub6I2iyJMPsGgtsOYDVUz0RTn9t405HXhyrUMBei8OZ107ghCdqU35+Le5ZZ1pAEK3+VDmK3I+gwKHBqXMx/Z85NoUApCUCman40xkOT34eiA2wbILv2XT+d0AnV2NSq3EucFE95Eh2XLJtU3fldGsqe2cq8xZN4gA2l7rwb/Lw0infD2tz/Vkd/NKIgLaIi1r3lXGSNuErMi9+/wQ9uVG+s/Lb4TNdw6Y/05kgrlYLzbPZURS8wVNWgssf0eYY9+6mrGspVKHMl+BwVcAGdZxkYHZNIHe+sfLiY1OpTsFzKtXUkpZNxnnrwnXPRYmT6tKFwDOqys2PJUS6WstYAjN9ZM10iZogmh8lg6amZ6e5sc//jE//OEPuf/++5fESktYwn9zfPjDH+ZrX/ta2s+8BKiQ1qT9zLnWzPC1QaJDEBuZYnZ6Xkzmhph93ZNVTI0LJ2e50/RJKPMVSPMPEd1Q14p3laIx5nPsK1ezur4AGEoKUGmUmELajIIQjQmWPxji/Pfr6T87ysGzWdYQGlDpVJh8eiBzzMhSpaf0Zhcnv3UtLbVVJgxcGsK72U7PRfl4RdV9Pkylek5+t5FoFndOgMHL4xzKIYAf7RZpwtoOZl9H2CqMIElZRUo6r4bizQ7sVSbZVBUA9mojeVoVWmt28f1wQ3RRjoZTE7nFQovFRN8kM1OzSMrs68LFOpDrrGpmcqQLAai6pyznYbrSm5xobWr8B1yyqcUAJvpjDDZkP1ywqJhdonutfE8ZeqeWk9+4KOu4NdEbZTZzGEhU1RVN3Zt1ZSElm5yc/FbmPqLzisO1xpIC2ZjX/Dh51b0+psanqZdxHTeXFpKX5aDHfHFe0gnp8r+2pI0Pyfs2lhYiKSTGZdb59T/vSLl+aRwaqh/2M9Q4lp6OMcGrIk/JTGyWrlOick+dJbVZqJE0+OpX4ohHOcQfmJWmaWhoIBAIEI/H6ejowGQyyd7TEpawhP9/IxaL4fV66eubGwNV5FHHbtSSOq2sa62JruND9F4YxbPWOq+S9DpDd3iwLzdx6nsNRDpjHPoL+fVBdGgGlBKFXq1wTbmhLkOJmsq3lnLt9530nxvJaUygNudjzDKt+nba0du0XPzn1pxrwkJfAfk6VbqjzA1Y8a5SOo4N0H9uhONZBLsAI63jqI1Z5mk11D5ayXh3RMwXOcI82QTfSXSfGcSxzJS1rqLNVgpcWoo2u7IKgcrv9KE25gmHviz1GYp0QuCbAxndaG5AngZmYjNEBydzll0MZiZmmJ7MHvPqPzdC/7nc+6Bqg4p8vQrXKjNdR+XNH1a8s5RCr47x7mhWcVrxJjtIUlaRUvvBXgocGkayGDosNq0dMVAbFFR/qJyR1nHZ59FfP46nbpq+y5kP+QFphwlXvruM9qP9shxaQoXk61WyjlDzBU2oofo9QS78sDFjOkOtW41an4ehuIAOMojAYulmDGs+EGB6fJpz329JK5OEIl8BWbaP57t+rXlfALU5n8NfvpT+PiT+HemNkV+oSt2HY7kp9VzC0ipoBOJaGjjPzMwM3/ve9/je977Hww8/zDe/+U35RizhdWMp3dsbhEzOSaVUElQsX1DWvlpPaH8xseFJTnwtscFxw2OYn75s/ePljHZGuCSTV37jZ6qYHFtcaq71Hy9HmaeQXTAUbbHiWWedO7WSxYkpmZYqW4qxsn1OJnqjOQVAMJfeKZuoKHiHh+HmUdkUdzeWtVUas7oGrXyvsM47/f1mJlqzKKRfZ0o2Y0gn7/STQOXbi2l5sXdR6fFywb/fRdfJoTekLnhj070B+LbbGW4dz8nJYrBY3rKlAPz3YO1HQ+Tr87K6OYTv9mIu0S9amLXiXaVZF6zJd+LUty4uKs1grvo2fraK+Ex8UWkUS/c4sYbkRXRV9/kwlelzOmkB6P06Vt5bSt/VEa7+ZKHDgt6vY/ndJVz5ZSuDlyawr9bTe3rewioeTzktaW2w5n2VQqiWQbQ5MTvBxOp2zpw5QzweR6vVUl5ezmuvvbYkVlrCEv4bIRKJYLVaiUTmAsZKVNRy6wJxEghXEGW+IqtrkqVSx8ClCWwrC/Hv9nDuBy0Z3Y4q7i7GEirk1Hcbs6ZrA5H6adX9ZfRcHOLav2UOlq99JETH6QE6XulfVFoqSZKyuixV3V/CxR9m3/iCOYHH5NAUx7MEfxZbHwiee84NpUQaCy8qxPeRfvmUUslyryfNWPLZZYO2SIu31kL9v/7H0+Kawlp0Tp14Zm8A3sh0byBSdzlWGnK6Hy0GBSVa3DVm2f6bhMGvlXVHyogcz9jg17L87WUMNd2wmXMDNnyygs4TA4sSNtmrDRTYtTT/IfOmavKdiA1NLiqNorvOgjJPIevQVP5WL9ZyQ/Y0ivN4WPexMM0vddErc/Cg7tOJFMo5gqvJulRapeyar+peHzqbOiUWNIXlnbeSQjW59I0ToR6uDV2mp0fcY1lZGVu2bFkSKy1hCf/NkMk5yU8VfqlqQVmdV8Pqd/qJDkzKClSMAU0qBVL1B4NM9Ea5LOPGV/upCqYmFpdOq+aREHkFStk0avbVRnxbHHMbX1mcmLw32/Dd5KD3vHyKMU+dhZmpON3H5Tc/kljz/gBam5qTfycvKvJtszPeF6U/h2slCKci91pr1sOMFW/1YgkZOPejRkZbsqxbX2dKtsISTfb6AP8BF12nhhaVHi8Xirfa6L0wJpuu7/XijUz3BuCqtRDpnciY1uv1InCbm/ajgzmFZ3LiOlnkeMar3luGzqHl0JfkXZNKdjpwrjJnFVDNR8U9xVx+St6Zv/r9QTS2/KzvxOupr+6JKuLx2UWlUXTVWvCsscgKpAK3uXGuMHP6+405+7DGoaH6vX76Lg1z9d8WfmtoHBpWPOCj4bcdDFwcy/7sNLDx4/Ku79F4lMjqTk6dPcXs7CxqtZqKigoOHz68lAZuCUv4b4RYLEZZWRmdnXOCiHzUbGDXAnESiPWP2pjHia9elHXbSaZFMpSoCb+phAtPtRDpXKhmKbnVgafGxul/aMj4+/kQTjp+es4O0fCbzOKNFe8qpf/SiBA2LCItlSJfkXU/L3xXEVcXEddJpoqKDGSPPy22PhA8910dpuUP8vGH2k9VEumLciaHWP71IJsQKwm1TU3RevMb4mik96rRu7R0zXOB/o/gjUz3BuJebRV6Weeg11vXYnjTe9WMtb2OA4g5+rrarmbNe/0MXhvN6ki+9qNhuk4NyDpKzocxqMPgLZB1FVMbFNR8uCJ3TDYBc6UerSVf1mXKt9OOd4M9exrFeTysfshP+5F+emWMR9Y/Vs50LN0dXA6r3lOG1qrmsMwhBv8+F8biglS6yFxixkKPTtYBa7Kkl2uxejo6xfdgSUkJu3fv5m//9m9ztnMJufHGWKr8P4xHHnkESZLSBEpBVrJD8ZY0gZLOo2btR4IA9J4eY+T6BCe+l3kgcFQbKL+jhDUfCIAkUrfJCZQAZqZmmcpyqnrtR0LUfFhc++hfX8kqUPDUWMkrUKHzJD5sMuz3lN/jBeDaLzo4/a3LsgIlAHe1Ff9Oj+zvgdS1jn7xihALZXE9cqwwEdznzVqffXVhqn250ppFhibFCfcsAiVHtYGNj1VR+fbirHXpfDqc640AixLjXPqn69nFHbo5bnLBtcbC8reX5Czn3WoTIpQ3CPbVhRhD2SvUeTR4N9oJ7sneD5LIVV9O3hJICpR8uxw5y278bBXrP16etUykP8bMVHZHrqs/aUsJlBzVMvk0Egjc7qawSMfyB+WfW/KdiPQJ57Jc9Rm8BSy7Xz7F2cEvXeTQ31xKlc9YZzKt3nITamO+bH+5+KNWDn7uIhMdUcyVOuqerMS6oiBjWXWBRHw2zuDVzAuQsUbhHjV4aQJ0ENpfzIb5z2NeOqBIH/ReHqbxWTHuVN1XTOjOub6lU+iwnQ2xXXozChTotDpOnz5NQUEBen12N44lLGEJ//URiUQwGAzodLqUQElFHjukN7NVuiNNoBS6q4jQXUUAND/fReeJAVlRxIZPVlDx5lJApEc6+oUrsgKkwYZR4rNx8nSZXYVsKwup+3Ql2iLhYHTwzy7KCjy0FgX5pjw81ZbEDWYoU6SlJDGXnf7bS1kFSsvfWYqptADvTTbZMmiFM0qkPcKpv2/KKlBa8e6y3PUh7hngyOcvywuUEpiZmmW0O/uGyvoPlbPxyYWbnjfCt0PwkkugBOJ+cwmUDP7MFsM3IrjHS+ktTiEwyQJTWJtKM/eGQCuEMbmw4r4SijZkf2apKouy38R4SySnQAlICZScG0xoLdnXLFX3+tj4eBWmsPy1RxojzE7HieQ4kXfk85dTAqBcXIf2ePGss8r+PvlOJAVKWlf2dXjpVie+m+TXmVf+pY1T35hrX/BNGdbCiVfB4NeSp1fh3WCXre/QX1xKCZTWfiTEmvcHZMtOjk9nTbd88cetKYHSmg8GqLq7TPZ5XPhhPUONYymBUs0jwbRnrKt3sLL3JoKswOFw0NbWxg9+8AMkSeKTn/ykbBuWsIQl/P8DX/3qV5EkKU2gFGYVO6Q3pwmUNCZFalyaaIsycGWEiz+WFygte7ufVQ/7ATj5jWuyAiUQ7uOTo/LWLKveW0b1B0XM68TX6rMKFDzrLKhNeRSWJMb4DMs9/wGRQqntpT5Ofu2yrEAJoHSbi7IdTtnfgxAogHBhzCXG8NbZCe0tylpfMh3Y9Rf6crqtRwaFG1A2QZExoGHjx6uoeGv2WJvGpMBeLWJeuQRKAI2/7sot7sgx1yZRvNnBintzp3N3rjULEcobBFNIizGQo0IN+He6COzOzl8Sqb4ng4ZfdS5KsJMUuXhvzr3mq/t0Fes+EM5aZrQrwkyWtQNAy7M9KeGMpSp7fMVTZ8ESKmTZA/Ixr5PfupZ6JzQmsj67ZH1V98n3g0N/eZHTfyve/+Kttsz9K0Gtp8aCxpovrpsBDb8S6bcn2qJoXBpqP1Uhe895WpidmWWwMbOLQbQnyrEvXk2lgqu6u4x1j8s8jyi0H+6j4Rkx7gRucxO4zZ36tUbSYD5Txrb4m8hHS6G+kDNnzqDVajGbzXR1/cc3p5ewhCX858Lv96PRaFICJTUadkhv5ibpwJxASZLwbbMT2C/Gh2u/a6ftYK+sQKnmkRDL7ikFNYy0xDj+lauyAqShhjFmp2fI02SOeRnKNGz4eDl6r5pYX4xDf3FJVqCEWqTfdSVjXhkuqTYoUnPZ0a9fEc4nMgjd4cG+zJRz7lMbFMRG4MR3GrKKMUJ3FmGrMuaszxQWex4nvlafVaAEwtVxvDv7PF79wSC1T1RmLQPgWm8GyClQApFCazFCm8WgbJcb/x4PakP22I7eq8YYfANjXmpw1JhyFlt2dzElt2Rff6eqtKlTKb4yYTG8ASmBkrlSj9qenUf/XhcbP16V6jcZr9sbYzo6Q2Qwu/Dp+N9cTQmUcnFdcWexcHySu+bILCe+PfdOqG3Z7yO8v4jSW+RTy7Y+28uJr15OCZRKd2d4JsnMbjY1OocGzzr5mObRL11JCZRWvKuUFe8qlb+XsemsmojGp7tSAqVl9/pYfq9f9nmc+3EzvReGU+/ZqveUpXGT32KnqmsjK6jDZrPR2dnJt7/9bSRJ4n/9r/8l24YlLA5L6d7+nfjyl7/MY489lvYzH+WEFSszlvfvcJJfmCfSFD3by/nvLzyRHr7by9WftNFzcoTizZNceTrz4Kjz6Vj9YCnjPVHOfLsxp+Vxnk6VNfuCzqcjuMvJ2e82cexvrqKzKWSFQr7tdqwhA6se9nPm240506i1vtrDwDn5fJ43ujFldTMCmv7YyXBTlo0tHYQOFOPfPcuRbCdnEqj/aTv1ZN+wmhiaZnY6TksOZe6Ke3wo1Qq6zw9ndV1a99HEafkcyuEV95RSWKTj2tNtOVO5dRzvZyLHhp/Op6NkixN7pZFT38ytlF0MQgeKmY7OZA2MTXRE6bs6QtsrudW+dU9WIimknE4Cqx/2o3Nocpbb8IkKlGoFra/2ZH0mU+PTjOc4kXfhh7ktLpMo2mKl5BYn7nXR9JQc89Dwy05mp2dpejp7+sDkO7H6/RVZXZAaftlJfCaeNc1gigMdOFeasVeZZIV8R//6ihAxTYBzvRFLyCgrlrQtN8vne0UIxg6dE9fR2iXWvK9SKLYz9cMJGO2IMFAv+rxvp52BhvG0lJP1P5sLEpsSaZEyBY63Ke5iYmCC0+oXmYiNMz4+jtPpRKFQpJ1EWcISlvD/DzidzpRTB4ACJXXszuicBGCvNBKfjVNPO90ZTv/Md8NpP9qPwSMvmFjzAZFC9uCXLtJ9fChjfUlIKglJKeFcbqC5PfPcXHWvj66TfQxcmuDUNy4TGZBfT61+sBRJKdHyTM+CdHI34vw/NFN6q1PW2QWg7mNzbkwRmfYlce57TZTscmStb/X7AujsauC6bIqsFCIsKlXHWGcUjSl7OgytS4O3zoZzhSmns8zGz1Qx3DqeM7XK8reXMTsd5/BfZRe5X/hZG551ppxuT+E7fKjUyjfMIWnNu0Q/7DwtL7gDsV5WG3MHn9x1Fsp2uOi/MpL15BZa2Pho7hOIWpeGwC4PUxsdWZ9Jx7FeCr06YiPZDX1zPYf5SLmlZeH61D82oXdm71fJd2IxLkinv9+MIUeQL/luJ9+T0daJjOPHSGMkbSxY8e4yrv28RXZsUGlVKNTy48b8FHar3xdAZ1Nz6puZx5qrv+kgtMeTclIKvsmTJkyLDJBysyrb60JtyqfoFtcC8VqpVA695XTaG7jQcwoQ38w/+clP+NznPsf9998v294lLGEJ//Xwy1/+kjvvvJP55uulVBCUFrqFA3i2ONDa1JTsdNDybE9G0VEyNdVwQ5SxzgjXfp/5m0xjUlD9wQrGuiOc/W5TTofnfGMeCoX8JorGpCBwWzEXftDCmb9rQmNSEB3KPIbaVxtxrbagd2o5+90m2XJJ1P+undEO+c2FG92YcolPrvz6umzK9CSq7i5jOpY9DpNEy7M9tDybfTMtNgrTkRk6T2SP2Sx7IIDamMdoWyyro9Gqh/zobBoOfVnekQcg/KYibMuMNPyuM6cTVfML3cRGcqQS0UBgjxtXjVk2DvN6UXVPGVMT0xz7Upa1ZhS6Tg/QcWwoZ30bPlGBIk+RM/Ve5duKMfsLsx5OgHlpeS9ld5mKDMRypmJp/HVX1tRx82Gp0lNxl4+xjRHZtIodhwZQahRcfyF7v0q+E2s+UEV8Vt4FqePQACqtktY/Zk9HmEzHVrzJQdEGm2x9J79xLTEWCDGaa41VVizpXGFAoboh1eQ8jLZE566jgY2PV4mY/Xcy98OBqyOMdIh1VyYXrvnvrL3KiKRU0PCrhePlTdI+GICjmmcZiQ4zNDTEihUrKCwspLHxjXkHlrCEJfzpsGbNGk6fPp36fx751HLrQuekxGFez3obxKHhN50MX5tYkKpK61ZjLNbRdXSQ1pd7MAf1ss4uy+7zYSzRc/CLFxm+NsGRL2RfYyjzlVgqDYy1ZR6T/ftcDDaOMXhpjBNfu5wxFVQSK98TJE+nou1wX84UavW/6GCiL5bVQWfdY+UoE25Msd7sFdb/vJ3xnoisUwwIFz9LsJD6X7fLOsDMx2JcGodbxinMEoMEQA3+XW6KNthypr6r/XQlw43jXHoq+/7V8vv9xKczZ6eYj6u/6sRVY8z63ADCdxSjMeW/YQ5Jy97iw+QvZLglQkwmnSpA47Od6Ky5Y16mcAFVby0RToc5Di3WfrKCaP8kp7+bZf5UQ+VdPuHGmeWZtB8bxFJuIDaaPQ3x8S9nj2XOR81HQ6j12dP5nf6HZvTu7Lwk34nFuCCd/nY9xlB2I4ZkH6m8x4c5pCfaF8vowBXri3Hiq3NjQflbvDS/0Cv7nNXGfJDfbkxz1qy8x4fJr+fk3zVkfOevPdNNeK/E0FVhalFyqyNdbBgTYwEIYWCBS0txnWVBaj+nVISzv4hBSycn+l8D4M/+7M/4x3/8R/78z/+ce++9V77BS5DFkkjpdeLkyZPU1NSk/cxNGcsUaxeUrXx7MQavjiNfuML5H7RirtQJp5AbEY+z/MESjCV6Zu6YoeGXXXNp4DJgonWCmalZxrrkdydqPhxkOjbLmW83ciiHm9Dytxaj0irR+XRMtE5kFB5pbcLBpPX5XrR2NVeekt/I2PCJxCbBn12kLcfH6LVnOrCECql/Oosb0yYzpTe7OP2dS3S+lsNCewJG2yfoOZ+9XO0TlUgKOPTnuTc/ki4vuXDuR82UbHXkTAs3GZlGoc5tYtZ1sp98vSqnQAmg+XfZhS4AE30TDDaO0n3mjUlNAjDYOMZQjvz2QMYUX5kw1DSWVeySxMTQJBqLOqugDqDxmXaMpYU5n8mx17EgWP6OUgzFOi79rDnz+wy0v9KPa7WZq/+aPSiQFCitfthPfmFeVsvs8Z4oEwPZF9ZJgdKKdwmBm2wbJ6DtSB/DTeIUV/L9XlAswW3Zdg8KlSSb9nC+2E9nU7DqveVc/FmLrKPYzNQs/VdH5hySbkh3OT9lnXeDDe96Gwdl3tWDf34ppSIPv7UIc6meI1+/kmqnTqFj49ReJphgpKqFppYmxsfHkSSJTZs28eqrr2asdwlLWMJ/HdTW1nLkyJHU/yUUbGTPAnGS1gIr3zuXbuz8PzVlTT9V9dYyiEPHK/20vZA92D3YMEaeTn7ZbKnUEb7Nx+GvXqb35Ai9J+U/0LUWMPn16N1ajl66IitC0FqEOODKz1tQm+SPFdtWFhK+vZjB+lEuPXVdNpVVEgPXRlGqsyTxBtY9Gma8N8bFH7bkTBl25V+aKH9rWVaBUrKN/ZdHuPLT3GuCiz/KnV4u0hWl58IQPaezr/m0RVpmp+M5T7KBWIdMRrIHEUAIWRpyCLwAWl7qxuCVPzn1etH6Uje2KlNOcZRcurAb0XloAHeNhd4sBwoAiMDM9CyxsezcRLqiDNaP0vyMfBoOgKGrkUWJ1ZLY+GSV2IzNsk5qfbkHsz/7if5Ie4RIewStRcGqh8u59nSbbL9tfa4Dg1eXNY1csr5kGsOp8WlZcdbpv20gdFdRSqCUfL/T6kuMBaawlkKPlqp7/bJp5+YLuJJOJHIbsqNdE+TrVbJjzXhLhNOJE2ahu4pwLDMhSVJG57Gm33YxeG04JWja8MkK+utH0gRL7t4AbilAq+0S04URGhsbeeCBB/jgBz/Ic889x/r16zO2YwlLWMJ/DTQ3NxMMBpmZmTuZ6iVAhbRmQVn/ARe2ciNHv3iFxl930X9xSDbdVeA2N67VFiRJouFXnbLCBoDo0CxTE9OMdsp/yCdP1p77+2aOfTH793zV2/xobPmpFHOZhEcakxA39J4exuDTZRQEJFHziBCGHPrSRXpPZt+sanupD9dqM9dfkBd/WKr0hA54OfPtq4tK8zZwdYTBxuyp7UXaTxWH/iL3plG0J7qo9F0XflCPb1tRzpRrk6NTqA15OdPH9ZwbQOfQLCpVXsdi0nlEoff8EH2Xcm8gLhbdZwYZacvt2LlYcU/vpSHytblD8ePdUQzFBWhcmqzCtiu/uI59pSnnM0nO84tB6A4P9hUmLv9ra8r550YMXBxjbGOEqz/LvmZPCpQq31ZMgUOTcnHMhMHG0ZxOTkmBUvldRVgrjVz+N/k2Nj7XRbRfrFeS7/eNSI4Fof3F5OlVsuXSxH4a2PBIOVd+0Sqbsm1qfJrBa/Lv8nwxVNk2F0jICtcO/9XllPtWMt3e2e9eSWvn+thOokQZWt5MS0sLfX19SJLETTfdxEsvvSTbjiUsYQn/NfC2t72Np556KvV/FSrq2ItaoZ6LmUsSqKHmoSB9V4ZpeaaX8z9qzJp+atWDfpCg6+ggvWeGswps+i+PoLGpUashlqFKvVdN5VtLOPvda4w0RbOLaNUi64clZOD4pauyQhe1AWIjcOlfWtB7dLLCC0OJmuX3Bei7LIQmuVJ8dZ8dQGfN7lq45n0BIkOTXH7qelaBEkDTb6+Td2dJVv6Sbey9MET9L3I7Ucs6T81HDK6/2stIW/Y1n9qgYDo6w8Rg7phX77kh4rPZD4uBEJTkcowCaHmhB2PpG+ekdP21HqJDU8RGs++BDV0dZ4jsvCTLjXZM0H0m91pzKjJDdCz7QQFi0HVqgPYj2euL9Qq3ssViwyfKmZmKZ/2bxj90Yq8yZhXyxfpixPpiqA2w6r3lNPy+k/4LmeODrS/3YgsbuX5IPh4eG5ml58QQINIYTo5NyaZiu/RUK6W7nSmBUvL9vrE+EKnurOUGcZhO5iDkfC4q7ikmT6vk3D80Zyw72jmBzqmWFSXGemOcS5jGeG+24d1gJ1+ryviudh0dZKJ7gpEWUVfNh0MMNozSOM9QxjzgZofiLfSom5goGqKhoYH77ruP97///fzmN7/hpptuytiOJWTGkkhpkZiYmMBoNDI9PRect+CiWrFF9m90lnyU+YqUAGCBWEAHy+7yceEHLZz/fguV9/po+OUNH7aJhYij2kBwn5fBhlEu/dP1nC5BakM+eTPZJ5yiLVbaX+nn6Dev4F5plnUxMoZ0LLunlOhgjJNfb8gqUAIY746gs2dfCKx62E//1RHaFmFPbS4rRFJKaOw6In3ywYHye7xceaotTeAgh4m+KHna7Bt0WhuseX8Vg41jWdPtpersiC6q3GJPdPWeHqX3dO4A1dqPhIjH45z4ao5cnRMiRdcbicXcL4iUa0VrrZz+zqWMYphUff+UfVMricWKnhbLIQC6hEtAXyxlBZgJ3af70bu1xIazK8mTm0ruWjMzkzNZxWZqYz6KvOzirPn9Zt2jYc7/4Kosl4NNYxQ4tbIiKoDWxKZz0pktNjQpvxH2l5dwbzLDhCifp5ZPaeje5ERSSRh9BRnLRPrgyOfn3vmNn6lkcnRKnI6Nx9NSuwHU/+Y6arNQgBdtsSCpJNpeSP8YSZ4UKXRqUOYrMgqpdAodusuVGGZLOMjTKJVKDh06hNFo5IEHHuBrX/uaDFNLWMIS/rPwwQ9+kG9+85tpP9vEPlnnpEgElHkKjD7xgZxJoOTdaic2HKP35Aitr/Uy1p45qA1icyevQDgfNv+hO6v4x+ArRJGvwFtrlxU8WSp1RLqjRAZmaXimg+4jQ7L11TwSRG3K59Q3LidSmcmP531nRwnsmWUgSyBca1Gw7N4Ax79Wn90xJ4E8rYqCHJkjnBtMTI9P039+LOfGR2R4mpnJWTpPZA8mrflAAI0pP2tq4vlYTBqySHtk0Y48Fxexriko0bLibaW0vNRN56HswazuI0NZn/PrRf/5MfrPy/fZ+Vj7kRAzk7M588wvJtc7LM4BC+DSU4tby4FwFDOV6Tn4pYtZhVeTY1NMDGQ//d95aCD1PEJ3FWVN7VfgLUChkjAFC2VFSpGB2ZSIvWSXA71LK+/EFRGW7kOt2YNkyTZVfyiIxpzPqb9rzJhWcuhqJG2McG4wZe1HWrMaKcv5h4ZfdNKACIJW3V+CqbSAiz9pSgmNbmyjQjknUKq617fgvUj+ndalQZmnQGfOfFLP11cJfTDEBAN0MTo6yvbt25mammJwcBCtdnHpFZewhCX8aRCNRnE6nYyMzH232vCwWtoo+zc6swaVWonGoSHaE80oUKp4q5fL/9JGw686USglWfGPMaBh2dv8DNSPcvkn13O6JBY4NMRzxLzs1UZ6Tw5z8lvXsFcbZQVUGoeG6of8TPTFOP23DVkFSgAj18cxlhRkFeFUvq2Ysa4I11/oyyrMADAHC8V46tERHZKf5wO3uWn4VWfW1HhJjHZGcp8w10DdY1UM1o8sqs7oEFz9t+yn0AEu/fPi1gJD9RFO1+cWz6x6yI9SqeDkt3KvWbKl5vv3IFdfSMK51kzpNidnftCcVVS0WDFT6x97czoGgXDwGW1ZfHqv2k9VEBmYlHX4AbH5Zg4VEh3JLk5PCg3NFQWodKqsgj2dXZP1wAekn4ivfn+Qi//cKOtkNtAwhtGvlxUoAXQdFutCjUlB9YcqhJu3zLr42FeuYq82Eh0S5TV2tawAybPWilKjxFCsz1wmStr4VfdkFZMj8o4LF3/SSIFbHGqwrixEbchfIMpLplc0+nSo1EqiGbqYRtLgulCBKV7KazyNQqnglVdewWQy8a53vYsvf/nLGa+/hCUs4T8PX//613nkkUdS/5eQ2MwBIU7KhBjkFagwFImYVyaBkqPGRHw6Tu+ZYRqf7SQ2LP8dveo9ZWgdGg7/xSW6jg9ldD9JQu/SkqdTYV9jSaWeWlDGq2YqJgQBV37ZRv85+b2QFQ+WUFhcwIlvNzDWFssqthppiTE5Mc1Qs/z3ttoAlff4Of2dRlqfzT1/5htUKPKymwiYwgUo85T0XxhJCRzkEBuHyYlpus9kjxFVvc2Hwafj8N9czukaBcg63KRde2R20Y48ixFHJQUura/00HU0uxin/8KIrAjm34ORpigjTYtbe614VymSJHH2e/IHH4BF7RXD4hywgDSxSi7497lwrDRz6huXZFMxAkz0xZjMcShw8JJwJgORVq359/IxarVVg0qjxFRWIP98YsJVEsS4YQkVpq3FFhQfmsxqmgKk2rT8gRIMvgLO/mNDxnc71hvjys/b6L8m2mZfZcwqAtS7tKiymH60vdSXGpf8+1y4Vlu4+NOWlHPSjWXz9arUcwwecHPtmc609zEpUFIbxJgr903liJVBI8TicJ1rjI6OsnfvXpRKJT09PajVi0uv+P86lkRKi8CN6UXUaNmi2J+x7PrHwkgqiSOfv8KJryc+fiQFsPDDqubdAdTGfOxrCuk9PZZVoNFzcgT/rdlPgZff4yUeFwKOg1++mNU9pubDQdTGfCZHJ+k9PUrnYfkJZ7h+gunoDJ2n5CdZrQ2q3h7kxFevZUxldyMKHBq0FnV2p6WEa8tihDWVby/GEjTAPeQUUQGc/bvskxeAxq6DOIx2ZD81ZV9dSOhAMf31IzmvveYDAXrODdH+SvZNOt8uB66VZs7/Y33OlHqqHB/6SYTeVISptOB1uQblQvk9XgwuHcf+JnudeVolklLCVG4m0pd9cbP8wRI0pvycgTx0UP2uIE3Pd2QV44BI85LTDn0C4rNxZqaz8y2ET4tPP1K20w1x6MniqnHkC/M2/mTcipLw7XKQV6AisL+U8//YnLFM2wt9qXcrcLub/AKV7Pgy0Sre745j2ftk0sVs1X0lSEr5lHwNv+yk4bkuGI+DDtY9FObYd67O3dN8IZIOZmKzDLdPLBAnJdF7egwQCzDfFgeSYqFICQBJkeZA59tuw1tn59pv29MEYjqFjh28hQnXID2aZq41XOPrX/86P//5z/nLv/zLpVQkS1jCfwH89re/Zd++fWk/W80mbJJ7QVnnBhOBnR4aft9B9/GhnBbDvs12Zidn6T05ktM9abQjkt1+WQtr3xPi+NfqhYjp5e6sQouKN5cyMznLkc9fzilc6T4zhLvGkjUNXOU9xYx2R2l7oTengCR4Zwn5prycYge0QIScqSUAAjs8IMHB87nLjrcszjlndjLObI4NR4D1nyhHlafM2U7bykKK6uyc+UFjTvehtR8JMdoZySniMvv1KPIk2XQPN9Y52DhGw68XF2RZDNZ9LEzflRGafps9MJIrHVgS2iIty+8upu1QX07RlfcmG5ZQYc4gUOU9xZhDhZz5QRPjLfLEj/dGMZYUUODQZi2Xc004D1X3lWD265mOzMhy1Hd2lL6z8/pOot/LwV1tFY6SWTB/fV39oSAnv3dNts6uM4MUrbVmFCglMV+gFNjlwbXKIruhePivLol7QKSpm47MyPa5sU4xrmUSKCWRfAecG0yY/PpUmu8bEemKpo25Gz5ZwUx0ZsHzqpY2AzCytpVz588Ri8UoLCxk/fr1HDx4ULYdS1jCEv50WLlyJefOnUv9X4ueTdLujGWrPxhEpVVy9ItXOP+D5uz1vrsUvUeXEgtlE5AMN0SZjs5kDX6X7Xai0iqp/3mH2NzJIhJa8c5SCr1iE6/35HBWAUW0J0psZIqubO6MGlj9jgCn/7ZhUSfkzf5CDMUF2VNdaYCoEMLkEsOU7HTgWm0hT6vi8k9yi4CybTIkobNpiM/MMt6b/eS9zqth9Tv99F8c5kqOVBnLHyhloH6EjhxrCudaM8WbbJz/yfWcKfDyC1UolLndyEt2OrBVGHOmRHk9KNvtxBwoTG3iyEGZJ6HMV2AJFtCR435Cd3oo9Ohy1okGVry9lPbDfVnFOAB1T1QyPTWT01VsdjrObCz7+nC0JbqoVIJJVNxVAnGyvmNpG3+Jfi8He7URjS0/laIxE3pPD9N7WlzPe7ONAptatm9Gh2aJjUzReSp7LDLZ/pXvDYl0zTLflR2v9tNxvD91D9XvD3LyH67J3tPk6FRWF4zhhjmBZ3B3EUq1QtY57Oz3mlP/tq82EtxXxLXftadxr5E0bOcupvL76Cru5MrVK3zlK1/hn//5n/nCF76wFPNawhL+C+D06dPU1NQwOzs3Hq9mCzaFa0FZU7meijcV0/xcF13Hh2RTWCYR3O1hZnKG3jPDKQeUNEhSyhRhsGUMlVYFajILZtSw+n4/p7/bKERM54ayCmtWPhhIOSBnEygBdBwfpESflzUdm3+vi8nxadpe6svpSuPbXoTOocG13pxdWJO411zp7AAq7ixGUkocWoQIJ9a3OOecmZlZZqbjOQVKNY+EyCtQ5TxwZyhR47vZxfmftOSsc+W7y4j0x3KuY/UlBpRqpTgIngOr3+NnqG08q2Dm9WL1Q34Gro3mFGurTfmLqk9tUFB1Xxmdxwdyiq7sq4w4lhu5kOMAY+luJ561Vi481bwgzeJ8jHVFcSyPozariY3IP6DFCqmS1y5aL06VyvG+wO1M7h1PwHeTg/wce8zzTR1WvKuUqz9rlhVedZ4aJL8wL6v4MCmeMgZ1hA4U4aoxy/Jw/G+uintApGqTJEn23ie6o0xGpjMKlJJICpSMQR2OVWa0dnXGa8dGpbQMSzUfCTE7Ncupbzak7XGWK9ZQzhpGV7dy/sp5RkZG0Ol01NbW8tprr8m2YwkCuUea/4dx//33I0kSPT09SJKEhILbHG/lgf3vFkIChEDFu3XeUXMlJJMlau0KyvY50VpnE2X1lB6wUXVfMQC9l4cZbBoRm/A6KNvrRGcTf2tdXkDVg8Vs/GwVpXuceLfaaPxDO63P94qy+5zoPMKtyFypo3SPE2vIgDVYSNEWK87lxlSTyvY50SVcBYwhHWX7nFz6p0bGe6KoClS4a81pZfV+UXbtx0JUfyQIID5QZ0TqtflljSFRtvxuP2pjPkVbrAA41xtT/wYo3ePEXCnK6jwaeq8Ocvj/iBfcUW1I49C3y4G5UsfGR6vY8KkKyvY50/j2bbenlbWuKODSP11noHGEydEptImqrCsK8O1yzJXdbqfuyUpqn6ic49CmSOMwCe9WG3la4Z7QdqQvje8kh0kYAwXEZ+JcPziwgG+9f15ZHWitarwb59o/n2+db66sNVSISqvEWJX+HJN86zyaFC+H//ISTc93yPNtE/3QVFJAXoEqI9/WFeLUjtZG2r0t4Hu7HfvqwlRZU6mevEJVRr69W204qkXO0oZnO+k82c/wleGMfBdtseJcL+61wKUl35Any7d7kxl3rRm9S4fGnE9gvzcz3wgXI/cmM1MT00z0xWT5BtFnW1/pSZ0Gk+MbRJ9d+XAZGz9bhXO9MSPfybL9DcP0XJgLMGTiO9lnK+4tYuNjVQRudy/gO9ln+072celnzXSe6JXle/4Y4VhuwhwolOUboPfiEMMdMbQ2kQoxdPecECDJdxLDbWOMdI5n5ZtxMUlXvztAXqGKwE53Ot/xOM51RopqLBz56yvU/6yD0t0ONj5ZyfrHwug8asr2pvPt3Wrl9Hcu03aoF99OO8U7bYTe7EFnk0RZ7SxIikSftZFfmAdx0LjUWJcXgKQQY/Jewbeu00xNwWY2rroZdb6ajo4OHnroIUwmExMTue3cl7CEJbzxiEQiqNXqNIFSKRXcW/selq2rTP2sZJcDbZHYkZ+OiFNhGov4OHWuNeHcYEorW/VAMQUlWrRFWobaxzj8VRHUsVcbcNdZ0squ+3iYuk9XonVpiAzGOPa3IshgW1mIZ94869vhoPItxeSb8gi8yU3JvPHYulyP96a5eda71Y6lUsdQ4xgNz7aK9icua6nU4d0q5llTWEvtE5VYq/W0vdzHsb+9miirSP3et2PuOuZQIcV1ietoE7y4xNxp8GvT2tR3cZi2o70p4cN8DgtKRNngmzxsfLyK0N0enGvTOSwoEWW1RXP1Xv63ZnrrhxfwbfDPla160MfGz1ZRssuxgG/fDgemcKKsS0PJLgdnftzIkc9fXsB3kkMQrlAzkzNERyYz832TDetykfbLd7ODAocGg1uxgG8AzxYrtpVins0vzMPk18vy7a6zYK820PZCLwe/eJE8rVKWb+cGE861JvINeZhL9Rn5TpVda0oTPMnxnSybp1dhKi1YyHeCw6RYpeGZdq6/MhfUSePbopgrG4mQV6DCvXZurk/nm1Sf9ay3ovdoZflO9sO++n5mJmcxlsrznWzn6b8XQiY5vufzUvupSjZ8skKWbxCpAsf7InQlTmFl4nt+n639dCUbH63KyHeyzx7+P5c49Q9NWflO9lnfDgcacz7V7w5k5huIDcboPCG+G5Y9UELNY8GMfANMjUwSG53kzA8bZfnWWhQQEX3WGjbgXGnOyHfJLge950c48vnLGPza1Fo2eZ838j3SFqPjaD/Xft8pxtJ7fWgt6XwnyxaUaInH48zG47J8G477eHPt2ylQ69FoNBw6dAiNRsMHPvABlrCEJfzn4H/8j/+BJEmcO3cOSZJQomKHdj/3bLsPjUmUMYW0eObN3wq1lAx5gQaKt9rQmBSpskXbrVS81QtAz4UR+i4nBELJso7Ed35AQ+jNHjZ+porSXU6ca800PNOROgVbvNWGJjHPFpZoKN5qw1VtxVZhwl5txF4x9z1bvNWGzivK6ryi7Ll/bma0dQJmhehhftlk6qSV7/NT/aEAIEQUUxNTOOfPhzfbMAZE2cq3FKOzq1OxFEuVHlftHC+ezVZMITHQa0wKOs72ceQ7Ys1prihI49BTZ8EU0lL3sUrWP16e4HAe35vn1kCuWgvmigJanu2h5/wg4z2RFN/GgAbvzba0shs+WcGGT1Qs4DvJYRLOtWa0ljwO/9Vlrr/Ql8Z3ksMkbBV6ZiZn6Trdv4BvjSu9rKFEh3fL3Nw/n2+NI1FWA9aKQvINeZiCcwcC5vOtMSlSZY996Sr1v2nLwre4jimgR23Ky8i3uSKRfjfBSxKZ+LZU6VNlrcsMqe+MG/l2rjVjTcyzHacGuP5aDwOJDZEb+bZXG7GvFv3Q6CtAY86X5du+2iiEOhoFhUU6/LvdsnxbVxbiXGsmOjTJeFdUlm8Qfbb11V7Ofb85K98g+mzFfV42fqYKV60lI9/JPtt1pp/us3Mxr0x8J/ts6V4HGz9ehf+AKyPfxVttjLbFuPBPjbS91i3LN8yNEUW1NqwVRlm+AXrOJdL2aWD9x8sJ3jknBEjyncTAtWEGW0az8p0UJC17p08Iqna5M/LtqrVw4qv11P+8A89mK7VPVLL2I6GMfHvqLBz56mWaX+jGU2fBucFE6A7PAr6TfVZjFjGvfKMyI995URvLZ9exY+Uu8lR59PT08N73vheLxUI0kxXTEpawhD8JHA4Ha9asSQmU/Czn7hXvonxVOFXGs9GC1i125CMT00hAnl7sv5gr9NhXGVNCI88mC8E73BjKNKjtGvrqhzn9fRHHMoULcNSYRKWShGejhTUf8lP7yQqRImxihhPfqYeY2Kx3zfvGc603E9jjRufSULbfiWeThaQpiKFMiIFSZdeaMAZ1dJ0eoP6ZdlHWIMZ9Q4k6NSdr3WrWf7wc03Lh7nLyu9dEWZuoWO9V49k0N387V5spqp0bgz2bLKjt6lRd88sOXBul5eXulAjFs2mOQ7VdlPXebGPjx6sI3ObCusKQVq/em14W4PyPm+g+OyD4Tpats2AoSZS1qQm+yc3GJ6sovsWezneCQ0OZGOjVBgWeTRau/LKNY1+6spDvBIeiLExPThMdjGXk21FjwhQW437xzU4MJQUYfZoFfIMQ3ZgrxTyrc2gwBfWyfFtXGLAuM9B/boRDf3GReDwuy7d1mSirc2ow+/UZ+Z5fVjkvo00a37ZE2UTfMlfq0Tk0WPyFC/lOcJgse+037bS+NGcsks53or8YIBabRWtR46pZ2GdFYVJ91rvJhrFMj6suM9/JsgMNY0xOTKOx5snyDaDSKDj1902MtMRk+Z7Py9pHw6x/vDwz34k+2/z7boavj9F9Zigj3+ZKfVqfXfd4mNpHKzPyneyzx79ylVN/35CV72Sfta8yUujRUfG2sox8A0yNTaYMEYIH3FR/KJCRb4D41AzjfVGu/qxVlm+1TQ0x0Wfdayy41lgy8u3ZZGGwJcLxL19F61ZT8bYiNj5ZhX2VMSPfk+MzNL/QzdVnu/BsshLY70ZtUMzxnRAieTZZRZ+dhXjib1N8V8zxXXjax12r78VUYEar1XLw4EG0Wi2PPvooS5DHkkgpAw4ePIgkSfzoRz8CoKamho898ijbFXdRssuLp8aKd4MNJAWB3UX4NtlZ/5hYSKjylTAbB0lB0SYXnmor7lrx8ePfVYRnlR1TqR6dTcK7wY6xWAy4vk12Ue82DwCB3UWYivXEZ+NMR2fwbXYQ2F0EgHulGU+NDf9OJ9YVBYQOFKeUm4f+/BIltzjx7xT1GEM6PDU2grc6Cb2liGX3lOKutjLRN8uZbzdSttVN2Q4hSNDawFNjI7RH/D9fn4fWqE4JKMp2uCnbOide8NTYCO4R15mdjCNJUurUm3+nh5Jb5sQLnrVWyu8QG1WBvS4c5ZaUkCqwuwjf5nliiw02QvuLmRqbZnZqBk+NLfX7wB5vmsjHu8FG+DYfALGhKTw1Noo2izYF9xSL55Qsu9EOEkyOTuLdYMNTY6Nkl+A0tE9wmIRvs4PAXvE7R4VB8H2reI7hA17c1XNlHVUWkIQjjc4n+A7vEWXL93vw1CTaMAHERSoaAHSCw/BeT6KsG0+NDZ1NwalvNBCfjVN28zyxSLWV0D7RpuBeUdYaKJDlO7RPiOFKd3vx1NhoO9rLwc9dxH/rQr4Du0UQ0bu1aK69gH93UTrfG+34E/3QtcGJKl9J7+XhjHz7Njvw35ros2tEny1NXOdGvktuceLfIXi49tvrSJJEYLcrUbYoje+ybW5Kt7sYa5yg4dk21No8yvcLnsr3JfhOzHnJPnvsy1c5/w/NeGpslO8X1wnvcQm+EwKnJIc6n47aJypxV1sJ7xPt9d8qytrD4n0N7C5C79ASn4kzHZlO47vkVsF3kgtziQHHcit6v45l9/vwbrAR3CPKFm0W7U2OEUavqL/v4nCK78Aeb4pPT40N73YPg5cmCOz24t1go+7JytTvM40Rh75yialEG5O8yI0Rrg1OFCoJe3ieGPGGMcJcaiBPLT6MVry9BE+NLfMYEY+jNWuYHJ+i4VddBG914qmxpYRf/p1uSm5O77Nx4kwMTOLf4cRTY8W5LDFG3OrBt8lBpA9an+/Du8GGd70Ne4WR4h0ePDVWfJvsqWfjrbNz7RedHPzzS3irbYT2FbPxyXLK31yKp8Y6b4zwsuP2m9kycwc1q2rQarUMDw/jcrnYvHkzS1jCEv50WLFiBTqdjsnJSbRaLffddx87pDcTlJYT2OkhcKt4b7UWkVJtzbvKMPi1FG90IykkWl4RH6aBWz3C4ScBb60dU0khVXcVE9ztwuwtpMAhAuzB3UWUbZ8LUBdtsKFUKZiOzFC2w4m31o4tJMbl4F4vpYkxK/gmD946G3qblos/aUKlVOKtteNdJwbD4D4vvpvFPFv36Up8m+0E9xVz8cetFLoMeGvtuBLjfnBfMb7NYvyyLTejUEmEbhVzhHedTdSbGFdD+4vx1tlSQgfiEE8cvLNXinrLdog2hg94KdpgY+OTVax+X4Cy7S6KEvN7QYkWb62dYGKeDe/34K21M3h1hJnJWexBU4pvtILD5NowvN+Nt9aOpULDwKUJ7EEjgZ1zfBdtsBFMrJ8CO52YSwqJz8TpOd63gG9vnS01d5a/SdTrWW8SvOwponTeusa3eW4+LLrFhcagpu/SyAK+QQiTkmu4/iujSJKEfZlzAd8Apbc4CewRZZue70KVr8SX6D+hfQm+Eyjb7iKQWDdaA3q8tXb8uxJ87xN8JxHY6cG/y83Bz13kwk+v4621E05yuFfwnSp7qweVZi5g4621p9aG4T2Cl6QYyr9LuDOe+mZDiu/UWmWX6LPWgD5Rrzzfvh2iDe7VFiIDMDM5i8Y0Z0Oc7LMAnk2iDY61Ds79qIXp2MwCvoOJNvg2OfDW2jGWmDjy+csUrbUu4DuY4Nu5zIS31k7pLXYq7ymm4i0lC/gOJtY1prDos3FmiQ1PEdxbtIDv+WNEgU1LeL+bqvtKCO1L8K2d43v+GKFUKZiJzwAQ3O3CW2tPicRSfTYi0gYWbbCx/N4ygm/yyI4Rrc/1cOXnrWjMakL7i0ELvu0e2TFC79ai1uWn+HbVuhaMEerCfIgIcZDvZgehA/JjBBKc+VFTiu/QfvFsMo0ReoeW2ek4vZdG0vieP0Y0/6E7NUaY/HqWPxgmsMOTcYw4+oUrzMRm8dbaWf+JcmqfqBR8zxsjyrYU8cGHPsSK8Q34y/zMzMzwrW99i8rKSl555RWWsIQl/Glw+fJlFAoFn/vc5wBYtWoVH/3go2yV7qD0phJ8W5w4qsX4HTpQTOkOF+s+JmJe+TqxMQ7iG863xUnRTYl5dq+Xko1OLOUGNC4N/u0uzGVinLSGC/FtcVJ6ixgLA7u92CtNzEzNMh2bwX+rm1Bi/i4s0eDb4sS/w0FhiYbwnV6KNzs484NGDn3lIsHdRalYlMYEvi1Ogre6KNnpYPU7/fi2ONFo4Nz3mwnu8aTGN4DizQ78u8Xf6m0atBZNStQR2luE/9a5GIzvJkdq/RGPiZhXpF9sGIX2e/HvmJtnS7c6Cb/JR92TVZTsdlO0xo5nuTVVtnTenFy6w0XoQDET/TGmJ2fwbXHiWu9MlC2mdOvcGsi/w0X5nWLcH+2I4tvipPiWeevIm+bmZP92FwqVRHR4EotfL/jelniOewWHSQT2uAkfEPemcQm+g7sSMZi9Hnxb5h1yWu9AoZCE24smwffuxNyzxyX4ToihZqdmUebNrWuKNztSa8Oy7XZ8W5yYirVc/FErM5OzaTEv300OgnsTa5VtbnxbnNgTB/eC+4oW8J1cf7g3OfFtcTJwZYSDn7tIcH8RpTvS+Q7uF23wbrCl3Vtwn3cB38FE3M1eZURdkE/fhUTMa+8NfN/qTq1rTMVa0Wd3OhJli9L4Du4pIpDg7Pz3G5AUEqFE3DC4W9xrUrCS7LPRoVnO/aARtT6fUGJtGNyV4NuV3mdPfauBiz9qpXizIzX3l24TfFv8Ym0Y2u/Fv92FxqRg/ePlgu/E+qP4FlGva7UlVdZSamBmcpbJkUlKtzrFOgNwrXemjRG2sBHXGisah4aKu4sp3e5KteHGMcIWFs9zIBFH9M8rO3+MGG6IEtjtxXeTg7onKlN8Zxojjvyfy0wMxgTfSQ5lxgjXagsqjRLnCmtK9HPjGOFYbhHjHLD6XWX4tjhlxwijV090dJKGX3VSeovoW9ZE3DDTGIEiTnRwiqKbBIfJuGhqjIgKp6bSHS78O93YV5hwb3ZkHCOuv9DHob+4SMkmF6EDQlC2/G0lC8aIjXfUcvPM7axduQ69Xs/g4CA2m42bb76ZJSxhCX863H777UiSRG9vL2q1mre97W3s0L4Fv6KS0D5PapwH8S285t1+jEEtZZvtKPIU9F0R4snwfg+BPXPjUOlWF44VZkIHivFttmKvMKGziv2i8AEvgVvdKbeP0m0u8rUqpiZmcG+0U7bdjWuFCYDQAS/+xDeeb6cd/y43pmI953/YwNToDGXb3djXiDVcaH+xiE0A6x4N49/jIXTAS+PTXajzVZRtd1OUmAOD+4tTayBruBCVRkl5Yu4xlRRQtt2Nb0viO3lvEaVbXSlRRBzEPitCJFO23U3Z9kS9e9yUbXez4ePlrHx3GaF9RRTXJWIPaijb7iawMzEW3uqkbLub8S4hLLFVGAntnxv3S7e5UvdeeovgxbbGwFhbDHulicC8Z1O63ZVaGxbXWXAutzAzNUvPhRFC+4vmvpMR8ZvkWqVsf5G4182Je91flLomgH+3J7X+sK6woHfqGKgfXcA3CLes5Lqm58wwkiRhDYvnGNibvuYM7vOk9hMv/bSFfF0eJTcn1+IewXcCof1FBPeJ66htgu9AIn4Q3OWibLs7rWxofxEH//wip77ZQNl2d2odGdgh+E4KnIL73GiMc65HpVvnYg++m2yUbXdjLBb7RaG9RcRn45z+buMc33sTscAtDtEPEwcVgvuLCO5O5zu5VnGuTTzHlVaIQWx0Cp1VM1f2Vk9q/eFaZRbvQp2Niz9qIjo0iX/evQZu9aT6izVooGy7G0eFgeNfvopnjS2N78BeD+FEWUOJ4LB0qx3/Xhcr7vdTui2d71Bin1JtEH1WoZSIDMRSHCbfhdD+uecIYCzWE9zjJnjATWCvKJsUiYX3F6X12TytKiVq9G0RfJsTa8PUGAFEOmOUbnex/IEAgf1u2TGi98wwF55qpsCuFXyrwb7GJjtGGAN6ER9LfHe4VpgWjBEFNg2xkVlM4QKCez2Uv0l+jFCoFJxPHOIL7vOkvmcyjRHWkEk4y10eJrRvju/5Y0THa/0Eb3FStt2Fc7WZ5Q8GCO5z3zBGOPHf6uHE1+qJ9MYo2+6m+pEgGz5evnBM3ubivQ88RPX4doKBIDMzM3zlK1+hvLyc559/niUsxFK6txug0+mIRObspX1Usta3ic5XhQq35aUepqMztB0Vp19bXuym5BYHU+PTICnoOj3IWKf4+47XupAkGLrWTehOD80vdKH3apnoiTHRF6fz5AATCVvl3lO9qPV5jPePsfHJSrrODyLFReokAJVGSWxQnBjvPDuI3qOj/fggqx8sBaDn3BDD9cL9o+1IH1PjUwAMt0/Qc36IztOD5KnBFjYw0Dznw9Z2qJfZxGQf6YOe80NMRsV1LvyiGUfITCThTt36Wg8KxdxJ7/6mYSylBlY/7Ofas124V5tF2iag9eWeNIVsz7kh8o0KjN5CGl7uoWi5me7z4qO0+Y9dqM1zE9Xw9VF6Tg/Re3oUnUdDUa2V3pNi87Hp+Q509rkJZXZ6FoVKgc6joetwD8p8JR2vCru2puc60Ht0qbKdJ/uJ9k/SeXgQrQ20ZjXth/tTZQ0lYnBOCi6mIiIPaM/lEYylQ7QfF32g8dl2LCETINLmTU5M0ZnoDxOtc3yLsh3YKhOCD53gMIUJwXfPuWTZThwrzExMzM5xOM9WsffCMAP1Q6LsH7txrzZTcrOL8jvUtBzqRKnIS+N7uHk0wW8PUxMzKWvjlhfS+e4+O8jodXHaq/2FTpgBe0Ic0vzHzjS+u04NMN4j+nfXkW5UahXtL3emOCwsLkiV7TjeP9dnTw1SeosLU5k+VdZYOncCan6f7W8YFxxeEe1ter4jxTdA28FeZiYFR92HRzB4hui5muDwuQTfCSOc+Xy7a83Mzs7SfFBYWib77ETrDX12IopCJTE1MU3j88IuuvH5HorWmum9muD0pS7Uhnyaf/f/sffe8Y1d1dr/V5JtFcuyLFnuvdsz4zo9jfSQSSCBJCQkIaSHhACBUEPe9/O5cOHSQs2Fy4ULFwiEGloI6X36jKe4e9xtWZYlWZZlFRfp98eRZGvG0tnOTd7fDfj5azxaOtpa2medtdd+9rMkWcGpihk8I96If+0s+ZcZP+CI+VtjTmPTdSWoUpXYjrvwjkufaX3NhkKpwLZfGufwi5Ok52iZ7fehr9Bh63IyPxaJEUftqPWpK3P2WStlF+ejSlGd6e9VMQIfDD49gXlzJrs/0YDfGUwYI7yDPtzWObLLs2I+WytGROfswvwSqjRlwhhh73Dj6HEDEJ2eWdUZzPb7GH3VjmrVpqy9w83MKQ/Ojnl0JTqabtJRsNXM1KFZhl+0xUl4Tp2U/K21aHF0eggrw6iNKRAOMfS8DV2OOtJmE0myX6Ugd1Mm4/vtZJUbsL5uA4WSoRds6POljUjjyUredWELf9z3G5ZCSzGy6g9/+EPuvPNONrCBDbw1+P73vx+noqFEyZ6Sa0j3GAHp+TL6ip1QZEHld4VwDcxiLM1AmQKDz1ixbDLG2ioNvzKFUqGg8qp8rK9MYmt3oUwN0/8HG+mlWvIajbG2UsMvTqHSqGj5kKT6Zjs6g3twFle3D22hluDsAo5IUWDoxUnUGWlUXplP7uYs/DMBRl6cwt3nJ+hxsBRYxtkhBcPBZ63osqVn5+LcEqTB8LNSbmLbb0epWon7g89YsTQZATj1ByuLgSV8kRYRzg4H6sxUrIdmYrbllxWw+xMNtP97F+P7HQTnpLg/3e3BUOjCetQdsZ3AWCHJFC/6lhh93cNyQCJizI/4sbW7sJ2QbK1HHGSUpOPs8OLs6KHo3OyYv/FLz/7pTsl2/ICN2ivLqNxTgqunL+bvKKaOzeDsdUd8NkVeo5GB5ybBD4PPT5KqW8lVbEdnmI2cUg6FIRwOYz0Zee/z8XF/8oiLufF5tHkasqsNzAx7Yrnhan8DWA86mZ/2gxbsh+2kqFVYX5+K+VCfv5IbThxwEHAtgBYmj7nQZatX/P2slczSlVxl9PVpFn2L7H64gSX/Mrb2Vf5+boKsqpWTSqOv2FlelHIVvy0Q5++h562Ya40x2+FXpijalU2KWnom2tpdMR+eenaSvEZjrC3Y8ItTK2T3iL9nTkn59ODzdgpaF3AOeCPXsVOwLZfNt5bR8ZPhOH+PvuJgyb/M5DEpfx1+3hZTCVjtbyDmO/thO34XDD03SXruiurBxAEHPsdKrpKqVcV8uLy8THhV157xfQ6CbmnOTnW60edrsR51s+k9RSgj66jT/Q3gHluZs1HVpdU+PD1G2NpdzE0HqLo4n4X5RWztrjNiRBSr/e0a9OCzB86IETF/d8yQ25DFoneJiQMza8YIAGeHl8kSF1nVenZ/ooGePwwmjBEHvtJD2Ttz8U74sLQa1owR0Tnrnw4SDoWZOGiPfM6ZMcJQoo9rnaeI5GWJYsTgk1KcnRnxklWqx1gjtYKLm7PPSnPW717AethJ0bZssmr0aE3gd8XHiKFnJ7FsMpJRqCNVq2L0sHPNGKFXmMgNF1LRVs2JwXZ6e3t5xzvegcFgYGYmuQT7Bjawgf8Z8vPzsdlW2mGWUkdb9m4mIi21bQenUSjBflT6e/C5SSouySc4J8Xksdft+CJEHVeHE7U+heneWcr35DLwtBVDeTrBmSUCtgCjr9kJzkbW+X1zWA868DoC7PpsPbaTLsL9MPyM9JwJLYdZDkjPzrmpANaDDqY6Zmm6uQKFEiYPOfGNS8+bkRdt0T0rAm6wHnTg6J5leRny28w4+90E3NLrQy9OsWqJyuQhJ4sLUq3n2K8Gya3OZG5Kuu7Qc1OoNCvPWdsJJ3mbzTTeUU7fXycJehZxRmoCg89Mos5cyWsm9jtIy0ghuzaTiQNOFtxLuDokHw48Y0VnXiEDO3rcOHvncJ6YQ2NUkr/Tgu2gpH448LQVfd7Kc3YhsEiaNhVdkQbbMRdaYyqTkdZOg89YMayqwYy+Zic4txhTrrIedDAZaYk1+NwEWZWR08MaIASLPskPAduKvwGGn7diqpbymqY7ywl6g1ij7TECK/4GqZ6XXZ9JwC4RmIaem0KVuuLwyUNOZgakGuTIq9MEZhZwj0nPqcFnJ0ld1VrCesDJ7Kg38l2cLPqWyNlipHpPIaOv2SC08ttM7HcwF6k/Tr4+Dcsw3e6I/Tbpq3LD8denmY/kKo7jDlK1KvK3mWO2GYUrueHoqytzdrprFn2OZsXfz1rJLFk5rT3y8lTMh+4xP0sLy3E1r5i/gZEXbCwvSpM24A5JPhyQrjv07CTZ9ZkxdZ6hF1faV8yNSL+NayQyhhds5G7OjLXIWz1nTQ16Qsthxg9I9/fwS9ME3Qu4BiWfDj43iTojlUAgJNWYPQsMPiPlAWN7XSwFlrFFcsOh52xoslJj7QrH86Zjh1LXihHp2Rq23FhCqj6F8cN25ifiY0TUhwN/l+asu9+PJkeD9aiD+UnJNhojYnP2mQkqLiuMkflHXp5aM0YQgKGnJzA3SDWvebs/YYyYGwkw7/SRXZlJwC2pKK0VI1z90hh8zgDqjNSEMcJ6wIl7KFJjj4QDQ4kO54m5NWOEZ2yemZ55NDkashsysTQYsL7mPCNGROes2pCGq2NGUrrTS4M8PUaMvW5HoVJQsNXM+CE785OBNWOE4XgxV57Xwp/bf8tiaIFXXnllo+a1gQ38P8DTTz/NZZddFvs7hRQuMr4LrT0LgtKzf/B5W9yaabLdiaXeCMDIy9P4poL4I7Fy8NkpVGkKit9hwd7uZOz1aVRqJcNP21Fb1ARnF5kZ9IJCwcCzNtR6FQ03lKDLVTP6mp25cR+zp3yos9WEFkLM9LkBKT5rTWkU7DJRvCuHebuf4Rem8IwECc4solQpmG6XnhEDT1tJj5CTA+4FlpeWGXle+i4zfW7GDKlMnfDEbKM1r/GXHYQIEXRFnp0j84y9Zmcq0hpu8FkrVXuK2PWJBo7+cIDh52wsR1qU+ieDjL1mZzpyWG3k+UmMlQZymrJYnF9m+PhkLO4ThLHX7Lj6JFvrYTv+2SAzvQEO9/ZhacqMy1XGX5/GHclVRg9OY64zUHpeLo52D6f+Pknqqj3OsdemYy08x/a7WJhfYvT1aQjC4NM21IaVvGb0VXtsn5hwmHAojKtX8uHg05NoV9VgRl6awucMojZIh9Gme2aZOuyM+TC6fwEw/JKNoHsJ1FKnHq05LebvwWcnMRSt5IZDz9lY9C+DGmbHfHH+Hnp+EmP5Ss1r+NlJlhfD7PpcPYu+5Tgfjrxkw7gqrxl8Lr5N8dhr9pgPh16awjvlj7XyG3zaRvF5FjQG6fuO753GPRSpTb0q1Yhmx6ScbuCZxP6eODDDkn85Jpgw/LKNmsuL2HxzCR0/H2XkpSnm7dLzOuo7R0TpcfCZSek5G2l7NvySDb9Lqk3N9Mwwpk9h6oSHoCfE4DOT6AtX/D3yoo2gR5qzzlOeOB8uLSwRnFuZS8PPR/wNeGwrc7bqkjxQwMShFbXz4WdX5mzQszJnveOS6pJpwh9r0Tb4nC0uVxl7zc78tI/ad5cS8Cww9pp9JUY8Y0OlXslVxl6djtUCPWNegrMLUoyI+FutXzVn99spbMtmwbuEvcOzZowAmD3lY+SlKUw1enY/2EDnbwYZe23tGHHkW/0UvMNEcHqJrHr9mjEimov7Z5ZYXggxHlkXrRUjMksz4trIKSPK9IliRLRt4NRJF7mNJjKrdMye8sXP7xenmJvw43ct4BmaxVCeSfamDNQGJUFPiPHXHbgHPaBQMPq6A79zAX2BBkLS+iZuzr4uzVm1Uk2tdydVTbUcHT1Ef38/l1xyCTk5OUxOJm/z/c8GRTgc3YX458bNN98cU04C0JDO2aor1rTVZUPz3bUEZxc58r1B6Ri7IoEoVTjEzs/UoUxRsPeR7hh5IhH0FToa31/KdOcs/X9I3Otdl63E5whRdH42wZkg08fmEtpuf7CWjt+MxcgYybDzs/XSWL/RJTvWqL31oENqQ5cA5i3pOE8m7gG5GtXXFmKpy2RmYI7uX44Jvafo/GzGIwvnZOMMLYXW1VddBLseqiccIq435VooudBC0W4L9pNuTsn0fW25rxKtSc2xHw/isyaX4C25JIfczUYOPSLf83bXQ/UsL4j5YPfDDSzMLXL4W/1J7aLfa/yAg9Fn7Elt628sQWNMpf3RgaR2sGoefmHtHvBxY/18A6HlsOxvUHiOmdJ35GJrdzH4V1tS2/Wg7J3S6afeP44knee6bCUZFRlMHZxNaLMaux9uIBwKs+9fk3+vKCzNGUnjAIjdr1Fsf7CWFK2KE48N4x2UDwZtH6li6qQ7/l5ctcACqL+hiO5fjQOgMyvwORM/fnZ9ro6FuUWOfFd+vmx/sIYUjYpjPxvBN5bgnonEaV1BKs23VuC1+Tnx4wT9hfNneGnyBZaWl0hJSWHLli0cPXpUdhwb2MAGxOH3+zEajSwsLMT+r5ULMClMa9o33VFBer6G9ke78LuSX9tYo6XhfeUseBY5/O3kzzGArR+tJkWbvNe71qTE75KKI7XXFdH7m/GEtiUX5WCqyuDYD+Tjl6leR901ZQRmFjj6vVOy9mWX5pLTaJR9lps363F2eGWvB7D7oQZQwN4vyj9zQVJzmTrhjpE+1rTZaqTysgKGX57C+qozseE6UXllPrnNWfQ+MSr7/XZ9Tjp1ve9L8s/RKPHo4Nflc6Tmeyrx2v2c+kPyfK5iTz55LVkM/N3K1GF3UtttD9SQqk8Rynu2f6oWpULB/q/0yNpue6CGicNO2d8ges94xnx0/HQ4qW31ewuxNGTS/+Q400cTNKCPYOdnpN8g2b31RrD9wVpQwsGvJv+9is7NZvyV5GuEKBpuKsVYns7EAQcjMjltFKZ6Ha7uxDlS6SU55DZlCeXeWhO03Cc+Dw0VWmrfXcyhbyZeA+RuNYIKpg6442LYWqh+byGW+kza/70nqd0bGevWj1aTlpEqrS8TxI2+/EOMWkcAKCgo4IILLuDnP/+57LU3sIENiONf/uVf+L//9//G/tai5yzFZWsba2DXJxoIuhY4+n35/CT6HDv63a4YOSgRNDkaWu6swH5yhoE/Jy7QaoxKAu6Q1IYpBNPHEq+j2+6vpu/PY8yNyLcwWs9YQVIIsLW7YmSNtWCs1uLuT5IYrULJBRaKzrLg6puj59diNa+CXSas+5InwNserIFlkj4X3gh2fKoOgANfTZ53mBszqH13MVPHk/+uAA03lmCs0NP5y0FJnSkJ8naaKNxm5sh35XP6HZ+qI7Qc4tA35H2w++EGqab7neTXtTRnUr2nkImDDkaeTZ4fVFyZhz5Xy4kfDcl+/rYHakhNTxHKv3d+RvoN9v9b8t/A1KCn7r0lTB5yMvT3qaS260HeThMVF+bR+5cxnCeS1Jw0kvrU9FGxmteuhxogFGafTC0viqy6dGZ6kteWt328hqljM7ENqWRovqcSnUVN1+NDQvdv4x3luPrnYi0p10L11QX0PyGtEaIxLBF2fKqOxbkloRjbel8VGlMaJ382KBvnNEZo/XADc2O+WGu/07GocbN/+VWCC0FUKhWNjY387W9/Iy8vb037DWxgA28M2dnZOJ0ra/GtvAOj0rKmbe01hZhrDBz54SBBR3BNmyjU2Wm03V0p1ZH+/bS6U3Srd1VNfssHS9FZ1BxIsn6ObsYDVOzJY/DJxHsnOW1GcpuMnPyv4aTjBEndpOX2SvyOIO0CNbK87VkU7bZw+FvJn+VRooEIdnyyFmWqUqg2BFK7LN+EL+aPtWAo17DphnJGXpySzdHWg8Kzpf2r3j+N4zyZvN6y7eM1qNJUQvWWXZ+rZ8G3xBGZvT6ATTeV4HctMPi35PtneduzKL8on6FnrNhkal5Nd5STnqcVyntaP1xFqlbFAYE6SvNdFdiOzcTa/CWCOltN2z2VzA556XwswX5QBMXvsFB8toVTT1mxH3Entd36QA2qFIXQWNeD1vuqUKqVHJbZ881pM8qOMYqKy/PIazUxfmCa0Wfl8ySQ5rlnKHHekbfVSNHZObL3KwBq2P3JBhbmlzgssF5RW9Q0XFsUU5JfC5lVOtSZadiPuONi2FooucBCwc5sjv9kMEboisPqfUw17H6wfmWsp+1xxhBpB7flg6Wk52tpf7SHYILbdiSvg36rdK/m5eVx+eWX8+Mf/zjheP+Z8E/f7s3hcMS1dgPYzZVxBCWFMn4S+hywHAzhnQ5IryUgKBWeI6mRdP9ulJGXp+JJP6vfo5MelvoKHd5BH3u/2J2YoKRQsPOz9TR/SFqkjr/oSEpMyN+ZRYpWRdUluQltVmPw6Qk8o/NJCUqZ1ToqrpAWLvu/3J2c8KCD2qtK2RFZVMuh/7cTBN0LsgSlsnfmUvluSUZNjqAEkuLScnBZ1q7+xhLK94j5CmDfv3bLkmMA/M4Ay8EQp55JvqEF4OyfY3F+SZagBDD6jF2IoATSnF3yy/tgPZi3+wgvh1kWuG73Y6NCBCWA2dF5/K7kCXkUAXdwhZWeBBOvOtn7hS5hgpI2WyLeyMHROyf1gTekJbXzOUISQUkHLfdUyl7XPeRl9BWxTbLCc8xUX1lM090VSe1i96sOaq8vSmrb8Zsx5u0BIYIS6QrUmWlxLfyAlYVRBFGCUvPd5TR/qI6cVgOJsO/LfTGC0raPVVN++ar78rSYe/Drfdg73BIRUwf5u41nXlChjMXy0FI41rd35eXVR+eyeAfvxYAZU5aJ9vZ2FApF3MmXDWxgA28cl112Way1G4CZfC5SXJOQoAQw3TsbUdFLnLrmR/qAu/v8TB2bSUpQqrwyn5b7pFh8+Nv9SRf1+btMtNxXR8PNpQBJCUoAea1Z6CzqpDZRuLp9zE8G6P7lYFK72uukmD389JQs4aH5nkpqry4huzEjqV0Uo3unme6W30xouqsCtBLhIRlBCZBOxYdhpl+epN5yb+VKCzsZDPxlkr1f6BIiYM1Z/fjsYrmEbzqIazA50TeKYz8YkCUoASz4lggthfFOi41BFIvzSywFxPK5Q9/sEyKJufv8LHqXcA3I+2D8dSdL/mUWvYuytvv/rXtdBKXyy/Ooek+BrF1oMUR4Uf6cTZSgVHlVPgXnmJPadv1+BL8jKExQ2vHpOuquKUtqM/KMPXa/VuzJR1uYeKL7XeAenqfvz8kLZlGUX5RPqj4F82Z9Qpupw27pfgVa7q1j+ydrE9r2/36CvV/swu8KYarXSUSwJGMdfW2ak7+QSEXR2JsIXltAUppIEjdqJrdxFnsoyCvA6XTy2GOPoVQqcbnevILvBjbwzwq3201qamocQelsrkhMUAIIwKJ3Ee9U8gd+7lap5nXyV6MMvziVmPSjkUgZxmotAXuAff/alZTIsu3jNbTeJ9WQpo/OJiUoZdWlozamxrVPSIa+P4/i6p9LSlDS5Gkoi9TQDj3Sl5SgBNDwvvKkMXY1Rl+YZt7mp+dPyWteeTtNsdqUyOZXaCEcU5xOhoorpbZ4ojjw1R5ZghLA0vyipDS4X14NzzXgJehelCUoAdj2u4QISiDlSAveJSFbUcw7giwvhmKn4pNh8C82IYISSCfxo8pEsmOYDOAZk6/LuLq87P1ClzhBSRPJ72XgHvQRDoVRp6cmNwwQU/HacmuZ7HUdne5Yy245mBr01F9bSuMd5UntDj3SFyMoVV+dPKfseXyIuVGfMMFQn6clf2vynCdKUKq7vpjW++skkmUCHPhqT4yg1HR3BeWXJa5FH330FJOHnDGCUjT2rg0lS4Fl7J2J42ZqwMg5i1eSRwnZ2dm0t7eTn5/Pu9/97iTX3cAGNiCK+++/H4VCESMo5VLERcprExKUAOwdsyz4kj/DzFsMoIagY4Gx16fPJCiBtJmuUFB4tpnmSMw8+dMRDnwt8f6RsVZP20fqqLtearGUjKAEUiv5jHxdrBVVMvgng7hOzdH1++R1tLLLckENtoMzsoSH+utL2HR9GZamxDF2NYZemMIeUQlOhoYbSkANM93epGQHgFR9GuHlMDPD8jWvLbeWoU68BRKHidec7P1ilyxBCcA9NI93QkwYwjM6z0y/WM2r8xejsgQliOw1BpfxOeXzufVgwbMonM8d++GgLEEJIOgI4rMHcAr4wH50muDsIsHZBVnbw9/sWxdBqeAsExWXy69ZFv1LhATy+ihBqei8bApk6jKDf7MxNzYvTFBq+2g1m2+sSHqf2w67Y/dr4dlm9EVJjIMw3eHm1JOJhVlWo+x8C1qTGvOmxDfP7ClfzAct99Wy9eM1CW1HX5hm/5d78E8G0earabu/OvF3C0L/X630/HYUFIrEsSZCXpqz+VmcW0pIUAIotW3mHN5Ffm4+brebn/zkJ6SmpjI9LfZ7/CPjn1pJqa6ujt7elSBSTA21qpY4m+jGtbZIS/PNxcxZ/Zz8yWjca+HQmS7c+emaxOpJ0Q32sBRocrdlUnlpAZ4JPx0/GY68tsbPolBAOEzt9UXoTOrkLMJqndR6zQe6El1SFaXMah0N15Zy/Ie9+BzywW/X5+pRqMRUbgAa7yxn6rgrqYKMNhssrTmyajyxMTxUj0IpPgZR7P58AyCmJlD9nsKkalf/L9D64UomDjqE1XlEIaqktF403lGOe3Re+Hd+K5BZrSOjSCdLbtt8SymGknSsh52xtm5vBlo/XIkmS83Qs5NMChTw0EH5+bkMPZl8DG0fqaLrl6dirdeSYdvHpVN73b8bZiaJAsDqa4cWwklPPOgKNfisQQiHz1RPO41tbGnWU35hAQeTnXCMxkltiN0fr2cpsMzBr/fFvxY+M15t/0SNpAD1yzG8Q/Hf7YyYrYPdD9QyPx3gxI9G41+LwLfs42DKUywtLaFQKKitreWxxx6jtbU18dg3sIENrImJiQmKilYIkgqUXKh4T0L7prsrSLdokqpvRLFeRaLtn6wlRa0SVg/a9vEa+v86hrsv8UBWq6rIqZa0fKiScDjMsR8kJycBWFoNVO8pwu8MJs39otDmaai7upD27ye3Lbs0l+GnxZ5vRedmU3JeDp5x30qu+iYgqoxk73TLEn+Kzs3GOTCPf0JsI+GtQOklOaTnaun6+cibet31KCmtB7lbjeS1mjj+Q/l59lai8qp8Bv4oL2e8+/MRFUnBE46i2P1wA6HFsDBhqvSSHGnTLMlUy99lIqsqQ2wuaGH3gw0sL4Q4IKCApS3U0nRzGcd/Ppx0vmsLtdLrWkjP0ca1eTsdLR+qxD0yz5BAsbHx9nL0BVp6fjecVCkKVqkqBZaFFKOa7qggPU+TVLFpUHuCQZ+U82VmZtLU1MTLL78se+0NbGADZ+Liiy/mueeei/1dSh3Vis1r2mqMSlruq8M7nlh9YzWia8q9X+uKtalKBGO1lobry5kdmafzZ/Jxs/TiHIxl6Rz/z8SED12RRmo3GpBIRdH2V2tBk6eh6QNlHP/ZcFK7KKKqwiLfDSRCwswpL1OHk6zvNVC8K1uW8BTFjk/XoUpVCueqotj12XpQKtj3r/LXLd8jX4d4q7Hl1jJs7TNJiWpvBKJKSutF3fXFzE/5hX/ntwK6Ig3GYp0sua3iyjzymk1YDzhjbRffDGz6QCmZpekMP2cTVpcoucAiq37UdGc5vX+alFoLyqDp7grSczT0/klG/SmCxtvLUCgVSWPOamUkOfW0zEoN1VcUC6n6gqQqteRbElJCW5cCVEQVzzvpS6p48qriLwRDQRQKBdXV1fz617+mublZaOwb2MAGVuDxeDCbzSwtSQQLFSns5nLUyrV3wuuuLyKrXM++R3pibZ0SQZuvpuW2CqkuJFBHar23EnVmGvse6V65dpL9xpZ7Kxl8ZjKpOtFqVRV1tjqp4lPDDSWotEohtSVDqZrNN1fiswc4JlC7UBug5poy2WsXnGXCetgl61sA8yYDtVcX4Rnx0vFzsYNDIijYZaLsojzsx2Y49ZfkNZGcNiO+KX9cK6v/18jbnkVmaTq9v01OKlsv1qOktB5k1esp3Gp6U3+zNwKRPAbeOrXxXZ+TugglU0tbjbztWdiOzyS9N8ybDGRvMsge1I1i90ORutA35MegNihpurOarl8PJ53vaotaahuoBr1FndR2000lzDuCDCcj60f2KKuvLsDSkEn370eZ6fbGvXbmIFapKgnslde8txBTTQbtPxqKtTw8HePqAXr8UteWjIwMtm/fHrdm/2fDP6WS0tGjR1EoFDGCkooULk69Po6gpFAq4pQ1fKM+wkthgt6lM15bDV2BdLJk6Hkbjr65M9WTVimA1F5fCDqYOjRL+w+61970ibCfK6/Kj0n89j4+nnyTSgebri9j50frY2NPhuyGTBQqBaYtydmWURz/6RDjB+QX3FtuKwPgxH8OyZJoGm+ro2hHNrpssSm575vdnHpSPkBu+1gN2z6WmEF5OvY+0kXvn+SLZptvKSVnszGm5pQM5Xty2fqxatDJmpLTaqDtI1VCftBX6NBkqSlozZa/MFJbPJExrBeW5gyy6sUurM/XkteU7MTPCmqvL6LxzuSnpKKovraQrR+tFrLddH0ZJWfJnxzs+O8RTj05LkxQKrnQwq6H6tHK/BxHvzcgTlACdnykjvxWs+xvd+Q7EkEpf2eW7Lw89Egf9pNuIYISQFpGKuosGaUoq/TQLbnIQu1VpWxOcnJu+pg3RlCqv6GIHclOnfqV7P1mb4ygVH9D0YovToupAB0/O8Wc1R8jKEVj8mpEY7hOB+HlMLMjvjNei0Kn0nG+4hoqaaSkuISenh7a2tpoampKPOYNbGADZ6ClpSWOoFRHW1KCEoDX6md5MYQ2icqONk/qce3q9uEZ89H9y8QEJa2JmErLwa/1SuSnJNj+qVoqr5Ti6aFH+pISlJruqKDumjJydxgBZNslqY1paDKTx9Uopo96mDo2I0tQqrwyH/NmPX5bQJagpM3TULDdzLZPiOVI4684GHjGKktQ0uZp2PW5ellllSgG/jJJ35/GhJSJSs7NoeWDYnnB1vurKRc4nQQSIaPyKvl8DiC3OQtjWbqQraleh0kwP1oPtCZkVYGiKNhuJj1Xg1bg59AWamm5rxJjjbysldYktfAqOlc+B61+byF5jSaq31soa9vz++F1EZS2PVATU0RLhv4nx4WLQOmlWgp3ZLPtnuT3xuQ+V4ygtPmDZckv6oeJAw5O/KeY+mnOpgyUqQos9cnV0KIEpp0frafp5uT3Rvv3B2IEpR2frqPo/MSneE/8eIj2R7twdfvQmpRJ7w+/C5y9Hk79VVIEicbkRAh4FlheDCWNkRX+Ri5SXENJYQmhUIhXXnkFhULBqVPyBNQNbGADEmw2G0qlMlbsTCWNixTXJCQoAQTckvp0wJP81LAmR7rP+/8yxnSHOymJp3xPLhqjEne/n6Pf7UpKUCo6LzumRjTyrD0pWQCg+ZYKdnxEqpHJEY+ya/Wo1Eos9YnV51bjxI/6JVVjGS5Ew40lAPQ8PpacoAS03VlN8dk56IqSx8koDnylh94/y7eDa7q7QjoJLIh9X+6m+zfyaj+V78qnoC2bynfJ50gFu0xSOyqj/OdnVmpoursCjczzAqS2VRlFOgq2ieWVeTtNQmNYL4zVWozVYrKfpuoM8trExlu+J5fNHygTsi29OIfWD8krfQM0faCCUgFlscG/2Oj5/agwQSl3axY7P1MXiwGJ0PmzEfr/MiFMUNr6sWqKzrLIXvf4fw4RsAfIqktPqjoEcPw/Bpk85BQiKAFoTWo0puSSIFGCkqU1k4bry5P+drMDgRhBqfyyXNk1175vdMUIShVX5iWdxz2PD+Ae9MYISsn8ptHA8sIyXmtyMtM54SvZzE5KS0rp6+ujpaWFHTt2JH3PBjawgXhcc801ZGZmxghKDWzjfOXVCQlKAJ5RH0vBEGp1gs1xJDIQSIpEjh4PXb9M8gxXQ9ll0p7H0X8fiCcorUZkv7Ht/moq3inF0/Z/H0hKUKp5byGbb6wgb6sRQLYlnS5fg84spjDuGQky9tq0LEGp6LxszJsMBD3Ik5/UUHZ+Hm0fEsuRnJ0eep8YlyW7qA2w41O1MT/IwbrPRdevR2QJSgAVF+ez+WZ5hUOQ6lglFyRe069G7XVFklKVAAq2mzHXisk+GUrVZFa9BZuNaomwJYL8ZhOGMj3afPm5pjYo2XJbGcYagZqeWiJWFZwln9MVnZdN8dk5VF8lrwre9esh9n9TvObVfEcFzXfIz4nu341y4NtiBCW1QUnFJfm03pk8r3R2emIEpRqBet7gs5McFzjoApBVYyBFq8JYmbzmFSX5bL23hsZbKpOqOnX+YjRGUNr6QA2FZyeum/Y/YeXId7slgpKa5PdHECYOORj4u3QPR2NyQvO5BZYDoYQEJYCiYCUXKa+lOKcEpVLJ888/j0qlYmBArAvRPxr+6UhKZWVltLW1xf5u4iwuSL0m9vfqDWp9uY5dn6mh+qpIa7Ov9dP/+/gHymrVjR0PVtN8a4VEPDrsoe834yub6KdtpGdWajBXGdj+IWmhEqd+EulluJq9l5GnRZmiQFciEPh9MG8PMPJK8pOy0WsN/ElqnZFUWUYHOz9bj6U5A581IKuE03JPJRmFOgoFN1FO/FcPMwNzskpO5Xtyyd+ZBT6wH5WXPVRpVai0KqExmLekg494BZgE6PjvEVwDcwz8ST7ByK7OJC0jNWkLvSgKt1tQZ6ZBmvzGpXfQx7Hv99DzO/ngZWnOoPScXLZcXyY/iHWi+spiat5dImTb+fiw0ClrAFNFBvo8sUJQVqmeNIOM9HQEk0eddP9+WMg2OscszWItcxRKBaZ6+TkfJShFiXzJ0PmbUaY7Z4XmD0jtP3Ib5Ylgp/4obQhvf7CWKpkkanVbw4QxKHIaY/R5Bwtzi3T8ZmQljiUR7NPnaVGplWeSsFarJPkAhRJ9hZ6sygy233NaErUqzvqmQzG1u60fqaT51orYmE9XSfK7FOz/aj/DT0tM912fqWHLrcWRS8aTlSpSG6iZ3IUmVZqTJ06coL6+ntdeey3hd9vABjYAJ0+eRKFQcOzYMQBSUXOR4hqKFGtvqDfdUcGuz0kk64G/THLgKz34E9S3jTVaWu6soDnSQrPjp8MJbQG23FZLziYjWlMkJ0tWq9VCSpoKg0jeBfT9YRi/KxhrrZQI6aVSDNn/5W72yyiqVL93hYA7IFDQyG3OouZdxULj9dsC2DvddMj0YgfpNDQg+90ALJsNKFQKQovyypzRdnQOwc2Dnt8PM7pXQAZXC2nGVMzVYs9ufb6W7FoxmfCDX+2l4zGxNh7V7yqRbQf2RlBzTQXl5+fJkkFA2sRof7Qr6X0RhTpd2qAp2CFP5Pb7Ic2QimWzvN/6fz+Bo2eW/t/Lq49GVXuStTBbDVWaklRtiqzddCSfKzjHnJScAzA/4sfZ6+HQD8QIRSUX5WAo1sXuk0QYecaO3xUid6uRHZ9O3gZ75Bk7e7/Qxehz0npL7rce3zvN7KiYzLuhQosqTYmhKHlsi86ZzR+sIndLVtIx9P5mPEJogpY7K9j2QOKNuN7fjMfUpGqvK2L3Qw0Jr11j3U758gqhorW1lbPPPjvpuDewgQ3AWWedRX5+PlHR9EZ2c57iXWvaanI07PpcQ6wt0sGv98baFa2Fto9U03pXBRojuPv9SW01ORryW81svkXK05K1VwPIKNCSolaRUSpG4pkZnGNMplVUdPN+/GUHe7/QJatus/3BWsyNGQTcIcZfTm5bf0Mxxgo9ReeJHRo78p/9THe48Y0nZz4VnG0mb6e0ISJCsEjTpZCiESvtZtVJmzIi7a0G/jyJ/eRM0rZ8UVi2GNGY0ggIqE4VbLeQnqNBLbA/FHDD0e920ftb+dxLk6Oh8pJ8qq8uk7/wOtHwvnJqrhKreZ382SCHvi6WQ1jqjRiKxdYa5hoDmuw0ELg9Rl6ZEiKigdQiDqR2anIILYVQpigxCWzuRZWv6m+QX5t0/HIM2zGXkEISQO1VxeRvla+7Rdvetd5XJUu2O/C13lh+Ikegmz46i286yCnBFr2G0nRSNCnJf7vIV9cYleQ1m9hya+JcKuCGrsgarvGOclrvriCzcu2LB9zS4ZyoL3Z9tp4tt5StaZunKKJqdCsZKim/P3jwILW1tbz00ktJBr6BDWxgenqalJQUfv/73wOgIZ2LlNdSoCxb0772mkJ2fkpaD1r3ujj0SB9Bz9p1c7VFTdvdFTTdLl2r7/cTCW0BWm6roKDNjNoS2URfvUd++n6jGlL1KbLrwij6/jrBvM2P7bA7qV2ULHL4Efk2WMXvsNByr5Qnjr0kX+spOstC9RXyRBAAgtI6uevX8rE6SsBwdsrvNRrKM1GmqFijsc4ZiBJ43H1ia/WuXw0y+ooYcVifp8VcJ0YmyqrMIGeTUcj26PdOceKnYkSJ6quktntvNmrfVUT1nkIM5fJJz8CToxz5ttTCSxZpqWQU6CQxADkEIT1PS069UdZ0/GUHk0ec9P9R/vClZygAQYS+G0BKRgopevmal7tvHoJSS0g5YlXQE8J21EXnz8QOgVmaMsluyJTaISaB7eAMQUeQzCodWx+okW0Tt/eLXbH1VixmJcDQczac/R4hVTS1RU2qVoWhaI18ddUeZdADKBS03FpJwVYz+sLE+/Ejz0wz0yMRmtruqqDtw4kJXiPPTMeI5yUXWdj56bqEJLpaxw5qFySuSigUoqmpiXe84x3yX/IfDP807d56enqor6+P/Z2CmvNTr07+Jh3s+kgNM0Neen69dpBZvelddqkFc1UGRx4djL54BjkJHdKGezhE1VX5nJJpfVB9TQH9v4t8tsxPVf/+YvR5Wg49IrYg3v1wA8uLIQ78m3zbgdztmVReWsjssJdOQfk8EWnoovOzWZhdECIcQaQdm4I3vR1G2/1VqI1p9P5xRIiktG5Ef3cR02ylUNu99X5+/dUlWA86mO2XH8h62r3VXl+EZ2yeydfFlIFEsS4/rMO/68V62xuKovHOcvR5WsYPOITb39XfWEK3zIayeUs6oaWwmEqSDnZ/ooHF+SWhuFFyoYWi3RY8o/N0/Pcap2BPk0XMPyuLkrNzpBiTSDJxFQrPMeFzBFbGfnr8BCr25DD4oh18UpvIM9rbrYq7+TsyKdqZzaFvryTXiVTwNNnQfHs17uH5hPE+CuviEHPFk4yORQpDjY0cP35c9vttYAP/bGhpaYmRkwCaOYtsRfICccNNpWSW6Nj3zW7ZFm8gqbkMv2hLSnTRmqQNd60p0lr2ucQx17xZjzJNGSM1yGHHp+sYeGpCiGiz+dYyDEU6Bp6xChF+tn28hlRdirAcsnmznkXfMp7B5I6re18xPb+WP5kPULEnn/w2E64+D92Pi71HFLsfFm9/9YagRWgOgXx7vjeC/F0mdLlqoTZn62n3ZqrXYdliovcv48LfTxTr8sM6/Lse5G41UvnOArxWPyd+LLbBJordn2+AMOwVaHEDxJTR5O7X0ktyGBHM5aItUHqfGMXZ4ZW13/npOpTraPez7YEaXKfmhIiNINCKTwvl5+ettImT+d1b7qvEdnSGSQH1hPrrpQ1+EfWsk1mv4V/y4fFIsXl8fJzCQvnTfBvYwD8TbDYbBQUFMXKSGi3nKPbIvm/nZ+qY6Z+jV4BMmrs1i7y2LI7/R5KT7hpiG+6lF0faZ8qoLYm2FCu/LBdTjUG4RdeuhxoILSzLbpKBROCpv6aUmYE5un8llvMUny/fvs3SmgkhhNuV7fpsPQqlQvhZJYrNHyjDUKqj/y8Tb3rrNCDud5c1XdU26838/Op3FmA/4WJ2QH4g62n3Vr4nF9/Ugqxa1nqxLj+sw7/rxXrbYIui9r2FZG8yMr5vmpFnxfKkmvcU0veH5LEoo1RDilbFTI9Y7XbXQw0seheFWq9ZWjOp3lOIe8hL1y/ka9/mxgwqLyng4NfFDmOaGzMILYSSjr3ovGwcxx0E3JKaWDKCp6lBT9n5eRx9VGCjUQM7P1aHe2hedi3oDjuYLhlidGyUcDjM9u3bOXDggPxnbGAD/2S45pprYuQkgGbOIVuZXMmu4vI8LJsyOfYfvdImuQya7yhnbJ8DZ2fimpPaENlwV0PhNjMTrzkT2hpK1aiNGqaPR3IBmf3Gto9VM/z8FM6T8oOtvqoAy2Yjg3+3ypKZQBI50JjS2PeNBIpPa4wdpSLWci4RKvbkMfikfJtzkNpeVVyaj7PXI9zWShS7PtfA8sKy8DNi3VAj5DeQ1HOCnjc39zJvMZBRqE3eXiuC9bR70xepyWnKYvA5m/D3E8W6/LAO/64HhnINm2+sYG5snpNr7a/9D7Dzs/UQFm8nZ6xJJy0jFfsRd1K7grNMWF8XU8isujKfnKas+FZqSdD2sWrSdKns+5JYHtp8VwWecR+DfxO7x0sutjD67CoS5Bp7lMXvyGbspciaTuZ33/KBUpz9Hqz75NcFFe/MJWeLkf3f7pWdSx26vQRS5nG73QCcOnWKykp55fh/BPxTkJS2b9/OoUOHYn+3cCHZqatO0aoiSjvLy6CD7fdWYz3oYPyVGem15eW1L6xQsummAgyFOvZ+qXfVf0sT/XTVDnSw+4FaloOhtYskCmWcesimm0swlumxd7ilE2oyP9X2T9aSolEJkyla7qvE2T8nTJAQIYJUv6cQdUbK2gSGNbBe0pGuQENmiVa2VVb5nlyMpXrZ1iix65boqL0yn/ZH5e13fKoOZYpCrB3FW0ie2f5gLYoUhRDJbL1YD0lpPai9vghztUFqsfNW+EXQ35tuLiGzTC80jsp356NMU9L/W/miLUjEnII2M0e+I18kKHtnrnA7uea7K9DlaBjfO83o8/KnC3QlOja9p4hD35IhH61zjm5/sJaO/+7H5wgn7mUdQcs9FWiz1XQ+PpJUMjaK3Z+vj2werrq31iAqAeTvNlJ+fi6zI/N0/iJ+EbFWDG6+uxStSc3+7w3AfIJkdFUM3v5gNfYON8N/n45/RqzC6/wZ36L0vRoaGnjqqacoKRE7YbmBDfwjw+/3k56eHtskS0PDuYorEtpX7Mknu94gtnDXwq4H6pkd88VaLSVDlBDQ96cxISLR7s83AAgtnE31OuquKZPiUJL2JbGhF2rZfF1x7ESFEASIIFs/Wk3nzweEyCXll+dRsNXMzKCXrl+I5WqiBIy2+6sYfd0uTPCqvbYI/8xCUtIYSCoyLXdWMN0lpsbzVpFntIVaWm4tx9Y+w+CTYgQQUayHpLRe7Ph0HcuBZaGNmTcEQX/v+lw9S/5lofnffE8FvX+04pdp37NiX4m904311cTFWJBIR55+jzARa/fDDYSXw8It6DZ/sAzvpJ/hp2Vyu3XM0bJLc8ko0nFShLClXUU+F/Bz7XVFZNdlYjvhEiLT7fh0HSpRwpQWdn+8AWe/WLG39JIcchuzOPhob0LfOLSTHPO9DoBer+fss8/mqaeekh/LBjbwT4AbbriBxx9/PPZ3M2eTrUiwSaaBbR+qwXbMJUuwAai+uoDsOiP7vtklRJLY9VADS8ElITWZiivzyG8xYz85k1SVKYq2+6tJM6Sy7xtiY9n0gVLmxn2MviCgxAhCRJCSCyzo87UxJRM57PxMHcoUcbKpxqgkoyKD6aPJiUQFu0xkb8rkxI/ECL2aHA01V+Zx4sfDsrZtH6kmVadiv0it6S0kz7TeV0WKVvWWbO6th6S0HpRdkkv+NjPtPx6UbUP4hiDo78p3SQrbR384KKtQVHReNtqsNCEFAJCINiVn5ci2lwYxIl8Ude8rxlxrECY1aXI0NFxbJE/QWeccbbu/ms5fjwkpO9XfUExWZQZdvx4SUijb9ZC01twnQEI0Neipe28JM6fEiJN11xdjLEtn/7d6hL7vtgdqmO6cTdru75DqeWaXpPp7XV0dTz31FGVlZfIX38AG/sERDAYxGAwsLEgtcrXoOUv5znijaD07HKJgt4n8raaVvYLT9gDjoFGy48NVeMb98QfFVl1vNaquzCen0UjvnyeEiEQ7P10HStj/5cgzPln3gyI1jbdU4h700vUr+bxHbVDScGO50PNh5U3Ibt4331FB958mkrZPiiJvq5GKdxYw0++l+3GxXK1gl0moRemW28qwHnIJ+RkkckRoISyrzokadn2iHvsJNwN/Fag1vUXkGdSw8+P12NpdQsSj9WA9JKX1ou2j1YQWQuubd+uBoL+3faKW5eAyR78nvye46aYSTj09JTSnATbdWMLMsFeWKGTeZMA7FZRtxxjFeklN1VcVEPQsyq+t1jFH87ZnYa7OoFN0bfXZehbmFoX8XHKBheKzc5hqd8W3XEwgptD24SrSMlLY90iP0Ph3fqoWZ99c8hw6Eu9z2jIpPtvCkR+ckq69Rkz3qD0c9D8NgE6n4/zzz+evf/2r/EDe5viHbvfm8/lQKpUxgpKKVC5OvT4xQQnQ6UCVqiC73rDy2lqITKLlRelBrjtN4fkMghKgCChY8C5J0mQJrrcanT8fxTUwJ1usibYyOvi1Xol0kcw2W0njnVKLlfZHB2QJSls/Wi1t2AkSGbLrDBhKBHSbIzjxy2FGX5NffOaflUVmtQ6fNSBLUALI2ZSF1qw+s4VUAvhGfUIEJYClwBLLC2KbGzvur2P3ww1Ctvk7s9j9cAMVV8j3jo9BkPhb+e58tj9YK37ddaD+xpJYOxo5LAdCEIbMQrEfZtdD9ez4VPKWGFG0faSK3Z9oEPrNZ8d9hJfDZJXKGw/8aVKYoARQtENq2afLlg+vUYKSXLs1gGP/Mch056wQQQmg9vJ8UjNSyN0u04olcl833V3B7ocb0Mqo1R/8ei8+R5icVgP1708u3d3+g0H2PtLN7Ckfumx5JaWRl6cYeEasMDZ5zM3yQpihV85MztaMv1EFpUjruIRQKNGX61ClKsgsjrQbjJKTTnsmnMW7qGcHhQWFdHV1UVZWxq233io0/g1s4B8Vt9xyCzqdblWLkV1JCUoAmSU6UjSqlTZsyRCp/SpT5GMKwNhrdpb8yzj6xVqKDT1vo/9vMhvqWkmVydXtY+/Xu2QJSvXXF2Oq1+Gf8MsSB7R5GnZ/voGGmyKto2Rq3QXnmEkzpFK+R6zN29DfbNhOuIQIShV7JNUrEYJSeqkWtTGNop3JW2mtRu9vx2UJSgC67BTCy2HcQ/K/odYEux9soOku+Z7tIJEudn6mXt4QSDenQBiWggkOL5yGrfdXUy3Qt33d0EqbCiUXybdlAwiHw2s+F9dC5VX57H64AWONWLvd3Q83sO2exO0oVmMpuMyif0nI9tgPBoUJSmhBZ1FTKND2Y+qAG78rJKlRtcpLo4++Ns2x/x4WGwdgKNKR2yzfchc/Eonn8w2xdpWJMPz0VIyg1Hh7uURwSnLdvd/oisUZbWHy37H3N+M4ez1CBCUAZ78Hv0us0qQ1SZ+95Be7X0xVGaRokrfozvbnc5HiGjK1RsLhMM888wwpKSn4/W8BK3EDG3ibIBAIoFarYwSltEhb3YQEJUCjgdT0FEzVYi0ilhak+1hjFGtL4HMEcPaKbd4M/sXGdPRQXhJE2y8d+W6/PEFJI6kGAXT+bES2iN54R7lEHBAkMuS1mTCWibUlBTj202GGX5Lf6DE3ZpBZqSHgDskSlADyt5nR52uF2n8BBOwBIYISwOL8IksBwXzn7uoYyV8OmZVSnlu+J1fIPhwKE0Yshyk6L5u2+6uF/bEeVL4rn9YPJW7rsBpLwWUIhdGZ5FtzgHQIUrRWt+XWMnZ/sgGNUd7WPewltBRCa0r+bAWpTYkoQQmgaKcFbbYaXZG8s6MEpbJL5H/znl+PYT3iEFZdKr/QgsaUFmuPmBCR+7rufcXsfqgh1gYyEY58t5+APYCxWkutTC7f/asx9n69C3e/X/pdZFzS95cxBp8Wy7tcg14WvUuMi7S7ZtX6WCCOaYxKUnUpZMrURLctX0gzZ1NYWEhPTw+VlZXcddddQuPZwAb+UfGlL30JjUYTIyht4aykBCUAY6ketT5VavkjU5OObowrVWvUvNYgNo3tdxH0LOLsE8u9+v86Qf9f5WO+2qDEOx5k79e7ZAlKFZfnYaxJJ+iRJ4qoDbDzc/XUXR+pYcksL7Pq9ejyNFReJJY72A67GX99WoigVPwOqX4lQlBSG5RkFOgo3iHW5hdg9NlpeYISYMhTs7wQYm5SYF2rht2fbGDLrWVCY2i7v5odnxTLM/QWNYTC0v6dABpvL6dizzr2MdeBlnsqhVsqE4Lwsli+WHi2md0PNWDeJLYO2vW5etruEtv3XPIvsTgvVvPq/MWoMEEJNWSW6clrkcl3kFoWBh1B9EVqoe84+Mwkx/87iULuaTDXZ5LXKj8Ogkikt8/US3WsJLAdnIkRlGqvK0ItM+z9j3THCEpybeJGX5hm8ogznqCUBPYONz57QKytnEGK0UI8AYUSS30m6vRU1OpIbI/G81XPBEPQwEXKa8lSZaNUKnnqqadQq9UEg28FK/F/D/5hlZQ+85nP8JWvfCX2dzWtlGnq45UwVm04b765gMlDTpydvjPJSavfo1Ciy1fScG0ph78zRHjVa6vbCK3eDGi8vYRUTQpHvy8VmMOnXW81tOYQLXfXMzs6H99WLcHPVHVVATlbjEz3zAoRKbZ+VDp5JtrWbPMHy0jP1ayrFYe+Qod3MDmjqfLd+Uy2z+IbFZNweSNt3nQlOqHr7/58A35HkPYfvPls25r3FaG3aISYnflnZVF2Xh5dvx0Rasm2HrR9pAp1Zpqw/9ajpLTjU3Wo1Mq35PT/to/XsLywzNHvyf82JRdayNlipPMX/We2APsfIrNax6bry3D0eej7tczmtQ50OvFWdS33VKK1qBl9zc644AmzhptKhKSnM6t1wnOp4oo8crdkse/b3UKExFgbvC9GmNbRGJWAibz78/WSGsGX5WOJNhta7q5nZnCO7sflF05ZdTpq313E8R/3xX77RPFYoVJR895cVGlKun81Gb/AO32hGHmt+e5Sep4YJxAVaFjjOXJA9Rc889KCcKP92wb+WaHVagkEpKqoEhUXKBK31dXmaai5ooDjPxJbDDXcXIrfGVxpOZRsHCYljXfW0PH4CPMj8ov8+uulE7B7H+kSVoRRKATbcGgl0oxoWzOtCZruqmf8gIPxF8UK0oYKrWyLN5AWe6Ly1WWX5lK4I5uZIa+QYhVIv6kIsSTq7/Yfr4OIIgitScmmmysZe32aKRF58XsrUaoUHPmuWC/29WD3ww0sesUUbdarpLT74Qbm7YHk7XbeALIbM6h8Z6FwC8OW+yrxjPqEW4utB833VKI1pQmpGGkLtfgnxIkq61VIMlRoyarKkCXspZdqhWJOFDs+XYd7yCt0X0bb4PmmgxwTWLPUXlcUUSNwCJEBN3+wjIwCrXCrzdYPVxGYWRBWEpEU3/rxCyiEZzdmkLMlK+m1Z4smOTQmqSplZmbyoQ99iC9/+ctCY9nABv5R8NOf/jTugEQNTZQoEhfR664rwt7hxtUlL7uvMULDjVViLYQi19aY1ELxKdpyyDPmE4ohRedlU3JujhCZCSTSkT5fK9zWrPrqArIqM9al1qMr0uAbT57DFJ+fjXvQy9yIWK6zXsUlkMhbImo9Oz9Th88RFFZdWg/KL8vFUJoulJOYGvRU7Snk1JMTQvNwPdhyWxkZhbp15VKiSkptH6lGbUh9S07/t3yoktBymOM/lPefpTWT4l0Wuh4bfNPb5WlyNLTcUYGrd1ao9aMmRyOkNASSwo+5xsDoq1PCqkrVVxcI3e8ZpRrhe6zgbDPFuy0c/2FP0hZqUWx/sJYUrYq9XxNUkftcA+FQSFiBbNcD9bj6PEL+1hVp2HxDKSf+s1/oty+9OAetWU2PYLvuLbeU0f+ULelvelT/Aq45KZHbqHlt4J8VBQUFTE5Ka98UUnmH6j3SC2vUltUGqLqiaEUdJEHNOfpa5RW5LAVDjDw7nbhWHfl/tQG23FZN3xOjeEbkN68r3plLTmMW7d/viW8xl2C/cfsnalGmKdn/ZbH18u6HGlgKLHPwGwK5lBq2fbgW6wFH0rZ0q6EvUuMdl/+elVfkiykRATltRqouX5/iktqgJBgMyRIYSi/NIb/VTMfPB4XGvR6oDVB3XTlTx2aEWuptvrmEFG0KxwTyjPVi1+fqWZhb4sh35XOp9Sop7f58A3NWHyf/a/h/OMp46IvU1L+vjMG/T+LslCf2bbmlFI/Nz8jTgp2I1oGGG0owlOjYL1ArVlvU4qQm1q+QpLaosTRkyJLqtPlq/JPi42j7aDWekXkhMny0DZ530s8JASXxkostFO2wMPbaNGMvydfPq68qwFxrkOLgnPzB5y0fKGXBt0Tv78TEK5rvLKf7CeuZKlZrxH5DmYa8NjN9f5iM+//V75k3z7DP/gwgKYnff//9fOlLXxIay9sNYkc73mbIzs7G6Yw+5BRcrHl/vMFpJCRdNmTka9Feko+zZ3jti66aTFXvLCBVpyJ/lwHrazNxm+Hxb5H+P92iAUXcC2t/RjiE3yedeE6wz38GTj1jxVSdQf+TYjfL4W/3U3iOWZagFCX4dPx0WOi6Wz9WzcyQl4E/TcoSlAByG7PI2Wxk37+KBcreP42QWZohZFv9nkL6/zAhRFDSZksEBtGT3a0frmTsNTvTx8QUGWQJLasw+foMk68L9rjXSWpEogQUkdZjbxQHvrrOdnM60OfJE9kADj0i3hJn9HmxNmir0XR3BfYOeb/P9vsgDKq1TjGcDh/4fCH0FTqMpTpZ4lH7DwbYdHOJMEGp8t35ZFVksPmDZbL352y/D3Sw48N1dP5uNKnPB/9qY/Cv0ua/CMHv2A+70RevuiejQSscXpOoND8dwOcUS2IUaRILemkxJD2gk50yAQq2mlCmKDBWZuJ3nFmIPr39m6lSvxK3E8jlRl/LadahNalpeG8JR38YWbSs0f5tx/KVdLCPBdMsJ06cICUlhYMHD9La2ir0nTewgbczDh06xPbt22N/F1NFraI56Xs2XVtMmjFVmGBjLE3HUKgTIillbcpClaakYKuJ/hH5/CgUiQ1aLYgIcrj651DJKH7E4If+J8eZ7pZf/EaJFiKLSGONlpp3lXDw0V4h/zXeXo6+QEvRudmMvyL/vBl+egptVlq8vHgCFJ2bjXNgXpgkolApCIfDQgSlgnPMZJXrhdrpAfhdoXW1NRNtCwwRMtikX7hN11tB3n6j1zbWaHH3yQ/ccWIOxwnxvE5UhTQKS6uBgq3ZQhtxS8Fl6dEs0BotOvcqr8oXUgWyHZ3B0e2WH3AEm28oB6W8qliUoFR5VT6GQp2sf1YTF+WIVlOH3ShTlUwKnPIEGH3OiqFIJ0RQioPg/NZkppGaLlZKKDrfIim+vbNEiJBQcVkBKWpV0t8+c1xSVdqv/Ts+n49vfvOb/OpXv2J4eFjsC2xgA29zNDY2cvLkSQAUKLhQ8d7kb9CAqdZARrEOV5f8GrvskiI0pjQKzjZjFdhAMpSko0oVzI3WyU8ef9lBXnMWYy+KKb2c+NEQeTtNsgSlKMFHhAgBUu3AMz7P0JNTsgQlgOKzcijaaWGf4AZf56+GMdfKqCBHUL4nl6Enp8TaiWmkpa6oMtKWW8uwHnHiFCArAwytox2Iq8vLwS5xMlhmpYbZAbEJ82ZvYq3GulvCaSAjV4w8s57WJNNHZ4VUtlaj/oZiZobmse1Pnj8E7AHCoRAKkZpXxF6Tp8FUrpNVoOh5fIy664qECUoFu0xYNhtRZ6TR8bPhpLZzI4FYC8u+P48mnS/W15yxeCZC8Dv4vV7MNRnCMWtmcI5lwftME1FcCgkqP+S3ZpGiUWGsM8r+lgB5LSZUqWLNMzJKNWSU6Gh4bxFHv5+4dtzqvYBBuvCY7Zw4cQK1Ws2rr74aVwfYwAb+UTE+Pk5x8Yp6dSn1VKsa441Oq13XXFVCRpEWY0164naQq95j2ZRJeCkskZTWuN5q6IszSEtPIafRhGdEfv0r1deBNLEeTLYTLnRmcWnCrt+O4LfJiyFEiRaHBMhM2nw1DdeUcOSH/UJEn+qrC8nZYiQ4tyikXmQ/4sZQoBVSWMlpMzJn9QuTM1QqJYTCQuM2bzFg2ZQpTCoNeuD4OkjnHT8XI2BBhIDiCgq36RI99PVGsF5iuCiRzTsuNv+iOPnfYrXIKDKrdBTtzKZTQFxg0b9EaCmM2kA8eXANRAlKJRdYhNpYj71qZ25C/p6MovmDZajSVLL3TvQeKDovG3N1huxcPLKqPitHtPIMBaRDJsfFct3RV6bJrslkbJ/4fnA4HCYYJOH+5WrocjVolsTyNEtTJrocDWUXWOQPISqUVO0pRGNMY8QwufLbn7ZHme7M4iLV+9in+huLiwt84xvf4IknnqC7+6277/7/wj+UkpLP5yM9faXVmJEctmkuTmivL9MS8vrxOSBvWwa2QwkW4ZHNq5yWdOzt0s1tqNThGfAl7h8L5O3IxHbgzJtqrZYLuhIdWSVpTLy6xmJjjZ+o5n1F+OwBYWLDjk/XMTfhE1JfQQe7PxFhQH9NIGiv1x7I3Z5JaCEkS/bRFWgILwSElXG23FaGoSgd6xEHQ0++ub1TddlKmj9Ux4JnUWgDbPMHy1CmKjjxn2KJQ/2NJYy86hAiV1VckUd+qxl7t3tdrchEsR4lpTdy7XAoLExQq3x3Pt5JH1MHBSTPz8qieFeO2CnIyLxdnFvi0LfEyVCiiLb5W89GYla9jplu+d8/SsQTQe72TCovLcQzJkY6zN+ZRfnF+Xhtfvm5q1Cgy1bQdFctA3+3Yj8qJi3bel8FRx8VZ/BXXJHH4JMym2zRlpQ6MJfrcHUnWQDqQGdW4xsLYt6kkxT0kiBvhyH2fMht0zN1JPGpT1/AR2fmi7hn3SgUCi655BL+/ve/Jx/7BjbwNsbll1/OU089Ffv7LPagVSRuMWRpNTAdiRWr/70mtGAslsgVIgol5s16nAPeWCsluc328svzhEhPUTTfU8GxH4jFrtwdRsovyGf/t8RUSZrvqUBn0dD7xCjODvmT5ZtvLcNQpKPnd8O4BJ4bAJVX5gsp3ogSWqLY/fkGCCOmLLVOrFdhaNsDNQy/bEs+ryLI3WpEa1Yz/LRYvrj7oYiq51twin6933M9qHtfMeZaA4PPTgoRXNJLtRRtN9P7WzGifdMdFQTnFun5tXxRLfY9vy6mWrYeVL2ngNzNWTh6ZoUVw6ItJv2u5CfSLa0Glv1Lwvfa9k/VkpKmEp4r2z9VS4paJeyXhptLSc9Rc+gbYvlryUU5pKhVDD4pdqq06NxsnB0uWb9EkbvVKKtctpqQmt2YIavUFX0+RFvWJSNweZonONi+T7p2djbHjh2jsPAtaLW4gQ38L0AgECA9PZ1QSLo/TeTQqjg3oX20TVrAFsDcmCFLPDE16GMKNyIKJZbmTCG1IpDaC4lusIPUHmopuCy00QTSwTmvLSC2yaORlC4XfUvCB6N2PdTAUmBJOPZm1aWjTFPK+lxjlJ5Foso41VcXkLMl6y2peaGRWogE3YtCp+Jr3lOIOiOVk4KtUauvKmDisEuI5JW300TlJflMd7jpE6x9rAfrUVJaL3Y91EB4WVBRB2nDye9aELqXzI0ZlL0jT3jcb+n3/JyUG+9bxxpAlHhWflmuMAHOWK2l4fpy3ENeoZp3Vl069deWMjchptCgMULT3XUMPjspTBJrvL1MuL0iSMpHsm3uoi0pNZBVls5Mj8zh44jiW2alhtmJQFKy1erng9yzIhAO0GPej8MpxebLL7+cJ598MvnYN7CBtzE+/vGP881vfjP29zlchVqVuMVQVt3K/Wlu0OOUUQ40lKnxDAeFlFIMpWl4JgOxVkpyZJLCs82J1YrW2G/cfHOJMKnFWJNO7buLOPYf/QQ98jlM3fXFmKoy6H1iXEjBpvrqQiybMun+/Sgz3WLqi6IEDkOpWkiBKoqdn60HEFaWWg+a76pAl6ORVPsEhtTyoUpGX5vGeVLeh1n1etJzNMK59I5P1qJMVb4l5KP1KimtByUXWyjelcPwCzYhdS61RU3h9iwGnxSrB9deV0RoMUz/E/L5aOPtkqLrke/0CN0X60HBWSbKL8zH3uEW3hdUG4A09ZnqPqchs0qHMlUpfK+13leFOjOVfd/oFpq3rfdVoTGmSTUvAfvKK/IxVuiF89ecNiPa7DRhxStLUyaeyaCwOpV5UwbOzuRrOn2hGu+EdD1jTTruvkieloBwGn0+qA2g1Knx2xKPZa5hggMnXwPAZDJx/PhxioqKhMb+doAYrf5tgC984QtxBKVWLo0jKClSzjzpueW6AhpvqUCRkrImQUmhUsUISqUXm6m8NJ/NNxeiUCmZGw6sTVCKKGy0fbiC8gtyyaqL9HdWKEGhXJOgBNB0YxGl54n1VgXIrjFQvNsiZqwDVZoSXXbyHo0x+CA4u4D1sJjkIj7Y+40uIYJS0fnZoIOpg7NCakSNt5TT8iGx/vYgnZ5yDcwJFWuKzs+m+e4K4Wv7HCGO/XiQzsfEgmNGgRZ9buKN2tXQlejIqtBTf1WBkL29y8P8lJ+JF8U2G3Z8pi6WUL3ZqL2+iN0PN5BZnbyXeRTuIS/2Drfw9XMbsyg9T6y/rbk6kxStipxWgb6yPuj948i6CEqF55hpubdSyNZ62En374aFr932kSrqrykT8mM0ESnfIx8zpg7O0v79LmFVtMn9Myz5lxl8XqwgpM3ToVAqMNeK9fKtvb4QTZaamuvW2DyKxMnVaLu/krzmLHJa11ZSUygVkipSZN9w10dqqL2qWIq1ayUB4RAEFPgmpN7hNVcWsPPBld9UoTrzPbYDHhQqFeWXZlNxYS6bb4q/TxWr1Pl0Gh3bgntQkUpaWhovvvgier1+zbFvYANvd+h0uhhBKQ0NFymuiSconXYqofH2cqr3FFFwrhkUirWJJKves+uBehquk3pXz48GEp9yUChAC7VXl7DjI3XS//kj/5/gPbk7jOS3mWgSzAPqry9GZ9FQfrng86jKgDJFgSFfLA8YfmGSBc+iEEEJoOMnw7Q/2iVEmii5KAdAiKBk3qyn4X3lNN0lnh/1/nGU0VfFFoLN91SQu9UofO1D3+yjR/BZWnCOmVR9CsZyMeXN0vNzKdhuFh6L7dgMzl4xMm52Ywa7H26gYk++8PXXg52fqWf7g7VCtmP7HXgmfLiHxAg29VcVYa4zSEQ/AaTnacgsS5c3BDp+NUr7oz3rIig13S02Z079wYqz1yNMUAJoua+OLXckbo0UxfRRD65uH1oT5O8yydof/G4ve78hXnyzHZ1h3h4Q9kt6tppUjbggctGObPJasoTtS87LoekusfllaTVQ+c4Cmu9Jnh9HCUpbbi+n5t3Fsn6MPh+abymj5dbyMw1WxXbDsUJauYC01DQcDgdNTU18//vfFxr/BjbwdsIvf/lLtFptjKC0lXfEE5TWyHlab6+g+YNloFCsvem86j25W7Ooe28Jmz5QCgoFc6MJCqWR9zTeUU71lYWYGzNW/j/JidSmu2qouFgsjwLI32am+KwcYftUbaqkYi6CAMxZfUweESNMAez7RheHHpWvHeRuzUJjhJmeeSE1oi23V9H64TrhcfQ/YWW6wy1U87I0Z7LltjLhaxOAo9/tofPnYuo+xko9+iKxOhAasGwxUvdusYK6e9CHe9jL6F6xuuS2B2rY8SlxP64HZZfksvvzDZgaxNb1jk43tqOCKulA0VkWyi4Qqwcby/SoM1PJ2ymfjwB0PT60LoKSpTmTxtvLhGxHXpmi5/fiCgNbbi1j0/sryKqTzxujBKWi87Jlbd39fo5+t0vsUC7SvRlwLTD6stjmZGqmBlWqEnOV4Brj4hz0BTpq3ytGmN5yWxmFO7OxtMooqUVIRts/XEv9taUSaSkJomTATddXsPNjye+NaKzK22mi9t3F0nNgNVbFdo1CQ7PrHWjRo9FoePbZZzGZxObjBjbwdkNhYWGMoKRFz0Wq98URlE7vrlJ9VR717y2i8GwTCqViTYLS6vds/VgVm28oA2DBuZCwWwsA4RCb31/OtvtqpL+DrFlHj8JYk07peTlsubV0zddPR+mlORjK9JS9U+x5ZKrKQJWmQm1OE7IfedmO3xEUIigB9D8xwZHvdAmRJgrOkmKQCEFJX6Rm882V68qPun45yOhLYvskm24swdIkpowJcOyHg3Q8NihE3DDWpKM1qzFViuUj5RfkUXKOeC49cdDJ1HGx/EVfpGbX5xoou0x8P3s92PrxGto+Kl+rAZg64MTVN4drQKyeWnNlPnmtJtSCe+VZFRlkVYj5vPe3Ixz5wcC6CEr115eQ02aUtbO+7mLyiFOYoATQ+uEGtpz+TF8Ds6d80r2mRmgsRx89JUxQAhjf72BufF7YXp+nIVWXIpExBVB+YS4FbQnqu2usUauvKKT5FrHYaChVU3tVEY0yMcNrXQSFkuqrCmi4toSCXZEaXAKRm+jzoen2KlpuPfPaq58HGV2FbOedpKak4nK5/uFqXv8QJKW6ujr+z//5PwCkpqRyseZGzJps9GVaFCkpKFJSUGdJyklR6IrT8Ez6GXndSXhpSXotsrbWWFToK1bZ5iuZbncSnF2k84+TpJdpCKdF2oPpQF8eeaNKhS5PgS4bun8/it8ZZDFI7LpxtoCuIBVdQSoAp/42jqPfHW9bsco2W4muYGUFMvSKjeOPDyW2LVn5W5+no/37XZIqjoxt6WVmtNlSe7DxFx1xttps4mx1JTp2fKaOwnPM4ItcV7diG/c5JTp02UpKzs5h18fq42zPGFOBBl22NDWtBx34XIHktlG/RF7rfmJU3hYoaDOjy9FI15bxd3S8PmsAv0/G3xU6tNmS5OHeH3TJ+lCbDb5RHyMvTTF2yJHUNuoX76CPU8/a8PlCSf0dxXJwmeWFZVl/x75r7MXkPtRX6PDPLRBeDoNGzIddvxhl4NlJWVttpBZhPeKk629j8bZr+Bug46fDnHhsOKbok8jfUQTnV0iDcj7UV+go2mVBa1afabuGD4dfnpJUkQRs0cHgs1aC7oXVHcTW9Hf0Xqh4Vx4FbdlsjjzEEvkbiM3Z7Z+spXxPblIfooOuP4zhHfShr9Bh3pKe3Ie+MHu/2E33r8Zl/a2v0NH75wmGXrQx9sLEGv6Ot0UHR348wOzYPL6ZFcfoClLjbctXvuvgazbm7L5Vtino8lPibdWRa+kVzNn9jB+UCp+6fCW6PImopFAp464bTl1iun+egHuRjl9Y0WWDLm8lWdBXaFFkqGI+fFfdLbRW7yQ1NZX5+XlSUlIYHRWXWN3ABv43w+VyoVAo8Pv9KBQKKtnMuYor0JqUaPM0sQVAeql2heighYHXbPimA1hfdaHNUsQUMgDSy3RozYqYbXqplomDTpx9HrRmpWQbOemlLdSijdZBo5/jB/fwPEMvjMddN84WYmOaOuDGPeLl1N8nT7NVnmEL0P2nMSYO22PKS9o8TUJbtDDy2jR7v9CFZ9Av2eZp1rRNr9WS3ZKBu8/P4W/3J7VFCzXXF7LtgUhRCmVS2/RSLY23l1O0K5vii83x/i5d5ZeILYCzw0tgJsjYgZXizpo+jL0GvpnlWAu5ZD7UFoLOookVSZLZrh6Tq9sn6+/0Ui3WV53s/XoX4687Zf0CcPLHvUwcnhayBZjcN8Xoq44427V8CKDShQkthiWp7NNtT/ehibgVWVJ/m6S/l4PLLM4vJfd3xHZ+xM/JSD93EX/3/WWc0dcn0WrlbQHafzHIiVUKCslsWViAtDQhW61JiWmTjvQcDYU7s5P6W2uSYkRUzUlbmdyH0XvBa/UzdcK5ZoxY7cMomu+pp/yivDVt48bkB22mhpLLsmNksmTfdbrDQ9+fpHZDuVuNyf2Sp6HjV6Mx5TI5H2rzNBz/xRDHfz4kbxvxi+3oDIMv2ZL4e8WH00c9+FwBep9a2dBOZAsw/JoN/0wwpuqVzN/aQi3jh+w4+zxrf9cyXazYVJhfwKWGq2hqbMLpdHLvvfdutNzdwD8ULr30Um688UYA0pRpXKS4BqMiG12RBrRS3qUxSsoZUWhyNDhOzTL0/BSEw9Jr0Ze1CnTF2jjb2VOzzE8FGPjLqGSrjqyVNauuq1CgyVGjydHQ97sh5iZ8+F2LK9fVnDYGoxJNjvR316+HsXfOJLdd9Uzu/ZuVjt8PCtlq8jS0f78rpv4Tb0ucbeF5Eono5H8NM/6yI84vZ/gwT8O2j9dQsMsEAdBlaxKPP0eDxqik8rJ8mu+pi/f3WrYRv4y+PI1nyidkG32t728Tsv4GKDo7m4xCnaTWJONDXZEGjVFSdAoEQkl9qMmTbA9+rZd93+gSsFVCAPr/MsHoAUdSf8eUpewBhl6YIuAOJPV3FAuB5ZWWdsl8SPxrcj7UFWnwzy+wvBAinBKWtdUYof+PVoZfmRLyN8Dwi1P0PDm6ynZtfwMM/HmSY78cjCmSJfMhwII/nNjfp/lQV6Sh5FyJYIOArfWwU1ILWcv2dH9roP8pG/P2AEHvSm1nLR9Gx5u320TJuTls/kCZrA8DAenvtvurKb8sd80YEbUF6PnTOLMDATQ5GjJqNUltl5dh79e76PnNuKy/dUUaRl610//kBL1PTsj6EE3ksG2/h3l7MN42gV/6nx1ndswbIy0ls0UDrmEP4/scsv5GA55xH16rj87fjJzp72ItmixFzPbi4qvYXrAdrUbLzMwMKpWKnp4eNrCBfwQEg0FUKhVWqzVS82riLNUe1AZJhSV6YFabp5aUSgDUMN4+g2fUh3XvDGn6MGrLyg67JleDxrhSR9bmqRl9ZZrpzlk0RgVqizombqC2rLpuxBY1THe6GXzBijZ/5bqS7arr5ku27r557J1uTr2wQshUZ69tCzDy8jTDL9sY/rt9xXYViWO1LWqYbJ9h77924RkKJLVVF6kxbjHgnwzS/oMB1AZl0uuWXZpD631Vkf9QxvlQmx/vb22+mur3FFJ+YT5FF5jjbM/wYcRn3vEgcxPzWFcR1SVbZbxtdPwWWFwg1to0mS1qyCzXU3Juzip/J7aNjknOh1Fbd988e7/YxegLNllbgKM/OsXoq2fanu7DKKbbXUwcnFnblnhbhVbabwy4Flb5ZW1btQFIWZl3Sf1tkP5e8i6xMLco5MOgJ0T346OEFhHy96mnJhk+TfghkS1A+497Ob6q5pXMVnJO/HUT+VttUKIuUpNVpadwm1nWh2qLOqb+pC5aw/Y0HwK4TnmwHXUJ+QVgx0dqqbqsQMhWnaGm4Ows2j5SLWs7O+KnLzJ28yZD8usalPT80cr+f5NIUHK2aouaY/81TOdjgzL+JhYjRl6eYuC5SVl/A3hGgsyOzzP8/GS87en+jpCRRo/M4LX5se6bWdsveas+JzuV4VdtMUGPaKyP2uoKNDGykiXXzCXm99Hc3IzL5eLee+/l7LPP5h8B4kcw/5ciNTWVpSWJMHTjjTdSVlLBwW8OUnaJmYKWLBx9c/T/xcmWG4pJ0ShZ9C2jTFWiSlUQXg7T+XMr+TsNlJ+Xg3t0nu7f2NlyfQkpWiX7/u0U2z9RKdmGwhz4xhDGGh31V+UzN+nj5E/GaLutgrSMFPZ9dQB00PSBCsKhMPu/0k/fE2M031mNzxng2A/HaLm5BK1JzeuP9IAPmj9YAQo49vMxpo95qbmyhIzbdRz57gDNN5eTnqPl+GPDeAfmabq7FoVSGsfJX41Qfm4ei/OSNPXm68rILEmn/69j2I96aLqrFoVKweRRJ/mtEoNwyb/Mwa/3Un9VMaYqAyOvTjH+ooPGO2tRpijY+4Uuqq4qIGeLkYK2HPb9azdVVxWQ25iF7biLgT9N0nhbHSq1MtaKovmWMgCyqjJQpSkpPisHR98svY+Ps+XWWlI0qjjb8HIY62EnqfoUmm4qZ3bES8d/j7DtnhpS01daXDTfXhFrBzY7Ok/xWTk03VzB8f8YpO2OKjRGNa//S6dke5t00n/vF7vY/YkGadPUFeDo9wZoubUSnVnD0X/vxO+ItwVI0aoIehfBB413lpORr6PjV0PM9vti/o6OqfFG6bva2l1os9Iwlmcw+IyVyf0zNN1ZiyIl3jba+q7mwiIstZmM7Z9m9Bk7TXfWx/wd9cvyQogDX+lBnZlKWWsehlwdp/5oXdPfoaUw+7/cTesDVWgz1LgG5uh+bJQtH6wlRXumv/d9qRtLcwbqjDRmxySJuW131ZCasba/dSU6mm4qJ9oFMpm/AZpuKicwE2Tfl7ppuacSXY6G9h8N4LMG1vThwtwio69MUXFZAaoUFT1PDOM8OR+bs3E+jMxZnUlN09Zshk02Jl51xs3ZqO1yMMSBr/ZQ/Z5CcjYbY9LnjXfUoUqN9+HyYogD/9ZD2TtzKdyWTSgUIrwMoaXQGXM26u/8s7KouLAA97iXzsdH2H7vaf5e5cOseh0N15YzZ/Ux9voU9ddIc2dNf2crabqpHJ8jQPu/DxC+UPLp61/vlGLEWv52BznynVMY8iX2zPDL0uJhLX+fHiPC4TDmKgN5TaaE/l4dI0rOziEcDqNQnDZnI/6uuiqf3C1Z2E64GPiTjea76yTbL3ZLth8olXz4bz2UXJhN8e4cHP2z9D4+wfYHa0jRqKQxfrOf5g+USnP23/rI3Wak6rICZkfm6fjZCDqzmsb3FxOcXWTRv4Q+Tyv58Mt9GCq0bL6+GK/dz4kfjVLUnI3GKG2AbvtYBSkaJYRh31dOgTZE4w3F+F1B2v9zjOb3F6Mzqzn1F6sUv2+R/L3/a1IxfMv7CgjOLXL00REary9Cn6ul8w82FCoVjbeWolAo6Pz9JJ4BH1uuKWDJH+Lwv49S/+4cjCXp6F9IQdlhYqTwEOMT4+zatYt7772Xhx56iA1s4O2Kb3/723zsYx8DJInR++67j2M/GcY/4af5nkgcirTzbLq5jAXvImm6VHyzAdJNWnqeGIFwmKa76qRYvsp20bvE5BEXxedYUKqUDL1ko/e3E+z4VC2qtJVY3nJbuRSzvtFH872VpJvVTBxw0PXzEbZ/MpJ/ROJQy60rz9mi8y2UnpPDon+Jg1/rJT1bQ9MHyuOuG1oIsf8rPeRuNVJ1eSHLi8sE3YukaFSk6lMYeUoq8LbcEYnlX+rGUKFly00VzI7No8/VokghLm623B6J5f/ahdYEzbdU4J3yc/w/Bmm6rhyFQoGjpxP88bYg2fqcAdofHWDL+8sxFOqkwpWWFX9HnxEfKI+1pG14TwlZlRn0/XUMy0IWhW05FO+It40+I6ovLyRnk5GRl6YYf8VBanoqde8qZu/xVf6O5DXll+dRsNXM5BEXGfla0vOlwvVqH0b9XXCOmfLz83B0z9L723E2XyeRqzr++1TktymPPCO6yW7MoPaqEmYGvXT9YoStd1WTZkiN5TKr/Z1eqqX5lgrmJnyc+PGQlO9la6RcxQ8tH1/lQ63kw3l7gGM/GKDp5gr0eVqOfq8bvytEQUs2hW2WOL8EZhY4+r1TbH6f9OzsfHyQ0BJsen8ZCk7zoXeJQ9/so+5dUku1U09PMHXATdl5RShTFTEiRtMHyqWWMt/oo/KqfPIaTYztnWb0OTtb7pBafUXRcls5S8FlDn61l9JLcijaacHW7mLgL5NsuS0+/9j9cEPM37k7jFRdWoiz10PPr8fYfMtKC7lNHyglszQ9lteY6nXUX1uOe9hL589GaLujCrUxLUas2/z+cop35rHvS91o8zTSnLX6Of6jQVo+WInOouH1r0X8feMaczaS1zS+v5yMQh1Hfzy4EiNU0gK7709j1Ly7mAX3Ioe/20/DNaVklevp+cMIzg4vTXdJ+V7HY0N4Bv3sfrgh5u/aK4vIrstk6EUb1ledNN5ZE4sR0ZZy0bymYk8++W0mJg44GH56ii23r6xRTvx4iN0PN5DXlB0XI6Y6Zjj1ByubPxi/RlGoFISWpRw5GiNmBuboemxUWs+satnXckcFYaQcKne3iaqL8pkdm6fjJ8O03FaJ1qQ+I0bMjs2TWZqOQqGIxYjmWypIz9Gu+HtVjIiON+hd4PAj/bEYcfIXg3gG/WfEiGgr4p7fDZPXmh2LEdOR9aMyRbIdfHJS8vfZFlQqJa6hOSx1KzGi8c66uJisM2nYcl0tIy9OUX5xPqpUJZNHXAw+eeac3XKdFCMAmu8tJz1btxIjbjnNh2vEiKXgEge+0svWO6tIM6RKsV6hiMUI/5dCFGQ68Sy76ejoYPPmzXR0dLCBDbydkZmZiccjkfWuu+46qsuqOfC1XiwtmdRcWYSja5be30+w6aYq1MZU5qcCqDNTUaWpCC+H6Pv1BJmVGjbfWCnFrF+O0XxLBTqLeiVupqdI99tXetAYFbTcWoFnbJ6TPxmm8aZyMgp0vP61LghA610VhENSi6eTPxnhrIcbpJj1wyE2XVuCsUxP+38N4BsP0HxPDcpUJSd/NsjcSIAtH8jCkJ/O0UdPUfdu6dnZ/bsRXF1emu6qQZUqqY93/WaIuisKpDZVvf1UX1ZATmMWQ89OYt3novGOalI0Kgafs1FxUR4oiD0jSi/OoWiXhfF904w8a2fLrSuxpeBsM6Xn5lK8O4/9X+6mYJeJ8ovzsR1zMfDnSTbfIuUf0TjUensFKMFcYyA4v0jdVSWx52zr7VVoTGkrMevOCsLLIYaft5GWqaLltsrYc7bplgr0udpYXaXljgoIh9n35W6mOmaouryAxhul9lBb3l+GoSidI9/pJOCGltvLQaFg35ekmhdK8E0HOfaDARquKSGrIoOOxwaYHZD8rVApY+23tFlqgp5FAu4Qte8tJHuTkb4/jzN9bJamO6tRqVdakzbfKj1fJo86USgV5LeYGXrBhvU1J413RPPriF/urIjlNSW7LRSfnYP1oIOhv0/F+Rug9Y4KKa/5Wi/KFCVVlxeQVayj/wkrmz5QjToz3t/Li1KtYcsdZRgK0nH2eeh5fIzWW6vQZJ/p7/3/1oMmT4PeosEzItW8mm4uR5+vW/F35Nm578vRfLUyVvPa8r4yDKXpHPnBAAH7mT5svrUCvyPIga/2UH9DMaZqA52/GsTd76fp7hpUKcqVHOjWCoKziww8NU7te0pJUas49TcrU4dnaLyzWmrtusrf0Tmr1qdQfkElo69OMfaigy2315Cqi/fhYmCJQ1/vo+i8bErPy43VvDZ/sJq0jNQ42+XgshQjmjOpeVcRoeUQocUwS/5l1MbUNX0YjRHu4Tk6f9ZP8/WVsRhxhr+NSlpuq8QzNk//UzZa76xAoVDw+lc7IRA/Z6P+juY1S/5lWm6rjIsRp/s74Frg6KOnMBZLOZH1sLT+isaI0/195DsrMSIcCmOqNmDZbDxzzq4RIwq2Z4MivubVekeFtPb5eu8ZMaLlw/XxtqvmrLkxIz5G3CfFiOgYV/tQV6SJixHqzDRabqtkbmKecAj0+bpYjEBD7LUTPx6mqM2CoSgdjRE23VyN2pBKOEzM3823VpwRIyb3S+TAlg/Xxq1nmm+tiLV3rN2zEiMIQNNHpfy66/Eh3P1+mj9YzsLcIoe/fYqKi3MjMSKd0KCBkeLjjI2Ncf755/PAAw/wqU99Su7RtoEN/K/Fk08+yRVXXAFApiGTD9//YXp+KxEbm+6oRpWmYP9XJVJ08wdLCcwukJaeitfuJ7MonVN/myQcCrPltkrStCns+4qkwth6eynB2UWGX5mm+p15qNJUjLxk59Rfp2i9twK1IYW9X+oFoO2OMhbmlzj8nQHqbijAXGlg/MA0/X+apPW+SqltUsS29fYyloLLHHqkj6w6PQ3XlrAwv8ihR/rR52houakiVndruaOc8FKIA1/vQ1+kpum2KhYDSwRdC4RCYTIKdVhfnYnYSrnK/q/0oDZA651VuAfn0Fo0pGpVKFOUHP5WJ0HPStzf/2/Rz6mMtdRs+UAFqhQlx2dO4R0P0nx3NYoUZax1WsvtlfjsAY79cJDqd0Zi+XIY1ESenSvtx1pur5TqNY+eouz8XAq3ZzPwdysKBeQ1mSnZlRt7RrTdXUnQI8XfwrPNlF2Qx+grdsZemiZNn0btlUWxmlfbXZUs+JY4/M0+ctqMVO8pZPKwE5VGhWVTJoSJe54sB0Mc/EYvxpp0Nl1fFmu/1RzZV+j4lUQ8jsb9A1/tRW1R03pnFa6+ObofH5XyveJ0lgJLHPhqb5y/UUv+nh320vGzETZdU4KxMoPD3+om6AnRfE81CtUqH95Ryfykn+M/GqL2XUVk12dy8ucDeIYCFGyzUHRWLvtX+dDvkAhjlRdLikI9T4zhnQzSeneF9Iz4164Vf7ul+li0pVo0F6/ZU0KKRoUtQmpqu7uSoHeRI9/qj7UlG9tnZ/TZaTZ9oApNVhpEzj+03lnJYmCJw4/0Yd5ioO7qYmxHXQz8dZKG91eizVbH/L3zc/WEFkIc/HovhnINW26uZLrTTd/vJ2i6eaWFXPXVhVgaMlleXJb8nS352z0wR+djo2x+XymZZXpe/0on/skgTR8op+TslTnbemdVbO1Tf3UJppoMDn//FMHpIM23nubv2yvx2QIc+9Eg1XukvciOXw4xe8on5dcaJQqFglNPWal6Z4G0D/XvA1RcmEf+VjP9T05gP+Jmy+1VpOlSOPHTAbzjQXZ/PtKi97v9FL/DQsm5Ky3sNn9Qet7v/WKX1DovX8vC3BKHv9VH3vYsKi8rYPzANCNP29l0s+TvvV/sovc34+z6XAP5bWYOfaOXrHo9DdeWYj8xQ/8frdKaMEcT87cyVcnyslSvicYIR88svb8ZZ8uNZWQU6uJqXgqVAoUCTJt11L+nHPfgHJ2/GGXzdSVklmecESOmO9zkRlS+ozGi9t1Sfe/4f50ZIyxNmVS/q5Dg3AJHvnUqFiO6fjvCTLc3LkYEHbD78w2ECdP9m1GMFXopRjw9ie3gDFturyFNl8LeL3Uz8ZpT8rd3CaVSgb3DRdHOHEZftTP2koPNH5Da2UVjZ2ZhOtqrSzj1Nys17yokVZvC5GEng09N0XBjJVpTWsy29aZSloMhUCipe18B5moD9s5Z+p+YpPnmMnQ56lj8brm9nPBymANf75dixB1S/f3A1/vZfF0xhmIde7/Ui0KpoOW2cghD8GuLFKjceNNd7N+//x+i5vW2JSk5HA4slpV2Z/XKXVg0BUx3e1CkpDDdO4ehUIv1hFTMsXd6MBRoUGemolDA7JifgHsRAM/QPN76AJPtksSW7YQbY5kORYZEZgothXD2Sa+5x3147QFs7W5QqbC2z2Cplyh3OTWSZO2ifwkUSnwO8NoDMZm8iYNO8lqzYm2J/LNBtEY1OfXpDI948dr92CO21kNO8reZ8dokY0e3B0OJFnVGGjpjCl6bH2eP9N0mj0yjUiuZG41+VzfqjFR80wHCoTDz037cA/Ox66ZlpOLqlb7P1AkXOlOERfpHK+b6DCaPzMT8kJ6rYbJd6rk9dXImrn2ZZ3Se+ZkAQ3+eQlegIasqA1uEhWw76iKzdEXC12Obx29fYPipKUltxaRm8qgjNiZz3QptcWZgjvQcNbsfbqD3qRG8U36skRP91iNOcjavtCtwnvJImwU6WJxfIqyEiYPR6zrIazHjjxx6n+6dRRnZGNFlK5m3B7B3SN918pADxQ4LsxOSv6c7Z0lNX7k9/LMBNHo1k/ttaCw6UnQpuE9J77V3Sf6OYm7Chz5fy+7PN9D562G0xjQcHZ6Yv9OzV06ieMZ8eKf8bP9kLctLIbxTfmwn3NKYjrkwFK4ozcwOe/HPSOxkTXoaoVAIW9SHR5xkla/IDrqHvATnpPntHZ/D7wlg717x4en+XgpIDx+fQxpPeuRkjfWgk5ymFX87+uMlOb1T0pzN3Z6JvcdBdtiML3LSzdHtkQgiEUT9bSjRo1QpCcwHcUbm5XRXvL+9k35cA5Lc8IJvgVAoxOKSdKrIfnIGbdbKKXzPuA9P5HebPDZDVk06+a1mbAemmDq+xpx1SOOzd86RWZJOilbFkn+ZmSFvQn/P9s7i3ZyFdd80+GCq20lm/orU88ygl8V5iSw5MyL5cPKwg5luH6GlMIvBxZits98T2+DyOSK/ebuk5DNxcJryi/PZ9UA9+/61O6G/QZrf+duy8dp8ZNXrzvD3WjGi72+D+Meg8t35Z8zZ2ZEzY4ShUIciFVhaGcNqf9tOzEZihPQ5y4uhOJVZyd/S7+bonpNixOFIfGl3UbgzG1VkY9Y97CU4J32QZ9iD157F5FEnKJRYD7sw1xrQ52hITU9hZsDLUlA6fTdr9eG1+5mMqCFNtruwbMpEoVeQolESWgrhiswz/Mq4mDzZPkNuo5GAE3KapfsnOLcQG//8dBBHtweFSsnkETf5WxV4bH4AAp4FtJlqlv1BFCoV3qkA7uHIPGz3kqJR4R72kZ6ewRU7r+GE9SD7D+zn85//PH/4wx84cuQIG9jA2w3bt2/n0KFDAChRclEd95QAAQAASURBVEnJVXhtAfwzAVAosJ+cjYtDngk/XtscBa05+KcDLAfC+KzS/Th1ciYuDs2O+pgZmiOzMB2FUoF32sdMp3SvTh13S3E/opjhHvHhiRBvU7VKwuEwUwNzoFBga59Bn7cS992DXuanpbjv7J6j+KxsVKnSGCcPu+LaVLn65mLPTs+gG89EFumRuDN+wIGpciXuO/s8LM5Lccgz6ccz4WPykIPyC/NBBcHZlcA53TNLKLLI87vAM+GLxX179wxZZRmxNk9TnTMoVat96IvlKtYD07DDwsknhsAv+SVVt0Ju8Yz7YnHfdtRBqkGFd9jD9FEP5Zfnxft7ZJ7Z4chv0e5CY0yj5Jwc8ttM2Npdce1S3EPzeCOxz3Z8Fn2+lqkON8uLy6jNqXitgZjtTP8cvoh60Ez/POYaH5NHIvG500VmXjp+l+QLV/+Kv+fH5yS/HJFylYmDTkrOtRCclV539npip+Pn7Sv+BilXyd2axe6HG5jpn8Pe7Y6NB3/Eh9Fn52EpNzRUGGi+Jx+P1cvC3Ir07pzVv5IbHnagUClwj/mpvDQfhUKBb9q/4u8xXyxXsbU7SNWn4Ik8tx39bnTmldMx7uF5POORZ2e7G51Zw3S39N6pYzPkt5lQpijP8Le9cw5DcXosN7QecWEo0qHN02Ao0jDTPxfLVTz9Hjybs7C1S36ZOOyMzdnMYomobI9cxzUsPcttR6XfZvygIy6/Xl5cjt1v/tlAvL8PRXLDiCvs3W5yNhnZ/slaDn6tN97fhxzkk43fFfk+J92kGlMw5Etku7g5e3gaVZoSnzW6RpFiRLRNmGdiHld/5LVjUq4SixHHVnLDmREv2bWG2MnIqQ436XkapiK5+OkxwjvlQ5+ro2JPPpNHZsiq0GM/Fp0DiWOE3x+M+PBMf8NKjBh8QTptlVOfueLDw/HrmWiMGHh6kuZbKlheDK/KDaU5u1aMmBn0UnxWNs5T0lyKxgjPpGR8eozwuwJoTRoyivXYjjpQaaQYsdrfUcyOzKNIVWAo0BEKLuGZ8MXWw4lihGWzEWWKFL+nIifBonM2itUxIlWdSjgcXokRR07z92kxIhQKxfK/iYNOzPUrMvpSjAiBQkHD0i5yr0jjhVdeoLOzE4VCgdPp3GhFsoG3HQKBAFrtSryqow1LuIDJozNSO7bhOdwjXmzHIvHisBNThZ5UfQoKFDi6Zln0SfnIrDWIe8Qrra+AiUNOcjZngkJBijaFpYVlpjuluk/AHZau2y59zsRBJ3ktIQhAZqV07wfnFlblZd7Y82XysHR9X2TNPWfzkVmsx1ybydxIAPeQF2dP5Nl51IFKvRL3be0ujJXppJu1pGWomTk1F8tVbO0u0gypuAYi660jTtItGoLuIKGlELPWeWYHI7Wcbo+Uq5yMrIWPumJx3/qak6Kd2UxGYqxrwEdWtXfluXXQGReHHN2zBP2LjDxlR2OU1qyxuH/AibluJe67Bj0szCxKJ+01kJ6jw3pw1bNzszFma++YIT1Pze7PN9D75zHpusek55b1sJPQUpiA5FJsJ1yxuB9wLaBUK2I1r8nDEqFodiIQ8ekMqelS3NcYlbgHvbHWF7ZjTlLSU5gbjvj/WHzcn7POo8vWMHlollStRHBy9c3H+Tv2XfvmyCzTsetzDbT/1yAZRTqmOmZjc2t13Hd2z+KfWaDt/mrC4TDuYS/2E9J3nTjojGtZ4uiejcX99GwN4VAY2xFH7Lqr/e3odMdyw4A7gHfah6PXGfG3i5zGlfxuqiO+rZ972BurV04cchAKhwl4JB9OHZshRbPy7HQPeZnumsXUoGdm2IMyVYl7LPKcbV/xNxDzty5XhypNSWA2yOwpyS+2I664Oparfy6WGy74FyUiUWg58ru64nIVV58ntp5xdHvJbzOR32pm6vgs1sOuNf0NSDFi2EtquorlQIjpbk+8v7vcsfXM7EQA97AX60EnATfYOhyYK4wxW/vJmdh6JuAOxeZswBZg0b8k/RaBqL/jW8VIv7k78t2cZBRoabq5XCLpreHvtWJEZqUGW7srbs6uFSMGXpwiMBag+PzsM+ZstI61OkakpaegVCtQrJI1Xe3v02PEwtwiKata7q6es/Ojc2fEiPJL8mLfb/Wc9Tmi/o6PERkFWsIhKUZE/U2AtWNEANIMqSwtLePsXqkdzo7Mx07kr44RmYUaFAoFgdmVmleyGOGdkggXC36pfjkz4I35e/rELFqTGlf/PBqllouqr2CgpJPX97/Opz/9af70pz/x+uuvs4ENvN1w00038dhjjwGQQioX5V7F7JCfoDOIQqlg8oiLtFVxyNErxYviXRYCMwss+UPMDkbXtzNoTCtx39HjYW4iQEaBFqVKyez4PI7+SF5z2IV+lbrGdOdsrJ6uyUglHArjPOWVauQHXRhWdTGwn5yJxSGf1cvS4jKqVCnuTBxwYapeifv2E+5Ybuh1LODs92Ao1JGqT2XohSks/uWYgrntmCsWh4IeaX07dXyGol3ZLC+o8DsXCEZCj/WoM66O5eqfi+WVE/unsWzJwjstfR/rIVfcs9PZ58HVG6mNHHeh0qgYen4MglIMWx33Hd2zMUKyo8NNep6amUEftoMzFJxliov7052zzEfqKo5eLxlFHgq2m7FsymTigIOMVc9O+4mZlT2gET/OPg/2E1LdwFieHot9UR/GagK2eckvkbzSdsJJZkkGwchvZz8+E4v7QU8QZ5+kagNgPehCbUwj6JY+N5qbSsaSX6ZPruRWy4Rp+0gdju5ZJttdCf1ta3dJB8PSYMenanEPe2PPepDWzTODUtyfPukiVZ+Cd8SLeYtRqsVOrdS8prtmmYvkKtMdHnRmDc5T8xE/uMgoXMmZV/vb2TePodjDdKQGYz3opOTcnNjzcPrkir+9I97Id3XFvmtWhR61QYm+WI/9+MxK7dUaiM1DgPEDTolEBpiq9ISR9oUAgnPx/p48MsPSQijWbmxpYRnlKnWn1f6ePOokTJigRzKePOyicJeFrQ/UcPibffFztt0p5XyRrh7Ww07UplSySjNY9C3FzVn7iRnSDKnMRuqGk4ecaLPS8I5Ln+Psn2V2KMIF6PWQnqfBEdnDnzzkJD2SG7pOeVEb07BG8o2ZQR/OPg/OyBywHnBgWLUv7xqcxVSZScXleUy8Zov4MOLvA05MNSv59dQqf5NK/Jw95MLiW5lL0Rgx+sq0NGc3r/w2E4ddLC2Gz4gRw3+fQpuVytJieGXOHnVF9gHOjBGeiQDh5XCsbhiNEb6JiF9OixGzY14MRXoyCnQ4OtxojGnMRNaI1oNO0qNqawoF052zKNPAXJ0JSmnP1hH5XScOOuNjxEk3/pkFLPUGUtJUzI6vym0POeP8be+YJeiR4qxaL8Xvqa7o/HZhqomPyatjxNLissQtifhhMbDK3+2SbxVKBZvYSe5FWl46+Gys5mW32+P4Mm8nKMLR4yNvIzz++OPccMMNsb/PVl6LTpe4D7o6C6ouzaXz8akzX1zj66tNYCzVMXUkQR/L1FTCCytJPTrQaCHgBDThGAnpjI+K9nHSsWIT/XeC3oRrjU8Iqz9DACUXWhh9Xr5vaxQ7PlVH319GpXZWAtj9cENMPUYEVVcVYGnIjDGl32zsfrghpqjzVqDxjnJSdSqOfOeUkP2uz9azvBTi4Nd635Lx7H64IaaCIGq/MLcotQiUgTYbWu/dFFN6eLORuz2TyksLsR52MvzUGvfwaSg8x0zhzmw6fj2Gb3QdN4Egis7PpuTsHGYG5uj+5Zj8G9aJlnsrSdWlcPDrYr9VzfuKyK4xMHVihoE/Tcq/AWj7SBWzoz5O/dEqNigdFLaZmXjVGf//p/VzjXtLtgKf4w3ErwS9tBVKBeHV8XVVjEvYs1sH+KXr6YrV+MZW5LMVKiWJHn8KhYKiszMZf232zBeVZ47PVK8ju1ZH3x8dZ9pLFwTgNe8T+PCgUqloaWmJkT02sIG3A1af4s/EzDblBUnta68tYvKwE8+QP6ldFAXnmLC+6kpsoFDG5UraQi3+ici1tcQ28M9A9D4/3UaheOM51hrQmpQx8o0ICs4xYz3sTDzu01B7bREaUxrH/2NQyL76vdIposkjrliLOjls+0QNfucCHT8dFhvUOtBwcynGsnT6nxxn+qhH/g3rhKFCS917Shh8xorjxJysfcWefPJasuj45VCMBPNmovXDkZNLkRNGcoiq/4jaxxTDBO3Xi+0PSopHB74ilie3friKwOwiXT8feUvGs+PTEWXML74133fnZ+uZPOJk5Bm7kP3uhyRFougJQzmYN+upuLSAQ9/oEx5T0fkWxl8UX5tpTRIJ8k1HsviaxF5rUuL3h4Tfm7vVyFSnW9h+0wdK6fztCAQS56L+kJ/X+SsAeXl5/Mu//At33nmn2AdsYAP/P+O1117jnHPOif19NleiUWoSv0ED9VcX0/0rwfWpBix1BqaPCT6TNaDRKAi4I62jAgns1sqtktn/DyC1JhO3LzjbjPU1p7xhBFs/Vs3A361SOysB7Ppcw4ryiQCKz8+mYHu28LN2vdj1UAPLC+I1oPWi7vpiNMY0jv1ArAa0/cFawsthDn1T/Fm4HqxWXBS1jyrciNrP2wPCufh6kFGqYctNFVgPORl+Rr7mZWrQU3lpAT1/GGVu5M2/ucyNGdS+uxhX31ysle6biYabStBlq4XqjQClF+dQuDObqeMzDPxZrOa15bYyAq4F+kVrXhrIazbF2ugJvcWoJOAWX/+tGyKxc5WNJk9DwCY+H/J2in/fjFINea0m+v+Y3P9HQ6/gYgqlUklra+tGzWsDbyvU1dXR2ys9M7PIZWvq+UntSy+2MNPvwTMcTGoXRU6zAbtM3hVt9wZSq6FgZNMeNTFyxRpvkrdZDxLUydQGJUGPeMyzNGUy3TMrPKaSCyxklqZz8ifDQvZF52VTck4OE4ccjDwtto5vubeS4MwiXb8alTdeJyouzyOv1cSpp6zYj7jf9OurLWo2va+YkZftOE/K5+8Fu0yUnJ9L7xNjzHQn2OP+H2DzzfFKOXJoumNF9UgErfetqAG9FWi9rwqVWsmhR8Tyxi23lrHgXaL3t+NvyXjaPlpNWnpqTBXxzcb2T9QyecTF2EtiNaYdn6yNUzyTg6FUTfW7SmKtt0WQt9WI7bBb2P5/FOOS7GHGXVfkMyI2agMEg6fZJ9jXBMiqS8dnnRe6XwCqr8pj9AUbC97EYw8uBnmFJwDIycnhy1/+MrfddpvYB/wvwttOSemGG27g8ccfj/yl4FLTHQDxpKHoq2kSW3nL9bmkaJWkl6YyP7KIIjUl8p7FM9+TkkLzLYUolIozSUqpqWt+1q77KgHY/8gwYd8Sctj10Rqp/dC/9SUnKEWw87P1KJQIE3x2fCq+TZgctn5UkrSet/twnpQvwBSdn41KrSS/LZuZbrGH+szAHKGQ+GbgqT9ahQkUtdcXYSzRc+B7PcLELP90EK9TbPGWvzOL/K1mjv7XKeHrn/jRkJhhBKKFrDeKmUEv7mH5Tbs3Ar8DZkfnmTwivpGyHkwdnGXq4BpkkQSYeNV5JplGBlVXFZCeqxEqOI2/6KCgzYyjyy18/YabSsgo0HHgq/IFyPZ/Xx/Rq+/X42R+rAbr62LFGgB1ZhrmmhROIXaP7XqgHoVScaZfw+E1H/JtH65EbUzjxC9H8A7K3zT17y8mq0LPwNNWpg6vPU/DoTCKgAKUUHV1HpY6A+P7HIy+kOS39gEKaLixgMxiHROHXIw+LxVhwsshFJFTB6eTlVo/VEKaPgXfzDKuztOeA6FQ7FlAhHhafYkFRYoChcENPggvnfYcCIdRpKVyTta19M4eYN40xZEjR1AqlYRCb2FRawMbeJOgUqlic7WKRsqUtYmNFUrQgrk2g8wyHQe/1rfy/7BmzpO71UjZebnkNGRy7D9Oe36u8b7yy3PJbzUx3T1L/++tspvapZfkULgjG+tBJ8NREkISglL+LhPlF+UxdXKGAZlCLEhExbprypifDHD8R2IbF2XvyKV4t0V4YyqzPJ2UNJW8YQTjL06SWaATJigB6yJQbP9kLTODXvp/PyFkP905Q3q2Wpig1HRXBbMj8ww/Lb9RA+AZ9AuTewEGn5xk8Enx5+Z6MfrKFDlbsuQN3yDG9ztiqpdvBdbjS4Cj3xMj5UehNSmpu76c0VemcHbIF8zcg15S9eLLVq0Jttxey3TnrNA9IFp4icJ1ao7FoPyaL4q8VjOpuhQsrQaheyB3q5GSsy1k12Zw7AcCMUULLfetc3P2oQaWFqW2gkkRia+7PldPOERMDl3OvuXeuliLRlloofKdBZRdmJc4JkbzzXAY82Y9maXptN5exdEkByS0Si0XcS3jVSfpH+jn3nvvpaOjg29/+9vyY9rABv5/xP/5P/+HL3zhCwAoUHCh8hrZ90Tbt2XV6ZjpkV9/bf+w1Hp7uscjRCDa+dFaqSXTl7qF7Hd8qg6FEvb/W4+Q/bYHa0hJVQnXRdo+Eml58PUuoes33l6GvkDHoneJ6WPytQVzYwZpGankNpuESUq2405S1eLPqrEXHYy9mOCQy2kouyQXy+ZMTv5XnzAxa3bEy6JX7FmVVZdOybm59P5mWJh00fP4+sgr680t1oup4zPM29+M3dm14er1xNRp3mzMjQSEic8Ari4vrq71kb1KLrCQWZzOyf8elrV1npgjeN4i06vVSWVQ+a58TFUZQpt9Xb9Y3+bwyLN2zFUGJl4RWxeA1C5ttYKJHLbfLx0AECXtbLmljIwSHZ2/HGR2QD4Ile/JJb/VzMBTk0wdnpG1jxKzxl6zJ48TkY+ufFc+uU1ZTOx3MPKs/GZ9NCYuB5eZbl8jJq7KuwDqrikhVZdC/98nk8bcVuW5jIcGmbGMc+TIEVJSUlg6vT62gQ38L4Rer2d+Xnre19JKSVqd9MJae3YKJaihoC0LS72Bw98ZWPn/BO8xlGupvCyPvGYjJ366dgxcTVDK226k4qJc7B2zDPx1inAw+Z5a3lYjFZfmM37Awehz8vszWXV66t9TjO3YDIMC62VtvpqW2yuZG5vn5H+LHUyqvqKQ8ovzhJ//lk1G0jLE86jpdgfZ1QZhghKsb8+l7f5q3ENeBv4qVjdy9nnILEkXJijVXV/MvC0gTBoJTgfXVXex7nNJ6p5vEUZfs5PrXRYmXKwXI6/YySxJLEryP8XRR9dXwxIlz8Wghs3vK2XyyAzOTnknTXe50WdrZe1WX7/trmocfbNC98DBb6wvD5866UaZSBRgDVi2mFBnppLTZhS6BwzlGiouKyCnKYsTPxbbR9/1iXoW5paEiVA7PlnL8nKYw3K5aWT5sP3jNSiUcODrAvYKJS331ABh9q+uqYVDCYlK9VcXSS2wH1l77kVFGMKhMNo8NZaGTPQ5Go79KHHMVadpuZj3M1p2hIHBAe655x46Ojp45JFHkn+H/2V4W5GUKisrGRyUCrVpaDnfdBOQnKAUXljg8PfHKDrHwPzImaSkuPekSO4YfnWGzMLTFjOpqWu8Q8LsmE+S0UuCmIoSEHAvxCUecgi4gqjUiVl4p8PRO4txlcSYHA7/Zz+b31cmRFACiaThOunC5xDfXF+P4szOz9ZjPeJkVPA0sz5HI/lnHaI57YKnvQAKtptRZ6ah1YFf4DOirbREF97abGIt6URQeI6Z0nfkSomnoI+6H3vzGeKrsV7VhV2fqye0FBYi7UShK9Dgs4oRy3JaDRRutwj/ztn1mXESj3JYb4FNa0qT5qiowpkOtt9by+z4PL2PyzO0D31rfQWqY9/vWdf9O/qKnTSD+ONi/ICD0nNzhQhKIEmEGkvSmRvyAPK/w+TRWcxVGThOSASlcCicWE0JGH7ayqabKmIEpdOhUCjiiEqdvx6h5soiXN0+STlJhkh04D9HyN+sJ+xZQpGSgiIl5QyiUnhhEUVaKrWZO5hWjDMdfhoAg8FAR0cHJSUlst97Axv4fw2Xy4XZbI79vZML0SuTtMuJJuK+EMMvT2E9LLAgViiZOuIhp8nIyV8Or3290zD04hTZNQbGX5QhWkbua/sJD3ktJqaOixFe3UM+QgshqbWvAFzdPhbnlxh7XZwQZDs6w9ykWN4FcPCrvWhN4rmg3xXisODCrf76YvT5WmFyg9akJEWtimtnJofpo551KSil52pQG1KFSUpNd1UwvtcuRHgB0OZp8K/jpPH2T9WiUIgrCzlOzAkpOr1RWNdJxi6/PI/8VhO9fxwV9hFa0GrF1XkabizBOxVg9DmB3FSrRmtWU7QzR2g86z2t5ndBika1rqJW6SU55DZnyZN2YN2qAp0/G1mX2trUYTfZDZmSUpAI/LDgXsTeLU7qD3oWCMwmXxvHfYQryFJQPHf0jPsIeM5co699cakNi/2E2Lx2dngZNdkZfyWygEp2Kg4oOrUFu3Ya17yT73znOxw6dIi9e/eKjW0DG/h/jAsvvJAXXngBADU6zlHuEXrfsf8YpGCXSYigBND3xzFyGrOEFY7snW40BpkN/1XrqTmrj5R11LDmJwOoDYlrbqdj6vgMOQ1G4fGfeGyY+quLhQhKIJE0jo72rEslZehJcQLFtgdrsB1xCZOUDMVaUnUp61KOWg8RpGiXhfRcDWjSEHFqtJVWz2/Ens8aIwQCQpcGJNJU/XtLmTgoRrgAhBV23ihEv2sU2x+sJRwOr+sQgCZHQ8Au5qSsunSKdlmEN81ym7JITRev6aznJDyALltNqjZlXepCbfdX47X66BU49HD0++vbTGx/dH3378DTVjLyxPPGsb1TVBmLhAhKAFPHZ8nZlMXsqJhk5NRxD7nNWUyffmguASZemcRYpmfkVbH75cRjw2x6X6mkpiegMHzo0T7ymk3gX/ug4moUKSvImjJhVzzH8vIyer2ejo4OysrKhMa2gQ38v0QwGESn08UO5e3gnRjSIoeNEhGUAAIhTj01yXSPwJpfocQzHMR1ysvwM2KHhW0H3eS3ZTEuR86MjHGmb5aFcyxMHRerufis8yz6l3F0ypMmAfyTQfyuIOMHxesQwy/ZWPQuyxtGcOS7/agN4rlj0APHRA8JXpZLVoWe9h8PiCmxqCFVn4IuR7zmNXvKR/sp8f3GrIoM9PlaYZJSww0lWI84cfeJ1RHV2epY2zkRtN1fjTJNySFBMotnKIBnSOzQ4huB86RHSDEqirztWZRflMepJ61MC9Z+IaKGI/gxlVfkE5xbZPxl+fxdrQZDSToKBUIkpdFn1yn+EIS0jBQMheK5S972LIrOsnBYoPY7/HfxdQ3AwF8nGX9lSlhtzTMUYLprlv4nxeeQ1+ZnZkBcFcznCLLkF88F56z+de0PO3s96xJlsR79/9h77+jGruve/4PeSAAE2AsAggQL2IbTh9Ko9zqakaaqWrKKFclNcpOVt9Z7v7y8OI7t2FYky3G34m7ZseUed2l678Mhh70XsKGwAL8/LhpJkDyX8chKwu9aWjbnnoN7777n7rPvPt/z3UOMtIp9qwd6QjT/qoeeQ9JYXnDdM0qKcrSsYdgwRt9YF5/+9Kc5ePAgf/rTn4Sv7a+N/zLl3sxmM2Nj0sRvVxWy1nJr/FiMpBQjJgHk1htxXmGh7/Qozb8cjqsnJSOmpKRQqzFmQ9V9BZz+TicTXUkJ1TnkpGRCVO3DhZz8RuJDODK18O6AyMwMhdfY6Ph9ikz/AkpKllIjI43iC1hpbqMwKQAkcozZbZGlUrPm2VLOfr9DmCyy4cMVKNUKYRWo7NVmSm8vvGyltDDCxvdW0vrHHrrfFAvEAIwOo3DpsE0frUShVoiX7HiuHLVBvGRHwWY7js3ZXPxZB/3Hlg6G09xGvFuLuPSbLqH2IK/cG0D90yVMTcwIk5XWP1fOzOSMcDk8uWVN1jxbis6iFSbjyCFAxbDufWWEJqY48UV5qlmiaHjRy9TEtLDsZPUjLsyFRlkEpJp3uRhqHJOlPFV4bSYdycnUJRIUllIjIxfF/ZLFk7Zg+1QTcmaNkYnOCQJDi1xHEtHBdbOdqYlpOqOl3BSq2R9AyVOiQqVi1aMFTPmnOf2t3gRZKRVpNUpE3fgBF1OBMEe+mPjwjBGWFNpEP7/fzyHljwgEAuTm5vK73/2OioqKhe9hBSt4m3Hw4EHWr18f//sK7sCgTLGrI+n9Wve+EtR6FXv//ty8Y3HEYh6Fkpp3OVAqFRz/19bZsdDcftFjhddkQjhCxx/FfJYhX4/OBL7GFP59gfDX5DQw0Spe28jsNsgqF5a/2S6LYOK4IRtTpo6zgrvVTU4DdQ8WyyrPsO79ZWhM6ssmo1z3uBulRiG7JKwoqcPsNlC9p1iWklXDi14mR6c49M9icc6aZ0pRKBXC7asfdqFUKYR3BMkt95az1opjczanvtUmRLbK2WCl+Lo8Lr7RIUyeanjRS8g3yeHPicVqDS96mZkMCxO5ZpVsFED+Zrss9TG5iJUkPPOdS/guiF1XwwtepgLisZqhwEDFXfkcfVn8XcjZYKX3hE9WybV3mh+rfsTFKcFFVEOuntqHXJz44rnZBLlU8WYkQunWfLKrrFEC3uLfzUfDbxIw+pieniYnJ4e2tsu7iWMFK5CL0tJSmpok/5BJHquUVy7aPqPCSOU2Jz3Hh2j+6dKJZL0Vah8t48Q3WgkKKs5473eIk10iEVnlg0AqISSnXJWxUI+/Q8Z3ux6yvBb6j4jnvOreXcz5n3QLl01a+14PGqOGvX8vNodbSvRU7XIz1Hh5SmmBlD9p+1O/vNJVMkpFyc1hrX6qFH2meBlcmzcNz52FNP+6W+jZ6bP1VO0sou2PfcJENLnl3moecjE9OSNcUnHNMx7C02HhOX/106XobeI2qnnERXqhkZNfbxZ6h5ZTmqzuCTfhybB89QBBbHpByjuKPoOyrQVkVlk49pVmYT9Qsb2Q8d6g0IJiDO80P2Yp0ROaQPj9zN9kA5VCrLylQkHNQy7CkTCnv96W+EZeIO4C2PiRSqb800LfCH9W/4TQVIisrCx++ctfsmrVKqF7WMEK3g50dHRQVFQU//sqtqHTJpFSknJXMdQ96kBv0bD/nxrnHUvVz3NXDtp0Fadf61q0kkpMzCCrzow2XU3XW8PzjqWCzq5Bb1UyclH8Wy6tQMd45yJx4JxcWVqhjvEOcbKLqJJKcnury8QFQZVuXaaONU+USASH18X6rHrcjSFTJ6byuwyUby/EYNYKk6ZiECUS6cxK1jxbwVinX3hObvi4l+DwpLBiUM27XKj1KmG1Kc89BWhNKk4LfifILfdmKTXiviGPcz/uINC9tI0spUbKtxRx6dc9wiSlho97CQyGhGM1ufmfWSUbBWCvMVN8Yy6HXrrwlyndOAexkoRnvtsqTHbb8KFypoNh4VhNl6mj7M48WbFjRmUa/s5xWapchjyd0LiIIa1Qv7jfm4PsNRb6Di8xjpL8f/l9+ZxP3tCwSNk3nRlqHinh5GtthAamkrrMj70i4QiFV9lxNGRy/qddDJ1JQdJKOteFyaMMmNqYnJykqKgonlt4p+O/hJKSRqOJy4OW6tdRYlw1r00yQQlgtN1PJGxmoi+UkqAU7xdVT8qtt6JUK8iqNTPRNRA78YL9KrfnYcrW4bkzk8afLP2x4749m9xVGVidJk59bemP2oxKKeEUGpkUJnLU7nERmRGU1Qdq3yWVhRttHhFS8snbmIHOoqXsznyOCdZhD/om0crYrdN3ZJS+I+KLZKVb8rn4qy5hFSXX1Tko1Qo0enlDX5SgBFLpNnuNuJJV32kfGcVpwu3lljPLqkxHbVBhdqYJk5TkwmDToTOL8x3lKhH1n/FhKRS36dl/awatVpisI5egBBKjXqkVZ/gDuG7Noe/4iND5RJNTMfSfHiYt1wBGPUIvhBHSC4wYM/XC4ylWSlJUSa10Sx7Z1Vb6z43Q+P2ld4sYHUaqdhQx5Z/m4KcFg+I7ConMRNj3CbFgKa8+AyLESUpzMVdVSW/RoIvJzS6mqqRSwcwMM9MRQqOzlQlSKSsZjUauYjcdrn2cPnuayspKvvWtb7Fz506h+1jBCi4nvvOd78waizco70vdcE7QHRydQq9IfSxVv7RU5aoW6edoyAIFwiSlVQ+5UCgVvCVIlF73AYmsc/SlM0LqMRU7irCVpUulJwXUYwwFBlzX5FCw1i6sWpS3xoZKxlyjUkF4MiysSAIIXwtI5IcMpymhYCIAfYYW5RKKo6kgqjoz2hzg6JcvQUA8MTfRHWTwgvgXsChRJ4a0PIMsaWS5sBanoUlTY3aKKUL17vfRu98n6xz+/iADZ8RtdO77LZICoSDkEJQAdOkaVFoleZtsdIvKlhug+NpcoZJvZ74hqFqUhCn/NP5B8URHxV35GDJ12CqNQrYyFBgouSkfxxXZwomwTR+TSvSKJv9iZb+PfvmS0DOpebSY9HwDSoVCyA9U7CjCXGik5M48mn6ytMpF/roMVFolWauzl/arCgUT3UEiFRH8XUsn2eqVVxAoGuBo+37a29sxGo34/TKkeFewgssIm83G8LC0ILVkad0oAj1+wtNhJnrE/FBmrR21QUVevZVLAkqFxTfnYHWZKNuaz4UfLv0tl7/JhuuGXOxl6Zz++tI+VZ+rp+ZBN8Eh8QWUuofcRGbCUhk5Aax9QvJxY10hoQV+q8eAKddA+Z15HBfcjDTRF8SYKdQUgJGmoCxiuPPGbEkdRTBlkbM2A7VelfiGFYQoAQKkfI7VI16SoufYEJles3D7oTPj7D8jTkq2OAzoLBqsLpMwSUku0vKNskq1y1Ui6jkyhL1M3EaNr7eAXpxYJpegBGDI0BKelrevOX+TDV+7X4iEs1dGiTuAvpNDZJSkoRKvgI2tzIzZYRImKa151oPOosHX4heybeHVmTiuymbg9AgXfrj0YrneCqseccvaLFG1001Yht9zXpcLEcRISoApN4mUsZiqUvTYdHCa4IiYWuaV03fSV3WeE6dOUF9fz2uvvcbu3buF+q5gBZcTyZvyFKi4QbsjdcM5+Sn/YCiRnxHIeVmcRlQa8XxOyU25oGIWSWkx1D3olDZ1C64Frnq8GGOWnsOvNguRJ5w3Z1OwLpP2P/cLKf7ozEpKb82nqCFLeB4sashCZ9FwQdcpRsxQwGRgmoFz4vP9sVfFyUO6TB12j0lWqbS0HEnxUi5ElY5Co2EOv9IEk+JKyMMXxxlpF1edOfnlFuG2AJZiE2qdjAlZJsyFJgyZOjJcJiEyyshFv+z1xpFL4ww2iq+Vnvq3ZkYvicfLcghKABqdEq1RTf5qm/j400HRpiyh97P5Zz1C5R2TEfJNERwVH3fuG3JILzBirzILKUjpzFC5zSFtHBD0Ges/WI5Sp2SfoN+reZeL9Hwjp77ZzGjr0s/EsyWfrGoLGoOaToFYynF9JvaydNy359H8xtI5L3t1BlqTmiyvecn1DYVSQWAgxMxUmImOpd/nMm09BRkuTgz/iebmZqxWKz6fb8l+f22845WUlEplfMF4jf5mMo2zS+IodFoioURwXLjJRMA3w+DZoHQsuIDj0OkgEJxdfin6/xc1SVLZNsc1Ftp+n5gQl1JSqn/SxdFXWlIcTP2xuOaZEi7+vIuRRrHkafVDTkJj0zQKfBiBRAgovjqT098Q30VqrzEJl4WTC/cduYx1TAgTaQyZUP+Ul+ngDAf+8fLUt1/3vjI06eI7298OZK1KJzA6I0s1Sy7kKinJhhEKN8xR5Pkr43I/a4vHSNVOl2y7Vj/skl1OTxRy32d7jYnsGltC5WwJFSWA9R8s4+TXLgiXNFzzTCktv+th8PT88Z2KUVyxI5/BsyP0n1jkPpI+HLPrTYwPTONvl4KSuUpKs6BUppwjFFoNkZnUfluh1UB0LijfYuf8j5KCDZ0OpuYnc341/BUihMnIyGDHjh28/PLLC1/TClZwmfG3f/u3/J//838AUKLiOuXW+Y3mJGPK7yvg/Pc6o4cUC+70ih8zIEsVJBYnmZwGdAYFQ4KlTHLWWkgrMNL04xQfCSlivaxoqdBjgqVCDTYlVQ+UCCeYQSqt1rZ3QJbKiSihYTnw3u/kzDfFyRkxxZ+jX2yWVS5NDhpejO5mEtzB9XYgb5ON7mND8satDMhVUloOzG4Dap3iso0l2TBAw3NeAgPiO9fkYv2HylHrVLz1yTPCzy5rtRljpp5WwZLKciH3ffbe7+TSb3qF37fy+wpBwexdXIvAXp2GY3OO+DMwQO3uYmGVMIDCa7Po+J0M+fJUc4RAzJmz1gIqxWxCnkI571u7L9zJCaRyb9XV1Zw8eVL82lawgssAnU7HZFSxu5YGspUFsxvMGcdZqy0QjkTL9Mwf4wv1A0CPMNkFIP8KO11vChKfIxGqH3Rx6ustwr9f97ib1t9142sUc9Kee/IhAo0/EiuXos/W47o2S5ZikdVjEL4euSi6NhP/YIhB0ZKwemh43itt4pFRNkwO6t5djCnHIM2Vlye0k42MChPTgRlZ6jRyIVdJSTb0kFOdQe8hcQX3y426x92YsvWXTT1Vn61n9RNuQj7xhSaQCM2XS1VM7vtsLNRTuN4uRDiKYfXTpZx5rVmYCFb7WDEdb/Wn3g2fAu47cxlrDwgT8KweA5OBiJha09z4SuYc4dmSL+SP/xD+MVNMYrFY2LNnDy+99JL4SVawgr8wXnvtNe6//34A1Gi5Vnvv/EZKBSTltdy3ZdH8s/6Ux1L205Eg3MT+/yJKSjHosnQYrMpZfmsxJSVLiQ67x0zzz8VKM5ldepzX5HDyq4vkgJJyZTozVO50yyL5uG/LZeD0sBAZIH5dxXpZ5A858NxTIKy4BAnFnxNfbZKlICUHmz7mJdAXlK28dDmRvcZK3ynfZVHwAflKSsuBIU+H1qSSVdHjcuNyP+vVT5eiz9By+LNnhJWILKVG0nINQgSc5UDu+1x6Zx7t+4aESV2OG7PQmTTC34NphTqKb8rj5FfEc9/eXQ7OfGsJzkTS2kjueis9B3zCv59qjliwpFvsXJEwFrcefYaO3mSVJ5Vq3pw0OuljPz8DwOv1cvr0afFr+ytAngzI24xkRYvN+m2zCEoKnXYeQQmgYI2Z0usyUhOUdLrEfwHp2IbHCln3dAFoNTCtkf537nWolPH/6h7OZ9W7pKRR2+9HpIA+9t9cKBXYq0yU3ZsLkJqglAKF19oBOPy5JiGCksUj1Z489bVWMYKSMVG+TJSgVLajEIwIExoKr81k08cqMTpk1MWst+G5s2jphlEEBqBj/wBNvxBLwhvz9aS5xa8HYLwvwHRAvH5u3RNuGj7ulcgMQhclkWOyV4vvmCq9vZDaPS7h9u9E1O4pxrk5R5bi1Kon3NI4FMSaZ0vZ9EKlcPuRbr/0rOUNEXLWW8R+v9HPYOMoh16VQVB6xIXFYcJ1a45wn/onS1j/3NI7byHxPpduyceYufR0MHhyIk5QyqgUM9SBf5IISpZSsfaHP9/M4Gk/xnwNWXVLj49z3+mi/8QExnw1VfcXpt7JolTE/+s7OoG/PURWrZENz5VAmlIiIylT9FOpIKQClQr3LTY2PuXCeb2VyOTUrHkhGZHJKdCoKbsnkwyXEc9dtsTBUAg0Wum/JNyU8QhrV69lYmKCV199laeeekrIVitYwV8aTz/9dJygpEU/n6CkUM57x7y7CsksT6fkjpyUBCWFUhH/LxKO4L4th4YPlFN4jV3omgw2SV7WWiaVLxo6509cxwI717wPODHYoPfQSGqC0hxkrTZjsEH/kVFhgpLZbSAwFBYmKFnLpN3mZ7/dLkRQMjkNOG/KBhAmNKx/rpzqR1xCbQFK7swjw51G+XbxufXgKxfoO+0TJkxkyYhvADDA1MQ0vhZxAm3DC15WPekWbl9+XyHVD7uE2+dtsuG+MY/Ku8Vj1HciqncXU7bFKdw+Z62Vtc94hNsbbEoaPu7Fe7/gOQLSsx7rlbcQbHYbMNjEPmGbf9FFy+97ZZHLPLcVUrBOXBLD7Daw8SOVwmN96KwfDFCyJU+o/ZlvthLoCWJ2iylWnP9eR5ygJNJn8NR4nKCUv1nALweIE5QqdhRhci59jhhBqf7pEqoeXGJ8KBQQlL6tN36kkk0fi8byAvuqSm7Kp+SGOXaNhOfNF9nKAjZyPU6nk1OnTqFMFQOuYAVvE9RqdZygtJYbZxOUYmN3zqJW6S35lN5akJqElBwjRY9t/HA5G54vl/4ttED8lNSvclcRdY8XAwgRlIyFesq25gPMJygtkCvL3Sh9Ix1/tVmIQJDulNQ3G1/vEk5Ipzv1BPuCwuSH4ttzQI8woSFrlYUNH6qIX5sICjdmUyYj50UQmn/dQ9PPBUlZVqWs6wEY6wkwOTYlTEyo2FHEphe86K3ivnP1U6VkrRLLmwCU3V1Ezf3isd07EeW3F1B6Wz45azOE+3j3OPBsyRduX/uoi00fFc95+S6NS89a3hDBXpsu1C7YF6Tn2BCHvyie8/Lck4+93EzxLeI5L+/9Dta9v0yobex9Lro2E2Ph0jfu7wjGCUqWEjFDHXnpIkFfWPjdO/Gvlxg6M47eKmbb5p/00H9sBL0VKnYu7T98jQH8HUEsJXrWP1+O3ip0WeRfYafhuUpc0W/QpeC6KZvsGisV9xUs2fZq5d2sW72OUDDEF77wBZ599lmxi1rBCv7CePnll+MEJSPp8wlKsfxxUl7LeYOd3DorxTdnpSYoJeWcCUfI32Rl0/tKKbwyQ/q3qeixuYjFXnola54tweLWE+oPCcUhnrty0Zlh5GJAiKBkKTWgy9Qx2hJcnKCUhLRCHaFRcRUis1NSZWv+WY8QQUlnVlJ0TRaAMKFh9dOleHc5lm4YRf4mG9k1Vjxbl/ZTMRz/xiW6Dg0KE5QyKsWrowCgg+BwiGEZKkcbPlROzbtcwu2dN2dTuVPcTpZSI57bCyi/Szw3+E5E3cNuKraKx9nWMhOrHnNLJBER6KSSpyJzcQzB4RCjXfJIU4Y8HbpMsYu6+LMOmn/VLatUWuV9Too2i831IJEn132wnOw1VqH2o5eCoJPGoQgu/qSbUH8IQ55O6Fm0/bo//j2YVrh0h/GOUJyglL1G7HskRlBy3ZId922LIUZQqr6/CO+uxd8jhVKBYkpaJ1n7vhI2PivFtIsRUmN5rYp7iii+fk7MPDOTmIOiMGutXMU23MVuzpw5g0qODOlfAe/YjJwiKZGxWb8Ho1FKYsTISSn76LS0Hx7n/H+IswBDY9MEhsRkSgH0Vg06i4B8X3RQlN6ai700TZj4UPMuF44rsnHcmCXU3pippGqnS5iUALD+6XJWPeTCIJh/N+brySwzs/494ufIKE5DoVLgHxB3wse+1kLr78WY3zG0/apPmDhVtd1B7R7x+wY4+2/tsqQCZ0JhyaEI3nbBGjuadDX2CvGETefBQfpO+oTb1z5WTMOLXuH2y8H658plEYJaf9/LcPMYg03ii5DGbD02t1hyBGLPQrg5F77TIT1rGXHDxo9WUnKzeKB7/tsdsn7/1Fda6D4ySIvgjggATboalU7ctae5jWTXWKl6sFS4z/rny6m8V/xdylqVRtVOJ6ufFk80rnrYjecO8eC4aocLc5ERY97CxIVkZJSlo1QryKsW+5joOTpEZDpC/ymfUPsLP/UxcHGCxp8vECXOISvZL9WhnNIRDod55ZVXuPfeFDt5VrCCy4hHH32Uf/mXfwEgjQyuUt6ZOLgIIejsdzrpPemj+WdiqiO9p0aZmYwwKFiOzF5rR6VVYvOIzZPmYgNWp5GqB8R9mue2QlY9KT6Hrf6bUqr3FAuTBgy5erw7iln7XnHCh3dbEQUbMoXJGABqnQq9eeFSxXPR9JNuug4NCiuuABCAiwIlX2Lw3F4oK0YlAAc/dUGoPFcM4ekwkxPihPKMknTMheKMZN95H0MXRmn5k7j6Y8MLXtY8Iz4G5cKQq6fh414qZSRHek8N0/ZncXUge6UFrVWDXXCeDAxJMXB4Sjz4OvipC7LGk6HAQPWeYip2Fgu1HzgxRpeMEskALX/o5ejL4iVmpnwhlBoFmWXisfz6p8vJqcnAYFu6LUjPu3qPPB+y/rlyqvcUS6pEAnDfnofrmhxh0qLBpsRWlk7VfeLJT4NVR1qeeHmgwEAIv6AEPsCFn3bQ+LNFNuwkzWVpShuFrTWApKKckSG+iLyCFfyloFKpmIkqdV/JnViVVunAInEXCiUXftLJudfF1bAn+kL4+8TfpfR8A0abaLYequ4tItNrmU1aWWgjH1C2tQD3jbm4bhIkJeih5kG3MCkBpEWsmgfd6FOVFk51Civkrbaz7inxc9hK0lBplUwJlj0COPryOS79h7wyCz37hoQVV8q3u6T7zhVnoTT/pEeWKmh4KkxkJiysGpNRYUKfqcVeIU5cb/9jH93HxOfv8m0FsolTclH/VIksQlDrm4MMnPYxclG8HI3FlYZNRsm3Kf8M4WnxuKv1133Ss5YhVrHu/WWUyyDqN/+kR9bvN77eRcfefi79QjznpbdoUevFF1v0ViVFV2bj3SZ+H2ue8VC1W9yHpDul8pWrniwRPkf9U5WySIvePaXYPOnCZKiMEgtqvQpbtdjmoKHTQ0wHZ+gTLPfc8qs+ug4Pcu57YgollmMuDCELMzMzfO5zn2P79u1C/Vawgr8UPvGJT/Ce97wHADOZXKFNynkpFyASAa2/HaJj/xCXfi2WDxi8MMqUf4b+s2L+P6s8Da1RhbVEbM1Dl6khq9pC1R6xb2KAynud1D8q3r76AQe1D5cIbzjWmaH6gRJWPy2eA6nc6aLoyiyJmCAIjUmF3pZ6XTgVuvYO0fLbHuGqMwCEoEXGnFS5zcFaGTEqITj6chOtvxTPzcxMRZjyi+e8srxWrG5x8tRIu5+eI0N07hVXP97wfDn1Mua85WDjxyop2ya+7ta5d4DW34vb1eZJx5irJ0t0XTYkxcEzIfHY6+jLTbJKrOnMUP9oCZVbxO579FKQngPyVDubftbF0S+KKzuFRkOodSqsLnGxifpHSyhYlylMtord9+rHxH1I/XtKqH24BJ1ZLP7PXZ9B6a354mNKB/lr7Hi2iMdqphw9JhnfYWMdASb6xAPns9/voPHn3QvnCpLmMp1WR+GlegDC4TBWq5XRURlstrcR78hyb7MISuaHMao1KYlJMRWlvPVpFK1N49i3h5hK4jxEgkFJNSkFnJu0tP45NTM5EppcsARQZHJKIhwF5gcukVhd0OSgxgiFa6y0/3aRQCaZSWGE+gfdHH0l6igEHk/90yX0HB6ie5+YQ8pebaZgUxZHXxIvreC6NYe+4yP4u94Z+s/lOwuxe8yc/X4Lw4IKA1mr0slbl8mJL4qVJ3DclI25wMipr7T8J65UAMnlpC4DKncXYXWlsVewTifIL/dW/3QJWpOG/Z8QX9SRC0MmwiXDlou8KzLIrs7g+BfEJmrXrTkYMrSJ8mcCWP98OSqtkr1/J/48Ljc8WwtkBex5V2SQU53BsVfFS31I5Su7l5bcjE6ypXfnEhyZpOP3Q0mHFpE9NCkpWG2h889JH4Ex35qKLRyOgBEUUwuQTsNh0KRe7Le6dah0KoYuzPeHkZmwVPItCTU77GiNKg6/Gl2ITTUvTU2CTsef+r7FjMaPVqvlxhtv5Ac/+EHq61vBCv6C2LlzJ9/5zncAMGNnveqGhPrEAlj3vhL8g5OceW02wSUSjqR8VzNrTPiHZ5hoW0b5DH1YUkJJdT0p2KiFV9mXrOucHF85bshGoUS4vJOt0ojz2jxZ5cjqnnDTubefAdHyHgYouSGPpp8srQT1dmHTxyqZmpiWtZBVsaOI0S6/MFGk9tFieo8P03vIt8yrFIPBBgHBEu/LwfoPlRMYnOSkYEks2eXeDLDp/ZX0nfRdvjEityzjMlH1oJOhxjG694o9kNpHi+l4q1dYYSxrtRnPbYV0HxmSRX67nDC7DZgLTXT8UTywXfVkCW1/6Ba+7/zNdjLLzLLKstU95ua4DBnywqsyZd2D0JhagNTgvDGL1l+LJU0NNgV1j5dz8WedCZ+7wPwRCIc4bvot4xPjFBcX09z8zpHcX8F/byiVyrhq+JXcjV6pXTTOsVWl47k9n+NfbCTom3N8gXit6Gob7X9YwLcuFudFwvLLwm2y0fXW4MKlGefktWoecnHyay3Cv1/9oIuBC6P07BObK6weA46rcznxr+I+MH+TjbEu/2UtMSYHzhuzKVifybnX24RJSlaPgYJN2Zz+uphKQs7aDGyeNM5+6/KU2poFmWNKDopvzyGnJoN9nzknfA655d6qH3RhyNJetrJ7IJHlZr3flwFZqyzk1GYIl2XM3WjDnG+QVf5szTMeNCYV+/7f5csPykXxLTlc+n2v8PiwedMo2JjJyS+3CJ9DbvnKomsziYSh4w/isVTuRpuwHwSWfu8W8NnGQj16s1rY91TuKsKUpePQZy8u3lCh5MjMH5nQDaHRaLjppptWcl4reFvwv//3/+Z//a//BUAGOazV3yDlhVPlmaNqFqsecxIcneLc97vnH0/Rz+zUwUyE0Y4FyMszMwvHXtrwgmW2UqlrZNWZ6T83CkExskTuWiuaNDXtvxfwN5FIojySDB9YudNB32kfgyfFF8Ed12XR9lsZZcEvMzY8X86Uf4YjLy3hy5Lgvi2X4PAkXYL5jIqdRfSfHpFlp+VAZ0aWuo5crHnGQ3A4xOlvim2cWE65t/XPlTNwZkQWyUc2kstuXSZ4thYw1uEXJhOVby+k58iQcNk6s1NH1R433UeGZBHsLid0mTrsHpPwewFQdb+DzgOD+C6IiVrYq8zk1lvFxmA03hEq45aE7DUW+g4vQDhN5c8FxtNC65t5G6107/Mt1jFxGjPUPuKm6de9DJ2O5rwWWv9UKnhT+Tp+vx+n08n58+fRLcCZ+WvhHaeklExQujn3PRiNxgWVk0BST7IW6VAoFaTlJv59MYJS5V0W8motuK9PzVCeS1AyZsGGZwrw3JkhDegUBCVgFlOt+sECHNdlgB86/uRb8PqTUbDZBn4SBKUlEFMxOfpSkzBBCSP0HRkVJijFyqO1/LxXmKBU94QbY74MyetrM2l40UvJ3WJlDwDCMxEi4YgwQQmg/9iYMEEJIG+VTdZOe4zIKssVh0yC0vrny3FcL6a0BZIalByC0nJw9KUm2QSlde8ro3ynuFLOcghKFo+RvCvEd0YXbcrGJLhTCqT3Qg5BCWA6MMPMpAyJJ6Dh4142yti1B5IEtmgZwRhBKVY6cil0vznMsRiRS/AVOfy5JkYu+oXVly7+uEciKBkhr8G6dAc/EkHJCGufKZaua7FdyMpoOREjbPyAi9qH5vifRUp/VNyVjeem1LvRFCplgrAahc6sRqVTgGYRFb6oqtLm7F3UVtfh9/v54Q9/yAMPPLBwnxWs4C+Ahx56KE5QspItEZRgUYKSQqlAY1BjtM+OzxYiKAF4bi+gbo+44kb9E8Vs+kiZtKgdFFBIM8DaqHLNkgSlKPI2STImbb/pEyYoGWxSuSZhglJUNOT4F5qFCUpmtwECCJNPcjZYKb9Pnizzxo8mlVESxMxkmCkZikUA577TLq5kY4C0fANFm8RjnLxNNqFyU3Mhh6BUsaOI+qfl7RA78InzwgSlZSEAe//vWVkEJedN2az7gIwdfsskKDlvyhZW7wGwOE0UbhSXOT3xpUvCRB2QyjguKpucAqVb82l40UumYHkTiKo8CZYRHG0OxMk9ouP32CtN8VJxIuj602CcoCSq2BQjKAmVfYP4PbhuzsEr4t+jY6pyZxENH/cKX1f5vQUUbsyi9B6xb0VTYRpKtYIMzxLPT6HEoDJQN3EdRYVFXLp0aVYuYgUruFyYR1BS6RePcxRKMkrSUGmUGPOTdrAuQjRy356DY3M2nrtzUx6f209vhU0fLadsa/Q9E0j9VGwvxHGdNGd37R1amKCUhFiZN1GCUqxM0amvt4gvzEdLtokSlGIloLr2DgkTlLx7HLLUiuy16TS86MV95wLPYwGEZ8LCJAGQ7luUoARQ2JBJRqn4XIdeIlYsCzIISmvf65F1nktv9EqEmMvILzv19RbZBKW6J9yUySgxsxyCkrFQL6ukXNGmLMxOo3DJt559Q7IISgCTo1OyVAYANn6kgg0fqpDVx7Mln6zVYuoHl34hEZREVYiGzownFucFbRUrXylaXq39dwNxgpLoM4z5wdVPlYpdVxDQS/atfUxcRaXugWLKZSgHGDN1aIwCVSeA1aqrWOVZRTAY5Ic//CEPP/yw8HlWsILl4BOf+EScoGQjXyIowYLKSbFj2nQVxsw5a5ILEZuAyq0FVO5YJC8zJ/aq2J7Hhg+UiJMkdLDqMRfooP/4qFCfrDoL6KDnkE+MoIS0+D3eERInKEWXX89+u02YeBMr0SRKULKWmSi5Q3zdEGDtB8rY+GF588qUf0YqiyoDzT/rkUXEsJWm47hSPOdlrzELlbSaCzkEJdctOVLZMxk4/LlGYYLScnHgk+dlEZRy11plqXkByyIo5W+yiZeIA7K8Fgo2iMe157/bIUxQAhhtDRGeChOWsd5YeHUmDR/3Sj5CELpMnXCpu9BAKP5eiKqlnf5mm0RQErTt4OnR+BjUCQqRxghKovcdIyjlrs8QU2CKjifXzVls/HAZukyxagdFV9spvi6HkjsW4RYkbdLW2XSodUoy3KbF8wjR+eqK8D24nC5aW1vR62XWfX4bIBZBvk2YS1BSGKIGC6bwFgY9iqgCzbmfzln00esWVCBSaDScfX2Iqm0ZNP/H/MUihVpNZHp61r+p0tQQgcDwAgszKRaz03P1pGXpaPutGHlo/QfLUBtUjHQGGW9e2gkZM5WseqpCltpN3RNuTNl6Tn+7hZFGMUdXu8dFZCYiTHKxeIyYsvVU3lvI4aV2UEQxOTJJeDpC06/FF1oav9dJI+IfynVPuNGZNRz4R/HSbfs/cQ57jbiMXeU9Dmwl6SiUUpJEBBs/WklkJiJM8LF4jKj1KixOEyAWyKW5jahUCD/zZcEI2RVm+o6IR0CadDUWtbh93Xfkkltv4+IbHcLnqdrpgohEqhHBqX9rJTIpL7NVtqMQmzudfX8v9o4c+bw4Gz+G0OikLFlPY6YSa3EaaXkGYVt57isgq8JC74lhmn4s9i6uf64MtV7FW/+f2L1nVBqp3OYkMBTi6L+IkTE3PlOGUq2g+y2fUPuSa7PQmFRU3pXH2W8L3IdfIlaEp+fPGQqFglRigz0nRwn6piSG8sz856JQKUGthuhccuiLSf7AokYR1swjMgEo9FIUZutci4EWxunjBz/4ASqViq9+9atL38sKViATH/zgB/n6178OSLvJ1qiuiZOMUi3qK1SquKrR3n+Yk6RXKFEoF/ggUii59LteVJrUgbNCqZh3vpnpGcIzGhQhBRGWJhh473WitWgovCaTDpHkiwGKb8ilaHMWBz4hFhvUP12Cwabj6JcvEegUY3A0fNDL1MQ0Bz8ttqjh2VZAltdC5/4BYeKU86ocqeSBDOWbQH8IhcyvADnlbwE2friCvlMjNL8hGN8F4OhL8gjPxdfnQgTe+jux3Vj5m+24rs6h7Y99wgow5iKjrJISAJm16Qw0jl1WJSKz28BUCOGxaHWloTGpZalIrf+QVKpP9B0p3ZpPTnUGKo1K+Lmf+36LLNIRSDvqxnuDnPmG2EKsXLJ+51tD2D1mwlPisVf19iI0aWoMuXoCPWKx5KaPVaJQKITHr706jfJ7HPguTXDmm2L3Hlfp+uQZofFoqzTiuiaHnFqr8KaWvDW2xdUu5yAwPIk1HAGDmNM6//1O1A+qufj6EmNKoYRImIETYwycSHrmBhZcuFYoFRiVRsq7G2hHIuxWVlZy9uw7R/F0Bf+9oFar5xOUFoBCqSCiVUIQmn7SS9NPemcfCy8cVzW/0YsuXU3jj+cn9lPFXej1RGYiBIYW2P0fS34mJUczStOxFpuWXmCK3u+qJ0swZukIDgbElEb0sPpvomo3nxPLeVXsKMJWls7Z77UyfE5sF27dg24i4bCw6os+W4/VnYbXqhXeaT8TmGY6MEPXfp9Qe5BKc7X+WrxkRcXOItLzDMIxJ8DhzzZi9Ygzi11X5VCwMRNNmloq6yWAdc9JBOmDnxS7Lr0VtGYNVkca7YjFavpcPRodl1cFSw82d5os0pgpU49WkLgB0qKX67pcmv+jR5iUV/egtKjYe0gs53XmW9E8jAxTuW7KIafOyn7BfKoclbQY/P1BwnLWhfWQVWPFWpxG/xGxkkpF12ZSdGU2vceHafp3sTh1zTMedGaNcKymz9Wz+t1uJvqCwgrt6z5YhsaopvfUsNBzyb/Sjj5TS8WWIs59W2DTZFDa6BueFCftt/6xj5mQeBx8+HNJvlAPhJQpFY9jSD/rwj7TQy+tfOc730GlUvGlL31J+HwrWIEovvSlL/HhD38YADuFrNZfHV9/TJXvVahURHQzEIID/3xp/jFSvxcKhYLGX/SgN4uXIpuZCjMzvbCC0ly4r8/BmK2jcIOAcngUnjvycV6XzaFPi8VRVXscWFwmTn2jidFWsQvb+IFKJsemhNc7Cq/OxLE5m463+oVJSu4b89BnaOn4Y7cw+Was3Y82TV7SS46CEkhEqP7TPlml2w5/9gxoxRkuntvyQakQXneylpmovNdB2x/76Pyz2DjJKE7DIKPUc+w8vtaJy6pClFaoY2YGAt1iJzE7TegztKQV6hjvEOuz5hkPCo2CQ58Si1Pzr7BRfL00HkUJVKdea2b0krwYdfXTpUz0Bzn/3Y6lG4NwjBZDx74BcuttTAWml24cRdldeaTnG2XZd8Pz5SjUSuHxm1aoo/ahEoaaxsRiHBIqXYc/e47Q6NJELUOeDs8d+RRutHNUMFZzXJmFSieu9xMcnIQwaHRKoVek/Q+D6G0amn7aG89rpYRSAeEIoy0h9n4iOfZSwgJxdGzO8/ReQQstAJSVlXHhwuVTh5WLdwxJKZmgdFXOkwsTlGL/boD12+zMTEU4/NXox5t+YWeq0GhwXaFDrVfS+EaQ0z9IfMAp1IubYawtwv6XF3A6C6htHP1S06KE7Lk49bVGSu5yChGUAPwDYaYDM3QfFmfqjrRNoLdoZZFVfJfGpYBJ9ByNfolEck6crNJ3ZFQWucWztQBUElFJFLp0DWqdvAUmgMGTYoktgJZftqG4xSFMUAKpjml4Sp59hUuBRFG9w4lSrZDdTw7WPFaK3qqj78hp4T5yr2eiL0AkHEGlFX+OPUeHCAyIR0vLKWeoT9egVCsw5uuF+1s8Rtw35Qkv/ogS/mLwD4S59NtuYXIWSO+T9QMmug+K9xnvCWC0iwexw2f9TAdm6Dki7rdaf99LmgxFs6Y3+uk/N8Fok7if2/+ZhRf6kuem2Adsy39ISTCdXYN3Sy7HvtGfkqxEbG6JkpUKN5koqE9nuH2Sxl9L15dMVor4gyiMehR6HVcW7aFV/Sua2y/y3e9+l9raWj7wgQ8I39MKVrAUPvnJT/KpT30KgHRsrNVcGz82d+FKEZUMrdiRR0axiebf9NB7MDpvL7Hzf9XjDo59o43uvb45hxYPkk5+RZ5K3ZlvtGIuNjB6SZSlA4PnRhk461uyaQw9R4Yp3JgpTAoBmBybwtcuHkt07BvCUmgUJigBHPjH8+RssMoixMgp6QSw6kk3jT/vZqJVkBBTZkCpVaJLl/epERiSt+u66ddd6NLFE4Egje/xHvFnIpecZcjVU77FQUFPgOOvXr7SUdV7ipkOzQgTiJZzLWGZu+Av/rwLlUpJ917xjQdyCUoAap0Ko03ec/dsK2A6MCNU8i3QE2T/P8gjzJ362kUMOeIEJYDhpnFZKk+Dp8aZvm2G0Tbx8dt70kdWpVnYPwyd9TPa7qfp31uEz3Hsy5cIjIjfd8sve2n5pTwZ8pgySMWOQsa7Awsn5ucQKTZ8qByVWslbf5/6PYkpACqUCq6cuZsO13HOnTuHTqcjFLrMuu8r+B8HnU7HTPSbYTGCUnKMtOl95cxMznDgUxfnHUvVL2+jlbRcAxd+2MXZb3fOOrYYgj1B9n1igUTlArHe3k+dRW9e5FtwzuLfuW834b7dIVwKiSAEBkP0nxEjIACMtk2QXmgQJigBDJzxySJaBvuCnPn2JYL94oGXrzEgK55w3piN2qASJlIAGO061Ab5KV7h5wH0HOhFY1TR/GvxXe0zAXmxRNAnP1dUs8eBxiijbO4yULPLhbnIxOFXmgj2ic15osSWGCb6/IRn5Nmr/c0+QjJUH4I+eb8PoEtXo9KpsJToGWkSu3djoZ7Sm3M58aUWofai7eIIQuMbncIEJZCUi7K8VjoFy60A+FrHsRSJb64M9gQJ+aboOSx+jotvdJJZYREmjnX9eZCx9glZpDw5G3YBut6Mxll6SVXpuGBVgqzVFjy35TN4bpTzP4j6r+SFtiQFwBrVRuz56VwaaOLf/u3fqKys5LnnnpN1nStYwWJ4/fXXeeyxxwCwksMawzXxY3MJSrGcl/PaDPLqLTT/po/eo2OzjqWCQqGgalceF9+IleUW/7ZtfF3e91Dzz3rpO+5jvFP8G6Vj/wAT3eK+oufYMFqzWpigBBDoDzIu4xu4//QYmeVmWWXejrx0EXuNWZY60PnviZE7Yqi630Hr73uFyRe6TB0avUoWMQ1iCkfi9m38aRf6DDE1FgCVRkV4Kox/UPwcR18WVIpPQtVOF6PtE5z8SovsvqKofaiEycC0MIHowg86uSBD1AJgOjCNclqcfNL15hCGDB2dfxaPheUSlAC0aWoiYXnEMceNWTAjqFAWgkOfkUdSOflaC1anSfgdASkfpVKL23e8I0RodIrRVvFvua6DQxRssAsRlEAivQ2cG6X1113C5zj+r40gsIE6hp5DI/QcEo9RARpfl8aU83o7U/4Zuvb6UpOVYt+t0Vzi6iddaNJU7H+pOaVriUQiKBQKFAoFNxnupylvL42NjRiNRvz+yyhqIgOKSCra8NsMlUpFOCwZ/KqcJzEakxakk0lKhtlJnFVbDUz0T9H4q/F5BKVIIPHyKzSSI1/3kBmFUsH+l5N2oKUgKEWCUt+Ke+xYCvU0/95H/5lg9FjS9cwhKEUmJ1n9pIP2NwfoPzn7AUemFmAlGiHDoV+4bNlf//EIw5ipxD8g74O39rFi1HolRz4vPhlueqEShfLykm7q31OCwa67rOd4u+C4KRtTpk5WWbKGF72yVLpy1lvI8mZw6qsty7zKdw7WPFuKzqyVVSNXLuqfLMGQpaPxJ+30HxMr/1N4bSYF6zJll9WTQ56SjctREmMRwkPOmnT6ji6wczFFvzVPu2j+TR/DiyRekz821z3rRKVWsO9TLdKxVPNDkk+uezAPg01N675Reo74ZxOV5pYbnZ4GI6zbk8P5340wlvStlExUUhhnz3PHg9+lu0cKsL/0pS/xrne9a8F7WcEKRPH666+zdetWAAykc6Xm9lnHkxfNk98RW4WBklvzOPjyRWnBe+57lxw8K5QUXp1B0SY7Ix1+Tn+tPenQfN8RO2fDR8uZCk5z6J+b5x1LhcwaE0VXZgmrs0FU5eb45a3//nZBjmpLDOufL6f1j730Cu7mz9tko/iGXHwtE8LKNctBw8e9+AdCHHtFfoLkHQWDpOzVe3SQwVNiu+3jajcy4s6KHUVRssYy6uG+g2CwQf17vIx2+C9rHNnwopfwVIR9/09cIaf+PSWERqeFVYtiMNiUsgl370TYKo2ySGQ5a63kr7MLJzlzNlgpuSmfvtM+Lv4wmiBaIrZs+Hil9BxTkchSzEmVO4vQZ2g4+krLgr+ZPCcFpgLsU73B9Mw0Wq12hai0gr8Y0tPTGR+X5gRRghJA7bucBIdDnP9B97xjs+K16LH1H/Sg0ih46/+en3csVV/37TnkrrLS+PNu+mMbx+bEc3M6UvdYMV2HBuk/tkgsNSePZfUYZJFh3qnQW5WySR4VO4rQWTSyyMIbPlSBSqu8rDkJ7x4HFlcaR186s6wyY+8k5G+yYcrV0/i6+GJDw4tRla7PiuW8MipM5Kyyce5H7Ze1rNzbgdrHijHlGNgrk0QlBxU7i7B50mn6ebewylPWaguua3I4KLgYGYM+Wy9MHHunw+aVp9ZV94Sbtj/0ChMz177Pg8aoYe//jT77JeKuyl1FZJSk0fK7vgRxaTHoYd3THhr/vRPfxaRnssi8ct52gPZ+iQT15S9/mUceeUToXlawgsVw7Ngx6uvrAUgng02GOTmvSOqclylPR9mdWRz5ciuE5hOUIkl5X4VCgd1rxHNbLr6WAGe/t8QcFI29NnyghKnQDEdeakn64UWUxwq1uG7I5cSXU3yTLtDPWmaSyiYtF++g9Uhdpo6QjA3oIKnjtL/VT99hn1B7S6mRqp0uhi+Oc/bbl6+E2caPVDLRFxAvpfcOhueeAgbOjTB8VmzOiqndyIlt3bfl4h8I0SODXPxOxcaPVjLWNsHp1y7j+PpoJZHpsCxVpeoHHEwFw7JJfTqzUpgU9I7AAvGO2aljtCckzBu0lpkouiKTk19pXXzTdry9Ee+2InpP+iSVJJbePLThQx4i0xEOfDr67Zjs5+eSZsMRnDfYsRQaOfH1hZ9hsghDKBTiTeXrTE9PYzAY3hFEJXEa22VCenp6nKC09Yq/wZIpEZQ0RrCXRBsZ9BhdetLzpT9zq8Duhgu/GKbxj1NobLpEW8CYC+kOiZyk0Giwl4IxAw5+b5Tzb45gL5cYrgq1GmMOWJLKMmeUgDFHBSoVvq5JIjMR+lukwNqYJw0slEpQKrGVGzFmx04KeVcY0Zk1OK/OxpirwF6ZIFtlVBgxOhJ/Z9WZwAjrnyqlcpuT3CvTEm0rk9oqFGStSofon8ZMJQ0velnzrFRf0+IxkuZO+t1V6RiiJS4NmdLfWavSaXjRS/Hd2Uu2jaHuyWIaPu7FmKmMt439f4yz26a5jWRUGql9dzkNL3oXbWt0SG1jMGXr0Vt1s9vG7jVfP6vcmr3GhNFhZO/fneX8G62Ltk22ocVjJGvdbBsmX1NG5XwbTgWmCU9H5rVdzN4bP1pJ9aOOWXaxeBa2d+6V6eRtzFiwbSobrv6bEhpe9M6yob3GhDFfv6C9x9rH4wSllG0XsKFCpUiMwyXaTo5N0fzbhOrD3DGbyoZr3+eRap8m2WUpexdel0HeVZa4DeeOw3k2dCjZ8JEKyncXLt02au+p4AzhmUQwPnfMLmTD2PgUaXv06000/bpj1i65We99ChvaKtJQ6ZRkrzYv2TYxXkpZ9aibzHrTrLYLvfcWj5E17y1l0wuVS7ZNKzFhKZVOuuH5ctY/X44xU5F0rwmfFvMRMRTfmUPDxyvx3JM/u61CKdmwIsmGVUaM+Ro2POeh5JZ8staZEveap8ZeNadtkeRPMmqMaNPVFF8n1Xme55PLjBiLErsdMquMBH2ThManMWZKf8dgLdVhckjjQ6FQkOk1ghFOfHuA1oM+piaiH6kqFeklakxFiYnfXqZCawLUarQaNc1/9DHWIc0nmTWQXggKrQaFVoO9XI0metrYHFin344KHQqFghdffJEjR46wghX8Z3Dx4sU4Qcmis3JXzb3xY1aPAUOBVPJBoVKRWZMGBrCWGrBVSu/AwU9dhKASq8eEoSBBxrN7DVJJHYUSg12J3Wug4w/DNL7RRfufhzE5or+rlBI5epvUz2ADu9cYV7KYDEzjH5lM+l0jhuS2Se+myWHAdV0OBpsOQ4EBe7UJgy36/hnAXp3wfSanAXOxAUOujrK7Cln3XBkGmzKpbcJnGQoMWMsSpS+q3+Wg4eNe6d9ibQ2JtrYk32KrNGLI1bPug2Wse3/Z7La5+lltrWUJewM0vOCl7nF39F6Vs65pblt7dRrmSgP173ZT++7iWW3NbgMm5+y2MRvmX2dDrVeRlmdI2MWduq3BJv3dvXeIc99vofWPfSnaprZh7hXWWTZcrG3M3jNTYSbHpuI2nNU2hQ0rdhSx/kPlCbss0jZmw8LrMuK/PavtHHsn27Dh417WvK80yS4LtwWwl6Rx6Y1WBk+Nx20YQ2p7K2f9LdTWAP2nh+MEpbljNqUNbdK91D5ZvHTbJBsW35ETv/dU43Cuvcu3F7L+Q+WLt02yYWAoWnaV8Ky2S9rbIP3/VGM2lQ3Pv95G40/bFxyHqe2tIy1fv6SPSLZhw4teah/zLOkjYteQf5WVhhe8lN9XuKSPiNmw8KpMGj7upeBq25JtYzZc98EyGl7wzrZhSntH/y4wUHGvi7Uf8CzpI2JwXJuNIVMXP77Uex+aCDEzGWakZTxFW9OstjF7n/t+Kxd+3IYhVze7bXwcarBVRP9QKOk+MsS5qBJJToNFmkNStUWaA20uGxtnbkWtVjM9Pc369etZwQr+s3C5XHGC0p2lO7DaJR+gt0JGeSI+MhUZSHNIx7Lq08koM3D++y1ceL0HhVFBRpLf0efqsbj18fjJWqpHn6XmwD81cvbHbdLv6qXfjbWNwVqqR58tbeQb6ZxgZjJMf7NEONJna7B6jFLSVaHE4tajz030tdcbMeXqcV6Vjd6qmPXdZinRo8/RxRe2MipMUsm2p0vx7iwmd5Ml3jbdqcdYmPjdjAoTeitxu2x6wcvqp0uF2mZUmDAW6tn0ghfXLVmkO+e2jfoWffSaoijfWcCmj3nj97dYW32uHkuJnppHSqWY0GNAn62f3Tb2Z7Z+Vgk1s8OIMUusraVEsvf+T5zj7PdbZ7e1KmddU7Jd0p16MmrF2sbudXpyOq7qndzWWKhf0IbrPlhG1YMOobbowV5vImu1ZZYNY0hpQ6DqQScNL3ixVC7RNsmG/oFAnKAUs6GIvRUqZo3vxew9HZih7c/9cYLS7HGY2t51j7vZ9II35ZhdyIa5G9LJ3WgWahuz97r3l1F2X0HKMZvKhpNjU4SnZxL3KvJs9Il/TzVm59rw3LfbufDTFibHJ5dsG7NhZmU6GpOanLUZQu89QPWDLlY/4cZWb12ybcyGtY8Xs+mjlbNsOOteU9hwzbMe1n2wTKgtQO6VGTS84MWzJX/JcWj1GNDn6lnzrIeKbQ5yN6Qv6SNi5zRl6ym+Pi9uw6Xe+/G+IKGRyfltHXPbGtFb4ey32mn8eTuBwQTJ1FioJ90xt630Da7XS8pQvotB9NkastZZpLbROSX2u3EblhsoH1qPATNKpZKPfexjHDt2jBWs4D+D0dHROEHJYsjg5oqt8WPpRTp0WVIMpFCpsJQYQQf6bC2WEi0qHRx5uRXFtIq0QiP67ETe2OzSoTNLeWG9RYG5WMfgGT/nftRJ+1tDGHIS+TGLW2oLoDNLf8cQGAkRHA6lbIuOWTGbIVdH8c25pOXqMTt0WEr0s9uWJvyDLkuH2akDHXjvc7DmfR50mbrZbWN/ZuowuxLn8dyTR8PHKrGWmaJtjbPbFifamp06dFk66p8sYc0zntltzcr4WkGsrSEvce8bPlxB9cPOlG3TCme3tZQaSXPqWPNkCdWPOGe1NeTpSCuc3TZmF3utCZ1FgznfsEhbZZJdjIxc9HPiq000/7lXsmFy21k2TFxDZr15VltzsX5+2zk2nApOMzk2HbfhYm0BXLfksPb9ZejmXP9C9k4r1JHbkBH/7WS7LGbvjR+ppP7pktljdgl7t/1HN8Nnx4Xaxu2tmN02PmYXsOHghVF6jg8LtY3ZZePHKql+xJlyzKa0YaaOwmvs8WtctG3Uhs6bs1n7/rKUY3YhG4anwkwnkRwXaxu3oU56TqnGbHLbmF3Ofq+Vc6+3L9g2lQ3TCkykFxmXfu+T7L3pY5XUPV66pI+IIbPOyMYPV+C5p2BJHxG7BnuNmY0frSSvwRo/tpS9Vz1VwsZofDdrHCoUWEoNc+xtQGdWUH2/m9WPl5BWkPy70rGEDRN+1nV9Dun5Cb9gKdGjy9Qk2ibFgrosHeHgDJOBGXytfmkOSW7r1idsaFdjdkWf43c6OPeTzoQN9UosJUn+26ZIPEelguHGCc6/Ia3L26tM0nwTH7Oz5x9Tvg6Lw8wV4XtQqVQEg0HWrVvHXxt/VZJSSUlJPFnTUHwvNTfYqbxReugVNxoovSIdTTSBU32jicrrTJRfr8VRb6KkwYTnZisAZdfqKb0infQC6XerrjfhvSUzcZ7NFipvTwc/5JUY8VxvI3e19DJU3W6j/AZ7vK3nOjuVW7LBCOlZGpRqJUXRBf6qO3OouCMr3rbsVjtV9xUCUNxgofjKfIYujXLo8y1U7yim7M68eNvKbUXU7pLaFl5jo+zOIiq3FNL4RhfhcBj3NUVJbZ3U7ZE+/LNWpVF2l4PqHS7pGh6QEjWBIelDr2qni5pd0uRudBgpu8tB+TZpgcu7u5SyuxykFUj3mleTSe1u6XcwQtldDry7pN+ruLeEsrsccUKFMVMPCuLKSJ47i/DeLzHBana6KLvLESep1Ox0Unmvi8HzowT6Q3juLKL6YY90DVsdlN3lIO8KiYxTu0dqG4NCpWBmMnqOWwoou8tB8bU50u8+6KJ8izPetnyLk5rdkl3ScyS7eG6XHnr1HuestpX3uqjdI/3t3e6k7FYH3q1S3+qHPXjuLJrVNmbDjErJhkqVVCvTu6dkVttZ9s5UUnaXg4rtJRgyQalWYClIkEVqd7uo2pG417K7HHh3S/Yu3+am5DoH7pvyyVlvoWaXk6qdibaeO4uoelBqW71dsnf2ajOhkSkikcgsG5ZvcVK9W7qmyi1FlN3loPDazFn2rnrAkbDh/VLf0pvyKbvLQcmN0jiteWC2vTVGddyGjk1Z0ti6q3BBe9c96CSj0kjOeos0Zu+Tjlc9WJrShqHRKWamw5Td5aAsOmYrd7spuyuR9Kra4Zo1Zp1X5lN8tfTMK3ZIYzZGoplrb8+dRVRucaPSKLE6TZTd5YgTk1LZOzZmw6EwKo0yTiCrmzNmy7c4qY7apezOQsrucrD2KQ/lW5zzxnf5Fic1D0h/u6/LpewuB6U35YMfXFflLzhmC6/NpOwuB5X3JMZsWqaRt/7PGfqOjEr2vl9qm7UqfbaPuD9h784Dkryj5zbpdxbyEcn21pm1knph5uI+omang6qd0etXgFqnxLsnyUfc6YgvMNXscFC5LXGveXU2IpEI06EZvFuLKLszyUfsKqRyW2K8lG8poma3i7Y/9THln8ZzYyGuqyQ/XL2nmLLomJSeRz7V26W/zbkGFAoFY1GFkartrlk+uWJLHrVR/523Pg3PrTlMB2Y4+moH3u0OSm/Jjrctvz2LqrulvtZSHZ6bM6nZIh3P85opvT6DNY9mY3Wr8N6WQ9VdUltjJniutVFxh3RvlXdm4LnBBkaovtWKe52Vypus8fN4rrPhvUUao+XXGyi90owxF250vYfrr7ue7u5u1qxZ845gOK/gvyYCgQAej+TrlCh5+r1PU35P8nxYRM3OAhQqFfkNFsrvLqTs1hwqtxZQfreb8i0F8Z0CldsKqN0pvUOZNUbK7y7Ee4/0t/d+F2V3Sb564KSf6h0F1O4ukhbgHAbKtxThuVs6b8V9Lsq3FMUXjbUGNZac6ERqkHxAedSvlm1zUnGPI74AXru7CK1Jw/FvtBDoDFC+xUHlLsm/VW93UnGPM76wXbvbSfVuF4GeEKOdATQGNdUPSf6t8u4iKrY6pZJpQO39Trw7Egx2c0EaESL4LgQouTmPiq1OHFdIPqBmj4OKJL9fca+LmgedKBQKlDolFVudlNwQnWfvd85q691RTG3Ul+ddY0OhUqCJlkerfqiU8nsS/tm7vZi6B6W+tkojFVudFG3MZtI3hcakntW2encxtXuktoZcPRVbnZRtleySU56BQqGg6UfSon3d/cVU70rca8VWJxU7JV/uuaeYiq1ODAUGhs76qd3jonp3om35PQ6qon7fe6+Tiq1O7NVpZK02U3J9wSwblt/jiNu7/M5CKrY6ydtkm2Xv/f9wjjOvtUk2jNrFfZ1kb9dV0djwgYQNDZla1DpV3IaFG7Oo2Oqk9Nb8qB0c8+ztuCKPVe8qJmetlYqtTiqj43CuvZNtODMVRm/WUXK39HfFruLZbXcVU3e/dK8Gm2TDuqcqMDkNlG93U7HVGR/fKe095+8YISSlvR+I2nurg4qtTuqflp5r3QMuvNuTfudeF9XRmNlzWwEVW50UVmcyMxXGZNPPejbJ9i6+NpeKrU7c10ljtvZhF/mrM3FcXxi3Ycze+ZvtVGx1Un5HNDbcJdnbYNOi1qqkMRuNgTJr06nY6sQbjQWqHiiZZUOFUoElX4oZTE4DFVudeO4pjtu7YmsihojZu+E5L97tLukatkt2KbtXsneM7JJsw8FT45Tf46Byd9RH7JD6xn1ECntPTUxz4BPnl/QRFfe6qI5+u00Fp1Hr1Uv6CADn5myKrykgQgSlSrG4j9hkk8bLXUX4+/2gAOdVuYm2KXxEVTQW9+5xozGqmQ5JSbHFfETFjhIqtjoJdAaY6A2iNWiEfASAWqOCiEQ8i9kwlY+A6JjdIr33/UdGZ/uIOwqpuMdJ3qbY96MD73bpeofO+am410ntQy5WP12C+7pcKu5J8hF7XFRsS/adDmr3OKjYUUDJtblU3OOg9GZpfFfvcsxqW3lvEbU7CzFoTFy3/g5yc3M5fPjwClFpBf8p3HjjjbS2SjvfV3M19bvLKb/PBYD79kK89zmxRhOfNbuKqN7lwHVjFqW35FGxrYiqPdK7WXZbHpX3OsiskzaN1O4qTHyLAZX3OaiO+guby4z3PicFa6V5tmZnAd7tjllta3Y7QQ+mDD1qnYriDVnRa3Dg3ZH43aqdTmr3SHNlzloLFXe4GLw4yqHPXqTqgRIq701quyPhhzIqTJKP3lLEuR93EJ4K476hIN62+n43tdG8hD5Xj3e7C090ni3f7kapUhAYkhbwqne7qXvAHe/r3e6i/D7JL3nuduHd7sJeIfmW3FWZVN+faFt5n5PKqA+rvKcI73ZXfMHf5jajUEnlmWJtqx6Mzie3FeDd7iJnbdQPPeCkapeb3uPDjHf78e4spibq94uvycG73UXRJikxUfOAA+/OhN9U61RMh6Llvzdk4t3uovj6nOi9Fc1qW7XLTd0Dkk3VRrV0r9GcV9UDJVTelzQfJtnQu9OFd4sLb9SnVewsXrCt3qrEu92FLk3L/k+co+zeYsnHRnPqdQ8UU71njr2juQaNUY3VlR4nM9Te75pnb2+0b8XdRVTc6aLsjkLyr7RT96CLqp1Jv7uzmKqd0tjy3JKPd7uL3I02gr5JIooIVdtmt43Z27k5G+92F87NiXnWu7OYih1FcRvGY5V6G97tLkpuivn92fbWpmniY9Zemy6N2Wh+wbvHPc+GdQ8Xx0lx3u0uSu6SjpfvcMXnKYDqPW7qHigm5JtkOjSNd7uLsm3Scc9WqW2MqDHX3u6binDfKF2D+w5p/osteKSyd9UDJaiNaqyuNLzbXWStskR/VxqzyTas3iXZaNI/jVqnJn+tPfq789vW3C/Z29GQhXe7i9XvLpVs+6Bz3pitjY7ZnLUZ0rscjcWdmwtm2bBqpzuljwDw7nKT4Tbz1j+eoffQ8JI+Imbv9jel0hjl0XNCah8RI13V3u8iLdtAOBwB/eI+ou4hF97omFUopPG/lI+IP8dr84goIkz5Z5b0Ed4dkr2bf9VFYDhEyc0OIR+Rni9tZpvokQhEi/kIS4lkQ6VCwZGXLqbwEYnYUG9V4L3Phece6e+8VZl473Ox5plSbN406u53Ub0n6frvc1EefR4ldznw3ufCWKCn/lE3npty4/lTgMp7nXij9q64Kx/vfU5sXhNXqG7lhhtuoLe3l9WrVxMM/vdQxlrBXwcWi+QH1Wh4/NEn8d6XiD+89xVQs0PKeVlLdFTdm4/nhkxqd+RRuSUf77a8uHpS1Y48arZL31u6LBVV9+ZTHJ1PyrYWxNcEfRdDVG3Pp3ZX9Dw6qLqviNLbJb9UckseVfcVoYsuKerNWtLzE4v03u1FlEfn77Lb86ja6YwvVtfsKsJg13H0yy2MtoWo2uHEu8sl/e6NOVTvKsZeI62819zvoGq3G0LQf3YUnUlN1Q7pGh2bs6jeVUz+aslnVe8pmvXtm+W1ElFE8F2YIH+NjerdxThiufddjlnzVNWeEmoecIISlFoF1buL42tL3t3Fs9ZbvHvc1ER9i7lcijl1Fon4VbF99tpM9QNuaqP5A12mjurdxTivymG8O4BKq5SuN7rWXvdg8az5sHp3cXyezfbaUSgVtO+TPkprH3BRnRRHVu10URn1WZ7bC6jeXYyl1Mh4R4i6Ha547B1r642uM7hvyKV6dzHZa6yYnTrK7iik+sGEakb1HjfVu6TnWLQpi+rdxRSss0evT7Lh4c80cv57HVTfX0JN1Dfm1mVI93qNFNdU7SiK2zstS4c2TU1tNA6zV5mp3l0cn2crd7rm2dB9fR717yomrVCyoesW6frL7nVQtSup7f1u6h6UxsCUfxqjXU9pdI3Ic7eD6t3FcVJHKnvXP1WG2anDdUsh1buL44SQ2vtT2Dv5GncXk1Epxe21D862d/UeN1XReM51bQ7Vu4upe0S6xpr7nVTfP8fe0ZxXwTo71buLKdqUxXRgBmO2ftaYrb6/JJ7zyl5jpXp3Me7rc6PHHDivysURzdtW7UnEKtYyk2TvaCwes7cxQy/llJPHbJZkb3d0Da5s2+z8klKtJMMZ3fyvk+zgia4Llt4Zs3c0jxUdsxs/UEnVLhdVu1xUbI/GnHdJ9o6Rgmrvd8Vj75GLfmnMRs9bcmMe1buTfMQDznh+JmbDyfEpDn3qAo6rpDGbv9oWt0v17tnPpjoaGwZHJtEYNUv7CCSyUfndxaBSgGIJH1Gsl97lOwrwD4RQqhUUX5+I71L5iNI7o/a+x4kpS8/UxDToUozZXcWURfOK7tuKpByXTstw0zgavZrqB5JirR1zfMSu4jhRSWtQEwlH4upuVTuceO+N+ojrc6je5SI7ukGjZk8h1XtcHPrMRQZPjlG920V1dHwXbbRTtdNJwZqM6O8k1llH20JUbS2idk8+de9ykFtroWqHA+dmyd7ebUVUbU+sh3p3FFKzKx/HNTbKbs+V5p8bJH9Ssa0I77ZE26qd+dTsyEOn03F92VaKioo4cuQIV155JX9NyC9Y/hfCPffcQ3OzJFnlsWzGjIOxvin6o/Wtuy9CtnOaqehabF9TEKVKQfOfp6m5W8nMZISBaNuuM0HyymFsGCI6LX0tU2iid2bMSDqpVkPn2SmUSgVDTRLJp/dcEF2aEqJlfUa7pzBlqtjwcC6n3uhBa1QxeH4CFAp6Tk9gtCYktUbaAoz1hSAcxuoyMt4foH2fVGuw68gQ6fn6uJTjcNM4E9FaoEOnhrC60ug+M4TvnJ/2Pw+Q4UrsYBi4MMrUuJTE6L8wTk77BJ37JDZcx95+7BUWznxTkobrPzfCTEBKOPsH/Iy0T9B7VJJg7djXT1ZVBpfe6OXSG72Ubkm81PhhpH2CvuND0bZ95NTb42Wh+k76UGoTHLbRDj+DZ0ei19BHwcZsBpsk2cie40No0jQ0/lAqSVT9kJPBi9JOvM79Ayg1SnznJdZrz7EhDBlSMJKz3sJIyzgjHdJD7jw0jM6iofeodJ7ug4OYchNMxeHmcTLcaax/vpxTr7WSlmugO1rnu+vQIJbCRIA32DhKaEQqodR3dhi720znfmm3efvePuyl5nhbyd5S2+FWP2O9fqanpuLXb69M7PjrPz0SV7/xD4Tj9g4MwMU3Osius8XLD/ed8s2Sbxtpn6D/tHS97W/1UtCQTXg6Qu+BEUzZBlSGxNgabfczeG4keg19oMim79wofUdGKb49B216ohbtaNsEw80S2a993yAqnYqhk9Jz7To8SOGGTMzRGuq+S+OMdkoX2HXEhz5DS3fM3ocG48oKAOHpMF2Hpd8ZOD6I2WGi84D0d+e+AaxJYzbgC2Gw6rCXW+n8cxcj7RlxgkzH/n7sniQbRsds8097JLLGDhfdh6Jto2M23vbMSELG3g/BsUn8Q9IHeOfefrLrbASiVU56Tw6jVM0es/2nh+k9MIK9xkTe2ixGovfee3wYtSnh/kbb/Qw2jkSfTT/qdCX6HGmcdh8bQmdJ2HukZRxfizT2uw4OoTWqGbwwRE51JsOd4xgtCcas79I4493S9fYc8WHM0tN1xCeds9dPhiMN9x25NP+0h+GmMSaiE9zQSclHdB0YiI6BATLcUgCX5jYy1DJKaEgao/0Xxmb7iH2SjwDoPTCC2Zm2pI+Ioe+UdG0XfyTtQlzUR5xK+Ij9nzhP9SMuBs9K/eM+ojnmI4bRpCXZu22CwaYxut8cxlJqRKlRRX2Ekp5jw3EfATDSOsFIh5+eg6OM9k7hvjaT0TbpPeo+PEhaTmLM+lomGO+Vrq//1DDp+Xq6j42x6tEiRjonUGsT79jgxXFCo1OgUDB0cQJ7aRqdh6XSe5FojVljtgL/AAw1+5mckHyyryvEWHeQ7mPjoFDQfXyCLK8Oo1WLY30GAxf9hKciKJRKAkMw1jtJT1Suu+v4GNnlJphSM9Q2idYUIZhUnnasd4r+9mkiWg2dpwLkVYA/WkWhNHs1h62HGR4exmazrSRtVrAsJJfTvV6znc79g6QXJM2dF8bxRxeEhs+NYC020XloFP/gJBangXBiIyz950aZjMYq490BfG1+ug5K72bMb5scBiY6gvSdGWUmILWd6A/ga52g5/AgKJR0HBgku87KpveVMdEXpO/USEJ6OwC+1gl6oztnOt7qJ6feTmAI8jZZmfRP4WvyM9Eq+Vlfqz/uh7r29xMOg69dOtZ1aAidTfIBp77Sgnd3USJWOTCAQqNktFHq2314tt8fbhyLzx89R33o0rX0n5L6du0bxJS0I3jw/CgTPUE6/jggqdDcmBP3+x37BzAnJaMGz40SGJaM6jvhY7gonY43JV/e9tbsWKXvjC8eGw61+Bm+NE7X/j58FwLkrLXOilV6Tw0TnpRsGOgJMnxpnN6jgxgKDPSfHcI8nvjdnmOzZZOHL43HY5XO/f0U3yglOC78uJ3uw0OoDIl51ndpIh6rdO2XrnuwaRyDQUlwLMR4UtkFX/N4PFbpPiTFKr7zvqj9B8n0muOlpYYujDHaJdm7+5gPvU1L7/HYeRL2PvpSE+XbC5nol8bs4NkxzIXGeGzYsXcAqzMRq/SfGUFn1TDa6me02cfwJQud0Xm27a2+WbFK3xkf01GVvP2fPYf3Xic9sVhl7+y5s/fEcFyBMTAEofFJtCYNabk6Ot6SYhUCCXsnKwLH7O26Ojf+92g0bkhp72is0nWwH0uxCYNVskXXocF5Y9YXreHedWgIjVHN4KkhOv44QOG1WZgyEztphi6MJWKV4yMY7Dq6j0nPpn1vP/lrbLS9JcUNg+dG47HK8OlhrK40Og7EYgopVjkTla/2bCtgckyKVSY6xqQxe0AaJ+1vJmIVkMasKceAwaZkoi/A8KXxRe0dCYPeqmG8N0haniERq7zVF/UR4bi9lapELB4JR9BbpRija38f4ZmsJB8xOCtW8TWPx33E+GAAxSUxH3Hmu+04r8pe0kcA9J0YxZRj4NJv+wh0BsjfbF/YR5z3MVyaTtfBAUabAzT9qkvIR0g2lL5nYuUaF/IR0rPpk8YscPzVZty356FIXP48HyHZe/aYtZYZcF2Xv6CPAOg+krB3jHga2z7VfWgQlX62j5g1ZhvHMDuN0nfML7rQ23T0Hpfadh0cxJQUGw5eGGeiP0jnH4eoe8LB5FiY7phP3jco+YjoS9l/dpSQTxqzuiY96+uv5Edd3+XgwYNs376d7373u6xgBXLwsY99jN/85jcAlFCDTZXL0MVx+k8n8h2RmQgj0e+r7kNDqA0qWn7dT1q+ganxaYaape+TrkPDKNUKxlvHQKGk8+AwOkvUZ8XfUem97jkxijZdzVCj1LfzwBCmpN2sA2dGMTsNNHygnBPfasaYraP7uNS2fd8g5iRVtv7TI0wMSH4oZ5UVX8c4XdE5oWPvABnFiXm258RQ3A8Nt0wweGGU/rMD+DuCNP2iG3t5cvwxyExA8tVBX5DBC6P0Hot9d/aT5bVy7tuSGnT34dklhgYvjNJ3IjrX7+8nJzRD+58HaP/NAM4bs1FqE35/qHGMwXNRf3ygn0gkERt27O2f5feHzo8yeHEsfk6lVsnIxagPOzCIIUNL22/7aaOfsq0FjHZFfd+xEXRWLf2nJf/W+dZA3O/ba9PpP+2L+/2Bs+Ok5RnicU3HvkEsSfbuPTFMdk0G695fxsmvXGDwgpmuQ9L9t73Zh700Paltwt6dhwfIqc6gK5qD6dw3gL0iyd6HB+OxStAXZrh5NP53x1v9ZNdmxBWCug8PzYpVBi+M0n/GB8CZb18id00m/oFg3C7JscrQhTEGz0v27j7Uj1KvIDwZpuvQICqNYlYea/DMCL7WWC5wSPL753z07AsTGJqc5fcHTo/E7d17chSDXUfvydH4vbquz8UaHYv9p3yJvMpZH2anie4j0TzcmwNYnYl5dmZqhs79kn0n2sYYvDBK9+FY3rAfuydhw5H2MazOdDIrLDT+okva3R9t27FXGrNxex8ZJBKGll9JZR0qdhbFx2znvgGmamfiJfa6Dg3OilX8A0ECUYWNrv39hKcjjHQm7K02JXIasTHbf2SEdKeegk1ZjLVE84gHZseGyfbuOerDmKVDZ5XGf8e+gVk+ov9UYsz2nRrDmK2n56SPorV2htpGMWUYZreN2nvk4giDF9LoOSK9y8MtY+TW2Si5K4+mf+9O6SO6D/Yn7F1uhqBESuo/P8zkkNR2IR8BMNIUpGv/0j4iOBr1s4eHUGoVXHpDejaL+YiuAwNxH3Honxup2F64pI+IITZme/YNoc/VL+gjgLiPGD43QWCoE9d1WYy0jEbvdb6PiOW6x5pH4j7Cu8eBr2MMTa86qW3C3iOdwVljVqGW3n99rp5gT5Cew0PxKhdBX4TBxjF6jyV8fd4GG5YCE4WbMuk+MiSVDYk6isHGMfpP+6L31s/MZAT/YJDuQ0MYc7QEBqfi1zTUOMZg4zgKpYLuQ0OgUODvkr5ZCmZKsWccYWBoAIvFslJydwXLgkYT83sKrjPsoHP/EJakSgQ9J0alRWzA1xFi4OwYPcfHGG71Yys3EU5KtfYcHYlv8giNhRk4O07vCR8gfVdGIhGpVFD7FN1HR4jEqiWEoP/sGP1nRlAoFHQeGmZ6JszqR0oZ7w7SdXD2N+rAuTEGz0u+pefIEJFwhNHuEBkVRib9UwxdnCDQI70P/adGGLokvTO9R30oNUrGW2PfnQPosyQ/1PjDTiJ3huN5ld7jo+jMWgYbo/PumwMYsxN+qOfoMP5o/mbwwgSmHB+90bK+7W/1x1WJAHqPDREcnqRr7xA6MzhuKIj757Y3+7GVJNRzuw8Pxv3QaEuQvlM+euNz5yC28kRc03VoIP6NGhoI0XfKR9+JYUYu+rGWmciqtsZLMnXO8ft9p3wMnB1Bl6ljqGmU6ckZQqNS4463BmbFKv2nRxi6INm79/AAxmwdVTtdNP6kk459/bNilf5TPnxRe/cdH0alUzHSOAqEmegPEBhM+KneY8OMRfMqfadH0du0DJyL+f1+MmstcdWmnmND+PsTude+QiN9J6LrUn/uj4/ZU99ow3VLDpNRvz/ePkrfKR/d0diwfe8AtqTYsPvIIAa7lrG2AOP9kg3ja0B7B8hMyht2HRiIx4KHP9uIZ2sB/dF1oY79g4QmZgiNJuydHBtO9AcwZupJyzfRfXCA8HSE8ej9dOxNYe+LYxRusMeflb8zYRdtUqzSd3yYkbbYmPWRu9qGIUMapx1v9mNMilV6jw3HSboD58YxZvvoOz1K++/7yV5jJT1pjbPn6BD+WKzSOErfKRPdR6U4oe13fRRdlUXH3oGoDYfieSxf68SsMdv+5gC2snQaX5fWwB03ZsW/Z0Kjc+y9b4DMkcT813VggPRCA7osHaHos0nYe4DJwEy8fFrnfik21BjVBH2TGLP1DEV9RPch6bmNRr8f29+a/T0zHZpBF41Heo8NodQm+Yi9A+iTYpW+48Px+Do0OknfKR+DjdJ47/xzP8acZB8xhD+65nbmOx04rspc0kcAjLdGx+yBAcY7QthrzAv7iK6Ejwh0hzj/ww4hHwHSu5A1Nh3nJ8zzEadHGDgzEv+d6ckwodEQZ7/dTsGVdtTpc8ZsY8JHAIzEvh/3DaA1qzHk6Si9OY/+U4n4uu+4D5UuERt2vDWI0R61tw7pUz0axvedGUefoWEg+lw79w9iSrJ378kRrCVGjJla/N0j9J/V0xeNIzv2DWEuSti7+6iPybFpeg6OkpanZ2piJr7e33FgCJvbJFUGIzqvBaNzVbeO9euvor39Nd58800eeOABvvGNb/DXgCISefuLjL7++uvxUiNZ+hLW5N0dPxYxGWa1VfilwZ+eDxlOHa3H5h8DiZw0q99EkhRpBvgnEg4Pf+JYjJyUDPdmDdYCPYe/0jevXmEklLRCFw3gbRVGym7LIuSb4sirbdFj882aXLd2zd+40Vk0HPtKM/6uqUVrz8bkstc/V87M5AyHP3tx4bZzsObZUnpP+uj43YBwn7Xv9dD2p176jowK99n0sUr6z4zEyQ1LwZAJ9U95mRqb5uBnLgifZ/1z5fgHQ5z6SotwH7lY9YQbU46Bxp+2y7LB24G8KzIY6w4x3nx5lVQaXvQyOTbFoc80Xr6TGKWdhEMnh+KKXe8UNHzcCwp46/+I18mVDSNsfG8lHfv6hd9PY6aSVU9VyHs2RtjwbAXjnX5Of6NN+PLqny5h8Nwobf/Rv3RjhQKMsO5xD82/6WLwlFjd67wrMnBdncPxV8/jH4gsWss1Rvhb9/4S1HoVe//+QvLBBfsZM6HusVKmA2EOfb4FmFN7fO4cEIlQeJWF3BoLh7/YPf8Hk327NjGvGO0R/EmPUaGdPSdFwokxrjAkrfYZoXSdlou/kd7piFE/q59icmrW33uHv8zIyAg1NTWcOHFi/vWtYAULQK/XxxN9N2p2zj6YoqYxQNnWHC78si9OsEg+BsDcOspJxww2CPiSjifFQPPeWQOse7yY1j/103d4/rwbSRFTrf9gKWq9irf+6ezs61sIBmj4YCVT49McjPnPJUJgk9NA7R4XF3/RSb9gPJCz1kr+BjtHv9wkdl2A86ZsLEUmTnzpklgHpFIYphw9B2TUGl/3/jI0aWre+uQZ4Wtz3JBN3hob+//hnPB5loOGF71EZiLs/b9nL+t55MKQq8dabKR779BlPU/82VzOuAOpzJchS0fvft9lPY9cFF6VifOaHIabxznzzdbLdp6aR4vRGdUc+px4fLuc96Z0az6ZZRb2/T/x8Rz3HS81CfcpvDaLrAozR18W77PmmVIUSgWH/lnMBma3geo9xUz0Bjn+arNQn7XPeNBaNRz/+qU4iXQprHt/GX2nfbT+WiDujMJgS6g2AUJxJID7tmy6jo4S6JSuTTF3Dkz6Lj869SdGtf2kp6fz6quvxnMYK1jBUjh27Fi81EgWhdSprogfU8yNn6LQ5+rJqUqn9bdJSdXkPNHcMZ50TG8lTnoQQdHVdrKqzBz+vNh7bSzQs+phJ4GBEEdfWaRPUmxV8y4X6QVGTn69mbFWsQ0Wq58uJRKOyPJrdY+76T8zQtefB5duHOvzhJuu/YP0HxtZunEUGz5UQf9ZH80/6RHroIeG572ERqY4/FnxeWf1U6WEJqY4/fXLNx9W7CzCXmam6Vfd9Oy7vDGOXGStthAcDAmPmeWi4UX5z2Y5yFmbwUhbgGDf5b0fudj4kQqUaiVv/X+XN/Zc/1w5XQcH6fiDYE469t74pjgsJ177QBnj3QHOfqtduE/1gy5G2sdpF82X66HuIXm+w16bjue2Ak58swV/h9gYWPOMB51FI8WeIl2iNpsan+bgp8Xy61mrLLiuzeHgK41i50BSWAr6kr6fF5mTZh3Tg+fmXBp/3BM9NGedZc63/gHjzxkdG6W6upqTJ0+KXdwKVgDk5+fT3S3lcW8y3D/74Lx4Xxp3zmszaN3ri5Nfko8B89YFk/NaOjOExhNjPXndTzG3H7DqsSK6Dg3TmyLnlWpdcNUTLgwZWg5//nycLJISSX03fbSS0OgkRwS/KXWZOlY94uLiL7oZPJl0kkVyZeZiPe7r8zn2jebZdlsEuWut2CvMnP6m+LpE6Z15WErSOPxyo/B56h4rxpRr4PBnzyxusyRkr7HiuDqbQy9dED7PcrDxo5UQjrDvMufW5EJnVmLxmKWN65fx/mPP5nLHHYY8HcZM3ezx/A6AtcxE1U4XQxfGOPtt8fdALsq2FWDK0nP0FfFvqVWPuTHm6mW9N0XXZJG31saBT4rnpK1lJhybs2XlvrPXWMmps3Lyyy3CfWoecaHWqxLfkyn8cTJ0mTrWPOFmrMvPya+IfX/VPOgkvcjIqX9rYbRF7MWpf9zFYOMY7X9Y4tsrKYbSmZn9TBbII8DseSd/gwVfW4CJLuna5uW8ktYpG0PH6dY2otfr+dKXvvRXyXm97eXe/H5//Ea1qrRFCUrJKL/aSG5JauGnuQSlGNY+YMZeoZlNUAIwLnCeKLG66VejKQlKs5D0IIfO+bnws/4EQUkAvad8TPmnJYKSIFQaJWq9uPiVIRN0Fi159balG0eRUWlEa9ZQsDFr6cZR2GtMKFRSWRNRBAZgrNNP21u9wn0ADnzyvCyCUv17SljzTKmscxz7RjN9Z33ySFovVErEFhlY82wp1Q+7ZPUpvi6PmiT59f/KcGzKwrk5B+fNhUs3jiKj0sj658vJWpW+dOMoqh920fCilzS3cenGUbS92UfjT8STGwCOm7LjdU+F4Id9f39WFoHQPxDG3xek9feCidHoeVQa5Sym9JIwgsGmI1fUd0QipOUa0aSpcV6dI3ya8GQYhVJBZn3m0o2jGG4aj7OxReAfgAs/7YkTlCD1x2LSQTr+OMKhl6L+fKFho509r/gHFaBQsPrhbDy3WeY1VyhT+8fVdxqxObQYs1MeJjLnPLUZD2O32zl58iRVVVUL38cKVpCEmpqaOEHpSuYEm3MD1SispQbsZemseXiBOSdFYFy5I4/6xx2gVMwmKC1yHgxAAA5+piklQWkhHPini5z7QZswaYAABIZC9J70CZ8ju8oilaWNqkCJIH+DHYNNh8EgHhPl1GaQlr9wDJwKBot2ljqcCFr+0MNoh1/cZkDbb/rkEZQMsOHDFfFSbqK48ON2mv8jBTF0AWStNtPwopfy+8RjiJy1VtZ9oAyTU9zW7ptycN+YR2ateNzxTkbVThclN+Yv3TAJ1Q+7WPVkydINk9DwcS8bP1wh3L7jjwP0nBjizA/kLciu/ptSqh9xCbc/+aVLsghKIO2U8l2akPXeaA1qlGqFrLEW9x0F4n3y6jMwZOri5QRFoDaqUenFfcdoc4Cp8em4KoIIDn2ukTPfEScoARz89AVaf9Un3B4kglJWvZn1z5cJ99HbIKfOSs3OgoUbJSWF6jWbqa+rZ2hoiG3bthEIyBgIK/gfi2AwGCco6TAKEZQAqncUkL8+I14GahYWIOGtfV8J9mqTLIISQNvvBoQJSgD+ziCnv9W6OEFpDnqODBPyTckim6gNKjQmGYLvejBl68lfIx536HP1Up/1duE+xkI9So0SrUHGtQUlZaGOt8S/9wGOvHxRFkGp6kGn7Hn63I/a6To8IIugtOFDFWz6mLycV927i/HucSzdMAmltxbMKkfyXxk2bxqlt+Xjuk48v2os1LP2vZ542TYReLbk0/CiF5s3benGUTT9qptzP5S3SJazNoP1z5UnqbctjQOfPC9OUAIISmraLX+QkfMC1Do1Bqtu6YZJMDuN5K6S4Tv0Ssl3bBD3HTOBaZRqJVmV5qUbR9F7YpiJ/qAweYigpHImSlAC6D82IrUPIvw8YwSluseLKd+WIo5aYJ5a/UgxWdUWLO7UJ5o7L9aNXUd2djanTp1i1apVYhe3gv/xuPfee+MEpas122YfXCAXpctSkVdvoW7XAt/HKXLHzuvs1D5UCErlLIISpFgEjp9I+p+jX2hNTVBaAMe+0MLpb7cKkwYAxjom4oqdIrB7jCjVSsJT4pvHHVdmY8zVozOL+9y8tXYsrrS4LURgyNShMahlEWdaft/L8MVxWTbrO+zj0KfkEZTWvr+M3PUZSzdMwtnvtdL0C/GclyFPR8PHvXjuWeS7dQ4spUZWP12K2Slu6ILN2XhuLyC3xirc552M6t0uyu4UzxMCeO4poOZdLll9Nn64gg3Plwu3912YoH1vH2dflxd71TzkpEpGLH3hB52yCEoArW/2MXB2RNZ7o9IrUWmV8bJzIihYZyctzyBrfOavsZGeb4yXHhSBNk2D2iCe8woNhPD3B+NKeSI4+fVWWQQlgKOvttD2u+immoVMMCeWCo2Cxa1jzd+4hM+DDhyb7VTck7dwm6R1So+ujtqqVYyMjLBt27a/ipLl217uzWRKyEFfW/4MkQUWbmOIGKQndvxXM+TNyT8uRE4CyF+rQalWkFGoZrA5xeJSCgWltdvMKFUK9r+yyJdAePakXbUzh4u/7GXonB+FWk1kUox01PH7ITp+L2/H0t6/l7e7PDAAR18+Q0CG6M7wWT/HvtQcL+kkgsGTE7x1Uj4LVg4DEiRll57DQ3TvG166cRQ6i3axTbWp4YfG73XK6jLeHUClkXcinUWL2ijvFew9MRyXwBNFw8e9+PuDHPuCeEJxOWh40ctYp1/4ubbt7Sctz0Drn8QTFtp0DWq9ioxyC/3HxoT69J8ZxpipIyzDbHKIQzGYMnUo1Qpy1lvoPSD4QWCEugfc9J0apvtNsXG9nOcoW5nBDydea5Gl2DXeNCH5jm7xiaz34Ai9B8U/ngAu/rs8YqNCpWTorHQf5dty6D42xmiTf0miEkD1jkxM2TpO/aiLifboLpJFFhYANEYl5nwdqVYzUxGVjvzEj6tWjX9YDZp5h4HZRCWjWkXGeC2D/I6zZ8/y5JNP8sorryx6TSv4n42//du/5dSpUwBUsAGDXmA1W6nA1xyk56iPS3N3pS/yDqTlG1BrF5kL50zItgoD5VsKGL40wblvi8279ioj1hIzTf/ew9C5gPSbi6lRJuHov8jzn5d+1sOln8lLkB99qQlDrj5ebkoEBz55XhaZAZBNtADoPzIqrAgFkL/Zjq00XRY5PH+tHZVWJjEWGDghNqfHEPJNMTU+Tf8p8VjaVpqOxqRekC+XCi1/6KMoFGagUfz6ah8tJi3XwFt/d3l3iK160o3Rrpd1nva9A6g0i89jc2HK0aNSy4txJ/qDsuPVph+JJ+xi0Fu0qI3yyHp5m2xkV1k5/q9i/qB775BsJa1YyTs5OPrlJgwGpSzfcfDl6GKUDN7MclTR5Cx6xeC7EMBgU1J8a6EsezS8UMlUYJqDnxLzcZnlFtQ6FTlrLfQeXvo9DQ5J5Qwu/aF/UbJI8nxlPllKJLIfgKKiIgYG5H8nrOB/FhI5LwVXae5aukN0vB169RLOBvtswtEiyYzMunQ0BhX2MrOwku2avylGY9Kw9+/Fd71W3JtPy2+6GGkOyoq7+o+NyFIqAmTtxgUgiKQ2IqdLT5AjnztHMCjub/0dQfYuY14/9x15G59qHnLRd3qE3kPiOS9jlk42cZ0g8XJXohhpGZ9VTkIExkwDM9MzSzdMQufefqYn5Sltb/poJRN9AU58qUVWP7nY9DEvYx1+Tn1d7DxDzeP0n/LFS+OKQKUCrVmDrSRN+P3pPz2MucgUL2Ek1OeIvHcTwGDTojaoyF1lk0Vw897vYOjiuHCf5aiI7f17+e/nsa80C6sbgVQq8cgXmmWpYvkaA7JVIzr+MCCP2BU9D0Dx7Tn4msYZPic2J5RvK8Beaeb0ty4x0iR2X8ZMPdqFyKQp5qwjX7mE88osaQ5ZAMkxmV6pJ6+vnD76OHHiBE888QRf+MIXhK5tBf8z8dprr/GDH/wAgCrNleh0AoRNhYLQQJi2t4bpOjY679hCyHBLm/sX/tnZffU5OlY9UMDghXEuvC6WWzIV6MiuMXPpF/2MtoRQKBUp1cVT4ZSMCgoAXXuH6dqbIuZQKBZUUzr1jTZ0mTpCAzIW519pwpCnk0UEOrmMKiojF/2MXBS3gb3GTFaVhXOvtwtfW0ZlGlqTGmOmPGLsyEV5VVHC0xAYCDFwTny+zihNR5+hRWXUIHpDnQeGUSgU9MjY0Fm2rQBbmZl9Mteq5aJypwOLyyRLobr9D72o5Wx4QCIta+RsRABGWv3MTMmLcdtkqEbHYMzRMzMtrxCWvcpMbr1VWLls+Ow4w2fHZZ2j5Re9tPxC3rfE6dfk+45jX4vm7WT4DjlKnPHzvCqu7gSAQsloS0gqeXldLo0/El872PBBD1PBGY68JJaTtBZLPid7VTp9JwSeUwja3hxi8LRv8fXPpHVK6/lylJHDzDBFXl4eQ0Nvr9Lu21ruLS0tjYkJKVC+2ftR6R8XISnNmLSUV4UYHYC+OQTAsFGLcmyRAHdqWlLASOH/I2rVrFJxMXhvN6FNU3L0aws7jEgg0c/qMVJxZxZT/hkOv9IBkQiRqQU+CiNhIuEIxbdlkVdvo+mX3fQeGp11fCEUbLaRWWnhuAxygsVjZGYGWSQDo8NIxO8nIONbKM1txFZsEisJlXRt3u1OWv6jR5hwFCsPNzk6JVyeYDkwZMKqJyrpOTYkO2nzTsWmj1Uy1hXg1FdbhPssp9zbphcqGWmd4IwM6c53MjZ8uILJkSnZ7GNZMELDB+WXPVz3gTLC02FZpR8NmZC7IUf2uM5alS5MCANAoaDwWjsdvxNPxOWss5C/1s7RV1oW/tk5C0nrP1CKUqVg3z82Ll7eQyUdM+ZC7QNupoNhDn0u6TyLrFZn15txbbZy+ntds0q5AaDRpvbb0XlHoVn4ozWSZpTmqDmoucvA8d8qUIQWUYpSS9f75sWvEooMYLPZaG5uxmgUVwpbwf8cDA0NYbdLOz1t5LFGf92SfRQqFdV7cjn59fmkIYVKNUvCOiWiykjz+ioURGZmvzOGAh01Owo4+6MexpoWDrSTEzLxMm+fOp84zxKLZRs/UsFMcCZR5g2WLPVW94Sbjjf7GDwl/qGWv9lO15/EfR+AvTpN1jkAXDfn0PLHXlnEhJiq5OHPic8bb1cJslVPlqAxqTj4T/KJEO9EeB9wYi40ykrYLMfW1Y+4SMsxyErYvJPhvj2PnDrrZS/5t5zybfmb7Tg3Z3PslfOySESF12YxeHaMQI/4YpbBpgStVlYfa5mBqRCylIvqHnfTua9fmCCYt8lG8Q25XPpNjzBpK2bro19sFr6fte/1MNEX4uy3UyzsL0SOiM07i8aDqnl98zZZMGToaP7lYMpS7XFEY9ATlt/Q19dHVVXVSvmRFSwIl8tFa6u0wD6vvG4qqFS4rrcRGJqcT7RTKhYfm5GwpICR6vVa4H0p25qHKVvHkX8RS8Tqc/WsftQplcX6fPPSBKVIhJy1GZTckkfTL7qFyTY2bxoF6zI5+bUWofYgKc5odAgvrAPos/UwOUnQJ+7L9dl6bGUmWeXk9Nl6Vr3LRcvv+8TJHMssc7UcbPxIBT1Hhmn51X+PnNeGD1Uw1umXR4pdRrm3DR+uYKRlQjb57J2Kte/zMDk+zYl/lbkwIxPLsXX9U5I6mJzSj3orZK/Oou238hYBMypMwqSeGHI3yiNqZVSYKGzIkrVZd82zHtR6Ffs/IUgwX0bZN0upgfItDk681kZQNPaMzTtLlNlNRaqofrCI09/sEDrNiam9+HQ9pKenc/LkSXJzc8WubwX/oxAKhdDrJSWPTGUhq43XL9lHoVJRdpeN86/P9xVL5rwiEUkBY6EF8zniBjozVO1xcvEXPYxcXORbLSm+qn/ChT5Dy5EvNhManF6aoBQJs/b9HiJTEQ5/XjzfU7XHQdfhIYbPLZCPSpEzy15jpe+wT/gcIKn7yCXo5F9hY/DkkCxll5p3uVCplRwTLFEOiTJXb/3jmcta6sy7y4EhS3fZS8y+XSi5I4/MSjP7/1F8c8Fyyr157ikgoyRN/iaGdyjyr7BRdEUW+//5/GUdb7WPFpOWJ6/sob3KTOlteZz+VgvjHeIXl7vWykhngIAM0QKdGdDpCPWL90krlEiBcq6tYmcR/WdGhUv/ZVSkUXFPIa2/701N3kxGNAZa9agTY46eE19rYbxT7Nrq3uUk4JtMTWxaKLaKzTuLlXtTqebNQRlletLzDbT9aXTxdZAomemE6Zf09PZQU1PDiRMnlriTvxzetnJvDzzwQJygtNn1bmbS9dJ/pvk7rWdM2ui/R7AXqilelWAyho1awsaFd2drM9Ss3apB79TPIyhF1Coi6gUWpBUKzvzMz7HvLjIxRyIo9AmWrK/RT8f+YQ5/rX3hhxwJzwo0FAopUO89M5elvfCjKNiQiSlbj0G8IhKV9zqp3eMS7wDU7HJQ/5Q8+ebKLYUUNmRhzBeXdsv0WlAoFQRHxJ1KTBXq9GsyJvNlrNlbSzNQKBUoZewYt9eYqH13saznsxwYM5Wsf76cgs3i0sIAe//vWVkEpeVi79+dlU1QWvteD1UPyJP/Xg7cd+RSKVNmXKlWyN6dD8gbd344/e0WWQQlALVeJav0I8CqxyvJWy1v7Kz7QBmeO4vE70mhYP0Hy3BckY0xX3xHgfPqHAx23YLnSbXTfTo4w4wMOVp/D3QdHhImKAH0n/Jz8OUUBKXEhc333X5QGAxUbzNTtWVhLcqIRk1Ek3iGnmu0GCwqPOsllcBUSoFhsyE+B15R+jAej4fe3t5ZCoUrWEEyYgQlJSrW6K9DoVLF/5uL2L+Xb80iLVdP8Y32eccWQu1DhVTtyZfazMm7KBSKBZn7ge5JDnzmEmMtiy+sJ/uAA/90kbY/9csi6MxMzjAVSEo0LUFQMtgkKX+3jLJYZrcB1zU5skrMGnL1lN/joP5peSU68tfb2fCseCktkEo8yVVvPPjpC5x6TeaihTxBKAA0BhUqmQoAlTuLcN60QJ3MvyC8Dzipf4+853PmG62XfUcZwKmvtMgmKBVelcm6D4qXxlouDDYlNY8WY3aLDwiVXolCqcBWuYwAXsa4O/W1i7IISgAzgRkUKgVZq8WDfWuZAceVWVSkKoexEAxQ/3QF1btlxKwG8O4opuo+8T6GXD2mHD2ua8UXe3znh4jMRGSVijv1tQs0/apLFuHq0GcvpiYoxZAq9gqAuTSN9c95UJiWUEdK6uu6KoecWqv0h1KRMuGjUCnj85i7dzUGg4FTp07x3ve+V/ieVvA/B//wD/8QJyit45bEmEuV61Gp4t8iufUZFF+XVDJ7gfEYhx7WPltMmsM4n6C00PmiuPDD7kU3hsxFsCdI48+7Of2Ni8IKSiq9kvB0mJGL4mpArmtzSXcYJRKRIKruc1C12y2r9FT1riJWP1Mhq0/5Pfm4rs3BUiIj51WZhlKtZCYoY4d1EN76xzOc/oaMTVIy7iMGq8eAQqVEqRNXVkx36ql60IneeplTyHqJOJMvs2zw/k+cW5aKoVzs/4dzsglKdY+7qdhRdJmuKIGiazNTl+BaBGq9Co3M7wNA9rg7+fVm2QuzGpNaXulHoPaxcgqvEC+tB9LGlMr7nLJ8T/1TJbhvzCXdKd7HfWM+6QVGWe/QlH+amZA8H9Lym57ZBCWFIvFfCow0BTnwTxfECUrR86BQ4t1dSM1DC8efCqVi1ne884YszEVGPFsWKT+SNG/WajZRXlbOwMAAeXmL9FnB/2jE8qFqNKw2Xi+U83JsNpNRbMR5bca8YwvBc2cW5fdkS7GbDHJBaBSOvNzK6KUlOiXFbke/0MKl/+gj2D8lrKA0E5hhckKsugsAOrC4TBRfn7N021iXTB2lt+ZTL6fErE4qOb/qcbd4H6S4sPbd4qW0QCrxpElfeMNwKhz712ZOfLVJHmFEnoASANp0NWq9vBjKfXsuBVfKW8dZDkrvzKP20WJZfZp+2i2LoLRcNL7eKZuglFVnYfXflMoqD7Yc6MxQvr1QVrkzpVqJQq0kwy1enjdxQvGm5793SRZBCWDKP4lKq8Jaki5+SVk63LfkU36nvPhzzbNeqnfKW6etfbiEivuc4tdmltT0nZvF48LhS+OEp8NxwQMRHPtmKxd/0SNMUAI48dU2WcpLAIRAn6tj9VNO9JYl1JGSS7ndmkfe6uhct1A8qFLF+5UPXUNaWhonT57kAx/4gLxr/E/gbSn31tbWxje/+U0ActOr0eUsXBdyNmlJwck/TBMlRC9KTgKI6NQ4qkGlVmDLitCVpBA7l5wUMerjakqrd6ej0ig4+PUFdpKmWMzK35RO194xOv48W3JPoVEvrKYENL/RR/MbfYvex1wc+OQF7NUmWQpH53/USt4aeayZjrf6sVfI8+AHX7lA+V2FssrDNf24m6Yfyy/pIOf+ATY8U4FKq5S1K71737CscnIAjs25GDP1qMxGGBBjhpftKCSzzMzFNzroEyy9ku5OR61XYXaY6ER8F5/FY2Sk059SVewvCWO+tCvRPyBOHNGaNah08hYmN360EoUCWTvtc+oyFi/pkAJ7/07+AuOaZ0vRWbSyxtxIo/wHsxyVgZY/yJz8gI79/WR5rbLGTtMvO8muteHvEp+cT37tIgqtRtZ5RHb/zg0q2n7rAyB/k5muveKRWuU2O+Z8PUe/3snkCJKK0qwTzd+pbLSqiUQiUmnR6YXnhIhGjWJqmsbfT1JYP01bYyK4jei0C6oqhY1aivx3cwZprFVXV8dLeq1gBZAgKAFcr9+5aMIl+dj5H/aTvzFA55sj844t1NeYmTo+m0tOUqiURGbCGHKUrHrYzWDjOBd+JL6DO1ZOs+OPc3atLlF6ZFbZIAEB0cBQmKNfvkRgSJzFMNocYLhxjM4D4sFKYCTIRHeQzgPydvu2/L6XKTkJKJZX4gmk+xKGARqe8zLRG+S4jN1ryyklleFJxzJpovVX4jH1po9VMjMd5sAnxJMcaXl62SVUlqOEsywYwJxnkPWMLC4TGqMas1u8X/5mO65rcug6MEjLL8XeV1OhCXOBkaIrszndLFayo/EHnTQir9wySLvzpyamOfgpsXEkRwkpht5DPnoP+WT18V0IMHhulPM/FdstDkAAxrsC9J6S8S0SAF/zOB17xf1IoCfIue+3xMvhCvUZkh9/BoYgsN8HQM4GK73R/y+CTR+tYHJsisOfjy7WzyVdzPH7GSUm1DolxVdncekX/Ysn9KN9G3/WyUTfnHh1EeWadIOddH8Wflp59dVXeeaZZygtFSemruC/N3w+Hx/5yEcAyMGJVbsIyWJObHXsK82JkhEC36zOBjsaowprsYHxtqT3eJH3pP4JF9p0Dfs/KU4UyFptlkrFytwx3/XnQVmqQwBHXrqI1WOQVUbp3A/bKNiQmVpJagG0/qmPnOoMWX2Of60Zzy35shSbllOuCYAgssrQrX3CgzZdI2tXuq8xILt0XdGV2VhdaRjzjQR9YgqgjuuyKGzIovk3PcKKM+k5erTpGsxOE10ySq2mO/WM9QZlPdflYDlKXMYsPVqzvNT7ug+WodIo2ff/xOP3/LX2aG5NPJaS8/sx1DziIr3QKKlOCNp7rFX+g1mOakLTr7rQGOUtULf/qY+CdZkER8Wv8eLPOslfa5d1X4e/2Ijeqpc1dpajcBV7b7JWW+aX9FukfJPn7jyyqqwc+ddmgnNjowVgLhTbWBBTVWr9TT9TE9N0i8aDCiU557yAtJPf6/Vy5szlVfhdwX8t1NXVMRNVPboubbdwzqvtT6MEfJP0HZuYdywllEosRXqUIusKSiWEw+jMkkrPwLkxmn4m/p2WVZdO//ExuvfLW5s6+op4/gWAEBz+QjNMiufuQwMheo4OMXDGJ+s8gxdGGTgrgy0BnP+xjG/oKJarUiRHmQUkxbqxTr+scnRy1J1iyKnLIDwVplNGTL3+g+WEwxEOycixWVxpaNLlxSk6sxK0Glllu5YFHaRl6WQ9o/RCA3qrFmNBGqFRsZjVWmbCe5+TzkMDtP5SLMeoNOnIrLCg1ig5fUmMKL/c74NNH6tkcnxaeIzLISfFMHopyFsyvw9C/SG6Dg3S8jt5yqxDF8cYlOkTeo8N039S/NsgNAqnXrvEaIuMGDQE+/9R4N1J/uYOQV803sqqM9N/XPy+1r+/lMmJaY692jL/d1PAkq9Dl6YmZ42Ntt8NsWiBtOhcdO5HXYT8c2LPReJBncFAbqCMixzhpZde4rHHHsPrlSdqsxy8LSQlp1NiuSkVGqq996VsM1dRqbw+QmcbjA3qGPdHFlXyiOgSt9F4ABqNYfBLMlELKifFoFAwPRmBpDhDYTAQCQQWXsgygmOTjcJ1GRz45wUS7ykWyzY8X0b3sSHafr2AM0qxyJa92kzfkVEGT8mTnh0+62f4rLydRJ1/GqRTZpkS/HD+2+KBgzFTiSHPwOBJeffT8KKXwGCIo/8ivqvM1zqOKVPeFh9jplIWyQbg6L80Ya8xySqtFxyeJDwdYbxNvMRL74EReg/IqxtvrzFRcY+LsS7/ZZdwXvWom5nJsKyF0OWUkJG7MAtw8lutjPcsg6UV8zuCXfvPjZJdaVmw1GQqxEoZ+vuCHJNR0hEj5FRbhMdE95vyPnBifYT7RckIg6cmZPsriYA4hTFfA2oN/qRk+6LkMiOse6KUocYxmt4Q++jL25CO48pMsrxmjn91YbKkIknlaLQzRHquDp1NzeTIAoSjWCAR9eEHvjeaGAPq6G8tQFaKKSq1NUrzYPXVcOoP0WNRRaVUZKWwUcvqyndxqed1Ll26xPvf/34+/elPL3hPK/ifgw9/+MPx+sGblVsWTLrM+ncDVN6Rzdnv9dG1b1yInBTD/s+0zlIyWbTmMWDI0BMJR/C1JvkKlQoWkdWuf6oYg03L9MQUg6fFHGzpPXlkONOkMm+C1Y1NTgPhsRCBThnknCgWVf9IhQAc/1f5yQq5JeVii4xysOrJEoyZOt76J3HFGYNByaRvij4Ztezj40amud/65BkMNnmyTVNj00xNyqsZL4fQFEPtu8tkk+SXg7oH3aTlGDjy+bPCxJvTXxcjDCVjpM3PzGSY0Kh4/DVwYozw1CVZJJgYDDalLCJRYCjEaJu889Q/VYLBrpO1qAvR8oxN48Lj9fz35CdXT3xJfry+HPWI2LPJrE0XLvkGUrnJ7BqrrMXDjR+uQKlVLk1SSpo7ZqbCTE8uMQ6SYq+23wzQ9uZA/NnE4scFyUoKJQOnAqBUYC0xYK9IS8SSsdgzRd86w2bOZ0Jreys33XQTzc3yffgK/nvCZpNISSrU1GqvSN1oTmxVfFMmQxfGGWkJEhwMChGUAFp/O0jrW4MJgsASCU2AqcDMrM1BC5XiSYbn1jzc1+awX8b7vu79ZfQeH5ZVbsnmTWPozDi+RnnBwFhrkHOt8vxs/5GR+Qv3SyEIjT/qEm+vhwyX/PJRm17w4u8LcPyL4vPA4PlRzA55qrp6q1IWUQKkecbqMch6RqHRaaZDM4x2iM/RY61B2fGT3qqk9qESRtsnZC0YLgerH3czHZrhgAz1ALmEMJDyhRqdvHT9yW+14h9YBksrljIV7Np3cgSNXo1erxQn1Olh0we9TPQGZOcl7bXpDArGKaLtkjF0ZpyhM/JKb4+1BjnfKpNYH5SU6fRWJco0Lf4O8dJqa97tYbhljOafiG08zKgw4bm9gPx1do6/OsfesVgrEpkVd/laJ7BXmNGblQQF94Ds++wF4XETi8tiBKWKe/M499PupfsrlGzmbs7Y/0xzc/NKzmsFcXz3u9+Nl6LZpL9bLOcFlN5q4+LPh+g/GRQiJ8Vw6JVOWUom6jQd4ekwY0l5pdimvYXg3VWAxWViZjrC4Ekxf1Z4lZ0sr5mjXxZXA9Jl6SDC0gSTFAvZzW/I3wB9/rvyv4lFyzPFkFGZxnDzuCxFpMqdDqxuE0c+f1ac1KGD8e4A/adlxJKxcSOTz7P3n85isMmTbQoMh2BGLPcZw3JKDFc/XILOLI8kvxyU31VIZqWFk1+7yGirmAGb3+iRPU4DPQEmA9OEhsVzXoHuECe/0cToJfmxl86sJDQqHouPdfgZl7GRA6RyjmanSfZGM3OxntDgpPD1tfxCfunoc3Jz50jqXXIRIyhZy0z4Loh/l+Wuz6Bgg53DnxMvn7n22RK0aWr6z40u+q4nr3NOBaaZmlhY2GAu+o6P03cu4ediay8LkpWUSkbbp0ChQJ+tIacqjdbfDcc6E+08r5vbUMdk1hDt3a3cfvvtXLp0eTkF8DaUe0uW5Lxu/cfnHZ8ya1OUfItgz4bq1TCdtrB60lRW2iyC0tpbiJMDIhoVMxmLfKwnyVud+MEER/4t6aMkWtotJcIRFNNaBi+M0/ZmikWicDglQcleZUSlVWBZbKdBCoJS6W0F1D/pFl5cwygReqofEpc/A0mdpuZdLll91j9fzoYPyys3UrGzmPItTiwe8VIOhkwkQk+/PGd8/tsdHJFRixdg1VMVbPiIvHsCZJOu2n7Vx76/PyubECUX/u4JxnsDdO6Xp961HIy2++k9IZ8IIxeHP3uRw5+V91zHm+UrSeVtzKDhg16qtonLD7b9qo9D/9wo61yBAWl8h8bkka82vb+SkpvlySmW7Sik4UWvrNKEFo+RTS9U4pBTVscIDS9USr5LBlY94qZmx8JKe/MQUKLWK7G6Uvv6VJN09/4xJvpCHP+ueHDTuW+cAy91MXYpGjgsVv/VZJSOR8dA+U0Gym+KLqSr1USsC8tmRnQqiupUpNmU1F4/95iWsH7+rkC7qYgqTw2BQIDPfOYzwve0gv++CAQCfOITnwAgV1GMwTBfIVGhVs9LyNTtLMDiMJKzOh2FeuGkuEKrjfetuDebktujik0BQKFYtC8ASgVDFwLs+6dm+o6KJ4TPfa+F0Q6/MEEJIMOZJrtMQPVOJ/VPy4sD6p8qoeEFeTsL3LfnsfEjlRgKxIk2hgIDDR/3UnybeIkmAM/thWyUGa+FfJNMT87IIg8FhsIc+lwj3TJ2vlfvdNHwnBdrmcw6cQFkE8kOfa6R43LIwMtE77FhhhvlL5LIRefefkbaJwgELm8sOdEaYP8/nJP1XIFlEZQ2friC+vfIG6tHX2qi6SfyEhb+wZA0vmUMu6zVZiq2Oqne6ZJ1rg0frmDd++WV2Kt9tJj1H5Inb1/9sIuGj8vzQ/XvKaHs7iJZ75+lyITaoJLlu9re6qf7sLzxc+CTF+YvrC2A+HwWAIMN1j6TiD8VSsXiu6oVCiq25JFdlUJNWKlIWRq4fGAz2VnZXLp0ifJyec9pBf89sWHDhvh3x3Xa7fOOK1TKlGMpt85CxT35i5K75yrDrn7Sid6KtLC7wBhNhVNfb+fQZ2WUEQO6DgzS+mfxPII+V4/GpMZcJE6asZToqdjmoO7d8spMbHrBi1dmOfd1z5VR/aBLVp81z3hY/5y897xquxPvdhf2WvFyCehhOjiNv1/eCtalX/TKUq8EWP10Beufl++75JLIeg8Nc+Afz4uTMZaJYDDMcPMYnfuXoVwlE4NnR+g+JHNj5zJw8sstHHlZXs7L3yFfScpSoqfheS/ee8Xfpd5Dwxx5+aI8olsQpkPThIZTq0QvhA3Pl1N+l7xSec4bs9n0ghd9rviGVX2ung0fqsB1k3jZI4BNH62U7btW/00F1Ttl5OuDoDNrsDrES8MMn5vA1zzO+e80L7yWMGfe6T82yr5/OI/vosB7HiPGRseb+/YcKu7NTzq8eOndzFVmMjzp1KQq9ZKir15rorKwhsnJST7zmc8QDF5mybQV/JfAjh07AMhXl2DWpSiJpZmf8yq72469zEh2nWnR+EmhUccJSsXXZ1B8fbRUTkj6dlg05xV9tya6Qhz8bAt9xxM5r0VVLyJhzvywk8ELY8IEJQBbaRp6q1YWAaZ6ZxFrnhDI1yddr3eXg40frpRF1Mpdn8GG58tJKxTvpDNLa5TOm2WsQQAV9xSx4Vl5sU1odJKpwIw81ZmQtKmo54D4+pfn1nwanvdiT/W9ucS5At3y4sKTX27h5Nfkb0yTi+6Dg/KIWstEz9EhBi+MEhq+vIpNodEwhz51QdZzBZZFUFrzPg9rnpGX8zr19VbZZKCxvgBT/hlZZe/MTh3V97vx3C1jbQ5Y86yH1U/LU5gu21bAWpl5Ms+WfDZ+VJ4f8u5y4L3PgbVM/Ps0vdCIzqzB7BKPJS/9ppeO/YOyfPHRV1o4/VoSiXOx9cZYTiAE6KDukaK4HZaalxQqFdXbcslbZZ5vO4UiZXm7ivFryc3NpaWlherqasE7Wj4uq5LS66+/Tk+PxFysr3ps3vEpszb+v5rR5I8VBY0nIixG+5jRz7708g2g1ilxlYa5dHZp9SSA0uv0WPM1HPrhWIJUEJ2A42pKC6DxJyk+gMMLf6QNnvaz99KFhckLKYhNfUdGKdiYyfkfi+/QsBQYiYQj+AdlvBFGUKoU8muRRxbZnboAmn7ZjfOaHFklrgIDsO/v5bE+HddnYS83c/SrTbIIIxN9QdmJoU0fqyQ0OsmRz4sn/Qo225mamBIu9QZQ/2QJhiydrJ1lgQHelgU5gFNfbZHdZ/1z5aj1KlnMa0Mm5F+R9/+z998BjlxV2j/+KaWqUm5J3VLnHCf29GRn44BtgrHXCdsYsI1tbAM2tgm297fvl3fDywK7Cy+7Cyyw7C4sSzBmyTYmGDPjCZ6cY3dPT0/n3Ardaun3R0lqSa1W15XxrOGd5w8Yt6pUpVO3zj33nOc+h5MvntP9bItarbTeXEP//lHdrQbPvTpK+QYfgwfHdN8bQO0NftyVdnb/s/7xIDq+Afr3jmIwifFMgwNhaHTiqHISGtI39sbPBpEMEs5SgUpeUPMNS+6Ah4ydv1N9Ifp2iwWEWz9/Iu84iMfjCxL/+79xdukFaQ60vMuLwy+z4+vDeduBAKnPXWXmhX7SZIRobjWP7iMgzcXozurcNufSAqOYYsYQziS0qbEriMdfBqCyspIzZ8QZ6RfwpwOnM7kCkVhpvWTB58nAVTKZiKepe+39+lkqLnYysC9PYjLrvXFXaoTjkz8Zzt3XOAfWf6SOsc7p3G3e8qgphUfgwDfExvaOvz8uREIA6HypD2+rS+icuZkYc1ExoojqtWAwSUJEG2eFtuNtskeMGN2/Z5TZkJiCkLAqFLDqgTqGj03S82v96gmD+8cwW42MHdNvh8abyylucbH7q6f0t1RToeZSP50v9wsRrzY/3UZ4fEaI9K63JdrrxdC+SSEFHNAIHO0fbGO8e1pIVal4jRODWYcSThraH67HYjcLKWwOHZ9Atou16UDVVKUG9o3pJlIVsptzcNcEgfYgJ18Qe77xuTgxQf9gVAyYzGJtBkNjEeylKmpA0f1enPx5L7VXlgq9f2+Y+luOOUT1SKy8r4n+vWN0vqDPr5Rd5MdsN1F/g5+TP9H3rI78sC9nES+V6MkxN1UNrmCAlzh58iTPPfccN910k65rXcCfHvbs2cP27dsB6ODKBZ8nk36SJC0oTh367tm88VP2Gqb2ah+y20zphmJOL6bOnYWqy73424vY//UThMeyvn8JNaVOgZaqoKmEbBFsmT5+Msxkd5DO3+jf8ayUKMSiMUJjYnkbk9mIURVbP8ejceImwZzXC/3UXyOo6hKGHZ8Va3/rX1tEyUoX+7/VKUROGT01SWRKbIPU+iebiYzPChGiite4iEVjQnZovaOSojoHu754aMF4XRRhOPQf4oqCheDo98Xb0rY/VI9SJLP1r/TnvBQ3lKwppnvLoO5nq5QotN9by8DBMU7+t76c1/jJMNMDYQYPiBUayy724m1ysP9rnbrP2fEZ8fbOZ7cPY1bF4qGp/hDEwFEmE9YZD4X7whjMBlTv4pukc2EuGmMuIuYfRk5MMnxETCFky2f1t9ZLohCVTdDavhU1ONgu4I/8y91C1xjaO4XFOkjvlqzcXzLXkCPXph4uQ4obiDNHQ0MDPT3isfwF/OkgqV4pYWCF7bKFByRzumYTzM7nvI79cBj/aisDB/LED1lFYl+TFclo4PRLo0sqhidjuvYHqxjvCnLqZ/OxWioGzJdLjsDR7wooNwL7vtYFFrG15slfnMO/0i10TnRmTst5CYRejjIVg9nAlECdTQ3YIBYnNCRGau3ZMiS85j710z5O/VRMcaftjirGuqfo/b3+DTiDh8ZRvTLDB/X7/orLfFRs9HHo26d1KwghQ8VGH4O7h4SIVxs/1kJkfFaojiXSkvf1YPxEkPET4pvfNn2ylbFT0xz+tv650N1kw6yaGNyrPyZafncVaonKjs/qV9gc3DeGtUSs8w8yLPuzKoaPTtC3c0zXKd0vDtL9ov7cLMBEV4ThoxOc3SJ2XnwuTlxQwctiM2GyGDXSjM4hHhyK4InG9LUATPjjky/20/BWv5CS0vHnznJcPivk74YPTTG8hDJnThK3DB0fqGPo0ARdvxldut4IlK12oXrN1FzipfOXabm2PG3cDv6gD7NiWPCbkjXQXEp/dSObOcf3OXz4MN/4xje455578t7X68EbSlJKJusUtRivfX73Q5KclAtVzXH6RuHcZG5KXDY5KepUME2EOboNbL4YU+N5FjBZwYStyIjBlFC8WEqpKDE41j4QwGiSePVznWmfZT7A7MJf5RUewsMRBvct8jLkICglsfuLYrvdxo8H2SqYGCJIQfJ8hfQIHz8eZN9xMYmwtruq6N87LKRW5F9VpKknCM5jBRF6pNT/6Eb1ZdoOnYFd+u0enphBLhJbNHtX2Ki5opSjP+4VakdXCJa/r4Z4NMbBf9cfAEQmZ0VNR911VbhrHYRHZnS3JxztCoIERkUswbHzH8QlL0uWFWGUxUXqWt9dycD+Ed3j/NSPxSVWe349RM+vBXcYBnW05cuxUNv61/qLkkns+2rm2Mm7AyuJxLBuuTXAke+k2STt3ORiMH1BufzOAHa/zL5/6yKo0ySK04TBLM2388vTDiR5Dwd+MkEwEdvF7WlsiWQr0hxkpa7jWpBWv2yOU7sWfm1SUSmdrLR+07N0nvwSg4OD3HrrrXznO9/R96Mu4E8Kd955J9FE/HGN870ZRdV8rPrqK910vzzF2VcXmSeySX2Jgu2rf9eJWmbUTVBSPWA0S8hO/eGnrUpl5Z2VjJ2e5tC38iQjs1rmNt9SobVaEmwj1r9zjH6di74kCmnPVEjbrf5tY0IkkSREVWZ8Kx0UNTo5LliIsZUoWKwmIZJSIfY2mgwgoZ+ghEZQKt/gw6gaOPm8fntEZ+YIj4sV8truqiYejRVE9BKBu0ml9uoyjv24l+kufQM9NKKpN4YnxJJ+jddXEI/FhcffkoncLJx4Tiwpm4StRCHQXiSk9uRdbsfX5hYiLO0v4F0vZL0kuv4DOPn8OaGxDTBxKsTeAtuVFa9xYpJNQjbf/Ewbs8EoOz6nr/AVCsUxmg24KvUr8J78UT99eyeY7k71fVvynPGT2rFWr0RRi5Ozv8+RmEzOg4l51aOWUuWooWeom49+9KMXSEr/D6O9vR0AKw48lnmlw1w7EpMoXe9k7PjkokWHbN+ZTBqefnGI/kNTBAV2VTurrJgsBkSEJ9Y+WofZZmarwEYa/1o30cic0O7/JPZ/o1Po+PBAWIgAm4TI70lCVM0GNMKDaJzX+K4yhg6PC7WIC6wpwuYXLHIAh/9TPD6RJEk4b1N/TSmS0cDWfWI5r7nZmH6CEmCtUGi8oYzOX/YyfvKNVVhpubUCJIkj/6XfhuGxGUyCRJuySwKUtnuJx+Oc0Zm/CQ9oLSONghvZCsmBlnV4sDgFSeVA/TtKGT0xqbu9Ws9vxdWxhvdNCo25JAppyyfS9i+JQlqcJAlKje8q4/gP9MfKLbdW4Gl2sufrpzSlLR1xueKWMcpGFLdEeExfwXH3N7pShDBdOTygd+s4SAaqLiui+zc58ro5cm1XqXew3/0SAwMD3HzzzXz/+9/Xda0L+NPCpz/9aUZHNYLbZba7Mj9cZMMpQPlGO2d3hOjfv0gMZcgde+34p7PIxUusa9M/k8GsGlHdmo/Mq54EEI8hO2HNB5sYPjbJ0e/pf8frrivRSDaCIjNjx6bzF+xz3POxAki6x5/vFWuXi3ZvrxYQ4535jRipwlmr4Gt1C5OU3PV2VJ8sRFLS7C2WRzCpRjBITPTpf7jFLS6qL/OjOM2cEMgBzkxHCY2J5Yca3l6KZDZw/DnxcSECtVSm4bpSun7dJ6RaNBueIyKY82q5SVP3EyEpIUnpXSF1QaQldgoRcNVqnQL0kpRAG+fFy4qEWqUVsqFv1xfF10sHCsiJn31lmLOviCmaRoYiHCxkM0MEXA0qqlvOtPkS+aWNTzYxG4ry2v/VGV9HtPfdUaoCCfL2EvXG3m3jjHSGCfcn/EN6zWaRNm7hwRhhYshuI0W1Kn05Olsk8xdJspJNdlJja+LM+En+/M///I+TpFRSMi/Lt3Hz4zClOYZ8BCWIU1ED5dXwuy0LP80mKCXRuhkOb0GIoASw52dzSEEdSYC0AREencViFzNbxQYfSDC4Lyshm4ectPZDDZisJiGFlfJLvHibncI9vhtuLOOEYNDQeEs5A3tGhRSRmm+vwF1jZ9vnjwiRh9y1duwBleH9+heAOz53DGuZWMKm8aZy7CWKEHMYECeFAad/fQ6zTWxRf/hb4otZ37IiFLeMp9b2hpOUnBVWYWWtQhIip18aoHzjHGdfE5iU9BBtcqDqmhKKm51CPUj3f+2YcBs/q89AUb0DW7HC8H79xKgV76/B6lPY9mmxAL71zio6f9FNSCDnU9RqRXHJnHs1a7dTnoVa6UVFlCx3s/dL+n3SsrsqcFXZ2PJX+t/31R+oQvVYCGxw0rdN33aBoaOTWL0WkA2Avue15xv9IOcg0OZhOQeHJSBO1QYzU1MwnB2DLaKqVLMM/DVGrM45Dvwm9/2kqypZrVaam9v5/e9f5Lvf/a6u33MBf3r41re+BUCteVXG3/MRlFbcVYrNLzMzHaPvtRzzRA7VseLlKmabgd4tE4TO6fd3oRF49TOnlk7UZGFuJkb/Hv1JgIrLffhanJjvqeaAXqljFTZ/tI3Bw+NC5JxV99XRu2uIQQFlRP8GN6HBCBOn9DOo1HKVio0eYeLQ+qeamTobEtpNW/uWUsx2E8d/elaI5LXlU4dQPUK3R/vD9fTvG9OntJKASGEoif4d/RhVA70vi6ngFFJ8cFfrlxF+PfA0urF6FYpbnLpJSgCv/o143Nrz6hARwcRVIUQb0BS5xjun9StShWD3VwRUtRKof2u5cNFQ9RhYeX8TgwfGOfUT/Yked5OKt9ktTBisu6FU6DqgtYo7t3tYyCdt/Hgr4bEZ9gisgRpvqCA+FxciKc1OR5kWUawNoamy6CAapWO6OwQqNN9QxtHv6088r3xvLZJRyk1SSiJNVaklfAVzpS/Q2dlJXV0dpwokfF3AHy86OjpS/75YfWcqoZePoARQc1kxsYt8bP/7hWukxYpgje/0c/wX/UIEJYAD/342b94pF6b6w9iKhU6h9i1+DCYDW/brn2NW3leL6pGF1rLelQ5KV3s58G+dQvdXc42fTkElvNq3+hk5Pi5EfKm5xk/JSjf7/uW4UDus4uVu3DV2dhzRr16y98unUEoUIYWVqiuLcdXYhBRwAOF8A8DJn59DdonlvE7/pJ/TOlXwkihudWL3qxTVu95wklJRvUP35owkCiGF9f5ugHgszuBuMZJOIUSbwEYP/lVuodzcgW8cFyKSAaBom0nd1XZGDunPebXcWoGj0iqsNFb/jlLObh/VraYE4KhWULwyg7v0Fyi9Kx2UtXuFyJaNN5bhW+Zmq4BCUtudVRTVO5gejNCrs0DXt3sYZ1XauiQeX3L8ipJGgZSNyzYVMTM9y/ABfWRLf4eD8k1enJVWDvz7Iu9JVq6t2b2MgYFf89xzzxEOh1EUcaLmBfxx42Mf+xgAdXI7sizPb8zLQ1BqvN6Dt8lGbE7i3K4cOa8c5DpntYzVbeDcrmlmhnQSlAAisP3z3YsqhGcgGZ/JMjPTUYaO6Cd6e9tslHZ4UD0WoQL8xo+1MHRofHESS45cXcvtlQweHGd4v/71pXeZk9mpiH4VILRWb+WXBDj1EzHiUMejjUz2BoWIVDVXlmIvUzn7ygCRCf3x2pb/fQjZKbY2XXFPNYOHJ4RaiXX+vF+4vdfgkXFUr4X+fWJqfSKq4Ul4W51IBgPHeWNJSq5KK84KG55mlxBJaafOTVHp6PxVn7ACfSFEG9AUuSbPhYTIda/980kiQ2LrwPq3lqN6ZSGSEjJ0PNTI8JEJoTFor5DxtDqF1ZsqLy8WJhk231LByLFJIULZ2scaiYzNsP/r+p9Z2y3VxOfiQsSw8EiEkOBG122fPp6740ueemOSoFR3rY9Tv8zhWxZRVVr57jKMsiEnSSl1apqqUjOXESsP093dTUtLC0eOiK8J9eANISnt2rWLwUFtcK3f9FEAonYL8Tw+PGrXyEvdZyLMZj3HUMCKZZHEeGlFFFexkdVXwe7f5jhgkQB89Q1G9vx6DqbzFMpyDIID39EWA5Is520Hl4693zqDr3F+B6hkkIgvEayIFvAAyjf4tGR7UuVDB+rfWYp/ZREWu0lIIrm4xYW3wSlEorJ6ZYxmg7C60dHnu4iGxe0R7BVLUHgaHRgtYoGG6oNQEOHfdO73Yi2tAErWOJmbnRNSlDr67R6Ocn5kcAshAak+8K7wCan7BHvDBTO1rVVWgt36H1ZJmwuLQyyxJkpQSp7Ts2WQ7pfEJmXFbREes+WXePHUO7DcXCeUiGr9sxrisfhCklIeVG0uya8qlaPoNJMICB31NqZO53lWaefu+Y9u6q8oXpKglFJUMpno2zlN306xlklJ1L/FjmSAEy+mTej5dozZJQKtKrG5OMNd0YWfm4zMuVSk2fl5ofMg2Bxw8FVj3l67McXMnKwFMkbL5cRivwAgEAik2q1ewP8bSCboJAw0qmu0PxqNeXd8SSYTB749SPON3gUEJUmWM1Qh01F7uReDSaJ3q/4kSsPbi5kNztH1kpgs8HR3iO2f1RbNS7UlSaLnN0PIdnPmQiyP7CmAp8YKcZiZFFhMqGArVai5LCBECKi/qgwkMRXL5reXYS2WGTk6zvABfbuPAUwWI7JbbB7b8XfHKLvEK6xCBRoRTS9UD6gemZJlbiGSklquCrXJS96XqMoMKpSt9dK7c1iMrFVAgagQnPrJOWECC2gKQoDQOOr+pVjLnyRUD4RCCNnPVqJgsZmE2uaJEpQAjv23+G6q0EgMo8WALSBWEGm5uQaDSRIiKS1/Xw2uShszk7P0vKwvTlY9BuxlKlXWEiGfBMI1V3q2DjG4S6x4uuPvxJOFoI2jlltr2f3P+knva95bi+w242lRGTmSewBKZlOGIvKZLcPE5ha2CV4Ao5HklsnSgbWc5SxdXV3s37+fFStW6L7HC/jjxtjYGLt2aZKn66XrgKXJScmxdeqlhT5VMhoXKHQn4a5X8LU6sBZb2Ps1/Wv7le+v5NhzZwgLph6OfCexgS1LpTIf9nzpGL6VaUzlJeKu5CGiqLqoBNUno7gNuklAZZs8lG/0YS2WhUjbpWu9lKwqElJtsgUUTIpRiKAEcPBbhZEcwwNi81/JCrewAo7iTlxrTOg0BveItRADKGrRCBUiilJdLw7Q9WJhcYooClHjQoHAag99e0Z0E1LCYzFhslbqcgFFiJhTstyFrURBcet/xsIEJYAwdP6yT7hFjFxkwbTIhuXF4GmzE1jtwVaiCG3iXXFXnUYOEyAp1Vwe0Mh4Cvqf7/gMxMBdqTJ2XF+QfOib3dS+1a+boAQwdjy0UNEz6ZeXcMBVVxZjths5+d/6c0o1V5YwF44xfGCRgrfRmFFn6X9tEne1jaPP9eUnpBuk1Pxp6QwQT6TNqqur6e8/P222L+DNgYqKCiCR87Kt1f5oNObPxxqNHP/FOHMxFhKULGZYJOdVf2URFpuRvkPB3EpFOd6hqsvcxGNw5ndj+et6WbFVZDDCa1/Q4oAlc16Jc4cPTtLl66fnVYE8SqkM8Tgzody/ebG4zdOQ3FStf33ZcH0pRotRKDdSe30l3iYnkz0hIfKB2WbC6s2TOM+BfV89TWCtW4iglIToOY5KG5LJIERSkotlIiKbewAihan0lHS4GT8+JtQibtunxTfzFYK+7aNCdkvCWasgGQ1CreIKuQ4AsrafXcR+7jpNkUuEnCNKUAI4/qMerSOICCJgsZqw+cTeqZZbq7FYTUIkpYa3l+Jv9xCPx/WrZ8rgbXZi9cmL+4lcMY44tYDTL/UzKij6seerhRHXkGH5n5Vz4JtZNe8881vbbaU4q1TGekKMHMkRhEpSIuc1/+NP/XoYk2rUcg95IBkNqdisbngT3XRz7NgxXn75ZS699FL9v0snpHghbJilvjQxEMxmOxdd+jSRIm1BYRlfOAnOJlp+uGemCQYhvRobtc4bKxdJKWbRPm+pDnNyX9aHaVprhonMoL/xYvCUWRjsmuH0r3IsCNIIRPGw5gCspbD8xgAnfzOWsSsgPrPwvlImzUFEygg08iV8Cnws3hU2IRILaO3URHu4e1fYMBgNDO4Rl/N+o1G82kHj2yvp2z0i3BJL9SGkLtPxoQZkl0XrEa7TZ6k+WHlfC2e3ibXe2vxMG1BYaz5RbH62jZnJWXb+vXi7MxEsf28Nriobx398hgGBYsq6x5sIjc5w4Oudus/Z+IlWDCZJjEwlQPhLx6ZPtjI3Eyuoxcf5QO0NfuGkV8ONZQweHMtUT1sisWGtshIPBnO/U0vsis8rE73Ujvo852YryrTfV05sLsber2uFQynP7hsAZJkNH/ARj8XZ/i+Zi0FJTStaZvnwmk1mTu9PJIRzFCDmXPOt4NLJSgDWIhhD+25TDlZ/xKORfE3TcwSDQU4c/SKRSIS/+Iu/4Iknnsj/ey7gTwJf/epXue+++wC4xHw7qqoiWRLjbTZHAiIxzlVvlFD2NJkWqOYiKUmShMUF/pV2un+TJ3GQFQNt/GgdSHmUlHLER6s/oJEj9/5LZpCfM2mjVyXgDxz2qh7AogiRJDytVpxVDiESBkD1NSV0vXB+ijCiWP9EM5JRKqj9CipCJJbNz7YRDc0JzbHL31eDbDcJKSNWXOqj+nI/AwfHhBWsRLHusSbMdlNBhG9RbH6mjXgszta/0l9oq7qqhMCaIrYLJKPUgEL7/XVMD4SFSNGqR4zsBlB/Yyn+FUXs/tppYQLb+YBvpYOZqaiQehoqNL8t0bZSAJ5WKyOH31j11NeD4jVO6q8uY+9Xjsw/5yXiyeZbKvA2Ozi3a5TTP8v0gYvGiyrUXOyj81eJZGOOeSMj5suKzdQSCI9p8VWuzUWSJfFZNMo+48/pGz1HS0sLhw8XUMC+gD9KGI1GYrEYFlQuV29e0BIw62AAlKI5wtnrovQeAYuQlAAqL3XTvW108SJ41hivvtJL2foiBg9OcGKJInMyrlLcsOreRk784lwmkVVQiekPHWtlw92ov7CfROONZRz/ea+Q6pCjWsFsM+luTXU+oQQU1txXx7ndw8LrehEyCsDKe2uwl1nZ9YUjQuSrdU80cW7HiFDLro0fb9FaxJ0HwvfmZ9uIjM/y2uff2JxX441llKws4vSL54QIOu0P1ROZnBXK1RYUTwqQa9Kx/slm4tF4wQTkNxqVV/h0t8pLourKYsa7JoUUuZQSBWbChRG3zhNW3luDZDSw98uJeFwHQ3TTJ1ohDluzFVjz5OIqL/cytG9kcVukF8Sy5iwlIBMZ1DYL5coVpIppiXnyNevPCAaDPPPMM3zyk5/M+1su4E8Dr7zyCpdccgkAl9veo6koJfO7sRyxl0EbM7IrSiSbx5NOKs9FUpIMIEPZcpXe7YvHANlrhHUPVyKZDGz/+84lxQmS8eKyOyuQDNICNTE9RKU3BDneP9kJyGKkGXuFTFGDU1ghpfxir3A7p/OF9g/WY1ZNbP9sAbUeGaG2fJufbmMmGGWnwBzbeFM5Np/Mni/rz70Utdppu6Wagf1jHP/BG5vzWnVfLbaAel7qmhs/3grxuFDrwJION5WXFHPga8f1E45k2PxkG5O9QSGVUtkpRmoC7d2ourSEQ9/pEiJfnS+4GqzE52JCilcAdTeIq6c5a5XFr1PILhi90Knw7apXaHp7Bfu+eSblN5dqh1t5uZeKTV56Xxuj66WsemOe31S+2c3ZbYvzMzJzXpn+XXZDZDrxea45y5zoiBaNcpBfcna0k8bGRo4e/cPXuwW7Ji6Nd73rXal/pxOUciFJUALoWA2XXqT/OjGLEZs1AkQ40pV/N2vMqWb89/FX4NTOGU5t03+9stUuJKMEc/kTLunBdPFKG5s+0UTTzaXaZzpbYa28vxZ7nXXpA3NAlKAECBOUktcRIihZNXKOKDZ+opW1H24UOsekmIjH4kz1ijtsEYISQP/+MULDESEii6PKidFsSPSa1I/e14a13VcCaLurSiM3FTachLDu8SY2fqJV6JzOlwcYOTnJwBGxmdlsM2EVZPQOHhpj8qzgmChwzp+bjTEXEZOILL2oiM3PtFF6UZHw9axVYg+4kF15J57vFWrvCBDsXoSgpANtd5bjX+sQOmfTxxpY/1i90DkWuxFZUC3r+EvD+QlKOZAkKFl9INKwePlmWLVJojygBTXRPK1pojYjVquV1tZlBINBnnzySd3XuYA/biQJSh6pLJOglAuJALVsnZWVt1XQ+Db9/bkkSUINwMw4nPndEgWbLFb+q589xdH/FlN9kZ1mFFe+NsEJpCVpNjzVzKZPtAhdx7/BTfMtFULnJBEaEVdxGTkcFCYoAcIEJVu1WJwBUHFFMZufbsO3Usz/RsNzxGYKTJYJckomeoL07RHb5WT1ysh5W04vxPCBEYaPTtDzqljstfHjrbQ/LDYXFQK1XGXz02003FQmdF7f7lHOvCKWLLQHVEyyUWhMhfrCBAfDwrGrKEEJINgfIRaNYy0Sa9+29sONrH+yWfh6qgeNXKcTQ/smxQhKACGECUpAwQQlZ53K8vfWCJ3Tclslm59tExoXBrMBg8WAf51f9zlHv9fLsR+d1U9QAgiRIiip5Zb8O6yzsPGJOlbeVTt/nTy7zCSTiZVzbyXgD3DkyBEeeOAB3de5gD9e/Pmf/zmxRKE0g6CUC2mfrbirlg0frRO6lhLQYrozL4/lJxJkjfGuXw1z9IdnOfEj/bFDSbsPo6K9o3phrVDY/EwrTcm5SCdBqe3OKhzVhbXpESUoARx/XoygBDDZFRYjKCnzqkMiWPd4E2sebhA6x+oxMTcbI9gv1ooVxFVwzu0eZao3KERQslYomFUT9oBYLNr92wF6t4slEOreHmDTJ9tQBFUOC8GqB+rY8JTYOuPMqyMMHhhj5PCY0HlKkYytWOw39e0ZYey0IKmuwA55c5EYM8FF1DgWgafNzqZPtFJ2sVf4eqLPV5SgBJoChWjLwPBA4QSlxhvLKF7jEjpn48dbWP+EWOyqehUUt9g66PB3O4UISgA9L2sEJdFn1fhOP+3vrSSwzqldJl+BMZFLa61uIxwO8/TTTwtd6wL+eHHZZZcB4DVVZBKUciFBUPLUy6y+o5SGa9z6LyQZkL1ABHpfyx9vZK8Rdvzfbo78QCznpXhl4fpGxyMNbPyY2FxU1GKn4e2lQuckEZlAWNVnqiciTFAChAlKcrGY7QC8K5xs/Fgr3hVOofOi01GiYbFaTwqCIjhDR8bp2yWWGHGUqiiCilLBs1Oce22YnlfF5sy1jzex+gNia5qCIGv5tfq3iY3dM68M0PlrsZyr3a8g282oAdvSBycRgfHTU/TvHRO6lihBCWB6IExsNoZJFlOXXHlvLWsfaxK+nkZO1H/8+ImgMEEJECYoAQVdBzQ1ueZbxXL/1dcUs/npVpw1YrGN2WrEL5BXP/PbUQ5/v4euFzPfxaVUvpMEJblYjOaz7oMVrLijfP4P+fIZJhPLuIrS0lKOHTvGBz/4QaFr6cEfnKT0/PPPYzAYuPHP7iRSZKLYGuSKlmkqXFrCdEVrhM3rIymC0iVN06yvnWZwEqam4aKNEcprI0StRpbXBrlk5Xyidd2mKKvXR4lZjFitETra4ZLN2meNq2H9NWgBq8HAmsvirL44mSCJs/YmM9VrwFMJNWuherWW7InbVFbcZGfln9k1xtjcHB33FFF7ueaQKi93sfaBAN2/H2fbP/RQ1mFn9fsDqXta+2gNjTeWEI/HKb/YxfrH6rBWasF/+cU+Ta5sxxjxWJz1jzfQerv28Es3uNjwVDOuBo1csPx9Nax7rBFrmYzdr7D8jiqW3V0FaMpAG55qoXi1NrCX3V2VsShZ93gTm55pZdMnW3E1WtnwVAulGzWiQ+u7KzOS72s/3MjK+7Wka/O7y9n8bBuNN2u/p+m2ioxjOz7UwOoHtAlH9cGGp1qouqaETU+3sv6p5ozF+ZpHGjIKMhueaqHubdr31t7gZ9PjrbQ/1Ia1ykr7B+vpeLQh49jGmzS7VL2lmA1PtWD1aUNTMoLJPv+SrH+ymebbNWdSfomXDU+1pAhdK++rZe1HGjn36ihb//IwNVeW0nqnZkP/ehcbnmrBu0J7rsvfW8O6x+cd9Ponmtn8bBsNN5bhXWFjw1MtlKzRgpW2u7Ls/ZEmVry/BoCxriAWuzlFLGm+faENVyVsaC1T2PBUC0qRzJZPHSI6G8uwYceHGmh/MGFDq2aX2hu0BH79O7Ud4kllqDWP1LPmkUx7179Tm7BrrvNr32tN5Agl6Lgvy963aPauuMKn2btMc7Qr76+l40Pzx65/spnWd1cCGolmw1MtuBKtC1e8v4Z1H5m3oVE1pNasJWucGWN2+T3VC8bs8vfWMHUqSN+uITY80oJ/vbY4b70z095rP9LIyvu0MWuv08Z312/62f63R3OO2ZS9fYbUmAUwGA1YffMTSsejDbR/MLe9694WSD2bTU+3svHpFtY8kmnDhhu1RGzVNSVseKolRcJb/UAdc5G5lFrD+iebabqtItPeCVLRyvtrUyS8yXMRkKC0Q0vYlG7MtPfy9y0cs8vurmLTJ1pZfU/Nkj5i+ftqAHA1Wtn48RY2P9tG/TtL8/oIa5Vm74ortB+34eMtbHpmnojW8Wg9qx/QjtV8RDNVVxcD0HBjKRue0sbP5mda6fhwPe0fnA9gNzzZSN0N2rOpvb6YDU82psh07Q9pCltVF2ufr3+8gcYbNX9SeYWH9Y/Xa2QfYOW9laz5YDUAs6E5JHOcppu051i+WfPJ9hotObrinnLWPDAfjKz9YCXj3SG2f74bf7uVdY9W4WnSxkjbn/lYc+98ENxxXymtt5TMn/s+L1WXaPNYyw1O1tw6TxRrv8VK2/UqSBLWAHTcYSfQBNWrYMWlRta9U0rNVauvN7Diai3gsFpjbLgiRmWrRNxspLEdrHaYmYVzfbBhTYS1qyNEVSMxNcrGy6LUNWmJwZbKIJetDBK1RZC8b8ftdgPwlre8hQv408ZVV10FQFlpGRdVvw3JYmb5LV5WvnueGdzxYBl1by0Cs4nSDpWOe/0Eh4LMTscwW42sfl9AC0iNRtbc66fhOs0fl6xSWftQOY5qC5IkseYDAVbeVkHpOm0u7fhABc3v0t553zKVtQ9X4mnR3reWm4vpeEh7N4uaVNY8WEXpGjcA7gYr6z5cS0m7HWJxmm/ys/bR+YLwmg/WsuzuCrZ95jj7vt3DusfqKd2k3VPDOwKsS5IR4zHaH6ph5b01gEYcMBglogk1srobAqx/Yt5vrn6gLjVHoGp+tOZaP9WX+PG2ODVfmKilrHqgjvaH5ufZ9U80U59I6lRcUcyGjyX86NtLWXlvbUYMtO6jTSniSOkmD+ufaEYt1744Oaekjn2sKbVIKl7jZP0TzbibtGPb7qpm7Ycbaby5nM1Pt7Hu8SbaEnGNd7md9U80p8hErbdXsi5t4bn20UZWvaeW9U8146xTWf9EM/4Nmv2bb6nImE/WPNKQmiNUvwUMIJdosWz9jaUZ80n7B+tZdV+mDauuKmHX/z3B0NGJjGNXP1jH6gfn/f76J5qpvV7z5dXXlLDpmVZthxOw6r489r7Up9kwkfCWDBLe5vnF3rrHm2i8WYtr/BvcrH+iOUWaWPaeatY+2sj2zxxly18eYt1jTbTcVplhb0+r5r/b7qzKsOGyu+sxmA2EzobwtFpZ/0QzxYnYsOW2THt3PNrAsvdo4x1Ja8eatHfjzeUZ9m5/uJ4V9ybmTo9BU6GyaPNA/duz7P1QPas+kGnv6kRcU7reBYb5TRCrHqhj9YOZNqy7QbNh1VUlmg09Wps4b5NzPgZK2vtG7diyS7wZ9l7+vhoUt5ktnzrEdFeIdY83pUh9/rWavZ11iTF7d3XG5gKzasJTqz0r30oH659oTrWby7b32g830nZ3tTben2lj/ZPN+NdqNmy+tWKBvZOEGrVcpfKiYrp+08/wgSkabipj3Ucz7b0yZW/tt1Zcofkto2rMaEu7+sH6nD4CoOZav3b/a+y0P9zGhg815/URmr217155by0bPtmcGu/5fMTy99ak1km+lQ42P9vG6oe0+1/MRySx7jHNR2z6ZCsbP9G6pI9Ijllnncqyd9fgrLRqCk75fERAYf0TzZRd4mVgn9YebdltVfP2XsRHANReH6D6Ej9bPnWIzl/05/ARTdRer9m7+uoSzX9bNRuWr/fS/kBtao5Z/3gD9Ym4vfySItY9Vo/qNyVsWEn7A9r9bni8jtV3VtLwjhIwSPjXO1n3kTpsVQkb3uZnzQcqUnFZx0PVRMNRBo9M41uu0vFgGUUNKpLRSMvNJXR8YD6ObL+nhJZ3FiGZTJSrjRgMBr72ta9xAX/6+NSnPoUkSbzt6pvAaETxG+h4sIKSdi0+qr3Wx5qHqlLJvpXvKaXt1hIGD04y0Rui4+Fqyja5wGCg5soiOh6sTH33iveUs+zdCcKPAqvvrmTD45oPqLqsiLWP1JAQWGX5XeWseE/a2ubRWmqu9uJuUCjb7KbuqoBGmpEMLLurglX3VqeO7XiklrrrtHczsN7Fuo/UM3B4ii1/eZTiFmdqjQeaz21MrH2LVztZ91gjrnrtJuqu1nJhA/tGIR6n49FGmhNzclGLjXWPNeFp0/x+883ldDzaCIrW5mDZXTW03K79dke1wrrHmihercV7jTeWZfi31Q/WazHUx1tQAtqxgY0a0b72Bj9rPzJ/7KoP1LH8PTUAVLzFq+V5bkrkSq7xZ/jClffVpnI7oPnRqiu1nNTaxxu1YxP2XvG+GlbdX5txbO1bNT9UtsnDxsdaWfNoG+5GlWXvqZ6fT9DmuPp3aPfgX1vEuseasFZoX2xUjFhcaRs4P9RI47s0e3tXOlj3WBPuxkR8fVslax5uYOTQFNv+zxEqNvloScSR7kY1w95NN5XT8aF5u6x5pEGLXd9RirUiYe8EQaL+HaUZ9l71QF1qjpjsiSA7LZRtmrd3ug1XfaCOFfckbKhodvE22tnyqUOERiKZ9r53Pm5P2rD6am0cVlzmo3yjj67facS6FffUzMdASXsn/H5go4d1jzWhlCjEY3EkA7S8az7RvvbDjfNjdo2LdY81pUhxrXdUsuah+dxOx4fmx6ynzc66x5pSbedabq3QxmwCqteCwaTFbK56zYbexDzb+K6yDHu3P1RP251VhPvCdG8ZZsX7GvCv1fKGdW8PZI7ZB+bHrOI2sO6xJrpe7mfH3x2j9q1Z9r6/lhXvy7R31ZVaXCNJkkZsSo7Z99ekcmlJG9ZckxizF3s1G7q1/NbGT7RkjtmPNFL3di1uT47ZJPmk7c4q5mZiKaXM9DFbvFqzd9JHtNxemSLhBXunkEwSJavcQB4fkcCahxtoub2S9U80s+a+uiV9RNtdWjyiBBTWfbSJTU9r4z2fj1Dcml0qLtPWzmsfb8zIeS3mI0BTa1r3WBO1b/Oz+dk2Vj1Ul9dHaPbW4ppl91RTvMJN9aXa+M/nI9rurErFnOGxWQxmaUkfkUTHo42Md06x7dNHNB/xeLqPKMvIza95qJ7WOzSfPBOOs+6xRqqv1X5r/TsCrP3Q/PhYdX8Ny+7WjlVKzKz7SD2lG90E1rlof18V65+c/96V769meeJYFFj7SA0Vl3rAIFF9pRdXtZXIWJTR4xMsv6uM5XeVIUlai7e1j9RQfbnme8o3O+l4qBKsBqxHa/EWabnTK6+8kgv408bjjz9OLBajpKSEixreDiYTjW91svwmd+qYVe/2UX2ZEwxGjZx0p4fwTITgSBRMsOJ2n6agZDSw8nYvtVdqvttVK7P6vQGcNSpIBpbf4WX1HaWUrknUPu7003CdNgYd5TKr3x/A06RV7muudLPqvWUQj+OssrDizlL8q7R8gRKwsObBaopXaO9b9RVe2u+fXzOtuKeKltvKeO3zJ9n71ROs+WAtgXXa76m8zEvHI/Pv2/K7K1l2ZyLek8FkNRINa7ng8ou92nucIBMsu7OKFe9Jj/caqLqimJrLSyhZ5abj0QZkpzaPtd5eyYr3zR+75uF6qq/VfFLxKhdrP9LI5mfaqLshQPMtFaxKm0/aP1hP3Q3aHFHUaqfj0Uac1dpNbPh4Cxs/Pp/zan+wPjUnuxqsdDzaiLtJm2cb3l5K+0P1VFzmY+PHW1n9wTqaEnOyvUKm49HGFJmo7vpAhn9beW8tHQ/Us+7xJmSfdmxJh2bDqquLM+aTFe+roe2OxBzhM2OwSNgSOa+Ky3wZxy6/u4rld88/q45HG6m4zMf+b3TRt2dEOzZh77Y7qubn5MSxybpIYK2bTZ9sZUOi5tJye2XGfLLm4QZqEnOEd4WTjkcbtZZ8Cfga50lU7Q/Vp4g67iabZu9abY5ovLGM9gfr2fXFE7z614dZ/YE6GhMxkbNWoePRRopatXFYd0MgI4fRcmstZquJ0LkIaqlmw+JV2jxb81Z/hr1XvH8+bo/H4yg+mUAiX1N1ZZa976lmWSJ3iazZxWTT1kXamJ0/dtldVSxPH7OPNlJ5uWbDsjUerV2ZUct5td6eae81jzSk7F3S4abj0UbkYpmzrwzjqrGl8kBJe9cl8pHeZZq97RWavRtvKsdZYWXL/z7E2LFp2h+sT5H6kvZO1vAb3l46X79FE1JwVWvj2VmdGLPLnPP2Tsu7rby3luZbKqi6sphNn2yl4yPz9q6+tiSj9rji/TW03q7ZUHZC/bVldP12gOGDE1Renmnv5e+pZtldmfYuTxDCLXYTZpsx00fck2nvZFwTWF+kja06hY4PtbH2kabMMftIQ4aPSNobtBzShqdaUuM9n49ofFd5iuTmrJbZ/ExbKuZfzEcksfo+zUdseFLjJizwEen2fn9NKt8u+2RWv7cWb5MD2SdTdVUxHen2fm91ykdoNmygbFMRfbsniM7O0XTj/Hp9+V2VLL9r/r87Hqmj4lLN3mWbi2i4rowtnz1K90tDtN1RwYp75v3JmodqqbpSO9bf4WLNB2uRfdo60L+qiBXvqcBZZYFYnPb7q6hOHOtts9L+QBWKP2HDd5Sw8h7tt3U8UEH73ZXUXa3NVe56mfb7ynFWacfWXe1m5bv92qYmg8SKO/3MBKMMHJ7GWWFm9d3FuOtkMBqpeYublXfNbyhcfrObxmsdYDJRbVyN0WjkK1/5Cn9o/EFJSmVl2oSzbNkyWpu1F8VpBZMB3LY4My4TdhuY04hZshlsCuw7Y+PMmITRqJ2TPDd57IzbgqyAVZ0/D2BWUwPF6pEwmuaZZRYFlMT3KFYwmiQcPgONmyyU1Jq1Y5OfOwzItnlTGM0S9mJtcDiKzRjNEs7qhAS2y4zFNv8DTIoBe4n2wB2lCkazhM2daG9ntSAhMd2pEa1MqhG7X5tA7GUqRosBe6n231avBbPNRLA3wuHvd2EwGLD5tR9rK7VilA3YSrUbtvlVTGlqGmabiXg8TnhsBntAxSgbsJdpx9pLVExKWts8hxk1wapNqoeYFG1SdviVBccqHu1Yyardg7PcCnGQTGQk9WVXmtqBVfvMUa7dg6PMiiRJRCZmCHYHUVwWLM55lQejbMCRIMk4K7TrmIu0/47PgSFtt4ZJMWIvSdiwXPutNp/2XapHxmI3U/WWYqxlSoa9HWU2jLIB1afZ1FosY7bNJ4JMqpF4PE5oOIKt1JZpw0CWve2mFNml+cYy7f4rbAkbZtpbdlpQiiwJGxm0700oKDn8aoYNLQ4zcuJYq1vRjk2MAWdiDCTJLrLTkqEIYJQNOBPjw1Gqfa/VrXD4m93EonEsjkx7OxM72pzl2vfKLu0+1CylAZNiTO3eclRodkn2+bX6FMyOeRsaDAbmItruOnuZ9r1qSdLeyoIxay2WUX3Q9M6qxBjQbGj3Zx5rsZtRE+PQ5jNrdilP2lBZYO/kseYiJWGXxLHl2n8nyWcWpzm1m0hNjtnEM3ck7IIVYrNxJEnS+syn2dBRlrBh4rdKVu1cxSNjcaSNQ8WIIzUOE++yx5iyd/LZTCV6nBoTO4OSNkzuPrT6Fo5Zm19l6MQEkcmZJX1EcmeGPaBiMBtS35HPR9g8xgy7SMY0Bq8kaT6iKM1HWAw4k+9Cwsf1bh9mbiaGxZbmI2wGjBYDjuRzLNPOVZM+2WkhHouz4+9PpuxtTyTEnOVWjBYJk0s7WC2ypHzZzs+fxmAwYE9M2LZAwid7E/b2yFismf7blvDfpR0ujGYJ1ZNog+UxY7am+R7VkFJosBWrGM0Spa1umq93YvOYMKW9y2bFgOrSjnV4JIxmCUcRdO2FWCyGIU1aWLYake0JH2EDownsiXWI3aXNa1t3ysSQkS2QFGxSrFrdw5YQwXHZMhWL77jjThRF4fjxN1a+/gL+5/HSSy9hMBi47fbbMCY2fKhFJhRHYqybtfGZfC/sJRZMsoQkmdn1jQGsHguyfd63mFUD9sQiw1GmYpINWL3a51JiPj63Q1NtNNuMqWOtxRZMsgFbifY+2nwyZpuRtjtKaX5nKRa7CdWb8Lme7HtStEVTArLDnJorbR6D5kdTc7KC2WpKqScpLkvKZxkcKpJRYvqctk3JUZ7p31SPBbVoftFvUo3Yy1S2f+YooZFw5rFFcmr+Tj8WwJnwb3ORGL2/70f1yaju+e81W00ptURnhVXz1wkbImnzZepY2/yxjlIbJtWI1Z/w5SXaHGE0GVLfa0vEQGqx5udtiTnCXqpmzBEWl5n4XJyhgxOoxbJ2/4nr2ANKxrGKy4I18RyH92rKIw6vdg/OUmvGfKK4LSjJ5+jS5mtntZWyS7w4y7KOLZJRknZRNRumfmsiNpxLEMoUr2WBvefjSO23yk4J/wY39lIl0942U2qOcJRr92D1JsZhiZIRc6Yfaw8kji22po7NsKHDjLM6Gcdox9oDaeMw7VjZaUk9m5O/OItkkFLzYfaxqnt+t6Ts056NIaGA4ShXs2xoQU3YRVUNml2S74JHTVxP262pFsmonmwbzo8Pk2oEVaX51gqsATljR7VJNWbEkSbViFpkSPx2OUPRLMOGFYljE+MnOWZTx9pNuOo0O9gCyTG7uL1txTKR8VnisbgWg/rnY2azPdPeyTFr85owqUZcDTYqLvXhCKiaj0ja0GVB9c37CJNq1NYzQHh0JmNn0mI+ArS1m0k1Mnx4itBIBMlgyOsjTKoRg0P7LtUnYzQaUwoj+XyEtXg+Fh86ru2KsiT+ezEfkf5sbCUK4dEZZqZnlvQR8/5ERpIkhk+OQyi/j1CLtHHoLNPaykVGZzDJ+X1E0vek+whnnYrqyfIRSrqP0Py3mlj7K0UyitdMy01V8/YuVTKOlRPvutU7P77HurT5yhFIzGsBVYv/Eokgq0/Gkj4H2ozEohKnfzmGrcSMSTag+pLxnzavJVu9WexGrD7t3yub19De3s7c3BwXX3wxF/Cni4su0uS/GxsaWbFKK2Rb3RbM1kRMZDTiKJWxZPh9C1afTOevRjmzZUI7NuFHbQF5PgYyGFA9ltS4khNx/2yi3bO9VMWctpax+mSs3nT/rH1vy00VVF3sxWwzYrAl8k3FmXGNxT4faznKNP9QVJe4pxIlNfeApmyZfDftfu1YJZGvUZwWiEuMJRR3LU4z9vL5NanZbsKWyoFZtTk5DPv/7RQS82s8xStjtqfNL6Vqhn9Ti2TiMQgORVDdRsx2E46ED3CWWbHY0471WLAmYsxkbsCkJvJ75ZnzidUnz29kUrR5y1Gh7fYymgyY7SYUZf5YNW2HutluSlvPqhhMEqGRCGPHQ9hKFKye+WMtabGtvUzBbDeherR7ngvNIaWlZmWHeX6uT9hQ8c7HcLJbIwwpAS3GsaXyBWrChvN+P10xWHZZtJzXyIwWp2fcvzXD3laPjDWxTm56R0D73lS8as2woeqxoCaOVRRDxj0sONaroKZtHDPbTTjL5uM9s91E8zu1wppakhnXmG3zxzoTxyouidM/6Wc2HEVNi2ssDnPa/KfZO5m3sAdU5LTvlR3mjNyf2W5K3aMtoGbEkZJkYHZaKwyrxdpvcwTm857p9laKZG2eVWD5HVWaXcrm80LpYzbd3maXJWGX+fgj04Yy1kSOTkmM2WT84ajU7ilJ5LH6lAyFjvRn7izXjjXYFeYic0gGKeO9t9jNOBKxobMiYRd3Yj70K6gemcBGbRzKTnPKDvZA0t5Jn6GNWdBUvOIxMCYSF4v6iOSzcVuwBxQG9o0xPRRa0kckv0d1GzFbTUgSGE2GvD4CRckY3yaLMSM2XNRHJJ6j2W5i6NA4s8EoitOS10eY7SbMiZjaVqwQn4Odf6/la/L5CFuJkhq/e/75JAaDYUkfkXqOaT6i4pKSRBy/iI9wW1I5dJtPq1GUr/PRekcljtIcYzYRG8p2Y+p7+3aME5uLpdavKXv7kj5CUxdIxnD2UgWz1cjur3QTGdPGd4YNrcZU7tUR0I5VEjmPd99+J1ar9Q1pO3IBby783d/9HZIkcfvtt6dyV3afGbUoMSYNRhSnCUcqF2VEthtRVJn93xnF5rOguNP8s9OEI0FQsfosyHYj1sTmkuTYPbdLi2sUtxmbP1nXkZDtJmy+5LpCRnWbqbvGS9uflaL6LNgTaw7ZZkJ2pOUpyhSUtLqC6rXgTPgSg1VOxFpy6lg5zRfaSpTUug3AaDYw1a8pidjLVGSnGTnx2lj9Smo+0e7ZjKNcZfc/n2KsexrZacbsSPihgJKh2Ke4LKl1sq1UwWI3a4XsvaPYA2rG/K2454+1+1WtLpiouRmMEoY0HyAXWVL+TfXIyGnrUEe5FaXIklojKi455d9kV+LYhE3tpWpGDsPqk5mLxujfP4rs0Oo2yXjVVWbNsKG1WMaa8DtD+6cgTmod6iyzZtR8rH4Va8m8EqTsMuOoshJY69ZiCJcZOVEDsJYqKV+YPDaZV7EFtPxkdDaW297pNixTkF1mrB4Zd5MNT5MTJW3+VoosKV9oK0kc652vMctp87filVPHKh4lw97OhL2TUIsVPI0OZKc21mWXGVvaGjvd3rZiJTV/HP1uNwaDNL/OL1czbViiYE3MJ7Ks2cVoSdRJKhL2Tvw8m19Nzd8pG5Yna+IqxKFni5antJVl2ltxWXCl5Yq1+rSR6mtL8DQ4MsQKZFeaDf3a2JKL5nPf6SpUsseSykdaixPjMFUftWbYWy2W8TRppEfZnbB3IsZwllrn8x1o9VF7qUpoeIZYNI5sN8/HZWXWjLyb1SennoXBpt2Dq1Ybh9n2tvmVVO4sacNkrDJ5LoSENO8jAirWkkx7p+bZMu17YzNxJs8GMSTJ72n2TvcRssuMmuiilaw3JkV18/mIdHtPdGmiDckNG4v5iNQ9FGs+YupciPBYZEkfkYw3ZLuEZJAYPjZOZCiSw0coWJP+26H5ZHuZlchghKkz4Yy1vbVEzvSzTnOK22BPxMWyDGpAxl6+0Eck/ZTNnzjWlpi7/DL2MoVltyZI4C4zznJl/liHCWuipmwPKCiJOHHo2DTESc0/Vp+M7DChJnIKdr+M7E7L7xWZIQ7dv59CdhmQ7cZUrdrht6A4TalWb2qROcW9qCprZO3atUSj0VT71T8UpHiuZr8FIBgMYrNpkeKqyz+K1RdYcEzEZUDJkgjuqJ6myA5bzxgZnbOijOaWzYtZJCxji0jJJtYP5olFpI4TP9EwGab5UomZUJzTOxKfJfrtSdO5JRzjsRgbPuCDOGz7/ELJ/fjcHPEc/Wtb/iyA6jGz+5+7F+9Du1QP2T/Mo/mjhavRysyoeLuozc+2MTcbY9vfHHljbiz7WpEY2z6t/1odjzYguy1ifeIT14qG5tj+GYEFWFLcRbDzw+Zn25iZnE0tmPVC9Ym1zLP6DKx+qIWpvhD7vnJa93nrn2jGpBqFbOhqtLL8jlome4Ps+xf91yoEJWucNL6tsqBrlaxxMrCrAN3H84nX099VR//WRdt3LHWuQaLqyiL8y9zs+MJCu0tGY857b72lBHeVlf5Dk5z+5Xju7072YU27t9XvLuLYC6OEpvNLPsbsCZLXIj496laR5nLPB5FE0LZpWQjZAi+/mqm1GSo2Y5nKfe7w8a9z+PBhSkpK6O8Xby11AW9++P1+Bga03cbX+j6Q8xjJYiE+kxkfrX/AT2hijgPf08Z7PLJI/GQ0aFJeuZB4F+Kz+WX+Vb+Bpuv87P1qrhgq99htusmPr9lJ//4xTv5o4diNx+I5Y6h1H2mkZ9sQ57bmaQX2/3hstRR8Kx0M7RNo54u2+9vuV9nzjVNMd+WXRH+9WPVAHbYShd1fPCTUFmzzM21ExmdSKoci1xKN11SPgdCIWOu7dY81YbabhK+VajkmYPb1TzRjUoxs+d8C11Jh8xNtTPWG2PdV/XHNho+1YLQYxH9XAdj4sRYMBVxL9RgwOOQ3fOz+KaP9g/VM9AY5+fw53edsfqYN4rDlrw4vfXAi/qt/RwCDSeL4c+fyt3qD/HLVaG3aFpsPJFnGXmlg2Tv8DB6d4tQvxjIPUJWcc+OIOsLB0Z8xOzvLzMwi8+oF/NEjWbxeb7oWt7Iw5yUZjQvyP7VXFVGy3MnB7/czdXYmlYPK8eWLf5YgOC+aW0oiFqfu+mLic3D6F1ltNvLknzY+1QQSbP3rRXINOc6tvd6Ps9zK3q+cvhBfFQhrhUJsakaolRpoPnQuMse2v33ji/Obn2kjGhbLQy1/Tw3OKitbPnNIqJ3Y5qfbmJkWzEMll+KCnR82P9tGZHyW1z4vlvNS3Abx5/VsG5Nng+z/Wqfuc9ofqkf1yGz5S/1xjeKGNY+2MdkTZP/X9V+rEFgrFNrfX8/EmWnha3na7GKtFC8gA/61RVRs9gmN3bq3Byht9zKwb5TjP9Qfr626v5ajPzpHeInWkq8nLku2zFp+ZylWr4Xtf5+51pAslpx1F4Deml0cOHgAv99PX594y5gLePNj06ZNvPrqq0gYuKbkgZzHSBYz8azYfO37fITGohz6by2/vtgYQjLAYp8lsUjslSypys45Gq8r5cC3Fr5bi8VtFZvdVF3io3/fGCd/nDtfm1RMTkf7AzWc2z1G3/axpeuKheD/gXjO3WRj7Ni00DnNt1Tga3Vx8NudwueKInmtvV87wVSP/j5xGz/RSmR0ht3/fFL/tW6twNvk5LXPHxJqQSY7xVuWrbqvFltAFctDwXzLMYGWee0P1qN6xWIo0OLQiTPTHPi3Lt3ndDzaiOwyi/+uArD2I01Y7Cbha8lOMDtlofH0R4fXU6tc8rsNLL+7kuBQhFM/099KfeNTTWCAbZ/OE69l1TorLi7C4jBx6meDSMYl6qBL5bzMeVoDmi3IHlh5UzFDJ4Kc/lXmC63FXgvnr0hkgp1zPyQSiTA5Oam1X/0DQKyJYR74fIm2IpJhAUEp4po3aNi9kKgUj8Mi3CRAIygBzLhNWMaitLVE8HrgtT0QDC5hiKzJ9ejL+ifbeEy7z+MvDWN1LzRVvgSRs0JT+8jz5Qv+VHV1MRUbfPRsHaT7l/r7trZ/sJ7x7ulUKzA9sNdZcZTKnPt9nkJeDlS9pZjBvYNCRBRXo5Xmd1Zy/CdnGD2sny3T+mfVGEyScLGhb/cIoVExp1u82sH0yBzBbjE2z5ZPHZonAunE1GA4tZNP+FqCWP9wohB1HopDhRCHgkOxgu4tOBQR7tk8fjzI7z9zUJiwhRXKO7yc/Z3+vsgDuybwtU3S+bIYw27dR5owO0wMHDkkdJ8r768lPhcXSnpBYe+z6oPiNcV0v6jfR1nLZFpvruDEz84xfnLp7KEm2S6x8alGiMOrf6s/+eJtcGiqRwGJYF8Ofx+PLwhcDn93gKabihcnKC2CPd/S/KekLnFgFlZdAxbVwI4fxoi6tZPjRsOiRCWAuVhyOouQjNBDxRqTecauzbHZZKV4y41w+HCKxHIBf3pIPtvLvPcv+Cyp9JD8d4qopGpjaW6pXurJYNhihplZ1j1cTnB4hoPfFusrH+qdzUlQyodjz/XDTSxOUMoBZ622i9TX5lqcpJQj4bLxE63EY3G2/R/9ZGPvcjtVl/k58p+nhcgoVVeV0P37ASFCiRpQKGq00SswBwGsuLeWuZkYh/5d/+Ja9RhoemcllRdF2P1P+hMbJ35+jooNXmGSR+kmD+e2CjCNQGsroSJkQ4DZUJTpAbHYMNnCQhTtD7cwMzHLzn9445XsNj/RxuxUlB1/d0z3OUJk9yRCEI3MMT0gVgHc9vkjws8KwFatIlslRgTWDd1bBjMUffSi/eEW4U0A3uV26q4u48A3Tgj5ANVjoGhZkfD7XLrJw1h3iNBZ/casu6EUe0ARIpXVXOunbL2Xkz/rpX/nmO7zVK+MSTFyEv1Fr55Xhxg7JVagPPnfhRWfHDUqy24upX/fOKdfHNYISqDFg4sk4qfOxIjH4qm2PikkJS0tiV13aQURT8hDKBgmTgyv18vwsNhzvoA3P2pqagCQMCwgKElpScJsopLBZCA+F9cISoshuT4xGmFujqrLigi0u9n/nXOEesV876mfisVqAIe/1429VCyx4W1wZCiZ6EHxaheNby+n5/eDdP9K/30uf08NU30hOl/Qv/FCCSi4KlT6d4rlvAIbPYwdGRMioiglCstur+TUC72MHtFfvFp2S1VBJOXu3w0QjYgVJ4tabESm5gj2iI2nLf/70DwRSCemB0KoJRZh4pBoMQmg4/5G5ERb2jcaax5uQPGIbzgs5N6m+8MZyut6EB6DLX8rRgxLwr+2SOhdCfaEGdg/ytkdYrH8qvu1IuWu3iNC71jL7ZUYLQYOChQOIfE+nwoSFolhFbTc/G/1J8oUt4Hm22ro/m2/kA9Y/0QzklESWov62pzaTvxqhckufb/r1I/6MBoNQgQlQCOhgq7NhulYdlcFthKF7Z87sWQRLYm5SIz4XFzzN4mflcxpJGO3bKKJ99Qq4AD9/f2Ew2EURdBZXcCbHq+++ioAFxW/Z8FnksWc8e90olJsLs7c7BI+JjmuTSaIRlnzfj+h0VkO/2Bpv5au+RAZJSdBaVHE4vS8MopRMdAlkFuXfVrnA1+zQyMp6cTaxxoxSBLbP7dEziDtN9krZGqvKeXYf58jMqQ/jxJYX8TokVFhwktRk5s+gfUnQNPN5UhGiaPfEcg3ytB2azXTfSH2Cmwq7/zNINHQnDBBqXiVi8Ej40IEm6Pf7eGo3CN0DkBkfCalsKX7WiK2S0PHh9oIjUTY/Y/684aFYvOTbYTHZtj1f/VvOBQhaqUjMjHLlGDO67UvHxd+VgBysYziMjJ+Qn/O6/RLfRmKbHrR8WgbM8EoOwXyhs5qmfrrKjjywx5C5/T/wELfZ+8KJ8GhiNC1yi/24q62cfCb3brPCax1U3dtKade7KNvu/6415FSr9JfY+v8VT+hEbHB0fOK2Lo1CbkIVr67koFDU3T9ejQ/QSmByEjuGst87KXFb+lkJVl2MjMUYzY2S1VV1R9MFOEPQlIKBoOEQlrStOW2/wVpMWM6QSkXtg45IC3uDxcZU2pKsUVIPhaLlsMJhkipKAHMOi3zakpZCcfKZqios3Bi+wzDnSxgQcdtakpNKUlOSmLkZJwR5gOdbHKSZDJlBsqxONs/dzJFXlmwm24RpnMsGiMejdO9RSyppHq1NmciJKXWd1RgdpgYPzpOcEj/wrBiczFl6328+tc6dr0mEOjwYFKNKC4ZEeZF7/ahlNycCETskETj2ypBKix5IEp6OfrtwgKAQjB4aCzVbuSNxsDBMdxV5+daB/61s7ATRQlKwMp31+IoszIzOcPgHv3qEof+Q/8EmUT3ln6K24qEz7P7VURF8Squ8FF5UQnOKhsHBHa+rb6/FckkCZGUVI8J2WWh6tIS9p/UZ5d4LM7MVHRRQsICJHZu7f6P7pzPOb1wkJofEsUAyWzi+I/yBAHmebIHyftJXG/N3R4MJonXvp17oZJUUQKIJ69niOfM8cQTpJAkWSmSJjW6/XBCNpfF/fWM3ZBBVLIW+TCZzESjs2zYsIFt27Yteu4F/PHB49F6/UkYUFWVeHh+IZVOUFqAEOz8embSRZIt82pKuZj6qva6SIn+xRnnmk2LqimtfbiSufAcu798JufnktGwqJrSsef6taRRImZa4AvSPgOYOB1iy//OE5ss4iMjEzPEl+BrZaNiY4nWPkSVEWFgVGzyUdrhEUpCN72tDHuZSmQ0wvAB/QV9R0B8XgiFYox1TtO/W6ywPt0V4miXWGxTdomX2isCuKpsHPmv3ONjURRAetnxWf2L8deL6f4wg4fFSK8FX+tcmOGTYspXhWL7pwsjNxWCVXfXEo/F2XpY/3pDlPiTxNjpaUYFbWgLaO09AhtLOP1T/euO1Q9qhSiRe3XWqdReFSA0JEYeLF7uwmgRKyj17xgksFo8Dt3ymUPCz7r7JYH1btLXSwb8HU7qrynl5C/7GHhtkex3VjFssjOEZJAyZMJTSBJDEv5SStsJtv2fdDzbBJE3iUu997J18hsAjIyMpObqC/jTQFeXVhy/VL0j4+/SEgXYky+McvKFtLVGgoiknZw756UUWZCMEqG+mZSKUvJai22W862w0XBNgOM/62X4QK4FkWHRXNT4qTDjp/Ik5XOcu/PzJ+bJK3lIf9mYC88xsEvMZzurrFhLZCGSUvM7yrD5FYKDId2FfIC6qwLELi/hVQFlbv8qjTSg+hRG0V/A6v7dIEX1dt3HJyFCnkii+cZKDEZDQUQgUdLL6Z/3c/rn50fJ99zuEbz1jvNyrb5dI3hbnOflWseeO1vYiQUQlJpvLse3zI1kkuh7VT/p6PgPeoWv1f27AfyrPYTDYiQ7d40tow2bHhS12Ki/ppTxzmkO/Fun7vPWP6JtwBR6zxSt9XPFhmIhklJ4bAbJKPa7RIlaAEiSMEEpidUP1GG2mdjxd7kLxLlUlCSDtLS6Epnz5+HvJXxGnqGRXX9RFAV5ViUSDXHJJZewY8eOxU++gD86tLe3A2DAhF12ZpCQ0glKubD7m5k53oyxswjpTmtTlmPcpsVt2TmW9veXMheJse/fcvvDjLgtK6fV9cvhvLGZZJAy8mCRoVm2/NXReWWZPOemIzwUQcr1u9KR9bvKNvi0NqY2iAi4wrprSpm9uJgdSxGi0lB1VTkly93MzcYZ3Ks/j1JUZ9flZ7IxeHCcoSNi+ZrIYISTPxbzoe4mG03vrMDT5ODodwVrgQWQXs4HYSiJsZNTjHWeH0XEkROTTJx5Y9WrknjtCwVsNCxQnKj9vjqIxXlVID88vL+wzisD+0aZOieWsDHbZVSfjH+Vm85z+mP6Ffc1YVFNQiQl2Wmg+Z0VBPvC7PkX/ZtFA+0erWWbQHzYt3+MyktKiOURCshAYr7Y+nfHhJ91/1KdchaZi1x1Mi03VtD52yEGFqtFZ+UfIqMgGSUsNh3E8LQ6586vLe3gJZMxg6h0kfdufj/+dSKRCIODgxQXFy99zaWu8Ydo92a1WjWSksHImvd+OvHNix+vjMWYsRl4S+Ukp0eNnJrK3LFlmc4/SCzji8swmsdzj5amNeD1w7Yfh2EyTzVqct7pWX2w4iYfI10Rjv9iEkLhvOpJyWDJWmogeC5L0WJuLn/g8Dofg9VnECIbWausVF/s5fC3xApDNdf5mZ2KCqnKaBekIIKIKNruqsJeqrJdUPa65jo/JtnIief1L7IbbyqneJmLo893Mbxf/2RZ9ZZiwqMRoZZe3hU2mm+sZvDIOMe/W2CyQgCFtnsrBJuebmUuEhPawa76oOyiUnp/f05IBWj9k4ldSgIJR1ejlYqNPk79rFvoWq13VuEoEx+LBaHA92v5PdWc+skZ/b5Dkii/xINRMQqRlEBTUwqeW6RtlJ5LL7X7Kmthkq6klPdcSUqxizc8Us5McI7dX0srSpnzkD0MEh3v9WAwSOz8z6VJStmYc+Xf5TXjzl50h9i4DPqGobtLTikp5UJU0ewRDA7S+9N/JB6PMzHxJm8jeAG6EQqFsFq1sXWZ935UNUHojS3+LsdnZqi6xImrwpJq85bx+VIS13k+X4yktP7RKqLhOXb9c35yYjpRae0jNZhUI6/+bWKBHY/lJysmYivVIxEaWUQ97Q2AGlAI9YlVAaquKiEyNiOmUBJQqLm8mMPfFiTyQEGKQ4Vg/RPNjJya5MRz+mMo1WOg9roKTv9mUEgdZsPHWojNxISUg1SPAf+6Yjpf7heyx7rHmzApRrbqaUf1OlFwu7cC0HJbJZ4mB7u/ckpoDBevcWK2mYUINv61burfWkbPq0N0/1L/jqP6G0uJjMzSI6hIuf6JZkZPT3H8+298rFwIKi71gVGi59diMVTzrRV0vzwk9LwKaTv4eiHkFyWJltsq8DQ62PLZw7rfTdVroP3BZgb2j3PyJ4sky/K1FDHl36OVTfItXWulpNXG3n8f1IoT6uKxW/K7z3l+y959eykrK+Ps2TfnWLwAcVRVVXHmzBkMGLm66L3aH/PEJ/G5OTAYWHmXn4GDU/Ttzlor5InZtC9Y4rtzoPZqL/5VbvZ8+QThsXzfnXZtBTZ9pImhI5Mcf/7c0htEEucqJTLhbIXCN7hFiGibLaVEofIijzCRouxiL8zF6RVUezxfqH9HKZ56h1AsBFC2yYPsMXN6Md+ZAxWX+ai8uIRjPzrDsEA74MBGD7PBWaFzlBKFNR+oY/DgWEHkF1EU2u6tEGz8uKbaKKSyqUDV5mIGdg0LjfuORxsxygah/JoSUKi51EfnC71C16p7ewBvg1N4LBaENHUdETTfXE7X74aFlJSKV7uQXWZhMqBSoogpNr1OCPnERAFv48eamZ2e4zUBRYo1D9djUk1s/2zu8ZuXJLBUK5Icny+/s5SxziA9vxvNv/kqcd1wOMw+5afMzMwwNDR0QU3pTwhJYuIVxe9FlpcmiMZnZvGvUPHWyxx+YWJBQXmxDXIp5Mt5LfJZ+31lxGZi7P16/pg/PWe28r2VqB4L2z43n/PKe24iNpN9ZiJDs9kf5j13SeSJ3WSfLKSiBJqS0lwkJkQ2kp0Gqq6nvEpdAAEAAElEQVQMcFygJjd/MgWTRESw5pEGxk5Pceon+jcoyU6ovKyUvt0jQm22Oj7cSDwaZ9cX9ftp2QnF7T4Gdw8JqVi1P1iPxWliWyEb0gRRcLu3AlB1dTHl63wc/OYpJrr0297dZENxmoUINs5ahbbbazm7dYgzv9Gf56m8vJjZYFRIzQc0Vc/xrmlh0lxBKOD9KulwY7IYhNdRddcHOLtjlMigiGqTgchE7A1v9ZZxzVx+eNFTJaqvLqasvYhd/3ws893Mp1Apw4YP1dO/Z4KuXy2Sf82X81pKRSmr1ulpkilboXLg+2MQm1si9tLuu8/7O/bs3U1FRQVnzhRQr8jCH0RJKaWidOtf6Dp+ospIxeQ0shEqXXOIKL131EzT3wsDg2Ktno7tAml2Dml6cZKRNBslfWpWPUbisTiTyd7LZtOifWjTseqeOuJz8fkCGwn2c55TS9Y4KV3nY++/nyqIbCBCUAIIdgc5/C3xC3X+rMDdUIKX8q93UX1ZgEPfP8PUKf0n23wKJkW81UMhvysei0McgufE2LwVm4uJx+JCJKVYNE58Lk5kJH8f8Gw03lSO4jYLtwErBOWXePGvKhKSXwSIzcaZnVqiOJ59rYvL8K/UdnqfFNgNFJ8TT5yOHw8yflxcFcnmkwsaiyvvr8VoNogx4AskAB74hvgOrLO/KyxZWyhBqepqH84ylYP/kWexkpUUqb/OR8kKF/37xjj18/zF1PSkSCwaJ7pUC6x0xOLs+vZ0wcHQynVRThyEYFD/VKzKUF4MB+MWTKGlx7PVWszE5BTEYwQCAfr6CmuVcgFvLtTW1gLzKkp6IDns+BoUzKqYsoa9EipWuznyA/Ed29u/sLTvzObKzwTnlu67nIXGm8sobnXR/fIAPS/rJ1Ase081o6enClJgESUoAUIkjfTrFERQAmGC0uoH65mZjgq1iEMFk2rEXiKWDA6NxDgkIMmbRFyPbHsWqt5Shq/VRTQ0J0R6mQ0KSmwlsPrBes7tHBYioxWK5e+rYbo/LKTmEx6bITYbB8Fd243XVQBiikWhkQjEhTtEcPL5whIuJtWI3S82Ft1NKo1vq+Tkz3qE2ssVAlHSVRKFyLAXTFBSNRXR7t/1MXZMvxPZ9MlWJEnSp9CRiJuCQxHcNXacAZWJ0/quFRqOsfVvCiuG+pZb8bW4OPq8/uShv82O7DSieiA845xvnZoH7rPrgb309r7xRfYLOH9IJt8uUW/XdbykyMjWWaw+CyXL7AtJSnnQeIOX4eNTjBwVizVOvzjM6ReH86pQZMNeojA3GycokBAGaL+3jngsxqv/J62osYSakqteofKiAAe+01kQ2UCEPAEQHggXRHbpfeX8tGp0N6o0XF/B8R+f0dUSPQl7QMVsE0/lFkK6kgxALE5oRGwtX3tlAOJxtu4TIHobYG4mRmRc7FrVV5dg8ysFKVmLoni1i9K1HvYJtIgBiIbmmJkS+11la71UXlyC7DQLFW5j0VhuJZA8CPeFOVJArGH3J8aiIIGo5fZKLHaTmB0L5P4cLYC4PrinMEXUQglKgY0eimptHP5P/Wu+sk0eaq4K0L93lJP/vUTcnJavmovEmJkWy7/u+kex8Z6OlpsDdG8dIyjQttQekDFbjZzdGdZVg1EUhYnRKeaYpba2lnPnzkPh9gLecFx00UWApqKkh6AEIFkVSloUrB6xOVJ2QtUGB8d/Jt5mZ/e/6PDPWcT0mWAUkzWtXqBDEaniUi9VF/vofmVIKOfVeGMZk70hYSIEIExQAgq7zkSsMIISCBMolt1ZRXQ2Jry+lp1mbIJ5hsgEnPiRuD+KR+PEBHNexe0+qi/zI0mSEFEmMj6LwSyYrAGWv6ea/r1jQmS0QtF0cznh0RmhNtEzo7PMCbZFBmh+ZwWSySBEUooMh/NuXFkMIs8pHbLLjCMg1nlILZVpvamS07/qY/SwABGjAALgwGtj4icBpwRymkkUTFCSoeVdFfTtGs3fwjErkbnusQaMFgOv/p+l81FJAvfUuRBzy13IHpnIhE6DRmD75wqLvZw1Mr5WB6d/Oab7HH+Lgs1nRimGyKQ1L2E3iaLe9cBuenr+MB2jXjdJqaysTPuHZMBqtRL2zg8MJWtH+4xz/rOhGSu/6Qxm1NbnEryjkGxAzUqsxg0AQYps4KyHgVzvcRxmnTLmrAdetxxCE3P0nYS4TUGaXhgcSwlGs6TIxMPa+cPH5hg+Nrz0g0kEzcm2JZN9IaLJwoZORnPlxSXILgtWq4FgUL8T3fxsG7PTUSEZxZrr/JSu9nDoe12MH9efjF/3kSZisRivfV6MhLL52TamB8Ls/ZJ+uTZfswuTYtTbujqFHX8vnrS2VllZflslXb/to3+7/sn1xPO9QspLSXS/MkA8KjZ5jR4OCrW8SMLX7Fxa0vMPhEB7EYpbjDwIsO3T+lWNkjj7Si+SQaL392LBnsh7ko6ORxuITEWF2qIJ7ZJLg02w0JuEthNwRuj9rLjCR+WmYvZ++ejSRMe0Sb/jkXqMspHtetvnSAa8y6w031jJeNc0B/9D/wRWtkZrp0Y8prvKefK3Q3gaHIyeCi2twASpYHLHP2e9z/lUlNAWwACocVovVTj8i8y5J5+Kkq/NhMMBzStg1w4JKSugDZXMv0vGmeSzUdl2JEQwqIIfoqr2TLLJSsGSeTtZJuK03Pgxjvzgr1OE4gv440ey5++l3nsBiKvz4yXZujYFeX4c7/6PUdTszjOJd0QyGolHFgbMdRd7Ud0mXPUWxk/mLs7mavnWdksJh348oBFl0tuapCFFUDJIqfdw39cSyVm9O8IkAyNHx3FVWIWSNQCuahu2gCJEulj+vhqcFVZ2f+20kALQusebmJmOCsVCzjqVtltrOP3rc/RvG9N93tpHG7G4zMI7lKxeWby/eaiwVrnL31eD0WIQsgcgtCs8ie6XeomG5+jZIUYQ2VNAH3u1XMVWohBY7TkvJCVnhRVrsSxEUur8RT+dvxAn53e+3C8cv06cChXUVsa/wU3VxSUc+PoxQgI11ULGouyUMdtMeFrdQiSlVQ/UYStRhK/Z8WgDsVic3V/UP748rVaa3lkt7AvWPdaE2WYS8gW2EhV7mUr1FaWMHdP/fo6dmkIyiSU4u18aFGv7xjy5vHSTC5Ns4sxvsvx3nriv/uoABrM03zorq2AgpaskJXZa7/luglwaAsk+r7S0gKzksKU2O2kpQwmIs2nTJrZu3arvx13AmxaXXnpp4l+SptCQvkbIjp3Sdi6Gx+DVf84sOqeI2EbDokqU3mY77horI0dzky5ytXwrv8hNNDRH/67JjLgq9xfMF8OmusNs/+xx3QpKSYyenBTeAFR1WQBHuRWrTyHYo79gvelpTeVZRPHGv7aImiv9HP1BF2PH9cdrqx6ow2CQhNprAmx+po3J3qDQ5jBPiwuL04zFISPCwNj7ZbHYCUBxw/L3NtL18gCDu/TnvM78eogzvxYn2J564ZxwHircFy4oN1Syyo1Z/YPsv10SgVVFOMqswoo5heSGencOI9tNnHtVbJ4UHbtJrHh/DXMzMSGylyhZKwlXlQ2DIFkeNF8QGZlh1z/pz3kVr3FRd1Up+7/VKeR3Vry/BtlhFnp2SkBhzX11jHVOCdmx8iIfZqvYGO7dOkJgjYeRY2Jq2TtE1fKTOTgFWt5ZzpH/Opv18eLP0VVvo6jehsVhYt+/LswBZuzUT5vT9vxrJ+HhRAveZFyXnUtIa8/L7AwXq7fy29A3mZ4+Py2BLuCNx5YtWwDYXHyX9of09m4zWaRP03z8f+C5cWQnmcX1RD47u2VNErWXOnFVyLjqVcZP5o4ZslsNAjRe5+X4r4a1ay2S80quN5I1Q4Aj39FXy0iPzSY6pwi1OOjZNpz8UNd3FLe5cNXaFicP5SCYN95YRvFyNwe+eYqJ0/r9ZvuD9URDUfYLbIiWnQZW3d9I52/6hcgNK95Xg71UFVa9tperIM4nKUhdu/GmchSHScgegJCCUhKDu4cwGCUGdonFDIf+szCCt6vGjmSUzgtJydfiYiYUFSIp9e0cEyIaJXHqhT7h+DUygVDLtiSKWu3UXhng4HfOCKkHFTIWzRatlbin3iFEUmq5vRJPg0M4t7zi/TUYDQah1m32CpnWW6s588qgfrKjJLH6A7WoXpmtf63/GciyhKfegVk15icpZWH46CQmRSznNXxgiuEDWe/0EvXNZL7A22ZFdlno3TqWeUCenFfDNcVYbEZOv5SID7PmCilNbTI5Jx3+xTgWA8yEQFKApPp4NidGmY+9ZMAkyUTjEdavX8/27dvz/qal8LpXckmGesvbH88gKOWDlSAKcYLMF3DndHEbrLzWFWTBY8yaXLKJSv7KGCDRdzL3LCTlSA7ZyqF2vYsDvxiHfDF/VgAiGQ0c+NfcOzVyJZOSeO0LJ/EutwkrIkVDc0wL7tawlyhIJonxs2K7hU2qkThirCGrz8DcTIypPrHi+MF/f+N3QSXhX+HApBixlaiA/snVWmUlHgwKtQAD6CkgyaP6wFnnEiJRAWz968OoPuHLFYTX/kU8iAKw11mRbZJQy7zQEBx/rrD2CUWtVkYFd8rLLgtmu2DhtkBs/cvC2srMRWIEh8WUtsxWI5JRoqi1iKBAkd6kmoR35w0fDBJ7W5zgiBgN++D3zjLVn3heyYk1fTLPlRQJwo4vnNZHUMpC+UY7thILx/5bf1V0+VtUbB4zgWUR+g5qf8tHUALoO2fGZJ6lp3vpcTVnMaSISsGg1r/JbzHSP5P/GqCRg634aG1t5ciRI1x99dW8+OKLS553AW9eXHHFFal/q6qaQVDKB2cFTJwgs+Cv4x3Z95/DBNpVxrvyxyfpRKXKS524qqy03lDC4e/lVg/K1W24+ZYAY53T9O/Q3xoCYPhgaGHQn7qxxXf1b/nMocTcrx/T/WGsxbIQQQnQlPUEkyFFDQ4MZgmDQWwRFByJIFnEE/+FkEkKhd2vFlSccNapTJwSs31oJMbJAnaweZfbCY7OCT3r0NkQv//bg+elzR7A7i8eEiLxJFG8xslU54TQuYUojgEaMVJVhezoKLditppwN3sIvcHtdvp3jhVEKJseDCM7zMJtFc02c07/lw+h0RgGs4S7yi5EUpoejGATuhJMd4U48r1OYVWpghXfVFh+ew0nf3aOUJ/+GLHmcj/xuXgmSWmJOe3oT4eYmdS5bjYaNKJS4tmqXggb0PWs46rMeu/tHAj98EK7tz8R/O53vwNgg3r9kpsYUlBAsUM4zYXpVYrc840uLPb8G1eyc0sV67WNHf27BNprFZuou9rPoefO5lfmzVEIW1R1JU/ctf9rnbgbVSGiAMDMxKxwzstZoWK0GAgLKkTJDnP+1kW5oMDsdJSpfrHJ/9SP+jj1o/OjcutqKMLiMOMoV4VISkpAgXA4f/vAHOjfKa6koLjBVuUQahEHsOMzx1DcwpcrCPu/0VlQ2zFrhYJsNzJ6RIBAEYbTPy9Myd5RrTDZJZgn9qvEClAeLwSFkNEAZqdnmR4Qe88MBgNGiwFvo13I91jsZkyqWD4p3BdmNhRlul/M9gf/q5vgkLgKUyGFbNCIW0U1No4JtOpueUcZ3kYHFZd46UmsCZbyleOdYU79ckDfvJRG8AgnQjtnpYmJMzpUn8wWFGBZ3TIOHjzIVVddxS9/+culz7uANy0ef/zxxL8k7LIzk6CUB/YSmDpDVkudpef0Iz+ewNciM96VX/EunajkbVXwtdgwWCSO/nCROk+O1r611/qY7o8wsCf/e5FNHp/ojrD7y515z8mFLZ89jOoR21A+PRjGNRUVIigBmG0mYVUeV6MTk2IULvxPD4SxFFCnOR9tzZJwVdswyeJ1CWe1LNSiDLQxL0LiSV2rVmE2HCd0Tux6v/8/B4WvVShe+8IhoRZ2SRS12gmenRI6t1DSlewEZFmIbGT1yihFFrxNNnoF1yuimOiKFNRmb+pcCFuJguxEyI6yyyIscDQ1GMGsmoSV0Sd7Q8LdGCITcQ588zQTnXl8XA4i0amfFthhSoamG0o5s2VEKOdV/1Y/xMgkKS2V8/rZEHNRffySFHk2AjNo41hSdD5ri5lLfO9lZ/hbf5CclxQXzZKm4ZZbbuF73/seAG1Pfi7nMcpIPENBCeAG2wSyAX7TaWRSXrzIqo7EEgpKSQQhjdgkj0YXLfgkSUrS7BxWK7groDdN9EOaDuckJwHEwxFW3V6E4jRy9OeDjJ3Ksfs/HMnJkO54uJqJs0GOfW/xYshiRCXtw/OzKPxTxeZn2wgNRthdwO53UWx6uhXJIAnvoN7wsRaGjowLtSlbeX8tjlIrh757WphgUwg2P6vtVtwpusumABRqx/VPNjN+Zpqj39avyrP6gTpsfpW9/3FaqI1goShE3ehNidfT21W0x8uC0xe5tmTITVBKwFppYdm7yunZNkLfzoUsccmUm6O7/tFyJIPEti+czVuESKkoAVihrMlA7555mcl8JKVoUTYpYhbQFldSLJ6hopQN40yMS9pDmCT48Vkj6XOiKRTPUFHKuObB33HkxR8AuckhF/DHAykxxlb734Xf2ZD7mOlQhoISwPq77cyGY+z+99G8QW0uNaUM5FGXTFcEqLjISc+uicyC7tzc4uMvFmfTxxuIzcbZ9pncc0+uXf5lFxdR3uHhwL+dIDSSZ2xfGPdvCApRaikU/rVuGq4vZ/TUFIf+Q/9utJbbKnGUqez4OzE1xc3PtBGLxnn1bwojD4tg3WNNmO2mgpSAROHf4Kbh2nKGj05w5L/0E0vqbyzF2+AUVrPa/GwbsdnzY8f2h+pRffJ5seMFLETzrRXYSpTFWz/niCf9a100XFfORG+Q/V/tzPv96eTzss1uRo6MZRBA8s1tGbv1sxGLZaooZUF1x1h5Rymh8Tn2/yCzwByfmQFHbirYtsGvMDY2xoc+9CH+4R/+YfHrX8CbGp/5zGd48sknAbi25KHcB0UiGQpKAMtv9WLzmdnzb2eIjC++HlpMTWn+gMXjl/S8kuIGd4OTvp1pWcV86kjxGG13VuCutnHk+R6GDyyyqzYHQWn1A3VM94fzt+a4EHe9Ydj8bBvTfSH2fqXwFkx6seGpFoxmgzCRfd1jTQwdG+f0T/Qn85tvLse3zM2xH/cIEakKhZarEVPoKhSF2rHjQ41M9gQ5JrBBr+W2SrzNTo483y1M+CoEm59uIzw2UzBh5gIKh+I2sOzues7uGKbv1Ryk/kXyeBuebMZoMbBlqQ2S6bk8Bco6PPT+fiTt4zx5wiWKaHnjsrk51jxQicVuZNv/PbfgswwVpTSMKX1sP/M88Xj8Qs7rjxzJnNdK3w2UOVtyHzQzm6GgBLD+bgeR6Th7/3Mkbx47l5pSBvLlvNI+K1luZeB4MFO1aW4uJzkJNNWKjU82EJuNsf3vF1EYiccW5L28bXaqLi3m0Pd7iQgSNXXjwjuzKFa8vwZHqfW8bOqzV8isen8Dw8cmOCKwCajmrX48DY7F1+GLYOMnWonPxc4LeWvVfbXYAup5yR06axVW3F3P0OFxjn5Xf92w4jIf/lVFwrHhxk+0Eo/G2Pa3b7wd2+6owl1vPy92fFPj9dQql/zuxdfu1VcXU1RlZc9Xc+ekc8VGziqZZXdWM9Ed5OA3e/J+fzrhyrfcxmT3dCZpqNCcVzyWoaKUDbMlRvs9xQRH5jjw31mbKqLRDBWldGwf+1dGRoZ56KGH+Md//MfFr78EXlf1OElQ8my+NufnM+6FBCWAo9MmJudgoCL/3s6gb/72KlxBrm6N0xbQjCTFyLsjfU4xIc1qQUcwmElQAhYkkdIhGQzs+844XVsmchKUmI0u2hfZbDXiqlha3SIdy99Xw+ZnWrGWiTGbl91dRcUV4jI5Vl8Bj13sJ6VQc52f0ouKhM/b/Gwb659oFjpH9UE0PMfYGYHemq8DgwfHGT0leC0rGC0G4d6hZ17pZ7x7mtEuMWLN+iea2fDUIgH9HxiNN5Wz+Zk2rFVig6V/7ygD+8eEr2dSjNgFW6Od3TbIVH+IuYk3nqAEmtLZpOAuquLVDjY/20bruyuFzrOWKbTeWSV0zvzJBZ7m0xEQpCW2VR+svK8aa9nSux0kg5Sa2Nd9pJ6NH2tc9Htznj8zh0kx4GuxL32PaTj2syG2faN/Xtow13dnT8xBNIISQDxO3Kb//b7oslk2XZL2VaX554HxajM9UwbGcvBIoqrErCP3eaZl8xd56aWXdN/fBby58Morr6T+vRhBKW6VFxCUACYHovQfDRNfQuVLSkv6rbu/hPUfKNF9f+kF5J7fTwiryez+8gmO/jD3AnKxNiTFrU7MdhOhkFhSZfPTbaz9cOPSB6bBWaey/L01yV4+uqF6Cgy3Ba+TPKf51grha7bdVc3mZ9uwVYtddOJskNlpHTtc/wCYODXBxNkgvdtzq3MtBntAwWwTF4/tPzBK704x9SBPq5XNT7dRfY3+9+b1YP1TzXQ8mtsXLIaJ42OMnpqiV7D9nbPUKryjHGD0+CR9u99YNaQkJnoKG4/rHm9i89NtwueVXeKl4tICJUsLeL8L8SUVl/povrVC6Bx3k8rmZ9qEz3NV2VDcOlVmEujfOc6Jn51dkqCUncjp3ZJFUFqKFJ8oFtS/tYiNH6nEVTu/hpCs+efFEG6CY3OcO7BQAUOyWIjbcq9HimgF4POf/3z+e7uANzU+9rGPAVCtrMr5uWQx58wt9e6ZZmpwlsj0Eu2j0851VitsfLya2qv05U+ktORseIxMgpIOHPpmD8d+dFaIoATazl9XtdgCsvFdZWx+ug1Xvdj6vfFdZZRtyu5VvDQUdwGxV2Fd1ynb5CGwUfweN31SPBYFTVlqXDAvVCjO7Rxm+Ig4YchsM+EoFRsjvTuHGT46weAhseuteaiBdR9tEjqnUFRe4WPTJ1qFx/HZbUOc2yOuSCk7zNhLxQKGczsHGeucYrr7/LS9ikzMMtkrNh6tFQqbn2mj5TaxnJfiNtD4rrLC3tUC329RX6K4oe3OKhzVYhdc83ADmz7RKnROOBxDdpspbnUKnXfkuS52fVGAoAQQRj9BKQvrP1LH+g/Vzp+br4gGSDYb5/ZOMt6dI5dqNC7MxyXgDgdS5KQf/OAHuu/vAt5c6OmZzwctRlCKW8wLCEoAw52zDBwLQ57NB5CI3RJov9vL2venreeWyjWnFZAHDmQRlCB/4dwgsfsrJzmyGPE0B0EJwNfmRPVYFrYYXgIbnmym/aE6oXNkn0zzrRWaMozIec4Cc15ipdAU6m4IIPvETq67PqDFog1i8cnE2SCh0TdW6SaJ2YkIw8cmOCeYh3KUqSgusXU4wNmtQ/RsEcsLycUyGz/WQtWVxcLXKwQdjzbS/mC90DkTvWEG9o9xbruYupSj1IrsNAuPy4F9o/TuOD85r/Ez04RHZ4Tf0fYH69koGGcAFK9yFbQWAwp6v3X5kiw/W9LhouHtpWLX8cls/EQLjTeVC53nqbNhFaxHT3RHOPKDHg5+qzd/3iortho6oJ+glI7y9TY2PFyKu37+AeQjKAHMmmyM90Y5uz9HTG8yEbfmPr/KcDEAX/rSl3Td22IouN3b0NC8AwtctJCkNOPWJtWwL44ylGngE1g5slTL+xzPKxaHztGlA2HDjEYgijpkLro8QjQCr70w/7k0oy953bcnx0NZYqfb1r9ZnLGaCjQkQ0bQMxuaJT6nEOwVm/BcNXYcFTah9mGlG4uovbqUsdNiPbLXfqARi8MsvDO5rMMLwLnfi8k9R8NzBIfF7BEagu0FMFbXP9GMSTEKM1BP5Ns5uBiCFLS7e/RwkNHDneLXg9dJRRRAwk8aBL3KqR8XJnFeiB0H90wyuISkai6sfqAOa4kifE1RtQGAwWOT1EfjhEbFWrfVXRvAVWmj9KIiofdtw1MtGGVD/t8Wjy8IADY/05pQmNAv1e1ucuMIqNRdU8qBf9Xvf2ZDUZCyBtYSE3NwCF79bKfuayQxdiKiT0o4Fs8IHgLLoKrDQe/xOc7sBykeJ66D1T07C9GsRx03gpRnY8+eGTumiYWT6HSZdr1ZB5hzDHNPVRUj3d08+eST7Nq1a8l7u4A3H5Kt3uxqWc7P41YtAI05rRiyyJiHfxEmniORkw+h8ShGva0dEzFO3bVeStrsHPvZACNH0lhK+VQkEwiPQHh4IbNpMYISwN6vdOVPJC2yIywamSM8kV/OOxs1VwRwlFvx1FiFWiGt+kAzBpMkHGdsfqKN2amokAJQ9SUl+FpcEEdox1BoJIKjXGW6S4xZdnSxdi/5oGq/baxzmkP/rl8RKTQSY/9XxVUDdv5DYTvkTz4v3iIumbSU3shdPenXkyThtjShEYSUqJLY/U+FqZQW2gZs89NtzEzNCj2/kz86x0nEn1todEa4HSNAzWV+4rE4PS/rX4upHmh/uI3gYIQ9Asqvy95TjavaxqH/Os3YMf3vacVFxcIteseOhYjNxYmGlvbb6Sgk7gWNqKQH8Vg8Y7yvfbQOo2Jk22cSdsyKzXJh6GgIT50NY3ZLzKz1eTb2/2wGKcfSNObR2OFxm4I0nVlMayq+mEnTcSKRCGfPnqW8XCwBdgH/8wiHw8QSBLcW5+YFnyeLXJKiEA9nPv+RY2FGjovlMwxmiIZjDB/X8Y4n7kuSJNZ9uJZoaI5dX0rz7flUlNIwuFd8bbzlr/IUtxeLu0JzzEVjjJ8U3MCzzI2nKUavQOtPV73CsnfXMXpiksP/qX8OWnlXLfZSlV1fOCTU3qzqshIkoyG3kkkezEzOFlT0KiSuWfNwA7LLwta/EotFC2kdAhS0u3uyK8yRrgJiBsP5jbuQJAxmsTVVz2/FCoBJFKLaMH4yzPhJ8Tiv5fZKPA0OtnzmkFA7u9e+ID4egz1hopE5QiNi47/y8gAlK4oIjcwI2bTjQ43ILvF89qan24jNxoTa0ynFKkX1DgxGAwf+rVP3eeHxGYwWweRtuLC8qKgfTqKoWaXlpir6d49y+gX9viEyMcPcjFig3bd/lr7dC+dCya5tdpcUWetwkYUKfzM9/Uf5i7/4C971rncJXfMC3hxob28HwKEEcn4eT8RecUVGyhoDJ38XBsMS71HW59PDs8hWnT49sVYoXWunalMRx18YYORo2j0soqCUjsgERHLtOs2zDjn6vQLqT8BsMEpkTEcNNC12q7rUh6/FxdDhCSL79ZPfV9zbgFk1CccZm59oIzIxKzSXeFc4Ke3wYrQYOf4D/UqD4fEZZkJRxk+IEWu7fjFAF2Ib5UDLZ4ycnBRSRIpMIHR8Evu/1il8DsCZ34jHeQYTWo1IfP9aYTAgXtuMIDQ2kjj8bf21qnSc+klhtc2NH2shMjnL7n/Unxc6+8owZ18RJ75PDYSRjOLxcv11ZRBHaC0GmjL91LkQ+wRyuPVvK8XfXsTR53oYPqjf/1RdWoJFNXHiR/pzgZGhCHORGLPBrLrAEpvfdn+pU/c10jF6JKir20w8Hs9Y16y8pwLZZWLHF/X7haGj0/iXi4k2ABz99QzMLozX4k4t9opbFaRgZgwZcDZQYihhamqKkydPUl8vRihMomCSUm1tggUvy0Q8ceSReeMlCUq5cJ1tglgcfhLX6H6hYgl1cP74bHJSyGNAHYnRM26lZ1xTUEpeacat3b4lbcJNEpQ0RInNwWyiAJxNTlpg2BltULa9w4m9xMSB50eY7k2rHqcRlJLM//jM/OfxubSAIivRuaDAlvb50W+fLUhWcc8/HcFcJNincSBCZHyGbkGW7PDxCbwNghRN4PD3O7H6xLcKF0I2Kr2oCFuxKkwempmcnR9UAuj4UAPDxyfp/FmB/SgF0HBjGe5qm3BCqtBiQSE4/t2zHEc8AGi8pRxnqXreWqJ1fKiBwSMTdL+gP8CcHomgeGRNcUgglvWusFGywsPhbwkEmEF49a/FW6Kc+lE3vjU+YULgyOlJHH4d72gWUWl6MExwQGdSKeHrzm0ZIzYTo3+JXb7ZBdc9X8pKsi0lHZ1P+jCPQhIAFjMd7y3GKEts/9JA8obmz0/ftZX06waJvtNQ2R7HlLZxIZuotLDNG2zfMk+ICvnnT44nfkI6WWmqdP53NRUFaVTn+HWvkWAOKaxsolLIH6fooQ8T/ev/xZEj+pNsF/DmQjQhLb1p2f3EAMP4vENKEpSyoXpg+VttdO4JM5DgusRVGSm0+PsryTLxSIQD38mxCEm+Q+kS2GkxjmTUYp4UQSmLnCRJUqb8euLcTU81EJmcZdc/deWPn7JRAEEJCpsf9331NMVrnEIEJYChY+MoTvFdTaHhCGOdYrugu14YIB6DwV1iSZTTP+3j9E/FF9bNt1bQv2dYiDShqgbmZmIEB8QS5DXX+imqsxdMlhHFmkcaGDs9zamf6F/oDh+YYsuB8ye7vO3/FObP1364kcHD43QJxEKFotDnFo3MER4XIxKC1pZuqidE/84x3ecc+Hqn8HUAOn/bz9RZMX8QGoGZsVmGjoopnpzbMYjFbiKSg6ScD0e+30lkSLwtQCGx6KJYonjsblJpu6WG4aMTHP1ejrVEWhyWnBMkg8RsaA4pm4CVRVTKiPtiMcZPBtnxj/PkyowdZcnrpM8r7vn176pb7MRm4+x/PrdfziYqxVxWyq3l7N27l3Xr1tHbW1iB4QL+57BqlaaeZJRkJKtCPC13JOXZ1LD8Vi8Go8S+bycSyCZT3tYhktlEfDbK2IkwO09krRuT709G7JQZ+8SiMWaDie/XGTc1vMOPr9XF4e92M3ZiER+R653I+92LX/v0z/s5/XPxvMmu/3sI2SuW84pMwnR/mHM7xXJeQ0cmMJmNQgQlgIP/2YlNUDUICiN3FK92YS9XhNqoAYTHCiBAAKvur2X05FTBZCURVF7ho7jNLdw27Hy2Gev+1WBBtqi5xo+7zi5ETn49WHV/LSMnJjkjsKE1NBwhWmFFUQyEwzrfeTRSYMlKD8d/IDbHFZLzPfObXkKjYgQlgOEjE7hq8ndyyIXxzinCE2KbB8eOhwpqtSeyiXhJ6CDttT9Yh+K2sDXXpsNFimijR0PE5+L5i8U5cnF7v5YWdy2lopQWl/lW2qndZGf/f/Xl9MvZRCXJqrCc65ly93PsmFib7wt48yApirC54V7ikFG3iy8We8nQcaOdM3tDDBxLxCKKDOkkpixykmQxE5+Z5dhPE2uy9FgnqZaUXudL+9xoMRCLxhjpTHx/NjnJaMzIgyXzX+s/XMvM5Bx7vtadGa+lfXcyH75oHmyJjRXp2PVFHXNOVux2/LmzDB0eZ/SwWOeQgb2jwuoiABNnppk4J7aeHt4/wUm1l1FBpcfe349kKMLpRd31AYYOjzFxWiB/JcNMMEpwWCznFVhfRPFyV8GkI1GseH8N42em6X5Rf2wTOhfh1b/5A+YKlsBrBW46XHmvFsMWQsQSRdkmD95Wp/Bzm5mKEh4Rz3lVXl5McDjCsACR8LhA6+B0nPxZL5ExcXLz1LkQQ4LvaP+eEawlMsF8JPYcMc6R73QzOym+8WPH57JiBR0kosWw1OZR2Wdi9ftrGTk6xfH/zrGOSzs/OWdIkkRkKorRmv++smOryDjs+tr8NaQc3TYyYJ2vV7beYMMgwcEfL5LzyuLTxK0K5Y5Kdu99jcsvv5wzZwrbpFowSWlqSpusSp96JuPv+QhKALIEcQlIq1llE5WyUWoPUlsSZ9cJiUievkSZBCUAE1t/Z8KkZ5DOzDuEaESTVwymr3uWUFCKz8XY9PEGouEYO5J9ZXUEDtYymYqLfRz7UY8Q+QEgOBSDIbGTpk4FCyKDnP5JP6cRTyqNHg4yKvjDilqtuOscwomXqov9GC0GYZLSni8t0gd4CcguC74mpxBJqfGmcoqXuTj9q3NCZJKiOntBrUr+GFBUY8ekiNOvN32ylXhcvIgiuyyUtLqESEqFErDqr60oqDWKd4UNZ5Vd6B0IDsWEflMSx78r8LvSiEp7vySuZgEsSVBaDIENLpQiC50/zx9cphOUAmvt1FzmY/T0NEef0x+UzoZjSOmKM/HY0oFKELY/v9Df61FUqm+axWaHbWcXDxrSCUqg8SolCarscY4ssnbMpag0MaHZ/9FHH+ULX/hC3vu6gDcXHnjggUU/W4ygBFBcb0IySsSyQqSliEptN7qZ6J+hZ+sSc3hW8uTUL8Y49Yux/OfkODc6G2Mmq03TUgSltrsqcVdbOfK9LkaO6I81aq71Mz0YYnCXuD8q5JwTzxVWmBbZTZOO7l+KzwU11/oZOz0hRDYC8DY7sZUo7DqmP7YMjcQKItcUt7kw28VjoY2faCUeiwtfUymy4DFKFBYlvrlhcZrxNDqESEoVVxRTdXEx3a8M0vNr/XNqoc+tUKK9f0URnjqHEEkJtHdg8MiEkJpY7+/Ed7AB7CygMD1yOMjIYXGfIPpOp6BC4/Xl9Pz6LCGBXO76p5oxWcQUaseOhYjH4kRn9RdFAfb+S1fu+GwJRSXZGaP5HaWcfnmUqXyvgDtzg45FkYjJ+WO6bKKSI3otsJdz58QVvi7gfx7JIucl/ndn/D0fQQlAtpswZC8BlyAq2SsUai51c/wnfUTy5XNz7NJ/7YtdmQTwxZCWm5qbiRGfizN+SizpvOmTrUTDUXZ8Tr8fU9xQfmkpJ184J6TQAlobu7BgYjw8EGbvl8Vn795XhuktYGfyZFeYyS6xe7RWKPiaHMKEl+rLSrA4zcK5skPfLIwAYQuomBST0H2WXeyl5nI/nb/pF7Knp8mJ4hEn9f8xwNPoKOi3rX+iGckoCcewyecmQlLqenGArhfF1xC1V5djLZaFSUquegVXtdg7EB4rTJWq84XCNpYW+t6IEpSS8K50YPMpQjZxN6q03V7LyHFBtY6pKCabeK5y22cKKxaXX+TGWa5y5PnFfcKCViRzYDBL+Fpt9GzNXSzLpag0NjYOxLn33nv56le/WtD9XsD/DP71X/818a+F8faiBCWgpMaoqaRmLwuyiUpZaLjaQXB4lt7XlsglZdX2zm6b4uy2qYza5qKnpsVn0VCMmaksQsISdcO66/0EVrs5+vxZhg8lkr866o1lmz1ExmcZPpjHHy0SO4oSlKBw5cUD/yau/AfQt11sgzZA2UUepnqDYmQjILDGg6vKxm4RonEEdgoooidRssIt3OYVYO3jTUiSxI7PiuVQHKVWzKpJiKT0xwJ7qYrBKAmRlLwrnDS/o4Izvx8UOs/X5irouRVKtK+8uJjIxKwQSQkS70DPNBNd+gk9g3vF2z4DQgpKSUz1RPITvRapr02dLbAdowzVlxXTt2uCyJD+71jzwVpkp5mtf6P/HY8Mx4jNxIlGxNTKj36/T3ebtwzI0HKdh97d00z25ckTWDPHrWI3LFkCzSYquYJXAK9ltGsVRUGsh/Q2MVarRhqKeOJIi8yPYV+cqDWOMmjge3O51XhytXdLoqY0js0EshUiOeKGOcWAOUfLjua2KP19MBk2YpjOPdDiVgVpLHPCPvaL+clYsliIT+cJVgwG4gkCU2RiltBI5i6LvAU2yUDdNVqLpsmeaSHSytqPNGJSTcIEjfaH65k8GxIm8qx5pIGeLQMMCBTnSi8qouayACd+2iPUYqvu6jJkl4XTv+4XIm7t/89uPPXiO9iqrilh6MAEwV6xIKUQWd3QaIRYNM7kOTHnuYDZqRObn20jHouz9S/feIZz020VFDe7OLtjSIi4VcgOKkAL7AtozVHIcwMov8TL+NkQU6f0D8qjPzyD1SvegLXxbVUYTJJw8nHdR5qIx+PCilsr3l/DVH9I3/USRCVrmUzrzVrgptsvxGMsu7sKV5WNLX+V+7kvxjyuvcIPEnS+qL9S1rdzispNXibPJd7tpSb1xKI3tes5694ldZGAMxYnbtc+a9wIZ49AcGz+YykeZzaHilISgdJEnJWDLxZf5JYPhmwcTNQdp5vimKZy223WAVHr/ItiXbuW4M6d/PjHP75AUvojw1e+8hUAqv0Xp/4Wc1mRZnMHuDGnlbjFRNfuabpySKUvBUepjNVnWZykJBkWqCRZyw0EljvnSUqLtHiTJClTfRLY8XdpxSTJQDxfe7hEQmaiawpbsWUhQWmJQl3ZOi/xWFyMcKTC5o+2MXh4nOPf10/u9G9wU7bWy5H/PClU6K+9PoDqkYXbcq39cCNz0Ri79eyaS0PZei8lq9xs/7TYnHzyhV6m+sRiGmedis2vck5QLlik7V06IhMzxMXWgUBh8UL9jaUEVnroeXXwvKgUbX66DRBvB1LIbwv2TTM34yUyLhjDFvjc1HIVb71NqJUaQOdv+hk9LqZApparlG/w4aq2CRW2/Wvd1F5VyvEfn2H4gP5kbvEaJ2XrfOwV3ChRf2Mpdp/K3n8RO2/jx1uJTMwIER+rLymhZJkbg0ESah05dTaE7EwrIuhswbP1rxcpwC6SIYnH4khGI54WlaI6Oyd/mpVEjMUXJZJYi1WsPgtVF3k49IMx3dfc/p1EPCmbmQ24Ft0IFbcpxE3ad6iqiizLzM3NsX//flasWJHznAt482FsbCz1b0VxA5pKA9FFYhtF0XJDoRCvfV3c/1ducmEPyMhuhcj4InmJHASlmqu8jJ2eZvREKL+KUlYx6/TPBzmd2PwhGaSllSsTCA6EiYxn96rOf27lFWWUrChiZnJWiDSx6gOa0odIqyWAFffUMDWkc22bhpX31nB2x7AQwaCoxUbTOyo59cI5BvfoT+LXXxPAWWFj4MAkYQFlyQP/eQZ3nXjOq2yTh5HTQcJ9b3zOa3YqSjQ8R7BfbLOi6JyYxKZPaLHQ1r9+45UsK6/wUXWJn97tQ0LKYIUWocJjMwW15ig05+VfW0RwMCREujv247PYSsRzXk3vqtIKo4KF7VUP1GE0GYRt2nJbJaGRiBARS3FD82119O4YZnCX/ve78cYyfMvcbP2sWOu8xuvLkYwGIZuMHQ8xMznLRFci9tUZdy2q3JSnMpXM1dW+tZj+/ZMEz2b9uDz5trKOIkyyAdBPXBw6GmboaOIaJd4FLUZS96XIGeT0NvcVHBr7Fb/85S91X+sC3hx46KGHAKgq6kj9LZ4n9oorMpiMDBwPM7DY+i9P+zdPrYK7XF6cpGSQFuS0ZBf4Vzvp/m0il7RYizejkXgWOX3Xl9NyOzm+Ox3J2GzybIiiWts8QUknqi4tgRgMH8wRQ+WJ2zZ+vJWhg2NCbZOKWu1UbPJx7L/PCRX6yy7yYA+oHBPIr4GmkGOQJPYIrolrLg8wE4qyU7DGdvQHPcI5ELVUxl6iCBM8CiF2AESGI1BIvFBAW9myTR5qry6lZ9sgXb9443NeG55qRjIahGvghbQeDg5FmAlGCY+KqSgW+txkn0xRnVWYdHfiZ72Mdwvm+WWouTLA5NmgkOKTq8FK0zu1tY4IKcrdZKNio0+YiFh5eTHOCpWDggqTax9rZHZilr1f7dR9TnGLi4oNxVjsFo7/QL/PG+sMZsS+S6koJWOrHf+wiM9a5Px4XMt52UplvE0q3b8dW/jV5tz0HtkOrgoZJImjP9W/tt39XGJcmU3MeR0Ygrnfhbh1nlguyzKyLBONRnn55Ze59NJLdV8viYJIShdfrBXIDHYHALO++UnXMrDwK5MF0kqCaLz+tEV14hmEfRLK0MJJ0hCF3/Q7KDYFmQwulA00JmRoZ53mLKJSlGI/eH2wbRE+jhROGDmNWW31Q6DNxqlfT8+3cjObciopLQg2/jHtpUskgfLKNMZjHPhOF/VXBYRbNBVCzgBQPTIWm5kT6CcpFa92oHpkAmu8QiQlu9+aUG8Q2xV7+PleytcWiStLdQcJdgueBFRs8BFYWXReWqP1/HqIHoHE3OvFRE+QmOCu5EIxuG8Eh19h6Ghhu4ZEcb7awwFghZorAoTHIkLXHT8eZPy4+Jjs+nUfxgIUmAo5B8BRbsVaolM2PpH0MChGZJeFQLtHv1+QDERnY8TjcaxlZoK9s1kfLz6pd/9+gMlz0UV3x6f6tSYXiImF6I4vZAZD2b1dUzCb5hdqkkRxm4zVZ6brZW0hKClKxue5UFIXw1tuQbFH2Z+WD0kRlLJa5iWx/YzEeBCQQMrh2yfL55+rIYuPW0qQE6E4Ubs1J1EpVDE/T5lHjJTefAeT3d1MT4sVcC/gfx7JHVhNlW8BYNY1HxNZhhY+z7hFi8fsfpjKfrUT4zBXP2EAYjG2/8sIavEiN5Oc17NkrBveUoxaZGbg4DSTXYskkpLvkUFKFdNqr/Ux3jWttYhLi58Wi52S6Hl5mJ6XcyQ6c7VGScOh75xGLhJLpjtLVYjDnED7A4DAag+qRyYkuH4sWeEuqC2HSTFiyMf8XwTdvx0gMiW2EAfo3zYmfE7T2yuwOM3CJKVCIUrYej0YPTqOs9x63mKhsa7pglpGF4KRw0G2HT5/7UJX3FGFSTUKk5QKUTcKnQ3Rt3uE3h2C6zGjtsPbXmYVIimVrfNhK1FQAwohgYKxr9lVkF8gHhdeO3a9MIAkSXT+4vyodaBCw1tLOfvbPkIjyXhr6d/aeEMZBrO0gKSUT+lm9HiIgz8eZCof98rjmv93VgHBVQZDMYg65JxEpXBgvqWMPBRixYoV7Ny5kzvuuIMDBw7k/0EX8KbB6tWrAbAYtOcZT2v5LE3lWN8l1h7OCgMTPVmxQnIsmy0wm2OujcU58twQtnIzU905fEIqdjIsKIYFVrsobnOw/R+WSI6n7bpX3FC2qYRTvx4gHhRrq7v3X9Kuo3P+Of6DXiLjYgSl+UuIz3GOSitKsUWIpKQEFOxlVso6xFRQ7KWq5pcFXfPxH/dRusYlRFACTSWqT/AcgJqrApRNzrLz7wtTQRHB4J5xIcLW68XoyQndxIzXi+HjU3ianIwcPz+/b9+/FFb0KhT115USHpkRIgAFe8IEe8TH5KkXziHb8qvS5YLFYcJQwPP2NDqIRqzCalG2EoXA6iIhktJscA5icRx+RYjwdfKFc8wIFsKBgt9rd4OKq9ZOV1JBQ0fc5apTCLQX4Si1su/rabm2JTYEHvjBWcJ5XLLBPh87xbMIKbZSmI4unruIFdnnv2d8mir3KkbVw6kOIBfwx4NwWHu+reXXAjBnm1egM47nSKgkFPDtJSyujmoxZ3RPSSEWY8fXRpCLFjkvGX9k5byqL/XgqbUy0R1i9MQi72vieEmSUnFM+WY30wNhxk6E50nlOhSRBvdOMLg3Leeus9XbgX8/jerL0X4tT1wl+2TisZiwum3JCjeOcmsuAay8KF3rRXaYOSbYucLiMAvHXQAnft4rnM8DGD4orqbecF0pzgobg0fGoUCRFxHs/0ZhilSFYLRzGm/PtHC7vUIxfHgCyVx4Gy4RhM5FClLAKhRtf1aB6pOFSUoDr42JXywCPb8fpF9QfSk+F8MkG7EVywI0Y/CvKsJVY8dZqwipl5WscCO7csSHS8V+cfHU6ODecWS3iZ5tYvY/9VOBHFlWbFV1mYf+Q9NEBhOOYSmCE9D8jmIsVuMCklKKoJSjA0xkGA78cJhgnrA37pyPn6Ss2Mvph9EoxKyWnESldDEG82iIVcvXsP21rTz88MPs379/yd+UDSlewKo/WeAtffZTmKsyJWuzSUrpCg7vGZ0iFidTTSnrOaQTlQxZvCBlLHMiMWZNLNlqSgFPFMkAA4kEZLaaUoqkBCmS0oo/c2EtMnH8lyMMH82aRdKIStkEpeZ3+YjNxTn2/cQgzQoa4ov0mp3/2/kpMAAaR0yQN2H1GQgGY8LnnU9seKqF4FBYuP9n4y3ljJ+cFCJgVV1TQsUGH6dfPMe5V/U7MlejFVeVje6XxHYLrX+iGaPFwNa/Oj89Xzc/28bMeUpiLb+nGmeVjS2fPSQ0voparTjKxG254eMtxOfiwgpOre+upG/3MKOH9d+ktcrKyjur6d83IryT83zCXmfVpxCVHRCI+pIlkh55mce5zk07fgHxKFEocDdaqbm0iD3/2pf5denH52Adb3goABJs+yftuWVIT2ddK6miBFC7Fk7vyrzXBSpKWecHA5nzaDpRKZ2gBJkkpdXWKWrUGN0Gid+pWmCRTVRKJymBRlQ6+7+eJhwO8//9f/8fzz77LBfw5sef//mf86lPfQqAq9f+/zIISrCQpJQkKLV0QFFJjO69Ic6lbyLJGoMZyb6s4ld8Niuhk008zireVl3qoOvXY4t+nhF2JmKjTR9vID4X59VPL5xzFo2fVFj9nlpOvdDHxOlFGEDnM7bKBxUooOOSrVoVaj11vlF3QynFy13s+8oRIZUo73I7nmaXkCIVwPonmyEu3gas4opiJrqmmDil35ZqQKH9vjqGj04IqcgUinWPNWG2mwre+S6KTZ9sZXYyKtx2rOKKYkZPTQmNy4pLfVRdWsLJF3uFSG3Fa5w4y22cFNjFCbDi3loUt5kdnz1/ySVRqB7t/0XeG+1ECvIl5xvNt1QwNxfjhMButLJLPNReHmC0c5pD/55IsubbzZ8ohhWvtjEXjmkk1/TPl2jHJVnzKJGkE5QgYx5bf5uCJEm88pv52C2bqJROUgKInRnhlYOfBgojXFzA/wySa4XLA+9DdvszP8smKaXt0l/3HifxWJwdX0nLCGaP5XSiUhYhe4GSZPaYyYrTXHUyRsXA8MFgzu/L/C7t3JZby/A0ODjx83P078xTYMjKW9W9zY/RaOD4D8/lvrc3ExSEW8slBLMIj/2B7+UPiLUfaSQ0MsNBwV3JtW/1M9EbFCJgFa9x0XBdOV2/6qNXgFjuqFZwVNqEW+eteagBi8vEq39zfgjRm59tIzI+y2uff+NzXkllnd1fOSVETCvUluseawJJXJG9/h2ljBybYPSI/g1NihtW3t/MwN6xgtuqnQ9YK5SCyFSF+JLzDUe1Qu1VAfZ9q0voXjd+rBmDycCWpPK+DhUlgKrLvXT/JmtMLkFSkiyLtztMJyhBJknJv0Kh5iIHw2dmObFVm3OyiUrpJCXQiEovD3yZYHCaxx57jM997nN57+0C3hz4yU9+wtve9jZA4trln8wgKEEOklKCoFS1AkobjfTsDdO7P498cjpRaamcV3Z8kxWbla23cXZr2nyaraaUdnwy9t/w0Tri0Tjb0xXEUwctTpxZdmcF3b8dYKI7suSxuvBGxW4yBZFx1FKZkGC3kfOJsos8lG3wsf/fu+ZJBTrgrJbxLSvi1E/7lj44DWseaUAySrwm2CEjsNZNcDAk1MYLGTY+3srw4XGOC3bcKQSr7qvFFlALUjgqBOs/2szsdFSsTR+aLaf6Qkz16Leld4WTxreV0/lSnxDhyN1kw1ltFW6313RzOY4yK68J5vPOK2SQZQORCUGflcuXvJGbEXQQtHOh+upijCaJ07/I8+yyvttVJ7PstipGT01x+L8S6+k8tdBkzstdLxObg4muTLLQAhWlrOtJ8uKxVzpBCTJJSh1/pmIwS7z6QppoQhZRKbvWGesb47cnPks8Hi8o51XQU5AkCY/HkyIo3dIb4h19WrDgnA1y6+wkK2PTRK1xLp2c4o5xjb1+1ghRI1wnTYAEVinITYYJ1qB9vo4pri+ZBIIYonC5f5K3BiZ5W/kk5dZJLm+bZlm5tlhq9k1z6eoQVoN23fVtIdZu1oqxxnCUTZdEcZdoBKWKRlh/NVgT7OjlV0q0Xz9v5DW3qjRdZwdFZuBokFg0xkxEM/yymz2seV9J6tiOD5TRcpOWWS5ZZWXdh6rxLbNSVGvH2+hg3YdrUwHD2g/XsfyeSgA8bTY2PNlI6QaNoNX67krWf7SJTZ9sofWOCtZ+pJGV99UCGrFhw1MtlF/i/f+z999xshzl2Tf+7Z7Q3ZNndjbnHE7OQQlJgBBCQiCEJFAAkQRIgEAi8/78+n0MBj9OGBv7AQwGg0HYgIUxGYQEOtKRTpJOznnP5jxhJ/Tvj+6JOzM7NUKL8LPX5wPaM13Vobq66q77vuq6ASON1uaHezP38L4u1j3QAYAWNMg5La807rHr5ga2fLgv82z3d7HuvZ3GPxxG2Y5r6gDoeE2dUdb00a57byfr7+9K193y4T66bm4AILg+yJb7+3AEjS6z9l0dbHhfpuzmh3vpua0JMNJibflwH44W48Sr397Oxg90Z8o+1Ev/m1sAqN/qZ8uH+/D3G2VXvqWNrZ/oY9W9bemyK+9pBQxFpy0f7qNmvdGGK+5qYfNDmXaxKDLOOiNw6+022rB+qz/T3lltuPH93ax+h9HeF343RvvLG2i6OggYpKXsNtzwvi7W3deZ096eFgd6Usff58pr707W39+Z04adr60HoP2GWgZua6VpuyFNse49nWx4ILe9u1/fCEDLtdVGG5rtLdnJ+Vo3P9xL7+1Ge9dfZrShy5T9XnVvG5s+0JNuoy0f7WPgTqO9azd72fLhPqpWOdPtnd2Gmx/qZeVbjLaXLBJbPtxH7WbDUT9wZ257b/pAT/o9uTocbPlIH+sf7MLf76D39oV9ds27jD7rCMpGn73WaAe7z5YzeG14oIt178nts+03GI7hztfWp9u758YWmrZXF+2zbdfXsuXDfWjGa2XdfZ1seJ8RCEc32/tWo72brg4a7d1g9J/V72hn4/uz+qz5LBOHQuk+6+02++xb29j0wZ6cNlxxl9HevjYrslXC3WIM3Cvvac1tww/2sPKtRhv6+zN91tvtYNsn+tny0UzfEh0j1r6r/DGi+/r6nPbueE2BMUKSWPeeDta/N6t/v7eXrpuNui2vqGbLh3txBI3Jde272tnwQKbs5od66LnVeDeN1/jZ8uHuzBjxthY2vj9TdtODnfTfbrybui1eNn+oC3+vg60PdbLxA61sfJ/RDiR1Nj3Qzoo3mePUSgebPtBOzVoHJJP0v7GGnhuCaH47TdvcbHhnAytvM9rB3WZj43saqVtv3EPPa3xseFtmrI/PJwlPx5BUFWeTyoY7PTSsMyb/zpcpbHizO1127fUyq68zPtALB2HjTTItq4x5oG27jW1XxgFjftq4Jc7GzakFcIytV8ZYWTfHtb1zvKJ3jmt65lAlI8iwvWOO65wZ8uRN7mk2uGZI2mBAm6PJmWRWhqPIvDo8w83hGeIunbhL53VMcwXGonnVVIg3D4aoD4WIBRJs3LYdgD/90z9lGX8c+MxnPgPAlVe8kphXpb4uyvYtUXwew3IfuAzWv8IgJ+l2Kxuvgd4NcOEURMMyDQNOAq2AJNF7tZX1r80YqutustP7KmNO8DQlWX+Xn033+ll3p4/ul7tY/5aMnNLaNwcZMG0gRyNseEcddRsNw7bjOh/r31mfJiitvbeBFXcYY7cWgI3va6PxCmM+6Xx1kE0PtBvGuCwRnY4RTRm8mjEGtLzcGLzbXlnN5g91pW2rNe9sZ+27Omi/uhZnjcbAba103GCMWU0vC7L5oZ40AWD129szNhCw6UM9bHywmy0f6aPhiio2P9SL1miOz29ty5lPNj3YQ++txjxbu9HH5g/34uk3yg7c1ZozR2x6sIf+2w17r2qli80P9VK10miX/tub2XRfZo7Y+P5uBu4y7BpPh8bmh3qp3egDjMB+9nzSe2Njeo7QGo2yDea43/X6BjZ9KFN23Xs7Wf229nR7b36ol6arjXfXcUN9ztyz9r7O9JwMBnl368f60Ro1Wl9ZY5Q11xtr3tnBundnj+W9dN5ojPveDoep6mKMf6veltfeH+yh+xZjLK/fFmDzQ704WzXG9s+iuG05NtCmB3vofaPR3tXrPWx+qJeAaRsO3Gm0tx7X0RM6mx7sYcC0IwP9DjY/1EtwtTEm993WbARmUu39QDctl1fT+9pmnK1me28x2rv7lsac9l733k5Wpdqw2oaOjtVjrBc6b85tw3Xv6WTN28021Ix2aX1lDVUrXWz4YHfOnLz2vg7W3pdp780P9dL+aqPPtry8Jue8a97ekbGBUu1tzrPpPmvauivf2sbGh7vT7bbpg1l9douPzQ/14ukwXuSKu1vZ+ECmzyKDrBrvLbjandNnB97cktuG7+9m4E6jz7ZcXs3qu9qoNm3x3jc25ZTd8EBX2o5MtbdWZ0dP6tSs8hZv74Cc02c7b6yn/Zr6NEFp3bs7WfPOhe0N0HZdbU4bOusUbI7MYn3zQ7103GC0YdPV1cY9pcaIrD676m3tbP1EH12vb8ht73LHiKz2XmyMWHVvL46GrDEiv72LjRGvyR0j1t/fVfYYseH9Xem1T7ljRP/tzWz9aD+bH+ql7TpjPC9njKjq8xjS2VdWmWOyZLZxG+vek/kWNn2wm+5bjPbW4zqJWJIzO4dBkln5llY2vDer7Ps76TXt9uq1bjZ9oINAn8bI3jnq1vnZ8N62TBve307fLcaz+bs1Nr63meAK44Z7bw6y4b5malarbLmvmg33VtF/kzE3Oephw1uD1JivrnMbrH+t1Qi8WSysudFOLG5heEhG0+JsvSJOU2ucuFuhfZOFjdenb4HNqyJsWGEE0WzNDgKBAHKJdBPLeOlBkiT8fn+aoLTylRYGrjV9SCqsu8NL4wYFZJmmDXbW3WbMQyPH54nHkqx4Q8BwFEoy6++uomW7Mac1bFRZ/7Z67G4gqTNwazVr31HHlvc1EVylsuG+Jtpfbvgw6jY42fDuZlTjs6b/DbWsudcYd3RdZ/27Wgj2eRg7ECK4ysnG+9twNRtzRN8b61n3rtb086y/r5WeWxpAkhk+NEl8PsH8jGF79b2hIed7W/+edvpuM743b6fKpge7qV7roWaFn+qVPmP+Ntfv697dmZ6T1TqVTQ/2ULvRuP+OG+vY+IFutny4j95bGlnzrg5W3t1mlPUZY2PD5cbDtb2yNmcsXP32dta8uyPd3pse7KHlGuO7brmm2ihrcvZX3dvGGnN8A6Ns+8uM99ZweRWbHuxB9Rnf38q723JsoI0f6KbjRmNO9nb5WfXWHlRznh14c0vO+Lbhfd10v84Ys6pWu9n0YA/eTrO9b2tm/Xszc8SGB7rpM+dnf5+TTQ/2EBgwxv3eWxrZ+ok+VtxtvJ/17+6i/w5jjnC3Gm1Yvd4Yl7pvbsiZT+xuG+4GYzxTa4yydVuNSa39htw2XPPODlbdY7T3qceG6Li2nqarDPu69RU1ue39tjZWv60tpw2r+tzoiSTuVi23ve8p0N6vMtt7W4CVd7bTdrXx7xV3t+a29/u76bzJmJOr13vZ9GAPjibjxFaXBcmacdRveF83PaZ/LNXevm7j2fve2MQG067pfl0Dmx7uoe82ow193cb9Vpm2Yc/rG9nwvkwbrnt3Z7q9JZmc9u68qT6nvde8qyP9nlSfzKYP9rDuPR34ujXaX5XX3u9oZ5U5J6f6bLPpY1SqbMZOJHMaWHVvW9q3k2rDtlcabdZ0VdDss9Dz2mbarq7N2ECp9jb9Y3VbA0bZGrPP3tnC2vs6ScZ1knGdje/vptv0j1WvNdrb3Wr22dsX9lmrTWbi8ByBARebHuzB3+dc0N4A69/bRZ9p1yhVKlbVgrfdkX4f+e1daIxQ61S2fqyfTQ9ntaHgGJHyR5YzRqR9XuT12cXGiPsyY0TtRr9RtpwxYqObTR8SHyM2P9zLhgd7ctt7kTGi/7ZW3I1OWq+oZu27OtL+X7VGYdOD3dSZfvH2V9eyKcs3Hw3HmRuNGB+CJrPpA500mXZk68ur2fSBzLOteksLq95inPfsY2NsfF8Hrdca/bvpqiAb729Lt/fKNzWy+p6mTBve30bby7ysf0c9mx9oYsM7G1BNW7z/lmpWvj6zkX3tHT46rnYjWS0EB1QaN7oITScYPKbTe6XMmuut6A4V3aGy5g0uOq8yxoSqJtjwKglfDSS9Tq7cYqhPf+ELX2AZfxx4y1veAsCWTVeQcNrxVetsuFLHW2XYGx1bJFZfZzXISVYLq66V6NwIw2dgdiJBdbeCz/hMaNtqZ/VNmQDqildrdF1jjFGKN8ma231suMfP2tt9tGzVWPPmYKbs6/303OAzynpg7V3V1K4zxsKmrS7W3lObJiituLWG/teb/jIF1r29kYbNxtzTsM3Hune1IKkSkiQxNxIhOpshQ61/dxvNV5n23iYf69/TjmJ+Cn23NbDq7mZqN3jxtjrpe2Mzra+oBj1J9RovGx7oQqk2FD5739DImqz5e927O1n7ng5jHlzhZsMDXXhaFdB1ul/XwNqs+WTdfZ10pXw7XQ42fKAb30rjWbturE/HwgDWvrMjHbNyNSlseKCbqhXGDXe8uo71b8+Mb6vf1p72USjVRtmaDUabtrwiN47T9ap6+m9vSbf3hge6adhmDBDNL6vOGQtX3t3KCnN8A6NsozlHNFwWMMqawqcr3tzCqnsydvCmD/aw+cO9uJoU6jb62PBAN4rHGPf7bm/OzCcYc1ybOUf4O93YnVZs5rvpuaWRNVnz97p3d6b9kf5+Fxse6DaUY85EsSiWBe2dmpM97SobHujG12O0d+dr6ln37k7D5xXXWfv2DnpMX5pWb7b3KuMm2l5VmzOfrLq3jY7rG+i+qQUlaJSt25hp7+w2XPXWNgbuMNtQAckCdq/hO2m6Kpjb3ne1sPKu3PZuuiqIp1VhzX0dxlxvtvfAHS0ZG8gs2/IK49uo2WC0dyqfU+8bm9K+y1R7d5j+sapVHjY80I2rSUm394YPdKX76bp3Z/qsr8fJhge68XaZ9sfNDTl91qLIWB3G2s3TarSLv9/0X99Ql+N3W/P29rRvp+NVDay6u4PqNcY823pdTU6fXXVvW1afldnwQDfuFg09kcTf48pt73uy+qyS22cbL6+i87oGzj5ukFxW3NnCyrszfXbDA900v8xow7rNfrPPGsd8na4ctaH193fRep3hHzPGiO7MGHFrU7rP9tzSyNaP96X7bNUKo709rUbZ7tc3lh4jsvrsomPEO7txNZvt/eq6nD5bcoy4MneMWPXWtrQvzRgjumjYZoydzS8L5viVV72jNR2TNdqwKzNGbA8YZbPHiLtb6bi+hi0f6mbDeztoudooW7fRy4b7O7LG5Ma0DQTGWrlhY4CaVT6q17hZ/552tDqzDV9Xx+q3ZsqufUcLHdcb71G2y8QicS7sHgdZovu1tax5a3Om7L0tdN1gvEdPq8K6dzTh61SYPBEl2ONizVsa0mvw1Xc10H290Q5qtcTat9QR6LWZbehmzd01eJpkNr+tirVv9tF9nSvdhmtu91NjNlvLGlh7gx3dakG3Wuh/pcJ83MLQeRkUnfVX6TS06yQddhpW2Vj7qoxPa9XaOKvWGvFOuc5FMBhEkiRGRsRId1ABSWnz5s3ous6KFSvSvzl08JhkK6c3gRUImiziqiSkPplfelxYAYecubhVgirMsiSxShkFJacFLLLR9hdCRlmPaigoeZ2Gv1A2jWBNBcVuEJQALFYImBve3H7j30rA6Cyax4LdkXl0q13GETDTogQtSBYJZ8AwZrSADZuWkue2YtVknKZcoqNawWKTcNbZeeqvThOPJrFmpVuyOaxoASMQ6KxRsNhlnHXGeV21KlbNgiRLWGwydpcNrUox78GKRZHxNBuDrLvWWPSloHjtOPwabdfXYvE4jLINZtlGDYsiZ5W1oXqNe1j31k4sioyr3ryH+tyyqteeM8BZFBm36fBu3FSFRZGRPcazqwEFxZO1g1S14K41jnmajXtae08b2z7ej1alYHdlzmvVLLjMss46zSQXOdJtKssymvmurJoFR7VZtt44r9O8f2etltPeALrZdxw1ivGsZhs6a3Lb0O422rt6rZtVd7UZbdholPXU5baL3W1D8RvPKjmMeyABO/7sEIrDntveHnumXRxmG5rv3F3vQJIkxk5Opdvb7slrb9Ph5G4w7kExn13SZaQs2TGrasFVk2pvp9EuQeNcjqCKzWX0Z2+bC4tNxmmWdaXasCbT3tltaLS30faSVTL7S1YbZvdvlxWH+S04gzYsdhnNrVC/IYgrr70Vjz39TpVqNedZSZg7Vc3Nn3ZPps86HLJR1rwHd+rdOOD0Y4Pour6wz5rndZllUzulFb8du9vGzr84ws7/fcR45+a78TQa7aJVGfesVSmGfGhWe3vbnax5Vwcus387zNyjzmoVmzMTDLNqFpy1xnkVt/Hf6dNhs73z2tBpxRE0z1Nnvps6DdlKemxIoZwxouvmBrZ/agDFa0c127usMcJvZ/unBtJ9VmSMqFnpM9qwwQhWyx7TaerPGiMkOWeMaN1Wg8Um4wqa7R1QsWe3oWrBWWs+a61qjJ21diSLhMVuwebI7rMyDrNdnLXGmJweM4IqskVm3yNnOb9jBpvDghY0x+SgDYtNwmUS05xVdqxK7rygaMY9KR6w2CTcNUZdV5UVi81Ml+XSsDtkVHNOaVoFFquEu1qCZBK3O3dTmaIZ/0sZFVbZmNeiMeMnq2wIDOoSaPbMfAnGHOi3GvX8NmOu3Y2FIc2BB8jef2aXwGuWrYkZ87DXHB+vuOpKPB4PjY2NLOOPA/F4HFVV2WoSzLxusFpBM4dRh8+aY9fYFHB7YWYcxofAagPNa/RZp8+SsWsAuybjCFggmcQRULAqRpq1+bkkzqA1UzaRRHFb0KrM8dmnYVUknLV29EQCT5OCTbPQsMVwyqgem/FtWixYPRrWrPnQsIGy7sFpxa4a51U1YwzwmMQAd5NmzCfms2p+BS1g59R/D7H366cMImhjZiw3ypo2XJWSnk/AsMssmozFKuOuN2wIh9/4QB3VeWVd1sz91mtYFQsrbzEWds6a3DnC5rSmx01nncOYB0y7xt/tTs/JYNgUqdzVKTsmVdddp2FzWtHqVLZ/cgDVZ0/PyQ6/BatmwZ1dNouIoXrtOGtVtn9qgLrLarBqFjxNmXE/e+7RAna0VLo7DSw2GdkqQTiKu9G4fy3d3nZUf5a9p1nS7R0dN5xsNp95j0EFzZdJh2NzWnGZTnxXg9neVTbWvLMDd6OWY0fanNbMs9U7sWoW1KCW097P/PVRnvnro9ic1rRd46hzmm1oPmuDljMn2z02kvEkp345iMu0edymveeuzy2r+ZR0/05G40iSRGI2aba3I6cNVZ8d1SyreY253VWnUb8xiOqy59hAqk9BzUovaNUsmTnZbJeUiadW2VF9ue3tMZ/N02Dcg+IxCjuqFeyqjaoeT7oNneY8m36Ppi3grFGxZ83fEhJ63JgjXPVm2WotXTanDbP67OxQCEmScNc7C7ah4rGn7RpHlc14toTEjk8fwqpYF7R3qqzNp5jtYvYBs89u+lAPng4N1Z+xIzWN3PfYZL6blB86IRmE9Kw2zBkjtKwxIpj57jW/HVnOttvLGyO2fbyfzlc15Nh/5YwRPTc1s/GBblx5bVhyjDDLpohJqre8MaLz5npUr4KzOrVw1soaIyyaBdkqGedNl118jAhNRNnxmcN4mowx2Waq/zmq8sYIhzW9JnQ1aMhWCYcjtZ5RUDy5beg2HT+eZgdWVUY119nuZhW725pV1oIzZV/X2LAqcrpNXTUqNk1m+FgEPaEbfoAq4zqugIpVkXCbhBB3wIot2w52WpBlOHrIasxVVnCbjiu3B6w2Ka2ipKrgMNvIrsGatWtJJpNcf30Wk2kZL1m85z3vQdd1ensz5D3NLeNwG/1B8TiwaRIuc/3tqrZi0yRQ4fSTEaxWGYcvq086ZFy1Rll3jR2bQ0ZWjHHKUWXHplhIxnVGj0WwOSzG3KnrRn91WFB9Kf+TMUekNvjYPVaq+rPGY4cFrdq4jrNayVm32T02XDWp8UI1fQTmOr9OzfFLKF47LnMtpvrV9Lz71GcPE5mez/k2Vb+SnnscASs2lxVPU8b/YXfZkG0yFs2C5ren19Cyy/BZeNJjuZZjLzlrVFzVWppIYHNZcaXW+Q25ZR1BNb1OXnF3a05Zj1lWdpn2a42CI5AZh+wuG+4GB+vf3UX7K+oMH4fpG3TWqjnzt+I2yoJhF9hcVgZu72DrR/tw1akoWfO33WNL+/400z/jTI93DmQ5s4ZVAnZcZlm1SjHuvz7lv9Fy5hM9rpOIm2n7vJLRhulndeTOswE7Wo2Cu1Vl43u6zfNmlc1qQy2oolWZc4RqtLfVaqgaWSwWbC4rqklu1mqUdHun3k16jmjQkGSJMTMdmrNGzW1vty0zpzUa70YL2NLPRjLj81KyyrpqNdP/lJpLtXSfrR7wYVMzNqcjaJR11WbseMWd22dT7S1ZzDY07z+/vR0BJW1zKlV2039j2Hup+0+3YVXGrlFV2WgXs78QM4LUkcmIeY9qumy6DRsz92tzWUFVOfWLQZJxPe1XBmM+TNuR9UbfUlPrvFoVza+w6++Osevzx3La29Volk35lAr0WX+Pm1VvbcNZm+qzC9sbQPHZ0/O3au6knjplOPTcdY7yxojIPLJVwqZmtWEZY0TD5VVs/9SA0beyUhktNkY4qlW2fWIAtUYVGyPcNurWGgFzj3kP5YwRvdc1GzGBakfR9i40RlisMjZNzmnDxcYIq93Cnq+e5MzPR9D89rQvTfXIZn8pPEYomi39bagem2Gvmv4xT2PGPpVkCa0q893Xbfca521L+a/NuUpNtbc9t886LLjqVaJTCfSkjs1hwe4y/XA1Cpo3yw52yjirjX+7a23YFIkLBxPMjRp+DMWZ5ct0yjhrDPvV6QGbIqGadtmajasJBALU1uYqIS7jpYvR0VFsNhvbtl4BgMNl+E5N0XhcVQqKO8sud8u4qiQi0zB8GhRNwpmK7VVZUFyZsppHxlltg2QS1SOjOGWSCZ3ITAJXjRXVba6DdB1HwI7T9BtLCiguC85qu0HabVJQPFbq1xu2lyNow1ltB1lGUUBxW3GZ6xVXvYKStT7RPEpOikvFY8VtfsfuBg3FY0N2pNaAKlpQYWjXFLu+dBqrzYKnIVVWRfHYUL2yeR0tJ62b6rOjuIwYjbPGKKt4jfO667X0HABGnCQ1fzurVRS3jf6bjOC6u9GBkvUdq1VKOt6i+A0bMzXW1K0PpNdlRruo6blH9VpQvLb0HO1tcBhragW2fqwfZ52K03w2FPO8KVulUcuxZZ21Rmre7Z8coPnaahSvLcv+cKB4bSjm2s1Rq+KoyZojHFasiiXdZorXhs0cZ111WmadbLZh6lnnhiOgg81U6XU3OHLb229Pz1POGhXFa8NRpdJ3ezOBXveC9k7NPY4qo2zKxnA3GD6PPf94gt1/fxw1qKTnE0fAaBdXQ1bZrPnEWa0SjyQ4+YtBFKcR50nbe/WOnDZ0VCs4zH6nYMQaY7NGUN+dX7ZGw1GbIfspXhueBgfVqwK4aow+q7jNtUW9mvZLACgeG96GjN9N8drSinyuBi3HBlJ99ixfifGs6T7b4EBx26lZ7U+3d8oP5DDXOik/kateS8dvwYixJKKmzRw07iFlG3oaHTltqAXV9Dw7emQKSZZw1quZst7c9k4dk502oy/ZLDz9uSPISHltqKbbUFHMd5PyeTUZ7b3+HV14uxw4a7W0vZRu75RfvNEoKzuNZ03GdBLzGeUb1WvPifsZfIBMf0/1WWetESdL+RidtWZ7m2vNYmPE5g/1MnBrq9G/zfdczhjReYNBZHI3aChegTHCb0+TuxxZ7Y1i+IicKR9pY8bmbNjmx1PnTLcvitEP3al1qTnOKoqUeTc1xppYskpme6fWA8bYaXNnYpM5Y4TXztxIhKf/9zEc5jir+izpNtSqlLSqkeqzp310zqCK1W5B82TOqway5gV/xr7TgiqK25pu72C/M71mQtdR/Rm/ocNnR3FZcFUroCdx19pR3RamzydJzOvYFAtO0+dlc4DiknEGjPtzVllRnJn1l8MnY7XBqYMSCsY87DSFxl1+Y66N+U2fnQucWYJM69atR9d17rzzTkQhnO4tJXvtuf0mfNdetuC4zW3sxkoM5ko+3Tw1SwJ4NGDcuTZUmB8lx3NTvmXDGs78rkwtlHC0hozfrLPzbH6lsen+mV9kndvcpS+Fi8i1RaJsutfP6PEwJ3+xMPWXPh9bIPGYPpaVCq6Q9GI6XUkxWUaB1+DtdtB+TR17v3FSKNXS6re346hWeeozh8qvhME2lu0yTwvKLq+7r5P4fEI4/dpSovv1jVSv8HL2t8Oc//Vo2fW0IEjIhEZfoMxmmXC0OCCeJHRRTGfY0eKAUET4PitN9+bqcDB7KSSWAswB/laHUBq1FwQHOIIOQmfFrrf9kwPoSX3JUu5VAn+/g+4bmjnx0/OMPV++RHfPbU0Euz3s/frpwu1SRFZx1b1thsN6sbEhT26w59YGEtEEJx4dKp3irUDdBYctJY7bSqf6gNLpQDa9s5bwVIIDjxZuS91hGihZ99A4AE0DNs4diHF20DBudMvCZ4zUZIy+ZBFl7NlGCxSZGmbbjG961WSYVST4IRZCWlbqkjbjnmOTBXKQA4k//VuGh4eZn1+YV3YZLy2Ew2EcJtnyZdd+pmCZhEn4UYfC6d80J6zcBqcPw0gq7e1U4XFPiifSaW/zkS23Tl6qW+PixvGmy5w0bvBz/GfDjB4ILzhezNxcfU8jis/OM391vPD1k3rlkta/RynrzhvrwQInfjAoVG/rR/uZOj3LoW+fK7tOoN9B3+vbuPjsGKd/OlR2veBqN+3X1rP/kXOEL4QXr/AHwraP9wMIz6dao7Z0z6WBr1lj8qjg9TRw1oin6as03ZsWkMFuJ3xJzD5MqQMtVXtqAZlwOCmUqqztuloaNldxfscoZ39RIpH6HxgpwtD+r54WqrflI33Mz8bY8/di8uNbP9rP9Lk5Dn7zbNl1tIBM1+taOf6TS0s7NgjKcnff0kCwx8OOPy+eniZtN2bZh5se7IAkPPO3JzOS1wWuLWnZqXuL2I/5qd6yEGn1AbBxIIKuw95dufLa06aSlmMoll+V+bnf8tQT/0UgEGBsTCxtzzKWHna7nVgsRkfgMrprrlhwXFeMdy9PzOb83vcqB5Iscei/DTtcL2JbkUxArIBNRZ69VMj3ZG4G1HWdje9pAxme/cLprOOL2D56ki0PdTN8YIqTxdKRl2N3vcip3tQ6lc5X1nLi0XNEJsu3A/ve2IS3zcXTnxPzXa15VweK2yacUjalWHLwX8sfk5caTVcZaVfP/26Es78S2NmqGmQbkfZ/IVDrVEgilA4NDEUp5ueF77PSdG+OJpXQaEQ4BZi3U2Xqgni9SqHWqUQE7cOtppL3UqXcqwRqncqKW5s59ctBxg/OLl7BRMs11TRuCXLo308zeax8W6j3lkZ8nW7hMaX9hlpIwKmflL+WqwgvMAXKpge7iYzHeP7rpcewbL9doN9Bz01NnPvtKBeenDR+LODXk6xZdlIRNcn8VG/ZSNYYQemqmhht62wc/E0sJx1ntMmw2ewjhf11B8e+xuDgILOzs6hqYb/YMl46SMUbX77l/y14PGk3HKe2iazvV4G1V8ucPZBk3HS35KcDzJwgmZvyLQt6drq2Ej6vqj6FjmuCnPzVaK7PK1W/SMyw5+ZaXPUqu75wqvC9lbC79Gy77oWkeivDbmu6KohFlTnzU7G198YP9jB9Zo6j/3Gh7DpKtcK6e9sZ3DsudD1Pu0rndY2c+PF5sdRmS4xNH+rFYpV46rNic4dSrRCdjlaUOq8SeFoVpi8JXk8BLSCepq/SdG+KRwbFJpRuD0AJKiAhXK9SGMpcSaILKQVFUbPBR9f1DZz77QjnHhNXn1kq9NzSiMVm4dC3xdY7G97fTSKcYO//KZDmsgQ2frCHmXMhjvx7+WMKCvS/rplzTwwze0HgnVeQ7m3RWGaJ8zZf5ad+vZ+df1tkPiCT5i0b697eBBbY80/nM/ZVoftQMvFGqYiNmJ/qLRuxWjOD1coYsgQHn8k9x5xJDFULfFfR6DGefObr+Hw+xsfLTxUOL4CktPrRTzI55M45liIowUKS0p1myrdvlCApyVl2gEFUCrE5kGD/uIX5cO75SpGUwCAq5Zw7K29eQZJSJIq/E7qvDjB+KsyxH0/lHNazDZk8o2PgjTV4mhzs+cpxIqOUJimRddyBQeZ4kR08/zeg87X11K72GwG9H7/Ii0CMVAZWzSIcTFp1bxt2l5Vdny8cjC2G7Z8cAFiyvK2VkpQqwcCdLfg73Jz+9SUuPFG+0779hlpqVviFnQVbPtyHRZGF312l+GMgN5XEC837uhjJSJSklBo3WYSgBGmS0vp3NGDTZJ7+/PncU5cgKAFseXcd0bkE+x6ZKdgOaZIS5BCVAOK+DGFoMZISGESlrmCIWBzOTDoMglL6BAvvLUVSunx6lo4kHEBmr5bl4GnLOGryiUq++mmeu/nPIKlz44038uijjy68wDJeMnjVq17FT3/6U5CtbLj7s7jP5do3iSxFomySUls/1LfB2WNwwZxyCpGUsvMOE4lSt9bom5f2RnMJSlDSYQOg5ztlso8VsnWSOhve24bNYeGpzy2cb0o5ZLZ9rI/I5Dx7vlhisVPomhpCRIllFEelZKNKsf1TA8Rm4zzz18UJDAugweb39nJx1zjnf13+or/tuloatwQZ3DXOyR+JEdMqQaUkpUpRqW2y4YEuwuPzQgQZMN5deDwqTMipBJ031lO71s/px4a4KGBXLqMEBMdNrVFj3VvaGTs6LeRY6r+9GX+niz3/crYomSrHbsyzEdMEJVicpARoVTKNG90c/5mRsqEUQQkyJKUrNhs7ap/8TWGSEiwkKs3V2dj1tQ8BxUm7y3jpIOXzuvqaT2O/mOtpThGUYCFJaeOb3SDBs/9q9KmCJKVklq1kEpU6Xunj4s5JwhN5faMESQkK9KUyCEpqncrae1oYPzrNkf8oMb/l2V3dr60nOOBjz1dPGcSHcvuxypKRMv6no2FbgLaX1zH4zNiLT3zASP3pqFaEbZO+NzahVSns+aLYnL/tY/0gS+z4s6XzeVVCUqoE7a+qpWFzkHO/HRYiijVcXkXjpiqe+eJRoe9o4/u7sXtsS2ZX/jGQm/6oIDJumvPVmne0owXsPPVZMaLl1o/0Mj8TZ/c/nBD33WWXX4ykBCDL1K1zktR1hveGShKUIENSquuEthUSFw7Nc/75zPEUSQkWEpViVQ4e/83/RyIR5uUvfzk///nPS15rGX9YfPrTn+YTn/gEksXG9hv/DG0wdx2QIihBLkmppgPa11o4fyjBBXNZW5CklE1Cmo8R6LRhtcsMH4rmEpSgDJ9XXvns+gXsNl3XWXVXI44qhaf/qsC8WIJ4tOn9nUSnYuz75zOLls2BwkLSyfL6oyJs/lAvcgVko0qx/ZOmbfJ3YrbJhge6Gdw9xsXflU8MqNngo/uGRgZ3jXHyR5dEb1UYlZKUKsXWj/SBJPHUn4v5vFbd20Z0KiZEugPj3YVHo+z5xxff59WwLUDbtXWcfWKY878pX3TjjwovNB4pdC258LhZtLhkpAN9ZzdjR6Y5/sOh/AJF67a+vIq6dT4O/fuFokTLQiSl9LEcAnhpkhKAXZNo2ODgzO+MeFApghJkSEpbL48h6bDzl4VJSrCQqBStsvO7H3zYuI7gnGNdvEh5yCYoAVjqDaMhMaihW0xyUigTHAvXJnOISnKeDRAJSqwIQa0D7CR4Km9ciHotaaJSNjkJwOGYZz5JOpCdTVAC0DUznVU4mqMcMHECdp5YOJjr+UxriyWjDBCLo2M0fCQ1Jkhy2nDQSziKtr6vD9kqCS8c1723k/npGAe+IRYgqN/qZ/L4BGHBscvV4WD2pKDKjQNW3d7G2SeGmTpWft3GK6pofVktw89PcvwHF8uuN3NujqoeDxPHZ8Tus0Jc3DWWTq8hAkeNId8ripEjU4sXKoCtH+snOjXPnn948SdIV4eDVXe0cmnvOKeK7cosgAtPj2LVLEwcmhC6nrfJSHOnBRHq00PPT6Rl9pYCkcko8aj4boftnxwgEU8KK5j13NZEZGKesz8TVB1wGOn1RFW3qte6mBuOEbpYYGItMin7+xx0v7qB4z8ZZOJwkfGhQN1172pB9dvZ8fnji6t1Zako6Ql9wVpuMYKSpKrs/Opk5ofU5CpJueSkFBLJHKKSw5MgNG0YFZKZdiZFVsonKAHICegI6iR1OODMM0YkcohKKYISwG+tMr8FcDiwRMkhJ6Vg80UWEJXcm3qYefoIu3fvXvgsy3hJ4Ze//CUAwd7tC45lE5QAIqaMrDoU5vQhOJ23Fkt6HTlEJSmfhKQqNK9zIFkkBp8t8JFZrRmnTZ4DRquDULatlnc8FfDTdT0niLbr70+bBeQcp8sC+ynveDKhk0wUsbGKGMNao8a6e9uZPh8SUj0JrnbTdnUdh35wXkghR2vUcPgtjO0vf5cvVKY6A9D6yhqsDouw2tOWj/QhWyRhwkpoeGl3rk2fDzF5QqwtPfW5aa3KxdD+aVwNGoN7J4Xqdd5YT80qH3v/8Qjh8RdfeWDduzuxOa3Cyg/DByfRY+KOSsVrR7aL27FzgxGGD0wK16sEk6dmCHS7iYyKfUC9tzZR1efhyPfPCn2zvh6Nxq01HPj6GdFbxdkqrrqlBcDV5mFkt8AWPWDgzlZsqoV9Xxbbxbb9UwPEowl2fq78PpYiGCWTujEel+lgOvSd4o7AgqR2PZmxFzVQ3BBNLSey7DZYSFAC6Lzah6vGzlj7HBNT7gXHs5EiKAE8sRNANdIkh+I55KQUQrW2BUQlRVFI5gdClvFHhWyCEkDSbzj5UmSlZ7+Z64uQVCWXqJTMs7tsVnxNVmoG3KheGwceyVu/ZfmdyOs7ig8iYTKB7FIEpSz7KXIpwlOfLYPsm2936cb3nFZmkaSyAl6b7u/BplqFAxKr7mkjFklw+DvlK1ECVK12M3d2Jkdtoxw4mlRC58XZVP13NHNx5whTJ8qv6+9z0n9rKyPPT3JMwOcVGg0zPx1j8rSYLVQpBp8dp3qgNHmzENyNDqwOcVfzpT3jSDbxgMSmB3uYn42x70vFdyT/vqD6ZNbe18PQ3gkhotjg3im0oMLwQTF/pafJYaa5E+ufF3eO4essHYT4fWJuMFJR/HvrR/tIJnR2/oWYHdt+Qy3xUIJzAmr4QMXqYP4+J+HJhJAylaNJpe+1TZz+9SUhxacVd7fibXWy+59OLq4qlmVfJeMl1sYlkENqSo35Rfx4elLPscccjSqhC+Y9puYg8/gCghJAMknblQEScZ3R46W/9RRBCeDSCbh0QgdsSMRyyEkpzFc7FxCV2tpfzonjP+TQoT/SDaP/F+Ev//IvAQg2rltwLJugBBAzU0zaJsIMn4Thk7m2le5Qc4lK+ba33UbbVhdWVWLoQIF1WAmflxKESPbQn3/uVGA5kcgJ0D7/DXONI0u59toiCkoLfF55tllBKLD9oX6mz8yxP1vlMTVeFBmsPa0Kndc3CSsUKUEF1Wdh6rhY3FDxyESjSWHFoLrNfhS/TVjtacMHurEpVp76rNh4MHVuLif994uN0UNTzF4U8w8oHiM1mLfZxUXKJylNHZtm9LCL4X1i8bjGy6to2hbkuX89LaymVAlW3NmCFlR59m8ENisCF3dXtmHNWZOb+rdcjB+fYfzY0sSlp8/NEZmYZ3ZQrK80v6ya5surOfbDC4zsKz/W7GpSaNgS5Oh/XRD+ZrV6cdUtxSvhanYzdkCsPbturEfx2jggqHC77aM9xCJJnv2bxUVFUnZQdNoYpxcMqYsQvs/8apwzvyr8nZYiJwGggN0B86lmybO98glKAK2XO6nq0JgZijM2bF9wPBspghLAU78FsIEKlkg8h5yUQqRaWUBUstvtFfm8hFaOd911l/GH+eC+WqNF5kILGyAFPbttHbkPE65N4rxQ/MUddEg4xiXOjBU2XvPJSSmsWgV2OzzxBNiHS6Syyd/Zlq3QYbeTnC2RLsliSTucDn6zsGOhKEHJ7KwTp2ZyclqWCy2goHjE67W/op74FTVCC0AtCGvubCc8HmX3F8pX/2ncUIWnyUnT1iBTx8ofGOZn5klEk0ydFhuEhndPMyzorAfY8L4uFK9dmCh2/tejQunhUhAlnKRw7Lti7N0UJBkstqUxpiwWY6AWdUhNHQvx3DFxh9LefxILsqRQqdJWpX1l9xcqI4jNz8SYDxVOA1AKwR4PybguTFLa/qEB4uFEJtBZRkDJEZToubGF8HiE3X+f9z5KTMrOOhWrZiE44ClOUiqA4QNT1K7yobpkoqXsm7xJfc8/5wbsyyEopZE1LwClnfGJJPEqF9uuTiBb4He/yD0sLeI0Oj0icUEtYpCYr2O2NW+iz5pXE4pOMXPG5ovg1DLzYfsnbuXEHX+9LHv9R4C46SBp3fJaAGaajfnfMSo+PoBBVLKMFZ9jD/06hMtdqp8Xtr1W39ZEPJpk1z9eRC+VRjDfNspW6JDkhWpM2chyyjxdKGC+mHc8HCU8HmVon5jsaPWAD7vHhuq2UH4iTeh/XSOq386T+0VVF7srUmus31CFbJGESUqRsXlku3hQSJTskML2Tw4wNxJhn+A8LppOC2D6ZLiiXeThC+GKrmfVLOVJ//6eYFUtyBWQ349/r/ygaDYq3fX2QvpKaDTC3n8sv/7Y/lnG9os5sAAmz87ibXUSK7K+LIamy2rxNjsJ9DsYF0hdvP7+LmN8EFVlfXsvVsXCyG6xet4WR1G551KYG4owOywuP/dkthJGOUSlbLtRRLlJT+Kos7PmrW2ERud57l/y+naJeeHEr8YJdDmECEoGMrZTosS6J1RrQ8967N7eXp577jne/e5388UvfrHkNZfxh8OXvvQl8y/j5c03GM4621hlqcklVUEPFa87eT7Omd+OM16MhFvEydd9YyOuOoW9XzpJeKyEIzA/mJWl0CHJUslNddl214lHL3HiUfFd1qOHpnDViG8QcjU6SOarFZSB3tc2E5uL88xfic0Da9/aQWgkyl6B3c++bo1AtwdJlpg6Ub7PKx5OEJuNM3lWxKqEyWNhnv1bcdWf1W9rw1XnyB2Xy8DQsxMMPSsWuALEFC+zUKk6lGyTsdgXcer/HiFZZKya2PUilyIVpQQ8LJAuOhsXd4xzcYfYegcM9QB3vXhfef5fTgtfCyA8Pk+ygg199WurSMSTwiSl7Q9XoMqqQv+trcwNi61dFJcFNWAn2OcVIild2jtu9K9S62lYYFc9X8G6JY185aZsEnge9KSOZLGw8f52bC4LO/48L06wiKLf6cfHmJspn6C04PpqcV/efLUTKev6LS3bGBn+DTabeLB5GUuLVFqY1hU3AhA2NxYrY4t8B0WgO1Sk2eK21+HHZnGW2ndexCe19vZG5ucS7PnqJfQiaXuhgIJEtkKHLBU9f7q+2Y+f/bx4PEFRYOZCiKHnxTa7+/u8aEEFxaeCAEmp+/pavO1unv2bQ0Snyx/PB+5sRwsowv6FpsursWtWYZLS7MUwSgXEkyOPnF+8UAFs/Vg/c0Nhnv/n00L1RNV7wCBLVOKniU4nK3o+iyYjWeX80MuLBqtqwVIBif3szytLnyaqvJRCpTZbJX1l9nyU3X8vlqUHYOZiiOhUjPm5wqkvi6FuXYDqFT7Gjs4w9nz58feVd7fibXPx7N8cKD8NniSx4q5OVJ+dJw+IvQtflwurIt4xJ0/NEZ5cfNzL9/Xu/Kvj+QVKnyC7voByE4DktLLlvibmhubZ/+288a+E7XX26VlmLsUYGy+foGQgM14m1OI+r0i1kmN7DQysYO/ePdxzzz38y7/8S8lrZkOITfDII48A4Fhp5F1v9k0CcDhUW7SOvX6OGw/ouIB/UeWcgKolWnqAscw62AOoFJ7kYi4rttmFRsHFi1BTA9aZRYJVih2iGYNn8x0BAHZ+ZRx9fh7JbluoopS+eAzJIqMnklSvdjDynKDTSk9y5NuVTXSVSvZOnJxlUpD8Ew7B3FCYwT1i7NMLT4wRm4sxc1aMODSyd4aRveJEntrNXjytLmEyT3Q6XtEur/43NWNVLcLGRqVY864O5mfjHBJMr7Hjz5Zux8jUsVBFfdPb7aD71Y2c+NkFJgSCO5Wi/jI/DRuqhFPuVdpXajd78ba7Ofodse+9EgckwPEfnWf2rPjuyrnhiLASWWhUZ+p8iMFn8gy/RSblC49PcOHxEg7PIvUv/HaKC7+dWjzNWwE4Wy3EpxLMz1qNybtIEFmy2YwFo8VC36udeOpsnHhikjHzdaSU+IpBjiUYHgJnEeXqaLB4/T02NySgKNMI0C06UiL33m+bnEUB/mvTPFOzxUlHvUHDiDkyWgMY5JcTJ158lbVl/H4R9Rnv31HCJxuuc3DNuhDzEdj169xjUqy0Q2T2XJySI0j2rv4szAxGmb4QQS8kj10EDdu9tF5ZzcihaY7/53BpghKkA2VaQAJNLZoOqBjC48mK0k0dqnCxeeaxS9SurRKud2nvhLDyD8C+fzqCo6GCehUSSLpvaWTi2DSjz4nNHYlYksiEmMNRC0DfHZ2c3zEirCBTCYKr3bRcWcuhfz9PWGDXdKVOrEpRaSCw//ZmZLtckfpPJVj51jYiU/PC5KhELEl4XNw5XUnfHHp6kqGnJ4WvdeI/z+JoECMoAVx4ZpTalcWDMMVwfscozhpxgnGlaRn3/Z/KxgcgQ9wqhxxlBsS2f7zXSEX455m+vRjxLzSSIDQ6z6UiuwGlAjvKAMLjcOGoFUgsILjn3Jos5TheNHuEzetgZg5+rntQx4r7HKY7jf96TsC46Qz85je/uUxSegnjU5/6FAAuVxMA8x5j/Wcr4Q5J+l2s2KbjrrGw59vTxLKnjcV2EiYSDO4OoRczgWS54Dku7Z2kbo13YYq4RbDl/m4ki8RTnz1amqAEOQQnX5fG5HFxwqKIwnI2dny6Mp/X0L4J5kSVHlWYPhNiaL8YIWfyWJiDj5wmfEmsXWbORCqavwMDLvxdbk48KkhGn4ih+sUIuAAdN9aheu0VkWsqwcCbW0hEEhwRDNA9/bmlSzEWmUxWlI5OrVPpu7mRs48PCRFWKkXVajdN26o58p2TQqpikYl5tEBpf0chVNo3K7UxDv3HGeHvDmDy5CzT5wV9jhEYPzojvMll4vBcRf7RsedmGBNcW6Wg1qkQiRKZLH9e6LypjtrVfk7+4hKXnjLHwMWCbMCl5ybxNBYmoOak383D0BEd0JHk4tfQZRkpb95bew2oLomfHvWgjRYPrk52Gf3Xd9yYB+bn5zl9+nTR8st4aUExbfaY0+gfSgnbK+bXuOyqeSJzSZ77eV6fz1cMz0NoMEGo1HCVraaUhfETIULjsYUp3/IgSVKaqOTtUBh4QxMjB2Y4/qNhwx+9iCKSJEvYXTqyQyF8ScymiU7D818TX+Of+emwMPEH4Oxvh6mdSwgRlAAGd47h6yq9UaQQnv/ycbQ6cfJ7pX6a1utqmD4bYuKQ2NwdC8WJTIgRQVBg1ZvbuPjMuBARpFJ42lXarqnn5E8vMnu+/H529ucjFROAKsG+L1emlNlxQx12t61i8pAoem5pJB5OcPK/xTZ1VNRXgJZXVDNzPizUNyePzrHrqHi88dxvBhk9Ms3kUbENFheeGSMxr5cWGsiG6Tc68/gI3mZx3/azf11ZLDXt8y/D/smHt0Nl6qS5+C9B8s6OQ255sAM9qbPzbzN9e7ENhXpEZ+pshNEjRd53EUGG6DRcOm0FkoZfodj5LVKeuEKMy6+C6Wn4zZwbrUSmgKl2w+7znooTivsAePTRR0s9zgIIRdznTSZ/w8dvSROUAPoahjh8MZeoJFsyNz5mAXuCggSlSNB4eHU08yKsZltf758mocPjEwtlau0zxvkLEZUGD+oMmmuBpGZDDud+6Dmyj1lEpemhGLIs5SgAFCQqxTL/liwyXa9uoP1anZ1/bQa+TEOj6M408/j6+zu5sHOUoZ2VpfIShSjBBYBQ5Yo1lSgbVa9142l1ceI/xRa3rVfWYdUsHEPMobH/a6eFyqfga3dVtFN+28f7SSZ1YUUlZ42Ko+p/Zv7gQI8bu8dGcKVfiKTU8Zo66tYFOPPYEBeeKJ9EV7cqgOpTcLQ4CJ0t/3qV9pW2l9VjUWRE3ZCVfguVfHdA7q4wgZ32C5QmRPPYLyxQ8vCqtzYxcyHMmV8WcSKngkzJzOTrabez4uY65kbnef7fTGZHAaKSlL3DKpFg5NgcistN2Byi0wSllMMkb3JPeoyF0ql95g959kGKoCTHdJIFdgH02+bocST43ZSVURw5SoQzHVk50POIShMS+Mzhwesy5rd8stL65syCrDc4zJHRGqJlW4nL+EMhHM51vqYISgATXTb8x3PtEz397YaJRWFmMvd8KYJS0mPYY/J01hgYixNoh84rPJzeOcvwPhYi5agpQFQ68K2ssapAQK2QI2fm4jzRyRhD+2bKJigB9L2xHUe1yu6/P0g45S8uI8dA23W1OGpUDn5jaYgZhqKLeCDi7C/EnUNgkLDC4+LX67ihnsmTU8Iki+oBL74WpzBJ6enPigeTnE1uHFUq1Sv8QiSllpfX0LQtyOnHhrgoYCtUD/hQ/XY8raoQSemPBb6OyuzYLR/pA8TfoafJgatG5ThiJKVK+goYfdPb4BDum5V8C5V+d5WSokT68e8DtRt91K0PCAcSt3ykD4td5sn/JUCO0pNMXwgRj2TG+0X7qWn37ftnw7GUL5GdJijlpeVNYe1NxvG9j0ZzzgcQbs+QyLKJSuF5lXg8wuws4IRIlXGP+WSlqa7M39Od4Jl6PZz4M2ZmlkYGfhmVYWTEcLr39LwuTVACmGv34DxVfP6ZHY2juuWCBKWUSqseyTpo2j2r31wDEuz7lwIO7ZRtVMCuGnlulpHnzLEnP30IFA1+jR+fxarKQgQlgIHb2wzV3b80V7Vl5nZa9dY2Lu2ZYGTv0vi8REkSAERg/9dPV3S9icNiznowFJh87R5O/0yMwNV2VR1q0C78jEe/V5kqd3WfF0sFu5E3P9QLEsIpvLxtrkUDv3+scDcoOKoVqvvFVHXqtgboeHkdZ58Y5vxvylcNqh7w4arVcDS4iEyWf71j369MabP92noUn024b1b6LVTy3QEcrMQnDsJpJ18o+m5vJjQc4eyvigSBC/jrVB9seEcHs4NhoYDu8N5J3PUO5lLphRbz55l20vnHJ4CFPrk0QamIimawV6F9u4tjv55k8nQih6yUqMts7sknKs1MgGTRgQjhoDGn5pOVpjoyKgGTXQq+41Ei5rw7OTmJz+cr+WzLeGkgRVACmG1RcZ0tvhaPzCaZySdrmwQlXTVsfCk7i0o8gVIFK6/zcmZXiJEDBTbYpWyvAkSlo/+VtQ4rRCLP8mmliEqRGZ3ZwQgjh6ZybbVFiEqdr2nC3+Fi95dPZYhKi6V6Axq2+XE1OBYq8lSSk7MMTJ+KMH1K3M649Owkl56dFK4XnU4SnRafA5quCjJzISSclq5xU5Cq7nkmDoltdN9VwcZzxaPgaXISDyWFSErVa7x03WAQoS/8tnxfga/LjatBw9PsFCIp/bEg2OdFriBV34b3d2Oxyuz8SzE7NtDjQY8nhUlKlfQVgKYt1YS7osIEukq+heg0FX13E4dmhe8PYOz56SUh6qXg73PRuKmK/f9a3N4r5Jda/+52FK8tZ4NdQaJSXt3xE3PoWYSgNEGpSLwx5aM69L2R3PIppAhKicKb71a8wo5skXj+J9EF559vyKTQzSUq2YhEY0xPAVYIB4w6+WSl6dbM9abarXii18D+XzM9Lfb+xGVBAIfDAeTuas0mKmUTlACe7JOYH8zISiymoJSCTQKLBBG/jDqROWeKoJRCNlHJOhNl/dUwNgRnShCVcmASlQ7/10zpFCWQQ1BKYeZCmMkz5oeaZzDkEJWyjnm7HGgBlfr1VUIkpZZrq2naXs35J0c4+8vyWav1W/00X17D/kfOCREz6i/z07C+il1fOZ6b8mgR9L+5BV+rU3jXbvvLG7BqFmFixv5HzhHoFGdYVq1yIltkRvaKOYsrVSiKRxIkY+KOl0rVs7Z/aoB4JCHsIKoE3m4HK25vY3YwzHMCi+JTPxqqaIdleDRKMq4TE5Qo3CMg4Z4NR1AmsCognObv6A/PonrFd6N1vLIRiyILfwvr3tOJ3WUT3lHYc1sTqtvGc185LVRv9dvakK0Se/9JjNm+9eFukgk9VxpxUYeIjKtWRfMrhUlK+ROxSVSaPjXP7HCUoQN5g1gJRSWAscMJxsx8wospKKUISimsfxmMDCY4c9K4p3wFpXyi0kyjBYtk3E6tXWd0kakom6j0M6+LQHfuzj6vK5ImKmUTlLLR0tLC2bNnefOb38w3v/nN0hdcxh8E9913n/GHXNhcyyYq6TlGqsYTB0G7lOnziykoAbhqFCSLcR5JsaNnqU0u2EmWRVRqusxJoMPFvq9mOSeK7PzPxszpMLv/8YwQQQng4rNjVK/wCRGUAGrX+rHYxReplRIz1ryrg9hcgoP/KkaKWvW2dkLDEU78UGz83/zhXkIjUeE0ZXXr/VT1uBk/JEanPfGzi4RHxJ0ZDVdUMXFgLPP+ysDoczOMPndA+FrRmXkS80miE2L3Wal61pp3duCsVdmTTaB7EbH5w0bqL1E7sVJVndhcZWkmK7Vjg6vdxCNxJo+K7ZY/+5thxo6KO0Pq1vvxtTsZF3FCarD1/f2MHJ4USrWoBWT6bmvn/NNi6mCeDo3e1zZz8ucXhUiQbdfV0rCpimP/fV7oeg2bqnBUq2gBhPr0hR2juBvEd7nu/9qZtD1YLkEJoO3lAbwtTvb987l0AG2BglI+UcnnwaZIlOuyzyYq/W6XytiKXMnsSJWUJiplE5RS0LwBnE4nHk+p/BLL+EMjadouXl8d+eZ4KaLSmWM2zu3M8ikspqBkwuawIElSWqU7jXzbKMuu0nWdVXc3MXVmjrO/MddEhYhKBXDsB4PCBCWAsUPTzKSC2GXaXaoPPM1OJIskRFKqWu2m98Zmzu8YKR6kL4DAgIv2a+s5+ug5Zs6UTzCuWu2maUuQI989Q2SyfF9N+w211Kzw8/TnD+emSloEbdc24KhWhIkZB//jfEU+L2+nikWxCiv4PF2hD2m+gNp9OahEoQiM1LCxcJxn/rIydUkRqD5Y/8AAM+dDQum1RnZPMbJbnKgXnYwSjyaIzoj5vCpVDVB94OsLcOkpMSP26KPnUKvEfV6d1zeheG3C38LAnS0461Se+d9i77z9VcaGFVEl0b7bmrE5xZX0Nz/UC8DO/y0Y6Oxy42lyFB7/imwojEzCxIkZRg6K9bOZs5HMxuQyCUoprH5LM2PHZrnwO2MeWqCglEdUklxGXEi2Srhq7EyeLm3fZxOVTuyBqT5vzvFw0JYmKmUTlLLR2trOmTOnuPvuu4V39S9jafC1r30NAMlSWAWiFFFp1y4V20RWP1pEQQnAW2PHYpeQrRKS1ZqrBJ5ve2URlapXqlT3ujjwn8NZqdtK+7wkSSI6Ms/z37hQlo2WjcFd4yQTuhBBCaB+QxWK18ZRwU38Gx7oRrZJwuly+29vIZlIcuS7YkpFvbc2EZmeF1Zv2vBAN5HxKAcESactV9QQnYqx6+/ECCFHvn+e2Ky4z6tmg4+pY9NCClPRkSi/+1Nxn1csHCcWEVfjqVQRqffWJqp6PTz3tRNLQm5af38XqtcunIpWlGSUwvzkfEUk/ac+U5mPzdvlQE8kmT4ltjny+I8vMnVWXFWy5YoawqNR9hwXi49u/lAvo4enOPkjARKWAqtub+Xi7onFSUdZ9oJSrTBwSyNnnxhh7ED5Mfu6jT7aX1HHqZ9fEiJB1q3z421z4mpUmL2wsE8X80ud3zGGt6WAz6uUohJw7NGM3buYglK2z6t+vZNAl5MDjwxn6uUrKOUTldxO7E65VPgz99aziErPPmVjoidXBCEckNNEpWyCUgqKouB2u03+UPmoiKSUraKUj3yCEsDLTuic8sxyLO4qSlCKBHXUUSmtogTw6HjGgZciKuUTlFKIuaxogwZRSNEgWJ8hKYFBVLKMFe/UjirovNrDqSfHmDmdazhI5svW5wqzdA58a9BwKBUxGCRZWhCAmzoeYs8XDxEKmUZ7mY6exHwSPaETHhMbuKp6PVg1C5pXEuEaUb8ugOoXX2zaXdZ0oFMER/7zHIEecbnH0NmQEPkqhZ6bWpBkiZG9lTlERCFq7L1QRKfmmRlaGgWA+YkQsbk4Y0eWhuk6+NQEg08VIKq8SOh9QzuOGtWQdxXoa4Y6lHjfPPmzC2hV4uk8rKoFuYJcvVWd7oq+WWetmpkYBVSUErEkifnyjfVUirfnv3uRudMF+nSxNB0mUWn/d4rsJkjqSErxvKy91zmIRXVOPF3gXs3FaNK3MLebokF1PZw7kiBcX3hiThGVZhqNe98/72R/VjRESoBuyVVRykaKqBRoHGfjYRj0woX6zPFsotKC5woOc7axnrNnz7Jz586CZZbxh8f3v/99ANSa5hwVpXzoeUZtXSCM36VzCAntkl6UoJT0OAw1pZjheDn7dJSzT2cM8jRRqVgKN4sFPRqluteN3V3ApJRl9FjxQEXXTTXIFokj/15i124B22ro2SmGnk1JnJXv7Hn6s4dxtooHzRMh8RQZAM6gStIvvmPN3aDhCCrCJCWrzYLNIb6YPvvbEUKXxHfFVKICE1ztpv3qOnxtriVRtKpUraZSjB2exqZZloSgBDB1ag6tgqBQpdj9BfG89y8EPa9tJjmf5ClBguD5x8UI5Slc3DnGyGFBOzZsBFsUd+kc7/mw+RQc1Sq1awJCpCGtWsHmshLo9QqRlMKTBrlfj4uNSYe/YzivRPv0+cdHhZQ5Uwj0OWi5qpa93ziTCQAUQp7dF+z1YHMav+mJBHIxp0iKqOQz/AzPfDfPpjSdOtkqStlIEZW0FQk22Wd5Zj5X8TmbqJSP6U7wer3Mzr74qX6W8cKRraJUDjrWwviQi+mDs0UDVpKqGmpKWb6hXV/KzPVpolIx8rYsp/1KrjoFm2bJkJTAICqVIn6rsOq2Fs4+McTk8SI+giI+rXQKLgG7KzIJuz4vHmzR43pF6T79XW4Unw21ShEiKdWtDeCqdyC77DBZfj3Fbcdik4UISgBH/+sCwQp8XpHhCBeHxX07fa9vxaJYePLg0vi89la4KaxSzF4KEx5dGgWAyCRExucZE7UVKsTE4Tl2Hn7xNxym0PaqZqp6PEQno0JqRTNnIkLfXAonfnweR6048c7mtGK1ia95qlf6sKri9bytTmSr+EaXeDixOCm0APZ+7SSh8wXacxG76uC3KiOndb+2nkQiyckfFQ9W5xOUAJx1ChZF5sLvJoqneDOJSimC0uiRKKNHMt+rnkwiyXKOilJOdZOoNNWnMFAdYiIkMziX8XFlE5XyMdmlUDXfxpkzpzh0qLLg8TJefHzuc58DQPPV56goLQafP44/AKdO2LBNxIoSlHRVMdSUzOPDh+YZPpSVQSVFVCpmP1mt6NF5avpcuOqVhesTWS4oaJBCy1V+rJqFk/9diHRoPm8B22vyWJjJY+Gix4th1xeOo9Vn+QfKtNvm52JY7ZWMj46KxrlAt5t4NClMUrJqMjaneDj75E8uEp4UTyM/dkB8vleqFbpvaGT8qIdD337xU+ZOHp3j2SWMN44fnUHz25mtYMNiJRg7No2nQdxWqBTP/8vSKO+n0H9rK3o8Kbw5YHjXZEXXO/3rS0yfEff/ynYZu7swmbQUPK0u9KRemqSUZ98oTgmtSiHQ5RIiKYUnoySiSRIxgTFJkjn0/QsoiqEYtfBwcdtreO80w3uLPJeeLBqrdDYotF4R4MSPB5kv9HgpX4Itt72r+104gobfUddLxDNTRCW3YXvt+UGeTWnGSrNVlHJu3SQqWVZJrFRC7J/O/f6yiUr5mGq34vV6mZycLHxvRSDpevlehlQg+obH7y943GGdZ++FxtwfQzp3nIKIDN9pNxrOcmmhM902bZxbKeIAVaaSOf/Nh33KMAgsocITjjwbRYoWn4ya1sg0rnEydirEsf/O3Xmgp6QhCxgsNWsdNG+v5uAPLhIqwl5cXCHgJZ7Gy0ElHIslxfr7O7HYLcIkoJZrq7G7bRz/gZis8ZaP9KEndOEdMTXrPURn4kwdE2vQbR/vZ342xq7PL01waPunBpififHs31QmOSiClALTyIEpjolIkTugfp2fySMThAViUS3XVtO0rZoTP7sgpGLm73dQtz7Ioe+fFfoeOl5TR80qP/u+dEjoPpccTumFfeclCEovNMWbVCA9Rw6KEZRS9W1WVtwaRJIl9j9SgKxkElELsZc3v6PKyBP7neJON92loRdxWkVNolmyiHrLbL1x7wmlcBvNtplEKNvCeaK+x1jkzk9bec0BKxFLkl+sz50jX9O8n0OzdQXPbfvd7/jWwweQJCm9a3wZLy1YLBaSySTVn3wPtbMFZBkAJPAdzyUCXb4yhN0Gv9ojYQ0btpd9dOEHLoUNuygnDW4W0kpKRUhK6V1niQRoQJ4ZpCcSJXeMbX24E0mWePLTBebSEo6YVW9rIz6XMNRuXuo2VKUo0J4vJWiNGqvvbOXCzjHO/1pg95UGvTc2MfjsGNMny3/AhiuqaLuylhM/vciQwI4YLQCebp8wUSm1O2zPPxwmXCL39u8Lmx7sweayVqw4JIqND3RjdViEyT++Hg2rahVOo7bpQz0AwioHnTfWE56cF05xtunBHuZn4uz7cmUpq5cML/Hv/IXA0+Gg5zWNnPz5RcYPl29gDry5BX+Hi6P/dYHR50qQeSQ5Vw0zqy0luzHvSdbCDuxUoExXCjvZ5psNglKiwA7KkbVGnZss0ygyfG92oSrS3MYw1hOFSeLHPvUh49r/U+eu/wFIrQcuu/lzhY8nwXFmoTNy62tlouEke39o2EbS7MJ+r8+bQaxYYb9UWkmpmP8oS0kJAJVcgkxSL2k/BVe56LmxkbGj0xx+JM//UaKer0uj4xUNHPvRBWbO/A8dtPLb8iWIVfe0YffYhFUA6rYG0Hw2Tv1ETK1m4we6AYR9QoEBF4lonKkTYg265eFeYrMJdn9x6Xxe0akYuz7/4vu8VJ/Muvf2MXpgkmOCvsfq9V5mTk4RmRSr0/WqRk796pKQKpK7VaVufYBjP74o9D00XF5F07Ygz33jDJGXcprkP4LvvCjKIH733tKI1WnhwNfFguLbPt6PntB56nPF7XRJlhb67cz2TPvr8tOTpOpqpk1UxC7TqwPGfwsQz8bXGHaWNRzmup444Rg8fiqXID68GXyHC7fPmGOKs3/zp8iyTGKx2Mwy/iBwu93Mzs4SvONOOuS1hQvp4DqX+/Gu2xjH6Ybf/jqTsUWeXmijSCnba74wkSjHp1UI5nE9kQSFhSSlZAlyObDx/jYsdpmn/qLA3FbC9up5fT3JeJJjP7gkRFLKPf9LfL1RqD1fQlA8sOrtPQzuHBNKo4YCHS+vY3T/BNNnyn9Af7+L3tc2c/oXg0IqMIoHXK0exo5OC7VnyzXVNGwJsv8bJ5dEEWnN29tx1mk8+b+Wxue16t42tIAiHLt1NSlYHVYmj4oReda9uxPZKgvb6c0vqyY2GxNOf7j2nR3Ew3H2f+PFJ8K9ICz2nVewse33hkXikZlihe9RqVbou7GWM0+MZEilhc6fV7/9FUHq1/s49athLj1bwrdqseTaVlltmRLVKdZ+ktMgFulFSOTxGsO+ShYgp46tMOy2a9zTeGzww4t28+JZZTYk8BwtfO79f/Mh0HUhn1fZFOVf/epXJY87rIajZW3jQpLBnir4baC860TNcr1KiJurptnsmilKTEohRVAqBtmU5dOLsMv0cIRzT4V47j9GOPZYCdJCgUB4sN+LzWnB6bcU7NjFCEoDdzaz7eN9BgFIAI4WB9VrxXddvSAsIUFp3Xs62fj+buF6NqcNq1aBesAvR4QJSgBl5wXIQ9cNTQy8oVX8cjoVMdMH7myh8YrCO1JeDKx8S5tw/0wkAB2SCTGju2VbNR3XNtDy8iahekmzHeUiC+himDgU4tA3xQhKAJrfbsjICsrctd9Qy9aP9QuPERVBevEISsXgCELtxsX7Sj5Bad27mtn8YHv5t2ZOxs4aO87qAnNAvixiHvb/ZI5nvhVCKtI/dZehyiLFS/dfeRHVKEvU6Jev801zk9cIfKQISovB7olzMhjnyY6FBCWAfldhKc51rzZIxYtKSy7jD4YUeUzrbClcwHx1k125huGuExInL2YISotBdxgG6Ka7PWx+i8Gk10sQu4FcWWwoTFCC4ikV9SRPfe4Ye78qTiJw12l420wFM4H+u+Ujfay9r0P4etXrPWgB8XHuBWGJYoBancqWj/TRdGVQqJ7Db8Fil1H9gjtpwnDkkfNCBCUA2XzPooTK9le30nVdI8HVorZJ0rT1xK4XXO1m4E5xO69SNFxRRe+tYnYQQCKZrMiU7X9DGz03NYtX1KnIdj7xw0FhghKAVbNgF1RBAdj4/m5WvrVNuF7FWOJYf9VKF1qjmJqcVqey/RMDdL2+ofxKkoSrScPutRHoL7w7qxgOfu8su//hMCN7Z4qvfVJ2Z/bxAm25YJ7KP000Rs+VVrbcoeE3u3WKoLQYdiZs7Jq1Lbjw3Ebj3/HO0lHQZRXLlyYiEfO9FXP2mVNCqHUhOe3YriQnd5aZ5spm2Ge+TpUtDzTSdZ0vN9VbIRSa//IJSlB0XaYndUb2zbDrC4c5/KiY/6NqwItaZcdRowrZXR031rHtY/2oNWLqwGqdir9voVLti4olJC6suLuV9e8tsvmgBBS/La0YJ4JLT40LE5SAiufu3te10H9rm/jldMM+EUX3zQ3UbS3T4fx7QN9tzQQGXIsXzEESkrphXwqgarWbntc00fZKQZ9XPAm6XnZqhxRmzkQ49n0xghKAFrBjVSxoPrH+2bAtwOaHeoXHiIqxxAQl1SdTJbgGAVj9tjY2P9wrXM/f5cLTJD527vnKycUJSrCQKJHfnot9v6ZdtvntQTa91fBTpwhKiyGuaRwetrLzVK59P7zZ+O9kX+HBSvX5jOu81Mka/xcjHDZsZ8/adYULmK9utjl3nDj4PBw/QtGMLQtg+n7X3e5l4z0+49SLrBUWbNYrRFCCohtndV3nmb87xZ6vi6uc+dtdBLrM8UPA577xA92sequ4P8Lf70LxLLHPa6kISgps/EAPDZeJ2QqyU8GuWdH8YorJROHkjy4JEZTAjFPpumhmQOq319L3umbqVvmE6iUTummbiF3P2+Wg+3WNixf8PaF6jZfO19QvXjAPelxPxwBF0H9bG/1vKOKDL3lB8SoA5x4bESYoASheG0oF2Y9Wv62dgTsqeL5KscQEJW+XhlJdRrtIueSfLQ910/Hq2oJFi/mlVLeEo1Yl2LfQN1Bq3D71+Ci7v3xicYIS5NpWhdpyEftGisVpWSez5Q6NoBlOTRGUFsPuGYVnxxaOf2MbjEFjuqfIHGqS0r/3ve+VdR0QSPf2J3/yJ0YFVeJlVUd5bKwnfSxFUEphbeOFtKLSvGznOV/uuRJ10bSaUkpBKRvRAEyPw7wDhiZyj0e9xgtOEZfyCUrdmySC1fD8Tp3Z0QxBKQVdsecoKunhjFUdGgWjSUyWdKTAm7dYchjSB/41j5QlyWnDvZSCkmyRDUN/TmwEW/nGZqyaRTg92aYP9mDVLOz4MzGJ040f6MaqWYXzam77eL+hjiDIjlW89kr4DjwtuBM8hfX3dzI/m2D/106LXe9zlV1v5MAU0SlxeclK85r62l246jUuVBDgEYWjQcXb4sTmsDCyt/wd9rMnQxWxqEf3jeGq1zj3pFj+ifO/HuX8r8UljapWOem8rokTPz3P2PPls6kPVMhodgZVI1d7nYPZk+UziNa8qwNnjcreLx4mNFqGE8w0CFbe3YKn2cmTgmPE2vvacQRVnvyzwsz0YmzjlXd3YVFkhnaJMdMli0T6jGUoKKWw8+8vpm4oUyCPoJRyXKRJO5pqzgtm1UQSPYs0lSIopY/Hk2lFpU2vMMjOjz+bOS7PJ9OKSikFpWxYojqzCYgkFxKU5JgZoDcVlVIqSikc7zYNg7jxzCmCUgr9rks5ikqbvacB8Pl8+EzHzTJe2pheM49nX5ZxmPdpTXZZ04pKsXE75/OGxvmgI62mlFJQyobuUJkZTmBRpIUEpdSux9Qusjxnzeb3t5KIJNn1T4bzZYH9I0u5weQsB2d4KG6kxU0dL2OX2IJxqsy0uZIsLa7sVgDdNzQRm43zzF+LqcBs/+QAk2fmxNKaabD9gwOMHZ3myHfPl13N16MxcFs7kydnOfjN8ucdZ40Ni11GK2cRl4Wx/bM8uV987q5e76HtqjoOfu8ccwJqDOcfH60ohdf5J4dJxpKMHhNT/jn+vYscR5zE3nxFDY4KUrVWiqZtQawF1F4Ww56/rywVy4WdY1iKKAOWQqXpjle+pQ2LVRZWRNrx6crsZrvLhmwTf77tnxwgEUsKr0e2frSf6NQ8e74o9j62f2KA8GRU+D32vq6F6OQ8u/6ufJWK8FQEJLCUm+bEtKEuPjHOxScqyHsYkclanqMn9dxxO3+hmNRBlqga0Oi5oYFL+6c5/cvMpiM9Hk8rKqUUlLIxcTqMK2AhGl5IULJEjbkspaiUUlECuISW3kxmMV0GKYJSCvHOSI6iUrQpxtq1a9m7dy+f+cxn0ildl/HSwac//WnjD6uVkbVWqvdm7B0pzzwJtXrSikpSNM543ueouxxpNSW90O59m53oXJTodILx/LVeao2TsqfyAr+tLwtQv9HPkUcvMHE0slC1MssnBbmO1QVqLGXYXScevcSJR7M2PZRpd1mshuJZZFqMGTDwuibUoF1YXXDNuzpwBFR2fEaw3js7UH12YR/P5od6sSgWdvyZ2PUcVUpFKacqVbledU8biXhSyD4EePZvK7vexZ2jQmndUxDd6Z5C9Sofvo64kGLQC0FVrwfFa2P8YPmpOyOTsKMCn97Y0RlG9k8yuEvMnzf23Aw7nhO/nqNJpf/1zZx+7BJjAqqZJx4d5MSjYmmqAZy1KlbVghawEBHI+NP3xiYCvR4OfOukkGJX980NBAd87Pirg0KEpb7bmwl0unlS8FtfcXcnitfGk8+J1ZNS8QIQCuA99dkKviFJJjJcfOP3grWznkzbYuvva8Oqyjzzd6czx80UIpCloJSNeJzZ0RiJaHIBQSmVoj6lqJRSUUrhRFQDDaxhY/5JEZRSmOzTcxSV5hqMv6uqqnA6l5j4uoyyka1wNbpaIvhctt8ot+xss5pWVIpPS4zkCVsmPVpaTUkqZHvZbUxenEdxWRYSlPJtr7zj69/RQDKms/dr5liXT8rLixdmE+OiI/O5PrEybK+n/iJv/Zxn2xWDJEnIcnl2Wjb6b2kx1AUFVWC2fryfyZOzHP62GBFr60f7GTs8JaQuqHhkNryvz/CVPVK+r0wLKNidVpzVYn6a8GBUeNwH8LSrdL6qkRM/ucD0qfInm7ED0xWllxvcNYnFKjNxdFKo3vnfjHL+N+I+tqYtQXydbs7+cpDo9IuvOt58eTWq386J/xKzM/Z/vbK0bed+M4TdI57WbE+F6Y67X9eI4rIIKyKJpodLQauyE3eLv7etH+0nEUvyzF+KXXfjB3uYn4rx3FdO5R5YxL7Z8nAv0cl59n7pVMly+VhxWxvh8Sh7vijgQ4wa8UaLtfg9LfBLAVMnI+z4TAFfZyGfFaQ3cUvzEtFSy5b8eKdpWznr7Kx4Qy1DB2Y5+7usdYiZWhcyCko593l2Hl+DjejsQoKSPG/MWylFpZSKEsAkCpMSoIIlYjxDiqCUwnRPPEdRKVSns27NGvY8+yxf+cpXeP3rX1/iQTMom6R00Mxf7jHz3qWISvkEpRRSRKXNg/P0hOCntTDiKp95ejrgYPyUuIJS0tgwQjK0kKCUQoqolE1QWvE6L84qKzu/XMbizzQ8Su12WyzF2/5/OVOR7OK53w7j7xLfiRGbi1fkdK9EvQdg5mK4ol1elZJxKoXqU1DcFTxjhSnwhNKZZUELQjgkfs3jPzrP7GiZOzpfIEIXIxz/yXmmT5afQi0FLYhwKrTQaJKD/1qhpGEF78/b6saqWfC2uoVISpVif4U5cCeOz6C4bYRC5ROUoEIVWElmfjaB5i9cuRQZ4MIzo7gXySlcKM3b7n94gTKWKafKIgpKKay6SUV1yjzzbya5wyQq5ROUUkgRlZI6BQU4solKhfCrUTdTveIv44pnbFh0iZ+tTy4gKKWQIiqlCEoA8XickRGBVE3L+IMiTVQq8mmliEpbN0WZn4fd+8SIJ4ceT8BE6UVxod1myQQk4osQtFNOmSzHypaHu5kbibD/a+I7yypBpTbG+NEZJk6LkVzQIBnXmZ8rrfa5oJpmjA+iO36io1Fis3HGjos5NUafm2FU0HH+QuBtc2FzWfE0aEIkJaCi1FjTJ8NMn6ysf2kBCAvGuw7/2ylcbaK76yvH8988i8Mvbm+jgaaJP9/ZXwhEkApcU/T9uRu0JVX7q8QJCRAeixIeF9+EYEggi1dLxJPE5sRTVkyenGXk0KRYpTBLJsmewraP9jB5eo5D3zbWTWmHULGdLEmd+ZBRLhlf2KDZRKV8jB6D0WOzRLtqhO6xjjDbrDEOxa0cw7GAoJRCiqgUbTLmgsmoUS7lW1nGSws//elPAbA4jXE8RVTKJyilkCIq1fZA84CNoztiTAsI1oTHbOz550WCMwWUKZIJHT2hE52leFpdM5iV7c/pvaUef6e7pGLG7xPHvn/RUGURxJnfDVHdJ6bCBhCbjZNwi4+NelKvaDE8eXIWrUpwdz0Ik95fKFwNWmUqIhWmxjrz88psBdUHkYj4NQ999wzhyaVL43T4B2eZOyvuD1J9BUiCiyECRyv0IVby/jxNDhSvDW+rU4ikVCmO/eCicPo7gLHjMzhrNaJjYrZX0vzWVVUmEik/QDc/FyMREw/onf3tMP4K1gX7/s/SpitecVczrjqVp/8il5xQ1J9n+tQS8QRyskCZLKJSIRz89zH0ejG7C2B7zQyqBR4/6VpAUEohRVRKEZQAYrEYo6Pigfhl/GGQJioVmbZSRKU1l+kk4rD/abG14qmn4uihRca3Qj6vuE4yZt5UMdWwVLwwa87d+N42QqNRDn6nfIJFpbE4MG2MCub8S7vHmbkgLvObiCaJzVYQd9ILr9tKIRpNEh6NMnWyfJIwVE42qhTuRidalYKrwSFEUgIqSoEXHYkKE3jSl/NAVJAXdfyHZ3E0upaEoARw4JFzqN4KfF4KKIr481WiapR9TdH352t3YimQcuvFwtOfq4zcNHN+jvkKfFDolakZxiMJojPiY8vQvgkmTy1ipxfwKz312cXXZ4WISuWcuxA2va+NydMhjj2at24qJsiQTBIPzaMn9cJzRBZRKR/Tl+D5H8wRaxRTk/MQ5TJ/lGMhG6ci6gKCUvr8JlEpVGfc15R5e8ePl785UtLL7CUOh4NwOEz3dh/v/JJhDXotIX4+PlCw/FDIINL07nRTPw//nUdSksaNv5XRwi+udypEsz3OzksyhfIdqeMJbCUmQet0BClSYjfAXBg9ljm+6g0+HH4rT39pFKJmerhY8fPr8Tgkddbd14LqtbPjs5lG1xOJ8vLFLsuN/t6w/ZMDJBP6kpGctn9qgGRc/Hob3tdFaDTKoW+JBcy2f2qARDRZsYKTKLZ/aoD5mVjFu/VE4GhxsO4t7cwNhdn7T+Uvxh0NKivf1Mq5HcMM/m6i7HqNV1TRdnUd4ydmjPRtLzI6XlNH3boA558e5ezPXkBw7/eNFxr0W2TSfaGTdiGCUhqLKChBrooSwOq7atC8Np7+wgUjxUKJ+5NUk9ghy6y5WcXukHnmWxlWW9KpQQlFgZhfJVGCiBSqtREvsoGjxxHC6U3wmKewM8vbY0SUVVvu/HTtUwqyDtW3/RaA0VhhMut17ud5MpRJqfnwip8By/LXL1WkgvMtX/3zzG/WJO7dhTuQfdp4j69umCERhx3P5JKUbNOGI1eeKszS7N4qMXUhyvBzRRbSsfnS6UhisdJ9KY+ktPXD3YTGojz3lbNCSkrbP9HPzKUwz3/ldObH5T68pOi4oZ669X5OPzZUUTouUay4uxVfm4tD3z3F+KHyWcZNVwap3xDgmX88KkSQWXtfJ84ald/9xYElScm16cEebC6rsGpEpdjykT4sdln4ev23N6P47OwV3CW29WP9yBZxhdVKsfWj/Uhy5YpKy6gQebbl9o/3MzccYd+Xy9j9lmUXbv9YL5PnQhz818x6SSpHPbNEGcmhIdkLkwm6r9UYGVMYmi18fGS1MecmsvjpjYTZbotxJiZz8EpjTBqdKGx7vabvef5z31oABj/zj8SOnsbv9zM+vjSqH8soH62trZw9exalpY3We98HgC5D7bOF/UIpf1RP/TS1nXaOPDHPZFaMQDKVufVQYbvK1yIT7FQ59uMifSGRKJk+Z9EUcXkkpb7bGvG3u9jx50dyyiyGVfe04WrQcpVglu2uJcfWj/ahJytX9RbF9k8MkIiLqwSueUc7kfF5jvyHGLlm+ycHiEcSFSsqiWL7pwYM1YjPv/g+L1S47MMrmLkY4rly5sSsehve0c2FZ8aElKJ83Ror7uhg/Ng0h/7txd8MUrc1QMcr6rj49Binf1ZBasFlLEQF/roVd7fgaXKWZ/9m2V2r3tKCs0bNIbAu6s+zWEpuJJDsdrAVJogHB1S8LQ6O7yt8fGqFD4C4lnv+a+tnsFngW/3mhsNLhTdkda49z9nHM6lsjv7JB4Fln9dLFal+1PHZv8z6EYJ7C78v+6xht1y5IkQiAbsfy+0ncsjweUlFbK+WdRbmRmKMHi3CJIjHKZX/Sk8kS6c2zCMpbX5/O6GRKPu/dbEsJaWU3bb14R5mLoY48M3z2QeLXzfnJMt9/feBus1+Ol5Zz5nHhrjw2xff59X5mnrq1gc4+p/nGdlXvgBA1SoPLZdVc/Bbp4SIQ/23txDocfPsF48THXnxc++teXs7zjptyXxCGx7oNtQMBa/X8eo6nHUqz//zaaF6Gz/Yg12zLhkhbuMHe7BYpYpJR38wLOEmxMLXf2FpLfPtoy0f6mb2UtgYqxc7d0pJSZLY/P52Js+FOPq9LLv5hfq87Paiogxt2xTGJ+yMzRQ+Pt5v8G8Saub5PES5OhDlbMTCjs3G2BIZKSzasGbFGQ7s6ABg9Mf/xfRjv6a6uprh4fJi4WW/lZhJ6Glb7wMMghLAKwILP7wUQQngyOYZ/qXTXpCgBBANLhw8lXHo88SpckDUuzBQq44bxkLMZSXmyjVqPfEInrhhiOhq4UaX5kzpR1vm+PP/PplDUDKOLzSY9Xg8oyIgSyRixi629PGUISPJJTvm1o/2sf1ThQlepbDirhbWvbdTuJ6324G3u7RqSUFUUAUMYkb7DYXzOJbCtk/0s/Vj/cL1otPzRMaXKpktzA6GGTsiLsGoeO0V5QifG44wfKB8Ik4KWz/Wz8p7xHMRV4ptH++n57YmoTqh0RChsQiDe8QMPq3KglWzUNVVXh7NFCZOzBEejzL83ItvYILBNE5Ek4SHxaKcXTc3sP1TA9Rf5l+8cBZcHQ5W3NWCFhSqBlB+neyxzQE16915hxcnKLVcG2DT+9sLHy5BUFr3zha2fait+Klt1oJjd3I+aSwUbeb8k9QL7jxOE5QAkkn2/SCykKAEEC9s+Mf8RiDLMh/Br+QuikO1NkK1xrxjLbBenm2Fbm+CZsASWdiGKYISQCSW+4y/3BpNE5QAgraFO4Oucz8PwHZHxhHrdrtR1aVLTbSMFwbJavS7mfULO1CKoATw3xfdRQlKAEnvwsldCkUItNpp3uBCUgoEamOms8ciL/hG3Y1WMO3Eos7K1PeWNX489bljuQSlvOPFoCd1EuEsx1EZThgtIHPZ/7OCNW/vWLRsbkWDQFK/TWzHAUBwtdtQjxFFBXW0gEz/7c1ojWKVW15ew/ZPDdB0dbVQvbmhMPFwgtkLFchKVoChvePMDUcID4ldz9/txuayonnFxrnBPWPMDoWFCUq9b2xi60f6xCq9AKy4u5XNH+4Vrjf8/CTT58TfnafViSMonvd+7Og0k2defBXKFMLjUcIVrAu2frSfLRW8v/ZX19H6SvEd4UBF37unQ8PZKl5x7X2d9L5RzE4HI5C7+eES/UySCjqbkgmdWLQcZc/ccf/JzxwRJygBmjeB5s0NKkgODclhtJU+v1BxIVHnI9Ci0NQF1tmFG5xSBCUAS9Z4cAGN78Y8aYISQNC/0PZ6TZ9he712zV4AfA31AMu210sUMzPGO7QFDT+GbnbNoY0L1xbZG+aODnp4+pHCBCUAyVHgfcfmadrkJtjnQnIWsH1SfiVZXqBIobiTKIvJ9JuBrOx12eHvXMglKBkFSp8HiEUTJLPXPmUGvzZ9qIftnxT3eXW/roHVby+8TiwFR5OKu7WCb6vCz7H56iAt14jZT2CkL9jyYfG5JjQSITRSgbRRhRg/McPIwUnheo4aDW+7uHrM5KlZhvaJ+7w2PdRD/x3NwvUqxZaHe+l+XYNYpQhMn59jcLcYOVX1qCg+G4EusfaMjISZuRiqqD0rwdxgiNhsnJlLYrZl01VBYx1ylZjzSq1T6b2lEdVXQaCpku9dhcCAeJ+u3ehnwwPdwtdc9ZZ2LvvUAKpPLJCXCJfO+JBG3rj//NfOChOUwCD9OJty1wWS3Z4hhRfY+C15PbRs8RLssCMXIJGkCEqQSeuWwi8H3RmCEkDdQlu/c61B6Gi5MrMh1ePxYC9CVF/GSxBm9xtdu7AfpghKAI8fcBQlKAHoBW2vOHUDKi2bXTkxwTRS8T6LZUEg2FFtRTf9cUWVwkzbLdsntvNvT+USlKCg7ZWvjpGMJ4lnr6PKJChd9qkBVt3TVlbZbKy7r5O6zWLxBwBfjzOdAlsEilgoJ12n68Z6tHqxC1at8rD9kwM0v0zMZguPR4lOxZi9tAS71oCRAxNMnZ5l+oKYrRfodKEFFRRBdc9L+8aZPDlDdFrMb9J6XQ2bPyTug6oU3Tc3sPHBHuF6g7vHGD8urgrp73TjqhMPiA8/P8HYUfFYcaWYuxghVAG5bOMHe9j8kPj7a7gsQOPlVcL1gMwYIUBQcjUquBrFB5cVd7bQdWN94YMl1r3bPtrLxg90FT0uyVJB+ygRSxKfTy6+ps6qq+s6O//2lDhBCVCcCRRnns8r2/YqkOo06XdT022nuRcsoYXHUwQlyKR1A5hG4T/HPWmCEoBavXA8XLPCyAa0YpshPqK0Gut4W6F5tgjKTveWyhG7+hV1aYJSCq8IHEwrKmUTlMpFNJhMKyop5prt8QkrjQXG1hRBqRhWvAwsVomnHjUaVFdtOYpKKYJS+t82W46iUj4km7WkotJzX8k4UBdL8ZaN8ZMzOPziRrK7yYlcIj9iMQy8sRVJloR3TG//oPFeRVmndWuNYN6pH4ntopmfiVUka7nr8+XLh2Vj2yf6SUSTwru1hHY/ZaHSHfL7BBSGsiFbJezusj/zFwzJIqE4Ba8Xgj1/L563dez5OZ58Xrw9Qxcj7P6CeH+pv8xP+zX1DO4eE+rXI3tnGNkrvttxbiRMIuYRJt+1bA/ia3cT6K/iQjF1iwJGwcp7WvG2ODn+kwsMPVM+Y3/1m1px12lEp88ydTxUtoJSoNOJVbOgBiGSpbxcUkEJGDk6Q3Wf+Dyz/zvmRWzFx90cglIBpAlKKcSTOYpKKYISwLatYLXCYzuLn88aYYGi0hNY0j4sS0QioRrjYTZBqVwEbTNpRaUUQSmF7Y5jPBnqpqamZjnd2x8JUgSlFGbWR9KKStkEpXKR9DrSikqpXWYnnpiioPJ1rLSU/opb65mfibP7Hw1noCRJuTsV8+d1MwVJUSxyfMdnssbUMgNl4XCS0FiE4QOTZZVPwVOvYXNZCXS7GdxR/ndYu9FH16sbqT46zaFvl7+DuenqalqvqGH4wCTHBHag126qJtDjYX4uzgkBme7QcJh4NEF4RMzxMvTsJEMVyCB33lxP7Uo/h//jtJAikpGWTtzB8Hx+3vMyMfT0JENPTwrXUz32itIrVwq724rVJi4Nfeq/L1V0PVE1hRRE+nI2Nj/Ui2yReErwupWmyYhOz5e9QTUb9esD6EmdM4KKmds/OYCe1IUVn1a+qd1QdP1zsXqOagW7R3xdMDcUYXZQ3Dlb1ntbVFmzPGcNwJq3thGbTbDry8VTx+jz83mKShKnDutMmp+EdTZG3GU4U7IJSuUi6J9JKyqlCEopvHbNXp7o72LksR1UVVXo4FvGi4pw2Ojnan1zmqCUwtBGa1pRqZSidzFIDjWjqGTaVcd/MoKnWVuYkmkRv9LA7a0oPhs7/rzImjZvIJNkqbSPZRG763C2HSOwO3/0wBSuenFCpa/DhU0VH6tWvakNi00W3sG89QN9SBaZHYL1GrcEkSwyZ38ltpYKT8wvvmYugOeyFUQFsOXhXpJxXTjN3GEB+zUbou2YwsEKVa6tdit2T/lO8BcK2W5B9Yj7ckV35ANEhiMV+RAjk5X5LH3dGgNvbGdw1xinflK+z2vmTKSiNIahkQixcFyYfFe/1ktwhY/QeJRzvy4/jVfnTfXUrQ1w6ueDXBRY1/Xd1ERVn5fDPzgrlAavqteN4rPhrlWZOVP+Mw4fmERWJCIRsTX+4e+WYW+/UEX0LLts3TtaUP02nvqLEnZ3LL5AUenQb8Jo5t5dORQhaZJJsglKZaMumlZUShGUUmi58ixnH2+hrq6O8+fPF6q9jJca8rrf6FopraiUTVAqF7pDzSgqmbG9wz+fIl7IvVUgxVs2Vt1WS3gixr6vm4sGWc5VVMqz3Rb4xPKxiO2186+zbDyBBer0+TlGDpbv0weD/KMFFaq63VzaWT651dWksOL2NkYPT3HkkfK/MX+/i4FbWxl+bkIo5aen3UvtugDJpM7JH5Xvz4hNR4nOxoQJHVPHQ+z6O3G1xYbLArReVcvR/7zA2IHySSvTpyLsP3VG+HqVpk6dODTLxCGx1HkAisuGRVk6n5fitmJVxX1eF383zkXEYymVvHOAsz+vLLay7j2d2BxW4dj0oW9XZjdHRiJIFfgsWy6vAUkSVhXb+tF+0HVhn97Ku9rR40me/t9i9qW7yYFWXWAtvYj9M3l6lpBgGmGAZz9/YvHzC9hWhZDt81p7dyOR6Tj7vlnC/p2PLVBUOrYbZs0qllCMhMM4nk1QKhdqdTitqJQiKKWwYttJds80IkkSPp+v7HOWne5N0zQikQh/+lcPFi0zMb/QAeGISFiwMKPGiUVKBIcTxv+KQV7kuJQAKZnAageLDaL5m3X1BJSo7wgYUqVzI0U6Y7FmkgAZdME8qmWd+/cIu9uKZJGIThYnZBWC6jc6bGRCrJ7FlAZLCC6qKoXNZUFP6sRDYkaro0ZB13XCxd57EagBG8m4zvx0BXl3K4BaZSMxnyQ2U0HuzwrgqtNIJpIVMXKFIYMWsDM/FycRfvHz2UoWUP125mdjQv3TokqoXoXoXIz4rMB7kEHx2AwC3lK8Phmsqkw8nCycw7sIa9migN1lIzIREwrQWRQJm8NCZDKev56sAC/gDIuxsSWQrDJ6oU9WKn5pzScjyzJzk6UJFXoeucpqNf4XiYAuQbKUn12GZAl+lA5YlOJjVECJoE87ABnJs3CBoVG87mf+v28yPT1NfJEF+TL+MLBYLLjdbu74cHHby1ZgzetXDH/JVAyspeLK8Xko9b3remkpa934Py1oJRZOEJ8rNOgUH2c9jQ7i83HmhsXmYMmG8S1XQGpeMsjgCNgJz8TQo+Xfp2SXcPjshKbmheohgc0hEwsnS7/T3xMki4TisRKZigldz+6xoLjtzI5E0OfLfz6rJqG47cyNRpfk+WxOGbvTxtzw0qh0uupVZIvM9PmlUaZSvFYsNpnQqPgivBKofhuSRSIseD1nrYIkS8wOigWvbC4ZJGnJ7GaLJoEuvu7RquygQ3hcrF00v51EIsH89NI8X1EsYntJVmMJXmIaKAhPo0YymWTu0mLfX+71tSorsUiS+FzSOFYiNS9IUGJXvS5DrIS/xuKYxxe3kiDBjLbwAV22wmvn6eFpvvDn/4TX62VycrLE/S3jDwGPx8PMzAy3vuM+Ao2Fd2Aq4wXet8uw+ycnQQqX+J6Ti6QIScLiH4yO3S1j06xF7Kfi9d1NDmSLxORpQWU7yfyeBebtPwQUrxWL1UJoTGzudgQVkBD2fVg0YxG5FD4MwCCZ6jrzgnObp8mBntSZuShGNnXUKOgJnXAFDvtK4KxVScwnhH2PlcLX7iIZSy6Z7eWq14jOzBMT8SVVChlctRqRqaiQj1RSJDx1DiKTUaJTAv4B2bBNIlOxF+YbF7iezWEhNpcQsjEkVcLpV5kbj4itz1QJh1dhbiTy4q9DXkgaFMlcJwt+su56FatqZfL0YsHqXLvK5pKwO63MDZnfbKl7l6XSQTiLTNxZnGw4H9Spjho77QcL+M60Ev6yb336/zA+Pp7efL+MlxYsFgtOp5M3PPRw0TJqAdur2quTSML4jIRlrvj7lxKFVfRT0EmW9ivpOiTBVWcjFooTXbBBUKfUQBTochKPJJg+V2wO1guGBWVFIjmvC6+jck/9Io/HsjF3R6fmxeYam4SrViM8HhGL40lgd1mZD8VLxnh/X5CsoPkVQuNRoespPhuOoMrMxTmh57M6ZLSAyuylUOHYxe8ZNpcF1acwczG0JD42b6sTq2qpKDNNJVD9NmyazXi+pbhelR2r3SK8ucvT5ES2SUyeEiOM2d1WZItERDDWXymsDsMGEI29O2sNIrKob9URtJNM6kTGl+b5imHRcKNdMuMTRUsU/DXQ7SQRTzJ1ehFfZx7ByVljIx5JGKkdJQmpmLIfGPHKIql3AXSrzLyreP1kTZLGOYgCowUSQzntxfv659//WSGfV9kkpbq6OoaGhviTP/n/FS2z+IlKvNXfy7z50naaLGMZy1jGMv4n4veQT3fRUxSf317I1b/1rX/j3LlzhEJLY7QvQwyqqtLW1sbtd9xRvNALMn2W7aZlLGMZy1jG/614IYHAyubP+fl5PvPpz9DW1sapU5UpvS3jxUNjYyMXL17kQw89hMtVJLXPoq9+2bZaxjKWsYxlLEMMi286LI3ic+93H/kux48fJxpdms0nyxCDw+GgoaGBO++6q3ihZdtrGctYxjKWsYzfM1482+tP/98/pbm5mTNnylOHK1tDOZUOZvuVP+ZAdOGusuF5w4lzaLZuwbHRqdzUPPrUQoaWbcb4zWoqEq73xVEt8OSYFXUuQ1e1hBY+fEYlQKKhMYHmhJNZ6upSOIvVFV/IvtPjWYy1QszYrCp63s63+rUO7G4bZ34zXph5XUSSZOCNLUiyxIFvny54vBh6X9eMxSpz8Lti8n+t19Zgscqc/KlYeoemy6uQrTJnHxOTrOu+qQmAY4+KSaquuL0NPalz8BGx5wuucBOfTzJ5TGxXoKNeIxlPEBFUUpJcpoqD2MZu+m9pJTobFX4PqOLXAqM9Y6E4Ryt4D8L1FFjxujYik1FO/GRQ7EYreD41YKXj5Y1Mnp7mooAcKYDNKxGbEl/EeNqdTF80KaRlQnJBba+PoSOT6AKk6IbNAQKdXsZPTAo9X/VKN9X9Ac4+OcLshWziSemZxdPhoLrPw8nHLxW+zyKyhcEBB4FOH0d/NQhFCbQL67Ze5cNV4+Dgjy9CuPy8rZ3XBlA9dg7+9BJ66vEWm8ksMlXtKp4GjVO/y21LyZq1i74A+1hXslJ9yAt3fiUdmYvrWfdRX2fsqj44nLn3eAE51EhV5njSrrOFBBrwGMa19BpjUtK0hXPX9mBuigfVsrDMVs2Q/B5JLFQL8MrzfPnLoZx86ct4aSEajXL8+HEsW57nv0+uWnBcHjc6nbPAUK1N5G69sRbYrJKSvpaixn8HrvMSmU5wcscsemwR2yjr9J3XBpg+P8vIoUwdPbHI7orkIluRSki6tV9Xy/jxGaZOlD/nOxs0Oq6pZ3YkxCmBOVir0+i8po6J09NceLJ8WVvFb6X1yjqG9k8I3afit9K0tZpL+yaZE9jx7ml30rS5msE9o0wcLX+yabo8iL/Nw9C+UYafL39Hk80jEejyMnRgUmhORAF3nZOZM4IqDuY1Y4KpDRu2VeFvdXPg+6fF7hOMvOmCdbpe04jqtbP/m2Lkg97XN2PTrEtWL50TXvD5Oq+vx+a0cfjfBaWlFVOFQ/C1qzXGHBwZFjMS/T0ukGHisNhutJV3tIME+78l1p49NzeRjOsc/y+xtHYt19QQDye4uENMMrvz+nrm5+Kce1xsfbbi9jZikThHfyC2Llj55nYSsSSHctZni9sOrdfWEBmPMLQnb2xZRGo7d7fYwrI5qYGzztVxrZ+54TBDh7P6S6F0iA5P+k/dobJyM4Tn4MQB47dQk1EnWmBXWaw/ZWsZ9+h0LOyb72p+DIBfT/cvOJY4aPSRZdvrpYmJCWOdsE87SIjLFxy3m5+c98JC34ElT3VECi0c8PSI2V9MG6n9Kh9Ov8L+Hwzl2FWFdr7rWXZT7SoHzlqNkz/LlnlfzO5aZP4sYXdVr/agVamc/XX56Z8A+m9rxWq38Pw3xFJwdt/chF2zceDfxMbipsursbusnBT0RdRvqcKqWTj3mFjKzs4bGpFtEsdEx9Q7O0CH/d8UaxdfjwuSMHlcbG5Tqo25NCqYUktymD4vQVWWvje0MD8bE34PpJargtdbdVcH83MxjnxPLD3dqrs7mJ+trN7cWJSTPxJMZWtH+Nmww4pb2hg/OcPg02K2gs0tEZsR93m5mh3MDoXE7tUONQM+Jk5MCV0zOOChYVM1o0cnhWwhX5eLho1Bzu0YEVpTOBs0alf7OL9jhHkBpShPu5Pa1X7OPHZJqF7D1iqqurwc+/lFIkPZRndByfP0X22vqMHT4OL4zy4SElAT9bQ7CXS5OP3zvLF6MbsrGwVTksgFjwf7VTzNLk79IsvHZllYX8pO36lotG9ScHgtHPiF4dCL1xrxpIhvoWNvYm3u3CQrC+eq9w/8AoBHhjYuOOazhwl9bdnn9VJGOBzm9OnTXNp0kT272xYct08b785zeuG3ZwulbCOjjDy90CcqzZvfXsw4tuJ6L6HpOKd+N4c+nzXQFbKDsi7Z/jIv0xfDjB3JqpMdIyxQf1GfWLbtlmentV5TzcTpOaZPhspO9yZpsPqOTqYvznFKYA62uST6Xt/O+PFpLjxZfgpNSYPOVzQyenCayePlp8KUNGi7oo7hA1PMXSjf56XVKLRfU8/FXWNMHiv/ejXrfNSvCzK4Z5ThPZNC91nV5WPs+CS6iDiODZw1mtCzpau6JGKzYnN3zTof1f0+jv7wPLEZQQkmGzlx73LQ/so63A1OnvvmCaG6XTc24giqPPfVE0LX67qpEUdA5bmvidUDKnq+1pfXovlVDgvG3rGZPi/B127z2ZFtElFBRVd3qwOLzSL07QGseFM7slXi+a+LrUM6b2wE4MQPRexficbtVSTjSQYFY7etL68hEU1y/okSY1K2fWOOkwO3txKPJjj6/fNC9s+qu1pJxnQOZKfRWzQ9t0zTdh/zM3GGn89bny1SV8qOMRayUbLrZz1G2+VeQuPzDB/J9BepgFKl7sySPrIrrLwc5mbg1D7jp0itoV4Z9i2sO7M6dxFgL5C9/aHenwDwb8MbFhyrmjc+OrmUylMeyiYppQSXxicOc+Oms/wq1JU+dipaDRjGZT8n+d1IR/pYcBC6p+E3rZlLJWNZQV9AHcq6YS/Yp+Ank5mfHKHcQJYtLw+tMpF5Kb0rE1htEtPDxv3KM/kjg83Iy5d6LtNR1LjZga9J4cAjuc5efT53JNPz5EGnj+YOBHq+86eIIbHva4bDJXRBzFGQiCRAgaljYqoXzls1JIskXG/FbW0gwdQxsYHZajc6uOj1Lj47Rmw2LlxPtHwKK25vQ4/r7PjMoYrqi+KpP1+a66QQDyeYPDtXUfvoCV24Xvz6BBMnZyt+HyKYAoaeXhqJSICmq4O0bK1h/Pg0h74l5sia3CPeHrGJCPGrdS78epDQaPlSijWr/EgWidj0fOY9lLEgb7myBs2rYkNmJN/xWWJSb7u6GpvDQnIWZk8Vec4C9SOr3TiDOtMnI6npozDyJto9ly7iqVONeuTmZS0Im+HtnDkToRATTsqRik5CXtq2xs3gCcLBxwAS6Fn3k/AoC4hZScU43tc3j80Ko6FMrpC4nnvu2cbc9xK363w/6996RwhIXU/D7cq9mKU145BL7KsjPi/h2ZYx2l/vyow3XcCZeMaqqLWkzmUVMhqWsfRIJBJoLTPc0vIkX9j9svTv8pACqVfaDf6s6WWFe47YPFwYybxzdTy3/8tT2R+eihSKsPOrmdz1ev7nkpcSUI9l/q36bMgWNyd/bCw6FnPGpGypFXc1M358hsEdk3kFStff90Vx9Ynpk2HmLoaZHgyXIFQuRCyko79MJzIeZ/pk+RWDq93YXTbcNQ7O/bx8R0/DFVU4qjQ8DfMM/rb8/OmuRgeyVYKkJHSfp0IjRLfGufjEEGHBdO1je8XntoG7WvG3uzg8coax/WJBtkowfVIscPhCMXlijqoeWegdAGkioGi96TMh3HWa+PUqxJ6/F3NkvFCsuL0NSZZ48n8dFKpXaXucfnwI2Sr+/qx2K0lrUrie501Okgmdw98U66eaX8XuEr9eIpYkHkoI19vzJeO9hy+ZE0OZgZ7nv1xk/biIs2jlPam5YWpBeclSoK5px2j+Wqw2Cyd+njU22fOcLj4PZA09SY/Ejp9k/j3V7czMEWEIVedeLxow576wzvYhuOSA8WDm+Of7/y3995sY5Fvj29L/blHGeXaHYbvZbMVTmizjD4dUEHN0Zoz+207y7M8H0se0rJjveKNKVRYx2+OZp6YFTu7NlJEzJhUAeijbsJIhNs/+b2Xsg2y7yvgh16+U7Yfqub4GxWdj9px5zkXsppSPqnajl6oeNwe/dT6/QMn6M2cqG1Of+5oxBogSTeOzcSwW2Vy/lQ/3Gx1Y7BbheivucCNZZA6eESPg2hwWZFn8Ps/8ZohkXBeuJ1o+hZV3dqAnkjz154crqi+KZ/7y6JJcJ4XI2Dwzg6GK2kdPiLdrdCrG5LGZit+HKJbqvQEEBlx0XFPP2NFpDn9bzOc1c0xwIyYQm4qALDH4zJTQOOHrcGGxySRCSaH3ULc+gKvWgdVuY+xM+euQxi1BVK8dPS7WXyI9MZIJ4x4j+WlOssf4PLvq+W+exV2jMnNWcIw4G+HCbwqQvRaxu2o3egl0uTj0bZNInR0YK1TXPN79qhpUv43Z85n7lKy5/jnJkRfZcsD+H2XaItoagJRbdxpCNbmb6y6pmfmpdyaCW4c9tRkb6p+2fj3997ubf8znTl+f/ne1NksEI5617PN6aSORSBCrjrLyuiM89tjq9O/qSKYvjrcpBI5kbKWW6ihJYPhSps/Z8tKFSuHs786IBz7z9SyfV85nKS/cSJdlm7lqVCw2C2d/cyl10wsfJIu0lPKJdd9Uy/SFMEO78uIXebZXfjzxwDfEbLUU9v3zCWZHoyCShlyBZCxJeGKe2fPlEyW0egVHQMVZM8/5x8r3eXm7HHiaXESn4gw9PVl2PavDisVuQZYkofuMTY8QjyQZenrMSJEkgJljYgR9gI5X11G/sYpjP7rA8K5J4fqimD0/xMkfit9npRg7MoNNszF7SoxUo8eM9IUi7w5g/NgMUqfYO38hOPA1wQ15LxCb3tiKVbWy49NiPq9K2+PkTwexOSzC9W2qFSTB60oS/k4PekLn2PfF7ER3vZNkLMnshRKkqHwbRU8SjySIheLMXhRjp+3+shFniI7GzFMvpjJkXPvIvxf59hap33NTLVPnwwzvM2N7WbZgIdJR6nzuOhWbw8rpJ7JISnmhUd3tzAmB6g54+keZf8+1ujIbVocgFMy93pgzcy9bRqJc1GDEk/ntnzZ8I/33ext+yl+duy7972p1ltnzUXRdx2otm3pUfro3m81GPB7n3rerfPz/8QHwq1CXSVBaiBRRaeMON+4E/HszhLMUJ5LDBlEph6CUBfsUOEaK77K3zSZzyEkZGJONHE4UIChlYT6W2ckGbLi3Gqsi8/QXh9KBuHyCUjb0RAISCbpuqsVVr7L3nzJOWD2pl2c8vNi5YX8fSMXXX+KZgDa+v5tENMmefxRj1fa/qZnwxDynfyw2mW/9WD+x2Ri7/u744oWz4O12EJtLEroottjc9vF+IpPz7PmHCljDFWD7pwaYn4nx7N8ce9Gv5QjKrL2vj9Fj0xz9jliQpmqVk7ETc0L909/voO/1rVzaO86pH5X/3h1BmY4bWzj9m2FmT5Z/wZr1Htpf2cCpn11kePfSkarSENgx5AhKhEbzxqUSDo1yJ+yihwsFmrJRKmc95ROUAFqvdOJrUtj3LSMKLykLlYUy1zXuS3eobHitBatN5ul/zyK3WiwGQakIkoqFcNCG0TEdC47HNXkBQSnnuEs3CUoLkSIq3dK6L+f3xPfWgy4RuO0JIJeglI0zcS2LoARdLYaRWKYpsIwlRipY9hcHXpn+7Qu7X2YQlAogRVR6TeMMiQQ8vi/XKaiazt9cglLW9UKRHNtoAeLxhUE0MMhSYSCRKJugBLD9E73GXPP5LOLDYvaTrrPuvZ2MPD/F+cfLd4T8MUELIEwYWmrUbvHRelUtR39wlsmj5QcvfT0aDVtqOPWjM0LP2HFDPbVrfOz951MZokQ50CDQ5mD8kJgh2/vGJqq6PTz5VweFSG2VYtODPdhcVp78/8QcE5Vi3bs7sXtsPP1ZscCX1qghW2FOMGC9/v4urJqFnX9xRKhe23W1WJ0Wjn/volC9tfd1IMnSktnNFSM1RC8Nx+z3AwG7cu272pk8HeL0T017u4ydbJIsse1jPczPxNj1hVPZB0rbjbKMpBS3zbDbDIJSESQ9mkFQKoAUUSl6WWZzUnBC55UXYdQOO9cZY1I2QSkb3xrfRotiDHjf+dTzPPu9QTRNW061+xJEVVUV4+PjtFzXwWV/cg0Az/58IIeglFPeJCqt6Qvhrbaw57EEkcnMcXnKcDrmEpSyEJsvbFeloOsLNsnloAy/U3bQa/172lH9dp78syPZBUrWR9dpuaYaX7uT575yunTZP1ak9lAuDeekYqx5p0E2En0PHTfWEZ9LcPZXYup7mz7YQyyUYK+gj83dqhKLQkTEXgM2P9xLdHKefV9amlSY2z81QHQqxq7Pv/g+L1TY9mA/o4enOPZ9MZvG160xeS4s1D/VGpW197ZxafcEp39Wvs9L9UHbq5oZfGaEqRPlX9DbqdJzcwunfz3EyO6pxSv8AaH6yBmnX3SUspt0XciuWgwN2wJUr/Ky7/+Y31CZCgIb3tuB4rPlzA2SLJWuL0tGEK2IKr5ktS4kKGXDoRkEpQJIEZUGX5Y7P91xKYQCfKPHICllE5Sy8bnT11OtZUho/7bty8Cyz+ulipTP696d96R/e+yx1TkEpWykiEpXrwkRi8HO3+X6hW0TxsIql6CUhfkYerSEVFwykUNOSsNUWdZ1vTBBKV0/meMT2/aRLiKTMfZkxQ1L2V4pu23lXc2Mn5jl4pMT2QeLXzfnJC/9vq54ZGHC0FLD1+Ok8/oGjv/oAlPHy1+3afUKTduCnP3FoNAzNlwWoPmyag595zTTZwSIIAp4GlSmT4nZXa3X1VC/NsCeLx5dknex5u3tOOs04Q1olWLFm1tw1mns/EsxH5QSVLCp4iSgVfe0ovgVnv0bMbJ+w7YAqt/Oyf8WI/EM3NGC1WHhua+8BFPIZ9s2Faq4lz5/CftET4opSBY8ffnxzoHb65kZjHDuN+ZYvaj6kkFC2vrBNiITMfZ+NYuEJUmFCUopyFJOrHPBea0Wg6BUBLpDMQhKBZAiKo1dnpkflWiUNw3CoB0e6zGeK5uglI2/Oncd1aphe534+Ul+84kncLvdTE+XFwsv+43Z7UYD7N2bCdQ224rLsV5WfRJZ0tkRhP3uhb5XKSYhxYq/tKu807yybw5HEfaBNVLMIJABGWl+EXm7PEWAQ4+OsN9kneqJZBmSjAb8nS60QAmHaBGsfkc72z62UAJ+MWhBg+iyZAixpASldfd1sv7+TuF6NpcVxV+CdFAEh751TpigBMZYKxWQsV0MK25vY/U97cL1WGR9WAzdtzZSu9krXrFC9L+pGX+/YP80xxbRtXn9Vj99r2tj5a2tQvWsigVJloTlfkOjSfZ/9bQQQQnAWa9hscmoQXXxwllovKKKzQ/34mgQq5eDUs9YoEPlEJQk+YURlBYhGKk1Ms62Es9WpP6qO+vY8v6W0pM2QB5bN9iponqMOpK99O513W5DN8s8//MEB3+bp6inla4fc6auXfhbmPcUb7tbLNO8ab64VOfq6kFWVxeQ7V1zErou8Arn4aIEJYCt6iLttoyXPDobiwcYJvohocCJ87C/UDxB10s6LDa/xcvGe2uKHi9qG4VTpxdLJXLwkbM8ayp0oCfLdrpoAYW6df6yymZj68f6GbhTbM4A8HRoaIV9qC8KlpKg5OnQ2PShHqrXFw/eF4IzqGFVLGhVJZzPBTB5NMzBb4gRlABkRUKSJWRFbO5e9aZ2+m9tx9Mhdp9yGQvLQgj0O+i9tamiupWgdqOPzhsXpuFeFHJl6abW3NXGmrvE7ViLTV7cbiiA0z8dEiYoAaheO6pPfF2w7j2drHxrm3C9ihFmSQlKlY5lWz9qjp2CfcZRrRLsNdO+L0Zcl6V0H9n/7XMcyE+59wLtTqmIcpG3Hra80U7nFcXnr1CDTqgh9/ioCvv98GwNPNz1s6IEJYC/qX82/fdFMwWhw7GE6/lllA2/37AtZs5kguyxjuIf6Vi/Sly1cPIAnDmQEA58d7+miq0fbMXTWmRNlFyMQFQ+QQng4LdO8fw3zmTqlml3Bfu9uBrE+2zfbc1s+XCfcD3VZxBdlgyFBXdfNAzc2cKad3YsXjAPWsBeke/x5A8vCROUwPB3WWziTqhVd3aw5u428etJUlmO/Xy0v6qW6rVL5/PqvrkBX7eYXQmAJAnbl+5WlRV3dDDwhhaherLd2BAmCYr2RSbh8LfPCRGUAFS/hs1hxSno86pa7WbjB7qX9HtfSoKS6pdwt5R4tiJ2Vd8bm9jycK/w9erW+XGaqZJFHMi7vnKSA/8mlj0hvY4o1lVK2GXr7wqw6U2Fg2QAcw0ycw0L7/83XpmdDpkPr/9pUYISwE/7/6vosWX8ccDSXlzpbLzXSlyTOXYYDh8QP/fGu7ysv6eqeIFi6XFTAfZFbLN8n9hz3zjHwX8Tt708zQ5qV/vKKpt1cTY92F2RP0KrV1DEXEIvCEtJUFKqFdbf30X1GjFbQfXZUdw2nNVic1R4MMqx710QfkZJksy5W8xv3319A6vu6sTfX3xcLXY9JMnYzCMAT6tCx6vrhOq8EPj7XbS8orBISiksEtYqilV3tbL6HvHYtGyTkSuIFV/cMS5MUAJw1KpoVeI+r5V3tTBwh5hdKYR82ybK0hGUAFeTVtFYtukDXfS+oUFYkMHb6qSq17zgYinepEw8eu+/XuTQf+SpRC2m+igYC01B0WDLbQodVxavH6qTCNXl3n8U2OGFZ/zwsVU/LkpQAvhB90/Tfw89Y3AtnM7ihKkFt15uQY/HQygU4vw5Y4A9FjMcOFe6DvP47ELHw45Rw4E95LMy5Cv7ftKYCMm4XKUH84RmxRLOJRv1rEkSrIHnfwwhbEjRAmpIIZNVbbWim2SlkMBm/PRuNouFZ/66yK4iSS5peFjtUkUkl9X39mFRZOGd1hve14XdbWPHn4mlG9vwvi5sThtPCaZD2/qxfmSLeHoGNWDPTsVdNkSfK4XVb28nGdfZ/7XTYtf7dGXXmzg5S3hcfGSu9Pmq+7z421wM7XzxdzM5gjKBLg+qz87EofJ324UuRipiUU8en2B6wMuFnWIOt5G9M4zsFb9e9Vo3bS+r59Cj54WISqd+NCSk2JSCt9WJVbWgVVkICcTnVr61DU+Tg+e+dWbx+8wap1bc1YKn2cGOTy+uqpA9Ya95RwuOKpUdf57FFE9NmrJUcIEnWWRW3dGGVZN56i8KpI4pMela7GUEOgtMyru+apBq0wSlMnetzYeM/6WQdBmLEzmWJFnAaRs1HcdXd88hy/DLI7kTcqi2tEExYQOlgk0vls7J9N8zuoRbyjpJKETd+mmk5xrACu02F6dixqK/pqZGSH5xGX9Y/HhoBQDt689zavdCx4PH/JzODlfgOAci0wmicyV2hYFhNOc5Zjbd30IimmDXF88U/e5TY40kS+mg2eSxCqLzklSx2owsS1gV8VXqyje3Ex6PsufvxXaSb//kAFNn5zjw9fKdvloA1t7Xz+iRaY7lL1hKILjaTc9rmxk7Ms2RR8pXJdSqFWwOK54WJyMCan8nfzTIyR8VIEwugkC/g46XN3L0R+eFUk4d/97FisgqF58eIbm+ykjzJ4BDgikuUmi9ph5HlcoRlibNXOs1tVgVCyd+KPYuRPtyCoO7x1C94o6QZ/66stQvK+5uRdfh4DfEAidPCSpEpaD5FexucYfp9k8MEI8l2Pk5sV16Wz/SR3hynn3/JJZGb/snBgiNRdj7j2L1Vr65ndhcnGf+Sux9yFYJqyo+dj75v8z1i6B3cOZU3vdq2oW6rhcm19lsuFvsrHhdLZf2z3LmN7lkb8lZnFwxH4VYTGZmWOgWQZN4LmuqPRerymzgCodZv2WY3U/XsNlUb/pg4CR/Nd5Bk6efi+yko0OcoLCMFx9NTf9/9v47TLKrOvuGf6dyruru6pxznjyaoIgiymkkjQICLMDYZBuTDN/7Pe/jgB+T7AcwNgaTbHKUSBISktBETc7TM9PT0zl3dXV3ha5wvj/OqVzVXbtAg/iuua9Ll6br7H3COvusvfZa916rhgsXLuCfUYz/PRcUn5Z3mx/HnkzbynlR8TUFPDDqEb/e/KUlbKV6lgO5d/RLkpQR8Kq/oZjKjUWc+M4giznKAaUTlGL3GfAIsnEkiUNfEMseHYPOqEVTAMml582tGBx6YXtvzVMNWMvM7BH0XfX+WQOWEiP7BLP9bf7rNnRG8fIMtkozWp24XAot+9WxsxZJgtPfFrNtRLMfxjB10kNgfoUsFTmw7/8U9nyVm0sILYWZOnJ5MviUrSnCUm7Cc05gDg4gPE4AFiYCzJ7zMnZALHusbzjAnr8Xv5693kTrHTX0/2ZEaJ02cWCOiQNzqzdMg6PWgsGux1RiFCqj1np/FaU9Ls78cJDZU/mXbWu+p5LSLidHvnRGiKzU+Wgtria7mEwliY5HmrCUGhP2UJ7QmbRoCtARh2IZREWjsgGY708q2Rbzt+XIRhDLbLnuz6rRmbUc+EJqaZwVM1sCC7NRjNYoILamGDWbGDXDvcCF5XKaDUl+1kCAa64bwvhqFWDiWw0v8sTADQBUVlYSXY30ewWvG/zukmIjh65aQL/fnnHcMai8y+QybyJYmg4TCqwyHrTajGxJ65+qJBKMcvTro4ovOcsGvXi8MMkntjSafwwo2Xbb/Q+FzcFavQa9WXxz6vqnmvFPB4UrlGz9SCfzA0uc/o5YiawtH2pn5rSX8wJ+DHOlkfVPNTN1ap5zP8rfV2a0SZhcBhy1FqaO5m8rjO+fY3y/+NxmrjTSfmc1/c+PCmU3GnllhpFXcicEyYWJwzNIWgnfSP7zIcDAryYY+JV4vKr22nJcTXZGXpm8LGSzxhsrMBUZGHxOLP534puFlW0b3TutxKcFcfQ/C8to1Hp/NRqdxNnvi/kQRTM2xWCtNCOv4vbPhq0f7iAcinJA0Je06f2tBGeXOS7gFwfY8jft+KYDHP+vpH552Ddr3txA0Bvi4OfFfGV56c4s19/zT+o6WXAjQmAyba20qs9Lh9EBa3aWMnFqicHdqTFfyZTb9pKjEFjSsDAmGHA0GjmTdNqBZTcNhqQ1STDIlptHMb5SBRj5cu0u3j50NcUeN9BHXV3+ZLi8Z/StW7fyk5/8hNkZOU5QiiGdqBQjKAH0MMuaPiunbVoOVymXk0cSDp5gsSIc42xC+JYJmVNYObUA2MGwkFB45ulU0lE6UUlaDgJ6JX3+EsjGNKKSL3WhFSMq1V1rpaLLyumnJ/HGdEosUJ5kmGSk204zXFKcQSsQlQ59Qf1Qchg2uTB2ZBZHpXjwMbos550VMhkKw0+8n286gL6AjB2Fkn8Kha3CfFlTvp7+78tb13TwlUkWhi9PKizfdJShXZNMn86dBeYPCf80HP/qwGW5FkBxhxO9XUdxo1U4m1IhOPWtwsaKd8SHtdTE4niOe0yfUFU9Jek0iUlQIINSZFlO1XvpBKM0wkLMoTF6cJbiliws/xUISpJWy9GvJxnQsfMm31My4SbNqZKRQSmNqCSb0yb0cISN9yuG6cGnI3GCUgzpRKVg0s5WOUoG4TKZoGRQP5PlpDW3ry7MM7HsSx7QuxKL2asbU42rc74yWi2JiJr0016s9nm4/xCQSlSq6PWiXYZo1ygMtAAJopLH48Fuz1z4X8HrDzGCUgzpRCVH0hBZ2+vHooU9RxL2gmkiYf9EHcrvGm/iN2lhiWPfV/+t1yOHkkocpqfDzkJUStED6USlNAMkRlTa/L5m5IjMAcHSqaK2Uwy7C3DWA3iHfUwd9wj3k6MykaCY8eWfVeQjGrxaGl4i7I/gHRKbnyb2eZjY5xHq8/vA1eTE4NJT3OoQIikVipkTi8ycEHPW/D4485NRSprz3y3y+6LvJ4PC2ax+H1x6VpTJ8fvBWWu9rHZ6oTrC7wkS9K6SxTcLJK14VgWAaEQmvJpzPQs8A0t4BgS/B0lid4GbJZT+q2dQSoa710rL7VUMvjLF6G5Phl2Y4bRRMyTpDFqQM9fqyQQlaUnRObI18c14zE727Ff+bSGEryJhK06vTbN5L9riO7s3DMt0LS5Te/0r8eMxotKmDZPo/HDVxkm4kNjG91fF/fzzRcUxvnbt2txCuYI/Gh5//HFeeuklgp5gnKAUQzpRKUZQApCb9WzukBm/EGZY5VnESr0BSBZlDZFS9i0YZPIoTB71k7FoSB/HaUQlORIFGXQ5/OfZCEoAFVtcNFxfRt/Tw0KB/ULtrhPfGBDuAzC8bwZXg/hcGg5EiUbE71OjLWwD4cKIH6NTMFUNhZN/CkVRo9jO+t8X534iTir/fXDhl2ME5i5fWsKLz40xe/EypZsPiJPLfh8UNdsxuQ04G+yFbSYRRKEb+hbGArgawvhGxd6DVqeUjhXNphQJ5l9tAYj7mEb2TVPa4xK7GHBCMJCXem1xctOGdzYi6SQOfr4/c0Nguk8tqfSuHJUhTeUmE5RiPgTJmJis5BIXfXuVfxtYYrksoeun1qX62xx9OrxtCfv6Ke8UWktiHk0mKl2/ZRDDgkx03QicUTJgxIhKc3NzVzJY/okgRlCKIZ2oFCMoAbRsjGI3RTmcVO5NnzQXxPy7KWXfgsuc/oU6Lg165OWkeGFaxZWMeJ+c5vtOs40y4oWqT2zd25Qg7ZEvD2R54gRy2W5JDVY4luhb6Gad6dPzzJ0X95tEw1HCy+KMB0mjQRIksvtngwTnQ8JxLu/FwjbHFwpntRlLhYmiNodwCbZC4L0UxHspf9LW74vzv5qgqMF72bJh9f10CEv55fN5je65jKntgeJWG9JqGXT+gNgnuLEuhqVxP8v+Fb71HAQCjUZC0omvsyKhKJFAGs8iD0ydmGdBsOS0pJHY9+lVyj+vUgJ3xa5psrFW6OnaUcnwvjnGXl3Iw+elznN6FLsrzSZNJijF5rzkGKfPbuOganuZCBIoTRyb7kmlB5nPG/G3KOfomAtyTcCP+5rD8ePJRKWtV49gmokS3TwCx5T5+8u1u6i5qPhBGhvzz8IvyXl6fgcHB6mvV0pk/PJC9jJlLy92pBCUAByTsO6sjTl7iJ9XKcZnMkkphhhJyTIRux0fm4oijPi1jAUscaJSOkkphhhRSTuffSElBUMZBKVk1F9jorzTysUXZ5g4kjbZqYZGhsEBNL2xhPI1Lvp+Nsz08aWM40rH1dJ0v/5rxb7eseUjHWi0UsEZh0Sx/RNdyFFZ+Hrr39lMwLvM6f8RczRs/0QXkVCUfQXunhPF9k90sbwQ4sDnVlHQfwCUrrPTdk8d3uElIdKRpc5C1wPVXHpxnKkj+ROjWh+qprTDyeiBmYJK/Ymi5y0NOGotHPlKP77Ry5BHfjVWYa5JNaanfp8Sb5CdZKQutpIdGnn3Tb5+ruOx+8qVEUjSsOkpN7Isc+hbWTKFqDLLICkBm3cYkYH9v8nN6Y3qNSkEpWSEzcq5c2VQipGUfHXKHHbLtI9+I1ywK06UGFEpnaQExElKO5yH+O5X347e4OeBJ76V0sYuyVTVjiOh2DHyWEv82Mn5SdZ0KPK4nEHgK8gfMaP0n0/emkFSiuHioZoUghLA7cUL6DXws2k7jkFlbCWTlGKIkZSkBcV+KWnV4Kwx0/9b5e8YUSmDpBSDSlSS0x068ePyijbQVX/dghyR2f9psZ0YV32wDTkiC2cDuYI/HIo7LXTsaGDmjFd4x08haL6vkvLeIob3TDP4m/yJMqUbHNRdXcap/+7HP5u/E2Xt25qwVZk59B8X8AsucAvB5g+0obfpCs4SJootH+5AaxDPzNq5sxatWcuJ/xoQ6rf9b7uAwklAotj+t12EAmFeFdQtV5AFhexWAco3OWm+tYrBXVMMv5zb0ZduW1Ztd1F/XRmXXp5kdF9u+16SpDhBKeOYag/myqAUIykFq52UlQYpdsGZcwCKLRcjKqWTlCBRfuLPJiYJTpfQePvzmItT59cdrYey2l0A2kqFlOvz+TCbL5+z9QryQyAQUN6LBA3f/PusbRx7zCkEJQAdAa7dJDPjgXMvKTZRMkkphjhJKZgImDXe7MIzGGCuL5DwN2XxO0GSvZ7jOKwc5KrY4qLxxnIuvjDO+N78d4ZXXV1C/XVlnP/FyGXLVnMFmdj0/lb0Zp1wpqhCse2jit9X9HrdT9YTXgpzViAjKCgZSMPByGUjcW3/RBfB+RAH//W193mZykxsfGcz3ktLHP/6QP79XBo6H21kcNckM8fy93nVXO+m7royxl6d4WIBWRJE0Xp/FaXdLk599+JlITe9rlGg3fSHwKb3tiBpNbz6ObENQJvf14yklXj1cytkUJE0uf15anA1VwalGElJLnEB0LgBPBMwp6qIGFEpnaQExElKH73hGSa+ex2SMUzZfbtT2jQbJri56WxW2+uJgRv49rb/RJKkK9mUXqfQ6/WEw2Ee/91O9o9njzfq99tTCEoA2xsWsRjgN302LKqvXZ+FsBonKak+LUcNFNWauLRH6RMnKuXyaa0QE1QOyLmPARveqcRS48kKsp0ii+224S8bkSSJg1/ovxJX/CPBWGpk4zvUzE0/fu1JQFXbimm4uYLhvVNCWYOcLRYabijnzE9HCU7ln7mr7cFqSrtdnPifi8yff+3J12vf1oi1wnzZCGMb39+K0aYXvl7TnRWYHAZOfVs8O5ik1QhXIyoUWz7UTjgY5eC/vPZ2bF54re2fQmr35X3qwmKpjgYjnTtqGN47y8huT+7uabIpajPRelcVw3tnGX01B58k1k+fIx6pUeKMuTIoxWKcYbcNZ3GEohIYOAeg9IsRldJJSkCcpPQuzuO/VEXFTXswlqaSWBsM01zfeD6r7aWv7ye6HOXkyZN0dXXlfL5k5J1JKZ/0TJ5QpiPQWwYvlykPER5wop3L7kwMFstYh1NfWIUFnIYIYwFYtmuwTuTeoRox6zCMq4s2i5I0NLlEj2zUI61AUhr4jYeLv87hQM2SUSmG8LKyi01rWOFDyZJRqe3hatxtDob3TDH4/HTeBkXZBgd115Vz6ntDwoSHok4Lc6cvz46fkl4rJV1F9H1XLHC1+a/a0Ft0whPIsjek7KC9TFgc8xMJijPFzaVGjEXiKQP9M0EWCwiSXfU37fimgsLl7AqB2Q1r397JxLFZod1QS8NLBDxBJk+IpdB0t1ox2PUUdziFSEqzZzw4qy1Mn708GZ980wFslWZ8gqn117+rGXOxUSyAKElUbnVhdpvofyatnu1qk7ngTvcYLHVm8Pnxza3w/WmkjAm5501VRMMyp76tpnbNk6C05X01yFGZ/f83aYEQlVesoSzptCs67LORk2J49QdBZKtJYSvnQDaCkt3iY8EHOr8Fb0PuqTZslVkuUXWJz0d1GNxhuKCSl5x2Pz3u7Olvz/nKuK3oBACP/NmXEwemfbRtyBFAqEw4rL76Z+2A90ompdcxtFotkUiEr/1AR/m12dtIWYb2L2cT71QKyxhnsuufqMOMdiahC+u2ONCbNHGSkqTXI/tXcDRrNMjLirPHXG3AP5KecUmCFabKff98bnWHSzbIZOzazAeFEiW6n6xHjsicEsyGaC7WgMFwWUguAE13VrIwtiRUtg2UII132CdEPPHPRYksR1ma/kMWF8+NmVMenDVWPP1ic3dpVxFGlwFrjRX/bP59x4/PUmUswT8v9u6a7qyktMfJvgJ3MIqi5y0NmIsMwuXUZs55MRetXIohG5yNNjQFZJvwDOZeeL8WCPnC+D3ipWa2f7wL/5x4acfWB6uZOj6Lp+/yBOYcTWbhTGTWejMd91Rz8TejzMbWg6tlR5Ekmu6soGJ9ESP7Zrj0nEAmLXWchALZJ4FcduXobo+SQUnSrLwjLY2gZHSqsQe/QpzVOB3Z+wGyXhcPiDU2gNEQIykpCJkl5tuy941ctFG5bpzmdXsSP876eXDr6ezzUszukoAT1ZSUlDA/P3+FoPQ6hcmkBkhXsjGyLJnCmPjtAeXflogXaTG7z0WymJAXU/VhWbcNR7WJub5xJK02N/EbNaNS7LgJTCaEMoKM751lfK/47uCQP6zoCkHfcO0b3NReU8bI3mkh/eFqNdN4cxVnnx7BNyw2D9vrTUJlo34fOJtNuLuLuPAzsZKra/+8CYvbJFyOyzcdxOS8fIHIuYuFZaJ01FqJhsXt+/nBJfxz4nblxve24p8JCtvpheKqD7YzeczDwLP5+7wC3gCLE37Gj4v5vCxVFsxuI6WdLiGS0vzAIr5OJ7PnLg+pcGkqSFEgQmBebHx2P1mPs84q7P8tWWPHXmERege/D0xlJlheVp5vFbspGR0PVSPpNMLZsLZ9RKlUsUdkk6qkUZMeieuIV//lwqoBumwEJVOFnsB4CKJRpJXsGp0O2ZnI6FbWoMVVEWVuRLnXsEnLXEd2h5ujT4dvszKnlj/ycuKAJ8A7tu+HLBnMqUrYXo/9O3wbrvi8Xsew2Wx4PB5++aVpSu7L3kbO4i7ePZAYU1JURpdj3S6bjfFsqgD1mx2YizRxkpJk0CMHV5h7tNq4z8tYqiE4lTa/rRKYP/TFgYJ8XnIUZFbe9Kc0TP3mt/yNSpT4pBhRovX+aiQN9AkSjI0ODRj1QuSY3wfV15QQmAsxc1LM57XtY514B5c4KVC1IugNsrwUxjd1eezKuYElSsf8eM6L+byKWuxYK80U1ZsZF3gPU6fmMTr1BCbFnq/q6mKqrnJz/Ct9BMVeQ0Fovb8ae7WZQ58XI+BOHfNgL6AaUXG7o6DqQLN9CwWVuS4UwdkQy0vi2by3fqSTwGyQI/8hVg6t/rYy5vq8mdnBXiNykqPeiPdSUIicZHTr6binikuvTOHpy48DIWkkyjc6abq1nJF9Mwy+MJPeIGdfjUEDUYgsZ9fTWcu2AXN9AfZ/pl+Jha6URSuNoGSwwHIECALRCNJKWSJ1WsIuZfzXN4HdGSMpKYgYNcy1Zr+2+bwRacM8Zd0nYdvJxAFvkDdtO4wUIdP2qo6VvYOSolJmZmbyJiiBAEkpGa36uYySbzF0Oic4PV+e8Xv/KQdYIFIUykpUihGUlu0ShgUZsNDvXWJgQfk9RlAKW7TofJnOTv1cIF7abcsdekKBKIeeSbSTFv0JZ2YoezYmSavJnsJVbZ+eZhtg8IU5Bp9TUlzFypdkIItBMXV8DmeVhflLPiHGc1GbQyFmtNuESEpr3t6IvdLCmR8PMJMr41MWbHh3M+ZiE7s+dRIE+E1NN1Wjt+sQ3b8c8CwXVHv78BfFggkxXPXBdjR6cZbrsQLrjBa6Q77Q59OZtJhd4qSoQiBZLGh0ElZ35u6XleCbjnLwXwVL/QCDz08x+LxYPVqAmeNLzBwXZxl3PVGHq9HGkX87g286/wVG/zPjmYShPBDwhDA6BN6dOvHVXV+OVq9JvWYeE/q2j7QhaSV2/33mzsWVHBZrHq1B0kjs+T+5x2i2SdlWbkro01VKvCVjaWqZaChN/isRlFS9f+ibnuwTv9GApOp9OYvjRbbmHs/LTuX9aAMRIikGrI/N7RBYhufHtegXZEL2TBn4KpTnN8xo40SlV80wrz6Ou9YDwInpyqxEpRhB6ZXZGq4pThBCrc9EkCDOZk5G8u+7TygBvPb29pzPeAV/XLjdbiYmJpj92vN8+NEZvja8PWu7hUawZ5mWnP0LgIlgiSkrUSlOUDIZIRDkwsseDEk1mGMEpZXsI0mS2PDOOgx2XaYeWGFHWRwrlMbNhf2f7itot5h3xFdQGZBCS06t/8sOomFZ2EG0/RNdRJajwkSXig1FlPjswiSlyHKUwLwYocM/HiiIiONoMtPzWCMTJ+a48JP8g3qePj+H+sRthVPfKqxcQqFl8CylRmXjghm4DHwVc5EBvUV8OXf+R4WVYil0V9ipbxb2HrZ+pJPwUpgD/1fMbhMlbcUQDkYIerKvE3PCDGXdLmxlJg735W+vW+vNrHtzE/NDS0IEwfItLlpuq2a2z8vp7+Qf9CrrdmJ0GXDU2RWS0krOpKRj85cWKG62Md0n5iyNf0M5bNDYmjmrjblSVs/kzUNJNmLPo1XoTVr2fm4IyWRCDi6nlBeJIepSglSGSaXEyLETUFoCsSxK841KH2cfWYlKlesU+/pfTt3E+7qeB6D2NwtI8ip2lwy/+7EOk8mEdhVi/hW8PvDkmn1849iWrMfmm/U4L2TqCsugmqHUZslKVIoTlPQ6CCn+rUu75vCcVzNYxghIWcrqglrmTbWbtn2gjeWFEAc/nzAAVy0VEoMJEIhHTB2aZ+qgJ/8OKmbOLVLa5cI7JEZUdTbYVWKGg0sCJKX2B6txd7voe2aYqUP5kzO6n6zH1WDj8FcvCJGiGm6qwlZh5sKzY0LyDM4tY7CKz92FloPf8Bct6O069v0fMbvtjMAckwxR8lUMJwsscWWwiZfcKxgmxcdmKRUkegfg6L+LBYMAZk8tsvuUuDwXLgU48iVxH2LjneVUrCvhxLf6hch+o6/MMPrKzOoN0+CfC2ItF/MfAjTdVInephMmKV31wXZ0Jq0wKWrtWxvQ6jTs/ofTuQneWewqV5M9v2zkaZgbWFoxZpV5baXxwRUytazcfYV7VG2WjNIjwLo31RLwhDjytXHkcDieyTLl3GpWS2l+MU5UOrc/QliNo/vqFJ9U0ZlQVqJSjKD0z3tu5G+2vRD/veF3c0jRhI2Vck058fv/+ZoSu2pubs79jFfwR0V3dze7du1Cu2c3T31My1dOZfd5zTdqcF7MtI2sw4uAlrDTlJWoFCcoqbbXhVe8GG1JPq8YQUmrySihA6ptptHQ80gZtkojez+TNldFIvFvI6fPKIfPayW77fCXLubnJ0vTSbPnF9HoxfVOSZsd5csRIymtf1c7ciQqXEJq28c6CQejvPppsX71N5QTXBQnKYV8EfxzgpuYgnDgc+J+BaNDw/p3tTN13MOFZ/L3efnHghwtIN448KsJBgrImjh3epG50+KEdGupCYNFB0YjClvitYW1xIjBLm7rDb4gHjMEOFBgxv5Cyx1v+qs2Ir4IhwXttiP/WdicH1oK45sRf2/Vm90U1dpSr7saQckIV3+oi/mLi5wQWMc4Gkz0vqmJ6TNezv4gf7kWNViwVppwNVpXJSkl2z7+qQC+iQCe9JKXq5R485wPsO9z2d9DLoJSHCvGQtXrpvm82u8uwVKiZ98Xx5V4ZyiUNbu4rFZn0Xn8hF1mzh6H4lKIZVFaqlHIS0XnolmJSpKa+OCfDt3Ghzf8Ov571b4FNOEctlfMJosqG7+KirJzh3KhIJJSNvxsbkP83+lEpat/5+A64GsquSsXUSkdpxaUHY7pGZTSiUr6uYQRIhv1+LxhZocTkpIWV44SyAGl/5b3VBMJybz6hdzZf7IRlbCAxanDNxbOJCrlMCjmTvt49fQ54SDb2e8UVlJjZO8k1VvL8I2JOYgmT85T3itu3PT9fBhnnXX1hmkQKfeVDFuTBXe7Xbh8V2Q5UtCisfneSrQmrXCmqELR+XgdoaUw5wUnvMtVNgTAN+gr6HqWKhNtd1dx/rlxFvtf+0xfJb1WqreUcex/LgoR7yLhKHJUxucTC6aX9Foxu80M/3ZaqN9pkZ2ASRNf38+GsFaIM8VnLixiKc7Uy6t9H9NnFtCtwDDPNSnv/ZQ6iQsGak78T9Iu3BXISZAgKAHYa2Ehfa2VJXiVDEu9id5tsDgPJ16OIOtz32s6UWnRD0O+xN/pRKUYQSkGhahk4ST5IUZQApj87Ta+O+/iqut+TWPLIEtvsbP8fAjDS4rRGbtqPAUjsPAGHa+++CoA999/f55XvYLLjfe///189KMfZWIw+wJi4GBN/N/JRKV6vZ91zjDTWjihxvZzEZWS4R2EWOqj9AxKGUSlJML3+BEPxa22lParEZTkqMzat9djLTOx+zNnQVC3FpJJpNCsgoWWqJo9t0CggGwuSxMBFsfEGS6DL03iHRbPWFNo1p+a69wsji8JZY8J+WTkqIwsygMp1tB8Tx3DuycuS7YaV5uZumsrOPfji/gFkk5cjsyVySiUjNN8dyU6k/aylOoDaH+ohqA3xMCvxez0aDRKOJ2YnAfqby1j8uQC/hGxsVJQiRk/XHpxgrlLYt9edMGPbybA1HGPUD/vpQDeER8j+8Xsyou/GOfiL1QCe7Jttko2pZkTS8ycECcImiuM+OeDQoF7UMqAag0a9nzyvJIpcyU7NMlpM3liAUe1GcmUCHamE5ViBKUYDJNL+MusDOb5GcQISgA3HTZz5OidrHv05ww9XEbli17qnlOc5dnsLvlOM5cermDk4/swGC7PBpIr+MPDsS+xxkonKl3bu4h2o5b9P1btqBxEpXSMH0gjKMWQRlRKscEkDfODPjwXE3pnVYKS6pfa/redajlMwU07JjA5TEK7rX3DAQ59QVx/XHpuUixzm4rRAzPorDoWhsUc75PHPOjMWqKLYgrr3C9GcdVahPXcme8VNveaKkyUdtoYEvQrRMIRtFHxjYB1N5ZidOgLDrqIovW+KsKBiHB5sj3/cPl8XgQoqEyJyQUt9zQwtGuc+QuvfUYGZ7OJ6q1l9P98UCjbmhxSdE1I0NR2NpuwllkY3SOWqa3/6XH6nxbf0HfmR4PYq1bYPZ4DUyc82ArIqjB2YBaTawXfUy6fV4FrLCGCYFIAzV5nYmFQbHxJFoltH2hjYcTPiW+sfN10opJ3yM9s0no8naiUXnY3RlSazVMFxghKANdOwdh3bsSx8TjW1ikG7q4kvGcE3Y+UNtlsr0N3V7PnuYNK/2tzpKW+gj86PvnJT3LttdcyO5xd8egOJuz3ZKKS0xhkS0OIKRf0qe7RXESlZPimwDel2mrpGZTSiErJttnYMS/ugFXZ1xDrttqmvKhM2/0VlLTbOPK1IfyCPh5btZHFkTxsmth3KcsFlyUrVF9NHp0jlCWZxGrw9C/hmxOfD8//cpTAtLg/qBCyEUDZRheB2UBm9pgVEAxGkSNRwiFBuRih/Z4axg5MC12vUNhqjNReU07/byYICmRIP/eT0ctmG0LhZJzaG0rRW7X0/1zczigE9beVEQlEGX5JzE6XQzLhZfFvqGpbMXMDS/jHxNY9BwU3AMbQ/6tRFsfFvz3v0BKTp8UyewZnA0yf9TJ2QIwAP35gnvED4llEvYNBjn41KQ67WrIH1UdlLJYILskZXL3VCErr31GH0a5j7+cuKev9lZjpST6v8ROLFDWYU+Kd6USlGEEpBp3HT9BlZixP20tKqszyQB+cPncbnY8oRKXRW9yE3zSO7psKmSub7fXqo9UMfXsIfRby1EooiKTUd9ZHWzvxbErJBKUYOp3KwvL0fDlzWjCm+ZdjRKX0Em+gZFMCuMnoxWqA301kLiJiRCV9lgnt2EvKY0mEshOUkjIqxQhKAIH5MIsTwdRAXJasSylEpUiEbe9rIxKS2f8p5SOPE5VWYTx3PlZLwBMUKo1VKJTsMeJs3OHfTguTKwDmz/mYPydOODG7oXRtqXCGnK4HatGZtcIkpUIy+ACU9biQNJJwpqgtH+oASTwgWNRkQ47IwiSlPwWUr3diLTdTubGIcwIkpeZ7KylfU8TZn1wSyg5Wu70ca7kZW4VFiBRVKEGw5fZatEaN8HdUtsGBHJVXL2WXNvHNnfYlyjoKpETs+37m2FqVwKfVcv6Z3N/qipNynuXdUmCB3gfKGNg1l0k4Su+fNBmWdmhouraIhckQp55WWdFZCEpSJBrPpiRbTcjLsByAKdVOkUIKUSmWQSnjkVSikr/EzktZxBIjKqUTlGK4bcpHWQR+2b0MaT63E9OVAPS4x1IISgDGkjlCizbKqwZp1KnBuW9XsfyqD8O9mTqx/+cO6LUg1ymG+sc+9rGs93MFf3x85CMf4aMf/ShRdb3ylprd8WxKyQSlGBYalf9fugg9YfCmqY8YUSm5xFscJiOYYdO9FuYuLXP+F5n2U9w+SrONRvd6Gd3rTdhHeRCUACZPzFOxToPZDH5//hmV1j7ViK3KzKGv9AuREIo7LdReXcHRAhe5ojjz3cJ2oB8VTLsbw/DL4vYaQEmPQjCbOSG2i6ru+jJCi2Fe7cvfGvKPB9jzD+LZeGwNNpx1VqLhMjx9+e+0L9/kovmNVQzummL4t/nblpUb3NirLThaXfgLyKj0ekdZr6sgkv6WD3cQXY4Kk6NKOhxEQ7IwSWm/4I7MGKq3uHG3Ozj4fwXsfDNUbSph9MCMcBasQr49/yzCZeVA+YaOf6WwjK45d7rFiEpZjjfeUY7OrOXcD8XWIGufbERjkNj9d6dXtEflqJwYi5KG2fOLWNxJdpZKVMpqF0LcaTN8IAQHMtftMaJSOkEphqu3BvF64RV/5nGnOszn21IJSgA+Q4SAQZmz7rLOwNeLCBwxYbojk1ghP1/Nf9fWcOagErwN5cjqfAWvD+h0OsLhMKdfGOHJGxPZlJIJSjHMNyvrDeeFEAszUYxpe7RiRKX0Em9APH17220O7NUmDnwhywYVlaiULZvlqf9JfJP5EpQAFkb9LE0JKjlZZvsHuwgHI8JkzuZ7Kgn7IwWRjkSxcClQUDaeqSPzTB0Rd2j7hgPC5ehAIay4OooZPzIrRHDqur8Gk9sgTFI6+uXC5ozKTSVoDRrhQNSm97Wi0WvY/ymxseLudiFHosIkpT8F2JucOBusLC+WMH8h/wBy1TUl1F9fzvmfjwiN0cpNpRQ127HW2Ql48s+EOPDsREEl1FrurMXo1AuTlIo6FKU5d0aM6L1wKVBQWceCxpYkZWZjSCZ4vwZlTnrf3MDQrgk851fR1Un2lanCxJonG/AO+Tj+9fw2PEoaCZMJfJNBpk6lja8cdlecqKTXc+qHmbooRlRKJyjF0LQJiis0vHxMh5LWL4GiM4p9NNehTyEoAUyboCwARdVTPOVQfbOfryD8FwF0t2TqqM/95Do8TS7CT/8MgH/6p3/Kej9X8MfHNddcA0BkWfmmnuraHc+mlExQimG+UR33FyHohwVP6vEYUSm5xFscqu21/kErnuFl+p/PEtxXiUrp5PGZ0wFmTgdQat9Gs/q8UjIqqbbZ1Ol5TA490VAoJaPSarZb2wOVlHY5OfHti8yvpgsSN4CjzkD1tnJO/3jwciS5of8XhRFATn+nsOyQkwVk9gRwtliQNBKePrH5puX2KoLzITFiRxDhzFIA5mIj7k4nklbCezF/X6Kj0UTXzkaGd08JEWSKOx0Ut9mZv7TIqABJ6U8FlZuK0Ro0wiSlje9tBVmczFO5oQQ5LE5SKpQ01HBTBeUzQQ7/m5hPqWKTi7k+j3CpvvEDnsQf+do+QTj+NfG1WXBBw9kscco/BLL5Qau2F2Fy6un/5WTeBCWA7kfqMNp07PnnxDvIJ4PSdN8S9oqkrKwqUSlbaV0g7vOa7osynU2HqUSldIJSDJuuibAwD4fmbBnHis4pc9JcqyaFoAQwZ4Jl1Rx83K6u5f+pjPBTTnQ3ZK5nvvTLbYy6jPDtEaJZskKvBCGSks1mY3Fxkb98xwK/eclCq371etr9A2X0V2U/FikKwXDunYR6HehWeK/ZCEoANR1QVguHntOvmEUpmaAEcPQbiQWLpNUgB3IraEmS4gbLwqifxQnxBVJRkw05bBUmKW37205Ci2EO/IuYEtv43hY8l5a48NP8Uw1igbVvamLy6Bxje/Ovn17Sa6X1rjouvTzO2K78+7Xe14i9ysLSpE+IeDLwwhiOuswPbVVYECarABz/9iWi4mU/80/BnoYjXx8An/gY2/6JLsL+iLCDqBAUdVro3NHA/MAiJ7+Zv7F58ecTTJ1eYHFc7B3IESUbQ3BJTKZHvtlPSbNV+J1b3MpEIVLqDaD/2RGcDeL1z5tvr0bSSEwdWWGnXpaJ76q/biO4GOLov4s5I9e+o57p015Gfqd8r/kGLze9u4Hxox6Gf+dJu7Xc/S01etY8WsvM+SXO/Sx/4616rQ2r20j1RhdnRjyrto9haSrK0myIkWNepWa9OXdKcSkSJepQJnWfFw49l3Z8lZ0Q/hItm0oWsOjh5fHM965fkKEie19bBLREMwhKyUgnKAFUbj0DW89whhq6SchT+6aJjBKxElD/qJdLJyy43e4rgbI/QbylZjcA/9+DD+ds4+zX8UoOEy9YYsKSjaQE4AeNVsK40nSaY8z0vrmapckg/b+czih3k4zkeXBsj4exPZ7EwXxKv8kyw3snqdpSCn6xIFvVljJsVWZKemxChJyOR2opbrWz+9OnhMgLNW8opbzHKUaUQMlQ5GqyCWflWfuOJvRmrbB92H5fHdGwzMwJMfLQxJE55s6LB/XMxcp86p/Nfz6dOuQl4r/I7IDY3B0OhJUxJ1jm7/RPh7CWmVm6JDbGet7SgKPWwuEvnBF6vkJx1Qfb0Rm1wtm+jnzpLJgFS5Wg2l5hcVv28FcLC5AWkjENYPzQHJ5+sbFZua6YxjdU4KiyCBEMa95QSvVVJZz4ziWh8VJ1bQnFLXahUm8AzfdVYq8wc+RLYmTGTe9rRWfW5d4lm8Nuq1hbhKSROIeYk2j86ByWEnWdL0dXJyqpwbDzP8tCZIjKsczUWSGZTKx/vISxkz7Gj2S+AzmYO6OdVhtFa9OsqNvTCUoAezYp5zx88Sbu6vkeAPo3TWW1u3wPj8OeGp77rGIXXik58vpGU1MTfX19PPepU3TeWM2Ta/YB8JN9N+TsYxn00pdj+SvbLJCNpKRC79ApZUJzIGu5XaB8o52qjcUc/o9LxLJgZj9Bav/jgjonFoif7fPiKyCAUd5bRDQSFSYpbflQB6GlsHAm1A40eQABAABJREFUpjVPNbAw4hcmI3Q9UcfMmQUmDuTvu7LUmOjZWc/wrikhckbdjdWU9riILEeEytL1/2YEV6Mj7/bJsNebhEkdR78xUNC1osuykvNfEIe/0q/USxfEto91EfaHC84uKQKTS8OG93Tg6V/klEDm66lD8yxNBvFNC/r0IrKSjSEg5nw889MhXLVmPOfEbCiTS9FFAY/Y+7vwy2GKmsXHZtu9tUoZNUE7dsO7Wgj5wsL6rOvxOjz9i8JkqvXvbGLi+Dyju5J29K8WhDLBtr/qZObMPH0CZZaLu2w46ixULrvxnBfY8BII4Lm0xGiemTZj/r6AB45+RTCAqNfTcIMTa7mRk9/NQs4OhzPsoRhMRhmNYeUNi+kEJYDTpTpOlwJnb+VdFV+N/y49OZ7V9nrzO/fxL8/eRnl5OT6fD5Mptw/wCl5/eKpL8Xl9/eBtOdtYh6McGM4+lsJOE/psJCUVWqOE0Z77G87Ibqmi4/5SfLPLDL40v/LGvCSf19wZP3Nnkr5lSYO8WgYmOcr4gWm0eo1QBkuA0jXFFLfZKetxCRF66m8ro3JDCYe/3C+UVadso4uqjcUcEdxoV7bRRXGrXbi0bMfOWsxFBmFiRudD9QWVpRt6ZaqgbOVGhzKfBr35z6f+sSDHv3kB76jYO4+GFFshGhabuwdfnmLqhFc4E0/L3ZWUrS3i2NcusCiYvbQQrP+LZowuA3v/UcxfefQ/zoFRvExcNBxVYkeCOPyf/WgKSAdjrjTinw0KkwqHXpliYVTMP+poNNF8RzVT9Vb6fpg/ab6k10HjzRX0/WRQKMtXSa+D0m4HZ348LPR8NdeVUNRozZt0HcOaP6vHXGRgn2DG4KpNxejNWvp/JUYwGz80j7U84VfNt8TbUFoMFVCISrlISijJGLrvczLVF2DyVBZhrhDf02uj6O1aWGGZm05QAvhtq/L/XSdv4/Gt30y0fWt222vHXx5hR8saQNznJfTpfPKTn+Td7343AxeVyfZ73vUA1JpmGQoUZ+1jdAQJjsvc5oVhI5wsShiG5osGQmogTJ8lVvTKOWVXhT6HZoialNvXpC3YSqvAYAJN2BevOZsVOh0kGR6lPRaqNtg5+o0J5FA4sXMgi/EgR6LxYNqJr+eYUFcJtp39ySAzF8Rrf8pRpfSUKIxOAyWtWi4gQFLygbXMRNVVJUIkJY1Wg0YnYauysOIXkIZLL01QtbmEmQuCZekOeZk8JEgBBTa/ow29XSdcpqzQsmSFkoV8g4VdL+yP4Jt67VNEAgTno0SCURZGxYNJhciz/5lx+p8pgLHvQ4gAF0Pv29rQ6jXCY2XqyMLq2ZCyYGTvNDrzShGZ7BOfzqRVZoZVmL/ppSmtpSYMVh0jv5tL3a2eTYepxy0VEnqLFnebPYWktFoGJYPNhByVWV7MPoFKel3Koi6GkT2LeKeDLEzKSg7BLNdJTi8dg28GTvxQ1Q9GQ85UirIasI1lTGrdrNgHZ/Yl2oRtuYm1yy4dhqUo7lrQZhFBwB37MXuA94e1yvzoJlOXrXErjq3n5rq5pSi1KNzAz7fhaL3Ipp5jKLt6FGi9iav51muxHI4gqb/7fD48Hh+1tbU5n+cKXl/w+/2YzWb+n4N3Kz/U+JGGs6er97t11MuLVJXCkTOpDjnz8AKyRflNykJ+3felVYI6sW8njRVvLTNitOu5EJnMj2ykonNnNUFvmP5fTORFUAIl449o1h+ACz8bQGMXJ54sLypEF3OxWShzU2mnA6PLAGaEyE2Vm4rRW8VXt0aHfsVAZy6MH54j4BUPCl14WsCeTML6d3UQ8oV59dNiwaTZ0+K2wsyJRfYIkq8A8CM8TgAWRn1Y3Eb8/teeoASwNBnAnCO730pQCFTiz1eoHStadg0AM/Q+0YRvKiDshOz/ufjY9JydZbrGwuBusZTStjITWoNGePNC9aYS9Dbx77ykxZHdPkxK85/tWGQ5isYgPi73fO4MxfXiJVVSsmatYJPGSfEqkWnt22oZemWa2TOJMZNzRxkgGfSYS5Yx2DWUNBszSEqSOt/lota9vEudRxszjy00qP/fX0H5VYk1R90AuBZ1HGsOs6VuIP67dkaOX2t5ux7D7hASYJlRfAmjIxNIksQHP/jBnM9zBX98fPOb32TLli14VL31zeeuUw40RLEPZB+LIbcF/bSP5s2wMAOTSXEaaXYe1BJ/8nLmXHvim4XNpaWdDkzFekzlBgLjgbw3Q7lazNRdX86xrwys3jhJnxRaouzU9y7iGRKfA6LhKJECSh/YqiwYHQZhkpKr0YbJaRAiKUXDytpbtHzU4O4Z5KjMgiCZ1nPOL0w6AYXEbqsws+v/zbewuILAeGF+pEP/Vli28kKvF5xfVoI7lwGBQJTQYlg4KAQUlHVrdM+sMKEGgAAFjZWetzRjsOuFfV6Fjs1LL01icogHEA32lcmdueBqsmFxG/OTacyuMoHZbaS0y5FKUloFJpcJORJleVHMQJw9tchhb//K5Sez2FUBD5z85urB/vTNiA23lGKw6+j70Vhyo9z9tVqIRChptaK3ZtqjkmHl93lqlwSEoC6T1OatV+xi+8s6Fq5LHU83DIa5aAfXmlQfsHZMzUoDXLihmOYXZ5GAonFFJ3g8HsrLy1e8pyv440Oj0RCNRvFOBXGUGvniyzcpB+rDWC/l2HxXbKQ06qOyBs6eSB2LuulFZHUsSsuZfudXv7JyIDolI1ISXLUmLCV6Bl+YzSjLuxKabi8lHIgy+NsZkKPx7zCn7SZp8F4K4r0kmJlblrnw7BgTh2eFySMhbxg5rGQFDQrE6Us7HFjKTBjdRiFyU9XGYixl4uRBS4kRQwFr6KHfTRIJiNuVQy+KVXqJYeN7Owguhjj4OTGyRCFl3haHgwVlbiKIMEEJYHHMj7PBRujyhBtZHPPnXsyvAIUgJv58h78onu0aIDhVmC26/qlmfOMB4bJ2hYxN72iAsQMzTB5bia2S6VeyVZkwWHRIOo1QBsmqTUXYqy35vwbV/ijtcmAuFvNzShqJSDCyImciV0KGA/9+AUfVKuu5LH1Hk7LurxgLjcVR1OzlXQ+VM3rIg+dCQjA5M4cD6HTI2jDWUh3RiDGTpGRaeQPqnpdU2yyzIAfeOuXeNHucRLcl1qa1M1C+CAcqYGNj6lykvaiWTAXO3VlM688V28t90c9AVIlfPv744yveUzokOX3GXa2DKvDzgxVxklIMyUSl31xsSxzwyTx6URmP31aDsOaLmQMtmahkG41NHD4sQMiXOnEZZzJHdzJZSeNNWzQmEZXkbDvvw2F6dpZiLTXQ94spZs+k9U8iKqXvZqu4yk7tNjevfk5RYlmNjJUCb2Kv4LLD2WopqHTb5UTZBgeNN1dx/pdDQgSU6mtLcHc5OfrvYhNBz1sbsFeaxUuWWMDiMuETZEVf9cF25KjMq5957XeHgZKBaXkhxAFBY6oQ1N1USvVWN30/GxQjD1nAYtEIZzZa++dNmIuNwgzsxjvLsZaahTNbbHxvCyF/hGMFplnPipUmvjzISemQozJmt8Jt8s9p0w8m/r1KiTbl1n6PEm/6LAuNZH2afjzpWtnISbHjXfcqDpBTv0r77pKISnKWjBJX3a9FkmDv09nJSRFT4nmWXanX11kD6uyVTE5KIFiUqveXK0JYfAF8ajDNXZEgKsUISsmIEZV80xZGnr0eg3mJNzzyg/jx9QYN2o6LaBbgwmkHWCzg89Hc6SVqhzW1Gk6fjGIymfALZqO5gssLi8WC3++n9xo7f/PVrgRJSUUyUankaGJcvaFuEZMOXtwPsVTq5uFMwmQyUUleUAwxgw2WF0khcgPIWRw8cceMGeTFNH2cpD9yOWC2f6ydaERm7ydXKYOaZiv1PtVIJBAR2sX8pwIl01AUfwExicuJtW9rQtJJHPmS2CK++8l65od8QuXXALZ+uAPvqJ9T3xTb7WuuMOGfDwhxcso3uWi6tZL+58eYuAzl3jZ/oA29TZw0//tcT47Kwlm3CpElwNaPduLpXxQugdj7VCOTR+eYSE4tvQpKNzhovLGSvp8N4ul7fc9vhWaKykC67ZWsL1+DMiSrwVwMPU+2cvGFcaZXsO3TbdLyzQ6ab6lktn+RM98dy05OSrLdMgJhDkN8bMbIScmI2lNrcWnrdWpCPsUGnG9M2HoxglLK/alEpev2mtBHJRZvPa2QUFX8080/QOORCfaV8Uy0Bvx+Hlh/mqBLyw/3bOLJNoX1Luh+uYI/AmLrmf/PsXsSJCUVyUQl9/Hk7zfENddBKBjh0M8V+0eazSShJBOVkjN3G50Q9KSODTnXZjtQTLs0QmyKrZXD/9TxUDUlHU76fj6ychaftHFa3GWj8aZKTn7zHAFP7m5/qigk09DlhrPZRNs9dfQ/P8bMsfw3QZWuc1K2xiVcCq/tgWqKWu3sy5WBLxdMYHKYhLM/bHhXC5JW4uC/vvY+KFB8XsH50GW5XukGJ823VnLhV2NipQULlGXno7U4aizsEyzPWHVNCc5aC6e/LWavrXlbI3JI5vjXB4T6XW6YXACalTNF/RHspryxgq+vY0cVWrN2RaJSNl/gVX/dilYnseef+rKfP6lPRgDNqo2XrMxGTpLMqQE/2WnDYIJltY8viagUIyglI0ZUMgXC7LgUZdkY4ey1CaLYd5ueRdo0gGY6yhf2bQOTCQIB/uKqvXhLDNy0pZQjPx3GYrGwtCS+UfUKLh8aGxsZGBigaYuLd3x1S4KkpCKZqFRyMmEbbWzz4bTCgVcgGFTGp246czNbMlFJ9isDMD4W0xMTZPF5xW13I+BLa59EVMqV/XLLB5uRIzL7P5NJ4l2JZN72QCWyDOd+lGfGkz+hNYaSaSgqXHLqcqP94RoMVp1w5r7W+6tZGvcLE403faCNxTG/cIYpo0NDMBgV4uQ4Wyx03F/Lpd9OpJbyeo2w9m2NWCvM7P67y+PzWveOJiSNxGFBf6XRbSS4IJ7ZaPNft+PpX+Tcj/PPUARKdrCZ016mjuZvHzoaTbTeVcv5X44wf/4PGLN/DfxKtmojiyOrCHO1EmurIFesc6XjeV8/V18jrHu8jsE908ydWcGnl5YkwVFvpGtHJbPnffT9bCo7OSn5mmnxTsmqS4zNLOQkOc0Ppi03EAxCLDX5Uk3CNosRlJIRIyq98TQ4QjIX3jAcc5cB8F91LyJdewnNWISv7d0IRiMEgzyx5RDzFSbKLiqyEPV5FZCETEE6QQlWyKhkkThcInPGAazgZwnZFKJSgqAEt3bIRGR4/qwGvS8/MkIGQQlWzqgEoNNx4mdTWCywNJalnbpbIJvBUdRsQ2fWUrHFyfi+/BVK644qStud7P7saRAsWVV5dZFQGbXfB5eboHTVB9uZPb/A+Z/knxLX5DahNWpw1tuFiC4jv5th5HdiO6YB9GYtUrZUKatg6/s60egk4SCUpJOQouLXq7u1jKAnyMR+8XIswrBAy61VjO6fFSJh6cxaJI2EVr86ASYZG9/WgsllFN4RqDNq0BTw7kTLMsZgdBjQW8UXClf9TTszfd7M8oy/h9NkpUnZP52DtSuQEWXVtIYqijssBOZ8+JI32WcjKCVDr2PDW8vQ6CQOfFntqDKQV4O1RJv92dWMStkISgD7ngGre+XsSZBJUAIIL5nAmqVxtv4VITo8AbYuwJg3wK8rTEyPO3BXeLMSlJLRUzVA0bUhjMZMgy9yppGL4SRDyWLhwiWFODW2JgB4+NjHPpbfTV7BHw1/8Rd/wWc+8xlO7/VnEJQA5BwZlQ6NadFqwe82Y57Obf/IFhOSLxAnKHXe68JRZeTkMxMsDukyiEo5z5NOUIK89MeJbw/ivbhKkD6LcWuvNBMtoOzUVR9qJ7QU5vAXxBaq5mozRiuXhfRwOcqEJaP57kqKW+zCZTLMbmNBa0nRIFkMGp0GQ5YduyvBXKxhwzuaWZzwCxHSNXoNkkZCbxRbKpmrzVSuc9H/wlghiYqEUb7Jhd6iY/hlsbTEGoMGWbAEHsD6tzcRDkTYLxj00mgldBaxdwdw/CviBG9ng7IuMzqMiLyElgeqcNVahYlbvw9eE4JS7Lc0vVm+xSVMuDNXGFn/Z02MHZnl4i/yt4NL1rjR23Q46205SUrZ7LKJV714h3z4vdEVsydBjp363mXQ57fjbrnMyjXrgmg08PIu5TfnxWXmGw1ZCUrJCN58huCQM4WgBBA6XgfAM0slyg9mMz86swEAE6H4LvEr+NNBOkEJYCFnRiU9Z8+GmJrQ5swEDiAZDMjLyykEpS3vrycalnn184P5B5iyZOxLz5SbDWeeHsH00jSByRWcxVnuwdloxejSU9xTwugr+ftP6m8po2pTCYe/clG8ZMkGp1A5tN8Hl5ugtPE9rcwNLND/dP6ZoQ12I3qbDketRYikNHVkXowYo0Jn0aLRiRt6m/+yDb1VnHitNWgK8rFVbSsm5I8U9IzCMEHDdeWMH5sXyvykN2qRtBphefY+1oCjxsrBfz0pRA7UW7RoBP1rAKOvzDCKuH/U4jbm6zJKwcb3tjLb5xXOfFYoFBlennnY2WwiuCSeIWztOxox2HS8+hkxe9TZaF1xfOXyBe7/9DlsdabVNztm8xUuRfLayAgKQclaAj3Xa/GMRzi7WymV6qtzZCUoJaO9dZxzRSQnDU+c90ADX5ivT/xgMvFvx24AYPR6xVf85je/Oa97vII/Hj7/+c9z1113MXzYl0FQAljKkVHpxCUtRsBrNWIM5rZrZIMeaTkUJyg1XmelrMPM2efm8Vxk5dJtyUgnKEFeGZVO/M8wS6PZ728l26242Y6cr3JNst02vqeVSDAiXILN6DZitEsFZfMRhUgZtD8Eaq53U9bjEi4jbK+2oCsgc58oUSUGnUGDvgC/yab3d+IdXuL4Vwfy7iNpJCSdBq1J7HpGt5GyHgdDe6YKSVQkjKJOG0a7nvH9YnFwrVG7Ysn4XNj4580s+8IcEPSPag0aDAW8O1FCGoC92orRqcdcbGSe/OP2tTeU4u50ZM9UnqdfSRSrEpT+gCjpsWVUXViVoGTSsOVdzYwd9ijZ7vJEcZMFc4meonprbpJSliou3ktBDv/XJYK+VbInQQZBCUBeCmdP1JAFYZeZ9VdF0Otg92+V36zDfpZqzFkJSsmYumaIpUljCkEpfg+/q+drCxWJH4xGvnVkGwDarn1E8p1TkyCsZTWqcJ/5UELZLvc7WR5UAp/l0VlGDtVj8SkD2L4k0zwhc6ZCAotE83KApouxgJePZnxY1I/Jho86mw/Uv90WH74gzCwobUvLAzijfowzQcyWKGVVUWILDKc7irNWEycobd5pZvNO1XNogdIWVKJSCGsNuJoSj17SbsDiBpZ1LM2HKVtrQU2AgaVaQ3GH+odWS+kaC5ZaY/y8ZeutnP7pGHs+eZ75kWXcvYl0+CXdFix16t9WDWUbHInzVhkx2pSBWFRvoaTXhq0p0Te1rUn5W8XG97fQdFMVFrcm3tbsVtu6NSltizotOFuVE61/ZzPbP9EVb2t2k9LW2WqhqDP1HixuDRvf28LWj3amtLU1ZWlbZUrIZYOD7R/vYutHO7E1WSjpTUTrS9fZM9rGn7XOgs6sxanKrXSdPSHDLG1L19kBGHx2krM/ucT4MW/2tlWmeNuYXGxNimw2vreF+ttKE21XkGHsWc987wK7//epjLbO1sy2sfdkdsPC6CLeId+K8s72bk5+b5C+pwdT26bLMOndxORds8VN081VK8o7+d2U9FoT8pZWlmFJrzVlzLbeVU35miIabizLGLMxeSfff2wcju+d5PzPh+Pl+rLJO9v4Hj04g38usKK8s43vg/96nt1/dyqlbTYZJr+b0nV21v5FE+07a1aVYfqYPf+LYfb+y+l423QZZh3fFiV1vKsp9d3YmhN/p+uTso1Oat7gZvvfttP1pipsjclysWMuk1QZQtl6W+LddFjo/bNatn20DZNb0WkmVd6xv5E0oNXiaLZQ1JY478Z317Ptb5qRtFpMbomydYlj1gYTrlhbrZayDXYsapbl1je6WfN4wpFga9JT3JZg+pZ0WrCUxg5KlK61gUW5DUmC4tZEYKqkzYC1WheXYWmHNiGXMpmSTj2v/vcS+3+4SFGj8vzxtq0glyj63OKCkrr4aXFVgs0ZYT5gAMKUV4ZBp8xdFovyd9SgYdmlo9Tiw21RvuvuiiVu6Vyi0bWEYSmKxu2nkcS8Vo6PcnwY5yTkkI8G0wJFvgDzeiWUOicDamabzYEZzIOJCJjlvAXUOPRz57qRz7rw+aC6eYRQSMdQX0Km/7W/l70XlfEyPW3h1NFOfKrdOtBfjdPpxOVy8YlPfIIreH3j05/+NKCw0IuXlDFo9odpmgmDX/m7yLlAa1JwpcLsJxyC2YBSZ6yoNhTPomQuhuKkFJ9FlWCqUb8/MyzO+gl6I0SCatsOC3IkirwcoqjNjKUmEQB2d5vBqkGORKm/zcW2j7RQfa0LUMqJWOvMIGmQozLuNTbMKo/dXAzuNYoe8l7042o14mhMjHX3GntSWwn3moTedDSZcTSZ2f3pU+z95Gm1rSbpvIm21nozrrbU82okCa1OA+bMtsVJer+kx4a5IiGX9X/WSPv9yjdmrs7Sttocb+teY48Hr7f/bRcb3puoxVzcacnZ1lxhip9r28c66XqyFmt96v0nt02+f1ebma4na9n+iS7ca+xpMtRklWEMRa22eNmpdBk6mjJlGJP30f84zblnEuVfssk7WYax87Y/XMOaP29YUd4pz6rKe/ffn+LIl/pXlHdMhjGYy00sTvsZPziblwxj8h7bM0vfz4aYOTGdVYautlQZxuTdfGs5lRuLqbuuNH4sXd4rjdmV5J1tfDfdWknddWUryjtZhjGc//kwx791Kae8k2WYPGbnB5eYH1nMKe/iTkvWMbv7705x4ZfjOeWdLEPlWTXU31HG+nc1Y64255R3rG3yeSePzHHivy/Gsy/lqyNctVYMDn1OGebSEVs/0sm2j3VmHbMpbdPG7JYPd7Dunc0ryjvb+N7+8S563tIAkkRxpzW3jqg04V6r2LbFHRZabq1izZ835JBhmp5tNONoNGOrNIIEBocWc7GUVYaOxswxO3N8lt1/f5bR3RNxXQ9grTPjajXHHUXuXivmcl3iWXut+MfDSMsaLLUmipLOW9xpxlwGSBKSU09Jpzn+rFf9ZRWb/rxK+SO0TEmXCbPKE8IMJU3K/zULS1gcMo5O5Zozs7DkA4s55jgL4q7xY1YJ3sVhP41JZG/tbidbQhPKdWvn4YIdYptjZyX+/IV74wSl2YulzF5S/u33w399wEY0GqWnp4creP3DalVsaPnb34n/VhkIUB5QbK2FCh9N3kVMJmW3vckUosQdYmoCQI+5WY/NkCBMFDVp1AweoDdBcUdi3WOrMbE0HWD2vELoK+4wY7RHlCxKJmXsx2CpNuFsNMUJ4Js/0MyWD7YqB02K/pAsyvdlqjDhakma6zssmCpMEICAN0hxly2WaBNThYmijoTOcrWalbax83bZuPj8BLv/9ylm+5Yo6rCmtLXUJJ4n5bxlJgwuHWgkrBV6nM2mjLYxuZhcGqWvijXvaKDtrhpcreYsbUlpa6834WxWztv1eB3b/7YLk0uTta2lJtE2ft4yE2ve1shVf9Oe0TZ2fUWGVkxlqXLZ+pEOtnyoQ5F3ets0GSbL2+jS46qz5ZR3sgxj8p46Ms/J/+lnImmndUrbNBk6m03Y602YKkys/fMmam9x55S3vV5pm3ze/meG2fP3p1aUd1yGSfL2DC0yd35hRXmnPKuKk98fpO+nCZ9XNnknyzAm74YbK2h+Y2VeMozJe6Uxmy7D5LY120uo3uqm6aaynPJOlYvy79nTHs7+eDBeTjCbvLON2fFDcyxO+DCWZG+bLsOYvI99ZYA9/3AqbxnG5N31ljpa76/K2jZdhsny7vvZMPv+9YywvI1OPa623PLOpiOKu2xs/0QXHY/V5JR3tjHb/kg1Wz+ifKu55I0kZYzZ9e9uYttHO3PKO0PPlin+pfb769jwtsZUeWfTycnnNYFWr0Gj0aTq5BYzpkpLUltr0pjVU9RuZt8/n2PPZ8/ibDJhqU6WizUxL7hIsU+dTSZsdSYWh5QMf8Wd5lQZqvOPpNViqzFhU99NxWY7W/+qgerr7BCJYCzSU9SSuKa1SsJRo1WqWMgyri4bJpPCA/F7oywmZU7R1Idxx9IxAdX6AHb179KXJa6VJpV5yw1EwTqaCOjd9cvH+dz5dkAhoAUulBBQzbbAuAmbzYbdbueLX/wiV/D6xp133glAOBzGqZKNjMEgtb5gnHykq1iifiYxVly2IFrAGzQCQWwNoFM33hkd4EiKnzrKwFiW8CP7PEGWpsMEFkMYHeBsMkIkCssh7NVGTKWJmKGzyYjRIUEkQtk6M1s+0ED1dicA9hoj1kqjsvlVlnG1mjCqoQWjA1ytynexNBrEWqXHWp2I9rpazfG2JpeU8J+jbBRx1BnZ+6997PvUeVxtVoxuta8RXG0JHWuuNOJoSJzX2WJRNrrrpETbWNdSI45GU0pbY2nivBv/vJmOB+vjbZ0tiXtyNJpS2iafd+uHO1j7F00pbc2VSc+afA8OjfI8DtjyoXbaH67OaJuQoSblWW01RprvrmD7x7so2+hS22oS8k5r66hPnLekw46pyADGzLbmytS2yfI+8MU+zvx4KLVtugzT340RGt5YTucTtSvKO0UubkXee//pDMe/OrCyDN3GlPt31BvxDC4y+ursqjJ01Bux1Sgn8vQtceaHg0wfm8kp71jbxHk11G4rpu66Muqud6e0zZBhjneTLu+sMlRhLDXSemc1TbdUri7DtDF77pkhTsQy7+eQd1wuSfKeOjXP3MXFFeWdbczu/cfTnH96OKe8k9vG5F25tYjeP2uIyzqbvLPJcPbCIie+eSFO3FpVR6jj0NVkxVxizGxrkuIydDQkj1kzxjITmz7QxtYPd2SRd8KucTRk6ohN72+l9631qrxT28ZlKGkU/RfXEbDtw210PaoELhx1RswVyXKxpOjOonblPRpLdLTfU03PW2vV0yrHUnVy4h6s1UYc9WYc5QmfV4b+Vv1W5nIjjtqke2gx4Zv0s/dT/fS/OI2rJXHMVK6Ob5VD42gwYiwiIZdmI8ElGSmsxehWni8ul3ojRrciE6w6nA0JktDGt5Sy8S2Kn1kOh5XzJuUKctYo55d8AYx2GXuzEruZGoeFBbA4YsShCNa6EEaVYWgiSGUS27Bsj4nt+nEwgq8siGnUCDG7zQsPPL+D/5xWJlj/mAP/mCK0YBCe/T9GIpEI3d3diEKYpPSOd7wDgOhs4kPmUBu82gXA/mPrWT+q51o1ZnHTIFw1Dc0TMo+elLl2Aq5VA702YLM2zPVqeqXrCbNZGyZsVm5rQ52MxQhHRpUPq7dGprsHokYt7WuhtQcs6uDpWged60BWs3FIWglZUohSXdcaaNpqpbROMby77yyj/bZE8KDlxiI671H+vurttTTfXEbNeuXEPQ/W0HZHYgC03FFFzw7lI2m5uZSWN1bRpCrl3kdqaL0rEflrv6+WNeoHVXe1m9Y7a2i/p1o572P1OGps7P7708yd9tF+Xx29OxVDoPwqJ6131dLzkPJ39846Wu5MnNdoNxCNRvH5ojhbLbTeVUvr/Y0AdD7WlNK288EGuh9pAGA5EEKSJDp3KsGyzp3NtN5VGyeAdD/SQOeDDQm53FlD52NKajxJC6131cYJIb2P1tO5I7Vt904lwt/zUD2td9Wy7A/hmwrQu7Oe9vsSwfPWu2vpUQkK7ffU0HpXLXXXKAGWGHHh4L+ej7ftfVQ5b9ONFbTeVUvLrYoTundnHa131ybJuz7ev2aLm9a7aum8rzYu7+S2nTsa6N1Zj7PRhtFpoGZLGT2qnLqfaEmV4Y4Guh5WzmupU+Td/mBTXN6tdyXO2/1IQt5YFJl17FTadjzcjKveQf+zym65roczZdj1hPJuWu5poPWu2jj5pXdnZtuex5R76nqgjta7aqm8WtF4PY8k5D28bxpJK8Xl3XpnNa131dL4BoUt0vtYXcq7ab+vnt7HFHlrDBplbN2pjtnH6zPk3fOI0rfy6iLKOlwE5oMMvDBJz2P1GTKMje+SXqty3vuUMdv1RHNuebuVe+h4WJFLx05V3hYY2zWHyWlMyBtF3p2PKfJuf1BpGyMBZZN395MtqswUeceISunybr27FqvbRHGTnc77amm9q5aaLcqHs+bxzPHdq34LLbdW0XpXLU03Ksq799HcY7bumjJlbN1TAz4IByIYkzL4tN9XT+8jynnLNztpvbOGnh3K390762i5vYrgXJBIMIqrzk7vTkWmzhYLrXdU03av0rbj4Uaa31gVP2/HfTXYKy3xLEgtb6yi80GlbeeDdbS8sQpTqXKs+4FKOu6rjPc1WHTIamHgtruqab61EkezIu+eByvpuFddFWo0NN1USuf9yj0FFxVdVL7egqTX0X13Ja23lcTP23JzEZ0PKNdpvamY5jcUUbveysGvTCq/3ZLU9qYium5XZuWGTRaariuicYvy3XTeXkzz1WogzQet19joulU5VtUm0bTNTts6xcnfea1Ey6aEw6N9m5ae6/QUu8OUV0JbJ6xZqxzrWQ+tHcq/db4o6+pl1tUpctCgEKkqiiDg0nCdMcxGayITzTWWMNdYwgRKZEzA1Qtw4yyMWU0sa6A7DG7AWuyn7HgFpScTc5X7nJvqI8r3WHXGzfmD2/nd997Eb7/7IMdevoVTu2+It504so6XX7wLgEN73sCRg9fRd3IdAC//5lbGxsbQ5rnr7QpeH9BoNFw3pATDtkzBNdPQpW6ivm0IthQn0lKvr4ywrSHCDbWLvLExwrqqCLUbFadM99UaWq9KvPu2bVq6r9Yg6fVU91qo7i1iYSKIfxI67y2l9RbVmtZqab+7nB712yxbZ6X19grab1fGaGmbK+V+Ox+spveRKuRIBFermfZ7ami+R9UtjzbRdrcylkvX2el6uIGexxoAJQDefm8tbTuUOaL9oQba76uLB6N7Hm2k59HGeIKU9vvq6HhUadtyfyPt99XFg/ZrHm+g6+HGxLPeW0s4EOHAv5yj68F62u+rozSm9x9toCPJBmq/v44edT5svaMaSZLwDisBxDVP1NOxI7VtzFZpfEMF7ffV0fgGRf/JkozJmVh0dOxoYM0Tqq2y2U37fXW0q7Zjz2N1tN9fh3/Ej6SRcNXb6X1UuY57jZ32++roUp1G3Y/U0nZvYj7pergRZ42NsD+C1q6j/b46WlTbsONRRS4xxGUIYAajzYBPrZ/e9lAT7ffVxUkd3TszZRibZ5vvUd5NjKCQTd49qlw6762l/b46yje5KG6xYyuzZMiw53F17ry9ivb76qi7WrENex+vy5S32rb+2jLa76uj+WZlXPY+UU/7/Yln7djRgMluYOKAh8ptxYq871bl/Whdhgx71XFY0mOj/b46mu5Sba3HmzLadu9U2porTLTfV0fbA01ceHaCoH+Z2i1l2eWNOmYfUf5ue0CRd2xFlk3e3Y8rNlDjncqYjRFaeh9tQNJIDL48mSHv9rtraL+vjsptyvyYdcyq47D55kra76uj4bryuLzTZRgbs/ODPtwtLlpuV+yI2JhNbhtfz2xy0X5fHZ2q3LLJe83jyj252szKe7xX+bvzsSaqN7oxFxuxlevpejghQ3OxIsO2h1R77+EcOiJZ3nnoiFgGpe5HlHvMV0f4pgJEwlHa76ujZrM7t7zTdIRGJyFpFNswq7wlKauOQIKQSljteLA+Lm/3Gjvt99bS9YBqGz5cS9s9Sj//pA9ZlrEWKw4na72Z9ntrablfuceOnY20J72bnkcb6Hm0ganDXnZ/5jTuVhftD6ljdofSNkZa6t5ZT9dDiWdtu6eGzkdVHXG3YtfGnEFrHqul66HEs7beVU33w6p9ek8VbXfXsOkDSt+eByppvzdhc7bdVUmXujZuusZJ6y0l1MRI9xrQGtQdcnoDLdfZ6bpFOVbbraPlWgcN6w3INgtd12noUm2402eNWC2wXrXvKlq0bJfDbEZx4FxPmG1JaaBvIIz11XpsP+2Ek27sJ2oxHVfXLK820XjexdfHtgMwvnsL47u2ABDx2JhVdezNN9/MFbz+8fnPfx6AkqTfbgyFuUnNzN10NMrahiht6ljq6ISubnC54OprQ6xZC113JLyGbTcV0fwGRZc032yn7aYiLNWKXdZ1fxlWt4kLv1ICBG13ltP5UB1oJDruqqTjvpp4oLjn4Wq6Hkqsm3UmLWiVNUjLreV03F9Lea8SOFvzeB1dSevkzh319O5UvvPN72ql88E66q9VbLjeR2vp3KGuZ2WZrkca43q/an0xnTvqab5V+R57Hq2l86HE2jdl7lxjp3NHPR2q7ul6qIbSDhd7/v4UM8cW6NrZxJonlLb2epNy3ntUv9AjDYl7AKylFuSoTGDKDybl/ttUHdz6gNI2FkzveayRrkcU3RFaCoMG2tU5uumuOjp31MfJDGueaKBrZyKQ1vFgHd2P1CqZnQ0aOnfUU7pOkWHvYw10PZKYTzofqqfnUUWGTbdU0LmjnlAgzNJ4gDVP1Ge0jflV6raX0rmjPjHPqvNBbDd/1yONrHmT8uwV6xR5t6rzbPfOVHl372yKy7uow6rIW/V5dT3aRMeDCR3btbOJ7kcbsFcYsZaZqNtWTss9St/2h1Pl3fN4Ez2qfReTd7t63db7VXmrZJfuRzNl2KnOs42311LWWcTYAYXk3ft4dnkDtN1Rrch7gyLvnkezyFC19xpvKqdzRz2121Tf6+N1dO1U2g68NIFGr6H3CaVtzRY3nTvqabxJkXfPY2lj9pFGeh5V/tboJWVs3aGsS7ofqc2QYWzMulrN1F9TgW8uQP/zk3TsbMwqb1AINZ076mlV59m2HfWKvNW4T89jjfQ8npBL54562h9W2rbco8jbUmNi6sg85iJjhgy71L4d9yrfbow40/tYA91JbTsfqqdb/e5b31hF5456KtYlbMN0ebtqbZS0O2i4TpF3/bWqLf5YXYYM/xA6IjC7jDlpnZSPjogEw4QWwxQ1Ouh5TL3/PHRESasTSashMB6g48E62lX9mNARMdswVS5mlxE0ip7tuLuazgfrKF0Xsw3rM/RsTEf4pgJIkkTVxhL1vFl0stq2bnspnQ/W0XBdGYe+cIFoOJryfXY90sCax5W2FWtddD5QS+sbFXl3P1xLp+oXJADdj9TT+5jStqjdTOcDtXTco+iTzkcaaL8vMYd0PaSsqUp6LJgqjHTcV0Oz6v9te6CWDrWtHInQvaOC7h2qf0+rBP+KG+2g1dJyWzHttxXF5d11Vxkdd5UimZQB37ZFS9s1EgEPBH0yte06XOXKDv9rikNsL034MTa5QmwtUf7uLI7QcKaI7ldKaXulmKbjpTSdSszMW4ckZl7aBEDobAu+A92Ezyhym3hhI2NjY+jyzDZwBa8PSJLE9dPqBtCAzM0LEdrV2OkbJyNsrkyUzF3fGmFDa4SNbT6uXxthXUuE2jWKD73jGj2d1yd0S+cNRrqvMyDpdBQ3G2ncVsTSbIjAFLTfWkTHbS6loVZLx/2l9DyojHVLhZ7Oe8qov14Zd2VdLiQNREOqH/lB5buQIxGMDujaUUvzncr31nJXFV07asGoBKHXPFlPb9Jm3a6H6mhT5++G26rofrgOm0piWvN4HV2P1sez1HQ9VEfnA8p5W99YSfcj9RR1KHq/59F6upPWvt07G4guRzn8xQs0vKGc7p0NVPQqz9f7RH1irlfb9qjxi5qtbiSthHdU8Xn17KyL+zsAeh5rivsPynpcdO9soOkmRU6STsLqThAbuh9N6H1Xm5XunQ20qvNs504l5hP0gqTRUNzqjOt9c6VROe8dyj217Ui7hyeaKO0uIjgfIuhfVs6ryrDlbqVtjNTR/VgDXUnPai0zszjmhyA03FZD986GOFFmzROpbbserqcrFvu9tZLunQ2U9DrUZ6un+9FUGcbm2brrSune2UDVhmLKul0UNdoz5a3ahlWbiune2UDd1aXqe8yUd7dqq5SuddK9s4FmlajTtaMmHjcDxVdldZuYOe7F0Wiie2cD9bco8u54uD617WNNdKvvxuhW5N18pyrv+2tT7+HxJnqeSL3/tgfrGNozy9KMn9qt5XFSSrq8ux6up1O1a+purqZ7ZwMao/Jueh9roPvx1PPG1jdNN1fQvbOB0rWqLf6menRGLf3PjSVkqI7Z2m2KvKs3l+SUYeybq1hbpMjlBsWu6X4k9Vm7H22K24azfQtUrCmi5dYc8n4sYavYahQZNrxRuf+2HXV0PZLU9tEmeh5Xvk+jQ7n/FtUv3npvDU23VmGvtmCrstDzeGOmvNX5vfEO5X5jJKZsY7bzAeWdt95eRffOBoo6VR3xWENcR8QybcVs8Qwd8XhdwrZCiXP37KxlYdhHyB+i+5GELd6zszYlJtvzWGPcbi/rcdL9SD1aowaNRqLroZqUtt2PNtD7aH2coNT9cB2ttyv6pPPhBiSdxPJiSJVhPWvU85orjHQ/XEeTqk/a7kv4l4KLYaIRGWuM2G9UdGeL6v9tvrOarofq4kSk7kdq6Xy4Bu9gkH2fvkBpp4P2+xW51N9UQdeO2jgxqfeRKjofro7ff+f91XSo/rOmG910PlBDSZcSD+1+sIKuHYm2XQ9U0nm/8nfd1iI6769iw1vVtfK9lXTel4j7dd5bSpfqA6vsMNF5hxIPBcXfpVM5M5JeT8fNNrpvUo6VNEPHjXYaNhiRzUbat2rpWqecc+CcFpsdetW/LbUarrEEWa9X5Hu1cZmrzQmS0rXWIFUHy2h6tgbTJSM1x8qoPKO886qTpWy8YOYbA9cAMP27jUz/blO872if4iu5+uqrEYWwtfZv//ZvfOlLX+LIkSPcJ11PVNZA+QwYlJvwOGDGFOJ8GVjNcKrYQL0XxuzANCwAE0iErTKeoMxUGPrV2ziDjmY1K0DYrGHUAxJwTdMSk17weGBSzQI7OARVFeBTmVwTo6CLKIxqWa/DOxViblAR9sipZao6ZaYGFYfjxOkABmuCnzU/GsRzcQk5uEwkKCNJUWbPKicePzqPyZVgW3sGllgYU64zetiLyWlg/Mgsm9/fiEYPcxcTKe3nLiyypKa0nj40haPSzIjKcBzZN42zXhlIzhYL031elr3K/Xr755kfLGJo9xQAw7unKGlPZHmZOjNP2BcGH8yP+JgfXGLsoNp27xSlXUXxtpMnPPEagCe/NkjPWxqYOKI4wIZemaR8XQl+NTPHxPG5lHJN3iEfU6fmmNg/T0mvlcqNpcyPKMbi+JFZdJbE8PEOLjGjymxo9xRIEheeGcA/DQ23l2NwJMnw4iLzlxQ5jeyfRW/SMX1IuYnR/dNYyxOGzVz/Iguj6jUPebC4TYwe8ih9X53GXpVEloN4Cv3Z47O46m0M7VWfdc8kxU2JXb8xeQ8+O8ngK5P0PNzAyL7JuAxT5H1ynsiyMnZ804q8NQaZ7Z/oYvKkh6A34bxOljc+Zcf55LFZ9T1OUnNdKZ07ajj4r+eZODqH1pAIFMfkDTC8Z5LqLWXMXFDHU1pmuvmBRWb7lej0yL5pNDoNnrNK39GDM5iLFcN88NlJbGWmhLz3zWG06pk4rOy+G3t1JlXeFxZYmghQs72UaCjK/MQSI/vUMbs3MWYBZs558c8qCwTP2TnmW50M7ZrENxrIkHd8zAIzF5aYH1yKyztGcrG4Nfimo2nyjjI/uBQfs8O7JylbU6wQTh6qZjkQxnM+kcYvWd5Duyeo3FiKT13gxOS9/eNdyLKcMmZH9k6CXMbkGeXvscOzKWM2Ju+xw3PYKixoDVpmj89myBtSx6zn0gJlvS7MZcrxkf2pYzYmb4DpQ9M4qiyM7J9Nlbf6TaboiIvzzA+6GNo9DZKG4d3TlLQ5mDq6xNTRc7Q+WElY1aXecT/eoSXGDs3G76G0UzH2kDRMnZ5HjsCFnys6xDvsY+JobBxOU76uiICa7XDyxHxKCvaFUT/TZ9RxeGCeynVRvGOqvI/No7fpQa/I0TsSYPaC8q76X5ij9ionHnXH1viJBYz2hD6ZH/LjHQ+BVsvosXn0Jg2ewSUsbhg7voilRDmnpNczP7zMwpQil8lTPswuHROnlsBoYOy0j4oOI1e9ycaJXy4yN7SMf0GRy9ywAWflMiNnlWuOnJVxlSfSEQYDGowm8IyiZLmqhBGVgH9pAkpd8aaMzyubbgCOj0sYLTL9S8q3fX5BS7U1cd5LQYmIGkgNAJPAORs8NBxgBgjowF+sfBMXnVBmSIzvgD2AtmaaStM8cnOYYF85Op8FjSZKReM5QkET42Hl3ZpLprCWK99YS+dxohEdNY3n+NHCWr7z/W+zvLxMIJDYhXQFr2/YbDYWFxf54Q++j+l/Pc4pJ+hkGFbV7Hm/Dps2SlDdETqxBHM+LbXOCNEozM/AxCBErAaGBmQc1oQjcGYkgn9cMUjnLoWwlweIyhHWPFrC6JFFHGWJb3Pq7CLLC0rf+UtLeC4tMaKWDxrcPUNJi42R3yl/T570ElL1kGfYz9zFRcYPqnPyrilKu50gR5k6M0/rHVUsTivj0T+r6NGJo6m2SoyUNHZ4FkmSlMxBDzcSXFhmeI+iv0Z2TxDZWMrSpNJ49MAMOmNinvX0LzJz1ou5wsTwQeX7WBzwxtsaHIlnne1bYH5wST02i96sY+CXShbRkT2ptsrMWS8LY8o1xw95MBcbGVd3uV96aRJ7ZWK3xtSp+fjcOXNiFkedleH96hy3ZxqXOs/u/rtTtDxQxbJqY0yfW6Csf5Hh3ZNxGSbbKhNH54gsRxn4tZLlo6TRwbhqGw79Tp07VYwfmUvYKn5F3nFbZZdqG6ol58YOzqJNSm/tubgUt1U0RiXDl2c6Sd5J6Y3nzi0we1GdI/ZPI+k0ePs97Pmsh5qtpSlzZ7K8xw7OYbDomTqhvpu9iq2y/W+V+XvmjJeFceWak8e8WMvMcdtwaNcUzrqErTJ1ah57jYmmOysZ2zPGXLOd4X2KvAd3TyrO9ZgMT8wRVlO4R6QIsiyjNStz3uCuyRT7OiZvAP94QBmzR2bwj/gZ+PV4irxjYzYulyR5D+0ap2JjKVbVuZNN3jNnlLE0um8SZJhR59LRAzPobdp4qbdkeQ/vm0Fr0OI561Hln2qrgOJMBBg95MHoNMQzMwzvmU4ZszNnvHFbpazHweKUj7GDCTshWd6TJz3xMevt9zDX7yS8HGL7J7rwDi2yNJm4frK8PUN+5voXE2N2tyLvU2q2J0f1HFG1PF1cRxzJriMikaiSLS1J3rExm6+OAOLf2mo6YmzPLNZ6M/XXljFzQrW18tARF387iX/ET9W1Jbl1xMksOqLBxtkfKLpo8pQni46IyXCKkjZHXGYTRzxEVIf60mRM3tOqDKco602M7/Gjio5wNJrxXlTaTh6fi8ulfG0J/lnlfYwdmkOrV+UtafAMLOGqt7LpvU2c/+UY0atkPMOqvA/NoTcn6Yj+Reb6lfE8sn8OV72VsD+KLMuMHJrF7Eq2r5eYH1HG4dgxLwarjpmzSt/h/fNYSk3xUm8z/QGW5pWxNd0fxlK0zPiw8u5GzkRxuKM0N4LTBZNTSqajgFvPhCdMiQ1O25V7PIWOKiKEihW5XZiTKA5pcQHUTLPstxCsn+LsQjkl1X6Kkqou2uqG0Kobsz556UYuHflHJEnis5/9LFfw+sdb3vIW3vrWt3Li+HHKn3oYrU9Dn1ZDWF2UB0Iw6YHRWQ3BIj1DQyHKyhR/FXKUJc8y3nEZTIpun70UYPq88h2MHV0gsmTC74kiabWMHZ5Ha9DQ81gF84N+Zs8tMaNmoRlT57ZZtSzuyP5ZjPbENzRzdkHZ6QuMHpxHZ9DE9f7wvlnMxYn17NSJ+fjcGfJF0Oq1TBxV/Td7prFXJOmhE5643p897cFRZ2Xs0Bwb39OK3qZn+mQik8/4sdm4HloaXGDmrJeRfapu2TVFSZsyz9rrTYwfmYnr/YWJADNnvYyrfqDhPVOUdrri5x17dQZZluMlrmbOepk4GvOrTFG+NhI/NnpgJj7PnvvJKFqjlqnTysHRfVNEQzIL6vOM7JtOsVVmz3qZ6Vtg6sg89noT1VtLWRiYj7dN1vvTJ+eZH1R9U4c9GCx6Bn49QsATpWpbcYrenzrhifsNJ08sYCk1MX5sPiHvykTbiWNzCb/KGQ8z9VZG1N3wg69MUtyYyNyCRLz0y9yA4s8YO6Dq/T0JeQOMH5whshxVyr2dmafj3tq4vIdemUzR+2MHZhK2YUCRNxrF5zVxfI6QLxIv1ze6fybFVpntW0jIe/8UOpuW+hsr8ZzrZ3R/qrxnTs0zq47ZsYMzaPQaFvoVuaRXm0qW99jBeYw2A1Mn1Tljd2KeHX1lBqvbmPCrnF7EVmFm7KAq71em45nak+Xd8IZyoiFZkaG6RhnclSrv5DHrGfLH5R0YDyi2StKYjckbIOCJpoxZWZKRZRlntYn5C4GUMQuKvOPz7J4JwkE3vukADbeWE/KFme1LlPeLjVnlvSnvfjY2l6pjdutHOpAkTYq8Rw7MojVq8ZxR3tXw3ukU2zA2ZsePzGJymTAVGRI6YnfqmE3RERc9NMgVmN2KvhnalSrvfHVEurxz6Yj5CwFe/WwfDbeWZ4zZrDpCkhg9qMh74NlJkKTUMRvTEZMxHTGTqSPOLcSPIUksqLZhho44lRiz/c9PUrc9yuzJ2D1NYy1LkCaSdfLkCS8Wt5HxPi+mMiNDe5N0sqRh4rgH/6yyBvec9TBTb2HkVWW8DO6epnabm+0fbefkdy8xfixhG3qGAsz2eRk7pLQd2qus12NYnApgKzUxc04ZI7PnFhk/oo7DvTOUdTuT3s18XN7jexdwVpiZOqv6mQ/ME+6xxXXy2LFFtKbE/DM3uMz0uJbem2BxDmZHwkxHleOjgxApT8h7NKBhVK8jWCxxHh26ELg1ErIUZrJmAYNfx7kZJaBXZJeZtkI1oK8fJhrQo6uZ4FMv3o7+V9/D7/dfISn9CaG1tZVz587xo+//AN1HnuJCUMIalRhQP5vzcwacpgiBImW8jE5pWPBLlBdHkMMRpkZhchBks4Hh8+BwJnxeY+eWCXkU3bI4HmHqvJ/lQJjue50MH/bhqkmMwYljC4TU+IVvLsTU6UUmVb/EyKuzlLTaGXtV0QmjBxLfRdALU6e8TKo20vDeGZYXIxCI4r3kR47ILEwmMrROnfAwrery0X3TRIIRFqcVv9zQnmmlfLlbz4a3NRKYX2Zol6ILxw7MgiThG1V1+54p9HZdvCzTxJE5vEM+jA4N0+c86M065vrU9e3vJrGUJXT5+OFZFtWSlFMnFzAXGxl8RdXPu6ewVSTajh6cIaDaKvPnvEwetzJ2WNEXfT8boajBmtI2FNNDl5aYPO5hImZ/7JqmuFXRQ3s/eZq6G0sTfpXZoNI2vs6forQ78R5H9k4jyzLDLynnmjzuYeqkR3m2fdMs+yLxMnLDu6dTbJWpE/NMq36Vsf1TRMMyXtUPOrR7KkXvTx6dY25A0W9ai5IlK+hV2g6/MoUpae6MyVv5txejzcDMuSVGD81S0etKlfehWXzqXDNzdglrmYeJ48q7GXx5EkethS0fakdS562YvL0X55k8bmPiiGob7ppKlfer0xQ326m7pZTBl6dS5D24awp3R0KXj+6bjsub5ZDi81Jj5EN7pilNinEO751KsVVi8g5OB+n/xSjl60oScsmQt4dZdW6ZODgNMljcBrXtFPqkuTNZ3mOHlNidN+bXUuUdyxiUPGYnT3oxFRmYPqNcZ2hX6piFxEamuTPzTFZbmIzZ4q9M4ahN2CqjB6fjY7ZqazHzw4uMH1bl/bup+JgFGD0wHbdVFqeUMeufC7D94114BhaYOpFYJ8XGLCg6YvK4J27vDe2ZJrgYiZcG1Jm1GfKejvsCp4gEoyyqG5/C4QiGpJhysrzHDii2im8kZjOnyjs+ZiVJid2Zdcz1zcflbSlN2Crjh+dYnPAzeXAeo9tI3TUlTJ5U3s3Q7ils5Yn14+ihGQKqrRLTEcP7ZvCPBSnpdWTqiAVlHHou+Zg84WEiZqvsnqa4xcb5pxUSyOj+GSLLqi9wLsjkCQ+TxzxIGkkZs52qXzwII3tnEuUzg4pcpk7HbLYZQkthggsakJQYuVYvYa0ysjQaZPrUAtOqrhw/5EGOynjV8ujD++YSBCFJYvKkl5J2G+uequXcLyfRaCUWhxU9MLJ/DqMzYQNNnljAO6ro/olTXsrX2gmpPq/hVz1YShL6ZPzkIv5pRYazF3xYSg1M9infRv/v5rFXmpDUOOv4ST8Bv/Ks3mGY6l9mQo1bDp+J4CyNUFljxF0Go0MQDsGyy0B0Icj4tMR5i3KeM0ED1bowy0XKuc4s63ADJVEIlAbxLi4yX+njwrybebdMpTZBFra1DSBHlTH7yd23MXXgk0iSxL//+78jCkmWxQsLxj6Yv/z+Ruq63ApRScX3BtZntF/yK4M7et6WcUy3lPj47EOZt6LzL3Jrh8xyGPbv1mcc1wQTwV/tXGoNxqoukOQwo8cAn590yOGE4pWDyxnHk2vKJrdNHFfuV45EWP/OBvQWHfs/cz6zHZCrQPe2j3UgaSTheu3r/7KZaETm6L/3C/VztlrQmSRmji+t3jgZMb2df5lLLHUWGq93c/Kbg6s3TsJVf9OO1qBhz9+fFu7nmw5y4r8GhPoVgrINDupvqOD0T4ZZ7M9fKBvf24LRaRB+391vqsNg1XP4S1lqhq5yveiyLNxv+ye6WF4IceBz+ddBL9vgoPHmKvqfHWHqyMLqHVTU3VRK+doiXv2MWK3XrR/tRKMT/3bWvK0RJDj25YtC/QqBrclCzyP1jB6cYfDZydU7qFjztkZslWYO/9sp/DOr1E5N8uY13lFKJCQz+Ny0eii/vpZKDb6xLDpqlf71NxUz+OJ86o8xvanP1NdEoxR3WGi6qYSLL84x27cCSSYty0/vIyVYSvSc/dUU80N5JAE0KpN88/UGimsMvPrfi3HCl2w2ZrZPqhMbsRoyDkeTjL+QI/PZwhYN4GNdo8yxOS0+EsbusjMhx0BJ5jznsi1w5wzMa+DZ3szjW6ouxf9daZrPOH6P8xBAnKCUjG5DYtz9aEFJFfClO88yODjIc889x4033pjR5wpef/jFL34RT4Hd9oP/BUAolBiT9l2WjD5Gj/ItOs9lzvfapYTNI81mjqk1DzkwOXUc/uYEwZks9lFSfWE5lLCPTMVQf2MFZ3+gZAyUV6tDnMM2Shxf2UTd+pFOJo7NcfEX4yufJwnlm1y03FHN3IUFTv13/vZJ6QYHDW+o4MR3hvCPZNqUK6HmOnecSCICc4UJ/7gYmbDuZmVn0OBv8p9zHE1meh5vZLZvgTPfzb8eesNt5ZSvK+LYl/vipKbXEmueaiQcjMaJK/li+ye6CAci7P/ns/l3MsOmd7QytHeKCZWIlw/KN7mof0M5fT8dxNOX/zjZ/IE29DadsE2z7p1NgMQRQTtv3Tub8M8sc/b7w6s3VmGuMLHhHc0sjvo5+p/5rz9cbWZabq+h/9kRZk8LLCQKRM9bGzC7DLz6WTG7cvvfdhHyhcX6mZUsYQMvTol9qzFfTrYhImWxvVRdWNJjI7AYZemSmA5a+7ZGZFnm2FcGhPpt/3gn0ZDM3n86k18H1a686q9a8M0uc+Jrg0mHVrFJs2R3THbSZT2u11F1lZVwRMvksVT5S5aEg1K2Zc6RG+7Wo9fDy7sg4M70UUz3Jq4dIykl48Ft+wE4u1CecezNlbvj//740Xth/0UufPqb2O125ubmMtpfwesTGrV0R+l73o65qxWtL7FWqHolc0wY5xSHomFwNvNkgcTuRHkpUw/KkQhb/6qe5cUwB7+YZY6LJtlDabZT6Xo7OqOWsb2ehFM25eQC8/MqdlfXE3VYS03C+nXLhzrQ6jXs/nuxOa7nyQYkCY5/fUCon73ehM6sZe6MoM8rpjYE1LmpzET9tSWc/fmIUL+N72nFYNOz5x/FZLLxva34Z4Oc+paYj60QuFrNNN1azYVfDTN/If+H631rA45aKwe/dCFObMoHrfdVYS4xCM9Va97WiByV47vD88X2T3QRnA9x8F/z93k5m0203VvHwAsTTB3JXEPlQukGJ7XbSjn0lfNC42TzX7eht4jbhx2P1KIzajnxjQGhfoXA5NKw5m2tjB+aZfCFqbz7tT9YTUmnk+Pf7GfhUv5CqVErGcSC1KtCtSVMZUYCarApRddls7uSULWtmNE9WfT6CjBVmOh5pIaLL0wwczx/32jHwzWUtDvoe3qYqaOLq3dQ0XBLKeVrXez7VGIsr2p3ZUMyUzBLf0m1xVruLGVo9yzBpLJtkiHhI4tlUEqGvsLO+ju0+OYjHD5ozjg+3Zv4LVicee3O25V5J0ZQSsY72l6J//tTL96uXO/T/0H/hQt873vfY8eOHRl9ruD1hwsXLtDSolQ7qPuvTyo/BhJjsmxP5lrANKf4myxDmd+Z5E/yeS1lrp3ab7PgrDZw5PvTBCdCGcdTfF7JMUEjNF1fQv+zCpEmq89rBbstHVltt6S+mz/QxsTxOQZ/k79+ddQZ6HmymdlzC5z5Tv7+HUejiZY7ajj/zBDeS8HVOyShYpOLcbXcugiMbiPBacFrXVWERi8xuit/3Wx0aNjw7g5mz3mFfCAVVxVRs72Uk9+9hH9M7D4LQfvDNSAjdI+g+DKW/WEOCMbW1r2jifFDs0LvztlioeX2ai78ehRPX/629tq3NWKtMLP778Rsmq5H69CaNcJ2XvfjdQS9Ic4/PSbUb/snulgY9nFcIL5srjTSfnc1Ay9OCMmkULQ9WI2twhzPypovtnyondBSROm3iv2TjJa7KxnaO0twSuAbiIXesnVJ35mQBEeDkWgIFkeyXyuXfdP+UBVancSpb4+sfF9p197yN83IYZn9n+1fNQ4KCR/V2qdqCc6HOfODpPGlWSVeWYDPC62G0i4jsqRjpi8tPmNMxC+zxTp732jEYoNdz8OyK9P2mulK2G4xklIyttx4EoAL8+6MY29vSNhe/2v3PQSHZ5n735/DYrEU5PMqiFJeW1vL0NAQ//HEIf7u0K1oJGXC/c7FjVnbW81BhagU9LEZmbNIeI2KszBsVQRQlMP3GTbbePGSD92l7C85atSiCUYyCEoAtT0G5Kie0WPZHbmSyqiPpjmKHI0GLMU6xg8qv8vLWQJ0oAxc1Zg4/KWB7G1WMUam+7zoDFkG4CowFRlAmF6mpn0My8wcz58AVNRpoXNHA0uTASFSVNONZTjrrFRuLWJsb/6Dc9kbwmDPQnBYBULBpyRs+9tOlhdC8RJz+WDykJfJQ97VG6ZB5BrJECV6xWCw64X8kr8PbFUWtEYN5hITSs60/DD4/BSDz+dvbMew9x9PQ2bMYVUc+09xcpKlysS6p5qYOjPPue+vMtklYbHfp9ynIAILISylppUJSlkm9Eo1dffgc9N5E5QA1r65iUhQZv9nk4KcK/SXtFrK11uo3lSMo8bMiW8lEQQ0muyTqnrM3WVFZ9QgaVeYuLP0Hz++RNUG2+oEJWMqwejCS8tcIKHDsxKUAKJRIvaYM0WmoQMGzkAsjZlmOULQnelsSUZrrUSZWWYNEZJVnmFeZtkpZSUoAXgW7fywNbc+2Tdaz31NxzIP7K+GphFwZicoAZxcLuNssDLlt6mpKSorK68QlP6EcMcdd2T8ptcrzhDTi/aMYwBBlwajJ4rZLFNWB5fOJr7pGBFPN5Rd9x57xgt+iC7msH+0WohEUghKAM13VOOstVC51cfY3lXmyLTJqf6WMi49l0SsyYNDv/eT4vp14oCHyk0l8V25+cJoM6C36Khc56JfgKS09s+bsJWbmbu0JEQs2PLhDrQGjXBQomarGzkqC5GUvP1+oiGZ4EIW59wKGPj1hJK5SRAdj9RS3Gpn96dPZSdp5MCxrxRGLt79KbHrAOBPlP8SgbXcjM6kxVJuESIpFQqTy7jS+j4njnxJbJMDKBmjdv2/J4X7efr8HOgTl+XG97Sgt+qFv/NCNyuEAmH8czl0Xg7UXV1GcZuDcCjKuR/mbx+ue3MzllIjh79wJpXgl8tRpP7eelctGr3E7r8Tk4ml1JiPSs3A3PnF/PRC2iBM37Szok2q2nzlm+x4x4L4R5JsNlmOr9dzoWaTE0kjZZCUZF8AyWLKSlACOPR0iOVuEwF3prMGwH1cZuz6VKGV+P3UheCwQ+mTjaAE8PWx7ZybTATRAt/9LZFIhO7u7hWf5QpeX7jpppv4zW9+w9S/f426f/l7IhblW619Nnv7YJE+TlSq6JHwDCeyAMUyKskz2X0iklbL0a8P45vI4fiN+Z2yLOxbbq0kGpEZ2+vJ7AeJ7zOtr6XGhLXMyNQhlWiRh5IolBgzcWQuJWtuvrBWmkT853H0vqmJSDDCvjP5+4dMLg0b3tPB4qhPiCRTu70Yd7eLhYkAo6/M5N3PPxtEKqDytgihJhlbPtTB8kKIw/+WP6nZc87PoXPi/iuRoE4yzv1ktKB+Frfxsvm8zKUW9FYd1jITU+RPUpo6NJ/41gTw6qf7EuQ5AYhsOojDBNv+uouZ0/P0/Sh/mybgibL/U+K+2OBCmMhyVIigBFCzzY2k1eRHUkpSIBve3qRsWvh0XzzjyGoKxlJjovHmCko6HELjumKNA4Ndj94qpvfGD81gsOuECEoAA89NMfBcYl2fL0Gp5voShl9K0ltyNLcvT0XZRjulnTZ0Jg1nfpJ4B/JyCMmgz0pQAgiNL7DrhWLQZ1+4uI/7Gbk+02brwUe/Whc7G0EJ4D/6rsE7muoTmZqcpLy8/ApB6U8Izc3N8X8Hg0GMRiOYFOVe9tvsMaJAkRbTXASjEUrqYDRpipTNis9LM51d95590Qf4kOdyrHViPq+0pAVNN5RQ3usg4Akxuj+Hzyv2DaYRmCqvcjG235O4x5UISipEieEA3sFlvAOLjB8SI1hq9FpMRQaKO114L+Xv52l/uAZ3h5OANyRE0Nj4nlaMTr0waaXhxgqQZSGSUtAbJRQIE/CKrffH98/Fs/iIoP62Mio3lHD4y/1CJKyz3xMjJ8Ww+1OnspNBVsGR/xD3C5mLjRideqxlpstCyLFUmtDqxBcEJwU2pSZD1AcL4B8LFiTL3rc2YHEb2ScY0+4T8D0lY3kxTGAuJERQKum2U76uCEkrCdnqHffXUNxi58Q3+1NJj6s4MNvuqcFg07H7HzJlspJ946i2rO4bzdJg6oSXcCC6KkFJSpPZ0a+k2dorEZRU26q43UhwXmZpXMznVb/VidYgMdOXpvOCy2A05Ix1Hv9VkEiHmWVX9uMlp0KMXZ16betykDpkTqvx0GwEJYAvD1zD6GiigoDhaz9keXmZTZs2ZW2/GgoiKZ05cwar1Uo4mJhMvzewMZmzk4L5PuWGm3U+2sNRKoCn09qEVTtWl2V9Io3riRhBGwwAWbIpLS4j63VIacGy0bPLzAwByyHQ6SBLNiQ5EEDSapAjiVVt173lyFFZISmFQkiSRM6EU3IUSSMhR2Uqt7vQW3XxLCb54NwPRvNyCKVDNMtQDDPnvHgHxCaQudM+gvPLjB/O3+kC0P/MIEWdYgQlgCOC2aFisDVZcLfbGfilWMBMjhIvISGCnjfXK+meBZ+vEFReXURxk12YrFToOCkE/c+M0/9M/tksYqh5gxt7lYXThRgPBWzI73lrA5NHZ4VIZnqrBjkqE10W836V9Foxu80M/1YsGN73PTHWbwwnvzeEpUS/slMiS9+lyQBeNegeIw/l0nmx3VMTZ30UtywxmLTAAlZ0akhaDeeengNyfDOxSTnLtadOBZg+t0JWlmyZmyzQvt3E2d0B5EhmdqRkRE0GpFAUWa+hdQ2UVYHBBH1HlOMRqx6dP0LYnPl8y2rZheMLEqDhwkKq/Jcd0oqk0rB2kcU5G5bqTGeUzZRjleED/Ugx8lgR33AqzpxbXcczmj3r6QWg3qyMwc/e/wpLS0sEg6/9DpAr+MNCp9MRDoe59L++Rv3/8xYADK/YiepAkyXZo/uE8k2vuVr5LC+dlcmoHRrb8bic5pjxKzv9V7J/5EiEdMOv/xcjuNcUKwSlJPsos3OqLu16rJaiZjuRUJThF1V9GXMerwQzdNxTK+yIF806AzD88nRB2ZAu/XaM8nUl8fJS+WLqxDzmkpX1VjZceG6UxXHx77sQwhcoWaIWx5eECDnhUAQ5KmN2mvD78w9MlG9yUdLuEMqABYgTlFR07qxl9uKCUCal/p+P0f9zsZ1avw8KfW9dT9QzdWqOqQII96Ko3FaMs84q/J1GI3Lu9dcKqL+1jMmTC8IZz179tLgDePA3k4SDEeZOrrJGijk01OcZOzBD5aZEWcV8nUQXXxzHXpWdVLMS9vxjnpmQ0nD6O0OK3Shpsm+8yWJT1t/iJjC7zMRBb36E+agMGommG8pAgj3/nNDPkiQpzv0cWZQAjv90mqK6TJlIJmN2x4SKiNWAdiAKDZnHlq2x+07tf/1CFDswFg7w4xe2ANC1eSCj/4kT9QAYy5SFyuAlJTPOc889l/N+ruD1h+eee04Zg0k2UtWLGiIG0GZZE9rU0uumSgN16/SUNkY5/nSaHlLHLaFMw80/ubyq3ykbBl6aZG4gsOpO/HSsfbIRonKCOJGP3QWUrnNiKtIzJLC+HXhWnNAMsC/fLG5pGD86y4LgHBDwRFkc88fLmeaLoRdHWRgPML5XLBAobMuoMFWYKO20CckflEBoIT6vtgeqmR/0MXHgtfd5layxU9rpErYX9n6ysHFSCMb3zgq/a1AyKRU32jhbSFCpgArtHQ/XxMsY5guTw4QciRIOrZIJNw3OZhPWMotwtqGBZycK0g3HvjWglE1Ls61SkMWumutfxDcdWLFNOnzTAbU0i+izTSql5bIhB3EUwHPej+eCuG5oe6CSvl+MIS3nH3Ss2l5E3dVuLCUG+n40lrg31S7LuG3VFps84kNvnGX6dKrvStLpVrS7MOjRjy4QqirKOBTOSeYK0KUN0yLD0z9pU65zbaYuCh0swgz4K5W5deq/voPf6yUQKODjuYI/KtxuN9PT08x+7utUfvgdym+v6InqQZOFS+RSs4Z33aDFaIwyei7LGNSp64hwmm4LKjHBnMFMVJ9Xmn3U/+IMgTmVoBSN5rbdonLKGqr+JjfVW0rQW7QMvjizOkEppiOM0HRTBf3Pj+dPQpFlThSw2d3TtyRMGAKlHFbYF8FzSSzeOHZoBnu1+O7zc0+PEJwX93mJZhmKoWyji8BsAO/F/HVKJBBFjkTRm8S4Q642K6U9Ls4JkIWBgghKAM13VbIw5mfyoCfvPoUStwpFoe+t5e5KpTTy8dfe51XS7aC41SZMuI+GokQKsM+rthUzN7AknN3r8L+Jx9xnTi7QpxvBe3EVOabZNxNHPOhN2gRBKc/dlRd/M4G9Not/ZxXf0qufW2FjxQrX7v9l0ubtPEneFZvshHwRZk75Vs+eJElK1RmNhuYb3Wh0Gvb938RaR9Kq80S2e1TjpCd+OoezLgvRyKBfcf0uG/VoLoahKrOvUhEmE1sJUYGMN2rkwC96ACi6OjPeP3WkHD0QKlMm56ELih/vhRdeyHk/K6EgkpLFkphALh6apnFDglG1wtzOBYuF+oVF9sqpjkb7wGpXDHD9FsU/tH9P7lbpRKWho9lTOmZDMlFp+uwi3uHUj3xFhxHKh9L4hnKQSZCU8tzOs+HdLSwvhDjxdbHyFYXg7HcKY+QWkgHINx3F9zsxYlMMdbeWMX1mEd9g/iyUrgdr0Zm0wiSlQjLdADjqrJhLjEIkpcqri2h8QyWDuyaFiCu128rQZSFH/P8Dqje70RrF0wBs/WgnkWBEuEyco8aC0a4TIinNn/MVRPhqfmMNOpNWjKQkSdTdUsrshaXspQRXmFjnz/vw9ouzy499VdELK2Y3IuGYAMAHp7+f5nhZZdfViliJNWyBjY+VMXxggcmTWdgYyUhyqrRtM+KqNtCwIcrFV1foYkolApw7D8Y0glI+MCyYOZ5GAll2rPw+DNpFHvfJzPiXeKE6d7vfjLZzc1USi9wCS/UzhI255REjKCXDN6a84+9973sr3tcVvP7w1a9+lSeffJLg8cxsMrmISgD9/ah7D1PHom7Cs+L1eh4rw1pqYN9/DCP7Vlg0JRl+/lkYenFWrLQIcPFXQ0RvqWF4X5quXCVg1n6XkhK/6c5KIWJI+RYXddeUFURKEIWnz4+nT9z2KpToIkKoSYajyYyj3sbwb8UyG9ZdX8ayNySUKef8j0Y5j/hu+bpry9DbxJcumz/QhqSVhHd5F7XasVWaC5bp6xmuRivmIr0QSan+1jKqN7vpe3qI6WP5Z8ys2eYW3kkOcPiL4mRCgOotbko7nUKZsKz1ZoqaxMc/wKjIWkfVaRMHPEzEUqoL7GKb2OdhAo/Q/RWK7ifr0Zk0HP2y2Pq0enMJyDB5eJUxkmbPnn9uHHtlwhmVvlMtF/wjy/jTzFHJlCNrpooNd+rRG2V2/3rlc5cc0DCzKTGf/dKu4apFmUlzbqJYjKAUx+8SwXPzCv2u4PWJmA9o8cgJbOt64r9HDJqsRCUA/xxMDoQYOJC6U1v2rq43t/x1E8sLYQ79e/7fXc4yb6v1OzDDwliarywPolLLHcqCRZQk0/vWBsKBCKe/XUCGF0H0Py2+cQoKy7gc8FAQaQWg6poSPANL+IbzD3p1P1SL0SVGEgMKynQD4O524qi1CJGUirtstN9Xx/CeSaH7rLu6DLN7Zf39p4q6a8owOvUgSFLa/FdtRMOycAat4nYHllKTEEkpMBkoiPDVcocyJkVJSlXXlLAwtCScSck3HMCXowTISihI9wQKz/CVFasE6Da9r4VLr0wL2ecNt5RS2uVEjsqc/1n+vvDRQ3NYy0wMvZhEUMoHkQgj+7IQlFaCQ89VO6wsTEU4lrmvLo7yA8tMbEr2zZk46Fu5iEToYCbpydjXjx/4/Oc/v/J9XcHrDs899xzr168ndCYzkJ6LqATQfwb0eg2QSkTSeFbOStZ6u4viBhOHvz7O8uIKIy3ZPgoSJyjlBZWodOmVaYWgtEcsTla7zU3lxmKQZfoF4l1FnTYab6rg0JfPF0xgyRf+sSAXnhH3XymZkMRtqJmThZFOzJVGnLUWYYJNy+1VBOaWhUprDb80nX9Z0iTUXlOKvdoiTFJa944mdBYdBz4n5uMsX1eEq9EmRFL6U0HZ2iLs1RYhklLZRhdNt1Ry7ucjQv1qr3ZjKTMJ2wwnC8xS23BTBRWCY9JYZqKoUXz8A0wdFcgGquq8uTOLzJ1ZTPyWJ2ZOLTJzKs3OKKSEbfL95EDLXWUYnTpO/vfq702W5biPqu5qN2hh5swqa/Y0n9a5X09jr0ysdVaLw8YQmI0Q9KYpcsPKscreW/RYHLD3mZXPXXo4ytT6xH28gp410Sjj5F6TTR1JzSge7B+L+02MxsLWcgUUCFDQ3t4OwH+85SDfG0gt87bSuHnBbsPnSDjo0glKYVMiqxKAdTwEmAiHwbsAEaOWiFEJhOtm/OhmUh0rsj7VON70Jgfrd6ppP3W6lEC4nMaql7RKCaLzv5xj8riSRSnlePLAikQy0jYO7ZriyLfUhY9AgM5UZMBWZRFyUoNSI3Pje1uE+pT0Wtny4Q5K12UvD5MLdbeWsen9rUJ9QFlUi/Yr6rRQu7WU1tsrhPpdemmc8cOFOYicreLM7Qu/HuHEN8Qm/2hIGRcaQeV64n8ucfYn4iS2rR/tZNvHOoX7FYL2nTVs/0QXJb1WoX7Hv9rHuafFHQayLEMBab3P/uQSp38gFjC2uDWYs2e3WxEXfjXM1EmRiVwZFzVb3HTvqM1yPLfKrrraxbaPtFG23pbj3Jqs/dt2lLPu7bUZE6MkSSk6T0ojIG38i1p6Hle/Ua121QxKsfNveU81ax4vS22Q7tRIvq5eT/1mJzqDBkuurCLpWZRUR33f80EmLgRSCUqRqPJfrGkaQUkKRcEncWK/RMRqyCAo6fwJvb9s18azKLktPm5rW6Tbltg5kk5QMk1LmKaV38L2KGF7FCsQAgYNEr6RxLuzmYIZWZR+M9oe/7cnZMHX62G5LfuiO52gdMnvZu6Mj2g0Sm1tLffff3/Wflfw+sWb3vSm+L/9fj+GV1Ln8WgO3+DEmJ6xMT1Rc6JBBkHJoE8xcOUlH55LfkKBKGZzqj6Ql5czy+AmzWmNt7nZ9pE2zGrWT0kjpS4osthH/lk4893h7BlvVrCNzj4zzPDeKWFCj6PGit6io3yLS6jf+r9oZvsnuoT6APQ+1cj6dzWv3jAN697ZRPN9las3TEL5FhfbPtZJSU+OuSAHOh+qp+6a7Cn0V8LE8TnO/1KchGUu1mAuFluGnPjeEGd+MCB8rULR99MhTnxdjKRfvsXF9k900XiHmA1bKLZ9rJOrPtS+esM0nP3xIKe+L/beYjogHFiFLJyGE1/ro++n4naeo6kwQsfYwVkuPi+mE1pvr6L+2jLhMbn5A21sePcKazFJyqrDNr2vlcptxUJrv/ItLq76YBuORjG5bHpfC9v/VnAtIGmwV5ixJpe5Tbchc9ikR781yMDLqzjQ0/tGZaaOLtH/q+kM+xNIWXNLel08i9KGpyrZ+I6q1FOnEZQk7xKSV7HNFLvOwMI8hIIAErakDMPLVikpi5KCkgOJew1i4Xe23OucdIJScNKC8YUTAFx33XU5+13B6xcPPvggALP/+S2qXkwdtxFDbn1x8QDIJNYYGQQlvS6RVQnidtWyN8ziWCD1O8jid0rH5vc1s/HdTdkP5srA9OwkM8ezEKdW0Uv9z45x9Bviu3BtlRYcNeI+l+0f72LDu8R8XvZ6E5s/0EbphuzlsHOhYmux8LUA1r2zmY3vEfN5mVwaGm+soOU2MXuh/7lRRvaKB71AkYsozvxwkBNfFyPIRIJhkPMnm8Zw+ocjnP6+uM9r81+3sfUjHcL9CkHDreVs/3iX8Ng6+Y0LnPlhAYEomZUZGjlw6jsXOfVDMTvP5NJgcomHCM7/YoixV8U3pzbcUE7nQ/WrN0xCUaeVrR/pSJV/8jjLYXc13lHOmj9rEL7Hte9opPvJOuF+2z/eydq3Nab+uJIdJWko31yEwa7HUS1m5w08N8XgrmnOi2alCsC5n4wRmM/iJ0wivkpabdwXaHLBlg80UHt1wg+RTlCSfX5kn7qoV30MJj0s+6LMjy6jH00ER8NWXUYWpfIkgq82CAOYuJSj5mE6Qck8piMwPo8sy1RVVfH2t799ZRlcwesO69ati/876PXifiXVHxvNEZOdm9QwOaIhak40yCAo6bSJrEooMcG5AT/BhQiSGcWnpVnB55WkWyo22LjqA41Y1ewUGeuXdPK4pIFlDeefnlAyOK2W/TLJdht6cZpLL0/kT1BSyVTWMhMml4GqDcWrdEhF16N1bP+4uM+r7cFq1r0thy26yvUa3pi9hHYuuNqsXPXBdkp6HWLXeqiOplvF/GsAw7unOP8LcZ+X0QFGh9i82vezMU58q4AKM1GQCzAYTn5ngBNfF9sc5mg0sf1vu4TfW6G46q/b2fSBNuF+J/67n1OC8T+NBMgy0bBYwPH0d/o5XYCdZ6spjNBx6cUJ+p8T8HlJEo03ldJ8WyWOerFrrn2qgXXvaMzdIEe8ce1TDVRscgkRlJzNJja+uxlHg6pb0+MJOdD7ZC3bPpxljKxybWeDBVvSRrkVM0KSqDpz9H+GGVhtI0a6PRqN4ukPMrTLmxInTZw8acwlcVh6Hypi/ZtKUtumEZQkXwDJp/BcZKMe2ahnfhb8qqvLPJrweYUtmowsSqWHE9cOR00cIveaPZ2gpJ/UU/7My8iy/Hv5vArKpARKyTdJkpBz+EtiG+tjpd7i8Pl4PBxlCfiZMTdRJmxKLf2262D+C+pYRiUli5I+o7pJrtJvydj059VEI1EO/Vuqglkpo9Lwy4Wlutv9d4Vl8gkHIixMiO060Wg1aA0aitqdTB3Jfxe0u02pqW12g1/AJ6I1aoVLNcyd9jF73sulV8QWuhP750GgLnwMWz7UgdaoEa45qlxPDBP75wvq5xsN4CtgA09oMZQ5/l8j+GeXiYZl/PNi79s3HcU3nf9YjGFfgWm9Z46L18vteUsrOrNWeIzMHF8q6Hpjh2YJzKYxZFeZWG3lZiStRMgvZkgVNdjQrFLbN52gBKA3a9HoNULZkyxuCC9HmR9J0lur7boCBnf7GNydJatUthJvSZCNBqEMSgAlldC6QWbgLAyvoOti5KQYitQpamEe0K6eQSmGKYuF/0mb+3OWeFPhmbRQuquZQOkCC1sS6QOe9fRyq+t41gxKAJ95fBehQJSGhoa87u0KXn/4/7H31+GRXGfaP/6pagY1iZmpJQ2jzBzz2B7bY4/DjhO/2Q1tHPbvpeXdbGCTN8lumLNO4pAdtGPHMMykIUkjZrVaUoMa6vdHVZPU3eqSPfNNvHNf11zXtOqcgqdOnfOc59znfpxOJ9PT0ww+/jnsj/7dkuMxRaVYqrcYWttC5OfDy38C0Z+lbep18bQmA6/MMvCKir5Zcfx8k/L3bau34Z9K7DzJmPpNQdlVLqqvLOLwty8sTdOUaWe/Hy5kktLPgrM/GeTsCtItzPT5ZFVDE6pSiJkLDIga9YOxudCI3qrjPComnxHZ1tYyM5PHs+8cTEbvCyMY8laQXu5nK1N8WvveFnk32hdyJwH5B/34V5AlY99nVqaYpUYtKIbgdJDIQpTA9MLyhV8HhObDhALq0nIAqtpGDL2/HaX3t+rTcvinwD+l3pbtO2sJzYVVv7+eZ9UraJz99RBlG1yJ9Gs5QtSLCMv4UIthqTGjt+koaLOrUmN11ljRGjWEVDat2aEAtnL1/c/uf0lj9xwCTL6BQHZVkDTnWP/eGgAOfCn74rSgy+AzhhZAp19WQSmGrkNL7bGYnLQY943NYwR+oNVAkiLSyX01uDf2LlVQUnDixAnMZjMvvvhiTvd2GX9eeOqpp5S0g+n7hpiiUizVWzI23KUl6Bc5/sss34NOm5L67dB/qg9uS1FpxfP9dY/XgwgHv7hocSKLotJK037t+nv16UMAgt4Qs0PqcryHgqCzanHWWBPp7HJAQZMNo0uPucKoSt1IZ9YgqPTzAp4oI4enGD6ozp7TXfNMd6mPL2x4fyN6m051PGPqpHp/YeZ8gF3/oP59B8YCBNS79QSmF9AZVhzaVgX/1ALhQIQFlWlmAp4ogWUUPdJhpT6s56z6XMetD9ViKjCobiMz5wPMnFefVqvvpTGCsxlkUTLAWmJG1IhpCADZVeAKmmwrUvU0OQ2qFyoxwoI3xExf0neag/80un+G0f3qY8WCKDDworrYubncSMdDlVx4cYyR/Zl99MVxwLwqOXDln5Kd0WUVlBQEZuHwT1PbZOYUbzI0wQD3mBcYDInsDSU230gvORGumk6roAQw8e//j+jMDKWl6okIl/HngTVr1nD48GHGPvV5yh/430uOxxSVYqneYqhqilJWCbtf1iB6ssyPtZp46reJU0EmTqlQ0lX6Gt+4PAZYivTMDwWTDmfPwuJyW2m4pYRTP+nD25v7OJLzN5507ZUq+Xj65jC69BhsEFQhWJRXbkZnVt/P2mstmIuN9P4m9zhDNBhGo9dgKTSgpvfrfW4Ug0P9PfY9r15tGWD9+9z4J4Ic+nLuJKDgRJDgCrjoh7+6AmITckYOtQjOSSz4wgSmLk3Myz8dhBWkRFOTni+Gkf0eRmKK1yoQ9ELQq97PW/W2eoIzIQ78u7oNAYMq18wBep4bZ2EmlEi/liO0Fq1qJSODXcRSYqIgJDFyIPeOxFGXh8GmRdDkRk6KwTvoX5qBKAff68AXepf+MUPa22QEJyOMTWaZj6UhzHc8UoqoETjynWXilUuEHOR/UjiCoNUsq6AUw4XjsDi6linFWww3BeawI/E0BkhSUpp+pQTnFSNLCEoxHDt8GJPJ9JpiXoKklkGSBFEUkSQJy+pqmv9+Z9oyU2dcCIuusNM7xxzw/IQNMZT58tahSIqM9qqWABoNHDohrwbrJ/0IwfSOhzindLKLc84qkPz+jDvSpIUQm99fTVSCfZ9NL/ksRaJpd6Vt+nAjkUBEVYqB1BOv+HVcXJgB9ePWpYUZNv9VC1PnZlXJIlbdXISt3Mzxb/SqutyGDzQiakX10tkxQoIKe9bfXUpRm4Mj/3Ea38QK5INUovNJNwuzIfZ/doXtWAXWv68BjV6j2o5qCXMANbcWU7rWxcmnLjBzNvcXUHFdAa6GPI7+pzoJ+M0faWH6whxnfrQMc3u5XYZZBtZlB22NJisTWNCI2b9vjSZzv7QMQWlZ2cIsQY1lAx7LEJSsNTrc15oY6grSfyT1mKTXIenS33vDGiisEDh+GKbn0i/YhyxaQpb0zxZSFrmCjvTvJWyGQLE89hT6fFznk/ijWWBcSaMq6SSKqzIrwgVDWq6dH8NxuoT56kl8HZ74saNTZaxyZWYzfmnD9wCYn59PSdt6GX858Pv98XfX/oF/y1iu4FgQMWlBrbY+RHkZnDgB80fmsu7Il7yJ4+ZykeZbijnxk2EWlJiptLCQOfCyzE5/KSpl3NFfuNZG4+3lDOyaoO+5DEGANNetuaWYsg35HPpSl2qCwZ89VJKh/r9A8wMV2CrMqlOvdryzlrHj06pSqeW3W2m8s5K+l8fUpdgCTC6ZLKMGGz/URMgX4bCKoNJKsfGDTeisWtULQyuBpdpEx0M1DOyZUJfebIXtceOHmggHIqrTt7W/rYap87Oq3nXjfeU4a60rTmuTM2J+W6a+UKV6xJ8NVOxyS4eN769H0Ajs+2yGd53h/Js+VIckwb7P9WRW3tBoMpOUFJ9RyJROTaclXCBvjmrfJBEMwNmjietE9Ro8jZmVC8QwXFU3iwn4QV6qSp1lUGS2If3YN/SZLxE6241GoyG8zAapy/jzhclkIhAIYCmspeP696YtYz8xvSTtx/q7tCz4oxz7wRREs/hd/kBK3bo3FaDP09L1lBzAzBR3gmV24ssFsh7e+DeNCAjszZT+NkMft/GDSgoqlQH1P3sYAfXrGZccGz/YxNT5Wc7/IneieNlWF446Kye/p44It/qxOnQmzcrimyrtWXFNAeWbCzj2/V5VJLGVovNJt7wwpDKV2kqw6tFa9BatajsaHXJKQTUo2eKi+poizvy8XxWhrXCdnaJ2Bye+rU7NasMHGpm5MM/Zp1/HtGiL8Xr4VRfr+1bSmmQ9fpFgKtax5u11DO2dpO+F3P3l8itcVF1VwJlnhpg8niEQKAppNysC8ThgxpidVotglWMWOiO03mLizMt+AsotSjotgZr0JCMAISwhrJW4wrzA2YCW49FE7Mo6EMXTlNmmp//PhwCYnp7G4XBkLHcZf74IBoMYjfK637p3fjpjOWeXDyHJDyoqj1LXAl1HYO7kMjEvXyDumxnyoemGfM48N0kw1kYXQpnTuS0X88pAbAewlOno2FnNwK4J+rMRjxb1KSWbnNRcV8zx7/Ywly3d5Z/rmmI2GLjo6eheK6pvKaKgya7a721+oILp83OqUqlZKwy4d9Qw8Mq46jSqaollAGvfU094IcKxr/eqq7gCrH60FkuJiVf/9uLHvAw2kdWPNTK0b1IdWS/Gy1DZJte+p55oOMoRlamjG+8tZ3bApyoFW9X1hRS2OTjwH2eXv8+LGZfKxb9Z4ff9mtK7ySdYed1lrr3qrRVozRoO/Ueatd4s9l77aDmiVuTgfw5lvoZGA2J63yu+xmrIsLlYoyFqk/2lxnUQCUP30cRhSadhrjrzWqAQgdXtPmxI/IxUlTrzkIQ3g2jw+DO/wPunF9HpdCwsViBUgdfkLX/lK18BYP7IBeYDSw00pagoSYL8L4bv2aw8PyE/bFQnENUtfTHWIXnQj+jFuJS2wwY2JS6oV9K8SYZlVDy0GsxFUHNlgv0l+ZUIe5YURXs+d4F9n78AYqqJpEg04XCkafCCgKxKkkHqLBM6P9XKpg+rlK4zQ8c7alSnblsRXitBSeV6ePtbq9n0hMr0FT7QGESspepkrPt+N6aaoASySpSoU/8Jdf6Nm42PqXvXeovMIhVt6p4tv8NC6ZbMk7/XE+YqM1U3qE8VozVq0azAjmsfd7Ph/epk1Q12HYJGWG5OsQQDf5xQTVACpT0WLrOre9EA1vpQBZuT236uBKV031isf0sz+KVIC6b7vpP7x3SDbI7p3ZLR/mABJWvNS1JvLqmfdMxcBpvelU/LnUkDZBaCUkzW0K5klPMtctAlhXEshCIIodSGEDVpOXNayyvPaZiZXPp8MjlJvjfdfGLSaDf5aC+ajxOUMiGsvCPjqHzutQEJE+CUZHKSpJMnlKN9S+V4gyEtwZB87RcsRYzfcT5OUDo6VcbRqbL4/xfj+QuN7HmiD0EQcLlclwlKf8EwJS3ADv3mKXRzS4MQBcfkGUBUIxJVvsOe8zpefkknE5Qgo/8jeVOP28tM6PM0VHbK40hM8jqX9A31txfHU75B0kJaBv9o/JCXV//2VHqCkiRlDLj4PUEQwNaoTuq5/e01dD7pTrnHXFC61YX7zepSE6wYr4WgpDZTlgk2fbiZ+jvV7Tq1FBlXtGPu2Nd6VBGUYhA1AkabOsWnjR9sYu171UuWa40adObc1QJjqLi6AFOJ+pQqK0HxZgeOJnUv22TXImoFDFZ1723je5pWlO5Qo9egNaq34/Fv9qomo1lLjEt3UOWATR9upvmBitwKx/o/E+n9oz8jglLxBrvcX+XSRJL65U0fbqTzE7nPw+Iy3ALZn19KQ7YQBfZ+tod9n8vgZyeNV1KS4kzN9TZM+SyvyKkQm7SKaqvNCfnKBrCoXkNUL5/bkUZ1QgzL/wBe6s5LIShZBkUsg7LN8s4tbXOugyJlCxG0Wi1PPfVU9nu8jD9rxHYEzo/3oJtfOom0n1CCyqKYEjs68IuwTFACOdiYJuAo+QNL6uY352FX1CqyxZ0Ww1iko+ampLn4MgQlgH2fPpueoJTF75LvhxWpN239pJuNf6My5mWElh2V5K+6BDGv10pgUDn0N95TxsYVpK/QWbSpqQlywNCuKdUEJZDVkzXLxVzToPNJN+sfUxer0Zk0aHQiBqu669nrjarTr60UxiIjZVtVTh6Q43maFfhC6/7arT6VoE2HRqs+vjZ+cEY1QQlAb9FhKVbXHmtvL5bbfi7fTLJf8Vrc69eboJQ8p03qo1t2VFIcS2+S45qA0QGdn2zGvTM3XzTmd+VVmEAA/4yKRSFBZPBVD7v+6Vx6glJyyqukwKnRATXXO5dXUlf8MknZOF6+WocxTySvQCYnSYpfZuxduiArhCWEsDz2SIcEnvbZ4gQl60AU64A8rjnOLB3fig6GyPvDHxBFEZfLdZmg9BcMg8GATon59v/xKXS+pf6Is0tuX5IoICntdWxQZPdzokxQgswxL1/M95J9M2OeAXOBjrLVcjxJUpTFF68HpkN5pwNDYSI+nY2gBDA/GGT3P59h4KWp7Ivwi/oO/1QABLKP/Wn8tsZtZXR+yo2pVF16p/w2G8335zg3fq14LQSlFWTKWv/XjdTdpi7Vbl6xCYMtN/WSZJz+rwFVBCWQOXAavYjeru56qx+tZf37VxDzMmvQW9Q/W8kGB4bl1rteJ+S32bDVqnMARItOtqNKFcU1b66j84kVxLxMGrQriIue/emgKoISQF6Z0h5VEpTWvbeexrtVqgxmesW5ch4uAUHJXmek8Z4S+V5V+F5r313NlifqU/+Y5dqxtJ6iRkx/j1niYIJGw+FvjMgEpXRIHq+SNjeVbzBhcOUgAqHUFb3y2OgshnxleVDSaeJCDdYLS/0+ISL/Azhy3JxCUDIPSZiH5LHFloajWXBYIr+/D1EU+cY3vpH9HpfBa9LEfde73sVjjz0GwMSzu+G2LViMuTnHpfioywvzymyCrJRNVQngwHGYT+NDx4hKMVWluIqSgrZbbQiiQO/LGb4MjSY9E9oMFetsDPzJk/mmFu2a2P1PK5PjXZgNMT+u7ss1O4zklZvRW7WqUrd1vKOGvHIzh7/Vi68vd/bR5o+2IGoEdv197unp8jssNG+rZm7Yz1EVbFJTvmFFCxor2YFuLhBpfVjefaIm7cKef1pZujH/VJDJLnXU5lPf71/RtZrurELQCKqea6VouasUk8vI+JFxVQpHe/555XYcP6lODvn0D9XnEAZY91cNeAd8nPuZut1hy7bHNAOYucCAxrA02LGk6qIBcev7m4gEo+z9NyV1Tg5p2JrvK8ZZZ+HMr0aYOpXUFyxTd/MHqxEEgd2fU9cuLUUGDDYdI8cyKzcs3o2l0cop4sa75pZVT0rGwBEYOOJPmVhKy0gimvMi5FlhdDg9QSkT1pZGMWhhIOhjXGEiGTxSXE0pnIET9DuXhUKfT1FRyjz+xchJALVDUDQHOMiJ/Pn8BTmo2X3oGBqNhre+9a3LV7qMP2v8wz/8Ax//+MeZ6tpF9ZXb0c1JhKy5OPEhGq/RMdkbYioWf87k/ygY3jePp38efxo10hhRKa6qlHSegg4LRavsWEuNHPlqhmB3hl2nxRvseLu9+Kdy2wU2usezIrLL+EkPJqdeSduTOxuo8orCFZEgOj/lJhKKqvIdijc4qL+1jJGD03Q/k/tu+U0faUZrUJmi1A9ak4a8cnWLDGrStSWjflsp1mITR76Suyz15PE5Xj2u3s8bPjxNfqP6xU01/m4MjiYT1dcW46i3rogArxb1N5cRWVDXriaOzjJxVL0dR495cNZYly+4CLv/Ub0dy67Kp3iVg0NfP6+KrHdoccqiHKE1ajAX5BBkS/LbVr+5FkuRkUP/2Y1/JLDkeCZs/XgL4WCEff+W+05MV4uZlu3VTJ2dpWs5dc4kVHYWos8loLrI35wb9GNwqA9W7v+8epn58ivsDB6cSf+es/ijxW15FDZb2fefidxAkt+fUFPKoLr06m/BlAOnVUwSPtpUNMe5WQ2TOa6Oug6KDB9+nrH+fmpra7nnnntyqncZf57YtGlTPH1H39kXqGq8lpAlNz/AUgrlq/M48xslViNqsqoqARz70QCBkTQpkGLfqeI7LVZRWvXmGrRGkd7fq0xJYYSytS5Vu7XVqifG4JsIEJhQH612NeZhdhqYVJGGtenecgra7Jz8YY+q1Fcb3i+ned+tIrW8scjIunfXMTvoU7UT3bxCoveKdqAbYfVb6xg94mFkd+7veqUK8bN9PqZ71aW96PnNKD0q0r3E0HxPNVqjRlVqv5Wi7uYinHV5zA75mL2QO+tlxXYc8DF5Vl3K3N7fjdL7O/V27HhHDXOjfnqeUVf31b9T3x7zSkxy+rXlTLjIr+r8m1ZCgTD7Pp27PWtuLqJsYz5nnxlk/HDucdhNH25Co9eong+4GqzklRgZVZHeBKORBW+I8VPq4sTjh2YZP6SufRgdYK22MnEkzfeZZXGu4fZSrCUGvMMLTJ2RX5wUDifidxlI4717QoycDsmKYFlcyxg5CcDlDFJUCONI5MJMKzooj5ndXbsRBIGHHnpo2TqX8eeNp59+mjvuuIPx7t3Ubd6OzicRMucS84pStV6LdyyMJxauXibmNdMb5PCPRuIqSimIxZNjqkpJ57GUGai8woWr3sKx76jLSe9oNOH3RAmMLpMiW/H5Zs75s/slGYjl4ydnyCtXv0m16ppCTC71BJQtH20lGo6y99O5qxrbao20PVTH6OEpulWkbV//140Y7DrVPpE+T4dF5Yay4ysg8AJUXluIvcqsqr5/OLiiONTwoWkKAyp35LMyn95gg/rbyvF0z3Liu+oJ8GrRdHe5vN6lol2t1I4jh6fIb1G3ARZg/wrS8+Z32Cjb6OLMj/sIenPPCpCTzdPEpfR5OiyF6tp+853l5DfbOP69Hry9sZjX8iSgzX/TSDgY5cAXco/PGQoNrH9XDROnvZx9Ove+oPKKQvIqTPQ9P0ZQBWd7ps+HtVixhwpi1JFvKINLMpF1mThgYbuJ8bP+9KStLDGvivVWSjssHPh20twtuJBQU8pQd++v5e90OQhJXUZbuZ+BCZHJHJVmCg5LeIbP0N/fT1VVFTt3ps+ylitec+Lu2267jWeffZbJr/2Ggtu2xBWVgn1Lg9gxNSVBgvXOMFoBZAkP+eFjikq2C0vl0CN6EW/YjIYojqg/rfCHZNCgmVzqoPcdnCesNNK4itJiKE5LnDENbH6sGkEjMPCyMlHIJPWofJyxXQbmKjMFzWb6fj+xJJiUCStJq+UbCnDumQHGDqqbyIwdn16RsxGaD6PRq9uRM3lsntBNYcaPe1TVW2nga0XQ6zHY9RStdl4SMs9KF1BWgv5d46pZwytFz3PDlKzNV52CbaW4lHY0OvUrWpTOigwD2IF/P78s8zcdY9c/FWRuWHEY0g1SSp1kBZTQfBgpIuVGUBKE+AA8P7qQIFIlF1mG2XvsqdGso046uejZPjj4rellCUqSIXHcXAAF1dB3AIhGkYzZ+7uoSb5u25oIej3MzkTw+TSIwQhRgyYjQUk3HyVkEfn9qIZ1jmicoBSDwSMxX5b+PZePBhnMizBmN5GOoDTa58JRurRvbxsV0EoC40E4GliqmgSymtLErCX+e/J3+/B4PAD8279lThF2GX8Z+NjHPsbHP/5xAKYunMRV7Y4rKtl7lnrkMTUlix6cFTqs+RqmkoPqMYWK6TSBfY0G/zhABKNjAf/Y0iKCICAtSmMzcWwee80M538pB7kzpiNZRFRyNJmof1MZ/sl8Dn1J3WJ3zS3FjO4bzTml10rJTSee6iM6q36BzTcRIOhJs+iYBaMnPNTeWEo4Q2rjTJg6N4vFpX6r8aVINRZDfpMN7Qp25q8EA38cV5fW7DXA0+9n4tQMwwfU54hfCYYPTBGYXrmkrhr0/WGMPtJ0AhcBRW0Oea5yidId5hTcXOS3jR3zULbehX80mPZ4JoT9ERZ86lJ/hYMSobkwI4fUtav9nz9Hwaq87HZM42+e/EFuRKhkf7Ty2nwmTs3gH83x2ZS6VVcUUL4xn72flft8SZJkXzWDPyqFwgg6LedfTL8YLfn9CLb0pMS86CyzYh7zAQ2kEWRznPXjrU0laprwU2CWyDOEOQtx9aQl5z6nQedNjHUj+58B4Jprrklb/jL+svCpT32K//t//y8XTv+aqsZr44pK5t40cZikBa3GG/IxWEX05lkWYtMtRVFJmk+ThkkUCYwp6UcKdQRG0vgbgpiibhHD+d8mkZlzUFGKYdN7m9CaNKpTShiLjBS0WlWlUFBDTI4jAF0/6WPqpDrCy9ixKfIqzEQW1KU+CXpDqrOlBMYC+CeCjB1VR5JZkT1eAyxFRora7apISivFsW/1XvRrxHDhhTGMTvXE2pWg/6UxQnNhZrMtLL+OOHYJCO8x5JWZMTr0qklKK8HRr/UuXyiNXzU74GduXJ1zGA5EiCxEGVe5UXSmZx5DOiWLTHE6ZV578IunES3q5mGBkQD7/335/iDZ7zI6oGhNfu5p3pT7brq3EkuRgZB3gJmepHacYYFOikQQNBqO/3CM2hsccYJS/Hg4jGBM/7wGrY9g2Ix/XpuWoGTsnSZY4Vjy94Z6MBrA6APtQPrxzHEmin4uMRZ6pi4wNSX3bV/4whfS1rmMvxzcfvvt8f+P9x6isGZtXFHJ2re0D4ipKQk6KGnR46zQ4elPKheLec2m8700BKcBIujNofSL3KIIodRYzvxQkMG90/S/KK8jLaeiFPPNDPlaWrdX4hsNcOTrfcqhLPGypLplW51MnvURzJHw7Tkzz8Ez6jeVnXxqINs+2oyYHZhnwa8uduXtCRAJRliYVzc/HjvmwVahVj4cdv39pYt5FbbZMTrVqYCvFGMHPKpVm1aKoBeG908yceLir6EC9P1pjJDKdrVSjOz3MLLfc0muVdTmWBGJcFlkiEup2YARw8TpWUxOvSqCEsjzqbAK0lxMIdI/ucCESsL28e/042gyq0512P1rJUa8DEEpeR21ZEMe0xcCBMeVlKDLiDzE0ubWXZ9PVWeUA/+hiF9EJfm6mepHIyBq6PrNNBpDmjXJ4AKY0/d/Jnz4MRPwa9L6XtYLPuYrFre7IKXOKA5rlG6Iqycthu0s6OcTx06/+FWQoq9LzEuQpNeesDT2sir/9u2YW+UUGOlISjHk9YgURn2IwFgadlY6klIMG1t85JkkTuwFb5p4SDqSUjKkeX/W3WtxyW2g4mo7Wr1I7x9iDkdEbkSZ6irBoq0fb0IQBV79uySG53KBIkmi/e01LPjCnFGxQ/YyUrHxA03o8rSXZKGt/W012CrNnPhhLzNnc1ekat5Rgc6g4fi3cmdSl17hpPb6UqbPz65YVUkNOp90szAbWhF5biXXUqsCULTORkVnIV0/7ME3kXsQdusnWxEE4ZLkv934oSZ0lgxtMdtCVg4Dflbpw+UGyGzXXk59KYvcraDVZu/nlknHkTafvRnW3OOk59VpZgayBB512vikFGD1nXpMeVrO7vYx2U1WkpJk1MZTfZjzItQ1wfEDCTsEsxA6I0aBoC37+8pEUrofL6IGvlma2SFNR1LCB82TsDfPTEVJ5glBMknJ/8Gv09fXxw033MAf/vCHrPd7GX8ZuO6663jhhRcQBIE17/zX+N/TkZRiMPRNUdIiMZqh+0tLUlKw+b2lREMSezOk41lMUlpyPIvvpBSI/9e9s4qeX/cnlJRycFNLt7qou6mUmf55Veo1+e1Waq4r4cC/r0wN6DJkdD7pxj8VvCTk4c5PuYmGJVXqPKYSI83byuh9fhjPmdwXNjZ/tAWNTrw0PsMHm9BZL43/6n6kGketha4f96aSlJer9+ZqgrMLnP9Z7qpeMTWwyS4vp5+6+PObzifd+CeDHPp/F6Et/hmlcYsjgyKdquOL0Ly9DI1OXJaotETR8+NNRMMSe/4lh7mDIMaDQbU35ROYCTG8N+HzpPUJY8c0GlhGGTMdSSm/Fuo7zUxPi5w4nPn8i0lKAMUmP3N+iHj0eBoy142TlPpPcuy5bxGJRIhm2uR0GX9xiM2hWje8jYKSViADSSmGiWmMNgmjTcTTt7QdpCUpKWjeVoiz3sLpnw8ydSrNYtxyuctVkJSKNzgwOnVciCkw5RgeXOkY2fJABZGFKGdVKhRfRgKrH6vDUmS8JP5J47YyCjscnP3lIOOHcydh1d5ejCFPT9cPc49dORpNuHfUMnVmlq4fXZqYV3AmxIHPX/yY19ZPuokEI+z919xVAByNJqquLubML0cIjOVOitr8kRZEnciuFSgcqcXqd9dhKbxIbfHP1e+6CFj77lp6Xxhh+nTmecpiv8v9cDmOGivnfzfM6P5lVuaS7ttYKFJzTTFdP07y55dJb7LchsFMJKUN7yhAoxPY81+ZCRXpSEoQpLQEJs6Atz7z2lIySWngxJfp6enh+uuv57nnnst6v5fxl4EPfehDfOYzn0EURTY++M/xv6cjKcWgHfNSUCsxmWEqmJakpGDjo4VEw1H2fzmDKlIo+4azXElKAA13FtP/6iTBybByaPl4mb3BRPtDtcz0zHF8sZJKFt/NVmuk9oZSjqjIbnIZS7H1E278EwEO/8fFJ5hv+WgLUlRiz7/k7jMYbCKNd1cwsGcSz5nM7Xwx1r+/EZ1Fy+4VqA6pxepHa7GUmC6J/1p3Wwkl61yc/vkAk8dyZ680bisjFIjQq0LZ01ZtoP3N9YyfmOHs0+pU1VaCzk+68Y0GOPzVNG3xYvpOF8kHkk/9Gu57BfdVfUM++jwtZ382urwPlITNH6ojGo6y7/O98h+yraOKYrx+6QYLkZDE2JGk+GsG5W/lwlljYkBakpK1CNw3mZkaFzl9IPNzLSUpgc0g+2qBcQ0zNZnJlTGSUtA7ysnff45QKPS6xLxel9bV3NwMQP+n5NxzoXN5iAsC4kJmY4yLZkZFM7KSUmqAXNLK/9Kh7yQsBAVCwQwsf60GSbu0gdRfrWPTm61YyonvXltSdyGU0rgG/jQTJyjFkanhStE4669/10TqTrbloDgTtgoz+fXq0lFY68x0Pumm7c1VquqVbnGy/n0NquoAVN1QSMV1BarqFK2zsfEDTaqv1fmkm01PNKuq4x3xEb5E7NrJrhlC82FCKgUVXPV52KosyxdMwkyPn7A/gqdb3Q7C1p1VbPiAuhz2K0XjveVs+rC69wUQnFlgbij3RTKAkvX5mFxGdE51O5Rmh/zMj1+aXW9zo4H0bTGLw2CuttL5yWba31qZ9nisj1mMtkcqaHtzZdbBUdBo5IWdJKJR6wMlGPKVHzmwfwVBoOkuF20PFKYeiw2cmRwDrZbNjxezemf+kkOCVptx4K3ZZEFvFnFWZ/hedNq0g/qR5xaY7A8yOaADvQ4hw2ApGVPr+mY1KQSliFGL1pe+P4kY5fdwa9kst5YtJcdGDPK/tNfVwLBGINMeViEiIETSpAL0wcyCmb15mYlN/QP59A/k45+Rv43p3x1ldHSU6urqywSlNxD++Mc/ArLixFS/PHF1dfnRBCNosqjujHQJSKKALh3hXiPK/9JgbjTAeNdsZqJiBvW3zX/TyMYPLuNrLFpIO/m9vpxTvcUwvGuKiVMzHP9hr6p6Ba0ODA49FVer82vWvreezk+qz1Pe/rYa6u9UlwPc5BJpeTD9mJAN7jdX0/xAhao6He+spfNJN6jckBaaDzM7fGkkb+ZHAsyoTB9iqzBiKTJRuk7de54d9OObUO8zbPxQEzW3FKuutxJseH8jjfeVq6rjuTBHaC7MVK8638tRbaGwxaGqjn8qyII3xMQpj6p6K4JJbovefnXPtemJZjo/leV7FoSlvpsJNvx1A64WdTvfKq7Op+wql6o6AOveWy8rIqXcV/bUwO1vq6bzE82YXGn8ziyKna4GK46azPOUTL7o+d+N0PdyDkpbi67b8/vJVIKSIGRMySBoNDgbTGx+vJiqK5feYzafcn5ew4IvSv/+9H2VEJUQFi0QmPADfmaG9UQ8mQM19u4w9u4w5gn5vqdPP0ckEuHaa6/NWOcy/vJw1113AXBq/zcBMJ+bhnBE/pcBAa+AZ0BpV4unren6FgW9L4wSmA7hU5kareq6Ajo/0YyjIfeBfHS/J0FQUoHe50Y5+yv1gXhng011GgWjQ2TrJ924d6qLebncVta8p15VHYCSLS7Ktqrrqx2NJtY93pBLZqIUbP2km40fUhcr8/bNszAbUn2tlWCia4bA1AKBaXVtsajNiUtlbNPT7yc4E8JzIffFNYD6u0pZ9171sc2VoOr6Qja8X318bX7Ep9o/KVmbT165BUuJOpWomd455gbUXWulmB3yyW1RDYxyrLftLdXpj2foG5vuLaNlh/o5UdO9ZRgdOS5+Kf5R7S3FuB+uXHpsGWz9WDOr31Wj6v7KtjoxFegpaLFnuKX0ftfJnw4ydtyjiqAEEBiPqiMoAesfK2Pj40vnG4IgZN4EKQqMnfbjHc2wiUqS0hIrjMYgOq9MUMqEvJ558nrmMSixXY9nkJGRESoqKi4TlN5AiKnAR6NRJvtPAJDXPY8QjiKEMy+ITvQoMa908VhRyNjmPRf8jHfNZ2nTYtp42NrHq1j3+DL+yaKY17lfjsYJSssiKeXb8P5Jjj+VJtVTFp/SVmXFUmKi4hp1sZD2N1ex5eOtquqAvDZU8yZ1sRCDDervUBcnA5lQ0rgtfYaBjHXuLafzU24MheoyzASmg3gHL83Y6rkwz9R5dTEvnU2HvTaP4jVOVfVmuueYX0Esb+3j9VRdX7h8wdcBqx+tpe72ElV1Zi74lIwj6vzX/FY7xR0OVXWCPvCNBZjouvhphwH800E8A2l85SzrjeveW8/Wj7eovtaaR2txNFtVEYGK1tkp2ZDep0mHmI/T8ZZKXO7MxOR0qL+zhM1P1GMqUfc9F7XZcTVaM44HmfybM78a4sKLE4nxIBNBdNFYMbx/PpWgJGaOeSEIGAth0zvzqdySZk6v0WRcw13wi8xPRRk8nKGvSut7BYEggXENgfHMa8O2/hC2/hDGKXns8px4ioWFhddNOfx1yQPV1dUVf3FzR89jMK+JHxMXBKL69C/MjI9bXGF8Efid8h3nDSYGaUkLwqIxe2ZCYP8L8v+FRdqD4kziBUhaDUJSwGiqP4SrUo/ZpmN+MCQTlTIpKsVedCRC7c1OijvsHP1uL/OxzV6ikFVRafBP08uzoNPg8Ld68fWpG/Dmun1IUYlwSB1jrWSNC4Ndj73RrEoFqKKzECkqMfDH3GW9C9wOdHlaSq9wMvxK7lKAodkwc2PqBsrTP1zZLu2NH5Jlznf9Xe7M4eHd0ytKD3f4K6dUp0TzDQVU7bqKIa/MhNZ4adKp2CvNK0qJduDz6hUsjv5nD+YCUZWKEqBKYSOG9rfXYKswc+hLJ1W9t1PfyzBxWAZhf4TJNFLU2VjFtjQM2JS6iwcvUaTuZieOGgs11xZz+mfZHyy5vrPGnHIvyzJ7tVowQzQsEZxTRyDsfWWBsTML+NTGzX1wdk92B2oxQWnz1fK97fmThogx+zPFCEog+xTSokslk5OMkxKB/KXv7iViQdvUQS6ZnDQzYMdeIQ+OZi/cfE5kVlzgpxkYzf0DS0lgY1/5KQBVVeqC+pfx548rrriCV155hQu//Q9cj3465ZgmGCGSIZXWmrsMGCwie3/qi6cAkrxJRDuNCIt2gR3/XuZ80Ck7xhapdkQWIoQX1DPqN/1NE1JEYp8KNb+VqLScfmoAU4kR/4g6IsrCbBi9VX1aCVulGUuxkfO/zJ3IXndHJY4aKxVXFzDwp9wHIUe1RbUvOnnGi9Gmw2QS8ftzf28rSdFrKjex9u21TJ7xcvq/cn93R9LtFloGo/s9eLs9OacCjOHkd3NXvEyGzqLFUauOjL5S6G067Mv4AIsx9NIkQy+pT0f36t+exKSSX+Pt9rP/c+oVCrZ+opWgN8TBL6jwEf0ra4uz/T6M+RkIKBn8tqrOQvR2Hc4GO1Nduc+jqq4sAgGGXsq9MRautWF06ila7WLiqNJXLxckEkTCgSjRsIR/WkCNXv+ufzyDqVy9dP7YgRx2KCbdd16Nifb7y+jfM8nAnzzZlT5J+KK6PJAiEhPdqYG5FH/U51+ys8w/BYd+qSykFi06d1JfaT/vY6Ze/qY6K8MYNPD84QiZ2Jv27lQ/burCSS709mIwGHj++eezPtNl/GXh5z//ebydjg8dp5qkBdtwBNJslAPACJvfUkjQG+Xw9+W+V/Il9RuCsCRYGBiPcugr6cegbCpKE2fmKNvoRGfToyZfZtkV+VRfU8Tx7/YweyG3eqP7V5bi4dDXuwmo9LsCnijRUFT1ZrSiVU7MhQZcbquqdHG1N5RAVFKVAs/ZZMNYoKdic4GqFHi+iQABlWS0nt+M0qNih3cMa95Tj9GhU5XuYbprnuku9fGaI//RRcCjslKAFaka2SstlyydiqPOit6mfg6QU3qzRej6rwGMjgHVduxS4VfH0HhPGQVuB4e+pu777P7lCN1kniemg9FmJDgTYvJMmiwIWXwBV2MeQoYNNZlQttVFYZsDUa9ZXtUryUcpbLenxlFzXJyLLERUk7aGdk0z1eNX3S8SgHO/WKYfWHTf6x6vRtSI7P9Cj6r0JiFfGI1Ok/E4wSAYli4Q9u1Sxjr7IsJi0phn6J8mWCkvqgsE2bQe/HNw+KX095XXs3Rh9tjL/w5I1NTUZH6gy/iLxOOPP86XvvQlzr38TfIf+peUY0I4iqRN/2223qDHVqThyM98BJUmI80vWiBeFCs5+6ss8+Nk30sU5TQ/sUO+lSlIrH13DQhw6Mu9Odfp/rX6sX/gxQnGT84SHFfnawQ8IYwFETAgr2HniPxmG9GFqColmvKrZNWb4GxIlQ+V32wHJM6Suzrn1OlZrCXqWd6HvqReqdlgg7XvbWXytJezP82d2K9GhTKGuYEg+z97iqBXXXs8pyI2mQxTvgFHrZU+1G90UAtzkQlNhvh2Jkye8DJ5QmX+L2D3P5zCoG4vBcHx4IoUtjY/0UxwJqS6blrV8GViKZ7uOWwqU8sVrrZjLjaS35SH50zuMa/a64oQdSIj+5cnbcXWFy3lBqxlJoo6IrnP2QSRcCBCdEHCny5Fehbs+0IPhkL1c4fpM4GsWWaAlOMGB6zaWcHgPg9De+eW9b1i79GYZyASlphZrByYvL4bXABD6jMEfXD8dwo53LHo3Em+l6V/nvlKOWa9sS6M3Qx7DoQJBtOTvWz9qb6t3ztOb28vOp0uvon+teJ1SfcG0NbWxsmTslxb3T99Om2ZqF4iryf1Rd5m83IhoOFkQDZMMkkp5UbDYIwTViQ23wChBTj4koCgLJAlk5RS68rOhDSfJuCiEJWkhfQTiaJ2A3U3FtH38gSDr6b5uKJSWjlt985y7FUWOeVbDqneLjnMYDKjmixTdUMhE0cmVZNDiIlmXQI0bCtjwRem73c57OZVsO6v6tFZdKpSjgG4H6libthP33MXf1Bu3lGBt39eFdFrpbiU6d7a31rN4N5xplWkHFkpVr+7joFXR5k8lvvuvNadVThqLKoIbCCTm7qfG0sQD19Dirdc0ruZC8CX5nteQlCKIRql5pZ8el/1ZPw2M9U1lUn4BrMQlKToytK7xbCMnHQmSURJFFh3jwGtTmDvz5YGsSVRXEJOimHTTXJX/Ore9ANy2CzbIpmgFEMs5Vsm5aQYSUnSQD4+biJMFxoOI497gdJwWuUkIE5SCg1puXMUjufBiYKEE1JRMp2WnARg/91ejv1QJim9TkP9ZfyZIRYcbGt+iJLCtrRlIgYNhr7EIktZOxTVGTj8myBCQG4XKSSllMpRpKDs7Fdf76B0tYPdX+6V172UwExGWWvF98lKlMngH8VJSp9RRzjY8vFWgt6FS5J2bCUwlZvwD6ojX5tckL+6kIE/qvMzTC4R/9SlSTNkqTZRfXURJ7+jjtSz9ROtjHfNcO6nuQeVClblUbI+f0WkY7XIb7dS1O7k1AqCRGpxKdO9lW51YS42qErbtlJU3ViEyalXTSLc/NEW/BNBjn4td1n6qhuLEDUCvb9VH7xNi+WI5SbUcADkKiUGnI0WVSQlkPsBv1+5XiafUYpmP0aWujkgoy9qgq3vb2Ly7CxnfpKhTaW5bsU1Tiq35HPqp0PMdGdYmFP80LT+qJLyLaM/qZCUJK2GNXfoEDVw8OeJ+X6oKG+JclIMMZJSm3GOIpfErpOpAT1Pg3YJOSmGEy/8PR6Ph6uvvpoXX3wx/b1dxl8s7r//fn784x8DcEvLx9IX0mpgInW+vuoBJxPn/AwpSl4pJKVkSBJSKNG21r+3hkgwyuGvJja/vJ6p3mKw1xtxP1jLhRdHGXo5dxJr47YyCtoc7Pr0Sbg0YsXqYASjEdUkj5ItLjzdPlUptmLXu1R2qLq+kGhEUrWY1/HWGkyFBtWb3xq3leGfXlB1rZWi9vZifKMLKybBqcGlTPfWfF85Yyc8THepU4laCdyPVDG8f1LVteruLKGozaGKwAbQsqOSvpfH8Q28Dg0/hw19RodAwKMurlF2RT5TJyYz9wMZfCNjsV4mDl3E9CbZkC0GuOZdNehtOvZ+OkPbzXDP6/5HDaIosP//9Wa/drp3ocToMpLKYyQlUQAjbNpZwNCxeQb2Ks6yPS/j2keMpKTzBllzNYz2w3DSFMBbb01LTgII0s3Le7+NJEmXY15vUMTanLv2HsqK1qQtI2lFtGMJQoKrGsrdBo49H0TwKzGv+Qy+V1SSiXZA8RozVZ1Ojn53kKA3KY6ayfdaLiYGGf2yte+uQRAFDnwxC0EhTd2NH2wiNB/i8H9kmSf/f/gtGAoNqglRGKBsg4uhV9TNkQ02UTUpZ6UwFBqouqpAFdkIZCLK+MkZup/JndBrqzVStrlwRWQltbBVGyhem39J0jBfynRv+R028spNqshyK0XJBgeWEhPnf6Uuvrb+fY0Ep4Mc/04akYNM19rkRGfW0v9CUnz4YqV4E0TVJEWQyXnOJntWklI6H8dgU7ri5a73WvwyFQTtxdj0wVomuubo/m2aubIgpCUvFbSZqLuugDO/HmemN4OyZCzWleba8VhXprVdhaQkaUTcN+jQm0UO/zJhwKjDknE8iJGUqs3zlJXAgcOpi5ozNfol5KQYju37F6amJrn22mtfN5LS6+ZtnzhxIv5/08svUuCXB3+T30ej34fZ70NcEHCG56lKWhE/4tUyuiAgiSCJPkodPvTKcbNZ/g2yqpKzRMKaLwECoga0ejCZJSSNiClPoDBJydlRAXmKUqCk1VBYE0ZvBfc2Oy132yhsVRbBRQ15tRpstYlF36IOM2ZFBXFmIEj370fiBCVrjQlnUyJQWbTOirlUaTBmKFory5IFZ0JIUYmK6xNbjgvXWDGXGRJl19lk8g5grjKT32Fh88da6HzSTeGaPMxV5oxlC9ckdiLkd1hofUsFpVc4l5YtMy4pa60zg08mKC0uW7QuQRd1tprlsvFntTF+ZBzfRBRzgZhS1t5oxt6YWtZcIDcvUwEUtaSWdbZmKauc11QAa95bR9n1+ally4ypdlFgrZNtWNThoHxDvmzDxWUX2TuG/pfHOPaDvvRl09gw9m4ctVbKNhWosqH7LVV0fsq9xIbO1qU2NCnt0Fwgkt9oo7KzKDd7r1Nv75gNl5TNYO/FNlzO3ulsaC4zYq+2UndL2fJtNumeNn6oiS0fb83J3jEbFm21Yi02Ub65KCd7x8576nt9nPyvCznb21pnpun+UuyVFmquLqBovR1zeZY2256QMlz9nipqb89PKpuHYBUUG5rIb0vcQ+EqC+YaU7ystcKSsGGlnsIOc3xRx9VqxlyhSZx3tRnsOnr/4MGcBwVJ53W1mLFU6+J1CzvMifMWyb/94zoErRZHvRZLkgp2YbsJvQ3QajEXQKFb7u/a7nVStAbyahKpOApbNJiVR9VZoLBFuT+tlrwK6LjXzKa32TCXQmETmJ2AVoPOrqUwSc3dXAz22D1oNEiClBh/zVBYmyhrqdCSn6QQWlgGZsX8u3dB9wWIeUMWc5DCgsTAXlTgx+KKrUb6KLPNc23TPC6zD3twnjJzYlwrE3zkx8c5H3UaHyaN/LteUU6aR36vFWEfpbPKeX0+muZ8mJWFC4fPR3G3lhmPGZ9Zz24neGL8Ld8CLd0RJs/I36DTF6DJEwCfHCCsmA0QOHAMjUbD9ddfz2W8MXHLLbcAcOrsjygsDhNT5rK5wjhd8v81wQgF1VFMSlsfOg/9R4OwIBP7TEUC9uqEO+hq0CfUUqwiBW0mOY2SLwIC1FzlkI+JIi63BVO54teYoKDDHBebMFWYcLWasNWa2Pj+elwtpoQ6hwkKVlkTZUsM5LcnxpNzzwxw8qeJCXnBqrykssaUtEeOJhOWamUxOioh6oT4/Ztc4pKytjpTynmLNlrpfNKN+y1VKWVtdSYcTallTS6l33dBxXUu3I/IaQos1WnKxnZnmYif1z/ox1JtwpU0zua3W5eWjT1ruQlTsTlOUMpvty6yYWrZ5PHEVGzMXLbEmFI22YYV1xWy6l3VibI52LD2hmKctVbKrrIvseHissk2PPurgThBaTl7x85b0VmIvdJCwXpzatk09gbi9t780RbWvrd+WXsnv5uaG0pwNdlysqGr1Ry3Yeyecmmz8bLkbu9M7Xs5e8fKVl5VSHGHM6O909mwYL2Zzk+6qd9WqsqGZRvzE2l9lmmzrlZzvM3u+XwXQ/smVNm7fFM+ZRvzc7J3zIbFW6ys+R+18evE7a0ECFLtnWoXW0m6NiukLRvrI/yjIYZemlLabFLfubjNtiT3ERbQGyAggllM7TvLTbhalB+CSH6bbMOyK53U3VmcKCuImCosKX5kuj658xPNbPxgPaYSXbysIAo4m81YqpKetcMSv4dCtwkkmFcW8x2NJvJqk+1ixZhsww75vAMvTnP8qSGi0UQwpqDdFLe3wQUFHda4P2qt0uF+qICmu+UC+Y06zEXyHFxnhvzGRODGVAK2ykQKeI0eNFoh/qz5VVGEqDxGWh0RXAWJhYf8ogjO4BxGT4S+EegeEoix0awmP2WSL05QKrD6sZpivqEfZl/C5/NRXl5+maD0BsVTTz0V//8oezAlZVRwViCTVMIRjHkRnPUJAl3vK9NMDwbiaUZczUYMigq+0QGuZqVPFQTsdSaslfJvUSeitYgYHUll3Ql/Ka/KSF5VYje4y23B6BBovq+c1ocqUiTzzRVG7PXJZa0Yi+R+aGYwwOmn++IEJXOFEUdj4jt2tlgwFil1jXJdjDA/EYSoROlmZ2rZkqVlAYwlRpwtFjZ8oJHOT7pxNJoyly2Sy8bgaDTRcG8pJVtc8fuPl3WIKc9qrzdirjBCQCYoudzWJBumls2rNpJXnWoXT5eHwFhAsXdq2SU2dIiJd1O3nL0XPavy//Z3VFN2bSJumMneMRs6Gk1UbC2kYmtBdnsvsmH/q6Mc/2GCUL64bFobAoXtDsq3FGS0ob1+qQ3rtxWz9RNuHDXL2zvZhqXr8qm6pjA3e2dp32ltSKoNU8ou02ZjUNtmYzYsaHNQc1NJTvaOPeuax+vY9ERzTvaOvRtHgxFnXR4VnQkbZrN37Lzdvxzh6Hd7c2uzyPauvLGA/CYb1VcV5tRmY2h7exXVbypMLWsSkuyd8FUcDan2NpdZkmxoWFJ2sQ0xiQy9MgkI6e2tLHTJfSdJdrEQGF0AQczQz6aWBWh5oIyC9TbsdcuXBTCXG3G/uYLOTzbjbDbJZYt0cno3s5DiT5vLjTgakpQ/NBJSTMnFKPvFcbuUmlLKOpuMGBWf8+DXe+l+fjRRtkDA2ZRUtsGEOUlN09ViZO1jVVgrjRgdEVzNiWO2KgOmkkQMwdmoQ2+R32NxiwFBhJBCDrGVSVgKEotkzkrQx+7BAsXmIDqvHHs7dxRmkziKBdY5CodlVQWjUcJVLBFTCM1zSIx5dgNwww03cBlvTHzkIx8B4GTP0zgKE+/fZJOwueT/C+Eo9qJoXAFlagT6jgRBkmNeeoeArSwx57BVajDEXBeTIPd9BgjORRBEgWIlbi8IAvZqI4ZCZZ5hAEe9QV64Bwz5IrZaPaYSA2sercLWaEhJO+RoNCaV1ab0hed/PczJnyQIL44mc/z+DTb5dwzWcgNWJe4WjUSRNGCwCUllLSllbTXGpPNasDca6fyUm5aHKlLKmkoN2KoNKWUNBbEbhuKNdhrvLU+UrU2c195gTinraLLINhwPYihMU7ZwaVmQyT/2SnOcoGSrNaakYkspW2DA3pCwi8Gpw1S66P7jNhRTntVWbcBaIZctWu/A/eaqjGWtFYmysfNWXumiqN1ByRWOJWWX2FDZyGywwemfD8QJSsvZO3be0o3y+Fq0OZEyK5O94zZsMLPhA02sebQu1YaLyy6yYfWNJRStcsbPvbjsYhuuxN7x84q52zvZhsu2WVvsxImy1dcUUbYhP6c2G7OhrdbIlo+1Und7yfJtNsmGFVcXJdLsLWNvW60xbsMDnz/LwJ5JVfauvKqIyisKZRs2W+Nxq+Q+ImEX+ZijxUD72xLt3VqezoaL+hPFPzI5DdiqksuaMRTokp418WymEgO2GgMLcwIj+2ew1xuXljXI8SVDoVw2/m7qjDLZOaiUbTSl2jvmWwkithoDhkJ5DaHquvxF/ayIvS5xXtlXSZCoHQ1GNn+ojnWPV8vPqvhLgiBgqzJiKUt61gZD3GaOZhOSJBGcleNAllIDluR302BKfAt54FDuYeKEnxM/GSWaxE+y1ybOq7eCvdaYUFAqhKZb86i/US5gq9BgcCbGH3tSkhRDPuSViUiKyqjeJKCNrRnqwF6aSO1myAN7UsZPmwtswXn03jDDI9DTK6tZAhgMQQo0gThByW4LYjXG1keDRIPH8fnmKSkped0ISvA6kpQAtm3bBoD/xHFuRA72uZHYQoQNRMi7AFe4Iqx3JHaHbXKEudIe5h6Hl9W+MG1V0K4sKm+oAbey+GwcC9K6GjrWy7+7DstE/sbV8m/3hjB1mxKDffNVJtzXyr/1Zqi72knLHS7ySvTYSvTUX+uML7y731SI++5EvtT6GwtovltmODXdXkz9zaU0P1BEzU35tG8vpWVbIk9q/c0luB+QW0j7fRU03FpO8YY8zv9qDCSo2loY/7Ab76ik/WF5Qav5rnIab6+gaqvcQlbtrKZ5WzXzIwGCngUa76ykY4d83vqbSmm8o5L6m+TrduyoovHOBDOgeVs1zmobVVcWU7W1kMY7KmndJh9v31m9pGzHDvke1vx1HY13VNLxUA0AbTuqaLi9Il62dXsNHQ/JZa11ZhrvqKTpvjq2fLyVjscaabwjcd62B2toe1A+D2b5WVt21AHQ8mA9jXdU0vmkW7b3A9W0bq+J1224vQL3Tplh1ritlsY7KnG2mjGXWrDkm6i5ojilbMyGbfdV0XhHJaVb5IGg40HZhj3PD3P4P07ReGcl7Tvlsk13VtB4RyU118jn6ni4iuZtiRzojXdWsurhasxlRmqvK6bxjkoa3yQ7Yh2P1Cyx4SrlvOOnPWh0Iq33KG3g4eqlNlTsXbgmj8Y7KrEok3f3W+qXlHU/IJc1lxllG26X7dL6UB2CIHD8R/1L7Y1s79aHFHtvl+1trjKz6l21tO2oWWLvtkdklkf9nTU03lEZJwV17Fj6bmL2br1Htnf5VTKzJNZmk224+h3yx9v4pnIa76ik7vqSuL3T2dA3FGCq14vRZqDpTtkWadvsg/J1Src4abyjEo1RzGxvpc06W+U223iPfE9Vm0qRJImzP+uJl43Z0FSgtNkHZXu37JDbIWYovcKZ3t4Py/Zuuk/+jmLkqI6HqilocdL93BA9v+mj4bZy2pRvuf3+ahpvr6B4o+xodjxYRfO2xLNa8k2UrJbt23xnGY23lVO52aWUraDprsSzNtxeTvv2Cjb8VQ1b/6qehltKqVdyTLdvr6Dh1kQ/1XRbEe33yXUrNtipv6mYLY9VUneLE/d9lTTcUphUtpD2e0pBFCjsMFN/Qz7u25Xz7iinLka8FAWaby2k7U75HVsqof46J813yH1e060F1F/rJL9Zj7VYT+3WYtyxvNRKn9xwo0O29+0O6q52Yi6Ug/kt1+dhsmmJhCR8w1DbaaPpJjmo1HS1nrotljgxqe16E81Xm5EUdSW9QUM0Ig/CLeuhfr2OkkaQ9Fra10dpWht/VBpWQ9sWWHM1NDdDcyPUKePPmlXQ2iz/P2IQaa+U2FCpnLcY2itAp4F8C2ytjbLOmVjg2pgfoTNf/t1kFNgkhdmokEdib/CsMgBdKYa5aUY+b30UOn0S1/nk3zfPSWz1wEPdC+zoXuDaKbheIWwXAFuIcIuyofX6KbgiScm0Zs8Zzp07R3FxMc899xyX8cbEb37zGwCi0Sh5riGsyhy2fRW418j/1w1NU99poeUG2Ulu2aqlsdPMhu1G1t5toP16Iy23JvqAxpuctN4l/264wkLjrSWUrc5jaPcskZBESVJ+7qbbi2nfLo+VddcV0HRHObVXK/3FA+U0b6ukoNWGzqql5b4qVj2s9EMbXTTfVUHjbXL++PaHqmjelvC2W+6rpuOhGlY/WkfhOhvN26pw3ysfb3uwkqa7E/2m+4FaVu2sAeDUUxcw2gw0KP1+y0O1Ked1319L+0PKR26C5m1VlK0vIuyPYMrX07ytKr5A3v5QLe77EyzHprsraVHq1t9dQ/VVpThqLViqTazaWYP7gdSy7Q/J13XfKz9b8QbZbqvfUktL0jjbfE8V7Q/LZRtuLaN5WxUVW2T7r3qkmpbtNdRvK6Xzk26a76miQylbc3UxzduqqLte8Q0fqqL5niQbbq9h7TtqWfveeso25NO8rYrm2Di7qKz7gdq4L1ixpYC8Uivu7YqvtbN+ib3bdshlTeUmmrdVIWoEzj07SHFHQYq92x9aau+WB+XfTdvr5Ge9Xvbh2nYstaF7pzzO1t1RTfO2KlytZk7/Vy/RcJSmW2tSysbs3XJXpWzvzbK923dUL7F3h0Iuq7+llOZtVVRfJZOXO3ZWpZQ12PSEF+S+vOqKIpq3VVF/i2zv9p1L7d2u+Hudn3LLz3pXZdzemdqsq9VM87YqNCbZr2l9uC6zvV0izduqaNou26X5Abl9u99cvdTeKPbeofhl98hlLdUmjn2vDykiLbF325tlH8h9n2zvGHGm46GahL0jSptV7N18R4X8HW1QfMNHUu0tagXCQdmGddfL9q69LuEbLrbhqkeqMZWbaLxN/hYab5P7l/bFZe+ribfZWB8xMzDP+d8MZe0jbHVym431ETXXl2MpMGOyK7754j7i7kqa74+12Vqa767E5ILOT7XSvrMGd9KzNt1VEbd3/d01NN9diU0h66x6uBr3AzVs+nBjvGy74hu676mk+e5KuY8QRDp2VNOyPUGAbN5Wxeq3yddpuKWU5rsqqNis2PvhClruS9ileVslHTsqqNxaSMkqB813VVB3nTL3ebA8xeeU+2T5d9l6J813VRAJRZgdCtC+yD9tva+S9gfl/iPfbabpzgrc98q/q7aUgAiDL03Hy7bdLx8zVZhouqOcRsV/bd5eJY8TtxRQdUM+7dvLaLuvNG7vxtvKaNoml226s5zGmwviGwjcdxWRV2TEqWwUabjRRdPNcv9Rf4ONhuucOJTX0X6bi5arEkEjrU4kEpJ9q6YNIo2dZsoc8o789jXQujpelJaOKBvrIly/xseaJon2WokG5RbXNUi0rAXTsExMWl0nsb5O8eFKYKT3JOFwmKuuuorLeOPiySefBGBi7ixt18iRwIIaaL7CQMNaASanabm9gKYbHPE6LbcW0H5HPpseLSC/IUrzHSXU3SiPPU13ldJ0u/ydSuEwrdvL49/bsW92ozfraFC+oca7K2i9tzK+wNz+UHV8rg7Qem8lzQ/U4GrMw1FrpfW+qvji+qqd1bgfTPT7LfdW4la+1ZY7y2ndXk3TA2VU31REx8OpY3Lr/dW0PyT3CfU3l9K6vZqytS6GXp4kEopSe1VpStkOZYyovqqI1u3V1Fyt9EMPVdF6fzXePh/zEwHcD9ayShmTS9a4aN1eTeObZN+wbUclrfcnns39QC1FbU6qrirE5bbSur2aFqWvd++sS+kL3TvqWPVIjfxsj1TQur2ahvvl380P1tC6PXHe9p11tD+sPKsR2Q7bq9n44SbWPN5C6/bqOKmj7aEa3EqMC+R+NNbv191eRev2ajo/Jce8Vj2ytGzbg/L9Nt8u27twnR2jw4it3ELNVYmdNK33V9Ou9M+1NxTTur2ais1yZ9jxSBXuB2s5+8wgh798Rrb3TvnZK7cW0Lq9mtprFXvvrEq14YO1dOyswVhipHiDU35WZZxt21G5xIYdytjZ+/IIWoOG2lvle2p9qHZJ2TZlTDYWGWndXo2jJg8kqL6tNtXeD9fRvjNhl9bt1TQ/INdtvLsGQRA4+5vhjPZ2KzGvmjdV0rq9GmeLhZYHK1nz9jraksq23l9N2w75fhtvLaN1ezXFG+QxY9WbU7+F5DZbe61s7yqF5NPx8CIb7qhl3bvk65RtyKd1ezV1N8nvrv2hyqX2VmJTQwcnMDuNNN+u2PvBpfaOtVl7vWxDQ57cvzQ/WJNa9sFEmzU6ZBs23ivXrbpGvpezz/Yp9q5dam8lrlV/VzWt26vJqzZSuM6ets3G+4i75O8oP+YbPlxD5eYizvxigJ5fD2bsI0D2DZPtba+wUrZBbs+JPkLxxR+qTGkv7gdrWLWzitWP1dL5oVZa76uiUfHF2x5cVPaBRCzQ5Zb7v84PNVN7WzHuh+touTfJN3ww4Ruay4203ltJg+K3r328Se5nFbQ/XE27cl6Mcj/bdK/8u3FbFa33VuJ0G3E15tF4SwnuBxP31HJPRXzuU3eb3H/HFtpW7azCUWEhNB9m+rSflnsqaLtfvm7TbaW03FNJ4VrZ3u0PVNC6PdEGTE4D0ZBMUqq9tpCWeyopXy/bu/3BMlrvS8QNW+6toP2BMtofKafySictd5dTq8R02x+opmVbInVpyz1ltN8nt6GitVaa7yrHYNeS32im9d4Kmm5NrHC13l1I+73yu3DUGmm+0UntdfL9FjeZQYDRYzKBveW2QtzXyH6Z0QHNV5pouEJu3w1X6GhZJ7HuWthwPbRvlv/F0HS1heZV8kJZ42poXQtGhdtvK+7l7NmzFBUV8Yc//IHLeGPin/7pnxAVhYq8wgs4lNBVxwZoU9YIteNeWm6w0Kz4/9UdGlqvNbP2NgOrbzfQdp2B1tsTG+Bb3+Sk9U3yN1PepqP1zkLK11rxnAuy4AtTuiqxubj17kLa7pN9k6JWK633lFHdKY8nrdvKcd9Xgb3SiClfj/ueStoekMs6W0y4t1fScLM8JrfcU07rfUnzqx1VrNpZRdvDFVjLDbQ9UEXtrfL32HRvFW0PJMVVHqmlXemzDnzlHNYCE41Kn9VwVxVtD1bHF73bd9bg3pHoc90PVlN1VQnBmRCGPB1tO2riBIVVj9TgfjjR77sfqMa9Xe4/Gm4upeHWCgrb7NgbzLQ/VE3bQ4mybTtq4n5N9bVFtO2ooWS1bJd1766j/ZHUsrH4QfnGfNp21FB1hfwi23dU0bajhoprCtjysVbaH66jQ4lvFK6207ajhrob5X7JfX9FPDYC0LazjrWP1rPmsTrsDWb5vDfKNmx9ILHGBuB+uI62h+W6VVcV4azNo/52+Z6a7qtKOW/7I6m+StuOGkwOPV1P9+OqstG2oyZOdml7eKkNW5TrVt9ULj+bIr7QsbMmHuOK21sZZ+tvKqVtRw2Fq+30/maA0HyIhhsT/XOyDauuKKRtRw1lG5R+/+Gk+xdjvpZctmydS7bL1YXKeSpTntVaYiHkDxOcCJLfIT9bw81y3+7eXrHEhjFfZfNHW2jbUUPNLco8//7qlPEv2d4Gm0jbjhqMTtlmjduUe1Cm6+07a5e0lyZlzKu7TX4291vktpauzbYqz9N4m2xvR5OFEz/qJxKM0pYUH5NjjvL91t1QQtuOGoraHfK7eaSa9ofrZFKHpNh7R8y/lu1dsSW2NpbaXvQmLSG/vOZT0uGQ7aLEYNoeTLV320O1tD8st5+K6+RvofFWuc9ovbc8o72tFQbadtQwO+zj9C8GaNouf/cxJPcRGKDtwep4H9F4WxX2SmucyL2kj3igiibFz6x5UwVtD1ZjqzKw9WNNrHlbNe6Hku5peyVuhbjYcHMxbQ9Uka+QwNt3VNK+s4b176tXnr2aNsXe1VcX0vZAFaUKmat9R3n8/g02cD9Yxeq3yvdbvt6J+/4qqrbK303b9jKZe6HwK9oeqKR9RxnVVxdSvtmJe3slddcXKjaswH1/sr9XQfuD5SAK2OsMuO+rILIQZXbAT8u9lbTem/jGWreX4d4ut31DoY7WeyuovbkURJHyDS60ek1cxKbt/hLa7lfmboJA693FNNwi+7K1NxbSencxlVdZqei04d5WSMvdiTWXljsKaLxN/l19lYvW25zYKuQ1zfY7i3DWmHEpccSWNzloUghLNRtMtNzkJL9JLtt2s53WaxMkPINVJKyQoSpbBVqvNVNeKse82jaAe0O8KG2boqxxR7hyS5C2Fuhog1plyFndBu7NoB9XYl6tEh1tcsyryAXjI/sJBoNcd911vJ7Ino9HJZ5++mkEQaC7u5uf/PznaO96M+cEgXzgNDLr67xPQ74+ghiWiGoFhhYE9BGJAhNIAkzNwYUxAUkQ6BmBIkfi/OOjEA7JMo7TYxFmpsBoBswSgydDFFSLcWmtiQvB+EL1gg+8IwuMnZrDPx3F6BApbrXIKY6CQca6ZhEEIS7p5R30M3FGfomDe6YoXWfHVZOHVCkxcmQGnSnB7fL2+5g8K6dJ6ds1RRUw0yv/Hj40TaHbRvEGG6P7vXh655i5oJx37zQ6g5aJI5MgCAztm8BSZOTU92USSuvOKmaHZDWN4X3TmJwGhg/JH8LgvgnyyhJMxcmzXrQmDSe+cQFzgYit0kL/bnkle3D3BI6aBAtz4oyXBa/s4I+emKZmq4EJ5f4HXh0nvznhiI2fmCGiLM7MjfiY6Ztn+MA4TXdWEQ5GmR9KyK2OHfckZDB9MNM3z9hRmQU98MoYNTeUoNFrwQyjR6bR6BO7Xb39PsZPyoHt/ldGKd9cxPQFH/hges0MoUBix8VM7xxT3cr97p5A0Ih4zsl1Bw9MYnLp4+nQPD0Jew/tm0Jv0jJ2ZEax6SSW4sSHPH1hFleNjZZ7K+j66QCWQhODisT0wK5x7NUJG06e9eKfkr/6geeHMJj19O+SmQL9u8Zw1SV2Q493zRD2yQPV+JlZivvmGdwzxvQpH8Wb7BS6E7sOk+3tGwow0zfP6OFJxS5jFK1yxVOHjR6bTpGgS7Z33ysjlK4vxDfhIzgbwlJkZOJUgr3g7fcx2aW0pd1jIBUxfibWZqfQWbUUttiX2Lt/1wQancj0KdkuQ4q9Y4gsROLMz8H90xhsOkYOeuTfe1Lb7PT5WeZH5QnrhWcH0dyhYWjflHJPEyn2Tm6znnPTzLTY6X9ljJmzPkq3OFPbbJK9py8k2mzs3RS6nfEUh+MnZogqkqz+CVLt/fIYxWvywQe115cSDUdTbDjTNx9vswOvjlK6vpC5EfndjByeQmvQMvyqBxDw9s0zecarvEf5Xrw9MyCIDB+aRm9LpDbz9M3jn/YjiAJD+2fQGzVMHpPtMrR/Mk5wQ6PB0zvP7HAAZ50FUSfiG/czfNyLoNEwfHAaa1L7njo/R8Aj23Dq9ByuJgtmu54Ff5ShQx7sFfLgJ+i0THX74szg8R4/hYN++hWJxgVfFF1SurOJsz4iC7IN52e0eIeDjByX28vggVkKm81Mnl5AZ5zFXKJDivF4lD451s8OHZ2jqMmMT9kxNX4uiKgT6H5RZurOjoWYVGQRB44HKXNLzChknbFzAbRKKraON4nMTYWYHFTa4RkQdRJT4/JQN9wLhkTTwjMJogZsDgiFwTMNI4oS6OAQWPJkghLApAe8ijhSnwesRrgwCSNBCyHJh8OekJgdDsJcRIMkCvQvQNECnDJouRkvk4AGOYUpQD8CQUVVaViEERFORzVovSLH0VBDBAcgAL1GCAmgGTYw7Y8wSoRzyth6zAr1PjCOawE9P/nJTwD4X//rf3EZb2x89rOf5QMf+ADf/e53uKrlCTQsMDwoIiapgXqGQkz3LyBEYLhLUY9waRFEGDo2h8GSKDzdF8DTL39vgwe9aA0i02cSfo2z3kzr/UWcemqMqXNzzA7JjuvwkVmMdj0jh5W+fM8k1hIT3c+OMnxwiqorC+NKG5PHJrFVmBmKjbO7J7BXJT7OsZMebJUmLKVGDPk6prvnGNil9OWvpPoqo8enCfvkzsU77Mc7PIdGL3+3A7vGU8bZkcPTCV/FD9Pdc4wenmTy+Bz57VaK1+TjVxSmhw9NpYyznp5Evz+0ewxJKmT0+BTzF/wM7Z+M90Mg5/uePO2N3wOCgLfbA0AoGIYkxdSpM7PM9Ml94fCBafRmHZNHFB9u1wSWYiPRBfmevYPzTJ2Vd5KOHpnBXGhk+LB83oE9E+SVJsj64ydncDXmEZwJM31iGke1Vd6lA/S9OoarNuGrjJ30sOCV28XJn/VSuamIoT1yytz+XYvsfWQ63u/7p/xMd88xcmCcqVM+IgsRilYllADS2TvuG746RtNdlVRdUcrA89MMH5iKv7fF9h7cPYYUhaleH/hZYu/ps7NM9chtdGjfBKJOxHtWtsvgXtlXOavsUmx5sDJu76F9HgxWPWNHvcp7TfUNJ7u8cV9l/LgXa4mJoX2KvV9NbbPjJ2fivmE4GAFJkpWA0tg7uc1O9fqY7p7DUmJANIn0vzqW0mZT7R2Nt1mAocNj1N9YQUC57uI2m2rvUUrWFzI/5gc/S+2d1GaH9srvPjY/GNo/id6mjate6S3auL0H9k6iMWiYPjGdYu+4DU97mVUIHcOHPRid+rhvOLA7tc3G7O2+txyDQ890zxxD+5X737W0j4i12bler9xHvDqOt1u+VrY+ItZmAbp/M0zpRhf+kQAIAiNH0vQRyvc48OoYxavzAYHIQhS/J8jcYCBhw555xk/Kzza0a4zo+gK8I/L9DB2YoniNU3aTBVG2t+IbDuyeAlHA26PYf/8Uepvcvg0mASkiMa747cMHPegtGiaPKn3EniTfEJg8M8fssI+hl6epusmJtcjC8BFv/F3llSZ88fFTifnM9MlpHNUWLrw0yXyfn+JNdlz11rgM9/hJL0HFF5/s8eFR3k3pVjuhYBhfT2Jr2NixGSKhKAgi/qkgnt55Rg7F5lQTFLU7KF5lRxAFRo/NIEUS9vZcmGf81BxoNAzun6G4PYpvNIKg0TByfBaNVmTkyAyIAjP9ASZ7ZT9x6IgXKZqHR/HhRk760ZpETBaBxmu0TA+H8AxHIRplqCuKqAFPP5AHg31yCnSNT36+6RE5JuEqhuEpCEdg0APGUT9DFtk3jD+rB+YCApYLc7yw70f0DZ5Ho9Hwgx/8gMt44+L//J//w9/+7d8yMDDAj596mtrITXhHDEwNLjB8Vm7PAwfmcNYY5PQgGg1jp31o9BL5tRa0Bg1T5+YZPabMmfZNU9CUaFgjhzzydyHKaY2mzs5hLNRhdMjxmuJVDoQFAUS5b0lWhp8842X8pJf5sSDGPJGSdfnMKr7X4J7UsXPqtDcexxrcMwGCQEGjg2gkysCuCfS2RKhw4sQMM0ocYvjgNDqTlqlTHvlZXxmnZIOL4g1ORvdPM37cw+ywfM3RI15MLgMjR+U+rH/XBHmlRs4+LY8n9XeVxvshT5eHyWoLg0q/3/fyGK7ahPLJyNEpdGYNp380CEZ5fBnen+QbJtvwwGR87Bw9Oo2jMo/JM8o9vDRGUUdinB3eP5no9wPyeceOTdNwWzlhfwRP9zwBj3yuob2TKWPn1JlZxhU7DO4ew+jUoTVqMTpEBvdMpNh78uQMUz2yDze0fxJBKzLbPUPAA2PHpxPz5MX2PjCDwapn4pRcd/AV2TccPyw/z/gxT8JXOTGHpcjEsHKs76Vx7FWJfn/02DTFq5y0bCun64fnmTxtZfjAZHp7H56Mj51Du6ewFVvi9u57ZYzCVkdaewfGAkye9jJ6ZIrprnlcbmuKvYf2T6T4KjF7g6z0VBIowHN+Nr29T3uZjM1J9o2DBNO989irrETDEuOnEvIryfYe3DeFRq9h5pxsl4FdE5hceoqVxdTkNjt8eAaDXc+YEtPof1VuszEEZ0Pxe5o6Po2t3MzIIY9c9pWJFHuPHJmK+yrDL49isOgZ2q/Y+6Wx1DabZO+ZQdmGIwcn8Jz1k78qL8XeyW024CFub/kexileHSEworTZ/ZNL7B1vs7vGiASjzI4G6HhLHeFghPFjk2ntHesj5vsSv/U2bbwdLtdHJPvXE10eFmZDIAiMHo31EUq8bNcEeSUJ33D02DT+yRC2chN6q47ZAR+DB+T33PfK+JI+ImbvqR4fnoE5bKUWIgGJ/lfHyW9U7C2IjBycIqLMr3yTASbPeBk5KNtwfjyAyZkgOg8fmEoodQfkfnbseKwtjVO82sn0yQBdDGCvMUEkYe+ps7OMn5SfbXD3BNFwlJkhpU/eO4nWpKHn12PKu5llOt5HTCOKMBvzt/dMYnTK/rV7ZwXTF+aYPiOXHT48i8GqjfuVg7tTfcPxE15Eg0B+Qx5R5DFlWBl/+ndPYqtIsvdxLwGP3CfP9Mwxdc7CxLlZJo8H8E0tpKwtjJ6YJeSX26xnOMDUuXlGunw035rH7ESQgFcjp9ECRk/6ZN8QLQEPTA0uMH46gLAAQ8dCFNQZMRcYQJBjdoIAmin5+ab6dUz0hAA9/eehpALCAzNoA/CjIz9EkiQ+8YlPcBlvbDz77LO86U1v4vvf/z7XdDyBGISB81p0SQJj4+dDzIzIMa/Rc6DVL5BXKMe8Bg/PYbAlxuTRLj/zE3J/MXF2DmOejonT8yAKDO6dIb/JRONtLs4+O8XIUS++SeW76J5j/KSR0RNyPGFg3zR5pQZGDniZ7pmlZLWThVllXWdwnvHjHoaVuW//q5O46hPf0NC+KWzVJuy1FuwDPsaOexg9HIuPTVLQnJhfDe6ZSPgqQZg6J68DymXHWZgLE1SWLAb2TCCQ6IfGj88w0TXD9Kk5bLVGitfk4x0JKvc0nuKrjB/3xONNI4emEA0i0z2zzJzzMbhrAl2Sbzh6eBpvv9zvjx2dQW/WMa3MWYPeUEzwKn6uuRG575vomsNc6GH0mDd+D9YSI+F5ZS2ne5bp8/I9eHtmGTvmYfig0u+/PI4zqR8aOjBJUYcD//QCM/0+xo55GD0YW5+bwNWYGCOG9kzEfZUTT1+gcmMBIwdia27jFLYlgnSDuydS0keOHfMwfsKD58w8YX+YUCBCcEK24cCrEym+yvgJ2d4AI/sncNRZqeosZuD5SQZ2pdp77Mg0073zij2n5DhWzwxBr+zDGZPiKsn2Hj3mxWDXM3laWWN+ZRxzkZHuZ2XFprrbSvDFYq9n57GUeBg9rNj7pXFslQlfZfjAZDyeNHfBy9gxDyOHYuuLi+y9fyLuq4Tmw4SDEYb3jsffY0FLQvkp2d5Bb5SxYx6sZUZMTgMDuyfkdSdFnGVgd6pvGLM3wOCeMey1FnzjyprQrkX2TmqzsXfvuTAPQXltL7nNJtt7+NA0GoOGmbNKrOQV2d7x9HAC8TY7dsKL0aln/ETMN5TbbAwjh6bi9p4+42Ws0sLoEfn++19OtffQgUlC3jCNt5Vgr7EyfsrD8P5YO1zUZpPsPTcelNv34Um8vUGiYYmClqQ2u6iPGDvmYey4/N2c+cUA5VsKmD4p3+PAnlR7y32EbIfhfZNEQ1G8niAhXwT/dJDZoUBK2alzSh9x0IOgEZgbUPzt3ZOUbXHJHAtRYPSoB2+/HA8bPzGLwaJh+rRsl4FXJzEXyu1bm2cgshBlvEs+NnF6FnOBntET8nkHdk9hTfLFhw5OE5wJM7JvhpIteeQVmRk+FPMjJ1N8leGDMywofcvMYJDxk15GD8/g7Q/iajXjqrPGbTF80BP3DYPeEOMnvYydmMPZaCAaCTN+cjbpPc7I9lbqjp+aS6xxHvIS9kcoabOj0Yv07/Gg0Sba7MRpH5PdAdkfPTpHNCrhHVkARAYPzaIzioye9IMgMnbWj3dYvv+xM35ELXj75PX3gaN+jDZRJqVdrWPsfIjZCTkWPdYjobcsMDWIvKHwPJjzQAjI5xrpkTlfhVUw5ZFjXkOjoJsKMNAFeYmwPoPDAv4gGIbmOHLiN5wZ6EKr1fL973+f1xOC9Don7f3Wt77F2972NgAqnvhbzGYzYbMixXlhafmoIr2eNxBZckxIujXj2NKEhNW1ESrqYHYiyMnnoqkHo4nfwtzSvLPlG40M7PbF884mI8UkIfmDL9mYx8i+2aXHM+WlBUwuiTXvbibsj7D3384pJ49mLK+cnOJNdmquLWXPF7pg6a1fxjIo3mSn7qYyel8YiROWckH722riBKJc0fbmKmxVFnb93Sl1Nxkbn1S83/Xva0AQBfZ/NkPe8dcRnU+6WZgNXfRrVd1QSPmmAk7++AIzZ3M3hrnMiC9pkMwF6/6qHn2ent3/oO5dNe+owNs/r6otbf5YC6G5MAe/eD59gSz5U7Plngcy5yGN1c92PN2x5L5Sl4a3qgQWyHYMQJvmuNLfCemOJWPR8Y57rURDEid+5QNtmntOcqZiCkqWQmi/TiZeHXpWvq6kX3pdKckxiCpkybKqCEN9ABoixkSdGEEpGWGLSH2+jzNegcSHLCPoSLqvJe/Rx7aCMBHgx2EbixEoS4wlWm+a65bJY5Vm2LD0WKE8ThkvyA5e3jPf58D+/eTn5zMxMbGk/GW88SCKIpIkodWYuH7VEwBELHJ70A0t7bticqB4vEuOpZTz+Zf8bdMHqhFFgV3/dC573cX+kQlK1zgY3uXJyRcCKN7gYHS/J3vZRdj4wSZ0Vi2HvtiFf2qZ6yRh1TtrkYBjX+tRdb3LkLH2vfXoTFr2/uvpnOuUbnVhKTXGyS+5YvNHW/BPBDmq8l2ZSowyGSVHFKzKo+HWcnqeG1HdDtUi1m5f/b8nL+p1ADa8v5HIQpRDX8rgo6RDbP1iaZeQFVs/0crU2VlOPzWQc538divFq12c/F5fznWqbiyifFM+p5++wJQKPz6OLLnnXzPS+XzJfWC241n8xdcTJhd0vL2R878ZZPKEb3lfVMHGD9SjNWnY9dkzibax3D2LApigsMnC+BE5kJMcJEvnqwoaDaUbLQwfWPpuBaNxyd9icG+zYS3U0bM/yNjZpeNBuCjhj8VISsnwVcpBQuPo0obvVwh2lgtz+P1+zkx/G4/HwzPPPHM55ch/A+zdu5fNm2Wph2tLHsdoNCIZFR99Ms2cUWnX0tz80mNJkMLhJX8r6JBVLWf6fJz8XmpfKkWzh/JKNtsZ2Z3DHFbxu/JX5cmkBDXTbCN0PuEmNBdm32fO5FzN2WKh4bZyjn39DAGPiutdBiCnQWi5r5qBXRMMvJj7fK/lgQpGj04z3ZW9LSajcVsZ+S02dv9jl7qbjHXPKtrT6nfVotFrOPjF7POM1wOdT7oJzoQ48PmLG/MqXGen7oYSzj4zyNTJuZzrGYuMBMbUxbza31KDudjA3n/J3R8HqLuzhPnhIKP7c495bfxgEwu+MEe+0q3qWsCfn9/1/wHa3lyJIMDxb/fn7HcZHbLSU9AT4uCXssyD0jxjwWorE0eU9rfM9QRBoGitlbHTviXf73Kxvc3vqyAaltj3tTT9kiNBzBMWlvpdkUJ5gTtGUEpGuECuqx31ADDleoW9B/dSUFDA+Ph41nu6jDcGLBYLPp8PvcbCte4PAhA1y5t+teNL41rxmNfsMuNdmnXBde8sRWcU2f2Z3qxVl8S8DFDUbGXs8OyyMa+YD5ffkcfksdl0BTLWXfWOGqylJg78RzfB8aX3T4al3ub7K9DqRU6omGdfRgLtb6nG4NRz4HO5+w35HTbyyk0J8kuO2PCBJvwTAU58V927MhQY4gSqXGCrNtB8XzX9fxpj5CLHvFY/WoulxMSrf3vxY16rH60lGpU49vXe3CvFlltyNx8Am59oZrLLy7lfDudcJ0YYPPv04PKFFRSutlN3SwlnfjnEdFfu/mTOeA3+UTo/Jnmemqufk+HkK6+bfF0DrHt7NT1/HGP6tD81BpW2rnzd1W8rx+TSceirvXEyaFo/VkzcZ+zcjgYDnnPBpfeS7pk0IkXtBsZOLPWPBL0u6UfqteuuNlFQr6fnQICxM0v7/qgjQdqKkZSSsVAsH9dNLZ1zLBTKMS/DkNzejk9+nYmJCX74wx9yzz33LH2G14DX3Tt/61vfilZxWgf+9f8HgNYnoPWlf/FiWEIMywZsKPZxTWvCeZAEWVEpEy70aDhzgqUEJZAbhiimJShVbDFRsdZK233OpfUgoaoUSjSKGEHJXJJ0PAtBSYpK+Cbg/G+HEwQlkBthto9LEDAXmtAYxHhqslyx+aMtbP1kq6o65jIj69/XgLlAXVOw1pkpvSK9/TIhv8NC68OVyxdMQuP95XQ+6VZ1f/MTIQRRwFJoWr5wEo5/s1cVQQlA1IlyR2tevmwyOv/GzfpHG1TV0Vl0aE0qxc/MxNPhXWzkd1iwN6ozhLHAgKAVEFU+1pp31rHxQ02q6ohacUXj2ukfDqgiKCEIiKKQwuxOPZ7+75s/3MjmJ5Z5pkULNyUb82hU0jIJGk3OBKXaGxPsdkQRQadNT1CKQael/X4X1VdbU/8uCjLBKEOgovFWG5sfL6awJcN9ZahrzBMxuzTpCUoAkoSk08YJSgDz43D6lQVOPBeGSDQtQQnkXOVRvYaoXoPZHAEiDPVpQFEk0gTCRAxiWoISQETnp65I4ub6peOOwSMhiUIaghKAmV+GtbwQzmxnrVdMIShdFZjjnsAsBHxohg1pCUogk5NiBCXvmRMcOngQu93Oyy+/nPFal/HGQn+/rMIYjviZmpUnOZr5BTTzC2nLC5EogqIkt/bNBVRdaUlbLh2O/3iY3V/qzVpmSbAG2Pr+Jmqvz8GvSQqoxIghppLMi9BL7u9b5zjy7R5VBCUAS7ExZddpLije7KDzSTc1t6jz12pvK4mn6FJbTy3qt5XG03blis0fbWHjB9WNsVq9BkGjbuI5vGtKNUEJQNQIaDL00Zmw8UNNrH1X3fIFk6DRaxD1ImaV7cLRZMLRpM4HXRFMMpEPlZfSmrToLOocr43vaaLzw25VdUwlRgRRQFTZLiaPz6kiKAEY7DoEUcA/mrsfb6sz0fkpNzVvUvddNd9fkfv7VXy+0q0OTOWm1L8vMye0VFtY81hNPAVlrtj6sSY2frBeVZ3SLcVojSIGh15VAGnfZ89z7tdDuRGURAFEAVORAH7iBCVQNgBpNBmJ+O07i6jqdFLUsdTuUiDzAu7Jn3k5+6o/LUEpBo0vlEJQWn8LlClTNOOoPy1BCWRykuWCHKx5qetfGR0dpaWl5TJB6b8JNm3ahMslf5wvjHwZACEQRAhkiGpHIvHYUcl6K+seK09fLg0mjs3T9bPBJQQlkAO+mb7ZwtV51N1YQsfba7JfIMnvmjwqE5SMasa9AJz+eb8qghKA3qpHZ9FSskmdD7Xh/Y1s+ViLqjpGh8iqR2vjaQ5yrqekRVMDe72RxnvKVNWpur6QrZ90q7q/wLgfQSNisOuWL5yErv8aUEVQAtnvEjSiunaBTF5b9051MS99nk61j4IRCtfYE6Soiwh7vRF7vboLmfMNaAyaFDX5XLDu3XVseH+jqjoao6ja7wLo/uWIKoISgKAV0BrUPdP69zWy6cPNquq43FZqb8uxn0jyQ6pvLEz9+3KxeKDlwfLUejmg6roCOj/RTOG6pRvRssFaYsRaYlLldwU8cOTbfZz8wTIbNZLIDcZCJdvEkaQFzWUIrogidTcUsemxpfPVdGTaZOz51jjHf5WZOCkshFIIShXrdKy6R45FaKbm0hKUQCYnxQhKnsAE+w/vJy8vj5deein7s1zGGwZTU7K6y0JknkmvrIIg+kKIaTYaQGrMq/0eB1Vbcp80n/j5MIe+lZ08kC7mteFdNdTfUrwsETB58T5GUDIU6JILZK1/+se9HP+uOoISgL3agrVcXfDA0WSh85NuqpVURrmi7AoXzfdXLF9wEcqvzF++0CJUXV+Is9W6fMEkrH9fI+v/Wt0YqzVq0OjUxaEmj3lVE5QANDoBrVHdGLvmsTrWv0ddHABAa9RiyNcvXzAJ1goDttpL4HgB+W22BIEoR+hsOgx2dc/UsbOGzo+oi3lhAEErImZaA8wAb09AFUEJwOjSI2hFfJPp+7y0t2cT2PKxFqqW820W+Ud1txZhq8nN6DE/Jr/diqnEkPL3bHNV+f6g/c2VGPLT+P5Z/LZNH6hj3f+oyXxTSuwpGaWr7RjytJidhuwEJVFMIRwd+eYgp385nJ2gBBCNxjkjBof8pzhBCWTfK8szNb7JTu1VDoo7ltpdWpAVSNNdu/tPfk694E9LUIpBCIRTCEqrb4ISpavQTQXSEpRAJifFCErPn/gXhoaGaG5uft0JSvA6p3uLIRQKyS9bijL2pz9QdPWNWPtlQ0Uy9F9CVKLYLqHTgNnsw+dLkB3SqSjFMD6iQasRqV4LF/anGcRjwc4k52Fgtx97qZ6Tv5tJezyOWINUlEZaHyjBXm2m7+UJBl/2JBpVFudhdL/cgs0F4Iv56cs4Gz3PjNDzxxHVKkqh+XBmYkQG2GtNGOx6am+t4MR3cl8QWLWzBikqqSJvNNxaqXpRKTi1gBSVsFZZ8U1kV3yIYa7bt6Kd6PV3l5LfZFO160gVIzcJgekgYydmVNVRqwAE0HZfFQ4lxchwLrsoXwOa75YnsGoY0Wd+NIC6cKYM/3iQ8dPq7LcSVaj2t9VgtOvYnytLXhksdv2Dyl2GKJMUIcOAkmHRpqqzEI1B4NwzU5lPvKhu010u8uutaI0azv3ak/2mNJoYdwdLoR6TU8eFPyUFDcTMDrOg1RAOCkhRifGuNP1rlh1Y+743rxD/0g/8klYj98uxPtoM+MAzqCgrZYjVxlSUxIUIUb2GtVvl+durzyvHs0024ofM9E3PsxBZdG9Z/JsacZ5AEC5gSdut6+ZBd1aDvzj1/ZcgoY+CwS8QyDCPNA/LF15QeGcjP/gaAKWlpbS0qAvgX8ZfLsrLy2lpaaGrq4v9577GzWtlkrg4ofSTmUiIRgm9VUN+rYm+l1MXLCS/nP5ocZDDNyATn1wtcqOc6spNWiWWhnZZxJxu5bqdn3QjSRK7/j63MdA/FYUpv2rll12fOaVaJWb0qIfa60oJL6gjRBWvciJq1S0gtO6oxNVkQ4pI9P42xyCHCYo7nLhq85g4mmZ3XgZIEQkprE5oVe3iZAwb3t/I3EiArh/151wn17aQjNGjHhzVuZPxQCbJrURByf1ALVI09za7UlRfVUTFlkKsFSbO/yz3XVu7/1H9fQ0fmCK/Rd3ii38ksKJdcps+3Mzo0Wku/G4s5zpnfzLIWdQFeUyFBpCQU+DlXAnym/OwlZvYd1ZRoko3r1sUeKi9thgEePXvc5xjCCK11xVgLjRgKjLhn8r9HsP+SFzSOld0PztKz4tjqvpAkwv8UzB+eC633W1Riaob8inf6GTshJfzz8i73pfdwQYc/9k47tvyGTu26AazXLdii5H+XX6m0ig5AwihMLrBKaLOBIkzLx90enAVhRk+HAJX+mC3dkLuT6M2M2cHXyCWz+Dw4cPLPstlvHEwORlLoyRxdnIXjflbkbzKPEmTuW3mN1jQW7VYK4zMDSQCgtkWfqfPyOUqrsln4MXc/KnxI7MUts1z8qfLKNkt8rtqby+mdF0+/S+P0f/H3BR6JhUfw+gQ46nRlsPo/mlGj0+rU20Cgp5QtvW3tDCVmLCWmqi5pkgVCXbtO+tAQhV5o+H2Sgx2HWd/PZTzs81PBCAqYSky4BvIrVLAA7v+Tv0YW3ldASVrXKr8ttM/GQSVYyzA7ICPya7cYngx7Ps39f5k3U0llK7Nx2DXqVKVWgla769B0IiqbH/h92Nc+H3uPk0Ms30+pnvV7ZQ/8h/qVY2a7i3HWmpSrV6lVq0JQApLSBp1H3Dt9SUYHDp6/jguf1M5+F1V1xVQsSUfo13L6Z/k7iM766zYq6Jc+EPuyjzhhSiRUDSe1i31tuT+NZ3q3d5Pn1NHrFPK+gaX6SMW2WL1W2oRRIHd/6Lu/fa9kuPcXYFDWaz2DEn4091iNCLnFLGmzsdc1XqMeSJSNICgST9XkxQlHMEsX2PP6HeRJInKysrLMa//RjAYDGzbto2f/exnHLjwHW7u+BQA4ozST2ba5BqVMLu0aPQCfbsXzSXSqCgBBJWhxFJmRGOQCQW5oO+lyQSxJIc1wxg2f7gRQRDY/S9ncqob9ELQq9y7gVTllzQxvBj2/vtp1SoxnjPzhAMRwvOZhRrSoWxzAXqVG+2rbymiYnMhWouGC7/Nfdys6CyUlRFP5b7uI0WkRNrxHHF4BWMsyKrt/qkFVaSUPSsYY0cOTuFqVBez8V4Isuvv1fuT7Y/IPvLuf7q4Ma/8Dhst91QyemhKlVLR/hX4k6NHPERVxnYJrmy9dv1fNzJ6dDp3v1UQ6H9hgv4X1Pm5phIzUkRiwZOB2JQhnlKy1omzzsqBL2Zu84vJR/U3lyBqBXb/cw7foXLdiqsLyaswYS01EpycW3I8E4LeMOFghrlzBlLU8N4ZOb1wtj5QTL2uwSb3t9Nng9lVQJV6kiRR1GGm7oZ8Ro/N0fu8J8vFUu/37AuzNAKjx3LvpEs79AwfDeLN8GkI4QiaCS9Ra4JnY8gDk0UkvzTC6IkFJF16wRHNjOx7Rc1GRjynCEfl+9q3b1/O96cGF4WkBHDbbbfx7LPP4vnjsxRdfWP875pAZqLSq12gB4KiOjWWNbeKGCwafDMhxjPtlNRoUohIJ56eQQouxBe3s0IUIRql+7kROh6qwXNW3UR704ca0Jo0vPqZ07kTj3yyypEpX8Pksdx2Oh38gnpJ5OFXpvGNBVWl2gIYPTqN94K6CfO5X+e+ABVD33Pj9D23MulWe6NZ1XPZys1ojRpMBeBXG9vIpR0l4eAXVKTYeA248MoEgijgOXdxCUoAI4enVKsorBSHvrwC+6l8RwCWImPuxDplsDJXmfFN+DJfS4ouGWwFUWDfZ9U/097/7KZ6a5Yt9mnITWf+MEWrTuTsr6YQsgTQF9fd880RzEkCTMsRlAB6X/LR+1IaQ2QhKJWu1TB8DNl+i5qTlGHSuf4WLVqdyO6n1TmT05OJx8hKUIrDj8ELJ1m0aJXNTwlJrC6KIAhwIepjseyaLkv3/ot5G2ZidZZOnmIEpRjyf/djRFHEbDZz6tTFnShcxp8fTp06FV/s3XXqq2xtfTRxMBROT1Tyw55vjMgL05kc7gxBjuZt5URDEnu6cuu7Bl5QAp1SVCYQLbcYrlzXO+gjOJv7ThEAk0tk7XtbWPCGcieZKvdTutXF8K4sxM9FdVZC+Dj2g17mL6hjRJ36eT8td1XmTlAC8EPfy+MM/FGdH6UmZVsKTGBymfAP5v5s+jwdeSuR/s2lDSWh7w9jXCpR85FD00RC6oJ4K8HYUS+WQiND+zwX/VoDf5pg4E8qnWOV7wjAUm1Ca9JgLVG3w9NWZ8Lbre5io3tnGN2rjvCOH07/rI9QNn8yTUDlzDODqp/p+Lf6sdWa8Paoe659n1PnT+a3mfGN+gnk2O2BTFBa824l3ciXM7CA0mD8xDRFrTbOP587QQkTSN4wJ3+yaLEsS+CquMNAWYcFe5mB479LI5cdSh/Qmp2EPT/zZ223MYJSDFHTBTQaDW9961szV7qMNyw+/vGP8w//8A+cn91NY/7WxIFINCNR6cSPRuXFZpXknPa3VJJXbiI0H4pvhFsOJ78/IPtduVxP8bt6nhvFVW9j/IS6WM+a99RjLjRw8N9P5p6+LSATm0wlppzVfY59q1fVfQFMd81z7NvdzF5QZ/TBXePMjajrg8/8vB+tSaPq/U4enWXX0ZXN3fKqjaqeK6/MjM6qxVxhzJkQFYfKdnvsG73qzr9CDO3zoDdpmTh1EVJfLMLgngk0OnXKBivFStr6SvqWvAozhjx1ilzGEiMBT0DdtQSBg2pSDSs48IVzlF1ZkPlaafyBvj9OYHTqOPNs7guaALv+4TTmcnXKEEOvTDH0ylInKptyQMkmu9yPq7Df2rfVYHTqOfQldSkyx0951b1fI0iBCEN7ct/gAtB4az6iTmDPl9PMO6OZ50VHvjeZaLdpblNalKrLW7wfsV/EZDJx4sQJVfd4GX/5ePrpp9FoNESjUXaf/QZbGt+eOBiOZCQq7f32uLwwrTLu0PFgCZFQlH1f7M+qUBTD2BHlu4lKS8lDWTB1bpaoyk1iGKDzb1rxTy8sTeO+iIAeh3I/havtjB/JfR6899Pq40PHvnMhQaTKERd+O4ZOr+HCC+qIvd2/G2bkiLp1rxWnlTWAwWZIr2KVAeYiIzrzCpbgVbQhgJH9nouesi2GgV3jqkleK8HcBS9jR6cZ3K8iWLFCjB3wMHbAo66SyncEMvHFYNdhrzCzzFYSGcr3bC03MDeo7mKeM/MrIrwd/34vZFliS+fjnP7ZAHnlOXA6kvy288+MM3LIw3zyc+WwAe7I1zNEdzP08bZqAwtzCwQzNSMxzTUNsPbRGvyTIY58O/cMAN4+P/7JkLo4rQHwRzj729x9L3ulROUGE45KHSefTxPzCqf3vYKzsOdpf9Z2GyMoxTCnO4Qoirz1rW/FYFApa5YjBElSuw9Jxcljg6KoYd3b/nnJ8WSyknUoYbgSu4/qIth9XmbRm0Yze+7aaR96M9RtgK4/xU6c+IqE+TRBBYWs1HGfDZNLx7EfDeMbTz0GGXazKapKUiTNl6ownBfvkqi6Pp9Ct50DX+hOKZcWSa+j80m3vBP773IPWDhbzTTeXrmyBaYVkDguCcxQd30J3b8aybnK+vc1YLDrefXTJy/6M3U+6SYciKjaSdR4bzkml56jX11GpjcJ8WdagUqUWnQ+6WZhNrQi9SE12PREM1qjRtUzlV+VT/FqBwe/fj7nd2suM7LmnXX4x4MrIzgth6RFli0fa0HUCrz6t8t8t8qgK4gCxRvyWJiLMN216IGypG/Lmtptmbpy/dwJSil9QxZyEiQISu67bEQWJE7/ZjbRry2Tv77magPFDSY8gwucfk4ZLRXbpiUoKU5E1XotrlI49NtFxxXlpJiCUjKiitx6OnJSKHnykHT46jV+NCL85pwImNOSkwLORAUxJD93ieij3BrlgNeKv1CulI6cFFNSapv0U6sL8/tQYgdEoCAxNiwmJwF4ZroZ+c6XMRqNfP7zn+ftb3/7kjKX8cbH008/zb333gvAhpZHKZhPsxsxiawkeRMOcPsD+Qzu9zLdI/s+UrotkMq3LIXCNNxVxPDhWeb7lvpZ6aSvY+j8RDOh+TD71IwvK3BV1763nvFjM6qIFW1vqcZRY+XCC6Oq6rl3ViFFJE79UCUZewUkjkuF/HYrgiioUmDqfNJNOBhh7z+vkOSUI9Y+Xo+pwMCr/3oyZ/uZXND8QD3D+ydVqSN1PukmNBdesVJUrtj4wSZ0Vu0l8/HmRwOqdtuvemcts8N+ep7N3RdfiY+3EpjKTax9Ry3zwwGOfDXHZxIEam4pVkf6g8wBk9jcbiV5hdNhhX3DxvfXc/oXQ6qITZ0fbwYBdv2jijZugrVvrWFw/zRjB1QsYilBo7TkpDR+q7lCx6oHyvAO+Dn1tBJRSmNjwZCQco+FNlrusNH1nFe2Y548FqYjJ8WUlDquitB/ZIGZpPhTJElJaTE5CeC35z+DRAS32315oey/MQwGAwsLC4houcmVxv9OmnMl+1a2aiOVnXZO/EDuh7Km0IlEwAjNt5emVQVJp9IRQ+uOcpz1Vg5/syd3UsoK/K7CNXbKNudz5Fvdqhbet37SDVGJXSp2IedVG2m6q5ID/76CWMUKSByXClXXF9L3fO7E8o631pBXZebgf3YTGLm4D9X5KTchX1iV0lH1TUVYS02c+HbuZNaOd9SQV26+ZP5QcCbEgc9f3JjX+r9uxGDXqVKXLFxjp3SDizM/7smdkGKUU+zNj/g58p+5xxlXgo0fbkJnUuG3CgIut5XoQgTPORUOzqXyu2BFfUPzfaUAKf1yuoW75D66rNNJ7fXFTJ2fpetHuS96lW5xUNRm58jXMklEqrRFhoW89e+pRmfVsuczvRmrCmnieqYSkZJ2Gz1/8EBsASsNOUlQlJTsBQuUrc/j5NMJooSQl4hdLCYnAcyJAfZMfAe9Xs+nP/1p3vOe92S8x8t44+LkyZO0tbUBsKX2nTgiaVLbJ8WPpblEnL3pNhtjpwJ4LigLuhmUlECOeVVe5cDT42d2QCmX5B9li3lt/lAdofkIB7/Um3TCaNJ/VfpZGdYRO95WzeRpL0O7shB0Fvl0dbeXULo+nwsvjqpSH6y7vQSNXqM6RdVKSByXCrZaIxqjlmkVJOfOT7pZ8IdXpNSjBu6HqnA0WDnwuS6C3hw3ZBug/YEqRo/OqCKhbf1EK0FvaEXiF2qw+tFaLCWmFaltq0Xnp9zMDvpUEeabH6jAPxFU5Yuve28DRqf+4j2TEjcx2GD9+1qZHfBx7Ju5+9XlV+YzuG9y6Tf4GvwnNWlq01RO/D/WN6j06dY8WkX370bx9iU91DL3tOn9tWh0Irs/nSZemI6gpKDtoVLGu2YZO5xhM02aulk34iXHvMTEu12zswRPf5DTz2beiJQc84orIF9pomefTDiSTLLvlY6cFFNSatkiMXx6IUV5KZqXIJYtJicBPN/7JRYi8zQ3N9PVpT5zUK54HT36pZifVx4sGqFv18+XHNcoE4BkghJAcyVYTSgKEstjwZcgKFkKySqvLV9YbhBjp3xEQlKqQIVyLFuQaO27KtnykTQ5PjN8TH3PTyYISiow3T1H9+9zn7QAFK12oTVpqLpZXa7YzifdbHqvutzg69/XwOaPqZNWXfWuWjo/pS6/5/pHGyhZ68JclvuOloHd48yPXZrok38qyMQpdTux85ttWEvV7aie6fMR9qvbmW+uMrPxQ00Ub7IvX/g1Yt1fNdC6s0pVnblhPwsqFTJK1joxOg3qyGcLCwQ9C4wcvgjM60WDz9hxD94cVSRiA3vt9SW03LMoV/MyJKO176pg8weX5ojPVrfhVieb31eBtSbLuRfVtVTA5reV4L7XmTNBCcBaqMVWpmKngFZD76th5qdDCYKSgkwKSjFcOJqGoBSvu7RfbtsMV9wQwWxO/z3pfEr/v6iqdx6CC5CJoJQMMSRhxocZHyNRMwe8iYWubOpJAG2GMHZt6hhonFCUutIQlAAGvvEFwuEwTqfzMkHpvzHuueceKirkvmR/11fTF1IWaZMJSqZisBToqLnSkf0CSf3duV+MMd/nx1QsJlKr5YCFuRDeAXXsYUu1ic5Pumm8rzznOoe+eF618suJpy7gHfSprueoseKoS58WKBM63llL54fdmFy5u+KuVjOdn3RTdaM6H2/rJ1pZ/e46VXWa76mi/tbc7Q0wc2GekYOXQrlxGv+E2kiXiKXISMm6LOqDabDgVd9e3TurWP2YOnuvBMWbHWx4f6OqNoQJQnNhPCrTh1jLTBS2qfMlJ056mR++BL6438/8cICB3TnuuBQEHE0myjfls/qxWlWX6vxEM+5HKjOcN/172PxEE2seq1F1nU3/o5HOT6ibl9XdVozOqsXVmHtfJIgC3c+PpE1RkhV+OPSVPlUEpS1P1LPqbRWZC6QJ9EvBEOFglOFDs7EbznoNSZIwy+uFdP3Km0L0yqSeBGDKA4tDQ/2m1F1hmin5O0lHUDo++nsk5Hvev39/1vu6jDc2ZmbkOECUMCfmXl5aQNnctpj8XX9jPnmlRoz5OV4okFgIV6P0MbxvgpAvTHRB3YJYx9tr2KIi1jN+eIYjX1FHUAIYOzbNuV+ri3k56/MwOHTU3Fysqt7WT7rZ+HiTqjqrHq1l0xPq+uOWHZUy+UrNdd5ZQ+WVRdjrVcS89owz2+eDwMUfa2f7fYwfVxfzKupwYFeZatfTM0dwJqQqDZbRIbLuvQ0Urrv4Ma+Od9TQ8kCWsSwNvP3zBKYXVNUpWeskr8yM2pD9/IifkUMeVXVWguF9U0yfy9EHUOaPDbeW4d5Ro+o6HW+rYstHMnyzGXyCiqvy2frRZhwNuTciowM6/6aZtjdn8PEywFmfl1NqnVjcTxAFhnd78FyYp+vn6vq94d0eVQSlutsK2fJEQ+bxIgNJYqbfL3+DucIo288/EpUJSvHzZ49dV1/pIK9Yj7Eg8bcYMSkdQQnglZFvEA6HKSgouExQ+m8Mt9vN1VdfDcDunq+lL6Qs0iYTlPQmcFYaqN6c+1yp/yUPswNBDDbkBfVcVGAB/8QCM/2LYgjKd5qJoGQo0LHliSYa7ypZejBDf3fsmxeyE5RgyT13PzPC1JlZ1elRi9od5DelIYRlQeM95XQ+4cZUmrvyhqnUwOaPNFN1faGqa21+opmOt9eoqtP+cB2Nt6mLeY2fmmF4r7p0mCvB6FEPs33zZJWzWYwg2GqslKxzqrqWbyzATG9uiqYx1N1eQvtbMqxJvY5wtlpZ81gdhkJ16i3+qSCeHnXPlN9oo2i1OtuNHplmRmVsLWckfbvBoKy4NrA797ZnKDBQfW0RHQ8vek/LxFS2fKSJ5vvL0t9SBjLQur+qo+Mty/hQi6679q3VbHmiIad7iqF0kwNTvh5nk4qYlyBw7jcjjKQj7mUhKAGc+OGIKoLSxsfLcd+fpe+KxbwW2TE4F2H8dI5xZ0nCoMQPel5OVUTKpJ4EMn/cUaKhbkOqXyjOytdNR1Dq8xxhISL/fe/evbnd3wpx0dK9AZjNZrZv386Pf/xjJk79iYLVN2E2p8p+aQIgLkhE9YmXs+s4WMzgj5oQ0qS4iUE7nfry1t+pQWsQOfZcCN+0iDCb5eVqNIwc8TNyKE2ZWGq4dDvIRJFIOJou844MQUQQo2mdji0fbSI0F+JAjqm+Tn1PfWKK0z8ckNNN9albUFmYDTGrUspaFEXEHB20GCKBCJIkqUqp1v37IQpanfiGcg++rCiFA7D1k60gwa6/z30n36Evqlfm2f25U6oVns79TN0kFsBeZkBn0eJqtK/IHmpgdOrRWdV1KSe/q76NH/j8OUwFy5dLhm8iyoF/V8cIr7ujhJK1LgZezZJyME37V6P4FcP53wzhqEty9pcZnAWNhmgkCtE05J0s5CZ9ng5BFJjvz9CBabVp+73wQpSRLJL/QhoS0d6vTWGOxY2zKSgtqnv8l6nfeTaCkjlPoONWHSPdUXqPLDqoEdISlEA2ryTBfIbYiyQIaeOBh88qTIws8U/zWCSupnRtUQStAH8Y9eHDjNYPeX0Sgfz0/aZhUv77z9FSDfiSUsOZxiXEUPp6ll0/AsBoNNLXd6kSGl3Gnyv6+/vjzP3n+7/K9ZWPLi0UCst+jtJf+Efh7O+mmTq3PPFDSlroNblgzdvlXWL7/13esZttRxnA/s+p350z3yf3C5oM33Qm1N1eSskaJ6/+W46KO3449jX1O48PfbNHVYozgJFDkxjtJaDXk+uK3lSvDwQwOfXLF06CFEW1fPjosWmmT6vzG9TslI+h9rYSSte76H1hlKGXcptwD++ayj0lnwL/VJSDXziBXyVXOed0gUmwVZgRc0oh+tpQ0GxHb9OhcxjwT+XY/vysSBXq1f97UhUZEaD7GXUpNkAm1ElRdWkU/VOoUlAC8JzxM3p8muGDnpyvY6qwIEUlFubSkF2y+G2CiOp0yN4BHyaXuu+8+9lRho94432RIAoZg+DJwaXRfV5GyZ2ktO7xWjQmDfs+o2IDjkn2u8LBaG4p3hT4x2H/F2WFOkGf2R5SIAAGA+ZS6LizgKA3yuEfKh97JAIerxxcSANhzk9gDrpeJEVFST7mQ5vGhn6/n0jeGNqAlsceewyTSeXHcRlvKBiNRv73//7f/M//+T8ZWDhFfWADRuOiReFIVP4Iktr/oa8NYqs2Elhu6FvkV615Vw2mAj1Hvt2HbzCw7G58zzk/+/5N5VgmCIT8EXljq0p1kY0faiLki3A4R/Xi879QP1b0PT/O2MlZ1epBvokAfhXpOUDuv9XuGF6YDyFFonJKrBzv8dxvRyhZ62DmfO7PNN01n3OavGRs/kgLggi7/zH33bArST227/+dUU1a6//jBP1/VLdwqrPrMbr05DfZGD94cWNe1lIzkQV1GwfPriCOd+wbvRgdqErrRQDVCkolW1zU3VTC4O4JLvw+9/Q6OS9uJ/V5Z37ej7NpeUJPoq5INCKl7+Oy+F0mlw5E8KhJZ6jXseANMXJI3WaL3f98BmOJUbml7P1E8vGT38spwYsMI2x5XxMjh6bp/X2auGQGW2j0IkjgG1T3EZ57Rm4H2ZTbpXA4rqa05uFSDHkajnxrgIBHiQX4fAjG9AvKkk++nyPfD+Co1RJIbkrBYMalFm/tYYRxAaPRyIUL6uecl/HGwosvvhhP+/biwNe4puKdSwuFI3IgRPlGFvxw6tfTePuyKFcqSI55YYC176wmOBvm0FcHQRCyq18CR7+ZQWE7y5phcCIkK8JmmjcKYlpFpbJOF1VXFXHoS6cJejN8QUpK3xhO/VB93PjQ13tUpTgDGD08SV65unmSfziIoBEx2NSlIY1EJKIhFYQe5JRlM33q/KizP1WpJAWUbHJSd3MpF14YZfDl3GJekye8TJ5QuZEIOPC5kwRVVjuiIstLDM7GPPQrSWGn9jp1VsxFRqxF6lLsHfp/6tdqX/27kzIZUQUGX57M+Z3GsPFvmhFFsqdhWxwzCULXD1X4DkBwIsjAKxN4upMaxDLrjQYbSBEprUhGNj9HFAVEbRY/KM11p7rnsFeYVak6De/1MNXjT7SFLPeUHHeaPhNg+swifyibgtKOUgwOLQe/ksHmGepKUTnmlRGisJSg5IXD3xmXyeNZ1k+l4AKCXofBBqvvcuD3RDn2tPJuIxGEOR9k8L2EQJCFABz7PfgWLe8K/iCadGNSMMisqQuNRsPjjz+OzabCh18BLmq6txh0Oh1hZQDfvONfCZlTX4ZlJDG4J5OVzGYf7UVwdK/iHC9qd4tJSkUNUNYocvjXcmNIISmleUxJ2XG06qECjHYNe/+fTC6QFhbtcllUN2UBLt2EKYOE49aPNRGaD7P/8zks0CnXrL+7lOJVTk79uJfpUypYLWawlpiZ6/5zzN92adD0YAW2UpOqlGXr39dAdEFSlRKsaJ2NyiuLOJDLe30NMBVAzc2V9O+evOjv9VKle2u8t5y5UR/Dr1xc5YXWnVWIIpz4Tu6OeOkWJ1XXFnPs273pCXJpFlkatpXirLWy7ytnM5PQkgbftAN88uC86HjWFG/LpXdLHugWT2xSjkmZj6Xp79IRlJz1MH1+mXtaVG/jwxaiUTjwQ2X3VPLxxbZWjpU0Q3WHjp4jUUZja2VJEzpJt/T6UpJNo6bUwV9adJ2wRa6/rsmP3Qp7usDnMxG0Lz1vLLUbJFK+NZl9VJgi/GkgdbfJYpKSwaPINJp9uPKivJwkV2waT5w36Fg8dkbpOfALJrtfwWaz8Ytf/IIrr7xyyb1dxn8/HDt2jFWrVgFQb9pIQ96GVGlQQJpL8kyTvtWm2x2MHZ1h+oxCelj0XUgLqey+NY9WMbh/knFld8FyJCWkqJye6a01TJ7xcvrHOU7yV+CuVlxdQNXVRZz5Rb+qtGWbP9qCJEmq05a5Ws1MqfHV3mgwwYbHGhk7MUPfH3Jb6LDVmWjZXkX3b4ZUvSP3I9Us+EKc+6n6hR81KN3qwuQyrIhwowaXKt2brc5E6fp8Tv9q4OKmGjTB2nfU0/fiKJPHc99ZtuY9sgLV4S/nToDZ8P5GprvnOP/LLO9I5aaK1LoXn3D2WmGrNeEd8YN/qW+ZPBdNPla4xkrDrWUM7Jqk/4XcA2vr/6oWjUHL3n9TEfhLuu6yJCVlPNrygWpmRwPxVFhpSUrJ/qySWmT1g0769niYPp+6eCAsIilJATmw1XaPne7dYfxJzVRI2nWNOTWwLs3O8/uJrxCNRlm1ahVHjixmyV/Gf1c4HI64qtLNtrcvSYcjJacUSfoOjA6ovbGIk99X/KHF88NFfpWjwUj1NcVxRY1lU4Yo30nbW6qwlZnZlSsxZYVhwk1PNBP2RTj4xdxjIxXXFFB1VRFdP+1j6qSK3chGyCs2MnvhzzR/2yVA7ZuKcdbnqbL3qnfWAHD0a70513G2WKi6plh1Oj/VMELjm8oYOTR10d/rpUr3VnNzMf6pBUb3X9yYV92dJejNOrp+lHv6aZfbSv2tZXT9uC9ne1deV0Ch28HBr53L3Bbe4H4XyH2x51xAFYlx4wfkjAz7Ppu7D+VqNdN0VwW9z48ysi8NCe+12ku5/4bbiyhoyePw9/oJjCxkjz2SiC+6WoyUrbNx7DupfvgSkpJC+nDUGinosHLut0nzvuTx0ZBaTwoE6At0cTayF4vFwve//31uv/12NU94GW9QjI+PU1QkK0zXmzfRaN8IulRii+RPllVNfCvVV1mY6Z3Hcy79Qre0SIHVfX8xo8e9TJ6Sz7ccSYmoJKfwebSeqXNznP2FkmJ8USz+9Uj7lt+WR+Od5Zx9ZojJYxnYKWl8uvV/3cj/n733jo7sqtK+fxVvZVWVVFIp59jqbuUOzmAbBwy2wQnnbONsbEzyu75v3m8GZgYYGIZhYIjGDCYYGwwm2MbYhs45d6uDWjlnVZBUVd8ft7KqSuc2tMfvO3rW8gL1PTfUvuees8/ez3m2SqdSXLbMVm5g+tT/XL8LCZpur2D06LQwYVfKkWi8pYSu14YUEY+qrsonGAhx8lXlm+GVIHu1DbNLUlTm7EzwbpV7M+ZL5Dc76PvzoGLCllKsvquMnj+PMHlMnOzWcFMJGoM6fSm6FD7U2rvLmOyZ4/Qf/op3dIb+wt+svNtfCaNbwjvhl5WDBMlJ1mKJVdcX0rN5nL5Nk0sbpyEbrb45H8muY8e/p/Gpl1FgWhLzSn7esI/Vdk8es0N+jvwyvEbIJPIAqPTyHFd/hYWBg3NMnkyai5J9L7kcDNWXWDh9IJDwPai88b5XUqzN4+X3A98gRJDGxkb279+f8bn+FnhXvP+FhVhCa+fL/y86T/pJWB0nQ91WDlYbmGzhwMwyc/fwcaIEJX3yZsnkJFucJHJwMTzJp95gmXaB1XRPMU33JZW3SlMnFmDz54+IEZTi7jl6aIpQMIQhSxmVc+MnGlh9ozLZverrCul4SpmUNSaovVGZ3DEmWHWrsrJgNTcUySpHCmAvNqO3KmNe7/zX44oISiCX2JOy9LiaxGUv889xsPHZBkreLy5faa9y4KyyUXa+sjIv72W4VmVRen4KKdMM2PDpetofVybTbi8zk1WmrBTPwJYJtn7hiDBBCcBeakZn1ipSyWp5sJz2J8LlIzPtxI8LEpRd7CCvOd2AleJcrZbC9WZcjSl2MCRPgHG/rfJSG623OmNjYzJpKgVBqfQcI9UXOam5XJm9A4shufwmy5R3izs2eBS2/nwhRlBKgmohMahvdMD6i0Nk5aQgrWYIpEU2nXjC71WaSrxuPEFJhgfwcMxjWkJQSkaEoARQ6wzg1odQhTtQPEEpGebBIB7PKMOdbxMIBDj33HNXCEoriGL16tVcfvnlAJzwbsfr9RLyZygzEE6A6S3gKDVQeUnc3LRMkmrPt7tlgpLIBqmwjxRR+tDolbmh9hoj656pEy5v1fv2KJv+v0OKyC8gqz4Gvcp2YTXcUkrdR8soOE+0bgtglMkpZR9QVq4kr81O/gZlZcvy1tkpukiZZHbH07XKypZ5QW/TkV0t7g9Nn/Sy7Z+OKn5H9jIzOTXKynq0P1HDumeUlSkuvSBPsVz2exllF7nJqc/CpqDkcPkVbjZ+toHsRvF5vaAtG6NTIqferuj59vzHSUUEJZD7nEOhj7fh03VUXCngf8b5ZQ03FSlWk6r9aGqZ7Exof7ySiiuUjQmrbihm4xO1igJIOpOWUCCkuGT1zn87xbYviSd0m+4rofEWZTL6kl0u3Ra/g2/pJqLEMTqy9t/7k4klBKVkRAhKWSVgcemofV9snZ1AUEo+b2aON4efIxiU771CUFpBPCYnJ6P//63pn2ZOYMX5VrVXF5BVYiSrPKy+tKwyki9KUDLYl3mouO9kcU5WtF72nCQ03KKshOm2fz6qiDADMHp4luBiEL1NmYLchk80sOqmMkXnlF2aR9tj1YrOAai+WuF4bkBxWbCyS/MUldgDcJRbMShU2Nz3nS5FBCWAnPosuWxuk7j/6agzs+EzDZReIh6/suYZyF3joPQCZTGi9zIKOrIpe5+yeb3jqVpaH1HWT10NdhxVykrxjB+aZfuXjikihDmrrBicekVktdV3ltH+hMDvifO7Cs5x4mpRtms7ry0L11plNii5KIfWhysUlRh0r7PTcEMp9dcrGxcWvQEW/cqUuMYPe9jyj8dSE5RgiT9ksEP74+WxOUUQGr2aUDCEb1D2t5bdeARggPEjviUEpSWII3xUXOwgu9wQy9n40ytjhHw+fD4fR+Y3EwgEOO+881YISiuIwuVy8clPfhKAE55t+P1+WMhQqjDyrUjgbjBRfmHcfLaM73XoZ0MyQUlieaWV8LX804SVkdI3TbV2sxRKtD1eubS8VZp849jBGbZ84Uh6glIaLHgWCXiUjUcVV7hpvKWCgnMUxKIkaH6gUnH5NnuNmdxWu6JzHPUWZc8GtDxcpaxsmR9MuQZFMS//qJ+dX+lUrIyU02jH1ags5tV0TwVtTyrLmZVf7KZog7L3815G0YYc8tuyMRWKx4jcbXbWf7qe7FXifoe9xoy10ISr0a7o+Q79uFsRQQnAnGfEWanMv1n3VA2ll4bfqyBZqOqqPMVqUqWXuFKfk+GeTfeWUHKRgtg50HhDIesfrcpIUEqGzqIhsBBk7ISyHZr7fzTAjq9nELoIJo7H9de6qL8mzTeU7nklIAiB+JLsyxBgdWE7H351dilBKRnhHJDkAEeJntpz42Je3gyqZB4vW0ZeJBQuNfluEJTgLJd7i8cbb7zB+9//fhZ9M/QefIOiVe8HQD+9dEKMEJXePgjlEnim42b0yHvL0B+bLlcjmTUceAU88aTWyIeelHA78LNI7QcVaZlQ4XPjg02GrDABJtLZUqmMhI9F2dEm6Hiwhs5Xe5dXRlKpmDruZfPfi5c8iGC618N0n7Ld/FmFJrRGjUxIEDy15a4qDA6ZoDOyRyzBtObmcqz5JoouyqFXUMpZo1WjUqvIqjYx1Sn2cNu+qEwBIYL6jxUzeXKWgS1iO50O/KRL/j8KzO0b90MI1AoStANbJtCZtYzsVcaa3fhsAzN9HvZ/t0vReUqx8dkGvCN+RSSvE7/vY9G7vNRqPEIQTQ6IYvPfH8ZUoGyR3nhnGQM7RhjbH8eGXmZHWMYyRikm51AwhEZSo9GpU0/ewRCoVUt2MbnXZIEKhnZ3ZVQrit/BW9hiRaVWMXLAG5OJzViGTUtWoQGtUb2kb6ciJ0XQv9uLvVjPsT+ncQDSnLvrpx6ZnJTqeKQ8Qtyx5is1jPYG6InkhzKUUomoJ5VWhlBrQB8Zur2LBEzLExl3Hk2dlVxKTpJxhSuAVg2vdnlIx36NJydF8LteDcU5KgwjRlLNRdJkCK0v9u8Lx16W/12S+NWvfpX5R6zgfxxeffVVDAYDfr+ft2e+zweMD8aISgspCEuBAPNTcOrPUwxtTZr/In5TujHQCBseq2JhdpHtXxWbAzYpKKsaub/kkNDo1RSck5dZNSUJpZfm4qy2CpdnPZMSX4dePE3zXZX071Ag9esFnUWLo8pC1++HhE+rvLyA4EJIUcmzyksKCAVD9L4p7kNodGp0xsy7aJNxJkpA2Y0W8pqyOfS8uHT/7m+fxKuwzEsoGCIUULZbsfPXPYp3DjU9UIkpW5Llos8i1t5TgdltULQTrfOlU2SvdTF9UnyRHtkF5OkXd3T73xlj4uAYXgWxgPwNTiwFRjpfVCahnrHPpRizshvNqNSq5RV94vyysktdOCot1H+4kMMviD1f/gY7OXU29Hdp2f9dMSVPoxN0Zi22ImVsqP6d45hy0keTUvXh/k2T9KfaTZYGriYLJee62PmdU2IqXOF7GrJ0BOPig6FQaFnb+ydh61fT2CxFgN5UqGL1tTnMjS7EretTnOpLDMZMdcOpzTMMd2nTk5M8XkKBMMG24ATa2RDqoIG33347429Ywf9MHD58mPr6evzM0V1w0C0AAQAASURBVOndTbWxWT6QKtkb9m32fr+fnFUSU/G70iOxowzzT+NtxVgLjez5/mmhcj5HlYytcfEyS74RtcKSlRig5e4qut4cFFJG8g37FJUei2Cic5q5EWW+QFapCb1Vh8GuxjcpFlNYdVsp9jILk91zwuXE6j5URHZdFiXv8wvvTJfLg6px1JmFy7jt+saZqXlXfiif2X6fsLpP52/76fxtvyJiinfQCyEBBb04zJz2ceqPg4wfUFY6Y8NnG5jp8XDguS5F5ynFhk83MDfiZZ+C0ihHftGtWC0jFAgRUliqees/HsGQqyzmVXdDMUN7xxWVDcxYUi7Nu9YZNctvTkmKh5We60KlhpFd4kndsoty0ejUjOwVjwU7qixyWSEFfXtw7yTuNXaO/FqZ0urub3Ypar/27lLGjs/S+5b495C/zoXWoEFnU5buOfqSMqWOpjvdSFYtW75xGtLxHBaWxnp3/ecAOc1ZzE+kSZD5/cQX/Bit2guHwGKx8Otf/1rRM67g/3784z/+I88//zz9/f28NfldLs17MEpUSkkWDwXBB52vTzN+KGlsEfC91j1QyvzMIru+JRa32CZQHjs5b6gxqNCbtBS2ZXHyt+JlON0dDnIbs9iXnPtJs+lw33eUl/g6+cYgZreBsf3icSj8YMyWcFZZFSn11H+0lOBigOGdk8Ln1F5dDCHo/4v482kNGsUxojNRArKVG8hrzlZULm73f57EP6qsxF4gGESrLGXGsZe70RiUzRkNN5VgKzOz5fPKc9ZKUPORQpw1NkX36X69j5nuOSYOi6uzqiU1BEP4p8TtPXlsjk3/pKwvZK+ykVVqWqqOtYyvrCh+jkx2VGnVaHRaYYJSbksWeWsdaAwajv6sXygOmlVhoLDdiSVX4mB8KdtM95TAaNdjLw3Rjbh/07Mpc/nIVOuN8cMexg93pb9oMJigimQtkqi4OIe9P+6TFZsEYc5NqlwRCqHSLGN3b4gd3xb3vSQbNN1kZ2Z4gcO/yuAbJ21Q909A559mGB/Upicn+eej8QpPVh+LM7NICxKvv/668PP9tXhXyr1FsH79erZu3QrA6g9+CpMlJyVJKR76yXkgQOtG2LkJ4inI2snUwUR3DRTWatj1X+lJM6EUUfNVH3VidOjY/rX0geQEJycVmSfDboNQIEBWlYlVN5biHfWzW3SncChE/ceKMbsMZ5Q4O5sw5ahxr8/l5K8VLGhMUHZBHl2/FU/IvZvY+GwDi97AGZOc3mvY8Nl6JrvmOPwj8VJnZ1LubcNn6pnp83DgB//n1wc35ahperAO/9R8Yhm/M5WtXsYhyCSlrNItdRRNeeCsttG7OXMwKZ6kZHKBq8HK6bfC42KmyTL+eVKMc6pMsoYKSrwB5K+G/AYT+1/xMD+f4dw4O+hN0HyFjgVfkF2/DhDSp3emg1LysRDxLNdMJKXK+nnc2bD9qFzmLR4LpvQ2aHTP4bTAH9OoKIWSfmaLcxb/ooqD0+ZlFQMjJKVtP/0UoeAiFRUVnDihvNbyCv7nIOKoa9Bxce498j+mIinFITS/QNnFsnpM1+uJyYtk6esIWh8qY/jAFN1/zEA+TkouG90Sa28vp3frKL1/ynRe3IdhRHGZqvYna9CZtWz64iHhc41ONY13VnHqtQHFKj+KcAa/p+wDeQxtH8E7Lh59KDo/h7ED44rOebfQ9lg1eptO0ft5L6PxjjLMeQa2/qN4wvVMyr013FKKrcjEli+c3cDQu4WOp2rRGjV/u5J3f+NSI2WXuuhSKK9dcUUeJ98cOuv9WimRrvXhciZPezjxivharOneMow5evZ89yTeocXMvm3y8ySNc5kS1u2PlTMz4OXIi0ttnconjqDl3nxOvTXBRLodZUn+6errHOz/2cSyzwMQCgSZ8Y6zefanaDQaLrnkEl599dWM56zgfy7uvvtuvvvd7wLQob8Gu8GeMUYEYd/KAGtuLGbf95Nk5dPsnHfUGKm41M2Of80QU0pxbt11hdhKzGz7UobyHvF+lwHF5b0MuQZa7q9gbtCbmdCQhPIr83CUKStd9q7AAGXn59H1B2Xxq5L3uc566YwzxcZnG+TNBf+irMzLexXrPlnH1Ok5RaXOzqTcW8fTtcz0ejj8Y/H7vGdhgI1PN+AbnT9jslsC/sZ+l8EOznoH/ZvFy+QZ7JDbnEO34GbY2IkoGueU+l3ZjWbKLszl4POn8E2KP9OGx2uYn11g578tM44m20/B7yk4x07Rumz2PX8K32hiMCpTnLJwow1XnZU930tdejv53OLz5NhYzzvLr6sjaao/Tb/APF5KS0vp6upa9rwV/M9FxJfXqYy8330XIFCSbX4Bd7MZvUVD9zuJCd90SmKrP5bP+IlZev+SYVxKIqVKNlh9ezmDuyfpfSd9Qj6BzCqxNEGeoXILQPP9FRizJXb+2+HEElcZ0r6SDRpuqaT3L6OM7FWmrqsIqX7PMig4x8nY0TlFJJ3cVjtTp72KiT3vBlbfWYa1yMTOrx7BP/3ei8kpRfXVBTgqrWz7knju9EzKvVV+MJ+cehtb//n/jhxty0Oy2McSG/w1PlQmKCy3VrDeQf/uCVQL4s9TuNHB6IGJ2Lhztsr2CpZ4i2D1rYXMDPjoen0ZIlRcjrPu2jzsZUb2PN+Pb3g+83tJzo0mjXOZSErNd7qZHZyn83eTSw9mEJRYc6OT3l0eJk6kyekkPW/dlVaOvD4TLpG3zHsJBPD7/fxp4juo1Wouu+yyd5Uc/q6SlACMRiO+cKm1dTd+EdNwzKiLhqUOsGHUR+P6EFY79HfDqWPLk5QAVLNyJNRkD+FJ4TtEy73F/fym21xIFg1bvtUjJ+VTqbWEHZV4s9Xf4CYwH+LYz1M759F7hh0OU3YIz6gCs4dCdDxdi9agLHBfdnkeBW3ZHHyhS1h9CCB/vYOp41N4Rt97k2bhedn0ZXDqkrH+0/WoNSpFE2D+OQ4GMjmcKbDuk3WgQlFCCpOsXqXk3XQ8XcvCzKLiknRKcSYkJaWwVJhYfUMpfdtG6X5DMHhnAlOOCU+3uM0qPujG3ezkxO/7GNom7nRnrzbjHQsklnvLMDmtvqsMa4GRgy+cZup43PNlmJzz2mxM98zhSxFDSZjMUk0kggpKS89bZlIKX7donYnerYl2Xo6c1HarjWAgtJQgGn/PJBuuudqIwaph90se5n0p7Bu5Z/JzmwBveMeJLoUt4u4T1Ktpvwi2bwU8ifdIRVJShcf35o4FzAZ4cxdEaryowjsa521L72nCw7w3BJjwOZYel2bk+cNnTzx2ZbFsrzf2m/BlpbjuSGxxPW/V0Lft2/SelMea06dPU1KirHzmCv5n4fjx41RXy/L6Tm0R7c6rCHli33aqpG/I52f9UxWEgiG2fiWReJqOpASxYI7RCd5Um5eSSUpOaH6wnuneZQiuSa6q0alm1a2V4sTtCMdQAVHA6DbQfG8Fs/1eRbvM2j9Rg0qlUkx0Ljo/h963FQbU3wUYnWAqsDB2QGwXkqvFRvWVRYwfmxFOFJlLjegkmDwm/oIKzsuWCe9vDdGvwC80lxqZG/YK94XSS3PJb8lm77cOp+7TfyOcCUnpTND0QAU6o1ZRUtJWYVSkvASw7pk6ggtBtn9ZQfLTCHlr7AxtnRQ+ZePnGlj0pdhYkMFfy9/gYCBdwutsBVSWgUqtwlhoxORQM7pvdskxIKUKg2utheorCzn99rC4KpJRTnotzC6y42vKSusljO3L2Kr2o/L6+Pivl+4ATkcKkpzQfFcFc6N+9v8wbgNMeA5Q6Zf6bEYneEbkuUUlpSh5NB8u+2CMqUuUX2Amt9bI+EkPnb+ZQGVYqjwR8sT1eUnijfH/ZHFxEZvNxtTUWQzir+D/CuTn5zM4KPfhS213JpQrTJX0DS0sUv3hPHLqrQzsnKDrtbh5LUNSKjIuGOykTnynOHf1nWVY8o3s/vfD6ZPlKUKEFVe50WjVdL6UOeYVgRKloghaH6lGsunY9KVDwgl293on5e93c/SlbiHVpgicDRY844v4FKoyvhvIa3MIKxyB7ENoTVo2K1BwdLVkMXJoShExo+2xatQ6tWIf11pqUFROrPWRahY8C4pL0inFmZCUlMJgV7P2vhr6t4/SI0qcMYApx4CnV9xmke/g1BuDDG4Rd1izKg0s+BG+V821heSsyuLoL3sYi9/EkcHvctSZ8A56lifnvIs+WMS3yl9nX0KCyuR3qdQq2h6pIBQKLU8cisOqW4qwFZvY/e2T+EYUKMlH3BOR16NS03x/KYd/clqcCAXU31iAvcTE7m+fWHJeqvlKsoM/suklVUwyHA9Q6RN9svaPF6LSqNj6L10p45UJZX11OroNOzgyLJcYOXz4MHV1ykphruB/Fqanp8nKksti5ejKaMu5MqYiDinj4CH/PB0PFwOw/eu9icciBKcUY1vkmGQjkQwUQfLYIcG6RyuZ7vZkVORNHnMkG9RfX8aeb3ctS1CK3AdIQW7KTFJqfbSB6e45DjwnvuG8+YFK1AY1OxXmjNxtdgZ3TCo6592AZAOj28zkMTFVQUuRxJo7Khk9PMUxQaVSySUhWVRMnxKf2x31FmqvLqb77SFF6lCSS8I/7Rcmhrnb7BSfn8uBH5/GO3D2CF5nQlI6EzTcVILBqVe06cFSJDE7Im4zgNZHqyEEO7+m7DvIXm1bWp4xgx+1/pk6Fn0BRcIlrrVZMvHwDHwrpUTsuBOXbSLZwFxkZvyQuIKnuchA442FdP95jIEMed3kGFPHk+XMTy+y59vLxKWTcp0JY/sy5LGSixxotWpOvrF03ZaSpBQMgQTtdxfhGZ/n4M9SxLJT+EiSDfyTYf9KtzQmFpmX4o+5V0uUrDMzdtzL8demUUlLldej/JjwuW+MfouFhQWys7MZHX138xPveiTWG6dgtPWFpxKOaX2pmcoHtqg4dTiRoCSCug8Yabw6i4KWxJcb/wLisee5Ebb++2BMNSRDQj6+49tLzTgrzcLPFSEorbm3XPicbV8/qjhxMXF8BkJgLUpdbigVsqpNlF+ST8MtlcLnGHPkBX7zx8XPcTVZ2fhsA9XXFgqfs+becsoucpO/3iF8ztyQF/9UZsWIZCglKMGZlRDZ+GQDq24sU3SOVtKgsyqTYDSVmDCViPeBM0X2avFvAMCaK6HSqtBbly+3FcHqG8tovqOcXIW16QnBzEllShhj++cSCUqQ0bmf6fcQ8AeFCUoAlZfm03xPlaLnWv9kGc33FqU9vmTBb4J1D+fTeEPO8hcPBxlMOVC41kTrHbFazqLqSSJrp3js+5WfbS95WEjFO0txz+oNkF2KovKK1U2g00O1gKlVce942yFjAkEpHskqgFpviHPrQlzUlPq6EYJSKmzeD3vT5AlNSUGs2RNvMD3aj8Fg4O/+7u9WCEorWBZVVVU8++yzAIwv9tLjSSTTpiMdHf3VAFu/oVwCeuOna2m6L0UN9BSDg3ccNv39YcUKfCUXF6C36Si9NFfsBK/8n6vFRuVV+WKnDPrY9MVDymWwg6mD2pnQ8XQtJRfkphpq0mLtfRVs/FyDovu0PVLNhs/UKzqn+eMN1HyoWLj9yK5pFn0BphWUBps77VVEUALwDHkIBUOoteJLmaLzc2i6vYLaq9LPocnQW3WodSqMeQr8KCM468++32UsNGJ0Kyvrobfo5NLOCtD4sXLF/Sa4GCSUpiRqWnhRRFAC8E3OMzuQ1HcyBBKKLsyh4uJ86m8U79O11xWy8TO12MrFP9DmB8rZ+JlaoW86EgRadW0+NVcVYnQuPZbuPGO2AUIwcUI8MY8XNn/+GDu+LU5QarxdtpcSop6j3IyrPrWiZDr4x2HLv5xOJCjFIRQhHIVRfK6FNTcXUnl5mrVhUvsITr01x6k/jdP5m9RrvgSCEtCT8xaLi4tYrdYVgtIKhDAwMIA6vI75w/T3E46l253f+cshOn87mEhQEkDFlXm0PFRL8YXZiQfSLMr2f6+Lzf+QgaCUBnlrnGTXiq/BIwSlhlvE1yo7/7NTLpWqgDgzedIDITC5xOdDg11N3UdKWHWd+FyAQS4ptva+CuFTrKUGNny2geprCoTPqbu+iKorCig4N3v5xmHM9HnwjCojW43sUkZQAgjOhwguKFvsr/9UHY23iNsMQGfWINlSkE4zwOA2YFDoE50J7NXGGHFEAAaXXKpaScyr5opCmu+qpGCDc/nGYai1KkKBIN4RBUESYOqETxEZarrfy8LcojBBCaD2w8W0fFyZH7n+kzU03y8eLwd5Dbr6juXHm6hvZYCy9+XS/njV0mMZzguFQopjXgef72XzvxwTJiiVX+Yiu9Esf6OCr6fofAcGh47iC/IUPdvhnw6w+YtLCUqQYr4KBll7WynrnkzzTWdQDdz2rdMc/VU6/y4xZj/k62ZooRdJknj22WdXCEorWBY2m42f/OQnAIwudNEzm5Q/C6T+aA+/NMzeH2RIYKfJAXQ8Vs7aO1OMUaniQH7Y+s8nOPwTZeUh81qzMeVKlLxfIJYfvg9+yKoyUnqpS+yUadj0z4cUEZQgHO9SOA62PFRFxWUFSArSObXXF7HhM8piXqvvLGP9M8rGjOaH6qm7RtwnnO31459aYLZfPIblH/ErIigBePo8EFy+VHo87DVm2h6souaD4vlWnUWH1qDF5ExfPj4VbOVn3++SXBKSS9lzGZx69BZludPGWytY/7iyfhNcCCr2i4GlBCXImG+cG/Ay3Svu32WvslLzoUJqry8STtKVXJTN+mdqsFeJx7wabipk3SerlX3T1xZT+6F8jG7Bd6pWYXbJa4JpBf4qwLYvn2LPD8WVT2s+LI+bKcmnaZBXbyGnwSLWODI/+GH7NwdSE5QAklQAXfVamm5yUX5RmmotaVQDB/f76XxtkuOvpf5ByfyYPufbLCwsYLPZ3nWCEoCyL/ZvhLm5OcxmmdDw9lv/m/MveDb2QGGiUrKq0uBpFWoCtL8fTh+Hwb7lA+zd27zUXa6h/2hAXjil+uAjA33csarLHWRXmtn6b72xJHkKVaXIJHHwxQGmT2QeLBISVio11de4sbqN1H+smMP/JfDBhC9f8n4XGoOaU79ZXmp6qtOjmJ061elhusfDiV93CZ/jHYXgYgj/dOpAcCqM7Jmh6kplyYvjvxmg8jI3A/vESUT7k2vxCiD/HAflF+Vz6s0BYcLSmZSGGzk6pZideiZs46bbywguhs5qndiii3IoPS+P8TUzwmXlBrZMMLBFGSGsf/sIWoOGYQV16U/+elBZOUJkBa5Fz2JqlnIolDIQ0/W7Ybp+F7dbPANBKbIjqXfbGAa7PulYZjJQMBBiwZN68Z9qR5IpC0KBEDPD8+lVlJJ2QHlGYbzLz3iXJzM5KencHT9Mei+ZfotaTeMVeg68Or+UcJThns5CHY6CEGPdMRuoFgIxNaUU76Zzj4rhnBBToxmCTnFzQOOaBaxWeHvvAskKSqmg9crHJmaW/uRM5KRLC2bo7IcBTHiSSOTJ5CSAqdFuDm7/LWq1mo0bN0aJJytYwXL4u7/7O371q1+xd+9eDs2+SZbmKqxxmfAIUSleVWkiTBrJazVR2O5k17cSd5elw+ywF/+Ugh2iAEboeLiGiZOzdL64/A79oz/tPSN1l+rLi0AFJ14RDBCFL7/67nL2C5KVzqRsxqk3BrDmmxUpPc0OezE49BidauESbgveAGqjsv0JY0enFS2IAbadgRSz0t35k8e8bFZYl713+yjZNTaG9ogngDtf7KNTcHdcBKuuK8VeZuHIL04LK1CdCZpuL0OlVqYWeib+6tjR6bR+Rzpsz1RGKAWKLnJRstHFsVd6FJVX3PVvSbvjlgng9W4dxV5u4fAvk9ZeGXy2YCBIKBhi+pSCIOTMAjqLNuM3nbwGOPijk5RdUoh3fPnda5HjPX8ao+dP4v25/DIXvql5BjZPCY83DbcUYS0wUnxhduK9QsGMdtvypZOYi8WDXB2PlzN8YIquN+NIQBmCdaFAkJH907jqLZz4U9J6Ig05yb3GQP4qI7u/P0h4c37iNT1LjfLG1PMsTs2Tn5/P9u3bhX7LClYAcszLaDQCIf7k+zkXGj4aPRZJ/CarVIzuleeM5vtK6d85ztDO5cfDk28M4aw0M6JgbgMovcSFe62TrYLzwt4fnFREZgAouiAHe7mFuhuLOfKCQMwrfPm8NjnZfvq1pUpsS04Z9rH5H5TFSHyTQcaPTtP1BzFVqMizLfoW8U+Jx7xmTvsIBYIEFWxmO/KrXhr0avp3iL/PIz8V89Hj4WywUPvhYk6/M0z/n8XudSYlwQZ3TaAzKSNHb/mCAnXyMFruriCwGFSmbK4QjjozDdeXMd45LVzubbLTqziGN7R3DMmqo3+3ODO4/89jwu8xgvYnagjMBxUpDQxuGU9UahJInJ56YwhLgbJEZmAxyGKaTcypYLDDoj/A7FD6MWqJb+WD/m3jzAx4hf0uQJGCEkDDzUUc+lGvIlJg3loHeasdjB0Q96d7355g8pSX2R6xG1Vc4cJZZWHHt7vEni2cExk7NotkS4o7ZiAnrb0tj74dE4zsW2TyROKNkslJAD7fLHtDb6BaUHHuuefyd3/3dwIPt4IVwPXXX89Pf/pTXnzxRQ7OvInNbMcmxRF8IkSluKDtTJ8sm+Ko0lOywcG+51Pk2iLrkbjxbqLLc0bkhJYHy5nq8XDi18vn9LrfHGP82CyzfcqUbequLkat03BatEx5+PLCvhqw51vK1HgBTvy+H3ulRREBYKbPg7XIJCsDjYjZwT+9gGRXRnQe2DWGf0yZwIFS9RyANXeXo7fq2PEVsbHdPx1ki0K/ZvLYHJMnZhjcJe4T9PxphJ4/KStPXPnBfNwtTo79sveslgpcfWspeqNW3sQgiDMpGz2wa0zxZtPd31BW5SZ7tY3qKwrpfLUvPVEphV+1XyGJcOz4DCOHpjj9VphoskzcBmSOQygQYuqkuLPim1rEmBPAP6MGwfT20V/0UHJhHt5Bge857HsN751heK94jLBgXRaL/iDDe2aElbHKL84mu9pC8XkL9LwzGTuQ5p1EsP0/+jC7lxlv4vpVy70FjBycpWeroJJUMMDI8QAFTYv0J8UF0pGT7GUailvM7PvJGOMpPoVU4j1/Hv85c6Pj5ObmcuDAAbFn+xvjv0XT3mQy8eqrrwIQCHjZtvWrwDwbN8xTVSlPCnWFXs5v9gLyi2w6L0TLBaDVQVEZrL8wQOU6+XrFa6Htai2msJDL6ktVrL3OjGcCdv3XLK3XWKn7oAFUKvKbNLTdk4s5vIm68aMOWm53yR1OpaL17lzsZQZUWhXFF5pof6gIe5VBTqjf5Kbt4bLo72h7uIyGm/KZOenFtdrMuqerabhV3qHfcHMh7Y/HlIXaH69k9Z3yro6sKhPOKhsT3TMc/nEf9TcV0fFUTHWg7dEq1oZ3jZgKJNY9U0fJ+2U2X9FGF/ktsV1VrY9WxRSMTHJ5hbLL5Z0TVVcXsO6ZOsqvzKPtsWpaHq6i5eHYM617po7KD8vPW35lHuueqQMTHPh+F3XXV9L6aGxHybpP1lF9nczCLXm/i3XP1GEKLzSb7q9g0bPIoedlckrH07XUf0xmIOef42DdM3VYKuQd5WvuKaf9Sfm3bv77wzgqLNHddXkdWax7pi6qyNN4RxkdT9VGn6HxY6UyAdQjq/ase6aOvA5ZzrPhlpKEtu2P17DmHtmGNTcWsOGz9RSeJ9ut9sYiOp6OtW17rJqm++WdIKYcNSXn5YEKjA6J6usK5VJu8fZ+KNHe5VfK9m64vYh1n4q1bXm4kpaH42z4TB1VV8u76Mouz8NZYaXnDTmg1PzAUnvX3CB30qKLcmR7h9WQ1t5fQdvj1dG2HU/XUn9zSYK9s6rltqvvKiO4GGRwjxxI6HiqllW3ym1zW2yse6YOV5PMxGy8vTTBhlqzhsY7ywBw1JtY90xdVMWq/uaSBBu6mx0s+Bfo3zaKqURuW3SRvBiouaFoqQ0fkG1ozEnss9XXFsr9MNL2kUR7V11RzFS3PJBXfNAd7bMAzQ9V0vpIUp+9tpCii3Io+UCubMMcechrur9iib1rb5TtXXheNioNoJEnoTX3lNP+eOz7TOjf6+2s+2QtFR/KpfnjFTTeXUbHJ2qik3/Hk1U03iq3da01s+7pGvLaZIpxw80FuNfY6XxJXpy0PVrO6jvkZ7BVmmh/vJz8dfK7qb3GRdsj8nvb9m+96K1aVt8s28yUC+0PFVF8nvwtVF9hp+1+d/R5az6Qi286wOm3Z8EEbffkUnKe/I1VXJxF2z0xJZK1NzpYe6P8jjv/MEPFOXbKLpANXHqOkbbbHVF7r74ui7U3yvcsWa+n/Q4blRfJY0JRu462W22YwuvBxquMNH00PECr1bTcYKLpWi1mp46GKzS03WDElCcfa/yAjpYPx3Yatl6jo+5CNQSC5FapCC6G6D8uB0EaLoDWD4anMZWKtg+oWHWu/KezANovh+ZLAEIUlkHH+2KOQftFIdasD6EKhbBZ59lwzgJFxXLQ2WaVuVeqRZmctLHRS1ujPImbTD7Oa/NRUeRD6w2xNm+OC9Z6AA+7j5vQ62BdvQdpJoB1ZoYLV3moLZAT/PWFHi5c5cEwOUPh/Aw6DdRGN9bKx1rNM5hGFqkqkudAk1pOmLVUTzF46mcASJLEO++8wwpWoAR79uzBZJI/4M2BV/B6vdR9xEXr/TFVmeY78qi/RiYvWcuMtD1aRtH6bPRWLbXXuWh9MLa7qOXBUhpvl881Fkq0P1FBwbkO9n2nm8BiiI4nq3DWyQnq5gfLWRuek41O6HiqJurXVFzppuOhGrR6DZY8A033V9AUt3O246kayq+Qx7TSS3PluccI0ye9rL2/gnWfro1rW0vl1bJfU3SRi46nazE65TFizd3l+Ofm2f09ObDc/okaqj8i+zX5G5x0PF2LuVR+3sY7ymh7RJ5n628sxlZooiU8v7habHQ8XRtVymm4pZT2J2JzRPsTNTTcWkrbI9VUfNhNx9O1uMLqf3U3FCe0bXusmsY7yhjZNc3o4Uk6nq4lb50dgNrrimj/RKxty8NVrL47bEO3gexqG32bR/GOB6m8Oj9h/m7+eGVsp79RnrdKL81l77dPMnJgKmH+bnqggqYHYr5hx9O1VFwp27Dk4lyyyswMhH2ItfdVxObksL2rrpUHsaLzc2R7uw0YnbDumVranoj5Ku1P1lB7ndxf8tbZ6Xi6FluFbO9Vt5WitWiiq5L2J2qiSjc5a6x0PF1LdqO8O6Xh5pKYDcO/reHWUgDsNUbZhm32mL2fjLP3PdUEFoNMHvNiLpXb5od3qVd/pDDRhg9VsiZib6eajqdrKbpI7rOVVyXZ+8FK1t4fs7fFbcQ37cfTP0vZB/KifRZkH675wdT2jvwd4Q+uvSe9vQvOyyYUCjFxWl6oNt5ZluADtT9ZI++cAvLaZHvba+SHaLi1lLbH4t7NEzU0hP3I7EYLHU/XkrPGGrW3rcjEyd/IxL62x6pZdZtsb1tFor1rry+i/ckabBVGnPUmWh+J67OFctuCsC9edW1Bgg3z2x2ghrneGXmMeLqWkotl/6TiyvykPltJ0wMVrL67nJKL5TGh/Ao3qFSUXpIrr6ki9r6vnOYHY7u9Ox6qwTvuB6+sqtTxVA3G7MgYUULzg7Gxp/2JSqqvzafzFwN0vTVMxyeqMZeEx4jbi2l7OHbd9scqqbtBHk9cTVYsbiPHf90btmER7Y9VJrRddbP8bpx1RtqfqMLVZME7DsFgKGH92PpwOatujfmGHZ+oxr0uK9wfqmj/RKxty4PlNN4hfzfGPC3tT1RReJ7s01VelUf745W41zoouyCPpvvKWHN3WG3ACO1PVFFysey0lV/mov2JWF/SGTTMzy1ECUrtT1RRcYX8boovdNL+REXU3mvuKqLtiXKKLpDv23C1m6oPym0Lz8mi/bFyjLlh5ahbCmi+T37erEojap0KZ7UZQiHymk20PVSMNTwmN9yQR8t9sh1CgSAtd7lpuDEH7zicfnuCtjuKcNYaYX6B2itstNwd+6Za7s6n/iM54PdTsMaI3qohv0O+bs0HHbTck0/I4yXk8dJ8Vz4N18l2MBWqMVw4wSJybOKnP/0phYXiO1JXsAKDwcDu3bsBWMDPZp8c/2p7uIzyS+SxML/DQuuDxRjs8jmrbi5k7b3FGBw6CtqdtD5URkU41pDXZqPt0UpMhfJ6q/7GQloeKAcf7PjXkzTeWkH9LeFxaK2V9ieqyaqU29bdWExrXFyi9eEqsuuz0EhqCs530v5ENc7wLtDajxTK5QvCaHmoivqbivH0+rCWGuj4ZC0N4fVt9dUFCfNJ0wOV0TnCkGsgv9XJ2IkpjrzQQ/mVeQk+0Nr7K1gdjjVgkOet4nD8oPKyfArXxxKLa+4pZ83dZdG/25+sofSS8Dh0UQ7tT9ZQ8L5sWh6sYvWdZQlqR+1P1ETjNQUbnLQ/WYMh18CRn/ZS+aHiBB+o7fFqqsPxGldLFu1P1mAtDdv7pmICvmC0lG3ro9XUhFXBs9dYaX+yRlbZQfY/WsN+5JYvHMFeaqHuBtlm9moj7U/WkB2eZ2uuTbL3nVVyCNQHpiID7U/WkNcWHss/lJ8QB1p7fwWNt8l2Kbkkh/Wfro8qMC2x930VrL4rZu/KywpQqVVIWVpKL8lN8JfW3F3G2jjV9/Ynayi7NBxj/LCb9k/URPvs6tvLYj5Q2N4VV8l+u3u9E1djFj1hUsuq20oTfKC2x6qjKlOupqX2bnkors8+Wk1d2K9x1Jlpf7IGR50cX6i7vojFxQAD2+V5quWhKupujMwvsg1dTeFYyTWJfVZn0UTjkQa33Na9XnbEKq5yJ9iw5KI8FryL9G8bwWCX7VJ0gdxPyy7NS7Dh2nvj+my4f5e8T/YjS97nktuGeTur70q0d82HSpgd8oIPCs7NlvusXfZVGm9LtHfb49VUfiifvDYHeRsctD9Zg6lIvnDDzSW0PBizYdtjsT7raspCa9ag0stzct2NsT4Lcsm9ZHsXX5LDmrvLqL0h3GfDSZuWj1dSf5Nsb2uJgfYnqnG1hO394XyKz8nhRFhBp+n+ClbdFrZ3rkT7E9VRxajyy11Rf2n7l4+j1qtjykgGaH+8KqoYV3aJK0EBqebaUnwTC5z6rUxsbH+8itKLZXsXX5Qjtw3bu/G2YtbcJY9Tp98YpeL9eZRfJrfNX2+n7dFKDC4tKrWKVbcWRxWd8tpsrHumiqoPyd+Cq9lK26OVWErC4+wNBTQ/UBZ9ppaHyll7fyn2UjONtxXS9milnFsA6j6aT0ucz9nyYDl1H5V9F3uVgYAvQP9euT9XX51Py0Oxts33l1F/o/weTYUG2h6tpPlB+ffkrrbS+lDsGdbeXcyqm+W2BrsccyzYaJffa7VZJhCGc1Vr7iiiMTyHYJDnqqJzHRAMUnJeFm2PyPc48eoIaq2K1bcVyuSkQIDWh0opfZ/8Hgs3ZtH6UCl6yyJS1iIGh47yi2LjeesDxZRdZCM0P4+7zUrrQ6UY3HL8r/raHI7nbwPAYrHw9ttvs4IVKMHPf/5zysrKANg89xJ+v5/SC62svTWmLNT4USc1l8ljlOSC5rsLKDnXjtGpo+IDWTTdGYunN34sn7pr5W9esoZovreQ/I4sOn85xPzMIi0PlGIrlRVBVt1UwKqPxZQTWz4e/oaAgg12Wj5ehs6ixZJnoOGmwmiuQG5bHlVMcnfYaX24EskGs31+6m8sZF3curnloUrKLpN9INfaLFofqcKYLz9D7UcLmfcssuf7Momo+cEKKj8ojy2Oegutj1ZH1W+qrymM5mZKLnGRXWOjKbxutpUbaH20Gke97BtWfjA/oXpK030V1F5XxJq7yym9NJfWR6vJXi3HvCqucCfkwtbcXU79jSVMHfcwuHmU1kercYfjByWXuBLmntV3lrEqHJdAgvzWbPq3juIf8VN0QU6Cv9R4awmNYZ8TZD+h+EIXx17so3+LfJ+Iwsuqm0tiPhDyHFf6AdmGua12cmqzmOiSY+91NxZHY5eyvauoCMcjs1fbaH20GkuRBBK0PVETjRPK9q6kKqzcbq8x0/poNVlVctyw+uoCTLlSNObVdF9FtLqMrVSSbbgqbMMr3TEfSIKWR6uisR1jvtzWtVbuw2WX5SXa8K4yggGYPuVDsqlle3fI/bDkfUn2vr2UVbfE7N36aDWFYT+y8Nxs2d5hwZtVt5Sw+vaYve1VFuZGvEz3+XB3OBLs3XDTUnuXXRZW+VPJ94moI9VeX7TU3leG7b3KhkoNY50yCar62kKa4nz85gcqo357VpWJ1kersdfIvmHVVfkJPmfTfRXUhOO/liJpSZ/NrrLR/ZpM1Fp7T3nUj5RcctvcVjsApR/IpfWRaoz5EllVJlbfVUbDTbIN5fKJMb+m+EJXQp8tvdCFWqdiNkzQaX20OupHFpzjTLT3zSWsvqOU2o8Wyu/ikSpKwn6Nu8NB6yNVSDbZD6u/sZg1cfZuuaeS+bkF/KP+2BjhjowRBTTdE2vb/EA5lR900/2nMTpf7afl4xXYyuS21R/Ko+ne2DtvureU6rAPZCuTsJeZOfn6UNiGLprui7Vde1cJNdfI79Holmj5eBnZjWb80zKpvPn+WNs1txdTd31+1IYtHy8jr1V+N60fL4n6HwCNNxfSEG6LBC0PlFIQjqEXbrTT/EAJReudlL/PRcMN+TTcGIsLNT9QEh2T89ttND9QIvfZYBBDlhbvhD9KUGq+p4iSC+W2uWvMNN9biBQW76652kXzvQUUdMhruerLnZRdJD9Ddr2B5rsLZOJSMET1ZY5o/lbKAZ1JjbNWHhOyyiWabs+NziEVl2Sx5mPhuSoYYPV1dmo/nAV+OPnHCeo/7MJZLRFaXKT0XCNrb4rxQ1Zf56T68ixCCwsUNhsxOrUUtMnXLTnXTNPNOYR8PkI+H6s+4qTmSnvU3rYLJ/GE5E1/L774Ii6XmBLf3xr/LSQlgMsvv5xnnnkGgLm5ITqP/QqNBqxh5SprOEls0MrJaIMR9AbY+w7sekuFRgvm8ELNYgeNVoUqnDw3mDXo43aKa3QqbDl61n7UjDVXj0anwmSTX5TBrkNnirXVSmpCARVbvtKD3iCh0amwuGSH2eDUoY27rtaoxpQtX8eUq0etVZFVJP8As8uQUE5BZ9ImtNXoVSzMyaxra7EJbZxylN6qi6qrGJ1aNHo1lnw54DHvSdy5pbfqkLLktia7QW7rltta3UY0ejWuejt6mw7JpovJJptAo1djDbe15MltTWFbGJx6+bphm2okNda88HUL5LZSltxWcujRW3WUXJpL66NVaA0aTDnyb7UWmdHo1ZhzdOHfI6EzxXZdaI2aaDk6c658XXOu/LcpR0qwodaowZQnseGz9eS1ZIftEjk3yd4WLcawTGF2RRYqtQpzQfi35hqW2jvcVucwoNGpmeqa5eSvB7HmGdBI6sS2YRuaTGrZhvkmjDlgL7Gh0amjNpNseiRbjGyRYO/wu2m8vQZHvSlqw2hbSY011xC2twmNXo0xS0X74zWYcw3oLbG2WoMGc3hyt4TbmnLlv43ZEmqtmq7fDkVtaA6/R3N+2N5hG5qS+qxarY6+R1NOuG3k+V1JNjTpUKFmqtODJUcbtku4v6SwoeTQ0/FULc0PNsjvMS9iF7kPR9vadBiyYoxUjV5NToM8UVnCz2+MfPc2PXpbog0t+QZKzs2loNWJRq9GbZNtanBKS+xtCdvbVmxCpVLR/Sc5kGJ0SvJu+Dh7R9qaw+8xuyYLo1PC5NAv7bPhd2PMNaLRqzBF7lNkTBojNBgdcltzjkYee8KS5eZcA1q9mqY78pHsoDdpMNjD31S2SW6bpw+fK49xAKUXWNGb1Rhs4TJuJnk8tIalEi0uXbQtgGRRI1nVrLsvB5VZhVqnwpKjDV9XLnljMgJqNQaLGn14vMgul1CpVJiztaBSYcnRodaq0EXejTVxTNbq1YSCGvoOzDE/q0KtVWHJirxHDTpDYltTloaCBrDkyFLmhDdqGW1qtFL8+A3GsMqiyQYaLUgGqF4DZqtMco3aWw/GMG/KbJbnG0t4/olVv5LtL+nBFA5qGTTyxhtb+LfZTPLf560O21AHxnCX1erCbcPJO6sxtmlnzGMiFEoUjdKowRq+bpZZ/lsdvu9rf3iZ4eFhcnNz8XiUqZqsYAURzM3NRcuPvBP4KeZsKWF3s96ixZitJxQKYcrWoJXUTJycY+8PTmKy6+W2YblYyarD6AzPh1nyt2gNzyfWPHk+qftICRjBkKXDEG6L0SiPowXhtoXy35v+/jC7//0kBocegz28MjOGx9zIfFIg+0vG8HhiypHQaDXREm5aoyY6z1rz5HlKF76WMUdCMuvx9nkxFhrRmbTRMdZSID+DKVsXvW5kPjn8Qg+hUAh1eBeHxS0/g8kV8T8kdObYHKEzazG7JPR2Hc5qa3iOjs1x8W31Fl10njU6JbQGDaUXRgioif6SIUuPMVu2oWRToTVosBYZaX6oEkeFJWE+Mdj1GBxhP9Kolm0YsUvY3rG2UoKin9agic7flny57do7Kuh4qlZ+N3FzstaoifqGkbZGhxqMRjR6TYKvojNrMecZEtuGfS9zrgE1arb909Fo28g7N7vDbcM2NOfGbNjxUG2CD2TKk9+NOc6niLeh3qbDUmBkzd3lGLO04X4Ya5tgwyw9xvC7aX6oDq1Bgy3StiBx/jY49BgjfrtR9in8U4t4x+WSy/H2Njqk6LuJ2rvQmPC32ir/bchOYe84H1+tVTO8W15MmnKkhNIoOpN26bvJNrLx2QZsJcYEH0hn1mKO+jVhG7ojvqJB9qnDz6i36mJ+jUtK+D4tefK7qf1wMXUfLUOyxfqsyaFJ6FvWvEQbarUaAvNBuZxYZIzIT9Nnw2OEtcCIu9mRNEaEf6tR/l6Ncf275P2u6HcTsaHWoEGXJf9tdErR9xixobPSTNmlrrAN1Ziccn8yZUtLbGgJ+97lF+fJbXPDNnQtHSNiNjSgNaipuryAVbcWYclL/O71Zl10/Wh06tAawusOJ2h0arT6mF0kmy76TUm2cNuC2LvRGjXs/s9jHP9dPwa7DmNkbDSC1qCOjYf58jMBlF2Sg8GhRyvF+8GxttZCA1pJjdEWXj/aJXSShuL1csBEa1RjyQuvUdzhtnZD+PfokcI2nDohB4VDYf/Okhdu64iN9XqLNrqLX2fWYHMbMRVpMLl0aCUVpjAh1ezSozPH+ddmDUaHfJ+B8A48KTw2mXOkBJ9Tb9ZE+2zn7C7eeOM1bDYbX/nKVzj33HNZwQqUoqmpie9973sAzDLBft8mdCZNdD60uo3oTBq01vBYmaPHYNOz+7sn2f0fp9FbYr6KOc+IzqzBEP7ezLlSwk5xvUWHo9RCywPl0bkyMndacqWEdbLepkMVkkvuElDJY5g7NmfEj29Slj56zOCQ0Eoa7KXhmJc7sa3RoY+Ob4Ys+bqhcALcWWNNGAuNjtg8a7AZEp5hbixxh6fRKcnlLcPQmbVRn9PiNqIza8mrt2PI0WPKkaL+6ZK2+XJbKRJzLDTJz2uI2dAUeTeFcluDQ4reR8rS417vpOmBSiSrLuar5MjPbwqXhjXnGRLsLdl0ZJXLC09DtnxdS9wcLcXb26HH7Daw7pN1FK53ym0LYv5TvG9lckrRuI97TTZqrQprfN+Ki2EYnfrofGIwyHaZ7Jrl1G+GonaJ2MGYbYjGx6I2DPsBuWuc8jxlCI/lLgmjI8neEV8lX7bLqhuLcDZYMLkSfU69VRfrd2Ef2ZAtsfbechxV1sT+bdXF4lh5xrBfGftbo9XQ/Uc5uSTZ9VjCdjA4wvaOzFtuU4IN1Rp11Acy2jXh5w+3zTcl9tksPYTkEmkYEvtspL9E22bLfbblwSo2PtUgXzcc97QUhPtW2N6mbAljdpy9LVpyVsnBEVu4rS4S881NtLfeIvfDysvzKb8wT75uWOXGnGtAStE2ckylUtG3WSbCWJL6rN6mi/qCxnD/zm2wYykwYckzLR0jIvZ26hPsnbMqa+kYEf3u1WGfP9Hea+8uw2APjxGRPmvToTNrYu+xwBid6ws2ODDnSRhz4vuhBmvku3FL8thpjflwplw965+pCbeNG//c8nWlSNu4Pute60CtVieO32YNhrCPYck1JPjikkWHWq3i1B+HmO72oTNror6hKZW98wy4mq3YSoxoTRpUgcjaU4r6LRF7R9Y+RodGfga7RPXVeVjdhoQSN0aHhClsF63VgM4Us+H8ZOIOfKNDjyk8dhoMcnzSGn435gJ5Xd36cTlRaMxOXM/EX1def2lQGTT4xmDRF4SQKrFtXmxc1Zk0GKzyu3x77xv09/eTn5/P9LQCuZUVrCAOp06dwmKRA8N/mnsOa64U/f4BjHYdZpcOgkEko4Rk0TDdM8/uH/RgsOqREuZOHabccF/XgBTnl1ncBiSbllXXFyE5VZhyJEw54YFdAsmqxRzx4dwSklXLnm92svc7pzG5DNGxEGQ/wRZdU0tINi2SPZJXM6IxqKNEGUOWPrqmNuXJeSdDVngcchuRrHq8A36kHPk7jawHTdkSkk2HKTu25ovMEd2vjRBcDEYrxpiyDeG24WcoMCbM3wanhMVtxJJvJLvOhmTTRX0Vs9uQEMMw5UiYwgQJyaFDytJREo552dzGhLyZKUfCGB5jJUktX9dtpPG2UnIa5PtESBymXGNCqV/JpovFsYqMSFk6sITHyrwU9o7zPySbjuoP5dH6WDXmPEPCnCxl6eNiU7INJYeEJMnxU0P8uO/QYy2M5NikhPW5fA0VO74sqygZsqXo80r2sL3DY7st3yQ/P9B8VyWGLH3Ub5SsWvm3FkZ8raU2tJUZWXVzCWqznAuO9AFrgTF6XdmGhmiOauNTDUhZulh8rCDpunnGaFuQ57iF6UX8o375ujYdanM4Ludeau/Ib438bXTI35klz5jg40tZOmz5MRvqDFrGj85Gf6sh/t04YmsUo1OK2nDj5xrIacxK8CMN2VL0PUoOua053C9tZSYMTr1MPkOe4yJzvWRRhfthOJcX7rPVVxSw6qaycP+OLCTC181P/W60kpZFb0BWBZNkO0RjaeHrSlI4jpUrYcqRyK6xkd/mTOyzeYZwPwznAeP6t2ttFgaHnqwyc/i9hccIuzZ6riFunWSw63BUmSi+IBuTUx57Iu/DnG9MsKFk10d/W+UV+Ug2LSZnxIczYsiKi187dDHf0K5GsmqpuTKf+hvy5WeI64fG7Nj6UXIYkKxh31CSfVedMXZdU05c2+g4G/nGDEgWLdu+d4rO3w5ickmJ/TB5/LZoQSuTSE0ufcJ9JGtsPWB2SUgWLZI1HL92yXGsojAZzWDVYXVLcW01GCJxrFx9NH/rH5XjXaEFWUDB5NAgWTTRmJclV4+UpY2qU5qcOuyFRmxFOiS7NqGt1aWL+qqR92gO5zN6tsml0HWm8Lzg0iNZ4mPSOsxh37Br9iC//8PvMJvNfOlLX/pvjXmpQqEMOurvAi6++GLeeOMNACqKL6W0+sKE47rxmOx6SB8zfvP5IXT6ADt+Htbt0iZKCKtm4pK4KhVrP2qm8605PCMQ8mbWtw/55R2T+e1mSjc62ffzHjyRSg8L6eWdc1YZGDnukUsXJdV8TCcZt+qWIuxlFoYPT9L582XkpuNelavJyvxcgKlOgWR1OOm9pKRSBpRfmUfeGif7fnAKT7+Y1FvHU7VojRo2femQ8L02fk6uLSsqgWzKUdP0YB0TJ2bEyuQBphITnm7lSf2S97vofkNc7rDx9lL6to0wcVjsXvnrHZRfkq/ot1RfV4ij1KKoXEfDLSXozFr2flNcjnPjsw3Mzyyw4yti8pWF52WT3+Jkx392Cr/7+o8VY3Eb2f5lcQnjjc82KC5dV3tjEZMnZxjaJiY/mdeRxfTJKbypym9mkPizVFiYPZX+x0closMqSxueqWJ+dpGdX++KShjKt0i6R7gMQP11uWQVG+ndOknvZjnJklAaLlm6Ua2i9a5ctAY1W7+RJCWbVFogHo3XZCFladj1g4mlvze5DFvccZNThSdSbSOVXHakrVpNSZuK7h2x8SwU3z5Nqbd1N8gT/tYXU8sZxs8P8j/I18+vgr6exGOquPE4YI45Rus3LhAIwI4/y/ZZiAuoRaCNkx2fDx9fV+/h9ACM9cWct/msxHvqw+WvKivmyc+HLSfB45EHZ2ksNq8sWBPPk8b9vL75fwFQUFBAX5+yskMrWEEqxI8zlxpvWTImxMuGRtoaC3SsvSlcFmLTZPhg4vcaipN6z2u1kddkZ993wiVABWthtz0m7xja8dU4XdIMrmreOjtDWyeFrh2BUt8jgpKLc+l+ffnSI4CiMmwRdDxVy+ygj0PPC8r5GuVgwvzkAjsE5abLr3CT3+pk+OAkx38hVuak/YkatEaNovJq5lIjc6cz+9vJMDrVmIvMwuW+8tbZsRaahH8HwPpP1aPWKiuR1v5EDeOnZjjx8oBQe6PbQP1Hi+jZNMyIYHna9idq0Fm0bPrf4s+19p4KPBN+ReXo2p+oYfToNKdeFSuD23BLKfZyMwd+dEq4vGJ2o4XcRgeHBeXiQVaG6n9HWZkSjGDMMuAdDK9Tlik50vCxYuzlFjZ9+fDSUmdp5K83fqYWQrDp82J+tylHRdP9NfjG59n1jcRyIOlKiRgLjay5sYjuTcNyGTZRROJ8Aq/FWWckGJDLzoii7oYCnJVWhvZPcuKVodSNUtjN4JSDxuPHktaPcb5XxH/NqjRSf3U+x38/wMh+T/hYCh81vuy6Toe1RE/5BU72/XAwocRIctnjyFzW/kgp3vF5Dv4s5tyH4krCJZ93fGonJ9iLWq3mqquu4uWXX07x41ewAnF8/OMf5xvf+AYAVayl3NCY2CC+VE7cd9XwsULMLj3bvnw8fChxHEmOMa25q5RTrw8x0+0T9rucDRZqP1TEoZ91yeQLyOh32auN+Ea8+CaFLg/IsaWC1hxGDkxy7Bfic1ZWpQGVWiU2dkXyGwpKKrnXOyk5z8W+H57GNyh24tr7KzDnGtj1tSP4JsVsvOHT9aBWsVm0VIUBNn6igfHOaeFSboZcA75pn6LfD7INEsp3LYPajxQyfHCSiSNiZQqspQZW31bB+LGZqArVcii9JJec+ix2/qt4KZXKD+Vjckjs/0GX8Dkbn23AP7UgfJ/sNVaKN+Zy5IVTwu++/Mo8nBU2RWVhNny2geBCkK3/JF7ipeIqNzN9XkZ2ifkRzgYLnn6P8O+IwFRkiJV9FCj1tv6ZWhbmAuxMLs+bjPC4V3FlHu4mO72bxuh+M1VAbilaHijHkK1n05eOJvT/TCXc6j6ajyXfyI6vKStZZLAjPPYVnuOk7y/i3xYQJU5t+UdlZZNdzVZG9iR9k/FzQNy80vyATDTa/R/h9WYqO6Xw2RpuzGdo3ySjB2Mxz+TYZSS95G6zUXa+i70/6cE3KM9v8XGCJecFgrw+/2NChMjLy2NwUGydsoIVZIJWqyUQCKBCxaVZdy6NecWXGwzHoSU7rLmpkN6tEwxsTx2TiO/LWRUShe1ODv0kHCdYrlxU+LtcfVsxGqOGPd/sijuU/tzsRkvq8lAZsP6Tdag0sPnz4blEMP1bsMFJ/2axsUuyqfFPK5tHWh6qYm7Yx9GfiZeq3fi5BrxjfuHyWu42OxWXFzC8Z4Ljr4jFcNbeU44xW1JUXs2YL+Ed8Au3B1m5xFRoYeLwrFB7R72FrFIzXb9Lsx5PgbYnatApjN813VfBdK+Hk4JxIiRYc0s5AzvGhcu9rb2nHLPbqCgWV3djMQuzi5z4tdh7BFlhaezEdFQZaTlUXOHG3eLk6Eu9jB0U+85spRJ5zdl0viwei3S32RncMZn6YAafSsqR8I+K9bOKy/PIa3Ky6+tH8E+Hli3zBrD+6RpQwdYvCvqqEmx4ogbvmJ893xbz7aVsNY03lTCwc5L+zZNLG6Tz2SIcI4Gfbyk0oJFg+pT4N1lyoYPCDidD+6c5+fs08chU70YCW77EdHd6nkjE15FyYM31hZx4c5SxQ7Kjmhx/AhLjATotUjZUXuDk0C/GE48lnxuOeTXd4cY/s8jhX04uOQYsmQMHZo+zz/dHVCoV11xzDS+++GLa3/Ju4L+dpARQWlpKd7ecxKorv5r88o7osXiSEsQS0W3vC6HVBtj207iOF0dUSiApQbRDZZWCXhdieH/61XsCSekcZwIpIBNJKRSub+teZ8NZaebQj2IBmEzORuOtRRx4rjvt8cSbyNc5E7JGbosNS4GJk78+Sw7/GZChslebGdsvWIfxXUTj7aVklVro+cuwIqLSexEbPlOPSqNSlPhSSlJqur8CU66BPd84gmdUeV3m9xIyJq8zBWIyTPxLAiTxbZOOJSzYkyaQnEYLo4ciSZxkwlDqa5pywDOW/ppp7x37x7jrLiUp1V9h4vCrnqR2yb839ndRs5qCRhOeiUUOvDqfSFBKdY8w3DWgMWjoS9ON40lKJhtUt4TY+6b8dzBOAUCVNBbHSEoLbDxXXjNueSs1SSmeoAQLVDTAkR554NPNJZKn4klKEYISQOOqeRwO2HxCJinFE5Tke8Yxt8f9DM3+jP379wOyCk6kXNcKVvDXwOv1RvuSChWXGG9OGBuSaxurVCpMxQbW3FDAyKFpjv8qzo+IG3viAzbxKL88V5gUse6TtYRCIbb9c1xwVsBVbXqggqM/PSkrsSyDootc+MZ8wmQY+fqVmFwSnb/pFSaegFxa69APldUQVwKjO46kIYjsRgtjB8SCIu8mNn6uQSaEKKg3/16Es95E3UfLmOyaE373Z0JS2vi5BgILQbYqCKS9F1FxZT75rU6GDkwoIpwtgUCyLP25aXw4I9iLjEIJ8qivFyYPheZCS4/9DVBxRS6TJ2cYPyJOOFr3dDVqrYrNn1eW9Kq/sZDDL2QgFMSTKW4uYHjfJKNhslGCL5jke0V82OIL7BS2O+n87QCjB9KQlOIISnmtFmbGF/H0hueapDknPtgTP4+te7wU/+wie5+TSabxBKXk86acPRwc3cLMzAyNjY1RH2wFK/hrceGFF/LWW28BUE8HRYaY/H9yX458W2vvKsbg0LPln47FHYp9W+liTKZCA+ZcnRBhwdlgoe7qYrr/PEzv2+HgrIDf5WywkLvGwRFBQmrd9UXChJsIzmSes1cbsZfb6PqDeDJHEc6ADJVVaWCqTzmB6Gyj8kP5uJuc9G4e4fRrYiT89yo6nq5Fq9co8iGVkpTqbizGWW3l0AunFJF+34tQTJxLhb/G70q4TqIP5qg1MnFUmX0NuTp8w3Hk47+h3wVQd30BR34q7qPmrLVSfUU+swM+9n9fMNaPvIYwOCT6N00s29Zgh+qrS2LXj7djMkk17ljbo+Wggh1fDZPpk22VNK+Uvi+b7rfk50lOH8XHD+OPVXzARe5qG/te6Mc7ML8kRpBwXiDIcP1B9u7dC8hxCkNEZmwFK/gr4Pf7o31JhYZLs25PjHnFk5QA1GokO6y9tZjRQzOc/EPqhHW6mFfROQ5631kmGBX+NlseLEelU7PzX0/EHcrge4XPW3VzCcd/PyREWMhtzSLgCzJ2MC7mtYx/F5nnTv62Pz2ZIgWqrymk86Wzt6FWCUkjgqwqE1PH33tVCNZ/qh6ALV8Qz+e+FyHlSLQ+WMlE5yyHXxCb586EpLT+0/UE54Ns+5K4WMN7Ee42O5VXFDK8byI1selv5VMlXFO8gFZWhYHpLgXfWIQ8NP83KtKV5IsUbrQzN+xj8rj44qntoTJ0Jg1bvqiMgF55hYsTv8uwYTLu3VRels1E1xzjR8LPlSaHKZ8mn+dqNFJ+YTbHXx9h7HAaklLcvGKvkgjMw8xA6phXAkkpLubVdl8B/tlF9v90fMkxIGH+80u97J79C1NTU7S1tbF9+/a0v+PdwnuCpASQk5PD2JjcIZqqbyMnp4pAWGYrmagEckJaPSmTW/QmmI+fd7SapSSlMDrulGVzlyiLxF/bP5/2mAhJaf3Tlag0KjZ/4XjUkRBxNkoucQmzPOtvKqJnyxizJ8Un3I2fawAVihIgLQ9XoVLBzq8ts/MlDlnVJhbmgsIKTADGHFIr16RB9mozGp2GYdEd6k/WoDOLJ39MOWoqPljCiV93CT9X0UU5FK13seWrhxURtRTBBPXXlDC4a1RYselMoJSkdCZQqnB0JpDrIIfY9W9ibHuAkktz0Rk1nPhlHEs7g7PQ+nAVkl3Hpn85uuS9pwuOVH0oj+OvjKRkCkcX7HGTh+QA/wTRyW8JQUm+mfy/4Wu6W0wM7kpUlMtEUDIXqlh1mZPjb40zEW8ulSrtpLvqwxYsOTr6DszRuz1p8lOr0tqt4XIDB19LM5Ym3augAfq7kG2rTf/8UZJSKETzxSCZVBzfFWK0N0ZSSiYogUxSUi0sAJFrB6L/f8GqSyImxbC2eQGbDfr74fgJ/ZLj81naBHKSyTSPXKVNz3zWPNLYUpWmCEFJGpcdw9c3/z+oVCGKiorYtWsXOTk5aX//ClagFOPj42RnyyV5VKi5xPgx+UB4nEgmKoE8PkX+3eAEX3wMRqVOGbCpujqfvMYsxo5Nc+QnypJTUSzjqua12am8vIC5IR97vyW+IDE6wVYtqMRkhIaPlIqrHBEjX4wfmxZWlclZY6XqiiL2fv+UIvLRmShKGZ0IkboiKL/CLUw2M7oNNN9bwWy/l33fObX8CUDlVfl4J+cVKeo0f7yS4GJI0XtXijNRbFKKMyEpKYWz3oSr0alo16JSGAuNrL65hNN/HGJIMLBpdKqp+GAxB392WkgVCMK7KSf87P56kn+Xxu/Ia8vCPz3P5LE0N0gRwFHyfajUKswl4TJF3XEqwMFQxkRZ8/1lBBaDMcU5AWz4VA2EYLOCXfb2aiM59VmJBNMMKLrASe9bAj8+zm4bPlVFYD7Eti+H30nkd6fwvVQa9ZJEV+yYJlE5KQ7rn6qAEGz5l67U52q1CXNX1H8GVHrdEnJS5ByQExVD3h6OGbexsLDAmjVr2LlzZ8r7rGAFZ4o1a9ZEiW9rOZ9cfVHsW0mV9IrzrZIVPFRqVdoY04ZP1aJSwSYFO6gTIBAi7Hi6Fq2kUaxKWXBuNv1/FpvnK65yM3ZoMqbwJIANn65HpVYpIqusvrMMtV6tSHnaVCQnPqOqMgJQosICMrlJb5UY2SO4Q/3+Csw5BvHfboD6a4o59ds+YUUdV1MWZRfnsf/5bmH1KcUwQPVlBYwcnDirZCClJKUzgVKFozPB6jvLUOvUinxh93onRruOU4LKDI23lWErMbHr35IUxDLEyUovcXF6ufh2nB+h9PsAcLXYlmweyeR3GVxa1txaRuev+5hI5xMmofYj+WTX2ujfPk6XYLweZLWmI78eECInupqtzJyaUfT7G28rxlpopPPVAUb3zsRsmUpFL1OiUq1Kq/5SfXUernobg3umOPn7pb9dpVIl+HPx71Cl0aSMDUTinZH8yR/nf0ZQtUhBQQE7duzA7Xanf9YVrEAh4olKGnRcnHWrfCAS80omKoEckw73XckG/qS0U6p+XbjRTul5OYwemeHYSxnWWxlULpfLG2ZVGVl1QxkzfR72f1/BJjgJXHVZiWo36fw8CaqvLKRTgeqlu8NB5WUFjB6Z4qggGd1WbqD2mhIO/Pi0IiWi7NU2xYpSqd5hJhRf6KLnT4JjvQQbPlHPTK+HA8+JvZPiC10seBYZ3LY8GTWCxltLQKUSvseZIHuVDWuxUZFik1KcCUlJKWylEjmNDk6+PiikvnNGkKDtwRq63xlmeOek2Ck2KHl/Id1vDCSqj2Xwo9Z/qg7fmJ89/ykWT7XXmAnOB5ju8gkTlCLfhyi5W8rWojVomOuLM+4y92q8uZAQIQ7+KEU8Nc19131Cjvts/bKC+H6ehHuNla7XxdaZ7jYrgzvCJM4MZKP4d7T+8VIW54Ps+PeeZc9L9pESjmm1qdf+QPtDRQBs/0aacVirTSAg6S0wP5v6WBSRfPDCItP+MfaqX8Pv99Pc3PyeICgBpNCW+u/B6OgoVquV2dlZ9nQ+R5P6bnKcpWnbq+YXUS0GKGrTUFBnYLxvns53wh/5YkCecFN86L175gjMK5S0zYE1txQzNzzP/h8sP+HueyGuTfRDTd3xIm3KL3eR3+LEVmTmwPe6lr3H4R/3QiiEpcJEYNojRKQ59eYAUz1KZQh1oIDGZsyBVTeWsegLsO2fxViujXeWYSsycfjnXcLEm9qrSwkFQsIkJc+ID7PGuHzDSPvRIAe+3yXcHuR632qtisLWbPoEE2wdT9WikdRs/nuxAKLFbcJZaUWyaJk4fPYScu8Gsqtt2EsswiSlNfeWY3EbFZUTjK/9KoruPyjbRegZ86M1aYSfqeT92eQ22jHmSOz/QYoJR61eMnY13V6CSqVi67/2ppdAhOgxe4WG0vU23I1m9jw3AmpN2vMiQYLCRgsqTQoFpAwT7sFXPJRt1AsTlLIrYewEaQlKqmCIUNLtildLFK0KJarmpULcxL/7dXBXygSlyHXTwaxboPl8mJoIcGCXhhhZKVk5KQbN3AJ79sLqxtQEJe1M8kJ3ntYW2f/Y9ns/qsWl50CMnATwxpb/FwiiUql5+eWXVwhKK/ibw+l00tnZSXV1NSGCvO59gYuNN6Z1lCG2Q7LjE9VodCo2fyFe7Si1b3X85QF0BrWi3acAq24rJavYxO5vHMa7zJQaIUOIkiIiaHpAVhoUIvd4iRKURJWITv5mgOBikK7fiy/0VVoVap2K/FYHJ38jJmnc9lg1epuO6V4/3j6xgLtSdYK191VgcRvxDPuE7Owd9LHoDzA3Jp7AOiEoxR0Pg11PMCDuqBrdBprvqWDy1CyHfiRGDCm70I1Grz6rJKV3A6UX5mNyGThq7BUnA322Ad/UPLuWK9MRRu4qK1pJgy5FudR08I4HOagk4GaEBe8iswqSoxWX5Muqov+fmL+d12qj8rJ8xo7NcvRnmYO0kYBOw0cL0UpqNn/lWNS+ywV7pCydov4LcOAnPRiy0pO242F0Ajotk51e4UTvmrtKMOcZCC4EY6U9RZ7rhT4Wp+PukcH3Wn17IeYcic1fP7G0L6YhKIVCIbreGSW4kPq6yQmDuo/mYi81cerNEQa3T0OaPUiR5MS4d4C9vAVeubzuCkFpBWcD+/bto6ysjNOnT7OXt2mdfx9OfYaEbNi3crXYqL48n/GjMxz5eX/4UEg+niIwfPwPA6iVKokYYMMT9cwOetn/3eWD4fv+sxNdVuo1TTq41zspuygPZ4WVA891Ldv+5Ctyos+Qa4D5eSEizbHf9OIdT7+xMBWM2XIcRxgGaLqzgoW5ReHS9dXXFOBqtHP0lz2MCSp5rrqpguBiUJikNDvgRWfUyGpPIlOkDw7/WLw0K4DOokVn1JJTa6FXcB5ueqASo0Ni8+fFk1K5axyYXBKTnWKJmfcq3E1OcmoDwiSluhuKcVRZ2f2fJ/ENi9nXmCOhTo7jLAMlJf4A5sa8GF16BWQ2G0XrXdiKzOxPFd9OMW6tubsajV7NZsESuwa3gerL8ylen82ufz8VvmxmO7ibHGgkNWq9+M7/oy8OUHLhPN1/EovxOmqMTBzzcuTn4uuaqg/kE1x0i5daAQ4810POWqtMUIKM5AeDHZruq2Ly9BxHfpL0XOn8tVCQzl8No1KrUhKUCAQIJW2CbLqnksB8kO3/cjxtGiFCTgL40/yLBFhAhYrnn39+haC0gr85JElieHiY3NxcAizwxtTzvD/rlowxL4JBCAZpfqAEnUnLtq90LXufvk2TGOw6TryqrBJH5QfzyGmwsec7p/CNZPZdpo57Ofpyb6IykgA6HqpBa9AkkpRUqtREJT9RgpKoEtHgtgk0ejV9ggT0CHQmLXlr7XQNiMXKVt9VhrXAxIHpE0yfFsttrn+mjmAgxLYvis0rtdcVkVOfJU4i8sP8zCIeBSpPwgSoOJhyxfOZAEiw/hP1TByfESaOlb0vDylLd1ZJSu8Gijbm4ai2MrBrQpgAt+6TtfgnF9gjSPZ21WWht2iRFMS8/NMoVhubn15QFPOq/mAhOqOGTf8g1t9tZRKNHytj5PA0x38ptpmt4boiDHY9u/79mEz+EyBDGZz61JVbMvhse57rxZIrZl/JBkh6vEN+ul7PIDwTh+qrcsmus6DWqOnfKr6RYPePxNdN1VdlYy8xsve5nqVEyTRzUCgU4sTro2ik1HYNBYKoiOVgSy/Mwt1ooevPEwxunyatRRfkc6b902z2/RKAsrKy9wxBCd5DJCWAmZkZDAYDfr+fPUe/E1VUUs0vJpTyiUfvwQB5VSH6Dic65CGTAZXHtyRR3r9bfil6KzR+xMWu7y+/G8AzKgeBFryBWMI+TQAVwBMmAlnKTdRdlceOfz2VcacbwKlXh7AWmoQISlGYYM3NZXKS6QvLJ5kG/iJPsKYSEzoJpjqXdzaU1C8FWQ1pps9D9zviRI+ut4ZpuLYY/5Q4eWzk4BQDe8RZxwd/KL5DOYKyy/PIb3YK26DzF32K2OYA8zMLSGrx4N7sSQ89fxlmZK+4U7P2/grMLsNZZSq3PlqF3qoTJlsBHP9NLwveFOzONFjwBAgthhSpVCntv62PVKFSq9jxVfHgQMYyGCnQ/ccJzLkGDqcou7ikxEUY030+dCaxhBTA5MkAcyPznPxz5uBTvJPQ+YdZYDb+YKYTyW/SMLA3SNemZInc1Oflr4biJgvuukUO/F48cDx0wo9vOS5AeLyuagWDCQ68A4MnQLUYVrLTLbWdaiHiEGgIhWAmyWFQ+xcJ6JZ+m6tWLxD0w6HjevYfWPoo2pl5Fq3J5+nx++eZGU8/B2invARN8nkjnhdRqUJoNFreeustWlpa0p63ghX8NaiqquKdd97hvPPOI8gir3t/zMXGm+SDwVDa73nq9BwG+9IFQzpfJzJO1t1QxIIvkKhUlwaeUR+2QvHFeIQ4s/rucqZ75jgtQDjt+fMIKAzqNz1Qgcll4Ji6R6hcXISglL/BycDm5RMCI7umGdmlbL4+/tteCjpyhQlKAHPDPnyTYgs4gGM/76LoonxFRLBt/6RckrntsWoWfAFhNQPFfuqgj+BiCP+c+DzU+avu1AqGGbDxsw3MjfoUqTIoxcbPNTB5Wryk3JGfnCC7MUeYoASwuBBgflbcVzv9h2Ghby8KI6x/rJ7eTSP0vi0oXeqF7V9KkRTO4LccfOE0OQ1ZqQ+mCKzMjiywMLdI9xviPl7nK30UdGQrsu+WfxL3N511RrwTC8yc8iIaml5zZzVqvbIyb/u+282qW4uECUqtD5Vx6OUBZrrCPzySJMsQsFr0BQguhlIQlEIpx+SWB0rY+f3TDG5P7RCGAoElPnTf9hksboNMUEqD0MIiKo2aIW8Pg3lHUA2rsFgs9PWdvXIFK1hBV1cXeXl5DA8Ps5M/snZeVlTKpLw2smuasvNd9G1L8iNU6pREpaiyiAFa7q5kV7LqXCr4ILAQYGFObMz3TQbxTfowuA00fKSIXV9fnsw6uGUcZ6VFmCQcQct9FSz6xTbBRQhAhlwDhiyVEEFTNHkVhQ/GO2cY2C4ek+l5c5CsErMiAlX/tjHGjooHzk/8SjnZu2CDk+Lzctn6r0eEiE39fx4TVsKKYH5mAZ1ZPJaBD069NsD4YXEiTd2NxTgqrX9d+bJlsPquMix5RjZ/Xtz3PPyz0wmkjOXgn50nuBAUJigBwptDI1h9Vxk6o1bom43g1G+GOPWbpMRlBr9rZM80tpJx+t5OkexM4x9MnJhNub5MB9+gT/4Od4j3k67XRhSpIeW12RjaMS1MUHLWm6i9ukhxmbfTb49kVlGJQ9EF2diKjBz6UW+MoCSAUCCEdyRp7ZeG6Fr+ARdag5rOV4Y59nKKdxgIpFRpnxvy4ZvIsL4MBKL3G6o7QPDgIlqVljfffJNzzz1X+LesYAVK4HK5OH78OFVVVSwyHyMqQVqBA4CxIzPYikxL/j2dSliEoFT6/mzUWhWnfr/82tYz7CdUE4omkJdDhKBUfW0h/ol5ut9cfjw78doghixlG7hrry8iu8ZG5yt9ieSmNIgQlFxrs4TaT5/yKc5RHXtlgLILXcIEJYCp0x4WFMR9jv6qV7HK0c6vKVdjXHN3OaHFIPt/IBbHUVzqzA8BX4AFBXGczl91o5aU0QTWPV2LZ9Sfmoz8N8L6T9Uz2TUrXF76xG+6cdTYFSl0LXqD+KfFbTWyd0qon8ej/RO19G0aoV8gJhzBrn8XrwoDcODHPbjqLcLt/bNBvOPz9G0V7+/HXhmgoMOhSJ1sx9fENxzYiiX8vhD+kXn8yT5LGqy6uRTJomXzv55IuzEtGZ2vDKPSqoQJSmtuyefYH0ZjpYUzqQ6HOSMLcwGCi8GltgoGU/pQq2/O4+gvBxnvTN13Q4Hgkrj04IEpHGVGBvctF/PSMO0f47RzO6oBFQ6Hg1On3lsbQf5GhQP/dvD5fFEpxj2dzzE4ImeBVfOLqOYTB4ygzQRe2PmCB+9gAGcplLUnXTAUiv0Xh8r3O9AZ1ZScZ075HCqVKvofwNZ/7eXIS7KDYcpBJitlkgIDqi7JRmfSkNss30OlVqXf2aFSs+/b8uRUdlkuLPWDlsIjJ5m6/qgsGNF0exkN16dXqUqFxjvKyG2xCbXd/90uIQJUBLMnPWz74lFF5eE6f9GnqNQdgKvJSusjVcLtdUYtKo2KvI40SY2/AfZ88yRb/0lMxSCC7jdGFJXGC8wH08rL/a0QXAxl2riTEsO7phWVrDv8o25FAaEzgc6iQ2cWd8qqP1pA/ceKxG8QXpAffmFgaWm4+Akq6X0d+cUY+58PJ/2SgxcqdSywEHfswM/G8QxpZBWlVI8StxBbfZ1dHtdiBzP8BhXlFxgobrZQ+4EkAkEGFvTAfvDPBTj25tLvXBUMLVE7KmuT/7dre4jBw+l2dyWO7dkFYHHIzxAhKC2510IgSlAymcDj0bDpjxpOH9eg9i9G/0uGZm4BzdwCDgdkJ23w0s7MR/9LxDyNq+bRTvvZ9UaIzt0QMCUSmLRTXrRTseD565v/H/bu3Utubi4//OEP2bhxY+rfvoIV/I1w7rnn8s477wAQJMBr3v+KHQyGlo45Gg1Hf97P3rDPUndDgfC9nFVWctMRBZJw6tUhNn/+CN5xuRyUKKwFRtzNTqG2vW+P0hsO7JR9IE/onKMv9+Md9QsRlCJYdVsp5Re7Kbk4V/gcc6mRNXeXC7WdPOZVVIYOYO+3TgrvqgJZ7abzReWJ+4abS6i4Ml+4vc6sbEfSmWDLFw5z4mVx33n8sEdIOSsewUBIJmGcRYSCIYIK1GG944gTgcLY9k9HFSuLKkFBWzZqnUrRjvbmj1dir0nyPzL5LcD0KS8nf5Nid1iaRNlct5ftXzkhVO4tklSa7PRy6Edi31Reu43a68THToDaDxfTdGeFonO63h5iqkfM1zY6ofA8BwAHfyj2O/LX29BbtVRcFHYil1kMGMND86EXBtj6lTCBLzLPpEjOhUIhyj+Qjd6qpeqSxPEzFAhE/4tH+SVOrKVGpk/Osv2rYWWFpCBQaGGRUDgZMOA9zV7eYmRkhNbWVqanlZUQWMEKzgRDQ0Pk5cl+x17epn++C5DHk+REdSR+tP0rJ5jp9mEtMVB2iSvxgqFg7L84VH8gH4NDT9mlYv7Hti8e40jYNzDYxcblivfnYnDqyWtzCLWPEJQKNjiF7zFxYoZTb4jt8I2g+d4K6j9apuicmmsLcbWI+alHXuhRVIbONxlkx1c7FZWH6/rDEDOnlZVUy6o0sPY+8blCrVej0atxN4n5zmeCQz/qTk0uzoD+zeOKSl8F54OKyEBnguBiSLH64cSROUUl6079ZkhxfFApDFl69FbxmFfZpXnUXZ8U81rG7wI48atBfJMpYldp0PnygCJiD8CRn/YzdVLsG1l1SxGmQoPwtQvPcVJxiVvRWnf8sIe5QT+dvxFTXy25UC693r9pgoEtk0Ln5DfbySoWSRjIiJRg2/qlE5z+41ja+QKI/ntuo43sWmvisUAg9l8Saq7Og0CA/d/vpvOXg0uTb0nn/XH+Z+zbtw+n08lzzz23QlBawVlHZWUlx4/LxMxF5nl96oexgylyhmg0dP9pggPP90EwSMWl2SCJ3cvdZCd3lZgvMbBtkm1fPo5/OqwGIojsWit5zWJ+19j+6SiJqPDcbKFzun7Xy0y/RxERo/KD+VR/qJDiC13LNw5DypFouKlEqK1/xK+4bP3hF7o5rkSt20/qmMEyqLjSTUmyb54BBrseySnYoc4Q2798jJOviv+W6dN+Jo/NKbpHIKAsHnUmCAWCiioi+adhUKHC/s6vdXL4BeXiFqJw1FvQGTRojeKE/dW3lZJVpUBBS6XGO+in+03xjQT+0QX2fKsL76A4oWuuz0/nS4OJucg0sFcbqP6QWJw9grprC2i5vVjROaf+OMz48Tmx8n4S5LfLg+2xl8RUw+yVEiaXnvJwrCwtQSmswhcZy0+9McGO/+hLOJZK9CYUCuFuNmHK0VG0IXE9FgoEo//Fo6DdjK1YwjewyO7/7AU/qHSJvn18zGvCP8xm3y8ZGBigpaWFsTFlG07eDahCZ5u9cIYwmUx4vfJiriH3Copz1iYcjygrqadjgdf2j5lQqVVsfUFepKg8SYuVuIVUyOfDWgYzXSluPp/Iso03UftDRWh0KrZ8KXxiXOdKtSi2lJuYPeVJuQBItVPCVGKi6dZiFr0Bti23kI9/dSYwmdR4RpcfuOs/VszYkSnhUmmmHDVND9YpKuFWc0MROTU2RSXcOp6qZWF2kd3/IcYUbX2kCr1NXL2n+YFKjC6Joy+fZmy/solXFG2PV6O36tj0v8UZ4fnnOPCN+4Xt1PZ4NSpUbP+KskCPEmx8toH5mQV2fEU5I1wERRflULzBxbFXuoXfRfmVeQxtHRHq4wAdT9eiNWgUvYuMSBGI2fCZOlRqFZv+Pv13ESUmqtSsuasIs8vA7u8cxzdKlNSTUkFJpUJyyKXeerdN0r81zk5x10xGx8fdhIKw/dtJicg4AlE8QSm7Wk3lhQ78swH2/nhy6e+MJ2PGE5uusbD/5RTPlKKttRBm4nLbIW3s9yaTk0JaDdZ8aDhfYsEXZNfLccSfyISbYtqKzAmmbPAOJfaRoDGW8I4QlJreDwaziqP71YwOy8+TTE4KWGKEIk1k94UJTGqYVsWOJZOTIkpKHe3zSFKIE/tgOLyWipCU4olJEfTMv8jhw/J4tnPnzhUFpRW8q9i+fTsdHR0AqFBzsf7GpY0i33k4yJi/IYuyC/OYG/Kx77vyoi7TLlBjgYR33KtIacTVbKP6ykJm+r3s/87yTH9zqZG50wpuALQ/WYPOrGX3d08pUiOyVRiZPinQ3ghrb65g77fFVXUiJdz2PndK+Pes/1Q9oVBIuIRb0UUuitblsOWrh4XeidFtoPnuCia7xEulbXy2geB8kC2Cz3Qm2PhsA/PTC8IqiEanGldLDt2viyn+uFpsVF5ayKnXBxSXFBRF+xM16Czav53PkuYei/4AuwV3ZDnrTejMekW/eeOzDXhH/ez+hrJdX6LIW2en8tICJrviFKSWSZRt/Ey9rGr1raTxI01Qpem+MrSSmh1fE5T7brJSfWUBg7snOPU7sd357U9WLSkNtxxyW23YCk0c/9XywUZjnhbv9KKisbb9iUq0Bg27v3kMn+gGP5Uac4mRuW7v0rVusn2NsOGxKha9QbbH76ZLJmTE7Q6LrMGtZUZmurwJ/nIyOSlybP0nygguhtj65ZNLjoWSdin7y4bY1v0XfD4fTqfzPRmsWcH/3SguLqa3V14k1NFGkaYy4XhkHRnvW617Si6JFJXyz/TthYJYSwzMdCsjurQ/Xo3OrGXTFw8JqeuYigyKyDcGO7Q80sDC7CLb/0VBTMMABptBSGWm4io3Mz1e4VJpGGDj0w0seBaFCTWll+RSuC6Ho78SL+HW8lAVi/4A+74ttnt19Z1lWNzi6j11NxbjrLbK6geiv10h1t5bjtltVOSzuJqyWJibFybsrL2vAq2kOSOFAlFsfLYB/9QCO//17NzD1ZRFxaX5HP9dn3D/KLogh9G948Jl1VoeqsLg1J9V/3Hd07VoJE1M9WIZv6vuukIclTZ2f/ckvuG4jFG6ZJYB1j1STc+mMfr/IuaAdDwpK6Anl0dLtynYVGhg7W0l+Mbn2f3NLqF7ADTeWsyBH4qpN1hKDMwqGGsNbgPNd5bgn15g19eV7WY3FRrw9C1/r4abi8gqMXHs1/2MHQjHm5eZM+SHA4PdkFh+KpmcFPatGm8uxFpo4ORrgwztmE44lorQ1F+zn4MHDwKwdevWaPxhBSt4N9Db20txsZwAV6PhYvPNSxupEmNe9iqJumsKmen3c/DHMuEllZJSBJJDhX82mDphnmZDh61MYtWNpUz3eFKPOUnnSS4J/4g4sQCg6d5yTLkG9n3/JLN9/sxKIHGwFEnM9ordq+GmEg79WJzssfrOMqyFJg6+0CVUWg6g7YkaVGoV2wXVhVxrsyi/xM3ebx0VUn+RbND8YB0Tp2aFN/Wt/3Q9ocUgWxUqGyrBxs824J3wC8dyJJua7NV24XnVVm6g9tpSTv9piOGdk3/Fk6bH2nvC/uNZrPTSdE8FIULsFfSzbaUSOpvE2H7xjUobP9fA3KBX+B7LIsmvspUZaLy5nIkTsxwWUZBSqVn3VDWeYT/7nxP7/hpuKkLK0rHnW11C7W0lEqtuKqVv+xjdb4opLzXfX4rBrmPXN46n/vZS+Gz2KgOOcgunXlt+c6VkA7+fhLE2ZVm5ODTdXYzBoWP3D3rwx/s4mYRoVCoMuTpZRSkFoTWKMEdk3WOlzHsX2f3tgSXHopeMj2uFr2l265kbnE+MhwWSz5OPrXuokMBCkO1fj/WPCElpSczLOcr20TfxeDzk5+fT3y9GpH+38Z5TUorA4/FgtcrM/UPDr3Ko/7WE4xFlpaAttoPg4BseevbOoVoMoFoMEDIl7ZKIU1VSGQxRglL7vbm03pGe8RqvqjR2bAbfZFInzqCqNHvKAyZY93Q17nWJTOpUykqebg8Tp+bY9h/i0rsAGz/RwNr7aoXaHv6vHpmgZJIJSMvBMxrkxO/7FMkI928fJxQIoZXEWaIaSY1OwY6eBV8AQoipTgG7nzvBnh90KSYoZVWL71KZODXLwsyi8DMBlL8vn+orxVmiWqMWjQL2LYClQsEDnQFMJSZFv9mcZ0ClUeGfE+RImiC/JZuGmyuXbxvGZPcc89Pisp5nYqPN/3CEwy8uo14Rxy4OhnfH+sJzrUqjSVviTaXR4G52oFKrCGZST0rCvCfIgjeNilCcOlwEY51BTr0zyd4XptIHnFSq6DFreBPd/pfCqhJqVUYFpbL1WurfZ6HmfYkKQqnUkyKY6Q8x0T/PgT8ky1Gn2OECtF2tpbIpiGoxuISgBDH1pFiJN+g9CosLIcZ7QsuqJxW6FthwObjLAI9MUEqnnrRo1aOd9kfVk0b6EglKycpJEWw59a8cPnwYl8vF4cOHVwhKK3jX0d7ezr59+wAIEeS1+f9a2iiidhEetwY2TzG0dzJKUIL0wWEAb78fvFBwnpONn60nZ401bdsIRnZPszC3SM87YruAIoSeqmsLaP9EjdA5B75/nOGDk4oISg23lNJ4czlF5+cs39hLlKBkqxDbDbPjq50cfalbEeFqYW5B0byn1qhQ61TkC+6e9w76FCszHvrJqTMiKJlLxXcNzU8vMHFSXOmo8fYqijYIvLcwQosh1DoV5jwFO5mMMqnrrMEIRgXlEAE0kgadSdzPrryiiMrLFaj9GOV3MdYprjIm+j1EMLR1kr3PneLQz8UISkanrGqVIHW+zK4vvVWHVoGdQFZXGNwtLpO9/cvHOf7bfjFyYJ4WjDC8c1qIoASw9vZyNjwmNv5FcOAHJxg5PC1EUCrYaKfjE1VgCDJ3em5ZBSUAvOAbn2dw7+Sy6kmhUIjWh0ppf0RWk4sQlNKpJ8Uf6/7LKPueP5V4LG4XWQRH5newe2Abi4uL5OfnrxCUVvDfgp6eHsrL5X5+hB0cDexOOB5RVor3rfY+10XXm3Ek2+TxLF4lQ6WOEpTaH6+m7TExVemBXePMjfiECEqATFAyyJvO3OuX9yl8kzCyf5L931MW89rwiQaa7ioTanvylUGZpGOQS78t/1Bw9Jc9ihR/hvZOE1hQtoNcb9Ui2cQVIxfmFgkGQhjsYu2PvNzDnu+dVExQspaK+yxjx2bwjc+DAjen+qpCqq4QV6DWm7WKdpyDTPpQ8kxKYchVdn1zrgGNXk1IgbJmyfm5rLpVPOY1cWIG36h4+WZTkXIDbf3noxz8cZj4K6CgBBAKBWMEpWX8rrzGLDQ6NeoMa8hk+KcWmZ8RL83i6fNx5MUeYYKSpUS2kyhBKX+9ndU3l1D7EXH1WN+gj6F9Uxz6kViSs/Xhcioul1XxRAhKAH2bR2XffP/ssupJzjoD65+pwd2eBT5kglI69SSNJvrvB57rZmDHRCJBKY3i0l80v+LQoUPk5OSwe/fuFYLSCt51FBUVMTws+1BBAvxh7odLG0XizuGY1+RxP72bJzj4o76oEka6OD6AfyIEfnA2mFn3VCXOhtQVXOIx3eXHOz5PzyaxDS8RglLxhTnCFUMO/+QUg7vGZYKSICqucLPmjkphBaYIQclSJKYStP97XRz66WlhghKAf3Ie34T4bwgG5dyko05Meco/LccPQgqUEw/918kzIigZ88XVlGYHvYyfEI+z1F5XStn73MIKYAs+2U4mlwKFJ0kmzJ1NKLERgNamRWcR97MrLy+i9sMKKqRI4Bn0KYp5iX4PEUx3+dj5rZMcfmkZHyTiX0lyn533ivlFKrUKg0OH3iIe81JpVSz6g4woqIiz+5unOfLLPmFyIBJMHvcJEZQA1txezvqHxX1mgD3P9zC0bzqRoJQGzjojrQ8Ugz6Eb2g+NbEzhULSzICP4f0zy6onhUIh1tySR8u9csw1QlBKp56k0qijca3jr4+w/2ex2KBKp00Z8+rxH2X35Dv4/X7Ky8vfswQleA8rKUWQn5/P4KBsdIexnI7ypTv7VTOemMIGgBHarzUx2bvAsd9Oo9Km/uhCPh+oVLTdk0twIcSuH8jOQMgvL/JSse9Ci7GXXXuti6O/iDkQ0YBpUsDVVmli1XUFzAx4OfD9pQNMOtWB/I12dCYN3ZlqZodf35p7y5nu9dD1WzGpMgjvbl8MsUVBCa3KD+dz4rWlpar+b0Xj7aXYSsyc+H0fQ9vOzk60+o8V0799TFGJPKXXd1bZOP3OEL1vig30SpWUNn6uAeCssqGrri5gqmuGkT3ijoASZPwNGcufpQ+4ZFq4qDQZSkaqVOnPVavS31OtSlveLXrPOJRdaKZr25z8PWf6jeFnKVmvx11vZKp/gaO/D/dXTYpnCYZi/26Clg+a2PVrj3yfuMXeEoRC1F+m59DrSwMaqkCQkLTU0TSZYfXlOvxzAfb8PulgeHIOGWMEqcoWGDgO3lH5WDCp/BqA2iPPAUGz7Ei6y6C8Ho7vhbHj8ynPAVDP+Qnm6Fl/AYwNQmdcnkE97U14jgg8Hg9/7vwyAFarlW3btlFXV5fy+itYwbuBvr4+iopii7RzuQajfimRIBQIJCTNaj9agKPCzJavdRLKREANBclry6Ly0gKO/qqbsQMCxOHIzoJSI646G12/X97XaXukGn2Wjk1fOqRITaTh1tKYQksmGKHtvmph9R6Qy75llZo59fogA6K1yI1Qdn6e0G/+vwUbP9dAKBhi8z+cnRKvOWusWIvMnFIgf60UGz/XACHY9PdifpFSJaXyK9wUtGXTv2PsrP0Oe42RnEYHx39xdhayRRe5KDnXxcihqTMqJQgIJ8sSz/nb79FJR85MJhcYnJDbkkP366NLjqU7b/0nq1GpVWz+wrGU10x1TvllLozZUrT8XKZ7lbw/G8+wj1EFmzjW3FWCOc/Anud60pM74+xcc20ex34xFEuOpXoHkWNhH7Ht42Wghh3/1iUnutL5joEAdTcWYi8xseVLJ5ccS3WvnfN/ZBz5u2lra2P79u3pfuoKVvCuoLW1lV27dgGQTQHNmvOEzlv/yRrGj89wTGAMbXusilAQdn5NgBgUFyKsvrqAzpeXnwcMbgMt91Qw0+Nh/w+6lr9HGM4GC+Y8Az0CcYq6G4vxjvk5/ZqYEiLAhs82EAoE2fIFccJ08UU5jOweVVRu7P9kVH4on7y1DrpeH6Rf1D9ViIqr3IwdmlRUIk8Jyi7No3B9Dr2bR4T7h1IlpQ2frgeVis3/cPZiXqWX5DLT52H8kLIyw6JY/6k6VBo1mwX90yV4j/hdmW+X+IwlF2bTvWWMkEfM78prs1FxiZuJk7Mc+Um/kN8F0PxgGbu/1wW+zH5XKBii/sZCjvx06bia9jwDrH+sBt/E/BLVg0g+If68kguzGe2cY67Hu+RYOjhqjNReXczx3w8wujd9zDUUDKEyqVj3cDXjnTNyebflnh94beEFACwWC++88w5NTU3LPtMKVnC2MD09TVZWTEjgAu0NSNJSIkEoEEjIDZZc6CBvTRbbv9lFyBNMv2E3ECCr0kjdNUV0/naQ8UPhdVaGjR2Rb1nK0ZG7ykbPWyk2UCSdv/q2UiyFRnZ9/Sj+afH0bvXVBXS+JLD+lqD5zkp2f++EWCkl5LJveU0Out5Q4FNIULQ+h963lJWm/z8Z6z9VD6HQWVMcz6oyYSsy0/MnMeLbmWD9M3WgUrHlC2JxO6VKSu42O5VXFDKwY0xR6TolsBRJ5DTa6frd2Ym3Zq+yUXttESP7J1Ovp87Er4qee2b+lYhP8FfdT4Kidge9fxbYxBd+lraHytAaNGz5krgie35HFrZCI0dfiiPrpLFnXquVRW+AsUNpcu8p8rPVH3KRXWlm/wsDzA0kDYDBxNgVQNn7nHT9cTy2jk71LJFj4fPW3JyHxqBh93f6l415lb7PSW6Dhe3f7kkcj9Ocd9i7jZ6A/G12dHSwdevW1Nd+j+A9q6QUwcDAQNR5nfCe4p3Ob6ZuGMcUM+nlTqnRh+WxFzMwCUMhdnx7OEpQKmg3xR1KP8EXnWvDUW5m7R0pdhgnfezTJzxs/vyxlASlTCi/KI+idcvs9A53+H3/eSpKUHI1La9MAOAZ9tG/U3zXqKvJSt4aB633iLG0AVbdWsK6TylLuK+9v0K8sQmaH6oUVjvKX+9g47MN1N4oxpI9+eYIvol5ZgSlLQEqPuim8c4y4faH/6vnrBGUAPq3jzE35GX8xNm7x9jxaUY7xaURzwTHX+4XJijldWTRdH+FInWn0c5pJrvEg0EbP1dPh6BKB8Dae4rJa7Ms3zD8Tdd82El2fdIPyOBIVH/QTvu9ecK/WWeG3GoDrdeLKWgAdO+bZ9Ef5Og7GfpSHOnSVQ14YNdP4whK6RAK0fABCWuOjtK2xEOqFKU0I/BMBdj6gi8tQSkZriIVqzPE/SMEJYBsN5hMMNgFm38rE5TSnjcnjxEm5Feoi+MjqadTJ/A8nlH6Fl+K/j04OLhCUFrBfzsKCwvxeGLf+J95Ce986j4cT7LWGtXLSqtGMLRjik3/cJixA3MYC43YysXUVFbfVEZBh9gurh1f65QXvwoISpVX5+Mot1B7vYCP4CVKUBJRhAI4+evTzE8viBOUgHWP1sm/WVBwxuiEdc/UUX6FW/gerhYbVdeKK+bkrbMr8nM6nqqNEoFFMHlqluH9k8LtjU65LEh2o8AcC4zumzmrBCWAsaPTDB0UV9ZRiuGDU8z2exnce3YI9ACTx7yKCEqNd5RRcnGucPuxY7N4x/z0vilGUGq4pZSNzzbgTPaN0iBnjZU1d5cJPw9GaLyjRLw9slJu9bWpd82n2oTSeHMFhe3OtEoGEdWUeAzunmC6z5PyWPK9shtk25z63UgCQSkdQsEQhe3ZVF9RmLZNKuz7bjebP39MSH2u6b4SsmusuNZmeG9xAff8DhsAO/69K0ZQSofwMY1enn8MzqXHkjHR2InHMIlarebCCy9cISit4D2BnTt3cu211wIwRj+bAr9b9hyDXY55aQ1iajM7vno8SlDKa7MLnZO9xoprtZ2195Yv29Y36GPT/3dIEUEJoPbDJRRtFJs7jrzQEyWgOOqWVyYAmOqapX+beMzLVGSg+NxcVt1aLXxO5Yfy6XhKTNU8goZbShSp8jTeVib8m+3VRjY+20DdDWJq3X1vDzA35GP8lHi8qOiCHBpuFp8zT74yeNYISgCD+6aYPj3HyOGzF5MaOjDB6KHJs3Z9gNOvDQsTlBx1ZlbfWSassgUwtGeCCQVxuw2fbaD9CfGYV8MtJbhaspZvGEbFlXnC/jtA6cUuOj5RJf6bDVC4IZv2B1LvtE/lWw3tmMY3Oc+p3/Yt63cBUb909ze6ogSldAgFQ1RfnY+zykr5Za4lx9Ke5wmx+fNH0xKUklG4PptGwZh3VoUBg9vAxDEvW/7p2LIEpQhUalWC2lm6Z/Et+DhVsiP698jIyApBaQX/7bDZbIRCIdThxPRbiz/B70899sbnBnUmLSqNiiifKcN3O3XCy9YvnWD80BySTS7pJoLVt5RSfE5OagWcJJLA/udOs/nzRxQRlAo2Osldbaf6WoH1nx92/4dMULLXiPkgJ14bkPONu8RjXq33VVNyXq6spiICCVofq6bssjzhe2RVmahQECNz1Fuov1Hcz2n+eCUbPlMv3H7kwCQDexQQwyWov7EER73YnDl13HNWCUoAA3vGGVTyGxRi4rSX8WMzDO87e3G12V6/IoJS9bWFwspiALNDfqZPz9H9F7G1SMXleWz8bD3Zq8RizLYSiVU3FwkrZgHUXqdALR1oebiCiivEv7XVNxRRfG42WRXiD9W7dZzJ02LrkMh1B7ZNJRCU0iEUClF6fg6VHxD/DQCdLw+x5Usn0xOU4lB3bS7uJiu5azLFvGLjdM4qOcC/70dDMYJSOoSPaSV14vwTdywZU9XHGJNOo1arufzyy9/zBCUAZVr2/03YvXs31113HT//+c/xLIzz2qF/5tKKxwgZklQpwklpzyhsez62G7TsfDNdb8f+XqKsFO4klZdmkVNlxOrWc+Tnw+FD4V0J4cSbSqsltLhI75+nMTr0dL4SY/lGpOaBGJkgyWFpf6ISjU7Nln9afrfOid8PMDcmIN0bSQqGQmz4TD0qjYqRPcuzUvd8M7bb1FRgwNOfOWgwsmeGnFWzHP6ReH1ZKUuPRqeWM/cCY03lh/Ox5BlpuKWEQ88vf5+sQhNGp0TlB/LZ1bk823JgywQlF+QxNyQWIPF0e9j1b8pkyHNXO1BrxVmpJe93UdCRw5avHhayUfW1hbhWZdG7aYTuN5Z3OKY6PezpPLlsu78GR18Qq9MbgVKVhNZHZWLczn8VexdF61xIdj1GE3gFY23HfpLmN6RJui/MLjKbph8tUUEygSlHouTcXIZ3xz1QMJjI1o27l6PMhL3EyNhhT0ZyUuSYOVuPWqcSVjlbmIPho17GusROMOWDZwB2/VeaoEXSWLf2WiOSWcPi4iwTJzOTkyI49Hs/pRsWOR2OYaQlJy0GqDpHRXaxROfmAOPxoidJ5KR49SLV/CIDnTAaHlriFZHiyUkgqyjVNMuPt+0XqcfhCDEJwOoGowUG+2HzqzIxKR0LWD3jpXtyP4fG/wDAqlWrOHDgQJrWK1jBuw+j0RgN2oRCIf7MS6ye34hbV7IkMBIJSB74QU9sB2pHFtN980IJ7Obby0AFm/4+w3ygUkEoxP4fd+EoFQuOROBqsVF9RRH928eWVSM68fIAAW9QkWpRXpudyssLKFzvY++3Ms+13vEYsclcahQq5db5q25MbrMw2co7DhqdGluxOEu3+vIiUCFMSCk9P084KQowO+BFsotLLh9S4GcCYDRizjNQuM7F2AGxxE7Lw1UEFoLs/aaYfxQJOIn6LUd/pswvUoq5095oCUERVFyZj7vFQe/mUbpfX15hwFhoZM0tpXT9aZChrZNC97AVmzDlSkLXB/D2edn97+I7pab7PFjcBsYFJaZLzsvF4NBjdEt4B+MCC+ESSMlovL4YW6GRovOd9L69fLDN6Nah0akxJPXtTEmm7d86Qe2VBcx1L/2gk88zFhrx9nk59fv0vn7COUao+XARgcuDbPvS8WWTZBEc+UU3aq3YvqX1n6xm0Rtgx9eW6Xtx9t3zzS4qr8pjZM/skmPJu4Ebbikmq9iIzqyl+/U0vzsuEFN2SQ5dr41y8Ef9S44tQSjIGws/I7grgM1m4+qrr+bHP/5x5t+xghW8i3jxxRf5zGc+w+c//3k8TPFm4BdcpLk2bXvfJGz+x1hpiZL3uej+4/KxgeILcyg+14WjysqRF9Jsogv7XWP7ZhgoHuPUb5TtLm59pBqdWSOkXnTkpdNL5OyXQ8dTtWgNGjZ98dCyJenifQqD24BvMPMJnl6fvNv5d+IkXaNdQiNpMOQa8A0vH2cq2ODEXm6h4SMlQj6PIdeArdSE1uRm4sjy8+Zkp5eF2UWm+8TmS98ky/qwychvc6IzioeTXS1ZlL/Pzb7nTy/7DkAmQZWcn0vfllEhZSTfoE8xQU4pTr6ijOC+4dP1hEIhYRWvNXeXodZp2PMfYr5RYYcLa5EJDAZEazOeUqgU4B3z4xsX37BpLzNjdkmM7Ioj0afxuwDca+zkNdrZfECsTI6tyIhWrxFWOQt5QnT9aQTP0NJvIZWfZCo0MNfjZdfXU5dgSz6n8bZirIVGOvUDjOxOT/6KP6/z5QHmpxfo/tNY2ueI/HvJRTkUrc/m6Ct9CWuc5HPiVRFCwRBdbw4z2S2molR/XQkEYcs/py51GX8vg9uAtUDP6J4ZtvzTsWV9zdHAAHt4G05AfX09hw6dPRWyFazgTBAIBDAajfh8Pt5a/AVrgufhlkqXqGpEcoPHfzPMiVdlX8tRZ2R+Oshcf9wYmfy9hdc6a++uQq1Vs+Wfj6dVU1KpVYSCIfY/f5rsKkt65aLIeBp3HVuZgVU3ldG3fSz9GiqM/k3jqNQq+t4RVy2ylRtouL6UmX4P+7/blbmxH/aEfQpjvoQ3OcGfAkdf6iarzCJUFipyD51JizVfvHR83TXFaPQaYUWe8ve5MTj0MvlDYBqcOj1HaF6cLHbi1wPCbQEkCRxVFrSSionDYjGv1XeWQTDE/h8IKMUDHZ+oRa1TCysjnf69uLLpmcA/4ufwC+KxQXebnYrLCuR8qcCaSLLB6ntq6H17mMEdk0L3yKnLYqHMTN+fxUhH/lE/B55LY/8U+cbZYR/+6QXGDgqINISClFyQi63YhCVHEirlWHVVHtnVVorOc9L7jgDBTAKdUYPRIR7P3f9cLxWXu5g6ufzzSE4V/vEQgzumGdwhNgA0XFvEoj/I9q9lLpcbTzA98EIfklUg5hUM0vZwGYu+AHu+3bPkWALicr9HXhyi5AIHw3vD/JP4d5sk2FB+aQ55qy0Y7VP0vJ2GgBcX1ypYb6N/yzQnfjfGid+NLUtoetv7Er7dc1gsFm666Saef/759O3fQ/g/gqQE8LOf/Yz//b//N//rf/0vgizyu5Nf4rKKTxAy6AlZTXLJt3gsLIJOy+rr7ZjsWhb9IXq3Zl6kn/jDFOZsHUdfmVxyLBQKLVEIiBCUaq91Yc03suPrGQZOlRpCQRa9GTpSEoZ2TEMoiKXCRN1VBez46jIEDZWKgd3jGB2pSxGlg5JSXRGCUv56BwNblmeyKiX4nPjlAAuzi0LkG5AJOEdfPs2YghIFWxVKKbqarFReXsThn58WUjw68JPTzJ4U34UmZelRa1XkNzsY+MvyNh3eP4GjwsLcsPg9Wh+pYuTQlLBdlaL10SpGjkzT/QfBxNSon8V58W9Bb9aBAjXCnV87jqPehFfQ525/sgbvxDwHvteVeCCDKsj2r4on1vDA3m8fRyVlmBCT7rXvJz0Ys9IkmVMEevb8MPxuM5R7i8C9Vs/g3nm63hbrQ7UfMJFVoGPwsJfuLQLESaDzbS9V5xiFCEpl6zWY7FoO/c5PV3hDeyb1JADfrFy/dXwE0Gd2lorqoaACtr8E3XuXHk8mKEUwNgSzQ2K/t+FcHaBisD+1clKELKWe8TJu38KJPpmJpdfrVwhKK3jPIhgMYjAY8Pv97GcTowsDNOrWgUqdSMwOIyLxXnmJm1AgFC1PlAndfx5Gson5LXOnvVFiz7pn6oQIFLNds4SCIbyTYgH2CEFp9d3lTHTO0Pt25olkaMck+W3ZHPt5l9D1IUYYGdo/wYmXMwcnxg97oqSMvDY7QwKLZ6WlV4+90sPc8PI1uSPY/1/d4BWXqFJMOgIa7yxDb9YK+ZHePi+HfnKKyWPizyTZdAQD4kGkmQEFklxA6aW5OCos7PmPs0MSl69vFU5kTffMkl1jZeSA2MI/u8aCRq9GZxIPRmz64iGMTrFAYc4aKxWXFXDk591MnxSzbe+bI/S+Ke7H7vr6CZx1pkSCUgYc+EGPMEEJwDu4wKZ/kJNqkQRQpmRNbrOVoZ3THP156vIeyWi6tVgm9AuMo/IDweSpOSZPzwoRlNoeruDgz3sYP+IVlvwOLATxz4qNFe2PVTDeOcOJ3wxx4pUUSdEUAfpDP+5nzR1FywbXQSYoFbRnY8o1cOiFgdTBmrggfk/FHoJH5TZf+MIXePDBB4V+xwpW8G7iH/7hH2hpaeG6664jwAKvB37CxZoblj2v7sZisqvlHbfLBeV7/jSKvdySnqCUhAhBqfyyPHLqs9j+L8uPSf6pBeFNWxNH5DiOwW2g4Zoidn1j+Xn/9J+GcVSYRXkZgLIyV5FyDK6mLEb2LK9YeOC5LvEHgWj5E9EyKL5hH4deOMVkp7gvIvKe4pFVaaDm6hJO/LZfSMln/4+68U2KvwCdSYvWoMFZZaZfgKQ0enSWvLUOZgSJVgBr7iln4sSMUOnAM4HS60/1iMcoAQwOSdFmxwPPdZFVuTzxLoKmByqZn10Q2gwagaifGcGufzscJk0Jtv/OSUw54vHr/d8Xf/ac1RZG9s7Q/5el31kqP6n8MhfuZgf928bpek3M3zz+qx6qry4RIigVnOPEUWHm4A97liUoReCdmicYCDHXO7usr+ZqtlJ2YS7bvnSc/s3iqhNDuyfwTojFvJpuK0GtUTG6Zybls8f7wzPVfRw9vRO8YDKZVghKK3jPwuv1UlBQwMDAAPuC7zDuH6JB6gB1mphXOD9Yc1UBBGGrQHmiE38YxOIWWyf7RxfoH5W/4bZHK+ndNMrgjsy+yPSAj+BiiPlJsXVahGBR85FC5oZ8yxIupk/5mD49S+dvxYmuBRuclL3fzdCeiWUJObO9fmbDFUyyV9sY2798zGLL58WINBEceakH35R4HurgT3pgfkG4zN3J3yhX6q75SCGmbClK6soE/zQc+OEJpk+LE4eNTiljlaBkTHbNotWLb0Z0dzhw1duESVBKofT6njEf3lE/48fEYl6WUht6oxadRTzmtflLhzA6xRSCLEUSdR8tpfPXvUwdT/Jn0+Qbh3dOMbxTXC39wA97sJWJEZQAjr8yxOyAj6FdgoxAP2z957DQikC5N2eDmfFDc5z8rZgf1XSbrNa79SvicdOh/VN4JzKPdZF+v+a2Ijp/P8Jcvx+PYOWHRW+A+bmwAEKKMnDxWHtHAVPdXrreGKf7rRS+V4rv79QbExhs2vQEpTjkNlkoOceJtcDA0ZdGUse8ImSpQICesp34Dsvrj6985Svcfffdy97jvYL/Y0hKAM8++yxXXnklra2tAPzu5Jc43/0gJpMJdNql5X0WFjnw0iL1V5gSCErR8m9aLSSVgtv3Y3nBWfXBbOyFBnZ8M1aCIKqqFFZTisCab0RrCKsFJRMd4xcSAdj9H13RP93rshjcOhVlS6dDzeX56K06shvNjB3IvNDt+l2MJFL54XxO/HJ5Zu50r4cFX4aSeEnIbbFRfkk+Be3ZUcnw5VD54XyMTmkpCSQFIkQaR72JCYHd0hGCUla1SbhsWvPHK5mfWeDgD5df5AYDQdRaFe5Wp9D1lRCUADp/0UfnL8RKXYBMzNr2RbGdRhFIdj25q+1njaQkZenJrc8SJintVhjs2KzQ+QSE+k4EOpN26S7ydJOXCTo+XsOp1wcY2Zv4PS5RUAq3N5nAOyFGUJIc8vzi6QviHfalV1EK/7spB2qvzGX3z4ZlFaVgICNRSWeGkg4rhc0hdn5fLDDas9PD/8/ee0e3dV3rvj/0RgIgCsEKkiDBJvYmiZZ7b3G3lLjbsuXe4hKn3PvGy83JuefkpB7HyUl1qh2nJ7bjFicu6r1LFIsoilXsBQBJYL8/NhpJAHszJ3n3JuE3hsewiLk3FuZee6255vrWN0329KUEJZVyiYKSPaykPdwpsP/XSZ7BoknaWaRDoVIAgaTkJEGngfkgzmIY6oaefdCzLxyEKZKPX4rZeexZSpQqFSYnTIdfgZBRm5CclFcFWSVqdv5mlhMfJG57vIJSBD2H50AIokwQ5ynmgygmxaTyu13fRFDPolar8Xg8tLcv711YwQr+/4bf78fj8dDZ2UkfnYzPDXOW5gqAhPGLEBLo2TKML9mp2zBpO4Ke92IJkZanSzn53mBi4lH4VD+AtdSASqvEUWaRJCn5RkIx9RsD2AqN0kosBkjPMWCwayVJShBL4DsbzATG5iRJFx2v9mEvTaf3Pfmnp1Y/W45Kq2Tg0Jg8VSUDNG30cujHbfgkhvoz+8Xg1ZBrwDfik7x/RCHLkKXHN+6X1R5ng5nC87LY8UV5m2amTD0qmeouwLIISiBfESkCOfFrPDJXWdGk/e2WWcu9/5n9k9HnLAfLJQQB4EOWehqAs9KKWqdiTmaOrfK2AlRaJQe+s+i0lCAkjNfMRQYmOn2MHJUXC1q9BsbafLIJSlV35DPZ6+PkW+L4ILXJ1PhgEVqLBt/IHBOdMR+lum60Y4pQQt7N0nG36PJMOl8f5PBPkit4xV/jajSjtWjwXpnN/u9Ir4UyG80M7ppgx5dkxiz6EGq9EkvBIrL9ovE/gqbHPAwemqD77TPs/06SJOSihEzXW2cwOnQc/mmKNZQQwjc3zXbNG8wemyUvL493332XkhL5pctXsIL/v3HjjTfS19dHdrZYSvLt4Mus4yPoVck3t46+fJrym3JknRoGOBCe09wXOMmstiQ+DBcXdwFkFKWjNqrFEmUSnIh40o5cok/JJVnoHVpZ9gM7RxnYKSZ2Cy7OlKW0M3xsQnZZYoD0Aj3eq3PJX+uURZwCyD/fQXqOURY5O0JQshTrZZVBixCU0gv0TJ6UR0pZdXsBwdmQLEJaYFrMiTgrLLJISnKJMRH0fjBMr8xT55H77/qqtPp8PNKyDWgM6r8ZSWm5918OGQhYdo4PWFYJPUOGFu0yYsemx7x0vtvPcHz8mCTuQg96sw7/YABZ7EE96K0iwcov46CE3gqVG4rY/f1OWbcXtALeq3IoujDI9i/G3t9UcVfv5kEyPGlLCEqJ4q50tx6tWc3wwSn2fzdx3LL4mtzVNjR6FehB8CduR+S7MsoMjJ70MbR7gqHoRmJqArrdm45ap8Li0TPe4Y/eLxGc9ekUnJPJzq+00/nm0nkjmZ/a3+hDZ9ZKlsHbFnyb2c4pFArFioLSCv4u0Nvby4UXXsgf//hHekLHGfcNsdZwJSBWVllM9BAEgc63h5YqQUbejUVrnuGDU1E1tIYHizi9bYSBBESE+PHGkKVDa1Jj86YnJinFEwYCIbb9e3gO0YG1wMTYcWmirL3MjLlAnirMwfD+maVEXN8tIV0sQu+WEVy1GfRsXUbZt0e86Cwadp08LE9VSQe1txVx9Ne9BM6kTixE2qszK4GQ5P0j99OZlQQCIVlkJUuJkeLLctj9rROy7NNzjGhM8ufl5RCUALb/x/LiiuO/kL83CZBZbSVtGWpWy4WrxopJJrkPRDLdcvYbhw9MsPnAMuenALLUwQAcVVa0aWqEuUVJnSTrEe812WjTNBySecgzLVckJ010yWuP2a1jojtA/85xWYfUvNdm4RuejSkupVDGBKi6JZf0PAOH/adkqSgB9B8YF2MjGcg7K4OeD0fpeCN5HB4/VpsLdJhcOjwX2Dn00xQKuUolhELYKsS9gr3fiVs3JSjtFoVWQGfWYFlcFXLRGjqC2rtyGTkxzan3xzjy8ySkxkU5r8G9U5hz9Jz4fYq1bjBIIBBgs+rXzB2ZIycnh7feeovKysrk1/xfCIWwHErl/yWYmZnBZIqV+/Baz6HY1ryUpBQHYW6OmvUZ6NOVbP923OQbCCyQ54qg8e5M1HolW//rVOLySUmktYwumO5NwsyNl6e/zEl2fQaTvT4OvngqdXJbCMkm7ERQ/6AHg01H5x/7ZKnzRCD3e+o2eTj2iw7ZSjVrP1WBQqlg82flDf4tT5WhNqjY88JhWd+x+plyVDql7Pu3fqaS0LywbOa1XKx+phylWrHsTTC5KLk2B0EQZJHQANnl9iJo/Uwls5Nz7Pzy8hJDspqSo6f4siza/9AvWWLwL0Hp+jwcpWbafneKob3yN+SWIEnQUHJtNplVVnq2D9P9Vly5R6Ui4WTd9GgRGqOK/d/rYGZxX44wcuO+q/lhNyqtgq3/dQpFIMUGbXjcql5vx2jX0Pn+OIMHwhtfSUhKCpV4v/KrzQwdnWK4TZxsBUFAkYQdbCkUGD+VJGhO4KOWO8yggO0/SOL7YEgklS6C0QUzg8mDJCHc9tUb9AhBge2vxAU8SZ6V0aFkZpmli2svU6JPU3Hgz/NLnpdixo9giDHmy88BS6aGba/NwUTyExmKefGznRMvcuaMeNNrrrmGX//618tr3ApW8H8QGzZs4OWXXwZAgZKLNDcDqZO9BhvUbypj8MgEJ+IVgxJsUltLDVTeXMhkn48D3+lKfMMkIashS49PxmZJpCSunFjB7DHIVniJoPUzlaKC1DLmfmupQRbBxtVkxVqUJruMWM7ZdgrPczHWOc3hH0mfPDLYlNQ/VM7c1Lys0/eGXAP1dxfhGw7IKtlVfHU2rroMuj/4C8gvMuBabaX4khxObzvDSZmE6eXAkGug+GIX7b/tkiR9/SVofqIUTZpadhwrNgrZZQCLr84mFBTolClvvlys/WQF8/6gbBLacrHmuQqUSgWbFytgJJr/DdD68QqxL6eKY8MxmyFLQ/09HmbH59j5n/JOcLV+skxcR/ybvN9ryNJQckU2B74rnXCylRsYOSp/7HFf4CBvrZ2JnhkOvihPGQVixCypBFXN3W5MLj1dfxqgb4s00cDgUuMbkH/4BQOsfayUwMQcu7++VLI7otAXsV3ziJfJPh+Hfig9FvpKBvjgyLsAmM1mOjs7sdls8tu2ghX8H4ZKpSIUTo4WU02RSiLZKISo/Fg+5nwjW79yTHIzv/5+MWe0+YtHEtsmibvkljVzNWVQfHk2EydnZKkNySXsRFB5ixurJ43u9wbp+bN8Ykpk/JPCqtsLaP/DgKzfCuGclEa5dK5KgoYHStA7tOz+Zoes72h8VNy82/zv0mXuQCw3FgoJy1YSl4umx7yoDfLK+v0lKLg4E6VKIb9EmfyqZ4AYtwfG55ZNhpLVFCt4rnTT8c7gsgldcuC+wEleq5O2104vLK32V0LOOjuF57vo3TZM15tx/k+Sd6m9rwhTpp7d3+5M/nvjcmWND3vQWTTsfv6YrNJt5TfnYPOm0/H2AP0yyxB7r81mrHOKoX3SOcF4Yo8crHmmFKVaEVXUlIt0t57JbunvWU6cqc/UJCV6JYvxKm/Jw5Jv5PDPupf87sVre8+VLlzVVvZ8Q96z2p/xLoNnxLXYtddey69+9Svpi1awgv9L8D/+x//gs5/9LABKVFxk+ChAajUajcDqh4oZOjpBx2txeY4EOS+dU0fD3QVM9Mxw6MeJ1zLJ8ms6h4bAmSSkzrjvan6iFI1BxWYZOSlDllY24SKCtZ+sQAgKbF1GbGEu0Mki2FhKjGRWWaOKllLIqEij4gY3Iycm5SmE6qD16fDc/zXpuV9nVtL4aDkzg35ZakcR9aju95cXl8qFpcRI5c0F9O4a/puUWtM5dBSc6+Dkn89Ikr7+EtRuLMKUZVie8rvMcnsA+ec5ATj1p7+NQEPLx8sIzoZk9Z2USBJLNT3hRa2TH1e3fqpC7MvPS/dNnRkaHy7DNzLLnm90yiIprX7aizAvsP1LcYc1EpGUwuQlnRmKLsvm6M+k96ojhKmkwgyLYF9lovTKLMZPznD4ZfmHfc35OiZOBSQPqnivzsRensbJP52hb4c0Q1JnVxJYzn6jDloeKCQwNse+7y8lAwrB4ALhi6aH3Ez1BTj6y4HURClgwjHEtp43EQSB9PR02tvbcTqdy2jc/x2Qf0T5/yIYjUYEQUCrFWVh28be473u79JwSzqrrjbB/Dz2Emi6zYxrlfgTK642ozfHLYput1F9oxWAdLeC5vtc5K4W2cBlV1tRqBRRglLj/bnU3pElfncmtDycR8H5FgiF8H7EQctjBeJneSpqbi1k9VNF4YbC6ic9FF/uAKDkIy5WP+0FoOsPQwSDwQUnWdY8W4r3BvHEXNEVTtY8W4pBvJSiC7JoeryEtc+VU/GxfFY/W0bFR/MAcF/oYM0nyjG6xfbX3+9BrVMx0T1N34ejrH6mnFW3ibS+7LMyWPNcBRkVom3NvUW0PFUGiKf0K24spGpjIQCuFgtrnqsgs8EMiKU3Wp4Wbfd+s4PqO8uoe1j8rfZqE2ueqyD7rAwAVt3mZvUz5dHfFgyEmDkjLn6MbiNrnqvAfaH4wlR8LJ/Vn4jZNj9eSjAUZHrQjwIla56roOhKFwDem3JZ81xF7Dk+WkLjIyUMHhplasDHmucqKLk2BxDVm9Y8VyESdBBLnjU+Kp6c3fwf4oRYul70YeHlLtY8V4HRIfaR+oeKaX68NPo9q58tp/J2NwYH5J3vYM1zFaR5xBvXbfJEfQhicgqVQHA2RPYa0d/2apFUV7OxaIFty9NlVN1VyOpny2n9TCVrnqvA1WIR/X1nzN8gErdq7hX9nVltxVWTQe7ZdgAqb13o7+YnS6m/vzjm78cqcF+SCUDZhrwF/m563EvDw6KtwcEC/3qvT+DvR2Onj9c8V4H3+lwAPFdlLfB3w8MlND3mjfnlE+WUbcgj/xwH5jwTtXcWYcwRpaDrHyym+ck4fz9TTsUtYp9t+riX1s9UYq0Xb1y7yN8tT5dRdYf4DrpaLNiL0xFCAkN7J6m+e5EPny6jZqPoQ2dduti3rhL9UnVHwQIftny8lNpNoq2lxMiaT5STd76dE7/uY7Rrmuy62CZH8+PF1G0KjwPZSlY/VUzBxXZQKghMzyIIQpTw0vCAm7p780WCkhFaHivAc6n43hRfZkOpAt/IHMxA3R0u6u5yxb7ngRxKLrcCUHBOGs33uTj22jCHXxsgu9ZE/R2ZMdt7HJReIb67eWuMNG90kNMo9m+NXol7tQVBEEumNd1lp/xKsURAVo2GpjszsBQKNNxqpewiOw0fS4/et+GWdCqvNEEwSGY5NN2ajjP86CqvMBKcDzF4THzXG9abWHWlyHrPKAjR9LE0surEMa/8Ei3NtxgpXKuC+SDl5xioulIc040OaNpgIK8OCAYpPU9N840iOWi8f475oEDNFRoUc/OYjPM036ilQBTYo6QVmm/UYsubp/pCDU3XKam7XPzdCsUszdep8TSIE3xREzRfpwYFZBXOUneZEoUCtr0uEpSar1XhXSOSkwpWzdH0MRPGMD+25lIlaTYxgDDN+2m6UUfZueK/c6uh+UYdJosfxYwfz4VwQvkbzpw5g1ar5fvf//4KQWkFf3d46aWX+MEPfgCAQIi35l4i+zwzq5/2YsgIgRCi7r5CGh/yRK+pudsLSgjNBsk7zy7a5opjQu3GIpoei80npR/JZ6R9kgPf6SJ7bQZrPlGOtVS0rbqrkObHY/NJ88dLqbxVHHObnvRSf6+HnHOsgKi4Ej+fND9RStWdhQAMHhlFCAq4mkTbig35C+aT5idKqblHHPeDQXHur763iLWfrKBsfd6C+aTpES+1m8TfarApWf1sOZP9Mxz5eRcl1+ew+tnYfFL/UDH1D4Rl5gzifYuuyMLsMVC5voi1n64QCSdA/QPF1D9UHL129bPlFF+bzcDOMfzjs6x+thzXmjTRh5s8ND0S80vLM2WU3STGNUqFguBsiJPvi8mLmnuKaH4i5peWp8qo2JAPiASfmntL8Y0F6Hynj6o7CxfYNj9ZSuVtor8dNemsfracNJcG33CAYDC41N93if62lhpY/Ww52WtttP+uj9GOSXIaY3Nn02NeajeGfZgr2uadIwa+ZTfl0fJMGWaP6JjGR0qouz/ib9EvBeG4pvjqbArPE0sMCqGwvx9c6EPPlZH4OovVz5ZjKjPQ+plKVn+ijIaHSxbYllwvxpHuizJZ/Ww5hiw9Oc1WLG4T1RsXxhRlN4v+zjnbzupny6PtrU7g78pwXONqsrL62XLsVeJzrLqzEJUxtkZpfrKUVbeL/rZXpbH62XKc4Vi88hZ3rM/6RH9Xh/us2RPzN0DZzXlRW1dNBtmNNmrvC/swSy/6+3wxFvfekEvLM7Hf1vqZStZ8KtyHw3228FJX1N8L+veDxQgKISqJvPrZcoqvFv1deKlL9GH4sdfd76HxsZLov1ueKcN7gxhH5p3vFG2jY4QnGkdu/fwR5meDlK8X+2z2Whurn00yRvhEFdT5WbE9znozq58pw14lTuDiGBF7b6rWuwnOBul8tx9buYHVT3txNYr+rtiQS8uTsf7R/FgxNfe42fylY5x48zSrn/aSd07Y3zfl0vLx2H2bHvZQe28BVq8BZucw2nW4LwivCa/Njq4JAeofKKJ+UxEGG5Tf4GbtJ0spulzs354rwuvHyBixqYj6B4qi12Y3ZhCYnOPgi6couNghjrNh/9beW0DTw7Exee0nSln7nNgv07LF32pyh/vsXfk0PSLaCiGB5seLKV+fw/6fduOfnCW/1UlGqR4hJLDqtryoLYhKSBUfE/9Wd7eHlo+X4KwT+3fFR3NpeswTKzP3iIeqO/LR2yBrXQYtD5bQ+cEAu7/eSfn6HJofL462ofHhImo3iu+CIddAy4MloACFSkHp9dk0xz2bhgdFWyEkoLcKKC+YYF/PTtRqNWlpaYyPj68QlFbwd4dgMBjtt+0cYGvwDRof8lB1Wz4IIYy5elqeLCFrtRUA77U5mN3hxYofGh4opjo8J+szdbR8vJS8c8T8gecqFxqTOkpQqn/YQ829oi16cS1ccLE4DhVe4orOJ3qrkoZNHtZ8Mm7d/FRZNF+Tf76DlqfK0FtFxaNgIIgmLZZ0bf54Kd5wviZnrU20zRJzAu51WTQ8VMLqZ8opX59P8xOllIXnCGeDhZanyrAUi7aVt7ox2HWMHJug589naHrMS3k4rrFVptHyVBm2SnEcKt+QH51Pmh7zUrmhiFV3iHOy1Wug5akynA1iDqbshtzo/H3oByepvCmP6vvCPszS0/JUGTnhedZ7bQ7NH4/N9bPTc0z2z4T9JPol/3xx3C+60rUg5qzd5EFQCUyensE/4aflqTIKLxF9WHBxpmgbrppVe28RtZs89O0YZuLkDC0Pl+G5WsxP5p0b8bcYR1TfXUjDA+LYuOVLRwjNhfBeJ/o7a43ob2OeeOOq2wtpjIsjm58opXxDHnqrEmed6G+rV5wjKm9x0/ho3Bz3mBelVsm8L0hGuYmWp8qw14g5g/L1+TTFxe2Nj3ipvNVN02NeWj9dSctTZbiaxPxH6fW5C+KlhodKqL5D9HdOs4PsZjs568Q+W/yRbJqfitnWP1BMzT2FMX8/XIb7AjGuKbpsqb8jMRCw4DP3Bc4F/q7ZWETd/bE4svmpUoo/IsY1Oevsor8zRePquwppeCguTniilNLrc3E1Z5JRnE7tnYWkF4i2q24vWODvpse90bimdlMRrZ+pJLtV9EvFR/MX5NIaH/VG40ir10B2s51QUGDo8DjlN+ct8GHjI16qbhf9YswT+2zhZeF477qcBXF7wwMlVN8d9mGmaJt3roPeD4bp3zdCZo11gQ8j/o6NEeJ9/RMBhJAQJSjV3ltE7X2xWKXl47G4Jv88Oyq9isleH/4xqLmrgPpNMdvmJ0rwXiP275y1GbQ8WULXeyMc+OFJnOVmGh6Ms32smLJwDt3ZYKblyRJyzhZ9qDGpcJ8d26RpetRD+XpxPLFVmmh5sgRbpYm6TUWs+mgBTY/H+kfjwx4qbxFjfGuJOM5GYvGyG7IJzgXp3SGeWmh4sIiq28XnqM8SbXPWim3wXpu1IKYruTyb6jvF56i3QsuTJeSfJ/bvosszozHnwIEx5vxz1Mb7+8kSCsP+LrjIScuTJRiL9TTc62HNs15qI+M3oq0nPCbnnmWj+fFi9FaxBF7V7fnoTGq2fPk44x1+mh4txntNFkJIwNVsEe+bGxkj8rGXh3OBej3NjxVTfqM4njhr02l5sgRrsQ6EEN6bXJwq2cvgmUG0Wi3f+973VghKK/i7w//7//6/vP/++wCECPKm70ekVUPjgwXo7FoICVTclE3tXfnRaxruKUShFnMvzpo0Gh8uxOwW89dlN2ZTF44hACpvyObMsXEO/vAU1lIjzY8XR+dZ77VZ1N8fs62/v4iy8PtWs9FN4yYPeedZQQhRcrVrQd6tfpMnmtvp2SbuN2aFc16ey100PhKbp+o2FrHqVnEcCk3P0fREqbgv90wZBZdl0hS3F1Z9dyHV4f0WdND0RCnjp6Y48otu8s9z0vREqUgiAarvKIjOJwBNj5fivtiJzqGj6rZi1n6qIqxiBKtudVO3MW7MfcyL54osxk/MMNkzQ9MTpWQ2i+2v2OCO7m+BOMeVhHMNSrWS2Zl5ereJpJSym/IW5IEaHiqJ7llZS000PVjK1ICPjrf78F6XuyAPVP9AcTS3Yy7Q0fREKeaidCZPTROYmV8wf9fd56Hyo6IPdU7RNqslg94tI/TvHcFVnxG1rd1YRFV4T1ZnFn2Yc5YYR7ovEH2YlqeL+fuuOB8+URol3uSus+O9Oo/QXIigP0TV7QXR3GXE3wWXinNNzlobTU+UYnLraP10Jc1PlVEXFwM1PurFc6U4z2Y2WqNtsHtNOFdZqYk887C/I3G7fZWZpidKo2papTfkLoiBGh4qoTQct1tKjDQ9UYp9lTh3eq/NwZgZKwdbf39xNG5PyxN9mNloBcBzZVYs5gyI/l4VjoF0jpi/AQouzaQxHHPmrraTv85J1e0L+2xuOI6M9tkwWj9dyZpPxvY8m54ojcaRuevsND1Rik5sPlW3uVFqFMxOiUTBxse9FF4mzrNZLRmirVN8jpUfdVN3vyfa3xsf8VJ8VThWqbXQ9LgXc0F4jLg5j/oHxGez80ttzE7ORf2dUZ5G0+NerKXi2s57fS4NkVyxQklwLsT8rHgo3lyoo+mxYuzhtc/iMaJyQyGzvnm6PzyDIUtH4yMeXI3i2qfoMicND8Zsa+92U/nRXLZ9tY2jvzlF4yMecsLxacGFdhofLozaVt+WS9Wt+ZgLdQQCYMrUkbdOtM0/N0O0DY8RVbfkUn17Huhg1UfzWfNsMe7zxHchZ7WVxgcL0aUJEBKoXJ9N7Z2xcbbgHAe+kQCHf9qLqz6dxgcLMbjEG5ffmE3d3TE5o+bHi1j9cQ/oQGNW0/hgYdTf3mtd1N4j3lcQBOo25uO9OpO2NweZHvKT3ZSBtVSPIAiUXOWkbmOsDbV351N6rYuaO/Kov6uQxvvzcVSJ74LnYhv1G/OihKKa23Mov94FOnBU62m4M5/uzUPs+/5pCi+0Ub9JHGuEYJDqW7JZtUHsHzozNNyfj0IFSpVA/jozDQ/E3seqW3JY9bGc6H6u9oJxjoxvRalUkpGRwcTExN8lQQn+TklKEQQCAerq6gCYmR/lj396G12a+JN0aWqUagUGq1hXUm9Ro1Ao2P7NQQgGUeuV4mCh06E3aVGqFRgz1BAMYrBqUGkUKObFazV6JXqruLGujtjaxc5ttIv/JhRipicoKpII4TJMRsQ2OMK2Tr1oGyZxKAUlWpOagosd1N9fiFKtwBSux22yi7YKo2isSdOgMapRKBXo0tWoNEoMtrBtpmhrMIvfq03XoDaoOBiu2anSKdHbw7ZOA0q1Ar1FbJPeqkUdllXr2SxO6gazaGsIt0HvECcRQ0bMFkCtV2HMMND8ZClas+gHk1MMrgw2HSqdcoGtLl1L9lkZFF1gF9sbHrwNNh0qTZytSYVaq2bfNzvAqA/7RWyDybawTrs2TYMmTUPnqwPs/1Gn+Gwi/raLtoawvzVpGrSROqMz4rNJCyfETA7RVmnWx3xoiv1WlVaJtSCNyo+VYAz72xjuE1qzZoFfVDolQV+I7V84htEV9qFVv8TfUR/adUyeFkvuKdUKDPawv21LbfVW8dkMHBAXxEZnzHaBvw0qtGbxt+pM4m/NabJFf2u8vzUmNdp08b4KrX6Bf43Opf7WmmK1WpVqBekFBlo/XYnFYxT9Et5o06ZrFshWqjRKjHYdx17qYXJwGoVKgc6ijN5XbVjoQ2O4z877xQlXpwn/nkX+VutVGDJi75hCpeBUpC/bdAttdTEf6jLE35Zd76D5yVL0GdoEfTbyneJ4YnYbxPJtGVpUWtEvCqVC9HeaeF91uM8aw++ySqVawNjVGFRRcmJkjDDaIuQcsezZvrDsn9akQhvnF6VagSFDbJPRpkGpVqBOg8kuAa1BhcYQ+x6lRoEh3EeNNrH9eQ0Z1N+SgdakRK2L2ao0CnTpYUUBm/gu69O1dG4eJRQKoY74JRhErVVGbfUWsQ06i5pVVxnRmZWoNEq6ts2F/a0Ux+RgCJ1JKbbfIrbJYBb9og73RbVWiS78zhnSgihVCgzmsK1VFe2Hx94KoFYr0IX7mWDSoFQpMKYrUczNY0hXoVQpGO2E+UAIpVKJVq9E4Z8FBaKtRfweo1mBUqWguClEQZMJrUmJ1qCMqo4pVQoMaeHx3KpGqVKgMELdZUp0BiVKpYLtP5hkekaDSq3AYFaimPFjTBd/q8kMR8Y38/0fv8CJEycoLS2lra2NO+64gxWs4O8Rt912GzMzMVm+l997kbHJUdCKY7DOokGbHjfu65TMDPnpeLVfnHu0SnRGxFMWVjGuiUCtU2HIEMfC3BYxTnA1iPOWYZGtxqCOzhGTp8X2KMMVjE0O3UJbozp635n+WRQqBcZMPc1PlGJ0LZwjNEY1unDcaLCoUWmVaNPE2MuYucg2XY3OItoq08XfNj8ZZOy4D5NLj0obm0906dronGwwiDGF0aFjosNHcC64YI7QmjXownMyiLZpDjG2MjnF+xZf7MaQpUdn0aBJX+TDcHxqcIpt0qerqL6nCH2GdqG/9apYfGoX79u7fZgz+ycxLLLVGNXReUoftjXY9Oz5ejtavSapv3VmXfS3QiwGMhWIv0djivO3WYFKq8TkCsc1di1qnYqqW8TEizZdg84S9otBLPdnCsdApkyxTVv+5Qjdbw+K/g7P30T8nRn2i11sU2gowNz0PAqFMmYb9nck5jSGbTVGBe1v9DHvDy4oQafWqaK/zWDXRvsLgMGhRZOmjhLi1HpVNG6PtEEXjl0MGVqUcWqGYv8Ov1MZER+G2xSOa1qeKqP546VojGr04X6os2pE2/Bi3eiI9dk9LxxFCArRPquL+NsZZ6uL9e/49YzBoAz7MPxswu9yhDSjS9dAUCHG7bDA1hjus2jFf+ss4rOpf6gSDKIPI20whfusLry/rrOKcaQjvOmp1qkwOCLxknhfXWTNsmiMUCqVqNThmMKmi/ZZAJNdi8awsM+GZgWGD83E/B35rfZF771JLcaRPiAk+lBvC/vQphXLf0ds09QYnToqb3ZjzAn32XA/NDm0C8cIswatWYNvBPGQhiJuPeNcaCuOERpMbgOVt+SJY89MMHzfsL8Nhqi/48sCKlSK6Km5yHPUh+McvUV87yNkIrVBJa6TfDDaNi2+CxF/Z8RshZAg9lmbhp7tw8z658X7WnUIIQGjbam/9RYNdRu9FK1zin6xhP0dHiMibdAY1ejMGgovdlCwzoJKq2SkbYoD3+0W10nh+FQICWjTYmPyG2O/5q23/sD8/DznnXcek5P/DWXVFazg/zCGh4e5/vrrAZhijLfffxN9eD2oNyvFfEJkvHDoUSoVbP3forqHzqrBGB5jNXrFAluT0yCOb2ERDYNVhyk89un14XkrkvOKxEB68I+FxHc0FItd1HoVJnssVhFtxXuFQqIUftYaGzX3FKIxqKPxh8kl2urTw+OQTYs2XVxzadNUqI1q9BFbh2irtcRyPdo0DUd/JioRaNM10bleH54ro+OzXYcmnAfqeKsPBKL5ME16ODYJz7N6h04saxeGzqwh3WWk6TEvBqtK9Eskj+XQLRjfdOka9Bla7DXp5F+ULd43EqvYDQvmE71FHBsPfLcr6kOjc+H8HXYhOosWvUVL75YRDv6ga0F7TWFbZTgXoc/Qog2vt/GLMUVamPxrdIq/VR9eY+ttmgWHJtVGNTavmcpbPNFclM4Smw+juTTE3FrQH2LnV9owZOiieS0QYxVNXM5Im6bBaNcx2jlFYHI23A/D84lzYdyuTVejD8dLXe+Lzyo+VtHo4/xt0aAPx1Jo9agNKnJWi6QwY6Z+ob/Nmmi8FPF3BBFbfXgO11u10fkEQKNXY3YbWPvJShzl6eE8EVHb+LWPxqjG4NRx8q1Bho+Po1Ir0YbvtbjcmsakwRjuo4EZMX8SzSU79NE+G/GhIWyrtxtQaZT0bjsD/nCsEu/DNDV6W2SMUKPWq8hpdtL4qFf0YVyf1VrU6MNxu8Yg+iUtX4/eKuako35SKNBbtNFcWmyMEPuHSi3m24n2WQ16S2w9I74LkXdZh1qrpO118SCFLkOz0N+G2NhjytShNqjQp8Fktx+9VbOgH6qN6uh7bgrHbIXnZNL4sAejTbuwz5o00fWjPtxn9Rk62l/vIxQMoTEs8nfEL+bwGGHXUb4+F4NTh1qvjpaF06Vro7YGiyK8xgrHq5k6FAoFmnBOT2fRRPs3en34XQ63P0cXzYm2/24AtTa2Tor4MDZGiG0KDfvxj8wSCoF+kW3U3+H1rmu1De9VOZhcenFd6o/zt23R2GNRUXtPIXqrBrVaxZZ/PYa/34/aqBafjRCKjRFWHadC7fzgd9/h2LFjeDwejh07xp133skKVvD3iHXr1uH3+1GFVS1+t+dlxmdG0YXXvgabFp05bhw1qZnu83Py7eHoOK9OU4NC3APRmePGlnQNRrsehVJB7hobaoMKV4MVISRgcuoW5CV0Zk00ZhvtCJduC0XmCJ24xgsrKOks2qjtzKDYdp1NQ929RaTlGRaMhTqrJrpHqDRp0BrVaM1qFColaTkGtHH7OIYMHTp7rJqA1qhmfibE+IkZTNm6BbY6uy66NxPxS5rDQOBMgNnpeRQoQBeemxw6dBlxfjFpomOW3qFDm6am5NIcDNk6jE7dwjkiTR1bq9u0aA1qdGYdZTfnibbm2NyjNWuiY6zeqkVrVHPm4DijR6aW+tuijcZsmjQdWqMag13LgRdPotYqF8z1OqsmGsvq0hRojepYLJ6hRWvURIlH+gwt+vBciVa8byyPZUCbpqbmzmLQiXOTLjyfoBP9HYltjZl6tEY1e7/ZRs+fz6C366Lzd9TfzriYzahGEQLfcAAQFswn2jR1LOa3iX1Ak66hd/cI/onZBTkvTVrst+kzRNtIXi4tz4Depo0S4rTpmuhv01lEf0fWLJH9rpi/NdG4UZMu3jcSu5gy9WjT1DQ8VCKqiFo16CO2+rBfwv0lzalHF44597xwlOBsMGqr0ynDPgznpjJFv0RIM6GQAHEiNVqjGlNmJGYW/R3JdevtYlWPSMlsrVFDWlx8qjWqxVw34vrAYNfR+Gg5OrPYd2L5SNEvmnDcbnLo0KVro0Qk0YeRPGHYL+HYKy3SZxWRg/gKlOGqIzpLuM/GcRDi80A6ixZhVmD4wCRakyJ837C/HfoF8anephVzigGYmxH9YojuW4rtRxAPKuszdKTl6lm1Ph+DK9wGZzgmsoX9HWmDLRxHBmCkfRoFithvtWvQGlWg00XboLOo0dkUeK/JFMee6RAoFeJ60ahCG84bGheNyWqNuF8HYn5Ja1RF31+jXYsuXR1Vx9Nbw+9qAAYPTKI1qqLxq9GuQxu2FQQBnVnch+jecgb/xJwYP2VoIBQS/RLvb7Mag01D0z1uSi7KEu+bHuOS6IxqhHDFLb1Vg96mI6shjew1VrQGFSPHpzn0Ul+4H4pzkSCI73Hkub03+0te/8NrBGYDXHzxxYyM/A0k//9/xN9lubfFeP7553n44Yej/15rWY/F6FhopFYj+GMypqsfcIEA274VljcJJNCOU6kQZucou8bO9OAsPVsWJTjnEsgsKpUIwSBGB6z6WBE7vrpItj5BmbjVT3tFqdjPJZGKTSARCaJCzkx3ihpegoDFa2TVhkLmfcFl1TjPPdvO6fela9LWP1RM2+t9THXIqyXW+ulKUCC7nEVExUdOWTaDA+o2VTDV54sme1Kh8ZESdFYth17qYrxNuv0ND5dwevsQA9vlySlnr8nA6NLLL8n2N8TqZ8oRQoLsPrCccm/uSzLJa3HQ9vv/Znm1vwKMOXoKzs/kyK+65ZW3M0LtbR4GD44mLou4SA5w7XPlYqmg8Lu6RB4xInuoFMmIax8qZuzkNEd+1h/bhE5UVk2hoOACC9l1Vrq3jtK7dSr2kSoxl7RqgxOTU0vvvklOfbio1nSScm81H7XRtXWMiZNLh32FUhmV9M8ohsA4ovqTOjzJJipxqVZDKER6HlRcYmXeH2L3TyYgvDHI4vrcABo1RgfM9Ce4nybxd9Veb0SXpuLYn6cYX1QpRdCKk7MiXO6z/CIxmDj69iyCXiuSkxZB0IdJeXGf1VyjZ/9vxHJuipmlEtyRMm8V68CcpWGw3U/Xh3PRNiS6ZsD+PsfajjEzM4PRaGR6Wrom+ApW8PeC9PR0pqbEsUqHgbOVVy01UiijMYz3hhycFRYGD41x4tfhsgFJ4hsMUHe7h73fTCBbmyJsXXV7AbPT87RJ1FJ31KRTek0+031+9n1bXnknEJU8fKd9knbNT5aiManZ860OWWXoAEwFBlQqJEvM2SqM5LW62P+dpWWREsFzZTbZjTaGj01w9GVpCWz3RZnkrXXQ+XY/fVukFzmVt7ixFqbJLm3S+plKgrMhWaVH8s5xYPWkcfD7XbLujQHKP5LPybdO/U1Ksi0HrtVWii/Kof3tXgZklKVYbrm35idLQUBWab6/NTxXZjPZN83QbmlZZBCVpLIabVFSUypE3tWpXl+sz6eQaq7dWITBrmPrV49Kl8JTKFnzbCmh+RDb/+OEhLGI1k+WgQCbPy8vnrZ6DRScm8m+b0uXXMxZl0HvB/I1o5ufKEZjVLPnOx34+pNI/4eRauyKxLILSgsYoPXJMnH9+MWlvllwjQGaNxWz45vt4BM/S1SmYPH3uC9woElT0/7bfslr1n6idInfE10zEhxhoriTE+1im1966SXWr1+f2CkrWMHfGV5//XWuuOKK6L+buBir0rrQKC7uAlj7iQpQIqsMbdEVLuam5ul5b1EOKFW6UA9Nm7zs/GabZJmt5ifE2GjzF+SVKot+RZZeslyWPlNPwyYPsxNz7PyK/BIMWWts9G+VDhiq7yik+4N+2aXo1j5XgSJRidIkaH6yFKVGKa8smx5WP1rOzICfAy92SZpX3V6IucDI0V90M3J4StK++u5C+nePMrRXXs7LXpNOepZxYUmw/0NofNSLQoHsPrCccm/OBgsll+Zw4o3ev0l5teVAbwX3Bbkcf+207Hep8hY3Yx1T9MqI7VueLkOtU8XKsUiUyFj7iXJG2yc5+krq9RcKJa4mC8WXZNH9/hl6ZOSby27IxlFh4fS24SgpSApVt+fTs3mIsROpnZPu1hMMwsxpeU7UZ2pouNcj5km/Kh3Dyhm74lF9h5v0PANHf9XDyOHUeaPiq11oTWqOvJTc54niu5q7C9j/k5MoZhPHXRF4rnSRVWdlYP8Y7b+Le7cTrN2Hqzpo6zjG1NQUFouFsbGxlG1fwQr+nlBUVERXVxcARsycpU2Q81IqIPw+5a3LIH+dncGDE7T/PlyOK0nOSwgJVN2Wz8EfxnI0CddlCy/Ce41Yxr399/2RixJ+j7lAR9WtHiZPzXDgB0nWogliPJ1DJ6vUV/39xRgcOvZ/v52pHnn1uHQOHbp0BROdqcfGtDwdBee5OPQj6VLpICrZeC7NZvjoBMdekS4JntlopeSyHLr+2C9rXvRcmUVmVQZbv3xEVumxtZ+sJBgIsv0/pHMG9mozzlUWjv7qlLyyZjrwXJTF6W2jf5OSbMuBtdRE+XX5dL07QP926TzGcsu91d9fjEKtYPd/ysvV/C2Rd64D35lZhg/Jy3llVKSR22znYLJ3Ly62SsvVUXOnh4nuaQ7+UKLPK5SU3ZiDtcDE3m+1EZDRnKbHS0AQ2PmV9kW3ShzfrX7aK3ImvpAgPl601gQwZOkousDJ4Z9Kl2l01qQxtD+8Hol8f6LxLjyu1m10Y7Br2f/DU0z3pi4Pp3NqCQwt3QMEonuyi2kwaz5ezJwvyK6vd0leU7/RzeGfdROYQCzNlqgMW2TPN/xZZm0aRqeOrreHo5yRJd8TJsS2PFoACtj2xViMqVAolrQ5EJihv+QQx9vEXPDLL7/MzTffnPB3/z1BLW3yfz8eeugh1q9fH5Wz2jL+MvYZN82Oq2NG8/Mo1GqEeXEj+8ArAyj0QBBsXjUjifI2wSAKlZJjvwkvnoywemMeZ45P0/6HUdBolhKVQiEUCgWFF2eh1itxX5BB9x/jBmqVaskG/LZ/b8MYltrHiCxyRdOjJWjNGvb/5GRKgtB42wwn/zQgi3AUQc3GItKyDWjNajpfTZ1s2PO8OMCleYyE/CFmelMHGide62GqWzo5EsHc9JysOpkAvjDfLF4lKGVb/tBL4QVZsghKwLInxaKLskGBbJJSxS1u5meDtEkt7gH3hU5y1zg4+suTjB6Rbv+2f5NfK3i56H5zkO435dfCbXm6DGFOYMeXpTfWDA6o2FDM8dfkEeG8V+eQ5jLgqrLII5PNIGuTLIJTW4ew5puS90khJL7jQEaeSKEOTITHiETkpAiUSoLz4kKkd7+89+PgKyPkrTXRs0Wa+JJZpWXw4Cz7X04SNAaDCwIk7wWiFOb2bw0nJidFEJ50J3uge+ck/fvDtonISWE0rjei0ijY/rOJhWPd/PzSYCM8Hu77lQ9jFsz0L7qZQhElJ0VgzoqcDphNSFCCMDnJCM0fMzJ2eo62P8+x/zd+EISEZCMAm8vPaCccfRNclX4GIjH1fBDF/EIfzczM8N7It6EHrFYra9as4Z133knqkxWs4O8Rk5OTXHTRRbzzzjsE8PF26BXO4ioMSkPMKG7x0vaLXiaaphnYKY7NtnIjI0eTjOs+ogSlyo/lY843xUgHCkXSDTNLvglBEGgj9Tx6Zv8kvvFOpk+GN+0NSBIaDDaov7uIual5SWLIji8ex9VklU1QAqi9rUjchJfY0Bo5MsPIEZGs4WwwSxJDOl7tY3Zyjp73zshqx9DuQXJb7PIaDcz6xDHYVGCI+TMFxrqmGT4ub3On570zstsNkLfGib3MjFJTwOEfSZNCrKUGCi/IYe832iVtgWgpDTnEoIFtY7LISX8pdnxRPjnJ1WTFc0k2He/0yWqT94ZcBEHgxC+lkwwAWQ0ZuIJW2SSlgZ1jDOyUbgfAmbZJcgf8tL3aJ7lJBqBQAQqkCUphBP1B5nwp4pxF2PNiN0ardDsMuQYIzjPW5mOsTbovFn8kC1e1BXOukaMvS68DAHZ8qR1Xi0WSoGQrN1B+g5uZoQB7/6tryedLkuDh8XDP97uTEpviryk6LxONSU3Jpdmc+HVf0qS6EBLwXp+NozSdLf96nO4/nlnwWSJYivWMtfk4/Eo3geGFbVl8zZ7g+wzTi6JDQVlZGXv27MFgMLCCFfyj4PLLL8fn82E0GhEEgZ28hSOUTZ1yXcxoUdJ4zzeOoAuf3rYU61OSbDpfi+V91jxbxtCRcdp/258y7vJcnIXWrKHg7ExOvpU6H7DjS8fFsm5+RLUVGSFSJC91+KVOxtqSD+z+QT9tr55eFnmk9PpcHKssGKwaOv+QOucVIQPpM/WgRJJ4cPRX3fjG5M8tgYm5Beo2KeFHLHsp0/zEH/rxXpnFSIe8HIOcw37x8F6Ri1KllE1S8lydhUKhoP230jkyZ4OF4kuyaf9DnyzSlByy0V+Kod3jy+pfkbIwu74mr001G4s4+W6fLCJc4aX52MvMTA366f1AXp738I/lbfQCdL7Tj91rlhV3iaUDFdH1gByE5gXOHJDX7mO/6GNyrZ/eLdKbn/aqNIYPTnHwB9KHMgCqPlqAQimfeO4fnKPt970M7ZM+mNn0iAdtuobdXz+Gf0zCODweHnixG2OuXhZpyllhkcyTCyFBJDU+7GWsc4pjv+hj/3fFmFQg8ZhuLdEzdsJPx6sDTPbMxH5rApKFP+TnA34H+8FsNnPxxRfz5ptvSrZ9BSv4e0JnZyePPPII//mf/8kME7w1+xPO4QZ02phiUPwGe88Ho8yMzEaJhuZCHROdyQ+KRAhKhZc6yVxlYfvzJ1ITVRRK7GVi/akoSSkJCWriZIA93+3A1xe+oY6l914c4+mgcVMxgYk5yflrzzfasVebZROUAOrvFUtKSQkRTPUEogSljIo0Ro+kjmH6t49CSKBfZo5h8OAYRRe4CM0l37uIR2B8DhRgztIxcVL69545PMb4KXl7jcMHJhg+IC+PAmAvMZPdaEebruHoS9LznSFbR/FFLtp+0y2L0FK30YNSp2T389J7oGPHp9kqh2D/F2KPzDwdgLlIT8VNBZz844CsfuC+2Ilaq6Lj1cUbTYmR1+qEkCCbpDR6ZEqy30YwdTrASPskPe9LkLHDhESVRgkKZD1PgLmJOVE1Sib2frMNgytJHiVuvNHZ1aBU4esPJCcoCaFou3PWWik414G1eJK2Xw0kJidFEP5s77e7sVeZRIJSChhcOupuz2Oq38+BHy7Kp4UEhMVbsuHxcM8PTiUlNsWTg7KazOgzNOS2Ouh8YzgxQQkgFCJvXQbZDRZ2fLOLwX1TwJR4ryT7q+k5aiZOBdj/k9OE5ha2ZTFB6VhgF93CUWiD0tJSduzYgdlsTtyWvzP8Q5CUABwOB4IgkJGRwdjYGMNz3bzR9wKXZj+w0DAYApVSVAgBMIL3IjuhcwV2fP10YkZeKARKJWaXFoVSES3zlAqHf9qHMV/LzCmxc6UVGpjqSp5Ymen2YczRUHeXB//oLLu/HndCPgFLsfuDQQrOdckibkQISmUb8rDkm9j+76kXYfu/3UndJo8kQSkeNbcUIswLbJEINAbDGxgZFUasnnTJ79j11eURg7Z8TvqUYATjbTPsa5NPUAGideHlnM7qfLuPcYlBNB4ZnjSEkPTmKkBwNoRCqcCUZZRFUgJRZUiKRPYXISxnKEu5CLFmcAh5gWDeObkYbHoyK82y+vq+b3ZQdKVLFkHJXm2i9Go3J17rSawAlSAp0/PuMD0Mg0KZOCmgiM16o8dn2PLvcQFVeBxJhp4PJun5YGE7FEkSQ2XX2Dj2+/HEBKVFKkrudUayq0w4SgIc/m2C3xkMolAvnAp6982g1isQgiEU6qWqTEJ4Mi5oNZBZqmfnD8bjCErBmPrSYszPM3Dch92tW0pQ0moWmKbnQsWF6UwPz3PoNf9SgtIipOfAZC/s+eU0c7NzgGapkT8A+vBiUiBcPlMZ+0ynXXKJ4POT22wgrz6N6cp5Dr3qixKUhBk/ikXtHkvfT8dsjGTw6quv0tramrrxK1jB3ynefvttPvjgA84++2wAPuT3lIRqKFSWJbSPEJRq7yvClKkXN5T2JFlZCQIoFNGyH3JIB3teOIwvbGf2GFKqEkUINbWbPJgy9ez5bmdKlSTfCPhGAvTvlqd0MrBzDAziaffu9wYlVYkG9o0yNSiTWQFU31NEeo4BtU5a8ShC9Clfny+ppuQbkae4EMGJX/ZyAnlkFoDDP5QmbMTD1WSl6OJsDvykS5IE1fPuECqNgpMyidPOahumTD3uizLpflv6GoVKIRJg5CKyrpf/WOXfOksvmwSnt4nrl6BMMo6zXKxNL/e57vtBJ0Z7gjk3AZoe8xKcDbHnBZkJJx/s+6+4WF1iw2zvN+UpjEWw4yvy2lF0eSaDhyaZ7vbhk8EhqrstX1TR+Bd5G1/tv+3H5NTKIii1fLyE4WOTtP9+QFa8O3LUx9zUPF3vSq/rGh7yoLdo2PONY5KqceYiAxOdPjpfH6R//2Ry+7jElEanQqFUxJSd4j5bfM3qZ8pQaZVs/tyxheSEBNecqT7G2IEBCEJOTg5Hj/7tkqUrWMH/Sej1ekKhEGVlZRw/fpwz9PHH0C+4QHlDQnv/GPjHxLli1YYi5gNBtn8hCck1HHfps/QoVErUmsTKvPHo+F0/vTvGoqSd9AI9kyeTz03+fj96KzQ8VMnMcECSJHzy3T5KrshPSVCKIEIgKbrMhaPCIkkoPv7L02jTpAlK8Wi410MoGGLrv6YeY0aPimt0Y54eZ4VZksC1/9vLm7tkKS6F4R/0R0tTyEXtvUWotCpZG1Rtr53GN5KaLBsPV7UNBEEWSSnoFw+N6jPkxRggEsn8g3+DnFe4Uotc5SKlRkESHsgS5J3rID3HiGNVBuPt0n45+vIp8s93yCIoGfP0VN9SSMcb8ohesIiQJRF3zfT42fKv8tcNAzvHo+tBKZRen83xX/bJIii5miwUX5rFeP0Mh34oj6R04q2+aKkWqXsXnOtk+/MnZBGUAE5tGSarPkOSoKTP0tNwdwGTvT4OfL9bkqCU7tYz2e1n61ePo9eFgMQxVDRO8oNSFSuPnCruslenU3ZNHpOnxbakIiiN5wzREzwG4e766quvsm7duiV2K1jBPwK+9rWv8fjjj1NSUgLAe/wC72w9hdqKhYbh9ytCUCq9Lgt7aRrtf+hncG9qNoEhQ4tSnXy/IB5bv9qGTiu+l2m5OqZOJ993ihCUym7Ow16Szv4XO5baxxOVAjDZM83QEXnshwi5punxUno2D0mq6Zx6f5CgXz6J23tdLs5VFrrekVY8ihBTPFdmSRNPArBNYm80Hqc/GOa0TFIwQNuv5efHQFQkKr06j6O/PCmpMjV8aIJOax+9H8qTDreXpmMpSsfV5KT7j9KKhEqdEqVWXl8EoqXTZKlALRNyVb0A9DZx/RKckxd8ZdfZUKiVsklKe77dQVqmdMwAUHNPEUBy9fsEsdXRl6QVwCI4/FP5tgD7visvB5vTmsFUzwwT3QECE9Jrr+pbCtAYVGz538nWlgtjjt4tY5jzDSJBSQL1mwoYaZ/i5NvDDB+UFmfw9fmZGZrl1JZF72lIWML1WPXRHNJzDez5TkdSglIEBpcO30CA/p0TjJ70ExgIJKx4IwRD0b+rtEoUagUmu47p3gBCMJSEbyLQ8FAhOpOaLV9rxzcQWPDZ4muGy47Qe+gEzBMtrfuPhGWMOn8fGB0djZZ+Ewjxh77nOTOz6NRIMBRT+piB6aFZTu8aE/+djMUXCjHR7mfrl09x/LfiRFB7e1bKtkQISi2Peai+OSdG5kgCX/88wTmBkXZppuXg7gl2fEkkyqy6zY2zLm2p0aJBz5xjFGuKS7QDYgoGFbe4sXilL5jomaHrXXkDO0DFDYVkN8g/qb/6mXIaHymRZZvmMdLydJms3wmw9pMVNDws795qo3pBvfdU6Ns6mroc3yIceqlLNsnq9PvDbP7sYXrelacwsPqZcuru8chuy3LQ8mAZrR+vlG2/9fNHJIlyEbT98jT7ftRJx+/l9y255DrHqgwUKgW+iQQB8qJ3x+CA1k9X4L0uJ/GiHmJ/DwnU3ZNP6fWuuNtFJAwXLfAVCox5KtY8lk/e2vRFHyWWPay5LROr20BWQ1wHDwZj/8UjFKT7vUkCk0EOv70ooZLAftV1FjDCqS3TdL47tYSgJIRCUYKSQq3GkqtFqVZgdMTdLxFBaX6e6uvTwKKhZ8c8+34xHf0784lP3U12zhGaFxg5tShAn5uP/RdGw00GKi4wYTTPMTc2t5Qw5w+I/wFFrWpyagEfbP/RNAd/PhH9bDEEn/jdp3f4mJ0JcfxdMUgTZvwICRSX3up5ge3H3mNsbIzS0lIEQVghKK3gHx7r1q1DEAS0WjH5eYL9/Dn025TXHP9tL76RQHKCUgSCwN5vdLA5TJopuDiTgoszk5r7RgCfSFCquqVI1tw+fHyS+UBQVhm3Pc+3i4QgA9RulJ5TTZkGVFol9nLpkw3tvwur3Big8rYCSfsDP+nEdyYgqyQbiGXc7GVmqu4slG3f+qlKDDZZ5pTdnEfVXfLuXXZTnlj+V4bIybx/HqVagavKKuvecglKIG6s7f5OhyyCEsD2LxyTHb8AtD5VSdNGr2z75aD+Xk9U2UkKJ98cZPP/OsyZ/fI2VjZ/7jAHfyp/w3T6pE+2ipLaoEaTLi+Obni4hNXPlsuyNdig+Qkvhix5iaPGh4tpfrxYli1AdkMGNR/Ll23f9edBxjqlkym2cgMl12YDsP870ioHBhuodSrM+dKLHGddOmU35gAiGUvOJv9Y5zTz/qBkuUSDDao+5qb5MdGHCcdPIRTd2KrdKI5ph3/aw+Z/OYavZzp5uc/w3/t2jTDWMb3w74uuGQz28HbwZfbu3UtmZiaf+MQn6OlZXtJuBSv4e8SxY8d4/vnnAQgR4u3QKwyGUpMcR45P0LtdYoNFEPD3+djyL0c4Fi6dW31HYcpLIgSlxke9VN/uQW9NnWL0j8HczDxjMpR9xtv90ZP83mtzsNekS1wB5gITaqMavVXSlIM/6AJEdR+rVzooGWmboPPtZRzku7WQ3NUO2fZNj3mpf0De3KTP1NP0mFfW7wRRzbrufnn31lo0aEzy5urh/ZPM9MgnBR38cYfkwcYIRg5PseVzhzklM+fV+IiXhk1/m5xXwz0ltD4tP+e144vHZZfk7fnzGfZ8t532N+UpsAOyfZJZaUGlUTI3nXoTBgA9rP1UJd5rc2Tdu/JWt2xbvVXB2mdLyTtbXg648pY8nJUW2fYDO8eZ7g9w6BVpglLFhlzQw9DuCTrfkN6wtZelo9apMNr1krbVd7hBL7Zn37e6JO39/X7m/EGG2xaNh5GYJy7uqdtURPVtBaTna8EXWkqAirPPP88e9d2W/32M/d/tlIy7hg9MMj0YoO21viX3i8f7oVfZ1fseQ0ND0ZzXCkFpBf/oKC4uRhCEaAWXNvbw3uyvlxrGvTcn3+lnuj8gSVACOPLSabb+23EIQFaThfxzU4x9AQhMKtE5xRJR9TLmvZFjk8zOzCcnNCkU0X2QAy+eFMlGOlh1i1vy3jqHDo1Rjb1UOkY7/cGwSCbSiTkhKbS9dprJ0zOySrKBWDotq8HGqlul2w1i2bc1z5ajk0FYBSi8zEXlR+Xd232BkzXPVaCTIXISmJxHrVeRUSpPEUUuQQnEGGP3t07IIigB7H7+BDtlxi8ArU9XUn+P/LzKctB4f7Hs/drBXWNs/fwRhvbJI0Jv+/djHPyhfOGKwFBAtoqS1qxBa0lCsF+031h1m5uWJ+Xl9dCGaHigSHbOq/oON40PJR8fFitTu9c5qLhJXv8G6Hh7gDPHJpbuky6KH0w5OjyXi2Pn0Z/JiHV1oE1XYy0wLfx7AqKPpVBL8RVOUCrY9/1TsVK/ISEpx2OkbZrZqXkCo4s+j1wTuU4Hdbfl0XBfAYQEAgNLx08hGBJJSEDFTWJe7+Qfh9n+xU6mTvminy1B+Dt6PhxmuH0qRvJL0O6JwBhv+X/M7n27sdvt/M//+T9pb5evMvb3gn84khKILOehodjgu3P8d/y5/4dLDcMd5eDPR+ndNi2Wc3ssj5pbM1OSlQiF8F5lw2DTUHaDK7FdHE5tO4NvZFaW0sy2fztOV3ih1Phw3ECSjBhhBEuBieLLpCf3HV88zubPHhbbIYPAY3CI6j7l10sPUAe/10Xf1lEMDrEUmRQ63+7j2K/ln6ZXqhWodNKn+QAcZemo9Sq8V+bKu7l8xTu2fv6IpCxlPJofL2XtJyukDUF22bl4GB3yXuHBQ6NM9f8NjvID/ftHmZF7Ws2IbPJYBHIUlEBMkrR+uhKjW94XHHuph82fPbz0/gkYzeYiCwgwFfc7F0zmi95Pg12LrdAUvl3q02eOknRQwOxU7ARiqmv2/2SYMydm6N8xuZBopNGK/wGEghAK4j5bJC/u/elobPxZRE6KqCi5VmkxOdTUXG0N/z32vsWTkwAUZvGaA7+YZPu3hpkZSED0ihCQ5ufJadJjsKiousi48LMIImpEs3OUnKujqFX8HTu/P0rfgbDNImJSPE5unyAwFYwp5EUQR06KwOnRkbvKmPCz6O/1+bFk+Vl9n4OyK8RFwt6fTzM3Q0Jyks94iqPq3xJkjlAoxJo1a/7hGM0rWIEUAoEAF154IQBzBHg79AojocSLZ19/gD1fD5dzu62A1k9ViOWRkkEQQBDIbbbLKkU20eHDNxKg401pVZKed4fY/m/i+1pyfQ5FV6QmoAPU3VGMKVuPsyF1EmH6pI/Nnz3MwcgJdhmknMaNJVgLTdgqpJjtRNVoCi5JTtyKoPvtQfr3jHDw+13SjQDmpudFSWuvVZa9rSQdc468+dc3OgsC2Aql7YcPTrH5s4fpeFXexo211EDrpyspDhM/UjckCbkiFZZRPWp6wE/vXvkJpOVgqtdH3y559zbYlr/cS6VCFo+1n6yg/iH5Samt/3ok+r5JYbG0cfiPCW0LLs5DY1JjLpD3gJRaJUrNUqXaZDj+u9O0vSZ9IjLvPDsYoG/LmKwTbt6r88lcZZbXrwwiEXPzvxxjzwvSJLLiS7Kxl0kniwHqHxBP+3W8NsD2L0orZ/hGwHdmls5E6kyLklKVt7gxufQUXOxIuuEVua7+/kJaw+um7neGYj5McM1U3UmOancAoFKp2LFjB5///Ocl276CFfyj4MEHH8Tn86EMK/XuZzMfhl5Pan/0ldP0vCeSlNZ+soLae4uS3zwcd7kvcJKeb6B8vTRJs/PtPqb7ffjHpMfVHV86Hi0PViuTVOKsslJymXR+Z983O9jyucPiBr40pwD0kFVno/Ra6ZzX0Z/1MLBzFPSQs046Hj3+2x6O/lJ+mS2lRolKJ2/OtrgNaM0a8s+XRxJBSDKvJsCOLxxn27/JV2uq3eRhzSfkkYpTKW0lgxTxLYK+PSNMnFx+Tk0OeneNMNmzjHvL6XtxmOnxy1JpKrrSxdpPVWIplvcFXW8OsPl/HZZFVLbmGyAE0/GqBSn6jCXPJDvOsJSI5cnmZuSpbh3+cQ+9O4bpeV9auSL/PPFd3PedLkkfWkv0ZBSnUX9HivEvAn2sLZv/5ZikypG9Ko30PAM1H5M+bFJwkRPPleJewo4vnohtOKeIkzrfOs30oJ/J7kXtSHBN3loH+a3ScZfepWXtJyso3yCO8fu+1YV/cC7hNdP6MTqLdhNghlAoxLnnnruS81rBPx0GBwejwggBZnhr9idMzCYgjQohAhOw/0WROOm5PJM1z3gxu6XJBQXnZZK3VjrGCJyZY/K0j453pA91D+0bZ+eXRdJ3/nkO3Bcl2beLIyuVX5ePpSiNzEarRDsCbPmXw9HybMjgT1StL8BeZiajIoHgwoKbE1WDzFkrfXpu+MAEPR8OxdoigdnJORQqBRkycwjOVVbMhSZpQ2B6KAACGHMlfiOi4tXmzx3m5BvyDs/pnDrWfKICz5XSucvI/ZcFHbKeI8DoiSn6pA5B/IUYPj5Bv8yclxwy2GLILVXY8vEy6mQcUo1g55eOs/OLCYheCfb6FApFqlBrAdxnO9FnaLG45fVXtX55qliHf9ZN2+vSeVdXowWdWTxM0PabuD67OOYI75WWXZuNq8Yi7xmFy7Bt+0I7+5Id4osjE5VcmS3m03SLPotAGROAqL41F0ICfdvH2P31rqX3W4xAWJTlvaUEv3hyEkDRpQ4shQbc52Us+Wxx2yvXZ7P6qWLQweDeSY5HlKUStGGisoO92rcBUKvV7Ny5k//n//l/Et/77xwKQe5K9e8UhYWFnDwZI8Ocrb8Fo3HRpkhEpks9R8vduQyfmKH9D2GJQqUCIcnGeN5ZFnreEwdLR5WRMwcXLloTubbxwQJCcyH2fKMr4T0jxIfKW/KwFpoYODBG+28HIh8mvMbVbGHg0HhiElSCNmRUGKm4sZCZQX9UMSkZ8s53yFbrATHhpVApRDKUDBgdSnLWZXFimVKIkvf9W5U2C8NzVZYsdZ/GR0rQpGnkEZuM0PpkJVMDPvZ/S3rzYe2nKlAoFGz+X/J8vRy0fqaS2cm5aBD710LVXYWY84yceLUnWvpPqh1TfT5ZEuiVt7qxFJhkqVG5Wiz4R+eWEsNSEYoSEAWjJd8SfGbMVOAbTnI/pTLxdymVSQlK2gwF+a0ZtL85kbiOaTxBCWi4KxONQcnh1waY7FElvCZCUIpMnvmtRk5tngl/JpKUhEXqT0YHVF/vIDAVZN9Px5a2Q61OqI6U3aCj70AosXJSHEmpZaMNBNj+nXAgqtMmJCc5y6BwrYVDvx1nZnHMGrlfhIRkhHQ7TJ6CzBodoycCzCUaL3XaqHoSQMtGO0Mn/HRtFb8/EUHp/eGXmFNOMT8/T1ZWFlu3bsXtls88X8EK/tFw4sQJvN6YeowZGy3KC5PaF1+TjbPcsrSWeYL4xWBTYsw1MnxgCmupgbFTPslSWqYCAzW3FHLsVycZkSiP2vop8YT05s9Jz6vZa22yVYxAPB2vNWvY8/xhSZWSvHMc0RJtUrBXpVF2nRvfSIA9z8s7TVFyfQ4nXu/9q5YhM9iU+EbkET7+EtgqjChUSoYPSisvtH6qksEjY5z4pXRsWbvRg8mll/XMc862U3iei+GjExx75a+r1tL8RCmaNLXs+Hk5aP10JaF5ga0yynHUbvJgcsjzB8DqZ8vxj84uLMmWBIWXuuh6Q74CRVIkiZMMWTp8/X+BzniygyBA8Uey6P2gX/KdFRsArU+WEZwNse3fZcbPBsius9K3ZSylWd19hRidOvZ8v1s2sc5gA2O2keFDqcc97/XZOCvMDBwYp/23qdc2DQ95EOYF9qQqqxder9qrTFFp7pyz7fQm22iMK2tedlMe1iIT2752DPzKBfeLwBfy8SG/R6FQYDabyc/P58CBA4vvuoIV/FPhnHPO4f3334/+ex1Xo1cmITHooeWhUkbbpxaWo0iSFsxaa6M/HO9klJuipcxSofbeIhQqpWQ5t6IrXWQ32BnYNypZ/stWmcZM75Rk+aQIjHl66u70MNUvnUtwNWUwcHBUdimvlqfKUBtUbP73w7Ku0Vsh+yyXbMVnufiblTYLw32BvNIg1XcVYnDoZKtNrn2ukqmBGQ58t0vSdvWz5SjVSrbIjEuWg9bPVBIYn2PXV/+6OS/vtTk4q610vNVP/1bpAGLtJyuZ7JmJKnulQvFHsslcZZWlRpVRbkIIhmQRlFIiRY5Mb1XgH1vmlkKKuAs9eC500SHzXam9txBTpo4jP+9m9Ji835mzNkOyhJzeCg0PluEfnWW3DGJ4BK4mi6xydms/IZZG3/Kvce9Mgny/tcRA+Q0F7H2xK6paF4ViUZykB0uunvF2PxnlJnz9M4mfjWIhSX/102UMHhqj8/WhpO3YHXqPCfUwwWCQrKws/vjHP1JeLo+YuIIV/CNiaGiIrKwsQuF8eQZZNGnOW2oYfk/z1lnJbrSx48sLD4MsVjIBkWxhyDIydnxGLOd2JiBZSkvn0FB3RwHHfnuaseOp47Q1z5SBUiFZuhZBwFlrka1MA1B9dyHp2UZ2fbNdskxXVkuGZHm4CNLydNTcWSzuY8rIO4AYwwzsHCIgT/xGFnRmJYGJv13OKy1PhyZdw+gR6ZzX6mfKOHN4gvbfS5NKym7KI6MkXdbepLXUROX6AoYOjtP2Kxl17peB2o1FmLIMf5N9zDWfqEAIhdgm40Bc+YZ8rIVpbP3SEVll6poeLyUwGuDAi9JiG7nr7IlLA0oIGMiFzqEjMCy/zLIcuM93MLhnWPa7svYTpcz5guz8SvuSmCKKRbFeZl06g3tTK7uX35xNRqGJQy+dYqI7wYNRKpYSeXSQUWRg9Lg/MdEovG+b12olf52dgX3jdETinUT3A1bdkoNKo2L/95eqc0ZKukX2US0eHeMdYltdDWYGku11x32X+3w7mVVmdv5XJ8wlrqITmA3wHr9EqVRgMpmoqKhg27Ztie/9D4J/SCWleHR1dfHaa69F//2+/8dsG1tUhiRS/m0Gtv/n6ShBqeXhXLxXZaBQJVbw6flQnKirbsuh5PIs8s6xSrZHY1ChTU9eUz1Cejj84x5OvN4bJSgZHSRdzA3sEAlKeefbaf10Be4L4ySlEwyCo0dmCM6GGNgnHQxECEqFl7vEEmoSOPFaD/175G/a1dxbRma1Vba6TvPjpVTfXShpN9PrB6NYrk4O0jxGmh6TV5Kj6TEvWfU2MqRUDoBdXzshX3lpRgxQQ7PyAp7xk9NMnJJOEgJYvEYaHy2RVbpvuajZWETpemklL4ChQ6PMTszJIigZHCAEBeZmEpMEF+Pwj7pll8vzXJzDqg2FC/+YJGCo+Fg+3hsTn9oUQsKC9zJ7rTk6DixR9YlHKBRWbnOTWWtc+PckqL45G0eJEaMrAUFJpYqqJ0Ww++VBxnv8TJ4kMakpzOwtWGeg8S7xlEaEoEQouEQ9KQLfsIL52RDD7UkiuTgSUvM9NhruEFnEfXtmExKUhPkgzM5hTBeDrIOvjbDnp+ExRKlMqp5kyNChUCqwebQL7xcILFFJavmojYpLbQizswzuT0xQEkIhDCY/LRvtuFvFZ7L928N0/mk6YXm3mZkztKW9wUxwlLm5OUpKSujt7V0hKK3gnx4lJSUIgkBenjgvTDDCO8LP8YUSJ47bf9MXJSgVX5XNmmfKxRJjCcZk30iI4QPigr3y5iLWPiGtVOgoS0ehUqCzSp843vPCUfZ8X0xES6nPRAhKLc+UySpJdeboBHNT87LIDhGCUvPHS8k7J3WZkOGDU4y2TbLnu/IIStZSA5mrrLLLkLmarOLvkzisEyEo5Z3vxCGjHAuIyRLvDfJUL8tvLKTkSnmxxubPHZZFUAKY880TCgqylGx6dw7jGwlw5siYrHuX3ZRH5a3Sp6mXC1uFkfoHilOrj8Vh7OQ0w23yMg7zvqDoD5nY9r+PyiIoORvM5LTYqbtf3gm0hodLkv++RRvp5eEYVA5BqeaeQuofXNSGJIdADDZwVVuovktmyT4fDOwb48jPUxDYwt/V8mQJOesywEeMoJRC1Wnw8DjzPumylIWXOGn9VBmuRjO+4VBygpIQipZybPtlH8d/d1qSoASgNanRmhOUAFpUlqToChdl17qjzyYpQQkovzmH1c+Ia8xjr/SIiUUfJDr9P1Z7kp26twDxJNl3v/vdFYLSClYAvPfee+zZsyf67w/4HbtCf05s7Ift/3E8SlBqeaqU0utzkq6FIwSl0utzqbipIGXZ3Qh0Fi06c/KcVwSdrw5w9BfdUYJSKsWckcMiQclZZ6H105W4L0it3j3T42duep7Bg9KbawM7RYJS1hqbrFKqR145Sd+OYdmkpuq7S8lusMsuzVa7yUPV7YWSdv5BP+jFZyMH+iy97JJvNfcUkneWU1aJvQPf61pWOdxQMMS8L0F+IgHOHBlntF1euVp9lp7ae4tkle5bLso35MsubXbm6DjTg3765ahp6iE0H2LeLy/n1f7bPtnl8rxX51G5QYZiECL5KenvWxR32SrTyDlLzB9JEpT04hjjrIs7Pp8i3mm4s4isOisWjzylqH0/7GL46ERyglL4u3LWZtD0qBj/RQlKKdrhH4PAxBxDR6Tj55aPe2l+ogSEUHKCUvi7ImPAnu+fZM83jsU+S9IWnVWHUq3AWZ5AiWPRdWseK6Nyvfi8R49OJ302ekuI1U+VURhW4t3278fofG0gYTv8IT8ni/cywgDz8/OUlZXR29u7QlBawT89nE4nwWCQ1tZWAEbp54+hVwjMLRqLwu9Vz/sjUYJSTmsGzY+XoDPHHXyOQ2ACxo6La7iqWwtY82iCuGTRu5pRaESllVeWcs83jrHvRTHnpTOnOqitYGi/OAY2PFxCy1PSe4JD+8fwj89KEpSAKEGp/sFics5KrZI01RNgYO8oe1+UR1DSOXXktTqpvFVezGMtNdH8ZKmkelCEoJTZaMW+Sp50T8GlmbIVj2ruKKb0Knkx3bZ/OyaLoASiSnpoNiRLyWbs+DRTvT7OHJVHTiu4NJNSmTm95SAtTyeS4LPlSToNHx3nzGF5Oa+gP0hoPiSLoASw88vHZRGUzAU6Cs5zUXPPotgryRqr5m75v89zRRboROUyKTXw0uuzqbtHZh5SB3lr7VTdKV8dvfu9Idp+FyawpWhL/aYCslusADGCUqqc18EJAlPziQlKECXyuBrNrH26hMy6dPCHGD3qS1oRS5cmqiT1fDDKkV/0xAhKcfdbDH1G8nVsvEqSq9FM5c35eK9ziTFgir3uggtsND0q9ovud4fZ+bVOsf8lKu9WdpIdhtcAAYVCwYsvvvgPT1ACkFdo/O8cl19+OYIgYDQa8fl8jIUGeGPkW0tUlQRBiKqYGHNAoVKgNUiXGDv4i17qb82n570xSdut/xGbUCs+mkv/nlFGjyZOIA/uFl/g5ieK0RjV7P3mMWbOJC9N4BvyI4QExhdLHCsUSxaW28IbggYHuC/K49hLqU+EO0rNqPUqjA4lM2eSDyhDeycZCg889fcXs0fi9NzBl09iKzLJKoUHoElTy5aqa76vFE26GovXKFlKrfBsJ1qzBveFTrrfSX1a7PCvTpO31saohCJDBMYcPfnnOCR9DLDlX+SXkjssU74SwFKUht6qw9Vg+4vKyqVCWrYBU6a8JMLA9nEGtssLdHxn5Psje00GGrOG7jflSWMe/tlJMqszYn9IwWjOKBITAm0sDf4WLygK1jlRqBSyxoKCNRYUKgUGu3QCF2DXj/soPtvKzOJ915AAccNU8SVmfKPz9O6Y4eivhkVlo8UIhqJ/txXqUeuUaNNgdgqR6JTgGqMLsleZ6Hh3ht0vLiU4CvPzUWWm6NfMC8z7kyeuhPkgCrWKhlutqPVK9vxkJPr7hPkgigTvetV1aRx4eZTurdC9VV5EOdI9S3AuRTv8AdBqmJkRn6nZFfdMAoGYSlUYH5x5mXnNNIGOADabjeeff54NGzbIassKVvDPglOnTvHyyy+zYcMGBEHgQ36PJWSnWXnBQkNBiI7BaTl6lBoFPhkHYQcPjxH0S5N6T745yMnI3GCAqg2FsfJriyASbXwYsvTU3+shMDbLrq+lLn00Nz2PSi0dl3S9MRBVkSm5PofTf+pPqTxkyNKjMapxVlskVZWOvCSe8Mg734laq0ypVjN23MfA3lHafycvoWFyGVBpleQ0pVBCiTYa3OucBGdDnNkvXSbEXmZGCAm0IX1Ca/DQGH275J20A7EE3nS/jzP7U29sHf6x/FgKH7LVqgBs3vSEicf/LrIaHBidetJcGlmqOod/KL+88qEfyLctuymP7nd6ZSloDe2ewFYyQffb0uSxwktd6DO05K7O4MQvU/8+R006Nm869Q942POCdNLSYNehVMl7Jr4R6NkyzNDhBHGrEFpAUq/dWMC+b5+k/fcDSz5bfI3JbUBtUJFZaaH3g9GE94ug7KZcjv3uFL0fjMZsU7Rj8vQ0QkMGU0MpTtcJIUwFJmpvc+MbmWXPC52c2T+VtB32VUZsZRbafnGarf+WQLY8ATpfG8BaaOLob6XXPrp0DSqNEoONpCTOiHqScp8SvV5PRkYGIyN/m1KKK1jB3yvq6uoQBIHc3Fx6e3sZZZC3Q6+kVFXSW0GlVaFL1yb8PB7HXzuNwanj5FvS6+3tX4gRVrzX5nDm6HhSBaaRw+L4U7vJgylTz97vdYilr5LAPxogNB9islc6p7HjS+ExSw/ey3No+1XqOShzlRmNSY0xT5+yDZMn/dGyZdV3FUZLkSTDgR9146hIk60CZcjQEkqXRxiuvV1UhDxzdDzqy2TIbcnA6NTJUkg6/otu8s/PYlgijopAb1WSf17WQnWuJFhOKTkpha14mDI1pGUbcdXYGGv7657+zyhORwiGaEP6940enWb0qLyNVPzy/WGrTMPk0nNKptL9wZ+eJKveKsvWWWlBoVLKen4lV+Sg1qvo3SVN1Muqy0CtV2HK1DOE9Obh7m90UnSpk/GOBCXN4uIT9/kO5mdD9H44wrGfn04ZdwE4qyxo0zToMzWxcmYJrtFbIecsJx2vDrHrPxM8wwTXzfvmU+aaItfUbyrC4NCy+1sdMVWkJLn9ylvdHP55NwM7xxjYOZb83nHo2z0iq1yk3y+WPU7PTX2AdU/ofaa0owTaAtjtdr7xjW9w4403ymrLClbwz4IPP/yQDz74gLPPPptgMMh7/IaMuSSqSmGk5+hRahUEZKSzT28dRqGWXrv27xynP44kWbEhP5ojWozABDARQGeGxofLRUXub6Ses2bHZxFC0nsX/TvH6A+PWe6LnQzsnSAwlPyH6sygt+rIXGWNlb1MggghJ7PRit6iSRnHBIYC9GweovtDaTVIAKNdh8aoJqfBRq8MtfSSy3KY9wcZPiQ9r2XX20EQ6HhV+kBQz5YhRo7Ll37Kaslgblq6HR2v9dPxmvT3R7D/O/IVBDOrMlDrlCAjp7cc2FdZMOebsOQaZJWrkxO//CW2hZe56Ns5Jot4N3EywOkdZ+jfLb3vmdVkJS3bQF6LjbbfpI51zQU6suozMOcY2Cuj0kx6tgGNSSblIwAdbw0wkaCkrRASFuQzKzbkcuSl05zeLJGXVSjFd9uiwVmRTt/2scgNE8ZeBRfZ6d82xMjhaUYOJ1gvLrrONxQgOB/CPzabshk6MzTcX8LM8Cz7vtPNWFvyoNXs1uGoMtPx2hC7/rMr9e8LY2DXBJmVZtpeS6H+GW67Nl2NSqdE59TFxsRFvyswG+B9fonysBKtVovL5aK/X/57+/eOf/hyb4vx/PPPR+vHAqQp7JyVcT0gbrJHsLjkUuOmHPr3jdPzYYKBP06lpPymLKyFRk683s+ZgzPJ674bYe3DxQjzAlsTlASIl3zMO89Gdl0GO77cvtgo6e9M8xhxt9o5/KMEQUlcm1qeLkOtV7H3xS5muiUSPUZkk4kqb3VjLUpj8MCYvFJuRqhan3zj8C+CEQrPddH1ujyp4IwKo2zi0XIQ8fHm/zgsy3+Fl7sYPDQp+TyMDiXlGzyc3j4kj/izjOe37HJvMu9d/2AxYyenZEmdF1+TTd+HAylJcRGsea4CpVp+mcEFkCG5aCkxMt6+cDJbsPEYnlT0DsistdH9bmzCTla+DRAVkBI1Ke7veevE04s9m+OSjvEsW83CwGP1g1kgwLb/PL2QbLS4Hmr8Z/rgwue34DpxfGu+NxOlWsH2Hw9HbReMmeFrjC5wt5g58uuxuM8W/k5hPrjgs7xmPU6vnj0/GYt+ptAuXAAJs3PktxrJqTExfWaeQ7+N+UOIW90pNOJ1jXdkoFTB9m/E+ppCu0h1yR8AIzTe4uLUzkkGD8Vt6sWvGMMkpQnjGfqEHXSd7AKgvLycI0fkEwtXsIJ/VthsNkZHY+PiWVyFQRk+5RwfJ8WNl9lrM8hb7YhtMKVA66cqmZuZl7SNbIC1v94rmfBtfqKU7s2DDGxLbRePytsK6Hz1lCT5qP5eD/O+4IJNvMTGLKskW+unK0GQV64ORCKPf3x2Wb9RCu6LMun+cFBWu80eAxMdf8WacxEYoPWpSnk+RnwmrlqLrFJkRVdkkZ5tkJe4WcbzW3a5N5n3dq22kl1vE08dStibPQbMBWn0vCudzIv049mJOXZ+5a9bJgVExa+x4xINDo8XhZe66Hpv4L9fvjAuQbDqtnwO/XDRGip+3RVnW3ZjDvaydLFE92/6FiZeFq/VIp8ZgJkkn4Wvs5YaqLy5kLmpeXZ8pX3BZ4uvqbwlj853BhYm8BYngBZd1/xYMd0fDDGwayL2WYJr1j5XLpby/tyxJZ/Fw9VkofiynJgfUsB9oRNXtZUdMtYZkw2n2L1vF3Nzc+j1ev7H//gfPPfcc5LXrWAF/8z4zW9+w7XXXhv9txk7LYtJ4gnQ+HAJA/tH6flzahJE0ZUusuvttP3+NEN7U+chWj9dSXAuFD0klwzOOgvuszPZ9TX5c4o+U0/h+U6Ovpx4Iy6Cxke86KwaDv2kY8mafulNka2QFClXN3RgTPaGR8VH8zny09TtXRb04G6VV5YNwFKsl/bBX4CGh0rQ27Ts/maHrBJ0OevsTJ6ajpK9kkIPNbcU0rdnlCEZmz7LeX7LLvcm895Vtxcy2Tcji9DnvsDJ4MFJWT6LxooyywwuF+kF+tTPI7JO00Nei52e9yQOL0ghLuZwNpjRmzWc+lPcPZPEXRAul6YIH2qUE3cB6EIL/ZbguuYnvGhMapFINDiXtB16KxRemsvReBKARNzlbDDjXutg1/MdKXP5zjoz3qtymTztkyRANj5SgtakYYuMks6Nj5TQs+WM5BrYH/LTV3yY9nYx9iwrK+PoUfnEwhWs4J8VFRUVC96Vs7gCoya1dE1GuZHCczNllZVc/ZSXeV9QHEMg+dr0phzspel0vNkvWU6tbmMR/XtHo8SipIjL2XmvzaH7w+GU5CN00Pp0JbPT8+yUyufpkK1oA7Dm2QpQIrtqSVaTFUD6Ny4DWS0ZjB4dlVUeKy1Px1TPX1CSXgZaP13J7NQ8O78snTPVmZU4622SMT5Azlk2MgrTOCTnQN8ynt+yy73JvHdGRRq5zXbafn1KshyfzqnDXmKSRUaL9GP/6Cy7n099eFUSCfYGzQU6Jk7Kc17O2gx6d48u9Eeq8rky4L0umxO/WUiCiecjxO97us+zk7s2XC4tFSknvl06YPHB4kWxl86po+GeAvxjc+z55skFny2+pviqTHp3juPr8y35LBlq73bTu3OEof2pD3I0PVKExqhiy5dPpOxzFo+OyhvyGTi4yA8JYsDMOjM5q23s/a/uJZ8tvm666hS7Dm4nMBtAq9Xy2c9+lmeeeSZlm//R8A9f7m0xHnroIQRBIC1NVEeZEoZ5Y+RbnFlUm0kQhCjByJgDar0SZ4W01LFvJIAQFDhzUIKxMQPtf+hl//fEBXFmfQL51jB6/jQSJSjV319I48PhMgUKZdKXcdWNYn1NQ6IqIQpFdHDc/vwx+nYPSxOUwm02uo20fqaSuk2pyzUc/lE33R8MyiMoAQ13F2POM5K9JkPaGKjb5JEu+zZDlKCU2SCtaTh6ZAaMkH2WdBsMDjEYqJXwA0Db70/R+VafLBJPRoWR3GYH5R+RISWt1aLP0JLTkLoUTBR/ff7Vsu9tsOtwVlpl2bpqMqi+W1puHWDrV47Qt1tekqT1M5WxvpOKQGSE7DVWAMZPzCyYRJYoIxhCZJQZ8Y8oFhCUEkFnh+bHizCmUPsU4oiPOfVmchstMQnARASlYDD638Ff93L41YEY0ShSzjL+p+WpWX2/k+qbrKJyUiKCUuSeYex7aZDefTNiWcL5+QUEpXhUXG7DnKURS1Qu/l3zwSgJKbNKS8u9DjDCqS3T7P7B8ALyUvSa2TlsReJvPrV5hp5d01GCkhAILCAoxSMwMU8wkJgkKvgDIkEJMJpArVOSXR0egwMBEh1peXfw++zp/x0nu0+Snp7OT3/60xWC0gpWIBMjIyO89NJL0X9/yO/5MPTaUkNBiCZAsuoz0KSpoyWJUmHON8+0jJMt+77ZQdefBqLJWXtV8thrx5eOi+Qdg1jfPJUtgCHXgLXQRNUdJSntfP1+eracYfvzMspihNdedfd7aP10pWQJuqO/6GLPd2Se3AZyVzsouiBblq2pwEDLM2WSZdG63xYJSlL+AqIEpey1Mh4yUHNPkUjEkoIPTm+T6WOg5o5Cclrssmydqyyk5cgsI/I34F8t9945DXaMTnlql94rc3Gvc2LIkrb39fvpfLufI7+WVsqpu99D66cqZZXUi/QFSYIS4AjP211vSBOUau4ppOoOCcnrcJyXd44Ni9tI1Z3uJWXMgNjaK/z3Y6/00PXngYUEpQQlM+o2eWj9ZBmGDCE5QSnuurHjPnp3jMQISknKgUTHnvVJys3GXdf0SAmrbhf9sOPLbeJYmGijTAhhXyU+sL0/OMnRny9KGCW4ZuDQOKE5Ad+I9FicWWmRHN9HQiO8HXqFHbu3o9FosNvt+Hy+FYLSClYgA9dccw2CIJCfnw/ABMO8HXqFsVByIoveCjqLhkwZa3Xf8BzB2RBDMkpBHH65k30vdgGQUW5Kaje0dzxKUKr4aD4ND6SOpwBWbcjHVpqOXmLe2vW1Nno+HJJHzvGLqkBrP1VJzcbUpbI6Xx2g461+2QSlylvdZJSkkyMz7qm8xS1d9s1PlKBkq5SOvSI+cDXJyLvpYe1zldTcI9EG4Ohvemh/vU8W2UYkl7kovlxeeZC0HCM5jfJ89rcg7yz33ma3kcxqqyzbvLOc1NwuryTHjheOc+qDQVntWPupyuh8L4VIX5AkjAkCGeVG8CNNUNJD85NejHkp3s24WMJzoYv8VoesuAshxJ7vdHDkZ10p4y59hpLW58qojsRziQhKi67b8UIb3e+diaktJSETrbrVg60kLfHYE3ddRrmR1U+XgR6Gdo2x6z9PJL1nRrmobDS0d4KOt/slCUoA00MB5mZSqGeGobeCzqwhqyH1e78t9BY79W/R3t6O2WzmlVdeWSEorWAFMnHkyBHef//96L8/5DW2zr2R8pqcRptYWsghrVI0OzHHzHCSdVbcuHPslV5OvN4bJShZSpIvwvd+u1Mk7+hEImxGotKScdCZlTirrFRtSLLujCAAHW/2ceA7MlR4wz+pfEM+az9Zic6ZuvzVwR93sO/78nNeRZdkU3CBS5atzqGj8TGvZFm0/u0iQclcoJMsERchKNmrzZK2AKU35LLmuQpZ7e16t5+dL8hTOq66oxj32dIlmwGy6mxYiqRjSmBZBLNlQ+a9s+tsmAtMoJV+j7yXZ1F0cTZpeTIeRgCO/aqHE7+XPlxQviGfNZ+oSN534oh+kb4gh6BkLRXXTr1bRiX9UXp9NhUb5MXW9so0nJVmVt2ShxASov9FsHjfs/tPw7S/3i9JUKrYkMuap0vEMS0ZQSluvAoMBTj53lCMoJQk9tKZRcXbiuukSydW35ZHxXoxz73vu90pCUpWrxjHHXixkyO/7JH08XhHgLlAEF+y/Ye49mdWWzBkaGNjWoLfNjM7wVuzP2Hbvs0oVUpyc3MJBAL/dAQl+Ccp95YIk5OTvPjii9x5550A7PL/CpVfy4XmWxbYCYLATK+CPd87SSDMPWi4L48zxybp/vPSpMzJd0Y5+Y5oWHixjaxaK4d+2cdE+1IWx+Ae8SUxZqspviyHgvOC7PhS6jISOot2KS8p/iUPY9u/HSPvfDu+MyRXuVEowEdU1WbNcxXM++ZTqufMdM8QmhcY70ks1x2PnrAMcdPjXib6fBx/OflGxu7/bKfoShd9W+WV8jA69QsGz1RY/YlyVBolg0ellYzWPl6BQqWg78PU7fCdEdmlwYC0yo+oziSPxTN6ZIYzx8fpflt602em18/eF47KUhoCWPvJCman5tj11f8m+zcORreRujsKGTo0TtsvpaUdN3/2cGLiXAL0bB7CPyozIplBljqT0W1ECApiYC+hoNS0sQStWYN/fHaBwlai0i3Nm4pR61Xs+0EHM/2p+6V7nROVRoGj0kr3n6Xl0w/+rBezO8GiIp6gZITm23M4+sYgk53zsZF9sXoSgFrNTD8IQYGxxTL28QQlILNaT9E6Cyc3TzJwaJZTmxO3V6FWI+hCMAM7f3qGnEoDEd6nQq1KSD6y5OlQqBS4CjX071/6OYQJSiVKSs7PIL8pyN4fj3B6xwwKrSYhOanuNgcavZId/zXAgZcTJ86i6kkfc3H0jQGmT8GeH/Qx69ckJCeNOU7SNXGAWXzgh6qqKg4cOJDw3itYwQqSY/369axfv57MzEyGhobwMc3boVeopJkcxaIkuiCw5+sdGDIEfCNgqzBSfFleUqWkHV+M/X31s+UExufYm6TcbKRkWdNjXrRmDfsmO5k+mZzhkNNkR6lRYHanMXww+eLGd9pH158GYiXRUijddL8tnqzOOdtO4bkujv26O+W9x7tn0Fm0kmW1RsJzla3CSMnV+Wz/t9Qkna4/DTB6SB7BN3OVBbVOReE5LknFIbPHQNl1bmbPn2OnhCKCs8FM0UVZZNZY2ffN1Mkm39gsRqceg00p6YuTMsu/AnS9049KRnlngAPfOZa0JNVilN2Uh73MLCpp/hUJS42PlKA2qiVVKQD2vNAukttkfP/hH3eQe14Wvn55u3B9ck6fAfP+EMH5kKw2FF2UhfucTMnfZrBB6TX5eC4Jsv0/pBNzcssSA/S8N4Jar0rcz+PWXOXr8zBkaNnzjQ563x9JuB6Lv26ix4fOosE3Iiz5LP665se9KDQKtv/7cbreHEp+2l4hlgD39UzT9ecBsQ2LPlsMbboGpS556fBIO1qeKhVVYNuP4DvtEx9dgnvayo2UX19A1/vi929N8dwKLs7EVpLGnhc62Pm1EynHyJG6dvbt2wdBMBgM/Md//AebNm1K3uYVrGAFCdHd3c0777zDRRddBMBO/oQmpONc5UeW2PrHYPMXYgottfd5GGmbSFhaqn/rCP1bxTEna42NoguyOPJKJ2NtS1/q6N/0UHFTgagOJ3GqPi3LgFovPS/v+mobWWtssdJJKRAh8jR/vJTQrJBSsck/FiIYCDIh4yBfxA+193nwnQlwPEVO5PCPunFf4JR3ehsw56cuxxSPiMrO7t7DkmXlIkrfAzslcm9+CM4HmZdRXnmmx5+yRN6C2w766d87Qu/7MmI1P+z+2lH8Y/JyXi1PlzE3Nc+eF+SX55WEHtZ+vJIzh+QpZm3+X4fRW+XduuOtfoL+xLmQJfAjq9Sb3qokNCddBgNEEndajpH52XnJ0n4ND5Sgd2g58INOJrtTP2t3q1MsW12RzkkZ/WLft9qwllmWfrA4RnrSS9tvexg74cM/lDru8o/BfCDIxOLc9aJ7ZoRjmc4/9tO/bZye95KQORXKqBrTrq+dIGtNRmzsSRJ3WdxpqHRKsmot9KfIdRvz9FTcWIB/ZJbdX29PaVtzTyH6DC3bv3B8oZJTAjQ+UkL766cZO+Fj9/NHko4NftconYojTPaOgR9WrVrFwYMHU957BStYwVKsW7cOQRCora1l//79TDLKW3MvUcUasjWFS+wP/bgHbZpAYAIMWTrKr81hz/c6E26U7/mvruj/Nz1aTGBilgPfW1SqPVw+aHCXuF9ZfWcB6blGDv64k4mu5GOxvSQdjVGFpdDI6NEEeSmFAgSBwESItt+djpHUUyjdREhS9lVmvB/J5divTzF6JHnOa6xjirQcQ2qFJmKkn7Q8HWU3utn1QltKYsHx351mSka5MIAMjxFdugbXaifdb6VWqNQ5dFTdViyWy/t66pjDXKCj7Jo8JntnOPDdrpS2vuFZQnOhhWWhkkCqRF482t/oRW+WJvEAHPrhCVkqUSAqQuasdrDn2x2S7V0Oqu8qxGDTsf0/pA8eHv5pNzqzUlJFCaDt1yfJbnXJVreSU9IPIBgIEZwLyfJb2dW5zAeypPNYOqi8yU1gao5dX5Hey7UWmFCq5enRDB+e4qRtiNMfLO1D8fueBRc6sLiN7P9eN4N7JX6cQsl4tw9jZoK+uyj2qrnLjSZdza6vdtC7ZTx1zksbIjAO7X/oX9iGJMItBodWzD9KoO6+AgwZGna/IPb3wETiMdKUo6Pqo3l0vz9M37YRdn4lyfsuhMhqtpK5ysz+73dz8Ien0JkhMJk4Rhyv7mD3/t0wD1qtli984Qs8+OCDku3+R8U/LUkJ4I477uCOO+7A7XZz6tQpgszy5sT3KFRXU2psitoJgkBgXAmEwAjaNBWZq8wJSUrx0Jk1oIDZsdTJjZm+eWbO+OnZHF5wGkExo0hIwtn6v4+LpCPAe10W4yenGdwdXkwueuF73hU3ntY+Xg4CbPl8ksRxONgQr03ZVLENcZKK3ptyaXslNTlFm64hQyudZIqQTJoe89L22mnG25L7bfMX5ZVOA+h+fwCbJ12W/emdw6g00uW/ICwtLBPF12Tjqslg/4+7mOpI3ZBjL0kTlCKQS1ACQEi9J/GXQGcS7xuclZlYQSR4yUH3O/Iky9c8V4EQFNj2b9KbdTPdM2FJaOlnfPgn7ZRcUyBJUAI48us+PBc6ExKUIopskbJvbb8Zos04JPZHZfidTdCeuruyOLV1guEjM8wMLOwzQjC4oC25NWkoNQqyqtKZbB9JTE4KBjG5ldhLDHS/P8X2bw4s+XxxO4Rg+PcoQkmVk1AoKb7QhN2jp2fXNKd3zNC7M5agXkxQqroxg4M/H6Xt96NgVid+L+fnEYzALIycCOFvCdL25gjMiYk2IUlHVioVSR+tMDsXVaGyF+hR65V4znJw4KUzzI6HWLyqmZmZ4f3AS2im1AiCgNFo5P3336ehoSHxF6xgBSuQhcHBQXbs2EFLSwsAh9nBEWEXFyquX2goCFEyiPvcLDRpalnlwRSK5ONAPI78uoeSy7JjBKUkG+a97w/Tu3M4+lnVXclL00YISgWXZJK72kHv9uGUhB5luKFSc2jna/10hmvIF17qYmDfeEoiSVaDA7VOhavJmlLSP9JeZ4OZ3BYHe7+RnCTU+Vo/ne/2yyKaTHT4mOr10fYH6frZQ7sncNXOcPClLknbtl+cpm0Zte5bnikDAbb/e+rEhlTZg3jIJSgBzM8FQQCDzYDv9F+PpRSSSdKPQIrQFW934pfSm2/2qjTKrnXTs/VMlHCXCge/3yXr+wH6d4/in5DeVPONwFjXNAN75ZHstnz+qKSSk63cSMH5Wex5oSP5exsXf1gKTKjik0BJYpOS67I58as+Ol4V/0t1z9jfUt8TYO0nShFCsPV/H11IUFp0navJgjFTT+drA2z+0pHU77BeJJN1vtOPqyZjoW2CtvgGfaAAgyXJSURBiMaWrhor6ngyYIJ2HAvtpUdxAmG3gMViITs7e0W1cgUr+G/iwgsvRBAEVq9ezfbt25kjwNuhVyigHK+yeqFxQEFkADJl6tGa1JKkCINdzHn5pTYm/OIG1MCB8OZ7itJZO750XPwckeA4MxRIWlYuQhJa/Uw5CiVs/VeJnIDMKTS+XKzn6iw6fpc6pjExeJI1AAEAAElEQVQ69WL+TwIRslTtfR5OvtuXkNgVwdYvH5Wt3nPi9dO46mySBCWA7veHZG9UScVQ8cg714F7XSZHfnGS0aOpDzVK+TMecglKAAjLj5OkoLfqISSIcZ1MyHkOEOu/Umh+shSUsOML0sRs/1hIVm4M4PgvuvBc5ZYkKAEc/lUPJZdmSRKUQOzn3ZuHJPtvzV1uTu8YZvjAZGJiTlzs4awzozGqyaq3MXbidNIYSZ+pI7PKTPcfhxJvAC66LjQn/lupUKSMu9zn28lrdXDqgyFO/enMwvYuuq7yVjeHf9RN15uDdL2XQv0qPA7O9PiZPO2j/S3p90KhVERzi6mQ7tajs2jIP9vF2ImupH3yj6FfoTqjIBgMkpaWxjvvvBNdp69gBSv4y7Bv3z56enooLCwkGAxykK0cmdvJWVyNTrNw3TQ7JcZeBec6MNi0WPJklGVVKlCpkpAR4saj47/vx3u5K0ZQSkIqGj40yeYTR6Kfld2cx7GfLdqbCu8dDu0T47HMRisll+fQs20oNaEnslUZTD03928fjRKbctbaGO2aXljKfBEcVVZ0aRoyq6wM7hpLajd8QCQ1WEqMuM/OTKlS1799lP590oo1AIEzAUZOTHLyz9L5kImTAYaPTdD1hnSu5dSfhjj1J3n7YSCWNFaoFZJl9caOS4tNRCCXoAQQnA1BSEBn/OuKKglBgZAgP56TQ1AS7aDrD9IiB2l5Oqpv93DqwyFZJfLafiU/T9n1pwFC8zJ+WwAG948x2pGE3Bd518N8gO1fOiGp1pWWq8NzaRb7v3syIUFpMeyl6WjS1eGvE5Lui7ovsNP9x2F6N4/QuznBfRfHV0KKz+LQ9GgRSqWC7V86kZKgZPXqMecY6f7zCNufPwGzKcZHvTKs9tZPTotN7O+LfBmP+akAKECfkYLbEL4+q8GKwaqNjrXiu7Tw9/XMtXOEHbAbzGYzJSUl7Nq1K/m9/0mgEIRlvPH/wOju7qagYOFJ/nXq9RiNcaeXwpv4ugyiqkq1d2Uz1een/dXEA1bEva7GNIrOy+TgL/qY6opLRAQXLnSNDqi9txTfSIC9YamzZIpBrZ8qQwgJbPn8oolo0ctd/6AHQrAnxeYTi7pBZFGVCs1PlqIxqTny864FRI4lSKbklAAZFUYqbiwkMD4rS/Gn4mP5mJx6dn5FXh15o9sor7QdyGp39lkZ5DTaJdtqrzZR+hE3XX/ql1RpctalU3JlHt3vDXL6/dSbLzX3FpGWZWDzZ2XWc5WJ1s9UMjs5l1JVa7lofrwUtUnFls9Jbzasfrac2ck5STY6QMtTZQjzAjskavCWXJtDmkvP3m92SJOUEj378ES1eEI2ZquZ6QsTeFTJJ6ysxjTc52Sy4786Y/dOQlIyuqDmlgLmfSF2/VcsiI2UgVNoEvBL9YJ430RtCF/X8kguCqWCbV/vX/JZVEUJKL7YTN+eCVENKUJ4SrQACoZArcaYBVVXOzj4qzPiNRFCk3phO72XpmMr0jN60sfx1xMEWeHrTAVqqq52MjMyz4Gfxb0vc7NL7ll7ix21RhnzUwLfCLNzGB1QeVMuB14eYHZCHGtnzoAwO7vEn5MlRzh0/BDj4+Li68ILL+Ttt99e2t4VrGAF/y2cf/75/OlPf4r+24KdZsX5CW0j6jmGLD1VH3Vz8MXjkoSR5idLCYzPsf87nSnt6u4vxujUsef5oykJHZW3FmAtMkmSj0wFBqo3FLDvW8dlE0RMBQYyV1miZKSEMEDrU5UEZ0PSKjopVEoWIxLP7Xn+sKRPDTao3ljG8V93yyrJZchdBkFHZptr7/Mw1jUlqZbU/EQpQkiQFSPWP1CMxqResCmZDK2fqsQ3Kn1ibjmIKCD81eO5T1cy1jXN4R+dTGnnviiTnGY7R3/RJflcc862U3iOiz3f75R8to2PlND94SBDuyUyXcvor0v6VIqYrunREkZPToul2CTQ9EgJWouGPd/r+qv1WWe9Ge+VufiGA+x5IcU6zABlV+Vx7BX5BxXq7/cwPxfiwHe6Utq1frICFLBZIv6uf9CDIUPH5i+mJjJZSw1U3FDAsV91M3I0xUJJECi5PgejTcf+73TFSGI+FpCXAHwhH+NVXdFT+zabjW3btlFSIl3uaQUrWIF8jI2N4XA4CMbloNZxNXplnNpcJC8U+ZMfqm4vZGbUL0kssXoNlN9QwJFXulJvsOnFeGZ6yC+porj2U5Xigbt/ST0/rrq9AJVWyf5vp4754uG9Loe213tTEilq7/Ngcuk59ptTqYkcKUhXS0yz9DTc68F/ZpbdL0jnvIqudJFRmM7u5+UpYuuz9LLUpURjJNttr0nHfVampDqRPktP/V1FdL47IEm+sRTrKb+xkNNbz0hu/pSvzyejJJ0tn/vr57wC43Ps+upfL+dVu8mD0aZjy+elc17NT5QyOzXHvm9J99mGh0pQKBUpFcAA8s93YC1Mk1UqbLl9NqYalDzuspYY8H4kjwPfbZMkaumt0PBwhZh3lKEQIF6EZJujapBfOJLStuBiJ0NHJmUrgOmtCmo3lrLvRydTvl8FFzvJXe1g5PgkRxdv8sffL1NHw70epvp9YpyUAlW3F6C3atgpkXfWW2HVbSUcevkU/sEAeqsC/5iwJO4CmK7r5WjnYUZHxXzbpZdeyh/+8IeU91/BClawfDz44IO88MIL0X/byaFBc84Cm8i+n84sbmrrzLDqliIO/bgzOWEkvPdXv8nD3PQ8ByX28Co25JPhSWPP9zpSkn88l7vIarRxevsZTr65iCwTt3eoc+iovr2AAz88KVtBR+fQ4aoxRwnbydD6qUrm/UFpFZ0USk6LUX9/MQaHjl3faCeQrFRT3H0b7/PS/kavLHKPzqGTvmfcveW0uWKDm6l+nyRhqW6jB4VGIUtBctUtbvR2nay4Z/XTZQRG59j7bfml9aRQu7EIU5aBzf/rrxvPrXmugtH2yaXEukVw1lrwXJLF0V+dYvxE6g1fe7WZksuzOfLKSSY6U8cJNfcUcXr7cJQQlxQ6YFaeMIYcJa3475/q89HxujRhrvoON+m5Bg7+qIuJ7qX3T0RCEjQCBJILN5jdOlZ9rICZQT/7vpt6HPJcnimrnRFUbMhFoYDDP11EAltEJmp5woNSrWDrv7UlVlgKj5eVH8vDkm9k9zcWqYWFVegiMGTpqFqfy4k3+hg9knoMyD/XTnqOPtrGyDi+mNQVmAswVtPOgQMHEASBjIwMduzYQXFxsQxP/ONDngbYPwHcbjeCIHDjjTdG//bB/Mu8M/FjGu7NoeRysXZzZo2B6g35mArEk0eGDC2OivToNfWb8vFeK9b4tFUYaX6kiIxSI7aSNBQqBaVXOKO2Dfe5KV+fA4C5xEjz48WY3CaCcwKhYIjGhz2AOAg0PFjEqlvzADDmaGh5soT+/SMc/VUPxR9x0fxErEPX3++h6g6RcGVwgMagZvDQGACrny1j9bNlUdvaTUVU310oLlgUClqeKqP8ljysRWk0P11Ky1Mx25qNRdRu8kT/rVAq8I0GGD0yQ+7ZdlqeKouW8qq6s5D6+8NtmhEJKo2Pl9D6mUqKr82i5akyjDli5mvVbW4aHhZtR4/MMDs9z0SPmB3PbDDT8lQZFq9IFqu4xU3jI7GEtdWThjZ8CiyjwkjLU2XYq8V6naXr82h8NGa79tMV1N1RCEZI84i2mQ1isVDv9bk0Pe6N2rZ+ppK1T4g1YI0OJS1PlZF9ltgHiq/JFk8yATmNdnQWLTX3FokXGkXSTN75oiMKL3fR8lQZwwem2fK5IzgrrdRsLIp+T8tTZbgvEfuL+0InLU+VMT05h0KpIGe1nbo4fzc/WYrnKrH2ZvZZGbQ8Vcb8bBAhKFB1TyH1D8b6QNPjXkquFfuWq8Ui+tttxJijp/LWmL8BGh8twXuTWLPUWZe+4JlXfCx/gQ8bHy2h4mP5AFi8og+da9IT+rvh4WIqbxXrFBvdRlQmZZQ/V3JtzgJ/1z9YHO2zRocSpUaBxiQSRzxXZUX9DVC3ySP22bC/geiJTPclmUv6bOTZ2MvMGDP1FF7uAkEg73w7LR8vjd6j6q5C6jYV4Wq20PpkBaufLYvzt42WJ0swOsRJZtWtedRtKqDxEQ+1d3pofNSD91rRNrPORPMjRaQVirsxFTdnUX+fm6y6DFQaBQ13usUxQqnEVmGk6UE31nCN6NJrHNRvzMV3RsXh3w4QnAtR+hEbQjBIeoGGpgfycdSIfbbkcistD+fQ8lAOhARqb3RRfoNddIsTGu9xkVWrg2CQokssNNybw6HfD9B3YIqaDQ4qr8uAYBCtBRo3ZpPTLDqi8II0HCUGKq/NhGCI6o86WHWzPdYH7nSS12JAawrR8mAWjXfZmemH7d86g+ccC9U3WmO2d9gpOMeEvUxNTr0Wc5aWvsOTHP/dGJXXWqi5WXynmJ+n4XY7RReKvy3drkcQBKaGAzA3S/lV6dR+NCPWX253UnyxGWbn0BpVqPQK0os0oFFTdrWVutucCLNzCLNz1N3moPQjNmzlFtQ6JbW3uLB5tUz3zlJymZn6e2P1eu2XzPPB7Ets2bmFubk51Go109PTKwSlFazgb4R3332XmZkZtFotAOMM87bwczQtQZoei80R1fcU4blKnHs8l7rQpKnJv0h8d/POd9L8RGyOqLqzkKq7CgFQ61UYs3S4LxLn2Zyz7aJteLO88rYCajd6GO+eZt4XZNVtxRRdIY7lriYrzU+UYsgSY5WKDfloTCq6Pxii640BGh4uofI2sU2OmnSanyjFVCDeOG+1ncDEHL6REI6adNZ+uoKS68U52VZhpPmJUmwV4pjrvSGX+oeKqdpQQHajjfoHiim7WYz3TAUGmp8oxVEjzrPFF2Uz559n/4tdgLgRUrFBbIMhS0/zE6W4mqwAFJ2fRdNjXlo/VUnzk6XUbvRQeWuYjG8QN0ZyzhbH9sGDY8xNz0cJSlV3FVJ1Z2HUp81PlJJ3vhi/5p2bhVqnInet6NNVtxdQfU8srml6zEtBOK7xXJ1J/d1F1IXjk8pbC6i9LxbXND3ixXOlWCu89oEiWp+qxLVWbH/5+nzq7o/Z1j9UTPG1oq3JpSe72YbZI/q77KY86h+Ii4MfLMZ7Qy47vnScE6/3LPB3yfU51D8Us627v5jy9fmo9SpUWiXNT5TiDMeGniuzF8Sctfd5qLzFTXBelHJufqIU12qxvYWXuhb02Zp7iqi8rUDsa7aF/nZflLmwz95ViMoQW5I1P1Gass/W3LfQ34WXugBwrQ73WZt4r1V3FCAgEBgXlYkaHymJ+tvZYBZtc8UbZ1ZbUKoVjJ3yRf29uM9aS0VbU6Ye32ggSuSpf6CYspvEPmv2iH3WXpWGtdSAzqrFc2l2nL89lK8P99lcQ9Tfqx8tp/XTlTQ9EvNh7X2xPmuI+PB8G/V3F9HybNmiMaKQVbfH9e/HveSdY0ebrsFelk5zXMxZdUdBdIwA0dZ9oZOdXzvBwN4zVN2Ut2iMiPP3k15aP11ByXXZuJosNG/yYsgSj6tVbMinNu7ZNDxUjDnXxOChMU59OETz497oGFF2Ux71cf17zRNl2MvSsZUbsZUbaX7ci608MkbkiAdOwv+/5pNllN2Ux55vdNDx9gDNj3tjY8RV2TSE+7et3EjtfUVMDkyz70ddGLJ0ND/uxdUkllMpusJFU1zcrtSGVXx9MR/mnG0DRCWTeB8qVAo8l+cs8GHeeQ4xvj7bLtoawFFqIS3bQPU9heJ9ZwSaHi2JjhHZazMYretgi/I1Dh48iNPp5MEHH2R4eHiFoLSCFfwNYLVamZ+f57nnnov+7QN+x3uh31F7XxGeq8T5xOo10HivF0uuGAOZ3UZRXS2M2nuL8F4njgHpBXoaH/Fiq0zDXmFFqVHiuTwvaltzTyFlN4gxmz5TtHWWW5ibnmc+EKThgdi7Xn1HYXSO0FvF0+Gntw9w9JcnyT/fQWPcOLTq9gIqb3FH/623aDlzVMw2Nz3lFdUUw6j4aH5sjkC8b8l1WTirrDQ94KXxEW+0PFf5+nyq7yiM2qpUSqYGfAzvn8RZZxFtwyVEy27IpeaesK1fjClq7vfQ+ulKCi530viIl/QC0dZ7bQ614byEv9/PzHCA8dNi0ttSLPrF6hXnCM/VWQvybq7aDPQZYqxszIv5G6DoMteCGGjNJ8tpuNeD3iqW/Wp8xIuzQRz33Rc4aXgo5u/WT1ey5smKsANFv2StEcf9vHMdNIbn5JwmOwaHjuqNC32Ys06Ma3LW2mh8xIt/zM+Wzx8ho8hE1e0xHzY8VIL7AjGOdDaIPgxMz6JSK8mstVIdNyfXP1BM4SViP7TXpNP4iJdgcJ7QfIiyj8b5GzEOLrpStM0oN0X9rc/Ui/6Oizlr7/PgvXZhn42g6ErXAn/X3FNI6fXhPpsl2tqbxHm28JKF/q6+q5DycNyutyox2LRRJafF/q66vZCKj+ZH/a02qdBaxVxmzjr7gjZV3uKO5tJAzL0O7BdzXllrRH9HiITlG/Kj/nbVZJCeZ6Tg4swF/tZbxdiw/OY8qu8uxOo10Pp0JS3PlFF0mehDW2UajY94MeaF++x1OWI+bWMRDfd6qHuwGM/V4jrJWmKg8eESLMWibfFHsqi9t4jsZgcao5ryj8X5262n8eGSWJ+9wkXdJg/+Mdj7/U5mJ+fjxggdjQ+X4KwTY/GCi52s+WQZaz9RLvp7fby/ofHhkujaJ/88B40Pl7D/Byfp2XyGVTe7qQznLkG0zTkr3GfPsZO72kHVBtHH4hjhXmCbf54D9NDytJjLBoFtXzhG4TmOBWNEwwPFFFzsJKPciLPOjKPMQs/2IY7+rEccI+6O2dZt8lB0hehvo0ODgIBvRNz89F6TvSDmrL23iOKPiP7W27Vo0tXRvKHnKteCmLPmnkK81+Zgyk9HZ9FQe3chtso0/KMhii7NXNBns641sN30Blv3bMbv92M0GvH5fCsEpRWs4G+Er3/969EN6f+PvfeOb/Qq0/6/qo8e9WrLTZLl7mku0zzpjUAKSQgppBLSJqQXSCCwv89n96V3SOg1tLDUJQRCCiEhmV4zM57iscf2jHtvKrYl/f44kiyNVQxk991919c/yUjHT7l1nnPu5z7XuS6AEXp5ae5ZojVTNNy5MK/WvLeY8nfFa1xnF6Kza/G+Q4wBrjVmGu/yJVVSqq50U3+DGLM0RjUmj57Sc8T45lhhovFuP5JTNK68vIgVN3mY6JomPD1H1buK8MRrO9ZqA413+5GLRFv/JW4MLh0dL/bT9eIQq27zUn1NfN3SK9G4uQJzuRj33c0WwuOzhIfCmL0SLR+twx8fs+Qi0dZaLdbnPOe7WH17OStv9FC6ycWKWzxUXi5qBJJTtHWsEON+6TlOwtOzHPhZJwD17/NQFZ+TkQTZqKDZCkBxk53GzRVs+HANzQ9WUXNtabIuAaKte72Ie9+uEYJjYcJTgphRfXUJtdcvzBENd/kpPkPkQCUb7UhWDUXrREyrriphRUrO2XCHn7JzRQzd6y0031PBmvi7fcVlRay8eaHtqg/48Fwk2tZcV8qmD9fjbrEl473q1oU+sOo2H774nGyrMFJ6hjMZb+/FBQtrYQjyasVlRez7bgetvzpF4+YKbHVini0715U2n6y40UPVlcVoZDVqnVLEe5WId8mZDhpS8qW660W852ejzM3Op8e7xb6w1otQ3Kq5tlT0y/hvU9wiYljQbBVtE332PSVIdm1avEvieaRjlZnGzRVIZpGrVF1ZzIqUuKy5ozyZR9rqjKKtSxy44ooiFAqYm55Pxtt7sciBzOU60We9Uvy3sqHSqQgNinl31a1e/PH6r7FU9ENLpajBGNwSgeFwkqC08uaUPuta6LOSU8JYLFN56UJtZMWNHqquEn1WMou4uNZYaL6ripaP1NKQMn/XXl9K9dUp/ftuP+4NVprv9LPu0SoaU/LTmveWUHt9Sv++20/xJjt6l4SjzrR4jHjfQtuGO3yUnu3gwI+66XxtkIp3FiE5RQ5aeXkhK24sTRJq1tzlpeWJavyXFGCplGm81ZesefnfVcDKmxaem1W3lGGrMdO7c5QTLw/QcKcXs0+09V7gZNUtC23XP1JBYYMVW60e2S3RcKc3+e7jOdfB6vd7kv+/4dFKKi4r5PCzPbS/KI6byCNLz7Kz5gOirdknUXddEVO9AVqf7QYJGu7wUNAg8vaidWYa7li4BpVOQSQaJRwGYlEa7ijDvVY8C4XNZhru8IAE0fkoallJ+fkFyb9dc4eX4k3i2XWtMdFwpxfJDAWrLVg8BurfJ37H0HiMNbd5KIuPybZaPVMNnbyh/A/eeustHA4HDz/8MKOjo8sEpRQsk5ROwy9/+UtisRhWqxWACLP86GffpyckdiBby/WoZSWWIgliMSJzsaTU6poPlCKZNVji3vFWryzaemUO/6KfSDiGZNRg9MlsfNSPZNVgLhMTtqVMh1pWYfWZ2PH5NiSjFq1JTctHqll9uwedTYupRBzXVCyjllXozBJjRwLYy41o9Go2Pi4WPGSnhKlYPORaqx61rMJeZQY9qDRKVJqFn93g1GGML8DJTlDLKmSTxOCBceZnIuLfceKRoVCHwbWwy04tq5JWJWVnu1DLKrS2hWuUnQsacxqTGqVGSSwSQ2fVopZVmErF96ZSAzrbQlutQY3NLyYd/8XFqGUVFo+Ik7lUj2RdmNQUCgWRsGC+WP0mEUO/GFysHgOSJb1tLCbUZqxeERdbtWhr8xvRmk6TvI6THQ2lBtSyCkdlvK3PmCTQ7P7ucYiRjIveGY93pRgM7RWmNGsDo1vGEI83ehFDR1W8bWW87cQsW/6tFbWkQp8Sb008LgCOagtqWUXfjmG2fvIwpkIZ2ZESQ5Mm2dZeJdquuclLw+1+zGXp8ZYsWmxeYzyG5rTrNZemx1CyaDGXit/CFr/eqovKMsZbZ5NS+reEUqlkoms6Y7xlh4SpWPQdyaVDoVAQiLPQbf6FeIOQUjcWif7deFtFWryd1fEYxolHhkIdhngRMaE6Ya9I/230znifdevQO3WExuaIzsdQaZTY/UZQKHHE2xpKxP2YimRku8SprUPMTs+jNaix+gwQiWD1G8VzXyxiYSrRo7Nq2Pe9k2x7ugOtQZ0yRuhQy0qs8YTJ6tUjmdXonTB1Yg7JrMZcKu7VXKJFLSux+cRxLaUyCoWC+VAsHm8NpnjfMrql+HFlChr0FNSZ0OiVzJyC7r9OINvVGAvFcSS7WhzXI0EkijVOHtz1Y7FTVm/XYHBqIBJFaxCTtL1cxuKRUSgVqCUlWiMwP4/eqUHviP+uanFcR4VE5Xk2ihoNqGUlY3G7Q2OBBtmuTqonafRKCuoMVF9uxVouoVAomOmdjf82EjqLOqmipDUosftFzMa7gygUimQR3eSWkEyiD7ub9UgmEe+ebTMMHZ9GqVJiKdXE+6WMZFITCAToLd3Br3/3LIFAAJVKxac//Wnm5ubS1fSWsYxlvO2QZZlwOMxvfvOb5Gd/3vkfvLb9rwRjggRhcsuYS8Wz2PHcSfF3ZglkKDvDicaoTpIKTMUy5vh8svWTh1EqldgrTTTdV0nZJtHWUJAYV/UYCnWc+GM/Oz5/FK1ZQ8FqK5uerMdeb463FeOF2WvA4NJx6lWxk0ln02L1mShca8VaaUJjVGPxiPNafIbknOxucqBQKLBViHnW7BFtzR4xF1l9BmS7xFvfOcKprcPIDgmLLz53evRojGqslQt5gkanJtgfwrHSiKFAh6VcHNdQoEFjVKfkH4LEPReYJzAcxlCoS8bQUCCLtinzocagRnbraPloHeZifTKPRBaFr0Suonek/w7mUj0m94KPltasSV6DbBOfDx2eSLZNzMkAWqsGe6W4/rmQUHWQDMpkDPXOhbayXcJeLo47fHwCpVKJOZ67WLyGtJxTdkjY4nFxrbKIGPrFAp3NZ0S2L7TVO0W8d37pGJ2vDsTjYo7H25iWcxoKRAy3f+YIp94YiMclftzKBdI8iHzPUqbnjA+toOH6CtG2euG4GuNCXmMqktN22IjfMZHviX4oW0QsLGV6jIVykpCtNWuwJdpWiXuVCxPzoYwCBe3PCRUhyapNHtdeIY5rjufiKq1KSC4n3A/tEjZfIje0JPts6dlOHDXmtJxTdkpYvPE83WtM9tnxY0HmZuZRqRfySr1Tl+zf5iIpfq9mpnqCRGPR5GJdarwBNFbRZ21lJoIjYaJz0YV4x2KYCmXMccKVLCuS8d7yxcOEx+cWjxFFC31WY1RTtFYUG2SHPn2MKJbT+6xeWMCOtU1ir0yMEaKPmD365PvAuoeq0NlEvI//tg9rhTE+RojjWnz6tBgqlUoic1FGjwQwe+NjhDc+RngNyT5r8xlRKpVYfPGxxiPiYo2PL/ZKIzqblo2P11L7Xi8Glw69Q2amK4ihQJuMN4A9vtFj00fFArWk1yY3EyTHCH88v64T1yS7JaG0FQWNLt6HTxsjSjY5RFtZyf7vHCEWEb9PYudtYoyYXNHFX7v/xO49u4nFYlRUVDA4OMjTTz/NMpaxjP9cfPKTnyQWiyXJgLOE+PFvfshATCjTWnwmUavyxOfomflkzav+Jg8Gt4w1Ps+aivVIVg3WCiPtv+8jPDGHbNOiK9Cx4cO1GN36hVzFrUGyijrFzi8dQ5I16JxaWj5az6rbfBhL9cn5RGPRIVk1GJx6xo7MYK80IZk0bPiwICuYS/SY4+/UOitIVk1yHNLKGtSSKkk8sngNmEsW3unEcWV6tg0z0x9CsmrQJOZZrwFj6UJbnVOLOq5U7L+4SPytO/4uWW7E4F5oq3dJaGUVkbkoGr0KyapJ1jisfiOGwoW5R2+XsFeYqL/RQ/V7PEhWDRZfPC/zm9LqbkqFkrmQeGc2uWURw0S+V2VOy4GUCiWxaIzQOMjxto5E22ozupQFIkiWvNBZRbyTeUKV6AMAB77fSXQuisEZv35dPN7VC9cgWTXozOKareVGTGUpMbRrscV/G0e1aCsZtGz5RCsaSYWxeKGt7JSwVy3kp5JVw3hHgO2fOYKlJD3eBpcumbNZfUYkq4a667w03e3HWm5Mm78NBbqFPltmSN6bOI85Ld4Gtx6rP9G/JSSrhtpLPKATcUmNt7F4oc9KDi1KtZKJLkE+s1WZ0uJtKlloq9MpUSgUBAdm43GJxzt+GeYyPZZ4LW3FLV7x2yTrhuJeddaFPmuK99mEeqgtnuM7KsVx5XiubvYaMBbpCU3FmAvOo5bitWJEfU+yapJ5vbXCiLFQ5uQbg4RGZ0Wf9ZsgFsNSbozXs+P9xW/CUKDj8M9PsuXzh9HbJKzlhuR9S1YNVr8hea96l4SuQCJwKoTBLSdzQ0OhNjlGiOs3o1QqmZ0R/d9YIi+MEWZdMi62Wj1lZ7qQrBpCg2G6/zKEuTjDGBHvs454fA48K9TYLR598v0RiD8LJiwlOtSSCsmoQWNOGSNKFp5lnUOLq95C3Xu9eM8vRLJqmImrlFh8Bgwp70l6l0RRk53aa0ux+g2i5tUv+oAYI1L6YaGOgpVWAAb2jomaV3kij18YI+z1RoxFMtYKAyMHpuh+ox+VWpl890yMEaFoiMGVR/nVH/+dqWmhCve5z32OmZkZdLoUNb1lLGMZ/ykYHR1lx44dKOOOCq+2/onXdr3KXFxWx+ozYI2vfbX/YQBi4v0MwP/OQmSXhBxfy7H5jcnxbccXjqFQKHBUmlh1i5fyd7iRnZKotwPWSiOmUj29W8fY/dXjGItkCputbHyiFkedMb6GKMYAW6URY4mctF0zFetx1lhwr7ViKou3ja+LOKrMmIrENRQ2OlCoFMk5ObEmaClPjPtmjEUyu7/ZRtdfBzCVGLDG5zTZrkZ2StgSc0SVCcmkJdgXxlgqYa00LtSX7FK87UKuIjslwuNzBAbC2MqNybkHSeQUqbmKbJMwu5Ssf7QGW6UJa3w+AdAX6JL1GoNThhj0vCHU061+IyZPSlu3LnlcvUuM8WMdgihvqzJhLFtoayrW44jPs7MBMd5r4/ZZtgoTxpLMbU9tGxTjvjcxny/EG8BUqk/mgo4aPbJroQbmqDalzT0mjwGr38i+73Zw+JddItdK5oYm9Cn5ksVnwF5hZPdX2jj+x4H0vKzSmJYDWX0GrD4Dmz5cz5qby+PHTf9tJLNob68wotam1IUKdNirF+qcslNCcmiT8bZ4DKx9SKxzG9xy8rexlYtrMBcv5JwAHXFFelORPrl+a/GK4xrj65hanQaiC9ZwxhJDMl8yuhf6rGuNBXeDLZnDAxhLDcm6rLFA9ENruYHwcJjAQAiVemGtPRFvAI053mcrjYyfmCYWiaWt9Vo9BmzxPivF+6zdbxYbaQPzIt7xkFvLF8YIiPfvShPbPn2Eye6geO4zjBEA+kKJknWCQKa3a+NjhMiFrRWmtLxdb5eIEWP0+HSy1pqMt9+IMf7/q2/zYCyRsVcY6HplGFOpPm19115lTK7fAijVSubDEcaOBDC5JVH7jt+PvcqUXC+3V5lQapXJGMp2jajxxscIe6UJvUtL830+VlxbhrlUj9GtZ7I7jGyTkB1aMQ7EotirRH/Z8CGxEUBv00EECEXFGOGQsFcaQKHEWW9CdmqxlGkID4WJhKILNS9E7dgez608ZxeIPmuVOPijDuZCEUyl+qQqnr5Qh6PKxFTFKbZPvsK2nduIxWLU1NQwNDTEF7/4RZaRjmW7txzo7u7G5/ORGqIaxXq8+trFjaNRNjxSDgrY/oXFcr2px6i6ogBnjYn2F/sZ3DezyPItAb0TVt9exUjbFG2/WSytnWoDt/LmMiZ7AnT/ZWTBqiqTp2OKjVX9TWW0/uZkuq3Vad2h6j0luFZYOPFSH32ZPMLj2PiROmKR2JK9z4vOsBEaDee0idvweC1KtWJJ9mCedxRQss7B1i8dXpK1nN6pJDD8d3jb5zueR49Ggom23LZ3mx6NS1Z+Lr+diGOVgUDfDME81qdGvx6DU8PAjomc7SquKELvkDjw/c68516q3VvpeU5cdZb8lid6KN3g5NSr+X1cizbacva1BBLWgKGxMHueyn3+krMcma3z8tm+ZZIIJC5xmMsOMMVyreGOMjSymp1fE+OCIoclXN01hVg8Msf+OJTRQiPxt5WX2jj+fP4YAZSeaaKk2ULXG2P0781wwWo1RKKs2+xGoYQdX1881qSi+nIrp7aOC1u3bDFQq0E7n/yu4f0FtP5mkNk8ypfrP+hmrDtM23NZbA7jY976+0sgBjueSpF71KiJzc6lNa+6zI6j0kD3tjF6t2Q++cvTPyGKGIOLi4tpaGjg+eefz32hy1jGMv7TcMkll/CnP/0p+W81Ws5VvDtj29LzXHjOdNGzfTiv9dfGJ+qIxWJ5bdLqri/D6jey9ZO5cw/ZrqT2+vKF+S+X7VP8O7lEpmSDjeO/ye1F3/LROiKz0ZzWY6VnO/GcXUD7S70MbB/PebwEKq4sov132W2vnKtNVF9RxuCh8bzXCLDu0WqCI7Mc/GFn3raynbxWcn8vilrs9G3NfdCm+yrR2bTs/X5+azIQCkN5rckQ8T/1ev6cpmGzn769o3l/o7/H7m3lbT4mTwbofjl3n3c1mZkemMt737JdieSUlmTft/7DNaglVd7rtNfpCY5FCS7VbmYJSFg+ZkUip5Oh5aFaOv86QN/W/LnSpo/WMRecZ+eXsue8jpUGlBoVQ3vz9w2ADR8Wltw7Pp/dirj4LDu+cwrp2T5C10vZf0vZDp7zSzj6q3jOs4SxxntRATqrNq99XO11pVh9RrZ99UhOi7fCDVYqLiqib88oJ/54mtXlae+Om56sJzKf3ZKyK9ZGG/sB0Ol0OJ1O9u/fj91uz3mty1jGMv5zMD4+TkFBAXNzC+9RNTRQpsisZrb+sRpUGmVeOyvvRQWUbHDS9scehvbkqFPoYMMDtYwdn+LYb3qyt0Mou4TGZzn56nBu26eU76quKubkq705rafKznNSdkYBHS/357QpW/dwNQqVYknWsCCUgKKzUcaOZLcJWPtgFRq9ekn2YIVrbZRfWMi2Lx9Zkk2XzqokNP721bx0BTp0FgXjbbnzhU0frxfzao45MAFLhY7wyGze69S5dRgKNLkt9xC/palET2se25vEdS7F7s3VZKGo0ZbXkguEykBvntwURN/Idy+wYA0YGAqz75u5a16Fa20M7FpajWip0FnJ/uyk1NLqb/Kgd2iXZNvmv6wQ9xo7R357ktHW6aztyi8pXJxzZIGryULVO4vp+Es//TlqieseqkIlKdn2mdzPsP+yQnp3TQhbtyWONWvuLOfoLzuFvVoObHy8hrHj0xz9de7xbv2j1SiUCrbnqR17zndRuslJ56uD9L6R+d3kb7HnCccTPbfbzaZNm/j1r3+d87jLWMYy/vPw0EMP8ZWvfCX5bwmZs1SZa16uNWaqLi3i1PYRul/J8IynrP2tfbgKpULBji/mnn997yygcJWV7Z/L3U4yQ/XVXg78oCtxocKqLNNScvw7yayk5MyCJGkkG9Y/WkM0EmPXl7Nfg2OVmerLSzjxYh/9u8ZzHi8Bz0Uuul/KbpFmLtex8gY/A/vHaP9Dfkv4xs0VzE7Ncein+fOKhM3T2wnXGgtD+3Ov9628xYvZY+Dgj9uZ7MpvEeZYYWbkUP4LLWi2MnhwPK893YobPQwdmWRw93jOdn+P3Vv11SXMDIToeSPL+lActjojofG5nBaGIH4byaHLa90G8RqiVcuWz7XmvHdjqcRcmCXbsiWRYy1SMisITy6BqiHBhvur6Xp9KEkqzLaGCbDh0Srmw1F251g/NXskNBYtIwfS89NsNm9N95SjUCvY/bXsloD2eiM1lxfTs32E7r/m+C0l8F9QSEci78tmi6hQgjYKYShstmAq1nH8udy5ovcCJ4Wrrez/fgfhiezvG9Yqmbr3lNGzc0TwK3Jg/SOVROdj7Ppqexo/I4GhSC/7+Zu4FUmisLCQXbt24XK5FrVdhsAySWkJ+Ld/+zf+5V/+Je2zjYpLMOudaZ/FIhHQgyKoYOXNxRicEtu/dQICEItEIcNDrXNAw21+eneN0v1K7gdg4+NVzAyGOPCDkwvnzPAgbHqyhvlghB1fyD7RWyr1rLjem71dvFsUnWHDd657yeQfEGSY9v/IPdFv+ng9xHjbfEhrri/FUWWm7bmTDO3L/bK/9qEqtCYN+75xJCdRSe/R03CLj7GOKQ7/7GTWdiDuJxaJ5V3ULFxvyUsmAmFzV3VZGdMDQfZ/K7f/69sdy8Qxl0JSWipqri/FWW2hf//okvpGZC7K9k/nJ7zZ6vSMdQVy9k3fuwopXutg8lSAgz/oXPgiQ1Kw6ck60e5H8QQ8ywS//tFK1DoVW79yLP3cifYpz/r6B/0oNbDt8wu/4yKiUoLskylRicVQqBeYu9VX2LGXGxhpn+HY74YyHw/wnm+mc+sEinDme4hFomnHbbilAIVKwd4fDBCbn0/7LgFDGay8ooj5YJTd38ucBMTm5ylpMVO2wcJYV5Bjz42nfZd6XJNPSf2lhfQdmKLrL+Pxe1l8vbG5edbd7yE8PseBny1eyIvNzyeJYfXXuDAVSWz/6imYmxOxDS+Ozx7ln1DrlfT3ixcns9nMxET+Z3MZy1jGfw3sdjtjYwtFZiNWNiouXNwwZcG+5aN1jB7P70W+5m4/WqOanTnyJBB2X4VrrOz7UWdOokf9TV6s5QaO/cdJhnMsOKx/rAa1rGLv00dyki3WPVzN7Mw8+7+9NP932Q6ONa6kylPGa7zRg63CRN/uUTqez1+MWQo2PVnPXGCenV/KHUfZrqTx3lpmJ+eSO7yzYeVtPkxFct58as0dfgxFOtpfzE3Sku1KNFaJyY78BJwNj9ei0irzEnCqri6hYIWVnu3DdP55aYsn+fD3kJSWik1P1gOw5RO5j9mwuQK9S2L/MyeY6Xp7iFwtH61DoVLkvZ/6m71YyvTs++bRnM+EwSuz5pZygsNh9n4jS2ElnkMVrrVQ8c7izISafxCbPloHCtiSZ+OE7+LCJfcJ2a6g4e4a2p7vyTlurHtELGDv/W4Hwf7sBbD1j1ULAtnp1xiLpeWXq2/3oXfq2PaZIwsF5gz5p/ciF8VrHWz9chYCU/xvZTusuauOsY742JuFRDUaG2WioouTJ08yOyt2kX7605/m8ccfz3pPy1jGMv7r8LOf/Ywbb7wx7bO1XIhVYV3cOL4wX/2eEmyVJvZ/+0hOEhA62PhQLT3bhwXBKAc2fLiWmf4QB5/pzNmu5cl65vPkILoCHU13+/PmH/Z6I9XvLmXfN48tmdTjOd9F91+y512JayQGWz/59sztSeLXH3oY2pf7vXXNnWIhaN8POgicyr4go7MqadhczfiJGY78Ik/N62P1ROejbMtTp1kqAUdfqqPhNj/TfUHe+u7ijZ6paPmoyGnerljC0klKS4X3ogJKW1z07xul/fd5al4fq2c+vLTNiyavjrmJ3EQuV5OFqktLmOwK5H12Nj5Ry+SpQF4iV9O9gui/56nWzM93Su7QfH8lWoOarUuo4S0FvneIvj5yZIIjv8xO5ik+w8HooZHc408KVt3mQ2tQs/up7GQqnVVB0321zE3PszNHPdSxykTNFaWMHpviSI53T51bR8OtPvr3jtKZa1NNLMbah6oIT85zILVumfJ9IuZVVxbjqDEJslUslpVI9Zb6TdQuBb29YvOJ0+lkaCj3uLWMZSzjvw61tbUcPbowD1hxslZ1weKGKQv26x+pZOz4NG2/j5OAMgkUIGykDC4du7+Wmzxa3GLDc1YBB3/ayXRP9ndN/7sKcTfZaftDL0P7xrO2a7ynAtkhsfd77TmJI6tvLyc2H+VAYv0lHyQoXmun983sRGDfOwspWe+kb9dIXpJU6nFzEVE2fKiG+VCU3V/LkytIsOmxekLjs+x5OnfMq64qwVFtEu/judrFhSM6/ty3QETJcm6zW1oSQan5wSokkybvGmLpOU685xTSs2OYzhfenprK30NSWio2Pl4LSgXb8pD96673YK82cejZTsaPZd88kICtzsjY4exEaoB1j9ag0any1tv8l7opWGll7/dPEB6ezdpOcko03+1npj/I/jzEeEulTP01Pnp3D9P1Ysq8noOolA8bP1SNQgVbP73wbpWJoFRypp1Tr49kJS/ForGF7yRY/8FK2l/qZ+TgdPp3KWi404vskHjrR53M9GWOUSwao/GeciSLhu2fbVv0Xepxq99ThNVrYMeXjie5E5nOW7jWgvdsFzuePp5xHEgeV4LmuyuY7J6h7Xf9xDSxjO0DkUkG/Mfo6e0hFBKJ2Ze+9CUeeuihjPe0jAUsXoVexiJ8/OMf5+Mf/zgXXnghr7zyCgDbYn+EGQVnKq5OtwMKAArQ6FQoVIp0AkOCUJTyUDhqLCiUioxko1TonSQltvNhLjDPeHduRtHE8YAo3v9VTDSuBiND+xYPvn1vjtH3ppgIi86wUdZSkHPnmGOVgcLVNmzlxpwEl1NbhgiOLG13dfmlhRQ1OejbM8KJ5zNPjEefzb0gmYqencOUbnDlVVIKxGOokrIr3yQw0TnN4IH8u5aWQlACGNwzSdG6IO0v5U+qBg+MExzJn4gY/XpqLium46XenApWfw9W31lOcHyWthyFA4CTL/eikVS0v5R/YXSkbZKZgaX1jaXcR+efBrB5jRz8RefChxmeJX3cpic8k6LGE4sumuAVSgWDBydw1pizk6OiseRzvuMr+ReZN272EZmPsfNrKYWiLPzRY/8xSu1V5CQoya4Y7lVmnDVGdn8rPeaxyEK/955jwu7Xs/cHA+x7ZlCQfTLAWqFmvH2emc4IA4em6Hx18ViR+re9OwOUNJkZOR5a9F0qpgajoAC9VR2/l8wEJQCVWpFm+5ftuEq1AoVSgd4JgT7Eb5QSosGiA+xr2wOAPCezcuVKtm/fvmzrtoxl/DfD6Ogoo6OjFBYWMj8/zzTjvBz7FUV4WaFYt9AwYU9VIiyzlpIrafVq1EuY23V2rbBiyKNEM3JkAmOxLifRAGDH54/ifUeBIGPIwlIpEykkdcFt7YNV9O8dy6nas+oOoW4zsn8oq1pR60+7qb2ubMkEpQ2P16JUKXKShfK9jCcQHI0yOzlH7578O8vnA0LZLp9qzrHfdFB5VXlehaLgaJTgaH7iDUDf7lE0xvz94tSrPag1SgZ25i/WVF1dgtag5tAzSyy+5YFjpRHP2YUc+U1PXpWi7r8Npln4ZkPHi714zilcEkEJWJLS1PEXepK2YrmgVIvnNadCEjDTFWRuep6Tb+Ze3EGhYGDXBAO78qiLXlZEYYOV7tcHOfV67k0iAO0v9qLU5C74rHuoCo1RzdCRyZyxXPdwFR0v9TJycIatn8pemHSsNDBycIad32ijdIMzJ0EJYKIrgN6VYuOTJY9UqBQitdXFxPiZhSCvVCtRKBW4as3pClKnHTc4CkqVAl3CGvG0Ww/Gghwyv8n45Di0g8fjoampid/+9rc572cZy1jGfy1uuOEGbrjhBu666y6+853vALCLl1HGlGziEnSKFDug+PQjWTQo1cq8BAFHtQmlSpk/R9OJV29F/qmLwHCIwGDueTA0GKLz1QF6d4lx3lZryKhqNNo6zbbWuDV8vRH/RUU5SU36Uh2lZ7hwrbDmXLTq+HMf0fmlkZ6KW+z4LnTTt3OEE1kWg7peGsypvJeKk28OUX5hUU6CEpAkvig1+fPnoUPjjLbnJx8thaAEEDgVYvzENCf/lv+eerYNMR/MrECfCl2Bjpori+l+fSCngtXfg7r3lTE7M5+XeDSwcxCdWUPP6/lz7b69I8xN578fgKmu/LWxoT0TFKy0cujfc+ebOqvIZRL5di707h6luNme/flOIc3kWwQHoSAUjeRWmUyg88VBtEY1x3Iou+qs4DuvgJINdnZ+MftzWNxix91oY8/X2zOTf+IweXRMDYYIjcc4+cYQJ/+am1A5cmCKuYvmGTmWOy8OjYdQKBXoUuymFyGeW6l1qsV8gwz5nFKlQKFSonPrCPUFFxGUxv297GrfAnMgjUisWLGCN954A6vVmvNal7GMZfzX4siRI4TDYQoKCpicnGScYV6O/IIyqqhRNS00jL8GSmZhmaTU5ici6Ewa1Lr8CZXskECpYHo497vmSNsktmpTXlWfvd9op+RMR5KgZPZmJs+89b0FcvKaO8oZOjyRk4DUdKdQtxk5OkM4y7V2vjCASq1cMkGp+cEqNDpVTrJQPjW7JMIw3R9kuDX/ut9sQKw7SS4ppwpP2/M9aCRVboJS/NxLISgB9Lw5hM6ZYz6K49S2YWSblr4t+YmtnotcyDYp72bRpcLslfCeX8TxF/ryKiS1v9CHzqbN2Qag87UBYsSWRFAC8hKUAI79x0mctZa87RLryrkISuL7MIGhEKd25K+bThwP5lVhLd5kw3duAZ1/HaR3S/4168O/6U7axUFmUs/q93swuHVMnZphsjP9t0nlNjTc6aP7zWFGW6fTiEKnw+LXMdERYu8POylutGUkKKX+7WjbVNLW8PTvTodCqUBrjBGezHwvsWgMoqLu5ao1MbR/Kv27VIRBrVEiGTXJf6d9HQnTan2DkfFh6IDS0lLOOOMMnn322azXt4x0LCsp/QPweDycPLmwy0iJigsNNwolpdOgUCiovNyFs9bEiVcH6d+e8gKT+oDE/7bliWomTwU49JPcA/vGD1UxOzPP7qfyqOx8tEZILed4aStoMlN5SYmwzXo65XindY3mByqRLFr2fa+DQG/2F+W6Gz0c/m330mzXinWsua2cjpd6sxJ49E4la+6qYf9PupLEoWww+vWsvtHHWMc0h5cgxaj36PMe8+3Ghg/XopLy79R/u1FylgPfeW5G26fyxmapSkqbPl5PdD6Wl7H8dqNxcwWyS+Ktn3Yy3fF3/n5LJPsttF9I/g0FCmFzlqcdemh5oJKZwTBv/TDzs5xKLmraXMbs5BwHf7Y4kU4oD629p4TgSJiDPx/IeIzTh/KaKxx0/m2M2Yl0YlLqcZvvKkStVbLt2+m2j6lqR1pThMZbS5mfjbL7G/EiUfy8qSSh4o1GPBtt9O6f4uTfphd9n0DROjPeMyx0vDLC4IH03y5BUorNzaMvhNU3eBnrDHD0t0Pp93racdc/6EWhZEE96XSoVBwKbGHaNMj09DSxWIxoNMqbb77Jpk2bFrdfxjKW8d8Kb7zxBmeddVbaZz5qqVSszPo3S7FMA6GCZPHo2ffNwzntyIpa7JSf7+bYc7nVkvyXFuFustH2/KmcZI6kbdbnW7PaLMl2aLy3Pq8CgGxXUnKue0kWbQCrbi9HZ9bkVB9YfXs5KkmZ384VoUxlcOrY8sXs97JwsSDLb7/1Wy44VhqpucrDeOcMrT9+e8hCS8XGj9ShVCny7hZbqpJS/c1ebOVGDv/yBKNvE+F8qdj0sXrmZvIrZ73dkEvkJVn11d/sxeo1sPd7uRWHAKzVMrVXedn/nSNZ+2LhBivl57nZ/+3sbdKu83Rbtgwwl8usvNFHYCjEvm9lV41o/KAf2S7R+u+dOW341j1UhVpWpZOdMrzar32gCqVOyY7PZhgPE3lxLMbK9/swFacomaXmzCnHLT7Lge/cQk5tHc5qOxiMBdnKC5gsxqRSZW1tLYcP/9e+MyxjGcv4x7Bu3Tp27dqV/LcKDS1cnE5WSkHpOU48Z+W3TAOh5DLRNcPhn+dW7ln/WA3zMxH2fCM3AWLjE7XMBSI5FXEsFTpW3OBnZjCUU6l69e0+jMV6DjzTkZMcUnVlMSf/mttGLgGdFdbcXUvHS31Zre90VlhzVy1Hft3JRHtuUoquQEfjnX7G2qc48mzuGIJQcgm9jfarS8HaB6vQGjVLJrS/XbBWyax4n5+RY5N5Y7NUJaWWJ4WCVD7L6LcbtdeXYa8y0frsibwWe28ndFYIhchvKaiDlkfqme4P5iT/JLDmznIi4SgHcxD3m++vJDQxy6Fn8tdyIW7L9sZgTou15vsqkSwa9jx9OPvzqoNNj9UJhdgctXPHKhM17y6lZ8cwXTnshOz1RmquKKPjpT4GslkUxWLorNCwuXZBySxL3gXiXUElqdKVME/DidgRhi0nmZmZIRqNEovFeP311znzzDOzXusylrGM/x5obW1lzZo1zKfUu/2swK/KXvPa8GgV83MRduex2vS/q5CCVVb2fr8zK8EHwFZrpObKUtqe62HkUPaaV3GLDe+5bo49d4qRA9lrXgnbrN1fbc1ugyZBy6P1hCdyKxBJZig5071kAlLVe0owl+hzksmr3lOC3q5lfx41R4Caa0uxVZjY9sXDee3PxPUqCU++fZa7+SAXSTTeXsHY8WkOP7u0OfTtwtpHqtHo1HnVLpeqpOS/1E1Rs4Mjvz2Zs3/9Z2DjR+qYm57Pr5z19yLPWmQ+wloCFZe5ca20sv9HJ7ITuOLrk7JbYuX7ynjre8ezPn+2WgPVlxaz70edhIfnUg6xcL1phJ24LduJFwYXfxeHrlBH0+1epnuDvPXD9L6YetwVN5Ri9uhp/dVJxo8F0r4/nfCks2rZ/oWF3yTTeVe/34PWqmXXlxePI6nHrXq3G0eNmW1xu8ts9+qoN1JzRQmnto1w8rWRrISov0WeQ2+Tkk4Qa9euZefOnRnbLiM7/nENsP/F6O7uZmZmBlmWAYgS4cWZZ/hL6BeL2sZiMWZn5ohFYkmCUkGjQXwZZ+wloPeI482F42SnJQh7ZJNWSyAyGyU8kWHRPgWDeyYJT8xy5Lc9Oc+7+6vHhUVabwhbnR7fuwoztjv8U0FQKj3PyaaP11NyliPruS3lQvnAWJT9ZgPDUbZ+8jCB7gC2Oj2l5zmztp3uDxCLxpa0y2rl+3003OrLeX0gSFItH6nDc0Fu38jE/XreUZCz3XRfgPBEbvZs4rwbP1JH1XtK8jQUxKfq60pzNuv52whvfv7QkshbS8WWf2tl21fyLzZseKI2/30gkoG6G8ryths/Oc18KJKXoLTpY/Wsf6xm4YMsScHGJ2qpvjb79SmUQp1n9e1VtDxRnanBoo9i0RjBsey/cywSoeoKJygU7PnmyYwEpdS2Kk3KLnUWCEqxWCxJUFp/Xynr7hX94NgfxgiPRhcTlPRQdbkdgF1f72HvD09mJhRKEYhEmB2H4OgcJ/6Szro+nSjU+5aQbYzNx4jNz2ckKCnUaiZ6xTioL9BkvleN+LtAnIullhZim3pcfakKfXwImp2aZy4YzUhQmvH3cND0Ej3RNiYmJvB4PDzwwAPEYrFlgtIylvE/BGeeeSaxWIxPfepTyc86OcLLsV/RGctMQpqbmScUH4MNXhnZnjnlTewcT5IQ5MzXoHdKoICZU7l33syHI8QiMYYO536ZPvFyH1O9wQVST4bzBkdh79NHkgSlqqszz1PB0WiSoLTh8VrWf6gmY7sEdBZNXoWdt753IklQynbeBEJjs0QjS9vzsOnRetbcVZe3Xc21paz/cO77ALGA2fLR3McbOTjNfDDCZFf+XVO115Ut6bxVV5fkjTPAti8fflvlrFt/3MWbnzuUl6BUe11Zev6TBTXXxOOcpd+nYnZijvHu3DH0X1rEpo/XU7jWmrNd+SVuNjxei2zPfU7PhQU0fqCcmmtz57gglGRj0VhOgpLnAhcGr8z4sSDbPpObfGQqllGqFRhKTVnblJ7rZNOTdRSutRAcJStByXdxIXKJzOSJIHu/fiQ7QSn+Oxx7vo/AUDgnQQlgdnqe+VD8nScWy7xopVCAIo8ir078XXRO5Ixp42XKcZ2rRSx6d40QnYsxN5NZKXOs4QTb1X8mSoRQKERjYyOxWGyZoLSMZfwPws6dO4nFYhQWiheuCHO8wR94Lfb7jO3nZiJEZqP07xMDq73emLFdQskllsgbMnOe/i7MByPM5ql5TbSHmO4L0vZ8b87zvvW9TvZ87QhTXSF0bh2e8zPXgNp+JwhKrgYLm56sp/jM7DUlfbERlUaJqST7ZBsah+2fPcJEe0goNZ2TveYVGgwRi0SZC2Qeg1NRdVUxTXf6cx4PBDFl/WM1We83AVeDhU0fq8f3jsy1wATGTkwTGs1f80IH6x6tpurK4rxN1z1cTXWemtJ4W5A3P3toSeStpWLrJ1rZ/pX8BKV1j1RT8e6i/O0ey38fAJOnAsxNz+clKG18opZ1D2eoUWU4b9VV+eO85q5aWh6tz9sOIDofTb5vZUPFu90A7P/OiZwEJQCNXo2cRxFh3cNVrH9U3G/HHwayEpQS59391PHsBKXEOBCCie4ZOvIo2Y+0TRGdjxIJ51Hl750RiuGOLGoVkrjmxDWlKZml5F06q1BLAgiOzDI7PZcx15soHuJIyTbaOcjExASlpaU8+uijRKPRZYLSMpbxPwT19fXMzc3xi1/8AqVS5EodHOLlyC/ojmTeJBQcmyU8IsZgySkhuTKPOQtKLglJpszXoI8r7EwP5h7Xo3MxonORvEpy7S/0MnFieoEgkem8YdjzVGuSoOS9uCBju/AkSYJS8/1VrM0z7xkLdGj0uWtebb/pSRKUvBfnXssLjoWJLVEdc+PjdTRsrsrbzntxQd77AGj8YAUbH89d8wr2hQmNzzJxMr8CkP8S95LO67nIRfND+e9j19PH3lY73o7n+3nzM4fyEpS8FxfQfH9V1v6cgOd8F2sfqkYy56dBzAwEGT+RO4bFLXY2PVlPQbM1Zzv3ehvrHqlGsuQ+r2uNhea7/EvKhedmIsTmowRHs9e83M1mzB6JYH+YnV/KTlACMBToUGmVGIsWXoxSCT2xaAzXGjMtT1RT0GSBMJx4YTD5XSqKN9owlgiy1e6nji4iKCUQ04i/bXuhn6meYJKglPz+tOMGx2aT7zyZzpu45hiQiyUR04i/S/AuUsfL1ONaqwVHYaR1mrlQhLlAJOM5x9a087ryt4QJMDMzQ1NTE6FQaJmg9A9i2e7tH4RerycQCBAIBLDZbMzOzhJhnpdCP0WNlvN01yTbdr0yRtcrYoG/cK0R/4VuiteG2fed+ItzvKMHuoNpvo8tD1QTmYux4wuL2ZvbPrfw2YYPVYMCtn92cdKy/fNtSX/alo/UClWBLyxut/trYiHKVqen7movM0Mh9icK6CkvQQmLtJorvSjVCjpfG8iqmBQJRiAGEzl2P6fayYFYPOh+JfuOlLqrfaCAU69mkbMJwNZPLBTAcykldfyhm5W3VdGzO7fNQyAQRaFWYPUbc17bqe3DlLW4mJvJXSA79OOlkYQCw1GUagXGgjyVuwCoJCWmfO3ibd925Dmm3qlEpVGiz5Isp7ZTqhVoTZnJK6k48fxAVuu/VMyHIoTG48l1lsUZfbGEUq1AZ8kvDzneObN4Yfc0gpK+TCJwMsy2z8bVJ7IQCRvv8qCzaphqDtG/67QEKBoVakV6KFqjp3frFNu+lFLQSSEmpf3ZfCwpKZ9JPQlg7S0lqHVKeksmmOmC8Hj6eRUqVVI9aS4QZc93ennrxwPx08bPGScKlZ5ponStVagi7ZsSSkYZUHWZHUelgbd+eZJAD2z78mlFw7k5UKnwnm/GvdpC7+5xul+bWLjnSCT9fvWw+royInMxdn61i33fXVyE7Age5Dj7UB0Rv5dGo+Huu+/ma1/7WsZrXMYylvHfH0888QRPPPEEDz74IF/96lcBOM4BjscOUEszpYryZNtU5aGV13tRaTMrGB5M2flbfombomY73a8NLrJXa3+uj/bnhH2DtVqm/tpyeneO0Pnn9Lmo++XBpLJIUYud8gvctL/Uu8iWbGjPZFJpad3D1WgMarZ8YbESUcIGy16nx1VvwVKsZ1eOXT3R2Six+dyEoZ1fXMgDi89yCBuULKla6dlOXPUWdFYtB76XmViRKuucT/Vmui/IzBLsfmW7FrVWhWzPrboUHp9DY8gvY55PUSsBnU2cF5mcqlAGl07Ip+dpl1dZ6h/BEo5pKJCWJO+ud0rifpdwzFz9LoHZqTmic7Hsu8bjMJfpUWmUBPOct/vNQQpXWzn6XHaF2USfa/t1D23ESUJZcr7SFicl6x2ZbdbitiWl5zo59ddhjv+2j+O/7Vv0fSqme2cg5iISzr45QrZD8To7Bast7PjcMYKjpz2f8eOuuascQ4GOvT/oZKYryL4sSh/rHqlCqVay/bNH2f+d7GogGx6vJToXZecXj+VUYtvw4ZqktWPr6RsZUnKvxnsqkJ0S0blORg8H2PbpxYSj12LPMUcY9oLRaCQajTI8PJzc2LOMZSzjfx76+/sJhUIUFxczNjbGHLO8HPsVWmTOVlyabDewa4yBXaKuY62Sqb3aw8wZQfZ/Jz13CI1H2fbphTF440O1ROdjGefp1M/WPliFUqtkRwbbjdQxbv1jNUTnohnHvbfiC1E6t46mO/1M9QQ48P3ORe0SFmirbvSg0asZ3DOUVYElMisK1zN92Um8o63TbGldyEGLz3TQ+0b2GtTqm3wo1UpOvZbdbio1hrmUkk6+2ovFY+DU9tzWVaEQqCUVFp8ByF7zGto3gf8dRcxO5a555bNGWzgxqHXqvLUiEAQWQ+ESal7/GaJRS1AV0ujVGPLV5HSgltTobPlrXr1vjOTsJwnMTs0zN52bsKazivPK9vw1r8FDYxgcueftRJ/b/tl4P8ySd628xYvZoyc4NEvv1iwJvQ7cDTb6t43ltNxJIBKKolDl3qzbdE8FOoeWkdYJxo8HsxKUNj1SR3hqjt1fO55VvcnVZKHyncUcf6GXod3jbPtM5ncKz/kuSjc6OfSLE0y0hxZbZsdzqoS1Y8+2YbpeGkx7lk8nIDXdV8t8OMKOzx3l4DOdi87ZG+umlR2o+lXEYjG0Wi0PPvggn/3sZ7OFZhnLWMZ/c1x77bVce+21PPXUU9x///0AHGMvxyJ7qWc9xaqFmtdb319YJ1h5QxmSScOWzy9W+mn7XS+JrMi93ob/Ireww92SPi73vDFCT3zekVwSTXeU07NzhO6X0/OC/l3j9O8ahxhYqw3UvdfDiRf7xGcpmDgeYOK4GFsb7vCjL9Sx+2uLVZUS/5aLJErWObH7Tez9RnZF77nAPKo8lnd7v7nw9641FoaOTGRVQHKsMFOy3ompUM5Kpu1+aYjuuIJePtWb0eOTSxJPkG0SalmF5JRyKlwFhsKwhD2Be57Kb70KIJm14rx51J4MDhnJoMmvCrU0p7m/D0s4ptktizXEPG2NhTIavWpJylaZ3gsWXVp8o9jgwfGc7ax+I2qdinA49483dGSC0k1Ouv+SPXdO9LnuV4fofjW3BV/5RUVCAfTzGWpAsSgolLjXWujfNcGp10c49frIaU3Sr3d6IEwsApH45riMikIS+M4vYDYQYdeXsxOjaq4pxl5h5OBPOpnsDnPgR+m5V+LYjXf7UMtqdn75OEd/ld0xoPmBCojC7qfaOZCFFAXQ9EE/Gr2KbZ89Ruefh+j880IMU++n/n2lWP0GDv/6FGNHZtj5pcXP1LbIi0wzBntEzctgNNDX14ck5X+XWUZ2LJOU/kno9XrC4TDDw8MUFRUxPz/PPLO8FPopKtScr7surf3ArmmKm2c59luxqL7y1hKGj0wJlaXTzKfDk3PMxpmCxnI90alARqup6Hwk9+5YhRJiUaLzMSKzuSfJsa4Akdkop95Mke7PIDm7/zuHKdrohgDITlCgTBKYEujbNkbfNlGostXpqXxXadrC2OlY94hYpJvonmGiLTPz5eh/dCE7l1bobvloHQqVIqt1RmA4mixyuRpMDO3LImUZYGnWbAEWv4hmgdGvZ+V1Xjr+3MNgDjuYpVrCLbXdxo/UEZ3Lb3+zFBSdYaP8/CK63xjMThpDxHkp17fUdusfq2GqL7gkRail3GegN8yW/5Pld4sTkFyrDQy9NcORX2SYGOMTPEDDXWXIdon2P/cxuDdeqIzGMhKV9n2vh+ornQsEpWjK8xNXSdpwpweFSkHvvsl0MliK9Zn3XDNWj8z+H/Sy6+nutO+SiEYx+3VMdoTY9UwP/rOszHRFFp03oc40Ow7zoSgj7dPpNpbK9JeA0fYpSputqGUyn1eKQAAmOmdwVBgw2vUEeuI3kqJ6VNBkYnB/gM4t4xTUmwmNzyUtMJPn1UPjDaXs/dkpCMDMYJj+fWPEIunj35HgLrSV85w4cQLih3j3u9/Nb37zm8XXt4xlLON/JL7yla/wla98hVtvvZVnnnkGgCPs5khsNxWspFxRm9a+85V+nPXCK1y2K6m5tpx931xc9AgMhkQOFCcoOVebMlq7SWYJYjDalqimkJHkodKpIAaTbbl3AI0cm8JeacxJFBk9HKB/zxgd8RdXs19msmPxH6RacTVsrmC4dWIR4SoJGXznFlLa4sxsAwWcen0Y2SXR9uvsFlYJFG6wUvGOYiZPBjj4w86Mbd5KITo5VhoZOZh5l9K+b+a2M05g/3eX1g6g/kYPhgJdTruyTP3in2nnfUcBJeudHP1dd9Z7/XuQUEfKl9/s/trSClS5in8JFLXYKTvTxYEfdxHMYxdz6vXh7P0tBbmsdhJI9I9c7w4AjR8oJzJ7mg1LBkIRQPcbQ+mKWqmLQQoFjpUGPGe6cNWb2fv0abFJOd66h6o4+O8nGT8aEFY2Gc4lF0oEJ0IER6BvzygnXk0hNJ52XoD+PaN4zykkOBrM+H3yT+djRGPRrFYfCUTnokRmMxfiZLcOVAqCPUGCw2GUmsxF3uKzHFg9Blp/2s2xP/ZSeXHRIhWvYCzIUEUbY5NjzMWLtUVFRezcuZOSkvxKEctYxjL++0On0zE6OkooFMLpdDIzM8MsQV6O/QoNGjacZgM33hZk6lSA9rgqSe21pYx1zCRJTKkIjoSZj6uS6Nw6iAqloNMxH44uqXgZnRN1r1wIjYeYm54XJO0c2Pn0MbxnFQiCgw50Zt2iaxttnWZrq6gl6Et11F1VltMiYs3dfgwFOoLDIcaOZCY2Hfp5J6YyQ85rS2D9YzWodaqsqo2h8QUSl63WkPWchFiyNVuSmJIHugIdq27y0P36UMbfPoGtSzzvUq8voSr0dtjT2moN1F7t5dSWQU7mqHkRYmnKmaGl3W/z/VXMDAQ58u/ZSdoJ5LLHSZ52PP95E/0j32bA+hs9WP1G2p7vWbAvzJJ3HXymi4p3u7MTlIB191ahkdX07xvLSgYrbrHjrDPz1vc72ZMjdzV5dEx1h9jzg3Z8ZxcwfjzHy1UIQhOzjLZltzQCmGqfhGgxGlmVmYwlxYQSU+ckJesdaE1akjeSkqvZ642Mtk7Tu3WU0jNcYtE5A1bfUc6xX50gNA5j7VMMZ1Dn7Y61EasKiJrXPESjUa699lqeffbZnPeyjGUs438O7rvvPu677z7+9V//lf/v//v/AGhlB62RHVTRgFeVrprc/kIfhautgrAhwarrvBz4RdciAkdofJbZmXl6d4tx2VptYPzY4txAtqmJRWJMJjb+SywmgygUaGQ1sQiMdeXefTR4eJxCtS2nqkuwL0z33wY5tU3Mt8ZSielTi8fK1JrSihs9jHVMZ59nJKi6vATfBYVZ6wojhybpLRuh84X8m+Gt1Qbqr/UycWKaQ1nWpY6l1M4slXomjmde41yq6uPRX+bPBRLwX+rG4jUkVdEzYal2cEttV9Bsxf+OItr+0PO22LM13lOBSlKx68u587gDP8qtzphA68/z34e12kDlJSUc+kVXdhu1OEYOTC7pPpO/b441e0ulzMTxYN66XOPtwjJ3Kblt+4v9hEZTEqpUvoFCibFEwv8ON+5GG/u+05n1OA13+Oh4sY/J7nDSGu10SGbx3/AkdL02xPCB3JbfvduHMbgkJgdyx3g+HEWpzk8qi4Yjp9Mp0q5NqReKUlO9ASRz5g0Cjnoj9hoTbb/to/35U1RdXsrY4XhumCJM0enZw1RgkukB8U5TUlLCtm3bKC3Nr/q+jPxYtnt7m+B0Opmbm6Orqyspy5hQVno59HMCoYUJae+3upNkI1ORjO+szJLKe75+goM/jJOZrilhzZ2Zpfh2faWDHV8UL6brH6lk05M1GS3btn/uaFIxacOHa2j5SO3iRgHY/tmjjBycQe9UsOljday+3bfwfXxgDQ5Dxx9E0anhrjoa7slwrBT4LyxGY1Bjq8tu63bwmWNMngxkJSgBjByYEYQYvSAhlV+aXWZ6qHWCmQwFrtNR0GSm6vIymu6rzN0wbquW65wAFVcU0fJkbhnGaEioJBWsyeNzgVAYcqxaWpEqH2KRWF6FhaVCpRWLr7NLsK5bCorOsC2pnVpWYXTl3qHW/EDlYpuTDIs5G5+oxXNBFunzhIerEyovLWHdwxXZTxifETteGWE+GFkgKGXAxkf8VL1byIge+92wIAllICgBtP15mJHj01kJSkQiFK40Z98RFz92w23F1F9ZiHOlEQLQ8efxhe/j0Dthw4OlrLpJXNuur5+k86WUYmJ8XKu9ysnGh8rQF0HgVIRtX+ykd+tphZ1IhMbbi9h4jw/0MLg/wLavnGTwwGKCUuPdZfgvcGGt0kMAdny1m8E9iwtFnvUWJIuaFVcUEotEeOuHpxjctxDnqcoOXgr9lG6O0NHRQVlZGVdeeSXz8/PLBKVlLOP/UfzoRz8iFovx3ve+N/lZOwd5OfYrjsT2JT8b2DXOofiOqMqrvOhdUkY7qoFd40mig6vJTPUVZay525+x3ZZPtDLZEUS2K9n0WH3GdqdeHWLLJ1oJjkaxVsts+ng9FVcutoHoeL4vuYDUeE8Fmz5Wn9F+q+P5PghC4VorK28sZ9Xt5YsbJSCD3iVRvD6HpW0QRo5McuRXuV/aEwSlmmtK2fB49nxvYPs4c9PztL+Uv7iz/sM11FzlyWsz5n1HwZJs1dY/VsOauxb/BqkwFOjQGJa2P6Nwg3VJ7fJhdkpYkKl1b8++kFgks7zxPwJ7nT6v3RqAs96CWqciOJEjp5ZFXu65MLdMesXlRax7JL+0ePP9ldRc5cHsz78xYWYwRP/e7MUQ/6VuNsb77am/DjN5IrjYGi3+fjNycIbxrgB7v5+doORcZURjVFP9riyWLvFjN97pZ8MDtaBQcOKPAwskxJTzrrnDz6Yn60CGgV0TgnwWWHxdLR+pZd3DVRCLsesrbRkLrLIdNn28nsZ7Rb6684vHsu6mbLzTz+qbvIAo8mYj3XnPKsBaLiybZrqC7P/2ArksGAty0PUGb/I8x9qPMTc3h8fjYWRkhN7e3mWC0jKW8f8gdDod09PTjI2NodeLus5c3AbuL7HfEYotzBMHftBJ4JT4t73KTPmFmWso+79zIpmjrb7JS1OGfAoEOTiRKzVsFrmSzrq43a6vtCVJG2sfrGLjExnylpAgsIy8NSXUVJ6sZ9Wtvoztul4Sm/fW31dDU548o+ICN5JVk9XqDmD/jzoYbZvKThYCprpCSQWdDR+uzWmt1rd7hKme7PWzBExeHXXXeGnYnKOmEcfaB6sof2fumlfpOU4R21xlmdkQGoMaZ7057zl1VqHA9XYgFo0t2YY4H9Q6NbFIlNmp/IoIS4GrybKkdlqzBoM7dzxW3eZbms3bI9WUnZfb7g8d1F3jXVKO1vHKIOGJuQWCUgasf7Q6abfW/vvcFmpHfnmSoQPjOdWqSjY6MBbJOfvbils8rLqlHFeDGULQ+eLg4kY6ka+uuUO8Q+15uj1ju/JLCtn0ZB0mj0RoPMrWT7UuVrWKxVh1m5dNj9WjsyqFetKnjzC0bzL5fQKrPuCj9moPjrht7o7PH2Vo3+L4uRosGItkKt4tcrTDPz+Z1i5QM8gr/Jpj7Of48eOUlJRw/fXXE41GlwlKy1jG/6P4l3/5F2KxGB/+8IeTn7Wxj5cjv6At8lbys/FjM0nr8ap3FWPy6HGvsi463vixGXZ9uQ3CYPbpqL/Gw6rbvBnbbfvsUUFgkmDTo3Wsev/idkP7J9j2mcOEh8JILomWj9bjv9S9qF3vm6NJdaP693nY+JG6jPZbp14bhrAg96x+fwUrb/bkjI/Za6B4Y445Lgw9O4c5+tvcNa8EQclzvivnXDh+bIbgcJiu1/LXvJrurWTF9b4kkSMb3GutrH1oabZvq27z5WxjLtEjWfOrJgI4VuXPz5aC2ak5iMbyqlstFbFIbMEW+p+EuVy3JJs310orWqOaaG6hUDZ8qCavhXLxGfYl2dCtvNnDiut8WKvzr/mOd07nrHkVb7Kz/pFq0CkZ3DPBZGdYrFWeRlACmO4JM9Q6weFfdGY9ntkjoS+Q8J6b+32g6YPVrL5drKf3vDmakYRY895iWp6oRjLDZGeY3U91ZFS/Wv9wJc33ifeUAz/sZvfTGTY2StDyRDWNd/kA2PutzqxEq+Z7a1j1vjIAjv2mL6vSkv8dbly1ZohFCU9EOfiThXbhSJijhVt5OfILjp9oIxgMUl5ezuDgIKdOnVomKL2NWFZSepvh8XiIRCIMDw9TXFzM3NwcMaK8yW9hVsEZXIZea0q23//d4yhNosDTcLcPnVmTZuWWQNffBnFUir/TF6mpuaKUvd/sTH6vUCqIRWOMnwxgLdMnSQ2Fa80M7JpMqiklMB+cFySTXNBqiUVijHacRhg4TVmpZ9cItngBGz0Z7b92f+04Rr+e6Y4AshMcq5yL1HeCwyR33q97pBqVpGLbpzIr3BjdehQqBQZX9hf3479bUL1ZfUd5Ut77dAzumaTsjFmOPJt/V7dKUmKvMHGC7MmIQqFAoVRQ0GTOqpIU6A0tWf2o4Z5aYpEYWw9kV2nyX+bG3Winf+9okjyWCUvd9bYUnHp1OKeCUgKbPl5PdD6W9bcE8LyjgLKNLux+U147vKXETSWpUGXaFZ6yw8tWp0epVmDxGoGU+zjNvi04DIHhED3bst9r7XXF9O4eZ7I9wM6vZOhncTUlvRMUagUGl5ROTEpeuIqqyxw4qo289ZNORg/PMHp4Ju37hMKQ51wL3X+dYMd3utDrWSAvpR43/jy2/WWImncWMtwayHxeIDimIjofIzw5n66elIpIhNG2KSxlOrSyRCDxsCeuSw/Ocj3DhwKMHJuiYIVl4XtIkpNKz7ZiLpFp/Xkfx/48ROX5TsaPLCYmrbixCKNbx/YvddH1yijBkXAaMQlgR+hFQtIk863zKBQKYrEYH/jAB/jOd76T+R6WsYxl/D+HX/7ylwDce++9fP3rXwfgFMc5FTuOgyIaFWck2x743ok0haRNT9Yz0jaZZlkGwo6teF2IY/8hcon6m72MHJtYZNsGUeaDEfr3iRfGbOpLKq2KWCTGSOvpf5+O0NgsGpM6p6rSwK5xys5wcfz5uBxwJiWnIOz9TkdS+cZzYUHShi4ViV1ZBq/MmpvLheLLHzPnEXqnJObWHBZniZ099jo99jorx3+TWZq36y8DuFZa89qMWT1CIjmfjZxKq0Sbh4C01B31K2/zYSkzQISctmUbP1KHUqnIubO/b+sofTl2j/+9WMo9VF1dgqveQudfB+j9W3aViJqrvCiUirw7/7PZ/KWicLUVhUqRd1HQ5jOi0avz2uS1/qaHmsuLM6qFASDDimu8HHqmK7sqUzzn0xfoUKoVQtkokxKUQsHGx2sJT82y9+l2Wk+301AoIBaj9Gwnp3YOM/zWFMGJE8x0BRfeiRILUSn3NTMQErLyqd+fhvHuGXQOLbJOQTCQZQtYLMZ8KMLsTGYrF1eTmaE9kwRHYW5mnonOzIvVjfdUcOQX7QRHYaJrhsGDGVQtZNj4YB3TA0EO/qCTQ892Mjee/hsEY0G28EcMRgPTg0IdTJZlent7l23dlrGM/yWwWq3MzMwQCoVwu91MTEwQZZ43+AOKmIKNXIBBYU223/N0KxqLYBfU3+TBVKxn+1ePLCIltL/YS8EK8Xc6K9RcU77ILg5gvGMalVaZtHByrDYJwtFpCOexJAPQ6ZTMz0YY786tdtj9xhCumpTFHB2Lrv/AjzrRl+oEOUsHxY32xTv7Qws7q9fc7Udn0Wat0egKdCg1SvQF2Vc5Tr46zMl4LaPufWUc/u3JjGSPqa4Q031Bjv0hjw2bDrRGDbby3DWvaCSGUq3EVW/JSlYJjS9d8bvp3nqikXQrwNPh3mjHf5Gb/n2jdDyXveaVy+L078XQvomMZJLT0fJRcf3bc9iVuRosVF9WiqvOsthe9TQsRW1Ja9SgknIvvOncOjR6NVaPMdlPMiIknquhQ9nv1X+5m9EjE4y3Bdn91UwWIvFam07U4ww5NhZ6L3JRvM7J/mdOMNUdYqo7c78sPdvBqddH2PmlNnQFUmYiU/xZbH9hgPr3li6QhLLc53xontBYjo2WsRijR8YpXGVFLafUzOP5ICyoIg2+NYHOogWii3JCV5MFR7WZI8+epO0P/VRd5s44TlW/pwRHjZmtnzrM0L4JIrMRRlvTx6MDse2MaQeIHo8ma1733Xdf0v58GctYxv/7+MxnPsNnPvMZvvjFL/Loo48C0MVhuiKHceNhpXJDsm3b73oZap1IKiRt+FANo21TtP0uvTYz2RlivGOGE38V833VFUVM9QQX2baBUJ4bahXja0L9BUgbGyU9ROcieRXqQhOz6EO6nPZbE8cDzPQHaX85notkUnIC9jx1lHBckbO4JUPeBXT9WdTBJKdE451+encNJ63bToexUEYl5bZCS5CtjKUSBattdGSpn7X/uZfitc6c6lEgiFZagxqzV2KyK7vCjEZWo8jg1JGKfd/Ov7YJUHl5EYWNdtrlXvp3ZFe7XPtINeoc67MQJ7Qtwa51qVjKPZSc6cB7biFdfx1IWhRmQs17vGh0qrxqnG2/6aHtN7nV463VBpQaZW43I8BRYxY2dAlkUZts+4+TVF/pyahklrz+95Zw9Fc9HHk2t5qWoUCHSlIi2zSZlaAUStY+VMH8dIR93+2k7XeZ+2xBk4WJ4xNMdofZ+/1Ogv1Z+mP8eRw7McP4iezXDzDWMYO5TA9aDZD93WxuZj6prns6kmqwYVEzH81yzpU3ldH2Qj/h4TmGDk8w2p653bqHKgkMhjj0s1McfLaL6Ex6XhiOhtnKn5BNOqZ6xXhms9no7OzEbH57yH3LSIciFsujFb+MfwqBQACn00kwmF7gXckmirS+tM+a7vGiNarZ9lnxwle41sTArsUTe8PdXmEp9UIvg3sXXl5O31nduNmH7JA48XI/fdsnFtnJJbDukSo0ejVbvng4I8EogU0fqyM8PsvupzLsto13ow0frkUlKXMWIzY8UYtKo2TvN1oJZnlPXvtQFSqdiu05ihSpKDrDRt+bmSfVkrPExBUcCqd50maCq8GE7NDR/UoWf88sJKx/FLITSs8uyTkR1t/kYezEVNb7S1zX+ntr6HylL6d9HAhyztjh3Dex6eP1zE7NCXZ9tlN69ASGA3nj0fjBCman5nKSj2Qn1FztZ9+PO7Iez1anx1RmpDvTjqi/B6mJQabfM4WkVHdDKYd/dirlqwyJiB5aHqwmOh9j++cz9y+dE0zFeoYP5VH2UirxXmClaI2V1t8NZF2cW3e/F5VWwVs/6SSQqB2elvCseX8Rsl3LgV/3MtOVOQmw1+qpvsTF2IkAR3+b3dO28Y4SJLOabd/ozPl7b3hYLHhu+0Jn+henEaM2PFou2n2uI414BYAe7F49o4cD1F3vxlKqZ/+POwj0p49vA9UHGBwcpL9fJFYej4d3vetdfPOb38x+gctYxjL+V+Bf/uVf+Ld/+7e0zyRkzlJcmvaZ2S+z8n3lDBwao/13fcJeqn06I3li08fric7F2Pbp3LauSyHmynYljffWMjMYyml7VX+zF6vXwP4fxwkRGWCtlqm/rjynxZrBK7PmlnLmpuezklzsdXpq3+PjxF/6l0Sqca42Mdw2lZVosvGJOpSa7Ja7qai5tnQRSSwNeQgtfy98FxcycHAyK+lJduuoeJebg8925jxv/c1eVFplfhKPDLJFl9Mqbd3D1WiM6rzxslbLjB/LHYzCtVY8ZxfktUkrPsuByS3nlA+vuLKI9j/3va3xz/V7ei4sYLJ7Ku89Nn6wAtkhcew/TmYkBYJQw1pMKsyMDY/XMjs1l1UWXXbraLzTz1xgnp1fyBJXGTY9Ws/cTPbnDKDpvkp0Vm1Ocphsh8YP1hMcCy+2nUtB6XkuPGe6GO+cofXH2eXOi1rslF/ozjpOJIhOIBQGAiPhRWNTb6wL6mc4duwY8/PzaDQaVq1axe9///tl1aRlLON/OUKhED6fj4GBdFJLPespVqTvgF/1AR+GAl2SjJKNYFR/kwdr+WmWUhlQe30Z9ioTna8OLFY6ScGau/0YnDr2PN2aJDdlQsuT9QRHwjltXZsfqEJr0rD1C61Z1V/WPiTa7PlWR0b7OoA1d/mRLBp2fC6/RT0I0kO2WNjrjdRe7WFmIJSmepcJlgodplKjUCvIhAwErH8KOii/oDCnjVjVlcVM9Yfo35Y7B137YBVdrw3mJQ5ZKnRMtOe+iU0fryc8MZeZcJO49AIdoclQ3nisuMVLZDaa27pFB/Xv9dDx4mDWPqFz6yioN9H9l+y1mb8beX7PqquKaftt5k0Fqdj0sXphr5tt46MO7H5j+ia7LHBvtFF+npvDv+zMasnWfH8lkkXDvh+eSKqynY76G8qw+o0c+vmJrL+3vlRHwy3ljB6fymmft+o2H6ZimT1P5R4jNjwu6tn5SP4bPlyLSpulnQ6sZTLjbUH8l7spXGXn4E87mOpKv4ehFe0MjQ7Q2yt+n9LSUq644gqeeuqpnOdexjKW8f8+fvjDH3L77bcTTam3GzDTorw4rZ3klGj8gI+h1gna/9CP2adjsi+UkfDT8pFaonNRtn8+dx1h40dqic3H2J7IXzItLUuw6bF6pnoDHPhBZ9Zj+S91U7jGzqGfdzB5IvM4LhdJNN5ewXj7dFbrLskp0by5QszrWWx3jaUSK2/y0/3aQE4b0gQslXpCg4GsJKO1D1ejNajZ8rnWjPFMhf9SNx3P51AWzELC+kfhXm8jMBDITnqSoO4qDx1/7M5Joqq6shitQZ3V2i71eJJZIpzFyhRgzR3lGNxy3vkzH1kLBGHIf1ERe757PGfcHKvMWL0G2nOQ9D3nuxjYNZSXTPZ3IYs9IgjlrOB4eIHolwX17/NgrTDQ9lwvQ/sz572OVealWewplDQ/UMH89Dz7v5+5biSZofm+GsLT8+z+avb3oI2PVzM3My8UkbJg1S0eDEU6tn0mx1giwcaHqwkNz7Lvu51ZmznqjdRcVcJ4xwytP8+ex1mr9dS/t4yJzhkO/Wxxu1Tb6/WPVBIcCXPgh+mxGI0OMbtimKPHjjI3N4darWb16tW88MILuFyZnbCW8fZgWUnpPxl6vZ5AQKzqFxQUMDQkXjYPsoWDs1soxs8K7UYA9nyjK0kkqru+BGu5AaNbpv0P6aSMfd/qoqDRKAhKeth4fxUjR6do+11/GlHp6K86qbnGJwhKQMPmcvY9c2IRyWC6L4ipeEF9ybHSwMjB014s9RCdjzHZn2UAjTOnJ0/N5NwxA3Dgu8fwvqNEEJT0oNcrCQynkxhSyTErb/Uy1jFNT5bd4E33VaKzaSECfdsWE3l6/jaCSlYtidxSdVkZKMhOUorHaN1D1QQnZjmYI9EqPc9JcbNDWDdkweo7xAtu2ws9WckfrT/JkwjEr2spxa2m+yqR7RJ7vn4oK0FsqVhzkxeFKv8CZC4f3ASCw7Avx0ItQPXlHlSSkqE9g1mvvfLKYiwePbu/msHeIp4MyE5ouKOWY384ubifp6Dhbi96pw7P+Q66/yL6XiwaW0xUCkD3G4P07B6HGIuUmAAaPlCBQqlg+FD6PcYiot8rNGoa7ypl77dP0fXKOF2vjMe/F+QdRVyJSF+qInAqwqHfnqKkyUagL/7cqBarovXvn8BzhpOZ/hCQQTUtEmH00BSxi53MTmfYnR+JYK3WM348xNiJGVx16UzhxLVVv6eQmcEwvVunGDk2TTQSS1NiUigUwirx7nJmhsIc/Ekvh383wMSpaYjA6bSvjff6IQZbDx6n9ae9kBLvQCjAAcMrTM5MwltgNBoxGo089dRT3HrrrYvvYRnLWMb/Svzrv/4r//qv/8qPf/xjbrnlFgDCBHk59iuUKGnhXcgKmcmOYNqOmporPRAj4y6bvU+3ojQJlZDVt5cjO6WMu6UH9o0RmRVjc+nZTrQmjbBpOw3zoQhDrSI/s9cJYubpCI/PEimWsxKUAMLDQeZDEXq3Z89xZrqCjByZpPsVUeDOpEo0ejiwcN8yNN5WkXP+rr6ijMocpK393z6K2Z9/h0n5JW6ctRZUN6lo/UkWkkVQkKIq3lUilBdyvMs331/J0OHJjKpRIO69eL0DV70lK5Ek2B/Kmd8lkIsUkopNj8UXdf7J3WVmv8yK6/1M9QR4KwcxamDXeE4FqARyqSyBIMoUrrJhrzBlJ+YgCFbdfxvMec5Vt5ej1ikF4SbH71e60QkbnHl3uu39ejul57myEpRKz3biOaeAgpW2rCSy0vNcGFwSR//9VNbfRnYLclmwP8TI0Um6X85BpgsKqfOxrtxqHIGhsNiZn4Gs5VhpZOTgtFBFCswzmcHCR7ZD5VXlHPjeCU69OoSzxsSJ5xf3xaqrS3DWmNn6ycP0bR1lbmYuY7wSylumojE6nu9j6yfTn+mR8i72duwEQHFYQUFBAbIsc+JEfoWtZSxjGf87oNPpkhtHVqxYQWurGMNb2UFrbAcl+KlTNAFw4Pudyb/zvaOQ4g0OBnxjtP8+PVdq/Ul3Uq0EhE37UOvEonadL5xEa/AlCUorbvHS/vuuRSSDyVMzaHSq5OepheqFGxGK44EsBJIERtsnsflMOYkfB3/YRtl5xUkyiq5At4iYkkomqn5PCdN9wayLZitu8WLxGtBIqoxtRlun6bTnJmolUH+t2DCUlaQUv8w1d/uZD0aSdnyZ4Gqw4Dm7ICfRZ909gojd9+ZAVvLH6eoO2bAUlaSVt/iw+Ay89aP2RaSPvxerb/Gi1qnyLqjlilESofy1vRXXlCFZNQy2ThHKQm4vPceJq97C3m/kqLPpYP39NRx/vmeRKk8qaq8rw1FjZnZ6PmltmA1tf+hhqjO7OsaGB+KknE+c9m6QWLxWKFhzZzn7f3yC/m1j9CdqtynfgyBqhfpDHPpxO2XnuAmcDKZ9n4reHcMYCnWEh4MsriyJYwdOBonMRghPZNi4F4thrRJkoaHWCXRWzeI2iLFqdmqO3q2j9O0cyWpps/6xGmYGQxx6posDP+skOp35N2x5pB6ArZ9speO5/jRlsFAsxCHLFsYmRuEgGAwGLBYLX//617nhhhsyHm8Zy1jG/z68//3v5/3vfz+vvvoqF198MXNzc8wwycvRX6JGQwvvQlJKhIfDbPvswnpR/bVeUCoyKhdu/eIRjE6h3lj1nhIsXj27vt62iGxxastQUk3GtcaC7NLSnWEOCU/OMXJMECiyEU/CE3NEwpGsBCWA4GiY8MQcffuyE4vCw2F6dg7THydzS67FhJnpU+G0+tWqD/jS8tLTUX+tl+h8lO2fzbzetuvrx3BUm/OSi9xrrbib7GhNmuxk5rCwJqu5ysNb3z2WkzCz6gM+xjtmOPnXzGuXkhn87yjKSdgiDIefzb/euNT8rOXReiLhCDu+sDTifTZIZlh1ayUTndMczJFbjR+bYc+xzNb2qRg5MJmbxCNB6SYXrtVWducQamjcXEHPzhEGd49nbVP1nhIMdol9381sZ5aA70I3xMirPtX6827c623ZCUorTNS8u4TJNdY0i7JUuBqsWL162n7fn048SgiZKJRIZgiHITwJ/XvH6HljICU3W5zvBIfCTPXlJlhN9ASQrJqMZC2zTxJ2dGEIj89lrHkJEl0Jh5/tYaR1monGGdqfP7XIvs5znoOiZjvbP9/G+LEArb86yfjR6UXXXnaOg7IznfTvHqXjTwPsOK2+Oe3pZ1vn38Q/DgkOh8PhSL7TLuM/H8skpf9CDA6KCfuMM85gy5YtAPTSQe9sBxJ6ztZemWx74uUe6t7rSxKU1j1UwXj3DG2/ES8vCQWlghojCqWC6Lx4SG21esaOiIc7MAx7v9EJQMlZNvROHQ03l7PvW+lF5cMpLMTGzX5kp8QJYx9928YXGgVIS2A2PVknFlxSiTEKBYd/tjDZrnuoGo1JzZYvtKYRcALD0WS7DffFlZdOa5MKs8eAqUSflaS05/vHabjZn5GglECCoLTy/WJ3zOkF+ATaX+whOptdbjIBjVGNMo/XakIeWO/RE+jOfHPHnz+JzqrLr0a0uQLJps2pzOBqMOE9x52zcNOzY4jCNXaCb4Ma1MBbY8i23D63K272EI3C4RyM67obPVi9BvZ9+3BO4tT2p45Q+Y7inG3sVSbUugyEnJSCRuHaAhRqBWaPMSdJad+3uqi6uihJUEogQVSqe18JFo+ebZ9po+dv41mPo1Ap6dk5hmRaGG4T5KQE/O+0I5nU1F1bwOF/H0wn+cQJSM33lKHRq3jrFycJdM/R1h1/AUghKK25rQjZpmXb0x0M7JoSSmynEZi855oparLRt2eMrlfG2P6VDL9NJLKgdvSFTjpfHqPz5bH4taerHjkqjdh8Bnq3TnH8+ZG07x11ekaPBCEACpUCjawiFokycWyhUKZ3w4pry+l6fYDBfQHGO2eYOe1Foit0lGPswmg0Mj0t/latVvPaa6/R1NSUNfbLWMYy/nfj5ptv5uabb+b48ePU19czNzdHlChv8jzEoJ51FCu8yfY9O4bRGMVYXdRip7TFycEfHic4GiU4CoyKFzGNXoVStTCvpJKM2p9bWDwr3eRCqVEsIikFR6NpxOLa9/oyqjS1P9eXPJ7/0iLcTTahjpmyOBUcXSApy3ZovLeeyVOBRSSbhFqO2S+z8sZygiPhrCSkldcJJc7Ss52cej3zpDvUOsFkV/Y5VMRsHGRoebiOoSMTGa3fTvyxH6VWQfvvctuPWLxGVFolRQ327EpPMkhWLYWrrFlJSsGeIAP7xmh/Off55BKZhlt9DB4YT/tNT0fd9WVEo7GcSlDjJ2aYGfznpYjmxoNM9gTo2ZJdiQAZmm6vpOPFnpxqRBsfr2V6IJRVfQtE3+p+bZDJU9l/Z2u1jMaoxt1sz0lS0jultGcmG9pf6GU+lNnWLNGXRo9PcfTfT3Hq1ewqA6deH8ZRbebAz7ITacpanDnl0mU7Qj0prkCW8TeOqycFR8Ls/UZ71hx8w+O1qNRKtnyilSO/yFyYTBCrxhuFKlI2Jaza6yqQnVKS0LTvm+kE+FS1LYVSkfx3KkGp5ppSTMUyu77SRtuvezC4dHT8Jb2f/y32PJJZw3TnQs524YUX8uKLL2a8rmUsYxnLADh06BAgcrCf/OQnAPTQQU+sAxkjZyjemWzb+foAZo8+STxqureSqZ5AckEkQa6wVOhQqBZqL6kqOaFxeOt7nYBQE7J4DRlt4k48P5C0L0uqL73cn074CZE29rZ8pI7IXHTRprPUY625y4/epVukqhQaJ6lO0/xAFZJFw56vZVdocdRZsFebspKUDv17F6uu8+Xc+Z8gKFVdVYyjxsy2Ly+21AM48tvuvLUsANmmJWrKLbzvbrIhWTSYvLqshKAjv+nGVKzPqU4DUH+jB1OxnF5jPA2WCh3lF5Ww74ftWUlip7YOEKOAuYl/Xg6qb/cIhoLcVqZVVxWjVCo4+uvs6ujllxZSuMrGvh92ZiUfAez+Thvl5xbmbFO4WsQ8l0JS4Uobap0Ki8eQk6R05BcnKb+0MCtByX+5m4IVVrZ9+Uhu9SqFgo5X+jEVp2xYPU1Zo7jFjqFQR/17ymj92cn07+P1ujV3lmMo1HHgmRNMdQUXFkdT6nkrbvFgKTOw56lWxtsC4pk9jcDk3mDDf5Gb3u0jdL44kFkVJBZLUzvq3zaaVcmreL2DyGyU3q2ji1SuEiQnAKVakbSfTlV/0lmVrLy1gpNvDjOwa4yBA6PMnbZRcDDWy1tswWQyMTUhcjZJknjjjTdoaGjIeF3LWMYylnHeeecxOzvL0NAQ1dXVjI+PM88cf+P3EFWwkvW4lQuqlp1/HUQfJyJZqw1UvKOIg8+eJDwsSAPTPaIerzOrUWuUSYKB2adjslOMa6deW1gn8Z5XgNagpvv1wXQyQpg0gkz9DX5i89FFc3zPGyNJu67iFju+C9x0vnJafpZ6LAlaHq1jsnuGQ6cRM5K2bi6J5rsrCPSHBGEkAyovL8JUrKf0HGdW0vapLcO5rYPDggSDBBseqGGodSKjWlL/rnG0Nk1Wi7kEjMV6NHo1jhWZbeuS7dyiXTaSUngSTr4xxMmtuc8nmZWsubOK4SOZrzsB/6VulEoFx3PUxYYOjBHMZaW6RITDMHxkgoF9OdxkEBtHu14bYOJ49gXOtQ9XE+gPZVXfEieEtud6CE9mZxVJLgnZKVG4xpqTpGQu0aMx5KdaHP5VF0p1hrXLONY/Us1YxzRtv8ttxTdyaIqxVdPC6jkLyi8oQKVV0fb7+O97GskHCZrvrSE8OcfupzvSrQsTJB8JNj5UTWg4zL7vdWVVYmq+14/GoGbbZ4/R/cow3a8sfq4c9UZqrixhrGOaw8/2sPebmet1dVeVYKsw4lpjZmj/JId+mk5QMnslJrvniEbEeqO1Ws/40ekFghLgucCJo8LI3m93cvK1ESxlMj1vptdSd0b/Qsw0x8zJmaSd7tVXX82vfvWrrDFdxn8O8r+ZLuNtx5tvvkksFuPxxx9PfhYmwEuzP6O9bAeeK4yEhqH95UHWPVRBwTojalmFzW9k7QN+9E7xN42bfbhWWNn6qWP07R5l3UMV1F1dRstHqqm8ws26hyuSxy9YaSE4GWbft7uQndDyZC3ND1cCUH5JIesfrQbg6B/7iUQiuFbZAFh5i4f1j1bjuUhImnkucrH+0WpmZ+aYGQ6z+nYfDfeUJ8+z/rEa/Je5AZifnycajSLrxXcrb/PReO/CNa17pJrQeIjQ2CxFq22sf6wGvUc0XnGzh6b7xPXt+1Enc6F5qq8rpeQsB64GE+sfq8FSJdrWXeVJerE3bq6g5WN11N1QBgiLsPWP1eBqMAGgL5BQqISyC4gd9/U3iWTN6NfjPduNUqtE71TS8tE61j1cnbzepvsqWPl+n7imbx4hFo1RdIaIU8UVRax/rCbZtnFzBbPT8+z9RiuB4QDrH6vBc4GIoe9dhcm2IwdmcNZbWHO3P3lN6x+rwfeuQhHvC1ysf6wGpVaBQgmr7yincfNCDNc/VkPFFUUAFG9yojVr8F4iOsjK9/toui893uZSI2995wSFKy2L4t18fyWpUMXJPol42+ri8b6hjOYHKun4Qz+HftxN8wOV1N0oYmipSo+3xWfE5jemxLCSFTeLtnqPaCsXaFGoFJScWcy6Rxbi3XhvBStvE/GWy2H9B2sIjoikwX+ZOy3eDXf7WX1HOTs+d5R9PzqyEG+FQsT70YXjmssMBIZCnPijmJjWP1pN+SUi3qXnOdj4kSrqbxK2FTqzhsZ7fAsxfLiCineLtpJdeAGbq0QCsuKmUho3+5KT5vpH/Wx8vAL0EB4PYys3YPDoiEWi1L2viKZ7vJRd4EChUWPxyEwNBmj9eR/2aol195fjqNOjUKmovspJ410lnHxziNnpeWre6abuWvGMmasMrL2njIJVUtwyLUYsFkOK19Ea7iij/roCiERwrlCy9p4yZmfnic3HMLi1NN8bX5yPRFjz/iIa7izC3aRHcggy1syweAHxnm9l7Qc9xCIRChoMbPyQn4Y7S1GEVXT9bZjoXIyyc8zEIhE859tYd3851VcXUn15EU33elh9WwlbP3OcPd/sYt2D5fjf5URfJlFyppX6a3yoJAWFa6ysuKkIyayh+xWRjKsvGKezdAfH2AWAUqlk7dq1xGIx5ubmlglKy1jGMpaEyspKZmdnCQQC2O325Oet7ORvmudQXRREtkPXi4NoDRrW3OWnYLUVjUHNilsq8F9ahFwiU7jWyrqHq2n95Sm2fvIw9Td6WP+hGmrf66P8EjfN91dScaWYk52rTUTCEXp2isLAqju8tHysDnt8Lm28t4Kaa0oBGO+eIhqLYq/TU3yWg9V3+ZI5EAhrK2OpRGQ2ymRvkHUPV1N2Xjz/uLyItfdXxVsqicViqOW4cqBbx7qHqyncYAWEalH15aXMjs9x4uVe1tzlZ8Wt8XlAFoo4xWc5OPjDTkaPT1DULGJVfJaDVbeXJ+dkAKvHgGTVItuF/cP6x2uEMgwi/1hzh18cVlaiUCkwlYj7Lmqxs+7hamS7yNvqb/JiLBR/WH+zl40fqaXichFDV5NZtC2RaX+uj7G2KdwNtuQ1NN9fSeV7igGhQLNuczVHn+tk55eOUXNtaVrO2XhvBTXXiniPHB1n3eZqXOtEflL5nuL0eN9Tge8sQWCRCyXWPVyNq8m8EO8Hq5JtbVUm7NUi55HtStY9XE1Ri4ib7+JC0V9+0kXXi4OsucOfzCMT8S49W+RsCm364srK23ysun0hv173cDUFaws48L0T6F16kZ/G473iFi9r7hLx9p1diM6mxXOeiGHhBuuieDds9qNUK1FJStbeX7Uo3gavDLLYXe9aYUlazzbdV0nV1SI/stfpkzny3qePEBqdTY/3BxfibfbLRGejtP1BkHwqrixKyzkb7qmg5aN1yHaYPBXCf1ExhWutgCDnpcZboVJg8erj8V7osyDy65aP1bHiFtGnY7EYK687Ld4XuCjcYKX0PBfzwQh7f3AkGe/ViXjLC/EOjoaZ6JuJx1B8XX/zQrwJQowYCo34/RJjhOzWgQz1t3ho2FxBYDhMcDy8aIxY93A1K+8Q12tw64hEIpx4XhSZUseIpvsq2PhkLfY6PXu/0c5U/wzec91p8a69roxNT9ZTf0056x6uZvzEFFv+TyuOGqsYI2QRs4bNfmyVRrQmTXKM6Ns7AkFwnWtgZkMP2w1/JkyQyclJKisreeihh4jFYssEpWUsYxlLxo9//GNisRhPP/10crd9kGlejv2KttKdFF0mlIiO/b6P5vurcDVZ0Fm12KpNNN1bic4K6IQFU/F6F1s/0UrP66Jt/fV+Wj5SR9l5TprvX5gjitc6mRkKJglKG5+spekhMTcVn+kQbXXQ+UIPkXAEe5WY22uvLaX5/io854t6TeFaG833VxEcCzMzGKL2+jJW3eETpBAEmcr3DlETiM5HQBETG8+AmqtLWH3HwvzdeE8FoUlxHNltoPn+KkxVom3VVcWiDkR8Lp2cperKYgrX2rDU6Wi+vwpbrQEA/0VuVLKoz9S9r4yWJ+uouSZes3CLto7VIh8xl+lRahZKvatv91F7naiP6axK/BcVo1Qr0VkFiTY1hqtu9VH3PtF225ePEAlHKY7nNaXnpMd7xS1eovMx9nztCFNdIZrvr6L0HJHXFLfYk/Ge6gph8RlYdetCDJvvr8J7UQEgbOya769CJatQqpXUXl/G6tt9yfM03VNJ+TtFvIs2ONG7JPwXu5PxXnPnQrwbNldgr7Vw6JmuZLwtFfF4X7kQ7wTUehFTk/e0eF/upvGeCk6+OsyRX5xk9R3l1FydHm9XgwUAZ50FR71lIYYf8FF7fSLe4l4tZXoUKiUF9aa0GK68xUd9vJamc0PznVWE4+SVZJ+No/4mDytv8bH7a23seeoIzXdWUXaeiLd7o4i3zira2iqNTJ0KcOIFUfNqurcyLd4bnqih/hZxXsmgWRzvS0W89U4JpUaJvUIkndXvKVnIgYC1j1ax6WP1oIO5yTA2nwlrpQ5iMSreXcSau/24W+ygUOBaaWHi5DStP+1GXyLRfH8V9nojKBSUX1pI0+YKOl/pJTQ8S/mFhdTG80hdoY7m+ypxNZohFiMajRIjRmI5Y9UHykWfjcUwVUg0x3P6+VAEnV2zEMNYjJU3e2m4pxz3BvE+EY1FmRoIpsdbJ4hHLU/WsWaz6Fttf+hhPhhZNEb4Limg/vpymh+oZNUHfGz79BH2fqM9OUbo3DpcDRZW3FyB1qyhYJWFmqtLMBbKnHxVLN7p3jlLV+V+3mJL/DJjNDc3EwwGCYVCywSlZSxjGUuCy+VibGyMWCxGXV1d/NMYB9nOa8rfwTkTSC6J/h1jqDQKVt7sobBBkF5r31OE50IXkkvCWm2gcbOfEy/1s+2zR/Ff4qbpAT8rbyrH+w4Xq27z4o+vWZm9EpFQhO6tgzCroOo9RbR8rA5rtZhLV93qpeIy8e47dGiMSCSKrc6IY4WZupvKaLhjYT5ZebMHW5WR2cA8I8fHadxcQdEZVkDkHw3xuUeSBMdVFZ+/kcQanDtePyhusVN/dSnTfUE6Xx+g9voyaq4rTZ6ncXMFxS12jj/XR++eEVx1FpCE2lHNNaXUv2+B0OWsNaORVYKE9EQt6x6tRjKLuafqqhJWxNcTJQlUkgpzfI3NVmcUYgMuQQarvLwIS7H4ruIysX7ovVjMyZZKPY2bKzB7JXrfHKV/7yiOFCeLVR/w4b9U5DzGUonGzRW0Pd/JnqeO4724gDUpOeeqW71Uxms7g4cmabytAkeDqHl5znclYwiw4iYPnguLUGqVSDYtjZsrcK0RuUzJmY60tUd3gx3XalvWeDduruD4c330vDFCzbWlyRwoGe8zRB6pklVC9FCEheqrS1hx40K8G+7yU7rRydF/P4VKUokYJpS9rixmZXw9saDZirFYxnteYVq85SIpGeNVt/lQaRSoZCWrPuDDF88jzeW6ZLyRwH+JG3ezLankteq2xfGWbWp2f7WViZMzafFeeYuXqitFPVJySkTnorQ9JwjrZecujveGD9cgmRSEBoP4zi2goFnEu3iTncbN/mR8VToVlnJDSrz9uNeL+LvX22h5sja57h2dj1J3VWq8/ZSc6cDVYKWg2cbczDwHnu2AWJSqq4oW4q1Q0nCnj7KNdiZPzjB6YpLGu33JPlt1RTErb44fNxw3UIo/ctZqPY13+zCWxON9ZSGrbvUw2RskOBxm1fs9+N8l+rfZI9F4t4+694k4mcpkInNROuKbSlfd4qHiMvHbrLi1lJaPVGOrNXD42R6Gj01RstYm1lljUVbe5KHqymI2fKia+hvKabzbR3A0zLZPH8Holmi4S/w2klnBihs9uBus6OwSmKI03u1j+PAk4UmwNEsENvaw0/giE4wwOTVJeXk5TzzxBLFYbJmg9H8Jy0pK/xfx6U9/mk9/+tPs2bOHDRs2MD8/T0dHB11dXUQiEdYpNrFCLsXqMbH1U8dY91AFGoOalbdWoYovZmhNQo7W6NahllXMzswx1RPC6jWg0atpvs/P7u93INukpBWcyqxHoRCqJgA2vyBBAQS6AygVSgwuCc8FTixeI7FYDEeFie6XhrDH2+795jGCw9Dy0VoUSgWbPlbHlv9zOEmmApibiSLblGhtemrfW4TskoQdVhwag5pYNMauL7dRd6MHtayi4VYfW77QiqnUgFKtSF6T1qDBWqbEWW0mFomJRQqPgYm2AOYSfZKkpNQqUCgUmEvFYG7xmVDLKsxeI0P7piBBugxA0UYbklWLOs5yNRVJqGUVVr8JS7lJKL8YFx4RnU1CG99JJhfJqGUVZWe68JxVyHxgPhlDANkp4h0chuJzbfHjGul+ZSgt3iBe/BVKBRvuq2X7Z48kY9jJALZKcf0Hf9ZFoDdEy0fr0nZ9q2UVVq+410ggBg6YjsshG4vkZAwT8bb6DDTeW4FSo0Atq7CUSQS6AxhL9KhSClkAivglJmJo8ZkYOxzAXGpAJSlZ90g1p7YMIVm0qHUiTpZyY/xezQztm2I+GEm7V51Nm+yzJrcGtaxiqiPIni8dF8pbKYxj2SahM8coaDJTealIKG2VJnr+NrI4hi5dvFAhflu1rMJeZaL7L8PJtv4r3BSusHI61LIKW7mREwxg95tQKpVYykRMjYW6tHhr9GocVSbaowPMjs8jmyV0Rh2TTKfHOxZNxlM2gjV+DdYyLdMnApiK9ag0CkrX2XBUGJBMGlQacT8Wr4xaVmIuk/Ge40Qyi3gN7gswuK+bjR/yo9aLOJkL1ahlJf6L3Azu60Cj06BQKAgNx1AoFOhsGrQmNaveX4IhnmhYSwxs/9IJmu7xoNGr4uQmsVMSBXjPdDI1NIdSrSQ6L5STbOUG1LK4n8B4VBzbqiUWidC7fwLvWU7s5UbU71TiXGFCpVLS/Wo/RpcXrVGNVl74XdWyCtcqM4VrrEz1BVHrlBz6fS+TrQE2PlZBVBHlWNGbdHV1wZ/E7rHCwkKam5t5/vnnF/1+y1jGMpaxVMiyzMiI2KV1ySWX8Kc//YnZuVn+/OLzKBQKFDEl6wofRyOphd2ULKy6bJUG3E025sMR1JIKY7GWYH8IU6mYO4OjYU78sZ+ij9fjMquZm46gMarQGNVibgYMBSL3Co6JRES2S0nlv5m+MFaPCbPHRFGzXZCpU6/bLjE/G2H7Z45Q1GJHY1RTdmYRphIzeocWbXyeCI5GUaBAMonxvvEOPyjAUWlmYPs41nIDWrMmadNaf40OlMLO49gf+tAY1dgrTPT+bQSdRUJjVNN4bwWyXSIWSUngZKEoafMbGWmbAgWotSpkWUkwGBXzYXzuDI7GE694DlrYZEFjVCM5JYKjQUwlMiq1mF+sHgMoweYTeaS9wozGqMZcJBHsCWL2GlBpBIn85BtDSFYttvjfWrwmNEY1ss0ABLBXmtLmb9kuoYnPRWaPaFv1Tg/hkRPYvMa0fE92SEIJ9P+0UrjWSsW7irFXmBnaM4nNb0zGG4AYROfEvUlOETNbhYm+raPYKsVxi1rslKx3oDVqiMbjIFt0om2ViVOvDy/kD3ELMFNR+q59jVFN4RobVo+RSCQq7tUubPtMxfqkSlHnnwcoXu9AFT+eo1LEUF+sJzg6LeKtUSZtSzZ9vD6Zt1t84nrNxTIrr/cKK4uUn11n0ybtLSzl4riuVRbaft2P2SN286XFW69mw+O1zM7MojGqsfiNDL81hb3clBbvxE5O90Y30/2BZAwHdo1j84s+62oS8ScKyrhCpMYqVJxs5UZ6/zaCzWdEoVAk80OjWyYW36Uvx/tsWYsThULBTF9IXENQ9E9TkYxCoUC2K2m8tzbe/0zsfbqdFbd4hYKqSYbRIOZSPUq1gvqbvbT+uCs+doh7sVWIezMWa2m8wy8ITCjS4m1XK2mnD4tfxFtjVONqMmPxGFApVclnJnWM0Bg1KJVKzB4To4cD6EySyJllaL6jEsmiRWNUM9I2icaowlxiwOIzpvXZTY/VMzczj0avJjIXZcunWnGsFNcQLpzgdfXvmX9NbDBxuVyEZ8McOnSIysr0TQzLWMYylvH34IMf/CAf/OAH6e/vp7KykpmZGbpOdvGz3meIxCKsVjfTZPVjLzey5ROtNGyuQO+SWHlrFVqzhliEpGq40qhDsmoIT8wyeTKArcKEZNXQeE8Fe3/QjjFVxUUnNrho9WLOtleKtjqdktB4FIVSgalExrHahL1GLAbZKk10/2UIW6URyarhwDMnmeoKseFDNah0KloerWfrJ1rR2bXYK0x0MkBobA5TiQJDgYby81zYKk1pm5Rlh4RyUsnur7ZR/s5CJKuGVdf72fO1I1h9xuTcGRqPorfr0EhqXKusROejKNVKzGXCls5WbkrWBdSySmyWiteBTMUSklWD1Wdk5K0pYglh4xA4VpswuPXoZsWHOpdo66gyo3dIqLTKNOsqY7FMNJ7z6cwi3iWbnJSe4SI4GhbWDXGYiuXktZu8oq2twsip14axVogY6sw6QqEQ5rJ4Dem+anZ+/pi4Xr+RLgZxVJmRrBraXzjFeFuQ9R+qQaVNqSE5tdiUJk4wwNy0uI+peM3LXG5ALaXnFCqtklW36lDKSiSrBlOpkYn2ENZy46Id7on8yVRmSMZw7MgMNp8JyaKh6d5KeraPYCiU0VmFirihQCPalhsY2jdBeGwOnXNBYdzo1hOdE9epsYi4jLaF2PfNVtbc5U+PYYnIVSwVOlbcIBao7H4TvW+M4Ij374RikrnMkNzUHhqPxuNt4uSrw9jj8XZvdOFucBCLgTJFfUxn12KrMNH10iD2ciMqjQpLqcj/zB4DKik93k69hRPPDxAYDmMuNaA1iQTV4jMk82kg+XzpHRLmMnEN5jIj421BbOWCEO2/0E3haisGp465oCBgmUv1IoYVRko2OpObGSbaQ+z5xnFanqxHZ4vEj61GsmqouqSEoT0TSAatqHmNR+PxlonOR6m9riy5ccBeYWTH546y+o5yEcN4Pmgs1qHUKPGdW0D/vlE0OjWh+dlk3JNjxIRQTzc4RB8f2jdB1eUl2CpNRCMxSjY4UEkqRg5NYikzorNo0BoX+oDOrsXdbKN4g4PhYxNIVg1Hnz/JyJ4p1j9Wg0IDHd49dHR2wJ9Aq9VSWFjIWWedxS9/+UuWsYxlLOOfQcKi6KGHHuIrX/kK85F5Xn71RZRKJcqomtXFD6C3yMIxRYJNj9ahVCop3eBkdmYOrUGDsUhmuieMrcKI1qBmqidA14tDtHykDn2hjvDUPLFoDNkhQTzvsPpNKBQKwlNirDeU6NHG587JriCFq+1YvAZc9RYxH6fUGoylBubDEXZ98RiWSj2yU6L8/GIsZSY0ehX6ApHjhSeBKOhM4rgbH6lDqVZg8Rvp3zWOvdKI7JSS7981V5aiklTC2u2nnchOCVuFkd6to+jMWmSnxIr3ebGUGojMRtOE+WSnhL3axPDRaZQqJSqNEsmmITwZxlJuQB2fO5PWbPE4FDXbkZ0SxgJhOWepMCbnTmedGZVOhb3CRBeDmEsNom2xgcmuMDa/Ca1Jw4YP1XBq6zBGt4zWoAH6MRaLuCRqXu41trR8yVCsR7JJQB/GAgnZJVFzuYdD053Y/aZkDAFMpQYisxG2feowZq/EypsrsPqNDO2fwF5tQo7XaEDk4YncUJKUyE4Ja6WJ/l3j2Pwi3o4GM2XrnWk5TjKGfiO9b44maxuSWcTF6jOmker1BTrcehWWMj2z0/PITgmdVUV4OL7eGP/7wd3jVL6rGGX8xzJ79PF46wj2hbFWiHxvW9xFZ9OT9WhkNZ0MYCqJx7vUQNW7PeJ6U/J2Y5GM1hiPt1tGdkk4V5g5fmwGR4VZ9PdE2xI9OkeE5oeqmJ2aE3EpNzByaBJ7pTE93h4DSpUCd4uTwQOTyA4Jq8/I4O4JHJUmZIeEY4WJkUNTxOajqOL5qSSJdwl7hYn+HWPYK8QzptHFa6g+Q3rd0yHhOcuFQqlg+Jg4D3GBK6tP1FORoOWRahQqBbGIkf3f66TiMjeyQ0Lv0BAensNSbkBrVFN3vbBcUygUIt6xKOYyPbJDwlikY+VNXrF+HIUDPxKKVS1P1Ij1RsBYKn4bvUuHe+0Mdr8RlVpJeHgu3md1aK0aYACdWYtCqcDilRk7PIXeqkHv0oEEq27wYnTL6EIR+vePIZm1OGvM2P0GRg6ImpfepWPTR+sIT82hkdVEI1G2fuqwUMJySISKx3lD8xyzu2eJRqM4nU5MJhN79+6lomKBlLeM/ztQxGKnabAu4/8qfD6fWJxPgQIlm7gMvUa8uPne6cLq1bP3G50ojAo23FtF56v9wtopjlg0liQ1bfnSUWEnpmfBViylcrL+seq4z/piKzH/ZW46/iCk3tY/Ws1UXzDN0g2g6r3FyDaJt75zAn2xhLPOJCTdUrpW1XtKsFeb2B63jJOdLLLtqr6uFGuZYZGcdirqbihj8MAoIwdm0DuVBIazW7NVX1dKaGw2afWWBr2wZ4jOx7JaqOU7PsDaB6vQmjQ5PerXP1aDWlax73sdBHoz6zE3P1DJZF+Qtl9ml4gGYY2WyzptKdj08Xph1ZfD+3TTx+uZnZpjVxY/1qKNNsovKmL8xDStWXxPl4KKK4oYODDBdEd2eUZ9sY5VN/k48Gx3Vtu8DY/HZZpPtw1MyS5XfUBY/e39Zm5bOQzxBCnDqTwXOSld72BmKMRb3818342bfez9VvaY6J0QGBXXtfr9pbz176cWzhVfvEzI2XsvsFGwwsrO756AAMnFNoVCgeSA8AjUXuPG6Nax62udgGijUAi1MN8ZdjpfGkVfqqH+yhJ2fb+T2MzCMQw+HSuuKuLY8wOMHwvgOd9K15uj4npSkpzmDwqy0dan2mE6/lynWqTEx5Z1D5Sj1inZ+tXji+LXdI+X2eA8B39wkqIWC0WNdvb8qCvZbu/sawzTg04nCpmJa/zJT37CDTfckDWey1jGMpbxz+CPf/wjl19+OdFo+nxfhJcVinXiHzI0fqCCk38bZPitKVbfXo5So1hks5SwW5udnBO2T3HCyemQ3Toa7/QTGAqz75vti47hWCls1pyrTfjfWcyBZ7oIpto+yLBuczUHfySs6HwXF9L5+kD6uWRYf28NI0cnaX+uD9ku7LvSTwbr76vh5BtDOS3UVl7nS9qCyXblAvEoAxo2Vyy6p9Tv9C6J9j/1ZrYGyxKvtCZuHY13+Bk7PsXhZzPLGieIJnMz81kts8x+mZqryjj4g+M578daLWPxmejKlEsuEStv82Eu1XPwpyeSqkSnY93D1WiM6iSBLBM2PF6bRjD6R1FzbWlOezoQdmB6p8Teb2T+LRO2geHxWXZ/7Xjmg8iw6ZF6AiOhRc/KoqY5+lXLR+tQqBRZY+O7uBCFSsGJVGnqLMd3NZkxeww57QXXP1bD8OHJRTaNqc/QhsdrGdg3Ruef0+WiPRcWMLRnkOAorLnDz2RvYNF11d/oQW+X2BWXrPdcWLDYnjBOkExYzS2+ISC4MOYER8PsfTr9tyrcYMV7TiE7Piveqxo2VzB8dDJpkxeMBdnKC6CMJXPHaDRKfX190q5pGctYxjL+M3DGGWewZcuWtM9UaGjhYnQKUdAvPtOBs9bMW98VqkjrH6vhxF/6GdqTbjm15m4/hgLdgpVaFgus5vuF5dqWz7cu+r7sPGdS1aTpnkoCIyGOnDZPei8qwFys58CPOtFZwblmsT2I53wX7iZ7sp6ls7LI4sz3jkKc9easdRYQKj4TXTOMvDWFzqpMkjEywfeOQqLz0UUWVAls+lg9kbnstZ98xweh5m0okNn6xcWxS6Dpnkp0Ti0HnunIavu25i4/gcHQgoVXFlRdVZy0yvtHsenJeubDkZy1xU0fryc8Mcfur2b+LRLEofEOof7zj8Jzvoux9qmscYG4Hdj7Kzj625NZ2619UBD39nztSNbfrObqEhy1FvZ8p4PQYB67uyzPiqvBQtXlJUz3BZPP3+lYfUd51u8S95O4xvobPbT+ujtr33FvtFO2ycnOrx9b1CbxDJVfWoiz2sLOb5zWRgeeTS66/zKEzqpkxc0V7P5OW1obXYGOVTd7aP9TL6Ot0xS32Bk9PLro2Vx9RznGIpk938oSu3i8mu6tRGfXsuVzi5+H1bf7iMzFOPRMF/Z6I2VnFbD/Rx3Jdkdj+zjJ8bSal1qt5qc//SnXXntt1nguYxnLWMY/g507d3LOOecQDKbXIsqopEbZKP4hwar3eendPcbIgUmqry5BMqs58IPTrJ3ipKbQ+Cx7vt4uVHFSnbLi6xaSGZofqGeqN8CB73cuOoZ7jY3+HWOYvRLVV3k59Isugn3htDaNt1XQ+utThIfCFJ9hp3fXaPq5EGPyeOc0Hc/3I5lTCEMpx2m+q4q+XSPZLdQkqLlioUYimZWEJ7PnRitv8XLwmcyWV3XXC0Wojj/3ZbbqSnBcsruLIZmh8d46Ro9NciyblawEmz4Uz2O+ljmPkVwSK6/3cPDn3cLOLwvkIglHtSmr7d1SUHl5EQVrbBz+dTdjhzPbzK65oxyDW85Zz2p+oArJpBGbRv8JVFxWRPsfstd8QLgFWcoMi/tnHJJTonlzBcGRcNa6GMDGx2sJDId563vZ8yIAyaIkPJmZhrH24Sq0ejVbPn84Y99wr7ehNavpfjm7hZ9kVhCejGH26XDWWej400DWtk0frGDk+CRdL6YfT1yj+P/mByoYOjBO96txe8dYFBRK3GstjHUGCA/PUXNNMcHR2TgPIP7MKJT4LynEUiqz99udAJScYafnjeHk9wm0PFFDeHKWPV8/kW5FBwtjiwSbHqsjMBhi32l23rZaIxUXF7Hrm20QFopVYx3T9G4Rz3o4GmYHLzKnFEytWEzUvjZs2MC2bduyxmcZ//VYJin9N8UTTzzBZz7zmUWfF1DGGs0ZSVUk/6UFuBtsdL85RM/rYxSuNSXJSrFoTBAihoV84IrrypjqDXLgB/EX7PjDX3GFG6vHwO6vtYMe1t5RSevP2gkMp3eNTR+rYz4YYccXMi/4wALhad/3Owj0hhf5kIMg2tj8Rrr+OkDP30YyHEXIAcouiX3fOJKRKCQ7ofGe+pwLUJs+Xg8xsk5+NdeXMnpkQigs5cDGjwiZzGxkpqXAVqdn7HB2Is5SUHVNCQV1Vkbbp7ISlVa+34e5TL+YrPN3Ih9JaSnY8HgtSrWCrZ/IHrdNH68nFo3lbLNUOFYZ/n/23jvOtbrO/3+ml0mbyWR67zO3z61zpUsREBCQpqAiKjZ0VVQE3H2sSpHqqtgLCAiIFKUJgojAndvr3Om9z2RSJ73+/jjJmWSSXHB3v/tz3bz+ujfl5ORzzuS8z/vz/Lxe2I550x9clU2fS40XlVG6rpCxV+eZ2+PK+TqJVML6T9TkBJQ6rq7CWK1l8ZiLkRcyC4eSTQU0nlOO1xrk6K+nRSgpVZ2fq0WlV7D7bmFCb/VPtEQiYfuX65FIJey+ZzTr8wDbvlQvjP8PR9LOBUnKmBgatXRcUoZ7ysfxR1MagVIJLZcIdouDv5+n8iQjZRsLOfCr8QyAqetrjUQCMfZ9bzQdhATKuwzMdbshHqPrphaikTh77xlKDia+0DJ75S9TbDEzNycUj2q1mvb2dt566y20Wm3Wcc4rr7zy+u+W3++nrq6OxcV0WECKjC7eh0ay4myz/ettSGUSuhMrc0q3mFagm+TL/AlIWS3LrEM0sOVTzUy8uYD1oJu2K6oJ+yKMrMp4T17TD/18NB1SWrWtnTd2CPXZiSZibukgGjkBoKwR4G3fUm6gZOOnG9Ba1Dlhm+ZLK7F0GFk87mT46SyTSxpYe2UdPb8ez7mfIMTL1Z1WynT3Uia88S5lXqvD1pO9OfL3aOctHSDJXUuCANFEAtGc9ei70buBlN5JSfjNNuDOCSGt+UgtpjodU7us/+mxTaqoXYv9v1Db7ripnVgsJkI0uWTpNGCoLMj4+0hq562Jej9HI2vrlwWnzl339GaHBis1bLq2Htekl+M5mo01Z5ZQ1VXMwmFHzv1IglsipJhDuX4XNGVq2j9YxcEfCtBX5+ebsA26MwC5DZ9ooKBcLf4upAFeGihu1rN0dJn688oo31zE5BuLTP9tpeF4LL4HeWUMh8OBzyccv7q6Oi677DLuuuuunPudV1555fXfrR/96EfccMMNWUDxOtZItoj/r+gqou7MMqbftjL5FytFHTrsox5x4j8JRKhL1HRe38DypI9jD42nbbP69GLMrUYRpN746Ub6n57JgBG6bukg4ssBiCaUhBROBOTUv6+U8q1mJv+2mHPSp/2qagob9Bz85SiBbHWeWqjxQsu5rytd3+gAKXTnuAbWv68U96wP29ET97y2fqUFqUzKnrtyL2R7J5maNTiH3oE2fwdVnVpM7aml2Abd9OeA0ZsvrsCyxsTBn70LEOcEeidI6d1oyxebkWtkghtFDnXd0gEx6L7jvzbhBlDYJjhr/WdUdWoxNSeXMPrqPPO7c0zUJtRxdQ29v88OFjVcUEbZxiLmD9sZfS4TENfXqln3kQY8sz6O/nI86/bXf6KeglIN3ffmBt+2fbUVmUJG9+25x02sn7MAQ0klfxeywWb17ytFoZUz+PQM5vV6ak8u5eAvhzO2tfOWDsLJ34WkMULiNZaNRqyHhR7ijpvaiEXj7L17pbYNxAN08zKlFRZmZ4X7I5VKxbp163juuecoKysjr7zyyut/Shs2bODo0aNpj8lRso3T0UpXYsY2f7EJhVrO7kT/yLzOgO1YCgGUAAg2faYRtUlJd+qcWTwOKthwTT2z++xYj7jEuK3xP6WDE80fqMCy1sTRB0fwTOcAaRJATsgbYf8J6rMdX0/8Bp+gL7bjG+14F/w5wZS2K6spatLT+7sJnIOZ19uqU4upOaWExcMOhnP0BdqurM5ZwyRlXmeg9cIqJt/KXSe+kwz1ajGm7L+i7V9rRSo/8fV2+1dbiQRj/6Wa6d1ASu8olVAbW3tdDD2THeBqOL+M8s1mproXmfxzbqjn3chQq8I9cQKi7B205UstIIH995943IxNGgqb9Iz/KXuPbsfX2kBKznpz0/UNaMwqDvywLxPUQwCYNn22FfeEj97Hss9pWjaaaD6/nPlDDkZfWsyEhiRSVMUKNn+qgYAjASmuel7cn0/XozIqMvZXZZTS+sFajj46AYEY666txTHqYfqNdD6g9YOVmFsNHPrVKP65oAhgJVXYpsPR76Fsi4mGc8qZeGORmbdWtjEc6yFc4cbpcuL1Cn/HNTU1XHPNNXznO9/J+v3z+v9X+bi3f1Alo+B8Ph+VlZU4nU4AFpniz+HHAQmbOANegNEXVn7AGs4qp/69Zez+rvDj50tc58K+MJFAlOlu4YH119UQCUTpfWSKkT+s3Fi2XliJ0qCgdFsJYy+mFw6pTkvbbmxBrpKxaxVcsvdHg7RfVCUASlrYen0Lx38znAYaLR13YKjUioCSZaM+AxQKuEOoCpU5nYz8SxBejrBwLAuVnNDhX46iSLjilHQaWDyY/is98LgwgaOtULPx4w1M713K6roU8UUyQJDVqju3lIotZqZ3WZl8LfMC6OjzoS2W0n5VQ84V5+Z1BbReVMvsARvjWWjXoSdn4BIYejq325J7youuXIOxUotr6L8GRf1XFfaG02wns2ng2QmUBmXO57tuaSfgCHFo9YUvoaYPVCBRSBh6ciYTUEpu4+Y2YpE4e04wCeae8FCyxoRrLpx9G19vwbsU4Nivp7ICSkk4sPfRWcq2G5jfk6UiABaP+Kg9NcbcfntWQEkik+K3hZGr5cQ18TTgR1sMEoUE3zx4EwT86vOy/fIy4jEYeGqBsb8soC5SZsBqGz5ehcaspPv7w7gGPVldjwDMTToRhpx5y8XMW0LjxbxGS8OZZez7wRjE4oQ8EdxTiQ2kbKf5ohIsHUb05RoGn5qj+86VGwnHmlEcbhsjoyMQAY/HQ3NzMx//+Me56aabso5dXnnlldf/S2k0GhYWhGvvnXfeyc0330w8HidGlLd5AeJQSAmbJaekgT4dH67B1KBDZVIK0EfK3IxjzIOuLNHJTrgfDfxhCveoP22yqahJiCZYDT/0PDie4pgiuAO5JlaBFH6Y2bOEa1yoo9qvrCYSjjG0asWVdyEgRiwU1GqILfsznJWi4RjLM7knl2b2LlF3allON6Chp2ZwT3hFYEuM6ErZ1ySgtOFTDagLlVmhKc+Mj3g0jnvyxBNq27/ehkQiYfedmaBzElBqvbyKgDOU0wlp02caURmVWbcBMPaXebwLJ55wi/ijBN3Z64f/SWkKpURDMZyjueGs47+ZoPGC8pyAUsP55ZRtLKTnsdyuT5s+20j/4yM5AaW6c0qp2GZm/K8LzOZYjAAQ8UeIBLPX+XXnCHX1oR/3Yj3oTj+PADRgbhRAtP6nxvEv5K55rcddFDbpcrp0+Wf8RMMxAu5QxnNJ2G3y1UXKNhZiG3Cm70aZmjVXVLP/P4Zwj/oFQOy5TEBs562JhRX3D7L3gYGs+1KxoxB1oZL688oYe3FehJUAOq6uBaD3kQlmDwp/h4SE/U11oNr5ZQGqWzray9iL86KLkz1uh04n/f39+Hw+JLMSampqkEgk9Pb2otGkxwvmlVdeef1PKBkFFwgEWLt2LSMjwj3/HOPMxceRIqWTM6CbtNXvrRfXQCwuToiJrjKhEEFXmJl9Qs+r7cpqiEP/E1NMvb4kuiXVnV2K1qKifKuRsRfSJ3dSYZ/NNwjONasBoIO/HKb5fRUioNT5uSZ6n5xOA2bsQy6K243ixFM2uCTgDhEJRbMDSgAB8FoD2Aez9xYADv24F7VFs/IZ4940wGIsMRmoNsGmz7Qzs2cpq+tS0BUWY0tyqWxHEQ1nlgk9ryzbcA75UZug9fIGjvwsO/Cur1Wz9kMNzB2wMf5KZs9r+o0lFBqZuN/Z5BzzUtikR22UEPiv8db/ZQUcYVTvsOy355FRtJbc19ntX2sj4Ahy5OfZV+BXn16M2qRk6JnZnIDS9q+3EX+HidnlaQ+xSDHeuew107YbW/Hbghz79XhWt3Tzej22o8uMPjfP8pRfBHMyPmcikPg7zF0DLs/5xPi8VKlNQqyjbzqAe9KHQp15TjZeWI5cIWXgqRmGnp9CX1WQARUl788O/qCfwGIgJ8RU1mlOxA3NYDu6LMJ8+lo1LRdVc+BngiuTdymAZy5RvKVsJzlZbW7R0/+76bTJOGfHJK6Qg6Eh4Z7P5XLR1NTEDTfcwBe+8IWcY5NXXnnl9f9SR44cAeB3v/sdV199NeFwmAghdvEyxKCEStZLd3LgP1buRWvPtlC13cJUsZXJhCtv0u3F1u+msKFAfO2mzzQw8tIM7rEAR1Ic90rXm5DIpBmQ0tCzswy9NJvimNIhQKWpIEUQRl+ZI+AU7n8bzisDCYy+kA7KOlL6ICqLCoLhdEckFYR9EbwLucGeuf02tGZVVkAJhDrFvxTCdlyozQrbdRnOQUlAqfWyKgzV2qyL2TzzQaKhKMszJ56723xDM3KNNOucVhJQqj2nhFgwztRfswM5az5cg65Cw567s9cIwy/NEXafGMQJusKEfZETvuZ/QjqLipAvwvJUbmB79IV5Iv5oTpfRiq4iak4tpfeJsZyQ17qP1jL4zFROQEmAYyoY/8t8bocuIOgKpZkFpG1jWyF1p5Vw6FfjuIb9uIYzm0SmlgKcg156Hh0jfIJDNHfATtnGwqyAEkDQHScSiBJwZm7E2KTBNRLEesRNzUnF2AZdaYCSyiCh/Yo6Dj88QXApzPxBO6N/yazTd3ythZAnzMEHRnI6T5nXFqIrV1N3WjHjf1pMc2prfH8ZcrWMgd/PMLdviYJSNbHwyv4ntf3GFqQKKd139DO/38l8ov/si7kJbl5iYGAAj8cDswKYVFNTw6FDh1CpVOT1j6s8pPQPLq1Wi8MhgDj/9m//xre+9a3EM3EO8RpEQYmGU2QXAjB/WHhtPBan5bIKipv1HH1sCs+Yj733rhQYulIh+xyJFOIxdA1aPKM+Bh6fobDdIbr+7Ly1PbFyKx2s8dlCaAoTOaNaWHNpDccfngQf9D0mNOdbL6xEUSCnZKslDbqxHl7Geli4eat5r4WqnRZKN/nSVtanRsp1XF2DqV7H8AvTaaDRvu+tXOSFVVAhDnx/ZT9To9Wazq+i8Zx4OtmdUEGJAiQgU2S/aKROJLZeWSXCTalaPL5MeWcRy7O5L5Ktl9ejMikp31HI3O5MuMo24gUJKA2KLO8WdCJACWDyteyQVKpEt6X/wmr9bTe2IlNKRReJbDr4w9xWiEkJYFGOMUuY6CRzb7PJssaIRCphiBzjEhcuwhFfNOvTDe8vY/6gA+sRH9YjJ3BAkIJCnf3nsu59Fso3FWLpMNHz8EwGoGRZr6XpvAocox76fzcvOA6t0ravNCKTS+i+e4S+32Un8Td8vFGAre4b5dhDWb5vLI6proB4TLAuXDy8MraWdVr0FRpGX1rCNrxMuaEIrVGKzxcTwaKky5O118XwH60cf3IW98hKsWxo1OIe9lDYWIBcI6XhHDOjLy1x4Ifj4ms2f74OuVrGnruHGHp2noJSFYMvCd/HWjrJmOs4rmUXHBZsrZVKJUVFRYyMjORdk/LKK69/GN10003cdNNN+P1+mpubmZkRfnMdLPJq/PcAtLCJGkkjYy9N0nJJgwh97LipnaBbgGtTQaGmcytQ6OQYqgpwj/oxNGhECGTXbb0YGoTJi9bLqzC3Guh9YgznoH8FZtCoiIZiLPYI9UP9eWU4hl04B/1pAE5howA8rb4uHvnFyrVn3YfqkMpXxWf5SQOGssVkpMIiHVfXYqovyHBVSgJK666rR1+hQa6azxolJ1dJkcqy113uUb9YXxTUajA367NCNUFXWMg/P4HMrQZi4XhOSOmdIPScMXgpOpHbQlJdN7cT9kZO6LBzImmKYNNnO7AN5nZJsvf52NP3zg4IuZyAABQFwoDmApSqTilGY1bR8P7anK5DnjkfsUgRjuPZFxI0XVLB8NOzJxwLmVIKElAVa/DbM/el60vtSKQSdvX0ZoWltnyxGaVOsAkff3khI5atdLuJxrMrRGekbLBc0rFoRC3EE2ab+KvYWojSoBDBotRj0/HhGnHFftgbWZncSvk6W7/UgkIrZ9dtvYw8O4et1yn83UPab4SptkA8V1P/DovatbRdUsfsfhvjLy+wcNRB2C/UvP64H0fbOL39iei2g6DX65FIJNx///188YtfzBz4vPLKK6//H6RWqxkeFvo4Dz74INdddx2xWIwYMfbzKsRBg47NnIZaombqrUUUGuF6VXOGhcodFvqeHMM55E9b4W2qK0ibGNDXqlmeCDD+ygKOEReuEaFf1PWNDkKezLgMz6wPnWTlHrXt8iohBi6AGFlWe1YJ6iIl5Z1Gxv600n9yjQTE+iAZn7Xa4WnshQXGXhCuT/Xnl1LeaWbohZm0SLsjP12p37puFnpeBx9Y6XkFnBBwCteK9ktriUVjWVdZq8xqkEqQyqUZzwFp0V0NF5Rldchx9juJnlqCZz43vN1wfg0FpWoquoqyTtosTwRAslJvZNOJACUA62FXTkAmqeaLK7B0mASH8f+kyUDn55pQ6uUndEnq+c34O25neSJwwqg3QFwclk0VW4uRKaUnjMALOEPEc/TNqk4txj7iwTUSOOF3kcolyLNAQQClWwppPLcc10ZhscTq8dfXqll3TQP2QTf9v5vO6rSw9UstyDVyum/vTTv3U9X5+ZV4wv4nsrtQlKwxJf41g3PIL7p3GRvVmBoMTPx5EetxF7pyDaiVQEA8B4yNatZc1YC1x8nQs7P0PJruhpb8jdBXF6AyKmg4S/hbSP073PCpBtQmJXvu6mf6jSUK63SMvyLUf54SK/3+IzjdTjgOMpkMtVpNeXk5vb29qNVq8sorr7z+EXT55ZeLMZNbt25l//79ACwyw6uxJ5EgoZ0tVEjrmHjDis6iEQGlLV9qJuQKc/RX40y+vgIuVZ5kRlOkwlCrwz0WQFelEt2R9tw1gK5KgARqzrBQ1WWh98mEW1GCm1DpVQQ9YZYScHblSWY8835cw7606DTLWiMSmTQDUhp4cuVefN01tSg18nS35SAcSOlB7Ph6G+FglAMpKSKuYR8HEzVpw3lllG0q4vgT47iGV3oOSUCp+eJKLGuMjL8+z+zbmTWPUitDKs/e8wpagyI0pCpWUdymS3OCScq/FESpP/H0fcVmM7FwLCekFE3WB6uj+ZLf51huGD6pwzng81Rt+0orYV/khNFo76Sum9tZ6nPndEnyTAdP6KaVVC5ACUBhkIME3LPZazPzGgP66gKaLqjieI4kG5/VTzQUxTacfU6z7n2ljP9pITMuMUVSuQSkEtQmKcEsZlpbv9SCQiNj1+19eGYyD9y6a2spKNWw+850WCcpU0sBHZfVCM5IL85nTctpubSS4jaDEE+438mBH2Yaa5jXmNCWrIBFqTFyTReUi45iQWcIjzVzPzdcV4fGomb3nf3Mvm3DM+0R4S9NuUqMeSxuMyCRCfcp7okgBx8YEV+z4Zo65g7bmXjFysw+G/GUaV5ryzBH+g8J/zkAOp0OuVzOT37yE6677rrMgc3rH1J5SOl/kf793/+df//3f8fn89He3s7kpPBDGcLPq9EnACj9Yw3rZF0AyJXCH7ZnTLiQdn62noVjTmbedLDr9gG0xcJ213+yHl2pmpGX51jY50yLJYsGYwScArZY895iDJVaen4zmQYUrf9wPfoyDTVnWdJs9AYen0HX4MAzmgSeOvBZAxxOucGbfM2KpcNIzxPC9tZ+tJbxN63iewA8c34M1QUioKStUKcBSGgTq/9PQEI7Rj14k82UVZFUAjS1UrRs+nQjh36SeUGtOr0Yc7Mh6/O+SZ8YWaZr0BKLCI+l6tCPRrI6Oq1shHcFDnXd3E48njt+TlujpfncsrQb6VQF3WHi0TjaYmlOp6p3UjQYhRMkqTV9oIJoOJq18QBQc3YJVduLczpPAeDjHWPgum/rw7yuIPMJiYTy9xQy97aDffflmATTQtnGQkrWmtj93cwCp+YMM0q9guE/zNN9xyASqSTj/filjL9so6heR0+qa0UKcWw96qPxnDgBVzjjeW0x+BwyAo4Qcs2qhmEszrqPVTH0/DQBu4Tl+QBLfe605wtbtbRdXCEUcM9ZOfa7WTzj/rTXADSdWw7A6EtLTL3uYOp1obgv2ailfEsRR34+yeLBZRrOLBNdDURAKR5jx9ebkUgldN85zPAfrczusgoubVrYdE0N07uXWDy4nNEY2/XD4+ziReLEkM5KRSt/qVTKPffck58gyyuvvP6hpdFomJ4WGh0PP/ww1157LdGocDc0yCEG44eQ2mTYf54eB5e8BJRuN1G2oYgjD48y/PQsM3+dF11P1n6onlgkLjr4JGGEsDdKLBwXQYUNn2pg6s15AUBJASnKO4so31SUEXG167ZeCmpTgKdmA4ceHMOf4pA08dcFEWbSlKmpP6uU3ofTb55D7jA+h7BSLS1OKiG/PYi+UpMTZhl+ZozWyxtXIJ+EI1RSqa6STZdUsDzjY2GPM2M7666qQ6qQZIWUDqfUYqXbTVnfP/DM5Alj33JF26Uq6Qw08tLsSqzfKtWfV0Y8Gs+AYZKKhmMiPPKfkVSvIRaJi6sHs2nddfUMvzCXMxqw6+Z2YtF47sg/yAlAJTX9tyUCziBLWWJjDA0awr44S0eXWTqavX7b9JlGNMUqXOOeTHckhPP9yM9GGXluLjtMlTiPZvfbkGtzT3B6FwJIFZkTsZoyNf75AAt7nNSdVoZnMf38NbVoKNtUTP8TUww+PU7r5fUZx3zjpxvQFKnovr2PkefmmD/qxDuRvp2G88spbNTTdkU1/U9MpYFsaz5Si31ombluOwF3OK2eTv7dV51STM2pJdgHl+l/YopDP+4X/warTinG3GbgyM9GsY8LtZpCJ9zSjzw3R098L/NMolKpCPYHkUgkxONx1qxZQ09PT84xyyuvvPL6R9DHPvYxPvaxjwHpk2Z+PLzF8xCHir/W0yHZDKz8/jmnhN/PddfWYet3M9ttZ/ed/ahNwrWg9dJKzB1GRv8sRF0lASUQXMf9DqFBXrqlkKJmHX2PTTGQcn/femkl5jYjdWeH0xyAJv68iLXPjW9a2N6Om9rwWQNpMVfWwy7KtxQx9Aehf9dySSULR2xp++CZCxAJREVASV2izogyi/gjKz2tLJo7bFtZnKUmDc5xjQTSHKHWXVvHsSzxu+b1eso2FqEv02Q4+wScK7HB6hI1Cg0Z8E3vo5NCHF9v7trrRHEiSW37aisSqSRnzaIuUdP4vtKcwHTQFSYajqEtVovH5u9V2B8RoOkcqjnDgkQmYeLP2UH4JJyWjCnMpXeK2NtzVz+FbVl6XoCl04j1oCtn7w+g5uQSKrcXZ/0cS6cRfaWG0efmswNMifNoYb+D0o0mRv6YfbyXJwJEg1H8jsw6NRnHuDzrR1uUuYq97cpqxv9iJbAYwD60jGMk/dxRl6nZ9PEGlvqcDD0zy5GHx7Ie047L65FIheORCrKZmjVUn1TKsV+P4xoJEA3FCCf+TlLP3+1fa0OmkLLrtl5m37Jh73EILm1q4X5k/ogD60FXBlC278F+9vAyYcLIlmTivaJCoeC+++7j85//fNYxyyuvvPL6R9G+ffsAeP3117ngggvwer3EidPLPnpj+1D4lfgeTomDi68s9jK1FFC1zUzPk5PMvGVj6ahdcD2RSFh7TQPxSEyEcZLAUiQYJRKMim5F7VfWMHfQhnPQmwYRVZ9cAmTOf+25awBN+QrwVLG9mJ6HR9Pi4sZensfcJvS8VAaoO6cqDWICwa0y5IkkXiNNd10CAq4QkUA0DVBK1dCLM6gN8hVAaRUEdOyhlWtm9WkWwp5wBkgCCaCqQC44EK5iPFIdpTIi9xI6/lhuRyDgHaPnQHD1aTi7nNE/zWbdR4CK9xQhU8hywlCRYJTIf8FtSWWQEg3GCLpy97zarqxm7LVFgllgGICtX25BIpGw997czpITLy8y8XJuK07bcTe94exxfyqLCqlcgGhyOVN1XFWDqUmHdy6A9Wjm8eq4qobexyaZ3WVndleWRZGJ82jqzUW0ltzuP+4ZH0q9IuO8UxWrCC4FcQ56CXkj+FbdT2jKVVRtK2LoD3MMPj+DqkCeccw7rqrBUK1h910DzHY7cIz7RJgoqbJthZRuLESmkjLw+xkOpdSizReVszzjZ36/E58jjFyzgqAkAaXCNh3tl1YLbuS/n+Hwz4ZExyTLBiOl64z0PDKZ+FwJ8kRaz/QbNoZjPYzTh1KpJNQfEnte27dv54033si7Jv0vVB5S+l8orVbLxIRwoTt48CBdXV2EEpb/C0yyEBUuYMO/aadJtj7xJlAXKqnYUsTMmw60NVrwCRfZmW4rdaeXsbDfDRIpO77egmchQM+vx9N+cMs3m7PepB/9+RiNF5WJgFLXzW34bEGO/HRMhI00FgnxmOBqA0K0mW/Oi38pZaJKC4aaAtZcrmFPyg1yqjtQMlZtadDN4BOJ4sJH2ut33tpBJJC++r8vhXzd+ZUOIv5o1hXR6z9Rj8aioubskozot+nXBau5bE5Kadv4cB3EyZqxmgSUtt3YSs+DQ1khocJ2LW0X13LkkYkM0Akg5Amf0F2o8cwSdKUaEdJZraGnZ3I7D71L5YqsS6pkrQkk5ISUwl4BlJrszl7YbLuxFZ8tmAbDparz800s9bmYfM2aNeat4+pqTHU6Cixqhp/N4Rjgg4VjDubeXhDykiXp53bVjmKQwHAiDjEei4ugUuXJJmpOKhHdkQ7+ZCINTKo6pZDq91iY2Wdn8jU7u+9OTKSmvKbrGy3EI3F23zfK0QdTzqlE06N0iw5dmZq2S2o4/Ispen4zIz5f3mVgrtuNY8AHcZAlrNmTgJKhXsOaD1Zg7RNckSbfsuJYvXovHqP21FLkGhnqYgjYpOJ+6uq1rP1gOXOHHEz8eQnnuDdtFWpBhRbfkg+NXoq6UEl1l4XFg8sc/NEYvrCP3byEsVCPz+8jHhC+c2lpKZs3b+a5557LfjzyyiuvvP6Bdc0113DNNdcAcMkll/DMM88ApMXBKVHjv8MvAkvV2ywoTSvuiAVVBfjtAtzhGF4mFBBu4BvOL6dknYkjD44x+sIcoy8I1y1NmZqCUjX1Z1Zg70u/7h55eAxd4oZVhJF+OYp/PiACE1KpcKOWBJSSIM9ct12Eh9ourURTpMLUohEBCYD9KW4CGz/dikQiSQOiUqOkGs4vp6yzMA3i8dtXIKJk5MLQC9NZwZSSDhOWNmNWyOjIw+OUrNFnOySiWi+rwtxmQF+pZfjp9FXmSUCp9uwSTHW6nPEj666rR6WVp33vpBb2WSnbVEQ0lBsyKu8sIh7LDSntzdHAeLfyTvhzRtKB8P0MlVpqTinOCRoFnKGMWPmkTC0a2i6upffJiazgWUGtho5Lqtl3/2BWQAkE8I44GeBcqg79eITmSyuzngcN55dTUKoWwZ7V2nZjK3K1jF3f6c3qjLX1K0IUdfftffRlacS1X1lNYbOesVcFd69sE5+tF9eK9zp+e0w8hzVFUlTFKpyDfiLBmDCOCWAq+fe24XoBXtp9Rx+jL8wRj8fFvxFRGjDWFqAtVjHXbefYL1cmgNdeW4fWomLvXQNM/22JkvUmZhORRSiVaMrAPx+gfEsRioLELbxfGO/heA/j9FNcXMzSkvCecDjM5s2bufvuuzn99NMzvmteeeWV1z+6kpNm4+PjdHZ2ig7js4wxGxd+P8f+sJb6P7aJ79FXaVEZFMx221GXJF1LAszut6GxqJnfLdQ/W29swTsfoPeRyTRnv+r3FAvO1qsgn4GnZgi4wyKQsuOmNryLAY79anwFmFALt/vJRT/GRjVBW4iAM5bmVFS8xoipUZdWG1gPukRAKelaY+t1pYFSqcDrjpvaiASiaauiU3svXV/pIOKLZHV7bLmkEn2VlrqzSzMi12xHl1moczDyx9yuiwCbPtEAEjKi8AARUNp8QzN9z0xlBUr0tWo6Lq+l/+mJNFgrqaAzBDniMQBqTjJjqtNRdWqxGKmXqsm/nBgMejc69qvxEz5fsc2MRCbNCSlFQ1GiwRiLB7PHnnV+pomgN5wTtFp3bR3OcQ9Try9ljXlruKCMso1FmGoKRGevbJp6exFrX3ZorOmcCpBKsjpnmdfrab2oGvuA4I6Ueg5DAsJ6fyUze5aY+PNi1sm6rps7iMcEd69stZ2pWUNRsx6VUcGRn46mvSYJYAXmA8RjMaSJXlzyfFKXqNl0XT1LfS6Gnp1l+KVZvEuZk5b1Z1agKVaJ4F8S1lKXqNnwsToWDjsYf2WBxeMOlCnu6doKLQGnMG76Ki0KtRzrQRdHfzFGIB5gP6+jMSkJhoKEfcKCRIvFws6dO3nqqaeyjndeeeWV1z+yTj/9dCEmCfj617/OPffcQywWI5wSB6dFT/C+ICqp0Iuq3lGMvloruCAFg2jKtATdwjVr8ahDnL+q6CqiaqeFY78dZ/Ztuwj2qAxQ2KRDbVJwaDDdEODQL0YxVAi1XM0ZFiq2mul5dAzPdFAEJuRqGcTiIqCUBHlsx90rjkcX1WCo1WVEs6Ve59d/ogmZSpYGRKXuZ9m2QhrOKmf4T7MsHnAKLwiugEgN55VR1lnE0HMzWI9kuj1WdhVDnKwA0LFfDmPZVJTV5Sip6tMsVJ9sYaHWwcjz6TVaElAq22KiuMNIT466ovmSSnQl6qzGDPNHHNScXEI4mNvMoOaUUoiRE1I6mMWF5+9R0B07IVxkXmfA3GIgFo4x+FT2eU3fYgBpDsBcZVGx/iN1DPx+PGuMm6pYRcdlVRz68UjOuL9NH68HqSSncQQIYFnd+0pXzoOUerZsWyGmxgJaP1jJwO8zv0PnZxtRGhSiO1LG53+6AZVBwe67Bph4xcrEK+nHovZsC5VbixMxdI6s7kkdl1Wj0isY+tOccA4nzheVAVRFatzjAcK+MLGoGpUBgm7Ev7e2K6swVmvZc/cg83sdyDVSpt/IrHMta00YagqY3+9MSwVqvqQSY42W/d8bwtHvYXnWx9z+lferLCqC1iBVO8xoilUigLX7rn5mY+P0cYBii1noecUhFAqxefNm7rvvPk455ZScxySvf3zlIaX/5ers7CQYFH4o0uPgYJw+xqPCj2bb8hZ23Q+ahFv1ussrkamk7LptANtxH7bjiUkbLUhlEhQaKUikVJ5ciKFSS99jU+y5awDLRh0ggDTtl9biGPXQ99spRhIghxjRFU6AFluNxKNxFg+66b6jX4BBgJYLa4SYhlTnIB8MPDuB3yW8ZtPnGpEppGk/qItHXJSsNTH4nDABU3duaVqUHAjkrrjSfJVrEgiRC64cma9HfzFG5clmZt4UfiAtG/VYD69MxiQBpZYrqihuMXD00fE01ycA63EXQU+YXCp/TyFyjYzGC2uyNj4UGjkSmYSqriIGs0BKqZF22XTs8XFK2k7g2AQYm7Wo9PITviantFDTZTlhrNyu+3opaTPkfH7ubUdWgCopuVqGtjgH9ZoA7so3m9P3IeWi3/vIFJ2fa8gKKG39l2bkGhndd/SvnLcpMq/RYjvuo+/pKYLu7Mdx5i03VTss2PrSc1qT59v0ARdVXcVEg5G05ytPNmHrcxJYAr89hNcaFKEkgNqzzJRvMLH7nhEW9ntQFNiYfiN9nDZ+qgZNkZJoIMriIS/d3105H5ovKmHoD4uiC1JyEmvmzZVtdH2jhUggyr77Rzj+yAgo5ARsUswdasq3mOl5aArPvAeJTIK+Qpho739iFiRS4tEo277ShFwtY3FgAN9slKO/nWJxeIn9/JnK6nJmZmeIhsLYHXYaGhqQy+UcOnQoH+eWV155/dPo6aefBsiIgwsREIElDQX4v++nuK4I/EJcV8tF1dSdHmb/fwylQRQFZWqkconogLPmI7XM7F7EOejnyG/GiC0LEMS2r7UiV8jYdVsv3gm/CEfIEitKku9v/EA5I8/OpX1GeVcR9WeWYWk30fPguPj4oQdGqDjZLABKGtjxxXYm315k9s2VG8WlATdqkxIQwClDlTrNXSbkixCLxFk4nnhslWuSbcCNrlKTFUwBAbhKyrxWl+Z85J/xM5GArLpubifgFKL0UjXw5DQbP92QASilqmxTEbIszjpJacxKZDkiUPz22AkBIYChF6ex9p24pqo63cL06/+5CTNLpwGfLZzh2JPUxCuL+JYCJ9yH1eOWqrJNxUiVUqQ57gybzipHoZNTvF6fE1Ka3Zd9Es7UoqHj8nrmDtoZe3E+LQYRVo756Atz+O3BnBF7y9M+1GZl5hOJ8y20HIEsPbXkuI+/MoWuvAXngDPt+a1faiHgDnPsl2P0PZm9obfpc23EwoLzWSpAX7rFRDQUFcZkFcOWBJQ6rqnFVFfAoV8Jjmap7l7tV1azNOjCetCNQitDrlhxhxKbfBrY9MkGwh5hsrnnwWH8/hiT8RGWy+eJx+PMzwufFQwGaWtr47rrruPGG2/M+l3yyiuvvP63qa6uDrtduDb8/Oc/57Of/SyRiAB6j9DDSLwHkNDOZnbdDWq1cD1fc2U1KqOCXXf3sjwRSHNglCvk4r2yeb2e4mYDA0/NsP8/hgTXmoDg4NL5yQbsQ8v0Pz6VBqPE44i/+0UdOmRKGdbDrjS3mrZL65AppRmL1479ZgWYXvORWtRGZVrUnGvYRdBVzMRrwvWy4iQzs6siQMLeKKFkr2IVUAXgWwrgz7HKfPDpGVyTPhb2Cz2CwraCNAgmCSjVnlVCxbZieh8fzQCJZnafuJ4p6tChMilofG9ZWsRdUlI5yNQyStYX4RrJrN9WuzhlfIcXZ7ANu7HlqEkAtFVqNEWKE77mRMo27qna/b1+zC25QXp7r4c9vbldkpRGOTJt7tpUX6FFY1Yx9XqWDBBg9Ll5dCXqrIDShk81oClSsvvO/qzvTx7z1Bp8tWxHlwmfHcE2uGr8Euebtd9FwznlGU6hlo1GlmeDBBYDuKe9GS6gZTuKqD2lhD3f78c55BfdzVLVcXUNpnodUqmUhf2ONJen+vNLGXthQXQaSy7YS42g67q5g0ggwr77Bul7bATUAqBkbFRTsc1C32NTBBYF182CMmECPBXy23xDMyqTgoOzvQSccPjXo9innBzmTSz1RczOzhIMBgk4vdTX11NQUMC+ffvycW555ZXXP42++93v8t3vfpdgMMhJJ50kOlv6WOZN/ggx0GEi+OApmCoNBJeCoIKOy2oIOEMcfGCE0RcXxHnAgnINMpUUv12oTZovqWThkA33WIADPxmBkFDTdH6uSYA07ugjaA1iTdQyCq0cJBIRRqo5w8LkX6yMvjjPaOK+29RSQOsHqnBt8HD8kRWzgp6HJynZbBIBpa1fbmGmeyktlnbhmANdsTAHojKAod6YBhtFgzGioSiLPU7hgVXuNbZBN0UthqyAEsChn4+iSpgiGurVac5HQXdMBK63faWVkCvM4V+kL66b+qsVY7UmA1BKVeVOC6oszjpJ6Ss0KHWKzCcQXn8iQAhg4NkpHKO5nTJBAKXmjzlPCFzlkqmlgIgvkuaIlSrbMTfHg+M4J7IDREDacc/Yt04jCo0MqUpOth2sPbUYjVmV07EKYPz1BZS6zKaZplzFho81MLt/ick/WxlfFV1sbNLgGvYzv9dBNBjLeZ7Yht0U1ukyn0gcU99SEIksE+Kv6CpkttvBxBtWzE0GbEPp88kbrqsjEoxx/JFJeh6bQqXNHILOz7URi8TYc/cgQ3+YA4RzzdRSgEQqwdHvEeb74yv7kwSUGt9fRumGQnoeGcU9EUxEJAq9y4ZzS1meDWA94kKplSFXycT3p8bhbb6hjaArzIEfDtP72CjBIFj9cyyUDiOVSZmdFepdv99PS0sLX/ziF/nMZz6TdRzz+t+nPKT0T6RkHBzAxRdfzLPPPis+189++pf3wzK0sYXyN41Y1hqFJ7Ww80uteBYCHP3FBLtuX7koVW0vRqYSgCXiMbyLQtEQCwvRFbN7hR+jzs81Eo/HOfSjUbpvX7mBbDizHIlMsgLDSCQQjzP+13lMtcKPrnldAc3vr6Hv9xNprjhKvQJp6g+vFnyzAXHFma5BS8UWMyVrTGmuSKkr0rr+pR2A7ttXJpf23beymiyb61ISUNr8hSZURiWx6ESGW0888aPsmc+EiERCVAvbPtvK3h8NpIFSc287cE0Fs7okgeC2tHjwxBbYxmYt7R+spe/3E7hWXXjw8Y7w0Zor60R47O9VwxlllHeaURerVtysVusE+7Dtxla8C36OP5y7cMjmQpW67cO/HE2P/Etow/X1eOb9jPxhnoMPZHdLiIZjyNRZIkLiMbq+0YZEJmHX8QEc/enjWnVaETXvsTCz18bkazb23J1OI7dfWYmpvoCh56dZOuZj93fTn9fWaKg5qYSKzWb2fW+Ewz9L+f4JuEllkCORSyjdomNhv0cElDZ+shqpXMrBH08w+Nw0TedVsnhwOc39acsX6lFoZcwd9eAZ8wnwUjxG5ckmqnZY2PPAEPgg7IvgXRQqEZ8P1OowxCU0nF0urEBI7Ev3HYPivnV9sYWgM8yBB0aZ2WujsE6Hb9nHYuMAUgkMIrx2anqK8vJynE4no6OjFBcXZz0GeeWVV17/DEqNg5uZmWHt2rU4nU4A/HgFYGlcWG22yXYKznEv1uPC7/qWG5pRGhXs+k5vmpuKpkhwWtEUVrF/cIjYchB/onfimQ2gTjgzaYpg/SfbGP3zLL2PrNzYmdfqKF1XiKFCmwalzHXb0+J1N9/QRHA5Qs+D4yKQVL6xCKlCgkKTuEYm4I9UqGTd1bXINTLco05xv6Zft4rwTel2E41nV7Bw2CHGdS3sd4pQU/15ZZRvLkpzXRLBGw20XlxD9PxYVpebeDRONMfKrmRsW9MlFSgLFBnxdXu+349Gk+2dgvbe9c5ORx3X1KI1KbO6LeUCsMT3friGwkY90UA0J4RzIjWfWwWSE9dHufaheL2exnMr6Xl8IifklG11e6qO/GIUTaUmLTYQBIehtR9tYt/9gzldpIJLQYhDLJJ57Eq3mGg8twLvzgBHfjaaMTbv5I6UGmGXzSVr61daUGjl2I7Y8NtjK44SKSCdQisXGz1JF6midi3NF9aIY2YfXMY2lNlIajy3gmgoxtLRfo6kNBI3faaRWDjOkV+MsnjEjq50ZdLKtxRJjB0UNuvRlQsA36EHVv5eN1zfQEGJWljM4Qf3tI/5AzYm4yOoK6JMTk3i9DlhDsxmMyUlJXzgAx/gpz/9aZYjkFdeeeX1z6NPfvKTfPKTnwTgy1/+Mv/xH/+RiBSP08d++vz7kfgltLGZold1lHUWiQDPzls7WJ7xcezX43TfsXI9rTutDJVRAS/MQAD8dgG6kMoh7ImweFSo3dZdW4dULuHIz8fS6pSm8yqRa2RpkATA8J9mMDcJC7e0VWrWXlnL4B8mcQ6tXEu1ZpVwD56UWohVO/B9odZQm6TUnV5KxeaiNMenVKhp2w2tSGWSNJAjNf4rm+tSElBad20d+iqtsPJ/1f7HIjGIxQnaMmM3Ul2KNn+hmeO/GRGisRKy93o4aB8lkCOC1jUSSF+wmEXJMRt6fjrTSSjAO8JHGz7aQDwaw3b0xHFq2VS2o4j6M8rQl6rT3Kze7T50fqYJnyN4woiVrPFqKTr4QC+BLMPXflU1QU+Y0efm02IFUxUNxIjncF8XnSnv6c1wuVrtjrTvnnQnrvrzSynvNDP0wgzWg66Mel1tguYLKkWwOs0lKgE3KbUyZEoppWsLWdjvEAGljqtrUOkVHPrxCL2/n2Tt5XXieZrUhk81UFCqxjniwdHvpTvhZGBer6fx7AqO/mKAgBMCjiB+u3DeBpygNgn/bjqvGpVJgdokPJ7qBNZ1SwcBe5BDPx5h8s1FzG0GnI4AizVDSDQwKBkkHo8TmPJSXl6O3+9n37591NXVZR3nvPLKK69/BqlUKtHZ0u12s2nTJkZHhRrDg1MAlmZATxEb/Sdh7XHiTESSr/tILbpKDd339qWneqjA0mFEX67h4APDEAqS8F/ANeEVF0yjgi2fbWHiLwuMPD8nAjqachVVOy0UNejTYB7noBf70DJjLwqfs+7jdUT9MXofmxTdjwrbdSg0cuQ6mfgZBBHTYQA6PiRE1LtnA2KsmPWISwRLjE1a1lxZx/whO6MvCICUa9jH/u8J18xsrkvBpSDBBDO89kMNhANR9mWBgmLROJEcDt49iXm06tMsFJSpM2qMA98fQmWQ5gSE3o3TUdMF5egrtVndlhw5XBmTqj2nhKrtFmRqGTMngLxzqfWiKqQKadoc7mrlcjjSValou6yW/icnckJO7xTzNvjUDBOWpcwoORVsuq6RQ78cYX5vdsOFmDdhQpDl0BnqVKy5oo7lWR/Hfj2RAShluCORvhBg21daIA577xvM6r606foGNMUqMZLtYLIPnAKrqQuVRMJCnR60BgkCukoVbZfVMPjsFO7xAAuHHbimM/uFHZfVCIlE/YNpDlZrrq5BIhHOy4VDDkwNOmKJtD/xnkAFZZ1FFDaGsR5xpUFkrZdXYW7Ss+vePggKi1uX+txYY3PEKl3MzM1g99thAYqKiigrK+Oqq67ivvvuy3oM8vrfrTyk9E+qZAwJwHve8x527dol/r+f/fTv2g+7oJoWNhW/h2g4LpKoG6+vRaVXsueeIfbcM0T5dgFm0laq2HhtA357kEM/GmXPd1cupipDComrFUCW0efnOfLQGOVbC4EV96X5ww5Gn5sTnXTKO4uRyiWEEz+che1aHH2+tAi3tdfWYajSMvTclOhs5Bn14Rj1MPGmcJVf9/E6Asthhp5c+cEM2ENIEme5phj8PtKAoUgwSiBH1mnfs7O0XViRNU5s6OkZEUaqPNmMqa4gA7ppPKscuUZG64VVGRFxSUBp65dbiASjaRMT4jAWS1l3XQvHHpvMCjRJ5RIqtxfjGsqEfapOL6bmpBKmd1mzOh5Zj7vwWXPn1Z5I87sX0RQqmXotO6DUdUs70WAsa5wegFwjo6A0+0zhli8245rypVkBJqVr0LLuKsES3NGXHfAqsKjRFqoyHJK0NVpa31/GoR+NcjDLWCdhn7lDjpwOTrZeB9VdxWlxL/FYHF29Fs+Yj8luO4ZqLYGUmk1bo2HNJRXs+94Ivkk/7ikfIy/PpsFF229sRCqT0H3nIIO/nwOJMMmnrVbhswXBB2qjEqRAPIZvNsbRX0wI0YxfbSQajrPve6P0PjNL2VodnlEP2hoNRXVqpv/mQFGgQCqXUL29iKnX7ey7P/H9tbDzi61E/FH2fW+EvqTrlA/aLq/AVFdA952D4IFoKIbPEcIX9dHjHGb8j+PYsMEIKBQKCgoKiEajvP3223R2dmYdv7zyyiuvf2ZVVlaKMST79u3jtNNOw5eI1fWxzNu8wNu/eQEFKrZxJj57EIlyBcTe8Y12rH1ORp6do+fRMcI+YWJh7bVNKLRydn27Nw1GKt1aikwpRa4Sipyq0y3Y+pax9XhYqHcw+7ZwLdl2YysSmYQ93+3naAoMpTIokSVgJE0RoFSnxcBBIh43GE2Dv4/9aojasyoFQEkDWz/dQs9Dw/jtiRteR5BoKCZ+fkGtJg2MCXsixKMprkup8oNz3ItjOPuEz+6UiZCNn25g4Hfj4ucmZWkzitGsq7ft9wsQV8uF1Rz+1ZjoPJWq5ksr0ZWqs7oO6UrVwqqfHNr6lRZkSllW6+ex1xaJReI4B/5+QAlg/G8LqA1ZXIRYAb9yxultKEKmlBILZk5WGRo0tF1Sw94HBtLcr5La9LlGQHDcWg0oAdSdXYlCJ8/qEtVxTS3W4w6sB905I+AW9jup2GZm8PfjWZ/P5o6kKRKOJX4IuEKEfemdoOZLK1GoZfQ+OsnQc1MUry1MO0+SIJ1twM3A76bT9i019lCmlFK1zczAxLQIcTV+oJzStYUc+rXgijR/0MFct3CuN5xfLkY1qguVorX90tFllo4Kf0ObPtuIxqzi0AO9+O0w8sqsGHO47WuteOcDHP/NBO4pHyqDAk2RlHnjJK/u7aenp0fYyWNgMAiT3hdccAF//OMfs45dXnnlldc/u+677z6xUX3NNdfw6KOPEo/HiSeBpeP74TjU0cbawvWEfRHc00Jt1n5VNboKDfvuHeTA94ewdBoF9yQTdF7fgHdBgGdT49I0xaq0RXTJuLSjvxiibJsFSLgvXdfA3GEbYy8siBBL5ZYi5BoZ8YSLsrFRjWskkLb95osrsKw1iQAICE3++cN2bL1OANquqCbsj6TFsXnm/ILDAIAa1GoBwEgq7I0SyuH0PfTMJK2X12UASgBTry+JLjzm9XosHaaMCbGKk8yojApq31ueAfMkAaUN1zdAnOyRu2rY+pkW+p+eZHlVPH0sIvSOSjcWZY07M6/X03phtQjUrNbcPhuBHM7Y7yRnvx1rhYbJHJNs2cCvVKkKlcjU2V2SNnyqQVhYlyVST12iZuPH6wS3gizfGcDUoCcejWVEtKlNUloureHoL8fp+c14zu828ddFCpt0Ge5bILgjNb6vnLAnkva4tkqNbzrA3NtWLB0mQq6VCTy1Scqaaxo58PMhAk5YOu5i8i/p323rl1uQa+R039abFsWnLlFDKEDACQWlauQJd1gCiN9h21dbiUfi7Lt/kIHfjVO+w4Kj34u6RE1RSwGzb9mQK+XINTJKOgVnjUM/Xqnjd97aQcgTZv/3hjj+xBQKjfD3UX9+KSVrC0XQKuwN47cFCcQDDDHOq69OYMUKkyCXyykoKEAqlfLGG2+wcePGnOObV1555fXPKoPBwMiI8Ps6PT3N9u3bRXeTZey8yR958xnQoGMLZ+BdCqI0KiAkAeJs+0orS30uRl+c59AvR0SgIQkF7bq7N80pqGydCWWBHEUCKCrbYsIx4cc/F2TyzUWsvUKNtemzjSg0cvbeO5BWp2jNKqJJYFcFKoMKR58n7f5/x5fbhet5Sj3W+9sRqk8tF2GVTZ9upPepafH/0UCUkDfCTAJY0ZSrxDgsWHFdcg05s47jwhEHflt2kCYJOgGs+XANwy8vCIu+UlTWWSi6CK5W0B3DUKui/fI6jj4ynrZfSdWcYcFUr0vrDyalr9aiMmbvO4GwGEupl7MnyyK/+e5FFEoZS0dzJ6ecSKOvzKPJ5pyNcOzrz65g5OWUuL0UlW4sQlmQHXNQWVSsvbKGnodGCLozF86tuboGhVbO4Z+NZgJKQN3ppWiKVFRuNWfAV00XlOOa9GE94krrV6bKPRbAPellaJW7UlI+eyjTHUkFKpUQteZbCBBbBT/VnGlBbVQy+NQMvU/PULm1MO1YG5s0rLmiDmufm6GnZ9iTAp0balW4J4JEY6AskFO6oRD3+ByjiaSiypPM1JxcwvHfCq5Ik28tYj3uEZ+b2WeDIBSIsdrgmQmKyT9rPlyDsa6AAz8dJbgUZODZaWzHhb/VzZ9vwrcUpO/xKZanvOjK1agMKhalE7zZO8Cx48eIE4fjwu+NVCrlqquu4pFHHsk6dnn98ygPKf0f0Ntvvy3+e8eOHezZs0f8/xSDTI0N8sc7oJhKNspOQqGVI1Ws/DhWn2RBppFh67ETdIWZ2S00KrZ+uRm5Wkb37f1ClFtC6z9cj75MQ8gbZvp1mwiMqItUxGNxbP1ukEhYe20d3gUfPQ+lrK7RQvsH6wRCMwVycQwvoy1WiYBS5+cbGXl5jr5HVwAdfaUWXSy+QmZDGvm7/uNtQsRdyoqtNNellNXYIIBEScp406cb0VhUWePdqk8qQSrPnBAb+cMcc4dcK4BRlug5uUaGNEf8iLHJiEwppf7U4gwAyjXkO+HKM9uxJap3WiCLBSCQFQJ6t/ItxU7oghQNxTKaGqk60X4rDQqKmrJbZlva9UikEgrKtJmQkhbwxTn8q1F8s5kFRcfFFSj1CoxNWlzDKe+VSNn25SbkGhm7bhtg/OX0Cbami8ooWWtk+IUZFg97VtyFEtr6xUYUOjlHHhzFO+HPcFeq2GhArpHRdGEpw89ZOf7oLMRjrLu2mqV+N3PdLrzzfuRambg/AIZGLWsuqyDgCHHoJ+PsTmxXWwxtV9Rz8MEJ8MaIhmOCq0Q8hm/Sz+ikMLG24UPVIIHpvzkYe3GRsReFpt3662rQlWnYdZvg7hV0hlkadBOPxWk9vwzXjI+hES9yjQyJTIK2QoHLOcef/jTMgcMHhH08LKykAFCr1Tz55JO8//3vz3rM8sorr7z+L2rr1q14vcLEwltvvcU555wjAkthggKw9MgLyJCxlVOpaq1EKpOIjfnyzWa0FhWHfjTC4jEnhQ0Ju1+NAA45xzz0PjqZ5lxT8x4L1V3FdN/eJzoYAUQCUTHmTFMEbVc10v/YSFpjpuPDTahMSg79fDQN3PEtBUU77qpTijHUFND7yIQIbDSfJwAqls5iJl8VrjPOQb9YRxkaNKz9cD1+W1CEfqb/tsT034Q6MgmLTHcvie8XHZAS3zXkCmc4FxWv16O1qGm9vD4tugWg+/4+NBqpuI3V4E1BmRaJTIK5Rcd0FkipqEmfMxYuF3ydVNgbzRo3BkIU3zu5FZ1IqfF7qxWPxolH4zmdlFa7SqWq+qQS5BoZ5sb0mL2klDoFWSvJxNj2PT6V1WEJDZjqCtCVqzP2q6hdS9sH63COe+l9eCIDCNv+9TaA7O5IGtj0uQ7CXiHCIxvkb2kziv92DvpxDvopatdSfXIZR342ysIeJ7Unl+JcZVW+7cZWoR78di/2vpU6u/68MjSFSnofncQ5vExJhwldqQL/jF+EkurOKaV8cxEqvZy+x6fSVv/tvKUDvzPIoQdGmD1go6LTjN8vgIXlGwtFSEmukImLPvrmD/PHvUMs2BYgcehVKhXBYJD3vve9vPrqq9mOSl555ZXX/1k9/PDDPPzwwwBcdtllPPXUU8QTESPj9DPu6Of5e6GUatZJtqMyKpErV9qhNSeVoNDKmd1vwzvvZ/aAABVvuL4BbZGK7jv60npHbZdXYW4zEovEmPyLlfFXEnB2iYJYNIZzxCO+zu8IMfTsbFos15oPrcR4JuUc82Kq04mA0rpr65h6ayENRknWhKmAS2/KquQt1zejNAgRd0kIJc116cZWYKWmCThj4rW2/apqChv19D4xlub2BNBwVrkAQq2Klpt9y4Z92LvimJQlek5tVIpw1moV1hUIsPNOC30T6XVSYP7Ebku2o8vEzsvtGJQ8Jv8ZBZxCLF4uhX1Rwr7cPa/u23Pvt9aiRmVQMEImpFTUqEUql1JQqsmElBJje+iBfgKBzIKz9bJaCso0FHXosPem1zidn2lCVaSk+95eFvY70hyKqk4tpubkEoaeF9y0Vjs8Jd2Ljv1mlOWJQNrfAUDxhiIh2u/sckb+OCeOW9sV1bgnvcx223GOedCY0xcDqkvUdF7fgM8a5PBPRth3r/C3oDZB6xUNDDwxSsCZnOwVvm/AGWMsMcm38eN1QvzHW7a079R2eRVFzQZ23Sv8DXjmfGI8TesHKvAtBliemEWulCGVS9HXqplfmOfVv/2ZAwcPCJNjh0CpFCZKDQYDjz32GOedd17GmOeVV155/V9VVVUVMzPC731vby9nnXXWShwTHgFYeh6UqNjIaVgsQrx8MtnCstaAqUYAZeYO2rG0G0TXlx3faMcxvMzAk9PMJ9y3AerOKqcuDrvv7BPj0QAi/ujKQjUVrPtwHYO/n2RPyvVq7RW1GGoKOPrgSJrTzvKUl5BXIEDM6wyYW/QMPjXDcKKnVn2aBU2xipI1Bqb+KswZeaaDItSkKlax6bpGfPMB0dUpw3Xpijom31oU9zkVxNrxjXaCzlAaXAsCSGKs19H2ARlHfpEOE+27bxBVcoF9lmg3dbEGmVJGYUNBVkjJssaEQp8dCci2WC9VQWc4a9wYCEDN8HOZtc27Va4INACkEmLhlLi9VUp12lqt6h1FqIwKdNU6gscze2bqIhVyVZYeYGJsx/+0wNwBZ1aAqWR9IaZmfca+a8pVbPp4I44RD32PT9KT6iwpkbD5C01I5VL23TfIwO8yTSB2fqWd4HKYAz8YpidLhF35xkIkcmGfg9Ygoy/Oo6tUUXd6KT2PTOIa9hNwhsT7kaQ2faYBTZGKXff04Z8Lsus2oW9VsbOIgjINQ0/P4BrzEOsqRmEQBiAZ6Vay2Ujd6aXoKjQM/G6avSlJRdtvbCHoCnP452PM7LMhVUogFKRks5GqHcUipCTXyFAZhHNvxDnAq08MMbuQuD+aE3pe4XCYiy66iKeffjrzmOT1T6s8pPR/TLt37xb/fdlll/H73/9e/P8SM7wafYJX7wE5SrZxDrWdFuRqGabaAqb/ascx5sHcamTxoJtIIIpUvvIjvuOmNmYP2Dj68zE6rq5m+nXhR2znre1EQzH23DUguicBGCo16MvUQva3FnRlWjyjPryLAZZ6hR/39Z+oR12oZO/dA2IMW2G7FnWhiqb3VXBgaMWqcNe3e9HWaMX36co0HPpJL/5E3TJ3wIa5TVh5jBbaL65Jg5wigehKFMUqoMg55UFpUmQASgC77+jDslEAa4zNWkIOn/iZSUBJnPi4tzdtu923pay2X/WZc7sdOIcd4raySVMMTRfWcexX42mP+5dWbXuVLBv1NJxdyegrMyL49W615YvNhLwRjv4ik7gGMpoWSdW814JMLU3Lel+tXffmbuaMvbCQ9b3JWD4hAi69YCjdamRhn4v9/zFMSadhBVBKcTJang+gL1uVHZ84Fgs9y1g6DJDiylDYpqWwUcfoC4tM716iYosZ39xKg2rj9bWoTUp2f3eI4T8uMH9sGc94AOIr55auTIPapGSu20XPw0Ix0nJpOYUNOvbcPYR72EPQGWZ6l1X8TEe/D0unBZVBQct5pQw+OSe6IlWfXkTVjmIWjzkZeX6RucN2PDM+4rE4274iUMo9D03ht4cEt6kKBVqzkmgkysSfhRNMqZdTWCsEJO/fu5v+uX6sVisSiYT44TgymYxoNEp1dTXPPvts3jEpr7zyyutd6KSTThKBpZmZGdavX4/dLkx8RYmym7/AAPBtqKaJVslGjLUFYvTHxCuLmD6hw9SiIRYR7J+9CSfEtdfWoTEp2Xf/IEMvTqMyCo2K1suqMLcZGHlpNs3Suf7cGjRFKgzNJvx7nBS1a7H3+Zh8e5HKbRYRUNpxUzuLx5xpAFDFNjNyjSwN/Bl6aobZ/XbRKWnnLR0sz/vF+Dr3qB+/PcjE60KzoOH8cpb6nGKkFpCAaxKFTipU5BfiSR1TmeDM0tFlJPIV1yBLp2EFhPGD3x+joFbDho/U47MGxCg4gMlXF0UgKhvEtOf7/VkdhVLVcH453iW/CJcktRqYWq1119UjV0nfsfGzWqVbTNSeVkr/05NpY5fU+MsLOaPW1n6sToj4y/Gdjv9mQnAmWm3wlBibbLF7miIpmz7XRtAZ4sAPhtMAJU2ZGqlKgnfCz+AfpljKEoNi7/MRDcVEN4vVivgixFZNZrZfWS3EvfnBvxRk/vDK/YSmTM2m6xqwDy/T/8QUhx4cy4CmGs6sRGlSoClT458PiJOz225sxTPnp/fRSeYPOzBUCfcRhgaNONZlGwvFpqetx0N3j1Bfb/96GzK5lF239TL+8gKaQiV9j09Rd04ppRtXVuZHIzGiicnEwjo91n43+KGoQYdCJ6egVsPSuJ2XXniJfYcEK30OgEQifKZEIuGKK67gscceyzpeeeWVV155pevJJ58U//21r32N++67j2hUmIBaYIqF+BSv/hhUaNnKGRRVm1AZFRQ16Jl9y4a1z01hAhaK+mNEwivLl7d9tZX5A3b6fzdN66Vx0RGm6+YOoiFhoV1qvFhhswFTNCY6/ehr1SxPBHCOekQn87bLq9BXatl3/6DoaKQuUaOv0lJ/ZgWHhlbqhu47+lAnehctl1RibjVw6JdjBBaFGm7q7SXKNplEUKj10so0h6OQJ4Ik+9wSrikf+kptBqAEsO/eQYo6BPcdbZWaWAjxM5OA0qbPCG6BB3/Ynxb9tueulFpiFcTk6Pdy8Ae9ac5PGVJD+8XV9D2WCXufKDJNX6um7ZIaxl9fyOoUdSJtuL6BiD+aHleWomQc32pZOo0UFKtPCEh139YrjMNqqWG2285slljg9dfVoSvXcvjB0YyINvN6Pbajyxz5+Rjm9foMQAnAMbmMWWlIB8gSx2Kpz0NVV7Hg3J2QvlaNudXI+CsLTP5tgZpTS9OcrtZ8pBZDpZbuO4SJYvuIJ32/1FDUokdfoWG2287QM8IEVN3ZpZRuMLHn7gECiwE8c35m9gr3AaZmDc4hP/oGIwUlaurOrqL/d9PiWFs2Gmm+oBLrMSdDz84y+ZaVoFtwxd98QzN+e5DeRyfxWgMY63XoS9VI5RCPIDqCFVjUotPCkd7DjL49yPzCvNDzOrDS86qvr+fpp5/OOybllVdeeb0LdXR0iMCS1Wrl5JNPZmBAuN8OEWQvL4MVXrxdQi2tNEnWYm4yoCkS+lfzex0UNugx1KsJLseJhWKi01DzxZXoK4RYuL4nJyhIxKhXn2ah+iQLo3+a5divx8V9qTu9FH2lFvMaE7PddtE1ZmqXlRoJIqC05cstWI870+Knak62oClSMaiaEcGfqb9aWRpwi7DP9q+14pn1i+8LLgVZnvIymwBlK08yszzlwT0hvF4ilRANRbENJvoiq6CioCOEayrTOdE9EaT3dxNivFlhuy4tbi24FERVrGLz9Y0sz/nS5gUXDzizug0ldeBn2WuYVFWeZCbsj2Zsp/ex3KYFIPQiVQZFVpemE8nYpKXp3EqGX5pJNxdIaH6vI2fUWsullUz8eYZg9jV7DD83x9Qbc5nPJ45F1ppOBV1fScTA/mQkDVBSGaQoDAo800GOPzGedX/9c0GCnjCu1f1MFRCCkDuMTJkORjWcV8boa/MQBPekl6X+lR1WGWDTp1uxj3gYfGqGww9NZEBT9e8tQ1+tRVepwjMTFJNkOj/XiHchwMDvZ5jZa6OoWQ/BhAOYPQhBqNpRjEwlZQjBFSkJ+G2+oQlFgZzdd/azeMCFoULL8HNzlG0rpOo9xey/Xxi7SDBG2C/cLxU16rAPeQi6wVirQ21SYmzSsDjo5JU/v8y+g4me1/GVnpdCoeDqq6/mV7/6VeaxyOv/hCTx5PKivP5P66abbuKuu+4i9XSQy+Uo5Ar8AT8fvfqj1DbUEo/EkcglEBeirtzTPpYGHTSeVQUIMWKGKg0qoxLPnJ+jvxxn563txONxum/rp/myciytJnyOAId/Pcam6xrQGFX4lgJoi9XEY3EkEgm7viPAKju/2QEIANL6T9SjK9dw9NFxZDLouKwWiVRCLBpHAkjkEkLuMPv/Y4htX2tBrpIz/MI0iwfddN3SjkQqEVdiJbc78dcFCio0FLcYBKr59SVh0kEphTjs+k4vO7/ZQSQgxJ00vL+Msk1FAPT9fpzm91cLee7fztzfZOTa0qCbiDdCyQYTUqk07bWxSJzdd/Sx4fo6Ckq0eB1+jvxwjC1fTKyAS3ltPBan+7Y+dA1a1n+4Ds+cH5VOIdLP4mtv7UiMdx9rPlaDsVonuhhsvL4BbYmaibdmqT2pgng8joT08Q66QqiMSmLRGFKZlL7fj+Po89F1c7tAS8eFCReZQkp4OcK+7w3S/uEaCht0BL0hBp6dZe0VtUjl6eMdjwvH1nrchWWNkek9S0y+ssj2rwkOV2N/ESIAd36zg2gwxp67+qk7t5SKLWbh+3ynj21fbc0Y71gkTiwSY6rbSv3pZThGlul7bJod32hFKpMy3W1l8rUldt7aLoz3nf3CdlRS3NM+eh6aYvPnG1AZFey6bYANn6qlwCKci913DKKtULDx2ga81gBHfjbBzluE1YdJV6UdX28GYOSlWaxHvXR9o0XY3+8NsuFqYVuuaQ/GKp14fg+/KDgz7byllZA/woHvjbL1yw3IVXIm3ppn9k03O77ajEQuEd6TmBwL+yKMvTqPZa2JwgYdsUicPXcPse3GZmQKCWOvzoNMQv3ppcI5e++wuL+z++3IVFIs7UakcglBVxiVUVixH/SFeflPLzEwPIBCqcDtTq/ctm3bxpNPPklNTc3f+9OSV1555ZVXFvn9fjo6OhgfH097XKfT4fF40EkM/MstXyAaiKHQygn7Iyg0cpYGXQQdYUo3FgrRYzHYdZtQq8RiMUZemqVkYyHGygIh/uKVRbpubRdqq2/3Ci42l9YRCUaRq2XEonGkMgkLxxyMPDvH1htbUGjk2AcF4GPnrR1EIzH23NlP3ftLqNhUjGvGg7FSRzgYQaESouiS4EqyVqk83UztSaW4Jrwc/82EMHFVrCIejdN9ex87b0nUKrf3Ca5JNwr1k3PMi0Ito6BcLUZiJeuPkFNwVdr5zQ6xrun8QhNqoxLXjIfjv5pkx03tSGUSdt3WKwLiSZim7Ypqilr0Yixaas0GQk2RdDVY98k69GVaJt9YZPpvS8K21DKxLgRE18/as0uo3F7M3AE7jmEXbZfVptd7t3YQCUWRSCRI5RIkUgnWXhdDT82w9UstKHRywp4ICp1cqLHCMfZ8tx/zWh2tF9cQ8oRR6hQEXCHURuXKdm/pIE4c+9Ayk2/b2PTxeqGu+fU4Gz/dgNYiNPB81iCaImE1eOp4x2Ixdt/Wz7rr6tFXaEQnreR4J8+Jnd/sEKKeHxih4+paTPUFhP0R5g44qNpmRqqQptWRyZpNhOVemSXqj9JyUXXO8U6OadJVK9XVqPbsEqp2WIhFYnTf3kfV6RZqTrLgWfRz9Kdj4hgmnZl23tpBNBxDKpMQi8WRKaTYR9xMvW2j/QNVmfV1Yn9NLRo6rqjH5wigLVQTCUWRK2X0PDqGe9QvjLckztTbS9iO2Nj0uTai4Sh77hxg+02tyBQydt3TS9uFwnkWj8Y5/NA4tScVU9Six2cNorWoxLrur8+8Qd9cL7FYDPeym3A4LEySxeOUlZVx9dVXc/fdd/83//LklVdeef3f1Y9+9CO+/OUvEwyuNPVlMhlKpZKAP8CVF19J87pmseaKR+LE43Hsg8vMHbWx7qoGAKw9TtQmJfoqLe4pHz0Pjgu1VqKvUnGSmbrTS/HZghz+0QhrrqvFWFGAa8qDsVpHLCxcB5JuO6n1SMsllRSvMdL/1CQBd4S1V9UiU8qI+CLIVFKkCilBZ5gDPxgSa6DRP88zv9vOtq+1IlfIRLfMnd/sQCKRMPnmAhKJhKr3WJh+W4jaSvab4jEBmtl5SwfhQIR99w5SuqWQxnPLIQ79T09S/95yVCZF1p5XUYeOtktrsPW6WF4IUHOKBalspQbqurmDWETo7TR/sAJLuwnfkp/DPx4T+3tpvZ1onN2394Eadn61g+VpH1K5hIIyDQAHfyAAUDtuakMikdB9R58Yk5eM6Gu7spqiZj3Dr87SdGaF4LQkkQhwUOJzAksh1MVKomGhrzX0nOAitO3GVmQqGfFojFg0jlwlI+gOc+D7Q9S/r5TyrWYCriAjL8zQcmENigL5Sg10q1CXSSQSJv+2SM0pJczusTH+ygKbv9CMyqhg/NV5ZrvtdN3SQSQYYd89g1g6jTSfXyn2Hzs/14S6aKXe67pFGMNYKMbQ81N0XFkv1unbbhRi1JLHtesbHcTjMXbf2U/n55tQFyrFWnzdx+vQV2rZ9e1esSaOhePsvrNPHBfPrI+jvxwX+6cHfz5KYD7A9q+3IZVJGXh2EnuvR6yfDv1wgLqzKyhqNWAfdlPUaCAaiiJVyOh/agJHv5ed3+wg5A2z/74hNn2+CU2hkum9ViZftrL1RqFvGwvHxMm60HKY4RenMdbpqdxRLNTFd/aL9d7on+cJ+8K0XlQt1pFdt3QgkcLcQRsRX5SyziIUWjnLMwJ4F49ByBfitb+8yrHeY6g1alyudHBt+/btPPvss5SVlf33/ODklVdeef0fVzAY5IwzzmD37t3EYivwckFBAV6vF5PEzOdu+gxhTwS1SUlwOYRKr2Sx10nAFqJknUmIUU/MnXXd3A7A4HMzGGo0lHeamdm7xMTLi2nzfoZ6NR1X1hMJCD2veKInsHDYwcjzc2y4voGCEjVLvS4Gn5phxzfaiUfi7Lm7n5KtJprOqcA+vkxRrZ6QV+jF7PpOL6hg59dWahVjh5Y1l9ThGvNw/NFJOq6qwdSkE6+t27/aikQqEWPAdt7aARKwDy0TC8cobjeKzk5bv9KKQivDvxTk0I9H2Hlrh+jOtOajtRhrCnBPe+n59QRbvtSCXC1j9x19Qs1QqBT6Yz8eoeYsC1XbBXhrfr8zrRcIQg8p6BbqyOZLKrCsMTH5N8HlqfNzTahNSqG/eEsHSBHcfL43hHmdgdaLqpjdb2Opx8maD9cjS+kD7fhGO5FglHgsjkIjRyqTYO0RoOJ1H69DX6HFO++noExDLBwnFo2x954BVBYBtPI7gmgKVXgW/ehKNOJ2t3+tFaQSbMddDD83x85bO3CNezj+yKRQ7yXSWLzzftSFSiRSKbu/2yeOdywi1ETNF1diWWOk59FR3GMBcX5x/qCd0RfmhfFeDHD4Z6M0nFdGWWcRweUw8wfslG8xI9fKhPqURB2cqNmSsNz4a/N4Zr2s/Uij+BwIdXBoWRjvrm+0I5FLmH57icnXrYKrUaGKXbf3YVlvoPnCSuHcuqMf8xo9rR+owj3jo+fBCTZ+sh5tqRrb4DIDv5tmx01tQrKKBIjHUWjlWPvdzO1eov6sMvRVWnZ9JzkOK/PyKoOEzTe04Z71YqgoEO95jv52FM9skO1faEWqFPZx6q/CXGo0GGXP3YNs/mIzKr2cQ78cxdJmoOo9xcQicQ79fJTqriJKNhTimfOjK9MQiwl95l0vHKZneh/hSIhlzzKhUCit5/XJT36Sb33rW/8vf4by+l+ivJNSXgDceeed3HnnnQD09/ezbds2pFKpCCs89MhDqNVqAoEAFmMJl3/wStQqFaY6HSqDnIg/inPag2fRTzQco3SDAl250EjwWQMoTXK0NVpUOmGSxN6/DD5QaOTEIjEm3lig/oxyIqEYEqlwIQk4Q0T8Uax9TgBiCcil/vQSjv1ynOU5PwqNDKlMglQmBSm45jxs+ZdmZg9aqdhYgmc+RP35pUhlUiLhFbeb0HKYWDTGzJs2SjoNmJv1aC0CsOGe9mGo1hALCMBW0BUi5Bey7F0Ty1jWmpDKJDj6fLg2eNGlZHCGAxHRbtq54KPCH8U55GbxoBuZRoaxUsuG6xsILYcJOIKEloV9WuyxU3e6RrQtdIx7KGoULrTaYmni+wsFXdTtI+KPYh9ZZnrPEmuvrEFbpBH3wWsNiHbaxmod8Xgc27BAbNuHl1HqFczscTLzupP1n6hHmmLTGPFHcYx6KNtUJBQNoSgBq0AEL8/6URTIxGiNrV9uwTEuEMHOkWX0lRpUBUoa3lvK8rQ3LcM25A7jnvfjnfUTWg5R2KDDNSa812v3YSjXUbK2kLm3HQRdIXyJvF3X+DJlnYWilbZz0ouhTIO2WMraa5sJOkP4nSF6H5lCW6MVxmVc+K62wWXMrXomXxNWTfntQSGKBQgth5AqlNiGhNc6xjyY2wWXrcUjTureWyo6VfhCYaGYTgyTa9pDQfHKePuWghSUqGl8XwWLhweJ+KMsHnfRcn4FMpWUiD/K0pAbQ3kBflcQSVzC4uEVklqRcMuY7rZRtb2YSChC1zdaCPnCRN0xPItBpHIJhgoNMpUUmVKKY2QZY50WiVSAmCLBCLGohLk9LjZeXwuAx+pHU5zYX7MG14SX9kuricfiBF1hdr+9i/7Jfnw+H4FgQJwckyvk1NXVsX37dh5//HHyyiuvvPL675dGo2FsbGV10fXXX8/DDz8sNm88cTd33HEHcpkc4hI21m3ijAtOp7BOj6xFin1wGU2REvecDzQQ9IRQ6ZRYOgqZ67ZScIEaTaKuAUQHAZVJTSwewz3nIx6KE5fEMFboKDAr2XlrB7ZRFzqzRowmixMX488W9ruxNJvw20LoS+K4Jz3oSwtY85FaAo4Q3oWAuHqmpqsEEBowAPaRZUoKZIz/RYgsCQcjKyuH/BD2RJCpZcwfsKItK0BpkuNPLORfnvWjr9TgdwmrpcOeCPZEXTO3z07tGSWMPius6HLP+sTr6t57BtjyxWac0162fqWFqb2L6Cs0eGaF7URDUVJXagSdIZyJVWyKAmEbwUCi/pv0ok1Yao//dYHS9SZ8iyu1SskaE64xN3VnlCOVSsWV3QB+WxC/PUT/E1MU1GrouKQa59hKXVZYpxMWACDUcMnIXN+sj7AnwtQuKwt7nNSfV4a5eSUS17sQQFuqwtxqYOC56bRxsQ97UGjkzOy3MfumjXXX1a9ErfghFoshlUpBA46hZdQGBX6XUPe453wYKrXM7nOK4+0Y9tDx4RpURhlhT4Seh4bx22MYKrXCWCWcl6LhGL4lf+KYuzFUaXFPB/Hb/TTH44T9KbW4Nyy6SIT9EaRyKe5JYf9DgQgytXB+TLyySMlGE+4xoR51T3iIdZnRlWgo7yrCMeHBUKFl7M8LbLmhGZ8tSNARQleuIRSMoFTJsfW7BccvmbBaq7yriLluO97FAGFvlE2fa0RtVBL2RFg44KRsUyEeq4+iRiON51Zw6IERoWFWpqHAosJhUQn3EbsEl1eZQiYs9PAL56DKLCcWhPaLK1EXCtud7p9l/OAQh48cFs6tYJB4PI5cLsdgMNDY2Mgvf/lL1q1bR1555ZVXXv/9+uxnP8tnP/tZAObn59m+fTsulwu3202cOI898xjql4SeV0lhGR849xI0KjXFa4xoS9UEnWGc0x68c0G81iC6So3owOca96IrU6OtUlNgEeoF20DCFUmvIBKKMrVnEblCRnA5gkIjY8dNbfgdIQL2ELZBoe8WjQlQc8WOYnp+NY57wotSLyceEyJYY5EwrhkPnZ9pYm7vAhVby3BP+yjdIsDr0dCK65N3MQCSOFOvL2Fq1hCPF6MqEmpDx5gHc4ueaDCeeK2fSER47/K8n7A/gkwhwz7qwVjjxlSvE7cbcAZJ2jH5liMEnWHsYx6sB10oNDLMLQbar6omHo3jmfERDgrbndpvp7jNyELCNd0xsoxCk2hJJ1pqYq0SECJFbEPLzL5lo/XySnSlWjHmzD3lE3qACLEl8XgcR6IGcgx7KLCocfc52dXtpO2KarGuAwjYQ9hHlqkoNhMLx4h4oyzPJ2q6MQ+qQqXoGr7x0424Z4RaxTnuoajdgNqoova0MpxjHrQpvUCvNYBvIcDyfAC/1UfQWYhrUuj7uOe9WIwmijsMzHbb8S74CdiFWnF5Nkg0vBIf5xhZpjCmR22CtR9rxjPvI+yJ0v/EFGqTAKnZxoTzZf6gg4odZtHRyzPrI5I4B/zOICqTAkey5zXiERepzR9cwtSoY3neJ45/LBYjnlgct9TnwlBbQMCZqA0nvRQ26Wm5sIrdvf3iOVu+w4KqUEHQGcZ6zIaxWod3KYAESVpcnUItHOfJvy1Qd2oZnsUwXbd0EHSHCLn8uCZ8KApkFJSpURoUqIxqXOPLlG8rElfZhwIRYsSY322n7UoBfPc5AqAW/tb05VpcY17aLq0hGonhXwqyb98hxl7sx73sTut5KZQK6urqOOWUU3jooYfIK6+88srrv18qlYq3335b/P/tt9/OnXfeKfa8nHEbd3z3dpQKJfFInLWVnZxx/imYanUoO4QIXn2FBte4F5UBvEsBdKUaStaYGH9jgaJmgxiXHo/Gxfk4qUIG8TjLM16C7ggSBZgqdcg1UnZ8ox1rnxNJHAYTTpMSKUgTvQfXgBP/ZjO+hQCGUi22kWVMlQU0X1xJyBfGPrQsfk7rudUgQZxbso8soypSMNktXJND3ghKvUJ07PHbgih0MqzHXEjlEnSVGsJuof5wJuqygEPoP/kWA+Jc3vx+B7pyDUMvC7005+gy6sSc28EHhtnwiXocEx46P9/E1Ftz+JeCeOaFnkzIE0GWkoKzPOfDm3DAVCVMD0KJnpdt2I2hUqhrh56foWyjCZ9NqFV8S0H8S0FcE16qTipBppTic2TG5g09M4PKIKXjQ/XYE1FjjhFP2j64J71irRJ0C9ud2Wdj8YCTiq4iZBtWXuua9GGsL6BkQyHDzwnfzZHYrnN4GY1JyeReK7bjblreX4lcuVLvRaMxZHIpKoMU56gHXamaYOL7OMY8FDcbNOFpwgABAABJREFUWOoR3Jl88wHso8s0nFdGQbka/1KQ3qemCVqDaAqVqAuV4nEMecJ4E/OW7mkv/iUDnlkv7okgsUicsC8s7oPP7md5WjgWflcQZYFcdFcKeiPCduNxrEdcVJ9iwT0h1GWexRCRUBRjdQEVO4vEc2z8TzNsuK6O5TkfIVeEgmIV0WhMmJcf9uCZCSJRSIR7iZ1FzO6y4xj2EIvEWHtNDbpyDX5bkKVjboiA2+qntMNE03srOPyLMZwTXszNetQmJSqLimgwytTbiQSWAjnxeBy/PYh3KYhr0ks8FKf5vDKMdTq89gALfXa6e/o4eOggUqmEQCBAPC44VRoMBjZt2sSvfvUrOjo6yCuvVOWdlPJ6R5122mm88cYbWZ/TarQY5UWs8Xax46Y2wT0nQWo2X1bO0AtzlG8qpOGMcpYTq3IqTxaciGbetLPz1nZhJfq9g5R0GijbVMTRx8bZ8YU2fLYgR38+RtMHyjE3Gzj66wGqz6hk8AkhHqvrlnaICZbXSa29tg5DlVZ0UNJWqPHNBlh7bR09CfvHbV9tJeKPihEo5nUFtH6gFvekl56HJjJi15KrzI4/Po5rKN3CL+n0k3RhSlXXLe0QT6xaT9HOWxOuSKseT6rmvRaioZgYbycMdPo+ZVPV6cUZ+2DZqP+749xAoIJDy2H2f++dLSBTVdiuxTHhS9tXTTGYmgqZ253dlhHI+v1Sj9lqNV8iENCLPU6Gn13JnG29shJzk4GJNxaYeTPdJrvrpjbiZLEEl0jpuqkFiUzCrttSoupS9mnnLa0EXWEO/khoVpVtNVB3Rim9T07jGvbRekUFi0ecBJd8+JYEO88dX28WaPXbV7bZekUF5iY9A89OYe/z03CehbmDDhrOKkNrVrH3PuGc3HlzK9YBN35bEFNNAT2/ESCsjddUszzrZ+S5SarfW8HAE7Pi/sUicXZ/d5DKUwvxLAVxHfex7StNgvPD/QP4DDaCpQ4OHDyQMZ5yuZyNGzfyb//2b7z//e/PfozyyiuvvPL6H9G+ffs488wzM1ztkioxl1Jha6K6vJ5Nn2wQXSSLNmpRqJQs7HEKjkKKlRVTrZdVMfnaNC2XNKS5FHVcU4tjeBlDlZaiZr1Ym2z9cgvLM34m3lqiZI2eiVcWKd1uovHsCuYO2Bl7cV7cH2GF0spKbE0RaEq1FLYaGXl2DvNaHS0XVjP0/LQY/7Xli80o9QpxhdHq6LWd3+wQooKzxI3t+EY78Vg847mkw878QQejL6zUBs2XVmLpMIrOUtm05iO1mZEeWeLgUlXeVcTcYXv6azRgKNdkjWU7kZKrw5PH6++Rea0OW0+6jXTVKcVM/+0EecGQ8f2qTrcQ9oUzYuyS6ro5sQrvtt6Mx+MxxOOfVNJhauzVeeZWRZcUr9fTclF1Rhxfcp9Ed6dfrUS3bfpcI3KljH33D4IGOi6tpfeRCTHCreJkM3WnlWIbcDPwu+n0/YvGhRWMGmg8s5zZfQ7WXV3L/GEHk68usuFTDagLlez5fj/rPlTP1JvzOAf9aQ5aVacUE/ZFWNjvFFdf9v9+HP+Cj/KTSxn9gxDtsvObHaLLVnDbAsPjw8wtzCGVStNWkFZWVrJx40aef/75Ex+nvPLKK6+8/p/rYx/7WBosniqtWkuRzEKbb2vG9bruvBLmdy2itmjouLKe5RkhcsPSaUSmlDG/O+Ga4xMcX4yNaqreU8rx302w7fOt+G1Bjv16nKpTiynvLOLYo5OUdxoZ++sCBBBW4cskaT2MpNvSyEtzLOx3oC5RE1gM0HZFNf1/mIIAbP5CM5FglCM/Fa6x2io1Gz/WgGtScNVZHbu2/ro6dBVa+p+azIgLK91SSOP7ypl6e1GMzUpq+9fakEgzeyxd3xBWbeeKY7N0GlFo5cy+ldLzWrVP2VTRVZQRh1bYVpAGxLxbCS7i4ZzRbbmkr1WzvBDIiE4rXVvIwv4T9LyyfL/2q7LH2AFUn15M9UklLBxxMPLHlbq27uxSKrabGX99IX38EGJsJTJJ1vo51aUy2z513dJB0Bni4ANCT6qoQ0fLhVUMPDuFo99L/fmlOAbdBKx+MZ5v+9fbkMqloktV6v4l3amqTy/G2uehZqcZQ7WW/f8hjPeOm9qw9btxT/spbNLR//gUahN03tDB8qSPoT+MU31aBUPPJnpetybuDe7qx9JpJBwK4ezxi85TB3/QjyswT2CNn33792V8f5lMxqZNm7j11lu56KKLso55XnnllVde/zMaGRnhzDPPzHAWT6rUXEq5rYVidSk7v5pwdv7RCLp6FRqzGut+F1u+1IIyxdGw7n2lzO2yUntWOcXtRg78ZITgUpDmiytxTXpRFymo6DSLzkabPtOIZz7A5JtLFLfpmHnLhqFezdoPNzC738b4n1aiW3fc1E48FmPPXcIcj8ogRVWooLDNyMTLi+iqVKz5UB3DL8xhOy708dZ9vA5dmWZl/m9V1JvgYhll370pc1EJbflyCxJg332DaY9bNgjRp6v3L+noM73LKoLLq9V8SSVDT8+kP7hqn1bLvMaAZ8qdHpWmAkOZSoy0e7fa8Il6CspWXJL+HhmbtBmxaiWbTSeMtQMyvp9lgxGZQsL8/uzv23ZjK1K5NKO3te0rrUikiDFoSZVtMdFwTgXjf5nPqE91VSrWf6wxkTSUEn+X2Kfmi4U+Zc9vR3GPCzu59poalAaFGNWWPGaqYhXBpSCmlgI6LqvB2udOO5Zbv9SCVAZ77hHOl5ozLSzstbL2I00sHHMw/YaN1sur0Fdq2P+jIVovqGThqBPnoJdNn2lEbVLSfUcflg1GAKxHXLReXkVxq4H+p6ewDS9Tc4qZyVeE+4Cdt3YQ8kTY/71B/J2LjM0NMzs7m7Xn9Z73vIcnnnjixMcpr//zyjsp5fWO+utf/yr+++DBg5x++unixJnP78OHjzme5C93Sik0FiKPFbCtZDuWVhOFNXr23juIyqQQosKAmpNKkMgkzLxpZ9d3+mj+YAVohceVBgVardCEabm8EmOTFkOl4CDjX4LB382w6TONzB+yE3SFIbEG3rJRT9P5VYy8NMP4G4t4RoUL18brGsTosKSSUW4A2hotSoMy7UZ955fTIaLeJ6douaBCBJQ2f6GJvt+O4luKEXSHiEfjTO8RfqSTUBSAfykorvpJ1a77Vj6r/vxS5vcs4E/p9VTttACkQ0qJ6/DmLzQhV8vTvg/A9pvakCmkwn6kXLOTgJKmmLTPSG5LZVT+XRNiq+PWRCWAHkdfJkm17lrhPa5hF76llQtVzXstVHVZOPrbcfF4JZW0/q47t5Txl1aKruTFeeiZWWb22PDNphdEU39borBOj2MisLJfCPsW8oZJtUxo/1A1QXeY0RcWmTvkQKFdoa1bLquguEUvTKztcQngXYGUmvcWM/nnJQKuMBKphOIOPa5hHwNPzFK+3Uj7pa1ihNyRR6fxTfrY+sVGAPb9xwgze50U1umQaiRs+GQNs/vs+GbDaM0q5Brh81uvqODwg6P4ZsPs+HoL0oS7QmGtiqGXp7Hu97LlC40o9YI7mVRGIn94Ck0x1J5UQtgb4aWju3n9zUmGhoZYWl5C4pEQn1kZgLq6OjZu3MgzzzyT+4DnlVdeeeX1P66tW7emRRB89KMf5dFHHxXdkBZtCyyywOG5t3ntbi1KiYqG+Ca2ntGCokDOwlEnu+/sY+21NWgqNWgMEorbjWjMKg7/ZATLNgOGZhP+PU5MdQXoytXsvWuAgloNTZdUMPz0LAqtHF2JGv+Mn0C5irXX1rFw3E40FGN+twD6bP1SC5FQlF3f6UVTKTgMrr+uHl2Fht4nxhhJQMSFLQYkMglem7BCvObMEvb/bEgEZKpOKabm1JI0+Mna6xIcAIDGC8qRKCQMPy1MUoSWw8QiQj2hKQJ/ohfgnvAQ3WZmrntlIgdg6KkZpt+24U+sGGs4vzwNYmq8oBxTnU6Y3HsiZaLIjxABdlk9I6/OpsE7BbUa6s8so3KbWZxsSb7HPerPCTjt/GaHCJW9W+38ZgfexYA40ZhU8ruvBpQ0RVJqTi2hfGsR++5Nb2pt+1orIXdYAINW7V/NeywQJ+17aoqkmDeYmX7dyuGf9IljnSq/PUQksOLckISGFvcvUd5pJhIUjrumUkPbhRUc+vEIS0eXqdwWYPDpcfF9Sfv27tv7OJZo4lSdUozNH8Rvj4m24cKHQu8jE2JE865v9zL7pg3XpA9dmYqum9s5+ug43gk/AWeIWCROeVcRxR1GYdsakGtkmGoLcLdo8Mz5OfKzUQwNGvQVGurOKOfw1Ci2Qbc4MVhzagnRUIyF/U6W573YRtzY+3xs/UoLCq2c0T8ssNw8xR/+MMTRo0cFZ6U9K+Mkk8nYvHkz9957LyeffHL2g51XXnnlldf/L3rwwQd58MEHARgfH+fUU09lamqKeDyOL+DDxwTTTPDa/RLMRWZUcQPtkk4qNhdT3GJk//eGGH9jXuwp1J9RhlwjQErdt/VSf14pqKH2tDJ0FVq0xWr23jNA/fmlGBvVmGp1KArkBNwBxv4UYM1HalnqdeNbCiJNOFrqa9WsuaqOkVfmmN5rwzct1DWdn2oQot7vWZk4kauk4jVTbZJiqNKmTQrt+Jc2YAUuGnxqkuaLakRAacMn6xl4bo7AfIBIKEI0FMN6SGgoJaEogOUZn9jHSFX3HX2oTcK/q04tZumInYBzpRfUdE4FEqkkHbJJtHDWX1eHqlDJvnvSa5gkIGbvc6ZtKwkoqU2I8ExSqRFn71abbxCi2TIm0RKmScsTmSTV5k82ozIpWJ73i8cFBBir6ZwKen83hmsk/X0tl1RS1Gyg/n2ljKVMNNadXcr4KwtMvb6E9bhHHOuk5vcuULLexPLUCpiV/O4BZwhpiltBwwVlxMNxxv60wORbVgpKVOJztWeVULmjWIyg676tF9TC8Zp+YwmfXXC5LGzW4+j3MvbCAsZGNZ03dIgRckceGicwH2DD9Q3IlTIO/GCI+b1WSjaYiEljdFxdg7XHRWBecL9Q6BTifh19ZBzfdECsowD0DUYGXpjCdnCZ9Z+oR1+hxXrcQWA5jmN8mb5HpkANzedXEnKHefXYPt7Y9zrj4+MsOIRYw/j+uBglUlNTw86dO3nsscfe+cDnlVdeeeX1P6bGxsY0Z/FvfetbfPe738XnE+aHFmwLLCAA22/drUGnMNAQ38DGszaiLVHjHnSx//5Bmj9YiaZcRSwCFVvNGKu0HPnFGAsdDgyVaqxLQSwdRoz1Bey/b5CFQ27q3lfK+J8WUJkEN6LgUhDvopz2K2uYPbpEyBth4YgTgI2fEKJ+d9/ZhyrhlJmMDut7apKJl4XemKlRj1QuI+wR5qkquoo49ui4CMiY1xhovbiKmX1L4num91qJeIQ+SuVJZlRGBaMvCP2woC0Iyd5H8tIdBPdsgJA3wtwqyGbqr1YWe9wEEw4/NWdY0mCliq4iLGuMSGUSBp5cWdBFEDTlKjZ8pJ7x1+bT4B2VQUrrxVUEHCsAs7gfSUApC+TUdXO7sNA/9T3voJ23drA8K4D+qVIZIOgmA1BCBU3nVlB9soUDqwwWNt/QTMgbFra1at8az6sAWPU9wbyuiNm37ez9QSYwBuCZ9ZNq85KEhuaPOak5tZRgwg1dZZDS8sEajv1qHM90EMewh9FXV2q8bV9pRSKDPXcNMPTMDEPPzGDZaEJlgaA1iEKnQJFSVw89PcPmzzehMijYdXsfzkEvh341ikovZ/uNLfQ/O4Vr2I/fGgAJmDv0lKw30ff4VGJ/FJiqC3BWegg4gwz8bhqVQYK51YBSL8c54cU25GbyVeFcaT6/gkggivWIi+UFH8uzHmw9bjZ9uhFNsYrJN5Zwls/y/HOjHD5yWEj9SfFCkEqlbN26lbvuuotTTjkl61jmlVc25SGlvP4udXZ2pk2cffvb3+Zb3/oWkUiEWCyGzWEDbDy3OMkrd6qQSqRoYka2tV2HXCNj7NUFjjw0RusllVg26gh5YljajBjKNez//jD1F5ZR2F6I7007xS0Gihr07L6zH22Firr3lTD+t0U0xSqqTyph772DWDboaL6kUohvkErwLEXwTfpY/4l6vNYAfmuQ5YTF4dqP1qKv0nL4p30isLP28mrkGhmuMX8aXBRLXHlKOg1Un1TCgV8IF9a6c0tRGZXUn1vF8YcnmXvbwdzbwmopy0Y9zRdUC4TsL8Y4nDKZtOMb7Uik0H1b3wpEpIXyTjOl64vYneIG1ff7ceSqzEYPgEwpE2GvVI29MouxUZ/VbSnriilIWPjJ3pVLU1KeOT8FxeqMx7d+qgWFXs6ue3szttXz6AQNZ5WmAUoA6mIVSCAWIUNHfzFGw/vL0gClypPNWNYY0ZWoOfSTERFQ6ri6GlOdjuOPT+Aa9q2s1tPCzi+3Jxp2gxz4wcjKB0ikFDboiEXijL6wyPjLVhovLGXjp2o5/NMxpv8yQ2FdCwFXUHz9jhsEYGjyz0s4+n3sum2Azs/W03VTC913DjK3x0VVVzGuqWW2fKGR478VPk+WiJ0pbNNSssHE7u8Ooi0G7TlVVO+04FmKMn/UweSfrZRuNVLcbEBrUjLw1DiuqWX6EpO8taeUEA3GsB4fwL8cxDHuwjfhER3MFqPTRMwO+n57gJGREeLEoVsoEECIFtq0aRO//e1vqampeXcHPK+88sorr//f9dBDD4lRBH6/ny1bttDbK1zTk7D4Qf7CofteR1egw+8Lsp4dGKo6WHeVhr33DLBwfAmFVmjCNJxegUwpZWGPk0MP9FJ9diWaImg5rwJNsYrFww52faeXmjNL0JSpqX6PBaVBQc/j41j3umm9rIq5AzZkSulKTRKNs+lzjVj77Ci0MpyDQu3VdXM73oXASg2igaquYso6C9mbWIXms/qIBKOMvS40ZDZ8qgHHqIfZBKxdss6ERLoCKSWdMAHWfaIVuVJwunGP+sWV4+a1OlovrmHxuJPhp2dFQGnTZxvRmFW4pzyiq9PIc3NEQzHGX16pOdIkAa05vfbxTvhxjnsZe2Ei4+WaIimbPteGfynIoR+PpD0X9kRwTb/LogsBRAp7IqKl9coTsOlzwor3Az9Ib/747TFs/W4WjqSvrgeQyqRifN9qDb04jc8WTntsw6dakSokTL9uTQOUdt7SQSQoTIge/slIyusbKChVc+Q3Y3gn/Gkr0BrPLkVTrKJ0u4mFPU4Gnx6l/UNNDL84g3vUj28pSDS0UisaGjTUnFpCyXoTB384zN57BtBUaui6uZ2lATdDT82wNOBCU6ii8YJyVCYlvQ9PoNJKkMgkWNoMlG0yMfbqLM5Bf9okWN0ppRx6oB+/PSa6jo08N4euUsv0PiuTf7KKTqqzby1QUFWAdynA4BPjaMrUlK03E3SGeO1vL7P052HGxsZwxV2QPp9KU1MTl156qRipnVdeeeWV1z++6urqmJhYub4/+OCD3HDDDXg8HuLxOEu2JWCJmfgof7tDiVymQBcvYtOaD6EpVrFwcJmjvxii5bIaijp0+GZ9lG82U1iv5+ADw1SfVYyhSotvOkB5p5mSDhN77h5AbZJSs1OYVDLWFqApVLL/P4YwNqqpP7+UWCiOVC4lvBzCNx2g7cpqIap23IM/EbnReGE5lg4jhx8U4BGAtivr0VpUeOd8ImDjnvKJsbv6WjWN51bS/7hwPbd0Giko09Dw3hJ6H53EdnQZ29F+8bXrPtLA8rSPY78ep/fRSXGctn6pBblaJjqdJ4GhmpMFZ8XUhXZHHh5DU7QSS5wqmVImRrmlavCPk5SsK0oDlJLa9Blh8mTX3b1pbkWOEQ9KnSIrwJRLzgkPplpdxuMbPiLUOAd/0J+xD8cfHqLunOo0QAkQemdSSdae1+DTMwScobRJxKIOHRXbzRjrCjjys1ERUGq4oIyyjUX0PTmBo9+bBqQJTgwR9t07KMbUJVW2vohYNMbYnxaY322n+vRi1l1bx7FfjzPx5iIl601iTC/A1s8JtdL0niUC8wF2faeXdR+tY8dNbey+sx/XSIDAUgjHmIsN1zcw8IxQmysLBJBcX6umbFMRe+8eADW0nl+N2qhkeTbIYq+T6TeWMDaqKdtYhL5Mw8CTY9hH3cwk7gGaz68k4o9iOzhAwBPCc8iHc8gvAmrO+BK+2kUef+woQ8NDQs9rz0rPS6VSsW3bNp544gnKysre8VjnlVdeeeX1j6F//dd/5V//9V8BIRb9wgsv5LXXXiMajRII+AkE/CzxCvt+9md0BTrCnihr2YqlrQNjdQH77x9k8q0FtMUqAWB5byUqowLrERe77uml8ewyVAYpjWeVUtisxzXhZfcdfZRtK0RlUVH9Hgv6Si2jL06z//5B6t5Xil3pRK6TQ3IaLhhkwyfqmT9iFyLg+4QezbavtOJb9NN9e4qr4HvLqOgqZn/CCSnsCRJ0h5nvFiYk26+sYXnOJ7rvlG8zo9TIRUjp2EMrdWjnJ5tQG5XsuqeXoDXI/vuFbeqqVKz/aKPguPj8nAgodVxVg6lJh9caxHZMMJmY7bYLhhFvZfaIYhFAKkFlVqY9HnTHsPY4mczyHlSw88YOfAsBDv8ifTGdf3FlLvZdSUVajFuqNt/Qgd8W5NBP0vtqBGF6j1WMR0uVVCFJi31LVd+TE8TD0bTH1l0nOHLN7renQU3bv9pKNBxn//cG6X1spd5tvawKc6uBnkdHcY8F2JvihFV9ain6Cq3o/Nn3zCTrPlzH1FtWnINe3DM+pElDC4kEVbGK5vdXCL3Dn45y6EfDqAxStn+1BfvgMkPPzrLY40RfrqXqVDMFFjUDv58hFo4jU8ow1hVgrC5gqtuKa8TPpusb0CT+Bio6CznwU8FNbMu/tKDUyZl4eRFDvZGJtxaYecPOumtr0Vdqsfe5kKlluGa8DD89Bco4dSeV4l8K8ubeN7DtHmFsbAxnwAljyd0XvkdTUxNXX301//Zv/5brCOeV1zsqDynl9V/SN7/5Tb75zW+K/7/ssst4+umnicViBEPCL7sfP7fffRtKpZJQKITWo2e94Ys0nF3JnrsGsI+7KDBr0VaoKGkzIlNKmXnTztDzU5RvN1PYrqX+jHI0RSqWp70c/kk/ZSdZ0FaoqD+zQgBw7u1l6MkZwXlnyYeuXIPWomb3HX1oi6V0XF2DVCFFIpGIgNLWf2lhccCB1rjifrTzmx34UlarV7+nBJVRidakxucLsLjPinfOJzoUdd3cTsgT5sD3h/FMLxPxRxl+RZjkanh/GXO75/EvQdARQp6AVVLdfeYP2XGMCAWDeV0BtmNe0Y1IUwybPiPsTxJ4Sm1GpLo2LR50s3hQ2E75jvRoNduQG1NtQcaxG/nDHCPMZTx+IvU+Mpn1cduwG3OTISPmTVsufKeelOJKWyzFtxRj8InptLkcXYOW9R+uwz3lo+fBcUafFwqz5LjMvGmjsEEnbktjjuO3SbD2ODBWFxAWYmVpvriCoWdmwQdBV0jMwC3fYaL+zHLGXl9g7m07A89OYhv1Cm4HPrC0G0XXIt9SnGO/HmLj9a14rQGO/GyCqV1WZBopmz/fgLXXxeRfVoq08u1GtKVq9n1vhKrTilDq5dSdWcnyvJ+jD4+luyLFY5TvLGPgxUlsB7103dyGRCph8s9WTI067GMu+h6dE6Pa8M7QcrmQfdz7mxEsLTpMlTr6l6bZr3+VqaeOMjY2RogQ9IJCoSCZ4rl27Vp+/OMfc9JJJ/1dxzmvvPLKK69/TGk0Go4fPy7+/9ixY5x77rnMzMwQj8dZ9gj1yUH+xuHvvIVMJiMaj1EmvYqGugY0lRqOPjTOmiurabygnJFX5yhuNmIsL2Df/YO0f6iSko2FuEf9VHUVU7HFzO47+yju1FJ7cgkTryxibjNgrC1g93f70VRqKN1uwtxsRFOkIrAU4cAPhmm8oBzXnHD9TS44qj27hKImPdN7lgjahYv2xk83oC1WC5Bzoo9RUKpGZVAw+eoiaARnnaJ2oXiqOt1CzXsswjW8x4O1x4WxJlHjaKD+9DLGXpwn7IsSC8dZPCzUQ0nXoUM/GqH9ymoRUCpq12Lv84mA0rrr6tGXazj0i1H88wGcg/60lfSaIil+uzAx1fuwUI8Ur9ezNLQs7r/fHiPsiYi58anad/9gxmMnkt+e+z1BZwhrX3okYOkWEwv7nemr41hxN0qF4iF9/K0HV7aVHJfhF6dRJwGtFHeosC+C3yEcQ02RFEtnMZOvLjLx1zmaz6/Guyi8cPMNTci1cvZ8t5+eX49T1K7FvyAUiwqTBnWhkvozyjkyOsqRn42y8dMN7Ly1Q4TOHEPL+NxBNn2ukUMPjOCf8SORSFBo5XR8uIbepyfBn4iik0pAA9qyAnZ9uxdNmZpNn2zAVF1Ar3cGa7+DhW4rpdtNVG4vRl+lZWbXAl6rl6k3raCButNKCXsjWI8JE9GLPXb89hjrP1mJRA5/sb1MeZOF/T9/jbk5oYaeOgJqtTBGRqORc889N79iP6+88srrn0gf+9jH+NjHPib+/2tf+xo//OEP8fv9hMIh/j/27js8jvpa+Ph3tvdd7a56lyzLkgvuxsaA6b2nACEBAoQAISSEFAK5T+4NgZeEJJQAoQUChBYIEBN6L6a5YWzZsixZvbddaXuZ94+R1ha2sSkuCefzPEaaurNNczhz5vziiThhQvz+tuszOS8XXmZmX8yk4wr54Pf1dK3sx1PuxJJnIbc2C5PLSPfqQdY91ETRgTl4qqwULszBU+YgMhxn5S115M7LxpJnoeLIQqx+MyvvaKLlpV4KFvsYbouQVelETaW1m7QsMOUbRaBTUBRdpkBp5vcrGWgMEOkzZwqUFl5VS6g7zJp7mgEoW5KHLduM0W0hOhxlpGmEukc2M9ygncvn/7SaxGiSVbc3MtITJTacoPVNLVdTfIifvlVal6RQbxSrd0unnvGhxFrf6iXcpz22p8rKcIPWbSjcHgULLPzJxOPZusB7665NgcYogUatKCZ7ppu+1VtunuyrC5Bd697mvWt/o5/2N3Yy/O0nbD202tYG6oMYzPqJBUoW8FY4GKwbndCN0+LRER1O0/xiD80vbimCt+RosUmwTetENF6gNP66DNaNMlAToP6JjrH9aMVVfWuGya7xkIxoF9ZKj8ih5a1eiMJoT4RAi9ZVKWuKnSmnldLyhjYUXN1jY+/j2HuRN9OL0T52GSAKH966ccLr3/xKD+YsI/t9p4LBhiBtr/VnbuD07ufAnW9n5e2b8M1wYs+xUHZINgMNQT5+qJVodzRTTNTwVCfFC/3UP72ZgTURFvxM63zZ/kY/vloP/RsCbPxHh9a1ymOk8bluyo/OJTocp+7Rdix5FvxVbhrrmvjQ8TJt//6Y5uZmYsRgAxgMBlRV65g0Y8YMbrzxRpYsWfKZ3mchhBD7JrPZzAsvvJCZbm9v54QTTuDjjz8mlUplcl7LeYOVv31r7JygcJLlFEprqulePsjavzVSc2YZpUfl0PJCL7n7eXGXOFh56yYqTsjDXWpnaP0o5YfnU5pM8f7v6nFVW8ie5aX9jX4K5vrw17hZ/qeNmP1msvdz4yy0Ys+3oq5SWH1nE0UH+4n0x7cUMaEN/5U9w0PTq52kQtr5c8rpxXjKHay6tZ5YUIshPBV27PkWLUYxw/JbN+Iq0HIKvukuqo4vpOFfHQysC9K9ahBftStTQDPeJSkRg0Q0Rf8GLR4a7zpU93Ark07IzxQoucotBDdHMwVKVacU4qtx8dG9TUS6YsT6YhPyRGaXLnOc40OuusotxAaiW4Z9i0G4L0rfhi2x2LhPFi3tVIxti5DGjHSFtyle8k11MbAuSOtLE4e1G+9u9Mkh8mpOL8FdbmfVresndGQaf102PtWKs9Cuvb5bda2KDSWIh8Y7JIF/ho+OtwdofbsPm99MbECLT6efW4bFa+bDP9SzaWkXfesDRHu1xzE7zTgLbBQv9DO8McSGR9qoOaOEhb+s4d1r1xPri9KzeohwIMrM88pZfXcTsWAaRVHQGXVUnpBP+xs9tAX7mHe5djMAJhXfJDvLfluH2QVzfliLb4qLun+007dhiL6Vw7jyzZQfno930iitb3Qz2h2ma8UgKApVxxcQCyToXzsKOoXuVYOMtseYc1kVRrue9wJv4amwsf6v79LRMTak3KotOS+fz8dJJ53EPffc89neZyE+hRQpiS/VP/7xjwnTF1xwAffddx/JZJJ4XLuYEWaEa665JjNOZes7kzn2hGMx2vR8/GAz075VyqzvV7DqL01UHV9M1bFFfHD7RqafWULhgmzWPNxM3jQfubVe3r12A2Un5lB9UhH1T7dTMNdH7vQslv2mDv8cJ/kHZJEzLQtHrpWmFztZc/dm8g/IItAWwOg04CtzseKWTeTvn4W9yEI6qTLao51kpn67BEWnsPpvzVoxkA1mXjSFWCCeKVJCBXUsR2HLt9O5YoBwq3YiypvlJWd6Fu9dt37CyXb+xdWZwqrxQhxsUH1yKalj05kuAJEwqCl1u9XH5cflkj/bx1DjCOsf2pIMGe+aFGjd0hmq8ekdFyKVHJmDM9fCuge2X3y0teyZTvLn+lnz0OZtuiU1PdNNE90T5s04XxuCblnjxO5KMy+aQjqpbnOhbLQpjJpSM3cBgtY9qXRJLqFFWuHYeIHS3B9VYXIaWfbH9fStHqVv9Yax9b3kTPPgyLWw6i9NrLinkaqjtFaOw5uG4bB87GPtOSODSRZdXqN1IfhzI2vu30ze7CzmXzGZD/6wiXA/pJMqqXiSmjOLWP9QO9igaJ4/kwBbeZtWPrzol9WgQNcyLQG15qE2jGao/VoJObUuOj4YINAapHvVMBXH55E3w4vJbsSZYycajNH5/iC2AjO+SS7iwQT5i9zoDDraV40lrcpt1K1fz796n6TAUMC/bggQCmmJqEg0jNlsJh6PU1payj//+U9mz5690/dTCCHEf77p06fT3r6lIKWjo4PFixfT3NxMOp3OjAf+4GMPolN0WjtewNT6NSZXT6ZxaRddq/vJqfXin+HEkWvH6DCw6blOGl/spGCul6KD/LjL7HjKHCQiKeqfbMU/1YV/hpOSg3KxZJlYdVcTOrNCVqkdq3eE3P2yyJnu0YbOtULBgT6ya9yYXEZab9NioinfLCYRTZFKpDPFL/OvqKb9/X76lmsXlOaeX4XJY2TZDVqhkCXLCCoMjCUqdCaF1X/T9jfrXK1L0kh7iP41I5kuPp/sbDTe+njm9yuwZVvY+HRbpmgpMhTD7jdnOi9tbf9f1KAzKNsULU0+qZjycHLC0Go7KiyyeqHypDLa3+nJdJv6NLVnlTLcsqWrVEaEbToouSqsVB5TQPHCbJbf0jBhH55yO82v92yzn9HeKGb3xDvmth5CTXtdRrB6J3Zu2vr57XdhtdZp8uVehjdG6CocwpVvJdg0sSU2QMWRhZhcRpb9RitCWvXXzUw9tYiq0wppeKKDUF8Mk8tIxUn5BDePsv6RNuZeqn0GrIXgKvKw7Ldal6/iRdnUnlrCcGuI+qdaGKwLZ469/b0+Sg7y0/5+P60v9rLoqlpQoPnVPiprPQy3jrDu0VbmX6LFzcMbW5n5/QrikQTrHmrDUWAipkR5YcW/GXAOsPa+t+np6UFFZdOmAG63FgeaTCbOO+88brvttp2+l0IIIf47/O53v+N3v/tdZnrrIUrGc15BBrnmt9dkYq/yj8s5oeIE7DlG1j7cxrQzi5nxrTLW3NPM1DMd2I638OHtG6k5rZjsWjd9dQEK52dTMNfPu9etp+gQP8UHeGl4rpOyQ3Ip2t/Pu7+tw1NtJXduFlmVDnzVLlre6GHDI21kz3Yz0hnAlm1Gp3hYefsmvLUOXOV2krEkob4tnZeMNgMr72rKFDbNvnQK0cE4KxvG4gwV0mnthO7MtdC1ajAzdFnxATkUzPfz/vUbJnRVmnWRFpOt/HPdhCKh2m+WbzM0XSqeYrR327grb38vFUfkMVgfZMNjW2Ld2RdNwuI3ER2KZQqvPq0YKW9/L55S+8QhfXfAXWmhcGEOTc+0btN5aXuPMe8irShnZefE7kqzLplCOpGe0D0KINobJR1PTch5eWsdTDmthNFOrVBovEBpvDvlyls2MNISzezLW+ugcH8/nnIHH93ZxJoHN1N+WC4AQ80hUMfiZWC4LcKiX9US7Y+z8vZNfHzvJvyzvMz78WQtlotCKpYiHk0y+dRCNv5Te+ySxTnojToSkTTrHmuBKFoHb72Orvd6MNuNrL63iXQcZl9YQbgvRuubPQw1BxlYP0Le/l5KDsxlsCGI2R4iEozR9cEgWLRCqdhwAt8MJ3qzjo4P+yAKvloXja2beKbnHxQUFPD6H59idFSL9yObw1gsFuLxODU1Nfz9739n5syZO30/hRBC/OcrKipi1apVmem+vj5OPvlk3n//fVKpVCb2evzZR/jnc1rcpaBg7DqFKVOraXmhl6bXOinePwffdBeOHCuOAitdy/rY8GQrhfv7yJufhT3HQt5sL2pKZe0DjfimeciqcVA4z4e7zMHHf9tE16ohnAVWzC4oWpQNaZX3xq7jjRcoOQtsmaHeKo7LI5VIkYymMoU/sy+ZROubvfRv0M5x08/UhqZdcbO2H5vPDCqMtmkVQQazXtsfWpekrConkYE4fR8F+HC8i49Z6zoU6onw0d2b2bRUuxY45fRivJOcNCztoO8jraAoMhgjHUsT6frEWGjA3B9PxmDV8961W12zM8O0b1UQG01MGFpt9Z07KEYyQ/WJRXSvGtx2mLbtmHRCPqM9Ubo/GNpm2TbDv/nNVJ9SROTgGKtu23KtteLYPPJme2l+rZvOdwYnbDPSFcZRaCW21dOd88MqbQi139cR3BwluDkKZq1wPjqodW7authq+vmTMdkMdLw9QKQrRscHA5h9FmLBKGpKZevEV8lBOTgLbCz7fR2x/hgr7mik+sQCKo/Pp/GZLm2UmjwLJUf6CXXEaXymi+nnlmHLs2DO1uHIc/De9RvwTXcx5ZRijHYDfesC1P+7i2D9SGZY4s6Vg+QvyqXlrW463hhkwU+r0Zv0tL87SNlcP/0bA9Q/2c6s8yqxes1seKSd2jNKiAbirHu4DaMFVHuC1+teotPWwbpH3qG7pxsVlYEmMjkvl8vF9773PX7/+9/v9L0U4vOSIiWxW911113cddddmenf/OY3XHvttUSj0cyFs42NG9l445aLHY1Lp1JcUspIOsLm1zooX1JIxaF5mKzGzIWUza91U7S/n2lnl4Kq4i51EFkcp2vlIM58MxXH55FV4cDsNrHm781k1zgxuozY/DrKD81HTedpQ4/4If+ALEoW52YuyACUHJaNI9+G3qzLFB1N/1YZ8dEEPR8PAzDzwgpSyXRm2JFJxxZrF0be74cwtLzeQyKkDZsx7dwybD4zH9xQT/+GwISuQyVH5tD6Yi+jXREG6rUAJKvGxtD6sHZxb8yCn01h49JWhtaH2fxaD9m1Hlpe7Jjwetc/3UbpwbmZAqUMG+x/WQ2jneEJXY0K5/q2O3zc9pQcpA11Z7PpCIe3JGAWXlVD79rhbYqhNv27jfy52dsUNEUGYwS3Gupkzg8nEWgNs+mpzszzHX/+HW8NkDcri4YnmrH6wVOdRdeyYXrXDpO7XxaEYdLJ+finuHnv/22g461BXEU21j+sJbEW/KAavUlHwwudRPqhrz5A9hQ3m+gi3BkjMZokmUhReKCXjreHcZfYMFj0FBzkJNiW4r3rN2Y6GlkL0zhzXKz6y3qKDiqgeFE2Fp+ZeDDB5ne6CWwMs98Fk1F0CsMtLZQelMtw8yibn2tj5vengAq9awJk17gJdo6y/qk29v+hNlRbz4cB9v/FFBLRJMtv3oTpyDjdH27mrTffQmfR8cYNCRIJ7bM0PDyM1+slHA4zffp0li5dKsO3CSGEAKCwsJDNm7cM9TA4OMiRRx7JqlWrMnEXwBNPPJ753f6KnYWhhYxEwvT/aYR5P53M/Eur+eB39VQeWUDB/kY+uKWeaWeUUjjPR/1TbfiqPPgmeVh1TxOlB2cz6bh8Nj3fTcnBORQu9LPq3s1klRspOiQbV4GVrEonLW/1MvBRH9mzXYz2BPFOdpIYTfL+9RtwVVhxFNkwWPW4Cmy0DqYpOshPLJLQ7uAeq+fxT3bTtWoQIlqBUO70LLzlTj7800ZW3dZI1WmFmYKjBT+fQs/qIZrf7CExmqTzQ61AJ3+hl67Vg9Qv7WLKSQWZ9T2TrWz6Zyeb0O4WqzqtEHu2mdV/0ZIT/Ru1ocW2FhlME2wL0/rmtkPFVZ6cT06tZ0IsZ/RYcRfb0R+Uz/DGnd9h5im34yy0TigumnZuGTa/WRtKYyvBpggjnRE2PT+xaHzzyz1MO7Mksw/fNAcVRxXw4R82Tni+rgqtsKhrxSCOXO0uqZLDc2h9uZfIoDbs3HjnpnmXT2akI8KGR9vY/GoXjHXMtnp1lCzOJjEriw//uJGVf97E/Cuqqf12KXUPtNC7LoC/xkntd0qpu7+FSEcEk8eIx2Cn6CA/DU90gFVrHe6rdGK0G1l+dwNEyBQaBVuipONp2t/rY7QzzJRTSxntjOAuCzPaG2akLUrl4Vps2LtumGnnlBGPJGh7sw+r16oNsdMXpfKofAxmPXVPbWbQOkhjd4oNdRtY37Ue56iTkRVbOmHZbDaysrJIJBL87Gc/4+qrr97peyeEEOKrYeshSkDLgV155ZUMDg5misM3t2zm5ptvzqzT+GwNpeUVDKsx1j3eRO0pFZQflovRosdRYMPisdDw7w5KDsqm9lslxEYS5EzPIhlJ0fpmL64SG6VH5OAqsuEqtlP3WDOh3gjpeBpLjoVJxxRCukDLb1kgd24WxQf4tULhsSHRChZ68ZQ5MLuMW4aGO7OYUF+UgbHz/ZTTi1FTaqbTePXJxZhcRgbXDhEdTtPwzJZ81ORTC3EV21h+UwN9dQFypnkyhT5FB/tpf6OfwY3BzE2BzlILIy3RCfHM3B9V0fh8J0MbQnS/N0jRAh/Nr08sDKp7sp3KI3MzBUpbm3f5ZEK90QkdwEsWZ2Owbn/Yj08qOSgPV7E901Vq3P6/mELPx0Ns/vfEeG/DP1spXpyzzfBvI21hwkNbtp9xXhmhvhiN/+ri/bHn6660EGiMMlg3SujAKBv/3a29V9Oy6Fk+ROfyAUoW5xCNpik5NJu82V4+uKGewbpReiYNZTo+zfmedrGq650+osNpOj/sJ2+Wl6al3RCFcF+MRDSRGXrEVWDD6DCQtyiLUEeED26oz3Q0al3WgT3Hycpb6vDv56fyyHzchVZGeqI0v97JcHOcGRdUY7DoWXlXE5VH59K/LkDr2wPMOq8cdAo9K4epPMrHcPMI659sywwh17cywLyfTCYeSrDilgZ0i6Ms/6iDd955h7QlzZu3bLnQPDQ0hM/nIxqNMn/+fP7+979TVla2S++hEEKI/27Z2dm88847melYLMY3vvENXnzxRaJR7dyrovLUU//MrGP50MIi0yLiiRQD9wSZ/YNKpp83ieV/2kjNqSVYsswsv3UjeqtC3iwvIx0hcqd7yZ3hZdWt9RQfnEvhwlya3+hh0tEFpA7NZdVdTTiKzRQs9GJ0GShakE3b271sfLwZT6mdyFCIvFleosNxlv9pI9Z8M858I5YsE55SOx1vD5C9n5tkPEW4O5opYsqbnUXnin6ta5FZK4bKnuphxS0N1D3cSsWxeZmCo7k/mkzP6iHaXu8jPNaVB7RuTKMtQTY/24HxayWZ9V2l5glF18VLsvFU2DPFQD2rhnAVWSe+4DGtY2XPim2LwYsO9lM435eJbUDrHuSb4sLkMPDxpuadvp85M7LIiqYmFClVnVyAu8zB8ts3ThiCLdYfY6A+SMe7E7sodbzdi6fCoQ3ZNvY8q04sYcUtDROer6vUTLAlRusbvXgnOyEGefOztMeOQaR3S3eoWRdVMtoTpeGfHTQ+17llCDkzTDpG60a04pYG1t7fwuxLJjHl9GI2PNJGz0fD6PQKk08qZONjHcT6YthyLBisevLmemh7vY+21/tYdHUtsWACdPDxE80QhAU/q0Zn0LGyZRSjVc/mV7oYagox6/xKRtrDDGabGOmJ0LVygILZXgrn++ldM0TVKYXEw0lan+/CbAZftYuRzjCF83yYXSY2Lm0lrAZpi2xm4ysbWde3DqfTyciNW3Jedocdr9eLyWTi6quv5uKLL97peyfEl0WKlMQe9cnh4fr7+zn44INZv359ZoiqdXXrWFenDWXywduvk7cpj9GRUaKjcS754UUsuryGZdesp/yQPAwFet69bgO1ZxdROM9H61u9OGZ5ceTZWf3XJsoOzaH21GLa3u6l/Ih8Cuf6aH+/H4NTYeq3S0gD3nInXasHSEbT5Mx2MdIXpGhRNslIimW/qcNWYCFrshlXvp1QT4T21/rJnunE5DJiMG9JdiTCSYbbIxDWhjorXZLLUNMovSuD2HzmzHBvTc90E5iunQRmXliBLcdCOpGeMH58zdfKUFNq5sJW4YE+9GYd+XP8DK1vhTCZZE7+/lnkzfGy6tZGAg1h1jRo+6n6eiEN/xhLGoVBp1cwu40T3o+6f7QQ6Nh5VTPAips3kTPbRbh/SwImZ7YLRadkxiEFreiqf8MoAx+HGPg4lFmvaFEOK/+8iVW3btXC0QZmtwnfZEPmItmkkwvIme5hoCFI/SPtrLhZKwJbdHXtWLeiYVrf7ScwNu6szWdGZ1BwVNgYbQqTVeFkzqWVrLilkU3PtlN8cA7lS3LZ/GwPFpcJxaBQeXIOjU/18uGNDSy6ugbrARbiIwlW3d6M1Zdm1vdrSISSdC4foOHf7RjMOmadUwMqtC4zkU6pBDvCxMNxCuf5CbSMkj/VS2QoxuCmUcoW+7HnWGl5u4dp51SRjKWoe6Kd7Kna3WKxkRRzvlsJOpW7r7kfe6WJ7n+tp6mpiXA6DM9veYmMRiMVFRUEAgGuvvpqLrnkkl16v4QQQgiv18vy5csnzLvpppv41a9+xciIFouEQiFefuXlzPJ3b7WTlZVFh9pJw+8/4uyfnsF+364gFkhgLDRgL7Cy9qHNTDmthGlnlNBXF8BX7aJwQRbt7/aTVWln8nH5pFMqrkIbTa91oOgVTDYDnmov5YflgQobn24jEkiSv9BL0UI/RrtB65gU0QppihZlozMqmQLySafkozMqmBza/77kL8wl1B9l8wvaRZq5l1VhtBtooANvjQ29SYfFY4KIVsQdbNIqncoPz6PskFzevXZ95u6r2m+V4Klw0Pp2H+2vaQmPrErHhLHsN/2zM/P7rIsr2fxyJ8MbI6y9rxnQinwchbZMMZDBqEfRKXgmWzNdk4JNEeqfas0URu3MqlvrMHomJoksDuOE4wKtIKrxqS4+vmdLLDnrokpa3+phYO3ohJbXebN9GG0Gsme7MkO8jQ+XtuyaOm2YPaDsqFwKF/hx5Fmpe7CFxufbGRwbkthoM+DIG2v3XOXGU2anZ90wkcE0Q01BzM4t3ZkMZj02nwlvjY3Wl3vxVTnxlNrJXeAk2BBi2W/qmPeTyZQcnMNAYz+2LO19sGQZqTgiH1u+GbPVSNfHg8SGEsz8bjmKTmHzK91UHFHA4MYgza/3Mev8ClAh0BwhZ7qH3vVDNDzRyf6/rEGnKPQsH2bRr2rp7+/ngbv+TuXUcgZXDNLWpnVWWPnklrvfbDYbBQUFeDwenn32Wbxe7y69X0IIIcQFF1zABRdckJmORqMcd9xxvPnmmyST2rAR6+vXs75ey/WsWK/wzmCuNnxcIMV53z+X2edXsOyaOiYdU4DBaqDu+g2gV8mdmUXr2324i+y4SxysuquJ0gN9VBxRQPu7/VQelU/JwWk2v9KNOcvAlG8UEQsnKJjtp2vVANGhBFlldiLDIcoOzyM+kmDZNXVYPDqcFTa8lU5C3RHa3+jHU2XFlm3GYN2SNo6PJgh2hrWiHAtUHVfIYEOQvtUBHPlWjA4t39T+Rj+jnVouaMo3i/FVu9DplQkdkaadVbFluDrAN8OJyWkkb5aXoQ3atstv0u7Yz5pip+TAHD66azPR7ijr7tduvCs/LndC4ZDBrMfinNghcv0/WkgEti1o2p6P723GW+uYUADlrrSg0+swGLfEXnn7ewl1hRlpiVLX0ppZr+ywAj66s4m19zdP2K89z4Y5y0QjWsxadLCfkoNyMl2ixovA9v/FFHQGHT3Lh+hbGSA6EIMoWLNMGCz6zLBw2bVu3MV2Vt66iY1Pt1F+RB5587NpfrEHk8OA3qSj4vhcmp7pYfVfGll0dS2ObCuRoZjW8coCi35aSyyQoH1ZP+ufbMPiMjDru7UANL3YhcGsZ7AhyFDHKFVHFjHcPEp2jUJ0KMZgwyiF87PwlDloe7uXqd8sJhFLUv9EG7YiCyaXkWBbmOlnlGG0GXjw94+hK0vS/fwGNm/eTEgNwVtbXh+DwUBFRQWxWIyrrrpqwvdHCCGE+DRms5mnn356wrwnn3ySH/3oR7S3t5NOp4nGorz66quZ5cvuseHN8tKt9tD424/51i+/zvTTSwl2R/BXG3GW2Pjob03UfK2Yqd+uoP29fqqO85KMJml6qYusaidVx+YRCybImZFF46ud9K0bJp1ScVd5qDg8D3QK6x5pRk2kyN7PTeECH7YcCyturiMWBPckG6WH5GJyGDLduosP9WOw6DP5lIK5XgLtIdre0GKd6d8tw55toenZbqz5Zow2A7axEUM2PdvB6FinzKrjCyFdyHvXr88UIJUdnUvBXB9tb2tFMgA50z2YnAZtmLMYmfkA075TStuyPgKbwjSMdVo0Z5vJKrXSvXwYIDMsmWeyneGNWuwW649R92hLZnpnlt1QhyN74s2AFq8W92xdoFRyRDatL/VR/48tseTUs0roXjXMwLpgpokEQPZ0L2a3kez93JkCrfk/qUZv1vHutevp+yhA30cBcuZ4qDgqn6wKJ+sfaaXplU6tqxLa9crxofyyKhzk7pdFcHOAWBC6Vw9g81kyj2dyGFAV7T3tXTGMr8pF9hQPw3OCBFrivHfdemZ9v5KKowsYahnGmmWn6cUu9BYdU04ppmvlADpFoXNFP4mRNPtdUIXBoqf+qXamnFxEz6oh2t8b1HJewFD9CBVH5dHz8RCbnupk/hXV6Iw6Bj4Osv+VNQz1DXPfPQ9QuV8pbzw0TEtrCyigbpXzslgsFBYWUlJSwj/+8Q9cLtcuvV9C7A5SpCT2Kr/fz7p16ybM++Mf/8ivf/1rRkZGUFWVrq4tHXpuvPlGTCYT8XScl/8PTjjhRIq+7SXSl8BTrJA/z8vqBzYw48xq9ju3nOZXu/GUO8iZ7aZ9WR/+aS7yZ3oJ9UVxF9vpWN7DiEWPxWVCdagUzfcD0L8xyFB9gOrTi3AX2TFY9TS92knXyiFyZruoPLoQRb/1hbNcLB4T8aDW7SZvUR5qWmW4WbsIFe6Lgk47s40X4fRNCbD6gSamn15G+2taRe/8K6rpXjXIUNMoibFxT3Pnu4kOR1l9+4ZMgdCcSydR9/AmIv1QfGCO1unHD5GxouaqUwvJqfFgPEufuYts6+FJxgUadq1AaVzvyuA2070rJ+63aIGfwnk+3v3tls4BZYfmY7Dqsfl1hPvT1J5VQrAjTPtr/ZnnNenkAjY91cmmpzrxlNlpfbudeZdPpm99gObne+n+aCjTFnvR5TWoaZV3r91Az5ohLB4To03ac0kl02DQXuuBtSGqT7ZgcZrpWT3Mx39tZu5lk8id5mO0K0KwcYSWN3ooWphN1fFFGOxa94FASwi9VUfZkjx66gZxF9jp2xAgNhSnZFE2AMMto+RN8zLcPErLyn5mnFJKKp7GU2LHkW9l4/Ot+Kuy0Jt1pGJpRrtDOBem+fsDz9HV3YXb46avr49kOgkNWlAdG+s9OXnyZPLy8njuueew2Wyf6T0SQgghPs1ll13GZZddlpmORCIcffTRvPvuuyQSCUKhUGZI0ZZIA7/97W9RUEimkkyePJn999+fnrcHmUIJBpseg13P5lfbKDukiKGGESweM3qjjrVPbqZgmp+SRXkMbhohb1YWalql9Z0+TA4DxQfmEOoPk13tZag5SLoD8md6SSfSVB5TQCKUpOWNfqxeHe4aNznTsgj3xah/rB1rnoWc6R50BiVTfKTqVFJxLU4aXB/WOv+s0+7GmnZGOQDLfltH8+s9mSLziuPy8ZTbWf9kEzVZFZkCpcoT8vngd/VYvToASo/MweQ00vBEB/ZSK1afmUlHFbF845Z219POKAeFTJHS1smTre1qgRJAZBAigxOHhdt6KDeAaeeU4S6xkxhNZQqMrHkWrH4zFUcUMLB2I1avjupvlLH6L02su78Fq1eHvciOb5qDgbWjmbvFSg7PIXe6hw//tJHmF3pw5GsFSlO+WYx3sjNTxBXsCJMMa+2TRrsjuEtsFC/00/ZqPwaLEVu2haLD/LS/0s+y39ax6Fe1VJ1YQqOxgw2PbsY12U7lkcVE58cZ6YzQ/Fo3rkI7s86t1eLnplHSqkqgLYSaSpNV6SS1PkD2QjeR4Sg9qwLkzvZgdBjo+WiAWedVkIyl+PifrUw9uQhFpxDqjlFyrotVq1fx738/Q15eHstvfpnh4WEAPlrzEWazGVVVsdvt1NTU8I1vfIOf/vSnu/z+CCGEEDtjsVh45ZVXJsx76KGH+PnPf05HRweqqtLdvaUL4p//couW81LjvHwtHHvscRR/K5dQY5zcWh0Fc72sengz079WwqzzK1j/j834at3kznbT+EIXubM9FC/2M7xpFN8UNx3L+xhqGkFv1OHMtVCyOBtFr6PrwwGCnWEqT8zHVWTD6jOz8dlWRhvDeGsdTDq2EINVn8l5FR7ow1FgI5XQYsSC+T7SqXSmM9JoV4RoQOuEU7DYR9khWpedDY+2UfutElpf1WKsOZdW0bNmiJ41W4bjyJpiR02qrLxly7BpM84rY+MTrUSH01QcUYDZY8SSYyE6NjRc0cF+Cub4sXrMmaHm3r1uq+FJxmyv49KnGawbnTAdaIyy7LcTc14Vh2n5vq0fr/LIIix+E7YiC+H2KJUn5mtFQG/0s+pW7XmVH53L5ud7aH+jH3+Nm+Y3O5n5/UqGm0ZpfrGH9nf7Sca057/wl7Wgao/Ru24YR4GN4QYtJkzF0qBXM8/PkWvD6rXQvTpAw5OdWH1m8mb5GOmNMbIxSOPzXRQf4Kfm66U0LO1AZ9DRvy6AzqIw6dgCetYMYM+10bVqgPhIkoojtIurvR8PUXZgHn1rh+laN8D0r2nxlt2fwFfrpvG5Vuz5DkwuA8lIir6WYSoP9vHII4/Q0tyCz+ejr79P6wq+WRsmd7xb0qRJk6ioqODRRx/F4/F8pvdICCGE+DSnnHIKp5xySmY6Fotx3nnnsXTpUoLBIOFwmHBYu460Wa3n2uuuRafTkUwmqWyoZOHChQTeC4IKJrcRR56FtY9vZuqpZeiMOmweM2aXkVUPNqKmVIrmZTPUMKINAadC88tdmLKMlB6cy1DzCCUH5DKwKcBoVwRHqQsHUH1SEbFggoalHZhdYCuyU7woh1B3hIZ/dmD2mylY4MdkNbBurHBGZ1JIxLQ8TKQrRnQwRu/aYQCmnlGGYtDx3nXraXimA8tYo4KChV5ypntY/2QT7iJbphCpeEk2K25pwOzSQQxy5nhw5ltpfKYLs0uHq8ROhd3Aqk1bmg3MPLcMvVGfKVIa7wr0SbtaoKS9OTDaPnHouU8O8zbphHxyZ3khRSaeNLvAXebA7DExsC6I2QVVJ5ey9v4WGp/pov3NHsw+E1k1DobWj9K1YhCjXetmlD/fx6rbGuldMYynzM7GZzooOSKbov2zaXtLe04DG4MwNtxxoDVM9lQ3/lleOt4YRG804CqxU3SIn/bX+nnv+g0suqqWyScW0fBMB+ufbMVX46L6+GIiAzGGNo/S9HIXnkoHs86rAaB3zRCKTqF/Q4BoIEb5IQX0rh0mp9ZGZDhG30fD5M72YPWZaX2zj1nnlWs5rwc3MeVrpegMOsK9UUq/7ebjDWt5Zum/yMnJYcXtrzA0pOVBV380hNVqRVVVHA4HtbW1nHfeeXzve9/b9fdHiD1AipTEPufyyy/n8ssvnzDvb3/7Gz/+8Y8ZGhrK/E8twNKl/8r8bnnZQklxCaFEiPAHw8yYMY3ixTkkwknsPhvGmSZ0egW9WYfRrqdjeT8Fc3JIpVLoddrFqmQiRSKSxFfhxJ5txOa1ERrWki35s72UHJCD3qQnnUiTTqWZ8u0iIv1Rcqb5SKfTdHzQh63ERt6MLBRFoesd7aTgLLZlug0NtwfwT3Ux3BCEMDjyrOx/1RTWP9aKwaonf76XkbYIm17sxFZio+LIAhRFK4iadHIB3slODGY9VSeXozfpCPfFaHtHuyg1/4pqeusGaPhnB64SK/acLVW948PTWbPM1L/QRvVRxXSvGiRvthe9SSuk+eCGLe0ZDfYtd4rtf6V2R9f6x5ux59komOMjlUjRvXKIrElOjGY9q/6iBS3JeIrRbi0YmXx6IZ4iB2sfasFo11FxXDFGhwGr14yr2E7eflkEWsO4iqyY3Sa8VU7qnm1j+Y0N1JxVgtFuwF/tIjYcJ3c/DyNdIbreGSIcjGKxmciqseGrdmGw6pl3RRUf3tBAYjSJJcvEjItLWXNbC63v9lCyMJfp3y6jfVkfkeEoBqueyiOKiO4fx2jVEx9NEO9KUn5IHqqqkk6oRAZjxEbj+Ce70el1pJoDFC3MJplIMrR5FG+FE51BIdAdYsYppSTjKRRFwZpjYu3a9bTEmthUr6PlxRZ6e3vR6XSkH9jShcrlduF2uwkEAhx00EHce++9MmybEEKIPc5qtfLGG29MmBeJRDjttNN45ZVXJsRdGzduZONGrSvPO7/7N3l5eVgsFjweD4mGCBXlFYT7othzLUw7tZxVf93ArMlT8FY76FmnDclasjib4fZRrF4zqg5SiRR6ox67z0RWlQNFURjeHGKoZYTSQ3IoXOzDZDESGYphtOnJX+il+ECty1JoQLtYU3Z8DhanmUhAS25MvaAUo8OAp8rJwNpR4vEEOkUrOEpFUpQenIM914gjx47RYWDaNyax9m+bwAr7nV2OPduKI9/KR3c2MefSSZhcRm04180jlB2cR+OrXfS8M8SUbxZjzzez4sZNNL7QSdFB2Uw6tYBN/+zEW2Oj8ugihluCOPLsjPZEceRZaHurl8knFpOIJwk2h6l/rB3GQq7xoqHKk/PJmeYhMZJk+U0NzPx+BalkCrPdxLpH25h2Rgmtb/XSs3yYcF8Me56F1pd7sZdamXRsPomRFHWPbibWH2HejyeTVtOYnSamnFGEM8/Gh3/ayKxLilFVlZG5EdY+2gzA/pdPQafTYc2zMPVbxZkuoBv+1caCH1eTVemg/bU+XIU2VFRKj8yh5cVeihb6KVqUTaBtlI8f2syCy6opWZRDOp1k6KMgyXgKvV7H5JOKGe0JY3GbGe2JoDMq5Ez14K6wodfp6a0bJqvCQVaVEzWlkoglcRXZ6FnXjyPbjsGsRzGYKFrkx2gzEBmMUX1KKcHRIO+89Q46n46m51bS0NBAKpUi9WYq89kNBAL4/X4CgQB5eXn87//+r9ypL4QQYq8488wzOfPMMyfMe+6557jkkktoaWmZEHs9++y/M7+bVpgoKSkhEosQXVHD9P2mU3V8MdH+OI5cG8YDjKhqGqPVgDXPwua3uik7IJd0Kg0qKHod8UicZCRN9nQP9kIT7kIXocEwwZYwBbP8mA8xYbQaSMZSJMJJqr5ewGhXmNIl2n46V/djybFQujgHRa9khtDw1bpQxm45D3aHSKfTDDRrN7k5iqzs/8sprL67GbPHSOH+PgLNYTY83YbFA1O+VpLJeZUcmk3Ofh5MDiNVp5agJiHcH2XTs21Eg1Hm/LCK/o3DtDzfh7faidW75e772m+VoOgVzE4jm1/pouKIAnrXDpEzLQuj00BiJMmKuxpgrG7JuFXOa95PJ2M0G9jwz1b0Fj0lB+SQSqbo/TiAq8CK0WHIXDSLhxKE+rWdlB2Tg2+Sm/VPtmE0Q+E8L7ZjzNhzraTiaXxTXIx2RbD5zDiLbPhqXDQ838bqvzRSeWI+tmytuD/QOkrxgdmMdGhD3QV7R7H7rHhrHbhL7Jg9RuZeUcXyGxoID8TwlDmYcVEpa25vYdMLbUw6ppgZ55TS8mov4YEoFp+JqqMKiMz3YbQaiI7EGd0Yper4QlRUktEUod4okcEo3skuDGYDQy1Byg7JJRlLahfKpmRhsOgJj0aZ/o0KEtEkqOCpctCwoYH6ZD2GLgOt77fS3d2NTqfj7b9tyXml0ik8Hg+hUIjDDz+cO+64g7y8vC/47RFCCCE+G7PZzIMPPjhhXiwW48c//jGPPPIIQ0NDpNPa+auxsZHGRu0a15u3LCUnJwe7zY7T4cRYH6eispKRthBGh55Z365k2c11LNovC/90F90r+3Hk26g4poC+hiEcBVZUg0oikkRNg6vEjn+6B51eoXf1EKM9USqOyiMR9WNxmwl2hjBaDWTPc1O8IBuT3cBIp1ZMlbPAjT3bSnRYy3lVfi0Xa7YZb7WTofWjxKMJ9GNdHxOjcSafVIi9wIrVZcSWY6H2tEo2PN0OZphyahHeSa7MUG/Tv1uGLduC3qCjb90QlUcVsvH5dvqXByk7OhdPhYPVtzVS/1Q75UfkUXFcHk3/7sZRZKbq+CIGNwdxFdoJtIXwlDhofrmT2jMrSIQTBJpCbFrapVUhKOCb6mJgXZCig/0UH5hNbCjByls3MfVbJaRJY3GaqXuokdozK2l/t5++jwKEB2MkIglaX+3D7DdTeVwuqXCaNfc1MtoXY9b3K0ml0zhyrFSdWoAjx8qqexuZc2YFaVVleL9RNjzZBjFY8PNq9EY9jiIzk04oxOo1Y36pg9aX+sif48VVonUy91W5UIwQGYrT/kY/k08opOTAXEY6YzQ82YG7zE7J4hySkRRDm8LEwwl0Rh213yhlYFMQR76VQOsIoFA4349vqhOdqqNzRT/+Whe5s7yoyTSRQAxfdT4dK/qxZ5kxuYwYbXr087zYfBZG2kNUHptPKBrinbfeRSlXeeHNOhoaGkgkEqTf3hJ3BYIBsrOzGRkZobKykquuuopvf/vbu/OrJcSXQoqUxH+Es88+m7PPPnvCvOeee46LLrqI1tZWVFUlGo2ysUG7cNbR0cHLL7+I0WAky5uF2WymrLQMFJg9ezbuLDf6Kh2qqqLX60mEk8QjSexjrfoUg4LBYUBVVYwmA0aXARUVRVEIdoUYbgxRsjgHT4kDX7mbRDSJwayn7LB8zE7ThOHPJn1dKzJSx6pvixfmotfrKTk4l77VI6ADnaIj0BCm/t8tVB9XiqvYzsIf1aDotf1Eg1qSKqvKgcGsp/29blpfGmTRr2qxeNWxIc/AYNVTMCeH5mf7IQ1Gp4Fp55RhtOix+rW7xRWdQsWBWmcj7yQnqWgKnUnBYNWDDRhrrqTT6TLPQWfQXquh9WGKF+disOoxWPUULvCjN+lQdAoLfj6F96/fgMGkx+axMuv7lVjH2jXac4yUHpyH0W5A0Sts+nc7Oft5cRXZyKpw8MFt9cz53iTMThMzTi1jfboZd7EdgOU3NuCo0Iq8HDlaVyGbS3ufsipd1D3YxqKrazBaDNgKzGx8rosZZ5bi8NqYcV4ZQ50jY89BofTgXNLpNDqdjnC/VqykN+ixuHVY3WaCfaO4sh3oTQoWtwm9RYeiKHSs7KVwdg4AeoMef5WbeDxOW3sb/foB3n3kNXp6e7BYLPT19ZFKaRfFjEZj5vfCwkKysrKYPXs2t956q3RIEkIIsc+yWq08++yzE+ZFIhF+9KMf8fDDD2eGitv6zv/Vq1ej0+kwmUzk5ORgs9nIrchl/XqVqqoqsms9xENax0lPkYOWNzspPagAAItbuyCGAmpaxVNmx+TRodPr0KsqI10RLB4jRquB8sPzUFMqqqpi81iYem4p7iK7VmQcT2MvteLK1c6xnR8MA2CybBnu1lVqR1EUbD4rH/5pI/N+UoXRYSR3YTYFs32ZeO2jB7ShN8weE+lkmo1Pt+GtdmN0GChe4KfnnSHc5Xb0Rh1Tv1PKuvtbqDymgKwyB/N/Vs1gYxCjw4B3sge9UYfRZsBg1dO/ZoSq41WMZgPuUi3WGY/3PJO0oipvuRNFUUhEtBjC5rdk4lD/VK2wqvTQXDzlDpx5VvRGLWbb7ztax6i0W2W4xUbl0YUYHQYCLSG6Pxqi5ICcTIzas3qI3BlZuIptLPjhFNY8uAGdTkdoIEqkO4rBotdiQSvUnlaKwWDAmaclvUK9WiGaf5qLlhd7iYcSmOxGppxaymDDSCaGLD+wkMLZORhMehKRJKH+KJ5iBwAOs5VQf5R0Kp15fxRjCpPNSCqRIhVNY7Rr/6uaVe7GaDXQ3d3N0NAQPd09rP5oNU6nk5GREYLBLZ0+rVYr8XgcvV7P9OnTAbjttttYvHjxrn78hRBCiD3umGOOoampacK8Dz74gEsuuYSPP/6YWCxGPB5n0yZtOIuOzg5efvVljAYjniwPFrOF0tJSdOiYOWcmnmwPep2CiorOoCMWSBAaGMVX6SZuSGAw6bH6LKiqttxZZAadFmsMNAYZaY1Qdkgu/io3OTVZREdimB0mihfmYnYZMrELQPFh/gk5r6L9/ej1ekoPzGNgpdbFSVEUor1RVj/UxMwzK3CX2pl/aTV6kx5FIdOFyTvFhclhpPm1LjrfHmLhlTWgh8GGUWIDccxuI4Xzsml5vg81oWLONVL1tQKsHjM2vxlFUVAMCiUH5mD2GMmqdBIfTWB0GjB7jNj8Wqcj0PJc44wWLf83WDfKlG8UYfYYASOF8wwoBgW9Sc+8n0zmw1s3YnIaUVNQc0YxWZOcALiKbOTO8GD2GDEY9ax/vIWcqR58tW6MFj3L72jQCuFzrEz9WgX1T7fhrda2XXFLAxaP9hrZ87QY1p3nAAU8lQ6alnaTP8+HyWrEkmeh8fkeZl9ox+G3U3NWMcObhgHQG3VUHp2v5bz0OgKtIQwOPQaLHrvJgt2n0N8wiH+yV8ufZZkxOg0oikLzq+2UHlw0th89eTO8JBIJ2pvb6Nf3895jb9DV1YXVaqW/vz8zdKHBoL1uAHl5eeTk5HDggQfyu9/9Dotly02TQgghxL7EbDZz2223cdttt2XmxWIxrr/+eu666y66urpIpVL09vZmlq9ZuyaT88rNycVisZC/Xz7r1q6juqaavDl+Rvu0C2vZk7LY/Gon5YcUgAK2sQIURYF0Io1/qgeLL4zerAcFhjaPYnIasGaZqTqykFQqjZpSsWdbqf56Eb5qbTiuVDyN2W/GPykLgP61Wldsi9ucyfW4S7V8kj3bzKpbG5l5UQW2bAu+GicliypJJdOoafj4780AOAttpGIp6v7RgqvEgdVvpvSAHPqXB8mudWO0G6g9o4S6h1uxfM2ErlLHnB866V03hNVvJseehdFq0EZ68ZoJtsRQk2lMDhOeSTqgC51ei7k85XYG1gXxVY3lvEa1HKGz2K5dI9UpuCe7tWM4JBdPuR1LlgmDWcsNzbqgAp1BIRVN0V8XpPKYAqx+M8ONozR+1EH5oQXo9ApmM7S+3UvhAj/eKifzf1DNB3+uR2/SM9obYbRdi2sVnYLObqZskQeDyYBr7HrkUEsQX5WbnFke2t/oJ9QfxZFrZcophfSuCaDoABUqjywguiCGyWEkNpJguHkE/2QPKFpsGeoOk0ykMFtNoILOpMPiMpOKp4kNxbH6tGun/kkuTC4jvb29DA4O0t3Vzccff4zVZiUUChEIBDKfQ6vVSiwWQ6fTMWPGDBwOBzfeeCPz5s37sr4eQuxRUqQk/mMdc8wxNDc3bzP/j3/8I9deey2Dg4MkkolMMNHW1gbAW2+9hU6nw263MzIyQmFhIRUVFZiMJirKKigoLiARSWA0axdM9CYd6ZSKzqAw0h3ClW/H7teqahPhJKpZJdQXwV3owJplRk2rhPqjNDzdyfyfVmOw6Emn06x5oJXsmU4sLq1YaMVNWnJp/G4zgLLF+QCs+dtmKo7IxeI3se5vDZiybCz8ZQ3RkRhGi4H+ei2p0vhSO5VHFFG4wM/ymxpofbsXZ752bOsfaiIcTmvFTjolM9ybrcBCuHPnLa/jI4nM7+MtvgHW3LVZ28/Y0G0AtWeV4Cl3kH9AFmv+3qwNvWaDWedWsurWRmwF2rj0sZE4K+7cBGGoOKoQVEjFU8w5fxIrbtxE9TfzcRe7iIVgqzovKg7NRVEUOldqLR0TsSRGsyHT7SnUG8GeY2X62aWEumL0fNRPVpUbZ4FNK85KqkRH4yiKFrTFwglsfguhvihGq4F0Ko3OoMORpSWEQn0RrTo9GmX9+g1EYzE+ePIdOjs6sVgtDA4OEolMHH4FtEKkvLw8+vr6WLhwIffff790RxJCCPFfwWq1cscdd3DHHXdMmD84OMiZZ57Jm2++SSQSIRqN0tqqDbuxYcOGCduDVoRUXV1NdnY2ra82sfCg/THaDZlzeTqVRtHpMNtNpJMqseEEznwrsVHt4lU0ECcZTWHzWVDVNJ5iB+HhCH1rh/CUupn+rVKtG1NLiEhHhOpvaRdcxrdPJRMoikKoR7sDzWgzkoylGFwfJLvaTX/DMJuX9jLn0kmkkyqokE6oDKwdJdw5irvYhslpxOqF9//fBmZ+v4J1/2gB4KP7N5NVaqfk4BxQx4YFtoLVqg3dNu7daycOR6LGVTBB41PaEMcf/mnjhOXjMZw1z0KkO0rbKwMsuqoWT4WDNXdteY0HN44w1DhCz/Jh5v14MkaHgXVPbSbwcQTPZKv2vPvC7P+LGj66bzOd7/RQe04loY4oZrv2/jDWfEin6FBTKkSg7okWFl2hDcXmqrDS8noXNV8vw2w3Me/yyXx4+0ZmnFOO3Wshp9YDKgxsCuApcZBOaReudHodnmIHI90hnLl20ok01iwtKaSmVFKJFDnVfjY3bWZoeIihwSGamppQVZVEMsHg4GDm7sZxyWSS/Px8RkdHKSgo4PLLL+fHP/7xDj/DQgghxH+S+fPn8+GHH24z//HHH+fKK6+kubmZRDJBX5+WJ2lr13Jeb77zJjqdDofDQTAYpCC/gIpKLedVnC6mrKqMWCiB0WTQbm4zawXCepOeYPsovgoX7kI7qBAdjWM0Gwi2h/BXmbD7tcKmYGeYtX9vZu5lVZhcRtS0St0jm3FXWnAXO1BVlZU3aUPUqikYa2hJ5cFaJ526R5vJn+PDUWSh7v7NYDKx4GdTCA9ouapQl5ZvWffUZqZ9rYKihX56lg/RsLSDrAqt4LnhyWaiUZj/A63Y6d1rtXhp62HhPk0ssP2c14bHtCF7LR6IRoEoVJyQR95MLwWzvKy+t0krdLLAjG+VseaeZiweqDgij+hwnDV31hMdhknHFKKmtbzhzHMqWf2XRkqPziZ7iod4IIGibkl6lRyaj6Io9KzShg2OBmLaEMoWbZ3BxhG8lU5mnlNGsD1M8+ud5Ez34q1w4SywkYqnCfVGMNj02LIsRINx3CV2RrrCpOJp1FQanVGHu0S7yBnsCuPKt5FMJPn443XEbBE+emYFbW1tWK1WhoaGMkPhbM1ut5OXl0cgEGDJkiXcfPPNlJWV7fS1FkIIIfZ1ZrOZ//mf/+F//ud/JsyPxWJceumlPPXUUwwMDBCNRmlp1XJA9RvHRiV5Uhvid3zYuOrqanJzcul6tZnZC+dg9ZkZ2jxCVoWTZCyFTq/DkmUmFUsT7AyTVe4kNBgFFYLdYUilsXotoIC/xs1od5iBjUGsXgv7nVuG3qhjcFOQwKYwpcdoN6ONF3wnY2M5r24tFrJ5LSRCSfo+HiF7ipuhzaM0P9fD9HPLQIF0PE0qoTK8McRwSwjvJAeOfBtmv5kP/7iRqWeVUPdPLce3+t4mbH4z1ScVYbIaM7kqs0tHLLglX/P+77eM1gKQjmldPRuf0XJeH929ecLy9/6fliMz+83E+mP0Lg+w/8+nkFXp5IM/12M2a4Fk70daB6reFcPMOK8ce66V9U+0MLQ+hDnbjO4IhWBHiP0uqKbu0Wb6VvVTe1Ylo50RzE6tIEhNaDkqxaBoo6l0xWju6qFgro90UsVVbqH1jX48ZU4sThOzL5nEukfbqDg6B1eBnfw5PtSUSu/6ITwlDhKxJOa0CQUF/2QPAw1B7X2OprD6tM9EOqkSG41TOMdPe2Mn3UPdBIPDNDU1kUqlSCaT2815RWNRCgoKiMfjVFRUcNlll0lHcPFfR1HHb3kQ4r/cXXfdxTXXXENHR0emu8326PV6XC4Xo6Oj+Lw+SktLte45fj+VlZXY7XZIa3ddpZIpDEYDqaQWXCSjKXQGHTqDonUtUhQigSgGk1YPaLDoURSFke4wjS/0UnNyAWa3iVQixfv/r57JpxeSPdnDUNMIdQ+2suhXtaSTKoNNI/gnu+hdO8CmF3qYfnoZ4eEYuVOzSISTfPgH7WLWgp9NAeD9321g4S+1TkzLflOH1Q+Rfsg/IIuuVUMQhrmXVTHYOELTM93YSmxUn5DPqlu1dpaLflVLfCTB8hsbqDq1EDWtsumpzsxjbHiylUBDmJIjc2h9USsCs/l1TD6tDFuOhYalbbjLnORM97D6nibCnVH8c5xMPraY2EgCRYXlf2/Aho79LqxGTUPLa91UHFlAqCfC6juaWPSrWlRV5d3fbsBWYGbmdytIp9Os/1crjmwzJYvyMhXiwbYwVp8Jo027i0un0xEejGLNMhMPJzBaDVox2FiHBkWnkEqkUBWV9vZ2enp6CI+G6R/oZ3BoEIPBsN1CJL1eT05ODoFAgHA4THl5OVOnTuXRRx+VzkhCCCHEVgYHB7nwwgt5+eWXCQQCfNr/cthsNoxGIyMjI0yZMgWv14tep6esvIzCwkLUpHYXUjqpFRWrKRV0WsGS1W0mPBjF7h8rcFIUbRiOnihZFU7t3K+qbHqhjXQKqo4pQqfTseyGOojAwqtqtCFGrqlj1kWVWP1mNjzezOSTSkGBj+6oBytMObkcvVGHyWnk48c2M1IfwVVhZdqZ5XR80E90ME7lMQUMN4fY/O82IoNacqHoID/tb/Zrw78dW5SJ2SadWkAylKL5hZ5MQdH4BbKZ36+g/qlOIt1RKk/Ox5lnY/VfGrF6wVXhoWf5MFavjshgmkVX15JKpHn/+g3M/1k1alLlwz9uBCvMu2gyRruBno+HMNuN1P2zlcknFOKvdtO1YpC8mVmZWHHaOWW4S+y0ftBL2/N9LPjFFPRGHaHeKBuf6aLqhDwc2dp49vHRBIpOS+hYPNodYaiQTqskI0lMTu1ip8FkIBFJYrDoScZT6PQKwZEgbW1t2sWvUJiW1hbMZjOhUIjh4eFtYnSXy4XdbqerqwuTycScOXM444wzuPTSS3fPB1cIIYT4D/X000/z61//mvr6eqLR6A5jL71ej9PpJBKO4HK7KC8rx2Aw4PX5qKyowOlykkqkMZq187jJZiQRS2Iw6okG4hhtBu2OeEUrPgoPRNEbdaTTKha31lk80B6i8bkeqo7Nw1loIxlP8cH19RQe5qPsgDwGG4Ksf7hNy3kl0nStGKRwfz89Hw/S+Hw3U04qJjYaJ3+2j3gwwfI7tGHa5l5WhWJU+PCGjcy/ohqDWc+y39Zh8eiIDqfJnulmpDlAdBj2u6CcYGeYzf/uwZJjYfIJeay5pxnQcl6xQIIVNzdQekQOeouOpqVah9C5P6pi07/bGW6IULDQS+e7WqW5xaOj/JhCsiY5aVjagSXLSNGiHNY+2MRISxTnJAvTz6ggOhQnlUhT/3QzRGG/70+GNNQ/2ULt6eWEuiN8dNdmFl09nvNaj8UDsy+tJZ1OU7+0Db0eqo4t0Yq50zC4IYC90IrZaYKx7lfB7jDObCvhQBSrx4yaAp1eIZVMozfqSESSKEbo7Oikp7eHkZERBgcH6e/vx2g0brcQSafTkZuby+joKKFQiLKyMmbNmsXdd9+Nx+PZPR9cIYQQ4j9QLBbjyiuv5Mknn6Szs3PCcL2fZLVaMZvNBAIBplRPwevzotPpKC0tpaS4hHRCxWQ1kkyk0Bv0Wu7LqBDuj2LzWhjpDOEucWp5FUUhEogT6orim+JCp1dIp1U2vdBBdDDGtDPK0el1rLi9kVh/jAU/13I7y66po/aMErKqnGx4oo3yI/PQGRU++ksDMdLM+Ho5qk7FmWtj7T/aCNaPYPabmXVBBR3v9hNsDzH19DKGNo3S9Gx7pigpb34W3R8M4SgyU31KCStu0YrUi5dko+ig9dU+9ju/HHueNVPUNPWsEja90EOsL0bhYh/eyU5tWF0z+Ca7GPg4iNkFsSDsf2UN6XiaD/5Qz5xLqwAyjzHz+xXY/BZa3+vF5jaz8ZkOig/wU7woh44P+8me6sFkM7Dsmjoqj88nb7aXjg97aX6uj7k/qsLkNDLSEWLj0m5KD/Xjn+xGTatEh+OoKiRjSVwF2k12KAqpWIpkLIXFYyYZ02Lk+GgCo91AIqINuTcaHqW1tY3hoSFCoRAtLS2YzCbC4TBDQ0Pb5LycTicOh4Oenh7sdjuzZ8/mO9/5Dt/97ne/7I+sEPsk6aQkvjIuuOCCHVaa/uIXv+Cvf/0r/f39pFIpgsEgqVSK7p5uunu6J6xrMBgwGAwYjUZyc3OxWq3Y7Xa8Xj+5udl4PB6cTifpdBq9Xo/JYUSv15NKaiegRCyJM9fGzLPLAO3C2WhPONN1SVVVml/txTfdPtZ6W2Hjo+3YL6kkd7qfVErBWWjDUWAlForTVzfErIsrUfQKOpNCKqoFCP2Nw2SVae2jFXRUn1GAb5KLsoPzePfG9ZhcRvw1bpqe6ab62HysXjM5s130rgxOeL7+GheKTmHTU53k75+F3qyjeFE27vIIRQv8+KodjLRF2fRUJ8HOUSxeE32rR1B0CjnTPcz8bgV9dQF0JoVYMA4GMNlMTD6sKNPa8d3f1jH38ipUVSUS0TobjBcT7X9lNbFAgmQsicFsYOrJZaRSKRRFIRlPoTfqcBXbMgk4VdWGgDE69fT399PX18fIyCjBYIDhoWEGBgdIpVJEIhFCodA2nwWr1Yrb7SYa1arNp06dit/v5y9/+QtTpkz5PB89IYQQ4ivH6/Xyj3/8Y7vLNm3axHnnncfy5csJh8OZDkzpdJq6ui13sr/x5huAdkdaKpXC5/ORlZWF0WgkJzsHr89Ldiobt9utnf/HhkQz2g1kVTq1LjyRJCaLkcrDizLDesRG4sw8uwLLWCefdFKLneLxBDbFQvEhebz3/9az6Fe1zLyomuHGUaxeM+FglGRfmoL9fMQrk+TP9oICgeYRhtsilB2eR6A1QGQwTeUJ+bjK7Fg9JhKxJNm1How2A75pDgbWjpIz1UM6odL8Qs+E16bgQB+2bAsVR+ay7v4WfJNdGExa58iZ39cK0D0VDuqXtoMVUokUXR9pF8/UlIrRbmDGReXoVIWuNUNk17rImepBURSqTiwgu9pDoDXE5me7yZ/jRVVVPJOttK3owVVcTvG8bHKneAh2jeIpdmLPsTDru+WgQiwcx2Q1YrDp0ev1mdctlU6h1+sZGQkSDAbp3dhLNBplaGiIYDDI0NCQ1nUhGMwMD7I1v99POp0mlUqRlZVFdXU1S5Ys4brrrvsiH0EhhBDiK+Wkk07ipJNO2u6ym2++mVtuuYXW1lbi8TgjIyOkUin6+voynZjGjee8DHoDeXl5WKwW7HY7Pl82ubnZuBQXbrebVDKFXqfH5NKGOEsmtJxXdDSOq8DO7AsqAC23M9wyyuwfTsLiNqGqKi0f9OGuHBtuzqij5aVe7DkW8mb4UFVVG0ZNVQkPROldH2DGt8pIAyaXMdP1u2NVP4Wz/WCBaDRN1SkFZE/1kE7m897/24Atx4rJaWTzv3soPywbR4GNvP29dL83OOH55s3yojdpRUpZU+yYnEYKFmRjdAYoOzyP7JlZBDePsvn5HgKtAZwlNvo2BHAXWlAOyGH6WRV0fNCPyWFgtDuCYlax59goWZSPbyyftuw3dcy4sFzrdBAd7+6pFRMt+MUUIn1RIsEYVpeZmpNKSSfSKCjERuKYHEZ8Ne6xOBfSY8MeW71GBoYGtJzXJi3nNTg4yNDQEMlkcoc5L4vFgsfjIRKJoCgKtbW1FBYWcscdd0hXJCGEEGIXmc1m/vjHP/LHP/5xm2Xt7e384he/4JVXXqG/v59oNEosFkNVVdZv2NJZ+6233gK25Ly8Xi9erxejQct5Zfmy8OPHk+PRhtVVQNErWL0mrFlmULTRQ8xWIxWH5mOwaLmjSDDGpKNzsedb0Jt0pBJa7kYrYndQdKCP5X/ayMKrapj1g2q6VgzgKLASHowy0hnGW27DU2ihYIEfRacw0hkmsClMPJwg0BUiFkxTvCQbZ5kVT7HW4dJZYMXsNuKb6mJgXZDCRX7UZJrWVyfGmZ7JdtxlDioPh7qHW8ndLwuz2wRmmPeDaoxWPZ3FA3S93QekSUZS9KzVOk2mk2ksPhPTzi1Fjat0fzRI7vQsiub6QadQNBihZHEuw00jtLzQS+F8P6qqdUdqf2+Q3FlZFMzNJqvSxXDbKP7JbpwFduZ8v5J0XCUaiGF2mTDaDRjMepIx7fVMqWmMRgORSIyh8BA9m3uIxeIMDgwQHNmS8xoZGSGRSPBJPp9P28/Ye1xbW8uxxx7LlVde+UU+gkL8V5BOSkLsxIYNG/jJT37CsmXLCAaDGAwGUqkUqVQKnU6XKYrZmk6nw2q14nA4MkPLud1u7HY7ZrMFp9OF1+vBZrPhcrlQFAVF2dJ9KRN0jM1LjCQx2PToDDoS0SQf3rqRRT/R7roKtofwlDi1wh1VIdQbRdEr2LK1sWg3/bud0iV5GO0GBpqGGW4I0fNBgIqTcgk0jTLwcYisGhsGs56+1SPAxE5KAAUHuxlaFyDSD7XfKaHufq3F47Rzy3AWWDNJl4VXaUPLhQcjmGwmwr1RnMU2reORCsl4CqPFQKBnhLV3tGa6JSWiSaLRGK4sR+Y1TKfUTEvw8dcnGokyGhqlp6eXdForJguHwwwOakmmUCiUueMrmUxOaJGoKAo6nY5UKkV+fj5Go5G2tjZsNhtz5szhwAMP5JprrtltnyMhhBBC7Jrbb7+d2267jaamJuLxOAaDIVM8rNfrt9sR02g04nA4MJvNGI3GsYtpWiIgJydHK2zKycFqtWKz2SbEb+mUin6sgAkg0DOC1WHBaDNoXZZ+U8f0i8pwZduJjsQw202oaNv2bwjiKbETjyS0bk5JlfduXM+iK7RumMG2MHUPaq3Aa84qZv2DbVi9OpyT7fS+p8Vdn+yk5J/hJBlNMrwxgn+GE1uBmdbn+8lf6MVZasVf5SYyEKN71RAVR+STTqcJ98ZIhFO4S2yoioper6e/YRjfJDcAy26oY/4PqzGY9KQSKeIjSSyeseHWVBXSWrIrE4uOvTaBQIDR0VECgQDRaJRQKJSJv1KpVGZ5IpHYJhmj12vF9yaTiYKCAnp7teKl6upqKisrue222ygsLPxyPjRCCCGE+Fy6u7u56qqrePnll+np6UFV1Qk5L2Cb4ScURdluzsthd2AymXB73LjdbpxOJ06nc0vOK63FGalUGp1+bF5KJTwQw+wxYDAZiEcSLP9zA4uuqAUFetcPkVvr1eK/lMLw5lGMFj2OIis6vY5Nz3aSNycLe46F3vVDjDRH6Vk+RNFhPsJdMQbrRnFXWtCbDQzWjQITOykBZM9xMNIYJjqcpvqbhdQ/2gHAlNOLcZfa0Zt0LPt9HQsum4LepGOkO4zZZiTQFsJf60ZBQVUhOhrD5rYw3DXKurtaMjmv2EiC6EgUT6Er8xomYyn0Jl3m9VQUJVO8P/4+DA8PE4lEJuS8RkZGdprzys3NxWKx0NnZicPhYPbs2Rx55JH87Gc/202fIiGEEELsqieffJK//OUvrF69mkAgMFbE/Ok5L4PBgNPpnJDz8nq9KIpCdnZ2Judls9iwOWyoaTWTt0rGUhjNBhgbaXa4LYDZbtFu3BvLeVWfWYh/kofIcBST1YRiUEBV6a8L4Cy0ER2N4ylxkIqleP939VpX73iawU0jNPxTi5sqT86n8akuzC5wltvo/0jr2PjJTkruSTbURIpgSwxXuQVXqY321wfJqnHgmWQnf6aPcE+U5td7qP1mKWpKZahpFDWl4i6zozMo6I16ej4eJHuqBwWFZb+vY/YFlViyzCSiCWKDSaw5ZvQG7fptOqlqnUDRGiOMX3vcEmsNE49HGR0dzcRa480sRkdHicfjO8x5GY1GCgoKGBwcJJlMMmnSJKZOncr1119PUVHR7vgICfFfQ4qUhPiCwuEw//d//8cTTzxBR0cHyWQyc8Ky2+2ZzgCKomyT2AEtkWAymTLj1tqsNixWCzabDb1ej9lsxu12YzAYsFgsJBJJsrI8mM1mLBYL8Xgcj0ebHv86jw+DFovEMVtNJJNJDAYDalqla+UgBXO1i3ao0LV6gPxZPoaaR1n/RCs1p5SQVeEgEU4yUB+k6ZluLbGSVBnpjuAu1jo8RQJRklEVV95YFyNVu2PO4jRteW1Go9gcFtLpdOYCFsDo6Gjm4lYqlSaRiBMYDqCiEg6HicVijIxoF+4ikQiRSIR4PL7du+/HkznjFybHh5Sprq6mt7cXVVWZPn06v/zlLznssMO+vDdeCCGEEHvFxx9/zFVXXcXy5csZGhoiHo+TTqcxm83odDoikcgOC8lBSyRYLBZMJhNGoxGTyYTL5QIVXG4Xep0eT5YHvV6PwWBAr9djs9lwOBykUinMZjNOp1MbXjYQxubeMuRrbCSOyWZEGbvwNrR5BEuWEYtbKx7vXx/AW+XUCryvqaPiuHx81U6MdgODG0fY8GgbU88uxV1ip/n1HsoOzs0kkjre76dgrg9Fr2ixnd5APJbAZDECTChyTyQSDPYPYbIYicVimc5GJpOJWCxGPB4nGAiSVtNEo9EJhUbjsdcnL36N0+l06PV6PB4PsViMYDBIYWEhHo+H1tZWKioqOPLII/nf//1frFbr7vkQCCGEEGKPiEaj3HnnnTzyyCNs3LiRUCiU6QZgt9uJxWKZbtc7ynkZjUasVmvmhj6LRevOND7tdLowGneQ84rG8Xi3ynmNFVaDlvMymU2k0lrOK51Q6Xi/j+LFOQCoadj8SjcVR+Qx1DjC+ofamHxqIf6pbuIjCfrrgjS/2MPCq2pRU2kG6oPkTM9CVVXCQ1Ei/XFt6I+xi1ux0ThWjznz3MJDYWxZNtLpNKHRELF4DJ1Ox8jISCbnlU6nSSQSWs5LVQlHxnJewRFUVKLRKJFIhFgs9qk5L7vdjsViIRAIkEqlqKmpycR2M2fO5Oc//zkLFizYTZ8CIYQQQuwp7e3tXHvttbz99tu0t7cTCoWIx+OYTCb0ev0u5bzMZnMm52UxW3A4HSgoWs5Lr8ftdqPT6TCZzOj1ukzOK51OYzKZMjmv0YEQDp89s+9QbwRrlgWdQUHRKfTXD2N06HEVOFAUhd61w3jK7Bgset69dj2Fi31kz3Bj81roXjVI08vdVByVR94ML81vdlNyQC46g9bgoPmVbooXZ6O36Ekmk+jQExuNYfVYgC1NDRRFIR5LMDQ8iNlsJhqNjuW8hjGbTUSjUeLxOIFAQLtmGYtOKDQaj70SicQOc146nY6srKzMfsZzXkNDQ0yZMoVDDjmEn/70p5jN5m22F0LsOilSEmIPWrlyJb///e957733GB4eJpVKMTIygsWiFSWFw2FUVdUKilQ1c9FteyfLT9Lr9RiNRgwGQ+bi0XhQMT6dSqUwmUwYDIbMXfJ6vR6TyZQZnk6v19PS0oLP58Nms5FIJDLdoxKJBMlkMrOvZDKZubsumUySTCYzwdHWyxOJxHYDpq2NJ64sFq2oKZlM4vV6MRgMBAIBEokElZWVBINBQqEQkydP5pBDDuGXv/wlNpvtU/cthBBCiK+eSCTCfffdx2OPPcaGDRu0wpxgEFVVcTi07o2hUCgzrEk8Hs90DtiZ8bhl60Km8YtI49Pjcdb4OqlUKvNY43GawWBgdHSU4eFhSkpKMrGUoiiZwvfxmC2VShGLxTLbji8fv2t+69hrexe5Pmn8wuB4XKfX6/F6vZm79HNycvB4PHR2dpKTk8P06dO55JJLOPDAA7/weyOEEEKI/z4bNmzgzjvv5K233qKjo4NoNEogEMBkMmGz2YhEIpn45/PkvLaOoz4t56XX6zMX78ZzXuPxlcFgoLW1FY/Hg8PhIJFIZPa1vZxXMpnMxFpfJOcFZG5QHB/m1uPxYDKZGB4eJhaLMXnyZEZHR0mn01RVVXH44Yfzwx/+EIvF8mW8PUIIIYT4LxKLxXj22Wd54okn+OijjxgcHCQQCBCPx7HZtNFNRkdHt8l5pdPpXb5Wt72c1/i8T8t5GQwGkskkRqORUCjE0NAQJSUlE7p17iznlUqliMfj6HS6zPR4bLarOS+LxZI5Np1Oh8/nIxKJEAwG8fl8+Hw+hoaGKCsro6amhgsvvJBZs2Z9WW+REGInpEhJiP8AGzZs4KmnnuL999+nsbExcyJNp9OZjkuhUAi9Xo/dbs+c3MeXj0+PBwoA8Xg803FpfBq0Nt59fX3Y7XbsdvuEgERVVRKJRGb+eCDhdDpJp9PEYjGAzN10IyMjOJ1O7HY7w8PDBINBioqK0Ol0BINBcnNzKS8v55BDDuH000+XYiMhhBBC7HWRSITXXnuNV155hXXr1mUusg0NDWXaakciEVRV1bpgjl10G0/cjA+NEo/HMRqNmf1Go1GMRqN2N/5YkZGqqoRCIUKhENnZ2ej12pj3JpPWmXL8QpjVatWGC4nFMu29x7seORyOTHvwcDhMbm4uyWSS4eFh9Ho9+fn5DA8P4/F4KCwsZNKkSZx//vlMmjRpz7+4QgghhBCf0NzczEsvvcSqVauor6+nv78/M9Ss2WzGYDAQDAYxGo3YbLbMhanxGCmZTGZyVOOx13gn7/F4LRaLZfJifX19mY4B44VL4xfbEokENpttwsWzrXNe48Xu8XickZGRzH4CgQCRSITc3FzMZjOJRILCwkLy8vI47LDDOOmkk6TYSAghhBB7XSwWY82aNbz11lusXbuWxsZGAoEAQ0NDmS7l4x0ex4f1Hc95jTc/gIk5L0VRiEQiO815jefLxjsQjee8bDatM+X4PsdjqXA4jN1uz3SQCoVC5ObmkkqlCIVC6HQ6cnJySCQS5OXlkZOTQ3V1NWeeeaYMtSbEfwApUhJCCCGEEEIIIYQQQgghhBBCCCGEEELsVrq9fQBCCCGEEEIIIYQQQgghhBBCCCGEEEKI/25SpCSEEEIIIYQQQgghhBBCCCGEEEIIIYTYraRISQghhBBCCCGEEEIIIYQQQgghhBBCCLFbSZGSEEIIIYQQQgghhBBCCCGEEEIIIYQQYreSIiUhhBBCCCGEEEIIIYQQQgghhBBCCCHEbiVFSkIIIYQQQgghhBBCCCGEEEIIIYQQQojdSoqUhBBCCCGEEEIIIYQQQgghhBBCCCGEELuVFCkJIYQQQgghhBBCCCGEEEIIIYQQQgghdispUhJCCCGEEEIIIYQQQgghhBBCCCGEEELsVlKkJIQQQgghhBBCCCGEEEIIIYQQQgghhNitpEhJCCGEEEIIIYQQQgghhBBCCCGEEEIIsVtJkZIQQgghhBBCCCGEEEIIIYQQQgghhBBit5IiJSGEEEIIIYQQQgghhBBCCCGEEEIIIcRuJUVKQgghhBBCCCGEEEIIIYQQQgghhBBCiN1KipSEEEIIIYQQQgghhBBCCCGEEEIIIYQQu5Vhbx+A2Lf19PQwPDy8tw9DCLGHeDwecnNz9/ZhCCHEV5bEXkJ8tUjsJYQQe4/EXUJ8tUjcJYQQe5fEXkJ8tUjsJT6NFCmJHerp6eHrp34d9Hv7SIQQe4rFYuGBBx6QwEEIIfYCib2E+OqR2EsIIfYOibuE+OqRuEsIIfYeib2E+OqR2Et8GilSEjs0PDwMejBs9KCLGgAdik4BZcs/RacDBVB02rxPLN/xv7FtdAowPq1sNa1ogxEqZKbV8Xlj6289rSpb9qGOD2I4vs/xdSf8HN9ubL2ttlHH96Nos1QFVN1W2ylb9q1O2IYJ20x4fLZsl1n3E9tm/vHp60/YZgfzdvp7Zp46YZ46YZ/qhGnt8dVttmebfY6tp9uyXFFUbbYyPj3+Nm61fOyntmjLejpFHdte3WpaW0f7CKigqJn5OkXVlvGJeYqKDu2foqhjH9WxecpW64/9zPxDRSGNbuyxdEp6bBnoSKMoKvqxx9Mr6bGfKoqS1uZnlm89nc7sW6ekM8dgILWdZWl0gG58f2OPM/5cdKgTHkdbd+xYx37Xo6AAegUUlLHpLT91KOgUHW0dRn57i4fh4WEJGoQQYi/Ya7GXotun4q7M9D4ce6m6rbbdF+KuT6yzL8Zeet2+FXfpGdteYi8hhPhKkpyXNmu7sZeOfSru+uS8fTX22pfirn0x5/XJ2MugpCTuEkKIr5B9JvZSdPtW3LVVXLXPxl66TxwHez/ugq1jrPG3ct+Jvcbjpn0l7pKcl9gXSZGS2CklbEAXMYEyHjToMsGBFjQooNsSNChbLZ+wLDM9/rtu2yBjbFpVxs5UWy1TlbGzkjJ+WtmyjrrVGVQdW2f8hL8lINl6+hO/65RtAoIJJ8OxIqXxQGZHwcS2P5VtAoMdrbuzAGF76+10OTtbdzuBwyeXsfWyTwYK6jbLlPHfP1mkNOGnto4yHgB8MmjYapma+V2dsJ2O8cceTwRt+aewZZtPBgG6Hc5LbzOt3/rkPX5SHv9dUbUT+laBwPjJXK+k0SlKZn3tJ2PraSdxbXvtRK4bCzaMSho96cy+9WPT4/vUgoL0lt/HHnvL7+pWj7Vl/3qUsd+1AEE/Fiho07qx37WfQggh9r49HXupOt2+FXdNWJd9MvbKFCntK3FX5hj23djLoEvvU3HXlvUl9hJCiK8yyXl9ct3xOGffibt2uJx9KPbSfbJISXJeO4u9jEpK4i4hhPgK2uuxl063T8VdW2KNfTj2+mSR0t6Ou/bBnNcn5xl0qX0q7pKcl9gX6Xa+ihBCCCGEEEIIIYQQQgghhBBCCCGEEEJ8flKkJIQQQgghhBBCCCGEEEIIIYQQQgghhNitpEhJCCGEEEIIIYQQQgghhBBCCCGEEEIIsVtJkZIQQgghhBBCCCGEEEIIIYQQQgghhBBit5IiJSGEEEIIIYQQQgghhBBCCCGEEEIIIcRuJUVKQgghhBBCCCGEEEIIIYQQQgghhBBCiN3KsLcPQOz7VFuStA5Ah6JTQNnyT9HpQAEUnTbvE8t3/G9sG50CjE8rW00rWgmdQmZaHZ83tr46vh8UVO2Xsd9B+w/jO9CWp7dso45vN/ZwmfXHpzP7HpvWKVst0xZr/2HC/AnbKKCMP95W88Yfc3yeup3tP239CdvsYN5Of8/MUyfMUyfsU50wrT2+us3223/+6th7pY69DtoLrCjj02Ovz9bLx34qbD0fdIo6tr261fTYu57Zh7rVsamoqGPPTSWdeS7afBWVtKKOfVRVdKjaPj/xM/MPFYU0OoWxddNjy0BHGkVR0aNtp1fSYz9VFCWtzc8snzitG/s4az8VdAoY0KGHscdV0CmK9hPQje9v7HF0qJl/E/ab2eeW3/UoKIBeAQVlbHrLT+2xdLR1yClBCCH2BXs89lJ0+1bclTneLf/2tdhL1W217b4Qd31inX0x9lJ1+1bcpR+LgiT2EkKIrzbJeW01PX54OvapuOuT8/bV2Gtfirv2xZzXJ2Mvg6KXuEsIIb6C9nrspej2qbhrS+ywD8deY+1O9qW4C7aOsdjnYq/0WNy0r8RdkvMS+yL5hIgdSqfTGAwGkpOH9/ahfD4qWwUQu075xE/xn2f8rU/v7QP5VOOR1b7V0M5gMJBO79uvnBBC/Lf6j469JO76Stv3Y699M+4Cib2EEGJv+Y+Ou0Bir6+wfT/ugn019pK4Swgh9p7/6NhL4q6vtH0/9to34y6Q2Et8OilSEjuk0+lIJpNcffXVlJaW7u3DEULsZi0tLVxzzTXodPteMCOEEF8FEnsJ8dUisZcQQuw9EncJ8dUicZcQQuxdEnsJ8dUisZfYGSlSEjtVWlpKdXX13j4MIYQQQoivBIm9hBBCCCH2DIm7hBBCCCH2HIm9hBBCwL7Y+0uI/0JvvvkmV1xxBYcccghutxtFUTjnnHP29mFt14MPPsiFF17I3LlzMZvNKIrCfffdt7cP6wtLJBI88cQTnH322dTU1OBwOHA6nSxYsIDbb7+dVCq1tw9RCCGEEF8Cibv2Pom7hBBCiK8Oib32Pom9hBBCiK8Gibv2Pom7hPhySCclIfaAv/71r/ztb3/DZrNRUlJCMBjc24e0Q1dffTUtLS34/X7y8/NpaWnZ24f0pWhsbORrX/saDoeDww47jBNPPJFAIMDSpUu5+OKLefbZZ/nXv/6FosgIwUIIIcR/Mom79j6Ju4QQQoivDom99j6JvYQQQoivBom79j6Ju4T4ckgnJbFDPp+Pc845B5/Pt7cP5T/eD37wA9auXUswGOTee+/d24fzqe6++26am5vp6+vj+9///t4+nC+N0+nk1ltvpbu7m6eeeorrr7+ev/zlL2zcuJG5c+fyzDPP8Pjjj+/tw9yr5DsvhBB7l/wd/nJI3LX3Sdy1a+Q7L4QQe4/8Df7ySOy190nstXPynRdCiL1L/g5/OSTu2vsk7to18p0XOyNFSmKH/H4/3/3ud/H7/Xv7UPaqJ554goMPPpicnBwsFgsFBQUcfvjhPPHEE7u8j7lz5zJ16lT0ev0XOpZ0Os3dd9/N/Pnz8Xq9WK1WioqKOOGEE3j99dcz673++usoisKvf/1rli1bxpFHHonH49mlyt3DDz+c0tLSL3Sc4+LxOH/605+YN28eTqcTh8NBbW0tl19+OUNDQ5n1ysrKKCsrIxAIcNFFF5Gfn4/dbueggw5i5cqVAHR2dnLWWWeRk5OD1WrlyCOPpKGhYZePpbCwkIsvvhi73T5hvt1u5/LLLwfgjTfe+BKe9X8u+c4LIcTeJX+HJe76IiTu+s8j33khhNh75G+wRmKvz09ir/8s8p0XQoi9S/4OS9z1RUjc9Z9HvvNiZ2S4NyE+xe23387FF19Mfn4+p5xyCj6fj+7ubj744AOefPJJTjvttD16PFdeeSW/+93vqKys5Mwzz8TpdNLR0cHbb7/Nyy+/zJIlSyasv2zZMq699loOOeQQvve979Ha2rrHjjUSiXDEEUfwzjvvUFVVxbnnnovZbKahoYE77riD73znO2RlZWXWj8fjHHHEEUSjUb75zW/S09PDY489xuGHH86yZcs46qijyM/P56yzzmLTpk0sXbqU4447jvXr13/hgMxoNAJgMMifRCGEEGJvkbjr85O4SwghhBCflcRen5/EXkIIIYT4LCTu+vwk7hLiv5N8S4T4FHfffTcmk4nVq1eTk5MzYdnAwMBeOZ6CggLWrFmDzWabsGxwcHCb9V966SX++te/cu655+6pQ8z41a9+xTvvvMO3v/1t7r333gkn90AgsM3Jvquri8WLF/PQQw9lTuCzZs3i5z//OQsXLuTcc8/lD3/4Q6ZC++KLL+b222/n6aef5tRTT/1Cx/rXv/4VgCOPPPIL7UcIIYQQn5/EXZ+fxF1CCCGE+Kwk9vr8JPYSQgghxGchcdfnJ3GXEP+dZLg3IXbCaDRmql+3trfG0TSZTNut5vV6vdvMmz179l4JGpLJJHfeeSdut5ubbrppm+N1u904HI5ttrvhhhsmVBifccYZmf1dc801E1pIji/76KOPvtCx3nnnnTz33HMceuihHHvssV9oX0IIIYT4YiTu+uwk7hJCCCHE5yWx12cnsZcQQgghPg+Juz47ibuE+O8lnZSE+BSnn346P/vZz5g2bRpnnnkmhxxyCIsXL8blck1Y78Ybb2R4eHjCvHPOOYeysrIv/Xhuu+02pk2bxumnn84hhxzCwoULsVqt211/3rx5E6aHh4e58cYbt1nv17/+9Zd6nBs2bGBkZITDDz98QpvFT5OVlUVJScmEefn5+QBUVVVtU809vqyzszMz77777qO5uXnCeieffDIzZ87c7mM+88wz/OAHP6C0tJQHH3xwl45TCCGEELuHxF2fj8RdQgghhPg8JPb6fCT2EkIIIcRnJXHX5yNxlxD/vaRISYhPccUVV+Dz+bj99tv5wx/+kKm+Pe644/jTn/5EeXk5oAUOLS0tE7ZdsmTJlx443HTTTZSXl3PvvfdyzTXXcM0112CxWPjGN77BH/7wB/x+/4T1c3NzJ0wPDw/zv//7v9vs98sOHAKBAACFhYW7vM0ngzHYMm7rpy1LJBKZeffddx9vvPHGhPXKysq2Gzg8++yzfO1rXyM3N5dXX301E4gIIYQQYu+QuOvzkbhLCCGEEJ+HxF6fj8ReQgghhPisJO76fCTuEuK/lxQp/ZcIh8M88sgj1NXVsX79ekZGRrjyyis55phjvvTH6uvr489//jMffvgh6XSaWbNmcemll1JQUDBhvYMOOmi723/ve9/jrLPO+tKPa3dQFIXvfve7fPe732VgYIC33nqLhx9+mMcee4yGhgbWrFmDXq/fpqJ2dzEYDFxxxRVcccUVdHZ28sYbb3Dvvfdy//33093dzQsvvLDN8W+trKwMVVV3+3F6PB4AOjo6dvtjbe3111/fpfX+/e9/c9ppp+H3+3nttdeoqKjYrccVj8e55557ePHFFxkZGaGyspLzzz9/m+rz7dnV79vW1qxZww9+8AMA/vWvf2Xej8+6z6eeeoqVK1dSV1dHb28vRx99NL/85S+3ebznnnuO6667brvH8uSTT05oV/rKK6+wbNky6urq6OjoYObMmdx8883bbLd582buvfde6uvrGRwcxGKxUFpayhlnnMEBBxyww+cuhBB7isReXz6Juz4fibu2tadir8HBQe655x7effddgsEgXq+X2bNn84tf/GLCesuXL+eBBx6gqamJVCpFUVERp512GkcdddSE9XY19gKor6/nr3/9K/X19UQiEfLz8zn++OM55ZRTMu3PV61axWWXXbbD53r++efzne98B4Af/vCHrF69ervr6fV6XnvttR3uRwghdjeJu3YPib0+H4m9JtoTcdeuft9aW1t5+umnqauro6GhgXg8zqOPPrrdi4W7mp/6tHjq9ttvZ+rUqZnpdDrN0qVLefrpp+no6MBisTB58mS+853vMH369M+1TyGE2Bsk9vrySdz1+Ujcta09EXt9lvzUhx9+yH333cfGjRsxGo3MmTOHiy++eEL89VnyU/39/Tz++OOsX7+eDRs2EIlEuOmmm5g1a9Y22+1q7AVaHu2uu+5i7dq1qKrK1KlTueiii6iqqtrp6yZ2DylS+i8RCAS47777yM3NZdKkSaxatWq3PE44HOayyy4jFApx1llnYTAYeOyxx7j00kv561//itvtnrD+3LlzOfrooyfM+0/9wvt8Pk4++WROPvlk+vv7efXVV9m0aRPV1dV75XgKCgo444wz+OY3v0l1dTUvv/wykUhkh+0Y96Tq6mpcLhcffvghQ0NDu9yGcU8YDxq8Xi+vvfYakyZN2u2Ped111/H666/z9a9/naKiIp577jl+9rOfcdNNNzFjxowdbvdZv2+gnZRvuukmrFYrkUjkC+3zoYceIhwOU1NTw8DAwE6f53nnnbdN4ueT4wE//fTT1NfXM2XKFILB4A731d3dTTgc5uijj8bv9xONRnnjjTe48sorueKKKzjxxBN3ejxCCLE7Sey1e0nctesk7trWnoi9enp6uOSSSwA46aST8Pv99Pf3s379+gn7fPvtt7nqqquYOnUq55xzDoqi8Nprr/Hb3/6WQCDAN77xjcy6uxp71dfXc/HFF1NUVMSZZ56J2Wzm/fff5+abb6ajoyOT+CktLeXqq6/eZvsXXniBDz/8cEIC69vf/jbHH3/8hPUikQh/+MMfdinRJYQQu5PEXbufxF67TmKvifZUzmtXvm/r1q3jiSeeoLS0lNLSUhoaGnb4+Luanxp32mmnUVNTM2HeJ7s63HbbbTz22GMceeSRnHzyyYyOjvKvf/2LH/7wh9x6663U1tZ+5n0KIcTeILHX7iVx166TuGtbeyL22tX81LJly/jlL3/J5MmTufDCCwmFQjz++OP84Ac/4J577skUmX2W/FRbWxsPPfQQRUVFVFRUsG7duh0+/q7GXvX19VxyySXk5ORwzjnnoKoqTz75JD/84Q+54447thkeUOwZUqT0X8Ln82U6lmzYsIHvfe97u+VxnnrqKdrb27njjjsy/xO1YMECzjnnHB599NFtHre4uJgjjzxytxzLnvD6669z8MEHT6gSTiQSDA4OAmCxWPbYscRiMVasWMGiRYsmzA+FQoyOjmI0GtHpdHvseD6NwWDgwgsv5Pe//z2XXXYZ9957b+aObtCCXL1ev00By+723HPPcdppp5GVlcVrr722RwLYuro6XnnlFS666CLOOOMMAI466ijOOeccbr/9dm6//fYdbvtZv28AS5cupbe3l+OOO47HH3/8C+3z5ptvJjc3F0VRtrnTf3sWLFjAlClTPnWdq666iuzsbHQ6HWefffYO11u4cCELFy6cMO/UU0/lggsu4LHHHpMiJSHEXiex15dP4q7PR+KuifZU7HXDDTeg1+u58847t1s4Pu6f//wnPp+PG2+8EZPJBMCJJ57It7/9bZ577rkJRUq7Gnv961//AuCWW27JtCo/6aSTuPTSS3n++eczRUper3e7fw/uvfdeioqKJlwU214h0osvvgjAEUccscNjEUKIPUHirt1DYq/PR2KvLfZkzmtXvm8HHHAAzz77LDabjYcffvhTi5R2NT81br/99mPJkiU7XJ5MJnn66adZsmTJhItwS5Ys4fTTT+ell17apkhpZ/sUQoi9RWKvL5/EXZ+PxF0T7anYa1fzU3/5y1/Iz8/n1ltvxWg0Alo8dv755/Pggw9mRnz5LPmp6upqnnnmGVwuF6+//jr/8z//s93H/iyx1z333IPZbOb222/P5PCOOOIIvvWtb3HnnXdyzTXX7PA5it1HipT+S5hMpglDKn2a9957jwcffJCNGzeiKAr77bcfF110UWbM00/z+uuvM2XKlAl/MEpLS5k9ezavvfbadoOVWCwGgNls3sVns+84+eSTcblc7L///pSWlpJIJHjppZeoq6vja1/7GqWlpbu0n7fffpu7774b0Nrpjc8755xzAPD7/dxwww2fuo9IJMIBBxzA5MmTmTNnDiUlJYyOjvLMM8/Q3d3NFVdc8aW8xnfffTdvv/02AB9//HFm3nh7w8WLF3P++efvdD//93//x3vvvccDDzzAe++9xzHHHIPZbKapqYnnn3+et99+e7vjt+4uGzZs4JRTTiEWi7FkyRIefvjhbdYpKyvLvCdfljfeeAO9Xj+hqMZsNnPcccdx55130tPTs814vuM+6/ctGAxy9913893vfpehoaEvvM+8vLzP/HzD4TBms3lCoLi1HT3XXaHX68nJyWHDhg2fex9CCPFlkdjryydxl8RdX4Y9EXu1tLTw/vvvc/nll+N2u4nFYuj1egyGbf/3OhwO43Q6MwVKoCXZtlfYtKuxVygUwmQybZOE8/l8tLW1feq240OanHvuuTt9nJdeegmr1crixYt36biEEGJ3kbhr95DYS2KvL2pP5rxg59+38eLtXfF58lPhcBiTybTdmC+VShGLxbbp8JCVlYVOp9vhMX/aPoUQYm+R2OvLJ3GXxF1fhj0Ve+1KfioYDNLc3MwZZ5yRKVACmDRpEqWlpbz66quZIqXt2VF+ymaz7fSx4bPFXmvWrGHBggUTcnF+v5+ZM2fy7rvvEg6Hd/lxxZdHot+vmBdeeIFrr72W+fPnc+GFFxKLxXjqqae45JJLuOeee7Y7Rve4dDpNU1MTxx577DbLampq+PDDD7f5Ij///PM89dRTqKpKaWkp3/nOd/6j7sS97rrreP755/nggw9YunQpdrudyspKbr/9ds4777xd3s+mTZv429/+NmFeY2MjjY2NgHYi2FngYLfbuf7663nllVd466236O3tJSsri+rqaq677jpOP/30z/4Et+Ptt9/e5ljfeecd3nnnncz0rgQOFouFl156iT//+c88+OCD3HXXXej1ekpKSvj+979PWVnZl3K8u6q7uzsTwD7yyCPbXefggw/+0gOHhoYGioqKsNvtE+aPBwKbNm3abtDweb5vd999N16vlxNPPHGb9/Dz7vOzuOyyy4hEIhiNRubNm8cll1xCcXHx59rXuEgkQiwWIxQK8c477/D+++9zyCGHfKF9CiHEniSx166TuEsjcdcXsydir+XLlwNa4uNHP/oRK1euRK/XM3fuXC6//PIJ3+uZM2fy0EMPcffdd3P00UejKAovv/wy9fX1/PrXv/5cz3HWrFm8+uqr3HDDDXzjG9/AYrHw/vvv8+abb3LRRRd96rYvvfQSsPPuSMPDwyxfvpxDDz10n2jxLoQQu0Lirs9GYi+NxF6f357Mee3t79t1111HJBJBr9czY8YMLrroogndxM1mM7W1tTz//PNMnTqV/fbbj9HRUf72t7/hdDq32xF8Z/sUQoh9ncReu07iLo3EXV/Mnoy9diYejwPbLxg0m81s3ryZgYGBHRY87mp+akc+S+yVSCQm3Dw4zmKxkEgk2Lx5M1OnTv1cxyE+PylS+goJh8PcdNNNHH/88fz0pz/NzD/66KM566yzePDBByfM/6RgMEg8Ht/uH5Txef39/ZmxG6dNm8YhhxxCfn4+AwMD/POf/+Q3v/kNoVCIk08++ct9crvJRRddtNNE/64455xzvvAJyWg08rOf/Yyf/exnO113yZIlqKr6uR7nvvvu47777vtc236S2WzmJz/5CT/5yU8+db3m5uYdLtvR8ygrK/tMz/GLvCZfxI5Owlt/Z7bns37fGhsbWbp0Kddff/0Ouxh91n3uKrPZzDHHHMOsWbOw2+3U19fz2GOPcfHFF3P33Xd/oe5Jt956a2ZIE51Ox0EHHcSPf/zjz70/IYTYkyT2+mwk7vpiJO7S7InYq729HdCGfJsyZQq//vWv6enp4b777uPyyy/n3nvvzbRqP/vss+nq6uKBBx7g/vvvB7QkyP/93/9x4IEHfq7nePzxx7N582b+9a9/8cwzzwBax8kf/ehHnHTSSTvcLpVK8dprr1FTU0NRUdGnPsYrr7xCKpX6j0n4CiGExF2fncReX4zEXnsu57U3v28Gg4GDDz6Y/fffH7fbTXNzM48++ig/+MEPuO2225g8eXJm3auvvppf//rXE4YMKSgo4NZbb6WgoOBz7VMIIfZVEnt9NhJ3fTESd2n2VOy1K7xeLw6HI9Mla1wgEKClpSWzz+095mfJT32aXY29iouLqaurI5VKZa6fJhIJ6urqgC1dycSeJUVKXyHLly9ndHSUww47jOHh4cx8nU5HTU0NK1eu/NTtxytDt27bNm68AnF8HYDbbrttwjrHHnss559/PnfeeWemHZ8Q/+1isdguf2c+uR3s+vftpptuYsGCBcyfP/9Tj+Wz7HNXHXrooRx66KGZ6QMPPJD58+dz6aWX8sADD3DFFVd85n2O+/rXv86SJUvo7+/ntddeI5VKkUgkPvf+hBBiT5LYS4g9b0/EXpFIBNASMtdffz06nQ6AnJwc/vd//5eXX36Z448/PrO/4uJilixZwkEHHUQqlWLp0qVcc801/PGPf/xcd2rp9XoKCgqYP38+S5YswWQy8corr3DjjTfi9Xp3WPy0YsUKBgcHOeuss3b6GC+//DIej4e5c+d+5uMTQoi9QeIuIfa8PZXz2pvft+nTpzN9+vTM9OLFi1myZAnnnnsud95554RuFTabjfLycqZOncqcOXMYHBzk73//O7/85S/585//jMfj+cz7FEKIfZXEXkLseXsq9toVOp2OE088kYceeog77riDY489lnA4zO233565hrejfX6W/NSn2dXY65RTTuEPf/gD119/PWeeeSbpdJr777+fgYEBYEtXKLFnSZHSV8j4Hb8/+tGPtrt8vD1cLBZjdHR0wjKfz5c5yW+vQODT2rqNMxqNnHrqqfzhD3+gvr6eGTNmfObnIMR/GrPZ/Lm+M5/l+/bKK6+wdu3a7Q7x9nn3+UXNmDGD2tpaVqxY8YX2U1pamhmP+eijj+byyy/nF7/4BXfccQeKonwZhyqEELuNxF5C7Hl7IvYa/3nIIYdkCpRAu5vummuuYe3atZkipRtvvJG6ujruvvvuzLqHHnoo3/nOd7j55pu54447PvNzfPDBB3n88cd56KGHMq24Dz30UC677DL+9Kc/sXDhQgyGbf9X/6WXXkKv108oLt+ezs5O1q1bx6mnnrrd/QghxL5I4i4h9rw9EXdtz97+vhUVFbF48WLefPPNzB35yWSSH//4x8yaNWvC36E5c+Zw9tln8/DDD39qB43t7VMIIfZlEnsJseftrdhrR8477zwCgQAPP/wwf//73wGYN28exx13HE8//TRWq3W72+1qfurTfJbY66STTqK3t5eHH36Y559/HoApU6Zwxhln8MADD+zwOMXuJRnHr5B0Og1o7c+8Xu82y8f/5+fVV1/luuuum7DszTffxOVyYTKZMpWFWxuf5/f7P/UYcnJyAK21nBBfBT6fb7utAnf2nfks37fbb7+dJUuWYDAY6OrqAsgE/r29vSSTSfx+/5fyHf4scnJyaG1t/dL2B9rFvxtuuIG2trbPPCydEELsaRJ7/X/27jtOqur84/hn+uzO9t6ABZYqUqQXAcHeNfauaKKxReMvxmiiMWpiNEaNmmLBFnvBAihFUKooXVn6wsL23nennd8fszu67oIssmqS7/v12pfOvffce+bOrvN4znOfI/L9+z5ir7Z/xsfHtzvOZrMRGxtLXV0dEBr8mT17NhdccEG7ZCa73c7YsWN5++238fl8nT7Jtj+zZs3iiCOOCCcotZk4cSKPPfYYxcXFHcplt7S0sGTJEkaOHNnpf4++bv78+QBa6k1E/qMo7hL5/n0fcde+/NB/bykpKfh8Ppqbm/F4PKxfv568vDyuu+66dsf16NGDXr168cUXX3T5nCIiP2aKvUS+fz9k7NUZh8PBrbfeylVXXcWePXtISEigR48e3H333VitVjIzMzu06cr41P50Nfa66qqrOO+888jLy8Pj8dC3b1/+9a9/hdvI909JSv9D2v5j8G1l+0ePHs1DDz3UYbvVaqVPnz5s3ry5w75NmzaRkZHRYaD8mwoLC8N9EPlfkJOTw9q1a2loaGg3wNC21mlOTk6n7bry91ZaWsqCBQtYsGBBh2OvvPJKcnJyeOaZZw7J33BXFBYWHvK/9bbykN98+kJE5MdIsZfI9+/7iL0GDBgAQHl5ebvjfD4fNTU14b+3mpoaAoEAgUCgwzkDgQDBYDA8sNsVVVVVnbbz+/3hc3/T0qVLaWxsPKDEowULFpCZmXlQS9GJiPxQFHeJfP++j7hrX37ov7fCwkKcTmf4yfuqqiqAfcZoncVn33ZOEZEfM8VeIt+/HzL22p+EhIRwwlEgEGDt2rUMGjSo03N2ZXxqfw4m9oqOjm5Xde3zzz8nOTlZBRF+INZvP0T+W4wZMwaPx8OLL74YHsD+urZ1Y5OSkhg1alS7nzZTpkxh8+bN7f5Dlp+fz9q1a5k6dWqHc31dY2Mjb7zxBrGxseGBfZH/dlOnTiUQCPDuu++Gt3m9XubMmcPgwYNJTU0FoKSkhN27d7dre6B/b/fee2+Hn7Yyibfffnu7TOIDPWdXdPb3vmLFCrZs2cKYMWMO6pxtAcbX+f1+PvzwQ1wuF9nZ2Qd1XhGR75NiL5Hv3/cRew0fPpz4+Hjmz58fTqAGmDt3LoFAIPw3HB8fT1RUFEuWLGlXUruxsZFly5bRs2fPgyqnnZWVxeeff05NTU14WyAQYNGiRURGRnb6pNqCBQtwu90ceeSR+z331q1b2b17N0cffXSX+yUi8kNS3CXy/fs+4q4f+u+ts+tv376dZcuWMXr06HC1zLYn8BcuXNju2C1btrBnzx769evX5XOKiPyYKfYS+f59H7HXd/XKK69QUVHBueee2+n+Ax2f+jZdib06s3DhQjZv3szZZ5+t2OsHokpK/0XefPNN6uvrw6XZli1bRmlpKQA/+clPiIqK4uabb+bee+9lxowZTJ8+nbi4OEpKSli5ciVDhgzhpptu2u81zjjjDN5//31uvfVWzjvvPGw2G6+99hrx8fGcd9554ePeeustli5dyoQJE0hNTaWiooI5c+ZQUlLC7bff3uUlDUT+Uw0ePJijjjqKf/3rX1RXV5OZmckHH3xAcXExt956a/i4e++9l3Xr1vHJJ5+Etx3o31tnX+bbtm0DYOzYse2eJDjQc0LovyHbt28HQglCO3bs4LnnngNg0qRJ9O3bF4BrrrmG/v37M2DAADweD1u3bmXOnDmkpKRw8cUXtzvnunXrWL9+PRD6n4umpqbwOYcNG8bw4cMBePDBB2loaGDYsGEkJydTUVHB/Pnzyc/P59prrz2kFZ9ERA6WYi+RH5/vI/ZyOp1cc8013HfffVx//fUcd9xxlJSU8MYbbzB06FAmT54MhMrbn3feeTz11FNcffXVHHfccQSDQWbPnk1ZWRl33HFHu74faOx14YUXcs8993D11Vdzyimn4HK5WLBgAVu2bOHKK6/Ebm//v/m1tbV8+umnTJky5VtjKC31JiI/Voq7RH58vo+4qyt/b/X19bz55psA4SU+3nrrLaKiooiKiuInP/lJ+NgDHZ+68847cblcDBkyhPj4eHbt2sV7772H2+3mZz/7Wfh8AwYMYNSoUXzwwQc0NDQwZswYKioqePPNN3G5XJx99tnhYw/0nCIiPyTFXiI/Pt9H7AUHPj41b948Pv74Y4YNG0ZERASff/45ixYt4uSTT+408elAx6farrVr1y4APvzwQzZs2ADApZdeCnQt9lq3bh3PPfcco0ePJiYmhk2bNjF37lzGjh3LWWeddUD3Xg49izHG/NCdkEPjnHPOobi4uNN9r776Kunp6QCsXbuWf//732zatAmv10tycjJDhw7lzDPPPKCM49LSUh577DE+++wzgsEgI0aM4LrrriMrKyt8zGeffcbLL7/Mzp07qa2txe12M2jQIC644AJGjhx5aN6wyH+IlpYWnn76aebNm0d9fT19+vThyiuvbFdl6IYbbugQNMCB/b115plnnuHZZ5/l3Xff7VDu9EDPed999/HBBx90ev7bbruNE044AYAnn3ySlStXUlRURHNzM4mJiYwfP57LLrusw5qybf3qzGWXXcYVV1wBhLKYZ8+ezc6dO6mpqSEyMpIBAwZw5plnMmnSpP2+dxGR74tiL5Efp+8r9lq4cCH//ve/yc/PJyoqiqlTp/LTn/60w0DL/PnzeeONN9izZw8+n4++ffty3nnndRiwOdDYC2DVqlW8+OKL5OXl0djYSI8ePTjjjDM47bTTOrR95513+Mtf/sIf//hHJk6cuM/7FgwGOfvss4mPj+epp57a53EiIj8ExV0iP07dHXd15e+tqKhon0/tp6Wl8dprr4VfH+j41BtvvMH8+fMpKCigoaGBuLg4Ro4cyWWXXdYhPmxpaeGVV15h4cKFFBUV4XA4GDp0KDNmzGj3NH9Xziki8kNR7CXy4/R9jHkd6PjUpk2b+Pvf/87OnTtpaWmhZ8+enHbaaZx66qlYLJYObQ90fKrt4b/OfP09HWjsVVBQwEMPPcTWrVtpamoiLS2N448/nnPPPVdJjj8gJSmJiIiIiIiIiIiIiIiIiIiIiEi30iJ7IiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCL/k5599lksFgvPPvvsD90VERERkf96l112GRaLhV27dv3QXRERERGR/dCYmYiIiMj3Y9euXVgsFi677LIfuisi3yslKcl/pIULF3LGGWeQlpaGy+UiIyOD4447jjlz5rQ7bs+ePfz85z9n7Nix7Y498sgjmTlzJj6fb5/XeO655xgzZgxRUVHExsYydepU3n///S73taSkhOuvv57evXvjcrlITk7mjDPOYM2aNZ0e3zaBs6+fzZs3tzu+beBgfz82m61LfX7jjTe4/vrrOfLII4mJicFisXDRRRd9a7vly5dz4oknkpCQQEREBEOHDuXhhx8mEAjss83777/P1KlTiY2NJSoqirFjx/Lcc8/t9zqH6rPpDhdeeCEWi4UnnnjiW4899thjsVgsvP32299Dz0RERLrufyUmqK6u5oEHHuDCCy9k8ODB2O12LBYLCxYs2Gebu+66a7/x1wcffNBpu6VLl3LaaaeRnZ2N2+2mZ8+enHjiifs8/pvuueee8DX217/OtLS08PjjjzNmzBiSkpKIiopi0KBB3HDDDezevbvTNtu3b+fyyy8nKysLp9NJeno6F198MTt27OjStbtDMBikZ8+eWCwWNm3atN9jGxsbiYuLw+l0Ulpa+j31UERE/td0NXZqm5TY1895553XabvS0lJ+9atfMWTIEKKjo0lMTGTkyJE88MAD1NXVfWs/t27disfjOeDY7pu6Gs94vV7+/Oc/M2zYMCIjI4mJiWHSpEm89tprXb72tm3buP/++5k2bRo9evTA6XSSmprKaaedxqJFizpt821jZ//4xz86tFm1ahW33XYbJ5xwAmlpaVgsFrKysvbbt4ONnfdl9uzZHHvssWRlZREREUGfPn04++yzWbFiRafH19XVcfvttzNw4EDcbjfx8fEcd9xxLFy48KD7cChpzExERA6ViooKnnrqKc444wxycnKIiIggNjaWSZMm8fTTTxMMBju0OZi4a+/evdx7772cffbZ5OTkYLVasVgsbN++fZ99O5gYYn82btzIhRdeGH6fmZmZHHXUUbz66qudvk9jDE8++SRjx44lKioKj8fDqFGj+Mc//tHp8ftTW1vLL37xC4488kgyMjJwu92kpKQwZswYHn74YRoaGjpt19V50YN5n4c67tq7dy9XXHEFGRkZuFwusrOz+cUvfkFVVVWHY79tTNBisdC3b9+D7suh8OSTT2KxWDjnnHO+9dj77rsPi8XCjTfe+D30TCTE/kN3QKSrfvWrX/HAAw+QlZXFqaeeSlJSEmVlZaxevZrFixdz4oknho/dsWMH//73vxk7diynn346CQkJVFRUMHfuXK644gpeeOEF5s2bh93e/k/hlltu4S9/+QtZWVlcddVVeL1eXnnlFU455RT+9re/cd111x1QX3ft2sWECRMoKipizJgxnHnmmZSVlfHWW28xe/Zs3nvvPY477rhO2954443ExcV12J6UlNTu9fDhw7nzzjs7PceSJUv46KOPOOGEEw6ov23uuece1q9fT1RUFFlZWR0Sozrzzjvv8JOf/AS32825555LQkIC7733HjfddBPLli3j9ddf79Dmscce4/rrrycxMZGLLroIp9PJG2+8wWWXXcbGjRt58MEHO7Q5VJ9Nd7nqqqt46aWXeOqpp/j5z3++z+N27drFggULSE9P55RTTvkeeygiInLg/ldigl27dvGrX/0KgKysLJKSkigpKTmgtpdeeinZ2dkdtufk5HTY9ve//52f//zneDwezjjjDLKysti7dy9vvfUWc+fO5Z577uH222/f57XWrFnD3XffTVRUFPX19Qf25lr5/X6mT5/OsmXLGDhwIOeffz4ul4vPPvuMv/3tbzz//PMsX76cwYMHh9t8/vnnTJs2jbq6OqZPn87555/P7t27eeWVV3j33XdZvHgxI0aM6FI/DiWr1coVV1zB73//e5566ikeeuihfR77+uuvU1NTw1lnnUVKSsr32EsREflfcjCxE8CwYcM4/fTTO2wfMmRIh227du1i7NixlJaWMnXqVE444QSam5uZN28ev/rVr3jxxRdZuXIlERERnV7L7/dz8cUXY7Ue3LOrXY1nvF4vxx13HIsXLyY7O5vLL7+cYDDInDlzOPfcc/niiy+4++67D/j6v/3tb3n11VcZPHhwOCl+y5YtvPvuu7z77rs88sgj3HDDDZ22Pe200xg+fHiH7aNGjeqw7aWXXuKRRx7B4XAwePDgA4oND/bz78ytt97Kn//8ZxITEzn99NNJSkpi+/btvPPOO7z55ps8//zz7SbiqqqqmDRpEps2beKwww7j6quvpr6+nnfeeYejjz6ap556ihkzZhx0fw4FjZmJiMih8vrrr3PNNdeQnp7OUUcdRc+ePSkpKeGtt97iyiuvZO7cubz++utYLJYObbsSd33++efccccdWCwWevfuTWxsLNXV1fvt28HEEPvy3nvvceaZZ2K1Wjn11FM566yzKC8v5+233+a8885jwYIFPPnkk+3aXHTRRbz00kukpKRw/vnnExkZyfz587nmmmtYvnw5zz///AFfv7Kykn/961+MGTOGk046ieTkZGpqavjoo4+46aabePLJJ1mxYgUxMTHhNgczL3ow7/NQxl07duxgwoQJlJaWctpppzFw4EBWrVrFI488wgcffMCyZctITEwMHz916tR9nuu9995jzZo1XZ6XPdTOP/98br75Zt555x3Ky8s7zC23Mcbw9NNPA/DTn/70++yi/K8zIv9B/vWvfxnAXHrppaalpaXDfq/X2+51S0uLCQQCnR43depUA5hXX3213b5ly5YZwPTt29dUVlaGt+fl5ZmEhATjcrlMXl7eAfX31FNPNYC54YYbTDAYDG/fsmWLiY6ONunp6aa+vr5dm0svvdQAB3yN/Rk3bpwBzDvvvNOldh999JHZunWrCQaDZtGiRQYwF1544T6Pr6mpMcnJycbpdJrPPvssvL2pqcmMHz/eAObll19u1yYvL8+4XC6TkJDQ7r1WVlaavn37GsAsX768XZtD+dnMnDnTAGbmzJkHdHxX9O/f3wBm9erV+zzmjjvuMID5zW9+c8ivLyIicqj8L8QEbddasGCBqaioMMZ8FY/Nnz9/n23uvPNOA5hFixYd0DW8Xq+JjY01brfbbN68ud2+TZs2GZfLZSIiIkxzc3On7ZuamszgwYPNhAkTzMUXX/yt/fum1157zQBm+vTpHeLj3/3udwYwl19+ebvtQ4cONYB56KGH2m1fsmSJsdlsZtiwYe1i3P05lDHu1+Xn5xubzWaSkpI6/f+DNpMmTTKAmTdv3iG9voiIyNd1NXbKy8sLj3MdqJ///OcGMHfddVe77X6/30ybNs0A5rnnnttn+9///vfG6XSaRx555Fv7900HE8889NBDBjDjx49vNwZWV1dnRo4caSwWS7u48dvMnDnTrFmzpsP2xYsXG4fDYZxOpyksLOzQpqtjQGvXrjVr1qwJxxeAyczM3G+brn7++1JUVGSsVqtJTU01JSUlHa4BmN69e7fbfsMNNxjAnHnmmcbn84W3l5SUmB49epiIiAizZ8+eA7q+xsxEROTHbuHChebdd9/tML5RVFRkevToYQDzxhtvtNt3MHHXnj17zCeffGJqamqMMcZMmTLFAGbbtm37bHMwMcS+DB482ABm8eLF7bYXFRWZlJQUA5jdu3eHt7/11lvhOKGsrCy8vaWlxZx88skGMG+++eYBX9/v93eYd21z4YUXGsDcf//97bYfzLxoV9+nMYcu7jLGmGOPPdYA5tFHH223/aabbjKA+dnPfnZA5/H7/SYrK8sAZv369QfU5mB+Lw/UVVddZQDzl7/8ZZ/HLFiwwABmwoQJh/z6Ivuj5d7kP0ZLSwu33347PXv25F//+hdOp7PDMQ6Ho91rp9PZ6ZNhDocjnCm9bdu2dvvaSjzffvvtxMfHh7dnZ2dz7bXX0tLSwsyZM7+1v83NzcydOxer1RpelqNN//79ueKKKygqKuLNN9/81nMdjI0bN7Jy5UoyMzM56aSTutT2qKOOol+/fp1mmXfmjTfeoKysjPPOO6/d02dut5t77rkHCD1p93XPPPMMLS0tXHfdde2qD8THx/Ob3/wGoEO57UP12exPVVUVkydPxmq18sc//jG83e/388QTTzBu3DhiYmKIjIxkxIgRPPbYYx1KTV511VUAHTK72wQCAWbOnInFYuHKK6/8Tv0VERHpTv8rMUF8fDzTp08nISHhgNt0VWVlJTU1NfTv358BAwa02zdo0CD69+9PU1PTPisk3XbbbeTl5fHss88eVOWDnTt3AnDSSSd1aH/aaacBUFZW1u74DRs2kJKS0qHc86RJkzj55JNZv349S5Ys6XJfvm79+vVkZmYSExPD/Pnzw9srKyu57bbbGDRoULhs+/Tp05k3b1679j169OD4448PP2HXmc2bN7N06VL69OnD0Ucf/Z36KyIisj9djZ0ORtt3+qmnntpuu81mC4//fP07/es+//xz/vCHP/Db3/6WoUOHdvnaBxPPtH0/33777Xg8nvD2qKgo7rjjDowxB7T8V5vLLrus00qOU6ZMYerUqXi9XpYvX97Vt9bB8OHDGTFiRKfjj/tyqD7/3bt3EwwGGTt2bIcKkEcddRTR0dEdPuO2+3z33Xe3qxifkpLCzTffTFNTE88888x36pfGzERE5Mdi2rRpnHLKKR3GN9LS0rj66qsBWLx48Xe+TlZWVng5sQN1MDHEvuzcuZOYmBimTJnSbntaWhpjx44F2sd9bfHAL3/5y3aVc5xOJ3/4wx+AUDXzA2Wz2TrMu7Y5++yzgfZzrAc7L9rV9wmHLu7asWMH8+bNC48pft3vf/97PB4PL7zwwj6Xtvu6OXPmsHfvXsaNG3dQsfbXBYNBbrzxRiwWC2eeeSZNTU3hfR9++CEnnngiSUlJuFwu+vbty//93/91qPLVVhnpqaee2ud12mIyVVGS75uSlOQ/xvz58ykrKwuX/Js9ezb3338/jzzyyD7XYt+XQCDAnDlzADp8UXz00UcAHH/88R3atZXnaztmfyorK/H5fCQlJREdHd1hf58+fQD2uS783Llzuf/++3nwwQeZNWsWtbW133rNr/vXv/4FwIwZM7DZbF1q21X7u2eTJ08mMjKS5cuX09LSckBt9nWfD9Vnsy/5+flMnDiRlStX8vzzz3PbbbcB4PP5OPnkk7n22muprq7mggsu4Kc//SnBYJDrr7+eSy+9tN15Lr30UpxOJy+//DKNjY0drjN37lwKCgo4+uij6d2790H3V0RE5MfmvyUm6IqlS5fy4IMPcv/99/Pqq69SXl7e6XEpKSkkJyezdevWDknybduGDx/ernx0m48++ohHHnmEP/7xj/Tr1++g+nnYYYcBoTjkm5NF77//PkC7BJ7i4mIglPjVWVLUt8WyB2LhwoVMnjwZYwyffPIJxxxzDBCamBs5ciR/+tOfSE5O5uqrr+bcc88lNzeX448/vsOkVttk174GXdq2z5gxo1snjUVERA5WYWEh//znP7nvvvv45z//yYYNG/Z5bNt3+uzZs9ttDwaD4UmhadOmdWjX1NTExRdfzPDhw/n1r399UP08mHimLaZoix2+7lDEE1/XNon29SSdr1u3bh0PP/wwf/rTn3jhhRfYu3fvIbnuodavXz+cTierVq3qEFt+8skn1NXVdUi87u77rDEzERH5T/Ft8UBX4q4f2mGHHUZtbS1Lly5tt720tJRVq1aRnp7O4MGDw9sPJB5YsmQJXq/3O/ftvffeA9rPsR7svGhX3+ehtGjRIgCOPfbYDuNf0dHRTJw4kcbGRlauXPmt52qbl/2uCT/Nzc2cffbZPProo1x77bW88cYb4aWcf//733P88cfz6aefctJJJ3HDDTeQk5PDgw8+yMSJE9vNJY8aNYrhw4eTm5vLsmXLOlynoqKCWbNmERsbyznnnPOd+izSZT90KSeRA9W2DMWvf/1rM2TIEAO0+5k8ebIpLS3ttG1ZWZm58847ze9+9ztzzTXXmJycHAOYCy64oN1x9fX1BjBRUVH7PA9gUlJSvrW/jY2NxmazGavVaurq6jrsv/HGGw1gxo4d225721IY3/yJjo42jz322Ldet+3acXFxxmazmfz8/ANqsy8HUiZx1KhRBjCff/55p/sPO+wwA5hNmzaFtyUlJRnAlJeXd9rG4/EYwDQ0NBhjDu1nY0zH0tXr1q0z6enpJiYmpsPSKW3LuVx33XXG7/eHt/v9fnPFFVcYwMyaNatdm3POOWefpbHbyl2+/vrrB9RXERGRH4P/1pigM11Z7u2bPy6Xy9xxxx2dLoP22muvGafTaaKjo80ll1xifv3rX5uLL77YREVFmZEjR3ZaLry6utr06NHDTJ48OXzOA+nfNwWDQXPmmWcawAwePNjccMMN5pZbbjFHHXWUcTgc5vrrr2+3NMiWLVsMYFJTUzt9L6eddpoBzLnnnntA1//mcm8vvPCCcTgcZtCgQWbXrl3tjp0yZYqxWCwdlgasqqoyw4YNM2632xQXF4e3+/1+k5GRYSwWi9m5c2e7Ni0tLSY5OdnY7XZTVFR0QH0VERE5FLqy3FtnP1OnTu2wrIUxoeW7BgwYYAAzbdo0c8stt5gbbrjBDBw40MTFxZlnnnmm02vdcMMNxuVymS+//PKA+9eZrsYzbUv+zp49u8O53n777fD7bWxs7FI/vmnXrl3G5XKZyMjIdssBG/PVGNA3f2w2m/nZz35mmpqavvX8dHGplu+67Mhf//pXY7FYTHJysrnqqqvMr3/9a3P22Wcbl8tljjnmmA7LwKWnpxsg/Pl+81xtcd2B0JiZiIj8p/L5fOH5ww8++KDdvoOJu77pQJZ7+6auxhBf98knn5iYmBjjcrnMOeecY37961+bK6+80iQlJZmcnByzatWqdseff/75BjCPP/54h3OtXbs2/H5zc3O71A+fz2fuvPNOc+edd5rrr7/eDB8+3ADmqKOOahdHHey8aFff5zd9l7jrlltuMYB58MEHO91/7bXXGsA88cQT+z3Pnj17jM1mM7GxseExzAPxzeXeKioqzMSJE43FYjF/+tOf2h3btuzv+PHjTVVVVbt9bfHbL37xi3bbn3jiiX0uJ9e2LPO11157wP0VOVSUpCT/Ma6++urwAMLhhx9ulixZYurq6syGDRvC64VOmTKl07a5ubntAg6LxWJuueWWDmupFhQU7Ddg8Hq9BjBOp/OA+nz00UcbwNx0003ttm/bts1ER0cbwPTv37/dvqefftq8+uqrZvfu3aapqcns2LHDPPjgg+Hj//nPf37rdZ999lkDmJNOOumA+rk/B/Ll3q9fv/0GZhMmTDCAWb58eXibw+EwQLvJsK/LyMgwgCksLDTGHPrP5usDLvPmzTPR0dEmIyPDrFu3rt1xgUDAJCQkmLS0tE77WlVVZSwWizn77LPbbW9bx3XixIntthcWFhq73W5SUlL2uZaviIjIj9F/a0zQmQNJAnrrrbfMM888Y3bu3GmamprM7t27zZNPPmlSU1MNYG677bZO2y1dutT06NGjXWyamppqHnvsMRMIBDocf/HFFxuPx2N27NjRpf51JhgMmjvvvNPYbLZ2158+fbpZsWJFh+PbPs+HH3643fZly5aFz3Hsscce0LW/nqT0xz/+0VgsFjNp0qQOk4jr1q0zgDnrrLM6Pc+sWbM6HXC74447DGBuv/32dttfe+01A5gzzjjjgPopIiJyqBxI7FRSUmJ++9vfmtWrV5uqqipTVVVlPv74Y3PUUUcZwOTk5Jj6+voO7aqqqswZZ5zRYazrpz/9aacPqy1YsMBYLBZz//33d6l/+9KVeOaee+4xgJkwYUK7RKT6+nozevTocPu2WO9gNDc3m4kTJxrA/PnPf+6wf/HixeZvf/ub2bJli2loaDCFhYXmtddeM3379jWAOf/887/1Gt93kpIxoSSu+Pj4dvc5JyfH/Pvf/+5w7JVXXhmOob6eLFRaWmp69uypMTMREfmf8Mtf/tIA5sQTT+yw72Djrq/7vpOUjDHmyy+/DD/01/YTHR1t7r333g6J1i+++KIBTN++fU1FRUV4u9frDScCf3Nc7kA0NTV1SOy6+OKLO01EOph50a6+z2/6LnHXVVddZQDz5JNPdrr/N7/5jQHMfffdt9/z3HXXXQeV8PP1JKVdu3aZgQMHGofDYV588cUOx55++ukGMF988UWn5xo+fLhJTk5ut62mpsZ4PB4TGRlpampq2u0bPHiwAcz69eu71GeRQ6HzWnciP0Jty1LY7XbeffddsrOzATj88MN5++23GTBgAB9//DErVqxg/Pjx7doOHDgQYwyBQICCggLefvttfve737F06VJmz55NQkJCt/T54YcfZuLEifz1r39lxYoVTJw4kbKyMt5880369evHunXrOpQPvOKKK9q97tOnD7/85S8ZMGAAp5xyCrfffvu3LuHWVlLwZz/7WYd9u3bt4tlnn+2w/a677ur6G/wv8MYbbzBv3jz69evH3Llz6dmzZ7v9W7dupbKykn79+nHPPfd0eo6IiAhyc3PbbZs2bRp9+/Zl2bJl5ObmMmjQIABmzpyJ3+/nsssu2+daviIiInJozZo1i3Xr1rXbNnz4cE4//fSDPucZZ5zR7nXPnj258sorOeKIIxg3bhwPPvggN998M0lJSeFjXnzxRa666irOPPNMfvvb39KrVy92797NH/7wB6677jo+/vhjXnvttfDxb775Ji+88AKPP/54p6W6u6K5uZlLLrmEuXPn8vjjj3PaaacRGRnJsmXLuOGGG5g8eTKvv/46p512WrjNP/7xD0444QR+8Ytf8P777zN8+HD27NnDW2+9xeGHH95pLPttbrrpJmbNmsVPfvITXnzxRdxud7v9bcs419TUdBqflpWVAXSIva688kruu+8+Zs6cye9///twrNy2NFzbknAiIiI/JikpKdx9993ttk2ePJl58+YxadIkPv30U5566iluvPHG8P5du3Zx6qmn0tTUxJw5c8JLULzzzjv88pe/5J133mHFihXhpbKqq6u57LLLGDt2LL/85S+/c5+7Gs/ceOONvP766yxfvpzDDjuME088EWMMs2fPxmKxEBsbS01NTTimWLx4MYsXL253zezsbC677LJO+xMIBLj44otZtmwZ5557LrfcckuHY6ZMmcKUKVPCryMjIzn77LMZN24cw4YN4+WXX+bWW29l2LBh3/n+HCp//vOf+c1vfsMNN9zAddddR1paGps3b+a2227jwgsvZN26dfz5z38OH3/33Xfz4Ycf8sYbbzB8+HCmT59OQ0MD77zzDpmZmeTn53c5btOYmYiI/Cd59NFH+ctf/sLAgQN54YUXOuw/mLjrhzZ//nzOO+88Ro0axfPPP8/AgQMpLi7mscce4/bbb2f27Nl8/PHH4aXtzjvvPF544QU+/PBDBg8ezGmnnYbb7WbBggUUFRXRs2fPdjHBunXrmDVrVrtrxsXF8Ytf/KLdNrfbjQkVPqGwsJAFCxZw2223MWrUKD744IPwfC0c3LxoV9/nj00wGOTpp58GOp+XPRBbtmxh/PjxNDQ0MHfuXKZPn97hmBUrVuBwOHj99dd5/fXXO+z3er2UlZVRUVERXn45JiaGc889l2eeeYZ///vfXHPNNQAsX76cTZs2MWbMmHZL9ol8b37YHCmRA/erX/3KAGbcuHGd7p8xY0anT3rvy8svv9whq7U7lg/Zvn27ueSSS0x6erpxOBymV69e5o477jBLliwxEFqm7kBlZmYawGzYsGGfx3zxxRcGMFlZWe2enGrTllH8zZ99+W9d2qXtqbCEhAQDmMsvv7zTpUyWLl3a6f365k92dnaHtn/84x8NYG6++WZjTKh6QZ8+fYzFYulSpr2IiMiPwX9yTNDZcrqdlTn+5vFdrVTUpu1J/nfffTe8bcuWLcbhcJiRI0d2qDAQCATMyJEjDWAWLVpkjAmVd05KSjLTp0/vEKMcTP/aluJ45JFHOuxrq17Uq1evDvvWrFljzjzzTJOUlGQcDocZMGCAeeihh8yrr75qAHPJJZcc0PXb+twWe3W2vIcxX1Vb+Lafyy67rEPb4447rt19z8vLMxaLxfTq1avTKlUiIiLd6btW0nnyyScNYM4888x229ue4O/sieeHH364Q5xz+eWXm4iICLN58+bv3L+uxjNt6urqzG233Wb69etnnE6nSUxMNBdffLHZu3eviYqKMna7PVw5p7MldfdVOd3v95vzzjvPAOacc87ZZ2XO/bnwwgsNYB599NH9Hsf3WEmprW1nlSAbGhpMZmamsVqt7SptGmNMcXGxufbaa02vXr2Mw+Ew6enp5rrrrjPbtm0zgOnZs+cBXV9jZiIi8p/mb3/7m4HQ8vYHs9T7vuKub/o+KylVVFSY+Ph4k5mZ2enyYW1Vdb45vuL1es2f/vQnM2TIEONyuUxsbKw57bTTTG5ubnhcbufOncaYzpfE7WxsqDMrVqww0PmKLl2ZFz3Y9/l1P/Ryb++///5+56/3p62SUlvcNXz48A5Vx9vY7fYDir127drVrl3bZ3XEEUeEt11++eUGME899VSX+yxyKHTt8QmRH9CAAQOAUBZvZ+Lj4wFoamo6oPOdcMIJAO2ezvJ4PGRmZlJfX09RUVGHNtu2bQOgf//+B9pt+vbty3PPPUdhYSFer5ddu3bxhz/8ga1btwIwevToAz5XcnIyAA0NDfs8pq2K0r6qLU2dOjWc8fz1n++i7bNpe09f5/f7ycvLw263t6sAsL82RUVFNDQ0kJWVRWRkJNA9nw3Afffdx6mnnsrMmTO54oorwhW72sTGxgKhagmd3be2n7y8vA7nvvzyy3E4HDz//PN4vV4++ugjdu7cyVFHHUVOTk6X+ikiIvKf4McaEzz77LMdvrs7qyx5qHQWs82bNw+fz8eUKVM6PDFmtVqZPHkyAKtXrwYgPz+f8vJyFi5ciNVqxWKxhH+ee+45AI455hgsFgsPP/zwt/bp/fffB+Coo47qsG/YsGHEx8eze/duKioq2u0bMWIEb775JmVlZXi9XjZv3sxNN93EF198AXQtloVQVaucnBxmzJgRrnL0dW2x1yOPPLLf2GvmzJkd2v70pz8Fvqqe9PTTT2OMYcaMGV2uHCAiIvJD6yyeqKur4+OPPyYhIaHTJ57bvufb4gmANWvW0NTUxMCBA9vFE23H/vvf/8ZisTB8+PBv7VNX45k2UVFR3HfffWzdupWWlhbKy8t5/vnnaWlpob6+nmHDhoUr59x1110dvve/WVkJwOfzcf755/PKK69wwQUX8NJLLx3U0/UHMtb2fdtf3BYZGcmYMWMIBoOsXbu23b7U1FQee+wxdu3ahdfrpbCwkL/97W/k5+cDXY/bNGYmIiL/CR5++GGuv/56hgwZwqJFi0hLS+vyOX6M8cDy5cupqqpi7Nix4TGxr+ss7gNwOBzceuutbNy4kebmZqqrq5k1axbZ2dls27aNpKSkcMXNyy67rMP39q5duw6of+PGjSMuLq7TOK0r86IH+z4Plf2NS8KBzT3ub3WbA3XKKadw3333sW7dOqZPn95hfA5CsVd8fPx+4y5jDL169WrXbty4cQwdOpQ1a9awZs0a6urqeO2114iJieG888476D6LfBcaqZX/GNOnT8disbBp06YO/1MMhCdK2r5cv01BQQFAhwGMadOmAfDBBx90aDN37tx2x3wXbeUmL7jgggM6vqamhs2bN2OxWPb5Hpubm3nhhRew2WzMmDHjO/fxQO3vnn3yySc0NjYyYcIEXC7XAbXZ133ujs/G5XLxxhtvcPbZZ/Pss89y0UUX4ff7w/sHDhxIXFwcK1euxOfzdencqampnHrqqZSXlzNr1iyeeuop4KsJNBERkf82/8kxwaHi8/lYs2YNQLtkrJaWFuCr5cq+qW270+kEIDExkRkzZnT6069fPyCUdD9jxgyGDBnyrf3a3/VbWlqoq6trd/1ve48vv/wyDoeDs84661uP/7oePXrwySefMGDAAH72s5/x+OOPt9s/btw4AJYsWdKl8wKceuqppKWlMWfOHPbs2cPMmTOx2WwdllMWERH5T7By5UqgfTzh9XoBqK2tDf/7130zngA488wzO40nTjzxRCA0iTRjxgzOPPPMb+1TV+OZb/P8888DBz421sbr9XL22Wfz+uuvc8kll4THwg7Gp59+CvCdl9Y9lH4s91ljZiIi8mN3//33c9NNNzF8+HAWLVpESkrKQZ2ns7jrh3ao44FXXnkFr9fL+eeff0j6V1dXR21tbZeSxDubFz3U77Or2pKg5s2b12Huua6ujmXLlhEZGRker/qmwsJCZs+eTWxsLOeee+536sttt93GX//6V9auXcvUqVMpKSlpt3/cuHFUVVXx5ZdfdvncV111FQBPPfUUL730Eg0NDVxwwQV4PJ7v1GeRg9YN1ZlEus2pp55qAPPQQw+12/7hhx8ai8Vi4uLiTHV1dXj76tWrO13yrK6uzhx99NEGML/5zW/a7Vu2bJkBTN++fduV1MvLyzMJCQnG5XKZvLy8dm3KyspMbm6uKSsra7e9ubnZNDc3t9sWDAbDy1ice+657fYVFRWZPXv2dNrftpKGxxxzTCd3JuT55583gDn55JP3eUxXHUiZxJqaGpOUlGScTqf57LPPwtubmprM+PHjDWBefvnldm127txpXC6XSUhIaHc/KysrTd++fQ1gli9f3q7NwXw2+9JWxrKtRKTf7zcXXXRRuKRnW5lxY4z57W9/awBz9dVXm8bGxg7nKiwsNF9++WWn1/nggw8MYMaMGWNcLpdJSkoyLS0tB9RHERGRH5P/1pigM9+2nFptbW2HJVOMMaalpcX8/Oc/N4AZOHBgu2VQPv30UwOYiIiIDsuzrF271rjdbmOxWMwXX3zxnfpXXV1tcnNzTWFhYbvt11xzjQHM9OnTO8Snv/71rw1gRo8e3W57fX19h1ja5/OZq6++2gDm1ltv/da+frPPbZ9LaWmpGTp0aKcltY888khjtVrN008/3em5NmzYYEpKSjrd1/ZejjzySAOYU0455YD7KCIicigdSOy0evXqTpckXbBggXG5XAYwy5Yta7dv0KBBBjB33HFHu+1NTU1m6tSpBjD/93//9537l5uba3Jzc9ttO9h4pqampsP5582bZ9xut+nbt6+pr6//1v62aW5uNieeeKIBzIwZMw5oSdevx6VtAoGAue+++wxgkpKSOu3j19ENy715vV6Tm5trtm/f3m5727K6qampZu/eve32zZkzx1gsFuN2u9stlxwIBExdXV2Hazz//PPGYrGYCRMmHPDytxozExGR/wR33323AczIkSNNRUXFtx5/MHHXN3XXcm/bt283ubm57b5jCwoKjN1uN1ar1Xz44Yftjs/PzzfJyckGMLNnz263r7OYZu3atSYpKcnEx8ebgoKCA+77hg0bTFNTU4ftLS0t5pJLLjGAueCCC9rt6+q86MG+z6/7LnGXMcYce+yxnS7/e9NNNxnA/OxnP9vnedt+D6+77rp9HrM/bcu9fX255r///e/GYrGYAQMGtPu8FixYYAAzfvz4Tj/H+vp6s2LFik6vU1VVZSIiIkxsbGx4PG716tUH1WeRQ6HrNXBFfkCPP/44a9eu5eabb2b27NmMGDGCvLw8Zs2ahc1m46mnngqXGga4++67WbZsGRMmTKBnz55ERkayZ88e5s6dS3V1NRMmTOC2225rd40JEyZw880389BDDzF06FDOOussvF4vr776KpWVlfztb38jOzu7XZvHHnuM3//+99x5553cdddd4e3btm3jyCOP5JhjjiE7Oxufz8fChQvZuHEjkyZNCpcAbLN582aOPvpoxo8fT//+/UlJSaGgoID58+dTXFxMnz59wk8WdabtfN/1qaNZs2Yxa9YsAIqLiwFYsWIFl112GQBJSUk8+OCD4eNjYmJ48sknOeuss5g6dSrnnXceCQkJvPvuu2zZsoWzzjqrQwZx7969eeCBB7jhhhsYNWoU5557Lk6nkzfeeIO9e/fyy1/+kvHjx7drczCfzYGy2Ww899xzuN1unnrqKc4880zeeOMNXC4Xv/3tb1m/fj3/+Mc/eO+995g2bRqZmZmUlpaybds2li1bxr333svgwYM7nPfYY48lOzubVatWAXDdddd1W8a3iIjIofa/FBPccsstlJeXA7B06VIAHnjgAV588UUATj/9dE4//XQAKioqGDRoEKNGjWLQoEGkp6dTVlbGokWLyMvLIykpiZdffrndMihjxozh8ssvZ+bMmYwePZozzjiDXr16sWvXLmbNmoXX6+UXv/gFhx12WJf6/U1vv/02l19+OZdeemm7Je1uv/123nvvPRYuXMjAgQM5/vjjiYiIYNmyZaxatYqIiAgeeeSRdudatGgRV155JUcffTRZWVnU19fzwQcfsGPHDs466yz+8Ic/HHQ/k5OTWbRoEccddxy33HILzc3N3H777QC89NJLTJs2jRkzZvDoo48yduxY4uLi2Lt3Lxs2bOCLL75gxYoVnT4hedVVV3H//feHKzHpaXwREfk+dTV2uvnmm9m2bRsTJkwgKysLgA0bNvDRRx8B8Ic//IEJEya0u8ajjz7KSSedxD333MP8+fOZMGECTU1NzJ07l927d5OTk8Ott976nd/LoEGDADDGhLcdbDwzcOBAhg4dysCBA3G73axZs4YFCxaQlpbGO++806UnuK+++mrmzJlDUlISmZmZ3H333R2OmTp1KlOnTg2/Hj16NEOGDGHYsGFkZmZSU1PDsmXL+OKLL4iMjOTf//43MTEx7c6xefNm/vSnP7XbVlVVFf4sAR588EGSkpLCr7v6+RcUFDBo0KDwPWxz1llncfTRR7NgwQIGDRrEGWecQVpaGrm5ubz//vsYY/jTn/5EYmJiuE1jYyOpqakcc8wx9O3bF6vVyrJly1ixYgWDBg3i9ddfP+jlbzVmJiIiPzbPPfccv/vd77DZbBx55JE8+uijHY7Jzs5u9719MHEX0O4cmzdvBuDWW28lOjoagCuvvJJJkya1O6arMcT06dPZvXs3eXl54fGsjIwMfvvb33LnnXdywgkncPLJJzNw4ECKi4t56623qK+v54wzzghXx2xzzDHHEBERwZAhQ4iOjiY3N5fZs2cTERHBe++9R0ZGxr5uawdPP/00M2fOZOLEifTq1Yu4uDgKCwuZN28excXFDBgwoF1sA12fFz3Y93mo4i6AJ554ggkTJnDDDTewcOFCBg0axKeffsqiRYvo378/9957b6f3JxgM8vTTTwOHdvzp6quvxu12M2PGDCZPnsxHH31Ez549mT59On/605+47bbb6NevHyeeeCK9e/emvr6e3bt38/HHHzNp0qROK8/HxcVx9tln8/zzz7NhwwZGjhzJEUccccj6LNJlP3SWlEhXlZaWmuuuu8707NnTOBwOk5iYaE4//XTz6aefdjj2/fffNxdeeKHp16+fiYmJMXa73SQnJ5vp06ebf/7zn8bn8+3zOjNnzjSjRo0ykZGRJioqykyePNm89957nR575513GsDceeedHfp6wQUXmN69exu3222io6PN2LFjzWOPPdbptfPz881Pf/pTM2LECJOUlGTsdruJiYkxo0ePNvfcc4+pra3dZ383bdpkAJOVldVp9aiuaHs/+/rp1atXp+2WLl1qTjjhBBMXF2fcbrcZMmSIeeihh/bbn3fffddMnjzZREVFmcjISDNq1Cjz7LPP7rd/Xfls9ncOvvZUWJtgMGiuu+46A5hjjz02/BRYMBg0zz//vJk2bZqJj483DofDZGRkmIkTJ5p7773X5Ofn7/NabRniQKdVF0RERH6s/hdigja9evXa73v9epxXU1Njrr/+ejN27FiTmppqHA6H8Xg8ZujQoebWW2/dZ5WfYDBoZs6caaZMmWLi4uKMzWYz8fHxZtq0aR0qTO3P/ioptcU4X38Cq01paan55S9/aQYOHGhcLpdxOBymZ8+e5rLLLutQKcEYY7Zs2WLOPPNMk5WVZZxOp4mLizNTp041L774ogkGgwfc36/3+ZsVrmpqasyECRM6VISora019957rzniiCOMx+MxbrfbZGdnmxNPPNH885//3G/FhbaKqYciLhYREemKrsZOTz31lDnppJNMr169jMfjMU6n0/To0cOcc8455pNPPtnnddavX28uuugi06NHD+NwOIzb7TaDBw82t912m6mqqjqgvn7bE+dtff6mg4lnbrnlFjNkyBATHR1t3G63GTBggLn11lsPqOrBN7VVMDjQuK3t+pMnTzbp6enG5XKZiIgIM2DAAHPttdeaHTt2dHqdtvuzv59vxjVd/fzbnpzvLKb2er3mr3/9qxk7dqyJjo42NpvNJCcnm5NOOqlDlYG246+44grTv39/ExkZaSIjI82wYcPMvffeaxoaGrpyizVmJiIiP3rf9p0LmClTprRrc7Bx17dd55vflwcTQ7SNSXVWFXzWrFnm+OOPN0lJScZms5no6Ggzfvx488QTT3Q65vHnP//ZHHHEESY2NtY4nU7Tu3dv8/Of/7zTVVy+zdKlS82MGTPM4MGD28V9EydONA888ECnMUZX50UP9n0eyrjLmND87GWXXWbS0tLC42U33nhjuwru3zRnzhwDmHHjxu3zmG/TWSWlNi+99JKx2+2mV69e7WLWJUuWmLPPPtukp6cbh8NhkpKSzLBhw8xNN93UaQXRNkuXLg3fn3/+858H3WeRQ8FizNcehxERERERERERERERERERERERETnEDq7Gq4iIiIiIiIiIiIiIiIiIiIiIyAFSkpKIiIiIiIiIiIiIiIiIiIiIiHQrJSmJiIiIiIiIiIiIiIiIiIiIiEi3UpKSiIiIiIiIiIiIiIiIiIiIiIh0KyUpiYiIiIiIiIiIiIiIiIiIiIhIt1KSkoiIiIiIiIiIiIiIiIiIiIiIdCv7D90BETk0iouLWbJkCXv37mXv3r1UVFRgs9loaGigpqYGYwx1dXXU1tYyYMAAioqKKCwspFevXiQkJLB48WKMMYwfP549e/aQkJBAcXEx5eXljBs3DofDwdq1a3E4HAwfPpzGxkYqKiqw2+1kZmZSVVVFeno6TU1NREVFMWDAABITE+nfvz/jx4/H6XT+0LdIRERE5JDw+Xxs2bKFL7/8ksrKSnbs2EFLSwtWq5Xi4mJ8Ph91dXVYrVYsFgsRERHs3r0br9dLTk4OTU1N5ObmEh8fT2xsLNXV1fTo0YP169fjdDoZMWIEFRUVVFVVkZSURFJSEoWFhcTExOBwOLBYLKSlpWGMwefzkZSUxIABA0hOTmbYsGH07Nnzh75FIiIiIodMdXU1ubm5FBUVUVRURHFxMTabjWAwyLZt2/D7/Xg8Hqqrq7Hb7dTU1BAIBAgGgyQkJLBlyxYsFgs9e/akoKCA2NhYGhoa8Pl8ZGZm4na7qaysxOl0EhsbS0tLS/gYl8uFx+MhOzub8vJynE4nI0eOJC4ujh49ejBgwADsdg2xi4iIyH+HQCBAcXExe/bsoa6ujoKCAhoaGnA6nRQWFrJ7927cbjfR0dHk5eURDAaJiorC6/XS0NCA3+/H7/dTXV0djrF69epFU1MTgUCAxMREGhsbSUpKoqqqCo/HQ1RUFGlpaezduxebzcbo0aOJiIhg586d9O7dm969exMdHU3v3r1JSEj4oW+RiBwCFmOM+aE7IfK/rLi4mPfee4+VK1eyefNmysrKqKysxOv1kpCQQFlZGY2NjcTHxxMZGUlBQQEAcXFx+Hw+GhoafuB38O0sFgvGGBwOB9HR0TQ3N9PY2EhaWhoej4cdO3ZgsVgYPHgwfr+foqIi4uLi6NWrF1FRUYwaNYoJEyYwbdo0JTuJiIjIQfP5fKxevZrly5ezbt068vLyKC0tpaamBpvNBkBJSQnBYJCMjAwaGhrCgyput5u6ujoCgUA4tvmxi46Oxul0UlFRAUCfPn1obGyktLSUpKQkMjMz2bNnD5GRkaSnpxMXF8ewYcM44ogjGD9+vJKdRERE5Duprq5m5cqVbNy4kU2bNrFnzx7Ky8uprq7GZrNRVVVFQ0MDHo8Hj8dDQUEBxpj/yDEvu91OTEwMLS0tNDQ0kJKSQnR0NLt378Zut9OnTx8A/H4/8fHxJCYm0qtXL8aMGcNhhx3GiBEjlOwkIiIiBy0QCJCfn8+XX37J1q1b2b59O6WlpZSVlVFVVUVzczNVVVV4vV6io6NpamqipqYGh8OB2+2mvr4ev9//HzfmVVVVhdVqpUePHuFEqejoaFJSUggGg6SmphIZGUliYiITJkxg4MCB9O/fX8lOIj8w/Z+PSDfYvn07zz//PMuWLWPXrl1UVVVRV1cHQExMDLW1tfj9fmw2G4FAYJ/naQsIANxuN5GRkeF9/fv3x263s2L5CmKiY5ly1GT8fj8L5nzECacdR1RUFMs+Wk55URU/ufQ0rFYr786cixUbZ11zKi0tLSx6ZgVHnH4Yvfr0pHB7MdvfLSZtdALDjx1IbWU9q/7+Bc00c9RNo/H7/cz520dEJjmZct5E6urqmP3cfKafeyTR0dGsW7OB3DWbOe2CkwF486W3MQQ56YwTaWhoYP68+Rx22GFERERQsLeA/MZ8oqOjw+/fGEN+fj5NTU34/X5qa2vJz88HYO7cuQDY7Xb8fj8AWVlZABQWFuLxeBg0aBBer5dhw4Yxbdo0Tj75ZAUZIiIi/wN8Ph8LFizggw8+YO3atRQVFVFaWkpzczNutztcTRLAarUSDAY7PY/dbsftdodjE5fLhdvtprq6mrS0NNLT06mpqWHLpi1MP2Y6kZGRfDhrPlasnHr+yRhjmPvKfI6YPJQ+/fpQVVXFirfWcOylU/B4PCx4ahkWr4VjrpuE3W5n2cPrceBgzM+G4ImPYM07W6jIrWHATzJIyU5i+6btbJqbx7SfjsfusPP243MIEuDkK4/F7/cz69nZ9BnWg8GHD6ampoaF7y1i2slTsVqtzH53DgbD0KFD8Xq9VFRU4HQ4sdlsWCwWgsEgTU1NbN68maamJoBw3PXhhx+G74nD4cDn8xEVFUVqaiqFhYXhKgRxcXFkZWUxceJEpk+fzuGHH96dH7OIiIj8SJSXlzNnzhxWrlxJbm4uBQUFVFZW0tTUREREBLW1tfh8vm8d84qIiMBqteL1eomPjyciIgK7LTTu0y+nH06Xk1XLPsOCleNPPZZgMMiS95cz+ZSJxMTE8OXaXAo3lXL8JdOw2+0seGYJVmyccM1R+Hw+lj+1jpyjMsgZkUNhbgm75lYQ1yeKEWf2p6GiiTUzc/HjZ9wvhhAIBFj0t08xbsPUGWNobGzko5nLGXPWUGLjYtm+dQdffrKFYy6YCsCclz4kSJDpZ0ylsbGRRR8upv/AfkRHR1NaUsrOnTuJjY0lEAiEqwns2bMnPOb1dX//+98B2t2vzMzMcBJXW9WA2NhYxo0bx+jRo5k0aRJRUVHd8vmKiIjIj0cgECA3N5dPP/2UDRs2sG3bNgoLC6msrKS5uRmfz0dtbS3BYHC/Y142m42IiAjq6+sBSExMJCIigurKGpLSkujRswcN9Q1s35jHxKPH4fF4WDbrU6zYmHb+kQAseXkVGYencPiYwdTW1LH+jS2MuWAYsfHRrHphPf5aGH/NMBx2B6v+thkHNgac2Yv4rBg2vLuDul2NpI+LpteETHZ+uZudHxYx6opBuCNcLHh8GUGCTJ4xmkAgwMJnlxGZ4mL0scNpaGhg2durGH3ScGw2GysXr6K+tp6hQ4eGHkZctYZgMJQw3tLSQnV1NX6/n/Ly8vCYV5snn3wy/O8OhwO/309kZCSpqanh5KakpCSSk5MZPXo0I0aMYOjQoXqIT6QbKElJpItmzZrFzJkzWbt2LeXl5Xi9XpxOJ83NzRhj9hsIWK1WPB4PTqeT4uJihg4dSnp6OgvnfoTNODj38rOIjIxkyeNrSIhOZvJNwwkEAnx63xbGXNofh8vBtoV7KF1Wy/jjBmGxWIhckQH1MHz4YAL+IN65kWRGZZKcE0e8SWLzywWkJ2fgjHQwwjUJvJAYnwgG+loOo+Yd8F8E6ckZWEZEUPZ5DdbjrFgbbES54phwUW8ClQGKV9XR2zKIfpMzSYiPpWp1C8MtE+jbKwe728aup6sZb+lJTk4OxhiOtJyEp5eTww/PwdfsJzg/hjHH9cfhdrDp3e3039vC+PNC72H5HzYBMOGmwQSDQRbcs5IhV2TjcDlYt2Y9az9dy7QTj8Lb4mXBwgVAaOKwpqaGYDBIfX09q1atAmDdunU899xz7QZ30tLSsFgslJeXExcXx8CBAxk1ahR33HGHEplERER+xMrLy5k5cyZz585l69atVFZWYowhGAzi9XoB9vuEV1RUFLGxsdTV1WHBwrSjpmGz21j24QrGTh1D/0H9qKtpYOdLxUz79RisVutXcclFgzHGsOKeXDJzEsiemE5jdTMZuYM5Ylh/nBF2Wubb8TVCTt+cUH8tflgCmVMzSfQkU2uxwg4XSUclMWnSBPIXlVG6qIHkIbGMO3c4uW/vIdgAlkQrvs3QZ1gP4iJiadrlp+EDB70s/UmKS8IYGGwZiSPWQUZGBo3lLYyyTGHQsB4k9I5hz6pSJliOZ/jQgVjtVhrfC1WenDA99B5iP+9F9rEpZI5KprnBy+q/bGPcjQOxWq18fPd6aqhg4rXDaGpq4o1nZuGMtjPmyFEUFRWxdu1a4uPj8fl84Xh38+bN4Xv8xhtvAF8lk0dERJCSkkJZWRkul4vevXvTt29frrnmGo466qhu+10RERGR7+6zzz7jjTfeYOXKlezatSscezU3N39rNUmLxUJiYiIup4viomIOO+wwsrKyWP3JWgL1cMrlxxMREcGqJzYRRRyT/28oAX+QT/+4mRHn9CEyIYKdnxRQtLiacccPwmq1ELE8HQiNeflbAjTPdpNQl0D2iHSiWxLYnltEgj2Z6AwPg6NH4q/3E+OMw+KCDEs2jYuhzt1CfEQigQEOqrbWY7FY8dUEcTuiyDk+naYdfsq/rCXN0pOMEQkkxCVStaqZfpbD6ZHQG0+yi11PVzPMMoE+vfuAgVGWo7C74fDDB9Nc20JgXjRDJ/UmOjWSrR/uoXfeCMafOwiLteOY1+J7Pif7nBSiEz1szd3KmsXrGXdC6OHAj+Z/RJAgbreb2tpa6urqqKuro7CwEIA5c+YA7RPvU1JScDgcNDU1kZqaSt++fZkyZQpXXnklcXFx3fsLIyIiIgetqamJhQsXsnjxYjZu3EheXl44+aipqYlgMLjf2Cs+Pp74+Hjqqutx4WTSUROx2+2s/3ATOcN7c/j4w2ioaGTXa+VMumUYdpe93ZhXMGhYeV8uHpud4ccMoKawnpQvdjMosydxPaLwLnbhrQnQKyMbm91KmcUHX0DqielE++OosgRpWG7ocVYs/fsPomR1FXveqiJpcAyDj+7D7sWl+CsMliwL/t2G5KwEYqOjKf+8gbolkGxJJ9Yaj8VvpYclB5sT0pLTqclvYIBlGJkDEumVncquT0oYahnP4N45RMQ7Q2NeFhg/bRAmYIj5rCcx/dwcfn5fGkobWfePPEb+LAeXx8mS+zbS5K9n5LX9aW5q5oNnFuG1NDPmxBGUlJSw/vMNxMfH4/f7qSivoKSkhO3btwPw3nvvhe/1N8e8fD4fqamp4aV/L7nkEoYMGdL9vzQi/0WUpCTyNV6vl0cffZTXX3+dHTt2tHv6y2q14vP5OrSxWCzEx8fjbfFSXlHOoEGD6NWrFx9/sARH0MWF155LbGwsq/64FRww4fLBBPwBPv3jFkYelYM72kViXQZFS6vJysrCYrGQYsmE+tYLBEOVlKp21JE8KJ6YVA+l1OJvDuKIsIET8IIJGiytscqud4tIujEWmyO0bMmueSX0Pi6dzPGJFHxcQe7re+g1LYU+J6Wzc3YR22ftZeQNA0g+LEjZuprwe3M6rXjSIqjeUUfV5nrcKU5ie0ayd0UpJSurAPA3BWipbr0vTjBBaChuBiBtdCIWi4WyDdWh/YFQxaSqdS3he2eCoU5HDQg9Aear9xFliSM5IQVHpJ344iwmWTIYNWpw6BwfxQEw4cLBBANBVt63mWE3ZmOxw/IlK1n/6QaOPH4CPp+PhQsXAhAZGUllZSU+n4+ysjLKyspYsmQJf/3rX3G5XMTExFBWVobVaqV///64XC6GDh3Kr3/9awYPHnzQv08iIiKyf1u2bOHhhx/m008/JT8/P1xtsq2CT2cDMdHR0cTHx5Ofn48FC0cddRRWq5XPFqxlzOSRDB87jOZKH7nP7GXcNQOx2r6WeDQxlLQTmBdNfJWHlJQUPNYmii2N+Or8uGKdEAk0ggkYaK1oWbCwkl7j0zCtD75Xbqol7YhEUsYlUvBRBXWFjXhSIsJ9rNvbiNVuDbVdVglWCylD4ihaU03lpjpSDoslto+nw3tLGRxLdKaHT/8aSgLqc0I6dYWN5H9cHtp/eAwttT62vxeaqCIIQV+Q/IVlAJgABE1owsrRWoCzpTqUzOWMcmCMofiz8vCxWMFhcZBEGomJiQQDhjGWafQ8Mpkeo1OoK2kgcV1fxl00EKuj9T5aYPSv+1FTU8PrT8zCEh9k9ISR5Ofns3HjRhISEggGgzQ2NtLY2EhVVRVr1qzh9ddfB0KDaG1J5gkJCfTs2ZP4+HjOP/98Lr74YhwOR5d/j0REROTb+f1+3n33Xd599102bNjA3r17qaurC1fx7mzMCyAjIwOPx0N5aTn9+/end58+rF++EUuNnVOvOZ74uHhW/WkrEBrz8jX5+ezBrRw2ohdx2VEkNmZR9HElGakZ2Bw24ixJoRMbCLaE4pbCVRX0PS6TiCgXAA0lzUSlRmB3g78ZfI2B8PhRwbJKMkcnYwmGYq28D0vod2omiQM9lHxeQ+6re8icmEDWlGT2flxG3oISRl3XHxOAqq317d5bfL9oKrbUUpPXiD3KTuLAGHbMK6T089DYWKApQNWOr9oEmoPUFYbGvBKHx2GCUNo6jmZ8ofix7NPa0OuAIegP9dneWvSosdyL2xJFcnQKMckeShbWMdISz8gRoURzsyA2dB8vHIzfG2DV/VsYeGEWEekO1q7YyPqlGzjiuMNDlZ8WLCZIgKioKKqrq6msrKSyspLc3Fzef/99/u///i885lVZWUlERATZ2dkkJiYyefJkrrjiCrKzsw/iN0lEREQORFlZGbNmzWLFihXh6pNVVVX4/X68Xm+nxQ6ioqJITEykIL8QFy7GTxmLw+Ekd/4O+gzKZsxJI2go8LLtlUJGXpKDK9YZHvMaP3YQwWBozMu2y0rSKcnYG+pxWhqo2dVIYr8YnMlOvGVeWmq92JyhWKphjx+/N0CgORS3lKyuJjo1koQB0RSvqqb8yzri+0aBDQhA2bpq7JGhtnW7m9g+u4iUw2Ip31RLU6mXYF9D0vAY9i4pb/feYnt7iO8bzcaZeQAkD42lbm8jxatDc43R2R7q9jaxZ3FojMtqt9JS66Pk09D+oDdIc9tcpA2CXkN9UahSUmR8BMFAkKLV1QD4GwxOt8EWsBFliSUhLoFARIBBliOI7hfJ0JG9qdhZQ9zqbIad2hdPkovl97WOed3aj7q6OuY8/hFN1npGnjiUvXv28uX63PCYVnFxMYWFhaxduxaABx54AIC4uDis1tC9SU5OJiMjg6FDh3LSSScxbdo0bDbbd/iNEvnvoiQl+Z/0wgsv8MQTT7B58+b9lkJsW2otyhNFj5492LxpMwQtnHnOGSQlJfHFE3tx4mTClYMJeAN8ev8Whk/tQ2Sim4SmdIoX15AQn4DFGjoP3tYTt16mYksNGSOTiUr3ANX4Gvw4o76amDFB0zY3xrYPikgeFI8n2Q1A5dYaUocmkHx4LGWra2gobcaTEoEzCrz1QZprvcRkhia/yjfW0veEDLLGJlPwcQU12xtwn+bE2iP0ZemtD7LiwdwO98lbH2T1o5vwto7HRKW6cXjs+BtDwUrfk9OJiHex48PQRNngc0IlD3fMKwAgJiWSgD/Irg9LAbA6rPhbQtWNnK0DNM1VoZuSNigGgNKN1aEdrffMm//VZxIMhK4b25rQ1NbWYXXijLQTuSmN8ZY0Ro8OVWiyfBQPhLLC/b4Aq/60hd6XJ2CsQRZ8sID8vfkMGDCApqYmysrKCAaD4coA69ev54UXXiAqKgqfz4fX6yUjI4OMjAyOOOII7rrrLtLS0jrcMxEREWmvvLycBx54gDlz5pCfn099fT3GmPCyY53JzMzE4XCwc2sevfv0Yer0yQTqIP/VKsb8fAB2l+2rxKNJg0OTVgvjiMhzEjE1gkCokBAt1T4iEl04YkNPzAd9JhyXVW1owJxqsLa+LttcQ9aYZDKOSKBwaSWNlS1EJrrDffI3B0IJ4sDOOcWkHB5PfGYUBVSwa3Eph5+XTc4p6Wx/r4jy3Fp6T08jc1IiBUsrCPoMzmgHkQkOamp8bH59byiJ6BtzgZve3NNuW3RWBHaXlfq9oUGXjLFJmIAJv47N8tBQ1gw+cMQ6sNgsVOW1lu4eGo8JQvH6agDcsU4IQsEnocEdC+BvnRikNfxsqgwlkrs9zlBC0+oKAIJBsH4tX8zhcBAfk8AwywR6TUwm84hk+sT3J/WLAYy5eAB2Z+jz8Rkfg6/JoLy8nHdffx9XlINevXqRn59PIBCgsrKSsrLQ4NOCBQv42c9+hsfjoba2FofDwWGHHUZKSgrXX389J5100j5/x0REROQrn3zyCc8++yyffvope/fupaGhAaDD0mttT+ZHRUWR3SubXdt3Y1osnPCTY0lJSWHT3wuxW+xMuHIw3gYfnz+0jX5DMkk+LJbkxkwKP6kizhOP3fbV8LIJtiZ6AyVry4nt6SGidZyroaSZ6ExPaDTaD74GHxZLaFyqZFUNfaZn4I4LxV6l66rwHO0mbkAM5etrqdpeS0K/WOxRdvz1fuoKm4jLDo15NRQ2YwEyxyZT8nkNjSXNRCa4cLhb++WHzx/e2nEU3A9r/74VfyjnCHesHVecE+ML9T91ZBzRmZHs+CA05tVregpWq5X8JaExrrgeUQRaAuxtTSZ3eGy01Hq/dgEL9UWhe584MA6CUL4hlNBksVoIBg2121ovHgzFmgDuuNA9aSwN7bM7QsuzuLfHM8wygVFHDMJqt8DCOCA05uWt9/P5X7eSdUYsjkQrSxcuZ+fOPAYMyKGlpYWysjLq6+v58ssvMcbw8ccf84c//AGPx0MgEMAYQ0ZGBr169eLEE0/kqquuUhUmERGRA9DU1MTbb7/Nhx9+yPr169m7d294znFfy9726tWLCHcEBVuKSU1OZ+ppE/GWBCl8v5bDz+9NdFoEy+8JjXmNHTuQoDGYBTGwEyLckbRYQk/QVe9qIGWIk4hkJ01lXpqqveFxq0BNkEBLEKsJjXmVbqgmLjuKuJ6RlJZ5qc5rIKF/TDjxqLG0Ody24otaeh6Z0vowXjWFK8tIyIkmc3wSBUvLqdhcS/8zskgeGkvZhhqCLUHciS7ccQ4amgIUrKigeHUFAW/7912wopyCFeXQeluisyJxxzloKg8dmDU2GYsVGopCMVBCv2hqCxoJeIPYnGBzWqncXtvaNoKg31D2RTUAkcku/M1BStZ/NeYVTmgCgn5DbWFoLC0q3kUwEKTii9C58BuCPhPul81iw2OLpo9lMHH9Ixk8IptMe2+SNuQw9KTeRLV+PgECDLwmncryCua/vhivtZns7Gz27t1LeXk5NTU1bNmyhUWLFvHII49gs9mIiorC6/WSlJREdnY2hx9+OFdccQUjR47swm+dyH8HJSnJf63KykpuvvlmPvjgAyoqKsJPhu2rNGJmZiZJSUl8uTZUdvryX16E2+bm0we2MOScXsRmRpGfVsyehRX0z+mP1W7FaSkNt287a/nmOnpNiiA21UMxNaHEo+hvJB61ZtLuWlBGxshkPAmhJ8WqdtSROjSBpMM9lG9soKmiBVdc6yxbPTTXeLG2Ztru+KCYmJ4eIpNCbXcvKqXX5BTwOKHeS8HyciITXeHrbn13L76Gr76UV/1lS+hfnOBJcNJQ/I2IoVVbglJ0dgTlG2sp31gb3rfj/SJa6n0Urwp98e9eUEzPKak07Amdq2J7DZ74iPB1mut81O5qBCBxSDyBliB7loQmpiISXQT9hj0fhSbDrFYLAW8w3Ba+qgSQPDA6dK831bQeS/geAViwEPSF2iaNisJisdBUFpp0S4hLwBXlJKdsFDmWUUw4LVQpafk9m8AJY37Znx3bdvDe63PIHtyDyIhINmzYgDGGoqIiCgoK+Oyzz/jnP/9JdHQ0VquV2tpa4uPjOeyww7jyyiu55JJLOr2XIiIi/83mzp3LX/7yF9auXUtNTc1+lwRx2B0MGjyI2po6qnbXctK5x5HdNztUeRIYf2Go4tHK+3Jx1DnISM+g3tZEPlU0lrcQm+nBleWgZa+PgDeAxdY6mbPXCwZsrcFB5bZaMhOSSRkaT8GSCpqqW9rFR/7mAFZH6Nj8RWVkjEgiOiMSqKRgZTm9p6WRMCiSytxGSjdWE50VGW5bub2WhuJQXFOf10TFllp2fxKapCpaWdnhn23/7sl001DQjK+xk5vYGqpFpjporPSx/smd7XZvfmNPu9dFqyup3RM6kSMC6vY0sGdRMQCuaDsNJU0ULgnFVhaLhfqSpnBbE4TaglDblMPjIAgVX4biPFecA4JQ+nkdEModb4vLHJGA+SqhyRXlxIIlnGhuCRIOjB0WB8lJycR54jnSchK9p6aRMTKRki8q2f5WEaNv6kdzoJl///V16qhk+KhhlJaVUlNTg8/nCz+R9uGHH2Kz2YiPj6eiogK3202/fv0YPXo0f/nLX4iNje3kZoqIiPz3qq+v57HHHuPtt99m+/bt1NbWhpNNOpOZmUlqSirb1+4khkTOvulU7EEHax/dSe8pKaSPTGbPkmL2LK6gb1YOzmgH9tYxr6DfhL/by76oIXlwbDiZqKGkmdheX0s8avSHE8LLNzaQc5LBHReKvco31eJpfSq/8ss6avIbien1VWXJmvyGcNuSz6tJHBCD0xMaut67tAyrzRqqrFQPBcvLicr4qorl1ncL2r3f9U+FntDHHko+aq7wg7/jfWlLUIpIcVFf0BxKZmpVsro6NPm1PjT2VPBpJVabhcaCUKPqHbV46786aVNFC7V7WhPJ+0TQUu+l8LNQ/BeVFoGvKUDhZ6G4zOa04q37Wma6xUJDaWvbfjGYIFRuDg1yWa0WTACaS1qPDxr8ja0JTWl2MISrCMTGxBObHkmvqsPJtAxi3EkDwQIr/xh6IG/Mbf3J27KLBW8uJql/LJ4YD19+8SXNLc3s3r2bvLw8Fi9ezK9+9Suio6Ox2Wy0tLSQmprKkCFDuOaaazjxxBM73kgREZH/crm5ucycOZOPP/6Y3bt3hysidfbwnd3mYPDgwbTUttCw28/4E0bTb1gfPntwGwRg9NkDwBg+27oVqiA9NZ3KhnqgltrdDUQlu4nq4aR+j5emKi+utvlFLwRaAuHiCpWb60gaFEt0ZgRNZV7qC5qI7xcdTjxqKmvG6mx9UG9zPS1TfUQmhCbbij+vIjLRRUzPSGrzQtWMYrIjw21L11XRXBOaj/PWBChZU0lZ67hPbX4jO+YUUrUtFKvU5DWw/l87AHDFO2mp8nZIUALCSUDOKBvepgA75xS127313b3YXNbw64Jl5bS0xUtOGxWbaylZG+qDK8ZO1Y5aSje0zRFaqd5Z91WhCAzVu0L986S7CPoMlVtCY1zuBBf+liBlrUlKFivt4jIT/Cq2ikxwYfyGyi1fzYu2PfBns9hIiIkn0kRzhOVIEgZHM+DkHhSsKid/fimHX5aNJdbw7kPzqKGCvqN7Ul5ewfbt29izZw979uxhyZIlPPHEE+Exr+bmZlJSUsjJyWHKlCnccMMNREVFdXIzRf7zKUlJ/uN5vV5+97vf8corr1BYWIjT6cTr9XZaprpXz15EeiLJ27KLw4cNZfK0SdBiZd1jOxl74UBsTitHJI5n98JSPB4Pxhg8aU7Kc6uIyfCQOjyBPQsraKn3ERHnovfxqeR9UELQb7A7bUT1cLF3aRk9JyYTlx0DFFKT30DyYXEMuqAHuS/toaXOiyvGSWyOh5rtDQR8AVytgcGepZWkHJ5A5oQUyjfmUVfUSGSym7QJCRQvr8TusGKPbf2z9YI7xknm6CR2f1hKU3ETnjQ3R1zRl5V/zMXusZE0NJbkYfGs+/tW0kcmEPQGiT47ksK1FaQMiqPo80rienpIGBhDc42XNX8LrbWKFSJTv5rAG3/7IIyBlfflkjoyjoyxidicVorWVBKV5GbwRT0xPkNURmjQJWtqEp4EN4mDYmiu9eJMcJJzfBqR8a6vkof6x2JzWYnKclO+sRZHhA2LDaIyndQXeAFDayVvkgZFY4yhpT70mXoyIjDGULM7NLFmc9m+GohzAhYItjZO6h+atGooDR1rd9nC9w9aj219yi9jQgJ2u53MpB5MsBzHmJMHYHfbiFuTDRYYe9sAiouLeenplwnYA+Tk5JCfn48xhsrKSpYsWcKSJUu49NJLSU5OJj4+ntLSUsaMGcP111/PySeffJC/5SIiIj8e69at45577mHp0qVUV1djt9tpbGzsMCnm8Xjo1asXFeWVNJY2c84VPyE9PZ2tswqo3FXHhNO/qkSZGJGK3W6n/7mZbH21AL83gMNtI2loDOUbajHGEBEfipeqt9cRm+lh4Ek9WP/PnXjr/EQkukg9Ip6SNVUE/EHccU5wwO7FZWSMSSJ1RChJqWxDFb2mpdHz+GTyPyijqcqLJ8WNI9aBr8YHGGJaE5Fq8ppwRNrpMSmNytyd+Bp9RGdEMOCsTLa8UQAWC72OSsce4WD3glIckTZG/LQP5V/UUrqxmuTDYolIdBKTFUnl9nqi0txs+nc+Qy7IBquFos8ryF9YitVpxWq3ENs7kpq8RvqckkbasAQKVpaze0Epg87rgd1tw+Gx8+UruxlwehbFayvpNSWV2qJGYnpEUrWlniEX9QEgfWQSO+YUkX5EIlgtJAyOpnJbHRGJLkwgFId5Mt1Y7VYcrYM/7uTQgFdLa0K702MPDbQ5AB9Y7C3eECUAAQAASURBVBYCjaFJuLiBMWABb0PotSfJhcFQuz1UKcDisIbjMEckYAG/N3RsVJobYwzl20ODSDanjWhbNEMt4wCYcOxg/C0BVv15C/3OySCqp4slC5aydu06+g/Owev1Ul5eTlNTExs2bGDDhg08/fTT2Gw2srOzaWpqIiUlhTPOOIMbb7xRyUsiIvIfz+/38+KLL/Liiy+yYcMGmpubaWlpwev9auanLSm8Z8+eREdFU7itmL7ZOUw97UiCNYYNT+1m+Gl9iUx0kecoouizKjxuD1hCyTmlX1SSfkQSSYfFs2dxBQ0lTbhinGROTqTgkwp8TQEckXY8GW6qt9ZjgoaEPlHsBKp31BHby0POqRlsf6uQhpIm4rKjiO4ZQV1+E956P57UUEJT+YYqek5OIXV4fChJaXc9if1jSBkVS+nnNdicVqLSI8MJT54UFzE9PBQur6S5xk9sbw+HZ/fls4e2YI+0kXx4DKnD4tn4wi5SDosFC0Qfn07JuioSBsRQtrEaZ4yDnpOTqStsYstru/E3g81hIfprCU5jbhkAwKoHtxCTHUnm+CTsbitlG2uwe+zknJxOS12AhH4emqt9pI6Mw+ay0WNSMg1lzbgT7aQOSyC2VxRgoQBI6B+DO8aJJ8lFFfU4PA5sDgsRCS6aSluwWAkvX+fJDC3J2/ZgYUzPSDCG2oJQbOWKc4aPBbA6LPhbl2NJGhR6383VrcnjMfZQVabq1uQpK+El56Ky3djtdpKj0hhmmcDQqX2ISnMT92V2aMzr1gGUlpfy5pPv0mipJScnh71791JdXc2uXbvYtWsX77//fui6SUkkJCQAMG3aNC6++GImTJhwaH7pRUREfkAFBQU8//zzzJ8/n82bN9PQ0EBdXV2HMa/IyEhycnKoq2jAXwLHnDuFzF6ZbH51L3X5TYw7ZRAtdT7WPrad6OY47DY7vY9NJW9uCc1VLXhSIojt7aEmr4GAN0hUagQ2J1TvbCB9ZCKZE1LY8upeGkubiUx0Ej8wiqrN9XjrfXjSIrBF2KjaWk/QFyRlRByl62oo31hNQv8oMsfGU7C8ivqiJhL6x4SSguoDYAwxPUIJ4s0VzUQmuUkfnUhtXiMtdT6SB8XiawyQv6CUYNCQc1ImzshSij6vxB5pY9D5vSj/ooayTdUkDIjGGWMnrncU5VtriUmLJG9eMQNOz8QWYaNgRTmla6uxOiw4Im140t00FDWTPCyWPsenk78wdN6sI5NwRjlwxdjZ+nYBPY5MpuLLajInplBX2EhMbw91e5oYfFYPrE4rvno/hZ9Wkjk2GXukjZjMSGrzG4np6QmNednAGWHD7rZjd4XmUt0JoWrh/qZQfOSKc2D8QWw2K4FAEHuEDV9r4nlEuhOrzYKvuXXMKy0CLFC7t7XCpcdGsHVsDRtY7Fb8Ta3zluluwNDQWknTHmHH5XKQbQnFmuOOGkhLvY+1j+0gdVQMGVMSWbVwNV+s/ZKMgSn4g35yc3Opr69n586dzJs3j9tvvz085uV0OhkxYgQnn3wyp59+OhERX8WzIv+JlKQk/1E2bNjAddddx+rVq2ls7Ozx89CardHR0ZQUlzDpyEkcccQRtBQE2P5mMRMuGQwW2PDMdiLtEaGyxs7QF4q3LrQcSOiLJJS4YrVZcMY4Kf68lj7TCZeKrslrIGKEi9g+UUAJQX8Aq91ORLyL+j0tGGOwtT6Vv3txOcmHxeFJC523qdKLO9aFp4eLmu0NWC1WLPbWpc0qvVistJZRhPIvQ5WVMkcnUry8kobSZmKyPCQdHkP5xloCPkOgJfQF6Iiyg8VCc1XoyzI6NQK7y46/yY/XG8ST4sYEg60TUjbccU48KW4KPq8gMsMdysZ2Ek7esTq/vjaqheaq0ICHJzUCd5yToN8QlRRBZJobm9NKTV4jwUBoAjEmLYL8JSVE94rEFe3A6bGw6aV8Rv+yP+7o0ARjbWEjngw3nsQI3ClOnDEOMBYc0U56TY/D7rIT8IVSq5P6xWKxWLA7Qn2y2CxYLBYiE13U7WrCWAyW1rKVSYNDy8b5vaG2EXGhybDm2tBraydrvraVIo9tDdBaWpeRa1uTt43NZiMjI4OJlhPpeXQiPcam0VDexLondnL4jT2prqni+ZkvEsBHREQEBQUFNDQ0MG/ePObPn4/D4cDr9RIXF0ffvn05+eSTueuuuzr9PRYREfmh+Xw+Hn/8cf71r3+xc+dOWlpaOhzjcDhCiSDGQqApwLmXnENaahqrH9hB/1MySR4QR31ZE+v/vpOUxDSsNiuRiS4qN9WFKh61frdXbqojvmc0Ma0TRs0VLTgyI/GkuCmnlmAgFMPggJL1tfSckoo7NpRYU7m9jsxEF3F9IilZU4W3NZncEdmaeGQIl6yu3lpP9nQLCdkx5FNGoCWAzWElZXgsBR+X42304Y514Yi04qvxEWgO0LoKCYEWg/EbileHKkg6PTaCQUPx2tDryJQILDYrfm8Ad4KDyCQXfn8Ae4SdqFQ3ntTQeytYWU7GuMTw5JjV3pooFO+iJq8RV4SDYDBI2cbQedvaWawQmRQ6r8NjxwQMzig7kfGtSwFvqSW+fxSejNDr7fOKyDkug6hUN1arhaqddcRnh56+yj4qBfgqXk0ZFA9W8CS5KaMGp8cRrmQQke7AgoW2NYij0kJJXP7WARxHZOhzsEbYoDGI1WYJT4bFtcZlgdaJtLZqCL6KUPxtsX1VacsRGepLW1zmjnWGBv0iDyPKksn4UwdhsVnCy8gNu6EXW7ZsZcGH84mLjaOhoYGSkhIKCwvDiXQ+nw+r1Uq/fv3IycnhkUceoW/fvvv+pRcREfkB7d27l3vvvZcPP/yQgoKCdolIbeLi4khMTKSiqJLRY0YxctxI6rf4yZ9XytgLB2K1W9k4cyemMUBkpAd/63IgTeUtRCa58GRFwGdV+FsCOD0OnB4bNXktmGAorgCo3F5PQr9Y4vtEh5KUGny4ou244hw0FDYT8AVxRIaOLfwslAAe1ZqIVF/cTHzvaKJ6uKnLbwIrOCJCx/qbweqwEtuWEL69AY6FtOEJlH5eQ21hI+54J7G9PNTsaMDbGCBYF+q/3R5aIq2htSpkZLIbV4wTb40P/H48GRFY7KGH2GxOG1FpbhqK3JRurCS+X1Sokqa9NfvJasEe0X5sqKEkNJYWkegkKs1NwBvEHevAnezCHeOgcWMNJghR6RH4Gv3sXV5O4oBoIuKc2CPs7P6olJg+nnB82lTupaV1nNHuthKd7iYYNLhjHUQkOXHHuvA1hcap4nrHYnNYsdpDfbK2Vgh1RTmpp7k1XgrFTpGpbiwWC4G2Ma/WOLCldTmTttiujcVixfhD9zC+tWqVt8bXev7WaYHWalJWu43UlDSOsBxJTE4Eh5/ah9q99Wx8ZjeDf5pJg7+e1599k4ZAHZGRkRQWFlJfX8/WrVv5xz/+gdPpxO/3k5iYyIABA7jooouYMWMGdrumH0RE5Mdp/vz5zJw5kxUrVlBcXExzc3O7/Xa7nZTkFCwBG9YGOyddeDxpyWmseySP9GHx9D46nepd9Wx6MZ+EyBTsTgfueCd1+U0E/cHQGIgNKrY1kDnBQnRmKAaqzW8iKj2SyEQXNXkNeBv8uGOcYLNRs6sBMEQmtY71bK0j+bBYYnt6qNpcT0NZCwk5TmxOC4EmCHgNTk8o/qgraMbmtBPTM5qC5VX4GgO4YhzED46hZFUVTZVe4npH4Yiy4asP0FjVDK1jMiZg8DX5qcwNVRtyRtkJeINUbAs9ZBadEYnVYSXgNdjddqIzIwn6TSiRPd5FdFZo7GrvinKyjkwmKj0ilKRkt2CxW3FFO2goag6dtzlI5Y5QlaPozAis9tDDe6740Hlr8xsJ+oPYI+3EtN6z0o01JB8eG66kufXdvQw8uyfuRCcBX5CSDZUkD44DIG10IsaExqcAUofFY3fbcLXOTUYmOLE6baEqUzbAWEIlxIHoFDdBY/C1VlZyxbkwJrT8boAAdqc9nKQUmerCAvibW1/HuwALTWWt8avbigm2T2gKekP3OyLZTURkJFmO3jgsCYw6NgdHpIMV9+USMAEOv74HO7bvZPHcT3BGhR4OzcvLIzc3l5deegm7PfRwYUxMDDk5OYwbN47bb7+dtLS0g/pbEPkh6P8S5EdrxYoV/OIXvwg/KbYvAwYMIDY6lsLPqxjRdzQjLsyhKq+e3BfzOXxAb6JjI1j+TGj9Vn9LAKvNQn2Bl/oCLznHZYYHOKp21xGR4KJ0Y6gUc3NVC+5YJ1VbQ1+WQZ/B2/pUU8n6StKGJ9BUHJqsK/2imtSh8dS0ZtPW5zdhbZ1o8VZ6MX6Dry40gJA3r4T4q6KJS/VQSCXrn99B/1N6ENM7VFZx90cl1FeGzlOzvYGmSm84aebLF/IZ+6uB9Dk+g/KNtax6YDNZU5MYeUM/Vj+6jRX3ht6nO8XJ5tf3trtPn/11a7vXuz74aqm6NY9ub39Tg1C/56sksLbzAuycU9ShDOM3uVOcNJd6+bz1mtnHpNL/tGg++0vodZ8T00kfmcDOBUUUragkvn8UQZ9h0ys7qd/TQtXeehweO9vfLQTAGetg78pS8ueXgxMiYl3UFzRRsrqamN6RWLBSsqZ1CZVkN956H188FXpPBmip9VH4caikNgYaykP3N3loDBgo/jzU1mq3EvQbtrwaum7QZ8JBhDMq1LaxrHXgKtYNBnYuDC2p4rZHkJXh4SjLaQBMuHQwvkYfs/+yGG/fatJ6pLJ+/Xq8Xi/19fWsXr2a1atX8/vf/56kpCQiIiIIBAKce+653HHHHeEn0kRERL4PPp+PP//5zzz77LPk5+d3OikGEOWJYsjhQyjZWk5CZRZHXzceR4SdlX/MBaBHZk9aWstBl+fWkpQTS/X2UCzVUu3F7nSzd0loSTRvo5+2sokl66rpPT0tvERGze5GolIjqGwtHd1Y3kJkggt84Kvx0VTpxdsQuk7hp1Uk9o+hZm/oSaXqHQ24hjlxOEKrp9UVNIYTaxrLfexeXEJs6yDHphfzyT42lYLloT5te7eIAWdk4Upw4WtsYs+ycrKnpZIxPpHCFRUUr61i+BV9KFlfzRfP7Q7fF1eig88e2tLuXpVvqKUze5eUh+8BgL/RT9BvKFkTSkrKfa39km6fP9I+hlt5f2i5joLWZdwAHLEOtr/3VXw24ud9KVxZyco/hT6X0TcPwARNuG3Qa6gvamLjzF2t73svrjgnpWuqicvxUFfQyM7Ze8AH2UemEQwY1v0jFFtFpbrxNwXY/m7oek2VXlqqvbRU+IhMd+JvCrBneSjOjO8ZjQkYcl8LxaVBv8HXEKChdZmUoDdIXWHoM084LAYTMOxdEVoKmAAEA0GKl1e3tg3irw/FZTHJLuJi48iJHUjAEsWgE3oS3yeKz/62ns3VW+g1NY3q6mrWrVtHMBhk69atbNmyhdmzZ+NwOMjIyKCpqYlRo0Zx1113MXr06E4/KxERke6yfft27rnnHhYtWkRRUVGn1cDBQr+cHBLiE6j6rJk+0b0Zfe3hlOXWsP3tQvqkpBETFcvOVaEYpLnKizPSTn34ezZA7d7Q2E7ljjriekdRtS008VS7u4nYXhZq8kL7W2r9+FqrV1duaSAwLUhDceg7umh1JT0mJtNYGjpv2Rc1uBNalx3xg7fWT3NlqG3R8grSRyQS2boc3Kbnd9DrmIxwZaWt7+zFWxs6trnaT9WOevyt1Rl3f1hKQu9o+h6fzprHt7P+nztJHBzD4Zdns3HmLlY9EHqfzjg7ez8uY+/HZeE79cVzu9rducKVX8VJX34tZgMItASpap0Yg1AFpTYlq6spWV3dyWcBhSsqwtf3VvvDcVTysFiyp6Wy8dk88EPqEXFkT09j54dFlK6rJjLVjb85wNbXCmgobAY77P64lIKloXgwMsHJjg8KKfk8dN2YLA+V2+qo2FSLOy5UGalgVWjcKjLVSX1xE5teCcWLVoeF+sImilaG4kgMVO9uXdokw03QG6Sgtd92jwN/Y4Dts0MxnL8pEF7OFyDoC1K7JxRPR6dFEvAGyV8Suse2gJO0pDTGBI8GC4w5fyDeWh+f/H01NSlFZAxO4YsvvqCsvIyqqiqWLl3K0qVLufrqq0lMTCQ6Oprk5GQuvPBCZsyYoWVLRETkexUIBJg9ezbPP/88q1atoqSkpMO4lwUL0RExHHb4YGp3NBNTkczocw7Hk+oOLQdrgYz4TJrKQu2qdzbgawhQ2VpVuqG4GXe8k8rcmvBri9UCAWgsaKalqoWanaFj6woa8dbFUFcYisPq8huw9Aw9/AehhPFAayWfmh11VG2vpzY/dGz11nqiUyPDSc0VuTUkDogBGwS8Qba8vZvozND37N4l5Xjr/ZR+WQ1A3rxi+p2S2Vo5KMDuj0rpf2oWyYfHUraxhtWPbqffqZlUxtaxe2EpuxeGxnYcUTa+eGFXu/u17p872r3Ob43LKjfXUbm5Lrzd3xTEW+ujcmtoW8GyCgqWfRWn5b7Sfgys7bxlrcu4tV2/ZHUVJa0PDfY/M4uyjdWsfTw0TjXk4l5YbJZw24AvSE1eI9vfC83z5S0oxhXtoHpHA+4EJ9W7Gtm7rBRffYDM8YmYgGHTS6F4MTI1kuYKL3ta5xMbS5uo3VlPS5UXW4SNpsoWilaF9sVmefA2+Mn7MBRbBX2GhuImGktC88beWj91BaF4Oirdha/eR+GK1vHAoAVfvY+Sz0Lv09cQoKk1nra5bES5okj392S85VgyhyWSOS6Jdc9sJ798N0mTIqhtrGXdmnVUV1ezevVqPv/8cx577DHsdjtZWVnExsZy3HHH8dOf/lQP68mPlpKU5EehuLiYSy+9lKVLl3ZaIcnlcmHBgrfFyxHDjmDacdP44u+78NYHGXvGQCwWWLl6M007vZigCT+lVbWjjqi0CJIHxFK2ugZ/kx9XzFfLmPm9gfCTYoUrqkkbkkB0ZiTl6+tpLvcSmeAOJ9w0VYeSlgAa9nhpKG/G2EITa5Wb60kblkh870hKKr34m/3E94whOjuCul1N7PiokIwjkgBoLvVSvaOOPStDX0b+JohIcJEyNI7avEYqttUxYkZfKgfVseWtvax9fDvOKPCkOWko9rJjbiH1JV8lbbljndjdNpxRVrz1QXDCiBl9aarysu4fXwUKgy/oSXVeQ3hQBSB9fAIph8eR+9JOvF+Nz3Sqz4npRKW52fBMXnibM8HJoJ9kkfvmXryVoeAs6fAY+p2aRen6Kna8H/pyjkx2YY+whys17ZxTREu9l6IVoUGWgC/Iqgc2t54Uxl8/iOoddeHXkcmhgRUoBy9U/D97/x1nWVWn++PvfXLOdapOncq5qnOku6HJoIBIRiQJjGIAI454f87cec3c1/hV7+iYxjw6o4gyBsBRUMAACN3QOXdXV87h5JzP74+1a586XdWGmZtGz/NPd521w9prr6r1OZ/Ps57nZIzgGbF4ewbsRMcTjDwryELedQ7UOpXyPGqNREEO7nQuHdlEjpn9Ygw8faIYNvuaCLYMVp3CHAcolUrKbjprp7CcW/Ke1VuFRGRMTughlZX7oIMyZVKBHF7JT8+W7Xh67XjnmghFMmx+byfzwTm+9+3vkSOHTqdjbm6OfD7PP/7jP/KlL30JEAXj7u5uHnjgAT7ykY/87hdUQw011FBDDX8EnnjiCf7u7/6OoaGhlYkZScJsNpNKpjBg4i333I7L4uboV8bwdNvpvrKRKcsik78MkF7MoG2pFBkKqQIqWSEyPpQUNm0OET+FR+JiB3+bgeRYhuRcGlOdHJflhee70Sl+nj8epnGrC3eflfh4irlDIRq3etCaIJ+CYqaIRiur8kTzaE0afJvczO2NMPrsHHqrBveAndRLAWb2hbA1VWIne4tZyDXL0Fk1XPCBPl777Gni4yn2f3YQi7wDbGZPUBBlXg8rx2tNGsyeSjzZea2PuvUOTnxvnLhsRWvyaGl7g4+zT06RT1WKP2vubiE6nqoiKa0GrV1L381+pl8LCtUpGb4dLix1es4uIyRteEcHertWKbBp7Vo0BqF2sIQT3x1BK++sM9VrOfWkICAB9Nzsx9Fh4dCXzgLg6bdhaTAq/Z56LUghXVB+llQSw7+YBsDRZcbaYCQuF0CtPrFDP7pE8i+ViE2mZCs9MXaJBZGgMfsNqNQqUgsieWP06ChkiwQOh+Vj1YqlHICkVpFPiblq77JTKpQJynGZ1qgWBKiolk5pLRfs6KOYK+E50oXJp6X7Dj8vvvASh48ewuFwEI/HCYVCPPPMMzz77LNYLBYSiQROp5Pdu3fz5S9/GZ/P9zvfUQ011FBDDTX8oUgkEvzN3/wNP/rRj5ienqZQKFS16/V6jAYjpQwMdK3h8jddypnvTpEJFNh8dScqo4r9+89SSIjik6IQOZTEM+DA0mQhE4mRjxeUHeIgNmzpzOLY8Mko+QvrMLr0QJzkYgZnpwWjV9iPJeaSWBvFOl5IFAiPxSnJKY74SBLpIi9mr5FMIE8+VaR+vVMhHg39fJrGrSLnVciUWDgcYvFUTPnZ1iSKPfGJNLGRJBse7CR0Osboc/OcfmISNGBwa8gEC5z96bRixQGgt2nRmjRoLBpFxXHdve2kgzlOfrdCPmq7wktiIUPgWIUk7uy2UL/ZydDPZpVzz4eGrU5sLSYGfzytfKYxqGi/xsfkr+fJyPZp5kYDa+5sY25/iInfiFySya1Ha6nEXfMHIxTzpaq+HFrKz2lg60M9BAcrbbYWM6hQSEozrwdJzKblZ7ASHIwphCzfFhc6i1Z5HrVGTT5VlPsL6VCWeTmWcnRaKBVKBAZF/szo1Au1S3koiqUyqVk5dvUbKBfLSvHUKFvMJSdFDK1SSWSjFSKdVC4LtXfJQV9PBy276vEstBIOJlhzdzOxUoQfffspksTR6/VMT08zNjbGvn37ePTRR1GpVKjVatavX8873vEO7rvvvt/5fmqooYYaaqjhj8GBAwf47Gc/y4svvqjUXZYgSRJmkxkpp8aGg6tuugKX3sPpJ6YwWjWsu6SDCWmBuVCE+Kyct1IjyEbBrKJamA7mKBVLijJhZDSBs8OC3qMnNZMlOp7ELqsYgiBJ6+X8WHQ4SeGSErZmE4mZDPPHomgMGtRGNcV0kXyioMR7xZxQNarf6CB0Os7isSg6pxZrk5FMKMfi8SjZSAHkuM1cZ8LealL6rNGp2HBfB0f+eYRctMCJx8YxuGS3k9EUQz+bJiITrVCDzqbB4KzENXUb7DRf5OX0DycU8o3aqKZ5dx2TLy8qxCqA1iu8pBayLB6rEIxWg1oHLZc3EDwTq9TXAHu7GUujoYrE1HGtD2uTkSP/PAJF4X6is2iEs4yMwSen0FpFn3UWNXOvByjKqU7fVhfezQ6Of0fEjbZWE/YWM+O/Fu0BmVCVT8hOLFqJ0RdEzk3v1OHstDL7muiPyaNDAmVDAKoy4aE4uag41+AUZHIQxCqNQU06mJXb9OTiBYXUprdoSYcr+ViVRk0+IH621BspZMtE5RyjzqKlmC6SCxZpkJrYMNBBqVjGdagdtU7FwDuaef3X+zh64hgGu4Z4PM7Y2BhHjhzhU5/6FFarqG329PRw8cUX89d//dc1kYQa/p9AjaRUw/8VfOELX+CTn/wks7OzlEqlFe12ux2fz8fc6QB9bOWqv9xOKpDhyFdHaKmvw2gw4l7nYHZPiEwki9FlUM4tZEtoZJuuyHCc1t31eDqtLB6IEh5NUr9Oi86lIxfKkQnlUOsrikeSWoWj3QYsMPLyAtZmE54BG1MLAaLDSUrNlb7qTBohwYhYzNPBLPWbnMwfiDD8zAz+SF7ZGW7xmDA6dViahR1cfD7DmjtaOfi1EXKhHHv+4aRis5ZZyJEO54hMVlhDG9/dB8Dr//O0kuRwD1gJnowz9PQMQ8xUBi8H4aG4UrRZgq3FjM6mrSIp2ZtMmDz630tQArA1m4Ql2zIY7BpMXgNNF7gUklDgWIzGbWkmX63c5+TjE5V7dpmJTiSZfkm0d1zno2GjU+wak3erpcM5JaFFDkUFAGDjuzpRaSQGnxQ78u2tJqXoBnD63yex+YQ6gq3dhFqvYeQ5cWzbJV4MNh0Zme2eDGTQ2XXK86s0wgplqZ86o5ZYUgQC5nojxVyZ+f0i2aPWq8gn88p70+g1SsBRt9ZBuVgmJO9QNNi1lIplQmdE8KLVafHXN3Ox9GawwM4HBlgcDPHzf3sec78WnV7LkaNHKJVKnDlzhkcffZRHH30UgDVr1uD3+/ne975XCyRqqKGGGmr4gxAIBHjf+97Hz3/+cyKRiGKvtQRJkmhva6eQLmGYs3PV7Zfh7LQq6kgNdT4hTQgEjkTpeqMPs1vEXpGRFFa/GXunkehwmny6qBCN8qkS2XgetVHEWgtHotSvc2JrMJIcy1BMCZsRk0dLKpAnNBzDIlubZefzJOczZCJioc1FChhdOnw7vEz8aoGpVxbpeGOjcu7ESwtEpysBjbXJjMaoZvKlAKGTcVov8WK+x8CJ74xz8t8mFIIOQOhsXNjeyqjf7KTjDQ1MvLzA9G+DzL0eRmsCndNAcjqzQp1y6rUAeptGISgBeLe4sDWb0ZrUVSQlk9dIeWXouwL5VB6z14it2VRFUvKuc6CzaoEKSWnm9aAidw2CtLVc1cnRZZYTTuKh19zVQSlX5MAXxY6z6FgKnVWj9HPo32cZ+vks5AXZqv+2ZsZ/JYpw1lYTJo8Bg00PJIiMJ5naE2DiZdHuXW8nMZMmFRD3cnXZyC8jGiXm0kSGRULG1Wkhm8gz/dq86GerFbVGRV4exmK+TF5WvzT5dJQKJSW+tTeZkVQQHRextqSVyCWqFSiSstqDs8OG2WSix7Aeh9TCuhvbMLn1/PoT+xjkGJ3bW5iZmVGIS08//TQ/+clPKJfLuN1uuru7ede73sXb3va23//iaqihhhpqqAH4+c9/zsc//nEOHz5MIpFYEXvZbDb8viaiZ1J00Mfuh7eQmEtx6vFJXCYrRoMRW5OFTCBCbC6Ds71S4MpE82jk4lhsOo0kga3FROB4jOCZGMY6vUL4SUynFdJyIQNqjQpHu4WplwLMHwrh7rPiaDWRXsgSGUpBSVLuozdrsfpMjD8vCDqxiSR1a+0ET8aYemWRUraihmiw6rD4jJgbDSRnMsRnM/Td0syx74ySixTY94VBhRhTyJRIzKaJTaWVe224rx21Xs3BfxoiISuULxGgZvYGq1SRQMSUSypPS3D12TA1GKuIQaYGA1a/iULmdxOUAKxNRiw+Y9VnGrMKZ6eVVCDLtEwwT85kCA/GmDscUo4b/9WCEiuZ6g3kohWyVP0WB22XNzD0sxmCJ8Vnidm0ojQKcOCLZ5UMfc8tTeitGkVlydZmxuyt5DzPPjuNtV7kvAxuDXqbhpGfi7jQu9GNud6oWL9l4zni02lyQZnQpJMIyBv+DA4NRoeO+JiIy8weHblEnsBp0Ue1UU02nFXsS3RWLSl5E5+lxUCxsIzQ5NZTzBUJnxLPpDPp8Kjq2S5dAcD2u3sJnI7y6k9ep9SVwmDVcezYMdLpNK+++iqvvvoq999/PxqNhr6+PjZu3MgXvvAFHA7H731vNdRQQw011JBOp/nSl77EE088wenTp4nH41XtKlR0tHagTuswLThZv2Mtjds9HPjKWciBx+ytEI8WC+QSRfR2kdeKjSfx9Nmw+I0kJtLk4gUcS8SjoshxLJGJYqMpYfXq0JGayVJMlTC69Bg9OtKBHIsno9hbxLnFXInYSJKMrC6Zjxex+I14BmzMHwgzdzBEx9U+DC4dmVCOiZcWSEcqOQ9nq5mUNcfi0Sip+Sz+CzyY6n2MPDPL5EuLTL5UUZuMTqQwuCsb7azNRnpubGLixQUWj0ZFvkgNRqfo54nHqhUoQ4MJTB69QlACcHVZcHVbmdsfqiIpLVnC/T6SUjEH9lYzmVCuiqTk7rdh8VWTlBYOh0Xdrbh0bonj3x5T2k31om85mWTUc1MT5TLKcyQW0hin9Eo/Fw5FWDgaEYQno5rem/xMyXGXzq7B1mQiPpkC0mRjOcZfmCcsx23uPhvxyTSZJcGGPntFuACITSUVApO10UQqmGXhhBgLR7sFtVat9KOQL5KdlpWTjGpK+YrSp63RiEotKXkttU6qIjRJkkRSVuEy+w3oNXqa6MQoeWnfXo+z08LeL55iimHqtluYm5tjfGKcgwcPcvDgQT73uc+hUqnw+/2sXbuWRx55hMsvv/x3vrMaavjfgRpJqYb/7cjlctx///089dRTq6okAZiNZi657BI0MyZSR2Ddra2YvUb2fkKo65SLJXSy3/3cgUUat3owy373sdEUepsOLEACKJbl4g0kJrOko1kkeUd/5GyCugEH1gY9wVCOUraEpd6okJbmDweVXWe5OUFa0pnEtaLjSRq3u+m4zsfIz2Y59cQYxgajog4kqSVlocwlSrj7bXjW2tn3mUFGfjbLyM9mxbFAbDJFwyYnepuaXEjs6B+4rYWZfUHGX1ioUkACmNkXoJCqLHZ1G+10X+dnoTvC0NMVgtKSctO5Vm8gE3101Z+tdtz5cK58I4ixP/C500LBaRmW1JbMDTqSoZxC5EEHA7e3kI3nOfgFURgbeX4Wg11bkdPOUfX8Ox7tIzmb4ZgceBSSBVRy0Ahw6EvDynM1XeqheZeXwacm5fsbkCRILogORCcSzB4KEh8TySz/BXWVxV0nFveCXKAzOLVEJpKMygSnuj4bao2kPGu5BNm4SPQYvGLn/+KJsHKsSq0iNiqCCglJsQoEkFQVy7nGdW5UKon0fJ4uaR1rdrRiaTDiPtJJjhzNd1o5c+YM+w/sR5IkTp48yYkTJ3C73RgMBpqbmwH4xje+wcUXX7z6y6uhhhpqqOHPCnv37uU973kPx48fP491CKwZWMOavrXM/ziDFi3bb+slMppk8IdTpOYyuLttuPoshE4nSAUyVcWRbDwPsq97fCaNWqvC0+sgOpwmcCpKw2YXWpOKfKpEPlEQ3u5ANphHY9BQt9bB7N4wo79eRG1UY/DoSQXylNJlVKpKcUzSSLTs9jL3WpjIUJKjj4+il+OyTCCLpJIwNRhJBfLkEwXW39nJ0LPTBI7G2PeFauu1fKpQIcvkYeCuFsz1RvZ95gyBo7Eqa7b5g2Hs7SamX6skRda+rROdRctrS8qPgNYEaLVkg3nFcmMJY7+YZ/rlxSqCErDCEu68yMPeT55a8fHJ744oJJ4lLB6JsnhEJD3MfoNipQbQfb0Pz1oHJ78/rti5TL60QKlUKZbOHwwrVnOtV3pp2Ozi2L8Ok5rPozZrRRFSJoDFZ1Ls/cwpheS19aEe8skCE3JhDpWIc8T4qDj7zDRZWSmp81oftmYzY8+LQpraoEYlSeTl3FUqkCEgJ29MHi0mt57AnHgWg1NPuVAmvKQ6oCqTDGQUhSajXUdm6f8NWgrZYqVw5tFRzJVY2BcBQG/SUsqVMUk2NnIh2y/pJTqa4MzUNOYdKlQNeX75wq+IxaPEYjH27t3L3r17ue+++2hoaMBqtXLdddfxqU99Cq22msBfQw011FDDnx8KhQKf/OQn+eY3v8nExMQKlSQAs87C7ssuRjNhJnO6TPvuBtzdVvYPChXDQqaIXlbiCR2LU7iyiMGztCkuibXBgMGjIRMoUMqVZDUkoXgUn01Rltfe6FiCxu0e9A49mWCBQrqIq8+GwaEhEykw8coCJvfSuSVUkoRKLxfWppK0XdlA8yVeJl9c4OxTU+g8OjQGFYVMSdiVLKViCkKlx7vBweGvDjN/MML80YjyvMn5FMVMEa1J2KIZ7BrW3tPBzGtBZvYEOXNOLmrq1aASPwBY/AYG3tLK3MGQYjMCKKpPky8ucC4O/tMQGkP1Z9MvBxRy0e/D2admVnyWCRY4+MVBhaijHPsTcazGooFCgUIl9GLgDmF9fOxfxgCYPxLBVKdXCEoU4PQya9/ND3URn04p988n81SiYTjzZGWsXL1WOq9rZOjfhdqT0WVAUklk5bxWcjHD0cdGSc+I2Kv14nrSgUpBUaWWKGVEDKh36wmciSobDOvWONCatORkxahyCTJR8X+NQWzSW5QJTq4OGxqdWimcSRJkgssKZ2qJpBzD2dtNqFQqUrNZGqQW2nvF3Hcd7qBAgcbbzYyMDfP6669TKBQ4ceIEx48f57HHHkOv19Pc3ExzczP/8A//wObNm1e8oxpqqKGGGv78MDo6ysc//nF+8YtfMDs7uyL20qClp7OXgd41BJ/JoZbUrL+qnchIkolfL5AO5JAkCbvfTHQ0SeIcQnhyIYMkL8aZxSxqnQp7s4nERJrQmRgGpxatRdilZcN5pVZVzJXQGNW4e20ET8ZZOBpCa1WjMYlYq5AuolJLisKRpJFo3u0ldCpONpzj+HfG0VnEsbm4OFZn15AJ5cjFCwzc1sLo87NEhpIcf3xcqUUC5FIF2YlEoOWSOhwdFo5+a5TkbIaR2cpGt/hkmrmDIRZPVIhE3df7MdcbOPyN4cp11aAzqsklilXxGMDisSihM/Eq21hghSXc78Jq9caRX8xWPRdAYiZDYkbEFXqnTol7ALybHDRfVMeZH00qx0y8uIhKV4mm4hNp4hOiHugesNF0UR2DP54kHcihMajJpwqkQ7I9W6JQ1a/+25op5csE5DhOkiRRBwZQw+gv5xQb47r1djy9dhYOR0SzXoVKJVGUyVPpQJbImMitqY1qHK0WRf1Sb9NQzBYVJU1JKxGbSpGTYzFznZFsrFLHLGQKiv2fwaWjkCkSGY3L19JSSJXQSTo66Gf9+nYitiQTkwvo2kC/vsgrv9nDYnSB2dlZJiYmeOaZZwDw+Xz4/X4eeOABHnzwQdRq9e94gzXU8J9HjaRUw/9yJBIJ7rrrLp577jkymUxVmyRJlMtlNGi57S230tzQysHPD0EJNq3vY1EbYeTIHNlwEWujCotfR2I6R3IhjcEhEim5EBTSBSWBkVjI0GjQ0HGxYArPHAhQt8ah3FMlSehkm7bwYAJJgqYL6wiejDP2mznqNlSONXuNWBpNCvFodn9Q+LnK58anUyzK/q0qnYbua/zUdds4+f1JDn9lGFu7SbGHi02kUS37G77m7lZszSb2fPoU0aEk+z5T2YUfHUqSjecVazGAvlubsDab2PePg0z9pjqpsng4irvLytCzlSSKs89C/y0tBE7GFJUhEBZnBrtGMJKr3Vz+Y5DHZglLpJ269TYWlxX40MH6B2TbuS/LC3sO5vaHCCyTtSZXUVpqu6oe73oHh796VrGuS4dzBM9W2O9LsowA6+5rw9xgYO9nRMEwOZMhE8kSlBUHSrkSr32qYiPX8cZG0qGs0p/g6TixaVHAar3YSzaWZ/g5EbD5trgxuioqS9OvB9BbxDwyeHUYXXpm94lkjrPTgkarIjYpgohcqkB8OklyTgyUqc6g2JXoXCqK2ZKitmBuMFDIFpmWdwaanHqQYzudpKO1qQ2X5MVxsA3/hW7c28w8+f2nGJsdxWQyMTExQTab5ZJLLsHhcGCxWNBoNHzhC1/gTW960+99nTXUUEMNNfzXx/PPP88HP/hBBgcHV5CSVJIKyhIdjV3c8JbrmXxO2If1rmvC0mAkJIniGGUwucU6N3ckRP1WF5ZGE6HTCRJTafQ2LWiBvIjnbH6xgzs+niIyliCfFV+6k7MZNHo11jYzoZNxYpMpfFvcCmlpes8imZj48p+P5rG3WJBUEqHTCYafn2XdXW00bHcy93qYhcMRRYIaoOuqRowuPXtPniIVEGpBnrUiTgucidG4w01G9m/XalVsfqiH8EicwR9Nc/xfq3eCRWQCyxK0di0b7m9nem+A2b0hBn80XdU+8vPZKrUigIG7OzA4dJVYQ4ZrwEroZHwFQWlp/P4zWCIo2dtNpOYzVffoubERd7+do98eVYhKZ38+S6mIQlACmNtfsa7b8nAXwbNxxn4h1IyScxnSoSypedHR+HiK/V8Qc0RrUrH54R5CZ2KclUny0dGEEuOY6rUMPztDalbEP11v8uPotHDk64KYPn80gtasVq5tbTIy9aqIcbV2La5uG5RFjJjPw/S+oEKe8l/gplxGOddgr+wCRCsk1+cOCUUD3yYPerNWUXeQJJlYtwxLiR97uwm1VkVanjf1Li+uDhvxhBok2PSuTiZmx3jqhz8hS5pcLsfZs2f57Gc/y+c//3kaGxvJZrPccMMNfOlLX6qRlmqooYYa/gxQKBT4m7/5Gx577DGmp6cpFiuVFEmSUKHCiIVrrn8jzQ2tHPvGKORhXXcngVyUydMBsuE8ar0ai99AYjpDbDKF1Vdh2GRCongGolCmt+nwrHEy9eIis/uCeDc4REa3IDZFmeR1MRMsQLmMb6uL6HCS6X1BsqkCS7U7k9tA3RoHky8HKSQKTL0awLPWLs4N5AmeihI8XcnX9N/UQvBUlKGfzjL442kMHq2i0hQZTaA3V9LK7ZfV415j5/BXBskECxz++kjleYIFkguZKsKMf7cHT6+VI98YrRB4ZCSmM8zuCzHx22qC0vp721k4Gmb0uXnlc41Fg8GuITGdqSIL/Ychj+sSlghK9k4z0eHq+HHj2ztIL2Y5scx2bvLlBRJzyzpSgNGfi/7WbbDj3+nh+GPjil1bfCZNdKwSpy0dC9B+TQPuHhuHvzpEoVAiE8mTmEsTHq2oMB38pyHl/z03NJGazyj9mTsYJiurknrW2cjGCsqYetc7cLRbGH56Vj62smlTY1BhbzUzvVfEaWa/EY1RQ1omnhdyRYJnoyTlYqC91VLZDGAQmwOWrIDN9UZZoUkm1Hv0LAmLaSQNjS4/lrQTi9SEs9tC8xvd/PzJ5zg7OYjZZGZycpKhoSG2bNmCzWbD4XDQ2trKxz/+cS666KLV3mANNdRQQw1/Yjh16hSf+MQneOGFF5ibm6tyZtGoNJiw0Oxq5Q23XsnMryJEhpP4G90466xEpDEAysUypjqxzkVGk2SiOQwunSApTQtLN7VRRTFdQkLC3iZIS7lEkcCJKPmMTDQJ5tGaNBjr9OQTKRLTaZov8SqkpcmXFxVlnWIOXD02NEYN8Yk0i8ejmOuNuLqthE7HCZyKVqkT+Xe5cbSaOfjVIYrpIsf+dQxrs8hDpeazxCaTVdar6x9oJzIqiFfjL1TiBxDqSWqjWiFEqXUqem9tYv5whODJWJVSEQhij9VnqCIIdbzRh63JVE1cAiyNBhIzmRUEpaV7/acgn29w6cini1UqTb6tLhp3uDn5b+OkZVGChaMR1FqVQlACFPIOQN/tTUTHUsy+LvJFmXCO5FyatGyrlg3nOLW06VANGx7oIHg6xpRMco+MJCkVReCitaiZ3R9SVJT8O9w0bHHJ9coisck0i8cipGUXF2uzSbkvaqjf6CRwKgaIuHf8xXlico3Qu8GJpJKUc/V2XRVpPTGXVmKpul47BqdeUZ6XVCrSwSxFWWRUUklEJ0XMqrOr0Zo1Cgnd7nTQ4HYQT4qcV89NTYSyizz/9AvECJPNZtm/fz/79+/noYcewu/343a7uffee3n44YfR6c5Rwaihhv8kVL//kBpq+N3I5XLcdNNNGAwGJEnCarXyk5/8RCEoadQajJi4/aq7+O9//d+5qf0eLpVuoE7fWFm0cmJHz5Jk8fT+BQqZIvZOKwCZcIFivrLoSSoJV5coSi0ejhI4EyUVEn/Qy3kJk8tA/RYHAJOvLqI1VNhC6UBW+bKcmMzSsN7NwG1CjebMD8fY8/mT6GQyirXegMGhVZR65g6H6bquERAqQnMHQpz8sbyI6WDNnW303SKuNfjkFKd/OKWcGzgVJblYWSzNDTq2P9JLw3YnAAe/OFQlS12UF7/l6kf1Wxy0X10PIK69jCwUPp0gMppg7PnqHWl9N/tZe2cbOkv1e2u61MOujw3gWWfjD8W2D/Ww7eGeFZ9vfriLrjc1VX+Yg8CpmCI7vYTR5+aJj6XRuXQM3NlS1aaSFa9ySwFODo58bUSxqNv2oR463+RTjg+djZNayCrjEB5LCGUlhF1b5zWN9L+lWbnW6POzSn+63tyI1qxm7nVR/LI1mkQhVL7W2acmOfQNcS1Ls56OKxoVez+NFjLRLIHTEQCcHRYSs2lFocnVaVVIdeggMhZn4jciUGy5qAGtWUNkXAQKpXyJYrZY9S5jU0nlvhqdWvHD1Vg06FUGOkObuUK6hXc98G4++L5H8OBHhQqLRUg3jo2Ncf311+N2uzGbzbS2tvLTn/50xXuroYYaaqjhvyZefvllBgYG0Gg0SJLE1VdfzYkTJ8jn82jUGjRo8dPBRz/03/jwQx/hcukmuqMb0BQ1GFyCRFFMF9GZNWjt4ufIRELskAfy0RKlbIlyQazHidk0BruOph0eACZeXCA8XCEQm9x6PH0inogMJYlPp3B3isAjMpIguZhGJctfG106uq5pUu576BtDjP1CjhXyYPTosTWLeHBufxijS0fzxeK+Yy/MMfSzCnmo77Ymuq/3Y6rXQh6OfmOUxLxYi/OpkijiLLPS6LjGx6b3dAIwsyfIye9W7GjzqTyURTy6HD23+NGaVERHUyuSOGPPzym7nhRooefNTay7v23Fe9v6nh7l/n8I6jbY2fnf+vGsr47V9G4tA3e00vVmf9Xno79eJHAyWqWkRB6GnxHj23qlF0dXZXcgMp+mVKioKgWOxzj6DaGI2bDdydb3divvKp8vkVrIVHbbaeHs0zOMvyCKXd03NLP+3srznXpykqlXFhXrt85rfIrKgtauxejSY6qrFGQPfO4Ugz8R77f/tiZ8m1xkg+Lc2GSKpEw6QisSbJMvifs2bHBirjNQSMpEufkk84dDCiHc2WmrUmco5kskF0Ui0OI3kk8WmD0q3qPFZ0StrhxcLoKjWM9u6Tpu67uPh9/zMG++4DYs2KirqyOdSrO4uMg3vvENzGYzXq8Xu93OAw88QDT6u+XNa6ihhhpq+K+BQqHAf//v/x2/349arUar1fLxj3+ciYkJisUiOrUeJx6u33QbH3v0r7ih9S52SlfjyHkoLctjqTVqLLI1/cKpKNloDnODWAfTgWxVoUdSgUfeMJecyTCzL0g6INbBQrqIrcmsxF5TrwZQG1TKNtT4VIrYpFgDc5ECjdvcdL9Z5LFGn5/j4Bcr5Gqj24DZaxCKQMDiiShtV4qcUyZSYOI388ICVsa6ezvovFbEHzOvBhl9fl65b+BMjMRMWiFEaSwaNr6jQ8k5nXp8gvDZSlxWXoo/lm2ftbYYadzlBmDiNwtVZKH0QpaFo2FF+WcJbZd7WXNnGzpH9T5cZ4+FC/6yD1evlT8U6+5vY+NfrIzV+t7STO+NzSu2+s7uDzH+m+qi4PzBCMmZDBqDivZrGqraVGoJylTZz519clrZcb/u/jaaL/EqbdGRJLGplEKUSgUznHp8AgrC6q3nxiY6r6vkyIb+fVrpT+MOF0aXjsBxkWe0NpnEfJNvPfnreY58U+S8NBYN3dc3Y3CKnJfKoCI+kyIm562cbWai40lFhcDTb8PsqcRwgdMxxVamYa0Tk8egbMIsF0sUMkUK8gZHSSURHkko99XbdBRl0r3OpkbKqmkJ9HOJdD333fwXvO8dH6CdfvSYsNlszM7O8vLLL7N7925cLhcul4sLL7yQl19+ecV7q6GGGmqo4b8mRkdHueuuu2hoaECtVjMwMMC3v/1tZmZm0EgaLDjoYQPvu/dDvPst72WX9EaaY/2UEyrURvF9Pp8sordp0dnF4h0aisMS7aMI+XiBkpzzSgeymL0G3HJsNbM3IPIecknR6NYrcVk2nCN8NoFV3sQWn80Qm0oiycfqzVq6r/ejs4sPTnx3jCk5d0ERrH4jlmUOMRqTiroNgjA+syfI0E9nlJqpf6ebnpuaMMrqmsM/nSUtE2QoCueX2ESFQF23wU7f7aIWFh1NMvrzuYpFWrG0as7Lf6FbtnjNKWpBS5jZE2R2f2gF8aj7hia65NhyOfpva6b/juYVn58PZp+BLQ93V+epALUO1tzZSvNFnqrPF46GmDsUUghK4sFQiEB16+xY/Ms2F6qBMgrJCMTGyiFZEdPWYmLgzhZFvQogOpYkKlvhohbXnj8g8kXNl3jpf0uLMi+m9waZ+PWCouzUdJGb0FIOUg2WBgNGeTOoWqfm4DeGmH5FzIXWS7007/IqSknJ2TSxqQq5SmdSMyMLJFibjTjaLJQVF588068HFGJWXb9NqauCINhnwiKXZqozkAllCQ2J/JSlzoBap1beaTlfwhC1sknazRvct/Lgve/ixnVvwUcr9Z4GMukMR44c4ZFHHsFsNtPQ0MC6dev4zGc+Qzpdbb1cQw3/EdSUlGr4D+ETn/gEn/zkJ4lEIiva9HoD6qyGPrZy3cd2k43lOfjFIVKnyqR6M+gdGuIIhpzeoVOUeQJnY5hdYoFOTuZAktDoxF/88FAcT79d2Vk/ezCkLAYAjjYL9lYLc3ujzOwJko5lFJs2lUaFxqDG2WMhPJhg9mCItsvqGfnlnEykiRI4Jf5I5xKw46P95JLCjuxc6w6rz4jBrsPSrCcxmWXk2Tlh//b8LORg5rUAswcrY7LhHR0YnGKH/fyBSMXSDMgncqCShDLBMrRe4WX8lwucfbJ6Bz9A80V1aIzqql1jgGJXt6RItBynfzyNf6tTUQRaQnImQ2I+TeBMbMU550N4OAHllZ+PvjC34jmAyjMsEa2WxQ9dV9djb7coFnUAI8/OMfLsHADuASv5dFHxpNVZVEKJaxlBe/qVoFIw7LutCWeXlUP/PExmIUd0KMncgRBTL4vrtV1Vz8yBMDk5kLP4jejMlT4fW+Zj61lno+fNTcy8HmTs+XkS81nCZ2OM/kYOIi7zkYsWSEyKApferkWlqRS0Fo9FmH5VvKOOK324uuxKgDJ3NIDWoCI6JIIdz4BdYT0vIS8X2eztFjKxHBO/Fc/g7LCg0auVcUxHc6QDWTZKO3H2WBh4SyuT+xf42TM/Q9csXlQoFGJiYoI3v/nNOBwO4vE427dv53vf+x4tLdUksRpqqKGGGv7fRCAQ4K677uKll15aoVKpklQYtEY8uUauuvYq/Js9HP7GWVLzeYJn4xjk9TmfKqE1aXG2W5n5bYjxPQHMjUYcbSYWj0QppUss36ZTyBSp3+Ri8qUAodMJgiejypdarUVD3YCD5FyWmT1BjnzjLL4L6pRzDQ4dalnuOjqSorC9SOvuOgafmmFqzyKlQlmQgoCGTU4at7k5/vg48fEUr/9DtR2axWdErVUxSYDoaAqTR4v/QjfTrwQZfm6e+rmMoq5j8ulYf28Hc4fCjD03z4nvVKsnlZHt5JYpGtnbTZRKsmLQ5warjrd3mHD32CikSow8u4x0LYcP0dFUlUKRGGgYfW6OVDDLuQgOxlbuNPsdiJyNE51IKupQS8gG80Lx6bXqIl0+mlcUjrR2rWKFttTnhs0uHO0WIkMjSl8PfLGy+35pXJegs2hBJSnvijyKdQla2P7+XhIzaSX+PP2jSaVgqjWp8F3gZuLXomBlbzdhdOmU4lc+mq9612vvakFj0Ch2eJMvL2JvNSvXcvfahOw3Ih7SmjTKLvxivsSJJ0aJjYjfjZZLfZRLZUDET9P7Akrxq3GnG71Nq5DX1Do1lCEvE6nK5TILsn2v1q7F6NAp5CiNUSIxlyZ/XGKHdDWbbhEWgM996hVOc4iGtjpmZ2ZJJBN861vf4vvf/z4qlQqHw8HHPvYx3v3ud5/7imuooYYaavh/FE8//TR/9Vd/xenTp1dYiJj0JgxZKz2s49IPbFesvfKnJaJrEmjNIqCSyhKWOiMai4ZCosDc4aBCUipEClAGtVYktqLjSfw73Hg3Olg4HGF2X0gpsgG4eqx4+m0ETwwRHU1x/Puj6E1yoqVURmfRYmsyERtLMX80QvuVDSwcDFPIlJjdH1I26lGA9e/sIp8scOxfxph8caHKOs3g0GH26hWFp9l9YRp3uFg4HKGQKTHxm3mFYALQfWMjtmYzB758lvhEmtMTlRxaIVMAlVSVdwGo3+xg/mCEmT1BZUPaElp2ezHW6Zk5h4i0NIbn5sIAxp6bI7WQUXaILyEbLRAaiitEmz8EwdNxVLqV+3knX17E4IhWkaYApn8rq54vZdeXtTfu8OBd62DxWITElIhR5g9GmJdzhuZGA5IkVKOWrqFSS5SXJd1CZ+KEzoiNAf7dHhq3ujj2nVEygTyZYIHxX88TOC3a6zc7iI4kyMjjYPWbMNVXiESjz84xKufbzI0G1t7VxuQri8y8GqSQKTB3IMT8EVHk8293U0gVlb4Z3Hp01koJIXAiysJhcax3owPfJhcpmZQUGYtjPKxTYuT6zS6ysWUxqYSiimDzG0nMp5k+KK5lb7Ois2grpKxQllw0T6e0hjWejWy8u4vJvQu8+ptXyTZGQQMTExO8+uqrirp4uVzm2muv5dOf/jQNDdUksRpqqKGGGv7fRDqd5uMf/zjf+973GBsbq1Kp1EhaHFo33nwz69dvoONyHyceHyO9KEg1piX17SLorDrsLRaCx+MET8ewt5ox1enJRQsU0tW5mHyqSP0GJ4tHoqQDOeb2hYiMiTVV0kg0bnWTjxVYPBbl7FOTOLsqm8cMTh3FnOhjNpwjG8njXe9k6uUACyeiSGqhwARgazHTdkU9p384SXI2w7FvjVb1w95qJh3OsXgkSiaUI58u4h6wETwZY+5AkFyioKj+aC1qBu5sY+FImNnXQiss2CiJWEKtUym5J4NLh0orkZrPcvJ71bVDvVNH/UYXlGB6eUwm110zoZyiGrQcwz+bIZ8prPg8eCa+4rPfheRChuCZWJU6FAgFqvFfzRMeTa74fClnpTaqq1SWAHzbXWQjec78SBZxKMLpZRbDrj6hYLUEjVmNpJKUd0kRxp6vxJrr7m0nMZ1m9DkRP43/agF7m0kQfNRQt8bO4lGRJ9U7dVgbRSyemE5DEY5+s/KuO97QgNGt4+g/i89mDwQV21zU4O6zMiXHv8Y6naykJCdpJTj9o3GSsmp580V1IEnM7hHx0/TrAYV0ZGs3YWkwMiPnC9U6NSCRi4oDJLXE3OGKupPVbyYtW/ZqzBKR0QTpMVgjbaN7lx+zz8CerxxnjFOY2zTMzs9y/PhxHnnkET72sY9hMplYt24dH/nIR7j22mupoYY/FjWSUg1/EPbs2cOdd97J+Pg45XI1S0UlqbBq7HTnN3HRvZuwtZjZ/7nT5BIlFk9ElC/4mcUcBoeexs0eAofjjPxqlq43+nG2CfKQwaxFZ6lMyfRiBlevlfEXFgicidFySY68LIdcSBXpuMpHPlZgfl+EkedmFUsHgJ7rmimXYX5fhNk9IWYPhLC3VBi5GoMaT6+NwLEY489P03d7O8mpFLlEicCpKPGZSsFpwzs60Fk07PvHwSoSDYidWQ2bnOhMak7/YErZSb6E0FAce5Op6rPum/wsHIsQHUry+v+stgdpv7qexgs85FPFFckagP2fO4vFXy2pZ2s3sebONhaPRRQW8HLkQrlVEznhwQThwcSKz38Xhp5eeX0QKk7nhQ52PtJPKpjlyNcqct8nvz9ZRVA6F13X+ymXUMYolyjx+qcrxayBu1sYempKsZsLnomhdwqrvSUo70oHvm1unD0WDv2T2CmmWNAhiGG+bW6Of3eExGSW2GiC2ESSsRfFuPXf2ERoNKEQnPQObVUhd+S5OYV01HGtD98WF+lIjrnXw4w8M0sulWd+XwSANbd3kE9XgrjUXIakLHneuNONpJKY2y8SXRaPEZ1ZQy4knrGYLDJzVhT7dC4d1nojxZQcgWghNpNk7rUo66TtbLm5C51Zy4sfP8IZDuPutzA9PU2hUODVV1+lu7sbrVZLuVzmnnvu4Stf+cr532ENNdRQQw3/x/Hoo4/yta99bVVCuFlvwZ310c4Aux9dTyqY4eg3Rpl7PYzJpUdl0gB5DBYtjlaLQsqZfn0Ro1so/eUDefRWLaY68fPcoQiODqtiVRabSlUVI8w+IwO3t7P/c4PM7hVfaJf+9ax30bSrjkKmxMyeIAf/aQh7eyX+MTh1FGQ7uNR8nthMms6rfAw/M8vMqwEMDh2ZRRF7WVtNDNzewugv51g4GGHfP1YTh3puacbg0DH9SpB8NK9IMAOkZnMkFzKEhypJB61dS/sVXgZ/PC2KM+eMZc9NzVAur7gPCILVcuu0Jax/WzsGh24FoWoJSxZl52J0WQz5hyCfKlWpPS3HEvlnNXS9yYdnrYOj3xpSCFzk4dh3RhQrtnPhv8hN6yX1lIpl5b1O/GqBiV+J2NbZa8HWbKrEunlIzKQJLLOEyQbzSsKo/Vof7m4bgdNRUrM5oqMp9n6yEvdufV83qUBWIThN7w1ilJOLercW3yYnJ38kCp32Dgtas4ayvPutlCvx2rIYuu2KBsqlMvs/K97hie+OoJcVLRu2O2m+0Mvgk+JamXCWVDBbUVnqshBbFvfrbTqlkGZp0BMdTzD2GxH/1m9wYfIYFIu9+EyafDKOXXJzmecaNtzeReBElP1PnSDcMg5aGB4ZJplM8p73vIePfvSjpFIp1q1bx1e/+lW2bdt23ndYQw011FDD/1mMjY3xzne+k9/+9rekUtUEZI2kwaWroyO7jnVXd+Pd5OTQ14bIRQrM7guilXdfFzIlLPUmSgNlQqdSTO6ZR2NSY/LoiCUKaM1ajM5KPic6lcLZbWFmb5DkTIbkfIZsVKzT+WSBjje2UMyUCBwTCtW5eGUN77muCUktEToTJzoqiNYWvyCklItldDYt1mYT4bMJpvcG6L62kUwkRy5SYO5QuGqjVPeNjZi9Bg5/bYSFwxFF1QfA4NHSvNuL3qVj9Jk5hWCzhOCgHHMtJ+fschOfShGfSHP4q8NVx9dtsNN+lQ8kqjbxLeHEd8cxeKpJTQa3hvX3dTJ/KMz4rxZWnFPIlJiRY5flSM1nVt3897uwWh4OxCa/5Exm1TaALe8Wcc2pZcW/id8ssHgyqliknYueG5pAgkNfkgnjBTjyjUqk2v7GeiZ/G1Rs4WLjSayNRjKBSiFvuYVvyyVe0mvtHP+2IOkrBTrAPWCj/aoGTv1gguRMhmwow+KJCAtyzNpykZf4XFrYBSJISRp9haw19cqiQljybnTQckk9+XSRxSNRFg5HKJfLLB4RRbq+W1qFWriM6GSSXFy2GOk0o9apWZTVnYx1egwOnSDtAfl0gUlZYQANuLtsBAfFsSq9muBgjMUjUVqlXvova8HSYGTfZ84wXj6Drr/EzOwMkUiExx9/nB/84AcYDAbsdjvvete7+NjHPna+11dDDTXUUMP/BTzxxBN8+tOf5tixY1Wb8SRUOHUe6nMt+Ghl84PdpBaynH1qmuhQigVvWPEH0ho1uHvtTP42SDFdZPKlBcxeEQ8V0yWMLh1Gh54IScJDMdy9VuztZqKjQgG8kKoEMKZ6Az3dzRz/9hjxiTTDz8woCpDmBhNtVzUgqSUWj0UZ/PGUom4EQmkJmQNVTBeJz6Zp3Opi5rUQwTMxTB49GZkIorNr6Lu1mamXA4QG45x4rHpzXduVXmxNZoJnYhRzsHisotCcTxSJT6aIT1ZiVbVORcN2F9O/DbB4LFp1PEDntT5UGqmy4WwZsuEcJx4fV5SAltB+VQO2ZhNHvjmyqn3bcju15Vg4FFn18/PiHFLQcpyr6rQc3k0OmnbVcfJ741UkqtM/nFDIOOfC0Wmm4w0+VCpJuXboVJzQKRHLGj06bK1mRTUJIDKcILnMwreYLirHN2514bvATWI2TXoxRzacq4p7+9/STCacVwhOcwdDSj5WrVPhXedg6mUR85i9BvTLviNQhiPfqox9y8VeVGqJY/86BsCZJ6cUwQhri5GOK32clVXJC6ki8ZmUQoBydJqJT1fqrwanlqJsXWh06QgORlmQlcXdPXZszWaF/JWYTxGdTGKUjKzVbWXjtZ0sHIkw+OIEAe84JVuW4ZFhXnzxRV588UVsNht6vZ6rrrqKv/u7v6Oz8w9Xkq/hzxc1klIN58UHPvABvva1r60q22bSmmkudNFMNzs/NkBqMcORr40w/vICDZscYNFAIoelwYTRowfdNORg6JlJDG4RKBSiBcwNRurWOwgPJjjzwwm6b27G0qEnMSJ/iZdkJkhOkDmaLqojeDLO3OEw9RudpCLiuFKuxKa/6GTkhVnm90UY+uk08WU72Lc93INap2LvJ06zeDjK4smookZjbrRg8Rnx76pj9Ll5hp4VhQidRUUuUSIbzVUTs3TQd0MTp38wRXgswfDzM8y/FlHa1t3VhtGl5/VPn2HylUUml6/xFlkWud7A4Ylh5dmWzh19bp58TiYo6SptG97RwdyxEPN7IySmc1VtsekUyYU0E0s7uJapFm37YA/JQIaT31lW4JLP7b25iYUzERFs5arbzj12+XW7rmkkfDZOcCheday930zf9c2MPDcrxnfp2XIiKbF4PLriuvGxNFhg072dDD0zI36W7zP49BSFTHHVPjnbLDhaLbRf08iZp4Xt3eLRGItyoaz96nq8m5wceWyEzHQOcnDiR2NkZPnE1iu8xOZShE+IQDOfKlLIVJSRMGs4/sS4cl97hxWDR68QjQ5+bUhp67u9CVe3jeOPjxEbTTHywizpcFaxkdv+l31kglmmfhMQ1m+jCXIyO7x+pwOdQ8PZn8uqBzY1qCTlHasMEqO/rBCtLH6jHIQH0LvVTL22wNzeEOig9eJ6jC69IFLpYPFUlHIBdJKObf6L2HxLF+GzcQ4+cYr5pmEkAwwNDVEul/nqV7/Kd7/7XZLJJAMDAzz22GNs3LiRGmqooYYa/s9heHiYt771rRw8eLBq1xiAChV1eh/d2Q1svL0HZ5eV/V86RT4Kk68sUKIMWsjG8jhaLKjUEidGJxh6dg7vRismr5bUdB57k1nsqJZJS2O/msfWIqSQE/NpJBWKFPbC4RC9t7Tg6DcTOZUkOBhHpaswdN3dVhq3ujjwxSFm94Yo5IpKMsTZa6HvlmZmD4QY+8U8h748rKgPAfi2udCZtQw/M0s+VeLM01NoTaJT8fEU+VRFdhstOLrMGO16ZveGGPzJJMuZwqZmHWvf0s7kbxeZPRDi2GNjikoSWmi/wour14bZL+9SWtYGMPjkJMV8eYW6UstlXo59c0wQlJb6LrfPHgzhWEZ+Xzq3frOTlkvqOPHDMVJLAaB8rqvTgq3FzNiv5yt9WNZe9f9lfXS0mnF124SSk7a6rf9WQdhSxldum9kXQOfQklpSYJKvu0RQatjhxNVhrShwamH6t0HKRZg9EFpxH/IiKWJw6hh/dQHkfNTJH1Tiy60f6CE2lWTwhyIxMvjDaVzrY8o9u97sY+jZWeW6mVhOUZvSmlQsHIsobb5tLuztFkweHanZHIEzMaH8Kbf33dZCLp4Xzw0c/vYIJjlB07DTSetF9Zz4nkj0JYNZElMpQjKh3r/TU0nQaBFTSQ7zrZ0mYpNJRp8Vz+BZY8PWbCGfEseGRxNM7ZXjbRPUDdiJyuoMRb2YFwv7Q9h1Ti66ahPmOiN7P3mKWWkU+jLMLcxRKBQ4dOgQO3fuxGg0otfreeihh/jbv/1baqihhhpq+D+Lr3/96/z93/89ExMTVTkfCQmr1kFLoYcGmtn2oV7icylOPz7J7L4g+VwRZHd3U70BV5eVsZcWIAOnfzyBySsaCxlwdFrJZwrExlJM/moOLmvA3GwgOZkR688y0Z7YdBrfBW5FqTE6niAtk4kK6RJr7+5g7FdzBI7FOPvTaTKJSmFt3f1t6G069n9ukMR0hv1frJCvjS49rh4bqXCO6ZcDzLwuiDgag4pCpkQqnKtWD9JA6yVC4TsTyHP66Umig0mlrf2qBuytZg5/ZZjQYJzQyWW75g3QuN1Nqs3MyX+T44RC5bqLR6JIkiSIUJpKW/fNjYSGEgSPxgQJZ1lbJlogPBpXVH6Wqxatu6+NdDhXvaFOPrf5Ei+RybiwKCtUt5177PLr+nd4SEyniE6mqo41NGjpv7mVid8sKMSZpfbQUIzo+LKCnXzdJYJS31ubmXpJJvrI9znz4ylUmtX7ZHTpqVvrBJXIE1JAKFXNCNJ13QY7LRd7OfGDMTJzIkA69r1RkC306jbYycRzxEdEzFMqlMjF8xWilUHDyHNzyn09a+1Yo0blXZ76wYTS5r/YQ9MOD6f+bYLYWIqF4xEK6aKi8LTxHR2kQ0IBAg0sno5Szol+WDuMWLwGzr4mCFNaq1AsSAXFOGhMKkZfmFOe29VlJW7UMPdaGINLw9hvZgkej4MGmna6cbZbOfvv06CBwJkIIVkZvtPay5Y39RE4GeXkT0dZrB+lZM8zPDRMPB7nr/7qr/jEJz5BsVjk4osv5otf/CJdXV3UUEMNNdTwfw6hUIiPfexjPPnkk8zPVxNT9Bhp1LbQnO+lfZePhm0uDn9zhGKiyORvFkXcpRYkEU+vA41Rw8hPZ5l7PUQ6kEZjFqo6Vp8RR7eFyVcWoSjcP2zNYgNdLloUKkMmEfNERhI4r27A2mokPp4mMpxAY6pYt9haTDRe4ObEY+PEJlIM/mRKIecYXDoG7mxl5rUgs6+FOPvUdJXri3eDA3O9gZnXhFXa5CuLsqIN5KIFstE8xSVLYLUgyBidekKn44z9egHtMjsurV1N380tzL4WJHAmxshzsxXikBq86x00bHQSOhMTVnDL2gCGfjaLSlv5maJQ/Wm6yM3wM7OCoLSsDYTzTC5ZqL5WUdSm2q+sZ+jZmYrlmnyuyaPH0mhk4WikmtikXuX/y65rdOlwtFqErZy6us1/oQdrg4HT/zZV1RY8Hcfk1ZOJVvdhiaBkazeJ+HyJAKWGyHBSEM9GEivuQxF8293Ymk3MHwsrdb/JVyqbAwfubCExn2FCVq+aeS1EfE4QlAB8O1zM7qtY46UjOUUhSq1TEZ9OK7a5rl4rngE7C0cjpBfFZssj/1whJXXf4CefKHDqCRH3nX5qCr1ZBJDWdiMdV/k4+7TIW+VSRUKDcWLTYm56NzkFsUpWe5IkCUoiLtO5NMQmU8y+JitYtltw99iZejEAarERL3gmqpzr2+ohMpJggQjoJKZeXSQ8lMCoMXLxlktxdlg5+KWzRKUAqc4gi9F5FhYXePzxx3niiScwm810dHTwwQ9+kHvvvZcaalgNKzVsa/izxdzcHBs3bkStViNJEp/73OcUglJjYyN33HEHF/NmPnj/h/nwf3uEmz94HQDhoSiWeiNdb24kG8hSt9bJ1neIL3tDP52klC+x/b29ADRfWE/LLi99tzWRS5SIDMeo67cLQoZJg73VzNo7OgBhJ2Fy6llzXysA1jYzlgYjBq8OcqCzaVl7exsAwaG4kGHcJrzr7Z0Wtr2zm/br6gEhY7d8tu/6yAC7/moAEIurpBL2DQCbH+xi16MDrL1f9MPZZVWsvHw7XVz46BpcvTZar/Cy8YFOOq6o+L/vfKQfY52eXKpA3XobFz66htYrhJ/8hgc72Pn+AY59Z4TDXxlmx4f62PrubgA2vaeTCx9dQ8e1PqZ+E2DdfW3s+kvRP50FzA0GOi4X9zF4dVz46Bq6b/IDMHBbC9YGk6Lys/39fcp4FwslnG1W+t8ivGD7bmviwkfXoHOpcPfb6L2hiQs+0Fc1LmvuFuNt8Ij7LCk3bXuohws+0Id3rYPG7W52/eUA6x9oBwQpaO2t4l1ojRq2vKuLHR/qV65rb7HQuF28m6ZLPVz46BrqtzjEeD/QhdGtp36DU4zhh/vZ9PZOwqcTmOr0XPjoGi74SC/mBh0b39nJzg8PEB5McOy7o7i6rGx+Zxc6lw73gFWM95VecskCKrXEpvsqSYeBG1tYf4d4Nt82FwO3tNL5JjGmri6LIkFet9HO1ge7uOCDYgx1LmFZs1RI2/ZIDxd+dI1yXVurhVKprNjSXfjRNXjXi2frvbkJrVFNWibTbX9/L65uq6Js1XlFI3qbjkwkR8d1Ppq213HmJ6KotvXd3Tg7rZVx+csBUpEsxx4fo/VKL+vf2kHTDi9QYvM7uzA6dAz9+5Q8hgM07ajD2W7Bf6GbLQ90E59OMfnqArves4E7738rd9x2B1dwC+996H1cfPHFmIwiYD9x4gTbt2/Hbrdjt9v51Kc+RQ011FBDDf978M1vfpP6+nokSaKrq4t9+/YpBKVLL7mUe2+8nyulW/nYxz7Gux59O74+L1N7ghSyRTY/KNZvV5eV9ssaWHd3G+Rh4WgYe7NF8bRvvbiBDfeJeOP498eR1BIb5BjHv8NN/XoXjTvdkId0KEv7ZcIWIR/PY3Tr6X5jEwDhoQSNW9x03iB853VOrbDtldFxZQM7PizW/mwwi6SSlERBz61+LvzoGrquF+uu1qihvIyEtOvRAba9txt7h4mu630YHDqiQ6LosPVd3Qzc0krTLmEnt+H+LpouFP9ve0M9G+/topgtUUgX2fxgF9vkGEhr17Lzw/1odCqOfXsUd4+VXR8ZwN5uwuTTsfMv+9n+/l6ioykSU2l2fKiftfeIOKHlMrFzrX67AxDKSRd8sBIvdV7lwyCr/tRtsLPrIwPUb3ai0kloTRrW31nZLXTBB/rYcF8Hjdvc+La62PWRAfwXiZhozd0typgBbH9fL5veLs41+w3s+sgAHW9spH6jg/7bm9m57NhtD/dgazFRzJfQ2rXi2GvE+DZd6BUKWjKpZ+tDPUrMiRY6r2rE1mYGrVBd2vWRAbR2LTN7gmx5Zxc7Humj/w4RO+78cD99tzVx5OsjhM5E2fXBAezt4tk3vaOTbe/rBa1QfHD32hi4U1jJNu320Hd9M/YOEy2Xe/FucHLBhypjaKk3YfUJgtzGd3Zx4X9bg2e9kE+3+U2US2VBcNLCro8OsPUhEdN51tpQa1VKAmbTQ51sfWe3KCQiSNuSRiIxlcbeYWLdW9tIhUUcNnBnC9YmE0a7iPm2vb8XrVnN4I+mMfl0rHtrO+4+O6Ci99YmPH129n7mFOTFeLdeUk/zrjq0JhW7PjhAeCzO8C9m6b6hka0P9Airk2iere/uxuDUMbNfFIFv+dh13HLrLbzl0rt54A3v5q1vfSu9vb2k02mCwSB/93d/h8PhQKfTcfXVVzM7u8xasIYaaqihhv9lSCQS3HXXXVitViRJ4sEHH1TUwhu8Pu64/Q4u5Ubefs17+MBH38sb33EJADP7AziaLbRe4SWTKNC8q46tb+8BDYz/ep5sMs+m+8X67b/AQ9cb/LRf0wAFmD0UomGTG51DA6jwbXGxVs5LjD47h6XBSM9tIrfj7LLg6rZhbhQb+/R2rXJsaj6D1qLBt8UFCHLU9od6aLlcxESSWkKlrZC4L3ikjx2P9AnCi0eHpJZIyzmNvlua2fXRAfrfKtZs3yYXGtl2ztZmYseH+/Ftd9O4w03PzX56r29WrrtFzlPk4gVMfgM7HumncYeIa7puauSC9/Zx/LFRTj4+weZ3drH+bSJn1HOLn51/2U/TJXUsHI7Qfk0DOx6R4xoNePoddL6hUfl5xyP9tF8l8nmtF3txd9spJEXsuOG+djbJOcdCroRnjZ2Oa0X86r/Iw45H+jG4NTRud9F3YzOb31nJC13wgT66bxT3Mbp17HikH0uTGO+1d7ay5T3d+C/wUL/Zxbb39dJ7m4iDPetsbHxbF5IKVFqJ/ttb2Ppwj3JdT59dyd04eyzseKQfz1oR1wzc2YKry4q7V/y89aEe1ry1ldR8BkktseORfjY/3IXBo6X7Jj/bP9BHeiHLsW+P4uywse6eNjQWDQaPVoz3LjfFTAmVVmLDPZWYs//mVnpvFO+q+WIv6+7qoOVSkY90tJkx1YnntDQZ2P5wD1vfW+m/zqwhHRIEpnUPtLHrowNoZKV7T4+VcqlMbEzEWjsf7adhq3jWxp1uTF4D+bQIOjc80IF/m1tRpFpzeysWn5FCskD9Fgdd1/gZe2EaCrDmra34t3vwrnMAsO19vaRDWQafnsKz1sbmd/TQfqUPNCr6bm3G3mzh9I8noQBbH+6h641NODos2DvNbH2on/BInNn9Ydbf2sWtf3Ezt1x/G5eVb+Khtz/MpZdcitlsJp1O84tf/IKBgQEcDgfd3d089thj1FBDDTXU8L8Hr7zyCpdeeikmkwm3281XvvIV5ufnUaNh986Leevl93GldCsfeO8HuOvDt+PpcLB4MkomnBc5LsDabKT3+ma6rhfr9+Rv53F1WXH1WIES3W9uVnJc4y8JAknvzWL99m500HppPXXrRH4sPpOm4yqRN8mni7i6bXRcLX6OjiZo3l1Hy2UitjI4dVj9RuVZ2q6oZ+tDYu3MRHOodSokmXjsu8Al4pyLPQDorVpK2Yq93Nb397DloS4sfiPeTQ6sfhPpRbHu9t3SxPp72mnaJc7deF8H9ZscAHgGbGy4r5NCtkghW6TnzX7W3ydiK7VRzaYHuzC4dBz/7jgGh46tD/dg8RvRWdRseU83G9/eQTacI72QY+PbO+l4o3jWhi0O6tc78fRZAeh4g0+JrQA6rvZhklV/TPV6tj7cg6vfilqnQmfT0n9bq3Ls+nvb6b2xiboBO827vWx9uIe69WK8Wy6pY8t7upVj197VRv+tzUr/tz7cQ8vl9TTudOPf7a6Krda8tZW6tXaKGUGw2fpwD/6dIub0rrHj6bMrxK/+25pZe1ebcm7/rS141thR60TObuvDPejsGsJnE/Te1MSmd3XTeqWIMze/q5vWK7yMPDPL7IEgW9/dg7VZPHv39X5lbmWiebzrHErezdFppvfGZqwtRlx9Vlov8bLlPZUxtLdalI0Lvbc2sfPRARxdYrOjxW+kXCwrBKcdH+5jrTzfjV5h9ZaUa9U9N/nZKit2AnRe7UNrUpMKZNHZ1Wy4r51cOg9FkYdr2OhUcrVr72nD6NEx8eIiap2KjQ900niBG9QS/p1umi/ycPDrZynmSgy8pYWeG5po2OxWxjs0FGXq1QUatrjY9p5umi+qo5gu0XdLM1a/SVG/vPzhndxw05t505pbuH3Nfdx1+1309/aTTmU4fPgwb3vb27Db7TQ2NvL+97+fUGilAmoNf76oKSn9mWPPnj3cfPPNzM2ttJ/wNzTRTg+GsIud9w+Qz+QJSGeZOxhCa9WIHc8Ir9dyucziyaggHo0mKMuEoFxaMEWXpKQHn56k5bJ65o+Ic80NJrFjLQeZhRwzB4JKQcXcoKNMGa1BLDaDT03RuNlZkaUulZAktaK0EzodIyjvolk8FqFhg1NZTKdfC6C36tBZIJcQfqcGpw6DV0d4MIqlTk+xVAYdzB0I07DVKdi7QOBUjPh0is43+Zh+PUioOUp4Isnc3jDZeB6r34RvpwvvOgeLJ6KkFrPM7Amic+kInYkSPB1h2weFklPoVExR61k4FiUry3VrTRrymQKLJ8W4zB0MkU+KbUu5hPyzbOuVieQInYmycCzC9r/sIx3KEDpTUSlaOBxWdgEe/MIQ/bc3MXdUXHf+SARJglyoxP7PncR3kRdVqZLICg/GWDwl/HrzyQLJ6TQJebGcPRRCZ9KycCRIYjpH361NQk0JCAzGMDi0DD8zQy5RQlKJQG4JwVMxMvEsF3ykj4XjYUJnooRlUs/svhDmeoOy823xRFSRI4yOp4jPJDF7jdjbrcweDGJrEot5fCzNwrEIJq+eLe/uYuS5GTHeZ6IkJrMUMkUcrRYatjup3+hk4ViUXEreYfbdEVoua2DxRBTfThex2ZRQbQKiQ3HyiQILx8WYGeu1YrxlyfNcPI9aW2G8LRwPUV4+Z0tl5V0tHI+g0sDZn4pnKxdLSPplc/aMPGdzEBqJ0rDZSdslPo6cGWHuSBidScvUS6JQVcwWMbsN6HQQPBPF5NIRnUmQS8D84TCtl9Tj2+pm8WiMwKkoGqOK6T1BiukC+Z0eLD4jifksc4fCuPttFGKynPa0KISvr9/M6Z9PkV4zSzAS5OzZsxSLRR599FE++clPEo/Hue+++/ja175GDTXUUEMN/3F88IMf5Gtf+9oKKxGtWse6rg1YzzSy5pY23P12zj4tyKfh4QQqvYrEXBbyeTQGtRIPTby4QPPFXuYPCwU/U4OBMhCbSpGP5oUyjiwOoDVpFeI1wJknJ/FvdRMZEfGTzqoRKpZayKdg6tUAubhY5IpJsTab5PV97IV5XB0W5VrpSA6T24DWriUVzbN4JEz4rIgTFo9FcbZbFP2juQMhyuUy1lYT8fEUiyfDGF0GUnMpFhHiNqYGE1qThtmDIXQOLVO/Fl9+A8ciBAbjrLu/jdBQnMWjYc7+XCj0aIxqtEY1rgErPTc0kVzIMHc0oti16S0aUvMZPOsdlMtiXJewcDRCbFqoBAz/bBr/Tg+hM+Ln+YMRjB4d/ovcNG73sHg6QnxSXDM2lWLxaJj4RIJUIE8hXcTSWElkzR0KkQnlmT8Yxt5pxDvgIDwsxmX+cIRMKI/eqZWPDZNLiPHOhTMsHg0TGIySmExhbbFU2cXOHw4r9npoYfFomODpqPIs5XyJnlv82BpNyngDgsh2OMTikFAmWjwRRZIgL8dIc4fCNGxzYfKIGHrxeESxcpk9EIES9NzUTj6ZZ+5gGK1JA3k48vURut7kIzSSYN39bQSHYiweDZMK5omOLKDWS5Tyog9tV9dXjffc4TDuPhvx6TRaE4TOCrtBAJNLSzFXIiTLrCeDaRaPhpl9XSgaFfMlKJeV7w9zB0JkI/IYxsQ7MnoMyn1ysTxDP12KrUrobVq0di35aI7FIyECg1HyqRILJyO4+2ysu7uNY98aY+5ACLVRzcLhEPl8iWw8h7PdynB6ioVjEVR6FenFLOSFolLLJV5MMpFt8UQYrUXL/OEwpSL03thG+3UdvH7qDKqNeQLSJJNTk0SjUZ5//nna2tqwWCx4vV5+8IMfsHbtWmqooYYaaviPYWxsjHvuuYe9e/dSKCyXq5Fo8jTRJvVjCNjYdk8P+USBgDTC4vEopjoDAXldNVh1IAmLeQoweyAoiiIFKGUKGGxaEvNizRl7YZZ8qkDghDjX3mwSOZhMATIw+vwMkiRiMY1Fg0oloZFzXkP/PkP9OjtZeQNaOV9CUqvQGIQq0/QrAeIySTc2lqCYLyt5l+lXgxhcOuXY4GAce7MJg11DYibN3P4g+WQejQEWDkdQ61XMHxKx4+z+EJlQjsZdbhaORpnbFyQxnyZwPI6z20ImlMfZbaF+s8iT5RJ5AsdiaAwq5vYHCY8kWHtvKwaXnrmDIcWObO5AiEJGFOiMTh25RF6JDQMnopRzcvGuAKPPzyq2rhRgbr9QC9j4jg5SoSxz+4PKteYOhlGpRVR56vEJ2q7wEpJjushIAq1eRSZa4MAXTuNeZ0etrqS+5w6GiIwncXbZyCcKzI0GyQRyynV1NpH/yQQLNF/iJTErxjsxk2Juf5Cp10IUEgWK+ZJi2QEwsz9EPlVg80NdzB8JM7c/SEKOZWb3h4jNppmSrXpn9gXJyday6VCexVNRXF0WrH4TgeNRsmG5bSHL3P4QpnoDm9/VxdmfTTK3P0hkOElqPkMxV1RIOr6tLub2BSnJY3j0W8O0XlZP6GwMZ7eFZFCMIUAmkCExm2bxuHj/5kYDc/uDBOV3kwll0Vu1FDLi92XucBiVrHKvsWgoF0RhV4x3khlTgCm5SFXMlVBpJEWla2ZvSNjpZCA6nUQCfNvrCJ+dYP5QmPBwQrGcy8Vz2JpMaAwaElMpZvYGSAayFBIFFo5GcLRZaNjoJDqcZHZ/CJ1FzeKxKJlogXQog6PNwsjPplk4FqFULlGIiz7GT+XZdeFFdJvWMPrCPJm1iwTSCwwNnSUajXLPPffwvve9D0mS+MAHPsBf//VfU0MNNdRQw38cjz32GH//93/P4OAgpVKFqGNSWVjTvA7LeANNF9TRtLOOM08JpZj5I2G0Zg3pxSz5dBG9Q0tGJmXMH4qg0kmKOrLFZ0SllkgspijmRAyhVotYSq0GnUWrWIBN/mqe9HyW2JQgfOjtWlQaCbUOijkYfmaGokwmyuWKlEtCGAFg8uXFKlu1xGwGV5cGnUVNLlFk6uVFolNy/DGaILnOQVl+3LmDYVQqCaNHRzqQY2ZvAHOdkfRilmK2yMzeAGqTGludnvlDESKjKcWFZOb1IPHpNO1vbCA+mWRmb4D5QxGKctykNWsw1evpu6WF2HSSwOko2XCOcklcNx3KYWkwUC5B4HTFMm3m9aCSR5zZGySfKhCTVSADx6Mk5zM4Os00765j8XiElKwGmY0VmNkbIDGTJhctMPjUFJb6Ss5rdn+IQqZI+GyChWNBnJ124vJ4h87GyWeKaPTi/cztD1GSVR+LOdHf2GSCdCCH3qlXlBiXxrBcLiv2ajN7A0TGRA4pMp5AUkP9RjvOTiuz+0OoVJUa58RLC8RnxPyIT6aZ2RugKOfTFo5EaNimxiwTiGZfCxKfFf0Nn02gVqtovayBQqbI3IEwWpm0PfKzWZJbMqQWM7S/sYHohHg3mVCO+ESaEWOlvl63wc7svsp4zx0KU8qXSC1mQA2xiYRCUNJaRH43LNdZi6kC068sEhwUc6uQLYl3L6ssTb8aFHXMIuTSYs6aXOJZwkMJSrmSUPACcskC9mazmLNpMWdj0ylhWzccp3Gnh643NDL07zPMHQoTOBMjMiTn3uZTePocTL4UJDqeYOo1FdlInmKuxMLhCB3X+JS84cz+IHqbVrzvdImODfW8Yfd1NAz2oW4rELJNMzk/yezsLJ///Of58pe/jNPpZNeuXXzuc5+jpaWFGv58IZWrfKxq+HPAD37wAx588EEikciKNhsuNnIRa25ux9ll5fX/eRqA9W9vJ3gqxvQrwoZs+3t7CZ2NM/STGXw7XThbzZz8vggqum/y4+yw8PqnzwDCf3P69aBQmpHPjYwkGXxyCveAFb1dp+yy6XyTD8+Andc+Je7r2+lidk+FWbntQz1kI3mOfnMUnUUkdnIJsUD7L3bTcpGX44+PVWzDltmEbX64C61Jo1x7OXQuHVve3UVyPs3RZR7wS+i41odvi4vhX8woNl7LsebuVqxNRg5+8TS5xIpm2q6qR61XMfzTc3ZGn2tldg42v7eL0efnCJ9e5aI62PzOLsJn4ooyz3L03NTE2PNTq/bn92HXxwaITSQ5/p3x33/wOfDtdFHKlZg/EFnRtu1DPcy8FhTzaBWsf3s7oaG4sEb7A6Fz6ei/RezwXw1r72nF4j//u7ngI32UyyhzfTkszXrW39tJZDzByccmVrR3vbmRurUOjj8+KubcOdj2wR6K+RIHvzhUdc3EZBaDV8emv+hk4pUFpl8S4+Hss5AO5cgs5Fh3XxsGp459/yhk2g1eHY1bXIw8O6f0e+FwWHn33Tf5BenpZJz+tzRjaTQq5zZsd+LqsSrPcMFH+lg8HmXkmVl0FhX9b21j5rUAi0djDNzRjNknzh0rn0HdkyMQDBAMij7abDZMJhObNm3iqaeeQqdb5pdbQw011FDDCuTzee655x6efPJJcrnqRV+Hni7W0yi1suXhLqJjSYZ+OkvdBjt1a+2cfXKCfEooBnn67ez/rPi73ndbE4FTMQLHY6CFLe/sIjScYPTZOVwDVmxNJsbk9aH1Si/edQ5lTWi53MvsgTB5WXZ4y8NdxGfTQk2mXovaoCUuJyr8F7nx7/Bw6EtnyadKmHw6xb4LYNO7OymXyhz+6so12N5hov/2VqZeWWTq5ZXr+sAdzdjaLRz40pDSl+XY9qFeyqWy8szLobVr2fxgJ+GzMQafmlnRDmL9P/OTmVWvfT40X+zB2mSq2KCdA/+Fbuo3Ojn4T0Mr2uo22CmXywSOxlY583dj4K4WbC1m9v5/p/7oc7UmFU2XeBl9duWGg7ar67G3mjnyLyPVFnMynL0WWi72njeGEjdgxbkd1/hIBTOrxsRL7yY0GOPs0yvfTeNON22X1zP2q3kl/l+Odfe3YfYaFQWjc7H9kV7S4SzHvjm2oo/2DhP9t7Uw/PNZYTki94d8nnxKzAmtVcOhLw0rp9ZtsItjtbDtvb3M7Q8y+ZKYrw3bnSTns8THU3Tf0Iit2cQBOaazt5uoW2tn6N9FbL/1Az0sHo8w/sICaKHnzX4Cp2KETsbpepMPe5tZObdxpxtHu1mZZ9s+2MP80QjDL0wzbD2MsUHHyMgIxWIRlUpFQ0MDKpWKb3/721x22WWrvqYaaqihhhoq2LdvH29/+9s5ceJElYWuGjUefPSzlZZd9dRvdHLoy+Jvc/eNjUTHUsrmpA1vbycykmT8VwvYO824eqyMPi/ssRp3uanf4FBsR1uv8BI4FVOstDa8vZ3YeIrR5+cxNxowunUEjon4wLfNiW+7m4NfHYKCsHtYss0CWP9AO9lonjM/mkJjADQaCrKtm6vXSue1Pk79YILEVGaFTVjfHc2YPQYOfPHsykHRCKWa+HSK07J1xHLUb3bQfpWP4Z/PKGvocrRfVY97wM7hfx5R+rMcdRvsGBx6Jl9cWHFfVh6uYOAuESsuqfSce+7AW1qJjieZ/u3KWLLpkjrmXquQl/4YbP9wH+HhOGefnP6jz3X2WJAkqeq9LWH9X7QzdyCszKNz0X1jI4npNLP7VsZQ54PGoqHzDQ2c+dHUqu3tV9fj6rNx5Jujq76bje/qRKWWVo1fdQ4NG9/eRXgwxtmfrIzbfNucNF/s5eT3x4VV3TlYe28rkkri2L+MKZ8ZPFoygTwai4YND7Qz9cqikh80NxooZgtkggXar2nA5jdyRM7BaiwavGvtzOwV8eGmdwvC18yr4mf/RbIN32iK5ku8uLrNHPmXUSiAs9uCq8fK8M9mlWdePBFl+uUAGgO0X+MneDJG6Eyc1su9ODrMHPnGKAvlGXJdIYLRIIuLgkRmtVqx2+1cf/31fP7zn0ejqe3vrqGGGmr4XSgWi3z2s5/li1/8oqJQCSChwo6TdgZwS/X03d5MfDLF9J4glkYDnrUOJn+zQDFXom6dnfqNTo5/ZwwA/24P8fGUYq/Wd3szsfEkM6+FMNXrsTaZmD8g1tK6dXbqNzk5/u0x5efIaIJ8QsSAfbc1kVrIMvHiIjqLGrVJrViVObrMtF5az8nvj5NPFNHZNeSilbW0+81+1HqJ0z9YuQbrnToG7mhhem+AhUORFe3+3R4aNjg59p0RxYZsOdbc3YpKLXHsX8dWtKl1sObudsJDCSZfWlzRDtB2dQOTLy9STK+89vng6rFiazVVbNDOgaPLjG+LS7EZWw5rsxFJIyluIn8Mmi+uw7vBwYEvrBKj/h6odVC3zsXcgZXqO54BG84e2Qp2lWEwenU07aoTdnznvQErzvVuclDMlgieXJnfW3o3obPxVXOdthYTPTc1Mf6reRaPrYyp266qx9Vt5ci3Rld9d2vvbSMbyXP2J8v6LPfR4NLRd1szY7+cIzKUlPsjauTFXInWK7yY6vSc+n7l/dlaTMrv0bq3tTF3KMziUXkzRbuZfKpAaj5LwxYXrl4LJ5+YUO7l7rUyLeftBu5qJXg6pvze+Xe6iU+niU2k8G5y4Om3Kec6Os3Y2y2MvyDm2Zq7WwmcijGzP8Ck/izqljzDo8MUCgUkScLn89Hd3c1nP/tZNm7cuMpLquFPGTW7tz8TfP3rX8diEV+kb7/9doWgJCHRQAtX6m/lw+96lNuuugOdpKOQLFAulNDJG+Tnj4TxDAiZPnJQLlW4bbN7QhRzZWEVAhQzRcqlsnLu6K/n8W9zKeeWCiVKRZFECJ6Mk43mqN/mACAdzFHKl9DJO49n94RoutSj3CufLFZ2RydK5BIl6jaKfi0ej5Nb/oU8JwgsS3Zl4cG4wgRdgl2W2MuFcgRPxhj+afWC5ewTDzHyzCxDP59eUYzxXyie+cRj4+z9RDUJRmdRse7eNgDGnp9fQVDy7XSx88P9uAesrAZnjwW9VYvFZ1y1nZxQSlqNoFS3URQ3my72rXKiSHxteug/5r/eeoWXCz7SJwhWq6Dt0nrFhuVc7PvM4HkJSgBGlx5nm+W87Vvf382W91X3OxfKKcW1xp1uOq5pqGo//p3Ku7G1m7C1m6raj/zLCKd/KIpEtnZT1XMlJrOEzsQYekYU/pbmyxKCp2OkFjMKQWlpviwhuZAhLatC6Vw67F1mRUlLZ9ZQyBSJymoKvp0uklMpMnKQXEgVyGcqgUrTDo9CUDI36CgVSmRkdQv/xW5SCxmCJ8W1ysWy8jsGUDdgZ+qVgNKPUqFENpGTx6yOfLrAolxULRXLFGULnjaplxveeBPX9t7CZi7GbXNjt9uZn5/n2WefxWKx0NXVxe7du1cU3muooYYa/pyRz+e55ppr0Gg06HQ6nnjiCeXvpBEL27iCuy94B+998P00SkImuVQsU5R3Py8eiVLKlajbIOKMQqpIKV9CaxKh++z+EHVLcVkeSqWyEpuFTsbJxQt4NzsAyCUKFHPCEgxg4lcL+C9wKX0tZEsU0+Lvfmo+TyaSV2y3YpNpCukiWrtIzqdmc9g7TEo/kvMZkjPVJF17h1hnoyMpErMpIqPJqnZrq2gf+/Uc84fDVSQirQlMPrEQDz45yZFvVRPH7R3Cqi0fzfPa/zy9gqDUeqVXsdY4/p3xFQSlzQ91seEdHZwPtlYz5nrDedunXwmuWuABaL6oTpEJPxdak4ptH+xRrDH+WGx4sIP+25tXbWu6xItvs0sZ1+UYe25exEjn4WlZG40YnDrM/tWf2bPWxo4P9eE6J1YdeXZWiYn772hGu+zWS+9miaDUsL36mWf2BBn89ymFoLQ0X5Yw/PMZ5g6HlD5bmqrj4PBQnKC8k87k04m5KB9bKgoJ7shZkXBxDVjJRwVBCSAby5OLy98VtKJvS4VYk0tLMVskKe/W9G52kF7MKoS9Ur5MIVeJrbzrHYzLZCatXUspXyKfFHGbb4uLfKpISI7LSkUUZQMAV4+FOVn5TGsXSlH5ZAGtpOXqbddy3a4buKx8M346aGlpIZFIMDU1xeWXX059fT3d3d089dRT1FBDDTXUUMFLL71Ed3c3KpWK7du3c/ToUYrFIhq0tNHHldKtvOvW9/KGndeikTQU0kWKuaJiabVwLIqzu/J9vlQoU5K/jkeHk+RTRTz9IsYopIoUcyXl3OnXQnjX2JVzi7kSRVk9MDmTIRPKKWtpKpSjkClikM8NnYnjWWdTdO4z0byislPIQCFRwN4p8hCx8TjpUE7ZpU8BNAYVBo+I8UKn44TOVBdTTEtxTUEo+Iz9sprUvGR1Nn8wwpknJ1cQlDzrxDOPPj/P/s8NVpFgNAaxcQtE7HouQcneaWbbe3uqxnU5jF49pjo9lobzxF4FOPnd8VUJSha/gaYdHhoucK96atebfKy5p3XVtt8Hzzobm97Thcawesq8440+mi7yrNp29J9Hz0tQArA0mrC2mM/bvuauVtb/RXvVZ4VEQSEoObstNO6qfubR5+Y58PmzFBIFDB4tlnPiuuOPjTP4lDjf4NEK8puMXKTAzL4gk7I9zpLV4BKiE2miE0mFoLQ0X5aQmE6TkO1INAYVFr9BUdLSGCTyyQKJWXGus8dCNiYISgDFdIl8uhJb1W90KAQljUVDMVdUFOZdA1Zy8TxRuTBaKpVEbCVPR3evVVGV1RhUlPIlpfDn6nNQypUUUlmxWFZUHLxSI1fvuI4rfNezgzfiNfpwOp1MT0/z5S9/GaPRSGdnJ3fcccc5Smw11FBDDX/eKBaL/O3f/i0+nw+NRsOHP/xhxsbGkMoqPDRwIW/kpo67eetNd+OWhK1WMVeiJOetEjMZ8ukCji4RI+TTBYq5ImqjUNwJnojh7KyOy5akNlLzWbKRnGKdlU3kKWaL6Czi3MVjUZzdlRxGPl1UHDRyiSK5SEGpD6UWs2RjecU2LBctYPTolH4k59PEZ6tJukavyFllwznCwwniU9WkHaNHtM/tDzPzerCaoKQW5A+A4WdmOf2jajKQwaXD4NJRzMHRb46uICjVrbNjbxfPPfbc3AqSS89NfnpvaeJ8sDYbqyzszkVkKLkqQQnAt81N+1UNq7ahFuQaV9/qdc7fh67rG2m9wrtqm6vXTtNFHiyNK+PFwMmYICCdh6dldOgx1xsw1q1eyDTV69n49s4V9cKFQxGFoNRySZ1CBAKUd7NEUHJ0Vsd1sYmUiKllgtLSfFnCzJ4AM6+FlHe3NF+WEDwZIySrKunsajEX5ecrl8WcjS/FZX6j+N4h56py0QLZZSQ7Z7dFISipjWryqYKSE7O2GBWCEojYqpitKDa5ui2Kk5JaB6VckZJ8H3u7mVK+rFwbRM1/6VxHp5XQYEw5t5gtUkwXUUtqNndu45Luq7mUG+lnC23N7SSTSV588UU2bdqE1+tl+/bt7N27lxr+PFDbDvAnjKeeeor77ruPaLQ6ySChopVu1tZvoWmHh6GfzEAODA4tZjk5MPrcPIsnwhjqTOQSKZxtFkx1enQWFblEiX3/OIhh2R9YV68VY52emT1BRp6dU8gUAK0XeXF227C1m4iNptj/uWrGbPf1fkqFMvP7IszsCVbtqq7f5qB1dz06s5aRn81y+KvDVedufHcnRpdeWM2Fchz4fPW1Nz/YSTFbZN8/Dq4g89jaTax5SyuR4Tgnvz/J4JPVjOjWK7z4d3oYf2me6ZeCzO+LVLX33dqEq89GJpxTyCFV51/lw9JswtlnWVUJKTGbJp8sEJ9YeS5AeDDBno+vvqO+45oG9DbteYOGxcNRIbM4srqMUrlUrkhp/5EoZIqUCiUMDp1CqFmO009Orq78JMOzzoZ/p4cjX1u5a381lavlSC1mKeXPv0vOv8ONSquqmn/L0XdLC5IaXvtk5T6ZhRwZWc5q4PYWivkS+z5TUW04/UMxL3QWGLi9lXQwq8zD8GCCsCy96Nvpov2KBmZeCyps9JPfrSgxDNzWjNGj58DnTpJLQGw0pahagCB3+be7ld+PU/9WmY+tV3ip3+AkHcwy/UqQ5Fyuqo+NW92oNCqFALbUZxDEKqvfhKffrjDdl5/r6LCglwvXAJHxpLI7wOLXobdoMVi1uCQv/X09qDVqBifHOcxLOD12JicnGR4eRq/X09HRQU9PD08//XRNYamGGmr4s0M+n+dtb3sbP/zhD8nnq1khVhysYxcdF/jJJQqETsYxOHXo7UtWU3kOfXmYug2VApet1YxKq2JmT5CplwNMvRyQiUYl3H127J0WTPVaUvP5KmUYgKYLPeSTBRYORpjdG2J2b2XHUdNuD43b3KQDOeYPhleo6Ky/pxW1QU3gaIz4eKqKlKO1a5Ud7Scfn2Dwx9Xk7tYrvTRud3Pmx5OETic4/q/Viozr396Oya1n72dOk5rPr1D/2fBgD5IE+/5xUClCLEffLS0U0gVFkeZc1G90kksUhMLUKkjMpZUv1avhxO9QkFx3fxsTLy4QHVl919jBrw1hb1pJFALQOXWUC2UlMfbHolwqUyyt3u/RF+YInIwpZJrV0HOLn+RcZgVRfOLXi0z8evVdeQDRyTTZWJ5McOXOeRAFI0e7Bd8OLxO/WljR7llvo+MqH3qbVigMyVhSm2ra7aF5dx0jP59jXrb6SM3mGJsVcVT/7c3YOy0c/eYQqXnxO7VcnWng1lYknYp9snprfDzF4a+I3wWtSUXPDU3Et6SU97r83M6rfNRvcpIJ5YgMJUnN56vmesvFXmUugkggLsHZa8Gzxk42UWDilwvko9Xn1q21Y3DolPk9/XqAkWdF/00eLZYGE7amjPg74NBy+olxUnJBz1wvFDcol+lXbaF9TT1Tr4Y4wzHmjSOUS2WGhoa46aabMJlM9PT08KlPfYqrrrpq1XdUQw011PCnjKNHj3LXXXdx4sQJlovE69DTxgAd1l4atjiZelGsdaZ6g7AJRViexcYS6G1CqcjiM2JrNmNwaMhEChz7lzF0jkrKtH6Dg1QgS+BYjIXDkSoiinedHe8mJ8GzcWJjKY5/uzqe6L6hCcplQifjRIeTHB2ukLCtLUa6rvVjchuY+M0Cg+eo5fTc0oSj3cLBLw5SyJQ4fs5u+/Vv76SYKQhVmHPIMQa3hnX3tBE8HWXop7NMn7Pb2z1go+tNjYz/ap65/WElt7GExl1uWnZ7KWZLK9oAvBvduHttLHZGiQ4nV7RnI1ky4dyK4t4S0gvZVRUzQSg7meoNqypFAiSmMxz7zijJhdWvXSyVqwjCfwyK2RLlfAmtTUshk13RfuZHk4q932qwNBlourBuVcWqQ19aPYZdQmIujUp3/v3ETRd60Fm0irrQuei9sQmtWcv+z1XGtZAokJDJZf23t0KpzKGvVL47LP1+COWqFhLzGU7Jao+p+Qxn5PyQvd1E320tTP52Ubn/2C8r8V37NT5cnVYOfGWIQqJAJpDn6D9X5nrHG30UUgVFOWniN5Vz3QM2mi+so5gpMrc/TCFRqDrXv92NzqZVSHTTLweU+Wxwa3D12cnGi4JMpVFVnWtvN2NrrsToqbmM8swaiwajW4fersMiWdjtvxqtSc3UxAIn2Yfeo2J6epqRkRGeeOIJ2trauOiii/jWt75VU1iqoYYa/izx2c9+lk9/+tNMTVXiFTVa6vDRw0bqOpyUiiXiE2l0Ro2oJ9rV5KJFzj41ja2l8vfY1WUlYU4TPBkjMpQkMpRUyEHWJiOeNXYWjkVIB3IM/rg6PmreXUchXSQylCQ2mqpS93F0mWm52EshXSR0Or5COKDr+kYMbj1HvjZMLlrg9L9V1mu1TqyVkdEEI8/OKrZZS3AP2Gi7sp6z/z5NbDTF2HPVcUrHNUJF+eg/D1FMF5l9vfr8gdtbUBvUHPvWqGJJtxw9N/gp5Eqc/O7quamGzU7y6SLR0ZVxF0BiJo2kkVZtAxj/5cq8zRLa39jAwpEIyfPEbYNPT4lcxSrQGtUUc0XFOu+PRalYrpDwz8HiySiJubRij7Ya/Dvd5BKFFcpFocE4ocHVa68A2XCWdCBLNrI6Edno1VG3zkE2UVAUhJbDVK+n87pGZvYGq951fEIQuB1dZjqvbWT0uTlCp0U/comiogrl3+mmYYuLE4+PK/Nhdn/lOh1X+9DZtEpckw0v+11Qi/kSGU8yIitJLj+3br2d1svqOfPjSeKTaYrpYpUiWPNFdWj0ao7Km0MXDkUURTCDS4dvu5tyUVyzmKPqXHefDWuzUblf+GxcOVdtVONoN5ONCBs8rUXHyHOzClnP6NELDkIR/FI7Xs8mwuE4M0wxrjmNJEns27ePnTt3Yjab2bRpE1/4whdqCkt/wqjZvf2JYc+ePdxwww2KTO0SVKjoYA1t+l50Fh25UI6Bu1pwtFk4+PWhVckmO/9//eQSeQ58fuWX6I7rfDRsdHL88TFioyl0LnHNJWx5XxeSJCmEiyWLq6X/D9zexugv51g8HMU9YCU+EVdUiOo22mnc5laKZq1XeKsWUPeAFYNHx/RLQWztJqyNxqqii73LTDqUJxfK0XZVPeHRBNGhysK9vK+9Nzcx+tyMYhl3Lvpua1pVznEJrVd6q4ou58Li15GYPmdsdaDTqc57TxDSxEM/m1LG7FxseqgTnVn7e0k9/1H8Z+zefh+6bmikbo2DY/86tHJsZAzc2UJsJvU7bd8M3lVIUjqU+b0aLM16jG4Di4dXSi1CZbf/avYlIOb9wtEQicnsijkP1fOlbqO96j46lw7/Vqcgy+mg901NnFkWYDt7xO6A8GCC1iu9mOsNVSSn+i0ORSJ76/u7iU2kq4h1S79j9dscdFzl4+y/TyuS8kvkQhCWe5JaVW1vJ9sO1q230XNDM/NHwwytYtGy9QPdaI0a9sh2NBa/jsWpEId4maK+QLlcVpRCnE4nl19+OT/84Q9XHcsaaqihhj8VPPzww3zjG98gm61es2242MRu7A0mhWCx49E+0uEcR74+CueE4N3X+/Csc3D8u+OCcKKTYJkf+7YP9VJIFxRrEa0JRSHGs9ZG13WNnP7RJJGhJGa/geQyS4au632YfUaFIOxZa6si8vTd1kRkPMnc62EcXWYKmRKJqYpCUtebfAzJiZ2Wy+qYfS1IPlWJY1wDVqEao4WuN1SOXcISEcvebsLWbFLstM5F/WYn+UxBUaA5F571NlIzaYXQcS60di35VH6FcpDerSUbPL/tW9NuDwaHVrHuOhfWVhNr7mhles/iefv+n8F/xu7tD8H2R3pJB7NVVhzLYWky0n5l/XnbofIOz8USUe58aNrtWVUCewld1/vOO+5au5bmXR5Gnp1dtQ/2DhMWn/geoHdr0RjUVfO+caebyNkYqUAe/4VuEjPpKvJb4063sjli3X1tTO0JED4jvpBoTSpM9Qaioym8mx007/Jw/Hvjyjxa/ju2+aEuCtlilWX0Ul8dXWb6b2th4uUFpn+7rKAoSVAus/mhLrTm1e2ozU0G1t/bzuIxUVzWu7VkY3kms0MMcQyLzUw0Vok1N23axGc/+1kuvvji8453DTXUUMN/dQwNDXHnnXdy8ODBKis3HXp62ECDtgWdRUMuUqD1ci8NW10c/ddR0vMrcytbP9BDLpbn6DdHlb/LS2jY6qT1snpOPjFOfCKNxqKpUhEauLMFjVGtFA2MXj3pBVk12aGh/9ZmJl8NEDoZx9JkIBPIKbZktjYTjdvdSlGsfrOD+YMR5doWvwFTnYGFwxEMbg22ZksVAcno1VPMCSWA+s0OkgsZYf8mY3lfmy/xMnsgtKoNGKzMt52L5XmI1WBwaxRlnOU4d7zORd/tzUy8uEjqPGSfvtubMXkNHFzNuu5/Af4zdm+/D75tTpp2C4u0JQvAc9F6hZdsNM/c/vPbvukcYh5XQQMaw/nH1uDQYPQaViWVgVC30ujVq9qXLPU9PpMmMZ1Z9R22Xu5l/KUFKIhrLSenaQwqvBsdzMibI1ov9zK+jMRuqjeg1kvEJ9LUbbBjazIp9mwgdvuHz4p+r7mnlcRMumpuLv2OWVuM9N3SzNBPZ5TjNQahPAZiY4HWpKlWP9VKkC9jbjSw9u425g6EVs57SWLN3S2YPHqFpG5wa0gEMpzgdaKaAJJaUr7z1dXVceutt/KlL31p1bGsoYYaavhTwb/8y7/wP/7H/2B0dFQhhavR4KWJbtZjcRgVAsKGt3eQCedWtSj1bnLQcrGXU/82IYgw59hsrbm7lVKhpFhVqXUqRSHG7DPQ/WY/w8/MEJ9Mr7Bla9jiwt5mUu5rbTYSn6zktPwXeUgHs4ROxRVVneWkF99WF7OHQlAUFmLh0WSVSpHFbyQxLa7nu8DF7DnkJbVRTTFdRO/UYWs2KnZa52KJpLVcgWY5LH4juUS+6tlW3CdXXKEcpLWoFXu71eDstmDy6s/rcKKzq1nz1namX1vduu4/i/+M3dsfgrX3tpEOZxk+T25JZ9fQdGEdI8+s3g7yfCuWVoztEsnufHD1WwmdOj8RarX5svye3vUOheyzNI+WYPToMHkNBE/GUBvV6Mxq0oHKvHV0ijp4NiyUxXLxijISgKvPqpCj2q9uYPFEVJnHah3onXpS81ksfiMtl9Qx9LMZZe4t/x3rvaWJUrFcZZu31FeDS8eau1qZeHFh1Xnfc5Mfk9ewQnwExLxdf38HcwdDTL8SVOZ3uLDIIEdQ2cuKAIter2fXrl185jOfqRGW/sRQs3v7E0AikWBgYABJkti1a5dCUJKQaKWHK6VbuVy6mTapl52P9LPmrS0ADD09xdFvDytEj9YrvOz8b/2K1drkq4uc+P4yJZg7WxT7sqk9QWITSTKL4ltgLpSj56YmRV0pHchVJRsSk1msbUJKMDGfRVJLmDx6QFi+LbdJc3dZMdXplWud+8Wx8zo/TTuEnVhsNFW1uOoswrN+4C3CEmPs+fkqgpK9y8yWd3fRfZMfgDM/nqoiCzl7LOz8b/2Kjdu5BCVzg44LPtKntK8gKOlEsmPgDnH/1Ug4mx/sYvPDPSs+X0LdehtGtx5H5/nlEQ/90zCvfXZ1glL9Fgc7Ptq3wnpseR8tzfrzXvsPgk6Mxfmw6aEuNj+8up3c0NMz7PmHk+clKAHYmk14+uznbR+4o5lN7+hSrPwU5MRctLYZ2fFo5T0tITGZFcQhnSjY9dxULX8593pYISht/8s+1t3XVtU+8rNZQVCywJZ3dq6Q4V6aL7Z2E93X+ZV5AKJfS2peXW9sxD1go06204FqVSZnlxWrv1qNQUkM6kBSS6jExgIMXh06CwqhrZgpkUvkCcgy7103NKJzVpSS5g6FCZyIKv3c+v5uLPViPiwejTG9N8DQs4KgtPm9XVX2evs/e1aRIbV3mVl/fxdr3tTNLukadueuZ7N0OXrE73ksFuNHP/oRkiRhNBr59Kc/TQ011FDDnwq++93vYrfbkSSJf/qnf1KS1Rbs7OI6rpRuZbt0Ob3XtrDhgS5MDTqQJE79YLKKoLT5oS5lLRn71TwTLy6KHTeShNVnZNN7OjHJFh6LxyPM7qt8sdW7jLRdLWSzoyMxMtG8YvmWnM6gNakUizeVVoVaWwn7z1UasrWacfeIuCMylKwiKNVtsFO33kHzxcLWYuLXi1UEpf7bm+m9oQlTvRbyrCAorbu/jc0PdoIWoqOpFSSfNfe0svV93QDMHwyvICh1X+9jixxTBI7GVhCU/Be62fZILyaPTGA5hy9jaTKy6R1ddF67uhUbCEVQZ9f54674eIq9nzl1XoLSxnd2sO7+tvOeb6rXgva8zX8QzmfJBoIktv3DvdjPkahewuufP/M7CUiubgvmeuN5z0cr1EnXPdC2ommJoNR3W5PynpZjiaDkv9DNtg/2KHNyCUsEJf+Fbi74y76q58xH8wpBqft6H1ve1SXGUkZ0pPI9oO/mZtbd3VY1zjN7gsp88e/w0HVdY9W9lwhKJp8Oc72xapd9PlVSCE0GuxaVVrUqQQmE7eHS9x6TT0fbG+rJxwogSSQDeSIjCRYOid/dgTtb6L7eJ/4GSBKnfzQhCniShMmnY8ejfYotYHIqw7HvjDP0CzEG/bc2s/19PTSrurhMdRPbElfTb92ICjUqlYpDhw5x2WWXoVKpuOiiiwgE/tcT6mqooYYa/m+gUChw6623otPp6O7uZt++fRSLRbTo6GEjV0q3crF0PQ1SC1ve3U3PDU0gSYy/vMixb48rBCXPWhvbPtgj7NEkibEX5hn8yZRCUGq7wkv3jWKtCBwPEzwVJR2SrdcSBfy7PYq1WnI+Q2K2Ei+lF7IYveJ7dS5SQKVTY7CJYxNTGYWgBGBpNGJtMinXWk5QAui8xkfzRSLnlQkWqhWSNLD27ja6r/Mr5y4nKBncGjY92EmbbJkx+eJCFdHEVG9g6/t7qJdtgc/Nt2ksGja9u0tpX42gtOHt7XRe51P6dy767mhm4190nFe73+I3YG0yYW85v93I6X+b5OBXVi9kWfwGtryvW7HBWw1LY/sfhkaM5fnQ95Zm1t67up3c7L4w+z5/5rwEJRA70F095489Wy71svEvuip2fUsoiLlocGvY/HA33o2OquZMpKDklTa8vV2ZB0uIDicVgtLGBzvoudm/ou9CjQg2/kUHfefYDY//ShCUDG4NfTc3K/MAoJApKQQl3zYnDVtduHorz5iazyjKAs5OC46O6pzlEuEIQK1VodIKJQiNRYPGqBLFZEmiXIZ0KEd4VBzvv8iDzmEUv8eSxOy+MPNHIoAgba27vw1znV7EZbNZxl6YZ/pVESP139nC+gfkvF65zInHJjj1g0mQJAweLRse6KL90kY2SLu4uPhmtpWvxqOqR0IiFArx5S9/GUmS8Pl8/Ou//is11FBDDX8qeP3119m8eTNqtZr777+fkZERpLKKepq4mDdzmXQja6St+DfUse5tHYpl1eDTU1UEpZ6b/HTfKNaahaMRRp+fU5R6dBYNvbc0oXfqlPblMZHaqMK7yQFAciFDaiGj2HXmogXUOkFyAJDUiHVDrpcsJygBuLosONrFupNezFURlCyNBhp3ufGuF/cKnIxVEUX8O9303tyk2LSdSzhpvbKetfe0odYJpZtziRotl3lZK1vQxiZSKwhKDVtcDNzZAmpho3ouQcnRaWb9/e3onTrRr1VINOvubce/c3ULXABntxV3j+287blokUNfHzovQanrzY10Xd+4ahsgrPbU523+g6Cza857DaNXx/oH2rE2rx47Hv/u2HkJSgCWeiOONvOqlnFLWHN3qxJfL8cSQcm/083AXa0r+rhEUHJ0mVl7b5tiO7iEpfni6DSz4R0dVdZzxVxJISjVb3Gy4f52ZZ6BqLEvxW2tl3vpu62l6v6R4STZsJjLTbvqVtjxLRGUtBY19nYzVl9l/Io5FEKTzqZBrVWRk78z6J26qnmYmEsrOS+tRU3DFpfyO5JPFFg4EiEkx3Etl9RV1WRHn59j/FeiJqo2qtn4zk7FFjCfKHLs26PM7RP12PYr69nwFx04pToukK5kW+wqthh3Y8ZKPpfn17/+NVu2bMFqtXLfffeRSJzfzaeG/zqoaZP+F8Z9993Hd77zHUrL7B8kJHy0MiBtBcQO4ebddRz60iC5RInFk1Gi44K0k0uU+P+z997hjVz3uf8HbdB7IwCCBNjJXW7f1a66tOpdspqtLlmW5DhO7CTOzb25T5Jbfil2YseWq9xkO7ZlWS6yZLnI6mVX23e1lb13sIEkiPr7Y4AhQc6A60S+du7F+zx+HmtxOHPmO2fOfOd73vO+vm1W/BtddDw3xMSZaTzr7OhtGpIx6H9lHGvESCKvsmJwCajy61vJWLJIZccS1uNpsaHRiTZVJ767RG4CsSDviFo4+k1RPWflbuGND9egMag5+Ll20aoqf84CGm+pZGZonqG3Y5x8uofF8eJEw9lkYbIzTjIOw/smGFDYjTTdPsfc8AJD78hbW0x2x0ktpJmfkFcwSsXT5DI5yT93FZKQXkyTkNlpXsDA2+M4qhUIRIhEkenOE0XEreWo2OEUiTTKHB9RjlvB6i20003kogo6Xxxi6G15Fu9aOOdPm8imi23RliM9u4ZXe1IkOWmM2iI5zgIOfv6U4vUD9L4+QkSnViQ6LY4vkkllSc4q34dcNkc6odzP5GyK2YEF+d/iMN07x1jel3UlZrrmGT48SeevxeTI02qTVI0A2p8dZLJ9VrIJ3PBQlDM/G5AIg4e/1CE+A4iWh5FLKjj5dK8Yq2SxXdv691ejNWrZ8w+i+sL4sZmlcwngXefA7DdI6hl9y2xdnDUWdCYtyTlxPNvrzJJVHUBiIilRWQWXQON1QU7/SHy2F4YXmGqfpT+/wLfx4RoALE+IYzvpWKTbeITe/l4SiQSf+MQn+Lu/+zusViuvvvoqdXXyJLYyyiijjD9UdHR0cOWVV9LRUbz7w4iZjZyHRS2Sa1sfqCaTyHLiu70M7xtHo1ORyr+P5mMpmu+opP3ZPlLzsDC2KFqAqVSk5nMMvDWBtcrEbM8cmUQKwaLDFrEwPz5J9wrb2pqrKjC59XT/aoTUPJLNVQFbPtJAYjLJkSc6V9my2aMmGm4J0/7cAJOn47zzr6eLyD0mv47I7gAnvtvL2JFpUnNpptqL5aQddWam2udof26AwDluRTWd4YOTOCLmVeShApYv8MkhlcyWtOtYnE2RXcwwr5B7xfsXmO6O0/umMmHj6Fe70Cnwc6zVJpLxVEklpuRsmvSi8s6qljujoELR0mQthM5zU32xnzM/7Ze1spsdSJBJZNDoFfaf5Lvu3WiXbDKWo/flMYb2jknKXHJ/Hzs1zXgJmezETArBrrwgmEllyaVzotKVDObHF0nGU4q2LYMHJ9FZlVWbTv2oD0+zTbxWHViDpiILvENfbENnFz99Aztd6O06un8pPlPzQ0n2/MtJKU6bH6tlcTLJifwOzuW2eJZKI633RBg7NiUR8k4vs9kNn+fDVW9laH+MxVia1HRqycJXpcLgFKT7pDOK43o4LxuuEUSlpIl8cSdypZ/EREoiDfa/NY45v1ipd+vYcE8Ez29shI6JJL+F1hH2Hn+bdC7Fm2++SXV1Nel0mo9//OP8/d//vWzcyiijjDL+kPGZz3yGv/3bv5V20IK4c7+KBmrV6wBw1puJXFbB8e92k5xKM3RwkoXxfD0nDSaPgLPezMDr48z0z5OYTKIRtECa8eMzGNxatPoc6QQYPHp0JrHyn04UE68Fh5bKnR70Vi2dPx9eRe6pvtRHxVYXx77VzfxIYpWtV/0NQQwugWPf7GbwrQkG35mAZeWI0AUekjMpxo5Mc/on/aRX7Ia3hAyixVgael8dYbJDvmCSmEgz1TnLyDH5HfzzEwkWp5MsKKhPpxNpcumsZIsnh9R8hsSMcl40uGcCV62l6PqWIz6Q4NAXTkvKNyvhbLCIRBuFv9cIalJzaeZk1LFAVAtovCVM5y+HVlngnS02P1xLLpPj8Fc6ZX9fnEmRUcq7ANLimNGZtLJkpaNfa1e8foDB/TEEm1ZRaSoxnSaTSJOaV65pZdM5UiVsjucnksSHFTqRhokT00z1yNvJJCbS9L0+KsXXWmWUCEiQJzstIyXV3xSk7/VRidR25kcD0oqELWKi7roQZ37cJxKkQFQ3y6PhxhAmr15S6o/3J/KWiiogR3C7C1vYJClvjB/P58oqFZZKE3q7QGYxDbkc5qCRkcICrErFwugiKYN4H7UGNZErKujO53zpuTQjhyYZOxKTrkFj0GB4ygBqSJvn6LO10dHfxvDwMA888AAf/ehHqaur46c//SmVlcWbIssoo4wy/tAxPT3NQw89xPPPP08iIc7HKtR4qKCRzRhVIjk4elUFZBEtrNriCGYtyRlxfk9Op6m6yMvAOzEyCxnmxhehsI6WgYkTMxg9AgvjSTLJHAa3gNmvlyX3hHZ5cEQtjB6dggycWaF+uO6eKItTKU4/08/QO7Eiuy2DS6D+hiDdL40w27vAsW93F5F7dBYNwZ0eel4cIT6Y4ORTvUUKNCCqN80NJRh4Z4LkXFrWng3E92U6kSGjsFY3N5JAa1Rm8GSSGbIl8q70QobUQpr0nPwJktMZxo9PM3ZiSvEYnT8fQqOgN2BwCWSTGZIllJiSJdY6AWqvDaI1akpujisFW9REww2VtD83wJSMhfDCRFIi0Mgi33VblUlWpSp2Zpbp7lnFewQwdnSa+IhyfTIZT5OaS68iiRWQzeTIprNkkvL1y8XZFIlJ5Rx8sn0Gg1NQHGc9L43iiJrF82vA6BZYWOYyc/L73WjN4k22RU2Y3QaJAJWKZzj81Q6p7/U3hUjNZyS7wtjJWYlsJdg1rL+rmuFDMWlT4HKREF+rg4ptLmLtMySn02SSWfpeW1pvNLiEpRquBtQ6zTLlSw3zY4tSHdi70U56PiP9PnxwElN+04dGUNN8ZxV9r5txdokbdBdrpjjct4/Z+DRPPvkkTz/9NE6nk7/5m7/h4Ycflo1bGX/4KNu9/SfDc889xx133MH8fPFka8XBZi5EUAkEdrkQzFp6XhzF2WCh/sZK2n7aL+2mKbJ++lgDKu0K66c8LGE9G+6tZapjVirSL0fkcj/+zU6JcGSvMxepFnlabVgDRrp+NYK5QiB8gW+1dVqejLTu7mq0Jo1EpFiJXX/VzMJUksNfXC0LZ/AJbHm4jvjQQtGHbAHmCoH199WIcr4K1myt90fo3zPO5Cn5Qo+zwUImlZUl1BRgjRiZ7VZ+kZkrBOaGS7wJgaZbK+l8aVTRrsy/3UHdVSGGDsYkr9HfFgafQPg8Lz2/HlAkAq1l91a928fibErRFu1ssOuvmknNp6VCgxxqrg0wcXqmaFytxHIrQVkIYHaVjn3lxZ6S1nIbPhil85eD8ucRRNLWVHu8yL6tgML4nB2Yl03UvBts1F1fyfC+CUlpaTmCu9xUnuvhnc+dhqSoFrb8vnlabdiqzHQ+P4TgEqjZXfycGXwC2bRILGy9P4LOquXg51ZbOCLArr9oYX40IVktLkfdDUF8rQ6OfqtD1u6uQFI68kQngkVN7bUhOp7vIxmHKf8gc85JTp06RS6XQ6vVEgwGaWlp4YUXXljdlzLKKKOMPyDceuut/PjHPy4ihWvQ0cRmAupqdCYV0csDnPn5IKRE5aBMIsOJ7y3lTpLdWY2Jltur6H9rXFaVZ8NDEUxuA3v+Ud72a/OHa5kbSXDmmQFJkWa5/VX9jUG6fz1Iah4iV/iZbJstsrcqWMTpTLDxg/X0vDoqS1qJXOGXfNGXEz0KWH9PNZaQiQOfPV2kqrS8H/aoRZGUY6k0UnWhdxWpfTkCO10M7VEmU69lMwaiqs38kPL731FnxhIwlrQj2/qROjQGDe986nTJc5WCf4sTtaBSvJ617N50dh2hnS4G9sRkLdfOBjVXB6jY4uTEUz2rCGcF6N06Ks/x0FFCAhsd6G2l7fNWKg2thD1qIpPKFSl2LYeryYJnvZ0zP5S3YKna7cO/0cnhr3XKxmP9fdVYAsrjc+OHatBbdbzzz/L3tPXBCIuxJGd+MigqM604Rf2NQbpfGSM1naLqUh/T3XGmO5eeE2t1niClg+0faWBg7wSDMhsDmm4L4ay1sv+LHbLXsf1jDaTm0xz+cueSQlS+mbPRTN3VQY5/v4f54SThCz0sTCYZPzZDKptidn0fvcM9kpqS2+3GarXyve99j507d8pedxlllFHGHwKOHj3KLbfcUkQKV6HCQ5B17ECr1uJssGCw6xjaN4nBo6P51io6fjHITL4eozVAOg2kofW+anRmHQe/sPobWGvRsvXRWsZPTBfZThXg2+QgdK6HQ19phzSYg4Yiwoml0oCt0szgngm0Fi3hXW66fr3im17kQxG9wo/eJXBKprYGsPUj9SSmkxyXqcFoDWq2/FED091xWfsUrUXLhvsiDB+YZHCPvI1H9JoKYidnivLC5TD5Dai1SCQROSy3tJOD4NCKC0gl1pCqLvYxfDi22sYsD2uVkXXvjzCwZ4K+V5Vt6EpBa9Hi3+xg5NCUoi3aWnZv3o12sqmcoi3a2WDrR+tJz6c58tXVdcoCAtudRWQeORg8OhIKVsdSGwXbvQKUiOoF1N8UZODtmCIpavNjtUy1x1ePb9Yen+aggXUfiDCwZ5yBN1bn3K5GK1UXeXn3W52kE8XWbSAS9OxRCwNvjKM1qgif76NrWW1XaxHZTunZFNGrK7BUGBUXSbd/rIH40IJEaFqOwHYnVRf5OP69Hlm7u/obRZLSqaf6QAvRS/z0vT5KOpFj1jzBbOUwp06fIpvNotFoCIVCXHnllXzhC19Aqy3vES+jjDL+cPFP//RPfPKTnyxS4jVjo4nNOFVeNAJUbHUzfGCSTDJL9ApRraUrT3CAYruz9XdV0/fmmKwqT/SqCpw1Fg5+uV2W7FF/U4jFySS9r46hyRN7lqsaBc5xMXp0msxCBu8Ge17VeCk30QiiQgwaaLm9ioE9E0x3ra5/eFpsVF3iFwmyMmTi6kt8eNbZOfrNTlkbtcA2F+4WG+/+W7fsdQh2LYHtbnpeXP3eLGC5zakcBIuGpIxy0srzKFnDgWgXZgkYGVMgr4No5WVw6znyldXrrmcLW5UJrUFDTGFj21p2bxoBPK1OYqdnStrWlYJ3g53qS/yc/lHfKiUt6TxGDb5WexGhTQ6CRVOStKV3CpKCkRwMLgGVpthScDmMPgFvs53eV+WFNFzNVkI7PZx+ule2H9W7fbib7Bx7Un581lwbwFJhkGypVyJ6VQWpubRYC11huwjiczZxfJpkPIOnxcbCZFJSQAMkoiEaWP+BCEMHYrI5c2iXm4ptLo59q1PWMm/9PdWkF7OSBbb0/AJGr0DtVQE6fjHEwlgSV7OVdCLDTNc8mVyGeP0wvVOdjIyJz5jL5SIajfLNb36T9evXy153GX+YKGfJ/wmQTCa55JJLeOutt4r+XYuOTVyAQ+UqUh4Kn+tFpVHR8+Iok2fiRQQkW9TEug9EGD0yScdzQxx5sruIaBDY5SKw1cXBx9uJ9y0ycXKGrleWFQYEsFeJZKTEdJJcJieRb1YSSaKXVaAR1HT9aoS54eQqgtLO/9JEYjLF4S93cPw7KwoxAmy4N8rAW+NMnJjlwJc7VhF3LCGB+ECSxGiS0WNT9L40jBzmhpNkk1lSc/IvFsElYAkaqdzpUSQpNdxUSS6HLJkLRIsLV4ON40/1KBJq1t9bQzaVlbzNV8IS1uNqtKEW1IqLdiP7pjB7jYr+qYJLILDFIXrEK7wnE6NJxULM2WKVd7sMnA0WjG69ZKWxEr1vjjJVYke+YAH/JifWoJEj7fLktcqLPVSd56Pn9REGXpM/z/Y/akAjqNnzj/L3rubaAIEtLtLzGVnSlTVixOwzUnmOl1N9qwsuAJnFDPFx+eQnMZpk+PCkpDhUGLcFjB2dYbq/XRrfGx+uYWDPuKSGNPj2hBTDwvM7cjBG5wvieF+unFSz24erwYYtapIIdYlljOpMOot2mQqYs8myNOaTogrZVK84futuCGLy6CXiX/uzg/S+MS71c+ujtcyPLUqEpuXEpvAlFTjrrZiDFpJn4jgmgzhGgoRYxyHewFZppH+gn97eXtRqNevXr+cTn/gEd999t2wMyyijjDL+T+Pll1/m1ltvJRZb/uGqIkCEdWpRrbJAXrBGLLhbbITGFxl4c4Jj3+guOlbrAxFMbj17P3Wa6c75VYSEdXdVMTswT+8r4/S/MYbRXWzJaq8xiQQIlYpsOkcuL2+9ktTgqDPjabGTWsjQ/auRVcpLkSv9VGx2cfQb7cyPpNj/2eLigKvFSsUmJye+20v3r0YY2LuaEFMgBnW+MIin1SFLAAGYn1gU7SlkCB4AwR0ubGEzerc82SW4y03kUj9qjapox85ytN5bS2I6qUhwr7zAQ/h8L+0/H1RclAlf6MXsNdK/Z1xR6enkM73YQsp2IhXbnMyNLcqSuQoYOfjvJ3WDeK8Lqj+K0EF4l4fh/eOyikidLw6RmkspEpQAai6vwB610PvmuCIZattj9ag0KsV81tlooemWMEMHYqvGYAENN4fJZXOKJLbAdjeWCqPi+EnNpUkvpBX7ePongwS2OaXxafLoimwCj3ylUyL5edbb8G1wFOXex77eLf3/DfdF0dsE9v3LEqGp7aeDS33d6sLdaOXQlzolG8fCWDD7DOSysBATi6bWKhOzQ/PSNfW+PEoynpGuY+OHogy8PSHldfs+fUbqZ92VATzr7Rz9agfz4ykmT8+x7/TSM1yxzUUmkWH82Aw6tQ5XWw2uVA3TxOj3nSSrytDd3c2uXbtwuVyce+65/OxnP5ONXxlllFHG7wMf/vCH+drXvkYyufT9asLKBnaJapV5sg9A+HwPWoOWoX2TJMZTHFqmJmlwaNnwUC0jhybpeWmUk88MFBENnA0WgjtcHP9OL+nZFIPvxBg5sizf04rz99zQolTzMrpEcs5KRZzoZRXo7QKDeyZIx9OrCBxb/qiOxGSSE9/tld2QVH9TkNFj00x3zHHkm12rCDUF4kk6kaX/rTFGFRaY0vmd3akFhUUqLbjrbegMGkWSUuPNIVQaFQc/L7OhCdFSq3KXR1R47pY/xrr3R8hlsorqQ4JDS8U2F4JFs8oeuIDZ3gV6Xhpm6JB87qQ1gLfVKf6ucLnpeJqBEgT0s0EpQk8B5qABo0uQVbkE6HlphPhwCcVQLVRe4GN2cJ5TvfLkNVejlfobQnS/NCxrvQeidbLRpWf/v8rnVf4tDqKXB1CpVLLKUgaHFkeNuPDT9QsZkpJWVA+Yj8kT1NKJLP1vjhI7JcZhJWFqbjDBwS+1S+N7+bgHiJ2eJXZ6VvrbDffXMrB3QiI0xQcSEnnOv82Nb5OT8TOzErFLem5UKkiLKgYFWCoNRXaIva+OSnlZ8BwnlqBJUuYY2jfJ2MlZ6XibHowSH01IxMLl+V/FJge+TQ5inXGmO+awLrqxnnYTZB3tvIsqnGBgcIAnnniCJ554go0bN/I//sf/4IYbbpCNYRlllFHG/2l0dHRw7733smfPHmlDng491TQQUTWKjfLkBcEuULHdRXI+zdiR6SJyEkD0igpsETNHvtLB4mSSw1/rLCIWVe/2sRBLMnpoiuGDMWZ754tIEUbfkiJMNpMlk1+7WH4MEIkfwR2ijdTQ3tgq5SVvq53wBT5OfL+HRCzJie8Vr6+ZAwa8rQ66fzXM+IkZJrvmVp1DsGtITmfo3zPB/MSiImFmYWpRVNVRgLvRhqveyvCBSVkyiy1qovaaID0vjSgSiJpuqyIZT60WfcjDUWem9uognb8YUiQ7VWxx4ai1EDs9ragi1PXLIUwVyjZo9qiZZDylSLgBZNWLfhtkkjByYI26mQZcDVamu+dX3TcQlZDIrbb6W46KLQ4qNruYOD2jSO5qur0SnUmrSHg2egRa7qxmcN/EKuu/AuquDaBSqzj2pPwxvOscOOutkuLYSmQSWVLxlCJRqv/1cRZiSWl8FsZtAZ3PD0kkP5Nfj2+Dg+6XRqTnrusXS89wzZV5QtMy8Y/l1xU8x01yLi0RiUC0oQMQjBqymSypfO5k9AgsTCal8wwfniKbykl9q7shyOixKWnd8t1v90j99G12UHmulxPfE5/fhbFiJ6fgNjfZTJYTXb1oVBrsXSFaMyHqWaDPcYKkPsGBAwdobW3F6/Vyww038OUvfxmN5j/oQ1jG7xxlJaU/YDz99NPcd999LCwsTawqVFTTSJ1qiQ3obLDQdFsVQ+9M0P3rkVUkCO8GG4Ftbmmiab0/Qu8bY0VkmoI6S+11AXytDg59raOI3FDAjj9rRKVRrbJrK2DTI7XM9M7R+cKwSF6KJYvIMsv71nJXFdPdc7KLT4JLYOujtUx3z8kSdiwhgdb765juiisSejY+XMPwwZjih7xgAQRRDWalKsxKOJssZNM5RQKS4BKou7qCE/+mrAhQvdtHOpFRXGwDisgl/x403FyJd72dd7/XrdjXhpsrSS9mFIlOsLaSki1qInKJn1M/GVCM21pj5WywUp1LDuvvqebdp3oUSVkVO5zobTpFFS0Q700p4tXy8bGWctPmD9fS+ath2X6L47qOuWF51S+DT2DzB2uZap9dsgZZ8fctt4U58XQfyVhSti/Lx9C2P8mrZBxenew23FyJZ52Nkz/slSXnbXy4Br1DkIh5KxWcmm+vJNYVZ2TfFOFLvFi8+iI7E2vEwGy3WAza+ZdNLEwsFhGZFnJz7ONldGYNc3NLsbrwwgt59dVXV/WnjDLKKON3jVQqxU033cQLL7zA8vTYjJXNXIhBveQH1vpABINTkOw3zSE9cwNL83HDzUGme+YZOThFxVYnloChaDGmoGgEsP1P65kbSYjKSyvScs96G/U3hBjYMyHZTS1v49lgo/Jcr2T1Zqk0rlKnKajamDw6aq4OcvqZPllyUeOtlThqLBx8/Izs7+vvq8ZSYWTPv5ySJY446syEL/CuImktx3Jlo4K6lBJC57sZeEM5Z6q61Ed8eIHYCQXCsw6abqpULOgUIBez3wY7/ryR9EJGcVGvYJ3X/ZshReWntZSUQFS3QoUiWcnVZKHpfVX0vz1O70v/PuUBdKItTin1qeAusTBQSk2z4dYQXT8fULSPc9SZSSeyJeNeGB96t2iBpkQi829x4m6yKn4PNN8Zxl5t4cCX2mXHW/PtYWwRMwcfPyXb3+AuNxa/XlJVMtmLCU86E6hNAosTKSKX+zD7DatVMFQqQMyN0wtpDn5h9Q5Fc0jP+g9E6H9znIG3JormCBDJisFtLinXarkrzODe2BLpbFnfIpf7RELitzqZX6Yk2pk9RRfvojfoJfl+p9PJl7/8ZW677TbZ+JVRRhll/C6xb98+brvtNnp6luZNDVpq2UCVulb6N4NHR+u9UQb2TDD41gQGh5bEMsUea5WRiq1O2n4skgjqrgswfHiyiJxQUGfxb3EQvsDL8e/1sCBjF7bhoSg6s25pp/eK3KzhfZXMjSQYeGMcwaElm0gXqb4s71v0Cj9zo4uyxBCtATY92sBU+6wsYUdr0bL5Q7VMts/S/uzgqt9BJHvEzsSV1X60IFi0JKfSq1RhVsLkN6DRqxQVfbQGCF9aQdfP5TcHgqjyrNaoS1qsGTw6ElOpkmpLpRDc6abqIh8nf9CjSLgKXeCBHLKqPQWspaRk8OgIn++l75VREgqqT+JY0XLgs/KqAGeDlepccqi9NkDHL4cUY2avNWP2GhRVtAD8Wx2KtVGgaHyspdzUdEeYgbfHZceK1gCbH2tgpn+e0zI5uNagZtOjdUycmZEdS1qDmtprg/T8ZpjEVFq2L6YKo6T4tP7eagb2TEjOAcsR3OkifIGXMz/pZ7JtdX2u/sYglqCRQ3nF/pUKTtX5b42JE7N41tmwVhrpWpaHL19U3/JHdcyPL4oqS3mks2kO8zpJ0zwLCwvkcjl0Oh233HIL3/nOd8rqSmWUUcbvBf/rf/0v/vmf/5mpqSmgoFZZQTPbEVRLfmDRKyqwho2SEstK5ZjgOS4SkyliZ2axVZmwBAwMLiM2LFdEWXd3NXOji5K11HKY/Hqa76ii/81xWZKKJWQktNMtKfUZXKvtsApqQhqjhuqLffS8MipL/Aie48K3ycnxf+uWJR9V5zd/H/1ml+zfGz0CwZ1uOhSI1sv7AkvqUkpwNVmJnVLewO9qtpKeyygTgDQQPs9bZLUlB0n15t+J1vsjZJJZxZqLxqih8lw3I4emFK3K1lJSApFkphE0DB+QJ/4YPQLr7orQ/8a4YpuzwVoqSI5aM2qduuS9CZ3vEZXFFO6v0SOAmiI7tpUojA+NUQMZZbtAa9iIu9ku+/wAhM5z49/k4t3vyKsVhc5z413v4Ni3umX766g1Yw4Ypbx5JeEJjUhGSsYzeFvtWCtNdL4g/wyUGis6i4aW91czuHeCsaPTRXMEiDHztTroeVmsZ1bv9jFxcqZI6azQN3eLjeqLfZx8ureIPDeWG+I0h1EZsywsLKBSqWhtbeXTn/40l156qWyfy/j9o5wR/wHiyiuv5Fe/+lXRvxkwsYPLEdRishDY6cTbbOfo17uYPBNnfizBdN4rXCIo5dWVPM12zBVGiWixkgW6/eMNAOz7lzN0PDe06kVbd2OQqc4448dm6H9rXHl3FqC36zD7RebtSnstc4VILJrpmeP4d3pkCT0bHozS+csB4gNJ3v7USUXiSXwgyXRXnM4X5SdnwaLG5NHjabYrfohveqwJENWR5Ig2lrCexpvDHPt6e0kbuHQyw2z3giJByeATSIwmS5Jg3C1WJtpnSxKUNjwURbBq2f8Z5Zf5mR/3M90bL0nscdRZyKWzJUlKa8FcYcASMOKsNTGikHy0/WyAuTUSoJprAvha7YoqR4Xr8G6wMXZUvvBWIFIV4rwSyxfRQhe6ZRWXCvem6dZKWSWrwviouSZAxWYnHb8aZGTf1KrjWCNGDA4Bb4td9h4kY0mm2mfof0e+eJQYLR736+6uZvhgjIn8AmwyluTwl8UCiuASaL23lvgKG7nCGHI2WNCZtIqex92/7gcqpbHdclcVPb8Zlp7b5YSi0IVuqi7w0/6zfuk+LCdRuRttGBy6pYPrchJBCWCmd47pflEFJHSuC2eNhXe/08uFXA8LMBnp5kD3PgBee+01bDYbAC+99BLbtm2T7X8ZZZRRxnuFffv2cfXVVzMxsTQ3q1FTwzoiajFXQAfNt1QydkJUr4udmcXkXirgzA0sFqm+OOus6MxaRg5OMbyi0OLbYqfmigDtzw8yfmyGfZ8pXgQzVQhU7vRy5qeDjB+fxV49Te8bY6sWyQAEsw69VScRkVaSPtbfU40laOLA504yP55aRT52NVnwrLNz5pkBTv+wX1G5BqDvtTE8zXbF3z1NNkxeg6I6UsU2J9HLK+h9bZSBNydkCSNNt1WSmE6JSk4KBKWKHU6G35ksScQp9KEUQcnVZCF2Kq5MlNHBjj9pzFtTKC/6HPlGJ4JFp/i7rdqCvdqM3qFf056uFDyNNnK5nCJJKXYqzpmf9TOukC8VsPUjdcyNJORjk0IkKOnAHjYVWZgVsFwhU+leF2zarNUmsunsKuu3ArFGZ1Kz7t4oZ37YW0T8gSWlsA331ZBNZjjwuDwJzN1kxRJUVl3qeXmY0E6vIiHu5A/6pL81hwxUXeAtsgBZfr0tt4lksgNfXCI8peaB+SSoVJh9BoxOQSIlScg/u13Lvls8662Y/EZ68zno3MAiez+5pNa08eF6MotZSR1kunNeuh8mvw5bpZmFWFKMZb7/hRhO985h9hskglLLXWFGj07DsSZqaCKRmOe0bT9jMyNMTk7y/ve/n/vuu49bb72Vb33rW7JxKqOMMsp4L/EXf/EXfPazny1STbLjZgPnoleL9SRngwXPOhttPx4kMZ5iunuO+GBeLbhAGsmrK9mjZhxRi6TgspL003pfBI1ezeGvdDJycIqRg1NLeZVKRXCXm4XxBJNtc/QXNpUp7Oc0uQXpt5WWZVqLqOI02TFL208G5dWTbgjSv2eChdFF9j9+pqQa0Pi7UwwdUMhBtGALi0qPSiSljfdH0eg1HPx8uyxByeDQUndjJaee6lW0+TL69Ki1KuYGE4oEJcEhEqEKSoBysFQaiA8nSpJf6q4LYK4wlLRHG9wzwUJsUZGgBOBptAKlSUprQW/V4aq3MdkRJzElf10dLwyRmi/NtvJvFXeFH/him+y9LhCU7FGT4jUVrAgLcV6J6Y45SZXI02qTvQ+FumjofA8Gu26VvWFhfPi3OIjsrqDjhUFZhSjBocUSMOKqs8qSlNIJGDk0RaxNPmbpRLZo3EevriB2asmGMJ3ISgvRWgO03lvDdM8cZ5bZyM0PL4BKhdEnYHAI6EzyNa/B/TG0Bq1EUIpe7mfo4ISk8rRcGcnZYKH++hDtzw1Kqk49y741XI1WbJWmJZKStnjhcfL0DPP5uqGr0YqrwUL7C0NsS18CCZitGOXA0FukUimeeuopnn/+edxuN88//zzr1q2T7X8ZZZRRxnuFgYEB3v/+9/Pmm29Kqkl6jNSzkQpVpdQufKGX2YF5pjrmmOycJTm39M5enEwW2UJ51tmJDyeInZllpne+iEhjCRpouDlM5y8HmWqfW+WgIlg0eDc5GXhjnPmRRQbfmmD8mPwmKLWgwuAWMHoFFsaSq0gw1Zf4cDfbOPINkVi0kjxh8utxNVjpf32cwb0xBvfHFO3Thg9OkYqnFYkn1rAJa8ikSHKxVhlpuKGS3ldHGTs2LXuc0Hlusos5hvbHFEkwjjozU+1zxE4qk2R0Fg2peKYkQckSNBAfTJQkKG14IMrQ/lhJO7gTT/UhWJTVaExeAU+zncnOuCJJ6WzgbrKiLkFSWhhPcvrHfSUtckHcgJmYVF6LLYxlk0dfZBVYwFTH0ppeIc4rUcgx9U4BtXa1rVsh5hoBaq+rpPs3w6uUmwrjo+l94jO4ymkoD3vEjC1sRCOoySRXbygdPTIFIEtQAhh4c4KBPRN5VTQNgW3uothMdcxJ11x5gQffBifvPtm5pOKUQfr/Ro8ek0dYdY4Cun49gkZQA6JymbnCINk+puKZovXGhlvCkIOTeYL3wnhSIihpjBpc9TZS8bRIUsrPPYVrnB9PMNkel+JevdvHZGccugJ4CZBZyNBtOU53vJ2jR49yxRVXYLfb+djHPsZf//VfK/a/jN8P1L/vDpQhor29HY/Hg8FgkAhKOq3AbTfdzm1ND3C++lrqL69k48NRAFy1YkG+7uYgACd/2E/1pX48reLi/s6/ambXnzeLvz3Vx3RPnOjFPkBURNnx542ELvEAsDiTQqVeKqY33xGm6bZ8gmIB3wYH1Zf6AcikM4R2ekQCFLDuvip2/bcWArtc0rFibeIL1LvJzqZHa/FvF/sU2uUjvZCm+0UxWdj4oRrCl3gBkaSz+SO1mANGKs/1UXdDkNY7I1KfNnwwSvQ6Pzv/somWe6rY9Ggtva8OkxhNUnNNgNb7xbbWiJENj0SpvMDH2/98kt43Rtn0aC22qKh+ELncz4aHxBgO7hsnvZim9roAIJKoNj1ai7PJAkD08gB6u4A5KP73ururqb85JMbQJbZtvLmSlturCV3oZtMjSzv9Wj5QRdOtYgw3P1TLrv/ajH+rAxAt9TY9utS2+fZKGm8Js+2xegA2PVorxdO/3SG2FSAVT6MRNLR8oEr6202P1hK6UJS59G6wsenRWibzH/f1N4dYd3e11HbjwzVU7/bxzidP0f7CIJsercVcId7I2usCtN67FG/UoHeJv9miJjY9WoslLNrP1FwTwNts563/fYKRfVO03h+h5hoxhpawnk2P1mKvMzN5Jk5wq5MNH4xKh229N0LdDeKYNfgEXI0WMpkcBp9A+BIvGz9UsxTDu6touLkS/3YH9TdUsuPPG/Fusotj6Tx3UQw3fijKlkfqqLm6AgTy406Md8UOJ5seraX+5hDVF/rZ8MEIzXeEi2IY3CXG0BYxYY+aRZUtoPGWSlruWoq3LWwiMZ1kZN8UnlYx3kI+TnU3Bqm+wMfbnzpJ+7ODbHy4hub83zobLGIMQwInf9CPd52D1gci7PwvzdTfHGLDg1GiV4jPmDVoZNOjtbhajNiqTESvDLDhwWUxvD9CzbUBkrEk0z2z6CwanA0WnE0Wqi/zsfFhMYaTZ+LM9s9j9olF3h1/0cQ5n2iS5gjfNg8mn166x44aC013iONFsIhxKcRbsOrIZbMSQWnrn9TT/IF8DPNzQc8bYrGm9sYKzv3LFmlcNt1WCVkYeF0sroYv8GKtEoup3k12Nj1Wgz8W5TL1bTx446NcfNHFpNNpZmdn2blzJ01NTTz66KOUUUYZZbzX+Ou//mvMZjM7d+6UCEoN0SY+eMtjXKp+HxF1E+vvryZwjhNSYI9YqLmiAp1dJ5JsFjI03SbmBaFz3Zz7iWZqrqsA4PRP+1Dr1Jj8Inml9roKtnykDoDRY9Nk0zlsVWJuYg7paX0ggiVsApWK+hsr8ay3Y/KIfytYNVRfJOZwJo+OHX/eyLaPiTmDSg3x4QWJBNJ4ayWRq/zYoyZ0dh1as5bJ7jipeQjsdEn5EkDDLSFqrgrgrLWis4vqUJ5G8R3h3+Kk9YEIddcH2PFnjdTfHMS33k5HnuDc+kAE3xYHADXXVtD6QIT2Xw6x99OnCO/y0HBTUDpP6wMRkVi0f5LZkQVcjVZ0JvETJHp1BQ23hqS2zjor7ibx3eOoM9P6QAS9W4xD5Ao/Gx6OUnN5gKpLvKy7u4rKC8Rc1lptEm31AgKRK/1sebSO1geXrrXlA1VUXZqPYUBg28caaLwljKPOTOUFHtbdvfSub749TPVlPkwuHZnFLN5WB4468b0V3OVm/T1LuVXjrZUEd7iZ7ZlHZ1LT+kAEVz6PrNghxnD4nUne/vuTeNfZqcvnnOjy8d4gxluw6VBrl3Lx+usD1N9YHMO+N8c58Hg7nvU2Wh+IoMsLe9VeE6DhFjGG40dnaL1fjDeI1mutD0Qky7DIlX40Bg3pfDFk/T3VhM4T39f2aD6GHh1bH6mj5Y5qmu9cypda7qoifKEYb0ulkZ3/pZlND4o5R9Ul3qL8tOXOMFW7fTTfFqb5tipaH4hgrRY7HDrfzbp8DC1hE0a3nujVYlx0dh2tD0SkeAd2ukgnM/S9JRaAGm4NUVNom4/38OFJ3vnX01RsdLLxkRrpuWm4KUjd9QHmR1K0/XyQ1gcirL8/wvaPN+LbZqf1gYhI7gHqrgrQcFOQ0E439moLGz4YpWKbGENXi1WKd/fLwySmF4leLo4lR52Z9fdVE9jpglyOwf0TLMbT6Ow6grtc7PzLRprvCoukJZUKX6sdwSLuEao8z0vlTrc0R1Tt9tFy51KBOJfNSRtDfJusbPloHZZKIwDuRjszA3N0vSDmXud8vIlzPiFK8ps8OirP9dL/phiz8CUeHBELzogY06bbQzRdHWVj/EKudn6AO2/9AHW1dSwsLPDtb38br9fL5s2bGRr6929mKKOMMsqQw9TUFNu3b8doNPKpT32KZDKJoNZz82W3cUvNvWxXX0rlZh/Nd4hzoaPKhLvBRnV+zu38+QDBczw468X5bOtH6jnnT8UNd/2vjjN+fAr/Jpd0vg2PRMUcDliYXBRrXvltmtW7fUSvqJBIpdUXeanK18sy6Sy+TQ60hnyucpWfcz7RhG+TI3+sJFOdYiHfWmWk6Y4wrhaRFOPf5GBxNkXf62KBveGWkPQ+MQcNtNxVhbPBSsUWB8GdbuqvWXrX198UJHiuiy1/VEftdQGa7ggzcmSaxESaim1OqRZlcGhpvCNMcIebA19so++VUZruCGOpFL/7/VscNOYXO/reGicZT1F5kVh301q0NN0Rxp6vjwXOc2MNGiWLj+hVfqrz+RJaUTGn+fYwTe8Tr7FpWR0lsttHZLfYtvXuKDv+vFGKg7PeIrYtxPtSH+vuirLxfrGu0XRHWKpL2KMmmu4Io7VoSc1nUOvV1FxTIZ2n8X2V+PM5p6XSQNMdYRZGxbw3eK5bqi+BWAOr2ObkyFe7aPvZEE13hDHk84LgThf1y/JTjaDC6BHrIQaPjqY7wpiD+RhudeDf7GTvJ08xfmyGuusChM4XcyDBIcbQWmVkbjCBI2Kh8bal93f0mgrC+bxda1Dj3eAgm85isGvxrLcVxTB6hZ/q3T5xHN1WxeYP1+FsEPNIV2NxvOtuCrL1sXpRJSofQ3eLrSjeofPd1F0TouHWENGrl2LYdHsY70Yxv3Y3WvGut6PN5yOhCzzUXhuQ2tqjFuKjCcbfncESEuNtcIttg7vcVF3oY//jZ+h5aZT6m4LUXi+ex+jT03RHGKNPT+8ro1iDRupvCbL1I/VU7xZrvIW6m8EuxtBSZcDdaCNymZ+G9y3FsPbaAKELPKQTMHokhmDRYouYsIQMeDfbabo9DLkcC6NJJs7MYHCI93HTh6Js/eM6aY5wN1gx+fP32KGlYpuThpuXYtp0RxhXntAmWDXkMlliPWI9e909VVKtGECtVdHzmph3VWx3sOsTzdL8Er7ICzqVSH4EIpf7xOOmxTmi+f1h3ItBLlbfxF3nPcilF11KLpejp6eHjRs30tTUxN/+7d9SRhlllPFe48c//jGVlZVUVVXx+uuvk8vmaAy0cPeFH+QC1bVUqCqJXl2Bq1mcC90tNqp3+xHsGqba50jOpqm+JP/tW2tmx8ebqMy/D9ueFzcmGfLrIt7NDmkNJT6YIJVIY/KKc7Bg0VBzTQCjT2xbdYmPynM96J3if2uMatzrHPn/r6H1gQit+bUQtUbFbN+CREYInecmsM2F0SegEUBv1xJrmyWzkMEeNUtrVAChXW6il1fgabGjEdTUXBOQ6nDWKiM11wTwb3ey4cEowV0uPC1WSQ2q5pqAVJfwbbVTc02AieMzHP5qB44as1SLAlF1ytUgkndjHbNYq0zo8qQe70Y7Vfk8DMC/yYV7vfj+NnoEaq4JINjF96y31U7djUFqrwni3+qkercPb2t+bcauFWPoEfC22tn0cG1RXlN1kRffZjGGOouGdXdX03RHFdYqI64Gq5j3FuJygQf/Vic6i4bFuTSeFhuWfA7kqFsdQ1+rXYy/RoyLtUqsS9iiJmquCTDbu8CBx9uw+AyE8u/6QgztUbPUf61Jgya/jhTY5pJyK4CaqwOMHJ7ixL/1YA4YqLkmUGwDlo/3bO8CkSsqcDWJY9bozcdwWbz1Dh3pebHmVX2ZH08+XzK4xLZ6p0DjTZU031FNdT6XBZHw5t1QiLeGzY/Vsv7uCCCqWkWWxTB8oRjvhhuD1F4doOaaAOZAfqNFvYXoVRX54wjYq01Uni+OAY0gxsUSEmPoqDWTTWcZ3DshxTtwTv57Jh/vmZ55jn6zC3OFgYabgggucbwEznER2uUmFRede2quCRC50s+GB6LYa8X7WCAMVWxyEbrAg7vJjrvRRt0NAZz1Ys5p8uuleI8emiQ+NI9/i9gHc8Agxjs/R4wdm2J+Iolg12CPmtnykTrpWkEkmhVqXoHtLiK7KzB4xZvuabFRfZlfapvLQjJf87IEBNbdXS3NEfZqE1Ndcel53PRQLZsfE9eCNUaRaDV6bEqMYYMZ/2Yntkrx2a680E3ldi+1cxu4Qn8Lt191F431jcRiMf77f//vuN1uLrnkEmKxf78aVxnvLcokpd8zPvWpT6HT6aivr2diYgK9Xk9L8zrO42puabqbpnWNmPIfzqGdblGlKJfj+A96SCeyWCrECU1v02Dy6DGHxMkwncgU7eI1+w3iB7dKhT5gQWvUENgoTjbJqZQ0YQFYKk04G61YQgIkIZdZ8hW1BkwYXYJE4jDYBVDlUCGey+gSsAaN+bZGjG49tVdWUnNtQPrgLyi1mNx6rEEjzXeEMYcMGGwCbc/2cOrpfixBI0b/kheqyaPH4jGSnEuTTWcxugQMLvF3a8iIKU/EWHdHNRafUdxRnQSDQ8DoEqSkyFZjwhIQ+9f/yjhavRZrSJzABFu+bZ64kU3myKZykmyw2W/Akn/ZCEbxWifaZuj8xSC2fFykeFcYMOXbTrTPgEolnddasaJtwEgqkRF9QQsxrBD7ZPEb8/EWOPlUH6mFtKRUBWB0CtgCYlv3Ojsmrx5XQ/5vg4aitiaPXnpZmnx68bg2IR9DU1G8ATT6vG+pV2xrdBuk4xaKOeKxDFjzL1aDQ18Ub/9WpzRGAYx+g3hvAMGsRWfUMnwgRmI0KRbH3EvHtfiNmIMGRvZNMXFmGo2gxpK/z7aQsSiGgllHLpOjf28MQcjHMB8Xa0iMd9vzAwzsGUcw66Q4FOJty/d//MQs5ABBPLZ5RQyNLoHEuMiwrtjqxOTRo7dp8nHJj8M8cdrkNeCqtRK60C3FUGctxNuIyWsgOZdiqmMWo0ePNf8iNbnzbY16Dnz2NMnpFEaPnvqbQ1jCejHe+RiOHJxCbxPj3XRzmOB2N8Zlyh4mf/5ZECCbyqAR1CJpSQBbcGkcznTNk5rPkMuIO0LX3VuLyaPHGhQXzPVGLar8fCK4BPQ2HY6IRVp0M7oELF6x/7p8Ajl2TFwcs0dNmINLY0ClVjHZIRZ+XI1WTG49VZeJyYw77GDXtvM4b/E6AkSor6+ns7OTL3/5y6hUKjZt2lROIMooo4z/EFKpFFu3bkWlUvG///f/ZmFhgUgkQqN1I5epb+P6y2/AHXIAYoHZVmnCERWTnr63x1BrVOit4geXPWLGFhF/Gz0szk36vKqc3iJg9uoR8vO+uymvOJdXPMllchjyxBG9XcASMFKXXyBIzaZJJTKSKoolYMQaNIAOdDYdGkFNLr+hxRIwFr2nrEEjgc0uGt8XRmdSYbDriA/kc7gKAyafAUulkcgVfqxBI6m5DAcfPwXoMPsMmPLHslQYMPsMTPfOsziTwhIwYsm/p9CB2Se+Hysv8FCx2Y25wohOpxbVaIJGLKElazxL0IhnnVgUmG6PY/Ya0FnFd4U1ZJTyGIBsOsfsoLjwZ/ToMfsMkkqRNWREMOvoeXWE3pfHMFcYl+UfYv8NdoGh/TEyixkxR83DXJGPIWLuqhXUTHfPMdU+hzVkxOxfek+Zg0ZsYRPzIynOPDuAwaaT8h5LyIB5WV7jarDhaxXHi86qEeOSz1WsfgMm79K9sQSM0vtQp1MXtdXo1FJsQczFLcvenWafAUt+AdHkz/+dTpdva5TyAmejBWvYhLMuX2zwijHUmcR3uK3SRDaZlRQmTH6DlJ8aC21tOnpeGWVhcrHoWs0VRilXMbh0oILpnrh0j4vaBsQ+df5iiN43R8Wxlc/xbEGTNGYnT8dJzaVRa8Xr11u10tgCcTwLRi2j+UUfV71NKoipjWK8LX4DpMASEOOy7p5o/l6tjiHkWJxJYnIvxV5qGzJx5pkBDnypHZNbjyVspO76AJZ8vNVGHfNDSXJpsFYYqb0mQPNtVfmxJZ7H5NZj9urRW7XksjlUKhXmfP6MTvyWKOScQ/tiZFM5BKuApdJIaLsLc2Cpv2qtmmxK3CUX2OHBYNNhCiw9C2bfUlvISTvqTCETloqlXN3k1pNOZGn7mXjPnbU2glvFb0CdUUVdXQ07/ZdwLtdSG61Dq9Vy+PBhgsEgdrudT37yk5RRRhll/Efw3HPP4Xa7cTqd7N+/H61Wy7rGVs7neq703UrTxnqMzvyGqCsCOGrEd1jXi6MsjC9KNQC0WuzVJundvzibhGWb7SyBpd+0FhUWr2GJWDSRRGtUU3BXslWb8G9xSHlPOpGViEcml4A1YEBrEd9NRpcelVolWQFbgyapnmB06bFVmqi/LkTVxT6sISMqtUpSarHm30XVu32YfQJmn4H25/rp+sUIltCy3Crf1uw3sjCZJL2YwRo0SmrF1qARWz63av5ABFetqOpCGrRmrdg2v9BnCYuLUQCxE7No9ZqluOjFYxkLdZckpBYyzHTPL/W30NYgHnfi5DSdvxjC7F1630FeTSAs9mnoQExUFPQu5RTWoBGtQQy4JWQkOZuk99Wx/L0yYs3nDcZ8XVCrF5VrErGUtMhQ+NsCicoeNeOqs2LL5zm2yqV7Xuh/oY8Ghw5r0Ig+nw+aA0ap9gdiXaJQuxAs+baFeIdMRW0ty86j1YtxMbrEGFae58FVZ5Xa2oJGrPm6rNagxugQGN4fIzEh1vJWxTBkZLZ3gYF3xtEa1FJt01SRb5sfswa7QHoxw1h+QcYaNEq5YSGGI4en6XpxCK1eK+UbIOZplvxYHzk0SSaZldSHrKGl/K7w34Wal3e9HUfUgtaolc5pDZkkFSRH1IJ/g4uKbU4MdjGGhe8bS8iINWAiMZlktn+h6N5ojfkxaxM4/KUzxIcSWENGQud7MPkNWJfFe/TdGYxusVbb+L4wkYv9S/ldLoctZJLinVrIoDVqxPGtBcuy/D8xlWZuLEE2ny813BrCETFjqtDn75UWCjzGvEqZu8km7ghRqfP1yvx9NWogm2OmZxZUatwtNuzVZimGarWaseOiIoWt2oyz1kLwHHHR1hm2s6VlO7sWrqGBTTQ0NNDV1cXf/d3foVarufjiiyULpjLKKKOMfw8ymQwf/vCHMRgM3HLLLQwMDFAdrmaTZRe7Ve/joi27cVeLRAxvq52KzU4ceSJJ14vDqFQq6f1tqzbiahJrOVPdc+TSWYlQo9FqsIWXyDiBzU7s1WaJWJJLZqV3sMakwdVgI5IXQUhMpUhMJSU1Ilv+fYhGJBHrbTqy6SxowOw1YA0vvdNslSYCu1w03BQGjQaT38hcXg3S5NZjC5sQ7FpxTSpoJL2Q4dg3ushkstjCJkz59USDU8AWNrEwmmAhllyVJ1grTZjcehx1ZiKXBHDVW9AYVZAR18Zs4aW27mabRByeao9jqzShNRTes0v5EkB6Ps1sj5h36Uxasb9mMabmCgNGh0DXr4cZOTAp5ob5d71gFtvqTFpi7XESk0kpFwExpyjUdrQGDTqzlvET08z2LmD06yVyFoC9Unwnp+IZun45iN4hKhMuj2EB/q0uKraJ9QONRo0tbJJyTqMr31azFDPLsvzDFjZJdSCdQSPWfTRL62i2yuU5kVFaA9c7dNjCJjSCKh9Do9Qno1egYrMDR404ZvX2fNt8XmMJGMku5hjIK2LbKo1S3q6z5MesSUP/W+PM9s4VXas1bJLWMbUGLSqNWlTnASw+w4r+ivHu+tUwva+PYQub0OdzIJNvKd4LY0niQwuoNeK1qAWxD4U1OaNbj94uMNkWl+K9PKewhU0Y3AJkwOAWcDXaabpJJFxbg0aslcXxVmtVLEwkEfJjS52PoSUk1qKG9sY48o0uzH4j5oCe0C639Czo8pZu6UQWW5UJ70Y7TbeFcdSYpO8xwSrGuzBHqFAt1dY0+XuezzmHD0ySmkujM2oQ7BqqLvVJcw2AVq8mmxS/r3ybXdiqzUt5sFdfdG05ciLfARAsKlwNVilvN7sNLM6k6M9vbvRvchO+OE8M1GioilSyUb+LC7mBxlALRoORV155BbfbTSQS4Xvf+x5l/H6hyuUUNIzL+J3i1ltv5Zlnnin6Nw8BNqnPl/5bcAk03Rzk1FPdJOOiIsl03xxDb69YpFepsEVNrH9/NbG2WU79oI+VcK+zEb28gv1fbIPFHM4mi6KFmWjLVkvf66Idx0qEznNTdZGfUz/qVTyGLWqSbKcab6nk9HP9stZt9joz6+6oJnZmRtGSY+PDNcTaZ+l7ubS/KojKQwvjSUXbtPqbQ3ia7Rz/Xrdim+0fbyC9mOHQ5zsUz1N9mY+hPeMk46sl9iTk7fbeC9TdGGT06FRJO7jALhdVF/g49NVOWfs6EJVraq9asphRwrn/rYWZ3rlVtjDLseWP68imcxz+onKcCqo+y6X8VkGA+mtDDL0ztmRV+B/BWcS95uoKOn8zrNiuYoeT6O4K2l8YZOywvNzllj+uQ2fUsvef5K3qQGQ7n5WtngBbHqmj44Uheas+AXb9eQsLsUUOf0k+3qEL3STGk0ycmMUS1hPvWy1XWcD2jzeQSWU5+Dl565TtH29gcSrF0a93FVuWFAqzESOL4wsk51Ssv6eKbDLHie/L2B3qVez6s2YWJhc5/KXVY0BwCTTdFOTUD3pIxnM03VrJ7OACA28tzTux7CiHeR3UkM1mMRgMGAwG9u3bR11dneI1llFGGWUsR0dHB+eeey6jo0uStloENnMBdvXSrvvgLhd6h46uF0bQu3XUXu6n7dkBUvOr0+WNH4xidAns+afTq34DaLw1RC6T48yPB9HZdegMKNp9rb+nGp1ZK1k7rcTmR2tABYe+oPDO1YHJIzA/lMTVYkVr0EjEjlX9frgGg1Ng76dPydpj2WtMRC6r4MhXSry7l6HqUl9J67Udf9ZIYirJ0a/JW3d4N9qpuTJA27P9xBTySp0JKrZ56HttDduOEnZ1vw0slUY8LTa6ZWxalqP1gQiZRXm/9QI2PlxDLpfjaAnrkpa7RBuxPX9/UrGNd6Od6OUVnH6mT9EOxOTX0fL+KN0vDstadBRgj5pw1FroeVH5vv1WWCPuOrsO33qb7HdFAZseqUGlVnFIIa+015hovq2awX0TiuPNHjWhMWqInVCWRS8gfKEHa6VJ8d41vC+Eu8HGkW92iBZ4qy4Kai4LSHLylkrjknXgCrs3V4uVhutCtL8gn3+HznUT2uXh0Fc7FW3p7DWi/Z7OrqP1rioxZ5QZBw3vC+Kut3HkGx2y803FdpFk3/nCMDq7jvprK2h7frjovEezexilD7VaXKDP5XJ8+MMf5vHHH5ftWxlllFGGHP7n//yf/K//9b8kSzcVKoLU0qzZKm6dRVT2iV7mo+s346Tjaaou9jA/nlg9V6rUGFxaNj4QZfT4DF0vrP7GtoQM1FxRwYmn+0nH06K9WL+8hZnWIh6r/40xRvIWBMvhrDdTd12IMz/tl2y0VsLkN0gWaeGLfPS9OSpr52Xw6Nh4fy2jx6foekHeLq3+piDxgQWG9slbnSyHvdZMJpEhPiB/bcGdbkLnejj5gx7F62+9P0Ium+PdbynXe/xbHEycicvaxEnI2+29Fwid72G6K654XSDuTI9c5ufkD3okIthKWEIGGt8XpvMXQ9KGQzns+PMm0ZbvxwOKbVo+UAUqFSf+TTlO9TeH0AhqTj21ug67HKHzPUy2xRVt9X4rnEXcA9udjB2bJK1wOnutmfrrQ3S+MCTZm61E8/urMLn1HHi8TfE8wZ1uBvco53fLse6eanpeHpEfl1rY9pEG5scWV8c7n1e5WqxkEhmmO+YweHQkplJiHFba7CKOcXJw7Mlu2b603hchGU9L1nIrYXBrSS9Cei5L9AofKq2KzudlansqNdv/pI758UWO/1ufNLdJl2VQEb0iQM9r4ySn01Re6CI5nWK0UGdUqYlnZjnCqyyqF6SaV2VlJS+//DKVlZWrz1lGGWWUIYPp6WluueUWXn75ZXI5ccOMJedgPedgVlmkdo5aM0a3nqF3YmgENZUXeOh/a0LWmqzm2gD2KjOHvtIua5EW2uVGrVPT99oYGgG0ZnkbNBBVLE0evWTttBL1N4XQGtRF1usrIdi1JKfTmPx6BKtWspFf1e9r8v1+Qr7fRo9A5fle2n42oGj9thzeVntJO7T190ZYnEnR9hP5nMISMlJ7bZCuXwwV2eIVQQPeltLnKbQ7mz6vBcGuwVlnY+TwZMnjFRSYun4ln8OCOE40OrXi9UNeeWijgwOfU84pLEEDNVcF6PzlMPEBeUs3jVFD861het8YLblOanAJ2KpNktXYfxhrxF1j1GCPmEpa9NVdH0Rn1iiOcYNLoPn2Kgb3TTByQP6bwOAS0Fk0a1reAbgarNgiZroV7l3gHBfB7W5OfL9H3hJQA4HNLob2x6RzK9n5GX0CTbdU0fXroSK7vAIctWaqLvZx6qneJRs5mWMsjCbRCFB3QyV9r4/J2vEFznER3OHm+L/1yPbHFjVh9hkY2htDI0DlhX763xwvmuN6c210coKsWvw3s9nM//gf/4M//dM/le1bGb9baH/fHfh/Cclkki1btnD8+HHp31SoaGY7QXX1qvbWCj0Wv5HADi89L42JJJ4Cp0ylonq3D/9GB+/8yxlmuuY5+aM+JpdPhMs+1FQaUeHE22xj7PD0KnJRzTUBfBscHHz8JHPDSfb8w+pFEsGiJhnPMnZkEv8WJ6lZ+UkpdKGb6gv89L45Sv8r45z+0eqPvsAuF0Nvx5hun+Pd7yoThhBEZrMzalEkKTXcXIk9amLfv5xhZN+U4nFIQtuPB+j59VBJctH86CKpOeW3jmBBlBmvsyoSRgDO+dMmFqdTHP6ycpuWO8NYq83iQqESsUYA73oHJq++5ALX0Nux1QS2FchlcqQXMiRi//HCSHouQzpZOisqSU7Kw+AQ8LbY0enVnCiRiLbcXYU1ZGLvPyqTgryb7NRdE6Ln5REG35YvlNiiJiq2uDA4BcWFqVj7HJW70swOKr/wD36uXVIUUyJGFQhKNdcG8DTZOPzl0yRl6mTOGgv6PBNZlqSUhGNPthPPS5sGdrnE3YrLzjnw2tL1rr8rSmYxy75Pn5Ht+9zgAulFcS4RLKzq075/Wfq7jQ9HEcxa9n2mTZpTZnsSouIUOfQOgVw2J0tmYjHHoa91kM0X0Fo+EEbvEKRF9mQsydGvd0t/5qg1Y/Lri0hKLrWPS3kfyWySha2DHDh0gEQiQUtLC7W1tfz93/89N910k+x1llFGGWU8//zz3HbbbSwsLM3ndjxs4nx0at2q9v6NTrQGNV0vjLA4keLE94tzmI0fijI3lKD9Z0O0/aSfVAlihsmjJ5NXQklNp0itqDVs+0gd8xOLnPhenzIpWJuDFMT75ym1rWDbY/WoNCr2ffqMPEFDB55mG+NHZzjxb53oTDpFUomt0oTBIRSTLpYfyqRm44fqGNo/wcAbyoSRAnHl0BfbSM0r511zw/MkZ1PMKhVrgLobwjiiFiZOTysSvULnuQmf7+Pk0z1Mdyofa8efNzLZNkvbTwcV24TP9eCotTDwxljJvh/7RrfibwUkp1O8F3tCFiaSpOZKr0jNj6TY/xn5d/9yVF3sw+wzliQp6ew6Nj9cw/jxGYmII4cNH4wiWHQlz9tyexijS8/AOxOK425uOCG3xiRhunOeA587vXQ/ZIhREmlHJz4TYyemFa/RHjVjcOplfwM488wAlsqYSFDS5QuGR5Y9xCmkuFRd4iW000Pb8wOMH50R86BlF7M4nWRhcpHxU+Kiu86kKiI+Drw1IeU+OruOLQ/X0P/2eBGpqzCmHRETOrOWrEIKfuaZQew1U+Jzko/DwN5xhvaKRa7hZQvggS0O7FVm9FZtEUlpg3onsJN0TZwzc0cYHBrk85//PM888wwNDQ28+OKL6HSr588yyiijjHQ6zV133cUPf/hDstk8EQkd69mFR5O3jli2iC9YdLjqrMyNLDK4Z5LeV8aXflep8W60Edrh5vA3ukjE0hx/qo94n/w7PpcV7VNtISOx07OriBD+LQ7C53s5/PUu0vG07CKJVq8incgy2RlnfixBclb+vetssNBwYyW9r4wwtG+SvldXv2tcjVZiHbMkxlMc+3Z3SXKKJWBErVErkpSC57rxrbdz+OudiqSpAnFlcM8Eo4cnSSeU85f44IKkoqx0rKqL/bib7SUJOps/WEtiJsXJEmTtqotFq5Ij3+gqSXgK7nBjDRlLkn0m2+LSTvNSSM6kWJz+j7OnFqdTJXMToCTJqQCtQU3lLg8Gu44OOaJLHtHL/biabKUX8CoNNN9eTc9LI4wenpJtY3BrqbrYjzlgpP1Z+Xx3bmCBxakk8+PKNa+T3+uVbA+ViFEFgpJ/q4PAdjfvfrNLduyZ/AZR8SlglCcppeHdb3aSTogncTZYRPWCNFJeJX3jqFS03BEhm8pw+Cudq/IuEN0ApH+S6fty8lL9TUHMHj2Hl9Vbl5PgjG49ap1KVFUqoDBP5bIc+lo36ryKRPVuP5aggePfEQlL6USOtp8tLQ56WxykF9JLJKVcFovGynlcRzqTZmHTAPuP7ae9vZ1oNEp9fT2PP/44l1566eqYlVFGGWUA7777LrfddhunTonrJSpUBIjQlNuMRqVZ1d7b6sDgFBh6J0YmmaXnN8U5TN31QRYmkwy8MU7PS6Pi/Kbw7WnyGiicIpOETLJ4caTp9koWZ9J0/WJ41XkK0Aji3872LUjKOXJouj2MYNFy9OtdzI8sriYvaMAWMjHTO0/nL4dE+y+Ffhtdesx+A0a3SIqQ61PjrVWMHZuW/iffeSADJ7/fTabEhvnF6SSJiUXmxpQ3lId2uqnY4mJ2YEGRCGKPmqm5KkDbswOKJB6A1geixNpnGXhdeZOft8VBxTYXsdMzpBRII1CanFTA4kwKrfAfN2xKzqVYnE6J60wKyCxkePfb3Wseq2KbC1edhdGjU8rkIg203hsldmpGUl6SQ83VAUxePe9+S/m81Zf4cETMTHfMKo6F+GACrUk5TolYkqNf75RUsuWIUYlYkkR++bf5zjCTbXMMH5BfD7aGjVgDBkWC1dDeGJNtcWm8LRcdAfFvCgQlV4OV6JUVdLwwKEsOzCxmiA8vMNsnjkuNoF66DmCqY46pji7pt3X3VDP0Tqzo2So8i0avEYNLEK26ZTC0N8ZU11K/Wz5QxfChSYkgNtM1L12HvdaKp8km2tQtIylVqeqpop6Ma55O/Ql6Brr52Mc+xj/8wz9wySWX8J3vfAeNZvX8WcbvBmWS0v8BxGIxGhoamJhYmuw06NjOZVjUlqK2LXeFsQZN7P3kaSZOzLJ/uKNYFUelQrCoSMZFsglqFZaQQHwgKRKPln2YtdwVFkkd/3Sa8WOzjB+V2Z2dJ1dMd8dxNVhQmwSIr55JG26uxN1s4+jX25kbTsoqsAgugWQsycBrE9grzZLE2kpYI0ail1bgqrVy/Ds9sgQlZ4MFjV7N+LEZ9n6mBIEHyKQyeYsuZNsJFjVbPtLITO8cJ77bq0hQKqjPHP+OchEGREJH27P9zHQp71AHsfAzt8YuqbnxRQSHUFr5JwkHviiveLMc3g02xo6W7tP4sZmSCkq/DY5+XZkwtRyCS0AwqxSVfRKjydJEtTxmBxYQzLqSSkljJ6apPM9LfFg5UZvpmqfjV4PKhDZE8sz+fxULQwafQGIqKXvOZFwcN6131zB2fFqxAEQ2Ry6XkyUoAUyeivP2p05K54he4adrhXpDQWVKsKiJXFqBf4NTkQDX99YY2VSehJR/LpdjORls/QOlFaEWJ5PFyWEh/vm55sCyuaDl/WGsYRN7P3NaupbEsmRfo1UX1XUKc1kBe/7xNIJFPG7LHWGsVSb2/qt4LEEtIByKcCkRDvMGep+a06dPc/PNN6PRaHjkkUf4/Oc/L3sNZZRRxv97+Id/+Af++q//mkxm6SMkRA3N6q1F7XQmFZsfq2fi5CwdPx/i3W91FqsmqdTojDnp39RqtVikBsmOTTqWXcfmD0alYx2SUZBbTqxYnE2JO4AVsOPPGliILXLs692SVdOqw5nUpOaz9O8ZJ5tW/pDfcF8Uk9vA+MkZUvOQml993vCFolJR32vj9L09rkgmSaWykMnlyaryqLsugLvZzuGvd7A4IX8gnUkNOg3zIylF9ZwCTn6/D896myJBCcS8a34iUZKgpDPBQmyRmb7Su45O/qAPS6WxJEHJHDKQjGcUlW+WH+u9QLx/Yc04FeBqsiiqUgGceXaArMxOyeVITYsS7AuTyoU0gKmuOcnaQwknftCHya1MjAOKSGOmgCCrXlS4H813it8473z2tOIxc9kcmUXl+/fukz2SvZ6rxUpyJr2KlFf475bbqrBXm5npn5cdz71vjGFwCiJBCXEuSE2npFxpbmCRI0+IebM5pKf1nihD+2OyBCqdAVLzaaZ7lghXy69x7Mj0EllKBzs+2iCS7p5dmiMKz4DZp0elRiK3SeQolRpyWXpfHmPo4JQ0hnf8WfGxtJ0WWjiPCNN0+o4xPz/Ha6+9hiAINDQ08MorrxAIBBRjXEYZZfy/g0QiwQUXXMD+/fulfzNiZjMXY9IU17yil1fgarJw4PFO5kcWOfDlFeQVlRqtAdIJcWOUSqPC6NKxMJpaRVCKXubD1WzjwBfbmRtKSN/wRcgTFGYHEiRnU2j1kJZ5RQbPdVO5082xb3ezMLrIcRkCudaiJR1PM3kmzuixSYYOyZOKBIeW+htCxNpmaPvJoCxByeQ3oLNomO6Y49ATHSWVcXKpbMkFG7Sw9dF6prvjtD83pEhQMnh0JMZTq2oNq5BGVCuaKk30meqOr0kGWphcZH5isbQiE3DoC22gLb3AZY+aFNUkC4gPJDj2ze6Sbc4WpQhFy6G1aNGZNCyMyudM6USWY98qTVQDmBlYQO8WpPEvh3h/gvjwAvNjysdKTKQ589P+kkpS6URWipPWooV0VnbcpBNZBIeWDffVMHZsih6lzQk5IJMjnZYfe/MjCfY/fkYa54HtzlWkPGm8aaHuuhBzwwtLGwtXEJG6XxkRrVNUKrQGFelE8fOxvJ9Nt4Yxe/QceFy+rpqYTEnWw4XzL38eT3y3RyIoVV3swbvexpFv9kpjevnYVuvUkqXL8rmsgENf6kRrEH+TjvXVTtIJ0Gq0WI9VcwnVdPAuqYppTp06xe7duzEYDPyX//Jf+Ju/+RvZayijjDL+38Mvf/lL7rvvPkZGxHe6Bi01tFCtaihuqIHWeyLETs8y8PYEnT8fKiIPQDGhQKVRocnPY5mFTBG3QSNAy11LpI62Z2WIussIEYnJFIszykWA5QpESkQLjVFDZiHD4L6JpflVBgXL4CNPdJBJZklOr653eFpsjJ+YIXZmlljHrCJ5JZOkNJkb8G12ENju4uRTPbLnEjsPGkFDKp5RVO4rYODNCWb65hUJSiCSp2f750sSlNCIG8AWZBRois739gQTp2dLEpQEu5ZMMierslV0rBJkqN8Gyem141SAJWggPqicC/W9Pkbf62OlVacyMDeSYGGqtCXLTM8cyXjpul/Pi0OMuA0lyWrLx3hBFWxVl/LPYeh8D+5GK8e/3bPqeQVAI47RTFr5Ant+Myo9j+aAgWw6y8JYcQcL463yAg/+TU7e/U6PrBparGMW40FBIigVnssCktMZSUlLsGhYd0+UoXdiss+1WlCxOJ1ibjQhXcvy+xQfWChS9pcj3RUITYJdg1qjIpPPYVeSo2InZ5nunpf62np/hFhHXDqWZsJEPduoZgPdriPMLE7z/e9/n6eeeoqLLrqIZ555BpdryX2hjN8NynZvv0P09vayfv16ZmeXdrQbMbOdyxDUgvRvlpCAzioweSpO+BIP7gYbh7/RKUuK2PrHdWgNGvZ+Ut5aBPKkitEklRe58TTaOfzN/LFW3OoND0Yx+QyyqkkS8oQES0ig9ppKjjwp36/Kiz2Ez/PR9eshht9RKNQsU2ypvsxXcvf2OZ9oIpeDdz6prJoTudxP96/XKK7ksenRWob2TTByYEr2d/9WB7VXBRk+GKNTQYIboPa6AB2/GnrPbNzeKzibLLTcVs3woRgdzykXUmxRE9lkek1btbOxe0MAb9PaxKhd/7WZxZkUBxUKAr9PVF7sYapjtqQ12q6/amYxnlK0RgPY/Ed1dP9mWNH+cDm8m+wsTCQUz1lzTYDAVhedLw4pKmOFznMzdnKWZCwpq4S0HOd8oolsSllVKXyJF4tXz8kfrJEEqlS03BXGHjZz4PHTReSiAqov9eJssErWbuYKgblh+bFWd30Ab6uD49+TJypW7/bhrLdIxwqd6y5SWALoyp6kg3clOxKdTsdDDz1UJiuVUcb/w/jLv/xLPvnJT0rKNSpUNLKFSnVNUbuKrU6GD4oL/RserGLs3WlJaUSCSo2j1kjTrWEG3hovthorMC5zWUwenURY2vBQhNGj00VqJQXo3To2P1TD+MkZ2hVIR8sJCQ03B5nunmfk4Mp+iYWZbR+pAxXs/6zybmudCVLzYPLosFSZFS3ggrvcRC710/2SshKhtdqE1qBm8vTa7zpXk4XK87yKFm8Amz9ci86o5Z1/Vs5prdWih/2qGPwBYPOHa9GZtLzzKeX+Azgb8zvBS9Q0zsbuDUQ7N5VWw1wJK5TaawL4Nzs5/PV2eZuy3yd0UHWhj16FXZQAkSv9BLa4OPl0r6J8u3+LE+86W+k8dRkqL/DQX6Jwtv3jjeSyOWU1KB2EdrglZaPCcyUtli37xqrY4SSyu4LOXw4xemj1jkudCRpvreb0TwdFclApqzwdnPOnjUx3xzn19IoCsEqNzpil+c4IQwcmGTsyXTQXLZ+jCtjxZw1568Vuiai0vF/Nd0YYOTzFyKEZHHUmkpOLRWTMVDbFAV4ijpj7m0wmHA4HR44cwePxKFxEGWWU8X8zpqamOO+88zhx4oT0b068bORCtJqlPZEGhxadTctsbwJ3ixXfBjttP+mXJWK0vD+M0aXjwOdlyN75ecvg0JKYSuNqtOLf7KDtJ32kF9WrrJZqr63AWWdl/xc6IKVAXM0TErRmDbVXV9DxsxX9KlhNNVuouyZE5y/lrTuBIkKCf4uDkaNTiuSjzY/VolKrOPh55TpDxTYnw/vPLgdqfF8lYyenFS1PrVVGWu6opn/PeMnFpOAuN4P7Jt4zG7f3CgaPjk0P1TG4d4LeV5TzCKNPTy6TUbSDK+Bs7N7QigqjM92liVFbP1pPcib1npGj3ku4W2wkppLMlVjI2/rH9STjqZIKoc3vr2Lg7fE1YwFgi5jIJLOK5/RtclBzZUDMlRTUoFwtVuYHF0hMpZeeKwVZq00PRyFHkRLScnjW2bBWGun6Zb5+rGSXp1ITudQjKn99s4vkVDF5EsCz3oZ3vY2TebXdwlwkh8B2B+ELvJz8YR+zvatj4d1ow9O8dCzPOivjx4uf39FMP8fZC5oc2WwWk8nEX/3VX/Hf/tt/kz1nGWWU8X8/nn76aR555BEmJ8X8QI+BZrbhUVUUtXPUmiXbpZprAkx1xWWtqAwugZY7q+l/e0zRGkuwaCSLppprAkx1xomdWn0sjaBm/f0Rxk/OnBVxJXiOi4VYUlElsem2SrQGbUnlnIISk8aowRo0yFpNgbgm1nBDJT0vjSgqI+mdAjqTpjQJKA+jTyB0jof2nykrdNffFMLk0XPkq8pOI4Jdi9lnOCulyP/TqL8phNlvKOkSA3nC0EiiJCHobOzeoEA60ZQka3k32qm+2M/x73XLKmH9XqEB7/oVKtwr4G21U3WRjzM/7ZeUh1bCGjbibXVILi1rwd1iY+KE8hrt+nuqUWlUJXNVV7NVmiMKz5UcbFUm6q4P0fWrIflxq4HI7goG946JBL5SVnka2HB/lOnuOXm1NY1IQJxsn2WyLY7OoilJrFt/b4TkbIozcvm9BmquDDDVHid2ZhajTyCzmCkiGWZyGU5xiGF6yJHDZDKxadMmfvazn5XJSr9D/Md12MpYhaNHj2IymaiurpYISg68XKa+jfPU1xQRlADW311D3dVBAPpeHufwl4uJQN4NNmxREwATp2aYOKU84ez4eAMb7o0C0P/qhCh9u4KgJLjE84+fnGGuhJ1V8x1hdv1ZM4JFTXwgKVp3KUxO/W+NMz+aIHZCgaDkEtj6x82sv0e0tStFUAI485N+TnxX+QVevdtHaKeHyotLFMQF0RYL4PCXOhQJSgAjB6aY6Z2j8zfKBCVngwX/RifNN5X2BN/0WC0bH64p2QZE4pR3g61kG0tYz67/2kL4Em/JdnP9cYb2T9D3lvzCYgGNN1ey7q61+3Y2qLs6SMONYSxhZasMgMG9E2clDbnjL5rY9Ght6UaCSK4Lnecu2axih5NzPtEkjXWlY4XP9VF/fen7OXZ8mp7flCbDHfp8O5On4ggW8dylUHtVgJbbI4q/d/58iK4Xh0ta9w28OUEylsQSEtj60RYab1G+hrF3pxl7Vzkx6nt5TCIobXy4hnP+skmx7cSpGebGEhJBaWV8e14ak0hFNVdXsPFB5TE++u40c8MLEkGperev+Fi/GZWOVXmRuHhefWnxcxBVN3OZ+jYurbqU6upqFhcX+cIXvkAwGOTGG29UvI4yyijj/z48/PDDqNVq/umf/olcLocaDVu5lN3qW1cRlKou9VFzZYU4P+WyHP1a9xJBSaUGlZrQ+eJ8M9U+x2zfPBNnZop+ByCXxbvRzsYP1hLM5xtHv9a9iqCky6vMLE6kmB1cINam4FGugx0fbaTlzkrI5Tjzo4Elco5KtfQ/gFyO0RPTDCvs4AdouCnI1j9uQu8WiQtKBCWAwbcn6PzlkCJBCcQcou7akOLvIJJH0EHsVLwkQQmg55VRhg+XXnirubKC6OX+km1Mfh3bP96Iq8Vasl3oPDfNt4dLtgHRvmzbH9ev2a7zF0P0vSFvRVyAo85M861VVO58bwgc6++poeHG0vegf+84fa+PMi/nKb8M4Qs97PzLZml8KsGzwUbr/ZE1+9b6YETK85XQeGMloR1uTAHl/Gzg9RFibbOKBCWAkYOTEkGpMOaUEL7QQ9WFPnxbHIptTjzVw6kfllC8SiERlFruqmLzhxvFc+ZySzv78/+beHea2f558XmT2QuUmod3v9VDajqF3q1j58caqb1GQY0oBbMD84weX1JokpDLklpQc/QbvYwdFeeUdfdE2fLhWul3oGjOGj8xI+WE9hoT9lqL9HtqHo5+vZuRg1OQy1J3TYB190SLrE10ah071Vdymfo2dm7ZRTabZXBwkIqKCjZu3Mi7776rHMMyyijj/yr09/dTU1OD0+mUCEoVVHOZ5g62ai4tIigBtLy/itqrxLlu4sQsJ79fTASyVBqwBA0AjJ+cZlTu+zU/r214MELLByIAxM7McfKpgVUEJa1FCyo1sTNzTPfOKxJuqi72sf2P6xHsGtLxNKef7l8iQ6zIu2InZpnqijOltIikhY0fqqf+ZvE9PXJwqiTR5/SPBjj5tPK7x9ViJbK7gsD2EvUFrbgoAXD6mX5FghLAbO8CY8enGNmnvGho8OgIn++l5ooKxTYAjbdV0nTn2jlV0+1hnA2Wkm20Fi3bP95Y+jqBxFSKnpeGGT6sXCcBqLs2wLr3R9fs29kgsNlJyx3VWKuMJdv1vjpK14tr17w2PVxDyweq1mxXd10Af4m8BcBea2bLH9VhcJc2SKi5soLI7tK59ND+WEniF4jWbzPd80VjTgl11wZpuEE5Xx09PEXbzwYUCUoAsROzJKbSCA4tmx9rIHqFfynvWoHhQ5Pyc0Ye48dnJIJS/Q0Btj5Wr+grMdklzhnJ6bxdpSXfMD+/jL87I5GK/JvtbHwoikthjE92xZnqiksEpZX3dOzI0rFcDRbqrgkQ3Fn8HPg0lVyieR/nu6+jtqaOubk5/vqv/5qKigoefPBBxWsuo4wy/u/DE088gc1m4/bbb2dychIjFnZyOReorltFUHI1Wam7LoSzXpyfOn8+tIqg5GoW6yeJWJKJ09PM9MiTUC1BA6331+BttS8dawVBSWMUbZEyySxTnXPMdCt/y7c+ECWazzMG83ZTShg7PsNIiZpRYIeLDQ/WIdhFVRclghKIzhrtzw0oW7cBtVdVUHNl6RzIVmVCI4hKLqUISgADb48zpKAQVUD4Ai+RyypEIocCNEYNrfdHsFWZSh7LUWsW11fWcKmquSbAurtL124A+t8co1fG0ng5BLuWptuq8G1wrHm8s0HDjWHxnV8CsTNxel4aIbmGApKrwcrmx8TxUQqWoIEapZrMMkSvqKDm2tLtQjvcVF3ow+hVrnmNnZhm9OiUIkEJRPvDAkHJFjWVvKfOeouoVNugXBM982w/7c+XHq+FOSJ8oZf199dIz/VKzA3PE2ubFTdjyiED3b8aJjmdQSOo2fhQLaFdCmu5GZhqjzPVuaTQtPL3zheWyFANN1XS8n7lXHr02BQTp8XrMLgE6ftSOtbPh4idEX+PXOqn6dbiY2lUGtaptrFb9T7Oa74IVU7FW2+9hc/nY/v27Zw5o7CxsYz/EMp2b+8hjh49yo4dO1hcXFJI8RBgk/r8onaCBZrfH6XrxRFmuubpfnmEKaWXtwB114ZYnE1y8PEOun+9+sVgjRjIJrLMDScZPTZFOqnMJtz+sQbUOjV7/+kUg29PlFyMGj4yiWDXkZSTlEMkY0R3V3Dqx31MnoqLJCYFJGNJ5kYSJRejmu8IY6s2s/czp0rKEoNIYMhksvS/olxg2Xh/DSavgYljU4oWbwjgbbEzdnh6zd3Yk2fitD0/wNhh5WQGIJfOrSkJaY0YMboErJXmkkpEKo2axZkksZOlz5mMU1IBqoDuF4fRmt+bx35o7zipuTTxNeQjlTyHV2JhLMH8eOljkQSz30Aum5MWi+QwN5oglwOzZ7XV2fJjtT/Xv6YSlGThtmysKGHdvbUYHHpxnCuctu3ZARanS19n4blsvr0SW8TCoS+cklVLig8kmR9PMLBPeZF0OeN6+8caSC1kOPwleQb8RNsMziqFImIux8iBaUYOiNdfd2MQ7zo7p37UJ6sg1b83htmrl+Lr32qX/hbEj4OjXd0AuFusVO7yYHQKnPrhakWn/lcn0Aoael4Sr3PDAxFGj08vqbb1OqllG06qaTMfYGpqimeffRaVSsXNN9/Mj370I8X4lFFGGf+5cf/99/Pkk09K/61Bx1YuxaZxiP+QLyhXbHXirDVz8ulBel8eJ5PMrZ7/84vxDTcFcDdZme6ZI943z/F/6y36HfI7Xd8VbZc8TVbGjsjnN64WK403hOjPKzEd/06v8sWkID40z8TKHGjZruGNH4yi0qg4/KWOkmo0AEOHptBZdcp2a3Ydmx6qYfzkNF0vDK+5U//k070lfeZ1dh3RKyrwttpEKy0FeNbbGD89Q+zEbMnFNIAj3+jEWVN6cUvv0JPL5kiMKu8QB3BEzZj9pReZoGAvu3auNN05X9JaDmBucI6eV0cYfY+sdntfGWVxtrTM9OJEqlj1SwGTnXM4G6yivViJNNMWMmP2G9C7lccSQC6VI7tG/nv6h/24miwlFZ5S82I7yI+Vd5Vjp3frqLmyAneTdckOZAX6XhsnncyWJOkVlKl0JjWbHq0ndmqGDoUda6NHpsQ8X8kOcSEnPeeuFiv114Zoe25A1n5vcUaUuB45qty3E99dWsDe/MEoi7MpjnxFhgCoUjO4b5Jc3uLSVCFATsX86JKy0vJvhZor/AgWLXs/1Sb9vnyB/8T3ezH5xYKOo95C6BwXx5/qla7bcqSK86niKG+RcyU4evQora2tOBwOXn/9ddavX694TWWUUcZ/XgwPD7Njxw76+pbmphB1NGuK7XTRQsP1AQb3TRLvT9D1mxEWSnzrN7+vksRUkmNP9jJ6ePW8b3BpQZUjMZ5i+OAkKo2mKC9bjvX3VqO3iUpMk+1zTLbPrVJYKmD85Awmn0CyyG5uKe+yR03UXx+i7dl+prvmOVPKgiIN091zTJxUfm9VXezDs87G0a91rmn9FTsxS4dusORO7PrrgrjqbMwOzhervqyAs97CZFuczp+XrhklxlOc+mHvmpZq2VQWdbb0nlfBocUaMhIfSZSs72n1EB9eYLp3DdWCNKvsweTQ8/IoguW9qXmNnZwlm82xMFq6b6Xu0XLMDi6wuIbtHYA9akEtqEWimwIWJxbJZXIIVqGkatTpH/cz01/6fkp1YS04o5aSC8aNN1dir7Iw3RlXtBU885N+MqnSOWFht3/lRV586+0cfbJb1hIwOZVmune+JAlpeP+U9P/X31tNNpPjxL/J54Wx9rj4jMuFLJdlumuB6S7xfgd2uKi6wMupn/QzLbPwPXFyGmvISCw/vp11ZnG+ySMxnubMj8V80uTXE7nUi8kj0PWr1d9wsTNxun4zKt3zuusqmOqak5SVdBMGIhNb8NHAu/o3mJ2d5Rvf+AZPPvkkjz76aFlNvIwy/i/Gl7/8ZT7+8Y8zP5+39MbGJs7FqCquk9iqTDjrLfT8ZpTYqVlUapXifB7Y4SK0y0MilmR+ZFF27cYaNjLbt0B8MMHYsSlx/pSB0SfQfFs1/W+JSkw9L5be6D3dPcdsifdSzTUBBIuGUz/oL6kMAxBri2NwCYp2axpBVAuOnZ5hcG+sJIkJoP3nA2gNJXIIDdReG2Smb66kk4klZBStWUcWmV9j3azjuSGRSFFChUiwasimcyzOls4hbFVm7BFzaYszxI1Q6TUs3AAWxpKr7MFWIhlP0/mroVWWzP9e9L4+SnZRYR03j8xCpiTZrID44DyzA/Oo1KWkfMDo1mMLmxQt2ArIZrKo19B8GXh7gune+dJxy0Dfa+IaV2GsKHVPI6ipuybEZMcsXb+Qz+Mn2+J0/HywZP4mPiOiqtH6uyJMton2j7LHa59FrVMp2vxlkiIJCcTnv+HGSrp+OcxM7+oxkMlkmemdE+0VFdD76tK6ZvNtYdILaU49Lf/NNbh3ArVOvAeCRYNKpymyp1uuBhe+0IulwsihJ9pl49v+3CBGlyi+YXAJBHa46H1pWFKQMp7ysour6aWNKdcQ+/fvp7GxkfXr1/Pss88Sjb43myLKKNu9vSdob29n48aNUrIA4KeKVvU5su0Fl8DWR2qJnZ7l9I/kH7iWu8K0vzBCMpbEvy0vE60wt+36qyaS8TQHlOyocjkEi5pkPEv1bh8aQa1IaGm+I4w9YmbPp0+taWkmuAQ23hfh9E/6Ze2aQFRmmR9fLC2hnEflxR586x0lbcE2PVLL3GjirI4nWMC/3Uvfy8oEjo0P12DyGTjwxXZlMgsQvcJP16/Ozlru94FNj9Qy2T571oSgtXBWdm9nCcGipuXuKMMHY4pWgL/dAXnP7fa8G2wk5zNMl9i1v+UjdehtAm9/6oTi+QWXgKfRWpL8V4DBJ9B6d4RTP+pjtlu+6BW+xIt3nf2srPIEl8DG+0sfb8ODUZIzKVki0Eq03F2FNWhi72eWzQXLCraWkED08gDHvtkjnV/pGfJuslN/bZDRd6dp/6k8azu4y8VgXj2q6bZKRo5MyRYzBQts/UgTM/3ziov9cWGSdxIvkUVMaoPBINdeey1f+cpX1rzuMsoo4z8H/uRP/oTPfe5zkq1LQVSGAAEAAElEQVSbDoHtXIFJY5Zt3/KBSiwVRt75XNsSuSCXlRa4HHUm3A1WOn4+AjrwrbczenBSdgGs7roKvOttnPi+8iKOzq4TrZwQbUs6fjUsS/DQmVRserSeybbZJQu4gjKLDBpuDKLWqRQ/2OxRE7XXBDn2jXbRjmoNbHqkhuEDk4oEJXvURN21QY5+u0e6nlKo2OFk4t1pUvPyRQWdCbZ+tJm5kYWSlhL2GhMqtaqkms6/C6WstX4LVGxz4l1v59i/db8nxztbu7ezRfhCD7ZqM8ffgzzud4W1LNhMfh0bH6xjqivOye8rK02EznMz8M7EWd2HuusDCDad4sIVOtj0YA2D+2IlSU0F1F8fQGfWcuL7fbLPrD1qouaqAO8+2UlqvvQnt84Emx9rYPzEjOJ3WuRyH4mpFMP7JtGZVOIxFRbptzxWg86kYe8/y8up64xZ7DV2xo/PYvLpqDzXw5mfLCu0LpsfG24M4GqwcuDzZxTnlTb1AXpSYr5qMpnw+Xy89dZbBAJr70gso4wy/vAxNTXF9u3baW8vfJeqqKaJes0G2fZaA2x+tE5UMJHZaAcQvcLH0P4YiVgaZ52Z2f45Wfs3gG1/XEsynuboNxTea7ksWqOadEIkuOrtWgbejBX9XkD4Ii++DXaOPNEunq9E3qU1qGi+s4quXw0TV7Barb8hSGouTfdZ1GJcLVaC21y8+90eRZWl+ptDJGdSZ1fb0YJ/g6MkmaXuhiDuRhtHvt5ekszy21jL/T7Q8L5KZnrm3rM+npXd29lCC023hBk/MV2SXP3bHO+9ttuzVhnJZXPE+5XJcU13hLFVmjj4+dOKz6LWoMZRb1G0PCxqa9Gy7s4wHS8MKT4/nvU2/JudZ5Wzag3QcleUzl8MER+UX/StvbaCbDJH16/Xrt9W7/bhbrRx9OsdpBP5PG1ZXiXYtVRf5KXtWTE/0prVpOfkv3EsQQPrPhBm+OCUtLluJVzNVlFRNw1VF3uY7IzL2sChha2P1jLTP0/bT+QXwRPaBAcWX2QB8VspEAjwyCOP8Dd/8zdrXncZZZTxnwPf+c53eOyxx4jHxdq4FQcbOQ+DSn7jVfhCL64mK+9+s1PWpsnoFXDUWBjaK+ZH9qiZ6S75eotvs2hXefqHfcQVrDs1Ro1EYqi+xMfQwQl5slCBFNEZZ+CNtTdTBXa4EKxaxTzI4BKIXu7nzI8HyCgIKyxH/Q0hJk7NSOopK6F3CtRc4efMs4OKpIzlsEfNxIcTym01sPnhOuKDC7Q9q5xjGD0CGkGtGN9/N0rzcc4atioTnvV2el4cOas4r4WztXs7W7iarDiiFjpfODs7tN8HPC02xksQ7TRGDRsfrCF2ZobuEnmLq8EqknzO4r76tzox+wwl41J/Q4ixE1NnVW/1b3VidOslUtJKGFwCkd0+2p4bWvv50cCGe6OMn5hmcK+8wpi31U4mlSV2ahaNoC459hpuDmHylbAj1IA1ZGS2dwGNUUPFNqeiDWVgm4uKbS6OPtmleB2Dmm5Opw+TIY3RaKS5uZlf//rXZRu49wBlu7f/AIaHh7Hb7dTX10sEJT9VXKa+rZigpFITOtfNOX/RKC3kv/3PJ5cISiuKy9aIAUe1hZpLRfujkf1Tq0gRgV1OBItYSOnfMy7ubJVDLseOP2tk44fqAFHVpvOFYcUizFTvHMk55a9hwSWw9aN1WELidez79BlFghKAYNVidJew3AKabhWtqvpfGV+TjKEzazA61z6es8lCMk5JghLAye91MvTOREmCkn+rg+A5HmqvK11kD+xyiXYYpbuHNWLEElqjEaLVW8udYYTSAgIAGJwCZr9hzXabHqnFu8m+9gHPEq33R9a0okvGsxhdAraQ/MLxcgR3udeMc+FZ8G91rHm8wC4XGx5cm9Vad12I+muDJduc+WkfPS+PlCRIJWNJiaDUem8EwaI8xRpdAhpBg8mrbJfX9/KY9EyELnTjbFIeDLaQAa1eg8mtfLyjX++SCEobPhil+jKffEOVivmRRRZnUsXXu0xeOz6QlAhK4Us8bH20Fv9W+bE1dnia4cNTEkEpdIF71XNSICghgLPOQtVF8uMqGYe3/+GURFDa9EgNmx6tKZpHLUknl6rfx04uY13LOkZHR3niiScQBIGHHnpIMT5llFHGHz7+9m//FrVazWc/+1lyuRxaBM7lei7S3LyKoLTxoQjr7hJzjBNP9/POv7QVExmWzRtVF3jxFKwLUjB6aLo4P9NBxTYHAO2/HGZgz4Q8QUmlxr/FwdbHavFtEefEE9/rU1SgSc3nWJxOMrdcBWhFjlZ1sWfJAu4nA4oEJQCDU4/OpMXkV5aBdjVZJOurw1/uLLnYY3Tr0Rg06K3Ku8l0dh1Nt4lxHn5nUpGgBKJKTs8rI5wpUawBqLsmSOPNa9uIrLu7Cs8a1rnAUps1iCyRK/14N66dJ1lDRkw+w5rHq7zAI8XmvYB3o31NSzUAS9CI2bd2XqgzqWm4JYTeXdryDcAcMmDyr9FOJxKu1rLeq7suQPgCL4465dxwfiRF/5tjnHymhA0beRu2FDgbLUSvLi3NbnTrMThK5OAp8ZkoEJQUbdjyMHj0GAp5l8y+n+mueQ59sYPUfA5LpZGND0fRlVBoX5xJMdWjXCjq/vWoZCe58eE60dpNQR3k1DN99OaLwDq7Ds+64nuSWlBLu/Mrz/XgarRi8iy7v8vmvzM/HWLPZ0SCksmjY/uf1q2y863PbhVtnhrOweFw0N3dTTAYpKGhgaGhP9zCYRlllFEa8Xic1tZWnE6nRFCqponLNLcXEZRUahWuBgtbHqtBsGtJJ2Df4+0SQUmlLs5tDA4t3vV2Attc4k7/9tUEJWeDGa1Fi0qtoue1Mc78VDl32PBglPX3iN/94+/OLBGUctlV8+RM/zyJZTtuV+ZdWoOYX5h8etILWY59o1uRYAFg9OoxeJS/wUFUUAJRHendbykTlACMTgFjiW96ENVnbBETpClJUAJo//kgva+MlCQoWauMVF/qp/pShfpAHvZas2hnt4ZQkcGtxegrfQ0gqi1Fr/KjNaxdmrYGjFgq1s5tGt9XiauxdB7y26D22gAV20pb0ZEWcy9rYG3FTlejldAFa9gA52/VWlZ5hTYNt5S2AgZovDksWS4qofOXQ3T+akiRoASQTmQlglLttYElOzQZCGYtWpMWQ4ka7vi7MxJByd1iE8e1AgxuA4JFh2DXyeZdAB3PD0sEpfobgwTPUbh3KjXz4wkWJheXCEpQNGckp9MSQcnVbGXLI7W4FXLc+GCCvjfGpdzLs9626jmJnZxFlRXnG98GO5XnFo8DaZ5Mw4HHO2jLq3Q03Byg5QPhonnUkDZwnuY6zudGWte1Mj4+zt/+7d9iMBj4q7/6K/lrLqOMMv5T4Mc//jEOh4N77rmHeDyOBTsXci3nqC4rJiipVNRcE6DmanFu73ttjCNfWUZQWpHfVGx24d/kFEksKtVqgpIG6ft89PA0va+MyhNoVCqsYSMbH6yR7KV6Xh5VVDMiA/PjiyRKrL25mq1ELhctvobeiZUkauvMGgSbDkOJ9UajT5Cupe3ZAUWCEogqRTqLFsGq7KelEdTSOsV011xpMkZGfJ/2vFqaLFt1kY+669d+f1fv9ol2X2vAGjZK5y8F70Y79ujaa3QmrwFb2LQmQcnVZKXqktL5428DS8gojelSMHr0xVZeCtAIENrlRrCvrbIp2DXo11h3RiOS8ta6J96NdiKXVyzdFxlkFjL0vDxC3xpjJXZGJCgZfaLaTykYnAL6Na617dkBiaC01vGMLgGjS7kOmIglOfV0P5mFDIJdQ8PNIUWbOID5iUXiJVTwx45NS3aSDbeElmySZbgMXb8epvflUVCp0Ajq1fckI9pdo1Lha7VTsdG5+v7mjzu0P8ahJ9rJLGQke0VHrbnovMFMhEtUN7EzeBFut5uDBw/idrvZtWsXsVhpW8cySqNs9/bvQDKZpLq6muHhJQahnK0bgGBVk4xDfCRBLgtGp04kxCQpKv7aoibqrg1w8CsdzHYnOPpkB/EB+Ze34BKIXlKBt8XO0a910/eyAgtZABYh1jZbLOG34qGOXuHHs87Ovk+fYejtGENvKz9UBrsWwaLD3ewgPiCfMAguAWfUxMiBKfb9S2mfxsqLPbiabFTv9pVMQArkrrWOhwDOeisGr17WgqoAZ4OFbDbHdPtcSaYqwMiBKTSCZk11HE+jDUvAuKbKT/31IfRWgbf/vxMl2wW3eXHUWlGbBIiXPuief1h75725Qix22avMa1rWnS0sASMqtWpNMtjb/9/ZKQMEz3GhETQlJTNBLEJaAkYmT88oW/kBnnqbSN5aQ32p85dDTJ6eKnnOeN8i8T5xt1b4ktIKXe4WK9awiardFYrKQZOn4kX3raB2poTwuV4yySz7Tsk/A+PHZpZ2swkQ2ulm4DWFMSsgyhmWyDO7XxyFF8Vnsu6GIPaIiQNfapeN49jxGVx11iU7N5l4dz4v3lODT6D6Ah/uOitH5VQ0knDgy50k82O+5f1h0oksZxR2OGZT2aU5TaUGXVY6t0XtxHLKiTEb4AC/AeCb3/wm3/rWt/jCF77Aww8/rByAMsoo4w8KTz75JA8++CDZrDhxadCxnd1YNCsIJcuUcrKpLNnCB7UMmaT++gC5XI7254Y5+VTp3bvr7wxjCRqZODFFai5L78p3gEotnXvk2BTedXYmOxRI3DrY/MFaxo9P0/faOEe/1l3y3PZqM/pSxAogsNPF0J4YIwcnGTlYeod5zZVBVBpVSaUYnUlNaj7L8H5llaUCqi/04KizYqk0Eu9XtsMI7nIz+PYEQ3vW/ng7+vVOrJHShROdXYclaCIVTzNewrrV5NFRf20Id4NNshFTgq/VwWJ1ak3bjrafDgKl/dwBHDVmTJ61CydnC3vYhCVoQmeipFJWKeWh5RCcAu4mG4npVGn7QB203hNlbnSBY1/vLnlMa8hEOpEpaeXX/twQM4MLa+7cKtjW2WtMpBezki2bHKou9KG36+gqYX987JtLfV+udiZ7vEt9+DY5mBmYVxwPy9XAvBvtTLXNklqQXzRz1VswOAR0Vh2p+dXnTc3DkSeWbNy2/lEdw4cmGXhLPpcbXW4RJ6MQNj+aYn5UfHabbgxgDhiY7pqVHTdnfjKEyTfO/HgKnQla7orQ9rMB5oeXHTT/f3U2Hblsjrlh8VlfORadHRGcREjzNmOqPtra2qitrSUSiXDkyBF0urUJcWWUUcbvH+l0mt27d/Paa69J/xZW1dOo3rKqrc6kIp2A+fEE2UwOwZq3SkgXk5MMHi21VwU4/cM+ElNpjn6zi8Up+ZUUrUG0Mpvpm+fU0wOMHVF4z+cVZ8ZLWKwB+Dc7qNji5MjXupjumJO1bpIOadZidOtxRM2KlmxagxpbtZnY6VmOfk3GgnMZXI1WAjtcpBMZBvco15S0Fi3peJqjXy99PAD/Rgf2ShPHu5XzV5PfgFoH8f7EmjZps70LtD83uKatiqvBir167YWtyOUBbCET7/zr6ZKELE+zHd8GJ8MHp0gnStuhHHh87Z33WgPYqs0kJpPETpe2FD5bOGosaE2aNfPh/Z9Zo1aZR2CHC4NDUNzJXUDNNRV41zk49ER7SSs/R8SMrcosjR8ltD03wNxAadu65FSa8SlxDPg2ORg9PKXY1uQ34G62k05kFGu58yMJDnx26b5pDWpFizgQF/2yqSyHv9Ip+3t8IMH+f12Ks3eDbbV99zJYKgxoBDWDe+Xv3djROGNHxbpxYLsTzzo7x77TLTtmZ/oWmO6ZY6Kw0C2jdjW4RzyPzqSi5go/7kYLp59Z/b2gUqs4/JWlXf+R3eLibs/LY9KcmcvmpONnk1mymqz0tzn10m8GjQHDqRYc2Wr28huy2TT/+I//yGc/+1m+/e1vc8sttyjGp4wyyvjDwjvvvMP111/P6Kg4p5qwspnzMapWvHc1QJ7wmE1lxfliOZat+1VsdaExqBh4c4LeV4bhdY30tytRfbEPT7Odo092kZpNM3Z0xTewSiWp9Mz2LTDZNsvsoEJRQgMNN4SY6p5j9NAUnQpW6gVYg0ZxTa2ECpCjzsxU+xyzfQsceUL+PVFA5BI/OrOWqXblnKqg0jLbu7BmLudeZ8Pb6mD81ExJ+zZXg5XYmVlFharlaP9ZPyb/GuRmDTiiFrKpXEmRCI2gpuHGSsZPTq+pxFmx2Ukynl6zj8MHYgwfWLt2Zw0ZcUQtIlnkPYDJp8ceMSNYNCTjyoyrgTfGz0qZSy1oqNjmIpPMrXk9694fXVMBiww46izkoOQ9GTsyTXImzWxf6dyrkHsbPQKoKGkTF9juxhoyMnQgpvicLLdbXK52JgdXk5XgTjcLsUXF2tzydXNr2Mj8eFLxmJagCZPPgE7pvBlof3YpL2q6Pcz4u9OKalOjR6fR6PP8CQ2Qyc9deaJ6Kp6RCIiVF/nwNNo4/LVO2XMP7Ztk4vS0SKbUiOvzfa+NkZhMLc2ZGfG4gllDJpVjMV8v1OhVZBaX5lnLkJcmvJjooJ2j7Nmzh8rKSi6//HJ+9KMfodEok7TKkEfZ7u23xI4dO9i3b5/03w58bNNcIv5HYYdWnny04f4qzH4Db3/6DCz30lwpy5/L4t9qp+aKIO0vDCoSSEIXuBl4fWLp/++dUCRe7PizRtKLaQ4WLODklJPyt77m6go86x0c/lqnoqJQ5HI/g2+PkFTm/UjY/rEGtAYNb5+lZYWn1VZSKrjuxiDedQ5O/KCnpB1XAQafQGK0NKlnx581otap2PMPp0q2c7dYmSixyLIKZ2FFZq4QcDXb1yT2wNldy+8C76Xd22+DUpZhy2EJ67FHLcoknH8nLGE9yblcyT40316Js8HG6R/1lRwblpCgSDRcia0frUdr0LD3n5THozViZHEmc1bxWX9PNbYqM0e/1SERq0oheoWfrldWqEQtmzNa7ghjDhrZ9y+nV/22Et5NduquCdLz8siSOtIKBHY5mTg2STKet3k7EFN8brb/aT2ZdJaDjytIN0r9VdN6bxWWgIEDnz8jzlUr5uR55zSdmsMMj4gLmA0NDfzrv/4rV111Veljl1FGGb837Nu3jwsvvJBEQlwkUqNhK5di16ze7aGz69j6oSixttli2yIFbHmshmwmx+GvyBckdCZwNtoZPTSNzq7DXmVg/Nhs8Y78/PwS3OWk6gIvp57pOyvJ3G1/XMdkxxwdCsUanUmFb7NLVIkBxd3CIFpKtby/mvHj03nyTGno3To0WlGpRgk7/qyRxZnUmsWfAkx+XcnjedbbaLixksH9E3T/UpkcrrPr0OlgfvwsPdTO0r4tuMvNVNvMWR13LfLK7wLvtd3bbwO9W6eo9LUcofPdjJ+cWbvtb2mpVyg2lsI5n2giPZ/mQCnFVR3oTGd375yNFhpvDjO4d3w14XBFu8nTZ/Hxo4OdH29iYTJZRDRSbG7X4VtnUyQg6d06NtwTYWDvhGIutRybH61FrVFx4AsKz6sOKjbYGT4wDTrwt9oZOSj/venbbKfmMj+nftzPVHtpz0idCbb+UQOTXXFO/1B+7pla383BY/vIZrMYjUYuuugiXnjhhTWvqYwyyvj94UMf+hBf/epXJUvdCiK06nYCSAthhYX0mqv8uOotHH6io8jWcqVyUi6bw1ploOmWSjp/NUJsxYaywnE9620iCSANnnVWxk/PkkvK50AbH4yQzWQ59qSCqrh4YAB8m+yEdno4/v0eRcKHf7ODiba4SPRYo0y6/t5qjG49+z535qxsuWwREzPdynNqcKebyvO8nHqmt2S7ArQWLelEuuS5N34wis6sKyJ1yMFaJdognDXOwopMcGhx1loYOTC15uEEh7YkCed3hffU7u23wFpkogIMDi22iKUkUWjpoJy1PZzBoSWdpmQfQhd4CJ/r5fSP+phsU86DDG5tSYWu5Wi5qxqDU+BgCbKZwa0lm+GsxkP0Cj++TU6Of7enpNJZAf4tDiZOTBerJi1X1b3Yg6veukQeUrDTBcS57H2V9Lw8yujh1bVslVqFs8HM7OAi6XgaV5OF6c5Z0onVcyPAurvCqDUqjn6zR3buXH7c6BU+3I1WDn+jh3Q8vWpOTlumaTMeo39Q3JhRX1/PV77yFS6++OLSASqjjDJ+bxgYGGD37t2cPi3W3A2Y2MQFWNR55dpCTqJSoRFg/X01TLbN0vvKWHG+srJWn8vRcHMItU7Fqadl3nW5HGjETXHTXfNoBDCHTCLxQua4BSvztp8OEF+D9ArQfGeYmZ55BhQ2/WsEcNaVtsMqQLBrab03yuiRKfpeW3s9TWPUoDVoWJxUXkNZf2+EZDzNmR+V3si21AeNsloUYPLrab6jiqG9E4pWVoW+aQSVSOh/D+GoMzM/tnhWx12LvPK7wHtt9/bbQGfRkCpBeCrA1WAlPjhfkhwF/NaWeia/viS5DURBhnQiw4nvlviu4eyvxegRaLqtioE944wemlJsZw4YmBs6O8vBjR+qYXEyWVLdvwCNAI46m+IGCI1RQ9P7Khk5OHlWc0D9TSF0Zm1xfJbPU1oVjuhSbdFRZ2aqkMOumBstISP11wVpf35AJJHJzJ3Lj7vxwRqmOuL0vDRa/Hv+7+bqRtjf+TapdAqDwcDtt9/Ok08+ueY1lbGEMknpLHH//fcXDS4jZs7TXFfcKJcFQWT/zvYs4t9mx9tk493v9Im/rfjICex0EtruYv9n156c7bVm1t1ZxVR7nBNPrb07uuWOMAuxRUleeyUsQR01V4bOapeWuUJg40N1xIcWzqq9JSRgdBtK7mjZ/vEG5kYTnPhO6Ym3cP7a60Ic/aryuQWLmtYHazj1g17mhtcmcRh8AtaK0n10Nlhovq2KybYZTv6g9ORbfZmPnhffG8bwb4vtH2+AHOz79Nnt3DobvNckpcjlfoI73GdNmnmv4WywgJqS6loIsOvPW1iYXOTwF0sTYkIXllApWoGWu6tIzqYVFZVAVGYyOISzKpBZI0bW3VlN90sjDL+jvJuv8mIP/a+szSg3+AS2PCzzfCsQkUIXuDC5DbT9RP56DD6B5lsrOfTVzjUJe2LMm0lMLnLoi2svhDfcHMLgEuR3OKjU+LfZ8bXYOfYtcV5x1puYPBNfNff2ZtqYcPUQm4yhUqmwWCx0dXWVPWTLKOMPCOPj4zQ3NzM+XpjHVKxnJxWaqlVt7RET0/kFnZY7Kxk+PEnslDzpYf09YWYHE/T8Zu3CxsaHIxgdAns+c6aYdCGT0+lM0HxnNSd/2K9Ikqi7LsB0n7Iqy3K03leNOWDkwGdPi4t+a6TrBZUiJVRscxK+yMfxJzvPiqhTd32A2YFESVWmuusCqFTQ9rOzs3Kq2OEs+d4C8aPX6BTY84+lSeTORgupuUxJ5abfFew1JlruqKbrN8NrXs/Z4ndBUtr20XoyqSyH1shpflcIne9m4I3SuVLDrSHc9TaO/P/s/XeAXNWZ5gH/Kt1Kt3KOXZ2D1N3KQoBEEAgEIoMAEwzGOOAwjuOdb2dmZ2d3ws7sepjxDh7njHMCJ2xjG7BNkIRybnVS5xyqU4Wu749bVV3dXVX3yh+eb2338w+o69Stc9977nve857nPO9n22RJbpMX5xQRkEwBgbpbw5z8UntZtan1D1Vw9pk+Rddsui+CwaXn9X8vTZJyt1iZ7p2TSFxlyNwgbW6LQSOHPn5B2e8/EOHCTwZKEsQqrvOiM2hp+2FpFakcGu8JYq8SOfq5DmaH5H974zsqufjSSL403DLooOnOEP2HJxg/N4MYNhDvWZ3gSqaTHOJ51NYMU1NTqFQqPvKRj/AP//APsr+/hjWs4T8PTz75JB/60IdIp6XEtwMvG1S70GqXBNhzG+LmgJ7ZwQTWCgPeZjttPxkgk8is2mC3V5sIX+HOlwkvtkGfu6bRraPlkRgjp6dp//Hgqs9XouJaD8m5dEkyp2BTU3GNl/PflSdwa0Utm95ezWTnDGe/3SMbdwl2LWavQVprlkDLWyqZG1ng/DPKfr/6Br/026XaGKBhfwVtP+pjXkEspxW1WAKG8iQTt47WR6sZOjlBx4/KzyG+zXZFpKPfB5ofiaER1CUVdn4XvNEkJXezleobgpz8WmfRufD3DZPPgNaoliW5bX1/HbMjC/kSa6Ugd5i0ELHdXjIZljZvisDVZEUMGGQVHkAiKzXdX0n3rwYZOVG6D3m1J5m4K/9+d80sV1UtQURy1pmxhIx0lahaoBW11O7zc/57PUVL4y3zc1rY8kQ1c6MJTnype/XnWeT8XOgKJ5aAgbPf6V/1uUqtwhoz4mu2cf5Z6X01+/XE++ZXXXM0NUCn/TgTk9JaJRqNcvjwYex2e9F7WsMa1vCfj7m5Ofbu3csLL7wAgBaBVnbgUK8onZXJYPQIzGXn/ujVHsbb4xLBOJNZ5QNj1/mYH08wcDAbH5URLqjeF8QaNXH4kxeWky6KXFcjQGxPgO5fDpYkSfg2O1iYSDBRRrEyh4rdWeWmz7crIl04asWyMY01aiJ2nY+z3+0tS07Kwb/ZSWI6WbYUnHejHZ1Zq0ixB5QdwKq6OYAtaubwJ9vKEl2MXgEy5ZV1fl8QbFqaH6qk8xeDsiqbSvH7ICk13hsB4LSCvfLfB5yNFsZOlxe3CG53Etjm4tRXu5gbKf0sxZCRhcmEondBEDXErvdz4Yf9Zcvxxfb46fvtsDzpComgbg0Zy6qyi0EDiZlkWbJeDrn3+/jn2xX9fsVuL/0HR0te29NsQ7DoipMeV/ir0A4X/i0OTj3dzdxIdh+6jB+svytM/+Hx1cpY2etGdrmZ6JxhunsOvUPHwmRCendXXPPU4kFmbGNMTk6i1+v513/9V97+9rfL3vsaQL7w9584vvnNb6JWq/MEJQ06dnHHaoISgErNtnfX03SPtIE2eHBSIihlP1sJwaRBa9QghkvUalep8W+T6mdPXpjh4m+HyxKUNr27mta3VgJw6usXSxKUyGQIX+7F7DdiiZWRFcxWFpkZSHDhp31lCUrBHS62/3kDBq+kHlOO/AOQTiySnCnvoHxb7Ri8AjMDibIEJQBXsx1B1GHyl5dJdDdb8+pEcn0cPxdn+NQkF35UnqDk3+YgvMND1U3y9VK3fqCOhnvCsu1qbguy4y8aEZwydVCB8Qvx/OZsOTTdF2H7Rxpk210K1j9UwfY/l7/m6Pkp4gNzZJLynMjWt1Wx7cPy1xRDAts+3EBwh0u2bcNdEWr2Bss3SsDgkXHOfFs+sMkRlEJXyP+26DNiCZevU3vxl8P55FjF7vJ1fJOzaRaTGRamyicmcwSllscq2fTumpLt5ocSXPhJwfudG3KZ4pvivlZHvuZ0qesdfkoiKNmqzVz2kXo8LdbijRPQ/lwfp7PJWM8G29LvF4HRJaC3li4TMnhwMk9Qqr09QOM9EVzrVv92VFPLxsnraAo0s7i4yNTUFLFYjMsvv7z0j69hDWv4T8OOHTvweDx5glIljVyn2V+UoORuttB0X5joVZI/PvW1HsbOzBRN/gIY7AJmd2lHI4gqnA3Z2vXP9nLu2d7VqjDZmM7dbGHbB2ow+XUkZ+HYZ7vKEg6c9VYCmx0lPwckFRrg+NNdnPteT1mC0oZ3VNO4X1qUy5WkTcSTZBKLJGX2tHLzWtuz/bJl48SwCUtUvuSHf4t0z0oIPee/f5Hel+UTQFXX+2m6b/V4WInQFS62vK8OvUu+xNTW99ct1Tsvg+RciqmeWcYvyCvsbP1APXW3y8Qfl4htH6qnWkHMOdEeZ+y8vBqoKSCw/c8biOxyy7atuzPEpneVjilyqNoboOIqH456sWy7jp8N0X9orCxBCWDkxBTJySQmtw5bVfmYSgyYMNgFLLHSsQrAiS9J76vJp8PZVL5tYiZFcq78icSRY5LKlCkgsPX9dbjXl77miS920faDXkUEJVuVCWvETGBTad/R9fOhPEGp+ZEKmh+pKNn29Df76PzVcJ6g5GmxlvSXlqgRwaxdktheAVVaxamv9zJ+TkrENu0Ps+mdVava6TQ6LtPcyMap3VjMNjKZDP/4j/9ITU0N3//+90v2dQ1rWMN/Dl5//XVEUeT9738/6XQaI2Z2qW5ni+7aZQQlkDbXWx6toOGuEABTXfO0/WAA0uqivkRr0KC3aBFDhuK+RqXG1SCiUquYH0vR8bOhsgSlxvvCNOyXfrv7VyOl1eYyi3jW2XBUWRDD8mVXU/EU55/pKUtQctSKbHpXDQa3jsREqixBCSAxmyIxU37usFWbMbgkZZ1yBCUAc8iM0aXH5C1/P5aoUVLLiafKbuYBzI8k6Xl5JF9etRSsMROV1wWIXFU+VwESOavyRp9su8BWB1veV4fBLR+jjZ6bZrxNPu6KXu1l83tqZdtdCir3+BTFPvGLs4x3xEnNy2/E1N4eZOMT8tcU7Fo2vKMa3ya7bNvGeyNUXidv955fD3PhR/LErBxByb2+RC6nANaYGUukfHw2emoqT1CSu5/UAiwupEnKvD85lamam/2sf7h07JOKpzj7vR7Ofi/7juXcWmZxuUJuFr5NUum3ctc7841eUvNSGcvN76rCUbe0Jlrmt1Jw7pk+LjzXj0qtwlZlQlvkFVapVajUKsxuPQbn6j0ClVoFKjVTnXN5glJwm511b4rgbFgdb7u0fjbHr2eD9zIWFzN0dnYSDoe57rrrSt7XGtawhv88fOADH8BsNvPCCy+gRk0jW7hafdtqghJg8htouq8C32Y7AN2/GpYISip10Y13o0vA4BSkz4ptzGvViGETqFR0vzBE2w/6VpNlst8TgwZaHo1hdAmkE3DhB/1lSRTeFjueZnv5m89WQup6fohz3+8pe72aW4NUZOc2uZgmtZAmNZ9mMVl+HnY2SOv0gUNjZQlKANawCZvM/AZgr5bmACWq6j0vDNHz62FZJZ6Kq7zU3SG/h2irNLP+oQoEm3yJqXUPVlB5o1+2HekMI2emiCtQ2Fn/cIzILo/8NS8BzY9WElKw3zfeVlCGtQw0Rg2tj1fh3WiXbRvY7qTxvohsO0+Ljao9AazR8uNj8PAYPb8dKUtQAoj3zpGMp9GJGsyB8rG+YBMweQ2Y/eXbdf50gET2mpZo+T3z1Gya5Gz5QRnvmycxmUYQNTS/OYatsnQ+uOv5Ic4907NEUCozPPUOAVe9FVd96dhr+PhknqBUucdP7a0FedYVfq735VE6nhtgbjQBKhXWCnNxYrpKhWDXobcLaIUiHVRJsdfFF0fyqrN1t4Zoujda1Lc2qbewaXI3flOIhYUF3vGOd1BbW5snoq6hNNZISiUwNjaGKIrs378fAJvVxjau5851D7P9XfWY/dIGV80tfloer8BSIS0i0uk00wOSA7dWGtn4jsr8Z1V7vWz9s2o2vUtK3toqTAyfnCTes4AYEtj4zipJ8UWlJrbHx6b3VFJ1vZ+aWwI0v7kCg136TYNXautulibVyDVuNry9ivTCIumFNOsejFJ/pzSJCaKKje+swrdZeskbHwiz8Ylqznyzh0P/0Ubkcg+N+8PSi6VXsfGJ6jwx6rIPNrDj/9MIAgwemKBxf3jZ5s3GJ6rzm1lGjw6NXo3OJL2gDXeHWffg0iJxwzuqiVzjwdVkwd1sJbOYoesFScWg9o4QzY/E8m1bH68idr2PqusCND9cycYnqhFD0r1X7wvQ8pbKfNuWt1ZSdVOA/pfHOPHNTsKXu7FWmrL29tPy1oK2b6mk9tYQLQ9XSfZ+ohpHdjFXcZ2X1rctJdWbH4lRe0dIIo4IUtsc0SJ8tZsN76jOt3XWWYgPzdP+o34EUbKLb6sdkDbHNj6RbStINWLNgaVJYeMT1QR2SOot/m0Oqa0As0MLZBYz1OxdChw2vLOa0C7J3p4NNjY+UY3gFGj7fh8qlUQYyrd9e3We7OJqsrDxiWoW5pIkppPU3BZcZe/KPVLAZ6sxS33I+tmqm1fY+7FKqm6WNsbEiB6Tz0ByXkocVO7x0fr4chvW3CZNGIvzaTR6dX6xXbHby4a3L9lw/UMV+cBrbnwBtSZLWEFSLdrwzqW2TQ9EabgnLJVSy2QIXeHKj9ngjgJ7IyVqmu6L0P7zfo5+qo2NT1TnSU2+rXbJhtn1fMM9YQxOnVReT5DGbPhqacPO02LN2xug7o4wW95XS+xaP6ErXLS+rYqK6yR7OxpENj5RnfcRY23TyyQ0Wx+voir7XK2VJjY+UZ0nCzY/GiN8hSf/ectbKqnel7V3dswa7QKv/Z+z2CJmWt9Wha3GnLd37R1Swtbgldq6m61kkhm0evWyMbvuwYoCH6EmuN2Fb7MdzwYbl/95E1s/uJTYa7o/QmOOWCdAJp2h7zXp3a3c52fTu6vzxKLGe8I03b8UyNXsCwAqpgfm8W22sfGdVQhioY+IMnhokvmhBBveXkXtTUG2vKMGd7NFapu1d+0dQZrfXMHRz3Rx4Mk2Wh+vpOWxCja9qxrHOpGN76xCDEqZpuqbfbQ8GqXr5/2MnZsmdJmLqr1e/FvtWCr0bHxHJdZKyd5XbLiKDzz+50Q8MXQ6HS+//DImk4n/+l//K2tYwxr+8/G3f/u3qFQqXnnlFYwGI26CXKe5l71330jtLVlShg5aHq2gep/kc9VaNamFRbqzZZNqbwtQd0cwnxxueUsFW95bhX+LHfd6C4l4irYfSifaa272U3enNE+p1CqaH4my4W3V1N4cxFFnpmZvkOl+aSFZeaOXxnuWFkHrH4pgCRtYTGawxky0PFqBySstaiqu80q+UKXGHDbQ/JYY0avdHP50O+0/HaTlLTHEsOSHotd4WPeAFFuFrnBx+Z83UntXEJIwP75Ay1ti2LJxTXinm/VvXprrBYsOvUvykzqbjpbHKvOkkOAOF82PZr+rA/d6GxMdcZKTSXQmaT7PbTr4tzhoeaySyr1+old5Wf/mGLW3Ld1ry2OVeLObCZ5WGy2PVYIOjvzHBaZ7ZqjLblTm2ubmZGeThc3vq6XqhgD+bQ6qbwpQf/dSkqX50Vg+jnTUi7Q8Vkk6BRdfHCF2g29ZYmD9QxWEd0pzsq3SRHI+Tc+r0lwU3e1dFp82PRAleq00PvROHYJZiyBKG2CRXW7WFcRLTfdFiGVjoLmJBUxefZ4EE7rStSxeargnTNXeALP9Cc4900f97eH8pkDgMifNb1lqW3d3iJpbAixMJZidSkj2zsaRvk2SvfNtbw9iLthwbHmsEl+WkOJusebtDZLCFSqYn5TGZfNbYgQuk+JIZ4NkQ51NaryYBqNjiZDX/EiM0JWSvW1VJloeq8Tk1jHbn2AxtYizfmkTat1DFXnSkqVCamsOGVhMLKLRa2h6oMDeb4oSzcacpoBAy2OVjJ6Z5MKP+xF9hmXxaeN9EWI3SPbWu3Q03h1mol1KNoZ2SWO20N45MpbOpKblsUrWP1pF3W1h/Nscy+19VyjvI4aOTzA7soBGJy1zvZvsy+xde1uQujuXxuyGt9ZSe6v0b/d6yd66bJ6pZl+AurtDtD3bz/HPdtL8aIzq7O/kxmzO3pV7/RJpcDFDZjFD6HIX4Z0F9n5LDJNPaltxnRdvNnm74e1V7PgvDUSzMacYNi7zEbYKM9P9s3RmD5+0vr1KStSq1Jh8uiUfkVkkvNOF0akjnZDizsZ7glTeKD0bnU1Hy6MVOOrM9L86TnCHg63vq6HmJj+2KiP1dwap2efP2lvys3qLltf+pQ21RiIlbHx7JcEdDupuD1B7ayB/qr/l0Qq8G210/WqYie44LY9WYKkyYvIK1N4q+WQAnUbg8fvfzi0b76UyVklnZyd33XUXgUCA2Vn5AxdrWMMa3ljMz89TX1/P5s2bmZ2dxW51sEN1I3vCd9H6pmqMHslnBbc7qb87iDmQzXmlFpnqkd5Zg0ugYX8YMSDNN75NdtY/GmH9g1FQqbHFRAaPTjHTv4BW1NKwP4S1wgAqNZ5WG+sfCFGzL0D0ajdVN/owZuMaSTUohCO71nWvs9B4X5j0/CKLC4tU3eCj4prshohWIi85G6X8WOx6D433Reh9dZTXP3EBd72Vyht82c08NY33RXBnD7Jsenc12z5Yh9agYvz8DBXXeKi6aSkH03BvRNrQUKkQ7FoEUYvWJMV74as81BQkyOvvCuPf4sAaM0mkLJWKwSMSiSp4uYvaAtJy7R0hgpe5qLkpSOP+GI33RzH5pFggeJmTuruW4qXa24OErnQzeWGG419qx9fqyBOvfJvt1BccgqvZF6Bhf5TGN8XQiloa74/m40hPq42Ge5diq8qb/VRc65XUAVIpGu+PSvlIpPmw8f6lud5VZ2GyO87FF6S5qPH+aJ7g66y3SG2zxA+dqJE2P3M2vC+Cu1myt63aTOP9UbSiloWpFIvpRULbl0jSDfsjeQKLJWqk8f4oBruWvt+OkkouLtuQqLsrTGCrFC+ZgwYa74+ymF5kbixBcIcrnxvJ2zubBzK4dTTeH83vLQS2Opbb+9YgoWzMabBrsVaZSWXzOb5Ndhr2L9mw+uYl4lYqJeX79DZpDLubrTQUxLKVe/35HN3M8AJavQpnfdaGTZZl9q683kflHp9U9iydwb/dmY/bHXWiZMNs6FhxrZfKm/y0/7ifk1+7SMO9ETytUi7NVmnK2xsgcpUXs88glWjTQv094fymtxg25O0NELrSzfo3x6i5OYRvs526u8IEszGnySe1NXolnzByemrZIbra24MEL8/a2yWNQzEkdbjyRh9VewN5G9fcGiR8lfQu58asyS1w5FPt6G0CDfdG8t+tuslPxW4fqFRoDWppzNaKpFOLaPTqZWuHyht8xHIHALUQ3OrEWSeRFre9v57Wt1flx2xst5fKPcuJAT2vSMQ9/1Yb6x4KL9n7Gg9VN/nyMVD1jQFUGhVzIwtYY0Ya7wujFbVkFjOEr3RRfbOPqc455kdS1N0RoOHOII33RhGDBhr2hzA4pU4EdziovTXA+WcHOPrpTmpvC1Bzm491D0Qwh3U07A9h8mpBpZbG7B0B+l6fYPDIJO56C6HLnTjrLRgcAg37Q3kf0RRt5t33vo8a+3qMRiPPP/88JpOJJ598kjWsYQ3/+fjBD36A2WzmX/7lX9Dr9USp51r1XWy7fDOhy5dIGdX7gnmShkZQk5hJMX52AoDANhehnZ48ybLq5gDrHqzA2WDBHDSSmElz8TdS/OHbbCea9bGo1FTe4Kf5wSg1NwcwegSiV3lZmEpk4zIHFdcu+cLYdT7EgJHUwiIGl47qmwMYHFJs6Gm2Ebvel4+Pqm8J4mm1cepr3XT9coDqfQFJCQhJSS9HjLHXmNn6vvp8vmZ2JEH1vkCelOGssywTATC69Zg8+qwdpH1BS0RaJ9urzdLvuAXQgKNGZLJjJk96qt4XyO8RWqMmqvcFJGLJDQGqbvITunIp/qi6OYA9G3OKISPV+wJoBDVtz/YxfiG+jIRTdVMgT3Qy+fQ03h+h9pYQ7iYr3o12otcs2bByjx93kzR/Gz2ClEvQqBg+PomnxbbsoHrFdT48zdL8rXcIJBfS9L4s5bzcTVZie5bi04prvHnCjWDVYnDq0eil+NTZaKFq75INI7s8+DdL8/fM8DwmnwExKNnbUSvm9/lAmvsD250k4mm6fjlI+ApXntxiqzTn96hAUqsJ7XAxO7LA/IT0HHOkFUtUsmGOmBLY7sRasbQfWnVzAEetFHOKQYNkb6PU2L/ZiUqrYiF7oKtqbyAf4xu9AtX7Agii1HZxcRGjfSnnFSu0t1tqq3cIpOfSpBNp7FVLpN6K3V48LZK9BZtWGksegXRiEa1RQ+UNS/aOFthbJ2qo3hdgdniBth/2ojVplo3Z8E43gS2SvTWCmtieADNZroC9boUNr3QT3J6t6qGRxmzTfRVU3SiN3VX2zuZP471zTPfOotZJwawlkhuzWXtvc+bjLICWR6vyOS9zYLm9fZsdRK/yMHhonLZn+qi80Z+P4YyerL2zBDhPqzRmM0A6lcHbasuPWYNTamvI7uV5mm24sjnG6lsCbH53bT4+FWyaZT5CDBiY7J6h/zXJb9XeEcK3xSGVuDRqlnxEJoOzTsQSkfwSQGini8C2nL0l32mJmBk7F8deZc7nty1hPaEr3IR2LNml+mapv8c+10VqfpHqfUFq7wjiarIQ3O6U7J2tpFB1cxB7jZnOXw4y1h6n+uYAJq+AYNcR2OrM5081ag23XnMnt9bdT3Wshs7OTq699lq2bdvG3Nx/fiWAPxSskZSKYNOmTbhcLmZmJPbrmx9+M2++7a1YNU5MTh0Gu4BgkSZls0+P6DXQcLu0GNIKGjQayUEYXQIGu4DBIU2mot+A1qRBZ9QgiGBw6jFnExF6m15q69IjBgVEnwHBqGXg0Bhtz/ZjdOnzGxiCWYvBLmB066m/M4yv1YHBLnD0Ux2c+FI3Jo8eU5YgoTZJ/TV7JAfkrLRisEv9SYwlMHkNGH1LGyMGu4CYVSNKzaeXsQKNPgMmr35ZW/d6u0RcSErkheRspmhbo0MgsNlJ/R0RrBVGDHYBvVWTtaEBo6ugrVNA9Bs49/0eRo6PS21tWRsGjBgK2pq8Bnwb7JI9zZK9jVlnaPYZMBacQDG49MxPJmh/rg+dRWpryl7L7Dfkv4cAlogJVzZhIJhVUtus/S0+49KmjwBmjwFNdlJAELL2lmxo9hrz5DIS5JMbue8W2tvsNUhjS1DT9/IoidnUsk0ro13A4su29UhtHbXShGUK6DF6Cu7VIeTZtEavNLZGTk5z+KkLiH4jRnfBM3cu9cHoFJb6izRmje6CZ+PSI+au69CjEdT0vSJtDItBI4aCzTCj25Af31pRh8Ghzyc1zH7D8rYefT7p2fvSsHSCyFNg74I+mb0GTNk+HPmP82gFTd5OZr9klxxpxuQzYPIZGDwwQSK+uNzenuyzEYR8W7PHgCVmZMeHmjC69Hl7m3LPxiw9Z5Nfj1qjpveVEXp/M4rRuWRvk0uyt2AVlp6rS0/1vgCb3lMjPZusXYzurI/I3p9KpSKdXKT9x9LJKINLn7/uko8Q8s/G7DPklduMriV/Uugjjn+xk3jvHAa7IJHcBDB59Ziy9labpLZmr4HJ7jnSyUW0wtKJWclHLH/v9Rbp3/4W+7LxYvQtP9kpmLRMXIgzP5TAEjFidOkxeJfGpcmz3EfMjMxz7tk+jG49BrsevVWdt6HRpc8vwIxOAb1dj9aoxWgVlvsIvwGDU08iDme+1YfRKWCvFqne4yd8hVuyS3bs5d77+rHtrB+7itbWVhKJBP/4j/9IdXU1Bw8eZA1rWMPvHwcOHECv1/Pf/tt/AyAajvG+97yfjbpdgPRem/x6VGoVgl6F2avH2+zA2SRi8ujRaCVfoVKrMPuW5h6QfLLWqJV8pkePya0no5F8nNlvwOKXTvYb3TpMLj3xwXnO/7APk1tqq8uuoyWfa0Tv1NH6eAyTR49g1nHwYxcgCSa3gM6sW+pv1tc17Y9iCRgRA0aSk0kMdi0mtz6/AVDYduTMFJmM5MMBdGad1DYbR5p9BkweQ16ZaHEhTTp7WlsQNfk+A4g+PSa3gcb9UVofqcLiN+bnTnTSdXO/a/YaMLn1dPx4gM5fDKIzaZZO5OiQ2nqW+iAGjESukhZgJp8xP69CNk7I2t/s1qPTa+g7MMLAa+OYg4Z8DJFrm3tW4cvdiEFj/nNLwIjZV3BdrwFLluStd0nx29xQItt2+TM3e5d+Z+J8nMXUInpb1t5BIyZPwfjwGxGzCbGLvxpGq9fk4x7zihhI9BsxB/REd3tx1puzdpG+K3oke+fb+oyY/UaOfbqDwVfGlrU1+wz55wRgDhiXKdWY3Et2MXmktros4cbsN5KaTdP7m9FsWwNi9tnk22a7IQYN2CrFPNnF6F6KKYzZsaLJjtm50QV05oK532NADGbtbZPGrN6ipe0H/cwMzC2LT80+A5asDfVWQWrrEBh8fVyKOZe1Neafo84oXdfo1rPuoQqiV/qWrQfMPgPmbPJMbZTG9/iFaU59oxvRZ1hub78RU+662TErhg1selcNriaLZO8s0cvsXz5eFtOLTHVKaz5T9l1Ap8s/G0vB+DZ5DPhaHdTdHlzyEdkDGqJfOsk2O5jk4JPn0Fuk2NC/2YHRkW1bxEeMnZsmQwYx2/+iPsIptfVvdiB6DbiySVGdqM/6iFzMKf331NOSUoCt0owrq34piKrlPsJrQK1R0fPbUSbaZhH9UrJSpVYV+Ag9mcWMFDe69WhNGrQGyT+s9BFmr57B1ydZTGQwufXU3xxk/YNRzH7pfcwpqBhdAqGon5re7Vy57hrcbjcDAwNEIhH27NnDGtawhv8cvOUtb8FoNHLu3DlAxf13P8D9ux9B1NoRRK2Uj7IKEuHaq8dRLVKT3fAQTFrUGonwozNrEX169Pal/JjRJqATNWhFLWJAj5jNTemMKkSfAb1dj8GpRfTo0dt0dL84QvevRvJ+FECtl/pgdOoIXeEkuN2J6NNz/pl+zj87gNm/lD8A8m39W+wENjuxZOe+VDyFOWjM+1ipj0vzQGIqBWoVakM2N+U3YMnOf6hUmH1GXA1W0Eo5r3RikfS8lPMS/cvjGjFgxLfFSeM9UWwxE6LfsMzvF/ZBDBgx+/Wc/c5F+g4MI/oN+VilMI4BsETNhC5zoTWo0eqlmDa3Bjf5DMviMDFgZHZonvbn+tEaVNm1cTZ/4F3e1t/qxLvBLv1DK103lz8zugr6oJXiJ03uhLE2Ozdl4xqDS8rfabPx+Px4ElWBOI3oN+bjBqMj1xbGzk4zN5LIx2E5++fIWoZsW3PYSOhKN2LAsOzAn1gwn+stOkS/gemeWU59pUuae1bZO5srEaW2uWy42bfc3ubAUqyiMWkRjFr6D43l7W1e9syXNvq0WTvliObmFfa2BIz52Gro0Digyud2TJ5sH7KhmDm41PbIp9oRDFqMrqwNndmcXFblLNff8fNxUvEUot+ImLW3IZtb1RpU2bZ6Kadq17L1PXXYY+Yle9uzbbPxoOgzoDNq6Hx+gMFDE5K9vbl4TxovgiU3ZqXrBrY6aH4khhhYeud0Zl12fGdz1Bo1qblFel8ayT/HnP11Js2y8W326nFUiTTul0hwlqARczY3pTZKbY0ugY6fDDLRFsfsM0gERG32mQcLY0UDRofA/Mg8yZkUgnHpxLxkl8K1hB6DRepD+HI3togZtb5w/SjdW2Yxg9EuMHYmzsJEGrNXwB4zYXTn3nv98vfTb2CqZ46Onw2ht+skG2cJZJJfKoiD/QbMbulzrSC11dt0BW0NkIKuXwxj9huwV5qoudlH4DI7os+AwZYbW1L8XznbQvPYtWxs3UQymeSDH/wg1dXVHDt2jDWsYQ2/fwwMDFBdXc0tt9zC7OwsFd4qnnj4PdQJGwDJl4t+Y55Qba+UyuXaKk0YbDo0OjXptEaKy3wGrAVznMVvwGDTYnTq0Vt1WIJGtFl3YvYZpXlKpUawarCEjMT7Zrnw434EUYslZERjyPoWr4AlaERj1Eib+hEjepuOU093k5xZxBIyojNLvtPk1WMJSgSgulvDuBqsiD4j6bk0Gr0GS8iEPrt3anQJ+dhquneeTDqTv45GUEltbQVtQ8Y8YSg1k1pS1dNI183NEUaHHkvIRN2dYepvD0vxRm6O1rCsrcElYAmZGDszyYUf9aERNPkcBoAlZMznIgw2He5GW/6gnsmnz8/1IM39OVK93qpDbxXo+c0wI6empDk4WOD3Q8Z8Ls3basPb7MDsX8qt5WwI0hyX20vViWosAVO+9JXJZ8BS2IeQMR8DxXvnSM2n85UnjO7l/bWEjPmYue+VEXQGDfqcDZ2SvZf6YED0GfE027BFTcvt7ZTsnYM5G9e0/6if4WOTWEKmfBxpsEv2zsWOos+YPziYt3c2PhVsumxb6TOTX08qnmIkW2ZODCzl5fTWbFvj0p6yo96C0SPk+5+La7QmabzosocLpnvm8rlWqa1pad/SkG0rahk6PMFk+8zy51iwltAIS+N7om0Go0tYFkNYQsalPbfs+DbYdFRc46Vmbwix8JkXxLaa7Jgda5ui7dnevA1zRC8pr1LwrEImjB499XeFcdZbsm2X7GIt6H8qsZhXDdNn7a01LLUVC8dAxETkCjfRqzwIYtbe+lxbI5agkWQ8zamvdGGwCZi8euw1ZrTGrA2X+QjpuhMXZiCdQczmeIv5iFyMaYkYcTfacDfasm3Vy32EU0Clgo7npL1Tb5Mtf/gEjQZL0CiRKVVqjE49Wr2a7l8OMX1xToo5w5I/lHxEdm84s4jBKfkpvVVAZ9RK8V5g+bthdBmY7p4jNZ3GEjIS2+2j8e6ItB4LmPJqTWLQiMNro/LiZq4M7cHv83PgwAGCwSCPPvooa1gNVSYjU2z9Twgf//jHeeKJJ/L/tuBku+b6om09G6xM984zP5wgdLmDifYZZgaKy7bFrvdgqzBx9NNFan5n2XiF163dG2DgyDjtMjXhAbb8maR4cvBfldXzrLzeW7wMXHYYuJutuBusnPlmealpALNfoPWxGqZ7Zzn++U7Z9oII0WuDtD3TV7Zd8yMxjj/dCQpKrtbfGcZeI/LqP50p285WY2aye0bRNQGaH44xfGZStjTJtg/Wk0qkef1jbbLXrLktSNuP+2T7YK004W600f7zftm26x+qwBo189t/PiXb1tEgkpxOSApEMrj8vzYx1T3DCZk69QjgabAy2T5FQkZ9e9O7a9BbdLz8D6dlf9/dbMUSMNLx00HZtp4NNjSCWvZZhXa5iO70ceab3bLS7K1vq6L7xSHGz8hLiuf6m5PDLoWGe8JYK0Re+7czisZh1U0B5sYX6C8lYY80VmwxMxd/OSx7PcEpsOWdNcT758qWbszBEjMSvdLLyS9nx0ARGUNbtRnBrJEtnQhQca2H4HYXZ77dI2t/gB3/pYH5qSSHn7qw/IMi8oy+LTaCW50c/vQFSBbn3lbt9dL+Y8n3ha500vvr4nYdSvcyVzPI+TbJp8ZiMTo65O21hjWs4XdDU1MTp09L84IKFZu5Fodu6ZRS7pQqgH+LjYGDkwBEdjrpfmG0RGmRDE1vinHxpWHGz69W5yi8JkDr4zEEs4YDT15YVVZkJRx1ZupvC9H5i0EGDk0WXlT67wof5V5nYW58npnehZLXbLw3TNfzg8yOrCj9VCREb34khtlv5NC/nSU5W7r2eA7hnW7G2qaY7S898QQuc6LWquj9dfmScSAp2rS+rYaR05N0Pld+jnbUi4yfVTaPOupFgttcnJSJO5xNFupuDXPhx30MH50s29a3yUFiJqmoD9FrvUx2xplsl1dzuewjjcwMzXH8c51l2+lMasSIifH2+OqSgSvQ9EAUa9TMKwpiJJNPh86kY3JlvfQiv7/lffWMnJzk/PfLx97oJDnx4ZMTZceKdF0I7fTJPn8gXx7l9X8vHyf7tzmwRk2c+5Z8+ZFcH/ROI/GeMieRdLD1PfUMn5igU0E8qTNB7a0RTn2tfNnfyr1+On4+IPtMQYrTxbCJQx+/oKi0W91tQQaPTZR9tpFdbi6+VCSGKeKDNj9RRSqxyNFPd8r+dtVNPnzNNk59s5epgjLSK/1lDusfjjJ6doq+l8eLfm70ahEDJoaPTmHy6hCsOibaZotec6j2HB09bUxNTaFSqfjiF7/Igw8+KNvnNaxhDZeOX/ziF+zdu5dEQvL1HlWIDbqrlhoU5KesFQYS0ynmx1K4Gs3MDM0xP1ok9sgs4mm14qqzcOZb/UU/L/RNYthA011B+g5O0PPr0mXGcjHZugejaPVqjn2ua9VnxRDYYqP/YJEYIesnxZABT5ONjp+tmBtycVfBulcratn09momO+Ky5dikL0D4Cg89L5Rfn9feGqTjp32k5KtoELrSjbfFzuFPtkGZ6lcmn4HE5LyiawJU3uRn+uKsbB6j5bFKyKAohxDa6WbwwIhsHwxuHc46K32vjZa9J5AUu70bHBz6t3Ok5svHvmLIQGo+JSkFyWDbhxoYvzAtqaeXg1Yq9zI7MC/7+w33RrCETBz46FnZ3xfDBqxhc/7QXzlYYyZ0Ji2jp8o/K2e9hZp9Qc5+56JsnFh3V5iBQ2PL5ny5Psi1De10411v4/jnOmRtBZLCx2IqUzamN7h12GMiAwcL8n3FyhdlMmgNaja9u46p7hlFOW2DXUv4Sg9tP8j6rSK5JqNXh8EqMF6ihE9hPONeZyG228vZ7/Uy1TlXspxuDpueqGRhKsXJL5ePPUHyx+HL3Zz7bg+phSI5r8wiwW12+g5M5fsycnI6/1nhvcVTE4xWt3G+7TyZTIZt27bxwgsvYDDIl8ZcwxrWcOl45JFH+MIXvgCAgJ5NXIOoKShrVPCO2qvN0oY+4FlvYfj4ZPEyRepFam4KMHhsKl+GaBlWvPc1+wKYfXqOfqazZO4q9z2jR6D+jjDdLwwzdraglFaROAmkw1HphXTZclbhnW6GT0yxMC6/IVJxnQ93g5Ujn2lfVpmiFJwNFmaHFpgfK31tW6UZQdRK9pSDBpruq2C8bZr+V0vvyYCkSjOjoCQaSCpA/k1OOn5Sfr/X6BFovCdK+0/7ZcvHWaMmFtMZ4r3yCi3uJitz4wlF/W19WzUzA3Oye7gaQRIpiA/Oy5avi+zy4G21c+hj8nvYgk2DRq/JH0ws3QHY/EQtQ0cnuPiizN6YBjxNNqZ758qOlVxbb4udocMTsn2tuyOE1qDh1Fe7y7azRk3YK810y6wRCvtgdAjly8RpYP2bYoyenqL/YPmxmmtfsctL1y+LcAMK4N1oZ/TkBGkF+5cVu724G20c/3z7Umm3MghudzLZPVt2HLqbrIycLlLGr4gPqs+qoebXaSX8GoCnxU50l5uz3+0l3rew/PMi36vc42Xq4gyjp6aLfi6YVZi8BiY65tCJGvQ2HfHe+aLXnIh10zZ6momJCcxmM9/5znfWDukVYE1JCYjH41gsljxBSY2GXdxRkqAkiFCzN0BDtlRA72/HSxKUIMtoLlB3yaNI7evhI1NMXZyl58XSyXRLzED4Kkl27eDHz5clKFkrTVz2kQZC2XIDRQlKBQhf6cFRY1nd1yKYGUjQ9dKgRCgqg/o7w9hqzCTiyE5uoV0uLCET4cvdZdvlcPY7PbIEJYDGuyNsfXedomsCHP9ipyzpBWCqe4apbvlFfeQaD74WB8HN8vVUo1d68G905AR+yuLEl7o4/pUOZYSu28I07o/JN7wE+Dc4qLstgqdV/r5OfaObQx+T33wDiF7tzUtRyqHqhgDRnatrNq/E8OvjzI8vkJyT3yQ6+sl2xQSlit1e6m4L50vxlcKZb/bw2v9WRlACSRYxtL38Nac6ZvMEpXUPVuRL1xVDYkx6X499WRnhpmKnF2vUjMFbeiBOXpiRCEoCbP9wPU0PlK7Z2/WLYV7+P2ckgpLAMjnRYhg6MUnPb4skrYv4TWeliN6iXd22ADmCkrXSSMUuD033F6/r7NWEqOjYhA+pPE1nZyehUIi/+7u/K3v9NaxhDZeGf/7nf0alUuUJShU0cJ3u3mUEJVhK/DbuDxG7xps/mVqKoJSDwabDXr3aKRbb1Oo/MEb/oYmyG16x6z2gg/FzM7zy5LnlBCWpo/kFSNO9Iba8RyqxOXJyuixByeQXsMVEwlesqOFe4gzB8a900vnzgbIEJZ1NR93dUoza89KILOkkuMVJcKv8PA6QnF3k4JPnZAkqkV1uGu6K5E+Ty2H8bFyWoASS4sHsyDzDp+STS5FdHmpuCsq2AwhudRG9Wj6WADj0sdOc+Y48mca32Unj3VHsFaXrtP8uaNofo+724nNYIZKzixz7Qoc8QQnQmXQEt7kIbZOPv72bXAS3uPInC8thqmuGifbyiTWAgdfGFROUAFrfVkfjPaVjDgCScOCjZxURlAD8W9zYKsV8Wb5S6PixRFCy15jzpetK4cTXuuj82YAigpLOJG0uhq8o/wwuvijFRuGdLrZ9oAaTN3siscAH5XDoqfY8QSl0uXOpbbHr/maM8QszRTcgV/pGnQkMDl3+JFwxzA2lGDosvac1+4LU3xbKq1mt9N3e83VsmtqNFh2ZTIa3vvWtNDQ0kEwqYIKtYQ1rUIRUKsW6devYvXs3iUQCASPXqO9aTlCCJT+ihbpbA1RlSyCNnpouTlDKQvQYMLqFfEmkPIqs3eI984yciTNwZKLk9fR2Db5NNlRqFaeevriMoLQSBreWze+WSvsCxQlKBQhud+FeZ13e10xGSniv2HhLxVO0/6SPs98vT3gI7XRL5TBSyBKUnPUWnPVWPM3KYqTeX49w+KnyBCWQkvTNj1SXb1SAjh8NyBKUAMbbZpjslJ/LnU0WIpd7cK2zy7YNbHISudKD1lB+DQ/Q8dNBjn1eGeml9rYw9XfIxAeXCGvYRNO9FbjX22Tbtv2wn8NPyROUQMq9hhTmPav3Bonu8si2G7swzXT/nKKDDOe+3aOYoORqstK4P5pXcy2F3pdGOPzxC4qeFUBwu5vg1vJ5v/mRZJ6gVHmTXypdV2ydpFKRml+k/Sd9nPmuAkIhENjqwllnweAuHR/NDSXzBKUNj1dSe4u/ZNuRk9McfOoC093zqAQVwR3l7dX32jj9B+XzzgDWCvOyMs6roFLT99oEIJGvqvZ4qLnZl/+sEKLWTkXXFupUGwF47bXXqKqq4l//9V8V9WUNa1iDMvzsZz/DZDLxhS98ARUqGtjMLs3tywlKkH9HQ1e4qN7rzysgliQoZWHyLFf6yKNI7DVweJy+A+NLG+dFrutptoAG5oYTHPlM+3KCEiyLk0I7Xax/sAI0EO+bL0uk0IkaPOvseJvl51GArl8OcuEnfWUJShpBTThbzmrszLQs6cS/2YF/i7J9JtJw6itdsgQle42Zhnsi+dJvcpgbSsgSlEBS7ZzsnilOPluB8BVuKveUnpcKEbrSozjvd+LzF+j6hXwexRI103BPFGuBwtIbgao9AWpvDsk3TMOJL3fJE5SQRIaiV3vxKIjn7DEz0V1enHXyz3aye1Y6mCiDqe5Z5QQlJFX+2ltkbJCGE1/qVEZQApzVFtzrbHmlslIYOiwRlIweQXZ/tutXQ1z4SZ8ighIaiSgklyfOqWg5as20PFaZ94nF1mpnv93D2e/15Nvr7RpWIevzxs5MMnRscjlBKYeVflOTU8EvTeBOzGTy+c7ILg91twbzimArfay9M8rGieuwIVXv2rdvH9u2bcsfHPpTx5+8ktLdd9/Nt7/97fy/69hAVFO/rI1KrSKzmMHTYmH4zDQkpHrRfYfGUaVURTe1fFtsuOssnHxafnHkqDXTcGeInldHufir7CmaIgFFtjNs/bNqtAYNL/+jPDkHAbY+UUvH8wOMHC/CQMw1M6tIxKXfFJwCiTKTe+UeH9YKM0c/1a7o93d8sJG5iQRHPn5Bvj1g8ArMyzBlmx6MIlh0iq/p22wHNQwemCjbrvXxKgBl93aJ8LRYFSnOQFb5SYYtfanwbbWzuLCoqA9KlZQEEQLbvfQfnig7Zi4VZr9AMp6QVWcCcNSJjHfGFZN/lMK/zUHF1T4OP3Uu/26UQv2dYc5+R1kiJHSFi9Blbl772NmyfZZ7DwvharJQf0eE4VOT8icBkcZi5CrvagWw3ESfnRZy76IgQmKm/CmwjU9UMXY2Ttfz5YmQAE1vimCPiZz4ahdTpU74qdSSHxRg+5/VMzs0z/EvdC19VgK2ahMVO90c+3xpBnvoSie9r41BQvLVgwcn836+EIl0grH15zl9+jTpdBqj0ciZM2eIRqOy97iGNayhOEZGRqisrCQelxy8HhM72ItOtyI5nPUB7maLFL/owNdsY/D1ySX/sAJN94fp/NUws/2lSUE5rHsgjMEhcOj/Ls33pUhKjjopThs+MUXbD+STCtFr3NiiJo5/obt0PJe73SToXToWRsuoKOlgw1uq6Pj5oKT0IxO6194SwLXezokvdZZXminsjk1XlkihM6lpfbyGzl8OMKIwlqnaG6D9x0UUFQqgd+loebiSC8/1M3aqdJz6u0BnAoPHxHSX/AaMzqRGbdSsfg7/v/y+TYe32Urvq6NvqJKSe72VxcXMG24vS4UyW8GlqWRdCpofjZFeWOTU0+VPoV2KShZI8f3swBznn5Ufj0rHQOvbqjDYBF795+x6bEUMtQwqFc2PVDB6dpq+MgqZhb+vM6nyZbSLwb3eRmSnm8Of6VCk6nTZh+uYn0py9FOdJX1djjwU2eUisMXBya91M9MnH4vW3xVk6MQk42eLrF1UanTGRRx1VoaOTKEzgRgySSp3RXz5dGiQ7sRZ+vokct3b3vY2PvGJT8jf4BrWsIaS+Lu/+zv+6q/+Cin1p2KdejtBbdXyRmoVLGawVhiYHZTUeJz1Zqa6ZkglpM9Wwhoz4G6w0v6TEus/9dL3jB4tTfvD9L46nlfFLJfzWvdACKNDkMrqrsAqH6aF5geiXPzNaNkT51p9hlS2VJtg15KYKM368W6w4ayzcOYbPbJxF8CWP6tjbmSBk1+RJ1wr+X2A2G4vJr+RUwqvqVRtp/b2IBq9hjNfl1dvuVQoUdvJwRw0MNOnUPZJIWzV0qbL5AX5XNqlKCn5Wu2MnpXKqb1RMNi1pOYXFRF6xJCB+VHlKllKYas2U3VDgONf7JS9t+jVXrp/JZ/rASlHV3GNjxNfKE8u04paxTY1+QysfyjG0OExOp8fKq6mVAAxbCB2rY8TT3eVJfjl30UtUlxSpm3DPSGmLs7S98pyYlGxgzPRq934N9k5/a0+pksdbC2IgzY8HmN2ZIFz3+1f9dlKGDwCkctdnH+m9Aayq8nM6LkZSIGjzsT4udllPjmHVCrFaMNZTp8/RTKZxOPx8PrrrxMOyx+IWMMa1lAcc3NzXHHFFRw+fBgABx42cBUazfLN81we2hI1SoQUjUSOmLgwUzRHDVBxjYfhE1PMDhfPeRV+r+JqN9aoieNf6YY0Ja8JUnnQdfeHGTg8ni8tX3DRVf7I2WDBUSNy4Qf9ZeMkjQDphERUSsqQGGpvD9H/2ihxBbGBb7OD8A43p77RJa+2k+uLUVNemUkDTfdG6Xt1NK9mJYfAFqcsQUQjqGm8L0r3r4YUCR1cEjRS+au5YXkbaASpVJkiMonSnzdqsFWYmGyfllXduRQlJTFoQKVVKSJqXQqMbhllohV9UDIWLxWxPX5UQMdPy+eWLVEjmTSKVLJAEgNYmErmy+mWgpJ3sfCalpCJo5+5IKuUBdK9xXtm8ySjYih8DzWCmnSidJxoDhqIXOGRyOcKfr/1sUoWppKc+Zb8QU1nnZnILg/nvteXHxPlfGT4SheTnbNMF8mxq9QqMqoMtqhJUjLVgOjTE+9bKL7f6Jik3XCSnp6LqNVq/v7v/56PfOQj8jf4R4w/WSWltrY2dDpdnqBkwsp1mnuLEpRAIgzU3hyk5UFJXaPvZYmgVAqBTQ4sYZMiRaLxrhkSM+klObASECxSUHD0i10cl1FDqd4XwNEgQgIOPHm+LEEpfJWLzX/WIBF5QJYYYYma8rVLZZGAY5+7IEsm8myw5QlCcgQlAK2gQa0tvygF6bkBDB6akCUo5SF/WQSnwKZ31yBG9PKNs1BKUAIUE5S2fbiBiuuUnfwfPDBxSX1QgkQcup4fUkym2fr+OmrvkGdCzwwoIygBkjLPJRCUGu+N0HCP/IJ7YULa8TEH5dngOYJSbryVQzq5iEqjytdlLYWcTf3bHLS8pbJs29FT0xz74gVFBCUAW0xEMOtWqyStkE3MvYsb3l7P1vfVlr3m4afa8wSlpgciZX3fqacvcv4HvXmCUkkFKJUaEjA/kZCIaAoQ2u7E7DeWfRa9v5YISgaPQPX1fprfHM3+3PKXX9AI+E+voyG9FZAWmhs2bODOO+9U1Jc1rGENy/HII4/g8XjyBKUNqqvZpbu1OEEJiUhUfaMfnU0LSZYISkVgdOuwhIwEFCr3THbPMTcqX9ZKpVYxfm6Gs9/rLUtQ0pmg7g5Jtaf7lyPlCUrAlrfXsOlx6bR7WYISYHIL6K0CtqhJ0UbZ+Wf7Ofb5C7IEpXUPVeBskk4GySm9GDwGVBoVi2UWkDnosrXC5QhKAKZsbfn5cXliWd3tQWr2lVfhK0RyFsWkm+TsoiJySu0tATa+U5lKQXIyKZXQe4PFYEZOTCkmKEWv9bLlveXn7xyU2gq4JIKSpcJE69uq0Ck5XKcgBgcYfH0834fceCsHtVaF1iiv1pAbA82PxLBVle/w0c+1c+SzBeubEvL3AGgzGOwCtkj5a+Z+37fJzub31uPdVPqU38iJSQ7/h0RQcjaJRK8qfyryxFe7OfmlDjKLGQSxvKHj/XPMT6YUEZTQga3CVNb3JufUDB2R1iD1d0Wouz20NB5W+HRLr491w7uw4EClUvHpT3+aiooK+vvl/cka1rCG5ZiYmMDj8fCXf/mXZDIZHCof1wv3FycoAVoD1N8epDqreDt2NktQKgFfix1HjVna3F+JFeuqueEUc2PJkptqOWiNUs7r7Lcucuobq0k0hUne4DY7tmoTqkUVJ750sSxBydloZtO76vJxjxxByBoxYXTpQaPsTOexL7Rz8uvlyURi2EDD/oii3wfQGjVodPITo1aUHsBU56wsQSkPBfOt1qBm3UMVmIPKS0ApJSgBiglKG95WRfAyZSf/Jy/MKCIoXRJSUj5RKZmm+ZEYsd3yObr5iZRixaF476URlCqu9VK5p7zaI8DCpDTPm9zyeawcQSk33sphMbmIWqtCL5Mfy9nUUStSd1f5HN3s4DzHPn9BIiiB7JrIGjJisAsY7OXjxNy72PJwjA1vrijb9sw3e/MEpcobfHk1tmIbWt2/GuHMd3olgpJKvVplLodsHDQztMDUxbmin62Er9mGLWbGYC/9LEZPSQQlraimZq+fujuya6gVvlmr1eJrW8eGzLWoUTM8PExzczPvete7Sl57DWtYQ2l84hOfQBRFDh8+jAYd29TXs1lzbVGCEkiko7p9AXSiBtLkCUrFoDFqcNSKOOuLJ9FXfm+6b474wHyeoFT0mlk3PT86z9nv9CwnKOUUl3J5LQ35Si1jZ6ZlCUoN94Spv1vKt8uRInSiBqNLwORTFnMMHhrn+Jc6ZAlKFbu9WKPSwlOudJzeKqDWqllMysd+GqP0PJUo2Ag2yVcnZ+XjiMB2J6EdymIeANIoIiiBRBZTQlDyb3bm41XZa86lGTsjT1C6VMT75hUTlJyNFtY9WH7+zkEpQSnXB6XQOwRqbw3lx0U5lDl3vwzT3XN5gpKS62p0arSC/MVz72Jsjx8xVH5vsv2H/Zx+ulMRQQjA7NXLXjP3HloiRlrfWo2jtnRZmJm+ec58SyIomXx6PK3lVbBOf+si53/QD5nFJUWjEsitS1eOiaK+UgPOOgve5tKq66qMKl9queJqD/W3L42HVfuN4zYa+i8nrKohk8nwF3/xF9TV1TE2pkwR648R8quLP0Jcd911PP/88/l/72APos65bGGRGzz2WjMT52dIjCXoPzRGx6+GS07sYlDA22Kn46fDHP10l7TxXsr3CbDp8SouvjTM8LFpDv3fEiSeXOmQN4WxRc0c+sQFEmMJEuXGrADe9TZsFSZFJauGDo7hbrAxeHyifEMBiXT0aflyUbYaM3W3hjj6+c6ypfBy8K63Y3LrEUS1rGoNwLHPKitZteFRidzx2v9RJrmsVEHJ22JFbxVQaeSdf8PdYWxVIoefOiNLvAlf7Sa0zc3Jr7QT7y1vN8EpwGKGxbR88CSI0PRANT2/HVYk6X0paH44Rnxgjg6F5TTUMieecmh9vAqNQb1a7adEH4w+A6/9s7y6mBg0kk7Jj7Hxc3FFpQRzqNrrx7/JydnvXpRqlZbAwGvjikoJ5uBpsmHy6vPvXynEL0oJ36b7ImhN2rLvSNszfUulF1ded6XUfSbDWNu0ojrQIBEO7RUiVdcHaP9h6Q2lHGGu9fFKjE49r/xLiVJ4KjVHP92VXxRtelc1/a9P0P9KcRueeroHwakjMZbE4BEIbnXQ/qPiY3N+OEHva2P0vzoMqHDUm/MqAMsS4LoYQWJMtXZw5PgRvvvd76LT6Th48CCtra0KrLKGNfxpo7+/n6qqKubnpUWeiwCbhGukDwuJPNmYxxozMtU5x7kfDOJuEElOpkqu5Cp2e+g7NM7caJrXP36BZJm9Ef8WG571No5/vpuel0ZLtlOpVehMsPEdNUz3znHqqz2MnSm/4RG92oerTsRWZZLUjmQwcnaKxVSR+XtlkkdQMTuQ5NX/fVY2Gb/+oQrmRhNc+FG/bIk3nU2H6DfibrQqIrxMd81y4KPysZR7vZXaW0J0/WqIvpdL2ziH8bNxDpw9J9sOJPWVRQXzN8DWD9Qz2RXn3Lflybsb31nNwniCU19ToChQpsTgSkSv9WJw6i6pjJkSuNdbCWxxcvzznbJtM6lFyEgkunLvBkhkooa7InQ+P8Dw0fKlcnQ2HRvfWsXg0XG6fl7+VL1aA0aHHkeDnaHXJ8q2Pf7ZzvKdXIGt768jnVjk9X8vHyseVqi8CtK9mbwGvM328u9yUiIV6V061t9fwelvd0vv3YoYKtf2wL+cW/q7jrLktbEzE3hb7Qwdly9rCFCxy4POpKX7hdLvXLxH8r8mr46WN1cyenY6T7xcubk2fn6W8fOdgCT779/i5PiXu4r3OQmH/6MtP76i17gZPDrJwtiKxlkffvbbF/FucErtVWCJ6pnuzpIWCuaDy4S9JG0z9NhO0tbWRjAYZP/+/Xz9619XZJM1rOFPHR/5yEf4p3/6JwDUaNiuvRFRa1+uopGd08x+gZmBBKl56H5xhNHTUyXnO8Gmxd1ooe+1Cc7/YFDaeC/ccyn8nhYa7wgyeHiSsXMznPpqifkw6x8qrnHhWW/lxJe7mB9LkZovH8sEtrlITKU40VFefQ9gqn2aqZ5ZptplYh6tdD9tz5bfeAMwevXU3Rrk9LcuKiIdeRptiEGjYvWYth8oI2c23RtBI2g4/HH5vAnA+e/Jny4GsFaZMXkMcoI1AAQvdxHY5OTo5ztk781ZbyF2nY+z3+2RJSppDUAGMmll8V/DvRH6D4694USlypv8LIwl6XtFPraF0pvBK1F7exCDXVAU01Xu9eOoEmVjHgBLxIRaI9+H+ZGkVEpQIbwb7FRe7+fc93oYP186uTnZMauonznYa0WsYZPsuzE/IsUWFdd6MTgEzn67p6SiUt+r4/S9ms0ZZd/rchg5NYVKgc1AIhx611tJzae4WCb2muqUNhdrb/FhjRo5+plOiWy28iCLSi2pImX/3nBviJGTcUZOTi+tgQu+0/XLUXoPjJOKL6IV1fiabfS+XDw/loov0vnLYcbbpb6IQf1SmZOC+cCudbNbez/xhi6OnD3EU089xZe//GVeffVVGhoaFNllDWv4U0Y8Hmfz5s2cOyflNiKqOhq0mwCK7jcavQJzQwl6fjPMdP88yXi65NzhabEy2TlLMp7mxFcursrPF37PWmHE22zj/DP9jJ2bYbxttvScpIF1D8aY7pml47mBJVJGidybZ70Nf4uDyfZZReouo2emUSkQGEAjESeOfUZ+r69it5fUbJrel0dJTMo4dg3YKsywiCIFo4XxBCe+2CnbzuTT03hPlO4XhqSSfDKYG1Z2XQBL0Ihap4KX5duuf6hCcQmx2ttDJGfTdMqo94CsUOEyuJusmDz6SypjpgTmgAHfBgddz/fLE6DS0jsmq5SFtI6puy1Mz2+Hyx5uAInA1/SmGCOnpuh/TZ48IgaNWMPGsvERoKjkXyGa3hSFDJz6avn1zvnvKc87agQ1tqiJ5FxK9l1OxNNojBrqbg3S+fxgWaLXyS8XHNjQUJbcNN03x0RnnCmFhyVD212YfAaGT0yWvG7OJ2iMGpofijF8eko6OFoEcyMJzn9fWmuJIQOBzQ7afjywjNSZ991pOPV0F+mE9Jm7ycJk9wyJqeK+uOelYeL986TnJL9eqOBVOB80ardQrWlmIHKKs+fP4na7+Yu/+Av+7u/+TpFN/pjwJ0VSOnXqFM3NzSwuSsG9Ax9bdNcsa1M4cYtBgcY7Q0x2zXDy6R46fz6CasWRo8xiJv+dutvD6K06On41DAlYmCqd1BAEEMxaHNUiw8dWJEpy9WEL0H9gHK1eLa9YkyUcHP9yB/Ge8qfUKvf4GD03xVTHLEf+o3zy3lZjpml/BYNHxmn/kXyyxBoxoRE0CEZlIjcnv9wlS8IAWPdgBWq1iuMKJ/fBI+No9PJsUzGiJ3a1nxNf71LU4Z5fjdDzq/LyeTnMTyYxzqQUKQNlFjMsphZlCUogKe0oJV8ZPNJJQNFvfMNJSuaAAbVeGQ34wL8o24gESM2lFZ+onxlZQGOSf86X2geAwA4nFr+JczJ17XteGkAMGJnuVqZu4GmxErvOz4H/e67smDv++U5F70YOgkNAo1NIyxbgsg80MDu0UJrUpFLR9kz2nc9kaNgf4cz3e0r2Z/jIJPMTC0x3zud/o1zfB14fw91oW91mpR9UqRGcAoKoRfSXVzBLZDfG6m4JYPYZ6HllvKTv7HpeCqT1Li31t4eYGZrn+Oe6VwckgPVoJc1JKwf5GalUimuuuYatW7fy3HPPle3PGtbwp4z77rsvv6msQsXlqpsw6Vacfih419c/GMbs1fPqxy6QnEzS/1oR9aSsfzB5dQQ22TE69Jz5dp+06V1GvUj0G9HbdEUJG4XxHEifT12cZfDIRPkbzJINLvxokIGj48zk5u9i/dBBzQ0B2n7QT+fPyhA7slmB5jdXYHDqFc9bglWH0hrOyckkrz55RlblR2dS0/KWKi78pF92EQ8w2R5nsmuGvoPymzg1+wJMdM8oLh+neLNDJ50Mnx2SV2cCSC2kSc0rI+Ke/76yjT0AW8yEwaZQefQSIAaNmH1GRaXJLr44wsUXlcWr032zZLJqj3JITiZZmE6SnJG322T7LK/8L/kydjnoTFBza4S2Hw/IKnwNn5xkfkL5abimB6KkZlKcK7NBm5xM8uq/yL8bOWgNGjQGDZaAWSIp5cjesDzDl93srtzrw9ds59gXO5gtcZAjOQvHP9cJgK3KhOg30vvbIu9U1hce/kwHJkdWKUCGADU7lGS6f47+15cSbYUxz8oktq3CjMGmRaeDZInr5vypzgSBzQ6sYSMnvnRxWR/zbefU9L48AUDj/iDWqJHXP9UtPesVG3G6STOVk9uYYJYR+vjmN7/Jq6++yosvvrhWencNayiBkZERamtrmZiYACCgrmS9cPnyRgXvuVbU0nRPiIkLs5z/wQCDR6dZtQhfzOS/U7XHixgwMHRsgtQ8pGYzJQlNWnUGo0OHJWRg7NyKGKJIzmvoxCSCVcf8WPFNp7yPyhIOTn2tm/mpVP6zYvBttDEzNEe8Z162vJnBraP5wRh9h8ZlSyWAdFpYa9KiETTIMiCAjp8N0vHLQdmmlXt8aM1axSrJfa+NolcQbwh2LdFdXjp/2qdIlWfs1DRjp5Tlm1KzaeYnE8rUhjSwmFhkZki+E6l5OKLwIKFg12IJmZi6OPuGk5TsMZE564IikpISwlEOqdk0SYOyGHRueAGDXVBEuDnxBeV9AKk8mzVsousX5YnnQycmsMVMTF9UtqFkiRqp2uPn5Je7yqpGdfxogA7tgJLXCJAUC/Q5haTCuKsENr2thpmhec5+q3ROr++Vpbio4lofXS8Nl+xPvGeeY1/qZG4oGxhpIZNaHUPlMHh8ksUUS+9dYbyzIuelNUile8xegZGTLPssj8wiqWx+uWKnB1edmdGz0yV9Z37PQVDRcEeQeN88Z77bv+S7C/yneKaCLSkPv+VZpqamuOyyy7jjjjv43Oc+V9wYa1jDGnjyySf54Ac/yOLiIgIGtqn3YNQsV9At9A8Vuz04a0SOfa6D1Lx0SHql/8jFPBqjhsgVbszeOF2/GCY9ly66ZsvB4NBhdAlozdpVhI1VsVIaxs5P59U/ipKTMot5ssHw0UmmumdZGM/6vmJkbk22BNqrY4oIPBW7vdgqzBz7QocitRa9TUCjcN4kjbLraqDx7ggXXxpWpJ6zML7AyOlJxs7K359/s5PZsfl8JQk5nFMY+wHMjiaYU1jZJDWfJjWnbJLtPzimSCEKwBI2YQkZ33CSksEhYIuZ0ZoF0ony9zh2bpqxc8r24hKTKdIJZeMnnYC50QQJBbHtwniCw/+hnJyNBiJXeBg8OkZisnx/ho9Pkk4qI+sDRK/ysLiYoafMWiadWOTo59oVKyRpBNCJWoxOvSI1Kk+zjfAVHs58q7t0+zR5joHBKSD6DcXLxGXjvPPP9EmqZGlkCVDpuTTj7XHGzigbF6Jfj9GtR63KsFiwDi70s6n5rN/VQOhyF7YqMxcKDv0Vtl1MqRjLCseELnfia7Fx4uluElPpVfuNQlpPtHMjabWetsVj/P3f/z3f+MY3eOmll/D7/Yr6/8cAVSajoG7EHwFuu+02nnnmGUDaJLuMmxB1luKNCzbV6+4I0Pmz/pIEk8xiBnutickLcwgi6J1Lp0GLJUpClzuY7J4h3iP/Qhs8Ak37w5z4Qrv0+2U23gA2vL0KvVXHq/+sLJGw4780sBBPKlKqQYCNj1dz/nsXFRFolKLx3ggqrYpTX5E//Qaw8V3VqFQqXv+/l+D4lfRjfxh7rZXDn2qTLTdnqzEzN5ZUXOLs9wWDV5A2Zn4P3bj8vzYx1T3DiS+Vlyz/XSCGhDd0DP2u8GywMXxEPqDc9J4aBJOWV/6XclUlJfBttlN5fYCz37uoSPHM0SBSfUOAgx8//4Y+85a3VDJ8epL+l1cEoEUSPb7NNqpvCDJ4bEKSdZVBw91hHLUixz7XrkhRreneCInZlHRyFWQ1MKtu8pVUScrB1SQyeioOAohugXiJ0iUqtYrqm330HxqXNg1lyFXjTRc4ee4Ec3Nz6HQ62tra1jbM1rCGAoyMjBCNRpmbk05leAnTKuwq/YXsxro5qMNVay2rCGIOaJkZSUES7NUmJi4ULPiLxErRq1xlr1eIqr1SeYb2Hw9lL1c6TDaHBJrfFGPgyDidP1uxKC/Sj5p9ATzrbZz6RndxhZYVSXb/VgeOSjOnv9GjqMybEuhMsP7N1bT9qF9ReS9ng0jNvhDnvtejiKR0Kdj+4QbmxhYUnZhzNlkUlzj7fcLk0zE7+AbXb0Miz1ijZl75B+VkHsXQgc6kkyX8/L6hs+kQRA0zMuWtTQGB1keqGTgyTsePL+2UmRw2vrOa1Fxa8QZi4/4IC9MpRaULl6HUZlkmgzlsoGpPIE9CksOmJ6rRGrWlDyYUxko62PaeGuID85x6ujy5XqVWobNpabw7zOlv9UiKdTKwRA3obbqyZcQtUQPT/fOQzP5/93zJeE5n0xHaZl/yn2UIVrO6SYaC5zh//jwAjz76KJ/97Gdl+7yGNfwp4b//9//O3/zN3wCgQcvl2psxaEtI6BcQHcJXOBk4OlWaYLKYwRzUS+s5LZjdwtLabnE1SclZZ2J+IlmSiLmsG6KaulsCnHu2n1R8sWzOK7OYoe6OIJaQgdc/2bGMQFAqXtv87moS00nFfr/hvghdvxhkblAZ0VkJIld50Vs0ipWRGvZH0Jk0l0R2UYLwVR5CW10c/fyFvCJNKRi9epKzacUlzn5f0IpaUvMpxeSVS8G2DzUwfmFaMRnsUmBwaZkf/f+v7QBs1WZFhK3G+6OYvQYO/uulHeiTgyVqpO72MG3P9i5tgpeBOWigao+f01/rvKTydnIkpZp9ASa6ZhQd2BTDBtbdV0H/oXG6FRxMDV3hJLjVyYmnu5gfKfPMs7FQZJcTgIsvKtsADm6z0/faxPI/riA3WSIGpi/OgxaMDi1zwyX6oVYR3GpjvHNGaiNDeJus6uRk1xFmZmaw2+2cPn36T2rDbA1rkEMikaC1tZUzZ6T9gpiqiVptS+kvZDfWBasGe6XIUBn1Yp2oJjm3mC1zJDA7uBRTFSMpeZqtDMv4uFys5N1gQ2fQ0JsjZxYhjucgmFU0vamCwSMTq9VkiuSoPK02oru8nP1OjyK1JWulCUeVSNfz5UmylwQN1N8epvulIdlycCCpWtXeEqL9JwOK+nwpaHm0krnxhCKVGzFkfMN//3eBYNPIEmd+F0R2efC22jn0sfNv+LXRgM6okS0r+PuGxqhBMGtkiTw6UUPzm6sYODhK36tvbImv2ttDLKYXufCssnVH6Eo3meTiG9oPwaYhssvLhR/1KyJC1d4ewuTVc/STJQ4mrIjzmt8cY2Zonna5fKFKjUaAqhsDdP5iSNH40DskMtbKuLXQ7+rtWlKzKdIJMLoEZocXypbp9DSJDBzK+vsyBKtEOsFA9SnOnj+DSqXib//2b/nLv/xL2T7/MUCh3MYfLuLxOHq9Pk9QcuLnOt29ywlKuRqrgMkvcNn76mi4OwjAue8NllXAaXm0gsa7IwhOgUScJbn6YhAgustL3W3la23n4Kg2o7focNSVqbdYEEQMn5pkZkD5ZHbya128/okVZJ/CEgVIJcXczVZIwOF/vyBLLml5ayVb/qxWcR+MHj0mT3lVlEIc/vcLighKTfdF2PahBolooACnv9HDoY/LE5QA6m4NseltVYqu69tqJ3y1W1knBEm1RymaH4ix/X1/WLK79XeGaX1LLQavsgcjRvQ4GkrXJl3WNiRQc1tQUdvG/WFq94WwVppk2574SvclEZQa7g6z/c/ln8vgoQle+cfTighKIJVK0Zm0OKqU2aPiOi/bP9IglQUsg2Of7cgTlPzbHDJ9nuT0dy4qIigBDB6bYG40IU9Qyvpgc9CILWZe+nuZJLVngxX/Bjs1t65OkqjUqnxwMHpKsu/Gx6pofrgSlaF40JBZzHDhh4PMDiQQHFoue18djftDJX/fcaqaDXM7AUgmk2zZsoV3vOMd5e9zDWv4E8Ff/uVf4vF4mJubQ4WKK1S3riYoqVX5Ta36OwNse3cVOhPM9CXpfqn04khngvX3V7D+XimWWkZQKoKafX6C251YYyX8/YpkjC1qxhoxF2+b/4rU75neBDPD84ycLqKIWeR32n44WJqgBPn4K1dne+DAuERQKgOTW8e2D9XL+u8cLFERwaJDb1Empjp2Js5r//usPEFJJ5VYi93gU3RdgFefPMPpr8qToe01ZhruiCi+duVePya3TlFbe40Zk09ZW0uFiQ1vrSW626uo/f8r2PZn9ay7L6K4vW+TsrEEELrChVNhnLbp7dXU3VZ6Xs1htj/BwafaFBOUdCbY8r46qvYGZNse/viFS9r0NXn1mAPK1ymb311D4/5IaVKhSsVM70KeoORssqCTCUWPf/4CJ7/WWbpBob9JQrxvnuETytTJnNVmjHYd1pBBUfuavQGqrivxHmZjueluiaBk8upoujdC/Z2lY/PkZDJPUKq/IzsP2LI+uWCOADAlbcS6tuJF8v1f+MIXaGhoIFlK3mkNa/gTQiqVIhqN5glKQXU11xruXUZQUqlUqLJxhlZUsfltMSqvl/IUvb8dL0lGUalUVN3opemeEAaHFlIwM5BYul6RhGzlbi/Ve0rMlSvaiz4DJreALWosfYPZWE2lVjF6dprpi3OKCEoAp77exemVPrQg/wdSSTFbtRT7nfnaRdkNrZpbg7S+tbJsm0KYA3rMfmV+FuDMNy4qmquiV3vZ+M5qqSSaAvS8MMyh/2iTJSgB1NwcYMNbleW8bJUmfJvsyjoBuJqsits23BVm8xPK84v/LyC4w8WGt9Zi8il7MAaXFku58V/Y1q4lfJVHUdvQTjeNd0cVXfv8d3s4+O/KCUqhnW42vatGtt109xyH/u28IoISSNUG9HYBc0A+Twfgbray+T21GGzlVdXbftCfJyg560scVs4i3jPPya91KSIoAYy3zTDdN8fcULKsL8rBVmHCHiu/1sxBDBsIX+Gk4hrX8g9U6mVx0vRFidFVf1uAdfdF0JpKkLYWM/QfnGJuOIXWAJvfFqNqjzSeCueIfF/bY2xauBENWiYmJli/fj1/9Vd/pajva1jDHzueeeYZzGYzZ86cQcDATvVtqwlKBfFGaIeT1kdiaIwaElNphlZWVSmEVk3TfVGqsvmPPEEpe72Vm+G+jTYiO92IZdZ0hf7JHjNjjZqWcuelDghnFknE00xdnGWiY8XeRbH1rkrF8LEpTn29S5ZsY41Kfn6qY1aWoKQxamh5tBJnY3n/nYPRJWBwCQhmZXmeuaEExz7ToYggtP7hGIFtyvfujn2ug/bn5PMaBqdA/V1hgtuVXdu70Y4gM/flYPQKkgKNAuhEDS2PVBPYovwe/19A88OVVN8knw/KwVppksgiCuCoFRXHaevujxIrlS8pQDKe5uhn25UTgzTQ9EAFoR0u2abnv9ermKAEIPoNmH3K7g+g/q4wsevL32NiMi31IS1V4NEI5Sko55/tLat2udLfTHTEGTuv7BCryWvE7DdgdC/P65UiFVVc5SW227tqfOR9pUrNwoREUNIYNTTcHZLal/Cj6bk0A69LfQ1sc9D6SAydqMlddNn3BI1AtHMDdeoNZDIZ/vqv/5rW1tb84e8/ZvxRl3v767/+a/7H//gf+X9v50asOvvyRitk5WcHEsyOzDN8akpWxQPgwnMDhC5zrlLVWbU4EUCVUtH2436GT5dPHNuqTUxemKX/lXH6Xx8vreaR7V/D3WHOfKuH3pdG6X2pvFJAYIeD8GUejn7q/GqpwSKnT9Y/EEVv0TFydkqRektyOqW4/jqgWBGp7o4wag2cKeewCpCYTUsnrhT02dEgMn4mrlgZ6ex3e7BElDnv8A4PglmrqDRcaKuL2LV+NHq1ova9r4wiiMpe4Ya7w9hrRF75xzdWDQgkJR6DS89r/yx/7b7XR1nMZFicVWbr9Q9Ukl5Y5MAZ+YRJ9Bo/9gqR7pdGZJ/lhZ8PEZpIKpLbzF3LEjMy3TcnO6ZmRhcwBw0IIopK/DnqRGLX+zj87+VLLva9PErfy8qUQABmBudZvAQ5yJa3VGIOGJnonClL1suRqhruCWP06Dn8VOl+j5+LM34uK2+408Xs8EJZUlZhSSO5U3/DR6bQ6NQMHJiQ/lCgfFTsVEnbj3rxtTggWz+2XAIpMZ5idmSegaMTJdsAiDon16vexNi685w4dYxPfOITfOMb32BgYABBeONL/KxhDf+vI5lMEolEGByUFM4cKh9b9Nctk5AHVknLD5+eQiOopJJBMjFEchYGj08xVOz9LNyszypytP1wiInuWaY6i/j7whOoWcWPw5/tKFsqSaVW4ag3ozVoGDo8yfHPyytBtr6tismuWTp/OlSaoJSFyS9QszeAs1bk7Leyp61kVJTS82lmFJ74HzsT59UzCmIBHbS8uVI6TdYjvyDSmXSk5lLMDsv3Q2dSo7Npme1PkFQwT020zdDzygjdL8qfrjP5dPg3OtBoVUuqfGVQc1MQlVbNgY/Kq5DOTyQZeH2ckaPjsm0Btr6/jqmLs+UX278LdBLxaOjYBJ0/La8mCDBwaEyxDHj0Gg/hyz0k51OKlKsiV3qYHV3ISxmXw8WXhpnsVqbGlVN9slWaZDe2krOQmktJcb9C1N0eZCGeouvn5cfUoUtUbk3MphTJgQOgg7p9IWZH5jn22c6SzZKzkJxdQGfT0fpwBe3PD5Z9Nqe+tjTeam720/bD0knRwdcnGTw+mfd5Ylhftlz4iS91YA6Kku/ULi73lStO4M4OJRk5OUX3b5Ql3obPTKExqElOZn1CTp1FrVo2h7QKu5jTT9DrPs3Zs2cRBIGnnnqKd77znYp+Zw1r+GPDt771Lfbv308mk0GNmst0N2HWLD/kltt4zomop+IZpi7OMdY2s2pTutj3un87Tmo+zfz4cv+2SpQ9q8px7tkB5oaKxA6FxMOsMuHEhVkOfryjtJpH1q9Er3bT/asRxs7EZeccW7WJymu8nPhaz2rCUZEcX+3tEcSAkQMfOyf1QybuSkyl0CosNQ8S8UkJgpe70ItaOhTM7QCpeWnOUaI4I4YMxHvnFSsjtf2wH0tQWc4rtMON2Wdg8PUJ2ba2ajO1t4QQzBr6D8jHU32vjKK3Kst5ha5049/k4NBT599w5aWqm/zYYiKHn5KPC8bOTaIRNCQmlcVeTffFWEwucqTU6fEC+Dc78W12MnJiXFapafDACJlUhulu+Tg+V4rN4NaRiqfLlmYDmBtdIDmTkpSuFIwpk89AbLeXU9/oLvtsxs/HOfikcrLU/FhCcfkakJ6jp8nG0dH2smS9eI+kAhm60oU9ZuLkl0u/w7ODC5z5hrRmczZaSC+kmeosbfMTX+rJ78SYAwIz/aXHSbxnnvM/HGS8LRsLFyofFVGx6/rlMO5Gq+QTVsRPhVCpVKTmM0x1zzF6XvKnmUwmT1Qq9O0GrYHduvuYqLnA8bYj/M//+T/56le/ypkzZ9Bq/6i3lNawhpK48cYbee655wAIqapp0m1ffVBtxX7j2IU4OrNGKsFWbr9RpYY09B8YZ7KryNq58HeyihyDR6aZG0sRl1EsNroE5kYT+dLn5fbvTD4BQdQw0TYjr1aCROCeGVqg/9UxWbK3TtRQe2uIkdOTihWUkrMpFiaUHU6ZG0qUVmRZgepbAvS9MsrcsPycrREgMZ1kflzB/K4BvVVgYTyxquxeMcyPJej6+SDjHfL5Eo1RQ+RKDzpRq6g8ccXVPgRRy7HPyiuYLybSXPz1MBPtyvI26x6sIN4/98YqYWXR8pZKhk9MrlbwKoK+V0dJKbAzSKSj6puCnH+ml0kF9o5e42VuJMF0t3xer/vFIebHlI3T3LgwegT58ZeWxl5yXrlSVGCbk0xaygeWw6XmKxMzKZJKc14aqL01xMzgfHk1sbT0DmgENXV3huh9dbTsnu3FF5fGfWCbs+wYme6Z48hnlso+5vwgFN8fPPdsH6LfULys3IqcV3ouTd+BsfzeJyp1acEFlZrJrhn0Vu2SolPueiu+V6FpIKCvpDd4nGPHjmG1WvnGN77BHXfcUfI+/9DxR1vuLRKJ0NMjvWQmLFwh3CJ9UDhQsoNKECX5vZHTU9JpzpXBworBFb7SSegyJ0e/0M18CSdSOMC3vLcGtUbFgX9tW/XZSghOHZvfXsXM4DzHPltwurxIvwHCu1xEr3TT+/IIXb+Qr/8Zu96Lb4ODw59uXyJyrExMFS5IvALuJqsi0syloOUtlcwMzStWZNn83lrUWhUHPvrGyg8LImz+syZmh+Y5qrDW/aXCVmNmUkmJFEGqR3rxN8NveAm3it1eXI1WxaSwSyn3VnNbELPPoDgAvBT4tzmYGZpnuswiPwfBKaATUFRW7FIhhgRaHqlhoiPOqaeVlSZUivDVbiKXeznznW5FqkpiSKDh7gpOfLVLkfKXUgiimsBl7uUbdmWS1usejGJy6znwpDKZzss+Uk86sciBfynRvsCviWGBlocqmeiKc+ppeUnU2PUeApudnHumN6+cVLjYKvS5KrWKlseiaPVaXn+qfdVnqyDA1nfV0PfaKL2/KZJIzfa7P9HFCX4DQDgc5qMf/Sj33HOPbN/XsIY/Fvzyl79k9+7d+aTmJs1uXLqs0llh3JN9z0I77PhbbRz6VKe00b3y/VsRK218WwXzE0lOf6OvdCeysZKzUaT2pgDdL43Qf2By2WfAqjivcX8Aa9TEkc90slCwoCzlHza/uwqVWsWBJ0vMqbnfUqlBB5sfr2KqZ47z31dWTiKyy83Fl0cku7xBYbrJp6P+ziinvtHNwqj8otnZZKHuljAXftLHcBkZ8t8FjfdFsFeKHHyq7fdSgszk05GcTkqkNxmIYSMGp46RY8qUZy4FzY/GmOyapfsX8gmbSy331vq2KgaPjDPwmjLClFLoTOBucdJ/aKwsWS8HS4VJUdnA3wUtj1Vicht45aOnFfXlUrDlfXUk4kmOfVo+UQdQtTeA3qbltMKN5jxkyo+ELncxdHJK0Xugd+loebiSnt8O0//qiudeJNEdvcZNaLuTth8NMFxifBf6tfUPRTB7Dbz+8fPl353sb21+V4zkbHr5erWwHwU+1xTQs+7eCN0vDTP4ujz5reJaN45qM0e+2L307IvMIy/P/5A4E+h0OjZv3szLL78se+01rOGPCTfccAM//elPAbCrPGwz3AAsJw/lSUhaWLc/xHh7nN6XJ1aRk1Z+x1lvpuIqF6e/3cdcwWZ+4fcKv9O0P4hg0XDkM1k/WeSdzUErZNjweCXxvnnOfLsgH1QiVnPWmam52UfPr0dWlz1idX7N02olcrmbE093kphIrbreyt/SilpctSKDhyfesLgLpA27hckUF19QtnHT9EAFgqjlyCfKH166ZGhh63vriffPcfqrb2wuIwdz0MBMnwK2lBY862yMn528tHJeCuButuLb4OCkghwWXFq5t+BlLqwVJs58/RLjAAVw1IksTKaYHZQ3iNYAWvPvp5ScVtSy+Z01jJ6dou2ZMuut3wHOJgvVNwY59/0eReXnBLuW+tvDnH+259LuVSbuQguBjQ5FBDmAyuv9WKMmjn6xUxHxbdM7q1hMZTj6mc4S/Ss4LW/T0vpIlIkLM5z/QRliYtZ/etZbqLjKzfkf9jPZPrfsM2CVz63d58Ng13H8yz3LPlNplvvCTCYDWmh9MMLg0SkGj0wt/T33naxdJ1OjvJb8CRkyBINBPvnJT3LzzTeX7vsa1vBHho6ODlpbW5menkaNhq2a67FqsoozRWIYe5WJ4FY7p77ZI210l9tvVKmpvdVHam6Rjp8Nl85fZf9u8gnU3Rqk+9ejjJ2ZWX29FQhd4cTXbOPEV7uXlfIqtUfZeE8YnagpTWzJ+Yisf2i4O0x8cJ6eF+X3JkFSVZxoi5NOKD9cLQedqKHqhgAdP+9XVK7M5NNTf0eEzucHGD+vrMqFUoSudOPf6OD4F9t/L6XTBFFDOo0iApTeIaC3aJnqfuPzNpU3+pkZnGfo8IRs20st91Zza5Cxc9OMnVGmmKMYGnBWWxi7MK2oFJnRLciWb/tdUbnHj6NG5Oin20i/wT/ReF+EdCLDue8oIyF5Wm2Y3Po3nHDmrLMw3TerqNSaxqih8Z4I/QfHGD21IodVJMZz1luo3OPjwo/7S6v/F/jP2HUenDUiR7/QzeLCct9TLP/fuD9MOrGYJ3auvF6hzxUsOurvDNDz2zGJXF5mD4LMIu4mC+4mK+ef7V969kW+czr5Gj2ZNrRaLbt37+YnP/lJ8fv8A8cfHe29ra2Nurq6fEDdxHZCQvXyRisGRiIuBd1ao0aRetLM8ALphHzyIjegx9un0eqVnbRKjCUZOT3Fxd8UUUwp0reeF4aZG55nVOa0s+AUSIwl6PzZ0NKp62ILuKzdqm4OMHholJmBBD1D8gSl7X/ewNzIgiJWLoDBIaDSKFdcOvRv5xWVbjN4BZr2Rzn33W7Z0nQgPfv+10aLs9OLYNsH6xk5PUX7j5TL5ikiKAEk4OIvlQVzBq9A7U1BOp7vJ35RXrWg6/mh3wurGaDt+5eWwKi9I0R6Pq2IiX8pm2+JscQlcbsEUc2Gt9cyfHxC9rRivDfByKkpOhUmGEFSGlKpkC3V0/OrEXp+O6KYmKYx6tCZtLgaLPQOySsrORpEGu6I0P2bIXpfLN0+EV/ME5Tq7wxz9gc9kMiUTPSc/PJSgjPnX8rhxFc6SUwou8l4T4Kxc9O0/3K4bG3sHEZOTuKoFvMEpZXI+eJcwJGaSRdwCJZ/thImp4BKBYup8j4/IFQQoIL+2mOcPnOa/fv3c+utt/L973+/7PfWsIY/Btx33318/etfB0CPiV2GIuz+FRtUi+kMqCQFnuS0fNY3OZtWplCiUjN2YZbZ0QRjhaXgykhYt/9siOA2xzKC0tLXVvvAo1/oRldKObrAZ+lsOpKTSQ491V42YQSgM6kIX+Wl48eDy06FlEJ4p5vQDjcnn+5SpHTkqLUiWHRoBGWx19ipaV45r4wcUndniNTcIu0/VhYbtf9sgMAWpyJiRmyPD1edhUOfaFNMVJkdVM5oiffMKbIfSGVUAVn1nRxyJb1+H7gUYrgYNhLd5eH893pIzpYfh8lZ6H9FeS36SyUoxW7w4aq1KFIo6n5hCJPHoPi5m0MGam4OcurLnbL3efDfz10S8UkMGtAZlatmrH+oAoNLL6kBlNkw6/2tFJeZQ3pctZaypUUWRpPLFCdz/gUoGit1/3JEkuZvU/aM2p8bwNNsV0TuA5jqnmN2LLHqlHAehX9fhMXkIjNDyhTftAY1ajXLn9EKBT6AHYabGTf30aM7zSuvvIIgCHR1dREIKJd6X8Ma/hAxMTFBJBIhHpfWPq26q/Bpl5f1XKWQlAK1BjSCuqR6UuHf58cXSC9I72/R663AWFsco6MgOCp1On8xQ2oe+g9OMHq2SA6rSLw2dnaa03NJqZzkChSu4XKqLsNHpxg+MlHyejl/FdzuYOxCnPmRpERQksHGd1YzO7TA2W8rS/abvXp0ZuUp11Nf6VKUodUa1NTfE6H9uQHmlPjVFHT/apDZEWU+uPWtlYycnVZ0Oj8HRQSlbF+Ukt+1BjWVN/rpfXlMEYFn5PhUvqTXG42+V0bpe0W5qnXwchdkUKSEnT99rQCpeS5JORIttD5SyciZaXp/Xf55puIpel4ZYfj4hOLLR67yojWq6PhJ+Xza2Klpxs6dVaxwpdaq0NsFbDGR+VH5/ph8Bpruj9Lz62EGDpVpnyJPUApf5Wbg1VFS86XzPB0/G8j7ECWqUae+3k1KYV4vMZmi//UJhhQelJjsniM+uMBkz3xxlaQVcdLCdBKNTl30s0KoVCo0Bg0qdXZ9XvB3WE5WsmldXK99gMGqE5w8e4J9+/bx+OOP88lPflLRPaxhDX/I+NjHPsZ73/teABx42SJct7qRajUJUKVWIRg1JGZKlQNf+k5yJk1yNl30s5XfmR1KMdUzT1zB/JtZzDDw+iSLC4uKCTPnvncRTan1b2Zpr0BjlNShznyrR57orYHARmdxAkIROGpFotf4OPc9+VK8AGa/AYNLQKNbKX9SHLODCxz+VJsiokpwu5MM0K+wPNfAoXHSc8rs7W6y4m21c/bbPYpJWwkFhI8cFsYTLChRfwI8zTZUWpUi0hFAx0/k9/Z+V1wKYVqwaQlsctJ3YFSeDJOGsXPKiU+XSlDytNjwrLcpEjkYODzGVM+sYoKSYNNQcZWf9p8NyBLUTn/zoqKxnYPoM2J0K68KUrHbiyVk4sQXO8u2y9laEDXYqkSGj5VeB6Tn0suul/MvwDK/k7/22WnmJxLMKqws0PuKpDKfu2Zhvr9Y7n+iPU6q3DtZkPPKAMm5NPNTqVWfFfueRi+V7lz27It8p1G3jZihhg7LcZ577jk8Hg9nz57F6fzDKskoB3lGzh8Q3v/+91NbWysFAai5irvLEpSqb/Li3yJJYR/4t3bani2/6bD+wTAIMH52hoP/dqGkihKAJaxn3QNhANp/NMS575bfuKm41k3T/VL789/rX37tIonnDW+Pse5BKRElR1BCgM1vq6L18Urp3ypV+RMmAvhaHdTeESndZgXmxxOKiT4Ar/2fs4qUi/zbHEt1LhU4bF+zHb1VkC0XU4jOnw0qSgwIoppMJkMmpSxg2PCOaja/t1ZxPza/t5bw1W5FbV21FiwhE0aXsjr31koTYkQv3/B3gCCCp8WquL2z1oKzTlkdYYCN76qRrXWaQ+UeH5f9l0ZFhLZEXHqOKp0yN3juuz2KSwICiCEj5oDCmq4JMPsFmu6Tf+cm22Z4+R9OlyUcFWK8PU5iJsnsgLIJ21En4mq00nBbWFn7BpHN76imaq+/bLt4zwKJeAZbtZltH6rHElsxdldM2me+3UdiLIm1ysyGt8fKX7svweH/kAiSvk026u4ovjmVCzhOfa2X45+TgsWaW/2414klZW5nBxK89tE2+l+dAKD5zREEsXRfAudbcKel5/jMM8/Q0tLC2JjyDd81rOEPCclkEqfTmScoRdWNZQlKOquKxrul97P/tUkOfbyrLEHJ1SQSvVaquX3iyz1c+FH5OK36Zj+OWhMk4fgXLhYlHeWhg+aHI5i8OhbGknT8ZPm1V5aNtEQNbH53FeagQHIyyWypEgHZeK3yRi+b316JGFY2T1fuDeBvdWDyF0xgZZI88f455icSigk2vb8e5dV/OsNsmZICOdTdFUJn0ykmcViCRsVlcEEiW3Q+p6yUSZ7QrqAvOpuO7R9uIHCZssVa9FovLY9VKmoL4G6w4mmyyTcE0IGzQZTKDv4eYA4ZMIeUjS3Rb8BWYcYSMytqH7rSRevbqhT3ZdO7alj3YFRR20w6Iw1rBXaZaJu5pDK3WkGN0aHHpeQZZcdTdLcXZ5N8THrsMx2XVPptqneO2SHlEhE1NwUJbHUpHi8tj8XY+Fb5sZsjKDXdF86vSwtRuLk/O5Sk63npsET9XcH8GrkUzj87mFeYbLg7iM5eYp2hUjM7lOTQU53EexLoTFB/Z3kS0YUfDfH6JyQlDP9mK5GdBe/0injNMROkYXgXajQkk0nq6+v50Ic+VPb6a1jDHzK++MUv4nA4iMfjaBG4VndfWYKSf4sV9zrJ/x//Ui8XXyx+CCj3naobPGgNMDuU4tgXepgfT5UkKAlWLdV7JQLvwOtTdDxf3me714lU3Si17315nPmxghiwSM6r7nY/tfukPEAxgtJKtL45SuN9WV+Xk84vBa1Upqz6xgJ/JLO5Fu+fY7pXWdwFcPTTHYqUi2zVZoI7pHhXCYnDXiNi8hjQ6JTnvAZfn1BU9gutZIZMWmajMYu6O0OXFEute6gC32a7oraWiAlnrRWTR9mGidGrx+j9/eS80EolaJUe8/Wut+FZpzxH1nh/lOBlLkVtPa02tvxZHVpRQWdy+yQKD4j2vjSypD6mANaoEUvIpKxxSiL6VMrkjQDmR5IcfPIcg+UIRwWYHZxnbnSBGYWxl9ErENrqInK1V1F7k0/PpsdjhHeVf0bzYylS8RRGj44Nj8cwB1aMxxU5r56XxkhMpjA4tTTcEyx77cRUijPf6oMUWKMGoteU6Es2Tup+YYwz2X2I4GV27NXGknny9Eyao5/rYfi4tLdQfZMHbTbnVcz/+9rXU00LAJ/61Kdobm7Ok2bXsIY/NqTTaXbu3JknKNVrtpQlKGkEqLhaej8nO+Y4+dXesgQls1/At0Fad3U+P0Lvy+PLrrcSvs0OLNk8QPtPhkhMlWchVN3gxeDUkZ5L039wYtlnKw/r6h1a1r0pgtElkE5kSEyWmA+yfsHTbKP10UqMXmXzdGCLk+AOF0aF8/r8RIK54fl8aSY5TLTNcPST7YpIJaEdLgRRo5jEYQmbsEYUzndIZAu5Mls5qLSSPRURlDSS4rS7SVmM4WqyUnNL+fmlEM56C971dsXtxaABjXJeyyVBsGkxOJVdXG/V4V5vkw65KYCjVqTuTmX7XgB1d4apuknZQahMKkNmMYNGkN9vnBtOKCLsLUGFGDRiq1AwFrNj291kxRqVb9/x04FLqh4z3TtHfEB5zit8lZfw5R6phJoCVN7oZ92borLtcwSl8E538WdUEHsl42kGX5dIUqErXDjryudI+w9O5FXJwzuzPqMYVGqS8TRnvtkvESo1EMnFjCV8+eCRaU5/UyLiWaNGvIV76yu+Y5x3Uj9wJSJ2RkZGiEajfPSjHy3b9z80/NEoKVVXV9PeLpFebLjZJuxZ3qDISQN3owVr1MTA61PFazWrVZCW3mhPqxVLyETl1R46fpZNvpRgwpFZJLLTgyVsQgwKxPuWJsdiah0qtQpnvRXBXHqgr+qaVo1Gq1ASMQGTXTOMnlPo9BJw8qudTPUqOEorSO2VlkprejDKVM+s4vJxoctc6Ew6On+mbDPrUhSDam4N4qy1cOQTZ0koWE8l4ouXVG4uMZVEa1DmeQWngM6oQTAr253o/c0ovcXUtkqg4c4IKo2KV//pjOLvKEXk6gD+jU7mp9oVlWW71D4IZi1GhUFJfGge11wK0SMoUtJ67f+cvaS+NN4bQQwZFY2DgwrLoOVQsduPLSZi9guKStYJToGmeyOc+vrF8uSpBBz6t+zGWvZ9LYfxc3FOf1tZ6TmA8TNxZofm6VF4mkCtUaFSgdagbPrxtdoxOvSIYYF4z+rOr1RCCu1wIZi1ZBb7y9bXzsFdLxH+Rk7K1I9VqfFttiL6jQS2e/IbeWQWQaNZNoe0CJcznqhjIHSK48eP43a7ee2119iyZYuie17DGv4QcOTIETZt2pQ/XblDsw9Rt3xTW6VSLTt9GdjsxBY14qw1M942S8mKw9n3KXKFC51JTfcvRsueAEWtAk0GV72I0SUwfn526e8lvmMNGTG5BdyNVrqLqNKt9B9aowaVRqXIrwAMHhzH5BKI9yhbtJ37dh+2qglmFZYsnWibYaJNPvbSu3TU3RrizNe7ZdVlQFLdcdVZWVxYpE1hSd5LIW9seW8t421xLihUpOz48QDKNDqlkzmJeFIxOcToFBAsyllEl3KfjiqRhruidL0wSO+vlcdrStF0XwXp+TSv/7t8nwYOjjNwULkypd6StYsOReSwxFSShMKyfV0/H1KsRAUS8az10UoGDo3RI6PoMNkxyyv/S1m5vBwCm53MjS0wJnfgI4vwTjcml7Bc7rkIlpX4U2DHU1/pQHDoFRMDBw9PYAkpJwaqdapV5T3KwRI2ojNpGDhY5JTbCiKBJarHFjMS2WGn/SdlFGFzpT6vcOOoMmGrMi4vV1JC0dK/wY7WqObiS8vjzML5RafTsVt3H+fEVxie7efJJ5/kxRdf5LXXXlN8z2tYwx8CbrvtNp555hkAvOooG/S7ljfQaPL5qxz8G20k5xYZOTO/6jMA1GpYlOIDS9iAq87MwlSS3lezuaPFIrGDWk0mnca/wYqzxsxAdv1aTHkjB5VKhbtOXL0xlY/ViuS8dGoyauXl10ZOTytPlqfgxNNdJKcUxF1aqf15Gd+fQ+UeH3NjCcVzb3C7C7PXoJiYO3JiipETynJ7ga0OfJudnPhyl6wKDAApiZirFInJpKzKVh5a0NsEBFFZbmf8fJxX/1l57qj2liBao5bX/++l5WGUwNdqp/K6AKe+3sVUp3ye9MglKF4CGOwC805la4C50QUWJhPoTBpFz/SowtK2OUSv9uKsExXdg9LSejmEtjnxrrcz+PqEwvJ2ampuC9H+XL8seSrfFwXjcW4owcmvdSlep80OLjDROcNImdP/hVCpVag0KjR6ZbGXs0ZE9OsxB/XM9K04XLiYWUUuCm51YPbp6f7NGKq0qqTPBckf+1tsJGZSTFzolQ51azQlfbs1asBZbWZuNElf9qBe7rPC71TomvCporT7DnLixAkcDgeHDh2ipaVF0T2vYQ1/CBgYGKC+vp6pqSk06Nih2YtRs+LU6op1jL1GxNVgYax9lume+dL5q+zfA1sdmJwCg0cm5XNeixm8zVbmggtM984v/R2Kxnh6hw5LxIRtcIGhI/L+S61To9aqQOG0PtYWx+w3KFI5AkmFaKIjzlwZ0Yc8NBKB45yCkqwao4aKa710/WJIUfkzwabBt8kJGpWsymAOSlU0QSqzNdkxQ5/CfZLhY5Nl1WUKIYgaFiaSzCvMvxhsOowu5Syis99Sfp8Gp0DDPVG6fjmouP+XgrpbwyymFjmlgPA/fXFOcRk5kPK7BptuuVJPGSxMJkjNK2O0jZyaYuQSiEcaAervjjJ8clJWbTQxmeLwfyjPSwKELnczO7KguNyfs86C0aeXVVQdO1NQik+BeFn7T/ox2ATFxMCRk5NSnlFhe41es6QgqQCOKjPzDoGxczJl4jKLCFYNnkYrmVSG3pfHSh+Eyfpjd70ZT5OF8Qtx4r0LS5+V8O2+VisGp7BaXbPgOxqNhh2am+jWn6Jn8Twf/vCHOXjwIE8//bTie/5/GX/wSkqJRAKdTkd7ezsGg4E9W29nm7AHk09g/QNhST1GrSK0w0bjvQEQQAwK1N/pY+j0JIc/2YVgU7H+gTC2aoltGdhup+l+iWUqOLTU3u7H7NVz/Eud9L48yvoHwjjqpMSwd4NVUlgCUKmpuc1L1Q0eTn+9l2Nf6SR2rRf3OimAcTdbaH5o6ZRb1U0+qm+XToYd/ng7s0PzeDZIrDlXkyi1zc4jVTd4qb09gDl7wn5hMsngCclxOepEmh+uQBClFyF2vZf6LBvUt8VO05siTHTOMHhoEkvMQPPDFRiyLOeKaz003LPEHN3+4QbC17qY6phF9Ag0PxxDDEltQ7tcy5ReGh+IcvmHm6i9I4TBK7W1xCS7BHe4aHpg6VR1w91hYtf7sARNeJpsND8cw1YjsRX92xyse7Ai37b2jlBeleX4Z9uYGZ3DlT3l7Ntsp/nhWL5tza1Bqm4OZO/bR/Ojsbyqj7vZKrXN2fDmADW3LrGH7dUiqKWSb44GkeaHY3mFlMo9PuruWLLLugcraHpYuh9bjVlqmyXOVFznpeHupbZNb4oSusLFqae76fjFAM0Px/L2jlzjoXH/UtvGeyOEr3aTGEtw/AvtmF36kvZuuCdMxW7ppI/glOxtrZSYsIEdzmX2rr8znFcfEkQ1idkkw6cmJBtutbP+oSV719wWXGKaCkg2ywakng22Zfau3heget8SK7X54RjzUwv0/HYYvVO33N43Bai5bcne6x+qwLfVDhTaW13U3k0PRgnskE5Nn/5mN1q9Zrm971ltb4C50XkWxpNkshNY+Go3jfcWjNn9YSLXeABJuaj54RiBHQ58m+2ErnDR9KblYzZX2iVnb5WgYjG1KNm7QDWg7o4wlXty9pbs4miQBlPjA1GaH12yYTF7u5utnPpKN10vDFK1Z8lmVTevtrcne8LCv8mKya0nsEWyadVeP7V3hPJt1z1YYO86keZHY1z2gUaa3hQldr0v7yMAmh6I5k9vWmJGwtvcGLwC1fsCrHswutze90YI7ZTaiiGB5ocruPDjXhJjCSr3eln/yJJdGu8JE7lGUgeTfEQFqUSKV//5LEaHQNMDkbzfknyEJ2tvHc0PRbBVmzj/vX46Xhyk4mpffmzV3h6g6gZv3t7rHwzjapLs3fvyKDMjc/nPqm/2UbV36YTc+gfDuJslf+JeJxIfnufwl6QEXPWtXqpv8uZP3q5/MIw365MddUY8DVaOfa2brueHiV3vofH+pWe17k0h/NukZ2OrNrDz0Q20pq5GNIhkMhmuvPJKHnvsMdawhj8G/M3f/A0bN24kk8lQW1XH9ZYHEHU2orucxK5zo1KpUKlU1N3uw71ORAwJWCsMmBwCJ77ew3jbLMEdNqr2ePLXrLvVh7dFejcdtQINdwU5+2wfRz7fRXCHg+q9nnxwXnuLD/9m6X0z+QQa7gpgtOk4+oWLjJ6ZpuaWpXe+5iYPgey7qXfqaLg7iDmqY6pzjs4Xh9Dblxbs1Tf5CF0uzT06m5aGu4M4Goygk1Rapi/OEe+RFhiVN3rzJyN0Jmi8J4ityoQtZsK/zUbFNR5OfkVa4Meu9xDNzt/opLnIUS/FQDW3+dn4Tkn1c7J9luhuL7Hrl/rfuD+Ce73kh+w1Zra+r45tH6oHHUSv8Sw7jVx/dxhPq3SvlgoTjfsjBLc6MXuNRK71UlMwn9TdFcK3yQFIqjyN+yPoXTriPXP0HhhZlt+vuz2YVycy+XQ07o9g8unQu3TU7w9Td/uSL6y5JZCfk/Uuqa0YlmJD33YHGoOa5EI6a+8A4Z3urA3VNO6PSKfUAXeLlea3VOa/W7nXTzQ7f0s2jGDPxpHOJguN+yPM9M5z+OMXsFeJS/bO2tCZnZMd9SKN+yOgkxIwQ8cmiN2wpNbYcE84b29blWRDXfbQUWSXm6q9BTa8O4R3kx2QyF2N+yOSAhVgDuqZ7p9lKFt2pO7OEP4tkr1NAUGyoVtqG9zhwuRZOmlde1uBvd1Zewekcerf4qDuzhBdvxyk4+cDkr2vzI5D23J7ezfZqbt7KS6o2hsgsmuFvauW7J2b69t/3M/wiQmiOwvHbARHvbjM3jlM98+RKEjsNO6P5NWJ7DXmvL1BUq+qvGnpWTbcE8adjdttlTl7S7FheKeb6BVuMqlFVCppzJayd+gKFzW3BPJ2aH28Cv+2rL1zYzZr78BlTmqz8enxL7UzNzifj4FyYzanUuXbJNk7h+B2J4466zJ7W7Kn2DytNuoL1gOVe/20PF7J9vfVY3KraNwfXrL3esuy9UDoCi+uBhs6m46mByLLfISzQVzWNrrbi9El0PasRPRreSyGe33O3iYa7wnmx2z0KheVN3o58aWLHP98F/V3BwleIdnFEjVKbW3avA2rb5LehYNPXSAxncK3yYbOBOagQMPdQfTOrA232ai5WRof090LjHfG8ydcxYiOhruCmLxSW/9mG7W3+JaSK4KK/tfHmWyfk3zy/qC09lGr8G2yUnfbkk+r2uNm+PQUR7/Ui84ETfcFsGbX6+51Zupv9+c34WLXudm98SbWWXaQTqc5cOAAsViMyck3PmG6hjX8ZyOVShEIBHjmmWfQ6/Xsab6NDfpdaEVJ+cgc1INGg7POSOX1LtCCwaUlfIWDoVPTnPzqAFpdmqobPIhBab6x15ioulHyxVoDhHbYsfj1HP9yD72Hpqja48IaluYea4WBqhuyc7BaTfAyK6EddrpfHOP4ly7i32DHVinNPZawgeobvfnjkIEtNsJXSX7nzLf7meycy59aFYNSW2320LNvk5XILicGu/TlhYkkI2ekedTo0VF9kw8h67O8G6xEsyrUzjqRyuu9zAwtMHpqGoNTS83NPgxOqa17vZXKgthq4zuqCWy3MzeUQG3QUrMvkFcBcDVZl8VW0eu9bP9APRW7vWhFqa05KHXYWW+h6qaltuGrPAQvc2KvlpSJa/YFsEQluzhqxWVxWOhKd37uOf10N1M9M/kYyBozSW2zNgzucBG6UrpX32Y7NXcEcdRKc7IYNlCzL5C3YWCrg8hVS/fqbrKi1qpJxVOYg9m2WQUe32Y7Fdcuta280UfN7VIfjV49NfsCCPacve3ECmKryut9eFptdD4/RNfzA9TsC2DIzrPu9dZ8bgSkchC+TXaJAPX5DvQWDSZf1oZNFioLbBi92puPl7QGNTX7AojZOdlRJ1J9c4ENd7qX1Ie0UmnooaPShqCt2rzM3sHLXVIJtixq9gVQZc8TrrL3ZS5CO5cUzqtvDpBOL9Lxs35QLWbtrS5q78qb/PkYyORbYe9N9nw+L2fvXMx5+ptdaNSq/Nj3tNqoLFATj+324t1gB6SybHMjC2SyhBH3eiuVNxbY+1pvXq0qN2Zd6y046sRV9o5c5SWwNWdvyS4ao4p0YhFH44oxu8LeNfsCWGPSmI1e56X2zqX1QOGYzdnbVm2m6xdDtP2kl+BWR4G9nYSvWloTVt3kx1mfjWtqRezVIt712RzYFgfRAvWjyr1+XFk1CaNXT82tATa/p4aaWwL4Nq6w9/U+3M1SW4NLi3+DA4NLS3C7g5qb/UXsLf2mYJP8ycXfjDA/kcK32UbdHYVj1o1/S4G9b/ahUqs4/B8daAU1VTf68mMgfKWLQE6pUgvVe31YIgb6Xpug7blB/BvsIKiySm8OgpfZ879TfaMXa1aNvO/AOJMXZ/PPLbTdTmjH8ra2KqmtJWRgqm+Oth9KG/3B7VbCV9gl0pFaTeUeN4466TmaPRrcDWZOfKuPvlcn8G2wUnXj0nOMXefO590MHi1NN1fSmrwOt9lHKpVi69ata2qWa/ijwTPPPEMoFGJqaoraSAPXi/dg1Ig4G8xSLkqtyu43SjGQwanF4NRicuk5+e1+pnvmcdaYlt55pFgrl8MwerREdrro/vUIJ7/Rh6PWTHCbrYC8ZJNUwgGdRUtklxO9XcOZb/cxfHKa0A5H/rqBzTac2bW6xqghssuF0adnYSJNx/ODCAXKe76NNtzZeUojQHSXCzEsgAa0gobJzpm8EpF3gw1Py1L/o1d5MAf0GJwC9lozoW3OvKiAp8WGd6N9Wduc2rZvk52GeyNoBIkk6mm24du81P/wTnde6cXoFlj3UAUtb6lCI6hxNloIbFtS1Q1d6cZWKdlQ7xCIXuXB1WDBFjXjabYS3F7QdocrHy8JNg3RqzwINg2JyTTdLw5CgWpkYLsTZ4NkF50otTU4BTRGDeGrPcvmtMAWZ37u0Qhqold58iR8S9SI3iaQTknX9m124GnO2lAj2cXkk2JxMWSk5pZg/rueVls+n5ezoZiNOc0BA9GrPCTiac5+uwejU1hm78guTz7mNHolu2gEaY+k/7Ux/JsL7LLTnd9PNDizbbOl/VbZ+woX9mpz1oZayYZZNRmjV2C8fZqJ9vhqe4s5e0tjz15tzvcPILDNibMxOw6NS/YGqRpMaKeb7heG6H5hCP9mZ145SiNIdsnF7ZaokciupRjCu9G+yt7mgGRDMSjZECRiWP/rYzjrlkiH0as8iNmDYCafXmqbjRVnhxZIzS8RdZfZ25OztxQbupqsBLYs9blwzK6yd4MF70Yni6lFyEg2zPmIwjEL0loilF07aAQ11bcF8pVqcmNW75DsYqs058fs6W92Ee+bW2XvXGk3a9SUz8uCFDP7sjZcZe+IMW/DnL1rbg2y4a3V+esWszeAZ50Na4VJUpu7zrfMRxSOWZBU2kxeA73ZAxzV+wJLPsK12oaBbU66nh/m/DP9hK705HkEeoeO6FUedNkx66wz533Eiae7mRtZwFFjRiOAYJV8p2CV2tqrTIS22wFITKUZOjnJ3OhC9roaIjtd+bWmrdIo+eSs/9aatPS8Oka8d0Gy4TUuyd5qFZaokfCVS++Yr8XKeMcsp77VDxqIXefK53/FoF7ad8iSnzwtFjbXb2ej5hoyi/DVr36VhoaGPwo1yz9oktIvfvEL9Ho9qZR0ouID7/sgLdsaABBDBixhQ17+zFX3/2XvP6Pkuq4zf/hX6Va6lXPsquqqTuhuZIBgAkEw50yKShRlSVZ2lP9jv+u/lte7ZjQeTXDWeDyyZUuWrDSSbJLKiZTEBBAkQYCIjdjd6JxTVVfV++HeCt1d3X0uRFj0O/2s1R+AOjfte+4+++zznP0oA9aOD6XpeCyOOy3jTspQKmPzK23daTvodfhaZKWEn6HItt9I42t14mt1Mt2/iOSUcMQteFQH7W9TqnCg0+NqthBod+JXB/DF8TyOuK3qMPwtDhxxG0jKzopAh5PQJjcRtcM7YjYCrYoD86ptLS41WdLmxNfqYPP70gS2OHEmbATa1MXzjF1pG7BW27qb7QrB4dYI7pRcdYzutKxUeFIHRG+bE3dGcciRq5TFo/BmlayQlHEkbMgx5VkD7W5c6ZrzdiXslMtlBg+P4whbcCRsuNXf/ZucuJrq2jbLeNscvPhfjtHzk0tK6Wb1uoE2F86mWnk1b86Bt9VBYIsLkyzhCNrw5BQb+lqdOOrKK3pbFLsgQWSXD0fchk+1oV9tK6kOztfqwNtaK50m2YxM982p/UNpa1J3dfnandWBFcCVsuNJOYhd48OTVuxi99faupvr28qEtnvwdzlxpew4EjYcUeXd+NuduJtrshLujIy/zaWQ5xI2HAkbzqTaX9pcuDK187qbHfjalfvvfiKFo8mGp2LDdtcSe7uzcrWt2W/G5rVASVezd7LO3hUbApIsLbGvf5m9K99CBY6EDWfEzrkfDeJtUu1dsWGrA29Lra0zacff6iK8y0PbgwkcSRuSx9TY3kmZQLvyHXmaVXsHa9/CUnvb8avSHi61zyZvCldt6F5uQ/W7kWOKvZv2hWm6IYS/w4WrTgpF2f2gtLX7FbvMXlrg4J+fwt+6tH97cjV7Sy6lrTfrQE6Y8WSUb26JvdXAV5L0OBI2fDl1gS5qxZGwEdjmrNpwub0r373ZYYYSDLw6XrWLN1frW84mO4G2OhtGbeSn84ydmcbX7sCdrbNh0zIfkbAhhyz4N7lwJm1LbOhK26vvxpFUfE/FR0S2+3DGazZ0ZWT8ql0cYQuOeJ2P6HDhTsts+VCL2tZe9ZVWj0nxnaqfDTQ7cCZs7Pp4ju0fa8ablauJK6NNbZtTJNt8rQ4cIcXPbv3NHIFOV80uklKi1af2NV+rA0fYigS4c3aCm9zVyRooPtmv2tublXHELZQXUKoqbXHhTsm4c3YoFnHErfhbHKDX4U7bccQt2PwW9pTu4aYbb8ZoNPLFL36R9vZ2NrCBf8/YsWMHf/zHfwzA7q6reewdj2Kyqb68VcZfN8nzpG2EtznpfCxO0/Ve3GmrIiFRLuNvcywprepptuNrddB8m5/W+5K4M1bMskRhSm1bN0Z4c8ruNPQ6Wu+N4Gm2YY+ZWRgt4Gt14s06qkG8NytXv2N7SMKTtdGhkmJ9OQfeOl/oban5cqtHwp2xk7srxtYn0/jaHNXJOSjjY8Vvmmwm3BkZT7OdlvuipPaFlvhNf7uz6rtNJmXsr/h9X4tL2dmkkjgCbU787bXEhLtZrvpGd7OM0WZgdmQeCsrYWXk2AE/OgV8dM9xNNtzNMsNvTvHCf38TR9SGp2488WadVX/nTChtQ9vdYAJ3Sl7S1tPirPpye1hpK8fsNN8cxtfirJI2ALytzqoNbX4z7ma5FotnHeh0es6rFS+9bTUbmr1qW3Uc9rc6ccSstD+skGH8bc7qWG92mnA3y9XY0N/iwN0sk9wXwGTTE+hwEVDvAZNiN5/a1tustDWZ9GCCQMdSe3uyjmpyyp1RFkZMDhPeNpnE9cHqYlLVhuq7caUUu9hUEocv68LqNVNQd7h5c46qDZ0Ju9I2rMbt7Q5MdZU0va01e9vCVtzNMk51nPW3K2P94CvjjB2fVtuqhD2fSbWhrWozb7Nyns0fyBDa5sG/SWlrchmVtuqY7Gtx4snWxj9/u6t6Dyabau+MGovnFBtW+2y7i+Bmd5UIVm9vj9q24iP87U4CXW7iVwcIbfPgydb6rCut2FtSEyv+TS68bU4O/uUpLjw7rNhb7e8utX/b1YSev8NVjfHbH45jD1tq8UdMOa+tLhavtJ3tz+NtcxFSE3z2kEWxtxr7+jsceHP1pdR1zI8rSVubV7GLW+3f/vZlNmxzYrQamR1eAJNR9REq0avFsdRHdLgItDkJb3ZV+0fFR3hzatsGPiKy24MjaiO2xw/lktJnMzV7+9qdVfuC4g9Te4NE93hwp5T4zqImDv3tjlosXlBix/AOD9s+kiO83YM7Y69K7vjbl/pOd0LG1+ogfWuATY8q/ltWk1O+Ngee7FL/7UzKoNfR8VAET8aGU00G+loceLL2mv9ukfG3OihMFDB7JFxJGy3q4qo3K+NWSV+VCi3+Vhn3RJjbAo/Q3t7OuXPnSKfTvPrqq2xgA/9ecfz4cSwWC5cuXUKPgY/9xifp2N4KgMVtwdcqV783T9qKr9XBpoejdDwcw9fuwJNS5ipGqxFfq11J8Or1eDI2fC12KJXoek+S6C4Pvg4H8xMljEbwtdiryWB32oav1Q6SHovPSHKPl4hKgliYKOJrteNVv0dH3IKv1Y5kM6LTKTtDE7u8+Dsr8y9Z8Ql6Xa2tUx0j2hyENrvofiKJt9WOr02u+ho5asXX5qiSOHxqDBHa6qLl3iiBzU78bRVyiBVfmxOb31I9r09NzLsyVqx+idBWJTls9Uj42pzVfI231bEkLvC3uigXYfTkFGanEV+7C5dqF29Oxt/hrrYNdLjwtTs59NnTnHymF197Lc/lbrbjqztvYJMiB+ZpkcEInnRtXPBkZHztLozGSlsnAZWkkdwbItDhrs7lXSm1rV315Ztc+Otkxqx+K5PnlR3CjqgVX7ur5vc7XNXYCiDQ5SG4SdnAZQ+Z8bW7sPqUvKGv3Ym/Tv7Dt8lFaJsHV7Mda9CCr92FPaj68lZnNd6oXMfX7gIjWL0mfO2uqlSNr8Wh5MMqbTfVjm17R5LAZg/OhGJDT1Ze8m6CnbVnNVqMOOM2dHp1EUK1YX3bYN09+dpd6NWxxtWk2tBSsaGzSooBJSZyRm0MvDKOHFbeo1Fd7PBvchGoiw39bS4l95y20fnuJnybXLU+277U3v52VzXXI4eVd2MNVsZOJ756G3a6q/Gp2ae8m8S1ysJPfSxYuafKdSwupc9mbo6Q2h/Gl3VUcznL7W20K20XJhY5/PmzuNPyyj6rPqvRqMfXruRDjLKR2E6f8h7r+2ydFI2v3YVXjYEsbuX+feq783e4lsgp+zvc1XmfZDdSLpQZPTmj/uZc0r/97a5qXsgRteJrdTE/lmf87Ay+dscSe/s6anFkzUdYCW3z4mt3Vheclbau2pzQa1riI1I3BJfau6OW3zM7jPjanDjVDQOerExwi4vOdyZqbVVfJNmN+NrsOCtExibFz3a/M07XOxP4Oxz41bboy/ha7dWY052y4c3YMVqg691Jors9+NscVeK2r8WOJ6N8N84mK95mOzq9CWvASNN1AcJb6p61Ra6ub8hRK74WOwaVwBTZ6SbY6cSVtkCphK9Vxpu1g16PHLLia7Vj8xnZVrqZW/begcVi4c///M+58cYb2cAG/j3jk5/8JPfeey+lUokdqWt44IEHMNoUv+9rdSzJGwc6nPjaZDoeiRPd7SXQ6cBgAEplPFm74rNUQpO/w4knYyPY6aDjkQTBbgcWl0RxoYQnY18i4RXY5KzGS003eInt9GALmilMF3Fn7IqkaKVqR7tcW9exG4nu8tJyj0IydSVsS+RH/R3O6nhikAwEulxk74jR8XAcZ5OtRvBAjRPaa+SQQJcyV83eESFzS4RAl6tKKvC3O5fGFN3uahwZ3OLB0+zAIKljdKuDQN0YF+z2VNd57EELVr+ZuaF5ivnSipgi2Omuzi1tfolAt5vZgXkO/a9T2EMWAl3u2v13uao5I4vLTKDbjSfnxCCpa7Ddtbb1aweSw0Sg240taCa8w0Nsl4/Q5rrzdtbW0UyykUC3G1nN7bhTMnqjnoGDY2r/cFXHCINkINDtrq4RuZI2/J0usnfF1HdeNx4aVBuqeQmner+KzfX42p3LbOiuxpxyxEqg243BagSDEsPVxyqhLjeelGrDkGIXyWHA6pdovjO6RJY30OnGo65j2vxK2woRxtPsQA5bKUwXa/ZuqZBDlHdj85urbStxYsXelXyH5FDsUiFveTIyoS43k+dnme6bJ9BZyzEarEvt7WyyE1TfY+aOCMl9oVpb1d5OVZbWmVDfuUo8CnS4ltgw0O2uxviOuNK20md97Q5CW91VUk2gy41btaEcVuxdicV9bU7COzykbg7jbXcQ7HLjVsdkW1C1oVNp6805CHS6OPbViwy9PqH0UTWnZPVaCHS7sbhUu+Qc+NXvs2l/iOAmT3Ujodmp9ll1rdqTlauyffmJIoFNLkJbPWAAya7Yxa7GnO5mmWBXjTRICWYGF5bYsCLt62yyL/lu/B0uzG4TU32zGAzFJX3WkajYsNJW8RHOJiVHH9zmqfqIyvfYyEc4kzaCmz1Er/JCuax+5y6kik9ucyzxnaEtLrJ3Rgl0uhQf0eWq2tuTc9S+haLyLYe2uuh6IqVcs9OFpdK/M1Yl/6sWMvDmHMrxXU42PRon0OWo9m93k23pfKBdxpVQZHbTtwSJ7vAgq4VnXEnrUv/dIeNrsVOcK2KwGAlv9ZBTc16umIXApkosqMPf7sDf5sA672Sf9DBdnV0cP36cpqYmTpwQV396O0JXXlVr4+2N3/7t3+ZP//RPAZCwsNfyoNBx4R1OjGYDF3+hll5uUDq1ilKZjkejDB6dZPiwGCNt8weSnH6qb4nE22qQZOh4PMXRL51lYXL91yDJ0PZQktc/r5a5ayRJtAyZOyP0PC0mqUG5jCUoMS9YplELMndEmOqbZUigvCQolV3cKZnX//E00xcW1j8AhWmbn1kUuv/MHRHGTk0xdkKcaRjZ46X/ebFSjTt/pwW9Sc+LfyJWnnr3p9oo5ovCEmHdT6ZZzBc5+kUxrdDuJ9OM9kwJy+xd/UcdTJ6f4Q2R8s0SdL8nzcChMSHNeE+LTPPtEU4+3cfEqVVK6tUhusdH6sYQp7/bJ3T+tofi+NpdvP4FMfk5f5eTyTPT5KcF5RMlaLsnTs93LwrJBIZ2uhl4eVzs3MDO327BaDHw/KcFJUsk2PRIE0e+qK3UttCpvZIiJSdYwj203UV+qij8XaVuDlJcLHHhJ2q/XK1cooq2h6LMTxQ4+4OlciKryS91vTfB4JFJBhrJlTRA95NJjn3rEvmxVUqJ10mcSDI03x7hza+p/nUdCaiZ5AAHzz3HwsICNpuNgYEBZFle85gNbODthEKhgM/nY2pKKee6xbiXoCmxzlEKsncFOfW9waqU0Vqhp9VvIn1jgKNfFZPUCG1x4E7ZOf6tS40bLCunmtznQ2/UK35EII6KX+ejOF+kX/XjjWR76+FRiVdjy0vGrnEtk8tUJbMsPeZXCNFN0HJvjBPf7hWWkLrqD9qYnyjw6v88LXwZf6dTSHLE5DKRuNpPzw/7he/H5DJhD0iMC8QKnlaZ9oeS9L44LCQnFt7lIb0/zPFvXxSS+nJn7aRvCXP8mxeY7V8/zgxuc+NvV6okiqDjnUmcSTsvCI79sWt8OGM23vzqBaH27Y8loIRw++0fy6LT6zjw52Jx6e7fb6MwuygkPwfKLsH1SlnXw52144haufDs+nGsLWRCZzQwUymBvw5caRsd72hi6PB4tTrReghsdmF2mtaVoAOEY6gKzD4TCyOCHwlKZaUK8W+9OAqg47E4R79xsfodriVhaXIZabsvyuEvnV/53Ta4lhyXSN0Q5I0vrlImftm1/Jtk3Ckbp55e45utm6vHrnYzO5xn7IRSPWA9iaELyYO8eVz5pv74j/+Y//f//X/XbL+BDbzd8I//+I+8973vBcCuc3ON7R4hn+JssmD1GBl4VZ2TFYtK1YxV0LTXy+TFOcZOrz93Bmi9N8iFXwwzO7i+1JTRAtk7w5x6+hKFuTXimkp8ZYTcbSFOPqXszF8rfqrEZNE9HvqeF5Q1LZeQ3MbG0lG/Ymo0vMNDfmqR0eNiEqJN+4OEt3s58k9nmRYcs6xBM+VikfmR9W0fvcrLVN8cU+fF3isoiwKi99/9ZBqTbOSgYKyw5UPNlIslYfmx7F0R0Os49S9ic4LsXRGm+uYYeGVcqP2u32tj7PQUJwWkZECp+D5yfFIobrT4TeTujnH2RwNC9nc122l7IMHp7/QJxdXRq30krwty5Mtnhc7vSFqZGy2ISf4BGCFxTZD+g6NCx3hyMmMnxXOrne9NYfVKvPw/BBdUjJC+JcyZ71+C9W5HY9xllI1rP+OyeMepqgdMrpNrrMRXgS4nBrOeSwfGG55vCfQ64td4KRVK9L00vt6tA9B8a4Dxc3OMHl9/vgSQuyvIhZ+PMj+5im8tlWrjhRFS13s5+2OxPHjBM8bzwz9gfn6eYDDI6dOnN3JeG/h3h127dvHyyy+jQ8d20014DMH1DwJiu11cOjRBsZIqWGO90WA1kLjKzdmfiMm8OuIWvBk7555dpf2yHJW3zY5ZNtJ/YEIojvK2KOTDqnTTOnkya0DCaDEwdWGZH1wjjhKV1dKK+HV+Lv5yWFgSavMHMixM5Dn2VXFZM0fSKjTWGiQ9wS1u+g+OiktUWQ1Y3CZm+tePA80eReWj9xfD9B9Y3y87ElZa7otz6qk+Js6sP0ZY/RLJvUHOPzsoJMnnSCiE37M/HhB63sT1AYKb3cKybJ6cjDNu49xP1s/vgdIXDJKecz8Sa9/6UByTzcgb/3hWqH3X+9Iszi3y5j+L5dScaRuTZ8Qk1kD5ruSwlaHD6+fJTLIBg2RgflRsDV9yGel6T5pLh8aEJQ7lmBWrVxK6H60wyYYquU0EgW5XTVJwrThPjbGablD8QlHAPEaLjqb9Ic79aGBl+wYxm+Q0EL/aS893h1b8Bqzw+/aIhDtlo/f58dVvom688DTbKBZKTJ4XmxsOJN7k9ZOvAPC5z32OJ598Uui4txv+XZKU9uzZwwsvvABAQJdgi/n6NdvH9riIbPVw4K/PCp0/stOFM27h+DdWWfBapiEY3OJEb9RxaZ3BvwL/Jpn87CKTZ2qdba1FL0/OTqlUZuL0Mse2yrWcaRuOiJXeXwoGOykLmZsjvPb5HhD4eBWJp2b6Xh4RWggChYRTKpTEJ6ESpG8Iceb7A0JtRe67Hnv+sJ2FyQKv/KU2HU9RSLIeR9LOiEACAxTZuuJ8Uex5LwN7/kM70/1zHP78WaH2WklKe36/g5Gjk5z4pniQJwrJK9F6V5QzP+kXIqxptb1WeNqUhdDB18eFE2bKjSHUT/1dTsrFsvD9x6730XRdiHPPDdC72oRl2X3s/q02ZgfnhftD7Ho/rqiNo18RC8QkGeLXhen5zio+tAES+/wKWUlggQ2gaX+Acz9SAoK1FtgqaH0gwvH/U7f4qNOv6kPlmIX0TUEO/6NYf87cEcCZsPHq3669GD2Xn+bnpW8DkEqlOHjwIF6vd81jNrCBtwOGh4cJhUKUSiVAxz7jA5hM1jWP6X4izsiJaXp/Ob7it0ahZ8ejUU5/f4iFscaL8zqdbslxzbcHOP2dVSYF9VDjq9jVHnp/uWwBa42YLbLbQ/+LKxe8VovXkjf6Of/c8OoEnGXXankwyviZGQZfWWPCV/e8m97dhNVr5sCficVR8ev8JK4NcPLpXoaX61qvAm+Hg+J8kYkegYm0CWGyESgLR4FuN6/9/Wkhks/lwNsmM3V+moLA7dtjFpquC3D0Gxc0PYcoWu6L4m118cKfiJGOtJKUNr0riT1s5aX/evxXuc1VkbwxCDpq5Jd14GmVmb4gZvvLwdYPNyPJJl78jBj5XyuS+wKc/4mAP1Gx4xM50Os48KcC36NOR3JfgMgOL6/8r57GhMTlMEHnO5roeaaP2eFl7VeJXyK7PUycnWV2UKxDuzI2FhcWmenNrx5H1V3LlbFRLsHk2dnab2sgvM3JwtQiYydrnUJn0K9KUs3dFWTk1AyjxwQW2Uyw9YkkF18YZfiNtdu/vvALhnTnMZlM3HjjjTz99NPrn38DG3gb4OMf/zh/+Zd/CUDC0Eq7ZbfywyqJWU/WSmyXmze+2r9yEb/Bd+dKWfCkbZz9ySqLHDrdkuOcSQsmm56RY7PKIvY6qMjKTffV5u+rph5LZawBIwazkemLyxKyq8RqFq8ROWZl6DWxGMfiNtK0P8jxb11cneRQd3+S20j3Exn6Xhih7wWxvNrWD2cpF0u8+r96hNqDQiTqe0GMAKAVOz7Zwvx4njf+4ewVOb/RArawrTYurIPoHh+UEbanVmz/RI6pi7Oc+D9ipCOtJKWdv9PK8BvjVyZnZ4TcHVEuvjDC3OD6OS+jBewRGxMaFr+0wBo00/1EmksHRjn3Y7FYULkx1icRocgUGswGJk6LEWs8LTIt98Y595MBLh1Yh5Co+sgtH8wwO7wg3B+8HQ5cTTbOfGfZ+10t3jFCdOfqBMlGsVVgs1PxWaudc9kxoa1OBg6t7+MqpO3k9V7OP1vnT/T6Vf21ySWR2uvm5FNii5WhrQ58OTtHv7p2jm9xcZGfLXyVIos0NTVx4MAB/H7/msdsYANvB8zNzZFKpRgcHMSExNWme5EqJUBWQfMdQSYvzDF0WJCcfIOP/oPj5KcaL84vz3lFtrvoPyhAEKiQjVrtKwmLq8RR5VIZb4ud0eWb69Y4JtDlYvT4xOoL/8vivNgeHzND80KbzgCS+4I44zbe+NJZIdKLO2un+fYop5/pY1xwPKlIUYmQgjAgTDYCRfoqcV2Ao18+J0TyuRzYQmYWxgoU8+vH4pJLkTbtfWn0ihDEIju8RHb7eOV/nrwiJKXkviCenMxrGuJqLfB3ONGb9QweGhdqr8X2l4PsPVHkiJVX/0Z80ygg3E/9HU6Gj08K9+m2RxKYbAbhtUNvu4PEdQHe/Mo58hMCFzFAen+YvpdHWRgT+17czXbmxxdXJ2cti6+sPgl0VCUsGx+iW9JeZ4TZgXzD8y2HM2mlXCwzVbfZZK2cV2SHi5nBPJOCG0ha7wsz8NoE42fWbn9x8RQnygcwGo28853v5HOf+5zQ+d9OMK7f5O2FYDDI0JCSRG7T7yRpVkpdN3r5lUDd7JTQSzokt478eLn6/6t1mPBWN5K9QSesdNplC1SpfUrAfUmwWkfmtjDlErz8PxSCzHq78nP3RNHp4MX/KubEc3dFkWSjMEkptsOPzW/B7pWYubS+U1gsQH5mkZHj4kzKF//0GBb32sFdFSqZQ3Ty3/loE464jef/25vCZKWDf34cvU2s+6duDhHa6uHQ/+5RqsoIID9d0kSS0Up28WUdms4vXJXncpCH5//jUU2H2MMSeotBqNJRfjTPYUFWM2i3PUDXEynMLhMH/mz9b2zs2DRH/vmcUBWoCrqfTGMPWYTew/BhsURrBb3PjjBxZlq44hh5mB/PV6UORRDsciPZxYeL1oeacERtDBwaFfIpLffH8Hc4mR/JMyRQtS5ze5DINi/5mUX6X1h/12zmjiDeFgehHbO1qkp1VZGWT8Die7zYwxbkuMT0xQb3v2wssDhNmCyGNe9Bp9NhMzu4ufxOetOHOPrmUXw+H9/97ne59dZb132GDWzg14Uf/OAH3HLLLQCYMLPP+nBtd2WjpKdekdEyWvRY3Kal/w+UiysnK86EGUfMQmS7i7M/XJoobRSzhbc7CXQ4mJ8oNCRBLUdkl4vktT5KiyX6X6rzAasguMVJ6oYAJoue8z9bP5ayxyRiO71Y3BIn/k+D8bzBtdwpGbNsWpukVIfp/rl148V6XHxumNFTk2KEIJVwJLIzvNJ+92+3Md4zzfGvi5E5Tz3Vz8DhCWGC0raPZpkemOPE18UWFgBGj4nv4J7pneeo4A4oADlupTC3KFzh5sS3+gANsZ1GHBGspFmFCdxNduEE4XktC1LA2HFtGui2iMSmx1Jc+MUQl15afxw//rXzFGbF2WQml4ntv9nMyLFJTn57/fdQJSgJku+OfukssyJkIxVjp2eqso0isAfNyBErwe1ezn5v2XyoUfxigqa9IWY7F3j978Qqa7beF6M4X+TgX6+R9Ku7Vu7uCOVimYN/KZAk1OuIX+ujvFjm4MmztdMVS+gM6lhQPw83KfLlZrfE2PHZNef15XIZq8uEwaxHko3rjkfd1uuYCvVxdORlnnnmGXK5HCdPis2pN7CBXxeuueYafvnLXwLQJV1LxJJTflgt7gIkm0GJvWQj8+OLtW+jQdyFwUB4qwt7QOLsc6NLSQUVEtSy7zC114teMigkpVXuof4em28NoDPqePVvL6inWyfndVcEo8XAK589u2a76v3cHEIOWRg6MilEivB1KjLmVq/EnEDl7dIizI8uMHFefM5/6G9PYZEF58wqmUOUoJS+OYS/08Whv+0Rrobz6t+cqEqYrQd/l5PEdUHe/MpZoSpNAIvzCBOUAPqe10BOMiryXVN9c0LvFxCu6HS5ePm/ayOGS24jRrOR2QGBhdBFOKkhJ7g4j2aCUvqOMI6Ildc/t34lq7nBBd744llm+sR2cQNk7gjjbXEKEbiXkBEFiE1jJ6Z57e9PM7+cuL0GZobmmRkQzJGhSALagxbOsEbcVYf0TSGCnU7Ge2Zqi1lrIHqVh8Q1fopzRUZPrpKLq9tJH9zsJLXXT6lYZuj1qSXVI1f4U72e0FYHoS1OZkcWGD6i+q36qkjLxo9gpw1X0oY9bGLmUgO7LhsLLE4TRqsBzAblfa0ythgNBvYbH6c/9SqHj7xOMBjk2Wef5dprr13TPhvYwK8Tp0+fZtOmTSwsLCDrPOwx34HOoOR4G+WvKr9JdgOSbFjx/42OMbuNeJvt5KcXlQpH9edrkPNyxC1Edrop5ssMvTG1bhzlTFpJ7w9iMA4zdGT9ikhy1Ez6ljCSY5hLAkQoSTaQvD6AzS9xrtHmngb35211YPWbhXMQswPzGMx6YRLF+KkZDv/jGfITgoECguQkFZufzDDeMy1cmWfw0DhTF2bXJETUo/XBOPOjeeFKQQCzGsa1/MQi538mvhHL7JEoF4rkBSvc9B8YFarodLk4/5NBzmuwDShEotnhBaE+NHxU2/qbFtuDUi2o9f4E/QdHGRG41rkfD1DKa6glY4DN788w8uakUIXv6vMKkppOP9NHQQO5bbpvjrnhPGXBQySrAXdGZn48T/9LYv0odVOY2aEFTqy2waDi89S4LXtnmNJimSNfWj33Wy6Vq0SlzK0hdHodb4jkW/U6Etd5oQxHvlS7n1VzXigS5PZggakL8+vmvAxWHSabAZPVsO54lDC0EpQDvJ7/BX/3d3/HxYsX+d73vrf+M7yN8O+mklI+n0eWZQoFJXjerb8dl9kHrE5QCm11cOmVlU5gVZJSXaUTyVZeKuVUv6Nh2SKR5JUwmlSWnUAlJVezlXKpXK2ktN6ikxyXsLjNDL+xbPFotWtJ4G91MCzI5AaQZB35qbeeCeppk1mcLwqRUUCx5fbfzDL0hniVmsgeL4F2F6//nVjZaK1ouilIsNvNy/9drHpBx+NJLD6JV/5CrEpTaKcbd0Lm+P8RW+iL7vGRvinMmR9e0pbo0QBNlZQuA7v/oI1SXryyVmi7G09a5pjgYmjm9jD+Dhcv/TexRFLHYwnMXolDf62RrSyI2DU+vM0ODv/zWTEinQRX/U47M5fEq18BxG/wC0v6aYJZp7laWaDbyZBg9Q7QXkkpdq2X3p/Xgpj1qil5Wu2MLd9RUn+tZf5U8hrJj5UaV8BahbAK4O90MHl+uqEUYP3Y89z8t5hnBpvNxgc+8IGqfOkGNvB2wmc+8xk+9alPAeDEz1XW29ZcEDa59Nh8ZiZ6Goz5q5CUKt+FyQn5iXLD32BlzOZKW5lYZzdB/Tca3u5amnxZJ15bTTpktZjN2yEzenQVokaja1X4W2vl2i8zRI/u8WmKDza9K4ktZOVlwTETE3Q8mGDw6IRwlSat2PyBDNO9c5x+Rkx+a8cnW+g/OELvz8WeO3d3hOETU8Lkmh2fyKEz6MQrgmqE1kpKWhG71kfT3hBvfv288DNn74ow2jMtTF7b+uFmpi7OCkum7fh4jt6XR+i/QhUkNr0rycDr48J9NHtXBP8mFwf/4phwRShHkw2AqXNrHKBRdqQCk01HYXYVH9CAZO1tkxntmRWuDObtkJkfXGB2uLB2DKVey5W2UJgtMFu/kLVGJQBbwERhpkBheplfN9SOqffrJqeOxUpXM0E533g8aDTvD3Q5GT46syaBY2JhhBcXlSpKra2tHDt2ZapybWADvypisRh9fUoe5GrzPchqzmu1/u3JWBg7tQZxaHkys7LADBgtRRbrp0f1/mrZt2a0gNFqZH5sceW9NIgNLT4jRrOhWklpzbRjqYzFbcTsNa2MIVeL14zgjFnWjwWXPcPi3Brx32XGXfaouitfkNBhtOjZ+uEsA4fGOf9TwYqFLTKBTpdwVRitCGx2Edvl49W/Fdut3rQ/iDNhE85VuJrtuJvswlV5XGkb7Y80ceaH/QwcHBc6Riu0VlLSiq0fyVIulIRt6kzZ8DbLnBVcDA1tdxPZ4RPecZ+8IYgjZuXIP12ZHJ+nRcbf5uTkM33CxLJtH8sx3Sde/QoguMXN4Kvjqze4zLiruoW70b2vEu+4s/ZqBdrlc8RGsVVwi5PBV9eopARL1h78m2SGj9Ti9tViocrilRyVVlaja0AircDoNNTGgOX+bxXCKoCcsDA/XmCxUTUY9V4oFjk0/xOGihewWCx86lOf4o//+I9Xtt/ABn7N+PGPf8xNN91EuVwmrG+iS7p2zQVho9WAxSM13Pi72nE6ow6KYLDC4qx4zssWMFcJL2tVo6zAnbExXl8Vex2pN62VlOSohenVYp3V7k9jNSJRaJUZTe4L4s7Yef3zZ8TuxwDJawNMnJ8Vkkq7HDTfFWF+JE+vYO6u4/EkQ4cnhOW3Iru9TF2cY7pXLFZueySOyW7i8N9fmfVVrZWUtMLdbCd7V4wT/3JRWGYtssPL9KC4NHLuvhizQ/P0/kLsnbU/mmDg9XFG37wyai9N+4OM9UwLP29wq5vYbj+v/8MZ4epaZo+E3oTQJg+tMEh6TZWp7BELM0NiJDR0euwRM4XZxXUrO1ViNotXSdTPj4rlvCTZQLEIxZmlweNqOS+DVUep4kINUF4Uz3k5kzamehfWJM4u5Kf5eeFfKLJIR0cHBw4cwGpdWwXj7QKx1eBfM6anp7FYLFWC0g2GR6oEpXrodLrqX3Czg/T+AM13BFb81giRnS6u+ngzoa1OKNURlPS6hgQlOSqx4xNp5KhEfjQvRFDqfn8SSYaJ03NLpN5WQ9tDUSSviemL+ZUEpQZI3xLC1+GAPEIEpUC3k853JwHIT6+fkJFkRbYtsS+wbtsKsndE2fRYSrg9wNzoAgOvr7+ruoL+50eFCUrOtI09f9RB/AbxcrPnfjgoTFACQK9tXhze6sXb5hRuP3x8ir4Xhxk+LGYjT5vMVf9PO6GdbvGb0oidv93C5g9mhNtf/PkQZ38kLgUW2uLB0ypuo3JR6c+SLObijv7zBc0EpV2/38bWjzQLte39xYhSDUp0PM/D7OA8oz3iQUz7owmS1wZxpm1iB0iw83daaLk/LnQ/oPiMrvc0CZ2+QlDqeEdCqP2Fnyjkqpb7I9jD61ddqxCU2h6MEt3jWbd9haDU9USS9kdiyn/W+2ydfkngkR9VAoydH86w9TdTjU9aGR/qxojs7SE637W2jXQ6Hddb76c1ugmAv/7rv+aJJ55Y9xk2sIF/S3z4wx+uEpRihhxX2e9YmuSsQK+v/m16JEbLXeGGvy2HTqdjy/uTbPmA4iPqCUrL47VKgN56X5i2ByIAQotSkV0uUjep1S4FdofZoxJN+5UYZ7XS/UtggpZ7lftZlaC0DB2PxXFlbAqRQIBM0HJfVHisAUV2K3VjiMztEeFjxs/MMN2rYTd2QRk3Rckfmz+YYcfHc+LnB1772x5hgpLZp0wkS4uCi4sm8He6CXa5he+n54eXOPcz8V1c3e9Ps+U3xd+bVoR3edj1e63YYxah9oOHJzn/7CDTF8Tfs7/LTXjL+uNrFTox+dUKDvzFSU0Epfh1fq76f9qx+U3rN0apNqWFRDd0dIKZgXm0TI87Hk2SvVP8W4tf52Pnb+VqJMU1UCEoVX1GI9TFLqPHpqEA3jY7sWtWzpOXY/ToNLPDBcxeE5nbg+u2nzgzz+xAEZPbzKZ3rhM7lsrMDhUozIKcMLPtw02Y1YRPuViLvep9fWGyTLlcJrTNwa6PpPG12xvO25fP6ZtvD9B8ix9XyrzmmOMy+9gnvYN0Os3x48eX5BY2sIG3AxYXF3E4HPT19aHHyI22d9cISvWo6+dy1ET2Vj/J69wrflsBgwF31s72J2N4W6xQrCMo6XQNCUomh5Gud0WxBY0szrOSoNTgWi33hDDKRuZHFpdIva2GxHVeJJdS/akhyX0ZQltdOFNWWBSLBeW4hdzdSmy6KMIhMiqybeEd4uNf5tYw7Y8khdsDTPXOMXpKfIwaOzEtTOSwuI3s+t1WTc8w9NqEMJkGQG/QgYacV7DLRWibuMz5TP88Z390iRFBYrU1aGb7J3L4O8VzRlrR+d4U7e8Qf8/nfjrAmR+LS8MFNqk2EizGVdmpLrnFDjj/00HNBKUtH8iw6d1i+Z+xE9NKNSjxghZMnp9h4qz44m9ib5DMrRGcKcGcF0rV9PRN68c5LCp/ctxC7h6x2K5CUErfFEQn6daNgwdfVb752B4P1sD6761CUIpf4yHQXavIuWKurC5YTfflQa8nc3uAzC1qznsNn704qRzX+XiETY9HGieyK+ND3W8ttwdouyekEJIqf8thMLDVfhOdvl0YjUY+/elP8wd/8AfrPvMGNvBviS9+8Yvs37+fcrlMzrSdbuve6mJvPXQGQ/Uvc3OQ5lsDDX9bcZxOR+6uEG33Kz6lnqC0Ws4rtttFap8fnU63PkEJZfNeZIcLYClBaRVITgOhbUr7hgSlBohdrcSjqxKUliG5N4CsErhFyASRHV7aH00ohCYBWLwSmdsjxPasP+etYPKCOt6IEqaKcP5nQ8IEpea7ImxaZy1gOU4/1S9MUDJIlU2f4oT6yHYfvjbxas4Xfz7MhWfFc17p28K0PSywpnSZcCStdL8/jTUopswzdWGOsz+4xMwl8YpH4R1e/G0u4fa65TyBdfDmVy5oIih5cjLbPpLF4hV75nM/GhQmKAFMnJ3VVCUWoPWBGKkbQ8LtvS0OOt+TYh21TIAqQSlxfZ3PWAMz/fNQVCpm+TvWifnLJWb65shPFDFYDUR2rT8vmh8tMD9awCBB+uZ1+A+lMvnpIsW5IpLHSNvDUSRnhajaOOdVnFNyXo64mc3vSeBqsgrlvILdDrJ3BHDEpDXHHLMkc4PlUbLpHEePHiWRSJDPXxnpybcab3u5t1OnTpHLKQsbevTcZH28YbvlL3TwtSnksJnT3x1alZhUj5GTk4S3uhk7WZcoWMPpWANmDCY9JocREeZBaIcLm99CeKeP8z9ZfwCSoxKenIOcxcCRL4rJUYS2uvF3OIWlriI7vdgDFiSZhlU/lkPymCmXYH5E3Nm/9vmzeLN24fb50Tyv/k9xssiW32xm+NiEcPWYcrnM/NgCg4KLFq6sHYvHxMDL48L3dFSjBMdr/6sHSXDwAcVGolJ4oCzaFWYLzI9duUT8wmSBwpT4+UUZxxUc+8oZoT5awZnvD2iyEShVvEKbXVxoVLa0AWb655gT1EytnL/j0QS9vxgSqjCktTLYm9+8QOwqn3hwktcW3AJEtnuxhyxK5TUBYmN0jxd3WqbpxgDnfry+XSWvhK/NicVt4vW/F/uOXBk7tpCF/hfHhdpLdhO6tSY+Ov0S8tJ03xwLIiX19Toolbnwy2EmBCvHNY1txeyx83rfS/zDP/wDPT09PPvss0LHbmADVxK333473/3udwFoNe2kSWpv3HDZwtSp7w5i8UgNf6tHJS6bOD+3IkZbK2aTHEZNJIhQtxujVb9CQm41pPeHsAct9D0/JFRJJXmtH1+7A/+paYaPrB97mVwmnEk7xcVyNam9HsrFsjj5BkV26+yPBzRVUur9xQi9iLUPbnMT6nZz7KtnhavNTJyb0SQZGrvGx+AbkxQE5bQWRgoc+DMNZPICPP9f38QkxnUBNEjhqZgfz2M0Xbm9IAsTBfJTBcqNKms0QGGiIFQCuh4H//qU8DsALqsaZWCzi9nhBWZ61094jp6YwJOThZOXoFSQ8qRlocqgEz2zHO45K35y4MwPLzF2WjzJszC5SLlYxuYyMSsgWVLxGaXiOj6jLnbJ7A+jM+mEY+3m20I44zYu/HJM6H2Hux3IUSuenI2xU+u/N8lhwmA2YPVKLIw2Pr9Op6sm30dPzxPsKjB1fnbFb42OO/2dIRbnSkycXTY/1etXVAwwmUzkBq9jwDzI7MIMVquVnp4ekklt5IINbOCtxvj4OMFgkEKhgAkL+5zvaNxwWWw13Veg98Vx+g5Mrhl3VRaQp/vnmR3JM1m/+3+NuMviUkrMm2wN9JgaXM+ZtOBMWvG32bh0YP35rlE2Et7iwuI0cvJfxebu0d1eSvkyr/3dWaH24c0u3BkZo2wUkkmzyEbKxRILk+Lj35tfu4gzKb5LdXG+xLGvikvOtj4YZ/zstHhFIQNM9s4yfkYsdrEGzVg9EqPHxWMdrbmWk9/qwyiLL3wtzpe4dEB842K5VGJhPE9eUArvcrAwlmcxL14OQmvseO5H/Zz+Xr8wyWfw1fG1Kwo1gFE24muRGXhF7LiJCzPCsi+gVCvL3pNg8LVxof4kWj2/ggs/G2RhIq9JZrBULGkqkhbsdmvyGe5mG4FuJwuTefpeGken162plmC0QGSHGzli4fj/EduQ4W93UJgpMnx4aVJ0tRjJ7DCtXb1uWYw0cb5OVlynW70iivrbmZ+OsjC5zDYGQ0MJuGhhE3aXkxd7f8h/+S//hVOnTvGNb3xj9XvbwAb+jfDpT3+aP/zDPwSgW9pL2NSYYLJ8Ifjcz0ewekwNf1tyXCXndXYWk93Q8LdGMDsljFbxPIK/w4HVK62QkFsNke1evDmZoSNTQpVUvK0Owts8TPfPCcmMGiQ9nlYHOqNOmNRULqsbzgSHm/nRPKef6WNcQ4Wj8VMzwrJzcsxKcIubcz8eFK42M3l+lgUNuRNvi4OJC7PC5y/mSxz9krb1xlf++qQQUaQC0fdVwcJYXlOuUisWZ4vMj+ZBsNBOMV/SLOGmpaIQwAlBFZx6OJJWFmeLQjKAkxfnmDg/oylu8eRkPFkHPd9ZP6ZYGMvTI7gZtIKzPxhQqhcJIj9doFQsY7AaKebXj6MMEnjbHOhN4j4jeX0AyWESe9/lEpEdPoKdLkaOTZKfXP99u1J23BkZR3KaqQvrP7tBMmCyG5CcplXPXx+zzQ4uMD2wwMzQ/IrfGh03+PoUlHVM9S7tQzqDYUVlJYPBQGZwD+PWKYZHLuHxeHjjjTdIp9PrPsevE29rubdnn32WvXv3AmDCzD7rwysbLQuuOx6LsDC9yOmnhhomJ+uPKxeL+Dtl5sfyTPcKkg2M5dU5SetUUpI8RvJjKz/O1SYwzrSVybV2h62QJ1JGnvyoBuLEcoLSW9gdJFlPflq8ZFvnu5solcoc/SexQVeSYdvH2pk4M82bXxFP8mjBlg83Y/Waef4/HhVqbwlKGPQwc+nKsRRz98cwGHUc+5r2gVEUV1ruzd/lJH51gFf//rRmGTEt8LTIjJ0QYzdt+VAzVr+Z5z9z9MrckwR7fredkWNTnPim2LvzdzlJ3xTm5b86oemetH57a2L55KmR/NkacDXbmdCwgOfM2Nf2e8sgeU3kR9eRKln1YKAgPvlrutHHuR+PoDPo1wweyuUyFr/EpoejHP5KX9Un6wyGhmPShfwpzpheZXFxkc7OTg4dOqT9WTawgbcI27Ztq/bBLdKNBE0NdsbUJS+tPhMtdwc5+o1eClOsn9gsFold5ab3hXHheyoby8ISRktQKmOy0ZhMs1oJ67iZ6YurT0KWx2yOpFWsNLB6vVXvZ9XjxOMyk01PYVbc95tserrel+H0d/qESVO5e6N4W5y8+JkrI5VkssGOT7YzcW5GOAnjStuEEmaXf096Wh9OcOG5IWE7acWVlnsD5d3lZxY590PxRUKtsIVMFOYRIzeZYM/vtTN5cZYjVyjebHs4jiNp5+U/Py7sQ9ofSVBcLGmSHln127tcyZEl517mM9aRxbX5TRRmC5r8jBw3M9O3SnDX4Homl57CxDq+plFcZgIKayfm6+GISxgkA+M9c2vP6w0GKJdpvs2PzqDj1NN1xPhVxqSfzXyNvG6eYDDID3/4Qzo7O4XuaQMbeKtx9uxZmpubKZVK2HQurnU8sKKNzqBfsiMztddNqVjm/M8nVvy25Dh1XuKISRTzJWaH6nJRa5Fcy2VlO6NWvkephFGGxQbT79XmTtaAkbmBNRz0snjNaAGjRam8tBYRYPkx1SpK6+TstObDjBY9i/PisVf6thAGo55TTwkuEBhh22/mGO+ZoucZ8UrUWtD6YBx3WubFPz0m9M6NshGjGeZHrhwhKHq1D7PdyJkfaCNDacGVlnuT4xZie/yc/tc+TX1E83ViFqYFyN4AufuieHNODv7FMbHKYpeBHZ9sYeTohPC7k+MWMrdGOPpP5zTZqeG39xbEXcq563zGGnFXJQdlj5iZ6RdfwLOFzcyu5vcaxE+V+1kzflqNqLqeL192zlC3zMDr0w0XvqqHGAyUy2WMNmi9K8jp740yP7Gonq7xQtvY4iCHSz+iUChw9dVXb2zO28CvFR/72Mf4q7/6KwB2Wm7DY2hQba2OeGewGsjc5OPMj0ZYnC0K5bxWlVJbDWvIoq0nmWuw6ik2krNdJeaxeE1rEyaWHWf1ScyNCCwEVO7zCkm8gXZ5KAzQ9mCcC88NK1VYBBDe7iW03cNrnzt9ZZ7DANs/nGP01BRnvisW21kDEnNDV3ABzQCZWyIMvDombCetuNJyb6BI3JUWywwcFCe6a4UkGygDBUES97aP5Bg/N03P09rIQaKI7fHh63By5AtnKAp2kdi1fvR6HReeFSvUAJfx7WmAQUL43tHpMFgV4qcWgpnFZ1FIb41O2SD2MlgNyvkFJXqXHgy6klhMKqmbgmYu5VclfCvnVHJewW4Hkmzg4i/H6x6g8Zh0aO4njNCLz+fj+eefp7n5ylX7/1XxtpV7+/GPf1wlKNlwriQoVcqUllYOnHLY0jiRWVf+uhJsN98cpP2B2LpycBXs+GCaHZ8QZ56lbwmw9cMZkGhIUFoOSYbNv9EEEsIL9S33x5BjiuycCEHJ0yKTuz8KiFVQAtj60WZi14uXUczdH2P7J9qQE2bhYySXSbicHSj3/sJ/flOYoBTY4qLjnUmFmCCIVz93mp7viu/uyd0RZfP7s8LXkLwSu/+gTZNtXUkbjoR4eWPJK+FpkYXbXw4sQQmXhopZjogVq8+MMyb+HDt/u4VOwVLTAFs/mqXtITGpMYBTT13g6FfOaSLgRPf46HhM8Bp5eP7TbwoTlAB0Bh1GiwFfVrw857aPZdn6kRbh9pKsZ+tHswS2CJa3zIMjZaHtIbGSnhWCUvvDcaGKYRW/l7o5QPOd65eTzKu78ptu9LP9o6sMthU5lLrAInVzgKt+qwVP6xp9sE7OLXmDl9guL/FrPZSLpVXHjHK5jE6nw520YLIacCdrPrBcLDaURUhIWXb5b8HhcPDqq6++7dnNG/j/X3R0dFQJSrulu1YSlCql3uuCXzlqRpKNyCFb48C4vkR8sUj8Og+Ja7wENzvWliVR4cnZ2P2xDJFdrrpTrh2zbf2NJOHtSulXkYX69G1BIqok6loEpQrMXhPZOxXpEGHt8rsjCoFDkDgQ3Oai630pTOLDJFs/kqPryZRwe1dGxmQ3gob1uJPf7tNEUGp5KEZgs3j55MIsHP3nc5z9vvgEvv3RJrqeSAm373g8qUmKTU7YkMM2rH7xmNaVtmFyaSjVdBnQeg1XWsadFo8HY9f42Pm7rULSZKAQdTa/PysmqQFQgJP/2suRfxYnKJls0PpQHLdgzHnsaxd5+b+JE5QALD4Js1uLXW1s/0QrSQ1y2NE9XrrelxJqW/EZ2bsi2GPr98HZYYWgZI9JpG4RexczfXlMNtj0rriYFN1ECUyw+TeSS3zzetj+G010P7FO3Fw3LrTcHaH5NvUZSqXVx4yislgghyXsy8vBl8srpayAvfaH2b51B4ODg3R1dfHqq68KP8cGNvBW4dSpU2QyGUqlEm59aAVBSWfQNyQhyWEzjoil4W/1MVJlUav5Jh+52wNrx09131fHI2E2vytWf9KG31EFgU47mx6NgHElQalcLq9cXDMqEr4YYW5IjOgSu8aLNWBSZOfG1z/GGjTRpPrlxXmUBbd1CEptjyYIbnEL3Q9A9Cof2z7agiwovQpgdkua4gkW4ZW/PClMUHIkrWTuCGMUvyWOf/siJ759UZiUlrjez+b3ZzFaBNPJRtj2sRyhbW7he/KkZVzN4jGLUTZqeg+XA63XsHgknAk7trD4MZ3vTZG7Lyrcvu3RBB2PiefILvx0kCNfOquJoORtdZC+I7x+QxUH/uyEZnKZ5DBpynG2PZZg8wfEY3mjRTnG2yGWV1ucB4vPSNN+wThKJSglb/AjudavHlshKAW6HMSvW18GsfK+/JvsdL4ztnbjOgQ67ez4YFKRyFzNh9f5fm+LjabrvYS2OigXi6tKipSLRXQ6HTafGYvLiC1UCx4r+bDl44zHGORq7114PB6ee+45du/eLfwcG9jAW4n3v//9/NVf/RU6dFxjuW8lQakiYVi3UGzzGrB6TFi9RqGcl7vZRupGP96cbe2cl/r/1qCZze9N4G0TX1dpuTeEt1Vp35CgtAyBbideVfprfpXqtvUwWA1Edyv+SYigBER2eTF7JGFijxyzkr07WpUyE0HH40ly94j7QXvQgtklaeKwXjo4ymv/S5ygFNvjw5UWf3cUlZxX7/PiBJHWBxJk7xaPDxLXBzRJsVlcEq6UvVYZXwBWv4RJ1lDm+jJgDUhVQooIPBkZd0r8Xbizdrrelxa/hgG63pchulN8Hffkv16k57saCEoGhUQkx8SqtPY+P8LrnxMnKAHY/GYsbvF3LbmMdL8/Q2i7uJS0O2un+W4x+dzKvYe2e7AG1r+v4pwqs+YyEBa8p/nRPBggfUtQTIpurggGyN4dwtfReE7SaG7d9mCElrvCQr4fvZ7MzUHSN6m5xGJxdSndSs4rYsYeWjaXXCXntdW6j52brmF4eJjW1lbefPPKbYr9VfG2lHt76qmnuPvuuwFw6LzssdxR+3GVhSzJDflJPQc/q62izomnL1GYEd8BNHp6GpOGsosWj6RM3kWZjFcHsAUs+LIyI0fXZxBJsg5fuxOrX+K1vxWTh0ruDWDzWzgn94nJvHklzA4Tdp94CevhIxNYPRLTAiXRKnjlL08Jt5VkcCQdwtJ2AKEuN46EXVuVnDziZbWBsz8dINDhFr6G2WmglC+RHxdfPTnwZ9oYx9nbw3gyDn7x/z2i6Tgt6Hg0iVk28bxgBYDLkWNbzBcpLogzZC8+N4hZA+lNqaamjZUe7HZj1XANACTwtzoZPrx+ScKhVycYelWsZGsFI8cmMTs0kP3yJSxOE96MQ/hamZsj2PziUpGOlAVPzkHWqOPolwVJhZtciozH02L9xGg1YDDrhO/p0qsTuNN2xgSrb5z/6SilxTIXfy7Gxh84NMXAoZp/WnFflbFMJdNaRpy0L17DL3mKs2fPsnPnTl5++WWha21gA28Fstksp08rck3Xmu/HZqxL4jaY0Veqewy9McPQG+I7xC4+N8biXJHB16bWliZRMd07y+xwnuFjYmV7zR4TBoseo0V8IuvNyhSTZfoFpV0z+wO4MjJ9L44ISzb5OlyYZKOwD3TFbVi9kqZqKKPHJzWV4R1+Y5LhN8TLIXvbZEZPT2sifHibHRglA0OviY9lWqsinf/ZILND4qstiwtFDAvisfzY8Wle+BNtk7n2R5LMDi/w+ue0SbeKwuQysenxFIOvjQlXYzjwpxok8YD89CLF+aKwNFlhtkTfSyMMHRkXvoaW/gdQKIAn56BUKAmXawdtfffQZ7XJ1k2cmWXq4gyjJ8V1ieWgBYtHEq6sZnKZ8G9yIckGjn5FbPNE5uYI9oCZsz8ZFHpuZ0pGjliJbPPQ/6JYrGOyGLD5xWPOyQtzzGqo+HviX/vX3jm8DK/9g/ot6HSY5LJS3a8elbFMPaf3eDtO3VkmykPs3buXz3/+89x///3C19vABn4VHDlyhK6uLsrlMn5Dgm32m6q/6QyNxyijDYoLeo58XXxRA+DEM0OaFmdGTs5gcYqTNS1uCaNt2SL2Gt9uoMOBM2HF3WRl/LQA2dsIke0eHFErx74mVvUmvtuHJyvT+/IYi1Pr+x2jRUnYLwTECUTjZ2aQo+JVbACO/bOGfKURXAlt1SL9bU78HW56vq+h6tIijGkYw/pfGmFhvCBc9cYiG1mcW6QwI57LOfJP2iosxnZ5iez0ceCvTgpJdF0OcvdEkUMWXv4fYvHU8OFJoZxPPRbniywuiO9S731+mFGveJ+dH18EAZJfPXztDtxpmTNaKnlp6LvTF+c1x6gjb04yp2HOszgP9oAZV9QqLMOXuDaIu1mm96VxMalIt5HQFjcmm4HTz4jlsMJbXRgkPRefGxVqb7QaMNr0mJxGCsvl1hpg7MwMvlaZ2QExHzV6YpYe0wjDR8Ri7KmLeV7537V5yJIKVNQqP1XGA+O0g03lW/kZX+Kll17iqquu4oUXXhC61gY28Fbg3e9+N1/84hfRoeda+8NYqfOfDaTbKtU9pvoKvP4F8Q3s46dn6WGI8dOzQjmvubECU73zTF4Q+1YNVh0mmwGjWYMsXJuTcrnM6DExHxje6ia81cPIiSkWxgRITRKEt3mxuCXOCMYgjogVe8hCcZWKoI0wdHiS/Kx4Qmqmf57X/rZHuL09YmFmcF5TBSV/pwvJZWJCg/yciPRXPc79eEDT+nVxoUhhXvwh5kfzHPqs+LosQMt9cWaHFzj5rStTkRJg0+Mp+g+MCEvZH/2yNkm8xdkihZlFjBaDWFWeIpz/6SCTF8UVQKYuiLetXCPY5Uav1zHdK36sLWRmYWxBiKyk9Z3lJxYZPTnF5HnxPm5xmbEHLLWKROvAIEF0pw+bzyzsQ2K7A7gzdoYOj1PMr583svklPM0yUxfnGBaJB4sg2Q1YBAjoFUycndVUGbTnB4MYTOLrFz3fV78FnQ6DpUxxeRdZlvNy9aRpMo5ztnCY3bt3881vfpP9+/cLX+/fCm87ubevfe1rPPLIIwC4dAF2226v7ZxcDnVxt/nOAP42B8e+1cfEmfzS3xscJ8nQ/nCMN79yoeFidiOT+Dtkho9Ow1olpdcrHb3qYUvPWZEvEjgQADkmMT2U18SvWFXO5NfUHTK3h+n5jvikt+OxBO6sg9f/4bQmIpQogQGUalDulF04CfF2hSNlxd/i1EQK0ir3Fuh2IjlMwkHD2xUt98dxpWzi71yj9BkoFaEMZgMv/GfxBU9Pi4zRZtBMWHpL0CijLSnJ6PlB8Yd3pCxMnRWYcKnVjrR8q8pha2TeG5VmrPhrnR53zsb4udmV73KVc2bvDFIulen57vDK06o7x+qx7TebMEg6XvozZbG6oW65Ol5N5yfo8b3IwMAAwWCQS5euTFn/DWygHul0mrNnzwJwnflhrCZbjYm/HGqcsP3DSfLTixz+Yv/K3xscl9rvobRQ4vxz441vYln1S5NNIRxN9xaqcVmjnf/rlb5eFeWV1xMhC1RiNntMYkZUKhiw+QxCRI+VF7wycZm/28n8aIFpDZPr3Z9qIz9V0EziqEg8iWD7x7KMnJjirEYi89sNkau8zA0vCBNpLkfuLbkvwPCxCWb7r2DZ7ysNE2z/UJahNyc5/yMxGTqtkomutI1Nj6e49MoYPd8R38GW3Bfg/E+0EQFW4C2SHQGwhSVmL+XXlXurwgRmh4kFgTllJYYyuYwUJhaX/6j1VhWsEZfpdDo8WRtjpxq8yAZzd5MDWu+O8MbX+hv7klJpycKCp9lK7s4AfQcnuPjz8cpFVx6njlfnfAfo6TuByWTiqaeeYt++fes83AY28Kvh9ddfZ/PmzQAEjU1sddykVGptQE6qVEqK7nAS3eHkxHeGmbqYX/J7w8pIRmi908/p7w03rJpSrfBaB2fczOTFhVr1gDXiwIYolYSJhUZZx+K02lYgXpNcRvIzi0uq/awn92bxG5nXKo1xBfNh0au89L0gRkYASOwNErvKxxtfPKOJCLWcKLDmPe3xEdjk5LXPn9Eu7/c2gsVvwpt1aLKvVrk3Z8qG2WXSRLx/OyJ2rR9/m4PX/rcgkf4ypB+7nkhhdkuayEe2kAWzy8jYCQ1JoOV4C+MuUIhH82vI2y7PQVkDJuaGBCY9amzV8FtdJ35aFWsRIXQ6bEEj+cnFpdcrlxsSMwCi22T0koHeF1cS7SpVlurRdn8Ai8vIob/vW/Vey+UyOoOe+cV5Tjp+Ql9fH+3t7Rw9enT1e9/ABt4iPPzww3z9619Hh5699keQDNZa1YrlUOOgjkcjFGaKnHx62ZxwlZxXYJMdnb7M4Our5ACWr1MawOo2MTdSWFOG963KedVLKq0ZQ6nHmT0mIYJSBSa7nsJc8YpJvWmFHLNSzBc1yaR1vz9NfmqRY1/VVgRDi8Rd2yNxxk/PcumgeMzydoS72c7iXJHpPrGg83Lk3vwdTqb651kY+3ec80J552OnZ4Rl6DTJn6HMk7rem+bSy6P0Pi++NhvocjF0+O0T10ouI/nl+ajlqPe9BkV+Lz8h8PGpsVcj0pTmNcXKT43m7pX1C4MBe0hiZmDZi1yFr2KQoGmvj3PPjjZ+98vGK6vPSOs9IfoOTiibwGH1ubvBQJ/8JieGX8FgMPDcc8+xffv2VZ/r14G3ldzbj3/84ypByaMLKwQlWDvY1uvpPzjF7FBeiKAEEOh2YXGbcGXEyge7s1Zyd4Zoe2B96aEKtn+sma73iktNuZptdD+RBBAjKKEQeyRZp1SAEXBcklcivlcpRyciZ1K5RqDbKdS2gp2/00KTqNQD0HRTkMgOnybJs1NP9XLplTFxgpK6yVcL6cFg0DbBlRNmtny4GUdKvOKUM21DksU/Q0mGPf+hncwdYuXyAKbOzmmuWqQVQ69PaiYo7f5UG5veJV6aGsDTpk22rv3RhLAsGUBZi+YN1L47DcWUzj87yOlntDGWWx+Ik94vXmJbkmHHb+VI3Szus5CURVIh5GF+MI/klYhdLfbdVghKFb+17iXUbzW0w0XHY+Lv0L9JZvfvZXHn1invWZF/k6Dtvihb3iveFz0Z+6rlQ+ulFSoYfGOS0Z4ZoaSSLLnIjlyNXq9nYGCAREJ8HNnABi4HuVxuJUEJ1k7y6nSM9cww8NqynQerEZsAT8qGd73vsg7tj8TpeEiRHhKR4/W02NjxsRTOJnFJhdYHonjUEtkipAez10T8OsXniRKUIrs9mGyIE5RM0PJAVFhiC5Q4astvNms6Jr0/TPvD2vzL6Wf6OPcTDfFE5X5E81pq+1JRfCzO3Rsle5d4TIQJXBkNGnooJcV3/Ja4jCpA/wujmir9XA7O/2RIE0EpdWuI3b/fpukaJpcJOS4e1zqabHS/Py0uQ1dQvm+9UTzmrn6rgpeYODPLxReGufAzcYJS4no/8asDhLaJl7NO7guw7aNZ4fYA/k5H1aesh9lLyruOXe0Ve/YCLIwWMLlMJATnWBWCUsc74tjC4g5l0+Nxup8UjCFR5Ala7g4tkQdZC+6UjM0vEVhtHqDXL5FkGDs9x/SlBQbemFp3LANoGtlBzNHE7OwsN954I88995zws2xgA1px6tQptmzZAkDIlGGrQ6mgtFr1pMpvQyenmby4IEZQArxpC3JIwplYJS5aliuzeI203h0gvc+zprRbPToeCZO7qyZ1uR5ByeIzkrtLmZ9WCUrrILzDjVFWE9YCRAmjBUJbXVAuCROUwjvceDTEqKAsYkWvWl+mqQJfh5Pk3hCRneLjSv+Lg5x/dlCcoKRu8tUi5aWrjL+CJBTJbaT9HUnsUfF42xayYJS1FfHf8VstxK7zC7efHy5oIihdDibPzmomKG35zWZN8m0ActyiSfOg6cYgaQ15n3Ilzha9RqVvaLin8z8b5PTT4lVHAFofjJPSkPPCqMjjRQXzUZVj0reFhJ9lfnwRowUCm8Vy4hWCUniHW0j2rfKtOlMWMreK59DlqJktH0iIz3uN0H5fhJa7l/WTNfy8t8WOJ9P4/DqDQSG61mHwyDQjJ2fXnLNXfrMYLbRP7cNoMPHmm2+ydetWsefYwAYuE+9973v5+te/jh4De+3vUAhKsCpJDwCdjuFj0wwfW6Fju+q3487Y8GbXWLdYFntl9vtpuSeoEFwEYPVLdL0rjj0kvggR2+PFkVSeV4T0YJAU4gIgTFByZ+wYrAYK0+IEpdi1fuHnBoWs0vpQXEimqYLk3gC5u8Wl4QB6vtNP7/MrNySvisozaCJm6TStP0V2e4nt0TDWAdblEujrIHF9gM73pDQdM356RpigdLkYPjqpiaAU6HKx+YMZTX3LIOmxaFBJMXskMndGhMb5GnToNRCpq9+q4HPkJxY5/5NBLgmSoECRY2u6MVSVgRSBt91B+2Pa8shy1FL1KeuhQlDy5GQxGcgi5CeKGCSd8DUqBKWmfQGsPvH33nSDj5Z7149TK+sXkR0uWu4OYvUty3mtwlexBSSccQuO1fKvy2RI50YWGTszy3jPnFDOKzrdTotjG3Nzc+zatYvXXntt3Wf5t8TbhqR04MCBaqkpty7ITtstjfX3KjAYCO9yY/ZJzA7mOfzFugmQTrc6sUmno/fnYxz6mx6GXm/AWGlw3PipOYbenOLYU+ILM4sLixRmxUeo2C4v9rAVSdApSl4Toa0e2h9LCV+j9Z4IyWuC2MOrXKNBUim42a1pomgPS+iNek0LTOd+OEjPD/vpfVac5JKfLtHzjPhiw5Ynm7nqD7QtzBz7+kVNVZTczQ6sHvFSywDtDyfZ8qGc+AGSxMJUgZkh8coH6VtCtD96ZYkOoZ1uut+f1nTMwmSBOQ2BRtNNQToebiK03S18jBy1akqgnfxmr+bKWR2PJdjzex3CRKWBg+MMva6t7PfpZ/p49W/Emeb5adAbDUiy+AJTdLsPd1omsS+wfmMV3e9Kktwr3l6OSYS3emi5X7w/RrZ7cCbFF0inB/OUFsEoCQZ/izoGXh3n2LdW+pPVEiwv/80ZDn727KrjjG7ZGHTx52OcfkrZeZPa71s9eFDHPJsks0d/LwaDgb6+Pvbs2SP2LBvYgEZs3bqVU6eUkr77VIKSzmBoXO0LQK8ntkcJ/Hu+P8rg4eklv60VGB/63xd59QviBM1TTw/Q+/IYFMVCVZ1eR3mxzNyYIHnZBK4mGxENmtrNt4aIX+0TJ2CYoGlvgI53pISvkbzGj6/Vib/VIbybX7IaMJr0mmTYXv27M5z8V22E2eE3JhldnqRbBSYbXPV77TRrIFVTgIN/eUq4og6AI27DkRAnHYW3etj0jpQm8snsyALzI+JVOzHBpncl8WokVmtFy4MxYteIJ6vmR/LMj+c1kdm2PJmm7QFxorDRosfmt+BOib+TA39xkrPf00am3/37bWx6VJwUc/5Hg5qqL114dphT3+lj4BXxJA+A3qQX9w9Aal+IyHbxRW57zEzyej8td4kveLbdHyF2lQ+T4CuxBU04YlYi2wTuS68DvY7FuSJFDSWtz/xggP7XJpkdEHNaQ4enOfS/zzF0eHr1cUavXxJ7Hf3qAIWJEragCf8m++oxmzrmteSvwauPotfreeihhzh48KDw82xgA6K4dOkSLS0tlMtlQsYUW+R96+a8PDkbFo+RxWk4+Z26fIlOv/pisF7H6Ml5XvvHPkZPii0ezI8u0ntgkgvPi/u9xbkiiwtFZYPgGhUAKgh2OnGllOcRgdEC8Wt8ZG8TX7xP7A2R2h/UtDgT2emj6QbxaxhlI3qTtlTqyNFJTvzrRfpf1mDfeejTsBu65d44Oz6pjVTd+9yweEUdQA5ZkSNWsYWDyn3dF6Pr3Ro2pxlhdmiB+RHxXFFou5v07RoILpcBV9pGywPaFjvnhhaY1fAcvg4nne9M428T3yjqTGqLhfueH1HeuYbqSMkbguz6ZBtGwdTaxJlZTRKCoGxEPfyFs+IHLIJR0iNZxVciPWk7wS43UQ3zv5YHEqRuDDYkNjWqRGKUjSSu9dN0g3ieLLTZjafZJk6emlyglC+LF7ss6bn40hg9P1zpT1YbR974+gCHvzSwamUnncGw5LfRE3Nc+IVC4gtvltcc1zAYMBot7LU9gtFg5LXXXmPv3r2CD7OBDWjDxz/+cf7xH/8RHXqutz+GZJDQGfSrksN1Oh3eNoW4PPj6NGN1srQ6g2HNucjJfxnk2LdXmdc2OO78z8e4+MK4MMFFb1Ck6/PT4uuN3lYHgXZxEkLsKh/J6wNILnHfmropRPNt4mOwt8VBeJsHV1KcIG60GjGYDZqqyxz/+kV6viu+dggw3TcvLs9lgK0fzGomEB376gXhijoAjqhV0zjvSFjZ9I6UJvLJ/Hie2WENOS+g6aYQjoT4es3lILbHh79DPCaan8gze2kBgyTef1sfipPVkF/R6cCVtGPTIBF97KsX6D+gjUzf/b40mVvF86lDhyco5sVzMuOnZjjxLxeFJSABKILBZECSxe0bvzZAZKd4zkuSDWRujRC/RnyzQmJvkMR1AQyCMaHBasCbkzV9I4W5RRY1SCj2H5qg96UJpVLeihtYeZ9TvXkO/1Pv2jKhy9Zrzv10jPx0EUk24GyyrLqWUxnzooV2stI2AG666SYOHz4s/DxXGm8LubdTp06RyylEDVnn4WrHfbUfl7Hz61/i7o8nKMwVeeVv1BJ89QP+8sfS6dj0SBijbOC1v12mT7nsxdfvCIhf4+HiL+oGjiso9yYs86bC02pjrGdak9xUZI+H/uWJp7W6wGXIOl1pdL0nhVE2cOivxeVGmvYHsYcsHP2SmDapHJPQmQxMndWoG6oRoZ1udDodl17StgiiBVs/mkWyG3nxvxwTPkar3Fv7I3HcOSfPf+aoZvkzUUheifhVPi4+O0B++vK+NbELQaDNKUwkCmxxEd7i4fjXzwpX6mraHyS0zctLnxF/J/8WcKSsK/v8GqQDR8qCTqdn8oz4yl9gi2tt2brlmZZKfnmdfnW5pRnrEysWnwlH1MyQWh1m+aR1+XAZu9pDbKeH1z5/jvzksj5ZP66oSfvQVgeZm4IMHJmi53sjlZMuPa5ujFswDHHU+CJDQ0Ns376dAwcOrP4cG9iARlx//fXVahHXmh/GbqkF58t3Rlb6c+ZmD4E2mRNPDdaSNQ36egUml57ux2Kce26E4SPrVJVRj/VvsjNxYYbC9OrnrcevUvpaq2wUKBWbRo+JV8hxpWwUZgvMDohP+O0xMzMXr+yOJE0wwY6PtnDx50NcOiAWr5hsenL3xel9YZiJHjEjezscjJ6c0kS20gqTy0Rkh4fzzw5eseuYXCa2fyTLpVdGhck3lyP3tuv3WpkbXuDw589e5p2uj9A2D8V8keE3tJGrtUKOWynMLbLQaALfAK0PxZm8OEu/hqoJmz+QYW50gRPf0EbOu2wI7JSz+U3MThQ09cXQdg8Dr4hXcjDZwOK3MnV+9TnN8hhqieybYAwFLPW5gnIl4R1OLh2o619rVVAGNj8RZWaowKlnhteMoSrjxtb3xzBaDLz82YsrfqveT91xw+nXOfT6K5RKJfr6+ohENBAtN7CBNTA+Po7P56NUKuE1RNnpuav24xo5r63vCVCYLfHGV1QCb/03uSJe05Ha68Lmkzj69bUJv/Xxk7/DxvDRurF6LcJR/Xe3rJ1IanGJzFv1PKsfZw+bWBhbWLU6UCOSgK/DwcgRDRVvjGCRjcyPq37v158iJX17GJvXzJF/EsvHAAQ2u3DErPQ8IyYXLrmNGM1GZgeubMzpycnoTXpGjl65WKLtkQT2sIWDfy6+sUur3FvsOj+x3X5e+Z+nWJy+Mtp4RgsEt/oYPDxxxa6hXAhcTXYmTovNaeS4hcgOL2e+e4lFQVKyv9NJ4roAh/729L+NlKBghQJrUGJOQ37b4pMwWozrVouoj6WcKSuTa+WSG8RWVem3KyH3VjemGK0lHGELY6eV51m+oLXcj3tyNpJXuzj6rQEWJ5f5xvp7VX2xIy7ReneAS4enufi8miBdPlaZamysed0Mxw0/4tKlS9x1113867/+6+rPsYENaMQf/dEf8Z/+039Ch45r7Y9gk2qbiCpyuhVUvq/AJhvx3S5OPjPIlFo9u/47WZ4rM1j0tN4T5OJLEytz48u/WfX7kiMS8xNFFuuLG1wpubdVKv2sJfcmR81M9wquh5XLWLwS5TKaKt6YPdLbTsJr07ua6D8wKkzaMEgQTojMxQABAABJREFUuybI6PFJ4YpCctTC9MD8FZXEM0h6vK0ORo9PaSKtaLsIbPvNHJcOjND3olhO5nLk3rqeSDE7ssDpf9VGNtMCZ9pGuVheM1/yVsDskSiXimLSZEDsGh9zI3lNJKLmuyIUphY5/7Oh9Rv/G8EkGzTLQDrTtsZrjatu+gerb534blnsVS/79lbKvVVRF5e5M1al4lH14svIRMvGlcxtAfIzRS7+cmLN3FVlPMrdFcDqMSnk8mW/VY+ri73Goyd4+c1fYDAY6O3tJRAQJ9ZfKfzaKylNT09XCUpWHEsJSsux7AWeePoSb3xNraAkUNYKWJlwWCOQb3swTOJqL+6sICtUgl2/kyV3nzh72NNqp/1hZTeOKEEptM0FEowdnxUmhDhSypaXFQSlVSDJeuSYVJV1EkFkj5f4DeIsR4CtH21m5+9o2+2lM4qVH6/HuR8NChOUADK3xuh6p7bKQJeDgZfHNRGU5JiEr0Oc5Qlw6K9OaSIoXQ7e/OpFnv+P2ghKlqCkSUowP5qn55n+K0tQArZ+oJnsXeJVA4ZeneDw58UJSkC1ypocE9/hmbkzwp4/bEfSUJjBHpY0yd1VCEqurLqbYZ3vbOrsvBI0SKxeoW0ZKgSl0A632E3llT9Pm0z7I+I7F21hiV2/myW5T3xHQ9fjcTI3r76LdnlSaHG+RLlcRnJI68qSAgwcmuLMT4ZqBCXlpKseZi4GaBpXGM4HDx7k9ttvF3iKDWxgfTz++ONVgtIe831LCEorUNe3e34wRs+PhxsTlBrAZDVQpkxxQXyxJ70/SMcj4tXWknt97PhoSlP1kty9IeS4WZygZAJfh+J8x06IHWQLmsAEE2dnmR0Ui+9caRuUy5oIStm7I5qe3eQycdUftBG7Vtw3yiElDs5PizMpCrMljn7pvDBBCZQKAJ2Pa5OB1YrCREGp1KSBFOLtcGiycWGiwAufflNzdSCteOm/HtdMUPK0ytj84s8y8MrYFScomWzKBoTUPnGpkuNfv6iJoARKbkG/VvKhAXZ8IkenBjlYgNi1PvydYvHt7LBCULKFJeEKVxWCkl0whizMoiTcTODtEAsiKwSl3L0R5Lh4rJq9O8j2j6aE23tyNpqu95G6SXz+WC7VhU4Ci3XHvjXIsW/3N/ytEfxnurGVlfeXyWSYmNAm7bOBDTTC4uIiwWCQUqmESx9cSlBajmU5r+NPD3Pyu6q/EyQNauHYxPe4SO/14kyK7wbe/ESM5F7xHbG2oIm0+p2Lyry5MlYwwsylgrB8mTWoONKRo4LJfCNY/CZYpEZQWgeenKypsjMoBJotH8xoOkav12nO1g69NiFMUAJIXBOg670p4eo4l4uxk9OaCEoWtxGnhoqMoOxQ10JQuhz0PjfMS//1mCbykFE24moWrxRRqZ51RQlKQNsDCVrvE59vTV+c5+S3+oQJSoCyIAXYfOIdLLzDw87fbtEkDyi5jTTtF6+EVlnAskfE7mt+dFFZfDYqspiroX7Bv0JQcmuojrQ4D7ZQzVeKwCgb2fz+BNEdYhInAG33RMjsX/0ay3NexXwJymA0G9ckUFV+m7qYp+eHIzWCEqwpqWUp22mdUaooPfXUUzz++OMCT7GBDayPz372s/yn//SfAB3X2B9cQlBajvp+P3RkllPfG2pIUFoBvR6DZKBchvLiymIJqyF9o5/mW8W/dW+rnc53xjRVL4nudmH1SwoxQJAcUJGFm+4T22AnyQYwwPxoXphwZPUrc0stBKXILq+mZzdIerZ8qFlY/gmoSncVF8THuWIezv9kUJPkWe6euLZq45eBYr6kuaqOHLVg0mBjivDKX50UJihdLg5//qxmgpItZNZUCWzyzOwVJygBdL6zicgO8Txs7y9GtFU5QiHbVKWcBdH+aILmu7T1SU9OxpkWi9UrMpCSyyBcibVCUDJ7BHNRRTW+MyBc3atCUIpd5dVUgTe0zcWmx2PiMp0+E+n9PiJrxWrLx5n64WSN3FVlfOr50QgnvzPU8LdGcPe1EDFkKRQKZDIZpqe1VT+9Evi1k5RcLuUFmbDw4Q9+lMAmpYMHNtnofCykVNEwGMjcFiB7uw8k6HpniM53hJAcJvJjJbxtNjrfEa4u3mdu8tJyd0AJCHQ6Nj0aJrLDyZGvXuLcsyPKwO41gV5P0z4PrffVJjQdj4SJXe0GoO/gGAvTBfJTqlbhDV7aH619tB2PRUneoCRn5KhE1zuSlBbLzA4tEL/ex6bHa+SA9kdiNO1XWGmWgETXe5O4mq3E9/hwZ2W63lubILY/HCNzu3JPkgzd70viUSUjItd6aL49zNb3K0mOtofiNUciQfeTqSrxI7TdRfeTKRL7/HQ9nqbr/Sly99fK13W/L6UQnoBAt5PuJ9PVqiWbP5Sj+8kskqx0ke4n00T2KM/q63DQ/WS6+lvmjghtD8eJ7fIRvypA1xOpqvyEK2tX2qoydulbQnTUaVcaJSPFRWXQdKSsdD+ZrhI3mvYH6XhnTcqh451Jmm4K8vrfneHEN87T/WQaR0pxPPEb/HTWlZBufzRB+hZlsSN7f4Sdv9tSJV7ErvHR9USq2rbt4TiZOyM1ez+ZZujEBL0vDhPe5VHsoqL1gTjZe6J19k5X7X31/6eDXb/fWm2bvTdK7v4aqaL7yTShnW4A/F1Otnwkw+YPZrAEJZrviiwhk3Q9kara29MmV22YuTVG6wMJ2h+pa/ueFLHrl9rbojrX1M0hOh6vs+G7klU5LzlhVuydMNfs/a5aW1vITNNNSj+0hyW6n0xXB6DY9T666rRq2x9NkFHLa0tepa2nRemz0T3L7P2QYu+2BxNk74rR/WQaf5faZ3e6l9i75f442XtrfXbX77bQ9RvK74EtriV9NntPlJb7a3bpfjJN+CoPe/6wnc0fSKt9Vvktc+dKe0fV8pwjxydYmMov6bP1cnmd726q2tuZtinvdbebridSiiTdMntXEiZyTKrau+/5EfoPjNC0r96fJEjdrPRZS1BpW99nnQkrC5MF9DaJ9kfiZO6o9Fm9Yu+Kj9jjrdqw6cYw3nYnLQ837rOh7Uvtnbs/xq5PtdLxSLLqT0Lb631EqmbvuyO0qhIwuz/ZSveTzUT2KGWzFR+RQpKVwChze5i2h2v23vKhNM23Rmh/OI6r2a609Uqg05O+JUDHo7W2m96VIH69j+S1PtzNMt3vSyJHVR9xo5+Od9TadjwWo+nG2kRPb9BhtCoTjfi1HiWIUNH2cJjUzUpbyavoevceHOH4v/QTu8ZN57tq5225L0RGnUCaHTq63hXH12Zn8LVpLjw/RuoGNcjU68ndEyJzR6Bq787HI1WZkeBWVcIJSN/kpfs9EZrv8FXHqs7HI4Q2K+/c32ql87EQXleULZb9OJ1Onn32WX7nd36HDWzgV8F//s//mS9/+csA3Lv7cbY9kK3+1nybl9gupY9KXhNtD4aQoybie5y03uej9R4/Q4dnQK+n+TYf8T2KLzHJ0HZ/AFeTMp4Euuy03Rdk9lKBV/7mIp6MleRetay+CdoeDOFRCeD+DjttD4aqUj0TF2eX7OhuezCEr135Ljw5G20PRaqL+ckbfTgTZhbnSxQmCrQ/HCXQpfhCd8ZG+6PRqsRRcp+P5juCmFx6vM0ybQ/GCKv+zZmy0f5YvEpEiV/nI3t3jXC+/UMZcndHsYVN2KMSHY/Hq0SP2DU+Wupiq5b7o8Su9tLxWJIdH2mm4/G4QibQ6Yns9tD6UM0PtdwbJXG94ltMfhObHm9S9NNRkvT1Wt/ZuyMkb1TGE5NNT8fjSSJ7vAQ63bTeF10y9jTfESGlxkCYoOPxmvRYYJODMjrGzyg7p9O3h5fIY3Q8nqwSLLxtMh2PJ5kemOPAn57AEbctSah0PJ4kuM0NgCtjo+PxJCabEhtu/ViWtrr7b38kQXiH0gccTUpbs69ibz8t90U5871LXHh2iNaH4tUx2RaR6Hg8iS1UZ2/Vhu2PJdjzRx1VwpXNb6Lj8SSyquEducq7ZOzJ3Rtl8wczNN0UxORS2rrUuCa0zbMkPs3eHSGpjt8t98bZ+sEMbnVMDmx2LbF35vYG9lYJ5d4Ox5K2qVtDZG5fakO/OibrdKg2VH5L7g+SvWtpnFCRqXOlVXurfTa5L0CuLl5qfyRBeJfSVo5bFRv6TbQ9mCD3YGKJXEnLQ7GV9o4o42zypgA7f6cFe0xZyGl5IEb8OnU89C21d3iXh/ZHErQ+FOeqP2gjd3eEpBpzVu2dUR4uuM1dtXdhFmYG51lcWFxiQ0+r0mf93c4lNkzfHiZ1a4jUrSFi1/oa9tmKj0jdEqr22Vf/pge9SU9gs/Ldu7P2lfa+u2bv9scSFPNFpi/Nr7B34nr/Enu3PRwncpUSt8evCZC5M7rURzxQ5yMeiBK7WrV3yETHexJsfl+Gtvtia/sIl4mOdyZxJK1Ednvofk+a7t+ozX2yd4VJ7lPb2qDj8TjurGrvrS52/1YLLXcq99F8R4jUzcq70Zl1tD8Wx9Oq9G9fh1z1h96cTMtdkWpbgPZHo1XSpqfFRvvD0aq9zS6TIoGk/rv9oSjBbuVbcKWttD9c55Ov8+DN2jn/3ChnfzhM6/1hQtuUto64Mv5IbtWGe1xk1djq9S/0o9PriOxwqDaUaHswhC2gtI3ucJC7oxaXxXa7cEatik0eDdJ2fwA5quQBwjuctNxbe7bMLR5iVzm4xvkAYV+E+fl5tm3bxgY28KsiEAhQKBSw6V2885H34sko8ZIjaqT5JpdCEjEYiO5wkNijfF/ZW9xk9ruwuI0sTJaQwxLNN7sxqvPZULeN5HWuquxi+kY3/nYrZ382wdmfj9F8qxezuuAS7LLTtNddvZ/UPjfBTuWbH35zhtnRPHl1E01gk430TTUCUuoGL6EtykVNDiPZO/2UFossjOXxddjJ3Fr7hppu8BLdqfhYowVyd4WQYxYi2zwENjloubdGRk1c5yV6lXpPko7c3SGc6sY6d7ON9geibFI3qMSv9RGvI1fn7okoi/8oviV3XwTvJgfd70nR+mCE5A3+KqErd2+0OibLcQu5+6IYLcoctfNdTWz9jWYkt2Kn7N0R/JucoNNhj6ptVbJEZKeH9C0hort8JK4LkrkjXB1PrEEzufuiWHxK29C2pdJjJtlIUV28tLiN5O6LYg2qMfNmF8131sae9M0hIjs9nH66n+Pf7CV3XxRZHYN9Hc5aLgolf1MZvyO73Wz5YLq6wOhtdZC7r9Y2eUOQ2LXqPNkIufuijJ+f4fxPBnAk5CVtY9f5Seyt5Uhz90WruZ1dv9fK1o9mq8SL6NU+mm6sa3vPUnu3PRan7dEEFp+R6FVeUnVkkuxdkWoeyBZS7C25jUSu9tPxjibSt9X6S/qOMMEtbsWGfpNib3WcDW5xk76jZu/0baFqzFmxty2k2NDf5VwSW8lhC1F1/DbKxhX2ztXb+8aavY0WxS4VMpWnZakNE3uDxK7zk7k1TOt9CXL3RatkJVezXWmr2jB27VJ7b/6NNG1q/smRtKp9VrX3Ht8SQk72nii+Dic7fquFtkcTK/vszTUbNt8ZqfbZoTcnmBmew6L2/dB29wp7h9QY3+JT7OJtV54xuMVNpt7et9TsLan2tkctTJye4cJzQ0R31qTVUvuDRK+q2FCv2DuuPJy3w4G72c7s8AJGs9Jno2q8VOmzlbjdk6vZO7zFS2SXj/QdtfvP3RfFk1PtnbYttfc1PrZ9uJmOdySV867hI6J7fDTdqPi4Le9L0/2+NP5NSlt7xELuvkidvd2k9geqZKWW+8K03h8jfWMQa8BE7p6IQnLS6QlucZKui63SNwcIbXUS3eHF3+4gd28Ia0A5b6DTQeaWOj+7z0toW40Mb7LoMajzL2+LjcytNV+ZvN5DdIdTtTdkb/PR/9okJ787gidnq8ZWAPGrXUR3Ks+mM+nI3ubDmTQzdTHPuV+ME9uuXlOvI7rbQWxP7R6ab/HizlhAr8ORNOPJKOSsUJeNlrvcxPfIVZm3zC1evOoYKIeVMVB2ubjG/Qhut5tvfvObfPrTn2YDG/hV8IMf/ICPfOQjANzW9iit19Xm+ZGtMr5WZaw0WnUkr3Vj9RvwNFuIX+0gfrWLyfML6AwGwttdBDrUyYsBEte4sIeUTaqOhIXktW7y00Xe/MYgVr+JYLcapOl0JK9z41DXt+xhieR17uqi9mjPjFJNR0XyOg+OpOILbUGJ5F4vBjX3Htgk405ZKcwqMm+J67y408r9W30mmm7wVSWOfB0ysd3KdQKdLrJ3hPGoOQyz20jTvkCV7ONrdyyRjm9/LEbbgzGsfgnJaaBpfxCzRxlnPTl7NQcAqgRXu4PsXVE6352iaX+wSj5yN9tJ7quNU5Hd3ipZyGDV0/XeDG3qpkRn0rZkTIvs8BLc6q7au2l/EHfOTnSXj/j1gSVtg1vdhOqkO5v2B6vkBHvCCpSZHlaIJ4HNLiK7arFt075gdX3LGpRo2h+kOFfiyBfPIclGortrbZN7A7jV8dvqV9pWyDytD8dpqhtn49f58bao+VSXQqCtkGW8bQ5i1/k5/b0++l8aJXaND68qwyfJir0t6jqUO2sncb3in2PX+tn52y11NlTaWgNKW1faTlO9vXd5yd0fJbTdg0FSlWVUUu5ye4e31+yduydOxzuakGOKDeWYVWlrqNk7XCdT37Q/WI057RELTfuDtT7bvdLerrRiQ51ep7RV+2ygy7VELi9xfaCad7N4FXtX+qx3WZ+NXeevynVJLoNqbyPtDydJ3xIhVt9nr/Hh66jkrw1L+qy300nXk+mqTaNL+qzaVl1ndaZtNO0LEtvjY+uHs0R2eauxVaXPVuztSFqX2HvszDSFuRoJvb7PylHLCntHdijnDnS5aNofxJlU+qwtZFbtra/ZW+2zp/6lj3KJFX22Ym9/h3OFvRcLJWYvLWD2NLD3tXU2vNZf7bPJfSGab49WSUSenLzSR6j2NlgNpG4J0vmeDPHrA2v7CElP0/4gtpBZWXN9IkVL3fptZIeX4Jal9pajqr0TVja/P0P2zigYKj7CrbTV6WnaH8ARr9jbTNP+AAYrBLtdpPYFiNQVU0ju9eNsUv1sUFL8rNq/LS4jBou+yiuKX+PBVfHJXiPJvV6MdtWGrTY8GRtnfzxC/4EJYntceJqVtpLTQPJad83eLTKxq5Rn6/nhKOV8CW+u0tZE8novFo/S1p0yE9ut5pENBkKdDiX/aFDm+YnrXFh9ijScK20jcU3t2UKbZQJtNjrl60h6ckxPT7NlyxZ+3fi1kpSsViulUgkdevb534E9KOFWSSfulBV7UKrqS3tSFtxJC7HtTmw+CTko4VEnhO6EFXvIjNGmOvO0DafqKJHAETMT3aW8ZFfcij1sxqq+VE/GjrOOYeeIWPC2yYR3OHFErUh2E7ZAZaCVccZrLEFnzIo7owQgtqAFe9hC74sj9P5iDG/WjiNWd96EFY/qIOwBCXvYgiNm4/DnzzM9NIccqTtvk616XrPPjD1sxdOkTsaSdijBqWd61bZ2PGpbSZawh6240sq/vRkH9rCVgZeHGT87jcUp4U6pu3hMZewRa/VYd7MDe8SKJKtfXLlMabFcrVpT39aVkpW2arDibrbjSssc+LOTHPnns8hRK96c4rTcTXbsESv2SrCSk3HUac4aLfpqeUtHxKa0DavPmnXgTNTaOhM2Al0uJK+ELWzFHrHijCltvc0OHPXvpsmOW70HT7MTk82Iu8lebStH69qm5Oq7kVwS9ogVq9PMuR8O4s0qdqnAlbbjaVbtLekVuzQ7QYLF+SJGs6FK4vBkZNzp2v3bI1a86rtxp2VsXgu2gEW9Rxlnusbql6O26nXcScWGZqeBnh/0sTi/iDNV1zZuxZdVHJMjblXtrUz63FkZd7PM5g8oi56uhB1vVp2AV+2tfnPNMq5E/bsx4lHbWgMW7BFrdfD0ZZ3VRamKXcI7vAS6nVi9JuwRKy7V3p5meam90zKeZplzPxqg7+WhJW19zcvtbav2OyQw2ozYVZt5M2qfrdi7WcadWWbvlMzMwDylktLfTWr/bmRvb1b5t15nwOyUsHrVYLzFgbOpdl5H3Fazd0Kxty/nwBGz4Wt3VIMGAGfcjlt9j/awYm9HXO2HWQfOpL3aXxxNdjw5ta3frPRvVXPYm3Ng9Zp55S9PMT+Yx5mSqwGHWW3rUZ/H0yxX3+nRr59ncb6EM6r2b1np31Uf0Swvsbc7bYcy9L04ot6zFU9G/ZbV81Z8hDsj41J98OBr4+igeg+uJrvS1l2bpLhSNRtavWYKMwXe/NpF3E027OE6H9EsL2E9O2NWvFmZ1/7xHBefH1Laqs/naZarNlLejbXaB+whC+h0LIzn1bZ2HNG68yZs1bY2rwF72IzRaGT81ByetIwjVttZ50xacas+WHJI2MNmXOoY40nbsIfN7P5kiqYbPLiSNX8tSWAPmasTSHdSGX+QwN8qY/WZcCdr92QPmXEnLdVr2oMSkgxBKcl99zxAsVjkf/yP/8G3vvUtNrCBy8HTTz/Nf/gP/wGADss1pDsTS/qgO2lR+qtej81jxBkzI4fNBNtlXHErroSlyuJ3p2x4MsqxZqdJaatODiLbXbgzVqwqCcWdsuFRkwAmmwFn3IJDTUi7klaccQuxPS4wqf4vrH5/JnDGLbhUv+pqsuFMWDCpC+DetA2zbOLVzymVEp0JSzXOccYtOBNWTLLqyzN23GkbhYkSr3zuPAajoTpGO6JKW2slCZNdOp4YJD0LEwVmLxVwqL7Zoi4uebPKeas2TNvxZmXOPzfMxLkZnAlbtRKRN+vAXTf2uDJy1e/bHEbK5TJTvbPVe3DVjT2erAOPOk6ZXEacTXZMViOvff40+elFZTyptpVrbW0mnE32qt+3+czo9DDTqyTFvM0y3ubaPTmb7HhUuzib7Dib7MTUxQRvzoEnV6u65UzYq3ZyqW0lj4SnVcbqkZaMnS7VLoq9rTib7FhUwoe3xYGr2cHAK2NMnJnFna7dvxyx4WyyYwtYa+9GjYHGz84A5WrMafGbcTbZq/3Qk5Grzw1qrBuw4M7IWNyKXSpJGE+zHWfT0raV8178xRB6o776PJ60fcmzebNyta3JBK6UnZZ74ziabHhSstK20mezjmrMWbN3LZnpbLKjtyqNfS0O3Nk6ezfV+qUjrswVut7VpNrFgbu51laxd4Xwodjb7DNz7ieDlMvlJf3Qk3ZU340tYMHZZMceVMettIzJbsSVrCz01Pps5R1XJvrerANX2s54zwyTF2ZxZx3VONLsUPpsZR7lziy1tySbcKrxUbXPVu0tL7V3s4w36yCwyU2g06XE/Op3704rMZvJpC7W5GrfTcXelWSmM6m8R5PDVH2PS2zYJDM/WuDs9waQY4oNbXWx4VJ7y9W4vf+VUfR6HZagGq/m5CX2dqcdeHN19o7ambw4y+nvD67tI3wmnAkbzriV/hfHyM8WsHlqlU88zfbad+9U26oxkjtlR6+HU8/0q21r92uyGXEmarG4O6XMjQsTBV7//Fkog7e5LrZNWKv+3BVXfbJNsYvJaqRUKEFRp7a1VP2jM27FmbBUiUfuZsV39r+sVCpypazVBUU5bMEZt2B1K+/Rk7HhaqqbHyStRHe62f6hBPaQpLStzNczFtx1bd0pK+5mG742GUfQjCtuQQ6p86QmK666mNPdVHu2a0L3sHPHTnp6evD7tVUK3sAG6tHS0sL4+DhGncR13kdxJy041Q0XjpCEO2nBoG6qcKcseFIWvBkzrrgZb9qCS/WxtoCEu8mCZFPaetJWPHXfZrDdTmynMke1e024U1bMLkPtvJlaX/ekrXhyFnytViweI1aPqerf3KnadwAK6bvyb7NDj7vJxqVDUwy8OqnEd81L44/KOGVyGHGnbTgiZk5/d5CRk1NL5m3erB2veqzRYsSdqeXPXEkrpVKZcz9V5qTenFwdp5R7slfP5Ugo+YLJ3jkG35hEkk3VMRkUf1eJI51xG55mR61KS7lMMV8kr1ZRqr9/OWzBk3VWSRxuNQY68k/nOPrl83hbnFU/avOb8WSdWL1q/JF1LLkHyW6kMKNcw+xT2trVONKdkZfEVp4WB4HNHiS3EYvLqLQNV+Iae3VcBSV+qown/k1ubCErjliFvGVT8lTVtjI+deHMaNTjyTqxeS30vzyGM2HDk3VWSRy+FgfeXP17dVZzaQsTBSTZiNFirLb1tNTuyZ11VMdkR8SKq0nGmbSjNxrxNDvwtNbuyZNzVG1oDyt2MTtN9L84zNzIPN5sra0vV2dvn0W1t7n6jsNbPFVijzfrxK32F8ktqTasta23t+Q0Vcdzya7YW1bzI66UbUkc5utwktwXxNvqQG9R26r5BXeTXbFhxd45O74WB73PD3P6B314ss5qrs2VUNoa6+zta6n1b1vIUo2XHDHl3VTs7W1xVBdAlXfjwJ22M9GjLHwpNlR9RItzybvx5BzVuY8OsAestcWlrANvru7+s45qHsvqVeztStnx5pwEulxL2npanFWbSrLaZ4O1WNzb7sJoUcfzVmc1rjE5TXiyzuqzuprsOGJ2jnzhHPMji3hbHbU+W7F3pW3SVrX3+Z8OMje6gLMur+VpdlTnRo6k+t1XbJhzgA4uPjcEi2v7CE9Wxqu+m/4DSrWIig3lsBlPRq75iGZ5SczpiNuYHV7gzI8HsQUsuDN2LBV7N9urxAHlOnY8GTunnh6g54cDuJM27AHVR6RsDdsCWJwG0OnITxbVttbqb8p1bNVxwmgx4k5ZMMtGJi8u4EpY8DbXjwsWPGreymhUzuVU5+uOqBlPysLWJ8JEd8h40zY8qfr4yYIzqpJvw8q6jtECwU47rrgVb11bT8qKS63cZw8oY6BJNiIb3dx7y33o9Xr+8A//kB/84AdsYAOXgxMnTnDrrbcCsNl+E7FMZElfd6eV9UWdTofBbMCbs2HzmQm02/G32vFlrdUKFN60tbpOaZBQ2qrjd3CTTGSro0pC8aTV70+nA4MyDlTGentQwpuzE2i1gQFsATOOcC3n7M3Zcao5DLtfwpuTMZgrMZwNq0fi+DeVSom+nFyNl6xeCW+rjGSvtfW0yFCEN750EZ1JV12jsHjUtmoOxtVkWzL2mGwmZi7NMzecx+yU8LU6sbgrbWV8bUtjCleznQu/GGL02AS+NhdWdR3KmbTjqxvrfS3O6nhikHSUiiWm+hXykCNpW9LW01KboxokA742F2anxOEv9DA3lsfX5qqSOHx1MRCAr81VzflbnCb0RgP5ccU3erNL81jeNmd1DVEOWfG1ufBtqq19eOvuydvmrOZCrF4zvjYXJrsRq1/CnZHxttQ9a5sTZ6pGsPG1uTC7VDJRSokLJs/MMjuwgK/VWZ33S04TvjYXFm/F3na8qr2ne+col6mSfCS7YpfKeqIzYVt6vy0OXE0y7pS9asNKn3XElGetf48VG575YR8mmwGHOpY6IkrbChHDm6uNh6CQ4FrvT2CPWLAFFbvoJfVbyC6NVbytzmrcrjPq8LW5qn3WlbYvbdvmrOYlLF4T4W1ecvcpJBV3Wl7SX/ytzupak9ml2Nvikuj5Xj+L84v4l/RZZ22OYjcqbdUx2RmzIIetyOEK0b/2bowWxYaVnK4jbsPb5mSyd5bRE5NKXKbGihV7V+L2ig0rMDuMtXVXg9JnKzGnvWpvNV5qlvG0yIS63fjaHPhaXTjUb9ketChtrbpqW1+dDX1tTvyd6kYKv/JuKkQYpX/X29tBfnKR/gOjWNxKP5TUPutOLTtvq6Oai7343CA6na7mI1J2fO119m51VMn5kmzAm3Mxfmqa/heG1/YRVqV/2IMWJs/MMjM4jxys+UpPzo6nuc7erc4qKUyOWjFIek5/rx+Kiq/01sfxLY6q77SFLOqzGTjypfMU8+UlMZy3teZn7X7Fdxptig1NspHifImiWgzOl5Or3BKLV/HfVZ/cpMRwFTWKQLuMW52TW9xGvNnafN2ZNOPN2qtVlTxZG9HtDjY9EsTkNODNWrF4Kt+yBV+d8pcnY1PyeFEJT9qKv9WGVSU9OiJmfHXzOm/agkvdGLRZ3sfVV1/N6dOn6erq4tcJXVlEOP4KIJFIcPHiRQBucb5vxe8VTb/lGrEAZp+O/OhKbT2gVgKrTq9v8/uiDB2dpu9FtcTwOo+85f1xzA4jL/zF6ZXyVY00WyXY9dEMg4cnOPsDMc1HOSrh73By5vviGpGSVyI/uuyGyr+C9NVb+OolGU1yV6BUAOo7MCJejhvY84ft5KcLHPzzU1fs/vxdTpJ7gxz/+nlmLr299HEvB5s/kKEws6hJ7u7qP+pg8vwMb3zhnFB7Z9pGy70xTn+3n7Fjv/4Scb8q2h+JYzAbhJ8fUMhGGrpLoNtJy70JLh0a5fRTgqUrJeh4KMnQG+MMva5RfkXj/WmVVLxcWIJSTVJyLQkDFfawRLDbtcJ3rqYfK8mw+TeyjJyYouc7Dfxtg+O63xvHFjBz6HM95MfXuJm6kovbPpDg/C9HGT4yo96Qet5GftZgQHJCfnyl/65MhhsNzYdmfshQ8QKyLHPo0CGy2eyKNhvYwGo4f/48TU0KoSFhaqfDtmdlI/V7WBF7mUCy6CnMNo7LKuWxK3GZv8NGdLuL17/QX/tOGsVs6nFWn4nud0WYODfHsW8OrmxXWnnN1E1+PBkrr/zd+dWlu5bFbMm9PgYOT7JQkdcViKHMXlOtPZXDNMZPorGalrjMhCbJMlAq0njSMie/3Sd8TPauCMHNHg5/8SxT58Sl27TeX8djCRYmFzn9zJXTmv+3grdNpunGEMe/el6R8xJAxzuTOJN2Xvj0m8LXaX0ojkHSa4rv3q6wxyxk74jS8/1Lwv3MZENcslHFto9mMdmMvPgZcRlkb5tMoNPN8a9fFL+QTndZ97f2Od+6vUUml4nCREE97VqS6co1k/t89L8yWT2milWOTe71EeiQOfjZxnF0tfS06ttNNtj6oTQzA3mOfKVOqmiVGAogul3G02zjyD/X2q8VQ+kMekwuyI82ir0q+YOlxxUKBX48+wUAdu3axYsvvtjweTawgdVwxx138J3vfAcdem50P4GxwkqoQF/5FlbGSEaHjsVpoEHcVf326mKrljt9jJ2dY+jo/IrfVhwHtNzpxREx8+o/9K6UU2sQdwFsfm+UoTcm6XupsQzi8m/PKBsJdsj0vTTesL1yrZXHrJC6WiOOWjcm05ovWyMWM1oQlp6rIHNHmJE3J5k4Iz4g7PhkC/npAq9/7oyma2m5P3vUQmpfiJ4fXGJuUEzW5e2M3H1RivmSJrm7Xb/XxtjpKU5+s1eovcVnJHdPnPM/HdT0Pt+uSN4QxOw0cvJfxOcFGAENSnT2qIWud6fpf3mEcz9uMMdbBembQ4yfm2HshGBusZJ70Xh/a5/z8uOu5bGV5DKSV6V0RWQ7JacRf6udvpeX+trlUmxVGKHr8ThjZ2a5+Ivxlb83kPxovtWLN2Pj8FcGWajcWyN/Wjm2XKL9/gD9r00x3jO/9LdG443RqPikhdLKd1IZCxuMfadnX+XU7EvYbDZeeuklNm3atPLcG9jAKpiensbr9VIoFGix7iJtabDoWum3hZXOwmAzUFxgzRiqkg+zhySi2xyc/M7IinzY0uOUb95gha5HIoz1zHLupw0kshrEXoFNMr52Bye+3VddEF953NLv1t8hM3l+jvy0ei8CMZRJNiiSTEt/XPW4t3I9cU0YEJaqq0COWnCl7fS+MCJ8bHCrm+T1QY597bwm6Tat95e4PkBxoXjFJdL+LWANSiSvD3Lux4PML1+rXgWJ6wMEN7s5+Bfi8ryxa3yY7CbOfl88vnu7QpINJG8M0ffiCLMDYrG3QWL1b38VtDygrGm9+jenhY+xhcz425yc/5k4T+Fy7+8tgcCapcFqqEq6rRV7VWI2X4eDqfOzNd9Za9DwOF+HTHirm6Nf62vsB6rxk+ovDbD5PTGm+xc4/YOxNe+9kp9yxk34cnZ6fljzGbpKDNVovDEYMFihuPwZAEyrH/fT8S+xUJ7jlltu4Xvf+96a93al8GuppPTQQw9VCUo3WN655DedQV9LFNYhcY2L7neH0ekUgtIKqDIhS6BWKHnt7/tqBCUBHPr8OXp+NCi8oG9xSZRLMCeop1oulUnfEia83avIzgliy/ua2PlJbYvSu3+/lfY6qYt1IcHuT7VVpaSEDvFKbP9kR1X6SfQYOWEj1O0WvzfgyJfP0fNd7QOTFgKVI2LF7DRR0KADH7vGV5Vnu5LofHdTVZpOFK/9bc8VX8CaPDPLgT89qYmgZA9LbPlQc1XS7ErBHpaWyO6JwBKwYPGJ65EC2ghAwNDrk5z92SVxgpIKV1om2O1Zv2EFkkLu63o8pemYXb/XukQecj3IMYndn2qtlsMWQXyvj22/0VyVnxNB6wNxwtu8Vf8Oay+w5ae1EwqOfeMip78/uDZBaRle+dsLNYJSPVQptxX3NYkiNbLTyeYnV/ZPnU63Igm11X4Tbdl2ZmZmuPrqq8VvbgMbANJpRdrRY4isJCipUiHL0f3OEL52G7qSvuFie6N+CjB8dHYpQWnlgUu+i7mRAqe/P8yxp8ST12XKlBZZmwhT/0wmiOxwk6uTAlgPwS1Otr4/RaDLsX5jFckb/ez8rWxVFkpkcSx3T4QdH89Wq+2IoPOxJnb/fpv4AUCw071kJ48ITj3VT8/3+rURlEAzgcrqN2MLmddvWIFJkf2qSMZdKbizdjrf21R7nwIYPTbNob8+LUxQulwc//pFzfFd6pYQLQ9qi4kuB+EdnqoUoAgW54tYvdKSiofr4XIIQKe/08fhL/ZoOibU7VF2a4l2AZ2OlnujbP94W1XaTASpW0Ps/K2cpntruT/Kjk80azpmx0eb6X5nYv2GKqx+E9HtbppvWhbfrRl7FSiXypic6ySP1Pl7YRZ6vj/Ika8tWyheJYYC6Ds4XSMoLXs3q41NhQkl19D5WIhQd4P5x7Kx0GQycaPtMUKhEIcOHarKRmxgAyL4zGc+w3e+8x0Arne/aylBSW+oEZTq4Gux0HqnB3QqQWk5GsVr6mlPPD1SIygJHHf8mWFO/2BEmNRitKNU2p5ZPUey/LtrutZL/CpPtdLIEpTKDRfEOx6O0P0+cR+l0+vY+sE06VvF4zuArR9uXiIDQbm8LkFp20dbl8hnrQujskva36Et9jry5XP0fE87aVsLgcoeVHa+F/Piq2veDkdVXvVKIn17eIm8hAhOfqtPE0HpcjA/ssjhvz+riaBklI20PhyvSqJcKUhuI/G9gao/EIEtZK5WVxCGRgLQTN88p57u1URQAvB3uasyIetC9Ts7PpGj9V4NuW8jbPlAmvRNwfXbVg6RjWz7cIboVeL5OG+LnS1PpqrS2yLI3BxQ5Ibq3ueqBCWARSgVy5o4mad/NMqp7w3XCEqwak5AuQE9b35zqEZQqocq5bbituaBsh5Xxkz7fb6VxzUYC5ttW+hMb2N+fp59+/axuPhWsc428H8DmpubKRQKxMytKwlKq/TTzE1eRY3FoBKUlmOV72JmIL+EoLTyuKXrlMU5OP29QS7+UhtBpbRYWpsEUH9vBohf7SWxt8H3tgrkmIXu9zRVK9qKwNvmpOt96WoVKRGEt3vZ9K6maiUkETTdEGTzB5s1HeNulglt1rBmAgweGufU073aCEqgmUBlC5qx1VWFEUFou6daBedKweqXyNwe0XSducE8x79+UZigdLno/cWIZoJSoNtVlcu7knCmbdUKVyIo5svIESs2n3jsdTkEoAvPDXLsaxc0HePJyPg3uaqycCKI7PCy+QM5TccEulx0PZHSdG/R3V4637PsmHXmbW0PxWl7QDzvabAaSF7vXyJTCKxJbipMFyktljFa1nn+Sk6rCD3fH+L0D4aF72vyYqFGUFp+mVXGtOKc8ltqnxdPcwN/0+C46xyPEolE+dGPfsSf/MmfCN/fWwkNU5i3Bl/4whf4xje+AcB2+21IhtpKcyNyUgXOmAWzY5XbbbAI5kpLtN0Tof+VCc4/N770R52uYUf25CyUSzB2YobBV8Wr+8wP5Xn5z3o07dJ6/e/O4e90kB8VX8AYfmOi4c7Q1SDJUJhbZHZEfGeUxS1RKpSYHdYwMOcXme6dpe+VEfFDRvM8/5mj4tdQMalxx9L2T2TRG/W8/N9PCB9z5vsDnPn+gKbrxPYEQAf9z4sHm7t+t5WFqQKv/S/xxRJ7xIrRru2zdaZtzA/Naq50pRVywkx+rFCVCFwPklPC6jPjiFuZONWA3NEA/i4nubtinPnRJS69tDbrtILQdh/BTjfDRyaEd2Id+ittlboAMndECG3xcPB/nlpZ8WwV9D4r/s0AkIeDf3ZM2MaVYybPzzJ8vPGO19WOKS4UKebF/c10b55SvsRiQfzeLj4/gjfrYOKiuL95458vIlnQRAo78BfadqHmp2Ho9Sl0Oh2J6zxceK5BX1uFfLHz403MjxU4/E/LEsurjDuOsBmz3YDk1Tfe3a/TLfH7TSNXM+wZYmhoCKfTyeSkxopaG/i/El6vl1KphAkzu1x3LWXOr5KItHpNmJ0m5KDE6ImV32ijZEznO8JIDiOv/O8GO3INhoaM/dguJ70vTTJ8VGwcqODcD0c4hwYfWoA3vnye/Ix4JmHi/ByTF+cYOiweExbnSyzOFZWKI4JxYWGhRGG+qInYM3Rkcs2FwkY4+qXzmGza9ydcOiA23gLYQia6n8hy4eeD9P5C/P0c/Ett466/1Ulkm5f8ZEH4OpGrvCSvD3LkS+eYvjgndIwjakUO2zCZxF+PyWXCZNMx239lEzYmG0geS1W6TwSuJjsmDUkEgO73pzFaDLyiITZKXB+klC8y+Mq4UPuFkQIv/Il4daMKdnwiR35mUbjaxESPdmbTm9+8oJl0N3B4HINZ27e2MJ5ncb60pMrRepgfzytlyjVULht8c4Lignh8Nzdc4Pi3+xk7KW67SwcnuXRQQ3yi11eJ3u6chWK+yNTFBg+0PAmj15O81kW428EbX+1nbmSpz10eQwFgArPLiDNhYeD1VcYdva5KnjCZbLTar+a5wW/x2c9+lrvvvpvbb79d/Nk28H8lXn75ZT71qU8BsNN5LxZjXYKwATmpAkdYUgg9jaqBNIjXLB4jHQ8EuHRomr5Dy/rzKnGXLWjEYNQxeWGBsUaLzatgcQZlftNo1+YqOP3dQYaOWpgfX/Ywa2wgGXh1Qpv/NMLC1CILE+JjrlE2sjhbrMqCi1YEGD0+ydCbGubUi/Dynx8Xb69Ca2Wj9seTmGUjr2rIKw2+Os7gq+OarpO42o/BbGD4DXH/3v3+NIXZIm9+WZxU7UrYyM8U6f25eBLfGjRTmFzQXOlKKyx+E4vz5ZXVvlaB0ajII0+enWHqvFjsaQtZ6HhHknM/GWDoNbH+5snIxK/yM9M3x9hJsZzXsa9oW8ACCG1zk7whxOG/O73yu14FWvpLBYf++iSL89qqoI0cn2TygoY4bxEKc0XyC+LXWZxepDC7SFHDMaMnZhhrn2G6X7xznvreJSVe1zDVO/JljcTGRRjrmUdn0BPstDH4RgPbLY+71MW67scDLEwscvw74yvbNxgj7F4TFrcRs1PPwmSj6oCGJVWVYjO7GfUP0zeoVILu7RWrdraB/7txww03MDg4iGzw0unYu7QvNljIBaW6kdVvwjJcYLK3QRzRIPZq2utGDkoc/frKiiM6g6FhNSVvs5XR03NMNbrGGhg6Ms3QEQ2LOUU4+tVeihrmrnOjBYaPTzHWI56PKxVLFKYL5CfEY8JioUhhtqiJ2DN6corFfEnTMRefG6b/xVHNBKJxwXUpUAgN3U+kufjzIYYOi8eFmiozo1QrSlwboJQvCV/HmbSRvi3MyW/3ClfrsXgkXCk7/S8boFEFlgYwSHoMVn2tSuAVgkECkyxpIkM5EjZsXjMXEK8KlL4tjNUradoEmLw2QKkEE2fE+k4xX9JU3aiC9kcTLC6UOPktsbFwbkh7HrL3pRF6XxKvPgYwenoayWGEonhuaWGiQGF2sXH1tlUwP1FgYbKgqWrTyDFtsWdxrsiJb/VqUlSaPD/HVK+G2Eunq44B1qAi1zs3vPL7Wc6P0Rn0eJstxHc7Of6vQ/8/9t47OLLjSvP9lbvlUQbee9uNbqDRaEPXpGhE753oRE+KoihRdqSN2diIp915+3Z3ZnaMRmbkViNpSHkvkhJJ0TXJZnvvgIb3QAHl/fvjVhUKhTI3QbaW4vQXoRAbdbNu1rl5M78858tzCGYuCbn2/CU6IkE9C6dz8M+0dhqNhnXqi5mOP8Nf/dVfsWPHDrZt26b8t70H+LOWe5ucnKSyUs4CU6vroMtyfuFGeRwY+bouWWN03VrN0Z9PE5zLsjpnadv3sVq0koY3/zbPhJHRn81PNjK5z8Xoa4kAjoI0iqU9Rczsew8Dy2st+fZ/p9IfsLbycFs+0878STenBNIRt91Ug9YoWApDtCxWoo21yoj7jDLHA8CGBxsJLIQ58TMxkiKK8/5TF+4xHwe/c0aojUi5N4Dz/3odCwNujnz/7GVtkpwS6++uY+iPU4rLBEoWkBx6PCNrSGMuMBYcbXJ5l5M/H1G8qEkWNT2PtTJz0CUsjFvLO6QYf6ZSb6vvq9whLVnAXGlm4aRXUakSyQLr72tgat8iY2+kBdzztO28tQJ7o5mjPxljcTBj/OQQKa3/SCWLo35GXsuzgciVXYYCJ+Qg1d/nFr4JwIUXXsgrr7ySv805/IfGRRddxKuvvgqo+LDzYfmP76ZUbB5eVrXVirlU4sSvcgQVMlJYO5qNtF1bxvRhN4Mv5BGapLWrPs+Os9XCwR+MpoLyealsLI692YRr2Lc6iP8u7JA3Q9v7pBRvOtZSeqrhinKK26zs/topxQIIU6VE81VVDDw3qVw8s4bSdSCXCPNOBxS3dXZZqb2glP3fHljT/ZSi685abI0WdgqUbltLubf199ZjqTbx5v+rvM1a0HJdJTqjlqPPKg9miT6bFATHQvutNQSXwpwR4FDNV1dibzILC+MUv0Nni0O9h+XeVn5tYQ6VhLPTzPzRhBMuX7sEqrfbKe0qYt83V+4NVDkCBQD9T9YT8kXY/+0s+70s/MlUpqP5MifHfj5FxJ+nTwr6mxMqNUc9bzIcOojT6eTQoUMpn8Y5nEMmAoEAJpOJeDxOs2kzLZb+wo3WWFJDK8Vp+XAxZ15ZJLCQJUiQ5XvX3VqKvkjL7m/kcXRn8LV1d1Qwe9TD1IHE5jOPUCnJyWyNRhYHM3wjouVyV3zxGku+FeJkZ9EntpbycBsfbmT+pJeRPynPPFN9QQn6Iq1YJqG1lMXSgtGpFxJRtVxbSdgfZeiPYpl0RLHlM+0snvFy/CfKfWui5d4Atn6ug/njS2Il0gShNUD7bfWMvjHL4mmFQdM1PJv0tkrHgrFMT/2Hyjjzh0kCSjOGamHj/Y3MHnMLCc9A4Tv0PuNdeXlVoe/NkinPUm7AMxbI7ydK8iMtdN5YwfxpL1N70/yleXhX7fl2KjZaOP6bWdyjGX7MHH1t+pAN72yYqUN5/N/5+qvQti9Mf4MYES6//HKef/55RW3O4T8m/vqv/5ovf/nLaNBxieM+NHnGfApr5A6ORj2WCj0jrysrfWt0aOi4qZypA27G33Ll6c/yPe1NRkrXWRl4bjoVlC/k8zKWSYRcodVB/LNVMvf/YkwxF9ZSeqqkq4iyHrm0ezSk8NC9RUPNRWVM7JpTLghZQ+k6kMuFRv0Rxb/LVK6nensJA89NLpe6OguovqCEyj4n7/xv5Ukh1lLurf7SMko6bez+J+Vt1oKKPid6u1aIr+odEsGlkPhzFRwL1ecXEw3EmdytPDFGWa+dks4i4czr/9fKt71bFOKCCsq9JWGplnlXwXYJMZG92UTZeisnfpHhk8yzDnXfXUnIF+X4L1bz4mxJfLRGFfUX2DnzygLR0Br9ggr8YZPBQfa7X8But3Po0CGqq89+Fv4k/qzl3pI/zKSyKRMoaTSsv7ucjhuzpPotQDhCi7Dvm2PZBUo5cPAHIwz8UbnK0lQuoZZUaCTlZmy/uYrWqysp7lKe6rXlugq2PN2KpLwJNTuK6bqjQJrsjBe4ansxLTcoL+8EUN5vp+exZiSLchuU99vZ/MkuKrYoT78oWWRCFg2IzfwnfiZWCsNSLXHe57pouqpC6D6EEBIoARz41uBZFygBTO6ZZ/QNMWfAWjCxZ56xtwQzAwkiNB9izz+eUixQAlnIsxaB0vYvdtLzkPISGgsnPOz76mkh1W3IEyMej6PSiU3FWz7XwYaHxEqCNF1dyYYHG4XaONosdN2lPN0+QGmPjQ0PNAi16bi1hv6n24Ta9DzaStuNyuerkAe0ejXmMuVl/I79ZIqhV+ZWC5QgJwE69MMJRjKz92U2zUI47E0Smx+vRipRluHifPPNlJSU8Pbbb/ONb3xDUZtz+I+Hb3zjGwmBElxovUtRG1OZRO/9FZgrs9Q2KuBQHHtzKbdAKQsWTvs586c5Bv+gfLNlsOvkbEAKBUoAbddWsOnBesX3AOj7eBMNl2dPEZzLmdN1Vw2ONrESpu23VmOpESsBse6eOmouzMKN82DDgy30PSlWMphkAjgB0YhvIsTBb50Ryu6z8YEm+j/TLtY3kO8h0Lf5I245e+XZrcLG2FtzZ50PAYzunGXsDbGa8WvBqV9NCAmUQPzZgFzeZftnO4VK6x3/8aiQQAkgGonJ41qgUmDV9mI2f7ITW1OB+m1p3EBn09H9QAOOdrE5oemqCkq6M0qcFJh7226uoqxXeTkhnU3H5k80U7tD+TxS0m2h7doK6i5JlA9QIDbQGDRojerCZd/SMPjSLEeeyR78zRag802HOfiDqcICsiw2bLummPbrSwr6FQA6Ldvo6d7E/Pw8GzZsKHj9OfzHRU1NDfF4HIe2UpFASaVR0/yhIpouzlLaqMDYjATg2C/msguUcuD4r2cYeFl5hkStGXQmzbLPS0FQqmqLnfbrK3C0KK95WbHZxsaH6tBm8yvlCJIVd1lpuEJ5qSaQ97e1O8RKQBQ1mOi4oxatRXlGa0uNgb5PdFC6UaDUm1Y2bzQs5vMae21WSKCktWjZ+nTHynJ3ShARz/J06tcTZ12gBDDyyjTju84+9xp5dYYJgSDRWhAJwOHvDSkXKMGang3ApidbWXeH8j2SfzrIsX8fUS5QSvQtHgcEtUQbH25k3T0F/FcZvKBis522m8QCKqZyA01XZ/h/C/CuogYjrTeKiZVrLihm48MNQm023FVD+3UCJSYjIFk1GIqUk9zRN5cYfGlhtUAJcga0Bl5cZOpAAeKVZf0ylmjpvr0Yo1OZ//NC572Ul5fz8ssv84Mf/EBRm3P4j4fdu3fz5S9/GbVazUWOOxUJlDRmDR3XF2N0Zrk2T5UXgIXTgZwCpWzvjH8hyuk/zDH+jvI4ht4moTNrFQuUAJo/XEbbTWIxvc47aqjsFyuNVv+hMizVYv6r6gtKMJYq98WDLE4p7RYrl9tyXY1cUk4AKq2KeCyuWKAEEPJEGfjthFDGmqYrK9nwkFhMBiC0qFygBOCbCnLy52NnVaAEMH9siaGXxPwwa8H0QRfDAsL9tWJy97wwXw0uiAuUSrtt9D3RKlQqcez1OSGBEkAsGCMejaMReO2KGk30PNqKtVb5+62R1DRdVSlc1ris1y5UKg+gensxjlbl4giNJB8gLetVPseZyiXabqiioq/w3JOcl9UaFTqzRqhc4pmXXZx6LkfsJAsHjfjjnH5hIXtJ0nRoV+9VqzdbqL+wKG825yQq9I1s6byAxcVFtm/fXvD69xJ/NpFSa2srsVgMFSoutN+6XP8uG3lI+7tOr0Zr1mT9LBvK1pvY+lQt5ZusivtmqZYwlUmEFmHmUIGNYBrh8E2FePtvBxh6Uflm+Pivx5na72LuiFgKlHgsLpQ1paTdRlGD2Mte1mOntEuMADgaLBidklD5Ke+kH+90gMl9yp1jIQ/s+tsTQtlmyvvt1F4i5oCKhME94hNK41253Un/p9swVyif+SWnJIu0BBYLc4XE9i92Un+pmCNu4HeTisucvRsM/GZCcdm2JLZ8rkNYOFPUaFodvCmA7vsb6HlcueAIwHXazcxhl1Aba4NRWOi3629PMPAbsdTMrlMe5o6KZWOzVhsxliivewtQtcWJrcGCZFHuUSptL8JcYUByKh/c4UBUDvoLvA9Dr0xzStBub//dACd+njaHKFART7wtzwWlG7IQoWRd2UxoNPQ9XkPPQ7kdZCqNeoVYKR6TiY2typB7ndNpU59ZJAdlmiaCwSCPPvooHs/Zf8fP4S8Li4uLPProowB0Gi/ApDPJDheNOitxTY4tU6kOtU5FPD3epVLnddZuvLeCjfdWFM4ElgZnmxy4mtqXZ+zGYqtO85/+7Qx7/mWYeDye21kTi68IoJ/8/SRnXsmyAcjxm3QmiEXihH0r7x2PxXMKlEwlOopqTDiazYpPh+qLdTharFT22hVdn7pXuRGroGNo5ugScyeVO8YAzjw3JVTiC2ShialSzAE1e3iRheNia9qGhxtpu1UsCOHssGCuzlKTOw/Wf7ReWNy1OOhj+MWz70hxnfIykm1c50HdJaVs/XwHOuVxY9BB6UabUKlAS42RzZ9oxdmlfD82f2yJhVNiYxSg+oJiofuceT4xrkXKK+5fYGnUR9irvFHYF8ZcqsfeJHDKBCjrtlG+0S7UxtFkpqRTuQ3Ci2Hi0Xi+xI6r5rHZgx4mdi8y/FLavjdjrs3E8EtzvPNPZwgvLV+TL4sSwOwRH2GfnCHJWLw6yKZSqbKuNRU9VvqfqKaoIc/8k7GWSWY1OmPi37m4l1abWjvLx/rQaXTMzs5y/vkKDlydw3843HbbbczNzaFBxxbnjai0mtT/MpG+F9CZNEjmtHeugM/LUqlj0/1lFHcqn8z1Ni0Gh5ZIAFyFyrylTQ4RL+z79hjjuxYVn5of3+Ni7O0FFk5lBLHz7L3UahXxaJxIul8pHsufzaDFTHFbjjk2R9uybjsVm+z5ur8KRfVmrFVGIgHlYrCIP8LCgIeF4wLrWgQOfHOQ8TeU+xdtzWbK++zK75HA7JFFXKeV7x9tzWZ6HmnCVK6cR2kNapztVjlTj0CbzZ9qo2qbU3kjYGLXguJyau8G42/OLZ+uVoieR5pov61GqI2xTI+tUYSsQdPVFXR+pE6ozdyRRWZFShgil7yrERT6HfjmIGOvinHW2eNuZg4L+ryqjFgqBQNl64so6bQh2ZUPVHuDGXuDWS7PqRBhX5RYOI421yuUZX4cenWOk78XCwLv//YYQ39KC2YqEGzMnZDfHVt9Fn+hWpV97taoWXdTMetuKs79xRlrWTwKGp0Ko0O7yh+WRPq6adAaqNdsIhwOc/fdd+NyuQr+lnP4j4VoNMp5550HQLf5UiSNUebuyf9lQq0BtQZjkQaNXrWS1iR9ZTnQfIWTtmtzHG7I8Z5YEnGipWEFItI07jW1d5Ej/z4u5PMaeH6a0Z1ZhAy5fFMa2ecVEShfqTFqcLRasNWZFGex00hqyjfYKe4Qi+NYq02YBefzuaNLzB0V8yfMHFjk6L+LHcgq67Wjd4j5vBZOuJk9JLbeNl1dSd0lYjFAc6UBg0A8BmRBmKi4yz8bYuaA2O9ZC/zTIaGSegDODisbH20SEo2gkUvlaYzK20g2DZ131lIkwNeWRv3MHHAJZytytlmFhECzR5Y4+syI0H2Whn3MnXATXFLu84qGYlhrTcLcq7LfSXGX2JxQ3FWEo0W5zysagliBUnSZWZR8UyFGXptlcp+yMRePx5k77uHwD8YJpZevU6vlfXOO+dszGSIWVKG3apGKsoy5HDEYa62RDXeVZj9UnkTG+qczpfm8EmtgzjZaLY6ZLqySg5GREe6+++7c93mPIbBdXDv+63/9r5w6JQc5Ljbfk58kZ3y291sTOT/LhEqlwu+KEvZGcZ0uoOpXqVIDpf36crSShrf+95n8bdLQdWcVcyc9TO3O2DSp1PnTIYbg9G/ENhmnfiWQtjmBfV8fUJZ5Kc0O+/7ltJCwAODYj8QzAXlGguz/xoBQm4otDlnUJDC51mwvQTLrGHlJ+SnzwHSIg//njFDfJJMWtVaNV6A+as32Yio3OfHPh4SEPUF3WC6fobRvFmi/tYHRN2dZOHZ2RQydd9TinvIz+rJy50PQFcI3K3biq+PmWlCrmD2o3GGh0qhQa8WObh19Vnxs115Qir3ewvAfJ4WEe44OCyFXSHEWprVk4FL8zqVtNA4/m8hCJvDeHXlmRLhkojwnis2LU+8oIAxZFnTJAh231XLi11MEFGba67i1AnuDieBSiKUzodVrUdo8moRvJkw4EJOJSSz3WFBp1MSjMRbPhHj7n0dRpW+kc9SVTX5WG+pmQHWEQNxDb28vJ0+e3fSn5/CXhYoK+URokbqUOmNn/hNhaWN69liA2cNp65ICwY17MqjsdGzifXA0G2m9qpTpOnfuLEoZ742pXEf9RSUc/fkE8ZBYaumF42J1zsI+2Pu1QaE2vtkwb/7dCSHhQ3AuzO5/OEY4vU2W+SQTu/7XcaG+AQwLngoyVUroDFoWB5XbTl+so6LXgUar4tSvlItIx14XP/mu1qjQ5FVYrEbz1dVEg1Eh4ZVvOkQsLDbeqs8vxuiQOPVrMSGtKBztFip6HUJONd9ckMBCCHTK66o5W620XlvN0MtTip9V0B1BpVUhCWSdWBz0CY23JGrPL8U3F2ReIMsmOijpLGL2gDIuGfbFOFyoBHKmozYMb/5/4u/q7q8NEF5MezYK5uA9XzkpXM5xz1fF5jiAoRfXlpm1vMdKUY2Rk79WPg+tu62SkCfC/u/KWZUyxU0qlWqF035+wEt5t4WIHzlIkC/TU2K/fujZxB4x/bvzci81F5pu50X399m1axd/8zd/wxe/+EXFv+kcPtj49a9/zY9//GMALnDek1WYlERmYPbYr9MObxUKKKtURIIQcEVYHC7gF0jzTbVc5kBv07LnW8rXpoZLnCyNBZg/nuGvKLC/IQJjO12K7wMw/raL8beVt4nH4pz8+UT2gH8ef9zxn4yuzIikgHeN/mmG0T+JZS4MzEU4IVB6DOQsTwsDHqEybNVbizGXG5ja7VLcJuKJcFrwsI/OpEGlUxPyKu9ccVcRjZdXcvTHwwJly9T4ZoL458SiNy3XVzF9wMXSGXEeIYL6S8sILISY2uNS3MY7ExDKdgbQel0VWoNGiLOqtWo0OjGf19AaRPXlGx1U9DmZ3r9AyKX8d1mqDUSCUcVZmAqKmrIEyE/+Upx7n/nTNKOvTy+XlVPAu4ZfnmX4tVmhd3Vq7xJTe8VEV6tKZmZDtv2QFlo/XMLImy4CLmX7mJrziqjotnD8VzO4x8Or16Is3Mo9HYI4hefRBLcKLETY9/3ZFT6vpD8sG1RaDY5IA2VSI9OhQfr6+jh9+rSi33MO/zHQ3d1NKBSiQmqmQt+YXZiURFpg1jMV5fCP0uaYAtmTUKlxT4bQ6bNclxHkTo5po0ND69UlTB9wM6Ywi5LWrKF6i53R1+eIBMV8EL4pQdVDFE78TKx0adQfZd+/Dghlj4mGYuz5mtjBN4BDgrE5kIUZIpAsGjQmDf5p5bbTSGpqLyxFZ14QKmG6cNKD8lQNMtRalXDl0cbLyolF40JVZfzzoayi0XxwtFowlegZ23l2s1gayyRK19kZe31aseAmuBjGOykmKDc6JdpuqmHoxSnFoqiQJ4pG0qDVKxc2BRdCDAvuKQBqd5Tinw3iHlZeohgNFFWbWBpWyI2jcOZ5cQ3C/q+Lr8uHvjcknO3r8PcGhcVdx34sXp55RomPMGPej8fjFNUaKKo1rt4Dx+M5RZ1t15UQ8kQ4/kt5LlFlrmEZOhPfXBjfXIRwAHndysGfAHk9jEQ488rS8r9T/ddALIf9tVq2mG7ixdB3ePbZZ9mxY0fqAPzZhCqeN2fgu4fH48FqlVVuHabzqTetW31RNLqKAG+4swTPdIiBF5dyOhnjEXlHkOvkfjyXgzF1gfy9lmoJW52RsZ3Lk1Detto4255qxjcX4sC3swQGsjhFJAtseqKNueNLnPiZ8o1T90frGPzjJJ5sqVdz3LO4yypUDot4HMkpERIQ2QBYavV4poJCYgRHh4WabSUc//GwYhGHZIHNn+zCM+HnwLfEHOpFjSaWBAIerTdVszTqZWqXS+g+opCcEqXrrYy9cnYXc2uDke67G5nctyCUree8/9TF0rCXQ4UCMmnY/sVO/Ash9n317G4aS7qLiIZjZ110JTklmi8rY2TnjOJycZJTQq2VxW6K75MY3+4xHwe/c0Zxu4bLyzE6dMJiKluLOb8wLst8KlkQyuQGcuavaEyhLRKsu/3mKhZHfEwqfP8kC/Q90cbiiI+jz2QhatlUx3US6+6sY/bIEqd+m5sYpq8rkkVOKzn4QuJ9zRc8iMdzf55w5qt0OTbOKjWWci1t1xRz4rkFPGNptotG5UxKWTDgeIlTp06xfft2Xn/99dx9O4f/MLjsssv44x//iBoNl5c+nP2iSGTFWC2q0dG0w86RX88QWiR3gLcAtypIKxPvQd1FdoZ3ulbqJOLxnEGvpitLKemwcOB7I/hzObcz+txxaxXWaj27vjKYX4+RxqEq+mwYnBJnXphJ+zj/bzKV6IjGIDifcZN8ovXkwYds/cpjQ2u9CfeQWACm7eZqPBMBxgUcCOvvrcdaY2Ln/zwqJLwylegI+6KrslDlgqXGSEWvnaE/TgiLLERhb5EzjLoEsz6KYuMjTehtOt7+n8oFKl1311FUZ+bNvzmquE3TVZWU99h55yunVopa3mvooGKjg7kji4qf61pRtsmOqUQvVMLNUmPEMyqWPWEt41tn09F6TSXDr8xkv1+u06Q6MDl1+KbEnpHOppOfq4Bn0t5iwpWZuSQHVGoVlho9NduKVztv8tyz5ZoynG1W3v6n06ttlyNLyvp7ajA6dOz6x8H8mZTSbFi52criUADfjHyTfO3i8Xhux2py/s7VXq2iYUcRJoeWIz/PEM1Go1mDHf6yYd4+/RJarZb5+Xl0OoHagefwgUQkEkGSJOLxON22y6k2ry5hGo9EV43T1sut+FxRxnb5cvOnhM8r5xyTzzkJKS5isGuxVEvMHl6eI3IFhgGIxeh9uAb/bJBjP8siZMjG17TQ90g9M0eWGHo5T1mCDF7VfFU5E3vml+fJPPwpycmsdQbc2URaedpqLVoiniyqgjy8y1CsJbAYERIjmMoNVG93MviH6ez3y9o52PqpDlyDHo4LiptM5QZ8U8qDMdUXlOCfFxT3rgFagxp7i4XZY0tC9hO+j0VL38daGH97nhGBkiBbPtvBwmk3J3+mPODT94lW/PMhjnxfuZ9sLUielj/b2aG0Bqg+v4yZQ0uKx5DWoEZrUBMQECihha1Pd7Aw4BES75X12DFX6BnMlk0oTxYPc6UB74RYgDJ1hDuqnHdJNi1qFSlbZJ7IX4EEt6o+30FwIcxsenWFfO20sOnBehaH/Qw8l8V/lUWkZLBrWX9XFdOH3Ay/njvYtmJN0kJVj4XxdxL9ysfXYvHcoo7kfJpDLKJSqdBaoP1SG2d2evFOL4+jeDSWU+A7VPRHjh47ynXXXccvf/nL3H07h/8w+PKXv8xf//VfI6mMXFL+QPaLIpEV4iSpSEPDeRbOvLYo+7hzcYYU98oxzqPRvO9tkl+VdpiYH/CtDKzn8aeVrTdTtcXBkR+NEnTluC6DQ1Vvt1PcZuXwDwtkTUn7rUV1RkylEpO7FxMf5fF3JdrpLBpUsDJbCBQUemskhIUFxhIJ/6xYo6qtTgJLYeYFMinVX1JGyXob+752UqiPOouGWBTFIgvJpqWko4ipA4tnvQybsUxCrVGLr4GCaLq6EmuNkf1fV56EovaiUso22tn9j8oPWJdusFG3o4xD/zYkl1c7i7C3mHGPBc76M7LWGTGVGpjarVy2ZnBKBATj9vWXllHSJTa+NZKamvNLmD7sEhLvoQHJoiW0KEb4NUaNsL1N5Xp8U2lx2nxZ3VRqJJuGih4Hw3+azfgod7vyTTYqNjk49L3h7LbL0rbhkmKK6kwc/P4oxHOsHSrVCr+WvUGPbz5CaCkq+7TyCW3jsdxC3OSePk/70g4DljIdg69kzJGx7D6vkGmWtyZ/jVqtZm5uDkkSS2wjirNe7q20VE4Da1RbswuUtNrV5FeST+rordq8A00l6VKB5KIGif4nqinpSqQXU6tyB4Iz7uUZC60QKOU9FQYQUfHm/zzNge8rEygBoNPiXwgxI+AIcLTKaaXLNhSonZh2T0u1RPuNNXR9pFbxfQD6Hm9m4yNNQm26bm9g66c6hNqUr7djqTYBIrVeYfDFSQZeEFc/igiUQD5VXdmXJ11tFohmnwIIzYeEBUrmCkm4zJn7jJ83/usR4XJia8HOvzkqLFBay2+aPbi0JoGSZEGonJhkBGe7jYpe5eMhNB8SEiiBPL5H3pjh+C/Fxrez3UpRg1gJkZYbqlj/kYbcqSizzLfWBgN9T3XScl2l8htJsOHBZtpvECzF02qhoseu+PqwT4VvPsjSiPL33D0cYs9XTuUVKGUi5CElUCqUoU6l1a4QOPU+UEn3PeXyP9RqVPkWdY2aKDE0OhX2+ozrNDlSMgJl3n7i8ThvvPEGO3fuLPh7zuGDjTfffJM//vGPAFxsvyv7RVnKiFgr9XLK60iOMobpbRNYf2cZ6+9MSz+sVhU8gZMsMzX8imt1gDsP/xr4/Qx7vjagWKAEsDjsxTsVVCxQAijdYKd0nS3t48Ja/pbrq+h9OKN0aT6BEtByZSXbPtOBPks5o1xwdljovqeB2otKFLcBsDdZKO5QnhYX4Pgvxznz0pSQQAnkjFIiQpaKXjul3fZEZh+F0LEs8hKA65RXWKDk7LAIPSOQMxeKCJTWioHfTbDzb44KC5SEf1MYJt9ZWJNASWcTs11ln5PyjcprxgPCAiWAMy9Nc/I3Y8Lj21ZvpiRbWuo8c+aWp9rouEWs/Er3Aw1seqRJSKDUeXs1nbfUCNm8rNuGrdGMqUJ5m/kBL76ZYPZXNsd8eeiZ0cICpQxMvOPGNxNWVJpQpdWmbFXcYaTvkUpMpYkOqlU5Rd7y5xr0Rbrs6eBzlNwyTtchxSx4PJ5U1sJz+I+Nzs5O4vE4Nm1FVoESGk1WfiSZ1egt6vy8S7vsEzM4tPTcXYI9vayhgpPPWoMcRE8XKOXNNpbgY3u/McKxXykUKCW66p4I4hrKMy9n3NdQosXZZsbZluApBfgTyKKUrttqabk24/0r0LbnwUY67hDzk7XdWEvfx1qF2jhaLThbxHwcRODEL0cZETiVn4SIQAnktbayV6ycmlYgM2ISkUCM2UNiAiXJrhUucxbxRHjrfxwTEiitFbv/8aSwQGktv8k97F+bQEmLWL0ErZaKPiel65SP10ggJiZQAojAwPMTDDwndkLf2W7F2SrGu6q2Oui+t4GiBuWlRyS7li2fbKf+onKh/m18sIHGK+V5KK9AKQ0VG2yUCvhAVVEVnokA7nHl73nAFWHft4bzCpRWIUJKoJSzJF0Skm4FP+q4xk7HNfZEh1Wo8u3rNBpQadAZ1VhKM7JkatQ5xVHV83KZ3V/96lfs2rWrQAfP4YOOyclJ/vN//s8AnF9yZ9ZrVGr1Kh+quViDzqRGpcpebjAFnZTaWzRcZKP5cvvyZ4X2FsjCHICZYxkCpXzxxliM6QNuDnx3SLFACcA7GWJpLKBYoARQ3GGlLOF7VyJQAqg5v5T19zVCukkLCJTKeu1sfKRVqDSasURi3d0NlPXaFbcBKO4owtkq5vMafXOOwecmhUVUYU9USFhhb7JQta0kNS4UQYPY9Qn4p0PCAiVzpUGsNBow8NsJIYHSWjFzYJHd/3hSWKC0lt/kOuVdk0BJpEQcQGm3ncrNYjxcVKAEMPHOPCd/PSY4vmMUd9mwC8Yb19/dQMvVVUJtGq6ooPu+BqE21ReU0Hl7HZItYXMFZSdt9WZK1xVhLFn5QuWb+5bGgrjHxHj4mVfmOPDdkdwCJVg1Z7rOBAktRUGTOwlPCmnrkrlMw7qbnRjsCTto1Kj0uScMlVaDvkiLZFWvnMMB1Jqs4ijJV0KZuhmPx8OmTZvy9+09wFnNpHT33Xfzgx/8AIAPl2RJC5VugEiWTU7y4WQ74ZXcAITldsXtBhp2ODn47+OEPMsPNR7OvXlad3s5lkoDe//1zHKWkDTCkM00jjYT0VCUpQGxU1srL1NuckUZjjLu23RVBeO755WJJRK/seO2GlxDXibfVq7iLO+zY7BLDAmWEBEtBbUWtFxfhbOtiLf/4ZjwvSSLWqhU1/YvdRJwhdj7FeUCna47a4nH4egzykt0rL+3nqJ6M298+YjiNmvFWjIprQWbnmxBb9WxUyBzQEl3EbUXlXH4h8OKs38VNZpYf3cDk3vFMkqtJcNY1111mMsN7Pq7E0LthLGG90hyStTvKJUDc9na5lgQuz9az/Brs8rTtCPPQ1N75wuXsEsLwInau6AjKF9wT62i5kIHo6+unvNyEYP191ZjLtHz1leHcto+PQAXj8dZ/5FyYqE4R34iz5OphT/bepH8LNual75eZknJuG/pJaZCJ6mpqWFkRKye9jl8sKDRaIjFYtSZeug0b812wfJ/i3KvJBKnv9pvkMUyx38xu+IkQa6T+ToT9N5fw+KIn+O/yCEUzHKyrLLfxsSuxfxZmgS41XJHc/QzmcEkdVmBTEoVOorbihhJio8V8EFbk4nKPgfHfpRxejvPb9SZoO7iSoZfXkPWIeXVvdaMvidbWBzyCpV6g9X2LoTmqysp67Hzzj8rzyBkKtHRcmMNQ3+cEioptu0LnXin/Rz89hnFbdaCtWRSWhN0cN7nu5g55OLkL5SLo9tuqSYWigk9242PNqEvEssoJToWQK6xvvHRFqb2zDPyytrKkSm/GdnfozwOhZoLi/HNBJkXENhX9Dkwlxs4/TvlGaVMFTqcrUWMvlr4EEQ6f9LZtIQzT7yJ5pVPRx5uZms0EY/FcI9mMWIWG+psanrvq2H+lI/Tz+fZo6atawaHms7rSjj90hxLw+GVn2eby5P8Klu663TulWVtem7ma6jVau6//36++c1v5u7fOXyg8Y//+I889dRTqFDz4aonVl+gkHfF8wWuEuPPUqGl8UIbJ56bI5gee87D2eovslLcYuLAMxNEUj6v5XchG7eylMt99oxn2fAUONC3Fq6mtaiJpPtfFGRSquy3szDoITAbSf8wb9/qLi7DNxNg9nCa8Qq4Q22NJgxOSaicGiALRc5i9iCAyn4H5X1ODn1nkEhATEicM6tUDvQ91UpgIVS49Gka6i8tQy2pGfydcmFK4+XllG9y8ub/OnrW7beWTEprQccdtVirTez6W+V8yFJtoHZHGYO/HVcsCJLsWnofbWHi7XmGX1buoxUdCyA/W3ujmf3/Kl46Vgi53qM8vEtrgKptZYy/mVbCTQFarq1kcv8inlHljdLnISVZlCCHvfO0LRi0ylf+WqOhdJ2JmcOr9z65BBpNlzqwNxjY82/Tud/BDH7U9CFZdDXwojy3Jn1e2daDlD8sWzaZArzrjO8gxxdfobKykrGxs/vensP7GxUVFUxNTdFhu4h64/pVn6vS3ot4ZPVYSo7/eFZelmib+Ky634JGUjH8unvlu5qzPDR031bG4nCAoVddy39P50/Z4o1NBhZO5cmsCe+pz0tj1BApVMI1ra1k0WBrtCyXwlIQTjaWSJR22xl+SSBuqIHyHgezR5bEBSMahErRrQUdt9fgHvMz9rpY4gHRjDGlGxMZhL6nPIOQxqih8bJyJt6ZFxIqbXy0Ge+En1O/Ek8OIYK1ZFJaK/qeamV6n4uRV5QfUK/eLicpEClh13xdJZZKk1DJM42kJhoSPACoga4765k55GJmv7JydGvGGt4jZ4eVsDeCe0S5sKeozoS50sDEW3my72ZAZ9FgT5+HCmRRSiLf+5eVvxXyh+XhbcYSCZVGnfWAdTYxkEaCdbeVMz8QYPTtPD7DtLYaXYyWyx2MvLWEbza64ruzxWOSWSqzrofSsrA825r44vS3icQDfOlLX+LLX/5y7v69S5y1TErz8/MpgVK/86aVH2q1OdNPdd3kpPZ8a+5BplatHAgJ9fLc8QC7v75SoFQIU4fceCYCskApFiucQQlovryMrptrVv4xHsvrEOm4tYp1d9fk/DwbDKUSSOQP2Oe478DvJgsLlOLxFYTi2I9GhQRKAFO7XWICpaSgT1BYsekTLTRdLZDFBYhF4vJLuQYxlIhACWDm0CKTe8VsZyo3YCovdDxlJc68PMnI62J1S8v77Gz9fAeODjEF7FrQ+/EWeh5rFmoz+IdJBv8odppKX6TDYNNhLlMuKV8a9OEa8DB7RGwhFxUoAcTCMaIRsTEkOSX6nmql+nyBLF7Jrgko60PzIdkJJyBQAjj43SEhgRLI81BBgVKW/gFY6/VC7cp6itj08YxMcAUIRdftldRuc2KtU27AmSNulkZ9iucVlUrFoR9OrRYoJfuXq48aNVKxmo33lCFlSyihXp1Vqcd5OV1dXYyOjrJuXZashefwHwJ9fX3EYjG0Kj2dReet/DBHRgiDQ8X6W4vRmQtkUMr8LmRxUqZAKR/CPnCN+Jk+ojxYb28yUnehk6YPl+a/cAU3hJ6H63G05zm1nIU/mavk+UBUJOGbDAsJlAAWB3xCAiWQ7Xf6t4ICpXxl5XKg+vxieh5rEs5WFIvGiUbEHWei9p49uiiXHhNoZ6owYirWozOLZQIYfGFSKNADsOGhRrofaBBqsxY4u6z0f7o9VcZOEcIw9PIUY4J80lJhxFyh/EQ6wNSeBWF+vJaydWFfjHgkpsRPugINV5SzITMDWsGbJf4//d0oMG+OvjonJFACmNy9wOnfion9fJNhRQKlTIQXI+hMoHcmfpRCgVLn7VU0Zs7LBdaCjhsqaLqsLO81K/sWY2k0wOxx5fYLLMTY+93J1QKlZP9y9VGtoWarlZYP27N/nmUNvbDpVkwmE88++yw+31muV3kO70tEIhE++clPArC17LaVH+bgXQD155sp7zYI8y7PZISDP8oQKBXA/EkfrqGALFCKxQtnUIrFqN9RTPt1FVk/y4Xq8xy0XJXn/c5yX8mmRWtgpUBJISZ2uVYKlKDg/DX88rSQQAlgcdAnJlBK0gxBgU3X3fVUXyCWKTMeh3gkJixQAoRFKRO75pkSXNMtVUasVWLcYWLXHIMvTAjZz1pnZNPHW7A1C/ChNaLjjlo6PyKWHXH0tRkGfi8o4DdpsZQb0Bcr94uEXBGm9y0wf1JggkB8LABEI3FiopxfC+vvq6d8k115m2TX0ul7gXkzEpDfdRGBEsCpX08ICZQgxzxUAEl7G0sTP0rhPrqo3sC6j1SttEU+gRJQe76NhoucWKqUb+pmT3hZGPQrfwc1GgZeXFolUALZH5ZTZKXRoDVraL+qCH225CdZ1tCGol66129gfHycCy+8UGEHz+GDhk9/+tNMTU1h1jposPas+EylVq8QKCWhMULTJVa0ljwZlDJ9tImxPLbLs1qglA9RmDvpY34gsTcoFG+MxZCKVDRcWkL1Vlvu62BVH1pvqMBanSe2lMU3pbfLvyuvQClLvDHkiQoJlAD8syExgRJAFKZ2L4gJlJJThUATe7OZtptrhLPgRENrWP9QXhouCfeIn8nd80IZhCSrBkuVEZ1J7DcN/n6CsbfEDns1XVVJy3VimXPWAmOZRPdHG7DWivHJwd9PMrVfnLdaBHnrzKFFJnaJ+WCEBUoAUTneKFCYCIDSbhutN4pVOUm9RwLDaP6YW0igBLA07BMSKIGcxSw1Dwkg6pezFemyZNfKdyi55gInlf0Z83KBtaD1mnLqLlCeKSsagvmBAAsDyu0XDas5/puFVQIlkEW4udY5lVZDcYuR6s3ZYyUqrXaVkOrimo9gtVr5+7//ezwe8cpGSnHWRErV1fILYNWU4JTSBCb5aushn3S21+TYiOUYBJseqqR0vUk5YUhg9oiPw8+ICSQOfH+IwZfEHPuGYgmjUyzovu6OWrY/3Zb7gixEo+maSvqfbitYjmgFmZDkbDaONjERS89jzbTcILYYdd1ax/YvdQqJKgB0Ri2S4AI78NsJ4Uw2XXfX0f/pPDbPgVO/HGdip9ik+s7/PsnufxBTDntGgowIjr1YOEYsEiMSOMtSciAajBINit1n4ZhHWBw39vocO//bUeGSb0d+MCxc/q/tphq2fE6spOGxH42y5x9PCbUJzYfQGTUYBFKgAmx8pIltn+4UamNtMLL5k63YRIKawLp76sRKvgGdt9XQ/ymx9PhdH6mh+64GoTKKOrMGyaTB1qycTB75+QRDr8ziHlZO+Kd2L3H0p2LvoEqlksvf3VshC3BXXZB9GTYUSeiLNJR35UlXmyFUKp+URSlHjhzhwIEDQv08h7987Nu3jz179gBwkfO+lR/mKbFT2m7G6NAJiTfqtlvpvDURnBbkXid+NcfCSeXk2zXg58zLsww8p/zdczSYkKxa1NmIeQ6Bt6lCR/c99TRfLZbmv++JJpqSQTmFAqXmqytpuymDQxVw9DjaLfQ81oSpREw5tPXpDrruEgum6IskdGadcOalvf9yWui0PED/023UC4gWQA4Ynvi52Cmv2UNLvPnfj8llRwQwtWdBKPMSQCQQJRpcg+NBENFAlFgoSjwq5iQbe30OX66yiTmw559Psf8bYum8J99ZYFg02yqw+alWYb6x+59OMfqqmGNNsmiRLGLvk86mY9sXOmm+XKx/LddWsu5usffQ0W5l40MNQm10Nh2bn2wWE70Dmz7WStv1Yr/JVCJhLhXb3w68NMuRZ8VOvh/72TSLQ4KTkUpN6ToTG+7KMZ/nWLfs9XqsFQX4Z9p6avKVYVTb8Xg81NWJPd9z+GCgq6uLeDxOsaEBuyHtHSpQ2rCoUsJeI7bv67rBgbNJ7J0DcE9EGfiDgv12WgDt+M8nGXhR+Zwaj8cxl+kxlmaZU/MIo5qvLKNHUCxa0Wen5+GG3OXHsu2ttImMhenlnxQE2NpuqaH+Q2Icpe6CMvo/3S5cHk2yaoXLUky+syCcyabh0jJ6Hm0qfGEGxnfOCXOow98b4sA3xfoXcEWY2uMSahOPxtfki1oLosGosG/NMxZg7oiY7RZOetj1dyeED4oNPj+FZ0xMaFN1XjG9T7QItRn90wwHv3NGqA0RkKw6JKvY3Nd6YxWbnxTz0xrsWtbfVy9U8g2VmsYryqi7WEwsWLujWJiv1V3spPueOgwlyucJjU6Fwa6jqEr5YdeR1xcZeHEOz7hyHrU0EmLwT27F18udk+eu1itsVG5YbfNcQiWtAcwlWhwNeX5TxnpaNncharWa1157jcOHD4v18xz+4jE/P8/f/d3foVarOa/0jhWfZRMnJWGrlLCWS+j0OdbZLNzB2SzRsMMmB+oFfV7juz24xxT4mhPcK+SKcvr3M4y9ozz4bizWYSyW0EjKfV46i4Z1H6mjanueAHqWdh231lC1NdFGoUCprNdOzYVi86mxRKL9lhqh8nAAG+5vpPEKsRLcOosWg00nLB46+fMxYWHFunvqqegTL+8lmq3JPx1i39dO4xLkDkvDPvxKqvGkIRIQ50NrQSws30vU5zV/wk0oM1t0ARz/ySjHfzIq1GZp0Mf0XpdQG4DOO2uFDycce3ZEWKCjNWnQWwVPn2qg9/EWqreI+ZTKeu00XSXmUzKWSrReXy0kiNJIsv1KN9qF7rXx/gYaL8vuH4rH4lnFSuYyPcYSsf33mZfmOPWc8ozoAKM7F/HOCr5PKjWWCi2tl2cXt+YSKhVV6bDX5v9N6UIlTcxCha4Tr9fL9u3bxfooAPHC4grwX/7LfyEQkDdG55XenrhTgVslSOs7/zq9WsQi6bKnxgaK6iS0Bg06AeWrpVKi8+YKBl+eZfaAAPmWIOSKM7V3SSYouVI7ZmDf186s+LdKrSpYOmTo5WmKcqlEcwTB1FrZhqF82o0MMlG+0Y6+SEJrENOrSVYdRkEnwPwpN1qDRji70Vv/3zGxBsglwWYPijkCYsGYsJq1tMdGSXuRUNm2taL95hpUGlkEoxQzB5aYOSBmh7XiwBpSPRd3Wam9sIwj3x8UzmAliurzi7GUGzn+U+X2iwQixMLipEtyygIT9xnlgfg3/7v4OHcNeAj7xEhXcCmKzqTF3mBm8VSCuCo4xWuuMKITdLbGogVi9lk2gsOvThP2FxfMYpWejnHs9QXGXhcQu6lVEILxtxLkTrB03sYHqoj4YopFrqqwCr1Vi6Usx7yvUsvrXNqasjQc4u1vT8n9ylcrXa1JbZglSaJcamYqdJprr72W4eFhpT/pHD4A2LJlCwB1xm50usQmpECQDJWKkbe8jOzxrhakaLU5uZexVM5oJ+Ks6bq1FJVaxeFnBUQLidJKU3vcie6q8qe/TmDhpI+3/y5Lut08E5JvLszMoSVG31ztcMjJ23QyrYpF4ooFSgCWKgPadAeZgt9krTahL5LwCWaacQ14WBwWzYQ3wcDvxE58W2qMBN0RoUw4OpN8iigi6Bhqva6SxTE/04JBLFHoi3W0XVfN8J+mhYRKR77/55l7Fwd87P4nMVE0QNuNVYSDMWFBmTB00HZNFdOHFnGdUj4GI6EYkTWcLnN2WIQyFp34qXiZiPBimKVR7/I7pTALit6mw2AXc7ZKFi1Gp4SjzczCCWX2S75/GilP2ZAs8/bE3gUWz/iEyrzt/soZxdeCXA539lDidwiWnyzuNFJ/voODPxonrNAvJ5nlgL+pVIdvJsvN1Cp5nUub2w/9YkHul7rA2pm2tm4yXc9zS19hYWGB/+f/+X/467/+a2UdPIe/ePz617/m5MmTqFDRX3aj/EetNv+anpgzDv7EtcoTp9Jqs5cdAQx2FfoiLVqj8ndUa4GuG0oZfmMJ16k8a1jm6X6tnIlk4ZRf7m8en1c6Jzv+syy8oYDPa+T1eYpqswSnVerc5Ul0sg1Fsr8U1RgxlxnQmpJlt5UFOowOneJrk3CP+dA7dMLZafZ9VXmZiCRsjSZhIXU4JH6AzVpnpKSjiMEXp856CbaaHaXoJDWDLyh37nvGAme/7FgCJwVF8iCXbqs5v5SB5ycIKSzdtlY4u6xYK41CGe+jgSjRQFTOaiagb9JatEhmLb4p5Y32/LM4b1047Vn20yrkXQFPBINdwlJhZEmJTy7Bf4pqTEQE/dzxaOIUfs7SdKvn7cm9so82sJT/XuninoVTfnafUl5uMclV5o4nfr9gCcq2qxzEo3FOPu9SfD+jU0cslv0mKpUKdLoVa07ABXueXZT7lc9vodGknr1Wq6W16AKOu17hyiuvZGTk7Pviz+H9g/7+fgBaLeeh0ch7K5VWmzdTkUqjZmEowsLowqpMOyq9nngo+6bE6NBiKtZBXLnPq/Y8GzqjioE/ugpmT0ohUVppaUh+V5X6vPxzYQ58K4vfIY9fKuyJMrpzloXTOfbMOdrGY/JcJ8KJLFXGxP5XuejdWKrH4JSEecrccTf+2aBQm5n9i8Jls/QOuW+iwqZIIEo0JNamcrMT/0JQWHAkCo2kpv7Scib3zOObUm5D4QxZa0RwIbSmmGvlVidEYeIdMUGZMDRQvaWYxWEfnjHlMcCIL0ZsDT4vc6VBqJTfxFvzwqI6ojB/cgm3wO8BMNglDAIJBwA0OjWWajnzqtJMTNEQgAqVRlmptyTG357HV2CeiMfiqNL4yPGfivnFVRoN7rHEPQTL5pnLtNSdb+P0Cy5CHmUNtXotBrsWg11DwJWjtKlupa7mzFteiC6XgMuFdKFSk3Erg+r9HD58mH/5l3/hYx/7mMJfpRyquJKVT/RLE+Sx23o5VebW5Zp4WZwuSaVz1UYd4UCM6UNpL1o6Sc3hsAEKioXi4ZVtS9ebadhRzOEfTeKbyP8CJM1T1mOl6bIyBv84w9TutEWsQFCq/kMlDKWdQiskTlIMgWDY6rbv+SM/azCUSYVL12WgvN9Oy5XVjO6cYegPZ3fR7L6vAWutiTf+6xHFbcwVEhsebGH87Vmh/m3+VCsqlUosQ5QEkkUSLlt23n/qYmnYy6HvKd8ESxZAErtX/WVlVG0p4fAPzwhlOdr6+Q4CCyGhU/09H2vGaJfY+TdHFbdZK7b9VScRf4R3/rdYtizJKf6s3jWUlhl4z++79kR+WevFArZmI1q9hrmjecZSRtv+TzQSDcfY81V5rOdMR52ERsPG+6uI+FeLlFSFBCGJ8qRZHfZpNWDT1zTJCA2X2Dn5grwxyVc/NrnGDlr/wKnTp7j11lt55pln8vfpHD4QePDBB/n2t7+NGg2XVzwGkJ97JcZ508UmTv9paWWwOP3dzMa9ku9QIe6VUQe569ZSUMORZ2eyO2zSuUni855HaiEG+745knFplnco8V452k2EvRE8oznmUkH+pJi3fVB4mQ50Jp1w2a2+J1tQ6zXs+l/Hz1LHlrHtC524x30cFuAo3Q80oLdJvPP3yjmUs8NC2w21DL4wydQe5UJYnU1H2BcWEmF03V1HUZ2ZNwU5ylrutfmpVsKBKPu/rpxD1V1aRtXmYnb/41Hl5QZ1sP1zncwdWRTOfCWKukvLqNkm88nFAbGArb5YR3BOvMzcn4U/vQuulP3rCvR5DferPs/B2BsLeUWr6dyqYrONugudHP/FJItngskL8t7DXGWg47pSBv4wi+tMxtxeiHslhd7Z5tn0Q1Rpc31ppx5UMHtCXgPjWdas9DXWVzTM20MvYLVamZkRy7h5Dn+50Ol0RCIRNpVcT5mpCZKOvnAW7pQYh84amcMsDKZdk3byPx9nyyVgSiGDd1mrtDRe4uDE7xcITBdwyCY4nbVGT/t1ZQy+NMfc0bSgSJ5AWzwep2xjEdP7cxyMEvV/FeBTeXmZUi72fuJdgGTXCotXLDUG1t/dyPAr04zvFC/1KYLGK8op2+jgrb87pljkoDVA7xPtjO2cFerfunvr0Rk17BPgKGhBa9AKC8O2fLaDhdNuTv5MQLS8hnsVdxXRdGUlx386wtIZ5Ryl5/FmAgshjgkE59pvqaGo3syuvz37fHzTk61EAxFhgZjWoiUSiIgL3s4m7zoLvimh7y3Az9J5lKlMi9aoZWkkj98w3VZqNevvKAc1HPrh1Krvy3pvjYa2qxzEonFOZYqUChxATwW1svkKdGk+r/R1RQt1fUaG9yYGRbZ1NOkvS3x2xvQcx48f4+GHH+brX/963j6dwwcD3/nOd3jggQfQq01cUvWw/Mck98omNEqMxYoODTNHA0TTh1Xa/iGrSCn5XhTkXivHec32IiSjmoE/LKS4VaG2rdeVodapOf7Tlf7lfD4vU7lEPBLHn76HVciBCvq38n3P+4w/vRtojBphsVH7LTXo7TrhLJFrwcZHm3GP+Rj4jXKRRMMVFVgqDBz6P2cUtzGWSHTcVsfQS1PMH1OeyENj1EA0mhCMKEPtRaWUbbSz+x/FYmUao0YWeQk8rs47aolF4kKZkZydVup3lHP43wYVi0QA+p5sZeagi+E/nV0/gLPTStMVMp8ULa2ms2gIC/ym9z2UckJBfreC06W1dbabmT/uze/zSltXrLV6mi8v5fRz08tZ9dI+zxZ7lIp0NF/hYGTnEp7JjHUpPWaYZQ5PxgULcq+0Nc1aoUEjqXFNJfqSjXsl45jhCEFpjjcnforJZGJ2ViyLvRK85+XeOjrk0kha9CsEStmQnoqxYoOVuq1FQveqv9CKvVEq6JxU6Vb2YeaQl13/PIxPQPwScIUIuMJMCaRVq9xqp3prMY1XyCVRlAa6+j/VQsPlpYrvA1CxxUFRY/Z6gjkhIVRSKQlLgZRg2eDosNBxW41wqbeeB5vY/EmxclELR5eYeGeOiTfFXpjifGWVcuDg/znDG/9DuUAJZP+hfz6IZ1xsQXnn708Kl7DrvLGG/o+3Ctt9LdjwUCubBFOHD/1hmp3/7YhwGTb/bFBY0bvvm6fXJFAylEnCY370zRkGXxDLUFDeb2fzEy1UXySWTrFyu1O49CLIv2st48JcqAxGJiRoulKsfJJkgc1PNVN/qdg82HlzDY2Xit3LPebDNSQ2/vZ/Z3xtAiUJ2q5xgEG5g61mqxVHnZ6SluQpodz3Sa631cGNxGIxnn32WcX3OYe/XITDYb797W8DcH7xnQD5uVeCDJd0SBQ3GanaIFD6Ua+i8ZIEVyvEvTIygB358YwsUBKAa9DP4rCCUyJp/Krp0jI6b6kRuk/dJSX0PNIoZ/cQbCfaRrRcG8gZh3Q28XZNV1VSskGMW9duL2Hzx1uwNYlxyoEXJhn5k5gw3FQprel3vfnfj3L43wVOEgPuMT9eQd41f8zDm//9qJBACWDTY81svF+8lIooTCU6+p9speFDYuveO/9wUkigBOCZ8OOd9iO0dQzDzv9xdE0CJbtgSdqJdxYYeXUa36TYer7p4y1suE+s1JDOBK03VGGpESghkoBJlEPFY/I7Ivia2BpMlHSL7WvqdhTT+2i9UJuGy0upu6AYR6vy+WLuyCK+2RBhv3Jhp28qzJ5/HV+TQMneoKN6s1kouFm31UJ173Ip9HzlI1RaLaalOkyShdnZWXbs2KH4Pufwl4t77rmHSCSCUVO0UqCUDWl8qHKjibotltzXZkClUlHWpcdSoc3L7TLvA+Aej3Dg+zME5pQrAcK+KJ7JIIuDyk9tFzUYaLykhOrtDsVtALrvq6Fqi12ojb3FhEWg1BEgi0oEswEDGNbA10zlBhovL0cr2MX1dzew4SGxtSgwG2DoxUmmBcs+WOvE167B56eEBEoy1LjHfHinxUqPHf7ekJhACag5v5TNH2/FYD8rhQJWoOuOenoeFuN4c0eW2PW3x4UESgCeUZ+wz+v4L0bXJFDSWrTCY3745SkG/yBWzsJaZ6TviRYqe8XmC0ebhdodYr4hkH+X6PsIiI8lLcLzGVpYf3cNVdvsBcWc6WKF9huraBApSReL4RoN4Doj9i6e+N3CmgVKtVsMkKusVhaUtUiUtulx1CXa6PLcJ/FZReh8AL7xjW8QKSQkOYcPBB57TD6Mty1VsSXPGEuMRXOJhor1JpzNAj59nUouW6ih4JjP3IuMvr6orMRuGlyDfpaGFcz1afNE7flOWq9PK2+mQKDkbLfQdnMVGsHtaOn6IqFSTIBw+VoANLKQQhRlvXbheKij1ULPI03CnGjktRlGXhHzaUo27Zp+1/6vn2bg92JZXLwTftxjovG1EHv/5ZSQQAlg3UfqaLlOzO+6Fmgk6H20marNYuXyjj4zIly6LTAfYnHYi6gUb/e/nFyTQMlULhZrXDztZejFKaGMVyCL6zpvFyxNr5GzURlLxQOHkk2cj2uMGuF5xlgsUVQn9u4Xd1npvE3huE3MqyVdFhovLaNIYL5wjwdZGg0Q9ikXhoW8MY7+bC6/QCkLVJIOo12Ds0lX2D+Whpo+MxXdafYrwL30oWKKTbXMzc3x0Y9+VPF9lOI9FSnNz89z/PhxLBYLTz72NCqtFmezjv777ZSvlwd113U2+h8oSTn7Nt3roPsWG3uemWf47UW2PFZO9VYLaDS0X1XEloeWyfemB8rYeJe8MTGWqKjoNtNymby5ab3GyZYnqpevfbCSno/KC7Zkhq2frKfpw8W0XFPMuo+Us/WT9XKAXqNh02N1bHp82Sm79dNNtN0gO/wbLy9h22eaCSzF2ff1IXofqGfzJ5YdCNs+10rn7fJ96y4pZtvn27DWyZNM2QY70VCUwedniMfibPt8K+vvqQWgaruD7X/VjqNDdlJtfLierZ9tRXLqUGlUVPQ52HC/PIGUb7Kx/a/aKd8k1xjccH8dWz/XnurDls+203R5BR231OLosLD9ix1UnycLHdbfW8e2L6Rd++k2ej7WLD+L22vZ/PEWWm6Q60V23VnL9i92pq7t/3Qbm56Ua5NLTontX+qk6epKuu9tYuvnO9j+peVrN3+qlb6nEmIiCbZ/qZPWm2S7tFxfReetdTjb5EDZpk+00P/0ck3x7V/slAVMyKe0tn+pMyWEiEVjaPTqFdd23S3bpebiErZ/qTNFRnoeb2bL5zoIeWIM/G6STR9vo/u+BkAWcmz/Uicl3XIfNjzcyNbPdyw/x7/qoOPWOpquqqB0QxHbv9RJxRZ5bHXf38DWLyxfu+VzHfQ8JtvQ0WZh+2c7U8KSrnvq2PZXy3bZ8pl2ep+Qr7VUyzas2Ohg31dPU7bettLeT7ex6RMr7d18rfxs2m6qWWnvT7auEG9t/1InbTfJNmy6ppLtX+pEckqM71kgEo7S//GV9u68Qx6H9ZeVsf1LnViqZXv3PtHMls8sj5dtf9VJ1z2yvasvKmb7lzpxtCXG7KNNbPncsl20Jk0qJWd5v53tX+qktCcxZh9aae+tn+9gw8Pye1TSLdu7MlETufu+Bral2/uzHfQ8LtuwqNHE9i91sjDoYeC3E3TdVbdqzPZ+XLahuSIxZq+S54GOG1bacIW9LbINW66XxT4tN1TJ10rQ+1Az3fc1sflTK+3dcWvC3ldVpOwNsOnJFio3OZk74k7Zu+vOhL0vle1tbZAXtp6PLdt7ar+LeDyOo00OKlVtT9g7OUc80rTahg82UtnnpHSdbO/yPrts7wdX2nvL5zrY+IjsTHN0WNj+n7rY9GgLLVdWZZ8jHpevtTYY2P7FDuo/JM+7277YwcaHm9Ns2Mqmj8v/lpwS27/YkbJ3+8018r8vraByczFbPtNGX8LeSLD9r9ppvVEe3y3XVbD9r9rlbFzA+o82IVm1SFZ5gdz+hTY6bpWfTeMVpWz7fFsq0NfzeCObn5L7MPjSNFqDmq475GtrLnCw7XMtFDXKc/LGh+rof2p5/t76dBNag5aB381Q2W9j22eaKemSA6Pr762m/6mG5d/6VAPr75Wfeck6E1s/VU/Pg1VIFlh3RwX9aetP3+PVdN8jryH2Joktn6ihus9EaasBR72eLQ9WyOprtYq+hyvYeLdsX0spbHm4hLrzrYnTazZK2kwce26R2VMheu920HOHHZVWg96uYcujpTTtkI3WfLGR/vvtqLRa9LFKent75bGwYQPn8MFG8hnv2LEDe2kxKq2W9TdY2Xjbsjhl8/0lNF9iRaVSUdVjYPP9xfhmQxz93SKOej2995bKpwRUavruL6H1CrltebeJ/scqKKqXQK2i9yOllHWasNfLJHnTw5W0Xy/ztOIOI/2PV+Fskz3B7TeU0PdoNTobtF1XQt8j1XI2JcDebGTLk3WUdVsgHqft+lI2f3x507Tp8XrW3V3NmT/MMnXIxZZPNlK1RV5PWq4pZcsnE8GBWJxNj9bRfb88x+qdOrQGDYtDcnCt+epStn56ec7qeaSejQ83yP/QwdbPtNJweSk6owapSMPWp1pTYoCNDzfQ+1g632uj5Vp5fqvbUcy2L7RRs62Y6n4nGx5soC+x9gBs/Ww7bTfJ81DVdifbPt+eEjT0PNqyYt3a8pm21JpcvsnBti90pAQa6+6tp//pNuovrWTzEy30f6adrrtkOzm7rGz7QkdKhNR1Zy39n16eyzd/qo2KPgeVfU5sjSa2faEjxWvab61hy2fTrn2qle4HZbv4FuTyLpYqub+tN1StWE/6nmxJrSc6m45tX+ig7tIyFo57MJUaVqzfvR9rpjfBOdHBti90pGqU119WRs9DLfQmvmvjo01sSrfh5ztovU6+tubCErZ9oQNTufxwNjzcyObHl9fkLZ9tp+1WeQ6u3OZk2xc6sNbL3LD7/gY2f6qNM89PcfTZEfo/005nYk0u3Whj2xc6cCbW2a6761bw0/6n21iX4ECOdgvbvtBB2SY7INdAT+dLmz/VRvf9sg1nTyxiLNZTuU3mNW23VLM1jS9t/kRrigOZSmQbGhzymtZyXeUKe2/6eAsbEwJwnUnNti90UH9ZGQDlW4qJx+PMnpCzV/Q8nmZvZHs3Xy3bsO5DZWz7QkdKFLbxkSb6nlxp77Yb5TFbfUGxbO9KuU/dDzbQdFkFB799hrAvxpbPttOe4EAVm+UxmxS1rb+3ns2fSrPhJ5bHbMmGInnMrk+M2bvqVozZ/qfbWHdvPY1XVdB1Rz3bvtBJ+SZ5zHbcljFmP9lG9wOyvc3VBvoebyYWjRP2yeXs0u3d92RLyt764sSYvUSei0K+iFyKOoHeJ5rpeSwxvyTGbMOH5fW84YpyeXybdJR02ei6o5ZNT6TZ+/PttCTGbN3FJWz7fDv64sSYfaiB7V/soPseuR/55ojuBxrYnNhT2ZpM9D/ZRG8ieF2+yca2z7Vhb5Htve7uGvo/ufwc+z/VQtddNbTdWEXj5eVs+1xbSqzUdUc1mz+53N++J5tYd4/8HIsaTFRtdaI1aUAH7TdV0v/J5SBs3xMNrL9PvtZUoWPrp5upPs/BmZdnWJoM0JrYrwBserSODR+V3zFdkYqtn2qibof8LjRcVkLvI40c+t4YvqkwGx+oZuP91Sl7b3myjoZL5Wded5GdLU/WIVnl59N9dzmbHqmkboe8Fmx+vJqmy+T/ru630P9YBaYSmTeuv62E3o8mntv5Nmr6LbRcYQOVioqNJvofKcdSJT+bruvt9N7tXOZl9xfjn4+w/xkXJa06Nn/UiaNeh0qtpuMaG5vuXT5M0PsRGx1XWlBptXyo824sFgtvv/32WTlZdg7vHwQCAb7//e9jNBr56F2PgVaD0QG9t5gpaZbHYN02Az23F6WEQ+uuMdFxmYnDv/Ex+PoivXc7KO82gFpNTb+B3o/YUt+/7gY7XdfZUalUaHXQcL6Flg/J61TVZhObPlqaKhXXdYODdTcvO+03PVhOzXYLVf0WGi+1senBcnQWQKOh46ZS1n+kLHVt74OV1Cfep7KNVvoeqwU1HPvpFM1XlrHhvuVDML2P1tF0hcz3nO1m+j7WgLVG5nsVG+yEg1HGdslBud5H6mi9OrEPajay+clGHG3ynNV6bTm9j9eDFtQ6NVXb7LTdJM8flmqJzU82UrJOnrOarixn0xPy3BePxdn4UAPtN1TRdkMVxjId/Z9soTyxJjdeVpraDwJsfKgh5TOqPb+YLZ9qpf4KuU91F5etWOu7H2hg/Ucb5H9o5bWoZkcp6+9pZNOTst8qKXJYd2/9CjHR5k+1UX+pbNPKfgfd9zdS1usArZbOu+rY+HDatZ9sozGxTy7daKP/6TbMCcFVJBxDShNS9T3ZSktiXnV2Wel/uo2iBtmGbTdX0/tEC5EATOxaoPu+hpTfzdZoov/pNpztsg1brq9i05PLfKn3481039dIzY5SLNUG+p9uo3SjPAYar65Y9ucBPY800fkR2YaGYi39n2ijYrM8PzdcWrZird/wUCPr7pX9qVqDmv6n2yjb5ODYMyMU1ZhX2vv+hhRfAtnetTtkG1ZtL5btnbDFurtX27vxcvk5lvfZ6X+6DUOJjvljboKeMB1pAZi+p1ppvFq2d0l3Ef1Pt2GpTuxRbqtZwZc2fbyF1oQfyNFmof/pNmzNMhdvvbFqBT81lkiEvbIgoqhBtndxl8xrWq6tpO8TaTZ8rJmOBMc3lcv2Luuxy/a+spzNn1y2y8aHG1N8yWDX0v90G77ZIGOvzVJ/6coxu+HBdHvLNqy+QH4/q7eXyNcmhtP6++pTfClp7/oPJey9zUn/021Idi0bH2hk44NNq8ds4r0p3yTb21gm+1U67qil5rySlPCq7xOtNF8jj9niLtneyeBv2y019H5MtqF72A/EUz5cR6ts76SPMdPevR9rpv2WGso3Oanc7KD/U62UrJPt3XR1xbJ/Ceh5pJGOBMc3lkn0f6qVzU+2UH1+GY2Xl6/wn6bPEVqrRP8nW6jaJo/vviebVvC77o/Wsf6+xNjSQv8nW6hJ+H+rz3ey+RPNlPcUUXthKRsfrqf7o8vjcPOTjdRdLF9bsdnG5icbUwKojpurMFca0BrkdaLv8XoaL5WfY+l6K5ufaEz5xTtuqmTD/TIPG/zDDBq9hqYr5O91tpnoe7yOojp5fLdeW8LGB5Z9UxsfqMZo1TC6c5GiOj19j1bjaJavbbrcSc99FSnxw4a7y2m7Vu6DpVzLpvvL6LzRgdYCDRcV0XvX8nrTfYuDjqvkZ2GwwaZ7iinrkLBUaKnoMtD3EZscLNNoWHejjc5r5LlGa4DeO6xUbZTXwOpePdW9Ro6+4GVhOErXFUa6PmyUg2U6Lb13FlHdK4+7yi4tvbeY0Fq1GFR2+jdtA+C8887jHD7YePTRRwmFQpy37QJspQ7QamjcZqD9suUA67obbFT3mUGrpahaQ/cNFmLRGMdecGNyaum4ZnlMdl1jpWazPEdZK7VsuN2JpVILahWtl1qp3WLGUiLvQTpvLKb+fHldNZVo2HBHCUU18rtZ3W9h3e1laLRxarYW0XFTCY0fsgOgd0psvK8KZ2LfVrXZxoZ7lvdM7bdU0nxVGTOH3Mwc9bDx/lqKE/7oij4bGx9IzCWxOG03lNN6feJgkgYMDgnXGblkW9kGKxsfbkiJj1qvr6T95mUOt/GhBio329GZNJiKJbrvb0yJiFquraTz9poV1ybjic42C70fb6bhsgpKu2w0XVVB193LsdMNDzZSlxCP2hrN9DzWjLlSnls2PNy8Yu/e/dGGFF+yVBvpeaw5tUbUX1JG9/0NlG2ws+HBJrofaKDxSnn9NpZK9DzWnPKPVV9YsoIXdN1VR8OHyinrtiPZtPQ81oyzU35W1duLU34UgI7ba2m9Xp4bA0sh1Fp1qhx7RZ8zFeeTn00N7WkHH3sea6aiz4lvKojWpKHnsWY0kjx3t95YTcfttcs2fLSJqq3yXFncVUTvoy2su6cBgOZrK+n6yPIaseGhRqovlOdcR6uFnseaU6KQpqsqWfeRZXt3P9BI3SWyDYvqTPQ81pwS7tdfVs76+xqYObjI0B+nWX9fAw0JvmSuNNDzWHNq3a3bUcqGB5ZtuO6eepoSPiNjiWxvR6u8JldfUMLGNGF25521NCf8HZP7FjBXGihJcKDKrU42Prpsw47ba2i9Uba3RpJtaE6Icsr7HLK9E26YtptrUv6lpL0rE6IkZ7sNVLCYEG23XF+V8p8m7V29PTFmO630PNaMPuFba7qmMsWtQB6zNQl725vlMWssk69tvKKCpisqGPjtBGFPlO77l8estS4xZmsTY/bSshVcdv1dDTRcIY9ZU7menseasTXKY7b2olI2PLhyzDZdXUlpt411dzXQ+/EWnB1pY/aRlfZOxil1Fg3diecWDcWo3JIxZm+toS2xH0Aj27Cs1w5AaCmMZNEuzxE3Vqfi8Cl7J8ZsabeNnseakSwaqvqLabu+JuU/Bdj4cBPV5yfnCNneyRJvTVdXsvlTbXTdWZ+yd645ouFyecyCXEZxy9NtdCWea645ImXvexto/HAFzVdV0nBZOT2PNqXNEcUr7X1nNc2Jfalk09B4aSl6uxaNUUP1NudyfADouK2aluvk56gxatj4cAOl6y3MHvEwf8pN4+XL++i2G8ppS87JwMYH6ijvkZ9j6ToLG++pZujlWQILUVquLqXtpuVrN9xdQUWvmXg8jrPVyIZ7KpBsCRteYmPdrcWUJcRD628vobpXtoO9TmLDrQ6MxfJa1XChhc7r5Gdc3Wug+QIzNX0G0GiwVkt03+LAXCq/ZLWbDXReJa+PaLV0XltEYDHCsZf8mIpVdF9nxlqhAZ2W6s0muq5dPvDYcZmRhq160GnZVHUVNpudZ555hslJseQchfCeHjWpr5cHYXfXBgILMskNucME3VECi1FUWi2emTBq3fJJRr8rIteXDsHidIygO4p/XhY6eGbCSObEjKXV4p+PpE5dRgNxAosRZk7IQgDfTBijfVlZ5p0LyfVSkbM+BhbDeKdDNFzoJBKOElgMQ+IwpncmhEq1rJMMLIbxJE78+GZCxKIxGnfYOf6TKbxTgRXObP9CGPdk4trpIAFXiKBH/i7vVICoX5vKoOSfD+FO1I30z4YIuEKEl+ROeCYCxCNxQvNh3v5fJ9nwYD2exLW+uQABVwj/wvK16enFAnNB/ItBZo+4Cbvl7/XNy6pK93gATXp/Z4ME3LIib2r/ItZqM64BOZjnngog2ZcVkt7pALFAQo0dkr/XO+Vnam8crVWDuWT5SIpvMrCc9TEkZ57yTMoLiGfSj7XGyOGfjkBIvlatWxYe+V0h3FOJa6fl3xpOpE9ePO2THebJa+dDeBP29ifsHUo4CTwTfoyBKBsebMQ96kvY25+wUSiRDSu4bMM0oblvNohKA6NvzaMv0sj2TpTd8oz7V/Z3JpD6rOW6amLROL5ECnXvRADJvDwOfdOBVIrAkF+2SyQao2KLg6VJP3rnsmrWOx1I1SMNeeT+eqaWbViyvoiue+o48m/DKRskkW5v77SfgMtEyBMiNB9i8bQHtZTW/4Vle/sS9g4lRPveiSCSJUJRnTlh72DqXsnxHUqMWe9kYEX9VN9MEPew7KRIju+AK23MpsE/G8QzFUBySrReW00kFCUwJ1/rnvCjThOm+WcDqbEf8kYIuELEYrIN3RN+JGu6vYNEEirVsEe+NjkGgt4wKo2K6vOLGXt9Du9UgHgkYe9Qpg0DWKuNEILRN2dxNJmJeJfVr+nf603YkFDCLuMBtDYNPY83M/LKdMLegRXXBhO1572TAaLJ/ofk/rsTjh7/nGzvsDtpQz/x6PI85Z8P4pnwp8Zsy9VVy2N2wr9CghqYC6ZOMYbdIQILQSLBCJN75ylut+WcI4JLMfm9n5Hbuse8mEqX33vvdIBYMNGn5BwxvTxmTeUSA7+bxDvtp7ilaPkEWFidsHcgca1s74QJ8U0FCMyFOPlz+dSA37U8z3pn5PtEPKHUtTqj3P+pdxap6HHgSdjbPydnwAul5uQg0eDymPXPh3BP+nG0majaYiewGJbXhsRYSp8j/AsRvIn3PLAYIeSNYLDpqNriwDMVXPmOzYcJLCRs6I4TXIzgXYjgGghRVOXFlPbe++bChBJ9Cvkh6I7im5fnNO9cBIM9ytJoYg7xRgh6lsdscCmK15X4bfNRzMXLY3T7+ssYGxtjaGiIyclJKirSTtmcwwcGw8PDHDt2DI1GQ0/7NgYSJ7A8cxE0Ca6l0mrxL0TwJVJB+xaiBLwRwkEIz0bwzEaQfGnvxUIE76x8rd8Txz8fIZL4fO6UH0uFDtdQ4rvmVr4X/vkwgUV5HPqmQ6iIU9Vjx9FgxD0VwDOVmMvdMXwL4dQa4Z0Ook2b971zQazleqw1EgF3HN9cCP98OHFtCL0tlHKmeiaDKYFsLBDGNxti7oTMa7yTQUwly5k3vNMy10rCNyuvcTMH3SyN+KhICCLisTjeiQCqtEMI3hl5zgXwzATxTQeZOjjP1DtuDHadzFVUaojH8M0GUvObfz6IbzZI2C+/1+4J3wpO4ZsOyuuJSkVgQb42lJj33ePyvD+RyOQjFelS3xtcDOObDRJI2MUzFUClXeaGvkk/s/Mhxl6bQWfS4JsN4k/U3/ZM+tGZl3+cZ8JPMMG7loZDeCf9y9dOBVbUFXdP+lPcMOyT+6DSykGnuROL+GbT1ogJ/zI3DCfsnbYe+uaDTO1fSF2bPo/6ZgKptdM3l7BhQBbQmEr0uIaXszz4Z4Opuuz+2YQNPeGUDaOBKGWb7HgmfPimA6lMlgFXwoaLaVwlvepgNEZRrRl0EFwKyTacy84NvZP+FFcZfXUWc7EhZUPvZAB9GldxT/gJJzhFOGEXNCqkhL2NpctrhGfSn+Ja4XAM32wQ38zy93qnAngG/SkbpieL8c0GU+PFNx2Q7xMO03VnLcZiiflTy6flfDOB5f3MTMLevnjKLmFLRLbhmBffTCDFl1Lj2xtO/bZYOG3xVMUxV8qb6sC8bO/UfmYyAGn99U4F8E4HmNm3ACqwVhoJLART16bvv7wT/hRXCXmi+GaDmCsNdN5ey+KID71jmXe6J/1EE3NYzB9dYcPZg4uo0/ZU3skA8bT+J+eIZP98s0HCi2He+ZfTNFxUsuKd884E8YwneM20bJdY4r33TgSJx2HhZGLfmm+OGPcTsSf2QQM+Qt4IriH3ChuGlpL2DqT2uyC/V56JAONvz0M8Qt1FlSk+4pkKosqYe3yJ8Rz2hPFOhRh+bRbC8jhM3395JoME3XKfwv4ovtkQvrkghGH+qBtV57IdPGlcK+yX529f4l3wzQTxzcnju+WqYtRqFUsJmxEG33wI33RifZkN4V8IEw4nvzdEcZuR0nYzw39axL+wfK3fFU74CRI2nAkhmWU3x4nfz9NwkR3vjHytvFZFCCX4q2c6RDS07BLxzUdxT8rfo9LE8LsiBBPj2zsbJh5fzhTgnYviT3C2eBC2bTuPP/zheS655BIOHjzIOXwwsWXLFgA6WzcQWtIAMcKhBL9yR0CnxTcfwZB2ato7FwOV/F74lrT4ZiP4XYl/z0Xw2eVrk/6y5IH4SBwWR8LMJ/bYgaU4vtnl05We6fCKLPa+6TD+uQi124qIhuP4psPEEwkmPFMhtPr0OSuU4nsBV4RYJEZFTxFnXpjDMxVacfLTOxXEO5PkcBG804GUUMM7HZS5VfI+E8GULy24FMYzHSSY2F95JgOgUUEE9n9zmNZry/HOBSEeI+KL4JkKpPZi3qkAWuPyj/OM+5g7HcF1ykvYF8czFcA/L7f1TPvRO5bX2aVxf2qPOn9qibINdpYG5WCevIbp5exq8TieMf/y2h+R++ibCTD62gxSkRZzuTGVGd8zvpKreCb9qT22bz7E0rCXwRcmiHgieMYC6Mxp10748SV4TWBB3geHffIXzx1dwuhI41oT/mW+5wrjmQykeI1nIkA8Fqfl2kp8cyE502GCAwXd8rXBxPronVjJVTxjfvyzIWYT3MszGSCQWJN9kwH0ljSuMu5P+bHabqwlFovjn0usydMBDBP+FdcmuUokEsMzGSASjODssibsvbwme8b8K9b+pL1B9n9oJDWNl5Vx8ufjeDL8Qp4Jf2psBeZlG0YCcSKeALOHllZkbshm70jKbxggFozhaNOlrk0+x+BiRLZ3Ys3zTgZXZOJbGvLiTZxgD3kS9l5c5jUa/co++BdCoIWuj9QRDsbkMZv4Xr1tpQ2T+61IQLZhOCTb0DsVSPme5Gt9xMPxhL3l+/oTvCbsiaDRqynvsTP1jgvPmB+VJm2Nngykfqt/TrZLLBBj+JVpbI0moqF42rX+1D7PP58cs9HU90SCETpur2Vi9zyecX+K4wcXE9d6k2PWv6IM+PxJD96kn3YxacOkvQMrSm3IzybI9N4FtGYNjZdXpni7dzKAzqhNuzaQ4oZhX3IcRpk+6MJSacg+R6jUEJHnHv9sKNE/N0UNyxk9PeOBlXPEVADfTAiVWkVgLoRnKsDUviVCS1GsVcZU4BqVOnVtyoZTQbnUXaK/ocUIwy/Py/+eCuJNPMeAS45JhBNjwj0ZIBzQEY/HcQ3I80NyTg4uhvBOB1N+ce9UeEVSFd9UEO90CHOpmtrz7PhmQylO550JpnwGxOJ4psMEFpf5nn8xjLlUoqzdjHc2vEJM6ZkJE0rEZyJBeS0LLMXwTEYY3evBmr6fmYkQjcr3iURkruVLrIH+pTi+hRg+2QwEvFEiae5j31wUv0eVuDaKbz6ampM3NF7M6MQQR44c4dSpU7S0LIvWzuGDA7/fz7/+67+iUWtYX38eY/sSc8t8FCmQeDklHZ6pcIpbhX0xfEtRoqE4IS/4XHGisWVe45mJpPyu4bAKz1Q4FReZHwjJ8/BUNHVtIOFLiwRYwZH882G0OhX2RhMlHSZcZ3z4ZuXvjYaieKaW3zf/Qgj3RNoaMRXE0WjEWCIRWpLjhaHE++efDyXiVgl/73iAWFomJfdYANfpAMRjBBZCuMf8qSo/nskA6rR53z3mxz8fwjXgwzsdpGyDTS6dhezD0Bg1K69N7A8Di2GWzviYP7HEwkkvKq2KiD+a4k/uUX9qzgp5wrjHfGm8ZhFdGqdYGvOn4mZhX1S+NsExZH+SCteAB62kRmfS4k/4CaN++dpgYu/rnw3iNi/PQ+5RP/PHPcwcWUz030co6dOfDeIezc5V/LMh5k8spfyR/vngigxEmZVP3GM+4vEYTVdXMn/ajXvMRzSxrnkyuJZ71C/vk4GgK4TrjIe5o/KhMu9EkNDScuY3z/jy+h1ckm0Y9UexN5uxNZpxDSz7a9xjy7wm7IvIvzUx7yf/XlRnIuiWP0v6O5LXhtPmfXUaV4kGozhaLGiMcuKBVfZOy+joHlvmKnOHlrBWGVO83T+30obu8UDKLxSNyjZUJxKWpOydGLPeidX29i8k18MQC6fcBBKxJu9kYAU3dI/6U76GoEu2YSQQpebCEmz1ZuYOL2a/1p2wdzDxnk/5Zf9fnYnAovxOpcasR7ZLkhf7pldyw7gqji1xSDISSDwbz/I4TPdjecZk3+v8KQ8qaRprtSG1T/LPhVbYe2nMTyyxzsZCcdxjPvR2HfWXlrF4xrtyzI75V1Rwco/5UuN77rgbtV6dmiO8E/4VfqylUV/Kd+mfDyXGYZx93xygbJ0NTdp+zD3uxz+TnCMS1ybmE8+EH7VWlcrIm2+O8E4FUv0NLoRYGvWzcFpul2uOAEClSoyPEJN75yEGVVuLl8fsTAi3aeWYDXujEI8RDWlYGPAxtXeBqD+Kb27l+PZMLMe5o6Eo7jG/PL7jMeZPeldUi/Cm6yCQ/WXJmEXAFcY9ESQahYreIjR68EwuxyXcE8GUDymwGMEzGSIaTthwNoy5XKKs08T0QR+eyTC+hWRMMIpnOpwas97ZCNGIbJfhN72EA8bUtWF/DM90mHBE7nNyvUv1YTZKYBGIglodxzMbWV7XXFE0mngqs5JnNpqKRUajGrb37+D3f/gF119/PW+//TbvFVTxrEVOxbFz586Uev3KmqeyX6TVrKoT23mtFWu5jn0/XSS0BPFwOHtbWK6bJ4EkQciT8Xmueq+JQR+PRuW2Rggl56jkz0+vh5yGeDzO5icaiEbi7P3qmezfnyWtYvdHazE49Oz6+1OKy7whQfUWJ2OvzRe+VmGt2ext/zJqyNZfVobJKXH0WbH0fFs/34F/PsgBwdroa8GmT7Tgmwhw7MfK+7jhwUYslUbe+K9iZeJ6PtbM0pCPgd8qT/dYud2JrcbEsR+J2fC8/9TF0rCXQ99TXk6lvN+Os8nK0WdGlN9Igr7HWxjfNc/ETgXjPoHeJ5ox2CV2/jfl5dskC/Q81s7oG7OM75xT3sc1QHJK9D3ewtTeeQZ+p1xZWt5np6zbzsHvnDl7nUtCoOzFe3tf5Qn8LFUSxhI9MwfciaYF+qxS03pDOc4WC2/9r9PZr8nyHSVdFlquKmfwjzNM78+R4jRLykR9sY7gXFhZqbcMGEtU+GfluVil02WvNw6opETGqFss6Mxqdn0r4z3RS9nrxgJjllc5eGwvZrMZjydzwTyHDwIcDgcul4sqYwcbiq/IfpFaDencSgeb7y7G74pw+FfyuIiHcnAvtSrFvQwOVUqAvgK5uFcC8WgMya4h5MpyXY62ZRssNFxczNEfj+EeXV2aNx6Pr06Lr4MtH29i8sAiwy/mmeMz+JOz04J3KkhwPpx2yRp50geAm3XdVcfE7nkWjiufMxo+XE5Fj5M3//Yo5KHx7wWqthdTtdnJO4J17Lf9VSeeMZ8Qr6nY4qC8xyFcGq3t5mpmjy0xf0R5yuyuu+soqjPzpmBZ2tYbqlgY9DB7YElxm4YryrFUGjj0XbGSedu/1Mnc8SVO/GRMcZu2G6swlOj/LJy8+4EGDHZJuDRy241VuCcDTLypkIf+BfCn1U0V9Dnx/ZX9NiZ2CZQPUqvY/EQDS2N+TvxiddkXVQ57bXywFuJx9n93PLdNE47M5HfoLBBOTk2FuFeyPENiXtYVQdhPao5S6XTEc+z/VZKEyQHrri1i7kyQgZcySl/l4V6vLnwTr9fLsWPHaG9vz3rNOfzlYnJykspK+QTxlU2fyXpNXKtBlcGr6rfoKWmSOPxbDwE3OccPqmXehRa0eohkDL94obI2iaCJ1giRpN81yU9y8Jt4PM6628pABYd/mMPXkOV9aby8mKJaI/u+mWf/n+Wepd1WZg6mrZEF+FNeXrZW7vU+4V2lG21Yyg0MPi9WNqv3Yy3454McE/G9rBGdd9URmA0K9bHx6grK1tt56/87JnSv9ttq8EwEGHtNeUY6R5sFe72ZwRfEbLjlsx0snHZz8mfKeY2t2Yyz1cLg78Xute7eeqb2LTB7UDlfa7+lBluDmbf/l1j5tp5HmhjfNc/0PpdQO2Foof+pdsZ3zTH2qvLnZWs0UbbRzkml5YDPJu/6M3GrfJBsWozFOhYHEhN2ge9VqVRUbbVT0Wtjz7dGVpdhzGEvc7mWjpsqOfOnBeZP5CgtlcVvleJehUq96RKChLS5VW+BYJK3STqIZN/7xw2JjFEX6TA7Nez5uXfF74pLOlQ51s05/R52HXmRiooKJibESiOdw18GduzYwSuvvEJj0RbanednvSau06IKruRe3TdY8C1EOf1Gwp+Uy+elUqVikZIJQtmqZeXiXkl+Eo2iNaqJZClnHc/h87JW6Wi6vJRTv5nCO6XQ5wV031fL9KElpvYsKuZA5ko9YW+EUOLA9LviVe8T/vRuUH9JGfOn3LhHlJdULe22UXNBKQe+M0jUr7yE01pgazRTva2Y4z8ZJrp6aOREz2PNLI36GPiN8rmwqNFERY+DE78cS4mGlKB6ezFLY75EhkRlqL2olLKNdnYL+vIqtzrxTgdYGlReyq6024a1ziRkC5Czmc4eXmTopWnl/dvixFJh5OQvlfPJtaLh8nKs1UbhuGHVVieBpTDzR8XK+r3v8G44YRonszebcZ32pn1UON7YeUcVvqkQQ6+sjjeoVKqU7yodLVeXotapOfHL6ayfA8vip0T/NHqIRpDfxyT3ytG/TO6lkRJhluS7XIB7aSTovlzP3Jkwo/tWTjZxSbfKp5HEG7PfYsnt4tSpUzQ3N2e9RhTvWSaliy++GIBqS3eWu6Q5ESXdCmJw+lU3NT1mQkr2alotRCJ0XOmgqErPvmcmCRUq9Zq28CYDyiGFE3wyaPzOV84UrBGdCf9CeIUqUQmaLi2jcpOTSCDK1Dt5nMMZhKH/U634ZoMc/rfhwjdJ/KaKLQ7KNzo4+sOB1WKvPOi+vwHvVEBIeFG6oYjmq6s5/dsxZgSCKM5264rTXEoh6ggBuZyaSgXHfyom5tnzj6eE73Xi12PY007mKMW+f8khusiD8g0OjMViNU7XivINDswVYvV8CcHufxC34enfTaw4xaPoVh6EHTwg1yutvbCMfd8+ncq+VvBe8yF2/jcxERqAs9mCpdqEZFET8ih3uPY91UIsEmfvV5SPEUu1RMu1NQw8PylE9JquLMdcbuCgQHDT1mym4+Yazrw4ydQe5YRo3V31xOOkREpK4JsOYqkwIFmyCFlBnsszFvfZIx7mjnqzXJwfwcRpGmOpDv+M8sj8xrtL0Zs1vP31yRShUKlUOYVKAKP7fEjmjDVFnzhxm3QmZThuqkMf4iB78Xq9vPXWW2zdulVxH8/h/Y/jx4/jcrlQqVRsqLh6dcArnQDrdMtCpTCM7vHgXygwxyTfkwT36r61DO9shCM/Uy7yNDi1+GdC2QVKeTB9wMP0AU/WgFiu90Rn0hFYiqRODGVFFodL0xXlxKNxdv+TciFKxWY7teeXcPiZIXzJetEKHERdd9WyOORj7PUMG+Z59+0tZmovKOXYz8YILwrMM482EY/FhcQhphIdRfVmfHNBIZHSmeemOPOcWLBGZ9PRfmMVI6/MsCiwBo3vnFuT0PjEL0dTJ5SUYvLtBSbfLrTRWI3i9iLUGpWQSGmtKOmyoTNrhURKZwQDoUmc/v1E6nSTUpxQGoDKQOt1lYSDMaG+Hvz2mTXdy9FahGTTKRMpJZwipRttNF1ewZFnR1JZRJWg/rIyDHYdx3+s3IGls+lov6GK8V3zzB9Tbv+uO6rROyT2flXhHBCPUbnFQcMlpag0KsbfdCm+V2ApQsBVQDiRgf3fGllep+JxRQ6npEDJ4NQRWFTOk03FatbfUsrMCT+DLy8tcy+1OqdQybcAU8cCTOzPeL4FuJdT1YqXfZx//vnnyr59ALFtm1xaptG5bdVn8TSfV6ZTb+xAkHAwLguUckG1knfVbDJR3mHg8C/m5ZOOCqEvUhNcii0LlAogyasO/2i6oPA8EwFXBMma593P4kMr6ymiMVFKfIVQqQC6P1pHYD7EyV9l+KESWSyzwdZooqLPyenfTxLxpEe88/v2mq6uILAQFuIb5ioDnbfVMfD7CeaPK/9dxe1FWCqNwiKlvf8i7kOpvqAEnV7NmT8qD7wAHP2BAj9jBkZemWXxjPj++rjg4TqAkq4iHC1FwiKltaC0s4jiTpuwSOmwgEg+ieFXZ5D2ifPQfd8QE9cDWKoNVJ9XwunfZbwr+RCBXX8r7l+z1plxtBRhsE8X5g5p3KDrrlpUapUyv3cCWouWlqsqGHtrbnUgNY+AqHyTnaI6Yyqz96puZQkWGUq0dNxSy+hrs8weTswB8VhBoVLnrVWotSr2fk35GPHPBQkshNEaNEQ8yuZt71SEPd8Q5+VJ7qW3QlBga9N2mRlzqZa9P1yU40Agx4ZyBMsAxg4FMFi1qwRKIItQgFViJWdsCzrdq0xOTvL222+nsh2ewwcDi4uLvPLKK+j1etoqL4FgRhA1TVgX1+tWCJWG3/ETyeMaAlJzjEqnIx4O036lA+98hIGXFQz2BMeRzGpCS9GsAqWciMdxj4XY/50xIZ+XRpKzTAcXxPwaDZeUgRoO/9uIYoGStc5IwyXlnPr1eCq7khKBUt0lZfhng8wcVE5eDU6Jqm3FjL4yncpWowTN11Wi1qg5+XPle2uNpKa4yyZnGBIQKc0cXBT6TfLNoOmKSib3zOObKjQYl7E46E1loxHByV+OrageoQRLgz6hmFAS5ZucaM1aIZHSWlGxyYlr0CPUzzU9L2QbJrNeKsXE28qTLqSjcrOTWDzO1G7lXO/MGrluyTob3pmAkEjJUmWg6apKBn43kcoYrgSl3TaMJXqGBYReGgnqLq5g7tgSS7n8a1n8RTUXlmCpMAgl57DWGWm5uoKhl2eYETg8EFgIE3DlmXtjsVVCpFO/nVnud5bPsyGaGH5aI0SSt8sSy8yExiAfsps9EWT8QFAR94qGYPxQkPnhldwqxb0S/58pVmq07GC/+xdcddVVnDghdkg0F94TkdIrr7xCKKH86S67YqU6WZv/lGPIo2HgteWBniQG+TC2x0s8xmqBkkaz7FjJWHSbLrNT2mXh2C8ncZ0Orl5Y1eoUMUgnA2U9Vqb3ueWBkGshz+IYOfXLybSPVYpO5Q/8bpqwX0ygBBANx4gGFCxCab/L0WjBVKoXEigBmMoMK9IYKkU0GGVxVPmEBrD3n0+DVPi69wJF9UZlJ2HSIFlAZ5HwTgrImoHAdIjJabE2ACXdRSwNLgk9s31fExc2rRUHvrm2U/JFjSZikSieEeUkYC0ECgAJLKUSnjHl9rdWmzCW6LHVmVk8JU4SRSCaNSyJ0FKEaESAiKpURMJgLNbjbLEI2dNaa0rVbVaKxREv8WgctSS25Az8YQrfpMJ5I+H8GdvpYmynK/+1yfk48c4nT+ibyiXUEnhGMsZHntP6fY/XoNaoeeerOTZFWU6jTR3yYLCv/nuyH8k1KJlFCWD2tILnq9OuCpbVlXQyPHuUhx9++FzpkQ8Ykg64Okvv6g8LEN/JwyvHiUrSLWdTyrEWTh3x4cm2dqVzrwysu6WUsC/K/v+TQ9icpa2lWkfQEyO8GM3JzVL9TONW4cUwB76Vx2mdI4B15Jlh9LaVc5oS3hYLx2SBksAJfkulEeIsi5QUOHlsDWbM5caV2bAUIOQKr0gJrgS+2bBwJp+1wlqpx1JpwlisFxIpmcp1+ObDwhmb1iIYMlcbUKlUeEbFHC87/0w2XOu9dCaw1lmYPya2CZje4xK+F6ztmdmaralU0Gcbb/39MeHx5J3yE/JEUAvupG11phVlipUg7AtjqTBibzQLiZQigRiaQExofzPxtlxqb+JthQ69xHcf+rfs/DVXFiW5rbxOFXeamDvqW54Pk23S1rEUL1KpcLYaaPlwCaO73Iy/k2MMp5/2V6nxzcPcYICpw6vnGlXiPkmxUjr3Gt4VQnaX5BmLGdxrXemHCBjH8Hg8vPrqq1x44YW5257DXxRGR0cZGhoCVLSVXbzC5xUv4POKBFWMH0jPapk2bnK8J7MnfKi1qlUCJZVWmzObUtk6I3VbrZx8fp7FodBqjpLGndJ5lb3RgGswkJfTpXOyZPvxt12Mv+3Kfn0ODjK9b4l4LL5SoJRHaCR/rCIciBFR4vNKQ1GdmaJaU6q8ktLT/7Y6M3qbmEhJpZbLLvlmxTjDsWdH3sOjo/lhbzSjM2tBRKSkBYNNS2BObE2OeCJr4l62RhPeCd+Kck+FIGfkWZsoWhSnfj3BqV+LZ2sxlRuIx+P4p5X7vPzTQaHrU1jDMzM4JWx1FsylEotKRUprxOifZhj904xwu4ArvKJEryJEolhrTVjH/EKB1KIaI0U1YgcwA7MRuQxfZhcLCJUG/zhNSKHNk7xq4ZSfhVPJzEvq9Atyt034tLQW0Bm1+Gcy7pnFb5XEuluK0Rk17Pv37IHY1En+tD5MHQtizrwHLMeIEgGzZBYlAPe8Bvd8fJUJ0xHXaVcJlZpKL+LExIs89NBD53xeHzBcc801ANRbt6/6LJ5nzAIsZsby05Mm5HhXJg76CPmy8KCEgBxYxW+ar3AQDUU58cvsnEGl0SxnU0rwEMmmgahctlzE5xUNwenfpK3hBfhTEid/OY7OqhXKoKTSqIiGonLpNYHsSbY6ExqdWkggYq4wYG8wM/KK4iaAvC5otWIxymgoxp5/Fsvks1YYHRL2RjOLQ14hkZJk08hjQzBhU7L8rwgkmxa1Rk1gXixO+eeyIaxNmK+RwFBsELZJToFMAUgWDdFQVCjzlaPVQjQcExIprRUHvjsoPJ78C2FCS2Hh5GmWaiOWcoNQm2hIziAWcoeFnkE0GCMSVPDD0niYe9jPwHOTzJ9Q6FtLtB18Po27pvHRFT6v5F45yc0Sn1mrJdxjoVWfp5eQS83BKjVGp4b2a4sZ2+1l5nhi7siMZWZwr2gQZo4HmR/KMtfk4V7TQwBaVHl8XpkHsCqKOpiMvsXw8DBvvvlm6iDXu8F7Uu5Nr9cTCoWos/bSVfoh+Y85TiUCMinQaNh8j425M0EGX1s5YRQSKeVMswg5U2dbKiRqthVx9CdTeRfX9DSM9hYjXTdXM31oiVO/nS6cTSkxmBqvKMUzFWRm/1LaR+/SzO+mhAh8INIxKkH3/Q2YK4y8+f+e/QBR0zWVVG5ycuiHZ4TEK+vvrSfijwqViHO0Wei6o56Jd+aEslitFWsp97ZWbP9iJ0F3mD3/pJx02FrMNH24kpO/HBESN235TDuoVbz9P8SzbYli/b31WGtMf9ZgpSL83ypTAmc3nXbad0sWaLqqgmO/mCyc/UqtShGKrZ9uIrgUYd+/pgkdCpQTqb3IQTwOY2/kUF/n2TivIBRZ2678XLJA9/VFLAyHGHjZs3yaP+uXL9vrnaXvMj8/z/Hjx2lpacl/z3P4i8Dx48fp6OhApVLx4Yanlz+I5uEK4TANF1uwV0ns++niqqB8wfIh+T7PEdCq7rcQDcaZ2FsgSJHWfuP91UgWLbv+KbH+xGJ5s4wRi6MzySmbh16aJpy5n3kX/Kkgd/sAlHd7L7DtCx3Mn3Rz4qdnP71x/6fbiQaj7PlnAc7QaKL+0nJO/WYM34Ryr0Hvx5rRmbW8/T/FT4mLYq3l3taCxqsqqNzkZN/XTuKbVa7Oab2hCpVWJVTuzdllpeOmWoZenlqdQewsYOvn5dItIn1UjL/AMm9y8/cmJXZWpH13yToLepuWsTdcctNC9lKrab6yhJIOMwd/OI5vKm0s5uFeKpWKlmuKGd7pWi7fnok8JUlUBcQkmW3rtxtw1unY+4xbXgfzca8EFor28Nb+l7Hb7SwsnH2n4zn8eVBfX8/w8DBNzu20lu2Q/5jH56UKhUGlYsMNZuaGw4ztzVh/8mSTkD/P4yjM8ZnOAtWbrJx5KX8JkHgaXzQ4tXTfUcHUITfDry4qKOMrf16xqYjgUoSFUxnE6934vfL1+d1ysg8Q72q8qoLi9iLe+fv35uRqPpT32Wm8rJKjPx5mUSCbYuNVFRCJC2U3Mti19DzWysgbM0Llw9aKtZR7Wyv6PtFKyB0WKs9hKNHReEUlwy9P4xU4wb7hoUa0Bo0QV14rGq8sp6TTJlxqVxH+ksu8rfW+Ckq9JaE1QNU2J+NvzsuivgJ+q6RIadNDlQQWIxz5cVqwrYDYo6RLFh1MHc4+DvP6tQp89yqRrxY2XK5nYTzK6O5g6hR/Iex3fYepqSmOHj16rtzuBwSLi4vY7XYMBgM76j+5/EE+7hUMU9qhp6RRx4k/+VcLBnKV200gbzwyR9kbe6MelQoWTuYPrKdzt+YrS7CU69n/3cT6o8DnhQaqNtuY2ru48ne9m5K5Ctp/kPjTu8HGh5uYP+Fm5BVxka0o1t/bQCwa44hAJkvJpqXuojLGds7in1Xu82q9vhpThZ79XxfPwiiKtZZ7WwtKu23Uf6icw98/I2SPyi1OtAaN0HM2lkisu7uBoZemmDkgnr1JFBseasQ14BXKVPQXj/eozFv2j5XHGy3Vegw2HbNH5MNyK0RGmVCrQaWibIOFmq12jv50En/aAQJVPn6kUlPdX8TMSV/OZCWqfH4pQe5V2qShtEnDkT+EUIUjiriXXxrg1UM/prm5mZMn3/07/e68nsDw8HAqi1JKoFQIRgNSEURDcfxLYgGenjsdNF9uE+0mnskQR382I7S4uk75mdjrYviVxEuvcDNStsFO3QWlK/5WaMDXXlzMlqdbkZxiGUqqzyvGUFagzf9lQlFzcQmSRWyoVV9UzPYvdmJrESuLtjTqwzcjrhxeC6YPzDN9yCWcXcdYqsdYLlaCzTvuYfSNGcZ3i6UQXH9vPZs+8ecRJTRdVcGWz3UItxt+ZZrBP4gJrySLFkORDnOZ2OmmsTdnGXvj7BNKgMVRH941jMVNT7bQ91SrcLvSHhtFjSbhdmuGaJYzlZrq8xwYSsUarrunlk0fbxJqY2u24miyUH9BceFupRGdid0uTmWKAAvMn6OvL+UWKOWBpVJH7z1OnC3K7RHyQCwcJxKKE7cqnxs1PgexWIz+/n7hfp7D+xPJzAy1lh7ljQx6ov64nP5XIGtIcauOnjscGBzim4KxXR4m9xXI1pLhZDr5+2lGlZRdSkPl1mJKuqwYBdeEjY800Hp9ZdbPcjlzTCU6ynrFeSji1WvXDGu9CUe7Rbjdpo+30P1gg1gjHbjH/Ws+cSSK0TdmGN0pFrgyFusxFevRCGbzO/PiFEMvim38dSbY/Kk2qs8vvP68F+h9opm2m6uF2kztmmPo5Sl8guXvTOUGzGViJ6LmT7qZ2DPPwnHxdXIt8Ez4cY+JZbFwtFvY+vkOStYXCbXT2XRU9DuE2vy5YSqTKN8kNl+ZynT0PdFEWU8Be2TsbevOd1K5ya7sJomTYyNvLjL6lmulQKkA4vE4p36fR6CUB02XWFl3g9hzDnmiRAJxdDoUcy/H0iYAXC7XuZJvHxB4PB6Gh4cB1bJAqQDiBj1aLYT9MaEy3gDtl5up3Sq+rwt74MyfloRE1IH5CMOvu5hI8jWFTuDKzXZqtjuF+udsN7PxwToMzizrcZ4+F3dZs2ahfT+hpLsIrWA5ekebhc2faqOoQexZe8b9LI38eXjX4mkPo2/Osjgk5vOylBswVYhxhoAnwuALE8wddAm1a7yynO4HGoTarBXlm+z0fqxZOPvVmT9OMfSyGKfU6jVYyg0YBX3EoztnGXntz+Pzco/6WRz2Cduj485aNjzUKHy/ogYj5kqxcbUKIgKljN+lRKDk7LAIz1eNl5aw7u6avNdkir8NTj3lG4oo21CY56nSBEzDby4y8FKGgLqAiGH2RCinQCkf9BZYd6URe42AzSMQDsaJhiBWpHxutEfXEY/HueKKK4T7eQ7vT9xxxx0A1FqUZ2iIW4xEw3HCgbhQRhNTsYa2S01IFnGfl2swyMJA/sPTmQKkkZ0LjLwhdpDB2WKmYpMDY6lYPKn1+kpqLhTzTegsGuxNYvE4AAqcBXkvYXBKWKrF/H8AbTfX0HJ9lXC7xSEvXqWVHt4lRnfOMP6W2AEvvU2HudKIRhKLv46+OcPQH8VLiK2/t57S7jX4RdeAtpuqqbmwRKiNa9DDwHMThJbEMkSZyw1YBHmGfzbEyGszwlx5rVgc8uGZFPN5GUskNj7ShL1Z7L3WSGocreK+5fcUBfama5mvNEYNXXfU4Gwr0C6DM1ZtdlCp1AeY6PfcMQ9Dr86vECgB+blXPMbYHo9wBSyAsg6JpvPE1omgL0bYL2cgi9mU2dIYakKjkjh16hQzM+9+3/Gud/o9PT0AlBqbAVYorVSBjEU6jRiHlmDvsxkO62QtWEkiHso+iah1KrSGPKtelnI3HTeVoNapOPzMdP4U1mSkYQQGX1DgWMxwqLz1DycxCW4kdXoNqCGUK71ejhSOdReXUbrBxr6vZlG85giuN11TSXmPg0PfH8R9Rvmk1v/pNogjdEpGsqipu6CMomoTR76vXAEcWooQ8kbwT4pN8EN/EFeROtosdNxSy5mXp5jYqTww6hkJcnJE/NTVrr8VP2UU8sCQSFruBGLxOPyZNGrxaHxNJyfXcrJ+Zt8iM/vEoxNrPcXf/+k2wr4o+76qvHzeyEszjLy0hjTWC6HVKaIVoPWaajyT/txl97Is6rWXlFC7vZSDPxjEfUY52e77RAsavUZ5dgmVGkuVRMMl5RRVuzn6I9H3RoFB0tIizux3E1gI4h4WI6PDf8p4/5PpGePxrPZLOnvKNpqo2WJjzzcyUr/nUS573So0WhUmh4Z5lWr1fG1IIxRpp533/iiRkcaoz1kbNm5cbqsKhOituJ4/TXyFaDTK/Pw8TqdYQOEc3l8Ih8MpAthVcgmQlupaJz/zFUhT9o+8E2DknYx3Pcm9cpTbNdp1qCU1AbeGnCVvMrmVDno+UsHw6wvMnwygUqmynwxLCpTS3gHfZFguo5YvI2c61CqGX5pj7vgS3nEx0UWuTB/5TpvVXlyKs8XCwoCP8KLycm/9T7YRcofZ/6+DyZsXFEE62i103FzLwHOTTO1R7sRq+FAZ5nLxrJL+mSARv2CJhzAcXkPWxQ0PN6KR1Oz9ilhZ2glBARvA5DsLTL4jns1k4fgadoSoIRZ/1wlQlSIejcv8SwC+2TC+WXE+tKbTdWEYXEMG0MptTuouKuPgd08LCVjWMhZ9s0ECrhCRQI79YY55ovWqcmwNFiZ3iY2tvo+3EI/H2aNk7CecIrYmE5231TDy6ixjbyh7B1RqFa3XV2F0SEztUc6ZfdNhVBoVWqOYm+DoTyfwJ4RvBbMoJRByhRnbmdG3QpkAEpmOOm5wEvJFGXgho32eLEpaowatXr3M7zLXmXTulchyM3EwzMTBxBjUkpt7pZ1kUwVDlBlbmPaf4sMf/jC7d+/O+5vO4f2PZNCzqmg9AHH98jhT+TN4V1rpnUgEjj6f4W9Jvh9Z/FZJaPW5fV7xeDyrT6vuPAuSWcOp510KfF7qFdmUpg54CvOuZEnEBKfb+61hDIKiHK1Rg0otC6NW/qj89268rAzfTJDD3x9Z/WGOtuW9duo/VM6RZ4bwjAYU8S6ADQ82olKzzNcUovnKKuaOL3Hql8rLjkVDMfxzQXwCJ7wBZvYvMrNfzBdiKNay/t4m+ZS3QNuAK7Km0lwiGYNSiMDUWkrLRhHmQmtFPCbfK73yjxLMHREXa3vGAmvKULSWMnsA3Q80EAnGOCqQuWH20BKzh8R/W3AuRCRXibM8HKLj5lqWRn0ce1Z5VvriListV1Vx9CfDLAn4v7vuqsVg07HnX5TzX61FS8vVFcwcWmLw+Qz/bcGT/IpvA4BnPMjBH44SmIkU5E7pmM0sfZtsG4tnP5id4FW2Gi21my0c+rVrhUsgXxalYEyHVq9Cb9WAKr5qDk4vN5KeXfDoi4k50aQhbkjwrkCmzyuNd/lD1Bf3M+zdydzcHC6XC7vdnrNf5/D+RzQa5YUXXkCFmqbirQCpsQCg8mXEG9N8r/NDUeaHMjhQcl5JL/mWRDyO3gxag5pwOIfPKxYn28Tfdo2Tib0e3OOhnNwr5QdL+zy0GGV+0Sfk85o/7sU7FSDoSpaOU9ZWUZaQjO8qXWejamsxB747QGgxqjj5wfq76gl5o5z4qfI52uCUWHdXPYPPTzJ/Qvn6VdHnoLi9iN3/JJbBwzsTWFOc7IxAZsgkmq6uRF+k5ei/Z+GveeASTIYAcgmr/V8X860B+KdD+KfFeChALBon9ufiXsqHYAphT5T5Y+J86NSv1lY+eC0l24oaTTReXsGJn43in1H+DIb+ID4WQ0sh/HMh4dLZFVucVGxysG/opJDws+O2GlQaldDY1zvkuWDklWmhcpG1O8qw15vZ85UsGURzkKuoP4pKo0IjiSkrz/xxhpBfnoPzZlFKv1cI5o6t5F4qhdyrZouJeATG9mS0z5NFSWPQoNWrlte9TO6VFjNM+iKWJuMsTSYesHaZY2X6OeKmtHijL0hbycUcmX6Om266iddeey1nn5TgXYmUQqFQKoV5X+WNitNwOhvAUWXk9MtpGwSFzsw931PgmM1w+EgWLRqdWNS/vLeI2vOdHPvJOJ58pSGykYIQ+CZXt1GpVTkDXwPPTTPwnLgI5diPR4iExAJKi4MeLJUGIYESgGtQfJEMeWKc/t04njGxk15rFaE0XF7O7JEFPGPKZ85YLE7QHRZWRDddXYlap+LUL9a2gImgpLuIqq3FHPv3IaGTmEf+TbmD4d1i8PkpBp8XXyhbrq9Cq1dz7EfKSexa4eiwULOthIM/OFO4DFgaAvMhwl7BwC1yRjDPeEAo25aImC8dgy9OMicYUF046cbRZCUeFiMpC6c8+cWiWeAZDzH44hTjgsTtyA/WNi5EBUpJdN1Zidag5cB3MohUDqESgFqrRqNTU9QgsXQmcd8CqRUJwTvfVRhs16hXCJWcTRqcTVpOvl54TMYNEqpAiI6OTvbu3cPFF1/MgQMHlN33HN6X2LJlCwB2ST5tGS801hJoPF/P3Mk4S2NpjhMF3Gt0l4/RXQrW8DSni71KQmtQ599IZnHIrL+7koArwqnfCAZD1KrcAqUcIm+AfV9fHYAqlA77+C/GKVtvkwVKAlg45SYo2CbkibA06mP+tNjcfuKXYxTViGdgOPqsmPMEZPGE0akXFgEFZoOodWLeeJ1JTcv11YzunMM9dPYzCLTdWEVgKcKwQDalsC/GO/9w9tNXJ7Hva+LCIX2xjparKhl9fZbFwbNvx6arKgl5wowKlG7xTQdk0bZgSQ1TpYSj2crYa8pFWMG58JoEWGdensbgFN+ruAa9RMMFyjxlYHHAh3vUh0eg3AvA4B+m1lRy/J1/KhCcz/Jc/LNiAqUkLNU6Wq8qZ/DFWVwDyn+f3qpd7XTPI1ACOPkHgb2sVrMcMNNB41YDsyNxlhRMB3G9xKaK63nH/X84fvw44XAYXaESv+fwvsbOnTsB6K66ZoVAKR8sTnBWSYzsDy3HuxS+H4d/vXrdXyX2zgiG6S0aJIvY/sxaLdGww8HpF+bwTeXZO2VwNpVKRTwSJ+DKshdRq3IeXJret8T0vgxBg4IyJYd/OCJcYsk7HcA16JEFSgKYO+FGoxVPOH/spyMEF8X2n0tnfBw+Iy6uLe+zszjkJSBQshWVCv9MEP9c/mwPmajY7EBn1jHyp7NfUsJSbaBqazFnXpwilG1s5YBISbl3i+l9Lqb3uYTbVW0rRm/V/ln6aq4yULnZyZnnx+UyYArhmw4SE/QLAZSsLyLgCgm9a2u1w6nfTOCZEvNju8f9LAx6CPuiQkqghZNuJGuaKELBHBTxRDj120nmT4nt3QZfys9bc3ErUYFSEvU77BjtWo79IoOb5wqWJaAzqbGWaHFPyu9n3jJvABHY/0uFzyuddwGWYnA2wdDhwk3jRgmVP0RXWy/v7Hudq6++mjfeeEPZfc/hfYnPfOYzxGIxKqxdwEqBUj5UtKpxj4Mv/ZVSwL0WhiIsDGURNGTymTShksGhQWdSo8pDC7Md1Gu8tJiwP8pookS2YqhVywIlAZz85UThizIw/s483umALFASwOwRN9GQWJtYNMrc8SXhuX3ktVnmT4mLUNZSTtZYIqG364TFQ/65IFG/4DPTQP1FZUwfdq1JPCSKyq1OoqEY03tdQu1EStG9W5z8pXiCCI2kpnZHKdMHXPimxLjvWlDWayceiQuJa0KLEXyTQWHRnGTTYK02CwngoyGExINJzOxbYGnIKyRQAlgYENcQBBdCzJ9YwjudxicVzN9jb8wy8bb4Icwj/17AHlk4Y8gjJlBKQrJqaLy0mPFdLtyZmoU83Mtg1RDN4OZ5y7wBE0ciTBxRuI/K0NCUt2pwe8CrYBjHTXpq6WFOtY+9e/cSjUbRrIGTJvGuyr0ly40YtEVZBUrx5GlEjWYFca5oN+BskORyQSpV1gGnklYbfEXK6wJOyFQf4nH2/58J9nwzTUiiwGAGhxa1VoVnLvNknGp54GRxqGz5dAvr78mdpjXbxsZQKuFoVZBKK8vLsXDCszoDSnz1CYV0zB1xc0DwZBjAyZ+Nrale+9RuF94soq18qNjiwFwhlo1KskD1thLqLiwXard4ysuefzrFkmCgprjdirNNrGQAwPYvddJ2U/5UvpkoqjNjLjeiNgnqCiXEy3K9G6zhXvZGM0V14mlEt3+xk66764TaOFusWKtNWATL7R38zpk1iajqLyyn/uIysUaSPP5FSz9O7JzPk4kt+2LnGQ1y4JuDQqI+gIHfTXJC6VyQNm+N71wQEoclIVmgpNuq7OJ4DOIxrHUS2z7bTN3F2bMGqTTqrKRCrVWjkXKQoLS5NT1l9uRuD7u+MrYsUCqA9PXNWq2mpEVauRYasoxPjTqVEadqgwlH1fL945IutQavUEQnPzdI2N1yxp2DBw8q6uM5vH+xb98+ADZV35ZVoJQ6kZg2ZtBBcb2Oiu4Ej8rFvTIcjc5mHaaStOsUci/XYJB3vjrGwqllfpJyrsZiOU+MaXRqNFpV1mBYLuds3Y5itjzViN6Zx3GVhT852s3oMnQ8ioL5YZjem8bYFTq7T/1qgpFXMhwiBTZc3rEAh783JCyICs6FhU/Y64t1lGwQ5zR1O8pouLRCuN2Jn48Lr6umCgP2RgtFtWJpvTvvrGXLZ9qF2gDYGi04mteQ2vjPqUXQid9Psuiw1pqF06O33VjF1s+Ll/Ut7iyipEtsbC0O+Nj/jQF8+Q6KZEH9heXUXSjIuwBTeY7xn+cd9U2G1pSt4PRvJzjzgoJgb8bccvj7oyyeUbZXSe433cMBPKNrc8rZm03obFnmtzzBq87bqtj0eB5urlavyDIDEFwIo9apMeabwxNQpa1B+/9tmqM/U+6MUqX5Kqo26lf3Jxv30mpAq0EHFDdKlLcuf8cK7pXFURTXS/gXY3i9Xm6//XbF/TyH9x8+85nPAGA1VGQVKKWyOWSM79JGLaUtknwqMAfvynaooaw97V1IjPms2ShXdCLOyedcHP5J2juhxOdl16KR1IQyxTXp/c3C2TY+UEPrtXl8LlnmCa1FjbU2o3xCHoFSPBZP8TLfVBDvRKbPK5a3vWcswImfZuxXlTi6X5tlWLAsF8DiaUHREHJGb0Ox+LnRhksrqNkmVvYiMBvm8PeHhEVbJV1FlAqWQwW59G3j5WJ+OXOFAXuTFa1CIWAKWt6DGgGC9xOEo9mCvUWhPyMNfU+2CpelsVQaKG4vwlAiVq7k9G8m1nTosPGKSmrOLxVu52izIGWWRSvwjs4fdwsJ2ABCrggnfjqGf0as3cQuF0MvygdnRESS88c8qxOxKNgvag1Q1LD6meUTf+uKtGx6pIaqzdnfUZVGs8JvlYRGp85dEiiWliE/jXctjkbY+4P5lECpINJ4l6EIbNWqFWvLiixKSSR4F0B5p57S2uXfHjfoUkKV9CxKqc+NEk7VpQC8+eabyvp4Du9bfP3rXwdgXf0NWQVKqWwOOu0KLlXWqKG0LbHHzcW9kmMz4d81l2jQp71Cqf1GAd9QYCHK4f+fvf+Ok+Sq773xd3VOM909Oee8YTYnJSSUUUQgCYSEJCREEiLYEpZ/z+P7u/d1r+/F2Nd+sM0FHDBgwGDASCBERoCklbSrzTnN7k4OPTOdU3U9f1R1nE6nV1qEn/28XtjaqTpV1adOnfM53/M5n+935vFmbpDVvjdFUQpyN71Zh06PUMyrpt/O2ve3Y3bpS/KfTNibzejLWVrI7aNksjczlSmyn97tERJpgOoqNfazGaLLYn20HJKF1/H0Vj3VHTbhtHSN69303CCeIm7qFQ9nfyXGKU0OA3WrnTiaxGI1rZfXMfpIj1AZUPmJu6eCmNdFTO2HXvx+epNEzUA19kYxLtS0sYZ1j/WK3QxoWO2idkiM54U9UU48M0FI0FG1frWL7uuayvu2M2ByaO1fAFG/jO+8mIAQVGepStylxn42kxaVldnvRBZj+Z2oyuBe1joTemuexlWkbPsVtYzcW6Q/yNHBAESDMgazDmMhF+IC3Ovkz5c584Kv/FTuGdyrpkN7hkzulWfNMDWO6qFp0Ehtxk9TrKYU58p0UUodt5kxxFsJBoN84hOfKO8ZC+CCREqvvvoqANs7Hsl7XDEa8gZHDv8kzL4fBVH0xYUCmQu5rRsttI7aad1UZiet16MoCjUDlvzCiSINXZIkzv1qkVf/+kz+BfWEUrBxRLwxArNiweCe6xoYfncbpjKCs5lY/5FeRu5pFyqDCUbu68DRKtaT1Y5U0fOOZrF7ASPv62D1/Z3C5bqvbWbgnWK/LeqHw985y+lfik2sq7ttuAfEB+TX/vdxXv2Lo2KFTBDyRPFNixGp0z+a4uX/fpiwoIp688cG2PoJ8QWlStB3ewuXPbVKuG3t+psTvPqXZaYNy0BwIYJvUmygPPXDKV7674fxnxf7Rk01Jpq2lJlzNAMnnh3n6LfEdkdWtVjpvaGFDsF8u40bXWx6oj9/f1cksF23prJvu+emJlp3lMhrnTOoO3ttbPlkP+6h0t+bpJNSwaA1D/bSd6PYIrjvXJRoQE6pnHNRaMJ48OsT7PmH8RWLaFkocMzVp4lvy3S2ARi8zkX71gyRnq34GJdwOjj2QpRXv7+yDSsmIwl7/nHVZDIhaVt8nn766bKf7xLeWvjrv/5rAAw6S2FXBqMhK8UbADHY9R0/Z14OQQnVfaZQqXNbFUM3ZQj9Sol4JB1Gi4KjtTKVxr6vTHDs+2KpoaK+KGFvnIhHbGFo4JYWhu8V4yd1q6rY+JEebE0Zv6+MyULL9hrarxTr0wG6rm/E2SM2iTQ6jaz/cC/uQTFe07GjjoFb2zA6xd7d0e9NcPwH4g5M9aNO4Xstnw7y8p8fEXLJAfBNhAgI7swDleft+7KYw46zx8aOJ0doExzDK8WWJwZZ/4hYEMV3NsjOCurROxkiOCe2uAnw2l8dq8jxydljw94qFlQ6+8tpDgvyLoD+29vpvTEn0FBGUGTk3jb6bxPkUEbovLYBZ3eRbztPUMTeamLgztLB0dyFtMF3trD6gTLnVJIOJB22BiPDd7XQcZlYOw56ooQXxQLMsSDs/sI5pnb7i8/P8+1WM0J1h9aPlLmbrXWDmbb1Nmr7Mvofa/F2FrXa2fd8hBMvrhxnFJORRJ6ADcDGjvcB8Otf/7qsZ7uEtyb+/u//HoD1vffmPa7o9XnnBmd2x9n/kygxY4nNMRnzBle7gY7NNhpHNK5WZJEL0NwiFRxNhvzCiSIBVkmSmD8cYu8/TeR3W1GUgqLy4HyMYKHNMQXQssnNyLtbsdSIKTyG7m6l52YxsQtA942NWBvE4hKOVgstO2qFRSjd1zXSLygkAei9uYXem1uFyx361zHGfyfmOmptMONoExtTAQ5+9Syv/12e9Akl4J8K4ZsW414zu5d49XNHCc6IcY0193ex8UP9QmUqRfNmN9s+PSxcl4f+9Sx7viBej77JIH7BmNfM7iVe+YujwoI0g8NAzaC4kOr4989z8kdiTh0Gh4HBO9tp3pgxzyyDd1V3WVnz/k4MgqkmqzpttF4mnvK+ebOLhnViIj1LnYG1D3Xi6k1uDioWV0pvgh64rYWBm8U4ZcyfILwUI1IgdV6h8eP0zz0c+t5CcTGrLv8xW70BgzFbOJ733hl8dPBtVtrXpb+ZhL14zEt22xnbD7t+vvL5FYsR2V64b7daalAUhf/23/5b0XtcwlsXO3fuJBQKYbfWF3RlUEyGvHHX/T+Lcf6AnH8hNhMZZVvXW+i7KqPvSySKx730OtCDtbbA91NM1ChJnPzxPOdeEEthH4/IhBYiwk5KvTc20fsOMX5ibTAxcm871tqM76yMXFuuPjv1a5xC9wKoX+vE3izIT/QweFcbVYKb12qHqhi4sw1ztRg/PP/CHMe/Lx7zqu6w5RdAFEF0Oc7uz59gbr+Y2Cs0G8E7Lu6Sffgb5zj2XbHNgyangU0fG6BhvUv4fpVg9X1dDL9bdI1Y5vW/E6/HoCeM93xQWBR18GuVmRtY601YBE0KZvctceibY8LuRu1XN9Bzk/j6X/uV9bReLh7frF/rxCZoEmFy6tV7CdZ/6/Zaem/J+G3F5sDaeqPeqmf47jaa1ov1W6HFaHFhWb7+UoZD/zaN50S4+HpjvjFPD7Y6VaAqGcqrGFerns6NZpyt6fNLcq9qOwd/p3DuyMpjitVE3JG/nQ613gTAN7/5zbKerRAqFin95Cc/AUBChymP61Fyd3/CljPQaKdG/GK3ntgd5vxuHxO7ypigaWRCMhjov6GeDffnDMglcr6aaoxUdxXoIEos0O37h7Oc+Wn+gEHmbrBMnHx+lsnXPERLLbDlLITpjTp0hRw/CqBxjQtXtwNXv9hEq3VHHY3rxEUaFpcJs1t8sfLEs+Oc/qnYQiXA4lG/sJCn75YWhu4SFHtViijs/T+nmHpZjJBWiuk9i8zuFVeuVoLZ/Ut4ji2v3In5JmHfl05z/leCKYEqRN/NTfRcLz6Qz+33CqXnA/CNhTj72xnO/UKs/RssegxWA05BV6q2HfU0rnUJlQFoWOukaVONkGV2aDGOpAeboCDz7AuznKpgV9/rXxhjeldhQlow6G+CmsHig3du2boRK0PvaKT7KrHg19mdfg79MOcbLUZYgEjCqO7Oy5mTJ6rVZy4kVNq48VZ0Oh3f//73hZ7xEt46SArM1nTdlf8EjXspudzLCMQgFhbjXod+6GHsxTItZDV+07Ldzap3Nq0QKpVyAXD3WStyoJl+3cf+fypiNVxgp9nJH09x7jdiY4ip2oDOpCO4ICaIalrvpmljnr6hRJ00bayhdbvYZNDRZMbkMKIXTKU29pt5Tv9sSti1KbYcU3cMC8DoNNJ/SyudFQi3KsH4b+c5dJHS3wYXYsztX8Rzsnzr5QvB9OuLTO2+SJzy1UUO/PPYRbkXwPC7O+i9UYx7BedjFaWwG/v5NMe+Jx54NLvNWGrFAi8ALZtqaNksxhdq+6qoHXQICxd1Jh16k1iUJzgb4/zLHs69mOP+VsJJ4NwvFzj8b5Wlwa7uMK1wt1uBnL583T0NDNxQmxYolSEanTgQYWynn4WTOX1dicXRaEQjXbncy66Ot/mESlajjb6+PgKBAL/85S9LPtslvPUwNjZGOBxGpzNiMawU/ypaIHHF+9c+uVhELFazdD7O6ZcCzBwvYz6djCvp9PRfV8Oq22vzHy8Agw1V3JQPJfjJiWdnmHx5qfjz5fQXk7sWOfubecKe8oSMScGl3lTE8aMAHG0WGta4cHXmzItL8a71btorcIQx15iw1ApuZwaOfe88ZwU32IHqEpU31V4RdL29keF3i7lQXwiO/tt55g9cHC40tcvD1K6Lw4UWz/iZ3rUgXP+V4vj3JoRTKleK1q01DNzRhsEi9r0tnwkSLyCSKQQ1LdoEE6+IvTe9UYfZacJWJzBplHQ0bXDTurXEBrs8aN5UQ9N6sTh4eCmO3qLtlheIlZ1/ycPJn2THAMtJoXv429MsHC3MfQvOwQ1Q1VaiHnPGEVu9gVW3uGhaZ09evOTzAZzZFeLor7PXcpQSbn9RvWGlIxUgO9TxtpBQaePo3RgMBr7+9a+X9WyX8NbDo48+CsBg7+15jysmbb0xN+4pAQrIconvJqfdnvptgLOvlDl/1OYa9YM2hm6tw95gyHu8EOyNpoocaLznwpx4RpwvnP7pDBMvl5HeLOO5zQ4jerOeaFBMENWw1k2z4PwWoO2yeuH1RqtbTb8myg8XDnk59dwkkUWxdSs5mhBOu44e+u9opWmT+FpqJfAc93HmefF11Eogh+JM7pzHe1Y87lIJpnd5mHl96aLcy3smyOnnpkA8s2JFGLizjfYrxeYeMb9cUSrAyZcXKkqdZ601YRUUUgG0X9FA/RqXUBl7g5WmDW6qWgVjXkYJgznpHFRevyCHZMZ+Ocf0npx1wxLl5w/7Of2zEmsJBfiRxaVHX0pbmVO272onfde40hvK5dKNc2lC5vSrEZYnss9VSqw3RgvkL41XqeNtPqGSXq9naGiYpaUlfvvb35Z8tkKQlJLe0flRXV2Nz+ejo2EHgx3XofOnXR1y04/ogumOfP1dVlDg9R+kz5fCxT8sJVriw4tnMNccEt20zkrMF2f+WCi/OCnz52vHR+5pprrdyuv/cJrIYubxPFWVMZB3XlPH0tkAy6dWCqnKSiFSDOXaeqXOL3w/k0MnLJwAcLSbhR1oLib6bmvB0Wpl7xdOCZVz9tmx1ZuFhUNbnxzCc8InlALPVGOidtChLigJjCfDd7dR3eXglc8KOjdViB1/OoL3XICDXxPfjS6Kkfd14Gi2CbtSuYcc6I064eDX1ieHWDjq5eQz5S+iONrNVLc5mHxZzHWg+/pG3ANVvP634rvm3jTkBDpMNSaIRomKrTFjqjERzd0tn9lPCQRkciFip13gAur/N0H3VXVM7fUSTlo/5rl2VvBHp2PDB9sxWvW88jdjK6+dJ5iSLN9zrYvx3f6CdZkvjWkW8u3kzxi3Eo40SetYA829Og7/KoJf40ZJkVLqpwTS/XXCpt77pSOfIxAIEIlE8gqML+Gti1gslnpn16//vwGQAhkT5RzuJWncy9kKA1c5OPt6hNnjGQQ1WlyMosQyjufjMAk573GjE5pH7Jz7ndo356WZmXxMO77l452EFmMc+NpkSTF58pq2eiM1Aw7Gd3og388R5U4I8DXBaxudxmwBUBn022jTgVEvLBy6mFj3WA9zB5eZeFFgfDRC06gb75ifoEBqlL5bmnH1VbHrr48LPWPNkAM5khAWr2z+5ABLp/2c+EFlogsRjNzXQXWHnZ1/nmfbypuALZ8eZP6wl9M/Ln/nu9EGNUNuPEcXiQlUZd+tzbh6xd9b4wY3gdkw/nExB4HRR3tYPOXn3C/F0/WkUKa1dKWwNZkI5kuFXYw7GcFopGjdXxB/KsXbSlw7yYWcXRbsDWYmX80I9pQIhtgaTKy9r4XZwz5O/9SzokxeFyVJR02/GZ1BYj5X0JHxW6Q8KemzkM9dMKN/zhT9rr9RTyKusO/H6fslRUpJ6IIZMRGrifnI73j98C9paWlhYkI8KHgJv19s2LCBPXv20N12DT2dV6PPjHnlzAky3/2qtxvR6SUO/Dw9xpWKeRHLmFfl4QhKkZiXu8tAIpZg+XysZMwqebzjcieNa6o48M1pQgsZMZ4SvK1hbRXB+Sj+yYh2egk+U4pXlUj5VmlZg0UiHlfSi9xlhj0tdUbhtG0XEy3banH1Ojj8r2JxGlujBWutiYXDYrGTdR/qZfGEj7O/KH9MNVjA2VPN8mlvfpeuAmi/qoGGNU52/+0JoWesFFv+aIjFU2LxvErRfV0jrv4q9vy9WFzI0WpBb9IJc9j1H+7Fc8zHWQEuZHEZcLTZmD/qzSsOKYTGDS7qVzs5+NULiB2+mbxL0qnOS/G4UHsE1fFJFlyoz713QZTJqwqX165tgMY1VSyfDafdLPPwrqzr6fUM31GLtcbA6/+UR/iQzyVJe96WUStzZ2LEM5tkxrXzpXGTMvryFRvZASljwU2uSh+va1LoGUlw7BUFn0YPkyKl1E8JpMdW2aZyvlf3/wU+n5dQKITFIu4gdwm/X+h0OkDPNTv+DCCbe5ly1hu1mKfJDsNXGDl/MI4no0vP4l75eEBmTCxPDEqJZ3z/GZxDb4KaLjNzR0IrjqVOlzO5l/rfa9/XQmgxxokfzZVcaE7yK6Ndj7Pdwvwxf1o4IRCLuhAuVS53SkJv1SOHxPpMvQnQi5e7mOi/rZXFkz7mBTmUs9tOyBMRSmXXsN5FwxoXB786JnQve7OFhJwQFq+sel8nS2cDTPy2DDHbBaL9ynoaRl3s/vzF4XmrH+jCc8zLpIggWq86YAWmI0JtsnGjm/pVTuH3Vt1tI+aLC6d863lHM/7JELN7loTKXUyYnAbhNI6gblCRYxegoyjholRpWSDFhay1Rqx1JhaPZ5ChfDGvDH6kt+lY+94WZg/6mXjVqx3OeJ58WVkkCVudHoNZj282p04yYxElYl55uVfGmJfJrYbWK0iKzLFX0ucmRUpJGPzZ3CsYPsbLu7/Opk2beO2114o+SyFUvIrs8/kAGOy4LuvvuQKlXCzPyCzN5Ki48uUizkDLegsb31+LtdTGhzwD7/TekCpQKoWMF3PqFwtM710mulT82rlo3lRD97ViVtTuIQcbP9aLo61IHeQhDJYGU/60TkkUmdBUIlACLppAqWV7Les/0lv89+WBxWnE5BC3YVg+GajI2UiOysQDYp1t8wYXPdc2UyuYjz7il4kFxTv2rusaaXvbxXEqsDeZGHp3myp6EUDUGycWFA8E9t/aVpG7USKWQA6LkV//+YiwQAnA7DRitAn6xaOmzlv7cLdwuUoQ9YgLlICVAiVID+YlBnVHi7g4ZuTeVla9t630iRn3rm4107zRTdu24jsXcoPr5170MPaC+Ps+/UJhgVIxDN9axejdrqLnZAqUAGbOQNCbKKruz+eoJEfV9vjud79b+Dkv4feL97znPQBUWfP0e0W4VywC/gWZxTM5jaUEiV37bjf911WX5j85x2PLcO7lQPEySWR8e2d+tcD4y2I7hVu2uGjb5sZcJTb2D9/dKp6iCbA1VJbGDhAWKAHEgomLJlBadX8nHW9vEC5nchgxVQvWSwymdy0KCZQAoiGZuOD4DdB7Uwt9gjbnAFF/nIhX7BltdUb6bm3GXFt5WxFB6+W1tF4uvjM8GogT8YkFQlz9TnpvaqZmSGw3YKzC9zbz+qKwQAnA5DBgqRbjXkankbWPdFO3tvpNFygB+QVKpRC7AIGSEeH0ilUdZkYf6cDeUrpcZnCl6211tG4T20UbnIsxuXuZ868spf9YQqwK4DkRWSlQgpKBe1s9rLvXSU1P8d+W60q4OCOzOFP82rmOOnXmywGYnHzzxY6X8MZj3759APR0Xp3191IOEIvTMovTYjEvZ5uBNXdWYXGJi34Wx+KqQKkUMspO7l1mfOdStiNMGfyk/bIaOq5IjzvlOH1Y6w2suq8Ne7PYHNBYbSyeeq3InDMeFhcoARdNoOQecDD83g5h1xpztQGzYH8OEJwJCwuUAOIhmZigSMPVV03/ra1Ud4rFvKL+KBGv+PjYuNFF4waXcLlKYHIZ6Hx7AxaXGM+I+OJEK+D0fTe30JObjrYMxEMyMcEF3/BSnPmDYgIlAGOVUTh1DkDLjloG7mp70wVKoDo3iQqUgAsSKFXirtb99lr6bi5jPpaxEGa0Gui4zE3jmuLfW27Ma3yXl7EXxNLgAEwdyhEoqRcvfm+dRNcWE8PXFRcMZQqUAJbmYdmjI1bk08nnqGQ2qt/MBz/4waL3u4S3Hr74xS+iKAp17pUpPHMFSllIwNJ0Am+OuUUp7tVzpY22jZbS846cuYUchbnjZa6RZVz7zK/mmdwt9t3V9NrpfFs95qoM7lnGpuC2K2pp2VFiTpZnzmRyVmD1pKESoZEcraxcJeh8e0NFKcosNUaMVeJrO8tnAsIijUQkQTwkvv7XeXVDRWtk4eUoMUE3RL1VT/PWGkyOytuKCNz9DmpHxDICAUSWYsIc1t5gYeC2NpxdYk4+cqiydVvvmaCwQAk0NzHBODh66L2lGWe3WAaWSlGJQAmoXKCkVzmpCMwuA/23N5eXIjwj3ta82U3HZbWlN+tkHJfDcO7FJWYOBjIOl/6twXl5pUAJSgpdTTYYeruF6ubi32mu+NszB5754mVyHZVslkEkScfevXuLlisG8R4W+MpXvgKALsMCKuEwI0XyV07CZgGDDikQ5tTLFSjoLOp9QoXWjCUJ5JUD65r31BOYjXL6px6UQi9Okla81Mh8lLGfL2iHpWz184ryutSg/vo/jGHK4dylFMuOJjMmu554Pm5TJMA6cnc7ZoeRl/+nmPvM5k8NEJgNc1gk7YUJtjwxxNSuBaH0Wm1vq6PjsgaOPzMu5HbjaLJicZqEnIaAil1/Rh/tYeGEl/Ffi6mGd/21uPJ3auc8sYDMwkmfULnTz4nleE+icb2bRDwh/NsqgWugitohJ4tjfmY85b88EUejTJx+fhI5Ii64e+1/i+3kB8AEow/2MHtgSUjQVkk+WlBJkdkpHtTY/KkBAF77qyK/MTkAZgSDNn+iH99EqPznlXQ42kysureT8Z0LTPzOk3WsGEbubcPVY+elzx3L+40XWmQzu02o/r3lw3smwvFnp5g/pCmHiizgKYqCpC04zB8qILAolA9dUZAMBhwNevpvqOHsy8t4Tmb/uJQtYz4kQCn02wq4D0T8cOCXAEbizVb0gfyRm4TdnEWK1vc9wGsnvsChQ4cKP88lvCXxzDPPALCu977U3xS7BSman1cpNguKTkfQE+bIz8RFxkoCEnIRDpOHe9UMmGndUM2xH88RXSrCn3S6Fdxr7oA/+3ipQFFC4eSzs8wf9hPJTZdbYoHa7DKhFxRNGJ1G1n2gh9n9y5z8YfnjVutltbRsrmHvP4+pgqMyF8oG3tmKrd7M3i+eFnrOTU8MkIgneP3vxHZq2+rMKMXedwG8+pfHhMs0bXFTN1zNwX8R423nfjHLOYGd/Ekc/8F4RQ4z+74sVvcAzr4qGta6WToTICKYFrASNG9UF4onficmrN37f8RcRwGWTixz8scSi0eXhMqd/fksZ38u/t5aL6/F2Wnn8L+KpeqrhOfFgjFstWbsjVbmD5TP0Rs2OOm9vpkTP5xg/mD55dquqKVpQw27/iZjLlFGsHn47lastWZe/4JY29z68X6C8xEO/EuBusxzbyWhYK4y4GiyEJguf/5+4sczxEICbV/jo+d+u7TyWCKBVEiEqyRAr6fziipsbgNHnllccbwQ9wouAQpasDnPWFBgwXRsj/YfRgOxGht6f/75TsJmRsro65ubWpiZnearX/0qDzzwQP7fcwlvOezfv59EIoHRkA5Syw4zugILBwmbGfQSukCEySMKIDamGuwGUCBcoCuRdLrsHf0a+q+rJrgUZ+JVf96YmFZ4Be+K+2Fqj8q9JL0+26kpFxm8bN/XzmIwC4QRdRK2ejMWl4FEXGzu3veORhwNFl77GzFOs/ahLoLzEU4+OyUkUFr/oV6mdnmE0mu5BxwM3N7GiWcm8Bwrfxyw1plxNFqIC9bJmZ/OQAVp0PvvbMV7LsDM7iWhcgf/ZUz4XksnvRx/VsF7VizmNbN7Sfj5AJo314LCRUkFYm+w0LyplsBsmPBS+THOyZ0LTO4U3wR16idTFbnyH/jKmHAZgMF3t7Fw1CsUvx1/YY7xF8RSaAPYG8zYG8RdbtY+1IXOILH3y2eEyq2+v4PATJgzPy2Pk0o6CYPDwOr72pl61cNMbjqQIui4uo7mDW52f+ls/lR4RWJeBrOuLPFnEjFfnGPPzOI9p6mwipRNxq0AfOMx8loR53NRAkgoSAY9Bgf0X+5g8mCY5fEckWs+d8p0cRKSlo8r97kKxNnicYljewEMRJstGH35+aVsN2X19av67+Kl1z/L7373u4LPcwlvTfyv//W/AOjveUfqb7LDjC5aYL3RbkbRSUT9Ec7uKzCeFuEBCjqUROG4kKTXreBHtjo9LescnNvpI+pTCi4US3odSiy7rG8iY+6g15dO25NQmNm7jH86RGRJLH5lKSVozhMz05tgzQPdTO9eZCI37XcRuPrstO2o5/gPxoWECc1ba6hut3Hs38XWTobvaQcJjnxLLF27vcmKLp9DbwlUMqZWd9uoHazmzM+mhVKHzR/2Cjs2AZz52TQ6g/hvO/Ws+Hqjrd5E67Y6QgsRoifL3KB6AWja6EZv0guL7StJbRaYDXPimQn8E2Kb5Sp9b+5+B65uB2d+Kpaq79DXK1gDl8HRYiUwFWH5TPnvzdFiYfCd7Zx6fpIlgfddM1BFy9YaDn7jbPnfgCTRekUt1S02jvyb2Pc9+lAPwfkIJ36Qv03niwkn4grWOhMWp5HQXPl91/iLC8ja6YqiFOdtipJaT1w4tnLXoaIohd2/FQUMBuoHzdhrDYy9lFP/sgyWlQYFAFHtVjqbEfJQ2EKp32bHtd9iNhCpLcy94g5TllNme2sf58aP8+1vf5u77747/+8pgopESh//+McB6GlRd5TJVq0irUYMS3m2J2idZN8OIyGfzMSBlWk+FLMRKZLnRycSjL8WZvy1AtsekgO6XrciKGNy6JEjRX5ikqhkBF3qRuy0XVbL8WemCUxri3o6qSwnpagnumLNPfkBFJpYnv/1Aud/nWeyWmKBbWLnAvb6IhO6AiRMjiaIB8QCIfYaEyQUElGxcr7xEP7pEN4zYp308e9XJuyoFLY6M7GgmEIWEzjqTfgnxJRUUX+iIkcee5MJSY/w/V7564uTHg5g4jcLzL2+IJ42zAHWJjvLgsRGNM1b6n41JnQGCItYYEbBVmfB2WpjCnHXLVFUsjAKsHQmUHqROc/AqSiC8h8lgX8mTCKuCC9qT7zmIVpAXV5sEXnPF0oEoQos7qUESiUgSVJaFKHTMXhHAwazjkP/phHFEjumQXXdMNr02BtMWSKl1CKZouSt/yO/LBAg0pCozuifMgLZNid0j8KREzGiGPMKlaKuNFkxLYZx2GtoaGi4lHLkDwyxWIyYtoXQalTbQxb3Ws6TZlanw1oFHZvNjL0Wye/AYTLmT/umKBz8QZGFhSRHyeFejloT5io90XJ4RkZQZuiuRqLeOKd/ljE+FhAq5e40WDqV54cl+4MCXGrvl/L3J0UXAWIxpvcuMrN/KUugXgpKQiERU4gtCSqvK9xUvHDcW5HYqCIBb4WobrNhbyyViHslzLVGEiGZWFCMjy6fFkuRkURVpw3fZLBY97wCUzs9zO/3CKVDuxDs+/LxoruLC8HWaESOIySkigVhtsIFQFujkaAnJlSX1W02HM3i7aQixGDnZ8UFd8tngyyfDxBaLPF9Z3IUJYEiAwklnQayzBS58VAirytVKRHe1J5F/FMF5tIF7u0fj/Lq/z5dMh0JpPtlSZIIzuSfz5eyv7Y1Gem7vo4zv5zXFs5U4URqDl7gOayu/M5ZKe6V794x2PNMOHVdKU/fn8m9pFi6zpsHwWiGU+MgO0x5hUrxDO5lXAzT3baBqekf8l/+y3+5JFL6A0LyXXW1vw0AWds4J1sMGBfzfE96LRXOsEQsojCXZzqnWEz5074pCgunYiyciuV3MdH4kGTQrxAqWZz64rswk3wlI6blaDLQfpmbM79eJJR0DipnsQxV3JRcdC9n9ycJhYXDARYO55nrl+BSk696iosYCpSPhWTiyZ3TklSWUMngMKAkFGFBSHgphuekD/+M2GLG5EsLTL4kHheqFNXtNhRZERMBGcDiNBBeENtoGg+D57CYQAlUlyKdHuH77f2HUwV1FW80Fo/72fU3R8RdeQyqwCkwKVbQd07cURLAYNGhs+iILonVZVWrjagvVnGsTQSFFpFKYeG4D8lQYbqOMsU/SV4V98dJRBMk4gL9gqRj7pBXzYyeT/xZhFcd/fep4gtdBRaUUgKlJArwLkmfMYeVdLRtd2C2Gzj18yX1bznH8yEeTGB26rG59dkiJU2gJCUUlDy/ceyIDlDUfB55um7Zme7rM3mXwaLQ1QunF+KEq4x5F8uirvTinmkxisFgoampiYmJCeLxOIaL1UFcwgVjbGwMnc6I1ewEIJ7MTGAzYFpaufFO0UnoDQptq3TMnk4QzdNlKlYzUijPpj1F4czLRfrk5PzGYMgSKlmcBqw1BuQCRg2QkeotI6bVtsOJHFWY2uXNux6ZfevsPidQLE14AS508ofTxTlNnpiWLMP5387hOy8WzFBkNdtIVNCRRwJRTT+gjQMVbEITTZV7IbDXW3B1OYQESgBGh56ELO4uFZqrwKkZsNaZiHqjyALFfedC7PnCcaEyF4Ij3xETqyRhcupBhqhfoC5lhAQ8ufeL+mWhd25rtFAt6Np0Idj3JfH1xtB8lPmjXiJLYoHHhJwgISuYrPry3oHGfxIhhbiou5qkY/JVD+ECrqWF+ouYX2b/P54VTs8b9eV5vkIxr4z1RJNDT/tlTqb3+Alo69KSwVAy5mVySFjyudwlBUoF1hsPJ1O2FeBecVeae2WKgd31ChYrjAUgVpB7pYXpZk+EzrYrOD9xgs9+9rMViZQkpazIQk4h7Udft+nP0otkGlaIlDJUnFtuhlhYYe+zhXPeZwmVEglMDqhuMjF/Mrpyd1duECV351jO8RVuSpn31khB5zU1NI26eP1Lp1aKLYoM7msfUtMQ7f+n/DtUCxIDE/kdgwTyy64sewF5G/+Asf1PhgnORyoWeIig7W11dF7RyMnnJoQCPe1X11PTXyU8KGx6oh+DVc9OQeesSrHjT0fwngtU7E4lguF72qkZqObF/3VIyD2r56YmHC1W9v+j2A6qrU8OkYgnirsNvUFwtJpY82AfM3sXOf2jyoIwbzjeSDvtMhfVyr9cGc9WqM8s8Cwt2520bq1l31fHiC7l7xvzBYJGH2lHb9Tx+hc1MlxEpCTlBj1yfseKnfy597NaMDnAUQeesexDWQIlyBIpuVtgcIuO8+d1nB1T75ErVMoUKYEqVHph718Rjft49NFH+dKXvlTwd13CWwcf/OAH+fKXv4zD0sCO4Q+t5F45IqWkIr5jBJr7dRx6Pkiw2KbwTKGSouDuNOKfixELgpIrYsrlJ7ncK+d4UTdKjZetf6SNqF/m0Lfy9JMZQZtMymqrNzL8rhbGfjXPwuECYsR8XMpIQaGE0MKUKE/7T8jNem9upn6ti93/zzFh4VAl2PSJAUgo7Pp/xJwsV9/fyeJpPxMvlr8YaKszsu6xfqZe93Dmx2K7mirByH0dVHfY2fnnR970e4HKhcKLUWHOvOahLuYOLAu5TDRtcdNzXTPHnx1nfv+bv+i15qEurLVmXv2cgOjozU7xliNSKnpc+NIX+OylAjJF+swVl9LqcdV9rciRBEf/PadPzwza5NS5yWVk9L5mxl9ZZGqXurgtZXKv3N+Zy8ukEtwrJ2CkWM3UtINvGmIxsoRKudwrc7Fs9DodepPEKy+n+VWuUCmew72Mi2F+uue/IkkSiTLS2F3CWwMGgwFZlnn7Zf8tJVBKYoVISZ9uf+uvSBAPKxz6deGFmiyhkqJgMICtQYd3MgE5u+5zF69WuCmJ8DKtndetstGx3cn+b80Qyw2yFhEq9d1Uh96s49j3prVHL8JtMjmVgfziqyJcqiQn+/8oD9v4eD+B2TBHBXcXV4KawSoG7mjj5I8m1DRgZaJudTV1q5zCzzhyXye2ejO7/vriCOe3/NEQi6d8nPj+m795p+2qetq21bH3iyeyUyyWQOMGF65uB8e+K7aRc91jvSBV5pwpCoPDwIbH+pje7eHcr8t0zryYvEu46JvIq6CoSCkVlyrUZxYQKbl6LHReVcuxH8wSXoznPV/K4x4y8I46TFU6Dv6b5piSeU7O75AMObwr91lyXJRyhUqKzayOdW7UlFwZXXimQAmyeZfFoTC6FcYmDZyfUbld7mJZpkgJVKHS3kNfZWHpBE888QR//dd/zSW89fHd736Xd73rXdS6B1g3cn9aoKQhV6SUbGM1DQrdgwmOvRgnVGSoyhIqKQq2WomIT1GFFpGcIHMOZ1ixHpnLKVasP2ZyL/W/+2+tR44kOP2TPA5FBWJeeqvE0G3NjO/0sHymgGg1Hx/SkxJKFOVTuWX/k3ClNxL1a520X9HAwa+fJrr85qelG763Hb1Jz8GvjgmV67y2kcBkSMjNR2+C9R8eYHLnPJOvvPkb8tuvrKdh1MXuz4tnpqkEax/uJrwU4/j3xDhU941NLJ8O4DlevuC+qt2qug09N8niCUH3hgrQdX0Tzk7bRVkDvyi4UF5YgnsV5XaSLqvPXIECZbveXgcJhbO/zvl2MvlRTsxKb4JVdzcx/poXj+aqlLWmmHuvnPVGKZd75boo5dRjwmHB7lKdmmWZLO6VKVCCbJFS/2oFqx1eO5neNLqSe2XzPrMnwi9f/DOMJgORiHg2D2Hmfu6cKsIZGBhILZJtuzzOxm3qgG1zwtbbdXSu04FBx+Bm2Kq5NL76HOgMEutuVdPPmCwKW+6x0rNFvU7vdiObH6hWF6ETCdbdXc2adzrpvdJOVQtseaSOvmvVPMtdl9nY8lgjJod67XX31bHhA43qP2SZLR9qZvB2NQVC++VOtjzehqNFrbzRB1vY9OH21G/a8vFORu5pBp1Ozdstga1JfQlrH2xn8xPd6XM/1cOaB1RBUuPGarb9cR/1o1WADmuNiS2f6ss4t4+1D3cAULe6iu2fGaRluxuANfe3s+3JfnZ8epDhu1vZ8ql+1j3WBUqCqk4T2/9kiPar6wAYeU872z8zlLru5k8NsO0zQ9ibTFga1HN7bmwERWHorla2Pz2cOnfTJ/rZ+HH1meztJrY/PULf7Wp+5r7bW9RztTa18eN9bPpEOu/v9qeHGXpXG5YGEz03NbH96WEsWo7G9R/tS6WWAlUgNPJe9be2X13P9qeH6bujhcaNLtZ9qJctf5R+/m2fGWLNA10AtGyvZfvTw9SOqO919NEedvxfI4x+sAdQF1HWPqzWf/06J9ufHqZxs0t9Nw93s/XJ9HXRqYpjUG23tz89TOtlahtY9b5Otn0mXS9bPj3Iug/3AuBoN7P96WE6r1Vzfw/f0872P0mfu/lTA2z4mFqHphoT258exlZnYmb/Iq4+R3Z9P9HPxo9rdWhS67D/zlZAzfvZflk9tlq1A9nweB+bP5ldh8N3q22r67pGtj89jL1JrW9F23SSrsNhRt6n1nfb2+rY/vQwzj41p+i6x3rZ8sdqvWz4WB/b/3SYNQ+q9d20xc32p4epX6vmcl37SHYdbn1yiLWPqPVtsOvZ/vQwTVu0NvtgF1ufSp+75Y+H1OAH4Oyzs/1PR9j2J8M0bnQxcl/Hivpe/1H1XHuTWofd16vfq84qkUgoKeHJ5k8OsOFxrb4dOrY/PUzvLWpe3f47W1Nt1tFsxdFiZdMT2W128J1qHfbc3Mz2p4cx1ZhSdbH5UwNMvDrPxMsLapu9V+0HOq9tYPvTwzja1Xez7sO9bPn0YEZ9D7HqfZ2Amrpn+9PDuAfUzmf0gz2p+k7VodZm7S02bXxQX15um9365BCjj6ptvXakiu1PD9OyvRZnn50d/9cI2zLa1pY/GmLdh9Q6rOqysv3pYdqvrgdg5L0dbP8T9bf23d7C5k8NsP6jah1aGtT67rmpCSSJoXe1sf1P0s+w6Yl+Nj7eh6PVpLbZPxnK7iP+ZCjdRzzel13fnxlgzYNafd/QwPbPDGKp1/qID/ew+RPp/nD7UwOM3Kueu/YDHex4epCqTq2+H+tiy6fT1936R32sfp96bst2N9ueHKB2xMG2pwbY8njfin52zfvVb6F+tIptf9xH40a1fa95oI32y9R+1FpjZvMT3ax9UH3nrj4r2z7dS+t2dYfOyD3NbP1kuq83WvTIUTWViKPdytaPt9NxhXru4G11bP1YegzZ8HAj6x5Q+w9TFWz5UBPdV6rP0HeTm80fqE2du/49btbd61L/YYLND9fQs8PE6htt9G63sfk9Nkza2ti6O6xsvD5VlK3vgMHt6tjauQYGthg4eFAVKG3cHGPb9hiy3YhsN7LtehjZrJbrbIty5bYIbmeUqNvCA/c/gCRJPPvss1zCHwa+9a1vIUkS77z9HmSrkeZ2me1XyzjdKokcuUrH+psNKDodik7Hxpt1DO2Ac4fhzP4EI9fbcKtdGIPXmNlwV3oBdv07bQzdoI4frnYDm+530XuVnZGbq+m/1s7GB+vS576vlpE71bz29iYjmx9poGmDWrb3BiebHm1KnbvugSZW36N+F9YaI1s+2kbbdvW76LnOzZaPtKmEXa9HSSjoTSqZNtpgy+OddLxNHXs6r6llyxPdKAa1Hx19uJ11H+jApOWa7rupkd6b1b6w/Yoatn6qF6Nmbb324U42fCiDw32yj00f6mXrp/tp2e5m66f7sbeYUBIKqx/oYNPjvelzP9XH0LvUvrBxg5Ptnxmg/071962+v53NGXxp8ycHGHmP2ifUra5i25OD1K1Wec2ah7uyxvpNnxhg9f3qy3D22Nj21BBNm9TfOvTuNrb8kTr22BqNbPp4P2se7lLru9XCtqeGUrxm4I6WrPFk48f6GH2sh67rG7E1m9j21BAd16j133tzM9syxu/1H+lNjScYVf6x/U9HsDUa6bq+kW1PDaEZdjH6wR42fDTd5259coi+W9UxWW+TkPQSRpvKvdY+0s3Gj2Wc+8dDDNylcqDmbTVse2oIR5vKr9c81KWKjpL1/elBhu9W67Bhg4ttTw3hHlTH2VXv62DzJwcYf2mO8Z3zan3fp/b7NUMOtj01RP2o1pff287mjPF70ycGqO6042i24uzW6lvjNQPvak3VN8Cmx/tZ+wGtvZjVgF4ySNh/a3NWfW/4aF+KqxqdRrY9NUTntQ00bnCz9amh7Pr+cC/rP5xuW9ueGqLnJrUOO97ewLanhkhm0M5X3/3amNx6eS3bnhrC1qi17w90q5xaayNb/miQgXep9d20xc22p4ZwdqsvcvX7O7PqGykdAK1bW822p4ao0bj4yH0dbP5Uul42f3KAVRrntDda6b6+mYYNLgCG727P4kubnhhgzUPq8zjarGpbsuuZ3LVAzXAVW/84u80mOaetTq3DDo3X9N2a3Waz6tum1mGXxiO7blDbLNr6hMVlzopRbHtqiD6NR3ZcXa8+k9ZHjD7ak2qzax/uYsf/b5iBZH3vqGXbk4PYW1WusuahLjY9nsE/Pj3A0LtbqR91MvDOVrY9OYizR6vv+zvTfYSkY/Mn+lIcqG61k21PDlE3WoXRaWTkPR1ZfGnTx3tZfb/6LTh7bGz74wGaNqrte+hdLWz9dB/mGvX5Nz3ey+oHtHfTYkr1bQD9tzWn+JKtycjWP+pn9BG17zE6jWz9dD8db1Pru+fGerZ+Kt1G1z3ayegjHQze0cTWx3vY+okeuq5Vx4LOa2rZ+omedB/xUDvrH1GfQVEUNn+8G4tLbdCtl7nY8kQ31jr1eVff18L6R1pT99n80Q7636Fet6bXgiSBbyqMpNez6j1NrP9AS+rcjY82M/AOtf+rX2Vj86ONuLrV6w7dVsOG99enAusbHmxg8Ca1Pbs7jWx6fw11vWo/NXCdnQ33uXC1Qv9lNkbvsDJyrZoqoqoRNt1jo0nrBvo3wuYbQTHqUYx61t+oJ46eV17WYbPF2HFFjPbOGLLDRO9GiS03ph6XTRujbFivTW4a9AwMDKDT6ZiaeotsWriEogiHw8iyTG9vb0qgtG40wtrVasDNYIBN10FLvwR6ibZ+2HSNWnbPb3Uk9HpWXZ0OKm64xUjbarVjah6A9XfZMVhQ4zfXWVl9u42Bq+xUNUmsv9dJx1Z1rGwYMLL+PjcWl3qdweurWHO3ysNQEqy7r4buq1RuVTtgYcP763E0q/ftv9HN2vfWp55h9IEmem+oBZ1EPJQAScKufZt9N9ay7sHm9LkPtdF/i1q2qs3Mxg91UDNgAwns9SbWf7AjNYaMPtTO0F1qWWu9gU0f6aZhrfr9db+9jo0f6WLzR3voubGBtQ+2M3xPCygJTNU6Nj3eS7MW2+l4W12KhykJhbUPd7L5E31Y6gxggM1P9NF6eS0oCVp3uNU+Vqvi1Q90slYbe0wuA5s/OUDn21UO1LJVPdfkVn/ryHs7GH0kzQ03PTFA942NGBwGGja62PzJAWyNatB26J72VLwDVIFQcjypHalm8ycHaL+mThXz3NXG+o+k+/INH+2j/w61D3P22tn8yYFU/KD/tha2/+kIw+9R+871H+5l8N3qGOFotbD5kwPUrdE4881N6fgSoDfpMGu/xVJnZPMnB2jcqNZh93WNWWP96CPdrLpP7fcNDrVeWrZrMdKrGrL46ZoHu1IxIwzq2F/VYeX8S3NY681s/uQABovahlfd35nmS6hcq0ur76ZNbvpuaaWqVR0kht/bwTot3gGw8eP9dN+s8un6USebPzmAvUWtb50x2/Vqw8f66btNrcOawSo2f3IgxWv672xN1ffQve1sfXKIgXeq40t1l43NnxxI8Zq+21rY+LF0Ha77UC9DGuc0WPVs/uRAikd239TEpifS9bLu0R6GtTinRWtbG58YoHakms63N2TV99oPdLNK4/gGi06t7x1qfRtsOhRFIRxW4+ar359R36j13fE2rc1uq1Xr22HA3mShZrAqu81+YiAVS2vU2qxF+5aH7m1n3Qd7VM784hwbH++nR6vvutVqm3W0qfU9eFdbFj/NbLPuAYfaZvu1NntHSxY/Xf/hPgbuUtustcaIziSBpL673nc0s/HxjPp+rJehe9T6tjaobalxvQtLrYFtTw2x5Y8y2uwHuhl5r3quyWVg8yf6admanBM2sPkT/RgsEq2X1bL2A12sfkCb4Bpg8yf6ab2iDiQdrZfVsPmJvnQfcX8Hax/sxFKj/mHzE310XqP2cS1bXGx+og+T04Ckkxi+t421D3WmnmnjR3vovyPZZqvZ9HgvtkY15jX0rhZGH0m/xw0f6aH3JvXd9N7SwJZP91DVrtb3wB1NrPtg+rrrH+2g/xb1XGe3lU0f6cbdZ2XjR7pY/3A76x5Nx5tGH25j4Hb1XEeziUiYJs0AAQAASURBVI0f6qBuRJ2Dd19XQ8919SgJMNr1rL2/haE71N9mcenY+GgrjWvVczsud7Lh4XRfb3LokCMK6HUY7Do2vL+elnXqN9a6ycqGB9JxrJFbnYzc4kzV9/r3OGldr3LklvU21t9lU8c1YPhaC6uvSy+cbbjTSscqGNohMbhJx8YbdFjULo6hHRLrtqQFIJsui9O9SkEx6qlvUVi9BQ6clDg/Y2R1f5jNq0PEqozEqoxs3BGnf1gtW+eMc9naEO6qOFG3idtuuwOdTsd3v/tdLuEPA5/73OcAeNtVNxC3Gaiuktk8GqHKoca8Oodg9TZVnKToJFZvUegaUvDMSpw4oKNvu4lqtRulbUSXxcOGLjfQtUVtk2aHwppb7fRdZqX3civNq42sfqcrde7A9Q56rlL7Pr0V1tzlpnZI/S6a1lpZe0/6u+i/0U3fdWpZvQnWvreBuiGNw622M3p/Exh1mmOSgt6cnqSOvr+VpvUahxuxs/bBdgw29XjvzQ0M3dWMyWZAURS6rq2ndat6n5oBO6Mf6MDsUuc2PTc2puaZAGve38Gq97Sx7oNdOLttrHu0O9VndV1bz+r3tWec20WnFjOqarOw6RMDqb6x8+0NWePU6vs76b5e7QutDSbWPdaLq1frh25szOIFI+/toOcdal9jdqvn1gyrY3Lr9trUvN7k1DN8T3tqrNdb9ax7rJf6NWpf07ypJouHDd7VxsC722hY70LvUM9t3KiOEfWjTtY91ovepNZh/x2tDN2drpeNj/ex+VODWOtM1I1Us+6xXkzaGmLvrc0M35vR5z7SQ+vl6hxVb9FjsOjQG7X6vqk5tT4EsPahbjquUuusutvGusd6sTernWHXdY2sfiCjDh/oovNarS9vsbDusV6qO9S21XF1A2se6mbyFQ8TL8+z6n2dqZiRtV6tw+SY3HpFXXZ9v6eDhrUu7M0WTE61XmpH1LbVsrUmVd8AQ3e3039Hcj6uU3mX1iybNq6s78G70nW47rFemjbWUNVuZd1jPaz/SB96q1ov/be1prgVqHGtVo1z1gxXse6x3hSP7L2lObWGDCp/ar1CrW9Xn511j/Vi1daWum9sYuPH+ui7VW0jax7sovNqrc12WFn3WC+OVvWb63x7A2ven65vnVGHoq3H2ZvV+nZ2a+PhVfWptTtQhfI9N6v17eyy03tLCzUDWpu9rJbRR9J1OHxve+p5jFo7tNaaOPeb2dR9UvX97jYGtHVhvUmtw4b1LgAa1rvUczUdy8CdrQy+K7u+m7eo8776NWr7Tq572xvM6IwZ/cmjGfU9pNa32a3WYc/NzYxo84HuG5vY9pkh2q9U26yzW61vW6PaP3Zd38Tq+9N1uObBLjrf3kBVh5XWy2pZ91gvVR0Z9V2qj+i3Y3ToabuiLru+M/uIGhPrPthDzVC6j1j3WE/q+xy+u42+27QYtFXPug/2ZPcRH1Tr2+TQs/6xbobercWQ9LDu0W6atHlS/dpqRh/pQq+tcfbf1szgXS20bHWy4dEuRh/uoHmTet3aEQejH+jApDl299zYkJrvAqx9fzuOZjOSTsLVa2P0wXasGsfsvqaG4bsa0/VyTyNtO9Tr2pvMSBJEFuNIBgOdV7kZeWd6zWXkjlo6tju0d2xg7bvcVGlz+7bNNkZuq0bRRK1Dt7jo2qy+N6sT1txiw9WitomW1QZWvcOGxQGDW/SsvlJHz6gEOjBZYfTtOurq1bG1tV1m/eY4CZOehEnP0HqFhBVeO2lCr5fZsipMU22MWJWRhh7YsCVOUtG1uivM6i5181akxsDIqhFisRhnzogZikAF6d5uu+02ABob0y8m4IeYFoMLmw2EAzJBr7rY5F8Gsz1dPrBMKm1YVIawT8G/qCqxAotx7G49hBPav2UkPYQWZHyTEPHJ+OdiIMsEFqKEl00plVtgLobeLKXUy5IBqrSgcsgTJbwUJ6ap8f0zEcyO9E8PLcbwz6g/IOiJElqKpWy7/DNhEjGt9eokQp5Yyi4/5IkQWooSXoyw/5/P0X1dLY6WtMIstBAhMKsGsiJLUUKLUULz6n1802F0Zh2xoMzcYS8Gs46QZkkW8Sa0cyPauaHUYhyo9We06THYjcRm1BQDvmn1mXxTISz16clAcDqcUk333tCqpgybUtXX/qlQ1vMGp8NZysLQYhTfVIjV7+3EYDMQWoyS0NI0BafC6G3pzjDkUc8FCM1HCC1GqR2sxt3tYPG0H6szrcYLLWScu6CeG1nWfutkCIvblLKWDC1EUs8bzqlD/1QoS2bnnwgR1Oos6lXPDS6o//ZPhzDY0urF4GyYiD9O42YXPdc2Ew3GCc5qdTgTSnXkAIGZMImIJjWMqtddPhNkZvcSLdtrsdak6zswnbGrMqrWoX9aq++ZEFULNvb+46lUfWcOKKHFKF7t3MBMiNBiNPVd+cZCGO3p5w95IgSS7XBWq0NvLFUvVs12VNJJJOIKPi2Xasij1eGiVi+T4SwVZWg+gn86jKPRSiKutUOP1mYnQlm2yqG5cOpYxBsj4o1ishmQ9BKB6TBGe/obC8yEiQXUZ4ol60Wr76XTAYwWY9a5iZjWR0TVZ0jap/unQ9ibLBCF/f90huF72rNEosk2m65DG0Sj6fo26xj/tbproWHUlarv4GyY0GKUaEBJvcd4Zh+xEMXRZmXDx/o48/Np9Vyv1g4nQ1mpEEOedJsNzattcO7QcurdZKbwCc1H8M9onfmy+h5DCxFC0wHiwTjxSMZ1Z8OElpP1LWf3EVNqH1E3WEXjWjeBhRAhzQ42EYxm9xGTISx16fYdnA5jbTIz+lAfr/39EbW+M/uIZkvWubnq46oWtYP3zYSpXoySCGn1PRNGb8npI7T6ttaYUVCI+NL1LWf2EZ4ovin1twXn1eePLEXxng2AUZe1wSvkiab65PCi2ieHPFr7ngqDTuLAV8fT70Nrs1GfTGgpRkhLdeOfjqC3ZPQR8xEi/jiYIBpWx5DggvbO56KYnWr7kAwGggsxVdAENK2vQtJBggQkFAJzMezudFvyJ+3rFQWi6s6dwGIc72wUR51EdZ2FqHaK3yuhyxBdhwLqmAoQ8OkIhSAYSP4bjBki5mAQliPquwqGIBSCaDKDqbmehoaG4lbil/CWgs/nw2KxgE6ddIQCGvfS3qnXb8CWsbsr6E3g04xOgssQ9CpEtM0cAU8ia4NUYFEmtKSAohD1xQgtxfGcixJaVLC5deiNWjtREgTmY4R96n1ioRhBT1zdDawktKCLROMaOzMHAgTmo0SDMpJeRzwcI7gQI6ilFAnMRLHVag3WCP6ZKAnNJSwWg+BClKA21gcXYgTmoyknj4DWDy2dDrL7C2dZ/b7WVHre4EKUwHyEZP4r/1QYQ0YgKPldK3GF0HyEwFyEiE+9r386RDyQ/laDc5FUPxT2xJAkieo2NYDgmwyTiCkpi+zAbCjd7y9GCcxFUrukHU2WVP8AEJwOqc8IxAIxAnNhQgvpvtxg0WNrNrHu4T5CS+n+LeqXCcyFUzzHNx3O4iq+6RDmaiMtm2vxTQfUc7Vx1j8dxtaUwVUmQ+mUcDEILUdTaZoCM2ECc+FUCrHAVCiLqwTnwqlnmj/sw1xtIqalVPFPhLO4SnAurPIM0Oo7TCwUZ91jPRgdRvwTaRvxwGw4gxtGCcyFiWjjrG8qjJKA6VfVRl3TV4VfG9MivjiBuTBhzXrYN5nNVQLTIeY9UcZ+OoOtzqjWt1aHgakwpgyu4p8OpWyIY36Vt3nH1E7WNxPGUmfOOjfJDWNB9T0GZsMYLHoUhRTPApUnZCIwFyagjf3BObW+k5sYA5MhdOac+p7JqUONavomQ5idRnTaoBicC6e5YfJcbbeLbyKEnMEp/BNBvOfU+g971OePLKe/m0xhfGAm/Qz7//kkve9oJbSQfDfZzxuYCqW4Siykvhvf+RBLJwO0bK/FnOEC55/O4IZBtX0n7+OfClPdaWPrk0Mc+955/FOhFDeMxXLrUP2tyT5i6aQXKcPVJDAXTrWX9Lnab50IpeYzy+eCmF2mFD8NLoQJzEWI+jP6iIz5WHA2gm8yTOeV9UgmicBchJjmZuibCql9mqaWCsyG033Ektr39N7QSngxyuIJX9Z8JjgTVvs8IOaPEZiLpLiKbzpCzUAV3dfUc/TfJ/FPh4lofXI0oKjnzic5UCjFVSxuMzqDJkzQKjGg9YHJ57M1ZM9nFEXBczqIklAwOY0EtTltcC5CYD6a6iP802F0Gc7JwYUo80e8zLzuo2bIRnAhSjyYblsmuz61wys4H8U/o/WzizGCC9Ekbcc/HSUeTjfE4HyMgHZuyJsguBBPuR5XNRjTdagoBBbiBLU6iwTjhBbjhH0JSCQIzMeRjHqWJmD8QBRHvY7QsnqfaFQi6INQcrxcUlO7JeH3qvELMBKLxQgEIKDxMJ8frJa0i5I/AHI8Vd309PRy/PhxHnzwQX7yk59wCW9tfOpTnwKgti4tqvN5damN7uEqA/7lOGHt/Qd9avtIwr8Eugz308CiQnBJ/XfQC4ElBWJqu/PPy4S8EFqK4ptWCHhkgp44JBKEvDLBuThx7XvzzcUxB9PpOQwmHS5t00fEGycwFyOWjKXNRZBjGc8wE01985FgjMBMNMXp/DOR9JxarycwHSaopY2IBWQCM2Givjgnn5unca2D6vb0/NA/FUlZ68dC6tgZXkzOmSKYXEai3jieU36UhEJcE2kkInH80+l4QnBOjUMkY1exQBx7vRlzlZHwUhzfdJiQ1g+F5tNzW1D78uTY33F5PUarXu3rgYB2bkJLlemfzI5j+adCBKYjDN7Ziq3egm8ySDyiPqNvMkQ8kObXvslQmn8sq3GH+mEXtX0JZg8sZzkn+CZDKX4a9cXxTYWILMdT93S0W1nWOIZ/Is0N4wH13GQdBmay4yoLR73qHBWIhxX1XK0O/bNhzDVpbuidULlKVYe6uzvii6XGiOBcmnclnyGFuDqO+SZCeA77cA848DVaiGtt2j8RUkUpGXWYHDtDCxGWxvyc/OGUdm6YiD27voPTybm7WocxLca4eNKPNeP5/ZNBAtozRnwxtQ41XhOYCqcETXq9jnhITnHOqF87V+OG/slsLuufDBHyRKnusKPEE1n1HZwJY84Y670TQWJaGut4XOUU1lozkl4dO60ZdeibCKrzAyCevK7Gl7xng1icJtCarX88mMVVfFMhAhl16JsKQTzO6eemkcOJLK7lnwqluaEWW02Ol/6pMDFfPJWurXagOsWXwkvauVr78WVwK1DbbFWrjdUPdHL6JzPq82vfdmA6nLU72z8VTI3JsUCMpTP+lOOAfzqUFVfxTwRTse5YUFa/5cUI4YU44YUI8Yxn8E4GkUPqb0mEte/ek/4WfNNm7K022i+rxzcRzIq/qn2Eem5oLqePmAxT1W5m3Qd62PuPp/FNp3lkYEHrIyJxQMI/FcJgzgjCSOrcA6aJLEXxT4eJa/2sbyqcmgch6fBPhVOxy6omC5Ki9mVqvURQMsxY/FOR1DNE/TECs2Ei3hjzR7zozTr0GdzKPx0h5NG++1CCwEx67hOcjWG0hDn+QzXO6Z8JE9HWM+KRuHquV/13cCGKf8aQdd14TAFDsn3HCGjrMyGPOqaA6qLkm03voK/pMGI0S4ACiQRBr0xwQU5lt/MtyOh06dRv/iWFoBeWZhRsLgVXraSeqwNfUI8xs16W1TgHQDgKvqBEOKQ+sy+gI56Res+/DEtxQ/rcgEQyOUfU4KS5uZloklhewlsee/fuxWw2I1kaIaDy52WfLsWBlmUDZDjR+ZYgmGwrYfAukZonB5cT6DNWPP2eBJEQoCjE4+CfjbM8EyXikzBaJfy2pO2QQmA2TiyqtTMZ/DMxIl4ZFIVEXMFcpaemx4zndITATFQVbev1yLKMbzKa+jbD3ji+Sa396dW5TWYI1jcZTqUMj/pkfJMhEtq6ZWA6gt4sEVqIcfjbU3RfW5eKZUe8MXwTIeJauME/E0mNo6DO+2NhNT4X9cXVc7XUSYHZiJp2XIN3IqTO8RSFqF9GSShUtdqBOfXvGQ/sGw8R1GLtclDGOx5MrUPVDjqzUpL7xkNEA0muop2b7LPmI/jGQ+itetY+2It/JpROhSqr54aXkrHACN7xdMzIPxnC5DLScWUDkaUY3vFgKv4fWVT/LWtczD8VQmfIHGfD6A0SUW8UvVmvnqu958BkhIgt3cf5JkIpvuQ9G2C+3pz6ff7pUNZv9U6EUvw65ovjHQ8SC8bpu60FW4M5K3WYbyKYmlNHA+lzQeUfOoOUOr+qzZaqBzmUXd+huQi+DG7oHQ/iOe5nercHvVWv1Xe6Dn3jGVwlYw1LlhN4TvlTa4ZBT3hFfWciWd+SJJGQITwbQo6m60VnSo9bvvGMNdpl9d0kUu8mTNSb3WZDyTmKV3uPWpv1T4WwN1pSPM43EUqNnTG/rNWhNsbNZru3LJ70EUy+m6B63ahf4zVzEXQZY71/PEhYq99DXx+j/aoGwssZnKI6k++FkLW4SiKq4B0PEpyL4p8I4eq1Z63h+yZDKNq4JctqHSa5YVhbvxr9QA+nn5/CPxnKWnPzjgdTseLwUlStQ62+PUd96KzZ9Z2M0UW0+k612an0fMY/oWoBkvOkqD95rno8MB3Kms94x9U+onVbHaYqg1rf/oz6LtFHdF7dSHghytzhZYxWQ9a56T4igXciRESr7+B8GHN1Hc3bajn781ltPpPsk2W8E6F0H+GJ4tXar96sx+gwpP6NrLWtZN+5FMM3HkoZ3/kn1Ta7fDaEpNdhdhoIeWKpOvRNpNt3YDpCNGP+6JsMszwWZPFkEFuDSeWD2jP6ZyPEwnLKRck3HSGo8amYTx0XVI2KRGg+nrU+45tOx/5iUQnfTIyYxotd7SaM2jqrkkjgn4sT0eYochT8czKRoAwKhJYUDFUJwn4YOyBjd5NKhyorsOzXEU6OlwHwLWc8g18iatADair4Zb9EOKLFNcM6vMtpFyVvMNv/qLtnmEOHDvLkk0/yne98BxEIp3vT6/UkEgku3/oZTEkbowwkTOoLMHmyO7IN16mxlD0/13K6BvLnfZUSykqbxdTFM+wPY7GVx5M/JRan4ypVoXbuheWMw+kGnQ+m6gQbHulh7pCPk88VsKnNY5NocusAHVFPYfJbdgqRNzHNm3vAQXWHjbM/L9OCV0PL9lrMVQbO/HRGqJypxoTRVCB37hsMU42Jtq01jL/iKfoecuEectB9bRPHv38O/0T55Zq2uKnpq+LwN/Kn93uj0Xd7C4qscOqHF2f37cVM91bdbaPzqgaOPTMp9O4qRetltVS32TgiaD+++v5O5GhCuFzz9hoS8QQzry0JlasIJnA0mvGfz7HVKyFGqe620bjOxYkfTQql3HMPOahutXH2l3nsasvEm56mRENVhwnfuZU/rphQZ+unegguRDnwjfx9X8oyO+MZzDXQfUUNZ37rIeI1ZJ+XiUxLxgK23bLTjlSgXw81a+419SHaO2DfHvD7MxZ/WzQ19Vz+HC0HX/8cCwsLTE1N0dTUlPecS3hr4Ny5c3R2dmK329k2+pm85yhaENOwmOZe1fUwtE3HmQMJ5sbUv+mC+bmXKporkM8ngzOtsLlOlgVsbh2tW6oY+7WHWGYKe43/FKKbq+9pwFpj4rW/LTDeJBJ5y9pbjAQmM1ME57l+mZxKKM2b4LVbd9TiHQ/iOxssfbIGo01H+1WNTO9dIDglNi7aWy0EJgq85zcYDRtcJOIJ4RReA3e1ggLHvyeWXmPgna0snvIzt2+59MkXCFujka6rmxh7YUb4HVSCi53urfumJuRognO/EJsTVIqBd7XiOeoTShfjaLPSe1Mzp348hX88VLqABqPTSPMGF1OvLJROQ/gGiHVtjUZivjixYE4/UsJyuuPqOkILUeYEv5/2K2tZGgvgHxe3UC732VKogKMleZXJbUSJxLLHgyQKpNDtvaGWuiEHr/yf80jxAvdOls14tvZtDuSYwuTuQDrNW753a00LK3LTkCSRqLIV5F7hRlWounV1mIQCe17LTi8SbE5yr5V9RjSyzEsvfRaz2UwoVH57voTfD+rr65mfn2fbZX+CJWn3kIGEJuA2L2SPtyNbVVp/8GX137pAge9UTiAV5F2ZPuyFeZcSj9OwyoreIDG1L7jieMG0bTqFTY+0MnPAx7nf5RlPE4m8cSWDBSSDjpi2qFB2qrd8KMGhhFKT5MDWaKG63cL0rqWccsWfqWawCovbxOTO8lPDguqYY7DrCC/keVdvMAwWHQ3rXMwe9KaEJuXA1mih69pGxn4+Q3CmfI7o7nfg6ndw5rk3P+0tQMuOWiS9xMRvK48tiOBipnuz1Blp31HP+RdnL0pbqRmswtlt48zzYjHc7puaQFGEy9UMVoEePEc0xUCh7+0NSudhrTekBEm5xwrBUmegfpWTqVcWiOf5DArFpezNZuyNZmb3luBrZcalil6iVP3kixtllLHUGQjPr2xfkl5f8BnWP9hMcCHGsR8v5X+mZKqRjPsYLNC20c70wQDhcHJT98pnU6zpmJeiz3//uNOalXI3E0Ftk02zKcpAZ4wDJ4z4MjYVBZrU/7bN5f+mzh/8AmNjY5w4cYK+vr6851zCWwPRaBSz2UxnZyddAx/Ke05CE0CY59MfsMmiMLIRzh6HxTm1jen9RbhXofXGzFS6ebhXctHeYJZpHHEwc9hPPJPOa5xLyU25q6HrKhfVbRb2f7XAeFMg5mV26Yl4SowZF8KpMstfQKq3mqEq1cght18uBj00rnOzfCaQEluXC5PTQNQfL5ye6Q1EVYcVSS/hPVN+PA9UNxidUcf538wJl/NPh7PETW8W9FY9bdtqmdm3JPwOKsHFTvdWP+pE0knM7lm6KPdrvawW3/lQajNgOTA59XRc1cjEznmh70dv1VPT58Bz0p8SdL2ZMDn0yDLC96obqSYWkgu35wK8p2aoSjVxyBNXyS5fmHuVvd5YQZreJF9TncRk5HzhHb0+LzdqWG2ndYuTA9+cQo7lj4ul3Bky4mY1vSrf8pyKIpk07pWbipcc7mXI/9viTmvBPj+kca+1jSF0Ehw8lZ1SLqA5O9lmV7YFWQ7xyvP/f5qampiYEJtfCad7S2hCoXhn7cpjpgIVi7pjLOQrPuCliGkyl7EJ1t/jpH7QlCVQKgmjgXMvLOcXKBWCdn3veIi5o0UmH3kaZu+1jWz8YBd5NFtF0brDTdd19aVPLBclJjSLx/3CAiWAyZcXhAVKAFFPVFigZHKodnGmjB1U5aBhbTXNm2pxd9tKn5yBxaN+Xv/bk0ICJYCG1S6c3YIvHC0VW0ZajHJR01eVshn8zwZ3j4OqVhtVTebSJ2dATUU2XPrEHNSvduHqFX93B792VligBNBxRQMdVzQIl2vc7ErZvJeNKCsFSmXAeybIie+LCZRA/X4uRKAkCmevNZV+CSh7kW3DhzpZlWGZmSpeos9cPhdi4USg9PiTMSmMeODoD9ICpbKgXX/1zRa6t6t9n+xURUhKiWf0hPREwgV1ToTqjSv+FnEbCMbV+zz88MPlP+cl/F7w+OOPA2C0txFqsqw4Xoh0KgkIBRT8pdZakvzIpLaVzh1WBq7X+shCC1x5EFxMcOK5/AKlgkgkmD8ewHOywIRF+zbyfaur725nzQPtK/5eCn23NmFvEeMYF4KJlxaEBEoAsWCC0z+eqkgcU4lAqWakKpUSQwQdVzbQdbW4yPH4dyeEBUoANQPV1K9yCpUxOo1sfTKdRqxc2JtsOLsdOJrFeOUfCmoHqqkbEuQYqClGkqn2hO7XX02t4P384yH2ffm0kEAJoHbQQduOepx9JbheTr9idBpp3VGbShtXLoIzsZUCpTJw7lfzwgIlgPO/WbgwgZIIEgodV9akUjeVC2udkQ0Pt9N2WZ7vroBACWDhRADPqSBGYzlz9/Tx8zv92QKlMiAlFOp7JdbenB5XE1Xq916Ke/nDEoEiry5Uv3KMURrrtFQ/F0dEegkXBo/HA0CiK0/My1i4fQSW1f8VhbaApZjS7XX4BivudkO2QKkEJIOB2UOh/AKlQkgoGAwwfyzA4pk8fWtyzpPnG2ja4GL9Q+2pdI5FkREzqxm0p6zz3xCUmP8FZ8IrBUplwHPMJyxQAnX3r7DoxACNG1wYHALzRaCqw0bHVY24BGNewZkwh//1rJBACVSRUsMql1AZ0FKxJdMKC6BuuJr6kTewrbyFYGuwUDNYjbV25VyuGFq21bDpEwPCbaV2uIr6Ct7dmR9PCwuUADre1kDHlRkxr3zjaJ6/OXvtOHvtK8/Nh4xvX2ghXEN4Ps75F8QESgCBqciFCZQEoCgKlnoDnVfXCJcduquBVe9cOS+TkryrwLx84VSQhVOh0uNHxvF4GMZezBAolQFJc/Ht2whtWhg37lQzOxQSjiexmNARCEkFHzFYv/L7iDj1BAxqBpA/+7M/K/s5L+H3g3/8x38EIGBsItC8sl0lTPm/MUlSHbWSjkoFkeRe2npjfZ+BTi1NTpZAqQTiET0Tu/MLlAoikWDxTJD5I+Ixr8Fbm+m/XTze0rzFjbXWVL5A6QLhOeoT75dlmNm9WJE4JrosLlCyN1uoareWPjEHbTvqKlrTmXh5QVigBFC/1qUKfwUx+sF0GrFyYa42ULfKia1ObD3uDwV1w9XUDYvHvEbe05FKtSeCxtGaVEq+chFdljn5zKTw92OrM9F5TSNVrWK8Um/VUzNUlUp5Vi6ifrkiMdT8Ya+wQAm0PuUCBEpCUBLUDNmF51d6E6x9oJXGNXnmLinutbKP9U2FmTus1Ump8SPjuOdUNFugVAakeIIqN/RvTtd1knuV0pF44zq8gcJ1HGxYGdeL1TlQ0DEzIz6XEJrp+P3aqJ+nEeQKlKI16g82eVSye3Rn9vmK3ZLlprRCOW824WqSMVgk9MaVg6pkNKbdlHKYav2wGXenk+PPLmiHc8onG4osZzWW6BIc/lYZTjU6KU3wlQSTuz3EwnLKcj7rdxYhBC2ba9GZJMZ+ljFoJeu2CFHY/Il+ooE4+76cJ7+fJBWcXKx5sAvPaR8TvxELvqx5oIvJXQssHPaVXcZUY2L0wS7O/XZWyEHGPeyibUc98Zgs9JzjL80TmAyzOFaKmWbD0W7G4jKn7JDLxf5/Es+tCKoVnhwR79Rf/ctjFd1v+58ME/ZG2fN3pyoqL4Lqbhur7+ti+vVFTj9XvuPT2V/McraCnfzB2QjhtiiYEBLX7P1iZXVhaTBR1WJlbq+Yg8Phb59NW0ALoPvtTcRDsnDbXP+RXkJzEY5+R01xVu5uteG721g6H2Dq5cWy72Wq0jH07g6m9iwxVypwk4G61VX03dzM6Z/NMLev/HJNoy5q+qsw1ZhKu25lBDomdy1mpfiEMnap6fUc/X5Gu0yOFTpdfmckJZ3WpWmjjapGMyd+qvaZyd00qXKWPBOARAKTXYeipAVKqUtLUtau/qSLEsCi38TLh9T/NhJPOShlIlRvXOGo1L3hNg7/6oucPHly5bNcwlsKv/71rwHoWnvHimO5AqW4W+VehsUQvgU48MtsPpCwWbLdlHL5gsmI3a3HaNPlJcuSwZB2U8op2/P2arznw8wf0SI2Ofwn+c0pipLFvaZ3+5InZF8zh8xLkpTF58Zf9aSstIEV3Cwf7C0m6keqiQbiBCbTAstkYLoQZ2vc4KTzbfUc+fcJfOdCZQdz6ked1K+q5vA3zgvtTGva5MbRZEmlyigXA+9sxVxt5MBXxoTKdV/TiM6owyPA8wAOf/0Mkrmw4KAQ6lZXs3w+RGy5gItEAez8nxW4DMVkQp5Iyua5XMztW67IsannpmYa17vY9XcnhX9fJRj9YA/maiOvfk6MJ+76m+MV3S84FxauS4CXK3SIqhlyEF6MEJwpvy6n9ywSmouwPC4mDmwaddJ+eT3+6RDLp8sv27TRTeu2GnZ/6VQq5Vw5AZOaITv1q50c+/dJoedsvayGqhYrx74rVm71Ax3ozTr2/YOYC2zTOicRX5zZ/aX7h2Q/H5qPMb3Py+yhnG+oiEAJYGksytJYev6X7PMlScpfNqGofb8Ret/mxHMmxtLZnPhAku9ZVwbwjEYdJquErRb80eygVC73SrooARw6qXEtGxiCcspBKROhetMKR6WGhgYWFxdZXl7G6fzPuRD/nwHxeJxEIoHOsPK95gqUIprgIOmodPZozvl2c7abUo4ISTEZsdpimO06DKY83MJgSO/oz+ERVS0G3O0Wzr7ih/jK49kxr5zF5V8trbxXbhA1k5clEswf84KipNLZ5vKyQmje6MLiMjK1K6M/KBHzknQSq97XTjwsc/TbeUTNkq5g2d53NOGbCDGbnLOXyb96bm5i4YiXZZGd8gYYfbCb8ZcWWDgs4BTYZKH7umZ0+mmmXit/7r142s/Br59JpfoqF5ZaA+Zqk9hvA04/N83pClyUKuEJAPv/sbIY28aP9xNejHLoIriAGxwGNn6kj8lXPJx/ofwYluewj1cOHy19Yg5CC1E1fXNcbCH5xH+IcYQkDA4DVc0WFk+IxVWP/cc4SrRIH1IAvTc0I0dk9p0q8e5zeNXQ3e1ElqOc+clM3uOF0HlNPYGZMPOHBOY8Bui/uZmFo148x/MstBW4t73ZxOAdLZx9YZ6Fo+U7YtT02mlc62TmoJdwrkNQRkxKvXd6TJre48VcnRPzyuVOSd6UhF7PuZcy3nUGd0o5KGVCUVL3dHcacLSaOL87mvfZMnfyp55HVrBW6dDrIe7M5mWKTspaFwpmbGINxw3sGjeABEYSKQelTATrDSsclVpHb2Dh9Cvs3r175W+5hLcU/vVf/xWAxpGrVhzLFShF6jTuNR8mEpI4eTD7fNlhznZTyuVeZhNWl4SlWpdfoJTBvXKdkRrXWAgtxPCOa+0+J2aWjPkqciKLVy2PhVkeC4vFvBIK4zs96XTduSjAg/RWPS2ba1BkpfB4nKeso81Gzw2NnHpuKpVCvhw4Wq3UDlUx/ttZZIG1mepuG1VNViZeFlujbN5ag63eLJxppO2yOszVRuH1vJM/nERnFI95OVqtRJajqdRY5aKiNSu9moY1siQWfwrORNj9t+KuRvVrnHRc3cChr5+9KA5Mvbc242i2su9Lp4XKHfmWuNEAqCluI15x18vX/74yhyh7s4VYMK6K78qEbzLEoW+MpVKZlYvqNis9NzRz7HtxfOfL3wxY1WGlbXsdx5+ZFBIr2RrN1A1Vc+4FMcGeq8+Os93G2V8VKFeAe3Vf34C5ysix7wvG2La4ifjiLOWbKyW5icafkjEvOQoTryyqawSZWMG9ElnOAmFPgolXMuaNyXFEr087KGVCTqeOa15rxbcAgTmtTHIM0xyV8nEvvS6BxWbAWq3gk3KEmjljUiiDe40taP9tB0MgkXJQykSwQb/CUamppY3ZqfN4PB5qasoX3QuJlB588EEALFV16oNoATlLsZ1DikJ1HTjcMJnzrSp2Czpf4Q9iaVrPa//sKXrtfKgfsuNoNIHRgFLIRhtWkIH2K9woCoz/brF00EUnpRrR8qkQy6dW/o5SiuXX/uYkljw7LUsh4osT8xb5XQUmg44WtSGKiH9MNSaq2m3U+uJCIiWL04DOoENXwOGhEGb2LZGIKSyfFFwYiqpOUaLovbEVW4OF+QOHhctWguPfH78o90li8YQP3+zFSSkQnguzNOZn4bj4rvBKMPnyApOCZPZCMHh7G7YGi7BIyTdWWf2feGaCyLJ4gM9g1qfzvArYabt6qzBWGcsXKUk6olGwN1mp6YkLiZTCngjxUIJETCzYduanU5z56RTRgE7ITnt6V/azlSNQAnC0mGjd7OTYj+fSQrhEIj9pAHWiZzTRMGTHUm0AsvvMlFipwG1f/zc/sjv/jonkrv5w00plt9MRxV2lMDZVePdDqN6ILp4eF6rr+3A6nSwtLRUscwlvDfh8ajuyVavcK+mmZJkvPhlp7oPlOQjmdFkJmwVdoHC/dPhnEQgVCUoU4Ea1PTZMdgPzx6MQK8ILM7iX0Qbtl9cwtdun5l2WpKI7CTK52cRLSwWer3C/EpiMsuvzx8mXMbgY5EiCWFBW814L7DZzd9mpbi9zd3AG6tc4sdWLi5QMFj0Gq3gA5ch3z2XlBy8XwfkYaVVG+ei/tZXlM34OVxg0EEEsmGD/P1S26FUJFo4tY7DriAXffIESwNyBZSyui+cMdvhfL06a4yQG72xn6YxfLMAUo/hCbAEOML1rgcBsmOXzYou4OpOEzqTH5jSq30SZC2V1g9XU9DpU56Yym4ukk3D32LHXi+2YA4h6Y+grEBXu++p5Ip5YyVQludxq7Oc5TpslBErJwE3rlirkuML06+l5naIoBbkTCQXJaKK2xwo6XVqklC5c8JZTh+NMHY6vEIenimq/KdKQu+s2RmsjeH3gK2K9Fao3oYul79/a2sHs7CxPPvkkX/ziFwuWu4TfL5LvxupSd9AGm9R3XDTmBVgdYK+G+ZyYaMJuRuctzLtCQSN7v1MkzlKgDbu7zNT3mzn3ShhFKRbzyi5fN2JDp5eYPRBQeVWxHZwZvCw8F2d8rnxBTbLPOPSNCUxOcY4RXY4RKxYELyBUcvdWoTfrVZFSuQJxA9SvcqHEFCEhj8VhQG/WoyvirpUP/ukwR759VmgREIA4+CtwzGy/rIGawWpe+QtxkUwlmPjdxXNaBpjdt0xk+c1fJAOIh+PMHlxi8dTFiXktnvALC4YuBN3XVNBWJKmwA0CJuMvxZ8aJh0ssduXhVUarHjlmEN5FX7+6GmudKSVSKisVSBxc3XbiQXmlSKnI/SO+OFF/nHhELOY18doSM3uWkCNFni1nwQtg6XR237BCoJQqq/WLRrVfNldLNKyyM7XHn3aZKtZ3KgpYzNQOWKhuNKRFSpnPVgQHf5EgVpPfrSDpqBRqWDm3sRvjOO0JJik87wnWG9BH089usjhwuVzMz1/cPukSxHHwoKo0sroaAVJuStYS3MtdrxD0QySU/b3IDjP65cLc6+wBBSlQuG8tlLatcdiGdyqKd1KGWJFxJ/M70EPzumoWTgSIeuXyYl7a/T3HCggci8Sk5JDMni8W2YxaoKySSBBZignHMapardQOOYU3n9f0V+PucQiLlIwWPUab+Jz2zM+mMFjE+agqMhLfeD5weyuLJ/2c+elFSJkrw6lnxWKHFwL/VIjpPYvEBFIPXwgWjngJzlwkJ2ng7K/EjRQuBIN3tuM56WNMpK3IlHYaygPvWT9H//08/mmxtUpJL2Gw6FX+JSBSqm6zU7/WxcSrnnS5MtYqne023P1V+UVKxbjXcryizJVHvzuhfuvFeGWu0BuY3Zszhy/IvZLmBepxV48FSYLFUxncTZYLrzfKMpLVSuMqG/rT0bRIKYkijoDLM7A8EydWW2BtIrnRsDGXX8nU2hWCMYkQRbKnNejRZQwbTZ39TI2P8bnPfY7/8T/+R8FyKx5DKWf7k4ba2lo8Hg992x+grn0NMbtacVXnCn8UkqKwfnUIh1Ni57M5u+rjCaRQkU4mOWgXEBopcRkS+V+CyapakRUiFoDaQDKIwabHu0CBXX87Vr7FvJJg5N5Wls8FmXgpO2hT0laxGC7EcvEC8sj+oaLnpiZcvQ5e/1sxV5DqbhtVLVYmXhQjRWs/0I3Bpuf1z4vdzz3kQI4khHPZbvx4P7FAvOLdZaLY8acjeM8FOHgRdqPVjlTRd0srp386JSQAMjnAPehi5sCSkJNS57UNNG2oYc/fH83rflYIzj51UUhUGNV7SzPVHTb2/P2b72aVBQGBEiDmSHWBlopl54Wt9P451zc5YOC2VqZeX8JzrMS3l7ErrfMqFy0bXRz70QyeYyqBk/T64gt1BgOYdQXrUrKYC5KORLWWZqTIQl64xQY5w8PW1SGsZvjBUjWWhcJjh69Dva/ztDru7fz2H6v3+//gmPGHBHXhV2LHOz8LQNyqtj9H0dSOMXZcmcDvSXD4tznXS5TgXsmASiR/I1YUJb2rPxdGICyvWBBbUV67R90qO33X1XHm1wvM7PVn7dgvWBbNgWSoimM/ms5e3E8oF8Sf3lQ7bNHvTEC48PvC6KM9LJ70ca7Q7pYCaNrkxjcVEkpNZ641svaBbs6/OMf0q+Uvkhpt4OypVh0gBOqzYYOLzrc1cvjfzlaUQk8UI/d1UN1hZ2eFjkOiWP3+TvQmPfu+LLYbrarThk5XQgSUB+s/3Et4IcqRb4sJ05q2uPGeDwinPlz3WA9zh5aZ+F0ezibKj0TwRllO5730m8ydSkFQpNS0qVpzhJvNu+M/+9rpZ9v4aCuJeII9/5wOtEr6EuJ0gwGTVVd4rcBsKhgwSlQlU40Uvn642ZZKUwKgJ8Zlm2U8SxIvyg6sC4X7d3+ret3qMZnZ83s4+do36O7u5vRpsW/vEi4eduzYwcsvv0z39nup79lETONdVeOFBxFJgaGWMHXN8OrPco7FE0jB0rxLihS4fhHeZTBCLJwoGBNTr69kxbxWv6cBnVHH/q9OZ+zWL7RLP3286+21+GcizB/MFhAWxQXyqqK8rFxO9p9ontO40UX9KicHvyoWo7HUGXE0W4Udmvtua8FaYxJ26HS0WlAUCEyK8adV93USj8oc+87F2di35Y+GWDzl48T3xVMQi8LWaGHoXW2M/WpGzLnUAO5uB77z/rxpygqhbk017Vc0cOgbY0SXyl9EtDaYsTeYmT8o0FYkiZatbtx9VRx6o8XsbzSvMqA6z6UufwHcSjAmJXz5UnxVp8vmVQbouaaGheNBlrU1moLXSHIinUTtgIWeq1yc/MUii6e1scpgKH5/o1GNeRVoWorZlNrVnwvVQUlG0UsU2jcfaDFnbbADWNsWpsYh84OoDetc4XiZv1V9bucZdYx47VufQZHjl2Jeb3Ho9XrQGdnwXnVBM67p2KrOFzNFgG3DIZYX4fSh7PYqyQl0/sLcS0puqitkbCDL6ppj3ocFYnLxND0JJSUCtzWYGLq9gbFfe/CcCJYd87LVG6kdqGLylYWVDkVFONAFx7Qu5reipxL9z0VF7y3NeM8HhV22nd12IssxIachvQmG7+1i8rUFPEcEuIIeqlqsBGdCQm5WjlYr3dc1curHUxdFBNR+ZT0Noy52f74yxyFRdF7biLnayPHvifFKS40JySCeWrb/jlai/jhnfy6W6srVaye8KNZWQOXpy2cCzB0Qd4D/veJC4nEluNfFWG/M5EfObiuOJjMTLy+VHfOSJImhO+qQJIkj38+IpRsNRetGMhrRmw0Fhx7Fai7MvVxWVO5VeINdoDWXe8lc3hdhxqvntWob1tkiMa829bmrzyiEfQsc/P7/4Morr+SFF14oWCYXQow/6biQKVAC8HWsVLJLipKySD++E07vXylQArUCV1hRyepgv+GeKta/O38uxxRZ0OWpfFkmqtnp5U3Lk8iwXcwIWO76/Bj7vzEhFmyRdFR32KnpX+l+UfTDMMGWT/fTeU1d9t+VRHHCYIK6NVUU3DzwB068O69tYP1HxPPXm6uNGG3iimjvmaCwQAkgEU2QiInX9cBtbQze2SZcTo4kSu8wyoOem5qoX3eR0gmYoO/2Fqq6xHL8xkIyiViCRK49dAk0bKqj7+ZWGte4hMrFozKJeALB7o/lk4GKnJvMLiNGe+FBoBB63tHMusfEvwWgsgH/4mw+TPWLjhYT1d3iTgCbHu9l4I7Gwifk6XejUahqsVA3VCKvc+YClaJw9uUldn9pLFugBOoYkG/il7TEjuTvx6VkmrcC4tnWIdh2m46aBhkph3WEW2yqQAlWNN2jY3r2HVOfLVyrI1y7sm0nBUoAyz3quZKk/v9z5y6uM8YllI+pKXWRVq+lHEkKlAD87cXzhh/5XYKx/dl/kxJFuFciQW2Xjs33VVHXl7/PSvGjfPbvsqwKlCDvd6goSrq89q3NHwqw+x/PMnPIn81f8iwWZ3Kz2n4H7h7bSoESFJ1U9N3axOijXSuvnVCKBnOq2i3Y8uRbLhuVcLOLKFBa83AX7VfWlT4xB6Yq44pUmuVgeteisPBHL6FyhbhYXdaudjNwe5twLvpENIEcKRKcLICqThtdNxQZo95g1K2upu0K8XcXD8rEQ+I73wbvbKP/tgp4bCyBLJiqBGD61UVhgRKA0WHEUp1nslSCH40+0k3zVrfw/dRrv3kCpQuGpAMjuPttFDH+yYv2K2rY+NGu4pfPU6+1/VW4e+wruNUK5PT3+789sVKgBIXnyNp4FA0l8m9OMmvtoEA0Z/216v+kRCI1RiYRbrYRbk4KyNO/UcbI0VN6jo2pzxaqlQjVrqyDpEAJwNulp6F9PQAzM2KBy0u4uDh2TE2f6e5YlxIoAfjaVn48kqL+D+DcUTi+N+d4MuZlM6PYVvIuEglW32Bm9Y0FOF0R3qXICVWgBPljYpnzlYyY18FvznL4e9PZMa98Ir2c47UDDmr7HBmHy4uZjX6gg6ZNOfGIEjEvRadQ1WEp7Pt+IaLxtwDqR52M3NcpXM5cZcKUb2wrgfB8TFigBCBHZeKCMRqAvlta6b+tVbhcLBQnHhSPeTVtcuPuzx83fjPQekUd9haxOEYiHicellEEY4juHgeD72zH1S/IY2WFRFS8LkOzEWGBEoDJYcTsFG+bzZvdDN3TXuDabwKvusgCJYvbgL1JvF5Wv7eVzquLpMhI9tmZ/XAcavvsuLvTLkV5++lM0XZCYeF0mD1fm84SKCXL5i1v1MbCSCJvXEtJ8q4Cc6iaOpmtV0GtW0HKKR9oMRNoUcfDhCH7/ZyaMbB7TD0WqpcI1efjXem/LXerdWS0qN9Ocmy/hLceZFkmkUhgsqlcIZ5htOVrz5d2UPsfcOR1mMjR/SfbVcJhJuHI5ldSLI7NHmf0diuu1gLxHW3OIOVb7E3IqkAJCqei1vhPMn4cnI2y71/G8ZwOCsW8nB026ldV5Z/CFOiDlIRC8yYXQ3flGYNLcC+L24ip+iLPZy+iQKnnpmbq14qvj1ndJkzV4ms6y2cCFaRC0yFHZeGsE1UtVgbf2U5Vh5iLeyKuOsaLrm+a3SYa1rsoYq7yhsLRaqV+jfi7i4dl4gKuP0l0X99I740twuXkqPjaJsDSqUraClhcJkwVxGN7b22mZrjE+tibhTdboKRH5V2CbbNmwM7Iewvw0SQ0bpfdT1vVtUaBmJeiKJz4yfxKgVKybJ7yksa95Eg87+al1PpOAe41vFZm1Tp1fFzBvVrNBFrzcS89ByfMnJ5Vny3UIBFqyMO92tJ/83ZLWKpqATh+/HjeZykEoZacKGLb6eswpRyVpJzKDDisRM+mbcSkMoPUSxMxddHIZMxSN69YMNDp07vHZJmNH2xh+VyYk8+rqeIkva64o5JenyIhkYUSnUKeRaydny1c6ZJOyrvwZXKYQAFZcLGldVMtXdc0YvzF1Mq0TEUCRW1vq6NtWz2HvjUmlH6q67pGGte72fP3x4n6y+9oR97XgavTwUv/XSyNmr3OjLmCwf/Iv1WWMqTv9hZMVr1wypFKHYbGfjGNXMGAVVFOWqBxfQ3VnRHhFGWVwF5jonGturAj0sa8Z4K89r/FOi6A2V3q9714TCzgNvGbBaGUh0nUr3PSurWOvf98SkjQc/jrlQlA7LVmzE7xb2H9R3oxV5vY+b/E7NzXPtSFwa7n9b8t0dZySMH6D/eg00vsLlUuByPv6SARVdj1eYFy2r0L8pJCgaYovPy5U6V3o+UiohCNajlnS6UpyVw8MMGm+xtYOBnizG9Ue96UQCkJOTttXKLaxvI0uBsSxMr5fHSkHJWW/SaWe7PbSrhWl3JVyhQoZWJ0dJS9e1/nqaee4pvf/GYZN72Ei43/+l//KwC26qa8x/3t5gKOSkYWE0YMGRbXuYuv+RDyxvHOxlmeiqkLuxluSiuClAZDihx3Xu6gttfG6/+UYTGsk4rvoNfpIJEg5qOkiCf33ieenSFr703ufQqkAJEkCalw0qACN08weHsL6CR2/Y3Yjp/1H+4lHopz4J/HhMuF5iMcFdxJvu2pIfzTIQ7+i+AOe7cZa724Kuq1vxIP9hptOobu7mD85XkWj5VvZxicj7Fb0C0TYOGYH0k3zfJJMa4wf9ArtkijoWmtk/q1bsZ+OXNRhGat2+uwuE2M/1YsjYFo20ri9PNiud2TqDTl3sC7WgkvxjgnaB//2l/maZtlcACLy4StVmzh0WiT2PTxQeYOeTn5w/Itum11Rlbd18n5F+eZ3rVU9NzMhTRnj42B21oY+8UMcwfK32HZstFF55V1HHt2Cs+RAqkD8kBJ/p8C7m6FuNWhb2rOFLkBeEUp+i5iGVOWvJuNMpHBvXquqcLZYmLP1xfS5cw5C4OynLWgkKiy4pkuX0eq6KWUo9Ksx8hyTzb3CtVKKVelTIFSJurr6zGZLl6KxksQx/Ky2ggNBsOKJu9rM6YclaScdhOsthCfSwtwy415ec7LKm0xG7PdlIrwLkVOsObdbpYnopx7SfueM2Ni+ZAR84r5Su2yX3l89xfOZhwuUj6TkyXjrQIO40pCwdltY/idbZz5+Qwze5ZzTyhYtmakiu63N3Hs++fxj2vvQpJKfuT1o07aLqvnyDfGCAu4znS+XXVo3v35o0IuN1a3GVtd8c0G+XDu17Oc+7V4CoqW7bWYXUbO/Fgs5ciZ5ysTVJ75aWUpR45/rzJHo7bL6wnORS5KWjSDBdp31GM06YScosILlbmi+875OfX8JEuCDpaewz4xxyYN1V02WrbUcvKZCeLhEn1Yxlg+9otZxgS5GoCl1oStVvxbGLyrheo2G6/9jdjcoPfmRmz1Zg5+TSz+O/SuFgw2Awe/KhbbG3pnM0oC9v1z+fdL8qqCVKkIr3rt78+vOK4oSvE4WFQhHteO59uIlAljNu9Ze4eD+bEokwe0sSmXd8XlrF39cacFr09mcb54dvkkEgYptas/EDOw3J4dkwvVS1jnkrwr/29cs2oNu199gT//8z/nK1/5SumbXsJFxzPPPAOAtSb/RhhfuyHtqJQznC9brZgXMrhXsbU/DXIUFs7FCS7KK9YbcxVBkkGfWoOs7zdSP+zi8LMLaXFNBrfKB0mvR5Fl1d1GMOY1tXuZqdeWChfIiHll8SxJQjTkhaLQdW0jRpte2D1x4M5WEnGFk8+KxQn672gl6osJp4kbfaQH/3SIUz8U4xq2ejPxoPgmrYrW//TQc30zs/uX8E+Uvz4mRxNiae41BGcinHpuEt85sRRewZkIRwWdrgFcPXbaL69n6YQvZRLyZqJh1EV1u03YMajS9MPnXphDZxD9iOD0c5Xx39bttcTCMrN7loTKHfzqWEX3s9dbCM+Li6I2fqyf6b2LQvWqN+kYvqeDqd0eFgTcwcxuI4N3tnH+t7Msnig/dlXdZqX/lhZOPjcl5P6uoOo39IXS2eWsNya51bkXPJx7wSMc84oHM7iZsTj3kjK4V8OImZouM0ef86ZF5bkb0HO5l8vKwrxctsFnJvdaCulZ6svhXg1SylUpU6CUiaamJuE1WHG5HWS5KOUiV6AEsHlTlIUFPed3ywWDNYrVrKYfyRjcT/8ug7VqxKHgjmadPpUPVoklVuSvl/Q6lFjhwcjRamLonS2c/c38ynyCSRQKrhRYDEsfXilUinqivPpXGYtdZe4Gmzvqw2jXs3BgKftACbIT88WJBeNEvGKDh5JQUGRFSKAEar5QfRHb/EIQFQtdKKo7bBjM4p+ByaEjGk0Iu8/M7F4SvheApcFEIhgVSk8GsOcfTpKogIRVgsB0lL1fPkGgAvWvvcmklhMoGvUnGP91ZYTDVGMiKvic1W02rLVmLC4TYUHLx0pwoEKy4TnmqyjQE4/K6Mwlvtk86qDIchS9vryBJ3OR7fzv5omJ7JTU7r3rbwsE9wTTkGSXLfy7Rx9uJeaPc+S7edpasl835YjJopCIK8RjauopyVrAXUwTKiXTvPmX4OBvMp5ZllH0+rSD0ornBhKw3KtwvdPL+bCRI5H0vTKFSrlY7tHDnOq+8eqrr+a//iX83vHLX/4SgNq+zVkuSqXQ0RmjtgH2vGbAsBgvKFBKcS/teHAejv0sY2KrCZUKLkYZDBCJkIgqyJE899BJRUXiQ3c2YLDoOPiNPJM57btUitlogxA3O/FM9n3KtcIe+9VM6cXyPIgsRYkFxMdgOZaoSNDsOebFOykWmIACgo43CeYaM/ZGK/YGi5BICcDoNBJbFlP+xJZjTO30CJVRbwY2p5HgvNj9Tjw/xcTL8xfNCevwv46hs4pvYTPaAKN4fXqOVrgAaASjUUcsKNaune12LM4YF+z3V+YE+ZXPiX8LsaDC8lgAz0mxxcBYMKbukiwxh8vd6R/1xogG4uU7rGr8ae6IF0kn4TtbfpAHncT4i4uMv5g/xWJZqUjyQVEKpl9rWGOnbZuLA9+eIJ6vuSX7dWP2Qlg8oqT6TUVOINkKiM00oVIyzdvZg9mHpUQCRadLOSituL0mVGpZLbPOFOGFpWz3jkyhUi68XXoSLySYmxNLkXkJFxeyLIOky3JRykWuQAlg7VAEz7Ke2UNFYl42s5r6LYOXTR5O84SUUKkI71I0AbkcTRAP55yn0xdOyQsYHDByZxPndy7hOZ7DF5LfayHepYnLyxYoAcRh3z9m9OBlpncLTAQ584tZFnKD0iXKx4NxIstR4v6cOighVFI015l4WIyzLZ32Y7IbhARKULnYqFI4u+xYXOLiSINFRzyeKJjSqRBEU8Km7udQhXii9bn/K6dJlBLUvEGIh2HvF08Qzm1jZcDiMqjlBIrGwwinmEnC4DCs/BZKwFZnpqrNhrHaSDxcJPXLG5Q698zzM5whRwxXhoPSwjE/Ua/4O0hEFeQKHPHDizGMybmuQJq3c79dICGXf78krzr0zQKL/cV4lSQVPK4oClIRAdLgzW7ikQSnXljJEZN9vpRHYB2PKqoDh5xAKcS7tMUyNc0bxCN6jh9KH5bkBIpel3JQykVysWy5R+FKk58J2cApOX2vTKFSLlQ3pQF49QX27duX//ku4feOH/7whwBU9Q5nuSitQM5rrnPFaaiROYwR80KsoEAp4TCj80dSKd6iQRjfkzEHTgqVCvAfyaBHiUaR4wbikcRK9x+9HoqsN7btcGKqMnD6+Twx5VIxr1Ib/yTdirJTry0y9VrG3K3M9G7jv5srvSaQB2FPFFlAjJ6EHEtU5NY4d2CJ8KJ4sKVSQUclMFr1OLvs+CaDQiIloLBIogjkaKIyobYeTFa9sNBoZu8ii8e8F0WgBHD25zPoTOK8Q28CnUlPTPA5A1OCRDR1Q9DrdcKxXGePg1ggLixSqhT7/6myDYRzB5bwisSS0Nyl4gkUAS4EEA8nCC9G04L5MtO8BaZCnPnFLP5pgfSFko7FE0EWTxSYvxRYb0yJwCuIeVW1mGjb5uT0LxaJ5usiCnAvOaoQj2h1GY+jVBVwT0tyL5ca85qdzH6OFPdqLc69HH0yg4YIr+QMzplCpVx4uyUSko7FebGYl6SUmZg3Go1iNptBr2fjA5/Nf5IC1edyG0GUHdvBswjH96uk2LCUp/a1AV3Sgi5GE7RtNDNxJEJ0iZRdlVIoX2yGk1LeR5MTFMr3CuDsMNB/SzNjv55nbn/5IqXW7S5at9dw9HvjeM/k78TyLoKZSAsyLtSu+g88xdsbgY0f70NvMvDq58TcYyrF1ieHSMQTvPZXYg5AI/d1EF6KcfpHYura7U8PE16OsufvKnNUEsWOPx3Bey5QsWOUCKq7bax5XzdTr3uE6sXeZKLv1jbGfjXD8snyB8m2t9XReUUjJ5+bqFg0JoK+21qoX+Ni9xdOCgujhHChgaLkgF+oP7oAu+03OiesyUG2YK+M6697pAMkiX3/kGeps4hIaf0jbUS8Mke+V2RwLZI3VjKbi95DcaiEQTGqhKF1EOJRmNE4Y7hZXfxS8qj4F0ZUcZQhFOVWd5ipiJ5dwWyCsjQaw34yvyOX1+Zl4v/+L9hsNgIBMaJ5CRcHTqcTr9dLx3/7nzQdLRxYzHVTGhiM4a6DV140phbKMl2VUkhyL41b1fUb0elh9qjGtZLcq9CCV/LvhYIqiQI28RqGbqvDYNdx8Ot5+v5karo85UcfakeOJDj49SJuMHn6MqMNYsHk4XKtMy6Ao/0n5mf2Vgtr7u9m/MU5YRefStC0xU3Pdc0cf3ac+f3lOxy5+uy0ba/j2DOTQoKc3pubaVzv5rW/PSEs5KkEI/d1UN1hZ+efH3nT7wWw7rEeTFVGXhUU5XTd0IjRoufED8R2Sm76xAAkFHb9P2JuZJVi8ycHiPhiqoPTG7SQlhdvcoq3NzUVSSlk3jtJIzI+hVICJVefjb4bGzj983k8x/MEfJLlc/hR/Ro77VudHPvBPEFPkQVIg6Hgb5SSO/kLiEsVe5p7WR1Q3wHnMsx/I40ql8pNNQLgGVYrY4s+QINJ5vkFC7k59BbXylQfzz9mH/r8UyixWOlUWZfwe4MkSeisFkbv++/5jyuk3JTSiLNlNM78oo6xk+q7Ny6tjA1JyRQhSadKA7T0G1g4HyfiBym5Ia/QxrwMJ6W8SMhFF7MsVRL9t9Qy/srySpFSMlaWp226eix0X13HyR/P4j1fYrElj5MSccoWKBU5ofjxUvhP8M2NvLcDs8vEnr8Xd5asBOse6wUJ9v4fsRhU93WNRMMyE4L8cOPH+4ksRTn41Tc/BgWw5Y+GWDzl48T3K3NwEoHBYWDTR/uZ2LnA+RfKF6gZHAZ6b2hi4pX5tDtYGXAPOBi8s52TP5qoyBm0KPKM/82b3bRf2cCBr50hdKEb+t6AuFOh/uSNjktl4QKvncurDBayBXulNgHr9QzeWofBouPQd1a2sdSGmzy/Yei2GqKhBKfziJRS5Q2GwjEtszH1DPmQqFJFRQmTeryuUSahgGdW/XeoST0uG1fW4eKgek9DCG40+5iQDRyIZ28CDKwOYzmeXyQVcEcZ//RnaGxsZHpazE3uEi4OLr/8cl588UXa/uefUTdWOLVl1bnseUFrfYymOpndRyzoNVFAXu4VUTmVLqgeq2qQ0Bl1LE/krCMWWG9UkvyoUExMLs69WjY7sLqNnHwuT0y5SMyr9+YGlLjC6eeLjBl5nJT0JtUtKt95ha/zh8+R3gzorXpGH+rh/IuzFQuGRVDVrqZtO/mjCZYE1rmsdSaaNtQw8dKckHCofq2TzqsbOfDVMSKLb/5m/PYr62kYdbH78xcnJtR3awv2Ziv7viTGY+vXOjFVG4WdmIbvbUdv0l80QdzIfZ3Eg3GOXwQee0F4o9Yr8x56g6+tJ1uIWuL61joTvTc2cv5FD95zeXh6AV7kaDLRcZmbM79ZIrxcpH82GJAK8T8tY4tSwIkpxb3MBkwmGVctLMyCLGupSJu143m4l2dE/dtQOEqHLsYv41Zyc+iFVocwHc9vynDmy39BbHKKeDyOvlRmGg1ls//nnnsOyAj65UIbz7wduQosEy+9bEoJlEohaQ/q7jbQ0G+mrsNUOEiTRIattckOjsbsZ0wFcQq9VFlm+UyEXZ8fKyxQgrwNMx5NkIgqBW2hC02ORu5s47I/HVLFSgJovaKWNQ9m5K8vk0g4Wk1UdRVw8ygCk0OHySE+SWzeXkPrlbXC5TZ8rI8tnx4ULrc8FsR37s23d05i+nUPU6+L78yvarXh7Cy2NSA/ZvYsMrlTPEXZhsf76LtNPI9qJTA51EUh0ffunQgye3CJ2f1i9WmpMWOrt+BoEUvLsXjUy/yhZRYr3OEniuUxP4GZEETFCF/PO5rZ/vQIphqxTsLRZqbv1mahMkg6MIGl3pR/8C9CCEwOqFstnsu27cpaVr8vv51vsXtv+HAX6x/rFb5fPCjnt3YtEezZ889THP7ubOHFpMy8sRkwOcBal/GHEqm2kosWrf06WgfUsSYpUCqFuNXEs4vVeQVKAIG+/JNtk8OBwWDAZhPvky7h4iAUUheCjMb8QrMk/O3Z3Ov4MWOWQKkUFM0NrHW1idY1xXMZp5ARpLHVGVVnlkxo/KfgQnYiwdH/mOXgvxYPFuYrHwvIRIvtDC4QhFn/oT7WPNhR9H75MPKedpo2uoXLuYccGG3iHMpca8xd8y4NI3Rd34itUaygrdnEtqeGab1cbOyO+mV84wF8ExdnLPWe9jOzZ5Hls2I70RzNVhwtNkwOMbehmf1LTL3uERYotV5ey4aP9gmVuRD03tzM2ke6hctN7Fxg8hVxXunstOPsLLBbpwimXltg8rUKHK0qxPLZAEunA8IBkU1P9LPmoS7h+7Vsd1O3RpwLGW2s7Ds1FAu4ONrMWOvEUwKP3NtCw2gZz5lxb7PbyPYneul+W335N9LpiPpk4mE5/1y4yHuZOxBgzz9OqS5mhQL+STeAnL7eVqfL7jtLpHyQYjI1bdDSq8Op/bykQKkUXpXtPL9QRT6BEoB3IP8Y5a5V+9qkU+IlvLWQXMCUCnDjpIOSry33+zPw6j5LSqBUElrMq8qtci9XiyEtUCqEzMUxA1hcOfwiGRMr1HfIMuGlOAe+PrNSoJSJPN9nQoZYUCYWiAtZt7dtr2Hrx3sxOYvXS24/UTNcRf8dzZknlHU/S60BW2Oe2ECJmJnBoroGicI94KBhnUu43NC97az/kPh8dul0gCVB174LweQrC0y9WgFX6Lbj6hLnChMvzTP5ijhXGHlvBx1vaxAuVynWfqCbxg0uoTJxf5zxnfMsHBUTDBlteqo77TiaxGK5vskwk68s4B9/g3l6ge/fNxVi6bRf2DGzcYOLzZ8cwJLkNGUKlCw1BlovqxHKDSHpJDBQsj/KB4NFTYUniroRO/03N5Z+tpx6HXpXM6MPdRY4Ow+0BaCoX867QF3KEfjoj5Y4/UtvEScZrc5yYloGC1gyNSUlHJB1UfV4Zw90dKl/SwqUSiFuhecjVXkFSgDhgfwiPoPBgNFoJFEiHncJvz9MTKgL7HpH8finryP7252YM2YJlEohobl9NQ2aaFut9Tkl2qyS0W5Mdgl9bnheLs69FFlmYucyJ39cXOyQN+bll4kFijxfAW606n1dDNyRsw5URt/acVU9NQPi81l7swW9SZxDGR363DXvstCw3iXcj+utetZ/uI/6tU6xm8kynhNegrMCriwXgOB8lIkX5wlOizn5mF1GXL0ODHaxelk+G+D87+aIeMXWq1x9dobubqvo/VWChvUu+u9oFS43s2+RyZfFN1RWd9pwd5e3HpOJ6d2LTL4mzpsrxdJJH0tj4hvOR97TQf9t4vXp6rNT3S3IhSQJvUn9nygsNSZMTvGYV8dVdbh6y3jOzH5RDxs/0k3LpvL7CEmvJxaGWCCe3ymqiDjHPx3lyA8WCC8WEbkm07nl8BeTI/vSUhEnPwBdJI69Gjp7wa518UmBUikctZj4ZdxBPoESQHQgf0zB1aAG137xi1+UdR8QoPRf//rX1QIuN541CjUHMhpXTl16O8wpRyVdHrIQd1nTbkp5KlIxm5g9FiW45MU/l5O2TVtISzkqJbKPt+1w0zBk5+C3Z/HPRFfuMtNsqlNIEgrN2UiSpOI7G3OsFmd2LTGzaynvqcV2g80cWFKDJfnSoxRBTY8DR7NGygWUzv13tGNxmnj5f4jt0F79UA9mh5GXBXd2t22rQ2fSMfEbsc7ZNxHCWEHaipPPiO3oTmLzJweIhWTh3WFnf16ZPfcrn63M6en0jyvb8WEwGyqqz0qhM+owWQQn/VEq2r22cNjHy4cPlz4xB4HpKMe+V8R9owDq11bT945WTv54krm95Svo5/Z7mRNwfUjCNxGkus0G0RI21jmTmbZt9dQOVXPuxYXynJu0QXnkrjbcPQ5e/O9Hs9MklZjMDL6zg6o2K/MH87sxFFpkc/fYsdeLp6Wb2beM2aW1MQHF9MFvqG0sa/JXxm40SDs3pawck8hVK2fknF39rgZ0BondX1tKH08k0na+jpWBRikmc/hliPpWCpQkLR9s0lEp6aKURDJWY9CG1qRAKYlAX7ajUrhBfb9OpxNroXR0l/B7RzxjQWphjUTtgcLjvr/dnHJUyidOijutaTelfNzLZOTwTwIYLawQKCUDkylHpZxdZMN31hEPKez7ujZW5fCfFdxK42EpZ6PMNBx5Aoi55Q9/q8iYUWQha/bAMsG5SPkuSgCSjup2G4l4gund+VMeFcLwXR3MH1nm+PfKH+OMTiMbP9TP7L5FTv5QwF2wwULL5lqUhMLZmfI5ihxVCMyECAgGQmLLMQ59XTwJV+MGN53XNHDsu+eF0oEE52OcqiDH+/hv5ytyevKPh/CPi6fOM1j06M0Xj3cZbHqMFvH7VboTcN+XTldUbuLFyoI1ax/pRmfQCfP049+bqGjHlm8iSHipDGFaDjdq31FH2Btj/oDY4vHGjw4QnI+w/5+zXSNK7QhbdW8H/ukQhwq5yRXgblWtVuKhBLP7yn/OyGKM+aM+Fo6rZcpN8Raci7H3n/L0fbnlk32+Vi51fSOqc1NCyeZ7uelKlARIOlwdRgZvdDO+N8jkvgz+q6XWhbSDUibmjsosTkNwaaVASadxr6SjUtJFKYm4Tf27IaielxQoJeEdiGc5KoUaFLq7u/FMT/O1r32Na665ZsXzXMLvF//xH/8BgKG2hsU1Cu6MmFduijdfmzHlqJQv5hVzWVI7+lMOSpkwm/DNRTnwsyDyUs5xg9avp5yVsnlX04iV9s0OjvxoEf90fEVMbEV6kGTMywDEc3hVvoXbnPRo3jNBDmaM2UVjZsnvNaGwdCqI0aQjulR4TpqPkzk7bLi67ckTCpbNRdc1TVS127LdrsuImfXf2YGjycJr/1vMJbtlay3WGjOze5eEynnPBYl6xV0aK9m0BrD6/V3IsQRHviHG20R/VxJ7K+QK07vEeHYSRpsefQWbAiqFwaJHXwH3Gn9BPNVnaDbCa38lnoo27o9XlFLQ0Wph8K52xn4+w8LhnBhWkfHfPx7m+Lh4TC84H8E3HlRTVwo4KNUMVtO+o46FY17C85ozcAZXyHVUSv674/I6mje62f13J4TSCrZf2UDDGiev/FUBPlqAt1W32XCKLugBswe8WGs0zlFmzArgzK9WfkMrBEq5cT7tuMEM8QiptLip8rm8KyOmNXCtA6NFYu+zGZWZUT65iz8TuqjMoX2qe3iuQEmvpeJLOiolXZSSyI15JQVKSYQHsh2VIvXqb62pqcFQJN3dJfx+sbi4mOL/i6sTuA8WbvO+DkPKUSmfOCmLe0VWcq+EzcLpV8Kq2ChXoKStNyYdlXIXhvuuryUeS3D8h5qYNrd8DvdKpmFLORsJxrzO/bpIDCOHG2X2eVO7FokFBNNhShLuwSokg4TnuNh8duhd7cztX+Kc4Bg3+oFepnYtCMUJ9FY9HVc2oNfrmNolIGqW1fTsoQUxMY4chbGfzZQ+MQeOViu9NzVz6rlJ/JPlDzZySBb7XRqWTgbYc1LcZTO6HGdGMMYJYDDpMdoM6PUldX5vCIwWPUZBARaA71wIH+IxvVPPiscdgcpS7gE9Nzdjsus5+h2xtcpKhP0Ay+cC6TRqAui4ooGIL4a33Dhucn3s/i6C8xFhN/ahd7Xjmwxx6kf518QLrjf2OVAUdR5aNmRVZLY0prWXEvE4SeM5ckjm+DN5+HYJ96AUt0o6N5WIeSmJBJJOh8kBq26rYXx/mLmT6Y9PisVTjkr5uNfytML+gEQktFKgpNO4V9JRKemilETcph43BNW/JwVKSUQHsh2VIvUybW1tzO3dz/PPP8/1119frCrSP7mss4CTWmdnbFJ3AaSESgXm/EmhUs9gnKYW2L8b/N7yOxTFbCqdtzM3GAPMHgmBJOUXKCWRFCpl9KSr7mqhqsXCzr8sY0KdJB5KApPbgMmqwz+ZPdCVWgBbOOxn4ZC4cOHAv2hBbEErxnO/msXaIC4ImHxlAVuteLl9/zKGqYJ170qtlpu2uJHDsrAYJLIcEydvQN/tLYQWI8IirEox9O42lseDTL0sNgBdrPR3oIo4KhJhmWDk3R1M7fawePTNd8My1Zjou76Rcy/O4j9fvho+GpSJ+GPF3TsK3K95vYupV+aJ+ssnAXN7l4XEUEmcfn6c8Z1mIYESwNSeJeJhcXZ59rdzuHvyK8yLLbId+EoZQdI8gaqJlyoLXpocYK4x4TsXLZ4zNgej72/GUm3glc+fBzKESgXsFJNCpalDofy3yAjq5ENgWibUIbi7A3iH2YtegudC1SsESqlra0KlpEAJwOPxsLBw8ZT+lyCG3AWgcoVKW66QicZg706xAHo0biQ2W2ISncfmemK3n3hSdF3IXj8ZdMkIyKz/QAf+mQiHv1164p8ur+BoMxHxRFOp21IosZA19rM5MYGShp1/caKiNCNnX5hlacy/YrGvGGLBGNOvLzJ3WKz/D0yE2ftPJwnOiwVeIgsxDnxlTKgMqGKqhtXVzO5ZFNo1HfFGiXhjxIJii3NVnTaa17s489PJle/9TYB70EH9aifHvyvGS8/+fLZiIXslOPbv4qJrUHmzvc5SkfCrErRsr8Vo1wvXTXgxir7E7u98qFlVjU4vMX9AbF5w7N8rm4cc+NoYsQo2WE7u9hCcEy947rfzBGYKlCuyyPfKX5Yh9srD3U78sLI2bWs0EgvGiCVj3WUKx7Z8rI2Fk0FOPa/Ne5JBm0ILTEqCwEyM6SMhls7l6QMzhEq5iMUgNicTaSucXiIfGoixwxbiaNTEScwrBEpJJIVKoQZ1DDgTVp9vdvbi9ROXUD4OHToEgLFe3f2XFCrlCpSSSAqVmpridHcnOHhQh88nEEQ3m4jMl4h55eFdy+MR9EYd/vk8AqUkkjGrjJhX52Uu6kfs7PpCGX1dkrskEhgc6uan8ILYPNg/GcZfxHGxECc785MZzvxkRph7jb80jy1zE0yZ3Gt6twdrBTGvY9+fwCBejMmXKpt7uQccJGSF5VNiu6bDCxHkfDt8S6BlRy3xoFyxWEkUHW9rILgQFh679/3DmTfpifLj9b+rLN1e901NLBzx4h1784mswQLtVzYye3CZgMACaTwiE16MEvXn8PQS47fBIlE77GThhJ+4QLzMdy7E0XPjwineJl/z4DmRX6CUi8xjC8d8JBJKwaxNBS7A9N6lwnOsIvc+/dM5Tv+0+MJ9PvG355i4MwJornAOQ7peyuTQ/dc7qW4xs/srGjfRhEYrBEpJaDGtySPR/A4qOUKnXESXINAh7rZ2NX6sKPyUqhUCpSSSQqWkQAnUmFdc6KVfwsVEJBLJEpGVK1RaMxIlLsORY2LZB2IGC/Jy8W8sV6AEMLkvkKZchZQZGvdSMtcb72nBPx3h9M9Kj/2ZMS+zS088KAunbpvbXyCOlLkZOQ/2fflMRWnfzvx8mmCheWkRjP9unuXzYmtAckhm/1dOI4fEvmc5mvh/2fvvKEmO69wX/WVmVZb3rqu9754ebzCDgeUAAw+CcPTeSJT3R9K5ete8d5fOuXKURJGUKIkSJZGiFY3oRG/ggfEe46envfddXfb9kWWyqrNM1AAD8Nz51gI5XZmRkRkZGfHF3l/szcXviNs9FFXG0+lg/soKqdXa/SWptRQrU2ukaozylYPFpxLsdzF2ZE6ovnphC6v4e90MPzdVnOKqCqZOLTBVKmR+FTH83DTDz4lzZ3eHHUfYymidYh5ReLsdqC4zE4fnhMqtzcZJrYmL352NVmSTzMKgGK+sdwPhma8Mrh+PykHHbUZemGZtQVQ4KXPlJxOsldnUUYn3Hf3U5ZquX4rhF+ZqvLliqC6FVDJFKrekrzG92bb3hJl6eYWhF7LjYBWbVyadJr4qM3Rsjfkxg6iZOqHSOqQgMZdhpV0sQpgjlWIfq5xAZQjLOoFSDjmh0lpIu69Rv2ZbW1mpvW/WvBKYndUcw2qkIf/b9Jbyk5e6nCYWMLMwB8uLsFSa8l41kVbLG3BaN0tsf6u4o3ZpNMHFH4o79idOLjAjuNgH6H+8kU3vbhcu13SLj84HGqqf+Aph+tQiQ5VU2GUw9uJsXVF84jNxlobF85mGtrgJDIiHl2x7Q4T2u8Xb89g/XeL0F64KlwsNeIhsFU/9svt3+9j8vnbhcr4eN5Et4vX9PEB1qvg6XYQ2eIXKOZtUbv7DDbTsE0g/AbgaLPh63AT6xMaX+fPLHPqb88wL5AUGCG1w0XxLCP+AWH2qX6Xp1kD5lJCSZGgsii/B0lANC4SSCXn2zBJnvzpafLwGY9HCpVWu/HC94eUVzwubha/PTv8T4t96/xPNbHxLi/ZHNYGSrm3HTywyda7knVd7NkVh7FickSPGY2DGUj5cZffNMrvLGFwA5rrMzHWtLz+eUphIKUj3TuOLlF8sDLyxeCdmxciBN/C6QKnhcmpL+f5nXkmzFjAzOw0zBvbQjGoiU4F7bb5HpfVmsRSaAGNHV5g6ExM2ME+eXmLiRNZ7nU5XTYuYw6a3t9D1gHgq0+6HG3C1Xr/IYcPPTLM8LGiwScDF74yyeEXcgbEyGtcijwjAbJdp2OUrm3KqHEIDbtreEMElmM5j7vwyR//+IivjYjfq73ES3OjF7BEzQrbuC7H79/owC4YJDva7CfZ7xNPu/ZwgvMVLcJP4Omvju1rZ+Wvi6ewi272E6+DNZ/9jmNNfFOTpkkTn3RHa76qeXqMUvj4Hvr4KfboMN1qZSNSUGrCUGw3+aKoo+pIkSzXxp9EXZo2dnIJj8DqUqbt1X4DwFlfNUZRy2Py2Rrruyb6HKmUlScpff+rsMtNnS7hXFWNPMikz+OIaK2W07GUNNmbYeq9Cq78895rvNDPfWTwYLAHTKZmZpELi3nmcDeWN7C1vKjjQ00Ft3TI+Lr4r9wZefeRSjpgC/vxvMxVsXuaVDDG/iaUlmJmRWC21eVlNpCtEGQ42pxi43y6UsgggNg8jR1ahmr23xBk1c2GFiRPim4La7wiz+R01pOkugb/PQePe62fDWBqOMZHb5COwxpk9u8RIHc6P5FJSWLgFWtqoelJHtd8VoeNu8bnt/DdHuVSHTS+6w09ku1e43NYPddD7uHgaifA2L+HN4vX9XMAEkS0+Aj1itk6T08TO3+ghepPYd2Rymols9+MR5OmxqQQn/+0Ki4NikQccTXY67mnA3y1Wn8kqEdzkwSS6/EwiLFACWB5dY+hn04Wxs5rNK3tsdTLJ+GEDG8s12rzK8SpHxEzrvmBtdisdWu/ws/nNDRWvnYcs5e9/8uwq46eKeWXV8orM7FCGqYvGnu2yvAto6oadLeXXugvtMgvt6599FBMjmHDeNU4kXN7vs+Oh4oj7VTNm3MBrimQyuS7S1ezm8nYh83KGWEBhelZmdnZ9P0lbTKQt5ftf55YM4f4Ki/wy393cYIKFYfEoiGNHF5h6WZx7DbylmebbgsU/1iDebtzjxxYWs5lcC2ZOLxKrZZN0CcYOzrA6IV4uPp+sXSiRhaKCt8uBIphpxNFkpfO+KM4a01LmsDoV59zXhlkV3EDojFqJ7g5gcYstDPy9LrZ8sAPVI/Z8nhYn0Z1+FPX6RQK/ngj2e2jY7q9+Ygla94UZeEercLnQJi/RneL1DT83zZUfim9gar4tRNs+8XTH9ogFZ6O43T8+nyqI5ypxhJJjkycWxIRUWe41e26ZlfH139Cr5W8MbXRpaeKqRVEqeb6BJxtoudmfO1i1bK782LFl5q6slZ5QsTwoTJ5PEi83pVTgXr07oFEtPybNdcnMdRW3TQwYRmEOhcj+Idobyq+Xb3rgRP7fmVAAgMnJ2iPs1WzJXFrSnl7taNcqy7bZ9Nb1RE9dLkyag7KDowdMkCg0kqzbPZ12rP8opHgCszWbr9CgcfOp3mRF+0+Hph02eh/watcpt2sg5wTTGTsnjy1x9mvj1YlrOlOIEiDJDD83w9ghg5CqVYzMke0+Ilu9lesywNYPdXDTb/UIpzDoejhK/5PihqWOeyN1iak2v6+dze9pFy7XeX9jXY7H018a5MxXxcVG7g47jgZx8vbc/zzNob+pI5TiUpLVWXES9tz/OMWRT4qlugDY+78N1CWKqgsq3PJHA2x4i1g/i8/Eeeb/PsnZr4pFA4ivahEnREOlT59a5Jn/+6R4pAMVfP3O8qKhMhh+aZqXv3aVsSNiEYCi272039VAqF9sZ3dom4ddv9mDs0nsRt0dNgbe3owqmHY3uMnFlg+0FbVLLYSh84Ewe36v27g9KxiKotu8+HPGPYGIKMMvzDJ2eC4fkrEs9GNrOs3YwaXCTn5080q5nTPZxXW4X6Hv3mLjc8ZmIWPLbrc1SLeVCDgwu8yYTWAyiPA221doLKWExxxIOjh4c8HBZiRUummDFilwx55z+d+i0Sgul7gw9AauH2SdkSTHvYyESmZdNJvj03YGLxT3dWW1MFZmjLhXIonJJmF2KMbcK7f70GRap+zvud+LvyvbP8t8Y3l+pXueSz+YYerUStUYwZlMRldeYuTFOUaMwhJXMDSbPSZCG91EBPPQmz1mdv9OtyYaFSw38M4WLcS/gFHU7DHT+3gT9qjYGO5strH9V7rwdIo5vfz9Hjrvi+Lr9wqVmzw6zekvDzJzTiwcuNmO8D2CFqHo2T8+pQmxBLA2nyS+KB656dzXR3j2j08Ji756n2zi5v++QazQNWDju9vY8/v9wuWO/eOluqJfrs0liNUgxinF4U9c4KW/EE9XYo+YcTQJGFCyc/iZrw5z+svi6Qi77m+k696ocLmBdzTT92Rt6xf9GrH1rmB+bBExtnQ/3EDrnSVjUg0CpR2/3MaGN5e5zwr1R7d6iGytMHbKsqFBf/TQPKOH5qoba0rmjYvfm2Xuoo7o5OakMmNpbqd/5x1WQj3F95GxqmSs2fE0vr7vJlwqJquCyQLKigH36jXmXiuYeWrNyfhtBTGVkVBp4wZtfdq79zIADQ3aujqREP+ObuDVR86QZg5pTqFKNi/zSuG3Caedl182k0wW+JESK/SnlMsg3E4iiWqRMdtlMrKBsyyX6s2Ad/naTbTenJ1L5TJrmxy30n3bi0NxBp+aL7Z5GTnjMpnC9ybLjB2Z56ouonNNNjMgvMVD467yxvpy417PI1G2fqBdWHjZeLOf9rvDwpEAIju9NO4V43kAnQ820POouO2q894Guu4Xn2vOfGWIs4KpEgBsYQvWgHiajIMfO8fxf74sXG51NkFsRnyMO/BXZzklmJIOYNdv9dYliqoXu3+vn44HBW2kSXj+T05zSTBtTDKWZG0uzppg9PfYVILn/+R0XVG7nM3WgmiozMa4UsxfWebUF68wc0Zsw7C70033g1HcHWL2CGezlc3va8MRFQtlZg2a6LgnjMlpKh5fjMYa3W/ORis9j0QwOXXn1cDbItvd7PhwGybn+nMriYD8fW4atrjKi7f070W3yWfi2ALDL8wVrq33X+ih512ZDHOX4wy9WOAw+QhK5dboWV7mCWfo3FWSksRqIWPV3osUW99v1wJWFLeM2ZTBtLz++rM9hXsrtXmdwcrlvQU7l5FQ6ZYezea1d3dhnROJRLDbxdefN3B9kE6nMZt1PCjbfY2ESublQn8+h42xieL+p+gi7KTc68cHKZ7AbJMwO0xkLAb2liz3kkymdZHEmrZacYWyN1fOrpxLMak7PnFsiYXBtWJuYsC9Sm1eg09PM6nPwFJFoJSLTtm424e/28CwX6m8Alve305I0FamqNC2P4IjKiZ4UFSZptuCWP1iNi/Vo9D3ZDPOJrGNh7agle6Hm/C0iI0DC4MrnP7iIPODgkEtFC1KEYLan+lTCxz467PCkakSq0liM3Fh8dbYwRkO/PVZ4ahNjXv87Py1HuHnqxet+8Js/yXxjXIXvzPK4b8T993G5uLEZsV57LmvDXP0H8VTHqtORfhbALj0/XHOfUN8XdB+V4T2OjY9tN4ZonVfuMA/atQmhDa5CQ7U6NvUca/oTb51Y1ItNrO+Jxpp318moEUlf+NuH8EKgVP0AiM99xp8dpaJk0vFvKxMSs88UinGjiyzNKbrZ1X8jVJ2nmzoVfCEi7ldxm4lY9fGYdmIe4XsmFwyJlMG8/L6e5vpL3zM8lrhPlOKwmHFhuP2wmYXI6HSrV2aZuG2XacBcLi9gNjGvJpXqvG4NtKZW1vyxpocprdmCBzVflRLHjTgiBPuSnLlQvmq0g4r8nI2Z2zWeHjxmTUusn5QzhgYF/Xwddux+wvkRlLk4rRvpZ0km0AzstONI6Ry4TtiOVSnTy0xfUpcEX3oHy6i1iFsLhJkCKQP8XU5kc3is0doiw8khKMpmZ2munYqnP3PIRDPqFJ7PswSDLy1lcRKioMfPVf95FcA9QiNrgWLV5eZOf/qp1ADIA5Lo6tMCeYvrru6mTgHP1pfqO16EBrw0PvGZgafnuDqjwXGiTjCIcsBRl+YYm0xweQZg7IViIDJJqNYZGTVpFVuBINJOdjrwtfpxBF1EC+NHFQB7lY7jogVZ1BlaSRes5NtbSFBctVgjKhijD711ZHisbM0b2sZTJ9ZZvrMcmWRkkG7Bvts+LrtnPvW9Hrha2kYa90iNthtwxE0ARXGpkRynRjk2KHC36blJMls3mW9QMkITcTxD8EZnUbQF1lgdlwjgjmBUg479pzj0As9mM1mUtcjifQN1I2cSKmUe01tkQge074hc0m6rbZAnFg8xfxs+f6ecViRctwrK5o78h/G336mSnh0X5tGhmfOZXlbSXLydXwgm3a3814/0y8vM39RbA4f/Km4wT0xn+TA35wVTxWWSZNYTgqn+rT7zbhbHMw3LjN/sfYx1dNiI7jBw+LIKiujtYclNjsUzDYTilWM682cmSWdSjN3TsypkFiB2Tp2BEZvDtO8N8jxz1yuK1qUKMYPzTJusJng1cLsuSUU0zVGsxHA9MsLJATDnV8Lzn/z+qSHy6H/yTYUi8JLH6lB4KSbw5eGxCIA5HDuG8NlU5lX4idmuwlFrbyAMeJHkS1e0vG0cMhtb4eD+HKyMBbW6MiPL6ZYWzRYS1fhUYf/4RL1aGoGn5rT/lGBtxrxstY7PCyNxZk5u7peNJtNq5svr+Ne/jYLJrPE5LkK7z+eAFUvCDHx/NOFv5SVJCl7lnv1VuJeCfrNScYWYVZny3I2LLE0pjkGcgKlHHr3XubSpLbbcW2tjvyAN/CqY2FBW3cpgUBFm5deoATgNCVpaEwyMgLlTGwplwVlMfves7xr5EyKkTMGPDxZmZv72qx4W1WuPJOdh2WlOO1bKbfPph/xtFtxhMwMv1iyvszysnJYGlljaUS791oFSgBnvjpSNktjDpIsrUv7traQKKQQqpKeRA9flxPVbebyD8SEIA3bfSgWRTiakuoyG6c6qoLz3xrJO2FFsDpR37ix4c0tJGMpjn3q+qRFO/sf9aWirRfTZxdYvHodcgFnMXN2QTjlXt1Iwol/vXJ96gIcjVY2vbODwZ+OM/K8QHqUJCxcFuRekszCpUXOfj3DwqDYmkKxyKgOBZNV7PtzRe2Et3iYvbjE3MWSCIoVxhpHRMXb4cDqnmdpKVZzBKXEcpL44nqeXi1K0dWnZxk9MEuy1kx92fRrS2NJlsaWKl/fgHc5G0z42q1cfX5pfYq3UpuXjpcFWs3428xcPFB+LSLFkmRKIgqeu1LgV6blFEmHdn29QMkIAZI0jEkMNxTmjEh4nvEJzYmZEyjlsHf3GZ57sf+Gzet1jkwmUxAplXTd2c1pfMe171wvUAII2RJgS7GyWr7fpNwWlAVt7sz5G88+VWZRU4V7BXttyCosjmbLl9i8SgWBkqKQSaWIbHOxNLrG8ljJHF6FexX5GmsUKAEc/uSF9T7uajwqk2FtPkHCYMNGJSg2hUCfm5WJGMujtacWVT0mojv9rM3EhaIwKWYF1WVGVsVI1NJ4jLNfHWJ5rPZ7BCCF0HPl4O9y0flAlDNfGmRJIOVqvVi8usri1frS1teDhaFVzM55oRRx14L5y8tk6khbXC8mDs8xwdx1q6/jvigWj5lj/yTG09fqCIIBWorGetYhZrdpPb8o1SYY8I/wVi+ZDMIpAn3dTlKxVD6FZc3+xvmEcXq5Kjazk5+7Wm3/dDGy3Gvm5ewapJLNy+BYaION2EKKxeF4QaCUQwn3knRC3lCvysKIzPxEeQOdHEuui+Z8+FRBTGpeTpNwaHXqBUpGaE7FsS7Bqk772t4wzeUxbYNPTqCUw227TvP0s11IksRqaZjpCpAyNSpJGhoaGB8f57/9X/9X2XMUg7Yxy9o7iqdASlaqKl3eKAzZY1VuteLhymVNNhlJkkisiI2wsklCkiG19lqGDr0RttRkU8ikM6TWxBROskkiA2Qq9k2D+uzZ+mKCiipZ0l6XoIDLZFfIpMSfr16YHSYyqQzJ2HVgHJLm3EnFU6QTgn05a3AVLWO2KaTWUqQF37usyqQTVcYqg/pMVplkLC1+r4a4xrCGr2e8io8mKaCYs+9BACarjCRLJFYqlKt631L1uIVSBTGJBJlKBn5LCjUJEhJrpvV9TJHK97t//dtPMzExccNZ9jqF2WwmGo3y5g9+qOw5Smz9+7Wp2nCzlgA5WaHvZjJVuFeGiidUG9KqzHVWr5nkWoqk4M4ds10hGU9Xn7ur8spXG/8L8zOzhGozEV9OgojBQJa0uVSQX8hWGbPFxNpiXEzMLgGKBKLzvVXBbFFYm69v4S8Ks8uEbJLrNjSIwuRQkE0ycdGoSLKktamgkcjsMCEpknD0S0mVkCRIV11nFU/EJoeMhETCYIf2a4JXk7q9prSwcuUmm0w6lSEdF+svFo+JdDJTmXtVrV6q6kTMlItAA2RkyJjLl89YUjhTEgkpw5pBEByTbHzva6sx/ur/++d0dHRw8aL4TssbeHWxbds2jh49yvt+93dxeI13k5sNfOlWUxpVgYU1GaXSer2a5VMfwajs8YoXqHjc4lEwqTLLk2XmmjJlTVZJmzMEBdu1XLvm4zVxqv+FeRegelTIZITnUsUqk8lAWtCWZA1YSCczxEW5kEnW+qogV7AFLaTiaeHnqxeOBhvJtdR14162kJXEcpKkoBNYMstkkqI2KLAFrMSXE6QEbdwmu4nkWkrM+WiSsHrMrC0kyNRk07vWVB2vUdnrgvpvUFYlzFaFNQNhFEhlL606Zcw2E8tTFb69alG1JKocV0ibKhyXIWktf1xxJbCtgSklsWhf38csSvnv6ksf/wKDg4M3oli+TmGxWGhoaGD/L5W3eakz6/uG35YikYLFuIK50jiXTFW0xUvpdEXulanGzdKVbWaeFivxhSSrc2X6aJlrW/0mksup6jbsa+ZP/2tzp2uBrMrYfBZWZtbIJAQ4lAJmm4nEclKoeRWbgt1vYWl8VcxPKYFslknHBf0dDhM2n8ri6Mp1ERxZAxYsbjPzl65PMAWrV8VkV1gaERRRK1rka6F3Dlj9KoqqsDwmVp9iVZBkSZgfWr1mUGRi09fLn1OJn2SqHL+Wa1/jpWsqX38FVo+ZVDJtbLuqcFl3k5VUPM1ypdTh+uhNRpBlMpVSAysyaUt5m1dahoSzfHlrcBXvvMKaOc2qAfeymsqvof7i1/6c7du3c/DgwfL3p4NwzN9KBYzaLJUBKRvoooIPdl2IAMUESJDKcchrtklU7mya8TSDrIh1SsUsg0RxtKYaIJtlJAlSghOIMV73q6yaIZs1g4aoeESStY+2oiO/XFlAqrRYMiyjLfBkwd3yikWGjPh7lyRN5CBan6RkdybWwzklqb766lQ3S7KMbCCwqASTVSGVrMFRbVifhCz43kmDXC6NZNl6tPenmCQyacHxRZVJiYqifo4gEAyuUEbR3puwINEsI8ni7y+dgKpzg5T/nwrHK0A3ecqK9mdKx1EycpVrpKX8ekIx6GOVfHTVdvHdwGsLSZKQZRmlwiBg1KUT2bWwItfAvXSXNtu0jfj5MMEZqLoQuQbuFV/SblT0u5TNMiYJUiIDiKQTNyWqiK/WVUhdUR5/LviZLGGyKiRXxQwokknKjscyyIIDeSqj8T0BSLLGt2VFFgorrVhlFLNC3Ch6TKX6FClv7BFClquJGohy84BwuyiaEEPUgKLtQpKE6zPZTUgyJEQd1Yrm2BBuz+ynKlcQixhBNinZ9yfWLkp2R77wJoSKeB2NA7lbEfxky27OqMIhFFVGTkOywi5hIySykZmr8/Rr4GY6bmVWtY1weu6VVtCMGGWQkSAmZbS51uDx5DJ1y0mtj93gX69vmCQwlXFoGfKuNKTSoMiZstnXgOwGm8KfqhUUM6xmAxFLUIVvSGQqfsCVN/AkltMkltPCa3yzXUE2ScKbPVSHjKTIxrtZ10G/CxdtfNE/S2loq59jqE6FTAZhIa2iytk5Uew9ZHKZ/wQjq0uShKyIl7P5VdIpLSqDGDSnkGh9ikUmk86Ib3gj+4yC9ZmsctYGJV6XpAjWJ4E9YCGxmhTrL1kblCTLGGWTrIR0IqNF8hUYJiSThGKSUVSZdDWSof+UJQmLy0R8JSlg0/v5GgtKA91VRJYbKGZtI+fafFKIspltMiaLTGLVKH0dZXlbcg1Sa8nq0WArGJYy1TbmySBl14yqGUwKrOgCjKRNEqYKvEtOS8RlSMplbF4V+oUsyzd41+sYOZuXqYJtx6hrLsU1e7JJzmg+xPIVFAkwnH6JZCJDLMe9MpUjGmUyEhUXT+k0lcal5bE4mUzWf2hcgeH1rW4zcUkik6o22RSXtYetrC0mtBReVe15BUjmLF+4PnvjryskM1g9KqvzcRCgJopFs5WZLTIpwbknvZZBMQnyGZOsberL+pprhdlpwpoTGwlwE209IGn3KbI0MIPJYiIpaBOSZW0DmiLKR80ad0qJiryzNijR+qwBLR380rCY2EjOiptE6yMFmVRGuJxiNWn8S7Cc2WVCViTW5l5Hwt1qm89ELmXKDqu5cb/G4uXXL5UvYHGbSCXSpBNG0ZvKl1ue0BwvZecGcjajCtxLqSIgN0t57uV2ZEgkYVWXzi1jlatyr2VbmrSk/Xvd/SVfuSwCNUs6lpe1cLZj957ixy/sXnfcOqndlO/cevZtmSl+SebZ9aHu5BXtxUhr2v83bjHjiZo4/d3VfDhsKJPuTcf4+x704girHPpUIR1BxXRvUDklCVSOfiIQclGPLe9rxeQwcehjYumqdv1mD4pF5oU/zaY9qNFBt+3DXSgWWTit2ZYPdSCbZI78nViaspt+pxeAlz5yVrhcci3N4Y9fnzReG97aQmw2zqXviYUErxct+0KsjMeYPnV9UqLt/aMBViZiwqG9b/mjARYHlznxb1dqL6TCrX+wkZmLC5z+wtXq518rVOh4Q4TJk7MsDb/6u9+sYZXeh5u4/OPxutMLiiCy00vnfVEufneUySPzVR1BObTdFaLx5iBnvnKV2TM6dXqVsIaNe3003xLk5GevsDxWe3u23R0iutPL4X8aJC4QprXv8SiBPjcH/uZl4su1T2ptdwWIbPXw4scvFrLZVdkpX2SQKFUYV2nXojQkRvXow2Hrzu3e78LTqHLoi4V3kClNWQKkXbmc2BlSDjOt7Uk8Xjh+RDt3MZtGKxZY30Yre3Nh5rV6nY71c+snNv07AB8ZuXfdsaBlGcu/WLBY1udqv4HXBxKJBCMjI4w/cIWnf7Jp3XFrdkeZ7+x6MqzOV+de0mox9+rdZ2V2KMXkuUQx9zJK96b7bcd7w0ydW2XwaV341mrcqig09nouVTHQZ7WodAbczOwxs/U9rQw9N8Xoi3M1l3c0Wdj63k6GX5zmyg8mKpfLl89gj6psekcHg09NMPbibG3lAGezjf4nW7j8gzGmTtQeDje4yU33G5u4+N1RJg7N1VwussNHxz0Rzn5tSDjtXj3wdNppujnIua8NVY+S8grA0WTF3+Xk6s+mXvW6APrf3Iyvx8ULfynGfwfe2Yq71cFLguU2v78dR9jG84Ll6oWvz4nVpzIqkgLkGtB6dxjVppRPM/cKOxy2fbgTSZY4/LfZdU+NadR2/XoXqUSaw39XzLerhaTe/L5WkispTn9RLDz79g93sLaQ4NTnR8qfpK87O2bu/q1OYgtJjv3ToBB32vr+ZlZnE5z9mm69VGnHlnaBCvcm604zOK8a99KpQPSpeLe93cfcUJzLLxbsBUbcK+O0Zf+VJulUGdiSZHoCxse0c5daynOvxb3Fxkqbff3OxY9v1bjXnw4+sO6Y/ZL2zpxO57pjN/DaI8c9Fnae5PuT+9cdt0zLoILv7Pr5S10otoNZZtb3DTkbOTLHv/zN4Gsyc+GFRD71LlDEwfLQ8aamnRZ8rRaOf0nHLyqle4Mi7lSVl60rW3heEXtZ5/1hbAGVk58ZLH9t1tvMNr6rBZtP5cAnLuZOqFg+h97HmrB6xdMl9DzSiMlp4vS/V77PUmx+fzuKWebI34tFRdvygQ7SyfR1S+PVdleYxGpKOJ1dvQht9bA2n2Dh8vVJwXbT7/SxNLLKmS+K2aB2/14/sxcWOfdVsTl4z+/3M3N2kQvfuj4pcKM3+Zi9tESsUpSbVwgmq0zHA1FGD8ywNPQqpKgp4VWuViv9jzVz5UeTNdlIc7wqMOCi894I574xwtyFGvuZJOPrtdN6e5Bz3xxlZbz29gxudNF6e4BT/zFMrNKO9xI07fXSvMfP0X8bZG2milJJx42CAw6a9vg4+aVRkkvZctU4byVuVSevykNv89I53Rs3mwl2qhz9TsEOmFHXq+JSnkKKkYTTRMifJOBNc+ailvZtsVkrEwuuv7fM7vncnQHgtq/vlx/r/xwAfzm63ublV5cx/ZMJU7XcozfwmiEej7O4uIj5/jN88/kd646r0wo4wXtuPRewzBX/ZsS9lBVNRCStaMeaNiosz6aZG8nkU8ABhtxLbwfrf8DN7OUY48d1Y06FdG8AGf1xQ/5UgV8VCbUN7GVG3EuBTW9vYeTAHDOn59cfL7pAobxiU9j+i10MPzfF6Iu1r/MVm8LGt7Uy9PwUM6dr93OpToWeR5sZemaK+Uu1p0+1hVU2vLmNyz8cY+ZM7fW5Wmx0PdjIle+Ps3i1vrTwIrAFVcJbvYy8ME1i6dUPUaR6FNxNDqZeXrguEZGa9gaI7g5w5N8vC9XXckeI8FYvJ/7tslB9bfsjBPrcHBUsVy/sEQtWj8rM2evjuw0OuLF4zAxfJ57e/cZGzA6F05+vkTdnOcWGtzSDJAn7fDsfaCCdyJRPx13G5tb7WCPJ1RSXvlejHT6Lze9tJb6U5OxXRqrb83ScqPvBMImlFFd+VngPVQXOeptY6bkiNi8D7lWUflf37979dhbHU4yc080BFpVSJPXcy63S3hRnYUlhZl6rd77dBDGIBdbfm/OWyaK/XZb1c+tHu78AwJ+M3rfumDejjbOKQYrhcqiZpamq9rDTZ+a47/YjfPepbfljOYESaDmE9UKlzsAaTR1JXjwoAesbDEBeKTxoxqIircUZOZZg5Nj6RYOkmo2FSlkk4+miSC7rIhyV5nzNEoauh0N4mu0c/NvLxee/IumZ1uPYp8UMIDlcfWYSky37ggUiCMSXEphSgkpOyO9gFsX8pZUqu/yMISpqula42xzYQpbrJlK6+uPJ6icZQaUgyBDAqS9cYXXmOilj41p9yyN1GKPqeb449b+3OupzRqw4ojbcbfbrIlIaPzjH+ME57Q8BJ9zC0Cqe8dW8IlcrX6MIKFM9C0EpkrEUyVgG4mINOnJghsRyUkigBHDlR9Nc+ZGOuIkIlOpA131+PM0WTfiazhTXV2ro0OWMTSfSVaOKFQRKBQxeLlwzJ1ACsE6nDZ1lOdxxNYUrLfHTgUKdOYESwO80fq9IqBS0aAvBqampG2GvX+dIZznLbW84USRUsupCXs/2moqESjs6V1mdhwsXy2+dzTnIoMC9zv7Y2BgtmUzGQqXcPSYzpJPruVW+vCQVG12yx7d9sImZs8sM/rTYEFJjJmIhJOYTHPibGgTXJQag5Yk1hp6bYurUXG0VZe89Fc+QWE2SFEyxkMlk6uKeK5OrLAwuszwu5lAYPzTL+KHaRVTXCnezHXebA9WnklgRdH6YEdr5BrA8HGN5uE4nSx31XfjeOFYBw9614sxXhrG46jC654YGweebffn6hObOwd/jwmRVgOvjCDzySZ2juVbuBMxeWNIiX+pQTaAEaMHo6hjv4sspLdVircimR776zDRrS0lh7nT0n4dKrncNAqUSZDKZdfVte3eYmfOrDD63uJ57lYSpyaTSeYdaOlk9kkZBoFTAqWOFbygnUILK3MucSHD/EJwPw+VQ4fecQAng91u/UyRUClmXGBrVHAY30uy+PpETjy2NL/Pw7Qf55jM788cs0zqbV69cJFSKOBK0N8Q5ftZEsoyJTV7ViedsKtJqnJkhmBkyGIjNJmOhUhbptZLI06VhOhTF0HHWuMuJv8vO8c+XrKEFFoDrOF0FXPyv6kZlIyfb0HPTqE5T7oSa7y2xmNB2TQsik/8fMcycW6oeecQAoiKqa4W/z0Vi5fqJlCaPVnGMlkPu0xGMUHTys1fE5sRrxMnPXiY2X0d9JoSfDWD0pTp5eh31qV4Lvi4XS8Orr7xIyYBXLQ7GeOmva9ugqudVK5Mx5i4tExNM1ZeLKlZuM3E5JOMp4supbJTt2jF9ZolMMsPaQu0CJYCpU8tMndI57kWcZNVQyquAxm02/J1WTnxltohXAettXslUXqiUTmVIVUnpqxco5TA5Y2Iyu1zKCZQArFMZQ6FSDhtHIZg0c7iv8CJyAiWA345+r0io5Fe1NpyZmSElaui8gesGSZJIZm1ND998qEiopE4XeP9cj1wkVOr3x0iYYWjS2NcIoKzouJfdgrSyxvDJMn2hCvdKJUq4V2mfkosjQOYESj0Ph5gfXGXiaIngQSTSrCTXxodScOIzNQgISnhcajXFlR+NszAkKOBJZbSoTYKRNjPrb6EmxBdTTL+8wOqU2Dpq8eoqRz4pFnzhWmD1qQT6PUydWhAXKSkIC43i8ymm5mvf4Hit9Y0dnGXm/OJ1EUQBDD0zxcSROrlQHc+3Mr7Gyvj1W6t7u53Y/Op1Eymd/0aFjW6l0PGPmQt12gIzlNcIVLC5xZeSJFfFO9nVp6dIJTJCAiWA898uXrcKCZSqwMjm1XO/j/mra0ycXMmFZC7UvY57JfN8LJXQ5qNKSBpwr8vDhblyvr1wfet0xlCopFUG2y+ZmGlIMhMovIucQAngD6LfLRIqec2rrE7GyGQyeT1RLZAyNVoYWltbuXr1Knt+Yxvb3qM5yb771LYigZIeOaHSFv8yoRA885xERidSyu3o1wuU9HA64wTaTQw+b7wwysQTlWOmplKVU7Cl00WEovfRCK4mKwc/fqVgdKlhp/6GtzThaLBy4KMXSg7V0KwCBpf1Zf8Xzf9UJ3b/bh/JtZRwZKp6sfe/b2BtMSFc38DbWlieWqs9GkOuvv9tgNXptetGqm75owEWRCMp1QlrWGXnh3uYPDHP2a8OVS+QhepX6X+0iatPTzJ7tvaJ0tfvZODNbYy8MHVdxGlaRKRGLn53pCA6EsG1RgkQcLKJX/o1vjcBJ1vvmyK4W20c+JvLGpGooV0lRaHnoQCuRpVD/6BzkMrSemONHoqCZC0fnShjNhkKlADCrSDZJF5WjHfY55xlhShKGh64mMKehO9u1xbheoGSHh8ZuTcvUAL45K7PaPd0Y055XULK5h9+9/Pvy//29E82FQmU9MgJlW7rW2F5CU6eKiaEOe6lFyjpEWnPkFhMMnvF2AKbSSaLIiitQ7qy0jGTKT6+4xdbmD6/zJUfzeSNNFX7YjrDrl/rYPLUIld+VBIdpwZeVZGfXQsvg/9XcbOGXT7a727gzH8MMne+9t1v9aL9vgiNuwIc+cdzQjuffX1Oojv9nPrSoJAgp+dNjYQ2eXn2T08JC3nqQS6S0vP/8/SrXxlapFSb38ILf3pGqFzLHUGsHjPnviEmGtr+y12YHSZe/POXhcpVRIV5fNuHO5EViUOfqJM3XyM/uWZ+VPnilY9XqtvAMbXu8tdqjNGV3/ELzcxdXuHi92eqls3Xqyhsf1+EmYurXPmZztgqS+sESkXlFdlwB1kOGbPJUKAE0NwPEzMyE4HK3EsfRcm+muCNw3DGDWfbtblDL1DS408HHyBk1dYqxz59jCN/e5AdO3Zw8ODBsvd7A68NHnvsMb72ta9xy29tY/u7NwDwzWd2FgmU9MgJlTqsMdoiSQ6cNhNPFtYIuR39eoGSHlYlji8C4+eTxmKCRLIyr0qmqtrE9Datpj1u/D02jn9mvMC3qjlu02la7vDj67Rz7NOFtXrNouoK3KqqzeyGvawIWz7YQTqZ4cS/XL4u9e389R7iiwmOf1qsvva7w6wtJITFNbt+q5eViRinBCNa1Yt6IynVBRPc/LsbGD80w6Xv126DMlmh4/5Gxg7NsjhYu/PYGjCx7UM9XH12kuGnaowmeg12J1erjf4nWrj0vTGmTho4Sl9LXvUq25yqVv8K8qpq5Zt2uwlucHD0X0a1eivtYM89l6zQdJMdf4eV418sbLSQFLmyzcukGEZNyiGjmg0FSgAeXxLZZeKC3ZiX5YRKhShKGvZcAW8Mntuu2TT0AiU9/nL03rxACeAf9v4H8Xj8hs3rdQqz2YzZbOYDTz+a/+2bz+8oEijpkRMq7favsBKXODdUbHvNcS+9QEkPj3ONzFqapcky/CeRrLhBj2RlbkY6UxRBqe/RMAuDq4weWixwk4rp5TR+NfC2RmbPLzN6QPcdZNLX7m+88R3UDFeLje6Hmjj/reHrEoEpOOCm/Z4GTv77ZVYnaxfh2kIq4S1ehp6d1tL81YiGnX6abwty9FMXrkvEp1wkpYN/I5blp150PhDF0+bg8N+J+W79G1zYvOKioZ5HmrBHLBz9B7EIq/Wi+5FGVIeJU597lXjzq50mtQI/e9X9ja+gTazvsQiLQzFGXspmwanR5tX7sJ+FoTXGjujs6Yq8XqCkh8lExlpB+GNRDQVKkCLUAFNJlclGY39lTqikj6KkpGDvGTOXQ0nmWzTupRco6fEno/fhNWvj5PiJKb783u/z6KOP8tWvfrX8/epQM1v3+XwAzFwsLDisbeXDns32KCStEi+ft/D0c5YigVK+5gq1N2y2ER2wobprvcMCLH5qEBgVHz/7tXEOflxAkJGd8BOryWIlNbUJlLZ+sI29/9uG2uvLovnOAANvbxEupzplXO3GC4DqhcWLhLZ5iO71C5fb8evd7PrNHuFyS2OrLArmCr0WTJ6aZ/ywuIrX3e7A1+MSLjd1ep7RQ+KK2u2/2kXng1HhcnVBhZ2/0UPj3oBQsdhcnJmX5xk/LtaeNr8ZZ9SGp80hVG55Is7suQWmztapMhfE6kyc1Zk1VqYNBJkVJr22u8Ps/e8bcDaLpeJyNqm03R3WvlsRg4zgd54jDKrPhLNRfJCI7vGx8R1N5U8oQxi2vL+Fm3+/W5hQaPlha1uMSYqST/N27lvTxQIlqGzsASRZRnWCuVyzVCjf2gdtXeWvvdKQYaVh/XN8p1PhP3oV/o8N3yorUAL4YucPi/52Op3YbHXODTdwXVBqTJM7ygtCZntNJOwyL76orhMoAWQkiUyFcadlm4Xm7cbGxEowW8Fsp7ozqcQYc+jvr2oCJUGk4tUjlRnh5v/Ww4a3VBh3ymDDW5sJbhKfu+1RFbO9DsO4mUKkG4EyTbcFsATECno67ez5/X4iO3xC5Van11ieWCW++OqnWwWYPrPI1Mk5EotiiiFPmwNPmwO7R6xdJo7PMXlsVlig1Lg3wLYPd4oVuga03xdh8/vbhcuNHZplvI7daP4+N94e8cXZ+JG5uuoriypGg6XhVRaHxKNe7vzVLrZ8oEO4XGSHB1+vxkeFDCql3VKSK3O37DFHo1kbc0tRpe7exxpo2FF+LCtnjNnz2x30Pd5Q8dpGSCXTJHM7a6s54WQpf/+HPz1eLFDSbq5yeUXBXGlJUIZ7OX3Q3C3h7S1vDFqJZFiJFM85KzYzX+g2czRs5n/f+K2yAiWAr/d8K//v9CVtUAkExNZLN3B9EI1q6+aFkQLX8rTPlT1/tlcm7pQYnjDz7HFbkUAJIKPIZIxS52Th71Bp2WbFVu6zrNDvTWJLYACGX1jg+GeyAol0uvou/uzxVCxVNVrGOmTSdD0YYvdvdZc5XP56wY0uOu6PiNWHJuiwheswXoFAjPkC3O12AgPic+KGd7Sy9UPic83i4AqLV69PCjWAscOzjB+ZEy7n73fj7xVvl9EDM4zVwRX639pC0+1B4XL1YtN72wlv84oVSsLYgWkmq6XfKYHJasLf7cbdKvbBJ5eTjB+eYa7WXe/X4oiSZBLLCRaHV4jNGawLKvCawICLXb/RhbPZeP0pyZIhr1I9JiLbPdW/29K6Rb/zbN0mqyb8EoWvy07n/aHyJ5ThRp33BbjpV1uFIyhlkulCRJNqfFSS8tcffmmlSKCUP16lvEmtoGOqEGWupQM6Oso7xNcCGdYC6+eIF9rgu33wB93fLStQAvhM+0+K/rbZbFit4jaOG7g+MJlM+UhKOXhayo+Vcz0yCYfE0YvWdQIlqM69mrdaiA6IcwXFBEoNxUrtdy9/bUITKEGN3Esrn1xNi3MvYPsvddC+X5xDtd4Zwt1hvJm2ElSPgmKrI3MLaFFuBM/3b3ChesQKqh4TW3+xC3+/mE0vvpRifnCZxPL1CRm0OBpj9MVp4oKCIUfISnCDB9Uh1i7zV5YYeX6KhGC0Gk+Hg97Hm8XfX50IbfHQ9UZx3+bkyTlGXhL3pXo7nQQ2iPPYyVNzjB64flHVl4ZjzNexLuh7spmeRyvYxXX8QA93hx1nUw3+o1LuVdpPqti8crzP4jXVNOaWoukWP77uCmNZGX607YOttN8VFBaXp+Npkmspw2OGdWfrP/vNmWKBElT34yoypgp0JlMmorCqQns3OCuYqmMNKWINxWNBSoGnNyYYCmf4/3V+raxACeCfW3+S//fyBc0H7nbX/h3VzLLb29s5duwYM+e1ReNPB7Ne1F3zcMCz7nzX1WvbjX71wCpT5yFeSUcgK+t2jnXd4yHUY+fwvw2zNpM2VsqndB1HJLxiDjon3Plv1BeJZeLkAt4F8a3ZgV439oCYaAFg43s6sHpVnvsfYju0d/x6NxanmecEd3a374sgm2VGnxMbnFcn1pBM4gvkU5+tTzW649e6SSczHPk7sZ3W578uEBpPh+f/H7Ed6znUu7tLdZix+kQ9nfVBVcFsN2H1Cc4gcTj9xdojKOUwf36ZZ//4lHC5+EycU7XmXdUhcpOX9rsaOPv1IWbP1B65aeHSSuX+JUmGOxlWptaILSSIr4gtSpr2hAkOuBk9skB8pnbn8cATzXg7HDz7P6pHOdAbinrfGMUVtfHcnwikapRkAr0unI1lZtb8ri5pneB08uQCnrbKCycjQnHh21klcI4wZDL1GePMudQDxuUls/a9bXzAiWKSOPC5YjFvpkKEJYBjLyuYzYD4MJ/HWMpDg6Jb1MfjbHnjGPbvNwEKn2h6nl8ZvhkAq9V6Q6T0OkZpSo1nr2gOjfjOJdSD6yM+OIeujXu9/OMl1qpF9jeZ1kVT2vrOCPGVFMc+M2743UIh3HW5Ma9myBKH/76MqLxKGOzps0uV84qXKe/tcJJKpJk6USUnecmzbftAN1Nn5jn7H7XP4Wa7zE2/3c/E0VnOf7P2aDXOiI22OyMoFoXBH9YerTGxnGB1Zo3YnFg44/lLKxy/dFmoDIB/wEXXA42c+/qQUASmxSsrLF4RX4Bf/t44l+uImjh/cYX5i+L1qW4Tquv68C4Am0fF4hFfuU8cmqurvnp3hdWbYmbLhzogA8c+pUuNU8PcLfLt6LE8sUZyVXwcbXtDmPhSkrnzl4XK7fmNHpYn1zjxrzWsY3QGi01vb2VpdI2T/67jzzWIo3wdDhRVYezQ+rGskjFm+twysxfEI6Yd/efsekkkDYkRco6GTNrQcCOpZlxRhQ33uxk5EWPocDH/rcS9lmbh6CmF5dU0eOu/xbGkhwZTlnslEmx7+xhHPtfArU7NKvePLT/lQ1fvxLqkcd+cGOYGXl/YsEHbRDZ3RTNCPTWs2bysO2eIHVy/Acsxcm270SfPJlgcgdVKugwD3tWw2ULzDgcn/3OWlUmMoynlbV7GvKwqdHaykRfnGXnRwGFY5drTZxZJGzjYqm3q8/U48bY7uPRf40LRlLoeasbTZufFvxCL2rfh7a04G6y89JcC61mg9Y4QFq/K9CmxzU8rYzHidTj0RCLw6LHh7a1IEsIRioafrjECTwkOfby+6Ob11mf1qSSvY7o3i8eMuY5Uu5cF+HkOsbkkL/y5uA0xGaP2qOG6+d/drkWNuPBfo8wLzPuxmTRn6rDpxZcSrEzGSS6Jvb/gBhcttwZZHFllZbx2m1frbQGiO7wc/MQFktXWvDpe1XJ7kPBGNy/8Ve08WJIkfJ12Aj0OLv7X5PoTKnCj2fMr1VPLGZQfObTEyKGlQrq2MrypGqRsOjdSKWORd9Ym1ne7imqXOPyN4nVkxl7ZmHViRNUuYRzAsiZcTfppMen8DckkXb88g/efNFH9Rxtf4jdGbgI0m5fDUYey9wauC1RVZWmpYGPPcS/bthlWj7zy3OviC3HSVYYcyWRaF02p70EvyVias9+eWZ9WN4t8Rpc6/Y36jDBnvz5mfG+yVJFHTRyZZ3Gsgh2jjD0uuNEDssTCJTEbyOb3dDJ1Yp4rPxab43b9Zi+jB2eE5n5FVei8N8rwM1NCYpBUPMPy6CpxQT/s2myci98WtyvYwirdDzVx+YdjQlEQ12bjdaX8mjq1wJQgFwVYnYqzOiUuqlGdJqw+c7nP4BWH6jZj84k7SRYHV4XaP4eL36rPllRvhPnOB6MoJplz/ynm+x07WJ8gamksBnVs+m27I0xiOcmZL9fA93S29a3v72Blco1zNfjS9f7G/iebWRxe5eJ3BNY/kkxwg5sF5yqz5w3Gsgo2s4nj8yxX45QG3Ovct7Icr0pAg6rIqr7Xpd3NwaKi2mDgPhvDJ+NMnC/++Cpxr3gcDl6xEksB17CvYy5twSvrOF8qRfT/XMDzPzRB/l9GX+C3R/eQuKC1s9frrfnaNad7+8IXvsDb3vY2LF4LHf/0h+tP0AmV9AKlgBrnpqY4I6MSFy5qRnTz/PrVgLxUeEBpraRD6HLCZuIGE4rOKOOKyoQ3OrnwwxnIXqboEY1Gz3Satn1+oju9nP7qCHPnSwYw/eRvYCSxN6isjMWzh+sgS7UaXq7BqRfa4sYetgqnGWu6NYAtYOH8f4qJcnJRmxYvX5/oRr5eJya7wuQRsZ1JWz7QQTqRFk5r1rY/TCqZZugn9RlSRNH9SCNLY6uMvfgK7kKvgOuZ7k11QteDzQy/NCNMhuuBo0Gl+ZYwl34yISTiCW5207G/gTNfvSrUr61hFV+Xc71gr9QZpP++r2Enm+oEd4enujO9BMFNLkIDbk5/sTIpKt3J5u1x4O+0c/G7BoYX4wtUPl5KGPRjag0OuHJONtVvhmSKeKm+THe+ZEAodn64EYCDnxwpCJTKlTcXHNMNWyyodpnBQ7r5y8BJltaRiHioWCy0EirUN7PR4Lk6Ct/Le87HMDuW6HvjTwv3kBUqbb/9CrahNOlWBV4o7Nr9leGb+eSuz2CxWIjFqlnpbuC1gNlsJplM8p4X3p8XKOmhFyrpBUp7m5exmTK88FxBvGAyEKHoU+5W5F5G4a51vzXfZCc2n2TqtG5s1H27GSPulcmw85daSSfTHP779U6TSvTUbAcUE4n5MkaG10nat7b9YWbOLQmLa3ofb2L8yKywSMbX52Tp6hKJ67HJ3gyRzT5mLiyVfw8G8HTY6XqwkXPfHBFqF3vQTHR3kMFnpoTqqxeeDjvhTR7htGb14nqne2vY5UP1mIUEbdeCplsDZNLiYqWBd7SSSWY4/cWsuLxGfhTc5GJtIcXioMDHcA3pQBxNKmRgZUysb7bfG2ZlIsbEkYX19evHoZJjzbf7WR6LMXsu+3yvdioSI1QSHmWvp3rNxBcqWy5LDTD+Xivd+wMMPjPP2LGVgkCpqFDhNymbasRsh8atVibPxliZL/A5I+6VsRXmxrVgMfdaDRW43MzA+nZJdWp8add4gk1LCZrv+xl2X6GfNZjm2fnAFVxnEqQ2mkl/vzgCsmfrGKuTK/zsZz/j9ttvX/9sN/CaYmhoiJaWFtwtLto//pvrjuuFSnonmZUkdzasMjSicGVM61+qwVyl6G1eseLjkt7OlTT4bnS8y+LMEOixMn58peBo1wuVDG1eGYL9Ntr3+Tn7zQnmL5dwfz3vMnCsmd0mEgvJ7KklHKqKvawUwjazGnmZu92GI2gRTjPmH3BhD1kZ+mmN69ksrEEzkiyzOiEm9K4XjkYrqsPE7LnaN0yBZkuSgHOCNr3wNi+SDON1CptF0bg3wNp8Qlj0VS+ud7q39jvDTJ5eYHnk1V93m5wmGnf5mTgyQ2yugje+ZP53NlnpvLeBi98bY2m4yn3q5mKT04Sn1cb0y/PFqSuvgVtVikxpsoI9YmXhSpl7LFOvs9lKaIOTS9+vYsctqdvRoOJptzPy/FzlcrnqryXFWy2crEx5kxOkjLxegKVvDwNetenJALJZ4tjnZwoCJT30djKdTczXoqA6JMZ0ezKNnGQpR4F3xYLFmytWgoVrz/etr1rtKowH77m0iOpaouOuF/O/5YRKvW8fw/NcnPRtVvhSc/74b4zcxMd3fg6Hw1EkhLmB1w/a29u5cuUKv3rw7XmBkh56oZKee21yruIzpzl8orD51Yh7mRZ13Gu12OZVZANLrB8r9XYwf7uJZCzNwpCujI5v6QVGeaTT9D+uRTU686XKc3BpeUUFFKWQvquEC71e0r6FNntYGlsVSk8G0LQ3wNzlZZZHxeZER9RKbDpG6voE9MbdYWd1ck0oHZrFp9KxP8zVp6eEnk+xKYQ3epg+My8cTakeWP0q/h4n44dnrkt7Xu90b+4OO1avysThuetSn6/HiWSSmDkt5o9ruSOEbJa4ImibczbZSMVTwt9eRVTgIJZsEIy12TI2LyPulUkT3uYhvpBk7uKyUIo3f5+TtYUEy6M1rrOuIcVbTfawMtxLdSrEq7iJS21eNr9C/yMhrjyzwMz5mGFYyqIyFo07KQoEus3MjySIxQplDLmXs/DbaqQ4SMRypHDtuY3r54lgp8atopNwx/Qqm/b9GKe30K9zQqWm35rB/9VVUk86SX80nD/e/444F38yxA9/+EPuuuuuddc3Qs0rhsceewyAxFKZjr9Lc4aWRlBajMNSAiaV2nYV5wmCCtsed9C4xWzsGNZDLpDaxcE4F75TECiBrqOVk3fKMtPnl5gfXGFlpsIkYDC5t98TYtv7O/D1OYSMLY4Gld7HoqjXsHNABJPHFoQFSgDDz0wLC5RAEyfVI1ByNqmEtoiH1Ot+qJHO+8R3pB77p0t1CXEadviJ7hBPZ7frt3rqSiMR2uQhepN4fT8PsIbs+Ps8BAfWR2SrBE+3gz2/30/DbrEUNb5+N8GNHjytYtFjpo4v8NJfnhXu1223hencH0X16xbjRpNf7rfs/9f7LcSXZWGBEsDUiUVhgRLA3LnlV0+gZPBb6x1+GvcY95VKpGLLO5vY8t7W9QeqLMymz64wfXal/DyULa8XKAGMHVtj8PlCX6kWQSknUNqzLUZXqzbZ2ydr21H4p7v+A6tvFkdDsbFtLKW1kzUrXpEGi+e3pRnNqaZcq9r7Bl412O1a1LBEwngREN+pGdpKIyhNrShMryosR2uLsJLjXq07VTY+mB0bq3EvHYkeen6xWKAE+W/XUKAEIElMnl5k4qT4eLX1/e1sfntj+RPKjDUNuzxEb/JWr+AaDOp6XPnBRF3Rf85+ZbiuKD6zL9cnUPIPuLAHxaL/OCM2uh6IEt0lNgfPX1rh0MfPC7eLu91JZLsPT5vY3N2w28dNv9OHPSL2fMENHkJbfJgF08T9vKBhp4+G7WLvDmDTu9vqSmcXvSlAYx089tS/DwoLlAC67m+kUyRVUPab9w84hb8FgJXRhLBACeDy9yaMBUq6ezI6NvTUTEGgdI2oZpAxe8y07w+KfQuZDMEBOzve10jDdrHF7spUkplLq8xdjRkLlCC/Js8JlAASK3DluRgrOh1cNe61FrTR2pRg19Y1crkdbZO1vcd9Gw5i8S1gdha/h7GkB+fL2jXkU+uvFc86Sm4IlF6faG7WHJuxOWOHgnWnZrAr3cUfA2biMpPWGm1eOoHShn1mwl0SGbVKWR3vis2lGX5ppdgRLesiXxhBllgcTTB1Zpm1SqIFA4FScKOD7e9vwddtMxaRlzH6mpwmmu8IYHLqjKj1bOqrkZctXFoRFigBzJxaFBYoAcSmEnUJlKxeE54u8ageHfsjdD4gbvM6/58jwgIlgMY9AaK7xVNTbnpPG31PNFc/sQTRm/w07BTnJj8PMFlNNOwKEBBMg2cNmNjxq90EN4uVczfZaNwTwNlcIQK1wfy/NBzj2D9fri5QKkF4s5ueh6LY9FH/a/hutW9BPL1QMkZ5gVIFLA3FhAVKAMtj8esjUMoiuNFBcKBMu1Qov+GRCBvfbMB/qwg9J19eZerMqrFACQrzSol9YPZqivEzuo1NVSIo5QRK2zpitIU1+4N9qjZH/B9v+TqOyCSOcPGGh6tJbX3hPqBdT3rBuF/k7Co38PpDU5OWdihWJo28bZsx95pJKEzEFZaaarNn5gRKgTaJrt3ZiBWWyvYySce9Zs7HigVKkBfwGQqUQPM3nlliuko2BqPyfY830vem7Pds8A2XE3J6Ouz4+2pYf11Lmk8dJo/P1yWSGH5uWligBLA8Wp9AydloFU4Tp9gUeh9pJtgv5q9am41z5ktDws9nD6o03RrEERWzeblb7Wx+Xzu2YG323xxcLTYabw5icoiV+3lBaJOHxjp4bNvdYfqeFOexDTt9NN4kXt/Vn00KC5QAOu5toO0N4eonlqCebwE0cVJZgVI5SDITR+aFBUoAMy8vXReBEmii0Mg2N6qzTLuU4V72sMqmdzTi7xPjGPHVFBMnV1iaTJTNm5ufF3TzVCoFEy8nWNO5Uapxr9WIlYAryabmVRQ0zuUYr20D0Ic3/ABvdBSLvdjmNZfW6vR9Xxvj5O8WRxFbGNXmvDvvvLOmekAg3Zuqag2STpY3KmQMrhZH5ekhrayDhGEUJYC004K8GNMXxGyVsDizncBsgtJd/nrICqxpHbfvTQFmL68ycbTQgJIkUckcsnQ1zqnBMrulcx3ZgDtPHJ/HZFNYFjROeDsdhAY8LAytMvbSXPXdYVljUHSvn9Y7wpz6whUhsYSv30nzzUGO//vlIgFX1XK9Thq2eYXTcbXtDxPod3PoY2Khnnve1ILVqzJ5TGz31PlvjSDXkSZOdcqoHhNLw2IM5/AnzgLikRaSsTSJOkJRH/zo6fURYGrAzX+4gZXJWHGajFcJql9l5y93M3F0lgsCaTYWLq3w0l+eFH6+dDJNOpEmKZg7d+gnU0wcE0uFBlqEItVnYemq2Ld+6ScTLIyuFOqrtBDQHeu4J4qr0S72LUgy3Y804IxYOfIPl4Xus+kWHxaXmYvfNSZG5RZAnfeFkFWZ89+crDyOlRCGbR9uI5PKcPQfsxFUKhEG3bGGHR7SiQwjLxRHTatoDJJlRg/Nl+UsRhGUcrj84zlt4VlJcW1e71Tof9DFxNk1Zs7HybgrLBBNMvF82NI4ZhNYLIXZKqVKzPeUKXvJjnerZmTrvu/Zwu9LcR7ZcxopmVnf3VqyY7IJ3O/Q7qu11UC8dQOvC4RCIRYWFvjhF1dx32Z8Ttqg+56bKVbJG0VRAi2Sl7xc4F5mh4RqL9kpWYl7mUywtoa/x4q/y8b5/ypxDMmSIXfKYfCns2XDYOe+aSNn2Oihuepjv0HqtqabtQXj6EtzVcNk67H1Qx2kk2mOf7pGUXM2hHbnA1ESywmu/kws6mLr3WFis3HhlFybP9DO/OUVBn8ktsDtf6xFOC3d0vgq578zUlcKKHtUJTEfFxJUjR2YZfqcWNQmgGQsRWotRUqQel349iiDPxkVFn11PRgltMXL839xOqd5eFWx+X3tWP0WXvqIWGqbI/90EYOpqyriq8mK66lyOPr3ZxHYG5OH1leSJFbFaj37jSGStZbRkYPehxtZGl3lxL/VnhZYkiW2fqid8SOzjB0QiOhqhu77Ghg7OsdSqcHb4N7yxTwyXfc0MPziNIvlyhnA22mn+8EwF38wycwZ7butZcdYsNdOw1Y3C0MrzOi/v3S6oqNsfjjG2Iklpi8aE3zDENZAbCbJ+e/MaM9eTqREsUAJINRvxhEycfmpVUimyDjLG4oyikTcp82TVmsG7VKF66XNEnNluJdy0Ypj6wy+rhF8XVmn/0qCx247gZJLa5XrehlQOrNrMBVSh5qJBhqYmb0+kXFvoH7EV8pzjLTFaGwx8dKMZgxzyCkss8bfZsppQVkuPmaxS6h2GUiRUc3FEZXWVWMiE9M4XcseB8uTCWYu6q4nV867sDaf5NIPykS0qzAezF1ZY+TAHAujlexx0rq6nRGVppv8rM0mmDy+UDPv8nTZ6bq3gXPfGmFxsEYHTyaDo9FKdJefy98bIxmr3VZjj1gJb3Jz+acTxVFgqiC01UNkq5cT/yoYlfvuBjztDuG0dJd+MI6iis+lJquMyakQmxIjJif+5RL12LwSyyniK+I2r6N/f640s2FN2PFrPaxMxDjzxdrn7rphgt2/2cfYwVkGf1I7304uJTnw16erpxgrQToFydUUqTWx9zDz8iIHPn6ufBq1Mt+7yQomp7lyXzHgJhPHF4jNJVidSQht9ojuCRDZ4uH5PyukWqwUQSmHxt1e3G0OznypZO1SpW5/nwOrz1xecFSm7oYdbkw2E0PPVE6tUsqr+h5vQFYkTn8pax+tJlDKlm/a5SGThqlTJQuRCuUlSWLk8CKmcmNEBU41fnwFFAWp0v0ZbGBqu0lldjjBwkiStKe88DIjwVqg4GSzqWlW44W2yphgYX0AHQDiF9wENmki0uabjxcOxJLcv/8MymoGs5QprLsSwIZsWj6bxB3/h4WPUxAh38DrDz09PTz77LN879sZfOVsXub1/GFkTYWcmUsCdc543Eq6LEXRlMyqjMWp638WdX1UcR0kk4lMLIY9pOBrtzH8UsnaRlGgnEgJmDy1XFdOrNGDc2RSVLSzG9m0Gnf5MVllZl5eMrSJlUPng1FkReL8NwSjLm73kklmmDwultkktNlDYiXJnKA9qfOBKEtjq8LRcfoeb2Hy5DyDAmnpUqspzv7nEMtj4oJ01WMitZoUElQtXl3l8N9fKETPqhGphOZrNMr+XAmTR+eZOT0vLPoKbfXQcmuIo/98Sfhe60Hb/gieNruwb/PCN0a1iGSCSK6kSFjEn+vsV65Sj81L9SikVjOk4mJc78K3R2rf/KFL89j9xiYWhlaK09rVYBfqeaSR6bOLzJwp2WhchXs13hxk9sISq1PGHc2Q9ynQeluQydMLrE5U6aC6+i1ehZ43Rhn86TQLuVR/VXilJEnYG6w03ewjNp8gvlS6Abv8860tJRh6aZ6lYeMxopzNK7UKwy8tZP2NFQRjJUJaV1jBGVYYPRFHSlThXrJELKT5Gy3mNHZLpsg9kzZLLPQa9/Opi376N13FE5rGE9LZDuIptj02imkpjUUClrL9bzGDsjfr33XJeBINLFljQkER6toq/gv9z5Q9ttCx/pJRR5x+SZt0Eh7ruuNAXqCk30H20r8vcenZ7EvOEoayyv5kMq9g9rTaCPUXO4UzqZT2wVX46LruDxHZbrBDJZ3R/jP46FbG4pz/zzHis8maFlM5DB+Y5eDfX6xNoAT5+04sJUkLDloAvk4XriY77iYxZV9kqxd/nwfVKdZVbF4V1VmzBi6Pyz8Y59IPjPPuVsLs2SWmT4lHY9jyoS42vkt8R3h8KV2XaOjI313g9BfEjSf11AWwPLbK/OX6cqIKIx5nZSLGwqB4ffU83+LlVV76y7NMHRcPBy4qUALovL+Zre/rLo6IVGNdo8/NVB1/SnHpB2NceUrA0Zwdn2w+FdUt5nmUZInorgDhrWUiFFUY2/y9bnzdrqJ7KHdveqRWU6RyxmOBsfPFT1zi2OeKF03VBEoAw8/NM/SMwaJJUchkMmVTS/U+EsTZVOadm0yas6BEZGFWwR01E+hUwWop62xIu7XdEepsjsyoPH3Ayqlz2jy52KS9R0+ZSKg5gdLHX3qA4ZcGiGdtWIFDqyhrGZQUSCV2SSkJchKkGPz0ee3D27Rpk3EFN/CaY9++fQA4nvsRH9pYgXu1FX9jZhJ0eWMEZ7XxOOk1VtbnBEo57nXhZ2sc/rJuQM5xr3KkPMu9Aj12/J3r+UUmlXVilynvajbT+UDI8Fil73L4uTnGD1UZ+w241Yl/v8rBT17MHq5d9JBYTZKs4LBcX7d27cAGNwHBKIEA0R1+orvEo85YPSpWv7jy5NIPxxh6WnDnTgImDs0Ji4YcTVa2faCbxlvEd/zUk+Zt6tgChz5+nrVp8bL1RKWaH1pmaXjlugiUAOYuLrF4tQ6el6jv+c5+eZiTdUQgTaxAYkV8/bL5XZ0MvKtduNzsy8u1pXor4ScXvz/OlZ/WLiqUZAnMoDpNWDxi/NAetBDa6BaOquAMW/F22HA2iu2wzGQypNYKmyVqTfE2+tI8R//lKjNnaneUIUkk5tNc/sE0CQPqJUlSYX1dgtBGO817K7SJomjcrcSTHey0EGzPznVmU1lnQzob9lqd1ea/sxdUnj1QmCOXG7X36C3DvRxbNQfll358P4tXgwD4T62iLqYxrWVQ1oqfSYplkGMZpIUMn3s2wtLyMi6Xq/zz3cBrDiXrbPpwz1Nlz1k0CIzsMyXpimv9as1nPB7kBEr6lINHvhVn6LjGMfJrhnI2r0Qib+wM9dsI9pTY1tKp/DdSDtFdHvy9BuNHJqP9Z/BtJ5eSXH16przgAQztZXMXVjj6qUtMZtfrkizVZDNLrqRJxlIFKlfjhj5H2Eqgz429wdjmWA6+HicNuwJYvWIcSnWZsXhVga2fGoaem+L8d8QjGy2PxFi4LD559725hU3vFI/mnYylhUU1AC//xxCXviNu00vGEBKJ5TB/aYn5S9cpjVMS5i8vszgi/h7qacv4XJJj/3SJ2bPiz2f4vVaxSYV3BNj2gS6s5aJKlrH3JJeSWnoTwfc3+tI0F743lr10beMDgNVvwVo6ztYgjmrY4SW6w2t8sELdgT4XoYHKkUmMeFViOUUit4asluJNV/7oZ0c4/bWStVkVgRLAzJlVJk4Y9E1FKYzxBmi5xYU9VGYgy9q8jNKQBjvM+FvMmsB21Zh3JZ3ae7JMF44/97Kdl4c17rXcoM1X7gvrywJ5gdJfHb+fyTPtJLPpTVzn17CNJbHMp5DmiucIaS6NPJdGGk3xt1/Q5tWNGzcaV3ADrzkeeughAMJnnuW93c+XPW+xrfSXFFFLHH82ik+8zByeEyjluNfYuRSnflRYrOfXDGUiiWfiCZAVPE1WQv229aKHVApJkcs6o1WPQrRMBoi8zctg/Jk9t8LchSoRmAzWUme/Ocrxfx/MnVCxvB7J1RSJOgTGoY0eAhvE1zbRm/xEtolHT7QFVGxeceXJhf8aYexQZaGpERYurQgLcRSbwpb3dRLeJm7Tq0f0szwa48yXhlgrs0miYn11RKVanVxj9vxSXeK7erA4vKJF4qkD9Tzf8HPTXPx27cEX9HWJCo0A+h9vpfuRCpkCymBlfK22KGYlmVsufmeU0RenC7/VaBeyBS1YSv2NVbiXokLjbh/eTmMxTTneZ/WYCQ64cYYqRwkyqj+xnCQVz3GvyinecvxpcTDGsX8bYn6wdoESkkRqFSaOLBqmZ6xk83I1qQQHyguMJJOiaWBK/ImeZhOhbm38q8i93NkNeZPa/Dcyo/LiBTugca7F5iz3OmtsM+jfpGkXPnbwTcxPFqKDWYZSOE/FsQ0mka4UzxfSlSTylSTSiThz8+I2LylTzgNkAEVRSKfT/MWp/fzDmVuLjmWOFDth3JcKH+XdzUsoMjzzfKFjlUZU0kdRWufQNTAyZvQEuXS7jZIqiha0LtVI6SNnHcx7fqeT2EKCI/8wWHK85PySSb7v8SjLU3GGfjadPSyw21eAMGjnvzI5Y2uGCqpav0jmeqHt7jDeLidH//6iULmG3T7MDhNXfywW3nvz+9qRVVm4PtWvIpsgVk0FWoLtv9JFYjFZV2q6enDLHw2wMLh8XerzdDvoe1MzF783KiY4UsEZUoWjYDXuDdC0N8DRT18WEiu52m1EtviE0x923BvB1Wrn2KcuC5UTwjWmJsqRAtVnIj6bLBrDqhqKSusuHdOuMeRixaprDaWtwsbHGhh6cYb5S7p3XmLAL72eq93GxjcFGT+xzKWfzK+/15KQjOuEHCVpRvQi3JxASY+4L3d9jXDkRErAumhKOYESwM4zMg0LJroe/CFOvzZYP/qRS0if0DyD+rvOvdnnf7GNOz49SDKeYXR0lIaGhnX3cwOvPQYHB2lra8PmMfF/Pns3/3iymHuZjhQbS91XtO/Pqya4uWWN4WGJi5cK/ag0opI+ilJN3EsvyCvlXiVca13I6tKISZkMnfcECG9yceifh4nPrJUcLs93PB02Gnd4Of2lMuNxFW5VlaeJcrN15a+Nq5k95roEOdcbm97bxuz5JYafKROVwQhmaN8XYeL4LCuVIjKUwB4xs+HNbVz52QRTgtE27REzKzMJIeFQcIub9jdEOPWFy6yMv/rvYuCdrbhbHTz/P0+/6nUBDLytBcWqcPzTl4XKWQJm0qspYcHR5g+0s7aQ4OyXa4/WBdB0a5C1hbhwGtvN729n8sQ8Y5XS/rxC3OkaLoDZDokE4qK2a6y7VoGScd01RgHY7cbsUrj84yqRL0ueZcs7IqhOhQP/kHVwlxr8S7mbnouZoVQtoE/jkBMo6RH3KeijKOVESsC6aEo5gRLAQ4cVVtUMu5/4NgD9nxxl659rc5IR70r+f3x85O27+cON30VVVdbWxHfk3sD1gd/vZ3Z2lr8+fiufurSv6NjKiWJniku3ofd25xI2a4ZnThRE26URlfRRlEqNioabGvQ2r5LUvxkpXSwIKN0+XWoDy3Kf7R+IsraQ5OQXSkQkZWxkOTTd4iOxkmT8sMEcbMSrKnAp4ZRvNYqU6kbOB1+HiOR6IrjZTXDAwxnBTW++Hieqy8S4YITOjgcbsLjNnPm8WH0mq4xslYlXSitogP63tJCKpepKTVcPdv9eP7MXFjn3VTFuUg+sARP9T7Ry5ScTYoIjE1g9JmLTYm3p63XSekeIl796tbhslfnfGjQT6HMz/MK0seCoDHeKbPfg7XTw8n/U/+5eCV5VC0xO03oB16vNq2rkTvWU1dfdea+fiZOLLI3qnq9UtFpSl9mjsO3NQUZPrDD00sp6m1ZpGpISEW1pqlK9CDcnUNJjLZC7vnbdnEgJ1kdTygmUALqvynSOmem/70fYA9q64KGvXEX9fW0dasS9fvR/9/C2f7jK1GCMM2fO0NfXt+5+buC1Rzwex2KxEOly8Pvf2Mu/nL+56PjyyRLulXVTqKTY51thcMLE1clCXyuNqKSPorSOexltakjoUhiWcrMqXMvIBhba6KDlFh+nvjxKrCSSyDqbl44f2QJmggNOrj4zbRid/JptWtfbv1gCxaZclyg814r2eyIsDa8ydUrMBhXe7mX+8oqQcEixKfS+qZGRF2aYvyQmylE9iiaUEGhSR9RK274wl743VjbKzSuJljtChLd6Ofg3ZXYDvQr1qW6TULYXALNTIZ0SF4x13N9Aai0tFK0LwN/rIhlLsVDLJruS+uYvL6+PbKSHEb/Qf/vXmvaxBu6lqNmhsqQ5X3XeV0MEpfJla+Ntvi4bFreJsaPLJYcr27w69/txhs0c+0LWtyeX2rhKuJueaymQUSpwL/f6zTqxkImcQAkKIiVgXTSlnEAJYONBF3E1zVse/kL+t1t/tIz0C+OQNuBeMnzto1t4/NeOEYlEGBurfdOKkHXW7dZ2NZ5+erIomlKpQAm0iEq5qEqnTkscPlr8MnIRleTFWHGaNzSSm1HNbHzIzk3vMN6tkH9ZRvGAU4XdY+sESlCsEtQZX45/doij/3i1uCMZTfolH4Gvy0lQpxqu9SPb8SsdbHiLYMhRScIaseBouE75QuPXV6AU2uJm2y91odaQPlcPR9SKzV9FXWmAsRdnhQVKALJZrivU9rYPdLLlveKRmyRZQlLEB+/GvQF8vYKNWS9UaNkXwhoW65uySQJZEp4XO+9uYOsHeoSfT7HKyCYZ4mKGnsXLq8ICJQBnkw1bQLxv9j7WVNv4cA1OttLdavHZZP53/f8L1a3/rcK9eXvtwsYg1a9y06930LDLLWQI8rVZcTVZ8bbpVMoGO4yLFoiKwuLVOIf+ZYRLz2YdbLn5ILebrLR8bj6xWtYJlKDgfDASKAFsHUhzx+40i02ZIoESaNGUchGV9AIlgIOdaY62xXH6l3jUof3H/x4i84xxGrd/+MHNPPdbPUjZHK03BEqvX+RS8cUWtW9TH02pVKAEWkSlhTaZuTicPCVxsSQabi6ikrwcKxIoQZZ7OczseoeTztuMx6y80dKIeyl67mVgENFHVMp+a1efmebgJy8Tn0sUfbPV9PPeNjuedhv2BoPdchWMMQ27POz81U69P7q28mbwdNQYifIVMPZcb4FS7xNNtN8bES5nD1lxRMWiFZCAy98bFxIoAZDKcq9y0SXKILjJzbYP9RDdKbaLTZI0biI6T9mDZhr3iuehrxeeTjuhMlEQK0Ey1ccrt7y3ky0fEOexilnGZBLkK5LE8LPTwgIl0KIUuSpF0jBMo2Zm83tb8RhEhVtf/BoMKpKcrz+xwnUTKNmCZlSvKixQ6nkkzKZ3NWXrrt3JFuh3EOhxFq21DevWr7UlmWOfm+TEl3WGvdx8UiY6TD6iktmEUTiTnPPBSKAEcPueNJs3rLHcqBYJlECLppSLqKQXKAH8tC/FoRbt3t7inGfL79rJvLhuizcAyYMtfOTtuzn+dc2RdoN3vb7R3d0NwNEfzBRFUyoVKIEWUSkXVenskJmDZ4r7UC6ikrIcX5fmLWNTydhUOneb2PGmclFbs30+sX6gkDK6XftG+R3034zuOzv1H5Oc+vJkcbprI+5SwsvCG10E+wzW3eWcZNlxrv/NTXTcGy45VD1iislpwuo1XR8nW/L6CpSczVb639qCSTDyuDNsxRkVi6IHMHtuSVigBGBS5fKpoypg47va2PTOduFykiIhmcTnOH+fC2ezIB+9BoS3ebW+KQBJUbTnE5yDQxs9bPtQD56u8rutjSCbZGRVKXYI1VB3bCqhbT4oXerpuIsR7JH6+mbTbQE67ou8YryqFlxPgZKzyQqVviGjCAYm2PLuRoIDdiGBktVvwt9pwx3V8R2jqHolNq/EEhz+3BRjRzTnaN6mVcbmlRPP5vw26+4pKwIxEigB9DamuGNjnOWGTJFACbRoSrmISnqBEsD5aJqD3WuonkUess/zkH0e3uUmfrjFsJ5PPb2Hl59sZCVL324IlF6/UFUVWZaZG9MmYn00pVKBEmgRlRbbII7CsYsWrk4W96NcRCXT4lqRQAkK3Gvr/SrNG8vYFbIRldYJlEBzJOecyQb+xqKIStlvafLMMkc/M0RsNlX0TRravHTjkS2oEtrkwRZY/y1VEii5W20MvK0JxVbBblKGO9lC18nXSH0Rg64FTXsDNAjahABczXbsEXGOMXF4TjyyUSqDoiooZsFsNiGVLe/rItgnFqFZkkBWpGKlQQ0wOxX8vS695uFVhS2k4ukQ40GgPZtczX5hgN5Hm+l7rEm4nKLKmo9TEDNnF4UFSgCuJhu2SpGGDPiJomqpHZ2N1msTKAlwr1Sc6yZQUp0KZpep5ghKOTTu9tD1QHa9KmDz8nXZtUibIjYvReHij+c5803dZt/sWj4fQakU2fkoo5rXCZRAx70MBEoAN3ev0duwxmKzUiRQAi2aUi6ikl6gBPDywCJXOjUB1q1WmVutMjzoInPcOELvx5+9gwPZbDs5m0qtEPpSb7tNSw77rb84D2hp3yqlfgNwjCRYWFRZWV0/0ZVL/ZbD7GiShbEKA3qZhOWdd3vY9YsNFcNcA+t2h62M63a25UJylYPuY3j+z85x5JOXK9dlAFmRUSzig+X2D3bS+7gxEa+E3f+tX1wUpcLu3+2j/R4x51VgwMXePxqg+Q1BoXLOBhs2vwXVJybqOPWZQZ7/f8R3n0du8rLp3cYG5Uo4+g8XOfSx88Llhp+bZPgFcVHUoY+dF97tDtC2L0zb3eKOx3rgjFhovS1M024x59zsmSVe/LMzTApGRpg4NsP4sVmWR8RUdFd/PMkLf3qG+JJYFICWfSHx7wc4/ukrvPCnLwuXczXbcFZLz2gwKe/5vR62fVg8nPuu3+ii+42FvlIrYdjzu5103leSrqkKWXG1qgw83kTXg8ZpnsrB5pW1ywoGOZk9F+P5j1zmyk+yERUqzA2ZTKboeHyRosh8FecFAKuFDfda2f6E8bsrl/oNYG4IZuISuUhKRigVKIF2+lAE/sfZB4p//6WxdWsNCXjjb54AwOVy0dQkTrxv4PpCkqQi/8yHNj5TMfUbgGM0w8yMGSM1TrnUbwAkYH48zfxgBU9NGe61/d1huu/zVudeOoOIlgJKd0yWqwqUSGe48qMpnv+zC6yM1SHmkcDuK6NSKuMI674/ysa3t2H2VEkDUnLv7fdFuOl3xA2iXQ9G2f4rXdVPLMHWX+hk12/1CpdzNztwt4qlAwZ48c9fFo6MA9D7aCMNu8RCe69MJXjpL88yfqhCZBwDzF9cYuSlaWbOiQldJo/Oc+CvzgqLqRr3Bmm/K4LZfm1RempF+/4GOu+NCpc7+ZlBjn3qUvUTSzD07CRDzwpEzsriyCcvckokEkN2Yb/hrc34+8XF9i/82cuc+0aZHXNl+Ik9YMYRtmKrkta3lB813x5gz+/14GgUM+q27guw45fF1yC9j0TY+Ut1lHtjA9veK85jFVXJbigQ69PH/nWUg3+XfefpdGXHbEmaqNhsyVhsJHzVw2xix5udNG0zHqPLpX4DmJvIMJKq/O5KBUoAS3aYc8P/c+b+wo+/PW7Iu67+qrZWOf8t7bfbb7+9Yn038NrirW99KwBPZdNLf7jnqYqp3wAcYymWYiZiyfUO3XKp33KYnZaZHazAZwwESgCRzVa2vtVXNr1IHiVrl7X5Ao+TcimAykHHyw79/RVOfl5ww46kbewy1WHz2vb+NroeriLoM7j3bb/YSccD4kLArR/qEBYZ28IWbvqdPqI3iXEaW8CCq8kuLHS5/MMJDvzVWaEyoAnt60kjce5rI5z4V/HI2kPPTnP1aXGb1+nPDXL2K+K8svP+KG37ro/Ny+Q00XlflMgOMUfn6sQah//2AjMvi/HR+SvLXH1mkuXh1eon6zB9aoHDnzhPLBfNqkZHVHCjmw5B2y/Apf8a5+DHyuTrqgBPqx1Pm/gaZNsvtDPwdnFOs+ndzbTcoXt3Ndq8tv9CK01713/nlbiNyWli4MkoLTeLjQ9WlwlJgUxGzIEXm0ly4O+GGTmwpI37ldbkJTavZAySuqkmUxoBubS4aqZ9h8Lme43nt3LpRwAWR1OMJhQq5cksFSiBdvq0D/780v1FPyv/x7Qh97r9j7X+6LS7iUbF10o3cH3hdDpZWyl4sd/b/XzF1G8AzpEUi6sKRkqJcqnfcpgag4WR8v3UUKAE9N7vofkmx7qoF+ug/4ZSkNIP4YpS2eYlS5BJM3NmkUOfuMiqYCaODJq/0VxOpFSm7vB2Lxvf0Y7qEeMmoc0etrxf3AcR3u5lw1vFfZudD0XZ/N524XLuNjvuVnEx7fF/viQcGQegcY9fE/IIIBVPc+JfLzNzVowrxOfjDP5sgoVhsehLSyMxTvzbldpShung63HR+UAUVVBsXy8a9wTouFec21/58QTn/lOcVw4/P8XIC+I2r/P/OcLl748Ll2u5I4Srjr557FOXGH7KwEcEZXmfYjPhaXNgqbI+LYWvx8GOX+7CHhHz1wcGXAy8tblomK7F3xjd7WPg7WXGhwr+xubbAwy8RdzPJZtkZDPCNq+L35vm+GezdsdabF56f+NyaSS9ysLNjGpm4G6VUKfx2F6Je02PwLCl8vdaKlACSNog7oA/vvJw8YG/njHkXnv+7hKH/1l7jh07dlSsrxRCo8m//Mu/EAgEGL+geZT++tl7tAOtCWyDxgQgFjBhnV5hz00ZpqYlLlzUhWCcXsmHozJqyJGXqmxnyhlkSgyX8dUUqXiajJzUOlcVgp1D820+GnZ4OPDRy8U5YQXDV1dFtuyBj9YX3m7kxWmWx8W3eiVjSeIrgkrlOCBLwkrQxbE1ViZjLI+J3eel741z6XviA3q9CPZ5cLeKq3HrhVBKlFcA574xTGzm+mwLXLq6xtlvGOTvfLXqG45zfvj6hAIHCPS7xfMeX4Mq+eDfVBHBlZmUF4dXidWQxq6UFAjt6svWrTohGcuwtigQlUqWWJtLMHZkjrGjYsK0+YsxXvro5SrXr0HxnE4bnpc38mfSIMkMPBHAbJU5+lmdkaSCI0AymyGRJBlLk7KuPy9jrdx/rsxZ4BBgwMOWm7Pv5/kQzpuLjTb7D5kY9iVx7SlOVSqd0PpBBjj7tgC9n9cMOJFTSwyfWWBmZuaGSOnnAE6nk8XFRWZGVvA32vnE03drB9qS2K8Y07iY30yfa4VgIMPBQ8X9zjyzWpF7nfteFeFnziBTQqATsbSWwz6VQlJk42hKoH2DOsPI5nc3sjaf4Ox/ThaRekPDzTWEtM6kM4y+OMfoi3Ply0uy4TVGXpomvpggsVLBiWhwv4nlJMnVpKYVE9BTSXJ96ZjmLi1hqcNQcOCvxR1e1wJ/nxvVZWbsgJjgqB4kVtJcvo688srPppi5sCScDq1enPvGEKqjinjuFcTo8+vFGq84cn3fDN4OJ8mVFDNnXqGwrhUMGvMXV3j+zyp/C0YGleWxVZbGVlmuxbinq99oB1dFZOtOrKaJC/YvSZK4+swMtnICTSi7Zj7z5dFrS1MCxRFbSqE7ZrbB5rdFGD6wyPhxnYK1EvcymTCbkyTX0iQMliD6dG9GOHEhu2nKwNe5lOdeASw3F9ZwGwchsiDzo740N7UUuJf0grbmygCZX/MgfWweCWjLjnUnj59GlmX+6q/+quI93cBri9/8zd/k937v97h6SnMQ/NnBe7UDrTFMg8ab7FYDCrbpNXb2JJiaV7gyUeh3lpk1Unbt21MMeMTs+TVmqbCJORfJokQknlhJk1hNoZiSJJNSebGRXLz5LtBro2mPh1NfGiOxnCp8v4a8S+NlZZ1plXhZlk+d/KxYqrAcrj41SWyuyrgqrX/u+HKKZB1zcD2Rq1dn1li4uszypFj6xsmj80wenRcqcy3wd7sI9Lk5bxoxTuH1CmNaMCXKteLlr17V1iDXAcmlJKe/PMjy+PVJ2RmfSzL8dBkHVK0Q4BqBfjfuFhuXck62VzA1rlHkj9OfH6rruvOXVlhbSQrfnxbFLftHrbv4TZBYSZGMFa99q6UJScbTDD47y9zlMtERypSPzSY5+q+V02NU5Y+Koo3PRs+YK5vSorp03O7E6lY4/a3CmLQu5ZseJgUpniC5Cok1I5tX5XXJeNzG+EkMbV4rDdl7eyGMZ0+xKODmk2bGfElcm4ttwMoPsxGgJDj0+01s/9Nh5Ax0/GSGpbkkk5OT+ejUN/D6xcDAAM8//zzTQ6sEmm189MBd2oGmNUzDxk7x1YBCaypGgy/F8UvF/MwyXZl7DR+KAVJZ7pWLZJFJFn/3ydU0qbWkZgtTFMNoSsC6dVXnPQESKymuPjOn2cuq2bzK2KXy9ydLxtGUMmkWryxz4oqYWAVg7uIimWSG1KrYfJpYTbK2mEBRZVJxwTVqHdFUFgdXWKsj8vhpwdS114rQVi+Lw6vCgqN6kIprkZuuF6bPLLIysUZ8/vpwr6tPTWC2Xz+b19x58e/nWhDe4iWTybD4SvlTK3CE+HySw38nLiqPzSeYvbjM2mJaiHvJkhYpNRdJqdZvPhlLkVg26F+V6pYlxo/Ml+ddFTD0bIlt2ogH1ZDRJZPJGHM0fXRjs8SGh/2MHl1m7rJuPWEUvTIH1YyUSpBYMZFcWz/2Z+yVxWMXFmywALSvP7bSpF3v/AttdO8pbE7xj5kJTKmc27DM5kAx95K+ptlnMyo8/ced7P2ji5jisOGb4xz3LSNJEn/wB39Q8Z5KIWWqblkvKZBt6L84tb8gUspCL1TynSmeqO/qXWZmBs68rDWaOr2+w+idZdKq9pJabrKQiGUYO1x8fsZoR5nOIZYp3elfpGI2JhGNez007vRx8ovDRVGVtPK6ZiohCs13BGja7efwpy4Rn00K5YVVnRLxJYFX8BrnjH29IrLTS+d9Uc5/e4TJI6++wWfz+9pxNtl57o9PCZVr2RfCEbBw5stii/Hd/60f0hle/AvxiDz14JY/GmBhcJkT/ya+c04UbfvDNN0c5OzXh5g6XrtBK7TNQ3iTl5OfEbvHbR/uwhZQee5/iEfeqhm6Cemm3+4luZbk8CcuvoLXv7YUb69FvcA1h9K2uKTy6ScrGFK2vr8JSZY48k8lCnpdGaNdyBvfHMZkkTSRkpGDTOdYk8wlhNlcIBdG4qS0s3gRHffAxv4MVwYlllZUFlsKZfICJR1yQiU1BvtPKaxGF1nWRVn6WNMLcN8gDCb4/NNbQFUhHufxW04w22JjtyQxdGKRu+66ix/+8Ifrn+0GXjd44IEH+K//+i827Avy3o/tLIiUstALlXxnC/ymryFGxJ3ixeclchGVzDPrFz2l3MsegMiAlUtPxdY5xEqNNECxWKmEXxUJlYwE45mMJlJaSHL2q+uNsUUUtYRbbf1QK8nVNCc/m51Pq4jH9dzMbC+J4GRcoMoJRTda+7n/C2HrL3YimyQOf0J8kVsPbv7DDSwMLnPq3wern5yDGfre1MzE8TlmX65d6BLe4aX7gUYufGdUOHpTPRh4ZyvuVgfP/89XkZvocNNv95JOpDkoGBW0541RFkdjwgKzvf99A9PnFqpH3rqWkNNZRHZ46dgf4cxXhooNTK+go62OwvWXfRXTkGjXN7g33Xhtdsrlx8sy17aHzQw82cDgU7NMnqpgbCsRL9kjZvoe8DP43DzTL8eqc69SQ46eexmIk0pTvoX7FSQZhoa1OXKpuVBmyYB75YRK2y9B80qGsbuLjd2f/O0vwYUEvNDMZ2MNkEjw2F3Hme+08pl/vIU/3Phd7d7+Xzpn/DxBlmUyZPj4qTsLIqUs9EIlT4mu8fboEnOzMuezDjXLzHohg95ZJq1ox0OdEplUhunzJTashIFxVsfN1tm89H3LyOaVzuDttNJyi4ez35ogNlWhfAlv8/fZabszyKkvDxObTgoJx03W4nRqIvaymvD/km/K1Wqj/4kWLn537LoIgToebCC80csLf3ZGqFxwkxtnxMrlH4pFHtj6oQ5ks8zhv70+vHL37/Uze2GRc18V32UvisCAm543NnH2a0NC0ZTc7XaCA24ufm9MSGDW81gTvk4nL37kGjYiCHCXze9tJZ3MFIkSS3mT/rt/tdJ81IxXk1tdo7DbZJfLpp+sVG/vwwFMVplTXy3ZUKB/VoPyHfs8WF2aSMlQnKTnWiUpSPTp3ozESUlXMe9KuCW6m9OMTMmsxEwsthSunRco6ZAXKiXhnpclVhqWWegt2Ps/0fwzlF8eRz6T4PNf3aTdazLJA286w0S3g18Kqvzk30Z44okn+PKXv7z+2W7gdYOPfOQj/O7v/i63vL2JJ/73DQWRUhZ6oZJXN6w12eO0OJOcOG0ilQ3VYZmuwr2WY6g2CLQpjJ5JIZVyLYMIrEV2sNJoFzq+ZbhRL52m854AydUUgz9dv3G9ks2r++Ew6USGi/9VftNVpoy/UlGzaZYKFZW9xg2UR9cbo6gO03UTOW37cBcLgytc/E6ZqNBl0Hx7kLmLyywJRF50RK30v7mFS98bY+bMqy+markjRHirl4N/U1/QDlEMvKMVSZaE/YbR3X7W5hLCArMdv9rD9Kl5rtQReUsUziYb3Q83cuHbIyxe1b3zV8CeVhavpT2tWv11XFvPqdaNl3o+VDYqFQw8FmXohTlmLxXPO0V8rcTmpTpkOvf7GD26xPxg3FCcVMTHSlLrFnEvA3FSKfdytMqYlAyTc1q5+XYd92paPy/khErhIZW2uQyx24q/nz+JHIH/7yScivPZT27MC3bv/uBZhns93Pq5YdJJiWSZLBzlINy7crkc/+x7t6w7ttpaXsn6o7MOjkxVjlhT2NlfeLGRPgvRfktlNVnpdZJJVD/4unUvpYZwXSPPzXPgY5fXC5Sg0NkNDCax2TjJWBrVUUNz6sr3PtbETb+1AbVKWoFShLa42foLnUJlAFDBV0fKBED4HgEadvsIbfMIl7v5DzfQ/2ax0L0r02vE5uPES/OLv0qYPDXP/GXxXd2hjR58PWLhHgGmTs0zdUpcfLXlAx10v0k8tHc9sIZVdvxaN8HNYjlwZ84vMnd5iYVhsYhPoY0ePG3iUbAmT8wxd+EV2pFvhJLJa3UqxkqltJVlsPcP++l73OA7qDApq05ovyeE6i+T7qLcpK1SKcNYWdgjKvaIeMHO+0L0PSYWRlySJDa/p42bfrNduL7EcoqkURS5rPG9XJqEk1+eKi9Q0t+bTqBkVsHfaTJ2KpRB3KMSDUPQr/0H4Lqq9RkjgZIe21oHmbr/UpFAKY/vtvL5F3dpAiUAVeUrB3bw469uQF7wIUkS//zP/1zzfd7Aa4OPfexjAAwdWFsnUAJYaTPuay+PWfnZWQcxf+UQ+qXcy9+mEmxXcUUlIe5FKoW/x1qUYa5qChJJ4vi/jXD268aLuDyxN3BmJZZTJGqc8/WGm92/08PGd9UQjrpkrO19UyMtdxiksK1i7LFHzFgCdez6Mc7WV7mIx0zz7UHhcj1vamT374mnpVsZj9UV2bNezJxdYPKkOBfy97oICIbaXhpcZurleRaHxfhCcJPG0a9XureuB6NseJt4mPTxY3NMHJsTLhcY8BDaLM7tp88tMFXNofoKGVTWFhKsTK+xOqvjXjUYVHofa+Sm3zLOm17JoBIYcBIYqLC+KlO32VNfH/F02IS/cYCBtzbi7SwJI15lfexssbDzw+203u4VqktRIbGaqhxp0yC60sp4gsOfHi8vUNJBL1DytJgw2xHiXgmPlcbGNC1NhbW5c0jrM0YCJT1MewfXCZQA+FIzHOrQBEoAZjNffWoHP/qXAdSpSRRFwecTS/tyA68NfD4fZOB//vS2dceSreXnvadGnRyPVeZduZ39OYESQOMGlYZelYxZzOZlsoKrUVemqihRYu5ijOOfGV8vUNKXNxCWxxdTxJdSKGYxm1fjbi87f7VHeM3oarXR90SNNiH9c5vA2Wwc8aoaTHVEo/T1OPH1iNvYdvxqt3BaurWFBMvjMeJLdaQ7rgNz55aYODknXC640UNoi1e43MTROcaPiNfX/UgjrW8IC5erByarzMA724Tf+fL4CuPHZ1kZF9sl7+tyEtrkFSoDMP1yfZy5XiyNrbE8VhjTjHiT0W87fqWD9rtDYpWZILLDLf69mrL/CTqyVLcJq69QV61RMCPbXbTvK0kLWINwvO+NYbZ/QNyGG19KEV82EkhkKtZ96WdL5QVKeugFSiZwN0pIZVJiGSHhNuN2QDSYwu/W7sl1VZuHjARKemyOjDJ2x0iRQCmH1N9G+Pw3thXsFiYT3/nWJg7+dQdjL2m26T/+4z+u+T5v4LXBL//yLwMw9oJlnUAJINlkHL1ueEXl+Qk7S4HKHCPPvZY1Dmf3yzT0mnEGEeJepFPYQwqKvrpKEWMBZJmL359m8Ok5w8MVbV5LKeJG0USMoONem9/bTs+bxFNiRvf461rrq04F1VmlHYxgnK2vchGbQmDAXfwOakB0l78uX+rK+BpLI9fP5jV5bI6Zs+JC9Mh2H54OMR9ZbC7B2OFZ4eiQjqiV7kcaMdfzzutAeLuXtrvFed7k8fm6bF7hLV78/eK+2/Gjs8y+mv5GHVJrKRZHVlhb0M3DNfCTxj1+tnxAPD2js8lWV7pEJZt2UlSgZAurxWNDjQKp9n0BHFGxwcHkUNj6gTYi23T+7BqycilmhdhCkviKQWSjnJ/AYH6IL6c5842ZsgKlIugESTYvKBaEuFfcp9IUSNIWLswjnstZ7mUgUNIjsunyOoFSHv9niM/+45bC8ykKP/z0Bg7/dgTSCpGIeOpoYevohg0bAOj8+lP53+6ajLF3WhuwlYZl7kssEnFqRr423xq727Ttl041Tv+WNfpbCtsxN90BoWzkzXAbbLyv0JE677CyMB7n8Jc05eLAox5CG0xkEgmCfSobn/DnHeud+1z0PODL7ybb8e4Weu7XFju+bgub3h5B9cqQydBxT4C+xwuNtfHtjTTdok3C7l4LW97fjDWoXbj97gAb3pzNXyxLbHxnM813aLnqnc0qm9/XSmx2jYMfu4C/28XAOwokYODtzbTfo92Do0FlywdacXdoRqvmOwNYQ2ZmXl6AeIKBt7bQeb92T6pfZcsH2/H1agvfxr1+try/Pe8Ia3lDGEfEijWsojphywc78sKQht0+tnywMNj0Pd6cF6lseXcHG97cmhcOhbZ5tHOzbdj9psYiUcSWD3bQsNvHzt/oYccvdbHlgx2o2bV418PRIiHRlg900LhXaxdfr5MtH+yg/a4I7fsidD7QwIDOgbL5Pe00v0Fz9Lk77Gz5YAeOhmx73xMBMqxm01VtfFdbfiJytljY8sEOnC2a+KxlX4hN724DYPHyKmuzCfyd2g1awypbPtiBp1uboJvuCLD5fe35e9jw1hY6H4wS3Oxmzx/0s+PXuvMCruje4gG7/8lmuh/JLhJVrV1SsRSnPjtI5CZvUXv3PtZMz2OF9ElbPthBZKc3397J1RTP/YW2S777kUb6nyxuw+hebREbGHBl27vwiVpchYFr8/vaabq1uL1zQrKOeyP59rYGLAT63LTs0/qhq92mtWGTdm7b/jAD7yqEvh14Vytt+7X2liwSWz7Ygavdtq69AQbe1kJn1rCm+lX6n2zG4jZj8ZlpurWkvd/STOdD2nekOmW2fLCDwIA24TujNkyqQjz7zo3aO9dnIzsL7X3qs4NMnpqn97HiPhu5KdveW9zF/Tvb3sPPTHP6C1eL+2x/cRt2Phgtyo28+X3t7P5vffk+teWDHVjDuvZ+R7YNJYlN726lZZ/Wv53NFmRVZvhFLepN210hNurb+x0ttN+jtbejQfvu3R12ULVcxI7GgtBSGyNy7W1mywfa8PVo/btxr48t72slsMlH0+4AG55souuh7HjihC0faCO0WWvvhl0eNr+vcA+9j0XZ8Yud7P2dXlQ/bH5fK6Gt2ngS2urWzlUBSab74TC9jxbGzs3vbmHLe7VrBTc62fze5vwY0flgiL7Hs4ZXWWLze1po3KO9R1+3HX+3E9WrkZSOe4JseLJgpN30jiaab9WcOO52C5vf3Yw9ojJ2dJ7YXJwNby6cO/DWKC13at+Ns0ll0zuj+f7dfKuHgbc2cOpL45z4/Bj9j4dpe4N2XUvAzKZ3RPF0akbsppucDDxRMJD1PhKg8143KDKqEzY+4cfbqV23YauNjY/7tVQtZjPd+2x03KZdp3GXlZ43OGm9WUv9FtqosvHuAinp2iPRtVtCXopBMs2m2zJEw3FGJ1QuXga/L4OWZxM2Nq9wC4UoEPtZpBdtrvU97+G+M2lMl1SIg/NICPcLhXfzu599K3/zzE4AFq6EuPKdW1id0V7O2Ev9xGIxwuHwjdDXPwfo6uoCIJFIsGFR6xuR1QT3Tq3iyUaV7PUtc2ui0Fe2Nq/SFlgDEjQ4VxjYlsST1IziTT3Qs7Nw/Z6d0LhV69tWDzhCJs79bIHF0QwNA2Z67nNBJkMmmaLrbjfNN2k8xuyG/oe9uFuskErRea+X3vuDNGzW+lnHfi+tt7iRFBmzHTY8EcHXpc0nwY0ONjyR7a+SRPdDAdr2a+MxZtjw5ij+fq2e4ICTgbcVDLXt94TouC/Eqc8Nc/brYwy8rZHQJm0s9PXYGXh7s+asBlrvCtL1YOG7GHhbM0tjq4wdnMHTaWfgHc2YPRrpb90XpOeRaP7cDW9upOGm7NjSbCMw4Mbfp42jzbcH6H28cE99Tzbn52R7VGXgna3YswujrR/qZst7dTzhiSZNSIQ2Dg28sxVXm3bDDbt9bHhbC/agmb3/bQPbfqGL1ru0OcLs0c71dGrnRnb4CnMP0P3GKH2PNdJ6Rxhfj5OBd7bi69PeRXCLm4F3Fs7tfCBa5BhzNtlJxjT+7B9waedm10Lt90XoerDQLgPvbCW0VRvLJ0/OY7IqeUFO691het6oO/dtLTTs0sZcT4edgXe2YvaY2fTeNnb9di+9jxbacMNbWojeXGjvgXe2Yg9qN9F0W4DeJ5s4+5VhJo/O0/tkE023Zds7orWLoyk7Bu8NFPHT3jc2MfT0JOe/Mbq+vXf5ivhpzxujtGY5Z2IlhcmioLq09xje4S1u74ejtN+b7VtmrV38/U6sPhVbwELfWwrX7Xiggc4HitswuEWbZ/392rvKrcja743Q/bDu3He0Et7hBcDb7dDaMNfed4Xxb3BhD2pcYcPbWmjYrbW3q01r75xAruWOIL2PF/ip3a+SSmjrCkeTVWvvSHF759vwyUKfPfapC6TiaZzN2rccvdnPBt2z9j7aSGuWc+b7bIeds18eRrWbitq7W9feZofEwDtb8PVp33Joq4dtv9TBTb/di6vVTteDUdrv07d3C/4sjwxucjHwzsJ1fT1OlkZirE0n8u0dyra3r9ehfffZMaLt7hDdD2vfwur0GpIiEdmh9e/cGKFmU6S13hmg+42F76b/yUYadnlof0OYznsiDLy9GUtWJN50a4DeR6N5Y0rfY1Eab9beo73BzMDbGtn+wQ42v6+Fxpu99D1WeOe9b2qg6dYcV1EZeEsjruzap+EmNwNPNtL3kHYf3Q+Fab1D+27MbomBtzRqIiYgss3Nhjdr35irWcXdYs3fA2bY8JYovu7smDzgYMOThbGy/d4gbfuDrC2lmTy9hLPFSmCD1mj+Xrt2rqpxuLZ9Pjr2F5xwG56IYPFaOPav48iKRP/jwcKYfJubznt8eWNG38M+Ipu1g+5mMwNP+jF7AEWmebeTrv0FQ1HvA14attiQJAlno4m++5xYszb0nn1OtjyR/SORpGufjcYN2v3ZPdB/pwm7H+SlNRrbM/TcrB176aDMwgK0ZTda2awJdrYsE8rm5+wmxu1SwdC49Xkbd48vwrwZViDwfAPmUa0NbZed/Obn38pnF7WxaeK5jUwe0MSfiRUz//UnflKpFDt27OAGXv9405veBED4i0/nf9s+mWTzdNbA17jEHYsrhKxaXwlbE2wLrABJrKYkrZ0xerw5m1eK3o0p/EFtw4THn6LrJllzlgONGxQWxlOc+L7G8Tpvs+FvlSGRxBmW6brDjimruWnYpNJyizNv89r6jjA992jjhT1konu/B7NLS+8W2Wyn7c6Co6ljn5fgRjvIEhaPRO+jQax+7SbCm52F71iS6NgfILJd+/6sXhM9D4dJJ1Oc/Pdh7EELXfcVHAUddwdp3O0FwOSU6XkkkhcJBQZcOFtsjB+ZI76cpvUNQaJ7tPs1WaHn0SjurK3B3+uk59Fo3snWfFsQX48Te0S7Vs9jjXi6tDnC0+Wg57HGfBs23R6kdZ82hnXdF2XzezvynM3dbqfnsaZ8GzbeEihydPQ82khwk5uBd7Sy/Rc7tXOz4ofGm/103FsYG7sfjuY5kD1ipeexJjrua6DtDWEadvmKuFXngw1EsvO3NWCi57EmrFleE97mRVJkYlOaU6jj/gjRm7R2Ub3auY5G7YaDm91520h8Lsnq5BquRnu2DWV6HmvKt7d/wEWPjlu13RWm6bYgjkYrO361m03vbceTtUf6ep1FdquWO8M031lYC+eOXfr2WLa9mwrtfVuQtruK2zA3J7tabaTiaQ7/rRapsXFvgHZ9ez+itTeAo9Fa1N4AFk/h310PRQlv09rQFrZobRjQjkd2eul4UGtvR9hCcLMnb3fLtbctbMm3t55bddwboTHLOWWzpLVhlkcGN7npeUS37rg7nLcZmawy3Y804mywYPGY8fcVt3frG7T21k7W2jDXZ21+KyaLQmxO+3ab7wzRcqeuXR5rytt/PR32fHtf+eEEQ89O0XZncXsHBrQ2dDZbS/psgI57IsycXuLSd8fpfmM0byt2RK30PNaI6tXObdjlpeO+Qv/ufLCBbR/upO/JZqwhlZ5Ho1iD2fbe7qFTt6bquC9Cw65se3tNmGwyEyc0AUl4q6do/dWxP5wfI8xuM72PNeb7bCKWyre91oZBGvfqxog3RXG3Zft3r0P7u9lO+xtCdD8UyvMlgJ5HIniyYmxPp42eRyKFPnurj41vbWL3r3dmx7QI/t4s/2i10vNwpDBG3Oyl9c4Cr9n0jia2vq8VSZJwNVnpeTicb++GXW7a78qeK8t03h8iuFF758E+O+HNLqzeXBu66LircN2O/X7C2XWz1Wei56EQVr+JsWOLLI2v0anjVu13emnYrp1rdsp0P+DHHtauG+y30XmPn8tPLXL+e3O03uYiuj03RkD3vV6cUW3s8Xda6Lq7wK2a9zpp3W3RBEom6NrnxJ0VvnrbTHTtyxr3TApNW800btGuE2o30b/PQdMWLfWbu9VcZF9o7IGWDWBaXENOpunZmiboTbKwbOLUJQmPI4nJpH0LbQ0xtlEQ7+1hmVa0sVF+wc+dgwlMY2ZIguOiC+/xQrv8+tffxqcObQMgNu1k9OltxOa0Z599uZWFhQWCwSB9feKbcW7g+sJms2GxWBgZGaFlSeNLzniKXVNJHHHt70b3CtvmCmKKbvcaDfY4kMKrxmnriuNd0biXL5iitbOwUbWpNYW/U1uXKSq4QzLnno2xNAWeBonmXVYtO8tanMhGC6FezQagKNCyx675rNIpghutbHw0hK9DGzAim+2EBmzaiVKGttu9OLP+LVejSltuo4csE93uILKz8P21vSGAq1W7jrPBQtu+QF54E9riIrrLw5WfTDP09Cxtbwjm529bWKXtrlDe+R/e7Kbp5sJY2HpniMWRFcaPzGL1q7TtD+eDKgQG3IV5Ci36Tk6MoXpMNN4cxN+fs1O48jYA0Na3ubnH7FRo2x/BlvWdbvlAJ/1vL/iLmvYG8mInxZY9N+tD8XQ4aLs7jKLCzl/tof+J5jy3QoG2/RGcWQ7karXRtr8wnzTs9NN6R4iOexpwNNlp2x/B1aKN+86m7LlZ83t4u5forsJ44eqwayJvBewRC237IyiqnG1vD417Cue27Qvjzc7fc5eWkFU5396hzR6asrwg19454bLFp9K2P4Lq0Z5503vbadK34e1B/Bty7a2dY/Fp7eLvddFyR4jh56aZu7BM060BgmXa29vloG1fgRc07vEz+JMJhp+eQlFl2vZHsEc0DuTusBfx3uhuP+HtXgBScc3mZbZp7eBqKW7vyE4fDTt17bI/gqvVhtmh4G6207ovXNzeu3Xn3h3O+8Bz7S1lz13XhvvCeLP+W1tQa8OcACo44Ca81YujIeubvCOEv7fQZ3PtDVqf1be36jGTTmo2LzXbhtas38/X46RVx3v1ffbEZ6+QWElhC+naW9+Ge/z5PquoWrs4otZ8el59G0Z3Fdo737+bbPn27n60kc3vbccesRDe7l3X3u5WrQ0dUWu2z2rHnE22opR7bXdHiseI/WHDPhubS4Ai5f2J+TEi296BAVfetg25McJN8y1BOu4J03Z3qNDefU6aby+c23SLP+/rNTsV2u4OsfldLfQ+1oi3y07LHYVzG/f4CG3UzlVsCm13hXRjhJ3N72ql7Y4QSDLRm3yEtrgKbagTIrlabbTdFcy/49BGF9EdhfVv2xsCuJq0b8HZaKHtDYF8nw1tdhHZ7iGTSDF6YA57RM2PyfawStsdPhSLZjcKDTiI6sbvllu92AIq5749TTqZou12L0pWwxXos9O4y5W3eTXvceJtz2YW8yi0v8GF6pLBZMLfqdK0vSD+atpuw9+pgiyjes207LLk/azdtzvY/JD2hxRP0LjVgj+7lDOp0LYRbE6Ne/m8SZoHtL5/4rKZqQWJBr9mt1CUFH2hFXzZKIANqQTb4wUhpunpBrZNrcCKAikwH4/AtNYu0pSNX/rWE/zrnPYu5882M/+yZidPpeBnH/OTSCTYs2cPohAWKX3xi18EYG68EGqwYS1DUzYfXuS4CY85g9+hGRcCzhQeW4aIM87ezgRBJ3gj2ktSVXB4JNzZPuoNaX/j0EixJ2rGoYsI4ggoeJssoCi4Gy04gmbUrNHT22zF3WQp2rWf20HrbrLhCKmoDq1eT7sDd3OhAzijVrzt2sfZ92AUR0i7du5cV27RlM7garThzw6czgYbjogVR4MN1WcisMGFq7FwXXeLDW9nbpC14IjYcGXr9Xe6cPitnP7SEPGlDK5WO56cwMZjwhGx4W7JGhC6nNpgnFVEmiwm1hbixCbiyHYVR4MtH1HG1+HMD9ygGWV82esOvzgJGa3u/D002PJBNnydTtzthZ1/jgYbvg4nY0dmiM2s4WiwYXZmB+hOB+52Z/G5Xdrf7lY7jgYbV5+b4PhnL+PpdOJqLah5nU22/D24Wmw4GmzYQlobe7uckNEW4wCuZjve7P07GrRzXc3atfzdLlzNhft1t9nxZY1RjqAle26hvZ36d9PmwNvpYG0xQTqVwepR8Wbv0ddZ0oZtDrxZNbLq1Nrb1++i+02N+LuLz/V02PN9CbXQhgDe7LtR9W2oiwTkiBbO9bRnz80aaQL9LjxdBRWvs9GGP/u3u0Vrb0eOrPQU2vvFPzuDrEj5PuCK2rPtrd2zr8uFW9+GzXZ82esqqqy1YdSebxd9e7taHXiy/dsRVLH5rIy8MM3wz6bxdxW3t6vNmf8WVI9J67PZ/hMccGvnqsXvBkDN3oM32y75/p0919vuyE/CoLW3v7QNc+3dobV30x0Bmm4NaNfNkk5vqwNHgw2LWzF8N85GG7Iik1xL4Wq2Zdtbm2A8XU5cLfb89+lqsuffjbPRjrPBljeWeLucuJp07d1i1/o8YAvpxoi4FqHN4iyMf+vHCGuerOTGiNFDs7z89WEsLnO+zWSbqp2bdcp6Oxw4Itaie5BNkqb2joMjYsXXmfsWtHNVi5xv71ydALIsEZvPjrNt2nhocmTbu634XEfEgi/7HU2dXCSTAas3S0DaHbiadGNygzV/rrvJhiNiwR4wM/zMHJKsFJ3rarThzY5bjpAFR9iCM2rN37+rwYq/L0sAG614s4ZwR9CEI6ziasi+xzYbTt0OX2+LlXCfE2fUhOpWcQTNuBuzz9ZqwRHKvptkEneDijd7bPpSjEw6g2JSwGzCG5FxeAvzkies4AkrpLMp4JwO8PmyjmK79reqQtxrojGZIkJhYe0nQzQb5z2oJjAtWvCdbMH/VBvqlB11Vvd9LitcvKJFhIhN+YnPuUksas9+6pCfyclJ5ubmuIGfD9jtdtbW1vDNaSmWQskMkUQGZ1ZA3z6TJmjR9RVnmqAjzS1dcQaaM/gcaayBLAcKgzdc2MXgCUn4Ahkwm7B5TbjCJlSb1r/dzWbcDdldZ4qMp9mMty2bwsRhxtVgxhkxgSSjmGXS6QzTZzSHrrfVhrfdRiaVxmQ142qy4MoKL72ttvxCwdtpJbTBTXBD1vBqBlezNT83uZuz42L2k/N12PFlhTq+HjuuZlt+x5CrRftbzoab93UV5h7QxrtUPM3YwXlcTRrPsri0dvF1OvNzPWhzUZ7vRa1kMjD4M42b+Lpd+TEWtDEsN8/aQ1bcrQ4cYe17W5tPIpt0Y0B7Yce9PWjB3erIj1n+bhfuVgcrUwmmzyyg2kx5bqU6Fdytjvwc4um0424p3K+304XJZuLUF66wNLyGu9VR4JFtDtw6HubrKtwvZrB4zCxk83Z725y4Wx2Ys5ESfF3O/D1obejIj8++HieeNgfmbBv6u51FXEXPn7SdNw6sXjOp1TSKKuPp1J2ra0Nng9aG1uw86+924W130rDbR8MuH972wj3ZQ9p1c/Oar8uR5xeF9tbqsXrMWhtm+Ymv21k013u7XfnrmgMmPO0O/Bu0hai3w1HS3oV7MNu167rbHAw9NcXUyTmc0cJ47Ot04uvS9a1WB95sve7su8ltDNL6bHF759rQ3WLX3k2WG/q6nZAmn7LN01ZoQ1djtr2zIjxfj6uoXbzdLsJZw4rGJxzY89zQiVd/brtTqwuw5vpsQ26edeJuLzybp9OV5zVWb7ZdOuy03xfB1+fE3aa7bpcLf7cTJElrwxZHnuP72h3YfBbS8TTx5QS+Tgf+rsIY4W4ptKGn1am9m+wY4e915QV6SLLGtdp1bdhiL4wR3YXv/urPppFlKT9mlI4R3i5ngeOjrXd8XU5OfP4qk6fmcTXbsAdyY48dj25N5Wm16cYIC65mG4vDK4wfnsPX6cDTql932LT+IkvYA2ZczVacuf7d5iSdyjD80kz23dh1axSTdm60wGvcWSfg4pAWbdZs0Z7F7DTjarLm17ieVlthvQv42u34Omwk5lNc+OEUzpAFT3ZN5W7VyuWCSHrbbfh0z+pqshDa6MDsBHezFVfUgjm7e9nbbsPTZsuLENxNFtxZAZazwYKrwcLGRzUDoLdFxdNcEOu7G1U8rdrfDp8JV4MJm1e77tqSLlqm2YQnrOBt0J7V6gZXUMbh0SIHesPgzdutzLjd4Pdp96P4TYSkNIEs92qQkoTkwi66iDmJfcxF47NNWMbtWGatWOe0e7JO2/AuKvzjoBZ5Z3UsyOpo1kiakBi8NIwkSXzyk5/kBl7/+OhHPwrA0nAhFW3TSobm7E5J5xEbYXMKb5Z7+S1JwrYUTlOSO6OrNDvT+HQbfn1BcGf9R043+PxpTLbsWN6o4AwWNjR4ozKuiAKKjCOg4Gk2YcoOEd4mM75mc2HXYgaWs4JMu9+Ep8WC1ZFbt9nwtRfGFm+7FV+L9p33PRLG3+nAlo0O4m234cutqTMZvB0OvNm/VbcJT7sde8iCyQmhjU68XbrxrcuRF1CrDkVba4ZzY4sdd5Odyz+cJLmUxNft1MZ9QLaY8HU6cUZt+XN9nc68uFO1mViZiLEyHgMT+DpdeLLzsLvZjq/Tld98Guh25jnb6IFZMqkMnuza1xm14etyYbJqJ/u7nUWRrb2dLjxtDsaOzLI4tIKvy4XFnW2XTifebt253a78mGsPqfi6XAw/P8WpLw3i7XLmbQCQ5Yq5db7fiq/LhT3bLt5OB5IEoy9pvN7X5crXY3Gb8XW58m3o6yjmYf4N7ryDy5w915VrwzYH3k79PWjtnVpJkkqkcUSsOLM80t1SsPsA+Hsc+XeDSbsnT5eTptuDeNrt69uwWzefd7rwZNf9rsbsuVlnh6/biU8XzVI/lzobtHaxZnlNaIuX4IC3cP89rjzHtwct2rvx5tYPhfY++o+XkLLtCGDxaufmRNyeDkfRe/T1uPJ2FcUka+2dnWe97Y78ewPw9bryz2pyyLhbnQw9M83YgVk8HSVt2OvEn+X4pux1c/Yzf5+LQL8LslOtv9uJv0fPzV14srzd2WTU3sV9Nme3dWX7t9mebe8uJ94eF8GNboKb3RqPz7VhWMXX6cLizs7J3a6i6/q7XZgsMqlYCrvfiq/Tic2fa2/d2gHwd+tsdl4z/m4n7hYLkixp3ETHez1dDjy59YxDLhojlkfW8jYhyPaXzsIY4e1w5O2K7haN8yxciXHqS5r4PccNMWW5eparuJpseDsc+THC3+XA7DQxeXKR2FwSb4cdT86x3WDF22HPt7ev3Z63hwEoZpnlCc154whb8LTbsTi0tbRmj9S9xw473iynGzuySDqZQXWbQJL4/7P331GyXFWaN/yLjMhIF+lNVZrKqix/69b1TlcWIe8lkISQ8NA0NDTdTbuZ6XfWrJnvfWfmm56m+21LY7r5cI33CAQCAQKkK11/db035b3Lykr7/RGRttJFyYyg77OWFtzKc8LsOHHOE3s/Z29Xu6Uwr+bPk/dNmT0yznYzVp+RqZPLkAVXe5GXuWJW3O1aW4eIM2rGqgVPHVELrg4z9oj2XNvNuLS2kk3CGTUX4huOsIyrrXjcQI+F4GYHSquEJIEzbETRxE9KwIgznPd5ZXCFJNxh9beZ4TTZTA5BNJAzSigucAaEgtDL3QLuFoGs5lPwOLO47SqfsplEPE6QJUg6RNqWMoRKahkGydCq8TCnnMY8acH/UguBF1qxTFiwTBbXNc+MxJHz6kb65JxCfNRHalG18fMHuxkdHSVTrfTpVbwusX79ehKJBI5RNdCvpCEaz2LTHmH0soGQsThWWixpfKYMmzxJNntXaLVkkDRe43CBpyRJm8cPbiUDshGjCdxhEdmszpuKT8Qd0niVJOFuN+HQNr6KMrijMla3CAYRoyySSWaZOa/OCa52M66oGVJpRBHcXRZsWqDdGpDVTXqiGpiO3uijZWMxyO3utqFoQhKLX8bTo2CQte/OmA23xmusLTLuXqXgB7d4THh6lIKwxBGzlfEad6+dXAZmTi9h9hjx9jowOooxTm9P6bplx6n5iUxOI7l0jpE9akk6R9SGt89R0tZRmO+MNglvnwOzJrBZGFlGNBZ9jO6eor9MMot4+xzYfJogK2LB0+Mgk4TRF6cx2qSSOJTaNi9QtwctZdfg7rFhcho5/pVLzA/F8fY5CjzS1mrG2+dAFEv8WL3FdUvxm5m/FIcM2AJaW4s2l3cqq2yY90cqQTO+9c6CiMPRYS2IZADcffZC7MPsMuLtcyArMumVjHrvJcf19tgL8VtZkfH2OTBpQlZ71Iqnz46ry4ar24anx14QOktW1S4Wjdc4ItYybuXptRd8SKLFoNpbW2ftYSue3tJxV1xnRYtIy0ZnIbanVNq7SymMQ6Bg79kzS1x5bhJnVEGUi/7UUm7o6XUUfJcFe2uiMFdXOa/x9NoLvjaLR022IGm8xtlpQwCOfUHN6OLpsxfiW2aPZkNHMbZUmkE9sNFVEB7JDqM2ZrX1MFqMIUPeX6Y9G1u5ve1hK56eknehx160oTZmbUFVZOTqtOEttXdP8dtHFDUbanFkpcWCM2ojnciQSebw9CgF8VDe3vawqgewtqg2zM8RvnUO/Ou18wgCnp4i57T6TOp7r4mUnDFr4dlMn1xAgIK9C3OElhjD2aGU2dDTa8fZbuXsD0cZfnEab68ds1PjH22W8rYlNjTaRLy9dmYvxJk4MocjYsXTU/6Nkh93kknA06MUeLsSNJNJZhh/SU1a4+4q+kRFWcTTo2DzFwWeee6dXMywMLJSGJOI4OlRCr5LW0Btm/+MdsWsuLusZJIwsncOZ8SKQ/Ol2Xwy7m4boimvJbHgipXwj24r3h4rohksHnWul/Njts2MO1b0ebk7LNhD+Y3hIoF1Ct23ulQbBuVCjAXA1WHCoQldjSZwtxkxaXPP4nSarJZxLycbcbUIuDR3k9EE7lYBiwIZq4zDCT5n3o8l4lZyeO3qYpp1iXQsZ3Dl1H97s1ki2RIeJqSRLrux/LITJi1Iow7EedWG4qwF95SRLw2rIqTlET/xvM8LOLxXjZn85V/+JXoh5HL6i5LmUxHGvvj/kImXp6XyvlD+b9Ns3iBJtntTXDoLS4tFJ4wYLy+DZFgoSX+bSoMMWx92MHslydmnK9LdVZLNilp3q2rBVrYvSd2VN0NolxNBFBj69SyrUKPOK8C2D3ditIg89/9touZ3Sd/2N/qRnUZOf3O4cb/ixTbf9jcQSpsJs8vE5BF96Q13/6d1JGaTHPjHV7+GffutASK7/Zz81mVd19l1bxDfgJM9/+uErvNt/4MeJIvI8/9TX7+14tq/GGD+0hIvfU5f3da1YN2jETx9Tl7866MkdWRFHHx7O2aPzN7/V18t251/2g/ZHC/81UmdV1oHNVIq2jvMbHxbJ2OHZjjz3ebrCZsDMvaQhYmDc6/vmq+N8DLOXZlG29VtIbjFydkfjBbHSb2U1Fr//jcFcLVb2P8vF0mWZIcWSlMuVrlOpVWmdbPCmadm1T+UCGCFynSMlf+uSBecM5enmsxW/DvpNXD9zhyT03DijImkq9h/el15asikq2TtSSbZns4Q7h5mpVudh47PladU/J22Z8v+/X/tfZDhP/wrVsanectb3sKXvvQlruL1jyeeeIIvfvGLGGNhQv/tQ+QqudeL5ePErHGvkCuJspRi6EL5u2JYLk8PWsm9Oq41444YOfCVBUiVt13FrSrrDFfwo1XtS9Omarys8w4/I/tmWZ5cnba0jKaW8DBrwMimd7UzdniOcz+cqHru8stS+xqdRmK3+BnaM8nSUJ1SnHWOVb39bzY38wzYWRhKkJprPnVs931BAhvdvPj3p3X1Wyt2/FEvuXSOvTpr2G/9UDeLI8uc+sZQ032sLUY2v6+H4b1TXHhqrHGHl4mBJ6I4ojae/x/HX/VzAez6s34SM0kOffJc852MsOPDvYzsnebKs5NNdwtsddF9V4hzT40wunem/MdXqMRbKTa9P4bZIbPnr/SNE0+/jcR0kvh46v8sd4JXlD+tPnbz1xa71cvyTJLRfQulJ2h47J0firA8m+KlL1aU8iy9ryo2at1iI72SZfJEYtW5VnGvytTZldzLVM618qVN8+jYJeJ25djzogEwlnOv/kruVZzfPakUvZkU1juL3/yn5srTz78v+suyf//nPQ9w8e3/Sb2O3/C14t8TJEkik8nQ/ZX/RjpZPiaUveXp7k2zxee6UVxidExgOVEcU+JyOVeS5krKRmhlCjfcaWJuNMPlPfGytlTwqFwFL1vl46rkXSV8Js/J3F1mJLOBiSNVPr7LeFf5sdY9GsTqldn7jxe03+uM55Lz+jc4MHuMXP75VEWT5vo3hd+wd8vslTA5ZObOxxs3LsH2P+hleXqFo6+Bn8Y36KD7njCnvnWF6ZMLjTtoaN3uJrjTy4FPnIF04/Z5rH+iHYvfxN6/acKn+gpg55/0M3N2gdPfbJ4frhXhG3y0Xevn4D+fLmRTagaxO1uwh60c/vT55jpo6+bm98UQJAMHPq7DN7pG7iIpEts/2MnIvhku/ax5figp6qaxuXNNvAP/h3xS8ArwqiZ4Ux5mn0Rwg53Le2ZIx5s4v3ZvkWsdBDfaOfLlifLxVca7Vh/H5BLxr7Ny5QX1ZGUl31b5vMrXwcoSWZU8Ky9QymPFI7JrMMXEjMi5IZmko3i8mb5yO6Ts5fN/z0qS7nWXSIRVn8W5BW/Z75U+r/9y8D4m/vcXmXvhBL/zO7/DJz7xCa7i9Y/Pf/7zvP3tb8e6cx3BP34r6ZXyMWbfX17K1TSnrvtuOY1rNsXENJTWB5LidbhXMoW/S8TfIXLsJ0mERIVfqDK+mK6MJ1b8u6LkdBnf13hay2Y7M2fjJKv4TWr5vESLgU3vijJ2YJah56ZX9YMKLqVxJ1EWaN3hYfrUAssTFff2G8aXXkkoYQsrc0lSi82LFwNbXERvDHD4M+cKWWteTQw8HkUwCBz9vD6e1/fmCPGJFS7/YqLpPqIMWz7Yy9Dzk4zsqT6+Xkm03egnsMnFPp3+vLVi43tirMylOPn1K7r6Db6jg7GDM0wcbr5sri1oZt2jUc79aITp481z5oaoXLu197fr3iD2sJWDn9DhzwNsQROpeJrkXBPvwMvgXq+6P+0V9JcFNttJL2WYPl3CR0v5UOUz0H7b8NYWEvNpTn+//Pu2NIFOtftwxcxkMzCfj0eU+LVWxxsruJdczq1yVlPZvzPWci7m7TPQ4k5z+IxMBpGEq4R7rS8/VbqEe1kyGWKJDOvfeKCwrB6ZLS9F/ERoT9m//+uBezj3+H9FFARSlf6KJrCm0Wa1qsq8uZ+8gGitP0GvFDJIyBw/JJYJlFZdTGmQDFRnYxKyqRyZZJVFtEHd18HHW+m+SyOvTarnh/fMNRYoQdkgy2VzXPjpOGd+0KQIQTAU+vsHnXhK1KPN9RfY/gc9bP1wt75+qOXTSlNWNwNZMTDwWFuZArkZtOxwseOPegtpyZpF30Nt9NwbbtywAuefHuX0d/UtPKCWKsuX+WoWF38xzqF/Oa1bSJVZyZJN63S4AYc/d5H9OhcegB0f7V3TOFkLWna42P2f1hVKszWL49+6wqF/Oa1LoASQTWXJpPWT64P/dIqjX2jSyVOCfJnBVajjNFgYTnDuJyNc+tVUzTbV0HlrCz33hAoZo5rF+re1seEdxXI0zZKCvjcFad1e5bnVIwUybHpfFO+6GjWPa5y7ZYuDaz7ahW9Q38TgX+co7IjFYGg6yHbuZ5MMvThXW6AEVef3xbF0UaDUCNoHrFGGLW9x4OusbfdKgRKomZPSGVheFsqCZACe43XWLllmr9VSU6BUif9r74MABK0OrFYrn/3sZ+u2v4rXDz7zmc8AkLqgCpqFBtwroXGv4Vl5lUCpEtW4V3IxSzqZK2TKKEUZ4a6Ap9fEpre1FjKarBIo1cC5pyYaC5SgbF6Jj6e49MspLj/X3PwqGAQEg4DRCN5eBV+/vrXKv8nJrj/tK6QhXn2C6u+9Z8DOhnd36DoXqOXcSsusNYuBJ6JlZb2agclrpP+hNqLX+Ro3LsHwc5Oc+cHwmgRKVp11wgGOfu48hz6t36GRSWXJJvVxr/hYioOfOs2Fn+oTKLVsdXPNn/fXHievMDZ/oIstH+zS3W//P5/l2Fcu6+pjNBpU7pXSZ8vx/bMc/NRpRg/pEygZnUaMVv3OhzPfH+bsj0YbN6xA731huu8NNW5YApPHyOb3xwpl6oCmnDmuLis997UU5soy1OFu0Zu8ar8aqBXI2vTuCBvfFdElUALw9Sn4tZTdCELTorKzT09x6Zcz5XN45X1VChAMAqOH4kWBUiNo3/axGy303lGfU1YGzgCyaUinoFKgBOA5UZt7TRuNPG8uZkKoFChV4j/veQDXT/YB0NvbW7ftVby+kH9ec8/sR5Lr+5JWXMXxff6isUygVImyIBkUBHbplRzpqj6v+u9t5y1Ooru1d6BJ3jVzNsHE0fjqOWEV7yrxeeVyXP7VNGeaFe6W+Lx8gyW7fZuFYGD926IMvqO9cduK647d2VIo0dU0JLUMmD1qady2BM6YlQ3v7iiU0GoWnXeE6H0w0rhhBc7+YJhzT+lf4ySzoaysWjOYPDHPwU+d1iVQgjzvyqzSODTCyW8PcfBT+n1eG97ULj/yAAEAAElEQVTdweA7O3T3WwvsUQs7/qi3UPKmWQw9N8nBT+kTKAFkkzkyzXLYkjX6pc+f5/iX9AvZ8uXd9CC9mOb090cYPzirq19ou4v+inJ/zSB2m08t5aYTbTd48Pbr5+d9D7XijJmr/1iDV9kjJrb9bhvuHmvV32vB02HB129DMkoIgtBYIKVh9MA8F385Q2KmRIywindVzO+iyMoCBYFSQ+RFGhIM3GnFWecztVKgBCAZIJUSSKwIZQIlAPfJ+mP8tEmuKVCqxH85eB8AvqkUJpOpkBnxKl7/eNvb3gbA8mFVXCmZGsQbneoYn0lKTEyLlAqUKrGKe8lGUvEsqQSF8knlHWrPS7aASM8d7mK/VHPz+tjBBZILmVXzRj2fVyae5sLTY4webFIsUcK9Wre6cbXr87srITOb3t+pmwtZW0x03h2s9wiqwhG1Eiwps9YsojcHykrRNQVRFfIENrl0dZs6scCp71whuahfoCQ79a+pZ74zxAmdfhqATDJLVqefJpOEw585y8hefQIlJWxh8+926R4na0XP/WHWvaVNd7+j/3aJM082nzAgj8xKplAmrlksjSQ4/JmzTJ/Sx5lFi1goy7YKdTjA5WcnOPdD/d8D3XeH6Hhja+OGJRBl6H9zWPfztvhkwtd4qs+xdeAdsBO5rs68UMNf1n13gN4H9PND/4Adb782V+qJN/50huEXy5/3qnhJpc9LNDB7KVkUKDWCxr0C/UbadtW3f6VACdRwZyolrBIoAbiP1j7WsihyzCbXFChV4r8euAfzqWGEXI7BwcG6bWtB/2wJ/M//+T/5yEc+wsznf4Dzlp0FoZLrZ9WJ+4rLgGk2i0XJsG4DXDoLk+PqXeYNaByrseAaJQ5+a5ncUg3iLIqqk7JyJz9gUsT6vlRt0OUqBEzrHm4llchy5nva7s9aO7wEQ2GwTb60BpWkYGDvx89Ak+OyFPGpFV27kvKwhy2FlHl64Oq2k0nmmDnVvJJEkkVEkwGz30pysfkdYheeHsMg69fPjb4w07hRFWz7QBfL00kO6tlllITFZieUElz48RgXfqx/R35yeg2DBFgaT5CJ6xdFrQWJmRTLM0mWp5oMLuSxRlse+5J+0gaQXMySXNR3PiUss+ld3WpGpO+UZD1r5DRIwshz+sfluafH8K1LQErfeyDbpYIwSY9q2d1jR3YaGd1bquSpf25XuxWLR8bWYmLq+FL5j3XOnVnJklxKM3+h9lxSzRlz+rtjnH4KSOvbqZacznL5l7PFn2uJW7O5gvBVdkP/XX7OPzvHwmVtrGSyCKb6zMreISGZhFXyXyGRJGeWqwqUABjJ8gtr7Y9Hz/EMo7tX2+SehSXGNAJUS6D0ycs3cHGs6MhJTs8zcukSwWAQWdYvEriK/zMwGo2IokgmkyEVj2O0WgtCJc/PqwsoEy4D5tks0e4sigOO7S8OzLzjUBqvLrQdPp5l+HgC4tXFJ4JoUAVIFdzLaBIxWg04Wk3MX16pfjN5wl+irHd2mGm73stLXx4C7c81s00YhAIvG/p1pehBO3ad3ffL02me+6tThfNURZX+S0NxEnNJcpk6H6uCsMoBrAQt2AIWrEGZ+Ejza09gkxOr38xZnR/VJocR0ahv7ViZSnHhp2NMHNMnvI5PpohPzurqA9BzXxD/Rjcv/vUJUjo4SryKkK0ZHFqDyBtUoZLuPlMrLE0kSC69+pmlQB2XgqhfyLMWYVkqni2UltOLVbZsIugy8EgEs0tmz//Wl/lyaTjF0rD++zvz5Aip5awu/mTxGDFaDRjyz6DJ3WZ5R8jpH1Z8EzQ4tzNqKZQhqkS9QFZ8OkVuDdUuXvyHi6qQSmcWgamTFeLXWveVyxa4V+wNDhDg/DMl81Auh1BNLVsCi1PCaFptd2ElSc4kVxUoAVzal2Gx0w6u6sf1nMgwek35cTtSSfpTSX5hVNfdWgKlT126nosjRe515ts/AeDDH/5w3Xu5itcXPv3pT3Pttdcy/W8/wXnz1oJQyfzr6px9xSVgms0hSWn6urOMjBmYnlHf14xW2s00WuP7xyhx/JdZhMXl6r+LBshkV2dRAqwuiVSVd6AAbV7KVXC26PVOcjm4/Cvt+6/Wpj6DoZBRaeFKxXd+/t2ulxFJMHD8q1eq+q4Eg1A3m1J8PAmN1rgqfNHVaScxk2S4SSF7HoFNak2+hUs1nkMVGIwGZMWIyWEkqUOAcunn4xit+t2xevxxpdj8gW6WJ1Y4+gUdwpU0JKb0Ox0nDs0xcaj53eeF060hAAiwOLRcn5+/gkjF0yyMLJOY1em/WqMtL/50vHEjWLVOpxOQTug4n2BAMsPmd6sZkS7+tPlMDIJBYPqE/nE5vHeW5Zlk/edehVfJDmOhhElDlPCPlg0OFsdWmDqxVKdDyakFAbNXwh4ys3DZxNz5yvmv9ryby8HybKrqJpx6/Yf3LjB8cAEh04h3VTzvZRh/KV7z97IL08QXkhG6b3VwZX+cxTH1GeSyWYQGPiKbV0K2CogV9ExYTpKzyFUFSgDiZIbnldoiMffJLOPbV//9+vgy05rPq5ZA6ZOXb+DKlKvw73QiyeULFwgEApjNNQRmV/G6RFtbG5cvXyazGEdUrAWhkuW5GtzLKWCay+H3ZHA4spy9UBx/aW2NNY9Un59mpyRmp3II8zXmc0mCdHpVFiVBUEv2mFyyylOqIP9dVsq9zG6R0HYXF385S0ajGZXxyAJKfF7Tp6rPWfX4UyYlsO8fz0C1w1fxWeWxPJlkeWKFbErfmmp2yzjbbVg88urMTXXg6VPLjurN4mNyGsk2KcwvIAPnfzjKwrC+DJaZ5QzzOrNeQmkGprPNZa3RkNSR5akUZ76ro0JP6fl0XFuhz2KK+StxXRmpXg4Wh5cxWPTHiTPLa7u+419eY7xxDbZsf2MAR8TKwX+uiEnX8r9of0/OZ0jO6x+XZ3842jh5RgX3MioyskNClJrzk+X9ac52Cy1bXYzu1/F+CwYcESu2VhNXflWlXx1/2fLUSkN/WjWf2dEvDqtinFq8Lj9fVsQTl8bK57qaG7pz2QL3Cqy3IMoCIwdKnl0mg2CqkRhDg9kpYbJX8XnFV8hZTVUFSgAzp7Jc6LbV9Hm5j8LENeXjwZ3MsC6R4oBNXU9rCZS+MLyLM2NFseiVf/sR2WyWj3zkI3XvpRbWVO4Nyku+Adh/raq5xCq7v1xn1ECVLCfZuQPGhuDsifIHK02ri65QTYG8nCAwILM8l2H+chWSn8xHtKq/ZLn8MavdquZwKTXDjt+PkU5kOfDJi/UdLiXnzGVzbHhHlMxKlmNfbjKbj94U1qv6v3YpGmXFQHLxtRG7rBXttwZwxRR9pSuAzrtaWRiKM3FYX3Bu+x/2MHVsnvM/0ic6kj2ybtFR171BXJ0K+/72tUmJ+FqWe+t5KIw9YmH/3+kLfMkeWRUb6fQP7fijXiZemtMlFpMViL4xxOiBKRbzgfcmAmwdtwVwdtg49EmdmZv+D5R4kxXUbFavYomSwodajbnrZaXSrtLXGpDpfyDAuZ9OMHs+Vf8c+esWDLRsstB+nYszP5pi+ow2wDRCUZV05ImKXN0hk0+FnbVVd5BENwgMX4JZ32qnTdqsXtfkloofkkkeSySZQeBpLV1dZNfqVPUXjqhkQgio4/bSRz9GZnSKW265haeffrrq9VzF6xN33XUXP/zhD5F72wn+598FwPWcSmQNVeZB11n1mW/YkMRmgRd/AZUKOnFGS+1ehXsZxSS+bpmRA9UDNYVAWS2epDlcqr7veWeMxsF8GxQ6b/Fz+vtjzJyONy6Ho53T3WOl/Q1+jn7lMqm5Eo7SRNm3Og3q/94IrxA3M1ohpf+b8zXHhnd3MHl8npHnm//wVCIWfAMOLjwzVl8sVoHoLQG8vXYO/JPOsr5GMFqNuoU5Wz7YxdSpBS79pMkA0cvAa13ubeuHupk4MsvlXzRflmOtdmy/NYC7217cDNDkrnDfoB2Lx6TvGgUDG94ZZerUAsM6ReKvdYm3snf81SxFojN7UpWD6zp2772qo+LU9yaL11Xr/vI2MwhsfKsPgyhw8PMlgVGDyq/qci9j9SB/nnvlqnAvpx8Eq4HpMYiH6nCvzeXXvTOxTCyT5luYSWniqdCu1Q7hy4fV9AJZv7o4Xy319psLg8FALpej+yv/DQDTCyrnFqq4rFxn839Mc/1gkpFRAxcvl38bGKfVILchufoAwvIKjhBkExkWq+kDNJ9XLluDp+QDYdV4ThVOtuGtLWTTOY5+dbxY1q3WGC3xmXXe7ieXy3H+xyVz88so2/aK8LJX6N2SzAbSide3zyuw2YWnz84JnQGU4A43idkUM6f1iUkG39nB9OkFhn+tT/AlKZIqktGhkwnucOMbdHLkXy/oOtda8VqWewvt9uLts3PkMxd09WvKjlXW6Q3vbGfq5ALDjfh5KXeRILzLw8yZJeJjNTabrOou4N/kwNujcOJrawuQNnVtelGDd0hmVcD1WvuldB+j1jVUuS/JAn33+Ln0/BwLQ+ma7dS/i4XfHWGJnlucnPvFPDMXNF9Z/pqqZZHRuFhlqZECNN6VsVcPtPnbc0xNwpx/Ne/KyOr1Tm2seB7pNA8kVpjGwK9kNStV287V7+v5YyrvMraofouRv/sqS88e4eGHH+arX/1q9eu9itclPvaxj/HHf/zH2K7bQOtHHgHAtFflXoYqn6B57tUZXMFjy3LgpdUZleSp2txLSidwtopMn6sRWNB8XjUzhOe5VxWxUUGApM0z1oBM770Bzv54goXLK1XjkWXQ+JHFK9F2vY8LT4+VCVheVsnc18k3iSir2Xxe74jd3sr8lThTOjb1yU4JV6fC1NFZXffoHVCzj574qs5KMSKIsqhbmNPzYJj5y3HG9q0t8YMevNbl3nrfFGHm7II+4fwa7ejf4MTTZ+fk1/Q9NyVsweKRmThSmjSgMY+I3d7K3KUlpk+8gqXl4BUv8abrHX8NS7ytPnYTvK6kTWi7HYNs4Mqv55r3eYkGOm92INtETnyv5H3T/FqrSr1BodxbTe6l/T3tWO3zslgziDaR+XlYaFud2TOj0bXpLeXrRXc8yfrlNE/KFjLatfVuX60POHFUzW4m+VTudfaJ/4qYg3SVRELNYM0jL1/ybebbPyv7e55cVkMyKfPLX9UWKNVD+zUKsd3VldMFVBnMOSGNyVt/ByaUD9YX/+68KlDSAcEgYHIZkV2Nz1WJHX/Uy6bfienrlMsR3O3B+RqVk3hZAiWdyTpkj8zmD3Th36gvhbI9aMHi1Z8Z5NwPRnULlEBdtCSbvt1vrTvd7PhQj+7040aziGjSnwHL3avgzZdpeJUhe2Rad7p1P2+jRUSS9d/blt/pZMeH9JdNMBgNiPV2m1ZBchHOfGdYl0AJtDGps5QggoGN72kndrtfX79C97Ut2q+2QCmP6E0eTFXe03qEQQnL7PqjTkK79M0JjjYTRotIVudOtLFDy7zwjyOrBEqNYHNUKVdVI3iWh7VFIByF7v76x/YdqPiDLPNV2c7TdV64vECpFJ6MAVEUefLJJ+uf8Cped/jOd74DQPL0pVW/ZetMM0eOCDz/gkwtgVIttO+2EdlixehsMD9Xee+t7ibnEo3kTx5Z5IW/Oc/Maf2qHNkmYg+VpD1tIpgVvtbDrj/pwejUx9msPiPha+us36+gs+e1FihFbwkw8Hi0ccMKWH1m7K36dqguXlnmwo/0CZRAzdS1Fi60/QM9bH6PTp4NiCYRudmd2nkY1dKARuvLXE+bhLtPwd6++oOzEUTZUDutdA1ErvGx48M9ukvZyRYRKf/cmg3coGap1StQArD6TNj8+sZkYJODwXe0YdRryvwUsgb+9JoIlABH1IRvUP/34uDjQTa/R38pIpNTxOwUGzuCKmx2+N8mqwqU6sHspGqJhUbcK7reQO/6hofHd7B8Tn/BbOGrJQKlasgLlPJwfO85AFpb9aVVv4rXB9atWwfAzJPPl/09V3eISfzyJbmmQKkeunZbiWypPxEJ1Zyo6TQmR+O5pPS9PPJvY6pAqbxBw/4WjxGLu4R4NhIZadjwjij9j+grR0sui6fPjhJuMKfrWFvq4WUJlHQmRZLMBvrf0oa7V18pFlvAhNKqv7zGyIszugVKAJJZPxdydFjZ/qEeWnSWVDGYRSSL/uxStpAZR4d+LrQWSGYDnj677udttIiIZv0cdsM7Otj0rjoctsbYlyySfs6chqFfTesSKAEoATO2Fv3ZanruayV0jbvWwXUfrxmUCpRq4WUFsjQENiiYdZaAlBTY9r4QAZ2czRYwIdulJrJelo+H+aE0+z47tVqg1AAWU5UPuAa8y6Dk6OzK0RGrv154D1fcgyTxXVnhV4bazo68QKkU9jOTiKLI5z73ubrnu4rXH/7gD/4AgPjeE6t+y9Zx3Zwbkdh7xkItgVIt+LuNRLeZkF3158tqGyZkc5O+H+3djI8nOfgvV1SBUtnP9d/dXA7MXiPmEj96Q4E34Oq0sel3OpEb+fMqYFREPOtemzjSay1Q8m9w0n6r/nJQ9ogFq69+ppNKJOfSjB/QJ1ACMBiFNXGh/jdFGHhMvz9PjcnpXHNFtVSfXn/SWmFtMWHx64/3Gq0lfqgm4eqwseX9XTii+nilKIsY1/DcFoeWdQuUQBuTfn1jUgmZ6bw7WKe8XI1x8DIe82slULJ4jThqlKOrN8d2vNFL35vq1K8tRclGIbPTiMUt6fZ5nXtmvqpAqR5ECwiZKtyrlnBJQ6hToLe3sdjOc6D8Gs9YZb5bIlCqhrxAqXAphy4gZLKsX9+Ek60G1lTuDeAzn/kMjz76KLNf+wlR/11lv2VkoWpGJRUykiOJMQvLi+IqgVLeqVjY1b+sEoqLzy8yfiZZIM65bLaYQakUJSXYAHb+bpT0Spb9n7hSfNHzQaSKXWiVuylka04N3FdDlSDYvr8/1xRRqOy/Mp9kZUa/yiz2xlaWxhMcOtN85iD/Rgfd94a58MwYI881v+u9+4EQ3j4He/7XaqJYDzv/uI9cLseLHzvVfKdkGovHhD1i0yUeWmvWn9BuL652q+7yYXptATB9ZglnZI658/qUrid0KnHz6LkvDAaBqWP6r1UvIru9BLd6iE+s6EqFeeyLqwPuzWBs/wypuP73Zi3PLbjbg7tT4dgXLulygh75rM4xqS1eFo/ctMM3j8gNHqLX+zn95AiTR5ofX4PvaMPslNn79/qyPe34w06SC2kOffpS0+kUZReEdriw+mWOf3Vk1e9VYTAgmg2k4mnmh2p8YNboP7pvgdEDFWuMNr/XVDrnsmAyqBm6qoiTcpls8QO1ZMH298nErrUy9FKSoUPabpsKZ41hSb3+rM1MViOvi/Nw6liGuWmwJhPEQ6qDL7+LvxS+A8WMSsH5FOOyDDXScVcKlHLjJpbOHmB6epru7u6rpd5+A2E0GpFlmWQySfz0RUKT5SLNrFw9o1I+im7x5VieVMdVpUBpFfdaSXJxT5KJUxKpRYpjPZOpWmqkNB115BqF0BY7J747xvzF1OqdqpW7zPIO0WwWoxWSS3Xmvop5ceZ0nBf+poQDNblbf3E0QWIuhdECqbmyBnX7t9/SgiumMPTi1GqBTR2B0sb3xZAtEnt17hja/pEe5ofjnPpa8zu8A1tddN0R5PR3h5h8qXkO5QhZsOh0vADs+cu18Yveh8NMn1jQdY1nnxyBNdSUH3pxqliOSwf2/o0O7qrB06XQc2+Yiz8bY+hX+rIOrAXd94TJrGTY/w/6slG++Nf67236zDxmp5Gl4ebKZORx+rsjwIjuIHLvm0PMnFlqvPOt4sN/z1/pe88Eg4AtaMHmN+sWB2773U6y6RwH/lkf39vxBzHGDs5z6dnmv8WCO51Er/Vy7OtDLFxeaTqIFr3eg9UnM/mSjucmCCxPpzBa6syJNYJZR74wtvra8nN3SdbKUhhNOVIreV622hlSi3v13e7AIAkc+Frx3iq5l6Bxr5zNTNas/nZoXxafF8CAdXiZuCZ0rcq9DuaY3CzgTKVIJNElUDJMyMw9dwhJkvi7v/u7mv2u4vWLb3zjG/T39zP95adp9d1a9ltOqp5RSYUEljTmXIZEQlolUMrK6ljM7+oXltWA1bnnl5kby5Xxrmo+L8FgKMuotOlxP5lUlpe+OrW6BFsF76rkZZKcJZ0oa1DTXwZw7MsjRU6nIwvS8nSSVDxT8XPj792ue4IsDC9zopGvpsTXZwuZGXhLlIvPjDN+cLbhOfIIXeMluN3Dvr/Xt45sel8MQTSsLtVQB+lEFnvYyuJoQlcJt/M/GtOdyRvUkirOLhvnnxzV1U/PPeURH40z8uIUcxf18YWhZycZelaHOFlD111BJLOomwutBd4BB7Hbghz/ykXmdPi8Lv50vPnSbSUYfn6SbK1SdnV4wIGPN3huVYJB7m4brm6F85WlaFd1LT/v+R+Pc/7H+u/NFrQgVCsdUidQ5e610nNPK2eeHGP6ZJXxVcMvFbvNhyNs4fD/r9yvWjkfVvKXje+MkFzKcOJrI43FSfm+ErTf6GHq9BLnflTnWyCbLTumJEssz6aIa1n3c7lc+fXUuLe5iysc+EzFM6vkXZXcKptDMgmkU7WFrwVfWIk4Q/FD3y0KV15KMXpKm98reJe4oK5nGbuJrBYczqbg6JE08WWwpVZYCqrfnNU2uXsPC4WMSp54hllJqrlpsFKglBqzkFm+xNTkJF1dXVdLvf0GQhRF+vr6OHnyJInzwzinKnxexuoZlfJRdNkBSc29UClQWsW94gkmzsDCWFqN/WkZK0hnChmUSiGIhkJGJVeHTOw6hdM/mmFxJFXO26hSxq2Eo4gyZBKr45G1uFViOs3hf7lcVsmlLrR2yzNJlidXMIgiZXXfGmysC2xy0brNw9yFuK5sMp13B7F4ZI5+Xt93cf+jbcQnVrj0TPPriBK20PdQhLM/HGb2TPNcwxow4YjoF3of/hed1TE0hK/3sTAU1xUjW2vJ3NH9M2va0Hfs3/TH5Cxumd6HIlz86Vi5wOZVQuftrWQzOd3xQ71jESA+lmDoV5MsTTQn2M5jdN80o/v0lS0ECO/2sjiaYO78ki5/2VrGpMVrwhm1Vi/xXYd7rXtzBEEUOPZv1b/FaiVLGHxHlPHDc4wfbN6f54haiN3u58z3RlkaTTa9oa9lsxNPl439nyh/5o3ijcuz6fpT4iq/lsrdzv1kWrfPSxSzZDKrfVp55NLpYjYlqfh7bKcFk03gpadL1qUKgZI0r653aYe5wL1OnwaHA0DEfnmFhTaNe1Vx+3sOGJjeksWSyZCOG3QJlNKTFtJffxZBEPjv//2/1+zXCGsWKT3yiJp2kUyWZDK5KuCZFyrlS70VoZZ8W07AgV/VPn7OKJWVHxk/pkN6qgmVcqk0E8cXiU9W9K1TfzWPHR+JkUvndAfuBYOA0WWsX86rIgh2+NMXdJ0jf+1nfzjMzMlZXV3nzs2zMh8gMaNPyrsynyKzkimWhGoS02cWdNeyTS5mee6/H9PV5+XAP+jUrT5dK5LTSU5+Y22Co7Xg7A+GEdYQmFsLrjw3RWI6yfzQa5P+QU+5tpcL/zontlbLK7ZLsxH2/G/9qS8XhpdZHF1mXqcALrWYXhORjY+vkJhN6coAkJyFk98eIT6TKXyENQyyAXPnk+z/ZJX3pkFfk9/IylSdj6oq1966xUb7dS7O/2KW8eN10nxULNhzQ0lmrxgZOhQHjA138ZdiYrT8WNWCZKVom09xEytcSKZ5Ti6q+6/sCRPZNVQ1gxLAxCe+ApkM999/f9PXdhWvL/zFX/wF/+W//Bcm/+bzhN7231b9nhcq5Uu95dHbmyQQgP37YWW69vgq5V6pRZhb1CEE1YRKYwfmkG0GlifK358yx0sVtG6z036Tj5PfHmXmjL51xOQxsjJdPy1PqTNn7lycQ+cu6DoHwMWfjDFsn9adAWhpOEFiDTXUk/E06SV9u/pnzi4xd36ReINdg5V4Lcq7lsLb40BA0CVSWiv0lKJ7uZg+u8jZH4wwfVZ/toK14OyTQ2SSr01pmvhIkjPf0y8SA9bEnzzdDkTJsCYnnV5c+NE4F36kP8A2eXxRdwkvo9NIKp5lZUHfRJKYTbE8k2JhtAmBUglOfmsEe0R/homzT9UIrNUJ0hmdkJ7Xt5sMYPDRFnK5XHkmpWqo4F5Dh5Yx2QxqNiWj1Dz3ShmYrIjTN+JeNyRXsJLjaymgRKg0vCdEaNfwKoESQCoe58qlS0iSxMMPP9zctV3F6wp9fX2qQHw5STqRQKoIeOaFSsVSb3mk2TWYZDkhcPhI7eNnZams/MjcUPPzSUGolE4zemSJ1FKlCFxoKCLa8HgLAgKHP19RpqmBv0wQBESbSHq+zjxW4fM68z194ph8/1PfHmJpSJ/Icmk8wdL4Citz+n1eycWUWmJLBweeODq/Jp/Lix87qbvPWuHts+PusesWKa0F6QRrEuSsFeeeGkE0vjYZLKdOLZJODDF3+bXxeY3tn63+w6vgl3L3Kvj6HQ1FSq8UDn6iiq+9wU765ekk06eWmB+qXo68FlLxLMnKObLy1FVsujC0TCqR01c6Nw3HvzFCelkfP0xMpzn2tXIelMvlqpe8LYHRblA3FdVCFfG3IyLRe7uLC79eYOpMnbmu4tyJBRg/nWTqTBK1DnTzPq/5+fK29apwADjjGW7PLHM6J3HAWBQVXH4hTNvOoaoZlADG/vZLpFIpnnjiiaav7SpeX/jHf/xHbrnlFib+6Vs4H/2zVb/nhUqV3CvkSdERTHPgtFwQKlVDKffKJGFpSgf30oRKs+fjjNoNLFf6oESxugBAgz1sovsuP2d/OM78pXJ/TSN/mdFuJNXo+7E0IcJMilNrKGc6fmiW6dMLustdLY4sk9LjP9SQXEzr3oC+PLHM5PE5Eg18gJW4+JPXjpsABDa4kEwGXSKltWL2rD5h+MvB8kyS098ZYnFUn89xrTj/9FjzSUFeJpKLGUb2vnb+Q/9GF0b7EnMXXv0xMnFkrrqorAH3mjyu/ztHlCE5nya11ODdrjh3KpFhcSRBYrp5gRLA5WcnmaoofdeMz2zsYI0Yap2+ogWyCf0+r65bPYiywPHvNiitKJXztrHjSWRFQEim1bJvDTIolVwp8xVrYTWBUim2zKbxZzN812wp872d2ttO7/aLqwRKAJlMhisnT2O1WrnnnnuavLbVEHJ6Pasl2LhxI0eOHEF2Beh/23+o2sZ9cgVDxc6Pnu4k0zOwcDylKpRrXdzSctnivvERJwCHv6q+ULlksqbjJZevf1dl9xdQlzTkcjm67w6QWk5z8Sc1HLQ1dtvv+pNu0okse/+2zs6VKn2Du92kFtONM6C8TurGvi4hw+4/WcfM6QX9tVvXgB1/1IsgGXhBZxaBgcfamDgxz0QjJWkJuu8PEdjgYv8nz5AYf/XzYV77FwPMX1p6TYKWa7bj41EmXprVlW2r8+4grVvcvPTFC/pJ4hocQbv/Qz9z55c49uVGOz9f2ZqvOg+w9r5NZlBa27GL19V5h5crv5oqF0g2OHZgk0LnG71ceXGOK78uHyP1HD1KWKb9ehdHvzMF6eriLUE01E7JmK8Xa6qRqUgSSbtUJ4u/NUNXP5w6CtMTWj+joaBurnruDCz2priGFPsxslgiELaOCMx3VV+bkjPzjP5//m+y2azugOpVvL6Qf682/d5f1WzjPpVEKOFeVmuKUAjOnAF5Ilmfe8UTBe7kjhnpvNbKyafnWRxTj5dLpiBbo3+eW9XiZplMTR5jNGfpujvIxZ9NEJ+o42yoOHbbDR7C17g5/rUh5s7Vn9dLP2yNTiPBrU4uPTNZ2qBu//oH//f5XvU/EsHRbuOF//3qB9o8/Qp9D7Wp2UB1CI98gw7cXQqnvz3cuHEJdny0j+RiikOfaD5j6Vox8EQUR9TG8//j+Kt+Lnu7lcHH27n8ywmu6MhY4N/kxBm1cua7+oRKOz7aR3o5zYGPvwp2rOAwvQ+FcHfZdIm918SjXoPyuDVP/QqUIalzcAA8vVYMEkweq5hTGxx7y7uDGIwG9n+yyrtmEGrarW23gmAQuPTcYu0ybwahuLNs1W9apmVzbe6Vcarca9M1WTJpeGlv8VqykoHFaO3d9kIWzH1pfGQ4ZCxvZx0RWOisvnYs/sM/MXH2LLfffjtPPfVUzeNfxesbH/zgB/n4xz+OJRyj862/X7WN+1QaKmhANJBkIW4gcTYF6dr8wrC4jJAp/t5zo4wkGzj+tOb4T6Zq+q4K2S1rcZBMpi4nC+1wQA6G99b4nq5x3k3vbSObzHL4M3W+catwKnevjWw613jX+8vhY/Bbz8m2/2EvUyfnOf+DV19wtOFdHUhWiQP/qC9LUfstARauLDN9svkNVK3b3bTf3MJLX7jA0vCrH/ja+Sf9zJxd4PQagrh6MfiOdmS7UXe2p9htLcxeWFpdqq8OFwhsdhK7tZXjX7vE/IUKMc/L5C/VONO2D3Uyc26Jcz94meKm3wC/VJ0TvOxjh7bbGT+2QLqEegmCUPfelJBM/30+rrwwz+jBCs4mGmra1OyC8HYHF59dKO7qr4QorgqU5ZHL/72GzysnGUi7VL6kKGnWDeQ4dUpgblblcVnRwGKkdmZvIZNjvi/DQC7NOUFisYT/WcYEFrpq+zKu/OF/IJvNkq0VC7qK3wiYzWaSySS9f/S/EGv4Xt2n0wglQ0EUM4Q8GYYnROSxZGPupfnELC6I7bJwcW+iKFhqhnvVi0fWGn+GHNHr3IwenCU5W+P4udyqY7t7rMRuDXD628PMX24g0izhUKIs4Ol3MHF47reeG72aCO/24tvg4tAn9GeX1AuzR2b9E+1c+tm4rixFSsiMM2bTnc178O3tpBOZ1ySO2najn8AmF/t0ZphfC4yKyMZ3d3LpF+O6Nr3Z2yw4IlaGntNnx/VvayeTzHLiK/qq9AC6OURwl4eWTS4OfvpcWZK06sfW1vha31av53jkq+Uz07iXrUVGNBlWCUYbPY+e+/yY7BJHv1xF9FjH5+XpNiNaDEwcS9SMKQoGQ20RktYnZ6keM8xJBlJu1efV06OuU6dPF4+VlQTmO2pzL0MKsusy+DIZzlQkI7KOCizGqg+2lW98j9Gf/Jz3ve99fPKTn6x5/EZ4WV8oe/fuBSA5O44UX73YuU+qO/mzokC2RHF3+oysCpRAJb1ViK+wpC26olh4COlEjpSWEjGX1IQajQaswUDX3V4G39pa/FsdgVIeZ54c5+Iz09VLAdVxmkwcnWfohTqBkxp9O97QQvSmQP2LqiAU5oDMjo/2Er7OW79fBcwBmZ6Hwrr65Pv5Njh09ZEV6H0ogr1DXzrFje+Jcc1/WKerD0l1Z83CsL5dNWvF1KkFpk/qzwDg6rLTurlG7fWa55pnYShONq5PoNT9QIj1b2vX1WetaNnhYvMHukBnFampkwvMntGfccDVqeAfdOnqM3NmQU21qTfb0xqdDvGplca77CoWr/Vva2P3n/fWaFzZtXhd3fe14N+k4/0UDMgeCd8Gpfk+GkK7nbTudNY+tCBUJQRbP9BO173+xicocdZ4+iy0DDqIlM5zjciGwcDsUJy5Swmu7G1eoIQosjia4ejXptRybxUQREOxf8k64u+T2fSwo2Ed8/xaJ80uFy41l4XpOVWclNN2gNovr04rKmQofIArp4z8QrYVBErWEQHriGoTx9nV9+c5LND6/R+SzWbZsGFD/Wu8itc9+vr6ADj/nU8iVVnu3Ke0FPGiQE7jXvG4kTNnjKpACWpzr7hGzrX3aHEsRSYFkkl1DObyJUdqBZE1mH1GNjzegqO9SIgLKa8Foeo7nIrDia+NsDyZbvBBUf7b6OFZpk4tEp9qvD6Wzpnt13uJXOPFFpZLGzQ8Rve9QTb/bmeVg1e/rzxatrrxb6o9b9aCb9CB0aqPrvsGHbTf2oBTVsII1/x5Pz0PVM/EVgsLw8ssjb02O6gWRlaYPb/IwhV9PM8/6MQ3oN/2M6fmmTquj+cZrQY2vLsDT7/+tXUtWPdYG9E36nvWidkUs+cXmbukjwsFNrrwDbh09UEQmDwxx+SxVzhjllA98LLW8bjzo930vanJsa+d19FhIXaHP19RszkYBNz9NoxOPZ1UdNzqQ3bVIdnavF2K8C4nm98bxthMIqWS+avtOhexm32rj1+zq8r7RvYtMP5SFU6fn3urfUcbBC7vWVIFStVgKAboCpuQgP67FKI7zY2Dh9paJ86p80Y6pf4HqjgpK6n9lUrnFKo4SdAuN3FSKhMolXIv+7kq3OuIgGFxEafTyfe+973613gVr2vkS/UtD53HuFjF53VKG5eC9p+GS+OyKlACkAzqfxUwLKrjMicayGnfGOkVCj6vQqm3OinX1XMLhLZa6bndVfxbnneVvEOVGH5xvrpAKZOp6zMbOzTH8N6Z2seu4fPqvK2Ftut9VX+r1VcyC2x8TwctW131+xX6a2XsFInITU18d1ZAUiScMZ3Z5yRouymAEtZXWqjrniDb/7C57/5SLFyOs/ga+bwmj84xcVR/RsPAJje+QX3ca2F4mamT86zM68uoENrtpfve6llVXmk4u2z0v6UNyayPm08e088pAQKb3XjXVfHx1Ak2L46sMHVynvhkxaaPlxmIqhWMWhhe1u2D7bjFz/bf7yrWdmjy2kK7Xbi6Kt7POjEBQRAwWgRcnfrL+7h7rc3z+ZLnsf4tLbRd72rcp4S/mH0SkZ0ugluK70zhe7iaEELjwYnZNBMn4kyerCJQgpq8KzEvcPanCwU+VN63GIMp3dikBKD/NguSo/56lNPWOmk2UThcOg1Li6o4Katdm3Jl9be7kMkVNlo5ToocNpoLAiXLmIBlTONdZ1dfg/uoAe9XniKTybBjx46613gVr3+8/e1vJ5fLMfHUN5CqfLK6T6vrRE5U/wPIZEQuT8iqQAkacy9JJCeJLC9AJlXiK2qSe4k2gc5bXCjBEp9X/lulyneZepFw6RczJOdXZ2jL5XLFDaUV89rMuThjB+eIT6fqzsdA2XzqHXDQ/oYAloC+QE3LNjd9D0d09QFwRK04Yzbd/ZSQGdGir8KDErYQ2OLSfa5N7+8kckMDLlqBpYkE8xdem0xFibkkky/NsTiqb111diq0bvPoPt/ksYVVGWgaQlSTANij+tfWtSByg0/3s84mc0y8NMfiiD47errta7LjxNE5pk6swee1hnjj8sQK85fizQuUNGx8T4z2Ut9hE9zL5JZo3eZErJhCGgmUbK0yRqXGO13Dlwdq2bZCvyazZ7k6rfS/KYjRJtaMRxZQMu8GtzmJ3VyhqWgi3jh2ZJHxIzp9XqKB6fNJVaBUBYLBUCy/W1LqPbLNhL/X2HA9ynMv44w63pNJgVRKvZ6sJJDVyis7LqzmXoZUsYyq4bhYJlCyjgpYR9W+yvnV1+A8JiKeOIOiKPzDP/xD3WtshDWXewOQZRm73c7CwgLnf/5vxG56K2lrcy9X13awew0cfEp7aJJYd2c/wLHv1njZDeXkvdSBCWD1yZhs+m+1/Q0elFYzR7/Y/M6as9+vs3ukjrjp9PeGmNSxywggMZ7EIBmQdd5b5BofgUEX40dmmdNRu3XD2zowSAYmj+iYdGUZ/6ATgwgnLjSvyp27tLbF/2Cj2utVYGuVGXxHJ6P7pnWlfjz3/bWVvPj1Xx6rKoCoh5kTi8yc0C/ksYctGG36AyFrgSNiw+LRXzbv3JNrtOP/fUy3IGrm1CIzp3TaURDY+dFeFkeWa9ZfrYVDn2xQLrLKojx3KY4oNyYKlYTAN6CWLZw41Pz72X6jH/86BytzF1m41PygDO/0IhhgtNau2xowSAKGhkrp8t+nTy5zIjvCzMWELvKWnIbj3yxPl90oVbZ/vZnAOhunvz9FsnLTYZ2+9lYR2WYgWWJCYSVZzKZUYwfa2LDIWD7ZQJ3XtHR30DrfMi1Khu8lTSTlxi+A57Bqs4P792I2m/nRj37UsM9VvL6xZ88eXC4X81fU7HPSMqSb+DY0GlNsus3A+KUsI/mkNw24VyoOB79SIzCRFyrlsyqVBLMyiTQmp4QzbGH+Yo2sSFVKiRgd0H1nkJG9s8ycrSOgKClhkprLcvpbza8j+bnz4jOjTBydZ2mosiSwoS5fEwxgWENJj/abA6QTGV27eFzdNnofiHDluUku6SibEdrlxeozcfFpHemsU6glQxvtzKvA0K+mdO/WAlj3aBvWgIl9f9/8jvLUXIrjX9K/M+n41y/rLtEHrKm0mcEiYgtYUIIWptfA2/RCCVoQTfqCTmu149HPXdQnyNHW7PNr2FkffYOPli0eDv7zaVJVNsLUwsieGUb2NEifXIFcNsfiSIL5Zkq3lHCY1k1OPL02zv+0QYmyCvTc2UIqnuHApy413cfTbyO42Ul6OcPQr2eb7ieaDRgkA6lGt1bBrw59fhhXmxZs15GZaexIle+3Bg6s3nvczF9ZYfRQlYus09fsFLVNysU5XEgki9mUanCvo/uaux+hZBm4rmOJ8QWRKZpzxHqOCFx49stMjY2xbt06jMbX5lvsKl4dSJLEpk2bOHToEJd/+U3arn+IlNIcDwh15PC0wEt7tPaSoe7OfoDze2p8k4mFKBxQspNfg8VjxOKt4xeqUf7NP2jDHjJz7kfNr+UjL9bhMnU41KnvDjOvU2icTuQQZRHR3ETwqoRX+vrtRK7xsXAlzpyOEhgDj7ZhVCT2/a2+Xd6hXR4kq4HFoeazG81fiWNo4ru/Eie/rn+3u2Q2sPG9qs9rWEc2ypEX9a2pebz4tydBZ9WXpeEEZ76jL+slgKPNisWn3w+1Ftj8ZuxhKwazARL13+VSjO5dmx33/OWJ2l77XK6qfyQ+ltCd9RJg03s6WBxd5uyT+njbqW/qP9fCSALZIaljRId4KrTNzeLYCrP578QmdtkHNjqJ7PZw/OsjLFxpXsge3uXGaJGYPqVP1G+QDI2/FSu4VWIyzbFvjJCYrbFZJ5ureq/pZbj4iwqfXAOfl71VomW9hQu/WiBdaY46QTDFJ2FxiuRKl6iVZCGbUq6KGARgbk7iwP788WtfV2kW6Kg9Scie5qdpE4laWTRL4D6qnvvgr59BlmW+/e1vN+xzFa9vfPzjH+fTn/4008dfIPKGR5DikG5CPyySoWdzjpkxmBxpkntl4ORPa3CTOtwrkwSb34jVY2RxpIazwWBYlVVJlCF8jZuZs0ssXK4zJ5XytgwM/VqHz0WbV6eOzbEwvMzy2OqNsPVgEIQ1lVGNviFANp1l7nzzvMvklul/JMqVX04yuq95fuJf78TVpTB+YFbXNc6dX2JJZ5my2TNLjbOAVkH4Oi/OdhvHvtj8dz8ZuPiM/rJ0Q89NMvTL5rNk56HH5qVwRm0sjiyzcOnVF807220kZpO6nnUmmeXSGux48ZlxLv5Cfz+94xDA0+8gvMvLiW9cJrXYfHnF2XNLzJ5rMB4ruZVgYO7CUlFU3iT38nTbCe3yMHFskbwqqpkMSrHbW0kvZzjx1QpNRZ3zWnwykWs9ZLNZJg5rGoka/KcUoiwgmgTS8Qa8vIJ7nXlqAqtX8x3piDfOX1phnpVyvtbgGsPbFZanU0yfq5KUoI6/zeYSESUBKN6bsLxSyKZUi3tdvNicVsRQsnRt9i4zvWJgmua+qZzHRKZP7mNoaIjt27cjNxGjrIeXVe4N4PDhw2zatAmAre8plh6xX64d8DZkcqzvXMLhE9n3vdUvoTBX26lvcWaIbLNx6vvVP/JyyTpRiGy2YRalUnNsfFcbZpfEC3+jCQ2yubpOl3wZkd6HghhtEkc/f7myQd1zN7iwtfetgKyAyWdhoTL1bwP4NzvJJrNMHdMnplLCMouVQcBXCfYOC84OG1d+pmNhlmHHh3sZ3qMv0KaEZUI7A5z6/hXdoiO9kBUDkRtbGNs/xdLob1e5t/ZbAsQnErrKtq0V4Ru9Krlv9jlrC87WD3Uxf2WZMzpKxbh7FSxemeHnahC+VzqlogyyTSI503y9V9ltILjFzcWfNmmP/HllcIRMzF8oX1xfVhptqB8I01HexNNrpm23mxPfG2dlKtNQnJT/8Oy7140zYuKFj5c4lw1iw+xLtQJhADlb9YBWeB1kTDKXh2oHrhZDq4nBltY4HmuWr0omrFO1iYO0VFwzLjz7ZaZPv4CiKCws6NwhcRWvS7jdbmZnZ2ndfDvhLXcU/l6PewmZJNfsyDA1lOHioSq/z9f+yGldL5FeTjNxrIZzI1VnXcrmilmUqiGXKzpujLDzQzEmji5y/scT2s8N+E8mgzVgpOvuIOefHmPxSvMOmLp1zV/hUiP2disLw3HdYpnIDT7G9k2TavTBVQKj00gqnlqTMGctaN3uZnE0waKOwGP3vUGsrWYOf6qBmLcCwWs8ZJM5xvavLdijB75BB0ZF0lVabq14Lcu9WVuM+Na7ufTs+Ks3RrQ122iFyE0tjL04vXpHfx2Er/XSstnF/n+s2HzQgDuFr/Uwc26B+Ki+G2sqVXWVc1sDRuLjTZyr5PjuXitkYeZMc0GvPLdSwkYWx6u81y+nvJt6gtq/NTh2Ke/rvd9HYjbFpV9o4oVGO3y137e/t4WFsSQnv1fyThvE+pkRJKnuteWU6tyra6eB85eMrKRqO22WIuWZUIykuDa2wuiCxK9bLYXsSdVgLOFe+/71jwG4ePEi0Wi0Zp+r+M3A7OwsbrcbBAObf/cvC39XhuvxG+hW4viCcPR5SKfLx45htjbvMhqzhNaJXNpTPYiSS9QJruRy9X1eFbys+y4vjrCF/Z8qEb7U6Z/nZeHdLswumbM/KHHkN+kvq9Og/u+NUMq9JLB6zcR1ZtdzdFgRBJjTWRre7JVITOlU5awRZp8RR8TG+MFZXf02vjfG2IEZxvY338/skvBtcjO6Z2K1oOGVhgSh7V6mT8+9JrZ8Lcu9+Tc5Scczq8u2vRKoWMe9A3YMRqG4ea1Jv9O6xyLEx1a4+ExRfN2IH1lbZKw+E5NH1+BjWIs/TALJLJFeTDfMoFToYgbvOgdjB5r0N+b5hQQ2r8TSmI6x2Iw/rEFmytr9ykuIWPwS7dc4uPDsPInZdH1xUgnviuyw0rLOwr4vThWEhILBUH+XvpZxphZytupZ5DxhEBSJkUkDtdR2S8HV/rAe1wpBe5pvWc1Ypmr7y6REcc6fPPECV372ZYLBIMPD+sWOV/H6w0033cQvfvELQje+Gd+G6wp/tw/VfieFTIZt0RVmxmHk4ur3qR73crWAkE4ze7n68etyr2xuVcKE8t+zZRxl07vCTBxdZDgv+s5m6/u9MhmMikjbDT5G988QHyv63xpyq2zz4oeXC7NHJjGXbJzhpQKedXbmLsTJLDffUbSIZJIZ3edaK5wxG8nFFMsTzcfkWra5cYStnP6OPp7h6lazUa1FGKUXSsiM7DAyrTeb0hrwWpZ7kxURZ0xh+uQCmeSrXP5ThNbNHqbPzJGca3JACgKuThvB7W6Of/2KrnHs6VVYmlhhZabWhuAafCCXXRP3kh0iyfnmBUqg8kODZGBxqGTebCZzk0skHc+QKX3Nmjhnw3jkKxRvDO9SNw6OHVb5fN14oWAocLP1D3lYmkhx4Zcl75ko1hUoIdfPoJS1V/d5BbtgdFEmka3t81oMVwqKMuwMrDCxLLKv3VTInlQNYonb/+in/zOZxNIr4vN6mV5N2LhxI5KmbB/a91RTfYwTcU4/T1WBUiMENym4oyYcUf3qLP8GRZcj9/BnLhcFSjpga7VgXcNOnu0f6WbDu/SX5nJ225A9zdsjuYhugRLAxME53QIlYM0CpfCNXt3l5WK3ttJ2nc4SJ0l48WOndGcCCGzy4h904ozqS2W58X0xtvxel64+toiV4DYPgY36ysT9JiC000vbjfqeWfg6Lzv/tB9bq755ILzDR/jaJtO+lyxS+//hrC6BEkD7GwO039yiqw9A1z0tmP1rUJ8maSxQquwyk21eoFRxLr0CJd/6Bqmyq8zN1oDMjt9vp3V7g3mgoq8rasHslMitNLHGlJCkk9+bKRco0YhwCDhjIvIaqvq0dIlEOvT3OzBq5SfnFFr3NZ8K17o8jCRJPPPMM/pPeBWvS+QzYo0ffrrpPsbJFPufrC5QaoTwRguhjfrTNhttoLTJzX8QpOCFvzlfECg1i9QKWL0mnO36XsbgLjc7/rC7eimkeh9QRnD36bPHwkX9AiWAK89O6hIogZopZy3nsvqMRG/RyaGA2G2ttL9BX0mVM98b0S1QAohc6ye8W1+ZYyViYfsf9uLbqI9Ttt3gp+16/aViXu8IbPYQ2e3D6tGX3WXT73Qy8Fhb44Yl77S9w05wiwdXj13XuYZ+PbVaoNQIRoje6KNdJ6f0DCi0bNVfDhBoTqBUgZlT8TKBUrMC78UhfQIl2WXE2trgGVc597qHW9jw9sZlcyqv2+aXUXTycoC9nx4rFyhB/cCjwYC7U/953GHwRkRadFY8T2Hk5+cVTk6aCT7XJM++8HMEQcDv918VKP2WwOVy0draCrksYweb49Pm8WWGzgoc+qWwSqDUCN5OI/5uE46Q/mzgzqhcn8NUvF9nfjBVLlBqcnOcvdWC0qrf57X+iTZ6H9JfmssSkJEUHfZIo1ugBDB/Ia5boASsWVTjHXDg7NLHKSPX+ond1qr7XIc/fV6XQAnU8iGRa3zYwvqusef+EOuf0OfbNDslojcF8OotLfsbgOiNASLX6Ssv4+5V2PLBLqwt+soIhq/x6veJAse/dKVMoNTUuXZ76bxNv88rtNuD2bWGwg5pGgqUVnVJ0LxAqeJcugRKgKPNXL9eRRXeJllh87uC+Ab0lZl0BGVsAZl0PWFEFVx5Mc6+z06VZzqrJ1ASDVgCIpK+YQhAsBPaOnLoLeJxetbELy7baN3f/HMWzz+PKIpXS+z+FuFrX/saAHP7fth0H/NkimMvClUFSo0QGpQJ9OvnNaIMFp/UdIkhgEOfGSoKlGhiYx6QTWZwRCzYdK4JjpiVDe/qQK5VeqkOlJC+cyWm9QuUAKaPL+gSKAFq+zWcy6iI+Dfp//bvvDNIcIc+P9TYvhndAiWAyG4foZ36ziUrIuvf1o5LJ6cMbvfSduNvn8/LGVNof2MLslPf+tN1b5AOnbzG4pGJXO/DGW3SH63NFbPnljj+FX0CJVD9r8FaJelqfAPagiZc3fp8cnnoFSgBxMeSugVKACuzFQKlBhAtAlZvA59XFe7Vdr2Lnnv1c2Wl1YitRb8v6ug3p8sFStTPoIQoYmvRP2dbFGjtFHDr++QARF4Yt3J+wUTr883FHwzDJ8kll4nFYq+Iz+tli5QAvvnNbwIwdkgNmjnPr2BI5zCkay+yOUEgJwhEN4C9ci4UDTV3AZz98RxHvznB/JXqb3Ct2oOdt7jpvs1HYFNtoVItUqCUqsvqvFT5urAH/ukcL/5NlfIVdWouAqST2drqTkGo6kg2B2TWP9ZO9536nBSdd7Wy68/6dfUBVWDT9yZ9dWkjb/Cx68/7kRV9wy16fYDoTfomjHM/GOLYl/Vn/5EVVeylB1d+McLBT57WVTIPgCzkdC5AMycWeenfLnD+Z/pSL294Vwc7/1T/c14L1j0a4Zr/oP9cRz57lmNf0ZH6Mo9sjtSivg/yg/98kqOfO9e4Ycm7JntklIj+D5Vjnz/Pme/pI6PuHhutm92Ed9YXo1XulNj0vnY2/25H/YNXzD+yAts+FMO3oUkSpZGRwSfCbP3dcodjwwCbDF13BtjwzipzR61a3YDZLZLL5FgcrpEZpUbfc0/PsOdvL5Na0taDWjtLSuyhBKos/oJQezeMds/d19nZcF8VolfnvnIGA/uezHH8lzWOncmp/1VgY2AZZSWBvFCbMNgvp7FfTmOZVieZC89+mStXrtDT08P27dtr9ruK3yzs2LEDq9VKNptl6IAqEHdcWEHI5MpSpVciJwgYbQLRwSo/GoSaDt9j35/m0FdmajuEa/CbjY8H6bld+7iuRcBzuaq/WXxNCCiyORAMpOYz7Pmr07rExrlsjvjYCrlUDrOvyg6EOrv5N76jg74H6og1avDJrR/qpvdhfRFy30YHWz7Ypa/MFrDp/Z2sf5u+D4XQNT4i1/iwNmP7Epz89hVOfUP/Om4LmzE69Z3r6BfOsf8TzZeIA8gm0k3XMy/Fya9e4qXPNMEZKrDrT/vpvEt/AHYt2PHRPt1j6sJPxzjy+QvEx/QJbHLZHNk680uxYbHN9LEFDn76DMN79WWjsketq8d8I8dGCo596QoXdZRGBGi/IUD7TXUcc1XmN4vPyPaPxAhsauDoqZhXu+8JsO7hUPHQGpeoxaMEQQAjbPtQO6GdFc7UBhtvYm9ws+GxUA0RZvXvSoBsSvserXH8Wt/aBz49zLGvTNRdS9QDFI9r9Vd5/wWhZhYXwWAgsE6m50YboY1VnEN1fAgzIwZeeibDyIHq417Iqf+VwmtN0eFaQV5IIC/U/nizX0ljv5LGPKO2OfniMxiNRj71qU/V7HMVv3l49tlnARjZ8yQAjotpDKkchlQ93gU5IYc/nENxVbSr860wdmiZo0/OMz9SY9yJYtWgcmC9hd47PHh7zTXnzFym+vtt9pQ48Zvwl5345giH/rVK6dA6Pi/BIJBOZMjW9HlV7yuZBTa+I0bHzQ2CKBVzU8tWF1s/1K03Pk7PgyFiOgMUngE7Wz/co1t4EbutlegN+oJDV34xztEvXtDVB1Azw+gMOI4dnuXgp07rKpkHkM3kyOrkXompNEc+d56h5/SVK4nd3ao+59cAbTcF2P4Hvbr7Hf3ceU5/S1+ZPkEQyGVyZFfq+LyqrMeHP3uBY1++0ND/XApJkbAEytfkZoJR5384wkmdJfrMbpm2a734dW4e6HmglYG3hhtmUCrjKBKsfzyEu7u5cq35uS92m4fBx3VyeUGg914//fdV8WHXme9NikQ2laudEaEGrxo7HGffp0dJx7Xfa4kcSsaAqQptFQyG2tnzNE7VtdPE+lurzB117gtB4OgvBU78uvp8L+RyCFWuudO1gmMlibxUx+c1lME+lMEypbaZPPECly5doqenh61bt9bsdxW/WfD7/WzZsoWlpSUmX/o1AM4LqcbcSxQwWHIEIlXa1BmzZ3+2wKmn47WzahhE9b8K9N7tpeN6dT6r6Ruv8Y7J9iaC0FrfTBIOfvKCvioUuSyJmRSZZBbJppOf3NlK70Ntdcs0VkPvQ2Hab9YXy1NCZvreHEHUWQK3674gnXfrm6tdXQrtb2jB4tMnNDj9nSEuPq2/jL3slBAt+ox46ptXOPk1ff61TDLXOKtWFVz46SjH1xBH3fieGKFdNYQyrzAG396he0xNHJvj6Bcu6Mp8BWq8Vq8dlyeSHP70WSaO1SmHnUfJHGHxyohryFFw7EuXGH6xCleuw/mC2z10vFGfDUUZNryzHU+vokug1LrNSfstJd82TXLR9U+E8Q1UxCgbnDe42UX/IyEkW5V3rM58n03lSCe0eVlH9aqT357k3I+ni3yziXhj1XleFMlla/AcUUQJiPReb8HXubpvTjSQq+HziscNvPRrganj1b8dhKz6XylsYoZWaxJ5MYW8WJt7KVeyKFeyBe517udfw2Aw8E//9E81++jBGrYurMa9996LJEmk02mu7P0+Tu+thd8M6RxZqfqAkmVo7Rax+7IcfUZ9qMJiya4l0QCZ1cZZ1HzPsqJmBSogVXwAgiCUOVHOPTsDuSzjh7QOVerCVkPHLV6CW12c/v4Yky9pijfBUDd4JRgEctkc7h4bM6eb/5g/+HH9gZDEeJLR/TNceV5fNpSV+RTZVBZzQCYx3vyEbXIYdZd0WplNkU1mMflMJBebz+B04huXmTmnLx2ymrVJf+amDe/pQbZJPKejzEZyEZKL+s91+F/0Zw4A9IuhgPjkCgadJG+tiE8nMfv17yhfS6atoV/pK82XR1PPrGJ8d9/RgqtTYe//e7x8vml4rlz9j4cqaRZnTi/x0pcusTymb/dmJpmtTxiqEAJnlx2jxVBa1rQ2So6dTWfJlAhQm5oPknD511O66z5Pn0owfaqK87sOlFaZ5GKS1FKD66qwSd99PsjBvn8Za5zqseT3Mz9fwOyuCLKVkKDSWrF55NeuxWmgcnNESQBYuZxgsU11BilykqAjgzkKB89UZ7H2KmmJp0+/AMBnP/vZ+vd0Fb9x+NnPfsbOnTsZPfjjspJvAEImR06sPo47t4DDJzJyMkNKm7LLuJdhNdGOT6r/NtohVfndVSrkq+BHV56fZ3G85L2vx73y7002y7bfayebznLgEzref8GA0ZJFshpZbrKs1NyFOHv/QWe2FuDSzycwOXSqhlDn6lwdh1o1GCQDRpuEs83K3Lnm14bMSoZ0Ql8GpovPTjJ6cFZXWS5QhSh6YfIa2fSuTsYOzHD2yZGm++kV1gDEJ1Ps/Vv9KaX12iGPxGyS5Znmyw6+HCRmV1ge13mulJbZSycOf1oHf83lCmvlWp7Z+sfaiE+tcPjTF9Q/NOnYmLug/74OfuY8zrYau9drnNeoSGRXsiTm6gQOq/Ays1tGMqnHbMSf8r9bPUayqSzJpZJzNZEZ+PzPZggMJknpNMnJ7+rn1442I/OXU40zG5TY09dvpvMmF5eem2f0cJ2AQKGr2nf8eBKzI87w4YpxJdbmXkYrpBIQr+E3LBUnlXKvbk8SuznH8OXaLhP7lfIxMLT/hywuLmCz2bj//vvr3tNV/Gahu7ubYDDIyMgIo/t/gsN7U+E3QypH1lh7DLf3weIsnNivtZ8v8YnU4EaJWfV/JTNlZbZyqZKxL4plga/xo8tIRpg6pXWo57cq4V2+9TZib/By5qkJZk7H615XJZSQqfaGkio49c3m1/w80okcl58dZ/JkE3xDKAbrk4tpMisZzC4jCR1rutktkzLp21WWnEuRSaTVIOBs8xupTnz9Eos6v5ETs2ld58hj4NEothYzL/71qeY7pdeWJers9/U/Z4ClYf3Zr1amk8QdryHvmtR/rsQantf0yQWm6435Wutm/pnpKOkR3uEmuN3N/k+cIzmXbjoYlU6g6/sEVFsc+cIlkks6s2YkshhqfN9CdV6lBEyY7FJz91PCrbJJ9JWH0c597idTJHVupIxPZDjyRX2Bb5PDQCaZJZ3U5/Pquc2FQTJw+CvT9XfwQxmvOvvLJSzeCh9Umc8rSc5S/nt+7UosAhVx7FJxkjKcZDGk9pVI0+lK4TQYOFqDe9mHVo+bK7/4GuRyfOELX6h/T1fxG4ennnqKQCDAyK++jW/w2rLf6nGvYARaQjAzniOlvSeNuFfe3y+aIVMRusolSziEQSwroTb04gKpheK6UBmPrIV1b24FAY5/bbRh21KIMojmYvmlRkjOpTn2b/r86gCj+6aZOb2gO8tLOpklndbnh8rl1FJxFr+JxaHm44aZRJZcnQQZ1TB9fIHFoWWWJ/XFovRcVx6qyCPG6L5pXTGs5KL+FFGZZJZjX9S/cTC1hnMBLE0kSMyvzV+2lnPFp3Vyrwy6nzHAuR+sjb829cwqeErvg2GWp5Oc0ll2eHmqyn014HxnnhxZvY43gGSTSMXT5X6oJmB2y5hdclPXlYdREUknsqSXS+aOBtxNEARGDy2QnE+T1skph/Y0ISirgMUrsjyVaRwHLd2U5xPpu9PDxefnmT6zUj9zJRR+XxzPcGX/MpMVQ6NUnCTEV8hZiz4vUVbDM8kaU1WpOMl+OclCm/qM2uxJWq0Z9kyaqslwAFWgVIr5SyeYn56io6ODO+64o3onnRByzaycTeCpp57izjvvBODmm/971TZZScA0Wi608EVg8kqRpJYFykqRyZJbKb6EO97rJ5XIcPAL00VykKr+0hRusZpyWSMlNc0gw7r7Wzn75Eh1gUINp8+6t4RxxWzs/+R5ErVUm1X62jvMuGIKl59psHvolXlsv5XY/IEuElMrnPhq8zuVWra5kGwiQ7/Q55jf+vvdLF5JcOqb+nZFyR6Z5LS+xXLrh7uZu7DE2e+tbcHUg2v/YoD5S0u89Dn9ampdkGHHh3oZfkGf6EhWDCSTWX16NBl2/n4fQ89P1j5XlYXG3mHGv87FuR80/+EgKwKb3tfNpWfHGdvXYOFbQz3YYtcmnC0v4/jNEIK1H7t++SclKOPusnL5l7O6+m59XwijWeSFf6jyThqEmvZo3WZDMhu48nx1MaCglTWt6gyUjXWvKx8oyxkM+KLQvdXA8Nksl46ov6e9lqqZk4BCoExeyOJRkiwsQooisZzvkKqKkwDSY0+y57mfYTabWV7W/0F1Fa9/2O12FhcXCYevobe3ejA0JwrIY8VxbTSCUYH4TBPcK5sjl1Qn2uguK62DVo49OcfiSKooZKqVbUzjOLlqLDfvEKrBZcLXOFhZSDNxuI5jvsqOhV0f7WJ5Jsnhf2m8dpXujonc4GXs8LxaJq3k2teEf4f8LLDVRWS3T81wpMNP0X5rgIkjM7pELOHrvLRucbPv7/VlU8IIRqNBV+m88HVeAhtdHPgn/UI2vRh4IoojauN5HWL5tSJ2Vyv2kEWf6AgwOo3Fd6RJ9NwfwhIwFcVGTSK4y83KXIrpE4tN85jeB4LIDomXPtecE7Yhh3qV+FM97pTL5RpzKx2ly6ucvO5xQ9vtzF5KVC1jV+u6rC1GBh9pYfz4Eheema1x3tXXbLRC9AYXZ388V/u6NCdN1UBanpfV2EVWECkZDGy63YBoFNj//aIvIOW2rMqclEeReyXwOGB6vlyUOtdhXCVOyuP0r/83ExMT7Nmzhx07dlQ/wVX8xuLMmTP09PQAAjfe9T+rtskaBcxj5bzb7s6xMANCrkqgrKxzFiFR/MDd+CaF9EqOY99fKvCLMpFSKfK+rmq8qx4n087bcbOHK7+eKhNElf5ezV8WvdFD6xYnR754meVaa3kVTmX2STgiVsYPztffrXyVj9VE35sjJBdSnP9R8+IGZ8yK7DAycUifY37g8SjxsQQXfqIvU6GkSGppLh1Y99YoC8PLXPm5vrJja8HOP+ln5uwCp3UGh9aCDe/qYPzwrK5ye5LZoAZ6q5mwznq+6b0xRg/MMnag+eds9kh4+hwMPzfd/G55CTY8EWVoz7TK1xrhN9Ev1Qgvg7MJgoBRMeDptDB2uIoPqk4G43UPerF4JPZ/pso7KdT2ebk7ZWSbyPjxGo7UfPCsCrfKGTXeVdPnlQ9ICiguWHcNDJ2GYe0zKumxVM2cBBRESvJSFsWcJpGGdLooUpprl6qKkwByE79kz8+/g9frZWLi1Z83ruK1x86dO3nxxRdp77uLaPcbqrbJGgUspSVexSwWEyzHDYVM43W517IqgPC0S0R3Wjn10yXiU5ki90rW4Dh14pF1Y5GAp8dKeiXL3Pk6G9Kr9N34rnYScylOfXO4ccaXEh7l6bOzOBonOZf5redIrwbsbRbCu32c/taQLhGrf4OTuUtLJOttbqqAq8tGaKdXrTqiR3shgigadF2fq9tG6xa3rhjqWtF2o5/AJhf7/k7/BkK98G9y4my3cUZntkfRIuouPdi6zYO9zcLpb9Xhk1X4gqvbRno5q0sAF9zlweKRy2OUL4df1YGe7ElVOr+8k6/Rn6b2rX9ud5eFpcmkOhcWD1q3j+wwsv7RFsaPLDK8t0qcoka8UZQhsFFh5HCcWmnpCr6uagImLd5YK3NSXqSUMxjo2QJmKxz5VfH3pNe8KnNSHnmRkryYwm6GhUT5+ec7xFXipDwu/fyvGR0d5vDhwwwOVivVoR+v2Ci+4447MJtVh14i8RSdnSrpVZQkmzcncTqTGNI5Iv051t9Q7Odrg46NYPMKGO0CA/dYcWoVNIIbZNbdpe1sFQ303O4gdpOa9mv6UgKEHN5uGQwiLZusrH9rMW1Z991eOm9XSyYJJoHBx1rwD9rY+jttbHl/mMEntHSABgNd9wboua+YznnD2yO0bldTNfq6FaSStHydd/vpe1OxtNqGd0YJ7VbP4+6zseFdUWS3xOVnJ4hPJYiVpKTe8PY2wterWwgcMQsb3xvDHFAHRMdtAQYeb6Pv/giRXT7Wvy1K+xvVvkrExMb3dhRKTrW/0c/6txfLLQ08EWXXn/XTeU8Qc0Bm43tjhdJl4Ru9bHhXR6Hture0FVIhyi0y2/6gB3e/atPQbi8b3xMrtO1/JELXvZqdZNj43hi+DQ6QIXKzh43vLbbtfShCz0PFchMb3xujZZsLAP9mJxvfF6P1GtVO3Q+EykrGbXxvjFatvJV3wM7G98aQFQNKm4ld/7Gfjb9TPM+Gd3UQvk5NPeLuVdS2HtWGnXe1MvBYG0aLiGw3suEdHUTe4NPsbWXje2PYWtW27bcGGCgpg+Jd50CS1eeshFUb2jvUlMBtN/sZLLX341Fit6vjRZRFXD22or2vq7D3oxE679HsrRjY+N4YG9/XwY4P9RC60VNu74cjdN8fKrN3PgVyyw4XZqdcyNzQ81CY3ofKbdiyQ7P3Rof6bGRVDLX+ne30P1zS9j0xgrs9q+wN0Hl3kHWPFttueFcH4RtVezu7bWVjNnZ7CwOPF2244Xc66H2TOgbsHer4zpdKrLT3wNuidNzWgqzIiCYDoZ0eHDH1XY+8wceGdxRtOPBYG513qe+c7FGfzabf7eGaj/avsnf/I6X2LhmzQPRGP5JFRNB2WvS9KUL3AyX2fl8M/2a1lEbLNicb36sed+FCAtFsoLdsfHcUxqxvg52N7+1A1jISdt0bpO/hNjWDlSCw8d0dhDR7u/sVtW3JmF33aPG4u/+8l80fUM/riFnY+J52zP78HOFn4K3FZ7P+bW1Eb/biiJlp2W5nw7uiKBG1bfRmL+sfjxQWyIG3hGi/RX2OZr/MhndG8G1RLzh8rZvBtxWP2/9IK513+MEgILsENrw9grvXqt2bn43viRTSGvY+2ELnnb6CDQffFsY3oL4LLVvsDL5Nvbdtv9fOxneF6brXX0i3OPhEUC2/CfgHbeqcLAOCQNedXnrvDxDe4cTkNTL4eJCWLXYwGPD0Wxl8a0vB3p23uOm7T703QRDIJDOFzC2uTpn1bw0gazu32t/gou/e4jaugTd5Ce9UD7Q0kcYZNmHRbqftWoX++1yFtn1322nbqdrB5ocNDzvY8W4P/n6Z8CaJ/juKWRh632gmul1b7J2w/o0GHK3qszDbIZPOcumkdtxrcnR1qx+8spxm8/Y0Pr/68RKKpLk2tIhnJQEkCfkzdEVVgmAkyc6uOD0Lqrgk4kmyoydOXrk30Jbg7OmXUBSFn/3sZ1zFbyf27t0LwOjoiwwOJskrRDo7U/T2qmNByOTovxYCHWofqxvaB9QAsdkh0LZeIHZdMX177xsttPSra40SFOi/x4nshJEjcRILGVoGtbYGgZ47nLRuUd95q99I/wOeQvme4HY7PXd5CGywseMDEfoe8BLeqc7HFp+JdQ+3oITVtq3b7PQ9UORwFo8Ji0v9zegQGHg0hDOmrsktm+1l5ZK67g4QfaM6BwwfnCGXy+HuUd9H/wZ72bzZeVeAjtv8BWfOwOMRgte6abvOS8/9rQw8HimUmOq4o4WuktTRA0+0FWrXu/tsbPm9LrUMG+oa131fSdvHo7RuV9cIZ8zKwBPRQlmzrvtDDLy9uB6ue7SN4DXqvKRELAw8ES2UW4vc4KP3zeo8avIa6Xs4UuBA1haj2jaozjWh3V76Hynea++bwnTeF8QalDF51bb2dtUurTvdrHusWK6u54EQUS31b9+jYXb+eT/OTrVtYKurbK3vvjdIh8aBMKoc1B4yI5pFwru9DDxRbNt5V5DYXUXOPPBEFN+gOgY8A3ZsLWbi0+qY7bi9he57y20Y2OoC1I/3gSeiGK0GDKKA0SbR86aSto+1Fextby+3d9uNPnrfFGbXH/Uz8EQH/Y9ECO1WbWgLm1Ubtqhtw9d7y0qn+Te5MDmNYCza2xY2F+y97tGiDXsfDBHVOL9n0MHge9pxarymdbubgVJ73xckeotqb6PVwMAT0cK3hn+Ts8zeXXevtrdnQK3V4Bt0sOn9nYV7jd3VWlZmbuCJKD6NR3r6FfXZGNWyEhafadWYbdmqjdnOchtG3xig7y0Rdny4h9hdrax7rK3AgfL2NnlLxuybijZ0xmyYtF1U1laZgSfasGpcPHytl74Se/e+KUTkBvXZzJ1dpHWbB0XLcBTc5WbdI8X3vveBINGb1QXb6DQy8HgEi1/GaJNo2epk4LHiu9B9b2sh3bTRqr73nj513uq6r4Vdf9KDyaNef36OKPCnx0J41qltPetsDDwWAqM6t3Tc5qPzzuJ33sBjIfwb7GAQcHdbGXi0WGoterOX7vv9BYdK/8NBWraqz9HRbmbdI0GMTjVbbeQGN933FI+78V0RWnc4wKB+G617uAWLZu/wbic99xbb9t7vJ7TTQfsbPWx8Z4h1D7eo41sQCO5w0PtAsW333T7Cu9U5TfYYWfcmP5FrnHTd5qF1i0LfA6p9BUGg6w4Pbdc6Cjbsf5MPR7t6DbaAkeRSmiEt8Bq7xUX0Bq2EixH6H/Th7lSfubfPTP8D6nyXikN6JUf7jcVyL/33ufH0qG09XTL99zgRtMxT0WssbH3CzeBD6jX33mrF16e2dYah71ZLwd5tW2Q6dxbTe2cyOeLabmPFC/3XC8gmlWtFY2l61xedxus2pOmyLOPJJLBbIdqSwWpW56n21iQbwssFgdJge4KOgBrUsMopxNmnGB8fZ3Bw8KpA6bcU3d3ddHd3AzmWJn9ApEXj8FKagc4V7Da1BJy/JUfPhmIAyOODUAxM9hyiMUf3NRJ2jfa4w9B9TTH4G95mIrRJHduTZ5LksjkcYQkEAWebke5bivV6QlsthHfk/WUi3bc6cXea6H/Ay/pHvHTf7kIyA4IqQoxeXywb2X2HB0+vyq2UiEnNsKu5vULbHbTfVPxm6rzTj39QPa81YKTn3hbMLonh/fPMX1mmdZOr2PaOAIHN6ntt9kn0PBDE7FPvL7DZQeedLXTe1kr0Rj+x2wO0blf7yk6JngeD2ILqOusbdNB9X3Hej90aYMsHu4jc5ENSJHoeCqFE1LbeATs9DxTbtt8SIHSd9lFnhsF3dxTWZHevUua3arspQKSk5GfPQ2HcPer3oXfQrrbVHk/4Bh/RNwTK2nr6VLvYoxZ63hQu+G9Cu7103FLS9v5QgQMpYTM9D4WRFAnZJbHtD3roL+EJ3fcGC5zTEjDR81C4UEauZZuL2N2tyHYJo91I7O7Wgt/N7JXoeSiMJWDS7O2i657iWu/psyNpWbZll9o2X/7NN+ig5/6iDTtuCRT4kmQRcfc7sEfV8eIZsNPzYIm93xggfL1mb0m1S9f9IbZ/qAf/ZmeZvSM3+Wm7qdyG7l7V3s6YFUfEismh3mv4eh/tJaUpeh4MFTiQPWpRbWg2ICkSnXe3lpXo674/VPAD2UKqvWXNhsEdbmJ3Ftt23RMksNlVbm+vZu+tqr2L11DkcGbNhtYW1Yb+Tc4yLhu7vYXQNR6QwGg3EtzmQQmX2PvBijF7rWZvs2qX9W9rZ/uHe/H02ctsGL25hfANpfYO4exSuYp3wIbZIyNoGYfC13tpu6mYurnnwSAezd6ODgs9DwaRzJCYTiMYKPigAXrua8Wr2VuJmOl5IIikqHYJ7XTReWcAySpikAS67m7Br9nb2iKr772rxIa3F+297fc6GHhMtZPZJ9Fzf0v5HHFH8ZnHbvPTss2JxS/h7LLQc29LwafrW6/QdVegwK3ab/YQ2q6+N5ICPfcGcGll3jx9NrrvLh43eqOH0C6XyhMk6LnHh6NdfTbBnQ763lRsG7nORXi3q2iXe3y4Os3qnNxhpudun1pW7q2t9D7oJ3Kdq+Dz6rnLi7tLPa49LNNzlxfJrHKr0HaF3nu8tF3nwuyR6Lzdg7fXAgYBJWik+w4Pkubzat1so/2G4vydSWeZG1J9XmaPRPdtLkwO1Q6BQSsdNxTLpXTcoBBYr17D8kwKe6uM2a229fXKxK63Fe1yjYWW9XLBht03m9nyiIKnQ8LbJtC5u7hZLrpZItSvLhqSDD3bBOxe9bhmBVIpGNf2DbX1QzScF3mk6etL4XSqXMrjTrPFE8exEgfS+B1Zop5soe2G1mVic5qAxJpmMJRA0pR7Hd4Vzh9/HovFwre//W2u4rcTP/7xjwG4cubHxILLiKLK6Vs9aaIaDzOkckQ7s7h86tixmCAQBqOcxWjJ4QnlCK8rxvbCAyJubVqVFQNtOyzICkxfSbMwlcbdUdykGtpkxtOl+XetEL1GweRUj+WKWYhst6EEZQYfa6HtOge+PpVvSBaB9htdWDTfjiNqJnqDu3ANJoeESVGPI8rQ/gYvtha50Lb9DcW5u2Wrk4AWr7jy/DSZVBa7tp4oYbP6ravdXmCLk+B2V0Gg1H5rAHe/ndhtLUSu9dF+a6BQYsq/yUmwpGRX+y0BXNp6YvHL9D4SKfAT/wYn4d3Fa4re5C/wJbNHpv3WFmTtflp3la+z4Rt8ePrV9UR2irTf2oLJrX3z9dppu1H7VldEwtd58Q04Cv9uv7VYms3VbSNaUvYrvNtLcLcXs0dGlA2039qCtUXlQI6YlfYSHhbc6SGwxQVA6FoPmz/YhaJxIHvUQvutxett3eahZVvxWbXf2oKt1YTRJuHqVtS2BXu7CO4st2E+vmVtMWFtMZPRssP4NzrLSqS131xib59qQ6MiIhgETE4j0RJ+2najH0+vakOTW7O3Ng496+yEb/Cx8Z0xuu8LqfZep9lbKbe3u0cpO65/gwtrwIxoEREtmr21OJSry1ZWZi20y4N/ozoOlZCJzntai/aOWstsGNxetDeiakOjxu/sbeX2btnmpnVbiV1ubSlwTiVkpvvBEKJS9JdVjllnTLNhQLWLaBGRFQklZCkfszcHcHWvtjeAd8BB+EYfW97fRWiXh0jZmJU0e6vX7+m3E8nzMMDTpxTGaN7eZk+JvUu+HcLXePBvUG24MJTAu86ORYuzOmPWMt4b3OXBv0kdh6Ksvsu2gAlZkYr21vxWrducBLYUeUL7LX7sEdWGgS0Otv5eJ7JH1P6tzRElbR2avW1BE+23+JHMAo6oBf8WR3nbN/hwab5ii0+m/Y3+QjlD34CdyA0ekNRrarvBi7tbbWv2SLTf7C3MEZ5+G+HdxXes656A6nczCKq93+DF5BI1G1qJXKtpPASB8C4nnn4b/vUKvQ+00P4GVbgN6piNXFe83uB2J34tTinK0H6Tm/YbPbTf4FXn5BuL19C6xY5/UONPIrTf6C5wTpNTZHk6yeQJNQYX2GgjsKGEP13vRAnm/WMS0evsIKplOtPLWVoGi23bdtnUb3vA6hVp22Ur2rDbyLq7bXTdpD6PyEYJR1j9zWxXuZekhWQ8UZFQj4Gc5vPK5mBBK+hjskDHuiwmSV0v/d4M0UjR5xWNpIkIKzgTKWQRWp1pLLLWVknR61guCJRinhWCdjW+JIsZzLPPMzo6zObNm18xgRK8giIlgJMn1ajrsWMHsdvVG7dYQFHA4QB5YglXq4DiKZ7W7jPgiwoM3migJbiMzSPi0BZlZ1BC8aoPIhdP4AjLuLQg/PD+BWSrhEMTQbjCMraSeqLOiAlXfhekDLaAjLPDQnI5jWAwYAuYyCejcEUtONuLNaptLSZcWiDH0W7B1mJm8B0drHskiKvDhiNqLWlrxq1Nho6IFVuLGbNLYnE4iUEUy9oqIQvebnWw28PqcRVtMnd1KTjarJz67jAH/uUc9rAVV5fa1tZqwdZiQQmpx3J1KtjDxePaI1ZEkwGzXUJpMWNrtRQmIm+3AyVYvDdHuw1Xp3q9vXe2YnbKhcnR1WXD1lraVsHVqV6DrMjYWi04223s/uN1RHYGyto6Y1ZcHdoLJ6vX7I6pfd0xO0rQQuctqgjBFbMVFpD8/Xk6844JBVurBdkpkZxZQZQMWL3F1GVKyIJba+uIWrG1WrBogQVnpw171MaLf32Kw/9yHiVswdOpOTFCFmytFqwBdUy4u+w4IkUbOiJWgts9tGxzYWtVj5u3m7tLwR4pt7dLe45nvj+EaBRxaEEUT48dJVRiww6lYG/ZbcTWamFlIcPk0TlcUaXC3jZcml0K9s7bsEMhB4XUja4OW8HRlrehu6PChopM912tuNoVHO3l9s7b0NmuPnNZK1fl6rLh6Ch+0Cqhog0dbXl758lhhV1arfjWa2QlqNrb1locs45I8RocEXV8J6eTnH1yGMlqxK7ZzdNpRwkX7WKP2nBq12vxqDZcmkgwfmgWd6dSeC/y9nZrBM+o2dARVf+t+MzkcnDlZ5OanWwFO8gmAVtLccy62u3YWiyqeOndHXi6FZwdJTZsseDW/u1sV7C1WDBYNbvEbFi8Fvb8r5OM7Z1V7a29y842K7YWC2aN2Lg6lbI5QpAEZK1O9Ko5otOGo61kvIQsuGI2uu4IErslqLbVxpMrZivYE9SPlvw4VAIythYzvXcE6bzDj6fbhtJaFCg4ItbCvZocRmwtJhyaA9jf78DmK76PjjZLYa6UFa2tRmxcHVZsLSaUsIzBKGByGXHl71UGW8CES2vr7LCoRMukOjWcUQsGg8C5n06yMpXCFpBxa6JBV5sFm19GVjR7d6jzXd45ZXbJ5LLq/7eHLNh8MmaHDAYBV8SEPVRcJ5SAjKvDzLb3tdIyaMHmM2LT0l+6Iibs2lqEKGJvkXG2qe+J1StjcUpksznmriRxhWXsvuIHr8Mv4gpphMMpYHMZsGu82OkFg2goZAFz+EQ8TpUIyGawKeBwqb953WC3wNb+NDduTONWcngdKkkQZLDZwW9U11q3PYO9+Mg58uIPmJycxOVysWvXLq7itxN9fX1Eo1EymQynTj2PURPYuN05XC71/8sTSzh8Bpzat47iBbvXwKabDfTvFnAFwBUqZolwtEg4NcKsOAXsLUasDiOpuFrn3BUs4VohI+4OdX6w+kTsQRMW7cPHFTXjbDOzOJIkvZLBETLjiqltzS4Re8iEojn1Xe3WsvnN2W7Bu05h2wfbMXmM2CNmlKA2F3bYCnMSgCtmLfCw8YMLWH0m7Nqa7OywFfhQvm9+3seormtWl8zp746QmFzB0WZVbSgY8HQpuDtL1q02W2Het0dsmF1GJIuIyWvE3VXkSwgCjrbieq6E1XXIrImuWja6cLUX11lHyTUprWYcURsmjfe4uxVcHQqxu1rZ+rvduGIKbo1/WP3qcZWgFnTrsuEsWb+dHQqtm9103RnC4pZxRG0l66yCs4QXuDqVwjplNEtIRkOBI7liNhxtNdpajTiiNjLJHC/+1UksTrmw5uavqczeUVuBKzrbbTjbbQWhT5kNNXvn2zqiNhxRG0anxOVfTLI8k8QZLQZpHe3F8zgiql2sGjd099pxdiiM7JtmZN80zliRlykt2rPxmovXUGJD2SqpZUpTYPaqz0Zp0daiThuOEl7g7LQXeHvvvWEcIVuBD7o7y3mYs8tetKFdxBG1IVmkwjWU2bC7+MyNRgOOqK3w7FzdNpRWC+03+grnyXOgvN3c7RU2tBo58dUrJOdTuDpLbNhmKwjTHBErjqit4EBwdyk4QlbGDswwfngWZ7utwNuVoGoXS4nTK89dQRXzx7VdrbYWC442G1Z/0d7OkndBHd92AluddD8YxtFmLfATd8xWbsOS98ZkV3n41MlFDnz8vMaXitzK1Wkr2NtgNuJosxbmCKvfhMEosKKJ5QpzRC4LRrBHijzHGbVij1iweAx03RkgsMFRNkfYIxZcGje3hy3YI2YkqzYOO6z4+hxs/3CHauOwGafGiexBM/aIGbNdKFyDUzunu8eKLWAiqDn4bH4T9rAZs1vjke1WnNGSubPNiqvDiskuYbSI2MNm9ZsXlZc5S+ZDZ9SCO2YBgwGrW8IeMjFycI6zP5nG1W7GGS6ZZ6MWXBoPM9qN2IMm7JqQwBkxY7RIhVKgrqgZt3ZNRhm1reYAdkRM2IMmeu5yM/BmH+6oCXebxiuNYG+VceadxWEz9hZjYV1zRUwYZIGklg3N0SrhCKpj1B4wYg+IGM35thJOf5GXWWwGsmmNG/rUNdCeUYmY2weukjIkTjeEnBm29aWJtqRxKjmUvCPInsXlAbOWOt6jZAu8zCylOHxwH6Io8pWvfIWr+O3FgQMHADh5fC8ue36jAXicWezWHKbJZRxecBV913haoDUMm3aBz5XA2WrArvnEHAERp7aZQUis4A4bcUXUgT9+LInFJWEPqL8rPgFnWC6IZjxRE+62El7Wpn7rpJYyIIAzakbQ2rqiJtwl/gNnuwWnxr1sPhPOdgu997YQu82Ds8OCq6vY1h2zFuZCq9+EK2ZFduSz5Ai4O0vadloLHMjikXHFbFg92jwUs+HusnH+6TFe+uxFXF22wtppckq4OxWsmqPeHbMW1msAV48d2S5hUiSMVgPuTjt2zV/jaLeWcQh3l4JHWzvbr/PjbLMVBCvONivuruL65+mxFdoiaX6iNivbfr+H9je24O6yI2nOdk+3UhB4qPeqFHwy9pAVb7+DzjtDSGaDun73FM/j6lIKvMbWasbdZcfslEjOptX5usSn4eq2F2xo9Zlwd9mLwaUuO54uO0c+c4FTX7+Cp8teuHeTS22bD5Q4Yzbc3cVrcHfZCV/vxzNgR1Yk3F32wjrr6lQKzwJU/pTnH6e+fQWjRSrwSGe7rYxDuLuL9pbM6nGzyQzDe6aw+k3l9u5W8PSUckV7Yc1WIlZyObj4zEShbf4a1Gu0FziQPWTB3WXH6DAS3uWhdasHV0/pvSq4ND5iC6j2ljWBjavbXnZN7m57YaxZfLJqQ4+58Nw8JTb0rnMR3qm+3Ca32tbqL/qBXCVtXd3as0nDya9fRnbK2DR7V9rQ02NfZcP45ArDe6Zwtltx59sKAp5uW8GvLEng7iz6Nm0BG7ksjB6cVa+3R8FTeq+dSoF/KEHVL2gwSXTf20pgo7PM3s6YrdDWFjDjitmQbeq74OxScIRsHPin80y+tIC7y4aro3SOsBWCee4uG+6S+cRoEwsC9lVzRIe1rK2ry4q700b79X767mvFFbNi1fxRrnZr2Zzm6ixyWcki4YxZ6b2vlfB1LpxRc5n/1NVpLXA4ySzibLeitKrHDW11lh3XHbPi7tT4kwTOdit2zV+pBNW50+KWkMwiNq+Mp2Q+dEbNOLXvVnuLjLPdjNGi+a/bLYiyyOkfTJGYTqvcS+NPVr+MM2rGrPkGXVGzysO0YKTilyGXLwss4WwzFcR9roiMq63os3NFTbgiMhseVUVQzrARixb4c4ZlnPk1xGDAHZYK64/ZAs4WI9lsjqXJNK6giKu1yK1cQRGnxsMks4DTDzaX+pvdrY7NfMJldwt4Heo/JAk87hxOTaPutGXxKVk2dmTZ3ZfE78jgcxSzG3jcOfyCyruc1gw+e6awBl45+lPGxsbo6Ojg2mvLS4FdxW8PnE4nb3nLW8hk0lw++0u0/eW4HRm8LnWsmCcSeALgdKm/mW3gDUD/ZujZAG4ljStUjEW6wyKOgBb4lVK4o0ZMNhEykF7K4QoX/WOuNglnWH2nJKuIO2bCoolD7K0ynk4Ly7NJkvE0zjYzjqj6zktmEXfMUliT7WFTIWAPqh/LN6Aw8GgIySbi6VGwat9tSqsJT7et8M67u4rf+dOnF3CELdhaTQgGAaXVhLfXXkjC4anwCXh7HVjdMqe+PaSKInodiJoR3Z0Knp7StchRiDdafCYcISuyIiE7JfX7u3Sd7bMX4hlmtxFvnwNZ21jfdl2AwIZi8N/bay+JM8h4+xyYNCGro92Kp8+Of4OTje/pxLfOgTM/P1tFvH0OLNoa4WizFYQ6oK7f0Rv8RK7zIdkkvH0ObIH8t6QVT6+jpK1S8B9IRgNmp1wQGStBC96+0rZF/wGAt8+BIBg48q/nEU0GvH3lNixdOz29RRvaAmZ8651ENUGOq1Mpv/5ee8H3Y/GZ8PY5kKwiM6cXmR+K4yzxC3n67Ng1e5tc6r3m4yLOdhveHjsjL04zun8Gb4+94NeSHeqzyfsjHVEr7r7iNZgdRuYuLZFZziArmr21ddYRseIuvd6eIufsvi+Cf9BVtHebBW/ZvRX9hqJo0K5XKrd3/l3uUnCXcENvn6PA8a0tZgKDLsI7tM3/XfYybuvpcaBE8t8zZtWGZpGhX02xNJwoH7M9dpyab9PsVsehUVtnnTEbni47Q7+aZObsIt4+R+HZmJ3amNU28Tmj5eNQMoksauWKjXbN3p68vW2rbOiMWbG3Wei4JaC+n5q97RFr2XE93fbCu2yQRby9DuYuxTnx1SvYQ+Zye3fZ8eTHrKi+c3leYwuYke1GSKrzpafEpwtq2zyvsfq1+cQi0n1PkPAOT4UNFZSwFQQDFq+Mp0dBtooFG7ZucbPxHZqPt8eGQ3s2Zqfa1mjX4gXt1sL3gMVrJLDeQVDbpGpySHh6FEwOTbQZseDpUQpxP1eXDVe7FaNNxGgTcXfbCqIwJSjjKZn/3J1WnBo/FS0i7i4bQ/tnufyrKexBE56u8jnZpelDRBncXVZsAVndLBiQMbuMhbJ+rnYzro7iBm53zIJN27Bt9cu4YxbCWxU6b3Gp3+AlvMzTLmMPqG0tHgl31FgQjjpDErLVQCqubnZyRyTs2lplcRhwh0WM2qFcrQbc/mKmI5sDchrvMlnB3SqgJFSRt9OZxesttvW5M4RMSbbHVoi40gQcGSxG9ZwuaxavO4dFK5XuVzJ4rFrcUoSXXnwGg8HA17/+dV5JvGLl3vKIRqNcvnwZWbJz47Y/IWMtLuzyRHkKw1w+lZYM63bAyZ8u1SzflIuvzjvt6pTpfoODMz+ZZ/ZMRXrZipSHudIUiaW3XFGDVv259Hf1/2/7vRgr8yle+nxF+rs6KaiN1hyb3tvNxLE5Lvy4StrR/8Ppq2XFgGfAyegLM7r6dd8fYmEkztiLs033sXdYsAXMus+1ZsjoKwUG7P6LAWZOznPiazpTHK7hXK8V7B0WrXygvrS3ayn35u5XsLhNDD+nr2Tea4Zaz6lBSr/d/7GfhStxXvpc87V9ZUUgudjgHX2FyrwpIRlnh42hX880fVzZbaDz1gAXfjZdXo6yQSpHs9+EIyQzcbiJdN6VaFDebc19KaZ63Pb+EBMnl7j085LU5pX3VGEfb7+J2E1uTj01w/ylZPm1VEm1WFZypPT/y8aKhuXnzVrNbL1DYHkxx/FfsSrVdcpdDByKK+WpRX2DIrIxy9lhlQCZZsoHcqJEoGsZWSbFFM8d+DjJZJKVlRVkWeYqfnuRSqUKz/j6rX+G2WhrintF1kFiEaaPV5R6Kx2bK8mKn3L03uHApBg48vVZqJX2Ot++Vim4GimvC/0yGdy9VrpuD3Dqu6PMX6zggHXSWkdv9uDrtbP/49VLWTVMib26g772ZX1Xn8u30cHcxWVdZbOsLUZCO31c/MmYrnJlrTvdzJxdZGXqtakVb7TqK6emZmGysucvT6zhZOgqLfdaonWnm+WJFebO1yijWAVrLfcW2u1l9ty8rpJ5rwnya+AanlPvQyE8vQ6e/1+nmu+Un/IanEtXyuo6fKplq52FKyVl0ZooQ+LfoGDxyFz6+XTz14CaVWD8+OLaxnuD8m71uza2VfQGB+6YlUP/NgqZOu0rbNn/oBej2cCRr0yuvs4qdhekEj5Wet350iPFiy77p6vbTGyzyMnnMyxNs2pOTruLTilDsmRdMubo2mrg6HkD+cElz5Y/gErudWHq3zhz5gRbt25l3759q+7hKn678MADD/Cd73wHmzXAru1/QNpWHIumyfKU/bnC/JAjtg4u7U1UL9+EKlIqQzaHxQM9Nylc2JNg/mLFsSt5RinvKuU7VXhXropPbOCRFlJLGU5/v8J3UOEzK+tryDH41gjTZxYZfm529U3V4VF6ypToRv4aJTVAN3VsXlf30G4vibkk08fqlB6ugNkrYWux6j7XmpEfdjoqqu34aB+Tx2Y5/8Pmy8QVzqWvcttrBrNXwtGmMK4Jc5rFWsq9KWEzZo/M5JHX6BmXopmSZvnnpNPXtP33u5i/sszpb4803UcyU708ZCleoRJvskPC0WZm8qjqh2qGo0hmCO30MH5knsRMyeBtwH8kRd2gNnO2SvmVl1nerX7f5soQDz7qY/rsMsMH6nxnGMr9WEqrka6bHZx7dp6F4XRtn1Yepbyr5LpzDXxeOYvMut2wsgznDq4+bMpdFMAbKnxeSpeIRc5yeUrLRlFRGinhLZ7bMpYknV5iz76/YmVlheXl5UJlj6v47UQmk8FsNpNOp7nu+v+ELCukS6qemCfKJ6Oclk3OE8iSTsHSudqTlVAZb8zlCG00YXGLnP15fHWZ3UrukkpW/S1XzedVwb0sHonOOwNc+Mkki6OrOWB53yIn8g7YCQw6Of6VK9pPtdvWvYZXCfY2C/HJpK6yWUZFJLDBxejBWV39XF024pOJ8tJNryJEWV85tehNfjz9Dg7+89k1nAx95d5eQzhjNpJLKZbHmw+IrrXcm6fXztLECiszr9Pga63nVGfdD+70ENzuYf8/nqneoJI/5d9pEci+OuXd1NMWr9kRtbAyn2JlNl39mkqvS/vdHjVjccmMH9bHkx0dFpZGE2SqPGLdJX31lPFtgtd5+qz4+qyc/eEk2VRJ+wbxxshuOxanxOkfzap/kIr+gqr3VPJ7adndRtzL1GKmcyOcOwLLCyBUfLcnvUWfV3m8MUPLoMilSYmMphg0zZZzr2Vf8dzW8STj49/h6EvP8+CDD/LNb35z9T28DLzio/rMGfXlSqYXmJw5ixiv7VEtBGmTcPKHtQVKtRAfT5LLgclWf3GoJAayV2TjO8OFNGfNYN8/nl8tUGqA5CIIolBWLq4ZRG7ysvs/9hdKZTUL2SMX0ks3d33ZNYmGznxnWJdACWDhwvKaBUqOkl0szcC/2cm1fzpQKPXWLJ77f47pFiitf1s71/7pgK4+oJbd0/OsAHb8US87Ptqrq8/ChWXdAqW1YubEom6BUvutAXb/xUAhxXezGHisrVCarVlseV8Xu//juvI/NrHQPfc/TugSKAFs/VAvWz/cVbtBlYVdiciF7G71UBlgWxxOFgVKTSI5k+XEV0fLBUqNzisIrEwmdQmUZAUCm+z6CAKw9f0RtrxXy73bZBBN9gAC5Eqn+0aOHoPA1Kkkez85pgqUmkTfXQrh7ZbyPzYQaxjiCXI5lb9VCpRqIwfkmHwpU1OgVArLiOpIuzT+XVKpFLfeeutVgdK/AxiNRh588EEAnjv4NwBNca8rx6sIlBpAEAR1HOfQLVAKbbfTfaenRuvVmDkVZ+/fX1gtUGqEnDpPGvVRB7Z8IMam93Xo64Sabhhj43Z5TB6e1yVQAoiPpTjz3RFdAiCA0Rdm1iZQ0sqb6cGW3+ti8wd6dPU59oVLaxIoXfPn6xh8rL1xwxL4NjroKSlv1gw8A3au+Y/rCqXkmsXoCzO6BEovB8PPTekWKG3/w95CqcJmsRb7YYTdf9JPz/36+p361qg+gRIQvdbL7j/uLaQFr4ZqAqV8KW29GNu/UBQoNUCep0wcWdQtUMJgYPywPoGSp9eqzn86nDn2sJGdH4rg11JWN+sIEk2iSmn1DEGDwInvTBcFSk3A7IR199oxKhWcMFU/Yi4b0uRysLSADod8DlICZ/fkqCVQKoVlZJmp2bMMDV2kpaXlqkDp3wm+/e1vYzAYWIqPMz1zDmmp9lgUCoEjgUvP1xYoVYVBYHle/X6QpAZRigreJVkFeu9yY3I0/x127KtjnH5ysuH8UTZHpMEgCUgmfd97nn6FHX/QXSjv1iwks1AobdUU0qxJNDT83JQugRJAYiq9ZoFSfjd/s1DCZnb9UT+h7c1za4AXP3ZSt0ApdlsLuz7aXxRFNYmOWwKFUjDNYsO7Otj8AX0cJTGV1i1QWisWhxK6BUq+QQc7/6Rf37hFs1/eT9bkutz3YIQdf9SrS+AnGAT2/cM5XQIlgA3vjDFYUsK6yoFX/cnskZobRxWcLTmfLgiUmkU6AZd+MV0uUGqm32KmukCpFiRwd1t0+7zWvdnP+ke0VMdNCpQks8Zn9XwSGgQWx9Mc+vI0C8PN2yK6w4S/t/x7UGjw/S8sJ8ll9epLM0CGxbOZmgKlUljGVH/Y8PhXWVlZ4aGHHroqUPp3AFEU+djHPgbAvr3/BIBUR8giZFTuNT1uqCtQqt5Z9XmRy60WKFUiVe6fdXWZCe+012i8GsvTaY5+cZilsWTj76+SOTWXySEYKJQIanYjTs8DIfreHGncsAL2Nksh00czWLi8rEtoBJBazDD03JTufrNnl9YmUBIpZPxrFj0PqqVY9eDSzyfWJFDa9P5Ouu7S50dRwuXlzZqBxS+z9UM9hfJwzWLu/JIugdLLwfSpBd0CpXWPtdH/aFvjhiVQQmbd9gPY9sGesvJvQEPeNvLCdPMCJQ2eXoVtv9eDEtLnw8pnGWqEynlk/tJyUaDUuDMAC5cSugVKGATmL1UXKNWCrVVGrO36qwrZLrLpnWFc+eyYTQrPJaOAKAnl19dEvPHKnsWiQKkJiGbouMaCaC1//o24l5xNQA6S8dUCpdrIACJjL1FToFQK63iS5eVpLpw/gt/v52tf+1qT52ker7hISZZlPvKRjwBw8NRnATVYVitgJuRyhYBZz80WdjxhbypQD6oIaN+/TjJ2qEogwCCAQaiqXJatEhaPkeCm6iIHQRBUclChRJYV6H+kWI+8mV1hL3zsNGe+M1qtQc2+k8cXSC6mMcg1FssaTtbN747RdVeo6m+14B2ws+vP+vWLRB6P0vuQPmLTdW+QLR/q1tWn+/4QG94W0yVUmjg2x8LlOHMXlho3fpkYPzzDzBl9zitQU1K2bNIX9Jo5t8jseX335O5V2PQ7nchNLkgvB31viugeE/NX4iyNLrM0rC+Y5+qy4x/UJ1IaPzTL9MmSZ6VXiasDkycWGD8yW/3HGmRj4JF2dn2kfoC3kjB03OZnywdjxeM2mUVp8++244iVkBptvqx5XkFgy/ujDDymjyB33NpC1+0BHO01xp8gVH0Oy1NJlqdTDXeilX7EJadh3z8Pc/mXWhalWveTyxbuN7Jbwb+ugtzlcmoGpSpZlNTjGrAHZDzV7imZqnlPAAefynLy17WDZOJKpkzVPLgLdt4KkMM0k6wpULKMLBcESsfPfZfz58/jdDoLtduv4rcf3/zmNxFFkUw2ydkrPwOa415GI2x9RKHzhpL3oM4YBjjz4wWOfnOu5u9QPYOSp7e8LFHNvhW8zbdeIbi9ZL6vt+s+l+XSM5Ps+8dzpKosK/V27McnV4iPr6z+oc7c6ulX6LknREdJjfHyvtVtOfB4lI3vi9W8lmpwxqxqHx3aIaNVdW6Er9P3ob3zI330P6zP+TJ+eJaxQ69NtszJY7OMH60/BisRGHThHXTp6rM0lmD+0hKLo/ocm933Bem4o0VXn7XA6jOy/u3thfTWzWL2zALTp/Vx18CgC+96V3ONS8b81LF5JpoN2DbJY6ph5nyc2bOLLFyqHlSq5rh199nY8ER77fejRpRl43uitN2gBYWb4E8AnXf66bzT3+AuyuHpV9j6gTaUsD7BYNftfta/tQ4fNxhW8SvBACvzaebOxXXtVDv/9AwHP6N95zaYm/O26ry1irAzl6v7/AMDVmw+I2I1U6TSNefa8VNpDjyZhmTtazMkM4UsSkZjjp23Qmy92l6eTdUUKJVyrwMnP8fy8jJvfetba57nKn778K//+q8AHHrpMwBIS+maYiUhmyuIlcKDBrbcK5dtlqyLrMCR7y4xfXb1d0Dhe6gK7xJlAXvYhLe3+hpR9HlVzHMStN/kLr5XNZydpf6yw/96mUs/qyLCrOPzmr+SYHkmWZty1ug78Hg7Pfc08HlV+MtsITNbPtilWyTSfkuA9ltqcLwaCF3jYf3b9XGo1u1uNr4rhqOjeZ/X4lCCqeNzzF169UXRkyfnGT+on+MFtnjwrde3MW/q1AIzp/RxFGuLmd43RzC7dKqo1oDwDT7dYyI+kWTm7ALLU1W+M+ogsMWDb8Chy281cWyO8cOzTbUVDIK+DJMVGDs0y8RLNfh4jfW8594gW9/X4P2ouKbAJgfrHwuBtNoHVBMS9D8cLA/kVeE/leh/uIXuu6psdq3zfRze7qTnzgCOGsL3Wte89P9n7z/D47rOc2/8N21Pb5hBHfQOkCBAgmBRF9W71Xu1miXZllxj55zrPR/OefPPSd4kjh07iVsiN7nGRZatZlm9kGLvBSBB9A5M7/8Pe0/BYGawNyzKjo37unhdJGetXdZe5V7Pc6/nmYjgn44Ud3TlcKNYCPY9M8nILn9x3pWIp3mXu1WPo27x2EgmEsXbQ6XC4dHhql1KvFTL2LwOvwsDews/mjocXxRFqaEVes8ShbjCfKygQMk4HskIlEbf5/jxYzgcDn72s58Vvtkq/qzw8Y9/HI/HQyg0y8jIDkAUKhUSK6niSVGspIHObTqq18gPIDC6P8KJ1wvYAFL7v+hSXuaok9J/FxrXBbiVpUqgpMVU0B+ZqS+O2ZkjPg4+M7RI0JOe04twr8BEGN+4MtuG0S3QdkMNZeuViaJrziul5SMeRXUMJQLN11SlxVdy0XKtR1wvFWDtnfU0X6nMhzp1YJ6xXR+OzWti5xzTh5SJPRyNZioUitcj8zGmjywo5igVvSVU9Cq710qgMWqov7QCY6kyv+bMMZ9im5ez2ar8nTQw9v4McyeyhNR/iL+xkD1MpcY/FWFy7xy+cfnfyugSWHtnDWXLBHrI5YNNV1VkgmsUs9Nl/Va+wY5nq0P2swEYy/Ssub0q7/ctxvkaLi6l5coCPsoCe1e1FgJTEXzj0eLfKIcfTez3c+hnYgCQZDIpy99Y2WNeKuyMxYq+k92jw+bJb/Mqxr28k3DwzQSJaOG5f7G/MU53XxJPrfhv/VysoEDJNBHBJIkRd77/b/j9fj796U+jKeQz/QNwRnZxX/rSl/ja175GNBplx8H/ZGPnvWjmpM1zblj2LCyMxTDa1EsyAyRDYfEjF1ikHU0CNZud7Pu+vBNBvqEIu75xiojCjEWVm1w4Gy1UbLQztl3+omSpEihf7+TEr7OeT6UuSBxCExHe/3IBNSWIHTKPUGng5TEiPmWnRLxjYTEalUOZAdxSaSQWVqZU1tt06EzKutzQO1OggtCkAuNLBPY9fVLRfQDab6rG2WLlbQWpNib3LjCpVCEKvPV3BxVHDjv+ixHF97HVmDCVGTC7BSIzZ1bhbKtTGLYCMfrS7GHlqcPe+j8HZYsZUxh+U4rypIAsdD/UgN4u8N7fH1F0r7zfahnH2+Abk+jM+Sf5QsYjg0OHzqhR5NQrbbdhsOtQazWy0pOkkEyIpzVkQ63m6G8nqZ2LsXAqb7zGglUP/XQifY1CSCaT6ecradFjLjdkBEqFkGqnhEgqKtaYSSZg8tD4ss+UjR3fmVva/4rUrevTIZjUHH2vQIFYHN2kj4RtsRPBOw9qdQxVECggWtXMixvMhElHJBJmamEfIJ7wXsVfFl588UW2bdvGwPAr1JafjU6nQzMvOey1+eeWaCRJyBsnMJ2Hj4SLrxnNVzgJTEUZ2b50Dk+Nzex0IPt/PC4r2kZu3foL3CTjSUZ35AgQl0kRUn2ui/lTfryDGSOMSq0qKFQ68pMia2wBvjZz2Mfg6xMMvaMsimAyllScdk5j1GByGXC32ZjaL493RAMgWHQY7MoWzOF3pwgXiRySt84bK0v12vdUK/7xEAe/Lz9i4fFfKTvpDXDwx4OK02WFp6Mc/J6ySIoAjgYL8WiCkyhMpaIQpgojVo8JU5ke35D8E9/Hn11B+31/cHmBXO46GIWjcrlran3WwZYnWxnbPZs/VXYBeAeDHMojUCrmfPOd9jO2Z46JXQX6bj5upQPBpEGwFudQuYYHa5VBPlWTuI/OpIYk+GRGbJJuzNFnx1FrC9ysAK9aOB1lz3fGpEvI40K159uZ2BcgNBNd3sEGkEhS0WPG3WTEPx5hfJ+MPitdd/DdEKM7Qyx3mDkbay4zcGpnEG+hbUY8gXZqKfcKBWB+KMW98q+d2dxrzPcskMRqtfKP//iP8h9wFf/tcc899/DFL36R4eFh9h98hrWdt6GVeFeyyGEz70Qcq0uz5LjgklRvOTCVaqnZYOLI8/I4QHghyZ7vjRNT5nPA1WyibK0V/1SEqeXsHFmczODQ4lpjZfjNLDtZEZtXdCHK/qeLrLEF6p783TiJqDIO5Z8QT5jqFDq97PVmZftfQGfSIlh1itKjTe2fR2fWEVAoil7Jeu45x01VXwnbv3xU9vN5B4MFRcDF8N4/HVacIm7kLeV80ugScNRbGHfpCck98b1ClDRZ0AhqTr08IbtOYDykKKVcCu/9/WHQKXN0zRz0ihHAliEd2fyo5ZoKzFVGdv9b/lTZhTDyTh6b+DL3Pf3mNHpbgfmxAJfQ27QINi2qYmllc+CoNWIp16PRq5RFOIonSeSO+WV40fCOeWKhJAtD+SfbbLtVNgZfX+ZwHUhhuMXnN5VpsVYIjO9dxjaeulc8DhoNlV0mVBoVc6dmpJ+LcbbMb3t/4VfkMSprVGFyqBkoZE6PJdBNBojbFou5Aj4wCkkSXsCRv6p2QWzbuEkAogwO/xaAX/3qV/IfcBV/Fnjrrbeoq6vjxPFfUl6+Ho1Gg25mGe4VS+KfSRCYX8opVMv4GyvXGYkGE0wdK3CYDRZxlZOvz2XSPqXmHhmRLarPcqHWqpg5FljsBF/GZlTSZiE0FyEgCfiSiWRR7jWsMPsFQHAqQv8Lo8woFBAnEsptXioNWKtNWCoMzCs4pK936NDblfk1R96ZJhZS5tecPabcfwViFpbARJiBF/IEsSiA0R0KIzADQ29NMfS6/GjFAPFIglMvKbdbOSTh/9j7yp9TCQSLhpJmCwsn/QQVZAMZf1+5mOz0a5OcflNhNpp41rhS5G9sZGLXXOY7yzAWhWdjDL6mbAxHvBEG35hi9nj+vlvIXqa36RDMWkX+RmuVHp1Jy/Dbc4u5Tb55QPpdZ1KTTEBkfvG3Xc4mdeK5cTQGZTav0GxcjBhcDDl1SzvNzA+GiPjiy/CnjM3LWqOnostEeCHGTL+0dqiL7EGl686cjDN/2pcvS3tB1G/QMn48SsFkGvEkwoSfuD0TcVKjESON+6cSqEMJ4ob8z6ZbEL9JzKJjYeFtIhEvjY2NfP7zn5f/gAqgSi5JZP/BYHBwkLo68YTEljWPYY9lhY3LI1RS+QoT7WS2wSZPx244x0Rpp5mDP5/EN7y4UyeLhYHXxKk7u4RTr+SfUJPxpYu6vcnA/InQsvFLsxfi7o/WYSoz8P6Xj+QXRhW4VtsN1UR8UQZeKLBYfAh5ZP+7wtVppbK3hP3fOSW7TtVWF2XdDg5+94QiAVvzdVV4RwKKU+Apha3BhKvFWrg/fIA46687WRj0K2q/lcDdZUPv1DGscJFdCTpvq2F4xwzzJ+QL3pqvqcTk1rP32ydl16nbVorOqlsqVFphdACxqoyFcCVQ4GBTdt1lnqnQtQXourWSgZen8Y1EZKd6676nAr1dy3v/NpQR/+V7t+y2UqtAAItLh280R0VdQBFc0ig6+mcHc+bs7Lq5uWKTSbqvM6HRq3j/2TxMI5b5v1xHmSqYYRnZhCL9mPMZQ3bCpGN44RkOHTpEe3s7hw7JF1uu4s8HbW1tHD16FEFn5bwNn8mIlCCvUGkR98odl8s4y9bf5SQ8H+fAz6aXcrMsVp1LM0ua9EQDUbxDBVh0lhEnmUxirtLhn4wuFZjk2+hIfEpngg2PteAbDXLge/nTuOYzmFiqDdRfWMr+75zOe90V4S+IqzVeUUlgOqQove+au+vwDgcZ/J18Z4+90URZl4NjKxBvK0XVVheByRBzx89sdM7OO2ux1Zp5R4FQfqWovbCUqcPzBEY/YPF6zhxStsGOsUTPqZeW+bZZa7POrqP9+ipGt88wdUC+IbTj5ipGts8xf3Ixx/tDIgQU5Vd/LP5UDDLDVeei9hw7Ko2KU6/OSZdZ/vl1dlh/dzVzgyGOPrsMh8/hXpYqHb6RPPN/PsONWoWn18jw+0FUxcLO5HAvW0WS1gssDO8LM9Kf57pZe/w/hHvNMc3hU99DpVJx/Phx3G5lqcZX8d8fPp8Pq1W0c23a8CSOeCY6dT5nmXohi5fljLXlREqlDSpq+swcfWEB3/hiG1fRdCTRGOU9ZsZ351/H8kUeN5dr8Y/HWM5Kms3xmi4vw9ViZuc3B4nlOziXw6VSPMxzjotkPMHI2wW4g1IO9hfEuyweAxXrnYrESs4WC+W9Yp2836kAqs5yEZqLKE6BpxQGt46SZisj75xZpxfAps+0M3vCuyIBkRJYa40YS/TKU9KtgE80XFzG5OGFJXbxRZfN4TBVmxyYq4wc+7n8fuRea8VQIjCUa8f772ibKgYl910mCng2Wq92cfrdeYKTMdmp3loud2Kr1rPnu2PEUlQkr80rx66lBYNNQ2gmx8GWz+alUmFygdagZWG88Fya1OccgEkmaTtXh8GmZvcreSrEMvN4rkhJHczMQzHH0mhUKYESiCKl8akfcuDgXnp7e9mxY0fBZ1zFny8eeOABvv3tb2O1VrOx77G0SAkKcK/5wjYv1TL+xvZLjYR9Cfp/n2fty07Bk8NVjCXi+ApMRvOLlHL4lWDXEPHFIZ5jPyti80IDPQ/UszAUpP8349JPyfxlF91Li2eLm4EXRzOCqlXIRtl6B7FgnJnD8vlQ3UVlBGciTOyak13H6BYoabGuSFimFI5mM1F/HP+owtSIClFzXill3Q7e//KxM3ofAHenDd9YiNAZDthgrTVidOnFbyuTM2gEqLu4UoyIOiDNTzL4U825LqaPetOixA8CH4q/MXdeUhAwQfl9C2RBaDOhM2kZ311g3OappxGg645KZgeCDL6WFRRBhr/R4NAQmpMm2Cw7l0qT5/lUKkoaBWZORcgfOlxELvfSm5O0natn5FCMyYk8trIs0X2uXUsdyqxfUcdSm1dKoAQQECIc2P8vxONxTpw4QWmpsgjxcvGBp3tLoba2liuuuAKAdw58dfGP0Zj4pwCazjOw/uYC6cdyw+pHIwy8Msd7Xx8uuhHLh87rK6nsdWDxyD9hPn9CnLDtTYVTK+SSgkM/PMXebw8UFr4UGPSOJnPxNGx5wnx5znOx5a/aFaf3qtjkxN2lLDQiiDkglcLerCzMdsUmp+K89KWddmy1ZkXtMPL2NLv/VZlACaB0jYPKXmWpVLruq6d3mdReuag7t4zKPuW5Uf+UUXNeGbVnKwuX3XhFBZs+246gIEOhxSPgbLFRqjDVy/FfjSoSKAG419hxtWWJMmWkL2m+poI1dy3NlVssBLepwoBgVTiFC2TaTYERqPFyt/z2lhb27vs9dN+fE9p1mTRSFV1WTC4BU6m0KMvMpbrn6TEO/2picXSy7Hk45xsIJrCUaSACvrGYbCJZv9VC84VZ8+Qy75Myku/5RYCdP/ejCmQR/lh8kUApG03tUfq2xREKTF+a+dAiJxnA4f5fc+jQIZxO56pA6S8YR44cQaVSEYl6GRh+Y/GPRfqczgQ9N5ip6pJ3XDIZjbLzuxOiQAmWnU+y55Tmy0ppvEgeqVWpVARGYxAFc5VucSSXXD6YZYCJBuDQT4YLCpQg/2bMUmHAUmWkpF0ZT+l+sIGue/OkLijiKNOZ1NQqTBcBoohDScq3VB29S1mlzttqqL1Q2eajdK2dsnUORXUOfOeUIoESQNkaO+41djHSjEzo7Do2PtlKlcIc87XnlVFzzpnZhP1RoIPqs0qp3qxMTLHh8WZabywQrr3AWli5oYSK9c7iF87hR9H5KPv+45QigZLZI+BotKRP84mXXT6FSdd9tbg685CbIrzNWmdQ7EQzumWOvSzDSEmrCVeHggilKhWmUh0bH6vBvSZn/lomvYmz0YirOXMvOeeXovOw/8cTHH2+iNE0px1TaevyCpRyIc3vNo8OT4+ZxvMVkP5kkoVR2PETH6P7o4u5VzyxSKCUVYne8+LUNRV+tnzc6719/8rCwgKXXXbZqkDpLxQWi4X/9b/+FwA7dn1l0W+qSAxVpLDNq6pdTdelMm0V4QiTh8Ps/MHMEoHScqg9x07NFgemMvkhMfzSPczlRQylOXPFiZcm2Pv904WFL1nzQba9rLTDhqvVmq9Gpl7OnFzSZqX3480YXDnvtMz85WyxKE75BqwojZi5aqnBtxicLRY6bq9VVMdWZ8bVYcdYlj/NVD7MHvNx+Jki36kAqja5qFCY6qXhigrWPdCgqE7lhhJqzy8/QzH//zjwbHVTt01ZGuCy9Q7WP9qE1iK/IbQGFWXrnbjaCqf0yMeNRt6bUyRQAnCvsVG+Nus+MmxelRvtNF+Vpx2KpM4V7Dp0VoXOKi2ZdlMgUKraaEObGrbL2XkktF1bSsdNyr6tvU6P1aPHnNqbyYw0cuy3sxz51VRGoJRbN/eZtWAo0UAMwrOJ5SMoSb/XbTLTdK4CDirNu0dej7Ln+TCqQJboI5ZYJFDKRmVZjPWbYmgLTF/ahfAigRLA6NhODhzci8PhWBUo/QXjW9/6Fg6HA693iNHRnYt+K8a9NBpoO1dHaV2h6BuL56JkJMKh38znFyjlImcObL7URfVmaY6UkWoyMi8KlASrZnGKoCI2L+Jw5GcjaYFSwefKgd6uw9lkwVanjA81XV1J09UF0isVgEaA0u7iaaby1jNqQGE2IY2gRrAoq1RzXqni5yvvceLuUOY/PfXyhCKBEoC1xkTlJheCXf47aQQxapPS1Hd12yqoVJgm7k8ddReXU7pW2bdtvaGa2vOV2kAdVG12KRI1xyPQ/9yoKFCSwZ9AHBNl6+zYa5RlsWm8sgJb7VINQzF7mdGtVyxQWjT2cq+b/e+sv5vLBWy1mf2SnJS+GqOGtXd5cDTmvNMy82xJkxlXa4E5r0C9eAQO/XSS4XdysrYU8TcanGI7hObiojhpuQhKKhWCBWr7THjWFdaaLEEySdgHe18IM3Uyvph7xZOLBEpZP9C5NkpVeWGbl24hskigBLBj+1eYm5vj/vvvP2MCJTiDIiWA5557Dp1OJN5vDfzH0gKSUCk3ilI8IjVkMZtNboePgLFUS9OlyxjDs3Dwv0bpf3Fp9CXIH0UphZ5H6ui4camgoBAiPvCPRUSBQCHRTJ7Bv+trR9j5lROy7wPgPR0kHklgLFHmjGq4uILaC5Q5y3o/0ULXvY2K6qx7oIE1t9YpStVlqTRiLBEUCY4O/3KIt/7PQcUpzlydVsp7HYrqvP+vx9n9r8q+UzyaWBpGeBkceXaE/d8/qaiOrcHElr9qV+yUWwn6PtWq2Ah14AeDHP7p6eULZiERS0IiqUhM5huOsP2fDnL8N/KjLggWFTUXuhWnlXv/y8fZ9VVl6eEsVUbM5YsNmcs511qvrWTDx5oV3aft6gp6H2vGVFnYkJlLCEraTJR32am5QMZClLWwx4JxYgVygxfC2Ptedn3jFBN75EessEhCyYWTBcZ6nrm15So3nTeUFhZeFTg1vP8nMwy8IaU9WI6AJpM4aqC2T+pA2Y9XQCiyuHqSSFadlGMs10EGEIn4GJ/bBcDTTz+97LVX8eeNX//61wCcGHqRaL6T9VL/y+Ze0YDoMFIUdUS6dO1ZFswVOtmnIU68NMme7xeYiwsIE41uHV231dB2VcXSHwvcd0GKqGIqK8yHct93bMcc73/5KDOHs+YgGSf4Y8E4Eb8yZ0/9ReV4Nrswe+Q7sax1JjY+1kz9hcqM4b0fa6blyipFdcxVJqzVyjbAO//lMHu/oSxVhM4EnrNdioRXx347ytt/d4hoQH50heh8FBJJWQKMbBz60SkOKzxhv/buOjY8rmx9Xgk8Z7vY9Jk2THJFMABR2Pfdkwy8oiyMdTyaIBlRFs1izzcG2Pnv/YUL5Fmf3V1W7I3K+p1/OMLb/3CUU6/JfydzlYDJpcfoyuFDRYwxOhOsucVD20fyzEMUPvG19o5quu6pLv5AOYaRmrOdssWcKT4iWDUkIklxz6kAe54eY98PFPBjuxp00sngQvaN3HbUQcfVbjqvL7IfSaROmmXacWE4yonX5ul/VSbpTyap26JHZ2PpsxXZ2+t0Iu+K50zjxbjXqeDPgSQWi4Uf/vCH8p5vFX+W+H/+n/+HqqoqEskY75/4wZLfU86yRVGUgFhEXJO0SvaaMdBawNMnf54cfGOe4y9ME5hYylPyRVFKoe26Ujpu8sgXi8QgNB0DrXhKPy/yzLH7vzPAvv9Ullo1MB4kHoyjNSpTsjRdVUXtucqMq5131rFWoc2r8coK1t5Zj7ZQGoI8MLoELBUGDArW9JH3pnn3Hw8TnFCW089SbSh+GDIPdn+jn4PfUxZlOxlJEI8q4w6n35pm33cGFKWJMzi09H68hfINDkX3WgnWPdBA243LrOk5OP7rUQ79UEHbqVQkk0mS8YQiMVkslOTdfzpWkA/l3edpoawnS5wjE4d/OMyebxXheHlgrTZizd33LLN/bLjQRc999YruU9XnYP0D1ZgUHKg1uLV4tjio2lyiyNEYDcmzeWXvP+ZPhdnznyNMHZafQjEllCwoUs3zzA3n2Fh7jQN9IQ1oav7PqXvoRT/9b8iMPp9MYnRAVYfkhMt+vALipBTUUkaq7JSk2jnxH7niJIBYLMaJk88C8KMf/Uje863izxYpkdrhQz8lHl+690lzr6woSvF4Kh3aMhfPnpekYeJq1qejIxWFxHP6X57hxAs5aYVS+70C3EtjhM5bPVSflWe/VGCuDE6L7y7YijnCF3MR72CQPd84zsJAQNF8F/PHifmV2fjdXU7qLijHVC5fTC1YNPR8tJHKXmWimXUPNFKj0K9przNh9SizPRz83gBHlUZg1EBJqxWNIJ8XTuydY9fXjooCNpmIRyAZT6I0pujR/zrNgMKUb3UXldFxm3zf+ErhaDKz7oEGDAqDcRz47ilGtiuLypmIJogvs3blov+5UfY9rYwfW2uMisYEQDwY5/1/6WdUgdhNZ9Fg8xgxuBa3XVG7vwY6bqqi7gJlfuS2G6poua6iOK/L+a1yo4OGi8UxKzd6kmBUEQ3ECSjx96tUHP/NFEd+nifdYgGBksYIaCDii5NniZGuu7Ru6xUlNF5YWByX1ptkvW/EB8d/72V4r0xemExS1qxBMLI0Gl4xrYFG5F25S5BuTrR15YqTACb9rxEOz9PQ0MCXvvQlec+3QpyxdG8pzMzM4HKJHbur4lqq7B1LHyIQgnzhriQkC4W+ToVWlBxIa24tw+zWsfvpYSJe6cMXi8SR9VXsDXrmBzL3SSaTBU80uNdYMJXqGHyl8OnRfGlEtn6+lbAvxs5/KbKZy+MMK+2xM7l7Pk/h7Hp/2Gd0d9mY2regqI7nPBd6s47+38jPqepsteBssiiq82Fi8+faScaTvPf/KROZ/KnCXCHQcWsdp16dWL4PZWEl6d56HmkiOBnmyM8KR674o0JhuMD6S8rwbHZz9NlhRW2Xud8ZSu8mXdvZZsJZb6b/eflOOVujAU9fCYd+nP+kXCFS4O40M3Xcv1hok42VpnfLgrPZgH8stFR8VuTapWtMNF3sYmyvj1O/n8uppyr4DfQlUN3r4MTvisx52eGvBbA4VfikkNcqXRHjcTKZTjuy7loTeouK7T+R2k5aj5KG/GQ0mScVavp1AiESpvzWw5OhH3H02FG6u7vZvXt34WdbxV8MNm3axPbt29GotFzc9pm8ZVSBUPENRDj/gM9OKaIzQc+dFfgmIhz6hbQBLJZmF8khlkxi8ejwTeQ4uYtwtvqL3Qy9NyeKTfIhkVzCoeovKaVivYMDz5zGO1g4dHEuZ9OZwFRmyqSOOgPp3nQmMFWYmO+Xn4IUoPUmD0NvTipK1VV7URmzx314Tym714eBio1OGi+rpP/5UcZ2KM8b/6eIluuqEKxaDnxXvtN1JeneSrvtVJ/lZv9/DigSbH2g+ENCMedZo/s+2UwynmSHwkMamUueofRuAHoVtVtLmD7uxZ8nGlAhDlV7fgnBmQiT+woIbfLxHB04agzM9RcJub7C9G7ZKGkxMnNsqTGkmJGo+54KtEY173+9QNSFAu3o6bPgHQ2zMFLEwZbFvWweHQvDmXYumu4NQKfFYIeuqyzMjcY49orUdtIcvBLupQqF89YbDx7m2Mhz6PV6hoaGMJmUGbdX8eeHUCiEyWQimUzSU38LZfbWJWXUvhDJPKl3U1AV4F25fKzhPDMl9Xr2/9cMYS8kY7HitqB4PG3XslRoxSiyEkSbV/71w1Khw1wmML4r/36pkBlx/cO1RP1x9n+nsE0gnzjK3mRaPi27HD5WpC2stUa8I0FFAhhXpw29XceIgnQbpnIDjgYzIzumFd3rw0LPw42otGp2ffX4H/tRPhBoDWo6bqtl+O1pZo7Ij8S4knRvrTd4iHpjDLyozJmnCCvhVjJsT/k4knuNlabLKzj+mzGmV5LK7wyldwORi5jLddjrTIy8J98eZygVqOyxMfCyMuekpUogNBtdHKlICWSke7NUaAnNxZbeo0hbWMq1tF9XxsguHyM7crikunDEJ60FyjstjOws8kLZ3EoLRhsEU81WZL0CSEo2r9azdFjL1Ox5LkxMls2r8HXVoQgJU35H9Gnvjzh85BDnnXcer776atFnW8VfBj73uc/xd3/3dxh0ds5b84m8ZVT+UPGxWcjmle2H1MC66534JqL0vyaNwVisaBS0ZExc/AWbhog/vtiRHI8X5F5l3VZmjvmJFhID5bF5uTut1F5QyuGfDuEfLSJazqmnEUBwCAQnImcuVa4GTG49gXFlYmrP2S6mD3kVpeoq7bLjGw+K7/MnBovHSPtNNQy8OMb0QWW+1z9VVG4qwejS0/8b+ZEYV5LuzeIx4tniYuD5UTEl4p8iFPK2zjtqUatV7P+esqANHwTk+BvdnRb8ExGCU/LHknutlVgowZwS+7YGzG4B/3hk5SneZPgjLZUCvnz28yJ1my8vwVgisP8Hefh+EX+js1FP2B8nUCzgeBa/Mtg1hLKFiEIRf2MiSdIgoBFg7SV6ZofjDO6WAgBJ4qdCfsOkvgj3CkZJmJdyNl9wnH0DT6PRaBgaGsJiUXbARSnOuEgJ4JOf/CT//M//DMA2zxPoLIvDay0Kw54lVqrtE3DV69j5nwXSiURyDMS6BBZXpuMtioZUJAds90drMNh1vPuVfojkMbgUC7+qSxR23LPY8dXykUpmj/uY2l9g85fH6JISSgy8PMbI2wU2WXk+YcOl5UQjcYZ+P5Wnwn9PCBYURc/puqceU4WBd//vYdl13F02fOMhQgpITc2FpVT1uXj3nw4X7Qu5MFcI+GcisutYPAJtN9Yx+PtxJveeWVKzEpHSStDzSBOBiTBH/0u+sMniERSndlz3YAMavZpdX1V22qtik5Ox9+Q7TTtursbWYObdLx2T/V1z+7VsB5tSg5DC9CTyr7v0OdbcWsGxFyeJzMp3mvY9USs6Jr92uuB1U0g/rwAd15Ry6FeTmfbOfs98bSSQKVtEHCv+Li7ia29wYCrRsvuZKSK+AiKl7Hk4i1RYK8E7vLgdcg02KmktazxLj61Cw87nM9dSZ62PuWRD7QvwxtB38EUnqaysZGREfiSEVfz5Q6fTEYvFcBnq6au6MW1ITGER90qNGx2su8rM9IkQQ9vFzUXu/JDMic5krtDhH8v6PxkiJcGho+eeShYGgxz+LynV1zLpHdPcTEf+6B3ZXE3iUzoTNFxaydFfjxaM+JFPVN73yWaSySQ7/vlEbuGCz6d36Wi8qJxDP8qznp15qn3GoDOJkbbklVWz/rEWJg/MMyBXjK4Dd4eNKYW8pvvhRqILUQ4+o2BjrwOTXUdgSka6KQkt11QiOAQOnGE+tBKR0kpQ2m3Hs9XNgR8MFhb85UIHepuO8HRW+WV4g86uo+eBBgZfnWB851zhgjnrtMmtQ3DomDsu37jR92Qz86cCHPuFfAPZkn5djFPJ5GWKuZSCFCR5brbon55NNpJJGNm+IPu6VRut1J7l5OTrM4zt8kmXXf4dSloMWCoEBt8ssJ/NE0Vp0fyb256599RoRAHsbW58E1EOPSs6JuWIlABMbghMsWTeXcK9pLWq+zojYwNJRrN89aosx0RuvfjcAi+f/mfUajVPPfUUf//3f1/8uVbxF4Onn36ae++9F4CLmj+DxpzL2zO8K1us5G5UUdGo4cCvpCiOuWMkjwPN4FQTkvZZKUeY+I88fEOyebVcXoKtWs+ep0eIhfLZvHI4Tvbv6sQSsU0hM2LVZjv+8TDz/QVOg2ZxqRQHc6+10XxFBQMvjTO+q4AYIQ8HK1/vABVL15n/xrxLa0CRSKLhigqcjRZ2/ot8wZG11kh0IUpoTr6Cyr3WRu35Zez9z5OKovsIDi0RX0y2WEtr0dJ+YzUj7ygTHK0EKxEprQStN1YTmYtw8mX56Y0NTh0hue0mrbst11Qg2HUc+G5hbpzP1uRsNTPb75f9jarPcVG2zsbeb5+S3VeX9OsP0TYlCyu4Z+OlJZx+e4Gov/D+MPdd1t1dASrY+3S+0/wFnkELDec6OP3OQqYNF9m88tTTqdPfU7WczUviV43nGnHW6NjzywViPmSLlACMDgjOyLN5VbSqKakX2P8u6WdUhzLrXK5ISe0Ls3/0OYbn91JRUcHoqLLUhKv480ZDQwMnT56k2rmeNZWXkxQW7xdU/myblzQWNNC8ScfCUJjJo9ImJWf85QZL0Ns1hLMdydncK489KRmLoRGg6/ZKZk8GOfXqnPhDrkg7h3uluZWGpREycu+V4kUaqN5Swum3pvPXyS6bhc47atHo1Oz7z5OyeZPGqMGzqYTBV5VFZf5Th0agcLSUJYWh654Gpg/OM/KufDGsrdbEwqCyQ4PN11QRC8U5qVAYLdg1iiIwVfSWYCpTJjhaCVYiUloJLFUGqra4OfnyqPx20IBg1CgTQmmg6656ht+ZZuaofIe1zqpDsGqLiwpzsPauGhYGAwy+Jv/QRG6/LupvPIOiczmQw/2czSZUWpWY+UAm37PVGWm+zM3J12aYOZJn/BW4jrlMwFyhY3JfVp1i/kYNkMxOa1ecQ6m0GkkA68A7GmXgTckOkE+klDXvJw0iRxLMEAmBKifafa7fMGXzaj1Hy+S4humsIa4OZox0uSKl5Lyf3x39B5LE+du//Vs++9nPFn2fDwJnNN1bCl/60peoqhLTTLwy/LU0Oc2LnFDsKrUqk5JnuVzNUTW+0QiCGeovcCz+LbfTZRGDU69OMbZ7rkiUkPwDZeMTDfQ+3FT8mbJw7OejhQVKBXDyxQnG98wWFigVQFmPk4pu+anvQExPseWv2hXVqdjkpPcTylJalPc52Phki6I0Wu03V7Pxk52F0zPlgX8qTHhBviMKYGrfgiKBEkAsFCcRS2Aplf9C5X0Oeh5qofost6J76Uxa9ApDHNoaTIpS5a0U9mYzgkXZlKIza9AXCgdfAGvvbmTjJ1sU1UnGkiRXcIpRiUAJIDgXEY1wCrrQ2nsb2fwZ8X3kCpQ6b/Ow5g6P/JuoVbRdX87aPHWKEYGOmyvY9GRD4bGaZzGv7LNh9RhwNSlT2J54cZLT78wVvG4Ki55Xyg9bsL1zNmIVvSY2PViJu01ZWM0Tr84x3Z+J8pQr0sjd0Nk9UNEp9utcgVIustdDrV6FKjuNb6Cw1U/tC7BgPoQ/JgpRd+7cWbDsKv4yMTgoRnGZDp1kzHesOPdK8asoqNUqdMbMGFxOy54SKFWsMxVNrQaZk/ORuSgTB7yc+J38DRZAaZeFzU80UtKek0u6AD+MBuDozwsLlAph8PVJjv1S2Qbd3WbD0WjBvTZPTP0C86zOpGbTZ9povrpS0b0676yl4Yr8KacK1rmjlpbrlKV82/SZNtpvq5ddPhpIEJ6PEp5T0OBRFAuUQAxjHY8pc0L2PtLMmnuUpWwRHAJ6m7IUyjq7Dku1gnziK8RK7qO36RAsWojKN77UnltG76MtitKw6a1aktEE0ZCy026BqagigRJAaC5KQMEpL32Jjt4nWqi/REr5I0OgpDPB+gdrcbYWboN8c2X3/dWUtOepU4Tn9D1RR/OVRdIR5ZlPyrqsVGywKXLOjezwMrpnQZFACWDmWIjB14uM2Rzu1XN7GetuL/A+Be4ZDcD4gQCn3ssY+xYJMfKgZr0gpqHLI1BaclvJWKOzglqjWhQSX1UogjOg9gfZF3oGgI6OjlWB0ioW4Z577uHSSy8F4LX+r6AKF+6zquzUz0nQaFVo5dq8QBQoaaFyXc4akDumsmxep7cvMLpzobCooMD8sebWCrruWJzeqhg3HHl7rrBAKQepve/U/gVOvz1dWKBUAFWbXVSsd+S5cOH5rOHycno/ocyWYG8ys/beemV1Gkyse6BBURotz7luej/ejtYi3z4SnAwTmFYWocA7GFQkUAKIBuMkIgkEs/xns1Qb2PBIC1UbFaRsiSXQ20XnjRKYyg2K2m2lMFcpv4/BoUNwKLPHdd5RT7fCPhePJ0ko5MYAs0flC5QAwt6o4ohDzddU0vuxevEfMgVKdReW0HylgtQ9ajWerQ6ar1RmY609z8mGh6oVjVVHowFXiwVngzIe3v/iFEPvKIzSHoOBV+YKt3euLapWoPdON84GZfuXwfeDjB0KiwIlSKeILwSDHdwN4vfKFSjlYrHNSy2eBcwjUMqF2hcmoB1k1LsfgF27dhV/iVX8xeHgwYNotVqGZncx7TuVTvOWFylBUFz0H2v1WbxnGe6VEijZPDqMzhznc67ASdqzxCMwsmuB0feL+AHzcC9zpUDPvbXYanPml0LPGIfTrxcRKBXA0BtTnPjtqCJht6XCQOk6B/YG8/KFU9CIqVI95yicmy8so3KTspRvNeeVKr5P1331NF6uwL8Sh8BUiLBXGY9SKlACSMSSJBWu6203VtN+Y62iOnqbVrFvTiOoMbrPvK9RY9QoTvWmM2sxOHWKxkRJk5V1H23CWiN/XRcsGmLhOLGIssEX9cUVCZQAAlMRgrPy7awaAXoebKRyk6gNkCVQ0kDr9RVLU/MWg1pFy9Vl2GqV5Q3uuqua6rMyugU5MXTcnRYqN9gV2bwWTgU5/fZcfoFSEfgnIkzs9RcukGPzarmshJbLlekwiMPQzgBjB7MIXq7fJmfed9dr0Ggg4l8qUMpFyualEURbQzayBUq5UPtCHPH+lEQyxpVXXvmhCJRAfob5PxjDw8Oo1WqSyThvDX2fs6rvEH/IR3wlodLg9ginXs0xgqY+TqHBpVLTcqUbS5mO4V0zRLK1PalOnKNUnjseZO64aEgRHBDOp0tI3S+rc3hHgiTiycxgzqNMTk0CqVNi1jo9a26tY/i9aU7/Pss5V+R0/vFfKVey7vmPfsVim/mhABqDZnGkkWWgt+oQzDosNXp8p+VNsGqtGp1Ri7PewqxMpen4njnUejWirk5edJb+51agABag99EWZg4vMPCCPKXy6NszjCoUkc0emmOqxsLsYfmOOd9whHf+f8pP2Hfd1cBsv5eD35OfdmQlWHNrHd7hAPv+46TsOtv/4aji+4zumCHiV0YGFz2TTCdM35MtTOyb55SCE28nX5ri5EvKopdNHpjH5NIrSlEiOATUcspnlTGU6BcJD2B5h5RvLIzWpF06HxQhBKPbF5gfDBNQOP/MHAmK15UpUNr4MQ/ekTBHfiG1t4z2CEzFCC/EmToizVXxxLLRlAQLBKfhxO/yzFUFSFTDRiM6s5qx/YXbIJ9g5OgrIRJmY0FxkjoQSq9fkYiPY74dCILAZz7zGSoqlAkWVvHnj8rKSv7mb/6GL3zhC+ye+CUX6T9B2lSZj3tJPGX3z3xLTo6lNgwF5wwd1Gy2EZiOcOCH8hxTJ18WyZbOpiK6UHxDkrr/5GEflRuchPPkSl6EHF7WdmMVlkoD739lcTS9fFGUAMZ3FjAeF+F7w29NM3t0oXCUnlTbZc0b0UCC4HQY34SyvAJK1wwAg1NAo1cmJJ45soBvVNmz7fm6soiFALUXluJqt7Hra/JTfO395oDi+wy/M41ap6wNVhJBqe3aKiwe04o4mxK0XFGBvcHC2wqiLw29PsXQ68p4ytShOXQGjZiaUCaH8g0F2fEVGVEdkon0uKq/pBR7vZk9Xz+p6Pn2P62M3ybiSWZP+Jk8uCA7gpKl2oTOrJW7BQHAVmdAsOrQ5Pa5IjxHZxINUAtDeebRIm2/65vDCCXKnFEAp16dky1Oqt5qo3ydhX3PjBGZl98QCyNh4pGsuTaRLMq9UlGuBt+Vb0gyOaGiQ0CwqjjxauE5S5UT6S/qhV0/C5AwGQqKk1ShcDp89kDit0xOTVJTU8P+/ftlP98q/nLw/PPPY7PZ8Hq97Dz9EzbU3AQs7XuQESpNDWiYPpizz1jO5gXUbTbjbtIz0+8nNJc1JvPwDYDQdIyR6RioVWgNSaL57K6p+SlL3DQ3GEKjUxW0peWDwaGl8/ZqRrfPMroji1MVsZcNv6FMuA5w4JlTRAqJbQq0w8JgEL1NUBSxSKvXYHAKWDwGfMPyKiWTINh0mCtNzA/Im89mjngxKBRGj+2YXVG63DV31zF7wsfIW/Laff6En90nlHE831CIkXenmTku/6BmLJTg/X9WfsK+6556Zo4scOyXZzay8Jrb65g/6efIT+VHAl8JZx16c3J5wVEOh+l/bnn7ZTKRXLSHWHt3LdOHFxjdPif72Sb3+pjcqyDEPTB1wEugPKIogpLBKaAzFj+JDiziVSaXDqMSPqRSEZiO4J8IKxJdzfWH2Pf9MULz+eefQtzKNxaDsQJzViK5pH3W3VmOdzTMwO/mxP+Q4WQM+8E/HWX2tLgnTcYTy0ZT0hogFoDhXfKdpvVdGsxuLVOnggX5cT6b19C+GIP92oLiJHUgkl4DY7EYR2dfRqPR8Dd/8zerNq9VLIHRaOT555/noosuYvfIjzi36ZMIqa6VL8K3xGGOvhFFFczp7zK4V/1WC/6pKCdeyqmbx2cIpJ3cRSP1SHNY6kCffzSCdzREdDm/R45tynNWCc4mC/u/k7M3LuBvXIloZn7Az75v9yuLNhMX/afBKWWiDHO5nvCCjDUgC0aXoFisO7V/QXGAgxMr8NOWdFgp67JzOF/k9QJYSWSj0Z0zaA3K2u3UK/L9XilUn+3GvcbO+185s1GRKjY6qdxQwo4vyfcfzh7zMXtMGU/xjQQYfnOKwLg8ezZAZD7OoezI7svZVVRqStdYcbZaOfpfyvhq/2+Vpxke2zvP/MmA7AhKRqeAwa5DpZHvbxTsGowuPdoi6cSWQAPe4SD+SWVzwrFfTqC1KLd5Te4v0hcSiUU80tlooHqTnSO/mcpE4SrWftJv86fDqLNVNol40WhKqTVhpr/AwpDHV6HRQ/UaLUYrDO0uPGfl2h3iETj0+ygJi76gOEntD6f3zCPhdxgeG6Curo5nn3224H0+aHwo6d5SOH78OC0t4qmlJvtWWkq2LqvOT4YjlK3VU9NnZd9/TRGZy/qx0IlKAVz1OqYOFplYciNhAOseqMFo1/HOV04UFuksd7KtiNgo5Qzb+Ikmht+bYfSd2ewfi162+8EGDE6Bd//uSJ4LF34mW4OJBZlGkT9H2JvNWKoMDCsIh7f5c+3M9/s4/BP5xAEBLOXyhVofJhqvrGTq0LyifrCSdG8Nl5Yzd9IvW3j2oSH328hwxggWFes/1srk/nn6ZaassXgMOFuti8WHMqHU2ZxVsfjvH3IYbUu1gG9YGblvutyFu9XC7u+NEJ4tvB4sel4Bum+rYPpEgKE3F2QZawqiiMGm47oSrBU6dv94ikiOZqFo2hEB3A0CUycKvE9O+625UlTqH3guuHz/lDbVvx34BwD6+vp47733itdZxV80uru72bt3LyrUXNb4lPify3GvSIQ11zmIhRMc+W2OmLYA9yppEpg5XHydSeaEtzaV6lh7WyXTx/yc+HXhjfGyVLUYN0smqD3fha3OxP4fnF4UVamQSAnAVKGj6656Rt6b4XQ+DlGIt+nA5BIIjBUgkv+NU5DIgg48m11MHVpYnB6sCOovK6e00872rxxVFPXK7DHgnwgpjpR1puFoNmOuMChyuK4k3Zu1zoSjzsTp1z7E1M4yuYPZo8c/EZb/bVRqWq+rxFZrYseX5YvVqjY78Y4G8Q2tgH9/ACne8l62WBt9gCneUrB4dPhGlZ3e633Yg38izOGfT8nmgxU9ZsrWWtj7XclAdga4l84A3XeW45uMcvjXS8WixbiXs0HH7Oki+2lNxkhkckDbNhMntweYPQ3JZb63Kp7gxOx7HJt9HaPRyL59+2hqkh9NeRV/WZibm6OkpIRkMklH6cXUujbmFSktQjSGrUpL/SYDR17yEc7eTuexW6Vgq1Qxf7rIRJuHszVfVoLNo2fPd4YLO+Vz05HkIJfPLYLErdbcWc347nmmDmQJVJaxlbVcU4G12sTOr+URwxSpayo3EBgv8DJ/7rwL8f3NFXom98iP0NLzcCPzJ/2yD+YBoBWjAoUUpM39sFDZ52RhOIh/RL7SZCXp3sp7HfjHQ/iGlIn4V4xia3T2WqsFY4mO4IS8b6NSq0ALPQ80MHlgnuE35R26FBwCzkYT4/sWFEVfAv4sUrwBGEq0hHxLU2BmLrv0uuU9Zjy9Ng7+1yShmSINl91GWmi73MXCcJjRXb5FPGZpvWXSihSxedWcZaG0SeDgrxcI5Z6hXSblm61aw3whc2nOd2ncrEUnqDjyenTZg4KpdeSlI/9APBnhnHPO4fXXXy9eZxV/0XjiiSf4l3/5F3QaI9vanhT/cxnupQpHqe0To38Mbl88pycj+W055lKNuMctQoOSOeI8jRHW3lzJ1JEAw28VnmuLcisoavNKxuOUtFlwNls48duxxc9XhD/pzGo6b6tj9P0ZJnbNFb9/DgS7lkgBoeafPTRi5B3feEB2OrHSLjvl650cemaQ+DIRULIh2KW0uQojZZ1pGEsFTKUGpg/KD76wknRvhhIBq8fI5D6FUQg/BCz5NjJESpV9TlytFvZ/r3Bq3lw4msyE56IEp5UFAxBv+aeb4i0fCvFBg1NDaF7Znq7zlkr8EyFO/X62+LfJ4iu2Wj3lXRaO/Vq05RYVeRfjZVCYm2mg6/oSfBMxTr6V59RQEZuX2a3B71MVnA+SukxdjQCtZ+kY2h/FO8Xy3CuZZMo3wPuDz2AwGNi3bx/NzcqyZ/0h+FDSvaXQ3NzM3/3d3wFwYv5t5sPjouEk9Scfkgki/jgqFejNuiW/5V1sI6QFSk2XFwgNmCdix/iuOWYH/IpSNQFseKyernurlxUapbDjn08sFijJgHc4SLBQGGeVKu9gq7uojLV31uM52yX7PoJFzbqPNuDqzJOupAicrRbMFcrC79mbzYpSvjlbLXQ/pCxNR8vVVdSerSBEMPDu/z2sTKAEbPpkO523Niiq03hFBS3XKwgpiSigWv+4MqN4/3OjH4pQbeCFcUUCJXuzma1/3UndRfK/j7PVQtc99YrS1zVcUE73fc24u2yyDRERX5J3/+6IbIESKjW155VRc5Zb0bM1X1tB87XKTgM528zpexaEWrWIMFRstGUeVaWSZQRae6eH8l7b4v9cJtJRx/WV9D5aXfD3fPBPRgj5YkUFSksQgT1Pj4kCpeWQTGDxCPQ9UkHpWmXhJ4f3BPCOR5cIlAqhfK2As14LoUR+gVIsnlccIk7hycKb6HAk8wfo14hKZr1evypQWsWy2LNnDyaTiSQJXjn17+J/Lse9EklxulSw8Zg5IfbPkhYDrg55IXIDk1EWTocY3a0s3VfZOit9H2/A6NbJSosy+Oo0+58+rUjMEhiLEpqLEpzNQwqL8L2Nj7Ww5rY6+TdCPB3UeVuNojoA7nW25QvlQEnKLoCmKyupVbBOm8sM1J1fTvVm+WG2Tz4/zvZ/VCZQKtvgoPu+RirWyw+pq3fp6LilBrOC8MW128rY+oUOTG75J3bmjvtXFBFCKbynAooFSt0PN7LxyVZFdZqurMRzjvy9BEDnzbVsfETGhlalTvOZo78YVSRQUqlV1J5XSuNlCtIl6mDNXbVYapbpA1nzis4E5qrlv382vzKV6rB4suosw58AXB0m2m8oh9xbFdjnAXg22VhzUxVlXQpC7gPBmQjeEWXCrrHdflGglMMx8yKZoPNGN2tvLZK2bkmdJNFgktnBMGP7c/YtiWTBub5uqwHicWaPF3AY5+FeWqPYpBFvdGlIbQmqUCT9J8o4p4PbAfj617++KlBaRVE4HA6ef/55AA5NvoQ3NCmKflJ/8iGRIBqIoFKDzpSTNiSZLCjWTgmUPH3y54DxAz6mTwQURQ0B6LipnLbryiCRkLWfPPC9ocUCJRlYGA7hG8tz0LAI73J1Wum6p47yDQ75N9JCy0eqcLYoS09uKjdgcCkLRm8s06M1yDe7msoNtN1crSjmfcOl5dRvK1f0XLv/vV+ZQAnoub+RjluUcdzyXge1Fyizx63/WBNr7lZ2n9Hts4oESivF+PtzigRKBoeWzZ9pp2qLfB5lLNPTfE0VgnMZ7pE1LtztNrrvbaCko7gdV6VWZRxWMdj97wOyBUqo1JR326i/sBSjU34HrdripPrc4u+fO8dZqvSyr5+Cs0lhquVkkqbLXLjypeUtgrZry1l3e2EbXr75OrwQJzgXKy5QykUMjjw7zejuwPKOxEQcvRV67nBR0qjMLj95LMTcUHSxQCmZLCjwdFRrsFWoIZ7IK1BSxeKLU5qm/l+lQkWyoGg3m3cBDPFr4skIJSUlqwKlVSyLr3zlK6xfv55oPMi7A98BMn0xX38EIJnM3orKgn8yDnEwuTXYPPnHWi5Higdh+niAGYUHuq0ePV13VaN3aJa1eanUKmaP+Tnx67GlzusiLxn1J/BPhAjNKXOEdtxWQ9sNyuxXtlqTIv9Pdj2lMJUrW0PK1jsoy5c+uAB0Rg0Nl1dQulZ+ncl98+x/+qQigZK50sC6+xpxtcm3+2mMGmrPL8VYKn8tKGm3suHxFkXp24KTEUUCpZUiNBNRLFBquqaSrvvqFdUp73VS2mVXVKf5ag9rbpf4qkx/4+j2WUUCJYC6C0qpPV9ZGsOGS8swlRUYB/nmBA0YXTJsnlm2IMGiUZzyz1QmUHeBC01OtWJ7S3uDkY5bPJS0KJsLfGMhApPRwt8mj41uYTDMsV9Py/OdxuPUnmWl+VKHouciLnKv6f6c/UQR7lXapoNkEv9kAcFiHjuDVhBfPR6I5o1sCYu5VwQfhyZ/CcDPf/7zD1WgBB+ySAngM5/5DNu2bQPg7ZHvEclWJxdwls31R9jxzQm8hSJ0FDBaNF7kpLTNTHl3jtGmgHFofJeXoz8XN+qCQ75jLh5OEA8piP8POFvM9D3ZjEHmotH/mzH2fuukonucenmC2WNehrcrcZQkMJcbKV0jf2IWLNBxcy3N18gXJ9gaTKy5rY72a+XXsXiMmMoMigRUx54dYdc35Ts8UlAiNAEYfneS028qC4/oarfhbFYmBvMOBZhTGLKw45Zq6i9RZrRSCqFEYN0DDdga5C8YMV8U/1iQ2X757+Nqt2GtUbYoTeydZXL/PFP75RtJDWUKvr+0sB98ZogTvx0jMiOf3DsbLDgbLUWjeeSi7SMeeh4pIojLcRyZygUaLixlzW1Vsu8hWMBcpseZ/T1lnFA7/fYso7uUkdSxXX72/If8EKZdd5bTeo0yZ6nWIEZa9BWKbJILQfyzcDrKoV/lJ8PJ3PUqkaC6x0TjOQWM3UUi1+z/uZf9Py8wDsKLn/n9iR9zvP84Ho+HhYUzvyFYxZ8H5ubElD7huJedo79Y/GMB7rX/Z7MceXZO8b3qLyihdqtjyf8XOhl2+OcTBMai6BRM7b7xEIloAo1e2emN1o9U0nm7fN6x5xsnmdqnzME2/M4UAy/JFLhKcDZbsNaYl4oTiqDzzlparvKgM8mn8t0PN9Jxs7L89M5WKyXN8p14/uEQR38xxIkVpNzVy9kUS5jYN8fIjmlmT8jnEDqjFkeTuO7KxfxJH/OD/mKBLJbA3mii845aRX16JajdVkbTlQoEOsDsCR/zJ5T16ZJ2W2ZfIDMixenXpzj9lgIBlQ50dvnfP+Vg2/ufJznxG/mhst3tViyVeoxO+YbLhovL6bq9RhRFFnqeHANG42VldN5SrWhMlzSZseUK6JYxjAzvWmDqiI+JffnyNhXGwZ9MMvyevH5gKtPRc18FpnJlobVjoTixkEwBejKZHi8nfudl7lT+AZd7Mrm8U0tZq4GqngKiswLca2EUdv5gHn+BrZsqKwVJNBplz8JvicViXH/99dx5553F32UVqwAuueQSPve5zwHw1slvEsvmWgX4UHAG9vxkAd9E/nm2kFCpbI2RynVmXK0546AAv/MORTj1qri/0SpYp2KhONGgsmPcxlIt6+6vweCWJ2gY3znH0f9Sxh+mD3qZ2DXL+N45RfUcDRYcCvgNWlh7Vz31l8hfdw0OLevua6DmQvlOOYNLh73OgrNB/rP1Pz/Gvm8rT7ertWgViaFOvznF6deU2bxK19hxr1Emqp896mX2uDKbV+0FZYqEQCuB1iCK2yzV8sXusRjMnPCyMCR/nXbUmXC129Dq5X+chdMBTr89zcwx+RxPsCv4+JLN6/RrMxz5xSjBSfliG2eTGXebMjF123WVdN4q336lNUDz5aW0XKXAiacFe60Re60ycdOp16YZeV+ZHWauP8Shn07KLt98WQn1FyhzlmoMWuLRBAEFQiitDkKz0P96gSwUuYKieILqbj0NW/KPgYJiEMR7HPldfoGfKif126Hxlzhy/BCVlZWMjytPcbOKv0xs374du93OXHCIw2MvL/qtUN889U6QU+/IT++UQt05Djx9efw5BUR4Q2/NE5yNgwbxjwyE52PEwnHUOmWpuzxbSmi4NA/vKCBUOv6rURZOKmuD0e0znPq9srFprTHiaLIuEScUQ815pbRc50GwyG+DpmsqFQuo3O02ShQI16O+OEf/a4jhN5UfTNMpeBf/aIihN6bwDsrnEGoNlK5zYKmSv7YFJsJMH1kgLnfvDhjdAnUXlaGRk5b1D4Cr00bV5gIBSApg/oRfER8CcHfYcLUr89EOvTXJ8DtTiiIzrqS9Dv7wNKd+L9+2ZioXcDZZMCwnds9C5Xo7Hbd4MJQU4YY5/saqzU46bqhUNKbttUacjeZF2+HlxEDzg0HGds4zc0xZAI7B1+eYPFhg7OT4OAWLhrbr3Bhdyr5PPJwkpkATkmqr8QNhvGMFxluO8dlapsbTZcDdXOB7FrAthH1w6PkAwbn81bK5VzweZ//kDwmFQzzxxBNcdtllxV7jjOBDTfeWDZfLxczMDCpUXFb52NICUmirZChDYvUlsO6GMqYHwvT/zgvRPA5nadFNOZDdncalad/yfbxEpkN13FKBrdrEzm/2E5nLaZ5lUooU/innZEi1wNo76jn5ygRj2+dkR2HqfrCBaCDGwe8XUV3+oZ9UQHE0qbqLyhh9d4qIT/7AbL62isHfjSmqs5JnU4ryPgdNl1Vx6rVxRWni/lSx+fPtRP0xdn7luOw6StO9ubtstF5bzeCbEwwpWDg/NCgM5bzl823Eggl2/HOREJR/SFjEbGT16WXTvqnUeLY6CM1FmT6UZ6EtUN9zloPpY0HCUysYPCsJny2jvfWlOrpuquDEy1PMHl/+NH+KtGz4aCXhQJwDP8gxkK40hGWecIddt7ow2rS8992povNNOu2ItH4IFhCsKnyjSRAk8pBvMyzoEMyw7hozs4MRTrwaXPQbsEScBLB/5hWGAvvQarW89NJLnH/++YUfbhWryMH+/fvp6uoCoNmymWZb39JCae6VGZONF1px1gnsfWZGpF2Foi8BRGNYPDrCs1GiOfuHYuGrdSboub8W32iIQz9e6pwqSlUV8LK1d9eg0WvY842T0s/L86WSdjONF1Ww59snMu8kk7Plf6Y899ShOGWZqVyH1WNhfKf8yJwl7Ra0Ji0TO+fk32gFz7YS9D7RjFqnFiMq/TdH7YWleLa42fedk/iG5Bn8VpLurefRJnRGzR+nzf6QtBzpa2TW35rzXFSf5eLQT4aYO17Y+LDi9LjZ95Pbp6V76WwqKntLGHwl/54gn1FFZwN3m53R95UZx9LPtpL2lcHX2q5zo1LB4Z9nuPpyRqHyLjPVZ9nZ96MxIkpCbMvhXtJ8aHCq6LqpnOn+AP2vZn3/PHO0KsWTpDXFWa9j9qT0QfWS1Scf99IL1G8RKPFo2PeLhUVrVNIg1st1kgE8f/rLJEnQ2dnJgQMHCr/TKlaRB2eddRZvv/02arRcWv/xpQVSYeKzeL/WAGuutjF9KsrQ++G8KUdS4zZl87JVa1kYyuFnxfgaUHu2jdIOM/ufGSeUm66jaDq3pRwozdNyxqzBoaXz9moGX51i6qBPtr2s5dpKkokkx58dS/1Y9F2KohCH1KI4XVVZj4OZ4z5iPvkVq85yMbF3XlGdlTybUlhrjXTeVsfgK+OMblcW5f1PEesfaybqj7H/P0/KrqM03Zup3EDX3fWcfmOCkXdkRh9aCZRyAJl2qVwOtf6RBuLhBHv/o4jN74NKBSKjT2fzkZJWE7FwgoVTMqNWqdWUtJoITEYIzSoYPCrVysdbEd6VehetCTo+Us6pN+ZYGJQRwVJqs47rS4lHkhx9bibv7/nrFnas5UtX0rTNgq1CYN/PFjLLRd59qmTziovzsNYAghkC05DUi5wsnwAkKejQamHtpQIzp6Oc3pkh38V41+mF/RyYeh6NRsPLL7+8avNahSLMzMxQVlZGPB5nretSqm1rl5RJSmkMs/tfWbtAabPA4Rf9xCOF070BEIsh2DTEQ3HiucXyiJTSHEkDXbeU4xsNM/Dy0n2lnFS6eZHDkeq2laK3aTnysyIHeXLqGMsEGraVc+zZEaLeP50UbjqLBnOFgbnj8kU6pnI9gkXL3AkFh3g0fCjp1NpurEZv17H3WwNn/mZnGCWtVhoureDwT0/jH5W3Vq8k3VvztVUYXXr2fftPtM0UcDZni5nGyys5+stRvIPKxZGyHifFE/L16SKcTiOIgSEm9hYQYefhHxoB7HVmZo4pOzCXerYVpfqVYfPybHGgNarFNG8y61s9AnXnOjn2m2kiCzkNV4x7KUjFqxFgzUdKmD4eYmRvFifMy710i34zuzX4p6TnyrGHZSNp0FPaqKa8Xs3h3wUXrVFJo3hQMx/3evXUNwjG5v6o6XU/9EhKKUxPT6PVakmS5MXRfwMB+j7qovEC8YRF4zl6+u61I0jCz/V3uVlzTSnRUILAVIRND5fScpWopKw7386mxz3oS1SQTNB9Vym9D4unLqYOBtn8RA29j1QhlEDN2XY2P1mPrU4kxevu87Dx8dp0iK9NTzagM6vxjYVwt9nY8ukm3J2imnbdvdVseiqTbmzTpxrFNG9AabeVrV9opefRegC67q1h06czYbE2fbqFnofE35ztFrruauD0W1OMbZ9jzZ3VbPl8e9Z1W1n/MfE+lmo9W7/QTv0logra6BJwZJ2q6nuqhQ1PiCHnhRKBrV9op/HqKlCpaLuhmq1f7KDzrlo2f66djZ9sYeMnW8SKAmz9Yget14vP33R1JVu/2IFgUUMENny8mc2fa0vfZ+sXOui4VVQiN1xaztYvdmCRQluuf7yJ8h5nWmy09QviPQGqL3Cz9YsdYmo3RIfKps+K73r8lyNseLw1HYKvYpOTrV/soFRKX7LuwQY2fy7TLps/1073vY0gQOk6G1u/2EHlVrEPdN1Xz5a/ymrDz7bT86jYLt2PNnDW/+yk+gLxVE3nXbVs/UJH1rdpY/3j4rcyVwg0XlJJaCHC3FEvHbeIbZhp71Z6PyGWFSxqtn6xg+Zrq8T+++k2tv51ZzqF3cZPtrDxyZZMG36xg7YbxPZuvEpqbyli04Ynmun7VCb9xtYvdKRTv9RdXCa2d40ee7OZvs+0sunTmW+z5a86WCuFw/ac52LrFztwtot9pPvhRkiSFiht/lw76x4Qo/CU9znY+sUOynsdYns/sLi9rbXmdHo9V6eVrV/soGqreDqt657F7d14WRWBmTBDv5/C1mBi6xc70mE8O+9Y3N59n2plwxPNuDqtNFwhvlujFAmg/aZ87b24zzZfJ47t5uuqpD4r/tz7iWb6nspqwy920H5zNesebGDtfXVs/UJ7OkLShsebFpf9q3Y675Dae1spaq2aGSnSQM+jjWz6TFZ7f76NrnvE9q7a6mTrX7XRfquHTZ9qofvhOjZ/JvPNN3+mhXUPiGVLe2xs/as2yjeKJ6LW3V/L5s+2pEUwmz7dQveDYllnm5ktn2vFc7aYxmbNHdVska47/PYcjZeW0/OQWNZSLbDls83UXSx+m46bKtjyqUwaio2P11PeZSc8FUFwwOZPNdJ4mTgWWq4pZ/OnMnPahkfr6H28DkuNAIJYtvlqt/SNXWx+sj7d3usfrKb3UbHNWq8rZcun62m7QfzmdRc42fzJOiyVYnt331/Fxo9JJxnUajZ/oo62q9yotSocDQY2f6IGe700J99dwcaPZSKdbHq8mjW3lpFMJinvMaM1aRjfI36bNbeXs/FjmZSJGx+pYu1t4jO42w1setxD36NVlDQLdN7gou+RTFju3ocq6LpdTENiqxXY9Eg5no3icWIVCVQa0t+m9x4X3beJ38Logk0Puqk9ywSJBC0Xm9j00RLMpRDxQcs2Bz23OiAWRzDE6bvPQcO54kLWeL6RvvscoIoRCcRQaZLYs9LB9N1rp+ksLYQj1J8llhWkg6cVFy0wpxZJ+Ve/+tVVY80qFGPt2rV885vfBOC4713GA/20Xm5lw12ZdFnrb7HScbnYX201Ovo+WgpqiPgS1J9vZeO9mRPK6+8pY+2N4r9NZTr6Hiqnqs+KbzhK7XlONj7mof4i8do991XQdbc4z+vsajY9UUvtuQ4AGi8pYf0DtcwPBhjbPU/3AzV0PyDNFzrY9MkG6i8W56G6bS42P9mYjrix4dFatn6uGX2JOI42f6qJ5qvEOaD63BI2f7olHf2k6/469FZdWqC06almWm8Q15OqrU62fLYVq3SStuveWjZ+QpxH46EkgkNLx60irylbb2fL59ookdbZNXfV0pe11vc91cqae2vp+1QrbTd72PK5Nkq7xXm/89bqRev3xidb6bq/HqJgbzCx5a86qL1YfP7Wmzxs/mxmnd34iRbWPSiu36ZyHevua0qfKGu5rmrR+r3h8WZx/Qd0JjVbPt9O3cVlzBz2YSk3LuKc6z/WxPqPZdaMLZ9vT0fnqb2ojC2fakdn16EziZyi94kMt938uXZaP1IltbebLZ9vx1QpYCrXcdZfd7LpM5l1dtNn2mi7SZzbKzY52fL5duxStL6u++rRmDSMSJE/+z7dRucdYnu719nY8vl2SqQomp131tL3KbENK7eUsOWLHemUIM42C1s+3075BrHfddxWs2j9Trc3YKkW2yHFa1pvXNzevU80pzlQ3cVl4re5UFwzmq+pXNSGGx5vpueRVHtD1SYXoztn8A0FabiiQiwrTfU9jzax4fFMG275fDvNV4vtrVKL/05FlOp+KE973yCueZ6zXRjsOg7+aFBswwfq2fjJxe3dcYs4jio2iu3taDZTc56bro/WL+JAfZ/Kau+1YnunUgl23pFpbxD799p7xfa2N5rY8rk2KnrF9m6/2cOmT7dRvsFB5+01bPx4M+seENvb7NGz5XNtYgpqlZrWj3gW8aWybjvxaIK54wF0dh1bPttK7TZx3DdfVcGWz7amDS49DzfQ81ADPQ830Hp9JZs/3UK9dFq07qJSNn+6JT1HdD9Yz/pHGtIGmc2faqL50qw54lNNmTnivhp6H6vPtOEnGmi9rpzoQpKoP8bmJxux1ogb+7V3VNP7sbq0YWXjE/W03SByjNIuC+vvbyAkGTc6b66g92OZCGa9H6ul42YxwqmzxcSmj9fRKKUnb7+6jI2PZcpueKSaNbeJ17XVCmx6opaKXnEsbPpkLZs/mUmHs+GBKtbeLl7X5Nax6fFqPFvE79h0WQl9j1WjM2rQmjT03F/JurvEsjoT9D3mofZcsWzdNgd9j2W4VUWPlVggkRYo9T1aRf2FDgBqz7LR92gVOilAQtft5fR9rIr2j4jfbuPDFTRdIpb19Fnoe6QCU6kYqnrtDSWsv0f8FqHZJCoNCCY1JJJUrNHTd78bm8SROj/iYP3d0voTj9N7h52eO8R+p9bBxvtcOBt1EIvTdpGRDXdkog+sv91O+xUWMa1bIoZWr8JRK1639WITvXfY0iGue26x0Xm1OLeby8Bft5MkCSwWy6pAaRUrwltvvUVVVRUJYrwyKKbcXX+zheoN4r6nvFXN+huM6KX9VftlFtousxL2JgjNxei52Ur92eIAc7fp2XCXC6NLSzKZpPVSK+tuFcfFwlCMnjvddN1Sgt4GJU16Nny0Emu1eJ+Wy0vovjsTWbn7ngr0Ti1zp0LoHVp6H/bgbBIjYzRfVkLPRzMn0Lvv94hp3gBLpcCmTzWw9k5x7W+41M2GR2rTIfG7P1pL+83ibwa3lrV31zD87gxTB33Ub3Ox8eOZfee6++rS+2+tRUvfk81USbYda7WB0rWZ6Dtd99bTdW99+t99T7VQc764Jled5aLvqRYarihnw2PNrLm7Nr32kEyy8clWGqSo0hUbnfQ91SqmbItBxx219H48s85u/GQrDVdKc3m3nb6nWrFIEe7ab6nBs9WVFhv1PtFCy7Xiu5a0Wel7qhV7k/itWm/wpNf6kbem6bqnntYbRQ5kqzfR91Rrmtc0X1tF78cz6+H6R5tov7EGtGCuMtD3VCtlPQ6xva+oWLTW9zzUmF6/WyTbSGWfODfWX1S2aK1f99EG1ko2DK0B2m+swT8ZYnbAR/X5pWJZSYvQdV99mi+J7d1K3TaxD6x7sIFNn20XozABa+6so/vBTJTnjU+20nCp2N7lvQ76nmrFKKWb6Li9lp6HM32g9xMtNF0lciD3WpvY3tUGjGV61j3UyPqPZb7NhsebaZE4p7PFQt9Trel0fS0fqUKlIi1QWv9YM21Se1trjfQ91Ypb6k/NV1cuam9ns5V2ye5mLNPT91RrOnVgw+Xli1LktlxTiXc0yMg7M2Kffao1Hb2pbltOez/QwNp767FUGyjvE9uhWuqznnPd9D3VilYKRrP2njrWfbQhnd6178mWtC2tarOTvqdaMDjE9u68s5buj2a19ydaaLislJZrK2m6upy+J5vTaW7ab/HQ83BDOsXbhscaaLpK/DauTis6i4a5k2LEqtbrKxdF617/aAMt14nfxt5oZOPHG6jb5qbnwVpab6xg/aMZ/tHzYC1tN4plLVUGNn68AXeX2L8bryil99G6tAio+/4a2m8SyxpcWjY+3kD5eol/XFhC78fE684cDVB3nisdTUlrgd7H6qnaLH6b6nNKFnG2NbdVUNlrTwuUeh+tpfpssWzVJju9j9ailbhK5y0VdN1ThblcC8kkvQ9UU3e+OG7Keyz0PlKDQUpn135DGevulvaLm+1seTLD2dydJnof9mCpEMu2XeOm+55MpLWe+ytputSFRq/GXKplw0NV2OvEb9N8hWtR2e57Kmi50gWJJNYaPcYSLVNHRDV14zY7PfdkoqKsu81N6xXi85pKtWy4v4z195Zhq9ZSf46F9Xdl9utdNzlpv1rkRHorrL+rhPI1UjRRVRKNXkUsKqYXWXONhY4rxDGl1Yr8qapbD/EEVV1aNt5lw+iGWAjqN5npvMqcTqW1/iYL1evF9aaiU8v6myzoNDHi0RgaPThrMpEZ1t9opm6N6CQra9Wy/iYzBvFTUbHVz1D0HQC++93vrtq8VqEYJSUlvPvuuwDsn36B6eAQnnUCa67MhI5sP1+gcaPYJwULdF1vRaOH0EKcsnaBtddmfG6tl9toulCczzQCrLvJSWmbgchCHHebiXW3u6noFq/dcrmTliuk8aeBdXdVUNZlRqVSUbbGTPcdlcz2+5k67KX5ylJar8sa1/d4qJR8Ba52M90P1CJYRVtP2/Xl9H2yEcEu/nvdfTV4zhLnAGezie4H6zG6xPHXeFkZ5nIDR38+ikqtYt39dek0UbZaIz0PN4jpNFVq6i8pT/uSEtEk1loTDZdUgEqFxWOk55GmdKq1ugvLWHd/Zo1Yc1cdjVdV0nVvPTUXlNLzSFN6Tfac66b7wcxa33lHLU3XiPOdYNew/vFmKjaLz1+1uYTuhzO2qPZbamj5iEdqbzVr7qxHZxa/VUVvCT2PNKUjUbXdWJ1e6wF6HmmicmMJgfEwOrOWnkea0lFrWj7iSfs0QbRreSQ7UEmHlZ4HmxDsWjSC6B9NcSsQ+VP1uWIbOprN9DzShLFMQGPUsPETLXQ/knn+rvsb0uu3tVZsQ4tHtDHWXVyO0a1n5B3R5rX2nnrqLxU5p6lcT88jTdgbxIWq9vzStO/O3mCm9xMtab+ZoUSg55EmSqSoP56zXWm7FYg2sGaJn+osGnoeaUqnMavcLLVhqr1vrqb1erG9ne0WNjzenE57V7besai9W2+opv3mTHvXXljGyHvT+EdDlHbZ6XmkKR0lqvnaKjpuy2nvs8X2VuvU9DzShEHyhzZeWUnnnRlOse6BBmolvmRvMGOpNHLiOVFw13BpBWvvqc+093316fZO9VlrrRFXp42mqxanfFt7dz0Nl4vtbSwT29Ah+aqrz3WLPExC5x21NF2d6rNiX0ql0/VsddH9cKOYvvDicjpurUnvBzRGDT2PNFK6TmrvjSVpOyFA+QYn8VBcFChpRLtW+QaxbOk6Oz0PN6Qj7bRcV0n7zR5aP1JF7Xkueh5qSEeUcnda6Xm4AcEmtffVlXTeWp22l627vw6PVNbZbBbnCLe49jdeVkrn7RlbT9c9NdSc5yIegdBclO4HazFLvry6bW7W3OlJi3TW3uGh7kLxO5orBdbeVUssLNq8as9z0XVXpn903lpF4yXidzS6dHQ/UItHyrjg2eRg3b2Z/tF+UyWNl4tlBauG7vtrKGkXv836h2rY8Fimf7ReV0bzlWJZjQDd93ooXSPOPeU9Vrrv9aAzaxDMGlquKqXlarEsajXd91ZR3iOWLe000X13BRqJi5d3WYkG4mmBUtcd5VRuFMuWNBlYd0d5ek5u3Oag554K6i8Q32ftTW48fWJZR63AutsyEZnqz7HQcY1YLh4BjV6FzqKGZBJruZquGx2Yy8SyNZtNdF6biWDfcYWZzivFdkgkxLXK5tFAPI6nS7t4XbvERP1mA6pIlGQ4hsGuxlYuXrdyjY61V5rSNq/WC/Q0bhG/scYI4ZqdBGNz1NfX/1HT6ypLqP4Bw+/3o9friRPjteHvsG7h4/inRHW9fyqKpVRHJJYEVPgmo6i1Ko78eg6AsnYT4QXRgxyYihCai5GMiMZT30QEXVYKkJAvitGuo/E8NxMHfYTmo4Sl6MG+sRDGrPQCwZko86eCnPr9DI5mI+GFKKHZiFQ2TDKeUbcFpyL4JLVoaFb6TVK4eUdCi9SUwckwgWlRJReZixCcjRCYimCpFjCXGwjOZBR0/okQEb+4uYoEkgRnI/jHxfsMvTOFuz1jePWPh0hI7x3xidf1j4mbGe9oEGO5nsB4GMGqIzwTyajzIhCcjeCVyvrGg1hnTUSk3KhavQaNXoOhTCA0IV53YVQqOxYkOBshIok+/SNhdOYYnbfVYK01E5gOp1W0/rEQwdkI4QXxu/pGghhLspR+ahUGpyC1vXif4GxYKhuCLHF3cCpMJBjjrM92MnlwTmzDSbGsdziISpvV3uMhglJO3XgoQTKeJDiRKaszZbq+fzxE1C8+U9QXIzgbYfjtKfxjERbGguhL9IvKJqLiQ0UiCbENRwMQEXPSxqOJtLDBPxpc3AdmI3hHg1K7BIm0WNjwcCMDL47hHwmhMWY0g8EZ8d6pewZnI0T8SdovKUNn0LJwKqNSDU6H09cNTITFstK7+0aCJLLy3Qanw3iHAlJ7Sv1Q6pe+0cUq3ng0gXdE/L/wvHjdoFR2YSSAWp953sB4kJD0jUPzYhv6J0LpsoI1M8b8EyHigQQ155VhLNETnA3jHxfv4x0NYijNau/RIImsMYcK7HWm9PNaqoxE0u0dQq3Jau+ZCN6xILUtVgLT4vMnAql+GEJrWtzeqTb0jYUITIcZ2S6eWvINBzE6M302OB1hYTi4qA3joRgkwTsUIlmWNUdMh8V+jDhHiG0oPrClwkgikT2fZOaI8Hw0PUeI7RJCZ9PS92Qjx38zRmAiTNiXmiNiBOei+CdSZcMIVnFMtd9QjtaoYVY6QRAJQGg+im9M+ubjIUxZqe38EyHstSbW3FzNu/90UiorXtc/HsFaFc2093gYtaCWnjdGMp7ENxoGlQr/ZJjQfJRIQKo7EUYwZsZcYC7C3ECI02+O42zWY6s0EfLGpfaPYHRm+mxgJopvJELbtW5U6iShuRihObGsfyy86ERJcCaGf1K8Z2g+QSQQQ6fXEPEm8E1EFs8R09H0qeGwL0JoPkZMOvUyPRCmJJEpG5iJEZHCnsbDUh+X7hOci+KsFag7y8bBXyzgn45m5uQIhL3xtNrZPx3H7IpjtoF/CuZOxyBLkB2aj+OfjqXL2rxxkiGYiYzxxk+fIxaLcfvtt/PQQw+xilWsBA888AD79u3jn/7pn9g19xxtg9WoVBlDpn8qSmg+DskEEW+UwEyMqcMh+oejVG0wojOLDmTUKnyTkbQ4ORqOEpiOEZhOjfkozkYobTMx/PYsvvFIJu1PNEFgOoJ/KsWtIpjckXS63ZIWM6rUkhGFwHSEgLR++8fD+Kci6eingSnRAGFy6QjPRPFPhtPzW2AqjH8yTCw1748G0RlEkt5weRnxWCK97gUmxbIRaV71jgSJBcS/z58MMH/Sz7x00iU4HRHnOGmd9Q4HF3FD/3gQ32gIraAhNC8+U2hWfIaFkcVcxT8WJCilCI16RZ7rarEx+NIE/tEQgjkzb3pHgmluGA2BfzJEaCFE31OtBKZDBCYzp5d8o5m1PxpN4J8MpdfkpCqBWqvG5NYRmIriGwosOhninwzhGxPLBsZD+CdDdN5ag2DVMXtkYfHaPxnCmyo7KZaNBpJE56MkYgnCWafwAuOhdHsHp8JiWa/ULkMBYqE4w29Mp9slxVVCM1H8kyHC8xkeidTcjnrR6JfmKnPidUOzGb6n1mWe1z8SxFhloOfRJg79eBD/ZKbdfCMh9FlcxTsWJOYX27Cyz0UynsAncXHfaCi9yQfwDQfSXCUaFdvQP5a6bhBLpWFR2Wyu4p8M4R0J4bLrICn+OxGU3nU4iCaLqwQmQul3DUhtGPHF0+8atWXa2z8eYmFE4nvTUllvhOpzagnNR0SOmio7Fsx8m9mI2IYz4jMkAa1BjaXaiG8oiH80iH9KbN/ogti/U3sY70gIrUGLo9GMrcbE3IAvw1V8CfyTYQJTIal9Q+iz9l/eoRDxcGqOEK8bGJeuOxrEWKonmUiiUqvEZ02CucJAPCxdV+rf/okQ/slweo7wjWT6QN02N2pBRURKVxSYCuOfyp4jQuiywm/7JyNYKgx03lrFyPY5/FOZOc87HiIWyua24fS4qbvATTyayOx9xkKLuKx/Ipye08ILUYILEUrbbWh0GrxjYVTarD47FiEo9f2oP0lgOkJwKoLOBLFAnHgWB/JNRAin54gogelomkf6JyIYHFoO/FCMQtl8eQmJWKbPBqaj6T14YCJCoFRAZ4K268rxz0ZIZEWeEstGIJHENxXBOh1NBzf2TYQRLEbU0jwXmI7hn5CuOx0hMB0jGogCKrwTUQRzHINTRWg2iXc0wryU2j0wFxe5lz/VhlFi4YR06ldNkiQ6oxqdHUILCYKzMYlHijaD7MNo/uk4YZ/4gBMHwpgdOnGdA3yTsUUH3PzTMcISH3350A+YD07S1NTEoUPyI5ytYhW5GB4exmw2Ewj4eWvk+7ROfZTAnDiXBOcTBKbjxCNi3/ZORNEa1Jx6W5yTnTUxQtJaGZ6P45+KEgtLXGU8SjSQtZ7MRnF49Hg22Jg4GMA/ESEqzVn+iQiJLBOMbyyCbyzE2C4fBreWwHSE8ELquhFUqswg8o6E0o7/WDBBPJxI72H9Y+E0twJxLk9xqVgogW8sRHBGnH9s9ab0OipeNyi9N8RCMbyjobSt4dTvp9IOFRDXzuxx7R0VOQeInMI7GsI3HsToFPBPhlGneI1KXDO8YykOJ9pNYpLpTWvQIFh1GNw6QlNRvCMBAtJcni4rzasprlK3rQxXhw3vSCDDP7xRvKNBwvMpG0xoUWQotVaFSeINEZ9Udi7Da9RZ3NA7FCAejbPpyXbGd03jHQ2m11n/aAjBkuGG88OBNFeJhsV+FJB4pW8ihGEks9Z7hwMkouIzxWLi2jq+c5bQVFTkc6PBtJDEezqAKoureEeD6TXO4NSL67UUesU7HFxkx/KNBNPfOTgt2po6bq1l8JVxkctmPb9vOIhP+jYhyVYW88WoOsuNya1n+kAm7bp3JJjmVqF5sQ1D0vqY+v/0dYcC+CU7YdQvlZ1N2UqCqPWZPhsLxvFKtp1oIC61t9SGoyH0toytZGEkSDwg2SliMbFsypY2FsJYltXeQwGS8SRVm904GiwsDPkzfWtC6lup9h4OitwwmQSVCpVGlbZ5+acieEdD6X2Udyi4yI7lHQniHw9Te54N31hocdnhTP9NvY9vVOIfc1EWBoNM7J1P/5aMZXGKkQxvj3ij+MZCxCNxkklYOBUkGc2eI8JpG24sEMM3FiI0J97X1WxeFBHXO5yxdcfCcXGOmM3YjIxuge4Hahh4eRLfaIiYZFeJhSS7qNTegclw2kbuOduB0S0weTCTItA/HiKQstdMi/b01Lj3joQp7TDTcWMVO752Gt94ON1fgrMxsWxE6t+jYQSzxK38MXFeG46AWk1oLop/PEJM+uze0TDRcMaO5RuL4B0OcWTvNKYyLbbqSJpj+MfCi+YI33iEwESE6nPsaPQq/BNRQtI+yi/5QrLLpoTw0WCM8HwUwaolGgTfVBTBnNU/xqNEpTQk8SgEJmNEQ3HQwtzpKJqsCADeiViar8YQywak/UBwIYFKDTXrTBz9XQDvZGxR8IjAdIzATGpdSxKYiiEYITYL40ejaHVZa9VEjMCsVHYhRmBaSywEoZiPn/7y+4TDYR577DFuu+02VrGKlaC3t5cf/ehH3HLLLWwf+xGVY4+i1WcO5vkm40SCCYjHicc0+MZjzA/FGd0TwVGjwW/L2Lz849H0PERCHFNBaX4LzsZIJpKUd5qZPBQQbeepqGJxcU4IzWX8JN7RMEPvzkMczGVhdOasdXYkRFAab+GFGN7hYHpv7B0LYyk3Ili0RObjeIdDaV9Y2BvDOxRMCwV8Y+F0at7SdTbisUTWehhnYShjU/KPZ3yc4dkoYztm09eN+GMsDAWISjYx33hokR3LOxwkNBdBrVYRno+yMBQgJHGg4GSYBXMmZO3C6QAxae2MB5PoTFpczTbG3p0lkOWjEq+b4SrxeEK87kKEtXfX4Z+KsDAUSEeH8Q4FFkUIXBgKpH0qSVUSrVGDwabBH4yLXEvImhuHggSmstbDoQC155dhLjMwtmuWyEJm7fSeDmbae0EsGw/EiQfjxMJxQjOZqCQLpwNpf2jUF5faULI9jIcgmWTq4IJ03czzxkJie0d8EjecCKW5isVjRK1V45P8ZvGIeN0UrwlORvBmRe9eGA5irzXRfnM1x34xwsJQIM1rglNhFk5ntfdQMM3p6y+sIJFIEpJsuqFpqb2zvo06p71Ta3JwRiybiEhr3EgIdRY39J4OEpyMYK4wQCIptovUT32jQaJZ0UYXhoL4JNtOxBeV+LfUD8eCaZ9sqr1TdpVoQGpvX5zWa6vxT4ZYGFrMywISn45LZVP2mkQiid4mYJJ86N6scRKPiM+b4u2BKfF3q8dISYuViX1zJMLSHBEXx1jq2wSmc57hVICF1NIfF981Ne5DcxEWhoLp4Di+kRBqnQqjS088LvVvqc+G5qNi2VCqDQPozKJtqqTdisGpIyZ9i7A3Ks0RCalsmGgwqw2HgpjLdDRcWsrY+3N4h4KZPjsRXuSX9w6F0s/QeFEZiWgi7U/3jYfEw/6psiMZG24slMA/HqSix45Gp8E3GsJrzmqXkWBmjgjHxbpzUdCIOo1ktr16NEw8PUdI+1Tp2wRno3hHQpz8nejPrey1LfK5eUciWe0dwzsSAZV4cDo4F0WV/a6jYYKSfy7kjeMdCxOX2tQ3EcVQoktzM+9YmMC0NH/743hHI8RD4t7ePymuIYJJ9MlOHwvjk+xukaBo54oGpX31dIxkUoy+pwKSiQQGhxbBIraLbzxG1BsH1ARnY2iyVD3eybjomwbmxuLMnIwRkmzFwfkEvvGMQc83FScm9dl9Qy9w+sA+GhoaOHZMfoSzM4E/Wrq3FMbGxqisFNWJVo2Ls8sWE9Fkdh6+LBa8/m43Wr2a7f+aP3xhMjvEolqNpUrANyItHMVCKJIJsVh7XgmeTU5OvjrF6HZpg/wBpXtLoXyjncZLKhh4aVxR2rfOO2tYGAow9GqRdGR/wKcVSgTcbVZG3paf7qzh0nKcrVZ2/vtx2SnZeh5tIhlPsufr/bLvs+6BBk69NsG8gnCPSuFstVC3rZzd3zpxxtLLGcoEuu6s5+Qr40zunl++glRHZ9LgVZAvuPuhRrRGNe//85lL91Z/STnl653s+kY/kRl5DSZY1JirTcwe9i1fWEL3w41E5iIc+tGQ7DqAovCL7TdVE4smOP6LIqFR4Q9O99Z+YxXe8RDDb8wUT18i3adio53ac13s/o+TRKRNfdGQg0DjpW7s9WZ2f31Q9nMJDnB3OBh5t0CIx4LPKbON1WrW3V1B/ysz+IbkD66Nj3iIR5Ps/vbSVFDidf/wdG8bP1pGIp5k57elVHLaPDrerPVDJYVftJSDbxySWWGu0+lIJKTSMbReZsNRK3Dot/P4UhkMslI85Nbzekd5c/7HgJgy4s033yz8LqtYhUxcdtllvPDCCwCc67wHs9G26PfF3EscI7YaHe2XOxg/4OfUa9L8kDvucsJbp4QwsEz4akiPrQ2P1ooRAP8tM299UOneUlgvnRTe9W8DUrHl+ZK11kj9BaXse3rwD0s7kn62pfes2ORkev880YD86/c80sjUwQWGXpeXatVUrmPNHQ2ceH6UmYPyUlF5znahtwn0/6bA/PsBofGKSpIkGfjN2Bm7R+uNHnRGDQe+K39dtDeaCIyFZH8XU7mONXc2cvqNCcbek5dCZSXp3jY83kxoNsLB78t/F0u1kbA3RnReXg6/0m47NeeUsu/bxzPpsT7gVG86u4726yoZ+N0EvqHiocJXnO5NpcZWb8SzycmhHy3D7yDrtFg1yUSCA89k6hQLS60zQcct1UzsX2Bsp3x+W9FrZfqwb0maTEUoEvras8mGwanlxPP509Pke6eKHjM1Zzk49sI0c/1Z4aiz58uVci+pXsU6E7VbbQy8Mc/kAWlvky9dSdacm0q1a3JDYGrx+qDK4W3JWAx0sPFON+GFOPt/lfkm2etcis+l8PboD5mPjaFSqRgeHk7bKlaxipUiFAphsViIx+O49fVsrLx+cYFI1pycNZbbL7NgcKjZ9R3JJpM75rJTuqlUGJzaTKqjZdK9JaXUPa42I43bXAy8OsPUQWkSUpjuLfeaubDVGWi9rpKTL08wtb8498jmZA0XlxGYiTCeSlP7Aad90xrUONusTO6RZ4sBcV0sW+fgyI9PEZOZiar1xmrUWhWHf3ha9n1aPlLF6PYZfMMyb7ICmMoN1J5fyvHnRpWlo1MArQE672xg6I0pZo7I451aixbBrBUdejLR8pEqDE6Bfd8+KbuO0nRv7i4bteeVcfCZk4Sm5bWX1qDG4BaW5TfZaL2hmmgwxsBvx5cvvMJUb9XnuEANQ68tY+9dqc1Lul/12SVEfDEm9hS3LaV4iL3BQP22Uo78dDQtdCp+HzXl6624W80c+KH8/YPWAI4mc2bOkwsZaUZAfJ/Wa1wMvTtPYELOe0i885Yykkk48JMC+zol6d7ycCeAtTc6ANj3k9klv6WRPc9LvxtsEFrI+U2XU1eyh3nW66noNHDkFT++Sem3bDtBTr1QwMvvx8Rog9dffz0/+9nP8rzgKlahDP/7f/9v/uf//J+oUHNh1UcR9NbFBbLssKmUPYIV2i+1MnEwwOju1N4kZ9wt4mwqBIsmfXAoX7q3bKTswm0fKUejV3Pwhxn7ygeV7i2Flusq0QpqDv6wgP8kTz29U4dnq5v+50b/IJ9iMTiazHhHQsSD8vOrtVzrYW7Ax+Q+eXxNY9TQcXMNg7+fYGFQ3jzvaDZjLNEz+t4ZTOeKGKFIo1Of0ftUbS5B7xQY+K38ddFYJhCZi6UPECwHjVFD5601jLw3w/RBef6jlaR7a72hmogvxskX5L+L3imQiMaJ+uT1MYvHSPVZLo49O6qoXwLybWMaaLy0ktEdswSnPlhHczbHM7oEytbZOfXKZL6CeevXXyRmOul/PqtO0RRn0HRZGXP9fqYPy/fN2+uN+MYjxIPxlaV6g6I8zNFkwlwqMPxugXkiT12rR6DpIhcnXprBN1rgu/yB6d5sHh2N59s49baX2X5xP5CPey2ya0n2KcEiZm1ZtDfP8RumuNeaa6yE/ElOvJFlu8tek3LqHZl4lQHvdnQ6HcPDw5SWlhZ+lw8Bf9RISgAVFRW89dZbnHXWWXjj07w7+TM2l96Qv7B0sgRgeJcPs1Pm4ycSaYFS0+UlqFRJjj+7vDNn8J0ZbDVGRhUYLQA6b/Ogdwrs+try+TLHd8wzvnc+I4RRqWUZX2zVJnQmbXGRUu5z3VWLWqWSJTyJzEQyAiUBWUKdgRfGGXhBxkY6C7v/9YSi8sCKcrcKFjXuLqds0ZXBJWB06SnttMsWEClFaCLC9n88qriOUjOVqHw/s0M9Go6RiCaI+OQvtBFfgogCgRLAnn+XL2ZbKaw1JlkO6xQs1QLGEj2Te+UZ3VI4/FPR4SVHoAQwtmOesR1ZfVGGo67/hSlgSv7ib1ATWUC2QMniEWi7ppwjvxrHNyLP4eluM2B06nDUGhSJlHb82zAqvbz3KO82Ub3Jwf6fjhKekf8txw/605EF8iKLFOhLoOMKB4eem1siUMpFMstJcGr7AhrBkVeglAu/d5qTlrdQLahobm5eFSit4gPD888/T1dXF/v37+f12afZxr0IRmv+wskEqNQsnI4ydzrCyPtZ84N0wqwQAlNRdBZou6acw78YISpjmhzft5A+ESIXpjIdHTd76H9pgtkjyxshdn1rABbpsFTLzvvOJjPmCgPWGgNemYYOS7WR1murOPDDQcLTy8+RaUGLjkXPVwy7/03ZuhgYjyrmHsNvyuea2XCvtREYC6aFasvB2WReFGHwTODoT+U5orIx36/MgRENiSdd4uEPQMxW7D6BGFG/Mqeib0i+yB1gcs/8YuftByFQgvS8AlDSZMJcaUBnKrLBz0FFr53pQ/PyRT3JBAsngyzIEflnzWn7v7/YqLscn4oGYO9/SHXkOLJ0QEylSNDUfn0Z0WCcE7+VPy6dTUb0VmV7gbHdfsYO+CGe9c5Fxue6O8vxTUTof1GeMA9g7FAAe40+I1DKh6x9ceNFNmJBOP1eYIlAaUm1FPeKwuSxIN7xTNlFQtwcTLvewz86hU6nY9++fasCpVV8IDAYDJw8eZLa2lqmwifZPf4cPeVX5i+cSKTnj5F9ISylOWOwEO9KJtMCpaoeE1qDisE3lrdjTB8J4qgPMHVU2VpXe0EJ1koDB36wvPBz4VSIHf9yIh2ppxiyOZmzxYJhNkukJMNW1nBxGVqzlmPLHThCPNmbXuO0yHq+JeuiDBz9qcIDVsCxn8sQ1OZAawBHs42p/fL28jqTGlutGXutSbaDSSliIdj7TWX2u5gvplg0FfPHieoVOpYUIhFJEgvF0xF55CAWSigSKAEclSmaUiIgSkWjTMHRaEatUS0vUpJgcGgxuATmTsicJ6S5aujN5Z2w2dxqfiDEnm/KFPNJ8+T4Li/juxTY4nQqYmFkC5R0Vi1t15TS/9IkgSmZBxZKNVgr9dg8BgITy3C8bN75ownQyfuutmod9efYOfrb2XSk8TSKzJOjewNohCJ8NkuEpDVA84Umjr8eWCpQykWWPWz8UBjBoskvUMqtFgjSr/stKpWKs88+e1WgtIoPDP/jf/wPRkZG+NrXvsYrI9+ShEqW/IXjcdBoiHhh+kSEiSNZe5Ni3CuRJOKLoxGg7mw7g6/PEgsuP09MHlDmPwAxdVfLVeUMvT3LwuDye9pjz44uinonB+YyA/Y6E+YKfToi0HIQ7FoaL6ug//kxIvPLr91zUqYHNKSjIi2HY79UZsOJB+Psf/qkojpzx/3MoTwYgqXKQMQfk/XuACXNFlQa1RkVKY28q/zawQllwpl4JE40EMtEwz5DiPpi6YhechGeVfYuvuEgh3+snKsrgaXCiKPBzNRhr2yRkr3BhG84QLxI8VyfYnA6kl+gVAQnX87RSCznb4zDiecm5N9AGuvzWba4ZDJZ1LZWfbaTZCLJ8Ntzsm/jqDVgqTIUFinlgXc4wu7vjaJKyLNzNl3iJDQbZXiHfPvdwliUqeNBZk8VnlOz7VrlawwkVRomj0SWCpRykcO9wqGs9yjCvbzmvQyFdqPX6zl06NAfXaAE8IeFAvmAsHXrVn77298CMBsbZefUr9OGxdyTjVLcKyb2hxh4ZQ6Axoscy98kkYBEAkeNAXu1Ud6DRWD/94YhIuaERVi+CogThCJFYERUxvU8XI9gQdxsLrPh3PkvR9jz9SKb/TxGW4NDQHDo8hQujL5PtdL3eOvyBVMQxNPg5b0O+VUs0Hp99fIFs9B1T306H6scrLm3kbpt5bLLj749w9v/56AigVLdRWVs/WInFo/MjoIUsarLtnzBrPIbP9lCxSbn8oUlHPzeoKJIVSvB8GvTotNTAQ9Y/3gTzddVyS5vKBNwthbYUBTAxidb2PjJFkUnALb/41F2fEmGqlva+DddXknLVVWy5weADY814uq0yBYoebY6KO3OEhDIECh13VWNs1UMEy4nYF7lZgebH6+ndK152bIpOOqNaPUaogoMdVOHAuz61mmG3pJnCO24vpSqPundZfYvwaIFFYR98r67u1WAZJLTb/kYfi9nUxKPZ/5kobTVLEYDc2kKCpSSsVh6Latab8BSCuEZOPxbP8lwZIlAKRVFKRkOE/Z6eX3+ewwPD7NhwwaOHlUmKljFKpbDvn37aGoS85H/bvY/iQRD6b68lHuJaXaO/naeqB/MlTpKOyUulUgWdVxbq4wYnVpKmuTN38NvzjH2vmi0cbaYliktIuqLolKp0FtkchzJP1252Unz1WJecpVaVXROHnxlive/clS2QAkgEYujM2lx1OWZV1WqvIKPsg0Otny6g5LOAqKxPHC2WejMyvkuB+51Nkq77csXlFDSbmHdgw3LF5Sgs+toucZD/cUVsuu8/5Xj7PqqMvF67xPNdD/cuHzBLNgbTejs8vlw05WVdN1fL7t8dD7Kzn85rtiJqRT7vn1SlhM2hYpNTnoebUInb1gBYt/SpdKKyNjb2BtMbPlcO+UbHLLvMb5znnf+9iizR5c3CiYTSdBB/bYyWm+Qv3eou6iU1utk7AOy5oDGS0tFEZGE5fZ2Zd1Wmq/K2twXc+RI2HBfDd33yufCAHq7FkO+/VyR++3/wTh7vyvPuCvY1XTeUrpYLLnMPA8K9Ws6MTofUTjy6zyiJmnNyXWy2av0OGoFkslkQW6bzb1qN4ud/dSbfmZPRUlGo0sESqn1LhmOsGfiObbvfhur1crPfvYz2traFLzUKlZRHNXV1enUgWPBIxyYeDljWMw9ESnZrhZGYgxvF3lHVY8M3iXZyhz1euzV+vxl8uDE8zMQA0uVTvbZJpUKZQNfOjfVdmMVWkvxm6Q42d5v93PomaHcH4vayvQuPQZHno15Ad4F0HVfPT33K+MSDZeW4+qUb8dBC7UXlCm7x5UVeM5xyy7ffG0NjZdXyf6G8wMB3vv7w4oESu61Nvo+1YbFY1i+sAStQY2tXj750Bpg7b31uNfKb9+BF8cVRapaCWaOeNn7zQFFAqr2W2sUfXetRYvFI2PsZo2BNXfVsO7+Otn3ANj/9CB7vy0jarq0Dlef7aL12gq08j877TdVYqsvXiGbWzlbTTgaZdrqJYFS0+UubLXyH8reYGTjQzWUtMq8D2CtFBDMGhIJ+e4T/0SMPU+PMLariBNLrUrzztpz7LjXSGNEZvcSTBpQqzIp1VMoIFCyVmlIJpNMHQ0zvj/HUSatOblc0lalw+TSYi5RF+aZsXh6LXPWazGWiOLEgXciooMs10mWiqIUiRILBHl57F8ZPD3Ipk2beP3112W9+ypWIRdf/epXueOOO0gS5/ej3yIeDma4lz6HK0h23+HdYeJB8bC7vUYqU4x7JZLoLWos5TqsVfIcAzPHAswcE/mduUJenWgwjkqtQmuUORdJr+loNOE5q0Tecx3xsvebJ2QLlACScTFVlqVc/rxq8RjZ8Egztgb53MBYJlB3kTIeZfEYsTfI93GYyvU0X6Ngb66Bthtq8GyWz9UO/3iIQ88o4yttN1bTdpMyv6mxVEBnkX8IrGy9g6ZrFBzOicPhHw1lRGdnCAMvjDH8hryo8QC2WhNtN1ajMcp/d3OlQVF5wa5h/ceaKWm3yvM3qtT4RsLs/Fo/Cyfl25ObLiun/pL89tR89uvSNVZqznPJvj5A+QY7muwpaBl/o9Wjx7PVIQqPZKLt2grab1B28Mvg0OXfzxWxeZ18ZYZDP5EX/V8jQMM2p/juCnR2qizutvxNwORSQSzB0Lu+JfdJ2bRy7Vr2KgGHR5vXF5lGFvcqbRHbaep4BO9EIj/3StkaIlEGp9/nzb0vYDKZeOGFF2hokG/nP5P4o0dSSuGyyy7jmWee4bbbbmMiepLdcy/S47ikcIWkSBDKesyUdphJJkiLlorh/W8PiY7urBNqy0FwqGi5ugLPVIS931o+pcKB7ytXX1prLRhdeio3l3LqZUnxWOSkWETa6zRfV8X8gI/JvTmGBZVqyUS58yvy032lsHAyQDym4CR4BOx1ZjQ6NePvz8mqUntRFe41NqaPWJmWmXrEVGFAbZC/STzx3Aga/ZnV5M32+3C2WuVPVsDaO2vRW3RM7ZNpGIpE0Bq1GOwKFDECWMr1+E4rUJIohFAioNaKkZ7kQmfSIVhlhooAmi6txF5v5q3/e1C2WMU/oixiwEpw6JlTuLucsp/JvdaK3qYThTSFkGN4rdpcgkoFk3u8svqXpVLAXKHH1Wphj7d17AABAABJREFU9mhgedGkWo13VMzjOrlfPsEcemtBttgIoPOWco4/P06k0DDPMy9bKvUINi0j2+WfNDn95gKn35QZDapSR9M2J+62MId/meMoK0QG4gmG3g0ytCuY/7sn4iRjOSHVN1iIdZjY+fREwYgtybCU/zsSYXtcTPHmcrnYsWOHrHdZxSqU4vjx43g8HkZGRvjd7DfY5nyQotINyWnccokTrV7N5MHFJ8zynYaYORpkZmBYdmSgFNpvqsReY2DXfwwRXiaNaDQAO76iPMpiWZcdXc5mtFhUpWgAdA49jRe7OfKT5R3+gbEI7/79keKFcvjaxL45KtY7Cc3KX7Pd7TZsdRZ0dp3sNF6Nl1YSD8VlC2kMTj0mlx5rnQnvqeU31tH5KAMvjjG2R35UlZXAOxKU8n3Lg86uY83t9UzuneXYr+RtYPU2Me2IEpjcOqJRZH+PlcDsMeCfCMkeW4JV5B5KUoq1faSGwFSIvd86Kat8PJokMBXCO3wGjVVROPxfw0R88tvWVm1EKBZJKNfA02WhrMtKxB9j6M1ZWYdP3O1WzOV6QNrHLbfPVKmYGfArzl605z/kC9PcnSZMTi2Dby7I/u4VXRbMbgFLmQ7fcHRZcVL6ub4rP5ru2utcGJ06tv/H2NL+W6hBkkl2fb/IqdB4nOwnrT/XQlmrgYWxKHP9IQq9RUowPl26m9EJ8ZDCD3/4Qy65pIgdYhWrWCHa2tp4//336e3t5XRgL2pUdJScX7hCQuRdVo9A1QYzap2KIUm0lHaY5dkbHvyvFZzO1kLb1WX4JyIc/unyKRVOvaLwHio15lId1mojZWutjLyzPD+IR1RAkqotTkIzUWaOZjn8C9jKlhWq5LGTzZzwoZZpG0zB1WlHZ9XJFvhUrndSuakE70iA2aPyTt/aa82E56PIjR9w6vcTaA1q2SKHlcA3GsA3GiSh4B4t11djqTSy/R+W4cQSYiFEe4lVwQFLLRhL9AQnzpzNS2vRotUiLw2ZBL1VS0xB6pCarS7KN5Sw46vHC4uhcmxF3qEgGuHM2jqPPz+Oe8AiO8WhpcqApdyA3qaDPLHg8/Gq6i1OtAYNu/59GZu7NFa1Fg2OBjPRYJKFQRkPplIRXojhGw0x0y/fTjhzPMTM8Tzcq4BPoeGiEk6/O0OsGBXOmbcd9QbMpQJT+/yyHX9TR0NMHc167yKEUmtO0nqxnZlTYfp/nzP/FHD4JRMJZk7GmRmayzunJGOxJd+xbpOJaDDB/p/NUpA5S6myYrEYO4LfJ0mC5uZm3nnnnYLPv4pV/CH43ve+x8LCAs8++yy/G/0m2yo/iqbYKeN4HJIJ6rbaMDg07DudZYtKJBdFBE4hMBVn7w8nIb58hJBseLbYKVtr5cCPRwnPLLNWxOHAD5RHhXZ12DC5BIbfksfb4hExlVdVXwmnX1s+IkvUF2fPN5QdjPcNB5k75SesYD211ZhxtdkY3TFNZF7eulp/UTmJeJL5AXm2Ca1Jg9UjRnmWJdSKw/Ffj+A7k7YPwDukMDWpBjpvr2N81yxDr8sT+OgsCn2NiNG9EnGUp0hTAMGuJeKLyRaS6Cxa9A4d8Yj8Z2q+porARJhjP5c7vlTMD/oJnEHOCXDoZ8Mk8wyRQodrLVUGTGUGQF6UTHOFgGezGLFoYveCLH+js8mCs8msKMLR7Ak/aq0ynnr81/IjNZkrBMxlAhN7fUWjTmXDXmfEXmNAb9cRmJRvVzz+vPz9b/0WM/YaPft/OrXkuQoGk4jHOfayryAXTMbiqLK4p7tZwLPeQMgbZ2EoXHjtkbiX13yMg6dfQaVS8cILL7Bp0ybZ73OmoUrKCbHxIeLLX/4yn/jEJwBw6+rodVwOsVj+HH+SKqysx8zE3qUTdrJIWKuK9WZqz3Fx8Kej+IYX95R8eWAbL3Uz9N40kZkiluScTUH9JaWUd9vZ9c2TstJ8pPMMFrnm4gqw9VPthOYj7PpaAUKQ5/M2X1dF1Bfj1MsKQrMpgGBRE/Eps7g72y3MKkz9dabReGUl5eud7Pr6cUXiGyVwd9nQGjWZFC9nAOseaMBSaeSt/3NQdp2z/rqThUG/rNSAAD0fa8LoFHj7/z200sdcFhaPgKvDwamXVtBvZW4QNn6yBZVaJS8VjoLw2ouryXiW3GsLYK8xMH8iJFsElz2fyBEpKUXX3VUceW68+JyYBXeHiebLS5k44KX/pbn8hfIZelIcOVL4PZLJJCqNmjW3lqE3a9j5LcnxnHKs5Vs/UnOrRkPjhTaG3lkgkm2rSiRBs7Rdum93QRL2/LDAmE3EIU9uWUeDQGA0IH4TdZ7nicVAoyYS8bFfeIHJyUkqKysZGVEe6n8Vq1CK0tJSpqbEzes254PodLp0n1yCWAzBrkKwCqIDOwf5DJYprLurjGgwwcEf5XFm53AvnQkqe50Mvj5bPBpcjgO997F6fGNhjvxsdPn0uQXSqhVL/dZ8VQXutTb2f/eU7NRZepeO5isqOfDdAkb3D4CK60woEp9Y60x4RwKKxWNnGhufbCUaiJ3R9K7V57qZOTQvOw3dSrDlCx14hwIckMmjOu+sxVZr5p2/kc+jtn6xg+mjCxyVIZhbKco3OAnNhcWUdx9UqrcUVGrMHoGuu+o5/fqULMOpLA5V4F4FUeCajkYTc1KqP7mG5kXjUIZISQmqz7ajVqsYfH2ucKGce667sxy9Tcf2rxU/QJP7fnLnE8GppuuWCobf9y5NWZevzaU5WSjRUNpqYXh7rqNsKfeyVOlou8zBwOvzzAwUEo/H83I9V4uO6cOSgTkfF4zFQK1hz9yLzDCIXq/n61//Orfeemv++6xiFR8QXnvtNc4/XxQnVZvWsrZkG8lIFJV2aT9NRf9yNOiZO5ln3YrFCs5j9hotDec7OfqbKQITi21jyfhSjlTeY2HmRJDoXBHbR45Du7TLSvVWJ/ufGSEyv4ywMZlAa0C20EGskqT3iSZCsxEOfO907o8F61VtdUEiwci7+aK1/eG8S2tQE1MgkgawVBsUp/460yjvdVB3YQX7nh44YwIfS7UBvU04YynlABqvrKB0rYN3/+9h2XU2faad2RNejslMr9Z6YzWOegvv/X/y76EUBocWR4uVsR1zxQuuwBaV4lCdd9QgmDXs/vpJOZUU3wcoarMqyKm0YHbp8I8vw8+zuI6i+WQFPLblajcnX58n6s3hH6l5MId3mcu0dN5Qwdg+b/HDfPnaRwtEkvn5CojznUZDwwU2LGUC+34kOZ7TNq8i30qjoXKdkcmjwcXtlUjmXXdaLrag1as49Jv8jvdkLLY08jJgckHYGyXmzxOZGXE9U2m1xGIx9iV/yvj4OM3NzRw7JiOS/SpW8Qfikksu4aWXXkKj0nF+5YMIGkHsk3n2bMloFI0Agk1HcDrP/iMaKTg/NlxgQ6WC/peW8o90OmoJGgFKWixMHvCl55W8tq8cbtV2QyWh2QinXpkuyoWSiWThtGpF6pX12Kk5u5RDPx4kMC6PG2iMGmrPLWXgheWF7iuFRlATj8jnXka3QHA2oihSyoeBzttriUcSHFlBOmC5KOmw4hsJyBZ0rQTrH21mftBP/3PyDv/VnFdKWbeD978sf87vfaKFqUPzZ8yHDWL0pXg0oSiCWBoyuIXOqqPr7jpOvzHFpNwgFYVu9wHbw4xlQibVn8xrawRki4GKPlKetitpMaE1apjYWyRQQc6c3XipG0u5nr3fH4Ziadty6mW/RzF7n8aoov3aMkZ3e5k5luMDyMfZpPlaY1TjqDMwfSynXyWTS/yGgkVFy8V2Tr/jxTtRKGJ4PJ2BJRvWCg0LQ+I8nY97EYuBVssp724GQu+i1Wr5xS9+wbZt2wq88R8HfxLp3rLx8Y9/nH//938HYCp6ih2zz4o/5AtxJYUJndjth0SSxkscrLlVXui/4HSYRCxJIrI0pGk+9L8wRWQuiaVaoPYCeWESfWMh4mH5BpCUoKD7wTrca2Wk+YjAvu/0FxYoQd7J0tVmUxSaWrCo6XuqVXZ6tZRAyXO2/BBzaYGSMtEu9mb5YRvrLyln8+faZZefOjRPYELZAmWtNypKQze1b+GMCpQATr81ydjuM3uP4TcnGdtx5vLpAviGI4oESqXrbNRcWKrIGDHX78N7WoZXRlrcu+6tZcNj8kPD6106DKUyOnnWZkGwABFEgRIse6Ld3WlBKBGI+MRFdlnHmgAbH6ul9jz5KQQrNtowuQVcjfLT700dCrD/mVH6X8jTT/KEll53dwUlrQYxUlEB8pMbFjHiixFNKfgLpkEQTyQL5kyq0P5XJIFS6kRyvrrxBMQTRAMJorkG6UQ88ycLJY0CG+4oAXWMuWMFBEqxmPgHCER8vDL/PSYnJ2lvb18VKK3iQ8Pk5CTl5WIqpN/NfoNoyjst9ftF0GqJzCfxDYXRGRN031WGrXoxES4UtjQaSBD1y9skRwMw+Lq4dtVtc1E8xFMGEV+csFfmiSzJBl7SYWHNnfLCJx//9Rh7vz2Ab1hBpKM2G9Zqk6IUbrXbyuh9oll2+WhAXGMcMnmR95QoUFKS+gvECEHp9F8y0PNoE603eWSXXzjpY/a4MtG652yX7PcGGHp96owKlABG3p1m+G35YalXdI/3phl//8zyu/Gds6JACWQ5desuLsO0XMj6rFQ9yWgS30iQ2aPLR0tUqVWgg40fb6Kyz7Fs+RSsdUVCz+czxEhzTUqgBMunzS2TUvJGA4jGj2UESnXbSui+r0r2vAbgbrXg7lCW9njv98Y58GN5EY5cHUbabxDT1SkRPMbDyeVPEUrcy9NnwVCiJTJPRqBUjHslkySiSRJRCM3lrEUF0vF2XuugZpMJ4vHCAqUs7rVz9jeMRY6TTCb527/921WB0io+FJx33nnptDZDgf3smX4BEI2PuWmkU8bGuYEwJBNUrjPSenmOLafAOArPx4lHErlblIIY3+0j6o1jcGgpXy+PswSnI4vTDRULg69SEwuL82PLRypxtspbuw98/9RSgdIyKO924OqQn9YWrZj2rfr80uXLQlqgpMSulhIoKUmZBWCukl+htNvO+sea5ad8O+Fj/pQv70HNQjC4daIITCZ8Q6EzKlACmNgzx+k3lo/48IdgdPs0Q2+e2XuE5uPLC5QgbS+y1hooX1+8n+emBJk77mWuX0bUB4mrNVxaKnufBKA1qTA48nfAQrYprQGIsbxACSCRwFqtR2fVKhI8dt1ZSdVG+ePVXm/AXmPEWZcz/or4D/wTMfY9M8bpN+VFqm290oW9Ti/O3ZHi9qsUIv4EEd8yNq8UtFC1Qdzsje6VBEpFeFcykSCZSBDxx4kGF/+eSqebK7Iwl6rpvMqChij+sfwCpex0u7FYjJfH/pXx8XHWrl27KlBaxYeGF198kSuvvJJ4MsrvR79OJC46m1P9PhsqnY54BIJTUVAnaLnYhsmVs58okJ46FowT9seLpqdOIR5BFCgBpWutaAR5dvyIL0ZErs1Lmi5M5QKNl8tIfw5M7Jpj33f6ZQuUACwVBpwtVkUp3Eo6rHTeUSs7glw8kkBj1GCulMeLglOiQEmj0Neos2gUpf9qvraK2gvlp6Kb7fcx26/M5lXSasWigA/OHPKeUYESwOnXJpg4w/7GwdcmmNg3d0bvsTAYUCRQKu2yo3cKivyNM8e8eIfl32PtXTW4cuzHxQRKRleRTp5PoCR172B2UI5lOIW9XrSryRUolXZaaLu+QtH4K2m1UCpHE5GF/hemOPzzMVliRHOZQP2FDkCZ0CoaiBOaX2bOlbiVs1GPYNUQj5ARKEkp2fPaVONxiMWIhUT+lY2UbSDXPlDTZ6S0TSAZixUWKGXZvAbm3+fQ3KvE43G++c1v/skJlOBPUKQE8NBDD/H0008DMB0b5u35X2Z+LJKPz+wW0MvMtzk/EGbHV04SGI9gKhcQZNov2q71ULVRnkhpap+XHV8+QWQ2JgoNZECwgMmlp2ytvAdKRYGqPt9FxaYCIoOcSXPXN/rZ+WX5qd8ivgSoUJQurfGqSuq3VRR+pjzY/Ll2Njws3yG3/rEmOm+pky1sivhiJONJ2fl+FwYC7Pl6v6IoSg3bKqhY71Qktup+qBGPgpyhfZ9qZdOn22SXnz3so//X8lTNK8Xk3gUGXpCf5qH+knLO+utOnK3ynS09jzYpMoZVn1tG9Vb5eYEBjv9qlMM/UaBkTyy/6UhBpVbRfn0VPQ/Uy54PnG0mNjzWLFsYCdB4aSndd3tkn/q3uAT4/7P3n+GRXWW6N/6rqKpSJVWSSjmnbrWkzu3czjnjnI3BxgEwwWeY8+28/3Pea2bOmZkXGOJgwASDAWMbB2wcsMGx252zcs6qnMP/wy6VSqUKSww+YzO6r8tcjWrttddee+217vU893oeOUQC4uR1ao+HfT8YYnKPmLGx4zoHqME3meNbymHk0dnVaM0qLE25DdfZm72l/jz1/AKHfj4jlJqk+SI79o5S9E4xD6G5Qfqoj/5mnqO/Fgudqa9QotTI0RpzvIsMsgAQUi/QX/o6AA6Hg2PHPrqoZOtYRy5MTU1RXS0ZoF9b/BGBaIZxNZdYCelEiEorRycivgSOPjXNqecl4YaxVuwaQ7UaZ6+JlovENv2HfjzK0CuSA0FUgGNtMVBarkFlEpsPAjNRUEHrNWLim/G359n7rX4WBFPagmTckinkwm0C2HRnI82XiwuCanfb2fL5DvTVBUQcGVCZVHTf10zzleL3SMaT5M2zlAMnfzvByGtrOyVVc6aDmjPEnIoAzp0WNt5ZJ1zettHIrr/roGKrOKcdeW0GV99HG/Z7+A8zuAfF1SRbv9BK7wNNwuWrzrCy4bZa4fIqnYzKbRaqTy/AvbJD489EOfzEqLBorNSuJplIEs6XAiUbajmdN1Tndq7lMfL03FHLlgfEx0fFViON59up3G4SjkypUKUchmvQyu1/fJxDPxfjqOWbSnF0SRxKtG+tzaXoHWrheVOlg4g7yf4fT+EZE7iHCiq3GGm+QIzTqoygMkljZN8TM8JhuEsMcnSWPPaALO61UHOQhYQkfHj++ed54IEHhO6xjnX8NXDGGWfw/vvvAzAZPM6HrpfSv+UyRi5BZ1WgMYopUEKLMQ79fIbQfAylHpSCe9CG821U7ygTErr4JsIc+vE4UU9spfimgFhJqZVjrNRiaRZrUGhB+m6tnQZsG8QM14d+MsyhHw4JlQUgBjKFDIVS3OFQvtlMyxVV2LvFxVC9DzTRcVO9cPm2T1Wz4eZ6YdFRxBcjGUugtZQIlQ+5Ypx4aozQvHjKFed2KzVn2tcktmq9toryzWbh8l131a+Js/jGQ0y8LbZH/0vhHQky8a74PWwbjez4cjumPDaNVZDJaLu+Gnu3uJCmaoeVunPyc+BcDq2J910MvboGsVUyd+S1nJDLqNvtYNMdNSj1K++dzz6lcyjp+XQ9FWsQEDWeb2PDDRXC5ZV6BTKFjGhI3OblHgqx/8ejzBzO4PMFBEr1Z5thDekAlXrQl6sw1+b5VrPED0vf2/gHPk68sChk86rboaeyV4/OLjaB6B1SuaE/+zn1BzFbn7ZMjrpUjtKQOxLgkjgJIKQMcEL1HEkStLa2cujQIaF7rGMdfy08//zzXHXVVSSSMd6Y+HeC8WWhSC6xEoBaK6fEpEBTJvYdjfzZzdjbki1Nmy1sygO1SUH1rjKc28TsDYMvzzK5R7qHqADAVKPDWKNDLeg3jbjjoICqM8T8Ku5BPwd+MIBnDfaJWCiOXCFDvQZBUMf11TReKD7/W9oNdN/XgtYh1lEKNXTd2UjNmeL2pWQyz4GbPJh8b4GZfS7h8gC1ux1UbBH3DZkaStcUREHrULPloRYsHeICkbmjHnwTH22E0NmD7pVCmiLovKWWjhtrhMubm0tpWMN4QgG1Zzuo6DULXxL1Rhn6wyyhBbHnUOsVJKLJFemCC0ZQUkDbtZU0XpJDhJgnglLTxQ423iYuQDfWami+pBx7p7gfV65WIJPL1iQG6nt+huNPix3YN9SUYG6UbNmR7IiXeWCuLcFYqRGeNxVqiIfh5PPzkh9AANXbjdSdLsZpFWpQl0LEDyeeXyTkEnsObZkCnSmP7THL5uV1HGcg+B4ymYw//elP3HDDDUL3+L+Nj126t0w89dRT6Y7TyPScbc5xslGhSKd9y4S+Uo1vKlow5duS2Gnb5+tJxJLs/aaUkqFQl6h1SbTlmuWoJpnIEyrRUFvChpvqmDvu4dRvBcQiapYjhxRLVZLCzsfaiIUS7PnXIqcQMp6tZrediC/K9AcuoXusFfUXlDP0irhwpePGGgJzYeEQfrYuI1pbCaOvf3SnmfQ1JTTsdnLox0NC5TUONQo5+KfEZ+Bdf9eBe9jP0Z8Vyb2eQvOVlSCDvmcEJ+16LfVnlXPidxNEBBfEtaZ7a76ykkQ0wcCLYmE9y9r11Jxu5+ATg3mj5GRCrYctD3eweMorLiKSyShr1bN4Ukyd3nhJBfFwnOHXCoyn/0BYbZDmJUePmYEXBMa4TI7Grqb1igqO/3JkZSrIAuTEUFuCzlLCzAFxZ/ha0r21X1fO8eempfcmIIRybjVSd2YZY++7GFs6USaX5zfwLLUlcx4sALUeeu+qwTcd4eiv8vRrnv6ytmmYP1n8JtWn6anqNTD2vofxD/xSWMZ8R5KVSvR2Gb7JHORFrlhBFJYwExnhQOAVADZt2sS+ffuKtmkd6/io0NjYyODgIAA7DFdhVuUQBynkOceyzq4iMBdfdcJyCTKZjGQ8TtVOI9U7yhh8bZ6ZQ6nJrcAJbnOLlsWTeYwdeYwBnTdXoXeU8P43+8SEABmp3wqle1tC7W4bVTssnHpukrkjXiG+ptJBwwWVnMxev/9KVNzebcI/FSAgcgoZSXTUdmUlJ56dIOoWu6b+onJm9i58pJGIas6ykUxKEY9EYGrQrUms03ptFWXNBuGUICqTipbLnIy8OSuc4q/ufAfJJIwIctq1pnvT2VTU7i5n5M1p4ffddKmTaDgu3KaOG2ow1Op4/59OLP+xyLqvK1cRDZF7PGVzKBV0XF3J8OuzBcfTXxTSOuNeVaeX4R0P4RlKvbsi9VWdZkZjVNH/0ko+WEj8XXVGGeNvi52az6hQqJijS49MIUU4KYoUh+q924lcJWfvd8VS2KSfLU8KzGw0XliGtVnHoV/OpMUDIjBWq/BMRyFWPP1e750OZDL48Iep8apU5l8nFAp0FhmB2RxtUeTmXn9a+CWBpBur1cq3vvUtrr/+euHnWMc6/po4ePAgPT09JJNJjEoHuyzXrSojUypWOHqXoClTSlHG8vAu5LL0d7Pp1nJIwsGfSfaZgqIDWRy9XS18wASkNFUbbq5m9qib4TdyRc7N4jpKIEZR/pTJyTY/0Eg8nODAD4aWfix4LYBtg5FkMsl8plD8r2gCdW4rY/ID8VPkdec6CHuiTO0Ru0ZfpUHv1AqX/0ugsSqp3mWn76VJ6Z0UgVKvRFnCmoRNWx5pwdXvo1/w8FzlLivKEgUjb4hxFo1VSdVOO+N/nhUWiaw13VvlLivIEBZDlVZqqNxuYfAPM8SKiatT6/DWz7cwf9zD4O8F7KgprqOv1OR0EubiT+WbzcjkFI7W9JekeMu4l8asxNphYPwdacwWOzyn1CtpPNfKwGvTxAQDS2isarQWFYv9Yrw81RDhovXnWBh7d0GKPCRguzI3aGi52Mb4ey4mUulvCz63XCbNiUvzYPZv2VBC720VeCcj9L3syl1nnnRvxmolnvECc2XqfpZGNY1nGRj9wM/0kRAypTL/nl6loqQ0Rsi1ei6VqVQ51ytfbJF35n9BkiRbt25Ni3TXsY7/DNx000384he/QIaMXZYbMKhXH4iWyeU5x7LaoCDiS0op33JBJicZi2Fu0NCw28LQGwssDqTm6AI2r1K7Ev907jrzcbaas6yUNek48pPhnEKAVXatzNRvhThUiidZWg00XFRB3+8mcA8KHsBSQNVOK+N//miEw4YarRQ9fVHMv6VQQ+25FYz9aZaoT0wAYO824R7yfaSRiCztBhQqObOHxGwIWrua4Ky4r9G53YKjp4zDP+wXE4kooG53OTMHF4VFQfYuEzKlTFhwtdZ0bwqtgqrtFqYPuoXftyMlHhJtU9XpVmwbTBz4boEsRVlQG5QkQXg81Z5tZ+qA6y8eTyL2sLKWUsKeKIGlOaQIl7O0lqIpUzLxXtb4K3AvS1spCyf+egcxM3mSoboEpUbBYp+AXTfFvVqudFBiUHL4pxn29YLcK9UnOVJg5uJsjk2lVGwycPz5ufzvLkc/a8oURP1x4rECbUndr/VSM6oSOUeelvbOMpUq70ElmVqFShOX1p/s31SqnPaAQ67XmAgdp6ysjN/85jfpdPMfR3ysRUoA77zzDqeddhoAStScV3b7qjLJaAxZRhj3Eouc7lsr8U1FOPLzifwDNEUOqk43E3bFmEuFWCzYJakFXq2HjXfUc+p3E3hHUhNAgQV+0z21DLwyhXdYPFTihttqSCYSHBUIbW2o1+AdElCvZjzbzv/WQSwYKy5sSkGtl7PhzgYGfj+Few2nw9V6eToF3McB9ReUM/HOrFCbanbbqTnNzqnnx5ndv0bnw8cEVWdZqTuzfE3PsFaR0vavtJOMJ/jg/5z8jzT1r4s15pzf/uU2kvEkH/xzgWfIWHxqzrEye8RLqAhJ/I8613IiV50pFbAsKn6/rjuqmT/lZeIdt5BQqXyzgYZzrEx+6Gb4jZShNFc/J5Mr/m5qUOMeLE4o9ZVq2q50cOzpOQLZ/ZpI5G3jxpvKmdrvYf7EyjlwaS6XZRhsum52sDAUZPzPqZNhufLHLm0cM35rvbyMk79blH5T5TlBE42hdarour4c71SEY79dWPFbrnsFnCP8+dgrJBIJOjs7OXLkSO6617GO/4vYvn07H3zwAQCbdOfh1KxOa5mMxVZ8W+1X2zBUlLD/iXEirlj+OSUeB5mMpout9L80v/LvebD0LVefXoaxSsvRX2ZsQvIIimxdemytxjVFx9NVqGi7qpojvxglvFDcU2+o1eIdyTCOF3GW1Z3voHKrhRO/HWPheIYVvgDvrNxlxdxYytGfigmZQRJDrSVd00cNXbkKU4OByXfF0sJu/UIryViCvd8Qj/r5ccPWz7eSjIs/w1pFSuWby2i8uIJTz44zd/ijTaGyAmvkViuvXTknlG820XhhOX0vTDF7MP8zLPEolUmFvVPPxDsCjtpCPOov4GX5HE3pb01Q7F3WrKVym5mTz0xK1wn0Z++9VZLg6NsCqY6W2qECXZlK6LRX+9U2osEEAy+v7tdkMpnz2Y01Kqq2mzn2dA4h4dKcnOpnY7WK+rMsHHxqGpbSoOfiXkvzZ+o3a2sJcpWc2SNBaX1Q5uFesRjt19gxlKvZ/7PplXNfLDf3Oqx+kfEJqT/37dtHT09P7rrXsY7/SxgbG6Ouro5EIoFWbuAs222rC8ViK5zQSg103+TAPR6m78X5/PNePA5yGZZWDYkYuFKOsoIipSVOpoQN11Uw9MYc/umU4bNAJJGWKxxM7HHhm8hh88rD1+rPs6IokdP/fG5RRqaDTWNTSgKU2IoC+Z8D2PxgM7FgjINLwiYoyLuUGmi+qoaJ9+bxDImTKaVGnk4B93FA+WYz8yd9xcUxgKXNQMuVVZx6fnxNUT8/Tihr1dN6dTV9v5sQTi23VpFS96cbkCnk7P9O/3+kqfmxVo5VxGaUyw616e46ZAoZB74/JFSvvcuAdzxYWJBchFeJRvgWhVIDsYi4kKrlchuuoSCzh/35+zjDfmWs09B2uYPx911MfFBkLGXwv1KHEv/Mcj/lTW2nl9N+uY2+lxdy92ue/mw8t4yFoZCU+jMXMtaH5vNNeKcjTB9MzWHyHLxr6dBdBr+q3VnKyLt+aQ3IxdUA4nGUpQq6b7DiHo/Q96p3xW+5rgsbpnhr4Bni8Ti7d+/mtddey133OtbxfxFf+MIX+Nd//VcAtpRdga0kR/SVSHTFt1W1TY+tWcOxZ+eILEbzfq9LHMu5xcDk3qxvJB9S/MrSosNYq2Xo1WVbWT7OVlqhxtamZ/iN3Ie7ch2+U+sVNF5SwcDLU0RcBfaKKa6ktamltGmCsHYaqT+vnFPPjOMZEeNR5qZSypoMDL4sdvAdWE4R99FmNBOGSq/AUKljQSCNPUDHTTXIlXKO/ETM7/ZxxFqfYa0iJX2VlrZrq+l/ceIjj1K+JqyB1+irtLRdU8XA7ydZ7CsurFaowdxsWHG4Ys1+xb9EbA555zOFem2p0bRWFc5tZQy/NlP0uiWu1HKFA41ZxaEnBDh5BvdSmxQrBUR53k3VDinq+Xi2KCurHZlQmxQ4e/UMv5mDCyZW2rXUJgW1O40Mvr5IPLzSrpX7OukZSh0KVFoFruGINOfm4msAiTjVu4xYGzUceXaBWOZQisVWp3oD+pSv0zd6FLVazaFDh2htbc1d98cEH8t0b5nYtWsXw8PSZBcjwsuLjxOJrB7hmTnUwwsJXENBBpec6EV0WON/dkkCJbXktBdJ1aWxl6DWKSlrFAtzduD7w3iHw6gtKkxNYnH0S0wqNGax+GNLAiV7j4mWayqFrjny5JCwQAkAtRKNSY2jyyx8yaZ7GtjycJtw+rOyVj3bv9QmnJJNX6Vm+1face4SC3lY1qqnaqeNhgvF+mj09Vn2/OvxNQmUuu6oZ/ND4mnr1gq1RU3zlZWo9WKf7/ib87z9/zv6kYqs3v/H42sSKNXstlO+zfyRtafuPAfbH21FbRHPu/f+P53gwI+GhMtX77LR+Snx0IhbH2mi9RqBUJspMtF9by3tnxIPObnxU1XsfKhpjaklVRirxNL8AEx/6OXY0xPLAqVcSM23JVYVnddLoSZFBEoAxhoNSrUCZXaT8hjD7RukufTwk9N5BUoroIYSoxJToTzOGWtJ0wVmKrdI4dnTAqV8SEXtC84lcY+FGXhzYdVv2Tji+xP7hv+MSqXi4osvXhcoreNjg/fff5+rr74agIOBV+n3781ZLtNYMvJnN/P9AaJLe8cCTiySybRAqXKbkdozzULtMtVo0VrF0p/NHfJx/NcTIJNj6RCbGFU6FSqdAkOVWP6KJYFSx6cqhdKyDf9hhsM/G1kpUAJpI5VnM2Wq01FaoZUinAhAZVKx5eF2Wq8TT8nWen0VG24XT2/VclUlvZ8TT8HRek0tdWeLpesDOPD44JoESrpyFVs/30r5ZvF0bGuFY7N5TSmM9/zryY9UZDX94SLv/M9jwgIllUlF3fmONaUPXCt6PttI67Vi/Bpg+kM3e741WFCglIn6c2zUnmlD5xB7Bud2E1s+Vy/8zPoqNZs/W4u+aiV3LCRQ6r2vgdarc4TVzoOyJh066xpyQgP7fjzOsd+KGWwbzi/D3FACUYTDUZcYlegsq/soF48y1qlQ6cAzGuXYr3NEHs1hCDfVaFHrFehMBVIkpEQGKh10XCXt6eZPhpcFSvmQOi028q6Xub7gaoFSFqLRKIdUv2N8YhSTyYTL5VoXKK3jY4Hq6mrcbjclJSUEE15enf0BsVwRLDJ4VywEM8cDjO1JEa9CYp1EkoWTobRAqeVii1CqLo1JicaswlAtZr86+ew0vokwSo0UAUgEGkuJeGqyOUmgZKjVUHtOKv1IEUP8sadGOJgdFbsA7wLQO7WUNYmnM2i6zEnvA83C6c905Rq6P92ArlzsAqVeSc9nGnH0mIXKa2wq6s+voOaM1ZEhcmHhhJe93+pbk0Cp4ZIKNt5ZL1x+rVDqlVSeZkWpF0uvs3jSx3v/cFxYoPSX4MD3B9ckULJ1GbF0iqdNWSusnQZ67mtAYxHMBQgcfHyYI0+KH+CoO9tG0yVrsEndWk39uWLjDqDlinIaLhAv33C+le576lEKZtBDCaXl2vx7u2Rylb/AMxzi6K8miguUAKUOGlNpbDMFSvmQTCbR26X9puh8YaqT5seB1xbzC5SyoLMpMRayqWdEBa/s1mJvl+6RFijlQ+q3WAhmTwQZ21NcfDHiP8LeqVdQKBTceeed6wKldXxs8C//8i/87//9vwHYu/gcY4GjuQtmcK/pwz5mjgeIpG1ehf2NSwIlU10Jjk1iE5euvASdvWRZhFMA/qlIWqAkyrvkagUlRhU6a0lhDpXiSUsCpeozbagEUsXNH/Vw9OfDwgIlgNIKDYYa7ZpSMHXf20TtWeI2pqpd1jWlP3NutawpbVjdueXUnSduFzj5zMSaBEoKrYLOW2qxtH50vMJQq11T/ceeHP1IRVa+8SB7v35KWKCkUMtx9JpRrCF94FrRcmUVtWeJpUAE6Rn2f7efxVNiz+DYZKbhPAdam9jHYGrQ0XlzNWqjYGpJvYKOGypX159PCKWADbfUUHeOOFcz1mgxOEtAIS6uOvXcDCeeE7N5OTYZ0Dul9otGp9KUqdCWifWRpkyBQg1hV4yh112rC+SY9/U2FdoyJUptgWdOC5Sg7nQ9KMA/E18WKOW9TnrGmSMBZo4FVwmUcuEIL9A3ehSr1crMzMzHXqAEwpnN/3NRW1tLOBxGq9WSSCR43f8EZ8Q/Ral2ZX6/TKHSyeck51eJVU37lXYO/HR8OXVQHoNExSYjOrua6u1ljP0pjxM+FZbVMxjm3X9adj6o9RDxyYue5Oq+ow6FWsa7/1BcHPThNweE070tofZMOyqdAhHpkTeV9qB8ixllqYLxNwuHYowsRHjnn44JpWBawvShRawRo/A1EU8EuUqGsUGPf6r4iXvfuFSxWiduvOh7aXxNKe7WGgUqmUyuKYJ43fkOKnfYOPTDvvTzFIKtzUB5dxmB2TAT73w04TM/alRus5KIJoTfw7YvSpNpwShHmZABcplwerslrKX8oScGhcolE0lkGhkkIRErMpZkmadjFSSi4lP09CEPJFmZFq4AIj5475/FngE1tF3q4MRvZ/ILjrIGfcNZZRiqNVLqzQmxfp14z8PEBxkPUEDk0Hq5FUuTjmgwhmtguf5sp9pSpBd1KUS8SfZ8K0OVnalqzjaqKBSUNWowVqqZeD+PgSpDfNRwnhlFiYK+V9yc+N1iXmESSBFo3vE+izc5jyKu4IYbbuBnP/tZ3vLrWMd/Bp5++mm++MUv8i//8i/0hT9kMTbDVv2Fq04DLAmV/FNhBl6RnOJNF1sJuaKMv5vx7WRHGkl9q44uA3KVjJG3XHmNmzKZjGQyyZEnlyMoLUcwkRU0Dlk6Smm9vILJSjfDr80V5FXugQDv/3OfULq3JRhqtZga9dSeHhdKYeFNGWtarnRy6tms8jLZqrn02JMC0VMyEHVH8Qz7mT0sLkxWlypRlIhv5JPxJKyB5/T9boJESDwliGjquSUEFqIgA7lafBO89eEWYpE4+78jFta59gw7yGVMvf/RpVv5KOHYaKRqhw3vWIAFgf41NejouLGOodempGcWOC2WTBYZF8nEKkPoWt71qWcmWewyiIlvkgmUqTG96h6JZE4jjMGpRaFWEPZK5Yud/I8GwD0SZPawuFN34PfzDLw2L5RSrXKbkeBClMX+IIEpgQtUYGsppdSuxjUonm77wI+nVjxroYjCrZc4iAbiHPhxlgEpe86Uy9Jz9Oif3Yz+OWM+ylxDsuZjR5cRfbkaS5OahZN5ThqmDDEqHbRda+fE87MEZmMMvuHJn/IKCAQ8vBV4EtxQWVnJ0aNHMZlMecuvYx3/t6HX6/H5fNjtdlwuF68tfJ+zzDejUWeN0wxn2ei70r5JqYXm8630vTIvpSeC1Y6n1HdqatBgrNFga9czlS+NpEIB8Tih+Rh7v7PMQ5QaiIUKpD5KoeP6atQGJXu/NVT0uY8/NbFmm1f1aTZK7SWM/GlOiqq09Kw56llKWWGs16ItK2E6M/1DDt4VC8Geb5wUSnu2hNkjbmQylvu+CCL+GEqtEp1DTWC6+EVL0ZCUGrFDaqG5KCd/Oyac9j7zHsJIJtfEl21dRhovrOTok0P4xos/c2l5CbVnOoiH4kx/6Fpb2z4mqDnDQTKeEBZ/bbyjDqVazv7vF7HRpMa7XCVDJidvlKNkIpnz9P1a3vXhn4wiL8nDh3I6tJIkYivHRb6ojAAqnWJNB/7nT/qRq+XERAMqxGD/v+fZS+XgO3VnlzH8x8XlyHFFUNFrwtKkZfqAsqBIKZNbLQ6EcA0Kpj3cpqdys5FTL83jLpSVIWXzUpZALJTk4M8zoqpknspPZO21lUpsbRoSkSSzR/IICjL25+UbtZQYFYy8F2TkvUBRIflhzx8Zj5xALpfzwAMP8I1vfCN/+XWs4z8Bjz76KDU1Ndxwww0c8byBLzJHu/601RFcU9wr5oPJfdK3Ut6tJx5KMHci49vJ4+h3dOpRGxTMHCwgBEyllpT8kZLNYSmCiUwhLxgBU2tT03pVJZPvLzBZKJ0nEFqIcODfh5b/UIBDLdkA1EYFjq4ykrEk4wJ+qCVhU9UuK+PvzxeNdjT+5/k1pYeLR2DxhIeFPnGeo9QpUOnEbV7xeEKau3OkhsqFkT+KpadN1x9cWwioeDAurelr0N+031ANSTj+lJg4uWqnDZVOIRwN6uMGfZWW2rMchF1RofSEapOCjbc1MvTaFAvHxJ55rT5fgHgkdUEOe1g2Jve48M2EhaOXKVTSNxrxxIUiKGksapQaBfFQavwVi9IUh/kTXjyjgpscYHq/R/JRCgxxc6OWeDiBdzxMxCX2TTi6DIRdGk49n+PQXB70vzQnFP08mUzSdKGVaDDOiWeyItStSp+pSM/RC30BFjJT1WXavLKuM9dpMNdpWByK4BnLw+2W+JoCGs8xMvKeh0gAJg8GC9q8YiE/f3Q9STQZoq6ujsOHD6PXix+8+c/Exz7dWzb0ej1+vzTRbNLsxqmVUpAkcziEZQoFtWebqNhk4OTvplg8lfqgljZIOYiB2qIishCVFiI1ucU1WYOr+95aNGYl7319AML5SUMykcTaqUdVqmRKVCSTTNB4cTn2LjP7/n2wqIhCiqIiy5mfUKpv9d+3f6UdkKLhiGLTPQ30vzCOf2ptIpBPIuw9JpovrWLglYk1iZtEYWzQ0XBBBf3PjwmJlFCDoVKbFpmJYMdX25k/7qHv2YnihVl7urcdX21n/oSHvmfE6lfr5ahNSrHnBdqurUYmZ01pewDhEIw7vtJG2BMVc1b+BWEThUIzrrXePHWKhNPuuKGC6QMeFlZspvLfv/ECC44uIwOvzjFzIEcEEFg9t8hkkuFVIJfxhhsr0JiV7P3O2HI7chm/M9uohsazLQy8slDQuSZTyGm93Iq5TsOhJ6cJzmY4+pZIQ/ZaoAbiCtQGcpOkpXRvGevO5nudyJRy9v5gOrdAKXWvZCzGRO0HHDlyhGQyyeOPP85dd921uvw61vExwY9+9KP0GNXI9JxtvGHFeM6GTCGn9x6nlFrjxxkG2KXvN/t7U4FKLUsJjuJ5nfeZ37auXEXXzTXMHPEy+Mps0RNs9efbGPpDaoMh4AhLKpJs/UwTnokgJ58uvq7pbCoCc1FhJ1v5ZjONF1Uw8uZsbmNMDq5maddj6zRx8jdiKSk+6dj06QbUOiV7/r81RPxcA1quqiQaijP0ezExh65cRdQbJxoQe8fNlzsxN+qF27/WdG9NlzopazWw51/Eo1jqq7X4xsS4Y2mVhsYLKuh/cZzAdPQ/luYtEymu49xRRt1Zdo79egz3QPFTln/11LkC9a0pPUkRg4euQkXNzjJO/DbLeFngHlvuryEZS/Lh98W5r8ooJxqmqAhKbVbQdWMFk3s9TOzxpp81l1kgsx/Ku0rxL0TwjWelN8ieg0tkbL27Et9MmOO/yTLuLHGvzPlSlWqzQoHKBNGFHNxryVmQWnfKmkpovsDG6Acepg7kMdak7uUuGaU/sofZ2VnKy8uZmlpDKoF1rOM/ARs2bODoUelE/xbDpdi0qWiHOce5HFu7hrqdRk79fg7PaGrvJcvDuwClUUbMlxKaK8ktyMm6ruUyG4YqLR/+YBQiBWxeySSlFWq0FhVzRzMcBIW4WjKBo8dI1S4rR342SsQdy/gpx3VKUGqUq8UWBXhYz30NyFUKPvy3HFEO85hEm6+sZPzdeYIzYtFLPsnQV2vouKGOwVcmmTv0149GpLEqqT/PyfAbM8L9qSvXCIm4ltBzfxMLx72MvCHmKFxrureezzaxeMrL8Gti9Ss1cpSlckLzYoKXqjNtqDUKBv9QpP412I0y+VP3vfVE/DGOiURSErnHGrjZXzvlm4ijqf5cCwv9ATzDGWMon+0KKO82UHumhf5X5lg4KRgBRC5HY1IScufYE2dxq4bdZRgqSzj4iylk8QL9kdWvldv00kG+Qu9EIad6ux5Hh5ajzywQWsxoz5JIaZVASfofpQZi4fjqdSCHrazjqjJUWgUHn8oTZXzpmliMqYr3OXT0IIlEgl//+tdce+21+du/jnX8J2P//v1s27aNWCxGmdLJdvMVy3uPSI6NlUJO22VlJCJxTj2fYc9Jfb+5BEUKDcRDAPH8zvsMO7har6Dj+kpmjniY/MBdOE1vMoGjx8TMIfeKuouJids/VUVwNrycLq4Aj1KXyon4xIU1hhotrVdXM/LHGWYPih2g05WXUNZqYPyt3Onr/tbQeKkTnVUt7HtbK5w7LBCHyT3Fg0CAJNqJB5PEC/D8TDh6zTg2moTbv9Z0b1L9Zg4/MSRUHqCkTE3YExESyKhNCqp22Zl8f4HQGoMciNjHDLVami+t5NSz4/gmljQJHxOf4hL+EjtbHqj1CpybzQwXCYKSiQ03SZHYj/5CTLwNoEgd2siZSi7jvSi00H5VBVP7PcwfDxTkjpmczVClJh5JEpiNpgMfAKv3smoFG6614Z+OMPRHV1YjFauvWRI8KuQotBAP5Jifszib1qqg9UILox/6WeiP5LQFLKV6CzPLscSbTE1PsWXLFvbs2ZP3eT+O+Nine8uGz+dLh6g6GHqdo963pYU6x0BLxuMMv7bAvu8NSQIltRTKPx3SNcc1kQWJfHTdUc2OBxtzpynL+oBnDrnxTYSFogXNH/WlBUqb7qkTSs3knw1JEVhyEaMsRHwQ8SUx1GvofaBxdYEck+jRJwfZ/y1xgZK+poRSp5aaM8TDKnZ/ppHND4unQDM26GhfQyqtslY9LdeIpzbZ9mgrPZ8VS1Uye9RNyB0h4hU/caTWy7EKhnb2DAY48N0BYcEOEdYkUAJIRBMkoms7objm+gVJDEjRqYSfFzjxmzFhgdKKvhfUYPqngnjHxfrUUFfCrsdaqdwllvalrF1P0+VFQn5mkAlbl56mS8W/rfJeI9u/0ICpUQrtWkx3qtaDsVpH5VbxtDUDryxw/Jmp3AKlrBDZjRdYaL3CDiAkUALpNGlsSeCZSBQUKLVeZpXSvEWkdsGSkj2Z+9kTSWYOewjMR1cLlOLxVcaV1iusbL+vGrUpnl/FHY2lhUiGWmmR+PCJSfZ+ZzynQCmZTJKMxQgHArzi+SGHDx+mpqaGN954Y12gtI6PPe68806OHz+OTCYjlPTxivtHREMhiMdzGpyT8QQf/nA8LVDSV6XSCC1929nXRCHqT6KzKdn+uQbqz88dOjfzXoHpKL7pMDNHXELPsCRQcnQbqL/AUXwDF4VoKE7EJxblJTAnlWu9ppLqM4uHwZ3+0MXRJ0fynxbLkYakaqeNsiaDcNo3c3Mp277URlmb+KmJxkucmBrFUrqAJJQpFQwrXrnLyo6vtlMimK7POx7EMy4eIhwkIZdo/5x6ZkJYoATSmBMVKIE0fuIfIe+KReLEw2s7fScqUALwj4c49MMhYYFSWVspKp2AgSNl+AwtRgjMR4QESgBdd9XS85kGobIAjZc4luceATRf5kBXLpWXyWRFnWnd99TQ8amMcPFFoopUbjFjqtWiNou36eCPRzn2tMAYVcHGWyvQWlVEfQhFaUrG4iQiCYKpfW8+DiWTyVDpoe1qaV6ePuSXBEogGVyW/stGOIlnIszM4awTjAqFNAYyDOAqHWy9u5LWy6wQj+cWKIFkkInF0u9psT/M/h+PM7XXm1u4kUhCNMZx9zu8O/4iLpeLs88+e12gtI5PBI4cOcL1118PwF7vC/R7P5CMlbkMyfEEc0cCHPjJRFqgpLEql7+1XJFUPNK323SBlc13VuZOO5QVOXP2mA/XcEAowpB/KpIWKLVcXo5SLytqBA8tRoiHEqv86DkRk6LBaCxKOm6qXo4PL5Pn5XjHnxrl4A/ypOrKwbvUZiVlzQYqNpsFGiSh5Zoquu6qFy6vsalouEA8NUhppYbac8TtBF131dNxc61QWd9YCP9UcE02L6VGjrFejDeG5mMc/+XomgRfaxEoAcRDcWKRtXGjNdUfjhMNidcfCyWEBUoA42/NMfhKkXU/Nb6VGjA1aIvWmemg9owG8ApyQY1ZyZYH67FvymHTlK/+nnUOFTVnWoTqBtBXllB9urg9yliroee+GgzVqcmqCO9CCdaWUpw9K7Mv5ErvtoTpgz6O/WZSSKBU3qOnfrf0vLkEStKtVnKrsC9ONJhDDJSJVL9WbTdQlrLvrYg0ng/JJHOngvimIqsFSon4KoFS9Q49m29zoDEkifnztCnDVqa1SZPssWcWOfirudwCpWQSYjFioRCvzf+YA4f343Q6ee+999YFSuv42KOnp4fp6WmMRiOLsUnemP8p8XBY2mPk4V4nnp3n1EupLC7mDId0Inf0uHhIcppvurUK59Y80Vwz/JQRXxzXcADXoNi8PbNfEijpqzQ4t5qB4uKGiD9OJFPwXYBHRfySLc+5w4J9U/FotN7RIEefHBYWKAHYN5qwd5qE075pbWq67qrHUFt8PVyCo9eMvlIw32aqvNYhmnqrlO7PNFJSJlbeOx7APbw2m5euvASFWsydP/negrBACaTUWaICJYBkLCmJXD8iSPWvLdJneFFMoATS8w6+NCUsUFrR9wL+xlgojnc8gC+TzxYQAjZeVE5HDl94PrFhea9JStsmKFBybjUtpwjOweWy0XyZg4Y89vlcsLbpsbSWojaJh/s68fQkfS+Iif8bL7KjNiuIR/IIlLIRh1gwUXRvI5PJkKuS1J4hzWve8QiBWQGbVyyBayjIQn/WN6xQrL5GARuutVF7phGSydwCJUhzNrVBAQoIzsc5/OtZKchEnghKyWiUSd9JXp/8JbNzs1x99dWfOIESfAJFSgAnTpzgxhtvBGA0doy3vL8qWD7ilz66ntur2XB9pdA95k/4CMxGhIRHk++7OfJz6fRN46XlqC3FFyN7j5HScg3VpxcxMsjkTO9188E/nyLiS0oiKwHY201ozCWUtRZ3TvlGw0R8kjBIROjjGw2z91t9a4pqEwvEiYfEF7r6c8spazEKibhAyv1q6zAWL5hC2BUlNC9oIInAvm/2sXhcPIxkz2dbaL5cXDRl7TRQd/4aRF/3NdJ1R71w+Q/++SQDL350Rvm11F/Wqmfbo62UtYu9XFNzKQ0XlucWDOZA/QWVtF9Xi7FBJ3zy//ATI/T/TkC1K5OjVCuJBuPMnRCLMV1zmhX7BpPwWK7absG+wVj4eTOIhFwpIxkH95iYES/ig33fHeDwT4ufGNRXqdOCI1d/jvpzkDJzvQ5jTYENQsY1SzlkT/1ujgM/FIvCVdago3KbWHqOpgstqPXgGohw+GdZBr88IXbnT/oJuqNEcvD4bAde5/UOOq5yUGKRF10rfKYZDmhfIEkSpVLJqVOnOPvss4WeYx3r+M9GW1sb4XAYtVpNgjivBZ7AFS2wkYgCcjm6ChUbrnPSfEnxjU1gNkpgPsL8cbHT20d+Po5/IorKKKN2t9jGybmtDNuSiLXARk4ml3Hg34cYekUKH6tziAkLTHWlwjnc3YOptG9XOPMLdzLWsEM/HeLDbx4XEiAA+Cf8JKMJFCoxqq/SSfnPq3aJ9aXKpMLebabmNLHyrgEPEW8UlVYsjengi1Oc/LV41ChLu57262qpPVOQS6mgdrddWGRladez5aFmdE4xMjL8hxn2fSuPM/SvgLXW33lLLZ23iDkqAWrOsq1JsNZyeTVdd+U4HJGN1He3eNLPwR8MCdUtk8sILUQJLQrydhXYN5ioPSvPWMgyxqhMKqxtemp2FRcYLiEWThDxixvM+p6fZd+Pxoi4in/AjRdY0DmURAMQnC9evqxei86ixtxQYCxnOPO0FknMtO/xSRYHinNH52YTxqoSjHXF50GNRUX1Lmk/dvLZudUp23IY5aIB8M9GmDuVh1dnGndUsOEaOxs+ZU9fWwhzjQcZiR0G4MEHH+SNN94o+gzrWMfHBU899RT/8A//AEBfcA/vuZ4tWD4WlubXtsutdF5tXxbukP8Qy3xfAO9UWChNmWsgxMDvJWdcxTYzKmPx9VxfpcHcoKO8q8jeTSbHMxzi4OPDkvjILMYVjLU69BUajNVZe88cHC/kihELJdHYVNSdW5wrRFwx9n23n8GXxAXNMV9MEiEIomqHDfumMpR6seet2mmlfHPZindbCMGFiLjNCzj6sxE8Q+LOss5b62i5Utzmpa/W4NwmLkxpubqSlqvF7LcAh344xMTb4qe314q11K+xqej+dAOmBjEupXWUULnTAiox+5Wjt4yO62uEhEpLGHx5hrE/CbRfJkdeIiPsjgmLmip6zFT0mCRBYg5kz0HOzSapvKCfWK6UkYgkCc4JCtdicOBHo5x4vrjjS2VQUnu2JDjyTYpttMqadJjqC/R9Bu9ams8mPvBw7DezQlGlbO2lOHvF9pSVW0pRaqS0fydfcmW1I/d85BoK4Z+NEnLlsNFnRWupO8PAhisty47NAvQ3pnVxQPks0WQIvV5PX18f27dvF3qOdazjPxsWi4WFhQVaWloIJ/28uvg43mgxgYcCpVZO+1V2qndlcZ0cYsp4ELwTYdwjYnPr8OvzBOciKNTg6BWzg5f3mrFtFCs78MJUOj2c2igmLChrNlDWJObgCM5KhnLndgtqU3HyMvzqDIceHxQTIADBxQjxcAKZQjAajAIqt1txdItxEYUaqnfZcHSZhcr7pkKEFiLIBXna7AE3o2+Kp6zSWNR03lSHXbA9KMDWaZSELALQOtR03FiD1i5WfvaQm+O/XGPGkzVgrfXXnm2n/sIK4fKWDgO68hLh8k2XOGm7XjygRnAmQt9zkytFUwXs0MHFCIGF1bw9n9iwYksZzi1mobYo1NLcUN5dZG7IsL3EQgmigXjO33Jhcq+bgz8dJ+Iuvhcq7zGhKVMSj0DEW7y81qbGUKnBICgwVBskMdOJZ2bwjkcKRlFKJpOYG3SUNWnRVxQf+wot2DpKARh/34tnLGvCytVPcfCMh3EN5dmXZfko2y4po+kc6V0Vmw9dzqMc9P0BgH/6p3/i6aefLvoMH0d8IkVKAE8++SSPP/44AMGkl1c8P2Lr56rpus0JySS2DTp2fKEO51bJULrxZicleiWzJ6Qck9seqqP7bmlDbWooYceXGqk5U1qkOm90Unu6lUM/kSbCHV9qZMtDUohtXbmanV9uouECySnT/qkKdn5FihCktqgp7zax+T6prFoPOx9rpfkK6XRU67VOdv1dGzKNjNn9HmKBONb2ZWHNrr9roz0lomq6rJxdf9cmCZ5kcjY/1Mz2L7XSdUcTm+5tYNfftdN5Sw0A9Rc42PW1Dgz10ofa+7kmbBvNvPO/j7F40seu/9ZO151Sm6rOtLLr7zuxbpDu23N/Ezu+KqV7a7rEiX2jiU2flk4qV2wvY9fXOinfZgak1Bs7/5tUNrIQYcdX29nx1Xb0NSXYuozs+lonVWdJBv6uu+rZ9Xcd6WfTV2qRq6VJ1digY9fXOtOinM7batn1teWy27/UhrJUwd5v9yHXqdn1tU4aL5NOK3fcUM2ur3Wmy257tJWtX2jh6C9H2fvtE+z6Wiet10gLRss1Vez6WmdaHLL18y1sezQVhesHg5S1Gum4UerDxkud7PpaJ6WpyWjzw81s/1Lb8rv5WgdbH22VxETnOdj1tU5JBJPq76U+lN5jB9FQjP4XJ6g63cqur3Vi60r192dXlt35WDvd9zVSd245lTts7PpaJxXbpXG46d4Gdv635X7Z8dV2eu6Xoj+pSpUY6nRUnyONw647Vvb39q+0s/khaVzqa0rY9fedNF4pLdSdt6zu7y2PLI/hXV/rhNT61359Vn9/sZVtX2zN6JdO2q6vRuNQ03xlZaq/pWllyyPL/b1UtvOmGtQmJUqNgvbratOiu80PNafTDi714cbbpTHbfKkT5w4rZc3Si+x5IKsP/1sHm+6RxqxzlwVrp5HFIS+ewQDd9zWw87Hl97jjq2103yeVtW8ysutrHfTc34i108Cmu+vZ+dhyvTu+0kbP/ZLDzdRUyq6vdVB3ro3FU36CCxG23Fe/3IePtrD5QalsaYWaXX/XRuNFDmRyGdGUEyuS0rhtfaSJLQ9K7zE9R1wufQstV5Wjtao5/MsRiMCWBxvY+vBy5ICdX22m7TrpPTZeYmfnl5uY7w/ywdcH2Xx3Hdsyyu54tJGOT0ll63Zb2PGlRjbc5kTvVNNxUy1bH1lu/44vNrLhRqls1S4TO75Yj6VFQ/1ZViytpWx7uG75WR+pY+Nt0vdYvtnAji/WU94jGVA23uZEqVWw5/sjAGx7qJZNd0hzmq1Dy44v1FF1mrTIdt3hZOPNTtqutkMyybYHa+m+WyprrFOz4wt11J5pBqDjOgc7HpG+1X0/G0WlkdJJkUhQUqZgxyM1NJ4nfTdtV1jZ8UgN+gol9o5Seu6uYvO9UnuTqiTbH66m6WLJCNV0kYXtD1ejNsOGGx303uuk7qwyDv1EMkZvf7ia1iusJJNJ6neb2PFIDVq75KTruduJ1qpkccBPaDbK9oeqab9G+h6rTzey/eFqDNUKkvE4yl2zHFz8Iz6fj6amJqLRKGq1oOpuHev4mEClUhEOh2lqkuav9wK/I9A4zPYHq1GVSlGSum+vYPM9y86Ejdc7ifjiDL81S9UuE9sfrk0LfjbeXsnmz9aky257qI6oP453LIJzl5EdX2rElOI1G26tYsuDy/PQtocb6LxBuk/n9dVU7TBTsVWahzbcUsW2zy+LJbY+0sDG2yReMPLnORQqORWbpTW544Yqtn9xOcrj1oeb6LpTEnLoqzXs/GorPZ+pZ9NdDbTdVMXOr7SuKNv96XpASve286utTB92cfDfh2i50snOjHVqy4PN9C6t3zpp7W+4pBydTYWty8zmzzanIwD1PrC8RoC0xrVcWQlRcO5ysPO/ddB6g/Q83Z9pZOsjLctlH2un9XqJ2zo2W1FqlYRSoohNn25YsX7v+Eo7nTdJ/V+xtYwtD3cw+MYkR386Qtdd9Wx7dHnt3P7lNjak1mTbJiM7H+vAXK/j4A/7kavlbP/yctltj7bRdbfUL+bmUnY+1kHF9jIC01FCixE23LL8Hrd+oTXNOUurNOx8rIPqM6V5tPW6KunZr6pMvccWej4rvVeVScXOxzrSPLL5CietV9Uw9vYsk+/OsPnBZno/l+pDFex8rIOmS6V1oP6icnY+1oHOJKdql40Nt9ax5aHlMbDzseV71u62S2VtKpJJKDGp2XBz/XIffrU9baSo3GVl52MdGOokbth1T/0KDrT9y21pkVD55jJ2PtYhRX4CNt5Zh6m+dLkPv9SW5kCWTgM7H+vAkYrk0HlLLdu/3IbKpEKlk3hZ1z1Sm0wNOnY+1kFlSmzT/qnqNF9SaOSY6vV03yf1oa5c6sPa3ZLYo/XqSnY+tswNa8520HGD1AaVTsbOx9qlKGRIEbR2PtaeHrObP9dEIhZnKJVeZedj7TRfLvV33fkOdj7WjsqkApmcns80sO2LTTRfJnGOnV9ppfVqqWzNWVZ2frUVXYVU8aZ76tn6iPQeTz07ibFGl94nObeZ2fHllrSQauMdNemyxOQk4kmQScYBe5eBHV9qwtqpB7mMDTdVruBL3bdXEZiNcOL5KcqadWz/QgPlm6X5pP26CrY9slx2ywN1bLytiiM/HWf6gIvtX2igaqf0blqusLM9gy9tvq+annsqabzIitaqovfO6jSvabrYxvZHlsv23ltF912VqLRJbO16um6tou5cidfUn1fG9odr0/3dfXclvfcuO4VbLrYz3+dnco+X2jNMbH+wGnXqNO+m28qlOTlllNn5+Ro23V4BKqjaqmf7g9XoK1Nz8s3lbLlvud5tD1TTdpWNkTfdTOxx0XaZA3NDCclkks5P2dl83/Jcv+WzlXRcZ6PxfDOVW4xs+1wVtk7p3bRfY2PLZyvTDsrN9zrpvN6OvUtHy6VlbLu/ksX+AAsnQ7RebmXrZ1L1JpL03uNk483SPlpXrmLbvVUE5iIMvLZA80XStek+vKuCTbc4SMYTJEvijFa9y959e7DZbLzwwgv88z//M+tYxycNX/nKV3j77beRyWS4YlO8Ov9DNt5spf3yMkgm0DmUbLm3AvsGyVnecI6ZUoeK6YM+iEHXLeV0XCPN8yVGBVs+U4mzV1p7as800XyBhVPPzUIiweZPO+m+U5qblRrY+tkqqlIOt+rTzWz9XG0qzRrUn2Wh+65lI/3Wh+qpPUvaX1VuN7P1oQaUeiW+8RDBxTC2NkNG2QYaLpDaVL7ZyNZHGtHaJW9Ox03V9Hymno2319F+fSVbHmqk+QqpTbaNRrZ9sRlDrcQN2z9VRfUuGx98ow/PUJAtDzXSeo20npS1lkqHolIH9lqvqWJLKqp33dnlVO2yShGYAGO9lm2PtqbtNc1XVrL189L6HfPF6H2gic0PNVNaqUFXrmHbo21UpCISN1xasYJbmRpK0yes1WYl2x5tS6/J9ec5VnCr7k83oHOUsP/f+4iFYmx7tI2as6V1tvpsO9sebUsLOLruqqf70w0MvDDJvu/2s+2RtnQEpsqdVrY92pYWQmy4vY6ez0hrfd+zE9g2mGi4tCLV32a2PdpGacrA33FzLb0PZPDgz7fS/dlGTE2lWDuNbHu0LR0pqe1T1Wx+cLnslodaiEeT9D03TlmLnm2PtmFJveeWqyvZksFPez/XTPuNNVSfbqf2HKkf7CknSfPlTrZ+YbkPe+9vovPWlD3VpMLWaUoLmxouLl/R3z33NbLxznoAlHol277URu150tiqO3dlf2+6tyFtMwKJrypSgqCqM2xSf6fEYhvvlPo7s2zDheVozEqc28qk/rZKZTtvrUvb6EDitk2XOVHrVagNatqvr0GfEsS331hD7+cy+vCRlrQIq+48B/UXVGBplfhg23XVK/jp5s81pzmnqUFL1U4rs8c9uAeDtFzpZOvDy23ovb8xPb5LnRq2fr6JjhsrMdZraby4nK0PL++Tuj9dn7Yra8xKtn6+mcrtZilq7WSQjbcu79U23VXDxlulepUa6VuuSkUXj/gl50osJK31G2+tpuv2zDmiIWOOMGGq13H82UliIei8sZJNdy6X3fJAPQ3nS99Nea+RrQ/VE/JGOfijMZovd9J9T0bZz9bQeJFU1tZZytbP1dJ8uQ2NTUnTRQ56Murtva+GlsulfUZZk5atn6ulrElL9U4jzl4Dmz+9XLbnnirarpTsVMYaDVsfqEnzmsYLregsag48IR2m6L7DSfvV0rjT2eRs/WwV5akITk0XltFzl5OG86Rn33RrBR3XSWVVejlbPlNJ5VY9yWSSmjOMbPm0NB6OPDWFXCljw/V2ydklT7Ll3gqqdkhzWtU2PVvuraCkLImz10D3LQ42fiolto/H2XJ3ObW7pLLOHh1b7i6nxCij6TwTHVdZaDjHzIkXXNLYutNO/VkGiCewt5ew5d4KdKk5uf0yM+YaNTPH/IRmI/TebqfxXOnZLE0lbLnLgaFCDrEYqu5ZPnC/hMvlore3F6/Xi0YjHq1kHev4OEChUHDy5EluvvlmkiR42/0rvGVDdN9qR10KxOM0nmem4+rlwy0d19gJu2NM7vdiri+h+44KtDZpL9aw28yGTy0LozfeVE4iliQwFcJQp2br52rT0fnrzrGw8dbKdBS2DbdUpqOY1J1jp/ECO7aN0jpbe7aVTXctz88bbqmh8VKJF4y/PY+yRIYlFVG76gwrPfctr2mdN9fQcpXEl9R6Bb33N9BytZONt9ZRs9tG7/0NaSFFxw3VtF0rzY0KtWSrmj/l4eTT41RssdD7QHM66lHb9dVpHxtA7wPNVO6woNAqqD7dTs99zaj0Ur+0XF214gBVz2ebqErZgUxNpWx+sDlt62m6wsnG2+vTZbvva6Rut/Sbub6UErM6HRSh8RLnioiWm+5pSItWDDVaej/TzMhbMwy8OEnd+eUreEHXnfU0pmxGuvISeh9oxlBbyuGfDpGMJen+zPLaueG2OpqvkObrkjI1vQ80Y+00Eg/G8U2FaLt2uR86b66lNRUQQqFV0PtAc5oDOXdY2PJQM1VL9psbapazyiikPnRuldYPR6+ZjhtrGXlzmtlDLtquq6bjpoz+vn+5HnuXid4HmlEbFdSdV07rtTVpbgXQ/ZmmtN3N0mqg94FmSZiUAH2ljtarl20Cm+5toO48qb+NDTp6H2hOR6JquLCCrnsbpDRWQNfdDTSk+ltfpaX3gea077TuPAflGdFJN95Rn/b1au1SHy4d+Kw5y073Z5pQaBUo1FJ/L4ni1aZUH6YOQFTtstJ7f3O6f20dRtquWxqzcnofaMbRK93XuVUas0vtbb2iis6blsdh7wPNUoo8wN4t9aFCKxVuvaaKZBJG35JEZT2fbaLqNKm/rZ0Geh9oSgvxmq9wsunueqkuhTRma8+2g0yOuamU3vsb0tG5Gi8up+t2qQ2T7y9iqtVRl+Kyxlotvfc3YEjxyPrz7Wl7NSBFvUopO0or1PTcV4c51d/Zc0T79VV4J4MMvzmPxqKk595aLG2lqT400313TVpc0/EpJy2XORh6dY6Zgx567q3FvkGaTyq3m+i5d7kN7dc6ab+2gqodUgS0rluWOVB5j1R2aY5ovaqC9mudoICKXhNdd9Smo8rZN+jpubcGpU5OMpmk+TIH7dcvRy5vvbycuRNe5o/6sbTo6Lm7Ck2Z9G4aL7LReYMzfch3y/01bLqtEoUaTHUl9NxVSWmqvxt2l7HhhtScnEiw8aZy6s42M38iwNAbCzRfaMWQ8lXXnWlmw03L83fn9Q7qd5up2maiZpeR7tsrMNdJIrfqHUa6bnIs9+HVVhrPM2OoVOPcrKP7Vjv+qTCe8QhVW/Rsuil12Dcep+1SM80XSeNOoYXum+34Z8KMf+CmoktL98325X64pIyWi8wQjxOPR5iqfJ/3D/8Zq9XKO++8wxe+8AU+qRDUdn48cdddd3HllVdit9tJJBL8f//2r1y87UpASWg+SmAugn9WOmnhHguRTCYZeEGaTGRyUGpkIJcTdCcIzEbwTaXKjgaQq+TIZDKSSSlMo0IpffUxf4TAbARvKpekZyyIWi8N3shCBO9EkLBbcghFIhCYDeEZDabLai1qiEgqSM9YABnQdUctWmsJgdmQFEIb8IwH0Ts1UiVIoXlVGunjG3tvlobznLhTp5y840FM9SHCHmlR9owEKDEoIQJqvQxkkEgpuH0TIQKzIUILYZDJ8Az70VqlD2rf9/vpurMBz5B0ktU/I5X1T0ntdw/5ScaW1YD+uSDGylIadjsZeHmCwGwonWPTNexfofT0jgcIuaISWVDJpH4Zk9rvHvSj1Cwrtr1jASnNykKE0mo1YW8Y76jUJtdoALVp2bnvHQ2QiEl9DxCYD+Gd9aX6wY/OVrLUhXhGgivUzCFPGK29JHVPP4YqLVFfqr+HA6h1y23yz4TQV2ip2GxhYs885tlQOqyveziAJiN9g386hHvYz9whD6bm0lR/p8bWoI/S8uWNmn8yhHcyyNzRRdRGJTVnVOCfSZUd9pOML/e3byJIMPWch382RNtV1fhT/b044kOmXO5v33iAsCc1Dv1JZDKwtZkYYAr3sB9V6XJHeEf9xKLSfSK+CIHZULqNrhH/ijCV3tHAikPQgdkQMiVs+WwLM4cWCMyGiKRCQ3pGAygzToItje/pD1zEQwmqdtqIpPrQM5LV39MhXKl3PvDSFPUXlROcW343GktGf08F8YwGUv8OEZgJMfL6NMhkuIf8JMLLDfZPBvFPS6rV4Lw0vnV2DeU9Zqm/M054eScChFJpMIKuOIHZEBqLmuYrKnAN+VeE1/SNB4kEpGeJpvrQOxFEX62W5gjDcn/7JoLEY1Kb0nNEKgpSktRcNCw9q3c8sCyylssIzEZwp+aTSCAGsiRaK0QWwDMaRKldbpN/Now7dfLNOxHCVB9BX66l9iwr3rEA6owTm/6Z5bK+qSCB2VJCrhiHfzpOyzV2VOqMstNhvJPh9HWBuQh+V5gtD9QQckWk/o3KUu8jTGAhAskkgbkYgbnleXaxP0CJUcngH+dT9w0RTo2HkDdGYD6Cd1IqKy+RIZOB2gKRuQTeiRCx1CYkGY0TWIjgmQhCIoF7LITaqMQ3EeHUi7NYW/Uk4qlQ2xEILGTM3+MhtDYl5gYdeoeawEKEUEaKt8BCBPe4VNY7FUZfqUFfqWTDdQ5cowEUCjknn51DplDgn4/gnQiTjMfxTQQJ1GkIeWOctLzJ8MtDKBQKLr/88k+sonkd61hCX18f9913H9///vd5a9+reGOLOEJdALhGgygz58aZMPMnfES9EAvFkClkaCxyAjMyPCPBFfOQdzIkzUNyOaXWEmQyKClTwhB4RwJEfRlr0YQ0xwL0vTRF04WO9DzqGg4QD2fM5WMh/LPSnBWej+KbDBOLJtj2+Ua8k4F0PSCtW6EUhwt74/gmg0wfdlNWr8czGkCRwWvcwwGiwdS8H5AM+b7UfKHQKtJiXwD3iJ9Eij9Fo9I64B0NEJiLMvLWDGX1+nSEJPeQH3nmej4RxD0eAJkM33iARG8ZlgYDKpNKWs8z+dN4IH0C3jcRxDcRQGVSsvWaFhYHvYQWIyvKLnFO/2wY30QAb7+07kaDUSIjy8dkvWOBdEpUiesFCMyFCUxGcA/7kWVwK8+In2Dq1H7EFcE3ESCY6n/3cACdowTnTguT7y7gGfEvcxVfHN9EAN9kijMPBzA3lGJtN3HqhQncw/7lFBvRqNTe1LtzjwTQmNWMvD6buta/zFWi4JsI4B6Tns03HsTnCBBwJzj65DDWNhOKjPZ7JwJp3u5N9WE0ECcw52Pig/kVXMU7HsA9kuLMU1LZJVFYPJxAVarCttHI3GEPvrEA7iWuMiP14VJkIPegH61Vg6JE+nZ8owG8qX4Izaf6e2apD/2QSNJ9l2RQc4/601wl5JH6Jc3bU/sZgEM/GKL16koiqZNQUW88qw+DqAzL3Gr2qIvkUndHEvgmgnhSY8AzHkBrVWeMWYmrLByVDoL4JoLpZ/VOBDE4g+nIEu4RP7Y2A7YNRvqen0r193JZ32SQaOqTdI/4KTGo6LixitE/z+GdCKXDoftnI/gmg+n+9gwHiPriqMxKiCbwji3PEYH5EL7JMMHU+HeNBIhHpO/R3KjDOxXCPxmGKITd0hyR7u+R4MqonDJQpA5dhH3gmwyneY13PISyZHn+c4+GMNRosLXpmdwzj28qjHcqxWXHQ5RkRCFxjwZJxJNEA3D4VxPUn2nFl+Javskwusz+HgkiV8io2mnE3mHANxOW5j+5XOIqTjXJUBQSUhsy2+SbDZOMJiGcwDcdxjcdJuxP9eFoRptUIFeCqlSeal8YY004zZE8Y2GigUSaN3snw/gmI4zv8+DoKMXWVop/PkIymcQzFpJEYyl4J8ME56NU9RhQlMjxzUQIpMawZyIs8d6UccczFiIaiNN5nZ1EMoFvJsTEHg+BmSjeiQjKlNEwGZf4XyyUIGRz8e7Y80SmIlgsFo4ePYrNJh6mfB3r+Lhh165dBAIBKioqcLvdfOvxr3NhzzVACRF/BM94OJ260TsVQVEiY/w9KSqlXJ5EqZMhU8iJhWN4xkP4ZqRv0zcdocSoRKaQDlXIlXIgCYkEsZgcz3govW/2T4XxWIJSmrUYzBz1EvUv75k8I0G8qbnQPxOW1tFUSPrF/iAqrZyGC2yYarS4R4MZnCKCZzRINCgt2u5hPyV6FfFogvkTXiq3luFJ7VGD8xE8IwGinpT9YNgvRbSLSYIJuUqeDtgbckXwDAcILiyvnYnU/vvEr8doucaZtqNEXFGp7JKtYSSw4pCze8SPY6OZyh1WBl+ZxjPsT9trvCOBFTzMPegnEorTcGkFKp1CKptakz2TQUrMy1zWNegnGZciNik1cgKzQXyTqTVuIojH5k9H9XcNBpArSe1/E3jG/PhnpXr900E8w/703tg16F/BVXxTQfQpm5d/JoRn2E841YfuIT8h8zI3dA/7sLQacXSZGH9nQepjb6pfhvzEMk5Tu4d8+KZCuAcDaGwqPMP+9DrrGVlpM3IN+QgvRFk47kauU1Kzy0ZwLvVuRgMr7FiuIV+6fSd+PU7TRRXpNBmekSCq0mWu4hrwEUvx61gohlwhw9ZpYuTVWbzjQTQZdiz3oH9FmzzDfsypQ3C+yaU+jKXa4EepzOT8fhLxJD2fbWHi/TmprH95zKr1GWNgyIdnTOLjx345LNm8/EtjNkDYuxypxzPkT9tER16fQ6GUE5iJpN9FZlpf97BP4ibJBGF3FM9IgMn3F6V6RgMrolW7hvyE3VI9YW8Mz4jEqR0bE5IdK4MXeIYCaTtWLJyQbEo6OdWnW/BOhlAbM8bsUCC9nsdikv3JPxNCY1VKNtARdTrKjnsksII+eUaX5wiZUtoHhpb2ByMBlJqMNo0G8KS+z2gwjkwO6lIZoVmpnhX9PRLEm9p/BefDeCeCmGt1EgcaC6Wfbek+/hQPC7qjeEaDBF1RFl+R5iD1ko00mcQ9EiC4kDps6I3hGQsRnI+w8Ran1P+jQUjIU+0NST6ARIJIQOIugfkU5xwOoXdqmNwjzcnu0RCxlH0yEY3jGQ/hnZbKKkrkyJVQYlISXoziHgktv9akAs94GP9MBJIJifuNqwh7kpx8aR5jlQa5Ipk+ie8ZD+ObSs3fc1E842F0FgVl9Ro8U2EC4xnjcCyMbyJlI12I4pkIoyqFTedZWRgMEHIrGPmTFxRyPONhvFNRiMUILkj3ifoSDJve48RrR5DL5dxzzz1897vfZR3r+CTjZz/7GRdeeCH33HMPb596Gb9igarIJgC8Y0FCGeusa1TiPbFAnFhUgUIlQ6VTIFMo8IyHJBFnyifnGglJWVtUKnRmlTS/aeSQSOCdDK1IteUaDBBckDjb2NsLyFWSDwmkfXPmHOsaChBJrS/RYILFfj+RYJyNd9TiGQuwOLCcGcQ96CeaWl/ikTiuAT/zJ30SzxoNosyIxO0aDqT9gPE4uPr9BFJzi0InQ66UpYPEuAcDK+xCrn4fvpkQ8WCcvhfGMdfpSaRSsmbbsVwDPvyTS3wvTCQQw9puZOLdeTzDAUKL0RVll3hk2B3F1e9DpoCOm2pYHPCnD4ovtSFtC/RIZf2pPXY8HMM1uBzJd3HARzhlW4j5Y7j6fYTdUSLuGN6JIMrSjH4Z9KXT5MVCcVz9vrQNzD8prUOWDgMLx7y4h5btWPFIqmyKc/onQ4R9Mco3W5jau4h7yA9LQyC+1IepfpkL4+r3MXNQSuvnGvKjyOAqiwO+tF0ikCob9yc5+uQwhmrdqv5esrsFF6WysWCcqC/O0B+mVqSodw/407apiFvql0jKfhANRSm1mjE3lOLq8+Me8BFI9XfEF5HKpvw83vEghmodJcZU6vZBXzrKdCyY6pfFJftHELlaTutVlSjUChZPeZf7MJjE1e8jkOKRvqkQKoM0vgdfmiK8GCGeHrOJVH+nys4EcfX70pGNRt6aTe1/MsZL6hsLzkntjy+N2ZEASrUcb8pW6BrwpTl+cD6Cq9+ftjG5RwKoDSqcWyxM7lnANehP+7fC7iiugWVO7R0NEPHHqD3bxuxhD64BP77ppT6M4RrwE/albCVj0hyhUAMKBa5BP8EU34j64rgGl33BmXOE1qGWbN2uGMQhGkym5pdoahyGV9jxZQoZCo0cEknioRiuwUBGf0dQG5ajrrpHApjqddg3mpg55sM1FEiPgcBcGNdQIB0kyD2c8svH4dhT41TtKMOfsrv558MsDgZIRFM8ZjSIokSOuUlH+SYjrtEA/qmwpONYjOIaChJNBdf0jgbT3y7A/Ck/coWMeDhJxJMqG1jiR0HJjp+ak5UaedpnG1iI4RoJEvbF08+aSCxHA3WNhAi5osyfCOAaClLWUCr1dyKJbyq8cv84Gibqi1K+QUuJWYlrOETIl9JmzErR8dKcbSxMLAa1pxmQKyTuOH8qQGgxjt8QxzWaetB4HPdoSEoXp/Hxp4VnCR0MUllZyaFDh7BYxNMufxwhS+aL/fwJg8PhYHZWck7Y5TX0anevLCCTrQidtemeGpKxJId+kkoxlCendTKZRG2WEQlIDm69U41vMrWRzxfmLJnAucNM3Vl2Tjw7wWKRtFCNlzgwVGvZ/52hos+5BHWZktrTrVLYuIIFYfsjbcwdcRdOx5UxDNQWNR3XVXPgewNF26GvUuMbF4zDiBR1CJmMfd/sEyq/dAL8vX84XrSsWg9bHukkMBfiwHeLt73lmipsnSYO/bgf32jxMNgah5rQjPizdt5Wi0Ip59APh4SvWRPUCKUjBEmxHAvFGf+zWHjq0/6+E8+In8NPDBctW1qhpmqXg6FXJoj4iqf0U+uXowr9tWHtNNBwQQXHfzOKb0wstPlSpK28bcpYZbY83ISyRM57/3SqYJ0yuQx9tZquW+tZHPBx/KkiqcxkcpqvKMexwcipF6eYPeBd+XuO0I5Vp5mp3mHhwBNjhOZWDoR8IaR15WoC03kGjVyengcbL7IRjyYYfm2hYEjEJahN0H17HTOHPQy/sbjs0MuxvOirSrC26KRy2cjT7vIePVXbzXz4w7HVY36pfam2L0UX2Pfv45LRPUcblvpHa1NJG0SgxKogPB9Pi1PzXWOqV9JySTmnXpzG1S+NsSXjfiZ8ER99preYmZ1Bq9Xyy1/+kssvvzzn861jHZ9EvPjii1x66aUAyJBxRsn1aFVZKQ3k8jT3KmvW0niBnWNPTxKYThkO8lHQRAJ1mYpIyhiR+e+8tDWRpOe+OuLhBId+PFqw7SodbLytjqE3ZvJytFx5v2t325g75CYwVyAVQDJB7XkOHBtNHPheH9F8uaazUHe+g3g4zthbRdbpZBKdTVW4DRnQOdVsvLWBodemmfnQVbR8+eYymi5xMvb2bFr0Uwjtn6qmrNnAh9/tIyyQmmr7l9sIuSIc/P5g0bIqnSTqEk1xZ6jT0Xypk5PPjuMfF0wHsUaodMVTTAGUWFVUbrcy9vY8UXfxB+i8tRZjbSnv/q9jQu1w7pQ2oJPvFgtBn4IK4X7MiQKpKTpvrSHmi3PymTxcJ0dI6xKLivBC/gYtHXQw1uvo/FQV4+8tMPpmkW9DJqfrjhp0NjXvfb1/5fPmCZG97eEGEtEEe7+9ku/m41Hdd1UTDSU4+mSOZ83Dl3R21XJO+1VtlknzoAo6r6ng1O+mpPElkAqkbncZ1uZSiRtFWcWHVpa1MPGBi2gunp6n3RtvKcc1GGTsndUpOJf6J5lMUtasofkCG/1/mGfhVDA/j1JI99FZlNL8pQKVKvU9yWW599Wp99Z5vY1kPMnRX82uqC+ZlZLkYOCP+DQzBINBGhoaOHWqMF9fxzo+aTj99NN5++23AahRt9NZevrKAjL5CptXy6VW5Eo48Ttprcj+ZkD6npPxOEpNSlcUA02ZkpA7VTZPimwSCUwNGpouKqfvxWk8w8vrbq45oGKzkbKmUo79Is9akSMdpFID5VssxbmREnrubmD2mIfxpXRWOepbWbeMpsuqOPHM2HL6ojwcU2NVEpoXT/HZfkMNSo2cwz8ubksB6PlMI4oSBXu/LjBnKWHbw634pkIc+/lI0eKVOy3UnOHgyM+H0mL6QlCblURc4s/acGE5ylIlp54WT9G7JigpmF4qE0uRCWYPuIXKb/9yO4v9XqG2K/VKKraUMbV3kZiveIOUGoTSKAJCa34mtOUlNF/iZODlmbQzregt1DKUygJtyuBqHTdWorWo+fBbQ7nLZnAqtVFJz101zB33MfBy4X2DTCajYqtRsmO/NMNCETs5gKVVR905No49NUFoMavf8/AXjVkpOeKKoLzXgEIlZ+J9d0H71dJvSg103lDJ3FEfE3s8BXmXpkyNuVHD1L7VRsZMDpUJY20JdaeXcfy306vfkyLlXE7Na+1XWFGo5Rz59az0W655OnWNSpckmmqGSo/0b4V8VVo36RrpmTRmOW2XWBh4YxHvWHT5t9jKfo3FQhzS/IGZ2Wl0Oh3PPfcc55577up617GOTyhOnjxJd3c3oVAINRpO11+PWqFeWUihIJn6NrRWBQ3nWhl8bZ7QQupgba7vUy6HaBRlqYJYSvSt1isk32OeayS+lkhna+l7LisdbTbvUUDrVZVMvL+AVzC9HEh+Fe94oHCa8mQSa6cR5xYLx341Slww1a2t04hMKWP2YPF1Wq1XEPGJ1avSK+i4oZaRN2dw9RVfW/RVWtqvr2HkzRlm9rmKlq/aZaVii4VDTwymRTeF0HVXPWF3lJMC/GJpOImmuFOblDScX8HIWzME1+CjXAsUarH2KLQK7J0mFk64hd5VzVl2HN1mMb4LmJtKkavkLBz3Fi8MUoQk8azLa0LtbgfxWILxt+ZW/5iHx6n0CqK+eMEUbyBFh9p4Sx1j784zs0/6NvKleANouMCOqaGU/f8+JD1vkfo33lpNMpnkyM+yxmMeG0zTZeUkE0kGXsyRMjdPu9QGhVDatvrzbIy+vUg8GM/Lh2CZK9k79di7DBz9VSptXgEfpb3LwEK/j3guG/wSj8ribA3nWfBNR5k9unreyGyf1qak+QIrw3924RkJS7atXPar1H3UWukgLgpQqCAeAlTKgnyt7jQ9cqWMwdddK3/LumYkdIxx1WH8fj/nnXcev//973N3yCcMfzMiJYCbbrqJX/ziFwAoUHJe6S2rC+XYQDRdbmf+uA9XX+5Fe6mL9FVqNt5cg3vIz7FfpQQ/eYRKxno1rZdXcfAnw0SyN1N5kEwkqTqtjPE9i0XFJ5vurqW0Qsu+7/evSThTVCCSTFJ3voPKHTb6nh9ndr/YBr/pcif+mRBT7+cQHvwHUL7FTMgdxS1AMgBar6lmct883iExAvYXCWYExUG9DzYhk8v48OtigqzeB5uI+eNCoqbqc2zUnuHg1LNjzB5c7Tz4j2ItIqW1YvtX2knGE3zwf04WLauvKaHzpgYGX5kUGot15zmo3G5l7zdOEPEJTG3F3mWOhV5tURERcKwBtF9fycBrc+lIX8Xu03CBjcFXsghPAWKSt7osgrThlkpOPTshPNa3PFiHTCZjzzeGioqU1voN9dxbTYlByXv/NrS677PaXbXLyHgO51ghdF5fTjKZ5NjTOYhjBtRG6L2rBv9MhMNPThcsC9BxjY3+388IPesg+znlOwBAY2MjH3zwwSde0byOdeRCIBDAbrcTCEiqjVbVVupLNqwumEU1VQaoP9vOqd8VMGan+NqGm6sodajZ973BtDgkH3Vtv9ZJLBij7/kcm6l8UCao2GRiau/KNSZbpKTSwZYHW/HPhjj0wwJOoSzjkKioZevnW0hEE3z4b/1CzVYZlTRfUsGxJwsLsv4S1J7rYOQ1sT7UlatwbrHR/0IR0XwKKpNKSLSz8iKEBDY6m4quu5sYfn2aqT3F+ai920T9ueXs/8GgUJu2fr4VEkn2CBpV1oK1ipTWgvLNZTReXEHf8xNCjrvOW2tRqOUcenxo+Y8FHGi9DzQRC8Q49KMcnDGbRwm8y2yDjMqkJFrMGJi6j6G2BGurgaE/pDhAEQ5latAiV8lYPLnyI80nUiqIDL5UsdmAUqdg7E+u/OUTifQ19i49DedaGXlrgakPvQX7W3ROWYLOoaLrZieLA0FOPpdjzs1ot0onGQNnD4ntuwDUZgWd1zg4+fwcgZncL3epP1sut2Ku1XDgp5NE3IUFBOZ6NYYaLSNvuoq2IRqN8nbk14TjQVQqFTfffDM/+tGPhJ9hHev4JOEf//Ef+epXvwqARlbK6frrUSqzAqTnsFFVbjNIUTvyHTBL8S6VQUn3bU4W+v0MvJwSwuYT75TJab60nBPPTKcjHC2hkKjc0laailyTecHqOaHx4nJsHQYO/GiQ0Jy4cEapgViw8Bxj6zLSeKGTvhcn0pEA84rnU6jcaSHijzF36K9rfzE16IhHE/jGxAQnVWfapNPeE2LllRp5OtKSMATFQe031KAqVazkDIXK31hDPJIQEgZZ2gy0XFXFqd+NL7+jvyLWIlJaK3o+0wgyGfu/U4TXy2Qo9Uq6bqtj+PUZFk4Uf05bl5n63XYOPzEsJMZBCbJEAV6Tw+al1MuJFTqAmMGvas60MHvYs1pElH2bFBeo3GpiYo+YnbkgsuxUjRdZGfnTPLF8FCaDdwFsvMWJokTOgceLvH+ZbG2iM6D9mnJKy9Uc+PH4yuuy2gBgbdMy3x9EFs/zjnJw2dozTChL5Ay8mme/k3qnSg1suqUc31SUky8UP9hQf7aRsfc8q581x/w8Sz8fLr4BQENDA++///565Mp1/E0iHo/T09PD4cOHAejW7qZC3bCqXDbvUaihosfI+LuuQpUDUHu2hbKmUg7/fJR4MHd9S1hKNT7+do7vP49AO5lIYm4qxdVfZI+ngJ57GvBPhzj1TIG5MceziohaOm+ulez1gjYshVpO9ek2hl9fg31PEPYuE7OHxNYihVaBY5OJyffEDogptAph4dbyRQgJbBRqORvvrGf0rVkh8Y6+Skv9uQ5OPjsuJLDquLEGhVr+kfgD1ypSWgv0lRrarq9h4MVJFk8Vd9zU7nag0ivoLxb8I4WWq6tIxBO5y2fbbjLfZREBUfqS1DdUSJy0hBKzEnNjKdMfuoXuobWqUGoU6ciT/yFktM9Yq6XEpGT2UIFxmEimr9FXltByWQXDb84VFaorS2S555Q8PkqlTsHGm5wsnPIz8laRoAgKMNVocA+FhAIzACg00HSBjZG3FgkXsWM5t+pxbNBz7OlZIp7UQMjzXrUWBYZKDTOHxexve/wvMh+ZQKlU8thjj/H//D//j9B1nwSIvYlPCJ588sn0ybI4MV72/5i5SJEIJmqwtRioO9uW35CSgm88gmc0wOAbxRclz2CIPV/vJ7IYw9igofFSR9Fr1BYVtWc76L6jrmjZg4+PcPKZ8TUJlLrva2Dzg22SMKMAhv8ww95v9QkLlADsG81UbrcWL5hC27XVdN1RX7Tc9F6XJFBSSxGeiuHk02PCAiWQxBVqvRyNo3jdANsebWXbg61CZfd9s19YoLRWzB314Br0EZgRW2CcuywrcgP/NbHWuueOuIWJoLZMCk0eFnRoDr82yzv/73EhgVLVaVZ2fbkDe49JqG5jgxagoEApG8d/NVFcoIQU4QhYLVDK1Y76ErY8UJ/3e8h2rDm6DRicGiq2lQm0WMLebw5zsJBYLpGARIKO68vp/XQ9aoti5W8Frtv/xBgnnpsqKlDSO9XU7Cxjww3lRdurc6hpvkyaf47+appjv8ojOspQH0c8UqjJoT8trvot+xpLsxpTrZbq062rfsvGgP1thiPHkMvl7Ny5k/7+/nWB0jr+ZqHT6fD7/ezeLUWvPBndw9v+Z4teV3OaFUuTDkOlsvCcgRSCd+6ET8gpf/xXE2mBUtOldlQmVZEroPP6aurOdawqm705jAbg2K/HCguUpAvT/9SVq9jyUBvNlzsLXCDhwPf6hAVKAJXbyjA36DE3lwqV19lU9D7QhK68eJ8sCZR0tuJlA9NRYYESkBYD6au1QuUdm83s+nIHlk5D8bbMRXnvH48LCZRACs2dTILOUvw5AWYOuZg+IC7Gb722CttGo3D5taD12ipsm8Tq9k76mT/pwXVKzMG3Vn3Ovm/15xYo5cDW+5vovX+1UTcXtDaVJMgRFCgBeEfCywIlyHuYZOl7dw8GVwmUcqH9eid15xbY52QZN8o3GSnvMuaf37KcVLOHfOz7wbAkUMqHZBKVNknP3bW0X+NY9Vs+BGainHhupqhACaDtynIazipDpSnuzK4724zOpiLiirP/8cl06P9VyOiD8Xc9LAwE0wKlnCeLU3+vPcNM+QZ9wfoAFqJTnCh7jXA8iFwu59ChQ+sCpXX8TeMrX/kKg4ODlJSUEEr6edX7YxZjK/c+uexa5V16anaZivKuqDfG3HE/Ex8UF+KE5mMcfmKcqCeGpkxJ1S5z0WuUGmi8qJzmK7K4UQ4D+8BL0xz79diaBEotVzrpua8JpaZwublDHj78Tv9K8UuRBbBiiwXnFvF9XdWZNlqurixazj0YkARKSiliTzGMvzUnLFACKU2cUiNFmBFB19319NzTKFT2+C9HhQVKSxDlGZ7xIDOHXcI2r7JWPQ0XF7cd/CUoa1lb3dP7FpkR5Iwak5JkMkksLDbO5w572PP1fiGBUllzKTseacHSnmM9zYGlfYKoQAlg9K2FogIlWB5/IgIlTZmSDTdX5h+zWfzFUF2CtbkUR0ee/UIOcdDhn01y5OfFBWq1Z5rpvrMGTVlGW4r4Do4/M8uJ380UFSgp9dC420rLBcVt6Uo9VJ8mcf+RP7kZeCWPXyKD+8ZCMHs8wFgq3Vwhm5fOKsPWqsO52bDqt2wMGt7laPBd5HI511xzDQMDA+sCpXX8zUKhUHDo0CH++3//7wAcCL7OPv+rqwtm8StraymODXp0dlXROWPqgJvZw560QKkQxt9eTAuUyjebVqTAzIfac2w0XVyO2likbBxOPD3OqefF7TsKrYKuu5uoyraX58CJX4+s6ZCduVmPbYMJQ42Y7UihVdB2XTUlZcV9fEt+KZH+iwfjwgKlpfIAGgE/JkhCos33t2BqKG7bi0cSHPjegHB0oVhQsnmpdGIccOaQm+n9LqGyIEWZMjboihf8C7CWuiOeKFMfLqbT2BXDWo+knfrtuJhACWi/tlrYT6rSK1aI/HJF9M9G2BVbFihJF+Usp9DKQQHB+aiQQKnmTCsVWwr4SLP4n2OjgYpeU/5MUxkCJQDfRJiDPxkpHklTAZ03VlGfZX8rpNuI+aKc/N1McYESUH+WhYbdVhSa4n1t7yxFY1YQD8HJ5+YI5fEJZ7Zt9kiAuWP+tEApX7uT8QQV3QbKu/SSsC3rt0wE4h6OlL7MfGQCg8HAyZMn/6YESvA3JlIC2LVrF8lkErPZDMCH0T/wXuDF/BdEYP8TY+z/seR0sncX3rwd/cUkobkIunI12x5pwNxSfLJsvKACx0ZzUXFQ1BVj5I8zHBAMCz1/1AcyOVsebqblmuLGj+kDLilva8HIMdKHG1mIgBq2PNJM3fnFBVaHftjPh98QF+TonCVorGKLNcDOL7az6fbi4i2A8m1mdv1dh/BCtuWRNjpvqBUq6xr0syDo5FmCaDv2fbNfODVcaCbC0Z+OpHOqF4N9gwlzU3EH31+CtdY98MIkQ68Uj1wDMHvQw/v/eBzPYHEHklovp1TA+boE33SIwGyosBgvtdCXtevZeHMtzVdUFK03mUiy9eEmuj8tMF5lciq2ldF9Zy215+QxeGYt9pYmPSqtAqXAoyaTSab3ezj001FGXi9iJFNLEZTKe6V3GfGxWlGcEieB9NvUATf+2TCRhfjybzlUyCUWJVsfrMXWZYAIuPqLkyPfRJjRdxc58svsELbJ5f9SaLzAirVFj9qYzL35i8fTxpVNt1fQfpVkQDn+zBy+4WBeY41jo7QRWjgR5PAvJhn4/fyq+pawEJnmZd+P6Bs8hclk4n/9r//FO++8U/Q517GOvwW89tprPPnkkwD4kou87Psx7mj+TfzA7+c59OQE3rEIqMDSmt+T5B2LMPCS5Fxvu6aCzhuL8x2tTYWt00jT+faiZY/+eoLh12eEIum4B6S1yNZlYOvDTflFUDI5yOQEpqP4JkNMCWzyl9LClW82s/lzTVLEmQIYfnWWAz/oEwpnDSArUaA2qDA3iglbanfb6b6vmbI2MafGpnsb6PmsmEOr+QonXbfXU1pVxIOIJAzyTgSExcogOViyMw/mwuIJH3v+5SRuAY4Bknhr9M3iYuIlWNuM2DeKCaHXCmubEXunWN2ByQgnfzVONCAWReHIT0aEoygZatdmkJo/5WWhyMm2JcNM2zXV9H62uXCFKad2WYuO7V9opKwtR3tyGE26bnSy9cH6/G3I4hI6q4pSR0nhtqTvl+DAD0Y5+ovxwjwKyfHVdbs0p0WXthfZ/Z3BeaJBGd7xENOHvSt/y/GOGi+00HWbJAJwDYg5eE/8dpKhNxaIhvK0eynSig7KN+qp321e9UzZ15Q1aem9x4nKJAkJ+19aIBmP5xYoqaCsSerno09Nsv9nY6vbkIEPfL9nT/BFpqam2LJlC/F4nLa2NqFnXcc6Psmor68nFAqxefNmIMn73t+x37vSYZZMJlfMZYd+OcnJZ6V9lalWLUXKyYOh1yXRgVIvZ9PtlRhri6/XtWdacW42FxUHxSIyBv8wTZ/gyWXvSAiZXMaGW2uoO7c4r5s54sY95CcWLm7qXErb1XlrLZW7ijvXjv50SNheA2Bwaim1F++7JfR+ppkNN4k5NUwNOrZ+vhVDrZjjruezrTRfVS1UduGUjzmBiD6ZKK0Ue87jvxjl5G/EIhfFfDEGX5giJJji2NpuxLFR/GDWWmDtWFvdkx8sMiGSkjeZxDceYv93BvAIHLZUakBjETfjhzwR3CN+FvoKcK+UzUtrV7Lxlhpqzykkyl7mGxtuqqT9+uIHMQCM9Rq6bq+mYqvYPsRQrUVjVq1y2uREIoF3JMihn4wxsce76rcV3EEJG291YmmV+GLR6EgyGXMnfHgnQpIQqwDvUpbCptsrKWuW6vZNRHO3IQMxHwz+cYG+P6wcK0vzd+YcXru9jPINekoMitwOwUQy/feWi8to2C3tE0bf9hKYDOe1eZmqlaCEwEyMw7+aY/TtVB/msHn5Y15eWfwhJ0eOUFpayje+8Q1+85vf5Kx3Hev4W8P/+B//g3379lFSUsJMbJhX3T8hEM8SdGd87zOH/Rz59TSBVHABQ2V+A0/EFZdSTwJVO0w0XFhc9KfQynFuMePcXnxtGn1znsFXZnKn/s5CcC4CcUk403lLLapcIp6MOTAejOMa8An5ypaEGIZarSTiKDLHzx/1cOiJAbyjYsIThQI0VjUGpxgnsbQb6LqrEaOgTaPxEidt14txKUevmQ231aEVCIrgGw+y2O8l4hW3ean1ChTq4nwgtBDhyE+GhdPDzh/1CAcWAHD0lGFp/mj8jWupO+KLM/6nOSm9mgCGX58RjqKUV2yWx042f9LLQp8Yj67b7aDrTsFDfFY1m+6uy839cwiVmi50sPEWsfEKoLOr0QnbvJL0/W6aE7+aWB0lKIOPAFjaSmm53AEKiAeLC4NkCRmL/QHmU7buJT4kU6yeMBybSmm5xAZyeXquLYahP84z+Noc8UhWfVk2LxRQucVA5RZTXi631DatVUH7NTbUegWxYILx972reFwm9OXSRnzg9QWO/XYmHXkrGU+sEij1BT7kLc9TjI+Pcfrpp+PxeGhoEBsznySIySg/gVhcXOTee+/lBz/4Ae7kLK/4n+B01TXolKsXnvBcBJKgNstoPN9BRY+Zgz8cLRjqX2dVI1eI6S73f3cIY4MGIsVTIy2pocva9bRe7uTkMxMsnirsgJIrZSiVxRemqfcX0+nY6s61M/yn2dyCJZksbQxXlCjRCSh/l8QyVWdZKavTFw0LuO+b4tECAOaOe/BOiDmRFvsDxM6IoygR27zPHHSxcFJs8VhrKOitn29BqVXy7v8rlr6jtEJNNIJQ9J2a3XZUGgUDL04VLXvw+4NC9/9LsJa6DfVaqrdb6X9hgogAOS5r17N4XCyXWPOV1Zgb9Oz5dr9Q/7n7/RzoF2v74oCPxVM+Rl4v3tcAYW+UqF/sJNzCcTe2DgMjb4up8odenWfo1flVf8+cr5LJJOZmLXVn2jnw+Aj+qeJEV29Xo1DJUWpT302mYy1rIa4+s4yZA24WT4VYPJHnm8i4RqWS/Ih5v8mltieTdN9dRTya4PBPJhl/273it2yoTRBxw+GfTGCsUxPJ5tE5DDFKtZyEdnVO1+zr9FVqGs+zYWst5ehT0/gmInnrnK45yMBYH0RAq9UyNjaGWi0uwlzHOv4WcOONN3LFFVfgdDrxeDy8F36Oilg9m7Rn5ywfmJbmpfarnJhqNOybHiOyGC0YblVRIhfaiAfnohx5chTfmPTdqkxyovlCskZhKnWid+MdNSQTSY78RHKMy+SynCdZlCUKZAoZ8mKGc5mcwz8ZhWQClU6GdYOZqQ8KC0aVWgWKEgU6k4pAEadMYCYGKui6rZ6Bl6fwFzgd4x8P8d4/HC/S4GVMvjdLabmGxQGxNTjkjqAQ4KIAw2/OQZKC7U0jCocFo/QAlFZp2HRnAzP7XcIRnkwNOiGhksqkov4cO+PvzqbHbyG88xGkbvtL6q4730HYFRWKMFVilYyn4fmoUKiDDTfVEFyIcCAfF0wmVkTHGHxJPFT70OvTGKsKOF+zom5Eg3F8o2J7hfH3Fykxia/TH34nTwS1LK7Ufl0Fcyd9zB3yEVyIr/gt13UlZhUqTUYdmX2eyXtU4OwxMrnHy/HfzhQ9jQtSKHi5qsA7TLXBXK+m6UI7J56bwjeeYOaQb/m5stutAlWJFFnu6G8m8Y3n+A5WPau0V9UaVUQW8n/zyXicjTdVoLOoeX9wRIqet1Q8q85ANMB01YcseqSIyX/3d3/3N3eSbB3rEMHevXv55je/yUMPPcR0bIg/LP6IMwzXUSJbtnklk0lkMhkxHyTjgBJaLrHjmwpz/OmZgrxLY1AgV4mt7SefnUbnUBILSUKKaJS86cLmj0r2LV25irarKul7cRrvaEia1/OcBpYrZcgFOKC7P4C7X1oLHL1mZg65iqYtU+sUlCxFbMmwhWVjKXKNpdOAtdnAqWcLR20//su1peSd3rdIyC1mYPdPBoj4okJpIQAm3psXtqeN/0lckA2w4dY6dI4SPvjnk0Ll1am+jghEArJtNKI2qph4e7X9Ixt9z07QR5FI+n8h1lK3xqrEudnK6DvzaSFcIeirNPgEU3BU7nTg3FbGgR8WT4Eok8sIzcU48RsxPhycjTG1z8XEHk/uAlljLeSOkYiJCeA9YyHmT/mZ3OdGJhC/YPaQN3f6kCzepbErqTvDwYnnpghl7vXy8C6NXolSo0ClLa5+sm0oxTUQIDAT4+SzxfmrTK5ErpQt27zytAGg9QorMpmME8/OMXcskLbl5XJmKbUQC8LAHxbQHlASzo4wmmuvqpFLlLKIzUull9NyiY3FwSD9v8+IiJXjujnrMfpmj5AgTnl5OUNDQ2g04iLMdazjbwE9PT34/X527tzJnj17eMv3KxrVPbRoN68smDrAuxRJo2qXCccGA0eemiTijhfcZys0CpQC/qx4MMHxX48TWpC+W4VWTrzAoaTFlMO//gIHCrWcgRenC0ZtkSvlKFRyZAJi0aWD6Ao1mOoNRX1sCrUclU6JWq8smoIs4pb6sPESJ5N75gnO5udJEV+cA98dKN7gFBZOeTE4tfinxPhR2BUhHhVzpc8fcaFUywnOi/G6wZfE/E2wFL2qkak9C4y/U5wfAWgdaoICIg6FWk55r5n5kz7Ci8XL7/vWR5NBZq1127tMxEJxoVRvCq0CuQJhQVPrNVWEXVFO/DrjAFWBb3j2QFaUowLp2MbfmUdfudLmlUwkc/N7BYQ9UQIFvoFMTO5zoRWM5gXk54uZbUkkqT7Dgm8ihGsgQCRzzsmeT1LXlRiUqEoFvhsFWJtKWTgVYOztxQKpw5fvqVDKC+8PU+9Ja1HSeL6NgVfnCM5FpVRvS6KnHOKjpehWJ56dJrS4epzkaptCLUepkxP25p/TkvEE9bvNmGu1HPrFJPEQxFLCrWxxUjweYaT8fQb6TiKXy/n2t7/Nfffdl/9ZP+GQJYvlOPuEY2RkhIaGBhKpAeeUN9FVsitn2WQySe1ZFqYO+4gsRFBb1EQXo4XTwCWSqPXQelU1h386tvK3HAaWbV9sJhlLsufruUU6SwTB2qmn6RInR38+vOwcz4eM+5RvMTG9t7DiVV9dwqY7GvGM+jn8RB6je65nVlM4ChPQc38TJUaVsCOs7nwH5gY9B74nTiJE2vFRonyLGec2K/u/XVxoVbG9DKVOwdgbAoYeNZz2lU684wGhE3rbvtiKXCVfk9NRFKf9fSeeEf9fPQdtyzVVODaa2fudU8VTFS71x2iAQz8eKlq3vkqNc7tdEpIVcaw1XuZEY1Zy9KeChkPBHLIrLylifJHJ1zSWHZuNVG6zsP9HwzmvyTZstF9bjrlBz/4fjUrOxkLI1Y48Diq1GXrvbSQwF+HQj7LmvKXrUtcY69WEfSkhaGadqxtPqvFsurOKeDjOkSenln/LMR/VnGmmcquZwdfmmDmQRUKXiEbKuOLcZkStVzD8+qL0Wz5jjUIhCZ9SjsX68ywMvbUAUdmK+pYQiQT4Y/xpkiQxmUycffbZPPPMM7nrXsc6/gvhnnvu4fHHHwdAjoKz1degyhPaRqVJ4Og1M/5nl/T/jRD1yXNuFJaQTCapPdtKYC7M3JGs7z9rY1Sx2SgJs1+bZerDPEb3FI/acGs1yQQc/flYxk+FabLOoQI5BIqIQTfdXYvOrmHv148Lpa4DpGhKRaZvnUPJpruamD7oYlBAtIwKuu9qZPj1aeEoTCLt+KjR/qlqfFMhxt4qzqcaL3Ey9cFcUZEXwIbbajHWlAqJfgx1Orpuq2fs7VlGXs+ROus/gM5bazHWlvLuRyBs2v7lNiK+mBBv3XB7HYZqndQOAZFS5S4LEW+UucMFDJEpDrXp7jrG3plj4bhg9C8RHrUWyGVrHssbb6tm/riHqb15ni+TK6lg62fr8U+HOfbU5Ao+tOqafO3II8zu+FQ5hkoN+388SSSXsTDjXVk7dMwfE5hkUm3XOxW0Xl7Oqeen8Y5Fl3/L0fbNn64mmUyy799zCNSzeGPbVQ5OvDADUZApFHlTu8kUCpT6JFF3Aq1VhaleI/V3Hh56NPQuY7ET0j3a2nj55ZeprRWLiLuOdfytwufzUVdXx8KCdOilQdW9ymGW3ivG49g2lOIbDxNySdGSYgEKp4FLJkEJjedaGXg5yxmS47quO6qQyWUceDzPXjvFrUqdalouq+Dkc5PL4t88IqVMPlbWXJp2tuWD2qSk994GFga8nHp6DcIVJZKoqYANsOWaKozVOvZ+61RRARSArcuIrdPE8V+sQbS01I7/JJgadFTutHHs50XSHCOlQlOVKpkRTA+y/cvtuAa8QhGVNt5ZT4lRxd6vnxKqey3Y/uV2Fvu9az6IWAyVOy3Unl3OwR8OEpguLj7a8eV2Fgd8nBRoh8asxN5dxugfZ4vyIOf2MnT2EgZeFItiXpRXCQriViFrLBc6DGyo1lB9WhnHfjOZe/xncYOq081UdJs58vMxSaSUj3flaEfBJmug555aScz5mxz9l/EMGosSkiwLfArxvxRaLrGCHE49P5+qTpbT72Bt09Kw28rg6wssnMyKJLL0PlJzo7lRg86iZGKPr6jNS1kSl+Z9oLynlOnDfkiutKEtIRaL8Vbgl0SSIQwGA9deey0//OEPc9e9jnX8F8L3vvc97r//fhKJBFqZnh2aK1ArsgQB6e8+jrW1lPljEndRaBXEQ4mCQsJkMom1vZRYKIE7O9Jelo3KUKuh+eJyhl+fYeFkYX5Ue7YNRYmcwZdniqeWSnEyKSWVglDmgfAcc1bDhRWUtRg48IOBdMqzolCQjiKSDyq9gg231jOzf5EJkbRrCmi+tJLp/YvCUZhE2vFRo+pMGxF3lNmDxSMZlW8pY7HPkxZxFULt2Xbsm8zs/bdTRZ9RrVew6d4mRv80y/ResbS1oqg5y46j2/yRcLquO+uJBmMc/2UOP1UWanc7sG80CfUHSDw3Hk7gGUktnAV4TOOlTmYPuVaOu4/Cp5j/wjWP5YYL7LhHAvnTsGXxjY23V+OfDjP48qz0W655RC5bcztqzrBg7zRw5JfjhHMcZJApFGl+ZagqwTsezrhfYX+jWi+n+RI7Q28sLEdcyqgvE61XOVCoZBz71Wr+txTNaYmzVZ9mYnKPm3gkP5eTrpMjVyeIB0GhBVOlloX+IDKF1O5sgdJkZIBDoTeBJB0dHbz22mtUVBTP7vNJxt9curds1NbWEo/H2b59OwCTiX5eCf6MSCS3MmDkzYW0QGnz3TV03lg8fG31WXYMVRpsG4qnxJg74mb+RB4nGcuT0PxRH+//71P4JiJo7GrqLygQ2jo12dXsttF0cSU1uwuHhfSNhRl6fTq/QCkHNtxWx85HO1DrCw+Z/d/u571/ERfNGKt1aMrURVPhLWHHV9vp/XSTUNnKXVa2PFIkTUQK1efY2PHV9qLPB6B3atFa1Oirijd66v1FMYESQASmDywy+KrYSacD3+sTFihZOw3s+Go7ti6x8MprweaHm9l0j1iYuVNPj/PBNwUESgARmHh/npG3xRyBvvGIsIHJWKNF7xQL59l9XwO994s9X/MVFXTfK5aW0NpRys4vNFN9pljY8LJ6HSUGBfkC9GSHETz+m2ne/Xp/XoHSUtkNN1ey/XMNqPVZv+UJZRhxwdAbcxz6eR7il3FN+9VVbFyaQ/MRhkQCdZmcunPMABz80fiyQElqTM7Lpve5CMxFmDmWLVBIrApNXbXNjH2DYfm3PNBZFfTeWUP7deUADL26IIm3coS6nm84yQHj6yRJIpfL2bNnz7pAaR3rSOEHP/gBfX19KJVKEsR5PfIrjoXez1k2GiAtUGq7poLeuxtQ6YufynV0Gag5LU+azAzMH/fgmwwzdSg/91riUUd+OpYWKNWcZUWlK7457Lyplg03FZ/3j/1ihL4XJ4kGxai3yqRix+fbaC2SzjcwE+Pd/3NcTKAEqHQqNGY1ZS1iYZNrzrKx89EODHVia2bXXfXU7i6ejgWg+75GOm8VExcYakox15cKlR14cVJIoAQw9vYcI2+JRffxDgf44BunhAVKG26vY9On//pheG2bjGz7Yiv6arEUL+//0wmO/FgscuTw6zNMvDcvJFACmHhnobBAKQV9tQadrQSttfiJ6xKLim1faMbRU4CzZhh6ej5dh71LYDwnknTfVsOWB8R4mkonOQMNlQX6OZMrRWHPd4YkgdLSb7nqNSnY9tk6mi7O2q8lEqvS2S7h2G+nGXxtvqhAqfZMM80X2rF3lRaOtpRMUr3LgKo0gW88yoffGVsWKBVo+1yfn5lckQ2yeKOtU4e5XkPVFiMkk3kFSgBtV1npvb0alQ6C89FlQVgWD41GA4xUv8d4XIrUcfnll3P8+PF1gdI61gHo9Xrm5+e5//77ARiMHuB1z88IZeQyytwrzh3xSwIlDXTfWkXzRUX2o4kE5V0GrK2llDUVX3tmDnqZO1HgJHOKW/knI+z//giB6ShKvRzn1vxpTGVyGTK5DEuHgdarK6ncbi7Yhog7xqkXpzj1W/GT6Q3nO9j6YAtKvbLgOnjq6XFhgRKAoVqHzq4pmgpvCT33N7HhZrG1ytJmoOuuerGynQY2P9icjmRUCBqLGr1Ti668eKMXT/mEBUoAY3+aZezPYif/j/9iRNiZpSvX0PtAM2WtYqmK14KOW2ppvU4sZcbEuwvs+eYpIYESSJEjJz4Q64+QKyYJlIpAJpdhrNFiEuTvLVc56bypwJ4jYz/k3Gqi7RqxNG+lFWq23t9AxeZlTlfoELCxToPWos7/rWRxg/E/u9j73SFJIFRAaFl/roXN99SgzNxKFCgfC0H/72c5/mxhgRJA+9XltF3pWOZdeepVaqCiVxqbp16cTwuUIH+fLAyE8I6H8IysdLJL9rqV6VSqtxmxbzBIvxXgXcqSOJturaTxfGkfPb3fL81lOWxeC/YB9mueJ5IModVqOXjw4LpAaR3rSOG+++5jYWGBmpoagkkfb4Z/wVD4yMpCS3NWnLRAqWq7ia6bKlCXygtGswSo6DFRuc1ctC3e8RCuwQDu4eKCnJE/zjH4smT/sG00oiwU4SS1526+rJLWq6uyflvNkwZfnaLvuXFhgZJCDZvuaqB2t6Nguagvzv7v94sJlJC0BzpHyaoINflgaTXQ+5lmdOViqa7qL6zA0WsWKtt0uZOGi8XEBWX1pRhqxNbt6b2LQgIlgNkjboZenRYSjER8cfZ9t19YoFR3noOW7LHxV0CpU8PGO+qF38mhHw1x6rdihxKmPlxg5M0ZYQHN4imfkEBJbVJgrNbmTw+XAYUauu6oxdyU28aZLSBsucqJqUFgbCQTNF7oYMOtgu9EATqHmtJCfD+Lbxz+2ZgkUFr6LVe1ath0azXVp2XtMQsII0f/tEDfSzO5BUoyWZpflTXraL68PJ1et5C/0dKqRamVE/HGOfrLqWWBUkZ92Zg/4WMml40zKxVvqUONva0US3MpxOMF+W3VNgMbP+VEoYV4EBb6pbk6O71bPB5nrPIDjkTeApJ86Utf4ujRo3/zAiX4G073lo333nuP1157jfPOO48kCd6I/5KKUCObNKflLB9ZiOAdDzL6bmrjkEjmPTky8MIsM/vd6YhHFVtN6dQh2Uh/xEDvAw34JoNFDSft11SitZYw8c5swVRxo6/PUaJXMfp6cVHMxDvSwl65y0LFljI+/EbW6eqs6CVzx9wotQqhFF1EpDRdLZdVcfCJwYKCFJGIQZnwTgSE86hqzCpUOiWlFep0Orp88E+ESCZAY9cQ8RU+fdz/u0n6fycmJAKov6CcslYD+75ZPEzhWuoVehcpRINxErGEqM9pTUjEksQj4m0RScW2hKWQocXQeKkTY61OKEoAwP5vi0fuSsaSJPKc6MyGzl4inD7EOx0ltBhlZp8Y8Tvx2zx9kTU3bbqzmng4wZEnJySBTY53vhT2H2DupA+ZUpaeWzJ/y0TdbgumhlIO/mCU6b0FnP0ZGPnTPMH5cP4CqRC4HVdVoDGrmPxgcXmOS/2WCb1TTfs1FZx6fhL3cJRDT+QnoGo9GGt1zB0NcPDJcSKFwnim7hWYieCbCDH23vI7ScbjK/ojEPHx5/gzJI8mMRgM7Nq1i7fffrtgP6xjHf8V0dTURDQa5ZxzzuGPf/wjo/HjjPtPFYyqNPHBAslEGdHUFJNvPgI48IMhUEq/WdpL8Y74c0YoigYk8RFAWYuOxgscHH5ynPBCfhGLyqSkcocFY42WIz8dy5v2DaDvhUmUJcVjYEcDMJdy7nd/uoGZQy4m38s//0fdUfwzIeZOCKSjTT1K5y21kEhy9Mn8J/Wj7ijv/aO4mHzqgJuyFgOhWTHuVWJWUxoQ2+0nYgkSgvzhg/9zQqgcACrYdEcD8yc8jP+psNPHPRDAPSAa2krqP1Ekoom/5NCUEJKxJNGgeIiFaIHQ75nwjQWFU45039fA7GF3ek+RE6kO8I2FePcfxdLAaMwqkokkvqniRtbSShVqvWI5VW0RzJ/0oTGrhMpGA7D3m7kjimbOTbpyFe1XOzn5uzzpzzIhlxN1xwnMRZg/mbGpy8F5UEH3LZWMvbvI/Ikgs4eKhy4fecsFChmzhwqcoE0mUZepqdxiwlCh4divp1f8lr1ZaLrIitai4vDPJhl5ozBntXeVMnvIz9zRAIHZSQKzBfojda+p/R5iocTK+TurHUdC7zAeOwnHoaGhgV/84hds27atYFvWsY7/ivjWt77Fl770Jbq7uwkEArwZ+Dn1qo20anN/L7EQLJzyM7d06j7HHLCE6X1e3EPBdLQQS6uOhZO518/p/ct7xfbrnQTnwgy/Udix1HCuHXNDKfOn/ERc+e0FC8e8jFlUTLzvKljfUlmAslY9VTutHP7ZcEFh0XyflxKLejlFV4HUb8QkUUzrVZUc/80ooQLi6MEXpxhEXCzl7vcRKtAHmVBqFZSY1GgdJQRnCuy7gcBMiEQ8KaVXKZJqbXqvi+m9LtEm4+gxY+8ycUQgEvfEu2KCHIBYSNzOlAjHSAqmH1srEtEEiah43SJp3gCQyZj+0CVUtHyzGUurgWO/GoV4cd5z8mlx22I8kkShEkuyoLOXoLWIuRLCrgi+qRBzeeaKbIz/2ZU+vJKJ7D1h06V2ZDIZfc/PFBYLprjV4kAAdamC2BI9ysW7kFK82dv1HPv1NIv9YtE3ht6YJx4p0ndyOQ3nWTHVaJg74UtHMcrVDpVBQceVdob+uIh3PMLJ3+X/XpQaKC0vwT0c5vhzM1AwIF4q9WcAFvuDTGc44JLxeDo6AEAsFuKtwG+IuEOUlpZy8cUX8+KLLxZ+xnWs478gTCYTIyMj/P3f/z3/83/+T04m9jAaO746qlLGtz57YskGX9xmcuSpCRRq6dssLVcTWowQz0UP4jD4iuRv1NrU1J/roP+lyXS6uSVkppFSqKHmDCumGi0Dvy8cVWnoD9OojDnm/WyeFCct5mi63Mlivy/NxXIhHpHKu/qL73OXBCU1Z9lRaBQMvZyfV8UjcPDfxQ5pAbiH/HhG/YQ9Ymu3zqYuHoUq3Zbkqigp+bDWbCaNlzrxjgaYPVQ48lJwLkJwTtwXJxwFC4hHEmvyCYpCJoN4JF58fc1qiwgi7tjKlGwF0HxFJYv9PuaPFveDRdxx9gumG1Tp1cSjScKu4vZFtV6BpkwtlKoWwNXvJ+zK8k3mSzsXhyM/zRPwIeMatV5B02XlDL0+VzxtoFwmfdvjIdzDGfwvj7ai+TIHs4c9uIdXi7JzYbEvgFK3yGJfAW6ZSKDQyKk93YJ7OMjgq4X3HuXdevQVGvpfmmX+eGHOaqhS4x2P4J+JcOSp6cJzeTwOCgVzx6U5Lh5c/dsSxiOnOBL6MxxP0tjYyDPPPMPGjRsLtuVvCf9lREoA5557Lslkkk2bNnHo0CGmkgNMBwc5W3ENavVqh9mRJyUHuFoPvfc14R7yc/zXUys/qFRYsyWBUudNlZjqdATmQ3gGw3nDVaMGhUqe07GV7Qzb/90h7JsMkvM+X3oomRySCfqekzaidec5sG8wsufbfQXTSRmrdKi0StR6GRFf/ok/00jh3GVhcu9CwXrlchlypYxSW4lQ1JzyLWZqz3LwwTdPFqz36E/Eoz8NvDjFgGBkgcWTPt7/p7WlTdPXlBDxJ4uKbjRmFepSpVBqL7VFTeeNNYy/M8fs/iJp+6rUbLi1kfH354pGa/IMBvjg/4g5h9aK/d8SEwYBbHu0Fd94kGMCoc67P9OIe9AvJFTSWdWUGMWcTrYuQ9pRXBQyOQd/KD7mDv5gOHVZcTVYZD7E/u8VJ6Adn3Ki1Ck59ERG5KJMMpx1L0WJIm1czjTkZCt6K7YamdrjYXqvJ6+oMvO6UkcJJXpF0XFct9uCtc3Ah98eZmpPisRlG4BSamW1HiIBOPDTcSwNWmmOW1Iy57gmEUsgV8rQObS4h/Oc+E9d13V7DUq1grnDA0Tm8tdZYlPTc3s1sye8DLw0z5FfSHNGrlP/rtY+TgwdI+mWoic999xznH322fk7Yx3rWAdvvPEG+/fvZ9u2bcRiMV6P/IqqeAsbNKtT73rHInjHpDm/8SI7lpZS9v9oiKhnpWFaJpMRDSQBaX5qubicsDfG/n8fyR9uFtCUqZApZSRy7SFSPAog6o5x8rfjLA5JmxOVDqKBVJqUrLpdGRujzQ80MrV/kYl38jvyVTpQG1ToHcVPph/+cWqNUIG905R/I50yDil1CpJx8U181131BGbC9L+Q34kRdUfXZODZ8y/iXOPQ40PCZZdQ1qZnsVB0BoAolJjUlNrETl3V7rZjqNJyRIBjtl5fRalDw75/K859jhUQi/1HMHfQw9xBMbFw9Zk2KrZYOPD4YFGBlWOzmfJuM8d/OZL6vvJDZVJRYlShLsS9UgYNnU0qIxrdyjMUZO83ihh3UgYT/0T0/8/ee0dHdlxpnr90L713SCSQ8N6UQVkWjWiqaKrojaiipyhPyrJb2p3dc2Z2z85OT/f0qjU9o+6WWq2WFymRkihSFJ3oTbFY3gMF7z2QifRm/3jpAGS+TI440w7fOToi6kXGixcvXsSNe7/4Loe+WT7xfPSN+ZLpSlQ66LrPx+Arc6scH/l2VP58pLGqkKvkkulLxIrB0aJn9swKp382IZ1aKZlEpVGh0ivRezTMnS/irJGJKew23VvJ1HExLd3wH+Zz1/KRSmXTzEUXY/T+boaF3lDuWpHfKDVylBp54fry2mGp11B/lQOjR03/7+dWn1Jb87umA07MPi2HvzvCYn+Yxf7w+jqBUCzIbP0pxs+JKhpXXnklr7zySuG+2MAGNgBAY2MjKysr3H///fzwhz9kMHaK0dgFLtHdjqaAPMnAK+k5QwlbHqhmcWCFgZfnV3+76dRB4Tnxu/Z9zI6720gsOIV/NFJ0PpPJZKg0CmLaAm7HNfZa72+mMNVqiC7Fc17KArEimVzG+DsLyOQy7O1GPD0WTv54WJKooHNpUJtUKDVKSfLI8mCI5UFxz21rMTJ/0Q/xvH5YM0fJFKAQFKiNKkmSUgamWh1117g5/aMB4hJ84IEyD2oBTB9bLFvFKDwbK/tQVwYauxISooKPFFRGJRqzgNIg3ccASo2cxpu9TB9bZL4EGV9pUNJ1Xw0T788zeViaKBtejHPsO+XbBB8G558snT4kg+6H6/BPhhh4roQvUiaj+VYvgfEg4xIHFzIQyUHqsghKphoNy0Plkc6Ryel/voSqaF5g6eLvylMgBZEIee4X6/cZa0lHVZfa0DsEzucd4C1mdwEoNYqyfG7WJi0LAyGWBsPShxLSc5jeoUJtVqHUUPgbTbfD2anH1WXk9E8mWMyQmYrYgUoNxKPQ+/s5TBXq1ek1CxClUqkEcpUMtUWJfyya9+/r+6PlRhdqs5IPvjNGbGX1tfzfKXXQdXclsxeCjL61xMAr4ngr5PNaquzn/ORxoithNBoNr7/+Olu3bl1XbgMb2EAO/8//8//w2GOPsW3bNsbGxng19FOaVFupU3flCqW/++gSjL69CICz00DFZhNnfzlBfGX19yiTyUglUlnCSMN1biLLMc4/PSnp81KbBPEATwHTLD/emIjKuPDrcYJp8opCoDABSiYnNBcllLYBW27zMntumbkz/kxDc2Uz85QCtFY1YUcMkF7n82M+pjodywPSBAGlToFSKI+sAVBzjZv4Spyxd4qTFBLR5IcSDTjzk/LjRFJkqmLQezRlCTTo7GpiZZKi7e0mTFU6Bspoj3e3HVONrix/1ugbZWaP+ZAIjIfL9qdZmwx4dzm48PRISfKfwavFtdnC0CvTpclYCtDaBVamS9MnFFoFCkEm7mPWogBBKDwf5cxPpZ8vQyqMBhKc/H75BLb58/7ChKT8diig5RYP4+8u4M8/pJjPY8irQ6lXoFTLS4tfKMTsNcvDIQZfnpVUTiKZQiGIcXOdQ81SEbtVJhNTxzXd4GLu/ArzF1aYOZGeV4rEG1GI81nvc9PrhUsK+bzUaZ+XUrZaYSt/76dQoLEoaLzWwfSpAGPv5KmZKdbMSYkEnm1mHC16zjw1RXgxwei7S9lrq4tGmaw+zpnzp4EUn/rUp/i7v/u7gn3xrxn/6tO9FcKJEyd4++23xQWfFK8mnuJQ6IWi5aNRiPjjzF9ML5RrZM7yceZn44wfXhAJSoDRVyRAEoXD37rI2Z+LbMXWOyuLl4Xsx7ftsw3s+GpTqUdEaxWQl7Fon/vFKO/9+XmigZSYviyfaFlg5tG4BOquqqD7Pun0FXNn/Lz7Z+dEo6UMYRmlRoFCrZBOqZCH7V9tZuuj5aVyc3abaLurPGnmqo85aPt4dclyggG672+g9bbS8nnnnhwV07KVk+EsEEVrFTD7Sqc0CYxFP1QwUjBQVjq7Dwt9RZm5+sioLpXXZq21hNxgHk79cGh16rsiJx41LoHmG6vouLd0aghTvZ7uh2tWpUErBmuTnva7q7Iy9FJwbjKx60+bcUvI2edDZVQhGJS5eacYQSn9Go7+3RAnvj+SdU6sTQMHoK9QU3uFg857vOuurf2duV58B6d/Ns773xosOY5VeiVylaxwv+XJc9fttbPlM/VYGjQQTjJ/dqWwgzuZpO0OF2qHQHAqyqFvDjDx/vK6+jLIpGG8+Ptpeos5BvN+F5mNEgnEs0ZLKpFY56yZj07zQuhHHDr+LqlUissvv5xEIrFBUNrABsrE5s2bicVi7Nu3D4CxRC8vrvyQpVjxU/WByTDhxRixZXGOKjSXZdD7/BR9z4vfu85dnDQxcWiJw98SyRq6ChVNN7uLll3oDUJMVF/a+vkmKneLMrXF5nmVWYVCkKMscbolFoT3v9lHb5pUbvSVluzt/EQNDdd7UJmlCCEyTnx3IEf8KYO3KxiUqMtUlanYZmXX11uxNJaXcq3ljir03tJruEonp+O+Gsn3lkH7QR+tt1Wj0pW2Zd7/y/NcKFPu2eDRonOVZ3+mIkmSsfJtrwxB56OEyqwq6/1COqCRSJWlAGWq1KJzaoitlD6BFluKcei/XGDw90UCqXkOjYYDHjEtcBltbrmtkoqe8uyjppvcmOvLe2+bP1XD5k+VlzpHY1ejVCuQq2TZeUcqUDZ/Lsjhvx7EPyptIHXc6aV+rwOVpkA63YxzJZlEpUmidaiILcU4/NeDJdWLVCpQCgrU5iLOs7wUcj2f9NF1n5jOZeFCsGh6OaNXSf0+MQ3I+V9Nc+x7YwXrA9BViC92sV9Uouz/fREHcN7vloZDhBZiBa9l8EHwJd6IPMnZs2epra3l5MmTGwSlDWzgQ+AHP/gBAwMDGAwG4kR5PfhTTqy8Jvmb4GyEpZE80mARu2v41TmG35gXCUqAxlnceX/yR6NZUoPvCpuk72B5ULx3+13VbC4jnbzGqkJZiAC1BmNvzfPBX/cRD8TRWJQoNdL7daVGRuOBSlpvW+NDkslW+chWxsN88Ne9LJUIqGWgUMlR6pSobeX5OLoerC07lZuhSkPdvuJ2bT4cnSbqri8jbYASuh9soPba0qm9xt6Y5YO/7i1LQSgeTmLwaDF4Sq/h8UCcVLz4HmAdlCKx6aOGpowUeRkkIklSEQlbKm8cGTxa9GX0A4iq/Ee+XZqEpdRA661VNN1U+r1p7ALNt1SUlYpQa1dQt9dRuiBgrNKw7Qt1ONqL7xvy36nGrEQwKkrbXenXcP6pyYLkp3wojXIa9jppvs4paXeRTKJP70OG/jDPse+NSpIIAVRqOUqNYnX6uAJwdRnY/FA1pio1RJOiQkARUmftFRY0FiXxABz7/gSzp8V5pdAeWJNWsur/wxx9LxS2u/J/Fw9CaD5GcKa4z2sl7uelpR/y7tlXicVi3HzzzYRCoQ2C0gY2UCYqKioYHR3l//q//i9kMhm9sSO8Gvg5wcQakk6ePzq8IH6XawlKhdD3uymG3xD9Z4K5uM9pcSDIyX8cJhpIoDIo8F5iK1gulUyxMhEhFUuhdQh0P1yHs0M6hbpCAJVOiaqY7ZVZ3xJw6oeDjKUJLFpH6bhRzdUumvZ7EQzS/rSB5yfp/U16b1oGV0ljViFI+dHyYPRp2fyZBgze8tZl7x47Wmd5qb1qrnGXlQas+nInrXdUoyrRDyD28cjrpVPAAugcaoxlPlciWn7sDij5zv5HoBDkKMoPN5JMJMtSJ9O51JiqdCSiZahFJcQMQBP5aQaL2KPVlzroure2eJvzyD/e3TasTeX5VT3breg95R2+bLyxgtY71sSpU8nVxKP0f6uNCgSDErkgy5UpQlBCAcGpKCd/MEpwStrnVXOFg8brXKLPdi13IuNHT6ZAlkIwKUhE4dQPR5n4oLSylVKrQDAWmXvy5tXWOzw07RdTSEplVhJMcjw9YjrisfeWxAw2mWGxZh+cmXPDiwmGXp9jrNjB5LzUuYGJECuz0RwnqUBa3f7wMV5e+TGnz52ivr6e/v7+f5MEJQBZquzd3r9O7NmzZ1Wqnk3yK3AJBQgteR/Wjq/UE5gIc+Zn45Ls5dbbK7A2GDj9xDDLA8V3OYJVydZP1bMyFebkP4ps3GKygbV7nWhMKs79skjgpYByk6PLSMQfwz8ovdPa9fUWEpEk739zTc73NUOk+konI2/NlEW6Adj5p62EF6McL1Pyrhy03+sjtpKg9+kiknR52PyZBrQ2gXf+y9mSbd7yhQYEvWo14aUI6m/wMH54riylKAB7uzHHNP8nwO7/vY3wYrSs0/+X/Lt2lodXSkpNGmu1dN9Xz9TxBfp+U14w8KOGuVHP0vDK+ndbhN5bt8/N9IkF6RSAMjmtd1RibTLywd/2E5VICwTQ9YAPg0fLke/0E12QdswZqgSab6ri1A/6ia6UQRorNsfkBcntrXqa9lcw/v4Cw6/PryIarXu09LXqy6wMv7taEW3t77yXWPDtsTP23gIjb0gHyaovsxYuI5cXdMSoHQItN7k58aORwt9l+ncGr0DH3VUsDqxw/qkpyTq3frYGpUbOoW8WUf1I/85UK9B2axWj780x9vZS9lqhk2STDSfo6+8jFAqhVCp555132LZtW7Fu2MAGNlAC58+fp7u7m2hU/PCNWNmt3V+wbP5cVLnNyumfjhKciYkk8yLm644v1RNeinHie9Knm1pu82Cp03HsH4Zzqd8KqV+qoPMTPs7/epxYgVMxxew17yU2xt6WTm3i+5gd7047vc+OM3uyuDKOSgeOLqtkerhcg1L4rnRSucPO6Z8N4x8qL3BWCiqzio67q7nwy5GSijhqu4otjzQyf3GZC7+QttN0DhXdjzQyeXS+OOElDb1Xg6VWz9hb5aUJUelAbdMSGC0vXcNHjcYbPbi6rbz/170lSULt9/gw+fS8+/+eLVnvpk/XozELHypt34dGiSNSlkY9i31FUoqtObWlc6iwt5sYeV36vcnkMrZ/uYHgbITTP5JWLFDpYOvnmlgeC3H256Xtz4YbXMgU0PfMdEklJaDoHJMfKOu8V3SiHvmbMk5SyuWodGBvNeRUJvOuAVm7ZutnfMiUMjHVXIET9hkYqwXkChlLgwXS+xRJUdR4g5OVmUiO7F3kdx13e9A7BQ79zVA2nWShOi31GlpucjN50s/Qy0Xmu/TvWm91oXOqOfJ3I+uu5WNaMcqirZ/BwUEAbrrpJn79618XrnsDG9hAWXjsscf467/+awBkyOnRXINNWYDAkPc9bnrQS2AyzMXn59IBp8LOfO8eG5VbTZx7ehL/6Hp/U3YuVcK2T9fin4hwPpOGqogN5ew2YnCqGXipfMUWQ5WGZCwlffI8lWTr5xtJRhMc+660SqRzk4mF88vFyQpr5q4tn20gvBTj7E/LP11fCnV73SSTKYZeLt0PTbd6sdTqOfrtCyUJFq13VaN3a/jgv/ZKF0QMjiz0+ksqKWVg9Gnxl5Gq4X8Wtn2pmdB8pKy0czseb2Xhor+kT1FpULLtC01MvD/H0Cvlj8mCKHkEvTB0FVqiS5GS7zYD9xYz/vEQIam0qzI5VXtsohrZD4ZLvuO6fU7srUZO/GCEaImUOBqLkobrXJz/7QRxCcV+KeXvtdf1bhWtt3kZe39+vS21Fmn7ydmhZ6HXv7rf1thd1kYtjTe4GXt7gfEjEv5amQxXl57pEwUUXYupKOmhcZ+bc89MFVZ7S7dFZVSw6WAF8xdD9L80n66ysC3afocTjVnFkb8vbP9mfqexKGm/zcXY4WWm0m0WlVnWz+VT1afoGz7HysoKJpOJt99+m46OjoL1b2ADGyiN+fl5du7cSV9fHwBuuY9N6svXF8zzbVvqtVTvsdH720nCC+J3Wszn1XVfFZHlGBeeLnIwN+3X8u6y4dpk5vTPhrOKHwX9VwpouLaC4ddniBUjehTwldlajNKKiKkUtlYjdXsruPjcOIsXJVKSK8DWZGT+XHlxM1urEd8VLi78apTglHS623KhEKBhv5fBV6YKK+Lkl9Uq6H6gjvnzywz9Qdo2UGgVdD9Yx+SR+dWElwIQDAqMPn1Z6cXEysVD/h8mndtHCdcWMTPOie/3l+yz6suduDZZyrI/Gw54MHp1HPvbD6cA+lFC51YXHlsF1nyVQYGlziCdei/tJ+u630dwLsrFZ0uoWilg00O1+EdDDLxQ2v50bzGj1CpEP3TGJ1fIx53vrytxvW6vE51LKJ4SLh9yUfHIWqsVD/2uvQbZvV/LbR4Eg5KTPxiR9M+prUpUagUrhchRRWKDnh4zkWCC+fNFfOFpH1TNFVYs9TpO/XgspyJXwD+lsSpou83D5Ak/E+8Xeb9p1WHvLjPmGh1nfj6x7lo+AoklJitP0d9/EZlMxpe//GX+8i//slg3/JvAv3mSEsDk5CQ1NTXZgJkKNZfIb0IQ1tAfkykQYPMDNcz3+hl+tcTCYpXTcI2bs0+Mpf9WFiUw6CoEgmnSRNWlNkbenStJqNn0SA3R5Xi2/izWTDA7/6SFVAoO/cV5yfpqrnISnI0wszaFRJEhYm83UnOVmyN/3SdZb9eDtSwOrTDyh9LsXo1LYNOD9Ux+MF+WMwYonUZNAEFATCX1x9b1P4i6fW4qdzroe24smzbvo2qHtdXAwrnSD1e/38PKZKis+5dLUhIMcmr3VjJ+eIbAiLRRaPAKREOUTI8n1lvm+0IkwaWSrE/X9z/oAMpfjD9MO9QOdelnk0rXuKbcji/UM9+3Qt8zRYK2eYu4YICOgzWcfWqC8HSk6AJfc5UNU6WOkyWCf/lou9PD2ScnJNOY1F5jx7PFwsAfZiQdRqZagab9Hk79fILwTKRonalUCu8lFsY/WIIoGDwCgYlodoO29neCBaKLYgo7lVZRkCy1VlJ862drGH1nnunj/oIbv77ocQaSpwBwu91cffXV/PjHPy76bBvYwAY+HL70pS/xrW99K/t3q3IbPlXrunKpVApXtxHPNgvHv1da7rdqj5XgbIT5syuozHJiS8VPMutcKoLTMVQ6sDYZmS6RZlVXoaL11irOPT1KcHK10z/f2eO9xEbNFU4GXpmWJhYpkzTfUMmFX5dP8u2418d8r794vakUOo9A04Eqjn+/P0cwkEDjjR4sDcbyU7WlU0ZJQW1XEZkrL72XmE6vvFt/GGz/SjOpJBz+q/Keq9x2qO0qFLLS6csMVVqcXWYGXpos2V8fhqTk3GRGaxMYLsOuNtfrpNNb5GPtey2yRldst1K/t4L+FyeZfL/AOCwkLV0Cq9TJyhhfACqzkthyCdWnQnUVsZF8l9twdZk4/sOhrILbunbm9Yl3jwW9U82FX02tszEySClTdB+sZvCV6ZJKSxk4OvQoNXImP/BLkpR6PucjlUpx5G+k58Xmm5zIlXLOPTUlOnGK1alIUrHJzOQRP6hA0KuILsYKpiRRGSGW9h837Xcw+IfZwt9O3v18l1nEtIo/K6x8EIvFeDv6KyKEUCgUNDU18e6772I2l6estYENbEAagUCAtrY2RkfFfaBOZmaX+gBK5ZoTqel9UcvNLvxjYcYze7si6h9KDVRdamfwJZGIqjRAPG//nL/PEkxKosE4xMHRYWD2rL94mra0T6vpxgoSsRT9z0sTmTd/qhaZXMbRvx0oSiAnlcTRZSIRSbJwobxNvt6jofYqF6d/XiSlXPr5GvZ7CE6HmSi0Lq6B0qCk6/5apo4sMP5uecRrlEimtMvUW46SUTl1/Y/A0WWi8QYvfc+OMXuqjODah2iHoUpDoAAJbi0qd9kIL8RKppGD8klKKKFqj5P5c36CU9Jt0FiUJIFoMcJPnq1QNKVYAWz+dAMyhYyjf1P+wU9Jhe/8FB4foh2CRVWSoPRh3uumh6pZ6F9h+LXCvvW1Kkptt3kYeHmG0GyssN2VSuHsNGKt19NbzI9WALVX2Rh8fR6Sxe0uZ6eeuisdDL42t5qotKYdGpuSpuud9P5uhvBcrLhfMpXC1mZgeThEPCyOnfBivGgqOKVOVEQy+wQ0NoGpYwXmsERiVcqRjjtdjB9ZZuFiuOAcPhkb4ETkDSCF0+nk7rvvXrU/38AGNvDH4Uc/+hEPP/wwsVgMOXK6VJfiVhbO7GD0qqnoMdP7m1wsrFjI1takJx5KsDwcQqGVkwit+b7z4oKCSUF0OQEKsNToWCh20ChT3qCg4QYPAy9NE14b48ir11yno+lGL0OvTDEjteanUnj32Ms+aAaiqlJgIixJ1FEZFNReU0H/c2OF09StgbvHirPdzKmfDK5O51QMCkqWU2gVpVOGZcoWS6f3R6L9nhrkChmnfjD4kbZDTF9GLp1VEQhmJbZGEzMnF0lEpX0zH4akZKzWorEKzJworbCjdQmEyhSQKOe9gki6b7m1msEXJ5ktNA7/R2KOa9SJymmHQoBkSiZdtsy6AGwtBip32Dj/9FhxQmJeO23NegweDcOvzRVMWwdAKknDgQomDi+WVFrKQO8RUBtVzF9YKeqfk8lktN3lQa6Ucfon0j5zz3YzgkHJ0B/S80wxn5csiaVOz2K/eKBCMChEBa4CtpdCC4n0uYvKbUamTvuzf69Cns/L1qTDUqej/+XZgu8kkUhwIvoaM8lR5HI5nZ2dvP766xs+L/6Npntbi4qKCiKRCF//+tcBiBHhteSTHA0XkMOOwrHvDGUJStu+WEfXg4XTg0UXklkCUf0NLrZ+uh5LETm3DEFJ4xSo3uOg+57SKQlUOmVxmbM8nP3FSE4KUUIqb+iVGZGgJMC2LzZib0/LPBaZeG0tJtRGVcl0Xye/P5glKFXutkuWDS9GScaTxMPlza6bP9vAji+tD2quQlQkmhiq1dTvLyF5nJ5LHV0mrK2l83w13epl55+WuD8w8OoUUycWmDq5WLKso8vEJX/STs3VrpJlux6spe320qnLAPqfnSiPIPUhEA0kufD0aEmCEkDzrT56PttQVr1bH21jyxfKK9v/wgSjb60J1BUYs+33VLP9K82lK0wlqb9W7PtSBCVDpUDDflFWPTIr3QcN+93s+lIThqry9CoT0VQ25/M6yDPy4AKWRi3RABz9m0FJghKA2adHay8tc7r5ER/eSywAnH2yuIx2SiVumAZfmmPkndyJtmJpmeRKBQpBjskrFHUqpVIpNE41vkvsdN4pylQGJnL9sPZ3Wz9bw6b7a0mlUky8v1SUoOToNLDzK/U4OsTv+sjfDIkEpcRqI3o5Os+A9z2GZWKg2G63Mzw8vEFQ2sAGPmL81V/9FdFolMpKMfXQufhhXgr9lGBs/SZ0+oQ/S1BydhnY8aV6zHWFpYpH31oQ00cCmx6oofvh4mtkcFpkLzTfWkXdXhcqvbRZbKjQolDLS6b1HHt7fjVBqdi0GyNLUPLusdP1YAnbTwU6pwZrvYR9IpMRnIhy/DsiQcnSqEddYt4PL8ZEu6sMFWxjjY5dX22l6jLpdA8ZglLd9RXSaerIEYN8VzpLN0AlnpJvurF0CouRt2a4+Hx5BLBNn65n82dbyiq75ZFGGm4sne43MBpi4HelCUofFjPHl8oiKKl0ctrvrqG5jNTEvqtd7H68DUNVaQnwudMLTBydL0xQWoPtX27Ed1Xp1CDWZh3m+nTqwxL9VXO1U0yHVoqgBGz7XB3tnyj9/ACxcIJEJFmSoOTaJO6Pxt5a5PzTk8UJSqkUeqcKjUWFtU5aztvWqmPTg6KS7+zpFZGgVAwK8bn7X5zh3C/zTt8VSIELYlpHwaAoTlBK/67jTi++y2yodEAMkaCUQd7vrE06tjxcg3enGZJJep+ZLkpQ6jjoZfPDYv8Pv7GYIyitaeeg8QNOmV8iguj1+Yu/+AvOnj274azZwAY+QhgMBkZGRvjxj3+MQqEgmFrilfCPORt+d3XB9Pd5/tfTWYJS5z0eWm4pnB4sHoaBF2dJpVK4N5vY/GAtpppc7qj8+TG6LBKUlBqou8pJy82VxRssyyiMqMpKI3Hu6VH6fpeeYyRcZLMnl7MEpc77azA3SM/P5hodWocabbEUHennu/jsRJagZG83SdYZD8RJhBNl+7yab69i62caS5bLpLPzXlpi3U0TSAxVGky1pdMOV+62s/ULpe8/e3KZ0XdnWewrTVDSuTXs/EprSf8giLZkx8HaslKSjb87XxZB6UMhDqOvzZQkKAHUXuth08Pl+bG6H26k474yfXkvTjLy5mzp+1/tYvOn6pAJJYJnqSSebeIaW4qgpDQoqdojpgtaZRsUQMVWE9s+XVfSRyxWLKb+ixQhPWXmDpVJibFKA3E48/NxSYISiEF4fYUgOQ8AtNxagXuz+K0OvjJfnFglF+fEmVMrDPxhtrCS0qryYkoSnV1V2JeeTiGiNCqov8pG/V7xG1ilZLXGXmu/3UnnXR5IJlkaDBclKBkqBbZ+shJrvfixnH5yWiQorTnBH44H6He/xZnE20CK5uZmxsfHNwhKG9jAR4x7772XUCjEDTfcQJIkx2Ov80b4V4QSq4lCqVQK/1gkS1DSVwh0P1CF3lN4Lp3vXRHTRwKtt3poXmuj5REJosvi919zuZP6aysQTNKTo9oioDIoS3IwlgaCXPzdeI6gJGGqZQhKlkY9DQdK+3GMlTpMPmn7JBZI0PsrkaCkdQqSKfAAossxYqHyGLSCWcmmTzbg3CS9F80QlJybzCXvnyEGObvK29+23V2Nt4TPDWDs7VkGXy6PlNtwo4eO+0qnUwbour8W3xWl0whHl+JMfjBfkqD0YeEfCZVFUEIB7R+vwXdl6Riqrc1Iz+ea0HtKG5T+sRDDr08ze760Tdt1fy3uHkvJclqnMpe6rcQWwNltQjCL6dBSMWl9mY6PV2fjmKWQjCWJBePEipHr0nNHxt8+f2GF4VdnJAlKgkGB3qXGWCJ9sc4t0HxzBShgZSIqEpSKIf05Db4yx8Xf5cZ3sXijYBDTBgOSPq+ay+3UXWlHqRPLrkoRmPc7rUNF1yeqcLbrIZlk/NBSUYJSzcfstNwqfivzvUH6X0gTlNb4vKbUfZwyvcRMchRBEHjiiSc4fvz4hs8rjQ2SUh7+03/6T6RSKWpqxCDRLKO8GP4x9fcaabtDXPA9O8zs/FoD5gZxQlOoZGgd6eCLANu/XE9H2hnu3GRk5+NNOLqMTB9bJBlP0pRejAUDbP9SI533iwQna4uenY83Yq7RMvT6DPFogp2PN2FvFwNR27/USPfDYruMNWp2/WkTE0cWOP73Q7TeUcnu/605S6rZ9sVGNn+6XryPTaD9rmpM1ToQYPfjbVzy79qyz7z10Qa2fL4+2/5dX2+h5ZZKVDolVXvs7Pp6i0hsksnY8oUGtj6Wc07YW4zMnl9mZTJK7Q1udn2jFSHtvNn82Qa2fakpW3bnn7ay7StN1F7tpvHWSnZ9oxVDtTgxdz9SlyOPREGulGOuEZ1F3kut7PpGa/bZuh6sZcfXckEkjVUAxMnJ2W1i1zdacW4WP+6Oe2vY8Sc5AlHXA/VUbLWCANZmA7u+0Ypnt7jZbr+7ehXZqPmWKlpvE9+NwSuw6xutVH1MNA5a76jKlg0tRJALMjZ/viHb37u+0UrtXnFyarxJfFai0PfrcbZ+upEtGQePALu+0Zo10Oqvr2DXN1pZHlgmMBHC3m5a1d+7vt5K861iAKPmahe7vtHK1OkFxg/NsfkzDWz78ur+brtLLOvdY2fXN1qpP1BB6x1VdH+yju1fzZF1dvxJK+33iM4Rd49FbG/aGF3b3zu+1kLXg7Xi+283sut/b2XTZ8Xx036vb1V/b/9qM92fFI0fU50OwahkeUxcgNruqlrV39u+3MSm9JjVVwjIFBAL5ILHu76eK9vzxUa2ZPrbIKfhOg8ai/gNNtyY7u80tny+ga1pslM8mESlV9CYDmzW7XOz6+steWO2np7HGqnYYcWzzcbubzTTcpvoOK263M6uP23CUCmW3fRIDdu/1Ej9dR5c3RZ2Pt5E+8fF/vbstIjfcoO4OHc94GPbFxtYGlwhvByj7U4fHQfFss5NJnY+3oijUxzvnfdUsf3L9RCFD/7bAJXbrXTeJ5a1tujY+bUG3D3i+G6700PXfdW03OiBZIptj+UIk0afwM6v1GeJRm13V7Djy3Wc+P4Ih749QM/natn0kPjOBZtYtuZj4rfQeJMLrU2FOR2o3PqZGjZ/Ku08E2DHl+uo22vH0qRl95ca2PHVOhBg9M0FNn2yOlcWsWzDAScdn6jEd42V5gMVHP3+KNPH/HQ/VM3Wz4pzWiqVYvuXaum8V+xvR7OWZCrF4KszpFIpOu/z0vP5XPB++xdrab2zglQqRXAhglwlw9qsQyaT0XGwkm2P1mYNl22P1dJxdyX+oRUSiQT1+5w4uw2kEkna7/KI/Q1Eo1EWOs/zgfxF+i72UVNTw49//GNmZ2fXq+ptYAMb+EigUqkYGxvjt7/9LQqFgiQJ3ow/Q7/7ENserc2W2/RQNV3puTBFCoUgw+wT5yjfx+xsf6wuS7Dpuq+K7vT8Nns2gMaipPYaByodePdY2f6l+ixppvO+KjY/UsPpJ0YZemWGTY/U0bDfjalWh2e7he1fbkBXIZbtuKcK704773/zIivjUbZ9sYGeL4jzh2uziR1fbcScDvS0311FZY8VEAkVl/xpC+33iO23terZ8dVGbK16MbXonVVs+2ITpiotGotAzxcaaf+EOJeb63Ts+Fpz1jnSfEMlpFKc+alI2Op5tJGOe8Vn1VUI7PhaM56d4n0bD3jY/tUWWm6rpuPuGrZ8roGuh8Q+VZlV7Hi8JUs0UurEfOTExGubPlVP9yNp54UKdjzegi9NnLY2GJCr5KxMi6yE7k/WZddvEMvWXS/azLX7XHi22Wg8IP7d9WAtWz6XC9xs/2pLlmzU8UANVZc68ewW299xr29VQGzbl5tpvt0LMUilktg7zVga9en+rmbbF3M20LYvNtF2VzWThxaybXJ0ikGI5ju8bPtyzgbqebSR9oM+Zs8ssTQUYMfjLbi3im1ourlyFbl5y+cb6LyvhtG3Z5g4Os+Ox1uywbWGGzxsz7OXNn+mnq6Ha2m+zYtzk4Edj7dQfbkj3S9udjyeK7vpU/UYvTkn3I7HW6jdJ9qR1Zc72PF4i5jTHeh6uJYdj7fg2moR+/BrLTTcIPZh5W47Ox5vQZfel7TcWU08nGTsPdEpuP0rzTSlA8LurVZ2PN6SJSWZa3WkUqlsajyxv9NrcqeRHV9rxtoi9nfjgSrsjcZcfz/WSPvd4vi2NIrj29FlRG1TIVfKqNhiyZbd+rl6OtLfgt4rsOOrjVT0mKm7yk3bHVVs+2JufGz+dB2d94nfgtqmYvuXG/BeZqVii4X2T1Sz/Us5B9umT/roSu+pVDrY/qV6fFfYWZmIgEz8GxUgl4lzxAO5Aybbv1hH7VUOJg4tMX1mme2P1eXmiHur2PxJXzYYtv2LtdTvdVJzpZ2KHhPbH6tD5xbLtn+8ks2PVJNKpVBqU2z7Qi2VW628/+0BQosxtj2aC9y33uFhy6dzbWi41oXGJqB1qLA26dj2WC3WFnHv03yzi62frhJJPx/3sOtL9bTe5mahL4RSK2fb5304OsTx07jfSc9nfVibdNRcZWXzw16SsRQnvj+Kzq1i2xd8VPSI765+r52ez1VjqRfHgFIrJ7ocJxYU045s+7wP7y7xu6m5ysq2L4hzzcL5AKlkCltLesyq5Wz7gg/fZRZIJvHtMbPt8z5UOpEAqdIp6L4/TURIJtn2eR8116SD0t1LnLa8zIXJ0wSDQXbv3k0qleLLX/4yG9jABv7n4ODBg8Tjca6//noARuLneTHwAypvVFF3jbgfNNcIbHmkKjtnKTVyjFVpp7oSuh+oouEGkVhsqFSz9TM12Jp1zF9cIR5OUHe1M/07MTVm043imqaxK9n6mRosDQYu/n6K8HKELZ+pwVgt3qfznipabxfXNKVBydbP1zF3dplzvxin6lI727/SgKlWnLPaD1bT+nFvtk3td1VjrBSvbX+skd1fb86SFNrurqLjnmrRuS6T0/NoI7XXulCbBdxbrPQ81ojSIBZuvauKrgdy+86KrTZmTi0Rmo7i6jHR81gjmvQ623yrl+6Ha7Nlt3yuka6H62g8UEnVFU56HmvCUCU+W9NNlWz+VM5ekqvkGL1ie23tBnoea8oSpupvqGBz3uEuo1eT9c/oKzX0PNaELX2gsG6fmy2fz9lL3Y804rvciVIj9nfPY01ZO9L3Mdcq26rr/jra7qrO9nfPY014tos2kPdSBz2PibZVeD6KSq+g4/5cv/Q81kTlJeJcXrnLRs9jTSg1ckZfm6HpVh+d+WUfbaL6CtGOdG+10PNYE8lInPneZSxN+qx9CrD1C43Upm1OR6eJnseaWBoKMPyHKepu8LLpkdzav+WzDVmb09ok9mHVZXZqr3bReFNl1icKsPnT9TTeJK5FRp+WnseakKVjGXXXV7Alr783PVJH063i2NK5NWz7ShNtB32gFElAq/rwoVpa7hTtGo1FicGjYXFAJJBUX+Gi59Gcfdp5fw1td6f7WwNKnZxYUAyYVl5ipyfP99d+sJqOe3J+laYDHtRmcYxWbLPQ82h93pj10nm/WDYeSaCxqfCliWrOLhNbP1+HxiaWbb7VQ9f9Pkw1Gqovs7P9S3XUXS2WtbXo2fq52mxQvOlGN90PVeO71EblNgubPuXLBsHMdVq2fqYGU604vuv3Odn0UDWByQgrMxEar3PTeINY1uDVZOcIgLprHGx+xAdxOP3TMVydpnVzhLNTtIF8l9vY+kg1TQfcol/ooJfWW3NzxJZP+3BtNpJKpai92sbWz9TQ99w0x/5hhPbbK2m9Ix0MV8KWT/uo3CF+C5U7zVjrdegrxXmt9U4P7XfnSJNbHqnCu9uExi5nxxdq2fYFH0qDgplTK7Tc7KLj7lyQffPDXnyXWai7xoazS0fbLRWcfWqC+QtBmvY76DyYLptKselBL40HnKAEo0dDKpVi/NgyJJM07LXSfTBHNOi+r4L6vTZIJglMR1Bq5ZhrNSCXU3e1je77KkTyUSJB1yfcNN7gIDCXIB5JUneNDVuzFhIJai83s+nhqmy9S60XeCfxG/ou9lFdXc2vfvUrzp8/v15VbwMb2MBHAoVCwbPPPsuZM2dwu92EUgHeiD5Nv+UDOg56ssH4umudWduKFKhN4poCYGvT03VfFQqtWLh+rzNLTJo+tYzOpcazzYxCAGujjq77q7OkmdprnLTcXsnQH2bof2GS5psq8e62oXUJmHxauh+qQesQ5/2aK51UXWLnxPcGCc1Fab+nOrsfN1Sq6X64DkOl2Kaqyxx4tot2gL3dyK6v5eJbWqdA98N1mOp0IJPhvcRB5/216Cu06BxqWu+qonaf2H7BrKT74TqsTeK879lhQ6aAgefFwzitd1VTn/Z3KLQKuh+uy5LBXVssdD9cR9ONXhpv8NJ0k5fGG9NzuQK6H67D2S3O+0qNArVJhUIh1tNwwEPTLbnDTN0P1eFO+/AMHi1qo4JIOi5Vf72Hlttz82jXA7VU7hRtZlu7kcb9lVRdKq55tXvdtH08t8/vvK8mSx73XeWg6SYvri1pu+xKF+0Hc2t9+0EfvivSYyAJFZutGKtFW9F7mYOOe3O2VdvHq6m52sXSwArxUILuh+swpw9GeXfb6by/Nlu25Y4q6q6rYP6cn7nzy3Q/XIetWbQjPdtsdD2Us62ab/VSv9/D8OvTTB2dF/swTazK9HcGjTdV0nhTJd49dozVWrofrsOV9v042k10P1yHQhD9WPX7PTkxDKDroTo829J92Gyk++G67KGEun0VbPp0PZa0Xdx5fy3etN/NXKen++G63Jj9mItYKM5MWhSi496aLLkr06YMKclcqyclI5sauv2gj5o0uUnrEsesMe1n9u524Oo0Z8lErXdVZ2O9aqtY1lKvR6FVIBdkeLblSPctt1VRf504vlUGcczaWo34LnOJcdmHcu+x6WYPDfvTa78Cuh+qwdltwrvLTvPNlWLZ9BxRf4Obxpty9kfXAz5cm80sDQdJJlN0PeDLzRHXumi+JWfXdN7vw7PNwmJ/kOnjS3Td61s3R2TT0T1QRcvNHjzbzZiq1XQ94Mvrbzutd3pE0pI8SfsnqnBtsXLiByMEpkJ03V+dtSOr9tho/3iuDQ3XuzH5xG9L6xDoeqA6e1jCu9NMxycqs/fY8YU6aq6yE5qNkkyK+8mM38rTY6bjYCU6l4B7s4mmG13IVTJ6fzONQgud91RmfVWuTj2dBz3oXGKblDoloYUY8WACZEk6D3pwtollne16Ou+pRCFAaDpCMp7E0pD2ecnldB6sxNVthGQSW4OGzoMelHoF4eU4aqOSphvTRLFkko6PV2QPA1AT5Jz1VY7Pv82yf5kDBw4QDAa5/fbb2UAOG1ZoAQwODtLX10dHRwfRaJTvfO/vsNvstER3E1sxEA8lSURENtziwAoaq7ix2fpILQq1jPCSuIjFggniIZGhGBiPMt8bQO/W4N1jpfpSJ9GVGJFlsWw8FCceShEPJpg6s4TGokJjEWi+2cvKrjDRlRgxv7iBTUZSxENJomkp58hyDJlcRu2VLhbOBYgG4sQzjMhojHgoQcQfgyjEVmLIVDluWswfJ5nIMRDjoQSB0QjnnziH9zI7ni1KKrZamXx3gehSHLlStqpsNP2sFd1WZEoZRMU2RZdjJDU5FnEsFGfhvJ9UClZmwlh8euIR8b6x5dUnYaIrccJLMbZ9qQmlVkE8lDtlFl2Oo8irN7wYJTCepjLKxTbFg4lsv+QzxENzUcL+qNgPIbFfYuk+DC/H0QTjq+oNzYnKOPGYWG+m/8NLMXRp9vXoq7PY6o3EI5n+jor9nTZkIv5Y7l0IoDapcmzVKKvKhhfFstEonPjeAO33+lAo895VKEHEH11V7+LFENPzS7TfLZCM5541FowTSbc3mi5rqTWgNqpY6PMjU8jyysaIpN9jdEUcO4JRnn3W/P7OvJtMe0CG3iEu9pHFGGpz7mRVNBDPjo9kNE48mGD66GK6/fGsQyZTNiNNHotCLBBnJi2nGPFHV7Hdo8txEnHx+9v8mSZSyRThxVi2bDyPDRzz58bWhafHMFVrCS+v7kPSaR6jyzGUagWThxaQKcDTYxe/G8T2xENJouFcG0jBie8NYW3SU7fXTXg5SiqZSpdNkUiPiehKDLlKxuzpALOnA2z+dO2aOSKV7QuVUY5SI8fSpGOxN0g0EF89R4ST2eeLLMeILMcZfXs+3YeJLLErERFPpUUDCWo+ZsNSrScWzo27qD++esyGkySTScz1GqKLcSLLcc48MZEeP3FSyTRTOZU+7eaPsXAhKL6XlNi/qZT47BmFEZlMRjycFB2wlaJjNR5O5vrbHyMZVWQZ0IlIEqNHS+dBL9Onl4kHk8TC6TkiEEMmy52mU6jlorMWmD62jM6qJh7OjPcECkF8ttqr7Sg1chLxBNEA9D4zScO+iuzcGV6KoTIoORZ+DZwRZg7PoFarueuuuzaUkzawgf+F2L9/P/F4nE996lN897vfpW/wAv/1b/4Kc6SCNmEHUX+cZFycD2bPrVC1I0bUH8NYraayx0IsnLdG+OPZNW7wxRksNToiyzG6HxTTgMRWEhBLr3nLcRKaJMRg8sgy7i0WTNU6HO0mBl+ZJLaSzJ54iqzNry4HlVaJ0achthIntpIkFk6vRcux7GZ8vjdAxVYrwRmxolgwSWwlQSwormPh5TgqQ4yzPxfTr3Q9UEMqlUJlVhELxdN1p+esQBxtev7y7LSiNquIrIj1JmKpXFmZaItGAzHG35tjZSxI7T5P7sR+LEFsJU50JWOzib+ztRpovqWaqD+6Kud3bCVO1J/psxihuQgL/UFUuvSz5tkU0UCcaHrdWpmKEF6M0fdb0cEUWYySiCnzysaIpJ9n4v15tFaBpd5Aur/X2IaBnK1y8bkJ6vZWZO2p8FIchTZnf0QCMcLp9lqbjSgEebYPo8u5ZwHRFoguxxh7cw6dW4XepSEWzL3HaCDf/ogR9ccZfWNWfD8rcaIraRtuOZpdgyG3ztpbTaBI92Egt35n2gMQXYohmFTZfoyt5Nb+aCCRLpvM9ouxUoezw8z0kUVigVjWromuiPWmhzeRxRipRIqVsXD23WTqjQXFssmY2I7QVIRUPLcfiAZi2XQesZVEdozXX1+BsVpHKE/6PeKPEU5/H+KYTYj27XyMyaOL2YMHufcolk1FUsRWEkRDCU58v5+66yrQ2nOnr6L+mPi9AslEithKkuhinJM/HsbaqMfRmlOqiC7n5ohYTLRRo/4Yw6/NUdFjRtDljbu8OQJAqZZjb9Uz+MossUCCWDB/joiRUOfs4MhynGgwxuArs9jb9cSCCRIxWfpalAxbsvuBGlTatHR0jPR+MLefiSzFUajkOLoMzJ4MEJqL4R8PE5qNodTI0n0oplqLLMUQ9GIbFi4G0DpUWdWBeCgu1pvup2ggQXQlju8SKyq9guBMNGdHRtPvMijKWUf84jzVfFMFR/9ugMiyaGeSTEJMbG/UHwe5HMGgQKmR42jTMnt6heWRMKm8/WNsJUE0Pf5dm83IlTJiMbj4/CyKm5zIFbLsSbLYShz/XIBTxpeY/WCWRCKB2Wzm7NmzeDylT9ZuYAMb+Gjw3HPPMTs7y6ZNmxgfH+cHP/8edquLtvhuDBE1UX+cRFCch2bOBDBWiD6vtls9aCxK5i+KZOV4TJwrYsEk0eU4U8eXMdfosDZpabjWTWght5YmY6TLJlgaCCEYlESW47TeWol/LERkOZazVeJxosuJ3PodiCFXKai+1MHpwREiS1FSeYdfo8uJ7H2CM5FViuOR5RjyPBXMyHKM0HSUD37fi63FiFqvwFqvZeaEn8hSbNVp8MhyNGvXVO12otIps+tNNO2HQyaDVIrIUpTFgRVmYklWpsNY6/QkomLZtbZKeClKeDlGxz01aBwC0aUYicwasRzP2jwAK5MRQmnVZplKJvp3goXLLg4FSESSxMMg17CqbDSQ8z8CLA0FCS9Gcv3tjxFNryexQM5emj/vZ+7MMvkHl8U1OuOPFMvG0z4avVu9ytcT8ceIBtK2SiBTFnp/NU7dPjdKfd67Woxl7dOM/RmcCjM/F6DGqBLXk0wfLudsw1hILGvy6dG7tUx8MI9Sm+c3XIplfTCJSIqoP5Y9RR1ZihFejq0qm3nnybjo7zD7dBAX/WGRPDWh8GKMeLq98bjY/kx6mmggmvUnZZ4t00fxOIRmIsyd9aefNXfPTJsydvCmT9aRSpL7FlYSaVWydP8vxUmExXrH3p7HUqfP2gmxoPgdJTOun/S/Lw+F6XtuEvcWS9ZvGA+L9SZiyex7kwty+p+fZvrEMlV7bOL4SaZIRJLiHJG+b2QljuCPExiPcPbJcVpv9WTrTUTj2TkCQGVUorGoMNVqWB4ME1mKZcda/hyRaUNgMsJ4WqVMtFXEa6mYaJfHVuI4Ogy4N1ly4zsuvsf81I9Rf5x4NI6hUk00EMc/Hqb/hZl0velvOW2rRP1xYv4E4Zk4wQXRF0U806ZcHyGTif4ywNGsR6ES/87uH/0Jsd70xxMNxLDV62i6zsHkiRXCC/GsDRfxx1Fq5NmT/GqDEmWt+N9z5wIYKzRZH2NkOY7aIF5zdurROQVWZsIQhwvPzdJwtS07LqN+cW92MXIcv3Wc6cPTqNVqHn/8cf78z/+cDWxgA/9r0NbWxuTkJH//93/P5z//efomzvKdn4/giTZTK28TbQqFTDw4NBlhcTBIzJ9AMCuovdwhro2J3NyYiIlr2MwJP5YaHdFggsYbPQg6BZGlGKmkHEisUqtbvBjE3mrCWKWhYouF3t9NEFmMkYil7QR/zo8FIj9a51Cj96hJRFJi2XQ8NBrIxYcCE2Eiy1GCk6JNkYgmRd9PJpa3Eie8GGXszVnG3pyldl8FiXgSlUFBKpEispSz/6KBeDbGY6rTYa7Rs9CbVkhMl83EiOIrCSJLMcYPzRENJHBvtqzao0aWYll7JBYU7SXBKtB2u4+VmTDh2ZxPI7yUs2viwQRLg0FWxiOgEGNN+X6s8FIsu05Fl+IsDaww+pqoghVZE+MML+bWuNnTfoxePUuDYhwzuhwnrF1tU2T8YwMvTVFzpSsbu4kF4oSXVrc3ml5nTT4tarOQi0MFVtsqkaUYsUCchd4Ay6MhDG5t1ocaWYkRWczz7SzHiEeSzJ/1oxDE32bs61hgtc0ZWRTXx4otNhRKefY+kI5hLsXI92PFnWoUqrTttRglkvalxcJivRnRv6g/htqowtZiYvHiimgbputNRMR6c2M2jn80RCj9LsOL0Wwb4mGxbDK9ZgenI6tU8cOLsez3kYyJbUxEkji7zdhbTQRnclKTkcWcDZ2KJYgsRolHkiRCCcbensuS7ED0DcazfizxWePBBH3PjOLebsfgzvN5LcVI5I/ZRbEPz/xkGGO1BkerSHRJJVNEl+OrxIwiAdEGmj62hKlGi6BX5eaI5Xh2DwKgsahwdJiYOLwo+uqW4tl9lNgHuX4JzkTxj4eYOLSAzi2IdmZ67xNZjiJXiWVbb/OicwjMngtAApJR8ftMpu+biSGbfFqWh0MExsPMzEWJLCYQzJn+zozZZNanuDQUxOzTZm3WZGzNHLEitr9iqxmDW83iYDA7L5EQ7eJ4SPRrxYIJlGrR53Xyx2NiLHUJ0d5TpL+NUALkcpQ6OTq7CmOVmsW+EHPnA8jzOBSRpTjx9Jj1bLcgGJSkkgmmjvlRqOSotPKsHRlZjrPiD3FO/zpTFyeIxWI0Nzfz5ptv4nSWkUHg3yBkqWIJTjcAiHLzf/Inf5L9W42WXewvqKzReMCFUivn3JOTCOm5KZsuKi9vq65CoOmAh+PfHQJEJZPo2jyvadRd62T88CLhmSiGSoHAeOFygk0lOoejourL9KllonPS6ad6Hmtk4vA84+8Uzv8NIvvT3mak95kxMRVckeFSc42LeDTB2Ovl5ZhtP+gjvBSj/9niqaRqrnahMijp+3XpVB3Nt1Zhbzdx+ieDLA8UyjmQg2ATqNplp/+54vfOwOAVCMxEs2ngiqH1jipW5iLZtHbFsONrLSwNrHD+qdGSbWy9xcvQ69MslcgX3HZXFfFYit6nx6Qb+SFwyb9rZ3l4hVM/HPpI6jN4BRoPVHPx9+P4Bwvp4+XQcW8NiwOBkvmK9RUCHffVM/7+LKOvSZfd9Kk6Lv5unMCo9DdhrNXgH0wbIYVkDNMw1WkxVesYLTLe842enkcbUAgyDv1ln+S9ATQuDc0H3Jz4h5GiZQSrnI6P+zj982GiC3nSgcXSDwnQeYeXUz+RHh/bv1iHTA6HvjlQ/N4G6LynhrFDC0wdLS55KZPJqLnKxuDLYv8YPMKqlG35yL/WcIOT0TdmifgLzDMCCII4pzbd6CYeTjDwYk7yXCaTZQlPGodAeDYqSkne5OHMLyeIFkjHF6wb492+N0kkEgiCQFdXF2+//faGctIGNvBPiFgsRnt7O319uTmzVbGDalXTurJqq4qWmyo4+/QoseUUaquKyEJeGoI8x7TvKvFky/Arc6h0aQ5CgYwFKrMcz1YLw6+I84vOpcqmhVuL7DUVeHfYGXtrbpUzfC0qesy4t1g5/o+Dq++dZyOCaCskwgk++G8S64YK2m6rypKbCiLPZlOZVbR/vJozPxrMBgkKofO+Gs7/ZpzYUuFnXtvOyHJMTC1XAt5L7Sz0LhOcKl2v3qvJEmukytRe6eL0j4Yly1Vf7sC9xcbx7w+UfCbPLhvGSi0XnpJeL401OmqvcnHuqbGy+qkctN/jw+TT8+7/e/YjqQ9ENa1UUiR1ScHSqMezzUbfb8ZWj40CGu/NN1di8Go58t8vStZZdbkTlV7BwPPT0o1Ugc6sIjgr9qNUKkXfVQ4m3psvnFosD5YGHS23epj4YJHhbE764vU2XOdkZTrM5JHi6WHq9jqRK+Hi70qn2QPw7raQjCUl07Y5uww07HMxfniR4deK78Uqtplwdpg4+Y+l9g5qrLUCU0f8Yso2KNpXOqeK4EwMnVuFtUHP2LvLBVPFqcwqcYyroOMuLxd+O716zMtFR0z+nNp0o4vIYozhAul3Y7EYF13vMTw+CEBVVRWPPvpoNuX6BjawgX8a/Pa3v+X2228nmj5MYpTZ2K7cV1BZo3KbGbVFycBLc6AEpTKXLirftag0KGnc6+TcMxNiijeDMnsoaS3cm40sDQcJz8bR2JSE5/PK5dlImXRf8TA4Oowsj4aIriWRZ38mtqXjnmqmTy0xc3w5/+LqZ9ptx3eZkwu/HWP+TPF529FlQqGSM3VksXCBNb6ymqtdJOMw8lrxtdDRaULv0jD0Son1Mt3Oqj1Ozj4xhH9Y2qei1IBrq53xt0v75zQWJeFAvHi6qzSqrnASX4kzeVg63eumR+pYHgoy8KJ0+hGlRk7tvgqmji2UfB7fx1zI5JTVT+Vix+OtLFz0f2R+NKVBSeN+DyNvzLAyXsSOTdtWdde6CUyGVo/LInV2HvQxeWSeyQ8k/C9yGc23ehh5c5bQjLRtqnWqcmUkfF4amxJzja643yfPtmq/qxKNRcWRvyvtP1QalNRf7eDCryeLl9GINueFZ6eLzhtr0XC9i/6XZiTHcdf9XlRaBUf+VmL/oIS22zxMn1pm7sxK4bQhADIZ7s0Gpk76IQ4aq5LwQuGb51+r3GFm+myAeKDAfixvTq3caYZkivH38/pfLs8GIFVGJTF/HKUemq530/f7uezB2nyE3bO8O/Iy0VgEpVLJ9u3bef311zeUkzawgX9iHDx4kJ/+9KcAKFDRpdqDU7E+TblCq6D2Y3ZG3hCJOCq9InuQB1jl83K0G1BoFEwdWUIhIB7wLpDVSSGArdXE9DExnZZgUmTTwq1F/jVHu5HZM/51dlQ+jD4tnh4bF58dyxI2gXU2UteDtSTjKU7/SHrd8F3pYvj16ZLpsUDsq/prK+j//WQ2FVsh1O6rYOztGWKB0pV23l9LbCXO+V9K78VBVHUMzkaJLJQIIiKq8ZQqJ5iVeHc6GHih+HqZuW/lTju9vxpdnb6qACwNevSVWsbekE4hq7YKeHfZGX17muhSeemJS6H6cieuTRY++K+9H0l9ABU9NuRKGH+vuD8FQOsQcG2yMPr2nOTYAFHNy9pg4MxPpX2NthYjaovAxCHpe6MAwaDI9aOE7eXsNjHfu1K0jRl/mdYu0HqHl/H355k6UjotnmuzmXgwLplizdllQjAoGZPgCeTD0qBDrlIwf754nXqPQMstlYy9t7C+nXl2pLlWi6vTSO9vpe18pU6G0aNlsT8ECnEuK5iGDRCMCqL+BEq9AmuNlplzwYI+L4VWke3vur0Oxt5ZWJ8GLplEkQ4VJqLg2W4mEUkyfWL9vjGRSDDmOMG58dOA6PP6j//xP3LfffdJPtu/dWykeyuBxx9/nFQqxdVXXw1AhBCv8QsORV9YV7bvmUnOPSESato+7mPr5xrFVGlrEJyMZglK9nYDPZ+qpf7awiy6/t9NE56JIhhEOeZNn6wpWC46LxKUEKD6Egedn6guWC4DjUtApVOgsakly51/apTJD+ZFghKQljNZV27opeksQWnzZxuwNhvWlcmHwaPFUqeXLDP08nSWoFR9pTTLcPitaVYmQyUJSgBtt1fh3mLNpvkqBo1LoOvBRroO1pas09JgwNFuKlnu0H85X5KglIHBo8XZUTovpaFKJ6bz+2cMc4MRrUONXFl6yjFV60TlgRJYmYxy6M/PMfqqtGHl3GxG59RgrpMek/oKgc6DdaK8u4TBANBwnYfqSxzrvm+ZXLYuwDZ5ZJ6Ffum89c5NJnQVAuGZ6HqC0hrj39ZgRG1UYq3Pe54CwbfuB6pxdOghSmGC0ppA+sBLM/Q+N1XwWj5UOjmmKon8vckU9jY9nq0Wmm8SpTCzBKU19Rp9Al33VNN6mxuSKS7+drowQSmZYucX6mm/W5RB7X1mahVBiWQuJ23XvVVsfqAawQDBiQjH/nZwHUFpJjrGK4kneLfvTWQyGWq1mqNHj3L48OENgtIGNvBPDJVKRW9vL+fOncNgEOe5c4lDvBz+KUux1fN9ZCHGiX8cIbYsKg9tfqiallsqClXL8CtzDL8i2intn/Cx7XOFc7HHlpJZglLLbZV0PVCbS+u7BhnyUtMNHqr32DD6pHObG706Ma3aWqTTj2TQ9+wYfb8rQdCOkSUoOTeZab+ngN2XZ6/ZmwxorQLGWmnb69QPh4gtxdB5hGy6qWKYv7DM+KHSwS+VDqovddFw/Xqn21p03Ouj675cuq1isDUYMFbrMddL2z8jr89y+K8ulEUmcrSZsNRLPzOASq9A79Ziqf3nbXuZavRZyW8pONpMmOsMxGLSBCWAC78eL0lQQibH3mrE0VLaluu8u5ruh+tQ6aQJSlqHisoeKw03VBYtk8HicBD/WJiJI3lB1AJ2jSed8uPi8zOSBCUAs0+LqUorWcbaqKMznc53/N2lggSl/AD+zMkA44cWsgSlYueGNBZBVDIyFryc/W3bLa5sepdYMEdQWltv571esZ0q0ZYefWuhoLOm5ko7Wx6uwuBVQQxO/3g1KS+VSmUJSls+XUfrzaIK0oXfTDH0+nrH1vvhF3lf8yzD44MoFAoOHjzIyMjIBkFpAxv4Z4ADBw4QiUR4/PHHkclk+FPzvBL7Gccjr68rO354SSQoAY3Xutj0cG2WPJSPeCDOuadFgpLOpWLLQ9V4d1sK3n/qyDLh2TgoofNgdS5FE6yyj+LhHCGq9ionzTcVXxNkchlKgxK1SZVNDb+qzjzba/ydOYZfn5YkKAHMnlzOEpRa76zKpoTI1bt6HTPX6rHUSdsKs6eWs8Qb12aLZNnpk0ss9vvxj0sTegBq91VSvceJxiJNRFBq5HQ93EDLzVWS5QCcHWbsbaXX9uPfHShJUAKIx5PYmk3YmiQWuDQs9eXZNP+UMHm1mKp0KNWlfV62ZhP25tJ9GQ/EOfZ3/UweXpQsZ6jSYK7RY6qW7iOR9FRD0y2ZFGTFA801VzrxXeYo+H2vxeSxRWbPp7+fZKqg3WXyadDYRbKiFEEJQO8RUwJZfNL+6qYDbqyNOmQyGf3PrycorbWBBl6apS9NoJc6r602K9G71MUJSskkepcC3x4rtZeJ6WqyBKU1NpXGoqTzE5XU7RXLjR9aKkxQSqXYfH8VLTeLPrTx95ZWE5TSqd0A6vba2HRfJUqDgrg/ydknJtYRlALxRV4N/Zy3h18gkYzjcDjo7e3l7bff3iAobWAD/wzwk5/8hLm5OTZt2kSCGMdir/J6+CkCidWB/EQowcVnp8TMIgJ0fNxLzeX2gnXOnglkiQA1V7vouq9wDDERJUtQ8u6y0XVvDWpr4XkhQ1DybLNQc5ULvUd6XtY7NevtLlgXT+x7bpzBl0vbCsN/EAlKhkoNdfsK+/oy0DkFDBVa9E7pNg6+MEkskEAwKDB4pff4s6eXmTomTc4GQAG1V1dQnd6PS8F3pYuOgzXZ9GbFoHOqsTYZS7ZxoTfA6R8NlSQoAZjrDDjKsOXkCrDUGdA5yzAC/glhqtGVZR8aq3U42krHWAEmDs2XJCiBqNru7CjdlzVXuOi8pw5V5n0Xsb0UWgXVexxU77GVrDM0J2Zsmr8QSFeZKnhg1tok9s30saV1BKW15c21pePLWoeQTf272B8uTFDKe76ViSjDr82uJijJZevimIJeicYioNJJ29B1V7moucIhpsBL5AhKa226mivttN0ppm6LBeJMn/YX9Hk52vR03+vNpoMbeHF21XeU8XmhgI6D1fguF7/v8UOLTBU4aNAXPcEh9W85N34aQRD49//+3zMyMrJBUCoDG0pKHwLRaJSWlhYGBwez/1ZBHV3CbvGPzEcok2Nv0+NsN3Lul+Lmq3KXmfF3CixqAnQd9HH+F8NEA2Cq07A8sPrUTWbSaL7Vw8ypZRZ6VzDWqPEPFVaFsbcbWJmJEp4O4+w2MXNuuaQSUPvBavqenyqq6ASiqpK1Sc+R7wzkyq0ZPoZqNV331TN7dln6RJJAtk1SSlIAVR9zUHOZm9G3Zxh6ufTJKUeXidmTEieSBLDWG1g4J00cAfGZh96cJjxdgt1skBMttNEsAH2FgLXVVJJck99HHwWsrQaab6qi/4UJZo5Js2zLVVLq+WIT0eUYJ78/+NE1FEo+e8E+LBJQAxAMMqKB0lNdy21VjL4zy8pk6Y63txuYO7N6DOUH2BwdBmZPlx5jADsfbyIRTXL4v+apGOUbLTI5giFPmS2/fwoE9QRdiq2fbWB5LMSZn69RUMgzQjrvrULnFDj07QGxvnwDJa/e5pvcTJ1aYqkvtO5afr3uHhNTHyyDXEblTjPj7y2tuydyGaZaNcuD4vzVdqeHiy/OinPAmnoNXoHAVASi0Hp7BfMDQaaP5TmP0/UKNgFTlZrZUwGszTrcnUbOPTW1zjkWFZaZqe7nzNkzALjdbv6P/+P/4NFHH13/PBvYwAb+WeBXv/oVd955J/F0SgMlAjsV+9Gp1m+emm50M3FkgcBYFHu7nuX+QEElEdcmIwaPRnRmq0BrVhGaXUNiSSXROlR4d9vpe0a05QxV6qKKfK7NJqaPLZNKpnB0GJk9LR3osjTqsNTpGXwxT5ll7WZVBdsfa2ZpMMCFp4qTltrvrsLg1XP02+cLK6dkbDUVWQUnlU4uqai07cvNyOQy3v/L85LPkXsePYsSyo/WFgML50uviXqvBmenmcHfl3ZYlXqGfHj3iCqjkmSlvP75qNBxrw+lVllSbapcJSXXVgs1V7g488RwSbWpD4X8Zy9iT1XutjF3wU9kTqKT8oLJKl1xJZ8MdC4V7q1WBl8orVBkadSxeFH6mS0NOhYvFrlpno3hu8KOd7uFvt9PMXOy+LhUmWTElsvbKjfe4MTWZOT4D0eJLqzuo8x2W+tQ0XVPNVOnlrOkyfyteEYaXrCq8O2x0vfb6ex1WYH3otSmMFTqWOgLoncJKNQy/KPRgvXq3CqCUzGsjTqMVRqG0ipTa+s1eFX4R6OozCpRBeU3E6u+i0y9FVuNTB0V+65xv5PpU36Wh8Lr2rvSMsLJi0dZ9i8jk8nYs2cPb7zxRll9uoENbOCfBvv37+e5557L/l2n6KRJ2LyunKFSjaNVz+ArIjHR3qZj9kwBW0AJTftcDLw6RzwQR1chrFepTO/bKndbCIyHWR4Ko3EoRfJSAWe+mHokQXg+jqlGQ3AqnCUw5SPfAV+3z8XYe/OF1ZfS9/DusePpsXHqBwOEFwuroggWJd0P1DF7aonBQv6pAi5WKSUpEE9jN99SxfDr04y/U5oAbvRpS6oPlVMGRIWk2VMLhOekFWuUGrmYFrQMCBYllloD08cWpQsqKang9GGgdalpvaOaoVenSpLOylVS6rinhlgoXlJpsyzkr7klnl1pUGJvMjB1dDHv94WDNzK5DKWGgt/AWnj32Jg7nyYGlqjXVKNheah4pUafFv9o3vUi/iSALZ/2kYylOC6hGr7qGUr1jwa6H6xheSTExedW25H5NlD9XgfmOh3H/mEE4oXtLhBVMJdHwrnnKURQSiax1KdP8Mvl2Jp1zF8IZq/lnl2OzqUkOC0+QO2VNiaPLotzyhq7S2NRimmq41C1x0JwNsr8hbzvNk1MUmrEA6qL/WF0LiWuTpM492bum25vWBlmoeosJ0+fBESf13/+z/+Z+++/v3hnbmADG/gnxalTp7juuusYGxPXGYPMSo/ySgRFmpySmVvlMjzbzCwOhQjNRNF7BMLz8YKqK0afBoNTYOLw4nollzRSyRQKrYKKLWbG3hZtOY1NIFwkRmeu07E0EIRUsiwbQ2sXsNQZmDicd4BlrY2kgM57alkeCYqEpCLwXubA0Wri1D8OrkrLuw5p8gKAQpBLlm27uxqVXsmJvy+eUSIfeo+GlYnia6LOrSY4JZ3BA8R3YW81r+6XIij1DPmwNhlYmQhJk5Xy+uejQs2VLtRWgQslRBnKVVIyeLXUXu3m4u/GCc18hIHRMp7d0qgnOBkui/CFTIZCkK1Kq1YIKoMCR6H3XcD20roEQnNRyXYaKtWr4pb5e538uKStWU/dXlFZbCHPV7u2fL6SUKk+cm8xU7HVytlfjq1X2ErvpRRaBe13VTFzepnJDwrEn9NtVGgVVGw2MvbO4qo5bh0UoHcJrExEURmUCHoFwenCPi/BoiC6mEDrEDBVaZg8upS9lg+NVUFoXiR+Vl1iZ/jN+VXPnanXXKvN2sGebWaWhkMEp6PrfF7h6mlOTL3P4tICMpmM/fv388QTT6DVShMMN5DDhpLSh4AgCAwMDDA3N4fRKJ72mWSAF6M/4Vz0cK5gKsncGT/nfiEGlFpuq6DmCifWlgLMziic/L5IUNI4Bdrv8tFxT+FTTBeenmChV5xUOu+uoeexhoLl5s4ECM9EQSancX8lPZ9plHwuc4MeS62B+qtdkuWWRleI+OOrCUUZJnT6owyMRHjnL85mN/rO7iKM0nQVzs1mej7XSN0+d9H7jr46WzZByeAVaL6piq77a4sXiiISlASRlCKF80+NEp6OIhikP5UMQcm7pzCbPR+td9VQfUkZ+Scz3fwRCbvE/FGS8fIMm3KRjCfLNpbKQuZZS9gg9ddV4tvjQuOS7hz3Nkua3CNtMAgGcfyef3pckqDk2WXFuVkc01IEJcEm0Higkq6HfJL3zeDiC1Oce3pMXNAz/8tVDMCWzzSw+TPpUxCFCErJFDqnCkOFimgA3v3WxRxBKXOabY3TaHEkKOZ8Da+/ln0WXQpbk4GaywqM2bx6nZuM1F/jouGAOI+Mv7dU8BRdxTYTHXdWUXu1HZIpzv58fD1JMZlCsKjo/EQ1nXeJ3+i5p6dyBKU19W66v4qGveJ9F86tcO4Xk6uuh6IBXok+wRvB5zhz9gxms5mvf/3rTE5ObhCUNrCBf+a45ZZbiMVi/If/8B+QyWTEifJW4mleC/+SWGy1g6D3mSkCY+n0kXvdRU+OTR/3iwQloONOL90P+CjAeSI0G8sSlGqudtJ50Ie1qfDJkuljIjm68UAFTTd6Sir8+C5z4t5kEckhGazdpMYgvBBlaVCa6XHmZ6Mc+pZIUNJ71etViDIbsnQ8cPNnG9j82fXp8/Jx/ulRLvyqeBAhH10P1dJ6e+E+zCBDUHJuMuPoLH7aaGUsnCUolTpFEwsmUZlVkvUB6DwCvitc1F0jbedmiRjSIk4fColIkmTso7W9UvFUeU6TcpB51hIEJQDfZS5aby1iN+cpUri3iifUShGUVDpRjawUQanhBnGPsNgXlDzx3353JS23eoqrcOXZBcOvzTH0xpwkQanmKjtbH6nDUuJbtjaL1/uem+HQf+/PEpRSqVT2fxmE5+JElmMExkPrruU7Tmous2Jr0qN1rD/Rml9v5z0+mvZXIJPJCM7E8I9G19ULsPmRatrv9JJKpZjvXckSlNbW23anh/a7qkSC2VKMc7/MEZTy67W366m7yoXvY+Ipv97fTrM0GFp1397oUV4I/Yi3jr1GLB6jsrKSQCCwQVDawAb+BeDZZ58lFArR0dEBwEDiFC+GfsxA7MyqcoHxSJagVLnbQsM+N5aGAs7YOPQ+J6ZtUmqg464qmg64CqqtjL+zmHUGt99ZRdf9hRXCVyYi2bRwTQcqafu49L5bY1Pi7DTj3VXEX5Nex4LTYUJzkaIEJYDoYpzD/603S1Ayr1VLWrOWGn1atn6mEa/E6fr5834GXpwoi6CkNChpu6uGplulFSozwcOaq6Ttn9HXZgjPxVFqpO2uDEHJXoaCeON+LzVXFffx5SpN//9HJOwSCyZIfcR2VyKWJBH5iOpMpXLPWoKcVX2pndqr3WiKKLpmYG3Uo9ApShKUMopIY2/NryYorYGlQYetWfRdSxGUlBpoucVD6+1pVaa13/Oav3ufnabvd9KHELru89HxifS4LtJEpUGJ1qkkHoYj3x3KEpQK2V0ymYylkTDh+RipWHG7CyVUbDbj3WlZf8NkMvs/Q6WapgNufB8T55H5C8Hc9TyYfBo67qoUU7YBg3+YXz+npFIo1Sk6P+Gh6TrR1zb69lKOoJSnnATQdqeX+mvEcsHJKIMvza66bzwe5s3gr3nT/wtOnj6JxWLhW9/6FpOTkxsEpQ1s4J85Ojs7GR0d5ZlnnsFoNBJILfBa7CkORX5PND9nWjLFxKFFQmkiTP3VrmwGg7XwD4eZSKcJ9V3qoONuHwrteuWeRCiRJSg52o10HKzGtFYpMo2ldPYS11YrzTd7Syr8VPTYqOixZtMkAev9DQkIzkQIjEkTnsbemOX49/pJRJMIZkVxFaL0tNl4YyUd9xb2B2Zw8XcTXHxuQrJMBrV73bTcVl2wDzPIEJQMXi0mX3EfQjSQyBJWFIK07ZWIimmm1ql3roHKoKD+Og+e7SXikpllRVrE6UMhHkuSiH50zCeZHBLRxEdXZ+ZZy6iu9uoKavd5SpazNOghlSpJUFIIMmJ577sYPNssoIDQtDRByXe5nZZbvAgm8aHWqiHl/z1/YYWBF0WCUkZpaS1Byd5upPt+HwZv2kgscu+MgtrU0SWOf38wR1AqEMdMhFMEZyMECxHM8uKNrjY97k4TGov0YGy6wU3jdW4xHrCSyJKE1vq8mm500XKTh1QqRXAmkiUoreqfVIqqPVZab/ei0itIRBGVzRO569kDhk6BhutcVPSIttz4+4usTEVW3XcyPszLoZ/zRu+LhCMhdu3axfLyMs8888wGQelDYkNJ6Y/A4cOHufTSS4lEcizZOtppVHWvLiiTU3OljaF0+pDO+6oZfHmKwPj6j7X5Vg/j780RGI9SudvKfN9K1vjIR81VDsLLMaYOL2Gq0xKeCeVUVvLg7jERXoixdHEFc4OepZGVggSQfHWA+uvc9L8yJUkUqbnahaVez/HvFGAbp4dU3T43nh12Bl+eknS2bPpUPWd/OliWElHDAQ8aiyCZs7bxpkqGXxkv2B9ry7m6LfT+ZjSXzq4ADF6BrgcaWehd5tyTxVnB7h4LjTd4mTgyT/+zxY0cY62WVCyRDaQWg2CQ0/PFVhb7ljn7hAQbWYDdX2tjaWiFMz8pLUdYDspVUioXu//39pL9lym3NBTgzI9LP4e7x8LUB4u5fygQWNv9jVZiwTiHv9VXtB7BIKPnsRb8oyFO/Ug6ILvja03IZPDeX6xmfRdKUVJ/rZPR95eKqoSZ6jQ0XFfJ0e8NgpTTKx30a729goXBoKhUBLmFPc/A2PHVelJJeP+b/eL1Ao7fim1mKnosHPvOcPG0bnIZ3l0WFi6uEJyKYqgSCIxGV13P/NbepmfurEierL/eSf/vZwvW6+gwMHt2BZIp2j9eyZmnx9fPMXKZOFe+LM4XLbdVMPLWPMGp6Lrnab7FzdJIiKkPlnF0GYiuxFnuX+1Ei0ZDTLWcZXhkmGBQ3EzdcMMNPPvss4WfewMb2MA/e9x///388Ic/zP6tRsduxQFUqtUOfFONBrlcxuLFIBVbTWhsgujMXQOdS0XFVkuWtOTdY2XsrYV1ZAiVDmqv8dD7G3F9tzbpWOgtzMKo/pg9mzLO0qgTyRUFoKtQEZyMoatQYfDomD66JEnC2PRIHSNvz0qeDN/+5SZSKTj8V2tOJ+WZ++6tVgwVmvIcMirY9FA9vc+MEpwovJ7pHCrs7WZGXi+hEAnseLyFRDjBB39dfF0GaD/ow1il473/75ykulHPo40oNAoO/YW04pOj28SshK2XQdvd1Zhr9Lz7Z+ckyzXf7sXWaCxZrlyUq6RULtrursZUree9P5duX8sdVVgbDLz7/50vqSKlqxC9i8G1ZO48cl3DDW5c3WbOPDHKUn9xllLzbZXYGgwc+e4AsUKKFmm4Npuo3+dm9J15Rt/I20sUOHWm0oFnp53hAgScDNrurMQ/GRZTnJWAyqyi6TonZ35eXMWscqcF36U2hl6bY+LwEjKZrGD6kM6DVcyeW2LqaKBoehGZIMO73ZJtW0b5KHs9XbdKB2qrQGAsiqVeh0wJi72hdfWqTDIEg5LgRBzXJgMyhYzJD9Z/AzqngL5CYOZkAGO1GnuTkcH0/JX/PPpKFdW7HJx7Spw3vLstjL+7tO6+Y5wjWDGXVR52OBw8//zz9PT0FO3HDWxgA/98MTo6yiWXXMLIiLhPliGjRbkdn6p5XVnXZiNTR8V5puE6F+MfzBOayZvj03s57x4rC30BglMxbM16grNRwvPrFyFHh5FUKsncmRW0DgWxUKqgGpG5XkcynsQ/HEbnFoguRbOEjXxnfFaZCfBstzBxdLE4USSVxNFlwtFm4pyEL8a5yUT9Pg+DL02tVrxZMzc23+al/4UpSTWlDDzbrRg8Wnp/I7H+7LYzfXShpLKRZ7sV35Vuen87Jmk/Kg1Ktnyqntnzyww8VzwVl6FKQ8fBWiYOzTP8avFDhBliTXitUum6G4uqoaXuC7DtS80sDgTok+iXD4NylZTKxfavNDN7bpmB30k/x/avNLNwMUDfM6XtcGuzgYULeY7NAvZPz6MNxIMJjn9vsHjqXCVs+1w9S0Oh7F5mFfLq7X6oGqVazpG/Ke0LrNhmZrE/WPD7BfGba9jn5vQvxstSzKq+zEZwJsLcueLqrJsfrga5jGPfHS5qd5nrtHi3Wzn75ERxu0smw9asIzgXJTwXR2NXrlYTk8uzJCBjlSarsFS5w8z44cJpQ0w+Dctpv1ntlTZG35lfTx6TyXBvNjB1VPweq/ZYmD0TENPFyWSriEne3RZC8zHmz69grNKQSkFgjZJqPB5nsu4kw+NDBAIB5HI5Dz/8MN/5zneK9uEGNrCBf9749re/zde+9jVCIZG4Y8XNFsVlKBSrD2pr7CoUgoyViShGnwa9U71euSSVTCv3GEVVJcDWamT+nH99eigFeHfasqQlvUfNykRhZSBnl5GZE+K9pBSEBLOS6FIcwaBAV6ER1bclQtGNN1YyfXyR5eHivoT2e2pQqGSSWT2MPi1Gj5bx90qrFaGAphu9jLw+U1RFSqFVYGs0MHNSOjMJQOf9taSSKcnYJYjKQvY2Eyf/YUBSAKDl9io0djXH/+6iZH3Gai3+kdIKmt5LHbg6LRz9G2mfXOVOG+4ttpLlykW5SkrlwnupA0e7meN/f1GS2JN5jhNpkpsUBLMCmVxBZKF4zNa5yUzNx9ycf2pE7O9iSuQ7bbi3WDn9o8HChwzTtpfBq6HlVi8jb85m0zAWg0IAe7uZmRPLBdO7AVRdZifqj0uWEW8vQyGI72XwpeIHB811Ohqur2Do1RnmzvjFdhfwW9de42R5JJRTmCwElQxHk57ZtPCDYF6j8JaxYxWgtagIzcXQOgSUGjmBscg6m04hgEqvJLKYwOBVo9IqmO9db0OqDEp0DhVLgyEEowJbk4HJIzmVpUy9glGBe7OZkTfEecPWomfhQnDdfWcT4yxWDTE4OEAqlaK9vZ2nn36a5ub1++MNlIcNJaU/Atu2bSMcDvPaa4Gbd6MAAQAASURBVK9lg2MDnOHF2M+4GDuVK5hKZglKliY9xkotrk2WgnVeeHoiS17yXeqg8+7qghvNoVdmmTosfkytt1WxpciJ+KkPllnqFxeotjuq2f75wuUyBCVTnY6KrTbaby98Yi0Ds0+HxlJExSatrDTwwhSzp5dLngY7/p1+ooEk5kY93Y/USZY11ejRu6Xzofb9RiQoWZsN1EioQ/X9ZpzzT41IEpQAAmNRViZDTByVDmhMfbDI2LuzkgQlAP9gqCRBCUR1ppXJEPMXS7CtohCcjbA0Wnwjn4FgoKT6UNkQRAJXOfdcmQ6xMFjiOQQIjAaZO1c6iAisJigVwYXfjHHxBWknUTSQIjAWYuxw6YDVsb/t5cyTqwlUqxSUDNB0i5gjuf/3M5JpDO1NRtQGBUZ3kZNxMjmenVbaP14JwLlfTuYISqlkQZWikTfn6M+kyCliiBi9GtQGJUKhHNGZ59ClqL7UTtON4rOsIijl1e3dbaH5Jk/2JH3/72YK3rfhBhdNBypwdhkAxIBfga6p3GnCu91G7V7xlOn5pyZFglKB57E1GqnYbAFg9mRgFUEpGg1xSPUcr/E0586fw2w2s3fvXlKp1AZBaQMb+BeOH/zgB6RSKW655RYAIgR5NfEEb4R/TSyWc5AvD4VZHBDtH2e3GVeRXOHB6ViWoFRzlQPfHju2Nv26IEAsSNap795qpvW2qqLqiSOvinaP70oHbXdU4egwFr73pNjepgNe6q9xi6o2RdIt6NwqNBYBg0f6NMbFFyYZfLnAupenejl1ZCFLUGq7qxpbe+H2AZirdGitAtb64mWCs7EsQanxgEdSiejMz4b54G9LOzkmjy2w0O8vSZzpf3GS878srfhUDkEJYO6Cn4WLgZJqSstDQZZHg2WpLumKrfP/A1DbVWXdc2koiH+shJQRsNAfYGlopaw0d8HJ6HqC0hpcfG6KkbfmJAlKANMnFlkeCUoSlEBUKDv31NhqgtIaVF1mQ1+pIhZEkqAEoHMJWGoKKNtC1s7ouNuLzq0ithRbTVAqpPjx3iJTJ/xMpPdkBQNhKlHBw+zTFw2UAbTcWEHVTis6p/iC8wlK+XV3319D662ibbjYHyzoNAHY/EAtrTdVkkqlmDrmL0hQAmi73UPtx8ST+f6RSJagtPZ53J0WzLXa7Hgee2dx1fU55xAvhn/MmfAHjI+P09jYyNGjR5mZmdkgKG1gA/+CUVVVxfDwML29vVRUVJAixbn4IV4K/YTh2IVVZTOqtxq7EluTHkdrYdtr7K2F7BxXe7WTllsKn1iePe1nLp0+rvlGL933FfZRLfUH8Q+Le8GWW710HKzNXpPJZdn9eoagpLEp8V3upPG6iuIPLpNj8unROTSSKj8zx5cZPzS/mqAE6wIWF54aIx6Io3GoaLldWs3bXGfAUClt742/M0c8nETn1uDZbi1abuL9Bc78bKhk6rN4IM7ixQCzp6SDI4HRMEOvTEkSlEAkJ5UkKAHEYfFigKXB0r6spaGAZNAyC6WYbu6jgsZeRl1KWBxcYXmolIykjLkL/tI+vjRWEZSK4PxTYwy8UiJNchzmzgeYLvZ+84JNJ344wrmnJYhgSrL+n8nDS0UJSgCmKh1am4DBpV5/MW1Xmeu0NFwn+m1H3pjPEZSK+LOGXp9j4OWcelIh6J1qtHYBdZHT+TKZDJRQd42LuqtFG2hdusM0CclSr6X1tgoqt6VP0h9aKkhQcm8x0XJLBba0wubgH9YQlNK/MdeoqbnUllVZGn1rUSQoJZOrCEoA7m4Tri5xHvWPhlcRlOLxOMdVf+CV2M84c+E0er2eT3ziEyQSiQ2C0gY28C8cn/vc5wgGg/zZn/0ZarWaBaZ4JfELjkRfIZGnrBSei7GSPkjmbDPi2mQuWJ+o3LMIgL3dSN3VLsx1uvXxxgRZgpLBq6H19iqc3YXrnDkp2hW2FiNtd1VjqS+8x86k2K263EX93gpRVakIqUOhVaBzqdE5peN+gy9NMvSatB3iHw5lCUreyxySykZqk4DOpcEooQyVCCWyBKWKHhsKiXBY7zPjnHuiDB/VuSXmzy2XJM4MvzFN76+lD/0DZRGUAJaHVpg7u1RSTck/EWLhol/yWTMQzIqPTJ1JZVCUdc+VyZBoP5ZQSPKPh5jvLd3PANGlhCRBCWDm+BKDL06W7O+FvgDzvf7iKuhp2yswFubskyOSBCVbiwGtQyARheljS5LkI5NXi9GrLVpGJpdRu9eF1i7Wl09QKvSbpYEgY+/OiQSlvHavhb5Cg7HY/iWTVnubGd8VDjQ20bbOEpTkslUqSy03VdC4X1SJC01H8I+GC9p8rbdX0rDPRSqVwj8aXk9QSj9P/V4HNVeIscaoP5ElKJFcrchkrtXhbDOidYgDcP78yqrrQcssr4Z/wdHYHxgZGaa9vZ2+vj5Onz69QVD6I7GhpPQR4le/+hV33nkn8Xhuc1NNI62qbavKCTYhS17Y+vl6wvMRzvxs/ekdQ5WAQq1g6WII7x4rapOKi8+u33za2w1oLCrG3l7AWKNGZ9cwdWT9xFax3SI6qt9fwNygJ+KPEZ5eP/G6t1mYShsv+f9dDO4eMxqzwNArBViX6eFVu9dNxVYrJ/+xv2g6rfa7qzHXGzj63YsF27UW+f1YCNu/0oxCreDd/1T6VHrHvTX0PjchWZ94U0qmIiunbeZGPe131TD+3mxZaew+Kuz8eivJaJL3/78LkuXKUVLy7LZRf42HgZcmy5Il/6iw6xutBKcjnPheWsWrgHFbqv9zBcm9zyKBYRCllUcPzeIfKnwyIGPYt93lxVKn5/QTwywPFJbGXtW2YuMp3ZZNj/jQmFW8963e1eXy2tp1fxVqi4rD3yqeQ1mwyqm/ysW5X0oTthwdBpaHAkQDonpBJn3RWrh7TFnCVMttbs4/VcApJoDvEhvDr86DAI3Xuul7Zn05U52a6t0OTv9EnAO9uy1iPto1sLboaLqhgvO/GWfpYhjBqsz1Y7o/AtEAh/gdWoOaQEB06F1yySW89dZbks+9gQ1s4F8u9u3bx4svvpj9W42WHYrr0GRyj6U3JSqzSDqwNumo3+fi/K/H1xMwgYqtJiaPiPNb6x2VDL8xlSUT5aPuOhcDz4vrt/cSG2Pvz68jeqSSKRr3V9D3rDj3OrqMzJ4sECRSga3JwPyZACqzCp1dxVKJ4EXTTR4GX5qQTKm17YtN+MeDnP9FkRPiKtj5pRYCE0FO/0hCwVBF9tky/VgIlkY9bXf6mD6+WFKlyVynw9lhpu+35ak5lSTRqEClkhMLFnc8dN5Xg9ap4f2/lFZd+ijhvdROzRVuzv5iOJvyrhDKVVLa9sUmZApZSTvuQ0MqzdvVLip7rJz4x/51xBnxt+IaLDU2ViHvfRY78a91qKja46D31xLjI33fHV9pILIc4/jfFx/D2bapZavH0ppUtzq3iq5PVDNzxk//82vs83RbdW4VHXdVMfrOfJacVAhVe6wEJiIsliBsOToMzJ4WiXH2Jn02IJ8PnVOFTAUr4zHcm43EwknmC6gMuLqNBCbCBGdieLaZCUyF8Y+st11rr3EQnI4wfcKPuU5LLBAnOLP+3bXe5kFlUHLyB6KTVWVU5t5xuj8uRI+yaBjDH/CTSqXQaDT8/ve/57LLLpN87g1sYAP/MnHixAmuvPJK5ufFwI8MGQ3KTdSrOoEcaUBpUGZVg9rurCTqj3Px+el1xAONTYlSpyQwGsbWokfnUDP61vpT73qPgM4uMHNyGY1Nic6hZv7C+nnQXK9DqVEwd8aP1qkiFUsRXoyvc7pbG/UsDK5AHKzNehYK1JVFKompVoveqWHi/eIHm5ybTPguc3H6Z0M5gs4ad6vvYy7cW62c/EG/NIlHCcRX92MhdN5fg8am5vA3S9sFdddXMPHOrGQqu/x7l0KptmnsSrrur2fs3bn/pf6iLZ9vJBVLcuw7/ZLlylFSMtfpaLurhoGXJso6JCcJCVtrLbZ+vpGVqTDnf5kOShbwVSk1EI+z6l0VtKvKfJ++Kx3MXwgSGJfOG1d9uQ1Pj4WzvxjHP1K4bHZsyGWr77/G7gJoutGNqUrLB387sLqdec9Sv8+J0avh+D8UD/oqNVB1iZ3BV6THmtGrIbwcIR4Ac52GpZEwqdj6NHDWRi0LfaHsM4+8XkCNQwnuThNTab9Z1WU2Rt9azF1PE5M0diWVO6z0/15sm71Vx9y54Dqyk86lpOlABf0vzOIfDaPQK7LfWKZd4XiYD2IvIjcm8fv9yGQybr/9dp588knJ597ABjbwLxf/5//5f/Jnf/Zn2UN5FpxsUlyBsIbJodAqSIQSaO0q6q910f/SjJg+ag2pwFKvy+5Rqy6zM3NyuaCCkHurmanjS5AQSRLzfYH1hJBUEs8OGxOHxDnS6NNm082uRUbpRyGAxq5mpcR6U7nTxtTRRUlySdvd1QRnIsVjawrofqCOwGSYfikflYLss2X6sRA0NoGOgzVMfjDPWAnbRmMTsDUZylZzKicdmUKQS/ZHzdUuzDX6XMzsfwEsDXoaD3i58JtRlgeK+z7KVVJqvasKlV7FyX/4X/cMtjYjNVe4OfeLYUKzxeOJBcdGIfuujPep0Cqo2GZj7M3SNnL3w7VEl2Kc+2Vxm1Vq3GabKpchGBS03V3N7KllRt+eW3cdQDAoaLndy9h7C8yfK37QwdasJ7aSwD8WXm+r5s07xhpd9kCJ0afJ/ncWchkqvQKlRk5oLoaxSo0MGcvDoVX2IIDRqybqjxFZTGCp0xEJJgjlp5ZL25rObiOxYJLF/iBau4pEPCmSotbYot7dFnQ2gd5nxTlEoZbn+jF978nEECPqUywHl0mlUlRXV/Pss8/S2dlZtG828OGwoaT0EeKWW24hFovx9NNPo1SKjMAR+ngx9jNOxN7JlltLnsj4LQSrEsGQ+/fAaJSli+LC7t5kxVlEBWDuTICxt0VnSdN+L/X7KkTywxpMvr8oqi/J5LTcUsWmBwurFmVIScZaDQ37PHTc65N87uo9rpI5TyOBGPFIoihBCeDMz0b44FvnCU9HEWyCpOKPoVpNz2cbaft4ccWn49/p49SPpR0TIKZfM9XoqZdQXQKRXLL7a2203yPdH823VtHzuUaMtcUZ2Et9K4QXI6xMl0gcD7TeUUXt3sI5hvPb1nhzJYJB+pOePDzP6Lul07GUg4WLAaZPLTJ7XvpUXs3VLpybCzPvsxDEtH+muuLM9gxWJsMsDKQDfUUcPd331rDzT1ok69G4BHZ/rZWW26RPMgoGsDQYqL+m+EnLjNPz7BNjXHhmvDhByapk6yO1dGZOgRYhKFmaxH44/t1hjv5NcYISQGg+SmxF2ghpuMaNtcGA0Vf8mxIM0Li/graPi+O7GEGp+RY39de4sLeJpyQKEpSA7nuq8e6wIVjlEKUgQQnAs8WKsUqLoUps21qCUubfM9+Kzi5AKrlqHg0L84w3Hedd2TMk0tHHK6+8klQqtUFQ2sAG/pXjhRdeIJVKsW/fPgAihHgj8TR/CP+CYCxHCskE1tUmFTKZjEBapU1XsVqWJkNQMtVqMddqcXZYCt43Q1DSOlRU77HTektlwXL5BKXmA5X4rnKsLxSD+bTcbdvtlbTdUSWplmOu1+FoN+P7mHSu9OhKjNBsYXJt5r5H/vuFLEHJXGwNTsfQOu6rYetnGlAVKbbYt8LZJ4fLSiPn+5gLe7u5pCpQ8y2V7PxKKyqdtH2z44sttN9TK1lmaWgF/0jpk/rGGh0d99WULOfoNFG5W9r+nT27zPjhOQKTEu/hQ2D07VnG3pV2YqjMKmr3uUv2me8qF3XXS6hIpBGcCrEyEylMUErDXKtj22frCo/vPLR/3MuOx5pKvvfqSx3Ymg1oHRIF006PM0+OcPwHxQlKLbd52PpJH2q7kCMorVGj1LkFVDpRvejI3/UXJSgBBOdjxMMJokHpiF/lNiu+y6XHR9udlTRe60JtVUGMggQlgM5PVNFyQPzep475CxKUVDqou8ZJ/bXinmHi8FJBghKAq8OEO33SdmkgtIqgpNKx6huXycj2Vz4JLdAyxFH97xlKnmFpeYmmpiaefPJJgsHgBkFpAxv4V4zu7m7m5uY4fvw4TqeTFCn64sd4IfRjLkSPZsutIq/kbdmVGvF/GYTn4wTSaZRcm8y4NxX2ea1MRJk5KdpotVe5aLjBs6qeDJb6g9mTvk37K+k4KO5t15I3FvpEgpJgVtJ8YyVNRdSc0j+m+lIn3kuk17h4MEEsGCe8mLdervFXDL86zdH/3kt4NoZSIy+u0hMX1YC2fLqB+huKr9XnnhjizE8liOZpaCxKnO0WPCWeASX0fL6JppsK27UZVO620/PZRgze4moH4bk4/vGQtC2aRtUVTip3Sa+ZSo0c76UOlAZpZaOxt2cZfeej8XmtzEQZeXtGVNmUgGuzBWuToXiB9Dhovs2L3iOtEAEZ1aj0Wl/kMF3L7dX0fKZ+1b+tJeMpDUq2fa6eumukfZ0owdVpouqS4qpcGYy8Pi9NUNLA5gerabo5PW7jrFcBl8swVIrqSr3PTHH874sTlED0eUX80j4vz3Ybrk6T5JhEKRKwG68Tv/fF/lBBglLlTgtN+yuwNmqzz1wI9dc48V1mQ5NW7ipEUAKwNxuwNegxeETf1lqCUmYeiC7HARmCSUEqtTq9ZVi5wkTDcd5MPMUKSySTSW666SaSyeQGQWkDG/hXjv/7//6/iUaj/Pt//+9Rq9UsMsNriV/wbvR5wokcISgTWFfp03OKX5xDBPNqiZsMQUkwK3C2m7A2FlZBmjoiEpQUWgV1V7uovdJZsFyGoKRzq2m+2Ytnm61guYzyTM1VFbTcWo1CKO6vUFsFPNvtVPRIr0uR5TghqUPqCTj9o6EsQUnrLBIXSS8xvitddN1fi0JbWBYoPB/l7JPDJQlKABXbbLg2W0uqAnm22dj8SAMqg7QUUef9tTTeKG2f+cdCLA2U9nlpbAJ1+ypKqh8ZvFpsrcVV1QH842FG3pwhNPPR+LzG359nrIQdpxDkuLZYir6nDOztJjw7Co/HfESXYiyPrkgSlNRWgU0P11PRs6a+NQcSvHvsbHqormTbXN1m3F1m1NbSip3nfjlC7zPFCUreXTa6H/Ct+9bzIZiUKLQKooEEp34wWJSgBKL6WsQfJx6S9nl5L3GI/StBUKq6zE7T/oqsumUhghJAyy0V1F3tgGQK/3BYJCithSxFw7UuqtJZDRYHggUJSgAVm80420TbPDQXW0VQUgig0KbbnELcq6Zt1XyiV9A7zQnTS5yMvcliYJH29nZeffVVhoaGNghKHzE2lJT+J+L1119n3759RCK5SdqMgx2qawqW3/yZWjQmFe/+eWFGqcqiIjofxb3VTM2VLs78fGi9CoAA7m4zU4eX0DgFmm6o4ORPh9eRIYw1agweHRPvLmDwqtDa1AXTntVc7WLivWmiAWlVJWOtBv9gGHODHsGoZGatRF1+uoDtFtxdVklW7/avNqNQyXn3z84VLdP1YC0DL46XTJ0m2AQ2PVhL33PjLJwr7FwwVKsJFHHk52PTp+qZPDIveYpK4xJouqGSkz8ZLEt1qRR2/mkrsWCcI39dPD2Kc7OZ5hurGH1nhqGX/nhlpnKUlMrF7v+tjehKnA++VZwp7d5uoWFfJQOvTDLxThkM8xKn0LyX2NG51fRKyVQLsPmhevpfmMwxvYs4gAyVQjYNYyFs/UI9i/0BBn5fPIdrBh33VDHy9mxhIpNMTsutbmxNRs4+NcbiWpnCdPtcm024u02c/IGE3KcANZfZGXpZNDpMdWqWB9aP8XxVpJqr7EwcmiO69jMRoGqHldE3F0CA+iud9Bd4Vu8lVrQ2FX2/nUYwgKnOwOzJ9d9c531VKLUKjv2dOL4Eq5zowvqTAJ33VmGo1HDkv/cR9a+/PhEb4jTvkkKcX2w2G5dccgnPPPNM8X7ZwAY28K8ad999Nz//+c+zf8tRsFl2BXbV+gCP2qZiy8M+5noD9P56PZFSZVYRWxTnze5P1hKei3DhV+sJOPZ2A3O9AYhB/fUuAhPhLNEzP1jgu8rBcDqVUuVuK+OHF9YpBKl04NxkZfydBVAmcbQYmT21ngxs9Onwp1NeVF/uyKZbK4aOe32Mvz/HwvnCDgtbq4GWW6qYOLrA4POFVffM9TrcW6xckDi9k0HttW5MVTpO/H1xW0/nUBEskQrE0qinarejpD3ScIOH5bEgM8el05SUA+8eO9WXuzj35DCLfcUdPFu/0IhCo+D9//LHKzOVq6RUDmquceHd6eDkjwbxS6Qd2fzZBpQahai+8CFO9xeEIKf9zip6fzUqqe7l2mLG0WbkzE9y9ksxNSVdhaqgihmArc1AzeVOTv1wgFhImoylr1RRfYmTc78oYhPKZez4Yh3RlQTHvlNgnKXb13F3JeOHF1noK/6Ajg4DoYUIK+MxDF6h8B5FBY5mUT1JZZLhaDUxcWj9uHV0GFiZihCajVGx1cjySHid2pFKB437K+l7dpxYEJxdBmbOBdbNK8ZqNS03euj93RRLA6Hiqlcq2PmFegJTEU7/dKxgqpXD0ZdZQJwvdTodgiDwxhtvbDhpNrCBf6Po6+vjyiuvZHQ0N6+75NV0yC/JHtzLR8utHoyVag5/e6CguktGgcVYraHhOje9v53IpjIBRKe3Emz1euYvrKDUQN0+DwMvTKxOrYSo0mTwaJk97UdjUaJxCAUVk1ybTcz3BYkH4qKqUv9KwbbpXALBqTBal4DGIkim4jLVaqnYauPCU2mbqYDbtevBWtRmgcN/VVwFqfGAh7FD84SmpX1VSo2cjntrGHx5iqUip9g1DlVZKdiabqkUU5JJpIhTauTUXVdB72/Hy1LpKYUtn20gFkpw6h8Hi5YxeDV03lvH8BvTjL/9xyszlaOkVC56Hm0iFoqvt3vz7CujT0vbnT4GX56UTOmR+620fWNrNmCo1DD86vo9QNa2UkLLTR7GDy+sDwqtgcaiFFW2ity39c5K/OMhxt4qriaWQd21TmZO+7MExFVIn1r37rBy7ulxlgcLB6tMtRoqus1c+I10Krt8FVx9hVDwYKylQcviUAhZQoajy8DCBf+6+QIluNpN2RRGlTvMYmq3NbA169C5NIy+OQ9KsPi0LPaHQJ7utzT5qG6vHa1NnU0drDSpiC8XUOe9xo6jzcixfxwlWsA2W4rPcSz+KlHEBttsNu666y6+/e1vS/bLBjawgX+9+OY3v8m/+3f/jmBQXO91GOhSXIpJsZ6MoRCg+8EaZs8uM/L6+rVToVUQXxEX8ob9FcRX4gwVWFcMlWpCsxESUVFhKbIUZ/Fi2qbKIyQ4u8zMnBHJTdamtE21hmOqEMBcbxQVWuQpjN7C6ksam5BVeLK3m5g7vyypTlNzjZv588tF03BpnQLtH69h/P05JoqoG2lsAs5OMyOvl47vOLvMWOoM9P6muB0hmBW5lFZFoHUIeHbY6f/9hOTzuXusRBajuX7/I2Cq09G038uFX49Kpi1rub0KjVXg+HdLi0CUQrlKSuXA3m6ibm8F534xQmCsePsbb6pEaxM4+f3BP/qeKKDmchfj788RK5TCLW3zGau12FtNDL5YIhUv4mGJ6FJh20vnFqi5wsWFZyZKKiQJJgWerdaC3y6IdmHXAz5igQRnn1wfS8zYjTVXOpm/GCiqhgaiPZ4IJwnNRVFblESW0t//GsW2jKqaQi3HXKdnvoAvWu8RiIWTRBfimOu0hBeiRBbznlUuA1kK36V2xg4tkgglRCWmsbD4rWTs3WQKwayg8YYKRl6fwz8WFpWlIsmCPq1ND/vwT0bEw4kFrvfFTzCUPEuSBBqNhrq6Op599lnq6goLvmzgj8eGktL/RFx++eWEw2FOnz6NTiceSV1ilhdjP+O12K+JxlZvnkbemM2p0gjQ9YAPIY9NGUufyBJM4r8F0inRBFseJTeKqJYEVO+xY6jUYvSsz//tH4ow8a64uWy+pZrG/d6C6ktDL4sEJcEgo36fh82frl9fCPCnN5ZNByqzp1KKwd1lRefSFLxfBv3PTzDxgTRZ5eT3BwmMRdG4BLofLj5JCHoZCkGOrlAe9DQyBKXWO6oklZKOf6dfJCgJFG1/eDoqLn5lEJRq97rZ/JkGyTLvffOcJEEJYObYEmd+PlSSoOToMtH1YG3phpWB2r1umm+VViEC+OC/nuX8L6WDi1PvL/L2n5+RJCh5L7ez+bMNYqqOEhh7e06SoCQYgCgc+9v+1VKUeQuqoUpg22MNCAYkCUoIoFQr0JiLD2jvJVYabxRPtp/+8WhRpSVSSQZemGC+11+UoATgbDeid6lFlaIi6LjDS+U2a1aJqBBByegTqL/GRfvdIhN/6JUCBCWg+x4f1ZfYxbkmSkGCEkDFFgu29AnCaIDVBCWBnFLcmvU/n6BUu9dB3V7xhOfIO7PMX/CvIyidi33ASdurnFO+nyUo3X777czNzW0QlDawgX/j+NnPfkYqleJTn/oUMpmMJAmOpF7hxehPGYidXlU2Mh9j9qyfsbSDwneVncpdluz12FKs4GZRpWOVEszcmRwpwN5iLHpyLENQ0rlU1FzupP0277oysSAiQQlov8NH0wEvavt6NZkMQcno01G1x0HzzcVPVKntKgweLY6WwuoEAPPnAsyeXmLwlamihJWl/mCWoNR4wINzU3GVRK1ZQFXi5FBwNobKrGLL5xoKPiOI6kwZglIxBSeAi89NlEVQUunkdH+yDkd38b4Ye2uOd//irCRBCeDcU8O8/63SBKXGAx68e6TVAcqFmBpZWnVy6KVpTv9EmqAEcOxvLnL4v0mnh+l6qJbK3aVPnhGDMz+RICilX+/00aVVBCVYTeRrvaOS2r3iCc1iBCUArVVAqZUj1xRXWmq/uxKVWc7KeKw4QQkgmWL8g0X6XyxgQ6edHiod6N0aXJ3Fxw0qaNjromGfSIgsdoii6xPVNOxzgQpiy6mCBCWVDhquddFwnWg7Th7xF0zHpnVqMFdrsnPOzMnVBCWVWeyf8JxoA2rT+8p8gpLaqqLtzspsGr6ZM35G3ppb5ayJxcK8Gf0NHxiezxKUnE4nb731FgsLCxsEpQ1s4N8wGhsbGRkZYWJigsbGRgCmkyP8If5z3o38jnh89R507L15MXVIHFCKqZ4Ec87nlVEOURvFf4ssiHPpKvWcONlUb65uC9YGPRrbevWU8Hyc2dOif612r5umA5UF1Zemjy2L91VC434P7XcWVusOTol7+Pp9FTTu94hprIrA0W7GVK1DqUnbVAVsq4EXJxl7WzoI1vfbCULTEZQGJU23rrcbM5Br5Cg1SjS24j6JDEHJe5mDxgPFfXa9vxrPEZSKCT2Fk/T+qjyCkmuzhVYJBXSAo9+9KElQAgiMhTn1o4GSBCVDlaakElS5cG+1UHNVCRUi4Ph3e7nw6zVBnzXv3D8c4tBfnZckKNlajLTdXY1SW9pVP38hUJCglIFSA8Th/FMTRQlKGouSznt9KA3KkmkABYMCjan4+LI16/F9TLRHBn4/U5igBJBMMfbeAlPHlooSlEAkIhqrtFn/dyHUXW3Hd5kdfUVafbsAQUkwKWneX0HjPhepVIqZEwUISkDjPhe1H7OjSdtKhQhKIPq8MifziYtqTOJzJUGeLDjHIJevIii5uo1U7rQAMHF0icnjS+sISmPxi5wwvcxR2ctECaNUKnn00UeZm5vbIChtYAP/xvHlL3+ZlZUV/uEf/gGz2UyQAO8lnufV6C+ZTKyOvySiMPHBYtYecrQbsbfnlHESocSqQ0MZTrVCYJXKTmBcJCgBODvMWVXetZg5mVNfqt/nofaq9ZlBElGyKaS8exw031yF2rp+fckQlASzktqr3VTvKazkBOL9LLV6zLWFVaEAQjNRxt+fY/po8dhTeD6aJSi5e6xYGorXJ5iUqIxKSTWi6FIChVZBy+1Vq+zdVe2ajYpKTwkkVZemPlgoj6CkgPobPFiKKGQBLA8E+eDbvZIEJYCBlyY49YPSBKWKHhv2dglfyYeA70pXSdXJuTPLnP7JoCRBCaDvN+Oc/OGgZJn66z3ltT0BQ3+YLkxQAnEcKETFMCmCknePPavuFF0qbnsJBhUqvUJyTNRc7URlUBBdThQlKIHocxt9Z56h19f7vLLfvwLMNTps9cXHDUD9dW6qrxDjdpHFuBhLXUNQqr/WReP1FWLqtCgFCUoooOmAB98esS+WBkKrCUoAyRRqowJHqwFHi2h7+YfDOTJfMoVCLdrM0UACGaBMK8rnE5QUWjk1H7Nnv9XJI0tMfrCwyueVSCQ4EXuTo6YXGEieIkmCrVu3cvLkSc6cObNBUPqfjA0lpf+FmJ+fp6uri/HxnKNcjpytXI1VtTp4UXOVg8rtNnp/O87s6Vygf618r6FKoPu+OubO+zn/1HoHvGATxLRIAuz4QhOj785mg1+5QlCxycLk+4sIViVNN1RkU3/kw3uJnbk+P+HpKJ7dVubOr6xLXScYwFxvYubEMgavgMoo5NSL8oeaAETB2mzAXKOXnLx7vthIeD7G6R8VJro031qFvd3EmZ8PsVQioAQUP9kMbH2sEblCxuFvSrN6d/5pK9GVOEf/W3HyUOudVVgaDLz7l+eKEpY67q3BUKnlvW8WL5NB9l3+EWi+tQpHu4nD3+6TrKscJaWeLzah1Ch47z8XV7sqC5nFtsSjtR/0YfLpePfPigcEO+/zoa/Q8t5fnS9an3OzmcYbKhl5a5rR1/IcXGsC0Zlv8PQTIywPFDZ6DFXCOjWzQooAPY82oBBkHPrLwuPF2qKnab+HC89MrCcnpdsm2AR8e6y5tGmqZO4Z89ru2WEWA14CuLuM2RSPq5/NztDLotFdc7WToTfn1vWXu0ckQvX/bhbBKsfs0zNzPO80ZSoJAmz5ZD3+0aConpRRRMo3TmRyEGDXlxoJzkY58Q/Dud+vaTvA9i/Xk0qkOPyti+u6wb9pkNPnT+P3+5HJZDQ2NnLHHXfwH//jfyzYrxvYwAY28M1vfpM//dM/JRbLOX7d+OgWLl1XtucLtaTiKY787Zq1b82Gq+sBH1q7UHROV+lEslHDDW50bg0n/n5wXRlHl5Gli35iQajd52J5NJhN+ZarCLzbrYy9Ja5V3kvsjBUIzDg3mbMEHfdWC1NHFgs0iix5of76CkbeniuspIK4JjVeX8nZX4wSGCnMOtnxeAuRpRjHv1PaYaHzCAQnCi/K5nodrXf4GHplisnDxU9mV1/uwLvbydknh1jqL9wmlQ42f7aFxYt+en9dhJSigh1famH+/DJ9z0inpVPpIBZjnSrNh8WOx1sIL0Y58d3iqlLlKCkZqrR03VfL2HtzDL/yx6lmZpV0JBSUVDrY8rlmFi746S3SV2KZFmbOLDLwfPFA6+bP1KFUywuu7ZCznbZ+ro5YMMHJfyycukbnUhGcLvBC1tgSlgYdLbd6mPhgkeE/FA5mtt1ViVKn4OT3Rwo3Wi7Dd7mN2fN+MdWdCoisTlUCYG3UEZiJEVuKYW/XM3c+TRTKswfVVhXGSjWzJ/3oKlTonRpmTq//3lv2V9D//ASxsAxXt5Hps/7V4y+ZwrPdjGebhSN/K/ZR9l2uSaPSdMCFrdnAsX8YIbIQy/4+v+0gqi817HUx+MpMVokgg5g9yLTlAmfOngHAZDLR0tLCq6++mj2As4ENbGAD+QiHw1x77bW88cYbZFyNwv/P3nuHR3aV6b6/SrtyUKmqVCqVSiplqVvqnJwDzgHbOGEbMA6ACbYBDwPnnLlnzvOcOc+ZuUyAAWYGGLANGGwwDoCNcW7j1O4c1Opu5Zwrp70r3D92qaRSldTMnLlnUr3/2K29atda396117e/9a73Rc829SWY1Da5Uf5Z5Ogy0XS5izMvTBM4vTaxVrCq2XS3j/njYYZenS/Jy5bUlwA23dPI5AeLBWu45UZgbzGx2BdFJeRouKSGgd/NlJBs7G0m4otJkvOyqlJsJlW8gJBXcqryGwmciSHY1OhsGsLDZeoFaiANepdAVZOJyfcWyyoqgVzrkOJpmfhTBp491XjPdXLyqZF1dzcvQVetJrlQfuGj86M+BKOKI+vkJSArLqbPom7kvdBJzSYbR757pizxA6DxUtni98j31m6zhJXX8p8Lz+5q6s93cvSxoXUVqP4QJaWuO3zoq7X/vF3/K3MsNajVnHX8DZe6cHRZOfCt8vkSgP8yF1UtJo7+cHDN85l9ejo+Usf42wtMr6GGD+DYYKbxEid9z0wWk4pW5FU6h5rkfP6arFHDAZkcrrNpOPj35WuIhhoNbdd7GPzdDOGR8gpLapMC96Yqxt/OLyArc8u/0RW5S3WHkYW89a29xSCTFlfV4VybLMwekZ8DNVsszBwLl/zerX49JreOyfeCqHVg9uoJ9C//vpaeYZ23eIjPphjdu4haJ1/HlUspSzZx2x5oIDabou/p6aLPK1bl290fr0OhVHDkh6U5aLR1jN6RI4TC8rtda2srn/rUp3jkkUdKY1ZBBRVUALz22mvcfffdjI3JzxQlKhqUnbSoe5Yb5Z/fHTfXoVQr6P1ZeWeGpXVH/+UurA1GDv9gqKy6j0qvIpPI4NpixVpv4MyvJ0ramer0JBZFMokMzk1WkgGxNIdRQXWbmYVe+Xlt7zSzeLKckrieyEQCMrIKULicaqSKQh9qtlUx3xteU4FG7xRovsrDwG8nScyusbnoE42I0TSnnl7HxSKPgiJOGejsAu03exnbO1cgZ5WDvc1Mw6U1nHl+Ym3yjQo23tlIaDi2rtpTzz1+Fk6FC7XENbFEsFpfqOes6L67kVRI4vQ6OdUfoqSk0qvYfG8TE+8uMH0W8YqzYekeXb8RdH+skcWBKBNvrUHyUUHPJ/zMnQitqcAFsmqTziacVQW+/SNesplsac6fz60Ei0w6KmCN3EtfLdB5q5fJfQtMHyhPrPaeX43eLnDmufL1PIVSgb3DTGI+JVvdqSi2wc3nVnqXQCaZQQxnMNXpSMwlC6TFJaj0KowugfBIAo1JhdGlJVhGpMF7bhVTB4JkkjksPj3h/O96Jax+PZ4dVZx8erJAeix3Ld3brHi22zj+s/F1FcuMboH2GzwMvzpT2OiyFM+MPsasZ4jjJ48CYDab2bNnD88++yx6vX7Nc1bwL4uzmx5W8C8Gu93OxIT8sN61axf79u0jS5b9vAwS1NNKh2YbACOvzTN1KIgYkCe4XY+0EJtOcuzx4peY6KxIaCzOSP5B2nxNDfEFsaCStEREsdYbUKhAyv+gBbsGcTFfsBZh+oMgAP6LXFh9xrIT/sqFscYLa/DuyvDBKjKPGKVgG9d2Yz1as8C7f3lSJkAoFMtFmfyDrPEyNzqrhuE3Z9YklciEzLW5dKefGUd4c5mMZbSXl/gFudCitwu8+/WTZb/v4N+ur1i0hMhEnMjk+sWh4EgMQ40OQQBxjbGtRbxajc0PNKO3Cby7zuJV3QXVeHc7OfSd04jRUmsskGN1+pk/6CvPivXs25aw+dPNoJB366+FDbc2YGkwcuAbfWv2G6D3iRULVmssqsXnUqgN6nUJT6H+MMlANbMrk50yRZaR1+YZeW1tFnLPPQ0YXToOfHdw+be0CkskpgPfHUBYh/mcCknkcrJsegnyfWu/zoWxRsfo2wHEhWRZglL3J7yYanQsnJEJhOUISrU7LdTttKNSy4pII6+VSVhzWer3OFAKCgZfnEcMZJkLRArHhCq1TEYSQaVRoDHKWe1KgpJQJe9YO/6TSRAhOBhlvi9aRv5RYMOtPqYOBhh5bYEjjw4XnnsAUSnKB7xEGgn2g16vR6fT8dJLL3HBBResHdQKKqigAuRdZg8//DBvvfUW1157LeFwmBlGeVl8Ah1Gtikuw5CX6Dnw7WE0VvmZ6bukGnePlWM/HivxVp/Yt0iVP7+7RAMdH/Yw8MJkQUVm6b9qvQq1sPwMXmmxNH9suTjh2mjB1mgsJSlJMPGOnM/5r6qhdoudxGKKxVXWtUsEJUONhqbL3dhbTJx8arzkXEttajbZEEwq+n5evoCgElTkcpCKrL1IdOg7Z5Di8vN8PRKSwaGh5xPNhAajnHyqtBAfGoz/QWTn6SMhbC0m4tNrL2JKcUiFROIL61iiSLDv62dXP9JWa9jyqRYWjgfXJOiAbAOcTqTLkvuX8Id83x+C6Hhi3TwQ5Hhv+HgTw69Or6sste0zzUQmE+v2W4rDvr9cX2kJFKQiIqGh9TcJzPeG0dvWSYTyOPh3ay+Yaqxquj/WSGQyQe9PyxcKl0hMwYE4B783uiYRDyCXWef9QqlAY4DabTYsXgPHnxgvS1BCA23Xu4nPiRx7bIyF49Hi43lsvM2DUqNk/liE+LREfLb0t2Wt01HVZKB2dzWjbywye3RFATObQ2NVIoVyZDNZlBolhhoN8RmpiKDk3mpBY1Qz9naAiQ8CKJQKUlGpRMK68xYPRpfA/m8PM3csSnA4hhRazs/OSEcYzvWimAamwWg0cvHFF1fUKiuooIKzQqfT8eabbwLwqU99ih/84AeImQTvpn+DMq2iRbWJBlUHAPO9UYKjcdL5GsDmTzUQm0py5lfFG9jEWJr53ghTR4IAeHbaEGOZgirAEqlF51Cj1CjIZuRnXhHhJU0hf3JtsePotDBzNFSi9rK4wsKt6fIaMoksh1eSzRVKSGcJ5DcWNV9Zi8mj54Nvni5VFcr/u+FCF2avgdnDi6STirJEpWw2Ry69ds1r8t0FZo+Flse6Dgmp9cY6bH4Th747UJbwc/Kna8/9KxE8EyG5zjwKEBmNYfUZkEX6y9dyhl+dZfjVs5Or2z7ixeoz8MFfr5172NvNNH6oht6fDK+p/DP53gKT7/2f28HBqhrUGmi7qQ61TrVu28YLXbg2V3H4HwcQ11EsGnl1lpGlWK1huxZfENFVi+sSnhKzCaKTSbn+sg7mT0QKv6Mi5LKgUNJ8VQ32ViNHHhtFDJbP9ZdITL0/myyvIpSHGMtAbnnHexHyeZPvHAeODhPzvWGSC9LyLbUir2q+0kV1u5HY9CjJxXRZgpKlUYf/YgeCScX42wFmDq0iLebh3VWF1qph8r0g6SQFglIul0NtUpDOh0+tVRZqdSsJSmodNFzkYvDVOUjD7IkI4bE4q/eC62xqNny0jqkDQSb3heh9eoJ0dLlNKp3kUOZ1IrlFOCbXvNxuN88//zw7duxYO6gVVFBBBcAll1zC6OgoQ0ND3HzzzRw8eJCh7HGGxOPYcdOtOgdBKb+L9/1iAlVe8drebsJ7XjWnnp6QFVFYJiXMHguRCqUL5AHfBdVMfBAsEAWW/qvRq1DrVIV2K8kEK4k27s1VSLE0faOr3uMzsJAnJTm7rTRcUkM6mSlZk1wiN6n0KlqvqWO+L8zIKzMl51pqU7fbgc6mWZ5TV0GlUUIuRzq+NrGh96fDZPKH1yMhqfQqNny0kcX+SGmfkNWZjnz37Jv7QsMxwmOxkvpjETIQn0+RDKy/0//oD9YnogOoBCWb7mti5lhwbYIOsioTORh8ce262L+InRryfXXgW+uvN6oEJV13+Bh7a25dZamNH2sgMpFg8DfrbE7MnL3vKpUc89jU+kzzxb4IeufaLj5LWJP0lsuCWknXbT7Co3EGX5opWUMDWdlSTGRILIgceXRkXSJWLpMrcTNZgkKpABXUn1dNdCrJwG+myxKUUEH7hz1EZ1L0Pz9FdKJ8HFquqkFr03D0ByNI0QzBWGk7XZUKV7eVdCLN9MEI4VWkRZVeSSaRJSvK+aLepiGxIBWN0eLTo7WpmTsaYeFUFLVOhVhG3ar+/GqsjXqO/2ic2HRprKYzo5zO7EeUUuRCOWw2G/fffz9/8Rd/sWY8K/j/DxW7t38lvP/+++RyOT796U8XdlWMcYb9ppeY7zyNKIkYXVp2P9JK7W4biUURjUnNrkdaqdlqpeESBzsebmHTxxs48eMx1FrY/ZU2nN1WvLuq6bjZw+6vtBa+r/WaWlIRibnDYQS7wPYHmtj5JVmOu/WGWnZ/pQ2AU89MIsYkWq6uBQF2PNzKnq910JyXg266ys3uP+6g77lRTj03wZbPNrPjy224d1YBsPuPO2jLy1AvDkaAHDqbgGBSsO2hFrY/3Fbo066vdJCcS9L71Ch1u6vZ87VOfHmLh033N7HjS3Lbg9/qx+w10HWXjw13NdB6k4fdX+2kqkOWeeu5x8/mT8qSa1s/3cKm+1sKlmbOHgu7v9pJzTYbANlMRn425+fyHV9qo+de+bPWFiO7v9qJZ081tXvsnPPfutj91Y5Cf3d8sa1gzTb6xjR1uxzUX+xE5xLouNlb1Hb7Q63UbrfLNm2CwO6vdtJ0lWz/0HK93P8lbP18C9u/3FaQ29z91U5a8vLUTVe52f3VTuZPBpnvC7Pls81sf2j5uu7+agftN8mWaya3Xvb5bJfPs/nTzez4YnG8u26XZbY9e6rZ/dVOrHnpx577/IV4A6AEQ41cYajZZmP3VztxdMvSh913N7LzkeWx7vxyeyHe1V1mOd475HhrLRr01csT9I4vtbHpftky0NyoZ/dXO0nFJUJDUZqvqWPXV1bF+zNyvNtvqWP3Vztp+JAstd1+k5fdf9xeaLvtCy1s+WwTg7+dofcng+z+445CvJuvrWX3H3eAADqXwMZPNKFQKRCjOVAo2f3HHbTeIN/f/sudnPNf29n6+aZ8DP1sf3DZjm/3V1rpuFm+NrG5hCwSZJB/v5vua2DHQy2FBa89X22j+2ONGNwCtVtsbP1MK7ZWOd7dn/Cx46EWeu7xoXMKbPioj/hskvljEZybLOx+pBVHtxm0SrY80MCOh5s49ugoJ38xxqa7vHR/QrYkrOowsfuRZto/4oJcloyYIZvNFciJ2x9spueTPgRjlq6P1rL7y82oNEpG9s6iMarZ9Yj8DCCXZdvn/Oz+o2aarnIg2AXUOiUzR+UFzpbrXOz+cjPksrg2W9j2mSa2P9wECiX7/2EIq9dA01UOyGVpusIp97/LhNlrYPuDjWx9oJG+X0wyfzzMrkdaab+tlrYba2m41MmGW+oR4xKJhRSb7q2n+84GAIakXsaaD3NY/6pMUAJ8Ph99fX0kEokKQamCCir4J+H8888nFAoxNzdXkGlNEuMdnmOkcT/zWnlhof16D5vvbyC5IJIISmy4w0vLtW6ar66h/iI7Ox9uIRUSGXhhhg13etn+uWZsTUZM9Ua2P9hMW34+cXabsdYbGHx5BoVSwdbPNrHj803YWmRC1PYHm2WLJaD/d1MIZjX2LhPNV9ew4+GWorln++db0dsFBl+eJpPK5ufdBpkgcaOnMNfHZyTSYqZQdPJeVM3OL7cX7Lparqtl411+ep8cpe/nE2z5TBPbvtAMGplAtfPL7dRf4GD+WFjOOe5rwuAW2HBXA5s+1VSYv9HAls+20nh5DSavnk33NLPnv3QW7Nh67vMX5u/4vATKHOl8dafuvGp2PtKOwSHbUHXf3cjWz8lz0ZYHmtnzX7tozVvXubdXsfORdkxePVJIIitm6bmnpWANt+OLbbTdLOecjh4LOx9pZ/TNWSZ+v0DX7fVsf2g5r9n+UFshB6pqN7HzkXa6Pir/u+3muqJ8advnW2i5qpbFM2HC0wl2PtKOe7uc57Z+2MOOLy3nH3qHFqNb3l1jcGjY+Uh7wdqt+epadj6y3HbzZ5rpuU++9zQGJTsfaceXtxDRVWtRqhUFW7RN9zexaYXF8s5H2mm8QpZKr7/Awc5H2gtWXj33+tnygBxvjUWDxqCiukPOBT178vGukdtu/EQDWz/XwtzxMDNHgnIMb5TjXbPVxs4vt2P2GbB3mdl0v5/tn29ZEcNWOm7Jx3ujOd/WyJHvDlGzybbqnm2m63YvWrsGa5MBzw47wRG5gNR2o4cdD608bzN7vtpGdacJo0dg58MtuLfL8vEt17rZ/pB8XimUJpfLojbI97fWrmHnwy1yvHNZ/Fc62XRPAxs/LufFXTfX0n133l5GAzsfaqL9ZjetH67Bd3E1Fq+O43myU/fd9Wy6V86tXJst7HzIT90eByefniQwFGXnF/yFeG/8eD3bPtcAqhykcuSyORKLciGxdoeVnQ83YfRocG82s/leL1vv93HmhRlOPDnG9i/4abtBzk+dG0zs+mITWz/jg2wOz44qpESG0TdkEv22BxrouLEWsjm2fraB7Q80Ye80MnM4SmQ8SedNHpl8lM2x7bONdN3uoW63nZqtVnY+6Mdcq+X0s9O0Xuli+xf8eM+3U9VuYMunG9Db1cTnUhgcanZ+wY+j3YwkSYz7DnPStZfh3Akgh0ql4gtf+ALRaLRCUKqgggr+yfjud79LOp3mW9/6FkajkSwZTmcOsk//G+bbTpFOp1HrlGx7oBFnt5nYdBK1ScnWzzRgadTh3m5l411eOm6sZejlOdJJ2PZAI7W7q/HstOM9r5ptn12eK5uvqCUZlljojYAadnyuia2fleddz04b2z7bhFoHU+8HiM4labxYnoO7P+Fj+8Mt1F8oz981W21s+3wzp389Sf+L03TcUseWzzQW6jVbP9uCP1+XmD8VQqEAvV0AtZzXbLp32Q5gywPNpKISJ58axdJgZvuDrXgvkL+n9QYPm/Nzfd/PxjDVGWi53oP/yhrqzqtm24OtVOWt1JuudtP9sUYAOm6vZ+tn2mj7iDwnGz06tj3YWrCqyGVyKFTL5K2ee/103CrPh7pqNdsebKVmq42qVhO7v9LJ9i8t15e6726k86PyfDj+9jx15zjw7LYj2NTUnedg24PLbTfc2YD3HCcnfjRCOpll24Ot1J0n2z94dtvzyttyybnzoz42f6YJq19OFrd9obVgo1az1ca2B1sJDUeYORSk49b6Qo0OYOvnWvBfLudAeocGnU3AnLdzabupjk33Fce76Wp5nq1qNbHtwVYsjfJ3tlzvKeSnIG8Qs3jlY2afnm0PtmLP19L8V7vZ8tnlXGXTfX7aPiLnF3qXlm0PthbqYwaXDotvWV2w+5ONBXs7waZm2xdayeZyzPUGqdlUxbYvLMdw48cb6LpDblt3YTXbvtCKZ7ect3v22Nn2+ebC1uKuO+rZcFc9MweDnPzZONs+31y4l2p3yPes2qRGsKppuV4mTi3dA1sf8OO7SL42zm4Lu7/SSvcn5evcdmMtPXc3LMfw0378l8nXJjoTR6FWIOStM1qvr2XTPY2FRbMdD/nZ/MkG9E411iY9mz7ZiLVJzoubrnSx+T4frR92o7Or2XCrl9hMisDpOCaPjm0PNGJvN4KgoOvWWrbc52Pwt7P0PjVJ27Vu2m6U36l0Tg3bPtNA44eqIZtDSqXJZnIkF+WxbfyYl46PyPaL/suq2faZBgx2gYG8je+2zyyPbcPtHrZ/rpH68+2gBl2VRlZYAmq3W9j6aR8qbQ6zV8f2zzSx5T4fCoWC4z+ZwNpooO6cKnK5HDVbLGz7TAPWZiPV7UY23ull4511jL65QHAwwZZP+Wi6shrfBXacG0103eYhGRJJBCRar3PRlf/tzqbHGWs4wAHtb2WCEtDT08Pp06eZmpqqEJQqqKCCfxL8fj8HDhwgHo9zww03oFarWWSavdlnGPYdIGKUiSj159rpuLkOKZomPpuS7enPsePeZsXeYaLn7gZyOZj6IEDjJU567mnA2W3F6BTYcEc9vrzVk8mjpbrDwvg7C6BQ0nJjLTseasVcL88DXbfXF9Zx+l+cRGvTYPUbcG6y0v3JRro/3ljoe8et9Zjq9PT/ZoLkYoqee/00X1uLSoDanXZ68ut+mUSGZFgqWDpVtZvouc+PI58DubbY2HCHj5NPjjDy6iytN9Sx4a6GghVXz71+XFtsRCeTzBwO0nmbD22VGv/lbpqvq6Utv8YGsOEuP7Vb7AgmFZs+2cT2h1sRTHItoumqWjpu9Rb6pNBQIMnbmo303OsvWPA2XlZDZ74W1Xp9HTu+3I73fDmGZp+ennv9GGt1ZMQs6ViG9lvq0eS/p+vOBhry+aqhRkvPvX7mjgeZOxai7nwHGz+2HMPO2+tpvEzOl3R2gZ57/TReLn+2bk91Ye0OZPeXhg/VMHMkQHQiTs+9fuydcg5Uu91Ozz3LuZW10Yg5n+eoBDmGzm5rId499/oLikyt19fResOyPfFSvEHOnwSzplCvbLqmlvaPLMe755N+anfJOZC9zUzPvX4Eq9zWf6W7kMtqTGr0Di22fI5s9cvx1jvleDd8qIauj/qYPhBgoTfMhrsaqL9AXm821cnxNnl0GGq0tFzvke+PPLru8NFwqSvfXzmGRreB/ucnMfsMbFxxz3beVo//cjcakwptlYD3fAfxOZmY49llL4r3hjt97PxyGxa/AZVeRc+9/sJ7Rc0223Lem4FsJovGqJRzrfw96+yxQi6Ls8fCts8105pfp/df6qL1w8sWzj33NNJwiQPv+dVUd5mp7rAwnFdhb7qqhvab5NqfpV7Pxrt91G6t4tTTE8z3hum+uwFt3vLWf7mLjXfVy1Zz+c19yaBc87L49PTc3YDeJWDx6Wm93k3nrV5G35zn9LOTdH3US/2FcryNbg2b7vex4Y46UGZxbLCQikpMH5SJiZ23emi4WM5l2250s/2zfqx+PZGJJIH+KM1XLttFtn+kFv9lTmq3W3FvsdLziXpMtVrG316kdouV7o97sbcbMdfpaPuwG5NHS3QygcqooOcT9dj8BjKZDDO1p+lzv82xzO9JkcThcPCXf/mXBAKBCkHpXxEVktK/Mv7+7/+ebDbLq6++isFgIBaLcejoQd7klzx/6gkmJ6cRw2mO/mCU0FAMMZambo9sQ5UKS6SC8uJ9OgVSPMPAb6c58qNRkiGJLDl2PdKKYJKVWgo7dkSRjJQlMimzkhUqyGSWmZnJRYlkUKSqyYRap0ISMwUf2GRQRIqnCQzECQ/FSQVF1IKShgvlB7gYk0jkH1qJWRExmiabhs7bG9GaNYjRvLWEQoEUT5MISIT6Y4hBCZRQt9MJAqQCIqkVnt1iVCIZlrDUGzB7DEhxiXRSXvBKBERSEbnt0MvTpBMZEnlGcSqSRopLiHk1gNjUMtu46w4f2Uy2YIGQSUhy26hEeChKRsoirth5lgpLpALy2MQESHEJ95YqNt/TTCIoIsZWtA0tX5uGS5woNQoS+Z1HiWAKKb48tlRQQtCrafyQ/OCV4ssxTAblPs3uX+DMMxOkghKpFbvZxFiaZEg+b3AgSiokEspbk6UCqTJtJXZ8qQ3XJitSXCKTkI+nFpdjtIRsWr4nxKUY5mORCIiIMYndX+3Ae5EDMZou7LAT48XxnusNkQwsM8DFSJpUPv7ZZAYpLhHqj9L7xCjJgHxvFcUwIOLcbKW63Uouly2MNRlMFcVbqVGitQqQV62S4mmS+XgnQ/J5u26uZ8t9zaTikuz3nt+ZJsUzJPL3dyIgkUlnic/KSYVYEu8MZq8ewa4hPJYkFU6TTi1fx6X7MJfNkQyJJEMS8WkRMZJGjGdI5+OdDIpIqTQGp466nVXy/Z2/X8SohBjPIMXT9NzlRWfRIMXkY6GBBKmoWIiDFBVBCfZmCwiQXCj+3aQiEqlgisbLarH6jEhihlQkzcTbAZKhtLybTSNf51RYBIUCg0MLoogYy8jXKpdFSklk87vBZg+HyYhZ+TeW950V4xlSQYkNd3px9tgQ4xkmPwhy5NFh4jMpxPAyw1+KZzA6dFS3mcmI8liPPzHG7OEw0YUkB47t47DtVfo5yqlTp3C73Vx11VXkcjlGRkbw+XxUUEEFFfxz4XA4GBwcJJfL8dGPfhStVsuZM2c4FPk9L4tPsHff68QWEsweiXDs0THESJq0lMG5wYLZayAVTZNOys/DZEAiPpviyA+GCZyKkQpJ2JqNtF5fi5TIkIqmC/N9bCZBOpkh2L+8IyyZPyYGM/JcG82gq9KgUFP0LE+GRZIBiekPAkiJNGkpjcmjx3eBi2RAlJ/fecRmkiQXRTQG8O6W8w8xPzclFkVSIYlQfldaKi6htQh03VwPkpz/pKL5vCAoIkYlPDscmOsMiPH08m4tCcSInCtGxxNEpxIkAimWHPWSAZHUit3WiXmR+HQKbbUG50YbYkRabruwnJfFZpOkk5nCv8WohBiRyCbT+T5JiIk0Wz7VQst1tfI8m8/hpGhaPm8ig8agxNxQ7KOeConE8+eVYnL+aPWbsPoNJANSYV4FSIYkkosSp38xQWQohhiRY1MY24p4h0diBE7JixtSPi5LuUAyJM/JS6SiVFAsjE2SsnLb/Nyfy+dcrIzhit1xYkSiqsnE1s+1kMqPdSmIK9uGBuPEZpKyFHr+c2JEQspvYkrlxzrwwhTzx8Kkwst9EmPyODMpicaLXBgc2iIFhVRYIrEU71QGtVZZWMxbureWYyiSCIpsvqeRhktciNF0IY9MBotzlWRIJCNmCY0nSSdz8vhiSzm+RFbK0ny1nCNHJpIk5pbySElum78eyUWRdCJTKMKkgulCfAFS0TRGhxZboxExJH+2cCwokQqm0RjA/yGnrEAUEgkPJxDDabmttJTriggGNR15Ml0yIJHIK2qmomlSkTTpeA7f+Q4Ek4ZkOE14OEF8WiIVSsv3bDaHFM8gJdKotWpMXoFkUJJVIfLEo2w2RyZP7gsOxeX2Mfl4IiiSCqfR2jVsf9BPLpcjEZA4/rMJep8cJxVJI0Yy+bhIpMJp6nZUUbfLLj8DRhL0/mwSKQWT49McibzDW8pfcrK/l0AgQE9PD++88w6SJPGNb3yDCiqooIL/E3zuc58jGo3S19dHc3MziUSCQ8cP8Hr2KV6de5qp8WnEWJozz8+weCpGMijh2VGFd4+dZEAitaRanJbrDkMvzdL3zBSpkEQ2m2PLA34Eq5rEokhyYcV8HpEIj+ZrXmoFmUyWdP7Rn5gVSS6mMNTICybpeLowj4lRuQaQmE8TnUySCkhoDGoa86SaZEgiGZZPJAbTxOdS5MQsrVfXYnLrSEVX9CEgkgqmiU4kEWMSSrUCzy4nar2SRHC5BgDy/JgIiNhbLdiaTKSCy/WRZFAika+rjO2dI7GQkpVmgEwqXdQ2PpssqBc0XOoik86SzKtMplP5HC+SJjKVRIyni/KNxKK4on6TJRUUqd5gpefuJlLRVfldIFXok2dPNRqDilQkPyeHpXzbbD4OKXQ2LQ2X1BTGupR7iRG5/wunYoy+MUtyIUVihSpmckVtMDKRJDwWIzImE5+Ti1IhF5T7JJIMSvTc48e93U4qKJJOZJePrRhrLgdpUZ4r00l5rGK+7pIKSCQDItu+0Ertjio5z8l/Nidm5Hjn84iZA4uEx5Z3gicDIqlFEXI5smk5B42MJxh6cYZUSCws8sj9F0ksipjqdHh3OoBcYaxiqDi3UmrA6NIV1IpSIQkx3zYVku9f754qNt/rJ51Kk1xc8T1BORcAuS4oxjMk5vM1x4BUqFUCJIIiZp8OwaIkPpciNp0kLaYLx5auObks0akk0ekUibk06USGZEgind+lngqJiPE01gYDrh4LiYBEYql+Lcq/ZSmeofVyF+Y6feEdJDqZlH8bS3VDMYdSo8S1wYJaJ1+b+JKNn1IhPyOCIp6tNpxdFtKpDGI0zfyJqJx3rfiNJRYlUIDOpimMXVY1z5ER0+RyOdJpiIwnSQUlYnNJcrkcuVxOrk9GJPyXVuPdXUUyKBEaiXP0sTEio/FVv+U0OpuAe7OVXD7+/b+ZZfF0jNhCkhMDRzhmfZUj6Tc5dfoUDoeDu+66i1wux5EjR/B6lxdtK6igggr+qdDr9TzzzDNIksQ3v/lN7HY7/YP9vBd8hVeln3Pg1PvE5pNEJpL0/2qaxIJIOpnGs8OOpcFAIiCSSeXfJUMS0YkEx380SmQ8SWJRxN5uxnt+NelkTn4Hz6/PxaYkkgspIvk5UaFSIEWXcpVM/nsyGOwCKrWS+NI8pcqv7QUlgv0xMiJIsTT2VjOuHjupiERiRX4XHYvL+Z4KGi9xo9GrEBPyPCVF0/LcOp9fFwyLGN06/Je6ISPPu0v1MTHf1tpkwtZsIpPKFuUJiUWRVFRCjGZYOBUmMpEoKCslF1NFfQoPx0nMJFHpVbh6bCQDItl8jpFaUS+IziRIBZfn93RSXnPNpPK5SlBEDEts/JifuvMc8ljyc3RGXBFvFTg6LMt2bchz3NJ5s2KGXC6Hc4MNk0cn57ULq8YWEJl4e4HoVIrkoijXGoBUVCqskwEsnAwzf0LexJ5ZimE+BxIjEslFEXuzmZ57/KQiqcIashyn5XwpJ8kbvJaCmAqKRW0TCyJmr57O2+uREvK1WbIUSwbEQp+SiyILp8LE8oo+hRiK2eV4L4jMHAgQGorJuW0+58ykMvkYZvGe48DmNxWNNbEoFlTFMqksWosGa5NcWxRDUmFz2lLbZFCk8zYfDRc78zHMjy0flyXE5pOIkTTJuRRksvm4yG2lSBopmaZuj7z5LtgfJTq7rEK0MoZSRCI6m2R830LhfinK4xeS6Ku1VLeZCzFceR8mAxKooPkaNxqdqvDbWophTsqhUCoQoxIGl7ZA7opMJkktSOSyOaRkpvCM8F3kxODSkgzIv4fkojzuVFBeM8yksohhCY1Bhb5akO/DueX+ZtNy3QsgMBAjPp8iHV/ObeOLIioBNt7pRaVRkAyK9L84R+9TUyQCIum8un8qkiaxKOI9t5qaLRaSAZHwSJzhV+ZAzDA7ucApDrBX+QxHRw+ysLDAzp076e3tZXZ2li996UtU8K8LRW61DmkF/6oQRZGtW7dy4sSJor+bsbOVixA0MivUVC8QGUlh8evZcJuP0b2zBUuQJTRe5sTeZubgt2VJwZbr3Iy+Po24SvF36+ea0Jo1vPu/V9hRlJGT2/VH7SQWRY7+4yrJQAHMHh2R4SQ12224t1Rx5LGhYsstAbx7qhl/cwEEaL68loFf5+X2lm5BAWq32Zl6dxHBpMTiNzF/rFiWVzApC5ZgTVe5GX9/saAasxqbPtVELp0rL3EowO4vdZAMSutakYGs+JOTMkQnSr+nZpsNq8/E6WfW9qdtuNSFa5ONI9/tX9POzNFtYf5UeF2bMmuLkdZrPBz90ciaYwa5QDT57try1ls+20x8OsWpX67d53P+axfh0diaPqqmOoGOWxoYeWOWucPl7USqOkxIEbFs3JbQc4+fVFBaty8Azs3W5e8pY/XWdmMdlnoD+9exoDPVCTRe4ub4j1baxi3zNN07bAXbw7VQ3WWi7cN1zBwOMPhiqWSos8eM/zI3x348SnKudNy5bI7ma2oYf2sWMQqCiZLfIwK4uizMHg4jmKCqwyrbtq2AtVmPqUbHxDsBTF4BfbWOuSPFvxXfxdVYfUaOPTZa+ExooFhGsbrLROu1HsbenmPi7eLnx0p0f6Iek1svW9sFislsnj1VpEISC71Rmq6SpeyPPDZcci/veLgFMZbm8D8MIZhAZdQWYpSoneHg7PvEk3IR2Wg0IkkSjz/+OLfddtua/aqgggoq+JfAs88+y1133UUstiwVrELDRsUeXBq5SGxwaeQiigQ99zai1ig4+Per8gsNdN/VwOLpKBNvL1DVbkQtKJnLW7stKe0ZHBo23etncSDKqV+s8iFfAe/51Xh3V3P8p6PFdiS5LFa/oUA22nCXj4VTEaY/KH6OOzdZCY/HSS1I1O6qIjweJzZRLB3t2mpl9lgIpHwusirvAtAYFEjxHBqDgtpdDkZfKy+ZbagV6LqtkTPPjxMaLLVla7yiBvdmOyd+NkJkZG3btqW+r2VX1nlrPYOvTpNaWNuCZOvnWlg4FWbklbXtRewdphLrvNVo/bAHtVZV1qpuCYZaAY1OXbgeq+HaaqNuVzXHn1jbfqzrTh8Wn5H31rFza/2wB12VsK4ctXt7FdP7157PDW6B9hvrOf2riZJ7oQgasDUYCfaXl8/WWDX03NXAxHsLTB/If18ZW5KWa90snI4QOF16HpNXRzaZIT4vLUtJl0HPPQ0IZjX7v1E+X99wl5eslOPkU+VlvLVVKhydlsJ7ksawbMm4BHunkcX+GEhQs9XMzLFIgTC2hIZLHAUb4NqdVqYOhYraaAyy0uf4u4sEB+IFy9/V2HiXF51Nw/5vrSPBroFdDzYTm0tx/PHiHFljQLaEy9v1brrPx+zREFP7in8vnt026s+p5ujjoyTmUpi8WqITeZKZJDHlO8GpkV4AFAoFNpuN7u5uXnnlFTQazdp9q6CCCir4P0Q6nebOO+/k6aefLpAxFShwKurYoDgHtVrexbtka6mzq9l4Zz2jby0we3hFnpLL4txkwdVt5cSP5Xnas6eK2UOBEiusjlvqMHl07P/2QMGGrZzl55bP+EksiGUtcQ01WuIzKcw+HXW7qun/1USBAAOAGlwbrczm6xZ151Yz8faquowaqtvMBbUna4OR0ECsyAJOraPQ/9odVSyciaxpEdZ6g2wneurn5espWz/XQjIo0fuT8nWdJehsapRaNfGZUmsGS6OBqmbTmpYpAI6NFup2V3PiZ2NlLeZAVguITCZKbfFWQO/S0nJ1LWeeHV/Tzm3p++aPl7fwAlmRIbmQWtdmbucjHQQGIpx5prz9sdqkpvNmLxP7FljsLWOJBpjqdKRTGZLza+SkCgUt19aSSWYYWicnBYpy++XPL+dWnj12HB1mjv5w7WspWNX4zqum/zfLdjMrcyx7m1G2R1sHxlotnbd6mdofYOLtxZLjJq+Olqvc9D07SXK+zDXKZfHstDF7LEw6WXw/r0RVm4HA6Tiowd5U2i+9U43RpWf+RATBqsZUoy1uo1Tg2GDC3mzk9PPyeOVd86llm1ulAoNLQ9fNXsbeXVi2fVtxfAlNlztxdJg4+vgYySViZP64vc1AWswSHk5Ss8WCvcXIyacnIVucv/Z83Es6maX3ZxOyUpNVQzJfP0tUBTkWfJtQIgiAwWDAYDDwxBNPcNlll5UGqIIKKqjgXxBHjx7lzjvv5Pjx44W/GbHQpdyJTSWr+mhMKjLJNBkRmq92o7VqOPlkcX6RU+RousJNZDzO3NEwhhoBjaG0FqLSKdh8j5/5k2FG1qgfAdhajPgvdXPq2XHiM6mifEjvFAqEhoZLXUQmEiz2Fc/Hpjq9vLktlMbWbMyTzIvfwc0+PfHpFBkxi7k+n4uscodSCUoyYhaVAPbOtWtRGpOK9hu9DL86Q3SydHJzdlupP99J39Nj8njWgcVnKJDpV6P+AiczRxYRQ2tbebV/xEtoOM70gdK5egmmOn2R7V451G63I1jV6+Z5glWFSqsiMVt+jc9Up6duTzVDL0+t2ef6C5y4Ntk48Ldrr93VbrdjcGuX14zLwOo3EhpaO5dR6VW0XF3L6JuzJfdCcUOZ/L2WjZtKUNJ2Yx0zR4Il991KuLfZic0mCuQ8oLB2KVjV8ga4wNq1S5At9UxuHUcfGyq5N0G+/5UqJUMvr2FfqFNgbzYydyKa7zsFgtcSjLVakgspMqKc24fH4iXfVbPFxuzxEGSgqsVIYChWaJPL5lBoFPgvcTLfGyEykURrU5OKpEvO03CpE3OdnuOPl7FCXpHbbrrXR2wmSf+vZ5e5CAolKgGqOyzMHpXzttbralg4HZWvw4rP25oMNF7ioO+XkyQXRLk/SySzTIaF2hGOTxwkQxqFQoHdbufmm2/m29/+NirVCoZfBf/qUP9rd6CCYgiCUEgY/uzP/ow//dM/JZ1OE2GRN/klCklJFzupHVmWoktFJObyiywdN3tILIqMvDbP8MtzDL88B0BVqxFXtxWVRsmpXxYviB389mDBOs3kFdhwewODv5sumZDjs0nC4/IDt6pNbh84HQURIsPyA7261Yyhuoz/pohMUALarqnD0WUhNBJl/lhkmXQiwdS78sTadacfvUNLeKiviNiz9P+CCWq22rE0GNckGSlUijV9NxHh4LdOF85nqtcSHSufPHTdKsf6/b/oKzk2cyDIzIEgsDY5qMhXfg0sLQqaG/VEhssnD9l0Fo1RjaPdvCYJqfNWL/Z2K5Gp+JrnOfSd9UlZfwiiEyL7/2Z9j9iWqz2oBCXv/e/SuC1Ba9OgFNYWdLP4DYSH4jJBqQw5aQmn1ygsATi6zYQnUkQnxGKC0go0XV2De7MNoCxRyegWiE2LLPRGOTB6qpRYlEdGyqHI78xKzoklhU+LX0/NJhtai4aTT06UPc/mTzaiswnM9oYRo5QQlADarq9DoYSJdwJEx8Wyi2BWnwG9Q1aXQmSZoCSAd3c143sXWOiNUn+BRLxM0rb5M34yyQzHHh3l1NNjaO3aEoISgO98J6mwTFJaSdwyuAVarnbT99QoqXCO+GxyWXErClIoyge8QkIRQTGuYIkv29rayt69e3G73eWDXEEFFVTwL4wbbriBaDRKPB7nvPPO49ChQ2SQOJLbCyLYcLJ54iI0avklJjIRR6OT/19jVdN6jZuB386QWpQ4tmLhwHeBE61ZXSApKZQKctkc8XmJ4z8dIzIlP5e7P+4DBQVS6RLic0niC6kCQcmzp4rJdwOgUBIaTsovZxow1uiREukSktLKPK7+PBeZZIYD3+4vajN7UG6jMShoucaDe0sVxx8vXvyQ4vLzueW6Omx+E/NHA7KN2ypoLQIKpYJ0qjwhe/ilGSbemkOKZ0EjW8KWIxrV7rbjv9SNYFYz8fvSfGeJMGRwaNBYNGUJUQdXjbMclghKxjpdYRfWauidWlSa9YVnuz/WhBiV1syvZg8GmT0YPGt/zoYzz61NaAO5wNd0RS26aoHhl2bKtrE2mhDMGnJrXCOQ5+/4tLgmQQlACknyvaRQliUn1Wy1MnMwRP+vp9c8R+fNXnKZHAfymylK+6EhPi1x9AcjBSvBclColChXplurNlq0fbgeg11g4oMASKUEJY1VQ9s1bkJjCU4+OcnMwdIClKPbhGe7jVwmx+ibCyWEoEKfnVqq200EB+JFuZmt2UA6lSY6LhIeSxR22K2Es9tMw8UOjv14nNSiRN8zk4QGS3P5xktrqO4wMd8bJj4tceT7y88N7/l2NAYVQy/NETgTwdFpRqGS4xEdTzGdHqM39z4anZrkiHzPGwwG/tf/+l889NBDZcdUQQUVVPAvDbVazZNPPgnAL3/5Sz796U8zPz/PbG6c2dxTCKKWLuVunDN5uwglxOZShIflB7j3fDvpRIbp/SHmjoQLm3V0DjXePdVojZoSQkjfzycweXWQlhcMNny0npHXZllYRVYOjcYLO5+NtTqUGoiMys/LpcUme4sZU21ezkahXJ530hQISp7ddurPdRKfS8k1syWkkQlKQOu1HuwtZg78/UARsUdWas6BGrznu6hqNdP7RPk6hlKllOtea+DoP/YXCCI6h2ZNMk3HbQ0o1Yqy+VN4OF6IfXWXhYXeUnLQ/PHwuqQhgMho4qz9yIkZtDYBc4ORZLD8XFt3voP6c5x5Rc/y+VvfOuTyPxTpaHpdYjiA/3I3WqvA/r85vWYbfbWWjLT2IqPeJZCYFcuT3XPZQp41+e4ik++WX4g0eXWko2mSwXQRQWklarZYabzExcBL08wfL811BKsaMZYmNpXi8D8MlCUWgbzrXaFSIBjVMklpVd6ls6nxnutA79Qz8MJM2fO031SLpV7PodFB0knKEqdar6lFrVcxfyKCGEqzGFpRi8qThyx1ekweHShzkGb5flAqcPaYmTsaIT4rqw4kFlaQl/JtOm6sJQecenqSwVdmmTkSLCEoATR9yEUiIHFicJyZAyFmDoRAqUCwqGm4sJqh12dJh7NEJpJIeUUR0hCdS3Ii+w5z2XGUs0qy2SxKpZILL7yQp556CofDUT7IFVRQQQX/wujp6eHYsWOIosiDDz7I448/TiwR5oPsKyizKjyKRtpCW1Hm55zIZAIxIiunqHUK6i9wMvneImI0w+ALy+/4np3VmD06Dv1D8QacTDLH8Z+Oko6lQaGk4VIHGr2K/l8Vk09SYYnIZHw5x2o3szgQhXRuWXFFBRafrGazmiyykoBTf76TjJQrIWYv5R+ooOXaOsJjsRISzJIKj3tHNe6tdiJjiSIlnCWo9SoUSgUZqXw9Ze5YiMVTkcL5BJMKMVqaA1h8BlpvqGP0jVnmjpbmO2N75fVclV6F1qIuS3g69fT6G/5hOT46u1B2PCATxLXm9SkCHR/xIcXTnPxZ+fwqOpHg1C/O3p+zYWr/2oQrAG2VQOv1dUy+N8/k+2vkRG4deoeW7NqpF9oqgVRAXJOgBPI9cfLJtfPJJbLUeiSxtuvqQMGaIhCCVY0YSjP4whQqQVGWoASgVCtRqFfU3VblXg0XubE1Glk8EyUjlhKUVAK031BHcDDG4Eszhbx+JUweLd5zq1EoYeZQiMXTxe9IS6R3s9eAGM0QmUgWCEGAvAaJrKQfGU+QLfMbMXn1NF7s5PSvphCDEqefnywmvuWfP85uK56dVUQm4iTmRc48P1U4bm8zorWomdofIjKZIDqdLJAbU8E04cwiJ7L7SOuSJCeSKBQK/I1+/vzP/5xbbrmlfIAr+FdHRUnp3wGi0Shbtmyhv7+4YKDDwE4uR1Atk4J2PdKKlMjI6kkC6KxCQa2kusvEQq/8gNn6uSZymRyHVqkAODdb8F9aw+EfjiAuyMpIM0eDJaoo2x9qRaNX8W45AkqeFGHxG+i6tZ6Bl6ZL1HZWKuN0f6KBU7+aKlIHEow5ane75B3wAnjPcTD+xnzROaraTMQmo4hRqNlhY+ZIaT+X0H6Tl8X+MHNHSwsnjm4Lbdd7mT0WpP/50gUgZ4+FbDpXKCaVQ/3FTnznuRh/Z25NQpL3Igd1Ox0c+k5fWXKKtcXIhtsaWDgZPquy0FoQ7ALOTnPpjr2iRuBoL6+WsISzKinVa8lJOWLTazOSTfVaTLUGpvetvaN/XQiw55EuEospDv9D+QWs7rsb0BjVHPz22sSr3X/cQUbM8sFflykcrVhYa7q6hsEXyhR0BNjzxTaSYYlDf1delavnDh9HnxhFkZYn7NXkpCWVJoVSgaPbLJPzVkDnFLA26JnZH8LkFTDXGZh6P1jUpvmaGuLzKabeD2Lx60gG0yWkoS0PNJFJyfaQa2HjXV5Z7ejRYeKrrp97u5XpoyEQYdN9DWRSWY7/qDghqzunivpzHBz98QjxabHouQJg9mmJjKZwbJBVmkbfnmd87/L92Jc5SM4TJxQOEY3Kn2toaODOO+/kz/7sz9bsdwUVVFDB/0384Ac/4Atf+ALx+PLLmxIVTWzAr+kq/E1WO7Ln1Y5SGD0CsckV5IQWA8H+OCavlq5b6hn43XTJHNB1hxeFAk78ZByNAax+M/MnVu0Q8+rovsvHwskIp59bY1dRLkv3JxtRKODoD4aLDmmrNah1SmITKdw7qhBMakZfnytq495RRWAwSmpBwrXVSmAgXqL8U1AfUudwdFqYL5NXAWgMSlqvr6N3jSLG5k83IZg17Pv6qbLHfZe6GD0LwXv7w20olAo++Kvy5wDY/Jlm4nNJTj9dnsy86f4mdFVCWSL6HwrXVhvR0VhZ4tYSDDWyMk185p+vpFTVbiIwGC1R+FkJ984qFo6HZCLYWliH9N12o4fqdgtHfjhQtq8aq4bNn2xkdO8cMweDZQlKvosdeHdXc+Y3U2Xz7iU4NphJp7JlSWbNV9fg3GCh9+cTZQsojm4zJrdO3oyx1IeVhRoNVLfK+YnGqERrL1U1qt1pLZCN6s6tYmJfoCi2eoeGhgud9D0tvxvYO40snixeRHN2m2m8xMHxn4yTmJdAQ9nrs+tLzSSCUml+tqKfBreGzo/UMfDbWYIDxWPuucdHLp3j2ONjoJEX5cL5zQgGl4Z4QAIJNt/fgEpQcOBby3lzUopzkDew1ZmZnJwkl8uh0WjYvXs3v/zlLysLZBVUUMG/CSSTSW655RZefPHFgroSyETxbuX56JY8rpB33WbELMd/NA6qLDqLmuSi/F5s8uhki4Q0dNxah1KtpPeJ4lzE7NPRfIWbvqflZ3dVi5HAcKxE4WfDnfUYnFo++JsyxGc1kAadXc2Gj/oYenmGxVPFuZu1Oa+SBLRcW8v47+eK1YHU4N5sY3p/EADX5mUVJgByOQw1OsSQbEtR1WoiMBRdU4mo7nwH8ZlkMSkqD1Odjg0fbWT64GJZRQOTV4dKqyr0txzsXWbarvMy+uYsk++VrzdVd1nwXeTi2OPDZRWVdA4Nmz7ZzOyxAEO/LU+mORvUOiW21lLV9eJGYPEayuYQSzibkpLOoYFcjuTC2opOumo1hhr9mkpLwLp5F8i11fh8it6flK/h+K+qxejSlt+NnsfWB/L13e+W1qtWKil5dlcx+V75+ty2zzaRDEmc+En53L3lWjfDr0yTTpXJu4CqNiOBwRhklFgadYSHixf+1CYlljo9i6diCFY1Fq++5H3Hs9OGGMswfyKC3qkmI4IYKo5/xy2y3W7f01PFpKMV8F/mwLnRwvEnxkryWVuzgehEnLSooO36GnLZHGeeL74Xq9oMNF1Ww8mnJ4hPi5jrdUTGlsejd6pJLGQwuDRsvN3LyN55Zg4u348T6UFCNWOEo2EiEXmMjY2NPPzwwxVSeAUVVPBvBm+//Tb3338/J08u1yB0GGmhB7fKV/hbVauRpstq6HtmgviMiGBVkVqxHmGoEeS/m1R03FrP6BuzBFe94/sudKDWKRn87TSowFynXyYP5SGYVHTf7WfuWIjRN9auBfkvd6M2qDjzbPH8rdKr0OhVJBdFLH6DvAH8ULCojcVvkO3KQmnMPn2R7dYSTB5dQSVpPbUjVNBwkYuRN2bLkkuar6vFVKvnyD8Olj3u7LGWJSitROft9WiM6lJXmxVoud6DGEkz+nr5mDVdXYvVZ+TQ9/rXJMGcDRafgWRILJmTV0IwqUClWLPNH6KkZKzVEZtNrttPW7ORyGSSTOKfN5ja7XY8e6rp/elIWaUllQCdtzUy8d48gTPlVQrsHWaarqhl4IXJ8m3yuZ+xVl6zj02Vksxcm63Un+uk75djZY+b6vSYa/UycatczWvF70ilVSJYhJLxVLUu5WZyn0ODkSICk8akonZbFWNvLeS/U1esCJX/W9PlNZz51ZRM5FZR9vpsureBREDi9CpxlKJ+GjS03+Bm9M05oqs2ijZdVYNSo6T/VzOQyxaeK0v9lBIZyCppua4GnUXD8R8v58WZjMTJ3AFUdWkmJibI5XIYDAYuu+wyHnvsMaxWa2mHK/g3hfW3BlfwbwImk4kzZ86Qy+X4q7/6q4IEf5I4e3mWVzJPcjizF4D3v36G44/JhenOG+rYep8fo1tmMq4kEkjRdME/1OgW6LrNCwLMHQ6z7y/PyIQhhZKmy2vZcl9zSZ+O/mM/g6/IzGmTV8uOh1sxN+YLR/mHnWBSkZVyhEaL1ZeAAkHJudmKuc6AZ5ut6PxiTMHIq3OgUNB1kw/feS6sLcaiNoHT0YJlVtPlHjbfW9rPJVS1mam/wFX22PyxMOHRGKOvld+hPnc0LBOUBNj6hRbMjfqSNmOvzzG1f2FdxaRUUCKXA8EqlD0e6o8RHIgw9Lv1d8qb6gScPZayx8RFcX2CEtB1Uz3tN9QjmNZtti46bvLRfffa8QaIjqXWJSh5LzrLoogIM4cDjL01t3abbHmZ9pUYeHGS/t+Uj+mm+xrwXlAFUJ6glO/HwukIw6+X74ezy4KpVk/TxS5y2VxZ9aSmy2rYcIdsGbR6cRpg40frabxIvj+j42IJQWnpe9xb5L6Gh5IFgpLFr5OJgUAmlS74GK9E1+11bLhT/v7Tz44z+MpMCUHJ1mqk6TI37dfWAnDk+yMFglLtLhtNV8njCw3HSKeyCGb5ObTyubLt88103eojl80xdyzC/r89xfjeBeYyk0y1H+dt4XnGOcPE5ARVVVVs2rSJVCrF8PBwhaBUQQUV/JvCPffcQywWIxaLsXv3bhQKBVky9HOUl6Wf8ab0LCFpnvG3Fjjw7TNEx+WXyg23++i5Z1ntMtgvFzQ0ehXpRIZwfodv42VOHN1mAHqfGOfET2Rysv8KD63X1WJwFdstRceTDLw0w+kXZIJS1+1eWq+vLe60QkkmmV1WMtLIqjgAqQWpYO9Vu60K99aqkjFPfxAoKBv5L3Wz8Q5fSZsl9aHOj9TTek1dgXyzGnXnO7H6TVibykvgjLwxy+zRYNljQIGgVHdeNV1l+gHQ/+sJTj+7/k75s+UIE+/OM/Hu/LptQFbLXAuzB4PrEpQAeu5upvX6+rN+z1owODR03uyj6UO167ab3hdYk6Dk2GhBW72+jdfQa3PM94bWJFNpzWpyOUiG0mUJSgCjr88z9vZ8WYKStdHApvsaQQMLJ6NlCUoAo2/MsHgmuubionePA0dXPhfOZUsWyno+3kjLVbUgKJHilBCUqloNNFzooOlKJ4BsebtqyK4eKza/HmuTnPevJChZ8u8CsZkkWSmHYMnvPMyfw+zTsuVTDWjtcrwHX57l5M9KFxc3fcJHy5U1AMSnJQ58e5jgQByNAdpucKOxygodUmT5vQ2JAkHJ5BXo+YSPxosckMty4sdDBYLStOc0Z+re4y2eJ0aYYDBIc3MzP/7xjxFFkb1791YIShVUUMG/Geh0On71q1+RTqd58cUXqamRn41B5ngr+0teFZ+kT9oPwJF/HKUvb2/mPcdBz92NGGrkfCc6mSyQeMRIGjEsP5jVJjX+y12odbIy0uHvDZNcTKNQKmi5prZsznPq6TEG8moBglVNzycbMC4pKOW/Q21QkxFzxGfyz+W6ZTLVEuHH5NVR3W7B3rWqQJ6mQFDyXeTCf5m7ML8AoFAQn02RTuVAo6Dlujo23NbAWqjZVIX3nPLP9ehEkrneIBPvlM95ouNJub9q2PCxhqJxLGGxN8LomzNrEpQAxKgEuRyCsfyO/OS8xOzhAGNllDJXQrCpqWotX7BKJ7PrE5QA33kuum5rQGf755sHNF/hYePHmtZtk1xIr0tQcuXVutfD+NtzTO1bJx45yGXWz2dP/2qS/t+W38TQcr0b12b53luLoAQwfTjI2O/L17xMXh32FhM1W+1l8y6dXU3rtbU0XyHnqasJSgAdN3rwXybXvMRQuoSgBODeasWd72tiLl1Y6NQ71QUfiEwyIy9MrsrxGy+tpuUa+bkx9Po8/S/MlOSzOruatuvd1J/vhGyO089OFwhKVW0G6vbI70eRSREpmkatzSuKrCAodd3uoeu2esjmiE+LHPz7QWYOhommg0w2H+UdzXP0Zt9jYmoCq9XK5ZdfTiKRYGhoqEJQqqCCCv5N4dxzz6W3t5d0Os1DDz2E2WwmSYzjvMsrmafYn3mFaCZM4EyMw98fJDaVIpfN0X6jl/abPIXzLBEJVDoVYkQiPivXnZw9FiyNcj1o9M15Bl+aBYWS2u3VtN/gRe8sXh8ToxlOPz8h12cUsnpT3fmleU06mSEdz7MkVLJKEEAmkSmoBbm6bWVrXuGheGFu8V/mpuVaT0mbJYJS3XkOWj9cVzj/aji7rDg6rZjcpeuEAJPvL8juK2twaZYISlWtJvyXl3eTGH51hoEX1rY+g3zNa5261/SBRcbfnjsrQWmtvAsgPBpfl6AE0HGbD/+H/vmuGCoBOm/1Ubdz7dobQHAgtiZByeTRIVjXt/GaPRpkev/imlZwKr2KXC6HFF87YIt9EUZemylLUNJWCbR+2APKHLGpVFkCEsBCb4jZY8E1j9duq8LZk393KJN7NV1ZS+s1HlRaJRmRkvHoqwWarqihbqe90OfVCksWnwHnBgvGWi25bK6IoFRQRlqUSCezstITFO4jrU1N+00eNGY5Vxp8eZaBX5euvzZf6aY5X/PKxCV6nxiTCUoqqNttRzCpyGVz8ntbSCqMc+m5IphUdH+8Ac/2KshlGfrtVIGgtFA9zoD3A17LPs1UbpiFhQU2bNjAq6++SiwW49lnn60QlP6doKKk9O8Uoihy+eWXs3fvXlZeQgVKmummUdWBySPgPcdB3y/kB8TOL7USGo6V2L213+Shut3M0ceGiE6KCCYKSj/OzRbSsTSB01HabqzD2mDgg++cKVIsqr/YgXeXg0M/GCQ5K2Ju1BXs35YgmGDbg53E55Ic+V4x+1fnEkjmpd22fr6Z8Ei8RP6x7vxqJt5agFyOjlu89D03XtSH2j12wkNRYtMizs1WQv2hIrUiwaREFLMgQt0F1cwdjxQpNy2hqs1E63V19D41XGL/Zm0x0nWrj8n31ycjNV3lJiNmz2rxti7yalTlsOsrHeRysO//Lb/r37OnGu85Dvb97amy5zDVa6lutzKyd3bN7zibkpKj24KuWihRt1pC992NKNQKjn6/PNO76So3tdur6f/tBDNl7NUK4z/LrrM1IUDPx/wc/dHQmmNEgF0PtROfS3LssdJFzp67faBUcPQH5WPQeJmzYKe4ZAe3ErW7q5h6L4BCqaDhUqdMussjl83h3mEDYOZACFurkUwqTWR0+Z4zujV03upj8HfTLPbF0DmXVdGWYPIKdN/VSHAoxskni3cQGNwC8UURRNjygB9QcOjvihWpWq6X5SCXdof6r3AVxrR0DXLZHDseakGpUbDvr/pLvmPDR31MHVhk7I0FPHuqUGmVjL2xQEKIkmif4uDhg4X2druddDrNM888wyWXXFI2rhVUUEEF/1bx+uuvc/vttzM7Wzy/W7CzlQvRaLTUnWMnFZGYPxbBd2E1zm4rR380irTqhX7Hwy2kIhJHvjcsq6+ATHDQ5C058ztZtn++mdneEKOvFc+3Wz7jJ53McuxR2QpLqdOQWiwuxHfe6sHmN7H/7wZKFJG01bLVmqPbgu98JyeeHC2yXrP6DWSkHNHxBDVbbWTETLE1hAbqdlbLxOhcDucma4lNsMGhkck7GqjbVV3Wug3knEGMpsvKQ2/4WAMGh7a8GuKKvmy4zceJJ0fXVRk6K9ZQwVmynxt6dZqp98pLOXff3UgqIq2p2OTZU01sJrEmKeesSkoa8O52sHi6PIFIY1Cy6d5mht+cKa9upVCw44tt5LI59n9jjZ1ra4y/LMopKF1YTUbKMfHO2nLXvgurqd1h59iPh0nMFv8mTF4t7TfU0ffL8SI1siVo7RpsjQZmDobQGECSivurMYCp3kjgVAxjnRadTVtEpEadpfmyGgZemJGLozusTH1QfM82XenA6NbLto0KJVp76e+q++P1GBwC7//tQEm8jB4NsUkJg1vDxo/WM/LmXJF9nMYA3R9rYP5UhNHX57G1GABlQTlJY5Dt6Mz1Ahtur2fygwCjbxTHs+U6F5Y6PQfz6p4t17qZeG+BxLxEqnWBk7NHmJuXn1FarRatVstVV13Fj370o8JGlwoqqKCCfw9Ip9N8+ctf5nvf+x6JxHLRXEBLq3ILHnUTOpuami1WRl6T32F7PtlAeDTO8KvFZAvPniq8e6o5/pNR4jMiah0FGypLg45sJkdkNIlnjx1np4Ujjw8XKRZVd5nxf8jF8SdGSM6n0bs0JGZXTQKqLDu+0EZ0KlFihyHY1Ih5FaWuO+qJTqZKVAKcmywF67qGS12MvDlb1IeqViPJkERiJoXVbyA2lSSdXLFgoQa1Wkk6maW6y0JkMl74zpXQu7S03+jl9LMTxGeK63Y6h4aNd/llG401ch6Amq02VIJy3TZnRV6Nqhy2fKYZhaq8/RzIdbuGC10c/9FwcQzy0FWrsfnNTB8OrPkdZ1NSMvv06O1aZg8Hyx73X+1Ga9KUt5ZTKHBtttJ0eS0DL00WrmsR1hm/fI6z7ClWQ9t1tZz+1dS659nyGT+xmSRnniu14G26sgaNUcWpp8tv6qvZYmXmWEhWDbOpi5XAAHubUbZqUyip2WJh5lh4uS+5LLZmAyqtioWTMQw1GpQqVWHxF2TyX/sNtYz9foHgQLxge1I0TJOarff5WDgdk3O4FRCsarKpNOkkdNxSi1qr4viPi98nPLttOLssHMmrWdZstTBzNN/PJQ5bGjbcUYfWquHg3w2v+n4lG27zMncszOS+IFVtBgSjmplDYdLpFJGN4xw4uo8ccl3ebrdTVVXFT3/6U3bs2FE2rhVUUEEF/1YxMDDA/fffz1tvvUU6LT+PlaiooZ5WtiCoBOxtRtJijvBwHHu7Cc/2Kk49N1miSNT9cZ9c51lah1xSYFGBo93M/An5XbzztnoW+yMyoWcFWj/sgSyceX4CVCDoS63T6s6V7dmOPT5UMn9oTCqkaAZDjZaGi10MvDiJGFr+vM4uoFBBYk7E4pPJVKtVk1ba3Fr8BsKrrFlX2rmtZYkL0PChGsjlyq4VNlzswtJg4NiPhtcmEqmg8ZIahl+b+WerIS2dp9znLT4DbTd6GXlthrlj5dWdGi+rIStmGX2zPKG5qtWEGE2vaaF2ViUlFdjbzEQnE+UJUSroutXHxHsLhIbKK39uuKsBpUrBsceG1/yO/5P42TvMqDTKNWO01MZ3oYtTT4+RWCh+VxCsalqurmXolZllO8OV3dOrMNfpCPbHUAkACjLi8rq/SgC9U090IoFg1qBzaIs39imz1G63M/W+rL5kazYSXKWS6tpsxeozFCzUln4nK+G/3EVVk5EjPxgimy5em9Xa1CQXJTQmFV231zP21jyBMyu+QwXt13sIDkeZPhBC7xBQ61UF5SSVINvRaUxKuj/WwOT7i0wfLI6ne5uVqhYzvT/NiyfsrGLxdAQxnCFTG6UvfoTJefmYIAhUVVXx6U9/mv/n//l/UKnWJ6lV8G8T//xtJRX8q0IQBN544w0A+vv7Of/885meniZHln6O0J85gmpMRfuTO/CoGkCAbDqLlJAf8rW7q7DVGzj58wlO/XKyiGSx7fPtxGYSHP3hKHOHlydX5ZLXff4Z2nRlDYOvzTD2+jxjr+cXzwTYeIef+GySIysIKmIUpvcvyr6y+c/KEm5TBYISAqgFFRqdqvDvpe+ayC/W1V3gwN5uof5cJ2MrlG2mVnizt1ztQYq5ihZhxGi2cE7feS5qNlVx8G9LCx66agGFSkFOKuXuhfpjvPv1k4U+VXWYCPSVMmYdG23kMmuTlKwtRjpv9jHy5kxRv5dQs8NG0+Uehl+bLnt8+PVpomNry1ZnM1kUKgWWutLkCWSFo+jY/wGBCs66c02lVaHUrE0wGnxxmoyYLU9QAnY93IEYlTj0nYGyRKWdj7QTn0lw/EflJa8bznNirNHh3lxVquYkUIjN+99YQeRaVQRSapVA+TE4Nprx7LAjmNScfmaqhKBUs91K06U1GBwCgy/MFghKKxUdGi92kknlmDkQIrhiMs+pcyCCGBZRahSYPXoW+2IFgpK1WY/vfCfHHh0lOi4y3xdm5M3ixWuTR6D7Y40EBqP0/XyyyKbO0W0ml8kxfzyy7A8rgCKtKBCUTF6BjXc2MnciRP/z0xx7YpTknIhCqcC12YKjw0zvzyaITabIZXIoVXLshn8/w2nr+0xnJlGJKjKHM6hUKhQKBZ/97Gf5xje+UTaeFVRQQQX/HnDxxRczMyMXx//0T/+UP//zPyeZTBJmkTd4BiSwv+mmh3PRaDTkcpCVcgWCUvtNHmZPhAicirHvb8+gMciEgdYra6nuNHPgH4aQQlKBoKSxashlc2RS+aJ3h5FsOkewP15k19t8tYeqZhP7/36oiIzU/9Ic3j1S4W8b7vIx/PoMsYlUgZBkcGhRaVWk8koDS0SV0Ir8of5cBwq1spikJFFQbmy5zoOz24oUSxPsX57PltSF2q7xUN1lJTyWIDJSmpcoBSVqXfmFmBM/GimQuMwNBiKT8RJiiHtLFZZ6I+5NVUzvL79DvOsOH3q7wIFvlV/s2vSpJjQGNfv/ppQMNfXeIkqVYk2CEoBKq0STXvtlePLd9RUDzgoJxt9aW/HJ6NGj0CjLqiku5VEnnhhCV12qjADg2WPHd4GLU8+OEThVWvCp3VVF/XlOTvxspKDItRquHhtkKUtSsjYZCA3GGX1zgdF3FgrXcKUFSS6bQ6FSoLMJZUlKXbd40RhVzBwMIZVJg7s/7ketV7Hv9CCxSYnYpLR0YgB851Tj3GghNJ5g/li0mKCkzoIEaq0KjU5ZyAmXCEr+K5yIkTQT7wQYe3sBg1MouQ83ftyL0aHl/b8aID4tse+v88RwDdTvtjP21iJSLAsKUGrk8wcHlgt4G+/yYnAK7PurfiKjSY78YFi2kBOUtF5Zw0J/lMWTMdKJDJn0cj559L2jvD/1e9KI0AuK/PXu6Ojgqaeeoru7uzRYFVRQQQX/DqBWq/nGN77BN77xDebn57nxxht55513ELMpTmTf44T4HrpZAx0v78CpkhVcMlIWKSkX2m3NBqr8JobemGXy3QCLJyMFksWm+5qITiU59fQk4ZHlZ3GhhpFfG/HstDF5MMhCb0RW185j4x0NRKaS9D25ghCRUTL6xizxBXmerNlqQzBrGHtzrogspNGrUenz89wKosoSkaWqzYR7axVSVGLy/eW8prAAoFDQer0XKSYV1dxIQzotz3n+y92kQiLHfjhcEledVYNSo6TcftXkvMT+b50u9Mnk1REdL11sqt1mB6ViTZKS3qWl6zYfo3tnS0jsAJZGA+031TPy2kxZEtDgy9OkguXzDYCslEUpKNG7tCV2MSArHE0vrK0a9IcgMpooe+4laHSq8vlrfh6ePRxCoVCUJygBW+5tQoynOVGupqVQsvneRmJzqcIi0mo42s1U+U04OizMH1/1HWowOnXEppIc+v5Q4XquzLsAVDolKm35/NVYq6XhYieGai1Dr8yWEJTMPh0t19YyfSjI6BuLzBzK92HFTn//ZTVk0zkWTsbyJHup0D/SIMbSqHVKDNUCwYF4kXJS/bkOTj87TTqaZvKDINOr4qg2qdl8t4/5viiDL83S9/PlOJnrdShUsqJTRsySy+VQm5Sko9mCLZvapGbLPT5mj4UYeX2BU8/PkE7m1cobdTjaLQy+NEs6miWXXlZMn+sNM2w6wojYj0IFmaNyzctsNvOVr3yFr33ta2XjWUEFFVTw7wHNzc289tprADzzzDN85Stfob+/nymGmWIYdUbAfbKRVnpkMoBCQUbKFUgOdedWEx6JExlPcOzxUTQmeY6p2Wqlblc1x38yghjOMN8bAYUSlSYLuRzZ/PutoUaLUqUgOpnkzHPLBNq6ndW4t9k59qPBIqLR9MEgmWSuMH80XlbDzKEAifllGzedXUCtVy+r7+SJKskV4gWe3dUIJjVHf1C82X6JdOTcZKXhohpOPTNWlBssEZTc2+zUnVtNMiCWJemodcrVQjgFjLw+W+iTzi6QDIklRBpLnQF7m4XwWJzFvvIKjvUXODHXG+j9SfnN9s3X1qK3azn++HDJsfBonMGXptY8N4BaryKrXptAvZY12h+MDCyeXPv7dVYBlaBcV13yzLPjaKvKK19Z/AZarvJw5tcTZfM7i99A4yU1nHluYk2VpZpNNpRrkJT0LoHErMhiX4TFM5Hla7hyXTOTQyWo0JjUZUlKTVfUYKzRcXhoMK96VDzWlmu96KoFjnx/GDGaQYzmC2P5m8vebMKz005iQSI4ECsmKOXvMbVWhcaoLvx76Xfi2mwlJ2WZOxFh+kCQ8HiihKDU+CEntiYjh743hBTNLAs7LBEPeyOFNXWFUr5XkovL+V/DxfLnD39vCDGc4dhjI4jRDAqlgtqdVcSmk4RHE6STWTKpTKGPw6fGObr4HmEWyI3mUCgUaLVarrzySv76r/8av99f9npV8O8HFSWl/2B49NFH+fznP08sVrzAoEbDRvbgyBdvNt3XgKFay7t/Li/G1J1nZ2KfXGDovKGOxcEoM/tDNF9TQ1WTif3/MAArFj6cm620XVvH9OEAA78ufmluuqaW0FCUhd4IzdfWYnAIHHu0eILc/mALSkHFvq+fkv9QRjlo2xdaUGlXtMmjqsNEID9pbbq/icn3iy0lnJutpOMZAqejODdbSSwki1SRqrvMxOZTJGfLqy4tQecSaLrMXdYbvutOH7ZGE8d+MkRkeLWH7rJqU1kIsONzbQy/Ol3WCgMBNt/bTP/zY0Qn1joJ66otnQ1dt9cjxjP0P19+x9R6Sko6l0DHTfUMvjRVlgR1VvwB/e68rZ7Eosjwy/mdUquISls+20RoMMbgb9ewaKNYoWsltj/Uilqn4r0/X6VEpVDi7DFjbTTS/3zpLjNYVkcCeTfm5LvFha8ldSWFUoH/cieDv11BBhOg564GJvctMn88gq3VQHAkXhSLluvcODdaOfT9oQIpaOXnEaHpCieuzVWc/MUYoYHle692l42azTYO/8MwAB03exj9/TzxabGIHLXnq+2IsTQH/nZgxdAVNF9bg63ByP7837s/4WP8/UUCfVGqu0yIUYnIaIruj/swefS8+1cywUvMiBzlbYLMotfrC7tcVSoVF1xwAb/4xS+w2+1l41lBBRVU8O8dkiRxww038NJLL5HJrKwkKKihnk52oNFo0FjVbL3fz+KZKGeem8Lk1aJUKwkNxqlqM+LeZOXkz+U5eesDTcz3hRl9vZiUsvWBJjQGFe//ZfHOI4Nbg2dbNf2/keeuTfc2MrFvYdleNJelqt1I+431jL45y+S7i2VVc4x1Wro/Ju+eH12plKgBU42e6HgCR7cF1wYLvU+PF33ed5FD/kwuh/d8RwmhpmZrFTMH5TmznOrSEpqvrmW+L1SqOKSBXV/sIBkUOfLdwZLPLSlDrYXGK2ow1+o59uhw2eO+S10IehX9v15fSvufpDa0AtYmA74LXfQ9OVyWYHM2JaWmq2pRqilRGl0TqwneZ+m3sU5L0+W1ZRczQSZn+y5wcfB7q9SDVhK8NaDRUDI+a5OBrlu8zB0PF+7R5Y8raL/Jw+CrsyVqY5BXR6ozEDgTx+DSoNKpiIwuF/1MXi0avYrAmTi2FlmePNi/nNQ7us24Nlrp/am8iGxtNhbsd5aw/cFmUmGJY4+OFo9pRcy2P+hHjKQ5+sNitYSu2z2EJ5KMv7WIvdOIwaFl/K38gm2+UNR8dQ2ubisnnhwv2uWmMSrZcGcDcyfCTLy9gHubFWONTlYJ0IC7x8r0wQjksuz6civh8XhBNXNBmuY476HSK0gmk4WF5sbGRv7bf/tv3HvvvSWxrKCCCir4j4K9e/dy33330d/fX0S0MWCmS7GTKrVs5dl6nRur38j+b8rvt44NZuZPRSAt5y3xuRTzJyLUbLXh3Gih76lRpPjy+UweHRvv9DG1P8DIKut3z04bsQWR0ECc2h02THV6zjybn6Pzz/8Nd/rQWgUOfidPkC6jnNP50Xp0NoFDfzdQ9PeV5KDWGz3MnwgTOL08v5l9srVIZCSO1W9AimeLVJGMHh2ZVJrkQhpLo4H4dLKs4pDapMZ3gYPBF0rrHw2XuHBvs3Pip8MlRCW1DtLp0vEsN4CeT/gZ2zu35qJVx231jLw+S2J2bTLSWdWG1kHDpS6yaRh7s/wGvfWUlNQ6JS0frmP87bmyJK0SrM67/oB+N1ziQkpklonsqzbNddxcR2Q6uaYSKVBWeQhgw1316O0C+78zUNQPhVKByavD1mRkfG/58xbUkZBrpwur7OxqttqYORjMW/ZYmfpgRU1MDS1Xulk4HSFwOobBrSW+IBX1oXa7Fe+51Rz7ySjJ+VV9z8fNtdlCw4UOTj1bTCKsajPg3mrj5M/kdybfRXZmj4ZJLhafZ9tnGxFjmRLFdM9OG9UdJo49LueFzVfVMNcbIjySxOTVkZUyxGck/Jc5cHRaOPSDYdLRLOl0mv7cESZz/Qh6oVDz0ul0XHXVVTz++OOYTGvb5FRQQQUV/HtGJpPhf/2v/8W3v/3twqY9AA1avDTTSJdMWFLBlvv8LJwMM7p3AcGqQq1TEZ8R0bsEXF0WRvJ1pvYbPQSGY8weChWRW9turMPg1HJ4Zc0nl0MwqXBssDL5vvyu3XxdLXPHQ0XrUnqHQOetDYy9NSuTSMqo5ggmFRs/7mf83XlmDwWXD6hAXyWQmBcx1upwbrSWqBY5u60Fcko51SSr31hQ+CmnurQE1xYbselkWTJTz71+UiGprMp4OcWblXB2W7E0GhhYo2ZU3WVBZ9UwcbYNdP9MtSG9Q6B2ZzVje2fL9vNsSkquLTY0OtXZ+7cWztJvwarCe56Lwd9OlW1n8ujwnuek7+mxdRWtVColGbE4p9ZWCWy8s4HpwwEmfr9qc6FCQd251cweCZaNi0oAvUNHdDKJxiQTiOIzy7mxYFUjmDREJxLonTpUWiXR8eV7y+TR4dhgLayh6mt0JFath264ox4xlubMc6vujRUx23hnPVI8w6lniteKGy5yEF8UmTsaxlAjYKzRlaxnuzZb8Z3voO/pcaKTy31XaBS0XVvL4kCMuaMhLD49Zo+eiQ/k37GtwUBoOEEum2PTfY2ER+MM/U7O22OZCKc4QEIXJiWmyGazqNVqtmzZwn//7/+da665piSWFfz7RUVJ6T8Y7r77bu6++24A/vf//t/8j//xP0gmk6SROMxeyIAKDdP/sA2fVfazN7oFGi5wYvUZ6H1inIEXJgqkHY1ehVKtLBApOm/xMvbOLHOHQyjVCmb2BwHY8XAruSzs/+YZBn+z/MAz1erQWpcZrM4eC3NHw+z/Zj+CSX6Rr7/YgXe3k75nxoqUiQJnImjN8vZ5waTITyQzhTY6l4DBqaW63VL0cJw7vLzw1XS5TMp6/y+WCSkrX7JbrvIgxV1lrS+aPuTG2mjCVCeUkIX6nxul8TJvCUEJllWbqrvMtH3Yy+ArU8WKQSLLtiXC8t9WHj+8qki1Go5uC63XeRl5fWbN3fnOzdaiWKyEqd5IOvHPq/bYGo3o7Vq01vKWEc4eC3N94bXt6h7uIBkQOfK90kXGJZx8ckUxYUXBR7ALiIsih75T/rM7vtiGGJF3FJYjKAEMvTyNoUZbeiCXxXeBC41BVZaktKSOpLcLDL4wU0JQarnOTU2PjcSCyMzBUDFBCRAEMLp0uDZamT8eIXhGTijMDVqsDSbG9y4wfWARY42WbCZXRFDa+tkmlGoF+785wOBLc4y/PUcqnENbrUFrVhEZTWFwaNFZNAVbuL5fTJLL5mi4xIFnVzXH8naOg7+bZua4fF80XV1DZDzO3NEIKrVS/q3nyVCnnh6VnwMCtH+4jthckiPfH+HYz0YREyKHeRN1FYiSSDQq/yaNRiPbtm3jxRdfrBRpKqiggv8U0Gg0/OY3vwEgFApx3XXX8fbbb5PNZplhlBlGUUgKqudriX99T8Fuyf+hGgwOLe/9xWkCp2NEx+VihsYASrWiMAc4NpgxOARG31zg2GODmBvlZ6u10UDnrV6GX51h+kCoQP4w1gnoqjTobHKCYfLqSC0mCZyKceCbpwqLb9s/24oYlTj6j8OFsYjRLLHpBFOH5Dmi7pxqAgNh4jMS0XE533F2WjDXG0visERqcu+UFXmgWPlniaDUfHUtrs020skMgVOrFq004NhoxejRcXRwlV2sBBPvzhMaLV/oWSIodX+yEbVeJSsxrsDwSyuKaVZNif3d6B9g0dt9TyNai1BWbQmW7MZMpeMC9HYtRpd+zeNng7XRsKxoWvLF8o6pxaUcetVCWd251dSf6+TEz0aJrBG/2ESqLEFpyVZt/nikWEkLZGuPrVYaLnJx8hfjREYTsgXbKoQG4zJB6XeluZXJq6Oq2YgvWV1i4QHQ/Qk/aq2KfX/TT3x2lb8b0Hmzl6yU48CZwSJy0hLszSZMtbqCjdoSQcl3sYPR38/LqmEjceJzqcKYAOydRlqvdjP4u1nmjkU48v0hmXyVy8qbJU7JcTQ4tSytjy+ejLFIDHJZtn7GTyad48j3hxl4eYbAUIzwcByjR8C9uYqBF2aQYllUggKNUd5dOn0gBJq85P1NssX2Qn8MKZTl4N+dYTw0Rh8HqKqxMjc3RzabhQRs3LiRO++8k69+9aulwa+gggoq+A+ICy64gNOn5bn4ueee48EHH2R0dJQ4EfbnXgVJJiwtPLONGpMbkMk4TVfUYPMb6f/1tDwH5MshGpMKlaAs2L81XOJk9niQ6GSSk78cJ5RXgdz4MR8qjZIjPxhmcl+w0B9TnR5zrb7wb2uTkdBgjBM/GUWtk+dke7uZ5qtrOf38RBFZdvFUBIMzX5tQg2dHNZPvLhSIMWqdAqvPSDqRKSIprdwB7r/MjUpQceBbyzWt2ApLrdbr60jH08WqS3nU7bTj7LIxczhY9BmAkb1yblSOpLMUK6NHR8fN9Qy/MlO8WJeGo/84VBiXWr38mSX0PVlMIFkNo0dH1+0NjL45U2IBswSr30BoLF6WEGTzG8lIOcbeXPdrysLg1mGuM6CzCWXHLxO/4vKYyih/b7mvmURQpO9na49x5LXyuafapCYdTdP3i/I2dN2f8CElMvQ9NVHeDgUYfnUOc52uJC65bA7vudUYnVrG31koOW5pkNWRpg4EGHtzoSxBSVYEzzB/IlJMUMrD6jeQy+YInI4VLIp1djUWn4HZw2Hm+mJYGwwl90PnbR4Ek5oj/zjK7OEwi31h0oksar0SwaohPiMhmNQYHVr0TjWJubRsiZvL4thgofFDLk7+fJzYlEj/b2eITcq/kdrtVhKLKYKDSVDJapZLdo8jr88U+tF5k4fIdJK+pyYZen2eMy9Pc0o6QMKySCaXIRyW72+j0ciFF17Iz3/+80rNq4IKKvhPAZVKxZ/8yZ/wJ3/yJ4iiyH/5L/+FH/7whywuLjJEL0P0ImR0eDKNZL6TQSXI77fe3Q6qmo0c+IdBErMi48F8fUglK1Gr8vUNk0eH3qFl7miI089PYPbIOZVgVbHhjkZGXptl8VSkQFDSmFSYavUFazZtlUA6mSExL3Lk+wMFAknnLfVkUllOryAjZzIQGIwSHJTnt6pWE/F5kVRALKjn2JqM2JpMqN6cYeU+xCWCkrleL+deWmUR0WmJoLSW6tIS3FurSCyInHm2dJ4ff2uexBpKkksEl8bL3ejtmhJr4bljoUIfVXrVsnJUHmtZ0a2E/3I3Jo9uzc19qMBUoyuybl2CWq/C2mBkzi4gRddWolwLlnoDWsvaJCpTnWxzVg62ZiP+y2o5/dz4mnZzYihTtGZdQF5QMjqZLGvha/bpabq8ljO/miA+kyKTKSX9pwIiE+8uMHesVGFUsCip2VQFOZh4p3RsBXWk7w0iRTMlRKa26+sAOP6jERJzpWMz1xuw+Y0FEtsSQcm5wczimQgZEQIDMaRocS1N7xLouLGO4ddmCZyJcfLnY3n1JjB5tAWykcmjRykomTsaJj4jEp+RG7Xf5AHg1C8nmT0cIrEoEp1MIVhUODplQmFOyqHSLivnh0cTxKYTkIG686pxb7Zx7FFZFer448MEEwFOcxihRlGoeSlFJVu2bOFLX/oSd9xxR8n4K/iPgYqS0n8SPPLII3zzm99EWrV6oESJn43s2b2HxYE44qLI5k/70VnVvPcXxcQdk1eg52N+FvoinPrlOOZGHalwFnFRpOMWLwB9Px/H5NXSer2X078cK7LB8uyx47/Uzfi780VWaNVdZnwXOQvEk85bvEwfCxYRlro+Wo/Nb+LYE0NEhlc8kDW5Ahlm6xdayIo5Dv/D8sKUziVgqtExfyyMo9uCya1fVuehWHWpustMZDS2bA0HBYKSYAJHd3VZQlDHLV5MHn0J0UnnEui+q5GTPx8pUnJaiV1f6SAjZtj/N6UkKZmIVMfw6+Vt4bZ8roXhV6fLWs7V7LDRcmUdU/sXGHyxvCrQelhPSels2PO1TqR4uizxC2DjxxqITieLrsMSdn2lg8RCSi5orV5kO6ca30WuPDGrvKz4pvv9xOdTnFnN+r3URc0mG/u+dbqEPCWYFNi7qpj+IIiQrzGsVNZy77AxnSeZNV3lYvDF5XvX6Bao21PN6Wem8n2sYuKdQNFnGy92cvzHI0QnxbIqUjseakGlVfLeX8iFVoVSAQJ0XO9hYt8CkdEUrTe4USoV9P1ieVwKpYLdj7SSTmUL6kdLikntN3lQaZT0PjmO0S3QdqOXM8+NE50UcWw0FxYa93ytnXiefLQSXbd7sfqNvPuXslpS3TlVDO0fY39iL476KqampwrPkoaGBiwWC7/73e9wu91lr0sFFVRQwX82TE1Ncc0113D48OESOw0L1Ww1XIC328XMwRAaA2z9XCvzJ8L0/7p4zu65R1a+fO//lecIe4eRxb4YJq+O5ivc9P5UVuZpu8mDGE0z/LviBY/tn29GoVbwwd/0r9qhlm//8izWJgPOLiv9L00VcUB2/VE7YkTi0N+vIgbnFWZMXj1dt9XT/+IUiysWMdzbqpg+IM+FLdfWMvbuPKkVcsm+i52M5hUJVqsqaawapLgEkqy+tNgXKFHm0Rhg06famHhvvsSCrfW6WjRmDb1PlLeD9eyRc4n+30wwX0bNsvuTeSLSN0qJSL5LXeiqNJxeY9Fo2+dbUOlKFUD/EJxNSWk9+K9yU7tVVjooKFCtyKGq2o3Un+vk6A+GSz7r2WOn/jwnvU+OlSUwbftcCwol7F9pkbxip7/Jq6PtOg/HnhgrJn5pYOt9TSwOREvuSZA95qePhuSFZJeGxIqd9BqrBn2VhvBwHFuLAYUCAmeW++a7sJrgSILwcJyqdiPRabHou7vv9kEOjj02WujLyvva2mSg8+Y6Zo+FlnM6hZKqVgP2ViMDL8zlz1PPyOtzRepHvkuc1O2oou+5yQJRiVwWg1tDy9UeTj49iRSSaP1wLVIiw/DvZtHaNajUEJ+V/17dZuLAd4dLiHI7v9RCbCbJiZ+Mo3doMLi0HDxygGD1JKhyzM7KfTUajXg8Hu6//37+6I/+qCS2FVRQQQX/WfHoo4/yta99jenp4lxKi55mRTcb2jeSXBBJBtO03ViLuU7PgW8V5zhqk5qt9zcyeyzE0O9m0dnVZDMghtJ4L6hGo1Mx9LtZ1CY1bdfXMvi7qSI1GGuzgc6bvIz+fq5oU5PJo8N3YTW9T8iLHw2XuAgMRgiv2PTmu8hF7Y4qTvx0pJgYs0KVp/P2elDAyZ8uL6KoTWqMDg2hoTimOh2WeiOT7y3XrSyNMmkkMprA5NWRDKZJR5f7rKtWk1xIg5ry1mGA90In9mYTRx8fKiK2qE1qORf89VSRktNKbP5UE7lsrixJyujR0Xmrj9E3ZsvavnV+1MfEu/NFc/ESTF4dG+/0M/bOHBPrWOKuhfWUlM6GbV9oJZ1YQfxaVbvyX1VDKpguWz/c/KkmkkGRvqdWqSQolFS1GWm91sPwazPMHi6/mNh6fS1SLMPwKoK9c5NFttJ5fKiEAKTWgbUpr4qkBo1BU3QPrFRPqt1hY2rFJkvBqsa9xVbYkODYYGb+xHLeb20y0HxlDX1PT8gLV2ogU6wKtfFOL7oqNfv/drAwVtTgO8/OYn+c6HiSuj1VCEYVQy+vGJdCyZbPNJAVcxz5QT6vy7/P1J1rRzCqGXp5HrVJSeu1bkZenyM+I2Fp0BZ+W9u/0Ex0NkXfU8U1Qt+Fdmo22zj09/2kU0qqu4wsnA5wOPEueq+K6ZlpRFF+f6mvr8fv9/P000/jcDjKXpcKKqiggv9siEajfPGLX+TnP/85odByTUeNgJM6OoTNVDfYCA7GQQVb7/czczRUYg/fdEUNVr+hoCpp8sgkGMGqwneBi5HXZWWeuj3VZKUcU/uXlIvlOlvHrfUIZvUyOToPzy472TRMH1hEZxewt5qY3L9YpJLTc6+smFxCTskrzAhWFR0f8TH8ykyBFAUyKWbJSqt2u52FvlDB+g2KVZcsPkPRZ1WCEsiSEeVjselkiTIPKui6vYHpg4slFmjubXb01QJDZTaBgazo1Hy1h8HfThbbfeXR8CFZZfz4j4ZLjlV3WTA4tIztnSs5BtB+sxedXSirbn42nE1JaT04u600XLI28UvvEqjb5aD/V6WOMVa/Ef/lbk4/O16kULSE9pu9aPTqsvEAOQ9qvrKW/t9MlhCI2j/iJTweZ+r90nVKq98oE+nz99FKm0KVoEBbJRCfSaF3CqgEVREBq7rLnLcOTGGs1SJG0kXf3XSlTJIrWCKqgOxy7qWtUsvKTgcWl4lRCiV6l0CV37SsSHaNm6n9iwXiEYC9w0zTZS7O/HqK0Ao1MMGkwneRi9G9s4jhDJ5ddnK5HFP7Aqj0KlSCTASr3VGFZ2cVx348UjRmgJ57GolOJRh8cQaVXoXRKTA0NMS0bYCsViootRkMBpqbm/mTP/kTbrnllrLXpYL/WKgoKf0nwde//nW+/vWvA/Cnf/qn/MVf/AWJRIIsWQY4ysB7R1GgwEk97qMWqurN8gcF2PPFNmaOBhl8cZaD3x8iGZTfeNuu8yIY1bz7v/vo+/nyC7aj04rOKrBELPVeWE1wIMrkgUUMLl2BoLT1c81I0TTHHhsp7NARTGBrNaM2qGTyTZ7U0fvTMZybrQWC0s5H2pk7GmTodzOgAHI50okM2bwlnWBSojSoSc6KBUUd34UutBZNETlmpdJQy3V15DKw7+vLqktLCkodt/sx1ehZHIiUKPSstbM9OSvywV/Ji1w6l0B1h5mJVZLKi2ciJALlCUzzp8I0XOwiuVBeEejQt/vL/h1g5oMgRqeewVf/6QSl/1P0/2b9Is96xKfEYorIeKLsbrS5ows4NliYPFA88QsmqN3lYuTVWY58r7TwBZBJZ0ChQDDJSkwFKJRsvLsJrVnD9JFgie1f42VO6nZWo9IomHgnUERQAmi6wo3Jo0ewLyAuigWCksWvJzyUIDIWJyuBxiLApAii3N9N97WwcDrC4Asz9D07RiqS92vVKeQ2RjVVzSYUSgW9w+Oc/qVMgnL2mGm63E3vU6NERlOM71sgNBInl83JBKpXZ0EEc52+oMIRmxY59Hdy8tj9sXrMXgPhyUHERYnjTwwTGZHvv12PtBKZTND7xDizx0Mo1AoC4iSz7hFOj8BoQi4KzcyK1NbWYrPZeP311ytWbhVUUEEFZVBbW8vBgwcBmJ+f54YbbuC9994jk8kQZoE34s/A+/JO/83SuYSGYsz1RlAoFXTeWofBpeXAtwY5+oMRDG5Zfcng0tB+Qx0LJyOcfm6KIytUkMxuHel8DqQxQM22asbfWuDMr6fQO2RVJavfRNuHPZx+bpzTK8i8nh12rH4TI69NyUo4eVLHsR8OglqeS5qucmPzG4vsvjRGJVkxS2RCzs3MPgOR0XiBoGSo0eDcaEWpVXD66eXvG31jPi95bKfhwhpUWiXT++TPLBE3NAZZGaBmq42jqxa1lHo5HulVO8MAzqyQtvae72D8vfkigsrckQXsLSbmT5Zf+IlMJMqeF86utjT02gzZ1cWl/wsYf3OaTDJTapGXR+BUjMCp0uIUQHwuRTIkrqmwNH04gEqnKrEg8eypYq43SnQ8ycG/K1OgysdcpS7N5wxuDf4P1VDVZOTkzyfzCkkyFEoFmz4hk4z2/+0Awf5S27/a7XYsviTHh+OFcRlcGuIBmdyWTmRgJS9QkpWTnJ0WDnxnkNBgnNO/mmLxZD7pE5Qgyb8Dk1vLwO9m8ve/nK923eFFqVFy/PFxRt+ak0lTfVGMHgGzR8/0/hAKpQK9XcDRZmTqg2CRjPbmexqJz6c49ugowy9PMfyGrOTVeJkT10Yr+/5azueDgzEWBsKckPZhNKmY7J8kRgwWoKamhvr6er72ta/xwAMPlL1WFVRQQQX/2bFSVfwXv/gFjzzyCKOjo6RyCXpz++jt24cGgTpFM7YT+qJi/7bPNTF9OMjE24sc/N4wOVGem5quqMVYo+WDv+kvsseqajZgXKHO7NhoITabIDQQZ+ydeSbzCjMdt3nJpDKceXaK3p9OFMgZrk02tDYN4eGJAglp9I1ZQmOxAkFp8/1+Zo+Hi4gu6Xh6uVaiBp1VJhiFovLfvec5MdcZmNy/rJKzkuDTep0XFHDoO8u1pOSC3LDlylqqO61EpxMk51dtblQo5LrbKuWddDRdWBRUm9TYW0wlZKPZYyEyYvncKjaZJLGQIrFYviZ28qflSecgKzyNvjkjLzj+X8bp58ZRapRrHh96sXRD3hKiUwni5Wp8uSyBwRihkRiLfavyVDW4N9uY3h/kzPPlbVwyYg4FoNSqIVl8oVpv8GKq1REajJBOghSWr69CqcCx0UzzFW6GX5tl5lCoiKAEULfLjrPLwuzRIMnFdIGgZKzVEptKEZsVySRz8i55hVJe/FVl6b7TR2AoxvjeBfp/O7l872iUkJbVtWo22dDoVUTH4oVFNJNHR8t1tfT/eoboRJyxt+ZJLkqQy+LebmP+eJB0Ul7Y1ehl+YN0JM3JvLWv/0MunD0Wjj46THIxzYknx0jMpSGXZdN9jcSmk/T/eprF01E0BhWRdIQx20kIZBiJy7mfMCNQW1vLpk2beOyxx7DZbGtezwoqqKCC/6wwmUx873vf43vf+x6JRIKvfe1r/PSnP2V2dpYphpgSh1CdUWOnhlZ6mD0RJphXG6o7r5oqv5HjPxpl8KUZtFXyErVKr6L9Ji9zx0KMvjlXZHdvrtOTy+aY2g+owNlpZe54mOFXZzHka16CVU37DV4GfzddIGIAVHeacW+xM3M0JCsM5UlIJ54YRa2T5xJnjxVHl4XTv1xWlFFpVaQTGZL5PEVnF0guigXyj0qvonZXNYJZzcjry/WiJYKSrdlIy7V1DL08XVAyKhCSVNB8tYfodKJEVWlJjSqXLtUWmV6xLmbvNBMaiBT6CxAajRE4EyEyVr4GtKQ0WA4LvWHWM1ubeOefTgr/l8BcrxzPcgQlgMSsWJagBCBGJeKzSeLz5XPN2SNBBEupW4ytxUhsOokYShc7vqyCUlla89KY1bRc42H+VJiRV2ZLyDrtN9ej0ig59tgwibnSnLD+PCfRqQT9v5oiNiX3W2NSkRWzZMQcUjxNNp2XgFIoIQuOThM1W2yc+MkoqUWRU78cXyY+qeX8zNVlwd5hZubQIhkRBvKK/L4LHQgWDf2/mmKxL4JaryQ0GkewqjC6dATOxMgBZq8Os9fAQm+k6PfVfZeP+FyK089OMnUwwPzJMFI0g7PbgmeXnSM/HIaMfH/F5lKMZwbI1kSZmp0gQgSC4HK52LRpE//zf/5Prr322jXjXcF/TFSUlP6T49FHH+Whhx4qSNeuRL27gR7rVjZc0cFifxilUonOIqBzCMweC6DWq8mJWUZ+P0frdbU42m3MHAoQGIhibzMz8Gs5kdjzXzrJiBn2ff00CLLVx9yREM1XuslmckQnk8weD1B/jpPQZAyFQsHsBwuIUdj5SBtKlYL3/vwU5kYdro1VTBxaoOe2RkLjMWIzSRJzIrH5FJ5tdgKDEQJ9UTZ/tgmDXcf+7/QiLsrKQoJJQ2g4RngoTtstdVh9Jk7+bIi0BHU7qwlPRFEqVWQzOextJmaPhgj0RWm8rIbYQgLBpGHueIT6c6pJBFNM/n4RZ48FY82yOlP3fY2I0QynfjaGYFJSf1ENE/sW6LzFh94mMH14kcH8BFB/sRMxKjGTV/DpvMPPwG8miE6IVHWYqGo2F2QIvRc5yKSysqKSAM2X1zJ7PIjNb8K9zc5iX7gQ77pzq8llKRSzmq+tZe6E7NNr8RtwbrASHo/TcrWHhdNhYrPJAnmq6ZpaAmcidN7iIzoTJzadYuB3UyCCe2cVaoMKz3YHYlQiPBovxNvoFnBvr2bsjSnEKNRss6GzCQVCmv/yGkxeAyqtkr6nx6jbWc3YOzKxx7nZisGpZeQVmaXdeJmL2EySuaNhBLtA85UuFs5EmP0ghKPbjLnWIJPTkKXYHRutCCYNxx4bpGaLnen9C8SmRdw7rHjPWbbyq7/YgRhJyxaFZiVdN3gZfW0WlLL8ulqrZjBvNbLx414WTseYei9A07U1KHIwezxIZCRFzyfrESwC+78xAAL4L3EghjMFgtLOL7egElS8+5enMNdqcW20MfDyDHXbq8hmZRsfz3Y7gcEo2XSOwJkogTMxNnzci9Vr5J1vnoIo1F9kBxRkxSx6h5ZsKks8lKLhPBfj7y+gs2iYORYgOirSfK0L9yY704cDDPxmBv/lTiKTSeaPR9j9lVYyUo4jj40gGBR4z3WSXBRRKhVUd1qYPRYivpCibped6HSc40NHWEjOMTY2VrBxs1gsKJVKtm3bxgsvvIAgLFs4VlBBBRVU8IdDkiRuvvlmXnzxxRJ1S61ax9aWHWxo3IypVkt4NEFkMkHzFW7mToYgpyCXyzJzOIy5VkfDJS6USgUffKMf7/nVxOeSLPbFaL3RjbPTxsnnxgiciOHaYkEwaUiFJBovdjJ9JEhsJklVo4n4QgLBLBAYihIeiOPYaKT1+npmD4cYeGEKzx47YjSNrcGIxWdg4XSEuWMBLF4TiUAKa4OR0dfn0BgUbH+onURA5PDfD4IGGi50EZ2OsXA8htlnoPV6D+HhGP2/nsK9rYpcLoe2SmD0lRkaPuRCJSgZfGEak1dPdYeZyGSC2EwSW4MJo0dg8CWZPNLwIReLZ6JERuIYagU6bm7g2ONnkEKyMpNaryLUH2HT/S0kIxKDL0wSGozLpKnuKibfmUWKQ8PlLhRKBcO/lef++gscRGeSBE5F0VZrcG+tYnJfACkkYe8yo7cLTPx+gU33N5FJZ5l8d57FvigaqwbPjiomP5DbVrWbMNXoGNsrF3Dqzq0mFZKo2+NArVcx3xti7nCA+LyErcWIpd6AyaPH4jMy+sYsYkySVZ7yMczlcni2VzPy5gwao6ZAlnLvrCKbzjF7MFhoO38yTGwiibnBiL3NhKPdzERebSqXyzFzMAjIMVwYiBAdSmCs0+LotDLyinxe11Yr9lYzfU/Kiz2+S12EBuOEhuMY3BpcW2y4e6qITSWZPhxEY1QV1CI2fNxLfC7F0ItzGBwanJtsTL47hxSHxiucSJEME+8s4t5uQ2NQEZ1OEjgdo2abFYtPz8gbC9h8ejQmNQqlkom3FzB6BDpvqWfs3Xlm9oWwtemweE3MHA6RWpRwbTLSdGUdoeEYJ5+cwLOnilRIIjGfQrBrsHgMKFVgbzEzsncWo0PH6Jty3rvrj1plC+Lvj6CxQu1OB6H+EO4tTubOhDE5dBhrdKg0CpnYpswxvU9+Z9rxxWYUCgX7/qofk1eLvc3M6GvzNF7uwr3ZxvDeGabfC1F3jh19tZqZI2GarnCTXEyRCEgkAilqt9gZOjTKmegJookIQ0PyQq9SqcTpdKJSqfjud7/LNddc8//H46iCCiqo4D8F9u7dywMPPEBfX59slZmHEiX1zkba9NvovKiB4GAUhVKBSlBiqTcwfSAgLwhIMHMwiPdCO/8fe/8Z3sh1p2njdwGFQs6JCAQz2TkHhe5WDpZkWbIt5yDb0oyDtE4zDn/PzLVz7ex6xjmNLcuyLcuSo7KVbaVWaHVURzYzmMCInFFI/w/FBptue0f7vpP2HdxfulF1UDg8RbJ+POc5z+Pf5iSyP05iOIut09hweN7xmW7KxVrDHTx4kYPEUJ7WC52ggvRUgehQmuBOp7JopFGR6E9TKcKGj7ShNYsc/OYwOqeIo89KfDBF3w2tpGYK5GcL5KMlKoUKjm4zmdkimckCfW8PYO8yc/SuUYqxMtYuIzqrhsx0gfx8kcBuJ+61NgYfnKacr+LZYCU7V0TUqKjK1UYsXSqcx7vVRjGpxGklBjN4ttgp5yosHkthDukx+/XMLNUTXdf7qFXrhB+fQ9SBZ4uT+GCK9st9WNuMRPYvMr30nHWtt1Cr1hXHTRH63hpk8oVFCgsljH4d1nYjM0viFNcGC/XKchyJ/wInydEcBrdEcJebhePJRlvHGjMqtUD0xFLb852kJ3NkI0V0Lg2OXgvp6Ryr3xZi8VRKmV9acu70n+ckPZ1jzbvaSU9lSU8VWDgSo1JUYl8ks0jLFjvlQo3EkLKYkh7PI9lEXGusLBxPUclWlPG2aZQoOkGgZZsNY4sOrVVi6JEZPBuW21ra9Rg9OmaXRPnezTbkbJnEcA5RJxDc4yY7UyB6MoO5zbA03kpbzyYLrnUWzB49x+4J4+ixEB9MU4xXsLTraL/My/EfK+Ia17ql8T6dAR10XeZl5mCcaqmOvduAWhIb37Od13nJTBSInsrgP88OAqTG8+RmS3Re48XYouXEPZNQAe92K9VCreHIveEjIXRWiSPfH0E0iDj6zMwcSuHqNVIt1xD1alo22khN5innKmTni2Qmi7Rf6ca7wcaxu4YpJhX3J0GASrGGwaOlkq9Sysi0XeRl+rUoklEkPpajOC/j3WKh4/IWIvtjTL0Yw7vZSjFVJjWWZ/NHO6jVapz+dQSVAC3b7RQTZWpV8G2xMXs4jpyp4N1oJRstMb4wxEJ5humZ6cZcuNlsRqfTcd111/H9738fnU73r/lrqEmTJk3+y1CtVvnyl7/MnXfeyfT0dMNZXEDApLKyvnULbfYuzEE9qYk8paRM6y43seEM9SXHg9R4DskoEtztRjKIHP9pGMcqM3KmQjZSoGWrjdAlXgYfnCI1lsfcbkBnEikkyrRf4mH+aIJiSkbv1FLOlxF1IvnFArkZGb1PYu0725ndHyOyL4a9x0S1VEPnlHD2mYmeTpMaz2FwaSmlypgCeqWGUMO223rJzhUakbXujVZKCZl0pIDOKtFxuZf0VJ7IvhjWDiOCCjRGkcXjKWWuSqdidn8CySpibTeSj5YoZ8vorFoMLTpFgFRVnIOy8wUKCzKSSU3XtX5Gn5pBTlUxt+rRGEVSE3k2friTQrzI5AuL5GaLaExqbF0m4kNZqoUqznUWJIO6UX8411goJWWyM0XUejWOVSbiA0pbo0+H3i4R7U/Tea0PlQrmjybJTBVQS6olQVQWOVvF4NVi9OgaYixHr5lysYJ7nQ2dXcPiyRSp8SxyqoreLWHy6dHZJDwbbYw+OUOtWicdVhy23Ous1Cs1grs8TL60gFqjatRsti4j9drKKL3MVIFiXEZrl7CE9Dj7zCwcTVEpV1GpBZIjS203LI3hvNwY78WTKagqEW6OHnNj3fKPx9vaayJ4npvMVJ75owk0RpH4gFIDtV3hoZyvMvNKTBnD3uXxdm+yUivXifVnsHUbUYmqxvesqVWPtd3AwutJdHYJjVlEhUC0P41kVdN3Yysz+6PETmcxeiUMLfrGeBsDEmtuaifanyb8zBz2HiPVUp1CoozGrMLo1gF13GusTL0SRWeTWDyujOHmj3WRj5UY/O0Magmc66xkpnM4epR/tVYtepuIxqwh2p9GpYHEqOIAtf7mNkSditfvCKO1i1hajSyeSuFeYyF0sZvxZ+eJ9Wdx9JnQ2jUkR3IEL3BSTJcpxssUk0VaNjmYPrXAVH2IdDVBODxGvV5HEAQ8Hg89PT189atf5bzzzvu3/tXU5D8xTSel/+Kcvdts3759vPOd72RqSnnQTs1NMDU3weOD0N7WzhVXXIFQ1qJSCQR2uKiVa9RroNIJeFbbkYsVFk8nCe3yYG03Yu80ceg7w9TKNZRtV9B3QxBXnwXJpOb1H4yx+qYgLZvsaAxqbO0mTD49CAK52RLyQBaNTkTOK4t4LZsdeNbZyEULHPjGENs/1YOtzUS9rmwmU2tUGD1aEoM58gsljE49eocROZ6j80of9WqdqaV4EVefFQSQC+DdaKVls4P0ZI7515Nsua0bnV3C0WVh35dP49vuoBCXOXrHKL7zHbRscVCv1UlP5Ahc4EbvkBoiJbPP0Bhba6eJls0OKoUqr/9ohC1/2Y13k6MhUgrsdFIpVJk/mKTnhlZMLQZCl7TQf+8kwfNcmAMGxh6fRXJIhHZ7qFUUkZLOJtGy2YFKo0LOlBG1alo2O5ZFShe4oVZnZl+MbZ/qQWuWkIwi6XAe/zYHzlVW5o/HKaXLWNtN2DuXHZ5aNtvR25fU52YNZp+R+ddjZCMyrRe6UWlU5GYLlLIVWjbbMbXoSAxk8Wyw07LZgWutlcj+KN4NNjQGTeNh37LNSb1aoyrXcK2x0LLZQXa2wHxcpnWXC51di86iZfDBaXzbHBSTMovH09g7DTi6LFhDJhYOpgie70bv1DZESv4dTkrZMmNPz6C1SrRsslMpVMnNLdC6y43GKOLeYGHxeJrADieVYo35Q0m239qNZBQpbS4z+vg87RcbsIQMjD0xz5r3BLG0GtG7dMy+lmD61TjbP9aFqFUzODGDwa1rKNqRwb3GjloSkEwi4WcW0ehECnHFNcm/1YlrtQW1QYW710q5WEEQBPZ/TRFOXfClPhy9Jg59a5R6VdnJZvVrqZdVeDfYEXUqyoUaolaljP18kf1fG6btMjctm+2411l57Z+GsLaZqFXrjD4+T+ebPLRssWNdKBE9mUHOVtDbtdg7Dfi3OxH1AvYOE7OH4wgqAecGI2MHT7H/yQnC42Hq9ToqlQq73U65XObmm2/mjjvu+Nf9xdOkSZMm/0XRaDQ88sgjjdd/9Vd/xZ133kkmk6FUKbJv4CX2DbwECFx99dV0bOsEAfQOLY4uE9HhDL3X+1GJAhqDmviwIiYNnudEJQpM7I2SnijgXmVFVCvPqu43+QB49X8Nsng8zc6/6qGYKKO1arAWDYr7ZalCtVilZYsTBIGFk8oftKGL3NRrsP8rg5hDBta/rw29U8TRZaWYlNFaNEw+v0g5X6dWrS9ZV0P31S14NtiZOSQQO5nDt92G3iZRdio1XXCXC2p1JUZMEgjsdIEAKlEF9TqeDXYOfrOfch5a3+NCsmkw+40cu3MM/w4nWpuGzESetku96O0S/h0eJn6vPPvVWjWzr8UZfjxCz7UBAjucpMbyuNbYCOx0kRzNkgrnCexQ4hrOiJQC57vJzuRJDGbpuzGI2W+gGC8yf7hM8AIXeoeWyMsxNHo1BrOOwAUu4gNZbO0GAjtdFONlNEbFkrxWqTdESsEL3BSTMrm5AlqnYkNdKVbJvxwjcJ4Tc6uR9GRuqa2Lcr5C9Hgao0dHYKeL6JCS725rN2HrMDVESkpdJuDf7uDUr6YI7HShltSMzczh22rDtdpKuVilXq/TulupDeeXBE3B81z4tjs4/O0BfJsdeDbYGiKrtovdSEapEcsX2OHA4JBIjedxr7Xh3+Rg4qUFIvsTbP5IB6J+WaRkbTVibjEQfnIRx2oLgR0OZbdkDfzbHNSrdSKvxpk7lOS8z/WSWxIpdVzuRS2qSI7lWTyRYf0HQxhcWiKvxKjJNTQGNcHtDuYPpFCLIoHtDlx9Zo78IIx7vR2oN2JPgjudlLIVJJOaWq2OpBeZfDnGkR+E2fDhVowefUOkJKhAY1B+TmydZgJbHGj1auzdRvRuCZ1V04i/3v7JLkSDGskoMbs/iiipWRxUfk7WvLMVUVIz+VKUxEgW7yYrgW1OhLoK1xoLBqeEoFKjUgnonVpKxixHp17hsV9Ok8lkqNfrGI1GzGYzHR0d3Hfffaxbt+5f5XdOkyZNmvxXZ8+ePZw6dQqAkZER/uIv/oJXX32VUqnExOIYE4zx+3sg5G/jiiuvQD1vQKUWaN3lol6FilwFdZ3gDhelTJnUeA7POiv+HXbcqy0c+8k4craCask90H++g7ZdHgyOJAP3RwjucRLa5UKjV+FebcEc0KMWVRTmlEUivUNCzlZAUOHoNtN+iYeaXOHYj8Os+0Abzm4TlXwV0aBGrVGRHM+RmYyQiRRwdJvRWjQUY2X63uKnXoeD3xxWXJUucKNSCdRrNSwhPaHdHoZ+N028P8Oqd7Zi7zLh3WDn4DeHaN3tobBY4tR9E1jaDbRd7KFeh0K0hG+bA1uHuSFS8qyzUa9D+PE5JKuO0G4P1GDggSnWvCtEYIe7IVIK7fFQKVaJ92do3e3GtcpKrVpn+IEIno02vBvszLwaQ9QpLk/VUlURKYkQ2u1Ba4yTmS2gNWsI7fawcCRBpVij9QIXKo2a6Ik06z7YjimgZ+FogmxkDucqK60Xujn602HyCyVsHSYcPebGglfrLjfxEcUFSzJrCO02KwKn6SKB851obRLx4Qw1uUZwt4f0VI70eB5Lq4HQbg++rXZlUbPXjNGjY/7I8nVr1RrVQg2zX0dolxs5VSZ6Kk3gPCf2bjM6i4bwHxZo3e2mEC+RGM6h9+jwb3dSKVaJnszQssWOvdPUECkFL3BRzlUYekxxCAjtUurXmX1xQns8mFp0jQWy1l0uanKN+OkM694Zwho0UM5VmXwhisGhw7vJxsy+OG2XumnZYMMWMhA9lWHmtQQ7P9uD1pQiPLuAtVWPzi4h6kQq2QretTa0dhHJJDLzWgKdVaIQK1EpgmeTmdYLFCG+b7OdUkZGpVZx5AeK8Hrn53ooxhVBeK1UR6UW0Lt0CJoqnvVWdFYN+ZiMwSEhiALZmQJH7wzjWmum7SI3gR0ODn57FHuXmYpcUwRKW2x0XuEhOZEnNZanEC9hbTNhDRlwrjKjtYq41ohMPLcIAnh2WDh24nWOHBxn7KzFMYfDQUtLC7fddhtf+tKX/s1/FzVp0qTJfwXUajV/8zd/w9/8zd8A8Itf/IKvfOUr9Pf3kykneXXiOV6deA7NUS2XXHIx/tZ2BLWAZBFp2WBj/ngSa8hArQomr5aFM8/v3W4ks8j47+fJzhapV2uoRWX+qe+GIGpJYP9XBjl57wQbPtxBMSGjtYiUi1VMXj0Tz89TLYJnja1RTwG0X9kCdcVlMjmcYcNHulg4nsCzwU5mJo/Zb1BqiCpUilXEJRc/13oLnVf5mHpxgfRkAXuPCVuXiXJJcc0JLM3RnUkUCV3sQZRUqCQ15WyF0B4Px388ipyt0nmVA1unGVubgYHfThO6yEP0dIqJZxdwb7Jh7zHjmrQysy+Ob5sDnUMiPhBm+NFpuq8L4FlvIzw7h8mnp+1iL4WoTDZSoPNKH2qN0BApte52k57Ok52ZJbTbjW+7g4HSFPH+DN7NdqwhoyKaMYqYAnoEtYrMVAStXUPbxV7G5Br1Sp3ON/mpV+sNkVLwQheldJnkeI56tUbbxV4mnkcRZ62x4t5gY+FYUml7gZtqqUo6nEctqWm72Mv88TjZ2QJGt4R3k7NRswXOd6ExixQWSwzeP03bxV5mDyjiMkeXicAu5XNRKeusakndECl1XNVCrVLn9TtGsbYbabvYS2o8h5yqELrIg6XVQDFZZv5wgtY9HmIDynibQ0badnuZeH6exVMpet4cwODSNkRKvq3Keu7MKzHMfh1tF3spJmRKqTKdV/kaIqXkSI6Nt3aSnS2QjRToebMfnUVDbrZIciRHx1WKW320P01VBlOLDt92J7HTWWp1aLvYQ2GdhVP3TeFaZUMQ6kT2LzbGsJyroDGIQB2tTWJy7wL9v5yi401evBvsLJ5KQU2FSi0gmRSnKL1bInShi9kjKlo2WjH7tJh8eg59fxSqsPb9rZj9eiaeXWD2UBKtRWThRBLqNfreGsDgkEiOZUlP56lX6/h3OBRx1hoLJp8OjVaNSi1gcEmIgTInDh7luecmyWTS1Go19Ho9brebiy++mH/8x3+ko6PjX/vXT5P/S2k6KTX5k8iyzFve8haeffbZc3b6A1i0draFdnHB2zcydyRB9HQKz0YbZr+B078M0/O2EBqtyNE7x9AFJDa8q4PpVxfJLZQIXeRi8DcTyFnY+dd9FBIljt81juSQUC3J5jZ/pItCosTIYxHkZAk5C+6tFrqvCjDyxAyLR1MEL3KQi8qUkzKmgJHsTB5TQEfbnhaGHo9QTpfJTpfwbrXSeZWfyGuLTD67iOSQkPQgpyrI2RqSQ8XWj60i1p9m6KFpJIeE0SUgmfXMH07i2WbBu8HBiXvHATAFtXhWOxoCosB5dsJLDjzGFglBL5IN53FvsiKIdRaOp5divlRIdg2r395GRa4y9MAUZZlG/FjndT7GllyLzrTNTimWfps/3sXiiSTTLy1ZILdqyc6XGvFhkl3baKvzKCKj4oLM9k/3ko8VGX5wEjl7btszY34mws7UqkVOlNj2yTWkp3OMPze3oq1GUuLDltuWkbM1kMCzwUL7JX4mXpgjMZpf2TYgNcYbSSkyG/33Sqx7R4jwM/MkhrJK28LSuEjgXmemUqyT6M8imQQkqwZTwEjHpV7GX1ogdjrbGENTUItrrZXxpxeQTALmDhOxE0oRYV9jQjKKzB9MYl9lwhTUM/VSTBET7bJjbzdy6t5pkKD1QifzxzLIcRnJBFs/0Us6kufUvdPKGNok5HwdOV5G55bYeHMbpXSFoz8MYwpKyEmZNe9Riuzh30XILsi07XYz+3qK1gtsjD6mLKTt+GwPpbTMsR9NKOPikRDUAuvf2048nGHq+ShlWfmclu0WOi5tYWpfjOnXYnRd5aVehbEn5tlyWyf5aJGBX83gO89O8DwnAw9P4ui0YO8xM/K40oed/62HZCTDY48+ht6vYXpqmmxOWeDW6/UAuFwuvv71rzczX5s0adLk35mnnnqK22+/ndHRUf64PBcFDR2WHi678nJsQRPHfjaJRgPd1/tZOJ6ilJXpuLSF8RcWiA9nWXWDH8mk4fhPJ+i8xkO5UGXq+Rihi5zKRMSDU6TGimisGjR6CJ7vwtln5vg9Y9QrdfLzSu238dYORJ2aw99VYkE6rvYSfnae4HlO5g/H0Vg09Lw5QCVfJfy0EhdXTpXZeGsHklHk4D8PQ1mJfkMQyC/VBWveH8Ls1bH/20PK+RYJS5uBuf1JNPo6XW9uJXoqRfRkGq1Tg2uNmfRkkcxEHt95dlITWfKzZdCArdNIcin2q+0KD4uvKy5FAAafhLlVT/vFPoafilBcLJGfVfrg2milnC+TGlZiUAxeDeVMlXK+hn2NidZdbo7fqSywaKwaNDoa42LwaigXl+LpNGBwSeSjMi2b7QTPdzHydITkwNJ1XZrGuJzpUz4qQxk0BhUaq0j7pS1YQkaO/2jkX2x7pv9ap4b2y73o7VqO/nAMQ4ukxIeUlbg8jUVqjLfWqUxKlGLKdQN7XNjbDZy8Z/KcthqrBu8mK9MvRpf6oKWcLrP2fR0gKBEn+blyo60lpKVWqpMYymHtMZCP5CnnAQ2EdjmZfF6pXTuucjN/PNm4b2ve1crUC3Nkpsp4tlooxItkZ5TItu4bW3B2mnntW0vfHx4NlaU/R8r5CqGLXPg22Rl4MEJ+Lo/GpEFr1dB1jY/ws/Okp4o4uoykJ/MYfRpqqIifyNKy00pol4fBhyKkxvLoXcp1V789gN6m4cR94+RjZTQGDZTL9L2jFa1Jw+HvjaF1aOi4wsPUS4tYAgZ8O+2c+EmYch7WfyhEKVVm6MFZ1r2/lXQkz/zRNN5NVjzrrez77XGmGaAilBkfH2/8XNtsNiqVCtdddx133HEHVqv1/+yXRpMmTZo0+X9MpVLhc5/7HD//+c+JRlfGV6hQ4ZA8rLdvY/s71zN/NEl8OIO13YAtZGLksQihSz1oLRKnfzWNZBVZ/Y4gMweURZbQLhejT8xSKcKmv+iglJY5/asIokmZ8BJFWP9BJQ509OlZKtkKlSKY2nWsviHA2NNzxPozONdbqOTLlGJljH49ufkCkllD97UBRp6KIKcqFKNlzCE9q25qJbIvysyrcUSTiKiFSkmJZEMH2z/eS/RkkvDT84gmEa0FJJOOxFAWc5uOlm0Ohh9RYrl0LRocnZYlAZEKzxZ7w8VIZxNBJ1KcK2JpNyDqVYpovgKiToVoUtN9bQDqdYYejVCrLPUBxR1p5kBsqS2IJk0jWm71u1uJD2cU52tA59JQyZapFM9tK5pEVCLIyQrrb26nkCwz/lSEShElBs+2sq0oQjFZOeu6Vbbc1ksinGHqxYU/39YpUsnVqBRrIIIlpKfzch/Tr8VIhvOI2uW4PJ1TXB7vM31Ilpe+VoHetweZfjlKeryAziZSOWtcLJ166nXIhAuIepVyf6wSPdf6mNi7SGIk32irc4nYukzM7U8i6kDfoiMzrkQEGvw6dDaReH8Wo0+HKaAldjJFpQiOVUbs3SZGH5tHUAl4t1pIjOSRU0p/t360k9RUnpFH5pb6L1IpKn0UTSLr3htETlfo/+U0OpciXup8kw9RLzL2zCzFaAXvFhuxoSzeDRYiryqito23tlHOVOj/VaRx3VoZNn2knehAmplX442xsHbq6L7GT+S1OHNHk/i22lBpVERejrPm3QFKqTKjTyxg7TTQdrGbsadn0dm1uNZaGH92nmKywsab20lFMrz0wivgKxGZUQThADqdDo1GQ29vL1/5yle49NJL/1V+lzRp0qRJkzfG0NAQn//853n++edJpVKN4wIqjIKZNkMPWzZtwdlt4fT906glCO7ykBzJUkyVCO3xMHMwTjqcJ7DLicGlZfjhGVq22KhWayweS2PvMdJ2iZfhx2bIzRRR61SoJQHnKgv+nU5O/2qCSqmmPP9QEkh0dolTS2Kilm125l5P4Og1kxrPoJZEWve4qVdhaq+ynlPOVum81ofJq+PUvWGqMkhWNSA0rtt2qRtbt5mTd48tnRfRu5TNXwCtu1ykJvOKWEevxtKqp5iUKSzI2LoMlBIyhXgF1GDwaMkvxX65N9lIjWSQl2KLJasanVVDx9V+wr+foxiXG30wBfVAjex0qdG2KkO1UEXvlQhe6Gb4sQjISnSdWqIRTSaZ1FSrSlvlvSJytoI5oCd0sYeJF+bJThb/t22pglpSodar8G6049lo4/hPx6j92bag1ouN/mtMarxbHJi8WgZ+q9Tb1UKFqnxuW7VejUpNI87ZsdqErXMppUYNkmllW3u3seHIqVy3RvtVXjR6NWNPz61oq3dqoC6QjRTQeyXkREWJ7VODe62FxVNpqIJ3i51EOI2cVM61X+Zh4XiK/FwJc4eeSras3NMq+M5z0LLZzvEfj1GV640xBGVsnGsttO1xM/ToDIXF4tL9UdF9jZ+plxfIzJQwurUUUyUks4igUZEJF7B06Om62s/wozNkZ0qKK2wV2i5xY23Vc+qXE1QLFVCroVYndLEHo1fHyZ9PojGp8W+zsXA8hWQRCV7oZuCBCapFFZ3XeCnnq0y9EKXjSg+5xSKJoQyWkIHATifHnxwjIgwiawuMjo0Bypy2zWbD6XRy880389nPfrax/tikydk0nZSa/EkkSeLJJ59svP7Rj37EF77wBeJx5Q/NdCnBc8O/47kv/w4BATN23nfRe9HZJOQsnPrZJJs+2kngAieZ2YISj1mtkxrNUdxgZdU7Ozj+4zDFpEw2ojzQPOvN+LY4OfazcaZeXaAYl8lOl1h1UxB7l4nD3xtk3+HTjT4Fdrip1+HA1wbJRhQxidBqoF6tkxjJggzdb/YRG86w72unQQYEgc23dFIpVjn8HWVnNDIUYiUWTyUBcPWZyc4VFNtmwNVtxeQzIJkk5LhMdqxEdkxxLWq9wEnLZgf5xRLzB5NLopwl0dGVPup1WDikPPDkbA05W6IQLVEpVhsCnjOMLTkhrXlfCID+eycb517//ujSjQGdTWoIh5Trgn21nvaLWzj584mG4Ajg4DeHVnyGnAU5q7zXFJBwrbE3XKCAFdeltvK1HJexrLdg7TAzsy+2sq2sfJ1nvlYaowDuDRZatjg4cfd448SZ95paFcHUke+OKHZYQDYiY+0ysvEDbRy7a4TFI5mz+l9HzsrIBQieXyU9uixQAvCst+Pb6qCULjO7L9EQKAH0XhsAYP5gksRAlsSAIs5BUOFdb0drXnZHmno+Rte1XkYfn0fOQm6xRHIs1xhD5zojHZd4GPvDPHMHk+xfipRb9TY/Y89HkbNQLdUQ1ALZaeV7c+LZRcXlaKOD3LzM3MEkB76uvG/jLW3obFLDYWmxP83E3ijdV3nR2SWOfH+MuYNpAue5KecrBHY4sIaMHPlnxU5eLapQqVRIJvCssxDZHyMzLhPcoUVnFTk9fYJSMMnpe18mElFyjlVZFRaLBY1Gw65du7j//vtxOBw0adKkSZP/GK6++mqGh5XnQD6f573vfS9PP/00hUKBSr3McKqf4d/2A6BFzyrjZtbZ2tG7JOYOJdFZE/i32okPZxEEAVGnPNfGnlhg0190IKcqlDKVpWgEpfZa+84gudki4eeiyLkquRnlD/Edn+0jO1Pg2F0TUFcst/3nO/BtcVBKlZl+KYbGAPk5mWqpRqVUJR8tY/BqaL2ghWN3K+IeykuOAhd5GHx4uiGESQxloFKHJeGJe52tETdWLghYQ0Y0ejXRk2lKsTKRl5bzzoMXegjsdHNoSeB0RqDkP99JYIeLSr5KPqospJ0R9MjZMpmRHOX8csxLdGl3ltapYd272zj9wGTjfKI/S6JfqRMMPon8rEx5eQ6NfLzMmneEiLwaJRXONz5n7kCCuaVdao220WWxf8s2O4V4CcpK+3K+Rjkv/8m2Z/rfusdFrD9FPlpe0bYUrzD4m8hy27Pqyp7rg8wdTzWOnREnGVwa8tEykb1RInuXblEeynmZNe8KUs5VGf7dbEOgpPShBIKK/EIR6jQESqCIqTova6Neq3NoaLQh+AJo2WgjeJ6LqgyRV2KEn15snDPYNVj8ejzrHWSm5lk4nMbabsDVp2PxeJrYqTRag4hGA5WqQCFaYfNfdqDSCBz+3hiTf4gy+WIUe7sB304Xk89HKWfL1Ct1qAHlSsPZYO17Q9SrdeInssztTzG3P4XWoWHnZ3uYO5pk4tlFpl+NIhnUUIOtt3Yy9WqUhaNlspEiNbcyudJzbQvpacUi3tJqRKVSoTFpcK03USvXGHpQqeP1TolMIser87/HNWZhau8UhUJB+boNBnQ6HR6Ph3/6p3/iXe96F02aNGnS5D8GURT5xje+wTe+8Q1AiYX71Kc+xcmTJymXy0TlOZ6ff4znv/MYIhpc+Ll645swerVUZYHwU4v0vdWHZ5OF9GQelVrZzV9YKJOZLdF9XYCB+yPkF4vkFpT5D0urntAFTgYemib8h3nKxSrFaIXALif+rXaO3T3OwW+NNvoYusCFoFZx5PsjFJMZRZTi0FKTq+QjRSrFOv7znWRn8xz89hAoZRzr3xuiKtc4/tNx5WsF0hN5RUwkCFiChkbcGIKAvdOKvcOCzrpAMVahOFdmZm4phm2dldBuD3KmTPREeknAs7Swd7UPQS0QP62I2StFRdCTmy2AShERnc0ZoVPHFV5EvZrhR2ca507/cqrxf51NbAiHlOuCMSDReoGb4UdnGoIdYHmeqdGYxnt1NhF7j5nZg8u12dnXpbbydSVbQRfU4QoaiJ5MNwRIAFQF0uEiR38UPqu98q8poMO3w8HwQzPn9sGlCKb6713++orJCnqPEjdz6tfTpMcKy9cs1KgUK1SyFUqpMpnp/Iqv19pqpH2Ph1qpxsLRdEOgBNB7rQ+VRiDenyU3WyQ3u3zOu8GG0atDUCn19vzhNP7z7YobZkX5/jizcEoFtBaJDe/3E35ugcVjaY7+WBnn4B4n0SXhU6VQQxAqFKMVRJ0Si+jeaCF4vhM5V2HxWFrZkAf0vLkFc6uBI0uRiJH9ceaPpQnssGPy6Th1n7KBopgoU85XcfaacXSbOXWfMm5qjRoERVDl3Whl9mCCbETG1mXG6NQym5km5pxi4LFXGukAQkbAarXicDi4/vrr+eY3v4nNZqNJkyZNmvzH0Nvby0MPPQQosXBf+cpXuPvuuxkbGyNbSXEqd4hTrxxC9YqIFTsdhVWs8oYoRkvEBzPMHozj7FXqLgQQtcqc19yRJD1v8VPOVamUauQXS+RmlGdgx5VeCjGZucMJapU6+aV1s/U3t5OdKTaSSQAsIQPBC91USzUWT6SWRDsVqkXFQaicraLWq/HtcDD21NL7qmDpMNBzbYDhxyMNcUtqIo+gVlFdmqaxthsbDkEA9i4zWotEOpynWqiSGMo2zgUv9ABw8p5xqNIQKFk6DLRd5GHiLBcjOVWFKhTjMrm5UkP8A5CdVuoLtV5Nz5v9TDw3j5xSOlSYlxl+UJlPkqyKgKe6XI4gZ6u0XeIhOpAmN1tsfF2ZyQKn7plYcV/PCKYArB1GKsVqo31VVpJVzlA+q63S/wrONRYykRxyqkpVrqxoO713cUXbM/jPc5Mczy5/TqFKFUXYVC5UiZ/OEj+dbdwjOVUhuNtFHYi8FG0IlM6+bn6hhFpSrficaqFK+yVBBLXAibvHKcwvz7uZA3raLmkBQWDxWIr5I8v1ploScXSZKWeq5OdKZMIFdA4Ja8hAKpwnOZptpNmcGcPeGwNozRpO3DNO7FSa2EAavVPCucbCwlElcrAqV6nVgGpV+TkAeq4LoFKrOBEeJz1e4vU7wqg1dTbe0sHC8SSz++PMH4mRGBKpynV6b2xl7vUkiaEM2Zmlm16vEdjpppAoUYjJaCwiKpWAxqDD7BehVmfqeaWGNHl1lApFTqePoS3VeOyX0+TyyrysXq/HbrexdetWvvSlL3HxxRfTpMm/RFOk1OQNceutt3LrrbcCisvShz70IR588EGKxSJ16qSJ8/2ffxdQMmadopdtxi7Mfj2RV2NEDkTxbbUzdzSB3qFFZ1V2dB/7UZgtn+jCd74dyaBBUAvIcZnpF2Ns+stObO0mUtM5tDYNclZZJNj+6V4SY1lO/jyM3q3YNAd2O2nb7WH4iRkOfGNZmONeZ8Pk15MYUFx4AGIDacr5KggC3q1WWrY46L93FHnpudW6W4k2OfC1AQD6fzWF5JCWXHVUbP54L5MvLTC7L87oY7NUSzXmDyYB6HtrkPAz08hZOHnPGJJNedjYV5moFKtkxgsNm0eADR/uIDaSbsStgSJCWkrHO4ftn+hFpVGx/ysDK457N9qV/FGJZXXQEsYWCe9mB2NPzq043nGFH3PAwPiL8+e8588RusiD1qJhZl9sxXF7rwlTQN+I0zublk0OTD49konGGIMyVs7VFk7/dnJFIQZg8EiIOjVGvxF56ZxkgnUf7GLwgSlyczKHloRBAMGLnEy/GGPsyTmKSZnZpdiR1ktc5OdLxPozjD83R25+eZJm6+3dFKIl+n8V4dTPx1b0rf0KNy2b7BTiMjP7Ehz/yQRtl7lZ/4EQJ+6ZZPa1BO41FrKRPCa/RHZGxhSUcPSZqddh8MEZTvxMEZnt+HQP9Xqdg98aYezJBUqpMvHRPDs+3cPM4TjTe2OkJ/PUSjVMfom+t7Yy/tw8cryMSi0gqJVvho23tBE9lWL+UIruN7cgGdVIDonW8+3I2TL9v5hWxs6pJamd4yWeZmSfl5n7Z5CrMkwo6mVJkmhtbeWHP/whl1122Ru78U2aNGnS5N8Vg8HQmLwBOHjwILfccgunTp2iWq1SosCx3Ksc++qrAOgwcLX+GlrdLijD6d9EWH9ziNBFTqKn00gmJaJham8MrVlk7XuDnLpvWnnOqBSxSTZSYOOt7Qw8ECEbyZNc+oO39SI3nnVWjv90hFqlztzSQs/GW3qoVWoc+f7yYlrwAjfOPgtTr8Yop8oYWiSS4Sy2TiPxJXHwmve0kgzn6F9ajApc6CSww0kpUWbusHLt/d8eRKMBBIHVNwWRrBqO/UhZ1Dj960kkkzIZ5VhjRjKIzB1KMLMvRq1cY+6Qcg3feQ5mX4uTn5UbYm9jQEfXm3wc/1m4IZAyuLSIehGdXdsQG53BscpE342tRA7EGjFrABqDBkvQQGWznVQ4zx8T2OUkGc6RixRXHG+/rIXcQoETY+Nv5NsAjVVDcJcbvUvL0IPLgiQEgdBlHmYPJRquS8t9EzC3GqnXIN6fWXFu3Qc7kbNljv5w7JzP0tq1qPUrJ4wCFzixBPWc/u0MQw8vT96ZQ8rup8xkgZEnZskuTdRoDNB6kYexJxeYO5RE1KuJvLIUKbzNRuuFTg5+f5T8QpnDd4RX9L33LX7q9TqLx9PEB3JkJnOsuinE9L4YyZE80dNpBLWAxqq4HJXzSs2us2kUkVIeDv/zGN4tVrZ+oofhx2eJ9WcZfWqO7JxM1zVeLK0GXv9hmFK8TG6hSG6hSMfVHgxOiVP3KXWUoBbQGERatlkxB/ScuFup57RWDcZSDY0BXGssTO5dJL9QJniBDskmcqz2ElKLimM/e46FBeV7JR2OYrVa0Wq1vP/97+d//I//0XRLatKkSZP/pOzZs4cjR44AisvS1772Nb7//e8TiUSo1MrMMcHdT90BT4EGLW61nw2umzBl9SwezzC5dxHvRhuJwTRGl4TeqcwFDT00y+p3BSmtq6CWVAgaFcV4hWI8Q9/b/FiCerKzRTIzhcaiyIab20hN5Dhx3yRG99KcUq+J3usDDD8xs0Io49/hIB810n/fJKIOEEXmj6dQVjCUZ3Zgp5OR30WoFJU5tbZLPCDA6z9Q6qPJFxaYORSnkq2CCJtv7Wbq5QWiJ9KNuurMYk7rRR5m90epFGucuHcCg0vpn9GvAyA3UyT8zPJGuO7rfGRmCkrk7BJap4RmSUz/x6z7YDtai4bD3x1ecdy92oK104SoUynORmchmkQ8663nzFP5znfhWW9j8UTqnPf8OYIXujEHFJFSA0FA75GwBA0rvo5G39ZZsbUbEU3iCkGR/wInrRe4GHhg6px6UWfVoDFqMLg0pM+8R4TVN7Uy/twChYVyY04JwL3RwuKxNPOvp6jKNaKnlBrPtdZMuVglNZon/Ie5FYL8te9tpZSUGX1ygZHHZqicpblyrVVi2iqFKgtH0ww9Motns5We630MPzpLaixPYixHJpJH5xIpRitIVhH/NjsarZrw7xcYW4pMXv/BECqNimN3jbN4LE29Uic5mmHDh9pYOJFi7lCS5GSeel1ZCO25zkfktRiVbAWVSkC1NOfVe6OP+FCGWH+Glm02dFYNOoeIvctEOV9h9HHl88x+PdNzM7xWfgbXmI2Zl2colUqQBavVitlsZsuWLXz1q19l+/btb+i+N2nSpEmTf1/UajVf/OIX+eIXvwjA5OQk//2//3eeeOIJFhYWSNQXSdQWOXLXS4hosOLkPPP5WEItUIXISzGkqzS4N1qJD2XRO7VIJpGFoyk0+jQdV7UQfnoOlVqFIChik8x0nt4bA4w/N0cqnCO3qIh/7D0mfNsdDD4UYeSxCMlRRXDR+9ZWBEGg/5fLz2PPWiv+85zEBtPIKeXZWIyXiA6kSS8969su8ZCZKzSMAawdStyYEgWm1BfHfxJGvaRRCVzoxOjVM/SgMicx9Mh0I6LL4NWis0rEhzKkw3mGH42QCuca/U4MZ5GzVQbvV94rmdSELvUSfmqmIZCSTGq0Fo0SnRZdOeel90iseUcbkX0x5g4vbw5US2DrMVOv1VeIns/g6DVTiJfOuV7HlS3kZosMPxo55z1/+hsB2i/zsngyxeTzCytOuddbSYWzK0RQZ97j6DWjklRkJgsrTq16eyvlfIWB30yf81F6p1bZ1HYWtm4j1jajEnG2f/nr19olVBooLMiMPj1LNa/0QS2BZ4OD2UNxMpMFxp6ZJX5aqcksHUo08OlfTVItVDl29/gK0Vjn1S2oNYqYqLAoM/GHWUKX+IieTpGZKhA9nUZccv4CqMp1fNucWEMGRaRUhf5fTmEK6Nl0azejT86SHMsp64iZCt6tNhzdZk7/eoqqrAjQcwtFPJusmHz6xtqwWqNC1KqwdBiwdhgYeVSZ6zMs/c2BGtxrrEzvW6QYK2LvdqBv0TCuGkB2pzn55EvMzS9da0yN3W6nq7uLW265hVtuuaXpltTk/5imSKnJ/zGSJHHfffc1Xk9OTnLDDTdw/PhxqtUqdepEK3P841f/EVBES5ujm7lMeznIcPzHYTZ/rJPut/iZ3R9Fa9agt2kZe3KOerXOxls7OPajMJJZg95eZeR3s1RyVTZ9tJP+h6ehXodandycjGO1hS2f8DD23CzZ+SKLRxUV8ZbbuihnKxz+7mmQlF+wfW8NYQoaOPyd0w1BiqPLjMGlRc4JIIB3m5XX7xrDuDTR0naZh5atDk7eM4YMGP0G6nXILxUx5nZ9o+CwrzLhXGOhXg8y9NA0uTm54ZbUc10QQQ37/+kscZEEercWJ5YVIqUj3xtp/N+71dZwdAKIvBZDMp37Y3v8rvCfFCgB9NzQit6pZezZuRXnh5+YQWNQv2GBEsDJu0cwh8znHG+71IveqWXqlcVzrnfinvFzBEoA4WdmEI3qxu49AO9WK/OHU8zuSzSERmfQunRoLRKeDXbCc8uTXorYyUxhUSbWn2Fm31JBIUHwPDfFlHJ8/nAKS4dBOSeoUJJ0lM+Vs7Dh5hCSRcOh74wy/vtFCjEZOVNB55YoLsrY2g3ozlI4H//JBJs/1oHOKrHvHwfJTsucuG8crVli51/1cPqBadLhAvGRDDW5Rvf1LZh8Oo7+cFy5gAo0OhW9N/qQjCInfj6lRMkZ1ZgDekw+PaJBzeHvKhOHeodEpagImWwdRkafmkOOyxhcWuazM7xQfRCX18m+bz9GLqcUq4uLi1htViqVCn/7t3/Lpz/96Td4p5s0adKkyX8mtm/fzrFjxxqvf/CDH/AP//APzM7OUq/XKZLn4Wfv5+FnlfNa9ARK78LotJFfKBP+wzyB853MHUtjatFhcCsLSUd+MMaGD7Xh22lHY1Sjs2goZcr0/zrCmncGkEwitWodQSVQLqiYO5Riw0faSY7nWexPUa8qi132PiPd1wQYeniayIFYQ3yy4QOdZOcKnDyz00oDJp+eerXOzL44Bq+G9FSBoUeniZ5U/rDf+okusvNFBu9XJjXq1JX4O0GAuvL/M4Kn0B5FPH1mAe3Mv651Fjoua0EyiQ2HJgD3WisGpxaDVdNwLUoMZtn/1YFG/xw95oa4Jz6QJTGSYXbfysmScqrM4e8OKLFmf4TGoCK024O1LUf/fZMrzg0+PEViLHvum/4M5VSZk/dNKHEhKz5DILDdgblFx6k/+oxyvs7+bw02RFhnM3ckTn5x5QSTY43y9Z5ZqGwgqHD0mFfUPmdY/fYg1WKVw98fIzGUaxzvuMKHc5WZ+eNJchGZ6ZdiGAMSuYhMKV2mXgejR3ktmQQ2faibyb2LzB9JMfS7GfJzeVzrzcROZalUwejR4egxkRzJM/lCFK1Dw9a/6CA2kGHokVkGH56hlCmz5j1B1Fo1J346wfyJFM5VZirFMhtvaWfuSIJyarmPBo8SCzfx3CKp8TzutRZ0Fom6us7694SIHIgzuz9Bx9Ue9DYJ0SwSulBxEOv/lTLRpTLUOJk+wOn6aU7stTO/ME+9XkeYEXC73ej1enbt2sUvfvELXC7XG7rXTZo0adLkPw+iKPKFL3yBL3zhCwAkk0luu+02Hn/8cVKpFOV6iZlqmK//81eU9kisK67Hb72EShGGfzfHqpsChC52MXMoidGtJePQML03Rr1WY9VNAQYeiqC3SdSqdaZejFHOVln9riDhp5RJ/3odKrkaYkjN2veHmHhhgcRolviQUqOseU8rlUKNQ/883Jgjar3Ii2e9jcN3jDbEMvZOM+aggUplqWbrNXHi7jF0LmXDn3ONmbaLvZy+f5JKdmkBp15XojcAvUfbqK/0Hi3+HQ5ErUD4mXkq2UpDYNN9jQ/RIC47li9hDhkRDeIKcc/Ar5ZdhaxdRlKjy8/pyKtRpQ9/xMhjsyDONtyizqbzSi+2TjMLrydWiJGmXoqycCz5hgVKAAMPTGEJGs45HrzQhb3TTKw/1RB7nSH89DxTL84rcXNnsXAkht6uWSFQsnYZSU3kSAznODR81lgJKnRmEZNXj73LTGFheaHMf76D0C4XlVyVxEiuIVACJUqkmCyTGp0kFS6g92iWLidQr0N9ac6rUoTOq72YWnQc+8k4iyfSVEpV5EwVnUOkGK9gbTVgDuqUlYIKDD8yS99bfZiDBg59ZxQ5VeHEzydQa9Rs/ssORp+aJT1RJHY6DWoB/3l2LG0GBn6t1PCCIKASBQIXONA7JEYem2tE4RncWjQGEa1dw4l7lFrW6NFRK9cRTSLOVWbCf5inGK+g2yaRqsfZV34So1fHvrseI5tV6unqfAmr1Yrdbufv/u7veM973vOG73WTJk2aNPnPQygU4ic/+Unj9QsvvMD//J//kwMHDpBOp4kxx+NHH+Lxo6BGgwUbbvEqDA4Li4UqY0/NEjjPRTKcxeDRYvYrQomhhyJ0vqkFx2oLgqCsxVULVSZfXKR1jxtxq51qoYqgEqgWqiRHc3Re4yM7WyB6Ko0gKs9RnUOi53o/Y0/PEf/5soPPmne1kZnJM/q7sxyZ2gwIGhXx0xk0JjVytszgg1NkphRBTd/bgxQTMhNnbYSr15ZrC5VaRTaitPXvcGIOGIiPZqBKQ6Bk8GrpfJOPGWuM2UPLNYMlZMTsNyAaJarykmvSosyxu5Y3qplb9Y2+FBZk5o8lWDyRXHE/qjKcvHu0IXRagRraL/eSHM8x9sTsilNDD09TSpT+xJv+DFU4ee8EtfK5QqTW3W7MrYZzPoMqHPvpGPzRWwBmDsSpFFaeOPP1Dj98rnDK2m7CEtSDmhXX670hQLVUpf8XkxTOSq3xbHDgv8BJcjJLYUEmfjqD1i5RSsiUM1Wog2TTUFiUUath9fvbmDkQIz6QIfzMLHK2iqVVT3qqQLUsYG03IKdlMlMF4gMZ1JLAxlu6iJ5KMfniIhPPL0C1StslbiSrhuGHZ8hGCsQGM8hZmZ7r/cQG0uRmS9Srdeq1OmqTmraLPMwfiZObLWG7yI3eoczrdVzVwuyROLH+DO4NVoweHZJJja3HTCldYfwPypqrxqliojrEKU5gDhtZ2L9ArVZDmBNwuVyEQiFuvPFG/v7v/765Ea/J/2uEer1e/5ebNWnyxunv7+d973sfJ06coFL5EzMIwAUXXEDQ0Ub8iQq+8+2Ednno/+0E7Xu8GLw69n91EFDERsnRHIJawLPeyr6vD4AM6z/QRiEhI2rVWDuN7P+K0n7DR9pJjGVx9lmQM2X675vCvspE15U+IgcXsQZMDCwpi3f+dR+JkSxDDy1ZGzoktn20i8xMnhNLttitl7hp2Wzn4JI7U8+NAWb2LTbER+d/cTWlbFmJK0MRKp2JEdvw4Q4y03nCz8xjbJEwh4zMHUhg7TZi8uqUneVnCYt6bwwyfyJBaiTX6M/Wj3WTmytw/MfLO+XO0HujIoY6G2u3kcB5zhVRcTqPhKhRYtTeKBd8aQ3pydwK16d/CecaM7Gzduy7N1lx9pgZ+O3KPrZe6iY1nm+oy89gbJHY+OEuMpE8J362/Llr3tvKyCNTishpabwkh0Rwh72xc6vtUjcTzy1ibJHoe1srQw9PkY3I2HtNDZcm9wYLPW8OMHc0ydgTyvs63+QhOpAhHS6w+h0BtHaJoz9Uxloywbbb+8jOFTj+08nGsc0f7SE2mGHkd3N4t1kxOrXo3VpUKoET90wiOSQ2faiN6X0LuNfYmH41Rqw/y/r3t6J36zj9wCTd1wQYfmSa7IzM5o91IGrVHLtngvXvCTF7OM7MvgRr3h3E0qrnta8Ms/GWNlQaFa//IAxSCeubRF54/gWyuQwaSdOYoJEkCZ/PRzab5dOf/jRf+tKX3vD9a9KkSZMm//dyJq5kdnaWWu3chRiPy8uFu3YRf7iGRi2x8ZZ2yvkKww9Ps/mjPcQHM4w8PkfgAgeutRb67xtn4y1dlJJlTtwziTmkp+MyDyOPz7D23SFSE3mGHorgWmemZbODhdNJQhd6OPajYcp55dldyVYpZitkI3niA1m6r/Nh7zZx8J+HGwKa9R9sw+jT89rXBxrHNnxEsd0ee3IOa6cBS9DA1F4lfqzzTS14N9o4+YsJMhNKHWHtUOySTUE9nVe3cPq305RTZQK7nEReVkTgoUs9zL62oIiKNEBZcSnquNzD0APLExVr39+GOWjg8PdHznEosnYa0DuWF+rO0PvWAPNHE6TGlusae5+JxOAbFyOteW8IS8jIa18+/S83BhAEDC0S5UJ9RT9XvyPIxN6FFdFvoIzbHztqAqy/uQ2jV8/h7w5SztdBUGHrNmDrNDH+zEphlv98O8lwlvxcGc9mK4mxPOVUmdClLowuLaeXoues7YZGXMjmj3agMYgc+IayCGdo0eBZb2P894rz5taPdxLZH2PusLLJYN37WzH79Rz67lBDANZzvQ9bh5GD31Zq7Z43+0hFsgR3uhl8ZJr8XJlVN/lRa1Ukx/KK89NSX7Z/qovFU2kEFYh6kaEHZ9BYFaFTZH8MtVaFpdXIibsnltp3kwznmD+WpPfNfkafniU+kMP7Fg2j0yPsP7Afq81KJpOhWlVmsDweD5IksXr1au666y5CodAbu4dNmjRp0uT/Wubm5vjsZz/LU089RSKR4I+nVdWIbN+2nVZrG4kX6lg79HRe5WP4sRnca604ekwc/p4iDl7z7lZSkzlqco3ghS5ev2ucSrZCx9VeKoUKtSq0bLJyeGnOqectftJTeWydJqolZVOf3iPRc62fyIEophZDY9Fr88e6SA5nCC8JtkUdbP1EH8nxHIMPKPM0rrUWAuc5ObY05xS4UHEHOBNXtvX2HuS03IhVMwV0ZJecIruv95NfLDGzL4ZoErGE9MT7M+hcGixBIwtHkyvGJbDbRSqcJTtdXOqPii2f6CE9nWfg11P8Ma0XeZh6cWU9ovdo8W93MPr48oKVaBIRdcLKKLd/gR1/tYrEaIbhh97ATv+lTXWWdj3p8eUd+6agDvdaK+Gn51c0d621UEzJja/z7H5u+csukuGs4pApKBGBHVd5mXpFcRY6IxASdeDZZGfmNaXu9G6xMX8kiWgS6X2zj/HnFsjPlzD5dWSXIm1Mfh1r39PKzKEEUy8otbNvu43MbJHsdJHWi5yY/YaGm6kgCWy/rZv0VJ7BB5ai6kTY9OEO4kMZJl+IYmnXY2rRoTVpEI1qhh+ZRdTB2ve1M/3aIs4eCwvHUyRH83Rc4cHabmDggWnaL/cy+eIi+XmZvrf50dklTt07Tt/bWlk4mWLxWJrQxS7caywc+8kYHVf60JhE+n8xRaUi47xBxSsvvUI0GUOn15LJKHONGo0Gv9+PwWDgs5/9LB/5yEfe8D1v0qRJkyb/9/L000/zzW9+kwMHDpBMJlfUXmpEvDYv23buIPNcDXVVous6HzW5TviZOTZ8qIPYYJrIqzGsHQa8G22MPjVH3w0BStkyo7+bRbKqCe3xMvVylK5rfGSn80y+uIjRp8Oz0UZ8KE3wAjcDD0xTLVQJXeKhWqkhJ8sUUzKZyQKezTa8G2z0/3KyEXHWdrkX1yoLR+8cbRzrvNZHKS4T2RdD55AwB/SN+Db3Biuhiz0M3j/VeL7r3RKFRRnJqqbtohYmnptDzlZxrDITH1Cej+71VuKDGeUzlgQ3aklFy04HkZeijbFqu8SDa62VE3ePneNQpHMoTqCJ4ZVzWf6dDtLThYZwChSRVH7+jYuRWve48Wy0neOU+b9DsqqpV1dGxAV3u4idTp/j4NSy1bHCCeoM7Vd4cfQqtcYZVyO9S8LaZlpuvzReti4jxUSZYlzGEjJQjJeQs1VcaywYfbpGfa33SA3hUs8NAQweneL8Xq8jmdTY+yzML7nEr35nK/OvJxubDNou8+JabeHoT8KN/vi2KfOwJ342rrze4SAfLdKyycHkywsUFmQCu51oLRLJ4QzmkKGxGXP9ze1E+9NU5So6q8Tki4ughk23dBJ5LQY1sHUaGX5EqfPWf7Cd1HiO+eNJeq71M/nKIulwHsduiZn8JAcPHkJv066Y83K73TgcDq6++mq+9KUv4Xa73/A9bNLkjdB0Umryr86aNWsaNtmgOC29+93v5uDBg5TLyqTBq6++CigRJdqDWroT3SyOJ4iNbefCz6xly21dHPneKBq9iNYucvoX08i5Mts/0cuxn42jd+tQG9QcvWMMc7uOrbd3M/zYDAaXjnq5ztE7xnBvsrLx1g6Sk1k0BjWxEylm9yVZ8+5WSrky5UKFfFx52He+qQVrh5Hx5+dJT2ZBENjwkQ50dokDS7vrJYeEe40VrUlUxDsSTL8WRc4qX1PbZR5sXSZlh7wMetfy7q9cfNlVqfOqFnRWLZGDsWXXIQmcq80YWrQcHVEmq+S4zOyBGDP7zo1Q852vPLwqxZWLTqFdbkx+QyOeDqB4Ru17ZiP8Wc/wNe8LobVoGjEo/zsCe5z4tzk5dvd449pnxkWOyysESgCBnS5FpXtGiLU0sRPc6cK7oboirg0gNyczdyTO2HPLEzz2VSZsbSbarvAz/NBMo++r3xbA4NYx/fICcrbOxMvKGFVroLVo8Ky3k43MYwnqabvYw9E7x1g8kcW1Osv8EeX6kglaNtkxeXUcD09y+jcRVr3dz/mf72XfPw0hZyFyII5oENjy8U6OfF+JhKuUaqjUsOkv2+n/bYT5Qyk2f6wDQSXQeY0XvUPiwNeHQYK2i1qwd5to2WKnWqlz4BvDmNu06GwarJ0mQhcbAIGD31ImHDUGFXqHRGCXA2ubkZO/HCftjXCwf5bBoUHmq/OoZTXVB5eLM3/Aj8/n4/bbb+f222//F+9jkyZNmjT5/x6f+cxn+MxnPtN4/aMf/Yj/9b/+F5OTk9RqNRai8zz08APKySqcesSH3eJAlbFgfNTAqhuDpKby6GwaJJNIOQ+HvjPKxlvb6bneRz4mY3BrKZfg4LdHWfV2P703BqhVaph8ek7+fIKFQylWvzNIdraI1iyhFisMPTKDwaVh/QfbyEWLyLlKQ4y08S86FEeA4axyTAM7P9XH/PEk40uLPa273Jh8eqb2RaEMs6/HUItCw9J5/YfbWTyZIhXO41pjweDUwtIOrMh+RaCkdUkEdjoxebT0/2qq8fnte1w4ey0YA7FGLNvQAxN4t7rOESgBdF/jR61TrxApaQyK25CoV5MaWxaInxEoaayaFdcyeDWsvqmNyZcWWTyW+hfv68ZbOyksFhl6eOasz4RyhXOESAaXBmuHiWClxtCDy+073uTFu8lGMpxtOFCdYeChGTxrLQ2BEkDbxR50Vs0KkZLGAKE9bpw9Zk7cM8nC6ylF7AVYAvqG25LGAKGLXCw4UswfSRHZH1ciPJaEYe2XKpFrkVcWlXi274+x/VPd2DuNnP7tDOHn5jF4dax5jzLREnk1TjEpI2e1tF/pRqMTGXlsDr1Lg+YSNfYuI51XmJl6JUZqLM+a9wQxuLVY2vV0XuHl2N0TlOKKo5IoqTC4NKx+RyvhZ+eZP5Ki76YAkklNvVZn80c7kLMVTt0/TnHTPOEXjnFy6CRVqivqrmq1Sk9PD729vfz4xz9uOiU1adKkyX9BWlpaVriLJ5NJ/uqv/opHH32UWCxGtVbhtUP7eI19AGgntHQ9100+UqZ1YjVbP9TL+g+GOPGzSSSziM4uMfrYHHKuytp3BBl8cBqLX0+lVOXUfVMsnkix/oPthJ9bwBw0IKgEBu+fxhTUseqmIIlwFsmsIRcpEjuVpf0yD+VylVK6TCGp1AveLTZcqy0MPz1DYUFZVOp+sw9Lq5Ej31fmI0QdBM5zYfBolfkXESZemKe25JzpXGPBvd7KyCNTVIpgDuhRa5X6oVKsKE6UgkD7pS1YWo3EB5Ir3IV8WxzYQkZO3Tex9J4aE8/PExs6V9ht7TLi3+mgVqutWFxr2WrH0Wch8soixaSyKbKSrVDJAiKIIis+s+NKLwa3rvGZ/zscfWZad7sYfGiKYmx5w+WZGLezBUoAvu0ObG1Gpl5cWOGu1Haph0q+2hB+naGSrTD54jzRk8lG3aX3aPCstVCv1Bl/dqHhFNVxpQ9Hj4no6QxyqsL88eTSRSoYPVrs3Uby8yX0bongbhcDv54mO1Nk/vXUshuCCK27XKQm8wxOzzD1YozgHtj+yS4O/WAMKjDxwgJqnYq1723l1H1TUAE5W6FGnb63+Zl4doGZ8QJ9b/MvxeHaMHq1HLtrXOnnpS0UE2XsnSYEUeDoj8aRrCImnw6zX49nnRW1Vt1oL1lEtFYNjl4jng1WBh+OkNDFyS/MMvTKELPlWdRqNdWHlmuvgNNPT08PX/ziF3n729/+L97HJk2aNGny/z2uuuoqrrrqqsbrvXv38vWvf51XXnmFRCLBTDLCo08/BCipLif3teCxeNHU7Aw+rGHNO0PkFopojCI6h+Km1P/LSbrf7Cewy0VuroB5yUmx/74JArtcBHe7kLMVbB0mwr+fIzU2QXC3i1KqjNaqoVZVahS1Xk3nNT5yCwVKmUpDjNR9vZ/MVJ7ws3ONYxtv7WTheLIRLebdbMO5allglBrLMGcUGwKlzmt8JMeyFBZlrCETRp+OMxVHfFhZi1NLKlr3eDD59ISfmWs4ArnWW2nZaCc+mG6Iaib2LpCPls6NUEOpX3T2PxIpqcG90YbOoV0hUjojUFLr1SsizdR6Nb1v8TN7KE5yZNkp88/RdZ2PYqq8otZjKRFYTq3so1qvxr3WhkpUrYiGc6+3ErjQST5ePMcUYerFRTKRwoo++nY6sQQNzB2NK2NVVT6z40of6ekco7+bJT2Zb/TD6NMtu2yqoWWLg9RYjvhQhrkjcTQ6EVR1qIJ3iwPPBpsiHCpUOf3rKda9vx1zmyIsmj0cIxnO0nG5h1Q4x+LJNMVUiWJSxrPJikYvEtkXQ61Xo7tEg8mro2WTg8VTKbKRGKGL3VhDRnQOidBFboYeiVBKlOm81ofOqlHG/3o/k88vEB/KEtjlRGtWJu96bvBTzlUIPz9HsSfKyyeHOTV1ClkoUX1xeXy0NQ1r167lqquu4ktf+lLTKanJvzlNJ6Um/+7Issxtt93Gb3/7W5LJ5DnndVoder2ebDJHl2cVN/3FW5g/kgBBcVMaf2GBuQMJdnymFzlbYfF0itCFbk78aozsuMyGD7WDCkqJCo4+M/u+flpxX/pgG7mojGu1hUqhwpF/HsXYItH95gDVShWDU8+BrymOTBtv6aBSrqEWBY7/eBzqdbZ/ppfFk0lmXo0iZ2ts+lgXWoumEeG29n1tmAN6Xlt67d5gYfG4kjO76S+70NqW2545p/NIrHprK/2/mUIlQjEpg6w8oNOTucb7Ta1a1r+vk5mDsYZS9uzrn83ZAqXlg3D+Z1eTWywq0XBLrL+5HY1ZbDhBneFPOSl1XOnFs8nO/q8sR9aZWrWs/0AXsf70Oa5OoLg4Fc+yREQQsHYZKcznGs5IOz/ZR36huOyeJMHad4Q49ZtJkMEU1JKdLtF5rQ9Jr2bg/mkkk4DRbyQxlGX1O4LYukwNly1ji4SgVpyj1rwnhDmoZ/+3h0GG1TcFsHWb2Pc15XvC3mui4wov6ck8I4/N4zvPjnejlVq5xvzxFPOHUqx+ux9Lu5H4iFL4DT80g321hVU3Bpg/kcAaNDL8WITsVJHNH+tEY9Qw9coCree7OfDPIyDD1tu7qFfrTL0apfuqFkaeniM/m2fVTcpu+8PfHeH8L6xidnKeX977a9rWBIjH48zPzzd2BgiCQL1ex+/3097ezte+9jXOP//8c8a8SZMmTZo0+WMOHjzIpz/9aV5//XXy+ZV/tAuCgM1mI5fOo69auOl9b8Xjc3HgGyNs+Vgn1UqNgQci2NoNtF/qYeDBCB1XeKlX6xy7axyNVcPG97Uy/sI8HVf4KERLnPz5BNYOA6GLPWQieVq2ODh+9xj5OZmua3xU61Xcq2xEB1KEn5xXFpxWmxElFdOvxYj3Z+i+zofBo2Xi+QVS4bzigPOxLuaPJQg/OY/GILD5Y73ETqcZfXwGg0+iKtcpxcpK2492s3gyxegTs9i6jSQnclCG3rf4KMRlpvZGMfgk8rMyaKD3LQGG7l/pqqR3aDn0bcVNU2PVIJnUDUHTGbRODaXYuaKmnrf4ca628vqPRpbPa2D77X3M7I8qjppL/Dknpc0f6yK3WGTogWXR0foPtWNwatm/VLO+kb44VpmWI/IucePb5uDoT8YabV3rlPjjyRfjaAyARoNKDb3X+xh4aJZyqoxjlZH4gDLJtOMzPWTnCvT/Ynrp+ivPJUezDD0y23idmy9w6r5pNFYNLZvNuFfbOPIDxW583ftbqchVVGpV43rbP9VNdqaAqFMzcP8k5Txs/stO1BqB2HAGrVnD4IMziLo6W2/rZfZwArNfR6VQZeD+Gaw9ela9JcjYM/P4ttkRtWqO/GAM7xYrbRe7iexPoDGqadls5TfffZSiNY3BpCM8FqYklxo/F/V6HVEUWb9+Pbt37+ZrX/saGo3mnPFt0qRJkyZNzqZSqfC9732Pu+66i9HRUYrFP6odJC0Go5FyokqrsYsbP/EmIvsTVPJVghc6GH92kVh/hg0faqNcqDJ/JEnn1V4GH46QmSzSdY0XUa8mM1MkcJ6D138wQqVQo/OaFkqpMu7VFqrlGid+NoGoE+h+c4BysYK11dQQJPXc4KdWqyNq1A1XpQ0fbmfxVJrFU2kq2Qp9bwti8usbu947rvDiWGXh8HeU2uiMm+WZ61lCpkbbM+dEo5rua32MPT1LrQJUKlSK4D/PQSEmNxbCJJvIhps7mXktxsxrsXOufzaSTUROnuvavu2TvWTnCitcmTquacHk0TWcoM7wp5yUvFtsBM53c+TOkYZYSLKJbPpIF4vHEg1Hqn+pL3qPRDlfa0TubfrLTvKLJcU9aYnOa1oY+70iStK5RIrRCr7tNnRWSfkcEcx+HZnJIqGLXXg32RouW5JVRKWBYrRC2yVuXGstHLtrlEoRgnuc+Lc5OHJnmEq2gsmvo3WPi9xckam9MaydBnzb7VRLVRLDSnRcYJcDz1or8/1J1IKKyRei6D0a1r+vnZkDccx+HdOvxslMK2Ilo0dH+PfztF3k5tRvI1SyFda8J4igEph4YZG+G/yMP7dIeipPz3UtqEQVJ342ydbbOlmcifHYb5/AudpCKpVsRFeDUnsJgkAwGGTNmjX80z/9Exs2bDhnzJs0adKkSZM/ZnJykm984xs89dRTjI+PUyotu/wICNisNqo5sFScXHTVblra3By7K0zvjQEEAcLPzCFZNHRd62f08RlattpRaVQMPTCNWoK+t4eY3hcltMtNPi4z9vgsklWkdbeb1GSO0G4vp38zQWFRxrvVDipwr7YSH0wzsz+OJWTAscqMSqMi2p8iHc7j2WxTNnHti1JYlEENm/+im/kjcWb2x0ENGz7QQWwoTeSVGJJVDVWQs1XUEqz/UBeLx5NE9sXQuyXklCKQ8u1wUClWWTyeQrKKSjSdGoIXuJh+NdoQMbVd4sHcauDkfeNLzksgWaRzXIo0JvUKN6MztGx14D/Pycl7w434O4B1H2hn7lCcaP/yuuWfc1LquSFAKVVeITpqv7IFa7uRYz8ePSfS7Y9FUWc421nSsdpM6243p3892eiXya9D79YqmwXVoJbUjTGY2rtAOVtdcY31H+ogO1toxDCffW7DhzqIj2SYXhJWrf9QB7mFImOPz6KWVNi6jXg22Dj9qykQBNou91Cv1VGpVI04tXXvayMzW0ClVjH96iLlbJWe6/1IZpGFEyn0DonJFxRXpM23djF3KIFkE6FaZ+L5RfQuNb03tjHx/DyObjNaq4bTv57CEjLQfoWX2QNxqNdpvdjNsz97mYRuAa1DTXgsTLG0/HfJmfngdevWccMNN/DJT34StVp9zvg2afJvSdNJqcm/O5Ikceedd3LnnXc2ju3du5dPfOITDA4OUiwVG78sBxaO8w//8wQA9XqddeF1rN+wHvk1mWJCRufQUK/UGfvDHBve00X4+TlUWhVqrYqpV6KEn4lw3qdXMXswhsGjQ61Vc+Brg9h7TWz7ZA+pySxGt46Tv5wgHc7Te2OAulDH4NaSGMly6rfTeLfZcK+1oBJVyJkqcrZG55taUKkFMlNLEyYSGH16ppYcfey9JnquD+LoTjP44DSxoTSWgKHRtmWLg9R0Ef82J3qnFskokJ1aLp7c66zYu0wNEZKcq1POV4gNLu+6P3Nu1duDWDpMHPi2ItKR4zKSQ2Lde0OcvG9SESzJkJrIsXgyueJe/PFEzf+O8DPzhJ9ZaWOdnS+RjeSZfGW5kFj3/jZy80XCz8w3BEp9bw1i7VL6mBo9S0UtK8Ks7Ozyw7Flkx1ryEjbbg8Tzy6QnVbGxdFlQrWUAxy4wEOtWicxlGXxdAqNWUSSQJZhw4e6KKbKvP6DMfp/Oc3W27tY/RY/p38zzeLpJDq3ho0f7ODYj8IkhrL0XOfHFNSz5p1B+n89zey+GOd/cTXejdCyycaxHymirh2f6aVeU2wR67U6+748iMkv4l1vx9ljZs1NIQrREqd+HqbjugCCWsDaamDVjQGqco0TPxth1TvbqchVaqUq5gtFjg8d4+mnnsLusPPad55sxLYNDmYxGJTvF5fLxXXXXcfXv/51HA7HG75fTZo0adKkyRm2b9/Oyy+/3HhdLpf5+7//e+6++27m5uZIJBR3IJlF7rr3h8oO5mqVvT+QuPyqKzBtslGeq1IpVQjstHP0J2G23trJttu7GH16DkGjwtJu4OgPh+m5MciWj3cRPZ3G6NYx8GCE8WcWWPNuRYxibjFQr9c5+M0hNAZY94E2avU65hZ9I+63961+dA4JjVbdWJxa9dYAhWixYWfd8SYfpZTM6BOzIAj0vqUVnVWjiMXLVbKzhcauc0tQj9GjI/JqDEu7Cb27wtTeqCJQAkJ7PDh7LDhWpRpinsxMgXpteS9HOVWmnCqjMcCmv+xl4USSiT8sNIQ+bZd70Fo0jQWoyIEoolZNKX2WaKgMB79xrrjoTyIIvH7H2DmHZw/FsXcYG6+1Tg2r3hqk/77xRl80BoFNf9HN4qkU479fWOGglBjN4eg1KwuFS7Rd5EElqZl8IUo5rwLKmEN6jF4dnnUWoqfTeDfYGkKkzHSexJjy/94bfDhXmTl2d5j8XJnpfVH825frldRkDq1VQ+BCJ5FXYtTKAmqtir53+Fk8nuLkz6foe7sfc6uezms81Mp1Dn5rBHuvkb4bAwR2u3B0WhrRbutvbkMyqmnd7aBlq4PXvjmEvcOIs89EvVYncIGD0B4X/b+ZRu+QEI1q8rNFytUy9e4sDz36EoNDg7jcLmLPxBQL6wwYDAaqtSoGg4EtW7bwt3/7t1x55ZVv7F41adKkSZMmZyGKIp/61Kf41Kc+1Tg2ODjI3/zN3/DCCy8Qj8dJJJQd9KdzRxj46usACHUVfak+Nm7cSOVEmdx8EVNAj0pSMfhwhDXvaCX8h3lEvRrJIpI9XODgd0fY+tEuZg/EsASNlKxljt4VRufSsOFD7cSH01hCRgYemGT0d3MELnSiklRY24zEhtIMPjqLtcOAe70VUSdSKyviGu8WG2qdQGJ02THb1mlk6qUFEAR0Lg2rbgqxcDxB+Kl5EmM56metGbnXWSkkZOydJiytRjQGkdzMWfM+Wx1LQhmlRqlVoBgvkZpcni86UwMGdrnwrLdx4qdjVIo15GQFUaei722tDD8eaYiEYv0pRZR+FuEnzo27/ZMIAvOvp5h/faXTpZytEB9MM3t02Umz4yovpUyFmVdjjc8OXOjEs8HGiZ+ONtwKzpBbKJKbW57vs3YYcK+xUozLzOxPUowq13D0mpFMIvwBvOutqESBzGSR2GAWvVOCitJu483tFOIyJ38+ycTzi4oQ6WIv4afmSY7ksAT19Fzr5fSvI2SQtPfvAAEAAElEQVRnikgGEcGvo+NKD+FnFkiO5Nj237oQBAFHr4nRx2eY3htjw81tCGoBUadG1Ko4+K0R1AY1vu12zH4tHVd4KCRkjv90DP8FyveRwSnS8a6gsnnhZ+P0XNNCpVilXKhg3aFmJDrIs08/i8GqZ/9Pyo3YtuigCqPRiCRJdHZ2ct111/F3f/d3mEymN3a/mjRp0qRJk7MIhUJ861vfaryuVqs8+OCD/PjHP+bw4cPE43FqtRppEtz39AhqtZp6DfY9aGTP5RdiWGOjPFFHzpVxrbUQfnqW7jcHWPeBdkafmEGtUWH26Tj96ykC5ztZ854Qc0cSWFqNTL2wwJHjw4QuUmKwDB4tglrg5D3jikPP1S3UqnVsHSaO/lBJMwmc70TrVJzMC4tK3dBxZQuZSJ7U5FL9s8OpuAwtbXAL7fFiDhh4/Q5FcJ4YzSqJLiiJLka3jmh/GnuXiapcY/F4qiHScfSa8W6yk57IKy5BQG6+iEqragiBqjKKQEkN697TRux0htlD8YZAybXGgs4pNcQ5scEUWouInF0p1j55z/gbvm/DD58buxs9maScKzf6pdar6byqhbGn55YFSmpY++424gNKH7Nn1ZjZmQLFmExVXp7PC5zvQmvVKCKlKlQLVSSriK3dSGbKRHwki6PPQna+CFVIjGQablG+bQ78Fzjp/6UiQpvcu7BC8BUfSmNw6XCvt7J4IkWlUEPUqWm9zENyJMvEHxbw73Tg2WimZbuVek3g5L0T6BwSa98dIh8rYms3Mbl3gcKiTOebWjA4tTj6zAR3uTj+kzEkm4b2Dg+lXBVrh4Hua/0MPRpBpRbQOjTkZ4tUa1W0W8v8Ye8zDAyexuaxEvvnpTmvFBgyBlRqFd3d3Vx44YXcdtttbNu27Q3fqyZN/q1oipSa/Kdgz549nDhxYsWx7373u3zrW99icnKSytIf4yf7T3Ky/yQAe3+sFCD1al2xWVx1HaFdLZz8eZg172qj7y0BTt43TqVQwbnawvhzc7RscXD+F1Yx+coiGr2aYkLm0HcGWP3udgS1gEYvAnX2fXkAJNh6eze1ag2dVcu+pd3ta94XUgRPoooj31OKgo03dyAIIGeUxSHnagvFtEz4GWXnu7PPgkqzFHd2gQtzwIA1pGfsiVmmD8eQ5+WG21F0IM2R7w2ApERndF3nQ2vTNOLRJJOKzR/vZeqlRWb2xZBzFaql6ooYN2tQh9Ys4V5tbhQy/b9YjiFZgQTObvM5cW0rmphUGP0GEn9swy2fK3QytOjRmEU4S9BUTMmY5eUZq23/rYfsTIGB+6c59qMw7k1WNn+8k9e/P8bcgQTZmTxyUua8z/eRHM0xcP80x389oYwT4Nloo1auMfHsAka3DoNLCwhAnUQ4o0zg1BUbTYE6Bp+Olh125g4ksHebca2ysv5DbUzvi3HgG0Ns+EgH1g4DGz4cIh+V2ffl0wR2Ownt9tDzdj+ODjOv/2AIa6eZ0EUeatUa694XxBw0su9/nWb9B9qoVesUM2V6bgxiazNz+M4R+q4PUKmU+cOTz1EI5okcGGJoaIhSqUTtZK0xHvl8Hp/Ph1qt5pJLLuGrX/0q3d3df/Z+NGnSpEmTJv9v0Gg0/MM//AP/8A//0Dg2OzvL5z//eZ555hmiUWXSQa7KPPHE4402hlEDra2tTBSnyfxhI3uu3o1vi53T90+z4f1tqEU1crqK1lrH4JJ47SsDnPeFVcT6FUGxWFcz9odZSjGZ7Z/uJT6SxuTXM/JYhP6Tk3Rd40NrVWNpNZEaz3L8N+M4Vpnwb3dg9OiY2R8lFc7TstWOsUVPTV5+ltaps3g6BYKAyiBi8OgweXVkpwt41tsAiLwa49C3h9FYBUXY9FY/1jYTB787SLQ/2RAtbby1k4nn55lcypzvfWsAvUvLsTvHKJehKtcoJVc6Ftk6TYiSqvE6Pytz+rfT8Cc8a62dBlJT+Ub0XIOlaFxghfvT2URPpImeWN6R5uqzoLdLGFr0pMaUyaZyvk6lVKOcX8q432kncJ6LQ98fJjOZ5+gPx1j9jiDZuSJTe6Oc/NUkpXSZ7jf7cPSaOfCNETKTBQ7fFaYcK9Oy1Yqtw7jsBOqQcGoE5g4lmdgbxeDR4lptZXIuSqVYQ1DD6ncHOP3LCIP3z7DjM914N1oxuiWGHp4l8kqM8z7fi2QSCe3xcPRORRC+7fYuquUallYjlWKFw3eE8aw3IerVGFw61r+3nfRkjtlDcfw7bci5ClqHht7r/ZTSFSZejLL6piDjQ1Mczb+Kw2pl74PzTE5OKsK7X55lQ65W4/P58Hg8fPzjH+cjH/nIuTeqSZMmTZo0+Veir6+P3/72tyuOPfXUU3zzm9/k8OHDJBIJavUqp4f6OT3UD8ALv4NgMIgakUpUwDiwh+CFfgbuj9B5pZe+t/g5du8EpXQZW6+JyRcXcfaZ2P6pXkafnENj0lAu1DlyZ5iOy90EL1Ch1qhRS0JjfmndB9qoylXMfgMHvqE4JHVc5cUU0CMZRPrvU1yJem70I4gClaXay9FjITtXILI/DoKAo8fciJNw9Jlx9llIjGaZP5IkNpalkqyAILD19m6ip1Ic+eGIIshBcVUyuLScvGfJXVuEzbd0Mb0vyuKxFJVChUqxQqW4XPfpXBIGjxZbu4mFo0kAxYHoT4UFiGD26xtxwQ0ElmsvEUwtOrLTK12vqMDIY7MrDlmCBipylZlXl10xS8ky1VL1jI6Ite8PkV8oEX56nuGHZjCH9Kx5b4j++yZJhfMcu3uMYrLMlo91kxjNEn5mgcFHppTYOpQFMep1Zg8m0Ts0mHx6VFoRihXmTyYx+3Qr+mT263CtNRM9lSE5liNwvpPet/qYfz3JsZ+M032tF+dqM2pJoJSucOg7o9i7jfRc78d/vgvXKgsnfzGJzq6h9UKnEtt3mRv3OgsHvjlC1zVeBEBOV2jd7ca7yc7xeyYI7HRQU1V59Q/7yXYkiIYHGXp6mEIhT33orHuRr+Pz+fB6vVx//fV8+tOfJhgMnnuvmjRp0qRJk38F1Go1N910EzfddFPjWDab5a677uLhhx/m1KlTJBIJctU0T/7+yUYbwwMGQqEQ0WKS1L4+tl++Be8WBwMPTrPxw52oJDVypkq9Wsfk1fH6D0bY/NFuFk8lkSwaBI3A9CtRClGZ9Te3s3gqhb3LzNhTM0z8fh7PZht6pxZ7l4nEaJb+xybReyS8G23Y2k3MHIiRmy1iCRkwtepXOAkJKlg4fkY0rcIaMpCZzpOfL+FZb0PUqon2p+n/5SRqk+KG49vhwLXWSv99E5yYWXY86nqzj/kjSaJLTkG+HQ4srYaGu2Y5X6WUXTkZZe0yorMui5TK2SoTz5/rMgmscHb6cxi8WvLR0jluSdmZ4grRkdmvw9SiR2/XkD0jUqoqfayUlNfWDiOtu5bdkwYfmCaw24WcLrN4LMXIE7NQreLdaqdls51jPx1DTlU4dk+YaraKuVWPe51V2ZA3nFVMJcwa4kMZFo4nMbXqMQcNFBZlKoUqgqii43Iv4afnibwSY90H2nGusyLZNUReinFifILNH+1CaxLxbXUw9GiEmf1xVr9DqX2MXj31ap2jPxrF3GFEZ9OgtWrovT5AajLPxIsLeLfYKCVk1DoVvdcrjlPTexfoe1srkZFZBjPHMbZLHHl5kfB4WJnzemB5MFUqRZC0c+dO3ve+93HFFVf82XvRpMl/JE2RUpP/tNx+++3cfvvtK47dfffdfPnLXyYcDlMul5mcXBbe/OSeuxBFEa1Wy4FfWvD7/LjXeChW3VjsZkIXeZHzMoJaILDTxb5vDHDB51YTvMBNbr6IoBHQGNQkp7Oc//9bTT5eUBS2p5IMPzHNjr/uRS2poAbZ2QJ6l45Nf9kJagGDQ0u9XqdWqeM/34l7vRVBEJCzyoPY4NJSLSv/r+TKoAJTQMfi0RRbb+lGEODQ90coZcrYu03oHR0s9qeQLCLezXZqFeWP+9XvCGLtNFGvQSkls+1TPVQKNQ5/ZxidR2LTLV3k5wsc//E49p40rbvdDZHS1v/WTb0OklFD5NAigW0uFo6ncK4yI+rV1K+v89o3FDcmVGAK6htju/WTfQiCwPGfjuBea8e7xU69DpmJHJJNQtSqOPQDJVJNUEFhoYTk1LLhfSFEvZqT94aZeG6Rjbd2IhlF6jWl3c6/7iMzmaeYktHZtJz3+T7SkQL9906y4UOKcKwQL+HdZqPrah+FRInX/3kMOV9GZ5Vwb7CQningFwW23NbLa/84iJws4+g2s/Ove9n/1SFGn5pj9TtaabvEjaPbBHWoVWqYfQbaLlGz6m1B8gslhh6J0HWNH1OLHtcaC4XFEsVECVevhWqxhmuzjY6LfVSKVbKzMsYWHYIKNn+8E71dSzFTomhJMxqJcPCRg+j1evY9UCIWW564kiQJWZYRBIGNGzfS0dHBj3/846ZDUpMmTZo0+Q/H5/Nxzz33rDiWSqX467/+ax5//HHm5+fJ5/MMDipOQPtPv8qBgX1oNBrsdjuHfyqxeu0ajKIJp3kVWotE55tboFbHtdZK7HQG0ahm9U0hFgaS1Cs1LO0G6rU6vu1OOq7wodaqEAQYeHCK7FyeC/5mNXKmjKgXmT0Up2WrA4NbqyycGTXk5pWJi7XvD2F06xq7qnre4kfUqSgmlcUolUbVyJMPXOik7RIPidEsmek8Zr+BHZ/s4+S9YTquacHcasDo0aF3aUmO5Nj+6V5q1RqVYg3vVjttl3g4/dtpMpN5Jaat1cjhO0Y5ducY2z7VS9/bgww+Mo2jx0z3NX7ysRI6q0RutoCxRc/w7yKsfXcb1XKNzGSO/l9NIerVqEQB90Yri8dS9L7Vj2uNlUK0xOt3jLHl410gCIg6FSNPztD9Jj+TLy8ytz+BwSlRLddJjeVpu9yDe52VUlLm9R+MorFq2PHZXpJhZcWr580+7B1mDnx9CJNfj7XDiHu9lcm9i5TSZZyrLVTkGhp9jc0f60XUq3n1K4OUMspEln+ng8XjaWrlGpaQkY6rPYSfWkBr1RA830m5UGH2tSRtF7mxd5pY96FWpp6PUa+BSiNg7zax7b91IupFhp+axugyENzpZMdfd6NSqTj84zBbb+mgVq6RmSqz4f1BtFaJwUcidFzqpUYdU6sBvVeLRiuSiCUxXFji8aceY3BwCIfTzlPfizVidcZmBERRRBAEPB4P3d3dfP7zn+faa6/9t/1hatKkSZMmTd4AV199NVdfffWKY3v37uWrX/0q+/fvJx6PMz093Th37yPhxpzXoWdseNxuWjb4KQsO7H4b0sUacrEiap2K9svdHLt7gu23ddJ2aV1xohQEDG4t0aEMOz7bRzqSxdJqYPb1GJN759h4awc6u5ZqqUpmuoBaLbDqnUEEASwhI9Tq1Ct1HH1mWi90Kgt1S05Cjh5TY6GomC2j0ggYPBKxftjykS7UGoGD3xogv1jC0WdG79QyfyyJtVNN6GIP1VINmKX1Ig/eTVaqco1KocraD7RRK9c5cfcEol5g88d7yESKDPxqksjBGK273SwsOYaveWcrakmFZNIwsz+G/zwnc0eTODqNGDxaKoUax36qxKCptSpsncuuPTs+2YtaUnPinjB6l0Roj4d6tU5yPIeoU6OzaTh+zzhUQCWpyE/mEU0iq94aQGvVMPjgNMd/Mk7PW/wYXFoqchVUStRbZjpPJlLA1KJn2ye7SYTzjP5ujq5rfGhMIoW4jKVdz7r3hMjMFjnx0wkKqSK2kAlHr4ncYhFRr2Ljh9s4+M1RClGZ4E4nW2/v4PB3w4w+PcuWv+ii7VI3ljYD1WKNarGGrd2EqFOz+iYDyfEcgw8pkc2u1RLeTTYyMwVSU1l8W+2UkmVMrTpWXR9AzlSIDWSwdRlRiQJr3hvE1KIjHytRD+aZnJnhkR8dQS2pefWlMrFYrBHZJkkS5XIZrVbL2rVrOe+88/jHf/zHpkNSkyZNmjT5D8dkMp3jdFkoFLjnnnu4//77OX78OPF4nIHBAQCi03O8dveLSBoJu93OyV+/yqrVq9DpzARaHBi8OsrFKnXq+LbZmT2UoF6vs+FDnUy/tkC1VFuqNerYu5SN7ypJhahX0/+LCfKJEjv/uo/sYhGdSWJi7zz+bU60FjUmnxFTQE9yVJnLCV3uwbXW2qh5Qpe40Xt0VGWlDhO1KjQWZanf1mVk9TtCzB9LkBzLUSlWWfu+NoYfjeDZbMMU1OFeYyU9nicbKbD2fW3U63WqxRqmgF5xLXpqluxMkdBFblwbbBy7a4zR382y5t0h2i7xMLF3Ab1Toue6ANm5IgaXlsRYFnuHiaFHp1nz7jaqco3kWI7xZ+YQdSoks6hsxhvJ4dvpoO1iL8lwloHfTNH3tiAqSTGQGH5ihp5r/EzvixI/nUFrk6jKVbIzRVxrLLRss1NIyAw9OK1E4n24g9iQYr7g2WbHvcrC8Z+FsbUZkSwirrVWIvuipMN5fNvtVEp11JKa1e9oxeTTcfDbw1RKVer1Op7NNhLDWarlmuIKGisxuz+O3inh7DVTq9SInkhTk6t4NztQaVTMHUlAHdQaFe7VViwBAwa3luEnI2i0Ip1X+th8ayeCSsXJ30yy7h2tSJYayXCO3hv82LrMnLh3nLY9HhAFbF1G9C4JvU0iNp/EeFmNF/c/x8DgIFanhed/FadQUOY6hbiARqNBr9fT1tbG2rVr+dznPseOHTv+HX6imjT516EpUmryfxU333wzN99884pj/f39fPGLX+Tll18mmUxSr9dZXFxkdlbZ7fTUU0+iVqux2+1UK1UCgQAtPh+utziJR1I4/FZ0donUVA6DQ4vBoaOQKCIZNNRrdUx+PetXd1EtVqAGyZEsiakcnZcbEFQaVKKa4T9MEdrZQtulHjRGDQIC+UXFEnDzx7tAoBH34VpnBaBSUIqIqlxBEAXkuMz86wnaLvYiFyq07vIgqFByWV+eBwlEkxqVRsXJe8dJh/MEzndhbNHTe2OQ8RcXEFRgcCs7qkpJmXK+wpbbu1GLKooJmWqlhkotUM5XKeerFBMyky8uYO00YvYZVrgxnR0DImcrlHNlshEZc6hMOV+lXquTmS9iVgmIHi3n/9VqBu6fopyvUEyXCV3oRDJrkPMVBIPEzr/uQM6VKWUqHP9xmM0f70QlCRTTZcaemyc1k6f7TX5sbUZc681Idg3UYOK5RaxdRur1OoVFZdFJMooggJyrkhrNISCAGrxbrYw9NY9ngw21pGb7p3uZeGlOsZ0UwOQ3IGpVVMs1khNZqtU6BocWrU2i94YgMwcWCZznppSWEUQBrU1CUAkkp3J0XORDLpSJxqIspBYYOTxMvV6nWCwSiURWZB0DlCtlfD4flUqF1tZW3v/+9/O5z33uX+cHoUmTJk2aNPl3wGq1rojnPcPPfvYz7rjjDvr7+8nn82QyGfL5PFMRZbf9I0+pkCQJi8WC6jUVbW1tBAIBdEkLJlmHp89G5FAM3yY7glqgTp3cYgFL0EhmtsCqG1tJL+ShBsVUCXk6j63diKhTYw4aKSZKFJMyQl3ZkS+ZRCrFKrHBDJ4tVkxuPdQhtxQnq9IqInOAZCRLqOammJCZfimGd5MNBLB2GvFtdpBdKJAczzJ7RNmhpjGIlLJljv0ojL1PiVlb9fYgR+8Ypi6AShRo2Whlam9UqfXUcN5nVjH/ehw5WyEfKyEIAoVUGdEokgrniRyIYQnqKaaVYqteVRZ2yjnldTFVoZAoMfGCsiutlC4jiFCvihQXSsjZCq0XuvCstZIYyTacPD0bbKhEFaVEmZ7rfdg6TcjZConRHAvHU6y+qRU5VwENHPznYVa/VRG/t+3xkE8WUYsqoqdTlPMojkhLLqCCKCCoBVTapTEcz2Ns0WHrUqJpx56ep+fNPoLnu3B0mUjP5lFrVFgCBjqv9qIxqImPZKjkath6jNSrNXrfFCQ1mVfqYVFFfrFI73VKnHJ+sYQpoEdQC2TjecQ1RQ4e28/k1CQajYZoNMrCwsode4IgAHZ8Ph/VapVLLrmET33qU2zatOn/zY9AkyZNmjRp8u/Knj172LNnz4pjc3NzfOc73+GJJ54gHA5TqVRYWJhnZiYCHAUUxwCbzUatWsN3wo/f58N1uZu50zG8fQ4sIT3R02lsbUZMfi2Z2TySSaJSrKKzaln3ni4KqRLUayyeSJGNFui9JoBar0atUTPwcJjQLh++7Q50No0yT7Ikgu67KYigFshHl5yv11sQVALVslLfyJkSkklDpQhzh+P0viVIOlIgtNuNaFCTnS0yczAOIogmFRqThsF7x8lMFnCusuDos9BxuYfwCwuo1CrMfj0IAnK6QildZvU7QmhNIulIAZVKgPqSA0CqTDlTZvLlKJY2A9agASpLBWG9Tq10lrv1YpFysUY2UkRjUOJ669U6xZjSd8kisv22HgYfnqaUkillyrhXmzG26CilZKDK5o91IWfLFFNlBu+fZtVNQXRWDYsnyyycypCLl+l7sx/3aguJwSx6l5Z6tcbcoSR6j4ZapUZuXll0Mji0qESBcrFCYUHpi6hV41htZvFYmv8/e/cdH0W1/nH8sz29kwYk9KoUC4KAdAuigiJiBbFexWuv19+1XBS9VizXhoiKHRQEpFcBUapI76EG0nuybX5/LFlZEjohUb7v1yske+bMmTO7O7sPM8+cU7tDDMFRdlrfXo8dCzIp3F+K4TaISg3FFmLG7fKNMOpxeglPDia4lp3m19Rhy/Q9NOpdm5LsMsAgPDkEk9VMxvo8mlyWTEm2k5yCbLIdmSyeuwmP4aGstIzde3b7k8DLhYaGkpSURHBwMK1bt+b666/nhhtuOLUHhIiISBUKDg7mrrvu4q677gooX7hwIV999RULFy4kLS2NwqJCior2sXOvb8CESQtNOOwOIiMjMW02k5KaQlJiMtacIIoyIklsE8vOBRkktInCEmTGZDWRt7OIWs0jyd1aSLP+KeTtLPTNzJHlJHdLERF1QwiOteP1hFKa7WLfqlIsZhPNB9YlJD6IkswycjYVEl43mKjG4RhuL4UHRgN3RNv8o0MWZ5bidnoozXGRvb6AhFZRmG1mHNFW6nauRcHOYvb9nkvGWt8Ut0ExdkrzXWz4YgfBtewYBjToncS6r3dgGAa2YAuxzcLZvyKX0lwXXsNLm9sbsndpFqW5LoozyzBbTTiLXJTkluHMc7Nj7n7CagcfiJHA8BoYXnCX+GIvV4Gb3B2F7P7FNypTaa4Ti8OM12XgzHZRmuui9gWxxDaNIGt9PqU5vnYSz4vBFmYlZ1sRiefGUOusCEpzXRTtLSFrbT4tb0zFeeC83Jqv0qhzYRyJbaOp27EWGzN2YQu2krkmB0+Jh7IiN/YiN3gMMMAWbMUS7BsdPXdrIfGtoohpEsbeX7PZOiWdljekknxBLOG1Q8jbUURxnpPolDCsIRZCEhzsXZ6Np9hLVMMwPG6DRpfWJndzISWZZdjDLeTvLCL5/ChsYVaKthQSnhyMNdRM5rY8Qs71smbn7+xI24Et2Oa7/rh/vz8JHHznvCKMcOrWrUu9evXo0aMH1157LfXr16+SY0PkdFGSkvzltWjRggkTJlQonz17Ns8++ywrV66ksLDQP3VJTm4Oq9es9tczm83ExcVhNpsp/amMjp06Eh0ZRZy7FqHWUOyhNrI251KrSTSFGSVENQ4nJDkIj9NLzrYiolLDSGgegyPchrPQRUlWGSUHvjg7PNkczCZytxeSNiOduj1jCU8OxevysnO2b4Qdi93iH2XJEWHDAHYvymT9np20vaMheVuLsDqsdHi0Bfv+yMYWYiN/24HpPErcuErcFO0vwZntZPWY7ZSV+u5eKytwkb4yh5DYIGwhFtZ+ETjdW/qiHP/f+5blBj55XihO/3Mo7GUHhgIH2PtLNnt/yQ6oHlbXQdN+KRRlFVOyr4ztM3wXjvLTi9m/xBfweJxevF78F9yK9pZRlucitlkEsU3DWft1Gs4CFxmrc8n8o4B6PRLxHDiBFJESjMlkwnVgiMj8bcVENw2nwcUJbJ2+j6XvbeHcuxtS/+JEktvHUrC3hPTlmTTuU5fULolYrCZKsp2YzCYMjwW300NUvTCKskoxDHCXuvGUQdJ5sZTmO8nMyaDIWcj6BetxOp04nU72/rjXN02b988TWTabjYiICMrKyrDZbLRq1Ypzzz2Xt99+G/uB6fpERET+bgYNGsSgQYMCylwuF6+99hpffPEFW7dupaSkxJ9Ikr4v/c+KEyEkJIS42DjSZ+zjrLNb0qhxI4LNYYQUBhEaH0xxTil2h+1AcrWF2MahFOeUUZJThqfMi8flJTw5BHeZB6vdzOqxO0hqHUV86yiCIu1gwJJ3NxMUF0KLyxIwmWDvcl/sktgqGkwmCssTmKwWnIVu9v6Si9lqJqZRBJsmpnPeXY3weAxythRQnHXgxIoHinOcWG1mXMUG677YSWyrCLJW+aZfK80qY9eivYT0b8Ce5blsm5FR6fOXNvOgBBuTCY/Li9dtkLu5CIAds/b7p5oDWDMmMIYrn66tKKMMr9tg5yJfjLvys23YrCaK053U6RxLmNNL4Z4SMn73xWLFmWUU7Cqi/cPN2PDDToqznFiCS1j9RRphdYLxeg1Ks3wJT9agA4ldLsheW4intxdHqJ3EdhFkrM0lpJadyNRQLnikMfv+yGHP0izCE0OwR9qIjLSTtbkAd4mH/N3FWIMtBMfasdezU5pVhq2Wg/TVOdRqGonhgfz9eeSX5pKdm8OaWWsICQkmIyPDf2f+wSdmIiIi8Hq92Gw2kpKSOOuss3jiiSfo3LnzUd61IiIif02JiYm8+OKLvPjiiwHlGzZs4LXXXmPevHns3r3bN2Wc10tObg5r163x1zObzcTGxmK1WCn5xUnHizoQFR5JuCcaiyOMkHgHe1ZkkXxOLAW7i4lvHUlEbghlhS4y1+UT2ziC2CYxhMYFU5hZQnFGGRmrcjHMJs67vzFmm4mMNXnsWphBrbPDiT8rCmehmz0LfbGXLdTuG1kIsIfbwAR7l+VQvK+UZtfUIX9HCZ5SD+0eaMaepVnk7yjyT83mKvFQkl1GcbYT3PD7J1txHxhp3FXsIeOPPCwOMyFxDrb+lB7w/GSu+XN63LwtRewsf2Ay4XEa5O8u9i9f/dmfsVbOpiJyNhUFtGWPstL0qto4c0so2V/GnsW+fSvJd5G7wZes5Spy43UZ7PnNd64vf3cJ7hIPMY3DiWsWyZpvd1Gc5WT3kiyyNxaS3CHGP4VdcJTDl9h1IHFq/+oC6naMJeWiOLbPymT5h9tpe3s9GlycQNK5keSllbBpSjrNr6pNauc4rMEWX/J3qRdXqRmv2yC+ZSQFu4vxug1cRR6cBW7qdU+kNNNJdmEmpUYJi2ZtprCkEI/Hzd639lJaWhpwzstqtRIZGYnH4yEuLo7mzZvTo0cP/vWvf2G16pKCiIj8PXXs2JGOHTsGlHk8HqZMmcI333zD0qVL2bt3L5lZmXg8HtIzD5oadpEv+SkuLo78FQU0aNiQRk0bYnOFkJ9uJywpmML9JVhsZtylXgwvJLaNJn9nEfk7iynLd2N4DSJrh+BxerEEW1j33U5imoYR2ySc0MRgTF5Y9u5m7KEWavdIwGKzsHOB7/xTVIMwTCYzJZm+G+otQWZKc53kbipmq2kvMU3D2b0gg2ZX+5LM01fk4CkuT+KG4owSrA4rrkIPO+dnkptWREGaLy4rzS5j36pcgmOCyNlcWOGaYsYK37mnjFV5ZKzK+/O5cxq4itwU7va1k7k2n8y1f8ZpabMCb0Lb+P0uaneK88VWbi/py3zXMdd9vxOrzUJZjpOoRqG4nR4K9xWTu8UXt+WnFZO3s5Bz7mjM5om7Kct1kbOtkC0/7cURYcfrNfyJU44wKxi+a5YlGU5Ksp0ER9iJbR5Gwc5idi3MIKF1NK3vaMD+FdmkzU0nKCaIoGgbMU3CyVydS1m+i/wdxdjDbITEOghpHkTetkJC4hzs+S2T2BaRYED2jgKKTXnke/OY++UMHGE2MjIzyMrMwmt4K5zzKh8NvEGDBrRs2ZKHHnqI5s2bH+O7V+SvRf+jkL+t7t2707179wrl2dnZPPfcc0yePNk/Ak5WVhZer+8LYfLkSf66ZrOZ8PBwQoJDKJ5STONGjYmKjCI4JJhGjRoR0zAcvAah8cF4nB7MNjPBsQ5CE4Jwl3nBDPv+yKJWs2ha3FgPW7AVr9vLxok7aTEwhbCUYExmE3nbfF+kYXV8U4iF1wmhYHsJQZF2bGdZWT92J84CJxFJoaz+cgfnDG2Eu8RDaGIwhTuL2b0wi6B4O82vTQXgt1fWU7djLSx2M4tfXu/fnxY3ppC3s4jdi7O44IFmFO8v5Y/R26nbrRZJ58Xy2yvrOdTZt9TDEmph5XtbiKgfQsuBqexdms2eXzJocVN91n67k8KdZSx7axPNBtQlunE4EfVDiGsRSWKbKIIibeyYmcmqjzdz7j+bUb9XPI6r7az5ajuJbWMIiTPI2VJIVMMQgmMc2ENsgG/kAjAIq+Ng55xM6nSoRULLaMJqBbH79yyCatkJirLTcmDKgYCgiPDawVhsJiJTQgmKsWGxWSjJLyYkOhh7qBVLsAWX00Vm4X52rtmJ2+Nm1+5dmE1m8gvyyc7OxuPx4PH8OX9r+ZCJpaWlhISE0LRpUyIiInjiiSe45JJLTsl7VURE5K/OZrPxxBNP8MQTT1RYNmfOHN59911+++03MjIyfKMQ7tmNx+Nh+YrlLF+x3F/X4XAQFRWF2+UmIiKC1HqpsB4aNmxIrdh47GE2XMVuzDYTZdllOMLCaNQrkaAoOyV5TrweL0V7S2kxsA6hsUF4PF4K95ZQmFXC2YNTCa8dgsflJeP3PEIS7VgcZsz2A7FHkJXw5GDCatvJ2lJAdIMwivaXkbfdN+1baZ6T0FpBvulxgZTucdS+II4dYTaK9pcS1yISV4mHFe9vBSAkzkbDy5NZ/10aSR3iSWobzR+fb6V4n4vWt9enJLuMjd/vOeSJhPPuaczOnzPYtzyXljelEBzrYOmITdS+MJaQODubftzLum99079c8EhTygpcZK8toM3N9TE8Br9/up1dP2cRmRJKXItIHNE2zBYzm37YRcM+yZRk+0Zjij87CrPVBC6Irueb0iMsNRh+MZO7vYi45hGc98+G5G0rZsPknTS9vC71uyfiLHRjtphJ/yOHhJbRxDaLwOaw4HX7ptR1Oz2EJwdjtpmJbRxOibOYHbt3kJOXQ25uLrm5uXi9XrLnZFNYWFghESk8PJzS0lJMJhMNGjQgPj6eSy65hPvvv5/IyMhT+r4VERH5q2ratGmlI14WFhby6aefMnHiRNasWUNmZiY5OTl4PL6pLCZPOeScV1g4IaEhlPxaQoNGDYjaHUWwLZRGjRtSq2UkJgtEpoTiKnNhtZtxJNgJrxOMq8SDyWJi99JM4ptH07RfXYKj7bhLvWyYtJN6PeKJbhyGNdg3UiNAeJ0gzDYzkXWCKN5dSnhSMCG1HKz7toCi/SWEJwaxZdIemg+si8ftJTIllNxthexbnntgerU6mK0Wlv9vM3U7xhEUZWfpW3/eVFe/ZzzFWU72rcil7V0NKMooY+P3u4ltEU5K51qs+HgruAOfr/qXJhAS62DNFzsIirVy1o312bMkm/0rsmh0RR22z0inNNfNH5+mUbtjLPFtosncWEBInIN6PRLYuSCDPb9ks/rLNNr9swl1OsURHOVg44RdYEBIgoOszQWEJNiIrhdKwS5fclRwjB2zBYLirGRvLMRT5iXp3BiCYuzsX51H7vYiwpODOfumFPL3lJC7tcj3/NlNJJwdSViSA6vDQlFmCfbIUILjbASF23A5PWTnZ7Hm1+24cbN78W5MJhMFhQVkZ2fjdrsrPeflcrmIioqicePGNG/enHvuuYfzzz//VL5lRURE/rIsFgt9+vShT58+FZZt3LiRb7/9loULF7JhwwYyMjJIT0/H5XKxYu0yVqxd5q9rt9sPzPjiJSw0jHr1UjH/aqF2Sl1iQmKIjAmhNMeJLcxKcVohUXHhpHSOI6xOCIW7i/C6vGStK6ThZYmE1wnB6zbI2pRP/t5i6l2aQK0WUbjLPORsKsQeacUeYcOOb5Qlq8PiG51obT5ZGwuIaRaBq9BN7tZCzh5cj+KMMiJTw/j9oy0AxDQPp36vRHbM3U/BrhKSzo/FwJdEBGAJtvimf5u5j6hGYdTpFMeGsbsozXbS4PIk3IVudsw75OY9C7S8PpU9v2aRs6mQ1G7xhNcNYfUX24mqH0poYjC7F2Sye4HvZrxWQ+rjLPQlAzXvVwfD5Nt+7uYiImqHkNgmFnuIFWuwla0z0kntGk9RegnOQjcpXeKxhVvAA8FxNmzBVkKTgshYlUfWunxSusRz1q31yFlfwKZJu2l8ZW3q9UqmJKsUs8XMjgUZ1O1Yi+jmEQRF2HGVeMBj4CpxE14/FIvVTPzZUbgoI71oD3l/5JBbkEvOuhy8hpfsNdkUFBRUOOcVFhaG1+slKjqKlJQU6tevz4ABA7jyyisJDg4+lW9bkRpPSUpyxomJiWHEiBGMGDGiwrLNmzfzzDPPsHjxYtLT0yktLaWoqIiioiLcbjdLly0NqG+1WgkJCcEwDCIjI4mNjcVmsREdG0NYWBi1aycT0zQCi8OMUeb7IvJ6DJr1TQUTeD1e3KUeHDF22j/VHIvFjMftxVXkoelAXzazxWQhf3sJeTuKiT87ijqdYvC6DYLjHOSlFbJ3RRbtHm2Gx+kbTWDHQl/m8c7F+6nbMYGwug6CY4NIuagWthAr9nAbu+dnUZbnIjfNlxxVPr1IWF0HhTsDpy0zWU2YzL5AJn93Ma5iN1mb8glN9iUVnXVDCu5SD6tGbsPiMFOcV0ZpRjFbZxQT1zyc2u1qEd0gHMNtsH3ePuq0iwMgON5BrVaR4IUtk/bS8pYUAKKbh1O3zEPB7iIi6oZy9s31cZd4KCtwYnFYCE0IpmHXZCx2M84iN7ZgC/YwK44IG4WFRWRmZZC5Pouy0lLy8/PJy8+juLgYt9tNbm5uhSGqTSaT72Ko243L5SIhIYGEhARCQ0O54447KkwvKCIiIsenW7dudOvWrUK5y+Xi+++/Z/To0axdu5asrCxKS0vJycnB5XKRlZ3Ftu3bAJj781zAd0eazWbDarVSK64W4RHh2G12oqKiiI9PIDoqisj64XjcvgtxZQUuwpJDqB9txxZsxVnkxFnk4dyhDbGF2TBbTWRsyCPpgmjiWkaACaIbhLN1UjoJj0dRu30sxZm+KTGsDgubp+7mrOtTMQyDiNohOIvc7F6UhS0ESrKd2MN8/70665ZULA4zwdEO7NEO8rYWEtMojOJs30hFmMFsMVV4TsKTQjCZwFnkq5e/oxgOnMuIaxGBPcJG27uD2To9HY/TwO3ykDZ/HwB7lmSR0qkWLa6rgy3YyqYJ20lsF09EnVBKMspI7BBDeJ0Qdi7IoGiPC1uwBUzQ8MoksjcU4nUbxDaI4IKHQyjcV0pZoRtbkJm4syKIaxmOs8SN3WYFK9hCLEQ1CiYnP4vdu/bgcjvJy8ujsKCQzKxMzGYzBQUFFBQUBFwIAwgKCiI0NJSSkhKsVitNmjTB4XDQuXNnHnzwQVJSUk7yHSciInLmCgsL49577+Xee++tsCwzM5MPPviAuXPnsmXLFjIzMyktK6W4pBiXy8Xy5X8mjjPdd0EuNCQUA4PICN85L6vVSkxMDCFBISTXTSa2ZThBEXbK8svABG6nhxb9UzGZwevyUprjwhZm4bz7G2ELteEp81C0r4zUHrWwhlixeA1K9jvJ2VRAao9EErJK8boMwpKCyN6Yz77lWbS9qwHOYg+OSDvbZ/vinl0LM6jXK5GQhCDMNqjfIwFbmI3gnDL2rcilaH+ZPyHIVewGs4nQWkH+6YDLmS0m8M3uQWmem9JcJ3nbi7BF2AmvE0KDPsl4Sr1sGLsLe5iVwv0llOwvoWBHCYnn+qYQCU0Kwmwys+mn3dS5sBaYDGyhVup0igPDYNf8HaT2iMNkhVpnh+MsdJO5MZ/EVtG0uqUeZXluCveVERRlJaZRGGHxQdjDrRTuKyGkVhAh8XastYMpLCwkpzSHTSszKXGWkL8yn/y8fIqKi/B4POTm5lJSUsKhoqOj/fFYcnIySUlJNG3alBtuuIGePXtqVCQREZGT0KRJE55++ulKl/32229MmDCB33//nS1btpCRkUFhYSElJSVkZmWwfYfvnBeLfb+CgoKw2+1YLVZq1apF+M5wbGY7UTlRxMXEEW2NJuGcaLwuD5igLLeM2MYRhMQ5CKkVRNHeEsoK3TQbWJeQWAe2ECu7l2QS0ySc2LMisTgshNcNZufcTOp0jCO8SzzFmaUYGDgibGyZsos6F9XCbDMR3SCc0hwnGWvysFggb1cRFrsvaKrXKwFrsIXw2iHYI60U7i2lNMtJ6YGRisxmEyZrxXNe9jArJhO4y3xxScHuEswOM3ggpkkEYUlBhMY72LM4C2eRG4/Ly57ffCNY7l6cRf1Lk6h/SSK2YCvbZ+3F6/US3SiCon2lxDQPI75NFFun76U020lwrB2z3UJyhxjyd5RQVuAkoVUUUfVDydtWRFF6CbYwG7UvjCPx/BjK8lyYw/CN0hkbRII9kkJnPrsz9uLKKCU/L5+CwgKysrIxW0z+c15ud2AGvMPh8CciJSUlUbt2berWrUuvXr249tpriYmJOen3nMjfhck4OIVPRI4oPT2dN998k6lTp5KWlkZxcTEWi8V/EsBsNgcMjVyuPJkpKCjI/3dkZCRWi5WY2BhsNhtRUVGYzWaio6MJCQ7BYrUA4CnzYDKbMFvNmMwmCrOKKclwEtvEN/Tftjl7Se2UgNlqpjS/DMPjm0LOHmrFMAzW/rCTxFZRxDSMIH1FNttm7aNel3hCk4MwnAZrv9xBi5tSWPvtDvDFEFz4rxbk7yhi9edpgC/oKMkuw+PyUq9bAumrc8jdUIAlCJr3rw8GLB+5jRYDahMSF4S72I3FbiFtYTqpnRMxvFCSWYYj2obVYaEkq5TszUXUviAW8M1LW5JX5hvi2mTCZDJRUlxCYZEvYCssLKSszElRQSHFpcXk5uTi8XgoKyujoLCAoiLfCZlDAwKz2YxhGAQHBxMTE0Nmpu+iWePGjUlOTuaee+6pNPtdREREaoYZM2bwxRdfsGTJEvbs2YPT6cTlcuFyuTCZfCc8Dv3vjMlkwuFwEBoa6ru4FhpKUFAQ0dHRmE1momNiCAryLQ8JCSEkJITQkFC8hgEYFO0vJTjGgcVmBgN2zN9PTNNwwhKDKctz4iz0EFzLgdkC22alU69LIu4yN44IO7k7Ctk0YRdtb2+EYZhY8802zCYrESlBJLSKYev0vTiifPHQngPT57a4sS4RdUNZ/JJvhCZbCNS/NJmN3++h2bW18RpQtKeU3UuySO1Wi+Tz4ti3PJvctEKa9qsLBjgL3TjzXVjDrARF2HCXedm5MIMGvRIxDIP9v+cSnhJMaGwwHrcXr8uLL/HK6rug6HJTWlZKbk4uXsPrH3Y6L8+X7J2fn49hGBQXF1NUVERpaSkul6vCc18eC8fHx2MymSgsLCQuLo5GjRrRuXNn7r33XuLi4qr8fSMiIiLHLzc3l3HjxjF9+nTWrl3rv3mvuLgYwzAwmUxHPedVHntFRERgs9mIjo45kNgUDV4TcbVicdgdWO028BoHErNNWIMtWO0W8ncWkbujmNoXxGC2mNnw425SOsdjD7NQnFGGq8CNPcpGSIwDDIO13+4gsl4Iye3i2LUwg92/ZpPQKorQxCBMJtgyOZ36lyawc+4+3Afyk9o93JScrQVs+sE3omV8m0jcTi/OfBf1eySS/ns2hXtKweSl+bWpmCwmfv94Cw0vTSamSQTFOaXY7Fa2zd5Ho8sS8XoMCnaW4Ii0EZoQRF5aEVnrC6nfMx6TxYS71EPRvlIi6oQAYLKYKS4sorikhOKSIoqLin3JYkXFFJf4znm5PW7KysooLCz0n/NyuVwBz3v5Oa+goCBiY2MpKCggPDyc+vXr06RJE2677TY6dOhQpe8ZEREROXHr1q1j2rRpLFmyhA0bNpCenk5+fr4/9jp0FB7485xXSEjIgRgslODgIN/1RczExMYSdOCcWJA9mJCgEEIiQvB6vJhMJjI35hFVJxR7uA3DY7Bx4m6iG4eRcHY0BXuKKdhVSlSjUCx2M5sn7aJe9yRcxR7Ca4eQsSaXtFn7aXFDXcxmCxt/2I7HBaFJwcS3jGLXokzMVhP2cBtZB6Z0q3tRLeJbR7Hs7QOjX1qg9oVx7P45k9odY7HYzRTtKyNrQz5xLSOo1yORPYszydlSSMvrUzFZTRTsLsFV5MYSZCaiTijOfBdpc/fRYmAqXpdB2tz9hCbbSTgrBmeJG3eBB4/LQ2h8ECazCWepC6enjNysPLxm3zkvTIZ/gIO8PN+on+UDVhzpnBdAbGwsDocDu91O3bp1qVu3Lj179uSaa64hLCysit81In8fSlISOcU2b97MJ598wrx580hLSyMnJ4eysjKsVitWq5XCwkL/XUqHJtUczG63Y7PZ/AGHxWIhyBEEJt80GBaLBYfDgcfjISws7EB2roHJ5Mu4djgcZGVlExUVic1mw263k5eXh9VsIzrWlxBVVuKkIKOIuk2TKc1zkrUqj8Rz43CE23AWu3EVusnakk+dC+IoLS1j15p0EpvF+i46FRRRVFRIeEQ4JpPJlzCUX0homO+kS+mBkYwiIiIoLi72/9hsNkpLSykpKcHtcuP2+EYwKh+tyul0UlpaWuGu+3Llz53D4SAyMpK8vDxKSkqoV68edrsdk8nE2WefTceOHbnpppuUmSwiIvI35nK5mDlzJj/++CPLly9n79695OTk4HQ6cTgcOJ1OnE4nFosFr9db6YU18I0UYLPZCHIEYbPbCA0NxWQyYbfb/ScegoKC8Hg8/sSm4OBgcnMLiI6OwOFwAFBcXEJYWKi/blF+MWHhoYSEhWDCxI6l+6h3fm0cDhvb5+wn4axo7KEWbGE2yvJc7F6cSWK7KIKi7aSt2EVUagT2YJtverTMbMBEeGSYP1krNzuPmLhonE6nP2m+PDmooKAAm82Gy+XC6XSSn5+P2WzG5XJRVlZGcXExHo+H0tJSysrKKn1eTCYTFosFwzCIiYnBZDKRn59PUFAQderUwe1206RJE1q1asWAAQM4++yzq+R1FhERkZohMzOTSZMmsWDBAtauXcuePXvIy8vD7XZjMpkoKiry33x2tHNeVquVoKAg3zkvswVHkC+eioiIwGKxYLfb8Xq8hIX7znkZhgEGOIIcOBwOcjJziIyJxGq14nA4yMvOw2RYiE2IxmK1UJrnIndbLvUuqEvhvlL2/ZZL7QviCI51UJrvxJnvZv/qXBr2TqSsxMm2xbtJbZ944O74QgrzCgiPDvffnFhYUExoaDCYfOe8cnPyiIqOpLS0lMLCQv85r7KyMkpKSnA6nXi9XlxOF0XFvnNeZWVlx3TOy273jRRaWFjovxM/LCyMpKQkWrVqRdu2bendu7cuhImIiPyNeTwe1q1bx8KFC1mxYgWbNm1i3759/vNeJSUllJaWYjKZMAzjsPGFxWLxx112u52QkBBMJhNBQUH+a5AOhwPDaxAcEkxwcDAhISHk5RQQFR3hj9EKcwqJiPWdAzM8BnnpBYREhRAZF47X6WXnokxqnxtPSLiDbVPSiaoXjiPGRmh8EAV7Sti/IofYs8OJbhTGtoV7iEgJITQxGMPrJWtnDl6Th6jESJxlTtxuN1n7solLivXFTyW+EZ/MZjNFRUUUFBRitVh8id2lZRQUFGC2mHE6ncd9zgsgKioKm82G2+0mLCyMuLg4EhMTad26NU2aNKFLly4a+VvkFFOSkkg1Kiws5IcffmDhwoWsW7eOvXv3kpub679DraCgAKvVit1ux+12+0/wmM1m/8kOj8dTIaP3RJnNZiwWCy6Xy//l7PV6T2n7DocDq9Xq38fyoQ9LSkoICQkhKiqK7OxsPB4PycnJhIaGkpSURIsWLejVqxddunQ5JX0RERGRM8+GDRuYMmUKf/zxB1u2bGH//v3+O6ZKSkooKyvzTydXUlLiv8hWPmKjx+M5bKLT8TKZTP67sDweD1ar9YiJVCfSfnkcWT7yQUhICHa7ndLSUpxOJ4mJvpGWyuOwxMREIiIiaNWqFWeffTaXX345kZGRp6Q/IiIicmZxu90sWrSIJUuWsHbtWnbt2kVGRgb5+fn+BGrwJea4XK7Tcs7LbDbjdrsxm83++OhUtl+efFUuPDwcr9dLWVkZwcHBREVFUVJSgsPhoFatWkRHR9OkSROaN2/OeeedR+vWrU9JX0REROTMk5GRwfLly1m3bp3/nFd5UlP56IzlcVBpaSler/e0nfOy2WynvP3yc17lo3qXD97gdPqmjImJ8c1iUx6DRURE0LBhQ1q1akVKSgrnnHOOEr5FqpGSlET+4pxOJ+vWrePXX39lzZo1pKen+y+yFRUVBVxkM5vNWK1W/11gNpvNPzxkfn4+DocDt9vN+vXrSUpKIjIyEq/XS2hoKFarFafTSUFBAbGxvmnaykdEioiI8A89bbVa/fWjo6NJTEykSZMmDBgwQF/4IiIi8peXl5fH8uXLWbNmDZs3b/ZPiVZ+B1t5TOTxePyJ5larlaKiIv8ITeUXq0wmE9nZ2WRmZtKkSRMsFgtOp5Po6Gj/CEher5fIyEhcLhelpaX+0TS9Xq9/5ACbzUZMTAxJSUlER0dzwQUXcO6552Kz2ar76RIRERE5YW63m127drFx40Y2bNjAnj17KC4uprS0lIKCAoqLi3G73f4kp/I4y+Vy+S+M2e12/wiTHo+HDRs2EB8fT3R0NIB/FAG3201JSQnh4eH+C3aGYfgTj8ovchmG4T/fFRsbS2pqKhdddJHOeYmIiMhfntPpZPv27aSlpbF9+3Zyc3NxOp3k5eWRm5vrHxmyfEYUl8uFyWTyn68qn6Lu4HNe+/fvp2nTplgsFjweD+Hh4QEJS8HBwQD+a5cWi4Xg4GAiIiL8MVhSUhJJSUmEhITQokUL6tev7x9oQUT+mpSkJCIiIiIiIiIiIiIiIiIiIiIiVcpc3R0QEREREREREREREREREREREZG/NyUpiYiIiIiIiIiIiIiIiIiIiIhIlVKSkoiIiIiIiIiIiIiIiIiIiIiIVCklKYmIiIiIiIiIiIiIiIiIiIiISJVSkpKIiIiIiIiIiIiIiIiIiIiIiFQpJSmJiIiIiIiIiIiIiIiIiIiIiEiVUpKSiIiIiIiIiIiIiIiIiIiIiIhUKSUpiYiIiIiIiIiIiIiIiIiIiIhIlVKSkoiIiIiIiIiIiIiIiIiIiIiIVCklKYmIiIiIiIiIiIiIiIiIiIiISJVSkpKIiIiIiIiIiIiIiIiIiIiIiFQpJSmJiIiIiIiIiIiIiIiIiIiIiEiVUpKSiIiIiIiIiIiIiIiIiIiIiIhUKSUpiYiIiIiIiIiIiIiIiIiIiIhIlVKSkoiIiIiIiIiIiIiIiIiIiIiIVClrdXdAarZ9+/aRm5tb3d0QkdMkKiqKhISE6u6GiMgZS7GXyJlFsZeISPVR3CVyZlHcJSJSvRR7iZxZFHvJkShJSQ5r3759XHv1tWCp7p6IyOkSFBTE559/rsBBRKQaKPYSOfMo9hIRqR6Ku0TOPIq7RESqj2IvkTOPYi85EiUpyWHl5uaCBawbozCXWgEzJrMJTH/+mMxmMAEms6/skOWH/zmwjtkElD82HfTY5JuM0IT/sVFedqD+wY8N059tGOWTGJa3WV434Hf5egfqHbSOUd6OyVdkmMAwH7Se6c+2jYB1CFgnYPv8uZ6/7iHr+n84cv2AdQ5TdtS//WVGQJkR0KYR8Ni3faPC+lRo80A985/LTSbDV2wqf1z+Mh60/MBv36I/65lNxoH1jYMe++r43gIGmAx/udlk+JZxSJnJwIzvx2QyDrxVD5SZDqp/4Lf/BwMTXswHtmU2eQ8sAzNeTCYDy4HtWUzeA78NTCavr9y//ODHXn/bZpPX3wcrnkqWeTED5vL2DmynfF/MGAHb8dU90NcDf1swYQIsJjBhOvD4z99mTJhNZnbutvHC21Hk5uYqaBARqQbVFnuZzDUq7vI/rsGxl2E+aN2aEHcdUqcmxl4Wc82KuywcWF+xl4jIGUnnvHxFlcZeZmpU3HVoWU2NvWpS3FUTz3kdGntZTR7FXSIiZ5AaE3uZzDUr7joorqqxsZf5kH5Q/XEXHBxjlb+UNSf2Ko+bakrcpXNeUhMpSUmOylRsxVxiB1N50GD2Bwe+oMEE5j+DBtNBywOW+R+X/22uGGQceGyYDnxTHbTMMB34VjKVf638Wcc46BvUOFCn/Av/z4Dk4MeH/G02VQgIAr4MDyQplQcyhwsmKv42VQgMDlf3aAFCZfWOupyj1a0kcDh0GQcvOzRQMCosM5X/fWiSUsBvXx1TeQBwaNBw0DLD/7cRsJ6Z8m2Xnwj688fEn+scGgSYD1vmrfDYcvCXd/mXcvnfJsP3hX5QIFD+ZW4xeTGbTP76vt8cqOf7Evet7/siNx8INmwmLxa8/rYtBx6Xt+kLCrx//n1g23/+bRy0rT/bt2A68LcvQLAcCBR8j80H/vb9FhGR6ne6Yy/DbK5ZcVdAXWpk7OVPUqopcZe/DzU39rKavTUq7vqzvmIvEZEzmc55HVq3PM6pOXHXYZdTg2Iv86FJSjrndbTYy2byKO4SETkDVXvsZTbXqLjrz1ijBsdehyYpVXfcVQPPeR1aZjV7alTcpXNeUhOZj15FRERERERERERERERERERERETkxClJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlLW6OyA1nxHixmsGMGMym8D054/JbAYTYDL7yg5ZfvifA+uYTUD5Y9NBj02+FDoT/sdGedmB+kZ5O5gwfH8c+Bt8/1DegG+59891jPL1DmzOX7/8sb/tA4/NpoOW+Rb7/iGgPGAdE5jKt3dQWfk2y8uMStY/Uv2AdQ5TdtS//WVGQJkR0KYR8Ni3faPC+pXvv3HgtTIOPA++J9hkKn984Pk5ePmB3yYOLgezyTiwvnHQ4wOvur8N46C+GRgYB/bNwOvfF1+5gYHXZBx4qxqYMXxtHvLb/4OBCS9mEwfqeg8sAzNeTCYDC771LCbvgd8GJpPXV+5fHvjYfODt7PttwmwCK2YscGC7Jswmk+83YC5v78B2zBj+n4B2/W3++bcFEybAYgITpgOP//zt25aZnbv1lSAiUhOc9tjLZK5ZcZe/v3/+1LTYyzAftG5NiLsOqVMTYy/DXLPiLsuBKEixl4jImU3nvA56XN49MzUq7jq0rKbGXjUp7qqJ57wOjb2sJoviLhGRM1C1x14mc42Ku/6MHWpw7HVguJOaFHfBwTEWNS728h6Im2pK3KVzXlIT6R0ih+X1erFarbib5FZ3V06MwUEBxLEzHfJb/nrKX3pvdXfkiMojq5o1oJ3VasXrrdnPnIjI39VfOvZS3HVGq/mxV82Mu0Cxl4hIdflLx12g2OsMVvPjLqipsZfiLhGR6vOXjr0Ud53Ran7sVTPjLlDsJUemJCU5LLPZjNvt5umnnyY1NbW6uyMiVSwtLY1hw4ZhNte8YEZE5Eyg2EvkzKLYS0Sk+ijuEjmzKO4SEaleir1EziyKveRolKQkR5WamkrTpk2ruxsiIiIiZwTFXiIiIiKnh+IuERERkdNHsZeIiEBNHPtL5G9o/vz5PPLII3Tr1o3IyEhMJhODBw+u7m5VasyYMdx1112cd955OBwOTCYTo0ePru5unTSXy8W4ceMYNGgQzZs3JywsjPDwcC644ALee+89PB5PdXdRRERETgHFXdVPcZeIiMiZQ7FX9VPsJSIicmZQ3FX9FHeJnBoaSUnkNBg1ahSffvopISEhpKSkkJ+fX91dOqynn36atLQ04uLiSEpKIi0trbq7dEps2bKF/v37ExYWRo8ePbjyyivJy8tj4sSJ3HPPPfz000/8+OOPmEyaIVhEROSvTHFX9VPcJSIicuZQ7FX9FHuJiIicGRR3VT/FXSKnhkZSksOKjY1l8ODBxMbGVndX/vKGDh3K6tWryc/P55NPPqnu7hzRyJEj2b59OxkZGdx9993V3Z1TJjw8nHfffZf09HTGjx/Pyy+/zPvvv8/GjRs577zzmDRpEmPHjq3ublYrHfMiItVLn8OnhuKu6qe469jomBcRqT76DD51FHtVP8VeR6djXkSkeulz+NRQ3FX9FHcdGx3zcjRKUpLDiouLY8iQIcTFxVV3V6rVuHHj6NKlC/Hx8QQFBZGcnEzPnj0ZN27cMbdx3nnn0bJlSywWy0n1xev1MnLkSNq1a0dMTAzBwcHUqVOHK664grlz5/rrzZ07F5PJxLPPPsuiRYu4+OKLiYqKOqbM3Z49e5KamnpS/SzndDp54403OP/88wkPDycsLIwWLVrw0EMPkZOT469Xr1496tWrR15eHv/4xz9ISkoiNDSUiy66iOXLlwOwZ88ebrrpJuLj4wkODubiiy9m06ZNx9yX2rVrc8899xAaGhpQHhoaykMPPQTAvHnzTsFe/3XpmBcRqV76HFbcdTIUd/316JgXEak++gz2Uex14hR7/bXomBcRqV76HFbcdTIUd/316JiXo9F0byJH8N5773HPPfeQlJREv379iI2NJT09nd9++40ffviBa6655rT258knn+S///0vDRs25IYbbiA8PJzdu3ezYMECZs6cSdeuXQPqL1q0iBdffJFu3bpx5513smPHjtPW15KSEnr16sXChQtp3Lgxt956Kw6Hg02bNvHBBx9wyy23EB0d7a/vdDrp1asXpaWlXHfddezbt49vv/2Wnj17smjRIi655BKSkpK46aab2Lx5MxMnTuTyyy9n3bp1Jx2Q2Ww2AKxWfSSKiIhUF8VdJ05xl4iIiBwvxV4nTrGXiIiIHA/FXSdOcZfI35OOEpEjGDlyJHa7nZUrVxIfHx+wLCsrq1r6k5yczKpVqwgJCQlYlp2dXaH+jBkzGDVqFLfeeuvp6qLf//3f/7Fw4UJuvvlmPvnkk4Av97y8vApf9nv37qVTp058+eWX/i/wtm3b8vjjj9OhQwduvfVWXnvtNX+G9j333MN7773HhAkTuPrqq0+qr6NGjQLg4osvPql2RERE5MQp7jpxirtERETkeCn2OnGKvUREROR4KO46cYq7RP6eNN2byFHYbDZ/9uvBqmseTbvdXmk2b0xMTIWyc845p1qCBrfbzYcffkhkZCQjRoyo0N/IyEjCwsIqrPfqq68GZBhff/31/vaGDRsWMIRk+bLff//9pPr64YcfMmXKFLp3707v3r1Pqi0RERE5OYq7jp/iLhERETlRir2On2IvERERORGKu46f4i6Rvy+NpCRyBAMHDuSxxx7jrLPO4oYbbqBbt2506tSJiIiIgHpvvvkmubm5AWWDBw+mXr16p7w///vf/zjrrLMYOHAg3bp1o0OHDgQHB1da//zzzw94nJuby5tvvlmh3rPPPntK+7l+/XoKCgro2bNnwDCLRxIdHU1KSkpAWVJSEgCNGzeukM1dvmzPnj3+stGjR7N9+/aAen379qVNmzaVbnPSpEkMHTqU1NRUxowZc0z9FBERkaqhuOvEKO4SERGRE6HY68Qo9hIREZHjpbjrxCjuEvn7UpKSyBE88sgjxMbG8t577/Haa6/5s28vv/xy3njjDerXrw/4Aoe0tLSAdbt27XrKA4cRI0ZQv359PvnkE4YNG8awYcMICgpiwIABvPbaa8TFxQXUT0hICHicm5vLc889V6HdUx045OXlAVC7du1jXufQYAz+nLf1SMtcLpe/bPTo0cybNy+gXr169SoNHH766Sf69+9PQkICs2fP9gciIiIiUj0Ud50YxV0iIiJyIhR7nRjFXiIiInK8FHedGMVdIn9fSlL6myguLubrr79m7dq1rFu3joKCAp588kkuu+yyU76tjIwM3nnnHZYsWYLX66Vt27bcd999JCcnB9S76KKLKl3/zjvv5Kabbjrl/aoKJpOJIUOGMGTIELKysvj555/56quv+Pbbb9m0aROrVq3CYrFUyKitKlarlUceeYRHHnmEPXv2MG/ePD755BM+++wz0tPTmTZtWoX+H6xevXoYhlHl/YyKigJg9+7dVb6tg82dO/eY6k2ePJlrrrmGuLg45syZQ4MGDU5ZH5xOJx9//DHTp0+noKCAhg0bcvvtt1fINK/MsR5b4MvM/vrrr0lPT6dWrVr079+fa665JqDOgAEDSE9Pr3RbtWvX5quvvvI/Liws5PPPP2f+/PlkZGQQHR3Nueeey6233lohAAWYNWsWY8eOZcuWLVitVlJTU7n99ts599xzj7ufo0aNYvTo0RW2YbfbmTlz5mGfr1WrVjF06FAAfvzxR//7TkTkdFDsdeop7joxZ3LcBTUr9po/fz4TJkxg69at5OfnExUVRYsWLbj11luPuN+7d+9m0KBBOJ1OPvzwQ5o1a+Zf9s9//pOVK1dWup7FYmHOnDkArFixgvvvv/+w27j99tu55ZZbKl323//+l0mTJtGhQwdefvnlE+qniEhVUtxVNRR7nZgzOfaqSXHXjh07mDBhAmvXrmXTpk04nU6++eabSi8Mvv3226xcuZL09HScTicJCQl0796dgQMHVhhNYefOnXz88cf88ccf5Ofnk5CQQM+ePRk4cCBBQUEA7N27l+uuu+6w+9qnTx8ee+yxSpd99tlnjBw5kvr16/Ppp58eto2CggJuvPFGcnNzef755+nateth64qInGqKvU49xV0n5kyOu6BmxV7H2uaUKVMYPnz4Yfv19NNPc/HFFx9Xm2VlZbzxxhusW7eO/fv34/V6SU5Opnfv3vTr1y9gaj/wxVHvv/8+8+fPp6ysjObNm3PPPffQtGnTCv0pLi7m008/Zc6cOWRlZREZGUnLli3517/+5Y/9pGooSelvIi8vj9GjR5OQkECjRo1YsWJFlWynuLiY+++/n6KiIm666SasVivffvst9913H6NGjSIyMjKg/nnnncell14aUNa4ceMq6VtVi42NpW/fvvTt25fMzExmz57N5s2bK/1QOx2Sk5O5/vrrue6662jatCkzZ86kpKTksMMxnk5NmzYlIiKCJUuWkJOTc8zDMJ4O5UFDTEwMc+bMoVGjRqe0/eHDhzN37lyuvfZa6tSpw5QpU3jssccYMWIErVq1Oux6x3NsTZgwgddee40uXbpw3XXXsWrVKkaMGEFpaSk33nijv959991HSUlJwHbS09MZOXJkQBDj9Xp56KGHSEtLo2/fvtStW5ddu3Yxfvx4lixZwueffx5w0mbUqFF8+umndO3alUsvvRS32822bdvIzMwM2Nax9rPcww8/HPD+NZvNh32+vF4vI0aMIDg4uMI+ioicDoq9qpbirmN3JsddULNir61btxIeHk7//v2JjIwkOzubn376ibvuuov33nvvsPv/9ttvY7FYKl12880306dPn4CykpISXnvttYB4LjU1laeffrrC+tOmTWPJkiWHPYG1fv16pkyZgt1uP+xzdSz9FBGpSoq7qp5ir2N3JsdeNSnuWrNmDePGjSM1NZXU1FQ2bdp02O2vX7+eVq1a0bt3b+x2O5s2beLLL79k2bJlvP322/7zT/v27eOuu+4iLCyMfv36ERERwZo1axg1ahQbNmzwX3CLioqqNO769ddfmTFjxmHjrv379zNmzJhjeh+PGjWKsrKyo9YTEakKir2qluKuY3cmx11Qs2KvY22zdevWlcZJ3377LVu2bAkY6OBY2ywrK2P79u20b9+exMREzGYzq1ev5p133mHdunX8+9//9rfp9Xp5/PHH2bJlCwMHDiQyMpLx48dz//3389FHH1G3bl1/3cLCQv75z3+SkZHBFVdcQe3atcnNzWXVqlW4XC4lKVU1Q/4WysrKjMzMTMMwDGPdunVG586djZ9++umUb+eLL74wOnfubKxdu9Zftn37dqNr167GBx98EFC3c+fOxuuvv37K+3A6zZkzx/B6vQFlTqfTaNOmjQEY27dvP+42f/nlFwMwBg0adFzrlZaWGgsXLqxQnp+fbyQmJhoOh8MoLS319xswnnnmmePu38GGDx9uAMYnn3xy3Os++uijBmDcfPPNhtvtDliWm5trFBQU+B+npqYaqamplbYDGF26dKlQvm3btuN+Hn/66SfD4XAYiYmJxvr16495vWO1Zs0ao3PnzsaXX37pLystLTUGDhxo3H333Udc91iPrdLSUqNPnz7GY489FrD+888/b1x88cVGfn7+EbczevRoo3PnzsaqVav8ZatWrTI6d+5sjBs3LqDu5MmTjc6dOxvz5s3zl61evdq46KKLjG+++eaI2zmefn788cdG586djZycnCO2ebDx48cbffr0MUaMGHHc64qInAqKvU49xV2Ku47XXyH2ysrKMrp27Wq88sorlS7/9ddfje7duxsfffSR0blzZ2PdunVHbM8wDGPatGlG586djenTpx+17sCBA43rr7++0mVer9e4++67jeHDhxvXXntthX082X6KiJwqiruqhmIvxV7Ho6bFXXl5eUZRUZFhGIbx5ZdfGp07dzb27NlzzPvz1VdfGZ07dzZWr17tL/vss8+Mzp07G1u3bg2oO2zYMKNz585HjfseeOAB49JLL/W/Vw/1zDPPGPfff79x3333Gbfccsth29myZYvRtWtX/zm8OXPmHPN+iYicCoq9Tj3FXYq7jldNi72O53g9VGlpqXHJJZcYDz744An183DeeOMNo3Pnzv7PK8MwjFmzZlWIn3JycozLLrvMeO655wLWf+2114zLLrvM2L1791G3JaeeRlL6m7Db7cTGxh5T3cWLFzNmzBg2btyIyWSidevW/OMf//DPeXokc+fOpVmzZjRv3txflpqayjnnnMOcOXO48847K6xTfteHw+E4xr2pOfr27UtERATt27cnNTUVl8vFjBkzWLt2Lf379yc1NfWY2lmwYAEjR44EfEPXlZcNHjwYgLi4OF599dUjtlFSUkLHjh1p0qQJ5557LikpKRQWFjJp0iTS09N55JFHTslzPHLkSBYsWADAH3/84S8rH96wU6dO3H777Udt5/nnn2fx4sV8/vnnLF68mMsuuwyHw8HWrVuZOnUqCxYsqHT+1qqyfv16+vXrR1lZGV27dg2Y6qxcvXr1/K/JiZg3bx4Wi4Urr7zSX+ZwOLj88sv58MMP2bdvX6VTp8GxH1vLly8nLy+Pvn37Bqzfr18/ZsyYwS+//BIwVOKhZs6cSVJSEmeffba/rLi4GICYmJiAuuWfKQe/r7777jtiYmLo378/hmFQUlJSYWjsk+lnUVERISEhFYYPPVh+fj4jR45kyJAh5OTkHLaeiEhVUux16inuUtx1vP4KsVd0dDRBQUEUFhZWWOZ2u3nrrbfo378/tWvXPub9njFjBsHBwXTq1OmI9dauXcvu3bu59dZbK10+bdo0tm3bxrBhw/jHP/5x2HZOtJ8iIqeK4q6qodhLsdfxqGlxV0RExAnvC0BiYiJAQIxWVFQEUGGUhtjYWMxmc4WpRA6WmZnJihUruOSSSyp9r65cuZJ58+YxcuRIRowYccS+vfXWW1x00UVHHCFBRKQqKfY69RR3Ke46XjUt9jqR47XcwoULKS4uplevXifUz8M5OJ4r/8yaN28eMTExAVNERkVF0a1bN2bMmIHT6cRut1NQUMBPP/3ENddcQ3JyMi6XC8MwjmmkcTk1lKR0hpk2bRovvvgi7dq146677qKsrIzx48dz77338vHHH1c6b3c5r9fL1q1b6d27d4VlzZs3Z8mSJRQXFwckLEydOpXx48djGAapqanccsstFT6EarLhw4czdepUfvvtNyZOnEhoaCgNGzbkvffe47bbbjvmdjZv3lxhnvEtW7awZcsWwPehe7TAITQ0lJdffplZs2bx888/s3//fqKjo2natCnDhw9n4MCBx7+DlViwYEGFvi5cuJCFCxf6Hx9L4BAUFMSMGTN45513GDNmDB999BEWi4WUlBTuvvtu6tWrd0r6e6zS09P9AezXX39daZ0uXbqcVOCwadMm6tSpQ2hoaEB5+Rfs5s2bKw0ajufYKh++ulmzZgH1mjZtitlsZuPGjYe9ULZx40bS0tK4+eabK6wbHBzMyJEjCQ8PJyUlhd27d/Pee+/RrFmzgOEXly1bxllnncXYsWP5/PPPycvLIyYmhptvvjlgjtoT6ed1113nH0a0U6dO3HvvvRUSp8AXyMbExHDllVdWeK+KiNQ0ir2OneIuH8Vdx66mxl4FBQV4PB6ysrL47rvvKCoqCoinyn333XcUFBRwyy23MH/+/GPa59zcXJYuXUr37t2POvT6jBkzACr9DCguLub999/npptuOurJ5xPpp4hIdVDcdXwUe/ko9jo2NTXuOlZut5vCwkLcbjdbt25l5MiRhISEBFwUa9u2LV9++SUvv/wyQ4YMISIigtWrVzNhwgSuueaaI8Zes2fPxuv1VvoZ4PF4GDFiBJdffjkNGzY8Yj/nzJnD6tWr+fzzz0lPTz+hfRUROV0Uex07xV0+iruOXU2KvU7keD3YjBkzcDgcdOnS5YT6Wc7lclFUVERZWRkbNmzg66+/JjExMeCGuo0bN9K4cWP/dL4Htzlx4kR27txJw4YN+eOPP3A6ndSpU4f/+7//Y8GCBXi9Xlq2bMmDDz74l5xK8q9GSUpnkOLiYkaMGEGfPn149NFH/eWXXnopN910E2PGjAkoP1R+fj5Op7PSk9jlZZmZmaSkpABw1lln0a1bN5KSksjKyuL777/nP//5D0VFRRWyMmuqf/zjH0e8q/hYDR48+KS/kGw2G4899hiPPfbYUet27doVwzBOaDujR49m9OjRJ7TuoRwOBw8//DAPP/zwEett3779sMsOtx/16tU7rn08mefkWGVlZR31+KjM8RxbWVlZWCyWCnd12Ww2IiIiyMrKOmz/DnehKioqimeffZb//ve/PPjgg/7ydu3a8fzzz/vvFCsoKCAvL4/Vq1ezfPlyBg8eTEJCAlOmTGHEiBFYrVauuuoq/3NxrP0MDw/n6quvpmXLlthsNlatWsUPP/zAunXr+OijjwKCsC1btjBx4kRefvllLBbLYfdVRKQmUOx1fBR3nZwzLe6Cmht7/eMf/2DHjh0ABAcHc8stt3D55ZdX6Punn37KPffcU+GE05HMmjULj8dz1BOxHo+HOXPm0Lx5c+rUqVNh+ejRo3E4HAwYMOCI7ZxoP0VETjfFXcdPsdfJOdNir5oadx2rDRs2BLzfU1JSGD58eMCITBdccAG33XYbY8aMCbiAevPNN3PHHXccsf0ZM2YQGxvLOeecU2HZhAkT2LdvH2+88cYR2ygrK+N///sfAwYMICkpSUlKIlKjKfY6Poq7Ts6ZFndBzYq9jvd4PbQ/v/32G506dQpIODqRNufPn89zzz3nf9ysWTMef/zxgNEus7Ozad269WHbzMrKomHDhuzatQuADz/8kOTkZJ566imKiooYPXo0DzzwAJ9++ilxcXEV2pFTR0lKZ5ClS5dSWFhIjx49yM3N9ZebzWaaN2/O8uXLj7h+eWaozWarsKx8+LPyOgD/+9//Aur07t2b22+/nQ8//NA/HJ/I30lZWdkxHx+HrgfHdmyVlZUddnhpu91+2G14vV5mz55N48aNK80sj4yMpHHjxlx99dXUq1ePzZs389VXX/HSSy/x/PPPA39OC5eXl8czzzxDjx49AF9QNnjwYD777DN/ktLx9PPaa68NWN61a1eaN2/Of/7zH3744Qduuukm/7IRI0ZwwQUX0K5du0rbFhGpSRR7iVStmhp7PfHEExQXF7Nnzx5++uknysrK8Hq9AXdxvf/++yQnJ9OnT58j7WIFM2fOJCoqivPOO++I9ZYtW0Z2dnZAHFVu586djB07ln//+99HHcb6RPspInK6Ke4SqVo1Ne46VvXq1eP111+npKSE1atXs2zZMkpKSirUS0pKonXr1nTp0oWIiAh++eUXxowZQ0xMTMAI4gfbuXMnGzZsYMCAARXu2s/Ly2PUqFHccsstREVFHbGPX3zxBW63u9L4TUSkplHsJVK1alLsdbzH68Hmzp2Ly+WqcLPdibTZtm1bXn/9dQoLC1m2bBmbN2+mtLS0QruVnes6tM2D48A33njDn0DVuHFj/vGPf/DDDz8cNUldTo6SlM4g5VmBDzzwQKXLy++MLSsrC5iPG3wZhuVf8i6Xq8K6TqcTOPI8sDabjauvvprXXnuNDRs2aF5t+dtxOBwndHwcz7HlcDhwu92VtuN0Og+7jZUrV5KRkVEhIQhgz549PPDAAzz11FN07doVgM6dO5OYmMjw4cNZvHgx7du397dttVr99cD3H4/u3bszatQo/zy4J9rPcr169eLdd99l2bJl/pMzs2bNYvXq1ZriTUT+MhR7iVStmhp7nXXWWf6/e/To4Z9q99577wVgzZo1TJ8+nTfeeKPChawj2bNnD2vWrOHqq68+7EmkcjNmzMBisdC9e/cKy9566y3OOuusgHiuMifaTxGR6qC4S6Rq1dS461iFhob6k7w7d+7MjBkzeOqppxg5ciSNGjUCfOedXnnlFb744gvi4+MB33QthmHwwQcf0LNnTyIjIyu0faQpdkeOHEl4ePhhE5zK7d27l6+++ooHH3zwsFOliIjUJIq9RKpWTYq9TuZ4nTFjBhEREbRv3/6E+1kuJiaGmJgYwDfYweeff85DDz3El19+6R8pyeFw+Nc/UpvlSUsdO3YMiL1atmxJUlISq1evrnR/5NRRktIZxOv1AvD000/7D+KDlU+dNHv2bIYPHx6wbP78+URERGC32ysdWre87GhDn5X/By8/P//4d0CkhouNjSUjI6NC+dGOj+M5tmJjY/F4POTk5AQMwehyucjPz690aETwBQJms5mePXtWWDZlyhScTicXXnhhQHmnTp0A+OOPP2jfvr2/n2FhYRWmWivvS0FBAQkJCSfcz4PFx8cHfFa89957dO3aFavVyt69ewH8/8HZv38/brdbwy+KSI2i2EukatXk2KtceHg455xzDjNmzPAnKb333nu0atWKpKQkf0xTfudpVlaWP+n7UEe6AHawsrIyfv75Z84999wKnz3Lli3j119/ZdiwYf5tg296uLKyMvbu3UtERAShoaEn3E8RkeqguEukav0V4q7jcdFFF/HCCy8wa9Ysf5LSDz/8QOPGjf3HcrmOHTsyZcoUNm3aVOloljNmzCAlJYWmTZsGlO/cuZOJEydy3333BUzJ4nQ6cbvd7N27l9DQUCIiIhg1ahRxcXG0adPGH3dlZ2cDvvhr7969JCQkKHFcRGoMxV4iVasmxV4nerzu27ePVatWccUVV1S42e5UfAZ07dqVjz76iAULFvhneYmJiTlim+X7VN72oVPdlZcdmlwpp56SlM4gtWvXBjjq9ADnn38+r7/+eoVys9lMgwYNWL9+fYVla9euJTk5+ah3euzZs8ffB5G/m0aNGrFixQqKior8dwqA7/goX16Z4zm2GjduDMD69evp0KGDv9769evxer3+5QdzOp3MmzePNm3aVPqlnp2djWEY/v9YlCvPoPZ4PP5+Nm7cmPXr1+NyuQKGYSw/2VJ+bJ9IPw9mGAbp6ekB9fbv38/MmTOZOXNmhfq33347jRo1YtSoUUdsV0TkdFLsJVK1amrsdaiysjKKior8j/fv3096ejrXXXddhbpPPvkkYWFh/PTTTxWWzZw5k9q1a9OyZcsjbm/BggUUFxdXmsy0f/9+wHci+VAZGRlcd911DB06lAEDBpxwP0VEqoPiLpGq9VeJu46Vy+XC6/UGxGg5OTmEh4dXqHvo+bFD92H37t3cdtttFZZlZmbi9XoZMWIEI0aMqLD8uuuuo3///vzzn/9k37597N69m4EDB1aoV/6ZNXny5Er7JyJSHRR7iVStmhR7nejxOnPmTAzDqPT81Kn4DCifuu3geK5x48asWrUKr9cbkNy9bt06goKCqFu3LoA/ufzgRPJymZmZpKSkHHHbcvKUpHQGadeuHaGhoYwZM4ZzzjmnQtZibm4uUVFRxMXFHTY7sUuXLnzwwQesX7+eZs2aAbBjxw5WrFgRcPK6vK2DFRcXM3bsWCIjIyvcWSLyd9C1a1e+/vprfvzxR66//nrAlyD0008/0aJFC/+d5vv27aO0tJTU1FT/usd6bJ1zzjlEREQwYcKEgKBhwoQJBAUFBZSVW7x4MYWFhYe9675u3boYhsGcOXO47LLL/OXlyUAHnwTq1q0ba9asYerUqVxxxRWALxCYMWMG9erV8392HE8/K/u8GD9+PLm5uVxwwQX+shdeeKFC32fNmsXs2bP517/+Ra1atSrdPxGR6qLYS6Rq1bTY69A7z8A3dceyZcsCjsFHHnnEfyKl3PLlyxk3bhz33HNPQD/Lbdy4kbS0NAYNGnTU52XmzJkEBQXRuXPnCsvOOeecSmOqV155hcTERG6++WYaNGhwwv0UEakuirtEqlZNi7uOVUFBAcHBwRU+EyZNmgQQcLzWrVuXJUuWsHPnTv8FLPCdezKbzTRs2LBC++UjXVY2cnn9+vUrjbtGjhxJcXEx//znP0lOTgZ8N9/l5eUF1Nu6dSsff/wx119/PWeddRbBwcHHutsiIlVOsZdI1appsdextnmwmTNnkpCQcNjpGI/nMyAyMhKTyRSwfmXxXJcuXZg7dy7z58+na9eu/vXnzJnDhRde6J/mLSUlhUaNGrFgwYKAz5jffvuN/fv3H3WqXjl5SlL6Gxk3bhyFhYX+IcsWLlzov1P2mmuuISwsjIceeogXXniB2267jR49ehAVFcW+fftYvHgxZ511Fg8++OARt9GvXz8mTZrE448/zsCBA7FYLHz77bdER0cH3Onx/fffs2DBAi688EISEhLIysrip59+Yt++ffzrX/8KGIFF5O+iRYsWdOvWjQ8//JDc3Fxq167N1KlTSU9P5/HHH/fXe+GFF1i5ciXz58/3lx3rseVwOLjtttt44403+Pe//027du34/fffmT59OnfccQcREREV+jVjxgzsdjtdunSptN+XXXYZX3/9Na+++iobN26kfv36bNy4kcmTJ1O/fn0uuugif92rrrqKyZMn88Ybb7Bz504SEhKYNm0a+/btCxi29Xj6ee2119K9e3caNGiA3W7njz/+YNasWTRu3Jgrr7zSX6+yC22bNm0C4IILLtAdEyJy2in2EqleNS32Gjx4MOeeey6NGjUiPDycXbt2MXnyZNxuN3fddZe/Xrt27SrsS/kw0m3atPGfmDnYsU71lp+fz6+//kqXLl0qveMsISGh0ina3n77baKjowPirRPpp4hIVVHcJVK9alrcVVhYyLhx4wBYvXo14Ds2w8LCCAsL819YWrlyJSNGjKBr167UqVMHl8vFqlWrmD9/Ps2aNePiiy/2tzlw4EB+/fVXhg4dytVXX01ERASLFi3i119/pU+fPhUusns8HubMmUPLli39I4ocLCoqqtJzWd999x0QeJ6rsot3YWFhADRv3rzSdkREqpJiL5HqVdNir2Nts9zWrVvZsmULN954Y4XkouNtc/r06fz444906tSJ5ORkiouL+e2331i6dCkXXngh5557rr9u165dGTt2LMOHD2f79u1ERkYyfvx4vF4vQ4YMCdj+0KFDefjhhxk6dChXXnklhYWFfPvtt9StW9c/fZxUHSUp/Y188803pKen+x/Pnz/f/6F08cUXExYWRq9evYiLi+OLL77g66+/xul0UqtWLVq1akXv3r2Puo2QkBBGjBjBO++8w2effYbX66Vt27YMHTo0IEHg7LPPZvXq1UyaNIn8/HyCgoJo3rw5jz/+eMCHhcjfzVNPPeVP3CksLKRBgwa8/PLLtGnT5ojrHeuxBb4vbqvVyjfffMPChQuJj49n6NChXHvttRXaLSoq4pdffqF9+/b+kxuHioyM5KOPPuLjjz9m0aJF/Pjjj0RERNC7d2/uuOOOgCDf4XDw5ptv8t577/HTTz9RWlpKo0aNePnllytcyDrWfvbq1YvVq1czb948nE4nCQkJXH/99dxyyy0EBQUd8XkTEalOir1Eql9Nir2uuuoqFi9ezK+//kpxcTHR0dGcf/753HTTTZXeeX+svF4vs2fPpkmTJkcdbnrOnDm43e5K7+YXEfkrU9wlUv1qUtxVUFDAxx9/HFD2zTffAJCYmOhPUmrQoAFt27ZlwYIFZGVlYRgGtWvXZtCgQVx//fUB57zatGnDu+++yyeffMIPP/xAfn4+SUlJ3HHHHf4RDA62bNkysrOzufnmm4/1KRQR+ctQ7CVS/WpS7HU8bcKRR5s83jZbtWrFmjVrmDVrFjk5OVgsFurWretPLD+YxWLhv//9L//73/8YN24cZWVlNGvWjCeffLLCObVzzjmHV155hY8//pgPP/zQPyr53XfffdSp5uTkmQzDMKq7EyIiIiIiIiIiIiIiIiIiIiIi8vdlru4OiIiIiIiIiIiIiIiIiIiIiIjI35uSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlEREREREREREREpIYwmUx07dq1urshIiIif2Pbt2/HZDIxePDggPLBgwdjMpnYvn37UeueKvXq1aNevXoBZaNHj8ZkMjF69Oij1q3JDrcfImcyJSmJiIiIiIiIiIjIGcvj8fDRRx/RpUsXYmJisNlsxMfH06pVK26//XZ+/PHH6u7iEc2dOxeTycSzzz5b3V05rbp27YrJZGLu3LkB5X+FC1d/hT6eLkVFRXzxxRfccMMNNGvWjNDQUMLDwznvvPN47bXXcDqdh1137dq1DBgwgPj4eIKCgmjatCnPPPMMJSUlp3EPREREAplMJkwmU3V3Q0SkxrJWdwdEREREREREREREqoPH46FPnz5MnTqVqKgoLr/8curUqYPT6WTNmjV8+eWXrF+/niuvvLK6uypnkHXr1hESElLd3Tgtfv75Z2666SZiYmLo1q0bffv2JScnhx9//JFHHnmE77//nlmzZhEUFBSw3q+//kr37t1xuVz079+funXrMnv2bJ5//nlmzZrFrFmzcDgc1bRXIiIif13Dhw/niSeeoHbt2tXaj379+tG+fXuSkpKqtR8icuopSUlERERERERERETOSF999RVTp06ldevWzJs3j8jIyIDlxcXF/Prrr9XUOzlTNWvWrLq7cNokJiYyZswYrr32Wux2u7/81VdfpWvXrixatIh3332Xhx9+2L/M4/Fw6623UlxczIQJE/xJhF6vlwEDBjBu3DjeeOMNnnjiidO+PyIiIn91SUlJNSIxKDIyskJsLiJ/D5ruTURERERERERERM5IixYtAmDw4MGVXgQJCQmhW7duAWWjR4/GZDIxevRoJk+ezIUXXkhoaCjR0dH079+fTZs2Vbqt4uJihg8fTps2bQgNDSUsLIwOHTrw1VdfHbZ/06dP54orriA+Ph6Hw0HdunW56qqrmDlzpr/f5f177rnn/NOLHDwN2sH9nTp1Kl27diUyMtI/Dcn27dsxmUwMHjy40j6UT6t2sIOnmFu6dCmXXnopkZGRREdHc80117Bz504Atm7dysCBA6lVqxbBwcF069aN33///bD7ezLK+5SWlkZaWlrAc3Hovq1fv57BgwdTt25d7HY7CQkJ3HDDDWzYsKFCu4MHD8ZkMrF161befvttWrVqRXBwMF27dgXA6XTyzjvv0Lt3b1JTU3E4HMTExNCzZ0+mTJlyQn00mUz+9g+Wl5fHk08+SdOmTQkKCiI6OppLLrnE/36obFvPPvssK1eu5PLLLycqKoqQkBC6dOnif+9XtzZt2nDjjTcGJCgBhIeH+xOTDp3Sb968eaxbt46LLrooYJQzs9nMf//7XwDef/99DMOo2s6LiIicpLKyMl566SXOPvtsQkJCiIiIoHPnznz77beV1jcMgxEjRtCiRQuCgoKoXbs2Q4cOJS8v75RNJ1se+2zfvv2odb1eL/fffz8mk4mrr746YMrVadOm0bt3b+Li4nA4HDRs2JBHH32U3NzcY+rHwTFsZYqKinj00UdJSUnB4XDQqFEjXn755cN+/3/77bdcdNFFREZGEhwczNlnn83w4cMpKyurtP6yZcu45ppr/HF4amoq99xzD3v37q20/ubNm7n22muJjo4mNDSUCy+8kMmTJx/TvoqcaTSSkoiIiIiIiIiIiJyRYmNjAdi4ceNxr/v9998zZcoU+vXrR9euXVm5ciXjxo1jzpw5LFq0iKZNm/rr5ubm0r17d1asWME555zDkCFD8Hq9TJs2jRtuuIE1a9YwbNiwgPafeeYZnn/+ecLCwujbty9169Zlz549LFq0iDFjxtCzZ0/69u0LwKeffkqXLl0CElsOvUg1duxYpk6dymWXXcbdd99NWlrace/zoZYsWcLLL79Mly5duOOOO/jjjz/4/vvvWb16NRMmTKBTp040a9aMW265hbS0NL7//nt69erF1q1bCQsLO+ntH6xevXo888wzvPnmmwA88MAD/mVt2rTx/z116lSuvvpqXC4XV1xxBY0aNWLXrl18//33TJ48mTlz5nDOOedUaP/+++/n559/5vLLL6d3795YLBYAsrOzuf/++7nwwgvp1asXtWrVYu/evUycOJHevXvz0Ucfcfvttx9XHyuTm5tLx44dWbt2Leeffz4PPPAAmZmZfPvtt1x88cW899573HXXXRXWW7p0Kf/973/p0KEDt99+Ozt27GDcuHH06NGDlStXBrxPaxqbzQaA1Rp4GWP27NkAXHrppRXWadCgAU2aNGHjxo1s3bqVhg0bVn1HRUREToDT6eSSSy5h3rx5NGvWjHvvvZfi4mLGjh3Lddddx8qVK3nxxRcD1rn33nt57733SE5O5s4778Rut/Pjjz/y22+/4XK5/N+dp0NpaSk33ngj33//Pffeey9vvfUWZrNvfJTnnnuOZ599lpiYGPr06UN8fDyrVq3i1Vdf5aeffuKXX34hIiLihLftcrm45JJL2LNnD5dddhlWq5Xx48fzxBNPUFpayjPPPBNQ/6mnnmL48OHExcVxww03EBYWxpQpU3jqqaeYNm0a06dPD0iYnjRpEtdccw2GYdC/f39SU1NZtmwZ7733HhMmTGDBggXUr1/fX3/Tpk106NCBrKwsLrvsMtq0acPmzZvp27cvl1122Qnvp8jfliEiIiIiIiIiIiJyBlq+fLlhs9kMk8lk3HTTTca4ceOM7du3H3GdTz75xAAMwJg4cWLAsjfffNMAjO7duweUDxo0yACMl19+OaC8pKTEuOSSSwyTyWSsWLHCXz5t2jQDMOrXr2/s2rWrQh927tzp/3vOnDkGYDzzzDNH7K/JZDKmTJlSYfm2bdsMwBg0aFCl63fp0sU49DRy+TYBY8yYMQHLhgwZYgBGdHS0MWzYsIBlzz//vAEYb775ZqXbOh7l/ZozZ05AeWpqqpGamlrpOtnZ2UZUVJQRGxtrrFmzJmDZH3/8YYSGhhpt27YNKC9/7ZKTk42tW7dWaLO0tDTg9SiXm5trtGzZ0oiOjjaKi4uPuY+GYRiA0aVLl4CyO++80wCMO++80/B6vf7yjRs3GhEREYbdbje2bdvmLz/4Nfrkk08C2nr//fcNwPjHP/5x2D4c6o033jCeeeaZY/754Ycfjrntw7n00ksNwHj//fcDyvv3728AxtixYytd7/LLLzcA46effjrpPohI1SgqKjI+/vhj4+GHHzZ69+5tdO7c+aSO2fvuu8/o3LlzpT9du3Y9hT0XObry79+jefHFFw3AuOyyywyXy+Uv37dvn5GammoAxsKFC/3l8+fPNwCjSZMmRk5Ojr+8rKzM6Ny5swEcMb441OFiwPLY5+C44tC6WVlZRseOHQ2TyWS89NJLAevPnj3bAIwOHToE9NMw/oxLH3jggYDyymKj8rqHxjHlz81ll10WEGPt27fPiIyMNCIjIw2n0+kvX7RokQEYdevWNfbu3esvd7lcRp8+fQzAeOGFF/zlBQUFRkxMjGE2m4358+cHbPull14yAKNXr14B5b169ao0xh0/fvxh4zGRM5mmexMREREREREREZEzUtu2bRkzZgwJCQmMGTOGa665hnr16hEbG0u/fv2YOHHiYdft3r07ffr0CSgbOnQoDRs2ZPbs2f6RirKyshgzZgznnXcejz32WED9oKAg/7QUX375pb/87bffBuC1116jdu3aFbZdp06d497Xq666qtKRZ05Gp06duPHGGwPKBg0aBEBkZCRPPPFEwLJbbrkFgJUrV57Sfhyrzz77jNzcXJ577jlatGgRsOyss87ijjvuYMWKFaxdu7bCuo899ljAHfPlHA5Hpa9HZGQkQ4YMIScnhyVLlpxUv51OJ2PGjCEsLIzhw4cHTL/XuHFj/vnPf+J0Ovnss88qrNuxY8cK090NGTIEq9XKb7/9dsx9ePPNN3nuueeO+Wf8+PEnursAvPPOO0ydOpU2bdowZMiQgGV5eXkAlU7ReHD5sU4nIyKnX15eHqNHjyYtLY1GjRqddHs333wzTz/9dMBP+ZSR559//km3L1IVRo0ahclk4vXXXw8YNTA+Pp7/+7//A2DkyJH+8k8//RSAf/3rX0RFRfnL7XY7w4cPPz2dBtLS0ujYsSO//fYbn3/+OY8//njA8rfeeguAjz76KKCf4JtKrk2bNnzxxRcn3Y+33nqL4OBg/+P4+Hiuuuoq8vLyAqbwHTVqFABPP/00iYmJ/nKr1cprr72G2WwOeJ4nTJhAdnY21113HZ07dw7Y5sMPP0y9evWYMWMGO3bsAGDXrl3MmDGD+vXrM3To0ID6V111FV26dDnpfRX5u9F0byIiIiIiIiIiInLGGjBgAP369WPOnDksWLCAFStWsGDBAsaPH8/48eO55ZZbGD16dEBiCFDpBQeLxUKnTp3YsmULK1asIDU1lSVLluDxeDCZTDz77LMV1nG5XACsW7fOX7Z48WJMJtMpTSpq167dKWur3HnnnVehLDk5GfBNX1Y+JVq58oSrXbt2nfK+HItffvkFgN9//73S16J82r9169ZVSGI60vO3Zs0aXnnlFebPn8/evXspLS0NWL579+6T6veGDRsoLi6mY8eOxMTEVFjevXt3hg0bxooVKyosq+w1stlsJCQkkJOTc8x92L59+3H1+WR8//33PPDAAyQmJjJu3LjTOnWNiJwesbGx/PDDD8TGxrJ+/XruvPPOk2qvskSk6dOnA9CrV6+TalukKhQUFLB582Zq165Ns2bNKizv3r07QMB3e/nfnTp1qlC/ffv2FaZH3b59O6NHj65Qt7IY6Fht2LCBDh06UFRUxJQpU+jRo0eFOr/88gs2m43vvvuO7777rsJyp9NJRkYGWVlZ/qmXj1dkZGSlCY5169YFCIhxli9fDvz5nB6sSZMm1KlTh23btpGXl0dkZOQR61utVi666CK2b9/OihUrSElJCXhdDo19Abp27cq8efNOYC9F/r6UpCQiIiIiIiIiIiJnNJvNxsUXX8zFF18MgMfjYdy4cQwZMoTPPvuMfv360bdv34B1EhISKm2r/A7t8tFesrKyAFiyZMkRR9QpLCz0/52bm0t0dHTA3eEn6+A7x0+VykayKb9AdqRl5YlZp1v5a/HRRx8dsd7Br0W5wz1/ixcvpnv37rjdbnr06MGVV15JREQEZrOZlStXMmHCBMrKyk6q3+XvpaSkpEqXl5dXNnLQoSMYlLNarXg8npPqV1UYP348AwcOJD4+njlz5tCgQYMKdcrfW+XPy6HKyw+37yJS/ex2+zEnJyxevJgxY8awceNGTCYTrVu35h//+Eelo9sdbMaMGQQHB1ea0CFS3U7ku718ncpiUIvFUuGY2r59O88991yFuieTpLRx40ays7Np06YN55xzTqV1srKycLvdlW77YIWFhSecpHSk+AYIiHGO5bnesWMHubm5REZGHvdrc6TXBaomBhf5q1OSkoiIiIiIiIiIiMhBLBYLAwYM4I8//mDYsGHMnj27QpLSvn37Kl03PT0d+DORovz3gw8+yOuvv35M24+KiiIrK4uSkpJTlqh06EhQ5cxmMwBut7vS5X+nKbPKX4vff/+dVq1aHde6h3v+hg0bRklJCXPmzKFr164By4YPH86ECRNOqK8HK+93+XvrUHv37g2oVxXefPPN43ovtGnTpsIxczTfffcdN9xwA4mJicyePZvGjRtXWq9p06bAnyNfHWrTpk2Ab3QEEflrmzZtGi+++CLt2rXjrrvuoqysjPHjx3Pvvffy8ccfHzaJIDc3l6VLl9K9e/dTmvArcqqcyHd7REQE4ItBD03i9Xg8ZGVlBUwT3LVrVwzDOKX9vuKKK2jatClPPfUUPXr0YMaMGRUSjSIjI/F6vWRnZ5/SbZ+og5/rhg0bVlh+6HN9vK9N+e+j/d9ARP6kJCURERERERERERGRSoSHhwNUeoGnsmkbPB4PCxYsAKBt27aAb5ows9nMzz//fMzbbd++PZMmTWLq1Kn069fviHXLp5U40VFxoqOjAdi5c2eFZfn5+YdNBKmpLBYLTqez0mXt27dn3Lhx/Pzzz8edpHQ4mzdvJiYmpkKCElT+HjlaHyvTtGlTQkJC+P3338nNza0wesCcOXMADjuiwanw5ptvkpaWdsz1Bw0adFxJSl988QWDBg2idu3ahx1BqVz37t154YUXmDp1Kk8++WTAsq1bt7Jx40ZSU1OP2IaI1HzFxcWMGDGCPn368Oijj/rLL730Um666SbGjBkTUH6wWbNm4fF4NNWb1Fjh4eE0bNiQrVu3smnTpgqJuZV9t7dt29Y/LfGh33GLFy8+bML5qfbkk08SHBzMgw8+SNeuXZk5c2bAKELt27dn8uTJrFmzhpYtW56WPh1J27ZtWb58OXPnzq2QpLR582Z27dpF/fr1/fFVeQw/d+5cbrvttoD6brfbH9OXvzbl9RcsWIDH46kw5dvcuXNP9S6J/OWZq7sDIiIiIiIiIiIiItXhq6++YsaMGXi93grL0tPT/dOCXXTRRRWWz549m0mTJgWUvfPOO2zZsoVu3bqRmpoKQHx8PDfeeCNLly7lP//5T6XJRFu2bGHbtm3+x/fddx8ADz/8MLt3765Q/+Cy8rvXd+zYcdT9rUx4eDjNmjVj4cKFrF271l/u8Xh46KGHKCkpOaF2j8f27dsxmUzUq1fvpNuKjY0lIyOj0n7feuutREVF8dxzz/Hbb79VWO71eo/7QlK9evXIzs5m1apVAeUff/wx06ZNO+4+VsZut3PjjTdSUFDA//3f/wUs27JlC2+99RY2m42bb775uPp+PLZv345hGMf8M3r06GNu+9NPP+WWW24hJSWF+fPnHzW5qEuXLjRv3pz58+fz448/+su9Xi+PP/44AHffffdhR78Skb+GpUuXUlhYSI8ePcjNzfX/mM1mmjdvzvLlyw+77syZM4mKiuK88847jT0WOT5DhgzBMAweffTRgPgwMzOT//znP/465W655RYAXnjhhYApT51OJ0899dRp6rXPAw88wHvvvceaNWvo0qULe/bs8S978MEHAbjjjjsCyssVFRWxePHi09bX8udw2LBhZGRk+Ms9Hg+PPPIIXq83IBmpb9++xMTE8NVXX1Xo55tvvsm2bdvo2bMnKSkpANSpU4devXqxbds23nnnnYD6EyZMOGzSusiZTCMpiYiIiIiIiIiIyBnp119/ZcSIESQmJtKpUyfq168PwLZt25g8eTIlJSVcddVV9O/fv8K6V1xxBf369aNfv340atSIlStXMmXKFGJiYvjf//4XUPedd95h06ZN/Pvf/+bzzz+nU6dOJCQksGfPHtatW8eSJUv46quv/Nu/+OKLefrppxk2bBjNmzenb9++1K1bl3379rFgwQLat2/vTwJp2rQptWvX5uuvv8Zms5GamorJZOLmm2/2J0odzaOPPsptt91Gx44dufbaawkKCmLOnDm4XC5at27N77//fhLP8tGVJ4lZrSd/urpHjx4sWbKESy+9lIsuugiHw0Hr1q254ooriI2NZezYsfTr14/27dvTo0cPWrZsiclkYufOnfzyyy9kZWVRWlp6zNt74IEHmDZtGp06dWLAgAFERkaydOlSFixYQP/+/Rk7duxx9fFwXnrpJX7++WfeeecdlixZQrdu3cjMzOTbb7+loKCAd955x//++SuZM2cOQ4YMwev10q1bNz755JMKdaKionjggQf8jy0WC5988gndu3enf//+9O/fn5SUFGbNmsXSpUvp2LGj/wKpiPx17dq1CyDg+D9YaGhopeV79uxhzZo1XH311afke0XkRA0ePPiwy/73v//xyCOPMGXKFCZMmEDr1q3p3bs3xcXFfPfdd+zfv5/HHnuMTp06+dfp0qULd955Jx9++CEtW7bkmmuuwWazMXHiRCIjI0lOTvZP43s63H333QQFBXHbbbdx0UUXMXv2bFJSUujRowcvvfQSTz75JI0bN6Z3797Ur1+fwsJC0tLSmDdvHp06dWLq1KmnpZ8XXnghjz32GP/9738566yz6N+/P6GhoUyZMoXVq1fTqVOngFHZwsLCGDVqFNdeey1dunTh2muvJSUlhWXLljF9+nQSExP54IMPArbx7rvv0qFDBx544AGmT59O69at2bx5Mz/88ANXXHEFEydOPC37KvJXoW9nEREREREREREROSM9/PDDNG7cmJkzZ7Jq1SqmTZtGaWkpsbGxdO3alRtuuIEbbrih0hFZrr76au68805eeOEFJk+ejM1m4+qrr2b48OE0adIkoG5ERATz5s3jww8/5Msvv2TcuHGUlpaSkJBA48aNeeONNypMSfOf//yHDh068NZbbzFp0iSKioqIj4/nvPPO899JD76EjR9++IEnnniC7777joKCAgzDoFOnTsecpFR+J//rr7/Op59+SnR0NFdddRUvvvgi11xzzQk8s8fnjz/+AGDgwIEn3dbTTz9Nbm4uEydOZOHChXg8HgYNGuRPAOrRowerVq3i1VdfZdq0afz888/Y7XaSk5Pp3r37ce/vpZdeysSJExk2bBjffPMNFouFdu3aMWfOHLZu3VppktLR+liZmJgYfvnlF4YPH87333/P66+/TnBwMO3atePRRx/l4osvPr4nqoZIS0vzJ6mNGjWq0jqpqakVkhQuuOAClixZwjPPPMP06dMpKCggNTWVf//73zzxxBM4HI6q7rqIVLHyz4ann36amJiYCssPnVKp3IwZMwA01ZtUu08//fSwy958801CQkKYMWMGr7/+Ol9++SVvv/02VquV1q1b8+abb3L99ddXWO+9996jWbNmfPDBB7z//vvExsbSr18/XnzxRerUqVNhOrOqNnjwYBwOB7fccos/UalBgwY8/vjjdOzYkbfeeosFCxYwYcIEIiMjqV27NnfeeSc33HDDae3nyy+/TNu2bXnnnXf47LPPcLlcNGzYkGHDhvHwww9jt9sD6l911VUsXLiQF198kWnTppGXl0diYiJ33303//d//0dycnJA/caNG7N48WKeeOIJZs6cydy5c2nVqhXjx48nIyNDSUoihzAZlU2oLiIiIiIiIiIiIiIVjB49mltvvZVPPvnkiHfIy7F76KGH+OCDD0hLSyMuLq66uyMiIqfR+vXrufPOO3nyySe57LLL/OVz5szhmWee4dVXX6Vdu3bH3N7NN9+M2+3mq6++qoruitRImzZtokmTJgwcOFDvfRGp8U7fmG8iIiIiIiIiIiIiIoeYN28ed9xxhxKURETEr127doSGhjJmzBjcbneF5bm5uRXKNm7cSFpaGj179jwNPRQ5/dLT0/2jjJUrLi72jzjYr1+/auiViMjx0XRvIiIiIiIiIiIiIlJtli1bVt1dEBGR02zcuHEUFhaSlZUFwMKFC9m/fz8A11xzDWFhYTz00EO88MIL3HbbbfTo0YOoqCj27dvH4sWLOeuss3jwwQcD2tRUb/J39+abb/LVV1/RtWtXkpKSSE9PZ9asWezatYvLLruMa6+9trq7KCJyVEpSEhEREREREREREREREZHT5ptvviE9Pd3/eP78+cyfPx+Aiy++mLCwMHr16kVcXBxffPEFX3/9NU6nk1q1atGqVSt69+4d0J7X62X27Nk0adKElJSU07ovIqdLr169+P3335k+fTrZ2dlYrVaaNGnCP//5Tx544AFMJlN1d1FE5KhMhmEY1d0JERERERERERERERERERERERH5+zJXdwdEREREREREREREREREREREROTvTUlKIiIiIiIiIiJyRiotLWXDhg2UlpZWd1dERERE/vYUe4mIiIiSlERERERERERE5Iwyc+ZMnnjiCR555BHuuOMO0tLSjmm9LVu2VHHPRKQ66NgWETk90tLSjiv2+qs7075fzrT9hTNvn8+0/YUzb5/PtP2FM2+fa8L+Wqu7AyIiIiIiIiIiIqdTz5496dmzJxs2bOCOO+445vXKysqqsFciUl10bIuISFU4075fzrT9hTNvn8+0/YUzb5/PtP2FM2+fa8L+aiQlERERERERERERERERERERERGpUkpSEhERERERERERERERERERERGRKqXp3kRERERERERERERE5Izi8XhwuVzV3Q05Bex2O2az7skXERER+StQkpKIiIiIiIiIiIiIiJwRDMMgPT2d3Nzc6u6KnCJms5n69etjt9uruysiIiIichRKUhIRERERERERERERkTNCeYJSfHw8ISEhmEym6u6SnASv18uePXvYu3cvKSkpej1FREREajglKYmIiIiIiIiIiIiIyN+ex+PxJyjFxsZWd3fkFKlVqxZ79uzB7XZjs9mquzsiIiIicgRKUhIRERERERERERERkb89l8sFQEhISDX3RE6l8mnePB7PGZWktG7dOqZOncqKFStIT08nIiKCli1bcvvtt1O3bt3jauu///0vkyZNokOHDrz88suHrbd7924GDRqE0+nkww8/pFmzZie7GyIiInKGMVd3B0RERERERERERERERE4XTQn293Kmvp5ffvkl8+bN49xzz+Wf//wnV1xxBb///ju33347W7duPeZ21q9fz5QpU/zJXkfy9ttvY7FYTqbbIiIicoZTkpKIiIiIiIiIiIiIiIjIX8iAAQP47rvvuP/+++nTpw+DBg3i7bffxuPx8MUXXxxTG4ZhMGLECC655BJiYmKOWPe3335jyZIlXHvttaei+yIiInKGUpKSiIiIiIiIiIj8Zb3yyiv07duXSy+9lEGDBrFw4cLq7pKIiMhxefbZZyktLT2hdd98803S09MD2nrggQdOUc+kJjv77LMrTG9Xt25d6tWrR1pa2jG1MW3aNLZt28Ydd9xxxHput5u33nqL/v37U7t27RPus4iIiFSPtNIMRuyexFvO2YzYPYm00oxq64uSlERETpDJZKJr167V3Q0RERGRv6xnn30Wk8nE3Llzq7srIvIXNmDAAL799lumTp3KE088wbBhw8jLy6vubomIiByz5557rtIkJbfbfdR1D01SkjObYRjk5OQQGRl51LrFxcW8//773HTTTcTGxh6x7nfffUdBQQG33HLLcfUnMzOTDRs2+H+ONXlKRERETp3xmb/Rd81LfJo+l8WebXyaPpe+a15iQuZv1dIfa7VsVc5ojz/+OEuXLmXjxo1kZmYSHBxMamoqffv2ZejQoZUGwwUFBbz00kuMGzeO7du3ExwcTLt27Xjsscfo0aNHpdvZtm0bL7/8MnPnzmXHjh2Eh4fToEEDbr31VgYPHlxhfuUZM2YwdepUVq5cycqVK8nOzqZjx44sWLDghPYzOzub559/nvHjx7N3715iY2O59NJLef7556lTp05A3dGjR3PrrbcesT2z2YzH4znufsyaNYt33nmHX375hZycHGJjYzn77LO5//776d27t7/ezp07GT58OMuWLSMtLc1ft2HDhgwZMoSbbrqpwl0Z5T799FPeffdd1q5di8VioW3btjzyyCP06dOn0vrLly9n+PDhzJ8/n5ycHBITE+nTpw/PPPMMCQkJx7xvgwcP5tNPPz3s8nXr1tGsWTP/46p8nk+VGTNmcPHFF3P++efz229H/mL48ssvufHGG7nyyiuZMGHCaeqhiIj8XSlmqNqYYezYscybN4+VK1fy+++/U1BQwI033siYMWOOuN6iRYsYNmwYixcvpqSkhMaNGzNkyBDuu+8+LBZLpetMmjSJV199lRUrVuDxeGjZsiX33HMPgwYNOux2jve18Xg8vPXWW3zyySds2rSJ4OBg2rdvz9NPP82FF154zM9LVenYsSOLFi1i8uTJAe/fyjRt2pSNGzeyfPly2rZte5p6KCKnUmpqqv9vk8mEy+UiMzPzmC7OiYiIjP/XQorzyqqs/ZBIB31f6HjY5XfffTcAnTt3xmKxkJycTGJiIps3b2b//v2sX78ek8lETk4OUVFRAMTFxbF06VI+++wz9uzZw3XXXUdwcDCjR48GYO/evVxxxRVs2bKFxMRExo4de9SpvOTvYcaMGWRkZDBkyJCj1h09ejQOh4MBAwYcsV5WVhaffvop99xzD6GhocfVnx9//NH/vjzYtm3bqvU8/OlSWFjI2rVrq7sbp82Ztr9w5u3zmba/cObt85m2v/D33+e93jyeLRuLgQEYAHgO/H4m7RvC0z0kmk/N+ZMWLVocUz0lKclp98Ybb3DOOefQq1cv4uPjKSoqYvHixTz77LN8+OGHLF68mLp16/rr5+Tk0KlTJ9auXUvLli25++67KSwsZMKECfTs2ZORI0dy2223BWxjyZIldOvWjZKSEi699FKuuuoq8vPzmThxInfddRfjxo1j6tSpmEwm/zrvvvsuEyZMICgoiEaNGpGdnX3C+5iVlcWFF17Ixo0b6d69OwMHDmT9+vV88sknTJ48mV9++YUGDRr467dp04Znnnmm0rZ+/vlnZs+ezWWXXXbc/Xjsscd45ZVXqFOnDldeeSVxcXFkZGSwbNky5s6dG3DBZsuWLXzxxRdccMEF9O3bl5iYGLKyspgyZQpDhgzh888/Z/r06VitgR8bjzzyCK+99hp16tThjjvuwOl08vXXX3PFFVfw9ttvM3To0ID6kyZN4uqrr8btdnPFFVfQpEkT1q9fz/vvv8/EiRNZuHAhKSkpx7Wf999/v/8/6AeLi4sLeFxVz/Op1LNnT+rXr8+SJUv4448/OPvssw9b96OPPgLgzjvvPF3dExGRvynFDFUfMwwbNozff/+dsLAw6tSpw/r164+6zoQJE7jmmmsICgriuuuuIyYmhokTJ/Lggw+ycOFCvvvuuwrrvPPOO9x3333ExsZy0003YbfbGTt2LIMHD+aPP/7g1VdfrbDO8b42hmEwcOBAxo4dS9OmTRk6dCjZ2dl88803XHTRRYwbN46rrrrquJ6fU+2OO+5g0aJFjBw58ohJSvPmzWPjxo2cd955SlASOUnFxcV8/fXXrF27lnXr1lFQUMCTTz5Z6eel0+nk448/Zvr06RQUFNCwYUNuv/12zj///BPe/uuvv85PP/2E0+mkffv2Af/nFhEROZLivDKKs6suSelo3n//fT744AN+/vlnoqKiGDx4MMuWLWPBggWEh4cfcd1///vfjBo1im+++YY2bdoAMH78eH799VeWLVtGbGwsAwcO5IMPPuDJJ588DXsj1SktLY033niDli1bcumllx6x7s6dOxk7diz//ve/K9zQfaj333+f5OTkw97EciRXXnklHTv+maSXlpbGsGHDqF+/Pk2bNj3u9v5q1q5de8wXbP8OzrT9hTNvn8+0/YUzb5/PtP2Fv98+G4aBq8RNcU4ZxbllfFu0CpMFDFPFumZM/BGdRffaHU5rH5WkJKddfn4+QUFBFcr/9a9/8eKLLzJ8+HD+97//+cufffZZ1q5dy9VXX80333zjv+D14osvct5553HfffdxySWXBIxO9Oyzz1JUVMTo0aMD7hh/9dVXadeuHdOnT+fnn3/moosu8i97/PHHeeGFF2jWrBk7d+6kfv36J7yPTz31FBs3buShhx7itdde85e/9dZb3H///dxzzz1MnTrVX96mTRv/fyIP1aGD70PheBNRPvroI1555RUGDRrEhx9+WOE/Gi6XK+DxhRdeSE5ODmazuUK9iy++mDlz5vD9998H3FWxaNEiXnvtNRo2bMiSJUuIjo4G4NFHH+Xcc8/1331fr149AEpLS7n99ttxuVyMGzeOq6++2t/WV199xQ033MDQoUP58ccfj2tfH3jgAf82jqQqnuf/Z+88w+OoDrZ9z2zvu1r15m654waYZpqpDi1AaEkggHlTSEgCHyEJL5BASCGBEOBNgRASSCBgML2aFgM2uBsXyU1Wb7va3ndnvh+zGlnIxjaYFp/7unxZO3Nm5pwzu9qjOc95nv2NJElcfvnl/PSnP+Xee+/lD3/4wy7Lbd26lTfffJO6urrPXFglEAgEgi82YswwnE9izHDHHXdQW1vL2LFjefPNNzn22GM/tHw0GmXBggUYDAbeeOMNZs+eDcDNN9/Mcccdx8KFC3nkkUc4//zz9WN27NjBNddcQ0lJCStWrNDbesMNN3DwwQfzu9/9jrPPPltvA+z7vQF45JFHWLhwIYcffjivvvqqPrb/5je/yZFHHsmCBQs47rjj9jih8kly3nnn8f3vf59nn32Wnp6e3Tpv3XfffcBnPwYUCP4biEQiPPDAA1RUVDB27FhWr16927K//OUveeONNzj33HOpra3lhRde4Nprr+XOO+9k2rRpH+n6P/zhD7nqqqtYs2YN27dvH7IoSSAQCASCD8PusXzuzn/uued+rPH0ySefrCcWHHbYYbz//vsf+VyCLwbBYJAf/ehHOBwObr755t067w7whz/8gSlTpnDMMcd8aLkNGzbw8ssvc8cddwx7DrA3lJaWDlsYJBAIBAKBYN9RFZVULEuqKD5KhbX/tX9pbVsoQzKSoZBV9OPWz29BHa/CLh6TqKh0ZkKfYis0hEhJ8KmzK4ESwFe+8hVuvfVWtmzZMmT7okWLAPj5z38+ZEV+eXk5P/zhD/nBD37A/fffzw033KDv2759O6Cp9HfG4XBw/PHHs3HjRvr6+obs23my5uMQj8d58MEHcTgc3HTTTUP2XXnlldx+++289NJLbN++fY8rO99//32WLVtGTU0N8+fP3+s6ZDIZfvrTn1JfX7/LyUZgWAzL7lZLmEwmzjzzTN54441h9+ZPf/oToAnMBia0AEaOHMl3vvMdbr75Zv72t7/xs5/9DNAmwXp6epg9e/aQyUaACy64gF//+tc8++yztLS0DLHr/6T5qP28O2677TZ+9KMfcdhhh/HMM8/oVsrvvvsut912G2+99Rb9/f1UVFRw6qmncuONN1JdXa0ff+mll3LjjTfy0EMP8Zvf/GaXn5n77rsPVVW57LLLPtIfhwKBQCAQgBgz7CsfZ8ywJ1HSB1m4cCF9fX18/etf1wVKoI2lb7nlFo4//nj++Mc/DhEp3X///WQyGX70ox8NERX5fD5+8pOfcNlll/GnP/1pyLh3X+8NwB//+EdAc4faeZxy8MEHc9555/Hggw+ycOHCPUbmfRitra2ccsopbNmyhb/+9a987WtfAzSnljvvvJN///vfbNmyBUmSmDp1Kt/73ve44IIL9ONtNhtf/epXueeee3jggQf40Y9+NOwa4XCYhQsX4nQ6hxwrEAg+Gn6/n0WLFuH3+2lsbNyt+G/jxo28+uqrfOtb39I/eyeddBKXXHIJf/zjH/XfMQDf+c53djup+rWvfY0FCxYM2WYwGJg1axaPPfYYtbW1++3vfIFAIBD8d/NhUWyfFU6nc8hrg8EwJBornU5/6PE7j9MNBgP5fH7/VlDwuSIej3PttdcSj8e5++679ygKWrlyJe+++y633HILXV1d+vZCoUAmk6Grqwu3243D4eCPf/wj06ZNo6qqSi8bDocBTRj1YYtCBAKBQCAQ7BlFUUlFMiT70yRDGRKh9BAB0sDPqUgWVVH3+rwmmxG710K1qYRtUm8x7m0oEhLVFt8ujv5kESIlweeGZ555BmDYqsnu7m6AXQp6Bra9+uqrQ0RKkydPprGxkeeee46vfvWr+vZkMslrr72G3W7/xB5WLlu2jFQqxYknnjhstYssy5x00kn85S9/4fXXX9+jSOkvf/kLAJdddtkeVz7szEDu9Pe//31kWea5555j/fr1WK1WDjnkkH1qe6FQ4PnnnweG35vXXnsNYJfWsaeccgo333wzr732mj6p9WH3cmD72rVree211/ZpUuuFF14gGo1iMBgYO3Ysxx13HG63e6+P/6j9/EEUReH73/8+d911F1/+8pf55z//qT8QuP/++7niiiuwWCycfvrp1NXVsWXLFu677z6eeeYZli1bpkfWVFZW8qUvfYknn3ySxx9/nIsuumjIdfL5PH//+98xGAx7lS0uEAgEAsHuEGOGz2bMsDd8WJ/NnTsXu93OO++8QyaTwWKx7PGYAefFgTJ7c51d3Zt0Os0777yD3W7nqKOO2uUxDz744D7fm51Zu3Ytp556KrFYjOeff5558+YB2oPw4447jtWrVzNz5kwuvfRSFEXhpZde4sILL2TDhg3ccsst+nkWLFjAPffcw1//+tddipQeeugh0uk0CxYsGDYJJBAI9h2z2aw7NnwYb775JgaDYciiIovFwvz58/nLX/4yZKLrnnvu+Uh1KRQKdHR0fKRjBQKBQCD4LHC5XEQikV3GUwOMHTuWd999l1NPPZUnnniCRCKh73O73UQikU+ppoLPG5lMhuuuu462tjZuv/32vXIP7u3tBeD6668ftq+vr4/zzjuPK6+8kq985Sv09vbS3d3NeeedN6zsj3/8Y5xOp/4sQCAQCAQCwVBy6TyJAfFRf5pkKE2iXxMiJfvTRUHSPoiPJLC6zNh9FuxeCzaP9r/+2mvVXnstGC3a8+tD0hNZsuFXuzydispZ/kP3V3P3GiFSEnxm/Pa3vyUejxOJRFixYgVvvfUW06ZN47rrrhtSrrS0lK6uLpqbm4flQQ44JjU1NQ3Zfsstt/DOO+9wySWX8OijjzJp0iSi0SjPPvss+XyehQsXDnGu2Z8M1GX8+PG73D9u3DgANm/e/KHnSaVSPPTQQxgMBi6//PJ9qsPy5csBbcXMjBkzWL9+/ZD9c+fOZeHChZSVlQ07NhAIcPfdd6OqKn19fbzyyits3bqVCy+8kNNOO00vl0gk6OjowOl0UlVVtVftHFjB0dzcvMt67+5+7olvf/vbQ167XC5++ctf8p3vfGePx36cft6ZdDrNRRddxBNPPMGVV17JnXfeqTscbd68mW9+85uMHDmSN998k5qaGv24V199lRNPPJGrrrpKdw0DLXLkySef5N577x0mUnrmmWfo7u5m/vz51NXVfeQ6CwQCgUAgxgyf/phhb/mwMaXRaGTUqFFs2LCB7du3M3HixD0eU1VVhcPhoL29nWQyid1u/0j3Ztu2bRQKBUaPHj3E5fTDjtkXFi9ezNlnn43D4WDJkiUcdNBB+r7vf//7rF69ml//+tdce+21+vZ0Os2ZZ57JrbfeyjnnnKNH9R100EEccsghvPfee7zxxhvDYgxE1JtA8NmwZcsWamtrcTgcQ7YP/C7bunXrPq3Gj8fjLF26lCOOOAKz2cySJUtYvXr1bj/bgUCAYDCov25pafkIrRAIBAKBYP9y9dVXc8IJJ2C323f53PqOO+7ge9/7Htdffz3z588fIgz+3ve+x4IFC7Db7TzwwAOfYq0FnzWFQoGbbrqJDRs2cOuttzJlypRdlgsEAiQSCWpqajAajcycOZNf/OIXw8rddtttVFZW8rWvfU1fNHTNNdeQyWSGlFu1ahWPP/443/72tz9Vd2OBQCAQCD4v7Mr9KNGfKYqQBsVIudTeuVlKEti8Fhw+K3afBduA8Mgz8LMmPrK5zcjGfUvYGWEt46YR53FTy7+RkFBQkZFQUblpxHnUW4c/+/+kESIlwWfGb3/7W3p6evTXJ598Mg888MCwSbD58+dz3333ceONN/LII4/oq9b7+vq44447AAiFhmYlTpgwgeXLl3PBBRfwzDPP6C5NJpOJ73//+8yZM+cTa9fAqhWPx7PL/QPbByxRd8ejjz5KOBz+SEKUgZUQt912G5MmTWLJkiVMnz6d5uZmrrnmGl5++WXOPfdc3njjjWHHBgKBIXEekiRxzTXXcOuttw4p91HaecQRR+D1elm+fDlPPfUUZ5xxxpD2rl27Fhh+P3fH3LlzOfXUU5kzZw7l5eV0dnayaNEifvazn3HllVdiMpn2OOn0cfp5gP7+fk4//XTeeeedYZNmoEWi5HI57rzzziECJYDjjz+e008/nWeeeYZYLKa7b5100kmMGDGCN998ky1btugTfiAm1AQCgUCw/xBjhk93zLAvfJR+25tjEokEkUgEu93+iV3jg8fsLQ899BCXXnopY8eO5cUXX9RdJkGLEXjooYeYPXv2sLGW1Wrl17/+NS+99BL/+te/dJESaOOl9957j/vuu2+ISGn58uWsXbuWGTNmDInTEwgEnzzBYHCXjksD2wKBwD6dT5Iknn32We644w5UVaWmpob//d//HfI31M48/fTTu5zAbW5uHhKjszvi8TgbN27cpzoKBILPP+KzfeCgKAqKopBOp1HVvY/L+KS59tprh41zU6mU/vMxxxzDunXr9Nc/+clP9DIXXXTRkEWOAy6iA8dfdtllXHbZZUPO999GJpMhl8uxdetWfeEoMGzR838b99xzD2+//TaHH344sViMl19+ecj+E088EdBcgV988UX+/e9/U1VVRUVFxS5F4XfddRc+n2+Ia+4hhxwyrFw8Hgdg+vTpTJgwYX82SSAQCASCz5wBAVIimCYRTBEPpkkE08SDKRL9mghpX9yPTFYDdp8VR4kmQNL+t+IosejbbR4zsmHfxEf7whmlhzDDOYpFwXfZ1LeDiWUjOct/6GciUAIhUhJ8hgzEePT09PDOO+9w3XXXMWPGDJ599llmzpypl/v5z3/OSy+9xMKFC5k+fTrHH388iUSCp556ipqaGlpbW4f84QGwevVqzjzzTMrLy/XJtnA4zEMPPcT111/Pk08+yfLly3c7ufJ5YCBO5H/+53+G7duxY8cuH6redNNNgPbHNmir7J9++mnd4nXq1KksWrSIhoYG3nzzTZYuXTosxmXChAmoqqrb4y9atIgbbriBt956i+eee46SkpKP3CaHw8Gdd97JJZdcwpe//GVOP/10xo0bR2NjI88++yzTp09nzZo1w+7n7vhg1Nno0aO5+uqraWho4LTTTuOnP/3pHuNYPqyf94aenh6OOOIItm/fzkMPPcSFF144rMzSpUsBLdZgwLFiZ3p7eykUCmzevJlZs2YBWjTgZZddxg033MB9993Hr3/9awDa29t58cUXqa6uZv78+R+pzgKBQCAQDCDGDPtnzLCnsZlgz9x555089dRTHHHEETz99NP4fEOz0JcvX06hUECSpF32ay6XA2DTpk1Dtp9//vn84Ac/4PHHH9cfuAPce++9gBYJJxAIPl0ymQwmk2nYdrPZrO/fFwa+M/aW008/nSOOOEJ/3dLSwi233MKoUaNoaGjY4/EbN278r5/wFAgORMRn+8AhnU7T3NyM1WrFarV+1tUR7CckScJkMjFq1KgD6r5u3boVgHfeeYd33nln2P4BkZJAIBAIBAINVVVJx7JFAVKaeDBNy+YQPa+t0cVIiVAatbBnAdIQ96MSKw5f0fGoZOg2s334M5DPgnprGVfVfImNkY1Mqvls//YRIiXBZ05FRQVnnXUWM2fOZPz48Xz9618fEjVSVVXF8uXLufnmm3n22Wf5v//7P0pLSznvvPO46qqrGDduHOXl5Xr5fD7PV77yFfr6+nj33XeprKwEwOl0ct1119HT08Pvf/977rjjjk9k4mhA+LS7HPCB7bvLFwfYsGED77zzDrW1tZx66qnD9u/YsWOIc8EAA+0ZOPeMGTOGZVDb7XZOOukk/vrXv/Lee+8Nm3AcwGAwUF9fz1VXXUVFRQUXXHABN9xwA3fffffHaufXv/516urq+PWvf80bb7zB888/z8SJE3nggQfo7e1lzZo1Q+7nR+FLX/oSNTU1dHR0sHHjRqZOnbrLcnvq572hu7ubaDRKbW0tRx555C7LDEQJ3HbbbR96roEVKANceuml/OxnP+Pvf/87t9xyCyaTifvvvx9FUbj00ks/dCJVIBAIBIK9QYwZ9s+YYU9js4/CR+k3j8dDIBAgEons0qXkgy5IH/Ua+3rM3vCf//wHVVU5/vjjhwmUYHA8tXz58l2Kvgf44HjK4XBw4YUX8uc//5mHHnqI7373uyQSCR555BEcDsewWF2BQPDJY7FYdGHhzmSzWX3/J0lpaakeKyoQCAQCgUDwReYPf/jDXpX7yU9+ortvfRiPPvroXp3vlFNO4ZRTTtmrsgKBQCAQfJpkk7lBsdEHXZCCmgtSIafs4sjokFeShOZy5Nf+Of02HCXF1yWfjvvRfzNCpCT43DBixAgmTZrEmjVrCAQCQx4aVlRUcPfdd+uTXQO89tprABx88MH6tsbGRrZu3crMmTN1gdLOHHvssfz+979n5cqVn0g7BlZebt68eZf7t2zZAsD48eN3e46Blfq7W9F/zDHHfKgd8UAddjc5NDDxs7cWvwN/cOwc9eJwOPRJva6uLqqqqoYc82HtPPbYYzn22GOHbf/6178ODL2fH5WysjI6OjpIJBK7LbOnft4bDjroIC6//HIuueQS5s6dy2uvvabndQ+w82Se2+3e63PX1NRw6qmn6pGFZ555Jvfffz+yLHP55Zd/pPoKBAKBQLAzYsywf8YMexqbfRQaGhpYsWLFEKfFAfL5PM3NzRiNxiHjjoaGBgKBAJs3bx4mKuvq6iKRSFBbW4vdbgc+2r0ZM2YMBoOB7du3k8/nMRqNezxmb/jrX//Kr371K372s5+hKAo///nPh+wfGE/94Ac/4Pbbb9+nc19xxRX8+c9/5r777uO73/0ujzzyCLFYjEsvvXSfxmYCgWD/4Pf76evrG7Z9QIz4aQmIFi9ezOLFi4eJGwUCgUAgEAgEAoFAIBB8/lBVlUwsRzyQIhZIEe8r/l/8OR5IkU3m9+pcNo8Zh9+Gw28lS5K6cdU4/DacRVGS3WsRAqRPECFSEnyu6OzsBNhrwcg//vEPgCERWwPW8IFAYJfHDDwMHbCS39/MmTMHm83G22+/TSwWw+Vy6fsURdFzoXc14Qaa5fCDDz6IwWDgsssu+0h1OP7445EkiY0bN6IoyrAolAGnqlGjRu3V+To6OgCGTUIdd9xxPPjgg7z44ot84xvfGLLvhRde0MvsDeFwmGeeeYaysjJOOOGEvTpmd0QiERobG5Ekabdt3B/9PMBXv/pVrFYrF154oS5U2nlibs6cOaxcuZIlS5bsc0TbFVdcwTPPPMN9992Hw+GgpaWFk08+mREjRnysOgsEAoFAAGLM8GmPGfaF4447jn/+85+8+OKLXHDBBUP2/ec//yGZTDJ37twhjiPHHXccb7/9Ni+++OIwkdLu+nlf743VauXwww9nyZIlLFmyZNiYdl/v5wBer5dXXnmF+fPnc/PNN5NOp/nNb36j7z/kkEOQZZklS5bs03kBZs6cyaxZs1i5ciXvvfce9913H6CNswQCwafP2LFjWb16NYlEAofDoW/fuHGjvv/TYN68ecybN4+mpiYR/SgQCAQCgUAgEAgEAsFnjKqqpCJZ4n1JYoE08b4k8UBaEyUVRUj5TGGP57E4TbrjkbMoRNLckKw4Smw4SiwYTINaBC36efSHnFGwvxHyL8GnyubNm3cZDaEoCj/96U/p7e3l8MMPHxLxoCjKLlc2Pvjgg/zjH//g8MMP58wzz9S3T5kyBa/XS2trqz4BMUA4HOa3v/0toE3KfVwaGxtpbGwcss3pdPK1r32NRCIxLOLj7rvvZseOHZx00knD3HYGeOyxxwiFQpxyyinU1dV9pHqNGDGC0047jdbWVu68884h+15++WVeeuklvF4vJ598sr591apVFArDf7HH43GuuuoqgGECm29+85sA/OIXvyAUCunbd+zYwT333IPFYhk22RWLxYZdI5lMcvHFFxMOh/n5z38+zN5/27ZtNDY2DokE6O7upr29fZf1veSSS0in08ybN4+KiophZWD/9PPOnHPOOSxcuJBAIMDRRx/Nhg0b9H1XXnklJpOJH/zgB7t02Mpms7udcDvllFOora3lpZde0h0FxAN0gUAgEOwvxJjh0x8z7C3nnHMOpaWlPPLII6xYsULfnk6nuf766wH41re+NeSYb3zjG1gsFn3MOUAoFOLWW28FBu/FAB/l3gxc9/rrryedTuvbly9fzr///W/Kyso4++yz97nNLpeLF198keOPP57bbrtNfz8BlJeXc9FFF7FixQpuvvnmXb4Ht23bRnNz8y7PPTB+uuaaa1i2bBnTpk3j0EMP3ec6CgSCj88xxxxDoVDg6aef1rdls1mef/55Jk2atNvfxwKBQCAQCAQCgUAgEAi+uKiqSiKYoruxn61vdbD6ya0suXc9L/zyPR67+j88cMnL/Ovbr/H0jct4/a41LH9kM5sWt9K2po9wR1wXKNm9FsrHehl9WBXTThvNEZdO5qRrZ3P2bUdx8f0n8LW/zOPLvzySk/7fbI64dDLTzxjDuCNrqJrox11hHyJQEnw2CCclwafK888/z49//GOOPPJIRo0ahd/vp6enhzfffJPt27dTWVnJvffeO+SYZDJJRUUFJ5xwAmPGjEGWZd5++22WLl3KxIkTeeyxx4as+rdYLPz+97/nG9/4BgsWLOCRRx5hxowZhEIhnn76afr6+pgzZ86wlfBvvfWWLmoaEEVt2bKFSy65RC/zwAMPDDlm4sSJAMPiPW699VbeeOMNbr/9dtasWcMhhxzCpk2beOqppygvL+eee+7ZbR8NxIl83JXd99xzD6tXr+aHP/whzz33HDNmzKC5uZknn3wSg8HAfffdp8dmAPz85z/n7bff5vDDD6e+vh673U5bWxsvvPAC4XCYww8/nB//+MdDrnH44Yfzwx/+kNtvv51p06ZxzjnnkM1m+fe//01/fz933XUXI0eOHHLM3//+d373u99xzDHHUFVVRTAY5JlnnqGrq4urrrpq2MQZaIKylpYWmpub9fM1NjYyb948DjvsMMaPH095eTkdHR288sordHd3M3r06GEitZ3ZX/28M6effjpPPfUUZ511FscccwyLFy/moIMOYsKECdx///1ceumlTJ48mZNPPpnx48eTy+VobW1lyZIllJWVDRO8geYqdumll/Lzn/+cd955h8rKSk4//fT9VmeBQCAQCMSY4dMZMzz55JM8+eSTgCacAli6dKk+1iwtLdXF9ABut5t7772Xc845h2OOOYbzzz+fkpISnn76aZqamjjnnHM477zzhlxj1KhR3HbbbXzve99j9uzZnHfeeZjNZhYuXEh7eztXX331MIelj3Jvzj//fJ544gkWLlzIjBkzOO200wgGg/z73/+mUChw7733fuQYNbvdzrPPPsvZZ5/NH/7wB9LpNH/605+QJIm7776bLVu2cMMNN/Dggw9y5JFHUlFRQWdnJ5s2bWL58uU8/PDDu3TFuvDCC7nmmmt0YbgQfQsEnwyPP/448Xhcj257++236e3tBeDss8/G6XQyadIkjj32WP7yl78QDoepqanhxRdfpLu7mx/96EefWl1F3JtAIBAI9pWCqrAqvp1ALkqpyc1M52gMklgHLhAIBAKBQLArVEUl1B6na1M/3Zv66WrsJx3NfugxkgT2EiuuMhvO0uK/Mhuu4s8OvxWjWYiMvvCoAsGnyPvvv69+5zvfUQ866CDV7/erBoNBdbvd6uzZs9Ubb7xRDQaDw47JZrPqpZdeqo4fP1612+2q3W5XDzroIPUXv/iFmkgkdnutN998Uz3rrLPUyspK1Wg0qg6HQ505c6b6y1/+Uk2lUsPK/+1vf1OBD/33QXa3XVVVNRgMqt/73vfU+vp61WQyqZWVleo3vvENta2tbbd13rhxowqotbW1aj6f3225vaW3t1e98sor9Tr4/X71zDPPVN99991hZZ999ln1oosuUseNG6e63W7VaDSqZWVl6vHHH6/++c9/VnO53G6v87e//U2dPXu2arfbVafTqc6dO1d95plndll26dKl6imnnKJWVlbqdTrllFPU559/frfnHzFihAqozc3N+rbW1lb1iiuuUGfMmKGWlpaqRqNRdbvd6sEHH6zecsstajQa3e359lc/A+rRRx89bPvrr7+uOp1O1efzqe+9956+fd26derFF1+s1tfXq2azWfX5fOrkyZPVK664Qn311Vd3e53W1lZVlmUVUH/84x9/5PoKBAKBQLA7xJhh1+zPsdmNN974oePMESNG7PK4t956Sz3llFNUr9erWq1WdcqUKertt9/+ofV5+umn1blz56pOp1O12+3q7Nmz1QceeOBD67cv90ZVVTWXy6m33367OmXKFNVqtaper1c95ZRT1Lfffnuv+mOAgX55/fXXh2zPZDLqWWedpQLqxRdfrBYKBX37XXfdpR522GGq2+1WzWazWldXpx533HHqHXfcoQYCgd1e6/LLL1cB1WazqaFQaJ/qKRAI9o5zzz1XPeqoo3b5r7OzUy+XTqfVe+65Rz3jjDPU448/Xl2wYMEuv3M+DRobG9WjjjpKbWxs3KvyGzZs+IRrJBAIPgvEZ/vAIZVKqRs3btzl8+EP45X+teoJa29Sp634gf7vhLU3qa/0r/2EavrZc+ONN+5zP+0Nf/vb39RNmzZ9pGPvuusu9eKLLx62/aPeV8Gnz76Ovb7oHGjfLwdae1X1wGvzgdZeVT3w2vxx2lsoKGpfc1h9//nt6su/W6n+Y8Er6r0XPD/k331ffUF95Huvq8/evEx9449r1ZULN6tNb7SpHRsCarQnoRZyhf3XmL1E3ONPH0lVP2ABIxAIBAKBQCAQCAQCgUAgEBwANDU1sWDBAu69914aGhr2WH7jxo1MmjTpU6iZQCD4NBGf7QOHdDpNc3Mzo0aNwmq17tUxi0PruGb7A3xwIkUq/v/b0Zcwzzdtv9Uxn89jNH72IRiSJBEKhfB6vcP2fZw6HnPMMXz/+9/nzDPP3Odj7777blasWDEs8eCj3FfBZ8O+jr2+6Bxo3y8HWnvhwGvzgdZeOPDavC/tVQoKwR1Rujb107Wpn56mENlkfkgZo8VAxXgvlRNLqJpQQtkYz+cubk3c40+fz36kKxAIBAKBQCAQCAQCgUAgEAgEAoFA8DmjoCr8pm3RMIESaJaoEvCbtic51jvlY0W/SZLEDTfcwPPPP88xxxzDDTfcwA9/+EPWrl1LOp1mzpw53H333ZjNZjo6OrjqqqtoampCkiTOOOMMbr75Znp7e/nmN7/Jli1bUFWV7373u/zP//wPACNHjuTrX/+6Hnt92WWXcf311wNwyy238M9//hOLxQLAU089xS9/+UsAjjrqKAwGAy+//DLXXnstsiyzdetWent7aWxsHCZkKi0tZcWKFYwcOZJNmzbx/e9/n66uLgC+/e1vYzQaWbFiBT/4wQ+46aabuPXWWzn11FP57W9/y6OPPko+n6e8vJw///nPjBgxglgsxuWXX86aNWsoKytj8uTJH7mPBQKBQCAQfDyUvELf9gjdjUVR0uYQuVRhSBmTzUDF+BKqJvqomlhC6SgPslHE4wqGIkRKAoFAIBAIBAKBQCAQCAT/xaxatYqVK1eyfv16ent7iUQiWK1WvF4vo0ePZvr06Rx22GH4/f7PuqqfGosXL2bx4sXE4/HPuioCgUAg+Jzyj543+GvXq4QLid2WUYGeXJhftT7BT0ec87GuZzAYWL58OQBXXHEFRx11FPfeey+qqrJgwQLuvPNO/t//+3989atf5cQTT2ThwoUA9PX1AfDd736XhoYGnnjiCXp7e5k1axYHHXQQc+bMASAcDrN06VICgQBjxozhG9/4Bna7nd/+9rd0dXVhs9lIJpPIssyf/vQn/vznP7NkyZIhTkorV67krbfewuVyfWhb8vk8Z5xxBj/72c+44IILAAgEApSWlvLQQw8NcVL617/+RVNTE0uXLsVgMPDggw/y7W9/m+eee46f//znWCwWGhsbiUajzJkzh0MPPfRj9bNAIBAIBIK9o5Ar0Lctojsl9W4Jk88MFSWZ7UYqJ5RoTkkTS/CPcCEbhChJ8OEIkZJAIBAIBAKBQCAQCAQCwX8ZqVSKxx9/nGeeeYaenh5UVfOAMJvNuN1uMpkMzc3NbNu2jVdeeQWj0cjhhx/OV77yFaZOnfoZ1/6TZ968ecybN0+PHNkbQh1xUsHcJ1wzgUAgEHxeSBTSHypQ2plgPvaxr3fppZfqPz/55JMsXbqU22+/HdC+1w0GA/F4nLfeeouXXnpJL1tWVgZoAtyVK1cCUF5ezpe//GUWL16si5QuvPBCQHM7Gj16NM3NzRx22GGMGzdOFz7Nnz+f2tra3dbx3HPP3aNACbRIr3Q6rQuUBq67K5588kmWL1/OrFmzACgUBic/X331Ve644w4kScLj8XDhhReybdu2PV5fIBAIBALBvpNL54nsSLNy4xa6GzVRUiGnDCljcZr06LaqiSX46l3IsrSbMwoEu0aIlAQCgUAgEAgEAoFAIBAI/ot46qmn+Nvf/kYoFGLMmDFcdtllTJ48mQkTJmC32/VyqqrS3t7Oxo0bWb58OW+99RZLlizhiCOO4Dvf+Q7V1dWfYSs+X6iqytt/XU/P5hDZZhMzvjwWq9P8WVdLIBAIBJ8gDoMVr8GxV0Ilv3HPwp094XQ69Z9VVeXxxx9n/PjxQ8rsiwOgJA2dMLRarfrPBoOBfD6PwWBg2bJlvPPOO7zxxhvMmTOHhx9+mKOOOmqPdRw4z86ionQ6vdf1G0BVVX784x9zxRVX7LHsB9skEAgEAoFg31BVlWQoQ7gzTqQzQbgzof+c6B/4Hu/Ry1vdZqqKLkmVE0vw1TiRhChJ8DERIiWBQCAQCAQCgUAgEAgEgv8ifv/73zNv3jwuuOACRo8evdtykiRRV1dHXV0dJ510EplMhldeeYWHHnqIl19+mUsuueTTq/TnnNaVvXQ3hgDY8GILW5d0MuPssUyaV49sFFb2AoFA8N/I1yuO4aLyuZzy/s305iKouygjAeUmL9fVf3m/XvvMM8/k17/+NX/+858xGo2EQiGCwSBjx45l7ty5/O53v+PHP/4xoMW9lZWVMW/ePO69915+8Ytf0NfXxxNPPMFjjz32odeJxWLEYjGOOuoojjrqKDZs2MDq1as56qijcLlcRCKRIXFvH2Ts2LG8++67nHrqqTzxxBMkEpqgq6GhAbvdzsMPPzws7s3tdhOJRIa09Xe/+x3nnHMOJSUl5HI51q9fz4wZM5g3bx5/+9vfmDt3LrFYjIcffpiDDz74Y/auQCAQCAT//RRyBaI9ySEipHBngkhnnFy6sNvjzC4DdVPLdbckT7VDiIQF+x0hUhIIBAKBQCAQCAQCgUAg+C/iH//4B3V1dft8nMVi4Utf+hKnnHIKPT09ez7gC8zixYtZvHjxXjtS1EwtZeY5Y1nz1DaUnEomkWPZPzax6ZVWDr1oAnUzysSDW4FAIPgvxCDJXFt3FtdsfwAJhgiVBn7rX1t3JgZp/wpW77jjDq677jqmT5+OLMsYjUZ+85vfMHbsWB588EG++93vMnnyZEwmE2eccQY/+9nP+MMf/sC3vvUtpk6diqqq/PSnP+XQQw/90OtEIhHOOeccEokEkiQxbtw4Lr74YgCuvvpqTjjhBOx2Oy+//PJu6/m9732P66+/nvnz5+P3+wEwGo089dRTfPe73+XWW29FlmW+/e1v8z//8z9cccUVXH311dxxxx3ceuutXHTRRQSDQY499lgA8vk8l156KTNmzOB///d/ufzyy5kwYQJlZWUceeSRZDKZ/djTAoFAIBB8sUlHs4Q744S7EkUhkiZIivUmUXelsAYkWcJdYcdT7cBb7cBb5cRT7cBT7WB761YmTZr06TZCcMAhqeru3p4CgUAgEAgEAoFAIBAIBALBfy9NTU0sWLCAe++9l4aGhj2WX71sHdHVsGVJx5DtNVP9HPrViZTUffy4H4FA8OmzceNGMRlzgJBOp2lubmbUqFFD4s/2xOLQOn7Ttoie3KADUIXJy7V1ZzLPN+2TqKpgH/io91Xw6bOvY68vOgfa98uB1l448Np8oLUXPj9tzqXz9GwJ098SLToiaYKkTDy322NMNiPeGgfeaifeageeKgeeaifuCjuG3TgCf17a+2lyoLX589Be4aQkEHxByOfzBAIBent7CQQC7Nixg0AgQC6Xo6+vj5aWFj1HPBQKUSgUMJlM5PN50uk0iqJQKBTIZDLYbDaSySTZbBaj0YjRaCQQCADgcrno7OzE7XYjyzKKouDz+ZBlmWQyicFgwO12oygKqqqiqioOh4NsNovL5SKbzWIymfB4PJjNZhKJBG63mwkTJmAymchkMkydOpWRI0fidrupqanB7XZ/xr0rEAgEAoFAMJRsNksikSAejxOJROjt7UVVVVKpFM3NzfT19VFaWkoul2P16tVYrVZqamro6Ohg27Zt1NbW4vV6Wb16Nel0msmTJ5PP51mzZg2qqjJmzBhaW1vp7u4mFotRVVXFhAkTSCQS9Pb2YrPZmDRpElu3biWbzTJ79mysVitr167FaDRy2GGHAbBmzRrq6+sZO3Ys4XCYWCzGnDlz8Hq9xGIxXC4XY8aMwel0YrVacTgcGI3iz0CBQCD4qFjcRo7+1iQmnVjPsgcb6dmsRcB1vB9k0XVv0XBcHbPOGYfNY/mMayoQCASC/ck83zSO9U5hVXw7gVyUUpObmc7R+91BSSAQCAQCgQCgkFfo2xqmc0OQzg1BereEUQq79p5xlto0EVK1Jkga+N/mMQvHX8HnEvF0WiD4lEmn02zevJnGxkaamppobm4mEonw+hNLsPnNZHIZYtEYGFRsThvxeIJCIb9X55YkCVVVsVgsGAwGkskkIOHzeZFlmf5gCIMsU15Zjqqq9Hb1UV1XhdlsJpPMkk5kKC0txWKxYLVaSacyhPsiuN1ustksHS2dqKhU1lRQKBTo7e7F4/MgSRKpVIpUKo3DYUdRFFKp1D73jcfjwWAwEO2PY7faqB5RRbgryowjDsJiseD1ejnssMMYP3489fX11NfXi0k2gUAgEAgEH0o8Hqenp4eenh7a2toIBALE43H+8r9/R3apxMJxckoWyaGSU7Okkiny5FDZs+GsjAEJCbPNhCzL5BMKZrsRk9XE2lXryEULOCttGAwGtq3cgYSMb7QLSZJY9uxKHGUWLFYLuVwOi8XC8ufXYPIZsZWYSMQSPLvqRRw1FlRV5V9/eRQVBavfhKIovP3qUlSDisEiUSgUyGcKqLKCoih7rLcBAxazFYfLTj4EBsWIt8qNxWgh1Zbnqjv/h3g8TkNDA+PGjcPv9+tjRIFAIBBolI3x8qUbD6X53W7ee7iJeF8KVYXGV9vY9k4X088cw5STR2AwGT7rqgoEAoFgP2GQZA52jf2sqyEQCAQCgeC/EFVRCbZEdVFSd2OIfKYwpIzDb6V8nFd3RvJWO3FX2jFZxVyp4IuFeMcKBPuBZDLJxo0baWpqYuvWrTQ3N9PT00Nvby/BYJB4PE5/MASS5jy0OyS1BIvDghoFu8lOQ8N4MqksHe/3MOXoCfhKvKx5uhFjwcQRl8zEbLaw+i+bMRksHPujWWSjOVbfs52JX6nFN9LN+w9uJ9aSZtbF4zBaZN79TROocPD544n3ptj0zzasGTMN82tpea2H8JYENMJJX5tPz9owfW1hkGDyYSNJ9afZvqMbe4WZqV8dTefyAG09AcafVIN/rIfl9zSSTysc+t0JSAaJZbduAmDOTycQ64+z7P/WM+asSpxldpqWbaV9XQ9TzxxHoVDg3WdWkSdPw6TRxGIxEv1bMdmNhCNhwpkwL7zwgt5HDzzwgP6z0WikkC/gcrvw+/2YzWYqKipwu934fD7mzJnDuHHjGD16NGPGjPmkbr9AIBAIBIJPEVVViUajuvCos7OTnp4eAoEAHR0dtLS0EI/HWffuerJyhoIyXOxtxITVbMVpdqBaJYxJExV1pTg9dnrfjWHERMP8OtScRPvLQfzjvIyaW0Xvqgj9q5NMOm8kJfVulv92MwAzLhtDJpJj40OtmMwGpl40kva3g/SuDlNa6qJiVgmN/26jkFEo93gx2Y10bA9AAFx1djyT7bS/HaBGAofVQsV4Hy1v9FKQFOoayrD7rTQtbANg2pdHkQ5m2LyoE2eVjUkX1NP6Vi/dy0JMOK8WZ52dpb9ZT4E8Ey+pIZPJsv7hZnCojDihjHBHlPblvXgb7EhWhdZV3eTJkpIShJNBosT5wVU/QGGo2EmSJEyYMatWxs0YjcfjYebMmVRUVJDJZHRBU1lZGeXl5ZjN5k/+zSAQCPaZWCzG22+/zcknn/xZV+W/AkmSGD2nivqZ5Wx4cQdrntpGLlUgl8qz/OEmGl9t5ZALJzDy4AqxelUgEAgEAoFAIBAIBDqqqhLpSmiipPVBujb1D4tus7pMVE32UzPZT9VkP+4Ku/jbUvBfgRApCQR7QXt7O8uXL2ft2rU0NTWxbds2NqzeRCafRqGw25X2EjKVVZpoJh3M4bQ4mHnsdNLhHN1Lw8w+ewo14ypZc89W8nE45PIGJAlNTJSBw06cRLQtzob1rYywllM9yY+0xkl0RwqfsQyL04RH8oMChZRCJqh9ebW+FsBxrg2r10KsJU3nsgAV032Y3Uay0Twd7wUxmjQr4nRflo3/bGXk8RUYDDLBxphef6NVZtTJVXS8FyC8NQ6AyWogtCVGx9v9ABSSKrH2FPmwNpGVieRI9WcAsFeYUbIqoXVJXJIXt+rDX+JhR1M/o6QSGkaOQ5YlUpIFZDjs+ElE25JUbtjB2GOrKJ/sY+OjOwg3JZn9g7FkChlevXMZSWJMOn00gb4g65duxGG1IUkSba1tNDU16Y5SDz744GBbjEYKeQWrycqocSOpqqpi0qRJ1NfXM2nSJE488UThyiQQCAQCweeAQqFAV1cXLS0ttLa20tzczLZt23jq/udJkyQjJcmrQ4VHsiRjUi3YLTZ8lT7yQSinltqpFZRUeul4KYQZKwcvmEghIrH5sQ6clTYmfLmO5sVdBDfEGFFfQclYJ6vf2wbASG89uWSBlGTC2C7jxEcsX8AiKfSvTWAxmTFYZAoZhZ7VYcxObRyRixQIboyj5LTxYX9THKPNhNFioJBR6FsXxlZmpWKGj9514SHtcFRacVRYaXmtl0JWG1slutJEticAMNoMJDrT+nGSQSKyI0lgbRSAeGeGQkbFJJkxYcaWc1PoSVEilWN3WxlbXUvzhi4MkpcRVRWUjHWxesVWkGDa/NHkUwU2/rMFs8vA5G+MoPnddlqWdeGdZcNYCk0v7yBLhkQ0SV93H++9sYIsGfIMfYAiSRIWrFhUO74SL3O/dASHHXYY9fX1OJ1OpkyZQklJyf570wgEgr2mp6eHX/3qV0KkBCxevJjFixcTj8c/9rmMZgMHnT6GcUfXsvLRLTS90QYqxHpTvPr71VRNKmHO1ybiHyGizgUCgeDzwt44kAq+OHzYwmCBQCAQCD4vxIMpXZTUuTFIsjifOoDJaqByYgnVk/1UT/FTUutCkoUoSfDfh5iRFwjQYkD+85//8J35VxMnQooEijFPtpChoBaGlbfZbDg8DpSggl12MHveDDL9efpWRJl6YgOjZtSz5v+2kY8rzDx3LAaTzPLbN0MGZk2fQGh7AsOyNqQuM4ZxRmx+G7F4inhnCqt/MEYjHclSSGl/MAfej1Da4MFaYiG6I0VgQ4SK6T5kIyh5CG6KYrRpH+lEZ5pgYxyjRXvdszKC0WrEXWsnsDFK59tBxp5WTe2RZbS/1UchnScVyJCODJ1gyqcV0qEsuVgeFLCXWag5vIyWN3pRsgpGq0whU6D1jR4AjE4Dyd4MXe8FtX4qtZLsydC7NgyAqkCiO42SHTx/oluLhXOUmckn8wQbIwAUUir5VIHwlqT2OqtiUMyUSzVghGmTJ9K/OYJdqmLErAqqZ5aw5q/bSKWzTL9yNDklw+v3LCdFnAlfGklXexeb1jRhthvp6+ujsbGRV199dUh7JSRKS0sxYCQdyOE2e7nsp1/jy1/+MlOmTPloby6BQCAQCARDUFWVYDDI5s2bWXDEVaSIk5ZTZKQkyUKCDKkhAnCTZMbj9WCyWLBlyqgeW0FpTQndb0SxYGX6ReMoRCW2P9uNzW2i4dR6Wl7vIdQUp8bhx1/nJiU1A5DvY4j4JxXMoCratSLbEth8ZmSLjJJRCG2NYfFq47J8WiHakgBVeygQa03grLRidplIZTL0b4rhHeNANkooeZXeNSHsFVYkg/Y6tCVG6RQPPatD5FMFCukCmWgO9QM58vmUtr2Q0+pYMt6FwSjT36KJyC1eE/2bY8Q6tPGTwSgR2BAhnyroxwc3aYIl2SSRDmcJbRkUmse7UsQ70lrZRJ5oa0K/djaSJdqmndfoMJKPqRTaZTySnxpHKb4aJznsIMGkw0aQiebY9kwnZreRCRfUsvWtVrrWB/AcZMFYqtL46g7SJMmZMzz5+JM8+I8Hh9xXIyYcZie+Eh9Kr4xFseNz+7h78W1Mnz4dk8n0Md5lAsGBS09Pz4fuDwQCn1JNPv/MmzePefPm0dTUxIIFC/bLOe0eC0ctmMKkE+tZ9uAmujZqi3u6Nvaz6Cdv03BMHbO/Mg6bR8RnCgQCwWeF2WxGlmU6OzspKyvDbDYLR4IvOKqq0tfXp7m/ir8jBAKBQPA5Ih3N0rkxqEe4RbuTQ/YbTDLl47xUT/FTPclP2WgPslH+jGorEHx6CJGS4IAhm82ybNkylixZwpo1a9i8eTNN6zeTVTLDnJBkZKrKq1AyKtlggRENI5gwYxw7nu3FGncx8+IxyGYDq+7aCirMntZAaHucLSs7MARtyIqMo9xGJJ4g0ZXGUWXTz50J56B4vdC2OFWz/Nj9FmItKaItScwuE7JZRskqJDrTSMXvokRPhkwsj9FsACDamqC0wYOr1kFkR4J4Z5ryg3wYrTL5tEI+lcdVY6ULUPIKkkHCXm6FjdrEVf+WmCY+QhM5tb+964fVbW/26T8ngxnCzQlSfZrKyFpiweIxkw5rr70jnRgtBlKBopNSqZVcMk8+rk20GS0GEl3axJjRbkDJKMTatckwi99CLlkgXHQKkA0y6WCWgaQRNacS79aOdVbYyKcL9BfdnQyyTD5Z0OtFDgwFM+VSNbJZZurk8VRRj3ftCEYcUkbVrFJW3buFaDBK3dk+EukYy55bRZoEvhIffb19hAkRzga48cYbufHGGwFwOV2UV5QzYsQIpkyZQn19PV/60pdoaGj48DefQCAQCAQHINFolC1btrB582a2bNlCY2Mjzz3yEkk1NsR5x4INl9VFic+Hq6MEG3bGHFmPOWcl9G4ah9fG+C/X0fpmD5FtSSrcXkrrPGTlFlChEJJ016J0KE8mlNVXGMU6Uzhr7BjtBvLJArGOFFafFkOm5lUS3WlkgzbYSgbSZCI5zC4j6UyWZF8Wk92IZJBQCyrJ3jQGi1Y2n1IopBUsHhOpQIZcIo/RasBaYibZmyGXLmB2GTHZDGTjebLxPPHOlC4mykRyZD4gDt/V9kRvesiDCavHjJJXBoaS2EotJPu0cZdskjHZDJqYCrC4Tdr4qLgiSzJIpEM5vQ6qCvHiuEw2S+SSBRJdRZGSxUg6lCUZ0OqiKhAvCqMA8ukC8Q7toYrJbiQfVyFowiOVUGX346twkJecADTMrSUTztH8cjeKK0v5sW5aVrXT1x7EWKKQM6fpU3q1RQLRAocccggSElYclJb7OeFLxzNz5kzq6uqoq6tjypQpYuJBIPgQvvKVr3zoRKuqqmIi9lPAP8LNqT89hJYVvbz3r0aiPUlQoen1NrYv62LGWWOYfNIIDCbDZ11VgUAgOOCQZZlRo0bR1dVFZ2fnZ10dwX5CkiRqa2sxGMR3q0AgEAg+O7KpPD2N/XRsCNK1IUiwJTZkvyRB6WiP7pRUMd6nz/sKBAcSQqQk+K8jnU7z2muv8eqrr3L/7f8gSZwcWVSGWviajCbKK8tJ9Kax5h3MOGYaNbXVbH8ogCzJzDpvHOHtCbY93Ynf5KK+uop0mYFoIkmiJ4NzJ+FROpJDkoqr8Jvj5FOleuRHpCWBzW/RHY/i3Skkg/ZQOBXIkk3kkYvRa5GWBCUNTuylFuKdKSItCfwT3Pqx/ZujWNzapEyiM0PPuhAWj/a6b0OEVDCDrdRCrD1Fxzuam9FAxFvra70AuoipvxjrZnYbcY9w0L8pgjI0OUXHUWXF4tJW7ncuC+rniXemaHqsTSskQ3RHgvD2GPm0gmyEeFeSnjX9+nVSgQy96zSnJGeVlUwkq6/2t/sspENZ0gFNaGSwyCR60/q1CjmVeHHizOwykovnibcVFccSmiVi8RYrBVWfdLP5zRTSBcLNWllZksil8mT781glO5W+atScSlIyI1tlZp02jp7V/bS+3kfZXCeWenjjsaVE0yF85S5isRivvfYar732GgDXXHMNAFaTjerqamYePINjjz2W448/XoiXBAKBQHBA0N/fz4YNG1i/fj23fvt3xImQJEaWQbtiMxa8bh+lJaVIwWrcFjcTjxtDolEhsSND6Sg3ZVO9bHq0FVSotJahmiAm9ZEJ58lGckhyUUzUmyZb78BoNZBPFUj0pLEWHY/UgkqiN6OLlFLBLJlIFlNRpJTuz2J2mZBkCVVRSQYzuggoG82TjeWwOEykA1kSXSlsfgtml5FMOEdoWxxXjR3ZpImieteGMTmNIGnuTJ3vBvXr5pMFut7rBwld5BTZoYmH7OWaMDsX3/XAS5IlHJVWkn3porhdQzZKBBuj+muDVaZ7ZUh3gjI5DHSv7icX00RIRpuB/s1R8knttcluILJDE3hLBgmDUSZSFDSZHSYKGYVkMFu8liasL2QKg/3aMyCGkor9XnxtlsjG8qSKYzhUVR/DARQyComeNJIk4bS5KbOVk0irOKUyKutLcNfa2dzWjqqq1Jzipa+7j+bV7WRtSSRbnsceepy/3f83fVGBjIwNJ36fH5fBw8/+dD2TJk1i7NixQrwkEAAul4vLLruM6dOn73J/S0sLN91006dapwMVSZIYeXAFddNL2fBiC6uf3EouVSCXyvPev5pofLWNQy+aQP2sciEcEwgEgk8Zs9lMfX09+XyeQmG4i77gi4fJZBICJYFAIBB8qmSTOYItMYI7IgSaowSao0Q643wwgdRX59RESZP9VE0swWwXz68EAiFSEnxhURSFd955h5dffpn33nuPpqYmWne0okqqnkFtkA2UlpWhJFWkmJHDTp2N319G+8Iw7joHDV+uI7IjTuO/26lzVFJW4yU+rUDg/QiFlIJvlAOz20isLYUkSdQfWcr6Ha1E25KUjHNRMctLz8owmVAWd70Ta4mZdH8WVVGpOthH37oIie40ZoeRuqPLaXm1l0wkR+XMEuxVFpJdGfLpPJUzfXS920+sLQWyTMVsH/GnUyS6UlTO9uEZ7SC0OYHJZsAz2qH3QcVBXpAketeGMZplxp9VSyaSY8NDLfjGOqidW0YuXmDzE23UHlGGioqj3Ebf+jClkzx0rQgim2Rq5pRSNsnDpsdaQQGLz4R/kou+dWEAGs6qJRvP0b85hmeUg+pD/EgyBDZpoimDRaaQUXBUWFGB4IYIyBI1c/xkk3m2PNmBvcxCyQQ3RoeR7c91oeRU7BVWfGO16xQKBSxuE2aPkXwij8lhQDZqD2ptZRYsbqPuXuCqtWH2mJCKzgfOCqu+TzbKWNwmkr0ZvazRYiCf1Cb5HFU2ZMPgA2Cr16w7P7nrbBjMmogLoKy2BFeNnbGZqSDBwWeNp5BRWHXPVhRfltr5XhrXbGHz+1uwlZiJxMMsXLiQhQsXAmC327Hb7YwcOZK6ujqOO+44zj//fEpLS/f3x0EgEAgEgk+cRCLBxo0bWb9+vf7vzVeWkFE1EbGEhNfhw2cvwddXRll5KWMOGUFiY4Fkc4762WW4ahxsfbaDTCRHiacM15Q823Z0kg5lkc0y/klughuipAI5yqZ69LFVNpGnbJKH8NY4qWAWg1mmdIqb7uUhEj0Z/BM92MstJHszFDIF/A1u+htj5OJ5TA4j/oke2pf0kehOUzGrBPcIO5HmBOlQlvKDvAQ2RlGyCoWsgqPKSqQlQT6t4Ki0kglnyYRzGC0yFTO8ZKJZkj0ZXHV2KqZ7aX2jl2RfhrKpXuzlFvobYyT70pRN9ZIKZrD6zMS709hLzPSsCeOud2AtxrZFW5MYLDKuejvmtUay8TzOWhs1h5XSsribVDBL2VQPBrOMwSzTsyZM+UFeQltj+Cd4SIezmGwGupb3UzLehdlpJNKSJLwtjr3UgqPSSj7VTzqcxWCR8Y5yEm1JIptkVFSsHjOJzjQGq4zBZsBokcnFwV5m1QVYkiThrLLqwiOTw4itxIxsKo7TfBaMdhkJzeDJVmZBzRYFRSYJq9dMRC0KtEotmJxG8klNoGXzm/XxniRJ+Kt9SDEjOcmMt9rOyBOq2LyonXhPirK5drK2NBte2kqSGNhybAs0cc455wBgMBhwGT2c9pX51NfXM2rUKE444QTq6urE5L/ggGL8+PHEYjFGjRq1y/2FQkH/e1nw6WAwGZh22mjGzq1h5aNbaHqjDVSI9iR55fZVVE/2M+drEympd1FQFVbFtxPIRSk1uZnpHI1BElb/AoFA8EkwEA0mhO4CgUAgEAj2RCaeI7AjQrA5SmBHlEBzZFh02wCuctugKGmyH7uI+xYIhiFESoIvBNlslhdffJHnn3+ef/75EVIkKDC4+lxCQsaAy+xh8vSJyHEL+Y0mphw3lrJpXjY+0koinmZk+UiMRol2JUq0JUUumSdTjDyLd6cpGVfQI9BSwTQ2vwUlq5BPK2SjObLFeIx4e5JMLI9aUIvHaivt8+nBCI8BAU2sLUU6nEUtuvwEN0dx1dj1yZJYW5pCdvAhcT5ZQC6uwk/3Z0GR8I12E9qcoL8xhslhpHSSm8DGKF0rQxTSBYxWGSUPvWvDhLZpK+TTkRyB9yMkAxnyaYV4VwqloJLszRBq1s6TieZI9WXJRrK4Rzh1J6JCVhmycr9nTYjwNm1yKRvLEWlJkEvmiexI4KiwYTBLRFuS2Eot2MstpEJZEl1pMvEsrko7Sl4l2pZixyvdmOxGjFYZ72gnvevCpPsz2MrMlE70Eu1IomQU7OU2jCYDoS2a25OS1+oda9UmQQsphcj2uO7YpORV4sXBgLPaSiGjEGlLFN8cKplojnS/1p5CWiHeU4w2McoU0gVi7dqxRpuRQqZApFXrw0KuMCRyJZ9WiPdodfB6PdSU1ZKVDbilGsYeVoVvtIult6+nn14qjnPT1d3F5o2bWRVczYoVK1i0aBHf/e53MZvMVJRXMG36NI477jjmz58vXJcEAoFA8LkiFAqxatUqVq1axe+uvYsYIZLE9f02HDjxMLa8gYrqCjKbwJJx0HBiHcneNB2BIDbVQom1lHQ+CORI9mUwuzTHHlRIBdIo+WJMWyRHLp5HzWqDkVR/hmw8rzv5aG5JZlC17+N0KEs+oY3ZcvE8uXhedzGKd6Uxu0z6JHxoa0x3YcolCyS6U+RT2rHZWB61AEargWxWO69/gltzaUoXCG6MYHZrzku5ojtStjg2SAUzdK3o1+PWkr1pUv0Z4h2auD3RnSYZzJCN5ilkFZJFx6PuFf04a23kEwMuRQq5WJ5CTmt7NpKjc1mAVNHVKBXMam1RtTFaojtNLl6gvylKIafoLps9q8PYy8wUsiqyUaJ3XQR3OEc+U8BRaSUVyOpuR95RDiRZ0oXaVq+ZbCQ3OJYND/4sWyRibSl9/GR2GEn0pHX3S9ksk+rN6I5OWgSvdl6Tw0AqkNaPRYZkT0Yf+6p5lURxn8Eik43kdaG5ikS66IQlSzJ2yYVL8lBf1BtNOKqO/s0x2ld3o1RmMI4s0Ly2lacffI6kIUauoN0nA0bKvOW4JR833PVjpk+fzvjx48VklOC/ljPPPJN0Or3b/RUVFVx33XWfYo0EA9g9Fo5aMIVJJ9Sz9MFNdG/SXIc7NwRZ9OO3SH1Z4amxK+jNR/RjKkwerq07i3m+aZ9VtQUCgUAgEAgEAoHggCIVzQwRI3VtDvJOuGWXZR1+K6WjPJSOdOMf5aZ0pBu7z/op11gg+OIhREqCzx3JZJLnn3+eq879f0ToJ01yiCDJIBsp8Zag9Et48DPnlFm4zD62Pd2J0SQzecYoOt7tIyBFSQYy5BIFfZIn2Z3C7DKjDEyABbJkQtoERrInTSaaJ1+cDIs0J5ENBt1VJ7QtjlKcPEoF8+QTBZTiBEt4RwLfaFfRsadA57tBXDV2vc6BTVES3dqD4lRfDlSwlVhIdKbpWRNizClVuOpsxNpSbHy4BUeFFbno6NP8UhfpsFb/WEcKX4MLW6mmug28H6FiupdxZ9TStKid9rcCAHhGOUj0pOlYGhysw8bBeBBAj20DiHdliHcNRrLkEwXinYMPtgei4wb6LBUYfJ2NDuapZuOacKlkgotET5rYjhSxHSmqD/XjqrPR9EQ7KFp8nK3MQvNLXWSj2r3tXBogWIygkwyw9u/bGbjt1Yf66dsQJdqaRDaCu95OYGOUXDyP0apFlfQVY+Rki0TPujB9q7XXjlIb/Vti2nVkLd5kICrFWmoi3pmie2UIAJPNQLQ9RaJD6wsljx6DIltlsvE8wfXasRaniXQ4R39jUQylSMQ6UxglM+XUMmXESGrVsVRuasA90k71sT6WPb2cjkAH1kqZeDrBc889x3PPPcfVV1+NzWpDSYPb4OXCK7/CpZdeyrRp4kG0QCAQCD55AoEAq1at4tsnXU2MEDHCpNC+3wwY8NlKqZRqsSad+NwljD90ND3vhclG8/jLXNg9FtqyAS1+tS9DJjogAMqS6s/qY6lUIIvNPxghpglkBuPR4l0pckVhTLo/S6wtqYu80/1ZjJaidb+qjYmk4rGZSI7AxogmfkITC8kGCUmSUFHJRvI4a2wMWP1EmhM4Km0kujOkg1m2Pd+JxakJVsLbE2RjeV2gE+9MU1ZqwWgzkEvkibYmqTq4hFhHklh7inR/FkkGm1+L2x1kMN5tQACfDg3uje9UVslDOpTV65+J5IaIpOOdO58X/bwDdcynCli8JjLhHPHONLJRourgEsLNCb2su9aOqqiEtmpCs0hzgnhnikwkh2yUiLYltfGRqrkbmV1GelaHQAV7iQXZLOui7ny6QGhznGwxri4TyRHeFkNVwOQ0ouRUws3adU02I5loXhctKVmFYFNUE/pL6KJ30OLp0sU2AEgSRFoTFDJF8VNG0d2cDBaZTDRHoiuFWbLiMvso9XgwZUtQJaic6SWZT7B9dSsxIkjuLJ3drXz1q1/V6mU04VQ9OAte/J4y7nr2N8yZMwejUfx5LPjiM3fu3A/d73K5OOWUUz6l2gh2hX+km/nXH8KO5T28989GYn0ptozp4YUR6yDHwFcjAL25CNdsf4Dfjr5ECJUEAoFAIBAIBAKBYD+TDKW1qLadXJISwV0v/HGV2ygd6dHESKPc+Ee6sbmFS5JA8FEQT2EFnzlr1qzhX//6F6+//jqrV6z5gEOSjAUrkxsmY4k7MXe4qWmopGaOn02PtpFPFrBmXBjt2ur4fFIhn8xjcWgTTbGuFJloFnupmXhnmmRfBpNzcNV0NpbXV5/HO7TV72aXiURXmnhXGlupBdkqo6QVlJyqC4+UvEKwSVtZD5DqSdO3IczATJqSU3FW2zA5jeTieVKBDFWzS4i1JVCyCk2Pt2G0ax+/XDyvTcoltYkmo1lm5HEVBDZF6FkVJtqaxFFlxeI1E2tN0vpa75D+C22NUyiouvAKGaoOLiHekaL97YBebtTJVSS7U/SsCevbSsa7KDvIy5ZFHSh55UPvU9XBJTgqrGx9tlPfZvGaGHF8BW1v9uor860+M9UH+1ELKqEt2kRYsClKNpbTnZoSXWmaHmvTqmuE0ileeov1ks0y9XPL9fYjQ6w9qa/0N1qNbF7Urte3fLoPk91IOqRd31Vl1/sWILQ9Tr7Yt1afmXQ4p7tCuWrsmOxGcvGiy1JOIbHTRKBaUHWRkqPMgixJpPq1ekgmbXJsoN9VVSXRpQ1cjHYZSZZIBoqOA04TxoKJklgtXqmaUVMrMZoNND3ZRoBu/HOtbNuynY6udgJKN3feeSd33nknEhIjRo6goaGBr33ta5x11lnY7YPiN4FAIBAI9pVcLsfatWtZunQpS5cu5cmHn9YFSUaMuPBR7aynqqKKwjYjdlxUTfGTS+QJbooip2WkvIzBYgDymgCo0oYkS6iKSiqQQTZr47JCRiWfLGAoxnnlknkkJEx2LdYs0ZvBUT64sigVyOgulfm0gslh1KLSUimSvekhEbOJ7jTSTvGtJpsRxauSDmXJJQqYHEZc1TaibUliHSni3SkMJplCVtHFNQO46+y4au10Lg2gKprQylVjI9aZIp/W3JMGUBVtbDAw7gAtGs033kUmGtSFRmaXkZLxLvrej1DIDo6xKmb4SPalPyBoGo5slKicVUL/lpjmrDlQ13o7JoeR4KboTtscWDwmuldo9VTyKpGWJKngoAC9f/OgqNxaYtZcM4tCKGeNrdj+IKqqkk8rJAMZ3eUq1Z/V3I5UTeztG+uiv+h2abQasPvNJLpSg/3THCdX7GOjzUi0NanlwAH2civxDq2swSwVBVl5/VypQIZc0SHL5DCRL7qYaidX9Tqb7AYykRzpovOn0WogG8/rojbJYEAOWyiVqqi01VA9xk9vIkIsGEetzZDzJti+voUg3bRFtnLUUUchY8CNj/kXncRJJ53EiSeeSEVFxYfeJ4FA8MVm8eLFLF68mHg8vufC+xlJkhh1SCV108t4/8Xt/M39n+KOoeXU4qbftD3Jsd4pIvpNIBAIBAKBQCAQCD4ihbxC+9o+AtsjRWFSlFQ4s8uynioH/pGaGCkhhZh59DR9kaNAIPj4CJGS4FMlHo/z73//mx9ffgNRQmRIMzBrIUsyZsmCTy1j8pRJjB41lrZnNceeCQfVEu1M0dkZJNmboZBVsPjM5JMpsvEsrmrb4DW6UvrkWCqgxawZbAb9dflUk77aPLwthr1i8Fglp2K0amXT/RnsZVZKRjsJbIzSsy5EJpZFNssoWQWlAIbign4lD85KG/ZSK80vdxNtTZIKd2J2aCKlRG+aaEcSZBlQcNU5qDnMz9ZnOkmHsrS/FcBZbQNZm5TbsbhHj74AKJ/mBUki1jqYb1o520fvugjZeJ7A+4N28Ciw7fkucsmhE3CZUJZMLDd0WyRHrC25R4ESQDKQGTLJBpCJ5siEsqiDaXWkQ1k2P9WuOySBFhkyEB/nn+Ai0ac5FwC4ah2UTfYQbU2S7s+iZBWaX+4mWZxYc1RY6V0TQimervaoMmSTxNanNbFUoic9OIElQ7Q1SaS1KEKqtVF9sJ9tL2pljRYDkizp/ZAJZ2l/u087twylDR6CTVpfmp1GrWzRaUs2y0TbE6T6tHo7K2z6BByALEv6RJnFayYTzekTkGa3kUK2oAuaJINEOqRFl1Tba5kwog5/dz3h7jglk1yYJhT4zxPvEFL7CIfDvPzyy7z00ksAlJWWYcHGVy+/kPPOO4/p06fv8d4JBAKB4MClq6uLpUuX8sOzf0yEIFFCKChIyHhkH2VU4zGU0DBrLJlmlVQgi8NpxVfjpGOHJtrJxnL62ErJKSh5BZPNQApIh7NkYnmMNplcokAuWcBWHEvBgMuPmXhXmmxMGxMNnCufKiDJErJRQsmrKDkVd72DeGcataASWB8Z0LZQyKhIkqQJjTIKSk6hYoqPnlSIbDxP7/thrD6zft1UMKOLkVRFpWKGj1yyQHBTlEw4Rzaax+zUxFKxthSpvowucDHZjXhGOcnG84OiGIcRk91Asi+ju2MOkOhJkw4POiFp19QcJj84dkr2pYeJpHaFkldJ9KZ116md+xN1aNnwtjiSYei2AfclySDhrLIOEUW56+wUsooudIq2JrVIOUVzN5JkzWlJa7eBqtl+LaI3lEUqumUNjIFkk0TXyn7dXdQ31oWaV4hRvJ6ELnaSTRKR5gTJovDc5rdi9ZoJprR6yEZJdy0FKGQKpPsHYuOMmptV8bqSUUYtqHqfS0aZZF/RgUkGo0XWx4cGqwElp5CL5zFJZnz2Eiw2Ew6pEoCyQ1z09PXQtr2dmCnEU4ue4p///CcADpOTSn8Vhm4HD733F6ZNm4bFIlbICb54HHPMMTz44IPU1dV91lX5XDFv3jzmzZtHU1MTCxYs2Ovjnsu9z1XrHttv9cjW54kXdv1gHLRf+z25MMetvRGzvP8e432t4mi+XnHMfjufQCAQCAQCgUAgEHweyWcLNL3ezrpntw9zSZIk8FQ7KdXdkTz4R7gw2wcFSRs3bhQCJYFgPyNESoJPlN7eXh544AGeffZZ1q1bRyQyKKYxGyz4zWU4Uh5GeMcw+8yptL7ZS2RHglLZjd02KB5K9GZ0F55sNItskHGUWkh0pIi2JbGX2jDaZfJJhVyigNlVfGsrmluSu9ZBZFuCeGeavvVhpOKKfk1cZNWFR+GtcTyjnfStC5NPK/Ss6idajLZAgYppPgophf7NMfrej1A5w6dPcPWuj6DsNDlVd8SgmCYbydP9XhBHpY1Ye4rQthiqouir8M1uIyPnVdC9op/AxqguUBo4d8vrvUOERFafmZLxblKBrB6RAVA2zUuwMTpEPDNA57vBYdsSPekhYqgPY2CyaggKtHzA2QnQBUq+cU4t9qUo3kEG/yQPlq4UncUousiOBInulB4FY3YaSRYjQZBhxDHlhFsSdBYj59rf7sPk0O6v0a5NVg3UzTfGRc1hfjLP5EiHsiR6M3SvCenCIkelhe5V/fp7qWq2n0hLgsgO7R53rQjqjlCuWhu5ZF53R3JUWPXrAsR70qSKTklWv1lz4OrRJuQGhG7ZaLHdKoSb43qbbF4LCV3AZCYTz5Es3gery4Q976KB6SBBwwm1RLpjrFiyirAlgNkm0dHZwa9+9St+9atf4XQ6qays5Oijj+ass87ihBNOwGwenKQVCAQCwYGDqqps376dN998kzfffJP//Oc/7NixAwArNkqs5ZRnavCofkY01GNxmulZFQIFLIqdgk37LsrEcuQSBQxWLcY2nyrgKh0UZsQ6UrrTQz6lIEkgm2SgQDaSwzPCoTseRdoSmGzF709Vi/Qyu4yk+7NkIjlNeO41kwpkigKeQUG1xWfGVmKmq79fc+jZkcDsMZGN58nG8vRviZErClFMdiPlU726mCbWnsLsMuoCqNCWuB6PBuAd7cBWaqHz3SCqopJLFvQ65xJ5OpcFdHENgLPKitllGhyjoLn5GKwG0v1DBUoAuUSe/qYYH2RPDko7s6ux187XH0BVVFRFE/nYyiz62AW0MaO73kGyL6PXsXddGEnSbqDBrLlLDYwdnVU2fGOcdCwLasKeRIG+DRF9zGpyGrUxTbFrSsa7dPGXVuc4kqyd21gUBw2IumwlFrxjnCSLkW2p/gxKXtHFYVafWRdXySYZm99CsrfYXgki2xO6wMvut5CN7SQWN0hk49qJZLNMqj9Lplhni9MEkqQLxlQV0kUROhKYZDPOpI8Rkh2b10LZZA9bl7YSygTI+eL0p/roYxuHHHIIBtnAjJkzmD9/PkcccQQHH3wwXq/3w2+kQPA5QFXVPRcS7DUpsvTmInsuuJ8JFxJQ2HO5vSVR2LtnAQKBQCAQCAQCgUDwRSSXzrNpcSvvP9dMKqI9J7J5LdQdVIp/pIfSUW5K6l2YrEIuIRB82ohPnWC/0t7ezv3338/zzz/PindXDolus8l2xlY2YOp2UUEt40+uQy2oNL/UDRFIR7KY7IOOR7l4XhceKXkFT72DzqVBlDwEGiMUCtrTuWw0j9VnxlZqJdaaJNKSoOawUoxWmXxaIbw9TqEo8FHyCt4xTkxOI21v9hEqRlVYfSaSPZpTUCFTAM3wCNkkM+rESpoWtpOL52la1D7Eocgz0kGqP0N2S5xYa5Lyg7yAJv5pf7tPF94AVMwswTfWReOjbSh5hfC2hB4Hl43maX6le8ikUu0RpThrbDQubBuMciuSDmWHbTd7jJRP9ZBP5fWYNQBbmRl3nV2LedvpNLJZxl1nI9qS0F2K9oStzIxslIfUE8BZbcNebtEj27QLQMV0H9G2JJ3LigIpBbY+2zmsPQP9VDHTi7/BTePj7VoZBZpf6SZTFD2ZnEay0bwugqqY4cVd52DTo62gQGhLjEw4q0+kVc70EdgU0evjGeFAyWtxc8jQ9Hi7dq/R3Kq8oxxsfqpDq2qBIROO+WSBljc0QZbVZ6Ziqpe2t7TXakGhf0tMnzh019qJd6X0/naUWUj0FJ0A7Eai7QkiRVcsV7UVs8OkT7opKoPxLDKoBcgGFGqlMUysnMrIYyvY/FQ7vaFuaEgSyvazfes2tm7dyl//+lcsFgvV1dXMmTOHk046iQsuuECIlgQCgeC/FFVVaWpq0kVJTzz8JJmig40LL6W2SmY6j8Qe9+ByuqiaXUL3qn6ysTy5aAGLc3DSOhvJMaA8KqQVzE4jFo+JfLJAMpjBYDXogh9JkjC7tT8jVEUl3Z/F6jNrDkWJPNHWBAMqFoNJpmSci1TRkTGwIYLNXxQ8qRRFKgMRbwVKJ3uQTUkS3WmiLQkizXGtWiqYPSbspRY9LiwTzuGqsRFtTZJL5Ola0a9HhUmyRNk0L7H2JNGWJJmicHhAlBPZkdDEVsUukE0SVbNLCG+PE+9KDxEogRavu3O8HICjyobVZ6a7v3/IdletTeuLD4jGLW4TSl7RI373hCRLWH0m0qGsLuTRtoOzxk4qkBkSh2YtMeMb7SQdzOqCnFQgQ2coq8foDfS7qqpIMlTM9JHoSuvxtvHOFNlYTnc0kk2yHrkrGyXKpniJ7IjrYqvetWG9XyxuE0aHQR8nmt1GnFU2YkXBf6I3TTqU1fpWgoqDfPp1JYMmIlJyWj2NVpn+puhgnG+NDYvbRLRNO5cWqTsotDJaDdp7BW2sZXGbyGcGx/+RlkE3Uke5lViH9tpokckl8uRig85QmWgWc9ZKhVRLeZWXQk6hLxIiJoWRx2Zp3djKrSt+SY4ssizjpoRvX3cF06dP5/jjj6ekpGSv7q9AIPjiYsNMucmz386XVfKaAGkPWFMm7BYLRothj2X3BofBuudCAoFAIBAIBAKBQPAFI5PIsfHlFta/sINMcUGks9TGtNNGMf7oWozm/fM3lUAg+OgIkZLgYxGNRrn33nu5+ZpbiRFB2WlZnwUbI0vHUGGowdrjxVProP6ocrY820E2mifSksBT79DLp/uzupgoE8liL7XirnPQ3xQjuKm4Ur4oHjK7TDjKbQTXx8gnFXrXhbE4jcTQIswyYS2WjbRCIatQe1gpiQ7Nrafl9R5ysax+3YrpXqKtSZI9GSI7EigFBUeZVXMZ6k4jSejXdVZZqZjhY/OTHShZhU2PtQ4R/njHOJEMmkgpG80jm2UcVVYSXWl6VoUJbYnrjkhmp5FxZ9TQszqkuSd9QPjT+36YWGdqyPnLpnmxlZhpfaN3mNAnG8nTtKiNfHLodmelDe8YFz2rwkO2u2ps1B1ZTlOgjWxk71RKlbP8yAaJbc91DtnuqLTgGeEYKlJSYOtzHcPqM1BvV62N8oN8NL/UrfdJcGOUbKwwpG0DzkayUWbsl6oJb4vTtVybDOxYGqR/c0wTlBllHBUWbcIRrX89IxwkutNa+xTYvKhDP2/1HD9Wr5ntz3cB2j2TivcZwGCV6Si6PZndRsome8hEc0SiebKxLNue79Qj6SpmlmAwyfqxmWhOn0w02mXSkRx9GzSxlKPCgrvWQVdRuJUJZ+laOeju5BvtJLxdm2QzWmWy0awejWdxGon3psiEc3gkPyPrJiIZZUbu6CapxjEdkmXzlkZamltpbm7m4Ycf5tJvXIpZtXL6V77ExRdfzKmnnrqn2ywQCASCzzGtra288sor/PTymwjRR5YMEhIuvFQZ66kqqcHc68QkmSkb7yWfKhDaEiOXyJMKZTBaDZpIKZEnlyggGSTUgopSUHFV24i1JVEVlWBTVP8+VnMqzgorqb6M5lLUkcRd79CPzacKutBILahYfWYMZpnQ1jipQJau5UH9u97iNuEd5SDZl0bJqYS2xrGXaaIlVYFEd1p39VHyKuUHeUmHskRbk8Tak8TaBsUmJocmgol3pVByKrlEHovHVPweVuldEyKXGBybekY5cJRb6XwvqMXL5Qf3KTmV/s0xUv2DY0TJIFE2xUN4e5xsLD9U6IMWsyabhgqXkDQ3IrWgDhMpeUc7yGcGY9b2hNEqUzbFS8+akB47B5oTkKvGhpJVhoiUkr3a/RkQ+ujli/X2T3CRDuV0F011QOAdHVrPAYciZ7UNz0iHdv9yKkpepXtVv35Ni1sTWev31mvC5h90ckr2ZjQBt6oJnCpnl9C/OUahX4uNi3WmdNdJk8OoRQIWX9vLrFh9JlLFMVB4WxxDMSbQYJbxT3DTt14bW0myRC6e18XlRotMeFtcb7ej0ka2GPUryRLR1oQ+vrR4zVi8Zl3QpBZUMh8YF6eCGWTJgN9eTmWFD39XHRlyqJUZ4vYQO7bv4LZbf0eODJIk4VJ9lEjl/OrhmzjttNOw2+17cbcFAsEXifmmqfy/Seftt/MVVIVT3r+Z3lzkg4meGio4YxYuvu8oZFWibLSHwy6eSPk4336rg0AgEAgEAoFAIBB80UlHs6x/cQcbXmohl9Ke77gr7Ew/Ywxjj6xGNsqfcQ0FAsEAQqQk2CcUReGJJ57g73//Oy89+zI5BidyrNgpt1UyYdQk8hvNyJLMuCNrSPSk6ewNkuhKkehLYyuxkI1qK5bzO7kWFbIKpZM8hDbHyScVupYHSQ5kg0pQMdVHJpwjsj1B+1sBPCMc+rH2Mos+EZFPFkgFs7jrHQTWR0h0pQg0RVGKIhCTzcjoE6vY8lQH2XiezU91DBHFVM0uIdWf06PQUsE0Vq+ZdH+WRE9aX8ENYDTL1B5RRueKINlIns1Ptg8RFdUc5sdRYdXdkwZWgwNk43m6V/YT2j64YtJolak6tJSOpYEhjkEDqHlFX9m+M75xLkLbYsMEQQB970d0gczORJoTNAXbhl3jw2j7T++QqJQBetaEh4mgAL0+rhobmVhuyLUKGc0hi53GBPm0ortblU7xUMgMvlbyCt0rQ/rKd20jepRb2TQ3pRM9ND3eRj6tkI3nh4jIao8sI9aZJFLs70RnWl81j6y9/wbaYC+zUDndR6Y/S6wjRTaaZ9Njg85V9cdUgAQ7XunR+nJ7ohhzo4mSbCVmulZoQiqr14KjwopanMArZBW2vdChu0dVzvaT6MnQ3xgDGbpXhXTHAu9IJ7YyK+lQQGtuQSW/02SrZJTpL/ZPSUkJo8dV4W2vJhFOYxsNYU+QtavWECfKo48+yqOPPoqEzNRpUzjkkEO45ppraGhoGHbfBAKBQPD5IRqN8vrrr/PKK6/wt3v+ThJNyOrGRzUjqSqpwV0ooRAFi8tE6TgP3ZF+ClmFeGcSe9mgS0IhvZNrUaqAzW8hFcxqUWs9aU3IUXQtsvksmJxGuldo5+pe1Y9sGPzStpWYiXdpsavJYAbvSAeJ3gxqQSXeldIFI6qi4h3tpJDV4nKTfRlSwaxeD4vbRMk4F5lIjnyqQLQtickxuJopGcjo7kioYCu1YHYZiTQnSAUymvug7oYkUz7NS2hrjHhXeohACYouQdEcO88AOyqsqKo6KKjZCUnSvnuVD4iTjDbNVSobyw8TBKGiiak/oF0C6FkbRjbuYsduyCULdCwN6K5IO1+j890gu5rJVnKaQ5K1xKKPJ/R9eVXv9wEGRECyUcIzShNKD4ypk71plJwypI35ARcoCUonu0n0pAkXx1bR1qQ+TjbaDXjq7YS2xrXrqtr5BgRQBqtBc1gqntpVbcNglXXBe3j7oHOV0WqgcraP3nURQBPERVuT+rmsJWbS4azufmV2mbR71qO5TkXbkvoY3OY34xvjItmnja2ysRz9jVG9zZ4RDl3EJRkk8pkCheKYzWQzkApmycbzSJKEz1lKpaMSt1SFqqqYx0FnXzvd4Q46pWbOP/98DJIBr1rGd2/6JkcffTRHH320HrUnEAgEAxgkmWvrzuKa7Q8MfA3rSIAqwdnthyKr2u+Pvu0Rnr5xGeOOquHg88dj9wlHJIFAIBAIBAKBQHDgkgylef/5HWxa3KrNOwO+WifTzxzDqDlVyLJ4FiMQfN4QIiXBHtmyZQt33HEHf/vj30mzk0AHE34qmTRiCt5UOam+LCX1Liqm+WjapsV19a4P46qyAaDkQZIkpOK8UzKQoXKWD1eNjVhbilh7Ul89DZqwpWS8iy1Pd5IOZtn+YhepomjJ4jFSe3gp+XSeWFuK1td7sVdY9GMtXhNqfiA6RCHZncY70kH/5hjx7jTBzTF91bfRJjNyfhWtb/SRDmXZ/lLXELFP/dEVmD0mNj/RTjaap7PorjPQJpNLi5QYcOtBRhc1db0b1BydBpBh1LxKws1xQlviBBtjQ/ra7DHhKLdgdhpJ77SSf0CMFdg4fOW9xWuiZo4fSUJzFdr5fG4tHo3h2iWAfRIowU4TUx9E+cD1dkYuCoTak7S/HdA3J/syWtRfscwH6+issFLIDYqUAP1n2Swz+qRKuleGiHdqzkk9q8LE2jS3LGQtkm3AgQgZzC4jJuvgpGdkx6A4rHSSh8oZPi3OL54n2Zeh8fE2vb0jT6wg2ZOhd21Yq8e2uOa6hDYJZy0x0bdO22fxmLGWmHVBUyFXYPMTbXqkXtXBftLhLK2vaVFxW5/v1AdIJWNdVB/qp2lRO6DFohg2R/X3asl4F+FivWWzXIzJKU7yekxEWxO6e4Gv0k+NvxrLaj8A7kNNNDVvpLlnGxs2bGDdunXcd999GDBy+FGHccYZZ/CDH/wAWRZKcoFAIPgsURSFVatW8dxzz3HHTXcRpR8VFRsOSihnvHka1aW1ZLuKUamjfKSCGaJRbRyV7E1jtBkoZJXBiLDijGcukcdZbSMV1AQd0bakLgBSFJXSSR763o+QDmUJN8dR1cFpUvcIB0aLgZ7VIQoZha7l/Ritxe+Mosul0WrQHJuCWZzVNrJxzX0o0ZOmsJPI2lljw2Q30N8UIx3K0rEsqIuwDVaZytklBDdGSfZl9Gi3AQxmGaNtJ0tmFUx2A7lkASWn0L0qNChqQhsneeod9K0PU8gopDLZIeezeE2oiub6MwRJ+44NrB8u9HbV2rH6THS91z/sGINJi5PbpRWGynBR0x4YJlDa6VwABos8JJ4WNBeikvEuOt8NDjk+tHUwDviDs+AGiwGrz6TFnxXHP0pe1YVbjgorVp+ZYFNUO06FntVh/b4a7QbNYal4TqPFgNFm1AVeakHVxUwAZVM8ZMI5fewabIzqrlQmh5GSBheB9REKBRUlr2iRfkV7bmuJWYvAK57bZDcMea/HOlL6e8DiNVM22UPnu0HyhQKpYIaulf16n/knuMlE83o7d/5MWDwmTA4j2Z0iBHdGkiDSprXJYDZQXubDELRQJtVhchrJ+5M0N2+nn15u/vnN3KTchBkrJZRz7e3f57zzzqO6unqXt1cgEBx4zPNN47ejL+E3bYvoyQ1+95SbvFxbdybzZk2jc2aQpf/YSKhN+32+ZUkHO5Z3M/3MMUw5ZSQGk4gsEAgEhJDDvAABAABJREFUAoFAIBAIBAcO8UCKdc9sp+mNdv0ZlX+kmxlnjWHErIphz3IEAsHnByFSEgxjwC3p//7v/3jrjbfIqdqEgNlowZ33UWMdycxZM0i25oi1p5gwp458ukDrG72Et8ewlZmpnOmjc1kQk8WAs8aGq95OrDVJaFuMsmleUsEsmXCOXFLBVWcn1pYiHc5RN7cMg9VAz6oQfRuj+Ma6tImI/iylU904qyrZ8M8dpPqydLwX0K35rCVmGr5cR+e7QXpWhehZGcI9wo5slFHyCuUzfFjcRvo3x1CyCtlYDnulleiOJEpBxWCVMRQn2iweM6WTbUR2JEj1ZUmFM0RaBuO3Sqd6cFba2PFKNxaPmeDGKLE2bQLNN86Jf7wLg93Ilqc68I5xEm7WJi/sZRasfjOFnOZi4B3joJBWiHWkMFplvGOcRFuSND7Whq3UTOkkN4GNUWQjTDx/JLGOBK2v94EMpRPdRNuSZKPaSu5AU0Sf5PGMdOgrzEefVIWiqLS82kMmnMPiNeGqsRHYFGXUCZWkIllS3RldsFM62U28KHIxWiVKJ7vpb4qi5LV4Ntkq4xvtJLQ5jsluINGbJhXIYnIa8U9yUzrRTduSPgppBaNNJrwtAQr0bxnsI6NdxjvKSXhbnHxawTPGQf3cclpf7yWyI0HJeM1NYcerPVp/T3YTbUuQjRawV1iwes1EWxIUsgr2CguqqpLoSiObZezlFnKpAr6xTipm+Oha1U9gbUSrw+aoPiFVc7gfs9tExzuaY1W8J0WkxazHy9TNLSO8I06sNQWyNlmGpPWLvdKC2WWgb50mGKuc6aOkwUVwoyYmspWYaXm1l3xawewxMv6MWvq3xmh7ow9XnY2+90PEOrRz1R9XjrvOTuNjrZjdRkxOA12rg+TieVw1NmqOLNUnR/0TXORSebKRHCankYoZPgrZAonOJI4qK57RDkw27Vd6SYMLo9lA57IgRrsWiVI23oMcMDNWmoqj1kIg1cuaDatJWiMsXbqUJUuW8P+u+X+MGz+OI488kp/85CeMGTNmP/92EQgEAsGuiMVivPDCCzz11FMs/NcTZEljlEz4DRVUFaZTU1qP1+Uh2pbC5jNTOsFDQImS7EkT2hzDPdKByWkkF89jcZuQTTK5RJ5MJIerxoan3k6kJUkuVcAqSZhdRs2FRlWpmO6la0WIQloTghhtMoS0etUfXU5/Y4xom+ZEaCkxYTBrIpyyqR5sfgstr/VQyCqEtsV1lyDZKFE22YOSU7TY1Xgeq8+kR6YZrfIQRyFbqRnZIBNrTyIhEe9KkSy6AFm8JpyVNnLJPNFWLYouUhxbGSzad793lJP+zTHyKS2+LlfUwjgqrKiKglJQMFgMWDwmkr0ZVEXF4jUhGyT6m7Txk73cQi5RIJfI46i0UjrZQ/tbfRQyCmaXEYPFoDsTZcJZ0v0Zva22Us21yOozU36Ql8DGCPHOdLFtFgqZAgazjKPSSiqY1SKOswomh0EbYwz0g9+MklPJRHNIMtjLrUiSJrSJtCSwuEy6y4+1xIxnhB1JluheFcJRYSUdzlJIK1o8bXGsBJpwW1VVMmFtTF9+kBeDRaZreT8Gi4zVaybRk6brvX4sXhNWi4FMJIuqaH2YiWnxeUja62RvGlXR+t9oN5AOZSmf5tXcspqiej/Gu1JIsoRskCg/yEu0PamLqRNdabLJASGRCavPrEf5mZ0GZKOsP1zSXCW1+shGidJJHmIdSbKxOCankUw0p4vMSsY5cY900vZmL0pexWCW6V7dTz5dwOQwUDm7hGhrkkg8j7XETKIYkSfJWmyzxWOid00Yo00TbWWjOT3C0FFlJdae0vqh0orFayIdzmG0GnBUW4m0JEmHs1i8Jtx1dgwWN+oOM5Mrp6OaFXrCXfTEOwkZevnhD3/I1T+8Gp+hlEt/cDGnnXYaRx11lHBZEggOcOb5pnGsdwqr4tsJ5KKUmtzMdI7GUFwhUz3Zz1m3HkHjq22sfGwLmUSOXLrA8kc20/R6O3O+PpH6GeWfcSsEAoFAIBAIBAKB4JMl0p1g7dPb2bKkQ1/EVj7ey4wzx1J7UKl4viIQfAEQlhkCAPr7+7nhhhtwSm4MBiPnnnsub775JmaThUpGcNah5/Oti67kEOl4pjfMov7QSkomuABoXdKDs8qGvcyCkofSSV7KZ3gBCDRGkY0y5dM8gLbK3jvSgaNSsyPPRrNUTveBDLl4HpPDiHe0A9DiJypnaAIQ0CIvzA4DxqIzUflUL6NOrATQJ3sGIiwclRZGn1xF2VR38di8vioctEm3MadUY7TK2DxmjGajLmDxjXFSe3gZZVO9xdcubKVafc0eE2VTvBhtBowOI55RDsqna+WQtUmfbLpA+3/6MDuNVM32YysxY/GaKJvqoXJGCa2v9xLelqBsqhffOK1to+dXM/K4SmylmhuUq9ZOxcwSQHNrkk0S5uIkltEsUzXbr69od9bYKJvo1dvmn+TGP1Frd9s7fdi8JlzVtmK/WKma7dfEXSq4a+yUTvbox1bOKsFVo5W1eExa2WJ/l4x3UT7Jo325y1Axw4e73g5okS9lEz30rg0Ta0/hG+ekfNpgnUrGu/GMcmiTUF4LVbP9mJxae5yVVowWmVRxsq/8IC+eMdp7wOQyUjPHT8OX63FW2/COdFIx3Uc+rdD8UjfeUU5KxrnwjXNishuomu3H6jPRuy5MrCNJ+eTBe1M2xYtvvNbfJruxeF+L/V1l1+ID0SbfKmf5qJqt9b9slLG6zbq7Vt0RZYw6oUpvm8lpItaV1h2cRp9SRcVMn9a2ChuqqtJXFBpVz/Ez4vhKlKz2XvSOsJMOZcknFWx+C3VHlKNmtfewb7wLi9tELqWVrZpTitlhItqexOozUTbZja1U+8yVjHPhGeGg7S3Nnaliho+SCS7sZRYsHjOVM3z0rAsT3pbAM8ZBzSGljJs0hmnSHC4+/XIuPmkBB5UejMdcQkdHB/fffz/jxo7DJFk4/fTTefzxxxEIBALB/mXbtm38/ve/xy9V4HF7OO+883j2ieepop5Z8tF87ZjLOKLmOGqlMYyYWkP5QT4MZplkX4Z0fxbvKO17y+w2UTrJjb1M+06LtibwjnJisBhQCyqOKhveMU5AE9c4Kiy46ux6PRwVVkxFZyKTw6CPPwoZBVXVvosBkKHu8DIcRYfM7IBwpUjpFA91R5UCmmtOPl3Q3ZEsXhMjjqnQv2uNOzkbIkHFQT7Kpnow2g2Y3UZcVXYGniW4qm04Kq26qKmkwYXFawIJzE4jvtEugpuiJHrSOKusg2OTUgu+cS4MZgOBDVGMVgP+BjeyScLiNVE3t1wfh4E2/rP5zVr9FRWz06jHjdnLrFp/S5rTk3e0E7PbBGgORP4GN0argVR/lmRfBne9Qz+vZ6QDe7kVJAnZKGtli/1tK7EMqYO7fnCMrJe1a2WtXjMl43cqW2dHVaG/KYYkS/gb3JidWp0sHhPeUU69r101Nlw1dr2/HRVWLcJM1SIC/Q1ufWWZs8pG1cEl+viwpMGF1Wsm2Zch0ZPG3+DG4jVjsGiiK88IB6gQ2BDB7DBi9ZlB0pyVBvpbNstYfWbctTa9/q5aG5Zifb2jnVQf4sdgGYjONQIqqJpzVv0xZfjGae0xFJ0kk72a2KlkvJO6uWV6vJ7ZZSLZk6aQUZBNEnVHlmHza58Nq8+M0WLQnTb9DS68oxzkkwUkgyailyQJJa9i9ZrwT/SQ6Nau46qz46y2YTDJSJImwsvG8qSCGSweE2WTPLjqbKCCq8aO2Wmk7/2wdp2Jbion+6m01TC1ZDbnzL2QkyrPokGagdVm5fd3/J6jjz4au+ykThrLgw8+SDy+k+uVQCD4xFi8eDHXXXcdd91112ddFR2DJHOwayynlMzkYNdYXaA0gGyQmXTiCM793VwmzqvXvy+jPUlevm0lL/56BeFO8TtEIBAIBIIDhU2bNnHHHXfw9a9/nRNPPJFzzjmHG2+8kba2tn0+129+8xvmzp3Lj370oyHbI5EIDz/8MFdeeSWnnXYap556Kt/85jd59dVX91czBAKBYK8Itcd4/Z61LLz6P2x+ox21oFI92c+p1x/CaTfOoW56mRAoCQRfECR15xwHwQFFa2srt912G4sWLaKjowMACQkHbiqoZYyrASUugwyTzx9B/9YYXe/1IxtlZLMmnlGyClUHl+Ab62Ljv1v0uDOzU4v9ko0w8Ssj6FkX1h1hjFYZRdGOrZjlw1NvZ/OiDr1eFq9JW+ktw/gzauhbHyG0ZdDJSDLK5OJ5vGMceEY4aHmjV48Kc9XYiBVjQarn+Im0DMZfGe0GbD6z7lzkqnMMiRIrneQm2q65E30wtszsMVJ9sJ/WN/r06K2dKZ/uxTvKwdZnOvRYr50ZdVIlRovMlqc7d3kvSiZo7kEDddXZRQzazvsmnVdPuDlB57Lgbgp9NKZ8bSQ9a8N6hNn+wOQ00nBWLd0r+3cZWwfsur0yVB/sp3tlaJd97xvnomaOny3PdOgOATtTfpAX72gHW5/p2u29+2Cci9lj1OL7gLJpXkJbo7pIyew2YiuxENmRQDbKuGptuhOVbJapnOWjv1GLr7H6zeQTeU3AhOa05am3s+NVTUxkKzOT6tMmymQjjJlfQ7AxSn9TDKPdgJJX9di4smle/A0uGh9r0+sx8B6VjTDh3BH0bYjQty485DMG2mfBM9LBpkda9WOVrEI+rWC0ykz4Sj3dq0ME3o9gtMqkSsM0dm4gWOilIOVRVRWbzcZhhx3G+eefz8UXX4zZbN71PRQIBALBLlFVlXXr1rFo0SKeeOIJ3n//fSRkSijDTxVlhirskhO1oOKqseEd7aT97QCqoiKbJCRZ0gTVEtQeXkqkNak5z0iDMVRqQcVVZ8dVYxsyNtAjwSSoPtRPpDmhO/IMiH+UvIqj0oqjwkrvurAe22VyGMglNMGsf6KbRE9aj6SVjRKySSafKmByGLGXWoi2JfTorYFYLlTNJSgby+vuPgazjNVv1sc+BqusCWeKOKttulviB5GNEhUzfERbk3o7dsbkMFA5q4S+9ZGh8blFJIOEu9ZOpCUxbN+H4azWBF+dSwN63Or+wFVnx1NvHxKLuz/wjnFiL7PQ+W5w1/FzMCz2DTSRk2ySdeeoD1I5y0cuUSDYOHw8JxkkKmf6iLYldYHPB/eXjHcR3h4fjKnbKSbPaDNgdhmHxO/Zyyyk+rV4N4vHRC6Z12PzLB5TMfJWc2GyuE1kivHRkqwJ5RM9adKhLAazjKqo+r2zl1tw1djpWa1ZhxmtBvLpgl6nqtklxDpSxDtTyEYJVUVfneesseEZ4aBjaUATU1kGY/4kGWoOLyPcHCfeoR2LJKEWtAhGzygHzkorHQMR0laVqCFIZ7yNoNRNSk1glI2cfe7ZzJ8/n1NPPRW/37+bGygQ7B1//vOfOf/88/F4PHsufADS1NTEggULuPfee2loaNhj+Y0bNzJp0qRPoWZ7JrgjytJ/bKS7MaRvkwwSU04eyYyzxmC2mz7D2gkEXyw+T59tgUAg2Fv+93//l/fff59jjz2WMWPGEAwGWbRoEalUij/+8Y+MHj16r87T2NjIt771LQwGA7NmzeLXv/61vu+dd97h+uuvZ86cOcyYMQODwcCbb77J6tWrueSSS7j00kv3qc77Ovb6onOgfb8caO2FA6/Nn0V7AzsirHlyGzve69G31c0oY/oZY6gY7/vEry/u8X8/B1qbPw/tFSKlA4wNGzbwm9/8hof/8Qg5ihNMGPBSSh1j8FOJLMlUzPRSOsHDhkc04ZHVb9ZXHQ+IlgKNEXpWhXWnnQFBROVsHyXj3WwsHmu0yrpIQxPWjCC0NUbX8v5hopSyaV7Kp3lpWtg6eMxONJxbRyqQofX13mH73PV2RhxbwfYXu3Y5YTXy+ArMHhObn2gftk82yjScXUv/lig9q8LD9ltLzNQfXUbrG33aZNsHsJWacY9w0LMyNGwfaH2AjC50GWBnUdUHMTmNjJ1fTed7QT3W5IM4q21kozmy8Q8oo2QYdUIl3Sv7SQWG19dolclnld0KoPYkUjLaDeR3cqbamerD/aT7s/Q3xobt845xaPF3u7quDONOryHaltxtP5qdRpAZIiADbWX8ru4LaEIgd519l/cVtGg3paDQ8fZwoZfRbmD8GbX0rg3tUlhVOsVD5QwfTYva9ai4nRl3ejWFnMr2F7qG16vUzNj5NbT+p3eX97fu6HLsZWaaFu70fi1+XoxWmQnn1tO9qp/Ahqi+T5Y18WD1YX489Q42/btVP3RA1CSbZSadV0/PmhB970f0ffm0gpJVqD7cj6du8Ni8PUufo4VtvVtIU5wANFs4aPpBXHzxxVx66aVYrdZd9q1AIBAc6CiKwrJly1i0aBH3/PaPpEhgxEQpVZRTQwkVGCXNqajm8FJi7UmirUlko4RkkHQRh6vWhmekQxOxqDuJjgAkqDls8FhJllBVVReeOGtseEc56Vga0AQWHxClVM/xk+zLEN423HXBXmbBP8lN57vBIQKiAcoP8qKq7HK8YLDKVB/iJ7gpSrJvuNjFWW3DM8JO53v9uvBjZ3zjNMFWePuux0DuejvJvgz51K7HI0abYdg+o82Akld0gcsH8Yx0YPWa6FkzvD2gicEsXtMuhU+OSitGi2G3wifZJOvOUh9kjyIlCWTD/2fvvaMkuQqz/adC5xwmh53Z2Zy1q5yFIggEwiAZ2ziAAdvgwGc+bGPDDywZg42NP8BgG2Nh4wBCBgRIgAJIgIS0ylptzpNjT+dQXV39++N213TPdBiBYBXqOUfnaKfv3Lp161bVnb7vfV+poTDK5lUJDLobzlMUp4xik0W0XwNcUQehdV6mH481FV3Vin7Meu0yRqnc8LpB5drMFpYEP7XtdStEtgSY2xdfGsPLftfT7RR/JzSovufcMPnFYt1GA7OtARtdu0JMP7WIllwpXI9s9mNzK0w3mGcqdpne8yPEDqfq/46o3C+BYQ+eLmed+E9WxTWRZIm+C6PET6RJT+bMz6qipsAaD94+FxMPz5t1qk4xPiVZov+iKIvHxe+Wy2VK4RzjiVFmSuOkiKPICiGjk49/4Vauu+46ent7V3aMhYXFz8RLWaQEQgh94pFp9v7XITKxpWeYK+jg3F/ZyLqLeq3dxBYWq+DFdm9bWFhYrIZ9+/axadMmbLYlYfLY2Bi/9Vu/xWWXXcYHP/jBtnWUy2V+7/d+jzVr1vDkk08yPDxcJ1KanJxElmW6u7vrfue9730vzz33HN/61rdwuVyNqm6IJVJ6efNKO1945Z3zL/J8Z44s8vQ3jjP29Jz5s6Fzu9j1+hGiw7+4TTjWNX7580o75xfD+apn9OgWvxAOHjzIFVuuZZ4pSohFChUbHfSyho0EpQjIsPGN/cSOpJl7Ns7isTT5WNEUk7g7HAxe3smR/x0HAyYenSczIxacDM1g+NpuUuNZ5vcniR1JCWFM5XddEQcdO4Oc+O7U0u9Wd1Yb0LUnRKlgMP9cgsVjSbRk0RQoqW4RbTa1dwE9bzDx0Dz5WP3Oal+fi5mn4yRHs5y6b7puYSE44qFUMEiN5xj/yTwY9asdnTuDxA4n0fMGR+8crxNGySp07gox/eQi+ZhW5/YEYlGoa1eQ8R/Pk5vXVoiBPD1Oes+NcPLeqRXiJBCLHYOXdnLs7gnTTaeWUl4nMZohM9VYxASYCyHLsftUVKdCMwli34VR7D4bR++caFygBeFNPvrOi7L/f06bwrS6Y7tUdEfjBcP48RaOBQYkT2VIN3BMqDJwWScAx++qd6SqCpR6zg2julTGHlwSseXmNLN/gyMeFJvMQo2AauyHS5Ob4IiHYrZkujbo2RJHvj5mjovoVj/Jsawpkpp/LkF6MmcKlLrPCTP7TNzsl5P3zaA6REyLu8OBt8/FbGXhMzev1QmUunYHyS8WzX9PPxHDGRJ/XKpOmf5LOpjcu4CWEM5MYw/Nkalc/85dQVS3wuTDYuFsfn9i6R6riL+mn1xES+oYuvjdqkNB99khPJ1Ojt89ZZ5TZrLqrgE7Xr+Oqccj9MytR5c1MsPzHD69n71797J3717e9773oeTs/MO//h2/9Vu/hSxbKaIWFhavbKrCpF++6DeYYRyNPHYcdNBHJ72E6ESWZDxdTgLDHlP0sHAoSTEj3ieGXqZza4DsXIH0ZI7sXEG4GVXdjdwq0S0e4QBThtjhpClEKRtlgiNeilmdzFSe3FwBPVsyBSWqUyEw5CF2OEXZKFeOu/TedkXsKE6F9ESO7HwB49nEkkBJEgLr3IKGnisRO5qqmwvIqoS310VyNEspbzD1eKxO1Kw6FRwBG5mZPOnJHJmZfJ3QxeG3IakS+ZhmumjW4ukRMWX5Rc10zqklssmHltZJjecaipciG32UimXm9ydWfAaQq8QHN6NslBsKlECIkKpxZctR7DJ9F0SZey5ObqHx77eie0+YQlxj8djKPpEQTo6KXV7R9lLeaCguq6Ili2Sm8xhNxEZ2n0rXWSFmnl6kkFgS/dS6YUW3BYgdTpljF1i6NpKIckuOZkxhWDFbYvrxmPm5v99Ncjxrju3kaFbMbytRb66IvW5uOPPkohnt5gwJV8fqPLCQKDLz9JJAyTfgJr9QMCOfF4+lxcaBStv9g24SpzIYepmSZjD3XMI8T2+vCyRIVzYTpCdy5meSDNGtARKnMmgpnbJRZv5AwpwPentdOAI2Fg4K4Vh6OkchVTTPueecMPHjafRcScQC71/6Xf+gB09nGPUJN0PSJnRvnphtmtHYKd7+9reLqDl3N5FMDz+av8dyWLJoi6ZplgPqKwBJkhi5oIfBszp49lsnePbbJykVDXLxAg9+9lkO3TfGBb+5meiQ5aRlYWFhYWHxcmP79u0rfjYwMMDQ0BCnT59eVR3f+973OHnyJLfeeiu/+7u/u+LzRhslJEnikksu4cknn2RycpKRkZHn33gLCwuLBpTLZaYOxHj6G8eZ3C++N5UkWHthL7tev5ZQv+8Mt9DCwuKFwBIpvUw5ffo0t9xyC//xhS+Zjkk27HSyhjVsxCv58Q24iGzyc+reGTAgfiJNdk4sAmhJneCwF/+gm+RolvyiRnoqh6wKp5b0RI7giNd0cSlmdHO3tJbUMTRDRHzENHRN/Fx1CvedxImMuUAAYPfaKKmijJ41zOgsgYSn24kr4jDjFmrx9rkIjHiZeTYOBitciTq2BsjHi2Kxapnzj82rEt0SQC+UiB1KrXBucnU4iWz0k5rINYwacYZseHtdK6LhqpQKBsWcjtFkLSpxMsMpfbqhQAlEP0/+pHGMW8+5YZwhOye/N93wcy2htxQgze1PoFTEM8+X1HiOseIsGI0XvU7dP9Pw51WCIx66zgpx+GvjKxyVmjkXVJl4eJ5SExcCEOOwlTecr9+N4qgXKdUS2RRAz+l117s6LmRVLEgpTqXO6am6WOnucBDZ4CM1nq0TOVXHnbfPRWidV0ToVE6h1kHJ2+1CUmTzZ8W0bi5Y2X027D6bucCnumUSNc4SkiwmaVVsHtWsR3UqFFP60oJdrws9VzLrXr5Y2rE9UOPOJBM7liYzK+6r7k1R7MEeAsd7MTBID8wyWTjNeG6M3/7t3+YP/+AP2bR5E+9///t505veZAmWLCwsXjGUy2WeeuopvvzlL/Ppv/1H8mRx4KKLfrroJ0AESZIIjnjRkkWycwUKqSKpiRySDGUD9FwJb6/LfH7n4xrFrHhWlwoGiqOM3W9DSxYpaSWKWd10csktaNj9NlM8IkmYjgklzaCkacg2CaNYpmyUsbkVFIeIaVselWr327C5hEiJMnVOhZIkBBiGXkbPlVbOrTwq/oElh6Pln3u6nbg7HGRm81ATnVXF1+8CSWoqBHJHHRQzelP3RD1vNHTnqTJ/MGkKXBqhJYsNHXgkRaJ7T4jFo+mmx06NrRRNVTF0IURZ7ki0WuLH05S0xgJwLa2bAuhmdOwIko8VSI3Xz5NL2vJ597K6U/oKgVItRqlMKV/CKDXuc9Wp4O5wkJ3NoxVXzpUdfhv+NW5yNUIiwHR1ckbsBIY8ZOcK5s9qHZ/cnQ4Uu1x3TZaERBLeHidG0TDrNooGWrG6EULBFXHUnX/tuFOd9ZOrWoGabBOfVedlNrdCIVE0x7NRNOpcpJwhu+kmJskSuXmNYkVE5wzZxTlU7l2tph6A7sFO3OM+OqUhikqeTNcip2aOcZAn6Yh20N8xyC1/+xFuvPFG/H5/w+tg8crmxhtv5KqrruI1r3nNK2KX+isdm1Nlz5s3sP7Sfh79z4OcfkJs3pk5ssg3/vxhNr1qgLNv2oDTZwnXLCwsLCwsXs6Uy2UWFxcZGhpqWzabzfJP//RP/Nqv/drz3gQRi4kNKO0ihefn51lYWFrnWK14ysLC4pVFai7LxL4FjvxwnNkjcUB8J7f+kj523rCWQLfnzDbQwsLiBcWKe3sZEYvF+PCHP8w/f/rzaAiRhIJKlB6G2YxX8tc5xfgGXHRuD3L6+zOmEMPT4zQFFutu6CUznWdqb8w8RlWkFBjyMHBJB8e+PdlwsWbk+l4kCY59e3LFZ3a/yvob+pl8dL7hLvnwRh/RbQGOfH2liAWE4wyS1DQSrHNnkNRkltychmyXV7j9hNZ7SZxMY+g0/NzT5TTdmBp97gjalhb0lsXVmZ8ni02j1BxBG3avumKhqIrqlhm5vo/Jn8w3LRMc8eAI2BpHmMngDDSPP1sN7eLe2iGrMqpbbijecobsRLf6mdwba+jEBGL8pKeyTSPaZFUmuNZD7EhjsREsiyis+2XAoLG4TAZZljF0A1fUTiGuYdQUqR0PgWEPmalcvftWzec954ZZOJSsP0bNsfsuiDLx0PzKqD6Eu5i3a8ndaDmbbhogOZqtixypEhzxMHBxJ0e/PdHw/Iev60GSMCPoqvc0iGszfG03oz+YJTOTxxmyo+d08xw7dwVxhuxm3GLnziCxo0m0jM60+xS5aJxTYycpl8s47A52nbWLW265hauvvrrheVhYWFi81Dl06BD//d//zd/d8kmypLFhrwiTBggSRXUouKIOU2Qd2eQnn9DMuZasSsiqjJ4v4QjYiGz2M/PUoim0qQqYQDxzS5phurPUYveqdO8JM/PM4grREQg3G1fELiK0liOJurOzhYYOjYpDJrTeR+xwUogylsXFKU4ZT6fTdM+RFKlOZCHbJOxem5iXVMRT5RpnS0mWTMGUJNd/Vm2fYq/E2y07dpVG0W61uDsd5OYLZl8ux7/Gjd1ra+qwJKsSgSEPybFsQxGU4hTv/2b1t6Nt3NsqaBXF6x90o6X1puIvZ8guYt+eXGwa4eYI2tBzpeYiMKkSQ7jcuanmminOlZ/XjhebV10Rn1v9XFIknEHbCnF19XO7T8XmUZecJJcdO7DGQ6loNBzjkixEaPET6YZOV54uJ6H1XiYfXWgYFdi1u+IK22D82Dwq3XtCzDwdR0sW6+5pEPNJu1ddiuD1qaYrmmyTiW72Ez+ZRkvpwmlMkcgvahTKedKd80zkTjGbmkZGZqBjiA/c+if8+q//uhXFa2Fy9dVXo2macNoZGeH666/n6quvxuezdp7W8lKPe2vG2DNzPPIfB0lMLQkyHV4bZ9+0gY2vGkCWrQg4C4taXir3toWFhUU77rnnHm699Vb+5E/+hOuvv75l2c9+9rM8+OCDfOlLX8Jut3PTTTetiHtrRDKZ5K1vfSsDAwN85jOfaVn23/7t3/jiF7+44ucf+MAHGBwcbHs+L3XS6TRer/dMN+MXxivtfOGVd84v1PnqeYPE6TyJEzniJ/PkY0vfCUkKdJ3lo/d8P87gmfdbsa7xy59X2jn/PM93tX9Tnfk72+JnwjAMPvvZz/LpT3+aI0eOAKCg0EEvQ2wmIIXqvvDv3BEkO1cgM5UnNZYjNbb0Rb0pbvjWBPmYxrFv1guMhq7sAgVO3TND4lSGzGzOjDFT3TIDl3Qy8+Qi2bkCE4/Mo+eWXiiqWyE04mVuXwItqTPzzGL9jnNZLLBpSZ3cQkG4NskyRgO3HsWuCLFHI2QIrvMiKSLma7kIxu5V6Ts/imKTmT+QXPG5MyxEGhM/WWBxWYQJCHHJutf2MfNkjPkDyZVCJBnWXttDajzbdKGpa1cIZ8ROany88TkYkJ0tkKuJtVtOq9i0wBoRI9dMpKI6ZSJb/CwcSjaMoVsNwREPZaPeCaiW4Wu7oVxuKLLJL2qM/7j1IlxmNi/iBpsQ2eyjc0eQ5Hi24YKcI2hj3Wt6mdy7QOzwMiGTIYQ5I6/pJXEqUy/0McQ9hQxrXtVFZjpfFwdXHQ+yCr3nRVb8fvVzu1cluNZLdq5QL1KqdLfNo6I6ZPQmIq3l180eUNESS/VMPxEjX1mE9vQ4UR2K6QQQP56hlJ826xi6spPEaNYUBJ787hSqW9xAvj4XA5d1cuI7U+QXNfKLGge/PGoep+/CaJ3YsNapwRm207kjSG6hgJ41GJTWoY8ZrCnvYJQjFEIJHn/8ca655hq8Xi+XXXYZH/3oR9mxY0fDc7awsLB4qRCLxfjyl7/Mv//7v7N3795KhG4fG9klotxkWTgcFcvYvCrBES+5hQKlgsHCoXqBUceOIKV8ifkDSQqJYt07xeZR6NolxA3FjM78gUSdQMLd6cAZtBM7kkJL68w8tVjn1OOK2NELBsW0TmYmv0K8rDoV4fZSFg4yVdem5ZRLZRSbjGJXMIr6CpGQwyecJdNTOeHUtEzk4h/04I46mNy7INyTlu2PCK334vDbmHostlKghBBY1f7+cjzdTsLrfUw+utAwqk1xyIQ3+omRNKNOl1NM603FOSDcexpFrVWJbvJTKhpLToTLcEXslMs0FQm1Q7HLuDsdpKfyDdtp96l07w6vGANVGkXj1VLM6OTjLdomQXiDj9yCRvx4434IrfPhDNnqNjcA5jXz9roIrvWsEPpUz8fT5SS8sXIda4RQtZ8H13qZfHS+4e87w3ZcEUe9SKmmqyRVQjaaLMZLIupPq0TWKY5KdF7l93MxDY6lzeN6e11k5/Lmv+f2JZBVUbfdb8PX7xJxiqUyxYzOxE8WMIrV6OAAet5g8aiYn9bOpe3eynWsiA2NoiEcOCt4up3Y3Ar5RQ2H5MSdGCSi9ZMny7xjkoXiJO9617t497vew1ve+su88Y1v5PWvf73pqmbxyuTOO+/k3nvv5e677+bQoUN86lOf4nOf+xyXXHIJ119/PXv27DnTTbT4OTKws4Pej0d47juneOprx9ALJQrpIg/9234OfX+MC35jC90bQ2e6mRYWFhYWFhYvIKdPn+aTn/wkW7du5brrrmtZdmxsjDvuuIMPfehDzysi2DAMbrnlFtLpNH/0R3/UtvwNN9zARRddVNfGW2+9leHh4VeE2+crTQT7SjtfeOWd8097voZuMHs8wcS+eSaem2fuWGLFRsbOdUH6d0TZeEU/7tCLZwOWdY1f/rzSzvnFcL6WSOklygMPPMBHPvIRHnzgQcqUAYkgUYbZTETqMssFhoXj0ZE7x9ESOsfumqoT3vSeF0G2SYz/eJ74yQylwvRSlIEK0a1BFo+nKaZ14qfqFyX0rGG60eh5A1mVUSoxbstFFoFBNx3bgyweT6FnDeb31e80Hr6qG9WlcPTOCXLzGrn5eoeY4Wu7SU/mmNuXaOge07UryOKJNFpS59id43XuN4AZPaeldY5+a6KhywCIxaPRB2abLuZoSZ2pvQvEjjVx8DFg/KG5lgKj0QdmsXub33p63mDswdnGH8rQd0HEFHs1IjWWYfSHs41dhABn2EHH1iDxE5mfWqQU3uCnVCg1FSlNPb5QF3PRiOj2AMWU3jBmZLqR00MNc/sSJE5nmjoGFOJFxh+eI96kfYYOk48ukJlq7FSFAaMPzqKlmsSb6HD825PoeXENlrs2aWmdw3eMmuOwa3eQxWNp85plpvIcrYgAVafM2lf3MLU3ZsYVJk5lzH4Jb/TRe25E3MOV368VqYU3+HAG7XX9aMYeykDN7ljVKVyiqte9kCqyeDRlLlxHtwdIT+bMczn9gxlsbhEL6Ira6b+og9M/mEFLCjeGA18ZNZ8nA5d2Iclw4u4p1rIFZmGkrHGSAyxoU9x9993cdddd9Pf386u/+qv8xV/8xStKlWxhYfHSplgs8p3vfId///d/5+tf+wZQJkI32zmfKD0o0lKEaufOoBAkHUySj2lMPDxvCilUl0Jkk5/5gwlKeYPY4RSlwtK7zOZRsPtsZKbzFDMlkuNZU9xgFIWbjCTVRF7VaA+Wi1MCw17ysQLxtE4xo1OseSWqboWec8LMP5cgt6CtmPc4gjaCa73MPh3H0MvMPFXvXqk6FZxhO+nJHNm5ArmFlS5FVXejxMmMqL+JBihxMmMKPBqRGsuSWyg0/f3MTL4Sadd4TlMqGEztXWgZA9fIPaeKK2JHVmXTZbMRC4dTSC0STj1dTsr89CIl2SaL67lYpJhZOf/TUjqz++IUmsxbQFwzT4+z4dytpBkN3U1NyjD7TLxlHyZPZ8jMNI8SzkyL69TIiQjEddQLzZ2a0pM58jHNdPNSnfXuWcnTWXMDRO34rFIrrvL1u7D7bKYrWblUrvu8Y3sQLVU0he5G0TDFT4pDuHmWCiVz3BhFA6NqsqpIyDXuUIpDrjunWqGZ4pRxheykp0X8oZauj9cLrfdSyhskK+cVO5JCUsS9YnMrdJ8TFgLyhJt+bR392joypJjiNF+7/et86Utfwo2XP7vlT3jjG994xr94sDgzuN1uXv/61/P617+eU6dOcdddd3Hvvfdy//338/3vf5/Ozk6uv/56rrvuOrq6utpXaPGSQ1Fldr5uLesu6mXvfx/i+MNiI9HCqSTf/sgjrLu4l3N/ZRPuoOMMt9TCwsLCwsLiZ2VhYYE/+ZM/wePxcMstt6Aozf9GA/jUpz7Ftm3buPzyy5/Xcf7hH/6BRx99lD//8z9n3bp1bctHo1Gi0ejzOoaFhcVLn3K5THI6K0RJ++aZPLBAcZkTeqDHQ9+2CH07ovRsDmN3285Qay0sLH7RWCKllxCxWIwdkbOZZowSYoHChZcBRuhnBLmyOtJ9ThhJQogexjJMP66gVxY0DM0gtN5HaiyDnjfQ8yXkUmVhyEDEi1UjzGRZ7PYtlIgdSq1w74lu9dO9O8yh/x1Fzxocv6veealzVxDVrTD58AILh1IsnsjUCaTcXQ5KBYNCvMjMU4srdtbXUkgWm+7wl+1ih3xJLzP/XGKFQEl1K4y8ppfZZ0V82XKBkqzKjFzfw8LhJLFDqYYCpcgmH0YJFo+mGkaMiTb4mN+XaBrRFhjyUEgVyS9oDSO+QERxze+P1zlc1eIM2fEPeFg8kkajcR2G3tzhCMQiz3NfOtX089VQjQprRnamuUirSnCNh+x8oaFICYRIbvCyLhaPpxuW0ZI6yNCxNWBGZNRSHa/OiB2Hz7aijmofqU6ZnnMjTDw8Vzd2qudQFRHNPB2v69fqNZTtMmuv7WHxaKouRqdal+qUCa/3V2JAGjgsyJIQ/SQaLyzGjqYoG5gCpeCIR4ivKrfS2INzqBVxoDNip/fcCKMPzgoBlwGn7p0x6+q9MIozYOPI1yfMPjTbLEN0sx9ZkYRISQY9WzKFYJIioedK5nkHRzxkZwpolXt65qkYik20wx5QGbiog7Efz7ExuQuKu9BDWZ6LPcnE+CQf//jH+Yd/+AccBTd33PMVKw7OwsLiRcuhQ4e4dvMNTDFKkQJegqxjG90M4pDEbh7VqRDa4CN2KElJM0icypjCIhBRYbaAjXxMo1QoUdJKyLJECZYEJ5VYKlfEIWJnK4KI5On6OUn3nhD5mMbisTTZ2UKdM5DikAlv8BE7mqKUN5h9enFJzFQ5hitsJ7egoWdLLBxICoeYBuj5EnpWXxFNVcUZsePrc5GZzlM2yivKBIY9eLudTD66UPm8fo7nijrwD7qF8EUzKC1rhqRIBIfF+66ZAMkVsVPMlNDzpcbiHwm83U7SU/mmwhdXxI4r6hBzuybTUEfQjupSWoqUWkXNAcJ982egmNEZ/9FcyzLtBFCyXa70R25lJFsFZ8iOt8fZsL3VPrR5VGRVMoU05uc118nbI6KTa8dF2SiTmxfj1dPlxCgt/btKocYl0tPpFC5CNdelKoD39bkIrPEw8chCnbNU9XjLx2ejcykqjefRgBAvVf4uUd0KElCszIdKBYPJRxbMeys44qWY1c0Ix6ozJYh7sve8CAsHk2TnxLnWnrMzaCcw5BF9Jfac1PWroZUpVZ4lsk3G4VdNYZSeN4gdSpnixMCwRzx3xmEd2xgpbCXlijGWO8GHP/gRPvjBDxJ1dNNdGOTx/A9xOCwxwiuRoaEh3v3ud/M7v/M7PPzww9x1113s3bvXjN84++yzuf7667n44otRVeuropcbnrCTK96zi81XDfLwFw8QGxXfaxz78SSnn5hlz5vWseWaNchKC9WthYWFhYWFxYuWdDrN+9//ftLpNJ/5zGfaioKeeOIJHn30UW699Vamppa+6y+VShQKBaampvD7/Xg8nrrfu+222/jGN77Bu971Lq699tqfy7lYWFi8dMmnNCb3L5jCpPR8/fdpDq+N3m0R+rdH6dsexRt1naGWWlhYnGmsb55eAnz961/nIx/5CM888wwAKjb6GGaErdgrC2SBtR5SozkMvX7RwdDrF0ZUt0Lf+RGmFFg4lGL2mXhd+fAmH107Qxz8qnBIOXT7WF2dvgEXqlNl8WiK+PE0Jc1Y6cZTETlJgFwTL7A8Om3w0k4ys3nGHpwzv7g321kRhsw+Gyd+PMPkT1a6J0W3+ImfSKPnDQ5/fXxF/dV26NkS4w/NkTjdzFXHILdQWLHYUouvz2WKlBoRXOuha0eQ5OlMU4ejzp1BimmdU/fPNPxcdcpIsliQaEZ+QePg7aMrY+YqOII2unaFmNy70NRl6BdFdHsARZGYqYkIq+XY3ZNNzwPE2JUUCdnW3F3B0+Wka1eI3IJWt1u+lq6dQewNREpVHCE7nm4ndr+94QKfrhnkYsUVMTlmOzWDsR/PLcWLVEV+1d/PGxz+33HzPgpv8pEcXXKx0rOlpTEhw4bX9zF/UAjmxAGWxp0zItyMoN5NSa8sNtqcCpIsmYt4sirX3b/TT8RwBoR1r+qUiW4LMPt0QpQx4NAdY2bZ3nMjuDscHPuWEB9mZwqcvGfabGfPOfVxd7XCNJtTBUlCrwgL/YNusvMyu6SLMcoG2poEx5IHmC5Mcc0119DV1cVrXvMa/v7v/55gMNiwny0sLCx+UeRyOe644w4+//nP86Mf/QgbdnpYQw9r8ElBQMRvqS6FQqJIqWiIOY9NoqSxQgzt63Pj7nBUBDusEKx27Q6RmyuQHMuSGs/WiaUlRcLX5yI1nqNslFk8ml4h2pZkibJRxigaSJKEYpMp5Y16gRLg7nAQ2eQ347SWz7083U68vS5mnlqklDdYOFQ/51HsMo6AjexcgfREjsxUAwFIRWyVGsuSj2kNBU4AelZHSxYbCkhAvKNcERFv1sg5CIRTVCGuNY1hcwRshNb5hNA903hOJJyppKYCJag48LRIy/IPuClpRksR0y8CxSETGPKQqAi7lqMli0w80jgyr0rZKIMkIdU4AS0nMORBUiTmamLIalGdCsERHyXNaOpQ5QzZG4qUquiZkhDfNGlrejJHMVNaamNl3JmfT+RMgZJsk3GGbHWCvtqx7+504OsXgrlqfbVjzj/gxu6zMf14rRC9xoq8dmwsa0fVUa3aD+5OB3reQKsIizLTebKzwoVMUiR6zw0TO5o2+6X2bxd31E5wxMfkI/MYuhD+NRtzsiph99mRFiNslSJsVnaT6Zrn8MRBnmMvAW+QG9/0Bj70oQ+xefPmxp1s8bJGURQuueQSLrnkEmKxGN/73ve4++672bt3L4899hh+v59vfvObZ7qZFj8nujeFecNfXcih+8d4/PYjaFmdYk7nkS8d4vAD41z4m1vp2Rw+0820sLCwsLCweB4UCgX+9E//lLGxMf7+7/+eoaGhtr8zOyuSHP7iL/5ixWdzc3PcfPPNvOc97+Gmm24yf/61r32N2267jTe/+c386q/+6gvWfgsLi5cupWKJmSNxU5Q0fypZ992IrEp0bwzTtz1C37YokSE/kmzF0ltYWFgipRct8/Pz7Ow4hxnGTdckP2FG2EJE6q4ra/erDFzcweSjC8QOp1ZEZYU3+Ihs8XP0GxPo2RJHvj5e5+TjCNrEDvGpPOmpHHafDVkGw2CF6Cm03ofqVFg8mkLPr4yG2HBjH6nxHFOPxRqKU6Jb/MRPpdGzBifvnW4au6bnDTKzeYrpxotKqluma1cIZEm4Jy1bjJFVmXWv6yF2LM38vkRDZyFPlxNZlUhN5Bj/8XzD48iqEMucur9J/FqFqgNTK2HQ8bumhIClCXre4MTdzR2K7F4VXTNWirFqy/hUnGF7S6HTwGUd5i7wnxZ3h4P+i6Ocun+mqSjL7lNR1BYnXLPbvVk0nSmKaUJmKs/hr49TbOJMBTD2w/mW/Z6ZygtxTrVbl4mMMFiK32vi3JQarcaLyKy7oY/pJ2J1IqLqfSTbxbi1uRVmnoyvaIsss8IZo5b8gsaxb0+aYipxPy3F3qUmcmbUm82rsv51fUw8Mm+Ofy2hoyVEX3l6XYQ3+Jk/kFxykKo579REFq26SCdDaMS7dL8bcPhr42bZrl1B3F1OTn5PXK/MTL7OWa3vwijJsQwTDy0gSzLO0RDbuIgNaMx0HGehNMttt93GbbfdRm+kj1v+5i9529ve1rAPLCwsLH5ePPfcc7xm+41McRqdIiE62MZ5dNKLLNVbpPvXuHGG7EztjVEulYXjSxVJxEVl5/JkpvIkRzMrhLKuqMMUImSm8+a8bLmoR1Yl/ANuCskihfhKwawr6iC8wcfUXuHsMrtMOKLYZRxBm/lu0VKxpq5CWkpvKsgF8Pa48PQ4zWi35QIjd6eDwBoP008KB6dG4m9vr0sITLKlhuKiqnNTMVNicm9rQc3MU4tNRU4gxGKTjy40jYGD1u9cEOJ+PVtq2Q7VrbScZ6guhchmPwsHk20dl1oRHPFCGeInGouyyqUydp9NxIs1O+eyGFNIUp3bV5VCokghsdKdspbY4SRGEwETCLejyUcXGtZfZeHQklCvkVtXIVk0HYIcQRtG0agTmpUNzLHq63fh7nAy8/Ri3XWqCo48nQ78azzkFrSGwis9bwhBXZNzih1JoTjEBVYcFaFezZipHceBIQ/OoL0uHrFWEOXtcVHM6KZISZzL0nFTkznzM7vfJpzXKvdreipPbkETAikJuneHSJzKmAKo2r91qs+FiZ/MYxTLyCUF32QXZ0tdZMpJEtFpvn7HN/jyl79MUIqyoXsz9x2+C5/P17APLF7ehMNh3vKWt3DuuefyyU9+kn379pFM/mzubxYvfmRFZss1axg+v5vHvnyEIw+Iv+0Wx9LcdcujjFzYw7m/uglPyHmGW2phYWFhYWHRjlKpxIc//GH279/PRz/6UbZt29aw3Pz8PJlMhr6+PlRVZffu3fzVX/3VinJ/+7d/S3d3N29961tZu3at+fP777+fT33qU1x99dW85z3v+bmdj4WFxYubcrlMZlZj36mTTOybZ/rQInqh/vuu0IBPiJK2R+nZFEZ1tI6etLCweGViiZReZDzwwAO8733v44knngBAxc4g61nLVlRp6XJFtwUIjXg5eucEWlLn2Lcm6xaWnGE7kgK5OY1CokhuXjNdVZZHjfVfGAVJ4vhdk2gJvV7kJMPQVV0kTmZYPJpm/IfzK4RLzpDdPHbsWJrsbONdvapTpnNnCBSJ+X2JFQIl1a0wfE0304/HSI3nmHhopYjGFbWTi2noWYMj35xoKk4xdIPUeI7sdPNd7V27QyBhijqWExjy0Ht+hBPfnWoqpgpv8IEEscOppgKlwLCH3FyhacQbiOi8/GKxqRsQiBg/Z8jOkRpxyHJSYzlSY80/B9BSRUotREyrQS+UyC82d54CmHy4vQgqui1A91khDn111HQDWo5sl+k+K8T0E4srxh5gjoHoFj/zh5Ir3Jmqv2PzqnTtCjH+8NxKB6fKv4eu7ERSZVNss5zAoIfOnSHSUzly841dl1IT2aZxd4ZmcPSb46aLkrvLUVfW0GH8oSXB3LrX9RI/nq5zQ6sKlGS7TOfOILJdZraBILCUN1g8ljLHd+19CpA4kVlyX5Nh3Wt6mXk2bgquxFgSvxsY8tB3QZTcgmYev1YsV0gVUWommsERT51I6+g3lsZkdHuA4JCHY3dNYjfsDMxvZoDNzDPNCfazkJ7n7W9/O+973/t4+9vfzgc/+EH8fn/D/rSwsLD4WdF1nTvvvJNPf/rTPPjgg9hx0Mda+hjGLXnNcpIMnTtD4hk/WyBxKkv8RI3wqCZKjXLlXVt5ry13NLJ5VTq2Bph5ZpFCfOW73xmy4+t3MbcvQalgMPGThRViHNWpoOdLFBIaqfFsU7FO1R0pNy+ERctFMt4eJ66og7l9CYoZncTJlXMVm0cVn41mSE1km7ojFZJFsvOFpmIPu08V0VgZval7ZXRbED2rC+FHo2okIZpNnMqs6FeziCxEGtnZQlOxjqxKePtcpMZyTftOscv0nBNm4UByhetULbHDjV02TcpirtJoDvN8aCdwMvRyndtPM7r3hMktFJo6UIFwoVIcckMBV7XfFYeMza02FLZVBUqebiclzWgaRWdzK3TuDDK/P2mKkpYTWOOhVDRYaBKZV0gUhZ1Rk6ltaiJHdk6MS0mWUJxy3ZxdSxZNYZAzJOLX5vbFl8ZXGfNednc48A+4mwqecvOFpbolUB2K6W4JMPtMnEo6N+5OB66wwxRslUvlunjH0IiXUqFUNwesjmdJFnF7xcqYsHlVynrZPFZmOk8hUcQoijZ27wmRHBPPLo/kxzPjp7s8wiyTzLpG2Tv1IyL+KO99/x/x27/926xfv75xZ1q87Mhms9x7773cddddHDlyhHK5jNPp5IorrjjTTfuFcd9993HfffeRTjd/Jr6ccfkdXPrO7Wx61QAP37af+ZPimXP84SlGn5zlrF9az7Zr1yC32nxkYWFhYWFhcUb5x3/8Rx566CEuvPBCUqkU99xzT93n11xzDQD/8i//wne/+12+8pWv0NPTQ1dXF11dXSvq+/SnP00oFOKSSy4xf3bgwAE++tGP4vf72bNnD/fee2/d72zbto3e3t6fw9lZWFi8GNC1ElMHYow+Ocvok7NkYnlgyXDBFXTQt02Ikvq2RXBbmx0sLCxWgfVNw4sAXdf567/+a+yS+ELwqaeewk+IC3xX8js3v5uzes9DlVT6L4uy6eYBAAqLGs6Qjd6LIgCUigabbhrA1y/yO9fd0MfmmwYB4WqiumR6zxeW3apXZfe719O1JwSIL+9t3iWBwZpXdTL4qk7z3+F1Pjw9ol7/GhebbhpAruilhq7uYtuvDxHZJHbeRjf7cYZEnFRgyMOmmwfouzCCrMp07wmTTxSYr7jQbPilfqLbAoCIU1v32l70nE6paNB7foS1r+4x27D+DX10nx1i7TU9DF7WyaabBlBsYvh2nxNm3WvFJDi8wceWX1lD154QU4/FMIwym24awN3hAITjy/rX9wFw6v4ZJBl6zxN9aPerbLppAE+PeIE6wzbsPtUUKA1f203vhaKs6pbZdNMA4c0+/P1uolv8bHzzgNneoau6GLhUxHL1nBNm61uHCKwV+c2h9T423bRUdvCKTvov7sA/5AZg000DhNaL/gys9Yj+tstMPxbDKJQYunLpj4eNbx4gukUIOHxDbjb/8gCqW/RL30URhq9dct3a8MZ+otsDzDwZJ7dQYNNNA9j94kL2nhdh5DVL/e3qcBBYI9rj7nCw6aYBnBFxXbvPDjF4WSejD8yiJXXWvbaX7nPE2HKG7KK/u0R/d+4KsuGX+s16176mh97zK/3tVenY5mdufwI9bxDdFmDDG5fKDl/TTf9FUVSnTGi9l62/Ooh/ULQpssnHppr+Xnd9D2uu6iI47EFWRR8GR6r97RXtD9nw9joZvra7bnxvummA8EbR31qmhLfXhWwXfdh/cQdDVy/1d/fZIeaei5Ob1/ANiHvB5q304QURhq/uZuKhBbS0zoZf6mPDL/UjqzKeHqfo74CKnjXoOTfMyA29DF/dQ+euIOtv6KVrd1D0fVT0oavTTn6xiLvLwfoblv7IG7m+l55zwhiawcnvzxDe4MPT4yS6xU//xVHWv0GMb0M3cEYcdO8JgSz6ftfvjJjPiOhWP+vfIOpVnaKN1ftY9Yp7ITAk+lCxyZRLZXORccfbhllXuY+QKwueMbGQ2XNumI03DuAbFMcZuKyD/ouipgitZ7d47mCIZ8SOt6/F7pWJSt288eKb+eXLfoMh5waSi0k+8YlP0NfXx7XXXsvRo0exsLCweKGYm5vjox/9KD5HgDe96U0888P9bOM8XjtyE+dvvQi35EVSJNa8qhNPt5OyIYQX0c0BFLuMUTTwD7jNeYwzaGfo6m7hdgPk5gqENwj3SRCi3Oo7uZjW0bI69sr7Q3Ur9J4XMd/Jrg47/gE3kiKZv+uvvJMVpyzeA+eK96476sDd4TCFQ9GtASJb/Lg7Hcg2GW+vi9iRFGVDOEj2nLMU3xLZ7MfV6URL60iqRO95EZxh8a53dzjoPS+Cf9BN164gkc0+wut9potL73kRXFEHkiLRuTNI7/kRDK1M4mSG0DovkU1L4tKec8O4Ox1oKZ2FQwkim/xmlGtwrcecx4AQelWj1ex+G73nRUwXm8CQh+7dIVwRB6pToWt3CG+feNfYPCq950VQXQquiIPecyN0nx0y6+3cGcQ/IPpQdSkMXNJBcFhcY2+fi66zlsp2bA8QGPJQ0gwWDiUJjnix+20AeHqcdJ+91IcdOwIEK/M72Sb60BEUZd2dDnrODaPnS8SOpAiN+AitE+NDkuv72xGw4Rtwm+ce3uATQvgKvedFMIoG6ckczrCd3vMi5vgIrfMS2eyvK+vpcpr19p4XQa7MmQPDHspGmURFDNO9J4S3Mu+1+0QfKk4Zd4eD6LYAHdsDZr1dZ4XMOYTNozB8dTfhyrzBN+Cmc1dwqb93BPEPunFFHHi6nGJ8V8a7t9clNgoAxVwJxangiop+UOyy6MNApb+7ncgOmVhFyBPZ4jfvMbkyZmVVJjWWxd3pYM2runBV5qvhjT5C60XZUtGg97wIHdv8dO0K4eoQfVjt79B6H+GNPnMzR/eesPm3gzNkrxxHEhsgFjTCG33C5WzQTc85YTzdTvO6BoY8KHYZb7eToWu66di51C9du0N4uit96FIIrvOaz4jAsIfOHUtly5Qp5irulz1O1r2uF7tPlPX2OLH7bKYgauDSDvoqfxMqTtlsL4CvTwgRq2W794SIbPEjSwq99jVct+MGrux6PT2s4e//9pNs3LiRgdAQ999/P+Xyz7apweLFy5NPPsmtt97KjTfeyCc/+UkOHz7M5s2b+b//9//y9a9/nT/90z890038hXHVVVfxsY99jN///d8/0005o3SuC3LDLRdy0du34vCKZ3AxX2Lvfx3ia3/2EJMHfnoXZgsLCwsLC4ufL8eOHQPg4Ycf5tZbb13x3wvB6dOnKRaLxONxPvaxj604xjPPPPOCHMfCwuLFQzZR4PADY9z790/yn++6n+/9zeMcvG+UTCyPrEr074xy3q9u4o0fu5hf+ccruPz3drL+kj5LoGRhYbFqLCelM8js7Czvec97uPPOO9E0DRmZTd1bWefYTn5URzVkkmNZipXIpcCgx9zVm5rIMf1knGJGCGgkVUJ1KUiVRZ/xh+dxVxY+QEQEGKXKjv68jp7TKVd2dGem8yKqokIxW6JjR5DYoRTp6RzTTy0Sr+y21pI6ybEsnl4XqdEcybEshm6wcETsIk+OZs3d8YVUkdxcgcCwl9R4jsxsgXzNLunUWJZiVmfkNT3MH0ySHMsy+9Qiet4Q0WbVHeOyON/MbIHM9CyFVJHolgB6QfRLbr5AuXJuYvHFMOPDSgWD5FjWrEu2i4WXanxHajxn7tw2NFFWtgnRRna2UOdQk57MmTuUDR2SY1lih1Pk4xqeLiepsaXdz+npvLmL/Ni3J+jaHUJLVfolqZGsKZudyZOZyi314ViWQlK0X0sVzT7WNIPYsbS56FDtw1xlB7vdo+KOOrEH7OjZvIh1qYliS41nKSQ0nCE7xay4jlU3nMxcvs6SsZQvmc5PeqFU14e5eY2yUUZ1y8iyTGoySz5WbFi2doEWID2RQ0tX+ls3SJzOmrElhUXhBmG2dypHKW+gJXUO3j5G956QGT+WTxTr+jB+KkNyMifce+RqH1b7W5RNjeU4NDFGZIOvLvM2OZY1hWiLx1Jiwcow8PQ4yc7mTcGS6O+c6SoQXu9DdSvmrvbsbL4uiqSQKOLv9+AICgeK5FjWHBPZ+QKGZjA7v0hqMoekSOQrbdDzlTGbNRj/8ZyIDonYhaPZ6SzpiSz5yj1WrIyPYkan97wIpUKpzhksPZkTzwgDxn40R3Cth2KmhKvDjpYtmU5JelY4dVTHw9qrupBV2bxWhXiRxcp1ku0ypbxBflH0g6zW92HiZIZpn3BDAyF4q3VQWDicInFauI9IqoTNpeDqdKGlM2RmCyhOmXWFHayTdqCck2P/2LPcc889bNiwgfXr1/O+972Pd77znVhYWFj8NDzzzDN88pOf5Mtf/jLFQpEedQ2berYiTwshkp4yKOXEM8sZtGH32kzHlMXjabSMbkZdyXYJm1tMpfOLGtNPxMwIt1JRxNaWK+ohPaejZ3XxjilDZipnvjPKehnZLhNe72P6iUWyswX0nGEeN79QoKQbqG4FQxMuednKcYrZUp3LT35Rw9NTcU9a0MjM5M13cjEnynq6nDiCNvKLwg0mO1dAkiEzm6dUmeeUCiUys3lS4zny8SI2l7IkWCiLsnq+hM2lmHFy1c8LiaIpoAEhSnaG7GRnCxQzot5y5XVZSOrouRJ2n4qW0omfTFNYXJqXibKiXi1VpFQR6lAWQrDqHNnQRVlDF+cz9VjMFEIB5BYKZn8bepn4qQzpqVwlRkw3rxtALqaZ/ZBf0Mi48+b7Uc+WyM4tuXQ6g3ZsbpX4iQzlUqUPC9VrXiI7W0BxVIS+8SX3HWGNnadUmXuVNNGOqhtQPq4hSUvtr/a36lLMa0OD/rZ7VTzdThKjGbPezGzedIvSUjqlgrE0H5krUKyIV8wxq5dZPJ4mF9NQXUtzuOz8kiuoUSwzfyhJujLnKKZ1sz1mf+fEnFBWJXz9bkqVY9b1d1k4UZUKJWSbjKRK9X2YLZGbES5gil2I7hKV+UjZqPRLpQ/1XAlDN3B3OMktaBTixTqRTWY2T26+gCRJGCXR/9X7sZAQ/a2ldLRUCmPIg6RIdGwPED+dqevDwqKGpEpCWNbvJjubNwVA1f42SmUyM3nm98fRc+JcHEEbufmlMZuezoOcwCgZOEN2Quu8xI8vObmI8S3qlQAto1MqiDYUs7r5DACYe3bJ+Ul1KihO2Tx3LV1i4WDSvHaKQ8HmUVlARM1lZvPYUk42SDvZ5NtJumeOfcef5qqrrmL9+vXcfPPN/Omf/ikejweLlzazs7N85zvf4Tvf+Q7T09OUy2WCwSA33HAD119/PUNDQ2e6iRZnGFmW2HzlIMPndvP4V45w6AdjImZ0Is3dt+5l7QU9nPerm/CErUUHCwsLCwuLFxOf+tSnVlXuAx/4AB/4wAfalrv99ttX/OzVr341r371q5932ywsLF46lMtlFsfSplvS7PF4nWu1J+xkcHcng7s7ScizbNux9Yy11cLC4uWBVLa2SP7Cee655/jd3/1dfvzjHwPgwMkaNtLPCLK0JIhwhu0MXtbBqftn0JJix/3yyLCq2AYZ1r22l5mnFk3hQS2+AReDl3Ry9K4JtETj2DFXh53cnFiY69oTYqHicLOirkE3Q1d0ceKeKTJTDeLUZOjaEWTm2TgYQtRgNI3bgKFreph5arFpXetv6CM9kWOqNoZuGXa/KgQ5MiujvGrLBVS6doYY+3GDyK8K69/Qh54rNY38ArFjOX4qY0ZjNcLTIxZJmp07CEcmxa40jZOrMnRlJ4nRLItHm9vQq26Z4JC3LhZiOd5eF8NXd3Ps7gnzWjdi21uHmHkmztyz8aZl1r2uFz1f4tS9M03L+AZcGHq58bWtttspM3BpJ7PPxMnMNC+HLJwdmkWpVfEPukm2uC6yXWbg4ijTTy427Xdfv4uhK7s5ee900wi+wFoPTr+NmQZRa7Vtro4zc4w2wO5XGXlNL5OPLJA4lVlZQIahK7pYPJkmcaLB59VjIY4XHPFQSBabXuP1r+9Dzzcf48ERD3pOLATbvSqGbjSN4xu+pptyyeDU/bON231VF8nTQtAn20XkZO29V9svQ1d2kosXmXlisa6adDnJKdd+ktIi2WyWaDTKH/7hH/L+978fu92OhYWFRSvK5TL33HMPn/jEJ7jvvvtw4GKAEXoZxi456soG1niQ7TKLR4VwWLHLdZFhkgxIEuVSGU+3E2fQxsKhxnFf0a1+DL3cNA6s6m5jFA0cAZsQrDaJxao6rMw2eS/bvSqyXSYf05Dkil6kyQzf3eHAGbITO5pqWMYVsRNa72PmycWmcWmKQzaFJFWhRzP8A24KqWLTd64zZKdzR5DpJ2JNo3FtbgVfv5vFY+mm8WxIwjmo3ZzK7lWF6LlFmx0B25ILVZP4OgBHxWGpWVQZQEfFbWvuuUTTMr4BN4FBd13k64p2+210nxVi6vGFOlF0HRJ4Op3kFgpN4/BAuDw5g3ZiR1pH1akuIcZu1QeyKqE6lZaxxs6QHWfIVh+RuIyOHUEkSUSiNUSC0DofydOZpuOyWo7ysjHagMCwB0fA1jAyF5bcreb3J5qOFUkRzwIk8PW6SFUEdCvqCtro2hli+skYWmplP8mqhKfbaQq8qxGLjVDdCt1nhZh9Nt6wLmdIOLFVnxWyTTZFaVWqzzXVrRDdLFxNSzXzvHK5zCJzzIdGGVs8jYqNP//wB3jb297GwMAAFi8t7r//fu6++26efPJJDMNAlmXOPvtsrr/+ei6++GJU1dq3BnD48GHe8Y538PnPf56NGze2LX/gwAG2bNnyC2jZmWPueJyHbzvA3Iml95fNqVgRcBYva14J97aFhYXFi4HnO/d6qfNKe7+80s4XXrrnXNINpg7GGH1iltGnZknP1a+FRdcGGNzdweDuTiJr/OaGupfq+f4svNLO+ZV2vvDKO+cXw/la30j9Avn2t7/Nza97C1mE0MRLgI3sIiR1LBWqEWJoSR0trZtf/iz/8j+6VUQWHP7fMfS8wbFvTtYfUAZPh5PMTJ7MVIHYsZS5m3c50a1+uneHOfL1cbS0vkIkgAzBYQ/x40KY01SgBJWIiCDZuQKpidxKkY4MvedHmH82gZbWOXH3VMN6ADCEM0t6urFQBETMVmDQw+H/HcVosj7i6RH9oCV0xn441/x4wOgDs80XwBDCKrvPhq1md3kjBi7uIDtXYPSBBuKNCp07QgTXejnw5dPNxVWVBdF26FmjpUAJxC74Uz+YIbfQXKC0Wib3LmBorTWOjQRzy9HzBrJNRna0/pKz97wIwSEvB77SvK9cHXbWXNHF6I9mm4t5EAt9zqC96UJmajzHqR/MNBUoASROZKh+Xevrc9U5GJlU2tlzTpjgiJfDXxtvKFrT0jqJ0xkyzca5IeIJq/ScEyZxKlPnnlHbJx1bAxRSOqM/aDz2Tt47ZS6OOyN2JEk4ZFWJH1/qu94LRETLka9PNKwrdixlDk/VKaO61aVFdgNO3bPU7r4LorjCtrq6aoVbhZSOXlmUqxXweSU/2/IXoMs6R3mGqfnTfPCDH+QTn/gEv/Irv8InPvEJ3G53w/ZZWFi8ctE0jf/5n//hPb/5h6RJ4CPINs6jk746UbjqUjCKBoZeRi+UkGvmAMvFEN1nh8nNa8RPpMlM58lM18+FbG4FvSBEHZmZghBmNqHrrCCFeJHYkZTpQllXl1elrJdFXNjR1AqhQS2+ATeyTYiUyg2K2X0qjqCd1FiW7Fyh/v2xjEKySGY6bzrfLEdWJbrPDpM8lRHvvkZTAUnMlbRkvfNhI/KLGjPPLLYUuagu4f7SSlnkjjqIbPEz9WjMdL5c0SxZonNXiORopqWgWVIk5KoApQWtxElVFo+nkV6AddxiWmfm6cWmc3lAuFy1EnzX0mZqKSkS3XvCJE9nWl7D0HofNo/K9OPNNxMoDllcvxaCtsUjqdbxYmVM8aAkS9jcTYRR5aW2p8azTa9zbr7QdJyAcKgqJMRMT3UqwqHqdKau/dXx4QjYCAx7yS1qpqtSXV3xYp1AyRWxk4tpZl2GXjYFSqpTofvsEPP7k3UOX1UMzSA1njPP3e6rbGKpunAtauQrLqvV+LyFQ8m6e776XJMQbmxVMVdVwCchEaaTcLyTQXUTp/Sj3PLhW7jlllsZdK3lu098iw0bNjTtO4sXF3/5l38JQE9Pj7kDvrOzs81vWVhAx0iQG/7yAg4/OM5j/3OYQrpoRsAdeWCcC39rC71bIme6mRYWFhYWFhYWFhYWz4N8UmPs6TlGn5xlfN8cxdzS9xiKTaZ3W4Q1uzsZ2N2Jx4pus7Cw+DliiZR+AXzhC1/gz//8z5mZEYv1EbrYyFm4Je+Ksr3nRggOCyGGoRsrXGrsfhVHwEZqLCciAco0dThZXtfU3vrFA9ku4+lykBrLETucFBEHTRaIopuFiCkzU6CY1hsKlMKbfMQOpcjOFDh8x2jTdql2GX+fm9xcAa2JM1B0qx/KMH8g2XxHdYXZZ+JkpvNNBUqyXWbNFV0sHkut6INaOrYHmNufaLsD39Dh+F2TLcsAnPjOFEYLsRPA9OMLYsGjxXoTBpy6r7lbESCEX+dGmD+YaOqUBZWFjRaLcs+Hdo5GVaLbAmKRssVxV9Ofs8/ExY7/Fn2Vm9M48d2plgt0hmZw9BuNBTe1VPspMCRciZq5W9i8Kmte1cXM04vM7WvskjC3L04uVmjuqmXA5E8WACH06b0wyviP5xuWl1UZ34DbjO1pxNFvT5riRl+fi0K6WDcu9KxBtSO7d4Ww+5uLkMYfmsMRsJttc4YddeKtWjFY51mhlkKyuefipuuEbJcJrHHXuYPV3p+dO0Lm86tal2qobJb2sLF8FunhGQ7NPsfnPvc5/uVf/oUrrriC2267jf7+/obnYWFh8cohk8nwz//8z/zd3/0dk5OTROlmAzsJ0VEXoQVC7NC9J2yKVpaLjqAiHp8viMiT42nhYlOtp0ZUISkSXbtDJEeFMCIX08GoFyw4Aja0tE65LLNwKCUi4JoQ3eInv1hk8WhqKQK3BtWlIKsioip2JNVSYO3w23B3OESsaoNisk0iuNbL4rE0RrHc2NWvQtUdqiqEaISvz0VgyMPkIwtNHX1sHhXZJlGIN3dZqpJb0NoKrLNzBfQnFlsKT8pGmZmnYi0ddgDyMa3pe7+KM2xHscltRUGNrt1PQ9koNxSzLUd1KXg6nWa0aiOyswUzvrbp8UrliltP62PGj6dp58vbSNC3nOp1k2QJd5ejpQtnYMiNp8vJxCMLDcdzuVQmdjjZsr9EtJu4/7w9ToxSuWmf2P0q7g4HybFsQ+FaIV5k8pF5c6y7Ox0r6qoeS3UqRLcGWDiYbDiP0/Ml5p5NkI+L8ecI2tCSunl/G3p5KTZXkejcGTSfOcspFQ1iR1NCEFWpS8+WTJFSMSui4My6Ggj4nCUvm6SzWGfbxmJ0nIOTz7Fx40auuuoq3ve+93Httdc27DOLFw9XXnkl119/PXv27DnTTbF4CSLJEpuuGGDonC4RAff9+gi4kQtFBJx72eJFqWzwZPoE88UkUZuf3d61KC+EYtfCwsLCwsLCwsLC4nlRLpeJT2YYfWKG0SfnmD26WPc9jivoYPAs4ZbUty2K6mhtzmBhYWHxQmGJlH5OGIbBpz/9ad73R/8XnSISMr0MsYFdqFJ9t0e3ByjlSyweTTP7bFzEbzRZO+k9J4LNp5Iam0DPr3TOcXXYUV0qqdEss88utqyr55wQ/gEPB28XDkQrvtyWwdfvJjWaZX5/kvRknmITEZOv30XvuREKiSKZqXzjmLgBF5mZAnre4ND/jrUUm7g7na2jJewy/RdFGX9oHj1bInGyxWKaZnDq/umWrgGuDjudO0NoKb35wpwMQ6/qYvaZeMu67F4VLdtc8FXXNp2WizAg+q2dI5EzYCc47CVxOtNSpBRa70NWaBpN83xwhu2EN/iY3LvQ8lqG1nrIzBZaipRALABJstR0oVLPlhruTl9OdbHQHlBb9gUy9F/Y0dZNoWt3iNx8oakDVzGtc/K+6ZbXUc8bpjtR584gWrpY51ZUiyNkxxW2o7pktAYiJUM3OPKNcbPPA0MeEqPLhG4GpsCp++ywiC+8p3G026kfzGD3iWeS3auiuOS6mDg9a6Bnxbl17AgSWufj0O1jDd1BJh+txNUZwnEsvCnAfE28TX5BI19ZZA6v89K9J0xmKt/wXqkV8Mkq9F3YwcyTwmlDlmT8p3o4lx5mGWc6cJL777+fgYFBrrvuWj73uc8xNDTU8HwtLCxeviQSCT7zmc/wkb/4S3SKdLOG87kGr+SvK6c4ZPwDbhaPi+iwVkIM1akQ2eynfEC4muRiNeXKIubJ0+0kM50Xoo7nUkKMICsrBEqyXaVjR4jEqSypiRxaAxcem1elVChhFMvMPZtALzR/74XWeUGSmHs23nDOJMngCNjJL2qkJnJNo6hACGAdfhuqU24aJebucCApEpnpfEOHl1pSEzkKiWLLyDFfvwubR2XmycWmZVwRO45A65gwAMUpU8obq5p7NY1Kq6C6FMpGua2QyRmyY3MrLUVKkiLh73eTnsnVxWn9tHi6nRhFo6VgS3HIePtcpKdybWPRHH5bayHPKpyiTFceGSRlZbRYLXafiq/P1XIe6gzZCI34KCwWmwrOEqeyot9biKOqfSSrSwK8ZkI+u99GuYVIKTtbcR8rV+Lt3OqKvqmOdUfQRmSzHz3b2B1Mz5eYeixmitccwco1qGlaVQAoyRLRrQHhCHV65Vy1XCoz81Tc7CdnyI5eqJkvl6kTh4XX+8jHi6Yj1cq6lgR87g4HkiyZ41st2uiYGibMINOM8tgjj3PdddcRoYuvPXg7l156acO+szjzfOhDHzrTTbB4GeD02rn47dvYeMUAD//bfjMC7vjDU4w+NcvuX1rP1mvXICsy9y0+y9+MfZ2Z4tLfgV22AO8fuJGrQjvO1ClYWFhYWFhYWFhYvGIwdIPpw4uMPjnL6JOzJGfqv1OIrPExuLuTwd2dRIcDSHL7JBcLCwuLFxpLpPQCYxgGH/3oR/nwBz9CCR0ZmUHWs47tddEitfh6XWjpIotH0w2FGD3nhMnOFUicyjD+kzmMFhu7u3eHkVWZ1Gi2Ii6oL+wI2rD7VFJjOaYeqzi/NFlL6NoVJLo5YMbJNdox7+4S0XSp8RxHvznRVGAi22UGLu5k8XjFzajRMWVwhe3k5rWmMVXmeQRU3FEHDr9aF1NVizNiJ7zex+QjC21df3JzGoe/NtZSBGNzq9i8atsX9sBlnRilMie/2zzGTlZhw40DTD8ZaypWAbFAMPSqbkYfnG3papBf1DjwP6dbtgvA2+tCcUgviEjJ7lUJrPEw91yiqXgN4OjyGMImDF/TTS6mMfr9FtdehvU39LF4LF0nflmOf9DN4OWdHP/OZJ3gpg5DCKPs3taPwRPfnaw4DzWnKlBydznwD7iZfrz5gqu7y4HNqzS97pmpPIfvGBf/kMEZtK90c6g0x+ZVGbikA/vTalMXp+PfmUKunKIzZEfL6PUOTQammKtrTwhPl5NDt481rGtqb4zF42kM3UBWITjiI3Y4VVdXtS/8azx0nxUiNZ5t+FyYP5AkOZE1F/AGL+9kdl/cFDHVCvicEQfeHhczysp+7ZT66VzsJ+VaYF/2cb773e+yceNGzjrrLP7rv/6LkZGRhudiYWHx8mF+fp7/9//+Hx+79eMYlOhlmDVswCV5GpaXFQlX1EFqMoeeLa0QG9g8Ct5el5iX5UtM7l0QApMG0as2l0J4vQ+9INxUaiMsq7g7HWQXdAxdCAqK2dIKARMAEnRuD5CZyRM/kWko0JAUCdkmUcobLBxKtRR0e3uXuRk1KGpzKxRzJfScEE60whGwmSKlZgTWeMjO5SlmS6ZzTDNih1PIttZzKsWhoLaJ17X7VLp2h5h5Kt5SVOPrc+HqcDD7dLxlfYFhD6pTaSmeAuEg1A7FJuPtdZKLFV4QkZI76qCYK7UUKRXiRSYenm9blyvioGNrgMlHF1q6T7k7HASGPEw9HmspCurYHsQolVvOzyRZQnUJBy2j2Liy3ILG5KMLLcVOZaNsis0Cwx4hyGrSv4pTwRG0oTjkpq5WtXMZm0dpLGSrNNc/2NrFqRAv1kUO2rzqinlytR2KXaZze5DFYynSDcTuZaPM9BMxM17ZEbSh50p1ArpiZqnuwJAHPVdi4VDj+OfpJxfNx5grYkd1q6Rqovxqz9sRsCGr0goRniIp9DFMb3qIWWWCE6UDXHbZZfRE+rjtv77ANddcs8KxzuLFha7rfO1rX+O+++5jdHSUQqHAD37wAwCOHj3Kt771Ld785jczMDBwhltq8WKkY21ARMA9MM5jX65EwOVKPPqfhzjy4ATlt8rcWrhjxeNxtpjgfSe+yCfW/qYlVLKwsLCwsLCwsLD4OaBrJSaenefEI1OMPT2HVuPeLqsSvVsjQph0VifeqOsMttTCwsJCYImUXiAMw+DjH/84f/GBD2JQQkFhmE0Ms2WFOEl1K4y8pofJvTFSo1lOfq+xw0kVd6fYNZ2AhmKJ6LYAhcou+bEHZ9Fb7JruOTeMzSWcmAzNaOjU4u5wkJ0rMPN0nMTpbNPYNl+/i6Eruzl137TYMd9AiCCrYFRcXU7cM2UKEBoh4uk8HPrqeEOXFhBiJ0MzyM1pHPpqYyFFFW+PC2+vC1mVm9bnDNkJrvMy/VisrUtPMa2vKiZs4pF5FHsbK3NZJjWZFfExLcjOFdrGlz0fxh5sLf56PohoidEXrL7RB2YpxNs4IBiQnsxRiLeOYEmOZ5ncu9BcoFThxN3NhWRVqvecp8uJp8fZcnHT1+PC1+9m+snFpuK/U/csRfdVx3Mzes+NEBjycPiO0YZxhsW0LoRYFaFeo/oMzTCFjYOXd1DMNHdVGvvRHM6Q3azL7lFXiBOr93BwnY/ecyKkp3INF+XjxzNmPCRA7/mRFYK2qjjKHlBxRe3IauNFrexMgYNfWRpr61/fx+LxeqGaLxfhQulasq4EM50nefTRR1m3bh0XXHAB//zP/8z27dsb1m1hYfHSZXFxkU984hN8/KMfpwz0s5Y1bMAhrfxD29vnwh11MPuMEAlNPrLQtF5ZkXEE7Ch2mVKxTKlQrhMoKQ4Zb7eTxGieYh4m98ZXOtYYJZCFwCayOSicmBY0IVBahupWKOUN4er0TLwuC3450S1+JEVi9ul4UxGHpEiUS2VS4zlyMa2pm5GkSHSdFSI51jgqanl9i8dai3IkWcIVFU4ujc6ziq/fRT4m+qKZUKVKejJXFzHaCC2ts3Aw2db1R8voq9oZFjucQnG8MJE0er7ExE+aj7Xny1wLAdDzJbdQYOrxWEuBEoh+y84VkCSJcotct8TJDKUWwiKAQqLIzFOtxV+AObYDazykp3NNXa0kRRLCrYxONt94Tl1M60txshLiPJo4KkmKRNeuSmTjWON7In4yIwRFZeEeVS6zQqxU62zUuSPI9BOxhq5KJc1g+smYKQ5qJGiqFV+F1vnQUsV6gXgNM08vIitijDuCNhS7XOcOVS6Vzaba3Cp2v41m2xZq73dXxE5gyMPsM3HzeSJJEl1GP530kelY4Gh2P9dddx0BwvzLVz7HTTfd1KRmizNJoVDgj//4j3nuuecIBAJ4PB7y+aW/M3t6erj77rvx+Xy84x3vOIMttXgxI8kSm15VEwH3AxEBtzCe5N/nf0TZCyx73ZYrP/qbsW9wRXCbFf1mYWFhYWFhYWFh8QJQ0g1TmHT6iVmKuaXvFJx+OwO7KjFu26PYXZYcwMLC4sWF9VR6Adgo7eI4+ymho6AwwjbWsGGFOKkaP6VnS2RnC+i5xoIM1a0wdGUXk3uFA9Dxu1o70YRGvGSm86Qmcg0FRc6QWGjLzOQZ/+FcQ7FDlZ5zwyLO6Y4xDM1oKCqSVeFykhrPMfrgLKmJ5otHI9f3kV/UGPvhXEuBEojdvamxbFNBEcDIq3vM+tox/1yC+QPNnaJALFoG1rjFl+7NxCKycHmZfiLWOj6sQrvzBCEcmXhodYtWqxEobXxTP7HDqaZuOmcS2S6z4Q19zDy1yOLR5guczRyxlmMuNLXCgNjzcIvqPidMbr7QMjbQNyAESLPPxpuOqZmn48y0+LwWV4edtVf3MPqj2aZxftOPL5Iaz7a8Z6v95oraWXtND6M/nCU13ri+0z+YNRcYq/dxHcbS+O09J4xvwM3B20cbnk/sUIr05JJAKbTetyI+pLrQ5gyJxa3kaLah65aW0Jfco4Dha7tJns40dvySxT2RWxCLbjavSjGrm2105wIMn95FB8Mc4HEeffRR9uzZg68YYv/UM3R3dzfsGwsLi5cOyWSSs4IXMVo+jIHBAOtYwwbsksMsIzkcUNSQFAmjaFDM6OQVSayQlUH2eDAyS898T7cTZ8jOwsEkOi6mn2gupHB0hfD2SqRnNEoFo06gpIQClBYTuLtcZOc09FyJyb0iQknxeynF69/TkixEEemJHKm5MsVsY2FErVComcACxPM2ssXPzBOL6PnWManlUpm5/YmW4h6zvicXm7rQmPUZZSHSbaE7kmTwdLsoG1DMNp8/uqIOVKfc9H1Wf2CaxnTVUogXmzp+1lVXKrcVrnu6nPjXuIX7VGud1RnB1+fC3eVs7QZVrnfhaYaeLbV086xSWEU0XBXVpeAfcBM70nyuJqsSnm4nxZze9PqWS+W2Dk+1hDf4UJ0Ks8/Em9Y391yitQtYeckJKbTOh+JUmHu2cX35RY2ZZ5Zi3yQZysvmVFWBkqyKZ0HiVLrpuK8VeNl9KqWiUe8gVV6KnXOFHdh9atO+qxVhOfw2AkMe5g8kGooaSwWD/OJSfGM1XhGEWMk7H2VX+VIWmOG0/SA333wz737rHzCkbeax8g8aHt/izPClL32Jffv28a53vYu3vOUt3HbbbfzHf/yH+bnX62XXrl089thjlkjpFcJ/zDzAl2Ye/OkrOBeM3YaIuy/r5N3N3wVlYKYY51XP/H/Y5Rfuq8i3dl3Gr3dd/oLVZ2FhYWFhYWFhYfFixtANJp5bEMKkx2fqHJPcYQdrz+th+LxuOtYFka0YNwsLixcxlkjpZ+ALX/gC73//+4kRQ0ZhLZsZYnPDWLfAWg8DF3dw7NuT5GNNRDYyYIjdt6WC0XS3t6xC97kRYodT5Bc0jt810VLE0HdhlHK5zIm7p5q6IqluGT1rMPN0nORYtqlgxxmyM3xtN+MPzZEay7VdtFg4lCTfwvXG5lXpv7iD8R/PUUzrLQVPICKi2rnoDF/bTWosy/yBZFuxyGqETM6AHVfY3tYdKbrVT2idj6PfmmhZn2/AhTNobyso8nQ56T47zOkfzLRdLEucyrSM/gBAho2/NMD0Y7FVLTathnWv6yVxKtPyXAzNIDnaOPJrOV27g9jcKuM/bh1T4uqwExzyto2m6dgeILjWy9E7WztguaMOyka5pUhp+vHFlg5JJoYY10NXdjHxyHzTqMHcnMbCkSSZqeZj3tANc6Gq9/wIWrIoxnWj+mIasaMpUi0cJ8xrIAsBYXoq11T0NfloDNeJtDhfGeFItuy5UBUoBYY89F0QIR8vNHSvyi9qdW5QfRdFWDyWbtw3Muh5Y+lZVXkumhjUOaAMXNqBJEkrxJxeKcC5XIkezrIv+xgLxVn6+/u55JJL+K//+i96e3ub9pOFhcWLk2w2y2c+8xk+/vGPEy/H6ZPWMVTegENy1pWTHEKs1LkziF4osXAgaQpUZM+yCLiKaMnQyxhFA8Xvb3hsu0/FsyZMclwjO7ZIbqJebKCEAnVlI5v9lLQ4hYRuCpRqkVUJQy9TNsosHC9QzDRRWUgSgWEPDr+N2afbC4UKiSKpsWxLdxzhMimt6t1cSBRJjmZbHtfutxFa62Fuf6KtM1LZgOkn2otK7B4V1aMALeaFEnTvDpEaz7UVdAfWeMjM5dvOp0LrfRQzelv3pmJWF8dscx6+fhfOUPs532pxRR0Ehz1t5z9aWgepvchdcchENvmJHU217RtvrwstrbcUtQknoiDJ0SzZuebCMVmVcAREBFszlyRDLzO5t3GkWh3lpfY5AjYWDjaeJ4Fw5mo3ny8kxPkpDpnQOh+xw8mmbmTpqVXUV7nHnGE74Q0+Zp5abHjOhl5m7tk4WlqUbxSJVxvvGBzxYhTLzO9vPLbiJ9JU/yS1e1VcUQeJ05nG/SlBqWgsnWfluVhFS+toabHRwOZV6d4TYvaZeN3zQ5IkonQT0brIdMR4bu5JHucBLrzwQj70oQ9x3XXXteomi18Q3//+9znrrLP4lV/5FYCG0Xy9vb0cPXr0F900izNEppRntvgCvKOeR1pEvJSB1q+c50Wm9MK4TltYWFhYWFhYWFi8WDFKBpMHYpz4iRAmFdJLf4+7gw6Gz+tm+PweutYHV+UibmFhYfFiwBIp/RTce++9vO6aGyiQR0JmDRsYYdsKcZJsl/H1ukicypA4lUGxyeRjjYUkvj4X/Zd0cPzuSbSk3jSOCUR8mrdbRGXkF7SGAiVH0IYkS0IQ9eAser65iqlrV5DwJj+HvzaOoRlkppp/yZNf1EiczpguJo3wD7pxhe3MPB1vGkdQRVJAdcgoNpmmSx4yBIc9xI9nVji1NELPlVpGpYBYhFKcMvP7WguUoCqwGG9dCLEIkZnJt63P2y1i6NotWEmKhKEbbReNQAho2iGrMpnJHFpm9Tvd25GdK7TebV6hVaxOLeUSTReCanFHHASGPMw8FW/pvJVb0FBduZVCl2Wc+E772DcQddgDKl07Qy3dvEp5Az1Xansu1etm96vYPGrLe091KpS0FmPBwFy0tAdUOrcHGX94vvF5G2LxqlXcoKEvPQt6z4/g63Nz+H/HGtaXOJWhkCia0XCBYc8KwVf1OaU6ZTxdLjLT+cYiJaM+lnDoyi6MYpnRBxpHFU7+ZAHVpQBi4cwZsNWJHdUFN2dxGXEWmIoe5cEHH6Svr5/f/u2384//+I/Y7famfWBhYfHioFQq8cUvfpF3//bvo1GgTxpmi3wRTsktYtVYEiY5AirFjHj+xk+k0QsVl5Jl4iQjkyGy2U+5VCYxLaFpoDV4zCjBoKg3ouIMqKQmxXOuKlCqFSc5AwqZUzFKwNRji5RtLpQGmidJhp4LusnMFEiO59FSoo1GrYtSzcJxPqaht3K8kYSrZnI0S6kiDG6FYpORmsRrVnH4bUI0rxmkmsReVSmXyuia0fqdJ0FoXaWNTUQptSROtxdTS5J4z2tt3ICqjjxauth2TlUuGS2dqqpoKX1V8x89V6Igv3DzrlKhJETpy0QkyykkiqbYpmV9mkG5VF7Vzjpvr4vMdK6lSKlcKpOLae0j5FJ6W6GVqLBy7D4Xeq7U9O8oEOfSbmzVXjNX1EGuxTxIViQUu1z5cq9xZ9fW5x9wi35v0j/FtE5mOt+yjdXflW0SPedGiJ9IN50bzu1LmF882twKRqm8ou7qc8rmVXGG7U03KdSOF9Wl0LUryNy+RMOIumJaN4WfIDawFBJF874RzkoRzuMq5pRJDj13iFe/+tV00c9Dxx5gZGSk6flb/PyZnZ3lkksuaVnG5XKRybwwG1rOFM899xzvfve7edvb3sZv/MZvnOnmvKjxKE46bYH2BVeBZuhCgNSGoOJ5QZ2UPIqzfSELCwsLCwsLCwuLlxiGUWb6YIwTj0xxau80+dTS9w2ugJ3hc4UwqXtjyBImWVhYvCSxRErPg/379/OWt7yFffv2ARK9DLOJsxo6J4HY3R0c9pAaz2DoNBTsyKosxAAzBZJjmaYORrJdpvfcCLNPi8iAI19rLZoZvLyTYlbn1D0zDb9grmXhSAo9X2odd3ZpJ3P74+TmNCZ/0lpw4u1x4YoIkVIz7H4VPaujJfS2LjfRTX6694SFICbZ/Fyq8VWriYLzdDlQXYoQKbWg++wQ8weSqxIKpSZybZ2goCIkab3pGhC7vdvt5Afw9DgxikbbuDRDMxh/qLVD0fNlteIj2S7jH3ARP976S8tm8RvLWTiUahwFtozV9mGV6Fa/iBJr0ZcOnw13pwO7X206Hg3dqBcathFJ9Z4XweZROfqN5vdCrUjHGba3XKhzRx14up2odrmpe1qtSG7gsk5ih5JNnSjmn0uQn9dankNVoOTrczF4aScnC9MN+17PG3XPr55zw6TGm1+n5Olsy4i6/KIGFY1ex7YAwWEPh746uqJcUIoQnI3QKU9zoPQ4//qv/8r//u//8s53vpOPfexjzU/MwsLijFEul7n77rv5kz/5E/bv30+XNMiItB235G1YXlIkopt9JMdzpMbzFBLCOUmu1SfV/M2eWygguTxA/QOjlBLvF/dABLtXITWlkV3QyS4slasVJwE4/ArRjW60uQSG4mooaahGvUlON4nTWfKNImQr4iSHX7xrFo+lhYCg3FyRIqsyzrCd3IJGSWv+blBdCnqutCoBUHijj0Ki2DKOqyqUKWaEaKEVqlPBGbK3FWnYvSqqW1lVfFvZYFXOkIZeZvLR1c1X4idWsTAvgStsJx8v1jnbNCK3oLV3unweCHFU8+jcWmweFSQaxqyalGHuudU5aKzGAQto6Uq5HMUh4+5wtI31c4bsFG16y7lPbr5gio4axarVoroUolv8zB9INhUqFbMlM15NkiVkVaqLdqxDEnOzcrncVKRU0gxzvNp9Kp4uJ4vH0w371CiWiR9PtxRRlUtlc/wFR7xIstR0Hp2ZzpOZFnM8xSnj63WTOJVu2EfVv0ur4j9JllYI96ouWZIiEd3iJzGaXSFmlCSJTqOPjlQvU5zmOM+xYf0G3vTmN/HZz36WSCTS9Nwsfn64XC7i8XjLMpOTkwQCL4xo5UxgGAaf+cxn2LRp05luykuCX++6/AWLSiuVDV697xZmi4nGr4syRAwv39v5IWyq9VWkhYWFhYWFhYWFxXIMo8zM4RgnHpnm5KPT5JNL34M4fTaGzu1m7fk9dG8OW1FuFhYWL3lWIZWwiMViXH311Wzbto19+/YRoZtLeR1bpD0rBEreXhfBEbEaNv3kIse+NYlRavyyCG/ysfFN/ahOIVSaeGihqaBAloUYxdXhaNpO2S6jukV7Rh+YZfSB5mKdwJCH9W/oQ7bL6NlSS8GHLMs4AjYcflvTMiDcWwAmH13g+N2tnWmGr+2h78KOlmWqzB9IcuyuyZYCJXeHg41vGsTTtbpddOM/nufUvTMty9j9KuH1fjzdbeqUhSjMEWzdP9U6gbZuS6pTxtWxOoeX7t1huveE25ZT3WKB8IVEdcq4ou3r9HQ7Gbi4E2ekfVnVKRasVnV8t7Kqp1jX7qB5XzZFhshmP4Gh1uVS4zkO3zHecjzWsvY1PQxc3Hqsjz4419I9rRZnxM661/a2PJ/48QyHvzaOnjfEc8HZvJNku4wzaKvE6jRGS+rmQnXXnhBDV3c1LZuayHH8u5Om6KjlfSELUWOrcRE7kmLxqFiQ7T2/g3U3NI9pm3xkgRPfncbQxXl17Q6uGB8Ro5tLpNdyTvfFyJLMxz/+cSKRCF/84hebt9PCwuIXzhNPPMGVV17Ja1/7Wib2z3KOfBXb5QvqBEqSTUV2OfCvDQhRQqnMzDMJUuN5lFBwZbQb0LXdh7/fieL3U8g7yC/WP8ulUAAlGEQJBrF5FJzBZYtoslQnUFIdYo5XSJaYPS1hKI3zTspakc7dHfjXhgDIzhfNKCcjl8PI5erckxSHjM2jonjd0ESgJNuEy4tRNJh6LGaKRRvh7nDQc04YpcX7oJbZZ+IsHmsthglv8BHZ0jgebzl6rsTU3lhb9yFX1IF/wN22PneHA29v+2wZSRauNKvB7lWRlPZl7R6Vjm1BbO7m780qNreyqjqfD6pLQW7jhAXCXSuwps3cp4JtNedeGYaKo/0YUl0KofW+tuUcfhv+AXfbazT/XGLVUcUOv43e8yKmy2Ij9FyJqcdiLUVAtYTWe+nYEWxeoAyzz8ZNsVW7+0x1KqLPW5x2ZjqPoZeRVYnuPSEcgebzqfkDSRYOC6HgkvtTY+xeG66Ive55IzuX/tYxisKFjrKoq/f8iCjfAMnhYurxGOkJIVByRR3YvfXPTEmS6JWGuJDr2NG7m6/d8XW6oz389V//Nen06gR3Fi8cW7du5eGHHyaVavy3/8zMDI888gg7d+78BbfsheNb3/oWmzdvZs2aNWe6Ka84FEnm/QM3AnWacEHlHXLut9fy7Q8+wsyR9k7QFhYWFhYWFhYWFq8EykaZ6cOLPPzvB/jye37AXbfs5eC9o+STGg6vjY1X9HPdn53Dr3z2VVz89m30bo1YAiULC4uXBZZIqQWGYfB//s//IRKJct999+ElwAVcy1nSxdilype1klT3JW90s5/IRrFgYxTLaJnSisUl2S66PTmaIXYkid7CPanvoogQEuUNDn91rOXu5JFX9zBwSScgoseaOiPBUhxBC7GMM2LH7lUxdIOjd060dMEJb/Cx4Yb+VQl1ACZ/Ms/0k62/mOraHTQFI612TgPkE0USoxlyC83jsgCiW/ztxSoVtKTOof8dI9FmV70zZMfd4WhvqSjDyGt66T2//c7h0AY/I6/uNcdKK05+b5KJVTgkRTb7GXlNT9tyz4fOXSGGruxuWy41nuXw/46RX4WbQO8FUQYuay9gs3lVNv3SAOFVLIK5O5y4wm2ETwYc/ebkqqLzQAik+i/uaPsUTZ7KEG+zsGZoItZPtssMXNbZUlSUX9CY+MlCW1eq6r295vJOhq9pfo0MTdzf1XHuH2y9OKwldTPioxnVGDffgIv1N/Th6Wki9DPg6J0TpqNZ585gy0XnxeOpJVcPWbiHLKe6SO8fcBHdFFixWFYlMNPNzthlrGEj8cU4b3vb29i8eTOHDx9ueW4WFhY/X2ZnZ/nt3/5tzj77bPY++BQ75UvYI19BQFp6dyrhIEo4KP6/4tRn94l7vez0o4SCGDVuM1JFqyCHgmQydgqllc8ZKRRACgWwl3N4OsRcJj2tMXcwixT0IwX9sOw97/ApdJ8Txt7lR/L70Cbr3x+Sz2f+B6BlS+g1LkKSz4vkq3eFqs6j8hmF+aMapVTzZ33njgCh9ZXfb+Nwk50vMH8gSamJGB6EmCe03ockC8eYdrFn2dkCubnWIg9JlgiOeFclqgHhjNTKibOKzau2FG1UcXc56T0/uqrjR7cF2gqVAbS0zsQj822dSgG6zgrhW4WY6vnQc04Yd2d7Uf7CoSTzB9q7JMk2mZ49YdzR9gLx4IiXrl2htuUkRcIZsrUV62TnCkw+GjMFe+1wdzjaCtm1tE56Ok+p0NoFVa9EQ7si9raCt8SpDLHDrd3Cqvegza3Qe24EZ7i5ADs7V2D26ThlQwiaVGdzQVW5LM6pVYReuVQ27+3wRh/RbY1dcCRVJR8XAq1yqYxskwgMeyhreWSns06sBFAqGqRndIoFBdnpXCFkM7JZyooTySnmjr5+F56epb6U3W5kt/hMkVSik0NcaFxHD2v48z//C/q6+7njjjtMx0yLnz+//Mu/TCqV4r3vfS/79u2jVBLjKp/P88QTT/C+972PUqnEzTff/FMfI5vN8m//9m+8733v4/rrr+fSSy/lO9/5TsOymqbxuc99jhtvvJGrrrqKd73rXTz22GM/9bETiQRf/epXedvb3vZT12Hxs3FVaAefWPubKyLkgpqbV39zB+uOdbFwOsW3PvwIP/znZ8klVicWtbCwsLCwsLCwsHg5US6XmT26yCNfOsj//MEP+PZHHuHA906TjRewu1U2XNbHtX9yNr/62VdxyTu20789iqxYy/kWFhYvL6ynWhPuuOMOHIqTT37yk0TDEa5a/1rOl66ms7eDzTcPYg/aQJLoPTfM1l8bNBc17AGV9LTYDe/ucLD55gHTaab77BA7fmuYDW/oQ1Zlhq7sFovshhC6bL55yQmoc1eQDW/ow9/vwdPtZO1reui9QCzQ2b0qm28exNcvvgSObg+w8U39TD0WY+In8wxf2y3EEwhXms03i/apTpkNN/ax+eZB8osao9+fZfCyDgYvF8ImZNh886Ap4ln32l62/cawOUoGL+9k6MolB5XNNw8S3iQW3kq6gWSXKVW+QO+/uKNOGLHxzQN07Q7StTuIb8BF/0Ud5u663gsirK0Rz2y4sY/OXUHcnS5C671svnnQdADqOTfMutctOamsf30fPeeFMTSDxSMpNv7SoOlA1LU7yPrX95llR67vpevsEL4+N/aA6MOqeKJjR5ANb+w3y266aYD+SyIYmoHqVkR/V8Qb0a1+Nr15wCzbvSdEZiZPPqYh2yv9PSz6MLzRx+abB0VBA/R8CVfYVtff1Z3mwREPm28eRFZl5p6Lk10oMHhpR12bohXHgsCQKKu6ZQxdjJfha2v6+039RLeLLwZ9fS423zxIajzDqe/P0Ht+hJHra/rwDX107QoC4O5yVNogrk73OeE655r1N/TSfY5wbXKG7QRHPMw8s7jU32+o7++qIMvuVRm5vtdcBOqojNkqYsxGAZg/GEdxyKZYJrrFz6ablvp76KouBi7roJjWmXoiRtfukDlmwxsq/V0ds6/qZM2rOjn5vWmmHouJMbtR9HdgbaW/K0KwgUs7GLy8w+zf2v72Dbor/S0WkfouirD22m58fSLacMMv9Zs77D09TvGMqDiL2X02OreLz1SnLPp7d6W/O0R/V58RfeeF6doVxFEZ7+te10vPuZX+rnlGLB5N0bkryOa3DBKp3IPNnhFTj8fILhYa9PfKZ4Snx8nI9b1s/82hpf6+sqvuGdG9O0QuJr5MHri8g+1va/6M6L+wg9RElsxUXozZXx40BViNnhGdO4P4B9z4BsSYrQqMqs+IzFSe2KEUG27sY/0Nfay/sQ9Pr7PhMyJ+PMPBO8ZYc0UXXWeH6Lsogq9flK0+I3r2hHnNG67jUvkGto5s5+jRo2zZsoXXve511u5+C4tfMMVikU9+8pP0dfXzH7f9J+etv5wL/TfSIfUS3ewntN6LEg6iRoP07vbQsUm8v20eFcplCkkdJRQktMZOaGhJHNBztp/Bi0L4N0Rw+mX8vSrFeSE2CA45iWxwI1Wckbo22QkMOXBFVBw+hZ6zvChR8R7w9yhEN1QW3yXo2ubGFvUSO60jSdA9pKNWHGb8fQ46zhLPbldIpme9ga/PQXJURJ31XtSBvVM8u33dNrrOCoqyETtrX91HZLt4H6pO4WJSFWB5e110n73knCgpkqlNqjqeVIU7nm4nPeeGRfSnWyG62Y+zIoCSFIne85dEFO5OB73nR7C5VJwhG9GtPsIbfOa59p4fwVURsLgidvoujCDJQhTqCNqJbF5yU+o9P4K7U5R1huz0XxLF0+VEVmWCI16iW5fK9pwTNudhzrCdwSs6URwy5VKZwLCHju1LC5zde0J4+0T/270iKqvqrOMfdNNZmccAdO0Kmm5MxYyOYpdRHOL97et30bV7SWTTuWNJED9/IIGnx4m94hzq7XHW9Xd0W4DgWiEKKxsiqrUqKvN0Oek9b0lIF6mM2dln4mTnC/X93eGoE6yHN/rqBMK950dMIY4zbKf3/IgpDgmt96KldbJzQpTfe17E/NvBEbTRe34E2SZXztVNdGtNH54dxlvpb7tflFUcMkbRIDOXr3Mj7dodMv/OsHlUes+PoLoV0lM5ComiOW8EMQettl91KaK9wNTeGO6Ig+49S/3dsT1gzpEVR2V8e1VkVSK03kvPOTX9vdVPcET0t6yKMesfdIvNAZ2OBv1dFa2X8XQ5cYbsyKqEK1rp78ofHuENPnPuVO3v6nhZ0d/rvES3+CkVDLSUTs+5YTp3BZFVCUeg0oeVeWR1zBazJRYOJQmu9ZrzXruv0ocVMZJ/jZvOnaIPQyM+hq/txldpg80j+tBWcbj09rqwuVURkyjB0NVdBNaKPlSdyopnhM2rkjgh5jAdO2r62y7Te65wZJJUFU+3k/6Llu7PyCYvwbVuU4zUe34EZ8hO4ngcZ9BG73lB+i7swtvjJLKp/hnRc3YAT3+A2afjFOKFyhi2447aCK11E93VYYqVhi7o5ayu87i8+5fw2oO8+c1vpsPez8MPP4zFz59du3bxR3/0R5w4cYLf//3f5z//8z8BuO666/jjP/5jJiYm+D//5/+wcePGn/oYiUSCL37xi5w+fZp169a1LPvXf/3X3H777Vx99dX8wR/8AbIs8/73v59nn332pzr25z//ed785jfj87XfxGLx8+Oq0A6+s/2D/OuG3+Njw7/Gv274Pb5/wV/y3l97PZE1S9fmyIMTfPWPf8iBe09jtBFGW1hYWFhYWFhYWLwc0AslHr/9CF/5wwf45v/3CM995xTZWAGbS2Xdxb1c83/38Kv/dCWXvmsHAzs7Gm7StrCwsHi5YAXBL+PkyZNsX7uLDEkkZNaylQtHLiIznSdFlmK2ROJ0BqOyEz4zVyC8wYu3z0nidJbEqSzZiluMniuROJURkUuq2HG+cCQpXI50g+RY1nQk0Qs6idMZijmd6PYAuViBxeMSM08tChFTwEYxK3Zs65pB4nQGLa0zdGUXNp9K8nTWjFdKjWcpVVyUDB0SpzMUUkWcYQcOn43E6NKu/PRUDqO09IVQ4nRGOCwB4w/N4anZqZ2eyiHX7KBNnM4QWOMhO1OgkCiysD+BoVf6ZSZnfmkPwk1Gdan4+92kp2ZInM6YDlLZ2TzFmt3oidEsuXmxw9juV4luCaAX9ErZgnluAEhlIpv9zDwVR8+LftFzlXrn6117UuNZ5g8USZzOoNpl0d8ZUW9+oUDSLs5NVsEZtKFl7JU+LIuylYiSXEwjcVr0oafLSW6hgJas7G42jLo+zMeXygLEDiWXzA6MSn/HRTsLCdE2wzDAgPjRdN3O/+TpLLmKS0whKcp6Op2E1vlIjGVQ4ku7sBOns6ZrUSEtymoJHT1voLoUitml3djJ0QzZBSE60TNifFfdwHJzBYyiUVM2S746ZvMl4sczpCvRFtllbgrJsSxaWpQ1NAO9UCK82Ud6Mkc+ppE4nV26NhM59FzlWszrxI9nTIeC3KJWF/GRnsxh6KIXFw4lcfhtFBKV/l6s9LexVLZ2z3chWSRf6W+t0ocYonB6Ko9ik7B5VQYu6SCf1Mz+LqbE/Vk9bmY6TyGpM78/AQYkT2fIV/qwmNHrnxGzefR8id7zIvgG3cRPpMyxqedEf1djHhOns2gpncxU3uzDRs8IgNx8gXKpTHiTn4VDKVJj2YbPiEK8SOJ4FiNfpv+iKPMHk02fEfkFjdEfzuLwLrlTtHpGOHy2uvHR6BlRdX9T3TLOkA27T0XPaw2fEamJHOnJHI6gjUJaR3bKkG78jNAzOpIiUUxX+ru08hlhaAbJsQwl3SC8zkdqLNvwGaEaKt3HNzC0eQMPnfwB3/72t+np7uHDH/kwf/zHf4yFhcXPl3vvvZcbr3szGSPJgGMjm8PnEHD4SEoFSoBWclRMKXXKZcgnSrg8BqpTpuzwkE2rKMEgAPlkiXI2iySDFAiSy6rkc5CLi2dGdqEEZeGcpCEjlUCxl7E5JLKLJfLTebSUgdrpJ5tVKBvifallDHRNx+aW6dgRJJ8yKOYNtEwZxQaZuSJGqYzk86GVZYy4eM64ggqGrlEsO5B8NgybRGZep6RDaXaOnGbDiHiR3W4KOZh5NmlG0OmJNJlpt/lMK2Z0tESRwJCHxKkMqbGaZ3mpTGZaiKCqZTMzeXz9btS5ArmYZr7DKIuyVWcWPVuqvNeKQljS6VhyZiqLd17VdaaklXAE7Xj73aRGsxTiWp2TZGYqj16ZY+j5EsnTWZJjWcqlMoVEkWKmpuxMnmJGlHUGbCJurfJxIVE0he8AmdmC+R6weZRKFJY4Vy2l172nsnMFc56j5wzix9Pmu0rMLZZcN7Pzhbp+SI/nKGmlSh+WyM4slc0tFDA0QwiFUnp9f2d1sUmhQj6mUTbK4niS6MPq+RRzor/NsosaikPG4RPv3sx0nmK1v/OibNXVqhAvoiV103koPZ0z3/2lglFXVksX8XQ7sPtUtJROtqa/S1ql3tLSvKbWzSc7mzfnYUZR1GsUy+L/Z/J1UXfZuYJ5zQ1dlC1V+rukGRRqIv5y8wXTTaxcGbO6VsK/xoOvz0385JJAOLewNGbLhmhjZlaML7tXre/DSn+DcB7KTOcp6QY954TJzBRE2fJSf9dODuf3J8lWYt/0Sn9XXXDz8WLdXDy3UMA/4MERtFNMizFQHXtacmnMZmcLqA6FclkI7tKTufoxW3MNY4eT6DkdLVWZMxfLZn8D4ueV9tjcioh4LFTncJX+rnlGpMdz5rVz+G0oNpnEyYx4RswUTIcpvQCJ03kSp1JQhkJcM2OpZYeDbMzAKKuARjFfIj0l5leFjAQ1fWJksmRmnOgFA9ntplRWyC6WcQTtKHbIJ4um67DsdpNdLKNnS9gkLzsdVzI0OMWzMw9x8cUXs8a9macnHiYQaOwEZfHC8IY3vIFdu3Zx5513cvDgQZLJJB6Ph82bN3PjjTcyPDz8M9UfiUT4+te/TiQS4dChQ7zzne9sWO7AgQPcf//9/O7v/i5vectbALj22mv5zd/8TT73uc/xuc99ziz77ne/m3379jWs561vfSvveMc7OHLkCIcOHeK9733vz9R+ixcGRZI5x1cvUuvaEOL1t17IwfvGeOKrR9CyOlpW5+HbDnD4B+Nc9Ftb6Fzf3q3PwsLCwsLCwsLC4qVIfCLN/Z96isUx8d2HzakwuLuTtRf00Lc9impv7rJsYWFh8XJEKlv+6oCIdnv3u9/NP/3TPwEQpZdtnIcqN9BxydBzdpjkaFZ8kS2VodwkRqJcpuecML5+F0funGgZrwZiB++663sZe2iubcwYQGi9j7JhtIx+cnc4lgQkMi3bEN0ewNfn5uQ9U23bqjpl1r6ml/nnEksRTG2Q7XLLGDq7X2XNq7oY+9HcqqLB7F4V/xo38/tbRzCEN/goZnRSE7mW5Wrr1TWjZVtBODnp+RInvzfdspzqlOm/tIOpvbG2UVm+PheRTT5GfzTf9viBYQ/RzX6O3z3VshyIa6tn9fYxYcC2tw4x80ycuWfjLcvZvCod2wLMPZeoE5E0omNHEFfYzugDs+3busWPM2RnfBUxdt3nhNHzJTMyrBm+ARdDr+rmxD1TpgioGa6ondx8+/EHYkx37Qoy9XisdXxiZed/7PDq7pXBV3VSiGvMPBlvfXxVNhe92rVz3Wt7md+fWFUbgiMeolsDnPjudOtxWHmmOCN2sfDXpKjqlOnaE2LiJwttny0g3MAy03nGf9x+DES3BYhu9nPkzonmba159vVf3MH8wUTTZ0x+TYzHxh+ioBcYGhritttu4/LLL2/faAsLi+fF1NQU733ve/nKV75CSO1mk+t8/OqySFRVzMNsLhl3RCUxLu5bI502hUkryGfoPq+TxGSR3GL9M6GcFM+/qnsSQGhAxeaSmXk8JmLdGlBOppD8PpAg0K2QnC1Rrk1f0pf+IUmg2CX0QhkkKBcaP2tKs3Oofg/RzR4So3kKiaX3qJFp/K72dDvx9roqUVHtp/CSIplClGb417hRbDKLx1bnIOfpcpKPa6ZAp+FxZfANuEmN5VbVThAxqnq21LKMI2ija2eI6SdibePWvH0uJAlS4+3nfqF1XgrJItnZ9rEzkU0+8otFMjOt5xKKQ8bb4yI1nl0SiDXBN+AmMOhe1bynGjHc7vggYlSFIL713FM4GQkxb7t+Vd0KgSEPsUOptte2Y0cQCZhtM5+UVcmMGVwNjqANWZHItflbwdPjJDev1Qmqm2HzqoTX+5h7LtGy/GruKfP4XU58/S5mno63/x0JOrYHyUznWo9DiaVoOY9qbrhohLvDgVEq18VmS2rjPUqukEJka5jppxJ197aRF+OsLgpOgu5dAdIzBZIn4qZL0nKMXBbZ5cbhV7H7FFITNeelLH35akglZtxHODD1OIpk4+8+9Tf87u/+LopifUF7piiVSi9I/1dFSn/2Z3/Gq1/96rrPPve5z3H77bfz7W9/G49nKWrzP//zP/mXf/kXvvrVr9LV1bW8yqbcfvvtfOELX8DlEg5m6XQaRVG4/PLL+bM/+7O2v3/48GHe8Y538PnPf35VTlIHDhxgy5Ytq26fRT3ZRIHH/ucwR384UffzDZf3c84vb8Dlbx9BamHx88C6ty0sLCx+MTzfuddLnVfa++WVdr7Q/pyP/XiCH39hP3qhhCtg5/xf38KaPZ0vWWGSdY1f/rzSzhdeeef8YjhfyysO+N73vodDcfFP//RPOHBxLlexS77IFChJDb6g8/a4RBSDJDcXKEmie5OjWWLH0vUL83J9ndW4i3xM4/Cdk80FSpJEeJPPjIlYPJpaEp1IK9thD6isfXWPGcvWThxQTOkUU8W25WRVRs8bHPnGeFuB0vA13WasQjvRDYid7NUd+02Pb5eRVbEjvp1ACYSYaykGojmqWwFZ1Luath7/zhQTP2m/oGTzqSKqYRV1ynYZxamu6viJk5lVCZQAfH1uvN2uVZVdLYpNJrDGY0ZStGLu2fiqBEoAkiqbMWztsLkVbM72x0+N5Th290RbgRJgCpSqcWOtcAZshNf56mJSGpFf1ExxkOpu3149U6KUbz8GDF1EEq6/odeMh2lYTqvcr5U2tLMKLWZLwp2i3Tg0ABmGr+qm/4Jo02J63mDiISFQcobtDF3Z1fIaH/3WFJOPiHvL3eWgTi+67PmZnsixeDwl2io36VtD/J7Nq+LpcYqIqFpqfs95OsxF+vX0MsTkxCTXXHMNv/Zrv4aut164tbCwWB2lUonPfvazDPYN8fXb72S7+1LO8b6mTqAkhYKmQAlAcUg4g6p4FoQCTQVK5XAAvAEy8yW0TL0owAj7kEIB8Z8MNqeYN8UndGYWHM0FSmEvkW0hFDtQhsTUkkDJ8LvrBEoAgX6V6IiNst/TVKAkedzIbjdGqYyeM0zXFMntRmqw4C/JEpLNTnbBYOapxZbiELtPpXOniKRajZjC0IyWgqMq1RixzEy+bXm7z4a/343iaP8ur7rqtRMogXASmnp8oa2Qplqvssove2RVRmowj27EwqHUqgRCqkPB2+Osc5p6IXAEbWZ0XDtmn4m3FSiBcA1V7DKS2r6tZaOM6lRWdW1jR5LM7W8tIq8ev6SJODPZ1r4N3h4Xnu7W8y4Qzl5G0UBSpLbXoer62W4YVO8pT4+TyKbGzwzz+DN5pp9cpFwqtx8HZdCzevt7sXJLe3qcdO8O1blSLic7VzAFSsG1HhHb2ER4klssMb0vax7f7hPlZKdTRMB5ap5LZUhP58kvauIzd+O/L2SXG8njweZVzLhJk1LJ/D25rNCT2cxF3jcScXfx+7//+/SFRzh+/HjrvrB43nzta19rW6ZUKvGRj3zk596Wo0eP0t/fXydQAti8eTMAx44de1713XDDDfz3f/83X/jCF/jCF77ARRddxI033sh73vOehuXn5+c5fPiw+d/p06d/uhOx+KlwBxxc9js7eO2HziM8WBMB98A4d/zxjzh436gVAWdhYWFhYWFhYfGSR9dK/Ojz+3jgs8+iF0r0bo1w419fzMgFPS9ZgZKFhYXFC8UrOu4tnU7zute9jgceeAAJibVsZa1crxozBUoy9OwJEzuaohAvcvTOCVOE1Iius0J4e5wcv2uSzEy+fjFj2SK6I2hj+OpuJh9dIHY0SzHdZJFGkqBcxuZWsNeKQqrfpjcwxdISOmM/nKuLy2pEcMRD/HiGxKlM27K9F0bwdDhFH6xiw7NeMMxoh5bIIv7g5D2tXYkABi+JYvPaRBtWwfG7JmlkirWi3ss6ATjxndUJfwzNQFuFmCg3p3H0G6tra+LkUkRWO1SnbEaFtePkd1d3Ts+H/KLGwa+Mrv4XZJDl9s4/7Rycahl7cG7VZXNzq3NHAggMeRi4tINj35oUDkFNyM4VOHj72KrcjADCG330nB3m6Lcm0JLNF1knH11Y+kcbBzRDK6MXDNoa41XqiGzy0bkzxNFvjaNnG1ecmcqbgi53h4NS0Wi+0GnA6A9nKbTop1rsXrWtsE2IoySQy6y5vIvURLbeVUlWoBLDlF/UzGsUHPHQsc3P8bsmGwqsitkyh786Zv6755wwi8fS5BOlujplSWYLZ6O7sjxV/An/9V//xTe/+U3+5m/+ht/5nd9Z1XlaWFis5JlnnuGd73wne/fupd+zjfXqLuxyvcBSCgUBUF0yrqBCaqpIPl4iH89CqHEMkKxCdFeI+IyBloTUTP3z1QjXC5UDvSpOn8z0QY1SwAdGXQKUSSnoxZZIo4RtKDaJkiaes4ZfLNjLsZVC7UTaQboAzC+u+Ky60C8nF5BdMnrOIHZMxJ9WxUmlufr3mmKX6T6ng8XjGbLT7d2OymUR0WWswrmFsog7bYfqUug+O8zCgURb9xoQcW0TP1lo67Rj86h07wkx+3TcjBJtRzWyrB2rnUuBiI9dDZIiiXNaxbppISn64IVm8ejqHK+qyKrU1skJhKBpNZTyBjNPrhzbzco+Hzp3BClpBgsHW1+P2OH2Lk61dO0KUkjqLB5tvrGipBksHKgct8atqBlGsWzG2rWkLOrrOitIdq5AcjTbtGitm5kr6iA339xRqRrDuFr3KdWpUMyVKBfySA4HlFbeR0axjGS34w5JhEbcTD0eN595IJ5f5Yxof3pqqW0dm1xkF1TSpxv3byahkp6s2Nm7ZZxBG6lJ8fuS20U5K9zOnLKH7VzBmp4pnp59iA3rNvLeP/4j/uqv/gqHw3JVeSH41Kc+RTgcbuoQahgGH/nIR/jhD3/4c2/LwsICkUhkxc+rP5ufb78RqBan04mzxvHL4XDgcrnw+RpvVPrmN7/JF7/4xRU/P3nyJKUG98dy0uk0Bw4ceF5ttGjMxl8LMf24yuiDcUqFMoVMkYf+bT9Pf+coa18dxtdr3f8Wvzise9vC4uXJmXYJsLCweGUSn0xz//97msWxFEiw+43r2HXjOuQXeDObhYWFxUuVV6xI6T/+4z/4zd/4LcoYBIiwU7oEu7S0w3O5e5IsS/jXuClmdQqJFl9aVYRLuZi2cmfrMnFSNaapEC9y+oE5UuMNFokqAiRZlfD1u0mcTC/FP7XY6jt0ZRfpqRzzB5JtRUf+QTf9F3WgpXWyM+1jLuLH02ir2JVdFdCMPbiKeK+tfsIbfBz71tSqxB7TT8dx+Gxty3l7XeiFEvkFDWMVJijTj8dWtTPcFbUzdFU3p+6bbhsLpjqFK1ArQUoVWQXZ3j7upFp2002DTD8eY/7A6hbXzjRbf3kN84eTzDyxisUtWYhZVtNvyOCK2FclQhq6qotSsdx2XCZGM9ieUMgn2tdp6AbIENngY+FQa2ex+MkMsm114wGgc1eQwJCHo99sLgo0dKMucrBdrGJyPIfNqzYVKC2n9/wIpWK5pdCtKmhS3TJDV3Yz+cjCUszk8uOPZs1FOtWt4ArZm0cxliVO/WCGYmXxWlZljGqzq89UY+l+Kab1yv0u1YmO6qj8nmovExjyUEgWySeyDetUU27Oka9hVDrMhHGU3/u93zOjKdxN4k0sLCxWomkaf/VXf8Utf3krHjXEeZ1vJuTopZxeWpSvipOqODwy7oiN9EyRcqCxOAmEe1IJKOTKK971y8VJkgxlA5LTOsmiDyO0cuGrFPSK47uhXBCPg7lj4hlUFSctx+aWCIx4mB8rY5RWPnrqXEiA0Fo3ZaPM/MFMnXPScoGSZLNjVIRE+YXW87lqDFUxrbedF0iyENSnJnIiurgNeq7E4rFUS9FuFU+Xk8xsflUikmJWJ3YktSqBUmSTn7JRXlXEsM2jUMyWViUmUhyyEHqsoqx/wI2n28nkIy+8+OjngbfXRWjEy9iPVifoVuyyEN6soi9Up4KhG20FUHavSsf2ANNPLbYVLSVOZ1YluqmOLZtHRZJo66wVP5lp69JaRVYlus4KkTiVaTqPAcjNF0wRUVshWBnSkzkKidUJ8Rx+G9GtfmaeiqM1uzfKmOJxb48Tu8/W8t6ofSY4QzYKCfEsBFYIlrKLZfTDeVOgVLsvp/osq4qVkEBLlyjmDNMZqSo6qkWquOU4fDqeTgepGpHT8t/zZ3q4uONXOJV/nL//+7/n3/7pP7j/R9/jrLPOanp+Fqtj+/bt3Hrrrfj9fnbv3l33WVWg9OCDD/LGN77x596WQqGAzbby73m73W5+/rPwgQ98oOXnN9xwAxdddJH579OnT3PrrbcyPDxsxb2dAbZug+wbCuz970Mc+/EkAJkpjX23TbPpigHOvnkDTt/qXAQtLH4WrHvbwsLCwsLC4oXg2EOT/Phfn0MvlHD67Vzxnp30bWueQmFhYWHxSuQVF/cWj8cJSBF+4zd+AwmJ7dKFnKNcZe7ilxSlTqDUucOP6pYx9DKHvz7J/IFlu5fLhvjmVpIJrfcxcInY+ZcczYmoIllZ+q8G1V5m4y8NEN0WBFmpFygZJSFAqhEhdewM0HdBRMQjLftMtKP+i/GSvood9BWSo1mO3z3ZVqDkHxRfSmdnCm0XvwJrPWx84wD2wOp0cJnZPOnJfFuBUjUeKr+gtRVfgdg53Xfeyh2azcjOFUiNNxFL1FDSDFJjWXKx9ot10W0B1r+ub1VOToFhH5vfPIhtFTFjhgETP1kgOd58R3YV1Smz8c0D+AZe2Lg3gJHre/n/2fvvMEuuwswf/1S4dXPs2307T0+OmhnNSKNRjkhCCAWibcB4sbH99ZplCcaAWa8DuwYMtoGfw8LaBuy1l7SAjAEhCQmhiAKKo8l5OqfbN1f8/VE3dt/uWzVWVn2eZx5Q31N1T52qOnVunfe8b2ZXwlHZ0UdmHTsbjFyTYfiKHkdlBy9KM3J1r6Oy+dES+dHObYaJHSXo0AQgPhymb08XwfTKL09N1WT6GTv6xEmkXWGsbAt4HNZj5OoeVl+TWbGMltcZf9QWioX7Ah3rceLuSU7dM+GsAlRjW5y4CwC9u1IMXJxe+jRq6tNKUyp6xUL0S2x48wDprZHWsk39bGGsyKn77MnjSH+AkWt6ERWprWBJVwX2f2e0HoHXfU4MJSq37rPKsLiRC81r6Qn3cffddxOPxPmLv/gLR8fo4fFa57HHHqMr0s+f/sknWRM7j4t6f5mkv7/+uZBM1AVKkgKhVDVWbFpnYtS3RKAk5Ap2rFs6TvKcBL6qccL8mIU+VcBMRev/mokpZbp3RrFSUfRoFL3pES5mCxiJSF2gJAjQ1QfRpP25GQstESiJszk70i0WxgyFMJvdmKbnEMKh+r9mzIkpZk9ZzJ2x2ke7+RQEn4IU8tdd5xZOleqRcMvRc07cUbQt2MPX0rS6vACiuT6SfVSFsXJD1LAMSlQmtSmKP9ZZSG5XBEciKYDSbMWRSAoBenYmia8Kdy4LdG+Lk9rgrN0Kk+UV3XiaiQ2HSG9dXlx3tgRSCn17Uu2tvxZRmq0w/dyCo7JyQGLgwjSBROdJYEES6NuTItTTOXJNK+oUJiqOxjGVec2RUL9Gan2E2KrOguHyrGqLlAQ6x77pFsXpiqNIQbDF1v17u/AvjjNbRH6sbAvnBDqWrSxojD8y6+j+BPt+dvq7T/QJpDdFCGeaBJqSBJKEWWyMj9WcgaAoRIYi9J6XgnLr2Lnev4VCzO+fQ83bJzg54ifYF0EIBW2XpELruL+Qk5k4bAsIJZ9AuLvxm6e2DYAs+lgXupArVr8dvWKye9d5bO69gELBuUOax1I+9alPMTQ0xCc+8QkOHTpU/7tpmvzpn/4p99xzD7fccgvvf//7X/C6+P1+NG3pNa6qav3zF5J0Os3GjRvr/1atWvWCfp9HZ0IJP1f8zg7e8N8uIDlU/b1nwf6fnOKbH7qX/T855cpFz8PDw8PDw8PDw+PFxo53e4Z7/vpJ9IpB35YUb/qziz2BkoeHh0cbXlMipb//+78nk8mwwCwpMlwm3EJGHKp/vtg9SQ6JdG2KER8O20KkDi/XBVlADkiOWlVXBWaP5Fk41UYQ0yxAqu5r4rF5jv5wbMUJKjkgEu6zJwtO/XSqPvG+HEOXd9cnZTq5ASlxmeErekhtcjaJkztdYnp/FjW78gv+mnCnNKW2xlstw/AV3ay+vs9RHQCO/GiME/d0dnKK9AdZf1M/csjZLaEu6Jy+f9rRhMvkU1lO3jPpyMkpd6rAqfsm0ZxMjJgwdyjn2JGnMFpyHJHihsJkmbIDZy2w61t2IOwCO3Zk1GFMyuRT8xy7o3NMINgryd1EpWR2Jxm+qrNYKnu8wMHvnu54L9WIj4TZ/JahjhNVhYky44/MAjgSus0czDFVFUF1RIThy3roPz+1YjEtr6OXTeSAyJrX9xFILj+BqRdNjv5wzF7dL0J0eOXJw9MPTNkRjyYd+05TNZk7nGfhhAORGXY8kag0OS+13Skg2uXSm2Ik1iya1G4WmKoK55QuZatwAYFQgA9/+MNccskl5PPuonc8PF4rVCoVPv7xj3PBBRcgInJh5pdYH78QUWjcV4vdk0IJiWiPZIsqkvEVHV0sy3YwWTR8W5aiECI/3zYdty5Oat735EnIH84v654E4K92GboKM6esen+zWJgEIAcEukZkxGgIU1/q+mRMTSH4Gv1rfFWI9GZ73GVpnZ8t2ZNFCuOdhdY1V5TsiYItmlgBX0hi4MIu/HFnoiM1pzP60Iwjx5iuzTEi/c7F08XJyorONnUsmHxijvxo57YAOzos50DwDaAXDUdxdwBa0aDiwI3RLUbFoDRdQVjBUbVetmzabj8O5nT1ssHUs1lHrlaWYTH55LwjgZllwvzRvONYMkkRyZybxBfuPOiZ3rfgyk20Z3uC5PpIx3LZZuelDs2sFw2yJ4qOx+Ph3gA95ySWOu4uonZvhjMBEmtWrnNhosz8EXssosR8dWFhO0zNYuzhqUZcW3PRNp1peV4jP67aCtIOCKItguooirNsZ6VAQiLW50NY9LU1oRKAv5zmwu63sS5xHgcnH2X79u08+uijHevi0Z5wOMxnP/tZIpEIv/d7v8fo6CiWZfEnf/In/OQnP+Hmm2/mAx/4wItSl66uLmZmlv7Wq/0tnX5xXuLfeeedfPSjH+WLX/zii/J9Hp3p25zi1v9xMRe8cxO+oN1BVPIa9/3vZ7jtvz/I1FGHv3U9PDw8PDw8PDw8XkSyYwVu+8MHOXD3KRDg3Det4/Uf30Mo2XmBl4eHh8drkdeESKlcLnPFFVfwG7/xG+iqwXbhYnZJVyBXZ/wXuydFB4OIsj3Zfujfxpd9+S1IEr6obccPMLs/z7E7JhGE6v7EpS96By7qIj5iT1xNPD6Pmmu80BZEgeYl6uG+AJvfOkSoJ4ggSe2FIIJYn23r35tm8JJux+0iyQKi7Cz/VM3qHL19jNkOUVZyQLSdp1SzEUu3AsOX97D6OmcOOAAzzy4we6DzZIQcEG03IhNHK7Ity0IrGI7irxJrw47FWmALK5aNslqEXjaZP+JshXB8JExirTOXAL1scvr+accCITeMPzJL9qizOitxmczOhKOyxQmHk5HYorGyw0lDsFew9+915rBllAx0h+Ku2gRVINV5Iqcm5HMyGQj2+d701mGU2MqTdrlTpXqUWqCrQz1MOH7XOKcfnHZUB0QB0ScsmUxajp7tCYYv7V5Z/Gc24kpWv6631T3LslozRmj0m6JkMnJ191K3NlGq9+nzRwoc/dEEmHa0SWpTbIkYtV4N1eTg9yeYfNJ+6R0bDtafkIufEX3iCOep19IXHeT+++8nk8nwj//4j84axcPjNcKzzz7LBRdcwKf+7NOsCe9hb+btxJTGGKXZ6UgQwR+2xyO5SYOxST/WMveqkQwTXJ1A8gEWTJ8wKRdAT4bQk6El7kmyAvH1fpBEdA3yi9JGtWQAq0ns0dUHqV4wYgqVoNJWoKRH/Qi6iZgKkx4WCSWa6hdWEEpLn11mKIAV8iOolSVmmEIoYP/ztfbZ80cLzBxREYMrv8yQQ3ZblWfVlnFl27JBif69aceiI71sCzCcPKtq9TAqzsQoetlwLFyJj4QdxfHW0ArO963mdWcibgGiA0HH9ShNO3PndItWMJg/WnDsJhFM+zsKomuUpitYDh15KlnNlaNFOBNYUeRcw9BM9LLhyP2pFtMn+cUVhTk1cmdKjsVrAN3bEyTXdRY15U4VsUwLSelcj8JY2Y6+c3h9CpLz32sIkN4SIz6y8u8DvWQgCAJKVKb//ETdsQ3ArFRaxEpGxbJFSkAwSlvnKiEcQggGwR9k5lCZ8nxVYNXtQ4oFEULt+7DChMbEUQvLAEECJdJ0bwX89j9AFCTWhvZw+epfYvpUjj3nX8DHPvaxti48Hp3p6uric5/7HKZp8qEPfYj//t//O3fffTc33ngjH/zgB1+0eqxbt47Tp08vccfat29f/fMXg2uuuYZPfepTvO9973tRvs/DGaIscs4Nq3nLZy9j7UWNRWpTR7J87789wH1//wzl/PP/bsPDw8PDw8PDw8PjbJh+tsB3/+B+Zk/mCMQUXv/R89n9lvWIHdycPTw8PF7LvOpFSnfddRfpdJqf/vSnJOjmMuEWesTB+uf1ieeqOEgOiAxdmqZ7WxwEEb3c/gVybbvk2gjd22JL4pIsY+lkhyBJ+GM+/G1EBu2iB0ozKrnTxeVXYS+avD/9wDQn7uwcyVSbRDp+12TH1cfhTICeHQmAjnFwAIOXdrP6WudOR7OH8sw7EbhUDzV3puQoLqx3d4p1N/Y7vsILY2WO3+Uszio6GHIcIdK1KcrgJc5WgYqKyODF6Y4ilBqJNWG6NsYclZVDoiPhzNngZt/BlJ/0toSjODuAtIvomthwiJEOMWc1/DEf8ZGwo7ae3rfgyOWrRu/5KdZc34cor3zxmXpVyOfAQQggN1pi/mjBcfxIekuMdTf0dzzG0rQKpi0g69uzsqOSXjQ4fNto3S1KDqxc8ckn5jn243FH4j+w3aiyJ9vc38LS75FDMv6Yr766tpl2/W9qY5TubQkQl7rm1TBVE0GS7OfAJem6oK62v+btZNPHlsJFbJH2YlkW733ve3nrW9+KuaJtk4fHqx/TNPnCF77A7t27Obz/DHtXv5u18T0t7kk1IZGYs8UC0W6J1IgPQbQdjZaLFDOSYQTBItYtEIovHTdJuaWuLlYqgOKz2unG0dqsZCrmobSCHluPNuJnDB0mj5oU56v/HV7mWRi1v0crw9SBcouDUrvJ+/iqoC128AfQyybGwvJjNTko0XdeimDaWSyOUTHJj5Y6ipnsytnD49ypYkcnHlEW6N2VIjrg3Bkpe6xgu/x0QA5KRPqDHZ1naqS3xByLsEI9fsIZZyvaZL9EYk3Edk11Uj4kOReXuEQOOt93bDBIqNvZ9SEHJBJrI+0eu21Jro84vvZskZKD82LBzHMLzlxFsYcIvbtTxAY7x76VpiuNa99B8xXGS45+/9To2ZEgubazqKl2bNHBIL7QytdTfrTE7EG7UxJ9HU6MZbuLZo85c3jUSwbFSbXhGtVMm7GSHBDxBUQEZWlfZxVb3chEWSA+qBBIVBcFLSNUsgwQggGiPT7S6wL1a88qVsVkgcb15S+n2Jt+C2vSe/j0pz/Neeedx7Fjx5wcqscihoaG+MxnPsPc3Bz33nsvN954I7/3e7/3otbhiiuuwDAMbrvttvrfVFXlBz/4AVu2bCGTcfa7zuPVTTgZ4Mrf3ckNn9hDYqApAu6uU3zzg/dy4G4vAs7Dw8PDw8PDw+OlQ1cN7vv7Zzj4nWm0skHv5hS3/tnFDJzjxbt5eHh4dMKZUuAViGmavOc97+GrX/0qAgKbpT0MSutaJq9bJpxDInrRRC+bHLtritJUe2FQbZtAUqY8pzP5ZJbZA7n65HY7/HEFyS9RmlE5dsdUax3aiJPSW2MsnCqjFQzOPDQPLJp0b5o58EUkBi/q4fR9U2h5nbK68mqy9LY4PdsTHPzuaUcOQ7HhEJGBIJNPzncsCzD64Ay+aOfLSpRFTN2sO750YujSbiSfyHEHIiyA8cdmyZ4qOopj696eIHem6NiJ59RPpxyLn0RFWiJgW45A3Ed0MMTUs87sy0/8ZNJxPVLrY/RsT/DMPx13toELes9NEe4PcuCbpzqWzR4rOBKZ1Yj2BVELGnOHOpcVRAHRJ9rxXh1Wpy+cLLJw8qTjeogypLclmD+a7xjnMf3sPIXREqbu3B2ib0+Kw98/s6KYx1TNuliqdv+sWI/9C+gVw3H8SGwgRGxVmKmn5pcVZzYzdHk3wZTCwe+cWbFczQ2r/8Iu1AWN6WeXn2xvjqjs3p5g7uACeu22rM9a2XVTF3QOfm+s+pFAdDjIwvHW/qTWJ1uGwehDs7aoyhSq4ipbhNpO0GRoAkfvnKI0bQsefBEJvdTYZ/M2A9IaeqV+nok+wLe+9S16e3v59re/zaWXXrpiu3h4vBoZGxvj137t1/jxj3/McOo8NvRcgST6INe4N5udjkQZTN12T8pZQfRYe5GPkQwjSRaCZWGZApPHTMzqbagn2wsT5L4A5TLoFYGxMRG5qStcLE4SJQhGYMFSyANUh3PyfEP01CxOisYsfJJAbtqiLCvLjqbN6qR874hAKQcLTzdc6xZP2Buj9vhGjgYJD0TQdYnSrL6iQAlskcH0s1lHEWSCKGCZFtnjnZ/DkiKS2ZVkZt+CIxclU7eYembekfhJDkgEkj7y42VnMWQlgzMPTjsqK8qC7WTjcL7SH/MhygKFic6xZXrZ4NTPppztGMjsSJAfLZM94Xzc4wgB+vd0MbN/wVG9J56cd9wegiQQSvvJj5baC1cWIcqiY7HU5NPO6wHgC8soUbljpJxlwvS+rDPhXZX0tjh6Ue+4UKI42RAo1e6flZg9kENz0G72DiHca4v6tGJndyfJL9J3forZA7kVnUZrv+8kv0hyfZTZ/QuY+tJ6m+UyYiBA9kQJsMdGSlSi2PwbuPbbtjruyY2qCFm7w1PifgzNwii29j1C0D4ms1Ri/OkCpg5CWEH2C+jY/Z5VXHpOc/MSpbJlD/MEu1+u1zrgh7J9zKIgsS51GQOZtTzy3PdZv24Tf/03X+C3fuu3Vmq+1yxf+cpXVvx88+bNHD58mK6urpaygiDw7ne/+6y/99vf/jb5fL4e3Xb//fczOWlHsL/5zW8mEomwZcsWrrzySr70pS8xPz/PwMAAP/rRjxgfH+f3f//3z/q7PV6d9G/p4k1/djHP3H6CX3z7EFrZoJLX+NmXn2H/3ae4+D9tJb06/lJX08PDw8PDw8PD4zVEdqzAXV/4BbMn7DmNnbesZdeb1yFKr3pvEA8PD4/nhVelSOn06dOsG9pIhSIhouyWryEgNlZ2LxYTiTKsu6GP+WMFxh9faCtQat4mtSFM3+4Eh384QXnGwNCEtgKl2t8GLkoh+UQO/7s9AdVOmAT2RLoU9NG9LYHkz9djhxo7XPpwEwQT2e98gqC2EteJQAlg7JFZxF90LhfK+CnPVFDzuiOnlzU39FKeUTl9v7OYqfxoCanT6uEaoh1vlnMggBJl2+1IEHAkUlIisn18Ds1Spp6ad1YQW8zx3NedC2cAx/WYPbRAYbLzRNbZMPn0PNLBzhF8Z8OxH487Lps9XnA08dqMqIhg0llQJIqkN8cxygYzCytHHupFk1xtskmk4zkqjNvRI6bDubVgt8Lqa/o4cc8EhbEVzqlJPTow0h/sGG8yvW+B2YMLjusx9UwWf8yZUwWApEhIfmf9jhyS6N4aw9JN2+2t2QKlTT+YXB+mf0+KI7lxynNL42dqfbFeNhAkiaFLUkgBicPfn2gRMjVTntEQBAlfRGD9TX1MPJllZn+hZX+1bSQ1wA71Kg6LT3F67gDXXnstf/iHf8jHPvYxR8fr4fFq4I477uDG198CgsDu4beTjqxp+XxxDFskAYlhhfH9Klo0Am0ewUay5lpo0d0PmgozE2Aay4uT9GQQn2KR6TWZmBAplwCEtq5JAPJ8hcCATDRukRu1RVAt+4sudYlRChWssIzRpluVp3N1cVKN7KSFdmoWaO8mYoxO1CPdTN1i4sncsm5SLfWIyqg53ZFAyR/3kd4aZ+IXc47EJ5ZpUZyqoBacOS5hNaI7O9YlabsZ5juIT4B6dJbTCDJTt5h62pnYG2DusDPHmbNh8qmsY8GyKywY/8UcetHhA9uFMEgr6K7cI2eeczH+q9ZDUkRHUWfBlEK4N2ALsTocQ/3aE3B0vOWZCrrDWEKA5PoockDseG3VBH2CZIt+VowRtGDi8VlH9zrYLmjzR/KUHEY3i5KAJAvV352dGyXcrdi/52Y1zGIRMdTUx7b5nZsc8aOXTWarRkaWulSsZAHoJeSAQGajwswxjfKCWe8HF4uV9LKFEAwQSxkEUzITR5uqXnNUqoqVgtoAFw3/Gvun7+K3f/u3+cyf/v94cv+DRCKdnaxeSziNI/7qV7/a8t//UZHS17/+dcbHG7/j7r33Xu69914Arr322vp5+vjHP04mk+H2228nn8+zZs0aPv3pT7Nz586z/m633Hnnndx5553k8y/c88Dj+UGURba/YTVrL+zj4f+zn6MP2gtWpg5n+e4nHmDzNcOc99YN+CPOf6N6eHh4eHh4eHh4nA1HHhzjvv/9NFrJIBBTWPOGBOe9ccNLXS0PDw+PVxSCZVmvKm/kr3/96/zyL/0yFhZDwkY2+XY72i65PkzuTMlZLJEIidUh5o84cwGSQyKCAFqhuu/l3kZXBQ1yoDVmzjKMJRPzckBEV03QnU36x4ZDFKfLjmOXhq/qYeFEoS5yWBERNr91mPxYiVP3OlthntoURcvr5E53XjnshlC3n1VXZzh2x7hjZ6S6G1GnphFh6y+vYuqZrCNnKSUmo5fNjq4+Z4MSl1l1ZYbT903Vo7eeT7a9a4SJJ+ddiaycMnR5D3pJZ+zns8/7vgGCacVRm4iyyOa3DzH51LyjCU0n7kXNjFzdg2nCybsnHW/jlP4Luph8cs6R41EgqbDujf2MPjRTFymuhBwQGbq8h7FHZik7nAhLro8ydyTnWDTni8gdY1xa+kFZarvvZsFnqEehOKk2f7jsvpWYjC8oUphwdnzpTRFmjxYd3ctGqsCjhXtYyGW54oor+Pd//3dCoc4RNB4er1R0XeeP//iP+eQnP0lXeDXnDLwRv9waiWr5lk5wiyL4YxLFZbolqy5MtgABJWBh6GDoQtv9AVgy1DKcFMVCVRt9hNVWIG4hmPb/iiKYTQIleb68RKAkSRaGISCqRr1eS46r2BBLBCON6Dgxt/x4yprL4guJxAYDzB4pYlWHdiu5KIV7A6Q2RBl9eAbDgdhC9AlE+0PPv6sP0LU5hqmbzB1yPsHrxJUG7Dis2HDYsZOSLyShORTiuyW+OowgCswfef4nsqNDIeLDIcfifTf4IjKpDVGmns5ias//mFSsCmGcCI9iQyGiQyHOPODgOB0Kjmr4IjI958SZeGLekRDPDYGkgiAJjuIJwY6Y9cd8jD3ibKwb6vbjT/gc30OSIiIHJSpZZ8JAQQQEoa3YTww0hJOiLNiuSwIIgfbRjUJVLCT57HvYbG5qeZn1T6JAIC5SzrYbzLWJ7vSBLyRSXmh/AVhy6zMgK+/jkf23E5CjPPDI3Wzfvr19PV6DPPHEE2e97YspFHo5cODAAd773vfy5S9/mY0bN3Ysv2/fPrZs2fIi1MxjOUafneGBrzzL/JnG2CYQU9jzSxtZf9nAsosDPTxWwru3PTw8PF4c3I69Xum81p4vr+bj1VWDh/95P8/daZsN9G5KcuX7dnJi7Oir9pjb8Wo+x8vxWjvm19rxwmvvmF8Ox/uqcVIyTZN3vvOd/Ou//isiEufKl9Ml9tY/F3wyltY6KT5yZZrinM7Us3nmDi2dtGneRonJrLqsi1P3z1BZMMkeb7/6W5BELMMkvipI97YYR++YQi+aCJJof6a3mZiXJPrPixFIKBy9faIxMV+bZBeWvqBdfU0PWsng+B1tnGZqL3tr+jMR+vd2kR8tcfo+B5MCIkiy6PyljgnH7xrvKDpoZnZ/Z7EEQPqcOKEuPyfvcSb00CsGuVPOottERUSsui45woQzD02vGLHQTP8FXfhCMoe+t3Icll0Z2PJLq5h4fJYZB20jCALqgua47qkNUQQRR/t2SyCpkNoYZfzROUciHq3gvN4Am942xMz+nCPBVGpTlIEL0jz3zZMd3cJM3WTs0VlyZ5wJ5WrHpsRkRxFquTOl1ombDsRHwqS3xjny76Mdy7pxOSjPqZy4a8L5cZrVya9AexHAYvwJHwMXdgEwd6jz9RUdCLLqqgzH7hxf0Qmqdo0k1obJ7Epx5IfjS0SWlmnVXY1qAqWe7TFC3X6O3zVlr/xvMwmuFcy6aHTkyjSF6QpTT9t1r/XhzUzvzyNIIr6ozMgVaUZ/PtsicGp+VkizYc43r+Nx4R7uuece1q1bx2233cZ5553XsW08PF5pjI6O8iu/8iv89Kf3sr77clanL0RomnDWU2GkXOM+V4KQyAiM5/zopoCxsPRZraUCyDn779GEhU+B2UmLfNVpyNdmrKHGffgKGt09FsUiFPICqipQSdgr6ZU2fbYZkxgKV5idESmXBczqba9FqkNjo1WgFAhYpIcExiYlrCmDxQIl029vVxMphWKQ6hMYO2yhSxK06R4tpbHSf0lMmW/lIXphvIxeNBwJlABMzXImUBKgZ3uC7PGCYwFEaabi2A1GCogYZdORQAlsl0m9bDoSq8gBib7zu5h6Zt6Ru1R0KESkN+BYSGJUzHZ6iraIskB0MER+vIThYszjlHBvAFMzHR2nqZloBX0l7W7rvvsCJEbCnHnQ2VijZ2cSdUFzJIQuTjt054L6ORd9IpZhdbxmtIJOYaLi2HULoGtTjNJspSXWrR3lOXcLArLHCnUXMCcIomDbwTsUZsVWhQkknIugujbHEUTai/LF6oVhmvVYuO6tUSrzGrmsDxb9drXKFYR4FANAUxEkSK/zs3BGo5LXsWIRhMVxbqZFSfdDGBSzTGJQZuaYZrt3WhZWJIRQaIxTDQ2MrIkZDxNNgaJXmDvdFJeuGxipCOKCvU1c38Le4QxPjd3Grl27+eM//iP+4A/+wFHbvNp5rQmNPF5b9G/t4tY/u4Rnf3Scx799GL1iUF5QufdLT9cj4LpGYi91NT08PDw8PDw8PF4lZMcL/OQLTzBz3F5U2BLvNvYSV87Dw8PjFcirQqQ0Pz/P+eefz+HDhwkT5zz5dSiiAtiTx8uhlU30srFEvNRuG71soldMBNG2O1o8iQ325HYNtWigFvTOoo3qBHturOxq5ff4E1mMSpvy7WZPTDj6ozHnsRCm85it6FCQ3KmSYzeftTf0UZyqOH6pjmG5cq9RF3THq9C7t8Xo2hRn/zdOOI64cuQsVWX04Rl8YWe3mCjC9L4shQ6TJDUq8xonfuLcoSfSH0SUhBdEpOSLSMRXhZl+Joua73yuxh+dc7X/2YM5ChPOBDYLxwtoBR297Oxemj3grj36L+oiPhR2FMvntq31koGhGUuc1JYj0KUwcnWGE3dPtI2obKYmUApnApTm1BUdgUzV5PC/dRZK1ajMaxz+t1HHE3i5MyUmnphbOaquieJUhcKoQ5c7QCsYqMGmG1oUlgiVLKMhHNXKBnqpdd+1vry5n7f/v4hWMtpGWtaeG5amI4oy54nXkBse5fETD3DBBRfwpS99iV//9V93dAweHq8E7r//ft7ylrcwN1Ngz6p3kAwP1T/TU+G22xg6qIo9PpMWCZS01NIYNNOobpO0BUPLCZTq36uB4aD71yKyPWleEtCc6XAoiDLivIWqweIQkZpAqZliFiqGiL6M3rNZoARQWTCoLBRscdIKGlHRJyApdoxULVpqJZSoTNfmGJNPzTsSy9hOKiaGC8edTgKPOgL07kqRO11kwUEkL9jCoFLF2f71isHEk3OoOWeDusq8iuVijNkpNrUZURYJ9wYozVReEJFSsMuPXjYciZSMiulqvKMuaGRPFB0LZmYPLDgWy+klw5XLkSAJ9F/QxfyRHPlO4wYL5o+6c7kyDWcCuBrx1WF8QcmOol2BuquUAP6Yr6PgrzBRtmPtHDJ/NI/oQgS1cNKdg1ppVqveRz7bHandIpsaFugVC0NrNKQVCiwRKgm5IlY0hBkMYGp63TGuvk3Ydm5qFiuJ2QJGLIzm8wNL+wwzZm8jLpSIKF1cuOqdnFDv5hOf+AQnTpzgi1/8In7/0shOD49mvLi3VzaSLLL9xjWsvbCPh/7Pfo49ZL/Hmjw0z3f/4H42X7uK3W9Zjz/sRcB5eHh4eHh4eHicPUcfGuNnX67Gu0V9XPE7Oxjc0f1SV8vDw8PjFY3DNbUvXx5++GG6kmkOHz7Mrg17uHn3L6OICoF0gHVv7CPYZU8cda0PsPp13YS6FRJrI6y6uhtDtZjdn8MXFll3Y4ZwfwjBJ5NaH2LNtWksTSc6GGDVlV1kdsQ4/pMZtLLJ2hu6ifTbLzyTa8OsuzFTn9Rec303/XsSlKZUzjw4x7o3ZIittqN+YgM+1t3Ya7e6JNF/YRfrXt8DQO5kifiqEIk1ERBEokMh1t2YQVTs/fbvSTJ0WRfpLVEAMjviBJL2i5ZwX4D1Nw8gh+1Zrd7dSYav7EZURPov6mLtjX3EBkOYuh0nsP7mAZSY3S6ZnQlGrs4AoERkdv3ndfRfbLuiBFIK628eIJC0JxS7z4mz+rqGO9Wa1/ex7o0DpM+Jo8Rk1t88QKjbbpf0lhhrbuirlx2+qofM7iT50RKVnM76mwcI99kTkqkNUdbd2F8vO3R5N/0X2HWYPZwn2OUnOmS/hE6sDbP+5oF62cFL0vRXXVwGL+tm868MEx+xJ0fjI9Wy1au8/8IuBi9pDBxiI2GyJwuYuh0nsv7mgXp79+1JMXR5T73supv62fiWQZSY3GjvkN3emd1JVl3VKLvm9X2kt8RQF2yR2vqbB1Didnv37Eww8rpMvezqa3vpPieOqcPCiSJDl3YT6LLbO72ttb1Hrs6Q2ZVonPNbBwhl7Pbu2hRlbXN7X9lD7/kpwI4b9Md9TD9nT6gk10dZ98am9r6sm/69dhuKssj6mweQAnY7xNcsau+L0wxUrw/AbjNZ5Lmvn6xfL6JcvWb3djF0WaO9193UT3J9BETb8Wj9zQPI1e/pPT/F8BWNNlz7hn5Sm+xrvTBWZmBvGqXqbpHZlWDk6kbZ1df3kd4Wt481LNO7K4U/Zt8b3dsTrL62qQ2vzdCzw25Df8LH+psHGLyki/SWGOmtMVZf32jDkat76u3ti9jXd3m6wun7p0htirL2Dc3XbA99tfYO2G0YHQgiB0Q2vHmQjW8dbLThJc3tbbdhfCRMYaLM3ME8q6/ra1yzF3UxeHG6pb0Ta+3r2xeV8Sd8dfeK/gsWtfcb+0ltsNsw3Bdg/S0DjLwuQ++uJL3nJRluumbX3mBfs9DaR4xcnWH9zf31PgJg9XW9pM+x27t2zpvbbNPbGsc6ck2Gnp12Gzb3EVNPZ0lvibHhTY1+oNZHAMghqd5HqAs6xakK697QS7BLQYnJDF2Wpn+PXVaQLNbdmCE6FAJBxLKEej8U6fMzeHGS/r1JW6wkwrobM8RX2f1JdDhAMK0wf6JUbYceBvbGG214Y4bkOru9owMBVl3exan759DL0L83wcY329eLpemsuTZNap39DIkM2v13cnqQndaV+H0B3vve93LzzTfj4fFKx7Is/u7v/o5LL70cteTnjZe/h1TUFiiF1waJrm9EBPUmKwSjEEmC3Ocnuc7P7IyAMK8RTUEqY4uTtFSATLdBOGQi5ytEkxaZQYsFv58pK0AsYtGdbMxod2dM/H0SatyH32cylNGQZZibE7ESEomRhotSv6ISjdodpRWX6F1tEfKbgO22lOqy0CIyWkQmPigQj9jfI0oWvX0mwW4RMSYRDlqEgo2It2S3RTQjYvplBNEuG66UCMUgPiDRvU5Cr+oSEt0Q67PHDJbfR/emAP6IvZ90osjIFQl7tz6Z2KBCfLgxqZ45N0mwOi7wx32sujJDz44kCBBbFbKfq1V6diTq/Z8Slcmca/eT5VmVUHeA1MZoow3PiRPOVN2pwhKZc5NIfhFTsyjPa8RXNYRm6a0xItW+Wg7aZeWghC8i07cnRfc5jX6za1OM6IB9DUh+kcy5ybpgO9wTwDJMCpO2eCG1MUpsyB4jiz6BzLlJlKhdNtTtZ+jy7vr3JtdF6nUSJLusv3qOAynFPlbLFs7GV4WJr67WX7DbMJCy2zCQtMsKIqg5HckvkVjbaMPMzgTBtN2G/piPzLlJRFkAwa5D7bkKtuNUqKfa3hG7vaXqODKYVqjMq3XBVHpbnHBvtb1D1TasOhZG+oPERxqxoF1bYkT67TaUA9Wy1TFnuDdAeluc6WezzB/J07UpSnSw2t6K3d618VKox0/39oTdvrJAekuM2HCo/t+Zc5P18VIw7a8/r7WCgS8kNdpbXKa9q4S6/UQHG/Vvbm9/wldtb/t6j4+ESW+JkdoYRRAFenY02luptbfPLhsbCpFcG2Fm/wLFqQrd58Tr7e2rtbffbu/oYJCuTbF6/Yav7Km3txxqXLMAkb5AfcwzdyhPMO0nUrtmA7VrttremQDd2xrXdzCtIPrtz0SfuOSa7am2N9jj7d7dSbrPSdTvBX9VVBnsam3DxNoI8dVhlKhM7+4kveel6r+/atdszbwtvjpMfCSMoZoIosDI63oJdjf6iMy5ybqLU62PUHM6ak6nZ0eCrur4utZH1No7OhQkuSECokh+tExsKECoSyYQl/BFFXrOiSApdtlwoExqWAa/guVTEP0y/qgEAoQTAj1rJKREACsUINwl0bW6IQ6IpQXKhg8zFMQXhL6tCophj8NCcejaHKoLlpJDMr5KmYUZIBmi77wwoYRdh4hRpKc65DRjQeLrgsR7/Iwo17Kt9/X8/d//A0ND6zhw4AAeHitxzTXX8KlPfYr3ve99L3VVPP4DhLuCXP1fzuX1HzufeJ/9/LIs2Hf7Cb75oXs5dO8ZLMuFKtXDw8PDw8PDw8MDMDSDB/7xWX7yhSfQSga9m5Lc+meXeAIlDw8Pj+eBV7ST0kblfA5qjwIC5yiXsL1vJ6U5zY7eMcyqk5FdVtcEtJJJ9/Y4vqBEcVpFq61slmTUoll37DEqJmpOR/CJDOy1hQfFSXsFsmWaqDkD0xQQJBFDs+quGkpMJjYYwNRtlw7TxC5bXV1sGAJqwQTBfrkt+QWig0EifX7yZ8qoeaO+8tbU7DrU8kfUokEk4aN3V5LCRIVKXredkQQB07Co5HSoHo5eMhAECPf4iQ+HKc9V0Kqrlk3dopLT6nb+WslAqsYuWNhRCZV5rVrWtMtW3UT0soGab6wELs+pFGfKTD+dxReRW/dbNloisbS8jlEymN63gBwQifTbMRVgrzau5Br71Qo6CLbIZfKJOSo5rd4uRmVR2bxup9qJ9mSSqVr1snrFWLRfA1FuTHJW5jQWqtEnhrZov0WjJVbC1C0CVUFIvb7Vz/WCjtq0mlnN6YR6A2QCIvNHC1RyWn21sF5sdWGp5O3os9hwCEEW7Dastote0lsi9NSCXnfb6t/TRTDlx6yuWtYrZst+tbyOXj2vpo7dhppRbUOjxWVAzWtNq5/tY6tNGJmL2ntxREclp9VdeWptaFavWa2gY6hN7bKgo1dMov1Bhi7pJj9WrMfrLHb5UnNa3XnAEuyJIESr0YZK4zxqOQ29VDtWE9Ow6L8gxbHbJ9BLBpWma1bN6fUV/Fb1XlAiCqYBxckyWnPZvFGPjLNM+9iKMyrlGZX4SBi15XrR68dgmtSvWV018fkl1Kbj04pavV+qldWrrmiGaoIA6a1xpp/OoheMFnO0Sk6ruxWYJZO5w3nUrL0ztagj6Q3daWWh4Shl6iaVBY3xx+x4u/SmWEskk5rX2/YRal7HsqwWlzc1r2E077epj/B3+Vti4tR8U3tXj7W5jwgkFHp3pTjy76P1PsLesdVyL9j3nM7gJV3oRYPSrNpwmzLtvrLWLoZqouYNkEQGL0phGiZzR6qr70XB7merdTBVuz8H8CcVooPB+jVZq7+hWnZ/blC9b+wCvpBMMKXgTyqoC/a9qjXXoWgiSDIJf4Yb1v4yTxd/xm233UZETDC+cJpIpDEp7uHxSqFSqbBm+CJGJx9nqPcCtm64DiEqo1cELEvA0C2sJvl7RVGwEhBNWRhzoGn2WEMA1LCCIQHVrlSrDnmUfoV4l0G+KEDVUMMwQBMbrkklxcCoGsjEIybhgMWZmA/dFJFNk2aDzLJPQkVAs0QkyyKgmKSiUKyIVPwSotx41uu6PVYDMIIyFdEgETWp+AVyBQFdB998BdMvowkmpl6L17WPzTQhkpKQZNCaDG4MDbBkrKqARatQHxdoJRO1hO2gZIGpWi0xv1pRr/ebpmGRPVkgf6YMlj0moqnPai5rGZb9bCoZzB3OE84EaHpEoBWNuluSZdrbRnoDlOft53qz243t9Ffdr2nv1zItfGEZyS9Smm44Henlxli2tt/aeMqoxpPVnu96qVEWa2lZLOoCJ73SGKfXyzYfa0kntTFK7nQRo2LUE49rZettqJtoRR1EgVCXYu+z6XrRikb92WNW29CybBFSamOMucO5prJ6fRxm1tql+sWGara49Omlxn4Xt4upmRgVE8knLmmX5vaulW05N2WzUdayy5pGraxVH5t0bY4RSCmUZtVqWVrL6mZrTK4IUlW8UttvLUbN0u3/rtehYhLOBAh1+ylOVVrPTb1sbbxqIEgCwZSCFBDtdqmeV8swq8dKvQ0RqF9fdtnW67u5bG3MIykigiA02tuwFl1bVovjpqEahLv9FCfLUDs31Y8NzayPj8B2Dau3/6J2MXX7Oqzvt2yQy2vVRQuLzo1u2b93amUrhv0bo2I2jcfM+v82t3dz7KAcFPEFJSSfPfaqXbM1d6jFfYRlWcSGw+THy5iq2VpWtRCEamFRRC9byAGBWL+fmUNltJKFJckgWxiWiK429Z0VC0OUCffJJIdEilmrfg/qsoKGgFUV2umq7ZAHEBkKEegSMUcl0Gz3PL3ad1rhIJooYGpVRyYLlAAE+oPkTdCDrf2sroHp92PGoD++h/4tA9z/8NfZseM8zln3dh555n/j4eHx6mfgnDRv+vQlPPODY/ziO0fqEXA//bun2H/3KS76T1voGvYi4Dw8PDw8PDw8PDqzMFHgrs834t123LSG3W9db8e7eXh4eHj8hxGsV+hyone/+9187WtfQ0ZhT/B6ImJixfK1CCWxKstyFO9lmigx2RZ/NKcYSNKyeSLBbmXZ6KV2TR3qVihOqUviiOrbLPoeJSo3BCaW2WaL+pcBtlOL0ygzN4T7Ao7jmsB24NFKOhOPzzsqn1wfJXNugoPfPbNiNNXZMnRZN6XpSse4hrOlf28XclDi5N3OItnW3zJAZUHjpMMIt9qK6U4xX/X939TP3NEC089kHZXf9q4RJp6cZ+qp+Y5lRVlk3U39TDwxR/Zo5zgJUbEjUAqjZUdRfsFuhXU3DHD0x2OOrrnoQJDe81Mc+/F464Tb84QSkxm8uJvTD0zVBULPJ/0XdRFMKBz5gbMg40CXwuDFaY7fOe44Es2f8GGUDUexcq6w0zAdIwdETB1H14Egy/giEnrZXNInCFL7bKRAl49yVm9bJ0GWl/TjgYRMed75OZWDYn0SWgqIddHEcjyt/owx7RiJRILbb7+dPXv2OP4uD4+XmqmpKW699VYefOBhNq15I/095wJgLfPDXFBqOmsBUbQwzYYw0pTbbWPLl0y5li7UGmWkRSXkNn2cIFiIfgHNaB99JCzaRBQsBAEqfglfof0zQmyKLRKrgiHTsvcvrRBVJRWX6QREEXF+mefj7Pyy+zNmGtG4kiKCgONYLUkR6docY/ZAznEEas/OBOVZ1XEUmxt8IYn46jCzB/N18cjzieQXSW+NM3sw1yLwXg5/wkdmR5IzD087imMTJMEegy9oKw6/a4S6/cSGQ4w/5iziNjoUIj4cchxZHBkIEuzyOxqngS32sizL8bioa0sMyScy+aSz/XdtjqHldRZOPf/XDti/O3xB2XWcmxNEWaD3vBSzB3OUZ52Nq2PDIQRRIHvceYxay2+45xFBXPkn4WIkv7ikHxFDobZlhXAYX1BEK7Xpe8PBNluALyCgWu1jlcyIH7HUFH0ngCRXhZztIsurWNVnhiBWf+JaIEq2qMlq+zwByydRURd4+uA3yeZP8dnP/jkf/OAHl/0OD48DBw7w3ve+ly9/+cts3LixY/l9+/axZcuWF6FmHmdLfqbEw/+0n2M/H6//TRAFtlw7zO63rEcJeRFwHkvx7m0PDw+PFwe3Y69XOq+158ur4XiP/Xyce//X02glHX/Ejncb2rm8e9Kr4Zjd8Fo7XnjtHfNr7XjhtXfML4fjfcVJPnVd54ILLuBrX/saYSHOZZG3E/F1tS8sSSBJdG+NsO6GbjvGQgfTsv++3DaZc+OMXGk7KKkLTRPc1f0tntju2R4jc24CJGmpaEQUG/+qpDdHSG2wLahXEijVSG0Ik95sW/M7ebkdXxOm/yK7TZwIlOIjYTa8ebAeJdGJQEph9et6Sa6Pdi5cxTSs+qpkJ8wdyrH/W6ccCZSUiFyPjHKKIAn12IROiLKIHHJ3q4w+NONYoARw6LYzjD7gbGIKbHGSU4ESQGGqgrqgdS54Fpi6SWm6gr7MZO+S8qpJ7mTRkTAF7GN97usnHIvicmdKHPruGdcCpVoEYif0oo4oC/hCzo3oREUkOtx+Amgxow/NOBYoge3kZekWst9hfURYc10ffXuW6Tfb0Lcn1RI9uCzVUxruCzB8Zc/KZbEdIEzdxBeR7ai6FW4zS9fR8oZ9rCGR4cvTddGpHeVW/ddEeUZDECQCKT+rr0nX4wVr+6v36bXyVYFSfDjIujf2Ikf9tMXnA5+vLlDqvyDB2mu7wbfys+Wc4BVsUvZQLBa5+uqrueOOO1ZuIA+Plwn79+9n7969PPLzJ9i99T/Rve4CtJjSVqCkxn1ocZnePpN4vOYyI6DGfKgxX1uBkpGQ6BkBJWwLlZoFSlpUWiJQkkSLTErHjItUIvISgZIWEuv/wBYapeM6omChBqRlBUqGImIoIoJg0ZUwbHGVJdj/ZPtfOywZUhkL3+Iuozr+aydQSo9IRNLLdHqaTosdFHbEU3OUVCdEWcAyrbpbkhMmn5h3LDLxJ3z1SClH9fGJiJLo+Nlfi/FyilExmXh8zpFACexYuNMPTDkSKIHtxlOZdyZQqtWnPP/CjLvAdhVSs873rxV0V+OiuYM5xwIlgJnnFlwLlESfiODwNAuC4LhsDSXms504O2DqFqMPzzgWKIEtlLE6/H5rJpwJtMTTdULyi/Sd34gvXrEudnolibWReiTfStQESuG+QD1KEtOkxUqytu9CoS5QCqVlQqmmsWab37gAWtnC8slE+3yEk619hJivYAZ9mMFqPa2qQAlIDwmE+nyYIWVJPQTdxAz6MPw+W6AkQ+9qgVAMjKAPI7j0uAXNQI6n2LH7N1g1uIMPfehDfOADH6g7vnp4eLz6iXQFufq/nsv1Hz2PWK/9W9wyLZ79UTUC7r7OEXCGZfJI7jA/nH2cR3KHMdyoQj08PDw8PDw8PF5xqEWNB766j7v+6hdoJZ3MhiRv+rOLVxQoeXh4eHicHa+ouLfp6Wl27NjB6Ogo3dIgO4JXI4pie1ej2kSxYTB3tGhP1HRafV7dpjyvIyxW1Cw38QxIAWmlxZ9AqyNSqNuPpZvMHnS2+jbcG0TyCUw/l+tcGPBHffijzleFqXmN0lTF8eRFeVblxN0T5E6VHH/H6EMzjsvGR8JkTxYcO7Kkt8VJrI6w7+snHG/jRkCU2hihd3eK/d846ch5RlRE9+5PJo5dbeSQSPe2BDP7Floi3lZi9EHn7X82nLp3ylX59JYYesVg/oize+BsHH9q7mlOGL6qh0Dcx8HvnOlY1tTh8L+NuqpL766kfY2ednCNVj8PdisYJbPjOdbLpitREyacvHfSlcitNFNxPLEMIPsl/FHZ8TkIxH2EMwHbZcCBO5U/6iOY9qNEfZTnNCxNR/At/zgTZQFJkRCXERgsFp9W8podl6eatiBJW3kiePZAnvKsBhXNLt/Obc8wQJIYDmylJ97N/Wd+xHXXXcdnP/tZb2W/x8uau+66ize/+c3oqsL5234TuScDgFxYeq/W4tjkgkEWkXJlSZGl28RkBNOiottxas1o0fZjL0EAKyQidDBVUfJ2/yNLEFSslYZyGEpjol2WIBiwyBVANVlWnARgybZTlM9ndRwLNlMpWGilNhNjWvs+cO5wHjnoTEwOdmzZ1NPO3BOlgIggCvY40IHuQhAFurfFWThRdCxMqWQ1Jh26/gD07EhQmlGZP+LMOUeUhXoUmFNMzXn5YNqPIEBxysFFDVQWNCovkDgc7LG4G1GN5BeJ9AZZOF2sx5OthNu2BECwrw0n+5cUkf4Lu5jZt+CoTfOjzn9zgL0YoWd7nOyJIjkn12g1h9If99Vjr1fC0T6bKEyW7ShEh05otshNdS4ytGy3Mq0gUcHZdRdM+dFLBqWZpuvINJeIjmr4oxKWYVGsGrxZuQJCNLzs/kUJLL9ES55iE2bQ1+KqpJYsarekGVIQl3Omwx6LL0xblPMgmxX0qB8j6EMqtR67vFBBj/kZWfcmwsEu/uqv/orR0VH+4R/+gXB4+bp7vLa48847ufPOO8nnn3+nNo+XB4Pbu3nzpy/h6X8/zi++exhDNSllVX76N09x4CenuOjXtpIaXroA7865p/jMqe8woTXGUxlfnI8M3co1ye0v5iF4eHh4eHisyHPPPcePfvQjfvGLXzA+Pk4sFmPr1q38xm/8BkNDQ6729ZnPfIbvf//7XHjhhXz6059e8vl9993HP/7jP3LixAkSiQQ33HADv/qrv4osv6KmGT08llDOqzz7oxPsu/0ElYL923LHTWvY/Zb1iMs4+Hp4eHh4/Md4xYweDhw4wNZN2zDQWa1sZ31g99JCzbNPIvTvijH+iyx6yWT6YHlFhwuAaL+f3GiF7JEc2UWf1WmaeJbDPvSyydhjC0s+W+4FL8DJe90JRk7dO+3K82ryyfl63JsTStOqY5GJEpNRF3THAqXk+ghyQHI8UabEbEcV+eciM/udibJGH5ph9mDOsUDJrQhq/kge3UU0Vv/5KcJ9AQ5867Sj8qmNUWKrQhz/8YSj8krUR3JthLkjeXDyLlWEQFKhPKe6iuJygxKTwcSxaCo6HEYv6o5FSqlNUWLDztuo+5w4PTuSPPsvxx0d89TT864Hm/6ED0EUHE0STj4xx9QzWeftL8LI1b0snCpw5n5n/UUgpdC9Le7oXq65UjmNW3N6nmpkjxdcRaDkzpTY/+1TjtunOKVy8DvLCMVqbkpVhwNL0ynNwJHbbacyyS9haAaYtpuSUPsR3SRsLc/qnPrpNPh8BJIypiqiFsylYiWfLcgoF6BcdUpJbw5TmlEpNOsgF8fKZXu4MHQrPy/+Gx/+8Id57LHH+D//5/84O3gPjxeRf/7nf+ZXf/XdJFJr2bn7Hci+pa6FNWESgF8x8clQKUChYLsnLYcak5FFC1mw0A2BufFW96Rmai5KgmChRiRUBIpZW1UgNz2btSWuh3Y/UPRJHMuL4FuqImoWJ9X3owucHpds16dlRspWk3DJNAXGx0XkmuHfCmPAGrmpNh1eG4GSIAkIgi0aceoSlFwXIXe65DjmLTYYItjlZ/RhZ88by7QY+/kspgMxCtjiCdO0HLsWAczszzkWxwqiwMBFaWb2L1CcdCYiSm+LUxgvU5p2Vj7YpSCIgmORkuQXbZeYFyCyGOzYKykgoZecCcskn0ikP2CLZVaILGwmvTVOYbzUKmJZgf4LuiiMlcme6Pz8N1ST6WcXqMw7F1ohQCBRHc92wDIsxh+fc+UeFekNkFwf5cyD044FbJGBIHrJ6DwWtGyhHrSPW2vH3CF3ggmnv7VqTO/Ltr92ak5Di/qxuWMrXPu1stVtxXyReaoOoj7ZFiyV9epnFcyIbTtXc1QSSxoLUxagQljBH4QKtqPSYrFSbZuFCoimhihBImkyPye0OCo1C5YEQaJn8CpQevj2t7/JT+95kCee/Dm9vQ5cQj1e9VxzzTVcc8019cgRj1cnkk9i5y1rWXtxPw/983OceMR+rzC+f47vfPx+tl63il1vXlePgLtz7ik+fPQrS7rJSS3Lh49+hc+u+TVPqOTh4eHh8bLhX/7lX3j66ae58sorWbt2LTMzM3znO9/hN37jN/jbv/1b1qxZ42g/+/fv54c//CGKstTdFOChhx7iD/7gD9i5cyfvf//7OXr0KF/72teYm5vjQx/60PN5SB4eLxrF+QpP/+AY++88iVZ9jxbvC7P3XZs99yQPDw+PF5hXhAT0wQcfZPOmLRjobAtc2lmgBASiMrEBP+G0b0UXpIZASWH44gThjLLks3aEB4Ksf0M3oe42g7Y2k1NKTGbDzb2t+18JEVZf2010OGj/t4M5jsFLuujeHne2f2w3m3U39TcikzpgH8MgqY3OY96C3X4ifUHH5dUFnSM/GGXmoDOBUg2nq8nDmQDDl/cQHXQWvQW2U40bkcbMwQUmfjHnuLxlWq5W8xcnKuz715OUHU4aBbsU1t84QDjjLhLPDauuytB7fspx+WM/GnPlvmRqpqs2yp4sOJ5sBTtSzmmcXI1VV2XoPTfhqKxeNh1PLgNgwvE7xznjwgHLF5YIZQIoEeexb+tvHqT3/KTj70hvi7Pupn7H5f0JH2vf0I/PSZ1MO1px9XW9RIec9xlrrsuQ2ZVY+oHY3tJk5Ko0qy5PL7/DRf3+4AVx+s+r9qu+FRzqqp/FhwPEBhfda22eJSExyiWxtzDYP8S//Mu/8Na3vnX5fXt4vAT85V/+Je9617vI9J/Ltl2/1lGgBBAOWESCJmB1FCgBdMd0emKtfeNy7kkAyT6L3mit/NKItyXlIyZdPRZ1m5RFLBYohRSTTFxHEKy2sXQ1agIlSbLI9BhIUtP+VxIoCdCzViIUX1SXNvFuNRKrw2R2Oe+npYBIsMuP2EaQtRxzR/JMPj3vuDzYIhMnjjlgR9WlNzsfnwKoC5oLgYnFzHMLjhxwABDA0p3XH2D2QI6Z5xYcl0+sidC1Oea4vFuUmI/+87scx4epeZ0zD844FigBWIbpZs0Dc4fzFKacj6VK0xVXjk3BlELP9oRjRzG3sb+FiTJjj8y6c9hKKShR52t+wr0B+vZ0OYqhA1ukmNmVJJheJn62DdHBIPHVDlyCqocZSCp0bYos/XyZWDQlIpLZGmzfx7Tp//wh6FsnIK/QTmaTuMgfhJ5BUPzVuNA28W/N2ykBCEfarCtqEwHX07ONiy56D/PZGdat2c6ZM50dVF/JmKbJ0aNHmZ5eGimu6zpPPPHEi18pD4+XmGh3kNd9YBfXfeQ8YplGBNwzPzzONz/8Mw7fP4puGnzm1Hfa6jhrf/vMqe960W8eHh4eHi8b3va2t/HNb36T97///dx44428+93v5otf/CKGYTheFGlZFp///Oe57rrrSKXav+P/m7/5G9auXcvnPvc53vjGN/L+97+fd7zjHdx2222cOHHi+TwkD48XnPx0iQe+so+vv/8env7+MbSyQWo4ylX/ZSdv/vNLPYGSh4eHx4vAy95J6Xvf+x633HIrArAreC1p30DL54Ist7w8EGXbAr6c1Tl0+xxGuf2kjyCJLdvlRlWO/3SWwqTmSNRUmFSZPVSg2ByZtMLElKmalOftCCEniLK9Att1bJiLyYRKTqM4XcF0qJ1QF3RGfz7D/BHnAqLRB5yLLERZxNRNStPOV1VvfMsgMwdyTDtcPVyYKHP4B2ccR13FR8KE+wOujqM0pbqK0po7lHe9WtoNlTmd43eOO14JfzaceXDacYTF2TB/pOBKKKZmddSsO6FbfCRMZCDg2Lno5D2TqAvO21QOiKy7aYDxx2YdHUvtPqjdF53InSpx4NQpx/XBhNFHZiiMO49QKc+qFGOyLW91cLqN6uoDSREdhY+YugkWiJJz/WxpVq27EyyhjVBpZn8evWIiOOjnAU4+MI+pNnWsPp/93FmcS1X97PhPs/XnTu15VNvn4u1kU2Fj9krmxe/zrW99iwsuuICf/exny65Y8vB4MbAsi4997GN8+tOfZmj15axefz3CohyzSlxqiUATBAvLEphdENFiEnKs/WBEjYot200uNIahK4mT1Opn8yVhSaRaO3FSjaIk4dOdCZTsAwFTBENqL/CxJKHFQUm0h2qYJliisOw40EyEEecLCEClaKFVGu0jxKJYM+2FzWIgwMLJoqvnt1E2XYl0BVHAMi3Hgo5Qj5/4SJjxx+Yci3xmnss5FtMAJNZGKE1Xlu/bF2GZzmPY7A1w7NZ5tmSPFxBewKUgak5n4hdz7n8nuMBtGzl1paojQGJ1hNKMs3NdmlUZe8Sd0Co6ECTcG2D8sc6LByyT+r5r90Un3LoXFadsYZbpMMbNMiwqWe0Fc+QCe3LeMk0E0W6DFtoIlYyKhVpYQeS3qB+slGBhykIrAytE89aESpWSwMRJC7XS5FYXUjCCMlJp6diraPrIzvmQDAOw7O7esrc1gj70kITc1L/JvlXs2PmbPPnEP7JuwzbuvuuH7N27d9l6vVIZHx/nIx/5CCdOnEAQBPbu3cvHPvYx4nFbMLqwsMB//a//lXvuueelraiHx/PA1ybu4Z8mfupuIxH4NdDKOlpZr4ty/1q7A+shi6J/+bGXBUxo81z15H9HcbrizwHvylzOr2aueN725+Hh4eHx2uGcc85Z8rehoSFGRkYci4duv/12jh07xic/+Un+v//v/1vy+fHjxzl+/Dgf+MAHWqLdbr31Vv7pn/6Je+65h3e/+91nfxAeHi8S2fECT952lMM/O1N3CO9eF2fnzWsZ3tWz5B2oh4eHh8cLx8tapPTVr36VX/u1X0NEYk/oDcTkrvpntYiexRPFI1d0oZdNTj2UWyJQEpomvi3DfunavTmMVjbIHq9QnNIRBGGJzqd5MtsfFbAsqGR1Jp7Kt76INdq/NBcVEb2kcfKnzieNTNXk2B1TWMvssx2n73MXI5c7VXIc21YTJcwecDZhISoisaGgK2HJ8BW2Ovn4nc4ivRBh/mie4qQ7Bxw3AiJfVCaYdL56OZTxE+kN2o4EDucTahF6Thm8pBvRJ3Dy7snOhbGFH7kzzoUoZ0Nxwt3EVHQ4RP8FXRz63hnHE2yiIiKKOI7di/QHCXYpjieQfCHJPtcOBThO3btq6GWThZNFKgsOnR6w22n40m4Ofe+M4yg9JSLjT/oc3dvZo9X70+Ex50dL5EedX0t62eTIvy8Ty7YMx3487qr8+GPz9v+RJOSA2P76aPpxkT3Z6C/iwwGyZ5rOx6LJOEES0Qr2E0Hyi/TvjnLm0Sym2hQTR+tzyCjbn4W7ZYb2xjhx3xzFKa1ebvGzSxRFLgjdyPH4w/z85z/n3HPP5cknn/Sy3D1eEkzT5Ld/+7f58pe/zNqNb2Bw5NKWzytxezzkKzTuFb9iku6zOLMgoxpSy2dgC5NqyCULUbDoihhM5yVKocb4yldatF2ksV1MNyhqAmXd/psWatzTcrl11Gb6BETBwrQECuWlKhGz+pViS1dsC5nyhkg+J+Jb1CFay4iWNE1gYlpup4Fqi2VBdqwaXacvP76z1OrzRbAdiwzV2fPGn/ChFQzHAgg5INF7XpLJJ+dRc86eMVrRoDBeduVCZJmWY2GJIII/KjsWKIH9vFdzmuNjEH0ClonjY5AUkZ6dCWaeW3D8HW6ENGeDZViuxhMAXZtj6CXDVRyr02gysM9duC9IZU5FcyJ6s8Afk9EKurPzbeFsv01Ucjrg7ndCelscUzXtKGmHBNN+yrOVpSKfRViG1RBzCThaXDJ/xN1Chtxpd2P+SlZDfc7+DqGdSNystrlod56GZjF33D4GUbSwaqdk8Yvcpn4zN2sfqKzY/aCqNMY4otp6TxkhmRJACKKShgAUcgJyXkOPNMe5NbbzzWuocYXulIEAzJ5qNKwvq6FVXf9qYqVwuIddu3+T/c99hSuuvJoHH7iPc889d9k2eiXyt3/7t6TTaT796U+Tz+f5m7/5G/7zf/7P/NVf/RXptO0oarmxSvPweBlTMMpMau5Eo3VkoI2ZnBPmjQI8j4/7guHueeXh4eHh4bESlmUxNzfHyMhIx7LFYpG/+7u/453vfCddXV1tyxw8eBCAjRs3tvw9nU7T3d3NoUOHVvyO6elpZmYac1ee85LHi83sqRxPfu8IRx8cqwvU+7ak2HnLWvq3dnniJA8PD4+XgJftLOiXvvQlfuu3fgsJmQsjtxAS7YgxYYWJW0GWmT9RRi87f+EW6vahlSSyx52JLPp2xxBlgSO3OxME9e2OER0IcOB7Y45EAMFuhaGLUxy/exo162wiZOR1GeaP5h0LghJrwyTXRjnxk3FHLkqiDBtuHWJ6/4Jjx6LUhii95ybJj5Udr86fO5xHcJbgYGPCxOPzjosn10fo2hTj6A9HHbtHTT+ddXzMAOFMkK5NMSafdFYvJSaz8dYhTv5ssiEY6UB5toKwzIRpO0LdfmIjYcYfmXW8jVviI2F8UdlxW2l5ncJYCVF0rOViw80D5MdKnL5vaWRBOyIDQWJDIccipel9C0zvcx7lAtC9PUGkL8Cx250Ja0YfcickLIyXmTmYQ3exgr5vTwp/QiF36rSj8jWHp8kn5x2LEFMbosRHwo4FRXJAZNVVGcYem3UsaBu8pBtBxHEsYM/2GKl1YQ5+f7zV+WgZEquD9O+JU7lzjvJ85w5BiYgEUz78EZnSbOfypTmd+VMVStn2dWkWK4miyJrchZhpkX379rFt2zaeeOIJAoEXLqLRw2MxhmHw67/+63z1q19j/a630d+9q/5ZTZzUjnxAxlc20AxnzyWfZBFQLGQRnPQGfsmkP6wxmvVR1Fb+jppAaSSqMVOWWkRK5grji3TCQDcFZotLC7UTKPn9FrGYyfSs5DAOyyK9SiI/a1LOWY4ESuGMn+hAgLGHKo4cXcDum8uzKnOHnYkaTN0Wz2oF50JpLa+7ii/tPidOcapCYdzZxJtlwsQT8473D3a8Ve4MjgVEidURlJiP8UedjYssC0ozqis3m0h/EK2oO4+gc4kgQnQwRHG64nicXVnQXDkvhbr9pLfEOX3/lKNYNsuE+Kow87rlWEzk9lwLkkDPOXGyJ4qU5zqL99QFDdWlmKs4UcZwKPQDW8iV3hJj5rkFx45e0YEgkf4gY4/OOhIqCZJA1+YYudNFx9dUqNtPsMvPzH5nY1s5KJLeEmV6Xw6jXdMuEisJImQ2+MhPm+SnDPtG6fBSt2tAQFdh0uFw2x+kKlJyVj5fsN329LCE3KZf06vCWLloEAgk2bHzvTz6xNc4/4KLeeC+e9izZ4+zL3oF8OSTT/LZz36Wvr4+AD73uc/x2c9+lt/93d/l85//PD6fz3sJX+XOO+/kzjvvJJ9/4ZyNPV5YwlKAHp+7WNl2GJqJWtDQBINyqHNfm5DCz6uTUljyfvt5eHh4eDx/3HHHHUxNTfGe97ynY9mvfOUr+P1+3va2ty1bpiYwaidi6urqahEgteO2227jK1/5ypK/Hzt2DMPFIv1XKvl8nn379r3U1XjReDkdb360wun7s8weaCzoSawLMnhxjNhQgCyTZJ9zZgaw4ve8jI75xeC1drzw2jvm19rxwmvvmF/I492yZYujci9LkVJtpZ+Mj4sTb8Vv+tuKk2pOFIIiEx/ykz1RYe5Y68vhtitCAUQQLIGTP2svYFguCujkffNIyvKRHouZOVSkkjMcKzFMzY6Fc7waXBbAtLAcTB60fI9uOhbqmCbMHcmRd7Eyd/qZLLnTRccTJ4Crld1KTKZrY4yJJ+cdT7joFdOeoHF43KJSjdlykbAw9dQ8U0/NOy6vF3VO3jtJYcxF27oU0gS7FFLrIi+oSCncFyCU9jsWKZVnVcdioxpnHp5Bc3hfAIw/MntWxyyHRPSis5OuFTQqOTfKuqqgKyIz/UzntjJV0/UxnHlo2vE1Drbb0fyxgquoHEM1MXTTsQOTrpqYJkg+59k35aw7p6r5owVMzewsUKpOyMwfK1HJ6ZTnmw6guV9f5KpUnjc59MP256Kdq5Kpw/gTdp/mTyj4QiL50XKLm1Lztpaus968GFUxOXBgP9u3b+eJJ54gFAqtfDweHs8Duq7z7ne/m3/51//LhvN+ie6hc6FothUn1ZySxJSAbgpYpsBsqXWM1uye1MACLHIBmVxFguDSydFm96QaFUPk5JwP1RBbHJQWY/rsz0wLZsoSeU1EYGVxkinb9aoYwpJUo+XckwCQBCxBwKF2CEGwuxTTcOighC24KUw4FygBTDzeOdKqGVO3WDhZdFw+0hdAKxquXI60guEqDlaUBUeCmGbGfu7uOblwqojULu5vGUzNdO1mE+4N2JF1L5BICWyRklbQHY+18y5dNcvzKpNPzdftz51w5gF3YzugGovnLF7NMmwBlBsnL0ESiA2GyI2WHLmMuYoOBIyKydjPZ9HLzn/zlOdVW5vk8DAsw8IyLFeiEsu0bKcch45NRsVEzRlVl7Gq49sKzkoWEgsTBpVcU5suJ1Sq9qfTpy1783DT7lZwVZrOVz8LCUjF1nvJCDa2q7kqlSqN+ippkWJJQC4YLW5K0CxWirD14vfy3IN/zyWXXsa3vvkNbrrppqX1fwVSLpfx+RrHLIoiH/nIR/jc5z7H+973Pv7bf/tvL2HtXl5cc801XHPNNRw4cID3vve9L3V1PM6CX81c8bzFpOmqwRPfP8z7U18hH6m0dcsUgB5fgh+e8wmkFzLb1cPDw8PD4yw5ceIEf/mXf8nWrVu5/vrrVyx76tQpvvWtb/GHf/iHKIqybDm1+r6iXRlFUSgWV363cNNNN3HxxRe31PGTn/wkq1evXuLO9Gpk3759jidsXw28HI53fP8sT3z3CKefqr6nEGDk/Aw7b15LevV/XOC+mJfDMb+YvNaOF157x/xaO1547R3zy+F4X3YipS9+8Yv8l//yX5AFhUvib8UvhuyJ8GUQZJnUmgCZbWFKMxpq3n5Raun6sgKlUJfM4AUxTt6fpTy3dDa/nUApsz3CzMEiWsnA0Dq/6VUiImrRRF3QmXUR5VWZ1zl5j4tYON3i+F3ulL7zRwquYtjcOhbVIpecTsyIisjQJWnGHp11HHsWzgRJrI0w8QvnE1O5k0VyLibjerbHSa2Psu9fTzrexi2mDtljLs4FdqRceUazBVQOmNmfY2a/88iKs2H0QXcOQQCBpIKhmY4dGdycu7Olb0+KxJoIz/1fZ+fc9b2E7figxHyOREo1MjsTGKrpSKBWE1iJsohpOhPZuRVCZY8XXIkKMeHYj8ZcfYcbBzMANW8wXY0rCSTkzu5IgkBpRgdRJL0pRH5MpdzsXreCEHX40gSmDmceWTppLcjyEiFS784IvqDIkUl9SURp83YAWyOX0tOT4PH9D7F161YOHDiw4ksCD4//KLqu8453vINvfvNbbDz/V0gPbAdWdk9SYyLDEZ2yJjBZaFzrvoK5jEAJMmEDQbYYtSTazfgsFigpoklAsljQJAr+5etSEycB+EQLzRTIqnZ5Ueo0XrNj3rIld2LTclmgXHa+jWUJzB1bWXhpLYp004qGYzcaQbRVCG7EPeG+AAKQH3MeLRLKBKjMa65ESvNH3Yl7+i/oInui4Dqyyg16yXAVxyYpIoIouBKhuBWMucUy3QuCBElADkiOnbNMzXLkVvQfQoCBi9LMHy04jpN1E8MGtmYmMhCkktMcR/XKAYnYqhBzh3IdI9yA+rXhVGSnFQy0grtrfOY5d4sUSjMqpRnn588yYfagi/vVNCjOVsVMgu28a2iwkr2cYQog2H1zOAK5LDQ/D5oFSzb2Z4pi0dMD41kLrY2jnhGUUbIqatweL/lki56UyeSMSBG5rasS2GIl2Sez9eJf58gj/8Cb3vxW7v3p3Vx00UWOm+HlyvDwMAcOHGDVqlUtf//Qhz7EX/zFX/DRj370JaqZh8fLG1mROO9NG/nY8TfxB9P/WhsqNrDAEuAjQ7d4AiUPDw8Pj5clMzMz/P7v/z7hcJg//dM/RVpmIX6NL3zhC2zbto0rrrhixXK1d5Nqmzh6VVXx+/0rbp9Op+uxwx4eLxSWZXHm6Wme+O4Rxvfb72UEUWDtRX3suGkNycHoS1xDDw8PD49mXla/qv/xH/+xLlC6NP52/EoMlot3k+X6pO7s4TLH7p6vC5SQxOUdlCQJNWdQnF7GrajNwE2JiiRXBwj3OZ8oXnVFF8OXJB2XT6wOsf6NvcgBZ6dEEAWGr+ghOhxc+uEyL4eDaYWhy7oRZeenffDiNJmdCcfl5YDIxjcNkd4ac7xNIOkjkFIcTQLUmDuU47lvnHTsGBPoUghn3Nlnzx8pMPao80mmULefTW8bItDl/DpJbYqSWBvuXLCKHBBZe30/iTXOt3m5svq6Xrq3OletKzGZvj0pRBfuB6uu6mHo8m7H5eeO5Bn9uTvBlRwQia92fj5OPzDN0R+4E+z4UwpK0wrwToiyyMa3DJLZnnC8TSClsO7GfuSQ8/ZNrA3Td37Keb0UkZGrewimnd8jmZ0J1txgR1U4cVkIZxTWvj5DdNDZ/S74RFJrQ8RH2pRf5od8cVqjMKku+3wSZLnls9M/X+DEfQttP2uh+ln35DmsCmzj+PHjbNu2jXLZuYjAw8MNpmny67/+67ZAac87SQ9spxKTqMTaX/tqVESN2SKj0QWZqUKjnBoRlhUoqRGBvCmSk9vvV2vThcYUk6TfQA+2v+9Nn/2vRthnMhJTUUQTSwRrha7MEsGULQbiOrFAq/DElIVlXZR8AYtU2kQQ2tRpme4p3mUR8K0gbilXWgRKkiLQvS2K5BcxHd770cEgfXu62q72Xw5fSMYXdrdWYfKJebInnAtUg12K7fjpgpn9C5SmnQsrUhujJNdHHJcXfQKx4RCiC2e/6GCI7u3P/yq7F5tQt5++81KurpNg2k8wvfLL5mZ8EZn+vV3IAYciPgtmD+QozbpzL1KiMnLQ2XeYusWZB6cdC5Tsaln4Yz4kp8eBHfHXt6erKhp0RmwoRHzE+RhSkASS66NIDn8vgr0oILlu5XvEaopXEH0CvefG8Sd8tqPSStELpgmmSWqVTGrVonGqZS37mzQQEoglrFpyXAtGm3tT06CoS5iahb7MeTeCMka1XTRd4MyERLEa+amHZfRg+zbTgiJGJMya895LODHIZZdfxV133bXcEb9iuOyyy7jjjjvafvbBD36Qq6++2nba8vDwaMuNI+fzubW/RpfQOpEVyfm55Se7WXOg27uHPDw8PDxeduTzeT7ykY+Qz+f57Gc/21EU9Nhjj/Hwww/zlre8hbGxsfo/wzCoVCqMjY1RKNjvAGoxb+1i3WZmZtrGwHl4vFhYpsXxRyb43n97kB996lHG988hSgKbrhrirZ+7jCt+Z4cnUPLw8PB4GfKycVL6xje+wXve8x4kfFzS9csoYjXiZrHrRNPkbmZ7mNKsxsJplXLWgOWESQCShCgDIugFk9MPLbR8thJqweLgj2YwXSQ2nHk46yhSoIZW1CnNqujllbepvfgWFRFfWGoVHHV4SRJI+gmkFNtdxSEWVqfdtqCrJhNPzDHvwmWlOFHhwLdOOy5fc2pyE8PWvS1BqFtx9T3lOdXVCnJDM8mPllCzzp2z4qvCGKrp2I1HV02O/niMiot69Z6XJJBUOH7HhONt3JJYG6Zne4KD3znjeJuTd0+iOlzNDyD7JZJro8wfzTuewCxMlF05S5RnVMouVp0DJNdHyexMkjtTchY9WC3iJlbu5E/cuaWZusnUU/MsnHbuPqUXdSzTQg7K6EVnbeCP+wh0OZ+8NHUTX1hGifocn8PyvNYiTKsJlZabBCxMqIw+Mk/utENhjwlH7ppdvn9vfj5UJ+pmDlbdD3wKSlxBLZhLn1VQf16Zqo6JieiDgfOijD1dQS9Xn2XN2+l6Xai0KXYpckjg0KGnOf/883nyyScRHcaMeng4wbIsfvd3f5evfe2f2HD+LxPZtIOaTEAutfZNNfGRLFj0hHWmChK6ad+DamT5CXk1IiALFliQU1vHWu2ESc2MCxKi0d51yWyj2SxoAqMlmcoK+vvFwqWSLqLq1Zi4FcQ0tc9kyUIWFg23mv6/FlXw5Rp9m6AZ+GUwfLCkiym3F2WIPhHLtNDzzl1WCpNl28nFxXjNbXyZ6BMwNcvxd4g+gfS2ODPPLVCcdC5AceP8AlCZ11xNEsoBiehQiOJkxfG4Pne6SGHSuVhUECGzK8X8kfwL6kSU3hanPKc6jnErzVQYf2zW1XUS6vaDZVGadnYOjbJBcbLs6py4jVcDSG+NU5yqOL+Oq04Ygig4ioozyiZjLl0mSzMVTN10FdFoAe00jytt4I/78M3IGGVn15YoC8hBCUFkxQUhNaGSiUQlp7f+jq0JlZb5zZwdrd1MbfrRNhFwxYJAqShiWe2z6JqFSpJmYlkCs7PV38CihRGyt5XbOKLVhEpUf1OHAiayDDNIdaFS8zPOv2BQiUmY0QDrr3wPx3/6v7jxxpt46KEH2LFjR9vjfSXwzne+k3e+853Lfv7BD36QD37wgy9ijTw8Xnlck9zOlbu28cjcYR57+DAzP8vSeyKOaAn85BdP0L+ti4vevYXEgHOxtIeHh4eHxwtFpVLhox/9KKdOneIv/uIvGBkZ6bjN5KT9vvkTn/jEks+mpqZ4+9vfzu/+7u/ytre9jfXr1wNw4MCBlmiY6elppqamXjWxyR6vLEzT4thDYzzxvSPMnbLfD0iKyKarhtj+htWEu9oYPHh4eHh4vGx4WYiUfvjDH/L2t78dEYmLU2+3I97a0ew+IUIwKYNpsXBa7ShQAhi8IIrPL3Hk9ukln7XDF5Xo2RJh7BcLjicyAkmZ8pxOccrdpERhQqUwsfLL8OZJeVM1OfqjycbKVweTAXOHcswdcheRcOZ+lzFeJo4iqWoEkgp6xUB3GGkC0H9hGn/Mx6HvORfEnPrpJErc+eUe7gsQ6Qu4irmrzGucvs9d9Max28ddlceEgotoFsB2DBPcORm4RSsa9sSiiGPxWGHC3XEUpyrs+9cTrraZftZdNAbYjhShHr/jcz9zIMfckbwzgVKV1KYo/ed3sf+bJzsKE5uJ9Acdx6G4uQ8B9LLJEZcOT3YbzTvfwIRDt426+o7louUs01pWqDR32C7vKPYN6v17YnUQX1hi6pllJj0lqcVRILlaoXdbiCP3LKDm5PZCJbCfXbqO7BcJxGT8Ua1x3uXlt1snX4JvWOCZZ57isssu47777ut4LB4eTvn93/99/vZv/5Z1576V2Jbdy5ZrdkfyiRYByUISQTc7C5QU0WQkpDFa8lFuEg+tJFCKRQ0qloBuiG0fJ0sFShY+ETRTIK8tP6ZrFSjZioXZqhOUE4ESQKEiUkBBoTb2Wv44akxVtdErSQzFZAJzbh6AykyByRl3MaJG2aS4jOipHf6Yj8qCc+W9pIj07+1i+tmsYxGRqVmMPjjjSigcGwpRnlfbO50ug9uxhJrTOXO/u7GaoZoYLp7xIFCZVzFcLFY4G7ScjuEigs7ULFTNeduC+4gxU7eYP+ru+kWA2GCI0qzqOIpu4ok5DBfjJ4De3SnKc6orgZ6kiCDi6LuMiulKkAeQO+UuytgyLcYfdSeeKk5VXAnBLMOoj6OWYBhtfzvr5ep9LgrIftAXf10boZJlCQiCRaLbIjsnLOuOa/hEpPq9ZNHXZVDRBKbnJfSg1FaoBLZYSSqbKIqFTwa0RmaTHhSXiHEBJF+AtZf/Os/d8b84f++lPPfML1i7dm37inl4eLwmkASRvakN7H39BhZ2FXjwq89x6okpAEafmeH/ffQ+znnDanbeshZf4GXxetXDw8PD4zWIYRj80R/9Ec8++yz/83/+T7Zt29a23PT0NIVCgYGBAWRZZteuXfyP//E/lpT78z//c3p7e3nXu97FmjVrAFi9ejXDw8P827/9GzfddFM9Ru673/0ugiBw+eWXv3AH6OGxCEM3OfyzMzx521EWJuzf1b6gxJbXrWLb60cIxp0vqvbw8PDweOl4yX9FP/XUU9xwwxsQELkw9VaCchvbvXbROCYc/2nWFietEO3WzMQzBZRmi/jlBErVie9Qyke424coi5h655fTogKrr+pi9kiJiSecvdRPrg2RXBPi+F1TbV/OCpK0ZNlrZmec/HiZwnjFkTgJETLbE0w8Ne9YQBJIKkQGgkw/k3W2AfaK7kBC4fR9U4636Ts/hRySOPRd54Kj6WeyriNKAFcOR6G0n8TaqCuRUnwkTGGy5Ngd52yI9AeJDgYZ+7nzCYrZA+6EaWdDYazsWjwVGw4RTCuu2vhsiA4EqeQ01AVn5z+UCRAbCjmul6mamC6NEhZO2pM/uotJz65NUfr2dHHw/51GzTs7luhwiPTmmCsxXLBbIdwdcCVyig4EQRLInXQ22SbKIr3nJ5l8cs7x/ZLeEiO6KsKx2xuOYCu5KslBkTXX9TD1TI7pA86EXeFuH76QxHQn0WtVqJQ9pSIIAmquSXAEy7oqqWU4dPvc0mfaCtutKl/MtJLl/vvv57rrruP22293dCweHivxl3/5l/z5n/85Q3tuIbF5b9syrdFt9uRuyRA5mZNRI8vfI83CJdUUGC/L5A2hPuBcTqCkB+3vCUkmgilQMBrf0c45qUbSb5AKGhxdULDauHgsjX2zGIjq5PMiC8YysXYREbncGF/JokU0aDJfEO3v6DD0EjSDQBhMCdTqo9GMhxGzhWUdlACCSajMS+jLTLov/SLo3hpn4WTRsehIDkpkzk0y9WzWsTuOqZvMHshRnndhKQouhT3289c0LMciJSkgIikSqgvB1dkQGw5RyWpUss6+xzIt5g67c6o6G9xE7wEgQHw4TGmm4ngccTaIPtvtteL0erEgMhDEUE3HIiW3AiWA7LG883urSs+OBJUFzdVYOrk+SiWrOhcsCRDpDVCaVTEqzo5LEAUifQFyDl20wBYn+iLyUrF7m8w1yzAQJBYBpqwAAQAASURBVIHucxLkZ0wq2aZ2W8FVKdYjEO6SGN/f5jy2+c0qihAMQbEAFXN5sWhDqCQwsyCi642ytfi35VyVZlQBacGEaM21qSFUsrdb1Oa+COuu+k2eu+Ov2XHuHp59+nFWrVq1bN08Xvnceeed3HnnneTzL3y/7fHKJpYJc+3v7ebkY5M8+LXnyE+XMA2LJ287yuH7R9n7rs2MnJ9BeIEXiHl4eHh4eCzmr//6r7n//vu56KKLyOVy/PjHP275/NprrwXgS1/6Ej/60Y/4+te/Tl9fH5lMhkwms2R/X/ziF0kmk1x66aUtf/+d3/kdPvaxj/GhD32Iq6++mqNHj/Kd73yHG2+80ZFzk4fH88H4/lnu/usnKczYL9z8ER/brh9hy7Wr8EdWeIHo4eHh4fGy4yXNjhkdHeXcHfbq/T2pm9l5/Srig/aDJD7oY901McTqaqT+XSEGzw8RiIusuybGhuvjJNbYdn3RXh/rXpdAUuz99u0IMXRxov49G16fILXWTyVrYhoW617fhRy1vyezPczwxbF62dVXxklvsPerFg1Mw0KsPtt6toYZuSLZKHtVku6t9mxbICGz9nXdTO3PM7UvT/fWCKtf18jiHbkqTWan/T1KVGbDGzOEMwqGZuELyax+XWNAuOqKNH3n2fWXQyIbbu4j0h8AILUpzMBFKcIZ+7+Hr+ih/yL7e0RFZMOtA8SGbSeqxNowG24dIDoQpPucBKtfl2Hwkm77S0TYcOsAibV2/eMjdtlafNzwVT0MX9Zdv0LW3zJAaoMtIIsOBtlw6wBy1U6//4IuRq7uQRAFBBHW3dRPeot9rOG+ABtuHUCJ2Oex97wkI9c2jlX0ixSrERrBtMKGWwcIJO0T2bMzwerr+xrtfX0fmZ0JilMVyvMqG24dINhtl02fE2ftG/ob7f26DL3n2edq6NI0O39rLeE+u83SW2Ksv6lRdtVVPfTvtdtQDthtWJ5XOfDNU6Q2RFl/y0C97NDlPQxcXG1v2W7D+EgYUYbV1/Wy+e3D9TYbvCTN0GXd9W2b2zs2HGLrrwyz8a2DKBGZ/gu7GL6yp152/c0DpDZV23ug2t4hkUBKoWdngpGrG2247o39pLdW2ztTbe+Y3d6ZXQnWvqGvfq7W3NBH9/YEAIGuanunqu29I8GaGxrt3X1OnMwuu6wSl9lw64Ad+4EtSFt3Y2t7D12WBhF8EbtspN++j1Kboqy/udGGw9X2DqYVYquq12j1mk2uj7Dh1qb2vqybwYur+dki7Pyttayvfh5fXbtmq+19cZqhy1vbO7k+at8j56dar9m9XQxf1dreXdX2zo+WEAT7OAB6z08xck2jvde+oZ/0tjhgx6BsuNU+V+tvGSCzO8Hq63rrZde8vo+endX2TtntHUwr6EUTSZFY23x9X9tLZrd9zSoxuw1r93l6S4zkhijHbh9HzeuMXN1D354UUO0jqvc5QGpj45q1dIvoUIjBy+w2XK6PaG7vkat76doSA3nlPqL/oi6GLrfbsGdHgnVv6OvYR9Tb8MY+urfGCfcGO/YRa9/QT/c58fqE6oZb+wkkfdXvjbP6ukxdrLT6mjQ92+17QVJEBAEKVfeA9OYwa65p9MmrLk+S2WHX1xcWWXddiuzJCid+liW1Lsiaaxp9/dDeKL07wtX9wrrru4gOBDB1sAyLtVfHCHXZ9R88P0z/+XYdRBnWXRMj1l99rg0prLs+BSIM7Qmz8YY4A7sbzoHrrk8RH7bvx2h/9Rkow+7EDWzZtJUf//jHfPjDH8bD4z/CN77xDT74wQ/Su+0qNuy4iIFwQ0jQF9ZI+g3UqIgsWKwKq/hFk+6AwUhYZSik1QVKfQGNLsW+LyXBYiSkIsXsezEm66wNVQCBBV2i12+QSOpoYRCxGAmqhCR7YjgqGYwEVWqTx5pl78/GYiSgEq6WDUsmIyEVoaoS6lZ0fLLFaNGHicBwRCXisyeqg5LJUEJDrO6rK6iTCesIgGYIdEUNoopdNiCbDMc1ZNEumwwYZOKNSfbBLpV0TAcBFNmiv9dAlqvHGjXp6W5Mjnf3GESSEElCohsyI+Crjk/DEYP0+sZqrtRqhWjG7jsEVAYvThMdsvvycCZQf36ALVSNr7L7IVEW6N2dJNilgAD+hI/MrkafldoQJb7aLiuIdtna2MoXkjB0g9KM3Tcm1kZIrmvElNT3i73f3t1JEAQKE2Viw6F6Pw+Q2ZWsjwv8Mbus6BMQJIGR1/WSObdR/54difozTYnI9O5OIvntayk6FCK9Jcb4o7PkR0t0nxOvjyF8IYne3UnkqhAhMhCku/oMjvQGGbk6Q3TQLisFRHp3J+tC9nBfgJ7tTW24Ocbgpd3ER8JIil1WidplQz1+Muc2teHGKPERuw3DvQF6dyfxx+2+PJj22+1SJbk+QmJNpNre9nMs3BcAwX72221ol02sadPeabsNpaB9rIJkF46PhEltbGrvc5OEeuyySsxnC/2rxxobDtG1ufF7pmdHgnCv3d6+pvYO9waIrw7Xx41AS3vL1TrIIbu946vDrL95oD4mSm+JNdrbX23v6mfh3kD1PPvpPidB16YYsVX2M0702WX9MV/b9i7PqvXvFCT7mvUnlmnvdRESayOkNkSJDofs67s6lg0k7fYWxFp7h0mut9uwNKOS2hRrXLPx6jUrL9Pe1d8cc4fzKNFqG1bjZ2NDre3dvT1R/50hB0XSW+PIAft4ogPB+rgR7DF0ZKC1vZMbovYCkb5AfZwO0LUlRmwo1NLeSlTGF5Lo3p6gf2+qUbZNH1G7ZkPdfnr3pAhXr5/WPgJ6dyXqY6tgl0LvrgSWYaGXNGL9fhKrAo12OSdMICmDYeCPCPRsVOrtLcigVSwsw+6ze0YEQtUmVYKQGRHqmqh40iSRshg9JVApC/T0mYQjdr+qKHY/K0n2f8ejJqleC8MnUq6IpBMG0bCBIlv4ZIuBbh2hKqyNhQx6E43+O5MwiKRAkU1WpTSGUyqKbNcvFjDo6W30370RnWTQwBeIsv3qX8cyVXZecAmFgktB4MuUK664glOnTr3U1XjZcc011/CpT32K973vfS91VTxeAQiCwKrzMrzlzy9l5y1r68+QwkyZu/7qF/zoU4+SHXt19BkeHh4eHq8cDh8+DMADDzzAJz/5ySX/ni8uuugiPvnJT5LL5fj85z/Pvffeyzvf+U4+8IEPPG/f4eGxErmpEnf8xeMUZsoEE372vGMTv/SFKzj3Tes8gZKHh4fHK5CXzEmpWCyyY8cOTHS2R19HQumlnNXRK/bLSN0QKecszOriRjVnIIgCugZaycI0TLRqxIFesSjP67bhkCRRKYKh2i8nRRmCKR/RAZPZYzqGIdjxP/X96mBadfekyoKBHJTo2xVh5lCR8ryOWX13qRYMBKmxCrQ8r6PmDTBNJMWiPKexcLKCqZqoeYPynEbtAMpZzS6LvSK9tlq2MGFbsER6G5NW5ayKVqyVpWVlrZY3mXxqgYlfzNv1bY6TMO396pVqu5Ts/86dKrH/mydJbog1VrGa9n5r36OXDEqzKma1vrP7F1g4ka+3U3lWRSvq1faulbU/q2RVDE1i6im7ToMXp+uCAqNs16HmRKUutEaPlaYrFMZtkZKhVstWj0fNacj+xirdypxKqD9AIhemMFGx20WttYtOabaxYrk8r9VX4qtFncqCVm9DNa9TmlWbyqr1FdlmtV306rWlFXXKTWUrWbUeXVIvWzIwdTj243F7QqvWZlmtZRWdXdast2FxroJRMlGLOuqChtG0Arg004i80MrV9tZtFylTN1ucpEqzFbSC0dqG1TqqOYPwziADF6U58ZNJyrMqat6ekDa1Recmr1GebbS3VtRRc9XrULPs9taa2nuu0d6mZpHemmD2QJ5KVm25DutRcLU2rLb39L4Fpp5aYODirvqx60Vj0bnRsJpWXpemK3XnB73ceh2WFzTEJked0oyKXtQ58oMxBAXSm+J1tzJ1QcNQm9u7glpsbUOrfs1qLau/S3MVtOr1rat2HbS8fY3pZZPyXFP951TUXLW9q/utXbOmbuBPKPgiMlpepzynolWv2XofUbu+i/aEci3WpjSvoRdqZVnU3o1rNj9aYuLR2Y59RHN7l7MqU09nO/YRalZDrIoBTvxkgr49XR37iHobTlWYeGKOheNFAkll5T5i1nZ8WDhdobwwQ2ZnAlOrXt95Hbm5vef1+n1j6iYLp0roZRM5JKKVjBYXkHK2UdYy7G2N6n6lgIASker1qOSMejybZdpl9YqFIIn2M6mgs+qiCFPPlajkDCzdQlB8WCKtz7WySTmrI8g+KiUBMWtQyRstdTIMEUHxYVQsyk3ub9sTVzMWG+dzn/scGzZs4Dd/8zfx8HDLvffey7ve9S5Sa3YxsOv16BaUjcb9lldEVJ8AeVsyVDJETARUQ8AKihiWAFVnoIopoFWdL9SQQE4WMaq3Y1iyiPlMJCwqIZGiJED1kVHbr2GBERCoCCIFySSj6GR1iYrZ7KAkUBTssgCGZW8LIAgWugWmIVLU7b+VdRGjWifDgrLecD1SDQHTAkMWGVdFukUd3aqWNQVKuv25JYIKSFqjXRZKMmUVMMDComw2Hgu6DqoqIFX7VVUEQ4Pp0yArEE2CVaggaKBHAqiFxrNTK5noqoWZLyAGI0w+NU/utO1yoleMFgdANa/XnwmWhf3MKRlMPZ3FH/fVxRMAakHHqjaaZVlUFrT62MpQq5FUtfoXW/vcyoJW7wtN3UIrGSTWhMkeK9jjnSZ3JPtZWnummVQWNCwTREmgsqBSaa5/rqmsYVXL2t9jlA3UJtMBNa/Xx2H1skZT2eozOHuigOgTGvGZpl1/syqQMComlVyj39fyOoJoPycts9ou1fGSoZotblRaQa8/a8YfnSOxNlx/Tpmq2eKqpBWM+ljFsux26zknwan5KUxt0X5LesvYsLKg2W0alLCqx1o/NyWjxcm1sqi9lZhM1/oIE0/M2+3VZFSj5hrjXkuvtSGMPjxDMO3HF5aayuoY1eu31i619tYKOsXpSv2/7XPTeB5WFjSsWhtWTNScRmG8TGGiQrg3UN8v1evQ0JvOzeL2rkUDWh3OTdFub1mRMKv7qV3ftfau3Z9a0UCQGm0oCLZIvzhVaVyzy7V3Tqc8r2IZFqbees3qZYNm47bm9p49mCM2ZDTKVkzEJncwLd+I6bMMi0pWY3rfAnrRIJBS6uPGWtnavdB8zeolg7FHZvDHlEYd2vQRteMxVJOFEwXmDtlOMS19hGFQyVbq17vd3nZ950+bhDW1xaOukjPqZc2KgbrQ6Ge1olVvBxkDLSdiVJ8xlgFqqdp3mhZaBSxTwG5IC0WxKEmAJWACFVVonEedej9lKgJlSyQSMElEdMamJcqqgGmCERJRJZD0xthK1QR0Q6DsFymJIlQszOpzQjcFyrqIHqiO93SB2pBZDKfZ/bp3c//3v8wv/dIv8Z3vfAe5nbvzKwjLiQOzh4eHI2S/xHlv28D6Swd48Kv7OP2UHSV75ulpvv2Rn3HOjWvYefMaLwLOw8PDw+NF4Qtf+IKjch//+Mf5+Mc/3rHcN77xjWU/u/TSS5c4LHl4vBjoqsFdf/U4lbxGenWMG/9wb8vcoYeHh4fHKw/BeoneVkV8XRT0WTaE97I6fG6jQkqr4tVSGy9qJUWqT3oDWFpTjMBiy/mm2Jxwt0wpazXi1JojddrEBKU3+IlmFI7dM7/ks9rKUKAuQJJDIutv6Gbq6RzT+wstn7Vs29TUkT4/qfURTj8wY9fLXOE0VOPeooNBe9Jnvqn+prHMRjaBLoXyjLssqkBSaRFaOCG5Pkr2RKFl8qoT62/qZ+rZLPNHnK80W/P6PgqTZSYem3NVPzdEh0MMXpTmyA9GHUeEvZwJZfxYhkVp2vk53fauESaenK8LzzohyiKR/gD58bKra+DlytDlPcgB0VVMmlvkgMi6mwY488B0fVK6E6Issvq6Xmb2u7tvokNBKguaq8hDOSRh6par8xlIKpSzquNYSURIb4o5i5arLr1PrgsT7g1w+r6Z+keCb/mXv6IMG28dYP54ifFfLP2edtsmRgJ0rQ9y7Ge5pTGcTf244Gs8ryLdIrnxRuGVnmWLPxNMrf49K22nmmXun/9XEE3+9V//lTe96U1L6u7hsRxHjhxh49btBLv62XDVexGlxrWvRlvHQnKpGqWItSTaTS427gEt3H47sAhKFrmmlwVSU3yaEWjdTsJiRFCZ0mQKhojpW/R507a12fJuRScmm5yY87WNeash1ibTZYGeoE5BEylURU2S2tjv4lg4X9ECLKIBk3yxNpFe/SzXGHvVxEn16gkWvoqGUb11hWJr5JOQa/TdZt7+/7VV+Pqc85hNOSgh+kRXUWehbj/h3gBTz2Q7RtbVCCQVkusjjD86uzh9+Hml+5w4WtFg/sgrP25HlAV8ERm1KtpyQnQoRHw4xOn7px1/jy00EhxHpL2cqccQPj3vOO7vbIiPhJFDEjMuIm1D3X4i/UEmn5x3vI0oC/gTiuNIxRpy0EXc41luI4ckJFlcPiKyKf5NDIcQJEiuDpIbraAVTYRqJK4QbpPdKVcdz7olokMBxg8Z9Z+qlq+xXyPsb91OhJ4+i0JOIGu1Wf3a9DtZj9j7EQULxbRQmwSlWqT1fYDUFJ/XHGEqYFWfK1VxUnTRc67pmTM/up9DP/0H1u7cy6HH719at1cQl19+Of/8z//M0NDQS12VlyUHDhzgve99L1/+8pfZuHFjx/L79u1jy5YtL0LNPF7uWJbFiUcneOifniM/Xa7/PZIOsPddm1l1nhcB90rCu7c9PDw8Xhzcjr1e6bzWni8vxPH+7MtPc+Du0/gjPm75HxcT7Q4+r/v/j+Kd41c/r7Vjfq0dL7z2jvnlcLwvSdzbO97xDgr6LH3BjSsKlJrp3R5i9eWR9jVeLFCqEu31gShRmLFaJ5o7rIKcfq7YVqDUQpMISS+ajD++wOxR56IBX0hCDopLJ8BXILM9Rt95qc4Fq4gyrLmurx4L5QQ5JLLuxn7S58Q7F67ii8gM7O0iuabNy+pl6yZSzmp1ZyGnHP3hmCuBUjCt1KPPnKLldLLHC64ESj07E/V4OTd1q0VbOGXN692dT4DiRMWVQOlsMHWThZNFV4IWJS6z8a1D9XgMR4i26KoWOeaEcCbA6mt7XfV2udMFssfd2bSLMvXYOifoZZP93zjlWKAEdjtrhYbjj7OKweDF3aQ3O7+nEWHDLYNkdiQcbyKHJLvv2Or8e6J9QXrPS7m6BiRFtCNUHJ5PU4exXywwtc/5xPf88TJH7phbsX9uFigB5KfsibtAQqzH3LWUX+b5ll6nsO51iXps4UrbKWKAy4bfjk/28a53vYvJycnOB+PhAeRyOW6++WbkQIiR6969okCphiRYDHdpxKX2k9+LBUoAsmDhEyz0kNgiUIKlwqSWzxA4Xva1FSi10PTRrCYxXpFXFCi1bmohixaCsLT/XCxQqhHwWfREDRQXw4hIDHpH7AilxQKlZmoCJYBov5/eHREcHor9Pf1B0k1xU06oObA4FSiB7Qg49nN3AiV/wufqWACKkxVXAnlBEkhvieFzMY4SJMF2onRRN3/cjlVrdqrqhKlbVOadC5TOFq1guBYoxVeH7UhXF0iK6Hq8Gl8VJuLi2a6XDfKjpYbzo0PkgFSPAnRC9njBlUAJwNDssZeb6ybY7adrc6wuQHRCdDBI7+5UPe7PCYk1YTI7E67qllwbqcfwtWXRAhjLtK8BN/dAYdZg9ozZsitBW0FIZcLkmEAhv/KB6E0iJNMSKAsipgIBpf11Y/jbjMewGI5pROLLd4R60/Mq0b+JbVfcyOFfPMDf//3fr1g/Dw+P1yaCIDByfi9v/syl7Lh5LWK1H89Pl7nzL3/B7Z/xIuA8PDw8PDw8PP4j7L/7FAfuPg0CXPm7O152AiUPDw8Pj7PjRRcpffGLX+Rf/uVfiMhd7Oi6DkHx1f+1Q5AlBFliYUwje0prdeiQpGUFSoGUj6G9MeLDStvPEYUlLkqJVX66N3d4wJlmi0BJrL6wnTtawtSEJZ8vx9yRIkdvn+pYDmx7f8u0OPKjcU4/sGiFtbj8i3lThxN3T9gr5h2iF01O/WyK+UM5x9toeZ2D3znNzEHn25i6yamfTpEfdS7Q8EXcW2X37k4xfEWPq23KcyqjD810LtiE7JeQ2rwIX4mhS7vpO7/L1TaFsRKlGXersjM7E4Qy/s4F/4NkdiUIdi9zv7XBrJgURkuuVn8Hkgprr+8n3OvueESfiC/k/PqZP1Jg9oDz6xkgvjrKyJUZ16I4URFdia5O3jNJ7mTR+ReYcOQHo+6uaRPOPDDN1NPzjjfRiwanfjbF9LPO+5vcmRIHv3uawli5c+Eq0/tyHL9z0rFbkyDLZI+XMComovPLE4BAQmLw/MiiHQot0UiLGd4bo3d7+8m/ds+6hXGd+dM6lrjCc7DpOSmrcdYHr6BYLLJr1y5U9YUVIHq88jFNk3e96108d+gIq69/D7I/hBoV6v/aoUUEymGBOUOiYLT2T1pYaCtQAkhFDfriOsupYIyAsEisZNEnayiCielbQaDUZGQkYCFgYVgCBUPE6PA4MGUBU7a3Gi34yGuN47HE5QVKgmlRqQicnJZR9dZ6aVEJqWIscVECyC/AzBEV8u2f1Wa+0CJQAsiNVpg5XEKMRFc+mCbmj+SZeMKdq2R5TmXusHPBpiAJCG0cR1dCDklkdiQJJNx1uIWJcku8bidEn4DoE93orWzB0XnuBEeG1hqj6wQlIhMdeOFfmClRmUi/u+/R8jqVeefuWwCJNRG6Nji/NsE+P4KLsQ2WLSCqxS87Jb01RnyV80USNdxcA5V5zb5vXFxsxYkyow/NuLpuChMVpp6Zr8ewOSF3pmRH9Lqo2+yBXOffhqbRECtZMLWvYMelY7sKtzgLN6MboBuY/gDlXNWRr6mpBc1YXqxkAqZJPGoSDCzaf5vf7TUiAYvejIm4zK1g+MUWsZKFQLYiUdDsmDd9GQFt7TM9ICBuuISuzRfw3t/8Le6//5XtpuTh4fHC4QvInP/2Dbz5M5cycE66/vfTT07z7d//GY9+42A9dt3Dw8PDw8PDw8MZU0ezPPiVfQCc99YNDG7vfolr5OHh4eHxfPGiipQeeeQR3v/+9yMLfvb2vLXzBrJUn1QuzZlMH26a8FlGnFSjPG9y4sE82ZPOJzyCCZlgyrnAQPKLbHhDN10bqi/HHSTnyQGRvvOWd81o+z2KgBywXZf04qKXth2WaRfGyuhFdy9CsscL6C4nCdS87iriKbUh6qoNEGHDzQP2amEXnLh7ktM/cx6dAZDaFEUOubs1Rh+e4cz97oRNJ++ZYuKJWVfbTDwx7yrmCyC1KUa4x4Vb0VmS3hQn3O1m1bzJ6funXU2WledUjv54jMK4c3FbYaLMkX8fRcu7cxuIDocIdTsXQ2WPFTj0/TOuHLhEWWTz24ZJbXY3+Rfq9rtyHzqb2MKz6QeyxwvO+4Eqtbp1FHct6uviq4KkNlQFRCvGZdqfiQqsv6GH7q3OJzPlgEgwKeNr1x8sI1Q6/WiesSc6iMiaIubUvMnUAfvZJivACo6CNXqDa1kd3c2ZM2e46qqrOpb3eG3zJ3/yJ9x2222MXP1OAslMx/JaxI5fA4EZXUZvsujQO5jFjesyZzSZdrYe7cREPiAkWuBiPJD0GawOaQjVWXlhpT6n2jXEfAZBqVZQ6LwdIPrtHejG0mPx5ZcbV1mIOZVKfvk+SQwvbURTt6hkdcycO3GsUXHe4SoxnyvXIYBIX4CBC7tcubToRYOxR2YozzsffysRGX+8c9/XjFE2mXxy3tUYtzKvMf74rKt206sRdNZKz5lFKDEf0SHnzopniz/uIzroTqRUnKq4WiAA9rN9er8796G5w3lyp1wIqrEF5aEedyL06X0LzLpYWAEQGw7R68KZFkAQBVdjQssE06UrlKmZrgVkRsW0f4O52UY1wbLbW+j0c8do3F+CBLEhP0K1G7H0Fb5Xsz+LpAR610mdv6eJgGwuOxSy2giV8mWBMzNS2766GUNpfD5fkdBMAbAQBQujw5BaECQGLnkTscwQb3jDGzh48GCnw/Dw8HgNE+8Lc/1Hz+Pq/3ou4ZTdwZi6xRPfPcK3fu9nnHh0AsvBu0MPDw8PDw8Pj9c65QWVu/7qcQzNZHh3DztuWvNSV8nDw8PD43nkRRMplctlLrrgEiwL9va8DdkfsidqfW1mpmTJ/gesuiDM0J6mF/0ruCcBCKJIJKMgyBKFKXcvbceeLHDy/mVedJsWmBZC03cbFZOZg3myp4qOBEoA4V4/iZFg3YGpTrvVoZYJlklmZ4INt/S3inqqny1Hz84Ea27oc1SnGultcUau6TyB2UxqQ5SNbx1aejwrEB0IMnBhGn/S3Sr70w9OM3fUuQMAgKmaruJDAkmFgQvShNLuIsjO5k4qz6moWXfXqNuoM4Dn/u9Je5X1C8yz/3KCaZcRGoGkguLGIcu0hXduYhJruLlGAfr3pOhyEaVj6iblGXeuNqZuMvrwDAvH3AnP+vd20bM94Wqbvj0p1r2x39U2ibVh1r7B3TapTVHW3zLgapv+vV2svaF/+fuoJghq6vPiq8PEVzcJjqp9dFssC7NiMXOgQPZkw7VJkKQVt8uPaxz68TzaYnFoc70WiZVKcyam6EMOiSsLrxY9/8LdEuuujhBMirZQqd0MXe3vio+N8YvZsGYz999/P5///OeX/x6P1zR33HEHf/zHf0LmvOuIrdqMGhNQY0JbsZEWsf+FMFkXUPE3qXj00MoCJSloQtBCCwhUFlkTGf72AiWAiixwyPRRXs7OyLL/NU8u53SJGVUCU1heaFTdrvYfMcUk0hQHVNuu3YS3XLHwqSaDSY1EuPULfHljRYFSf1ojGAEruHR8IyzkERaWjmF6toZR5IorgVJmV9K1OCU+EiaxJtK5YBPFqQozB3KuXFoAtKK7SLnIQJDEWnd1cxOJVcMyLdScuwGE5K9GjLogP1py7ch5NuROlxj7uTuxuyAJrp1J9bLh2uEIqg46bqL1YjLpzXFXLkd6yXDlPATV6/o5d+NVX0QmvSXuaswq+gT6L+gikHLxe0ew3aFcibUE6NmRINzr/LeLIAn070mt6MQlhqqdflWoJMoCkYwfJdxoA0vXlxcraTqlWY2FSbPlJ6sZ9iNqBmJbRyWByWmRhXkBYZnzaonCor5boKKLqBEBX8jEWKG5DUVoeZ70hXV6w3b9jQBtxUpqXEAPCpgRH2uu+1VU3eS8K2/AMDw3FA8Pj+URBIHVe3p5y2cvZcdNa5oi4Erc8ReP8+M/f4yFCS8CzsPDw8PDw8NjOUzT4u6/foL8dJlYJsTlv73dtdu3h4eHh8fLmxdNpHTllVeiWypbEpcTCa1gySe3TgRMH6wwe6w68d/BPUkQRaK9MqsuCBPq6jCh0BSTFu1XSK5e4WXwCqunp57Jt7obiSs3afZ4ief+39hSR6TFNL3NnXpmgbFH510JMyoLGqVpd7Fgpmq6dk4pZ1VyJ4uYqvPtcqdKHPjOKUpTLgQdJmSPFlw5wqS3xBi8JN25YBPlOZXnvn6ChdPOV3/HR8Jse+eIq0mfQFJh4OIu5IDzW1CJyay9vt/1xOTLmVXXZOjZkXC1TXpLjPS2uKttRq7JsPp1va62OfKDMU7d6yySsUZ8JOxa6Dd3KOd6FfzJuyc5dse4q22KkxWyJ9y5GhiqiVbUXQnjKnMapamKq22mn8vaUZZOupFq33jy3mmO3T6xYlFh0TNjel8eNbdczMjy/bwSFslsayg0BN8iAVEbV6Xh84L0bVM6PhNqQqXCjMHMEZVStqkRVnJVUnyMlK9EFhQ++MEP8vjjj6/8PR6vOUZHR3nHO95BdHA9mV1Xo8aW/yGvNelDSghMaRIVyy7fyT3JCEK/qDMkLnUAWSxOavy3RbekI1cdm9rS9pa00CyBBbX13jZXNOEROF2QmS7Z26zkoCRX7C+1LJjMyWR15+IUuahSKVrobYY2i8VJNTclQbJdBU3d3dirOFF2LbaZenqeWRexvGCL8d2OJdNbYq5dkWYP5FzFiwL0bE+QchlBFukPunLDAYgNh0lvdS5YfrkTSCr07U4hys5f7EmKSGJN2FWssRyQGLy0G3/M+bVQnlM5dd+U7fTjguT6iKvzqpcMVwsYANQFjTMPTbsar5maRWGyjFF2IWax7LGXK+GVZf/u0118j2VYzBzIURh3GLdrGBgVi9HHFqh0+C1mBRvnwtCgMLW8O9RyQiWwCIdN/EqjHbRIa3+8WGQalC2GohoBaWWhEjSEr/MVidlS635XclXSkgn6r3onubGj/NEf/dHKX+LxiuHOO+/kox/9KF/84hdf6qp4vArxBWTO/6WNvOlTl9C/rav+91NPTPHtj9zHY986hK56okcPDw8PDw8Pj8U8/q1DnHl6Btkvcc0HduEPu3vX5OHh4eHx8udFESn9yZ/8CQ899BDp4AjDyV3tCzW5JwGI1WdObk6gMGt1dE8SqhPBuXGdEw8XKM44/6Ef61dIrGp6I/n/Z+/Pwyy5zvoO/HNOLXffe5/umZ5dM9JIo5G1WZJlS0LGBmwWAw5gh/AAIeixgecXQwjxQ8KSEJYfEPODYAh2gARjm9gOJli2vMuSZUuy1lk0mn3t6b377rWc3x9Vd+17b3e1tVmq7/PIntv1nqpTb50659R5v+f7Nq41QGFjxz0FhvdvPG0QQHoy5nm839q7FD0Vkuyqy9JJf5dVLwWlHgHy5ZOlwLurF55b5fyDwUgZ5ZkaFx8Jvls8aPqpiVsKgdJbAQhdIo3gTdyuuoFSVlXmalx+bCFQOjEjqZHaEiwVSL1oc/Izl1gNkKZDj0p2f/8WUltefGLT9nvHGA6o7nPuS1eYeXIpUJnYUCRwkHH+yApzzwZTkwqaJrEBachgalfSUzlKjAZI3xYkvaKP5dMlZp9aClRm9VyFs1+8EiiAXpqpcv5rc4HK1JdtVs/2IVD1SqumXHC88yfGYp3pGQcpKgFmQrD7e4aID/eIYLWX1Vukw1heJ7s10jvtW3s92+p68eka5x73g39SDiYrGTpoOrOnFbh0qub1U1UCZDTGjRM/gqZpfO/3fi/V6gaDjSFe9XAchx//8R9nqVRj/O0/jpXpPYdqqCc1IFEoBFdMHTveW3GpeY2Y9x/AOdfgottquIPUk8B7vbKmQ0S03tVmULlDBamFmHSZjlrog5Qru8pqQmFKFxB9lZeUFOg11SQoeRCU6xLH9d7pXgpKjq+uoxVraMUayoWlK2D53IeGmlIv9aTmOZZWmXviSmDC0eqFCrXlYGmhGuSHjcJMG6S3xgMp4UhdbErhCDxCRxAsnylRvBQsbVkkY2CmgqkIrZwtMR8w1VlqMkbhqhef2BTJGoweygV6RrWlOpcfW8ANQoIR3twrkMJR1WHh2Cp2JQBxxiWwKhJ4qXODtrtI2iC9Ldg8PEiawAaWT5U8ZbEAWDxepBJQmXP5VClwqrjKXA3X7u3vpopSOxwHbAcEREY6v4EHKioByYxLYaLPtdpUlZx46/1MJRUJ0+2rqASdqkoVW3Bu1aDqeO3UMVlXVakoNVbiGqCQbYNHP1UlgNiu3Uzc+mZ+67d+m7/927/tf4FXIH7sx36MdPrVQ7p8oXDPPffwO7/zO7znPe95uasS4lWM7JYkb/nVG7nrvQeJ571JsmO5fOv/PM8/vO+rnH38ystcwxAhQoQIESJEiFcOzjw6wxOfPAHAHT9zDfmtwTaphQgRIkSI7wy86CSlY8eO8eu//h8xZIxDI9+/5rgy9DXqSUjYfmuM8QPRweSkaKRJTgKIpr1/l2ZtkBIxSIWiDRceLXLmwTYCw4Agt1IKdElloU61V4DI7b2ArcclU7fnGd43YEDtko2XOuz+vjFSkzGU4/RP79YVsBt7XY5INhizOLszMTg1UQ9kdnSlW9oA0lvj7P7+LYEUhKQuSU3GAu3GBph9aomzXwy22LP1rpHAKj31FZu5Z4MFsFbPVTj60XPBlKtcjwASRLUK/N3VL8HuvFrRChSMAi/lRhByF8C5r8wGfq6rFyosnw4mp24kdXa8dTwQIWr5dImT/3wpmCqGC+ltCWKFYOkPx2/MM313MNUmM60zekMuUBmkl9YxyDuLhKEDGeKjwchk2988xtD+jQdPNFOw7U1DDPdSuXBVz/64XnSpLtm9yU/tZduwfK7O8c8uttK+DSIcRSOgSarLLm7dI9zqjUCXlKh4fzKaMg0ieYM9d8ZIjXZdwzRQ0bVtJBMZ5XX73sSlS5d45zvf2b9eIV5T+IM/+AO+9KUvM/G2n0BPrJ132PFOchJASjjs0erIqGqSj3qhnmuRkww/sOsgqCNxTKgPeIWVBFeHOoLnLJNSW5o30YecBCBthSuh6kh6xaul1btsPuKwNW4hB/TJetc4nIk5jKZtQGEU3b7p3YyVOtIfW80oJLqmDnK5NJCgJIUduN8HSE/FA5FFwEsfFVSF0Uxo3vgXgDPi2orZp5cDEajMtMHwNZlAyj4A1YV6YHLX/JGVFul/g3BqLlYp2NzGqbuBVG02C+UorKI9cDjrhmsrj+gc4Lk6NZdL31gI7O/S5WpgVaTkRIzc7mCp/+aPrGxcEciHHteID0UCEbw0UzJ2Qy4w0S1WMIkGTHGtRWWwNHGAHtMCv+fRnMno9WuJbmpAKrPU1gTDuyKIHp/oyrYR9tqydk1hVRTK1BE91ZM8slKLkCSYuSJZXPb6OuGogW22mtFwNUnV9uwN2UmAreT7P2jHFAzHHaaiaweSfmSl3E13MTK9k5/6+ftYXFzsX7FXGP71v/7XZDLBvnNDhAjxwkEIwY5bxvnh338D137f9ibBdnW2wmd//zE++/uPsXolmPJxiBAhQoQIESLEqw3Ll0p86c+eAuDqN29j5+snXuYahQgRIkSIFwsvKknJdV3uvvtuQHHj2DuQXYFd5ae5Ud1kIhfmT1osXRiwwK91nis1qrP9jqSX5m299Do+9LgkNeZdu5lKrRGcHpRazoVLj62wer4rBUYfghKAXXY5+blZZo/0SbXRYzFYmhKr5FBb3niqDT2ukduVChb4kjB+YyHwru/cjmTgVBuO5VJbsgKRc1zb5djHz7NwbONpSqQpkQGDeOAFfFTAtCv5vanAZIzNIDEeZeLmwvqGbbCrLme/cCVYar1N4uJD8yweD5ZKJjOdYPRg9sWpUBukLhnan8YMkJLPKntBPBEwcAoEug7AsY+dY+5wMKJbbdWiuhzsuUYyBkNXpQORGPWoZOLmApnpAIREFwpXpQMreFklG7u28cCua8OZL17h0mNLA4zWvs/nHlykMj8g2NqD4OraoJleelBg/XHGH6Omb46x5brOCFdj7OuFahHmz1iUFjvr3SAo9SQqFQ+QiozwqU99ik996lOD6xXiVY+nnnqK97///eRufSOJrbvWHG+oI3UHXstKMutqDKKXdJfZIq1mmrf10us0+EhJ4TQVmxpoCCq5A85RdSUzNZ3uaHqPLHNNzFU1LqyuLdNAN0EJwHYFliMwil6l3A0oMkYTkMy1riGXBxNh3KVlYnmTwr5MIAUYI66R3pYITFKqF+3A6XyLl6pcfixY8D1IOrAGvMRO9FV06XmdqCQxGkW8BHqwqal4YOJ/+UotMDF6M6iv2iw8t9p3D0NPCG/uZSSCzVM2AzOlExsKNj9Wrgp2Pz6CqniVLvvtOwhZq+5SX7UD1y+5JR5YATQ5HiO/O9g3lpnSSU3GA/nBqTleWt8eZfoRlUpXLGaeLaMGTNe6iUrVVcXKlcGOs5O++pzTSLvp1SkaVcgG6Wid5+VqgpjuMp2pE9E6rzdojFp2NOattWNFPeP97h77hNDJ3fNjOJbFfffdN7hSIUKECNEFI6pz07+4ih/8ndsZ359v/v3s41f4+Pu+yuP/J0wBFyJEiBAhQoR4bcKq2jzwR49jVWxG9+S46cevermrFCJEiBAhXkS8qCvU9913HxcuXGBb7kbSkeHm3wcFaJGA0Fi61GdLvbZWXYK6xeqMzcWnKpQXN77aPLQrSnZrlOc+s4BbH1xO+WpFue1eaqHZp9oIBQPISQBKeCl8+kr391kEtssupz53eVClepRxOPLRs8FSQblw7P+cD1DAw+kHZjrTEm0ApUtVSpcCpiQalCKvDwpXpRm9Lssz/+t0oLLnvhws3R3AyHVZVs6UKc9snEy27a4RlCKQIlAsZ5LeGg+WXk+CEdcDqxVtBg2lnSCB0NhwhORolJknljZcJrUlxuQdwzz/6Ysbvi+pe0Q8u+Z4CgIbgQsn//nShuvVwOTtQyTGohz7ePB3KkhbXzgajBAGnoLXs393JtA7YZddnvvE+Y37zcexfzgX+L09/+Bc5x82IA9RvuL3q5IWCwIQ7WOFu1YBKVbQye+Kc+GRjZPDRvbHSU9EeO6LZe/eGufrNwZokpkjNayKd7ydYNQYB4W11q9XzgrAQEirpw8b5xHV1pjyuql38vD5v+CnfuqnOHXqVJjO4zWKWq3Gu971LsjmGXrTW6CteQ1K3SZQ1GOCK32mhd0BWicKWhUuuAYaamDwt+21RKKY1G3mHI05V0esM2WTtjcXHDUdFi2J3catX0NOarBdfGi2i0JQ68PHbycoKdEiSpVqkvp8/87LWFk7l1uZh5UF7wQdBKVoBKqtuYG71FLtLF2uUb64Gii9lVV2uPDQbGCSxMqZgLvyu3y5UYxen6N0uRqIoFNbsag9EywdayRtkN+bonRl4/NJPaYxcl2W2WeWA82J4kMRcFWgVFpSFyi1udRlgSBAMySO5W78eSlIjEWpF22s0sb9UNiXxrVdFo/3VwfrRnw4SjRvUpnb+Pw4qCISgNAEW24bYuHoKqWZgOUDtvWF54LPveaeWQr8zq6eKwd+b8tXapRna4Huxyo7azaBiEiLUKUcB9G1cUe5bXN9AcjWcRFrDRYNopJqU0xO5cGqQdVXJ1NG701BDaKS0GFkyGFpWdJ8si2xpZ4oKcmlokHN8QzqyZZhY6zSurrxipJUNEADre72PHljHNT8ihipLFve8gP83d/9b2666SZ+8Rd/sXeFXqFwHIfZ2Vnm5uaw+6TqO3jw4EtbqRAhXmPIbUny1l+7iZNfv8wjf3uE8mINx3J5/OPPc/wrF3j9v9zP1PUjL3c1Q4QIESJEiBAhXhIopXjwL59h8VyRWDbCXb9wEE1/CXanhQgRIkSIlw0vGknpmWee4c///M+J6mmuGr0bat5q4ECCErD9lhjlJZeZYz0Wy7oJSj6k9GLEy4OUl3rg8jM1Fk9XWypKfaDayEDRnI6ZHKCy1KPs1G159Kjk1ANdAfgBUvrJiSiaCUsn+gR6ehCUpC5BEjgdGGyijE+mWM937TDTOpG0wer5SqBL7fvhrSwcWwlEZFk+XcQq9Q7w94MelbhucF8c/ei5wJpkqxeD+QBg7vBKYLWd1HiM6XvGOP7pC1T7keReIGy7ewzHcjj92ZkNl7n8zYXA16mtWiyfLqHWIQe2w666PPu/TgVqrw2YaZ36ysYLzh9dYflMMAUFaUr2vWOKS48uBAqAmUmdaN5k5WyAQJZLYOJfUIJS8zp4afOCBITNtE5mOsnsU0sbLpPZHmfixjzH/+9F7A3GQvWIJF4w0OMSu7wxZ8w8U2bulLPWd41BqAdKS4CD5/MefleG3pOoFE3CtoNxzj1epbLU+9wqajaJSqYe58Z9b+ar3/okP/iDP8gDDzywoXsK8erC7/zO73D48GG2/NQvIHW9SVIaRFCK4bIlanFSmVg9iIG9Ut0Ifw5iIaia/cmEqmtsdBE8h7mhgL30lXUMAQnNZdne+EBrOC7bshaXijqVrnK91JMayMQcagvg9Il+9yIoyZiGW3FA9VFQ8olK7QSlBpQ0gQCkCtE/828/RHMmVskOlHYrMRoluyPJhYfnAhEe5o+u4NSCVVCLyMBlyldqVOZmA9VNOcpLPxbwWjPfCp7KqbAvjXJh7tlg5KugMJM6Y4fyXHp0IRDh6OLXA5DdfVQX6rgBSVdLp4pwMvClEJpAiI2raylHMffsCvWVjRPJwEtBnRiLcukbweaikayBXXY2/E4139kAhKggymKdF/NJcgEVqWJDEZya0zOlX0NRqZusNLQ3hlV2WD5XH6xA3IZI3HNC1e8qheX0JSoBuEpw8bJGOd5j/UDRh6gkWHE1JArRx8gx1xKVAEZ0m4ihuFjS+p28SdIFiF1zPRPHnuY3fuM3+Imf+AmGhob63ssrBa7r8jd/8zd8/OMfZ3V18DfHl770pZemUiFCvIYhhGDnreNMHRzmW//neZ75zGmUo1i9UuH+33uMbTeMcMu795EaHjCZDxEiRIgQIUKEeBXg2fvPcOKhSwgpuPu9B0nkeixIhggRIkSIVxVeNJLS937v96KU4nVb3wmAipiDFYf8xc3VWZdaqSvNTSyCqPdeeNajsPP1aS4/W2X5wsYX6I24xCq71Jb6E4VUDyLQpcdXW/W1+i+Gt5ddPltpqsw0MYCgBJCdjhHNm71JSj3qBTB8TZrC/gxHP3pmw2QMM6mz83snOPvlK4EUjna/bQuly9VAgY7c7hRDV6UDK7nMPrNE+crGd2ED1FfsQMQSgJGDOTLbEhz5+7OBygGBFWM2o4KzGVTma5z96hXqyy++ktLlxxdQ7ousGoD3bDcTYNsMQWn0hpzXZv/XmQ2XqcwFJ4O5dZfZw8uUA6gNAAxflyE9mWDl7MbbbCRrsOut3ju/emHjZLkdbxmnulTn4sMb9/3E6wukJ+MekW+DSI7HGL4mw+Lx1YGqXO3BstJMlaWTRW+IaUblehAa/DFImCarF+usXgzWjlwbVNU7ta6D3f6oB6V/MyS7bo+yMquYeX5t368MHRUzEbVWI62WobjoYisNZfYP4Kmo2UxTGq9cRTo6zuc//3m+8IUvcNdddwW6vxDf2Th27Bj/+T//Z9K3vJHo2BbAC6Z2E4Xa4cSgpgQrrE3zVssq9GrvIO0wDinT5QQGvQK5va6poXABG4Gm+opgNMlJDVhKcLLiX0cHfUC31SirBCzVZFNJA0C4Cm2AaqbUFMOGzRVDo+J01s41JJH5XnMkxehWKF20KXanAG4v30VQyu6IoxmC+WMbJ7RGcyaFfWkuP7oQiHBU2J9m9XwwVZb6ikcGDqqmFERtCAABEzcXWHy+SDEgeTsoWcupuy9JCjaA5VMvzXWsssOVp5ewqy9+SpjACkWwKTUugC23FFg5W2bl3MbbbBC1pgaqi/XApDUhBSPXZgO32ezOJGZS58qTSxsuE8kaDO1Lc+mbCxsmLQlNMHHLEIsnVgN912WmE1Tma1j1AfMNx0Gmks3f5XkLp+bXa8B3bUNRyc0kmDu/9j6ENaCso7xTxwWaVDhu18gxwC2JqMtwzOF5y8DtQ1Sy0gLZ1nTKrqAuBI4p6D9KeWOra4BAI/aWd3D5//c7vO997+NDH/pQ/wq9QvDnf/7nfOQjHyGXy/GWt7yFQqGAtkGSWYgQIV48mDGdm3/8KvbcuYWvfegwl494BNozj13h/FNzHPz+nRz4nu3oA74LQ4QIESJEiBAhvlNx+egCj/yvowDc/ON7Gbsqv06JECFChAjxasCLQlL67d/+bc6cOcOWzHUkzDwq4qe1qfQI3jeUlRzv2NzJVpBW9VFOakIIXAuWzluUZnszEIRpoLoITolhnW23JjnzcJHSpR7l/MiH0CTKaS1eZ7ZGWD5ba5GtNK3nomw3uWnlbNsidoPEIWTPCEuD5HHuq3NIs+v++5CTGlg8WaRecgKRMRReSoG+qej6Xeu5VWrLwYJRM48tsnSiGJjQM/dsMPUgaUrGrs8xd2Q5sAJO0CBZdmeCwt40Jz5zKdB9pSZjlK7UAqk2Tb1hGCEFZ7+08RRxdtVl+eRLEywLnMYPzw8Ttw5x4p8ubFjNBiA2bOJawdKvDB/IkBiJcPrzG/ff4vOrVGaDB76G9qexKk6gQOWVAEphDcx8a5FL3wym8lBbspg/vkqtGOz9Xb1QoR6wzOJzqxQDKqctHF9l6cRqqx/rlfJNyGZfKaTALrtcenSpdVzTUEohepXVtA5VADMl0UxJZd5uHqfR7/cag1yXHXcksWuKs9/oujfTaP27vb92Yem8TbEoB6ouNcfKmg0uXHjWaTtm+MfWPgMV89O/VeocmnwHD535c37iJ36C06dPY5oD8nCFeNVAKcXP/dzPoRIpCnfcA4CV8NqgXln7Htjx1jFLCC61TQft6OC5hmMqlpTAqq1VmlB+3MTRWkoTDWyRNhLFabd3mxR24/yiSSaKSBdHCWwlmundXB1kj6FdWq16u0qwUGnd0yByEoDhjz9nV/Q1Uy1j1buwa2rI+to539KJGnaf86tlj5AsYjFUpdVf1JYtpC5xqxsfN+2qw+q5ciCCEsClIClifVhlB6scrO+OFUyEJgKTymefXsYqB2MRF/anqc7XAxFn9JiGEN69bRRaVDJybZb5wyuBFAU3pT64CShHUV0ITowuXJXGqTssBZgfCk1gJvVAc38hBUPXZFg5Wwo0X5s7vBK4TWhRSXIs5ilZbpAcVV+1eyoHDYJyFZe+sRCYGFaZr1FfDTaHskoOxcvVQVyZtfVzFAvHVoJ/o31rEeUohOH3z3LtRWUsCo20YLpOea7TdyIaBdsBfW0A3dtw5NkrUyeaoKmmBOAkzGb/6vYIwMelw3je4dySQd3urFst3Xu9oGxLlmoK1xQoBKIP0cv1s9vJGhTdzmv3Sw8HbeMoKcbv+V4+/OEP8+Y3v5l3vvOdPa/zSsH999/P1NQUH/zgB4nHQ2WWECFeachNpvie/3ATJx66xCP/6yiVJS8F3GMfO87xr1zg1p/cz9R1wy93NUOECBEiRIgQIV4wlBerfP6/PYFyFDtuGefq755+uasUIkSIECFeIrzgST2Xlpb4j//xP6LLCPtH39wMuvZEW+q3kf1RRvcG4Ez5wWfXhZnjTqeiRbdpe+AYKM3bzByu9CU29UJqMsLkzVnihcE7lzoIShKm7sgTyfj3tY7KTCPo3lBdCpp2rL5is3g8mEKPVbQ5/7W5wNeaO7wSSIWlgaC77HO7kyTGg0k7RjI62R1JtEiw5l1bsoKlzQKU4wUOgxCUzLTO9N1jpLbEAl2rMlcLrLQTzZuMXJd9Ed70tUhNxcjvTQUqY5UcShcrgYlrW984yvDVmUBlnLqLHXDHfH3ZDtwmADLbk4Gfrx6VDB/IrFVdGwC77G4qvePlby4EVteafWopMOGtMlcP7j8/jaTUvf/WI2e2q3eNHsyS25loHVuvrOMweUuW0QPJgXbdmD1W5crhAQSlXmUuSCoNMZVBqktdiGdh+mazWaRBVuoFFTOJ6AkO7b+TS5cu8Uu/9Esbvk6I72z8zd/8DV/60pcYfes7kIbZJCj1QiOwKpViq1EnEkCSxjG9shUhmVunr+pOEzfjasy6wbjxo6bDuGk3CUr90E5QSpkOmUiLQLARgpIQXlogpQarZ6y57kqValENnIP2QmXeYvVMsFRgdsUJpCzTgGurQKmjpCFJjEURWgBmBBDNR4gPR4JVTm1Ozca1XFw7WJnUZJzCvnSgMrjeOOZYwa4VH4kQSQ8eE14ICAnJiRhagHkDQG3FCkykiuZMRg/mkPrG24VyFa7lBlZU2kyb0EyN5EQMPRJMYSKSNogVgpF5N6NcVVuyAhP4XMtl+VQJ1wrmwPJsLTCZUfmp/JrPdz1lVJ+spEcl2W1d77092D8R3WZ4SmAGmCZX64LZZQ272lmvfgQlAEcJZkwD5ffpasNtVzGi26QyrXfEGdBE7Lgicf2NDE1t49d+7deo11/c9NrfLiqVCrfeemtIUAoR4hUMIQS7bpvgh3//Dq55yzTCJ46uzJS5/78+yuf+8HFWZ4OvxYUIESJEiBAhQrzS4NouX/jAE1SWauQmk9zxs9f03nQcIkSIECFelXjBqQs/9mM/hm3bXL/7BxAxL7CayPrBZsCIQnxIbxKUYmkw44DwdukmChIRkShNokchnmsNStG0xEwJj6AkYfqmCEO7vfPoUUgUZIdtJNX6nRjW0f01VN2A6rK/gKrrRDIa0YzmKRspl8SI0SQK6DGNxKjJ6vkaJx+YxakrorlWkC0xaqLHpafaYQgSY5GmV9OTUVLjUY9P5SoSoyZGwjsoTUliPILUvUV8I6kRGzZBwp4f2MKW24YwU951pOadV+peWTOtEx9tLQjHhk3Gb84zfCCD1CExHm2qMBlJncRoK1IYGzIxfdKUmdbZclsBPe7fa1zrIARFCyaRbCvIkhiPokclQ/vTpLbGOm3zJtGcucbWezaSkYNZdrxlHGlKojmTaL7LNq41bRPj0aYPR6/PMXKgRUZJjEYxknqbD1u2ZkYnNmxSma1z+O/OIKS367vdttEOzbTeEUxLjEeYesMQZlpv+bDh7+Raf5tp70TLZ0vMHVnZkL+R3nld2+X4py9QWaxvyN/es5FUFuvMPbPc8vcaH7b83ThvYiTC2KEc0UJvf/f04VCb7SB/pz1/NzB0IMOw/6ykLjt92OXv+HAEM61TXaxz8ZE5Ijmz6cOe/u7y4bmvzHL5sYU1/u7woez04cq5Mosnii3bddpsw4dDV6cZOpDekL/BS89x4etznH9wLpC/ZUQyfnOB9NZ4h217m233d3zU8+HIdVm23jWy1t992qzUIbU1xuj1WcykvqE223g2mR0Jxm7M9fZ3tw/jXv2jBZPpu0eIDm3M34367v/xafL7vPaUGIugx7psZcPfOtGcV4f4kEl6Ot7Rz8ZHTZRQLR8WWv13fNjg8hPLnH1wCWnS7JMBzKQklpVNVaVYQSeS8XxaumKjmQIpXXBdjDjEcq3xJpaRmInWWJUoSKTujXU7btJJj+ARlaQk2hgDG37JgkzoqIg3Zpkx7zS6CdEkROIeUUlFDBI57+/g/X8i4xGV0vJWYmaKD37wgywsLBDi1Y1SqcSv/uqvkt1/LeaB3VgJhalUB/kohgsxFzuukEoRd10Mn8QngYhysaMKO6qIKRddtYhMMeXiGi6O6ZXbY9ebZaO46CiUBkJ6ttI/ZihFtI2BKoC6Hyx2TUVMuEgUwgbDVkRFy1aPKAyhOF/VmS1pRKVnC6AJRVTzbKWliDouhmwErhVJwyVueMdNyyWit85raApD8+tXdkhaDlIqUnGXrWM2ZtSlwaiIVevEqq1gsxlRSL+sXqoQcyrkJyW66b1/WrrVvxl2CVH2xhuhef1Jg/sUL0A03Qq0G0kdze9jhSYwUzrC7060iMRI6GhRjzhkpvQmAVvIhq13Ys2UzfEawEhoDF2TITEWBYFnq7VszXbbuNYkuphp3ZtPGp6tNGRzPgreXFGPtoggZkpH6oLF46ssPLfaaRvT0GNdto3z6oL0VIz4SKRlG++2lU1bM6U3fbhyroxdaREhzB4+bNh6PtRYPl1k7vBKp79lb383IA3J6oUyTs1FyLU+7PZ349mktyZITcUG+rvpQ//ZSK11zXV96JMtpOnNyU2/zuv5u3He4sUK9RW7r7/X+DAqcWoOF78xj2urnv7u9GHrvO3Pak2b7fK3kfDatx7VyEzHN9xmEYBSXHxkHrvqDG6zotOHyckYud0tgv1Af/s+lIZg+ECG+HBkfX/7PtSjGrGRSLO9m6kBbTba8qHQBJkdiY7fg9psw4epLTGSE7F1+4jmhg4B+X05xm/M+rYCMy6bZCUjrqFFRMuHSQ2hbISEWE4nNtqayOhRgSbdJlnJjItW+9YABTPHLOoVr+8UzXmkwowodNtG1r2+2TQVVspT7avVBYbupfWUtiKiu2j+/E42xwW/vlJhSq/vz+k2W4y6N1bpAqFDVLqIhi2KCC5uxFNVigqF5lObJIoYnq1jgjQ7x7Wo8sZSJ6ER+8F3cPLUKT7wgQ/wSsaOHTuYnw+usBciRIiXHmbc4JZ37eMH/vNtjF3V+gY/880ZPv6+r/DEJ0/gDEiZGSJEiBAhQoQI8UrHN/7uGJePLmLENO75pUMY0Rcl8U+IECFChHiF4gUlKT377LP88z//M9PbdnH1tbsBL/g6fY1GLOUFT/NTGlPXtBZ0t1ylMbJNMnPCZf6yYOsNERJ+sDe/RWPrdd7CpTINJg6YjO72gxkGZCd1Yv4Oyuy2KFtvbi2Qjh+IMrrfC3pLCdtenyI9EWHq5iSTNyXZ9vpU8+7HDqYYP9hS39h2R5bsVu86qYkI02/IoRlQmbcZvS7FxI0t0szWNw41lTtSYxG23zXUDBZktsWxyg7VBU8CYOsbhihc5S2Ex4cMtt89ipny7m/kQIatd3iyzTPfWiK7Lc7Q1RlQimjBYMe940QLnu3Q/gxb7xxp1eHOEfK7UkQyJmbaZMe94yT8RfDCvjTb7hpt2k7ePszY9V5O18z2BJO3DZPa4vktvyfF9N1jLdvXDzF+g2erRyU77h0nNRVn6JoMowdz7Lh3vGk7cUuB8Zv8XLESdtw7TnaHp06Snk4wflMBpRRu3WXsxhxbbh1qlt3+XWPkdnq2yS0xdtw73iQvVOZqHQGA6XtGye/xbcei7Lh3vBm0GD2YY+r2lvT1tjeNUtif9v0dYce940SyXhBx+ECGqTeOdNgOXZPFSOhEcp4PG4SQoaszbHtjy4dTd4wwetBbJEr4dUj4hJD83hTTd7f5+7ZhxnwfGnHdsx2LUZ2vk9maYPs9LX9vuWWI8Rs9W2l6/k5v9dpWdjrJrre2/DJ+U4HxmwrNsjvuHSc77ft7a4Id93qEsPmjq6ycLzN5c5u/7xkj7wdkUr6/jbjnw7FDeSZva/Ph3aNNdaTEqO9DXx1g9GCOqTtaPoymTFbPeTv6YsOeDxvkkaFrMmx9U8t26o0jjBzIenXYlmDHm8eJD7W12Te1+fv24aa/zaTnQz0isasu+T1Jpu9ps71tiLFDnm2jzSZ9RaPcziTb3zzWJKFsubXN37rnw/S05+/MtOdDJGR3Jhm/Ic/ELV3+3uH7cCre0WbHb8gz+fqWv6fvHqOwx7ediHW02bHr80z6bba+bGOXbcyM1+4Sw56/TT/wPXJtds17P7Q/g2u7aIZYt48Yudb3Ydpk+q4xxm7IkxiPDuwjTL/NpiY8H07cmGfq9tZ5+/URANkdKc+HCsyMydTtwwP7iB33jjdJVqPX51CuYtVXDenoIyYT7LhnpOnvsetzTN6aR7mKUw9cITESJe/bJkZMr09O6iilGL0uw+QtrQXerbfnSI1HcWoOsZzJttuzzcDm0J44Uzf5gUvHZeqmNIVd3rOIZCTbbkuy664UZlJS2B5h6roWQWHLtSbDO71nYSYEW2+Kk8gK7DrEkoLJAy1i15b9BiP7/HEt4o2XSd9N2Smd8f0mJ5+EehUmdsLYtO9CHbZdZ5Ac986VGYLpa1qk3jff/Q4cx+Ftb3sbIV7d+N3f/V0uzcxw03ffS2O0HHNtJv20hnZMsQOLrJ9mMKEUu20LVwhO6gYZ02HCaEkV7bAt8q5X1oi47KJOo8WOKoch5dDQl9iqW+SlZxtBsUvVMf3Abx6HrdIigst2WWebtCgI/7wopqN1or56R1Zz2Gq26jBh2BQMGyyBi2BbwiLqE4TSusuWlNVUTxpJ2ORj3nmlgGTEZbUm0eqKRMRlKtdSwxhKOhQSPmECmBi2iUcUlZqkXBVMDDsI4aV4y+YUuUKLTDQ2oYhmPQ+bccHoLh0zLlAK0sOS3ISGipio5VWG98WJ+/2xmdQYuTqBnvb6xpFrc4xe3+qHRg74RCI8gsHYoTyaT6hIbYkztD9NJG2Q25Vk6OoMSb8/1mMaY4fyGD7RJDkRY/ia1vy0sC9DLG+iXIUe9WwbY09iNMrwddmmbX5vmow/37BWbVxLNecF8eFIcwwGyO9Okdnu2QpNMHYo35xbxQoRxg7lm7a5nUmyfn+M8OYYsbzX30VzJmOvK5Ac9+4nM50gv6tFFhm9PtckN5tpg7FDeaQuEVKQ3ZEkv7elijRyXbaD/DF2KN8iDE3FKezL4FoKu+IwciDTvKaR8PzSmGcmJ2IMXd067/CBNNkd3r02fNjwd2I82kGiL1yVJu2Pf7PPLBEfijbHk/hIhJGDnf5Ob/MJybr0zut/O8SHzI72kWv3t/T83SD8RjNe6tuKn/ItuyPZHCvB93fB80ska/o+FEhDkN+bas4FwZvTNXwY8f2t+aSlzNYEud2pJtlo+Npsk9xsJhv+9tvspOfvlg8zTfK1Eff93afNDu1Pk5qMo0Ul6W0Jxm8sNL+pEmNRhq9t8+FVadJTnl800/NhY36aGIkwcl1bm92TIjPt+7urzdaW6x3qS7ldyeYzb7TZBkk9mvd8qByFciG9NU5uV8vfo4dyxPy5bCTjt1mfZJWZjjNybbY5rx+5roe/zUabTVC4Ku0/c5i8dYjsdu86/fqIpr+v8foIPa436zCoj2i0WT2qkZ6KNdPLxUciDF/TOm9hf5b0hFdfqQtGrk4QSelYK3VWL9YpbG/NgbKTBpkJP32tchjeHyOS8PwQTQlGdmhYNRB1m+yI6Oxntyhi/ud8XHMYnVbNrL+5lMPUsEUh7bXDLXmbpE9IjWmKrSmLhgBcPmIzlG/19aOmQ1r3fkelYjpmodKecUHaTGqtcWIyblFJCObQvXGNOpG2cW1Ks6hnvN/bHJshf7xMj42x49AN/Op/+A+cO3eOVyre/e5389WvfpVjx4693FUJESLEBpHfmuJ73n8zd/78tcT8tQKn7vLoR5/jH37lQc4/NTuwvKNcvrn6PP+88DjfXH0eJ4CKaogQIUKECBEixIuFEw9d5Jl/Pg3AnT93LZnxxOACIUKECBHiVQeh1suHEwBXX301hw8f5q7rf56onvfSX0iIxaFWBkfXMe06uglVX9AkVYB4VnL5lPc7FqlTL3vpfnTTC9pWVwEhiBgWygXLVzaOZiT1kuulBjLB1F2qy/7u+YQEpaiXFbgu0ayktmIxdnWcetGhOGdRXfSUk8yEBMemXvTKRnM6VsnBqSukrph+Y476ss25h5a83fBSUl/xFjNjeY36ioVddZGmIJLSqSxamP4OX9dS1Ba9wFu0YGBXHOyyi9QhktapLNZRtqekpBmSasM2b2BXbOyS7dlmTWpLdc8v/o7gqh+UiOZMHMvFKtqev/MmtSUb13bR4xI9plOd92wjWQNlKy/Ng/QCVZX5Om7dRY96O2wrc56tmdFB0brXIZPaio1bdzGTEi3aZuurtPSylab07nWArVW0fR922SZ10GimpooWTOySb6tLIlndC864nhqB1AVTdwyzeqHM8ukydtVu+TtrNm31uIYe0agutnxo1xzsstPmw4a/JXpUb/o7kjVwbYVVtLnqR6aoLdU584XZDfk7ljcxUwbJiSgzjy1u2N96VHLVj0wxf3SVS99YCObDtLc7u+HDnra+X8ykjtAFu79vCzNPLrF6oey1w3Jvf3tt1vdh3lzj744228Pfrq24+l9sY/bZJa48sbiuvxs+jOZMolmT2aeX0BMtf5sZHRyaaUzafRgbNtnz9klOf36G5VOlF6/Npj11oqnbhrnw9TnsirOuvxtpEKMFM6C/vTa7mT6iUaeNtNnme5/2dv5vtM12tO8Xwt914dmmdCrza/sIoWlECwZGXGf1QtXzS8agsmh5PkwZaKZGrdGf5HTsqksko7P19jznv7lCccb2+oiYRDMFNV91LzIUwakrnLqnjhTLSkauinLlSBXLNdBNQXXVV2xKemOYXQWkV7Ze8lK3dIxrQCQBTiSCVfKuE0tCrdoaA7WMTqUkSUZsUjlYvOwRlhq2ZakhVhw0HcwoVPyx1YzCc3Mf5cTJ4zz66KMcPHiQEK8+nD9/nj179hC56RYm3vJWqngKXobyVCDqQuAkXRJFsBA4QiCVYsS1WRaSYkJguAq9Iqn7keCIcnEQ2EKA4RKrQg2BEgJdKaR/XiU9W2oSWwiEUpgo6r6t4XpqFFodhqXDjCtxkdgINMeztWsChfDshKKuvCB90nGZilqcW9GpuQJTKmzXIyxpQmFaCsvy6qtLBQpsJYhoDtICy5Uo11PX0CXUnZatVlE4rkAoF0MHxwFXCaRQaBqoZQdpKTRNgQDH9soahoLlOq4Lsm6hGWD72Zs0HRDgzhdR1Rp6zJv/ubZCSE/tpDazBAo0XSF1gVX23nk9puHaLq7l2epRDavieLamRGgCu+L459G89G2W27S1q453r4ZE6qJJJNFjGspRXtonAUZMw666KFchDYE0pDfnwTuPcrtsay7K8eqqmbJZXy0qQdFMx2XENfS4TnZHgtmnlhCydW8NolC7rVN3Pb9oAj0iO20FONUBthWH+FCE4QNZLj4yj1XyU07FNdyGrRToUdnpQylIjEWpLVvYVaevv7t9mN4WJ7czxZkvzLT5sOFvgdRly9+9fNjwt+6NXXa7D12aKbmMuEZsOEJ6Ms7FR+Y7/d3Dh32fzQb9nd2RIDEW4/LjC+v6u70dJsdjlGeruI7XBj0f9vC31vLh0DUZjLjOpW/Mv+htNj4axUzqzPsKp4P8HcSHDduebXaj7duUCN1L07vRNttIK2ckdZyas24f0epPgvcRwjTXtm/f3zIWRY9IlACn7vWLelTi1F2UA1oyhh6X2HWBa3sqTCiF4/NOtYyJg+6dV/NI1nYN8lskxAwWZ8HyJZYMw++TXYGQCpUxsGxwTQ3NV70TwGJRQ+XAdgW2JpEodKmou17KTl0orLTAUgKhwBQujhI4CAQKUyhW0wJpCXT8cc2XsjJxqWTBAUaqLhUEZU/3z7dVFPOgVQSmUrjQHAOjK0sc+//+Hj/+L/4FH/rQh3il4gtf+AJ//Md/zG233cbOnTtJJHoHA777u7/7Ja7Zy4MHHniABx54gGKxyFNPPcVf/MVfsHfv3nXLHT58mP37978ENQwRooV62eKxjx/n8P1nOrKiT980yi3v2key0JlL84HFp/jdc59gxmqlGR41Mvzy1A9wT+7al6ra31EI3+0QIUKEeGlw7NgxfuZnfmbDc6/vdLzWxpf17nfx/Cqfev/D2DWH6962gxvf+Z3fBsJn/OrHa+2eX2v3C6+9e34l3O8LRlL6whe+wN13300hu4cbtv1IxzFldsr0yXIrfcbQlKCwVfLcIwrXBVGrswZteUhF3cKMQ6Kgs3jO7rSzun4DuK1dQsruIYXc2EVk9yrr75rcGcO1HRZPduV9912nnLXnnXp9jvholGOfuNQ8T8/r4qV7A2/Bd/x1OS4/sYS1anVcYxDMtN4M5r8iIT2SRIMEsVGMHsoSK0Q4/bmZYOVuyFGdr7N8uhSo3GaQmop5alkB7m1of5rcnhTHP3kh0LXioxHsihPoWQ/tT5OcjHH6s8F8eM27ppl5conZp5Y2XCa/N0Vme5JTn7kU6FrJiRjVhRp2deM7+kYPZkluiXPiny4GulZ2Z4LipUozSPRiYvL2IeaOrARqG7ndnlJG0LahRyXSlK/ofsBM6tTLHgFooxi6Og0K5g6veH+Q2kB7oWmMXJdmeH+KI5+4hFtXa457/+jMbS1NGL8+y5UjZeyKSzOPSscNeAoNQvY4Fo2s/VsbVMw/7qeOiyYhmpIsXXJx462yosdY4sa93bJbttgkM3D88dYxJ2502Gplq+P3qljh69/6Yw4cOMCTTz45sI4hvjPxcz/3c/zDP/wDsX/3CxhOvOOYk+x82bSSn1pIKfbYFgtScjnp/U0rr23Xrtl6f7SqIOM6VESLzKQa6YZqa3PFi7ZXT9bW1tsXX+p9zAJdKPK6w0JJ+kl32u7D71KF0/l+S6HYlbaYLWqsVLWe8ye90vqb8I+n4i6uglJFovtkQWmt7ai0YquysmYhNI9M2DzfSiudqKp23pizvNL64b40aTkaRHnlBJvmj92QY+lkqUmI3QiMhJc2dOlkcX3jbxOa6aXyqgSdUx7MUpypUrpU3XAZqQv0uE59xVrfuA3D12YpXigHqmNqKk5ma5zzX5sLdK2hazKUZ6qUZ3u8TH2gRSRSl02S10Yx9ro8y6dLVOY2fi0joSE1b6PIi41o3kSPaRQvVNY3bsPQNRmq8zWKAdoGeKSkBgnplQotIpskqkEQhtm0T0/GWDpdbvYdMtZKx4vs0d/HYoxfG6M0b7Nyee21VNRXWTI61wPiGYETNZvkatdcO8ezfMVh11w7RtXSrb+5+tp61X2lJG88UmQ0l6IjcRDUWoJSaD2aZi3npUbdX7W4hM4SrbrV811ja6Xz2vMPfpbS/V/g+PHjbNu2be3JX2bU63V+93d/lwceeIDGMpDomhcrpRBC8KUvfellqOHLh6CBslfCYl6I1y7mz6zw0IcOM/PcYvNvekTj+h/YyTVv3Y6mSx5YfIp/e/LDdM8EG2/87+/4yZCo1APhux0iRIgQLw1CktKrG4Put162+NT7H2b5UomJqwt89797HVJ7QRP+vCwIn/GrH6+1e36t3S+89u75lXC/L1iSz3/9r/81INi/6wehbbGvm6DUjdkLgvlLqsklUhGzRVQSaxccAdJjOoXtBsuX7I4AEYbeIiq5nQuI0oTcdISF0zWvTLfEsa63iEpdpKKFE73JSQ0ITVtDVLr0+DKRbNm/uOg8Zx955VjBJDkeRT3Wdi4h1iUq7XjzOKWZKue+MljmuR35PSmGr81w/JMXce2NswZ2fs8EpStVLn9zYcNlUhMxpu8e48T/uxgoiGIVHTQjOOli5rHF9Y26MHn7MEITnPvylUDlGunNgmDu8EqLdBEA5ZmN+64Bx3I3FJx4IeDaLk41eLCmeDG4D2eeWGLmiaXA5ZZOBCeupaZiTNwyxPFPXcCtb9yX5x8MFmgEsEoO1YU6Uu8Mfq+H6XvHcKoupz57ecNlzIyXyu3cg7OBgrZjN+ZJjEQDEcQiWYM9b5/k7FeusHxq488gPhpF2RsLsDcISAvHi5QuV3GrbkcwrUlQglaf2iBbKJ2Lj7cF1xt9dIOsZBpth1z/kHcsXtDQU7JnYA7aCEoA/gdXflKQyHskpQ5bv44NslKDoARw6ZLEvQByAMvLiRsdRKV4tEA2vZ2nn36af/qnf+J7vud7+pYN8Z2H06dP81d/9VckvudeL4jc1oS7CUrtUEJwJNUZDHbibpOo1E5OakAoxbjrsCAVM1rnvM6JqCZRSXQVTSkHB0HVz68ru4YIN9IiKsm2uaOtBFcsHUzQfLKh1sX3UJroICqJOpxf0rF81aTu+VM7QakdEVMhKy61Uuu4a8gOolI7QQkgMmQwNOJy8ZiDWhhMzGknKI0ezFCerbN6buNknkjWIL8nxZUnlppKMBtBI5XX7NPL61i2IDRBbcXC6UHSGgSrZAcmKGmmZOS6LPNHV6ivbnzAc+puYIISsKk5g2urwAQlALfu9Jvqv+Bw6y5uQCKaU9vc3PDyoxuf+zfgqQQGnxsWrkpj15xAc4aGemRQWCU70LsFXoq20etzXHpswVOp3CAy0wmMpM7cMxt/L6UuGD2UY/H5YqB7zO9NYSZ1Lq/zXdQgKDUQyxuUZiT1Yo/n5qrOuVXMU+yYP1HDqrreo26bbzUJStD6RvfJSkXb7Bi3ZN2f+/hkpQZByTvm+sckQiiSMddT7fND7dKfKzbISg2CEoDyBDAZM20u13WWna7xz79Mg6xUy/nnEoLDUQNXCLQBnypOTHUQlVJvuoOVLz3Ir/zKr/CRj3ykf8GXCX/yJ3/C5z73OXbu3Mmdd95JoVBA0wZvAggRIsQrD4Vtab7312/m+a9e5JH/fZTqSh275vDNjzzHc1++wM3/8ip+l0+sISgBKDyi0u+e+yRvyl6D1muDTogQIUKECBEixIsA5Sq+/N+fZvlSiUQhypvec92rgqAUIkSIECE2hxeEpPS5z32O559/nqH8PkwzgWOCtAYvSCspiSa9tG9u97pwH3ISgDIN5k5aLF2wewfx15zMQ2rUYGR/jKXzNdx+wRddh3pnMGL8hhTzz5WorzZYVL0DAd1EJbvqYl/uIpX0iVgIKVCOw+r5Mkc+Wu5hMJiodO7B2cCL67VVi9XzlUAEJYDipXIzJd1GUbpc4+yXrwQiKAEsPLcayB48VSk9pgUm9FQXagitf7vrd63sjiRzh1cCkVc2A2lKxg7lmD+60kwNthEsHi+yePzFVzYAjwC0GRLQ8LVZ6ivWS6J8ldmeQOoikE+sokPpUgUpA4kAocc1YjmT1QA7+osXK5sibV18ZL6ZFmSjqK/aFC9VAwcqK7M1lBOwv1myOP/QbCBfAJz9QhtpcB0VpQbssovdUOvzyaHC6DPUKdUx3gztjVFbcVi95JdXLkR6qyQp10VISWFPHD0iWOnu7wfg8imFe8LpUFHqOHePYJHr+oo3aV+Qqdj7GTTVlfwh49q938/DT/wJv/zLvxySlF5l+O3f/m1yuRyRN7weGExMaiLqIPCISt3oRU5qwI7B0ZpBv1Gym5zUwAgOFVNwuS7XEJSa142A3tYlJ6SLLlRHILmboNSA0gR6tXFxQc1eW8N+5CQlBEbRZqnklV1TL0NiLPbus2olmDvr9iUoiWgEVa11KigBlfk69ZLt9WcbVFRyLY+UE3Set/h8saco3CAoR21qzhDJGFhlG9cKRpapLAS/r/hwBMdyA82FNotYwUQaktLlYAo780eDz183i83MlfW4RmIkyvKZEj2jly8gpC5IjEYpz9YCPev6anCyHHiqjUEJ+kGIUA3UVi1mnlzELgfbTFEvBidEubYK7D+A1fPlNQo53egmKDk1l4vfXGr+7lBRalbIbzRtZKV6qa1u/vewSnSmHGrCsptEJd2ARBqW51uHZd2hVuhxXTyykowJssOKclFRtrqUMe3WeNBRZQTHqyYOgnqGnnCMtX9z/W9wPepSE3KNalKzbMxXV9YVkgg77ryDj3/84xw7duwVtyv8S1/6Env37uVP//RP0fUXbL9aiBAhXgD89cyX+JuZLwcrlAX+jaJesbHa1gOc5X+iGu8/V1LAjLXEXU/+OqZ84fqCd43eybtH3/iCnS9EiBAhQoQI8erCU58+yZlHZ5C64O5fuJ5YenB2ghAhQoQI8erGC/I1et999wGCfTu/f0P2TjqKUa2z/aBk7qzL7NmNX0vqoOpgBxSVWT5nsXq5jlMZsMDbFXg305LMZISVCzXqq3WQsrnwOghbbslRL9nMPr3xwIHUASl7k13WUVIKooLSXmYz5WYeXwpcxrXdwAQUaUoiGZ3KbLBd0UP7M2SmExz5SIBGBZtSNooVIowcyLJwdCUQeWX7m8ewSg7nH9y48pUelWS2JVg9Vw4UmJO6BMmLTqLyLga6KQOlbQPIbItTvlIL1EbiwxG23T3Kqc9dDpZObUcCYWiBgrDVxfqmVJGGrs5Q2J3i2f99JlA5PS7Ro3qg3fKbUdnCJVAbbGD5dInl08Ev9+2Q5fS4xB7QXYkuUk80pzNxc55zX53DKg1uj+1lM1tjlK7UWyQlWKMa0A7lulx4qorrBGMCNAi2MiJwaxuPEEvpsucAzM3A+ZU4enH9vkDXcxRy0xw+fJjHH3+cQ4cOBapriFcmzp49y4c//GFS3/fdxCLm+gUAe9hifBGGbIdno0ZPolIvCKVAVyihBeYznMBAc9YqKLVDdnV1cc0lJt01aheDoEvFcNJmtqhju6370uqDayxlQ8mzB7mp2L8Pdl2oLQ7ud1Vt7fGVTagvWiWHpRPB+0+7Ely9Ro9rnjLPBhXsGhi5LsviiWKgNFtO3d3UfSXHY1gVJ9BcyEzqDB/IMPPEUiC/RDIGRkIPTFKSuvDUjV5kAhB46lcoFUi5SY9oJMairF4oByKW5fekEFIwf3Tjc2ahCbI7koHJOUFJzQ2MHMyxfKbE6rkemz4GwEjo2BV7435UbIooFyRVXjs2Q6SyShto691qvz6EJprpyPuii8SdHNWRmmDl4vp+UYbXvzdISsWlzk9svepgR3uPAW5FcXZGp94jBdwgOA3VJaFw1cY3pgwrhxHX4YhmUt1iIyvrj03Wm26DrzzIH/7hH/Lf//t/D1TPFxv1ep3rr78+JCiFCPEKRMmpcsXauNJeBwz/v4BYckqbETzsi5ITfI0xRIgQIUKECPHawIWn53j0758D4PX/cj8ju7Ivb4VChAgRIsTLjm97deqpp57i+PHjFLK7MY04rr+g6EY19NXOAI/SW4uJjg3nj7hU2nk8vpKNipmISu/g0K6bDVbnNS4/1ePjVykvLU+XGpLUwbUUbh2ErqPsHrteGwQlTWuuktZXXI5+ag61Dkmood4khPBs29c911vgxZM5zF+VYfyGLEc/fq6T5LHOtSduKVC6XA1E8NDjksRYzCsTIKiRGI/i1N1ApBCAqTcMs3BsldLMxhcsUhMxtt45wrFPnqO+vPFdypcfXWTheMBd5dIjvZRna4H8sXyqtKmgwer5cuDd0PUVmyN/H4x4BbDl9QViQxGe+z/nA5cNiqH9GcZvyPP0/zwVqNzz/7jxtGEN1Es2y6dKuAFVgE5/Plg6vwbMtNdV1lc23hbnnl1i4Vhw8tvWO0dBwMn/dylQuYlbCqxeKAdKQShNSXoqFlgBK1owMWIaq+c3fi09Khl7XYG5I8uB+pCtbxwhkjM5/qmN+8P2yah6XMeu2i2FPdknoOX30yc+v9DZBzQUBvoQlUQ0gmsBuEhTrlH3U1FzjVpTA3rBZNcBuHBSsDwvoEvVzkm3iCey5qdAcSXnT7qsrgJxsJPeSnQ3WanxdwB91WLHlu/j0swfcN999/Hwww/39kGI7yh84AMfwDUMkrff4v0h2db4ip1TOxVvRR5mdUlRig6CkvIVlJSpkOXOd0TpirTtsrVqcyQGqkdwVgBOVKFVuxQtlEI5wnulzN5qSA2Ckmu2/j1r6YBal2DUOK4kaFIhRNtUbgNjg152GB1XVMuwuNhZ9wZBSRkaoksZ1IhAUq+ysuqlKKbWeWPucu9+P5I1cGoudinAHEpALG9SXbTWJwy0IZozMdM6K2eCETXye1I4NZf5I8HGrouPzKMCphzTohIUgdX8rjy1FMgevNS3xYvVwHOvpZPB53hCE0zeNszc4eXACqKbwfjr8pSuVIOlRVusc/Hr8+sb9ijXV06tD5yay7mvBidECwlGXKceIJUawOXHF3ACkuWNhMb46/LMfGuRWoD0fmbaID4UCZzq0EhoCCEC3ZuQ3ntdW7YCkQhjBRMjobNydm1fIBokoy6ikmYKxm/MsXCqTnVxcB27U+A2EY0g/A5Z9ZHuF3WbWh0ulrtSiCb8uU0fopKV0kCBXnNxIq2Ubw3U0wJpq2bqt3bkMzYJ4XICf47V5cp6tvUH6d/6otAoaa1ku27MGxO6yUoq1963R0neeRsf/Kv/wfvf/362bNnSywUvC/bu3cv58y/+d2GIECGCI6FFGTH6yL0FgF1zKNdqVGPrj2lZLfGCKikltN5KeCFChAgRIkSI1zaKcxW++CdPoBTsuXMLe++aermrFCJEiBAhXgH4tr9GPRUl2Lvj+5oEpY1itX19fIOptq6ccjol5WEtkaeLqLTlYAxpCM481GcBv1fqIunFs3umlGtHV3o5IQQXHl7sbStkR8q39oBTI9gfhKAEnpqPVQq2gJ/emmDipgKli5VAqjfjN+RxLJdT91/ecBlpSmJDEYwLZZjZeB1Xz1c4/cDlQAQl8FSbgpKoYgWTnd89wanPXd5Uqq2gmHs2OHFls5g/soKReGl2yq6cKwUONm4Wdtnh4iPBA2ybxba7RqktW5z94sZJTnbZJViCOA8XvzEfOA0jQGIsSn3VYpWNt+HEaISp20eorVwIpFo2djCLkTJYPX9hw2XsuktiLMLqeSPQOzr/XBE5YLd8t4oSeP3oyc9cQXQHxly3P1EJmo9LmuB2V3GAolJmQmP86gjPfbXaLKeibeo2jb68jRhSr8LsRShvgFPpRrQmUWl5MZhygJ0yiJJlamonjz/+OCdOnGDnzp2BzhHilYWVlRU++MEPkrz9FmQ00klQWgeOEBS1tQSlQShLwSVDwxaC9ret+21oJyrpSrHXrXMGgxK922y3ghKARPmvoWCQDE03ganqSi4u976O0kC0K3SUGz8UC4tyTda1QQpKAEa1QnRcY/ni+tvOZTSCW/WIKvldSaqLVRaPb7z/M5M6w9dkufzYQiBCgx7TiObMwCSlhaOrgUkoEJxoBJDdnkQzJVeeXAp+wYBwaq6X2uwlgHIVs88uU1998dPRASwcX8WpvYASCAPwUpCuGohkTEauzXLhkblApCO7HNwXVtnh8rcWsTagTtgOPSqJ5oz1uqs1yO5MoVzF3DMbV8uQumT4miyzzyxRCTCH0mMakfQGpDXaiEpOXbF0zqJeHODLHmngijN+HxXtVFgSjtuXqNS06fxEbmKQotJExqbuCC5brfurp1sdWCP1WztZaRlJSTUe2ODOztU9opItBHbQjjFlkbr9Zor3f4H/9J/+Ex/84AeDlX8R8TM/8zP80i/9Eg899BCvf/3rX+7qhAgRog3vHn3jC5Yqrbxa4y3P/BZLRqlndyeAESPLPx/4D2hB8wOHCBEiRIgQIUIEgF13+PwffYvqqkVhOs3r/9XV66YmDxEiRIgQrw18W+yFhYUFvva1r5FMjhHJDq05bqdM9NV6h4ISQLbgkrtK59zjNm6fAamfmtLSRX8F0zQQdWt9Io9SLJ2ro5mt6zTVlHqRk3xkpiKMH0pz4v456qW2azQC4o6zhqAEEBs2qS7UcPspAPirsN074utFm/mjbdHqDRCUAE78U3AVmoWjqxQDEpQATn7mIlo0WJNx6+6mVHxc291Uqoetbxxh4bnVQGSj2mKdk5+9RGU2mDT1xC0FNFNy7ivBdointsSoLNZ8EssGy2yNM/66PCf/38VAz608W4OXKKhUX7apLwdUsQK23FZAi2ic/UIwlaPEaBSrZAcK3KamYozdkOfEpy8FIgKdf3A2sAIDwOTtw6ycLfXcwd4PQUl2DRz/5MYJQw2sXqhw7BPnAilEAZx/eB63HjAQ6MKxjwfvC0qX+7ffXgSldsQKBrVVq5Nw5BOVRK80F65i620ZtJjk1BeWeh4HQApEWxCutOAwf9ryx5QBi7y+qpKb8MrOtj+yxjhpux0qSs1LR7x7lTWH7LQknbQ4cdYLzLUrKrWrKDVgpwwmd9zNuXMf5Fd+5Vf4+Mc/3r+OIV7x+NCHPkS5XGb0rTf3JiglbSjqHQpKANtLDoumy3Ld6EtOcuMusixReuu4JQVz0mt/TtxFK8v1w7UOXEGj0mbp+GpKvchJDWyNWtRrgplal7KG/0po9bUEJSkUmvTEyLQ+6RMbRCW9g8AgqFYb//LK9SIoNdSU5LJHcqkC1ZW28cBXU+qnoNQgKl1+dB4RjMtPfdXmwtfnAo8/xYuVTZGu7Wpwgkc0bxLNGoFVh5ZOFr1UZQEgDcHwgSyLx1epr2583NIiEmlIrICqPIV9aeyyE4zgpDaf0mszCJIatgEtIhk+kGXh2EogP0pDokdloDLgKXTZFYeVACnYaiuWp4oUkAAXyRjEhyMsPh9A3UhBPYCCUgPlKzXKV4I/64WjK4HJ6E7d9fqCgP5YPV/pqXopulK1AR1EpfLsAH/0ICg1FJWkLtGjAqva2Rc3iEoqvva6BjZj2wRXLmvUenRbut8v2VHNU1HysVLVsF3QLYUd6d+XNFSV6hlYM0drFFOdKkoNuP5QpFuKLbEas7Zk1Z+vtSsqdaooedAmoozcej2f+MQn+MAHPkCkl89fBjz66KMcPHiQf//v/z2HDh1i586dJBKJNXZCCP7lv/yXL0MNQ4QI8UIgnorw/qt+mP/PyQ+v5WX6GWnfN/H2kKAUIkSIECFChHjR8fW/PsLsyWUiSYN7ful6dDPg4liIECFChHjV4tsiKf3ar/0aSil27nprz+OOKdH0tR+9SoHrgJWMoA1Ie9FOVJI6bNmnM3PCpl72TzKIyKNp4Kd1W73cYzFdSPqqnEhBZdFm9nBxrWoTeEHuHgQlgG1vKLB8rsLFhxf631cXQSlWMMlMx7ny5JKfOmhjkKbE3QRxAoKlrWrAtcENGODZLMZuzFOZqwVKXyF1SSRjoEWCLbS4NpQuBSMoAVglG8cKuKgjYfqeMS59c565wxtXVLIrNpW52vrKXl1IbY0jpQiUDnCzMNM66a0J5g4vBxIQqi1aSDN4YHT6nlHmjiwz8/jShss4VZfasuWlgAzgy8rc5ohD0ZxBdSFYN6tHJaM35Jg/vOqlVnkx4W6uL9iMUkEDUpcbC861EVgz03HMlM7s0xt/ZyIZnR33jnDp0SUWjne1f9dFKdVz18bCyQrC1FuE1F5V6yI42VWYPd7ovF0vBVQ/NMYu/9rDWxSODQsz3m8rH0UO8E9lLEratbAdhfeitfogO2lQy+pEltY+UzO6AyOa5p/+6Z9wXRc5SFEqxCsWSin+/M//nNjNe9HzvdNBmPE6NbezbQulsAW4AkS+jir2V9Zw0zai7LX/vO0ggHndfx+UGEhQcjWFVhM4COYCTjGFUszVNVSfeZBWA81aO+9Lmi4jSYfTM4Ovp3f1W+mUS70uqNYEWnnw5EuUfSKC8EVT2qqhNkLOdR0UvZVC1sNLpVBoJDTiI1FWzpYDpW7TInJTio2buy+BVbIDpbsCSI7FSE5EufBwMAXG+qoVuJ5CE8SHI1QX6psiNwdFrGDi2ora8sY/IJSjqC3VA/sxPhIhtyMZOH2bXXMC+0I5KjAZCjwilZkM3h5jBRM9YBrbzWKz7WLDbdEnlbbLxAlNNN9rGY32TWUufQKS0CA1FqE8bwXaHJGZjhFNa1w+urY9CscF212zecmuw+KMoq4krtF/hHGNznLFWuu3XlPU0v3nNdJWSFvg6mCiGMLmEnozVVw954Lqf+3aWB1npfdxN+YQjVvUymvHVfHW1zP3lW/wqU99ih/5kR/pe/6XEh/60Iea/37sscd47LHHetqFJKUQIb7zcU/uWv5gx0/yu+c+wYzVUu9Lrka444t7Wa6scPFfzTOxv/Ay1jJEiBAhQoQI8WrGsS+d4+gXzoGAN953Hanh+MtdpRAhQoQI8QrCt0VS+ru/+zs0I0o+v2vNMcdPz1PPmJjLnYH25QXJ0lKw3dORBMQyGyzTUEjSdQrTGrVVpyVBD6gBCkoN1Isuc0d77PjtQ05q4NQDV9akDmld2E9iIkUHUSlWMMntSHL5saV169WOnW8dp7pQD6Tko0cl0/eMcfGb85RnNr77N7M9QW5HktOfD5CzDZi+exQ0OP3ZYOUSI1GU47J8auNlXNvl+KeCq8lkdiSIpA2uPLEUqNzs0xtP09CEC8f/8QJ2OVjgpTJb59xssKAQQOGqFJqhvSQkpfhwhPEb8iydLAYisQQha7Xj5P2XAqsilGdrgVK2NZAYj5KZTnAxYIDz+X8MrnTm2pDaEmf1XCUQSSkznWDytiGO/cO5QAGl/FUpEqMxzn05mF+m7hymumgx+9TShstECya73jrB6c/PBFL5SIxFieWNDpKSkKIV8e+xA7RedDn75TlWBygx9SIqFS/VwdiA/2wH9BaRSTehsMNg7oLAruONQ+ukNwFIpKDeVUVXlwOJSjN1g/mltcdrWb35/72ISlt23czpZz7H7/3e7/Erv/Ir69YtxCsPDz/8MEeOHGHrf3xXz+Nm3OszIskatWJLtUEJwbm4tj4hVO9sV1FXoQMb6fmEH5OWpku+7rKAhttGadI20J2VHIns0fS1AdOV1ZrEroGrBLJHziW94p1Q6QLRJGUo4nGFEFCtDZ5bymVvLqgMnWjUYWi7weUjdZwNckLccpnUZAzN1Fg6GUDdBcjvTVGZrwdS5tEikvEb88w+tUwtgDqMHtVIjEQDzxdKl6qbInpndyQozdQCpSx2LZeFY8EVG1cvlCkFVMsENkVY0QxJYW+amScXXxKSUnprAqtsByIpubYKpjTkozxT3ZRyU9C0gw2kJmNYJSfQXKgyV9uUkpWR0ImkjcDPfPiaDHbNZfH4xtulkJDfm6Z4qUJtaePPzUzpZHckmX16KRDhMb83hR7VuPLkEjLqk5CE6EtUAm96lRgzqZedzjllDxWldqxesVm94jAolZroQVQqLYGTWP87X6sqnGjLLma46JpizvQIQloNnHUEiwSKhFAYSlFvr6dQ/YlKQnAmA9TXzuuiea9vifQgKhkTI6T3TPH7v//7rxiS0h//8R+/3FUIESLES4h7ctfypuw1PF48ycXVBea/uoz9jxbSFSxR5P/91jfY+fpxbv7xq4jnBvfxIUKECBEiRIgQQTB3apmHPnQYgBt+aDdT1w2/zDUKESJEiBCvNGyapPS5z32O5eVlRnfcSi1nEFlsLbI2CEq9kEi52I6gWvUWAZ2EuSE1pcoyPPdgZ3o35S9IinrbAm8XASk7aVKasynO2GvJSbreVFvyTugdj+Z0MlsizB4tde5abScotad9axRXimojMNwmmd9+7gbaiUoLzxVZONZF1BBi3ZRvs08vYQVUNJGmxLHcwDvDpS4QevBcsUuni8gNBOq7sZk0dptFYjhKrGAGJimZad1LNRYwBrWZAI8elciIpL4cjJQTlBz27WDpRImlEwFYZT42e2+bVTfS4xqurQKpkEVSBqnJOMj5wM87KFzb5ehHzwUuV5mrMXc0OOFLSoG2iXdbOWqNKtx6qM7XmXlicf3AeTtxSLlcfHiug4gkZFd9ldt53O9zVi/2CFQanQGkNUQlQyc1YRJJacwd84OVskVGEmZbedvvf3UNBOQmDcoll5UrfiPpIio10rz5Fwbg9FFoBPOstjRvrh/Aaycr1XKta7txGDIcFpYFvVLMdROVrKTG2O43MHPiQT784Q+HJKXvUPzlX/4lxkiW+IHtCFmlvNIKJjQISmugFBlbUYy7TdUImbRw29WUushJKu4gyhoXTd1X/2q9I3bMT41WaUuj2/ZKx3AZFg4LyntvuslJrtmZ8q2Roi2nO1RdQcWQSKv9eOvfjq+y0a6oJCyo+u+AqwtkmzpMg6DUvK8mUUlweUZDL9bQ24LUSgpEW7/WICg1772qWLpg41hrFZREJIKqtSrrlltllctAQkA/CE3QJytyXyhXsXKmjFUJOKbO16nMByPibhZCE8SGIlSXLKwAnCihCYQUuFawgdi1Fa4dXAFQj2o4lhtIWcquOpwNSPr9djDzrcVNldvMvW3Wj0J6CkdBvz1iQxEQ9RdfVRICpeVtR+lKNbAilXL976ruucx65RyFa7lIXfYnwLXNVxr/Ll2q9vyG6yYqyfZ0ZAouPdZFvFqHoCSiEZy6XxgFbYqNKtbJHOomKrlJk3RGUS6C7d+baltPqKda45Xmp5JzooK46RIxFHPtn+hdRKV62yYnaYOF5Lhu0Jh71bNthYXvj7Yxzxlqtb+I5iDrkkqfVJXdRKV4qkby9kN8868+xfPPP8+uXWs3dr3UOHjw4MtdhRAhQrzE0ITkxtQuSAE/CrM3LvPQXz3L7Elv092Jhy5x9ltXOPRDu7n63m3IHmr4IUKECBEiRIgQQWCVHR7479/CsVymrh/m4PfvfLmrFCJEiBAhXoHY9Nfnb/7mbwKw9erv7vj7IIISwNhW2LKtczHXSQxIjQMgPZWK9Ug73QQlgBMPVrj8zAZ2xbaRiOIFg+x0tDMd1DoKSkopJm7OkduVaKv3BhefN5P/A48UEnT3en3F5tT9lwPt3AVYPF7k1P2XA5UBr44LzwXf9b4ZjN+YZ+87JgOXu/jIPCf+36XA5fa8fZKRa7OBypgZncnbhtDjwV69wv40u79nS6Ay3ykYOZhj53dPBC43dE2Gof3pwOWuescUhb2pQGUWnlvl2MfOBSYojVyXZd87twYrtEnUizYzjy0GUlECT8kqqEIawPkH55h7Jria2OzTy4EVsIAN95OijRSkxyVb78wTzQ3m43aTB5LDBuktbeNSX3m8FuwaHPmq3SIoNbCecp/y/scwB49v7QQlgHTCZWqrTSI2oEy2876ljKLHRzl69CgrK5tTMAvx8qFSqfCxj32MzF3XrQlu9yUoAQkHdlZtYl2vnUwOngfozbS6g8cr0XWaFaHxjGF0qCj1Q4OgBIqM7hDX3K7jg8tHlcNwykaK1vvjboh0qdCLdQapfXQTlABsdErz/d9p4Qf52wlKAMWLlUDpaxuYP7xCeTaYKoxrKVbOlXF7pMZ7MTB52xCJsWA775WjuPSNhcCk7eR4lImbg6ckSYxHSYwGVwcYvSFHcmJAJ/sdjPGb8iRG1pGc6YJmSrI7k2jrfOt1IzUZZ+yGfKAyAFeeWGL1XHDy0MQtBVKTL81zK1+pbWrzwezTy4HLWWWHucMrGyMotaG2YlFdqDdVlNrRK+3tZiCirbYUz0nSY9q6386iSzEylVUYbU1SbGAzwXxJ45S7th2vN3ZIW6ChED3U99rRTlACmKq4jDuD57CReOegaN+9Hxk1+chHPjK4UiFeELz3ve/lnnvu4c1vfjNvfvObed/73vdyVylEiFcchndkeNtv3MrtP30NkaT3jWlVHB7526N84te+xqUjCy9zDUOECBEiRIgQ38lwXcXxT85RnKuQHo3zxp9fu44ZIkSIECFCwCZJSq7r8sgjjxBJ5DFML49oLWf0JSjVMya1fAQlBSePCc6dCjYoZbeZ7LnNQO8XX9C03oHgRnWE6J/iTdfXBL8Xnq9w7NPebnKhycGLrFI2A9xmXEOPdPlAuX2D60IKkuMm+//FViJZo6dNP6QmY+R2JwOVAU/9ZzNPXY8GL6RHJZkdicA7sfJ7U+z70a2B67l6ocL80ZeGEAVw9stXAqduMeI6iYlYYJ8sPlfc1M78iVsLjN6QC1xuM4gWTHa8ddxrYwEwd2SZs18Jfm/xoYi3yz4gzn1ldlPB4s2geLnC/JHgZJCJWwrs+t7gxK34aITE+CZk2qWnshYURlJHBtTji+ZMRq7L9jfoEzCbvnuE6buH+3/U9Ohr3bqLmdTRo37gTusdwAOfqGR4N3PpyRInv9BFwHKdThWldtjOwHPjuKhI/z5+2x6YOtDb/64um6pK7VgqSZ49G2FZ6KxsM9YQkhqoZXWsZKtu47vvBOC3fuu3+tc3xCsSn/nMZygWi6Rvv6b5t3i62pegFEnWyBaKVOIuh7OScq8mortrVJQa2KHqTA4IErvaWoISDWKTEKD6p3hzzXaCEoDgdNVk3vLaqmusE2RWIC2FJsDUFd2ibnrFXaOi1CyqC8ZSdfIjvYPTslzvSVACSBYkMq6vUVFqRzdBSUiBNIL3r0ITgzhUfWGmDYxEcKHU0etzpLfGA5dbOl2ivhqM+L5ZlGdrzD0bnBwbSRsYyeA+mX16mfKVYJsB9JjG8IEM2ibmzZtBeluc9Lbgz+3Kk0tU5oORZIQmiOVNpBGsYZauVJk7vIkUyZvEytlyoPR34CkbTdxSIFZYZ+NMF4QmiBVM730NCLkJFUsEgUliSI3kZBoz1fsdEEIge6gkGXHJxI1pjLhcV0Wp43K6QDP9e3PdpvJxz2vbLk4iglKCC6cFlVKnT0Td7VBRaodWVTjNvnVtf+4pKvX2sYFiv6pjpvuQ0IVqqSq14UxcciohwXTJTyw3U711IxK3iKe8QUzGTZKv2/OKISk9/fTT/Mmf/AnzfZTz5ubm+JM/+ROeffbZl7hmLxx++Zd/mfvvv5/777+f3/u933u5qxMixCsSQgquumuKH/6DN3DVXVPNOefiuSL/9JuP8KU/fZLyUvD0qSFChAgRIkSI1zZcx+Xrf32EpZNVNFNy9y9eTyQRLO4ZIkSIECFeO9jUCvqnPvUp6vU6w1OHALBiAismqAz1XvxUbQu3riup19detq+akqNYnVVcOgV2j3VA0SAf9VgA3XlHnNF9A4ISruP91y+47CpwFaLf8S71jdNfnGP22dWOsgjZkYaoo7irqJdcFk8U16Y/Wkc1KrsjydD+zECbXtjx3eNM3joUqIw0Jft+dBv5PcHUZxJjMbbeMYKeCNbMqkt1lk4VA6vWFC9WNqXssucHJxm6Orgiz8rZMvWVYIowpUtVjn3sXOBy9aLN6oUNKIJ1Q7G+AtkLBUWgtCEN1JftwIpgAGe/dIVzX5kNXG75dMlL0xcEEvb+8BS53cHegfJMjStPLgW7FlC6XGXpTHAi1dihPKPXByel7fuRrYwezAYqY6Z1rvqhKVJbE+sbtyE+HGH4mkxvUtSAHf3LZ0ssnx3wDmgaaBpKqSZx1LXh+X+6QvFS2wJrH9Kp0KSXvtPpHbAShjHwOEDEdLjqTpPUUOe9qbhHputWDWjg8qrBxcv9SU6VIQM7IrE7SLCSqtX6Xcv09l01JygPS8rDnm1+fD+pVJpPfvKTfa8X4pWJj33sY0SmR4ls8cbwfKJMPlFmJNObLBuLtOYVdU10vF9SKqRU6PE+faESXIhozPXp8mTdT9nbFbdOodivLCIDunSt4v3XqXjUGDsEWs0LLrt91jC0emucqViSC4uttD0NcpKri76KSnrJplTRKPdwm1b0+wpj7dxR6pDJ2Rh2peecE8BZXlmjZhIrmEy+figwISGzLc74jcHVZ7LbE5siG5Vmquun4uyB4oUKVilYCrDEaJSx1wW/N6fmbir118KxVZZOBCOVA9RXrMApysDny75EU69GZq2gqC1b/RV5+sCuOFz65kLg5+1U3cAKrgDJiRijh4LPaYoXK9RXg83zXFtRulzFrgS7Nz2qMXxNNjAxMDEWZcttQxsnIgqvD8/tTjHcQ8VVGGbf71UZjZCaivUl9jdVkLpI4HbVZfViDVfvvyFARCMdKkoAxVmHxbNd/u+zWciNm0jLQVoOnjM6G7Sd0NGqDlq1/3MZExZTibXPu57204P2GI8s4GRCo+pIhN37IbhDVsPtrXJSoNr+EI/2DuBP5JYZTa8ymvbWBSav38+zzz7L17/+9b738VLh7//+7/na175GodBblW5oaIiHHnqIj370oy9xzUKECPFyIJoyuf2nr+Ft/+lWhra31sSef/AiH/v/fIVn/vk07nrKwCFChAgRIkSIEEBlucZnfudRDn/2DAC3//Q1FLYFj7mFCBEiRIjXDoJvKwb+23/7bwBM7L4TKzZ4dbWdoLRtp0u1CjMXepNWnISJVmoLPviEB7sOCxfXruOKdT6Wl87UqK54NkLXUPb6C8+pCZMtN6Q58cA8Vqm1SCo0DdUenFadxzRDbTjNkmrb8l9fsbn0zaXAAYZzX5ndFMXswtfmsAIuwOO6nH9ojuKlYCSZ5dMljs2dC0wIKc/UKM8E37WV2hqnvmIFDoQUL1YClzGSOvldSeaPrgROr7UZZKYTGHGNucPBVHkufr33LtkXA9WF+qZSAsaGTDLbk1z+5ksjK57bncR1FMsnA5CAXFi9UKZeDBhkk5DZmqB0pYpd3vh7t3x6c0pPZ798Bbce8P0GLn1znmrAd6C+YnPuwSuULgbrFxaeX91UCsilk8GJbA3oUYlttY0grguy1YG2p4gDwHGYujWDFpGc/uoG3rmIR7Ktl2HpvEWt3L9DF7aL6lJGKpb6d+aVof67TeKmy/ZRi2fqUSqupJYRRJb7X7s8LInPQjo3xvPPH6dcLhOPByczhHjpUavV+Md//EfSb7sR8AhKg9AgKEUs2L3sciYpPKJSD+hxG7tdZkl5dkW/nXaXahCUetYTwUJdozHqOwZoG+hapqI2NVcwv9o5LXUNkG3l2wlKrg66o3DVxqL8eqk1FymXBKAj2Hh/6S4UubBAX1KBs9zWV0itmSayumQx+8wSrh1soleaqQbulwFmn17alKpLMWBfDp6ii5HQqS7VA81j7YpDZS74PC9WMFGKTaXXCgwB6ak45dlaIOKKXXE2pfa0WaycDZ4ODTySjF11NkUeCgppSBIjEUoz1UDvgVW2N9VO9JiGZsrAakqbmXtZZZsLD88FJnxVF+vMPbvBOX0bKaZ4oULpcud8SBitjT5rvld9zDy16r2jch2F4DYoF1YXGsSh4BAauO352xwX2uZbbrxzg5KJw8i04MolQX0Dj72e8s5Vqkt0W8EAQUut2k2qFSy1EUqFLVB62/gy1L/tjFVddFfRePPi0Rrlan8i12h6lZlbd6F90OBzn/sct9xyy6DbetFx9OhRbrjhhoE21113HY8++uimr1Eul/nIRz7C4cOHOXLkCKurq/zqr/4qb3nLW9bY1ut1/sf/+B989rOfZXV1lZ07d/LTP/3T3HjjjZu+/gc+8AE+8IEPsHv3bu677z527ty56XOFCPFawciuLG/7zddz7IvnePQjz1ErWVgVm6//zRGe+/J5Xv+T+xm7KjjBPESIECFChAjx2sCV55f4/B99i9JCFT2iseOtOXbfvuXlrlaIECFChHiFY1NKSo8++ijxVB6ViQGQMByizXQhLqmEi2YolCYwdZdU3DtW1TVUQiMaa9kmUy66X1bXXRINcSBHEU1AagjGdwk0HeJjJrq/nqlpLolCq/pmEqKNYK7jEM/C8oU6pVkbaUJiSGverZlQRNtUJ+JDOnrKAE3DrruUF+tYfpoQMyWJFfQ2WwMz4ZWVOiRGTaQOU7cX2P09I8SHTRp5R+LDZjP1lTQkifEIwt9JbyZ1EqMR8nuSmEmd2JCJmdH9NCmKxHi0qTRiJPWOFE7Rgumlh3MBCYnxaDMdmx6XnbZ5k2iutQjsugq77AXq9GiXbc4kmm/ZJsaj6HGJa8PquZKXJsD3YSRrEC102jZSaUjTP6/0FIDMjE5suM12NIrZZdtIGWWmdYauTjf9Fh+OtHyoN2xl04fx0dai8LY3jrTSSPl+6fDhaOtem/4GLn5jHtdVTVs9rvX2d9u9xodNhq7JEskbA/3d8GHD31vuKLDnhyZb/i5022qdz8b3d3ZXksL+FvM8Mdrb3w0fNv0tvRRgTX/ra/0dH275sN3fouHDPv6OtbXvpr+j6/u7u80mxqMMX51p1ila6OHDHu179FCWvT882bPNdvjQR6PNZnemyG1PdPh7jQ8z3jvZ7u/Zp5YpXaoO9jed/jbiGtPfNUbGV7UY5G+pt7VZCfk9KVJbYwN92N1H2GUH1+5qsxvoI6oLFlU/7UuH7Tp9hFV2mn7obrN9+wi3j79HWn5JtLfZtj4isz1OatJ7/1o+NDGzkZYPxyJI3UvfZiYlI9cl2fuD45hJry83U42glEtiWEf6p9Ljkvhwq6+vrliU5i2EYSAiRqet4RDPtsaQaNobgwBmjtmYhsKQXpBQy0Za4xoQTUDMbAUIoxMGuu6SzzmMjVqkEi4NGblo1CXRZpuK2MgY2BGJLl2cgqJsCDShiEmXpO5QywhqGUEqYmNq/tiKS0a3kbiUhyWZ8etRSvFXf/VXhPjOwIMPPkixWCRzaC/5RBnhQqQmmtloDEcRtRWxiEUsYhG1QPfj1Hq8Tj5WRSpPPSmiXKJtRIGorTD8eYtwIW4rhmsOacvFcBXRSIvcE68qTJ+kLZQi7rqoiPc7UgWzBrPogCCCi+kHtwWKZNXFqHi/NRQx0VI8KtsCu9p4pxRRzUXzb04KRcJ10HwSgCEVhqYwNJgetUhHbTSh0CsuUigiRkuJQ0bA0FWToGRGFGbUJRpTCOliRr05l1asYdZqtAuGGKlWOktRLGImpCeMqUAzBUbG6xCc5RWkU0bzlc6EBDOlI3St+dtuU+MxEtpaW59UpJmy2fdZJQen6rTSholOW2nIjvRNelxDj2ooF1xLYab0pnqTNESnbUxDj7UC9NGcQSxvgvBSNQ2yNVN6M31dbDjiqT35j06PahjxNtuk3kxNJTT/vAJqKxbFyxWMRMvW6GHbECLVIh4ZKjEW9eY/CX2tD2XLh+2p3YyExsTNBZLj0TU+bPc3eGN2w9/SEGR3JltjUR9/d/il4W9zIz5sfEt02Ua15tyk29/tPgTQotLztxjs75YPW+fNTCea8xEhRacPfX+3fNjy98QtBTLbEx0+7PZ3d5vV4xqZ7UnMlN7h7w4fii4fGhLlqCYJq6cP9d4+zEwnGLom02m7AX9r/jxmXX83zpvU0QyJU3f7tNmu9t1sswLNlB7ZTvm23T6MdL0Lvr9dW3VwhsxMbI2/pakjNA1pCKJDPhFZgR6T3vzOJ2mbKQ0tEW35Jal5akpSoEc9W80UxHIaZkI2+0Op4/WHvoKSHhHobWnVzLhgZK9BdjqG1MCM0eojtNZ3P4AZaQkaOw7UVpX3rZrQIa1hGK2bjTk2puX15UIoorqLQFGxJRVbEq876P4YIzIKvW38iQkXver91lHIjIOuFGOOTdJ1MJRC2KI5rkl/nNNdRcxWTUWlqKNIpcvEchVQEK2DdD2iUsqoEbNa9TXqAt3nOo2OVEleu5P777+flxtLS0sMDQ1WVc7n8ywuLm76GsvLy3z4wx/mzJkz7Nq1a6Dtf/kv/4WPfvSjfNd3fRfvfe97kVLyy7/8yzz11FObuvbP/dzP8fd///d8/OMf53Wvex3ve9/7KJc3R+YMEeK1BikF++7eyg//wRvY+6bJ5t8Xzq7y6d94hC//2VOUl8MUcCFChAjxSsSRI0f4wz/8Q9797ndz77338o53vINf//Vf59y5c+uWfeKJJ/h3/+7f8UM/9EPcc889fP/3fz//9t/+W55++uk1tq7r8qlPfYqf+qmf4s1vfjNvf/vbed/73tfTNsRrA0opDn/uDJ/+T1+ntFAlM57g7b95K0NXB8u8ECJEiBAhXpsITFI6ceIExWKRqw8caP5tZ9ZiW9pbhXNGdHZts0gnvQXIfMZl15R37NyMQSKmGPe/d6WE7XsUaV/JP5uHbddpTQWlsZ2Sid2SzLBAuTB9QCMzLhGOS3pYsu1QpLlgOrbHYHyf2UzFs/0NCcau9gL8ySGdbbckMZNe0H50f5wtNySb9d96S5rCDm+RVtMEyZEIEX8Be3hfksmbvIVuoWlM3ZajsNcrG82ZTL+xQCRrMHukiF13mbqttbto8vYCw1d7uVLMjMH2u0ZI+MH1wr4k2+4aZuLmPOmpGJO3DzN6necIM6mz495xUhNe/fO7kkzfNdo877a7R9j/zm2YGR3dlOy4d5zkFs82uzPF9u8aa9puuaXA+E1enVJTUfb+4CSZaW+SkJlOsOPe8aYPx2/Ms+WWlvT79u8aI7szRWY6wejr8uy4dxzdD36M35Bj8rbWAuf0XaPkd3l+SU3E2HHvOFN3DDF8bZbRg3mmbh9u1f+uEQr7PMJNYjjCjnvHMf1g38iBLNPfNcaIn8pg65tGGLo64/vbYMe948R84sPQNRm2vbHlF6viNIMD0YzJjnvHSfjEh8JVKbbd3bKdvH2YsUN5pC5Jb/P8kPJ9mN+dYvs9LR9O3jrEuJ+WRPr+lrrGs397mljOq38DEze3/I2EHfeOk532/JLelmDoqmxTrWDsxhxbbmn5cPt3jZHb5bWXhO/DRvBGuQq3beF7+u5R8nu88ybGop4P/TY7ejDX9Pee75/kqndMNQlOsWHPLxGfBDR8IMPWN440z7v1jSMMH/D8bSQ0z9+NNrs/zbY3tXw4dfswowf9NpvS2fXWca5993ZSUzHye5JMt/v7tmHGbvD8oke1jjYrhPTuz4+Db7lliLEbvfNK3fN3epvXZrPTSc/fEipzdfSoF3xsYMe942S3++1wym/fjTb7ujyTtw5x6jOXOP35K2y/Z6yZwjC1xfO3Gfd8OHYoz2RHmx1l7GAWM6OTGPGeebTRZq/NMfWGlg+3vXG0GRwzEwau41Lx09MMXZ1h65tatlN3Djfbutlos8MeQWf7vWMd7/Lk7cOMHvR82K+PiGQNpu8dZeudw4zf4PlwI33EltsLjB7MInXPhxvtI3Z+7wRb/b4p6ftwI33EjjePcdU7pprBytHr80zd1ubvN/XuIyZu8q4/eUfrvFNvGGJoX6tP3n7XULOPKOxNkd+V5NJjy17/fGuO4f2+bVpn+o15EsNe31/YGWPrrdnmedMTUaJ+qkojKtl2S4KkT4TNbo2w7Rb/YytiMr7PZGyPd8yMw87XR0gOS4TtkB2G6WtawbvxHTC2o5X6becOm2xWkUwohnKKnTvspsjT6HaYzrUUQ/aNWAwnvTEukYH9GYvjpQhFR2M6UWdXsmW7Z8QiP+rZZgyXA+kajWxx+2+5GtM0+eu//mtCfGfg/vvvZ2hoiN2+THKkLtgyo6P5/eYuUWWqTZRjckGQLQtqBswnFdvmJVE/6DpUVUyvto0nq4oxYYESRFzYW7IZrrskHEXectnpE5tlXbDVsRn251k6sNuyiCuFVhVksdknamh+YHiLsBkWNo7hTTano3US0mv3Kc1lui0dXVIpEn7gWgDbEhZx/3c85jKZtZoCRoWEzXDCxnHh8qrOSNoh7SsiRSOKiWG7mbUol3YZjreuMzquKAxBYVgRiQhGtwnMivfepIcE+YnWtHh4qyQxbMBKESMu2XpLkuw2r29Jjhjkd0Sbad+G96c8Egygx3XGrs+i++PJyLVZxtpSVg3tz5Ca9IgDWkRj7FC+2RcmxqJeKifhjUtD12TI+Ck1NUMydihPJO1dMz4SYeRg67z53Slye1IU9qUxEt55I1mvvrFChLFDrflpbleS7A5/Hiy8cXfi1iGkJojmTcYO5ZuElcz2REeq09Hrc8R9Eq9Tc3AdhfQJFOlt8Y7UwCMHs8T9eZiZ0hk7lEczJXpMI7sjSeGqFvl65ECmSYo1Ep5tYw6U2hJj6Oo0c8+uMH9khaGr0yT98U+PeffaIIQkx2MMtxFUCvsyCM0j1epd/o6PRlvkdiC/N03Gn28IBLjgOo2NB5GOdKr5XSky231bTTB2KN8k8m7/rnHGb2yNldmdSbI7W98dY4fyxPKeX6K5hr9p+jvf7W+fTBTJGJ4PfRJNZmuCqTtHmnOx4euyxH2CuJn0fRjx/JKeilPY15km2vWVyRrtpUECSk50+nDo6jSpLV6brS7Wye9KNUlMibEoIwfa/H1VmvSU375Nr80KAecfnMVI6Iy0pZYt7EmR3ubZSt3zYSTjt+8hk9Ebch55R0Bud4psw9/S82GDNN1os41OQhoCq03FdexQnljB92HW9Of/fvuebvk7PZVg6xtGmt8OkbTRbLMNf+fb2uzwtVkSY1FSkzHyu1Oere/v1GS8Iy338NUZkuN+m417/k5OxohkDK/NXt3m7zV9RK7VR4xHmbxjCCPl+Sm/J0l60juvZkhGD2aI+OT35GSK4Wu8ezPikm135snu8GylqTF6KE8k7dU3ltMZaVtEzm6PkdmVIprRyO+IMLIvRtQnykfTGiP7Ys02mx7TyG5pkayGd5vUy4rigusRlnbqzXlNaliSm9CaKkrDkxD3m7sZ8f4t/HaZSbsMF1qEptFhh1TCJx5lBVMZC0Pzfo8kbLZmvL5eryimDIu85o0LplBsN+tEhEKrQk44TNs2Csi7Ltsdm2Ff+c60BbuMGo1MqPm6YlexpUy1teJiODCfUuguTM9qxPypV6oq2LnopXoDyC/q5Jb8jR8Krt69jYcffpgrV67wciKZTK5bh5mZGWKx2ECbQSgUCnziE5/gYx/7GP/m3/ybvnaHDx/m85//PD/7sz/Lz//8z/O2t72NP/qjP2JsbIw/+7M/67C97777eMMb3tDzv7/4i79o2u3fv594PE4kEuHHfuzHiMfjPPvss5u+lxAhXouIpk3u+JkDvO0/3UJhujXuHf/qBT7+//kKz94fpoALESJEiFca/vf//t98+ctf5oYbbuC9730v3/d938eTTz7JT//0T3Py5MmBZc+fP4+Ukre//e384i/+Ij/6oz/KwsIC73nPe3jkkUc6bP/0T/+UP/iDP2DHjh3cd999/OiP/ijnzp3jve99L4cPH34xbzHEKxB2zeHLf/YUD33oMK6jmL5xlLf/5q3kJlPrFw4RIkSIECEAoVRb3rIN4Jd+6Zf4oz/6I2743vcgs9sAiOouyoWaK3ENRVJXcNnBdSW65jZiONi2t0HTVcCcDbjE4lCrg2tLdN3F1BS1WX/Hu782VvczUMTiDlYVHAs0x8JMCKp+ahszDrgO9RJQt9h1dwqr4nDmobK34zMpqSzZ4IJhukgdan4quGhWw64q7LJDYU+U2pJFcaYOrqeuoRmS2rKNchzPtuZil71zRDI6tWUbp+agxyV6RFKd9xZJozkdp+5ilVyUcojlTGrLdVzbO68e06mv2uC6GHGJaytvUV1CLG9SW7JxbdfbzZrQm0on6ek4hb0pznxxFrfuEhsyqa3YuHXP1kjqVOY824ZKS33FZvRglsL+DEc/fg637iJNSSTd2xY85RaraDNx6xCRtMH5r822bJM6aFBf9myjBRO7ZGNXXaQuiWR1CvvTOBWXuSMrSF00U0pECyZ2xfZ96NlWFjx/G0mdSNagulDHLjtE8yZ21cEuO56/sya1pYYPvR3YjbQf0ZyJY7m9fej7u+HDSNZA2QozbbD9u8Y4/9Asy2fKvX2Y0UF1+mUj/m73oV3t42/R8uFA2w34u92HDX9ndyYQumD1XLnVZrNm01aPa+gRjepiy4d2zeGqH5pi5ukliufLbf6W6FG96e9I1uhos4mRKLFhk6UTJXBVR5s1Mzo4NFP/DfThy+lv3y9mUkd0tdmpO4axSjZnvzi7xt+aIVs+fIHabGIigmMpqrO9/d2rj8CFyduGmHlqkdqCtTF/p3WPiHhdjqMfO4uR1Ju26/URk3cMkRyPcfSj5wK12dFDOfSo5MLX51tt1pC9+whDEsmYVJct9KhECIFmCqqL/nmHIl19skFt2cK1wUibXp/csM3q2HXPFukF5epFhev6qgGxlm0krZEYi1NesqgVIZqW1Iuu9xwjniJBtaL7ftG8NluGREEyfaPJqW/WKJVNNB2MlEaliGfrC1OVIxGaY6ArsW0vC0okAuUKgESNecHDqu2rjpkONVtgu5LaOMSkS31Vkdah6oJAUnF9FZAJlxoC/bJA4hLXFEVHAJKIdLnyz3/K4uLit7VTPsRLh+uuu44DBw5w9icmcDVP8Ui3wTa87GxZrYpUgjNlL5Bg2uAApgtVHSLKxdJguRRHdxWagppPLIk4ChtBrWoglCLiQk16Yh26As0S1HzCSqwocQFbeIoTEaVwqwJXCNI1l53C4qgyqSExUB5dqeKlC4rZCksJXAQShSEUNSVJ1B1MqajWJbbybE2psF3P1qy5GEpRdwQg0KWfCtgVGGUXQ1c4DijbU9fQNfDENgTRqoUQ4PjZkQxD4TgKECgFkWoNq+6RBjXdU8qwfU6TboJaKnkEWscivcXAripPodMQiOIqdtXFrVvoMQ3XdnEthZAeGdcu11EubHn9EMVLFZZPeamk9JiGcpSXHkqAEdOwqy7KVUhDNBVkJm4usHBslepivdO25qIchdQ9NRbLTyWqRSVGTCO9NcG8P+/qa+szFh1f4clMaig8YofQBHqkv60R13DqLq6t1tr6SoCOnwZXj2u4DVtfncWqOAxfnUHogoWjq9hVp+mXbh9aFQeUp6ojddFMu+bZKlyr3YcOyvUIKlKXLduohnIH+7uRjrWn7QB/ozr9YtdcpC6IFUzqKxb14sZ9GC1EyGyNc+nRBRAtH/b0t+8XzZREMgauo6gu1D1/Ww0ftvzdsBVatw+72mzThy+Sv3WBNFv+1qISXJqp0ho+bPg7ljcp7Mtw6dH5Zpq4bn8rp0c7DNJmI7Lpb2l4SklWye7rbyFFq836/k5tiSOkoHS5so6/PR82/F3Yl6a6ZLFytrzG38pRuK5XN92ko81O3FJg+Uyd0kwNPSpxLbdnm9WSUTRDYBUtpCHI7YyzeqFKfdVBRCLoMYlTs1EOSE0gTYHtKwnrae8j3LFc/90WOJZCOV4aNz0VxfaViTQDz4c+WUdLm7i2l/FSaALNANsX3tA8oT1s3UTpEt3Es3W9/teMAkmNcllCVHh9su2NP4aucFyoJQwECpEAyxEoBFtSFlLAuRWDekpgCEU9JnAQCBSmUNSVoJYVaMpTWSrFBCiFCR3jmpa3sEyFK8Sa8XKysIQC6o6Gz7nF1sCVoDlwdfYKTsTlQimL7nF/cXRAgTi+zBf/zf/gQx/6ED/5kz/Jy4V//+//PY899hh//dd/zejo6JrjMzMzvPvd7+bQoUP8l//yX77t6x09epSf/dmf7Znu7c/+7M/46Ec/yqc//WkSiRZJ7m//9m/54Ac/yMc+9rGedQyCd73rXbznPe/hpptuWtf22LFj/MzP/Ax/8Rd/wd69e9e1P3z4MPv37/+26hcixCsdrqs4+vmzPPr3z1EvtwjA+W0pbvtXVzO6Jzeg9Hcmwnc7RIgQ34l4+umnueqqqzCMViaIc+fO8a/+1b/izjvv5P3vf3+g81WrVd75zneya9cufv/3fx8A27Z5y1vewq233spv/MZvNG0vXrzIO9/5Tn7oh36IX/iFX9jwNYLOvb7T8WobX5Yvl/j8H32LhbOrCAE3/ou9HPie7Qg/Xfmr7X43gtfaPb/W7hdee/f8WrtfeO3d8yvhfvX1TTrxuc99DqRG+cB2kuf8NG5+ANU1vABS0Ya4nzrEdiS2A3u31VEKnjvj7Zz0/ldSaVPfdqpQQUDcQJatJjkJQDgO1dXWb9emSVACLzhMY6OjafD851ebqXlcGyoLrQ9qq9y566e65Hikirhk9JokF76x1Mi2g112sXFRvnJAdcnxUrI1zjtvE8lI8rvizB5Z9YLfjfMutq6JC5X5lsqFXXaxy/5v16FWdzpt59psqy52tfV75XSZldMtxw2ybZAJAGaeWGLmiaXWZepuR9l22/bznv3i2t2W9WKnbbXt3lzbO+/5r8ytKdfPtgGraHfsfm6QOTzbrnstO81Ah5nRGb0+6wV3YK0P2/0NTTKEXXU5+ZlLlGarrWfe7cPltX7JX5UityPJif93qa+/G7bN+te9IIKXXqu+rm3775GDOZRyufC1ec8v6/iwgaUTpY5rDPIh0CTaeMYb82HDtnS5SulytWW/jg8biGRMJm4tcOaBGepFe6Bt+7PRoxIjplOaqfa07de+h67JkNoS49T9l/vb9mjf574y6wX0erXZdtuuNpvelsAdjzH79HIgf5cudkqpd/u7n1+e//RFurFeHzH71DKzTy37x9f3YQPnvzrX33ZAHzHzeCcxptlm/Q+Zzvbd6jsb/avVaNaa1tHPerYtP3lt1iU5bmKmdBaeaxtwXKguNcYQ5ful1X/XVhy23RmleFnj4hNlqkutonbNT98UafjFaeYrKc27HHmgimN4Bx0b7GKrbL3RXCPQMQbqEseFcsXL41kZMqDThZTqrdQxNpJVVzKctrnaqPLkUpSi01KBWcWzrY9B/LKkTQiAlYzGQrLA8qlTnD9/nsnJlpx/iFceFhYWeOqpp0j/QJpdeYPjy8MoCZY/x0lHqnhJAtvmRLqXhmZ6TnJ2xKbSypCILUVH06r6Ehda3MYp61Slar6Lti2w2zQ366KlCqaEoCoEviAJKxHJ07VIYyjFQqA353GCmmqVdf3felWRibjENZczNa1pW3c9W72qPFtP18ark38sr2zqBtQsPy0SCqWET1Dy4DiNHEMgbIVlefNUAG212tF3O13vmzPXGj+VC8vnWtaupVB+fyFNA7tiddhaxVYfduGhzrlQg4jgGdMkSzTO61re73Nfme2sULetrXDt1m+n6uJUXaqLS97v9uGl27bWOQ+ut3UQylEd1+m2bT+WHIv6f6v41+y0bR/vlNs678LzqwjRIntAp1+U2+0XF9fy1B9LM1XKV9rGxwE+BLCrDmZSx3XUmnvrZduAHtXIX5Vm/uiKn0p1rb97+cVxFMWL1Y5jg3zYqFO0sHHb5nnrLuXZli/6+bth247Ulhiuo1g+Verr7+Z5256NHtM8X7oN2/4+bH82I9dlWT1f7vgW6udD8Npsea6O9dgCdsVpXm8jfhFSkN4aZ/lUydssMsiHbf52LZfastvftk/7Xj7dOdfuadujfV9+rDUX6va30P1P9B7t+/xX55ARb47RPm9ptxXRiN9mVbPc/NHOetr+fANcXEfhVlpjiFNv/FuglGoSkgAwIh2/nfaOFG+OJCQk8oJaUWHXWn2/Y4OKeQOSsF3sNlFnpTwSU25Yce6cQlXBNlrHLbtt/EGgSqCi3t8uFXVcBfWU99tSHkGpYds+/jjCO6ZXwY5CXbXGPGvYxkKAIxC6WjNeWv5jmVqAOpIL+Zb/HQ2ciPd7S2KJC6Vsq6CAbYcckhNJnnjiCV5O/MiP/AgPPfQQ9913Hz/90z/N6173OoaGhpibm+Ob3/wmf/mXf0m9XudHf/RHX/S6HD9+nMnJyQ6CEsC+ffsAeP755wORlFZXVzl69CjXXXcdQgg+8YlPsLq62nfBbW5ujvn5+ebvM2fObOIuQoR4dUNKwf7v2sb2m8b45keO8dyXLwCwcGaVf/yPX2fPnVu48Z17iWUi65wpRIgQIUK8mDjQlvGkgampKaanpzc1x4lGo2QyGYrF1oKm4zjUajVyuU6Cai6XQ0pJJBKOBa8VnHlshi//2VPUyzbRtMld7z3IxP7C+gVDhAgRIkSILgQmKZ08eRIjs3a3jEdQaqE84qdSuGKDglPn9UYMF4B6xsRcbi1UN1LfNM8XNzBti903Si4ctljt4ruoiIGo+auijkMvuP7pldu1st1Y+LVtX9bJ/1l2OfrpuSZZpXmt7vML0SQqKcchORJl+JoUs8/6LKqmXFSPsm0YuTaNmdQ4/2BvMk8/mBkdt9YZUH+1QI9Lxm8c4sqTi52kjHWgmRIzZaxv2AXXdjtILhuFU3Opl/o/234YvT5PNGdw/JMXApWrF601AZqNILMjgbVqdwSxXixI3Usltnqh0kGUWg+O5VJbsnDb3sWNILsjyfiNBZ7+m1Nr3tmB16s5WJt4du3koyAwEzqOEfzhjd6QwyrZLBxdXd/4Ow0SolmT+kq9meYPaParCEEzj0gbkpNRRq7OcPL+mXUv0QzwAempGPGC0UFSEu0DEnh9tmwbxwyTk19abfazype0F5qEiMkaOC2ikmsDbd2R8AO4yvCO2z0WcaXtsmefQ7EkOF4f/GFfGm/5Zt6RfEtFWY5KjBKUJsQa+/KYIH658/1K7b2O5acf5W/+5m/41V/91YHXC/Hy4hvf+AYAIwdG1hxLRzrHry0Zj2x4YTlDPeJyZsSl2tYW06kyK6vx5m+lOtuLFrcZXRDEHcXz5tox1Uk4aCWvHeuVNYdxaZ2v+7jrn05aHvmogSs1DU1oKA1EW9fcbgN0HDfKLpkhh1JV0pgKKk0g/NRcRqnPGCQUw6OK4vk67T260n2ik+0iVtYSDmTEQGJj1/y53fJK53HTwK37FXGDjy8vNxJjUaQmWL3Q46EOQEOxJii6ySkbhV11mqSLjULqgrEb8sw+u0xlbuNzIeV6yoXKCXY9LSKJpA3KczUIVnRTMH0lwg7S8wZgV53A9wZe2rLKfJ2lk8X1jbuu5wa8nnLVGsLzhiDAiOvNlIUbhR7XSG2Js3SyuCnfvFhozFca35Syx+K/0GRrnhLtOq5p4DhIXSA0gUtX396YbykXEY2uOXduW4Ra0aE8v/6zUI35kYLsuMbCOQe73iIBNQhKzUvbbrP/BSgqneLZ1tik+UpOjiGxUmuXLfSqwo4KXLX2Wetlf8NU3DtWz66tb67iskW3eFY3sYY770/ZHlGpgdHRpea/Z3MOjnQwNajbGlcPXaYba4hKwMi1Izz88MNrK/IS4uDBg9x333386Z/+Kb/zO78DgBAeGa3x7/e85z0cPHjwRa/L/Pw8hcLaYEbjb3NzwdZIHMfhgx/8IGfPnkXXdXbt2sV//a//lWQy2dP+//7f/8uHP/zhNX8/deoUzoA1nAaKxWKY1iTEawpDd+hEto9x8p/nKc14897nvnyBE49cYusbs4wdSgYee1+JCN/tECFenXi5VQJeDiilWFxcZHp6ekP2pVIJy7JYXl7m/vvv59SpU7zrXe9qHo9EIuzfv5/PfOYzXH311Vx33XUUi0X+5//8n6RSKd72trcNPH9IEP/Oh+sqHvvYcZ781AkARvZkufu915PIr/2ODBEiRIgQITaCQCSlK1euUKlUSO/wJnbFKW9RsTv42QH/UN2Wa1Qh6hmTyHx/gogb1Vk8bzXT5KxBn8WjzBad3FSU09+oosoDAhI9SBENYhOahqoPWPAXAmV7NzR3tMRc1+5UlCfLPxDBMu01se1No9RWLM5+Ya3C0SDsftsEiydLzD2zHKzc27dw5cmlnjuF+8FM6uz5wUnOfWU2UDk9ohPLG0g92OJGZbbO8U8FI/4ApKZiJMZiXP7mQqByy6dKzdQtQTDzrQWkETyod6VNASsIxm7IU7xYfklISnpUZ8stQ5z98hWWAwSVqgt1zn4pWFsGWDpZ9O4rYKxz8XiRxePBgmuw+bayRg1jg4hlTaQWfJFvzw9OUpqpNFW3Nort3z3Oyuki8wFIUVKX7Pq+cWaeWAr0PsQKJrveuoWTn71E6VKPMUAp6HXrrsJ1XGRMx6337z+7CUgXv7E88Hj7+QEv5xr0JIIqx+1ZNQAcB5WMMzQF8Yzk7DOd5YU1OOCxOC9YTgwmW7YTlABcJMt+ijcr0auEh/KYQGvrBhI7d2IYBv/4j/8YkpRe4Xj44YeJZCOk/JzuuzNenzJT7Z/jXfp5aKo9+HTpVJnllf6NpZx0qa70nx72IicBbHMtlk3JktAwl/r3Xd3kIxA0+ABKA6PU/91WGpir3r2dnzPoZoFoVRfp9B4UlC6QEkS53nf61YugBGAmJMO7klz4yqU1SjcNSNPArXb2Z7GhCJltcS4/vhiIsJIYixLNmcwfWVnfuA253UnMpMHMt4KlcdRjGtom5iZLJ4PPgwAy2xL/f/b+O1yS6zDPxN9TqfO93TeHuZMDMIM8SAQIkiBBMIgJDKJsS6Isio9s+eGuZdkil+u1qFWiZe3PawXbKz27DpJskSYtiaIYQZEACRCBIIgwAAYzgwl35ubQt3NXOr8/qnNX973VIAYAUe/zDInbVacrdNWpU+d85/sob5qYuZ2L0YGBnt2uI1l8bAOnEkw85lRdNp4PLhI2UjpjR4eZ/+7qZRG6JKajRIZ0lh4LJlLKXwwmSKuzdmIrsFAMYOPkYILrQa4Vu+QEvgfAizyLDHmRyU6A3y42ajB21TAXv7u27W8udANpmY1yqV1xVp7INpdrveteoaqIWIzkmEJsxGhOjmksV0Dv0YZQVTIH46gRjdXnSv7r+IjDm4tEt/ipA9ki4JYSLp1oeReQEhn3L1+fqGQPR3rWk6rl0usK0CqS8rhgV8xm3VQpOe3HURcrmenu51IFhTVbw52y8Gt4ypp709Rs+/VktpxmQ+tdt8wmsuii+cyYmZvhwW88SKFQ6CmcuRx86EMf4oYbbuCv//qvee655xr7c+WVV/Le976X/fv3X5b9qFarbZEkdQzDaCwPQjqd5k/+5E92vP573vMebr/99sbf58+f5zd/8zfZt29fGPcWEtKLo3DTW1yevXeex/6HFwHnVFzOfnWD3HM2t//Do0wcenVHwIX3dkhIyI8L3/jGN1hdXeXnf/7nd7T+r/3arzUmyem6znve8x5+9md/tm2df/kv/yWf/vSn+c3f/M3GZzMzM/zRH/0RMzMzfb//xQrEX+282kWwVtHh+b9aY+us1+81fVOKPXcNcX7pBeies/GqP95BeK0d82vteOG1d8yvteOF194xv5THu9N3qkAipc997nMApA5fBYAd275MaUJjulQlnXI5v6hCi627sk1HrlOVLC5pKBX/jndp6Aizu8vSdSROVYK1jXpBVaBlMGvymgRCwNITRXAchKr2dkJynLZZh4GRblundBAuPrCKHKDtVlyrBh4QUgwFM29hV4Nt0DZdlh7f9GaSB6CyafL8XwYXGw1KbCRCajbG0qPByilGLeLQDKaQ6YzL2ilaXMG1g2/v1F/O02kk9lJhFmxO/Pl5XDvgBhUw4hpmyQ4kOPLiuQYQXylejEtrLMpOGPRaGZRz39zeLciPtRNbmPng15ldtnG2qzM7cG2X8rrZHu+yA6qbJuf+bqkt9qUNxV9ElL9YIX+x4omMBpyl2VOgVEfXPCcURSU+qjF5LMb5h/INAavwcZdpw7JxHK0rOqqOk+o9yDfvRCEHnSYHrXS6zQBMqhZDqssP5jQia72Pr7jPq/8TZ3UUJUosmeSFF17ovbGQVwSPPPII48fGG7nukxFPuNJPpDQ3tEVlPk0pIil2TGiynf73wJZQYVhCj3FsO+YjVJISSwhcQCv1vzddDZTa/aEJyVTUZqWqYroKWlkiFRA9qiKtLHE1gdIQSQSrB0TWYr1f21NTwe6uz8ySy+opExcN8K+3OgVK4D2zK1krsKOOdGRXXNROKK1UqWwGa+cBA4muXwzxiQh21QneJtUVr40R5HxKArk7NhCg6krg36G8VmX+O6vbT1T4EbF5uoAY4HGoaAKEFwMWBCtg26l1e1ISWLg16LUyCGbebotg23G5gu2JsCRtbrvb4drSaz8JGte0MIyek2REzHvxtisuVZ/3ifry+iSaTnJrEuzek4NENOK779kLtf3xc5HcITJm1ATo/herkzAQtkRqgnTaxXUhl2uJekv077LQShKnz+Rdc9h/u5YQXBoVUNEg1vvath0VTW2JFHRhbEshH3e5Ye4sq2ZvwdHVqYsAPJXfxegNo7h/4vL4449zxx139D2ml5oDBw7wz/7ZP3tZ9yESiWBZ3fe2WbsHXurIkLGxMcbGxl7SbYSE/DiiqArH3raHfbdO8eh/P8mp+73+u/VzOb74aw9x+E27uOmnDhMbCmN/QkJCQl4uzp8/z7/9t/+WY8eO8fa3v31HZX7xF3+RD3/4w6ysrPDVr34V27a7xEPxeJx9+/Zx7Ngxjh8/zsbGBn/+53/Opz71Kf7wD/+QdDrd8/tfrED81c6rWQS7cjrLN//D4xTXK2gRlTs+dhUHbusvSns1H++gvNaO+bV2vPDaO+bX2vHCa++YXwnHG0ik9MADDwCQ3H9lm0Apt08wdLajU7PlT0OXxKMSP4GSlfZeXPVsU2wgasKh5LBnllT1GyirDSL5CZXylyzyl7zPhK4jOzu/WhtYHUKlzuW+QqXW5UKw761j5ObLrD1baFsuFOE/SFHL7VIiKm5A8Q94rkGDsPBgMGcV8AbYzgd0bKqXW3sqmGPTi2HyujQjR4Z49rMXApVbeSI7kFhs1+vHiKT0wO5NY8eGcG0ZeEb5vrdOe+5Z3wr2W7iDaaIGJrBAiR246vTAGNIYOzbMyhOb2KWdb3fkUIrZW8c48d/PBxJ9DXqtTN00wvDeBCf/x3zgsoMwqFvB/H2DOT4N4hTl2pCf7+Hi0EOgVEfoKoriDe75CZUaIqSWwTA1orDvzhFWThTJL/SpP/WWR6Lr4LoK0gVVU3BNtylQqosYtPZ9rbsIbJ632ez8PpoCJaXq4Ea6j1NTXIbjLpsFBRcFpyVGtbCr+fzsFCpFFEmi5pxTHfMWdIqVKjPN52Bxn0XirI4ZTVJaXexxMkJeKTz99NOM3DUCNAVKANcMX+LJrdm2dbW6ukdC1BI1t4eWWNuaQCmR8OraYouCybUUFCkZslwKusCvdVKPeusSKgnBSqmprnMNUDpuNa3c3I+6UKk+Ni+laFvuJ1RqXR6NS0ZiDovrKrImVNJqMZ6uqvi6Kak509MPqCqio12n5Foamj5CJXczT6WmXfATEfgJlACqOYvqAOKK0mp1IAfE6tZLL+RoZebWUXLzJQoBY+IWAzoSghfrO/u6MVaeygaKX1UNheRsjPzFMm4AIW5kWGfy2gyXHl4LHE93uQRK3sYGM2bNHEqh6gorT2YDlUtMRpFSUloJdn1OXJehmjXZPB3MDWuQawVg9vYxsi8UArUrB8WpuhSXKk0BTv3/O34YoRtt/1/dMtvuWSXuRXH2EyoBVApQ2Wy/5+oCJfDcmDqFSiIaxS7X3sU1xYs8b1se6b/vcaPvBBnpI2BKjAiiSYW11Zb2iI9QyUk0ywofl666QEmtudg5HTGTVsL7vtWNWpsr3ra4IVDSimD7mAjGXBchoVSuxeq1iJXGpprP3FahkhQQNQWlqPfd44Z3XXeKlW4Yar6XXp26yONHpxCK4Pnnn3/ZRUqvBEZHR1ld7X6PqMeAXC4B0b333su9995LoRDcrS8k5LVMfDjCG//RNRx50y4e/M/PsHHB64d4/tsXOf/oMjd++DBH3jyH8mMQARcSEhLyamJ9fZ1PfOITJBIJfuM3fgN1u8maNQ4dOtT477vvvptf+IVf4Hd+53f4jd/4DQBs2+aXf/mXuf766/mn//SfNtY9fvw4H/nIR/jv//2/84//8T/u+f2hQPzVh5SS5745z/f+6zO4tmR4OsFb/un1jMz1njQZEhISEhIShEDZDidOnECoKorR3RGZ29fy4tnRv3hej/Ls2WaZ7RyU6kztgck5cOMd2+sYPJKtzhaOixGn7chEL+v7Oqq38vKTRZZ+sE20ho+zkpm3sWqDY53L2zLZpdsUKGmCYz+1m5Erh/pvrwMtrjJzyyh6MpC+DMVQiI4YAX9xUDTQosEjQIxhjfSBPtlDPRi/Js0VPzkXuFxhscJawFiUF8PaU1ssPRZ84CQ5HSMxGTynd/HRDVafzgYuN/fGcUaOXJ6Go2Io7L17ksR0sOOrbtlcuH+lt6tOD7SIytBcHC0a7F7IXypz4TsrAwmqBqFwqcz6c8GvzakbMxy+Z3b7FTuIjRkM7w1+7yma59gVFD2pYQwF+w0Axo4OkTnUMfN8O4GSqnLlB2aYuHbY+8CVbbGdXS5JtUE2p+pSzTu4ATWhlXWLc9/NY5XcbR2UOgfotAgosjkI2OmgpHQIVCujBvGIy75xi3hk+2ekbDnUC5bBd2bbt18XK0G7QKmVoclpbNvmwoVg4s6Qy0cul+PixYsM7xv2XX7NcFMoq7WqegSwf5OteLdAqR8xB/YXXQwXRLz9Gq0LlBrf1yJWN0qgenKjxmfuNqYbrgaWFFwq68gerk11WgVK4N32piW6BEqN5WqzLlNzJmrOe74MjcL0fk+o1H+DzeUylyc2qhMb9a8DegmUANSoMlDEq6KLfslLPYmOGGjxnXVAtjJ98wjJ2R3Yo3aQu1DCvEzCKNd2WXkqG9gpUDEUEhPRwDHCVsFm5alsYAfLyLDO6NGhoCZfA5OYjJI+EDw2KnehRPZs8AH5yLBONB3cUWfzVJ7CwmARc4OQO1ccyL109nWjwdvpwhPcq5HeN21dmNRJ/V6vC5Qa63e8a7eKkBCgDUX61hF+sXGqIRia0b2mVsvy7WLcEjNRZq7qvY6fQAnAscCu+k3W6d/G2VoTDRel7RyU6gIlAIFEUyR6qfn9nQ5KWodpXHXUYdp0mdqhgLHxHBUwP+lw7Z52N8q6WAnaBUqN7Uc1UlMpHnrooR1t78edgwcPcvHiRYrF9h+mbjV+8ODBy7Ifd911F5/5zGf4+Mc/flm2FxLy48bUFSO877du49afvRI95tXb1aLFA//fCb74fzzIyunsy7uDISEhIa8hCoUCv/qrv0qhUOD3fu/3BhYF6brO7bffzv3339+I4H3iiSc4e/ZsmxsSwNzcHHv27OHpp59+0fsf8srBrjrc//88xQP/3wlcW7Lnpkne+xuvCwVKISEhISE/UgINgczPz6Mkkv1j3nz7HV1KE97Lai+BUt1RSbTMfn/habh4pvYNdaGSTwwH1IRKtbL770gyfqijc1fXPQFRn4xbRfVfJlTVG/zuUfbSQ1m2LpR7LheKaIiT6riu5NJD697s8wA5DUZKY3hfAtUINnqVmo1x6N2zGAHFTemDKa788B4ULdj2hvck2XXbeKAyAKXVCpungzvBFJcrrAacDQ4wc9soe98yGbhcabVK/mLwwZZz9y4P5DxTWCgP5KClagqKevlmrqm6GnimnGu6bJ0tBh4ILK1Wee5z84EcFcAbeNx6oRgoWg5geG+CIx+aC3wvFBbKA7mKFZcrZF8IHsEzemSIqZtGApfb9YYJ9r11Oni528eYe33wez01Fyc5vfNB8boAaekHW2TPdSgaXNk7xq02GHbxoRzF5R7Xiq51uR41cVB6LbIdsJ3uAToFDt9ukJlRvPi3HhFvdaFSZdQrXygrPDkfoVCtOUDVYnhaXZTaDq12yPkDtWdPR7Zjq1Cpk+I+i4mr9gDw+c9/vud6IS8v9YG6A0f0NhelTrRO26FaU2tuyKt7egmU6o5KruVdY0UVTgyrVGqXXF2o1ClQqmPHvHi3tHA4onbfX67hCYw6RUZ1FCRa2b8ylor3z69sxVJYKXk3ZqdAqbFtVWmIk+qU8pCtJWlKVUXJldpdlDr3Iee1R6LDGrFMy6B+TUDQT6AEMHbFEJkBBNsT12ZI7w8uPBk9kiIxHlwIXVgoDxQTWlgoYwaMUlN0wfTNI0SGt5lA0IF0obJhBnJDAu+Zv/DwOnY5mErVtSWVDbOz+b49gsDthBeDUBionWcV7YF+843n82w8H7ydXt2yBoqKGzs2xNCe+PYrdpC/VMYqBj++/KUy5gDlxq9OE013XNO197teAiU1HmHXHVPEpv1FqPV6pk2ghDd5ZPq6FEY66ru8Ub4mRBJRbz1FEyTGdZS6S6OPkKlt34WAiEEl77Jx3vIV3vUSKAFU8pJsrsc2pMRJGG0uSq0orkuvXEe16qJW3TaBEkAm6rA75Ykm9ZLsGfFWFypVR73r8UJE5WyLu6WoOSq1uii1Un+e3jZx1ncXW4VKnVydusjMVIbHH3+85zqvJd70pjfhOA5f/OIXG5+ZpsmXv/xljh49yuRk8Hf0kJCQlwdFVbjq7Xv50P/1Bg6+vhn/snY2xxd/7Xt850+eppIbzBE+JCQkJGRnVKtVPvnJTzI/P89nPvMZ9u7d+6K/T0pJqeT1mWxuevbSrtv9kuwXDRfy6iW3XOSLn/4ep+6/hBBw0987wl3/9HqMeLB+nJCQkJCQkO0IpFjJ5/PoB3oPYuf3ClKdsW+43DxR4VJRY6nWeRtb7+78VUwXJ66j5ZvxAa4Lbu09VlgOUlcRPURKwna8QWbL5tITZaqFjv2w+3c4R4YUDtw1xvwDm11xQF1xb637rYEaU/vO1pWu9EYRWkc6XJqd/AFyGkrLVZ79i+CuF/lLZc59cynwYFLhYpmLzmpg15nVp7Nsng7uHlNcrAwUzRAbN1AUheJysLKVdRM7GrwRnT6QwLUkuQvb2D/8iBg7OkR1yyIfMFLl3DeXX6I96sY1Xc787ULgcoqmMHbVENkXCgPNeg+KFlfJHEiyeSqPHSDCxSxaFAdwAdDiComJGFvnggmO8vPl3pFofVgYMBpl7cQW6gADq4vfH2x7Z7+21PxjBw5KdTbPdJ9HoSreA0Ppsf+KgmIIFE34RwPW3Zh8BHYH3zpCedNm4cnenarCspFtUXFw6RmbUtZFxiMoFRu3h+OXFddQyy5OzIt4MztugfK4gloFx0fnlD/sDcapFXhLvsqpiMa5Due7ydsXOH/WX0RWvXkG/gwuXQoWWxly+XjhBc+l4R1HF/mBm/Zd53jmAk9kd7V9Fs9rJLM6K3NlxhPePbOY63ZuNC0N3bCpWrWBYiGwWm+DotbXEEbPCxwD8qaK6Sh0jmJ3ulZ0MqnaGMOSS1vdHR29hE0AqiLRig6u23vv9LxZizVq3vNW1fsHoORLSK13u1KWy4125eYL3XWxa1pe3dXHom3j+fxAUVybp/IDuf0tPLLRa1y/L4OIrhEQTRuYecuL39wpEsprJk5AYbKiC+JjEUqr1WDbGxAtqhIdNTz3nwCbq2YtVrPZl2y/OiksVmCAdnNkWEeNKIFj2wYlOuLVMUGF5dUtK1BbrY6R0nAdiR1QGOXbru8RgQZNAdLFB9d8r8u6Q5K0utu3ri1ZP1PF6vPzKcNDyI5Yc7visvJ0AbPkIFK1Waw+77kiYiAiBrI2iccquSw+0Tw+Yehg6F0C5wY1AZJjSso+92s/gRKAjBmoOjg2/vdQj7ZXLC4ZnYP5hf5tQ7UqcSLNsnlTpWx7baDqkNIz3g3AMSRaXsFOudg+k4WMlEmuGGUo0f3jvG7qrLf9jRjaZozqge528N8ff5jnqv59JkeuK/HMdy6f++/LxRe+8AUKhUIjuu2BBx5gZcWLLf/ABz5AMpnk6NGj3HnnnfzxH/8x2WyW2dlZvvrVr7K0tMQnPvGJl3P3Q0JCBiSejvCmX7qWI3fO8eB/PsHmfAEknPzWPOceXeKmDx/myJ1z7Y7zISEhISEvGsdx+PSnP82JEyf47d/+ba666irf9dbW1igWi8zOzqLVJi1sbm6SyWTa1svn89x3331MTEw0ls3NeckX3/zmN7nlllsa6548eZL5+Xne/e53vxSHFnKZufCDFb7975/ALNlEhwze/PHrmDk2+nLvVkhISEjIjyk7FimZponjOMTGe8z2rPUz5vd1C5UWihqF4s4Gv+1UBC1fRTNg135YugDVrf4dzJ0DTPmljvVrHbdC05B+YiXHxarA4uN5yht9RBI+bkqJmSi7bx/h+S8tY+boWi5d/5GNaEYnOR1j7ZnL00npmu5Ag1BmwcY8FTwOAhd/McA2REcNhEJg16DJazJoCZXTXwwmktk4GXw2OMDoFcM4FSewSGnf26aoZi0WHl4PVG7kyiEKC+XAIqVXA4ohmLg6TTVrBRIpRdI6e++aZP47q5SWdz7IFhnWmbw+Q2GxjF3Z+XVWXjW5uLq24/XrpGbj7LptnGeXzgcaaNOiCrHxSGChUlBHqjpBzmErlYAxfUHpdEhKTEXQEyrZMz73np9QqVZ+923DCCE4+61N3+W9WH2ujFVxkbbjG59CLQauU6i0tVT7HWoGEP2ESkBDqLR71KRqC5a3dAozO4ttcqJwrqqR1drX333EEynu2bfqL1SquTecOXNmR9sJufzMz8+TTqeJJVTweVzpitfmuDZ9sU2oZEZcCmmLiruzZl4kYVItGoxVXVQXlmMKFPuX1fPNwQULgdVDoORqAsVn8F4rwZaq+mkD25AKdBpFTQ7boEtWN1SkJhAd36/n/eulWNKLIDJbqjs/oZLM92/3OIWdiU4HcY4BT5gxCHKHccptCIgM6VhFO5D4RzUUJq5Js/Jklsrmzp8Dri3JvhC8XalFVTKHUlS3LNwewjI/IkM6I0dSrDyRDSSM0pMamf1JikuVwc7rK5zYWITIkB5YpJTen0A11MAxtp5zogwsUhpIQAeMHE5RzdlsngrWztcTGtKVTeetHbrdSqmBDHbfKtEolc3e76giVnNKMvR2oZKEat5pOCRth1CVhlDJf0eUbqFSqwBJQDyjUC24ODv8+WTMQDdgar9g+bzE7PgZnc4o9xbMKqyuq7gSFFvi+kQ1WgmvrdcqVLJcgeV2P4d6CZUAtLyCnrCZsFwuGiqOEOgTO7vmzKgLoyVPgNWy2bcOnwDgisiir1BpfEZlfn4eKSUigJvyq43PfvazLC01JyTcf//93H///QDcfffdJJOeW+CnPvUpJicn+drXvkahUGD//v3863/9r7nuuusu277ee++93HvvvRQKA/R5hISE+DJ95Qj3/NbtPPON8zz2+VNYZYdqweK7/+8JTn7rIrf9w6OMH0i/3LsZEhIS8mPDH/3RH/HAAw9w2223kc/n+frXv962/O677wbgj//4j/nqV7/KZz/7Waanvbbqv/gX/4Lx8XGOHj1KJpNheXmZL3/5y6yvr/PpT3+68R1Hjhzhxhtv5Ktf/SrFYpGbb76Z9fV1vvCFLxCJRPjQhz502Y435EeP60p+8PlT/PCvvD7iiYNp3vK/XkdidOcpCCEhISEhIUHZsUipHjliTI2gHMvhnmjOyBcdffetQiXVFCya7TPky6Naw01J8RkwsFMRIk4V1QDRKfqJ1azvy14vaefAkpHRGJ7SWD9VwbXpmlna1Qlc67R1Tdg8W6W1l9HXQalDqFRarnLhuxtNh6KW5V0CJVEbPJcuyZkYUzdkWDsRLAZq7NgQmQNJTgUU4wzvTWCkNFYDxk6ldsXQ41rgaIfxa9JoUYXFR4K5rExdN5jY6OIDq4gBXGCMYQ3XCj7TehDHIPDi7Mx88EHL579wcaDtXflTu9k8U2BpQHedICiGwtGf2s3CQ+uBrhe75PD0n54LvD3HdCguVbArwc5ncbHC0/81+PZQIDZiUM2aXt2yQ7bOliguzwd2AkjNJdh12xjPfjaYuCkxHWX8qmHPRSvAJqOjBkO74qw8kQ20n4nJKEO74ywGvMbGrx5meE+C018O5vaVOZAgPmaQPVPyHJQ6aRUqtQiQlp70uSY7BUqds/o1ja1LzYFBadvtQiWj/dnWKlQa2h1B0WCz1TCqRahUzXRbI6llF02VOK7oEiiptXHkuqNS3UWpzvPD3vqiNoBYFyjV6RQqxUbLgEIikeDcuXNd+xLyyuDixYvs2uWJj25PPc8D+cONZXWBUp1WoVJBU7paeNNDuYabkml1N/8iCRO1rKFJugRKbtyrTJSSd2+1CpQAkoaDjaBiess7HZQ6hUpaTWNYcer3ajMO2M9BqVOotLUskK3ttRahUpdAqd42sF3S41BermDne1eOXQIlXWPicITCsklpzeoWKPVxUxrek6C0VsHqEUnni/AEHZUNM9DzTaiCkcMpchdKgWKuVENh8rpMYLGRU3W59NBa4Pg1oQjUqOKJQAJof8y8PVBcrmO5lDdM3IBCo/JalfnvBN9eYirKyOHUQPs6CMP7EsTHI4Hb29kzgw3GmwUbRQsuhg76vlNHNRRQwAnYhlp9aqvnRJF+jF7RIm7qFJAI0XBT6oxwG94bwy5HKFxqnlelJYZN1NoGdUclpSZAio/p2BUXs+C0vaPWBUqN8h1CpdTuJFbZpVqvyzSt7Z1XdLgc1YVKE0dj5JdMKoWO9pOfUKleVhGM7DZYP2dSNt0dOSgB2BasXJAN97o6XQKljrZXNapTbdEJdQqV6gKlOnWhkiIksYwk56htdUurUKma8RHMFhR0w0GRoEy2C5RyRe93qDsq1V2UANyYTSUGoKLj1dV1gVKdTqHSocgS88k0lcoSCwsLzM7Odu3Pjwuf+9zndrReJBLhl37pl/ilX/qll3iPenPXXXdx1113cfLkST72sY+9bPsREvLjhqIpXPWOfey/dZqH/9tJzjzg9aGtvrDFX/+r73HFm+e48ScPE031f66EhISEhGzP6dOnAXjwwQd58MEHu5bXRUp+vPOd7+Tv/u7v+NznPkehUCCVSnH06FH+1b/6V1x77bVt6/7O7/wOf/EXf8E3v/lNHnnkEXRd55prruGjH/0ou3fv/tEeVMhlo5Iz+dYf/ZBLT3mT6o/evYdbfvqKgRIXQkJCQkJCgrBjkdLTTz8NgDE7BtAQKnUKlOrUhUqG4pKKuGyWvSibnVJUI7zwWH+XGr+IjlhKYXSvzvqZSs+It0YncMus0mhGIz6isXFmB5EJNSGSlBK7Isld6J5xuV3H+NqJHGvPBO+wN/M2xbXgjifxiQjJ6VhgkdLw3iSxMSOwSEnRBVp0Zy4grVz83hqKz4zZ7fBEHMEHTfa8cQKraHPumyuByw7C8g+yl2U7dVafzFJ+iZ1u6ri2y/LjmxRXgseODIJdcrn43eDORoOSGI+y/+3TnPnqQiDXIdd2MXPBr82t80XKa9XA4iZFV9AiKoqi+OaE9yI5GfVcMQKKlGJjBun9ycAiJTNvU9ro7zrQ6aIEcPF7G9vf6j6OSuWWmFEhxLYOSnXioyqRpMrmee8+agiVDP8c7rpQaWgcNL1dpATbOyqdP6+zdSB4xnfadFGBDZQugVKdulDJEyh5JBIJspcxmigkGAsLC8zMzABep35dqNQpUKpTFyoZFYFUwDKCDdJnx2yqK/G+63QKlABGcKggqKD0jHirC5W0lqZdSneoOgLT3b59WBcq6UUHs0cIXS8HpTqLZ0Ep+MQW1dyUejkoVcvgmG5vByU/oZKA5EwUq2QHEikJRZA5mGTtmVwwkZLwBB0iYB+SY7osPLKOUw3+nBqkjJHSmLwuw8Ij6023mpcQu+wMLMgZhGrOYvP05dteea0aSJT2Yrlc8XB1MoeSCEUEfn8JGidYZ/XEluecFdDhRtUVHFMiNB1pW20CpU6UFgHS0GyE0oaFWdj+XqgLlUQ0SmJcp7hmN0VK0BAqdQqUGuVVhWrewUXDtyFVFyp1lJcuXHyy2hQT7RApodrxKt/PQamlJIm4pGoKbNv7HepCpU6BUh21KhExGDccKhUFW+7cUaksFM5ZEcTuYLHMuKCWdJyoDXq3QKlOXah0KOI1CEcmvDbexYsXf6xFSiEhISF14pkod/6Ta7nizbt48D89w+ZFLwLuuW/Oc/bhJW76e0c48sZdYQRcSEhIyIvg93//93e03qc+9Sk+9alPtX32/ve/n/e///07Kh+JRPjIRz7CRz7ykcD7GPLKZPVMlm/+u8cprFXQIiqv/+gxDr4+fE8JCQkJCbk87FiktLzsDXpqo00HJeVYDvn0kO/6WhHKE4KpTZf9GZPHFqJtEzTtuNfJaPToRFaq23TWKgrQvc7WosvWYhkCJmUMzRiMHoyxcaaClDvvhE1OR4iNGKyeCCDiqX//AOkRuQulwBFjQOAZ1nUufnewmeDLj21uv5IPQR2N6kzekMapuqydCBY/cfHBNeQAm9z9pgkqm2ZgQUckreOYTuAovH13T5G/WAocD3i54gQBcAk8iATeDLv975hi+fHNYLEeCkTTBmbOxrWDRbjsfuMEi4+sU1rd+WBbed3k7DeWqKwHq1yMYY3J60ZYfqzFcW0HuKZLxQwuMMtfKJEfoI5YeyY30PWydiIX+L4D2LpQYetCb0Fbz05KF38Hpa4vaC+fmNCJjxusniiybb5US9nhWYOhab0hUvL77i5Uhflney92I/0FUnpeYqX8t1HY7X+tHyw7RFxJ5E0nATiTG/Nd7x/d9m3+y8lmdrymaZRKwa+XkMvD1tYWY2Nj1EVKAG9IneR7xYO+66+bSXbFs+TnZzANyeZYe30Vj3jXsZ+TEkAlH+kh//FQelRhZ/EGnvVtqiy1o8qdiNlsVlU2qgrqDqo7tSbaHEq6VKoC0xIty/rXr0o93rNH20uWe9dHW/NV3ELA+0TCpe8Fi3YFL7JtEBce15aB2yTeBhlILKRGFYbmEuTOFwMJQsyCzdLjmzjbtfM7MFIa6X1J1p7ZChRLJ1SBaiiBjzGaMRjaHdxd0C45FEqXL5rXzNuY+eAipeR0lMiwzvpzQSchKAg1uLNRalcMLaoGFnBlXyjSt1LqQXI6CkJQWAj2WzgVt+aS5N/WUxKe0qUtfg3YONUUuKiplH+8OKAMJcFqLlt6ov18iJQXgdVroo2STCBth+UT/sclEvGeZQFyq6KnYxIA0UjzPbUVCTJas3Ls855cd1Gqk8x4Ik+rAm6svwDbaWkbjY+4rG0qFOzmj+8a/S+EqqZwstTtUtkov02vh5mNYKT93wtmU93vN8JRiFwaorIrxzvHHwPAkv4b+WDqaZ4wvXbZ2C7vWWNZg8V6/qjI5/M88MADvP3tb39Z9+OVQBj3FhJyeZi+cpR7fvt2nv7aeR7/wimsSi0C7k+e5uS35rn9544xtn/45d7NkJCQkJCQ1wRSSk7+3TwP/pdncG3J0GScu375BkZ2p17uXQsJCQkJeQ2x4/nWa2ueY4mWSbZ9Lq7qHpxunUV/LqPxxFKUVg2BXm7+Yaa7O/OUqsP4lMuVd2g4ie4OTVH1Ol+loSM73Swsu9n5q/l3FDY6jlsGuldOlHj2b9bbO5UVn9PjOI04NyEEickImYOJ9uV4A+y+g+y1mfbj16SZe8N49/Jt0OIqRnLH2rJXHeNXDzN21F/41o/IkIGRCu4+Ul4zA8Wb1HEtN5Awps6+t04xcV0mcDm74uBYwVVtw3sTRNLBz8ugpA8kMIaCX5922QkcxaLHNQ69e5bUXLBsZOlKHMsJJEYEzxGpsFAO/LsrmkI0o6MYwewtjGGNXa8fR4v/GFqrKiqK4Z0XPxp1p+w+10N74ux7q78AB/AckuouSS0DcYkJg5H9sabASbq+39/6XMBxWHyyzMmvNZ9zQq/ts+U/CCijtUjSqoWotg9A2cMR7GFvAE0vdZcvTWhMH3S4fqyMnu++PrcONfdXVNqFTk8nVGK3NWNIDgx1u4y9Y9qb5f+RIw83PovFYlSrl9cZI2Tn5HI5hoaaz0S1prB5XeJ017rrZrN9ljq4yFam/frbqjbdO9LJbsFNJR/haM5mUljIWLegQ8t594YTkzix9utTL3j/ANwejxy96JWRLZfumZzBRlVFb4l4k2p320kruWg1ca+rCoaHXIwWlyitYNW2reDq3XWmUqggBIztVjCGfZ5R+VrDtUe7UbHLCKUZ2dSG6/SMe3s1oEYU0geSXqxWABRVwUhpgQUk0pGYOcu3+u1fEBzb7aeP8CU2YjBz8yjC57rquzlXDuTGo0YVoiOXL7ZEi6lEM8G35zoSxxykXRln/FjwAUTpEkhcVscuOwNNYNBiGno8uKNrai5FYjKC0Pq3nYWPm6ISizZckkSPugQAXfP+ddIa8eZTXhi19oXmf1wNByVN86/LdB1Vp3d7tH5MPkLs9L4o8bTouVzGjC6BEkBqRBCJNgVKQkqEz03sxJr7K2w4d1GlUGxupz65Se3xLmSmalGjFYlWaV/HHPb+gb8ToD1icdQok7FczGy3yOnKqaY75YXiSOO/peZS3r/Ju2YeaXymi+623VWGJ1a91vDaZdHasWxuDjah50fF8vIyn/nMZ17WfXilcNddd/GZz3yGj3/84y/3roSE/NijaArX/MQ+Pvh7b2D/65pxmKunt/ir/+NBHvj/TlAp+PfPOdLl0fxpvrLxAx7Nn8YJ3JgMCQkJCQkJAbBNh/v/n6f47v97AteW7Dk+wft+67ZQoBQSEhISctnZ8YjE+rrXwaZmuh9WrUKlzpgPiULFVvpuqlWoVHdQKuZhZVF0lasLlHoxul9nzy0tooWOTtquma2tA9J+77h+QqUWln+Y4/m/ruX5ONt0orcMYgUVSNSZuXmUPXdNBi932yi73zQRvNyto8y8bjRwuX1vm2Lv3cH3MzYaITrSexZsLy58e4WFh4I7FoxdNczwvh7+/324+MDaQO4x8/evsvZ0cLeh+ftX2TwVbLY7wK7bxkjvD358A6HA3OsnGNrVPyqoE9d2OXfvMsXFYDFxVsnm3L1LFBeDzZK3Sw7nvr5MeS2YOE2LKkzfNBJYhFVZNzn1V5eobATdnkp8MoLiM+Dej9RcjKt+Zq//QHwfEpNRDr5rJrAoKrU7zuF7ZncuwlK8wbWRAwkOvWu669HQJe706XwM1B9ZEyqtPF3k5N9sEw+4jUNTQ6BUp0OoVBcoAWRmFPYd38YxyUeotF5RWSx6v12rUKlVoORHRVNwjfZ1WoVKdYFSnbpQKRaLoWzznAt5+cjlcqRSXrtL7bAAahUqtQqUvJUl7jbj861CpUree+4uRRVyPpGrdYFSL/ZqJqmWCLpOoVJdoFSnKVQS+Klc/IRKrcwvaBSKtUHpQn83CqXQfLb4Nr3yHQ3XzsH9SonpG9NEa4JfX6GSD6qhMHU84wl5AqBGFCauSQcWWOgJlbk7xgML2RVVEM0YiIBRu1bRZvkHm4Ej39SowtDueGDRkFmwWX8m50VxBaCyabL8+GbgctUti/Vng7fzYiMRxq+6fC4AiYkoI0eCdySWVqpkXwjuGpKfLwd2XwIoLJTZOhcwTguIjRokJqPbr9hB9oVCYNcmoRvoSQ094d17nUIlJd7evm0VKo0fSzFysF003ylUErHu4xjeEyU10+O9p4/QaeRgjKGZ5vZ7Rbw1qLVfxg4apCa17vfbTtHVdo6RO4zDWzwjKWT7r9MqUGrZAPVng93RLu0UKtUFSgCzcYshvf/7eKdQSQILEZVSrf3ZKlRqFSj57aLUXYTSIdptESrVBUp1rjXWiNTais8//3zf/XyxLC8v9/1Xn4AWEhIS8nKQGIny5o9fxzv/95tJz9b6qyQ8e+8FPv8r93Py2/PIlpjRezef5B1P/Qa/8Py/55Nn/4xfeP7f846nfoN7N598mY4gJCQkJCTk1UklZ/Kl//NhTt1/CSHgpp86zF2/fANG/PJNcg8JCQkJCamz45GMutOCFo36innE0Rzqo8muz8cVm/G9Ds/YETKn+gmM3LaIt1LR+wcuTkJHLVo9BUrS0BGmBZaNbWpYnREEmga23dN6H1VhZI9KfNRg/ns+AhJF8Qa6fURIQghPcNRDoFQfcO/c9toAsVgAK09kA892BzC3LJxtOm39cCy3r61/LzZP5wcpxoVvrwQv9CIY3pOgkq2ydTbYwImi1bQPASdvFZeDCXEa2zO8a9ANmOhx8q/mcYMbRQ2GC8/+j/PYASNAwBMA2aYb7Hy6kL80WKSKoimBHZG0mEb6QJLcxRJmLni0SlBKy1We/8LFwOWqmxYrT2axy8GOz3Vc7IDxOwB22aa8vsOLTGkOumfPF6nmrbbfvGfEm3RBKAhVIX+xQv6iz32k9hnQd11QFP+YuNp39xIoDU+rpPdGuPD9HkIIywZdaxMogecYYZYEomohIzr2sI7fBa6XTKy4RmlCA1yyZn0/vHX1PF70m088iyh55+vOW54hthJDPz1Ebn/7oPqB5BoHE8u+6S4/c+hhvqDrVCqD1UshLz2maWIYBoqUvillt8ZP87eb13V9bqzEOZLYwklYPLa2q/cGpKwJlLxv39BF43MZtRFltSZQ8nG+iErUikAvQFUVeOMIzfVcHRSrW6DU2LQq2aPYZMsKZR8hu1RBOLLhoNSKq4LiyJ4CJbd2HNpm8xkhJazP175L17x7t1OgVKfWbnQLXtTUypM5rBY3F6FryG0cyKQrqW5ZA7nHOJYb2GnIMV02XygErsetksPS9weLBB4ELaKSmo1RXKrgBBQOCUW0DVjtBNeWVHMDxCoJT8AV9PcrLpUprV6+OjU3XyJ/KXhkp1AAIQKLt+zKgK5hwtO1BL2uoxkDNaIO3H7eKV7EG2yebq8ThKYjbatLoNRYbuhI06K4KcHtvs6EpiFt21eghK7hoiB1BWI92j+ahvAREltlF6cWd9lToFQXObUIijbOW813ifr7rY8rVKOclMiIweaC38u/QEa378h2YxqdzxAhJVKImkCp+xocH3YolyGr6b7LVUvi6KImUGout1xwJGgVFzsqGg5Kneh5sJISa9Q7Gastzz4Ac9Pwot98bo8LBc9N6Z/M3svmxVkqWpxIhzuhhs0Rfcv3XfjGYe9dNxYL5gQblJ/8yZ9E9BGTSSn7Lg8JCQm5HMwcG+We33k9J75yjh/8z9PYVYdK3uI7f/w0J791kdv+4VF+OHyef/7Cf+6qklesLf75C/+Z39v/c9yVueZl2f+QkJCQkJBXE8WNCl/5nUfIXioSSeq8+X+5jtmr+qQVhISEhISEvMTsWKRUH8R889ne64hIdyd5BBdDwITqoB3o3REuHG8wqo6ieB3oTq0jVbgquL3FOcLV2sQ06dmOTlMp+7oX6VGBogmGdvWYrdujrJ5QUDSFanabAZABnZN+1ExcGzxqDGDi6sHKccdgxYISHdGRjjfzPSjxsQgjB4NFzMXGDFwz+MCXnlBxbIkb0HkgPhHBrjiXRRwDEJ+MMJcaY+r6AX/3ICieE0B1ywwsrNFTGk7ZDibeUiExHqW8aQb+HQD23z29/UotKBpERyJUNk3cASL7BmVygFhBgCs/tGegcul93SLVQGw7a7/xP32W90aNqBhxhXLW52Lps23VEOgxheREb4c3qSg9v2N40hNASbX3wK6rSVzNq0sUJKoASza/z4mA28e4IvPIFEpVQXEU4mvdA6m2OuJTqs5S6KT0CsY0TS5cuMDCk0d7rpMod/++Ws7AjTi4EYdDpd5NvVJF4LaIqA1H4ijg1K5nUXERdp/7wwFRGx/P+FzjKiB6Pl4lw8JlOCqwXf9tKJaErqpMkopLzKLE3iapUKn0Fi+Kqot0+zgNmibS7ePsaO9MrJGaDeYuWCcxEdw9BmDk4OWx51YjCvGJKIXFMnIAIdbs64J1hGlxlcRElNyFYiChi6IL9LgWuH2oJzTi45GB3H8GwRjSiaZ1FO3y1MfRjIEWVykEFHtrURWhCaxCsPZobNRAMZTArpl1dr8xmBtsbNQARVBe3T7OVOg60k/J21iu+QqFG2gaOH2Wb1deUUjv7l3X9BOSjB6K9/9u7wt6LpKq4hu/1ly+jaPbNg5ssbSCbUlMn5/BE5P616OxmMS2YUTpfd86hvB13cvUXCWdCH0dBR0Jbt5b13Aljmg++7zPXDLl3vX3xfWrKK5nMBIl9Gj3AZZV/2vPtl3gy5jmSzuLJJVK8dGPfpTrrrvOd/n58+f59Kc//ZLuQ0hISMhOUDWFa969nwO3TfPQnz/H2Yc8p/qVU1n+8l8+wJ/9k+8hffS4Eq8L4Hfn/4o701ehivCdNiQkJCQkpBe55SJf/u1HKayWSYxEecf/dhPp2RfZlx8SEhISEvIi2bFISa/ZxB+85mm+cumqruVWQYcIRBe7ewO1Du2SkevuTFVrYgG1NkM3PSpJDcHivEAxWzowze5OcdEyUCSkg1BoFy20uBxJ16cztLVj2a+jt3XWdsfISGLCQE9oZE8X8Ztu2dbp3dIJPHpsCD2us/RosIiy+EQEVVcCO8gohgIKuEFdblTvxV8GnDhtDHvXixlwUGji2jR21WXjuWARG6ldMRzTpbSy/WDEj4L4RAS76gY+vqmbRqlsVMmeCRZBEZ+IYJcdzHywQaHRK4cor1cDn5ddbxgnd75I7nyw2fljVw1TWKhQ2QiwPQGJqSiVTRMnwPWpGAozN42wcbqwo0GoxuZUiE/GKK9Vcc3gIqWgKIbC0Fyc3KVSoPvPSOmMXz3E6tM5zABiOMVQiKZ1SuvVXmM//gjP6CioW5dQPQGQXeqzMR8RjJH0BoCz54qI7RRGLQ5LiZkoI/sTzH9vo2lM1NYh6fNdqiCa0UlO6Kw931F3tu6bT1HR4v7k59YkdY3GidZalgtvdUdtCmadSHd5K9n8zIopTMQshnTJuZzXE1sZAyRY0e7ny649XlRHvTYZ1rufC/dkfgjAQ+V9Xcviojpw9GjI5UHTNEZHR7n9wLd4xuxW+yzaaXZzhlOl9njV6hQsVoYABdLeFbJZ6XZt2MoLQGJXvebgoYLDpi7YNBSUvAo6oINidt8ceqH2mQDNkriAbLmJWh2UhE/Vp5Ulq/XlPpeh1ipabVsuccs2paKCZQmE1f3lSrE5+Ctq7TBFhfG9KtlFB3OlxWHJxwlTlprLhbSJj0eobFo4tWeGNHdWJ6uGgmMHdAnEq9KCOs4IxXtumAU7kDuOnlBJH0iy8Vy+cXw7QTUUissVSqvVwG48g6Dogq2kTiVr+rqb9CKS1hnek2D9+Vyg30E1FPSESmUzWDvPSGlER4zA7afEVBTXjLIesP0bSesYSZ38xWDb02Iqiq4Eal8AJGdiGCmNjZPBIt/0hIpQxWUT20fSOkIRVHPt97fsEBd6Dke1+sJyGJqLIVTYOleuLY8Alm9ZABE1ABs9piBNu9tNNBKh0UZw2o9dGBHPrAgXpH9dJCItk25aImYVDaSmI+vvsH4iqdY2SW15dFjBtSRmSSKNZvtF+JRvbd+M7lYwS5L8WvPmkxF/F6TW5SlHYppQLbc/Q9raQz4iKjvaXC59hEZ2TDR+NsdolleEREowE4r3s1ng+Og9rVRtv21wUg6HizYbukK2FrEcz9R+/+Hu94vbM2cAKAJMLTJldMemXWN45bZ83LXq+/1SuxgdPnyYfD7Pvn3d7T8Ax3HCNmCNe++9l3vvvZdCIXgEZkhISDv/dfnb/OnyfYN/wZvAud3FLFm4jsRRXSpG77aKBJatLG9+4tcwlGCRx724W17BUXpPEAkJCQkJCXm1sTGf5yu/8yjlbJWhyTjv+NTNpMZfWmfXkJCQkJCQnbDjtzjD8AZMtell7tmzyu8/c2djWXk9BvXn2n5Inm53MYpU2jvA4lvtnbBelEd9oFhDy1tsrLooGtimglpuXV9DlNtnHooW4dLUIZWhGY3n763NfPaJeGuLXmv9bwVk52BXZ4dxh4hp7URHJ33HqFJXh3OtM7C6ZaHoSuAZ2nNj4yiGytozwQYx9r5lEi2hcvqLC4HK7bt7CkVXOPO3wcrtf8c0UsLC94KJsFAETtVl81SwwY+g56PO3rsmqWRNlr6/GazgMwNtbuD9HHR7w3sTFJYqbDwX7HxOHR8hf6kSbH8VyBxKkb9UChyft3ZisPOy8sPsQOV4Kvj2jCGNvW+Z5OKDa5SWg4m+BtlPPamBgNWntwI5FqR2x5m8NsPS45uYWzsvN7w/we47JnjuC/OBtpc5lGTqhlGe/WyfqD+le4QpczBB+kCSzVOF/sKoDmFQftGkuFhl/bnaNdYpgOoY9BGN8jXRQWekXKfwqLO81vGYbPnbi3hrreMdzzEBmNyvkJlVeOYHLUsT7ftaGTGgJfmzKhVWSyqKAqarUNjdsi95qIy1n9/4ZPuzUI+2D1J/avqrjf/ewwt8Pnd94+9h1VtXSonWeYwhrxg0TSMWizE2us4bWOf71aZr0gVrFL0mUTuaKfBkYa6tbLkj4jWvtrfF1rNJqA/eRh2sss5jaYErwBUCpfXeiIFabb83jBa3r2NalSVbI1uzrTDykk7JnGjZnaaAyft/Idu/Wy860BoB11G1VNdaj0XtEiqpbVW8gnAchADXcagWJO5Gp3ChWQnJQvvzS9EFw3s0cvMVKllr25i3xj5EFGZvHWPlySyVzZ07ZmgxlZmbR1n+4WYg9x89oTJyeIilH2wEEjSrEQXpQmGpHNjtLzcfPGYsMqSTOZRk5cnsAO6CwSNei8uVwIKaF4PrRNCTWuB4MsVQMAYoh/AibF/qOLQ6l2s7dYb3JlAjSuDfsL6fnc/w1ntdicch335vSlkCAaUVEyURg2L7PShbhEIiFoVae2n8SAxHccnNt9QPLcsbtGxfRDXGDxvYVcnmeasrGlxEI1BsqdtaJu1MXJ3ALEmyF1vfaTveOfWO9o7tkBhVsauSYlFp/27ahUrSaI9Zcx3Xi7Gt3YIyqkOfS8GN6WBCMe8vxHHs9vaQ7Gh72Y1nQi02veVnNBNKQ+jjfQBOxFvvYKrKRlVly2k+vzqN3sxM+we2Lvn+kN549iUnio2vz1ppDoy0v8tqmXYhSyKSbfv7dZFmPTUBbLTkbkeFIJf39u2ljtp93/ve13cbk5OTfPKTn3xJ9+HVwl133cVdd93FyZMn+djHPvZy705IyKuaolNhxdrafsXtCGhEmnWKwSZo9aGsvbROdyEhISEhIZeTldNZvva736dasBjZneLtn7yJeLqPa3hISEhISMhlZMcjk+l0GoDcusnIdJT/5ei3+P1n7vQESh0UDloNodKessneEYuHNqLUB5xK4yrxVe8N0hMotWOndLS8hdiyUH3eNGXMQJRNhM9M9uySS7E+K9hHoAReh7W07bblk9ckSe+JcvJv1lpmpfq85dYHxF0X6bgohuKJqerHUZv+7jcb1lsuQMrATkh15u9f3X4lH5af2ET4WOJvx+rTW4htnP79uPCt5eCFgLWnB+vQiI0bSJtAA4EAlS0rsDsRQPpAAqvkDBxbEZSRIykqWTOwOObMlxdfoj3ywYVTf30peDkFxq4cIjdfuiwz7BVNYeRwkq0LpUBiHNeWlDdMnIARcYqmkJiMUFyu4to7L2sVbBYeCijyA/IXS5z8wjxmwCiW0kqVS99bw6kEK5e/VOL8t5ax/Rw4fMRJdTZPF8m+sM0At49zUXXLal4nfjFl9VnhQrQIlDzXAcVQvLpaEb7f3Shfj7rSNCaPRknvNjj51ZrqwbZB02oCJR8sG3SNjZxOqeNUqrXBTiehewKlDiI1l8HqUIdAqUZ0TWkIlY5ee75t2cy5KJFygtL1nj1+q0CpzgeHHufzuesbAiXwBsmcXs+rkJedVCrVNrP/xsgG36+OcMEa7Vr3muR8Q6hUPjVFKu6SzzTbSePxIqslL95sPdtt6azHLKyyjpLV8LmzcCIStSowtrqvzQtCo6J5A8dG3l94IlVPqNTqsHRg1GKtqLJVURtuSp5AqYP6DrmglywU1dOEy9pAttQVhOWi5vyfkVJVwXEoZSUi1y2irbcLOwVKAK4lWXgs7y3foUAJwDFdlp/YDByL5VRd1p7ZwuqsQLbBKjleHe7jLLXd9gaJNBOqwEhomAUrkOuTa7teVG5AfZIaUYimDYorlcBlB0GLqkTSOsWlYO288lqV8trlcfUEKC5VAu8jeI5PakS9bPtqDOkomqCyEaydbpedQG2nOvpQBIF3X7RSv9eVuP/oZznrIi3bEyj1wXNgarJ+pvZeZ+hgWp5AqVfZaHNZbsHGrTn2Nt5PqQmUOql/d8Rg86Ld7XKrqZ5QSe/xeq+prJ4ykRHdd7FUFYTj1gRK7VRa6nUZ9S9fx401lyuqbKurnZj/vgkpG0IlO66yd8piI6+QK3ptNWF7QiUz4fd0ArUqcSKC84qBGRVtdUTd0dmOdwuUALQtb5/cYZvkRHddeGZjtCFUevv4043PpSMon5zj2V0xrhw/C7QLlOqMKAYbrkm0dnyVincPHDp0yPdYflS84Q1v6Ls8lUrxjne84yXdh5CQkNceCTXKhD78I/u+qmOx5W4vik+riR+Zk1LML1suJCQkJCTkVcjCiXW+8X89hlVxmDiY5m2/eiORZP/3uZCQkJCQkMvJjt/iRke9AbGtlSoj017n6hUTyzy+vtd3/cJBi+glnUJBYbHcvRlX6y+YiU6pTEctLjzbY4VON4walbxs60jtSYe9ee5SBbOw84Hauj365DVDDO+N89znm05D0t1++9FRg9iIweapy2MrXl4bbDZQYWEwMVVPR5VtMIY1FEUJLDaafd0YdtHh3DeDiaOWHt0ItH6diesylFergUVK++6eorRWYfkH2UDlJq/LsHWuGFik9GpAMxSmbxzFMSVmbucz5bW4yr67p1h4eD3Q76AnVaZvGqVasAMNHtslh/n7gosEY6MGe++a4sxXFwL9foqhEMsYFFcrwaKCXAILlMATRW08H8CpoCa4tEsuuQs+HYd9BEoAokcd3qCHiCg2qhPNRMie3aZu6hAwjR9Nktkf5bm/WuuIh/PducZ/5hZNzA63AdRtyisK1TJUe+yi7HPsk8MW1pzgFD1mtWT868b8sE0l5vILE99lVu39XPnE6Cn+Y3a28XepVCISCWfQvFIZGhoil2t3fksrJS7QLVKCplCpOGRja91tkWK1f6f7Ltek7Ag2e9x/Wsn/2s3X8nj0bapircNZc6WgUq05aviJ1rvK15w1d+1y2dwQ5FtcOpRy/3pPlKvEhhWsiMCu+rTTthEgSTNgO0pCNRssSgu8NmQpQIRp6/aCxLU1EGAkNKyyEyi2zUhoTF6fYeGRdezyztvPVskZqO1rJDVGrxiivGHiBhBiRdI66f1JVp7IBjq+yLDO6JEhz5HnxzARKT4eJTZqBBYpDe2Oo8dV1gM6dCano+hxLbBIaRDnJiUeJ70nglAEqz5OnerQUJdrUR0tpkB6CKfkf+8qKU/g2Vm+1RFSpJI9v18kE22OR9VCh5tRvCaO8osfB2QihrAdrFIPMWgs0haD7re813dDzSHS5z02NiQwpYa9TZXWKlACmNkNWxuQ3wIn2r/bwYk021ZrWypVqyMizujf9nJ1KLq915E9Nq9Iyaxjk8+UeppDRTWfAxegT2RRIhYzap49fVwpd2lJ1hxPAFWqCXUzmUzP9UNCQkJerfzs5Jv42ck3/ci+z5Eu73jqN1ju5c4kYdJI85Wr/yXqdu/4O+SZZwa0MQ8JCQkJCXkFcf6xZf7u93+IY7nMHBvlrb9yA/o272QhISEhISGXmx2/xY2PjwOwteJ10n19zcvovv7Kc77rRy95nZQFW+V82QiyKQD0ioWW8FyKeuHnZGEkYGy/5m2uR2ehtGodjS2DcOV1m80XdibIabgkKYLNMwUuPeITFbbNC3J6f5LpG/0HGfsxfvUw+942FbhcajbG2NXBZzQlpqOkDyQClxu7apjJ48E7X2dvGWP2dcHPy4X7Vrj0cHDXGS2uoMWDd2Y8/5cXB3K1qm5ZmPngriXPfvYCCwMc3xUfmmPyhnTgcoOgaArH/sEeModSgcrZFZen/svZwBF/uJLKphV4ULaatXjqT8+S9xPW9EPxIt8CVmUUVyuc+tKlwIPOqdkY+98+jR4P9gIRn4yw+84JlG0GczqJZgzGjg7tbOV6LIcQJCajTFyXbl++A4HSyOEkB97Zoy7r5XIEpPfGmbp+m/30KZ89V+bS9/PNZTsQkwKUN102z7cMqka8546weggiastTGUiPdS+2U9vMzExDshh8RDyfsdmoxb9dcrpdcgAO6N7n/yjddDyzbZt4D0eJkJefoaEhtraanfKnLU8kfk1k3nf9upNSKeVgxoILVtScjqb3v/5cn0lXQ8IhXlNTOp0RQzXqDkqy5fbMV1VMZ2cuj1rNYUkKhZUVhVK5u5zU+9c9md0a0aHuulEWvcFj0cOBZPyIQWzU6IqD3I7Urhh6IqAdpYDEZBQ1GqwOVzTByOEUejzY9rSoytTxEYxksGeNWbA8gVIlYJtGeK5IBDT3LK+bXLh/JZBACTwnLDNvBxYaFZcrXLhvJXC5xGSUXa/3qfxfIob3JJi6cWT7FTvIvlBgcQChvl1xsPzczrZh42Se5R8GjFYGFF1B6axTFHXbdsbmBZON073FcF1RrjVGjqYZmjV6vkP2IjVtEB/VEDXRb6/vBzzHoxqxtIoe29nNIGv1k9RUEqMKRlz0XN6r/NhelfhIj3NXr/98hNQjuxSi/k2LBp0CJYC1ZSgVWwRKO7yfCmUFy27uh117V1N7iKSspEAgyagOms9GrD7NRgXQ4g6l9WBtIaFI9LEcSsRrD57vIUyLK167b0z13qcvXvL+XwR8noSEhIS8FlGFwq/O3YPAp+lYq+7f8tBRtuaDu4KGhISEhIT8uHL6gQXu/beP41gue45PcPe/OB4KlEJCQkJCXpHseATk4MGDAKycLzUESnU6hUp1gRJAeVoSn3bQRXNQIbrZ/G9zSMUcau8s1QoW+S2FU8+oWB2W86JqIarNHspOoVIsAeP7NLT6xx2dxA2BUp3agLUWUxg5EEO07Ceq2jXY3RnjVtlyyF8o+y/vFCpJ2XBwWnpsg+f+R3tcz06wSjZmIfjM/ORsjJGA4hGAzIEkk9cHFxsZCY1IKrh95KWH15h/ILj4x9wK5opTZ8+dU+x6/XjgcoGcbVpYeHg9uBjnRbB+Mk/hMkXSua7L2rNblNcvj9uTXXGZv2+FyvoALmED/H6p6RhH7pkjmglo/+3i7WPAbeYvlTnz1YXAkT9aRCUyrPedKe9HaldsZwOdHYMq8akoo1e0jP7s0EHJrjhe5E8nfQRKQlVZ+mGB57/UxzGtpbxsccyr5hzyix3nslOo1DHwKR2X1KRGYqL2HIm0//ZdQqWW5SMjDqNj7c+LVoFSJGsR6XBZKY0rnC1FeK4QIbbcvm+VQxUqh5r38jMXptuW/2L0ET6eub/xd5tQyXU58J+stmuiLlQqlUokk9uMPIa8bExMTLC87F3vdYFSnU6hUl2gBLBH22KvaH/WnNtsPsujMZNorL3utDeiXIhorOgqMtJ+/UU2FSKbzTZNp1Bpsuow0iJW6RQq6R3Cu7pQKaa7RDUXvcWtTArRiP2po3WIIsoVBadlAFvNNY+lU6ikFEooBU+UunjCpJAVveOQ6BYquaUSVtHGtZtRkjtleE8CYwAr7dErhogMBS+nJzWEFkzcZFccFh/bCBx9K10viiuoiMdIaszeOhZYgOttNHgRq2izeSq/I5fTHwVmwRooPm9QKlmT/MWAousXQWmlSm5+wO0N8BOMXpFi5HCPNkZHe0OJxxsxbq4lcX2sc1pj3jqFRCIeY/OFCrlLtfqkc3lLTJvQtLbyelSgJtpdCVuXi2ikPcKtJiQa3qURS9eOo/Wdt8MNUnbUS8kpHaMl+qxzeadQqb7crkrP9akzLrdPnSijOpfOKhSyPVfxFSgBVEoCU+tY1nEd2FEVO9oSz+u6JKIuSi0D1O6YTNIpVLKSXp2sCZjBIt4hZGwVKOl5gZ5vr8MrIw6nEholTVBYa5+Yc2xiiWMTS42/v715pHkYlsqNzhJviJ5ufNYQKkmJ+mCFuGg/9jE1weqa9zybmgo+6ejF8qY3vYn5eX+R82uZe++9l09+8pP8wR/8wcu9KyEhIT7clbmG39v/c10xcsl8hHd88RpGv53gLz/1AA/96bOYPZwQQ0JCQkJCXis8e+8Fvv3vn0C6koOvn+Et/+v1aEbAyXMhISEhISGXiR2PENxwww0ArJwrM+Gz/Porz/H4s3vbBEoABnANFU5MRbAWtx840boEOC5OXEft87Ipowai4nUob12y2brUMXNW08C2uwVKdVSVWFpl6rokxeUqlS3/gZpOgRKAkVRJ742z9lwBp+xnBa94IzmduIE1BABkzxTJngk++LH4yAaLjwSfMX3xwbWBBB2DuP6AJzYahJErUmhRlZUfZgOVW/z++kADVzO3juKYTuDYNi2ugisDx+HtvnOC0kqFNZ/Yin6sPpkNtP6LwiXw+QDQogq73zzJ8uObweLzFG+w0yzYga7R6IjB9E0jXPreGmZu59dbcbXK+W8tB75G4+MRRo6kWHhorS0OZDtc0x0o3i93oeQfv7YNq09tsXqih416HZ/B+dUnt1h9cpty9eIts/NzF8rkLnS41/URKLXi9tKl+ZSXUiKEYHhPBFDYuthR2JU940MBRg9Fka6kuOX//BKW7Q3+dQiY5p+uXZQxb5+2c1Aqjde/36WuH44tS8qT2wsifnX3V3j6797A0Pgau69u2tNfcpLMqgUO/JGF8m82cYsu/HK7U10ul+Omm27adhshLw+7du3iq1/9as/l10TmebI61yZQAtA3o6hlnd17N7lQ2l5obG+0CKCkBCGQEYmo9r7+XB2UWrPnXEWnc36zowtUS3YJlBqbUSETc3AlrG/1vvc7BUoAsZgn+q6URZtAqfHduoqwusv5NcfqLkqtCF1DtogQN57vaFfW4i634+IDa9uu071DcOH+4A4+ri1Z/kFwpxokA4m8hSoY3pugsFAOHPe2/MRmYAcmLaaS3p9k83Qep7rzh75QPDeeIGXAi3sb2h1n7cSW73XTC6voYBUHi0oehOqWRXVrgMkLMzH0uMpmH7chPxRNgBCBHa2GdnvioKDtk+wLLfennwhaUcHtvpZSMxHsikt5oxnVqPi4BgpNQ9p2I2atKwqy9g65HZsLAAHvI01l6emqV3UaPiIfRQHX7RIgASyd9La1E8lka/nsos/v5idQUkSbkLtfdddLoKQokngK8pbEdTv2VNJz53UNJjM2F9c0Sj3c8VQLHL0pUAKwpOBksdbWqu1SPwclADtjN555dQprCZJj279rX+8sc+6Fw1xxzeOoLRX2edtm//0WsZ9Zxf1zFd7cLnwqFHIoisKBAwe23caPGrmD59Zrkbvuuou77rqLkydP8rGPfezl3p2QkBAf7spcw53pq/hB4QXWrBxj+hDjZ1I8kn+OHCWkK3n6K+c4871Fbvn7Rzhw+0zoWBcSEhIS8prjiS+e4dG/eB6Ao2/dzes+crStLz4kJCQkJOSVxo6nW6fTaYQQnDrXZxDZ59sqwEPEWUEF2e6i1Io5pLZ1hiqKy7HrHUZqiign3n9GuYwa0Ct+B7a17c8vVnn2fy77C5R8HJXqGEMa41el0GN9vlwoXb270RGDfW+bQg8Yr9GInLpcDOgYNCjDexMDxZNFMwbxscj2K3ZQWq5SXh3AiUcQOPYFYP/bppi+JXgMiHQZaAZ6ajaGMXyZrhfFG4QaJD5POjLwtRZNGxy5Z47UTL+bzwfBQA1013TJXSjh2sF2VE9oJKaiBM2JS87EmLklePThi6LfoW13vW8Tv9J5zrW4gtYaZ7RNRKao1cHTx4eYuMbHFW4bgVN6X4LhvVH/hX32/ex9OeYf3WZQNdJbgKSUrQACJbglU2GuxeFGCtoclFp55sI0cc1b9/CtjzB18HTXOru0COIL3iB0/f/rfNA5j5SSvXv39t2/kJePXbt2sbi4yHOl3s+3Nav7frBGy5R3eaLW9XK8zUWplWjMxCo0r88J0+HKcrMdJCMSrdhfqKTnoNdoc6/otzqrawrrS/73vp+jUp1UyiWeALXYR8Cuqw0HpUa5CZXURO1e1zVfgVKjfLWKW/LKK5pA0YM/2wbmMo8jD+9NBI57EwrERgzUgNGi0pFUs5b33A+I8M366E9k2GD21rHA+4msi9qCbVA1FCLp4C5Yg6LFVIxU8HaelHInOrsuMgeTjB/bYTRsKwP8duA5YVlFuxGj5oc6NNQlQDJSWiP6UBiGr0CpjjLUrENT0zqRVHt7QESjbS5Kbcs0DZHo/d0iHmt3UOpEU0Hvfb3IfmUBGYv4ipjAc1OSsZbyAtRWPami9G2/oAhkVEfVYXRWeGU76CVQAhAJleFJpWfzrNNBqY5pwblLGpVt2s2tAqWWrQICrSL7C5RkTaAEjFqSq/JW27u664o2B6VWvr15hJIbIZXOcvDKp1FVn8bzl2rtrr/tfsZsLGhMTU2h9/ndQ0JCQkK6UYXCTamDvGPkBm5KHWTvdZO8/1+/nuMfOoRaa6eXs1W+/e+f5G9/42E25i+fg3lISEhISMjLiZSSR//iZEOgdO17D/C6nwsFSiEhISEhr3wC9djHYjH09TX+wdTDPdepzHUOGCkUUYgteA/FStp/k0bW6yi0a/EPrquwtiIo18ZU605KMuLfoScqZmMm6N7bYqTnfGLeNK23WMkF6fR4cFsWWJbvTJzCQpUTfz5PNWv3fvD7zPBFgqIKREC3xdSuOEfumQs8AJLaFePQ+2ZRAg7SpHbH2f/O6e1X7GDs6mGu/KndgctFR3RSu3p39vdi4XvrnLu3TwRUD4b3Jhi5IngM3sL31ll+LLhjwcLDG6w+lQ1cbv6+FdaeCeaiBLDr9eOMXTG8/Yo/AjRDYc+dk6Rmg/1+dsXl7NeWKC4Hi6UzczYX7luhvBbMbaiybvLCVxYDuSiBJyycvCEdVGvE1rkiJz9/MbC4KZrRSc0FFGABM7eMcuh9s4HLTVybZtfrewjo+giUZm4dZe4N/SMT/erG3XdZTnhzAAEAAElEQVSMM3fHWH2F3mWF8OremvWcUET36i3L/coDnP/2Bhe+63MPqTW3ux5WGUJTezpgSUNHGro3otbB/uMKwxPgxg0fh0CPaq0ej6/Wt+2yUNHYsrwDLE15+x457T84euN+LzL0DxfeghGvYNTFTbbLlf9kkTt+9iLGh5fhhdr2z1jwk5fgJy9x8efX+J0veud/dPQyi+FCdsyePXuQUlJdLjKi9q4jZyLZtr+lJkGTPL7u1QWpqH89mV/1ov6k4V2DBVWw0iLG0Te8/3YMfzWDsQVSg5TqMBfpFvwaeYmrClzVvw6RUiA1/2V60UYv2r7ChpUVha3ztRuzx3cr+VJX5JFQmtWZLBT7twtpiiPHjg6ROdgSi7hDdcfI4VTDQSYImUPJmrg1GNM3jZCaC769xGQULRasQepaksVHNwK7+AhVkNoVQ40Ge5jaZYfVp7dwAjpRmnmLlSezOAGdf6o5q+aiFEzJE80YTF6bGUiQMwjJmVh75OoOKS5WyJ4J5qIEnhPS5iDlzpfInQ/u8piYjBKdSPRcria9ZZ3Rbesni+QuVjyRUDzm71QEDQelevlYRkOLeddmQ5zUr56oiXxmro8Ty3TcQ/Vtdkar1YnqjB6OoveYfCLr5TtUPooGEwe05qQVrce9q7cv1yMwfUTDiHYs99t2RPfeuYVAiNohdNwKbkTrjs1tLFOxTMH8eYGfkbETURCuRPiWF9gRlV43kRUXWHGB2vFYG9IcZqPexqyEQOuhQbWS3ja1De/4S6pg2VAbD4f4iHedPrXk//578/A5AL5WOkak/mx1JSP/pcjYH+TZ80c5In9be17/TQH+7w3v33/K8ny1wP2PxxkaGkDoFxISEhLShWaoXH/PQT74e3ew53jT83/puU3+8n97gIf+LIyACwkJCQn58Ua6kgf/0zM88cUXALjp7x3hpg8fDh0FQ0JCQkJeFQSaejs5OcniynnfZY+f3Nv478qcRXS+2Rl8eNNEj7ucqzkBVNIK0ez2gwXLl7xO3c6oNxnREdXmZ/WoNwB0Dbsi23RBPWPe6tQcmOZeN0xx1WT9VO9OdCFEX6t0oYj2AQ0/gRJQ2TQ58+XF/vvlQ3mlwoX7VrAKwWIy7KpDdcvykgOCFJQS6UgUjUBRVaWVChvbOCj4sfyD7ECRYYMytDtOZEhn47nLM8uqsDBgBEhrElQAznxlAde8PHZYdsXl5F/NYxcH2J5C4GNzbZetc8GjDwclNhph7MphVp/MDhTVGJS1E7nA8X4A+YUSZil4dE/PgdhtXmqskoNj9a8T/Vh6fLO+QvPDbaLXcF0WHm2JluvcN9dtGwzc9oVM7T9Irhoqu1+XYPVkheKa1XOQE/CESo0BSbCqYGvN9bWChZ1s/l3tEJrGV11K4wrz5f6uS3XqAiWAaE7jc6ffy/tv/Vs0w8ZYd5n4ShEhuw1ZxHfKCGBOlDmXWgDgPe95z462GXL5ufLKKwE4fcpmbk93k+3vCkcb/z0TybJQTXt/2IKLZ+fQUw5W7VJLRavkK/1dOUqqQqluNLTRfn84hkQ1m/eU0XIrOqrAloLWDB8j31/coZdcorpLOuGylFURdp/7tf7VbR+0oApoceZR8s12XF2oJGyH3JLXdpKF/s8Ot2W5UFWyZ4sDRcPaFSdwzFiDAVxu8pfKXgRqQAaN6B0EIWB4b9J7dlQGcLIMiGtLKpsDbqfrutue0lqVysNrl80NK3e+SH4+uPhnkGMD75l/OUntTlHJ2VS37K4Yxk7q0W096RAV1wVKreVXngnQTq+7EAnILdlY5T73ei26rW17oumUKjUVYTfPrexsb6gqtMSOW7aC6/TZno8AyTZh7ZyDVe1Y7rNvbeUswep8i8tQpOO7O9pubqRVNNVtoeVE+re94hlJRLNZy2solsTt8z6pVsGJNHfDdgVWorm+VgS7ReNWFyg1lm9olEdsyj3Erp3UBUoAzsoQf5u9mZ/Y9QhKSTL+/8uhZSVS0HxvK7mI393w2mNpBeV946yurnHN1bfuaHshISEhITsjNR7nrb9ynAuPr/C9//IM+ZWyFwH35XO88OAit/z0Fex/3XQ4YBsSEhIS8mOFa7vc9/88xZkHFkDA63/+GFe8JbhpQEhISEhIyMtFoGnMhw8fplJ0cV23zU2pVaBUpzJnNVyVDMUl0jHJs+6oZGTthotSHTuuYcc1olGX4Yx/p2ndUUn4DHBcfMomt1pbz0+g1DojtrWzu9aP2vbi6lO+bbnjsPfN44xf05wR2RiU7yFQakUJmNBgVzxhRlBXlvKqyYVvrWAHnIGeny9z9mtLgQRK4MWoXU6x0fjVwxx+/67A5ebvX+X0lxYCl9t71yQH3zUTuFz6QIL0gd4zwntx6D2z7H7jxPYrdmDm7MC/+YvB3LIDX5uxMYOrf2YfielgrhHGkMbkdenA7mDpAwmu/si+wLF0m6fynPjz84Hvhckb0gM5Gw1Kfr7M2lNb26/YwepTW1z87lr7h9t14gmF1adyPe/1fraypVWb0qrPyawJARoOSh0oitt/3+qOSy3LVUPhwNtGSIy1/OZ+AqUWNyWhqShGRyRObXCz4aDUSW25GzU4/4JGPtsRcVdzVOoUKNWJKy6jhk1pSjZclOpETkcbjkqtAiUAxRYYZRVFcbklYnH9bkn1ryeRtYG6+jfV/99KKHzzc4c5PZ9DCMGtt4aDZa9Udu3aRSqV4swp715pdVNqFSjVmYlkPVclAVFLoLrt11HdUSm/mmy4KNWRhovUHVK2i9FDkFN3VDI6qpiiq7Dg6g1XJD+BUqujkl7yGaxvaQ/pRZ+6oeVQEo7J5Fz7Z3VHpVaBUisNV6WSj0CppV3o+giYrJLErp/6ABlZuQulwC6BAJunCgOVKyyUMXOXb7b41I0jgZ/dri25+N1VKhvBhENqRGH3GycCO4kqWs25KWBbIZLW2f2GCdRtBBWdSEcGdnt6Mbi2xBlAjD56xRAT16YDl4uPR4hmdiambWXyhgwjh4M5l4pIhOUnc2yda97ToiauUZOJhotSW5nafTx96yiJOZ/t1Z7dnQKlru/xi3drdVNqjUmTUFh1sG2luQ2/NkJNRF1vQ7gOrF9wMMtenVKvo3zbFy24QmNzwcVuvYVa3ZT8HJI0FelCpaoiVZ/l9X2rOyi1IFoirrsESo2dkrXlzf0YGnIZGXURLXWmn0Cp1U3J8XFYU2pC+LqDUid1R6XNqMZFnwi1uqNSp0CpsZ+W98yLj5QaLkp1nlqabjgqtQqUAKSlIW3veEeHBdmvjWPeqIMEUesCEA6eCO2mKGe+OoYdF1w4VwnbXSEhISEvEbuvn+ADv3sHN3zwYCMCrpSt8q0/fIIv/9YjbF4MI+BCQkJCQn48sE2He//d45x5YAGhCu78J9eGAqWQkJCQkFcdgXrejx8/DsALT3mzTP/B1MN9o98AEguSs8UIJ/Pds/d7Rb/VSc8q7NrVW+jjJ1CqYyToa2MPtAuUgPkHt9g45R2bEMJXoNTYthCNGa1m0capBJ9ZfOSDu5i+JXjMzthVwwPFQGlxFS1gvAbgXSUBiyma51IUdHup3XGu+NBc4HKVDZPcIDPJB2T9ZI7VE8GFIOn9STIHgsfLrTyRZeNk8A6VmVtHBxJFDYJiKMy9cZzYeLDBK6tgs/joOtWATgfRtMHYVWm0gAOPpdUqi49tXDbxVmltsGtz1+vH2fPm4MK05Ews8CAu0C322uEsQ2NY860f+uZeKzB1fJhIuv9gV9e2kgpXfmiW1FywQXGhgVlwcEzp1dv9HJSki6gN9tkVOP9gidJ6S/3uE+3WtutxA82QKJr/MfSKfgPYZVnsH+l/H3QKlABKIxYXr97i36/c2fhM3hil8ri/cPOLD17D5nVJ1ucjDA8Po/SKogl52RFCcPToUU6dbLZXRtRK3+g3gMezM8xP2lQi3ddhr+i3Ovtsi9E+aaadAqU6ChIV2SY28qNVoFSxFJayGlJ69YXUegiU6gjQCiauC5bZ33jNj+iIxuzxZM+oXT+BEoAWUxmaiwUSKNX3N2isWaPoDp09WtFiKkYqoPodGD06xPC+4G2F0koFu3h5nHVcy2X9ZA47oJOPoisM700GFhvZJYf153K4drDf3EhqZA4lL1vcW3w8MlCkYGGhTO7CAPFrU1HiE/0d2fzInS9SXNq58E5Eem9DbPd+B5TWeov0ewmUVEMwfV2KyEifdyxNaxcoAYoKkaTwfvNe0Wu+O0LXddJXoFSLfVNU71/3vql9330jwyrxfgnQPdoC6QmY2NNHoNQDxxUN8ychZV8HJeHKhkApX1ZZy7dvS+nj2AlevJuOpJc9WK/oN6Rk/4ZkMtbfQatToASgzW6gjuX5SuEqANxZleznRpEdQioZF5z8izT2jMrpUzrlsuTgwYN9txdyebn33nv55Cc/yR/8wR+83LsSEhLyI0AzVG54/yE+8Lt3sPuGZn/K4jMb/M//7QEe/m/PYVWCO4+GhISEhIS8UjDLNl//N49x4bEVVF3hrb98AwduCz6ZPiQkJCQk5OUmUI/9PffcA8BDX/VGr3775Nv57ZNvZ2Sqt1ijOlLvqHNROvKc4msOdlLFTvp36K6fcXjuyd67KHUN6dMZO7Zf48AtEahUEf0GX9Xu7dbFMdK2vc7aHuWl4zZiihYe3mTj+Y7eT+luO8i/8kSW7OngcVUjh5KkZoMPSBx53y7GrurXO+2DAlf/zD7Grhjaft0W9KTOnjsniU8EExNYBZv8QilwnFb+UpmlRzeCFQIyh5IcfHfwRlx+vszW2eC/3blvLHP260uBy22dLQ4UFRfNGBip4IKVQVAUiI0YaJ22adtgV1zWnskFFg3lLpQ48WfnAkfbmDmbtae3AsfLTVybZu9bJ4MVAvIXSiw/1mfEvwfltQrF1f5iAj9mbxtl4pp04HJXfnCOyeMZ748dOCghFBQNjrxnhrEjqY7F/WKbFIykQeZAAiPpP+AleoiIbBOWfpijvG72Fgv41Nl2yWX+gS0qm3YtMqXHj6+qoKrIWgWk+Ont+gwgyoiBKFtMTTkcutpn/xM6dqJ3+dOuzolLUfwezZUpm8qUzaNPHvD5Yu//jqXaI0TV/1HoGicXwN6/8qKd8tkqc3NzPfcn5JXB8ePHOXmiORvqa4WjfK1wlFQfoVLK8OoO4XOpLy5lELqL0H0WCsGpapRVrXfbydW8f50ciJiMmzZ6XvouryO76geJIrz7Wc87SEX4rOOhFi2kIrCqsLHcnVCklKq+bTsAUShhrZbYPG/1jLkSmv+O6zGV5HQERQumPElOx5i5ObgYfXhPgumbRgKXG9odJ3MouBC6mrWwBoiJy10oUR3AuWnsqmESU8Hah9KF4lIlsGuQXXa4+N1VzHyw43NMl+JyBekEEykpukJkSN+pzvdFo0bVns/SflS3rIFi8Faf2hpINF9eN3d8rSjxOKJ2H09eM0Q003xuKqkkSirZ91msZNLkFkxMn/hhEYuBrnv/OpCupFwUOP1ejw29q44xkgrjBw1EzHNIkn2ESjLevO4TGYXZYy2/naF7QqMe5aWuIaMRkqOCyQPd60hdRfaou6WmEBlWSYz0qdsN/+uouAVbuf5dBm5M64h5g2JBsJX1yjkRFdHjVnINBddQUGqCQMVnRTvW+4ayY6CXXY4oVYaV7t/cjnv/fBGCp0ZUFgr+K8ykc8ykc3xl+Vjb59JtNkMn9WY/iP5DC6XUvv9KSWI/7n326IPedXfNNdf0PJ6Qy89dd93FZz7zGT7+8Y+/3LsSEhLyI2RoMs7d//w4b/2VG0iNewJk6Uie+tJZ/sc/v58XHlpEBp2AEBISEhIS8jJTKZh85XceYeHEOnpU5W2fuLFNlBsSEhISEvJqIpBI6cYbb0RVVU48XOha1ilUSp7SSZ7yOuLMEcnNUxVmYs0Bgvha+0zoTqGSnjOxbYHrCFyjuyNWlJqD951ipdySzcUftEQDdA5am1bTDaM2KA2QORDj8LvGEErHQEZHedk6wF0TKrV2oEun5diE6DngP2icx/N/eYmFh9YDl7vw3VU2ng84sODCwsNr5C4Fm21dzVo8/9cXyV0MVq6yYXLpgXXcgINQigaJ6Wjw+LyqG1jkAp74J3Mouf2KPyJSczFSu4K7Z73wlUVWfpj90e+QD3bF5fm/vET+YjAxlRZXGDmSChzbNiixMYPh/cEdI+yyg9nP4aPP9oyh4AOI68/lB4ptO/PlRRa/H7x+WPz+hie86zeyWhMn1XFdOHffKlvzrfXtNuUBM2/z7OcWyF9sr/+EqvQUKAG4NqyfLGKXfOqHDlFpa4ejnlA8wVHrwGKnUKlj0FG6LrPXxNn/xtp93hLfIkwL0eGoJFucFdbmJQtnm8s6xUmRze6BWs9ZUKHiKiTn2ztLK1Pt112bUMmFY0/HObbpncvPrF3LZ9au9Q7p856Qsjyu8uCf7qEy7h3j3i+sM3+qTKFQ4I477ujal5BXFrfeeisnT54km+2+7juFSvevHeT+Nc+hYbpic2SFNkHO4lKmbf1OoZK+pmHV2i1+jkiRzeb93SlWumTp5Ey1bXkrRtHFqIkGWoVIu0ZtMkkXPd/eLuwUKqlFq22ZorTftkq+5Vy0tO1acSxJacPpytqVhSKy5qIkNK1LrFRaKXHpwbXArjrl9SorT2YDlQEorVXYPN3d1t6O7AtFVp8Kvr3CQpnSAKJYNaqgxYIJk8F7nrpWcDfD2Kgx0PYGQdEE8YngwrTKpsnSY5ut6aEvKfn5EmvP5AKXi6R1IkOXR8QOEBuL7MhVTIk3xSJCU7FKTuO+U1Id7e4OoZJIJb1/ChiZKCLa7sYkYn3a0dEIrhZha9HBMfEXCrVur6V+qeRcFk+7bXHAnUIlGTWQ0Vo7oSZEqhZcNuYd32NpK9vxnlvIKWxc7Kgv9eb2OoVK9b+3ViQrFySyw6XNNbSGQEkKgexoB1ZclXLR/z5wYxpuzK+NK9E0z9nIaREvdeqP3I62v+667JuwiEe8G8iOiYZASTUlqtn+BXasvjW4UNYpus3v6xQn6fnuY7CHHBwhcISgtNL+bjCTbr+vWoVK7kaK6JkRJjSvnf610m6+VtqN8Q3vOVR5e4TH75th463eDo58w3s3On9+if3797N3796ufbkc/P2///cZGgo28SgkJCTk1c6e45N84N/cwfXvb4mA26jyd7//Q77y24+SvRS8zR0SEhISEvJyUMpW+dvfeITV01tEkjrv/N9vZuZo8IlxISEhISEhrxQCqwKmp6dZPa/x2yff3rWsl6OSROGcrbPi24nZpC5U0nPNmb279kvGpqWvUKkX5kaV/FL7oG5fRyUAVaWwVGXxB3l/h5VaeenjwJHen+TgT0wHnslsDGnBnY1eBPkLJcxccJHF+nN5zK3g5apZK7BbDXiiDi0ebBAqOhph/93TxEaDzczPXyhx4VsrgcoADO+LD+SOMHFdmr1vCa5uH786zdixy3etXE5ioxFmbx1DD/ibpw8kOPie4C5YmUMppm8M7lCx8XyehQeDi3923T4+0Pbik5GBhFt2yfEX8WzDxvN5Kj7imb64kL9Qxip4g2V9BUrb0E+cBICikJqJtEe97XDm48yNQ+x5g89vUK/PezivrJ+tsvp8pe/gIbQLlACqJSgs7rzOrKQVNFyuyVRIaV65ulCpU6DUybHEIuxdh0y3s5vzkwnO/vQI9z54hPXbUnzjwSOc/ekRLn5gmM0HPwB4A1Yhr2xe97rXAbB58T/xtcLRruW9HJWqUZfNEbvhqtSLulBJX/PaMHHpss+xEHL76LZWrC2BJTsGv7cpLxXBRl4lX+7h/lGrU1oFSnXGdsHw2M72TRSaQsrokIqRUHq6JjXKbLN8JzhV12sLBcQqOpTXgouGXMvF3SYWyQ9FE+iJ4MebOZAcyLkpe6bgOeIFZOTIEPHxYFFjQvHaXkFjUNWIytiVw2jRyyOKutwM706QHED8PnZ0iMR0sLY2wNixIaKZ/nHArQIlACRsnq3syAVLtAiYjLjC5BVRNKNZH/kKlDrclBQNtEiPdoxfO6DedpCe02MvGuKkDmwTylvS/7v7uDE5ltfOaHy/3r1uL0elTnq5JzWXKySGJKoarF7RdJjd5aIPde9HXajUKVACL+13OatRNUVf9yRoCpRq30rJVSDAPAl7yGHcdJipNgVfdaFSp0Cpk4n0CrGptS5dv3l3lK0/SPPD/zBJdY/O8388zql/N8bGW2NkXYPnT1zdeKa/HPziL/4iw8M/nu+TISEhIf3QDJXjHzzEB3739cxdN974fOHEOv/zk9/lkf9+MoyACwkJCQl5RZNfLfGlX3+Izfk88XSEd/2rWxg/kH65dyskJCQkJORFEXgE/OabbyaXy2Fv+TvkjExtYSx1d3jOuwZ5VKojostFqZVOR6VWIyLXUBGW0+ai1IrUNah4y9J7dDJ7OmbYKgo4vbdtVQQbz+fbZsK20UPoVFiscP6+NaoFq91FqfNAOoiNRpi6IRNY3DS8L8HhD+wK/OslJqNM3pAOVgjPoWgQ16CpGzOMHQ0+W/PAO2YYORxs0KuyXuXMlxcorwd3ptKTWuBzufpklmc/Ox94W3bFwSz1vgZ7ce7ri5z9RvCYuIPvmmHm1sujqDeGNK78qd2kZoMNeuXny5z48/OBB3Id0x0onmbh4XWe/6tLgctpcRVlh4M+rZz/9jKL3w8eRbj/bdOMHAl2H2hxld13TgQejI1mDO9e7Xd4onthaleM8auHEIrY3kGppfz0TWn2vKmpLtiJQAlg5FCC8Ss66iIpe8dySgmKYPmpEstP94hn7CFQAiiuWuTX+w+SdQqUjChMHxBoBoiy1TPeLbJpoZpuzUEJdMVzAnBk81j6CZQeffKAF++mAXNZSLWPkH7swlv42k/O8vSvzzTPj6Lw9K/PcOGnR/mbv/kbotHoyzpYFrIzDhw4wOTkJPfdd1/PdVJqhYc297V9ZhmSUtIB4cW/dbootdLqqOTiXYv1O0NqYOREm4tSK64Gel6iCslYxEbtsMpwNdCqvQe4i7aK3OwtrOwV/ba5CltZUMpWu4tSK6raJlACSE3rJMa8dpfQtIaDkh9C07z4XzxxxtBc8Kjd1GwMI6BjjVC8NpsaCfbM0eIqI4dTCDWYYDQxFWXy+t7XRy82zxTYOBncxUeoAkUPLmpdeHid3IVgDp3SBafiBHY2soo2899ZDey2Gc0YzL5uNLAD06CkDyQZH2DCw8pTWTaeC/7b2dXBhHAXv7NGcal3G71LoAQgQNEFaibd7aJUx9DbBEoAZsll+dkKtikRkUh/ByVdh5rjUmJEZfxgy71aj17r53IUjxKfNEiOdd+rUlN7CpQAYiMaer+6QVN9Y81To9697sYNX4FSc/tKQ6wkBEztE0Rqp1mqoq9ASQrPyVjTYWQCNJ/D8HdQ8jCFwsKGJzbyw0+gBCCloFQUVPu4bknRKVCCYc0hqXrvV1pZ9ox30/MCxfYESr3oJ1D6yvIxJvUttJhJJNPtTvxfj1zHs+8ebr73C8H6exMUboyyua7y/e9/n6NHu8XGrwSklMzPz7O8vPxy70pISEjIS8bQZIK7/4UXAZesRcC5juTJv3mBz/+L73D24TACLiQkJCTklUf2UoG/+fWHyC2XSI3HeNev3UpmV/AJYyEhISEhIa80Ao+4f/SjHwUg/VfPNT47Oq9wYKkW4/ODDLc7ZUZrkWkzisXNegkNl72KydVaibkZq7Zxl6t2V8gkvHVHUzbXTpZxa4Myu/ZLELC6IADJ4Wskw1OArpEaVzj4Or2R2DFzhcrc1RrUZr7P3RRn9JA30zcxrnHgziRqrfNy6toEu29vimf2vznN6GHvBXX8miGOfngKI+V9z+S1Kfbe6TlwSMdh/9smGL/aawRER3UOv2cKLaaQv1hh4uph9r9juvG9+9422RAFGcMah++ZbcwAH7tqmPFjwzz9Z+cwCzZ775pk+iZvO3rSWzc54+3T6BUpDr13tvG9Y8dSaIYnmFAMhcP3zJLa7fXGZg6lOHxPc925N46z6/WeGCA+FWHuDRMM7/NmiQ7vS3jr1q6CXbePMffG5qyiw/fMkjmUInMgxcwtoxy+Zxat1mk8c+sou9/cdAQ69N5ZRq/wzktyJsbhe2aJjUXQExrTN42w962TjXUPvmum4SAVH49w+J5ZjOHa+b4hjVm0GgMn+985zcR13jmMjhi17zVqv1WaA+/0zrdrw+T1Gcav9QbZjCHvHCYmo7VzNtTmurP3LZNM3zxCfDzClR+a42iLuGbkSIpD72uew913TjBzmyf0aZzvXQlc2yV9INF+vt8wzq7X186h4p3D9IHa+d6bYOzKIZYe3QRg9vZR5t7Ycg7fN9sQZ6V2xdrO99SNo+y9s2Xd98w0BGCJ6ah3Dmtit6kbM+y92zvfW+eLDO9NMH61d75j4945rM9mn7wuzb63t1yzb59msna+9bjqne/x2vm+epgDP9FyDu+eZKp2zRpJjX13T1Jer1DNW4wdHeJQ2/meaIiltGjtHM7VzvfhFAfe1dyHuTdOMHt77Xxr3jkc3uudw8b5Vjxxk2NK5t7Qfs3Wz/fQ7jiH75ltuBHN3DbK7jsnwAXXdL3zXbtmU7O18x331p2+eYS9b2m5Zt89wxUf2s2uN4yRmKyd71qE2+TxDPveNtVY98A7pxm/xjuH0VGDvW+ebIibJq5Ls/+drXXEVM86YuN0nsyB5sDbTuoILaoSGdbZddto43zvpI7Y/eYJpo6PNM5hVx1RExHtum2UuTc0xUX73zbRuF5Su2Icfu90s464OcPuFiHSwXdNMnLE+16hwtCeGHpCAUUwecMQe+4cbfneccau9I49NhHh0E+MYwxpnL9vg+Jqlb1vbroi7XvrOOPHvO+NpjUOvWOU2Ij324xflWTfm9JUthxKqzZ77hhm8irvPBhJhYN3p4mnvYGk0QMR9r+x+YK39/UJDr5lqOasAAfeECNRG4TMzGkceL1Xt4iqydxRwcxh73tiQzBzWJAYARnVyGRcrrjCom4rt3u3zdycjZ1QAZcbRsuMR2zKrsJiSeOKdBUFFysluOmsw/WFpvjoDdkqc7UZnhOqCY/shRdGYDMGp8bhqeY9N/HUCF968o0AFNfTnP3OzZhFb5//9Dvv5uzZs8zNzaFs5zIY8rIjhOCtb30rf/M3f0N23bv23bJB9fQUshav9r3TV5NZbo4ijy8bJPMqRkUwlFWZWjCIKV4baKzisr/QHKDdV3CYXFCRChhSMufYLCkqthCMuA77Ha/NJlWY1SzGVO8a1JDs101iwkVqMKQ77Ema6IrXsT8VsxiN2BhFiSIku0YsYjUxVCLismuk1hYUktldNqMjNUc2IZmZcohFvXWTWEzNebFBAOkxSWZcYlYFtiWY3K8Qy3jnIZIQTB5QG5rIoUmFzP7maPb4FVFK6xab502MhML4AQUl7p23obkoI4ebcT/jV6WIpb3/1pMaydkYbs19LbUrxtixZjty/OrhRn2sxVSmjmcajpCjR4eYvD7dWHfs2BCpmthJjShMHc94Ymk8sdDEtWlAMHJFisnrMgzt8dZVdG/duuApPhFpExaNHE4xvDeBntQa31sXrMbGIkwdb66bOZgkXX++CK/dlj3nRV1ERwymjmca5zC9v90taep4htiY95zSIirjVw03BDnDexNt4trJ69KNdpiR0pg6nkE1vIjXXa8fZ7RFyD5xTbrh0KMnvHXrLkapXTHGrhpGOrL22wyTnG0/33U3xuR0tPEMrp9/q+hg5qzGeam3lxKT0cYzDLxn6fCeRO18CyavTxMZrp3v8QiTN3Sc79qzUiiCqeMZohnDE6MX7EbbFTwhUeZg83k+dTxDbNS77qKZ9vM9vC/RJtSfvCHTaBdEhnWmjmcaAq/hPQliIzqlmuvWROv5TtbOd+2dKjUXb5s4MH51c109Xrtma1F6ydlYm/Bp7KrhRuRw4VKZ4T3xhvNWYjrKROv5vnKIoVp7QzVq5zulIV3pncPWa/aId80qqRSKJpi8NkWk9j4QG9WZvWWY2ZvSqBFBZn+c4Tmjdr5h8lic6LCKSCaIjhpMXBGBmi5kaFonMaqBBBmLMHFVjOiwdx4iSYWJIwaipu1J7YmS3uud3+KGg5SSeMZb14gLJo42o6RTEwoju5uioPH9Gom0QDUE0SRMHtRQa5qj5JjC6H6jIRIe262QHPF2UDNg8oBCZk4jmlZIZgRjc00xz+guQWrUExGpOkzuE+g186pEBqYOKGgpbz9GZgRDteaTosLkXoFRq/JiIyoTe0TjnGkRSAzXthNRmdpLQ7QUS8LUnsYukJ4RpMcktiW4eAYyYxCNe/dfNC6Z3CcQNUFqJuMyMtpUAU7uksSikkpVIWJIZiZtlNpzIT3kMJZxEK7398yoTTLmlY3oLvunTSLD3t+ZqMNUsikSnE1ZDEW850TcdNkbNdFr+zBl2OyJes8UJyrYIyxG8coauBwUJhFcnJhkxHU4UPaWrRoqhpRMmt73GlEL7ZkRjKp3nhIFhcmlppBsz5ZD8dI41fUhnKpG7tQcVq1tZWaTVM9M8XDJi1xdmZ9jfaH2nuoo/NfP7sdxHN75znfycnLffffxW7/1W+TzTZHV4uIiP/dzP8fP/MzP8OEPf5hPf/rTOH0mdoWEhIS8mhFCsOf4JB/83Tu4/p4DjXZscb3CN//dD3nmv62QXQgj4EJCQkJCXhmsnd3iS//nQ5Q2qqRnk7zr125laDL4BLqQkJCQkJBXIoGzHd7+9rejaRqnf/gse3/hGiqWRjEKZs0G3gVyKJRiYCqSakGQlwoKsM+22KoK8paCFfM+K1UULKcmcLIEpZL3guhGNCplCyFA0yQuUMk62DUTJdtVKOdkI06sUpRosubEommsv2CTv+St7JgulS0H1/VWNosubsuM6krWppozkbZNYjyJaqi4dm3dgt3mglTZtDCLXqeda0rKGyauJRnaHSU+HqGyYXo9wdKlsmFh5q3aui7ldRO71glqFWxK69XG/pc3zYYrjLRr61a8dc2SQ3m96R5VuFhhyyzhmi6Kpnjr1jpbraLdFqFR2bSQtY7g1ae2iA4bje+1K077ultWmxtKed3EKtpcfHCV9ZMGY1cON1ymzJyFU2l2XpbXqg2HoPr3Lj6yjl1xGTmSwnWbs5FK69XGsdqmt259VraZt8nPl7Er3omprJtd59Ax67+NRXmjOVigJ1X0kve3Wz+HNQt/q9h+DsubVaySQ2XTYv7BNYZmo1i147FKdlvMSmXTxK1tE9f7XiUi2Hv3JJunCx3n26RxpG7tHNbOi1W2KW+YKFGBW/Di8BSteQ4rGyZWyW47h/XrNJLW2xy3SuvVxux+p+LtU+OabYn0W31qCz2hNdet1s6h5a1bzVttkWKVjSrV2vmWtWN1qs17ofUcVjbMxrZc26W0YrL61BZmzsasX9+N821i186DWzsv9etQS6pEMwaK5onNqtnmsdTXterXd6l2zbqe+MYsmsgWkwPvXvDK2uX6urX9z1rYhsPUjRmkKymvVbGKte+tn+/ad1VzVmMf6uc7v1Amf6GEY3Wf77b7ZsPELFiN86InNfSU5p2vvEVlvXnNep/VzqEl2+qI4kIFWibx7aSOqGyYnPqrS0xel27cJ/Xr0LeOEIJK1qK8bjbcMMrrVeyy034O6/u7ZbUZKm2cKpI947mQ2FWn7bxUcza2KRsOSl594n3vxskCqqYgpSdANXN2Y/AZvHrLKrugKDimpLzR/D2qWzaiXierqlcn1wQXruVS3rRwTBehKlhFB9tymbo2zsqJEpUtm2q9/pYK5ZxbuxcEZtml0hZrqRDPaGCXcF2obLk4tVNhOSqlYstzoSgb105+DZbnFczac03mbMotcSeVisBpcUepZsFUIKa4VB1JwVKwUt53l1xBtcURJacJqgkXEbMxq/BEfpTMxgi7D8xDzALV5UzJE4Zl4haO4R2rqltEhvIoqstvn34nkUuL5HI5fv7nf56QVwdve9vb+LM/+zMKub2IdIyUYqEkqlAb+LV1CbgYNTG2abjYqiReUiksDbOsC9wYKLqLLSWllli2kiqom104ChRdBVeCgcRCYOVbrl8hsFxvZYl3jaoFiYOgIgTnKzqV2rVfdRTqt7UESo6CVasrHRcqpkArOiiKJDYGpUrte6VniunUtuM4UDEVpArCkVhmzWVTkaSjNrYJjg1oKq7jUC016xInW0GqeAJ228YsONiVWnvVkVTzjrdzuo5tKUi35Zm8Xmo8/6Qt2TpbpLTqVQJ2xUUozfrCzNuN+li6kuqW1ajTlh7bJNLilmLm7UYdK128dW1vXafqUs157baL31klORNr7APS+956XVhft45VtHFtSXG5glC87623rRzTpbrVvm7rHPHKhom51WxrVbesRpqmVWp/xlW3rEabSI0o6HGtbV3XbqnfcnajHebatfPiSvIXStglG9kyBl7NWzi1tp/ruI11wXsWCdViaHcc6UjMvN1og0qndl5q59uuupit56VgY5suQhWN36a5rtN2Ds2C3Xh2CkUQGdZRa22kznNoFlqfW973OpaLXXbYOldsCIAa57DlfFe3rMZ2HKv2vbWvsksOjub6ruta9fNS+96yTWHRbTgUmTmreb4d2X0OW3bCSGrYFR0WK811a8fjVJy2iDUzbzWuWaHW2kg1wZ5TcRvtxsb57rgXhCIYPTpEeaPafh0WbKQRAyykolAtum3XbKWoUc46OKbEKrvIWttVSqgWHFwjBmWJY0vMSvO6UzTQDIGMeeKjalHiKBpg4joSs+h6AqaogV1tPr9dG8pZF8eUSEPHUb2yUlWRgG3KhruCjOhULYFtSYpZgaY4JMeaKbSOVDHrxlGKglmWjUg4V9OomJBflDgOROMCpdK8I80KmLL2PqOqVMtu416xTVi+JCjV9CWmreDW2o1IqJbBUVSk7tWLVUsBHFwHsssS1/Xi4YSEasWLV4PaumWQunceraps1BGyvm59H1SNSlV616Hw3t+VmljI0RUqVYdYVOJKF8cVVKqicV5MFOwWh4qKKbBr3+u6AsWAuCUpFiSOAtWWO6coFKqaAja4UlB2lcY+Xqpq6FGJE/XWt8oCs/bfLoKiFFi1W9ISArOooka90mVFUFUEImEjXShqgkTtcnJUSTUiyUQ8Bzfb0Hlkcz+Ros4t138PLV5BUV027CSuiKDEm+8+RrSMonjX7DcKV3H6mefYt28f1113HS8nf/3Xf83GxgapVFMM+Yd/+IecO3eOG264gVwux7e//W2OHz/Ou9/97pdxT0NCQkJeWrSIyvEPHebgHbN87788w8Un1gDYOlvhf37iu1z9E/u47n0H0KMvPgI6JCQkJCRkEJae2+Br/+YxrLLN2P5h3v6rNxId6h+jHhISEhIS8mpCyAG8bK+88kpOnnqem770z1AUhYrVfGkr/LA7WsrIe52EQ/M2bod5k15udsRH1rvjnhTL4thxWFuEtZM+cVBWsxNdlH1i4GoxHdLyKes0t12P80ChIRxqjYbzjXGr9exKx2Hm1hGiaZ0XvlqzSO/MlehxmqduzKAnNObvW/Vd3gsjqSE0ETgi69VA+kACI6mz8kQ2ULmD75ohv1Bi+QfByg1CfDzC9M2jzN+3EigKZPzqYSavz/D0fz0XaHuTN6Qxkjrz9we7TqKjBrieeCoIV/3MXpafyLL6ZHbHZRRNITZuUF412wQ+25HaHWfi6jRnvrLQvPd2wK7Xj5OYinDy8xd3XggaDkMLD60HKjcIWlzlwDunWXh4nfx8ecfl4uMR0geSLH1/vXf85I8CnxjK9uX9XXa2jXjzQdE854jSptX1e4vW/elw+EnNRBi/KsWF+zewre1jdOoRcpl9USaOJTj5pfXmPvnFy7XEvomaI1/b80BrLpc+0S/12Dfp04lpJ5svkJ6DUjvlCYVbxitcLGm8oES6lm9d0fKcS3ZcEK7LR65+BDQaAqVWPjz+SOO/f/u0N3t/5V9/gxf+7nGef/55Dh061FUm5JXH8vIyU1NT3POb13Lde+cAGFabdco31q7sKmM6KsKFU0vjXfe6azXvAXW5u4NjwraZdB1OqAbGZvf9IlqaREa+s30jEba3PaPY3fZR7OZnWtFplKnboLQuV0vdFaCotd20ksnUQYXNRZdKfbKz3d5WE8XuelcVDiP7DDaezzWEkw1a2opupSOaSngOP1bRbhOQ/jggVMHQXJziSqUhKN4J0RGDzIEkSz/YbBOavlSk9ydxbTdw5NvMraMUlypsnesd7deJUAVjx4bZOldsEz3tpJye0LAKVqCIudRcnOHdcS4+sLbzQtBwP6qLiHbKyOEUZt6isLjzmGShwNwdE6w9u0VpxT9623cfo14M4capfNt+Ki0iiQYt71vKUPfy+vuaSCa6ltXfCVNTGkbGYO1c9zkR1ZoQ3yeGLZWW2BVJJe/6PudFS/0iIz4xbfXlfvFwLbNjpE/MmmhpN/vFsAmrddvd7Yj6cr/4N2E5aIa3C47oXt7aFquLlOqMTHjC0HxW4EZ8Bmk7Hg9OrfzUhEO5ItjKeY6ZAK5PxGNrnKcd9YTrtb3uKmNHuss7UQCJ4xMPZ7VcIk6su34aSZhMWC5PJjREsvtaOTDbfOeqi5QauPDeyR8CsGF3RxHeEj/d+O+v56/GdST/7m3f5sPv+2n+43/8j13rX07e//73c8stt/CJT3wCgFKpxLve9S7e+MY38mu/9mvYts1HP/pR4vE4/+E//IeXdV8vNydPnuRjH/sYf/Inf8KRI0e2Xf+ZZ555xcb3hYSEBENKyfnvr/DQnz5DYa3ZNkqMRrn1Z65k702T7X0VISEhISEvmqBtr1c7QduO80+scu+//QGO6TJ15Qh3/8oNGPE+ceGvMF6LbeXX2jG/1o4XXnvH/Fo7XnjtHfMr4XgHynn5qZ/6KaTjsvngKQCiuk1Ut30FSgBmqu6yVB/xbfaGWjHPVclPoATg6joXLqhkz/YYINC9DlM/gdL+18eYvt6nE7uOqoCqNAVK0D5orqqgqv4CJWh0ugIsPLTRFCiB15MvFE+c1EcHZlfdwAML4EVizdzif777ceCd0414qZ2iRRUO/MRMIw5tpwzvTXDVz+xtRGjtlPhYtBHjEYTTX1oYSKA0dnSoEdOyU0qrVc787UIggRJ48Wvz3w0mNAJY/kE2sEAJYNdtY0y1xJO8lMTGDfbfPU0kE2ymWf5CiTN/G0ygBLD+3BaLj2wEK4QnTgosUFJqQrHhYMdmlxxOfv5iIIESeCKeod3xwAKlvXdNtkXP9aWlk23vWycZu7JjMLCPQEkoAjWqcuQDM40ImJ2WTczE2P+2CWIZH6FPva70iSBzXYlTdbcVKAlVaQiUADbPVjyBUh0/gRKA4yA0rSlQgvZr0naQhu47cFlHH9Y4ehOkOm45rRbZ5idQAoit2JywIiwo/t89/JyGSNq+AiUUpadACeCzqzfz26ff2RAoAVSeW2ZycjIUKL2KmJyc5LbbbsN6aK7x2ZYTY8uJ+QqUAAzVQSp493pHO0TRXRTd9RUoAWyqKi9oOsam//1WM/noEiglVJdDSROh9W73uJrA1USLQAloccuoL/cTKHnbrrmUSVg81SJQAk9MqKmIYtlXoATgoGIXeggsdO8e7BIo4YnDp4+PtLka7oRoxmD65hEIOK6RnI42YnSDMH5Nui0ubCdIV5KYijbi1XZKZcNk8dGNwAIlLab6Pzu2IftCIbBACWDjZJ7i8s7FOOA5NK0+mQ0kUAIwEhpT12dQA57LQUnvT7ZFw+6UjefzgQRK4N1zq09nA0+QsCsOK09mtxcoQUMwrAyliCQVYiPt51Fomr9ACbx3Ql0jt6X6CpQax+EjUAKIZjS0VO/nvNRUZERvEyipOsxeqWLU3fZ7tREUBRSlIVCKxGF8TjSaYrIWC+wnUAJPfCQjKqlplbHpHst9BEr1ZekZlcxsj2tSqa/X3T5yHM9ByVegBI3XekdXGgIlgKUVla1cS73uI1ACEK7EjoqaQAm8irK5rmJJ7IjwFSjVGU86zGnd16Re0yT6CZQAcgWdsyP4CpQAzlwaJxMptQuU6smjtUP1EygBPFw6yNfzV/P1/NUALH6/Qna5yO23397zOC4XuVyOkZFmbPKTTz6J4zi85S1vAUDTNG688UYuXbr0cu3iZefee+/lk5/8JH/wB3/wcu9KSEjIy4QQgr03TfKB372D2duHUNSWCLj/+3G+9q+/z9bizsXuISEhISEhL4azDy/yjd97DMd0mbt+nLd/4sZXlUApJCQkJCRkpwwkUvqVX/kVhBAs/c/vNz5bfXwS2aP/cvgMxFYkakxyw3SVTLRbjeAaCq7hvzvFCyaW22fA3LLbXC7qZC/ZFFZspOu2uWS0YVpdM2L2vCHNzE1D3h9W9/I2pNvuJhLwjK49NaDQ4uE1LgWcbQ1QXK1SCTy44OJabj+tlS/ljSorT2UDCy0WHl7nhS8vBiv0Ihg9OsTQ7suT5WvmbLZeuHydGxfuX2Hh4ZfeMQigvFrh9N9eaosHe0m3t2YONFg5CHpcY+zKYWKZbpebl4KN5/M897n5wOU2zxTIvlCoZSH1qLd8ljmmi1OfxV8XWPagXt8pGhQWq41ou5YVeu+gIsgvVDj37TXKPsLUfnVtccnk/P2bbW4EnWX71tWq2iYs7SqvaQ0HByOlcPiuBLFMy7FoKsLsLZYVrosrYWMZyvn2xW5EQ7F6q/DsqEb1gqDi8wBxonWngG7uWHU4tO7ynx+5ne887T/r6IEzB1haG278Xb60wcLCAq973et67k/IK5MPfehDfP3rX6fSEq103+ohyrZ/R8VzC5O8sDzGVMXhYM7/AS5ViVS7l1lCYGfVNpeLTvSCRHYsrrqCddNrb2kViduj6aUXHGRLlGHEkMxN2ai1+DqtaLct70Sp2o1BfV9qYiU/ZKHExlmz20Wphlut+tafZsFm6fHNwOJku+pQXjP7O8/57Ycjcazg7kTFxTKl1Z273AAgPQFvZePyPL/1hMbw3iSiz2/8o6SyaQ40IWAQzILF4qPrl217m6fzbJzKb7/ijwJJW+zyoPQUKAHK8BDKiKf0jaZVUhPt9ZtMJZB6b6GgjEd7C4UAmerd3l+9KMhne1+T0tCRHe+T0oWtZRfbBBmP9KyXXEPrEiC5jmy8W0lDw433tu2XuoJUFSzTi2XrWt5LgF1btr4myPaY61AXQPmxtS7IV7WeE27839+bbkiuruD2uc8dQ6GenDmetJnoEGM7hkA1e20bhAt5RyXn00/gREDpU11Xo1Da9G/Xa4aNZnQXjpRURufjVE2dzy7d1FMk/GhuD88XJxp/n3jgHCMjI3z4wx/uvUOXiUQiQS6Xa/z9+OOPoygK1157beMzTdOo+Ih1f1y56667+MxnPsPHP/7xl3tXQkJCXmb0qMaeOzOeWOnq5qTQi0+u8YVPfIfvf+75RrRuSEhISEjIS0Fuucjf/eETuI5k/63T3PXLN6AZl2cSVEhISEhIyOVmIJFSMplk//79FE4u4nYMGPcSKgGYLqzbKqbTvtn4yvaimZmDkJzcZnc7BqQ2zlrkduhg0jq4XVq3KK2ZPZf7llcE+942ye47Wtws3J29vOpJDWMo2Mz88poZeKAMYOnRjYFEMme/vkRhIZgbjJmzWflhFvdFDmbslIlr0xy+ZzZwuZOfvzhQ9Nexn97L+DXpQGW0qML4NenA7lKTxzMc/Xt7ApUBMLfsga6TQXBt77oM6og0ffMIV354d+DtZQ4lSc0Fd2K46mf2Mnb18PYrtmAVbE78+flAUTEAE9cNdk0OytbZIpung9/f8/etsnmqGCjezS65XHpwnWrWbl1h+425UFjoHkDfro6NT+xQIOY2B7OiGY0r3jtGbJuybe5JAI6ksOZQLdYu5h5ih65NZ02WLjRSRr3PerkP1LCjcGCiSira/3mReLpDqeS6LGoamz7OB3UeOHOg67NL/+0hAH7913+97/ZCXnl88IMfxDRNnvvWcteyXkIlgJIGW1EfV8fF/vdFDJdpxUIq/YUyrUIlWwo2TA210Hv9trK1wWv7/8/en4dJctR3/vgrIo+6q7r6Puc+pJFGF5LQAcMhARYCcdlgHowvwCy7xmvvAt6vzbLY4PXPxl/s9RcvXsCGNQZz22BbCAESEpLQgZCENCPNfXTP9N1d3V13ZWb8/si6u6q6stGFlK/n6UeayojMyKjIiKiMd7w/FmRyLUIBbSBiMWKS0b0Sre722zkoNSDATLQXBLhpmq6tcF11POqGrKxN6kTas9tQdq5A6niXFVmfb77gOcTrz8LIFb1EhtsoKduQWygwdde85zqJjYUYu7a1a1wngkmTUN8G33cLxq7t9+z4pBwoZe2nLSSgXXCwC97n2RMvHvDsIqqZkuhI0LO4LDYRZuwa93vrJFBqQNdZmSox90RNKKFiHdxxKQuUgOGdknCyxdhYES+1EjnVf9ZizG/nruTYkF5S2LK733Gq7BRZyMLiucq5O+etdzjK5iRrqabjFXe5DkIl2xItN/y0c18C0HQFLcKotULUtfeBPoeBPhunw/wEXIFSPbmSJG+JuuPdtbNCRrDSpIi1N5gyRgybYcvq6HYM8PBU4xze1hWr4ZqbYCseWG38vebYikPfneZNb3oTpum9H3qy2bJlC/fccw8rKyusra3xve99jz179hCrezZnZmZIJp8eJ14fHx+fZyOJkQi/8N+u4LrfvZRIrzu/cCzFw/9ynK+9/4ecemC25gLt4+Pj4+PzJHLou2dQtmJkXy8v/e2L0Tpt0PPx8fHx8fk5Z9Oj3G/8xm+gLIf5Wx9j/qGhhmPthUqSE6sBVmXtzV6zQKl5R6a+6r6cDkYEgaBrh1/ZpSqyeUS2aZdf04vlxJhBbLhcoHL4tipNrhgVJ475gxlSJ/NQWn+8im1XXTcqrJ7OsHK67OzSpUAJYPurhhl+Qe/GCZsYv7afmFcHIOku8kivExwJgR7vtpKRkaDnRRA9rHHemydIbOu8GNFMbrHA6uTT46wDMPvwMulz3q5nRHWGLukhsNHiaBNrZ7LMPbLsKQ+4oez6L/QmyNkswV6TsWv7kG0c0dqxenqT93Z+nORO76FwZh5a9iy42yy5xQIrm3B72v26Me9hGUMayT3Rxvqv77PauCvpYQ092Nk9CVjnAhIZCtTCHm3gvoQUVRejiRf1Eh1pXD1aJ1CqF78KQajfYPvLe4mNB9Yfb5nffWFoFRxSZwoUVupUQ00hONcLlGyKWcW5h/M4zno3lgY3pXJomQoD2yQN0eKaBEpmqoRZdrKzghIrKDE1CBsKKRTRs7Vxo5WDUr1QSZUMjkZ15tu4HzQLlCpuSuKRWQYHB7nooota5vN59jI+Ps6BAwdY+b47X7hjvjFcXzuhUtoULIYEst4xqUmg1OyoFFgSaEIREgoJKOn+AZgrCnOl8aV8vVBJE4qeoE1FpeFoNDgqGenG+ZHSBJaQLK1o2I5Az1jrjlfPnS2iZWsCnFIBVlOuMARaCJSanl+VcfvjYEJn6MIIetho6AOcdJMoqKlvCSQMkru8h9bSAhIj4k2MDiB1gWwTJqkdQhOE+gOenZviW8MMXtzjKQ9AZjbvinKeBvKp4qaEW5Fh73NRgNTxNPllb+6j0hD07IigBZ6eF4nR0RDhAe8uj0tH1yikvInZ9LBGcncMqXtrW/kl93vb0EEpEW+6YO2ZaRYoKUOvOiqpcLAqUALIrCisZhu3ZpFRvSjJ0AnGYHiXrE1l6vqOZoFSvZuSmdDRY43Pdr2bUisHJQDdqJy76Zgu3b/qfdb+X0iFGaz1vUqT64RJ9f+uHA+GFYm+SpyyurTNAqW6PsMxNRLDksHhujxNi7HNDkoVoVI6K0gXm87dGO19nUBJWpAuSFbzGrYp1gmU6t2UHNP9AwhrDmGtcU7YLFAy1gTGmigfU9gBhakUIaVACORc7TdZKweleqFSWtdYS7bvE5oFSkcyg5y5I8fyVJbXv/71bfM9nbzpTW9iYWGBN73pTfzSL/0Si4uL68p26NAhdu3a9cwU0MfHx+dZghCC7VcO84t/8WIuvmlHNQRceiHH9/7yJ9z6sQdZnfVDwPn4+Pj4PHlYBZsjP5gCYP+N25Ee3+v4+Pj4+Pj8vLHpN+jvf//70TSN6a/e3/J4RaiUON58xGEwVCIa7byg0fzi88QjioWzXRau/GJZFYv07QzSM9EkCGkX+q2OyKBBZGT9S/9Obh9LRzKsnvEufpi6a35TIbmCfSaBqLdFr2DSZNv1w0RHve16H9zfw+7XjnluMUOXJD0vellZm7WzWQpr3haG1qZyzPx4E2KXC+Jsf9Ww53wLj624zkEeyC0UeewfTpGZ9mahn50vsHBodeOETYT6A5tavNoMRlgjOhr2vHiVmc2z+IT3UCVHv3WOMz+Y85xv4bEV8h5D0vWeF2Pnq0c8X2ttMsfsg97b5OpkxnPbigwFGb96AD3U9JBu4FA0fFmSna/p7PbUarF77Jo+hi5NdOeeVEaagmDcQKvr3zdyUALILVucvnOJzEydA5PjbBjizSoIZn6abRtycp1ACZAaJLcabGiK0OTEEOmB/i0CU7nf20YOShWKtuTRs0FWcrX07cK7VVA5wZ50iaDVuDBXCfnWykEJYPne48zPz3P99dd3VTafZx/veMc7uO2221iabP1CvCJUeuJco3jcsBX9OYWUnR1X6oVKaaVxwjZx6K5PrwiVwjmHvrCN2RRGrl3otwpSKCJhh1YWNO0clZQDa4tgd+qHyqHfKgIlgMKaxdzBTHfh1Or6GGlIV5zp8T1Rz/YovXu9i2pHruglNuZNjK4HJQMXJDA8zg+LaxbZBY9h4oDVM1nXYcojgxf3EOr3Nj8pZWwyM95DEC0+vsr8oyue82Vm8pQy3twoKyIxbQMXmSeLQMLAjHkXwGVmvIvLCqkSk3fOe3ZuKmUsclnvGx36d5mEerUNHZSaWVtQFHPUhEkdwr9VsIuQXVVVwWOFdg5KFaFSfEAQ72txvGM4SsnITkG4r3OnqJraUDAEw+MgA6Kja1Izmg5mAKCWr5ODUoXlRcHiQrOjnOoYoh0gY+lk8h1cnVrkDRoOAX3jduU0/aTv0W2Sho2edfvyjRyUKixoGieNxu+2VXi3hmtnAgQz2rohqhLyrVmgVOEnNx9nZGSEV77yld0V7inmpS99Kb/3e7/H9u3bmZiY4N3vfjc33HBD9fjDDz9MJpPhyiuvfAZL6ePj4/PswQjqXPHLe3nj/+9FjF5YG/QnH57n6x+4iwe/dhSr6IeA8/Hx8fH52Tl+zzmKWYvYQIjxiwee6eL4+Pj4+Pg85Xh/q13GNE1e9KIXcccdd2CtrqDH17u1KN1dtBJNL/PGwxbLRYl1pvPiUP1ueQApQTehmC+//NU1hNXmx6BlIaTk1D1rrReo7Q4vQh2HwQsjKEuRmW4dlkgJybo32UBiawi7aLPmwdEnO+t9UQjg2LfOec6TXyxy/JZznq+ZOp4mt1TwHMrrzB2zWHnvYSjO3u1dtAWuc1NxzaLkIcSZlbcpZby/VIiMBJGaYG3qqXflMaI60ZEgy8fTnr6DyTvnn7pCNbE2lePwVyc954sMBZG6YO3sU1+PelgjNhZi5WS6rXClFXbB2VTYvNh4iNxSASvr7RmY/Umq+8TlBfSV01ke/9okVvOio5B0ajRzj60SON2+v2rnxnHy1lnERmHQmvI6RcXRm2uhqroRKLkZIT3dJNqSGyzQSejfGyJ1Oo+VbxprpIZos8AXGdAZuTBIdsmm0K5JtrB2z6Tg8D02ttAQ2NBGpOSYroNS+V8EdchbtbKEZx3Wtra/t+gjQdSuAttyDiu6JF93GXNObytQAoj/2xmEEPzN3/xN2zQ+z25+8Rd/kfe+971E774Grmv93OYsA0cJZN3kK2TBcFaRMqEwH+iosTFTjUdNFO7TJ1w3JUHbUFZGRpFHcHLZLUMzeq59XxS0bYbjDtOrgmKLKYrSBEpKRJOTmtQgHIPM2Q2EnbpejcWobCima+dR+e7mRLmFArlNCHlSp7yHewNYOLSKlfc2PyllbKbumcfpRoBVR35pcyHiNFOiBTXPQiUrZ+NY3sZGoQmCSZNCqohjPfUhNgIJA8dWnuaUdt5h+v6lp7BUjSw+7l3ALiQEewMUVoqe28lmCI0kcJRoOdde555Uh1VwcCIRSLV/BpxEBFGqHdd096+YBydgdNxbocKuokWUbEoFKM01OQ2FTGjz3CpDQxka82ccZIupkDK0ami3dcccmJnTsHLt694J6Yim5yOXgZlJsISG6DCvcwKNeTOrgsxq03Gn9bUds3Yzti2aTYMbjrciEAElHPKFFqHldIHTZiNDMmJjS8HMavtvrPl9AsC5go7EDQ0nLKCNSMkxXBclAEMpLEDVz0GXTRhq/5w/PDnOlYElzIIkH2mslLlMlAfM1gKlYrrIkTvn+OAHP4jeQhj/TPH617++rbPTJZdcws033/z0FsjHx8fn54CesSg3/D9XcPK+Ge79x8fJLhWwSw4PfeMYR394lqt/9Xy2vmBo4xP5+Pj4+Pi0QCnFoVtPA3D+9Vt8FyUfHx8fn+cFP9M23z/5kz8BYPFfvoWeWT9wJo64/1WiPhSI5KeLAeaOuJd22rywNFLuTun68G7b9gvG9rhpRbZQPr7BLlRHVi5boxKupzn8Wx2T96Q49YPldceV7aAqAqcWO/f7L4iT3B1rG1qpHaPX9JHc7T2EiNTx/C1uRhRVTFusTXoXkVhZx7OwCVxRTmzMe2iO7a8YpmeHt3pMHc8wdZd3Mc/A/gSDFyc959vx6hF6dnrbFR4ZCjB+zYAblus5xsBFCYYu9V6PO28cJbHDWz1GR4KMXzOA3GCRpZmVk5lNCb62vmyI3t3tF+BaYcZ1IiNdOp019TGtBUq0djsqh2grrlisTa13phBSdAwXVMoqiqttFnTqwrs1fFzePb+RA1KDAEnC1gNJQn3GuuOqhViocu1In8HAeSGMUHM4k7LTXn1fXkHTWJtXHLltjcLa+o6rPrxMc7hQAFt0blcV54Hgkpu3N+Kwf6JA2HQaxsLY6fXXFrb7ByCOBbitz2C2HA7FnNMx59xy6afXt53AEyECPynx0EMPsX//fnp6ejqW0+fZSzgc5m1vext/93d/x9KqQSq3fpw8Oevu8HWUqAqFVk042CsozLuuPEpz/5oJLJafrXJ4tyAOu/UC4bIqKZAqP3Mdpzei7L7UGF7ILIuClCZaOiMVizA1KSlaEpqOa5kSWqZULltjf6ab0DMk0APunLDVvFBVwsDVLRKbEUnvjsbnRegtXFNa9DOijbNTO+y8sykxSGGl5Nm1Bti08MSM6Q1Od90QGQ4yuN97WNmlI2sUUt6ETZqxOZeoUH+AgU2Evu3ZGSW2iTBxz3akWa5HjyEIw4MB+i/wNqeRkQiJrUGig+ufrU4CJYDllEk+TdUNrR4VDlRFRvWuQOGEoH+bxAm413MCRvX/G/I3OQmZYRrERtXjLZ71+rxKynURvjvmDWiogEYhJ7Bb/IBzDIlTdlBa78YkKDg6IFo6IdX/Zq6GRheqqu5pON5ijubUXS8SVSR6GvueqkCpRfdSKXcsokhEW8yfyvMbaSlkk8DQ0eFsWmd+rfUcyjEETjnspdbwE1YBgtIGfZZTMdRacdNttSy2lgWrjlE7bs22cK2re4lxf6GXxeFaAeYyUeYy7m/OI8uD67I+vjjMTz8/S7FY5Nd+7dc6ltHHx8fH5+cDIQQ7rhrhl/7iABe9dnv1N0F6Psd3/9+f8J2P/ZjV2e43rPr4+Pj4+FSYO5pi8fQamiHZ89LxZ7o4Pj4+Pj4+Tws/05a+a6+9ltHRUc498SiOY6FndKzIxgsjFpIANrp0sJyaWKn5pWUzs6cUVov1jMqCVNVVqWlH/NilEQIxyYk724SU0jSat4p27XzS5Kh04jszOEXvC0qBqIHl0c1HD0rO+6UtnL13keWj3YfLigwFGby4h5Pfm/EkIErujqEFJAuPdR8yQw9KJl4yyNxPU55CnA1cmKBne4RD/3Sm+wICx28+RyHl3fHGjOpYecfTrv4zP5gHZxOLhwUb5dG4KXUyQ/rsac+uVKNX9xGIG5z8zoy3C26Cnp0Rhi/r5cg/T3pyKTpz+/zGobVaYOdtz04KqeMZ0tOnPTsbmXEdK2t5ui+AI9+awvG4wNy7N07f7hgHv3i6c8Imkc+Wlw2Sns6xVAmd10UYtmDSoHd3lJmHVxr6rU7iJICBi3qQhmD2J97C5+x57RCpk1lmH+rg/NAkQDBDAiOsubfTwpVAKdVS8JSZL3H43+Zx7LpFr1Z2By2wWugxldG+kfYMw+AuneMPKayyGYmWLmBH3QXUdmFRUhnJyQWDbJGOo7Go6y8kDg5gbeQkVSbwhLvAXvzBLViWxfvf//6u8vk8e/md3/kdPvnJTxK44xB9119EKheiJ7SBiFgIdzm3LLipOEgorbF9NZNHMGkb5FqpkioflbthM13rj3WpmIiXmEnr5EptQrVpAtHgUlLv2tG5b693VCrm4NzDuVbmlm7aTFPdVIRKQrnC30LjQoLQDVSryWaZxPYI4YGAZ7ecxNYIVsFbuDJpCGLjYdLncp7ESpHhIGZMZ/lo2lMZhy5JsnwiTdqDs2F6Okdm1nsINiEF0hCe7svK20zdPe957FeOwi55n6/N/zTVtl21Q+qCocuSmxJhbYaB/QkKKyVWz3S/IGbnHbcePbp7KVt5EsDJiCsknz+YLs9ZPIj7EmGkpOt5lzI0RMkmvazIFDtPKpsFPsrQGNiiWJ1XrC2qjqHQ6o8FQhBLwtK52k/BbsKoReMK24JcVjT0g06HEIFCKHpHJSspRakoqteqd5FqRTgGyX6YmhQdu1WnSRClaVDRbLZ0T3L1QeuYX5LrNOpqwzDQ7slaNceKOKkVW0MlVoXGglX7vvUMWJFK3tb5JjUducEY4xarLtSno3Bk2U2wCx5fHEbZDmf//ce86EUvYmysc1hlHx8fH5+fL4ygzpVvPY/dB8b50ecOce6g6wQ/+dA85x77IRfftIOLXrsD3ePmOB8fH5/N8vjjj3PLLbfw0EMPMTMzQzwe54ILLuCd73wnExMTHfM+/PDDfOlLX+Lo0aOsrKwQjUbZtWsXv/Zrv8b+/fvXpS+VSnzpS1/iO9/5DjMzM0QiEfbu3cv73vc+BgfXi/d9uqPiorTzmhGCMXOD1D4+Pj4+Ps8NfmZblg996EPg2Cze8V0A9IxAz4iqi1I99Y5K40MW5+20qFfJVJwkKi5KDXl1STojKWRrLkrr02jrBEoAa3MlVs6VFwpauF8AVcckVSdWGro4xvbrejs6LgFVRxJl2+sFSl06Kp28dYa5R1IbpqvHyjvM/GSJzKx3hyPNlBhhb8qQyFCQaLcOL2WsvIPUhGeLyrmfpjj6r97D2eUWip7Dh+hhyd43TZDY3mIHbQecouNZtAJw6vtzrJzKeMvksKmwebmFgqcF0Z+FYtpi9WzWc504lrOpezv1/VnWPCzKVfAqUALYecMow5f3ec5XXLE839vcQ0scv2W6c6IWfYqoD8HUwTmp+gcEegwS2yMNYruOAqVyXj3g/q2jjYNShdlHVlg906G/aiG8KaYdjn17nuziBsq+Ftd2irgCVKl1FiiV+/jEhM7Ol0Zqormy8LWtQKk8nuQKGitzNYFS9bTpQluBUnCphINkLmfgtHB+iZ12GtyTKmzVS1wbzCEdp8FBqR79dNB1TyoLlBzH4uyjP2FkZIRf+ZVfaVMJPj8vnHfeedx4443Ev3e66iaWyoVI5UJVF6V6Ko5K0lFcUCjR2+QgVnFVqrgoNRyTghWhoRA1F6VmRKNACcByYKUgsZyy21e6dT9YcVQyMu7AIaViZNQmGMR1IengWKSkdMVKmfw6IUk7R6V6innBzP2tw6JVHZVauChl5wqkjnsT/wBIUyA7iBBaoiA6HEQPelzgUOBJEFJm+sElMtPe5pROSW3K7SmxPcLgRT2e820mzFt+qcjS4e7F/PXXUm3CYrVDOYrsfGFTGxY2Q365uKlwtI6lNtICriO3WGTpSHf1WBEogSvgUbZy5xqOg0zEO7ooqViYUEwwuldrnO7oWoODUitsw1g3FgNVN6V2IqKZYw7pjGx9vNwXrTtW1l055Z/THfOWHZQAQhEwm35OtRMoKd0tkwxq7jSmxXdW75DU/Hk+C0tLEtUi/GbFTalZoASwuiJYnJcbhnerd36qiI0cJRDKFSd1Eig5uvs3lrBIhOpC9hUroq3WeV03JcUSOllnfdn1THuBkrkiKUhBJiBbprFmw80W0Ail2LusGMi65ap3UKrnyPIgjy8O8/jiMACpe4+QXliuOk8/U7zvfe/j8ccf31TeXC7HP/7jP/KNb3zjSS6Vj4+Pz3OD5FiUG/7gCl723ksIJ935iV1y+MnXj/H1D/yQMw/NPcMl9PHxeb7wxS9+kTvuuIMXvOAF/M7v/A6vfe1reeSRR3jnO9/JiRMnOuadmppCSsnrXvc6fvd3f5e3vOUtLC0t8d73vpf77ruvIa1lWfz+7/8+n//857nyyiv5vd/7Pd761rcSCoXIZDyudfhUya4UOHmfu8F83ytah5L28fHx8fF5LvIzOSkBvPvd7+Z973sf9qP3w8tu6CpPZMZiKSBb6Yk2ztsnGbrA4OSDpa5dgNam3Zf3Qkr3hWy7BYcmR6V8qtTwMrhlaKEWjL+oHyOicfI7s90VsIzU3RAMXkQUCwc7OJK0ITOb59i/eRcAbSYkGsDxmzcQXLRgXdiqLklsixAbCzF194KHazmc+eEcmRlvC3ORoSCDl/Rw+vtz3oRREnRTehKv6GGN8av7mHk4RX6xxepLG7y6KPwsZGcLmwolOHpNH4WlIotPeFhAlCB16XkRcOiyHoQmmXnAmwPG1N3zlDw6nSW2RYiOBTl796KnfI7lLqh65fRt5RdgXTgoVVg5mWXlZE3otZGDUoXpH6fWf7hBXiEEqePeBEoAZlRSbCNwaEds1GTk0hgnbl/21J9aWYfcUqNjVicHJTQNZWjk0zDj8VEbHrJRPYqTy+0XW1sxaxkUlaDnQYN0l79bX1eY4y+KRT74wQ96K6TPs5b/8l/+C9dddx3fMf6C/8e6o6s8pbkw53SbdJcuXDUUQ5oNOqSsbsUygqVcxbHIDR0n2jkd1QmRHAfyedFgUqgVNu57NRMGd+gsnrYp5urmaoWN+1ItIFuKbIRuoErr85cyFqVNvHvbzHjsWIqzP/I2hoA7z9uMu9Fm5149O6PkFguenIPS53Jk573PGRLbIthFh/Q5b3M2qQvXOciDMCcyHEQPaKyc7v4LV44bIvbpYm3K+0YFI6ITnwixfCztSfTVbR3WC5SkIUjuCLM6maPUxXis4hFQinxGsXDaaaUTbIsdD5JM2OTS6wzS3OPRALLQWtBVMs0NXYmaKWRr1+nGQanC/HS9qhzsoI5oDj/bhGUJ5qZbhGgLdM5bkjpWun0lthIoSancn8othE2NeRuPD/fbFIqC5VUvokpFtiQpWk0i8w4OSo4BtilJeeyuBIqtlDitSXIe9mkpYDoiyBowfXKMwcGNXUSVrRj43hQTBw5w7bXXeivok0wqleI973kPF198Ma961as4cOAA0Wjn0OgHDx7k1ltv5bbbbqNQKPAHf/AHT1NpfXx8fH7+EEKw8+oRJi4Z4KFvHOOxW06hbMXaXI5bP/YgW14wyNVvP5/YYBhbOfwkfYKF0ir9RpzLojvQPLy/8fHx8WnHm9/8Zj70oQ9hGDUl/stf/nJ+4zd+gy984Qv89//+39vmfc1rXsNrXvOahs/e8IY38Mu//Mt89atf5YUvfGH186985Ss8/PDDfOITn2Dfvn1P/o08Tzl8+ySOrRjYlaB/h/dQ9T4+Pj4+Pj+v/MwiJYD3vve9/Omf/inmvT+g96qXEj9Ve1lqt3nJmC1oZAtttoRWFtBahNJyVgswrKMH24h5Ko5HTeHbzKikd0Jj+pGiu5jeQqikLMu9dvm6K6fzrNC0yNMur21XxQHp6Rx6wLut767XjZNfKnLm9u5320hdMnBxgpWTGc/CBjOuU1zdhBXQJjATOsUVb9cau7aP7FzB08KeEdYIJr1bYq6c2NyCktQl0hSe3IO2Xz+MNCTH/92bUEyP6GgtFhM65glr6CHNk7Bps+hBiRHVyS14u5YR1LA8ukQktkXY8uJBnvj6JCUPDgJSl4gNw06sZ1OLgDGdYI83AQoStr18iLlHU60FX21c2fSwhlNSHdthvQCplTPEhgKlcv+mh+V6F7EuBEpDF8dJz+TJzDa1jw6CiVCfwY5X9HPm7mXWpgrr0rYK8wZQyjmsTRewCsIdExy7pZOS0BrPl1l0yCzW1buuIUpWa6FSeazp7bVxdI1UU7fdMVyMFK5YMdN6YVF0WJQtrQnmaGMRAESmqlch3ydwnCKf/exn6e/v5z/8h//Q/sQ+P1e87GUv48orr+SP/uiPUH/wEoQQLMzVnEm0YOvOYGkDd6HWCMw1RXETzjxR00bLKrLItkIlPWPjaBJpO4BgeanFdXTp2jM1IbMF0DRsG7Ipp2X4KlG+Z2U1zgtVNktoKMzA+RHO3ruI3SQcbiVQqhCIGxgx3VNYNHD7WSE35wbkFSHdPs7xEObMjBvERkMsPuFNAG/GdIpr3kKbWTkbct5FUUITiA4OW63QQxqjV/Yx+/AyhZXuyykNiWzjhtcJI6JhF5yn5Xs2whp2yfEWhk0T6EHNkwAIYGB/D6Ws1dGVSgQCKMtClMMqCimQ5e9L9pRftirVcj6j4mVxkxA4liLfJK5xIu6cqpWYyAkZgMKMSgq59W1edXAxC/VqGCasLLYOn6bMujlAXT+k6WBpkoprmWjRRzmBWl5XTFSJk1Z2MSrPFZQmW4qNKuXWlYNtN9ZZxQmpXV49CKGQIp1S65yUVP38p6kh9PYrtIBkerb1eNFOQJTJSSzLdeYDEI6qlrEhf8M8XLCcbbyOYwi0osI2W+Q1XLHRsGOxIHUsmsVNLYsGgCbd2tdSGvR6aPxCsCB06DDHXkjVRD/JeBZ+dJL777+fL3zhC91f5yniM5/5DN/+9rf53Oc+x5/92Z/xsY99jImJCfbu3UsymSQajVIsFlldXWVycpLDhw+TzWaRUnLdddfxzne+k6GhoWf6Nnx8fHye9ZghnRe+7Tz2vGSMez53iOlD7sa4Mw/OcfanC1i/DF8Zu5e5Uk3sOmQk+MDEG7g+edEzVWwfH5/nCK3Csk1MTLBt2zZOnz7t+XzBYJBEIkE6XVuTcRyHr33ta7z4xS9m3759WJaFZVkEg96ibvg04tgOT3xvEvBdlHx8fHx8nn88KSKlj370o/zVX/0Vi3feSs+VBxqOaSXVVqgkpcO2EYvFFcnKmvuCMrBUqE+wTqiUX4OTD7Z+SyhydXmbXJE0AxITJsun8+RTdluxUfW6AI6DHpL07gwz91idUKZTXiB1Ise62CNdMH3/IsU1b0Iex3Ho3R2jlLY8iZT6L4gz/IJeDn3pjCc3ml03jZJfKjJ1V/dORT07I0y8aJDDX5/0FJLCjBgU2yy0tmPh0CoLh7y7S8W3hDHjBguPbbw7tkJmNu9ZaAQw92jKc/g7K2tz7FverzV4cQ/xiTBPfGXSc16v9O2L039+goNf8Pbjp+oA5IHsXIGzP1qglPXWPqbv9+agBBAaMIlPhJl9ONW1exvAwqMrLDzafXsCMMI6RlhrLRjqEDZy4kX9aKbGsX+faXm8+XxCCoyoxu7XjHDmznnS5zZws6jb3TfygiShXoMj3yxfqwuBEhIS20LYJWe9SKkDhVWLcw+ssLZR+ZrIL1tMr3YWDzQLlOKjOo6lSM/ZsJGQoy78Z2xAoDQaREr1AiV9rYjVIpb49Gx5+O1vKlfd0BKbdFibqJTTYb9RZM7QWCq1HrprAqUai3d8n6XFRT7wgQ8gPTvo+DxbEULwR3/0R9xwww3s+skW4i/Y0XDczutthUox2yFpO5wxtGq/Epzr3Dbmiu2ni+Za+/lQ1FQI2yFbKIdD6uCo5JSfSWk7BIPuOfP5uv6ljVCpwsq8AI+al8JKiYUnMjhKw0sHb8Z1IkNBzyKlkSt6yS54CxcXTJr0X5Dg3H0LnoQog5ckKWU6C0qaEQK0oHQdczwIbOYeTnWdtnotKYiOhcgtFFzBUpdsJtSeXbCZP7jiec6wNuk9pCzAyOV9LB5ZJTP91IfbHbwkydpUllUP4W8LqyV3TuOR1Im0G7atDSJQE2ZXhEp2wWH+kPudyfqhsEmoVBUolYkkBaWColi+rYpACdwxtl5M5AqUAASzZ0E0TRnqBUpOQF/npiQ193diKxoESnXoBozsgNlZKLTpBuoFSuAKg3p7bXRdMT8tqgKldlTKLaVibItiYRqymbIwaYO5l5IC01TE4orVFdFR/NzMUlpH867NZy0jqwKldjQKlBSJkMNaXrphSTu4J0FNgGRKRY9ps2RrDW5P9QIlPQNWY5OiJASnqDTC9hVizYXQB90KiBUV8SKc0RWqzTy8XqAErvPyka/fyf79+3nLW97S8Z6eLm644QZ+4Rd+gXvvvZebb76Zhx9+mFtvvXVdOiklO3bs4MCBA9x444309/e3ONtzj+9973t873vfa1iE8/Hx8dksyfEYr/7DKznxo2nu+8cnyKYKHN46zbcHfgpFGiIyz5VWeN+Jz/EXO37dFyr5+Pg86SilWF5eZtu2bV2lz2QylEolVlZW+M53vsPJkyd5+9vfXj1+6tQpFhYW2LlzJx/72Me45ZZbKJVK7Nixg9/5nd/hsssu63j+hYUFFhdrTtGbEU89Fzn94ByZpTzBuMn2Fw4/08Xx8fHx8fF5WnlSREpSSt73vvfxkY98hOzNt9Fz4csbjmvlRRXbEESnay+GHQd0vWG9t9XJq4lluvbWOdIHypZkU7R0XHIvXHNVyi07PHHzcuMaVJ3YSFktFi6kJBDX6T8/yupkltxiU14AR7kuSk2YPSbJ7WFmH0qt26HajrXJTbwRduDxL53xnC11MkMpa3sLUwakjqUpeBAaAaTP5jhz5xxW3lu+k7e2Flx0hcSToCQ6HiLSH/AkUtrstZ6ORasKCwdXWD7mIYzaz8DiE2ukzz4991ZKWywd2cR9efyuAMJ9Afr2Jpj9Seopv1YpbXG0lRitg0AJIZl5eAWtjUtAO4ckx3JYPJImu9DBVaKF9fj8YysYkfLQ0WGRrMHlyIEj32wKf9lJMFPO61iwfGJ9v9jSQclRIAWxURMtqJM63bRKWXZTahYnAWDb9G4N49iKdAuxZ4ObUtOAdeYRGxUsCzA2WnCUAnAY6HdYXBI4jiS0UCLXb2y4gBhaUwTiqmFZLXoa0ltbi5MAzPkCuQfvIpFI8Kd/+qedL+Dzc8erXvUqrr76apx/P8m58YvXdRN23m2zWtBCzTbubNNQXXdRwSW31UkUMd1hxao5h2zETFrDyDQ+c/VCJb1FGE1Hk8TiFkpBaanpeMVN0HJcF6UmQr06dt6mmFWITGPf0cpRSTmQW3L7QGG6K9yqWOroogSuu95mHPaWjqx5EuQAFNOWG27Mo+tN6lga2+Mcr7BS2pTgCHCbhIcyKqVIbA1j5WzPdeL5Wg7kFjYRY3qTzPxkCSu/udB5Xpl7JOXJLetnoZMLVb1AqYKyLIShg6pzUWpBs0AJINIrya04FLOqQaDUTE2gBBWXIhXQEOUwka0clCpCpcqYnU7VnaH8mSjZrQVKZbGkpUnm5qBYN+1V5f5JWM46gVKFXAYwtZaCnIojUnOZHQVzs7IayrKVQKmat+5YJi3IpKH+gVGt5kBCgFI4pnvvjgWtfha3FBEpBQISUYd0UWI1uT1V3JSaQ8MBhISiL2KTK0ryLe6p3k2pXoBUcCTH0iZWee7VyT0JXGensHJDB+bK89rAsqSQ7OK5KWjIokLV3fvcXILBwZV14qQK5+6YJHPkHH/xnc+idXzJ8fQihODqq6/m6quvBtxFpvn5eVZXVzFNk56eHrZv375hKLjnItdffz3XX389hw8f5l3vetczXRwfH5/nAEIIdl4zysQlA/z4G0f47Pid5QON6Sr+in8++S+8rOdCP/Sbj4/Pk8p3v/td5ufn+c3f/M2u0v+P//E/uP/++wEwDIObbrqJX/3VX60en5pyXz5+9atfJRaL8b73vQ+Az3/+87z//e/nU5/6FDt37mx7/m9961t87nOfW/f5yZMnsVusrT3XSKfTHDp0aN3nB//FfV/ed2GQI8cOP93Fespod7/PZZ5v9/x8u194/t3z8+1+4fl3z0/l/XYbFvZJESkBfPjDH+bjH/840z/9LsP7DiDl+lNrJYWwnOpLXJAcOV3e0bjRepeUDaKi4d06xYwim7I7L3YDaBqqUAQHpA6aKSlVQsVtsBM1M2/xxDemsQttJkuy9c79cH+AvvPiLB5exWqxCNeO3vNiBBMm5+5b3DjxurLQtSjCytqsnPQe4mwzLkVW3tnUtcD9vhwHT2KP3a8fIzuf5+zd3dfhuXs2Ud/A+W/ZQupk2pNDT6DHIL4lwvxPU56udd6bJ0idSDPz4+Wu8zxd4fzAbVNW1tuPCqnDvrdu49x9i55ER7GJEJopSR3vvl1JU3LBW7cydc+8pxCCi0+ssfiEN0GUGdXZ84ZxTt8xx5oHdwNpyvXOZhsIlABy860X1DuFcLMLorPwqs0LsvyyRX7F7l6gRPk5rjTFjfrrct7wgEHf7ghnf7xarZN24d3qyxzfEiIQ1daLlFjvnlTPqR9lkZ3CDrZYaArGXHc/UbJxwu3DTNYvGkbCMDpsky/orK0BqnN4N6PsUmMheWS1UWgSXHZaLzhWivzgd8jlcvzJn/yJ76L0HEQIwUc+8hGuv/56+i/cQ/hFF7RMZ+d19JLAMdy2tKZJ1jq0m2aUcNtoUFMMByxytkFRdSdSMjLuNQ1NUapbvFYbXH5+SUNmSu2nhm1Cn8b6JYW0oLTcvt8VuobK1QRGUhcktoZYO5fHyjkoq/twYEJ6M87ML3sPveqUnE05+hRWvYVfq0dooqNjTjPBXpOBCxNM3b3QfT6FJ1fOCpGhIL3nxZi8c96TUCnUH8AuOhQ91EtkKEhyT4ypH857KqNXV9SfhVLG+7US2yKE+gPM/NiDu6SA6EiI3GIBu9DY6FsJlCr07O0hlDSZfbyFSEwpVKK1IGLuhIMTMWG9fsnNamjYIQNZ56iU7AfDVMydE9hxE5lrXzd2NOA6KlU6maa21M5BCcCOGEjLId/msWwnUALIKAORad9wW4alU4JczhVBiQ4OZ/VzDSFUeY+MqJ23Q19VuW6yx6FQhGy2zn1qA4cjzYBEwiG/JNaJlKDZPalGoSQ5vWBQ6hCKr1mApAuFrUAhkCWFFW5ftnpXpz5sdBQn6S4kuFVwv8Nl0/1rIKO3FSgpy6Lw+e9y2WWX8YpXvKKraz1TbNu2retd9T4+Pj7PJ/699Cj/+adffdLOV7zQIm23F8srYLaU4uWP/A/MFu/RN8vbh17Crw699Ek7n4+Pz88Xp0+f5i//8i+54IIL+IVf+IWu8rz73e/mLW95C3Nzc9xyyy1YltUgHsqV36Nks1k+85nPVEMCX3bZZbz1rW/li1/8Iv/9v//3tue/6aabuPbaaxvK+NGPfpTt27ezd+/ezdzmzxWHDh1at2C7fDbNPadOIwS8+JcvI9ofeoZK9+TT6n6f6zzf7vn5dr/w/Lvn59v9wvPvnp8N9/ukrVpKKfnYxz6GY5ewD9/MRMxdiAnpDpcM5omZNuGZEoP9Nnu31xZpdm4pMTFcYLjfIpbOsecSRSThvoDtG1bs2l/ewZ/OM3Ghxshe943j1KMWgagk1u++nEz2Wex8ae1N9tilQUYvCpTLBruuj5MYN9n+0h62HYiz65U91bsfuzTMxNW1Hb67b+ijZ7u7GBwbD7DzVQNoIQ1pSkav7GHLgb5a2lcP0LcvBkB0NMieN4yih13xxPLJDONX91cX3Xe9dpT+C93rhIcC7HnjOGbc/RE6dFkP2181jBHRMaMaO189wuDFPQAE+0z2vHGcYJ/7lnTw4h52vnqkWobtrxrmknfvZOjSJGZcZ88bxwkPuffef2GCXa8drabddv0QI1f2uve2JcQl/2En0VF3AtR7Xozdrx+rpt3y8kFGr3bvVZqSPW8cJ74lTM/OCCNX9rHnjePVtBMHBhh/0UC5McCeN46T2OF+H4ntEfa9bUv1XOPX9jPxksFq3j1vGKN3j1uHsYkQe944jh6UmHGdS/7DbvbUlWn368bo3xcHIDISdOsw6tbh8BW9bHvlEItPrLJ6Ksuu14wysL9c3wNufQd6jFp9/0KtDnfcMMLQJeX6Trr1HRpw63vgoh523lirw+2vHGb48iQAi0dW6dkVJTLitpf+fXF231RX39cNMXqVe9962K3DvvPjDF3SQ/8F8cb6fukgY9eW61t30ya2uXXYszOCEdVZK4eWmTgwwMSBgVodvnGcnp3l+t4WYc8bx5GmJDwU4PxfnmDLy2r1vfv1Y/TuLdf3eLm+w+7DMPrCPrZdN1RLe9Mo/Rc01Xe5zQ5fnmT7K2s2pOf/8hZ23ujWaai/3GZ73TocuqSHHfVt9hdGGLqsB8eBpWNrDF6WJDxQbrP7E+x6TV0dvnKIkSvcNmtG3fY9dHGSgQsSbn2/rlaHW18+WKvvoFuHsS1hAJK7IiAVmVl32/vESwYZv7a/XN/lNru9XIc73Dqs9BHjLxpg4iWN9Z3c7S5QxLeEq/UNMHp1H6PX9DH30xS5hQK7Xz9G33mVPqJS324/NnJlL9uur9X3pe/eyZ43uPfTuo+opd356hEGL4qT2Bpi/EV97HnDaK2PuCjOzlfXvpvt1w8ydGmPW4dxnT2vH2H8miR6WNJ/Qawh7baXD1TrWw9L9rxumOiI+91seWkvF7699txvOdDH6JXueaUp2HPTMPEJtz/p2Rli92uHkKZk7xtH2f2aQcaudp8bJOx+zQCJrW7axJYgu18zgCwvhI1emWDk8gSBhI5TdNj96gGSO920sVGTXTf0oZXre+SyKFuuTVRFRMGYTmrKfQkYGdDZ9coejLAEqTF4foAtV4Vr9XIgSv+uAHpII5SU7LgmhBl1yzCw22DrlWVRkJRsv0QysKO8Az8K573EYPdVJpFe6N8q2XFh9bRsOx+Gtrj/b4bggh0FohF3dTAcVhSLirU191w7tpXYZbrPtSEdLhrNkyiH6RoOFLkykKXPsEjoFudFC+yKFMpV6HDRWJ6xrDueDholLo/nqKxC7s0t88Sj9zIxMcHv/d7v4fPc5LrrruPGG28k8r072T1TQJadG0dzNhNl0ai+YLC7VKSn/HIp4jjsLZSI2zZR22Fi3mFc1IQb22WRHuGmTazYbA8VMYQiawuWipKBQO0l1TaKJMr/NjXFlkQJU3PLkAjYDCctQqbDxECJsb4SiXC5TJpia7SIabppoxGH4cHaefv6HOJJEAZommJ4i8Ish4ALxxTDgyUoC62SY5L4kPv/C6dsgjFBICZB1wn1aAydXxP39UwYxAfKi/wChi6OYcY1zIhGuM9g6OKYu6YvBD07oyR3x6p5h1+QJNTv9oWBHoMtLx9k/NoBhHTH3cq4CjB0aZLIkHtdM24wfHlvtc8avjxZnYeBO6erzCGMiO6mLTuExMZD9F+YQDMl0dEQA/sTRMfcvlAPaQxf3otRHk+ioyEGLuqpnrf/gjjDlycJJAy0gGT48t7qfCkyHGTwklravvPiJLZGyv8fY/dNYwTi7nwpPBhg6LJkNW3vnlh1rBSacMtrSJaPpQn1mgxfXru35K4oyV3Ran0PX95LqDxOBZNu2oqYtmdHpDoXrNR3ZV4QSLh1KHVBYaVEcdWqjqvgzjGq9R3TG+o7viVM/744ia1hwgMBBi/qIVqtb7cO9ZBbh7GxEAMX1n4PRMdCFNfcZ0MPlus7Uq7vkSCDdfXdty9OvDzfSGyLMP7iAcxYub6HggxdWqvDvvNi1fmd1N06NMsOheGBAMMvqKVN7o7RU55PC+nWYTDp1mGoz3R/O0TdMvXsrKtvyvVd12aHL+9FaILcUhHlqIb6HrosSXiwnLbcZmVZPBLfGmbgwgTJXVGMiM7gJT1EhivtO8DQRVG0QLnNjgXpP69WhmCPVg2zpwcFQ+cH0IPudx7ZFqV/oiYy6ZuQRPvcf2sGDG8Bo/z4RuIwWJt+kNyikehxxztNUwxPKEolRXoFwlHF8IiDE3LrtHdQkehT5TpUDG8TBEPuv5MDcP4L3JBvAMlBiI9IHEOCcPueYMRNGwwrBne4qs1Er6J/2CE5UBMNDY8rgkmJ0gWBoGJkzEHKcn+YdBgetQmV+7HhEYdI1P3/QEAxMmYjggJHkyQSDv0DFUWRYscOm57yveohGBlzQ8YBxOMOA0MOShMoXTI45BCLK+IJxfhWh5ExG6MsUI0mHAaHa0qlgUGHeMJB6QJNU4yOWASDCk2W++ShWp88kLTpibv/llIxNmQRMBVKEwRMRcmCfNH97voTNslYOa8GEz1FQmZ5DhRwGO8tIYWD0hS9EZuBcEVM5o4hEcNNGwwqdphFRFlBNhCw2BMtMB5y028LFYlL9zph4bDDKKJV0uoWW7O1cc3AYbU8qQ8ph12qSGTJLe9QyWZboZZ2V7bEwIygv+AQthz2rtoEyuLLgbzDjryFs+w+K9tXHfrLDlemrYj8y0OkZmb58Ic/vLGw3sfHx8fnWUmOInOllSftL2V3t7EuZWee1Otm7KfPwd3Hx+fZxeLiIr//+79PJBLhIx/5SNfunrt37+aKK67gxhtv5OMf/ziPP/54gyt7oLw55cILL6wKlACGhobYv38/jz32WMfz9/f3s3fv3urf1q1bN3F3zy0ev9UNebflssHnlEDJx8fHx8enW568bRrAe97zHv7n//yfHHzkRwzuPIBRMrBjkC4JSo5AAsWSIJepOSrl8qBrguF+m8kZyKXBLr8nLBbKtvhl8mnlHpOCUkGRW3UQZQuKUt5x3T3KLwQLa3Z1d7sD5FIWpYJg5rEcuqGIDpe3RZYsN3yBFNWXibnlUtVpyUoXyS0a7HxlP7mFEtnFAla+9oI3u1iilLYRUmCXlBtOony4sFxEOVrZRUSQXSxQKodKswsOuYUCTnlHbHHNQmpFZh90XXJGr+qjUF4YcUrltOVwDoW1EvpSbYKZXypi2w6rZzI4lluGyi7nUtoiu1jbtZNbKlAqOzsJTbprceVWUMpYDeEwCktF7Iqri+OWwcrZjL+gH6tc/moZlosNm5AraaHssJOz3YU1CflUEVnngpBbLFZ3glt5271XB6xVi6Ujq9UFosp5C+vq0C1jcaUESrFUdr2JbQlXd7NbRbuhvgsrpYYyFFJF+vf3kF8tkZsrNNRhca1Err4Ol4sUVtzzLh1eJRAzsMttothc38uFqruQY7nlXz66xrkfLRIbD5FbqAn28svFupAd7r2VyrvAS1mb1LF0NVRcbrnY4DCRWyhQKl+nlCt/j45DsMfEjOoNTkC5hRb1XV4fyK8UsUt2VbiWXSxU69DON9Z3YcVqcPlRSmGWFzXtYjltsdZmtcX6NltwnzsH5h91Q5VZxXL51xrrML9UrJbBsdzzzj+2Qn6pSGxLuLEdLhWrIVYcp9IO3bzFFYvU8UzVXaqQKuKUFx2qact1aOXs6nl3v24Mq2CRPlf3vS7UnqNq2vJXV1wpYeds5h5JVdMWK/VdqKSttUOnznVi5VSGtaksCIFdVOQW6/uIErLifiIkucUihTWbUH+A8ECgWt9CCooZm3xd2LLccrH6HDk2lDIOyZ0RUqeyFNcsckuF2nmXS9W2hOM+n1b5e9SDWoNrSD5Vwil/b0KV01b6nqxDbrEIjsP8wVW0gNbgvpBbLFW/q1JekVsqVSN3FlctShmL+YPuAJBLWZTK79isgkNuqYQqV3hh1ca2RLl85fKn3fPaRUUuZaPKri/FNbvBmCqfsnE0we7rosw8nie3ZNXqO6uQhqo6P+VXHUqrNqDhWLC24JDPKTIrEj3gkK8fqzLu+IUQOI4ilwbLBtN0KBYV6YxWdW3I5QQlS4BwP8oUBE4etIJDURNk85KxuIUCUpbEcQTBZQeJQ0YTVXeaohKsWZLIjFsv0/N3kM/n+exnP4vPc5uPfexj7N+/nzcvpTkeG0AIQV530OoG5YyQ2JZEOgJLE6SlYNCyKQlJHq3BYCOrJFb5mbGVIGtLbEAJQd6RODjoQmEpQd4SWE45HI+CXElUujcsR1CwBLmiYGZZx9SdqsuGvmaTl2WnRAG2I8jXmQxZq+4i/Ng2wcwUFHK1yL62BYVs+SKapFQU1bFTKSguFaphdm0lKaRrC+2lvEKV5ybC0N1QUkXF7E/XMCIawqnNN0pZu8FQrrBSqo5pTskhM5OnkHLTWzm7IeRWYaWEVXbgdEoOhZQrCgFXhFzf7xdWS9U5hGOX05aLbOUdxFoJI6KT3BklPZ3DLvebylYN45iVtxtcgoprFqG+AEZUp5S1GtLahUZHoWK6VJ3vpWfy6CGtGirOLjgNYb6KGQtVcXNRbhmKGYtS2sKM6RRStS+ylLFqc0PljruV69glByFhYH+CuUdS5fqu1WE+VStTtQ6Ve59rZ7NVEVKlDqv1bamG+q7MRStOoIltkeo4VU1bV4eF+jln3bxdOU31XXAa0pbWrOqYFuozUZZTHU+sgt1Yh2mrem+qXC+VSV1zfZcyVvVeKmkrbc2xFZoh0QMapbRNKWs1zA3r69spueVHKYqrJdJnc4g6h5vCSqk6RtuWs64Ola2Yf9QNiRxIGG5aqeFYbnmdQgnQ3DYrrGp4t9ySTTHjPujKhsKag7LdEG9WCTeEmVIgBMWcwi4qQnFBbNygkHXnLG6Z3H4AwA4ZFIsOliVwDIm0LQo5yGcFRakTCCoK+dozVirWzqN0jXxeYduu41E+Y5Gad487pkbBUdXnD1Xue8pz5JLm5hXCLWMxqyiVp09OQCNnO1Q2GttCkM+rasTvIpJIwCGuOeTyGoWCe08AlpTkSrXo4EVHosrfha6D0Kj2yUpBPl/rZ0tKQql2r3lLYlkK2xJuWPWAwClPfGxLNNRLwRKU6s5byAlW0hLLEgSDipxdc1EqlET13lCQLwhsIRBC4TiKfKEWBrRoCWwESgqEUuSLErvSfzuQLwl6EzaGBum8hDrDq1xJUCqHh7OVImdJtAJYASjagtmCzpqSOBpkbYlVFjnaQNYRVEz+ikq4RsdKoQNZNPJlkZINZKvSJygIQEpk+bHLCvedxXDW4VRYktHBFkBGp2g5ZGStDrO6oCjBWQpQzORY+MFd/PIv/zKvfe1r8fHx8fH5+SSEyaDRPkytV4qO1ZVQKVIMEA4FOrpheyGiBTdO5OPj85wjnU7zgQ98gHQ6zSc+8Qn6+/s3dR7DMLj22mv5whe+QKFQIBAI0Nfnbgru7e1dlz6ZTHL06NGfqezPN4o5i6N3nQVg3yt9wZaPj4+Pz/MToZRSGyfrnjvvvJOXvOQlRHu3ctFLfxuAUqQcvmdmfYiFSui3yEoOy2r/Y0ym1+8CCUYUOy43mHowy9pMU5iputtShRbhNSpvq0vrQwE0VEnJLXPP9hCFVYvcYqnxeIuYudWFKE1x3i9NsHBotSpYoMvqjo6GSJ/LbZzwGaBlSKpnEdKUJHdEWDmVaRCUbcTEgQGWjq5VhUDdEOgxiAwHq8Kop5LwkPvCwkv5NsuFb9/G7CMpzyHpvKIHJZGREGuTmVo4sKeIyFAQPax5Dj04ek0fa5NZ1ia7fx4TOyKu2Gq+va13W7oIadb58Mbh4aAuBFu96qjTuTd4WdZxx3iXId4qBJM6payDXXAQG+34KR+XBuy5oY+Fw1kWjpafEbk+b0PIN80VkfZuM1k44YYERa/L06LcyizHHmkRLqsh5Nu6+lDsukKSzcLpM03xS4B8f+0zrdDcbzkUhjQsJMHl9X1arr88jpYFSmRPcd93/5b9+/fz0EMPrUvv89zjve99L//3//5f4v/tP6OXxQGq4lq0sL69OYZCUwpjvraw3IrA8vo5y6hZwpSK6Tm9Y14j02r8VYDASK+fO9UrnfVsCSEUkRhk1kApgagT9shMi761vAoei5SIDelMHyzUzmnVBpj6UG/Vz0oWUhdQyldFLbWDT+o0eXMIt0vxElru6caM6khDegppF0yaBBIGK6e8jcuhPhMr72wq1JkXhCYIJAyKq6Wq4OipIjYRJrElzNTd3kPgecWMGyjbqYqtN0Wr8dWo7X2piJTCfTqFNRu7qBC6e1zFW8Rwqxsz9T6TcBRSC3X9S0V4GFrfn8mSjdQUZkIjl6UqTK4eL4vVldF6PiELFo65/pisEx7agRbHLZtKH+i0OF4JzeZUBXXKfY6VaAjb5rQIdybL/Zkbwq2SVjScF0Bp6/tgURYY0uJYvSJVNYRhUwQCFTcksWGIt8p1E1GbRMRhclZHlb9D1WK+WB/yTWlg6g66hGyxLBwyRcu0FeyAW0anxT01hHxrOhwTNqMRiyOYFFvMUwvJWoXIptcUmlKUBsp9TGb9vi6ZdMchZ8ndUS6+/E2m73uAo0ePMjExsS69z7Ofw4cP8653vYtPf/rTXYUceTbYovv4+Dz5PNnPtq0cbnj0I8yVVlpHKlYQXQvwa595Maapc+kbdnLhq7ejtQlv7ePj49OOQqHAf/2v/5UjR47w8Y9/nAsvvHDjTB34//6//4+vfvWrfPOb3ySZTJLNZnnNa17Dvn37+MQnPtGQ9rd/+7dZWlrii1/8Ytfn9zr3+nmneXw59N3T3PPZQyRGIvziX7z4OefE+nycKz/f7vn5dr/w/Lvn59v9wvPvnp8N9/uk/+o5cOAAL33pS0kvnWbxnGvzaGQURqb1y31hOQjLKQuUFJF494sA+Yxg5rhDZq7FS3bhrui0EigF4pI9NyQJ9q1/0e1mLbsqlWpvK1Mnc+QWS43HWwiUoCwSUO4O6tmHlkkdT68rVycS2yJsf8VwNcxFtyR3R6vh5LxgRL0Zav1MAiWPLc6M69XQat2iByWjL+wnMuzNJnPyznnPAqDYeJjRK/o839fOV49Uw+F1y9AlyYZwIc8FIsMhthwYRA97a4M7Xz1SDW/XLb17Yw0ha7rl3D2LngRKAMOXJRtC/3RDz84IiZ3RzomaRUSy/pDoWqAENWcAhKz9tUMKjEjr49X+sAVmXGf0yp5qGJgWmVv2h6NXJNh6oLezQEnTqgIlAKcEs4+mWZkqO1W1WEAFULbTkNexYOFYsbZwZ9muOKmdsEqTbL/cYGhHi0XFbLFDHy+YmtKYX2h/T1rBaRAombpD0HQAib5MS4ESuOKkikDJcRxOPvINTNPkS1/6Uttr+Ty3+OM//mPC4TBXP/RE9TOR1RDZNovyJYGyXIGSiVMNkdMNi5bGTNG7QCkZtRlMdBBFuGvj6OUQPUoJ0quiKjhQmkBporVACUCTiGye3IrD8mSpQfSEroOutxQogSuu6L8gTrJVH9xh3iYNQc+OSDUslhfqnYA2RP2MAiWP77pCfWY1pFi3REdD1TBw3ZJfLnoWKAEkd8Wqocm6JTwQoP8Cb3NkLSAZ3N+D4XGO8mynZ0eE+IS37yo8EKj9xmg3vpY3flQESkK6ImCzbv7QUqAEoBROJIATCVDMi0aBErgOky0ESgCOoWHENQYGnJaPqhPSWwuUhBsWTYRaP4uO4YZ9WydQKrv4OrqGE9BaCpTAFQHVC5Sgrj/TRfX87VCScri4cudYd95Kf9iKaEwRajedlOX8TUKgQACGh22MSGeBUvN1MznJ4qqGKttBthIoAUhLoTRXoARQtGRVoASgFRWOLloKlABMw2FrtIQu1o9VelY1V1GVtJJMobcUKFXLVmoUKIUdB5TCFsIVJ7UQKIErTqoIlIpnpjhz1z284x3v8AVKPj4+Pj4NaELygYk3AOuHqsq/r7vvAqQSWAWbB750hG/8/l2cffSpF677+Pg8d7Btmw9/+MMcPHiQP/qjP2orUFpYWOD06dNYdRu5lpeX16VbW1vjjjvuYHBwkGTSfZceDoe56qqrOHjwIKdPn66mPXXqFAcPHuTyyy9/ku/quYtSikO3ngHg/Fdsec4JlHx8fHx8fLrlKXnr/s1vfpOBgQHOHfwGyeHzkFInWHYUsYNtFmgdh+Gt0DsseOInCseuDc6tXJQqLE05CIS7WO+0WGSrvCytO1ZIO+SWbNfOv8XxKpUFcLsSvsFg+LIEp+9YwC6odccbKC/4L7Zy2NlgV/7KqQynSjOeXVgiQyH0sGThsZWu84QGTHbeMMrp22ZZm+peiLHtFUNYOYepu+a7zjN8RS+JbREOf3Wy6zyBuEHf3jjLx9LVsCobUVy1ePzLpz25KIHrwBTqMz0JlZaeWGHh0ErDzuRusAuO5zyTP5zz7DYUGQkydk0/J78zUw1Z8lQxcWAAcMVe3bJyJsPhr09S9Fg2u2DjlLpfVK+US3pZFAbMhI4Qotb2Kj8a2j3D5eOHvza1/lob5O3ZHkVogpUTLRZs2wiIBvcn6NsT44mvn21/E015Az06268f5MwdC2TnN3C8qFts2vbyAfKpEpM/XKqdegP3pFBfgNhEiJmHV1uUq33eM/esoLcTNlXKpZx197Z8suAeayfWKn+uLAuh6wztC6AcmHuiEu6uk8irdiy7osinnbbH11H+ztfSre9JFm3C52wKfY2igLFem56AxWOP69i9rQUDwcVyOMOEO5wf2LPIn//LNP/lv/yX58VOJB+XZDLJX/3VX/HWt76Vf/21X+O3z7hiJWPZbXNOGz2HVIqdWolFpTGnGqeEwaVyiKmmpl1w3HMGKqqZFm1flA+puiZfLIlyyDZVPWeL9eaqG4coPzfxpBsyaS0lkOkiqiwgFE6LQVST2DbYK+uPqVzOFStZrcebpYPLtRC36zK36fOV69KXWypSSHU/qPedH0cLSOYeTnWdx4zpDFyYYObBDuVsQkgYvaqf1Ik0mZnu5zbR0RB2wfHkirR8PF0Nm+YFPaShHNUQDnQjpn+85Plajq0aQvJ1g5WzOfujBWyP+Xr3xHAsh1Sr8fxJRA9q9F+YYPHxVU+uUl5+J1RQjqptUnDslkIlLRFvygNTP8m6/4hHXd2gZTc6FpZxorWQJGZQUSqCKoeSLMXc8U+2+R6ssMaaA4UzFo7T2B/ZZRGQbq3/rWYYEO+HrK3B2vpz20G3T5TF+ryKsXHF6gqsFMrHrRZ5y9eV5Xba16tAKBYXZYMbkGhxS0qCLSURw2Fw0OHsOdngNqxko7NcAwJCMdyw6LkWjkZlF0jR1KcVCnBuwaBYpK2oUUlR0VpVsWyBlRMdhZAVYZK0FBgwFLdZSGvVcLWt3JFq1yyXW0HOlqwzNOv0Ll8pFIKUaP3uQZQgOCcp1rkpaUqxq2QxY+ssSokTal3P+qpbMCvmoByHidt/RN++fXz84x/vUCAfHx8fn+cr1ycv4i92/Dp/PvnPzJZq87BBo4cPTLyeF59/Pg9+7SiP33oapWBlOsO3//QBtr9wmKt+5Twifd42YPr4+Dz/+Ju/+RvuvvturrnmGtbW1rj11lsbjr/yla8E4FOf+hS33HILX/7ylxkZGQHg/e9/PwMDA+zbt49kMsns7Cw333wzi4uLfPjDH244z2/91m/x4IMP8ru/+7u86U1vAuDrX/86sViMt7/97U/9jT5HmD60ROpsGj2gsefA2DNdHB8fHx8fn2eMp0SkFI/H+fM//3N+93d/l2M//jJ7rnxb9ZiWt9sKlebOwuqSwrG9CQkSoxqDu02O353DKbZ5aStFTYjkwOQDGSh1ufiiaWDb2AUboQmMkI5d6E4wg5D07AiR2Brh9G1z3eUB1s56D/XmRTBUITdfZPr+RTJz3gRR6Zk8tkcR0NpUFstjaI61qRwHv3B644RNeBUoAfTtjTF0aZLH/vFU1wKizYYoO/X9Wc95rKz3e7LzDtnZAqrFAsqTTc7DYmYVB88CJYBT3+/+WWq4nEcXsKFLkoQHAhz+2lTjATdex/rPurlWm7ynvj/n2ZErfS5HRwOUFuIm5bj5Nlx8bhL6TD+YahCGdRPebeV0jpXTLfqyDfJaWQcr66y/RhvxUWJrgPiIyeSP057Efw3V0+WuFZEvMnuiSTC0gUBpdDsEQnBkynVFqqdx8bORc6dgOaSvy1OhIlCqkl/gf/2v/8XQ0BAf+9jH2pfJ5znJW97yFj73uc/xn/7Tf0L953chg7VFf1loLVRSCE7bBnnaLzILtV6oBIrRmEWuJFnOa+3zOrVF5kyhLBboMsSUEgKh3PBIHoye3Osakp4RSXbZodAsPiiHnGoWK5WybrmEbqCs7uZ4jqU4+6NFb4XDnQ95xcrZnudqynGF78XVLuesZeYfW/Fc55sRKAEMXtxDdi7vSdCzmWvll4rklzzOUxRdC8LqKaatTdeHF5SjKKSKOB7neJsJXZdbLJJb7LL+iiWohEbt4lL1AiUpFUMTsDgD2aZ9Ho4h1wmVrHCdo6LTfiy2Qhp6UyjHAhpnJsshujuVz9QaxurUsqBAe1dEu4U7Uj5PV45m9cLOnC1YWBQNXVXFqUhpLYRK5fPPzWu4vXvTfbQIU1s+K46h0So6ev01m/MMJB3SWUGu2P3kVZMghKKiMe0kUKrHyUlmVNN1OmTVlGK7UWTaMki1+HZFmy7RFoITjkG+w7yuIlCqYH7/h9x///3cfffdBALeHN58fHx8fJ4/XJ+8iJf1XMhP0idYKK3Sb8S5LLoDrfxS4ppf28fel4xz9+cOMnckBcDJ+2aYfHieS9+4iwtv2OaHgPPx8WnLsWPHALjnnnu455571h2viJRa8epXv5rbbruNr3zlK6TTaWKxGPv27eNDH/oQF198cUPabdu28dd//df8n//zf/j85z+PEILLLruM97znPQwMDDy5N/Uc5tB33bWuXS8axQy3dgz28fHx8fF5PvCUxS/4z//5P/O3f/u3PPHEwwxtv4og49VjWt590dssVnKsygtpBzMIxS5eeopsnhyQWSq/7awXIzXT5JoUHtDp3Rlm6t7Vzo5KAJpGMQcnbmkhBGpyVFJN51BKInWJ1L2JWrZdP0RhtcT0/UsbJ64jmDQ97X5v6fa0AQuPet+FnZnOew6ntlkS2yMM7k9w9Fvnus6zfHyNtXM5zw5H264bYvVsliUv9SjdsHRehEfxLWF6dkQ584PuBTr55eKmxGubYTNtondPjGC/ybl7ul/klboE6VFwJGHnDaPMPbLsyTFs+r5FNxziRgKWuuNDl/YQSJicuX123bGG9BWhUv3x5lvqEIJNSEFusVQNQ9kiQcuPi6sWU/est/JtoMWCVPqcuzi+oQVtWaBkRiVW3mns8zbIq0d1drysl6n7V8jOl1BK1a7XIZSdZgqELhrrr97poU3emccKG4fgrDvWMyYJhCUzk+uPtaT8HWfXXE2ssVqiFHcXsDqJk8x0CV2HkiPJtFi3XydOqtzPE1/FcRw+/elPI9uFq/N5ziKE4JOf/CQXXXQRv/z4ab57aaOTlizrW5rFSrnyAq6hFDbgtHJGKndXFbFSYAWyQUmx4nrZ5K7RkLfBVUnRE3coFCGXlx0dldzrCVLLYp3rh3u+Rkclka3NL5QD0pBIA9oO6nWuSk7GHRfMuE7v7ihzj6xg57ufRwkpkLroWtBSXPMuznUs1Rg+uEvS57yL3r0KlCr0nRensFrydM35R1OeXJTAnefGxkPMe5x3SF2gHOUpdF7PziiFlAeBDpus801gFx2Wj3lvE717Y2Sm8xQ8iNekIVxxU6Vt1I2xzQ5KFcJ9OoHBCMtnm8a7OjeleoESgOPAzGmwrZqDUjtqAiXFyIDN8qrEWnEL2EooVC9UcsOw1TouJ6AhC5Xfp+t/HleESk5AZ62p2hxdVt2Umq/raAJpKzJZWf13PUq2dp4DV3SVycjysfUdbINQqXxY11XZdamm7mwvTnJJ9IOUNovLbn3WC1Pbhm8TrqCsWQolHFUnpFqfr2QLzqWMDcVJtbpQDIVslgsSqyI22kjXVG6maUeSVwJjFUrlJtpOnAQQzEEJyLWZPzeLkwBKM7NM33wrb3jDG7jmmms2KNizg9tvv52XvexlHdPYts2nPvUp3vOe9zxNpfLx8fF5fqAJyRWxXW2P922L89oPXcXRH57l/n86TH616IaA+6fDHLljimt/4wJGL+h7Gkvs4+Pz88Jf//Vfd5XuD/7gD/iDP/iDhs/e+MY38sY3vrHra+3du9d3EP0ZyCzmOP1jd21n3yu3PsOl8fHx8fHxeWZ5Slcxv//976PrOk/86LM4LdQ5FbGSudwoXBndDjsudF9+dkMxC+ceLdQWwzssZtcf1wxJMKGjB+W6Y6pVCLcyoT6D/vMi6w9orXfVrpzMcPK73kN15ZaLFFa87X5P7Iiw+6Yxgm1CA7Vj7No+krujnvKEBwL07GxRDx0I9ZsMXtzjKU9yd4zz3jzhKY+VtymkLU/hvaysQ97DIlQFx1GeF/S2HBhkx6tGPOXRAhpmzKOuULqLefIpkyPWMJufpS7QQxpm1FvhevdEueCtWz3dk25KnJKD49HZwMo75BbatInKQn7Tgr5ddLDydnfOPOU0o1f1seMXhpuOda7L6EiQvvNibc7bOq8Z1ejdG+nc8zf3nxK2vayf8IDZtUAJYOzqJNte1t85fVNeKSGXKpFv7vc26NOXjhc4c08bkWCLvIGYpG9Hh50qpXJn3XS/gYgkEGv9va+jTlSRWoD5uoh8nQRKAKMjDnt3W0hZW0kPLrllaidQOvXov3HixAne/va389rXvrZz2Xyes2zfvp2Pf/zjfOYznyH76KGWaSpipcBSXVhdFLu0Ir2ic9usFxOl8hrZUl1nskH3WlmIN02F0dR/VxbEtWy7iZIiGldoLfp91UaQt3jKItci7FsDeuMJrZxNcbWEkK6jknuBjceNwYt7PM+hzJhO33mtxR3tENINLyeN7txHKkSGg57H2sGLe4hPhD3lsYu2Z1efUsb27OyjHIVjq42GyQakLhi/doBgrzenEz2kIVsIXjpeyxBonUKWPkkIKdBD7R19WmcCI6S5wl4PDF2apGdHUxt3OvQXRXccVx2en2aBUqWApaJo64rklL+LegclKaFkuXmsdmHF689hSoRQjI85hIKN5WslUKonHnMw9Nb31EoYBRCMKgxDdRXWrEIk7NCTcADVVihUpXzYNBVjYzaBwMbPUyWspmNIiiVBqdRCBNXhuo4SzC7p5NtsKGolUIqFHAytfdm0QjnEaN0pdQFBzalN5boQKAE4CGZsA7suQyeBklSK3U6RAdXYpishU1sJlJRts/APX2br1q189rOf3aBgzx4+/OEP82d/9mfk8603Dk1NTfGe97yHL3/5y09zyXx8fHx8wJ3f7XnJOL/0FwfY94ot1dcOK+cy3Pwn93PbXz9MZunp2fzp4+Pj4/Pk8/j3J1GOYvi8JL0Tbd7r+/j4+Pj4PE94St+gj46O8pd/+ZfYVoFHH/3Hlmm0vI0oNb4QXDgH0yfL4Qic9osd9bvmwQ37tuXy8uKDFFDq9DZSsDZtcew7S+tDg3V6Gaxp9GwL07u3zSRC0xBt8se3RogMdb84MvvgMkuHvbkcrZzKMHnXnOeQFmbEQA95W8DqOz/O4EU9nvJEhoL0nR/3JDDJpwqsnsm6DjpdkpnOc+a2Oc/hvQYv7qH/woSnPGdun/P8PS0cXGH6AW8OWctH1zj2r907Q4G7CLr7pjEio94WGjfDtuuHGbnS266uuUdSnLrVW+i71aksU/fMexL9WXmHk7fOeHLyMuM6Ey8Z7Lyw20KosnBwlXP3LrqryR3DmtVWcLLzedIzdWXbYOVVSEF8IkTf3haL4h3yxreEGL60p/2z1KLvMiM6RljbWIjXJBQ4d/8Ksz9drSvXxuHhimmHybtXcOq7rw0W5/rPD7fuT4Romzc+atC33US2WzBs4640e8TizE9KHe9FZgpVUUNyELbspTrSCsvBXGrvsGGkbYy0zey85Ny0huPU6lRfK7YVKGnpM8yfuoeRkRE+/elPtz2/z/ODd77znbz61a9G/vPNiPnWIbRkAWTdc+YgOOfoLCsNodo7GwEEU6p6XKAYjlqEjYoVCJirHeZtjmB+XrKabrHg2+lRl4KemEWwjS5aSbmuDwIQGkQGdVS+Q5i0OqGSU1IsHc1gl0MHV4VKG7B8PO3d0UYIzwIYIQW9e2MEEt6E6PEtYYJJb3lyiwXP4VhTJzJkPYak04KS3j0xT8KrwkqJxUOrnhyRHEsxf3DFc+i7hcdWyMx4Wwjq2RGlf5+3ueRmCCYNRq/s8yZaUzD7cMrz74SlI2tkptePX+1clEQ8Si6jkTrX+ktSZuu5VTShiMQVVqT9s1dqEuw7jmBhWaNYEjiGbCsWAiiV53RCQDojqppk97wbPO9BSSLuYJjrO8hSuN1cUdHTC+EO756dFhsqNA10zQ3D1pG6r75YhPk5jULFNU+T7V2URE3wlcmu75M7CZQChkMw0OZ7FaKlQEmg6InYRAynrVhLyfViLUsJTqcN8rbsKFAy0pUNI4pxvURE1MonLQh0+Mml5QWiIJmSBkuisfB6RrQUKAHI73wXa/Is//AP/0Ai8dQ/708WV155JTfffDPvfOc7OXr0aMOxb3/729XPf+VXfuUZKuHPzhe/+EXe9KY38apXvYp3vOMdZLPeQ6z6+Pj4PNMEogbX/MYFvO6j1zC4q6f6+Yl7p/na++7kp/92wvPmAB8fHx+fZxbbcjh8u2vP77so+fj4+Pj4PIXh3ir89m//Np///Oe5//77mZm8n7GBy1ruUq0IlZShUSxAsfyC1SzmsSoapg3s6h1LgRANYdUqzh9td/IKSSAuiQwaLB11X76rUudFmdlHVph+aAUhRNvzVoRK9aHfhi/tIbdYIDNbvrkudufrYY3Bi3o4d/9id2HIHEgdb70o2YmTt854znP23kXPIqCFx1dZOLi6ccI6cvNFcvPdhwOrIHVJIKmTm+9+ISaYNLE2cDlphRHVKXlYzMvOe1vE2yzFNYtTt83U2txTyNm7FrAK3uvOK8VVi+Kqt8VgPSixio6nUH5GSCc8YHoyydLDGtIQFCuL9EKybhW1hYio4ZndIMRbhXP3LzfKTDeylJCChScypE7l1j+3HRajSmmbYzd3EWLQcRpEAoUVi0J9JB6lOop7eneFsAsOK5NNYeUctb585XsNJnUG9obIr1ikZ8oLzxs4HAkhWDhSZOlEEad5CKzPW7Ko2L2YEYj2ayyd7tC+W/Tn1Y3/G/STWvm50UoWTtzAsiRLKfeYvta+/zJWCziOxU/PfA1N0/j617/uh3nzQQjBZz7zGfbv38/uo/dyIvRyhJCUIuvbaEWo5JiwWl5Z1lAYi7UwSM2LxtXr1J1u3VOn2h1wPxRKEYsqMnmBXQ4Zp2faj6FKCaaPl8N0Sdr35ZX2Xxa4B8KSxADkZgV2oXysqU9W6QyiPL9Utnss1GuAEF2H+PIqfKnkmX1og9CbTTiW4uw9C56dh6YfWPLs+OglNGo9ekhznQu7LKNAYMYNNEPilDzMIQRITXiqi9zC0zP3Wj2Tbbth4cmksFJi9uFlz+1hU9dKNbZxGXRdkFQuhwiFGo6JuCugljq0+kZV2N2wIYrWOrGSjOvucNrm0bDLjp31oc5MQ1GywC6HkLODWtWtt3rNJmGM4whSqdpndlko5BgCWWpyVyq7YtnA5Fkaj23g2Kp0jbOzqjy9aAoH3mHzxWqmO4csJQXCqXW42VzNJakldYeEUCRiDqtpWXWuqobgdNo7OMXCCkNXTC9VwsptcE3AkZLJpbIIrEkLVj/GaAWFHXDPlTBtMiWJ1UHBKpqns+USObjipE5o5e49UIRsAlbr5tF6pv01zRVBbvI4Z+76Pr/6q7/KVVdd1flCzzI+9rGP8ZWvfKUazu2d73wnN954Ix//+Me5/fbbGRgY4M/+7M+4+OKLn+mibopvfOMb3Hffffzv//2/GRwc5MSJE+j602Ap7OPj4/MU0b89wWs/fBVH7pzigX86TH6tRClvc/8XD3PkjrNc8+v7/BBwPj4+Pj8nnLp/htxKkXAywLbLh57p4vj4+Pj4+DzjPC2rmbfffjvRaJRDp/6VbH4RLd/+rWG9q9LgBOx8YV2oKrvzQu/anMOZB/ItHVbWhSkq1l6292wL0b873HVtOBbggB6RhPubdqZ3CBN34tYZJn+4UF+oDa9lRDR6tkcJ93kLTzHxkgGGLuvxlEfqEBlpFXqhNVWhg5dWVPkKPbY8Pay1d69qw8gLk2y7bnjjhHWc+cEc5+7xJojq3RPjvDdNeAp1pgclg5f0oIe7D9NhxnUueNtWYls8uCI5sDbZQpTyFJCZza9bxNqI3a8fY/Rqby9UevfGiI2HNk5Yx/i1A+x+zainPJnZPIe/NuVJfNZ/fpzdrxnz1L4jQwFiY+X76VKgVD1/t1+rFNU8XpzjjIgkmPT2Yl8PSXbdMECorzsHEgAch/h4kPiE2/90DCtXV0f5ZYuj31muCZSaaeqPhRDEht37WTdOdLhmYkSnf5tRHYtErmmhu43gdGkOJg92J1ACGN0Ge3fbVL7YjQRKAA8d+QLz8/N88IMf5Oqrr+54LZ/nDyMjI3z+85/n5ptvZum+HwBgdFh0rYiVBIqdWpE+s9YumxeBGxHMrulkSm36rqZHQ8+655UCehIO4VD34oqKtigQYV0fK7OtnW7yaw7Tj2SxC/WKqg79bFmsFB4IEOozUaXuRc5mTGfo0iSiQ0inVhhlcWu3VAUpXi7TUTTWnkDCwIh0PwYICSNX9BIe7H4uaeVtZn68RCnrTeQ8fFmSxHZvIfYCPQahfm/z6Z6dUQYv6fGUx8rZlDqI7p4sHEu5YaE9aJSCvSbjL+r31Oa0gCQ6GvLUtjUDRi8MEAo0iYXCnet/aUmyvNz6GbVbzrMVIwM2sZ6uiwYoIhGnGla8k9DIrgvbJ6iINzuHoqteRZdQzqOahDbNAqX6fwdMVb5W+VgX9Z5IOCSTzoZioXoCUhGPqqq2s6ObXR0LKcnskka7ehBNTd8wFZpQuHfVVA9tjZ4UvQGbqFEbgPQm3WSrsclBMGkZFNqNSWUqAiUNxS69SG9dmLeNBEpWNs3UN/+Rq6++mv/zf/5Px+s8W3nzm9/MJz/5SUZGRvjbv/1b3vSmN3H77bdz4MAB/v7v//7nVqBk2zaf//zn+cAHPsDQ0BBCCHbu3IlpenMS9PHx8Xm2IaRg70sn+MX/9wDnX7+lOgSnzqa5+U/u5/ZPPExm2Q8B5+Pj4/Ns59CtZwA47+UTniKG+Pj4+Pj4PFd5WkbDcDjMLbfcghBwfP6rOI6DlrfQ8hb66vofUqLkhoBbmoX5k1bjYrLtbChWivRLJi5q4dYkRMvF79nHMhz77nL7N6X11C16b7m2j5EX9LQ9L7g/JiviAqu8ABPqN2s1v8HL5Nx8kUNfPu3ZeccuONVwJd0yfEUfW1825KlV9OyMsO8tWz1NrBLbIlzw1q2eRD3xiTCjL+zzlGf+0RVOfte7QxTgqQ5Wp7JM3jXnyWpZBiSD+3sI9Xb/0tTKOiw8vkIh5S1Ex9ALkoQGnvqXs0OX9RAZ6n5hEmD5yBprU94s+PvOi5PY5m1hcu6nKWY8OlY0tAGlunI+m3tsjdM/mG8UD1UWxIVcvzguJP0X9DB8eW/3AiVg60v62Xb9YPvzVu+hFvJs/Kok218xUPu8/r+trikEAxfE2X7dQPfPg+OgmRKrYFPKeFtwPvWDZabuW23dl1ZcAuruM9Tr9vFWruJa1TpEm3vI7aMT4wYTV0QI9lQUW1bHfBXmj1kc+1ELAWybdpGMFxnb5iA69AlawW4QKIEb6nRmTqKvWS0FSnq6iLFaqAqULnlphqW1kxw4cIA//MM/7HgPPs8/brjhBv7bf/tvLN75bT5945WAK1QyMoLA8vo2L4sgioJZR2el1CigFU5nsZJQioGQRaLQQpihWCeicJTg7LRGek12DC1XQcu4bd4MwuCEJBDG7Zfa9U114d9cl03QQ/UWImU3lvR650mhSZaOZ1k64s2xz5132Ui9e5GAkIKhy3qJDnsT3g5e3ENiW5vYd20Y2J8gucvb2JncHSPqQbyuHJh7OEVmdhOLJB4FVMvH06TPeZs/RAaDxEa91XVusUD6nDdXKTNuEB3zdp3NYEZ1z6JtK2ezcirjyX3JCOskd0UR0nVQqrgoVVC5nOuoFI9WXZQcGxZOlihmHUR5Y0grgZIoun2GFTGwIjr1nYVwFMJR2EHZUqBUEe9MLRusZRuP20GtmmadyCck6R0EPSpaCpScsoCrXqCkaYotIxZG+RGyTdlW3KR0idIlUrp5QuXQaBUhUicHJaHB8JBDPOZBwCkFjgO2s4GDUtPhQlEweU6jZIuWAiXhNJZBCNdBCUSd85JoK4xSUqCkYCBmMxCvzXe0kmoZ2q0hL4LTawapYoswni3HI8UWq0jYdjo6KGnFmkAJXHesGVtnBemGdmshUDJWBeaK+6eURd99N5Mwdb785S//XItfdu3axTXXXINSikKhQDwe5zd/8zeJxbxtCmpFNpvl7//+73nf+97HjTfeyIEDB/j2t7/dMm2xWOSTn/wkb3jDG7j++ut597vfzQMPPLCp687Pz1MoFPjBD37A6173Ot72trfxr//6rz/Lrfj4+Pg8qwhGTa79zQt43UeuYWBnLdTo8XvcEHCP3nzSDwHn4+Pj8ywlM1Nk9sgyQhOc9/KJZ7o4Pj4+Pj4+zwqeNsnutddeywc/+EFmZmZ4+OgXuspjZ2yWJt0fWEbzGkkHoZLUwAhLZJv3husWwR3XVUMPSWIT3S/GnL1vmVM/qLnudHL/qIgMzKjOzhtG6D8/Xl+gzhdy3NBl4YHud3+fu3eRhcdWNk5Yx9wjKY79+1lPIbGy8wWWjq15akmZuRwLT3gL+ZY6vsahL51Z7wLTgeKqRb7LUC1VJOx761YGLuzpOouVtUkdz7R08GpbthWLxz5/ylM4FcdymP1JiuKqt935fXviRAa8iYc2Q+/uOKFBbw4FC4dWWZv0tvh39Jtnmbpr3lOe7HzB23UkXPDWrfRfEN84bQUhcYoO6XMtFmc7CJBO3z7Pye/Ndjjt+v4hdSLDyqnMxiHe6lidyrM2Wbegu4FACWD6wRVO39FlqMkyhRWLU7ctdf2sShNCfbobnqlTlrp7lTpsvTbOyKWRSoHbZ6s7tjJV4tQ9afKp7sqmmxAfLgsdmruSDqI1w5SYHR65ZnGSriuQimJesHqmO3HXSnqK//W//hfDw8NtF358fD7ykY9wzTXX8OY3v5lSurtxd62gYSmBQCGb1EWdhEqmptA6mQM2C5XKi9yhkLPuOu0o5mHmlEOhXpvSqRssC5V6xk0G9oQaF+k79Z8KVKmIGdW77mbtosPCwVXsQvcdpnIUcw8vs+pRrJuZy5Nf8ja/yczmPQve5x5JsXzMm1irsFpC2d5E8tHREGNX93u7TqrkWQy7dGSNuZ+mPF8nO+et3gJx3bMYajOYMZ3YuAd3TVyR0tpUzpP7Un65yOSd8zglD8IZB/IrDk75K+rkoFQRKsXjivFxBy+FcwyNkiVaCnTaORDZtuDMtEY+337uUC9QAnfIX1mTFEqthU218tQdU7CadvNUP+q0qUO6jktnZzXWmsQyG7kpraY1Vlbb2hKtwzQVQqjW8fjaEAsrxgasqgNVJ9em+lBx0ymdhbXunWMjuoMmFE4LZVW7MUgDTNns09SUpqnL1MsuVymlIbLddfQrd3+Pe++9l7/4i79gbGysqzzPRmZnZ3nve9/Ll7/8ZXbt2sWv/MqvkE6n+a3f+i2++c1v/sznX1lZ4XOf+xynT59m165dHdP+6Z/+KV/5yld4xStewe/8zu8gpeQDH/gAP/3pTz1fd35+nnQ6zeTkJF/5ylf44z/+Yz71qU/xyCOPbPZWfHx8fJ6VDOxIcNMfXc2L3nkhgajrYF3K2dz3j0/wz394N9OPLz3DJfTx8fHxaWb6x2sAbL9imHDyqV+n8fHx8fHx+XngafUV/OM//mNe9KIXsbh6nGNTtwE116T6MG8NOA6JQdh1tUmweWOfo2oOG3WszToc/8FaY3iPLhi8IMzIxVHQazvwO1FYsXCKDtKU6CGJsp3OriZAMW1x5o55Fh73JtIZf1E/W1426CmPHpRuyLcuv2Ura1Nc8SaAKa5azDyw5CmcmJV1mH1w2ZPgyLHYVMiy/n1xhq/o7T6DA3OPpjzvzu/ZGSG525tDwWaIjoZcJy4PHPqn0ywc8tbeNsPjXz7DwqMehHESEtsjntyxNoMZ1Rm6rMfzdWYfXq4JjjZy2xGS8IDJxEv6kR0Wr9phZde37XoXtmZWTudYPt5BdFXnoFRh9UyOhSfWu4asu279fTqQne9yIVxKenZGiAy3aJ8d6q9/T5TtL+9HC7UJKdTiXhwLztyzyvyRfHuxVbkvVmVBayDufi/ZRXvDMlVIbtUZ2VcXcrQbbIeFkxanHmtRpDZj3Za9sGO3g8i1DlunZYrVP4CileWx01/Etm3+/d//nXDY2yK1z/MHXXfdHgD6H7gFx3LbmJ5T1b9WyJJii2kxHFw/JxC2QqwToQjOrelkMmKd+0ZDqrIzSvU6UjHQ5xCNdD9fK5W7Zb3c1cj0Bq49UrA2b7FwJL9e+6BptFNWSUMydFmSsEeHwEDCIOjBJbGYtjwJRgAy03k3zJcHsnMFzyFZnZL3eZc0BL17Yuih7kUJhVSR1PG0JzclaQhi4yFPYcs2gzSEp+8TYG0qx/QDT/3iUHo6z7l7vYUoNiIaZsxbGNeNELEYIhZD1YVdDPVIArGyc1AwgMi3bntOQMcJuOXJ5QTLyzVhSksXpIYLQ2/UIhJsMYdSCtXG1UxpAlvIdaHHAJQu3HxNUznHEaTSGo6U7cvU5O7mKEFqTcNxXKeijuHUlEIJ13bOsmpOReUTtfy9W7nPeNRBdrKkW3dIMThg05Po0Fcr1rncrWUEM4sayhYbOuDJokKTrhDKUQKrk8tT3TWlUgyFLHqawgRu5ObnWIIzawa5FvZMWkGhNb0TCAqHPXqReN5Bb/OTz1yr/QGsHv4p0z+8lQ9/+MP8+q//+ob382zl9ttv5zd/8zd57LHH+MVf/EX+9m//lne961184hOfoLe3l7/8y7/kD//wD1ld3fxvx76+Pv75n/+Zr371q7znPe9pm+7QoUN8//vf57d+67f4j//xP3LTTTfxV3/1VwwPD/PJT36yIe1/+k//iQMHDrT8+/SnPw1AIOCKIX/913+dQCDAzp07ue6667j33ns3fS8+Pj4+z1aEdJ04fun/PeA6cpSH2uXJNP/+kfv4wf9+hGzKm9Dex8fHx+epoZAusfCY+05+3yu3PMOl8fHx8fHxefbwtAc/vf322xkeHubk9J3MLR9uONZOqLQy5zB/rER+rc1J27y4DSYkW66OILTG46rQetF95uE0J25L1dw8uhAqAex4RT9jVyW7SguweiYLDp5EEzM/WeLEd6a7Tg9gxgz693kLwaUHJXveOE5iu4cwItINKeblOtKUDF+exIx2v1ASGw+x9xfHPYlA9IjueTFm4bEVcgveHAp6dkS91RkwelUfEwcGPOfpvyCxccKfA4IJky0HBgl5cAiLjobY/box9HD3i5/BXpP+fT3eejsHFg6ukl/uoh2URYlGRCeUND2J6cav7WPigDf3iIH9cSIjHRwaWoh2Ri/vIdS38SJrvUBp142D9J3XZZsu95W9uyP07vL2HMw9keX0XanW7iMt7qXikJddtGqh3jYgMqCz40CM6FC5L9jIva7M/FGLk/e1CPMGiHxT27AdBrfCwI7WDa2tEBeYOWIxf7r1vVSESRUcx+H4/JfI5XJ84Qtf4LLLLut8Ez7Pe0ZGRviXf/kXHnroIWZu+RqqyQWstVBJsFDQWMq072tbCZVAkYjaxIP2OrGSkVn/IDmO4Ny0xlram9AkGIHhHQKjy+HDLipK5f5CtLqlFkIlp+Qw+3CKzLS30GXR0RBRjy460dEQQ5f0eMpjRnXiW70JFANxg4iH8G0AvXtjnkLLKVthxnQ0D3O1UtZ2Q8R5EGtJTZLYFkVvJ3BtgRaQDF2axIh0n8eMGQzu7/F0P89m4hNhkju9iep798SIb3HbmpPv7nkIJzXCPRIV7H6OVyoJMplWIpMW42O5yzB00Jt+54kOTodSKsYHLQKG2tCdqIKuuf0anZpNU7EDpkM8atPcqFsKlcrljYQUI4O263BUoYPoEwWBAPT0OMjup8WAYGZWY3W1TYjcFpeUQqEQ5FuEX2vHQMxmJNHd5pfKNRWCM2mDpXzrG9Kb9PmapRgzShjCdUVqplmcVCGvBHMZnWwb8ZTZ9M5Bm5tk9l+/yBve8AY+9KEPdbyXZzsf/vCHMQyDP//zP+e3f/u3MQzXgWPfvn38/d//Pddffz133XUXv/Ebv7Hpa5imSV9f34bp7rjjDjRN46abbqp+FggEuPHGGzl48CCzszWn2b/5m7/hzjvvbPn3rne9C4CJiQkMw2j4PdPJ6drHx8fnuUAwZvKid17ITX90Nf07au8Kj911jq/+1zt57NuncDpEIvDx8fHxeeo5cucUjqVITsQY2tv9GqKPj4+Pj89znaf9jbuu6zz44IMEAgEOnf4a6ULjDuCWThMOLJy2wXEIxZzWpW6zy1QPCPSgXLco1wrHAivnIE1IbCkv4siNXZVmfrLC9AOpxg+bHJWU3XhPkaEAe980TmS4u8Wi4qpVdTnqVqSTnS/w+FfOeFpgs/IO2bkCpawHRyUHerZHPIf66t0dJzzUfZ7CaonsfBHZZmd0K2YeWOLMbXOeyqUHJf37E57EUKe+O8upW9uH7GpFMWNRTHtzNTh16wxnf+Rt1/y264cYesFTOwE2ozq7Xz/mSaiWXy5y+OuTrJ31EPLOdiilS1j57uNTrJ7JcvAfT7V0K2pHcne0tpDb7uV20zO+cirLkX851/U1APKp0johVCcHJYQkuTNKdLjNc9Minx6UxMaDBOIdxAZCNLzElzpk5grkl7ton3X944lbFzh7/3L9idvXn5Sue5IDmdkmwU8L96QK2w70MH5VrPF4ff/ews0uM28x/WiO9JzdlUDJjAgi/e45ihubT1XDj+qmwDCbQpN0cAqMmCVErkRuFdLLjcfqnZMa6LmbqakzvPWtb+Utb3lLF4Xz8YErrriCv/u7v2Pl0Qd4R9/6vrCVq1LOkhQdiSwpQm1ebK93VRLoGmhl0UA7V6V6RyXLdp1TAkGF1LpTqeQzsHhWUdpgc7DKNIa47N0ZpG9nm3GqhatScdXtA73MO5aOrHkOt1vKWOSWi56chPSwRmQw2H68aEEgaRDtJHJtUzYvc0LlwMyDy56dngJxoysxbQUrbzN113z1O+oGx1LuvXTxm6BCIVXk7I8WsD0IkANxg+EXJD21m82Q2Bqhd0+zzWxnlo6mPbtrWnm7QUhcL1QSscbrV9yUFk+WWJpvfJ6a3ZQqDkoARqFIXC9WBTrNAqKqUKkpAtjcssZqujbmNwuU6t2UlCZAF+SLgsqwXLlO1UGpBWbQDUXXVkTX9HNBaRAwIRpWnR2UlGpoi5YtyBfckG+d3JPcvO5/8gXB1JSGZXXX1mSdW1NziLxW7kkAQdNhYtjC1FTDcWl1fo4W1jQW053VU/XXjBgOAoWlRNXlqpODkrBAlwpDqvUmeS3ckwAEinDOQc8KUrZGc6db75xUwcqusXLr1xgfG+Xv/u7vfu5FLy984Qv57Gc/y5VXXrnuWDgc5oMf/CB/+Id/SC7nLRz3Zjh69Cjj4+NEIo1C2PPPPx+AY8eOeTpfKBTiJS95Cf/wD/9AsVjk1KlT3HbbbVx11VUt0y8sLHD48OHq3+nTpzd3Iz4+Pj7PAgZ39XDTH1/Nte+4gECkEgLO4t7PP84//8E9zDzhh4Dz8fHxeSZQjuLx754BXBeln/ffEz4+Pj4+Pk8mT67ff5eMjo5yyy238PKXv5x7T36OA7veg6mHiSShkAGrCIawCUSgsr4UjLkL51suCbA0aZNZdigqsPKus0YoLsksOeAozKhEBCX5lMPx29eIDOg4jhtSSZoQ7jHIzJfAATMm0QxJbsldgAkP6CTGQiQmgmQW8wSiJrnFIo4lMWMSXdOq4Y/CAyZWziY9XUDqEB0LkF8uYWUdzJiOEZbVxffwgI5VdMOpSR2EJlg6mia3UMCMaBgxvSomCg2YOCXlhuWQEB0OkV8qYOUd9rxhDMdWHPuWK4YI9Zsom6rQITpaS6uHJcGeAOmZHKE+Nx1AfqkubaqAlXXQg5Jgb4D0uRxTd80TTJoE+0zyi27ayEiQwkoJK2vX0s7kwIFAj8GZO+bIzdfSFtcsSmkLaUrC/bW0ZkJHNzWy8wUOffk0kYEgZlynuFpLm50r4FgOZlxHD2lkZ91VSD2kMfvQElbWRuoQHgyRXSjgFN20Rkh3d+ID4YFAtb4rYcXWJnM4RQcj6rorVeu738Sx6up7S4SRFyQppIrkFosEEkY1bbDPBGeD+j7nvtQN9pogqNZhc33nF4u1tEkToVF1cKqvw/r6LqYtAj0GMqE31HdpzaKYrq/DHI4FZlzHcRSlsoNFZChIKWe59a1LwoPt6zsQN2rfTXN9R/WGNhvoM7ByFlbBrrbZStpW9V1ps8Ws1dC+9bBGsMes1UufCarWZqUmmfrRgutE1lV9F9u2WamLlvUtTcnIFb2sns2RmSlgJlxHiGp9DwUoZVVdfZvkl/KALId+rNVheCjghlFcq9RhkOyc68xjxnRyCwUylbQDJralqn1EeCBIdrFYq++oQWa2wJFvzhAaNAn06BRSbvuOjgTdvifvYEQkZswgM+Oe14honP7BAvmU2waiI4Fa2rBGoMcgM10ot0N3SMgvW0w/sEJkJIAeklg5t80GknVpK/W9bKEFJLHRAOlZt31rQY1gUiczV3TrO6EjdcgtWiAlkUEDGZCMX5Fg6r5lHEuQmS+CEG6fbEo3baXvzDkU0w4yoJGZK5Jdchc6zahED0iyi5Ybcq9PxyqU0+oQ6tUpZR1KeUF2wSbcp1XDvYWSErsERferI9Irya04OCUYPM8kNqDx+O1u+YMJgWMriuly2qQkt+Zg2w56AAJxyCzDuSdsgjEIRKFQFtLVj2u6CYEIpFMldBO2XyJJzTicLZsKRpJQTBcb0mbK4qVABB49+11OPnY/Bw4c4Atf+AI+Pl5429vexsGDB3n/+9/P2OveTv/YJehCoQtF3nFX2SMFG6e8QCxQBDRFVHdIBGwm1wykhIrkztQUSkHJEUjbIaC74YoWVySahIChKJTcBWZDV2i6Ki+kKwIBKJXAcVxnE9NU9CcUmTVBZs1dcLZKblozACoPjg1Sc5+NYg5ya+7/65GamNAMC6yiwrFcxyQjIilmHVCuaD2/ZrmhgKXAII9lCJySQmgCIywppm3QNLSARNMsShmLQMJg+PJeZn68RGGl5KaN6JTSJZTjuvNIQ1JKu32WHtJwSg5CChxLoYc0ShkLZSv3vIZ0Q7zhOvA5tkNhpURhtYQZM2ppTYkWkBTXKmk1lO0KRhCuqHz2oWWUo5CGRA/W0uphDRRYOffbMuMGVtZi9UyW9LkcZtyoinsqYdka0uYsnJJC6oLCqtWQVgjX+QjcccwuONhFB6kL9LBOca0EyhUvIxTFtfVp19VhUBLfGnHnQYtFzKiOXXKwC249GlGdUtpCOWpdfRtRHaeaFoxoUx2atfrWg5KV0xnsvAOCzvUd1lBOWaBTcqp16Fjl+g5ptXppqm8tpFWFXdIQ6CG9sb6FG2K5Vt/u/wsp3O+mXIed6ltoAqELSuWxRgtKpCYoZTaob1uBXv53plUdrq/v/FKxsc1aDgqQiRhGWFLKOu73aAg0U1DM5KE3gRFwNThWEbe+Q2AVSpSiITRNYRqKYt59QRuJQu8QrM0KlAMBU1GyXLc1TSp0HbJltxxDd8UnjgO2owgYULLdEGlSKgxNUSi5aiZdUwjddWkC1xVpeVW6aYXCMCpp3WNCQKks+AkEFCVHkMlL8gXc8pZctx/NBA1FsZzWNBS2DbYjEEKRt2B1QVbLICUUy9cxdcf9XWq7aU0DiiUoFAWWLTF1h2Kxdt5KWoQioJf7TgTBoHueYtndyDDcPrnaz5qsq8N43EEAyynp9rOWQKjGtFIqDB0KRZC2KzxMZyQli/J5FaVySDopFIZeq29DU0jp/ttyJJp0w77ZTWmFEhhSIaSiaEs0oRhLlFjIaMzbEikUplQUcMcjQyqkUBRsibAgKB0sAUVHciajE9Dc+tcKoAv3moXyuBaQDo4SOFnBgGExELI5nDWxkdUxkLVyWuHgICgpdww07BxHb/4MCVXijjvuIJn8+d/1/Od//ucbpnnlK1/J/v37n/KyLC4utnRcqny2sLDg+Zy/93u/x5/92Z/x2te+lkQiwTve8Q4uvvjilmm/9a1v8bnPfW7d5ydPnsS2W28wqCedTnPo0CHPZfTx8Xl283P/bI/ARe8e4vRtKeYeTgOwPLnGv/3xfQzsj7D1uiRm1JMFo4/Pc4J9+/Y900XweZ4y9egCq7NZtIBg17Wjz3RxfHx8fHx8nlU8IyIlgJe+9KV89rOf5dd//de5+/hneMne/8jWi0PMHLVZOusQH5AM79Y4/J0CttQY2m0gNTj7WIm1RYd9Lwsw97jF4kmb2KDO2P4gR76fxirC0HkmuqFz4g73B9mWF0YQEk7/KIM0BBOXhTl26xLFtMPg+WGCPTrHbk0BMPHCOKlTWY5/f4lA1GTbgSTHv7dIftmi/7wo0QGdI990HXMmru1l7Vyec/enCCRNznvTKKmTGY796yz950eJT4R44utuiLbxFw+Qm88z+cMFzJjB9uuHOXXbrGv1eFGMvr1xDn3R3b03fs0AhdUSZ26fwwjrbH/FMGfunGPlZIZi2iK+pbbbcOyqfqy8zanvzSJNyfZXDDN1zwLLR9fo2R5l5PI+Fo+u0rM1Qj5VQik4ecs0SNj+imGmH1hk4dAq8S0Rxq7u5+A/ncYpOoy/uJ9Qf4BH//4kANuvH2b2kRTzP00RGQ2x5cWDPP7VM1hZm6HLkgRiBke/eZZgn8m2lw2x8MQKsz9JERkOsu1lQxz+l0mKKxZDFycJ9Qc48o0pcGDLywZZm8wydfcCoT6T7a8Y5tjNZ8nNF+m/MEF8LMwTX5106/vAIOnpLNnZIsV0ie2vGObErdNkpvP0nRenZ0eUx7/kKtPHX9RPbrHI5J3zbH/lEAMX9PD4VydZO5Old0+U/vMTHPxCub6vHaC4VuL0bXPoQcnE1f2c/dEca5M5BvYnGLo0yWP/cKpa33bJ5tSts0jdre+z9y6QOr7G+W/eih6UPPSp4+DAyBW9CCk48W23DWx/xTDTP15k4eAqsYkI49f0c+wW916HX5BED2kc+1dXfLbtumHmH0sx93CKyHCILS8Z5PDXJwkNBNhyoJ/8isXRfzkLwNaXDrF0dJWZHy8TGQyw7bphjn7rLPnlIoMXJQkmzaqb1JaXDrJyOsO5exer9X38lnNkZwv0X5AgPhHmia+49d27Nwoopu5awIy7aU99b4a1szl6z4/TuyvKoX9y63v40l7yyyUKqRJmvNxm75hj5VSG3l1R+i+o1ffYNf1YGYvUqQzxiTCJrVGm7pln+Wianp1RRi7r5dH/67a70Rf2oWzFye/MuG32F4aZvn+RhcfKbfaF/Rz8wkkcC0Yu70XqguM3u/W97fohZh5apndXlPxykcTWKI9/+TRW3mHkBUn0iF4V+217+RALj7ttNjYaQjM0Fh5z+4ShS5KEkiZHyvW95WWDpI5nmP5xinC/yfbrBlk4vEbfnhgrZzKE+4Mc/kY57Yv7WZ3Kce7eJYJJN+2JW2fJzBYYv7aPUK/BwS9Oue37xf1kF4pM3bWIGdPZdt0gp38wz9pUjuSeKL27oxz9txmsrMP4lUkKqxZn7lzEiGhse1k/k3cvsXI6R8+OCIMXxDj4pXPoQcnY1UmsjMOp2xeQpmTby/o5e1+K5eMZeraGGLq0h4P/5JZ35AU9mFGNpeNZ5h5bZdtL+5l5KMXiExli4yFGr+jh8a+fxSnC0MVxtIDkxK0LDF4YZfyqHk7ducT8o2miwybjV/Vw+F/nsLIOg/tjmBGN499xFxu2XNvD0okci0cyoCTbDvRw9DsLlDKKgfOjhHp1jt2yVO6Te1iZyjPzcJpQUqdvd5jVH7guJf27Q0SHTI7c4ip5xi8Pk56zOPdQFjMm2XEghlJw6u4M0WGdxKjJkVvdLfKjl4TJr9ic/WkJMyzYekWYyZ/kWJu1KaQd4oN6NfTn6AUmpZzD5EMldAO2XmZy9tECqUXoGZZsuUjn+AMWKzMOI3vdxfUzB12Tqa0XaUwftVk+B/EBGN4hOXiXwiq6QgszJKlcaNsFgtlTisVJiPbC6F6Nw3fb2BYUo49y+tyP2bVrF7fffnvLcdXHZyP+5E/+hMnJSb7ylS8TfVmM8fO2ktAdjudcB5vRgEXGlqwUNGQItkRLTKV10pZB1HRIBmzOLurYhmAwZlGwBPNpHSlhPGmxkBFkLI1IyGG41yKVlswta/QnbJTusDgvESYMD9vMz2tksxAOK/r6HKaPg2XBwLArQJifcRfph8cVyxZkVyEYhr4xydRhB6Wgf0yQSAY49UCRUk4xsFMnddYms+QQiAj6x0KcfTiDY0FsxEAPSOYPu4LZgX1RVqfyrJ0rYEY1Bi+Icu7BVeyCQ2w0gBnQXUeg1RKaIQgkDQorJYywxvClSaYfWKSUtYmNhQj1B5i+3+2z+vfFyS0WiY6EyMzmiI2GmfnJEsU1V5QbGQly7l7XEbHv/DiFVJHlY2n0gMaWlwww+/Aya5M5woMBElsjTN3t9pu9e+KUshZLh9eQumT40iRzj6YoZSzCg0F6tkeYvHPeTbsrhl1yWHx8FaEJhi9NsnBohex8gVBvgP4LEpy+zZ3L9uyMIoD5svvT8KVJFg+vkpnJE+gxGbggwfSDS2iGJDIcRDMlc4+kAHd8XD6ergqfBvf3cPZHCygF2145TG6+wOQP3TINXNTD6pksa5NZzKjO0CVJzt23iJW3iY+H0YKSmQfKdXhhgsxMnpVTmVp9/3iJUsYiOhoiMhjk3H2LREaCjF3Vz9wjKVIn0mhBN+3MQ8sUV0tEhoPExkJVB8q+8+IU0xYrpzLVe519ZJlCquTW97YoU3eV63BPDCtvs/jEGr17YvRsjzL9wCK5xSKhfpPePTEm73DTJndGUbZi4dAqQkL/eXEWHl/BsRThwQD95yc4c+ccKOjZEUFIwfyjjfUNrrhp+NIkU3fP41iKxNYIWlAy97Bb34MXJ1k5mWbtbI5A3CA+HubsvW77iE9EMGM6sz9xx8OB/T2sTWVZPZPFjOgMXZrk3P2LxCfCaEENPSCZLtf3wAUJMrNufevl+p55cIli2iI25oYvnLprodpm88tFVqcdNEMweH6IucdzFNMO4T6d2LDByjxERtzFr1JesXzOQdNgcIfO/Dko2RCKQk8/TB13+6ZQFNKrNZHMyLDN3LwkmxOEQor+PoeTk+AENHrjNigwDMjmIRFVzC9qpAuCkKkY7LU5Na2jFPTGHSSKmSUdKRVbhy2mFzTWshrBgGKoz+b0jLuZpSfmYGiK6UX35/Fwv81KWrCc1jANGOmzODNnYNnQE7EJmoqz8+W0vRarGUkqrREOKAaTFlOzBiUL4hGHcEgxNeumHeyzyWQFy6saug6jgyUyWY3lVUks4BCNOkyec9P29znkC7C0rGEIxciww8ysRqGomBizEQKOHJMIR9HX61AqweKShiZhZNhmdl6SywnCYUVv0s0rJfT2Ojg2zC+6QriRQYu5RY1sThAOKvp7bU5N6eA4JOMVRyJX/DQ6YDO/rJHOQCgAQ0mLUzMGjoJkzKY3ZpNKS85lTEaTFotpjdWcRtBQjPRYnFowsIFkyMbUFVMrElsJ1zyqfKWAppiIlji5alJyoCdgExEOZ1YMbEOwLVpCoDi8GsCUsDVSYmpJJ61r9Bg2cd3hRLY8rgUtclnJOSSrlmTYtDAl5BxIaDb9js1hXIfSUdMi5whmSgaaKrHwnX+A1AI3330327dvXz+oPocZGRl5yq9RKBSq4ebqMU2zetwrsViMj370o12lvemmm7j22mur/z59+jQf/ehH2b59O3v37t0w/6FDh/wFTx+f5yDPlWf74sth7ugyd3/2EIun3Lnm/KMZVo4XeMEv7eb867cgtedGOGMfHx+fZzOHbnXXQwYvjmIEn7GlWB8fHx8fn2clQnUTB+0p5EMf+hAf+chHiBr9vHzfr1FSJo7luiaZISjMuS+nzDAoXaNYdlaKD4G0bVYmXdcRM6aTX3FfbRr/f/b+O0qSrLzzxj9h01dmedPVvqd7vJ+BYTwMIBBOgEDSSiCtkLQ/drWL3pVBu69Aq5V7VzorrTlawwohsSAQAuEZx3jvbc9097TvLm/SmzD3/v64aasyK6MGM6bjc06dmc58IuLGExE3bsb9xveJA46LU1T/jg4bTJ4XZ+FAlcqqhx2RVHNe041FN8Ap1GPTBm5JuYzoNoydn2TuqWIz1tAltXrZteiAjlcTeBVVgm5ob5zqkkNp3sGMK4eP6qqKtVMaviNUySlNEB20cXJqUmTbdaOcfnCJ3DG1c3baRPqot8R15bLjFDyEo9xMzITZdIuxB9REeuMN5+hwK1a3deyUiagJjJjeLNXg5HvHNtY7esEAo+dlOPj1U3hVQXTYxit59bx0xlpJE82AkXPSZHYmOXLbLF6xHmvq2GlTOQ8JFaubmnItAva+fxqv6nPku7PqOKbtZqwZNzBsvRkbyVjots7un5jk1IOLVFdcnJyD8Kjn22w6HLXnMD4ZITZos3qwhPDqOYybTXceO22C3z2Hm8n31utHKS9UWX6h0Ipdk+/2HA5si7P16lGOfX+u6eLUNbYth0N7laDt+F3zzfJ/0SEbr9w932ZcuXR5JR+36BEdtPFqnnIVq+e7Ww7P/4UdrBwqsPBMVr3t3zgP22OjrRxGh00My6Q0V22L9Vr57pLDgR0JUltizD62snG+23J4zs9so7xY5fj3F9adh13zXfEYu2iQwmwFt+C1YpNmZ7575VBqzfO7I99VD69CM4e+45OciFI4Xamfs/XYQQuv5qvrfk0Oz/3wNKXFGsfvWETTNSIZs9VHtMf6yiFjYHuMycsyHLltEd8RSE/gVqSKzVg4RQ/hyPr5bVBdcZm6MkNmV4KXvjuHk/fr7W/F6rZOJGVQrTvJ2UmD0QsGsFMGR25ZJDZs4RRFq49I6m2xOhhm0yUqsztO7lgVvybQIxp2wmz2f2ZcRzd1lW9dJ5ox8aqinu9G/636ZCtlYpgatXp7I2nlBjF1eQrhw9LBCtW8r87vmI5hQS0vQDeIpJQ7klet5zCtkxq3WHrJw4yijk1egFSOe8IHzzNUbErHjms4Zdl036pW1SSrnVBOAm4FEILogHJn8Q0bKwLTFxosHRUU5j11rxLgSjXBEk0qtyZRdtFN5QoYydiszKgSMgBurn4dpcD1LfzGPTAKtcUas4UXeWbxO0xMTPDiiy8yMDBASMjLxXEc3vnOd/L444+z9fpfJjk0STmmBEGWJhGAuarK4lgGVE3lZGFogoztU55X/zYNiWc2SgapWGPVR0olMogllTvHclbHMMAsePi+ijVjGp5HM9YwQK66gIY9oKoyVkq6Wq8FMusgharkaNh1ZxbAMCFpOxQW6iUXI+B7IP16rFfFq6phrm4CGviOZHCHjS4cVg6WEZ5UsRFd9R0SNE/dy/yq6i/MmIHwhHJd0sGIGsr9RoJuKQebRhlSFSux4ga1gosZNfCrPlIoVx3d1JvOOWbUQAqpSolpMHnlEKWZKvmTZXRTQ7dasUZUB0Gz7JgZNxCuZOoNwxROlSktVJvuPEZEB9kZ69cE0pdEMsoZaubBZdyScsIDmmPE9ljN0OpOeTGig7YSJ2mdscIRKof12EZeklMxagUHt9CWF7ceq2sYUb1PDnvlu5XDSMYiMRYle7SEcFUOzVjvfBtRnaGzUuiGxvzT2XqsUG5Ua/PdlsPRC9LU8i6FUxWkX4+19c58r8khgF9VJUaNyMaxwhEkJmOkdySYe3ylFWvrvfOta1gp5YYkPeUE1TxnN8jh2IUZSvNVall3w3w3chgfizB2YYaT9y7i1wRm1IBIFOFK0MAaSuI7UuXbBCMVw7AgktIpFpVQSHjq2jOSJr5br3AWVw6LXt0xSI/V8+1r+FEdywTPV32EZkgMve70EzHq5SRVn+N7ABq+D0JTbj2GQd31R8NAuSN5QiMZE0qUNGvg+TqaLjHbY/V6rK8hNeUKNJL2EFJjIWs0YzVJRywoFyYhVd+zfdKjUNJZyemq76zH+vVqd6ap8uUL5dZj25LRIZ+VJQPHUS5wjfJtpinRPNnsO626a5SUyklJerLppGTYKrftsb4jVQ6tRg71ZnvbY81oPYeynsN6HbbxUcFS3sRxtdZ6665FQmpIW+vIoakJIpbKRUkzVaxQsRoSU1ciNT+i3JM0TRK3JPmajo2KdaKGuv/oEkfUHZo8ga4p5z43rjFQFyKdqphYNYmlgyvASaj16oArNcwKWLokaghyMQNfqvucKzXMIhj1fS0ljOY9UErQcpLjD36F1SOP8ZnPfIZf+qVfIuTl8eKLL/Krv/qr/O7v/i7veMc7Or776Ec/yuDgIH/5l3/Z8fmxY8f4yEc+wr/9t/+W9773vT+2th44cIBf+ZVf4TOf+UwoUgoJOYN5vV3bQkhe/P4JHvvyQZy2Es5D21Nc/UvnMb73te8SGBIS8tpks2Ov1yKFhTJf/o27QcIl/78pLru2u8Pn65HX2/00CGfaPp9p+wtn3j6fafsLZ94+vxr29xWX7/7BH/wBx44d4/Of/zz3vPj3vHH65yBiITyoFtQ7m0BdnOSDqR4ipsctIjGT3ElPxa6qyW8AtwyyKprbqC77HL2v2Pp31Wu+qumVW3EA1ZyP9NRniWGboZ1x8idrlBdVGTevzfq7mheq1gCAgOXni53rWm39AGyIFgCQelMsUV6oUThdUeKOxr7m2mJFq3wVUJ/Yd9j9k1MUT5eZr79d3drXVqxwROvf9abppt4/Flh8Ns/is/lAsY2SG0v7c+SOlqgutcV63WMbzD62gl/z67Fr9rXsNydqgKZY6eDXTjVFQq1YgVduLduew/JsjfJs603MRg67xTb2NTEZZes1o7z0ndMdbWqIWtpjGzTeqA8SKxxB9kgR6UlKC6osWs/YthyuvFhg5cVCZ+xK73x7ZZ/pq4axEiaHvjnTFHGp2LX57syh257/tefhmtj4cKzDiavbObs2L0vP5ViqOzf0i21w/E7lPgbrz8Ne+Z6pOyi0s/b8ac/hlqtHkL6ouwbIdedsM1bTO3K4WlDODO19SnXVbS24JocvfvUUuqmj6aqX6+gjGrGaul69qiB7tIJuaM2yc9SXQ0B1pbWdhvgHYO6pPIWZalOgpNrfihWOoLrS0qnWCh6nHlhp/ruy7DZrZavY1r45RQG6h26DcGDlQLltvVB1WvujctISEWy7JsPsE3kKM06r/26Lbc94QxRanHMQQqOabe2LVxF4lbbYQqt9ZlSnuiqortbQTAOvWhcv1XW5DRErlqFymBNMnR/DcyUnHq7gOQJsdb9plJJq9PfVfGNZcGtw9FEf6veGhpC2/lI+1SKqjgvqmosN6Izu1MmvCJwqaLXWOVEtADbN2NpijVLkOM8e/S7RaJTHHnssFCiF/MDYts1Xv/pVrr/+euYf/gLyql8iKkZwE2pSF8BEItFwfFXux4+ArmkMRQREdEo1TU3O+4AFoOH6oNeXF0KjlNcomOrfni/R/MaITsOrgDRbsUKAWR/xpZPqGq2U6ut1wahfcqr8FlAfyvgeFLLqS90Er810QcW2+jfhQUOXX8v7iJLTvJ9IofqTBn77PVnT8Co+0SGbwd1J5p5Y7RibCFeViWzQELnU6sJ5v6ZKYalYiXDb+rBqWzkZCbMPt/pf4UmE1/rer3aOExptWHwui1NQJcuasbXusaDGUkvP5Zrb3ihW+kq0mTtWUmOWztCusQ0apVibsZW2WCG75nDwrBRSSLKHi22xrIlt5bCWdZtjQxXcOxZUDrNHit1j1+a7LS8N16MgsQDSk2y5aoSFZ7NUV5yO7WyUb9bkxXc2ODZCMrQnSS3vsnqouD62I9+tZRsuWEFiQY155p5YbbZb6BFw6+ea7LzGpB3Fq0m8GtSKPrLtLVFpm01xIQBlDy+qHFQMUzI2KVmcV0IZoypwo60yJI0+opkXXwlXfJ+W9Q6ApsQwojGIEOA3f0lCsaJTmakLKzUlgHLbBhxKcAmyPu5xfY2VgnIaasRq9T6kEdvMoa812zK7ZOB5SszZiNVEK08NAZJKoYZbhplyY3/r69FasXrzcKj+UPV/kmpV77le0PBqsrmigbjEjsLCkvpsbazb9m/hq3Jyhg7lsk612toXJB2x7Tk0dCVeKtfqHXRE5bCxnKzfJ5r5lhpRQzIW93Ack5rX+o0q0eoCJdBdiY+G6uLU/uZdg7xrYNbq9yrRuV4fMOtdkCtgS8LHNCXzroUjNayibMXK1v64UsPKeSw+9W2WDj3cdH1+PdGtvFk3NE3jox/96I+0LcPDwywuLq77fHlZ/XYbGRn5kW6/we23387tt99OsVjsHxwSEhLyGkPXNc5963Z2vmGCR//+AAfvVi7aK8cLfOv3H+Ks67Zw5c/uI5aOvMItDQkJCXn9sf/2EyBhywXDxIbXO4iGhISEhISc6bziIiWAv/u7v2NlZYXvfOc7PDrzj1wx9UEAZMRCxiJoldask1afFDj9HBjuGgvwxhNsvYtlbf0h7rY3JkEITjyQXx+zhsKsw0s3L+GURO8gXafjyTmw7bphIhmLQ9+c671cXXwgPNEsz7EZSgtVKitO/8A2drx1HE3XVOmsgNgDJmbEoLzY327dyXvrhCL9KJwo9w9au53i5rYBkN6RID7WKsfSdxsFj9J8FV1vlWLqh27qJCYjFE5W+gejVtsoOfKjZP6ZbIc47UdB/lQZ/+6FdWKrHzbl+c3Z/sdGbXxHrBOibURlpdbsLzakbuuRnIoyMB1j5rHVoKcKUJ8w32g7WucxE45gaX9Dbah1WaDLNhxB4VR1wxgpJZqmIaUkvSNG7ljA8xdITUWYvirD0TuWO4RG6jX07m2UAipLLpWVzV3HKy9VwDD6BwJDuyOMnRPjpTvynULUXsaB9c+PPVRuih+aiO4HNTGsM3WRxYknq0pc1A3HXffR8nFBPivwcw7rMmSrH6yNe95y5STPzXybRCLBo48+ytRUWLs85IdDOp3mlltu4frrryf/+BfQrvgIEdRbtG4CahmNSLZ1vRg15bB0VNqYa0QWRl2w4Fvrr3ndk9iWZHRMsFKTOE4rRvPaxA1m6/PlOXVJ6nVFjOh2/xJ0XKuGBeP7LFZP+lRyvTvihuiyvOIji+uvzw0WxC35HULfIFgJk/FLMiw8rYREQYkO2R3i2Y3oEOkEpF0YHwThBbgnrkHTNQa2xykv1taJfXvhFt11Qqh+mFHlhtch9tloG6VgcT8IvitYeCaLU9j8sdkMKwcLCH/zx2YzCE82z0U9Hl/3vSyV0BIJtHjdGlADO67hliVUa8hoBBnp/XNTWgbSlFTKsu6K1PZdl2GEXhOIiM5gwqdS06g6bR1Bo1/oeg5JkC2BUs/2rBm71NzW+rWNzIdFfRto1JzOPkvbYKwX1QW+0RBedaJ3PbaSsRGVq+Xl9duRutZ1e46joUzvNtj5juUkvtBYyWqqf+5jvKxJwdSQT7mmsZJfM1brsajmS2q+xjHXWif60t3u+z6R9HBsneVc7/GguW4Yq3GyaFFJtsRJ7bgptW07r77L7r+VE8/cwx/+4R++7gRKAH/zN3+z4feN3wQ/DpHSnj17ePLJJymVSiQSrXL2+/fvb37/4+Cmm27ipptuar7NHxISEvJ6JDYQ4bpfu5B9N27lgb95nuXj6iHGoXtOc/yxeS7/0F7OvmkbesBnTSEhISEhG+M5PgfvOgXAuW/bTon1L1GHhISEhISc6bxqClB/+9vf5vrrr2e5cown574BgFZz0WrdH/BLx8er+Og2bLsyhhlr+1IIes1yFGYd8vNez+/X0hAojZ2fwB7o8UBU1zuEUYsvFJh7PBto/Q0hQnTIZt9PbyU2agdabO7RFfKbFPisHi6y/EJ/cVY7W68dY/LK4cDxugl73jXF0NmpwMvExyPsfPvEps7G3T85xeQVQ4HjIxmLxHg0cLxb9Dh5z+KmBFGp6Rg73jxBdCjYMQQlnhq7KBM43ozrnPfPtpPelegfXKey6FCa3dyE5GZpOC1shn0/vXVTxzA+HmHiiqFNnSdTVwwz/abRTbVr6dkcS8+3XScbTcxIQXTQIjEZDSxQMqM653x4moFt6yf7ANUnrBEojV04wPilafWPXg+N2ieXdDjr3eOkd8S6x65BSkl6e4ytbxra1JsdlVWXlcOVToFSH/ya4ORDuabbUz923pBh/MLg5ztA9niNhRcqLYGSlBsKlMbPtjGjSjgm2nUBPQRK+IJqRaO47FPtctprrrdOoDSxzyQ9oaM5brO827rlKrWmQClXnePJha/i+z7/9E//9Lq1Pg555RgfH+f2229H13UqT38Jp6z6Pauk/rohq6DXJImoIJPoFHsYrkR3118zrqdckWqWge52F4i0C5aEUKWMDFOSykh0r8d12DJow3che9qnWgjWrzTESgNbowzv7dEXr8F3BKuHSx2ORf1wSx75E+UOp5p+2CmTsQsyRNLB++LYSITxSzZXqiG9PaHuXQGJDtpMvXEYzQg2cSGFJDYcwYoHE5cCFGerlOY3N14Z2pcisyP4PULTNQa2xTfVrvTOBBOXbSK/EqqrzssSd20Gp+AFFmcBxEcjTF8z0nRwDEJqOkYkbXUVKDVoCpQAK6oxdpaNVS8huZFASav3F76nsbqsI9qEKvoGonej6hOLSswuq+4uboHBAcH4kBdYoKRpkvFBD8uUaEL2Fii19UOpuGRi2KOhytF92VOgpLsS3ZMMDQqGBzv3VfdED4ESgEYhr1Eqrd8RzRNdtqf+XS1CPt99AK0J2TGGtG3JlgmBaUg0wYbjYE02cqOxnNcplNu2IekpULIRDETrbm6BBEpg1qDo61TL3Q+iWZEdAiVTl0zEXXQkelFi9TDJsfOyKVCae/4uXnrsdn7rt36Lf//v/333BV7j/Jf/8l+6/v3RH/0RH/3oR0kkEtxwww3rSrD9KLjhhhvwfZ9vfvObzc8cx+G73/0u5557LuPj4z/yNoSEhIScaYzvHeS9f3Q1b/rFc7HjajDllD0e+Nx+vvH/PsDCodVXuIUhISEhrw+OPDhLreiSHImx9ZKxV7o5ISEhISEhr0peFU5KDe644w6uvPJKHn/8cZ6c+waXTLxXfeF6YHVvqqlLrLiOFdU7SnVokQiyVls32b96vDU5HE0bVHP9H+7rJmR2xJASFpfrkyfd3JrqNMsxAdFhi+py/zepq1mHymJtXRmIjRsGO24ap3CizPKLvaw8WuSObN615+S9C+tK4m2E8KCadXE3MWkiPIkZ0bGTZmAnpuLpMtVNuAcsPJVlYU1pvH7ots7A1hjZw8HyVjhV4tC3Twd2PwBIjEeJj0W6lt/ohlcWLL2Q29Q24uMRkhOxwNt4OaS2xIhkrE5xTx+W9+c25QYWH44wuCvJ3KPB3LAAjt8xjxENPhEZH48o14Dl4O1aer7A0vP9r78GmqlROFVRjk3rvuzerxgRHd0MPqmomzrVrEstF/wayR2v4BQXqATorxp4FcH8U8GOuW7DzhtHmHs6T2khuKiptOQ2S771REjQVSk5NB2vKlg5XGsTo67Pa6PskxWD9LRFrSTInmyv+9IqL9qOGQXhgufAzPPrc6W5HtJeLy6IJDTEBsIsreo073M1a46nZ7+GlJI77riDq6++eoOdDwl5+UxPT/P973+f6667DuOZL8GFH8aOK0GkVRG4se59UkQIdb3RKicE4KRN7JyHsNrK9kiNlay6lixDgi47xAgNNNdHWq1rLhqDZAZKedkspyi7uanVxYTl+vN0w1LliqRoOcX1wi37iC7Cqo2IpC3SOxMsPpMNpHffrKDcKXjMPrq8qXGUV/VxCi6arm3s0NeGbmnoIrjq1y0rh0lN66k7WMfcY8Hv1w2suAFacMejlYOFTR1DKSWpLTHcsh84x9UVB7e0Ofe/5GQUp+htykFrs6SmY6ptAffDKXrkjpUCnyMA8bEoaDVqJ8tdhUpaLIosltCSSijmViRzLzp4NYm0TLRyDRnfqHyIJBaHakX1Ff3QJIDGzKLB2jOxt7AHak69RGVATB0MHVSNsWDLeT7UXK1vfLsIZ2FB7xj69RRlovpI0KjI9det1mO5ZFISiUhWFjZsUgdCQLWm9mejPdGkOgKWKXE9jUqjzNtGBsR14V4iJUhFBYWq3iolhxK7ii7jXUuXSKDgdB/TmxWJm+jMi6lJbENiV0RH2b927KJoLlc99H1OPfZdfvd3f5c//uM/7r0Tr3Euvvjint9dc801vPWtb+VjH/sY11133Q+0na9+9asUi8Vm6bb777+fhQV1In7gAx8gmUxy7rnncuONN/K///f/JpvNsmXLFm6++Wbm5ub4nd/5nR9o+yEhISEhvdF1jXPfpkrAPfL3Bzh0jyoBt3wszzc//RB7b5jmip/ZS2wgLAEXEhIS8nKQUrL/1uMAnHPT1tClLiQkJCQkpAevKpGSrus88sgjvOENb+Cxxx7j8dl/4rLJn1JfuvWH/O1ipWgEp1Tj8Pfrk+SGgW4qoUyT9hmktqfA6W0Rtlw+wJE7V5ULSA9xAKj1vXTzUud6NyotV2fk3CTjF6U59K05av3EUAJO3FV/ghy0wpgAvyo2Xephx1vHqWbdQGKPhmhIt3WEJwK169R9mytfV112OPTNmU0tM79JwVEDK2kGLjsysDXG1mvGKC+dDFQuTHhsStwCMPPw5q0+55/Ibio+MR5j+JyBH61IaTpOcjq2KZHSZmIBlvbnWdq/uWW8qgjs2AMwcekQmq5x+DvBzkczquO5BHZR0nQNryw4/WCXa2+DPmj20WzrH0J2uim1TzbWvxOO4OS9wSeHzbiOVxaBBUp2UmfHm0c59XCO8mKwc143dXxH4AYVPdb7wYXnNhAJrplonbo0iZ3Qeen2fE+3PLnGEcCrwEt3lVT/7m/QT/tqfVsvjIEGRx5v9Qma27t/0E2QZZcTD6ncrhUwadXO/K1UTvH0qX/CNE2+8pWvhAKlkB85u3bt4q677uLNb34z/pNfhIt/BjuhXGOsuvi7XaxUyxhksxIK6jKVUblOXNDuqNQSLElGJ8D3fZbmtPp3nRPOWpvTUqlgUC6qdTfWoPUTK+k6I7ssakVB9nQ9tn7NdxMrdfR5GoHUN74jEI7YlCDIHrAY2pti4elVRA+XkHYaohPd0gMJcNyix+pLPWxCerDZeL8myB19GSVqNdANLbCr0NC+AbyqH9j5czMuVQBIOP3g5sZemxH8NhjYlqBwuvwjFSmldyQQrgwsUvIqPoVTwUu6Asw/0XqbXpQ7hUparOWg1C5U8qpKoNSMWyNUar9+LRtGJwTzMzq1KsgNHt5q9VPIMCRqj9ucl/r8FipX673IBro8Tcqmm5Lra8wutvUza7VKXS7LSk2nUtu4LQ2BkqZJ0EBIjfrO9BEoCTKDEt2QLGc7hVC9BEoA0gOhS7rteC/XJc/TWFk2egqUtLbFTEMyPeqxsGpQquo9x8P6mus/WzHIVZRAydigTzRrkogp2JL2mPVMXFrHxKz0cKlClSf18zCbNwANJ9m5/3axs6Gzz97O6Se+x0c+8hH+6I/+qGd7zgS2bt3Kddddxxe/+EXe8pa3vOz1fPnLX2ZurlVi/p577uGee+4B4G1vexvJZBKAf/fv/h3j4+PccsstFItFdu3axf/3//1/G4qpftjcfvvt3H777RSLm7svhoSEhLzWiaUjXP8v6iXgPvc8K/UScAfvOsXxR+e5/MN72ffmcHI9JCQkZLMsHs6xdDSPYensvWH6lW5OSEhISEjIq5ZXlUgJlFDp4Ycf5pprruHBBx/ksZl/5PLh97QCuomV6my5KEIkZXDkvv5vredO1ND0QuAyRQ2B0uCeBLFhi5mHs32XWXqxiFv2cYrBJ1B0W2fPu6ZY3p8L5I508p7NCYJAlaAI6lgESlyw7/3TrB4uBnaxsQdMxi4c5NQDi4EFHLFRGyRUloKJHuLjEeKjUZaeywWKHzl3gInLhtj/5ROIDcpINMgeLVFePLmpXKV3JkhvT7QEZz8C4uMRNF0LXMJt8Zksi89kf2TtgbrY6uHg8WZUJzEVo3CiosRvPwIGz0qRGI9uSjR37LZZzHiXblFK6DLBPfXGESIZi0PfmO27bk3XiA3bJCYiLL1Q6LwuNhAoDe5OsHq01P066jJBPnx2AuHCakAHMDOus/fdEyw8k2fpheAP56s5l9omrg2vLDh2Z73/2EDcCcp1afdbhll6scTq0S7neQ9hwMzTZSIJPVA5z/iwwcieKKefcToFqH2Yfb6GZgD0d+jKTOlM7DY48oCLu2ZeeK04CSDrneDx+a+iaRo333wzN9xwQ/CGhYT8AOzZs4e7776bG2+8kcLjXyB56c8RId38fr1YSfWHpiGZyngslEzKTj9XHo3VpY21gGuRUkPTJUPTOvlFgdfFgK4DIVg96eE56/uIjcRK8VGb1FSEhWcLfbsPr+JvXjBb8XCLLoGVUEByKkZ6Z4LZh5cDC3ziYxGQUF7sl6g6GsSGI1SWgscnJ6JUs25gcdDk5UNUVhyyh4PdX5ZeyG3OVRR1v68s1zblMrkZNEMjmrGoZt3A5f5ejgh9s5y6b2lT8ZEBC+HLTbtCdaNdoNTO4DaTUl6jVuqep7UCQz/rMSNMvC5NMmoCP9LZrxiGZHrKZ3FJUvDVeG2tKEj3JaKtLGEqIajVNBxPU2OpPl2VbaryZ24Xxzdg3XhM0ySDA4JcQUduoGdrd1BKpyXJhOD0jIFE6ytQAnBdDd2HoAIlzZeUSxrlbqXhuoyjUklJKi6Zm+90N2ou0+WQer7G3IpBpaYF+L0nGR4QVGoaeYyu2+hGzdOYz5lUXA36VsGUTKdcnILGMkqg1M5acRII5p65jdNP3sqnPvUpPvWpT23ovnemkMlkOHHixA+0jn/4h38IFBeJRPj4xz/Oxz/+8R9oez8IN910EzfddBMHDhzgV37lV16xdoSEhIS8UkzsG+R9f/gmXrj9BI/9wyHciket5HL/Z5/nwJ0nedMvncfYnswr3cyQkJCQ1wwNF6Vdb5wMXelCQkJCQkI2IHidhx8juq5z3333cf3117NUOcZDi/+IEGseKrqe+ou2bvTZkw6rx2pqBsz30SJrBgFStP4sm+wxNfk9MB0hMWq0vtsAI6JhxdoesAvR+luLgNwxNTOd3hEPlG3hCIozFcpBJ4zqbL1ulNELM4Fi5x5bZeVg8PJUwhPMP7HK0vPBxECgylOltsSIDtqBl9l67RjjF2UCx6em4wyfnQp8FmePlTj90FJwUYxgUwIlUIIuM25s6sra+4FpRs4dCBw/fvEgE5cObapdrzYSUzG2XTuGGQ2eqLM/tJWhfanA8UZEx4xvrosT3uaO+eJzWRaeXN0wRtM1tPqbZ6npmDpnRfPLDQVKiXGbLW8cJDW1ZjJQyJ5CneRElORU8B9AXlkw/3SOlcPBSxI5RcGJu1cCTSSbUZ1dbxsmOhhcEys8KM3XKK0VLPbY79SUjW4IvJJHaWH9JLWUsvnXwIjo6vyr3y+6Kid8of6kYGyfDTpU84Jy2UBzveZfx7ZsC81x0RyX0kyN7KmWQEnaFlrV6SpQWrWO8fTCt7BtmwcffDAUKIX82Nm5cyf33HMPmqax+vDfkhXrBRBWRWBVBLWMGgd5PuRLOk4R9JpEr0mcdOe1rrui+VeKRPA9DTRJKiPRXQ/d9dHd9def5vr1P4Fhgd429NJ8v/m3FqfoK6cjBHZyff+6ti9Qy3hUVtxA5duauUiYjF2YQTP6T2gLV7L84ubKkpUXq6weLAQWKIESHEUyfWfxm0QHbUbOG1DjloCkdyQ2tY3Vw0WKM8Hde/yqCF5Prs5mS6ImJqJMXhF8HGXYOqPnZ7BTr7p3OzZFZneSga2xwPHJqRjjlw6u+7yXQEnTQY+aPYc1XR3QUM49Utd7uihpsiWQEQIWl3WqNRXbz0FJ0ySZpCASCXZSaUIymPQYyXQZEwi6CnEsE1IRgSF7OPu4skOgBFAoaKys6mie7ClQ0lzRFCgBlIoahbzab80TPQVKmi9JJ3wyg4K1F5MmZFeBEoBT0ShXtHXOeO35b36mSaIR5bBbqejQRdCle7L518A0JLquyro1/tZi1iRmTZIUPjFLABqlmo4b1zErsvnXjpvQsUoCqyQpZjUKtbYypEkduyjWCZSkFCwd/jannryVP/iDP+A//If/gNHjHD2TcByHRx55pOl0FBISEhJyZqAbOue9fQc//Z+vY881U83Pl47m+eanH+TezzxHNf+jeSEgJCQk5PVEJV/jyEPqZeZz3rrtFW5NSEhISEjIq5tX7dN2Xde56667ePe73823v/1t7p//v1w1/nOY+pomux7SF2iGTmnRo+EdMrTTJj/jqNJCRpen5VI0SyON7IvjVQWlhboIZ4NSbkvPF1lCvQ2+rrRcD6yEztarh7GSJkvP9X/7fuah+tvXuspDEFGNFFK5vWyCrdeNUll1WHq2v/ioKWoKWIqusujwwpc39wbmse/PbaosxvyTq8w/vrFApB2v7LN6aHM27onJKFNXDnP4e7OB3JdWDxVYPRRcAAZQPF2hmg1eSuTkvQuB2tIgPhphy5tGOP79eZyApe42y/Q1IwhPts7dPuSOlDiwcDJ4e3TIHy9T20Selp7LBXbZApi6ahgk3fehx1vVlSWHynLvfdDWTLgtPJ1rif02ECc1KM07vPTducCObwDH7+pxDNaWiYPm9by8v7j+uzpSyuZb5UZUZ/t1w8w+nlVlkurlldZvS0B9oke3dZDgNQRNffop3QbhwMwTa65VIbuaF+kmbLksSfaUw9wza4RWXbbV6LcLpxwKpxw0s8tK1yyXGNIZ2m5RXPIozzvrjmsTz0cDhrabZGc9PAfmD9TPWcftOTF4Ivs4LxTuI5lM8q1vfYvLL7+8+/pDQn7EbNu2jXvvvZef+Imf4PS9/wf7rJ8hPrVjXZxVEZhVHy9qkC3Ur3VdEotIShUd3REIe33foLsCzfWxUzrpQaiWwa0/626UepNrSsBJAYuH6teRaaCtNUvz/OZ37QxMGMRiFrPP17qLXtoc8ryKIH9SCdeDiI6A5thMNzT8gO46dtIkvSvJ0nO5vqXihCtbjkgBDZiWX8xvSuBTXXGYfWQleMk0CTMPrwQuc9fYxmbJ7EoiPEH+RDDx7Gbu9aDK6ZUWgrlRgnLPOv3gEv4mxl6ZXUmklC+vRF4AzJjB8L4UywcKgY/fwtPZIEOPJm7JW+eyJV0P6RbRB9YLGGTFYelo95+WWs1DrhHD6QaMbNVYnfeodrPIkRKj6iMiRttHGuWyBhIMXyD7iNOk1Dg53ypdpskNLhGlh2FxxWCtVkXzZU8RlVeFk7PrXXsADEc0S8jVWwSA72tUswJ69Dd6zW9uLzUgMUxJdkWVeTOqHsLsUr7Nb6mJWvtYFzX5omffpvs+UjdwhIaTWyNQErKr41EqIRlM+hxf1hFrBEqNcp9+W5+saap05+KCrtrUReem1+q5ian1peMCDajkdIyqQPY4ec2KwKjff4o1nUK1rZxgqfs1K4TPsYf+gYXZJ/nkJz/J7/3e73WNez1y8803d/3c932Wlpb4/ve/z4kTJ/jABz7wY27ZK0dY7i0kJCSkRTwd4YaPX8TZb97K/X+zn9WTBZBw4M6THHt0jis+vJc9N2zhyfJRltw8I9YAlyZ3YWxmkBkSEhLyOubAnacQnmRkVzp0oQsJCQkJCenDq1ak1OBb3/oWv/qrv8pnPvMZ7pn7HNdM/Dy2vv7JZkOoBGqSe3RfFMPWWHjGUU4Y3YRKAEJy7J5VRLfn+70m4IFI2mTnTaOcfnSVwomNJzrckuDwzfNUljc3UbPzrRMg4eitc31jN1vyockmJrOspMnud04y++hK4EkXM6qTmIiRO9Y/3skpIYZu68FEOPUQM67jVUUg8ZQZN5h6wzBzT6w0t7cRbsnDrXiYUR1nE5NTZlzHKweLDyrsaRB0vQ18V+AUgot7Xg5uxUduwu0B2JxgSmyudIpuAnrA86iO74hNCf2mrhqmvFAleySYQ4SVMHBLfuDSYo3rIKhAyU4aRNIWhdkuLmzdJpR12PuT46weKbH4bDBhnVEXHfi1DSZE17jKOXmPI7fVj12f/KambKbfmOHYPdnO/d5gQlx4cOyeHNXymphu29Jh13UpivMuc8/2OG5dlistCQ7eVUKUNzgWdaGEacPoWTa6obF0pCVQ6sVq6ileOHkf6XSap59+mm3bwrdsQl5ZpqamuOeee3j3u9/NE098jl3uh0lvP6drbEOoBJCKC9JJQbladzjpIVQCcAqCGacxub3G6cP11wmVGqSHJZEBg4WjXfp2z+8QKuVnfYq1MrgSzB7D3TWlPK2Ewdh5SeYfr/UVTfs1wcImS6n6npp0100Nv0tJum6kpmPEx6LMPxFAlF1fZSRj4ZY8RBeXkrU0BC6aoQUqZdYQKBm2Hli0Ex+NYMYN8seDiY6EJxABhV8NNEOrC/b7xzp5Fye/uXHRZgRKKt7f7LsDm0OCV/UDl58Ddew24xZWy7nUcsHzpJsgimVkMt75RQ93Gl1X93DfJ0gFVSxTMpASrOZ0hN9fTKgh0TQQUut/WjTeT9EkQmpN7SPUxT89SFg+VbHefQhaYp124nHJUNJnbkZDdCuptoHbmnIk6t6WVhsloFHI623fbVASzvMZnZB4mmBpufMg9BJWAxSyUC0ZCL27QKmdeEQwkvaZnTPwe5R4awiU2vdhIWeABka1d/vNeinSVFSQjglKTutY9BIoSVHl1COfZ2XxKF/84hf5mZ/5mZ7rfz3yJ3/yJ11L2rWXRH3LW97Cr/3ar/24m/aKEZZ7CwkJCVnPxNlD/NQfv4n9tx7n8X88hFvxqRVdPnf3HdxvHyIfbz1PGbfS/PbWn+KmwQtfwRaHhISEvPIIIXnx++ql/XPfFj7fDQkJCQkJ6cerXqQE8L//9/9my5Yt/P7v/z6PFv6ei6LvJmkOrnvoLesPYf0KHL67iFdpPHFGCZUarBEsifqD0cigxdarBjj9aJ7yXF14tNZVybLAdanlPHLHy5TbSgtpht5sw1oaAqXUdBQrbrJysP+beisHN1caBGD84gyxYZtj31/oG3vynsVNrdsteuRPbs7NZuziQdI7EuROlAKJiOLjEXa+dZJj35+jNNv/LXcrabLvp6aZeWSZlQP9hRbCkUQHbSJpO5BIycl7HLt1vn/D29j25jEiKYtD3zgdKF63dVJTwYRcoMqzTFw+yOkHl3EDCH1qWZfjd/Q/H34QNuNoBTB5xRC+I1h4OhsoPj4aQfgysCNDZk+KqSuH2f+lE4GFSj33oYeLUiRt45Z8YL3YZZ3Tjg673zlB7liZ2ceCOT7setsotazLyftWAsWPnJsivT3OgW/MtoRQG7ldCEnuZIXSXPDSkk7e48itPfqNNeKk5KTN+IUpjt+9GtjlobTksHq00hIobdB+M6ozsi/G3NMlqjm/1a+vnRVuFyd4kuyJGqVFtf4OF6W1y1kW2y6PUisJ5p8tdxeXeWv2SwfPgcP3lfE2mgB31XeZ65e55ct3s3XrVp5++mkymUzvZUJCfoxkMhluvfVWPvzhD/O9732e//Uv/xd/9w/q2vfWlNE0q+o6KFUlxbJZnyBW15Pe1v+uFSzJmpqiHxjXMQxYwcYoqD5+rauSTETRSlUqeYlb88CTTUGSTMXRCnXxS5urkpTg1SRoahuFOQfps16w1Lj2NQ237JM/XcUtBRfRGrbOyHlpVg4V+t6T/ermhU21nLspQblmaIyelyZ3okzhZDBR0PDZKXTbYDFg2zK7EsRGIsw+Euz+ZER0rETwnxxBHZSa67d1pq4aZum5XOAXAqy4EkCo+3h/UtOqTFrhVDBhctC4l4tX9Vl+MbhzpxHVyexMkj1SDFSqFQ2iGZtazkUKiWb1Lt+sWcoFaXRvlFpBsNo+nGr7raaXa4h4qxytJzSWZuthFRc/1uam1EXhZZoS26b7iyVr0H1JIiUZSvucnDORbW4/mg+y/SdkPR1RWzA+7DOzZOJ62obiJN2XaJpkdEiQK+jkCq31dxPqNPBLgpLGOvch6C1QKq30bkdnGyUjo1CtQrGg9REnNesOk8/R4czUS5ykeZJEQuC6Gg6aGsrUD+faffbbSqO7ZShqWrOqrh9ty1Wtc1tmCiYHPOayJnKt+LwRU2nflhI0Zcs6haqOWewt5LILPk6tgFu4maXF4/zt3/7tGSdQAvjkJz/Z9XNd10mlUuzdu5eRkZEfc6tCQkJCQl6N6IbO+e/Yya43TvLwFw9wy/yTfO89z6yLW3Bz/OaRz/Hnu34xFCqFhISc0Zx8YoHiUpVI0mLXGydf6eaEhISEhIS86nlNiJQAPv3pT7NlyxZ+9Vd/lYcq/8CFqbczFt0BhoFmW8g1ThVu0UMzdFLb4kyeH+HYvTmcwsYP5f2Kj1Pwcbu9ednFVakhNjBjOpGMRambg0kdzTCQvk9mdxI7bgQSKbW7FUWH7EACDbfqY5QDlu2oM3HFEEjJ3GP9hSYzD27O9WfuiVU1IRdQa1Wer7G0P0ttNdgkk1v0mH10mfzxYAIf4QkOfu1UsMa0kdoWp3CqHGg/ll/IowcsFwOQnIiy7foxDuVPBzrGUkrMqIFh6QSVi5lxHeEQqHTgy8FKmrhlL/BxNiL6ZuZcmbxiCCnhyPdmA8UXTlWYYTmwQCkxGaWWc9a7VPUQKAEcvWUT4jWhSuQ4xeDX5uJz+U05N8w8kmX5YDGwQAlg/olggik7abDlqkFOP7gaeB+kUCWUggiUdBt0U7mPzT9T6mhjLxKjFumtEZZfquD20TPqBiRGTQozLksHu/TTPewuakVBLaDbxpZLoui2zsnHa90FSg1hhOsihMfi1CPc/KUnueCCC3jooYeIx+PrlwkJeQWJxWJ87Wtf41/9q3/FL//yL/M7v/M7PPhkGrOshEpO2sTuEPtqaGUBUZ3BHToy79fLE22MVxaISL0E0BrWuio5FYlT135Eo4JqTd9QwKOlkhhOieSYRa3gU8tv0B/JugPJ6RpSqPuUcGXf0ma+K/Bq/qaEREZUZ+isFMsv9hejOwVvU6VwpS+ZeyK4OBSgOBe89FkjvrKJMm5KsLM50Y5u6ZgRPZDrou8IVl4sUMsHz9PgWSmEK1ja378MM6h7VA8TmO5oYFjB3aY2i2ZoyiUooIulbmjKDTHgeWolTMYuzCjn0S7nn8ivL/mWPekoAVGjNHcPByUAzdSwo1DrdlqsuSfrNVXyrVLVqWziNCpVNYQ0OgRK62g7PI6nsZo3cHucRproLPkmpcbpeaNDo72RQEl3PFw0cqvBBErpQYHwNUrBtICAcqXy/X7uSeo705J4LlQrGsKul4XbsL+TpJKSWg0cR8OPbFzWJWoLvDL4UmuWBW1nrUAJlHDN8TS0iuhaZq4dy5RMDPvMlE08T0Pv8jvfTag22gUfpzrL7PFvUK1WufPOO7nqqqs2XP/rlXe84x2vdBNCQkJCQl5jxAejXPfxC/jDJ7/WLI/bjqx/9J9Ofp0bM+eHpd9CQkLOWPbfdhyAfTdOY9oB7IJDQkJCQkLOcF4zIiWAj33sY+zdu5e3ve1tPJn9LnuTV7EzeQnQ3cVI+oJK1qO0qOO0C48acYZB87VOwKsKTtybBcCMWUQGNErzbZMwjafQdTelBpOXpImNRTj4zTnoMyd08t4uZdl0Y8PXgkcvSDN20SAHvnYSr48AaaX9rWqdQKIRXdfYzMyLGTfY+bYJZh9ZoTiz8WyBcATCUW2xkyZOgAmk+SeygdsCbOpN8gZmVEe39UDtiY3Y7LhxnBN3LwRyOwriANVOcabMwW+cCuxQVcu6vPStmU1t4+wPbmP+yVUWnw0mStks+35qmoVnsoGdkTZbnvDo7fOY0eAPOtyi13kt9GH6mlEqSzVO3NnmOLWBQCk+EaM8v17sss5BqY38yeCORQC5Y8Fn4iIZk1rWo5YNMEErJLvfMUb2aInlF4OJ+4yYgWZoeGvLE+n6OgelBqW5WmCXpi1XpImlTQ5+d7m3OGnNZGfuZI3CXA3hAhvkHSEZ2RdjaHeEl5azePUmaabRVZykGxAfsSgueMw/1yWfur7eQQkoLXlKx9qttJuUzXtG1StxyL6NmadmeN/73sc//dM/9W57SMgrjGma/I//8T/Yu3cvv/mbv8n73/9+5nMXYZaVq4qw9HWT8mZVUMtLZHVNGaC6WENELfRq6zopF4CCclWyBk3cNSUum65KdTclUBqI4e0G2Rmf0mqXPqPtGvVqktmnS60yV17dSS2VRBbWCMabrkowdlGG6orD6kt9ROUSlgMKXZqL+BJN19AtTfVhAUhORomNRALdxxsCJTNq4FX7i5U245AJ4JX9vuPRblgJM7BL1eCeJFbcYC6gU2NpfnNjr+UD+UDl8BoEdbtsMDAdJ7Utzun7X2Y55j4kJ6OkdyQCj6fckh94jAZqHDXzyDJe1e/poiTyRYzhwea/a3WRiEYZmU51XUYv1xCpKNEEjEzCzFHw66eEUXHxo91/mpqGRAhVuq0dzZNIs8cYwIWyv8HYcc3wRQiNfEmrC3W6nxt63bnINCSeD35b2bmNBEpxwyMzJVmY63RR6l3eTWIIWR8Tde6fMPUuLk91R6HFxv+vR2t7UcEwJVNbJMtLGqVib3GSsHW0Zpk5jfkFvdlNbrS/hisYH/YoGjqr+db4zY9qXcVJEVvgeBqyDMvl7ses00FJdfPlqgYFidVlLKoJiV1Q/VRu5QAHnvsSW7Zs4eGHHw5L64aEhISEvO75u/m7+Pz83T+09TnCIytLPR8dS2DezfLmpz+Nrf9wphp+Yfx6PjJ+ww9lXSEhISE/arIzRU4/uwwanPOW8PdGSEhISEhIEF5TIiWA6667jgMHDnDppZdyYOUB8t4SF2Xe2jPeKwtOP1kFAdG0QXTIJHu0NXEupUTrIkaYuCRJYsTiwLcX1gt91jwIPf3IqipjITYu+aaWVf+xB0x2vHmMU/cvUV7c+G305RdyuGVvUxNC6R0JJq8Y4vD3ZvuWH5l5eHPuSF7Zp5Z3ERvt5xp2vnUCM2oELoE2eFaKzK4ER2+ZCxQ/fHaK1JZYoDJ3ALveOYWTdzl2e383nMqSw+GbZ7qKUnqR2Z3AjBiB3tAX3uYnCIHAIjSAk/ctUlnanEhmM5y8b5HK8ibWv4m2gxK7OQHdCOy0ycjZaRaeXsWrBlvm8HdOK5eEACQmo+x66zjH7l6kcKK/kCi9I87gniQn7l5aXzKsMWve9qbZ4FkJ0ttiHLtzKVCOhvYmmLw8w0vfnVciJSk61teBkKCr8kGBHSeEpLLocOTmLmXeukwKTb9pEDNqcOyuHq/+C7FOcDT7ZIHogNm1L17L9mvTlJccFl+o9J/c19V2Fl6okJ+rNQVKQE/3pJG9EYZ2RDl4R14JLNsX8Xy0tpJVZhTSUxbLR1yyx/u7iqzWZnh05ZtITfCrv/qr/M//+T/7LhMS8kqjaRr/z//z/7B7925+7ud+DsN8mPMu+QUi0XTPZYpFdZ3oCJIDknKxc2Jer7iI9tJOqMt1dAvk0LoKjxpiJVD3zfmXvOY1LWMRtErve1Cjq01N2lgxnZUj1aZYqRt6NMbKwcKmyr6BEpU7Ra/DCbMbwpWbEoyAEtI7RU9NDATQ1lhxg4krhlh8NhfIpVHTNYbPGaA4WwkWb2gMnz1A4VRZlaTrQ3TIZuyCDLOPLuMGGM9mjxSRG5TbWotuaaS2xCnOVAK5F/kBxwcdBMw9QHmxFsgF6uVSXqoFLlUHbKrtDfq5cWlt5bMTIya+I6nm/Q1F3o17b6UIcydaAiUAehxvTUhGki5EDObmO8cPui/wzbVvqKoybJUCFPz1P3UbgsmWE5BkfNgnX9JxsxLf7j6GMhyBsHRAMjbi47gaSytq20bF7yqWMioewtQREXCczmGTUfUQPd6u1Ws+2eXu360VKBmmZHxKsnrSp9Ljp73u+B0CMN/TWFyAShnkBuNfzZNEbMnQkGBhUe8QZfWisb65JXNdN9tNoKRpkvEhn0JZZ7WL45JV8nDbykUmYoKao+H5GiurG7+dLKXPzMlHeOnFb3Hdtdfwj//4j4yOjvbdh9cTf/qnf/qyl+1VGu71xu23387tt99Osdjf6TokJCTktULJr7Lg/mheUtyIrF/q+/JuUEr+5l5CCAkJCXkleeG2EwBsu2SM1Fjolh8SEhISEhKE15xICWD79u2cPHmSN7zhDTz33HPknQWuGvlpBoYtvIpPLS/QoyaJUZPSsodwwE5IJi6KY0UNskdrJEbVw/TKsodmSBJjESrLHr4jsJM6+dNVll/Mgy+Jj9oIX1Jd9UCH1FSE8lwFryqwkwbRQZvCqSrosOtto+SOlVh6Xj3kSk1HqayoMlJmXCc2EqFwQi0rfYGVMqEuUkpti1NdcXCLXj02SuFUWYlYci7x8QiRAZvC6TKxYZtazsXJe5hRndhYtFmOLDpkgyYpzlbxqx6p6Ri1vIrVbZ3ERJTSjFpvdNDGiOqUZqsMn51i+JwBjt0xj5Nri52rIhxBJGNhxU2KMxVO3LFAYjJKdNCmuuqgmzqJqVasPWASGbDqJT4gf7LUmuzQITUdp7JQVTkcMImkLQonVWx8PIIZ1fFdgW5DYiJOZamKVxZYSZPokE3hRFnFjkaQSISvzKhS2+JUlmp4ZR8zbtTzrWJjozYaGuXFGqfvX8JKGcrdaU2+ERAdtjFMvflmvmHr2ANmz3wbEb3poJTaEiOzK4mmaay8VKznu4rwREe+AZJTMdyyR3IiSmw0Qu54uZXDtEkkaVE4R60PSwABAABJREFUrfKSmIziVwXVVYfd755CNzWOfm+2lcO2fCfGo/ieoLrsgK7KgTRKn9lJk8hgZ76lL6kstc7DhsalV74ra87Z3NESZtxQZfEa+R6x0QytKe5KbYtTW3GwEia73jHBXMPZqUu+28/ZzM4EoxdlOHrzabwq63KY2hKjVnSb5+zwOQNkdiWYe3y145xtz3ct63acs15ZYKd1UltirXxPRPEdQXXFQTchMRWjslCjNFvl9KMrHQKixHgE35PUVt16HxFT52FVXfdWwmgKlOKjNlJAZam1r5VVt9VHDFn4jgTROGdpChlT01Gqqw5uqRFrs3KkhPAlug7xUZPyQiu2llNlgsyoTmzEpjCjBJtLLxQw2ibGUlui1Ep+q48YsynNVEhOxRi7aICFZ3IUTqn1Jicj1IoeTt7DiGgkxqKUFqoIByJpE7fqU11163mx8WuCatZD14W6FlZ91SendEbPSTD7VAGv6CETOtGMSTVb72cnbCorHm7Fx07qqp+ddXCKPpoO0QGt1SdPxqis+s18xwYMSgsO01clKc47VFZ9Kquqk0hNWlSyPr6nREaxjElhzkN6HrFBk/xcjcK8um+kJkyqeYGTd1XsqElxlbroVWdwq0FqwmL1SJnEeIRaQeCUVb8VH4DCvKuO47DNcuwgTz5/J7qp8YUvfIkPfehD3W5vISGvWt773vdy77338r73vY8jL/w1kzt+iqHhHcSFUy/ZpKFnTDRNlQICSGoOwynQSlDSLSwbanUtke27aDrUNCVWsmxYmgVnroZugBXVcHwLKcG0lYjJzat+yE5oeEItF0lqpCd0Fp92kT6YCRvDAqekJsPtiER4Eq8q8B0TO6GjGSB90HWBEdFx63pTO2kgfIlXEdSyDpG0hVcVRNIWtZyLGTWUIEdK7KSJEFIJyDWaMbW8i2HrmHGjKUC2EiYgm6KSSMbCLflIIRm9IENludq8J1sJA9CaAqlIxsIr+1RXHZyi29wOUjlbarrWFKOr9vr4NYHvCPInylSzKmdmzEA3tWbprvZYzdCwU2aztN3aWHvAQjhCuerUY52CB1JixHQi0mqWxrRTpsp3RfXV9oCFU/CorjosvZBDt3QaMxftsY0cukWvWcLMSphNAZSVNEFIJXBqxJY8hCubY7TkVIxq1qlvozPfXtnHdwS6pe7JTsFjcE+yfk/11+XbdwS6qWElVRvslMXklUMsPp2lvFhbl8NGrJN3lShO6yyxGxmw8Bwfv9rKt5P3kEKV8LXaRBgd+dY1Nf4seEhfYkR1TNuglnfxq07XfDdyaET05jk7cu4AZtRg6YV8xznbjF1zzo6cn8bJOeTr52UkbeKW/Xq+NaykRa1e7tGKaSTHTKo5n2reJ5LScUwlJmxcy7WSBCkxIyAj4NbUXyQGngt+TdZjJdUaIDVMS2IgcWoay4sakUGt7mCkoeuSqCGo1VNsmhJDh5qjobsCSxPUdA18JYKJ2JKao6HVZDO2XM931JZoGugVgaZBQvepSB0h1fZsIajVVJ9m2xIpYHHFQJOShPSU+AgNw5CYJs3YmHARFjhS4tSgrGnoOmhlD8MEMwaNn0aWrc55v+AzMgmuA/mSRPgauiGxbHCy9TJtA2r85tb7WcuWuAWB64AeVbG1KoCGjY+mQbUuUIonBLqmhKRuURCLQFmqcpumqcaSjqOhOz6RqMQxTHyhxGS2JXErPrJ+bGTUoFZvQ8SWUBGYFkQHBcWyRs3RkWhEXRfDUHlx4yYRS+JL8DwNu+IQiWgsn5aUTR3TkJiGpOroWCUP25YIC1xAQxKxBaMRj6KjUSxraAMGVade0s2SmHkH11WKPC3jc/zQN3np4JN84hOf4M/+7M8wzdfko48fiO9973svazlN084YkdJNN93ETTfdxIEDB/iVX/mVV7o5ISEhIT8UEkaUMav3SyWbxRGeEiD1IVq2MIWBHTcxIz9YqaOEEf2Blg8JCQn5ceFWPQ7eo17MP/etoYtSSEhISEhIUF6zhaLj8TjPPvssv/iLv0jJz/JQ6e+J73UZ3qOUynYMtl6RJJZWDyOH9g4QSZkcvXMVfJ+py5IM74uhmSZm3GDb1RlioyZSSjI7Ymy5Ik21/tLJWe8cZccNQ/WH6zrbrh4kORkBIL09ztZrhpBSPdhNTUUZ2psEVDmS7dePMDAdAyCzM8mO60eVaMQReI5keG8K3VTuLztuHCe9IwFAakuCHTeOY9bf5h2/aJCpNwwzcdkgI+el2Xb9OJldajuJiRg7bhzHjqt9Hbsww9hFg5y6bxHhwdbrxxjaq8ouJMYiKjalSjeMnJdmy5tGAPBdQXIqxsi56odsbFCVOYsOqonA4bMHmL5mpHkMtl47wt73byG1La6coW4cJzGq8jK0b4Ct17beVB3aO8DANtXeaH29iQmVl8FdSbZdN9aMnXrDMImxKCfuWEDXdXbcOE5qizqu6R0qLw0mrhhi4tIhVg8VOHHPgsrhNhU7sC3OjhvHaTgNT1wyxOQVQ4AqCzL9plEGdqp8JydjHfmeuDjD1BuGmtvZdv0YZ71vmvSOBPGxqMphUq149II0W9443IydvnaUWtbl6K1zxEfq+a6fhyPnDjB9dSuH09eMMHzOAEbEIJpReYkN1o/NOWmmr2nlcMubRhi9QB2b/PES8VElbALlPLW1PYdvHGbswgwAVtxkzzsnGbtEleTI7E6y/YZWDqeuGGb8YvWdbqt8G1H1MCG9Pd6Z78uHmLista87bhxncE+SsYsyZHYnVb4b5+wlg0xe3ordfv0Y6V1JagWX/MkyExcPYda3M3ZRhqm2HG67bozBPep8iY9HyOxMYkStVr6vas/hKCNn18/ZYZuRfWmO3jaH8ATDa/K95eoRRs4bAFSJtB03jnPWe6fI7E4wvG+A6bZzdstVw4yer2LNhMmOG8aJj0WbOd12XWu9U1cMMn6haoMZ1dl+wyjJKXV+67rePFcAJi7LMH6Ruh51E7bfMNrsI9LbYgztSXLyfuVuNnFxmvFLWg+Wtl8/Qnp7vY+YirH9xhFMA7IvFRm7cIDJy1vn7NZrhsnsVNdCYjzC9utH2POTE6R3xhg9P83Ula0SLdNXDzG4ux47YrP92mHslGpzNG0zeamKlVKy5Y2DjJxdv5YzNtuuHSaatjFjOkN7E2S2x1k6oKb+tlyZYXhvAoTATplsu3aY+FD9/D47weQlAwxuU/s+eekAI2erNlgxja1vyhAdVm3I7Iix7WqVs9nHciTHbMbOS9SPjcXWNw6QHFUT2Jkpm61vHAANTFtj+KwoY+dElYpRh61vHGBgSp1LqQmb6cvjRJKCPTdlmLwkzsR5SSqraiJw+tIYA+PqfE6M2Wx74wCmCabpM7rbIpo2OHxHDiEMtlwaJ73VQrou8TRsfUMKO64jdZ3i9Avc++QtDA0Ncf/994cCpZDXLJdeeimPP/445557Ls8/8de87ToY3qU3ha2DEZfheMtVJ7PbIrcE5byasJ8a8zB08AbjpIY1Bid19IqLXnEZmVJCJZGOE0tr7LjcxtYdqDkkh1Rsg6EdNsmEQKs6WFGNzKSBVXdFiWckg1sNZL3E4tB5gyTGVL/j5BxiaQMrpmPFdBJjEUbOSSFdD+l6ZHZESdXHd4atM37RIJkdCQb3JElMRJv3YIDMnmRzvKEbGuMXDeKWlAg2OmwzfkmmFbsr0ey7NV2N6aKDlhKoxHQ17qoblKR3JMjsSjSXHb9okOiwan8kbbPlqpHm/T29Ld68VwKMXpAhPqLab6cs0tsSGJaObmqkpuMMntUqwTVyXprEuLqn2QmT8YsGyR0rUV1xSE7FGD57oBV7zgCJSRVrxgzGLxrEiim3SCtqMnxuK3Zo30Dz/mdEVKydNJWoKmIwcl4rh4NnpRjYqnJoWCrfdkr1z7GRCFNXDTfjB3cnGajnsJHvSFrlJTpkM3pehtMPLFHLumR2JkjvqOdFa+S7HpuxGL9oECRYMYOB7Qkyu1s5HLswQ6yZbxWrmxpe2cMtes02qHynidfHYVZS5bAxBkpvjzN55RB63V1n5LyBZr6tuMpLo4xtciraPJdAuYO28q3yYsXVeCk5HmPkvAFiwzbRIZuhfQOkttTHG/Vz1qqPOeKjEUbPV/krzlQxY0Yz37pZz/dAK9+N8wpUubrkdL1NwmXswjSRtIVm6ESHI4ydr+6zIptjYMrGcyS5GQ80jdG9UWJaXdyU0BjdaaBpSoQzMKozPuIwMqWOzeikJBarCwqjMD4paBg0pQckgyPqO+FrDGYE8YT6d8QQjE+IpjHjQFIwPOjXS5BpGAY0DJYsEyZHfCJ1G6NkUjIy0nrFfyzp4ZcktZqGacL4uI9VN3obsH1GR1tis9FBj4Gkj8gLqAjGJwW2OgVIxCXjYwKj4mFUPDLDMDohGRuXGIZkfFIQ19R2o3EYm26ulsyQJJNUgiIJDE5qRNVhJWYKxsdFq48YlGSGVAk20/UYHxVUy+DZJpEYjE9JTE+gOz4DgzDYZhy0ZatkfFyg+z52RMU2cpiJ+4ykPXRHtXFsUpBICDxPo7gkmRhW4iqA+IjOyJDAqKm/8bRHMiXRNbAtle+Y52FWPBJJyUhbDkcGfYZMlxHbYWRUMj7h48dNJBqJmGAy6WLVRYNDw5LEqI6mSWJVl+kBj9UVjVxWIzJsMF4/jlbeYdSuMVAf2patEidf+hLHjz3Pn/zJn/AXf/EXZ6RACeDLX/7yy/r70pe+9Eo3PSQkJCTkB+Aj4zdw24Wf/qH93XHRf2DcSveq9gYSkoUov/w/r+eX/te1/LO/uIpf/+rb+PuBT7zsbYal3kJCQl4rvHT/DG7FY2A8zpYLRvovEBISEhISEgKAJmWPmjevIf7mb/6Gj33sYwCck7qKaeNc0MFO6DglAQKMuImBi1NQD0l3v30I4QmO3lUAXb2565V99davDWbUwC0IpOcx/aYM1azL0n711oidtvDKHn7VQ7c1zKiBUy+dZCUNpCfwyoL4qI3nCLySV1+vjmFLnPqbx2ZcPYWfumKI2LDF0dvm8CoC4Qh0U8dM6B2xmq7i3aKHnTbbYpWIoj1W13XlEBTV2ffT21h6Icf8Y6ut2IIHQgkqdFtvtt8eMOtvbwuVw9TGsVveNMLS8zkKpysbxyZNhBBsvXYMNI3TDy525MWMtfbVSppIoXI4eFYSK2Wy9Ewe4YkesbJZCm/s0gzF01XK89UuOex0HBg5L8XQ3gEOfuM0ut49341YO22y5Y3DLL9QoDhTXp9DU2+W9ejIoakm/35Y+V4b25HD6Pp8e2V1vp/1vi24JY9jt833zaGdNtn73mnmn8qy/GK+I9asT5K1x0YGbbZfO8aRm2fxHL9nvjvP2fX5bpyzjX31qmvO7yD53mQOo4MmYxcpkVtlsbb+nPVlx3qH9qWwExanHljpyEsj335Vtva15DF89gC508pxy8mrY2HFNaSUzWNjp028ssrJxKVpll4qUa27ITX6iI7Yeg7TO2JMXzPM4e/OUV121Dmraco5QtPX9RF2xmTiggyL+/PUCh66ruEU/Va+HYmo+uvybSVMdFOj1nDUSJkIV+VQMzS1755gzzvHWT1cZPVQGadcz0NcazqYoKs8OTVN9ckWRDMGpfm6+0ZSR0pDucxJiT1gNPvk8QsTjJyT5OA3l5puSQhV/gjLxE7peCUVaw+oa6G84IFpYkYlSPAq9RymdHxPOVtpeJgxHa8mmL48xeKBCp6r4zb3VVc59MCIW5hRHTsqmL4swanHClRy6jhqpoEV9fFqAuEo8ZkZ0ynXihyx7+Po0aNcfvnl3HvvvUSj4duAIa99XNflt37rt/gv/+W/8M/+2T9j5sB2DCOCbkg0aJYE0tIm+nINKZRjytgOmD8KFcNG1yVWrtIs92RYSkvoRyzsSpnMFoPlE75yPDJAi9r4Hmj5EoatIXyJ9AEN9KSNv1LEsBo1rTR8R6JZllpvrqjceTQwbNW2iUvTrL6YpbLs4NftWAxbB8NQ7oOVMkZEb96zhC/RbV2VCZPKeUZKiXBVf2dEdYQjkUIysCPBwNYYpx9YVu43to6UIFyxLlYzNHRLa5Yf0y0dTaNZssyI6ghXIn2JpmtEhy1iQxFWDxXQDA1N03rEqrGBbuqMXzzI0v4sbtFvxUZ0pC9beYnoyhHI0EjvTFA4VW72m71ikUpwExuJkK+7KHaLFY5QlUgNjZHzBqgsOxRPV3rksBUbH7WJDNisHCpgWL3z3ZFDjWb51o58t+VQt4PnuzO2f74beYlkLMYvGWT2kRXckrdhDnVTY2BbnORkjFP3L/WN1QxNidMkrL5URIre+dZNreP8DpTDZmwrh2Yqqhw5NeVEppt6c73maBqkEhKpZdW9Xwogk0TXJX5du6ibyv0sMhplZR4MXbmhSqGqxOkmOLaJJkDXJbouGRmH1WUNxzBVuTRPomlKXON54EdMdF1ieAJdV6KkmiORUsO1TDQklhD4HkiUC5OmgWMaJOMCo+ZTqWj1kpTKDcnRdXRHNmNVnyYZ3yLxfFg51Yr1fZBSAwssx8P36nkwJJGYJJLUWV4C2xNqX6USK+o6uLqBXvMwDNVziYbpbExX/18VKtagmUMSBkbVJ56GVAYWTqvv/IiJpklMXzT7Vd1Q2ibHUgIdCw9NA89Vwh/dAMc0AQ3T81r7qkmmt0uKjkF2FtAkptGokqkhEuq6oT7ei0YFjqNy6Cd0Iq6P5wOyle9qRCm/ojUXKSEWV8e/XIZq1MIs+mi6eumnkUORMpDAZMxFCsnqit7Mt0gaREoOXlu+pYSKe5j9B79FIpHgq1/9KldccQUhIUFoOCl95jOfYd++fX3j9+/fz7nnnvtjaFlISMiPk/Da7s3tq8/wm0c+B3RWEW4Il/5o9OeIfd3kyEOzre80OOembVz203uJJDvLfYeEhJzZbHbs9WpFSsnXPnkfqyeLvOHnz+aCd+7sGnem3V/OtP2FM2+fz7T9hTNvn8+0/YUzb59fDfv7unil8Jd+6Ze44ooruOaaa3g+dz+z5lEuS74Dp9CK8csefts7H7NPFNS/fB98cJzWTyzhgFN/ixTD4NQD2eZ3Q3sTZI+VEC5ohoFwfBzHa37v1if90ztjTF81xJHbFnFyjfWqCewGDeHBzKMrRNJ2U/AAqkSEkxNrYtvKRiQtpq5QpdmER8ey7bFeVTD/+ArZI8X6etfEVgVUW+t18h7JqRhTVw1z7La5vrFHb55r/Xuj2LqgZOVAAeGKzn11BI7Tim2IWkCVhdMNrVkyY6NYdBjak0I3dMrz1S457CyMXpqvER93MW0dr7pxvp2cx9Fb5nvvK515AdjxlnE0U+PoLXOdsdX1sWrn6kIK0T/WjOoMbImzcrAIiHV5cdrzAhz6+unWZjbKYWPfZPfYtTl0ch5OzuO5Y8dYS7dYUC4RXs1vlmtTsd1zCGoiLEi+QZV+23btGIe+cxon5/XNd3XZ48QdC63P1p6zmtaMdXIeXsFDQ9sw35qu4eQ8rITB6PkDeFWf1ZdattjuGodsJ+eBppOYipCcijH/dG5NXtbE1imcrrD4TE6V9OsTKzyoLnkcu3OJbjg5h4YVivBg/ALlinHyvhXcyprjWOjMYSOni8/lyR2r1I9PIy+si83sSZKajHDygSyl+bbYgg9tbuBOvrXdhefLzXJuHftqGCAkTq4Vu+Uy5RRydCkPwscr04FTlED9XNweoTjvIhw48UChnoP2NrX+3y+7+GWoAYvxCoXZ+jalQLoCp2Ueg/DgxOIhDrj34Xkev/iLv8jf/M3fEBLyesGyLP7yL/+Syy+/nF/7tV9jx44dDBg3koyPdcTJnIdvGuiOT60CKzPgVMFA9Vt+W3fSFDFUXDwslo6qDwxTuatVC2oZGbHwa20XnARRcNAsm+FdOr4nWX5JleOSrovnAlYEvCpIVVYKYHl/kWoeRK3tOnfa7i+SpmCjIUpJb41TXqxRXXWanzWXbev7iqcreGVVnqt9+W6x0pf4vmRoXwrhCrJHSr1jhSq32ii5qsqzyR6x6t8+gtyxIrWs1yznBjQFJmv3VTM04iMRyvO1pkipVywox6bUdJziTAXhyQ1jpS9xCl6z/Gy/vJTmapTmaoFifV8qh6JLB1l4KttxX16bw4agWH0g8d1eOeyMtWIm6K22dMt3g1rW5cSdrfHFRnkR3po29InFkyw9n2cdXfLt+0qAFBu2qa44zVJ669pfjwUlhFqbb+HSHCdIH3y/9f3QziheTZI9Ub+u235TqfW2rceDSlZSyVYgEe34TkrVD2j1X6dCaKCp0me+B8JvW6/U6oIZMGo+Utfw0UilBPG4ZGZGlTDT6/vhtf0GVGIkMD2PVErg2RqlUuN7tV69fl01Yhvf5edl2xXXagOAXvbbfmtKfF+jXNSoZAUGjSKH9W8FiKqHbqm1aTqMTsHKHDg1EKU151b74Sj5+EApp/Ll1UtoNhyQ2rcjfDWUHR32KWTBqbUc6aTUkEUPvS6IF+3eCFJjcU7DdZXok7Z8S11Dq7SyYEck45OSuVmNmgNGRXTNt1X20HVJJAblkkapqHIIYNZ/P0uhdeyrXh/f5apKANUQJGm+wMh1bsfzJEdP3sWxU3dx0UUXceuttzI62mYjdQZTKpWwbRvLCieHQ0JCQkJePjcNXsif7/pF/tPJf2LebT23GrMy/PbW93HT4IXwr2Hfm6d54HP7yc2UkBL233aCIw/PceXP7uOsa7eg6T39mEJCQkJec8y9uMrqySJmxGDvddP9FwgJCQkJCQlp8pot97aW888/n7m5Oa655hpWvBnuyv1fCt5qz/jyoktpUU1ybbs2zfCeGAjRPbj+uRnXGb8wxVBbGY5e5I6UOPXASnMiaSO8smgKNqauGiY2avddRrd0DFu5z/RjaX9euY9E9WZJiI2oZtUEXLvYoB87bhpn7KJM37jcsRKF06oEhB5AInfi7gWO3T7fPxBAwEvfPM3coyuBwitLDifuWNjUfkaH7GYJjn6sHi2y+lKhf2Cds963hek3BbMEjaRsJq8YJjr82nvYPHphmtG20jAbERuxOefD25ulY/pRy7ksH8x3CHR6okNmd2JTveDSCwVmH1lRM0Z9cEs+B78+0yFQ2ojCiQovfm0Gt9Q+Odl9O7qpBGQLbYKmJlrnDplxnbPePUFirMe5IsW6ZSorDpUVt/d+CglCopuQmlbXw/KLpaYL0kYYlo5urXkoJSXNeiNtbLlygEhKuSYVTtU2XG+D2SeKzDzWZfK20e46ugnj58UZ3lOv0+L32FfPw4oIdt2QIppReVqqCyBw1/fvQghOxh/h6cLtAPz93/99KFAKed3y8z//8zz66KMAPHP4b5hZfLJrnOaqieZSvcuyIjC6FXThgdu9v9bqnyeGdTJTRlMzCoDrdl1m5aVyUyjRj2pdkGtEIL0jvu57zVozFtPU2KtRvmsjhCsoL6h+IjpoQ4Dn8E7B6xSB9sEesBi/dDBQewqnKsotJ8CEgF8TnH5omVq+e47XUpqvMvPwcof4ZSNyR0uUF4P15wBoqhRZENyKT/5EeZ3AphfRQZvpq0cxIsEGAqmtsWa5tNcSdsJk5Jw0uhVsPwfPSq0b04tqtXswUFz0qKwGO3ftuIa5wc8cbc0YQvgay4tKnKJXevUVreOdzerMzSmBEigB0wZbY3FRZ3W187rQuyyjytVJqlWNWnX9daS7ncukMjA0KtF6bF9zPKTVGvcIXwk4PZeey+iOh+54RGJq2CZ8KNd/Zmhu7/3UXOXUpK1ptl718OOdY0M7IkkPSvSaR62mrRFpdcepwfycjpftfnzaj1siIRkaEui6XPddO0bJJW26DI8IQJXic936MS2u7+N9mePpFz7H8dN386lPfYpHHnkkFCi18ZM/+ZN88Ytf7Phs//79/OM//uMr1KJXF7fffjuf/OQn+W//7b+90k0JCQkJedVz0+CFfO+C3+P/7P04f7rz5/k/ez/O9y74f5VAqc6W80d4/59ewxU/uw8zosY71bzDPf/rWb79Bw+zfLzH85qQkJCQ1yD7bzsOwO43TYWOcSEhISEhIZvkdSNSAohGo9x77738yZ/8CR4ODxW/xtHK0xsvpINwJX7jAfcGQiWv6HH45gWWXlSiAzO2cfpyR0sgBZndcbbfONI323rUIjkRJTHaXwSTO1bi8HdnEZ5oloTqx8Tlw2y5un87vLLgxB0LCEcJm4LgVjzc8kYTAZ1su2GMHW+d7B9YPxzJqRiJ8f55aQiO4qPBJrQABs9KBhYeTb1xmIlLBgPF5o6UyB4OJlABWHgqy9ILXUQnXSjNV3n+C8cpzweb6Bs5d4Cdb58I3JbNMHx2alPrfumbM5y4t7ujz1rcosfMw0vNyd5+OHmPucd6ixPbSW9PsPWaMaLpDWbL2ibLxi/JBLrWpJBEB010k8ACuJFz62Kp9vCGQGiNUGhgW4y975vETgdQ+UkBUuCVPZyS3/W7dhrX+9LzeZaez60XDtXFSQCaoTN6/gDTVw2i10vISCnR1s6CNdYdV2WUlg+WOH53/RhJ2ZHjjngbEiPWusnpxnbaxVAD0zbbr02DFFSzLrX8mn1ta7du1kVeHhy5K8f806UNBUqgJu2FR2vfXKerQKniFTiYvJX9x59k3759nD59mg9+8IPd1x0S8jrh3HPP5ZFHHuHDH/4w+498nal9h/H89X225vrNiXRNU8Ot5pBrA6FS4ZTD4mGvWSKp2cW47jqxklcV+GUXfI/hPRElcqwjfb/5105sNEU0bdDZAXdBwtLzuabAJojgQ7d0Rs5Pk5zsL7QtzlRa6w4gPPJrPn41+LjLjBtMvXGYyECAh2b1XCcmgo2NGqXRzOh6sWk3DFsnGUA0D2DFTUbPSxNJB2v3ZkRKTsFl6YVcYIHV8osFFp8NNk4DGL0wE1hgtVlGL0gHHuvW8i4n71vEqwQ7XwqnyuSOBxi/6qpmWfn4KrVCsJynJ3TS493Pk4ZAySir6zoSlcTiShyked3X3xAo6TUPy+p0P2q4KK0VKhlVj5h0ieKhxEyt660hUOoUKknGxgRDA51t0F2/+dfRppqPqAj8igCj81rWHA/N6ezvNF31hasnfGTF7xAvqf1Q4iQAGTEZnoKBocb+q35VRtePCTXHw/A9/KjNwgxNcZVe9dCr3fvcqOYTt3xkrHN9es1r/qmVS0ZGBdGYxKj6uKv12pvty1S8pgipIUoqFDRmZ3Qo+RsKlGDNPQIlTuomUFpefYmnX/hrfLnKbbfdxu///u+HjkFrWDtuBnj44Yf57//9v79CLXp1cdNNN/Gnf/qn/Pqv//or3ZSQkJCQ1wSGpnNFag/vGLqUK1J7MLT1v4sMU+eid+/ig39+LTuvbD0vnD+4ytf/3f08+Lf7ccrBXooICQkJebVSWq1y7FH1cv25b9v2CrcmJCQkJCTktcfrSqTU4JOf/CRPPPEE6XSag5VHWNr5BJ7o8Wa9gFMP5ckeVe4+4xemiKb1nmIlJ++BECTGbc561xjJqf4TBBqy7uu/cZxwBAe/cZql/eqtEnsggAhBh93vnGLL1cN9Q2ceWuTorXN929FctQl73r2FySuG+saevn+Z1UOFZpv6kTtWYuVg8LdnJq8cYuS8YO47qS0xdr9zKpBrFMDoBRnSO/u7YwGcumeRwzfP9g9sa8vw2alAsbljpcCiI6BZAi8IXs0PPDm1WXxXbMqNCmiWeumHVxUsv1gItK/RQZvRCzOBHLpAiQgPfuMU1dX+rhvRQYuRcwc6Jxs3cFPaeu0o264P9gZ3YiLC+EUZkmNtYqkN1l1erJA7WlrvFqXpLUekhgBJV6LDo99fajk0rRUn1ZexkzpnvWeCwT3166ZdoNQm8gElUAKYfyrPkdsX8Td0KoBoxuSsd02Q3lFf91pxUmNbQjRFRF5VcPC7i+SOVeuLrJ9gaSB9tU/rjv2adgPsvC7NlsuS4AvcXq4lngeex8RFCcy4jvDg2H0FKqt+V3ESwJv+1RT357/M8ePH+YVf+AVefPFFhob6950hIa8HEokEn/3sZ/nbv/1bvva1r3Fi5Uv8h/98U9dYzfVxqrB8GuVkZEFqVFdCpR5iJVHx0FyPwWmD4R1rLvQuYiVNA3yB7LG+drFSedll7smsEtpoqtxb47t1bkp14mMRpt4w1NeBR7iq5G5xprJhXDuJ8SiTVw73FUH5NcHS/rwS2ARwavLKPsXTFdxyMMebSNpmaG8KKx5MeDRy7gBDAcc7dsokszMRyMHILXnMPLxMLRdsEkMzNJJbYoHWLTxJeaHWLMvXj6BxDfyav+llgq9bBBZXweba7hQ8atn1+e5wU6o7uSbGbOxk73NEK3SKnZaO+qzWy6Xqpdb61jooAcSTMJDpFCi1C1vaHZSiMZia8ptCJb3POHMgI8kMyQ4xUjcHpfqWKGY1ymWtpzAJlDip4YJUzkM+27ow14qTGkKkTFowMSmay7ULlNrFSQDCNpESFk5Afs7v6p7U2I7meAyOa4xu1VAlIbV14qSGi5Je87B8JUAq5mD+pCoF1/iuKUxqRyqRluGs/65dnAQQjUu2TAssS6JXfGSxe56NkkvUdUlm1L/LBVhdUa5Y3cRJUtbYc/4pntr/t1xyySU8/vjjvPnNb+667pCQkJCQkJBXhuRwjLd84hJ+4nevID2pnrtKCc/fcpyv/Nt7OHTv6b5u3CEhIf154YUX+Iu/+As+8pGP8La3vY0PfvCDfPrTn+bkyZN9l33qqaf45Cc/yQc+8AFuuukm3ve+9/Gbv/mbPPvssxsuVygUeM973sN1113HXXfd9UPak9cWL37/JNKXjO8dZHh7sHmrkJCQkJCQkBavS5ESwMUXX8zCwgLvete7ePzxx7m/+mXmakd7xmuGgW5DenuU5ERdiNDLVQnlZLO0v0hxpoeopG2Cf/WlEsfvXAKpxE2RzAYqivomU9vi7H3vdH/3IAELT2cDvdktPNSkgw5brx8lOrRxWTnhKdeA5QObEBNdMcTud0z1jcsda7kMBRGVHL11juN3LARqQ+F0hRP3LDTLyvXjpW/PMPPAcqBYp+gFFnkBDOyIM7Qv4CBVh7GLMoHfjJ+4fJCpN/UXpwFkD5c4ec9isHZskuzhEifvDnZsEuNRdr1zMrD71/ilmUDlDwGSk1FGz09vdNmuo9sk3DqkpLrq8sJXTlE4EeycOn7XAnNPBXTFmqtx8BszFOslH7sKlOqf6YbAKwtmH8tu0F4VO7gnwd73TrXc0Lo4J7WLmpyCx/ILeXLH1+yjWP/AaMsbB4mP2kgpqa70z2E167H4fJ7CqUpP56QGO24YZNvVmfq2683rsUxmZwSkoDDjcPzeHKIxJ9aldFyDpYMVFl8o925A3T3JjOoMTEdIjVtg1jupLgIlTzgsb3+cT3/60wwMDHDvvffyd3/3dxvtYkjI65aPfOQjPPXUU4yPj3Pttddy1ds8hOgykV6fXJeJKJGERmJQb1Wd7CEsAijOOBQWNyhrFFeluKSA5UMVnKIAzyM22L1PaLoq1buY4XNSjJzTX2hTWXJYPVzErwUo/Vl3mbQHrECC6MpyjdyxEsINdjMzbJ3JK4b6jukAcsdLCE+urfDZleqqw8xDy4FdMrNHiyy/EGy8WFl2OP3gcqD8AXibcIwCyOxMYKeCOalYSTOwqN2I6IxekA4s3Fo5UAgkhH45rBwMvu7M7mTgfbRTZv8Su22lplNTUaIZC5ELduylpHWvrtNNoGSUXVaXYPGUEtj0o1qBxVPgulpXgVLDTcmoi3SW5jWW5tc7KLWj13w0TaJ5knJJw93ALaohMhrbBsk2w9VuzkkNIZJW8yllJfml9fuvr1nGikCmrn33y36zz+pow5plCquS3FJLoNSLSAymdoK95idnN3GSaYNlKfek5TmNaqmVQz++9gedamS1AtlVDT/fuw0N96RoApIDgAZ+TF3D3QRKheIsL536Oz772c/yl3/5l9x2223s2rWr5/pDQkJCQkJCXlmmLxjh/X96NZd/eC+GrcaSlZzD3f/jGb79Bw+zcqLwCrcwJOS1zRe/+EXuvvtuLrvsMv71v/7XvPvd7+bpp5/mYx/7GEeOHNlw2VOnTqHrOu9973v5xCc+wYc//GFWVlb49V//dR5++OGey332s5+lVttEKffXGcITHLhDicBCF6WQkJCQkJCXx+tWpARgmibf+ta3+PKXv4yUkqdLt2Ndu4BY+3S8jnDgpe8tsvSCEs9kdsaUgKbbhLeAxWfzICTRIYs97xzDTvVX20xelmHLVSO9A3S1rcKJMnOPr1Car/aOrbN6qIiT99BNVY6sn+jHtHViQzaRTP8JnKX9+ea6+05aAMW5CsXZDQQAa5i8Yojd79oSoASdevgfHQ7W7tzRhgAqwJv09cmMQM5VwOBZKc7+6a2Brp7TDy5z6BunA60XAcPnDBAPWl5FSNjEvJ0Z138kV7wZ3cR6dTV5HMR5STd1hvYOEBsOJtpa2p9n/5eOBxKRTb1xmF3vCFBuEFUiB72H+9Na0U89D7WsR2Wx9w81WRf+pHeoCXW3UYptAwelkXMSnPWeKXS7R7LXiJAqqy7FuarKdZf1SqEc3nRLuTkBLDyTb+1nFxciAD2qExu0uoot15Z6GzorQWpLFCklSy+UEW6XWbVGPY+6umz+6QJzT9UnO3W9p0BpYGuUqYuTxEc72yF9sa7tExcnmLo0ifQ8cserVFd7Oyilt0fQbXWOvnTLCqtHaz3Lu/38f72BB8pf4rHHHuO6667j1KlTXHPNNd3XHRJyhrB7927uuecefv/3f58//uM/psD3+It/+Gfr4hplispZyfwhT5m/GRBNaeB6SHv9vd6tSJxVF+l5ZLbZpCbarv+6o5J0OoWTdtJgeIdFZKT7GEb6PnpM3XezR0pkj5Wbn68tDddcRkhKdWFpdNAmNtxfIGTFDSJpq69ASHiy6bxkD/SP9x1BZdlpjpP6oVsak1cOBxJEN8qmBRFAuSVfiY46q2f1RJWIC1Y2D5SIO7U1Hmi9p+5forIU7GGpnTLVegO0WXhS6Wx7lDVdi6YHK923abTNrVcK2Rx39CMyYJGa3mC8r3cer7mn8uRPb/xbRcsX0XSY2GcQTa4pf9bjHm+YoHkSKdbvp17xOlyUNE0JcaplDTPf+7hbq1VMS2KaKr5ZFq6Hg5KmSaZGPNJxb0PnJK1t+WoRnApovr9ONASgVV20mk/U8EEDz1GuS2p9zjr3pGY+IhoRW6B365P0lkBJ02FgRO2Xn3eplvWuAiWt4jRdkmoVWJ4Dp3EYNa27exIwOAbDqS7rq7kdDkqmJRmfBsOU6CWP0oKg20WmCYlVcYnV9ZuFVZg7iXLZ61LeTUjBdT9l8uT+z5BKpfj+97/Pv/k3/wZdf10/0ggJCQkJCXldYFgGF793Nz/959ex44rx5ufzB1b5p393Pw99/oWwBFxIyMvkQx/6EF/5ylf4N//m3/Cud72Lj370o/y3//bf8H2fL3zhCxsu+653vYs//uM/5iMf+Qjvete7+Nmf/Vn+6q/+ikwmw1e+8pWuyxw5coSvf/3r/NzP/dyPYndeExx7bJ5ytkYsbbOjraxlSEhISEhISHDOiCd6H/rQh5ibm+PSSy/l29/+NncUvsiC28XuUsrm2726rTN5yQCjZ/efENE0VXbBq/R+Q7TBkdsWOHmvcrRpOpz0oFH2LTUdY+v1Y32PVmw4SmZngmgfUYdXFRz8p9PkjtSFPL1ED21MXD7MtuvH+op+CicrzD+RBQjklpM7UWL1cDGwO9H2G8eYvGywfyCq9Mi+D04H2r/M7gR73zdNdLD/RFxlqUb+VDmQAKq5XwGvtBf+4QRLAVyxAOafyDLzcDAHqPhohHN+ent/Z66Xwc63T7LthrFAsaXZKkdvng10vIUneOFLJ1h5McAbVY38BjyPSgtVirPBXJG2XT/GnoCCpqk3DHHWezaObUwUJsYjbL1mhNS22LrvulGYqZA9Wl4nllq7TEM0Vl12OH1/9/NDCommq8miiUvTbL12pFPc2GNWXDcEwpEc+u48Kwc7S7h0EzSld8TI7NxgslMIMAxS0xG2vikDQGneUSKiHhOXZlSV4yzMOBz+/irlxf79rl8Tzcn2bsg296TJi5MM71ZtFl7ru3Y84fGCeScf/ehHkVLyf//v/+Xuu+8mHu9/vwgJORMwTZPf+73f44EHHiCXy3HJJZdwZPEBRBfBpOb5zcs9MaQzNG20uiCvt/BGuBI/QOUyp+gz92wJpyiQjotu9RB3CB+35OMW1UqH9iaJpM2meLwXifEIiQDi4tJclYWnskihSpL1QzM0Ri9Ik5ru369kDxfxqr6q+tln3cJVIqhaPtgEQGzYZvSCtBLs9m00TFw6yEAAMRHA2MWDDO5JBoqtLNeax6YvjdtHAB1PabbKzEPLXZ1p1q3Wlyw9l8MtBWvH0NkDjJybDhS7GSJpi+mrRzGjwRydckdLLbfGPhROV5h9dCVYQxr53Sh39Ytb06CSk7i1ttKxPa5vKwJTOyTRePcV605biTZdMrVNEk9sfAD1+oRXZkgyMi47Gq33+P0mJRRzUOny7oVe6bx+Gt1EfgW8bHeHK63qIm0LXYeRrRqptoqwWs2BLsJMTQdqDpUCLByT6w0xq52iLCuinJx6VKpUy1QcRCrC0DjY9Z+M5UbF7kr3fkHX1Xcrc7A013vdDXxf/W2k5zNKKk/JDAyOt8VK0PPrx+jFygLPnPhrPvWpT/GJT3yCxx9/nGuvvbZ/Y0JCQkJCQkJeVSRHYtz0G5fy9t+5nIHxhhOu5LnvHeMrv3kvL90XloALCdksF1xwAZbV+Xti69at7Nixg+PHj296fdFolHQ6TbFY7Pr9f/2v/5XrrruOCy+88GW19/XA/ltVXs9+81aMIHNEISEhISEhIesIZh3zOiCTyfD444/zV3/1V3ziE5/gyfJtDJtbuDj2Fsz22fn6DyHhCA7fuqhKhQCJcZvSorNOBKEZOpVFh6O3KeGRPWAycm6KmceygKGe0LYhHIFwQDM1dr1jgvJ8jVNrS43pBrSVR7ESJnai/0REab7Ki185hfBUI82o3texZuziDEN7Uxz8+unuTjF1Zh5ZZvVwobnufqS2xth2/ThHb5ulPN/7rebyfK35fZD2Hv/+Ak4hWHmL/KkyRlQP1Obs0RK6oQcqnVFddZh5MJg4CNTb/0P7Urz4D/3rQG+mlByonAlPrCudsZbqqsvJ+xao/QjKjsw9toIf8LywkmbwScZNMH7JIOkdCQ5+9VSg+IZALwgzDy1jxja4/qRoinpyR0s4Obftq5YYaC3F2SpHbpmjvNh5TNYuo5tKy1PLesw/mW3GNFi7/m03juLXBMduX+j4rpcAauaRVVYPl3qfQ/UZsckrBklNxzn47bnWedreDqP1g8yM6rgVn2N3LCI8VU6zgzU1+ayojhnT1b423Ja6LBMdNNn5lmFmHi+SP1WjllONln6bo0K9NFtqyiaSNFjcX2Dh2ULHd81dqwuQ4qMWlZzEqwqO3LGKUxBdxUkAS9Zx9hfup5KrcNlll/Htb3+biYnwjZmQkG5ceeWVPPXUU3zqU5/iP//n/0x6awE7ewmpaKewtSFWKCxCOSua3aoV03Ar9fGQ2eoTtESc3MmWciA5GcWtCJyiQE/EEaXWd5pt4VXr4tDtGTJTGnNP5PBrAq1NFKAnEoiSujdolokZNQKJkZdfLDTFGrqpIbyNH6hrhsbEZYMUZyqqBGYPpC9ZeCqLWw5+zxw5L40UqlTvRuRPqPxoen3Yu0GTK8sOc4+tBHNqkkpQ62xQ1qmd7OEiXg8Xm7VslKt1aMqps3Cq0nSl+mFi2PqGwtcGhZPlwK5Lm8EteSw+nwuUO03X0HT6npcdBAnVYOqyNLkTFUoLPcaWbZNLwofcXNu9un7N6/kyYqBT1OYVfZZPg5sXkOhU2zQESkbZxY9bCAmFnEa10ipPplddRLS76+rqcYGWNFirYNMrHiLWGiPoukR6UMy1jcfaBDyyzbnHjsL4pM/iMR+n0irnBkqYtBYhlODIKzhovXJdc9ANGD/LJLcaodR2SbcLk2RcqYwaPx3dVZe5XN1cM9750opWaR0nDTAs5VhFrbVvIr4m3xWXzKSGHYW5eQv8Vj60WmvfRNRC0yTpIchngYLHSn0+Q8Q7j4VRckADKwo1IL8Kpbw6XbqJk4T0Ob5wP8cX7mPbtm38n89+nfe85z09EhfSi1tvvZXnn3+++e/Tp5XT72/91m91jdc0jf/0n/7Tj6VtrzS33347t99+e89JuJCQkJCQHw1bLxpl6j9dwzPfOcpTXz+sHGKzNe76q2d48c5TXP1L5zI43b8Ud0hISHeklKyurrJjx45A8aVSCdd1yeVy3HLLLRw9epRf+IVfWBd355138txzz/H5z3+eubkAbzDUWVpaYnm5NZ/ycsRTrxZWThSYe3EVTdc4+y1hqbeQkJCQkJCXyxkjUmrw8Y9/nJ/5mZ/h7W9/O4899hgPia+yx7uSCXtnZ6CUOAX1Cqhu62y7bpiVQyXmG2WIepAYjZCaimLafQQ3AhaeyQUSxawcKLByQE2yRwdt0KC60n25hiBn8ooh0jsTHPzayQ0FLNkjRZA9SlmtaW+lLqaYeuMwyy/mqWV7v4VfOF1h8bnshgKldgbPSjJ5xTAvffv0hpNbjXzZSRMMcHK9Y52813R16ouAlYObqIGuw9gFGQoz5WZeelGcqSiBiE5fEZIZ1znr3dPMPLLcLFnXO9bgnJ/exqkHFlk9tPFDVeEJsoeDC3M2Q+F08AnAPT85Re5EKZDIa+/7p8keKbLwVLZvbHGm0v8crjNx+SDZI6We19BaqqsOrNb/0WuysT6jXpqrUZrrfs63i4RS01EKp6pNgdJaAVG7UGn6mhHMmMHh76z/4deIaV9+4ekswu/+XftyU1cOsnywUC9N57R/2dqnNlZfKuJWhDqHN3B8Gr84RXpHgkPfml3f96wRJ6W3x8idclg5VGblUI8ykW3LVFc9ll4oUaznuF2ctJbkmEkkbbK4f/137QIkM6qz/dpBll+qsLi/0lPI54gapX0HeeLRR4lGo3z+85/n53/+53tuPyQkRBGLxfizP/szPvjBD/LP//k/5+njn+Pf//t/z/3/UEFfU59W83zVb5gGyWGdgXSE2eeqqjvy1ouVmttIa+gaOF1uhY3yb5ptUc155BxXlSVb813HMq7HwlN1NxndIDpkb3zPkEp8NHnFELkTZYob3BelLymcLFMJMP5rOPaYcYPEaJTc8Y3v4/kT5cBlvQDGLhrEKbisvrTxGKJRkjSStqjlNnZgKgV07AH6rmstVlwdi76CJanGJkHdoga2xomNRJh/crVv7OCeJNFBO5DbkFP44YuyQYl5g5azi49GGD57gJP3LSL9jc+N+GiEzK4ks4+t9IwV5TJ6PI6mQf50lVrbPopcHj09oP7RJlCy4jq2XaXoKMextQ5K7UIlrV5WrVL/uWWUHPy6UKndQQlaQqXifO88NxyUTKteWdYH36uXeVvjoNQQKpmmZHKLZGkenOX1624IlPSquoa9GuR0rUOg1E2cZKYsYikonHbw1h6+Rh9Ua/ULwofCkqBSaayz+zHXdJjYKiks+hSr6yv8touTrIjKgyth+ZBqYzcpZrsgq7QiqVrQEHa1i5M6ltEhEfFxpKRbL9BwTgJVki45qHH6lDpV5Eqlazvy5VkWnds5NnuM3/7t3+bTn/400egP3xX2TOD06dNNYVI7jzzySNf4tSWcX8/cdNNN3HTTTRw4cIBf+ZVfeaWbExISEnJGYVgGl7xvD3uunuKhv3uB448vADD3wgpf++T9nPcT27n0/Xuw490F6CEhIb257bbbWFxc5J//838eKP7Tn/50c2xoWRbvec97+MhHPtIRU6vV+Ku/+is+9KEPMTk5uSmR0je/+U0+97nPrfv86NGj+N3KWr+KOfxdNa8xtC/G8bkjECANxWKR/fu7PKR+nXKm7S+ceft8pu0vnHn7fKbtL5x5+/yj3N9zzz03UNwZJ1ICGBoa4tFHH+Wv//qv+Zf/8l/ydO1Ojtae5ZLIjUT0NaWJpEQ4guN3LzcnqGLDFpVVt6vgZPVwidWjJRCgRw2GdsVZer67+KVdNLLrJ8ZZPVxk9dDGE1CTbxjGtDUOfXNmw7jlF/K4Ja+vw46T91h4OguokmdO3qO82HviQ7d1UtMxallnQ5ESgqa4JDZi4xa9DUVbueNl7JQZ+O377W8Zx6v6HL2l/yhw5II0qS1xVWasDxNXDBEbtDl6a5/1Chjap97o6SdSKi/WNsxpO15ZkDtewin0n1jzyj6nHlgKLBIaPjtFLe/9cF0FdBi7MEP2SDHQsTv94BJOQCel3LEilYB5K81WA02MmlGdwT0pajm3r0hpYFucicsGOXLLLF55YwFUZneC4XPSHL1toa9YKrUtxo7rRzly+0IgEd/yC4WuZXbWipBS0zEKpyoUTlX7CpTMqE5yOkY161DLeu1fUl9Q/VeH8QvTzD+To5oXVLPd+zLN0Jt23CsvlXFKfrPv0QxjnTgJYHB3nMkrB6nevNh0RFqHEJhRnW3XDTL/TIHSnMPi80U0y+wqUIoOmkQzEbJHS8w8ke/aRzcESrFhk8qy6pdOPpCltNTbPem0sZ8DxcdwH3G58sor+c53vsPIyEj3NoeEhHTlDW94A0888QR/8Ad/wB/+4R+ye/duBspXMKyPr4vVPJ/CEjhLjuqONLCiGm5FKrHSGqHS4out+1psJILjrxeKS8cF26I4q/rdSMZiYDrK0gtFpOOuEyo1sGIweuEgi8+sbnjfkL4ke7REZbm/+KhRekvTITkV6yu6iQxYxEYj5E+VNxSatIt+ggiKCqfKgZ2aIhmL8YsGmXtipa/4Rjc1Rs5PkztW2nisiHIlGr0ww8qBfN/12imL1JY4xdlqX8HNRkKxtdQKLiKguKs4Wwk8pjOjBrFhe1Ni7iBE0haGrQdqR3XVYfH5XN98AbgVn9Jc/9yCGiY0rqX1X3YuH0npJIZNiqd6l3gDJVAa2apRLUFxpXMdawVKACPTUHQklQCHY3Ac0GAxgKmp5yl3H3dlY4GSbiphjueo9m4kUJK2hR2DeExQ1NcIidYIlOyYhmZArSgpFC20aq1r5UIZjzS3lZvXqBZk53eV9X3R4LSBo5lkj/a+LvWKSzwNsZTG8imJWwO3BsS7C5SSGSjUJLLgMdvjfY+Ge5JpK1FXcVlSyUukbnR3T9JqHDh1F6eWHuWss87iu9/9Lm9/+9t7tjlkY7785S+/0k0ICQkJCQnZkNRonLf+28s4+eQCD/7dC+Tn1csXz333GEcemOUNP382u66aPKNEtCEhPwjHjx/nL/7iLzjvvPP4iZ/4iUDL/Nqv/Rof/vCHWVhY4Oabb8bzvHXioS984Qt4nveyXtp8z3vew9VXX93Rxj/8wz9k586d7Nu3b9Pre6Vwyi6PPK8qObzhA+czde5woOX2798feML29cCZtr9w5u3zmba/cObt85m2v3Dm7fOrYX/PSJFSg1/+5V/mwx/+MB/4wAe49dZbuc/5Gtu0czkrcklnoJSUlzw14a3D9htGyJ+qMPNwtvuK6w+eM9ujjF2QJnes3HwLvRu6CV7VD1RK4/gd85ix+gNyW+8piHCKHkv71WvII+enEa5oujH1YvT8DLW8y4k7F3rGCEdw4Gunmvuom/QVQm2/cZzyYo0Td2283obrUXTQ7uswdfK+RbxSsIk1t+DhFt1ATka1rBPYheDFfzwZuDybnTQZOS/NzKPLfZeZeSh4KbnVQ8Hdn0bOT1M4/cMtfWInTcYuyFDLuoFESo0SM0EI6oI1tDeF74q+zlMAXlXwwj+cCHTc/JqgsuL0FSgB+K7AKXpdr0fZ+EFXFwAVTlQ4dseCElU1Zqm09e+PR9Im1VW3OZnduVKBFK1lYsM2228c5dQDy2RfKnR8174MgG4aeFXBwa/PdORBuTd1tj8xGmH4nAFK81WKcz0mtHQNI6Yxeekgpx9Sk9cr9YlmTdPWCZSMqI5fFay8VKJa8LsLlIRoulZ5jlCuJ5LmxGcvB6XRs+NEBiyydaFoB77frGBjp3R23jjE3NMFVg5VKM51728K3iqzY09x7NgxMpkMn//853nXu97VPQ8hISF9iUQi/NEf/RE/+7M/y7/4F/+C++//v3zkIx/h1N0JbKOz5JPm+jgYgCAxbJCZtph9rqrGHJ4PvgBjfV83MG5Q1U2yJ9df19JxW32yMPFd2RRkNFyV1uKWfOYeXW66Gm1U0q00VxcfGRqDu5NkjxQ3LLNlD1ikdySorji4G4wBS3NVSvNV5di0VuDQhfiYcs+ZfWQFr9p7ve0iFzNm4FV6x9ayLvNPrgZyBxKeVOsKcq91BE7eDTT2Ki3U8xCQ2LBy4OknHKtl3b5iqgZqPB/sLU8raZLZlaQ0X91cubU+xEYiRNJWIJGS74jArktu0SMXQEguq2XSe4YoztdaJVrriNUseibd8Vlx3qO44KHF1rwI0kbDQalWAc/pL1BCU+Igv8fvK3NJuYOJesmz5VklKOr4LrHekSfiOHguFLsMKbVSFc1q/XTOjOtYUZg/LNAqNfDXCx21Sg1NAyEl5XkoL9BRTk+rOk2Rd4PkiI5uajhLG4yZdZ1E1IOIRjknKa+2r1RbJ1Bq9BsrL1Xwre5ORFrVQa+PvXyvrWJ5XTylGesnBQ0LMoMCf8Gj268LvVRBq+9fZlwjmtSYe0koV6uih07n+SalZL50kJOVeyiXy/zpn/4pn/jEJ7Cs0D3hByEsSxwSEhIS8lph6yVjTJ43zLPfPspT3ziM7wrK2Rp3/venefGOk7zpF8MScCEh/VheXuZ3fud3SCQS/Mf/+B8xjPUvvnbjrLPOav7/2972Nj72sY/xJ3/yJ/zH//gfAZidneXv//7v+Y3f+A3i8Xiv1fRkZGTkdfHC57FH5vFqPpktSSbPGXqlmxMSEhISEvKappuz+hlFMpnklltu4c4772RwcJCj3rPcVfoKq9589wUEnLhnmYVnlAAomjHRe0i9Vg6UOPjNGTWhocPg7kTH9w23E+HBibuWKJxWEy/TbxomPt79Qb5wRLPE2a6fmGDbm8f67mNiLEJivL81/uHvzXLibiUk0s0NTo36pNPQvhR7378VM77xaXT8znlOPbDUd/ugyp3tfuckoxdmNoyrLjt4VYFu68THIxvG5o6VOHXfUqDJstVDReYf71/uA2iuLzpk9w01YjqDu5PNCbON0E2dob0pzGj/yzM+GmH8ssG+cQAH/vFUoDJrm8HJezz3+WPkjvUXCKW2xRk5P903DiC9MxEor43Y9I5E3zgzrqucBhSWlearnLx7sfND2X2SsXCiwskNRHgA6JDaoq7DxrXeM9TW2fUTE0xcllmzfdEsLddOZdnh6G1zZF8qdBU8NWa0t7xphF1vr09UiMZXsqO8HNDs00rzNQ589VTv9tbXaydM4iM2dqq+oJBdS8IlJmz2vmec+JiFZhhUltZMCguh/iyDqSvTRAdNEHD87lVK8/UJtzU/ru2UTnLCBt/n9COrHPl+l3O8PtMWG1btcwqCkw/lWDlUAXf9xLQQHgfNB3mo8g1OnDjB+9//fubn50OBUkjID4nzzz+fe+65h8985jN861vf4sn8lziZfwbZRX0jPY/Sss/SS05TFG3F6v1VF8Hiwgtlcicq4PtEBgwMu3NiXU+oh2m1vMfKASVWsBIG6R1xNLv7fachUIqkLabeOIyV2Pghnxk1iGQsdGvj+3gt6zLz0HJToNTeD69DAhqMXTzIwLaNHwiWF2rMP7m6oUCpnfTOBOMXZ7rePjraWy+fFkn3FwysHCgELre2crCwoZi/Sf22olsautn/Ler4WJT46MZjxAZW3FAllQOQnIwGykFlqcbJexd/qAIlgOzhIvNPBBurDmyLY3VxY1yLbmnERiJ9zwEAK2GS2hJFXyta6eKaaEbrzo7eBoMv30crKkFOYUlSba8+6LhopW5ibciddPH6uGLaETUsEj54fU7H1BCM79DW5UArVVUbrM4ffNk5wcqhKlqlhuzixKZVahgWjF8YJ5rSmu0GJQjSqg4y0lqusd2VUz4rB3oLlLR6mblIQsOOt46BVqkpsdQahrbqDE8ItJqDZ0bXDWUbbbEGIwyMqfXVSpCd7XRmaidWnxsUuRqzL7pUurwzoZcqaLoqtQfq2C6dVOeBll//u8EzV3ly5qs8ffrrXHjhhTz88MP81m/9VihQCgkJCQkJOcMwbYNL3r+HD/7ZtWy7rPXMe3b/Cl/73ft5+Asv4lSCvbQaEnKmUSwW+e3f/m2KxSJ//ud//rJFQZZlcfXVV3PPPfdQq6nfGJ/97GcZGRnh4osvZnZ2ltnZWVZWVBn0bDbL7OwsostvwtcbJ59ScwU73zARuruFhISEhIT8gJzxIqUGN9xwA/Pz8/zGb/wGnl7j0dotPFK5mZqoEEmbGJG6e5HJ/5+9P4+S5Crv9PEn1ozc99qrurqrd3VLra21oQVJCBBCWBh/AW9gGzO2x56xPbbxeDw2xjZmGXtmYHzsA/MzYI9nzCIhgZFASGhD+9ZaWr2vte9ZlXtkLL8/bmZkZVVmVRtjJKR4zqnTXRVvRt5440bEzbyf+3lxag5WVQy6Nl2fZviG5ocmPa42xSUyqIYKMqS2hum/IkVkoCkW0mNqU+Ajg5HU0CIyoa4AwUwAPa6uE6sze3CJhcN5VEMmkNBWxTYnJKafzzH+mJi4jw6FCHU1v2jWIypaRLyPYzoYcR0jpbPjPQOkdkZbJmy0iIoeabbJLFosj5awSg6yKrfEqiHFiy3PmWghhUBaZ+CqTDO2saI5JKPHRKxVcph5KcfSyWUv351iATbd2MXQtV0tefFiDbklh137Emy6sTW2IcZYncOBN2XInBfzfhexTQerRmz3RQm2vrMffcVrV8caSZ3yrMnBfzqDXXa8fHuxemusasj0X5EhPhJpyXdLbD2HoWyA1LYoakRpyUsgoXn9cKMcru6zRlKnUVdCNVbFxtrEdsj36j6b2hohuTXSNt+r+2z/lWkv/428eLEr+izA5FMLjD0+1zZWWxHbe0maHT85uCbfDbw+K8Om67uIDgXX5BsA1xWxUZVof5DhG7oIZlbnWxN5cR0v39nzYmy6LkuoR5xjXMe77pGclhw6psP4Y3PkzpRQg9SFSQ5GsjnprRoymfPCZHZFwHWoFaw19xNZEaIm1ZAx0gGWzpbInS6iR1UUQ/KcK4JprXkthGS2v7ufrn1xXMdFCajosRX9OyEja6JN8c0hjIRKadbkyJ1T2BUbfYVo0UioXg4lRThrzB8pUJw1RV4i9VjHIRCVUeo5VHWI9gYIZTSRb0NCDzc/+OkxRdyTbZu+i6L0XxwFGRxbQVZl9KjYhm2jh0V5u2BXgC3Xp8nsCoEM+VMFVMVu7d9RmTHnEE/Jd3F64TBbt27l8OHD3H777egdxAs+Pj4/GLIs86EPfYgjR45w6623cnDuu8wkHmSxMi4mtlfMicvYmEWhMAgmZHr2GOhpIdSRcMQkeF2wJCkSSlRsS2wKkNxsINVVmZKMd692bRtJdpAVFz2iYtSfmw23EEmWUIOK9zyUNRnbtFk6XaRWtFEM2RPKSDItsbZpM/NCTrgJScLZyBPVSK2xIBzm4pvCdF+YEPvVWmMb4gVZkagsVj1nICUgN4VQXqx4ba1koxqKJ6hRdLlFNLUytjBRJneq6Dk0KbqMoq+KredFDSn0XJLyxO/rxcqaTNe+hPccljXZG0+DEHM18qJFFLJ7496YQtakllgv3xL07U+TGImsODerYgMidv7wMvNH8q3nUZW8Z00zhxKR/iCJkXBrvlUJ1VBWxcpE+kME4lpLDiVlVew6eZGUet9aGbtCdLVhrN6awzV91suZQmxTGDWkrsn36j4bygboOj/uHc/K/r26z1plm6kXlr2SiooGsuI2YwNC6COr0L3bINoj2uTmiyK28diVQFUdJElc17Fw1RO0AChuzYuVihVUTZgspnogFLBQVzyWFbWpYZYLVVRdHGO6H5JdTaGMXKwgqyJeroufVE3EFucdFiZdFKUpTFKqFRQVT6Ck6pBMWShmFUpV7zhAHJeiNcVCii7h6DrFRYdaxRVtqgpBkKyCHGkebCQr0TcioVj17REdNygOUFZAdWri7zUTIy4jK7A47pCbctAcE7lSrfcX0Qavfzgm5dkqhRnbK7fW+B5dNk1Upyny0kNCfCRJQNVEdU2kmtnsL/V8a3aVbLdDOCC22VrAy7dcLKOUy+iW8FVKjATJbJJR1Lo702wRrVpCqp8rSQYUk+MLD/HQkb9DDhe44447+N73vsf555+Pj4+Pj4+PzxuXaFeIm/7Txdz0OxcTzYqFvK7t8tK3TvG133mYE49PrnGk9PF5I1OtVvn93/99RkdH+cQnPsHw8PC/en+u61IqiQUU09PTjI+P8773vY/3vve9vPe97+VP/uRPAPirv/or3vve91IsbryI+ccZx3IYe0nMQQzuy77KrfHx8fHx8fnxxxcprUCWZf7qr/6K8fFxrrzySnLODN8372Cx/wSpHeIDUbjbYOTt3Rj1ie3KokUgJr5pNdIaI2/rout8Ia4IZ3W23txDKK2zcLTI8liZ/suEDWRiJMzwjV30XChccIykzrZbegnEdI7eOYEeUdh6cx9d+xLoMZXhG7rpvVSo3/WIyrZb+8EWE0vpnTH2/Pwwmb3CpWboui4GrhD1cFVDZtut/cQ2BUGGLW/tYdd7h7xjHrwmy8CVYr+yCttu7SfUFSB3ooAcEK9tTBAMXJVh8JrmAGzzDT2Y9bIQ3Rcn2PHufm/yb+CKdIvL09Z39NFzYYJIf5Dk9jDbbu33BDi9l2bYdH23F5s9L05qVwI9rpLelWDbrf2eQKTnohSbb2pa1htx3St3EUoH2HZrP+GsmDjr2pdk5G19Xmz3viSx/rAQcMR1EdsjzmtmT5yRtzdjs3sTnptTI9/RwXrs7hjb3tkPwPzhPFbFou8ScV5lXeQsvlk4+6S2RcS5AnBg4JosA1fXVzHIIt+punAnsVnkxao4HL59lGh/kMFrV+TwnX2kd4q+FdsUZNut/eROFzn0T2fp359m05ubOdx6cx/p3fV+2Bdi26399O5PiX50SZrhG5qxI2/v84413G3Uz7lUP69JNr+114vd8tZez7kpmNbZ9d5BdvzkgMj3BcmWHDbeC0CPqsQGw0zVV/6nd8fYenMzdtObu+m7vN5nQwqKqlCcEec1vTPG1luasYPXdtF/ZX2/MXFuEpvq+d5az3f9zjZwVYbBq0WfnXxmHjWsktom8h3fJPLdENEMXJlh6LoujIQQ6m2+oZvMLpHD6KDId2OitW9/mk3Xd6MYMpIqs/ktvWTOi4PrEO4Jsu2WXoz6faHnohTDN3Yz+2KOU/fPsOnqLrrOF9dqOBtg2zv7CaXFbHzXhQl23CaOdelMmU3XZFrvEe/sJ9Ql+nd2T4yha7q8fjl8Qze9++v3iLDMtlt6ifYLQc6mG7oZeXsvxckqsy8tM3h1moHLm/eIre/oI7YpjOu4xIfDGAnNK583cFWa/itS4DrIisPWd/SRGA4RSKhsvrGLnT/ZJ+4RjsvAFSkGrhL7lRSZkbd3k90TYeTtWTK7omy9uZv5wwVwoO+SOINXpTznhS1v7WL4+gxqWCaYCaAaMoUJMYHYe2GcoWvS3gzk1pvS9F0ozvniyRJqSMGoC+S6z48wfHXTXWzbzRm69kQoz1vMvFKg+7wIobhUz2GUzTeInFUTC7yk3scrhSdwXZe/+Iu/4OjRoy12xz4+Pj98stksX/ziF3nsscdQFIUnJ/6JwJ4TRIaa7inJ4QDJIR3XsigvmMiK5I034gMBei4IC6GA7ZDcFCC5WdxTZ18uEEpphNIamgGhrEbvhVHUuLh/JEcipHdGKUyUmD6wRM+FCWJDISJ9QeGatD+NUhf2JDaHSe+Kkx8Tk+/9l2cYvLYLRZfRoyK2IVKJDYXpWvFcHb6xxxsXaGGVvv1ptLC4Z0UHQnRfkKQ0WyE/XqZrb4LYkIhVDYW+/Wn0upgh0hck0hvynJ36r8yQqO9X0WX69qc9h59wj0HPpSlCWQMjpZPeFSM5Ip5/sirRtz/tORYaSZ30DvG8C2YCpHZESdaflQ1RUMMJUo+oyLLkjb2SWyOkdjZF3b37U4TrYvhAXBXOkPUyxYktYe+5CtBzSZJwj3im6TGN7J6ENzaMD4fJrnBf7LkwSaQvKBx0zpaI9gXR6oKc2GCYrgsSXmz3viTRwRC4wiGp//K0t99of4jufc1nRHZvgvimMEuniswdXBb5jtZz2BtscavM7I6T2Bxm6pkFilMVke+64DrcbdC7v2n1nt4VI7E1Qtf5CYKZgMhhPd+h+u8NktujRFe4Y/XtTxPKiBwGUzp9+9OeECkxEmHTDd2eSKx3f1MwFkjU+2x9XBPfFKJWsLxyb90XJwn3ijGD12cDIodaSMUs2p7rU/e+pBhD1M953/40WkgIoqJDIbK7I80cnhf1nCK1oELPniBaUMaxoLxoEeluqmZSPQ6xbvGeimzTs0tHD0tohkQkq9C1pT6AM2ukBhXidYGTrEDvFolABGTbJhiFnq31bSWTVDckuoRASZKhZ7tKMCoxf7RKtQK9W/DERMk+hWR/U8w1sB2iMcdzGOodtJHrmxO9CqnNTTVU72aXeJ/qiad7durIQXF88YRNptet51Oid49OOCWzPOOgOjV6R2TUurNbtFsls1n0SaliEksIbbVjgWZI9OzQ0AISUsUkGnPIbhNtSPRrDOwPE82KPGm2Sc/uAFrdUSk8EKR7RCGSkkh1OaSHNYyoQrXooqgiZ4GQeM9wSqZ3l0Y4LfYVjErUyuBWTGQFenZoGBEJNxQgFIXBnTJSqYpVhWrJIRhrCiR7R2TCiuhn4bRM33k6kgzLsy52zSWVND33pO5dOqGEguu6LGuHeGb67xnPH+BXfuVXOHz4MLfddpu/ItnHx8fHx8fHY+iiLn7y01dz0U9u9T6blRarPPDZA9zz8afJjRc22IOPz+sf27b56Ec/ysGDB/mTP/kT9uzZ0zZubm6OM2fOYFlNN7LFxbUuvfl8noceeoiuri6SSfGZ+EMf+hB//ud/3vLzS7/0SwC8//3v58///M8JrlPi+/XA9LEctbKFEdXIbDm3ahE+Pj4+Pj4+nZFcf9lBRx588EF++qd/msnJSeLxOAOl3QyGthHOaBRnqjgWnstScbLClrdm0aMqJ++dxVy2kHWZcFanOF3BqTnocRUtqKAGZAbelGHquUXyExWqi2KlcLjHoDhj4pgOelTFSOv0XZJg/tAyxZkKjulSWTRF2ai+IOW5KlbFQY+oDFyTZfFYnsVjBULZAI7tUllYGxsZMFA0maVTJeEIFFdxHVE+DSA6EKS8UMUqOaghhXCPQbjHYOKJeYyk+MK5PNuMreRq1AoW294lhC1Hvj4GjiiBJivNSaxof5DqUg2zZKHqwtUkP1YWsUkdWZcoTYvYSF8Qs1Cj7/I0elhl8ukFilNlke+EWLlenBSTl+Feg1rJwsxbpLdHMQuWODemgx5T0cJqM7bbwKraVHONfAdbYvWIRmFCTD6GugPr5jsQ18iP12NX5rtNDoMpXRyrDHt+dhNLp4uMPjy3ItbEKtmoIZlgKuBNgBrpzvlWDSHkyE+U1893od4PuwJoEZVQJsDsy0uoAYXi9IocFq1mn+0KsOn6bqYP5Fg6U0ALqWvzvWQhqzJdFyYw4hqn75v+F+c7EO2Qw1X51uoOF428BLM6rgNm3mLX/zfE0ukCU88trM03EMyISZ3y3Mpz0znfKydeV+awbb51eUWfNTDzoh82ctjos/HhEGpIYf6VfMd8F6cqOJZL98VJuvclOPy1Ucwli3CPQa3cyPeKHFoOelhFj6oUpirgNPqsQ2Wx1pLDYFeA4Td3M/XsIrMH8/V86/V815BUiUhPQJQvciXyE+V6vivetbDyHhHfZFCcNbFKDrFNIVy7Wb7OSGtIskRlwcJ1XaJ9BmbRpO/SFLOv5JGQyE9VkFwJI6kiqXKzf28yGNifZOblIrnTJUJpjfxUVeQ7oSJrMqV67I53dWGbDsfvmRM5zGgU5y2cqk2g7gxWnDZJjgQZuCLJ6QfnyZ8tixx2BSjOVXFMIXJz9Cr54TEeffRRdF3n/e9/P5/73OdQ1Q51PH18fP7NcByHL37xi/zn//yfKRQKfOQjH+Hhvx4jGNZxXbAqYsiqR2SsioOCTc8FEXJnKuQnxP2hIYixTHBLZQIxlVrZJrMjjOvC8miFat7CKVc915xGqbFATMVIG4QzKtMHFlENRZQsc5vuNrW6ODvcaxDuMph5MYckS+gRFTNfw3WajjUNIXe4x6CyaGJXRZlaLahgFixc20UJCGccM2/Vj03FSOlUl2uYyzX0qNYaG1Awl2sEYho9+1PMvpATzy0JAjGNWtHCsVwUXRbtz4v2a2EV13WxSnb72KCCXXPovSRF7kSByqLplaELxDVqJRun5iBrElpIpbpUQ4+qSJqEU3WaOYxrWGUb23SQVQktrLbmUJaa5fNiGlZlndgV+dajKrbpYFcdJKWRb0s4/hkyirYih1EVu+ZgVxyi/UFSO2OMPjyDU2ufb8dysSo2kkzHfINwZ3Rt13PIapfD6lI9NqzgukIQ3Rhb1koWTs1F1mS00IrYkEKkP0i4y2Ds0bmO+QYh5E6ORChMlCnPmxvne2UOYxp21V6Vw/Z9tlO+Y4MhIoNBZl/IYdXUeg4V7JorYmWR05oUxHVA0SUUTcIsOvVjlSEQwKq6IIEekqhVXFy77siUCGE28mKIKrtWFRGbNrDyNRxbLKxQdTDrVdG0gChfa9XNjWLdEoU5txmrgVkS94+GS1sjtv+CAJV5k/mzQpykGpKIdUWsbAsnpEZ77ZqLbQrXIk1zV8QKB6la2SUzoqHoEnPHTexaPdaQqJVcXBeUqIbi1AjGFJanLDRDEk5DposkizzVSo6XQ1WHasFFUiAQVaiVXRErCUFUreLiBAxUx0TRJNSAhGpIlHNiH1bVBUVek+9Yt4IelpkelVGpiXtEI98hCasicmhEJbq3a0wermEWXS+HNSmAXCyjhyWsqotjQfdODddxmTlqgWWjGhISiBwCelhidmkcs/cEzz77LDfddBN/8zd/w5YtWzZ6RPj4/Jty5MgRfvmXf5nPf/7z7NixY8P4V155hd27d/8IWubj4/OjxL+2X9ssTxd5/O8PMfr8rPc3WZHYc/NmLrxtBM3wv8fxeWPymc98hq997WtceeWVXH/99Wu233TTTQB8/OMf59vf/jZf/vKX6e0Vi5I/9KEPkc1m2b17N8lkkunpae6++27m5+f56Ec/ynXXXdfxfZ9//nn+43/8j3zsYx9bN64d/9Kx12uBp/7fEV785km2vqmP637tgn/Ra99oz5c32vHCG++Y32jHC2+8Y36jHS+88Y75tXC8vkjpHPjEJz7BRz/6UarVKoODg3RP7yCl9KyJkxThYFJZtDCSKnpUY/msmJjwamjUMdK6N+mf2hZi/mge3LXGVrLq4pjitakdUQrjZW8CoRN9l6cpTlVYOt3ZYlM1ZLa9a4DZg0vMvbzUMS4+HKbvsjQn7pnAXO78vg03GscUJazYoATx5rf1YpUsRh+e7RijGjLIogTcRqR3Rum9NM3Ru8bWbSeIknfJkQhnH5jZcL+Z82IsnyltmPPNb+2hNFth+rncunGpnVGKUxWqudq6cVpEZfjGbqaeXvCEPJ3YdH0Xtuky9v3OufyXsufnhpl+Icfsi7kfyv6CGZ1Nb+7m9PemvX7fiZGbe1keLTH7Uud+CYAM6e1RlsfK3gRcO1RDZuSWPsYfm/cmCjuR2RMXpXw2ON/x4TCxoRCjj8619vXG7XTFCvDhG7vRwirH7hpvu301RlITQqOV+1wRH+oOsOm6Ls58b4bSTKXz/hrXoSSLycXVx+Q6eDVtgKHrRCnG0/eJ66JR8mUlwnWpl9lXlpk/3OH+4jqoYY2+/Ukmn12kVlyRIMdFUlrvc5mdYRZOlrGrNrIu4dpr74OubRPpDWDXhHtdQ6DgWM3tUt1lSQ3KRPsCLJ4o49o2oaxOeW7t9WY5FoHrl7j33nuxbZtLLrmE//t//6/vnOTj8xpgaWmJP/3TP+Wzn/0s6XSaj33sY3zlD59FltbeHzS5JgQyikIwpVJdbrrBOKWSd2+QFAlZESIALaTgVurjKVlZs09JcnBtF1mVCKYDnqi3E0pAlGtbPFHAtTsPq6P9QSL9QaaeWfTKbbYjuzeOVbZZPL7+qmBFl7HrY0QkYJ0RvR5VyZwXZ/bFnCc+aocaVIQI5xzouSSFuVxj4Wh+/UAJklujlGYqntimE0pAxkjoG+Y8kNBIbo0y/fziujlXAjKBmEZprrpufkAImQNxnbmD648/9IjI5fQLi9iVjceo50J0MER8KMTYo3M/lP0BpLZHcV2XxWPr9yMjqRMfDjP7Us67djqhBkVp3NJsFdkw2sa4rktiZxrVkFk4WW3daFlIsaYLk6JLBMISpUUHTNE33EiIdqS6XQpl1RMmNZBKoq+4hlDOqDp0b1OYP+tQybvN7cEA7ZBlIeRZ+VFNKle9Em8AyUEVSYKFsxbUS6uhaazGrZngghzUwV3z8Q+3UkUKCAG9GpDIbtOZP2ViFl3cqultW0kkqxBOwfTLZdDbH4NrmgS7Q2iGRH5m1fVbNSHYPFeKJgRI5SUXyhUkGZw2K57lUhkjoVAyG+1tCrsApELJ268Rk4RwqgZKrYhtuhBYu09TW4JNZ7xybn/8x3/Mu9/97rbH5OPzo+K+++7jvvvuo1Ao8OKLL/oiJR+fNzj+tf3jwZlnp3n87w9RmG1+xxdOGVz+czsZ3t/juzL6vOH4D//hP3DgwIGO2x9++GGgvUipUW75zJkzFAoFotEou3fv5v3vfz8XXLC+EOeNJlK6/SPfZ3E0z5t//QJGruzb+AUreKM9X95oxwtvvGN+ox0vvPGO+Y12vPDGO+bXwvH6SwzOgd///d/nt3/7t/l3/+7f8fd///eMOqNEpSTn61cTlptlKxzTodIQFG2PEB0Islx3C1pNQ6gRTOv0XprCqjqivNKqCTjHEh+sZFWme18SPaYx9fRC58bKojTEehNQAFbFYeHI8rpCJoCl00WWzhbFMcjC8abhHtPSzvpxq4bMyDv7mTmwuO6kSP5s8ZzaCEIA1X9FmvHH5733Wc384TyFqcqGAiUQq2y0kIqsyx3313jf7N4Esioz80Ju3X1WFk1vVf56LBzeYCKvTq1gUV2uYVsbT34VZ6u4tXObJFNDClbF3lBEdq6c6/4cy6U4XTmnHJUXzQ1FYWKn4rxvhKTKVBZMKrm1/XYlqiHTtTcOEsxtIJDSwgpqSOl83CuERae/N40eUpsCpTZkz49j5i2WThWbAqUO8ZV5k/xoyXPuaidQknUhJlo4VmDuYL41nytmzGRVTE6WZk3OPjy34XmslWwWjuXJj7fJZcvsHhgJDSOuUytWoMNkvBqWye6N4bgu84eLHQVKAH37k1QWaow+lsMsOC3bVpLeHiY5EmLpTBnbhtKs2fIFleM4HLdfYEI+hnmPycjICP/wD//AFVdcsf7B+/j4/MiIx+P8t//23/j3//7f84d/+If88i//Mrt37yYwMUw2sKnlmm44+MgKJDcbLI9VKUw3hTDN+4RC47/RvgCqpjL17CLCaqVVqOS6MmAT6jKIbw5Tnq+uK97QQsLZbiNK81Vcl3UFSoAQ6dYPUYuownmozUsaAqVIf5Bwt8HMgcU1oogGtZJNaaYqntnr0BAoBTMBZFWiONVZLDT7Uq4pkloPVzxjG2XI1iOUCRAdDFGaq64rPrJKNma+hiSDu84h2VXHc0jcCKviICsbjz+sqn1OoicQw3pJkXBqP6Q1IZIo13cu+2s4Km2EYzmeI9RGWGXb6yNOpbJGqNRY+1KrOGv7Yr2kgLtc8IRKwYRMJKNQnil6TZUKpTVCJblmomo60jpac6lSxTUCWCZMH7OxzKaAaTWyArFumaUJyxM8Q12c1IbykoNUM6Fx/bQRKAUjNtHeILMn7TV90q0096uFhKDHqrpMHqziVtYX75dmKzim0lag5JrN16oBCT20YkxYbb/fcFohlJApT4sxdDuBklQsYyQVUsM61dNgm02BklRoVYlJEiQHVApzDvkZ23O8Wzk6rdolTiw9yUTlIPFcnM997nP84i/+IoqyViTq4/Oj5sYbb+TGG2/0Jsp8fHx8fF77bLq4m/69GV74xkle/OZJ7JpDcaHC/f/zAP1701zxgd0k+iIb78jH53XCZz7zmXOK+4M/+AP+4A/+oOVv7373u3/ghQMXXnihJ4B6vVOYL7M4mkeSoH9v5tVujo+Pj4+Pz+uCjWcLfADQdZ0vfOELTE9P85a3vIW8u8ij1W9gXzlJxSmtiZ94MsfJb0+DA2pIpv/KtOc2tJLyvMmxf54SAiUgsyeCFpbXLL11LIdjd40x9awQKCW3RTHSa1fb4sCJuyc9B5zs+QnCve1XOk8fyFEriLJdW9/ZR3SgQ93gelN6Lk6x+YaetsfRwDIdChOlDVfAz73SFEiltkfXjdWjKuFuAyO+dkJgJQ13ou6Lk2iRzpOFS6eKnPjWxLoCJRDCq2N3jm0oUAKYfGphw5XqDVLbo/TuT20Yd/Z7M20FYauZe2npnMQ6wYzOrp8aItLzw6sPvfmmHoau6dowrpqrMfrw7IY5B5h4fN67HjoR7jYYvCa7bl9sUCtYnPnezIaOXFbF4ejXxzYUKAHMHVzm1LenWv+4SlTUfUEcPaaCA2a+tm5spF5WUcxeu63b65Px0X4DPazg1BzGHp3DsZyOjkyO6VAYL1OcqvefhkVAi5BIpu/yNJuu61rjfrbSRUmSXYbf0kV8s5gwnD6w1BSbrdivrELfZUnkoIZVdjj6jal6ScdVk54ydJ0fxZVcagWbo/88tcaVybVtXNsmvT2IHhETWGcenGf0sVzL9gbJkRCZnWEApg7kOPbNKezq2lnry35nMy/Evstp6yDRaJQvfvGLHD9+3Bco+fi8Rtm8eTP/+I//yDPPPEN3dzfP5+6msuMg/+Ur71sT65g2U88tU2iUHO3SMJLNccPK+8bC8RLzJ8QEvmLIhDKqECs5rfeNwkSZyacWcCwXSZaI9AdbZ97rVBZNpp5d9NyX4sPh1ZpzAOyK0ywr2xUgvSvWdn+iwULg0nV+gvim8Lp5qi7VKM9VOwqUxPG75E4WRPkoQ95QVGUkNIxEm3HmCuyq45UVi/StP7aYfWnpnMRC+fEyk08vrCtQAiHQWjiSPyexjqxKJLdFhbh4HcpzVZbOrD/+AHBqLrkTBXH8G5DaESOzO75h3LliJHQGrsyiBDYe/xSnKhuOx0GUz93QDQuIbw4TbPfZAyFOWmnOWzy9SH5qxdjHahV/uctizFyYsZl+qbiejhupYuLaMHvcxJxpVSmtFCEpGkSj4n3aCZRWCpBUHYwwKKr4e+PHQ1OF4NoQzkmVmTLlxbUCJdc0vR+z6FBetDyBklupej9eG8M62W0BIhkFt2q2CJRWuijpAZv0sIxrmthVl+KM1fY99YhMKK0iBQ0Kszbzpy0hTlolUNIMCSMmQblC/nSR6RfyawRsUrGMalYIG+K15UWbyVNCoARCnNQQKMkqxAc1JEUMWaefy7F8Ygk33/pZqOZUGXxrkScX/w9Lymn+7M/+jBMnTvDLv/zLvkDJx8fHx8fH51+Fqitc/J5tvPuTb2Lggqz39/GX5rnjI9/n6X86Qq1yDgsgfXx8fM6BsQOigkV2WwIjuv53JT4+Pj4+Pj7nhi9S+heSyWS49957eeWVV7jgggu4//77ebh6B89VH8B0Wr8Mb5Q5CmcDRHoN5A7Zbrj/qIZM13lx4pvqq4dXzTZZFccTEmT3xMiet/GkR2JzmPjQ+pNbsiome2oblPeYenaBMw/ONIUm7Y7HgfFH5zGXrbpoIb1uLwtmdfouTxPf0rmNlXmTw18bbU5urbM/NSST2holPtS+VETLe2d0Nr+tF1ldR3RVd3OKbw5vKIhRQzIDb8qKMnXroIWUDSf+GkSHQujrCK4ahHsNIYhZh2rOZPT7M1QWzs1R4FyYenphw7IoII5jo7yAyPO5xOkxFSOpbyh66t6XID68fv8HiG8R59faoGxL974EPZckm39ozKqtml2TdZnk9qh4704zb66LXD9lp74zxcRj65R4cV36Lk/TffEKcVsbgVJ8S9i7f0w8naM8V1lbawS89516ZpEzD860dVByHRfXcXEssKv22t2s+oMaUokNhQh36UKY1MYpRFJkAnGV9M4I0T4hnlwtHmuICGRdIrM76h2PWXDWiJMahLsDhLsDYpvDmvM4EzjF98pf4U//9E+xbZvf+Z3fYW5ujg984ANrD9zHx+c1x8UXX8z999/Pt771LZaWlrjmmmt4ZuGbLNWmW+IcyxUT77aNkVAJtHkuNu4jtinuUaGsQWJLpCkqWiVUcupOhUZSI7E5sqE4RI9pRHqNNaUt17TDEQL09ZxuXAdmX8yxPCqEAe2ETyDEuMtnRUwwrRNIrC/qTgxHNhSILx4vMH94ed33bRBM60T7gxvGgSiX2kk836Ah9jKSG4+VjJS+oUDKsV0CMRXV2FgUIWvn9r6yJhHYQDwPkB8tkdtAeP0vwSzUmD24tKGDlRKQz2n8qATkczoOAD2sth0LrxQnyZpEYnNIuD0ti/6zWqAEQjgWiMpg1jo6YUkVE7lmkt6ioQZWiKcLQqi0WoRkxBQiGUW4V3VyUKoLhsyiw/QLReylzmPioGGR3hJoee+GQKkhEpJkiPVpIIFVdcnPSWuESdC8hhwLZl8pdCzl7FZN3KqJY7lCHLlqqLfSOQkgmFAJpevnuY04qX4gRGI20UTdhbJNGTqpKNoTTCrE+jSvvXatVZzUfIFEMKGiGRJuvoC9SizoyDVOLT/NwxNf4Etf+hK33norJ06c4CMf+Qjx+A9PtOfj4+Pj4+PjE+8J89bfu5gbf+siIhnxOcOxXV74xkm+9ruPcOqpqZbxqo+Pj88PwmhdpDS4L7tBpI+Pj4+Pj8+54pd7+wHZtWsXBw4c4Mknn+SDH/wghw8f5hHuJGP3c55yGarcnOBYOlNm6UzZcxsZeXsPU88vCZeRFVgVh8N3jHvCi+6LEpj5GovHimuEDkfvGkeuq54SI2Fcm7al247dNe6JelI7olSXaxQnW7+4tyoOp77TdIUZur6L2ZdylGdXfdHt4DkA9O5PEekLcuwb4x1LRIW7gyS2RFg8kac8177kQHnW5Ng3xj0XpI7U32Pw2ixaWOXk3ZNtw6ySw5Gvj52TY4/rgqpLqCEZc7lzvGrIDFyZYfblpQ1clSSi/UGWTgU6Tj6AcLA6F2QVhq7pYu7l3IavGb6+m7nDy0w/u9gxxrEgd+KHN1EGrHucDWRVZtN1XUw9v7iuS5Gsygy+KcvMi7kN3asWjxXOybkq0h9C0irrljWUdZn+yzMsHF1m6pnO+QNQAgrS6rtmmy87HNPh6J3j6/bD+JYwfZemOXHPxPplCuv7P3Xv1IZl8FLborg1m6UzpbbiJIDMngSZXVGOfmMSq+JgrSwz4jogybi4DFyVZul0kfx4hbMPCgGV57BU37esCuHW5HM5zGWLw3dMtr0fqCGZ7K4Ik8/nqSzUOHrXVKuQyLZBUdCC0HNhirEnczimw/FvTYs4226dx5dh8/UZ8mNl5g4XGXus/XmbtE4ylznF1NQUgUCA3/mt3+fP//zPvXunj4/Pjw+SJHHzzTfztre9jTvuuIM/+qM/4olDt3Prrbcy+z2JmJJuiZ8/1HxGRHoCBOIa80eaf2sIHvOjJYqTZVynIbCIkDtVxFl1LyvPm0w8MSeEUBLEhkIUxstrSmRVFkzGn5j3nJCiAyHyY6U1t+TyXJXynBAyBBIaRlJv6yLYuO/LqkTPJSlyJwuUZjoLK8I9Bq7DuuOqhaPL6wq0V6IaCt0XJpg7tNxxn/mxMoWJyrpOTg1kVUJuU9pzNdGBEJFeg4kn59fdbyCuoYVUb3zaFhdR2u8ciPQEiW0KMfbo3LoCsnC3QWJzhNHvz64bd07la/8FODXX6zfrEekNEukLMr6eABpxHNHBkIjbYO5m9uW1YzinUkEKNMuQaSGFUEZnebQsnu1tBEoA4axGbEBmcrHDcGUhB6EQsiIhK9KaoVY7EVJx3qa0aOPmS0htSpgBZEZ0zGKNpfG17XIrFaSGS5JtU67AVKmMXXW97asbohoykS6N8kyJmqmuESdB3RFtV5DivEVhysRcHVKtQiCAqlhENuksnjGplRwWTjQWZ4ixV0OgpEdkFFWinLNZOlVsyf9KjLiCW6lSLVfIja4drrqVKpIRIKSbyCGV4qxFYdaiOGcJk8xiCWnFiwIxmVivzuzRCk7NZfL5te5btmsxWnmFSfkgpVKJD//Kh/mDP/gD+vv727bR59WhVqvxyCOPcPjwYQqFAs7qB16d3//93/8Rt8zHx8fHx+cHQ5Ikhi/tZuD8DAfuOsGL/3wSx3Ipzle4/388z8AFGa74+d3EezdexOjj4+OzGrtmM/7yPOCLlHx8fHx8fH6Y+CKlfyWXXXYZhw4d4sEHH+SXfumXOHnyJPPuBOlaH7uUS9Hl5mpx13GRVBmzaFOtl3/Swgq1oo2kKLi23SJqCKYD9UmkonBNWfntsoP3hWJiSwSk9iKlRiyIMmPtREor0SIqRlxD1ddfbb50qohVtjsKlEAIWA7fPuodk5HWqcyvFSs1Jr2S2yJk98Q5ec9kR0eb3Kki+gblOhrvlzkvRiChMf7ofNu4yrzJsW9MrLsvECKuE3dPUllsL7Ty4ko2h756dt2crCQ6GKQ4WcbpMH/lWHD8n89BwAWc+PbG7QORY6fmrivaOVdUQya9M8b80TxWqbMLl2M5HL1zY+GYYzkcvv1sx3w0iPYHKc5Wz0mIduJbExv6xTmmw/F/Hj+nicSJJ9v3pQahbIDui5KceWBmw/YVpyosnSmuK1DqvihBpDe0Vsi0Ymm9rIIWVqnmapy5bxLH7lQ7SLA8WkIJyM32rSoBB4AjSv1U4hr58c73i0BcJ7k1Qn68QmHKXNv36/s24jqJrVEWT5epLFqe8MhjRcmPYFonmFQpTpSxinbLdi0sC4c6RziHWBXbEzitpDQwzcniQSYnJ9EXdN73vvfxhS98AcNY373Dx8fntY8sy7znPe/htttu4//9v//HRz/6UU4UTnDbbbcx9V2bmJJpfYHj4tQcMWapo+gStukiBQK41aonNNKCqnCV6bDS1osLqUQHQpTnTZx2z476y/WYRmwwRGmmKu5XHdBC6oauN47lUpgobzgmmHtl2XtEqEFFvO9qcYIjHDSRoOuCBKWZakeRj1W1KUxVqG3wjHQd4X6U2hkjd6LQku+VLB4/t9K4y2dLFCbKGwqflk4XNxTXNJAUCS2kNEuWtqEwWaYwWd5wn8WpihCLbRCn6DKhbIDCVGXDEnbngpHSkSQhmluPpTPFcyr1tny2tOFxSIqEFlYxlzcej1aXLCaeyYHVub+7lsXyqEVptoKrrhUTrXQLsk2X2WPN31eKgKSQeKYn+lWqRYdyzsHJC8cft1xuK1QqztewKs2DdSvNHEmahqxCdrtBbsykMlPCWpnCFWIg1ZCwlirUqjD5TBlXbuO+VRVtdYHirEpl2V6zbeV+ZVX0T1kFp2yu2d4gkpCQVYnyTA3JWCtQauQovCmIQ4jqGdO7jlryV3+tHpKRVYki4BZKXleQQsF6u8RnEtt0qeVKUBLiTCnYHFM5co2F0HEmq8eZXpzmXe96F3/8x3/M+eefvzYvPq8qU1NT/PZv/zYTExPrukpIkuSLlHx8fHx8fuxQAwqX/H/b2XZ1P4998RXGXxKC/bEX5rj9I49w/i1b2PeuEdSAX3bWx8fn3Jk6vIhVtQklAqQ3xV7t5vj4+Pj4+Lxu8EVKPySuu+46Tpw4wd13382v//qvc+rUKeaccVJ2D7uU/RiyKFlklRxO3zfjvW7zW7ooz5uMPrJW/HD6u80yJt0XJggmNU7fP9M2rrEiPjYUItIXZOKp+TWCgePfnPDiEiNhZEVm4WjrKthaweLo18e93/suT7NwJL9GAFOarXrl1zJ74wSTOqMPz65pW0MI0XVBguzeBEfuOLumvFODyqJJadZct+RW/myz3EByW4SlUyVRLqUNkiKjaBt/8FRDMsM39jD59EJHAVfj+CN9QUpz6whkHOEIlBgJs3Bk7QrjBnpMZdObu5l8ap75w53jzkWgBLQVf7UjtT1GrWT9UERKgaROdm+CpdHSuiIlYH2noBV06hsrGbg6y/JosaP4DIQzgOu4oo+us8vYUIjlsdKG7dvy9l5yJwprrpfVKLqMosnrvmd8S5j8WBmrZDPxxPqip9Kciays2t/K2h+uy8CbugimdY58bUwIvNpolKIDQbJ745y8dwZz2WL6uVz99St2LEPPRQlyp0tU5k2Of2uqZR8NFyU9qpLZHWXiyUXK8yaH75gQ18PKOj+uQ6TPILE5zNij8xQmKhz5+kRTgLZCoBQfDpHdG+f4t2cwCzZH7pxqFTDVCaZ1trwly9lHZsmfLTPW5vyftQ4zGzvFwvEFIpEIH/rQh/jsZz/ri5N8fF6HKIrCz/7sz/Le976Xf/iHf+DjH/84JwonePvb3878wzJJtduLLc2aUHeHDKY10ruiTD23tGa8UV2uMfn0AlB3P7kgSe5UYc2zuFa0mHh8Hrde1jK5LUJxqrJG/FLN1Rh/Yt4Tp8Q3i/t/o4Rcg8JE2RMJaREVI6GtcdsEvJJukiyROS/G0uniWsGNW9dYSdB1foLyfLWzMMgVbTTz64w1XDyHJ1mT0CNaR1G069adkpT1xbIgntPBtM7cK8vt9+W4oiSfJNySOo6HGoKwqIrruNSKnccjiS1hgqnAuoLj1c5Y68dtHKsEZOJbIpQXzQ3HSudCuNtAkjcWKeHSUSi2mvUEdAChrgCpbVHGH5/DqXU+5lBWpzRntgiUnHweOdosLShho0UUzIKNVXGQI6uaXRcoBaIKsX6X+XGpYzk4t1RBChlIirhe3WKpbZwkQyAqU1m0KNVP/UpxEuA5KDkWVPMO1vKqzwMrhEKKa9K9I8riSZvSXL1c3UpBfF2AlNwSpLpkUSrIFGasNdsB1KBMsFsjP1mjumwzM7/Krar+vqGUgmNBZa7C4ulaW/GeW60SHwhQXhT5nT9WBr3Z7pUCpdRWA7MiU5yzWRoX11a7/CWHdTRDZurpOcw8LKz6qGc5JmcrB5kPHCd3Jsd73vMe/uzP/oxt27atbaDPa4LPfvazjI+Pc9NNN/GOd7yDbDaLovgTtT4+Pj4+ry/ivWHe9vuXcPrpaZ74h0MU5ys4lsuBO09w/PsTXPHzuxi6uAtpdW1dHx8fnzY0Sr0N7Mv69w0fHx8fH58fIn7Nmx8yN998MydPnuT+++9n+/btzLkTfN++C+uqScrS2gmniacWvAmacE+Q+Jb21rNW2cZcMfGirVpx3xDqGEmdYDrQUSTRiIsNhokPr29zq4YUYkMhjJS2bty5MPNSjrHvz64rQinPmYx9Xwz6wr3Guu1TQwp9+9Okd0U7xsy+mOPsg0LUpRqdu7pVcbArjjfZ2AlZlxm6rovufYl14xJbw/TtT6PHOmsAzWWLk/dMritQajD8lm56LkmuGxNIaAzf1L2hE8OJb01w9oG1QrcfhOJkhZf/4fSGAqm+y9Nk9sbXjVENmR3vGSDcu7GY5MQ/TzD9fG7dmOz5cfqvzKwbo4YUhq7tIrsnsf4bysJJolbuLGRq9K/8eJnj/zzRUTgn6zL9l6XpOr9zPmRd9vpY/mzJmzAHmo5qjR9g6tkFRh+ZFds6fFCyaw4goeqyECY1flYiycSGQkT71j8HgbhGbCiEHhd9zRMordqvFlQwkhqyLoMiJtewbU+ApIZEzsy8hVm0URW3ZTuAHlHJnCdWqJRnykw/v0hxlduHI0lc+tubeCH2XY5Yz1IqlfiVX/kVpqen+fznP+8LlHx8XudomsYv/uIvcvjwYf7xH/+RM2fO8FTxW5gXneJ3b//pNU4jlZzF4tGiJxiJDMWQtbVjBEmRsCo2dl3IpOitMY0xg6xK6FGtY/m0hkBJDSlEegzUwPpDbyOhEe422gpOV7YNwFnPmceFuVeWRPnPdVgpdIoOBL19tyPaHyK1I9qiSW15S9tl5kCupURdJ+yaU382rU90IER2T3zddgGkdsSI9ofWjVk+U2LquY3LvgXiGr2XpjZ8z0h/kNjQ+u9p5i3GHpn9oQiUAOYPLTN3sL2wq4EaVEjviqFs0Nfiw2FS2zuPoxsUJytMPbvYUaDkVquoQZn01hBGbO17Onkx1nUti2hfgMyOsNe/nYIQwLmm2eKg5Louds1tOiNVqmtKqcmqECotHFqmOLpWiOeWxXghnFFIDapItQpupdJWoBQIWqiyiVupsHhsuVXAGAgIYVH9xzZd5o+WKM3XQNPFz4rtLQTqDksdtuuJIOGkhOzUoNZhPG3WCMUlAqF62bl60yQj4OXFrQg3LD2ioAbr56AuUGpsl7Vmf7arLo4lhEmNnwZGUkVLiX69fHKJhUNrr5laADbd5vJE5SucqR3gve99Ly+++CJf/vKXfYHSa5znn3+eiy++mP/yX/4L+/bto7+/n56enrY/Pj4+Pj4+P85IksTm/T2859NXc8GtW7yFFIW5Mt/578/yN5+/m9tPPs7T+ePY51K32sfH5w1LQ6Tkl3rz8fHx8fH54eI7Kf0bcf3113Po0CGefPJJPvzhD/PAAw8AECHBDukikrIY1OTHml+UJ7ZEiPQGWDq51uVmpZgltT1K32Vpjt41tsYBZuaFHDMv5AAIdQfovyLDmfum15SyOvvgjCdRiw4GifQGmXxmoUXcZJVsDn9t1Ptbz6Uplk8XPQelBnMvNVf9JkbCGKkAUyuFFQBOsxxd9vwEiS1hTvzzeMfSXuldMfSw2tHxxyrZHPvnccyljR16AgmNrTf3Mf7kHLkTbfbnwKl7m64xjbIGa8JMh1PfnaQ8u74oZ+FwnsJEeUN3Hi+PMus671RytXVLkwDYpo1mKKhB5ZzKlv0oUQIyirn+RJ+sy5QXTKpLGztCncvxnb5/Gj20/u3NKtmcuGeC8lzn95RVGcdyOPu9dYRdMozc0kd+rLyhM5JjOhy/e2LdfhvfFCa9O87iycLaPlQXJmX3xkmMRDjxz+OYy5aIWyVQCnUHSO+MMfrQLKXpKifvmWxzfNBzSZq5g3nMgsXRuyba9sVIn0F8c5iJxxfIj5U5fPt4a1z9C53eS5OohszoI/Msniiy2O56A4avz6KGFI7/8xTlnN0xv/HhEJndMRaOFXBsmHuleR+0ZIvZ7HGOzx3m/o9XSKVS/Nqv/Rqf/exnkWVff+vj80ZDVVV++qd/mve9733cdddd/Nmf/Rk33ngjF110EeYLBt3yELIk49ouxRnx/JUVSAwHcSpVUfJqBU7NZf5QUwySPT+BuVxb46jnWC7TK4Qv6Z1RzKJNfrRVHGSVbMafmPfMdxIjEUrTlTXPtPxYmfy4KDemGDKR7iBLZ1tLmjk1h9kVY6/U9ij5sRK1VUKYxthBUiS6L0ySHy11LAGmBhXim8LUinZHp6Sl00UKkxuXYGscn5HQmHq2vSiosmBSWRDvI8lSR6F4fqxEeb66Yam02RdzooTdOnjbJdY1QbIqNtWlGrIiYa/zvrIitRW4vdrIqoRqKOu6HoFYANFJVO1Rz1WtuP7YyyrUmHh6Ebvafn+uJV6/NFoRzmYr+3OhiKSLBRENzbNZcFgoiL66WpwEEEwpJDcFmH65jL3O0NEtl8mfdilNSjidHJkqFWIjYcyCTe5Mm+ujWkVSoGt3mPykSWmuRiVnedtWEhsIUM1bVJdsFk+2L6GohxX0mEJhukZpukRphrX9URL7quRsTBPmjq4tQehWqigBifS2IAvHK1gVh9lDpZbtDVRDpntvmPljZSo5i+VZcIttFkpI4p5YnK6wPFtZMyS0wiVO5F9mpnSaJ/4B3vnOd/LpT3+aoaGhtsfq89rDcRxfSObj4+Pj84ZCM1Qufd8Otl0jSsA9XHmFR64/QiFahUVgEbq0OB8ZvI0bk36pWh8fn1aWp4ssTRaRFIn+PelXuzk+Pj4+Pj6vK15736y/zrjssst44YUXeOmll7j66qspSks8636PI32PMe6cbIkdf3yeE9+aAEQ5sO0/0Y+R0tfsM3e6yNSzC56AIbM7JtxK2lDLW94E2Bo3ofo3z8F0gFDWaC+Uqf9NVmVigyFCPRu4rCR0gm3avJLSbIXCeLmjQAng7PdmOPkdIRzSImrbntoQekQHg2y/rX+Nu1SDaq7G3CtLLI+2nyxYyfAN3Wy6ofPK0YZAKZjRN3RKAiEUWY/ui5Nsf1f/ujFTTy+sWzoORJm0Y9+YWCMgW018OMy2Dd7vXOm5JMnQm7s2jBt9aLZZXqwD5rLF2e/NrOu0ldkbZ8d7BpDX0R6phiwcfpz1xUwNx7L1BEqxoRA7f2oAI7l+f8aB2ZeXmD/c2dmg77I0wzeI0kOdBEqN/rR4LM/RO0bXFbkVpyoUJyvNa6iNg5IaUAgmNdTgOgIxWSY2GCTcG/COxaPuiiTJEnpUJZzRm/cZR7iIuI6LrOKdk1pJuCI1tq2cdI5vCmIkReDsK8tMPLUgtq8q7TZwVZre/Ulcx2Xm5SWO3DnRUl6x7BTR3rLMo+43eHnsANFolE996lPMzs7y13/9175AycfnDY4sy9x2220888wzfOc73yGdTvOy/RjHeh/j7Z+4BMttlg1zai4TT+U8gVJiJEJ8c3sXx8WjeSEeArSQQiDR3mWyVraxq+K+JilSqyNS/ZYoqxJGQus4dmvEBWIaoe7Aunbiii6jxzSkDk5OIO7X5fkq1eXOZd2sss3Ek/OeQKmTC09DhJI5L0Z0sLOLUGGyvKGLE4AWVui7PI0e6+Da6eK5ELUbE3vtqj8n1KCyrgOSpEj07U8T6uo8PrOrDgtH8xuKnpbPlsid6FBKbwXpnTGi/cEN4zZCkiW6L0oSiK/vcGrmLaafX9zQIbQ4XWlbVnAlvZekiPSt33Y9ouJaVluBkmvbuLaNasjic4gLtfKKuFpN/NRJbwuSGG51AHJLa/tRZclmedzEypdxq2vHcoou0b07iB4SfcGuNnPhOQ85NrIs2jJ3uOQJlFyzhmu2XiuuDeVFC3OxvOL1a/OrRxRU1WlxhWrZj2WhhSGYVJr3hhW7ab63TCCmoQWVlhi3XMYtlz2XMtt0heuT1NzWcJCSVYlQWoy7rIrD4qkK5allnFKrc5IWkunaG8GtlrDzRSYfn2Z5tFWslbNnidyU54GZr7GkT/KRj3yEM2fO8OUvf9kXKP2YsXv3bs6cOfNqN8PHx8fHx+dHTqIvgv4rAe659UUKkdbvTmfMJf7TyS9y3+KLr1LrfHx8XquMHpgDoGdHEj30r6824uPj4+Pj49PEn839EbFnzx4efvhhpqameO9738vk5CSH3Kd5wL6DY84LOPXlvY3yArIqYxYtzPqEUrjH8IQAjul4JeL0mErPxSnim9ZOqpWmq5y+f9qL2/GeIRIja+NmDuQ8cVQoG2DrrX1ty8kdvXPMc03qvijRdl/Tzy5yqi4uig4E6b4osSamOFnxSlglRsIMXdfVtic2hAmbb+oRMR2oFcSK91qps6hj+kAOx3TQIyrJbZGOcYsnCywc27gE2+C1XfRdmlo3pueSJJtv7Ok8CQkUJsod3WZWEkhobfO9mvWEUyDKllWXa+u26Vyxyja1DVyN1JCy4V1Gj6vndGylqQq5k4V1xW29+9OMvK1v3fcMdxsMXd21YYmW0kyF3MliR0cJNSST2iHKpCwczlPNdZ78reRMyoudBWThboPt7xrw2tRSZqROfDjM8FuE0Kk0W2Xiybpr04rJ62BWp++yFLguy2eKHP36OFa5dRJNDSkMXZdF1mUc0+HwHRMsHlvVB12HnouTDF4tSuYtHity7JtTOKbTKj6SYdutffRcJMoRzh3MM/VMG9cMGXovTZHaHsV1XAoTFYpTzXyEewLe/c0sWk3HBqd5H1hwpjnZ9yyPczd33303Q0ND/K//9b+YmZnhd3/3d31xko+PTwuSJHHTTTdx7733cuDAAa699lp+7/d+j+dC93LUep6yWy8ztcIpx67YntBCUqSWsVB1uebdm8K9QVLb2pfJWj5T8kRP8eGwd39ciWO5TD276DkJpbZHibQRsZRmqkw+LQSdsiaR3BZdU0LNNh2mnlnwxovxzWHx7F2JC0unilhlGyQhMGondHEskYtgWqfvsvTa/azALFhY64y7rJJNeU7kIdQV6Fj6rVayKUyUN3TqCaZ1snvj67ZJkqH7wuS6z3fXdsX7beTKKEEwE1hT5q9d3MoyWu2wKvY5lbbbCEmGWsHa0P1oozJvUD+2dUohizcU49T1XC5lTbh0teu/7goRcqwLUttWnZfa2nFTcaZGeX7tuWkIlYIpRZR5syF/trNAzKk51MoOdq2NOKlOaiRIZrtok2O7LeIkSddAEjGBuOhzS8eXqdVLb0t6UzAX7QughRVc02T2xRyFyWrLdgAjLhHOiP0UJqrMHq6scUaSJZuuvVFvUcnsKyWKs6I9K8VHoYxOz76w6HcuLByvUFtY+1nCSKgkNxvImoRTKlE4u9QsFScLgSAIAZeZKzXLSNbvA47rsGiM8mLguzxVvpuXX36ZT33qU5w+fZo//uM/Jpv1Sx38OPLv/t2/47nnnuPBBx98tZvi4+Pj4+PzI8V2HT41dqcQiq8evtfdQz/2yldYnNp4EYKPj88bB6/U2wX+5x8fHx8fH58fNn65tx8xXV1d/NM//ROmafKHf/iH/M3f/A1nCocZU46RsLPsTezHsEJUFkxO3z+NkdQx8yab3txFfrzE7EtL3qSWHldxbTh8+yhWxcZI63TtjWMWLOZeXkINqV4sMiwcbboJZc+PkR+vUJk3xermsEpl3kRSJXDEl9cgxFJ6XMXMWzimg6zL6FGVUNZAVmRK01WQm85BRlrHKlpYFYdIf5DYUNhz0dEiKtLK2JSOFlZFuQxZRk+qQhDi1GMV4Toz8cQ8iiGhGjJWxUFWQY/rXqxVtZl6bhEcMJI60cEgi8fzwpVHFn8zl0wcC7ouTBIfCrJ4ogCOyKFTc8UqfVlMQjacbuLDIarL1pp81woWZx+cQVKb5cBUQ27Jtx5TyZ0skh8v45gORlpfk8PKvElxskKtaKHH1JYcro5NbY8SGwytzXdKxyqJfCe3Rxm6Osuhr57FXLba5ru6aHL2gRlkVcZIN3OohhRkTfKOXVYllIBU/39rvtWQjKIrzB0UQrlAQsM2HS+HK/M99OYu1IDC0TvGvByuzLeR1EluDpPcHqMwWUY1WnPoOngTiY7jMvuyeM+VfbYRiwPjj80TzOr162ZtvgFqZYuzD02zfLbUNt+RPoPSTAWr5DB3cKn13KzId3ZvgvSOKLkzRZyK09JnAUI9AcI9QWYP5MidyKPHda+0nxpSUHTZEzZZVZuZlxZZPlvqmG/XcZEUmWA2QK1oiRwqkjjWXBXHgki3QXw4zNRzi0KUl9C8PtvIt2u5hLIBIr0GZsGmslAD1/FyaJYscEHWJc8kQNGllnxn98VYOlmiVrCZfXmJWsVGUqWWfEsIV6TxJxewSjbH756kVrBb7hGKoRDu1hm6JsvUs4ssnS2xeLxZ5i6QUplLjnJ66QjT09Oo4yr79u3jc5/7HBdddNE53XN9fHx8LrjgAv7+7/+ej3/843zmM5/hc5/7HKP5I9x6662M3p0nG+vFWq6QHy+j6DJKQCaYDpDcGmH6+cV6WSwXSZZQDJncyQL5UVnEGjLJkajnpufUnHqsEKg23IuUgEwoG/Cca1RDwbEdnJqLbTnIquSNvSRFQlZlISqql33TIxpGUmPptHiG2BUb1xHPa1kTsbImEek1sMq2eEZIwlnIrjh15zsJJaiI8mpuXczirnAhCinYVYfygrlGsN0QvjREXKXZqvf/SF+Qar5GrV5eTtFlkESsrEqkd8dYOllk+awQQigB2XNHUjRZlJCzXRRdRg0q1IpWS76tsk153mTmhVyLO5AaVHAskUNJBsVQmD24RC1fQ9YkZEXGqthr8r08VhKOS/XSYrK2It9QF+9IpHfGWDwpRMgrc9jINwinIassnoUrc+ja9Vhd9koXd8q3a4v2rywdtzrfjdiFo3kkRUINKc0crsi3GlIYuDLD9POLlOfNlhzi1mMVSG2LkB8vU5qttvRZxVC8WFmVKc1XsStNl6rV+bbKNtMv5LCrFqqhYVWcunOSgiPLODXh8rM0WkIS3+0iuxayKmHVmseq6ibVRYuyFEINyGDWSzKqErImYZUdJBlSmwPkR0ssna3U2yRjmw5u1UQJ6YQyGuWFGrYJuePimnRNd0WsC7KCpEBpuizaa9oougS6hG26SLomYvMVsDVkt4Yi2TSkU0o4gCSDla+CBOFMECwXc1F8flKjhthvzULWJOFIGQmI48zVcGVVCIGsGkqg3n4baIy7gwHskoPiVnFsF6fmohgygbhKedakWlFYHjeRzApu/dwoARnXcYn0GsjBAMXZGsXxJUqTQsjU+AwFoMUMYoMGesBh4qllpKDCwpHm/URKy4xWXiEfnmJ0dJTdu3fzqf/+CX7mZ37GF4S/Dnj88ce58MIL+ehHP8oFF1zA9u3bCYfXLhaRJIkPfOADr0ILf/Tcd9993HfffRQK/qS0j4+Pz2uJv59+kH+YfuiHtj/TscjZ6ywSlWDJKPG2439K8IyOZqhrxUw/AD/XfS0/333dv35HPj4+P3Ksqs3kK2KR8OCFvkjJx8fHx8fnh43/TeOrhK7rfOpTnyKfz/OlL32J4eFh5pnioaVvcqL3WaacUYyEzrZ39BHOBjlxzySO5bLlrT2kd8UYvDbLpjd303NxCqtko0dUtt3SjxpUsasO6Z0xRm7p85x1hq7uIhDVcUwhqNl8Uy9D1wp3osTWKNtuESXAipMVHMel/4oMekRl1/sG2fmTgyTr5bESW8Jsu6WfM/dPMfn0Av1XZtj+EwP0XS5q8m59Rx/JurtAea6KHlJRQzLBjM72n+hn0wpHpJG39yKrEqfvnybSZ7Dj3YMMXi0GfD0XJxm+XrjGFCbK9O3PkD0/wdZb+ui7KsO2W/q9Mlw9FyYZvlHEZs6Ls+n6brr2CeeCUDrAtlv6CWZFmTrHdITwor6SePiGHnovEY5IgZjGtlv6CfcGiA+HGbmln623Nkujbbqum966e5Jdddj6tn6S2yPEh8OkdsTY+o4+L3bomi56Lk5SnKwg6zLbbu0nMSxymNoa8fIN0H9llh0/OeA5PG27pZ/UVvH/xLDI98xLSxy9Y5S+K9IMXt3M4dZ39JHcHvN+F6v5xWRM7/4Um97c3cz323pJnxdHDcnEhoNsu6WfQL28Su8lKYZXlLkz0jqxAbG6PJg1RA7TIt9d+5JsfkuPyL8Mw2/pofvChIhN6S35tis2erSphRy+vpnDRp8tzlQ5eueY6LNv712R7y769qdAhi1v72XHT/QTGxQr9ZPboi35Hrymi4FrMjiWQ3nWZNst/SQ2t+ZbNmSS26L0X5EhvTvuvXbbLf2ktos+G98UYse7B72+13dZ2rtOAEZu7iO1U+S7NF1FUmTUeomd3kta8739XQMMXJ5GNWTCPSLfRqLeZy9KseVtPWz/yQEifUE239SDaqj13Is+G8oGCPcabHvXAJtv6mH5bIlT355k6Nqs58xhxDV23DbA4HXifRVDQZLq7kOSVL9HJAn3GGy7pY9t7+jDSOoc/uoYwaTOyNt6aCyrH7qmi/N+bhN9l6RQDZn0thil6Squ45IYibDt5h6vbwxfm2XzjV24jsv80QKbrs6Ke4QMXefH2HZzD1bVwqo69F6aZPBNaWoFMZm69eYe+q5IsfktXUT7DTZdk2X0+7PMvZKn79IUm67JUHFKJG6zeah8F08efZhCocDP//zPMzk5yTPPPOMLlHx8fH4gBgYG+NSnPsXY2Bh//dd/zbFjx3jWvJ9DiUd412euxXItElvCpHfFKEyUmX5+ka4LkoS7DTJ74kQHg/RdmkbRhbAgtilMZnccu+ZgVx26L0x65eL0iEbXnoTnEJQ5L87g1VnPvabrggTR+nO2NF0lMRxBC6nEN0cYuraLrgsSXruzexIE4hqTTy0gqzJ9+9P0XJJCC6tEeoN0XyieCU5NlH5qPNuTWyIMXpX1StOFug169iWZfWkJc7lGemeM/qsydZGtRN+lafFsdwEX+i5NE0ho9FycJL0zRnJr3T1KEttCdaeh7J44Q1d3IcniW/zE1gipHeJZ6VgukiR57ixGQqPv0rQnyIlvFjkESO+KMXxjN+F6aWE9pop81wU7oUyA7HlxQtmAKH22L+GVItPCItatObgOJDaHyV7QfNZnz48Tq5en00IKA1dlvbFipC9I974V+T4vTmwgKMrfLZj0XZr2xtPhHqPFHUvWZO/TlKzJImd1l6pQlyHGmHWxWHpHjER9fNfId6NEspHQRfvqEyHJrdEWt66+S9NCgKIKcXLfpWnP+SYxEiFdH5vYVUeImOplwgL1fCuNfA+HyeyKM/HkAvnxMt0XJYn0ihzqURGrGgqhrgC9l6bI7mnmpeuCBNH+Rg5V+i/PoIVUzOUakb4Q2fOinntSdm+c2GAQIyXKI/delIRKCWo1Ij0Bus5vjl17Lowx9KY0elRFtk16dge8sWMoq9N9vsiDUyhRy5tCUIQQ1PTui2LUz40RhYGLQoQTwjUpORIisVm0V5KhZ2+Y9LYg6ZEARkQisyPiic0Sm0MkhwPgOsS6Zfr2BQmmdeYPF3At6L0ogYSIjfer9F8c8crXyaqM47i4loWe0OnZG0aWbOLDQbr3RsnsCLN0pszC0SJde6OEkjKuWUMLKwxemaT/sgSyKhHtNZAVMOeLuOUy2fOiRPvEtZDaFmboqjSKYmMXykiWSXaPyIsSkMmeFyHSpWDXHNxqle5dOnpYLAwI9wToviBOalsYIy6THFKhWmX6QA5Fk+m7JEkgobHsLhB7p8X9M1/hWP4AN954I8899xwHDx7k537u53yB0uuEL3zhCzzxxBO4rsuBAwf4yle+whe+8IW2P28UbrzxRj7xiU/wG7/xG692U3x8fHx8VlC0K8zUln5oP+sKlFZQCdZYVIvMWD+c9y3alY3f1MfH5zXJ5Cvz2DWHSMYg0d+5MoePj4+Pj4/PD4bkuq67cZjPj4JDhw7x67/+6zz00EPYto2CyqbYVoYqO1AtHT2iokVUgmmdUCbA7MEcTs1Fj6rkx8tEeoJUFqpYdVeXvstSRHqCHPryKIGEcAGqLJogQ2wwhLlkUslZZPbGiA9FvJJvRlpMUJnLFl0XJijNVCjNVgjEdWplCz2kUZgQTgBGSiezNwYWjD06R6QvSCVnYpVsVEPGSAUoTJXJ7IyRPT/O6QemKU8LN5Zwr4GZt6gVLGRdpv8KMbFz/BsT6HEVVVcozVa92FrRInNenMJkBcd0KM2UcSwxiaUGFeEyBMQ3BSkv1oQgyRGTWqW5qnCWialoQZXibIWRt/ViFiymX1jEXLKQVQh1Bb3Y1M4o1aUaxUnxgTKY1XFqrnC/kSHSEyS1M0owpXPy21MEYs28BDO6l++eS1Nk98Q5cvso5rKFGpIxEoFmDtM6A1dlWD5TYuaFXD2HVayS08xhIzajIwHlOZHDSF9QlKApWC35xhETU7ImUZ5t5ruWt9hycy+FqQq54wUvdnW+z/+lLcy+tMjkU4vIuixyOFPFsUQOg2mdoWu6Gf3+jCj5UrYxl9fmUI+paGHVy2EoG8AybeE2JIv2l2ZErBZR0aNqS75dCxzHYdP13cwfyrN8uoBVEU4BRkL38jL8lm7C3QYH/+8ZcMR+G9dCI9+hrJjcPP3ANLbpeK5Aq/tsdFOY4mQZc9nCSOpISjPfiW0Rei5KMvbIHJWFatt8W2WHWsEi3Gvg2g6lGXNFDut9Nq6ihhQyO+LMvJBD0WVqZaueQ5lQl8h3YiRM1/lxxh+fIz9Wz2F3AKtie322/+oujLjGsW+Mo4dUtKjqlVILdus4VRdJkRi4Ms3sK0sUx4RzgBbVxISgIpGfKBNM6SS2hFk6U6I0WyXSKxzdhEtXmMzOKMe+MSUm8DaFmi5MQKTPoJIz6bkwSWwoyNmHZyiMm/V7hAZS3WVJlVADElpEIbE5yviTC+gRlcJUBRxYCE0wHx9lfGoMy7IYGBjgZ3/2Z/mTP/kT9FWlU3x8fHz+tbiuy3333cdnPvMZ7r77biKRCIlSF4PaCMGKEADoURXXdolviZAfK+E6ogSuW3f6kRTJEyIF4ipd5ydZHi2xPFpCC6vUCjVcRwgJtEjTka77wiTLYyXKs1UkWZSWqxUstLBCIK5RzdUwixaBmCbcVCwHuyLcZIx0gNhAiLlDS+AI55+GA50WVnBtsE2brguTVJdqLJ8u4liu5xJl1h2P9JhK5rw4C0fyVBZM9JiGVRIuRrImXI1cyyHSHyI/XgIXT9ShxzSssoVTc1GDCrImYy7XUHQZSZGQJFHKrRlro4UVUtujLJ4sUpmv1h1ehKtNrWijBhW0kIKZt7BNIbbRwipmvuY5SmlB0ebFY3lqJRHXEOY08g0SA1dlKM5WWDgsHKG0iIpTF5NJskSoO0C0P8TsizmQhKOTWWjkUMWxRb6RRPtrBctze1qZw0a+rYpwrtKja3OoGjKZXXGmnlvAsdzWHNZj45tDJLZEOVMv06wGFZDw3JL0mEa0L4gWUZk5sIhaFwc1YlvyHRULFuzGczfUzKFqKEgqnnB4ZezKHEb6QwQSGksni17/1iOqJ8hTdJmBq7MsHM2THy2hBORmDiXRnx3LofuCBKW5KqXZqpdDLRZE0WXMehu0sIJmQHFaOBMF0iFqpboblSaRGA4iyRJzL+XQk0Fct14WVwI9rGCbDo7tIuGiRxQqi1Y9L0JUU8uJsWIgHRTXoaFQmK6iGjJm3sY1TZFDVcGqOHTtjVHNW+THysI1CtE3axXABS0k07U3xsKJEuU5Ez2qYBVrOKhIqoQWFMeWGA7iOi6luRrmYr0NqSCO7SIrErWyTSCmoocVlk4ui/4S0kVJOQkyuyOU5kxK0yYSNdSgjFVVxP1El5F1Cbvi0HdpguXRPPmxEo6r1Uu5qdRKNnpEwSo7yNSI9gcp52xqRXEerIqDjcVCaIIp7RTTC1MMDQ3xsz/7s/zKr/wKg4OD/6r7q89rkwMHDpxz7L59+/7N2vFa5MiRI/zyL/8yn//859mxY8eG8a+88gq7d+/+EbTMx8fnR4l/bb92+JE7KdUxShqK3RRnq7qMHtK8BRn/UnwnJR+f9vxLx16vBo994SCvfPcsO28Y5E2/tOdfta832vPljXa88MY75jfa8cIb75jfaMcLb7xjfi0cry9Seg1SqVT4r//1v/J3f/d3LCwsALB37154KUy3XP/CuH7awr0GW27q5fT3psjXS7k1kFWZcJ9B/mxJON7c0M3si0sUp1tXcWT2xIn0GJy+T0yMrCxvtZJd7x2iMFlm9OHZjm1P74ySPi/O8W9OCDeXlgYhBDExlb7L0ow9OudNvqwmmNG9slU4bUMYvLaL5TNFr4zGakbe0YdjOZz6zlTb7X2XpclPlkV+1iExEsZ1Yenk2veRVZB1WZSW64AaEk467V7/LyHUHWD4hh5OfmfSm+RcTTCjk94RY+zRuY77iQ6IsiyNsmTt2PNzw0y/kBOTd22QVQj3hSjPVLzyEatJbY8iB2TmXlrq+D4j7+jDzNfW7VPnghqSCXcHWTq1fo479W1Zl+m5JMnEE/Md+xuI4x64uoupZxfa7ic2FGLo2i5OfnvSE3y1tNOQGXhTlqnnFpulGFcR7jaI9BtemcR2ZPfGkTWpfYwkvjjpvjhBrD/EsbvG224HMJIa297Zz9jjcyweW1HiQBLOEKohYxUt4ptCpHfHOH3/TN2lqfmFzcBVaQqTJXIniugxFSUgU55blRvHZvu7BzCXa959Blm4PFScEvGbHR566CEKhQKqqnLhhRfyP//n/+SKK67omAMfHx+fHyZnz57lb//2b/m7v/s7pqenueyyy/jwhz/M//mlb6JIrdWRM+fFUXSZ6ecX1+xHi6g4phB9hLIBtIi65tkkqxKZ3XGWThep1oU9ds1pGCF6hLsNUjuiTDwx75UIa0fPxUkKkxVPuNuO2FAIu+qsGQOujinPm54oZc2xhVVig0EWjhVw7bUfH/SoSve+JNMv5DwBzUoUQyY+FBal5Nb59CHJENsUZvlMqaW8m7efgOyVQetEMK1TXap5Dk4/KKntUWRN8krctiPSF8SuipJ07ZA1GS2sUF2qdTzu6GCI+FBo3fGbaijIutw2tw0SIxEKE2VPCLUaPaKSvSAhyhh2GIOfK8FMgMqiubYvrBhnCNcxu+W4ZcOov16UoC3Pre23UiDg/T8QEe5XDbE2gGQ0t2d3hnBsl/kj4jpzq63jr2BKx8gEyZ0W7+Oaq86TBPHhCKVZ0xvTulbrNaCGNBKbQyyeLOHUXFzbajkmSdeRVYmuvVGWzpQpTbVe89IKoXVyawg9CJNPt94/ZF3z+rZTrZLZHRMCr5l66bt6TvSoSqQ3wNyLouxAIKGJPqEFWvYXCLt07U0w+fS8J2BrjL2q0TzdN4a49957yefzXHrppXz4wx/mgx/8IIqi4OPzRsQXKfn4+IB/bb+esV2Ht7/0p8zUltoOySWgS0vwf5P/kSe/dJjJVxa8bYoms+9dI+y9ZTOq7o+VfHx+GLzWRUqu6/KV33qI/EyZt/yni9h0cffGL1qHN9rz5Y12vPDGO+Y32vHCG++Y32jHC2+8Y34tHK/v2/4axDAMPv3pTzM/P8/999/PFVdcwcGDB3mJJ3jAuYODzlNUXPGFdXGywsl7Jz2B0vANXfTuF+W0HMvxBDh6SEULqd5kjx5XketlquZeXvKEA5G+INt/YoBwr7GmXSfumWDyGfEhLTESpvuixJqY8qJJfrTkCZQaJUZEg8Q/gagmVqmvM3EU6QsR2xTuuF1WxeppUd6sPVPPLTDTQWQDMPHkvJefzN54x6shsSVCcnN7S0/HAqvkIOsyA2/KeDldiVVyPIFSo1xIW2RRSkM12jekNFsld7LQceIJQA2pROor7TuRHyuvK1A6FxwL8mdLHQVKIFyTIm360UoWT+RZXkckltkda+1Dq1ANGVkVIrFOAqXMeTFiQ6LcRzthEUC4K0B8KOyVY1tNYiSMHldxLDj7wEzH/SyPlZg6sNhWoAQib1pYRV/n/IR7DeKbwuvenbWIih5ZmxdZlb1zX5qqsHxmbU7C3QEG3pQBoLJY4+R3JlsFSnW2vaOXgStEGcelMyVO3jPlXdeN0n+4DlpIRg2JL2nMZctz7gqmdbbf1oseEdfo6MMznH1QiNEcJPLd0zxm38333W9y9913E41G+YM/+APy+TxPPfWUL1Dy8fH5kTI0NMTHP/5xRkdHueOOO0gmk3zoQx/imej9HHKfY9ldpKHrnz+8zPwRIVpRgwo9l6S88lq1guUJimRdRg00v8TW6vdKx3KZeTFHtS42SW2Pkt2bWNOm4nSF6ecWvf0lt0bQwqu+FJegOFP1hCuKLq/UkXqohuKVTWuHJEuEuoyWEq2rUQIySkBpKxwCMPMWC8fzHUU0dsVh4agQKKlBxSvbu6atQZVIj+Hla81+6gIlI6UT6gq0jSnPm6LUnCJ5ZdHav5dCKNt+H2I/VeHwsw7BlI4e7TxWcWqOcOH8Vy4LsSr2ugIlxRCujbLa+Xht06EwXu4oUJI1ue1ngJb3qfej8ly1rVhNUiQSI2EkWcKu2h2PO5TRCSbbn2NJhnCXjmvWqCzUWgRKq1keq7A8WsatVtcIlADkoC7KLEptBEqArKmEsgH0mIprWWsESpKq4jr1a0gVZd1WHlNj3O5YLqWpErXltW2N9hsEEipOpUru6BIzL6wV8AfiKr2XxFFUcW7mXln2BEqSInl5d6pVZNn2PgNVc7VG5V7im4IkhnTcapXKgsnUswtNgVIQpvRTPGXfyyO5u7n//vv5tV/7NU6ePMmTTz7JL/3SL/kCJR8fHx8fH5/XLYok83uDtwFehWWPxu+/N/gTZAbj3Pxf9vPmX7+AUEJ8TrBrDs9+7Rh3fOT7jL7wr1tk6ePj8+PB0mSR/EwZWZXoOy/9ajfHx8fHx8fndYkvUnqNc/311/PYY4+Rz+f5vd/7PZKZJJOc4ft8k5Obn+O0e5j8RFPkUVmqeRMYekwlszeOrIJZsDh217gnnhi6tovhm9YqwAtTZSafmvdKbnVflCA6EASEAKExqRFMBQh1Bb3XNcQ5pekqk08JIVN0IMj2d60VPOXHyxy7c1yUf9Jltv1E/5qY2RdzHP36mOe8NHhNFllvdlfHghN3N8UVPZckCXe37qM4WfGOY/jGbrouSLTNsZHS6b4gSWJze1HU6funOf3AdP0424YQiKtE+0NN8UYbUjujbLt1oKNQSQupZPfEiQ52EGc5MPHE/Lor3/NnSxz+6ii1QmcRUjCje0K2H5T45jCZ3bF1Y8YeneP0vdPrxiwcznd0wkIWbhWpbdGOrx94U5aRd/Su+x6xoTCxofY5bZzP/FiZI187297dSIbui1J07Um03YceV9n2E/1istVhjXOUrMr0XZn2Sp8cu2t8jTAruS1C1z6x/5kDOY5+fXyNo9Pwjd1k98YBmHh8vq371EhDWOS65MfKTB/ItbQDSZR9CWUD3qRaY/JV1mX6rhDtxHWYem6BqWcXWt/AdYlvCrH15h5CGTEhe+reaeZeEpP14R6D1LYIODbVxSpmzvQssctzJou1edS3Fngi+C2enHgQUy1z3XXX8b3vfY+JiQn+/M//HMNYf3LUx8fH598STdO47bbbuOeeezh16hS/+Zu/Cf1VnuJ+pvcc4a2fuoyKVWo+iyWoFWqi3BcQ6gqghcXDpTBeZv6wuD8GYhq9l6bRY2vFLIsnCyzXn4VKQCY+HPaENY0SZIouYyR1b7zllRtwIT9a8uJSO6Jk2zyvFo42RcHRgSCpHa3PVtdxmXp2geJUxYsxUq1jmsqCycwLOVF6rd7O1d/wN8ZdWlil+8Ikit7+o0Z0IERiS/tnc61oMfHkvHdM7URXIMr5BtOdBUYgyuolR9oLzUE8t9YTxZfnTcpz64uUZl9e6jyWabxPr7Gu6PpciG8Ke2K4dtgVR+Qt33kMaJvOum0VpV8jHYVOalCh77L0uuNdPaQQygRQ9Pb7cM0KTqXC3MEcC21E0gBGxCUxFOgorItkJJIDCm65TGW26JVT89oQVYn0ifFEcbzA3IuLuNXmGE9WJRKbg8iahGNaTD49T3GidWwWiGt0XRAHx8Ku1ISL5qrc6lGZ3ktTqLooG7d0puSJgiRZODK5jksgDKoiBnZ23WkNxGKOSF8AXIfyTJG5lxeplVadP9cle16MxJCGU6lgLteYOSBKfkuyRKQviKzJuNUqteUK1orXV/M15t0psu/TeNj6Bq9Un+GaW67ijjvuYGJigr/4i79geHi4bY59Xt+89NJLfOpTn+LDH/4wP/MzP8OHP/xhPv3pT/Piiy++2k3z8fHx8fH5N+PG5Pn8ty0fpEuLt/y9S0vw37Z8kBuT5wMgSRIjV/bxnv92NXtuHvY+ey1Pl/jOJ5/hu//9OfKznV1sfXx8fvwZPSC+d+/dlUIz1ll07uPj4+Pj4/MD4z9hf0wIhUJ88pOf5JOf/CSPPvoof/zHf8zDDz9MjRqnlEPs37+f8uMKPNN8TWwgRPfeBAuH8oDTUurq7IMz3ur+UDZA7/40Zx+aoVawmD+cb+5jMAyOEHHIugyOcGiafLopXoj2Bxm6tosT355sEXnkx8qMPTbnTVhl98bJj5dbYlRdxirZ3pf+qiE33Xnq/wTTgY4r5UEITWKD65cxMYtWcyXxKioLJkfvHPOEPWpIaRUC1duhx1VG3t7HxBPzayZ4yrMmh756dt1SYbnjIq+dXHhqBYsjt4+u604EwhkIV6yw7oSsyjhW+/0YSTEBNX0gt7Yk3zkS7QsSSOgd27De+4M4z73700w9t9hZUOXA0a+P4zid9zP5zELbCd+VnLxnsv0GGUZu6Sc/Xmbq6QWc1c2Q68dhOpz41kRHcZhVdNYVjsmquBZL0xVyHY41mAm0da9YeT3Uytbacj8ydJ2fYPF4gVrBYuqZBar5tS4Lw2/pBkni9HenWTpVbLpOuS5aRBXnwHWJD4UoTlVYKljkx8peTPfFSTRDYeyxeZbOlDj7yKwneFSDMo5p41iQHIkQzOgsHM3jWA6n75/BdCuc96uD3HnnnUxOTsK3hWPJu971Lj7xiU8QCoU65s7Hx8fn1WTTpk187GMf44/+6I+49957+dKXvsQf/uEfUpNr3HTTTXzgAx/gc+//CvOHm8+A+KYwpdkqS0VLuPhIwmGlulxj5qVmGbTktgi1ku252liIfehRjXC3wfLZumhJlz1Rw8qxV+a8GHa17ky0gsVjBc9hRQnIBFM6halKi/OLU3NbyqVJiiQccVbEGAkdSa51LE0aiGuEugIsj5bauungulhVW5Sxa8PisbzXTlmVcFa9v+cMszmMEddaRLcNNiobB5A7UVgr+ljB8plSW9fBlSgBmdhQiNyJYkcXKRDCsU7bI90GlVxNOCr9AMiaTKTPoLpc6+ioud77gxBKubbrufO0ozhdoTxf7eh2apVtFo7kKXfoFwDV5RoTT863PTfBtE5yW5Tp5xZpN7yTNQm7XKM4aVGZr+C4bT6qug521UaSWt9gpQNSIB4klNEpTDb7fotDkqoRTBuUF6yWMnyuZYn+aLlYVVF6TVKaeXVtGy2koMc0ilMVzDzMHVqmVmieE9ey0CIq3fsSTL+wTK1oM/NiU8AuSaK0o+u4BCIBjKROYVyMuRrnRtEl0jtjLBzNY5VtcicKLWPARlk4SRaOr7bpUJ6reiLDgrvMvl/Zwpe//GUWFxcpP7+T3/qt3+IXfuEXXpOlFHx+tHz2s5/l9ttv99wBJUnCdV2OHDnCt771Ld7znvfw67/+669yK318fHx8fP5tuDF5Pm9O7OG5wknmastktBgXRbagtFkZoYc0Lv/ZXWy/doDHvnCQqcOiXO+Zp6cZe2GWC39iK3vfMYyi+W6UPj6vNxoipcF92Ve5JT4+Pj4+Pq9ffJHSjyFXXXUV9913H47j8L//9//mf/yP/8ETTzyBi0s4FCZUTLCFXfAKLBwvCLGIDFvf0c/i8TyTTy9gLluYiC/rZU0IShpikcRImNJ01XNfatBzYZL4cHiNGKeyVGP+WN6byMqcF6MwUaGyaLJ4TEyeySqkd8WQZKllwsssWJy6d0r8IsPWd/azdKbouTEBLaIK1ZAZenM3E0/Oe/txLDh6V9N5Jnt+gspCtSmyQDjPNOi7LE1xutIiNGoce3xzmIGrspy4Z4LKfOsEjLlksXSmSHGqw2qZ+vsPXtuFXbOZeGy+dbMlnIMAglndK4u1koYgJb4l7JWIW02o28Bdp1ReYiTMwJVZDn/1bFvB0+KxQtvyXv8Sxh6dW3f70LUZlIDCibvbC4QCSZ1IbxDXmW+7PdIXpLJQ7SjYMlI6lZxJtcOEXzCjM3h1lrMPzlJZ7DCR5sDS6aI3MbSazW/pQVIkTt49uUaEpBoyfVdkmHx6gdrKPlxH1mV6L00y+fQiVsXh8NdG1wjY+q5IYxYs5l5aaumfDfSYyrZ39jP+xBy5E0XGH10bI6symV1xrIrNwuE8+cax1F2olk4VqRUscqeKuKvnNF2XnktTJEciHPrKWZyay6Evj3qvTwyHxOR5xcW1XDGBXMe7HgMSO39ykKlnF5h7ZZmJJ+ZxLAfLtVjMjlFKLHHs2DEe/htIp9PceuutfPazn2VoaKhtzn18fHxei6iqys0338zNN9/M4uIiX/3qV/nSl77E+9//fuLxOO95z3t4/v93lCRdTD694K20DXcbJLZEGH98Dtd2W8Y/ru164h5FF6U6KwvCtafh3CPJEr2Xpsi1eVYVJsqekEcJyBgJneJMRTg61fXaRkonPhymOF3BXTFsWCnoDnUFSG6LMvnUAs4KQdHsy01RRaQ/iKxKLJ9pOs2UZqpCrOoKkVF0MMTymZIn5qiVbObrQmYlIBPfFGbxRKFF0OTUxP8ze+LYVYf5Q2uFz+W5KnalgxC4vistpJDeFWPuleU1Ap7GGECSQQkoa7Y32itrMqohd3QhCqYDFCYq1Irtt3fvS2AWrY7jq3Yiq38JTs1hvM1YoYESkOm7LC3KCHYQQgWiGq7TWaRkpHQqC2ZHgZIWUqiV7I4LApJbI7gO5E4WOorHqssWxalKXXDjIKnNj6J6RCW7N8rsizmqS7V6jImkCdemYEpDC8ksj5a9Y2gRJiU0VEOhNCeE1o3PAY0YLayQ2Bxh/mgRx3KZfGbRe20jJrEljJEKMH1gGbvieAs3XLvZb4LpAOEeg9KcEDeV50QfU3QXPaJSmrGoFSyWxyprxOUSNn2XZVg+WyQ/VmZ5VPyAOIdaSKGyYGKb4v6w2lENxGeVcLdRH3O5zfuLW6bUN081mefgwYMc/qcE11xzDb/5m7/JddddhyR1LgPo88bhnnvu4Wtf+xqDg4N88IMf5MILLySVSrG4uMjzzz/PF77wBb72ta+xdetW3va2t73azfXx8fHx8fk3QZFkLo1uPef41GCUd/zXyzjx6ARP/uNhyksmtunwzFeOcvThMa78wG4GLvCFDD4+rxdqFYupQ2JuanBf16vcGh8fHx8fn9cvfrm3H2NkWebDH/4wr7zyCgsLC/zWb/0W4XCYWcZ5kvt4NnE/L1afoOjmwYHRR2eZPyomgDK7Y2x5uyiTVZgoc+o7TaFQ3/4MqV2ilJesyl4vmTu0xNRzC0JsIcOm67sw0rpwcGms7pchuydBfFPI+x2EQOfw10aZeSkHQN/laYauXzXIc8QkTu6kmOAJZnVRQmsFakhF0aS1jjIrfo1vChHt7+DOIotV3IF4e/ed/GiRmRdzawRKDSYen8eqOKiGTPdFibYx5pKJuc5KeSOpM/L2PpIdypiFugMMXd0lyqi04ez3ZtqW+mpQmCwzdaD9CvUfFfNH8swd7uz0VJyscOjLZ7FK7RvZf2Wavisz7V8si9Jng2/q/AWAVXEw8xZmm8nEUDbg5X7mQM5zBFrN3MElpp9fbLut0Y+MDqVbVEMmNhgm3F13AGtzmIomo2irJoxkIVAD4bg1+/LSmonp+HCY7bf1I6vgmA6Hbx/1xG+N601WZbr3JogPiesgd7zA0qkCuC59+1Mktoi/Lx7LM/HUPLgSuC5qoP6vJjFwZZZEvUTOzAs5Jp5cANclvSPCyNt7hEtGxREiqpMFHNdhqW+SsR0v85B0Fy/MPsPU1BRXXnklDzzwAHNzc9x1112+QMnHx+fHmmQyyYc//GEeffRRjh49ym/8xm/wwAMP8ByP8HL399n573tYtGdxXZfSbIX5Q0ueMKfrggTBjHgu5E4WPdeTYDZAZnfcEzc1Sm25jsv84WVPtBTKBogNivt3ed70BDjBlE5iJIKnQaj/W5ysMPHUAq4j3JJ6LkmtGf9UFmssnSx4AqVgWl9Twk1WJGSljcChLkRpuD9J7WIQ5Wz1mEYnjcTSqSL5sVLbbWbeEm44CEGVGlq7StmuOdRK9roOjsmtUbJ74p23b4t0HJfZVYeJJ+Y7CpQAlkdLXvnUVwPXdlk8ll+31NvC0TyLx9uLqIKZANm98Y7l5MLdBj2XpDqWXwMhTKuV279/dCCIpEg4tfbl5lzLopqrkDtRoLrcfgytBmW0kCxKqNV/VhLKBgl3h1q2r4xxbBc5oCLJTst2RXe9flWcqbJ8toJr2y0/6V0x79pbHisx+fQ8bq2+D1v8G8oEWsbuy6cLOFULLSiR2hYCx8Z1xNirNFMFSUKSXOEI5bpEeg1S2+t90BVCwVrBAkkswGjcO4pTFU/QZ2kmi13jmFfP8Kh0Ny/NPksqleL2229namqKu+66ize/+c2+QMnH46677iKbzfK3f/u33HjjjaTTaSRJIpVKccMNN/C3f/u3ZDIZ7rzzzle7qT4+Pj4+Pq8pJEli65v6+am/vIY9b19RAm6qxLc/+Qz3/Y/nKMz5JeB8fF4PTLw8j2O7xLpDxHr8CgA+Pj4+Pj7/VvgipdcJiUSCv/qrv2J6eprjx4/zgQ98AEmSmOIsj/MdHnK/yVNnHmE5V/9Su2pjrigLNfCmDKHuADhw+PZRZl7IAZC9IM6unxoCWYgmGivEAzGNwAoBUTCro0VUcODQV88y+7J4fd/+NFtv6RNBDp5Yw1yuUc3VhUAyRIeaoonGiuSeC1MMXtMqRKksmBz7xoT40l6G7e8eILWjdVLp+DcnmHharDbP7ImL8mgNHDhx92Tz+M5PEO0PNjdbMPui2BbtD7L1lj5UY+1lEhsOk94RE8e8iukDOa8MWjCrr9leWTQZfWTWc5laTWm6yvG7x9tO4qwkOhRqewVbJYe5l5bWLeU2/JZu+q5Mr7v/TuhxlZ0/NUgo27kEX36s3NEJKtxriNKB63Di7gkmnujgGODA6COzTD6zsGaTHlORdZlaweL0fdNtc5DeFSOzO7bm7yAmkDfVxXP5sbJXqhCEO1L/VWlkXcYqORz52liLW1cgoTH05i7vWjn0lbPkR8str99+Wz/JbUL4M/rwLNPP5VreP7U9yuCbsugx0a9mXsgJUVxIEdcnUF6sUsnVhIAQvGNM7Yyy8z2DIIu/HfraqNcPY0PND1SBhOZNUldzNXGe6q5K2941AAiR19G7xpg7uAwy9O5PEek1ADEJadavP8d1GK+d4dHyvTwo38mTZx7hzJkzXHLJJfyf//N/yOVyPProo1x33XVt8+3j4+Pz48y2bdv40z/9U44fP85TTz3Fz/zMz/D1r3+dZ3iQo4NPccR8gem5KVzXRZIlakXLu2cHEpp3by6Ml4XowXFBgt79aSL1sUl53vRKs6lBpWXcEagLZQuTFSaenPfESH2XpT1BQ0MgJSsSZr5ZKkyPqqKsVc3xREBqUCG7J0Ew1Tp2WT5bIld/poe7DbovSrKyGkJl0WTiyXmcmig/ldoebRGzVBZNpp5ZwLFcZFUivjnsfakPUF2qeeKa9O4Y4R5jbbIlUdo33L12m1NzmT+0jFMT+1fajDGWzhTXLZObO17wxn+dkFWpbWlWEOfJ7CCuAdBjGn2XpZG1H+yjV3JrZM14dyWO5VKYrLQvvSfRUZzfoDxXZeqZhY6l5IozFWZfXmopE9hACwuBT2GiddzUQJTLC7cVdkuSQ3ZPxOvXhYlyiwtTIKERSsu4NZPl03nmDi61vD7SF/RKQi8eX2bmhdaxYbhH9FcAu+Iw/ew89iqXzszuuCfqrhVtSrNi7GYkm+2tFS3hUua64DRLE3ZfmCQ6IF6bHyt5JRkbrkggXLz0iOr1y9JsFdt0kCSXvsszhHvEtZ4fLXlOsnpUJb65LnhywSpZ3rmtOVXGaqd43n2ER+xv8dzUE8iyzN/93d8xMzPDww8/zLvf/W4Cgc7jdJ83LqdOneLaa68lEom03R6JRLj22ms5derUj7hlPj4+Pj4+Px7oIY3Lf24XP/HxK+nekfT+fvqpab72u4/wwjdOYK+zeMLHx+e1T6PU28C+rL/gw8fHx8fH598QX6T0OmRkZIQvfvGLzM/P89JLL/FTP/VTBGMBxjnF97mbA+kH+f7xBzj8yAlAuL6Eewy0oJggCMRVwnUBytLJIjMvLHrioi039xIdDFLN1Th6+5jnONR/WYahhqDIEWIfgPxEmaWz9dXxsnBQ0iIqc68sewKN1NYom67rQo+3Tvycum+KMw9OA6IExfANXS2CIVmWKU6XKdUdBvSY2uzR9fYG07o3UdeO+KYQ0cH2injHcbGqdtuSYwuH8xy+fYxawUJWaStkCvcabL25v0Ug0qBRLivUHcBIrRUyNUrBRfqCa7ZBPR9v7iaxub3bkhpS6Lsi3bZdICZIKnMdyqBthCvcmtq5FIEQfnVygQIYvDpL/xXtBVKhbABZFSKg1SXWAG+FeXGy0nb78I09DF3d3mGpIfwZ/f4sJ77VvgydVbWxqu0n6Dx3pK72/UlWJYKZAEa8fj7r3abhBuaYDsWZCuZya94yu2P07k8Bol8d/+eJNTGD13TRf7lwljKXLM4+MINVcUjtjHq5Lk1XWTpVRJZbxUvxzWE2vbmbYEa049R3psS1J8PwDd0kRsTrl04VmHpOOEepIaU5EeyIfmikxesXzizz5NNPMnPeUR7Rvsljpx6gpOTZs2cPf/mXf8nCwoI3Wd9oi4+Pj8/rGUmSuPTSS/nLv/xLzp49y8MPP8w73/lOStlFnuJ7HBt6mt2/3sfJY6eoLIlnrxZWW57/elTzHJQWV5TQDXUFvGff8tmS56CiR1W6L0h64pOV4pTiZMUTojfGQbbpsHAk7zlRpnbE1jgHWWWbiafnKdfHdvHh8BpBcq1sU1kwvVJznvOO2/w9kNA6fpHXcF1qHGtrIsWza2XZOQ9XiMAb46dOjj6pHTEy5611TLKrjueE1E5kbZsOjiXKazVEN6tJjERI72wvcgYxNmsrsALsqt3RufFcMPNWR4chRZeJD4fb5xRxvF37Eh1z1hBe1Yprxz9aWBViG5eWcoUNgmmdnktSniBnJbImg1R3onqy2a9W4ljOuqL6YDqwrihej6roDeFevQ+K0n7iWGsFS7R7RWpkTSa9K+bFzL28xPzRAiutvrSQQtf5CSFUcl2WzxQpzVRE6cIVY9zSTMUTp7lOsw2ZXTHiW4QIxMxbTD27iG06GEnd65+uA7kTBcoLol9oYdVrkxJQCKZ0z51sbmyB4wuHkN+yzIO1b/Ji6Un2XLuTz3zmMxw/fpwHHniAD37wgyQSiY658vE5V/yJGB8fHx8fn41JD8W45Y8u49pfPR8jJj7XWVWbp//pKHd85PuMvTT3KrfQx8fnB8F1XU+kNLjPL+Po4+Pj4+Pzb4k/g/w6Z8+ePXzlK19haWmJJ554gne/+91YlsUUZ3mC7/J07LsYbzV54qsHPOeezO44fXURSWXRpLIovnxXDRnXdnEs8Q18bCjkuRSdvHeKscfEB7Bwr8Gu9w6hx1XyZ0veyvRQNkByS8T7Ar6xanrhaJ6T35nEXBKTR5vf1ismzhy8vwViGlpEw6pPZGgRFcdyGH903hNKbbqui81v6Wk5/tGHZhl9SAwsUzuiwulmBce/OSHKXQHpndHmqmXEJN/p7zZFUv1XpVuumMakSv+VWUYablErKE5WOPvIDMtn25cwAei/PEPvJam224y0zua39HgikpVUFkxOfHuC3InObkuJ4UhHgdbMgRwLR9s7OW2EuWwx9v25tiIhqDsddJikA+FkNfVs+zJqQ2/uov+q9mXeogNB+i5PE+7tvO/xR+cYf3KtA1P2/ATbbukXoi2HlpIw0aEQ3ReL1U8Lh/OMP9p8vRpSvPPuuSOtcE+Kbw6z+SbR58pzJke+OuqV32nse9ut/Z7gZ/zReYrTFWRd9pyQ1FCrM0ZlwUQ1ZEZu7vVcvsYfn+XUd4SwSl8RmxyJeiv4K4smk08v4FgOg9d2MXyD6OtLp4qcuHuC8pxJMKPTc0l9pZcDSCAroh226VCYFMeWGInQf3nGc7w6+I1TbHtXH2e2vsBj+t28UnqOgwcPsmvXLn73d3+X5eVlXnjhBX77t38bw+h8fnx8fHxe78iyzNVXX81f//VfMzExwXe/+11uueUWvvrVr/IsD/Fi9mE2fyjJhz/3fqaeF88bWZPI7I4J0ZIrnIVaHHFWzBfHNoVQgwpm3mLy2QWqS2KMljkvRmIkgmu7LJ0peo43wXSgWXoUPDeXmQOLXnldI6mT2RNHUqSWZ7saVLzngKRISIqEuVzzxouBuEbf/nSLu1CtaDP51IJwnQEy58U9xydoui7ZpnBdSmxZIa5xYfF4wROzxDaFCMSar23kRNFlei9Nt3VVWjyeZ+FoZ8ekQEIjvSvW8ixdSWpblPSu9mXhlk4XmT7QoQwsIo+dxl121RGlUdsJsM6B4nSlrUsRCHFLpC+I28ZECaA0UxUimTYuSKGuAN0XJlE6iNoTW8Ikt3Z2cCrPm8y+tERt9ZhQgp6Lkp6gZ2V/lmSJxEhEvKcLc68sC4fUOisXGOROFph9aallv+mdUU/gt3Ak77l8NcjuSXjCPrNgif7qNvu+a7uoQQXVEMIqq+qAK3KR3hUF16VWtJh8ZsETZjUcsBRNJtIf9MrD5cfLVJdqYrx4Rdr7+/yRvCcoDPcaXj92HVHarSE+MouW5+yU3hnzXCvLc1VOPjfKWz9xGUuXnOHByjc5pryIZVn82Z/9GYcPH+bBBx/k137t19i8eXPH8+Pjs5rNmzfz0EMPUSq1/3xaKpV46KGH/H7l4+Pj4+NzDkiSxLarRQm48966ydO8L00W+fZfPM39//N5ivN+CTgfnx8nFkcLFBcq4nuHXe3nbHx8fHx8fHx+OLT/ht7ndclll13G7bffDsChQ4f45Cc/yT333MOdd94JQNAIEiiHGX9wmE3RLYAQA21+aw9Tzyww98oyZx6Y8QQekYEgoUyAuYPLOKaD0R+kVhClRPLjJU9g1Hd5msqCycLRPAf/6YznMDN8Qze1Qo3T989QmhariGUVbNP2JnGMlI6sSCydLnqTYqohs/1d/Uy/kGPu5ebExegjc8i65L0u0mO0lPaQldZVobJad3yqtye2KYxVcbxV+isJdwUIdxnIMjir5nimDywSTLeflGqUPIsOBIltCrUIYADO3D/d1qkJoDJvcvr+qRZRzEoaOVMNec0+rJLNK//vTNvXASCLki3lWbNFsHMuhLIBrHK95FcbTnxrov1bqjKO47RMRK3m9HenOzoZ5cfKHP/mRIsICMTkT2pblNGHZylOt5/Amz+8jN3BFSuU0Yn2BpmWm45hDbSwQmwwzOLRgnBAcBrHIvqO0yijo8ueaC2Y0Ql3ib6XP1ti7LHWdskq7PzJQeaPLjP97CJTzyx6+4j2B1k6VcSqOMIeuj5n2LiWwr0Gm9/Sw6nvTlGcrHDinglwhHCp77IU408uUCtYlKbLXrWUYFbHrl9PwVSA5EiUmRdFOcCx7896Odn6jn5ypwtMPD7PwqE8o0dGOVU9ijxgMTU1xcN/+g00TeP888/nPe95D7/3e7/nOyX5+Pj4rIOqqtx4443ceOONfPazn+Wpp57i61//OnfccQef//znicVivO1tb+PgV05hPlZFc4TwIjYUIpgJMPHEPKWZaotQItoXxMxbWGVbiC1CClbJpjxveiJy1VCIbQqRO1kUguT68CeQ0Oi6IMHk0wtCjGQ1hSOu5XpCEiOlU83VPJEFNAXIE0/Oe24x1aUasweXvFJt4V6Daq5ZUk5WJZCaAhVJbnWb0cIq4W6DwmQFx2p99kuyeGbZprPGQcg2HRaOLnvlgVu2VR3sumFRcluUwkTZc1ACUeZ08unOZc1ypwotorDV+xaNE6Y77qoxQ+5Eof0L6ygBGVmV2joWrYekSGghRYy72giRKosm44+1X6ktqxKO5XYce5VmqtiV3JoSaA3mXlluKc3XIDESES5Ceautw5IQnOW9vtF6QBBM6VSXapQra92lQlkDcCnPVVvckZp9R2od00uirFtl0cSuOOROFbxxT4Nof5D4cJjxx0VZxem6c6QeVXFqLlbFxrUcnJoouYiLl7PM7hiyKjPzYg6zYIlcu2IcrQRkls+WsMo2xZkqri1KO6qG4vWxSG+Q8lyV6nKN6nINsyBKt0X6giS3Rhh7dA7Xdpl6fp7F6jyzTCJvMTl58iTP/pcHuOmmm/jYxz7GL/zCL9Df39/2PPn4nCu33norn/zkJ/nVX/1VfuEXfoF9+/aRSCTI5XIcOHCAL3zhC8zOzvKLv/iLr3ZTfyDe+ta3tvxeqVT41V/9Vd73vve9Si3y8fHx8XkjEAhrXPGB3Wy/doBHv3iQmaM5AE49OcXogVkufPdW9rx9GEX1v0Pz8XmtM3pgBoC+89KoenuXZR8fHx8fH58fDr5I6Q3Krl27+OIXvwjA2NgYn/70p7nzzjsZHR0l585xuPAsW7ZsQZoOYH/bJJ6IM3R9F07VIdxrkB8tU8tbHH9qHlmXGX5LN9HeEGcfmsauOqJsSV24kdwawczXWDiaR4uojLytl7HH5ph4ap5QxmD4xm5mDy3Re1GK0mylZZX+tnf149oOL//9GcK9Btk9cc4+MMvEUwsEEhq9+1NUl2pIkihJJVZTV8nujZPdkyB3uoBVcsjsiaNHVM4+IAaaW2/tJ9wV4PDXRpFkiZ6Lkow9OketZJHZHSO5NcryWJHp53IMXpOlOFXh6NfH0eMqA1dmqRUtRr8/S2prlHCPwejDwq1p9/uHsKoOR+8YQ4uo9F+eZuq5RQJJnfhQGEVXvDb0XZ7GLFjMvbyEkdbZfms/J749QXGySnw4TGJLmDPfE7HDb+miNGcy83wOWZUZui7L7MElgimdvsvS5CfKnPr2FIBwBXJdpp/LIeuw6c3dzB1cJj9WJtIXJLM7xvQLi2y5qZfl0SLV5ZonlBm+oZuFY8JhyYhrDN/YzdmHZ3FMh+zeOFpIJdJnCHctWbj0LJ0qEszodO9LMnVggcpcjcx5MfSYxsTjQpQ1eG2WQEJHluHsg7P0XJxk4ol5zIJFameUxEiEk/dMUlk0GXhTltJshYUjefSYysjbe8mdLDL59ALBTIDs3riX7/6r0qiGih5W0BMafZekmHp+kcq8SfclKXovSfLyF09hVeolNvbGmXtpidjmMP2XpTnzwPT/n737jo+jOhf//5nZ3nfVu9yLbFyxTceODQFCh0C4SWiBFJKQRvpNbvINv7Sb3FzSSAi5kIQkhBJqKLEpBmMbG/cqy7Ysq9ftfXfm98dIawvZYMAgYz/v10uWdubMmTO7knVW55nnoXt9iNRAljGLytj3XA/OUhv1S8ro3xGlZ2OIxn/up+6scnq3hYl3pph4aTXOUhub/rCX6P4EzhIrpdO9hfKF4z5YgWJW6dsZwVVux1fvIhVMUzzFRyaWw2RR6XxtgFhnkjGLywjuNZ7DqvnFVMwJsPnevWQiOWKdKTzVTlzldiwuM4qqENkfp+u1AXRNY8JFVQw0xRjYGcE/zoV/vIe+HVGysRzeOiehZuMO6XHnVqJaVRofbjUWq01QNb+YdDhD2Qw/4dY4yZ40+17oojXWjP0UnV27dtHfb7x27pCbefPm8ZnPfEZKuAkhxNukqiqnnHIKp5xyCj/+8Y/ZunUrjzzyCE888QTbeA0lZ5SMO/PMM3nljs0EuooomuQhFcxQPMVLeH8ci9NM13ojI46r3E7RZA+5ZJ7OtQNY3eZC9iKr10xgoofI/jhaFgIT3JisKv07owzsjOKucJCJZbEHrOTTGmaHqTDvclXYqD61lPaVfcS7U/jGucgl8sQ6k+SSOYqneIm0xnGVO8jGc9h8FpJ9aRRVoXxWgGh7kt7NIRSTYoxhX5xMLIfNb6H6lBKCu6MEd8fw1jrRdZ321YPZLAfLbw3simIyG9lqujcGQTcCTJxl9kLQS/FUL7HOJLqmYw9YqT6tmNYVfWTCWdxVDlSLQqw9idVjpniqh9DeOKmBjBF4XOciuNuY55Se5ENRFXo2hQAjqCk1kCbZn8HsNFE81UvfljD5jIazzIbVYyG0J0blyUWoFpVgU5REbxqTTcU/zm0Ex6SMebLVZSa42wha8o9zkY3nsRdZsTjNZBM5wi1xcom8kTWo2EZ2MKDFN8ZFLp0n3plCNRvPYTqSpWiCh/6dEewBC/07jfF765zoOkTbEiiKQtFkD9G2BJmo8bp4ap3YfRbjObWbQNcLge8l07ykghliHSn0wed/oDGCroGn1oGvzkXHmn60rE7RRA/x7hSpYAaL24y3zonZbiITzWJ1mzHZDnz/1C0sI9GXpm9rmFwyj3+8m+DuGFpOo3xWgHQsS6gpRufaAQITjXJoyb40gQlubAErvZtD9DdGcJba8I93E9oTw+I0Ub+4nN6tIcLNCULNMfzj3GRiRrCeo9RG5clFdK0LEutI4iixGUF4fgAde8BGvDNJ/84INr8FZ6mNgUbjOawdnHN2vhYkFcriLLNjD1jx1TmJ9aSwe61E25Jomo633onVa2FgRwQtrxOY5CETzRHZn8AesGJ2msinje+VqgXF9G4NE242sm8VT/Zi8xlZvIayn4X2xIiH4wQ9vZSd6uHll18mmo5SVFTE6dNO54tf/CI33HADbrf73flPSZyQLrjgApqamvjnP//J9773PcDIAqEPpmLTdZ3LL7+c888/fxRH+fY9++yzha/7+vr48Ic/zFlnnTWKIxJCCHEiKR7j5aLvnkLTinbW/K2RVCRjlID7eyO7lrdx2vUNVE8/dPZ4IcSxQUq9CSGEEO8dCVIS1NTUcMcdd3DHHXeQSqW4++67+ctf/sLWrVtJJBLsjm0nkAlQka7CFSyivnMs3hoXmqYy7ap6ujYFURWF1hU9BPfE8I914alxMOGiKnY93GbclT54Q7OvzomnyoHJphLeE8dZbsPsMKEoyuDimoJqVSg9yUeiJ02yN02oxVj4sLpNlDT4CO6OEWyKUjGvCJPVhKvChMmsotpUVIuC1WtmYFe0UF7E7FSpOa2EWMeBjES6phHrTpIOZXGUGmUlFBOggWJWsXrMOEuMkgumwX7BWGS0F1lwFFkxW43tQ+XrADRdNzLgYNz1bbabUEzQtyWMltXw1buw+sxoaQ2TTcWUMfq1ec1Y3GYsbguQRrUohTIUqlWlaJIPmzdJz4YQDParmhTCLQlcFXYsjgM/yiabWni+J19eh9lpYqDRWChTzUa/6WCGvc904hvjGjZ+k91UuNbCeQa7M9lUTDbVKIFngprTSjFZDpSBsbjNTPxQDe2r+jBZVMy2A3cbmG0mEt0pUgMZFJPR71CWIKvLTGC8m7KT/PRsCmG2qQfKy6gKVq8FZ5mRqcpkUQolSVzldkxWE8n+NC3PhbC4zYPjNcavZzWjrMbgeUxWFVPWeOCrdeIothayAygmMNmN59DkMGHzWrG4Bp9TTcUesGB1m4gD8Z4UFueBazPZTBRP8aCaVDrXDpCO5OjdZmT4snqNMZntZjzVTmKdCXQNgoOBYEWTvZjsJiPYqyWKs9TIolE+x4/JrmIyq2RiOVSThi1gxV5kpWdDGHvAgqvCjtlhYmBnBFSFgT1RYh1JSqb7KJ7qI95lZG9qW9lL6TQ/iqow5apaMokcWkqjZ3OcSDxMj7mNkNZPa7CVVCqFaY2J6upqFi5cyPe//32mTZuGEEKIo0dRFE466SROOukkvvvd79LV1cXTTz/NY489xp133kkil6DaW80p00+h47kesjsqUHMW7H4rnhon9oCVWEeSeE+KSIsRkGp2mCia7CGf0chEc0TbEqAbv+O8dS70vE7ftgiJvjQl5TZyqTz5jIaW0zBZLZjtKo4iK/m8Rqg5SrzH+B3iHSwp2vpSL8mBLK4KBxaHGVeZjUirZvxutalGdqOmaCETpm+sC98YF7F2Y+6lqAqZWJZEn5E5x+RQjd/BOqCAxWnC4jIbGXLUA6W5wMjE6Cy1khywkonmMFnVA7+/BzPs5AezMKomxcjcmDOy5QwFIg2VdzP6NVLl2HwWFOVARh6TVSmU4fJUO/CPdRvZpDJGv6bB+VG4JY670lFoqyiKMSZFwVVhp3xWgMj+A1k5VYuKYjIydSpmhcB4d+G8ikkxSokNZZ+yKKi5g8ekkolm6Vo/gMlmQj3oTk7VouIsteGutNP1WvB1z4uRbSjUHCcVzOCpdRa+H8DI7uMqdxDvSqG87vk2O0xYvRZMNhNaNodqVVFUCnNTk0Wld3MILafjqXUeKNcHoOvoQxk61aHnZfA1LLOhHBTnrFrUQkYkq8+C1WUuZDFSzAr2wXl8NpEnHTqQKQwF7H4LjrkB2lf1oyoK4eYYsY6kMXeyqOTNGna/BS2nY7Kq5HM62VCWwHg3pdN8hPbE0HJGacRMNIfVY8bms2Cyqmh5nXxGM15zm4qW18jG87irHPjHuEh0pUj2p8nGDtxUUTbTj2pW6NsaJtmXoX8wCMpVbsc/3k02nkMxKQw0RYnpIULWXrTJabZt20Y+lmfS7klceumlfOxjH2Px4sWYTHLHrnj3fOELX2DhwoU8/fTT7N69m3g8jsvlYuLEiZx33nnMnDlztId4VCxdupRp06ZRVTWyLLsQQgjxblFUhUln1VA/p5x1D+5ix7L96DqEO+I8/cO1jD2lglM+NhVX0cjS1UKI0ZWOZ+kezIRWO1OClIQQQoh3m6IP3TYnxCGsWLGCX//61zz//PP09hqR5KqqUldXR7ZFYeaU2dBpJRPOUT43gLfWSdOj7Vi9ZmweC9H2JGa7ypQP19G2spfQnjhmp0ouYSxgTP1IHdG2BG0r+lDNACpaTmPylTWE9sboXh/C7DRh81kGM78E6FofLGT20fP6sJJuvnEuas8oZfeTHYXyE2anicp5RXS+2k8upeGtcxolF0LZwv4pV9bStSFI35Ywr+epc1IxO0Dzs52F0lhD5b5Uq0rV/GK6XusfUUrsUOMDmHhpNblknuZnuw75nKvmwZJyB3XnLLcNKzd2pAIT3SR604VrPVLTPz6G7k0hejeHjvwgFYoneQjvix+2hN3hHOr6Di6h9nqeWgdjPmCUPTs4+MzqM1Mxp4i2l3uMUn4HKZrsAQUGdkaNwKWDui6f48dRbDMCsF5/WWaYclU9oT0xo8zNQdfavysKmnF8KpQtlPcDGHdBJYqiDCt/Zw9YKZvpZ/9LPaBByUk+o9xJTwp7kY1YRxLVqjL1ylo61vYTbIoVyvlZvWYmX1ZL++o+BhqjxvaMBhpM/nAtkZY4nWsGMDtVHCV2ovsTlJ7ko3iKl50PtgLgb3DQ2LoTz3QLjY2NhWxJNpuNKVOmcMUVV/CVr3wFp9N5JC+bEEKIoyyTyfDyyy/zr3/9i3/961/s2rULVVWZN28e55xzDsv+ZyWl3nKS3cbv9apTigk3x4n3pLD7rWSiWbScjn+cG3vAQte6oFGeTFXQ8zquCiMDU/vKPrSsXigH5iyzEZjgoX2VUcrK5rOQjeeMYBWLSrw7ZWRHGu8mvD8+rDxY+ewAuXSe/oPmO44SGyarSqwjaZRuKxn8PT/4rsM/zo2r3GZkUjrEO5GSab7BTD+Dv+MHg1fAKO2l5QbLgR1EMSkEJrgJN8fJHzR/sPktlM8M0LV+4NDlxwaPHSpLN3Q+i9M8rFTckTBZVWw+ixGM9RbeYXlqnfjqnLS9cuiybYdjdpiwOE0k+w9Rcu2NHOL6FBV0ncOOu2yGHxQKmaeGuCvt6BojSu6qFgVvnYtwcxxd0w+UbMN4nkqm+wg2HboknKfGgW+sm/aVfYXXxewwYbKqpMNZTFYVb52T8L54IXjJ4jZTObeI7o3BQrYiMMoQMjg+1aLgqXYSbUtgdprJJXJoOR1fvQtHiZWudUHje0HTQTeya9kDFjrXDBSuScsaPy9Fk72F8dl8FnJJI/Cv4uQiYh1JYh1JzA4TujdLa/d+xl9YyfLly4lEIjidTubOncuiRYv4xCc+QV1d3Vt48YR4+7q7u3G73bhcrsO2SSQSRKNRysvL39Y5EokE999/P9u3b2fHjh1Eo1G++c1vHjI7UyaT4Y9//CP//ve/iUajjB8/nptuuol58+a9rXMf7IYbbuDyyy/noosuOqL2jY2N3HzzzfzhD39g8uTJb9p++/btNDQ0vNNhCiGOMfKzLY62vuYwK+/ZTs/uUGGb2WZizuUTmCYl4MQJ7K3Ovd4Le1d38vwvN+KvdnHlfx/dbJwn2u+XE+164cS75hPteuHEu+YT7XrhxLvmY+F6ZSYs3tAZZ5zB/fffT09PD8FgkJ/+9KfMmzeP7u5u2vVmntrxT55LPsJqfSkb97xGV5NRniwTyVF9WgklDV40Dbo2Bol1GgtNZTMDTLjYuKNx7zOd9AwGwgQmeJj6kTqjNNVDbXQPbi+e4mHM4gq0DHSs7i/csW0vsmEvMjLsqGYomuQh3pGkfVV/IUCpbmEZvjonrct7C4EzFXMDlM8OFK4xl8iz+18d9A1mvymf46fkJF9hv57TSUezheOtbnMhAMZVZsNT7UA9xJvKg8d3sJYXumlfPbgIdYifwPoPVDD2nIph2xLdRgCPvdiKt25kAEnZTD8TLhp5l2iwKXbYACVvnZPas9/aXQGBiW6qTi0+9E4N+ndGRwQoFU32MPGS6hHPkWpWKZnmBQ5c38Fjm3JlLfYi6/BzDHYRbU3S8kL3sACloT4dxVasvtcdh5EVwV3pKIxVNauYB7MyZWN5MpEDi2T2gJUxS8oHszFA89LOAwFKgKPYSuX8YjzVRn/d60MketKMPa8Se7Fx7u4NQdpX9eEoteKuGjyvAo5SG3a/FdWqMrAjTHR/gsr5xdSeabwWWkZj2/0tBJti1J5dytjzKgHjZ2rfc10MNEUpafAy8dKawnh6t4QIN8dRzTD+gqpCpqdYV5Ktm7eziVfYUvYyj+z8G1sia1m1ahVut5vLLruM1atXk0ql2LhxI9/5znckQEkIIUaR1Wpl8eLF/M///A+NjY3s27eP3//+99TX13PnnXeyOvE8z0cfx3ZBklaaaG/uIB3NgA4mu0rZrAAokOhJEdlvZFlSFCOYyVFiI96domdDCC1rBHaUzw7gH+ci0ZMuBCiBESTkqXWSGsiQ6E2jmIwsOja/pdDG5rMY2Rp3RQrnsrrNlEzzkg4dCDCy+a0UT/UOy7AYao4ZwS66ESBUPNVbyJQIkE3kCuXrVLPCQQmPsAeshSw7BzPbTdi8lhFzq3QoS/em4IFgGGX4/qHyvDbvQX3qFAJ4XJX2EceoZoWKuQEcxcPnG/mMNiwY6/X8490j5zZvomiSZ/jYDpJL5g8ZoFQ+O4CrYuTd2faA1chmedD1DSmZ7qd4smfkSQavfaApSv/OyIjdVo8Fi3tkcl7FpOAstWFxGa+7rh3I2JTPaOQSOQ6+VcZd7SjMl2IdKaO87UGBY74xLvxjXYXjg7tjOEpsBCYY5dCysRx928Nk41mcpbbCuG3DxqcUsh+Vz/Ib7YBwa5yudUY2qprTSnAMvkaR1njhfUrF3EBhHpkOZY2smLqOu9JOYKKnEBgX6grTOrCPRn0jWwIreLbrn+xgHW1tbVxyySU8/fTTDAwM8NJLL/H9739fApTEe+rqq6/mwQcffMM2Dz30EFdfffXbPkc4HObee++lpaWFCRMmvGHbH/3oRzzwwAOcc8453Hrrraiqyte+9jU2b978ts8PsGfPHlpbW1m4cOE76kcIIYR4p0rG+rjoe6dw5ienY/cYc/pcOs+avzfyyDdX0LGt/016EEK8Vw6Ueisb5ZEIIYQQJwYp9yaOmN/v56tf/Spf/epXASPi/be//S3PPPMMe/bsYVtwA9uCG3A6nUyZMoWVr7ZSlKiEjBk0nQkXVrPzoVaibQkyMWNhJB3JMvWqOrrWBYl2JFHWDxSy50y6qJpoe5LONQNE9ifQBstHTLqkmoGmKK3LewoLUZ4aF9WnlhDvSRFsimJ1m8nEcsZd24PjtwesuMpt7P5XeyFgpmiSh5KTfOx+oqMQJGN1W8hnD2RMysSy7H/eCL6yF1mZcGEVrS/1Et4XJ9qWZMeD+41jVRh7TgU9G0PEu1PG+AYFJnowWRT6tkfIhAcXhVSYeFE1kbYE3euChbZ9O8KopkPHD1bMDmBxmgqLgUOS/ekDJdRel3zIP96Fp9pJ60u9w7abbAct5h1h4iOL03zIhTLfGBfeeietL/eO6CsTzZHoSxVev4PHVT4rQKQ1MSxACIzFqYFdkUKwGRil08afX0Xbyl6irckDC6I+M2UnBWhb0UuqP0PjQ23GASrUnllKrCNJsClGy4s9w8Y28dIqEj1pWl/qZWCXkV3J6jOTCefQ8hpWrwWrz0yqP0OyN0P53ACeSge7n+wg2Zth16NtmGwqRVM8DOyMkk3kUE0KFrsJzWsm3mlkFBh3fiWKArGOJKlQhsYHWzHbVRqurqNzbT/9O6N0rQ+ia/1YvWYmXFhN68s9RFuTDOyKFhZ1J11RQ7ApRrQtSaw3hWlnBFWF8pOLcFc5aHq0HU3XaNq7C/NY2Bpcz8DAAJke4zkszhVz2mmnceONN/Kxj30Ms1n++xdCiGNdfX09N910EzfddBOaprFhwwaWLl3K0qVLabbsoLFrEyUlJZx57pnMnz+Npb98BUWzkYnljMAfm0qsM0Vkf5xMLAu6UVrLP8FN9/ogwT0x8mnjl6M9YKV4ipfOtQNGgMhQ5qJyG/7xHtpX9hoZZQaDP3xjXeTTmlESDSMARTErKKpSyG7jKreTjmbpWN1fOE/57ADx7lQhiMlsN0q96UZMEia7Srj5QGZC/3g3FpeZ7vXGXKl/R6QwBmeZDavHQmhPjGw8R+daI+MNCgTGu4m0JsintULAtr3IStFED90bgoWgkmw8R2R/gnR0ZFC32WEiMMFDPq0Nm5NoOZ1UKFu4poMpqpHRKd6VIh0Z3qfFaSIbP/J7RBSTgtlpQjErI/YVTfKQ6E2TCr4uSEmBVChzyCxQ/nEuMtGcMe95nVh7gnx2eHSVr96FzW+hZ1OI3GBJOjCyJ+UGn5OD+7J6LXhrHPRtj5BPaUaA92CXjhIbJQ1eOl41vhf6d0aNksODWbKM4Cmjsa7paFmNynlFBPfESA1kCO6OouV1XOV2UqHMgedeUUABk0Ul0ZvG4jJT0uArZFQaaIqCbsxVXRV2Olb3o+V0utYNkI3n8Y9zYfNZC98TA4PZnVzldnxjXXSsNhaOYp1JsrE8iskIUAvujqFrkMok6WptZ8GtM3j22WdpbGxE13XGjBnDybPnc84553DVVVdRXHyYIH8h3kNHkkT7nSbaLi4u5pFHHqG4uJidO3fyyU9+8pDttm/fznPPPcdnPvMZrrnmGgA++MEPcv3113PnnXdy5513Ftp+9rOfZcuWLYfs5+Mf/zg333zzsG3PPvssp59+Oh7PIQIvhRBCiPeYoipMXlhL/cnlrHugiR3P7QcdQu1xnvr/1jD+tErmf3QKroCUgBNitOiaTtumoSAlKfUmhBBCvBdklVq8bZMnT+aOO+4AQNM0nnvuOe677z5efvllNm3aRD5vLGbY7XYmKhOZ755PLB+BVqicX4zFYaJ7Y4jg3hjZeIZMJIfJrjLpsmp2PdLOwK5oYXHH6rZQ/4Fydj/ZQfur/aSDxvaSqV5KT/LT+NB+Gh9pLQS71C8pJxPJ0jIYXIQK3nonxVO89O+KomU07MVW0uEssY5kITCqakEx/Y0RI7MPUDTVR8WsADsf3k8uoZEKZeh6bYDwfmPxrGiKh1S/kWXA6jRjsqnkh4JxDgr+cZXbMdvV4aXfNOMO7XjX8HIl0dYD2YEq5hURbIoWFtf2v9h7yOxL0bYk0bbkyB2AalExO0YGMAWbosZd4G9Bz6YQbBq53WxXsTjNhwx2Gip58XoDjVGi7UmysQOLaJXziuhvjJCJ5Oh6LTisfSaSI9qeIBUcvuBndVlwV9mxes3G6z90nYN37JssxhOmqiqlM7z0bo2g5TS61gVJ9h947usWlmEPWNn1cBuZSI7dj7dRNruIiBo3FgH7M5DXsXrN5FIamUiOqgXFeOqcRgk5YM+/OnCW25h8WS17/91JvDNF68u9ZBM5qk4pxl1pZ9cj7eRSGp1r+4m0Jak5owSL20LzM52ARnCP8X1fNtNPYKLbCLpSjecx2ZfG6jYz/txKWl/uJZPNUbu4hFWrVrGtdBsDAwPk1hnPp9/vZ/bs2SxevJivfOUrFBUVvfkLLIQQ4pilqipz585l7ty5fOMb3yCRSLBq1SqWL1/O8uXL+d73vkc6ncbv93PmmWcyZlY5H/jAB/jBol+RS+SpnFtEx6v9ZCJZ1MGkRqmBDFULigm3xEmHs0TbEmiDgdplM/ykI4PzpFykUKqrcl4R8c4UPZtChaBve8BK6QwfnWsG6N0SHhbIFG1LEG1LGhmRTAqJvnQhgMbqMWPzWehaN1AIZimfGSDZnya4OwZApCVhzGMwMhg5y+3EO5PoOqgmpZBhExgW8OIothHrTA0LJMrGcyR608PKwaFDpNUIfDbbTThLbYXHuWSezlf7h7cfFNoTO+TrpGs6ZrsJ1TpywtZ7iLLCb0TP6/RsDI3YrqgKJpuKcqh4J51hQV4H69kUMkqZDTI7TDiKrUTbkofMyJQKZ8hn8iO224ttZOO5A4FbQ+X4NB3VohbKolldZkx2E8m+NKmBDP07I4XXw2RTjXn3zgiJnjShPTGsHjPeOufgzQk6yf4M+XQes9NELpFHUSEwwU1wT4x4d4p4l/FR0uBFtaj0bAqRjedoX92HltOpPq2EYFOURG+aRE/KKBVnUymfHRgsT5gnGcwYN08oUHlyEZG2hJHpKZ03bqBQjQAnm99K9/ogeUeGqRePZe/evbzyyka2bdsGQOeje1mwYAHXXHMNV199NZMmTUJRRgaXCXGs6+3tfUeZVa1W6xEF5S1fvhyTycTFF19c2Gaz2fjQhz7EXXfdRXd3d6Hk3G9+85sjPr+maSxbtoyvfOUrb33wQgghxLvI7rZy+o3TmLSwhpX3bKN3j/HeYM/KTvav72HOFROZ9sH6Q2brF0K8u/r3RUiGM1jsJsonB978ACGEEEK8YxKkJI4KVVU555xzOOeccwDjj4MrVqzgz3/+My+99BI7duwo3P1oMVt47SkPXjWAJ12Ms2ciY8+povGRVhI9aSxuoyxD37YIU6+uY6AxQqQtQaQ9gZbJE94bZ9wFlaSCGYJNUVRLBC1nBLFMvLSa0N44Hav60QdXuzw1DurOKmP3Ux1GkJBmZEgaf14lfTvCdKzqB9Uo/+Wpc5IcyJDoTmP1mol1JGlL5MgljAWVMYvLCTbFCsE4JQ0+Yp1JEr1pMokcux/vKDwnEy+qJtqRpGvtAG0rDgQX+ca48NQ4aFvZR/f6UKH9mHPKibUnC4FMqlXFN8ZFLpErBCkNZSMy21Vqzy6jfVXfsCxERZM8FE32sPtfBzJDDeyMFoJoDvnaWdVCkNYbv8igqhRK3R2sf2eU/tedo6TBi3eMi73PdA4LXqo+vZhkr3Hn/cEBSma7im+si0w0S3/E6MviNlP/gTLaV/aR7MvQtsIok+etc+Ib66Z1eQ+xjiQ7H2oFDWx+C+M+aATwxDqS7FvaXXjezXaVkul+UqGskQWrNUnd2SX074oSbU3SuzkEJqOsS7wzhZaj8Pwn+tPGMVYjA1LPlhA9G0N0rQvS8Wo/YxaXo5gUmv/dRaI7TfurfWTjWSZ/uJautQOE9+WItibIRLLYi62MPaeCfcu6yMZyJPuNLAiqVWXKlbV0rh0gE82hKxDaayyAjj2nAtWs0rhyD9kxEXatWE9vqJswYV784aMoikIgEODUU0/ljDPO4LbbbpOgJCGEOM45nU4WL17M4sWLAUilUrz66quFoKWf/exn/OAHP8DpdDJ36lwaNw7gyPrwhYrwj6vEbDfT3xgh2pkEBXKpPPmMRvVpJXSs7iPRmyKf042AjVSeqlOK6d4YJLI/Yfz+1o2Sb/6xLro3hejfESlk2ymd7iM3mElnKE7DXeXAW+ei7ZVeI6BFMUqFuSochUBrq8dM3/ZwIROTvciKs9RWyNZj81vxj3WT6EmhazqxrhQMZi60B6wUTfbQvT5ILpmnY82BLD5Fkz1GZqNwtvC71eo24x/vNs43mEHIFrDgqrAT7UgWSo0NBSgZAecmwi0HAoAUVaF0+oG54JChEmGHoqiKkankCJKVKCZlWMmzIbqmjwh4UlSjpHJkf3xYwJHZbsI/3kX/zmjheR1iL7LiqnAQ60gVgpdclXZsXgsDjUaQfDqURVHBP85NojdNOpw1SiQPduUb48LmtdCzOUQmljMC2ge5KuxYPRaSfWkjO1JOp2iyh4HGKPm0Rt+2MNlkDpNVJZ/RsDjNOMvsRNsS6LoxD/LVu3DXOGhf2YeuQfvqfsw2lZrTS+jeGCIbyxFpTaBrxpzfUWwrjMHIIJbDP96N2WbcLKCoCvGeFPmshrfOiavcTufaAUw21chAFcthcZoonxmgc0M/MXOIcL6Tzh0dWMYq7N27lxe+8TgTJkzg7LPP5rrrruP8889n+vTpb/6CCjEK7r333mGPN2zYcMh2mqbR09PDc889R0NDw7s+rqamJmpqanC5XMO2T506FYDdu3cXgpTeinXr1pHL5ViwYMEbtuvr66O//0CJnZaWlrd8LiGEEOLtKB3n4+Lvn0rji22svb+RdCxLNpXn1b/uZNfyNk67oYHKqZKFU4j3UutgFqWq6SWYJFBQCCGEeE9IkJJ4V6iqyllnncVZZ51V2Pbqq69y33338dJLL7Fnzx72x/YAe9jWvIZAKMDkqZPpWh3itEkLqDm9hOZnu+jdFsLut5FLaaT7MzRcM4bt/9hPtDWBalHIxnLEO1M0/Ec9e5/tJNqeJBNJE+9O4R/vovbMUva/2EP/rkgh0GfMueVkIjn2Pd9NJmoEyZTP8hMY72Hng62F8ZbPDuAqt7PzAWOb2WlCMamFRRxHiZX2V/oKC0FlJ/nxj3ez69E20CDUHCc1YCxY2QNWFBMk+zJY3GasHsvwrEMq5DM6ufSBu9W1jEbTI62FoKCh4BkwAovMDhOm192ln45mSUdyRjDR6+KOPHVO0uHMgXJzQN2iMmxeC02Ptb/pa1o0wUPVgmJ2PrifXOpA50WTPYT2xEeUc8sm8mTC2RHZlSx2M1nHgeu0B6zkkjlyKY1d/2wdFgSVT+XIpzUU0/A70VWLgtVtHry7SMNT4yK8L046lCXcGicTN17r8ll+fOPdRnakWI6mx9twltoAI+BLtRnPoWo2XpvyOX5Kp/nZ/o/9aBmNxgdbKZ/jZ8qVtex8oBUto7F/eQ/5rMaUq2rZ+2wnmbBGsNlY8Kw6pRib30rzM52oZpV4Z5JMPMuYc8rR8zotz/fgrjIW3/JZjdqzy7AHLDQ92o5/vItoR4JkfxpPjZPiaW5eeeJVKs8P8NzOp2htbSVLFvaBw+GgqKiIs88+m5NPPpnPfvazEpQkhBAnOLvdztlnn83ZZ58NQCaT4bXXXmPlypWsWrWK3e7d7IoaWV/GDIxh3rx5XHLL2dz/zSeZOGcM2ViOTCRLoi+NzWcl1pmicl4RNo+FWKeRzU81qYXMNVpeJ9aeJNmfRs/pJHrSlM3wkwpmiHWmjOAa3Zg/lUzz0b89YmTIHAxuqT6lmPC+OF2vGSXaVLNC+ewAA01R4p0pFFU5kClpKLZG1+lY028EFSlGVqfI/gTxrhS5VJ54d6oQVGT3W0mFMqgmxcjE9PqkNooxFzg4cCfemSLRnULXjEyUignyg3Mek1U1ypMdRNd0solcoUzwsO5NCo4i67DgJZNVpeqUYnq3hoeVjzuc8tkBUsHMsKxNZocJk0UdUUoOFLLxHLnU8MxHilnBZDWhmhTygwFPVo+ZTDRHrD1pZKU6OLFUTh8RzKRrRslfk804p8VpRstpRim9cLYwf1VUhYqTA0RaEsS7U4Sa41icJswOE7lkHkUxXmfVrBQyJVWfVkK8K0lob9zIjtSTKmT3inemiHUZ32P+sW5Ui8JAY5RsMk+kJYECVM4vYmBXlEw0i9luIjmQweo2UzbTT9f6IFpWI5/Jk43nUC0q1acW07ctjJ7XMVnVQvng4sleEuk4bZEWZn58Aus2v8KuzC6S6SSmVhMzZszgrLPOYsaMGZx22mlMmTLlTV8/IY4F99xzT+FrRVHYuHEjGzduPGz7kpISPv3pT7/r4+rv7z9kxqWhbX19fW+r33//+98sXrz4TUtbP/744yMCuACam5sLGaHfSCwWY/v27W9rjEKIY5f8bIv3VAXM+GQ5+18M0b3emO8H22L86wdrKJnuYsxiP1aPLN0cDe9FALZ4f2vdKKXehBBCiPeazHTFe2bBggXD7mgcGBjg/vvv56mnnmLDhg2sWbMGDY19z+3EbDaj6mZ8uwLMnDcDzWkl2gGu9gQVcwJ0rO5n0mXV2PxWo/xacwxXuXHndN3ZpRRP9dO1fqAQ1NP1WpDxH6oi0Zsi0ZMmlzQWsuwBK+POq6F7c4i+nQdKsU26vIaBxgj9g9vMdpXJl9fS8WpfYTGjdLofe7FRHgwgHc4Q3ncgy5LFaSLcYizmlM7w4yqzsfPBVvq2hunbatz97iq3U3NWKc3/7qR1eU/h/LVnl5IOZwslPuwBI/tO+6p+gk1RMpEcTY8OBhapg4tNYSNga+iah5V3U6Hm1BLC+40sU4XXoDE6ItDpcGJdSbrWDwwLULJ6zVTNLy70dfB5w/vihPcdyDZgD1hJBTPse677QKcqjD23glhnktaXetFyRrvaM0toeb6HTCxH87NdANScUYpqVdj/fA+hPXFCe4y+y2b5KZ3uJ96VNMqwRXPY3BYy4ZyxSKqCalfRUhreehcVswLE2o22e5/qZMqHa7EX2ehaO0D/9gjR9gQTPlRJ37YIA7uMknT5tEbtwjL0nEbbij5Uu0q8O43NZ2H8eVW0PN9NJp7F4jSRS+XxjTUC5HY+1IqjyEomliPRk8JZamPsOZXse64Lm8+K1WWiZ2OIjJohW6/x6u717Ovfh123EPxrEF3X2fAUlJaWMm3aNBYtWsRll13GmWeeeUSvmRBCiBOX1WrltNNO47TTTgNA13VaW1tZtWoVq1evZtWqVXz5y18mm83y2qs2Zs6cSfuaPirCFZSWlKENKAT3xPDUOlH7VJIDGSpPNkrGxXvSWN0mUBWiHUbp0p5NIZIDafJZnXQog8VpLpTzSgWzZBI50CAw0YOu64T2GSXmwJgPuascxjwjacwzvPVOHMW2QhCTyaoawU6D5cFUs0KsM0kmavRhsqmFTE6qRaX0JB8Du6LEu1LDSqYVN3jJJfOEm+P0bRua55komuKhf8eBcmT+cUaGoM61xvmHSsABhaAboFCWDjhQ9gxwltoITPSQCvUVMjXlM9qITJJvJLQ3NiLbpafagb3ISueagWHn1TW9kHFq6JpyqTzZWI7uDQdK6LrK7RRN9tDxaj/5tIaugbfWiWpRCe2NGaXRetOYnSZKp/vo3Roml8gPyw5VepLPKNG2N0YulcfqNd5S6ppOvDNVCFrS8zolDT4SfUY5t2R/BsWkUHVKMe0r+42MUJtDWL1myucE6F4fNMrvDZZ7q5xfRM+mEJl4DkvcKOnrH+fC7DDTty2MxWki2Z9By2qUzfSTS+YJ7Y0ZJfvaE+h5ncAkD2arSvfGEP5xbmJdKeMmhaIcIWcPe5tbSDgjrG+NMzBgPKcdTzdx0kkncfvttzN//nxmzZqF2+0+otdMiGPNUHl2Xdf54he/yPnnn8955503op2qqni9Xurq6lDVd//u8XQ6jcViGbHdarUW9r8d3/72t4+o3cUXX8zpp59eeNzS0sLtt9/O2LFjmTx58psev337dlnwFOI4JD/bYjTMPBl694R45Z7t9O01/l7ctzVOeE+auVdOpOHcOlSTZHYR4t2SimTo2R0CoHZmyegORgghhDiBSJCSGDVFRUXccsst3HLLLYCRYv7VV1/l/vvvZ/Xq1TQ1NdEX6mLZik7A+MNp6dZS3BYved1EcmmEmR+cirfGSWR/gjFLKkhHc/TvjOAb68JT6aBnS4jJl9XStrKXaHsCXdNJ9WfQNJ1p19TTtrKXZH+GRFeCTEyj9qxSUBjMGGCUfSua7KFokoeeLSGi7UY5ksp5RZhsKvuWGQE0VreZ2rPKjBImGME7/rEuom0JMuEc3RsHMNtMgFHCbMzictpe6SWf1Uj0pArZjVzlduLdqeF39quQCmZoeaGbaGuycL7M4AJX1YJifPUuGh/aX8hC5Ci1MmZxBftf6CHenQIN9jzdMaw0HECsI3nEr1cmkiss5h28bddjbcP6HX9+FelQhrZXDtz9WrWgGP84FzsfbDMyGFlV0IwMBvtf6iHZmykEN2XiOfI5HdWqYvNbyKfy5FIayb4UymC61dqzSskm83StHaBva4RUKFMIngqMdxO1J4m2J4l3p6g9qxSz3UTHyn4GdkTR0Rl/YRWNDxnBZX3bwlj9FsaeV0nzM53kUhniPSlMDpXJV9aw58kOcvG8kUUrrzH23Ap0TadjdT+OMhvRdiMr0sSLaoi2JRjYHaV0mpeu9UFAp2JeEdl4jq61ScZfWEn7pm729O/EMl5n664wbV1tpLQU+nODpW3sdgKBMubNm8eVV17JVVddhdfrPeLXSQghhDgURVGoq6ujrq6Oq6++GjBKxA0Fiq9fv554fB0bdqxG69KwWCxMq53GmDFj2L+rHUfEg3mfQvFUL90bg7grfdh8Vvq2hwk2RY0yaW0J3FVOfHVOereFSfSlUUwKkZY4JQ0+9JyReUfXKWQSqpxXRLQtQSqYIRsbLBc3w08mkiWyfzDYWTGCkgcaoyT7jIVrX70Lm99amBvZ/VZsfgvxrhRaVjOyFQWNc/jGuECBcLORdVEbzHykWhQUVUExDWYQGgwmQjGCj8wOY+42lNFRz+uoZoWKOQHCLfFCmTowgq9MVqUwV4p3pUgNZA70OSjelTri1+xQ2ZaCu2PDMjrZvBaKG7z0bAoVAqcUk0L5nADRtkQhuH6opFq828g6lU9rhaAqTdNRBrMsWdxmsrEcuWSeVDCLrulY3GaKJnro3RJCy+n0bg0XgqfMDhOeKqNknJY1SgOWzfDTvrIPLafTvSlI0UQPnhqjrN9Qyb3SGT6irYlC4FJqIEPRZA9aViPUHMdkU0mHsljcZiobfHSvGzCyW6kKuWQaV7md4ile2l7pxVXpIBPLkuzNYPNZKJrspXPtAPZiK2anidbNHaQCMfr0fRRVe9ke3k5XZxd0Gu9HTjrpJGpraznvvPM4++yzqampOeLXSIhj3axZswpfX3/99cyePXvYttFis9nIZl+fEc7IAji0/91UUlJCSUkJy5YtY9myZcRisTc/SAghhHiXlI73c/H/O5VdL7Sy9h+7jBJwyRyr/7KDxhfbOP2GBiqmSAZ1cWg7duzgmWeeYcOGDXR1deH1epk2bRo33XQTtbW1b3jsxo0buf/++2lqaiIcDuN2u5kwYQLXXXcdJ510UqFdKpXiqaeeYsWKFezdu5dkMklNTQ0XXXQRF110ESaT6d2+zHdN25Y+0KGozoOr2DHawxFCCCFOGBKkJI4Zqqpy6qmncuqppxa2aZrGihUreOKJJ1i5ciWNjY3s7dmNjs6+6E5W/XMZHo+Hmpoasn1jYYJKYpOOX3Xjn+AmFc7S8Vo/FbMDdK4bwFPtoGyGjz1PddG3M4KnxkmsM0n1KWWoFtXIAJDJkxrIks/lOOm6MfQ1hkmHs4Sbo6hmhfEfqiKbypGN59DSGqhQf04Z0c4kkcEgpvLZAdLRbGHxqm5hGapJYdc/2zHZjYWlbCJHLqER60rhHeMk0ZVi7LkVDDRF6N4QIpfIG30vKsNsN7HnX52Y7SqOChv1Z5bTtrKXRG+agcYosfakkYWoyEomkiPZnyHWmUR/XWkTi9uM2a6S7MsYbWM5PFUObD4LkdZEYTFMMSmY7QcO9tY5cVU6CnfiW91mFNUokaZrRlDWUKBSoi9Fst9YQFTNKlavmZ4tQeLdKVSrgtlpZtwHK4l1JundGiYdzOAb66R8ToD9L/aS6E2x96lOrF4Tky6rpX97hO4NA1hcZvp2GHcU5TJ5VIsCKkbWojNK2Lu0k1hbip4tIaoXFDPQGCIT0ejaOEDZzADF0z30b42SCWXJRHNMvKyartcGiPWkcOmgqgoTLq4iG8sx0BhBVxVSwQwlM32UTvHT9EQ7pSd5SYfTxHsyFDd4KZ3mY+vfWxh/bgXRjiSxngRlM4xF286N/ThP1ekzddAR62B/xX5WLg0W/gCublNxOp3U1tYybdo05syZwyc/+UnKysqO6s+VEEIIcTh2u33E3CuRSLBp0ybWr1/PunXrWL9+PTsz28jpOdbtV6mjjtmXzGbC9Crsdjsv3/0a6QEVb50TdCfxniSqWRkMaglTt7CUUHOceGcSs9OEdbB8XPWpJQw0Rcgm82QSOfRojuIpHswOE5lojlQog5bTcZTa8A2WrM1njcw/rko7Vq+F6GB2I8Wk4Klx0LfDCBCyesxUzAnQtS5oBCopoAxOa+LdKdxVDlSLgqfGiafKQdeGIL2DWS7NDhMVcwP0bYuQCmYwO0z46p1Y3Ba61xuBMn07jTLCB5eES/ansTjNhVJmKIPBTaqR1UjLGuVr9ZyOu8phBFgn84XSdUYAjlFaTTUreKqdpMIZ0qEsJpuKrhvbc8m8EVilKuiaTj6TN0quDZZ5M9lU0KF/h1Fez+wwYfNZCEz00LVuAHRIh7OUzfSTieeI7k8QG5y/Bia4cVc5aHulD4vTRCaaJZ/S0C06uqZjdprIRHIUT/YUgpVSAxky8Ry+sS6Cu6KkQkawd9ksP12vBcmnjMAlm8+CzWc1xhXOYvVYsHjMlDT46N4UJB3OYnYaZekq5gbIRHMkelPYi22EW+LoQNkMP7HuJOlQFm+di94dYewlVtxVDuJdSbK2DObaPBPOmU6uNsarr75Kx84OoukopMGX91E5+TRuuukmampqOPPMM5k6dSqK8vpagEIcn2644YbRHkJBcXExvb29I7b39xtZf0tK3pu72JcsWcKSJUtobGzk5ptvfk/OKYQQQhyKqipMWVzHmHkVrP3HLhpfbAUdgq1Rnvx/rzLxzGrm/cdknL53N5BXvP/87W9/Y8uWLSxatIjx48fT39/PI488wk033cSdd97JuHHjDntsW1sbqqpyySWXUFRURDQaZenSpXz+85/nJz/5SaEqRkdHB3fccQdz587l6quvxul0smbNGv7nf/6Hbdu2HXE2y2ORlHoTQgghRocEKYljmqqqnHXWWZx11lmFbZqmsXbtWh5//HHWrl1LY2Mju3fvZtu2bYU21les+P1+bIqD6kA10Y5iKqZVkOnUsPmsTLy0msaHW5l2TT0ArSv7URWoX1RO58YByqYHCO2PYfFYyCfz5JM6Ey+qxmvgbB8AAILmSURBVFFip+u1AaLtSWrPLsXms2J2mdByGv56F71bgziLHRRP9aIPZkJSzSr+sS7Cg3ey27xmiiZ5CO6N0rclQt1ZpZisKut/s5vmZV3UnFmMyWoiFcpi81sIjPfQv8tYdCue7qVsRoDO1f2EmuNMvKgaLacZAUxOlWkfrSfalmDXI+2kBjKMO7eCxn+2oZoVak4vRUfHWWSjZ3OQ8llFtK/uw1lqw1vvonxWgC1/aQYNbH4LRZN8dK4xgpLGX1CJrul0r+vHN9ZDzWklaLk8wT1xrG4zZoeJ7vVBou1JiiZ66U2H8NQ4jOAsi0rjg62kQhmqFhRj81noWj9AKpxl4qU19G0NMbArSjqSZeJF1cS6k+z5VwdlM4rQNZ3OdQPY/VbqFpXhKLPR/HQX3monnmonoT0xws1x6haWMv68KjbdvZf0QBZHiY0pV9Wz9d5mUv1ZvFVOFBW8VS60nIaj1EasI4m33knVvGIGmmLEOhLk0nkq5hbhrXUR3BMdzE7gY//zXUYg1awiop0JbH4b9oAFHRh7QRk9wS72d7Vh8mus391DR0cH6XQafZle+D4uKSlh3LhxzJkzh0WLFnHeeedJQJIQQohjjtPpHBG4lEql2LJlC5s2bWLr1q1s3bqVu+66i+5uo4SrxWJhQngC1bXVdPUNUGmtwJF345vgJB3JFUqvZaI5KuYV0b0hSN/OCIHxLhxFNrSMhtVrMYJ58hq5vgygMPnyanq3hMhEc2QTeSrmBIwMkYpRHlbLaEZAzEw/nmon4f0JUv0ZvPUuHCU20oOl4Pzj3JisKqG9cex+C/ULy9j/Ui+RlgQ6UDWvmI5X+/CPc6NaFCxOM5mYcWzVKcVE2xKE9saweiyUzw7QvTGIntcpmuimuMHHvqVdRiagSR5UsxHkrOd1KuYWkehLY/WYifekcJXa6XxtAE+NE/9YF5HWJKG9RmYkb60RCJWJZHFXOag42QiySoeylE73oVoUVIuJ7vUDVJ5czMCuCIm+NI4SG45iG+hQPMWLu9JOrDNJ/87oYLBWEX3bQwR3RXFXOfBUO2hd3kuiL423xoG32kF/Y5RETwpvvZPg7hh6Xqe4wYt/rJsd/9iPxWnGP94NKvRsCBHrSlF3Vinx3hTxjhR6HqrmFZGNZol3p7A4zDjL7VQtKCLYFMNb5yLemSSbzBnzZ4+Fni0hsrEcmqZTOa8IPQedr/Uz7vwqQnujpKNZAuM8+Me7aV7WRfWCYjKJHO4KB6oP2tvbyBYnieVD2LGxN7GXnp4e6IGlm//F5MmTqaqq4sMf/jDz589nxowZ1NTUvK/v8BXiaNmyZQtPP/00u3fvJh6P43K5mDhxIh/84AeZMWPGezKGCRMmsGHDhsL5h2zfvr2wXwghhDgR2b1Wzrx5OpMX1bDynm30NRt/E256uZ19r3Vz8lUTmbpESsCJA6666iq++93vDiul+4EPfIAbbriBv/71r3znO9857LEXXnghF1544bBtl112GR/5yEd48MEHC0FKRUVF3HvvvYwdO7bQ7pJLLuHHP/4xTz31FNddd937MiOtpum0bZIgJSGEEGI0SJCSeN9RVZUFCxYUJslDYrEYzz33HE8//TSbN29m3759dPV10NrdMuxY1w4XpaWllE8t55/3bmLagqmUjy8j2Zoj0hbDVWJj/4oeSqZ6SfansHqtOEvtxPsyRPYnsLjMWDwmTGaVXC5Hri9L77YIJVO9VM0rRbUoBHfH6NsWxlFqpe7sMlIDGTrX9IMK7nI7yWCa0B4jo05oXwyL3fhRtPks2Nw2Wnf14a93g6az56kO4n1p/ONdoINqUoi0JUCDzrX9jD2ngvK5Abo3BOnZFCQ/WH4j1BwnNZCh5oxSTFaF9lV96BrYPBbC++Mk+zMkB4xMTOb1QRxFVjAOJRPJEmqOFp633U92kBzIoOUg2hpn33M5NF0n3Z/B7DTjH+eifnE5u5/oYP8L3aTCWRQVI9NTUxRN05h8YR2h5ijtq8IkutOMPbeCfCZPvMtYzGp5rofARDdFE9xY3WasbrORXUADi8NEvCdF59oBAFKhDFavmVQwi5bTCDXH8I1xUzLNQ6Q1SetLvfjGuWj4jzF0bRygc90AqVAGi9tM6VQfkdY4VqeZ/vYkwd1RtJxOYIKHgaYIaLD/5W58Y93oCoSaotjLLOR9GV54cjnuejvd3d10r+smkUiQSCTQdSMYyWq14na7GTduHOPGjWPixInceOONTJ8+/d35YRBCCCHeA3a7nXnz5jFv3rxh23t7e9m8eTPr1q1j9+7dbN++nf3Z3WzduB4Ak8nEmDFjqPfUE2gIMGfmTP7965eonlSJLWsm2W9kZNTRCe2NUjG3iIHdcTzVDhJ9aXq3hon3pHAW29HyxiQlE8uRiWTJRLIoqkLtWWWkBtK0vdJLKpzFVWXHVWqjd0vYCBhXQdd0woOl49KDZeQyUaOUmbvMmJehKkYg0744wd1xI2DKpKPldEw2E6kBoyxZvDtF6XQf7Sv7ibYnMTvMRuk0jBKyqlmhfFaA3m1hujcGyac1FLOCltVI9qbR8zrtK/uwus3kc8ZxWloj2pEkGzeyUsa7UzT/u4tM1Hjc3xhFz+uYbCrZRJ7ujUGKJnmw+a2E9sRID2azzCZzBPfGSPSk8Y1x4a520LM5SCaaQ7WolEzzEWqO4Si2EmtPGtksx7kxWdTBTE5qISNTNp6jd0sYdOM5T0eyhfGkgxkjE2iNk0zYyECpmhU8tU4cpXZSoQzhlhiuMjuOUuNO70w8h8VhItwcw+q14CwzAqt0TScVyhLZn6BoipfwvhjpcBZXjYXeYA+7X9lF/ZIKumP7aQ+207i5kURiMINWh0J5eTmnTD2FxYsXU1xczPz585k/f/6wP9ALIQ741a9+xcMPP1x4/6IoCrqu09jYyL/+9S+uvPJKPve5z73r41i4cCH3338/jz/+ONdccw1glHp76qmnaGhooLy8/F0fgxBCCHEsK5vg5+IfnMbO5/az7oEm0nGjBNyqPxkl4E67fhoVkwOjPUxxDDi4LNuQ2tpaxowZQ0tLyyGOeGN2ux2fzzesHK7f78fv949oe+aZZ/LUU0/R0tLyvgxS6tsTIh3LYnWaKZvoH+3hCCGEECcUCVISxw23280ll1zCJZdcMmx7T08PS5cuZc2aNWzbto3m5mZ6enrYt28fmqax58UdAJjNZpTXVMpKSykpLWX7Go3K6kpqxlQRbElTNrWYVDCNalZxltpIhjLE2pJUnVyCDnhqXAR3R0EDk1WlZKoXb62LeE+K7g1BFFVlzKIy/OPd9G4Pk0to2Iut+OpcRAazLKUG0mh5HXToeLWfiZdUk0vlUc0qtWeU0fRkO7GOFPpgMFHpjAD9jVH6t4VBg2h70gjswcgaYPOYaVvRi8mqFkq5pfqNz9lkHs1YayKXyJMkXXjOtKxOJmosUpntKtGOZCGAyRawFsrYAeRSGboGMsS7U5gdJkpn+tn7TCdmu4lkf5rwXmNRsOPVfvwT3ZhsJqxeMx1r+slnNOoXlYOu07qil7LpftpW9JKJ5FAsCsm+FADpaBaLzUTxFC/tK/vo3xHFU+1i4mXVhJqitDzfQ91CKJsRwD/WAyp0vTZA+awAzhK7sUgWsJDPQag5hsVlRsvpFE30YPNaiHeniEajpMsivLx8JwTybN47QFdnF6pVIRo1Aq0A1L0qVqsVn8/HhAkTqKmpYdGiRZx99tnMmTMHVZU7mYQQQpwYSktLWbx4MYsXLy5s03WdtrY2du3axa5du2hqamLXrl1s2rSJxx57jFwuBz1GYO/EiRMZ2BChuKQYu91Jz6sdVE2qIJEAk9UoUesssZPPaVg9FkLNcWxeCxaXGZvPQqI3RTqSIdKawDeYPcnsMBFpTxJsiuKtdeKpc6DnNSItCRRVwTfWmItkBrMsZeI5UIy5ULglQfFkL13rg5RM86JlNTpf7QfFmNtZ3GYUk0L/jgi6ppOJ5Uj2pdE1HUUF3xgX4eY43RuN8mWvZ7IemCNk4jkUVRl8ziCfyqPnjTmcrumFgCDVbJSIy6Xy5JLG3CwdztK3LUw+q+Grd5GJDgZuRXOgQy6ZJ9ZhzNVclQ5SoQiKqtP52gDoOhVzjGxW9iIrqqoQaU1g9VrQshrpsHFeRVFwlNow7zWRS+aJ7o8TGOdGVRXiXSl6t4ZxV9qpPLmIWFeS9GDQmK5p+Ma4ibUruMod9O0MYfOZMdlMmBzGZ6vHQnBfFFutQltnK1lLilQgwbY9A0TSYbKWFOHd4cJzte0pLw0NDZx00kksWLCA+fPnM3v2bCZNmoTT6Txq389CHO+efvppHnroIWpra7n++uuZPXs2RUVFBINBNmzYwD333MNDDz3EhAkTOO+88972eR5++GFisVihdNsrr7xiZDoDrrjiCtxuNw0NDSxatIi77rqLUChEdXU1zzzzDF1dXXz9618/Ktd7JJYtW8ayZcuGLcIJIYQQxwpVVWg4p56xCypYe/8udr3YBsBAS5Qnv7+aiWdVM/+ayTikBJx4HV3XCQaDjBkz5ojax+Nxstks4XCYZ599lubmZj7+8Y+/6XEDA8YNxT6f7w3b9fX1FeaGwNsKnno3DJV6q55RItnJhBBCiPeYBCmJ415ZWRkf/ehH+ehHPzpiX1NTE8uXL+e1115j27ZttLS00NfXR2dfJ5qmsaN7MxjJADBtMBXuGggEAuRaNSprKsm1xwn4isnGsgTGuUhHstj9NkL7Y2iaRiqcpn5hGYn+NDafheCeGNlYnnEXVOIstaHloX9HGHuplZqzyrD5zIW72M0uE75xLrpeC9Lp6WfMEiNb0dgl5WSTefRs3gggAlyVdqrmF5PoSxPZn0BRQDErZGM5sgBmGP/BKuLdSbrWBxm7pIJoe4K2FX0UTfZQNb+YnQ/vJ5fQhj1H1aeVYPVYaHqsHavPzNhzKuh4tZ9ET5r6JeW0reg1gnxakzhKrahmBbNdxe63GuVJbCodr/QTbY3jG+vEUWplzKJy9jzTQcl0L5ig+alOvGNdOEqt5AfL5FmcJrw1TsItSeI9ScJtCUobfLgr7YT3xoh2JDBbFcpnBghM9JCOZNF1nWQkQ2Ccm5LpPlxlDnQtgWpVCGVDJLUYPeFe1KxOKBQiGAwSCoXIZrNkswcWE1VVxWQy4fV6qaiooKamhjPOOIMFCxYwb968Q945IoQQQggjuKW2tpba2tphwUsAuVyOffv2DQteaqoyPu9s32oEMK012nq9Xmr0GrxeL5WVlUyYMIHVj67HZ/ZhzthwmPxYnGacpXb0nI4tYCHWkcRsM2FxmKicX4TVbSHRnSKf17EXWfFMc2AvshJqjqGaVOx+IxvkUECPrms4y+1YPWZ6N4com+XHXeUgFcxQNstvlELL6YUApMB4N55aJ8mBNFpWRzUpaHmdXMwIfLJ5LRRN8tCzOYQ9YKVokoeO1UaQdsXcItKhDMHdwxfGTTaVqgXF9G0Lk+zPGEHnfgudawbwjXFhcZvp2xYmmzDmiopZASPWCU+VA4vbTO+WMPl0nnQki8lmZFBSFBjYFaV8doC+7SHSkSylJ3nJDwas63kde7GVkmle+rdHiLQmcZbYqJgXINWfIR3OEm4xslxZ3GYcRVZCe6LYvFYUE3hrnWTjOcwOE5lYDnNApS/cT7oyzq7eVmpml9E1OO9qa2yjr68PrfXAnNPr9TJhwgRm1DUQCAQ466yzaGhooL6+ntLSUgkCF+IoeOyxxygtLeV3v/sdbre7sL2oqIjFixezYMECrr/+eh599NF3FKT0j3/8g66ursLjl156iZdeegmAc889t3Dub33rW5SXl/Pss88Si8UYN24cP/nJT5g1a9bbPvdbtWTJEpYsWUJjYyM333zze3ZeIYQQ4q1weG2c9cmTmLywhpX3bqe3JUxHdZBdPZ2s+Pl2Lj59AdOW1EuQhShYunQpvb293HjjjUfU/r/+679Ys2YNYJRzv/jii7n22mvf8JhsNsuDDz5IZWUlU6ZMecO2jz/+OPfee++I7c3NzeTz+SMa47th1+pOAEyl2ULZ4XdDLBZ7V/s/1pxo1wsn3jWfaNcLJ941n2jXCyfeNb+b19vQ0HBE7SRISZzQJk6cyMSJE7nppptG7Ovo6GDt2rVs3LiRnTt3sm/fPjo7O+nr66OlpYVcLsfGXQfam0wmnE4nDocDl8uF3+/Hp/sorihGzWVIpJP4cn7sZQ7849ygKCQHUti8Vspm+fGN8ZDP5oh1JgmMd+OuduIutxPtTGJ1m1HNCt5aJ6XTvHS8OkDdB0rJJTW0vMaUq+pIDKTIZTS61g9gtqvY/Ba89S6s3iDuCgflcwKEBkuAoEHrih4SvUZWpUhLHNWkkEtpI56Hni0hrC6jZEYmnKP15R7CzQlQIdGTorjBS9W8Ipoe76B8hh+r04TZZkbLanRtCFI63Y+r3E42kiPSkqD2zFK6NgZJBbNUzCkmE8tgdptRzSpmq4nxF1QQ2hsnst+4q79+cRnpcA6zTSXWEcc7xo1qUbEHrPR3BBlIxHEWOQjlewn3h4mkI4RWhUgmk0RXRYnFYmSz2UJJAzDebDmdTux2O2PHjqWoqIgpU6Ywf/58pk2bxuzZs7Hb7Uf5u00IIYQ4sZnNZiZMmMCECRNG7Mvn83R1ddHS0sL+/fvZt28fra2t7N27l+3bt7Ns2TKi0eiwvoqKivDH/VRWVlLkL8JeYaeksgifz0dpaSkrHn4VzQpFdT4SPSmcxTYibQncFXacJTasHouRTbIvTWCCG984NxaHCR2jxJujxIa3xsnuf3US2R+npMFH1/oBiqZ4MVkVLC4L/TsigIJiBovbjKfGQbApRsWcAJlojlQwQz6tEe9KkU/nD5Tl3RsrBKUPex4yGgO7oqSC2UI7s9MEGKXq0HWqTy2hf2eEXDKPu9KBltaMcsN7opTNCBCY6Mbms9D12gA2rwXFpBiZj6odBCa6CbfEjaxOioKv3kE+lSfZnybekcBZasOzpJxIaxwd0DIa7moH3joXyWiKjDlNTIky6YxpuKdZCIVC6JUJ9nTtoTfeS7wnTjAYHPZamUwmdof9jB07lqlTp3LyySdTUVHBqaeeSl1dHRUVFRQVFR3F7zQhxKE0Nzdz4YUXDgtQOpjb7ebss8/mySeffEfneeCBB46onc1m45ZbbuGWW255R+cTQgghThTlkwK4b3Pzy93PMmA6cLPDU9FNXPDbWdz0wXMpnyQl4E50LS0t/OIXv2DatGlHHHj+qU99iquvvpqenh6eeeYZcrncmwYP/e///i/79u3jJz/5CWbzGy8zXnzxxZx++unDxnj77bczduxYJk+efERjPNoSoTQrO42MTvMvmInzXcxItn379iNesD0enGjXCyfeNZ9o1wsn3jWfaNcLJ941HwvXK0FKQhxGVVXVIcvHDUkkEqxfv54NGzYUsjB1dHQQDAbp7++nvb2dXC5XKBN2MLPZjNPpxGazFQKbHK0O8lmNQLEfq9dKQvXQv8eCzWxjzFXF2B12dFXHUWHDP9GDu9KBalbo2RYkFc5QOtVHX2OUypOLcZTacBZbCe6JEZjoAUXHUWwluAci+xPUnlWKo8RKJpyj7ZVexpxTQfuqPtBAPagUiWpWSfZmKJ3mx+I2kw5nqD6tFP/EJH2bIvRuDjPpyhoSfSlKZvhI9Gcomupl0hXV6FloXt6Fu9JOKpIhsj9B+ckBnOU2iqd4cJbZ0BUdq8/ExP+oYKA9SFtnK7F4nJw7SzgYpnmbRjKVJJ1Jk0wmSafTJFYmiMfjZDKZEc+toiiYTCZsNhuBQIDi4mIaGhooLi6moqKCc845h3nz5lFXV3d0v1mEEEII8Y6YTCaqq6uprq7mtNNOO2SbUCjE/v37aWlpobW1lfb2dlpaWujv76e5uZm2tjb6+/uHBSYDWLdY8Xq9uN1uiouLceVd2Ow2BvaEsVltWH1WPEVukpEwHtWNa7IJf3UAq81CLq5RPM2Lw2+haJKbdCRDvCtFyTQvNp+F3q0hKk8uQrWDyWwi3BzHVWFHURU8dU7aXu7F5rPgrnFgD1jp3RTC5rVgspsI7YkVSr4BKCYFPW+UkSs9yUfv1jBFkz2Y7CbSwSyhvTHsfguOIisWhwmL00QmkqV8bgB3rYNEdxpN1ymb4adnUxCz3UTZTD/pmFGKLZ/JoZgVKk7zk0mliUdixAaC5MqyxCxxQlqOVEeKTC5NoNJPf38/0WiU+L44sVhsWODRY68Znx0OB1VVVXi9XsrKypg+fTp1dXWoqkpDQwPTp0+nqqrqTf9oLYQ4NiiK8uaNjiNS7k0IIcT7ybLgZr7a/Cd00/DtMXeaB059leh9SS6omcu8j0zC4ZUScCei/v5+vv71r+NyufjBD36AyWR684MwbuQecu6553LTTTfxox/9iB/84AeHbP/3v/+dJ554gk984hOceuqpb9p/SUkJJSUlR3YR75G2TUapt5Jxvnc1QEkIIYQQhyZ/LRbibXI6nZxxxhmcccYZh22jaRodHR00Njaye/du9u7dS2dnJ52dnfT29hIOh4lGowwMDJDP50mn0296l4LZbMZms2EymbBarVgsFmwbbdh22FBVFYvFgqnbhMViIZvNYrVaMZvN7N+kolk0TGeaaLWEUCIKiqqgnKXQrifRF+i4zWYURWFV48v4yn24xrnQNI1erZW8I0++Ks/2rk5MJhOZqRlyuRxrtu9HVVWyziyZTIZdqxQURSGTyZC2pdn1r3XG1+k0qX0pNE0jk8mQyWTIPp09ZBDXEIvFgsViKVzXUGaEKVOm4PV68Xq9zJ49mwkTJlBVVcXMmTNxOp1v+zUVQgghxLFrqOzujBkzDtsml8vR29tLb28v3d3ddHd309/fT2dnJ+3t7USjUXp7e+nq6iIcDhOLxYjH44ftz2KxYLVasdls2HbZcDgcmCwmbC02zGYzgZkBGjP70TM6VqsV10wX2WyWaC6Hx+nBe5GVXC5FLBPBWlREbYOPWCyGoujMvmwsqVSKWCxGOh1h0swybDYbiUSC/v5+qmY6sVhU+vp6yZZn8cywYnPmaOrahjZRw2QykXM42NPWZ4y1zEImk2HjOiOLpBbQWP/UclKplDHvymZJv5YeEcQ1ZCgrqN/vJ2/J4XA4KCoqYuLEidTV1ZHNZqmvr2fSpEkUFRVRVlZGICB3agvxfjF27FiWL1/OJz7xiUO+Z0okEixfvpyxY8eOwuhGh5R7E0II8X6R1zV+2voIh5zJK4AOLy9qZNzdZexb08XJV09iyuI6VPXECkA+kcViMb72ta8Ri8X49a9//baDgiwWC6effjp//etfSafT2GzDA3iefvppfve733HJJZdw3XXXHY2hj4rWjUaQUu2s0lEeiRBCCHFikiAlId5FqqpSU1NDTU0NixcvPqJjNE2jp6eH5uZmWltb6ejoYN++fcad7PEDJTTS6QPZhXK5HMFgkFwuh6IoaJqGruvkcjlUVUXTNDRNKwRADX39RgFChzOUrUhVVRTFCEgym82oqoqu64WAIjBKt9hsNmy2wYW8QAC73Y7NZsPlcuF2uwvbx4wZQ1FREUVFRcydO5f6+nopuSaEEEKIt8RsNlNZWUllZeURH5PNZgmHwwwMDBAMBunr66O3t7ewva+vj1gsRiqVIhKJ0NfXRzabJZFI0NHRQSqVKsy7Dv4Y6ntozjX08VYoioKqqqiqislkwjwYUK4oihGobrOhaVohk+RQ4MFQRkmHw4GmaVRVVVFWVlboZ+zYsVRUVABG9tDKykpcLtcJl0VFiBPJxRdfzE9+8hM+85nPcMMNNzBr1iz8fj+hUIiNGzdyzz330Nvby4033jjaQxVCCCGOC3/ufpG/dC8/Kn1ltByh/OFvrkCBmDfNHz+9HFNeBZ5HfUXF5jKjmtXDH/cmPl5+NteWL3zbx4v3Rjqd5hvf+Aatra38z//8D2PGjHnH/em6TiKRGBak9PLLL/PTn/6Us846iy996UvvcNSjR8tptG8xbvaRICUhhBBidEiQkhDHGFVVqaiooKKi4ojSpb5VQ4tjuVyOTCZDNBolGo0WFuHi8ThtbW14PB6KioooLS3FbrejqmqhnIemaVitVqxW61EfnxBCCCHEe8lisbyr6ed1XR8WxJTJZEilUiSTSeJxo5RaJpPB7/djtVrxeDzouo7D4cDj8RQCh4YCjIQQ4u244IILaGpq4p///Cff+973ACMQcii7mq7rXH755Zx//vmjOEohhBDi+BHPp+jJht/Tc6ac2WGPozqQPXTbIxHPp97ZgMS7Lp/P873vfY9t27bxwx/+kOnTpx+y3dDf/aurqwvluIPB4IjsuNFolOXLl4/InLtx40a+//3vM2PGDL7zne+gqm8/+G20dTeFyCRy2D0WSsb5Rns4QgghxAlJgpSEOMEMvYEYCjJyu91vKduAEEIIIYQ4ckOZj4bmXlKaVggxWr7whS+wcOFCnn76aXbv3k08HsflcjFx4kTOO+88Zs6cOdpDFEIIIY4bLpOdMsvRCYB400xKg/wmF2ZNJR3PouUPFIdTFAWr04zZ9tZuenCZJMv9se43v/kNr7zyCqeddhrRaJR///vfw/afe+65ANx1110888wz/OMf/yisBXz1q1+ltLSUhoYGAoEA3d3dPPXUU/T39xeC2gG6urr41re+haIoLFy4kBdffHHYOcaPH8/48ePf1es8moZKvdXMLJWSiEIIIcQokSAlIYQQQgghhBBCiBPAzJkzJRhp0LJly1i2bBmxWGy0hyKEEOI4dG35wqNWKi2va5y/5Qf0ZMPoh9ivAGUWP0+f9J+YFBUtr7H93/tZ99Aussl8oV3pOB+n3dBA6Xj/URmXGH27d+8GYOXKlaxcuXLE/qEgpUO54IILeP7553nggQeIxWJ4PB4aGhr47ne/O2y+2NnZWZgv/eIXvxjRz/XXX/++DFKSUm9CCCHE6JEgJSGEEEIIIYQQQghxQlmyZAlLliyhsbGRm2++ebSHI4QQQhyWSVH5Wu1l3Lb3XhQYFqg0lAfma7WXYlKMDPqqSWX6+WMYd0oFa/7eyO4VHQD07g3z2HdXMeUDtZx81STsHut7eh3i6PvlL395RO2+9a1v8a1vfWvYtssvv5zLL7/8TY+dPXs2L7300tsa37Em3p8k2BpFUaD6pHen5LsQQggh3tz7t3CsEEIIIYQQQgghhBBCCCHEcW5JYAY/G3f9iBJyZRY/Pxt3PUsCM0Yc4wzYWXjLTD70nQUEatzGRh12PtfKg195iZ0vtKJrh8rNJMTxqXVTHwClE/wSpCeEEEKMIsmkJIQQQgghhBBCCHGcy2azvPzyy+zcuZNYLIamaYds941vfOM9HpkQQgghjsSSwAwW+aezPraXvmyEEouXOe5xhQxKh1M5tYjLfng6255tYf3DTWRTedKxLCv+sJXG51s5/YZplIzzvWEfQhwPpNSbEEIIcWyQICUhhBBCCCGEEEKI41hXVxdf/vKX6ejoQNcPnzFBURQJUhJCCCGOYSZFZZ5nwls+TjWrnPShsYw7rZI1f93JnpWdAPTuCfPod1YydXEdc6+aiN0t2WXE8SmfzdOx1cikJEFKQgghxOiSICUhhBBCCCGEEEKI49ivfvUr2tvbOffcc/nQhz5EaWkpJpNptIc1qpYtW8ayZcuIxWKjPRQhhBDiPeMK2Fn0uVlM/kAtK+/ZTqg9BjrsWLaf5lc7mfeRyUw6uwZFVUZ7qEIcVV2NQbKpPA6/jeJ672gPRwghhDihSZCSEEIIIYQQQgghxHFsw4YNzJ07l29/+9ujPZRjxpIlS1iyZAmNjY3cfPPNoz0cIYQQ4j1V1VDM5T86na3P7GP9w7vJpfOkolle/sNWdr4wWAJurJSAE8ePQqm3mSUShCeEEEKMsjcuViyEEEIIIYQQQggh3tc0TWPixImjPQwhhBBCHENUs8qMC8fx4Z+dybhTKgvbe3eHeew/V7Lynm2kY9lRHKEQR08hSElKvQkhhBCjToKUhBBCCCGEEEIIIY5jDQ0NtLS0jPYwhBBCCHEMchU7+MCtszj/W/PwVbkA0HXYvnQ/D972EruWt6Fr+iiPUoi3L9KdINwRR1EVqk8qGe3hCCGEECc8CVISQgghhBBCCCGEOI596lOfYv369bz44oujPRQhhBBCHKOqp5dw+Y/PYN5HJmG2mQBIRTK89PstPPH/VtO/L3LUzpXXNdZGd/P0wHrWRneT17Wj1rcQr9e2yciiVD45gNVpGeXRCCGEEMI82gMQQgghhBBCCCGEEEfPvffeO2Lb7Nmz+d73vsfMmTOZNGkSLpdrRBtFUbjuuuvegxEKIYQQ4lhkMqvMvHg840+v4tW/7KR5TRcAPbtCPPrtV5h6bj1zr5yIzfX2Az2WBTfz09ZH6M6GC9vKLT6+VnsZSwIz3vE1CPF6UupNCCGEOLZIkJIQQgghhBBCCCHEceSee+457L6NGzeycePGQ+47kYKUli1bxrJly4jFYqM9FCGEEOKY4y52sPiLs2nb3MuqP+0g3Bk3SsA920Lz6k7m/8cUJpxRhaIob6nfZcHN3Lb3Xl5fPK4nG+a2vffys3HXS6CSOKpymTwd2/oBCVISQgghjhUSpCSEEEIIIYQQQghxHLnjjjtGewjHvCVLlrBkyRIaGxu5+eabR3s4QgghxDGpZkYpl/+4iK1P72PDI3vIpfMkwxmW37mZnc+3cvoN0yiq8xxRX3ld46etj4wIUALQAQX4aeujLPJPx6SoR/MyxAmsc/sA+ayGq9hOoMY92sMRQgghBBKkJIQQQgghhBBCCHFcmTVr1mgPQQghhBDvc3/ufpG/dC83HowB/Qs6mUSOXCZ/oNHex7B0mLE6TPAmWZUyWo5QPn7Y/TrQnQ3xgU3/hVU9OktXS2f811HpR7x/HVzq7a1m/hJCCCHEu0OClIQQQgghhBBCCCGOQ1u3buUPf/gDO3fuRFEUGhoauOmmm2hoaBjtoQkhhBDiGBfPp+jJhodvtA1+DJOG3NE7bygfh/ybtxPizei6TuvGHkBKvQkhhBDHEglSEm+ou7ubUCg02sMQQrxH/H4/5eXloz0MIYQ4YcncS4gTi8y9xLtpz549fPGLXySbzRa2rVu3jq1bt/L73/+esWPHjuLohBBCCHGsc5nslFl8h92fTebIpnLoB9VvM5lVrC4Lqmlkxpo3y6Q0xG9yHbVMSuLEFu6ME+1JopoVqqYVj/ZwhBBCCDFIZnrisLq7u/nw5R8G02iPRAjxXrHb7fzlL3+RxTIhhBgFMvcS4sQjcy/xbvrrX/9KNpvl4x//OFdccQUAjzzyCH/605/429/+xre//e1RHqEQQgghjmXXli/k2vKFb9gm2ptk9X07aFnbXdimqArTzqtnzuUTsDothe15XeP8LT+gJxtGP0RfClBm8fP0Sf+JSVGPzkWIE1rbJqPUW+XUIix2WQ4VQgghjhXyW1kcVigUAhOYd/lRU2ZARVEVo7b04Ieiqsa7B0U1tr1u/+E/Bo9RFWDosXLQYwVU48uhx/rQtsH2Bz/WlQN96EPvX4b6HGo77PPQcYPtDjpGH+pn8GYPXQFdPeg45UDf+rBjGHbMsPNz4LhC29cdW/jgjdsPO+Yw297068I2fdg2fVif+rDHxvn1Ecczos/BduqB/YpivO1UlKHHQy/jQfsHPxu7DrRTFX3weP2gx0Yb41tAB0UvbFcV3djH67YpOirGh6Log9+qg9uUg9oPfi58oKOgoQ6eS1W0wX2goqEoOqbB85kUbfCzjqJoxvbC/oMfa4W+VUUrjMFM/hD7NFRAHepv8DxD16KiDzuP0XZwrINfm1BQAJMCCsrg4wOfVRRURaW13cL/9ys/oVBIFsqEEGIUjNrcS1GPqXlX4fExPPfS1YOOPRbmXa9rcyzOvUzqsTXvMjF4vMy9xHFs8+bNnHTSSdx0002FbTfeeCMbNmxg48aNozcwIYQQQhw3PKUOzvnSHFo39rLqT9uJdCfQNZ2tT+1j78pOFnxsCuNOrURRFEyKytdqL+O2vfeiwLBApaG3N1+rvVQClMRR07rRCFKSUm9CCCHEsUWClMSbUhJm1KQVlKGFMrWwIGYslCmgHlgoUw7aP2xf4fHQ1+rIhTX1oIUxnWH7dGXwrYoytJRyoI1+0KqRPthmaJHrwCLcwY9f97WqjFgEG7YANBikNLSAd7gFtJGflRGLYYdr+2aLYodq96b7ebO2h1gse/0+Dt73+sUxfcQ+Zejr1wcpDftstFGGFr1ev1B20D698LU+7DiVoXMPLqQd9KFw4JjXL3yph92mjXhsOnjBamghauhrRTcWsQ5a/BpawDIpGqqiFNobnxlsZyxcGccbi1fq4AKbRdEwoRX6Ng0+HurTWAjTDnw9eO4DX+sHnetA/yaUwa+NRTHT4OKY8Vgd/Nr4LIQQYvS913MvXVWPrXnXsLYck3OvQpDSsTLvKozh2J17mVXtmJp3HWgvcy9x/AoGgyxevHjE9oaGBnbs2DEKIxJCCCHE8ap2VimVDWew5clmNj62h3xWIxFK88KvN7Hz+VZOu76BQI2HJYEZ/Gzc9fy09RG6s+HC8WUWP1+rvZQlgRmjeBXieJJN5ejcMQBAzUwJUhJCCCGOJRKkJIQQQgghhBBCCHGcyeVyOByOEdvtdju5XG4URnRsWbZsGcuWLSMWi432UIQQQojjgtlqYvblE5hwRhWr/rKD/et6AOjcPsA/v/kK088bw+zLJ7AkMINF/umsj+2lLxuhxOJljnucZFASR1XHtn60nI6nzIGv0jXawxFCCCHEQSRISQghhBBCCCGEEEKcUJYsWcKSJUtobGzk5ptvHu3hCCGEEMcNT5mTc78yl/3re1j1p+1Ee5PoeZ0t/2pmz8oOFnxsKuNOqWCeZ8JoD1Ucxw6UeitDUSSLrRBCCHEskSAlIYQQQgghhBBCiOPQv//9b7Zt2zZsW3t7OwBf/epXR7RXFIWf/vSn78nYhBBCCHF8q5tTRtX0YjY9vpfNT+w1SsAF07zwq400Pl/Mqdc3EKh2j/YwxXFI1/WDgpSk1JsQQghxrJEgJSGEEEIIIYQQQojjUHt7eyEo6fXWrFkzYpvcZS6EEEKIo8lsNTH3yolMPLOKVX/aUQgc6djWzz+/sYKTLhjD7MsmYLHLUpU4eoJtMeL9KUwWlcqGotEejhBCCCFeR2Z+QgghhBBCCCGEEMeZf/zjH6M9BCGEEEIIALzlLs796mAJuD/vIDZYAm7zE83seaWTBR+bwtgFFRIwLY6KoWC4qmnFmK2mUR6NEEIIIV5PgpSEEEIIIYQQQgghjjMVFRWjPQQhhBBCiAJFUaifW071SSXDSsDFB1I8/8uNVE0v5rTrG/BXSQk48c5IqTchhBDi2CZBSuJN6c4cmgqgoqgKKAc+FFUFBVBUY9vr9h/+Y/AYVQGGHisHPVZANb4ceqwPbRtsrw/1g4LO0B0WCjpg/MNQB8Z+7cAx+tBxg6crtB96XOh78LGqHLTP2M3QXR3K6z44uN3g+Q7aNnTOoW36IY5/o/bDjjnMtjf9urBNH7ZNH9anPuyxcX59xPGHvn598LXSB58H4wlWlKHHg8/PwfsHPyscvB1URR88Xj/o8eCrXuhDP2hsOjr64LXpaIVrMbbr6GiKPvitqqOiG32+7nPhAx0FDVVhsK02uA9UNBRFx4RxnEnRBj/rKIpmbC/sH/5YHfx2Nj4rqAqYUTHB4HkVVEUxPgPqUH+D51HRCx/D+i30eeBrEwoKYFJAQRl8fOCzcS6V1nb5lSCEEMeC93zupajH1ryrMN4DH8fa3EtXDzr2WJh3va7NsTj30tVja95lGpwFydxLCCGEEEKI99ZQCbgJZxgl4No2DZaA29rPP7++gpM+NJZZl46XEnDibckksnQ3BgGomSlBSkIIIcSxSGZ54rA0TcNsNpObFBrtobw9Ogctmh055XWfxfvP0EuvjfZA3tDQaqI62gMZxmw2o2nH9jMnhBDHq/f13EvmXSe0Y3/udWzOu0DmXkIIIYQQ4sTlq3Dxwa/NpeW1Hlb/ZQexviRaXmfT43vZ/UoHp3x8KmPmlUsJOPGWtG/pQ9d0fFUuvOXO0R6OEEIIIQ5BgpTEYamqSi6X4z//8z+pr68f7eEIId5lLS0t3H777ajqsbeAJ4QQJwKZewlxYpG5lxBCCCGEONEpisKYeeXUzChh42N72PzkXrScTrw/xXP/u4GaGSWcel0DvkrXaA9VvE9IqTchhBDi2CdBSuJN1dfXM3ny5NEexvvaSy+9xOOPP866detYv349kUiE6667jnvvvXe0hzbCfffdx8svv8y6devYsmULmUyGe+65h+uvv360h/aOZLNZHn/8cR5//HHWrFlDa2sriqLQ0NDA9ddfzyc/+UlMJtNoD1MIIYSQudc7JPOu0SfzLiGEEEIIIcRbYbaZOPmqSUw8s5pVf9pO2+Y+ANo29/Hw119mxoXjmHXJeMw2eR8hDk/XdFo3Gd87EqQkhBBCHLskSEmI98D//d//8ac//Qmn00ldXR2RSGS0h3RY//mf/0lLSwslJSVUVlbS0tIy2kM6Kvbs2cOVV16J2+1m8eLFXHzxxYTDYZ544gluueUWnnrqKR5//HFJHyyEEEK8z8m8a/TJvEsIIYQQQgjxdvgqXXzw6yezb203q/+yg3h/Ci2ns/HRPexe0c4pH2+g/uQyeS8hDqm/JUIylMZiN1ExOTDawxFCCCHEYUheeSHeA5/73OfYunUrkUiEe+65Z7SH84buvvtu9u3bR29vL5/+9KdHezhHjcfj4Te/+Q1dXV08+uij/OQnP+F3v/sdu3bt4uSTT+bJJ5/koYceGu1hCiGEEOIdknnX6JN5lxDi/WDZsmV84xvf4Fe/+tVoD0UIIYQQB1EUhbHzK7jyv89k5sXjUE1GQFKsL8WyX6zn2Z+uI9wVH+VRimPRUKm3quklmCySdUsIIYQ4VkmQkjis4uJirr/+eoqLi0d7KKPq4Ycf5uyzz6asrAy73U5VVRVLlizh4YcfPuI+Tj75ZKZNm/aOy1pomsbdd9/N/PnzKSoqwuFwUFNTw0UXXcSLL75YaPfiiy+iKArf+973WLlyJeeeey5+v/+I7jBZsmQJ9fX172icQzKZDL/4xS+YN28eHo8Ht9tNQ0MDX/7ylwkGg4V2Y8aMYcyYMYTDYT7zmc9QWVmJy+XirLPOYv369QB0dHTwsY99jLKyMhwOB+eeey5NTU1HPJbq6mpuueUWXK7h9ctdLhdf/vKXAVi+fPlRuOr3L/mZF0KI0SX/D8u8652Qedf7j/zMCzG6lixZwo9//GM+//nPj/ZQhBBCCHEIFruZeR+ZzOU/OYPqkw7Mmds29fLw115m3YO7yKXzozhCcawZClKSUm9CCCHEsU3KvYnDKikp4cYbbxztYYyqO++8k1tuuYXKykouu+wyiouL6erqYs2aNTzyyCNcccUV7+l4vvnNb/LTn/6U8ePH8x//8R94PB7a29tZsWIFy5YtY+HChcPar1y5kh/+8IcsWrSIT37yk+zfv/89G2symeScc87hlVdeYeLEidxwww3YbDaampr4/e9/z7XXXksgcCDlaiaT4ZxzziGVSnH11VfT3d3NAw88wJIlS1i5ciUf/OAHqays5GMf+xi7d+/miSee4EMf+hA7dux4x4uQFosFALP5xP4vUX7mhRBidJ3o/w/LvOvtk3nX+9OJ/jMvhBBCCCHEkfBXuTnvG/PYt6aL1X/ZSXzAKAG34ZE9NK3o4NRrp1I/t3y0hylGWSqaoXd3CIDamSWjOxghhBBCvCH5y7AQb+Duu+/GarWyceNGysrKhu3r7+8flfFUVVWxefNmnE7nsH0DAwMj2i9dupT/+7//44Ybbnivhljwne98h1deeYWPf/zj3HPPPcMWtMLh8IgFrs7OTs444wz+9re/FRatZs+ezde//nVOPfVUbrjhBn7+858XshLccsst3HnnnTz22GNcfvnl72is//d//wfAueee+476EUIIIcTbJ/Out0/mXUIIIYQQQojjmaIojF1QSc3MUjY8spstT+1Dz+vEepMs/fl6ameXcuq1U/GWu968s+PIjh07eOaZZ9iwYQNdXV14vV6mTZvGTTfdRG1t7Rseu3HjRu6//36ampoIh8O43W4mTJjAddddx0knnTSi/ZYtWwplvF0uF4sWLeLmm28e8X55tLRv6UPXoajOg6vYMdrDEUIIIcQbkHJvQrwJi8VSuOP7YKNVlsFqtR7yDvaioqIR2+bMmTMqC2W5XI677roLn8/HHXfcMWK8Pp8Pt9s94rif/exnw+6qv+aaawr93X777cPKpgzt27Rp0zsa61133cXTTz/NBz7wAS644IJ31JcQQggh3hmZd711Mu8SQgghhBBCnCgsdjPzr5nC5T8+g6ppB94ntm7o5eGvrWDdQ03kMidOCbi//e1vLF++nLlz53Lrrbdy0UUXsWnTJm666Sb27t37hse2tbWhqiqXXHIJX/ziF7n66qsZGBjg85//PK+++uqwtk1NTXzpS18ilUrxuc99jg996EM88cQT/Nd//de7eXlvSfuWPkBKvQkhhBDvB5JJSYg38JGPfISvfe1rTJ8+nf/4j/9g0aJFnHHGGXi93mHt/vd//5dQKDRs2/XXX8+YMWOO+nh++9vfMn36dD7ykY+waNEiTj31VByOQ98ZMG/evGGPQ6EQ//u//zui3fe+972jOs6dO3cSjUZZsmTJsNIibyQQCFBXVzdsW2VlJQATJ04ccUfG0L6Ojo7CtnvvvZd9+/YNa3fppZcya9asQ57zySef5HOf+xz19fXcd999RzROIYQQQrw7ZN719si8SwghhBBCCHGiCVS7Of9b82h+tYvVf9lBIpgmn9XY8M/d7F7RzqnXNVA3u+zNO3qfu+qqq/jud7877GafD3zgA9xwww389a9/5Tvf+c5hj73wwgu58MILh2277LLL+MhHPsKDDz7IggULCtvvuusuPB4Pv/zlL3G5jGxVlZWV/PSnP2XNmjXMnz//KF/ZW3f6J6Yz4YxqXMX20R6KEEIIId6EBCkJ8QZuu+02iouLufPOO/n5z39euOP8Qx/6EL/4xS8YO3YsYCyWtbS0DDt24cKFR32x7I477mDs2LHcc8893H777dx+++3Y7Xauuuoqfv7zn1NSMrzWcnn58FrcoVCI73//+yP6PdqLZeFwGIDq6uojPub1C5BA4e7+N9qXzWYL2+69916WL18+rN2YMWMOuVj21FNPceWVV1JeXs7zzz9fWHwTQgghxOiQedfbI/MuIYQQQgghxIlIURTGnXKgBNzWp40ScNGeJP/+73XUzS3j3K/MHe1hvqsOVZattraWMWPGjHjffCTsdjs+n49YLFbYFo/Hee2117jqqqsKAUoAH/zgB/nVr37FCy+8cEwEKZnM6rDsWkIIIYQ4dkmQ0nEikUhw//33s337dnbs2EE0GuWb3/wm559//lE/V29vL7/+9a9Zu3YtmqYxe/ZsPv/5z1NVVTWs3VlnnXXI4z/5yU/ysY997KiP692gKAo33ngjN954I/39/bz88sv8/e9/54EHHqCpqYnNmzdjMplG3EX+bjGbzdx2223cdtttdHR0sHz5cu655x7+/Oc/09XVxbPPPjti/AcbM2YMuq6/6+P0+/0AtLe3v+vnOtiLL754RO3+9a9/ccUVV1BSUsILL7zAuHHj3tb5MpkMf/zjH/n3v/9NNBpl/Pjx3HTTTSMyKRzKkf4cgZF54P7776erq4vS0lKuvPJKrrjiirfVZ3d3N0899RSrVq2ira0Nk8nE2LFjufbaazn55JOH9bdu3TqWLl3K5s2b6e3tpaioiDlz5vCJT3xixMKspmk88cQTPPbYY7S3t2O325k0aRLXXnvtsDfLP/zhD3nmmWcO+7w8/PDDlJYeSMmbzWa5//77efbZZ+nq6sLlcjF58mRuu+02ysoO3A3V2NjIH/7wB7Zu3Yqu60ybNo3PfOYzTJw48Q1eBSGEePtk7nX0ybzr7TlR5l1Dmpubueeee2hsbGRgYAC73U59fT3XXHMNp59++psev3btWu6991527dqFxWJh7ty53HLLLYcMnFqxYgX33HMPLS0t+P1+LrjgAq699tphZfJuvfVWNm7ceMhzmUwmXnjhhWHbEokEf/rTn3jhhRfo7+/H5/Mxbdo0vv3tb2O3299Wn+/Uli1b+N3vfseuXbtwuVwsWrSIm2++eVhGrQ0bNvCFL3zhkMffeeedTJs27aiOSQghhBBCiCNldZhZ8B9TmHRWNSvv3U7n9gEA9q/rGeWRjQ5d1wkGg0d8I088HiebzRIOh3n22Wdpbm7m4x//eGH/3r17yefzTJ48edhxFouFiRMn0tTU9Ib99/X10d/fX3j8doKnhBBCCHF8kSCl40Q4HObee++lvLycCRMmsGHDhnflPIlEgi984QvE43E+9rGPYTabeeCBB/j85z/P//3f/+Hz+Ya1P/nkkznvvPOGbXu/Bg0UFxdz6aWXcumll9LX18fzzz/P7t27R0zO3ytVVVVcc801XH311UyePJlly5aRTCYPW4LkvTR58mS8Xi9r164lGAwecemR98LQQllRUREvvPACEyZMeNt9/ehHP+LFF1/kwx/+MDU1NTz99NN87Wtf44477mDGjBmHPe6t/Bw99thj/PznP+fss8/m6quvZvPmzdxxxx2kUik++tGPvuU+V6xYwd/+9jfOPPNMzjvvPPL5PM8++yxf/vKX+cY3vsEFF1xQ6PN3v/sdkUiEhQsXUltbS0dHB//85z9ZtWoVf/zjHykuPnBnym9/+1seeOABzj33XC699FJisRiPP/44t956K7/5zW9oaGgA4OKLLx4RDKXrOj//+c+pqKgYFqCUy+X4+te/ztatW7nwwgsZP3480WiUHTt2EI/HC+0aGxv57Gc/S1lZGddffz26rvPII49w66238vvf/35EORshhDgaZO717pJ515E7UeZdQ7q6ukgkEpx33nmUlJSQSqVYvnw53/zmN7ntttu4+OKLD3vsypUr+da3vsWkSZP41Kc+RTwe56GHHuJzn/scf/zjHwsBXwCrV6/m29/+NrNmzeILX/gCe/fu5c9//jPBYJCvfOUrhXYf//jHR5RISCaT/PznPx8RuB6Lxbj11lvp7e3loosuorq6mlAoxObNm8lms4UgpbfS5zvV1NTEl770Jerr6/nc5z5HT08P//jHP2hra+O///u/R7S/4oormDp16rBtbyWLlxBCCCGEEO+WQI2HC749n72rOnn1vp0kQunRHtKoWLp0Kb29vdx4441H1P6//uu/WLNmDWAEHl188cVce+21hf1DAUYH/y14SHFxMZs2bXrD/h9//HHuvffeEdubm5vJ5/NHNMb3s1gsxvbt20d7GO+ZE+164cS75hPteuHEu+YT7XrhxLvmd/N6h9aD34wEKR0niouLeeSRRyguLmbnzp188pOffFfO8+ijj9LW1sbvf//7wh+nFyxYwPXXX88//vGPEeetra3l3HPPfVfG8l548cUXOfvss4fdGZ/NZhkYMO7GGFpIeC+k02nWrVvHaaedNmx7PB4nFothsVhQVfU9G88bMZvNfOpTn+K///u/+cIXvsA999yDyWQq7A+Hw5hMJtxu93s6rqeffporrriCQCDACy+88I4Wbbdv385zzz3HZz7zGa655hrASHF7/fXXc+edd3LnnXce9tgj/TlKp9PcfffdnHrqqfzgBz8A4KKLLkLTNP785z9z8cUX4/F43lKfc+bM4cEHHxy2CHfJJZdw44038sc//nFYkNJnP/tZZsyYMez7av78+dx6663885//5OabbwaMYKLHHnuMhQsX8p//+Z+FtgsXLuQjH/kIS5cuLfxSmj59OtOnTx/2fGzevJlUKsU555wzbPsDDzzAxo0b+fWvf/2Gv9T++Mc/YrPZuPPOOwuL9eeccw4f/ehHueuuu7j99tsPe6wQQrxdMvc6+mTe9facCPOug5166qmceuqpw7Zdfvnl3HzzzTzwwANvGKT0u9/9jsrKSn7zm99gsVgAOP3007npppu47777+NznPldo+9vf/pbx48fz85//vJA5yel0ct9993HllVdSX18PcMigoX//+98AI+Y2d911F11dXdx9993DMqEdHHj+Vvt8p+666y48Hg+//OUvC6UbKisr+elPf8qaNWtGlG2YOXMmCxcuPKpjEEIIIYQQ4mhRFIXxp1VRO6uU9f/cPdrDec+1tLTwi1/8gmnTpo24gelwPvWpT3H11VfT09PDM888Qy6XGxY8lE4bwV5D76EOZrVayWQyb9j/xRdfPCzrbUtLC7fffjtjx44dtRuR3kvbt28/4gXb48GJdr1w4l3ziXa9cOJd84l2vXDiXfOxcL0SpHScsFqth4xkP5TVq1dz3333sWvXLhRFYebMmXzmM59h7Nixb3rsiy++yJQpU4bdPVtfX8+cOXN44YUXDrlANzSJtdlsR3g1x45LL70Ur9fLKaecQn19PdlslqVLl7J9+/ZhixNvZsWKFdx9992AUbJlaNv1118PQElJCT/72c/esI9kMsnpp5/OpEmTmDt3LnV1dcRiMZ588km6urq47bbbjspzfPfdd7NixQrAKP0wtG2opMcZZ5zBTTfd9Kb9/L//9/9YvXo1f/nLX1i9ejXnn38+NpuNvXv38swzz7BixQpmzZr1jsd7pHbu3Mlll11GOp1m4cKF/P3vfx/RZsyYMYXX5M0sX74ck8k0bCHMZrPxoQ99iLvuuovu7m7Ky8sPeeyR/hytX7+ecDjMpZdeOuz4yy67jKVLl7Jq1arCQvSR9nmon3Or1copp5zCAw88QCKRKJT2ONTrM2vWLLxe77C0vPl8nnQ6PSJzQyAQQFXVN/2+XLZsGYqisGTJksI2TdN46KGHOPPMM2loaCCXy5HL5Q65QL1582YWLFgwLJtISUkJs2bNYtWqVcOuSQghjhaZex19Mu+SedfbZTKZKCsrY+fOnYdtE4lE2LdvH9dcc82wP65PmDCB+vp6nn/++UKQ0r59+9i3bx9f+tKXhpV2u+yyy/jLX/7Ciy++yHXXXXfYcy1duhSHw8EZZ5xR2BaNRnnqqae44oorqKqqIpvNous6Vqv1iK7xUH3CgTnTk08+SUdHBy6XizPOOINPf/rThWD2w4nH47z22mtcddVVhQAlMALvf/WrX/HCCy+MCFICI8Ob1Wod9twIIYQQQghxLLE6LZzysalv3vA40t/fz9e//nVcLhc/+MEPht288kYOvqHk3HPP5aabbuJHP/pR4abZofe+2Wx2xLGZTOZN39OUlJRQUlJypJchhBBCiBOA/FXxBPPss8/ywx/+kPnz5/OpT32KdDrNo48+ymc/+1n++Mc/UllZedhjNU1j7969wzKtDJk6dSpr164dEQzwzDPP8Oijj6LrOvX19Vx77bVH/e7fd9OPfvQjnnnmGdasWcMTTzyBy+Vi/Pjx3HnnnXziE5844n52797Nn/70p2Hb9uzZw549ewBjsfHNFstcLhc/+clPeO6553j55Zfp6ekhEAgwefJkfvSjH/GRj3zkrV/gIaxYsWLEWF955RVeeeWVwuMjWSyz2+0sXbqUX//619x333384Q9/wGQyUVdXx6c//ekjrol9tHR1dRUWbe+///5Dtjn77LOPeLGsqamJmpqaYQs6QGEReffu3YcMUnorP0dD9bynTJkyrN3kyZNRVZVdu3Zx7rnnvq2fzdcbGBjAbre/6YJrIpEgmUwOCwiy2Ww0NDTwzDPPMG3aNGbOnEksFuNPf/oTHo/nDTMa5HI5XnjhBaZPnz7s/599+/bR19fH+PHj+e///m+eeeYZstks48aN49Zbb2XOnDmFttls9pBvhu12O9lslubmZqZNm/aG1yWEEO8WmXsdOZl3GWTedWSSySTpdJp4PM4rr7zCq6++yqJFiw7bfuju3kPNdWw2G83NzfT391Nc/P+3d+dxUVb7H8A/7LIJiMguiguxiLiA5YIsaoqKJkFaqZRL7qaYllct07LSVFwT03BLQUtNAmRxwfUahLkgSldB0AQhQfZlmN8fvGZ+DjPAgAyLfN6vV69755zznOd75vEwDzzfOccQ9+7dAwCpb/V27NgRRkZG4ns0WXJzcxEfHw8PDw+J7QBv3ryJsrIyWFhYYOXKlbh48SIqKythb2+PRYsW1brSVE19AsCGDRsQEREBLy8v+Pj44J9//sHx48eRkpKCHTt21JpIdP/+fQgEAqlxqqmpoUePHjLHuW7dOhQXF0NFRQWOjo6YPXu21L0qERERERE1rYKCAixduhQFBQXYtm1bg5OC1NTUMGjQIBw6dAilpaXQ0NAQf0FLtO3bi3JycpiARERERPXGJKU2pKioCIGBgRgzZgw++eQTcfnIkSPx/vvv4+DBgxLl1T1//hxlZWU17j0MANnZ2ejcuTOAqm2d3N3dYWpqipycHPz6669Ys2YNCgsLpVaGaalmz56N2bNnv3Q//v7+L/1NcTU1NSxduhRLly6ts62bmxuEQmGDzhMcHCxzj+iG0NDQQEBAAAICAmptl5qaWmNdTePo0qVLvcb4Mu+JLKKHWNW9OBdkqc88ysnJgYqKitQKRWpqamjfvr34F8P6zs3qMjIyEBcXB3d39zq/YXP06FGUl5fDw8NDonzFihX44osvJLZWMzMzw/bt2yW2M6nu2rVryMvLk3qAnpGRIT6frq4ulixZAgA4cOAAPvnkEwQFBaFbt24AqrY2SkpKgkAgEMdfXl4u3k9VtIoGEVFT471X/fC+6+W8yvddsmzfvh2//fYbAEBZWRmurq5YtGhRje07dOgAHR0d8YpVInl5eeIVIrOzs2FoaCi+x6pp7sn647xIbGwsBAJBjfc2QUFBMDMzw/Lly1FYWIjg4GB8/PHH2LdvX41/3K+pzxs3biAsLAwrV66UqOvbty+WLFmCs2fP1pqkWNc4//rrL/FrVVVVDB06FK+//jr09PSQmpqKkJAQzJs3Dzt27EDPnj1rPA9RU0hJScGmTZtw//596OnpYfLkyRgzZkxzh0VERESkcKWlpfj000+Rnp6OjRs3vvSXVEpLSyEUClFUVAQNDQ107doVKioquHv3rsTfhMvLy5GSklLrl0WIiIiIZGGSUhsSHx+PgoICeHp6Ijc3V1yurKwMW1tb/Pnnn7UeX9fewy+2AYAdO3ZItPHy8sL06dMRFBQk3oKCqLUqLS2Vey5UPw6Qbx6VlpbW+O13dXV1iXby9lldSUkJPv/8c2hoaOCjjz6S2Ubk+vXrCA4Ohru7O/r16ydRp6Wlha5du8Le3h79+vXDv//+i0OHDmH58uXYtm0b9PX1ZfYZExMDVVVVqV9mi4uLAVQ94P/xxx/Fq1L17dsXkyZNws8//4yVK1cCqNp65fvvv8e3336Ld999F5WVldi/f7/4wVtd+6ITESkK772IFMfX1xdubm7Izs7G2bNnIRAIZG4/IKKsrAxvb2/8/PPP2LVrF7y8vFBUVISdO3eKjxPNJ9G9g6yVGtXV1VFUVFTjeWJiYqCvr4/+/ftLlIvubQBg06ZN4hXQevTogdmzZ+P48eOYMWNGvfo8e/YsdHR04OzsLPEzpmfPntDU1ERiYmKtSUp1/Yx58R6qV69e6NWrl/j14MGD4ebmhg8++ABBQUF1rk5GpGhr166Fu7s7tm3bhpSUFCxYsAAODg5NvpIcERERUVMSCAT44osvcPv2bXz99ddwcHCQ2S47OxuFhYUwNzcX/7352bNnUl+Ozc/Px/nz59GpUydxnY6ODvr374+oqChMnTpV/LvM6dOnUVxczCQlIiIiqjcmKbUhom/vfvzxxzLrRdtWlZaWoqCgQKLO0NCwzr2HAdnbJ4ioqalhwoQJ+P7773H37l04OjrWewxELYWGhkaD5kJ95pGGhgYqKipk9lNWVibRTt4+XyT6JTY1NRXfffddrUvzpqWlYcWKFbC2tsayZcsk6ioqKrBo0SL06dNH4udLv379MHXqVBw+fFjmyhhFRUW4ePEiXFxcJLaPezFeBwcHiW3zjI2N0atXL9y6dUtcNm7cOGRlZeHw4cOIjIwEULVF3qRJk3DgwAGpbVGIiJoK772IFMfKygpWVlYAqlYnW7x4MT799FPs2rULSkpKMo+ZNm0a8vLycPjwYRw6dAgA4OzsjNGjR+PkyZPiewZRcpKsROcX78Gqe/z4MW7fvo0JEyZIJZqL+hw0aJDEFo329vYwNTWVuLeRt8+MjAwUFBTUuLXus2fPAFRt/fBiQqNoVc66fsbIStJ6kYWFBQYPHoy4uDiJFS2JmsOTJ0/g6ekJZWVl2NjYwMrKCg8fPmSSEhEREb3Stm/fjkuXLmHgwIHIz89HVFSURP2IESMAVK3oGhkZiZCQEPG285988gmMjIxgZ2cHAwMDZGZmIjw8HDk5Ofjiiy8k+pk+fTrmzp2L+fPnw9vbG1lZWQgJCYGzszMGDBjQJGMlIiKiVweTlNqQyspKAFXbMnXo0EGqXvRH5TNnzmDdunUSdXFxcWjfvj3U1dVr3HsYQJ37D3fq1AlA1fYlRK2ZoaGhzG3E6poL9ZlHhoaGEAgEUt9qKS8vx/Pnz8VbczR0bq5fvx5XrlzBypUrpVZGelFmZiYCAgKgra2Nb7/9VuLBGgD89ddfePDgAebNmydRbmlpCSsrqxoful28eBElJSUyv+EvGpusn1UGBgZISUmRKJsxYwYmTpyIBw8eQFtbG926dUNQUJA4DiKi5sB7L6Km4+bmhg0bNiA9Pb3GLW7V1NSwbNkyzJgxA+np6ejQoQMsLS3x5ZdfQllZGebm5gD+/z4kJydHIllaVGZrayuz/+joaACQeW8jmqvVv6ksKqueqChPn0KhEAYGBuLVJasTrWS5ZcsWcSI3ADg5OWHLli0S46wuJyenzp8vQNXPmPLycpSUlIgTL6ntKioqwpEjR5CUlIQ7d+4gPz8fn332GUaNGiXVtqysDHv27EFUVBTy8/PRrVs3TJ8+Hc7Ozg06t4+PD6KjozFlyhTcu3cPWVlZsLOze9khEREREbVof//9NwDg8uXLuHz5slS9KElJFi8vL5w5cwahoaEoKCiArq4u7OzssGrVKvTu3VuirY2NDTZu3IgffvgBW7duhZaWFkaPHl3nyvxEREREsjBJqQ0R/dFd1lYBL3J2dsbGjRulypWVlWFtbY3k5GSpuqSkJJiZmUklL1T3+PFjcQxErVn37t2RmJiIwsJCiQcySUlJ4npZ6jOPevToAQBITk7GG2+8IW6XnJyMyspKcX1D5uaOHTsQHh6O+fPnY9iwYTWOMy8vDwEBASgvL8emTZtkPqwSfUtf9DD+RRUVFRAIBDL7jo6OhqamJgYNGiRV161bN6iqqspMBMvOzpb5M0RXV1dilZD4+HgYGRnV+KCSiEjReO9F1HREKwXVlOzzog4dOogTBwUCARITE2Frayt1D3b37l2JJIfs7Gw8ffq0xpWLYmJiYG5uDnt7e6k6GxsbcR/VZWdn13i/UlufZmZmSEhIQK9evWpdVe3dd9+VeDihq6sLAOjatStUVFRw9+5deHh4iOvLy8uRkpIi17YNjx8/hrq6OleuJABVvzsEBwfD2NhY/PtSTdatW4dz587B19cXFhYWiIiIwNKlSxEYGNiglf8GDBiAr776CgcOHAAALF26VK5EOyIiIqLWbMuWLXK1W758OZYvXy5RNmHCBEyYMEHuczk6OkptM09ERETUEMrNHQA1HRcXF2hra+PgwYMyt5DKzc0FUPUt3/79+0v8JzJ06FAkJydLPCx7+PAhEhMT4ebmJtXXi4qKinDs2DHo6emJ/0hP1Fq5ublBIBDgt99+E5eVlZUhPDwcdnZ24m/dZ2ZmIi0tTeJYeedR37590b59e5w8eVLi+JMnT6Jdu3YSiUvy9gkAhw8fxpEjRzB58mT4+vrWOMbi4mIsXboU2dnZ+O6772pckUhUHhsbK1F+9+5dpKenix/0vSg3Nxfx8fFwdXVFu3btpOq1tLTw+uuv4/bt2xLvX2pqKm7fvl3rw35RLMnJyfD19YWyMj/qiKh58N6LqPGJkqNfVFFRgdOnT0NDQ0O8tVN2djbS0tJq3DpX5MiRI8jJycE777wjLuvatSs6d+6MU6dOSSRbnzhxAkpKShg6dKhUP/fu3UNaWlqNyd+dO3dG9+7dcfHiRYn5eu3aNWRlZclcPaauPj08PCAQCLBv3z6puoqKCuTn5wMAunTpIvHzRfTzQEdHB/3790dUVBSKiorEx54+fRrFxcUSSUqyfsb8/fffuHTpEpydnXm/RQCqViE7fvw4jh49KnO7Z5GkpCTExsZi5syZmDNnDry9vbF582aYmJhg586dEm3nzp0LV1dXmf/t3r0bQNVqgcuWLcOcOXMQExODH3/8EUFBQbh7965Cx0tERERERERERPXHlZReIb/88gsKCgrEy/VfunQJWVlZAKqWPtfR0cHixYvx1VdfYdq0afD09IS+vj4yMzNx9epVODg4YNGiRbWe46233kJYWBiWLVuGiRMnQkVFBaGhoTAwMMDEiRPF7X799VdcvHgRAwcOhLGxMXJychAeHo7MzEz85z//gZqamuLeCKImYGdnB3d3dwQFBSE3Nxfm5uaIjIzEkydPsGzZMnG7r776CtevX0dcXJy4TN55pKGhgWnTpmHTpk1YtWoVXFxc8NdffyEqKgozZsxA+/bt691nXFwcdu7cCQsLC1hZWUntU96/f3/xygJr1qzBnTt34OXlhbS0NIlkIU1NTQwZMgRA1coA/fv3R2RkJAoLC+Hi4oKcnBz88ssv0NDQkJkIFRsbC4FAIHPrEpGZM2ciISEBH3/8MXx8fABU/ZzT1dXF5MmTxe2uX7+Offv2wdnZGe3bt0dSUhIiIiIwYMAAvP322zX2T0T0snjvRdT0NmzYgMLCQvTu3RtGRkbIyclBdHQ0Hj58iLlz54pXQwoKCkJkZCRCQkJgamoKAIiKisL58+fRu3dvaGpqIj4+HmfPnsWYMWOkkrrnzJmDzz77DAEBAfD09MT9+/dx/PhxjBkzRpwI9aLatmUTmTdvHgICAjBv3jx4e3ujoKAAoaGhsLS0xLhx4+rdp5OTE7y9vXHw4EGkpKTA2dkZqqqqyMjIwLlz57BgwQKpcVU3ffp0zJ07F/Pnz4e3tzeysrIQEhICZ2dnDBgwQNzu888/h4aGBhwcHGBgYIDU1FScOnUK7dq14xYPJKauri7eRrA258+fh4qKisSqZBoaGhg9ejSCgoKQmZkp/tLH9u3b6+zv0aNHaNeunfjfe7du3eDg4IC//vqLSbpERERERERERC0Mk5ReISEhIXjy5In4dVxcnDgxYsSIEdDR0cHw4cPRsWNHHDp0CEeOHEFZWRmMjIzg6OgILy+vOs+hpaWFwMBAbNu2Dfv370dlZSX69OmDefPmSWwj0qtXL9y6dQthYWF4/vw52rVrB1tbWyxbtgz9+vVr9LETNYfly5fD2NgYp0+fRkFBAaytrfHtt9/Cycmp1uPknUdA1cNpVVVVhISE4NKlS+jUqRPmzZsnlfgjb5+ifcozMjKwdu1aqdgCAwPFSUqituHh4QgPD5doZ2JiIk5SAqq2azhy5AhiY2Nx7do1qKmpwdHREdOmTZO5fUlMTAwMDAxq/XnQpUsXbNmyBbt27cKBAwegpKSEvn37Yvbs2TAyMhK3MzIygrKyMg4fPozi4mKYmJhg2rRpeOedd6Cqyo85IlIc3nsRNT0PDw/8/vvvOHnyJPLy8qClpQUbGxvMmjULgwcPrvVYCwsLPH/+HPv27UNpaSk6d+6MgIAAmdu3DRw4EGvXrkVwcDACAwOhp6eH999/H/7+/lJtKysrcebMGfTs2bPWbWb79u2L9evXY8+ePQgKCkK7du0wZMgQzJo1S2rrRnn7XLJkCWxsbPDbb79h9+7dUFFRgYmJCYYPHw4HB4da3w+gKtl848aN+OGHH7B161ZoaWlh9OjRUolHQ4YMQXR0NEJDQ1FYWAh9fX24urrC398fFhYWdZ6H6EUpKSmwsLCQ2DYbAGxtbQFU/R4iSlKSh6WlJUpLS3HhwgUMHjwYaWlpuHHjhszkP6BqpTVRgrHofACkVsCtycOHD6GioiJ3fETUOnBuE726rKysZK7kTs1DtFW3vPderV1b+3xpa+MF2t6Y29p4gbY35rY2XqDtjVnR45Xn3ktJKBQKFRYBERERERERERG1KcnJyZg5cyY+++wzjBo1SqJu6tSpMDAwwObNmyXKU1NTMWXKFAQEBNSYYFSTa9eu4YcffsCjR4/Qvn17jB8/Hu+9957Mtnv37kVwcHC9+iciIqLWa/369RKrhFLzioqKkvnlWSIiIno17N69u86VrbnEBBERERERERERNYnS0lKZ25Cqq6uL6+vLxcUFLi4ucrX19vbGoEGDxK/z8/OxZcsWfPLJJ+IYapKWloa1a9dixYoVsLKyqnecbc3WrVsxf/785g5DLs0Zq6LP3dj9v2x/DT2+IcfJewzndv1wbreMc78qc7shx9Z3bmtqajYoLlIMFxcXrFixAqampnXee7V2be3zpa2NF2h7Y25r4wXa3pjb2niBtjfmphivPP0ySYmIiIiIiIiIiJqEhoYGysvLpcrLysrE9YrUsWNHdOzYUaLMzMwMvXr1krsPKyurOr8VSICOjk6reZ+aM1ZFn7ux+3/Z/hp6fEOOq+8xnNvy4dxuGed+VeZ2Q46tb3tF31tQ/ejr62PEiBHNHUaTamufL21tvEDbG3NbGy/Q9sbc1sYLtL0xN/d4lZvtzERERERERERE1KYYGhoiJydHqlxUVj2BqCkMGzasyc/ZFrSm97U5Y1X0uRu7/5ftr6HHN+S41vRvsDVpTe8r53bT9fcyx9f32Nb0b5CIiIiIpDFJiYiIiIiIiIiImkT37t2RkZGBwsJCifKkpCRxfVPjw07FaE3vKxMZmq4/Jim1fq3pfeXcbrr+mKRERERERPJikhIRERERERERETUJNzc3CAQC/Pbbb+KysrIyhIeHw87ODsbGxs0YXe0MDQ3h7+8PQ0PD5g6FiBoR5zbRq4lzm5pbW/s32NbGC7S9Mbe18QJtb8xtbbxA2xtzSxmvklAoFDZrBERERERERERE1Or98ssvKCgoQE5ODk6cOAFXV1f06NEDAODj4wMdHR0AwOeff464uDj4+fnB3NwckZGRuHPnDjZt2gQnJ6dmHAERERERERERESkSk5SIiIiIiIiIiOil+fn54cmTJzLrQkJCYGpqCgAoLS3Fnj17EBUVhYKCAlhbW2P69OlwcXFpynCJiIiIiIiIiKiJMUmJiIiIiIiIiIiIiIiIiIiIiIgUSrm5AyAiIiIiIiIiInoVlJWV4ZtvvsHbb7+NkSNHYtasWbh161Zzh0VEjWD9+vUYP348Ro4cialTp+LSpUvNHRIRNZJbt25h6NCh2LdvX3OHQkRERPTK40pKREREREREREREjaC4uBghISEYNWoUjIyMcPbsWWzevBkhISHQ0tJq7vCI6CWkpaXB1NQU6urquHPnDhYvXowjR45AT0+vuUMjopdQWVmJOXPmQCgUYuDAgZg6dWpzh0RERET0SlNt7gCIiIiIiIiIiIheBZqamvD39xe/9vT0xLZt25Ceng4bG5vmC4yIXpqVlZX4/yspKaG8vBzZ2dlMUiJq5U6dOgVbW1sUFhY2dyjUCty5cweRkZFITEzEkydP0L59e9jb22P69OmwtLSs9diIiAisW7dOZt3x48dhaGioiJBfSmJiIhYuXCizbufOnbC3t6/1+KdPn2Lbtm34448/UFlZiT59+mD+/PkwMzNTRLiN4uuvv0ZkZGSN9b/88guMjIxk1u3duxfBwcFS5erq6oiJiWmsEF9KUVERjhw5gqSkJNy5cwf5+fn47LPPMGrUKKm2qamp2LZtG27evAlVVVW88cYbmDdvHvT19eU618WLF/HTTz8hLS0N+vr68PLywpQpU6Cq2nTpCfKMt7KyEqdPn8b58+eRkpKC/Px8mJqawsPDAxMnToSGhkad51mwYAGuX78uVe7i4oINGzY05pDqJO81runfeufOnXHw4EG5ztVarjEAuLq61thH//79sXHjxlrP4+fnhydPnkiVe3t7Y8mSJQ0LvgHq8znUkucwk5SIiIiIiIiIiKhNqs8f6cvKyrBnzx5ERUUhPz8f3bp1w/Tp0+Hs7Fxj/+np6cjPz4e5ubkih0FE1Shqbm/cuBHh4eEoKyvD66+/Dmtr66YYDhFBMfM6Ly8PR48exc6dO7F169amGgq1Yj///DNu3rwJd3d3dOvWDTk5OTh+/DimT5+OnTt3yvW5MG3aNJiamkqU6ejoKCrkRuHj4wNbW1uJsrrub4uKirBw4UIUFhbi/fffh6qqKkJDQzF//nzs3bu3xSb5ent7o3///hJlQqEQ33//PUxMTGpMUHpRQEAANDU1xa+VlZUbPc6GysvLQ3BwMIyNjdG9e3ckJibKbJeVlYX58+dDR0cHM2bMQHFxMY4cOYL79+9j165dUFNTq/U8V69exX/+8x84OTlh4cKFuH//Pvbv349nz54hICBAEUOTSZ7xlpSUYN26dbC3t8e4ceNgYGCA27dv46effsKff/6JzZs3Q0lJqc5zGRkZ4aOPPpIoa47kQ3mvMVCVQLd06VKJMm1tbbnO05quMQCsWLFCqiw5ORnHjh2r9Xf6F/Xo0QPvvPOORJmFhUX9g34J8n4OtfQ5zCQlIiIiIiIiIiJqk+rzB9x169bh3Llz8PX1hYWFBSIiIrB06VIEBgbC0dFRqn1paSnWrl2L9957r8U/eCJ61Shqbi9evBgLFy7E9evXcf/+fbkeWBFR41DEvN69ezd8fX2hq6vbFEOgV4Cfnx9WrVol8XDXw8MDH3zwAQ4dOoSVK1fW2ceAAQPw2muvKTLMRte7d2+4ubnV65gTJ04gIyMDu3btEic4DRgwAP7+/ggJCcHMmTMVEOnLc3BwgIODg0TZjRs3UFJSguHDh8vVx9ChQ+VeqaSpGRoailfuSk5OrvE6HDx4ECUlJfjxxx9hbGwMALC1tcXixYsREREBb2/vWs+zY8cOdOvWDd9//7141RUtLS0cPHgQb7/9tsQKlYokz3jV1NSwfft29OrVS1w2duxYmJiYYO/evUhISJBKXJNFR0cHI0aMaNT4G0LeawwAKioqDY65NV1jADLHmZiYCCUlJXh6esp1ro4dOzb7NZb3c6ilz+GWk7pJRERERERERETUhER/0Dx69Chmz55dY7ukpCTExsZi5syZmDNnDry9vbF582aYmJhg586dUu0rKiqwatUqmJubS2z/RkRNQ1FzG6h6mNOvXz8kJCTgypUrihoCEVXT2PP63r17SE5OxpgxY5oifHpF9OrVS2r1CUtLS3Tp0gVpaWly91NUVASBQNDY4SlUUVERKioq5G5/7tw5vPbaaxIrMFlZWaFv3744e/asIkJUmJiYGCgpKWHYsGFyH1NYWAihUKjAqBpGXV1drtV9zp8/j4EDB4qTG4CqLbEsLS3rvH6pqalITU3F2LFjJbaFeuuttyAUCnHu3LkGx19f8oxXTU1NIkFJZMiQIQBQr7ldUVGBoqKi+gXZyOS9xiICgaDeW562tmssS1lZGc6fPw8nJyd06tRJ7uPKy8tRXFxc7/M1Fnk/h1r6HOZKSkRERERERERE1CbV54/0KioqEt821NDQwOjRoxEUFITMzEzxH/8qKyuxdu1aKCkpYfny5VxphagZKGJuVycQCPDo0aNGi5mIatfY8/r69etIT0+Hj48PAKCgoAAqKip4/PgxPvvsM4WNg149QqEQz549Q5cuXeRqv3DhQhQXF0NNTQ3Ozs6YO3cuLC0tFRvkS1q3bh2Ki4uhoqICR0dHzJ49u9bVoCorK3H//n14eXlJ1dna2uKPP/5AUVERtLS0FBl2o6ioqMDZs2fh4OAgtU1fTd555x0UFxdDU1MTgwcPxty5c9GhQwcFR9p4nj59imfPnsHGxkaqztbWFlevXq31+Hv37gGA1PEdO3aEkZERUlJSGi9YBfr3338BQO6tCdPT0/Hmm2+ivLwcHTp0wJgxY+Dv7y+R5NHSlJSUYNSoUSgpKYGuri48PT0xa9asOufmq3CNr169ioKCArlXSAOAP//8EyNGjIBAIICJiQl8fX3h6+urwCjlU/1zqDXM4ZY7K4iIiIiIiIiIiFqAlJQUWFhYQFtbW6Jc9M3wv//+W5zIsGHDBuTk5GDDhg0t+g/SRCT/3C4oKMCVK1cwaNAgqKur48KFC0hMTGyxW9UQtWXyzmtvb2+J7V22bNkCU1NTvPfee00aL7V+0dHRePr0KT788MNa22loaGDUqFHo06cPtLW1cffuXYSGhmLOnDkS2/G0JKqqqhg6dChef/116OnpITU1FSEhIZg3bx527NiBnj17yjzu+fPnKCsrk5lYKCrLzs5G586dFRp/Y7h27Rry8vLkSmTQ1dXFhAkTYG9vDzU1Ndy4cQPHjx/HnTt3sHv3bqmfSy1VTk4OANR4/UTXV11dvUHHi+pbusOHD0NbWxsDBgyos62ZmRn69OkDa2trlJSU4Ny5c9i/fz/S09OxevXqJoi2/gwNDTFp0iT07NkTQqEQ//3vf3HixAn873//Q2BgYK2/y74K1zg6Ohrq6uoYOnSoXO2tra3h6OgIS0tLPH/+HBEREdi6dSuys7NrXeGxKVT/HGoNc5h/KSEiIiIiIiIiIqpFTk5OnQ9ZAODJkycICwuDurq6xAoO3333HXr37t00wRKR3OSd20pKSggLC8OmTZsgFAphbm6OlStXokePHk0aLxHVTd553a5dO7Rr105cr6GhAU1NTejq6jZNoPRKSEtLw6ZNm2Bvb4+RI0fW2tbDwwMeHh7i10OGDIGLiwvmz5+PAwcOYMmSJYoOt9569eolsQ3W4MGD4ebmhg8++ABBQUHYsGGDzONKS0sBQGpLIgDih+KiNi1dTEwMVFVV4e7uXmfb6iuquLm5wdbWFmvWrMHx48fx/vvvKyrMRiXv9aspwaGsrEyibfXjm3s7NHkcOHAA8fHxWLx4sVyfC59++qnE6zfffBPr16/HqVOn4OfnB3t7e0WF2mAfffSRxGtPT09YWlpi9+7dOH/+vEQib3Wt/RoXFhbiypUrGDBggNyf+998843Eay8vL3zyyScIDQ2Fj49PvbaMa0yyPodawxxmkhIREREREREREVEtSktL5XrIYmJigri4uCaNjYgaTt65ra2tjcDAwCaNjYgaRt55Xd3y5csVGhe9enJycrBs2TJoa2tjzZo1UFFRqXcfjo6OsLOzQ0JCggIiVAwLCwsMHjwYcXFxEAgEMsetoaEBACgvL5eqEz38FrVpyYqKinDx4kW4uLjIveVXdcOHD8f27duRkJDQapKUXvb6iX7eitpWP76lX/vY2Fj8+OOPGD16NMaPH9/gft555x2cOnUK8fHxLTJJSRY/Pz/s2bMH8fHxtSYptfZrfP78eZSVldVrq7fqlJSU4Ofnh2vXruH69esYMWJEI0Yon5o+h1rDHFZ+6R6IiIiIiIiIiIheYRoaGq3+IQsRSePcJnr1cF5TUygoKMDSpUtRUFCADRs2oGPHjg3uq1OnTnj+/HkjRqd4nTp1Qnl5OUpKSmTWt2/fHurq6jK3BBKVvcx71lQuXryIkpKSl0pkAFrfNRatPFfT9RNd34YeL2u1u5bijz/+wNdff4033ngDAQEBL9WXaGWd/Pz8xgitSWhoaKB9+/Z1/nttzdcYqNoeTUdHBwMHDnypfkTXuDnmd22fQ61hDjNJiYiIiIiIiIiIqBaGhoat/iELEUnj3CZ69XBek6KVlpbi008/RXp6Or755ht06dLlpfp7/Pgx9PX1GyW2pvL48WOoq6tDU1NTZr2ysjKsra2RnJwsVZeUlAQzMzNoaWkpOsyXFh0dDU1NTQwaNKjBfQiFQjx58qRVXWMjIyPo6+vj7t27UnV37txB9+7daz1etB1u9eOzs7Px9OnTFrtdblJSElasWAEbGxusXr0aqqovtyHV48ePAaBVXfuioiLk5eXVGXNrvcZAVYyJiYlwdXWtNVFHHs11jev6HGoNc5hJSkRERERERERERLXo3r07MjIyUFhYKFGelJQkriei1odzm+jVw3lNiiQQCPDFF1/g9u3bWL16NRwcHGS2y87ORlpaGioqKsRlubm5Uu2uXLmCu3fvwsXFRVEhvxRZMf/999+4dOkSnJ2doaxc9Zg5MzMTaWlpEu2GDh2K5ORkiUSlhw8fIjExEW5ubooMu1Hk5uYiPj4erq6uaNeunVS9rDHLer9OnDiB3NxcDBgwQFGhKsTQoUNx+fJlZGZmissSEhKQnp4Od3d3cVlFRQXS0tKQnZ0tLuvatSs6d+6MU6dOQSAQiMtPnDgBJSUlDB06tGkGUQ+pqalYtmwZTExM8O2339a66l5aWprE+1JYWCi1LZZQKMT+/fsBAM7OzooJ+iWUlpaiqKhIqnzfvn0QCoUS/15flWsscubMGVRWVta4Qpqs8T5//lxinKJ2hw4dgpqaGvr06aPQmF8k7+dQS5/DL5cCSERERERERERE9Ipzc3PDkSNH8Ntvv2HSpEkAqraNCQ8Ph52dHYyNjZs5QiJqCM5tolcP5zUp0vbt23Hp0iUMHDgQ+fn5iIqKkqgfMWIEACAoKAiRkZEICQmBqakpAGD27Nno2bMnbGxsoK2tjXv37iE8PBydOnXC5MmTm3ws8vj888+hoaEBBwcHGBgYIDU1FadOnUK7du3w0Ucfidt99dVXuH79OuLi4sRlb731FsLCwrBs2TJMnDgRKioqCA0NhYGBASZOnNgcw6mX2NhYCASCGhMZZI3Z19cXHh4esLa2hrq6Om7evInY2Fj06NED3t7eTRV6nX755RcUFBSIV5i7dOkSsrKyAAA+Pj7Q0dHB+++/j3PnzuHjjz/G22+/jeLiYhw+fBjW1tYYNWqUuK+nT59i8uTJGDlyJJYvXy4unzNnDj777DMEBATA09MT9+/fx/HjxzFmzJiXXn2sscerrKyMJUuWID8/HxMnTsSVK1ckjjczM5NIBJk8eTKcnJywZcsWAMC9e/ewevVqDBs2DObm5igtLcWFCxdw8+ZNjB07FjY2Nk000v9X15jz8/Mxbdo0DBs2DJ07dwYAXLt2DVevXsWAAQMwePBgcV+vwjXW0dERt42OjkbHjh1rTCySNd5Lly5h//79GDp0KExNTZGfn4/o6Gg8ePAAM2fObNLt7eT9HGrpc5hJSkRERERERERE1GbJ8wdNOzs7uLu7IygoCLm5uTA3N0dkZCSePHmCZcuWNWf4RFQDzm2iVw/nNTW3v//+GwBw+fJlXL58Wape9HBYFg8PD1y9ehV//PEHSkpKYGhoiLFjx8Lf3x8dOnRQWMwvY8iQIYiOjkZoaCgKCwuhr68PV1dX+Pv7w8LCotZjtbS0EBgYiG3btmH//v2orKxEnz59MG/evFax/VVMTAwMDAzQr18/uY8ZPnw4bt26hfPnz6OsrAzGxsaYNGkSpkyZInM1puYSEhKCJ0+eiF/HxcWJk61GjBgBHR0dGBsbY8uWLdi2bRt27doFVVVVvPHGG5g7d65cW2QNHDgQa9euRXBwMAIDA6Gnp4f3338f/v7+ihpWjeoaLwDxZ8muXbukjh85cmSNq9UAgLGxMXr37o24uDj8+++/UFZWhpWVFQICApotOU2eazxw4ED88ccfiIyMRGVlJczNzTFz5kxMnDhRvEpabVrTNRYlKT18+BB3796Fn5+fXGMUsba2hpWVFaKjo5GbmwtVVVX06NEDq1evlliVqCnI+znU0uewklAoFDZKT0RERERERERERK2Mn5+fxB80X/Tit99LS0uxZ88eREVFoaCgANbW1pg+fXqL3Z6DqK3j3CZ69XBeExEREbV+TFIiIiIiIiIiIiIiIiIiIiIiIiKFkn8dKyIiIiIiIiIiIiIiIiIiIiIiogZgkhIRERERERERERERERERERERESkUk5SIiIiIiIiIiIiIiIiIiIiIiEihmKREREREREREREREREREREREREQKxSQlIiIiIiIiIiIiIiIiIiIiIiJSKCYpERERERERERERERERERERERGRQjFJiYiIiIiIiIiIiIiIiIiIiIiIFIpJSkREREREREREREREREREREREpFBMUiIiIiIiIiIiIiIiIiIiIqJmkZiYCFdXVyQmJjZ3KESkYExSIiIiIiIiIiIiIiIiIiIiekVERETA1dUVycnJAIArV65g7969zRwVcPz4cURERDR3GETUjJikRERERERERERERERUh9DQUHh4eOCff/4Rl4keALaUh21hYWFwc3PD//73v+YOhYiIiFqQq1evIjg4uLnDwIkTJ2TeN/Xu3RvR0dHo3bt3M0RFRE2JSUpEREREREREREREbcw///wDV1fXWv/z8/Nr7jBbjPz8fOzfvx9eXl4wNTVV6LmuXbsGV1dXBAQE1Nn2yy+/hKurK6KjowEAI0eOhLGxMXbu3KnQGImIiIiEQiFKS0sbpS9lZWVoaGhAWZnpC0SvOtXmDoCIiIiIiIiIiIiImoe5uTmGDx8us05HR6eJo2m5QkND8fz5c0yaNEnh5+rfvz+MjY2RkJCAzMxMGBsby2xXUFCACxcuQEdHB66urgAAVVVV+Pn5ITAwEDdv3kSvXr0UHi8RERG1bF9//TUiIyMBQHzPAABxcXEAgMrKShw7dgxhYWF4/PgxtLW1MXjwYMyaNQu6urri9n5+fujatSt8fHywe/duPHjwADNnzoSfnx/Cw8Nx+vRpPHjwAIWFhTAzM4OPjw/Gjx8vcfyTJ08k4nBycsKWLVuQmJiIhQsXIjAwEH369BEfc/bsWRw6dAipqanQ1NSEi4sLZs2aBSMjI4nxnT9/HgcPHsSmTZuQkJAAdXV1jBw5ErNmzYKKikrjv6lE1GBMUiIiIiIiIiIiIiJqo8zNzfHhhx82dxgtWkVFBcLCwtCrVy+Ym5sr/HzKysoYNWoUgoODERkZialTp8psFxMTg9LSUnh5eUFDQ0Nc7unpiW3btuHkyZNMUiIiIiJ4e3sjOzsb8fHxWLFihVT9hg0bEBERAS8vL/j4+OCff/7B8ePHkZKSgh07dkBV9f9TCh4+fIjVq1fD29sbY8aMQefOnQFUbePWtWtXDBo0CCoqKrh8+TI2btyIyspKTJgwAQAwf/58bN68GZqampgyZQoAwMDAoMa4IyIisG7dOrz22muYOXMmnj17hmPHjuHmzZvYs2ePRAKVQCDAkiVLYGtrizlz5iA+Ph4hISEwNzeXSJQioubHJCUiIiIiIiIiIiIiqpOrqyucnJzwxRdfYOfOnbh69SqKi4vRvXt3fPTRRxLfehcpKirCkSNHcO7cOTx+/Bjq6uqwtbXF1KlT4ejoKNF2wYIFuH79OqKjo7F//37ExsYiMzMTkydPFidSib4l/+DBA2hra2PQoEGYPXs2pk2bBqBqxSMAWLNmDaKjo/HDDz/Azs5OKq49e/Zg3759WLVqFYYNG1bruK9du4acnBy8++67cr9XWVlZ+OSTT/Do0SOsWLECbm5uAIBnz57h4MGDuHz5MrKysqClpYXevXvjww8/hLW1tfh4Ly8v7Nu3DxEREZgyZQqUlJSkzhEeHg4AGD16tES5vr4++vTpg3PnzmHx4sXQ0tKSO24iIiJ69Tg4OMDS0hLx8fEYMWKERN2NGzcQFhaGlStXSqyu2bdvXyxZsgRnz56VKH/06BE2bNgAFxcXiX62bt0qkTTt4+ODJUuWIDQ0VJykNGTIEPz444/Q09OTiqO6iooK/PDDD+jatatE346Ojli2bBmOHj0qkWhfVlYGDw8PcXL3uHHjMG3aNPz+++9MUiJqYbipIxERERERERERERHJpaCgAHPnzkVqaipGjBgBV1dX3L17F0uWLMH9+/cl2j5//hyzZ89GcHAwdHV1MW7cOLi6uuLevXtYuHAhLly4IPMcK1euRGRkJPr06YO3334bpqamAIDff/8dK1euREZGBt58802MHDkSt2/fxuLFi1FRUSHRh7e3t/iY6gQCAcLDw6Gnpyex5UlNEhISAAD29vZ1v0EAUlNTMWfOHGRlZWH9+vXiBKVHjx5h+vTpOHr0KMzMzDBhwgS8/vrruHbtGmbPno2kpCRxHyYmJujXrx8eP36MxMREqXPcv38fycnJ6NGjB3r27ClVb29vj7KyMty6dUuumImIiKhtOnv2LHR0dODs7Izc3Fzxfz179oSmpqbUfYipqalUghIAiQSlgoIC5ObmwsnJCY8fP0ZBQUG940pOTsazZ8/w1ltvSfT9xhtvoHPnzrhy5YrUMePGjZN47ejoiMePH9f73ESkWFxJiYiIiIiIiIiIiKiNevToEfbu3Suzzt7eHgMGDJAo+/vvvzF+/Hh8/PHHUFau+g5s37598d133+HXX3/FkiVLxG03b96MBw8eYOnSpRgzZoy4/NmzZ5gxYwbWr18PFxcXiQdPAJCTk4OffvoJ7du3F5fl5+djy5Yt0NTURFBQECwtLQEAM2bMwJIlS3D37l2YmJiI2/fu3RtdunRBbGws5s2bB01NTXHdtWvX8PTpU/j6+kJdXb3O9+jmzZtQVlZG9+7d62x7+/ZtLFu2DKqqqti6davEMV999RX+/fdfqdUHpkyZghkzZuC7775DcHCwuHz06NGIj49HeHg4+vbtK3GemlZRErGxsQEA3Lp1S+aDRCIiIiIAyMjIQEFBgTjBu7pnz55JvBYlj1d38+ZN7N27F7dv30ZJSYlEXWFhIXR0dOoVV2ZmJgCI7/leZGVlhRs3bkiUqaurQ19fX6JMV1cX+fn59TovESkek5SIiIiIiIiIiIiI2qhHjx5JJMa86O2335ZKUtLU1MSsWbPECUoAMHLkSHz//fdITk4Wl+Xm5uLs2bPo27evRIISABgYGGDSpEkIDAxEQkICBg4cKFH/wQcfSCQoAcDFixdRXFwMHx8fiYdVqqqqmD59OubMmSMVv7e3N7Zs2YLY2FiJGMLCwgAAY8eOlTnu6p4+fQodHZ06E5quXLmCzz//HIaGhvj+++9hZmYmrrt37x5u3boFLy8vqaQhS0tLjBkzBqGhobh//75427chQ4ZAT08P58+fx6JFi6CtrQ2gavuTqKgoqKurS2y/8qIOHToAqNp2joiIiKgmQqEQBgYGWLlypcz66ok/1ZPLgar7yUWLFqFz586YO3cuOnXqBDU1NVy9ehWhoaGorKxUROgSVFRUFH4OImocTFIiIiIiIiIiIiIiaqNcXFywYcMGudtbWFhAS0tLokxVVRUdOnSQ2MojOTkZAoEA5eXlMldqysjIAACkpaVJJSnZ2tpKtf/f//4HoGrbjurs7OxkPph68803sWvXLoSFhYmTlP79919cvnwZDg4O6NKlSx2jrfL8+XMYGRnV2ubs2bP4448/0K1bN6xfvx4GBgYS9aKt3J49eybz/Xj48KH4f0VJSqIkpGPHjiEmJka8hcmlS5eQm5uLYcOGQVdXV2Y8ovK8vDy5xkhERESvNiUlJZnlZmZmSEhIQK9evWQmIMnj0qVLKCsrw7p162BsbCwul7VlrbxE/aSnp6Nfv34SdQ8fPpRYQZOIWhcmKRERERERERERERGRXESr+VSnoqIi8S3558+fA6ja+uPmzZs19ld9OxDg/1cBelFhYSEASCX/AICysjL09PSkynV1deHu7o7IyEjxCkUREREQCARyr6IEVK0YUFZWVmub27dvQyAQwNHRUWaMovfjypUruHLlSo39FBcXS7wePXo0jh07hvDwcHGSUl1bvQEQx9uuXbta4yYiIqK2QXRPkJ+fL5Hk7OHhgRMnTmDfvn2YOXOmxDEVFRUoLi6uMSlaRJQsLhQKxWUFBQXie5YXaWpqSiS21+S1116DgYEBTp48CS8vL/GKllevXkVaWhr8/f3r7IOIWiYmKRERERERERERERFRoxIlM73zzjuYO3duvY6V9U1/UX/Pnj2TqqusrEReXp7M1Y7GjRuHyMhInDp1CgsXLsTvv/8ObW1tuLu7yx2Pnp4enj59WmubmTNn4uLFizh27BhUVFSkxiyKf+HChfDx8ZH73N26dcNrr72GO3fu4MGDB9DV1cW1a9dgamqKvn371nicKCmq+hYtRERE1DbZ2NgAALZs2QJnZ2eoqKjA09MTTk5O8Pb2xsGDB5GSkgJnZ2eoqqoiIyMD586dw4IFC+Dm5lZr387OzlBTU8Onn34Kb29vFBcXIywsDAYGBsjJyZFo27NnT5w8eRL79u2DhYUF9PX1pVZKAqpW6pw1axbWrVuHBQsWwNPTE8+ePcOxY8dgYmICX1/fRntviKhpMUmJiIiIiIiIiIiIiBrVa6+9BiUlJdy+fbtR+uvWrRuAqpWZqicY3blzBwKBQOZx9vb26NatG6Kjo/HGG28gIyMD48ePr9cKQ9bW1nj06BEyMzMltjB5kbq6Or766iusXLkSISEhEAqFmDdvnrhetIXd7du365WkBFStmJScnIzff/8dBgYGEAgE8PLyqnHbFuD/t48TbR1HREREbZurqyt8fHwQGxuLqKgoCIVCeHp6AgCWLFkCGxsb/Pbbb9i9ezdUVFRgYmKC4cOHw8HBoc6+O3fujC+//BI//vgjduzYgQ4dOmD8+PHQ19fHN998I9HW398fmZmZOHz4MIqKiuDk5CQzSQkARo0aBQ0NDRw6dAi7du1Cu3btMGTIEMyaNavO1Z2IqOVikhIRERERERERERERNSpDQ0O4u7vjzJkzOHz4MCZOnCiVVJOUlARra2u5EoYGDx4MTU1N/P777/Dx8YG5uTmAqm1I9uzZU+ux3t7e2LRpk/gh2ZgxY+o1FicnJ1y4cAFJSUk1JikBVYlKa9euxcqVKxEaGgqhUIj58+cDAOzs7GBnZ4fY2FgMGjRI/FBQpLKyEjdu3ICTk5NUv8OGDcP27dsRFRUFXV1dKCsrY+TIkbXGfOfOHXHsRERE1PaMGjUKo0aNEr9WUVHBwoULsXDhQpntx44dW+d2uKGhoTXWDRo0CIMGDZIq9/LyknjdoUMHfPvtt1Lt+vTpg7i4OKlyDw8PeHh41BrX8uXLsXz5cqnyDz/8EB9++GGtxxJR02OSEhEREREREREREVEb9ejRI+zdu7fG+vfeew8aGhoN6nvx4sVIT0/Hzp07cfr0adjb20NHRwdPnz5FcnIyMjIycPz4cbmSlHR1dTFv3jysX78eM2bMgIeHB7S1tXH16lWoq6ujY8eONa4sNGLECPzwww/Izs6GjY0NevbsWa9xDB48GNu3b0d8fHyd28SpqalhzZo1WLVqFY4ePQqhUIgFCxYAAFatWoWPP/4Yq1evxrFjx9CjRw9oaGggKysLt27dQl5eHmJiYqT61NbWxtChQ3H69Gnk5uZiwIABtSZLCYVCJCQkwMrKCpaWlvUaKxERERERkSIxSYmIiIiIiIiIiIiojXr06BGCg4NrrPf19W1wklL79u2xY8cO/Prrrzhz5gxiYmJQWVmJDh06oHv37pg6dSr09PTk7m/s2LHQ1dXFgQMHEBkZCW1tbQwaNAizZs2Cr6+veHWl6rS1tTFkyBBERUXVexUlADA1NYWzszPOnTuHhQsXQl1dvdb2okSlzz//HMeOHYNQKMTChQthZmaGPXv2ICQkBBcuXEBERASUlZVhaGiI3r17w83NrcY+R48ejdOnTwOQXpGgur/++guZmZniVZyIiIiIiIhaCiWhUChs7iCIiIiIiIiIiIiIiBoiIyMD7777Ltzd3bF69WqZbaZOnYonT57g119/hba2dr3PkZCQgEWLFmHFihUYMWLEy4asUGvWrMF///tfHD58GLq6us0dDhERERERkZhycwdARERERERERERERFSX/Px8lJWVSZSVlpZi27ZtAIAhQ4bIPO7q1at48OABhg0b1qAEJQDo168fBgwYgP3796OysrJBfTSF9PR0nDlzBlOmTGGCEhERERERtTjc7o2IiIiIiIiIiIiIWrzr16/j22+/hbOzMzp16oS8vDz8+eefePLkCfr27QsPDw+J9idOnEBWVhbCwsKgrq6O995776XOv2DBAkRHR+Pp06cwNjZ+qb4UJSsrC/7+/njrrbeaOxQiIiIiIiIp3O6NiIiIiIiIiIiIiFq89PR07NmzB7du3UJubi4AwNzcHB4eHpg4cSI0NDQk2vv5+eHp06ewtLTErFmzMHDgwGaImoiIiIiIiESYpERERERERERERERERERERERERAql3NwBEBERERERERERERERERERERHRq41JSkREREREREREREREREREREREpFBMUiIiIiIiIiIiIiIiIiIiIiIiIoVikhIRERERERERERERERERERERESkUk5SIiIiIiIiIiIiIiIiIiIiIiEihmKREREREREREREREREREREREREQKxSQlIiIiIiIiIiIiIiIiIiIiIiJSKCYpERERERERERERERERERERERGRQv0f3kJvXNdXFKcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "title = [\"100-158.489 keV\",\n", + "\"158.489-251.189 keV\", \n", + "\"251.189-398.107 keV\", \n", + "\"398.107-630.957 keV\", \n", + "\"630.957-1000 keV\", \n", + "\"1000-1584.89 keV\", \n", + "\"1584.89-2511.89 keV\", \n", + "\"2511.89-3981.07 keV\", \n", + "\"3981.07-6309.57 keV\", \n", + "\"6309.57-10000 keV\"]\n", + "\n", + "position = {\"l\":184.600, \"b\": -5.800}\n", + "\n", + "i_iteration = 19 # ==>20th iteration\n", + "th = -5\n", + "\n", + "fig = plt.figure(figsize=(30, 15))\n", + "gs = GridSpec(nrows=3, ncols=4)\n", + "\n", + "ax0 = fig.add_subplot(gs[0, 0])\n", + "ax1 = fig.add_subplot(gs[0, 1])\n", + "ax2 = fig.add_subplot(gs[0, 2])\n", + "ax3 = fig.add_subplot(gs[0, 3])\n", + "ax4 = fig.add_subplot(gs[1, 0])\n", + "ax5 = fig.add_subplot(gs[1, 1])\n", + "ax6 = fig.add_subplot(gs[1, 2])\n", + "ax7 = fig.add_subplot(gs[1, 3])\n", + "ax8 = fig.add_subplot(gs[2, 0])\n", + "ax9 = fig.add_subplot(gs[2, 1])\n", + "\n", + "axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]\n", + " \n", + "ax_spectrum = fig.add_subplot(gs[2, 2])\n", + "ax_likelihood = fig.add_subplot(gs[2, 3])\n", + "#ax_background = fig.add_subplot(gs[1, 3])\n", + "\n", + "#plt.subplots_adjust(wspace=0.4, hspace=0.5)\n", + "\n", + "image = all_results[i_iteration]['model_map']\n", + "\n", + "for i_energy in range(image.axes['Ei'].nbins): \n", + " plt.axes(axes[i_energy])\n", + "\n", + " data = image.contents[:,i_energy]\n", + " data[data < 10**th * image.unit] = 10**th * image.unit\n", + "\n", + " hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = \"s-1 sr-1 cm-2\")\n", + " hp.graticule(color='gray', dpar = 10, alpha = 0.5)\n", + " hp.projscatter(theta = position[\"l\"], phi = position[\"b\"], lonlat = True, color = 'red', linewidths = 1, marker = \"*\")\n", + "\n", + "### \n", + " \n", + "plt.axes(ax_spectrum)\n", + "\n", + "energy_band = image.axes['Ei'].centers\n", + "\n", + "err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux = get_differential_flux(image)\n", + " \n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "\n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlim(90, 10000)\n", + "plt.ylim(1e-8, 2e-3)\n", + " \n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {iteration+1}\")\n", + "plt.grid()\n", + "plt.legend()\n", + " \n", + "### \n", + " \n", + "plt.axes(ax_likelihood)\n", + "\n", + "iterations = [_['iteration'] for _ in all_results]\n", + "loglikelihoods = [_['loglikelihood'] for _ in all_results]\n", + "\n", + "plt.plot(iterations, loglikelihoods, linewidth = 1.5)\n", + "plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = \".\")\n", + "\n", + "plt.xlabel(\"Iteration\", fontsize = 12)\n", + "plt.title(\"Log-likelihood\")\n", + "plt.grid()\n", + "\n", + "###\n", + "# plt.axes(ax_background)\n", + "\n", + "# plt.plot(iterations, background_normalizations, linewidth = 1.5)\n", + "# plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = \".\")\n", + "\n", + "# plt.xlabel(\"Iteration\", fontsize = 12)\n", + " #plt.ylabel(\"Background Normalization\", fontsize = 12)\n", + "# plt.ylim(0.7, 1.4)\n", + "# plt.title(\"Background Normalization\")\n", + "# plt.grid() \n", + "\n", + "# plt.savefig(f\"fig_{i:03}.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa21f679", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.ipynb.txt b/_sources/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.ipynb.txt new file mode 100644 index 00000000..afa8d16e --- /dev/null +++ b/_sources/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.ipynb.txt @@ -0,0 +1,2623 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# GRB image analysis (miniDC2)\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "Using the GRB simulation data created for miniDC2, an example of the image analysis will be presented.\n", + "\n", + "If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits." + ] + }, + { + "cell_type": "markdown", + "id": "2bc243c8", + "metadata": {}, + "source": [ + "**Note that it is not necessary to run the following cell when the headline is inside parentheses. These cells are prepared for readers to understand the code more clearly**" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "938d0c1c", + "metadata": {}, + "outputs": [], + "source": [ + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy import BinnedData, Band_Eflux\n", + "from cosipy.image_deconvolution import DataLoader, ImageDeconvolution, CoordsysConversionMatrix\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "from histpy import Histogram, HealpixAxis, Axis\n", + "from mhealpy import HealpixMap,HealpixBase\n", + "\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord, ICRS, Galactic, FK4, FK5\n", + "from astropy.time import Time\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from astromodels import Band\n", + "from threeML import Band, PointSource, Model, JointLikelihood, DataList\n", + "from astromodels import Parameter\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "from scipy import integrate\n", + "import matplotlib.pyplot as plt\n", + "import healpy as hp\n", + "import os\n", + "import pprint\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Data reduction\n", + "\n", + "Before running the cells, please download the files needed for this notebook. You can get them from wasabi. \n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip (please unzip it)\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/grb_binned_data.hdf5\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5\n", + "\n", + "From docs/tutorials/image_deconvolution/GRB\n", + "- 20280301_first_2hrs.ori\n", + "- grb_dataIO_config.yml\n", + "- imagedeconvolution_parfile_GRB_miniDC2.yml" + ] + }, + { + "cell_type": "markdown", + "id": "379ba895", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8892ed0-b1ed-4c58-8e06-31f8b4aaadab", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file:\n", + "# wasabi path: ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5\n", + "# File size: 194M\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e92034e2-3449-4b1d-8a35-07c3f215f029", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file:\n", + "# wasabi path: ComptonSphere/mini-DC2/grb_binned_data.hdf5\n", + "# File size: 101K\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/grb_binned_data.hdf5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0559f7ef-4a90-4f72-91c8-ff12eb0f84fc", + "metadata": {}, + "outputs": [], + "source": [ + "# Source+Background file:\n", + "# wasabi path: ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5\n", + "# File size: 194M\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2084adee-2f03-4c21-8941-cc72e6eef7f3", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip\n", + "# File size: 119M\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9cf7f129-0daf-4186-9e91-e83514301050", + "metadata": {}, + "outputs": [], + "source": [ + "os.system(\"unzip FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip\")" + ] + }, + { + "cell_type": "markdown", + "id": "c12da4eb-575b-4606-8ac5-980fa12d4429", + "metadata": {}, + "source": [ + "**If you receive an error in the above cell, please try to unzip the response file by opening the directory where it is and uncompress it directly, e.g., double-clicking it.**" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 1. Read the response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "573a7c60", + "metadata": {}, + "source": [ + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "98a778c2-73cf-467b-96b6-affc42f17102", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = path_data + \"FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5\"\n", + "\n", + "response = FullDetectorResponse.open(response_path)" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 2. Read binned GRB files (source and background)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "04e15347-6b38-42de-a7c5-cd99b2ae66ac", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 10.8 s, sys: 1.09 s, total: 11.9 s\n", + "Wall time: 12 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background over 2-hour observation\n", + "bkg_data = BinnedData(path_data + \"grb_dataIO_config.yml\")\n", + "bkg_data.load_binned_data_from_hdf5(path_data + 'bkg_binned_data_full.hdf5')\n", + "\n", + "# GRB + background around the event\n", + "grb_data = BinnedData(path_data + \"grb_dataIO_config.yml\")\n", + "grb_data.load_binned_data_from_hdf5(path_data + 'grb_bkg_binned_data.hdf5')\n", + "\n", + "# only the GRB signal around the event (we don't use it in the analysis)\n", + "signal_data = BinnedData(path_data + \"grb_dataIO_config.yml\")\n", + "signal_data.load_binned_data_from_hdf5(path_data + 'grb_binned_data.hdf5')" + ] + }, + { + "cell_type": "markdown", + "id": "4703e7fc", + "metadata": {}, + "source": [ + "## Check that the duration of bkg_data is 7200 sec = 2 hours" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1ae08e20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7200.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bkg_data.binned_data.axes['Time'].hi_lim - bkg_data.binned_data.axes['Time'].lo_lim" + ] + }, + { + "cell_type": "markdown", + "id": "225c4fa5", + "metadata": {}, + "source": [ + "## Check that the duration of grb_data is 2 sec" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e0432bed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.999995231628418" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grb_data.binned_data.axes['Time'].hi_lim - grb_data.binned_data.axes['Time'].lo_lim" + ] + }, + { + "cell_type": "markdown", + "id": "edccd223", + "metadata": {}, + "source": [ + "## Defne the scale factor for the background data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "23a2f1da", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3600.0085830893113" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ratio_bkg_to_grbdata = (bkg_data.binned_data.axes['Time'].hi_lim - bkg_data.binned_data.axes['Time'].lo_lim) / (grb_data.binned_data.axes['Time'].hi_lim - grb_data.binned_data.axes['Time'].lo_lim)\n", + "ratio_bkg_to_grbdata" + ] + }, + { + "cell_type": "markdown", + "id": "42646818", + "metadata": {}, + "source": [ + "## The start and stop times of the GRB binned data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a6362fbb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GRB start time: 1835481433\n", + "GRB stop time: 1835481435\n" + ] + } + ], + "source": [ + "grb_start_time = int(grb_data.binned_data.axes['Time'].lo_lim)\n", + "grb_stop_time = int(grb_data.binned_data.axes['Time'].hi_lim)\n", + "\n", + "print(\"GRB start time:\", grb_start_time)\n", + "print(\"GRB stop time:\", grb_stop_time)" + ] + }, + { + "cell_type": "markdown", + "id": "26f17d4c", + "metadata": {}, + "source": [ + "## Modify the axis\n", + "\n", + "Here the time axis in the data and background files are modified as a single time bin. This is because the current code requires the same time intervals in both files.\n", + "\n", + "\n", + "The background files is renormalized because the background is 2-hour data while the source data is 2-s duration.\n", + "\n", + "\n", + "Such a procedure might be confusing, but it will be improved in the future, for example, by introducing a user-friendly background generator." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8a51d2bc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 21.1 s, sys: 1.47 s, total: 22.6 s\n", + "Wall time: 22.8 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "grb_data.binned_data = Histogram.concatenate(Axis([grb_start_time, grb_stop_time], label = 'Time'), [grb_data.binned_data.project('Em', 'Phi', 'PsiChi')])\n", + "bkg_data.binned_data = Histogram.concatenate(Axis([grb_start_time, grb_stop_time], label = 'Time'), [bkg_data.binned_data.project('Em', 'Phi', 'PsiChi')/ratio_bkg_to_grbdata])" + ] + }, + { + "cell_type": "markdown", + "id": "96a87ccd", + "metadata": {}, + "source": [ + "### (View the events in Compton Data Space)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "83d37c4e-cb5d-4a50-9b05-64d74ccfae9a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAJsCAYAAAC23Hq9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOy9d7RsaVnn/33eHSqefO65sXMkNQ3dJMEwMuIgIgrMqCzHmd9CWSOGkdFRDIO4RlAYEB1FVGhHgmtAF6FVmhkaaBiBppuGTtB9b4fb4d5zw8mh8t77fX5/vFV1qupUrv3uCuf9rFXrnlunar/vqdp7v9/3icTMDIPBYDAYDAaNiGFPwGAwGAwGw+RjBIfBYDAYDAbtGMFhMBgMBoNBO0ZwGAwGg8Fg0I4RHAaDwWAwGLRjBIfBYDAYDAbtGMFhMBgMBoNBO0ZwGAwGg8Fg0I4RHAaDwWAwGLRjBIfBYDAYDAbtGMFhMBgMBoNBO0ZwGAwGg8Fg0I497AkYDIbo8H0f29vbyOVyyOVyyOfzyOfz1Z8r/wZBgCAI4Pt+03+FELAsC5ZlNf05Ho8jkUggkUggHo8jmUxWf04kEpiensbU1BRs29yCDIaDgrnaDYYxx/d9rK+vY2VlBSsrK1hdXcXm5ia2t7extbVV928mkxn2dOuYmprCzMzMvsfi4iIOHTpUfSwsLBhxYjCMOWTa0xsMo00QBFhZWcHZs2dx9uxZLC8vV8XFysoKNjY2IKXs/oAMQAoQC0BaICkAFiBp7T3PpB4gEJN6D/aeKz8BEKufSR2Yqfy8kGCSgAjAQgIk1b9CgikArB7mC0AIgfn5+aoQOX78OI4fP44TJ07g+PHjOHToECzL6umYBoMhWozgMBhGhGw2i9OnT+P06dM4c+ZMVVycO3cOnue1f7MEyLNBJQsoWiBPgHwL8ATIFyDPAvzyz+RCxOLdT8y2QXb7xZwLxe6PByDIZABbgh2p/rUDsF3+2QmAmATH1M9sex2jzRzHwdGjR6sC5Iorrqg+kslkT3MzGAx6MILDYIgY3/fx9NNPV8VF5XHhwoXWb5IAlRxQ0YHIW6CSDSrZQIHUv54AKTND6JBjA2XrAV1yFCA1Dm1nILd3APQuOHqBwUqIxCUQC8CuDxnzwfEAHPPAbntBcuTIEVx55ZVVAXLVVVfhsssuMy4agyFijOAwGDQipcSZM2dw8uRJPPzwwzh58iQee+wxlEqlpq+nkg0quEpYFNW/lCWgWCMoZASXrCDQNVfse5oTjvKqACBPgryg/m27WQTnLuqfHwAINREGAwkGJyTY9cAxDzJRhIyXACdo+lbXdXHNNdfg+uuvrz4uueQSCGES9wwGXRjBYTCEyNbWFh588EF897vfxcmTJ3Hq1Clks9n9LwwIohAD5V2IggsqxNS/gQVICS51cKGEgdiziIh0CvLyo3W/Zqv3xZcYQE08CXkB+NQTey+ISiy5LgCArQAyXgLHS5Dxovo3UWoaQ5JMJnHdddfh+uuvx3Oe8xzccMMNmJ6e1j9fg+GAYASHwTAAq6ureOCBB3D//ffj/vvvxxNPPLHvNbFYDN4GgXIxiFwcIhdT7hFQ3eLMvq9/Qa5ZjOnSYwhSrt7xGrCeugjO5QHodcNUIMeuuoAAAEKAwWDXg0wWIZMFcLIIZ55RLO6fzxVXXIHnPve5uOGGG3DDDTdgaWlJ+5wNhknFCA6DoQfW19dxzz334N5778X999+P5eXlfa+hgguRVcJC5OLKRVIbXyElUL7s2PO1z1mkEoBTFhkxF/6xee1jdoI8CXF2pfp/3t0FB71lrvSMIFAlk4UIqHGfMFhZP8oiRKby4Ph+K9ORI0dw44034gUveAFuvvlmzM3N6Z2zwTBBGMFhMLShWCziO9/5Du6++27cfffdePzxx+tfwADlYxDZOKxMAiKbAHkEBE1iB4RQwZdBUGfZCANmrrOOkGNDHFoAAMiZFGTcCXW8sLHXdtXnUvIQrG1oH4/auYvK3xPbPmSqgCCVh0wVwIkiGuNyr7nmGtx88814wQtegOc85zmIxWJ6J24wjDFGcBgMDZw9exZ33nkn7r77btx33337TO2Ui8HaSUDsuBCZmKpjUUOzxV/9UL+rDpWy1YQqmReWBZpOq1+Ng+A4twH2PCAIILd3hz2dpoKEhYRMFyFnSwimcuBEfeCv67p47nOfixe96EV42ctehmPHjkU1XYNhLDCCw3DgkVLi5MmT+OpXv4qvfvWrePLJJ+tf4FkQ23FY23GInbiqbwG0jbcgS1RTSbWJjMpYRDVjNUmNtW1Qwxx4dgrBVA+1OELEevTsPguQLBajCSgNg0p2jB1AThcQzBTAMwVVP6SGK664Ai972cvw0pe+FNdff73JgDEceIzgMBxISqUSvv3tb+OrX/0qvva1r2F9fX3vlwyInRjEVhxiOw7KO93XuBCkrAwRLC7kDmC1qA2ktCzIS+qDIbmZcOn20A3CQWSL4CfO7B1bd6zGEGAwOOFDzhQg5/KgOdVzpsLCwgK+53u+By972ctw0003wXWjDdY1GEYBIzgMBwbf93HPPffgi1/8Iv7lX/4FuVxu75cBQWzFYW0mILYSoKAHwVBenHULDaqIBMtqbskIET66BFgEFgLsdP6biAEqqiBLsbKJYH1T6/xGHbYCyNkCgrk85GwBsPZus+l0Gt/7vd+Ll7/85Xj+859vCpAZDgxGcBgmmiAI8MADD+ALX/gCvvKVr2BnZ2fvlyUL1lYCYqPsKuHeFnGyxF4gqEaqQsOJfmEi1wXP7dWikKlYtfCXKHigQjmTQ0rIp/Zn7BgAJi67XnKQ8wUgtmfhmZmZwfd93/fhB3/wB3HjjTeafjCGicYIDsPEwcw4efIkbr/9dtxxxx317hLPgrWRhLWZBG334CqpIVKhIUj7OL1AM9NAvqDqWeTykJkmRc0MLWEwZCqPYCEPuZAH3L3b7/z8PP7Vv/pX+Df/5t/g2muv3ROaBsOEYASHYWLY3NzE5z//edx22231Bbh8AWsrCbGWhNiNgfoMIYhKaAAV98zoLDicL4DL5djZL9cOqfRUsUc7A2ZUYQ4gp4sI5nOQCwXA2bsVX3nllfiRH/kR/NAP/ZCp9WGYGIzgMIw1vu/jzjvvxOc+9znceeede4F6kmBtp2BtpECbLqh5S43uqASCAvozTkZJaEhGsLWlfu7mNkFkxEefMAIE6RzkUh5yoVhtRmdZFl784hfjR37kR/DiF78YjmM+X8P4YgSHYSw5c+YM/vEf/xGf//znsbm5F6BI2Rjs9SlYWykgP3g2BLlONBknoyI0yhkmwdZWdyKjGcLaq+hp6AkOAjB5kIcKuObVJ/Dwww9XfzczM4NXvvKVeM1rXoPjx48PcZYGQ38YwWEYG4IgwJ133olPf/rT+OY3v7n3C8+CvTkFaz0NUXB77knSWOSpUrhrXx+OMBFitGI0PB9cKkEWCqEetmoZohGqQRGBsGsUXBwEPZ2T7KtgXBn3IA/nESwVAHdPQL/oRS/Cj//4j+PFL36xCTQ1jA1GcBhGnq2tLfzzP/8zbr31Vly8WG59zoDYTcJen4HYSYICqbqstqnx0EpAkOvuFXMqqWqXOnuckGOrhXgIWSe1cMmrViiVtSnCOhBqUYzM8lHrBtv3uwgsVjEXIAGy1d/LhWLTcvdcKrU9ZyvCg1lCzpcgj+Qg50rVEuuHDx/Gj/3Yj+FVr3oV5ueH3yPHYGiHERyGkeXhhx/GJz/5Sdxxxx3wvHL6pS9gb0zDWp+BKJX92Z6376ZN8dj+KP829Su4UASY9QoNSyhxE0EdjbZ4PmSxqIJAo778NQWakuvUi5lOliPJALcXqKHMy7ZVpVe7+VxUOff6OXCxuO88ZN/ba/gX9xEcySM4nK8Gmtq2jR/4gR/AT/7kT+K6667T8JcYDINjBIdhpJBS4s4778THP/5x3H///dXnKReDvTYDaysN4vIO1fNQOX1FoqFMdw87ac4XtHdtJUuAEomhx2nI7R1l3h/2ZU+kLAB9WjxEKlH/RL+WE8l7WTeaICIgEd9XXr4VLGW9+8UrQWbzSiDVzJWJIRcLCI7mwdN7nW2f97zn4Sd/8ifx4he/2JRTN4wURnAYRoJisYjbb78dH//4x/H000+rJxmwNqdgr81A5GsERRCo5mSuo27MfS7iXPLULl9zDw+RThmh0Qay7Y4xHlXBViHszzMIIim5LlLJ3uOCar4zZobc2AJ79Y3jZMpDcDwHOupVM7UuvfRS/ORP/iRe8YpXmC62hpHACA7DUNne3sZnPvMZfOpTn6pmm6RSKRSfcGCvTIO8Gj98EIBSycEHlay6kubDDZCso7wgimRyeGIjCMCFYuiBoLqoCo/KZ5eIRxtQG6XoAAYOSOZSSQnJWquHGyA4lkP8OkI2q4qyzc7O4id+4ifwute9DtPT060OZzBoxwgOw1DY2NjAJz7xCXzmM59BPp8HAFDJhr06C2s1pVq+l4NAKwW3qNFt0g9BoMzTuhAEsqzhB4UGAYKdjPpZDlKEJCJqgkqHbhEqu9d03hrJEqB4PBTRwYViNTOrGmQqAgSH8wiO5YC4ElGJRAKvfe1r8e/+3b8zxcQMQ8EIDkOkrK2t4eMf/zhuvfVWFItFAOX4jJUZWOuqn0ntLlPdmGOD73TLu1cuFAc7TgcoHhusi+ugNAmGrHUbNZrih0pNobDaeicjky7s+dpFBywL5DiDC498vl5IswRLVqXU53MITmTBaSWkYrEYXvOa1+CnfuqnsLi4ONC4BkMvGMFhiISVlRX87//9v/FP//RPKJVLZFM2BufcDMR2HGDUx1IIgojFwll4Ku4T3bEaifjwrBplN1Hby1nuBR2y5w/N8kHleAIiAtpUzhxm07oqmkUHoFxJFB88xoJLpaYWPA4CJTzm8ghOZMBT6hxwXRevetWr8IY3vAGHDx8eeHyDoRNGcBi0sra2ho985CP47Gc/W01tFZkYrOVp1aG1hcs8NLN6BGKD4rHhVgrtJ9MiqvobNZDjqlooPQpIJUyGKDqiyGRpDIrtF2ZwodDSbcgcQM4U4R/fqWa22LaNV7/61fjZn/1ZLCwsDD4Hg6EFRnAYtLC7u4u/+7u/wyc/+cmq60TsxmGdnYLYibXs0ipSidBM6TKT1W7VINcJZXfaL1zyOr+oHVEID2HtpS0PkKZZcUEMi4E/6y4g11G1WgahfEuXO7st070ZDDlVgH9sGzyr/q54PI7Xv/71+Omf/mlMTU0NNgeDoQlGcBhCpVAo4JOf/CT+7u/+DpmMClqkXRf2mRlYu22CPisulDB2srK8gOq0ajh2OEGs/aLJ1K8CEL3B02eJyhk64deBGDtrUo+Q64QS1wGU06E71JgJpgvwT2yBp5TwSKfTeMMb3oDXv/71iMeHeI4bJg4jOAyh4Ps+PvvZz+Jv//Zvsb6+DgCgnAP7zAzEVrylRQNA1cw+cLBlJY6hQ7noQZlUsVEL5/NgyT3HeZBdKduuN3B2qNaOiEQHhNWyQmkvyEy2Y7l+FeNRgH98C5xSr5ufn8d//I//ET/6oz8Ku1WZeIOhB4zgMAwEM+OrX/0qPvCBD+Ds2bMAACpasM/OQKwl2woNIMSsDslNS0KHzVBdKOUGYJFdslKq4mhB0FF4kKP60QzsDugBskRd3Y5IiUB0AKonC4Ug3lhKcCbb0S3EYMjFHPzj2+D4XgGxN7/5zXjJS16yv12AwdADRnAY+ubxxx/Hn/3Zn+Hb3/62esITsJenYa2kQdz5xhRmVgdnc/qtGq4zvF11BFaNlgQBICVksbjP1UKOqxZ+zRaNdgzNxVJJNW4iPEQ6Fc4QmWw4cR0oi47dTFeinIkRLGXgH98BHHVd3XzzzfilX/olXHnllQPPxXAwMYLD0DNbW1u45ZZb8E//9E+QUgKSYF2Ygr08pQp2daB6A+1xkeBsrvWiqzNeY5h9UCKqftkVtQGmwoKIx1ScwYj064is/kmDdYOIQNNT9TEXYZ0rlfPa91Wjt0Ysq+seLQBUFgsz5NZ2V9cMWxL+sW2Iy4rwPA9CCLz61a/GG9/4RszOznY/rsEAIzgMPeB5Hj71qU/hwx/+cDUgVGwmYT81A1HszlLRMv6h4eYnM9mB5xsKgkLbrfbMKImNClJCZrN7mScjIjYqhC46uvwOyLZB0+lwx26kWGouOhoRlrI61dLoCmFGsLnVtVCXbgn+JVuQiyrjLJVK4Wd/9mfxute9Dm6EbjTDeGMEh6ErvvnNb+JP/uRPcObMGQAA5Vw4T85AtMs8aaAqNsrVMKtI1tvXpE/IEuH0bumHURMb5YZgtemzZNvKUjVCVg6gDxdLzaI7SFwGuQ5Ic+8cLhTVfHsJ5iVSn0nDcywleHunp/MsSOXgX75drVp66aWX4i1veQtuuumm7udjOLAYwWFoy9raGt7//vfji1/8onrCs+Ccm4O40D7zpBZybHAQqLRXqJu67uDOQRlaJkqT0uRDpVydlEullqmywwgY7UTbgNIGwRvmZ00xNxL3GxeKwCBBqxUB4vsqkNTzuv4cZOBDLmbhX54BXPWef/2v/zV+8Rd/0RQOM7TFCA5DU4IgwGc+8xl86EMfUl0nGbBWp+EszwA+9RQzQY498gKjFnJsVX476piNUbNqSFmu0trdbpocd6hF0BohKpfFr3yPZSuN7s+YXAcUhRuuWxdLJ4iUeCHRvSuTJSQF8C/ZhjyaB0i5WX7u534OP/7jPw5r2H1wDCOJERyGfZw6dQrvec97cOrUKQCquZr79CJo19JeuXPYDEtskOuq2hcjIjhkNqesAL3eHoQF4TpDzVqpIwhUYCVRpFk+kcR0IARLRy0NcR6cL3ROow0CyGQB/lU71R4t1157LX7t134Nz3jGM8KZl2FiMILDUCWXy+GDH/wgPv3pT6vsk0DAOb8AazUNlMbHQtEvw4rZIMcBYu6emJMScmc38nlUx+7BqtEKEY+XrQtDiO2oaVJX+Uxru9FGxbiKjmrdD96r+SI3tlqPHwRg6UMeySN+IyOTyYCI8NrXvhZvetObkAijR4xhIjCCwwAAuOeee/Dud78bFy5cAABYm2k4Z+eBAibeqgFgeNkoHTqFcjYHlDz9u/NKka+Q29eLVEr/Qi+VVYh9v+25OhTREZF7hXODi8QqlSDTJkW+uFBsaYlj3wPbPn7gvz0fn//85wEAR48exW/8xm+YoFIDACM4DjyZTAYf+MAH8E//9E8AACrZcM4swdqJd7yBTwpDy0bpoS05VxrR6QgorQSGlpvshY1IJvUUTCvHZEB2+ZmI8kIategYl0DSWiqptS0qi6pCe4GygtTEZ1X68MjZIryrd4C4+l5e/epX4xd+4ReQTuu3+BhGFyM4DjB33XUX3v3ud2N1dRUAYK3NwDm/API77xYnhaHFbFTcKL0SSHCxBBSLoVg9uFRShaxCtmzUQSqDhSwrHOFRCf7sJxDZiI7u6SA61IAMzuXrMs8qpfDZkvAvz6igUgCHDh3Cr//6r+MlL3lJOPMzjB1GcBxAdnd38ed//uf43Oc+BwCgYtmqkU3u+b+N2NA0Zrk8+qBNufwACAIV3NknXCjqFRqNVKqT9is6yiXWB7bwCKrJYIlOeIxd9gpQH9PRBvb3+u3InUxd/x05U1LWjoT6/w//8A/jV37lVzA1NRXOHA1jgxEcB4xvfetbeOc736msGly2alxYAEmhdrvAwRAbwyhX3oMLpWsCCfh+z8KDSyVtLpS29NO2vkkQaCgMoXbI2AeSdjN2WXzI7Z09t4tgBJdlIE/kwcxYWlrC7/zO7+B5z3teOHM0jAVGcBwQSqUSPvShD+ETn/gEmBlUdOA8vQQrpyLIK6b1g8DQs1E0wdmccrd0et2wxEYNXQWTRmBtm9jslTCtHEDPogNA1d0S7O5W06vlVAnetcraQUT4qZ/6KbzxjW805dEPCEZwHACeeOIJ/Pf//t/x2GOPAQCs9Wk45xZVozUpR6/glEbGIUB0UHgn0zy4tNL1tTACZeSJIBKJ/WXRyxknkZ2Tw4rpiKoMelhWDqBt9kongrWNakApWxL+FbuQR9R5ePXVV+O//bf/hiuuuCK8uRpGEiM4Jhhmxqc+9Sl84AMfQKlUAnwL7plDsHbKuysjNqIZV7NloymSwZnsnivC80ZDaDRAdiWOprzgB0H0VWknOZA0bEtHN4GkLeB8HkFZDIMZwXwB/jU7gMNwXRf/6T/9J7z2ta+FGKG+PIZwMYJjQtnc3MQ73/lO3HXXXQAAsZOEe2YJ5Jd7KBwwsQEAIpXQk57ZhqGIjQqBBHseOJNVHV5HFLLtanOxoZ2PQxIdYnpq8ADiToyK6GAGF5U7jz0f7JXATgDvmh3wvHIFvuhFL8Lv/M7vYHZ2Nrz5GkYGIzgmkPvuuw+///u/j/X1dUASnHMLsNZn6pqtHaSYDaBswo64zwe5LhB2u/Qe4UIRcmtbicswzeshIZJJUCoFCFLzHOY5OQTRQbatMld0By+XvL2g8DDoJ6YD2BMdvg+URVBQyEMeycO/MgMIxqFDh/C2t70Nz33uc8Obr2EkMIJjgpBS4mMf+xj+5m/+BlJKUMGF++RhiGL9QjtKYkNHWqbyM+8tGsPo/DpUy0aFkodgY3Pvu2Y5UqJDxOMQhxb3Fls/QLCyNuRJDUF0WAI0M13/pB/sxbOERG3qaiiEITqAsqU1QGBl4F+/DU4GsCwLb3zjG/GGN7zBuFgmCCM4JoStrS38wR/8Ae6++24AgLUxBWf5kAoMrTCkGhuR1npohAhk790URQS7yZEQG20W79oaCUNBWLAvOdb8d40iaUhEkb1Clthz8fW7ePcAe17LLCYlsvq4LgaY974S6VJCenl8/+8+p1oa3bhYJgsjOCaABx54AL//+7+vamtIgnP2EOzNhh2TrpgNrj/eKO2gAdUyvRMiEa+/2ZLoX5QIC5SM1pqyj5KHYG2j7UuGIToqlifryFL7z7dYgtzaHm580YA1OqgxvsGyOp9TUYiOUqljB9jqdCxRZylsOv8BMleAJqIDgMznECxk4F+1CwjG4uIi3va2t+HGG2/sawzD6GAExxjDzPj4xz+Ov/7rv0YQBKCCA/epIxCFhliFMMUGS3Dt7nOYO+VONFg3un6bsxfECABw7NYvbnzvsOM2iiUEm1tdWwiiEh5k27AWF7q2/HChCN7eGW4QaY+l2OtERg/nTM0BBlq8u6UX0dEIWTUCpNY6M4joKBT3b1SkRCAy8K7ZACd9WJaFX/iFX8C//bf/dr+YM4wNRnCMKYVCAe9+97vxhS98AUClu+tSvQsFCEVsqGqB5fePy+kiLLVghACVBQQ5dtsFaNhio99FWrfo6FVsVKgGvA7LvdKF6KguwINYxeoOGI3okJnBs5YaxQc5Tn/zbozpqPuVh9LxFchDqh/LK17xCvz6r/864vEhWxENfWEExxhy4cIF/M7v/A4effRRgAFneXFfFkqFfgNEx1JkVAhRbNQft9yDQ4h9QagUj+tPb2zHoG6IiuUqZOFhHV4CCdG/EOvCPaSVJkGk1T4s5d+HTgSig/0AHHJdlooAoUSijwm1ER2Bj2BxG/KKHQRBgGuuuQbveMc7cOTIkUGnbIgYIzjGjG9/+9v4vd/7PWxvb6tCXk8egZVtfoH3KjaGGtwZIo1ZKlooLzTkuirlNpEArCFF04cYaFmpBhkG9tEj4Vh8hpy9UrFsUYTWq76tBT2gQ3QADa4l1+k+LoUZXCi0FM1BMovEzTlsb29jZmYGb3/723HTTTeFMGNDVBjBMSYwMz75yU/i/e9/v4rXyMXgPnkEwmtyMfeQjTL0jIWw0WXd6ALr8CH1A1F0TeEkI7iwEuohBxYdRLAPL4WbqTNkS8fQisaNqehohqhU+e3wNzULJK0gHQ+X/XgMjzzyiInrGEOM4BgDSqUS/viP/xi33XYbgHLK69lDIG6xo/a81qb1mqySUcsoGZg+g0RDn0Y8ptJv+0017AEuFCE3tsI/rl8OKuzl9kAqs0NMT4efqeMHkJtb0Zc9r2EookNzUzP2A6BYRFTLABEBMRXU3q5aabsYEyYJ78QqgvldAMCP/MiP4Nd+7dfgaM7wMQyOERwjzs7ODn73d38X9913n4rXOLcIa615vAaA1tYNTT76kWKI1o1miFRCNW3T1L+FcwUVVKmRXqwd1tyc3i6oJU+1PB+W6BCkhGSU2LaKgdFI1KKjArlOy1TgTpk0DEawuA3v2BpAwPOe9zz8wR/8AaampnRO2TAgRnCMMGfPnsVv/uZv4syZM0Ag4D51GNZumxteE7FR3akC4xf82SPd1NwYBpWdMYW4WHE2B7mbiSSDoxvRYS0uRNMYb8iig+KxSGM5oqjNAbR3Y+immoJu26CawOtu0nflTA7iGZvI5/O49NJL8a53vQvHjx/XOV3DABjBMaI8+OCD+O3f/m1sb2+DSjbcJ47ur6/RQG2Q6MTFZnQgkkDRQShnO1A6NXBPlyjFRnXMNqLDOnQo2mJnfoBgbX1o6bKRiw5h1S3EOmApgXwhcitHLVSOfaJ4XLlamFV11A6ig5Mepl+ax8rKCmZmZvCOd7wDN9xwQ0SzNvSCERwjyBe+8AX84R/+ITzPg8jH4Z4+stfltQVVsTFi/TKiYFQtG00px3RYhxb7ymoZZm2KZllMkYuNChqCZbtlGI0AI3GtZHNDFRy1EJGymHUpOuAEKF55ATKeh+M4eOtb34of+qEfimayhq4xgmOEYGZ85CMfwS233AIAsHbScJ5cah0cWnlfqTSy3UCjYKwERw1kCYjFhZ6yWjibg9ze1TyzNuNXRAcRrPm5UN1EvSIvrg7PDTCBVg5gtEQHUA4sjcVUjEmn79oGSpetIEjvAAB+/ud/Hj/zMz9jMlhGCCM4RoQgCPCnf/qn+MxnPgMAsNfmYS/PtQ4OBapVRGWxOPHxGa0YeVdKF4hEHJRMAI7TVngMW2xU5xEEsGam9QaIdoNkyI3Nvst0D0rkWSsRWDnADJnN6R2jT4iosxiyLfjHNuDNrQIAXve61+GXf/mXTcfZEcEIjhGgVCrhHe94B+644w6ViXLhMOyVNtHWNeXKJ6VYV1+MSBpsWIh0qvUiPkQXQiPk2BCHFoY9DUWxhGB9cyhDR+5aEVbbVNJQaFPxc9hUS6lLbis8yLbhL+2gdOgcAOAHf/AH8du//dtwNacYGzpjBMeQyeVy+N3f/V3cc889ABPcs0dhbbSJ9vc8dbEdYBcKgIkTGxVEIq4yWhqEB29uQ+ajKdDUiZESHJLB2ztD+2xEOhVdkTcgmo6yUoJzea1j9AsRqcZ4snwPbLF8kSUQLBYQnDgH3/dx88034w/+4A+QTEaQSWVoiREcQ2Rrawu/8Ru/gZMnTyKRSEA+vAix3WLHVBEalWDBAxgcWseI1dwIlXLTMEqlQMk45MYWuFAc9qyqjJTgAJRrZWt7KJ8RWSKadODaMXXv1LsN1BwSdbEzklveB4kIcjEAXXUe+Xwe119/Pd71rndhbm4uopkaGjGOrSFx4cIF/OIv/iJOnjyJmZkZyO8sNRcbUqouoIE0YqMC0eSKDUDdRD1/bxENDk56c18Iqu9cGiHDCFplT7MQKFeMrdbHGDVqa7AIUq6tJnNlZog1C/zIcczMzODkyZN485vfjPPnz0c4WUMtRnAMgaeffhq/+Iu/iDNnzoA8G8V75iEyDWZSKZXYaLLLONBiAxj7INFeCFZWIXM5FavDw8nIGFkkA4EESh4okRia6JCZbLRpyszRBIkPqxlhByou5ToqdW4a4luYGWJboPTAEZDnYHl5Gb/8y7+Ms2fPRjhjQ4XRPKMmmCeffBK/8iu/gtXVVVDRRezJy0G5ht16WWg0NWmaRWeyrRttYN8H+x44CFRht4OI5L2H74+G9UcyuBitOyeKTQc5ztBEXEeaCTyh4jsa58yBBOUE4svXgEoxrKys4Jd/+Zfx5JNPRjNXQxUTwxEhjz/+ON7ylrdga2sLVIgh/vSloBLtmWUr2Se1sRo1jFL10H21Lyq9WsKGZf1ubpJjN5rQtqw4UdXaE+VnMpQYjso1wqyukybIza2h1eWAIIhYTAU0RgGRCi6uSfdkDems7PugRLw+M6bkjUStjmoAaTPKQrRyPlTreTgB8kdPg2MFzM7O4n3vex+uuuqqqKZ84DGCIyJOnTqFX/u1X8POzg5EPo7Y05eCvL0Lgkvl9NY2i/bAbcP7gGKx5oVzLAuozW1v16F2UGqsOtWAOSmHt7hESNffeSWuJQJ3U6SCwy8L7BYio5ahCg5ElyZLiQQAFcvBNV1VdQV5ivnZemEjZfP7lFeK/POnTh2ZK9WXA6mqlyYTYCtA4dhpyFge09PTeO9734vrrrsuukkfYIzgiICHHnoIv/7rv45MJgORSyB25pL9YqODdSAq64ZINakc2aloThBE0kyLXGdvLo0LEPNQW5frol+RqbP6qnbBUXGX9Pq2IQsOLVYOoqrAqB2nAm/vQGb1prCSJSDmZju/sOE8Zd8HF/XXCeqq4mu5blGlZDqLAIWjpyHjOaTTabz73e/Gs5/9bO1zPegYwaGZBx98EP/1v/5X5HK5PbHhi71y5F3cILWJDWGpug91z/WxQx6G4OhANyJuHBjIqqWpVolWwTHALn3oggPlOir9CI4aKyLFYkCXZcx5J6OCVjVjLcwNXnBMYxXTrsvMl+9TlEqCKUDh6BOQiSwSiQTe85734DnPeY6W+RkURnBo5KGHHsJb3vIW5PN5iGxSiQ0WaoEudNEboEwYgoNsGywZIh4Ltxxzi0ya0ClHofctiCrBhWMmQkJzowkLJCgUl0uogkNyNSNr4EONgODoya1SG4PTZwM8zhUgd3a0n9ddWzl6gAtF5S7tUDm0Gzq6VmrxfCARBwmhRMeRJyGTGaRSKbzvfe/D9ddfP9BcDK0xgkMTjzzyCH71V39VuVFqxAaXvJ7iHQYRGyIeVwt0Oa9eS2R7RIKjF+tGW8o1DFoF5o4aocfthCA8QhEclfM/xCyTURAcQOceK9VKobYdSuppFIXhdAiOCux5VRfaIN9fT6JDMijmAkRgksq9kshiamoKf/Inf4Jrrrmm73kYWmMEhwZOnz6N//yf/zO2t7eVG+XpS5XYKBR7Xpx77ZVCtg1RLt9LyYS6oHSVKpblAmQR7K72BakOitzLflGibjQvA22BwgMEmQ4kODQIjQqjIjjIsVVmR91zzp4ICbvra7GEYHNL7zksCCKZ1BMUW65sCqAa5An0Lj7aZq00f0O5+SMpS8cxFdMxMzOD//k//yeuuOKKnsY3dGZEk6zHlzNnzuC//Jf/osRGPr5n2ehHbPjdv95amIe1uAAxNwdKJVW5ZSK1WOnsMxHFQi1EuGKjckzLUqmFtg2KKp1xVGDeq+vRw3nWF5JVtokfKKExCrUzNFIXz2TbKugz5iqhoaPFfMzV34Jd8l4mXdgQKWsPoCwUtddlk2JerWhaEKz9G8C5PNgPQGwhfv5KiEIC29vbeMtb3oKnn366jz/G0A4jOELk3Llz+NVf/VVsbGyACjFl2SgyZCbbn9uhw85WJJOwDi/BOrykShE7DqjJDU2XEWtUey30TFl8kOscSOGhdpglPcXESmVzeUhxGuMCOQ4onVIWgSiKZ0XQfp1LHjgfYVM3QXvFvFyn+8DQXnBscDaLYGMTFAglOopxbGxs4Fd/9VexvLwc/pgHGONSCYmVlRX80i/9Ei5cuAAquog/dRmogL67WDZ1pZSDzMiyYC3Od3UcnRHsUTTLIksAmrtj1hFRxk23DKX2SmW32cLd0pVLxQ8iFxiRulQE1e+8HUd1jq1FxwLZhuDcRe1jiERcW7M6lrK7dOg2DduAGhdsL2OXs2doZhqwJfLHHwe7BRw5cgR/8Rd/gcXFxZ6OZ2iOERwhsLu7i1/6pV/CE088ASo5SmzkqX+x0bjICEvd5KfSPbWm1tpmOqpUWMcON6umE0ZwVGklPFoKDlnu8TEkl4luwVG7w6ZEvPO1GLHgiCR41C1bbjRYVLhcabmn870cf9W4jPUUQFpG7mRU/M1UGuwEKBx7DOyWcOWVV+LP/uzPMDU11dPxDPsxLpUBKRaLeOtb36rEhmcj9vhxINe/ZaOxlLdIpWDNTMOan+tJbADQGrsRSS+Pij/XMBRUjIevvut2PXwqTdRGpbdJSJAlIFKJvcf0VPXR87UYAWJ2RvsYXPL6KsrWDSRE70HMllXtn1Jnceqj5xS5DtjzwbsZUMZH/NyVmJ+fx+nTp/Fbv/VbKEbcL2cSMYJjAHzfx9vf/nY8+OCDQCAQe+IYkJED7TIq/Uis6WlYc3Pq5hZBueSeGOGsDoMGpKpjsi+4tBoMOllCQ0ynIabToKkp1YW2/DAoOF9Q1ohRoiI8ykGm/Vi6KB6rig6ZzQObJeTuW0AqlcIDDzyAt7/97fAPeqfuATGCo0+YGe9973vxta99Da7rIvbUMWAbgy3ELCEScViHDoGSiYGEBpdK+oJFI1pcqiZ9w/CpCS4FsFd+fNQWnj4gx4aYnak+yHXVQ0dGiU4EQczPah+GPX2p8GSJwSqaVoJMbbtaVbSn8WuCxrnkgdZ8BI8cgeu6+NrXvob3vOc9I9G4blwxd/Q+ueWWW/DZz34WQgjg0UXQKgHo/0QkS4DSU9W88IEZ9x2noEgi7w29w6WSNrO6dmr8+mJ2Zs8MrzutNCJ0xFZESljfgyBA9LG8WRYoHqtaqdnzQRdtkDgKcfwMbrvtNszPz+NNb3pTOPM8YIz52TkcPv3pT+MjH/kIAMA+swhxoc+dkCDlJ55Oq0AsxwnlguOSxq6NnmfcKYaxgiyhHvEYrPm56oPKVXgnRWxEidza1hbMPOz4GCKqb5Dn+RAXLNgXjgIAPvaxj+HWW28d1vTGGiM4euTOO+/En/7pnwIAnIsLEGf7dHsIqk8xi6Ct+DihvZDRONAQQGxoD7l7HXIrAoPiMeUqmZvdn7Y6iQihp17FQcKx1blUKzpKHqzzCTjrSwCAP/mTP8Hdd989rBmOLWaV64HHH38cb3/72yGlhLUxDfF0H/nogtRNMBGvy8AIy19cTS3TgZTR+S9HMAsgathYknqCUkmIdAoilQClU+rndOpgWTBsC5TUUyejEW0p98Be5dEhQa6zb9PDhSKss1Owd+YQBAHe9ra34fHHHx/SDMcTIzi6ZH19Hb/5m7+pOr9mErBPz4B69FqIRFxZNVynPt0zzItLsj53ypg0PDMcPLhUAufzyqqRSAzdLH8QkBrTREchFqVp0H6hBPv0LEQ+hVwuh7e+9a1YX1+PfnJjyvC/1TGgUCjgt3/7t7GysgIqOnAemQf1aEQQibhqLNSkrkRoFxczuKCxb0pEGJOwoSuYwdmcepTKHZiNC2rPgjruDDtLzbKau+GKPtxHFnDJJZfg4sWL+K3f+i0UJuC+GwVGcHRASol3vvOdePjhhzE9PQ3n4QWQ1/3HRq4DMZ1u2cUwzJ2YSdcyTDSV1Nx8HjKThczmwLy/yuSBR9QHPWpF42c/EnFcrT7LAmPl/zCmp6dx8uRJvOMd74CcgBRx3RjB0YFbbrkFX/7ylwEmFL4Rgyh2JxDIUsFbbWtphH1B6XR3SDlSJb8NBweWUj08T4mMEWhBbwAgWWWr6GQERIdoERNDGULhnhTAhK985Su45ZZbIp7Z+GEERxu+9KUv4aMf/SgAwDk9B7HbnZmSHFu1iO9UuMuywrugJsSdYjBUYD8Ae55qIZ7LT053YkN30Oi0NmjVRVps2nDOHAIAfPSjH8VXvvKVKKc1dhjB0YLHH38cf/RHfwQAsM5NwVrrnFJHjl0OWpsA/2kjUVUXjaKVdyukjKyKqqEFzOBCURVeKhbBxSZdk8eFIVpiKJGI5Fri8vc10QhqW/XYOh+DtTINAHjnO9+J06dPRzWzscN0i23C7u4u3vSmN2F5eRliOwbn5CEQ2lsiyBKq30K3vlNhDV7GtwbO5/s2NZPrtA/Qkoxgba3PmTWMZbd3SUXeHbYWKUdqF81BAMjRE0Bk27AOhd+um/P5pp0/e0GkkiNhhgegKuUOsTy6XNtofz6XawENPlD7dvEAIKan+vteuJx1N+zrQDK4WGzpVmYwnvULS/j2t7+N48eP46//+q9Nd9kmGMHRQBAEeOtb34q77roLVLDgfvcwyG9z0xCkfHy9BmkJK9ReDTKT7ep1FI833/m0uxkww79wsc+ZdTMpqgoRcp3hlTQ3gqMrwhYcXCgCQRBK8KcRHHtUBUflHtWMMIJLPb9zd+wm44jp6a7ugeyPxnXAJa+tNYftAHOvkrhw4QJe9KIX4Y/+6I9gjYhLaFQwLpUG/uZv/gZ33XUXIAnOo4udxUY61ftFS6StMRQR1T1EpRhS+UG2tVfOufYxTMpNwdgrgSxLBdu6jmneNskwqyDQTBbs+ybTJAwkAyWv+qBEXHW+rdyjmj2inFvDQ25tI1jbqD44m9sLEC4/RglynZaxHABAvoWNLwKxWAx33XUXPvShD0U4u/HA3NFr+MpXvlIfJJpzm79QlBf0EWpZXVmcdbSyH5ofXVDrmhySm8aVmIVrdGEpq5lUJsC5C1plnY1a47yKeBkwS07mC0CNpYQsAaRTKhYmSnHUDssCEbW0hIqMg+ChNHBVEX/3d3+H6667Dj/wAz8Q7RxHGONSKXPmzBn83M/9HPL5PKzzaThPzzV/oSC1C4/F+r8IbHuwYl/M9WWFE3Gtlfn88xe0HbsRa3q6Zc2SrpCsepA00FV8i3GpdEXPLhUu+/hLnnZBOJYuFcnN61kMGMDMnhdZIbRO7oZBoXhszxVMYqgChBwHnMu3diMJgn/pFvzDO0ilUvjQhz6E48ePRzvJEcW4VAAUi0W8/e1vRz6fB+3EYD892/K1ZFnKmtDvCU/UtziQmSzk5haCzS0EOzvVx9i3og8TUU6la3iQbdc/hpkNc4BQGScFcLFkrE8V/KDh4atruPFh2CMIwIFUD98HvPJjCHAgQckERKqFhVsyrDMzEJkYstksfu/3fg+l0hhnW4WIuesCeP/7349HH30U8ATcx+ZbZqRUe6BEqK7ZDxCsriFYXYPc3YUsFMA1PQzE1JSJdeiGRt91ExFiCA8uFJVP3vcPdqEuyfsFhpT1D0NHlLVv77OqVJjlkhe9+JCB2jjG4y1FBwWA88QS4As88sgj+Iu/+Ivo5jfCHHjB8eUvfxmf+cxnAADO4/Mgr0UJ8nL2BA1YjKZjKfNy+eZKZkiwuqpu2i38tmGm1racz6TSIELIsavBq+yVmrpmDO056IGg7AeqkVyppDYGvm8ERhi0iQ+pEx8RWYbY8/ZERyLedBNKOcB9SrWz/9SnPqUqVh9wDrTgWF5exrve9S4A5eJe2/vVaqWYVzVVU5d1gxnsB5A7u/AvXFRpqCNwww7WouuEKJLJweI3QoZ9v06AcBAoEVJ5GKqwlGqxHedCXd1Ssylgz9sTGKXSSMXckONEFs/SKYMjKjhQcVhc8vS2eqicA0SgVBLW/FzTv9/aTuANb3gDAOBd73oXlpeX9c1pDDiwgqNUKuHtb387stksaNeFfWZm32uaFqEaJK9a7H8vl0rK/JzLI1hdhczl+j++QS8yqFqb2PeN+ECN0MjlJzfzhLk+XdPzqo9R2BQYmsO+vyc8NIiPRquzmJnel1XHno9P/frXIbJxZLNZvO1tbzvQ8RwHVnD81V/9FU6dOgX4Au5jC/viNpqJjUEDDWvfz54HubOLYGMTweamCv7s9XiOO/wWzgeYWvHBvgcOgj0ryITDUqodfb4wkUKD/aDm4SvXSOVhGA59ukuqGwTPD93l0lgrREyl95cm8AK4Tx0BfIFHH30UH/zgB0OdwzhxIAXHN7/5TfzDP/wDgHLcRql+0W5ZXjuEqnEsJYKNTcitbchsdqAdEjl2qO3tDQPArMzpVSuIB/ZHJ8U2TFiy6nMSQZprlFStNZXKlpXHBP2N48ygwcdcKZMelvDgJpaTcrHFRtFBOYZ75jAA4BOf+AS+9a1vDT7+GHLgBMfOzg7+8A//EABgXUzD2qqP29DWy8O2EaxvIlhdVzX5zU5psqn6+BtiQCYBlhOTeVLnHvH9PZFhmFgqwkNbnEcT0cHMsHZSsNb2mrzt7u6GP/aIc6AEBzPjve99L9bW1kB5G/bT9XEb7cRGy4qX3YxbKCJYWVWZD+ZmdnCRgcmAGSYVEViTSVIbAGo4eLDvDyY6ZNC8BDupthfVdUMy4Hlwzi+Cig5WV1fxnve8Z6IshN1woATH7bffjjvuuANgwHl8AST3/nwtlg3Ph9zJKCWt4cTSXTuC/UCZzw2hU5sBc9ADT7XSmFHieUb06yKKjBgdacWDXntt7pFieqoqOpgZ5APuU4dhWRbuuOMO3H777YONPWYcGMFx4cIFvO997wMA2GenIbJ7fVI6iY2eF3ZPRUdXSt/q8OWT44JSLTpAhgTv7pqbcwRUA08PUNCpVmqzSnx/T2gYtKLKB+gVHTpc0QO7BzvE+YjpKfXZlPs/iXwcdFZZ19/3vvfh/Pnzg40/RhwIwREEAd7xjndUU2Ctc9PV34Vq2QgCcKEIWSxq7StgmFAagk6F6ZjbE2SJavnrakbJATNZG0aTSkwHMwNSwl6Zq6bKvvOd74Q8IAXhDoTg+OQnP4n7778fCEi5UsopsN2IDbK6bBQUBJD5gv6CM4aDATPgOBBzc7AW5mHNtWgmeMAhor3S9JZlgj4NQ4E7idtKIKnrAswgEJynDyORSOD++++vVruedCZecJw7dw4f+tCHAAD207MQxXIb90pflBCQmaxynzQRGspEbgSIoT/ItkCuC4rHYB1eUt10DQDK17Bj75WnNxj6ZOAu0d3c48uiA0SAlBAlB/6jKQCqLtS5c+cGm8MYMNGCg5nx7ne/G4VCAWInBmtFfbnk2HulyttAlmgrSjibg9zJaKtk1w7T7fTgQUKAUknYR4/APnpE7epHpRV7RJBtqzLaA2SNGcYYySPbj6arOCEiFdNRLoNurc9AZOLI5/P4H//jf0x81spEr1r//M//jG9/+9uAJNinVRfYUGI2gkB1whxWLQIiiLnZ4YxtGBmsQ4uwlg6pAGLHnUjxQUTqYYlyA8XJ+xsNvTEJNYwokQCkVK6VM0uAJHzrW9/CP//zPw97alqZWMGxsrKC97///QAA+8wMRNHuXWzQ/o+HC0XIbH5iCh8ZxhsSAtbivHrMzqoGeBNARWTAsdVDRzE+gyFkmtbkaAFZlspaKbmwz88DAN7//vfj4sWLuqY3dCZScFQKfOVyOZWVciGtdkY93LSI9vuFuRIU2vVETH0FQ3RQPAYxMw1rdgbW7MxYig+yxJ4r04gMQ5SEUQm4h2NQMlGtPmyvzYKyMeRyObz3ve+dWNfKRAqO22+/HXfeeScgAeeJsitlgPRCLhSVC8Xrw5Q3oSeOYXShRAKUSEBMT8FaXFDulhGnLtPEsozrxBA5kVuty9VI4XkgENwzh+G6Lr7xjW/gC1/4QrRziYiJExy7u7v48z//cwCAvTwDkS8HmHURJNoMLpSbVBkXimHcIAI5DqyFOdhHDo9kjEddbIYRGYaDhrDU2hIEEEUX//7f/3sAyrUyib1WJk5wfPCDH8TW1hYoZ8M6P9W/2LAsJTQGTZcaMaoVGLt4QIjqzrOfxygucAcSIoAI9pHDsA4dAoQ19O+GiEJNTTeMBlVXdDePSaRcQr9byLYgptPKeh4E+Lv//GVceuml2NjYqJZzmCQmqozhww8/jFtvvRUA4Dw9D2H3JzbIEpCZ7MDzGVYfEpaypS+Rc/muXUNifhaioc1yT/PIFcDZ7j9HU1WzhkrQZNiHtS3Yhw+B83lVqK4YXUVcqogcx3zPkdGjZXbQDBBKJdGtlOBCsaXLuS/3dRhIHlwMlRsEkt2bmGbPB8HGhTt84CrgM5/5DF75ylfi+uuvH2w+I8TEXPlBEOCP//iPwcwQq0lYmQTg9L57ItcBwjrZI6p4qC7cvRsLl3u5DBtKxkHJeNev50IR6LQAHpAdMbmuSp3TdfxEAlYiUU7vDiB7EIZ9jWcJlfU1qTvbIcB+AHil9q8ZYVcwtdvMWPX3Ly6Voql1FASAGHBZlAx4RTBi3YkOYYEcW923PR9WJglrM41gLoP3vve9+Mu//EtYE3LfmxjB8Y//+I84deoU4BOcs3N9LUzkOiDHQbCT0TDDEGGus8BEdjHqRnLHGyS1+jt7zEIyKCiVBDGDXBdcLELmcuEev2K1MkKjL1hKcC7f/JdB0NESMEj82jBpLOxGlti7xwkCSIxuPQ5BYJ+BbBaYSoM6fP5kW4Bt732Xngfn3CKC6RxOnTqFW2+9Fa997WsjmLh+JkJwbGxs4IMf/CCAcs0NxHq6yMgSQCymTL5jEndwUJvDtUwXC7ip+ZiIjAm/E0SgeAwUc0GpFOTm5uCmdSM0eoMZcmu7+a9G2EoRGZYFVPYT5f45qLR9byXIhgx7PrC9AxYCYqZ9SwJKJkC+snBwIEF5Aef8ArwTq/jgBz+I7//+78fCwkJEM9fH+EnfJnzgAx9AJpMBZRzYW3M9iw1KJJQKJTJprBMGM1eDf2sfobnNJgkikG3BWlzoO6vFZJ00gbn6YCkRbGzuf2xuVTvdNj4MTSBSpf6FgEglqw+KjVYKOAcS7PmQm1sdm7vVXm8cSFgXEqBcDNlsFn/913+tf7IRMPaC46GHHsL//b//F2AVKEqih+JeZbFRS6tdhmGyaCZEAKgMjsrjoFKb1bK40FXGkck6KVNZOMqfFxeKCNY3qw+5sbXXe6nxYeiPms+cHAcinYJIp9T9vVwaP/IpNfT74UBC7mbaViKlhmtH1eZQVo3Pfe5zKmRgzBlrwcHM1ZobYj0Fq5jq+r3NxEaYcBhV6wyRwoGENTdTfYh4HBSLVR8HUYSQ46ieLVNTTUVHVWgcVLdVrUAVlkoJd1QsGCwrlGw3Q39QIgFKJYFEXH0vXQgPZn3ij0seOJNtKToolazLTONAQuw6sDbSAIA/+7M/G/sKpGMtOL70pS/hO9/5DhAQ3PMLXbtSyLZB8e6zJ/oiogwVgz4olazulkQ6BSudgkgmqw+K9Z8yPG5QKglrZhpiamrvuUqvk4OEbdc9yLbqHuMSA3aQICFURkysHKfUqdOwxnYUFdHRyr3SuAnmQMI5M4N4PI4HHngAd9xxh7a5RcHYCo5isYi//Mu/BADYF2dAsjvfHdm28vM1uTFwPj/2CtKgEccGJeLVh0gmIaamqo9JhxIJJbzm5/bKkE86wqpaLMhxqnEDlYdhfCC7/F26Lige7yw8Bh3PdZvGMXHJg9zZbSo6mqYKFwT8J5QQ+cu//EsUI6ydEzZje8X8/d//PS5evAgqWbBXZrt6D1mipdgAylHFxpdq6BZBVV8tuQ6subnqY5KtH+RMdpv4OoFRsVqMUQaboTMV8VEJNtWCaB0/wp7fU7ygdS6FQ4cO4cKFC/j7v//7sGYYOWMpONbX1/Gxj30MAGCfXwRRZ7NuNWbD3DQMuqgp2yzSKVgL8+oxN2cWrFGk8p0IS+16yw8jMA4INd+zSKdUlkuE3zkHEnJ7Z5+lQ8zP7nst+YStbyhXz8c+9jGsra1FMcXQGUvBccsttyCfz4MyLqytdMfX6w4QrcO0pDc0IgjW/Bys+TkV+1HpNXMAg1CHTm1GQyXAs8cS1IYJhUgFmTpuOK3qu4A9v2P2SgWxkQRlY8jn8/hf/+t/RTC78Bk7wfHUU0/htttuAwA45w+BOlTu7zZAlP1gsJOMJTgIwL4/uhXwDEOHEnGImWmImWlYM9MHOgMmMipZJDUZJOQ4xoJhaI7vQ2bzqrjioPV6nM5xIo3ZK9XMrwZIAs6ZWQDAbbfdhjNnzgw2tyEwdoLjlltugZQSYjsFK9featEuQHQfxeJARXY4CExmiqE3yq6XagZMSmXBGEKAaH8miQnyNPQAlzzV4HCAvlTVInhdjFXNXiECJZpvksW2C7GdRBAEuOWWW/qe17AYqyvw1KlT+PKXv6yKfF2Yb/vansTGALDvgb2SqVBqGAzHVuXFE3FY09Ow5maBFjcdQ2u2f/CaspvENpkkhlDgQhGczWmvTlzNXumAfWYaYFUWYtyKgY3V1Vjpl2JtpiEKrbMAOmWjhIERGuFDybhpUQ+o2ha2DTmVgFyag1zqrVz/gaHsKik953JcfN11uPi665BfECbgsww5tjlvQoIDCZkvqEJuGjMZq2XQ2yCyDsSasu5/6EMf0jYXHYzN3f2+++7D3XffDTBgX2zdxEZ7gChLsOQDITTkxhaspUXABNUNh5pFUx6aVU8VPdBuLrKgtlGEkknAsXHulcfQGMJF/uRfl10Tseg6EJsFqTp1i3S5qrWG9HAOJJDLQ6QSkNnmjens5VkER0q46667cN999+HGG28MfR46GAv5y8z4q7/6KwCAtTYNUWoRiCNlX2KDpexcirwmKNTEahiGBcccyMUZcDoJxFz1OABQPA6+5Aj4kiNYffklOPcj+8WGwRAVMpOFzJWFfweLR2OPlG5gz4fMF1oKGlG0wWeVlf+v/uqvxqZg5VhI0jvvvBPf/e53AUlwVlrHbvTzxQIAfL9tYJAJCDWMGpyKgwGAGZRV5z0VPWDCMqS8Z1wKdgS8lI2dy8fidmU4KEiGzOZBjl3ONGsuDigRB3uZ0Id3zs8Clwf47ne/i2984xt4yUteEvoYYTPyVzAzV3OO7YtTIL/FlD0PNDsT8uBly8eYqEfDAYQInC5b9WKusvLtZIEu8vpHmeCaE8gdTSB7RIAtY8owjC6qQrUEhGiZXdIXkkGWAAs0taKQZ8F73AJOAB/+8Ifx4he/eCidcXth5F0qd999t4rEDQj22lzzFwUBOJDhmpVYKvfJiIoN9vtP1TJMJuxYyuUyNw2emx72dPpjbgbrr7oOazekkDluGbFhqKdcsG3U4ECCPV9ls4SJEG3/XvviNFzXxUMPPYR77rkn3LE1MHrfXA3MjA9/+MMAAHs1DZJNYjeCQCnMMIN3KmLDYBhHbAGGAC8pgS52ckDJG02rh7BAlsDaK66ElwRAMCLD0J4R3sVzIIF8IVxLhxAg12nq9iffgf+EDRwv4cMf/jBuvvnmkbZyjLSF495771Xt5yXBXm+SmSKVqgQAMZUePOeeJdgrGbFhmAzK6aFyJqWyXFxndDq8CguYn0XuhZfj3OuvQmmawDYZsWEYe9jzIXcyAxUMqz1W1V3TorutfWEakMADDzyA++67b+AxdTLSgqNi3bBWU81jN8JMDTRWDcOEI+emIOengHhMVeEc1jwuPwrvmSdw/oePYPsKvS3CDYZhwYViKKKjjiaWfPIsiAsqjutv//Zvwx0vZEbWpfLggw/i3nvvBSRgrzSJ3fC8gUqRV2ApwdmcERuGg4EQkDMpUMkH/ACUzUfmapFXHENxIY6tq9wR3+oYDOHAhWJ411c5nkOVZqiJLSQBezmN0pE87r33XjzwwAO44YYbwhkzZEb2sv/IRz4CALDWUhCyoapoSGIDzODtHchCYfBjGQxjBLs2OBkDz6TBs1N6B1uYw/bLr8XajVPYusaIDcPBgkseIAhkhXDiV4JIGywd5DkQF5WV46Mf/ejg42hiJC/9Rx99FHfddRfAgHVuf7R9YzaKSCX6ilyWW9vja9lg7lyszGDoALu2ymw5NKuKiYWJsLD6Y9dh5fuXkFsSCOImPsMwGKOYodI1ltWX6FAWjZoNthBNA0Pts0mAgbvuugunT58eZKbaGEnB8fd///cAALGRgMU1lUOlBJdK+3OSSfQWucwMubkVjpVkmHAE85dSfd79PAzjgxDgVBzy8Lyq59FvALZtgxIJbL7iWpz/t9fATxGCmBEaE4+U6n7U772i23vHCGdgdEQIwHF6Fx3NPg+nvgstWRbIi0GsKW/AJz7xiUFmqo2Rk4urq6v4whe+AACwz9eYeqXsqoxsJ1hKcCY71mKDYmUXUwSLerC20df7yHUgpvsw1VsCJBxA8vhan8YcOZsGAIjNXXWOdfM9CAs4NIfCiWlsXnswyq2PIrW9pCK9foIAMsQASZFq0aKikqkRyPHtJ+Q4IAweFkCuu28Dbi2nIA8Vcfvtt+Pnf/7nsbi4OOhsQ2XkBMenPvUpBEEA2onBKiSAShYf82BfEDO4WAKXSuFHDuuECCKdrntKzM8CADibg9zu3M54GHDJ60usWEeWwHFXlezezXY3Vq55gyPDYMi5KcCXELmCquPR4gYvrzyOIGlj7TkamyYecEQqAUqlOr/QdeAfUm5o66mLY3tttGpaRpcfV/+WfFChtPcLZqBQjGJq4VAWHQAGWtfItqvrGQmCyDi44YYb8MADD+BTn/oU3vSmN4Uy3bAYKcGRy+Vw6623AgDsC2lVM0AI5UppcbOjcivvTshsTkUMjwnW7Ez577dAyRCLyIwLRMB0uvPrAAjHaV0RNgggw67+d5CwBeR0Ut3gd7L7RId//aVYf3YC0hljU/cIQJYAnTja8vccjyFImhTiCuzaYLfmvs9crVNBucJ49BRyHNWKAF2IjiBo7uYUQpU/D2Q1tOChjz8FPBP4zGc+g5/5mZ9BMhlybNYAjJTg+NznPodMJgMq2BCbCaBsmd2XBlSLZYE6tE+XO7ujb9UQFuylGvPXAekC2ojc2IQ4fAjcg5+TE7E2v2SIePPfc74wtjvAqGHXBs9OgaQEbWyDjy5h6zmzKE2RERs9IK65vGkcAhOFKiisjQyQP0DZd0TghLpnsmODKhsQPwDthN84LTTKIqKT6OBAglqdHpZV936xEcOJEydw9uxZ3HbbbXj9618f7pwHYGQERxAE+Id/+AcAgHU+rXatZevGILEKoy42rMNLIMdRN6Eey7NTKglR8lQb4wkh9O+KCOy0OM3tFERqT/3LqQRWnz+LuUfysB9ZbpiYHNm+OpFRLpnuX3EE6zckjdCo0GTnef7HLoPwgcV7duqeD5xo4vSp6EFO2Pkqrr4MXf1Ftth7nWOBY7Pq/Ts5oFhq9a49ogjGr6Vy/nCfwfZCqPcGEmQ7gFfChS9vA1erBIyf+ImfgDUiFYZHRnB8/etfx7lz5wBPwFpLqdgNKftfgJiVG2XUxIZQX7w1nQbNhNBgK8weMgcNqi+lzbaAdIH1ZyeAZ19d99L0coD0g+f3npAMzh1QV404wFYNywLXujiJcObVS2qL2oCdBzgigXEg6Ddzqvy+ajD02rZ6nnlfUS72vJbxI1oRomkQaNdUrByVVh8rCUw/n3DhwgV84xvfwEtf+tJw59snIyM4Pv3pTwMolzGXArAGiLJmBufyIxWzQY4LsgTE4UPDnoqhDzLHLWSOn6j+X5SAxW9t1r2Gzq0aK8iEwbNTCKb2BIY3G8Pqcw+mu3NSkIszAMqBp7kC4Pn7hMewGFR0VGKsSBKyD/nACRXLYQRHDWfOnME999wDIoJ1Ma127d2cAIL2N7Qpi42RcDMIC1ZaRZbTVBroEGtiGB+kC6y8pL7k/typJCjYu1G4Z9bBuyPsPzbso3TtUfjxves0e9RB/tABteZMOCrwNA3KqfLjJBnwhm8RJ9tWXdAbYzqCoGPzRbIssLAAGcC6kIC8JI+77roLy8vLOH78uMZZd8dICI5KZgptxCBKNiDK1UQ7qDyyLJBbv9sYlWwUEY+DZqZBLQIWDZPH5nX133X8yFHYeXUOO1kf7gNPDmFWhrYk4th84ZHqf7NHBKRJBukNKfdVfx4nOKmuW2aGYAbl8lXXxFBoEUjKQQDqFIthWRDxGGQuByrYoHUHPF/Crbfeije/+c0aJ90dQxccxWIRn/vc5wAA1ko5DbLPINFRCBClWEwJIds2YuOAU5jf8zlTYME5em31//NfeRpsevgMhezzLsHuCXXrYwF4U8aCMRD9BjuOGkTguKvu4a6jrOTD+ru6zF5pSo0oEeeTkPMl3HbbbXjjG9+IWGy4a9LQBceXvvQl7O7uAkULYiuu3CREPX/IwxYbZNt7FUD7DW4yTCxsAaWahe3iKy9DJZR++qkS4g+e2XvxONQQGHWE2LsOBeHsj19SDexkSwkNwxgRVXC85PJYFkQ6BUiGzHRXgDB0BsheIccFeyWITRcoCOxgB1/60pfwyle+UsNEu2fogqNa6GslDSrfEXoVGyyHmLLYpBIoUHYJ7WRAXRav6nv4mWmQ5w/dsmPoDa6xjG5f5WL7qqsAACSBpTsugGMuZNyGKBjx0QveNIHnZ5C/ZBprzzG+kUlBXHoc7GiOgfMl0FgdWRDEdFoVEByGxaPcqI27SwiuQq4D9kogEKwLSQSXZ/DpT3/6YAuORx55BA899BAgAWslVW7ha4Fl9zfZam+UqH1uRAAJiMQBrAJq0AYL4OLLjyBwCXaOkb6gzuv4udxeMSNDHaUpwJtWn83CjSs4w4eHPCPDxGFZELEY2PdV1esohUel90qP1z/ZNtj3YV1IILg0g5MnT+KRRx7Btdde2/nNmhiq4PjsZz8LABCbCZBvgXpUsBwEQCYb7e6eCGQ7qqT6iBRTmTR4ZxeYmxn2NIZOfomQX1K79OnpKRAD7k6AxLkhmXhHCCZg+xlKjLkLBVy2qFKU856xaoiCNxKB8xOHY6v7fskbrEZUX2M7oF6b1ZVLnZMvINZjkIdUvOSBFBylUqnaFdZaTasvkqin2htkWZG7EkQiYYSGZuT2LsQQBIfIlZBeDpA5Pnrf787lyp9rFQXc4+qzWbg/A1Ea046ZfbJzlQQtFQFiXH14fdjTaQ0Ds48Nx81J+ZIJSNZItRSDENEKu17WHSHUmgqAfQ9iJQF5qIgvfOELePOb3wzHGY4wH5rg+PrXv66CRUsWxHYMcMtBQV2aqvbV39CMqDTA6eFLZ98HcoWD2XxtHPEDuLse9loUjx5BDMjH1LVy4aVTAAPuNmPx3u0hz0wfQQywvk/51o/GSkg4ox+vRAy4Gwdg0W/TWHPcoNXeuluT6yi3RbE43DTaVtT07BGbLhYXF7G2toavfe1r+IEf+IGhTGlosdrVVNjV5F7flC6piI0orBsUi0GkUkpo9GPZiKIuv8mKOZD4ccBPALkjhDP/ZhZn/s0siktJSHd0BVM3sAACF8i+NIuZHzuH+R8+h8V0Fovp7FiIjQOH7ngGQU0b3oVOP9lhgkCJOMR0GtRDw8koIdsBkcArXvEKAHtr7zAYioVjbW0Nd999NwDA2kj3djJFlR5VidVwR7+MsZifRXBhZTJy4Q19weXL4uJNLohdHL5bmXqtgg8rNx6LdLFcuDV/1MfV151v/2LDgcE6sgSZHP2aRpRKAlnVX6kx05KiEEwd+Idf+7/ATcDdd9+NtbU1LC4udn5TyAxFcNx+++0IggC068Ly4oBVk2/cDkGq7Guli2wYkFAN1eSeWZBsG5RIhHP8QKrHiKpfw+TBBFx4kbpBJ9ZcJFcCJM7nRzbeI7/E8BPAJTeegy1Go6eF4WBBuXBiMSiVVBu/fL5edAwpZkK1CWGQ7UDkGbTjIJj2cPvtt+Onf/qno59O1AMyM/7P//k/AABrvd660dYPVis2NEKOG57YQDmOwxRyMgyJ/CJh/Zk2Np6Vxuazp7FzzdSwpwRAuYO2bvCwdYOH5I0buOL5Z43YMAyPzZ3wjiUIFI8N38UiRH0pdGHBuqjiCW+77bahlKOP3MLxyCOP4IknngAkwd5MdS0giEir2CDbVoLGZKAYJpDcEQJAEAGQX5jB1NkAybPDaSy3+z05uK6Pq+cmN9DVcMCxLFAiAWI5Go1EobI6xVoc7rOKeOqpp3D69GlcVS44GBWRS7AvfelLauCtOAhdmpkEaRUCwnVUWfIeg1cN+uALq8OewkQiLaA4R9h4po3ll88iSLngCPzLTMDWcz04r1zFZUsbOG7EhhZEwQNWI0oXjroWxbhRXreqGY4jgCAX/jl1vX/xi1+MfvwoB2Nm3HHHHQAAa6NL64YgFbipSQhQPAYxO6NVaMhsDvD1+s87dhEcNyYk1W5UkZbKBFn+viSWXz6DIOloKR3tJ4DMCcbCa87iyisuYiZegCAT3KwN2Uezr1EmggwVsbpVF8MX/gAUeRmHlpCAWFNulS9+8YuRu1UiFRwPPfQQLly4AAQEKzdd/8sWCwzZerw+5DoQiTjE/KyW40eNOLQw7CkYxhTpAMvfn8LajWkUl5KhCI/iLJA7zFj64bO4/AVnIYiN0DD0jJidgZzV248qKsi2h5Ot0pDZae0kgYBw/vx5PPzww5FOJdIYjop1Q2wmQA3tGpsVj9EVdCMScdDM9N4XYdsgS2jdGXCxCLJHx7RmMDSSXyTkF11MnbFh5xlTj+/2fIzSNFBYkpi5chMLqZyGWRoM4UFFr6fq1gMhCBA2KAiis0JZFkjKuuZvJAXEhgt5qIgvfelLeOYznxnNXBChhUNKWRUc9nZnxUqWUHEbIbs6RCIOmp6qV32WABy99Ta4WDJ1Mgxjwe4lApvXWli/cQa7V3eX1SJtYOumIuTzdnHlc5aN2DCMBZQvRp9FaFnaLPddQQJiTWVi3nHHHZBhlZjogsgEx3e+8x2srq4CPkFkuzCRCRG62KB4TImNYacrGQxjQPYoYftKC5krO4sO/3u3cfWlKzgxv6V/YgbDuFMp8zCs4bcSgC+wurqKBx98MLpxoxqokp1i7aT2uVMaqVo3QoQcW8VrDFFs8HaIud5NsJairxynDSk7F4LTgHN+B+lzJmC1grSAzWstnP2hWXhzcbClLINM6nfbLywg+aMXcGxW77k9bhy+Jz+UcSnCa0a3K0Ik4uAj+mLTKFcEZ4bYeXmIokMIG2JDFQf88pe/HN24UQzCzPh//+//AQCszVT7FwsKvSobOfZIBFVqjwgegfK5YcGBBFaG0A2UGWRcX3UwKZfJ+RfHcfZfz8CbcrB7pcTSj53BVcdXkTT9TfZBXvSZIhRI8NPnohswiutE5z2NeSibmjqGKTrWlVvlq1/9amTZKpEIjkceeQRra2tAQBDZJoJDyurJG3YUL8VjEAvznV9niWgiiE3eumGMYQGc+14bV96wPOypGAz9IyVoVDq8CtJblbRFaIKVSQCScPHiRTz22GP6xq+dShSDfO1rX1OD7SabulMqpjly7FCtGyIRh6jNRmlHzI2kyihnTTCdwWAwDBPyJXh3OJV2m6IzkNSymq6BJAXEtqrJ8dWvflXP2A1EKjis7Q5poSEu+KMaIMrM4EI4jYL2QQQxPRk56waDYYTxNFtqBQFHDuk5NjNoe4TERoUhuFcqcRxRCQ7tf93Fixfx6KOPAgxYu60XwzArsZHrlKuHjmhMQ8kD4v23W24bfCpZe1U7sbQITuhvF525ZhbL/7bzjU0WLTzjjza0z8dgGAa540lcfEHnjZNVIFyxuxTBjADazYJ1plNKBtY3QS3CuGgq3X9BMGZwYTT6m+yjLDqiqg1ibSUhxQ4effRRXLx4EYcPH9Y6nnbB8fWvfx0AILJxUKDfZUGODbHYOWajKVEIFCnBpRJ4Y0vfGJr7wbBjg139StyPC8zPZhGzO198q+/rbT4bj83j2r9tLtz8uEDgqnPBKpkAUkN3sFAPAJAxC9TkfiJjFp58dW8bAiYAXXTSJRaAY6tAyMZ4tGbPNR2sxesan7csaL1bEkO2EQW8vgka5B7qDLEORiciFB3kW3j2s5+NBx54AF/72tfw2te+Vut42j/1avzGTuvsFHL7KLolBMh16poHDZqNQukUsLmtJ2K3vBuozJcsEXo2zqQxc2oH5764iNgPX+j42m5ESS1Hr1/B7h81/13C2cWspY53+vYrQC3u9cIH3B0jSA4MBJSmW3/f3okSnnm5yhL57iWXgIJWS7KGc4aBK//3pvq51+D3bsTICGbA9XufHpm+Ju2IUHQ89E9PAZcpt8pYC45cLod7770XgKq/0ZQgUCfzgLvyahO2UaKmlgQHwcRUGqV8EZxwR/ImFDZX/tATLX93bmcaOw/vt6bZWULy4mDfNUlABKrWhaF7zl2cRYfE+84QkD3RpBaLBTzzWU8PevToqAiJWkHRTFzU/r+ba9rztaeTRlZufJQpZ6+EUQadiOrKm9cNs5UALtvGfffdh3w+j0QiMfB4rdAqOO699154ngcqOhDFJlaMIIDM5yFisYEER9Ny5cOmHFQ1UZ0by8itbWAmDdgj9HmHiBdYcETQsdnYsekd4EX73TIXM1NYW64XvyJnYfZk95+X8BmiRJD6rv2JJPlwvKfXSwfIX9sQxE2MZ152vu85PLE+D5IjcG3Uio3Kv7WColF8NAqTyjEafkclr2qx1QUXS1qPPzZYFojE4ALMcUAiADdJBaaCjSNHjuDChQu477778JKXvGSwsdqgVXDcc889AACx2/yuyUEwsFIOOxuFptLgnd6bVlXxPGXq62DNYGZQEESSimvoDV8KSKa+u5seTu/i8HX151Ded7B8vF6EeEUbs1/tbYE09I83xbCeVS8QLUvimbNboY6T20xg5BrjVkRH5edWNBMmte8ZdqGsARlqD5N+Ccu9YlnKOtUAgbD63RywAHzzm98cX8HxzW9+EwBg7TZJhw0CcHGw9FBybNBUyJYNewAB4HndWzQkA0ZrdGa8729VEraHq5fW6p6TTNj+iXrBkb3tCEQlUHUENsnjBteslZmrPRy/dC/NwRYSaVdTSvqo0Uw4tHOlVP4/5oKiI6NkBe+FkERHY9xj9fCbLoKFvTVbF9oEx8WLF/H0009DCAGRaWLhGNQkJyVYyqaR4INCRN0HJJXjNJqZqiYZCgKwrb/GydGvbOPxY4dx+IaL2seKGkGMuXh9z42Zn3iy+vPDp48h+ZjeLsbjji8FvJrst8te8WT1534tVOPI1Z8o1vdRaWXF6DYLpfJc7bEq/9ctSiZd9PSLRrEkduIQQuCpp57Smh6rbcWouFN41wE1Rr5J2TblqSs0npQ0M935RVKWU1y9Ayc2AIDPXojkxkDME2Pl6AZBXH2AVSZM5WFQbBfi2MglsJFL4NzGDM49eqj6qLjCDpLYANC9GGjlGmkMLm18vvw7KpS0t2fg3HAa3x0IhFAVvRugQAC7anNTWbt1oM3CUZl0M3dKM5NOTwQq+GVo6U1SKtPWoFknUoaSoWM4GNSKDhaoc7nwmFqKu8GXAhe29jYBhfUEyJvgP7hfeqm/0UxgtBIbE5KNFkmvrHGASFlLGtYvsZuATBXwzW9+E6961au0DK1FcEgp9wJGM00EhzdABHJQE2kbBOBcAZQMOfBOECge31+NTko1ZhdBod3AgQSZoFFDH9TVBiFUxUeTVkVjy5n1WXglGywJ2N7bXJhlowe6TYdtpDEGZBLcHON+rw3Lki4EyLLAsv54YjcJHNnEPffcAyklhIaNsJbb0+OPP47t7e1yd9h6MSAHaV4W1Kf1cCCBQcRLG5pZT9j31ZgTUk9jXDjxJQ8X1kesxsoowUqAVGp3iAAti5WNOpmSi8eeOIzHnjiM4loCvOnWiQ3DfpbuIliZYnsB0S4gtPb5VpksEVkHuFSKrFX6uBHq51KxclSQDLFtAQFhZ2cHTzzRuv7QIGixcNx///0AAJFNgGr3I1ICPMCdUHPudyu4VDIiowl09iL4kiPax4lfzCEoRVuQIue5SLvF8YsFqKwXvCc62Bpdl4ssT+z0k0uAJ5R4almhc/Q5de4wqBDtTjq+GYB82ToYFGj/u3bUWkb8AMhr7kFi7rPRIMS+YmAEgsjFIafyuP/++3HVVVeFP2zoRwTwwAMPqIM3Wjfyhf5Nc0EQbREt2wIlE6qAl8aLgCMooqONoEk1xglBjuoK3QcUjF7Qac5zkPMcPLUyjycePgrKWyCfxlpsAAAzDSfIudb1Ufuo/V0ttS6TVtkplfdOgMWBLDG+KbG6cJx9n0klo7SyhodN6BYOZq4RHCHtSqWMPhNEcvQix2DQSFV0ULnR2BDuvxu5BLzAQuZMF5lghu6pFRDtUlw7BYG2CjCNAB7UAj4KVDanYypuKmv2/fffr4pThvzdhy44lpeXsbGxAUiCyNW0MPe8/k+mNjtp9nyQHwxWsGvfeLLc40WlEB3EtNeukAzK5MFp/e6OmXtjKC1ZcK3JtapEBiurR9W+SXrFR85zsLatWomXNuMmwyREEuctONs9FDNrV9q82XM1pdFJczosKjFy40rNBpVsO1zRocma3Bg8KnIxQBLW19exvLyMEydOhDpe6C6VqnUjH1PtkstwIPszzXWo3sklb+CKpXVUxAYAsq1oSuGOqWuCmYHtTCRjHf1/Wyh6Y1iWeISpBJpSOcg07HAVyYTHlw/h3PI8vJUEvBWTzho26bMMZzPfPr210fpReU031oxaV82Y9jchIoD0p2/VrlOhlE1ocexQacjcIRYQeWUo0OFW0Sc4MjXxG57XXypsL6XCByWQKihqCIv/WKt6w0RQER4ipNP/9LlFnD59GNh2QLkxT0ccJxo3dZ1qbdTGekwyQ3BxsO8PXnMqAhozMitrdyX5I0xC3zLWZqhU6CudR8ro0qPK8RrNoGQC5Pv63SpSjmcBMJYTVRyolkwphumY5qj8UYP3Yj1kj3cHL7CwspNG4WJKuW0OwDpWy5Mb85CbQyxF36nWRq+1OGrfpzl7hP1gLBbnlrRZH7jkDa9IZQ9wIEEiKK/dW6Nv4djc3MTy8rK6aVUyVPpt0hYE3Z/kg9TGkAy0a4hDFEnBmIE7AQ4JLpYg1ve3aNfBzmo6knEqTFKmSj8IvzuLR6bkYiOXwNOnDqNwPgVIHKhy9BWYEenfLYoEuxDSgI2WjobNHu1E4zrVQpNS3lEz0mJKiD1BJCVETq3dy8vLqp5WmEOFebCTJ08CAKjYpH9KL/Ro3ZCZbHvR0PKNHcRGGZFOjW3U8SRx3V8fMGvDKFC2eLQqJLaRS+DCkwvYfHIu2nkZkFoWmPnu5t4TzVJYu01xbRbjERXMgBzPODYAe9WnO+H1GdcRcdICBRaOHz8OADh16lSoxw5VcFQmV1FIqrlZj7EbYfUp6UQgexIpIrm/RLvBcFCoBpiWhcduMYYnLy5gY3kW5BsxPhY0y0AZgfgNZh5tC0A7ZPfuJmbuzXIfMWTtyYFnPOMZAICHH3441DG0WDgqUa5AH66CCPyFtZko3UIxzb5ZySp1eAzhbA6UCzFTyDCSVASHVSBcXJ5DsB4zWSejQjPLRLOOsM1e28wKUvMc5cbXsqg9y5B7s8ZXRceoIURdDOFXPnwfgL01PbRhwjxYxcJBtfU3ekFKcJ9fhtzc6k6o9CE2AABEEDNTvb/vAMB+uRaKbnyJ4MNL+sepIVPq81yeYMgHqDCGAc4aWc8nkVtJRTaesy1w9Ku7e0+0SnHtlPra7DWNz41zHSKdrnDJfWUY9mTR6dZdEzJUNhqMrOBYW1vD+vq68vmWJyuz2Z6Oocp89/fhdqzzIRkoeYOpS8vSegKrLrRjmiIbwbyJGbGtaHcHwwwcfdbVy8gfGdPzYQgcu2YVthjO5xVIEalriQKCyJXd1c3ue/0sUmEdp8cxOZfXO8aIwiWvs5iL0v1iWarcOdQaLoTA+vo6VldXQxsiNMFR8fVQwQWx6L0kqu4FK4QsEBICYkpjpkSb9NxRR65vgorj6RIyTAZj12gvLMIqR96kRgft5sZ2E6Q7FTWMzEJmHkkLEkmByy+/HEC4Vo7QBEc1YLQSv9FDKikHMpSgIS608DWGqRLL5c4Nw8HOB1g+vTjsaRgMw0MSpp5sY41oTG+tjcnopkV9hQgyVca1HEDoG8Nma9SQg0uf+qaybIyk4Hj00UfVAfuI3+g3bqMRub27/8kes1E6QbY1FkVcJhVnq4BDd5vKlYaDi/CBQ3dv1D9Z0/OkaQnzTl1fh1S4j8e0XHqY1aFbZq/0GJAaNqKg1vLTp0+Hd8ywDvTEE08AAKgQ67kVMOmKi+g3QLQTsZg20THWcRyrG+M79xZIJuR9IzANrSkGNlbPzQ53Eq0qinZqU19LY7GvfHFsr2et2SkaXCDMPHLWHsqrzMzK2h4GoQiObDaLCxcuqAMW3N4a5Qgr1MY6cnVd/aBLbEDFcmgrQy5HIze+HyLbrXC0hSwDaTIyDK2RTNFm7TA6WyvaFfhqeswmVUY1b344P57BojqtDtXQgj4zYMKkYuE4d+4ccrlcOMcM4yBPPvmk+sGzQMGQzd1SRhJ8KdKpukIpBgX5+i+Shfu3sfWVI9rHMRhGkWs+ttNaODSrw9HstY0CY9KauumymkcQ4DkqRdAosDA/Pw+gZo0fkFBWzIrJRRR6LI5FBAq5TwkzgwvRFKEiV08xMPb8sTVl8pnzw56CwTD5dBIDtbEbnY5TG/tReW/J09qOnisbQw1oL/YVAaPiXtl6SlmhworjCEVwVCZDBben+I2wxQYAZYoKyfzTCUolIRLxSMYyDA/JBN+4VQwtOLs+G/2ggwR5NoqL2n+jsmqUvKEGRPaF54/fnAeEykaEkRIcexaOHjJUiEKN3RgWlExoOe6oKNx+EGvhdhhsxuKDPpbPR9MwTDLBG6QZoWGi8Vb13AOasXiPALpxW/abkUIESDm2NXWISI87RfKBExvAXpmL0RUcXVottFg3yrDvR+ZWARHEtIZiYCPa4KcbOKvfwpQ8mwHtTH72yOFnrcA3fQM7Ej+aRdqd/H4+M08WQO06wlZoFpPRjGbHCrmUwL4h/UDfhkpT7MY4bwAHoRImEVYMx8DOrt3dXWxsqJxwUXSBbnWETutG1BU7hQbxJEipdV3CrEs/56P/9WoEh3u7kbMv4J5zoLvwo1UALnxXX2+Vqau3EHfVTi+QAsXAHqjUuU0SjtXbeTkXz2N9/A2B2om7Xl+VRkNJeQ72zonUGYH4uqYTn4CLNyXAtmaLilS1Pnrl8N1ZOGfWuzj+mMWnjfHmb1CoqK6PjY0NZLNZpFKD9QsaWHAsLy+rHzwLJEVXgoMczZ1XoYJHqVn0tQbItiBmpsD5QmjpsnR0CZxwsXrzbCjHa2T9ezw4qc5BYYRs7ydJDCidYDjn9X7PFAAAAZq+4sypOWRq/r/wAGPmkd76A9Wy9rw08j/UpDhdA5YlcdncZt/jHHSKgY3lzZmOrwsCgcvfO9hisn1NCoes2hNQ3+JUWCAEEfQSFAzIPnTY+ZemALRfkCgA5h71kTq51t/k2h3bD4BCEewHAIckagJ5YK0bAEDSAjwBOBLLy8u49tprBzpeaIJDFJ3uzFkRVbTjQhHsOtoySRqhWAyYnQZibvM0s060SE2L7TKKU+F/ZrPfcpH9vvGs8jeuLN6bAe7t/F2W5pL47mv23HTz5xh2TcmC0hQdeDdLbNUC1awpO6U5bCaUyHA3LVx+a6bFO2s5uDvXYRHbYi1iA0DVckK2he5N7e1hPw8iOpDxGxVEyYV0Cjh79uzoCA4qOV2Z/3XGbjTChSJg26pQl05sW4mtZhHfrXLguxAkFDDST+dQfFZ0ba/DQjgSQZJh5fQKTGJgiA1dteBuFnHt3+79X+Q8UMUMTYTSUgrFufotaGFGoLA4YR9EmanHrX3aYOZJH8Lfe9LZ8SGKk7sTDWKAjCDbk8bM21GFy93Aw8ayAAugA5ihUoGKDpAq7HkzBiA8wVHswgYXclXRTnDJA0kOsYB7A5alhEPZskN+ALat/fnvzXLdG0VHxL0MLI9Bj6XAV/fvImh7fDuAF5ewcpoFpoS+77eBncsFkisxOFtDCE6sOT/clSzclfpfp5IuvOk9a14QF1h/5vgF1Vo5gdlT9c+lLo5mxkRhKQHWVWCqgSBGYy84hAfMPRxNyYIwYL8m3sqx1VoSBAdOeFTW9rNnzw58rHAtHB3Q1jNlGFgW0FhptFLMxmr4OxvFRCcLSA0iU8LUWRe7J0JePCTgbhEmP64/PLxpRuAKjMQy3iBiRa6EWK5U/R0LgWOr9TM9/7Ip8Ihl96bOWJh+cm+VIylh58djm+0n9MUPTSIUAPZa5ximvo6d13Ana4wDEQQIW48lZYSprO0jZeEQMrpc9F6QW9uwFubCsyAIAdit79pULIET5ciuZhX86l7cIDxqlXP5d8QM4elR1LFNhvdICvJaPVYOZ6YIvxSHndFrgqAAI7eQaqdDuWpihpXdEyAgwvHP73UY3b1+Brsn1IfWT4Bgz0gqB/kCx75ac06zvz/Ns1c69RYZc/w4UJrSP47QmdjHwLEvrOo7fsiZLyrwtPk5VWncOSolyHUjRsXCkc/nsb6u0qBEqUNwZsTulFrY90FOCHfVDmJDDdahf0Ez60YzQVLze1EKYHlAoGFhIKlxi0YMdssurfHYtHakOCMQX6NIU+Vk0tknHlrSqmsosLewM2P6oU1MP6Rev/I982ACpEvwQ943ONvqmk9eIMw8oecGbecDiFKEafAA2LEic6dMjBVFUzMyGlKTM7LtA5HBUpsam8/nkUj0f5MYSAFcvHhR/RAIlT7ThmG6U+R2CGa8bsRGhVp13KxzY+Oi0axRUs3vnc084ht6bqh2FvBy+jJ5nNkCpB3B4hzRPWf9uQQZG6I5pVuxUfv/yjlYe07WxBktfX0Dh7+2gYXvFJBelhAhJC/F1iwkly0cvdPH0Tt9bWJjWBQWXQQx/fc0FohkHBFAa9JO6rzUZ4UKu+cLc3dptYImom9LJ0hagK/OwdXVwaxUA31alcHJ67D1HoEy5pzPg/pVZs3iNdpAJQ/s1Hy0rRaCVv+vUCNMYhtFFGcS8OPh3nxiG4z8pg0kxzhFltUmcHKN6m3oNguqXcvyMu5qFu5qFonjUwhiAoFL2L6ye3Fl5QXST6lxUxeDsYnFGGVYAN74JantY+47etodkIZGl9xLp9yy6Jh0SweVLLDtY3V1FZdeemnfxwlHcPijr/K4UOxdcAhRfoSwyLdqAd0Y51FLzXP2dgGWl4CvoVdc+imB7Vm3q0Jg/SCXShDnYhPjVhkJ2p1PtT+3iyFqdkwA8WVlEWSLEF9PInvMReZ4e8G9+C0Bq8SIbU/2jXcSIYZWtT7/sA8qaLJw+dG60ppSY+mYVOFBJQuc9LGystL5xW0YyOywJzjaWzjIHn5cPwcSMtNDcGTFhdKn2KB8cU8lNwsKBXpeCHSZJO0sV01mWo7vRnARcnQ1BM68fMgdghuFRe1zlX9bxQXV/ttIQzo3BQx3NYvZ727j+Je24WT2v2/uOwLHvgwkV33Etkfg5h8B3mwMxWn9bjUmIH8oAle0ZtOgu1Uan3LmzP31kRE00S4WKqnzfVCXSkiCo/mHbM1F082za2SXfsRe4jVa0ezm3k5YdCEqZh7agqVpo0Ce0FpBa5KarQbRFK+tQybd9k26WsUKNb629rlurgVmkC8h8h6O/L8N2FnAKgGiIDBzysLUWR92YXiLiShKWNlo40OYEFkgJ495Hx3hQ9Wv0AAVSqH3zBq4xsakio6y4BiqhWNtTZWoFa1iOAR13r1HCJc8cKHQ/kVhiA1A3ajzxf1FwFrRbkdas5t1M3pu7vP3CgS+vrsbHc93flEYRBHIQaro09BodT41nmutXC6dLGttxPLRr6zj+Be3cOLLkxcI2g1sCUg3GhUQRd8U0mwZnHvEg72qofZGL3EWvRwzDJfIBIqOSpzmaFg4vNYf7ii4U2phzwe3Mu+FJTbqBmzYUTa7SNo912Aynzq1pa0Lq7Wsz1VAxPCnNO+EJSITHBdfMIQbSjMx2vhzK9qV2W+TIdV1m/MDgoxZKMxFY64rzo+3O8XJMNwtPaKU/CDajuC9MmGiQ7BSv6MhOMYgaLQCl7zmKlaX2KgNamq3M2120+9mNxoi049rPDgxaFZ/JozuALih0ot7rp2IqD1W5Rxr567p9JwhdErTFEmPIJ3WjdgWw17Z0TdAyHDY9TwmSHRUjApDExy+72Nra0tNRoPg4CDEFsONx87m6q0cOsQGoG7ijdaUdqKj8b0tdpOzj0TknggZy5bw5jXvSiISG0GMsXpTuvMLQ4IJkLEGa2G7InMdKpG2tJZU/t+tJW6YSMDORpcVwJZA9mg0ATw6stEa0VpZVCMUSMDT8L1LDR9IxKKDeijf0NNxfbU+7u7uIhjAstT37HZ3y345BhDoWKz1SW8OJOTWtrqB6hIbZcgPurs4Gm/ytdaNhhu9lfX07EwkkLhL4yJKDDhjEq3eCQF46Yh3+1bD+dCvtaGT9aPyXKeg0yFDjMirTEongmJfUZ1WGr9Kd4cxd9+6noM328gNekhPYzxSlKJDV72rsuCQUiKTyfR9mL5nt71dLuQiLVC7kO0+0kqVdUPzja0SOa1RbABo7muv/bfyaBZc2iLrQJR8zJ3S03VRlAC/qPHiEKw98p40V02sIG1AxoZkMm0VG9TNddNYebSVsBgxgTFsOKJg0eIsRdPfRhcM2DnoqZHBDBTGsOWkIGV9iCA9uNLrJdRjgqqlE6prfx8MLDiog3VDJJO9H7xs3dBZRIWcCKvDVdJxmxViauVDb1WwqbxQCE/CyYe/GFgFRvJhffZcJ+HBn4nAlhvBOlmaY2w8Ywg1ORrPmdr/t7KMNQaNNsYHdSqL3vj8AWTnUv3ftbQRSSNCofHWJ3xg4RsXtRybdImYCIQ1BxJcLGoTHWTtFakkHdepp+TCUATHzo4KBqKwUylZY839MuTYoFhsf1CnrvE8f69xUavdZbtS1E16YIhcCYkVTc2wcoC3qTFjJRFo38FFVQSssEAozUWQvwgARGCrQTQ0Fv6q0Kw4WCsaLW6N7xlRkWEVogtCKM3HI6m94cdJezqsriy3CjNPaFQzYfdNgd6NbRXJ4EIR7PtaRUcVJ3zLa2Wtr8Ru9sPgLpWQ4ze4ISCF/fAXVbLtqhLkYhGIoM0weX79Db2b7JPG1zQsHO5WEbHd8O8edpbhbujbZtlxD9KdDFN9aY5RnI3GrcIEsNXwvbSzRLQSs+0q3kaYFTUQDFi56OqARJUKGwW6xXj65IaW41JBg9iIqAKq3N0Fe2r+7Puhb6qJSPX8qn0u5ABSGqaFo1uXSs90qpY4IOQ69eovInNaNWe80XzdbQ2FyntrEHkPVknPBZM6A/jr+opbicUiWPM6TWMahd81rc6dZudLu9oa7Y7V7e8NAxO4gDeldwzSXKvmyN15fbt3HceVEblTGqwoMq/xc6oQdgDpKFg4qBTeH1VRgLogxwbF99sr2fOisXLkCq13l+2ET6PpvObn1GM7cHLhXzDCA6hI2kLmhRWArclYxFafR8rkHjXdlMpvfK7TOdZJgI+K8IhwGtlLktFkpwiMdSlzCgBrR889nArh92NhKfWkwjYQbGw2GZwhs1m9oqMSqBoCXCiCSuoaqIRT9DWlft9YTY0JOhxCEESii5txmzTYMIQIOTaozTy4VNqLs9BFp5t5O8tHC7M3MWvzyc59l+Bl9QVbiOM5vX5xjsjKIYDSdP+N/nqBHQF2rObnUTt3SKtMqGbvr7y+22MPgdhmNJkKbIv6uBlNSEvFA+lEdxnzpXsLEBlNNYJ0CF1NPV5qCTa3285d5nLhVExtFbMRlpWDJRCo8zOf7/877ns2hXJPEpIhKahOgTsD1OXoJDaqRBA8RPmaG2WzwLxuCi41ZB+424E20eGsOdqsHADgpyPwoUawG165mcCaiu70RLsg5HbvaQxMNgAAivMx+HH9n4efiOAz11x3Q1cTPQo0JBIw67dueH7ndYsZslAcSHS0tWKEaOWAHKLgqA4qo7k5NQaT9kJXYgNl14qGKOiWtGqu1ex1rbIRiJB8ekfbTn76UUCGJCqbIRY071RZf1R+1LBFYFH+Trop4tXsdbXPt0ulHUGsvIxkdxoVTEBpRu8Yuq0bqYsBrM2snoMHwfi0t6/g+Qgy2e6uIRkMtL41BovqgoZp4dgTHF0cwrJAbdJ0uvqwmfv6UprFbLQdxvPAugvLtIoX6bZRVpPUxdnH9JU7jz+oMXiUGN6CZssSIxIrx/mX9FFzpg/YEurK7ZT62lhYrvE5oLWYbeZeiSrAugNWMZpo4CDloDSl32pVnNO/adPaM2WTkXxKj9igQGopXaA1FTYIlNjowYKiXPp9rG/dVDANy60yGi6VLi6WTm3qNZUxp3isv6prOrsQMjc3ETbbqTYuJo270ZrFwtouaNvJxzZYn1uFGBQPtMdyRCE4igsRL8a150czQdHYALDynnZFvlo9300MyIQhLYokWDSKNvQ6z3+rCL2xG2FbN3QLZ9mHu4ZZxXP0+rd2EzcmKJxCYGNj4WgD+56WL59cp/8Sr8zgXCHcCdUSNPRXaeVKqdBs4Wh4HzFj4cH+a9y3gwIgcXdKy7EBwI758Bb1Wjl0pwMCAFvAmVdozmssI+MOuLFybSdR0K5IWO2/zei2iJhmnIwP8vRbOGTMRvaY/kZt+UXSnpmis6qonQUW7lrRcmwKpJYy5lr7pgQBggGyOLRlroRQCKziUsnl+m+rMTJBo10hu+wgK0g1ZRtwLC4UtfmK66wcYfWs8PWUOwdUmqyX1XgDtlh/SecI1krpAN5sRJVHrSbWi9qfG+MxOpUr72YXNEwLhwQQRCN4goR+v7i0xzsNFgzEtzRWhtax8OoUzJ6PYKv/olhVurSwR9mFFkA1I3WoLpVug0bJapI22IcrpZs4DnLdcBrY+L7yrekQHUHQ2TfZKWOlsRBYyUf6jJ74EyvPSJzWJzicZAmB5oyVKMqdBwnG+rOiaWHesXFcu2Jf3VgsusmYihCrKCFKEcRvCEL2iP7uaV5af5M2ndYNksDcN/VYN8A8VmXMueQNZNmoRRYKQAcrDBH1nIY/cLZKea2vrv190PcMisVi3SQ64thKdNTA/VR5Y24vVASF2y1PQxnaCuTXRF+3yk5pRpv5WLmS2nVowN3RW30UaW8ieqyUZoDciWgCSAH0lkrdS1ZLL+fkBJE/rL+IW+Dqj93Qfa7PP6zPNUHF8I/NUp81hgfY9TdDdipE2U9myqDZLOWPLhggxrFvwSGr5q4+b0Dcf5W3diq1qyJjvY6nK1W22RfXrNpjt4sEAFHwkT6d0dNjJcewd/XZgO2YD7Y176AjEBx+klGYicZWLuN2e2HQmKXSGLvRrvJop9dECPkMKx9Nd+coMlOkrR460Z0OnnwqBPdBE6hQ0lMTSZN7nPOF8C0nFZd+E/qxblTfO4AbhkZCcPTwHVIirrUao0in9OQkywCc7T9Qph2UL+5PU6w82lWTrNDkNaLkQ/h6Lq6p04C3oW8HKA4XtMdyRFF9dPs6IH9MozWoQrN6HK0KebU7n7oRFUMUH8TluCfNZC5LgjVXjA1coDSruaqo5iDpo1/P1Qe+h4mG2A1dZcy5UFTZJRpgr6Rc+o0Mcn4O8t5ypuJQBEdlUGICR9CHpJF95c51l5VmVqIjbJXcTX+LVuKj9ncNv586tQW7oCH7JwCsvNCWJktCQjq600n0m5tZAF5SaD8vmZpYOVqJjGbnUWPgcu251Kxq6TBcKhJwtvSXMo+ijDkLIH+IdBbv1Y4oAaKoR2zo6JkCQIt1g0ueyirRiaxPC27WFVY3XCqVO9yq/w9VcPRLKCaomlgOodl6osZjLZkrdeXO9/2yiUWjcSFosQjEdqQWs+rsQwR5LqFNdFjHcggS+kWH7qyVtRsJ21dFEMtBpFJkgf2CoV2J80ZR0mhda1bDYwgWDl0dkWuRroXs8TgCV7N1I4IEJpL6BLWdA5a+lYPY1rCr12RB02Hd4JIHubsb6jGbjuOV6j+TENa4vt0qwxIcslaB9rjokBteBH9FtJBjI/RWvK3QlS7bSzW9Tj77MqnT29oW1dmHCKxxm0ZL+kueR5Emu/5c/T1WWBA4bivR0VgYrvqiNtaLTiX2h+hKsfIS9q7+dgPetAM/of8eUpjXb9rQXcLcuRhONkYj5PnhF11kDv1ezYViJGKjOl6pxuoTsXWjfiLq3GXmvkVHCIKjt/eS66hiXyFCsVgknTqrhC06mEElb3/J835rJdQw86S+hds+qW/3LoSEN6c32IIiEh0rN+srmlaBBam6HHVPtjl/WvVOaRWsPKTslCgCRWXCVt1+NVPUHLcBAELjJePsMtJPaYpl01nCPETrBucL+t0ojWP6PrhYDK/uRgiVR/utxdHXX1CvbvqYeJi7JdF/xO5AyADBymqoipwSCYiZ6dCOBwBusYTdlx8J9ZhViOGv6guMTFywcNk/b2o7PgD4UzFIV+9iIwIJ6/Q5rWMAiMwKQURI6UyPrkHOT+01qtOEEAFim/qFTWnahaXRcBfEgOkfvKBvAADbryH0nZnYhtXvHsF1f7YMINxrsdvGnd3CeY0VqNuN6/vhrnOCei+iVzO832dIRMSlyjQgGVzywq290c2wO5n9gasDQLYNkUqGblJ8/D8cgdRUh0raDPL1iD07S7jiI0/rSY8rw6kE7Ah27nT6LHgEUktDJSpxM50CNPczoYIPhwgyrld4zj9cxNqzY3t25cpH2Pjncc1zjT9XXs/732cXgNX7DuPGlz0S5rTrmLKLmHfD3+EXDz2NL2y/AFd85Ey4B5YSHEJZ7wp07DDozDlwUX8Qcy0ilQpvnfN8yHxBHasXMV9zybt9hkb0tXWwav1I5ahEmenuJAw2QtyxlhcLLhT1NlyrRTJkJhuq2AAA69Bi6GZreWgWrEmHaY2yZyC2SVrFBoQYvPx9F5AXTJ7YiJILq5H0TlGtBjSPIbk+c6xiLGgct1FgND7f+HMFBkSRsF7Q58KTIEgNF39M+CguSMipkOfOrAoshgURxKXHlRs/IkQyGeq9iplVym0391cpwU3Sn4cuOIYB2XurabMPRQecz4eubkVcT12Lp390XkuvBiaALdZhWQUATD0hcMnHn9Rz8AqODU7qvWlQvgQs6zVxHwhWNrQPIUoBrIKvXXTMPF6zUek0Vq33opU1pOH1sS3gzD3HcSEbrmu2QtZ3seUltYiO137fXVh74Vzox9UR9CwuOaaEgG4aN6FhrHMhNK+z+gxe7Ws5IqL6AXV232uFaCiTXvK0VZKrIDNZVec+ZMTsTOjHzD33Evi6UkuFPrEBAMc+v6InF7+CEOCE/h0Kbe+CIyhWNfGwBGX1+85FwQdpbg5HEoivVTKEsPdvN+IDXbyOgcRFwvLqbL9T7MiuH4OnqTrf2veWECyGLJaYQWGvDUQQhw9BTOntDk2uW5eZwoNm3UjueQ0jUcl+U+MKIfoOOu17/2uXI2aZuOubKmdzoSnNxr4sAEKvZ1+L3Mlo8dtZ03p2IltXOpAa1lQWrNWdcuROgHJ6FxeenQLH9Mb8UCYP1iBODyTM2s+JClbe02rlIGakz5WQWK2p1NwkHqP6u30HqHm+1e8BuI8msJwJfyNTYaOU0mLleP1zvw1vVoPFV0MfFbYtiMV5iJQmF5awmmem9NH0tBlcKnUXilApOVH+usUA7p2BBUcvLpWw6s23Sg/iQGopQR52gGgdrhN67Mbuiy5F9hKdd01Nx2Ugea6gN3YDADv6UyDJ8411I0S4WITY0ZOSWQv5+r+zaixHRWh0cz01iozKe5uJD1aNFvMlfaK6JPVdQ4n/dg4cD3m3pKtpm20pS0fYbnGicjHL/Us0B7JvK0ewtVVzoP6yVIYiOKoulcrFInloKUO16AjQY00BqdbsDMgJ96ZQvP4Yzr/E0tKPhAlaYkIqHP06w31cb8yDPDSr9fgAQNkC5MaW9nEOFMx63Ww12Nv6MxDi6x7i67U1T7p8I6FepDTLWCk/5395ATslfX2PlguzWo77jOkLSN8Sfjo8eXo6f7Mlwi/IRR2C2vuxcjTrzt7umpKyrm0JC/XefgNGgQgtHJzNhWLhILtDVVEZYs8TyZA7GS1Nf6CjJr5to7Dg6LNAkL7YDStPcHc0ZyPYLTqrhgmzurEZwieQkYkO0tT8sBa7yHuNBLu1cjRYMpq+txIiwsCZzdkBZtgeyYSippa3U3YRuWeEXz8o9FiOynGPHQ7PtSIsVSKhDf1YOeqsG2VkodD9NVUWHPEBrDl9Cw6nsjMfYpZKKziQzbvs9YKm9NcKIpkMtcw7AMiZNC6+UI8JQmWmaDk0AGDqKSDx4Fl9AwDg6ZR2wUFeALmut1jZQYVzOZX5oxlihpXTP05itQQ7Vyk13/DLZlYLtHiukZrnra/PaIm1qLBWTGs57rybxfabNZRQ11g+gY4dDiUmT3RbrCykWI6usYYoOJLllCC2IvyjhdV9z5Qg6P/k0iw2IKzQK+DBsrDyUg0pZRWEPmHp7BLmv6sv4BcAEI9p7wQKZtCmnj4TBgXlCkAEcRaQgCjqr/+RWJfKytHNqdkum6VFIClJ4FsPX9H3/DohQdjx9bhtrp5fw7kfvST044Zal6ORpQVYc/3fh8lxu6650UuMGOcLg7uThmnhqAgOiL0/moNgKK3qm8GBhMwX+nataBMbUBk2YcdugAg7V4V7yFp0ZqZYedIeu8G9VtXrk24L4Bn6gwsFUARuFWKOJIA0tuXtb7bWrLpo4/ONtInpSDylL3hUMiEf6Dn+ZckNbD1bg3tSZyE+IlAHd0jLt8Zi2ipm92PxbwyB4GFaOBIJ1UuBa3e+snlgF5e8wetXEDVNhW2LZMhc75HtzXxdoUEEayF8S8QT/+HS0I9ZQdoaYzeKhMs/obnPSCIOjusvfU9PmyJfk4QoBZFYOeYeKdXHZzRzmzSKjU6NB2t+Z+eBb919zeATbUEhcLDl6SmC9YqbHsTZ14Zs5Qi7+mjj4eMurMWFnt5DjqviE3vcFHWzwe8UP9lyjWzcrA/TwlERHIjSpdIPsodCKZJV6XWtCliEHkfAUykEuop86YQBe5cAzdlNbIX/mTclqvL6B52La5EFj0bRTVh4EqLVutEoQmrrdnSydpRfSwxYBULG01fsTrKekufTdgGFeR6bNFkA6l4zN9Oba0WQNgtsx8zNbj+LUXCpsGi48AethNaC2jLmvSIz2a4WA7m7q/dEBCA0mMzO/PhhSE0beJ3WDQCqQZtOXAec0pcaWIGKo+FKNIRLFD1WAGDu0VLzbJNW1163ZdHL70+sEh4+dWKQKbZl148hr6lL5I+96hvYet5i+AfW3eNoca6rnivkuAMlELS1cvSy4a57XxNPxSgEjaJBcLDn1y/uklVztUEQg6dHyHyhfR16zwdrLo0OAGJuVvsYYaG1QRuAuYdJfwnzsHdGrVjdME3aIkRkoqn5I0pBNMXAAoa71ZCx0uhCqTzXZ4d4Z8PSWn00HzhaM2JChVmJSc2IDlkrFIuBwrhHtVi7uFTqKh6xMcajqQvGVmOkBkj/HdzCQR2CelgOHIDZc+xGMyRDFovNRYfnI8hk9dTbqEFHGfPMTZeiNDWePVMO3bWpV3AQgRN6dl21iJ0cMCLB0gcF3tmNbCyrGGi3cpBkJNfK959eLB2taDLfxCphdUtPGiugGrsF/S8pbVn78RzkXMh9SzQ0ddvH7BTsI4eb/koFiYZ0f2pmwQ8CtdHugk5BpWRZYFvdq6cHWMf6PjuqKqfRpQKohT0Ca0HPVERHw5fDQaBdbAAAwk6FBZA9Yo1lz5Rj/8IQmxl9AwCQs3obK1XJF4x1Y4IhLwBF8P3auQCJlRoXTrs+K71SPpbzQFpbJ1kAWClMabFyvObaBxEkQ/Yb62jq1myY9P6AWhGPh16HaR+S+1vXvCaNUEkAjnpuKIJjdnYWAMBOkz8oxC+RnJC/lEafludDZvWnMloL86CQg4IyN1+K7atDPWQ9mgQHBUBs09PeMwW2/jRYwxCJUuRFEKNKkiEql0QrodGi3kbng6uHnQOyGnus+Bp7Hxx57xPhV2cOAv3nERHsyxoybUJeC5h5XyhDsNNfTaBWm6ehWjhmZmbqJjFOVOM5BvhSeoIo/CwJ10FxWgzwDbZGd8+UpXuA2EnNqbAtGvyFjdjKmNobw4AZdGE9suHs3WI0GSs+q7oczVJgKyKksU5Hs3k1a+xW/tf/0iJyvr7dta4eK4fcDApX9JZu2g2RWDlcB/ZRVapdxOPhC6dGdGTMlS0clbW/Hwa2cMBpLjgqQScDFQLTmMoo8wWVihQB1tRU6IW+vBMLWH+uLhOEvtgNO0OIr+mPd5Bz+nzVe4NIoKi/BLZhNBCe/s1VfMODu12zANYW9GrVqK2bYmCof90j55cGnms78kH4gkYQY+ptGtofRJXOLoQSG2EXfaxQI5x63khXLCTtYupi6gSamurfVT24S8Vu/mVxodh34a0KoQSLtju+40Ak9RSs0Uo8hvVnJbQcWnfPlMQKIfHdZX0DACpWJoK6G1TwjHXjACFy0QQGx7cDiFod2yyItLECabNeLI3UiJXYt0NqNNYEyYQtT8/9aSGWxfJrwi93rh1mtfnWJTZQdoUM0LVdFsrxja0yXsr+vuFaOCwGj2ADt06ItGrkJaanwuvy1wSKxYAucrF7gV0HO7piNzT2TIkKjrvRFPoyGDTgbvsQrbrVNpYwr/zceLo3O/0jvCR8Flp6rMy7WRReFn6Gktb+KgCwuQ0etNp2l8h8+H2pmLha5HMoMRzpdHqvRX2zwFG0KZk6ZEQ6BYqVTX5EEFNpbZYOsiyQHaLJQAg8+e/0mUN1Zqa42wLH/u9FfQNEiS+BlbVhz+JgEwQQm9GlxxIzrGyE6c+N2Sq1AqNd8GinsucAhA/c+7VrB59jCyQTSppa13//5Y/h9P8XspVDZ3r+2mZkPcbalTDv/GbZuiFceY23LGs4LhUi6hw4OmAwzkAfXisEAY2lrokgZqa7qgrXC+S4ENPhp2Z66TG0QjBgFQDa1euC4KkU2I0mYLSXbo0GDTADEX8HUQQYAsDsoyXVRbY6MNq3q2+cVhcbBztLWoNHAWgrd+5Nhf+9U7vCkP3ADGxs6VnHIqaSjTo/Pw9rgFCHgXIR5ufn6ybTjIHTWjncE0sk4i0DOK357krR9kTIpv3g6Hyox6tFZxlz4RMu+/BpPQevDiKUmIwAMoW+DiYR1W4gZth53p+Rsm8+lTe0+LnV6wG4u8DD375s8Mm2IOu7yAR6Kv0GMz6CRX31RAaFAgls7Qynezr1dw9sGzMZVyfOoUOH+jp2hYHuzpXBOd5CcAiCtTjYAhmmOiRLdEyXtObnVCRxGONpKKv91I9OaxEFuisSzzyq9/gAVN+UmP6usADA51ciGWfkCAIgCFRQ+AFsVkcBQ+Sj2bHOnC5HjrZypRD2Cw00+RkNz9eIDidDeHon/O7VFUrShqchCv31z/8WLrxUQ5n2EGpyUCDBu1nwkDLYRKqP8ABhtQ0r4Cm1bi4sDJaWPJDgWFpSsQTsNr/xiKlwUhM5rBubZXWVnipmZwaP6SBSgakhsvuiSxG441nG/PAXNNfdMOgnCMCeDy6VILPZrpsi6oQ9D5Sf8NTkRiHRaPVod902i/WoHIOB2Cbh4vnZkCa6n6zvwpd60t5y35OBdyLEuhxh9FdhBu/sRhYgGiqWBXKab8jZVpaaoVo4OgkOSiQA24Y1O6ASlcHAooMsAepWRISQvWLNh79r2L7CBkcTnjB+WBZkSk8qXiMiwoJTI0EQlJtA1e/s2fcR7GQgtyMontcK34/cvUWehChF0NCNGVNnerjvtSoAVvtvs9+NKa+59kEUDoUcgzKo6NjcHpplYxCsdKoc39hcHLKtrv3FxcG69oYiOOC2MTEKAsIoTx5CLEdP2SLl7BXr8BKoj6qVYRf6CrsUbi26+6Zc+ZkiMGjH4E4QRVbKfCx3L/0g5Z7QaBW3IAMlPDY2hys8IoSiaPpVxsm2ue81KwLW+PsuSJ90cXJNX+bbWimlxa0CACxCruLc73e7tQtcXBtOzEYTerbQt7BsVBgLC0cdg54UzANZOfpqC08EEgLWocXeRIeGGhBrL78MuaOabnJ9trvulkhSCSMKFp1opNwTGYWiunl2GyDJrITH+gaC9Y3e3mtoC/noKtW1jh5eK3wgCPRdP5JJW9v6m37nWwjC7iLbC8zATgZcGLEGjr2sQV28dqQsHOwG4DZnOCXjsAbI3a3Sp5WD3MGtDdbiQtcZN9biYqiig6dSKKX1XLAsWGvflNiGABU0B9kJATkbQSlzAFRqs9sfV8qBoMp1Eo5QkLu7CDbL9Qc8f+ixHmFDkiPprWIVA0ydDeo3Be3cJLW0y1ZpeG9uK4FSoM9fe6EwrUV0OBRg47nT4W7ypOzOrcIMyuTAufALbUWJVSni2QIGgx3lJjpy5MhAYw2cpUJEKuCwUxO3RBwQA5rVmMF+77vlUIJXiSDmZ8NPm+2C3NXzyFw+novc0j0exPrWsKcRHqubo7WT6Rcp90SG56uHhpoWcncXwc4OZCYLzhf6LrvclpKnCrFFiCj4oCjHbBb82e407EaU1Lx/+jsutorRxECFzQt/8dvRD1oWGzI7msUtAXRllSfH7dxTzJGAYFiWhcOHDw80p4EEh+M41TQZjrXfxVI8BhGCpaFX0SFCDCQkISBmZ2DNzrT8MkUqpdJvxwDdXWHTTwskn9bv1+f0GPbDGQaeV32w71eFRhSw70Pmcuqxozrsykw2FJ83FwoTXRfFzgVwd8rqoJvU1wqdRErD+88+cESb6wMAtrwxuk6lbBnLQbtZYDsz0mIDQoDczhb5btZHjqt7xNLS0l518X6nNdC7AZw4caJuUpHQyw7TCbevBgkBSiQg5uaaWmzIDXc8uTSHizdrrC2hMXYjvs6gjW19A5TheDS1N8aKSixG7SOQ1ccw3ULslcDFIrhYhMxkEGxuVx9yJzO0eY0qVkmqImC1dFHYq2XflRbvSS0LrYIjq6GDLADEhIeH3z5YMOM+2ogNmc0dnMBxALJsTDh+/PjAxwpNcMguBIc4tDi4W6UMe8NNPSLbgr20COvwXnS3SNX0aAkJdm34mkqZs6Vv0SEZXRnoqBDrO6NzoykHeFYf5WJc1UclFqP2MYowAzKoPtgrVQNPK49Rxcp6kcRxAAB12xG2yyqj+/5f/llX/xNABY9eLIYf4CmIccWJ1dCPW9vQjQol4OLaaFs1ekSkUi3TYGupGBOOHTs2+JiDHqAnC4egcNwqZTqJDjGdDrdxWiPVLJZDgLBUadgwg5eEQGlGY68DjdaN5DmBhS8+qW+AMnJhNrrOsBHGbpAlqo994sLzwKWGR0SukWHQKECC9Y29QNTygzwfVCo/vGgCVIlZpchGQPJiCe52eazaKqMVGpu7oeF3jVVJa1Nqa4715P+5ItR5NyI1+XBjlg//aMi1j5hBfgAqeZBb25MRu1VLl6UWOEQLx8Bydk9wdOdDFYcPQT51ZtBh92DZtHY8NTZo0wjZFuzDIZv0ACDm4swr9AgOnoA29OMGEXXMdy+/EFRTnphX1ydaUPRDsFMfG0SZbPU+QK4DOtpdXQlOj1mgZKvKoo3io7EiaeN7e61YGhKSCUVpIybCPZ+fNXMen/rFw7j+d6Hu+yHd+zkzxu4TywLFYuDi/hpIIh7vOnszTAvHwILjkktUm2CO+2AwqIuz1pqe3nfD6Bf2fRXA2SA6yHXDL74VMblrFuFu6rkL5C4Lynba9lDBAvUYjC+KhPmHIgjii8cAS99dkh2rWhBNlAIlBJL9L1AkBBCihc/QHC554KeWu3qtNeBGwcm4dSmUweI0/LSe7zi+LeGlrb1qw60sGs1iN5qJj0ZY1fz49lOX4vmXPd3z/C5kp5H3Ov/t9+ZPoJAJfyPlXHThH52DtbYb3mZzdgq0Q2Of+loHUVcBpRUqvdJGQnAcO3YMRAS2y6mxfmcXBs1MAyEJDqC16Bh3di91EN8I3xLBBBSe6XW1o5EO9+5J2LaR/MZj2t3bvDALmdC3gHNttlEpAARpachnGB7BxcF9/7WuXbE2BTek5o+NuAD8f30VvJRmU8T9CTyc7D39sVhwuiogRufjmH1Kz99QOBRHaj3cwGNKJiZKcJBldWdpBcB2ANgBiKhqXBiEgQVHLBbD0tISLl68CI77oEwXMROCYB06hGA1vEAf9v1qYS5y7IF2opPO1nNk1xsA0U0V2QbYtULt8tsS0SAKJhDeyYTXvHCCGZVNh9zdBXZ3tR3fLlwJ6egVHKIIZLL6hLU8VEJhN4b46MYD18GWgJiegtzR971GBhFED0U4ZVJZqo8ePYp4CEI6lKuzonxkonszupZgzkol0hB9eMNi/Qcv11Yjo2Ii03JsSbj+7Y9pO34FOryIYErPTrIpwwoYC4LRzTAxRE7y1ntAgd7zIbbFiJ3Ut2EjW0JTaxXsXGrDOxZy23oirb2sdEKuW18zikTnQl81cHlNv/zyy0OZTyif4lVXXQUA4GQPfnvXgbUwH8bwVdj3AZbKZDTmcA8nRS/4SdIfHBZFEaYIBaUoBRBbpj6EoTndtjwIBanf2kWMnuO2eiWIaWqpQABruDdw3IWYnlKB32OMNdebGKsIjiuuCCd7KVTBIXsRHFAdVfvpxNoODoKxd6fIpTnoSoffvSroy03SLanvxCcvfcxgOGDYOUBmNdbkOFGAr6nwaHHO6TpGoRc4GY8s6FuHsOlHGHNSucZHSnBceeWVAJQaatfEbR8xF5QIXxyw74NltL0VwiRz1TRkhJumMLn0f/ce3d4rFI9Djls6o8EQEnPf0V+9N77BcDb0CQ6dZI5b2oLJKZHQbuUgS3RVkKtXRDrV0+sZjPRxFcszUi6Vyy67DJZlqSYvTm+7ZzE9FapJ0pqaUv72IBhr0aGD3FEC0uNfz4FiLmTSpJcaDib80OPDnkIoZC/3IcfM+83xLpqdDQDZthIbgkLtySWSyd7n7Ujs7OxACIHLLrssnHmEcZBYLLYXONqjWwW2Fe4XWDGllUXH0IL9+qR43THkF/QEKPlxBnXq6jsAl33EAm/rb9YWKZJhrU3Y32QIn5BaNowS048BckefsBfp7lLz+2H1pmm1tmiA5kOuaFo5rm1rEzP9hC5UkkCOHj2KWEhd0kNb2apulV4FBwBr6VA4F2yjqYsZ7HljJTqkTVqCqaRF2iLDKzg7pWjiN3SWq2+GsZQZOkAad737YAmrpP86szyApN6/S2rSM9LVWBCw0nIgRMjqLXukF8TUVF+xJ5xS9WWuvfba8OYS1oH6DRwFAC4UQ8kssWZnmx/fm9zW1d1SXAD46JiW6K2BYi684+FmNxkM4wT7Pma/8OiwpxEK2eeM6T1pMbx7EBE1j9mwrIHjRYgIlO6uSVsj3/sfng9gRAXH1VdfDWBPFfU8kel0WFNpyjjEc3A6idLseAZq2U/EYW1khz0Ng8EQIvGLFjgYz1TQ/KUh1+NogMKqKKuzjEMiruJO+uDUqVMAgOuvvz606YQmOJ7xjGcAKPdUsdTizqXexIdIasqTAgDfB/ujHUgqZ1Na4jf8OCF/VG+w6KH7Jfj8itYxDhzFUs/X0EHGVGQNn6mnGOzrK3pFgpG5RI97aPtKjYHlRKDUYJlyZAm9cRuWACV6EEVBAJS9AWwFOHfuHIARtXDMzs7i6NGjAAGyYuXosbw1JeJ9i46uonBlMJaBpIMiHUBMj79biYggLz8a6Zj22vDKGbPngYPRFcgjxzCva4quOzUAyK1tzH13MoKZ/YXxvDexbfWcalqhNhulLX3WEyEi0NwsuJf3S67eb2RKfSfHjh3DVA+l0DsRqnStmF76dasA/UXT9vS+EQ0k5akU1p6r162ki9S3E5i+IxqfsoxF63Ii0xa+HqF6MYhUfzfaiSbCPi7s+xA70TQUW7hzPFPQ2SKsv7j3JnRd0yr2otPberRq9BXHIQg8QHD9//e+nwAAXHfddX0foxmhXiEVt4pM7wkOzvUYFOTYkdzMRk50kJ4sEiZoLyImfNUS3DDBCIJIp9SOrtw111qYB4WULmcYXYTuS5uAQNM9SlfF5gqciEGkurfK68xGqRvj0EJvb5IMmd9bqx955BEAYyg4+oHisd5uZKK/Wh4jJzo0wBah8MzJaK1M0+GZ9gxdIgjk2BCJeNNrTKRToFgs9BYFhs5QrgAnN/4uNxELkLlijONvbLsrK0TfFUR7XNvCqBNy8uRJACMuOK699loIIQA3ADtlUzRLwO/9ZCLX7donKuKxviN9R6IMuhDIX6GnmIxu5I6D+YeKkYzlXbIYyTgGBbkORCymAs/aXF8inYKYmYaIx6NtZHbA8ZfPIXU2ms2EdSbCzswhIh3AO6I3W4UTsY6xFgOVK+/hfRSP99X4szY4nV0fFy5cgBCiakQIi1AFRyKRqDZ5kekSOF9QMRM9Bo8C6mYXiU90FMqgE2HnMj07xJ1r9P5dzpaF2F2PaB1jWNhbk2EZ6hWKxyAScVC884207n2pJEQqoQoNTWDlzU6QoEgDR6OCGJh6Uu8YnApQ6NEL0A3SJeSO6nf7UTrV0spRDRCNAErG+zoHa13iFQ/F1VdfjWTImaOhr+jPetazAAByqgiuBNwFQV9WDktzbY4qFdExgS4Wnjdplf1C+eLEnQ/tIMdWLhJ3gG6blgVyHVjTaVizeneWI0eEQaOThnAD+InxvdbYdfa5PnSnvTYiUsneslLKcDZX9385pSzWz3nOc0KZVy2hXyHPfe5zAexNGoC6afdjQbAsWHNduBrC2FUwDy2DZeWHLo10vDARXjQXk+4OjQcWQSogdDqtXCdh3RwtS12/C/PK4mHQAvkSvTTo7hsGWHOZc13kDgnkr9JgPmlD1YUSkdigeBw8lerPutGw3lXW7htuuCGUudWiTXBwyqsWAAPKPqJ+agoIartTolhMmX5DhH2/KkCiQEfvFADwk5r7IGRtXPGeB7WOUR3rmksiu3gnnnInSpFK7GWeaIRcB9bCvMpqcdwD6W7RBd/zHSRX9adu2wUgfZ/eOA7psp6sElLZeto5tKDqX/SZLtsOatMLhWwbmO1P1HM2B8i9dY4tWe2HNhYWjqWlJRw7dkwVAEuHFExIItoo+LKlI5JGZBrZeYYHEuP9NxjCgxxbPVwXlEpG5leuRUynYc3NgBzXiA9DPUtFlKaHPYn+oUJJuSL7dUf2O24svEBtmS4CpDrELi6GH6SvZW9ddatM1wuOvpuolWsARCo6iECOA2ges3TtUe1dXA0HG3JslWqeiKtHH50jw0ZMp5X4SKdUlWDjMjNopLBgQaYHK0XeDsoXwds7Kl4xQkQ6pVwp/eD5TdwpKuZPhzsF0CQ4brzxRgANcRyAKnUu+9xxW1bEgkMAlSIttq1NeGSOx4Axvdde/bHJrcJpbRfGuy29IOUySSWU23EEREZTHBuUiMOamlIVTHX2U4qAMLpejyruDkOcHc/02OKsQJAK/xqgkgdsboN3dsHMkbci4AH6uXCT9VhnwCig2cJhzUnIQn0ELOf7TzWkRGI4BYbKgXW6rR1hsn01IBJ6BYHznSe1Hr8CHTs8nJLmY+hSE4m4istIJquBm2MR++LYINdR4mNuDtbc3HgWExtCpkr8yw/CLug/V60SYOf0nkuFK4rwx0TTkOeDN7fBxdJQ3O9ifrZ/y6Dn72WRlmEhIebUczfddNOAs2uOliv66NGjOHToEFZXVyGSeQhZs2thVqqqn5ugIIiZacjtHaXORP/Nc9pCpPKZm4wP11HBr2GYzlxHWzCTdHlyrNS2ZUzujdRcP2RZvXWFHHXKf5uYKTv0JSPY2tr7/RgKQZ3IQqH8mYz/NSIcqWkbDLBTbrA36PnDDL641jo5yPO1xHGQ61TrZYjZGZWK2yfNBJKcLiIIAhw9ehTHjx/v+9jt0PLVEhGe//znAwDk9P5eKoNYOQB1Ixrq7qea8jTYx5e54Si89PjfJAzRQJaoPqqWjHRqssRGMwTBmp+rPiql1FWNg8l1YRjCZf1ZcXCi/wBLCqSyfK5thDirHudAatPN8QECRYMAXNif0CFn1HM333xz/8fugDb73wtf+EIAQDDTQlz0UQisFp25/V2JGUuonXcIwiNsSlMEjun1JSbvS6iy9QZ9CFVEq/pIJauPYWSYjArVUuoz07Cm00qAxHrsv2ToCyej0uF1UpjnaNJYu4UZlCuAd3Yh1zc7xmlwxYqvA9dRpdQHoNGVUiEKwaHtzHnBC14AIgInPbDtgfwa8w8zuOSBBmifq4LiNAWY9ZJmZJXFRkD9FzgLmeI8Q6T1tni85NYLkQRIiXQKQfIA9eco1leGDbvGzMRhNbhVayweXCg03clNIjP3r2H9RUvavSqJNUbuqA1O6YsPkycKwLlENAXNOkC7WXAglduqF1gCCHlTQARKJQf7WCQ37ezNTgBOlEBEeN7znjfICG3RJjhmZ2dx7bXX4tSpU/BjO3D8hkpvLIGSp2Ii+mSkIu8rwsPHSIiOiSERh3QndzfPuYYbmRzjrpkjQG3sFcVcIL33ebIfQG5tD2Na2gkeeRx40dKwpzFZ7GQgcyPUT4nEQHEbQOtwBjmrhPk111yD2dnZgcZoh1ZfQMWtItPZ/b+MsJJnL9CgaXm21ZWIKl11BNkjk7uQGhoIJDib2/eADOofhvCwhLoWyw9KxmEdWap/LJkOxAeJlRfPdgxAp1wBuLgGHkBscCD1uVUGoJVV+uVvfgEAve4UQKOFA1BulY9+9KMIpvLgiwxqsPex501ujwzXUSdci065bAstJc2lRWBL74kuMw4okKNg8dSCtV0AdWuKb3ZTkRLcqwnWEA6dMuAafycsWMcO7z/MxdWmb+/GjUiOC/Ymt2mi8IBAc1JMEANsDcYF6eyfNFW+UylVjEZYg+lwqwyAzDTZ+ANgMO666y4Aas3WiVbB8exnPxvJZBK5XA4yXoBV2F+khEuTe2FW02gBlUobQYxHaRaQx/Uudld9wodcXdc6xsjQboEJgsk+f8cQzudVUO2AiMOH9j8pub1LJghaBuRNEnMngZU5B2JKX5xY9tkFzHxTb/YVlcsb8E5GlVmYZPKFlhYXnvKwubmJVCqlrcJoBa2Cw7Zt3HTTTfiXf/kXyORuU8ExUuhsJVwTXMrJOAoLIxR/MqKQ60Cm9dx0KJAQ+eY3TCoUVXwRJlwQG3pDkCq21IqSVz1fyHWbZ68FAfwLF7VMb+bxHLavHu9KrVGQv2IOyQfOgv1AryVScrgGDpagktdzHAd5PmSbulHBrDIlvfCFL4Tj6F2XtBezeOlLX4p/+Zd/gT+dgbMx2kFNpPnDBgBYApyMIXAJ7k5/xrvS9IS6oRog14U/1YXgYIa9mev8uloCCSq2EBPFUv99fwwHl3L6MgAES7NNUzuJASvdmyigbB7++QsdX2fd9yhw9XN7Ova4IjyG1WcCUn7RRryFeyFMmBnUb5HL5gdUWWy9Bo56fttClZe9bBGnT+/gpS996YAT7Ix2wfE93/M9EEJAJoqQtgfhm509pGxZipiYweW4lsrPVBNcy0QQfmuhwiSQ39SbRpo5RkjffI3WMQBAFAPYF7vLKqADYMo2jD9MQDCf7uk9NJOEWJjt/EIBzDzao/Duk9UXxmFZ+tzDAQTc7db3OWIG9Tm88CY1+mw/VPLAxdbKTLo+Tp8+AyEEXvSiF2mfj3bBMTs7i2c/+9l44IEHECS3IXYOdlQ4uw6yV6iSzbXi4v9v773jHLnr+//nZ2ZUt/e96itu5244d5+NMTZnG4OptgPmi3Ew2ICBGMKPluAQIAESDHzBX0oCJCRf4EsSQsehN2NcAPtsXO/sO1/du63qM/P5/P4YSavVSlpJq5G0u5/n46HHSlM/qxnNvOZd8/MLPufERvEyRol7q1AKO2owfbRCOP5ZQLp2GYSmHJyo/8FQltJCQqNRpoGKLhxhLhSYZdyEjeaYf5E8/qYAVtCf36dpuRw612X0l42PrJeWIHXe8YR//UjDt912yMrZoLInBnjxlj09Pb4PpyklMrdt2waA2+u/GatumpQto0JBVNbEVigkRJmTolhslN1udjm/W90LWX6sGo1mZWBkmpDCbfh0nRFetooIL++WACJjoxKJium5csQzEzXDnQJNEhznn38+ADKaQBntWWtABAKzgZ2+7UQQP7p77qTszbucsCh1cy+eJpTSIkDTPFy3Mc0LNZoWkekysI9f6/t+Wpb9ohQqG6eiMpmS6dzKcJBRzwV37rnnNmVYTREca9asYdOmTSDA7Zhuxi7bmuKYjErzS1FqnWotIUsGCYGJNqryp8kLDWU7qFTaKxvehsWNVjLKXGbXAU1diOTCEbVuTwKEYv369axfv74Jo2qS4IBZK4cTXZ6lhashvcGLXykWB4UWiuJA0eKg0WJrRj7GQ8DkMf4ezuCkQfRgc55shVQYk7Gm7GsOrlz+Ofm1IhXYDsqV+Scl5UpUxkYlk6ikLnJWjDHVnODNQpSgqY0kR77vb3C60eEwebR//09qKIgYLVFvZYkjEqmF032VRI548T7Pfe5zm1aAs2ln5wUXXACANeq2rVvFb+xOq6wlIh+DIebHd1Ryt8wGlkKmx9+iYkYGAoll3iemTUvutwypUI7jdcAsgXKlZ/GIN/8G286IEg2ylhvdT/obk2daLna3f9cbJyxQ0eXXHLFUc7ZipHAxBryyABdddJHfQ8rje5ZKjmOOOYZ169axZ88eLHGQIKubtevq8PvJoEw78bmiYW46bKnlSgmRZedO0bQFxReuXpnkMvsxTnb2E5EZkgT4ozHCD4xNTLoR1HQMEQzoDreaJYOyDAwhygrqJYVSiFgCtVBPJiWR/Qkcx2HDhg1s3LixOeOjiYJDCMHFF1/Ml770JeRgCvwptlcXIhDwmq75SPLowTl1/IsFRCWxUbyORuMbWYtGIUHlcFPqbi6xnyDA3CfOZ7sHuM59kDuNTXzGfDZ2xhMqIhxCmEZZoa3RtANTx3XRP96HOjzu2z5Uxm5KZ3ORKlGwsExarBz0Yjyaad2AJrpUwPMVAYghB+muTL/vQlknhcKjkGLrRjGJ4aYeSs1yw3W9OI0SYuNvE//D5fZj88RGjgCSK+QTfMj5KUHlra9SaWQ8uWCVQ42mEm6nJL1CKisvBuHK0o1CS/T3kcLFGPZ+k8tacGzYsIGjjz4a13VxohPN3HVLkX1dXt53gYWi2hiNaqYBzGzE1+6NmmVKTmi4sqRZ+abU3ZzqHliwg6YCTlWHuMm9f850mUwhkykvo0ULD02NBHpTJIf9vbClNg0irKYZ+xuPUpBIVt2OQfZ57pSNGzeyYcMGf8dWRNMfiy+++GIA3P7EioludzqDuEGjooWiWotGq1wqZlLQs7N5AaORPTp92lcWEBoAfTLBJfYTwMJaNjf/UrmTXlWUziwVKmN7wkMHl/pOs1JjhS3p+WFHU/blJ4mRgNe40yd8zYRRCmbiVYsN5djIYc+dkvM4NJOmC47cP6l6Mkhj5XbiLJnaWmaZ4rTZctvxE+FCMNakJ1TlpXZpfCB7868kNHJstx8v60YpRwDJdrmz/L5diYzFtfDwCSVoWtVkoRSd+5Z/Nk69GIP9cNQa/zNhakjjVwEH1efddy+55BK/RlSWpguOVatWceKJJ4IAp3tq+Vs5DAPM+XEZ1bhUFrJw6OqimmpRGdt71XBxOtlZuENpKU6VC0SE54THdAw5HfPiPHQBMU0LaXRmldHfi+zpAMvHW6xSMFnZElz4UKHsDO5wCqUUp556KqtXNz9TtCWRhs9//vMBkCMppNvii40Qvj4RuANdpPu8COVq3CGlLBgLuVe08NDMQ6rZgl111oSI0Jz1ZDKFjMVnS6Zr8aFpMuPnN6bMuYhGMHp7kH1dBRMFItjYImnClTAVq1wzyHW92CkAJVEo1lzQD8D27dsbOp5qaYnguPjiiwkGg6gOBxmItzaYTBjgc8pSLUGhtcRo5MRIfMRE+dXoSLO0kMq70DhOxYJd1ZCkvt9FvevJeBIZT3rVSzO2Fh4aANIDEjva/hHxRk83atUgcqB73jw50NvYnSVTsFC9jQKU66I6HXbv3k0oFOI5z3lOY8dTJS0RHF1dXfnKo+5IErlAR7vlQqnA0IUar1WK7cjNi6/xv0uspo3JWjJyaa2lGjXVw4PWaF3r/dEYWdR+lSu9Xi3pNCqX4aJZsVgjCezO9hUcRncXYqS00GgoQkA4hLAdlFOb2EAprni/d8+94IIL6OhoTbBvy4o3XHHFFQDIoRRSLs/AIxUNkxqJLNgRtlRV0YrbbXKminBhYMfyF4RLjkKRoVTDqyX+IHAMdo2XCBuDHxibGrJ/ZTveK2Oj4gkv0NTWfW7aidB4mo5fdbZ6GA0hfc5xNS0vggHEulXIgW5UZ8T/YF1hgBCoeLIm6wZKooTixz/+MdA6dwq0UHCcfvrpjI6OgqWQAynciWVYl8MwkIHKBbvKlTCvJDqaHrOhRPMyVIAFiz74hVSodJs/TeeyTDK2LyKjkAkjyv8EjgYWPiS5+Xcam5gUkYaPJdc4LhfvIWP+9vFYNEphjreg+WCTEbZLaHIZ9FcSYHdWZyYWQiBMA7V2BBW0mtcwT7qomVjVYkPGk3nrhuxPMzMzw9DQEM961rN8Hmh5WiY4DMPgsssuA8Ad8TJV3PEaRYfrtn2WS63WiGr6oyz3TJXo44db10Ct3b7PbPBnPVkmjeCO8Fn80Rytqg7HH8UwnzGf7f+gst9JLstFpdKzQbJthGjReJQhdJt6HxCmgQgGUOtXozasaVr6MeCd77F49dcnqUDJvDhxV3m1cbZv347ZwnYDLa2HnTPtqN4MKpRVbTWaTJXtzF5wlgC1VA+ttNxCbhrN0kUEg14hopy7pMkio5CMsHhv9BK+Gzi2rHvFxuC7xtG827oIWzT/YqYy9qzVo4XflWb5IiwLhgZQ60b9TXUthet6cY41orL3RBl2UL0ZhBBceeWVjR5dTbS0nuuqVavYunUr9957L+5oAuvpLmQigdFTW/CNytiIgAW0UeSkYWAPRudNLrZOLNQjpdy6OZKDBm5jM640zcayvAaCWVQkhEhlkIlkhZWaR0ZYfDJyHv8Sehbb7cc4pVS3WB/cKPUgkynMGq8fmvYnvlYSmhCYtn8PltISiPWrUbv3zZlu9PeiggFUR9i3fVci/0BtVP9wqTKZvHVDZq0b55xzjhfG0EJaXkD+qquuygqOJObuznzucK2FWFQqjeiYf4NvFco0SPcF5sVkFBf8KtWevqrtZ5dNDQhkaBn4UFcYorNj1iRrGCiz/ZvvTRoRvho6la8GTq67todGUw/G2gTyTx2YPp520oLk2i7Cu7P7HOxHBSyk35VCK5CL1aqVnEVEGQp32BMcL3rRixo6tnpoueA499xzGR4e5tChQ8jBFOZYpK66HMqVqFgco7O9avuXi8koFiCl2tOXc5voNvVLEMuaI4iXgsDQaFYiRncXqrcLaRnNjdMoxnayloo6rDrZe4ccSEFAMTIywplnntngAdZOy696lmXxwhe+EIBjX+xVe1NOnS2tc4E1bYCwHTr/NI5hKwx7fq2Napqz5ZYpFbvRTFb9RltQqiJXtTb7El2d0Nfjvbo7UaaRf2k0y4Xeh2YI3bt0U2OFC4YDVlIR2TmOHOpFBczWig3XRSZTc8SGqNb1XmB9PP6l6wG48sorWxosmqPlFg6AF7zgBXzpS1/i4YcfJtDRjxH3fLFGNFrZb2WaGJGwd2BySIWKJxCRSE0+Lz8Q0zE67/NS4+xNozgdFk50ftfYWiwWrbBstCravq0RAop/wF0dcy5S+lvTrASEUogl+ExiOGCmJZ1PTCFiWRdEoA1uia6LjM+P36oqZMB2kDHvniOjNjt27MA0zXzdq1bTBt8u9Pf385znPIcf/ehHuKsTGI/3eDOUpJ5AUOVKSKcRoVDLRUeOwM4DBIDMZi9ox41a2B3e/7ZQ23rtPmkDDBNhFZyLhoGKtiaITKPR1E/ksJfJFJhMYx2cbO1girGduQ/QtSDn1uVxV3siatu2bQwMDDRidIumLQQHwItf/GJ+9KMfIYdSqF1dCDzhIGD+k2QVqGx6bctER5ny0sEnvQ6cqjNKsDtCajSKGyxvYq8U+7Eca3C0AyIQgEBRPxDTaI+nH41GUxeRQzZWwiGwb6JsPQvhSrBdz6XSZLxaO5n6Vs72UMpvKyCx1ksyGXj5y1/eoBEunra5gp500kkcc8wxPP7447ijScReE2GaKEDU6XtStgNStiZ7ZYEYFBFLYMYSRKeTYJmooEVsk5fOV8mqUTg9MWSS7tWio15UNIzsmI1AF47EMI0lkzXSKkTA0lkqVSLsuQ8eKqDPq3o5stVl5FcGooZLnplWdD3htXAX8RRioTpPUoLjQrMFx2ICRLMopbwUWqVwRxO4mQxbtmzhpJNOauBAF0fbCA4hBC9/+cv50Ic+hLs6gbm3QCTYDtT5dNmu2Ss5cr5DYRh0T80GvMa3jCBD5TNYANzQ8kuJjTwTQ9TQmAioGNylggGcgTIBbWLuusKS2XoumlIIy/KshTqmp2rmWSHt8r/XhooRw0BJuaysoIHeNFCh3kv2X+16Kol1JFtWXilEu4tj20GmF1G8Uqp8cUDluiih6Do1wOQkvOIVr6g62LQZtNXV9eKLL+bzn/88Y2NjyOEU5lQETBOllKdMS90MAhbCDVR+4spmrywYhNpKpIT0rDmt4w97AM/1kji20P+mFuzPspQRjvTMnUJU3aPAHu1pbUT5CiAvNjSLomKPpEx5oa3M6n8PSniv5Xy0hAuGO/tdmmlF54MHZhdYCkIrW368mpiNSg/M+UrE0hOzb/3v1/CRj3yE4eFhLrzwwoYMtVG0leAIBAK87GUv44477sBdE8c4GPZSeRrRHCcrOkTAaqtg0oUQsQQd988ta5vasgYEmP0GZnr+/yFNUFZrf3DSEjiR2o9bOBLAsINgGjj97WmVWikIIbzfSRuk0610hKuqKhWghEBk+6gk13bghGu7zhkudO6cqWuMjcS1559zSglC0xKU16U2sHe8BSNrEGUyUWqmwCqiMjZKOvy///f/AHjpS1+KZbXVLb69BAd4+cJf/vKXSZBA9mUwsw/9Fa0cNaBsx6uRUGMl03Yi/Ke9AChzLen++XXN3RC4jUqgEJAcMGtOe3NDkOqvXdQFYlFCobY7LVcUWmgsXYRS4Hg3oT2XCiKrF+5Yq5RAZAMj7IxF7Je9Ne83sUqhbBPpNMYtJOLW/LxyBZ07DuSf5JcsuRobi6XAlZJD9WbYtesQkUiEF7zgBYvfR4Npuyt7Z2cnV155JV/72tdw18ax/tTh1dSggaIjY3u+vcjyTGs005S0fNSDtCAx0pBNadocLTSWP4XiIkfhZyvgkrl4asF1iqeFgMR4FJHSQbEVWWy8Rg7X9co/FH52bJw1njX8iiuuoKura3H78IG2PDte9rKXYZomqsfGDc81O5WqKy+CQUSNWQXKdlDx2jvwtQtyqJeJY3TXNk1jEJblCXktNpYVShWl1WdFQvH04vnVbKvSdnxBwO6Xr2ne/hqN69YlNoxIeH4IQNE2lOsiOzKovgymabZVKmwhbSk4RkZGeN7zngeAuzY+z4Q2L0C0zngM5UpUHW1/2wEVtHDap1edZokiLAsRDCyZmCZNbZQTEJWERbllS4mVWrbTCFIDSyAYtBilEFLOK1VeNcW/Tdct+eDtrvPcZ5deeimrVq2qZ6S+05aCA+Daa68FQA1lcNTUvPmNqgOgMjby4Bgq0QCfmkazRBCmoYXGCiAnDqq1RFRaPjdNCFXSxaKZj7BdeHQX8vGnGpNOXuxKyU5zrRhyIIMQgle96lWL349PtK3g2LRpExdccAFKKdx1ZRqyLVTEpQZUKuUVTdFolilCiFmhoV0nK4Ji60SOcoJCCFUyZqPUNqqdt1IRaRu1e998gbAIym3LXedZ6i+66CLWrVvXsP01mrYVHACvec1rAFDDaaQ53/WhlMqrRhEMLvppTSWSqIQWHprlRU5o6BgNTY5KgmIh8aCtGZURtotxZBr2Hlz0vUQELBDZ23SptGgpcY04asjbz3XXXbeo/flNWwuOo48+mm3btqGUwh6ZKLmMchxPdDSoQqRKpfLCQ6NZygjL0sGgmgWpVUBoa0YFpIR9h3APHGpI6mu+4J7tlLVuOKtnUEpx3nnnsXnz5kXv00/aWnAAvPrVrwZADiZxjdKulbzoaCBt7WKJhDl4VnerR6FpU+YEguoYDc0ClBMQSomyYqRVVg43rNj7wvZ1GbBrLzJWJgSgXmynZJAogOtOI1Z5xara3boBS0BwHHfccZx77rkgwFk1P3g0R3EBlEagEknk+KTXzKeNUIbQGSqaeehAUE0xxaKhWCiUExW5OI5KWS61BqQ2BENhl2mN1DKUQuw5gPrTkw1/SFVOebEBcNF7no3rupx55pmccMIJDd23H7S94IDZWA45kEAGypupjGh9d2EvFqR8YI+cnvFERwODfzSaxSKE8F7BgA4E1ZSlUDSUKvq1UIBoOVFSbczHskUpRNpG7DuMnI413MouggHPpVIGGUhy5513AvC6172uofv2iyUhOI4//njOOeecrJWjdCwHeGpQBAO170CqBZv9yOkZ1PSM12BNCw9NCxFCzMZm6O62mgpUIwZKWT2Kt7FQwbCVhjGdwDgyjXziaeRkecv7olCqonXjzNdvQinFhRdeyHHHHefPGBrMkhAcADfeeCNCCNy+ODJUvumNCIe8ymw+oJRCxhNehdIVIDrUkjk7lj/CNLxXTmhot4mmQVQqdb7QsoWYUWcJ3VHqxzgyjbt3P+7BMd/2IRYI9HYDM/zyl79ECMENN9zg2zgazZI5PTZv3pyvPmqvqdAl0HYQ0YhvogOyfrVYDDW9cGOkJU2T72nRA4pArPGxOEuVnCVDWNmLj2lqoaGpmrU/UqTTdVh8C6jFohEKZ1DG8nWvGFNxxJ4DuIfGGu4+KWQhsQHgrPM6+l566aVs2LDBt7E0miUjOABuuOEGLMtCdiVxOyuUJBcCEY342hFWudITHhNTy194NIlAUmHYy99yVBGlYHIGlUzOWjK0yKgJFU94rs8VTsfTMZRb/txZyJUC9blklhsi48DjTyP3H/QlVmPOvqqIxZLdGWRXAsuyuP76630bix8sKcGxevVqXvSiFwGw6Ypu1Lz+xVmUAiEwOjuqj+mos+WxUipr8Yj7eiJqlinKix8SsQSMT8LEFEh3wZgiTQWUQtk2KhbXv8sSLBQEWrjcQtsoV5V0WSAlwnaRTz6NytgNrRhaChGwwKh8S1YojrnSK4nwghe8gNWrV/s6pkazpAQHeHU5IpEIjzzyCLKvdPVRlZrNZDG6u6oSHcqVpSu5VYnK2MjJKS8tqs3SaDXtg3AlwnG9V8b2BMbEFCqjn8j9QiUSnvhIpLzYq9xrBVHccK2aQNBqYjmWo9gQtoNIpL2aGo/taopgrcaNgpTIvgQ7duwgHA7na1QtJZac4Ojr6+Pqq68GwF41Xt7KUYDR3eWre6UQlUh6abSGsaBa1awcRCqDSGUgkURlM55UowsEaSojXVQymX+RsVdMuvti+qDUI0iWLOkManwCuWtP0wo/ViU2ACUkA2d576+99loGBwd9HlnjWZJ3xGuuuYa+vj5UII07WiJ+QipUkZXB6Ij6Gkg6D8vMvhY2k2mWH95TUsp7xRLeU3YigbIb0+VYs3hUJpOtKJzyYj5yrxVOqbTYWpZfiqhEChVPeFmIDepEXg3Vig0AZ3CK/fv3Mzg4yDXXXOPzyPxhSd4Jo9Eof/7nfw6APXQYIsXBT8rzgxfShEDSkhhiVnhUKOKiWfqImThMx2A6hoon8zcz7S5pc3IxH7lXIpV/rRT3aGFcR62t55espSNjo6a9bEOVSqGaLDZrKdYnZZLQcd74Xve61xGJRPwcmm8sScEBcPnll3P00UeD4WIPHaluJSEwOqJlYzqU7dQdPLoguWyDYEALj2WCsJ18DAYTU571wnG8V7HgXUbIRIUMseWAdPMvlU6jsrV3lntDx0plzKFyb5UlhVSoiSlkLO4F/PvQFmMhvBYE1d9+L7vtDOLxOMceeyzPf/7zfRyZvyxZwWGaJrfccgsATu84qnuuUFAZu7T5WoiqA0kXRSW/cE541HjSaZqLcOXcVy6TJPtSM7F8lsmyzyqRyjM5+5wW2HYUHl/p5jNf8hkwrvS+j9xrCVBr+muh5aOa5doSqVDTMeT4pBfcX+73KqV/D51ZqslGKRyPa8T59re/DcAb3/hGjCV8z1i6IwdOO+00LrzwQhCQWTUGoSIRUeFG4LfoUNMz1S1ombPCYwmfSMsBaRle7EX2paZnUFPTs6+V6BqRCtxssOUKCK6sFZVMzsbnJBKzrQ9c78Ylg+3X32Yhl0mtMRy1Ltc0HNdzmyRSnsioxpKhlK/neS0xG0iJdGycdRO4rsu2bds4/fTTfRtbM1jytv2bbrqJu+66iwwzyIEMxr6CzogZGywLIUorb6Or0wsSKoxGdt3W3Pit7EkojVmRtIg0XU1llCVwQ/N/+GpGF3HLoTI2SNnUILqljrJtyFpWRSRCpi+ElSj4HSuFFWsv4bpQafPiWhttXXvDcfPCQiXKt8BoBTWJDQClkD0JZG+KQCDAG97wBv8G1ySWvOBYvXo1V199Nf/6r/9KpvcZItPHoGJV+lqzMR1KCGTSW0e5EuGzt6UihiBfU7xQKDXB1LccUZbAjpY4zQ1wg3OFZSCuBR5khYbrejFNmkWhLIHdXXD+KUpaPYRUBCb9ixEpJRKqFQ7lBEm7CA8VT8x5SGtHS1zNYkNKpLJxNniN4a655hrWrVvn0+iax5IXHACvfOUr+f73v8/hw4exB48QVEPIeDawLZmCaGTuzbuQbPaKEQqh4vH2usgWlrQ2TKD9zLPtgrIEma4SSlGAtLI+aKVQJc6DctNXHLbjpYq24QV72SDAjZS2oLqh6LxphqMIHln8k3opkVCLcMgtU2r93PymkrG9WirQ1uerCFjevacWq7n02mY4a6ZQQYfR0VGuu+46/wbZRJaF4IhGo9xyyy381V/9FQweRiYGECqCSiRRSi3cg0wIhGUiuru8VsNStn08Rf8js8Joer2FW1BiRBUYSZYaFa9bQpAeqGx+KhYOoiCGp5yoUELMWW7FIZWXebJEgh6XK8qaf366liC5uqPk8lbSxZpcuDhVJetGLVaOwmWLU2gbbekQztzvYuRuiB7wXFFWPIFcAkXzarZqZFEZGxm2EeuT4MAtt9xCONzEGlI+siwEB8CFF17IWWedxd13343b9zTh+AaEEPmW8kZn6R/tHITA6OtFTk03ZlCuBNMf4SIKbg49T831sSf7LdJ9pW+uMtC8tvPKBFXDGZbpEphDc+uk1Gp9yAmH3DqF6+a2VWqbK87CkT1/lpvQKBevtaQp8y85URMnOt8qUohSLo5T/Q/esuSC6bHF77391O5eseIGoowXc/2dKYRTZhx2+7s+6xUbSIlCcdL1q7n//gOcc845nHfeeY0fYItYNoJDCMHb3vY2Xv3qV5NhBrcvhkWXV0q6xqdXo7vLK09eqymsAKUUxBOI7s661l8MkXGHyHjpeYkhC7fK2mfJIYHTUf/NyOmQ0F29i8qKhYgc9t7nREGhQKhGfJQSGMXzVpy4KMb2ag+0lfuwQYiOyjfgFcdEEDtU/WVedtmwCGtFeL+FWWVF8MEHbILTbRSQLGVjfhOGqF9sZGxkf5L777+fYDDIW97ylmUlopeN4AAvgPQ1r3kNn/vc50j37sFMnoQg4hXtsW1EoPpoUGFZyHQascxKk0fHqv9BxdZZOKtaE1Ffi1CoRogUWz5WIjrrRLMQ7sziIubX3mcTnFzZ55eoR2y4Lsp1Uaak+2w4cgRe9apXLblusAuxfO6kWa6++mqOOuooMB0yvXshFPTcKbVcZIWAUCjbk8XH6qOaklSKp8jNK/5barli0bJSxYbK2KhkCpVKa7Gh0fhJPdaNrNhAKi55/+kcOXKEtWvXcu211/ozxhay7ARHIBDg1ltvBcDpHMMNzkAwgOjqrK/7X1Z0rMiiTy2klKAoFBGFfysJiRUdDOq6XvnmVHpZuk80miVPzo0jFW53iu985zsAvPOd7yQUanLfryaw7AQHeBVIL7/8cgDS/U+hREHWSS03oFxaarZsscpkarJ2KMfxcsQ1NVGte6TS/HJBo6XWXVaiRCpkLI6cjiHjyWUVEKrR+ElLrH85V68hcTZ6gXdXXXUVp556avPH0gSWpeAAr+b84OAgKpAm070XDK/eRrU528IyMYojwAtdLNrN0hTKxXJUEgnlUmNLWUOWRQ0O182WH0956YJaZGg0LUEEg9UvXFBcz1k7hQq7DA8P8/rXv96n0bWeZSs4urq6eMc73gGA7B3DDcbAMhffnl6qfCXGVokOIRWB2Mo1kReLhIUsFJUExZIWG7bjRbXHk8h4UrtNNMsfpTCml4HVuEBsyI40ao33P9166610dFRRwmGJsmwFB8A555zD85//fKSUnmsFmW0TX+W/bVlePnUJlCs90VGqI63fuC6Bw8vgR1eCarJJGlVDY0m6UlzXi8lIpZHZQFCNZqUgpEKOHWn1MEoiqq25VCA2lFDYm8aRUnLppZdyzjnn+DjC1rOsBQfAm9/8Zvr7+1GBFHbPPm+iVV0UsbBMLy22DMqV3iuTKS88MnZtGTIrnIUCQGsVCYXBp8XrLjXrhoonPJGRsXW2iUbTQBqSFFBNdkpRjyJnzRQq6tDb28ub3/zmxY+hzVn2gqO7u5u3v/3tANhdBzzXClRt5RDRSFkrRx6pZi0eRSilagtU1ZQVFeUyUhaK5ygsIrZkyMWrpNJeEGgs7p1jOj5Do2k8i/xdiUAV9ZqKxIbsTKPWeSXab731Vnp6ehY1hqXAshccAOeffz7Pe97zQOSyVtyqrRxlm76VQNmOZ+LWQaWLolI/lGqmL7S9tsUwwTC9wLPhAUQwmC3WpbTQ0GiWMkVVTJUhGbzEQkrJ9u3bufDCC1s4uOaxIgQHwFvf+tZs1kqKTO8z3sRqrRwV3CqlyJu8s6LDy2xp8A3DcTHS/oqa4JRAOa25WdfiOlkygqIUWYEhgkHo74HhflR/T01CV6NpBwITZtn+J43CiPlQD2mxD4eGqPx7dd15LtBLbjudffv2MTIywi233LK4/S8hVozg6O7u5t3vfjfgFQRzwpPVx3J0ROe2iq8S5Tj5dMVGWzxEKk1wItXQbRYz8LCNiLem+n1ORBT2USm3TC20S6CoiEa9V2cU1d/jiYxqrW4aTRvSv6MJ2XNP7234JpWzuDEL0yz/8FrkRgFwe5N85zvfQQjBe97zHjo7m99vq1WsGMEBsHXrVq6++mrAc61Iw666DG1V3WaLkcpzsyzl8ugNbjtd3S7nt5Qv5WYpfFVLKfFSTzBqPYhgENHTjejpRnVFvVe0qO20jvnRaJqGsKz6ep/kqGTdKCE2lOVib/IKfF199dWcdtpp9e97CbKiBAfA6173Oo4++miv10r/LlSVD8m1NH6bh1Rey3vth6+KQutGMTlxkAsCLQ4GraaSaPH2fQ0o7euBgT4Y6EN1d6IiIVSkqBZMKZGhRYdG4xtCeIUgUdLrY7KI7ZS0bpQSG3gpsAQkGzdu5IYbbqh7v0uVFSc4gsEg73vf+wgGg7iRaZzuMag2RqMOt0oO34oyLdP7UrniXguJg0IxUVzTo1KK7OIHLPIvEQ7D8ID3CgY8V0nAguI8/dz/IUo8JbVjDIchwBAY/b0LZ25pNI2mQb9ZoyPqZR8ahj8B2SXEBoA7EkP2pQgEArzvfe9blr1SFmLFCQ6AjRs3ctNNNwGQ6X0GGUguvJIQGL2LTFtapK+wGPPwNMGp5VmPodj1UUp8lHKN5P7mhEkl98xCJdIrIoQnVHOvgb68yFA9nd58w5grJgpFROH73Bhyf9tNbBgCYRoYvT2Y/X3eNNOr2itMY1FCXKOpFuvRPXWtJ4TIWzSMzo7Z36RSXtmCejEEFFu+i7JR8pM7MnC0V5Lh5ptv9qzsK5AVKTgAXvKSl3DWWWeBUKSGdqICC180hRCLerJzD4/Xve5Ko1KPk2LBUGzJKNV/pdI2qh5TIIAIh71XJAKDfbMvy5xj5ahJNFSydLQSQyDCIYzODoy+Xu+JsJhAwItN0cJD02YI00AEA4iOqPcqOn9VOrOoSr2i+LdaIhsFQJmSwUtNHMdh27ZtvOQlL6l7n0udFSs4chHCQ0NDqECK9MBu1EIXzJzfbwXR9aSJks25kaSGFXZ0YSFQbLWoVjTU2ilWRKOIrs78S3V3ono6Ub1dqO4yQcT1PjG1YcyGEY1idHZU15AqEPDSx7XoaBumNgTAas55FTpoEZ6sPxaiUeRFRjCAiERqa6ZWKznrRrbFRSnLhkJx7juOZd++fYyOjvL//X//33yhsoJYsYIDoLe3l/e///2YponbMY7TvbAFQljWohrAqanputdtBX1P2NCkBBt3OIPdUfrHWM69UgvFLpQ5bewNOHxy0AvyzL5UVxTVEcm/CFh5U2xZgZCbXyttdBEyOiIYPV21n+eG4f0+Alp4AMiBbvZua12sS3ytQpnNERyRQxCcbK17V4TDEArN1rWpgJISlV6EdSNn6XZdlOuW7ULuDsX56U9/imma/PVf/zVdXV1173M5sOIjv04++WRuvPFG7rjjDtToftxECDMTLb+C8PzZ9f6MVSqNaGAFW+vgFG64Hze8fLVjPS3kyzWBy31O9htMnjD3KBppBaEqnogWGks94kGp0nEdTUSEQ14w3WJcO1mzde4pbiX3fJEhi5PPfYKDp83eZGKpEH2fXzl1FxpFYO84ssS5JMJhz/VX6zmbLVlQN6ZZNl4jv4tIBuP4OGTgxhtv5MQTT6x/f8uEFS84AK655hr++Mc/8pvf/Iahs+JM/jqEkOVzs0UkgnBl/f4/qRr2BChsZ9llqhQLjGrERj5Q1PCsFTB3nYnjTFKrZk2+Srjz7HtG2qwcuFksCoqnFb8vtZ1S2yhertwyfpC9WBu9Da5umhMewYAXnOdXllab0xNM0RNM4SqBKRSuEqTeNTfQcNc/H0twZv4TspVsTn2YJUHB+SNMwxMaUP85q+o324pgwBMbFcS0MiXDlwd45pkMZ511Vr7+00pHCw5m4zluuOEG9u3bhzmSJLR/HYLyJ7MwDS/mo8aUKuVK5OQURn/vIkc9i5l28zdcN9J4S4c5aSEHm/ekulD8hhICNyRwwvOXm1kvSK0udXOr8oZXSWgsJB5y7pTiZQuXawfXiSHyxY5EV2fpYNCG7SsrPEzT83PnbqArrCaNmS2gZwpFh5XJCxCALa97KC9GzIJCe/f/35Mx0/O/p65n3LYSIiJtYCV9GI9SGJnsQ0IwUF/xxTLblVMzi1q/koBWKOzN4zzzTJKRkRHe8573YPj5G1tCaMGRpauri9tuu403vvGNONEJ7L4IwYmhssuLSASRSqPawLwQeOYIKp5AWBbOhpE589L9oeKH/ZpZ/SvJM1ctbhv14IYEycHSP9TksCI97EOQWi2ujVICZKHtVdpPE8SICIcWHYdUN4HA7KmYEx8rTHjkKBQWZplqvs+69kGAOULEVYLf3XkSRon7nXBg6IHmu7DChwz6Hk0sejtG2kGkCiwZtgOHx7208za4YYtgoGyNjULctTPIviTBYJC//du/pbe3tzkDXAJowVHAli1beMtb3sI//MM/YPftw8iEseLlg3xERxQ1Hat9R7YN6Ux18QI1oGwb8/Fn5kyLjg7NsRhkRjraL97DUARC3o94ZkOQ1ID39O2GIT3SZFN8qQJc5URHOQtH8fxSf8ttxyfhYUTC+doZbUEggJDSe1p03RUrPAopJzyKxck5z3+w5HIzdoj7127Of1YRG2FKUAKVar8+PdZEYq6rJJlGJauoibRIVKL2fYiAJ9JVMgVlAkQB3L4U7tppUF7L+eOOO24xQ112aMFRxIte9CIee+wxvv3tb5MeegojcyyGXfoiLYJBLxajDreKSmcQDRYcJTkwNsfAEZ7pmNc/xl7VS6Z3EaXbq8VQhKPzuz0KobBM70c8PWpj97dYEBULg0KxUGn5cixU+Kvc+wYgwiFEKOilrLaDO6eQwgDTFRznAcyJ8SgnPCqtA9AVSHPhsx/Oz/vDwTWkUgFQAteaf5NUUqASzbkFBPZNgDPXIqlSaZAFcVVNGQnIZA1NLw3hFbszDFQqVTlINGQTelYSO6a46qqruOyyyxow2uWFFhwleOtb38quXbvYsWMHqZGdRPYei1ClnxCM3h7k+GTN+5CJBEYw0LAnThGJoBILmzVVLD5vmhVPEKhksoyEib66A9GARm5GC5rB1Uwlq0XxcqWsHOXml4sF8QFhGl6juHYrJlaKZSo8VFEp+2KBUEpYFE4rFh/FnwvjQor3MwehMK3S7kdVQojUjkXgyf0Vl1COU1/mlWE2NMZI1liWwBwa9FoSpDPIEtfOHMqQrHlxhF27DnDSSSfx5je/ebFDXZYItajarsuXI0eOcOONNzI2NoY500no0KbSQaRK4U5M1mUSNvp7G2riLiUmGoW7eQ0H3t2cG8H0wU6q7qrXSBR0Pmmx7nuHK7tASrlJoHSWSm75wmlVZrqI8anqq9Nms01EVxfC5zb3Ssq6zNI1U0ech9HdHimnIhKh7+txAoZ3o68kMnLzK4mLctPK8afxEcanK6T3NwhnLMLxtz3hXxq3YTb0fJYTk2VrZszu08vaKrw2q0QKOTlVcnFlgHPsBG5PjP7+fr7whS8wODjYsDEvJ9rMmd8+DAwM8Ld/+7dek7euGJmefaUXFAKju7u+nThOY33Xhn83mqYaJlr1QC5yrxJxHLm/xe6RctaQUiXOy1kaqrWolFo1W1XRiEa98uM+i42mki2bnmsat9SKiRli9sZmClVRLBQGheY+F1sqKlkyXCXmWzaahZ/PrA085spxK/dOyZXy7+6e+yDouGXFBoC7PobbE8OyLD7wgQ9osVEBLTgqsGXLFt7+9rcD4Awexg4dLr2gIbwI5hqR0zGQjSvj6WdAoDGVIPFIr2/bb0vKBXiWIld9tNBSUVyRtFwGTCkLykJDCwYwImGM7i6M7jqqgi4hcpUjhWV5PVuWMDlRUE4cVJO9Uji/UKBUa/1oFEoaDPzex+MhREPdKSqRqPiAZ3R2eFbnaHjueqnyMR/uQAxnZAKAv/zLv+Tkk09uzGCXKUv719sEtm/fzite8Qrvw6YxHDExbxlhGHVf8NVMHVkureDIBCP3NKnGeaspdoeUqqNRTiRUsnAstI9S8wp3YRoY3Z0Y3Z2Izg5Eh/8m87bCMDyrR8DKv5Ya5eIuSlGtxaJVlg3pCob++9GW7LtWVCbj9TwpgdHd6QmNMnU+ZJlMRNmZRB3v1fO47rrr2L59e2MGu4zRgqMKbrrpJs4//3wymQzpdc/gyvlFY7xOorWLDplMNc6tYghfmxU16wEq0t+E+IBKFPZLWSiOo3haIZXazheKkQXSYo3uTs+n3NU1+7TfBnUJWoZp5l85l9JSc7eUEgm1uFByn3OWjcJ5+xPdTMWXfpNJYTVQUJbpd2J0dnhNGstcu8slBEgzQeRcG8dxeM5znsMNN9zQuLEuY1bwVat6TNPkfe97H8cffzwEJOm1u5FO0U1RCIyOaH2ulbEyrpp6MH304SuQTXiaCpSJqG8qxRaKSpaKQtdJcRxHpXVz6xftN98BNxLGHOjLuhMaGzy3bDCM2aZxwYAXx5R7tSGlgkdz8RfFcRzFFAuQcu6XtGvhuv7/TpXrrzulUdlVKpOZmwqbdYGbo8OI7s6yYlWOT5ZsXyFlilUv7WRqaorjjz+ed7/73bqSaJXob6lKIpEIH/7whxkZGUFFHFKrnkY6RSejEHVVxFNKVSwmUxOm4ZuVo+sXj2P+tNeXbc/DWALJU5UCRospF6+RXV4GLWQkgNsR5NB5fRw6r4/4cUOzLbA1lTEMjK5ODl9xNIdeeDTxszd6Zdu7OtsqLbhQVBQKjYVcLMUBouWWsaWJ7TZHbG3560O+bVs06rzPZTllrcjCNDBHhzEG+ytbxaQq6YKRboaT37Sep59+mqGhIT70oQ8RDodLbEBTCi04amBgYIC///u/p6OjA9WdJj2wG5mZKzqMzg6vqmMtSIUcnx8bspLpGFx8qeRFU030fbVPYiWsHUoI7KEO7MEoU8d3MfbsLg6fPpvWObPewh3tq3XUK5bJCzaS67kYHzY5ePEaDl68BrlxNWrNMAz2t3aABVSqoVFs/SherlJF0mk7zKHJ9kgNbgeUK5GxOCJgeUHWQ1VkkGT7XRXXg5FOBueYae677778A6jOSKmNpRd11WI2bdrE3/zN3/CXf/mXuIMJMum9hCbXzPEBio4o1FLNDrzug6l0Y7INzKxJWTbeNdH/SIZdp3bQPeBfzY+2oZKlotT8cr1RCt7b/VHsLu9nJwOC+Gh7mv6XE4dP8W7AVkrRtXu2VUHgsb1eanqLWKjwV/HnYrdLrZVJG0no3k5IH/Rn441yhykFdsYLsg4GoUp3t0ql5rlSpJPB3TCDHEpimiYf+MAHOPbYYxszzhWEtnDUwRlnnJFPl3XXzJDpOjDvBK21AJFypVe4y2mASDAN34LowvftJDC2gs385brGFn8uEBvKMpg6odd7bQ4zs85iZp21NMWGaRI/cwOp845v9UhqxgkLJo4N51/xMzeQOHsz9pb1vu63VLBnpc/VbCM3rRViA2DNz2dQtj+N4hqV+qxciQiHveyTamPrHHdeUTvl2Lir47hrPKvru971Ls4888yGjHGloS0cdXLFFVcwMTHB5z73OZz1k4idJoHkUN5CUY8PUjmOlyYbCnnbWYRoEMGg1xRriRaSNQ1JoCeNPdWC+hLVNFCrVNBLCJJru4iPzp4D7jJx806fuZZkv0FiVLAqcyzBex5r9ZDqJj7sCT5jyMJaO/u02vvTnQ21fFSyWpT6DPMtGLn3lWI+0q7FE2NL3MTfgJ4/ynFBSUQkUvs1tKgbrLIzvP37f84HP/hBAG6++WYuvfTSRY1vJaMFxyJ45StfyeTkJF//+teRx0xiPywIZIY8sSEERk8XciZWfdqr9DpnCunmuybWXWvBECAMUI13qxxz+04e/vBauvv8jbMwzDaq+1HGlaKEANP7rAyDw1u7s9NpXcXURpLNAkmcuIrkoInKXsBlULHvghCcfzIbv3oQxidR6fmN+ZYC0oRMx+zBOnyZ13E1esih4/7d+el+PdGXco+UivFYyJ0iETiO/0brof+IYOx6wvf91IqSclYoijoq0zqu16Yitz07wwd/+w7e+c53AvCKV7yCa665pkGjXZlowbEIhBDcfPPNTE1N8cMf/hDrlBmc+w2MIyGvbkLAKzldqelPMSpjI0wTskWNVCwOljVb4rkWDAE+3LOVbRM4EET1JXy9pwqBl60im3znLtf7JPvX7Zg9FsmR8NJ0jVSB6u7E6e9g6pjSolcZCgzY+aphjPQIG75xCFGh58RSIRd4GltlEbtiU3768C8P5SsDi2S6YgXKSlTbhK0cpcSGqwSxMl2tG4kdDxKc9slyKrx+QDWRHUexGBSR2uuQuIe88gTKdUG6yK4M73vf+3Bdl+c973ncfPPNNW9TMxctOBaJYRi8853vZHp6mrvuuguOO0zw4SGYnsbo6vTSVE1j4YZBBSjXnVtF0XFQjpMVHdknmCpqMohwCBX35+Jw9D88xu7PjWIa/lkhggEHu9PGnfavmNlCKMMgMzy3AuHUpiBlmgcvC+RQLyoUYGJL9XFIMqTY+cohovthYMcQwSf21yS0lwKHtg3n33ftdQiNzVr4jKQNB+fX0ykVZ1FvG/rC98WfAR4/OFTbP1QHvb8PErn3EX82Lozq3ClKzfZEKeU2riPoNBeDlxcbHTb2iZPYScXWrVt517vepWttNAAtOBqAZVncdttt3HrrrTz44INkjh8j+KdhmIl5lew6OyAWr1p0qIyn1oszVlQma7IWAuFanr9zgQArEQjMrrcECQYdkpYFTTAV57D7o2R6vfgLZUJ8ZBmriwJUXzeZkU4SI0HcYH1WpcQqSKwK071pI6EZSef/PNzgUbYHM2ssZtbMNm0MJBUd+2cFWmjnGDA/y6R42kKUiuUoNe+p6YGlGq7lIURVwaIqF1RfLgOvDmuwSqSQ09MoxwalkFEH+6QJsBSnnHIKH/zgBwnoejgNQbenbyAzMzO85S1v4YknnoCMSfDhIUwn5JVgDoe8J75GttoWIl9ZtFI6rV9t62PbjmbqNfPLvDeamakIKum/Nra6MzhJi+gTQcLj7fGzGLo/hvnMmL87sSxip63GCQucyMIXfTcIsWoSO5SgY68ierg5wmP6shNJd7VH4EymRzBzcppod4pnr95TMTC0eBpUrs9Rar27nznK9/gNd1+UY780idjrQ8GvCm3olZSzRbgWuF3Vkv4KWbExMZEPsJdhB/uUCQhKjj/+eD7+8Y/T0VG6x4qmdrSNqIF0dXXxj//4j2zcuBGCLpktY7hWBpWxaxYbACq+QFCmUl6QlOOg4glv+RKBe/X4M6uhc8cY7XFbXhxWd4ZQf5JgyCbamyTTo2hVp+9mkjhlLRMXbGDivLWk+syqxEZNCEV8LRw+yeSZm07mmZtORqwaXni9ZUBitcSYDJB8potf/v54Hp8cmtdCvlwdjoXqc5Qqi94MrLjwR2yUsW4o2/ZiMxxnfuflkgO0ahIbkK25kd2+Crn0XW5CULJ582Y+9rGPabHRYLSFwwfGx8e55ZZb2L17NyJlEvzTMCJTxxO6ITDKdDCsBhGJeC4XV3oBbj4c6szJGxh7q//N1qYPdzTGrZK7WAclka7Z2imi4CKulIDfdxM53PqfRsMtHKEgzmgvk8d01J1FU7WFowRCCoQLG7+wE+W4dQdelqJdLBzTm8ENq/nfrwBlKp512pMABA2XkOnUXU8jJzR2jK0ilvA3YNSeCrHlvU/5UkwQIfKN2pQr69+HZVVfOFEqVCyOO+FVeFZBl8Grguzbt4/169fzqU99ir4+XeW30egYDh/o7+/n9ttv55ZbbuGZZ54hs2WM4MNDCNv7ukXAygYnLXCRkQoVT9SXTw751FoMExEKeUq+wbU5hNucm7IISFS9gkMoML1xhnvSGNlAV6XEHKGRX1wo7C6FnBAYTfr//Eb1dqECJuOntfYiqgyFMuDJmzYS3Q8jv57AODSBXMiat0RwQ8LL3in1c1UgHMHv7z0aAHNVgjUDXkbPus6JiqKjXPBp3AniyCYZqhstNnIBoqa5+JTjWsRGxsYdn0Cls4GiQZeRl0bYs2cPq1ev5uMf/7gWGz6hLRw+cujQIW655Rb27duHSFqepcM2vW6Fplmd6ACvBfdiS55bFiIa8SqZZlP7kHLRAaVq1TCPX99Lx2b/UyGnD3QtvFCOkJu/nhlBl1Co9gua9aserERrfx6LsnBEwtgjPQDEjorUHQhazGIsHKXo+5MiMmZjuIrAvY/XvZ12sHDE1woyvbVnbnVunMLICopV3dOMRCrHRuUEyGOTQ4z53TtFCTp/HmX0/z26+G0VZJAI0/CyTRpQZE1UawlOZ5AzMWTci2tTIZfMSRMQcRkZGeGTn/wkq1atWvR4NKXRFg4fGR4e5vbbb+fNb34zBw8eJHPCIYJ/GkI4np9RmCaYzGsSVIxyHC8rZTGt5x3HK9sbLkgxVSpvysxPStT2pCn2H2Lw/l6Sm+sfWkMQCqNj9nsMhpw5lowc5awaywrDILllFW7EJNXX/hk2E1sEE1uCCFfQO3oinfvSWPe3X2EpP4nt6sm/n+zu5PGIdy4Hgg5nrX26ZO2OZsVuKCUY/UYdFWULgtrzk4pTSxshNqrpjp3x4kFUOjNr2Qi5ZE4eh7Bk1apVfOITn2B0dHTR49GUR1s4msC+fft461vfyoEDByDtxXQYdiArOMyspWGBJ3BDeF1oFyM6DBPRGUVVqOEhinq5qFhiYVNqfy9P/q8RwidN1j+2KsjYFqkj2QDYkEsgXHCxEopAoGjsZcRFtaIjMR2m73dBRAsLntZi4chsHiU15FnCMl3+mdkbbeEoxkwKgtPe+9X/ubPqeh6ttnBkegWJUYWyGndJVQaojrk35XO2PIlluBxOdfLUkX7fs1PWfDFI5N6dCy9oWfMLd1Woq6Ecd9FuGhEOL1yTyHFRMzGUUp7rTrqosONZNsKSNWvWcPvttzMyMrKosWgWRls4msDq1av51Kc+xdve9jYvpiNr6TBSAe8HahiIYMCLlC5n7agxw6X0NrwfnujuQpXJeZ8nRnrKmGunYqCyd+KJKYJTo7g++JLl73tY9z8x771l8PSbUpimQgi1oGgoN794ejkBEulKo0QI0a65ONmnRdnXzeQpvd7Nyaemfc3EjSiSWV351PWbsJKw5osPeRNkQdGnNkMGaKjYABASxMzcy/Rv7/f6vkT3moze77lElYDd17kIo/HfTeTJI3MnlBIWUFMPlEaIjQX3KRVqajp/vqhk0ivqFXbovcxgbEyyfv16br/9dt1mvkloC0cTOXLkCH/xF3/Brl27wDY80ZEMemKj0NRo22WLhBkdkcVZOcATHFVUKq2ZwOIbL5WkoJlaeqST/Ten52WVCKEWZdEot0wmHaD75/6kFVfDPAuHZaFCnktucutIw+IyasFvC0dJsu6D0bttOh4+6NVMGJ+cs0grLRx2pyB2lGxa/5zglMG6/5nr/vTDwxLcNwnJxmUS5Vi04BACEQqVtm5IhZqZmXMNVak0ys4gIw7dl3rX4g0bNvDxj3+cgYGB+sehqQldh6OJDAwM8IlPfIJjjjkGApLMCWPIjsz8rJFAwMtLL/G0KuOLT0FV0z4V63Jl6Vbtlf5WQ4GIMdMuqYMdRbPVnL/zVy89PRfbUVGoGJJ0XxtYDQwDOdxH6pgRjpw7ypFzR1siNlqGUCAUB862ePK1a9h5/TrUcUch1raBz12AE6VpYkNICI2XmK4a+zIy7mzBrQai5CJSX7MIy5ovNqTyYjWKqzpLCUoiO20iF9kcOXKETZs28YlPfEKLjSajLRwtYGZmhr/8y7/koYceoqOjg8w9UaxU53zLRbbCXrG1Q4RDnlVkEYhodG4AaaOo1cpRTSv4IiZO6WP6ZTPZ1UVJa0epeZWHUX7ZdCpI8OFIS+pyKAG9T2Qwbcn0Ue3R474lFo4yBCcF/Y/aJAYtZABa4f1KjghSQ80L9DFswcb/9r/2jXU4hpiONXajSi2u1gZ41o1weG5bB6lQyeT8jsVSotJp3M441hlpkskkW7Zs4SMf+Qg9PT1omou2cLSArq4u/uEf/oHTTjuNeDwOp07idE7Pf5owDK8sesCaY+1QqfTCQaYLoJJJRDK98IK14pSo81H4ufi9EOWtHWWmd+1O4TzSXXJevRko5SwcSglC4Qyp4eZHjiZWCeIXxZk4PtQ2YqPdyPQqDpxlMfH8JOPb0s2/oglIDTbx3FAw8Ef/VZWRshGpBl8flPJqATVYbKh4ApVIlBQbMpnC6Y2hTouRTCbZunUrH//4x7XYaBFacLSIaDTKRz/6UbZt24Zt2zjHjWP3TZYXHZY116qx2EI5Dcp/L73dov+h0IJR7n2p7ZTBmkwSHhPZTcwPAJ3dfPl5pT4XkwtMVUpgDSdJjDbHZu5EBZPbUqgTZgiHbGbOSeZbpmvmkx52GeiNsXpkkvilMY6cu8jfRg3MbGjarvJ07vW3GaORcTEPTcEiH2pK0giDelZsqFTaCwpNZ0o+gMlEgjd+4xrcLdM4jsNFF13E3/3d3xGNRhc/Bk1daJdKi3Fdl49//ON861vfAsDc203gYD/CLJNAlC3apTJ2QwqCiXAYFfXh6bmUayV3qpWanptWaPUoXK7os7IMdr68F/P4mUWlvtYScGo/1k3n07PV0RuNNAWJC2MEAi6mMfepOZkK0Pe99ujr0E4ulUyvZNWxY3PCJxRguybjDw/S+yj+uVkETB0LMtCkarsurP6lJHzYZ8GRsjH3HVl4wRpZdNdqIbyqy1IiK8WhSYmbiHPdP7+Af/qnfwLgRS96EW9961sxFxlwr1kcWnC0AUopvvSlL/HFL34RAHOsg8CeofKiI4fresFTgfqzm0UwiOqIND67RIiFx1V46pUSGVXwp1u6iQ5WX6wsZ9UoF/dRaT0hFNzb0/BOsm5Q4IYheVqSjo7SGQGOaxD8cQ/BWGt/rsqA6U2Q6VEEp1obtKoEZIYd1hxV/uZ46PcjhA8LgpON/95mNoLT0bzjMXwPdD3d+IyROUhF4KmDjd+uUosuXy7C4cpCAzyxkUzibJpEjnpxLq95zWu4/vrrS6fyapqKdqm0AUIIrr/+em699VYMw8AdipPZeBClFviBmuZsTQKjPuWuMhkvlsMP3VlNRooQsyKj2KJRBR07A8iC+h/FVUXn725+/Y5KYqNYoGT6FNJszIVLmoL4asHUCQ7GeRNlxQaAZUpi5ydIDbT2ojl2rsMjf34H/3j5V0gP+9DIqwYyI5XFBsDw6QfpvuQAsaO84M5G4UYEqolVjAIzgkDC/1gRM+GD9SQXu1EvUnkdt6sQG9JJ4pwwjhxNIoTgLW95C6997Wu12GgTtIWjzfjlL3/JbbfdRiaTQcQDhHaOImRlt4mwLEQo6IkPqeoKyvKlNocQXupaYWDoYn74pVwvwBPvCxEIuIuqt1HLcqmnu+h5TCzKtTK9GdyIpGvddE3rzezpZuie1jwnTFyW4A/bPk/U8LKbvjrTx7t+8nJCY803UysBQ2fU9iQ+nQoRe7qHjr0GoSP1Hzw3IoivVriR5l06ex4VDD7ob2aKOZXCODLZ8O0q267vgSbba6qqW5SUSBUnc9wRVIdDKBTir/7qr9i2bVvt+9X4hrZwtBnbtm3LR1GrDpvUcfuQwcouA+U4qFQKYRhe/Q6r9gJcKpFsvJVDqblCIyc8FtpPufllYkIGvhXNzq7eUlE4rZwlpFxQaXBddaW2SzFzFIxvdQgfM1Wz2ACwhpLE1jT/aW3mhTP86vzP5MUGwDVdE9xxyZexu5r/zCI3137z7Q6nWX3cIeytM4xfkPbSaOvAidBUsRGcMOh+2ocA7yKMqQanwJKtuVErrgu2g3Jl1WLDMWZInziG6nDo7+/nk5/8pBYbbYgWHG3IySefzGc/+1mOOuooCLqI08dxOyvfnJQrvdK9QnjCw7IQgRquqI7jlStvNMVpstVkplQjlgoETO8Dk/R8vati1km5NvTl5lWycAihmNhqV13ZUQnI9AhmnpMgcNw03UOxfGfQWomEbeSzZkgONk90HL40xS/O+izD5vyg1e3RNN958T8im+hekMckGOmvXazlGOyOs3pkEvv5U0w+t7aYCDciSA43T2xYCcGq36QJTvubeWONzTQ8a01J6W2z2gcZ10Vl7OqFRpb33/l6rLNjEJJs2LCBO+64gy1bttQ5ao2faJdKGzMzM8Nf//Vfc++99yKEwHymD+twH6JCSUNhGl6eetFNW2WLiC344zdM6K2hDXw15Nwqhe4QKB8oWsZ1UnY9pUiu6+aZ/+UQCDp1Za2Uml/KKlI4L3k4Sv/vy7sTZECgDLAvnMI0ZUMLUSrA+EkfIR+CIfP7MGDsbJfHrryDgKjsNtntxLj4q+/A9DGmURngbkwxOjDV0O26SnDwyUF6HjYxM6psVosyYfJ41bSKoigIThqs+3FtHZxr348icGCqsSXMawgSrbemkELh9BxGbppBSsmzn/1s/uZv/oaurgZfvzQNQwuONsdxHD7xiU/w3//93wCY4z0EnhlEVHqaDwbKtmxWjku+6VqpQ2+YiK6Oss3d6qZQdCyUjbJASuy86dm/h7f2E39h/U++3iarr06amIrQ/UAQKzl3eTcosDsheVyarl7/bhYKED/vI7yIeIRyTB0N6UGXXVd9rup1fp2SXPeL1yHGAwRijb0rKxPstWlWj0w2dLvFjN0zQnBGlIzxsLuy/VKahHBh03/5n5ViHYkhZup3E5Yib90os09gUYGkSkjs9Ydxe73f++WXX86tt95KoBarrqbpaMGxBFBK8Y1vfINPf/rTSCkx4hGCT40gnNJ27HJWjnnbzYmP4lPAshDRSOODSP1o7lYgRuIbe9h9BUSHK188F6q9UQuJw1G6Hg0QiCti6wABdo+ka+3ihE+1pNIBer/b2PocY2dIfnvVP5Z0oVTDbWMn8C8/uYDATOOOtd2tWHX8oYZtrxKuEhz5/TAAoXFBaEKR6RXE1zSvORtA59MGI/f4a90w4xmMgyUasyyCsmIjW9SwXGPKqrdvOWQ2HkBGUxiGwc0338zLX/5ynYmyBNCCYwlx11138YEPfIBYLIawTQJPDGFmSrePr1Z0oAqiwAsvEn6IDsOYbbhUKV6jeF5xMbByf8mKjisV0cFERWFRr9goXi9xJErXIwGSo4rwMVN1x2bUiysN7Ie66X28Mds7dJ7Dd57/SU4MLq5D7j+Ob+KO7z4fswHVsZUJanOc4V4fYowW4NBEF10/iyIcmDxBoZoU9db9uMHgQ0mE49/5JFyJdWi6oa6UeV1gpcpbVBcrNABkZ5qOM+KMj4/T1dXFbbfdxtatWxe9XU1z0IJjibFnzx7e85738NRTT4GCwO5+zMnScR1CCERHDWV8C04F5UpENIxaZJO4eRSKjsL9VlFdtFoeu76P0Ma5Ofv1CIziGI7cNqQ0MO73/MRWCqyEYvL8FJ1dPpu/y2A7Ju6fuhYtOsbOlHz7BbcvWmzk+I9YN+/+2isXXZnVPHGavg7/m5WVI/7tUfoez5Dqt1ACEsMGsQ3+ulbW/FwSHvOxoqhSBPZNQHH/kcVu1rbnlERv5O3FHYyhNhzBtm02btzIhz70IdasWdOw7Wv8RwuOJUgikeDv/u7v+NnPfgaAcSBM8MAoQsx3sdQsOopQjgs9nY11hRSLjoWsHbXEewAyGuTRm0JEulMVW9NXU7Oj8K/7ZCfRfd57Mz0/biNz4TQBqzXFsFxpIH/fQ+duVfMNPtUn+OrbPsaAqep2o5RjtxPj/06dzj9/83k1j0sJCJ40RU+kNUIOYOzeEVb9xsEosDRIU6As7zzYf56JDCgvY6kRPxEF/TsEvY+nENK/S3Ng9+GGZqWoZBJlO95vu9FYYK8+jNM3CcAFF1zAu9/9bt0TZQmiBccSRSnFv//7v/P5z38eKSXHH388u76RwLCteT96IQQiWn/58sLCPSISgQKrR13BpYbhNWCqJRNl3qBKWEUKpinD4JG/6CTaU9uTsVICxzGQrieI3IxB392zAbiVbprSEiQuiBEONa95WDHO3X107KtedCQHBb/9i9vn1Nfwg7fu38r3/ucMjCofqKUF1rEz9Hf6nKFRBlcJxnYMs+5HdsXvMhe7neq3OHLK7LnqhmrPZhEudD/hf4EvpCKweyzfl6lq1NwiXHJyKh8AKgIW+NCnRIUd1l8Z5LHHHgPgta99La9+9asx/BA2Gt/RgmOJ87vf/Y7bbruNmZkZuru7SdxtEYh3eT/+gh9l1TEdZShZLVAIROfcJ2JVbV+XYtExZyM1ulLKLO/0hNl768JPcYnJCLiz64f3BogeqO9nkekSGOdP1LVuo3Du7qNzb+Xxx1cLUkOSb7/0H9kSbM6T4qufvoC7dm3C2BlBVLjXySBwVILhvgVKWfvIwfFu1n2p/uIiB58dRBXcf+1OhQxVPiahwwZrf+avwDIyLuaBiaqsG/lU+hyOg4zPF0PCNKCB2SG54E+nP0Hw+ClisRg9PT28973v5ayzzmrYfjTNRwuOZcC+fft4//vfzyOPPAKAuTeK9UwvRjDcONFRZV69iMy3pKhQoPQ+c6IDFrZkVBhXufgPGQmw68XdWFtmM0ZSe7oQRV6PzqeNeS6SenHCgumTbLqHmh/gmEMB9u/76N5V+n+KrRW85s9+yDv6n2zuwLJc/ujl7PzlUSXnyQCoo5KLKuy1WFwlmPr1CKO/a1x8w/S6AHbn3PM43Q92t6e8hCPofwh6H/fPumGkHczD0yXjNlQmk7dW5Kel056bpOJGRdkU/HoQQqACJvbwIZwBL3vmxBNP5P3vfz8jIyMN24+mNWjBsUzIZDL8n//zf/jGN74BgJixCDzWj2EHPBGQpW7RoZQXZV5Pn5ZAGcEBqL7uyoW/SoxjobGLeNKrcAqo7g4ObhsgvtpbJ3pAVXy6bgROVDC9xaZ7uHWiw3ENnD910/vY7DQ3CCfc8BBn9ezijb17WjY2V0n+euxUfj22if13rc5PVwZwTJyhntZ9bwBTPxpl6AF/W8ADpHstMp0CFHTus4nsmrWMub1RVKCxLgprbAa1v0xqsW3XlUXSKFeKEAJMExl02HxViIceegiAq6++mte//vVYVhNL2Wp8QwuOZcYvf/lLPvzhDxOLxcARWI93Y45HEFYAEfaawNUdSLoI0VGOmsqvV4kqKqcswmFmzlhLfKR5TcacsGD6tDTdfa2JQQAve0U+3EXPE97nG9/1X9zQc6Bl4ynmsBvnyh2vZuIer+aFddI0vdHWZaMAzPxglP5HbF8DNosJPzUxv/BWsLxIrwvHRU5M1l3VsxQiGGhIkKiwLDAETtc0mVUHwHTp7OzkXe96l+6HsszQgmMZcuDAAW677bb8U4KxL4L1VBdCCoxwGEwTYZp1Z6/My7VfClgWkxdtIt3TvOJA0hLMnJus2HbeTxSQyVhcv+W3vLLn96y1StdsaSUJmeGgm+G1j72SWDpEyPK/SVkpXCWI/XiEwR1NFhtPTyKm/bXoKCnnBHg2gkaIjZzQUEJy8duP4Tvf+Q4Axx13HLfddhurV69eYAuapYYWHMsUx3H4/Oc/z//9v/8XAJEwsR7twYh7FgUjGgXTxOiI1vUkVXfL6RYSP/doYqvMplaLVAKmzk/R2dlc0ZErCHbUDzyLwejHdvLF9T/DFO0V3f9QJsk1n7mVVb9O4IZNnrnRbrpLJe1YxO8aZPQe/90ohQhHEdo97rkAfUI5ric2Gshi3SjCNPLru+EkQ9scnnnmGYQQ/Nmf/Rmvfe1rdYnyZYoWHMuc3/3ud3z4wx/myJEjmKYJT0Ywn4l6hcKEwIhGEdEooo6KokvR0pE4ezMza5vrD5aWYPLZGbr7G9uvohyxXT0EZgTrfzj3RmZ8YIzjew5y+6p7mzKOSux3Yrxl94v448+O5ajvz44zNRjkmYsF1nCyKZVF045F7J5BVt3VXLFh2JLgvmlfrRvKtpEzscZaNuoUG/my49ksNoXCGTiCXDWO67oMDQ3x3ve+l9NPP71hY9W0H1pwrACmpqb42Mc+xs9//nMAxHSAwKPdiLT34xehEEZXZ13xFEtOdAhB6lkbmdrY3CcoJyyYPtHfQNLYzh4ihwxG705hZEoHACaHQ4z8xZN8Y/OPfBvHQqSVzZb/fBNHf7V83fOJYyPE1wjCZx4hGvSnrokCJn8+ysh9LbBs7J3yXWyoWLwh5cRz1CU2bBsCAc8Fk0VaNpnV+5AdXnzTRRddxNvf/nbd5XUFoAXHCkEpxZ133sntt99OPB4HV2Dt7MI4GEYgEJaF0dsDwqjN2uFDIKnvWBbpE9cxeYy/xa6Kia2D8EmTDd/u9JEOBn8doOOgQ3By4ZtzfHWIdW99nK9u/EnDx1INx33xJo76XnVuhIljI9hdgs7LGx/s6ipB+Pa+RZderwmpCD89gYj5G0ys4glkA3uk1Cw2XBeZSmMEs1lyhvCsGr2T2COHwJBEIhHe+ta3sn37dt14bYWgBccK48CBA3zwgx/kj3/8IwDGeBDriW5ExmsfL0zTEx6miaghKGzJWTosi9TJ65ja3DzRIQOCyRMdulc1pqCVAnq+3I2ZlgSnarMCpAaDXHDbXfzt8IMNGUu1bPnczaz9cbKmwExlCFKDQQ6fbDJwbuOER/prI3TtbW5V2MjjY5BqQEe7CqhMBhmLN8yVUmuAqIzFvOtIZwcIAwyBDGQ48epe7rvvPgBOPvlk3vWud7F27dqGjFGzNNCCYwXiui5f//rX+cIXvoBt20SjUTIPmBgHIp61IxDE6J7NaKhUR6OQJSc6hCBx1iZm1lhNCyRVBighmDk/QUe09huPKw1s26T3ux107U5j2PWbzGXQ4NrPfI/nRp9gY8C/DJa0snnGSbP9q+9gw7eTdVsUlCFQpuDJa016R2foCNXuCnGkQfxnwwzssBFu7X1n6kYqIk8e9l9s2DZyqnEVWqsSG1KiMjbKzh4PITD7+7zxZK0a1qYpkskkoVCIG2+8kZe85CVeTJlmRaEFxwrm6aef5u///u/ZsWMHAGIqgPV4N0bK8uI6olEwsndi4bldcu/LsWSzV1Y39+KnBEydV32H2elDnaAg+lSANb9orDk+0xvgDf/4Da7panxJ9phMccH9/4vBv29MB9ocyhI8eb13Iwx3pqvquZK0LRL3DLLqty0IEH1m0n83SqPFRiU3Sq7kuZTIVME5bJiYfT3erECGzKr9+ViNU045hXe+852sW7euYWPULC204FjhuK7Lf/3Xf/G5z32OVCpFMBjEfTSIuTeKEQrPFR05DNMraVzmyWfJWTqAxFmbmVnX3OwVNyiYOjVD92D57JWZZ7qxpg2O+mEK4fj3U53eGOaFf/lT3j34aMO26SrJqXdfx+p/8DdAd3xLhMnjoOvYibJWj4xrMnP3UGvEhs/ZKJB1ozRwH2XFhuuiXNcrhV506xCWhdHVhTLA6R/H2jCTt2q8/vWv5yUveYluurbC0YJDA3j9WD72sY9x771eyqSYsbCe6MbMdHjl0EsVCTOyF6QS4mPJiQ7DJHXq+qbGdAA4EcH0CXOzV5LJIOF7vKZ4vU86hA835yY5viXCka0un33eF7k0urjYhmfdezUTe3s4+t8yTXNbHHpWFDcCmS7F0BkH58yb/Nkow/cvv2wUAJVKIxOJxsVslBAbKpUGJVFSzf9dGyZGOIQIBnA7Mqy7xOKJJ7zytqeeeirvfOc7dayGBtCCQ1OAUorvfve7fOYzn/FKoysw9kewnu7EsCJeEFgpClwswrJmW8QvsewVEQiQOmFt07NXnIhg+uQMPX8MEppQmLaic09rqpMCHDkpwjfe/dG64zpOv+caej7bVXMga6NwQyYz67xjePiiDF1/DNH/cPOED+Blozzlb1Ev8FdsqExmtnlbud+xEJg93agA2MOHcPunUErR3d3NG97wBi6//HJt1dDk0YJDM4/Dhw/z6U9/mh//+McA9Pf3M32Xgzndg9m5wE2oML4jV9VyCYkOLIvkaeuZ3tCEOh0KIuOSnl89BaEgzkhvwxt21UtyJERstcm97/rfVVcn/dTEUXztr7cTmHEJxFpTorwYI+NiTMa9+isb+pq238hjh0p2ZW0kDc9GCVjIZLKmGCyjrxe3d4bOk1OMj3vdXbdv387NN99Mb29vQ8alWT5owaEpy3333cfHP/5xdu/eDWSDSp/sxhI9+UZwVWE7+QqDSwIhiJ+92QskbVT2igKzIEFh6Ic7UYkkxT8/ddxRKMtAma1/KlQCDpwT5fM3fYrjAmn6zNK9dx7IpPhDai3/+rorm9qHpCJSYU2n5gZqZsWwO9SD3TVrxVJW41KUhKsI7zoCDayBUYpGBogqp/ZAb7O3BxlxOOnq/rwbdv369dx66626WqimLFpwaCqSyWT4+te/zpe//GXS6bSXyvZ0iMCRYYxgjZkHtoNSKt+Keg7FgaltwGKzV4LTCjPj/byCMy6hu6oLyBTBAHLjamSofUTaE68zeekp9/OhkXsJCO87+UEixI+nT+CuD51JdL+/6Z61YMYzGBNV3oxNk8zq3vxHN2zWfS4atiS4d2p+59cGohwXlKxdbKi56dPKqdMCJQRGbxR71QRqaBrXdQkGg1x33XVce+21BIPNdUdqlhZacGiqYv/+/XzqU5/iV7/6lTchYxA40Ic50YtRy0UmKzqKEcVP9G2So588YzPTR1V34+/Z5dV2yBF+4hByfLKu/YpwGLl2GBltryZW+2612XH2v/GteJR3f+E1rP6Vv6metWLG0hiT9Qdpuv3dYM2ei27Uwg0tfC62VW+UXHBnIY1wa4aCyFUp7NFxsLztbdu2jZtvvpk1a9YsfvuaZY8WHJqauOuuu/jf//t/s2fPHgBE3CKwfxDLrsE/XkZ0FFKy1HEr3DKlyqArGLpvet6ixuN7Fvy/akFEI8i1Q8hw+4gOZQn2bosQPqwYfNDfgMhaMadSGLFEQ+vAqHAIVfT9y0gAu3v2fBCuIrRn0l/LRrneKEqi3BJiosGXdbXKxF5zBBX2LFkbN27kzW9+M1u3bm3ofjTLGy04NDXjOA7f/OY3+eIXv8jMjGfaNSZCBA+PYjil/fzzkKpms265fgtKqZJNoupFZWxvezkCAYz+3lmri1LIw+OL3k81iFAQTBNn86qqqr36iXVoGmE7XjCkaYJl4g52t9z1Y8YziHjKG1szLmemiSoUv0cmUImizrzdXYs/Xkohp2e84loZuzXB1/0BnLUTuN2emOru7uaGG27gyiuvxLLax+WnWRpowaGpm+npaf7lX/6F//iP/8B1XUzT5Morr+SHH3kI4VZ3MVKZBqVOZssrNyQWpILJuta+Eo1CBAM4x2UrNDZTeCiFOZ3GmJyZrS5ZiGGAENjrB5sviJTCSDuYR2ZaUt1Wjk96BbBKnS+Nikly3frjLRaBCrpccttZfP/730dKiWmaXHXVVVx//fV0d3c3fTya5YEWHJpFs2fPHu644458fEc4HMbZ20Hg8ABCLuz/bpjoyFZBbFSaYDlaJToAjJ5u7HWDvgfZCttFuBJz35HqVwoFcYZ7vAwbv8fnSqz9jS/FXhVSoWZmkD7X2EDJposNZSnkUSmMo1JkMl5a7/nnn8+NN97Ihg0bmjoWzfJDCw5Nw/j973/P5z73OR566CFvgmsQGB/AOtKPUAs1gKrdxVIW257v624wNbfrbiDGQB/OaK8vqbNGxgVHYh6aAFnfd6i6O5HREDJi+WL1MDIu5thUa3r2SIWKxb36F37REqFhINckCW9xvKJ/eL1PXv/613PyySc3dSya5YsWHJqGopTiN7/5DZ///OfZuXOnN9ExCRwexJrsrSw8Gik6XHe2SqJPCNPwLB0tEB5Gfy8qGMAZboB5WymsKa9uhIgnG1awSvV2gWGgLAO3s4a6LWUwMi4ibWPEUqXdOz6j4glwHH8tG80WG0ELOZrAWTWDCnj73bhxI294wxs4++yzy8ZNaTT1oAWHxheklPzkJz/hn/7pn9i7dy8AwrawjgxUFh5Zd0hDLrqu68V2+GntMLJddFvoYlGRUN3CwzocA9f1twS3aaIiIWR3pL6MG6WwJhLguIhGud9qHcJ0zF+rBvUV4KqbcAA5HMdeNQ0BT7yNjo7y2te+lksuuUS3jtf4ghYcGl9xHIfvfe97fPnLX2ZsbAzwSqXP/MnCmuirKDwaIjqkzMZ2+Cs6gJYJDyEEjA7hDHVVvY45lcKYiUMzb+CWBYbAXtNfk6vFOjjlZaC0ABVPeBVhfd6/sv1vLCcsC0IWztAM3aeQL0U+MjLCq171Ki677DJduEvjK1pwaJpCOp3me9/7Hv/2b//GoUOHAOjp6SHxeNATHuWCSxslFpoQ1wGtDSgVQqA2rcWNBOYGbWZ/4kIqrD2HvWl1xmc0hOz3o6LhWZFULECUwjoSR6Tnt0FvFiqVrrtwW0378VlsGB0dKEPiDM3QdaJkYsILq1WhoQAAGKNJREFUth0dHeW6665j+/btBALtU+tFs3zRgkPTVGzb5s477+QrX/lK3tWCa2BN9BEY7y+dTpvNPGnEqVo2jbFR5Fws0DLhAaCOXZ/fv3lkxvfeHovFHR3IV/gUaRtjyl/3RUUcLxXVb7HhiwslK9yMUAgCAZTl4AxNEt40Gwy6atWqvNDQtTQ0zUQLDk1LcByHn/zkJ/zrv/4rTz/9NADBYBD3YJTAeD9GpkSQYRUVSqvCtr3t+Cg88gGlQjRXeOSCKYXwGuwZJsJaGv545Xhjz5e5DwR8T6+dQ8ZGSYmcnPL13FCu1w+lIWJDCERBvIWIeP2NZCiDMzyBGE7iZF2T69ev58/+7M+49NJLtdDQtAQtODQtRUrJL37xC/793/+dRx55JD/diHUQODKAkYgiClu2uq4XCyAMVGoRT+0ymw3gd80O0/BunH6RjVHJUSykRMBCWBYiGml5pdJyKNt70i+ux+K5p7ybqTANCPkYX5CxkVPT/sdquO6iK4aKQHA2bsg081lSCoXsSOEMTSB7ZnvcnHLKKVxzzTWce+65GC20umk0WnBo2gKlFA8++CBf+9rX+NWvfpW3ZIhUiMB4P+ZUz6zwyN2EwiGvv0q9pcal95Tpe7EwQ3iBnY0SHrkCZzmqGLsIeDUxjO7qA0v9RkkJ6XRVsTXFHYZFd2djBiGVZ9HwOY16UVYNw8QoLNlfdB4pIXH7YjgDU6io1+tECMH555/Ptddey0knnbSYoWs0DUMLDk3b8cwzz/CNb3yD733ve6SyVoy+vj4uv/xy/uO232LY2SfdrPBgqA+Kb1oHx6oPEs2VRfeZeq0dKlMUVLgIcSRMAxEMIjqq7HnjB0p5mR+LuPQU14cQHVGoo4+OrOU8qZNarRoiFJqNA8pRwjIhgzYvvu0cvve97zE97TUTDAaDbN++nauvvpp169YtatwaTaPRgkPTtszMzPCtb32L//zP/8yn1AohEDNRrIk+zFinZ/UQAob6vZVyF+ZSp/XYBJTICMjfcJrlZglUrsDZDPEDYHR3gmV5N2+/3S3Z47FYoVEtIhhARMuLKjk+4f/3XEURLyMcnl84roLbQ6GQXQm2vmojd911V/67HB0d5cUvfjGXX345PT09ix66RuMHWnBo2h7HcfjNb37DN7/5Te699978dGF7tTysyV6EayGCQVRnFCzTu2gXntpCeJ9L3FjFkcm5NwZXgpLIZMp38dEWGAKjqxNME9FgH7/K1UFpUPXSxSCEAEN4AtP2T2wopea5Z4xgYFEuNRVwcPqmGX52mH379uWnn3nmmbz4xS/m7LPP1sW6NG2PFhyaJcWePXv41re+xfe///28Gdk0TdRkBGuqBzPWiRHpBMurblnVk3vuJ1Bsph+fwm1SG/p2QAQsRMjLDhKhYN1WD1UQyNpOQsP3EvRSeeKqQZdUJRSyO47TP43qmbUMdXR0cNlll/HiF79Yu000SwotODRLknQ6zc9+9jO++c1vzjaLA6+mx1QP5lQPpuhDWBaqI1JWVMyh0AKSC1qdSYBt4x5pUWfSFiHCIS/eI5tmWRVKeQKjgTfdxdA0oQGQtWg04v+W4TRO/zQdm1VeVAOcdtppXHHFFVxwwQVEajkuGk2boAWHZsnz1FNP8cMf/pAf/vCHHD58OD9dpINYU71YiX5EuNcLKiwUHOVESE545P5KiUjbqKlp5HTM/3+ojRABL3hRRCOIMi4BlUp7GRgNKs7WCES2jLrvNEhoyKCN2zuD2xtDRWatQkNDQ2zfvp3LLruMtWvXLmofGk2r0YJDs2xwXZf77ruPH/zgB/ziF78gU5DdcdJJJ/Hoj49gznRj9A97E8vFdRRPy/1EsjUu1J59/qfSthu5ug9CYPT1ekW60um2ERg5RB2ZKnXRgJL7ynJwe2Mcc8kwDz/8cH56IBDgvPPO44orrmDr1q06NkOzbNCCQ7MsicVi/OxnP+MHP/gBDz744GxdDyE45ZRT+NOPDmOK1QgjPFd4FFo9iqcV4krUM/v9bwzXaoy5lSyNgf68+FCpNKS9ug+ttm40zaKxyKaCynKQvQlOunItf/jDH5DZnjaGYfCsZz2Liy++mAsuuICurvapl6LRNAotODTLnrGxMX72s5/x05/+lB07duSnG4YBiQ5MewAz3YdhVrjIF8d3ZN+LeBI1NQPge/vyZiLC2eDRYADR2VHVOir3/zeqBH0F8nU4mhUMCnULDRVxcHsTHPfcYR566KE5382JJ57I8573PJ7znOcwMDDQkOFqNO2KFhyaFcXBgwfz4qPQjA0g7AhWsgfDHsAw+hG5X0apQNMSbhcxMY1yXK9y5VLCEBhFoqJakVGSjJ3viwKAdBtW86KpgaB1Ng1UKFSHjexP4XRMoULpOfOPP/54LrjgAp773OeyevXqRo5Yo2lrtODQrFj279/PL3/5S37961/zwAMP4BaWC3ctrHgXRrwLy+6Frt75waTFQadKecIjkULF4m0dYGp0RCCXAiuEv31KpIIC60A9lqDZDrxtGggaArczjuxO4nbEUObs/2uaJqeffjrbtm3jvPPOY3h4uNEj1miWBFpwaDR4VU3vvvtufvOb3/Db3/4238obvBvycccdxxO/GsOMd2AkIwgR8Eqql8OVXq8WQO7e29IAU6OnK19fY3ai0dxOrIWUiHlR0zPzbvDCNEBkC5H5PdYaYnGEZXkVP6NJXvFXF/K73/2Oxx57bM74I5EIZ511Fueffz7nnHOOjsnQaNCCQ6OZh+M4PPDAA/z617/mnnvu4amnnpozPxwOc+qpp3L/fz2JGY8gkqE5HW1FNILq655dISs2RDyJe3CsGf8CwjQwhga9D60SFrWQi5PIZHAPHpozy+zr8+1/KOfqKc52UShkOIXsiPOsKzfx4IMPkkgk5ixz9NFHc8YZZ3DWWWdx0kknEQz6aDXSaJYgWnBoNAswNjbGvffey3333ce9997L+Pjc6qPRaJTUQYURi2DEwxiJMEJVKBFu27NPw02wfMyxcAgBZpu0KC+42TsHxxbdtr0qsg3/zO7OinEgSkhPYEQTuB0JggNuvpFgjp6eHs4444z8a3Bw0NehazRLHS04NJoaUEqxc+dO7r33Xu6991527NhBPF4Uk6BAJEJ564eRCCMy1hwrCOC5XAriRpqRXitMA9HjWV9EMNh064dKpb3/2ZW4E/5XbxWWlXfLCNMo2SVXoVDBjCcwIklkJInZ7WIX9Vvp7u7m1FNPzb+OPvpoXSNDo6kBLTg0mkXgui5PPfUUDzzwQP6V62w7B8fASIYwEiGMZBiRCCHsIhGSEx9SNkV8GJEwBHLBmCYiGm78TqRCTc2W53Zjcf8tGUJgZEt/i2BgjiVDoVABGxlKzxEYmPO/776+Pk477bS8wNi4caOXSq3RaOpCCw6NpoEopTh48CAPPPAAO3bs4NFHH+WJJ56Y97QMeCIkFUSkQtm/Qe+vPbfYWFOqmhrCs3hkEUIg+mpvc65S6TkCQymFSqcrrNEYjHA4341VCAEBC2W4nrAIpVHhVP59KXERDAY55phjOOGEE9iyZQtbtmxh9erVs/U+NBrNotGCQ6PxGdu22bVrF48++iiPPPIIjz76KDt37sQpU0iqv7+fjRs38ocfPIGRCSBSFiJtITIBhGRe63O/ELlYj4KnemNotjiVmo4hZ7yiZyoniJQsXZnVB8zenqw7xEZFHGQww+U3nsOePXvYs2dPaUsTXunwDRs2cPTRR+fFxebNm7FyqbcajcYXtODQaFpAJpNh165dPPXUU+zatSv/OnDgQNl1hBAMDw8z9sQUIh3wBEgSyJiI3EtWYfI3xGxdiyowRoawR3tyg5idUXDpMO75kyc2qqTaqp3KUKigCyEXOk3oFMiAzenPO4b9+/dz4MCBufVTihgaGmLz5s1zXuvWrdPiQqNpAVpwaDRtRCKRyIuQ3bt3s3fvXvbu3cu+fftIJpMLrt/R0UHicBqRMT0h4hjey4wglIVwTUS4G3eoHwgA5vxgVp9QSMAB5WA+8TTKkF5vEZVGmQ4qICHgoiwJIUX3aJSpqYWrtobDYdauXcu6detYu3Zt/v369evp7u5ecH2NRtMctODQaJYASikmJibyAmTv3r0cOHCAw4cPMzY2xuHDh+fVhah+4wYoE4SJJ0C8v94rJ0YEIArESe6vygoJBSX+KhxQNgiX2VrxtRGJRBgeHmZkZGTe33Xr1jE4OKhjLTSaJYAWHBrNMiGRSOTFx9jYGOPj40xNTTE9Pc309PSc99PT02VjSPwmGAwSjUbp6Oigt7eX3t5e+vr68u9zn/v7+xkeHqazs1MLCo1mGaAFh0azAlFKkU6nSaVSJJPJOX9z7zOZDFLKeS/XdfNt1S3LKvkyTTMvLHKvjo4OotGojp/QaFYoWnBoNBqNRqPxHV3FRqPRaDQaje9owaHRaDQajcZ3tODQaDQajUbjO1pwaDQajUaj8R0tODQajUaj0fiOFhwajUaj0Wh8RwsOjUaj0Wg0vqMFh0aj0Wg0Gt/RgkOj0Wg0Go3vaMGh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEcLDo1Go9FoNL6jBYdGo9FoNBrf0YJDo9FoNBqN72jBodFoNBqNxne04NBoNBqNRuM7WnBoNBqNRqPxHS04NBqNRqPR+I4WHBqNRqPRaHxHCw6NRqPRaDS+owWHRqPRaDQa39GCQ6PRaDQaje9YrR6Axh+UUqRSqVYPQ6PRaGoiHA4jhGj1MDQ+oAXHMiWVSvH85z+/1cPQaDSamvjhD39IJBJp9TA0PqBdKhqNRqPRaHxHWzhWAMHfDSNUVlsKA2EIEAYYAoRAGLl52elCgCEQuWXy80R+nfwLCqYZc+d7K+anKSFmJW7BNvLTxey+Cqcp4W0mP8/wtutNF/l5uXVUdlp+Psxuw8gun5vP3H3MWSc7fGWUmDdneeaMcXaamDdv3joUjqNoPmWml9leuXHMW6fSdvPT1fz1C9bJzy/YlspOp2A9b54qGI83XxTOyy+bm6fy2xSFywuVn5c/xXLTc5vLLuOdCir/ObeOkf3szfM+59bLzxMKwex6RnZa/oXKr2cI5kz31pez65FbXmLm1sl+nt2WzG/PLNi+iTfdzG0vv6zEzG2T3Djk7PLMbtvbpsTA2783z9uemZ0mkJi59QvWMcFbD28/ue8j99nbl8q+JztPYWS/FxOBAZjZg20gstMEphAYGIjskbMzJi993Sia5Y0WHCsBV2R/+niCg6w4yF7JZ+cJMGbvrsK7e2c3krvzGMy7o8zezefe5XLbnHcHomha4T4oMa14PWaFRoHgmDetQCAUfi4e4tzlS6xjVJhX7t+YN44y/3aleeW+qnq3V7DNUmLEV8FRaj7Fn1V+24XjKNxnqXl5gULBMoXLz1tHldiXmvMqFByzIib7KjePnCjxNlkoTnLCBHLCgfwNu3CeJzjk7A1bFN6wvfeGEJ4YyP4l/17k1/O2Q3abuXXJrpedXmpewTpmViyZ+XHmBIdaUHAUbs/MfR/MnWZQOMaCY6hZtmiXikaj0Wg0Gt/RgkOj0Wg0Go3vaMGh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEfX4VgJmAqlvGI/Xl0JUfBXFBXjyv0teE/hNFXwvop5BUUZZsszlZs++1fNec+c9RSAyk2f3aZCgCK/buH8/DbmFI8oHEuJz2rOkIq+jzKv4mWrqbVRaV7V+6pyXuEuK66nFtimKjPG8oW/5tbOKJiXX7b+wl+z4yiow0H9dTgUs+spoea+8P5685gzXQoFQs5uk9y+ZEG9kOwy2flKyPz2mLP97N/cvrKfjewyub/AvGmy4Gedey8FSGbrcMjsNEG5OhwiX6zLZPaY5T4b2XWKa3tUX/hLMFv4q9TvUrPc0IJjBZA581Crh+APuet5nRTfLzWaHIWnlmzlQOqmUPFpQ7amPdBn4jJFd4rVaDQaTTuhLRzLlFAolH//3//934TD4RaORlOJVCrFi170IkAfq3ZHHyv/0d/p8kULjmWKELNOgnA4rNs9LxH0sVo66GOl0dSGdqloNBqNRqPxHS04NBqNRqPR+I4WHBqNRqPRaHxHCw6NRqPRaDS+I5RSi6hkoNFoNBqNRrMw2sKh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEcLDo1Go9FoNL6jBYdGo9FoNBrf0YJDo9FoNBqN72jBodFoNBqNxnd0e/plSCKR4Ktf/So///nPOXDgAIZhsG7dOp773Ofy0pe+lEAg0OohLnumpqb49a9/zX333cdjjz3GwYMHcV2X3t5ejjvuOLZv384FF1xQcRv6OLaWr3zlK3zuc5/Lf/7FL35Rdll9rDSahdGlzZcZBw4c4JZbbuHAgQMAhMNhpJRkMhkAjjnmGG6//Xa6urpaOcxlz0UXXYTruvnPwWAQ0zRJJpP5aWeddRYf+MAHCIfD89bXx7G17N69m9e+9rX57xvKCw59rDSa6tCCYxnhOA5//ud/zs6dOxkYGOA973kPW7duRUrJT3/6Uz760Y+SSCQ4++yz+chHPtLq4S5rLrjgArZs2cJll13GmWeeyerVqwHYv38///Iv/8J3v/tdAC699FLe+973zllXH8fWIqXkTW96Ezt27ODEE0/koYceAkoLDn2sNJrq0TEcy4gf/OAH7Ny5E4APfOADbN26FQDDMLj44ot5+9vfDsBvf/tb7rvvvpaNcyVw++2389nPfparrroqLzYAVq1axTvf+U5e+MIXAnDnnXdy8ODBOevq49ha/uM//oMdO3ZwySWXcMYZZ1RcVh8rjaZ6tOBYRvzgBz8A4PTTT+ekk06aN//iiy9m1apVc5bV+MOznvWsivOvuOKK/PtHH310zjx9HFvHvn37+MIXvkBPTw9vfvObF1xeHyuNpnq04FgmpFIpduzYAcDZZ59dchkhBGeddRYA99xzT9PGpplPMBjMv5dS5t/r49haPvrRj5JMJnnjG99Ib29vxWX1sdJoakMLjmXC008/nb9xbdy4sexyuXnj4+NMT083ZWya+fzhD3/Iv9+0aVP+vT6OrePb3/429913H1u3bmX79u0LLq+PlUZTG1pwLBMOHz6cfz80NFR2ucHBwZLraJrHzMwMX/nKVwA45ZRTWL9+fX6ePo6tYWxsjDvuuINQKJSPu1gIfaw0mtrQgmOZkEgk8u9DoVDZ5QpTMAvX0TQHKSUf/OAHOXLkCMFgkLe97W1z5uvj2Bo+9rGPEYvFuP766+cE+VZCHyuNpja04NBomsgnP/lJfvOb3wDwtre9jc2bN7d4RJo777yTu+66i2OOOYZXvOIVrR6ORrNs0YJjmRCNRvPv0+l02eVSqVTJdTT+8+lPf5r//M//BOBNb3rTnEyVHPo4Npfx8XE+9alPYZom73jHO7Cs6osv62Ol0dSGFhzLhEI/8djYWNnlCn3Iheto/OWOO+7ga1/7GgA333xz2SdpfRyby2c/+1mmpqa48sorWb9+PYlEYs7LcZz8srlptm0D+lhpNLWie6ksE4466igMw0BKya5du8qm6e3atQuA/v5+uru7mznEFctnPvMZvvrVrwJw0003cc0115RdVh/H5rJ//34AvvnNb/LNb36z4rK5zJWXvexl3HLLLfpYaTQ1oi0cy4RwOJwvPHT33XeXXEYpxe9+9zuABSsoahrDpz/96Tli49prr624vD6OSwd9rDSa2tAWjmXE9u3beeCBB/j973/Pww8/zAknnDBn/k9/+lP27duXX1bjL5/+9KfnuFEqWTYK0cexeXzyk5+sOP+f//mf+dKXvgSU7qWij5VGUz3awrGM2L59O5s2bUIpxfve975874bCRlLgdSl99rOf3cqhLnsKYzbe9KY3VS02QB/HpYQ+VhpN9ehuscuM/fv385a3vEW3ym4hBw8e5OUvfzngNfFaqET21VdfPc/Voo9je7CQhQP0sdJoqkW7VJYZq1at4ktf+hJf/epX+fnPf86BAwewLIuNGzdy8cUX89KXvpRAINDqYS5rCnujSCkZHx+vuHwymZw3TR/HpYM+VhpNdWgLh0aj0Wg0Gt/RMRwajUaj0Wh8RwsOjUaj0Wg0vqMFh0aj0Wg0Gt/RgkOj0Wg0Go3vaMGh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEcLDo1Go9FoNL6jBYdGo9FoNBrf0YJDo9FoNBqN72jBodFoNBqNxne04NBoNBqNRuM7WnBoNBqNRqPxHS04NBqNRqPR+I4WHBqNRqPRaHxHCw6NRqPRaDS+8/8D+C9K4sTggGAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "h = grb_data.binned_data.project('Em', 'Phi', 'PsiChi').slice[{'Em':2, 'Phi':3}].project('PsiChi')\n", + "m = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents.todense())\n", + "\n", + "_,ax = m.plot('orthview', ax_kw = {'rot':[0,90,0]})\n", + "#_,ax = m.plot('mollview')\n", + "\n", + "ax.scatter(0, 70, transform=ax.get_transform('world'), color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "a409aa7b-9bd8-443b-be46-ee5a053f8349", + "metadata": { + "tags": [] + }, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_time_binning_ccm can produce the ccm for the time binning.\n", + "\n", + "Here we calculate the dwell time map on each sky pixel and each time bin, and then combine them as a coordinate conversion matrix (ccm).\n", + "\n", + "The ccm $C^{lb, \\nu\\lambda}_{t}$ is a three-dimensional matrix with the axes of 'lb', 'Time' and 'NuLambda'.\n", + "\n", + "$C^{lb, \\nu\\lambda}_{t}$ is the exposure time on the pixel $\\nu\\lambda$ on the detector coordinate for the model pixel $lb$ (in the galactic coordinate) during the time bin $t$.\n", + "\n", + "By multiplying $C^{lb, \\nu\\lambda}_{t}$ with the model map, it can be converted into the detector coordinate for each time bin." + ] + }, + { + "cell_type": "markdown", + "id": "47b489df", + "metadata": {}, + "source": [ + "## Read the orientation file and extract the orientation information around the GRB event" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "40cf80b4-0767-4c61-b28d-1a96101701cc", + "metadata": {}, + "outputs": [], + "source": [ + "ori = SpacecraftFile.parse_from_file(path_data + \"20280301_first_2hrs.ori\")\n", + "\n", + "#Set the GRB duration\n", + "Timemin = Time(grb_start_time,format = 'unix')\n", + "Timemax = Time(grb_stop_time,format = 'unix')\n", + "grbori = ori.source_interval(Timemin, Timemax)" + ] + }, + { + "cell_type": "markdown", + "id": "3140000d", + "metadata": {}, + "source": [ + "## Calculate the coordinate conversion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "71a9940a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dbf0e25f7db540378bc848109154bf0e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00, )" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAABR10lEQVR4nO3deXxU1cH/8c+9d2aSyUIgCRD2RRBUUFQWK25FRIpatRbbWms3ql3U1qWLbbVPbd2qbfX5tc9Tl7Zq3Z66tu5oQeuCYAUFlFV2SICQkH0yM/ee3x+TmSRsQjKTmUy+79drXnPnLueeXELyzbn3nGMZYwwiIiIi0q3Z6a6AiIiIiHSeQp2IiIhIFlCoExEREckCCnUiIiIiWUChTkRERCQLKNSJiIiIZAGFOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIlnAl+4KiEjPZIwhHA7T2NhIKBQiHA4TDodpbm5OLO9rXSQSwXXdxMvzvHbve64DsCwLy7KwbTvxOb5s23Ziu+M4+P1+fD4ffr8/8fL5fAQCgcT6+Ofc3Fxyc3MJBoPt3n0+/WgVka6nnzwi0iGRSIS6ujpqa2sT722XGxoaaGxsPODLdd10fxkp4ff72wW+YDBIfn4+BQUFiVdhYWG7z21fRUVF5ObmpvvLEJFuxjLGmHRXQkTSLxKJUF1dTXV1NVVVVVRVVSWW4+vbhrempqaknTsQCBBuiIBngWdheYCx2n/24p9btgGWaVk2xF60WY5/TjDtP7ZdjhdmtRRhm9hnm3bvxgLslv1sA47B2Ib84iChUCipITUnJ4fevXu3exUVFe21rri4mJKSEnJycpJ2bhHpnhTqRLKc67pUV1ezc+fOxGvHjh3s3LmTysrKRGirq6s75LIty8KEgaiNFbVi7xEbohaWa4NrYbkWuFbLOgv2XO9aWHslrO7HxEOj0xr2cAzYBuMY8Hmx9b7Ycnxd/DOOofegXtTV1RGNRg/5/IWFhZSWllJSUkJpaWm75bbvfr8/+V+8iGQEhTqRbq6pqYmKigrKy8vZtm0bFRUV7QJcZWXlwbcgeUCkJZiFY+97LbcJcESzI5BlEkNLGPTHAp/xe7Hlfbwbv0egl49wOHxQZVuWRWlpKf3796esrGyf78FgMMVfoYikikKdSIaLRqPs2LGD8vLyRHCLL5eXl1NdXf2JZdi2jdcEVrODFbaxmp1YUGt22oU2hbTuJx4CTcCDgIvJ8VqXA7Hl/oeXsGvXLiKRyCeWV1RURP/+/RkwYACDBg1i8ODBDBo0iEGDBlFaWproYCIimUehTiQDGGOorq5m8+bN7V6bNm1i27Ztn3w7LmphhZzYq9mBZnvvAKew1qMZWlr/cjxMjovJdSHHTXzOL8ulvr7+gGUEAoG9gt7gwYMZPHgw/fr1w7L0PSaSTgp1Il0oGo2ydetW1q9fz4YNG9oFuIaGhv0eFwgEiOx2sUIOtAS3RIgLObHn10Q6yTgtgS/Hi4W+YBST6zLw6H6Ul5cf8DZ+MBhk2LBhDBs2jOHDhyeWBw4ciOM4XfhViPRcCnUiKeB5HhUVFaxbt44NGzYk3jdu3LjfW2CWZWGabKwmB7vJwWryYbW806yWNkkvg4m17AVbXrkuJhhl8IQytm7dut/AFwgEGDx4cCLojRw5ksMOO4yBAwfqVq5IkinUiXRSY2Mja9euZc2aNaxZsyYR4EKh0L4PcMFq9MVebYKb1eRgGQU36X6MZWIhLy8aewVjy/5ie7+dOILBICNHjmTUqFGMGjWKww47jJEjR5KXl9fFtRfJHgp1Iodg9+7drF69OhHgVq9ezdatW9nnfyOvTXhredkNDjQ7anWTHiHeuufltQl8+QcOe4MGDeKwww5j9OjRHH744YwdO5Y+ffp0cc1FuieFOpH9qK2tZcWKFaxYsYKVK1eyZs0adu7cue+dm23sBh9WvR+rId4Kp/CWCayJ43jpnw/xp92DePrIvumujhALeyboYvIjmPwoXn6UksN7UVlZuc/9+/fvz5gxYxg7dixjx45lzJgxFBYWdnGtRTKfQp0IEA6HWbt2LStWrOCjjz5ixYoVbNmyZa/9LMuCBjsW3Or9rUEuqmeDMoU1aTwv/eNve613jYdH64+7v9YO4ckj+nVl1eQTGJ+HyY/g5UcxBVEGT+zH5s2b99kSPmjQoETAO/LIIxkzZoxm1ZAeT6FOeqTt27ezdOlSPvroIz766CPWrl27zw4MVpODVefHqmsJcA0+9TTNMPsLcXtyjbfXOoW8zGccL9aaVxjBFEQoO6aEbdu27bWfz+fj8MMPZ9y4cYlXaWlpGmoskj4KdZL1PM9jw4YNLF26NPHasWPH3jtGLOx4gKvzqwUuk00ez8vPfHKQa2tfoW5P8ZD3YO0g/n5EWYeqJqlnfB6mIIJXEMUURug9Op+qqqq99isrK0sEvPHjxzNixAh8Pl8aaizSNRTqJOuEw2FWrVrF0qVLWbZsGcuWLdtrXlPHcfB2tw9xhPQMXCYznzqGuU8+0OHjDybUtRUPeA/XDeDRsQM7fF5JvUSHjF4RvF4RRp48iHXr1uF57f/N8/LyOProozn22GOZMGECo0ePVsiTrKJQJ91eNBpl9erVLF68mPfee49ly5bt3bPOBasugF3rx66JBTnLUytcputskGvrUENdWwp43Y9xWlrzWoJe3mD/XgN8K+RJtlGok27HGMP69esTIe6DDz7Ye3qjiIVdE8Cq9WPXBmLPwmkMuG7BnHgMc59ITpBrqzOhrq14wHu0rj8Pjx2clDIl9Qwm9mxeURhTFCFvmH+vnxt5eXmMHz+e4447jokTJ3LYYYdpgGTpVhTqpFvYsWMHixYtYvHixSxevHjv52eisRBn7w5g1QSwGnUrtbtJVZiLS1aoa8vDKNx1UwcT8oqLi5k4cSKTJk1i4sSJlJSUpKm2IgdH7cySkSKRCEuXLmXhwoUsXLiQ9evXt9/BBas2FuLsmgBWvU8hTtr5MNzE2XOvbF3R8udroHczH510f1LOYWPhWPq7uDuysLAa/NgNftgG4RUGf34gFvJ6h8kZ5FBVVcXcuXOZO3cuAKNGjWLSpElMmjSJ8ePHawgVyThqqZOMsX37dt555x0WLlzIe++9R1NTU2KbbduY3U4sxO0OxJ6J0+3UrJKMlrql4RDnzr1iPyfYe1UyAt5j9X15cMyQTpUhmcdYBtMrgte7mVHTh7Bq1ap223NycpgwYQKf+tSnOPHEEykrU29pST+FOkkb13VZtmwZb731Fu+88w4bN25sv0PYxq4OYFfnxIKchhfJembqBOY+fv8hH7c0HOLcV67YZ3BrLXz/mzoa7hToeg7j8/B6h/H6NFN8VMFes1+MHDmSqVOncuKJJzJ27Fgcx0lTTaUnU6iTLhUKhXj33Xd58803efvtt6mpqUlss20bU+0kgpzVoFuqPc2htNYlghwcOMwlCj+4OhxKwFOo65kMBpPn4vVp5qhzR7J8+fJ2w6f07t070YI3adIk8vLy0lhb6UkU6iTlqqurefvtt3nzzTd599132w83ErFiLXG7WlrjNFtDj3Ywoe6Qw1yi8EOry8GEO4U6gZZWvD7NeMXN5I1o3+HC7/dz3HHHceqpp3LSSSfRu3fv9FVUsp5CnaTE9u3bee2113jjjTdYtmxZ+7kbQzbOrlzsqhysGr9a4yRhf6Hu/eZmzn/18jY7dqTwjtfLX9TMipPv32u9Qp3sKfEsXnEzZZP7sHXr1sQ227Y55phjOO200zj55JM1jZkknUKdJM3OnTt57bXXmD9/PsuXL2+3zar3xVrjqnRbVQ6s7XN17cJcZ39SJeEnXdtw91h9Xx4cOxT0I1T2w2AwQRevpJnDZgxk9erViW2WZTFu3DhOPfVUTj31VPr375/Gmkq2UKiTTqmsrOT1119n/vz57VrkLMuC3T6cypYWuWY9NCwHx5x4DL95+J7khblEwUkqh1i4+8Wxz6uVTg6JyYniljYz9uxhfPjhh+22jR07lunTpzNt2jS14EmHKdTJIaupqWH+/PnMmzePDz74oN2tVavGj12Zi7MrByusICeHzjdiGB/9tF9yWtYqfYz46YLWsocM5qOfD+h8wYCv2sfInyz45B1F9sEEXNySZsZ9biRLly5t9wfxcccdx/Tp0zn11FMpKChIc02lO1Gok4MSDodZsGABc+fOZcGCBUSj0cQ2q9aPXZmDU5mrICed5hsxjI+u69epMvYMc3udIwnhzl/tY4RCnSSB8bt4pc2MPXdYu0dXAoEAJ5xwAtOnT+dTn/qUBjuWT6RQJ/tljGH58uXMnTuXefPmUVdXl9hm1fuwd+bGgpxurUqS+UYO56Of9D3k4z4pzO11ng6GOwU6SRWT4+L2DTHktFI2bNiQWJ+fn8+pp57KzJkzOeaYY2KPuIjsQaFO9rJt2zZefvll5s6d267nFs02zs5c7B1B7EbNMCepc6itdf5KHyN+9k7HOi1YFr7Bgw4p3CnUSaol5qbtG6L42Hx27tyZ2DZo0CBmzpzJzJkz1cFC2lGoEwCam5v597//zXPPPceSJUtaN7hW7NbqjlysmoB6rUqXOJhQF9jpY/jP34l9SMaPsZaWD9+ggXx0/cAD7qpQJ13JEBsmxe0XInekRWNjIxB7/m7SpEnMmjWLk046iUAgkOaaSrop1PVw69ev59lnn2Xu3LnU1tYCLT1Xq/w4O3Kxd+VieQpy0rUOFOoSYS6VP7os64DhTqFO0sXYBq80xLgLR/L+++8n1vfq1YszzjiDWbNmMXr06PRVUNJKoa4Hampq4rXXXuPZZ59tP55cyMbZHsTZHlSHB0mrfYW6Lglze9pPuFOok0xgcqO4/UIUH5/X7vbs2LFjOe+885g2bRq5ublprKF0NYW6HmT9+vU8/fTTvPLKKzQ0NADgOA5muw97exC7WrdXJXPEO0ukJcztqU2481f7GHFdmusj0obBYHqHOfnK43jjjTeIRCIAFBQUMGvWLM4991yGDNGYij2BQl2Wc12Xt956iyeffLL9s3JNTkurXC5WRK1yknl8I4axds7A9Ae6NnyDB7Hm8qFqpZOMZXwebv8m+p1YSHl5eWL9xIkTOe+88zjxxBPx+dTRLVsp1GWpmpoann/+eZ555hkqKiqA2LyD7PDjlAfV6UG6B8vKmECXkIl1EtmDweD1CTP5W0eyYMGCxODGffv25bOf/Syf/exn6dOnT5prKcmmUJdl1q5dy5NPPskrr7xCOByOrYxYOBVBnIo8jSknItLDmBwXt6yRwvEBdu/eDcQGNp4xYwazZ89mxIgR6a2gJI1CXRYwxvDOO+/w6KOPtusNZdX7cLblYVeqB6uISE9nrFjP2dHnDWLFihWJ9VOmTOHCCy9k4sSJGtS4m1Oo68YikQivvvoqjz32GOvXrwdaOj5U+HDK87Bq/brFKiIi7RgMpjDCp64YzxtvvJG4NTtixAi+8IUvMH36dI15100p1HVDDQ0NPPvsszz++OOt3dijLbdYt+VpOBIRETkoJjeKO7CRwGGx4a4AiouL+dznPsf5559PYWFhmmsoh0KhrhuprKzkiSee4J///Cf19fWxlWEbZ2seTkUQy7XTW0EREemWjOPhljVRPDmYaCzIz8/n/PPPZ/bs2epU0U0o1HUD27dv5+GHH+b5559PjD9kNTo4W/Oxd+RiGd1iFRGRzos/dzdkZknisZ5AIMA555zDF7/4Rc01m+EU6jJYeXk5Dz30EC+++CLRaBQAq9aPsyUPuypHz8uJiEhKGAxecTOjPjeAlStXArFnts8880wuvvhiBg8enOYayr4o1GWgrVu38re//Y2XX34Z13UBsHb78W0uwK7Rw6siItI1DAZTFGbcJSMSA9jHw90ll1zCwIH7nh9Z0kOhLoOUl5dz//33M3fu3NYwVx3Atzkfu1ZhTkRE0scrDHPcpYezcOFCIBbuZs2axSWXXKLbshlCoS4D7Nq1i4ceeoh//OMfidusdlUAZ3M+dp3CnIiIZA6vMMwx3zyM//znPwD4/X7OPvtsLr74Yvr27Zvm2vVsCnVpVFdXx6OPPsoTTzxBKBQCWlrmNhZg1/vTXDsREZH983qFGffV4YnbsoFAgAsuuICLL75YQ6GkiUJdGoRCIZ544gkeeeSRxNAkVq0/Fub0zJyIiHQjXlGYI748hKVLlwJQWFjIxRdfzOc+9zlycnLSXLueRaGuC3mex8svv8x9992XGAfIavDhbMxXb1YREem2DAavT5ghZ/dJDIXSr18/vvnNbzJjxgwcR4PidwWFui6yePFi/vjHP7JmzZrYipAda5nbmaswJyIiWcFg8PqF6DM1J9F4MXLkSL773e8yefLkNNcu+ynUpdjGjRv53//9X95+++3YiqiFszk/Np2XBg0WEZEsZGyDO6CR4HgSjxmdeOKJfO9732PIkCFprl32UqhLkbq6Ov7yl7/wzDPP4LoujuNgNgfwbSrAimo6LxERyX7G53Hub0/jqaeewnVdfD4fs2fP5pJLLiE/Pz/d1cs6CnVJFn9u7k9/+hPV1dUA2LsCOBsKsZt8aa6diIhI1/OCUY777qjEGHd9+vThW9/6Fp/5zGf0vF0SKdQl0apVq7jzzjv58MMPgdj8rL51hdi71ftHRETE7dPMgJmFbN68GYCxY8dyzTXXMGbMmDTXLDso1CVBbW0t9957L//85z8xxoBr4WzSc3MiIiJ7Mlbsebvc8YaGhgZs2+a8885jzpw5FBQUpLt63ZpCXScYY3j11Vf5f//v/7F7924A7B25+DYUYIXVnCwiIrI/xu9yys8m8OqrrwJQXFzMFVdcwbRp07AsNYh0hEJdB5WXl/O73/0u8XyA1eDg+7iX5mgVERE5BF5RM/0/U8CWLVsAmDhxIldffTWDBw9Oc826H4W6QxSNRnniiSf4y1/+EpvayyM2RMmWfN1qFRER6QBjGdzBDTijI4TDYXJycpgzZw6f//zn1ZHiECjUHYK1a9dy2223sWrVKgCsGj++tb3Uq1VERCQJTG6U8ZcN57333gPgyCOP5Cc/+QnDhw9Pb8W6CYW6gxCNRnn44Ye5//77cV0Xoha+9QXY24OaDUJERCSJDAavfxM5EzwaGhrw+/187Wtf40tf+hI+nxpRDkSh7hNs2LCBm2++mZUrVwJg78rBt7YQK6LmYBERkVQxAZfjvz+aBQsWADB69Gh++tOfcthhh6W5ZplLoW4/XNfl8ccf57777iMcDsda5z4u1FytIiIiXcRg8PqGyJsUGz7M7/dz6aWXMnv2bGxbszPtSaFuH8rLy7nppptYunQpAHZVAN/aXhqmREREJA2M32XiVYcn5lE/7rjj+OlPf0q/fv3SXLPMolC3h3/961/89re/jU1A7Fr41unZORERkXSLP2vnGx8hFApRUFDANddcw+mnn57uqmUMhboWTU1N3HXXXbzwwgsAWLV+/KuKsJrVOiciIpIpvNwoo77SjxUrVgAwY8YMrr76avLy8tJcs/RTqANWr17NjTfeyKZNm7AsC3tjHs6mfLXOiYiIZCBjGS66dxYPPvggnucxZMgQbrzxxh7fiaJHhzpjDE899RT/8z//QyQSgWYb/+oi7BrNCiEiIpLpvMIwvaf72LlzJ4FAgO9///ucffbZPXaasR4b6pqamrj99tsTc87Zu3LwremFFVVvGhERke7C+DyO+8FhvPPOOwBMnz6da6+9tkfeju2RoW7Tpk1cf/31rF+/Hgw46wtwtuXpdquIiEg3ZDC4gxphVBOu6zJkyBBuuummHjcTRY8Lda+99hq33norjY2Nsdutq4qwa3W7VUREpLtrezs2GAzy85//nJNPPjnd1eoyPSbUua7LPffcw6OPPgrE5m31ryzSzBAiIiJZxPg8jvrOYJYsWQLA1772Nb72ta/1iMGKe0Soa2xs5MYbb0wMWuhsycPZUKDbrSIiIlnIWIZzfncyTz75JABTp07l5z//Ofn5+WmuWWplfagrLy/nJz/5Sez5OQ98q3vhVAbTXS0RERFJMbdfE/a4EOFwmKFDh3LbbbcxaNCgdFcrZbK6LXLp0qVcdtllsUAXtvEvLVagExER6SGcHUHMogL69u3Lpk2b+Pa3v83y5cvTXa2UydpQN3fuXH7wgx+we/durHofgfeLsev96a6WiIiIdCG73k/Nc4YxY8ZQU1PDD37wA+bPn5/uaqVE1t1+NcbwyCOPcPfddwNgV+bgW12E5en5ORERkZ7K2IZJPxzNW2+9BcBll13GRRddlFUDFWdVqHNdlz/84Q+JByPVIUJERETiDIbP3nkKTzzxBACf/exnueqqq3Cc7BgJI2tCXXNzMzfddBOvvfYaAM66AnzbsruXi4iIiBy66IBGzOgGPM/j05/+ND/72c8IBLr/mLVZEeoaGhq47rrreP/991t6uBbhVOamu1oiIiKSodySENbRjUQiESZNmsSvf/1rgsHu3Zmy24e6uro6rr32WlasWAFRC/+K3tg13T9ti4iISGp5Rc34JjfT1NTEUUcdxW233UavXr3SXa0O69ahbvfu3VxzzTWsWbMGIhb+5X2wG9TDVURERA6OVxAh9+QIdXV1jBgxgt/97neUlJSku1od0m1D3a5du7jqqqvYsGFDbAy65X2wG33prpaIiIh0M15elF5nxLLFsGHDuPPOO7tlsOuW49Tt2LGDK6+8Mhbomm38yxToREREpGPsRh91L0G/fv3YuHEjP/jBD6iqqkp3tQ5Zt2upq6qq4oorrmDz5s0Qsgks64PVrEAnIiIinWNyoxR9xmbnzp0MGzaMu+66i+Li4nRX66B1q5a6mpoarrrqqjaBrliBTkRERJLCCvmoedGjb9++3bLFrtuEuvr6eq699trYPK7NNoHlfbCas2OwQBEREckMbYPdhg0buPbaa6mrq0t3tQ5Ktwh1jY2N/OhHP2LVqlWJThFWSC10IiIiknxWyMfuFz2Ki4tZu3Yt1113Hc3Nzemu1ifK+FAXjUa54YYbWL58eWwcug97Yzcp0ImIiEjq2CEfdf+C/Px8li5dyi9+8Qui0Wi6q3VAGR3qjDHccccdLFq0CFyNQyciIiJdx27wE14QIBAI8Pbbb/Ob3/wGz/PSXa39yuhQ99e//pUXXngBDPhWFmHXK9CJiIhI17FrA3jvB3Ech5deeol777033VXar4wNdc899xz3338/AL61hTjVOemtkIiIiPRITlUu1op8AB5++GFefPHFNNdo3zIy1L377rv89re/BcDZlI+zPS/NNRIREZGezNkR5JJLLgHg9ttv5/33309vhfYh4wYf3rp1K5deeil1dXXYO3Lxre6FhZXuaomIiEgPZzBMvf4o5s+fT69evfjTn/7E4MGD012thIwKdY2NjXznO99h/fr1WLV+/Mv6YBkFOhEREckMxjaM/EYxK1euZOjQofzpT3+ioKAg3dUCMuj2qzGGm2++OTG4sH9lkQKdiIiIZBTLs1j3QCV9+/Zl06ZN3HLLLWRK+1jGhLoHH3yQf//73+ARC3RhzRYhIiIimceKOOx+xcXv9/PGG2/w2GOPpbtKQIaEusWLF/OXv/wFAN/HvbDrAmmukYiIiMj+2fV+rrjiCgDuueeejOg4kfZn6qqrq/nGN77Brl27sCty8a8tSmd1RERERA6KwXDqL4/hlVdeobi4mD//+c+UlJSkrT5pbanzPI+bb76ZXbt2YTU6+Nb1Smd1RERERA6ahcXrv/yAESNGUFVVxU033ZTWGSfSGur+/ve/s3DhQvBiM0ZYnjpGiIiISPdheRZbnqglJyeH//znPzz55JNpq0vaQt3q1au5++67AfCtK8Ru1BRgIiIi0v3YTT6++93vAnD33XfHRvJIRz3ScdJIJMItt9yC67rYlTnYFcF0VENEREQkKf54wcNMmTKFcDjMr3/9a8LhcJfXIS2h7m9/+xsff/wxRCx8H2vGCBEREeneLCyW/PfHFBUVsWbNGv761792eR26PNStWbOGv/3tb0Bs+BIrkhGjqoiIiIh0ihVxaFgQW37sscdYs2ZNl56/SxNVNBrl1ltvbb3tWpnTlacXERERSSmnKpfTTjsN13W5/fbbcV23y87dpaHuqaeeiqXWiIXv40LddhUREZGs8/ZvlpOfn8/KlSt55plnuuy8XRbqKisrW2eN2FCIFdE0YCIiIpJ9rLDDZZddBsRmm9ixY0eXnLfLQt3dd99NY2MjVp0Pe3tuV51WREREpMv94XMPcdRRR9HU1MT//M//dMk5uyTULV26lJdffhkM6u0qIiIiWc/CYvVD5ViWxbx581i+fHnKz5nyUOd5HnfddVfsZNuD2PUaZFhERESyn93gZ9asWQD88Y9/xBiT2vOltHRg/vz5sc4RUQvfhoJUn05EREQkY7xyw0KCwSAffvgh8+bNS+m5UhrqotEo9913HwDO1jysqMakExERkZ7DijhcdNFFQKx/QSpnmkhpynr++efZunUrhG2crXmpPJWIiIhIRvrbN5+ltLSUiooKXnjhhZSdJ2Whrrm5mQceeAAAZ3M+lqdWOhEREel5LM/iy1/+MgAPPfQQkUgkJedJWdJ67rnnqKyshJCNUxFM1WlEREREMt7/XvgoJSUl7NixgxdffDEl50hJqItGo/zf//0fAL4t+VhGQ5iIiIhIz2UZK/Fs3UMPPUQ0Gk36OVIS6l5//XUqKiogYmHvUCudiIiIyN1f+j+Ki4upqKjglVdeSXr5SQ91xhgeeeQRAJxteVieWulERERELM9i9uzZADzxxBNJH7cu6aFu8eLFsXHpXAunXD1eRUREROL++vWnyMnJYc2aNXzwwQdJLTvpoe7pp5+OFbw9V+PSiYiIiLRhRW1mzJgBxFrrkimpqauyspK33noLAKdCrXQiIiIie3rpl28D8Oabb8ZGCkmSpIa6F154Add1sWr92I2+ZBYtIiIikhXsRh/jx4/H8zxeeuml5JWbrIKMMTz//PMAGpdORERE5ABWPLURgBdffDFpHSaSFuo+/PBDysvLwbWwK3OTVayIiIhI1rErcwgGg2zevJnly5cnp8yklAL861//ihW4K0fDmIiIiIgcgOXanHrqqUBrhuqspIS6aDTKvHnzYgXuVCudiIiIyCd59bfvALFJGzzP63R5SQl1y5Yto7q6OjaDxO5AMooUERERyWr27gAFBQXs2rUrKbdgkxLq3n471jXXrsrRPK8iIiIiB8EyFlOnTgXgtdde63R5SQl1CxYsiBVWlZOM4kRERER6hH/dGbsFu3Dhwk6X1elQt3nzZjZt2gQeuvUqIiIicgjs3QEcx2Hz5s1s27atc2V1tjLvvfceAFatH8vVtGAiIiIiB8tybY466igA3n333U6V1ekUtmTJklhBNWqlExERETlUkydPBtIc6owxfPDBB7GCFOpEREREDtkDVz4JwPLlyzs1u0SnQt3mzZupqqoCD6w6f2eKEhEREemRrHo/Pp+Pqqqq2OxcHdSpULdy5cpEZTSUiYiIiMihszyLww8/HKBT49V1KtStXr06Vki9rzPFiIiIiPRo8c4SK1as6HAZSQl1Vr1uvYqIiIh01NM3vQzAunXrOlxGh0OdMYa1a9cCYDWopU5ERESko+JZat26dR3uLNHhUFddXU19fT0YsBoV6kREREQ6ymryYds2NTU17Nq1q0NldDjUbd68ObbQbKuThIiIiEgnWJ7FgAEDANiyZUuHyuhwqIuf0GpSK52IiIhIZ8VDXUeHNelwqIvPT2aFnI4WISIiIiItysrKAKioqOjQ8R0OdfH7vVaz5nsVERER6awX/zAfSEOoq6qqAsCKqKVOREREpLPimSqesQ5Vp0MdYbXUiYiIiHRaJNbxtLa2tkOHdziRxU9oRRTqRERERDornqlqamo6dHyHE1lTU1NswdVwJiIiIiKdFo3Fsi5vqYuHOstTqBMRERHprHimCofDHTq+Q6HOdd3WE6qlTkRERKTzvNhbJBLp0FRhHQ51CR2bnkxERERE9sEY0/qY2yHoUKizbXWOEBEREUmVjtyC7Xw6091XERERkc4zraHK5zv0aVjVUiciIiKSYYLB4CEf0+FQFwgEYh8cPVQnIiIi0mlOrKdETk4OjnPoM3Z1uMktPz8fANNSARERERHpOOOLNZTl5eV16PgOh7rECX1qqRMRERHpNCdNoa6goABoTZUiIiIi0nHGF7v7WVhY2KHjOxzqSkpKYgt+98A7ioiIiMgnC8RCXWlpaYcO73Co69u3LwAmR8/UiYiIiHSWaQl1iYazQ9ThUBdPkSagljoRERGRzjrz26cCaQh1/fv3B8DkKtSJiIiIdNa2bdsAGDBgQIeO73CoGzp0KAAmqFAnIiIi0lmbNm0CYMiQIR06vsOhLnHCHE9j1YmIiIh0gnE8qqqqgNaGs0PV4VBXWFhIcXFxrCJqrRMRERHpsHiWKi4uTgwbd6g6NYnryJEjYxXJj3SmGBEREZEezRTEstSoUaM6XEanQt3YsWMB8AoV6kREREQ66szvnwLAmDFjOlxGp0LdEUccAYApjHamGBEREZEebdWqVUBrg1lHJKWlzuRFMbamCxMRERE5VMbxWL9+PZDGlrq+fftSVlYGFphe4c4UJSIiItIjeb0iuK7LwIED6devX4fL6VSoAzjuuONiFeqtUCciIiJyqGb/+jMATJgwoVPlJC/UFSnUiYiIiByqJUuWAK2ZqqOSFupMQRTj0yDEIiIiIgfL+N1EJ4m0h7rS0lJGjx4NFnjFzZ0tTkRERKTH8IrDGGMYM2YMpaWlnSqr06EO4KSTTopVrEShTkRERORgnfD1owGYOnVqp8tKbqjr3ayhTUREREQOgrEN//nPf4AMCnWjRo2KDW3i6BasiIiIyMHwikOEQiEGDBjQqenB4pIS6izL4owzzgDA69eUjCJFREREstqkrx8FwBlnnIFlWZ0uLymhDmgNdb3D6gUrIiIicgDG57Fo0SKgNUN1VtJC3fDhw2NTW9jg9Q0lq1gRERGRrOP2DeG6LocffjjDhg1LSplJC3UAM2fOBMAta8SgDhMiIiIiezIYBk8rBuDss89OWrlJDXVnnnkmubm5mHwX0yuSzKJFREREsoLpFWHjxo0Eg8Gk3XqFJIe6goKCROXcAY3JLFpEREQkK5z8g2MBmD59Ovn5+UkrN6mhDuC8884DYgMRm4Cb7OJFREREui2T4/L6668DrZkpWZIe6kaPHs2xxx4LNriD1FonIiIiEnfOrafiui4TJ06MTbOaREkPdQBf/vKXAXDLmjS8iYiIiAixYUyee+45AC666KKkl5+SUDdp0qTY8CaOwR2o1joRERGRi/50Fs3NzYwZM4bjjz8+6eWnJNRZltXaWjewEeOotU5ERER6LuN4PPnkk0DsjmYyZpDYU0pCHcApp5zC0KFDwWf0bJ2IiIj0aF/4n5nU1dUxdOhQTj755JScI2WhzrZt5syZA8Q6TBi/esKKiIhIz2P8Lo8//jgAl156KY7jpOQ8KQt1AKeeeipHHHEEOIbo0IZUnkpEREQkI8265SRCoRBHHXVUylrpIMWhzrIsvvOd7wDglTXh5UZTeToRERGRjGJyozz77LMAXHbZZSl5li4upaEOYMKECXzqU58CC9wR9ak+nYiIiEjGmPT9sbiuy5QpU5gwYUJKz5XyUAfw7W9/G8dx8Eqacfs0d8UpRURERNLK7dPMW2+9heM4fO9730v5+bok1I0YMYLZs2cDEB1Zh7FNV5xWREREJC2Mbeg7PQjAhRdeyPDhw1N+zi4JdQBf+9rX6Nu3LwRd3MHqNCEiIiLZ66J7ZlFeXk7fvn356le/2iXn7LJQl5eXxxVXXAGAO7hBnSZEREQkK3m5UR555BEALr/8cvLy8rrkvF0W6iA2xMnkyZPBhujoWgy6DSsiIiLZw2A4/KtlhMNhJk2axGmnndZl57aMMV2arMrLy/na175GU1MTzvoCfFvzu/L0IiIiIikTHdSAO6Ke/Px87r//fvr3799l5+7SljqAAQMGtN6GHVaPF9RtWBEREen+vGAUZ0wYiN127cpAB2kIdQBnnXUWU6ZMid2GPbxGt2FFRESkWzMYRl3cj3A4zJQpU5g1a1aX1yEtoc6yLH784x9TWFiIKYziagoxERER6ca+cPeZrFixgoKCAn70ox+ldOaI/UlLqAMoLS3l6quvBsAd0oBXpEGJRUREpPvxejfz0EMPAXDttdfGhnBLg7SFOoDTTz+dc845ByyIjKnF+N10VkdERETkkBi/S8HJFsYYzj33XKZNm5a2uqQ11AFceeWVjBw5EgIekTF6vk5ERES6B4Nh3HeGUl1dzWGHHcbll1+e1vqkPdTl5ORw4403EgwGMb0jer5OREREuoUv3jOTxYsXEwwG+a//+i9ycnLSWp+0hzqAoUOHcs011wDgDm3ALQmluUYiIiIi++eWhHjwwQcBuOaaaxg2bFiaa5QhoQ5gxowZzJ49G4Do4bV4+ZE010hERERkb15+BN+xsQ6eX/jCF5gxY0aaaxSTMaEO4Dvf+Q4TJ04ExxA5YjfG76W7SiIiIiIJxudR8pkAoVCISZMm8e1vfzvdVUro8mnCPkldXR2XXXYZW7Zswarx41/eB8t0/VgvIiIiIm0Zy3DEdwfwwQcfMGjQIO655x4KCwvTXa2EjGqpAygsLOSWW26hoKAAUxQhOrpWPWJFREQkrQyGk28YzwcffEBeXh633HJLRgU6yMCWurhFixbx4x//GNd1cbbk4duQWRdOREREeo7o8DrcwY04jsPtt98ee1wsw2RcS13c5MmT+clPfgKAO7iR6EANdSIiIiJdLzqwAXdwIwDXXXddRgY6yOBQB3DmmWdy2WWXAeCOrMct1VAnIiIi0nXc0hDuyHoAvv3tb2dMT9d9yehQB3DRRRdxwQUXABA9vAa3j+aIFRERkdRz+zRjjooFugsuuIAvfelLaa7RgWV8qLMsi8svv5xPf/rTYEP0iN14RQp2IiIikjpe72asCQ24rsv06dO5/PLLsazMHo0j40MdgOM4XH/99UydOhVsiBxZg9crnO5qiYiISBbyeoWxj28iEolw8skn89Of/hTHcdJdrU+Usb1f9yUcDvOzn/2MhQsXgmvhX94buy6Q7mqJiIhIlvAKw/hOCNHU1MQJJ5zATTfdhN/vT3e1Dkq3CnUAzc3NXHfddfznP/+BqIX/QwU7ERER6TyvMEzgxDANDQ0cf/zx3HrrreTk5KS7Wget24U6gFAoxI9+9CPef//9WIvdR72xaxTsREREpGO8omacSSFCoRATJkzgtttuIxgMprtah6RbPFO3p9zcXG677bbWeWKPqlavWBEREekQt08z1vGNhEIhJk+ezG9+85tuF+igm4Y6gGAwyC233MJJJ50U6xV75G7cEo1jJyIiIgfPLQlhjq4jHA5z8sknc/PNN5Obm5vuanVIt7z92lY0GuXmm2/m1VdfBQO+tb1wtne/dC0iIiJdy+3fiDemAc/zmD59Oj/96U/x+XzprlaHdftQB+C6Lr/97W957rnnAHA25uNszscis8eTERERka5nMLhDG3CHxqYgPeuss7j22mu7xbAlB5IVoQ7AGMO9997LQw89BIBdkYvv415YRsFOREREYoxliI6qxesfe2Trq1/9Kt/4xjcyfmDhg5E1oS7umWee4c4778TzPKyqAP5VRVhut310UERERJLE2B7HXjWShQsXYts2V199NZ/97GfTXa2kybpQB/Dmm2/yy1/+kubmZqx6H/6PemOFu3eTqoiIiHScCbgMv7iY1atXk5OTw3/913/FZqrKIlkZ6gA++ugjfvKTn7B7925otvGv6I1d3z1GhBYREZHk8QoiFE6DqqoqioqKuO222zjyyCPTXa2ky9pQB7B161auu+46NmzYAB741vTC2amesSIiIj2F27cJe3yIcDjMiBEjuOWWWxg4cGC6q5USWR3qABoaGvjVr37F22+/DYCzOQ9nY4F6xoqIiGQxg8EdVo87pBGAqVOncv3115OXl5fmmqVO1oc6iA158uc//7m1Z2xVAJ86UIiIiGQl43gcf/UoFixYAMDFF1/MnDlzsO3s/r3fI0Jd3Kuvvsqtt95KOByGJgf/yiLsBj1nJyIiki28/Ails3IoLy8nEAjwox/9iBkzZqS7Wl2iR4U6gFWrVnH99ddTUVERe87u40Ls7UHdjhUREenGDAavfxP2Uc2Ew2EGDhzIjTfeyOGHH57uqnWZHhfqAGpra7n55psTz9nZ21sGKvYU7ERERLobYxuih7UOKHziiSfys5/9jMLCwjTXrGv1yFAH4HkejzzyCPfdd19soOIGH76VRdhN3XfONxERkZ7GC0YZMruIdevWYds2c+bM4aKLLsr65+f2pceGurglS5bwy1/+kqqqKnAtfOsLsCt0O1ZERCSTGQxeWRP2kbHbrX369OEXv/gFxx13XLqrljY9L8bu4dhjj+W+++5j4sSJ4Biio+qIHlGD8XnprpqIiIjsg/F5TLluDNFRdYTDYaZMmcJf//rXHh3oQC11CZ7n8fjjj3P33XcTjUZjs1Cs7oVdk5PuqomIiEgLryhM0acdKisr8fv9XHbZZXz+85/vkbdb96RQt4fVq1dz4403smnTJgCcLXk4mwrUiUJERCSNjB0bTNgb3IQxhqFDh3LDDTf0qN6tn0Shbh9CoRB/+MMf+Oc//wmA1ejgW9MLuy6Q5pqJiIj0PF5hmLKzC9i8eTMA55xzDpdffjnBoKb+bEuh7gDeeustbr/99lgnCgPO1pYpxoxa7URERFLNWAZ3aD1mWAjP8ygtLeVHP/oRJ5xwQrqrlpEU6j5BbW0t//3f/83cuXOBlla71UXY9ZqJQkREJFW8ggiDzuvFhg0bADjzzDO58sore9zYc4dCoe4gvfHGG/z2t79t32qnZ+1ERESSytge7rAGzJBY61xxcTHXXHMNJ598crqrlvEU6g5BTU0Nd911F6+++mpsRcjG93EvnGr1kBUREekst08zJdNy2L59OwDTp0/n+9//PkVFRWmuWfegUNcBCxYs4Pe//31s/ljA3pmDb10hVsRJc81ERES6H+N3iY6sw+vbDEBZWRnXXHMNU6ZMSXPNuheFug5qamriL3/5C0888QSu60LUwrdBs1GIiIgcrPisELkTDPX19TiOw+zZs/n617+unq0doFDXSatXr+aOO+5g5cqVAFh1PnzrCjX8iYiIyAF4hWGGf76UNWvWADBmzBh++MMfaty5TlCoSwLXdXnmmWe47777aGhoAMDenotvQ4FuyYqIiLRh/C7R4fV4/UMAFBQU8M1vfpPzzjsPx9HvzM5QqEuiqqoq7rnnHl544YXYiqiFszkfZ1uexrYTEZEezVgGd0AjOeM8GhsbATjrrLO49NJL6dOnT5prlx0U6lLgo48+4s4772y9Jdvo4KwvxK4O6Hk7ERHpUQwGrzjMwJm9ElNwjh07lh/84AcceeSRaa5ddlGoSxHP83jxxRe5++672b17NwDWbj++9YXYDRq4WEREsp+XH2HcN4axZMkSAIqKirjsssuYNWsWtm2nuXbZR6Euxerq6njooYd48sknCYfDANg7cvFtLMBq1rMDIiKSfUyOS3RYPV6/2HNzgUCA2bNn8+Uvf5mCgoI01y57KdR1kYqKCu69915eeeWV2AoPnG15OJvzsVz9tSIiIt2fcTzcwQ04h0UTDRkzZsxgzpw5lJWVpbl22U+hroutXLmS//3f/000RROxcLa2dKbQlGMiItINGdvgDmwkOA7q6+sBOOaYY/je977H2LFj01y7nkOhLg2MMSxYsIA//elPiYmKCds4W/JxyoPqKSsiIt2CsQxuWRO9Jvqorq4GYMSIEcyZM4eTTjoJy9Lvs66kUJdGruvy6quv8te//pVt27bFVoZsfJvzsXco3ImISGYyGLz+IYqn5rJjxw4ABg0axNe//nVOP/10jTeXJgp1GSAajfLCCy/wwAMPsHPnztjKJicW7nbmKtyJiEhGMJbB69dEv1MLE40Rffv25atf/SqzZs3C5/OluYY9m0JdBmlubuYf//gHDz30UGIYFEI2vi352NvVciciIulhLIPXv4mSqXls374diA1P8pWvfIVzzz2XnJycNNdQQKEuIzU2NvKPf/yD//u//6Oqqiq2srnlmbvtQXWoEBGRLmFsg1vWSO9JOezatQuAkpISvvSlL3HOOecQDAbTXENpS6EugzU3N/Pss8/y6KOPtt6WDds4W/NwKoIaCkVERFLCOB7ugCYKjnGoqakBoF+/fnz5y19m1qxZapnLUAp13UA4HObFF1/k4YcfpqKiIrYyauFUBGNDoYT1QKqIiHSeCbi4AxvJHWPR0NAAwMCBA7n44os588wz8fs1I1ImU6jrRqLRKK+88gqPPvpo61AoHtiVuThb8zT9mIiIdIiXH8Ed1Ig1IILrugAMHTqUr3zlK5x++unqANFNKNR1Q57nsXDhQh577LHWQYwBqzqAb2se1u4AFnruTkRE9s9gML3DRAc3YnqHE+snTJjAF7/4RU444QTNz9rNKNR1c6tWreKxxx7jtddeS/x1ZTX4cLblxYZDUacKERFpw9gGr2+IITNKWL9+PQCO43DaaafxhS98QTNAdGMKdVmivLycJ554gueee46mpqbYyoiFsz0Ym6WiWU3nIiI9mclxcQc0kn+kj9raWgCCwSDnnHMOn//85zU3axZQqMsydXV1PPfcczzzzDOUl5fHVhqwqwOxThW6NSsi0mMYDF6fMN6ARkxJhPiv/LKyMs4//3zOPvtsCgsL01xLSRaFuizlui6LFi3iqaeeYuHChYn1VpODXR6MjXenIVFERLKS8Xm4/ZsoO6mIrVu3JtZPmjSJ888/n0996lOayisLKdT1AJs3b+aZZ57hxRdfpL6+PrbSbek1uz2IVetX652ISDdnMJjCCG5ZE/6hhubmZgAKCgr4zGc+w3nnnceQIUPSXEtJJYW6HqSpqYlXXnmFp556inXr1iXWW40O9vYgzo5crIj+chMR6U6M38XtF2LQqcVs2rQpsX7UqFGcf/75TJ8+XTM/9BAKdT2QMYaPPvqI5557jnnz5rV2rPDArsrB3h7ErtazdyIimSrxrFxZE1a/aGL0g9zcXD796U9z9tlnM27cOCxLP8d7EoW6Hq6xsZF58+bx/PPP8+GHH7ZuaLZxtgexd+ZiN6nnrIhIJvByo3j9m+hzbB6VlZWJ9UceeSRnnXUW06ZNIz8/P401lHRSqJOEdevW8fzzz/Pyyy8nursDWHU+7B1BnMpcrIg6V4iIdCXj93BLQ3j9mjCF0cT6oqIizjzzTM466yxGjBiRxhpKplCok72Ew2HeeOMNXn75Zd59991Es358aBR7Ry52lQY2FhFJFWMbvJIQXt8QVl838XPYcRwmTpzIWWedxdSpUzUXq7SjUCcHVF1dzbx585g7dy4rVqxo3eBa2JU5ODtzNfadiEgSxKftcvuFyBlmtT7vDIwdO5YZM2Ywbdo0iouL01hLyWQKdXLQNm/ezNy5c5k7d27rwMYAEQt7Vy5OZY4CnojIITAYTFEYt7SZXkfksHv37sS2gQMHMmPGDM444wwNRSIHRaFODpkxhuXLlzN37lxee+01ampqWje2DXg1ASyjgCci0paxWoNc4ZhAu5+hRUVFTJs2jRkzZnDkkUeq96ocEoU66ZRoNMr777/P/Pnz+fe//72PgJcT62ChgCciPZixDF7vMF5piPxRfurq6hLbioqKOOWUUzj11FM57rjj8Pk04oB0jEKdJE00GuWDDz5IBLy2txGIWrEx8KpyYmPgaYoyEclyxvFiY8kVN5M30tc6ow/Qp08fTjnlFE477TSOOeYYBTlJCoU6SYl4wHvttdf497//TXV1detGD6zaAM6uWMizmjWLhYhkB5Pj4hY345U0Y5e09loFKC4u5pRTTuHTn/40Rx99tOZelaRTqJOUc12XFStW8Oabb/LWW2+xcePGdtutBh92PODV+9TRQkS6jfh8q15xrEXO5EfbbR86dChTp05l6tSpHHXUUQpyklIKddLlNm/ezFtvvcVbb73FsmXL8DyvdWPYwt4du0Vr787RYMciknGM38Pr3YzXJ0zRmGC7OxGO4zB+/HimTp3KiSeeqF6r0qUU6iStampqeOedd3jzzTdZtGhRu3GZoGU2i+oc7N0BrDq/OluISJczVktrXJ9YkDMF7Vvj8vLymDJlClOnTuWEE06gV69eaaqp9HQKdZIxIpEIH374IQsXLmTRokWsWbOm/Q5RC3t3INaKVxOAkKNbtSKSdAYDuW6st2qfMDmD7b3+4Bw9ejSTJk1i8uTJjB8/XjM7SEZQqJOMtWvXLt59910WLVrEu+++2364FICQjV0TSLzU4UJEOsrkuHhF4cSLXK/d9qKiokSImzRpEiUlJWmqqcj+KdRJt+C6LqtXr2bRokX85z//4cMPPyQabX8LhCYnFvB2+2MhL6KQJyL7ZgJtQlzvCOS67bY7jsNRRx3F5MmTmTJlCqNHj8a29YyvZDaFOumWQqEQy5YtY8mSJSxevJhVq1a1GzoAwGp0sGoD2LV+7Fq/bteK9FCJ26m9IniFEUxRGJO3d4gbM2YMxx57LMceeyzjx48nGAymqcYiHaNQJ1mhoaGBpUuXsnjxYhYvXszatWvZ61s7bGPX+rFq/di1AawGnzpeiGQhYxlMfhSvVxjTK4LXKwKB9rdTLcvi8MMPT4S4o48+mvz8/DTVWCQ5FOokK9XW1vLBBx+wfPlyli1bxsqVK/e+XeuCVdcS8Or82HV+rKhur4h0N8bnxVrgekXweoUJ9LNpbm5ut4/P52PMmDGMGzeOo48+mgkTJlBYWJimGoukhkKd9AjNzc2sWrWKpUuXJoJe27kXE0J2LNzVt4S8eh+Wp6AnkimM7WEKorEQVxDBK4zu9TwcQK9evRg3bhzjxo1j/PjxjB07lpycnDTUWKTrKNRJj+R5Hps2bUqEvBUrVrBp06a9b9kasBp9sfHyWsKe1ajbtiJdIX4bNRbeYiHOKjTtByxvMWTIkESAGzduHEOHDlXHBulxFOpEWtTX17Nq1SpWrFjBypUrWbFiBTt37tx7Rw+sJl/smbx6H3aDP7asW7ciHWZ8Xuw5uPxIS5CL4hSx92MTQN++fRk7dixHHHEERxxxBIcffrhupYqgUCdyQJWVle1C3urVq6mtrd33ziG7NeDFX+pxK9JOoidqfjQW3vIjePnRvcaFiyssLGTs2LGJEDd27FhKS0u7uNYi3YNCncghMMawY8cO1q5dy9q1a1m9ejVr166lvLx83we4La16jfGXg93o0/AqkvUS4S0vislzMXnR2CsYhf0MITlgwABGjRrF6NGjOeywwxg9ejT9+/fHsvR/ReRgKNSJJEFdXR0ff/wxa9asSQS+jRs3Eg6H933AnmGvyYm9Qj4sT7/ApPswtsHkRjFBFxNsH+DYzxMJgUCAESNGJILbqFGjOOywwygoKOjayotkGYU6kRRxXZfy8nLWr1/Phg0bEq8Dhj2AkB0Ld22DXpMTu5WrDhqSBsYymNyW0BZ02y2Ts+/bphALb8OGDWP48OHtXgMGDMDn83XhVyDSMyjUiXSxtmFv48aNbNiwgS1btrB58+Z9D7MSZ4DmlnAXsrHiyy3vhG3d0pUOMRgIeLGwltMS2nK82HIwip3HPnucxhUUFDB48OC9AlxZWRmOo+n6RLqKQp1IBqmpqUkEvLbvW7Zsoamp6cAHe2A1O7Hn9ZodrOaW4Be2Y2EwbINrKfj1MAYDjsEEPAi0CWs5LiY3tkyOu99bpXHBYJDBgwczZMgQBg8e3O5VVFSk595EMoBCnUg3YIxh165dbN26lYqKCioqKigvL6e8vJyKigp27Nix19y3++RaWM12rFUv3BL8wi2tfGEbIjZWROGvO4iHNfwexu9hArEXOW7LshtrfcvxYvt9Asdx6NevH2VlZQwYMID+/ftTVlbGwIEDGTx4MMXFxQpuIhlOoU4kC0SjUXbt2tUu6G3fvp2dO3dSWVnJzp07qa+vP/gCPRIBr13Yi79HbayIFXuPtrzreb9OMZYBn4fxtXlvCWyJ4Ob3YkHNF3v/pNa1tgoKCigtLaW0tJR+/foxYMAAysrKEq+SkhI95ybSzSnUifQQTU1NVFZWJkJe28C3a9cudu/eTXV1NY2NjR07gUv7kNfyjmthuRa4LcueBVELvPj61ne8lpch41sKTaySYLfc3mx5xzEYp3UZu+3nPUJbm8/7G+bjkwSDQYqKiigpKaFv376J4FZaWtruczAYTOrXLyKZR6FORNoJhUKJgBd/r6qqSixXV1dTX19PXV0ddXV11NfXH/Ah+g7zaA15HrGWwJblePCjpXXQiv8UMy3rod12DCQyYnznxOeWHeKHWi372MQCW8uy2ce6ZOdOy7IoKCigsLCQgoICevfuTZ8+fejdu3diue3n3r17K6yJSIJCnYh0iud5NDQ0tAt58eXa2lqamppoamqisbHxE5e7648jx3EIBoOJV25ubrvP8VdeXl670Nb2vbCwkPz8fM1XKiIdplAnIhnBGEMkEiEcDhMOh9stt/0ciURobm4mGo3ieR6e52GMwXVdjDGJdZ7ntVtn2zaWZbV7j7/2XO/z+QgEAvj9fvx+/wGX4y91IhCRdFOoExEREckCaucXERERyQIKdSIiIiJZQKFOREREJAso1ImIiIhkAYU6ERERkSygUCciIiKSBRTqRERERLKAQp2IiIhIFlCoExEREckCCnUiIiIiWUChTkRERCQLKNSJiIiIZAGFOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIllAoU5EREQkCyjUiYiIiGQBhToRERGRLKBQJyIiIpIFFOpEREREsoBCnYiIiEgWUKgTERERyQK+dFdAJM4YQygUSnc1REQOSW5uLpZlpbsaIgp1kjlCoRBnnnlmuqshInJIXn75ZYLBYLqrIaLbryIiIiLZQC11kpECi/phmZa/OSwby7bAssG2wLKw7Pi2lvWWBbaFFd8nsc1KHJN4QZt1dvvtsQMT64xltf7p06aMxHqr9Vxt1xkrVkximx0rN7beSmyLH2Na1iW2Q2sZdsv+8e20P0e7Y1qqb+x9bGu3P+3q2LrO2mvbXsfQth57bGc/6/dT3v7qsdcxByo3sd7sfXybYxLb25RlWtbT5rjYNtOmPrHtVtttiX3j20yiTKvt/pZJbEt8i8XXx4tr2Sf2rWASn+PH2C2fY9tin+PHJbZZBovW4+yWdYkXJnGcbdFufex4r/U44vt7OPFjWj63luUlynPalO8QW+/Ey0vs6+HEyyReD691f1rLjpXpYRM7f2xbrDynZZ2FhxM/vs0xDsSOI3ae+PWIf46dy7Qs07LNYLdcFwcLG3Ba/rFtrJZ1Fo5lYWNjtfzLRcIOF3yrDJFMolAnmcm1Wn68Egt1tASwlt+WrdsssFsTjBVLSC2FxH+72+z1W7s1MbVPEvEy9/otzx7r2p6Dfazb8zhaw1ybULfXujYhrO3nPavYfv99HGMfYNv+voy96rGfL/tA2/Z3qTpaXpsy9xX4Uhrq9rWdPT+bRNlt69H2nPvalgiBtNmn7f57HWP2cS7T7tU21LUGxZbX/rYRD36xItsGwHj4g3g4IxGK2m6LhTqvNRRZbUNRbNm2rFjganknsWwljouVQ0uZ8WNpOa5l/b62tTnGaQmkTqKe8VBnPjHUtS3PiV8P2q+zaVvHNv+GIhlCt19FREREsoBCnYiIiEgWUKgTERERyQIKdSIiIiJZQKFOREREJAso1ImIiIhkAYU6ERERkSygceokMzkGY2IDjsbGXbPavFt7DAgcf2+zTNt1ps3yQWxrM2hZ6xCx+1vf+m7aLdPuOANg4utbyzRYYEgc23Z7oox2g6u1rcs+Ppt2Vdrjeuzntee+BzMW3YG2HfS5DnJb21Me8DjzCWWa/dRx/4MPtx9brs22xL4dH3y4tR5txqmj4+PUGVqPM5Zp/yL2HttGu/WeZcDyWsskfi6vzXh6Lfu0bDeWlyiPduW3vMfP1fLZbtkn/g7stc5r8986vuxZ4NE6Tp3Xss5if+PUWYkBgx1a/83in+2WY/Yc++7gBx+2aB18eF//L0XSS6FOMlJ48o50VyE14r8zO2jPTCIS1/Zby0tnRTqsbarWTSSRjtD/HMkYoVAo3VUQERHpttRSJxkjJycnsfyPf/yD3NzcNNamZwiFQpx77rmArnlX0PXuel1xzfXvKJlCoU4yhmW13lDMzc0lGAymsTY9j65519L17nq65pLtdPtVREREJAso1ImIiIhkAYU6ERERkSygUCciIiKSBSxjTCdGzRIRERGRTKCWOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIllAoU5EREQkCyjUiYiIiGQBhToRERGRLOBLdwUkOzU2NvLYY4/x+uuvU1FRgW3bDBkyhGnTpnHBBRfg9/s7XHZVVRWPPPIICxYsYPv27eTk5DBixAhmzpzJWWedhWVZSfxKuodUXO+dO3fy5ptvsmTJEtasWcPOnTsBKC4u5qijjuLss8/m+OOPT/aX0m2k8nt8T3fccQf//Oc/ASgrK+Pvf/970sruLlJ9vXft2sXTTz/NO++8Q3l5Oc3NzfTp04dhw4YxYcIEvvjFL+Lz6VemZDZNEyZJV1FRwZVXXklFRQUAubm5eJ5HOBwGYPTo0dx5550UFhYectmrVq3i2muvpaamBoBgMEg4HMZ1XQAmT57MLbfcktRfqJkuFdd7+/btXHjhhbT98ZCbm4sxhubm5sS6WbNm8cMf/hDHcZL01XQPqfwe39PixYu56qqrEv8WPTHUpfp6/+tf/+KOO+6goaEBgEAggN/vT3wGeP7555Py7ymSSgp1klTRaJQ5c+awbt06SkpK+NnPfsbEiRPxPI/58+dz++2309jYyAknnMBvfvObQyq7vr6eiy++mKqqKoYOHcrPf/5zxo4dSyQS4dlnn+UPf/gD0WiU8847j6uvvjpFX2FmSdX1Li8v5wtf+ALHH388Z555JhMnTqS0tBTP89i0aRP33HMPb775JgCXXHIJc+bMSdWXmHFS+T2+p1AoxNe//nW2b9/OqFGjWLlyZY8Ldam+3vPnz+eXv/wlnudxzjnnMHv2bIYPHw7EWgfXrFnDG2+8wTe/+U2CwWCSvzqR5NIzdZJUL730EuvWrQPgV7/6FRMnTgTAtm1OP/10rr32WgDeeecd3nvvvUMq+7HHHqOqqoqcnBx+85vfMHbsWAD8fj+f+9zn+MY3vgHAs88+y+bNm5P1JWW0VF3vwsJC7r33Xn7/+98zc+ZMSktLE+UOHz6cm266iSlTpgDw+OOPt2u9y3ap/B7f07333svWrVv50pe+lAgaPU0qr3dlZSV33HEHnufxve99jx/+8IftrnNeXh7HHHMMl19+uQKddAsKdZJUL730EgDHHnss48aN22v76aefzoABA9rte7BefvnlRBkDBw7ca/vnPvc5gsEgruvyyiuvHGrVu6VUXe+CggLGjBmz3+2WZTFr1iwAmpqa2Lhx46FUu1tL5fd4Wx9++CFPPvkkQ4YM4ZJLLulwOd1dKq/3k08+SV1dHaNHj+bCCy/sfGVF0kyhTpImFAqxfPlyAE444YR97mNZVqKF59133z3osjdt2sT27dsBEsfvKS8vj6OPPvqQy+6uUnm9D0YgEEgse56X1LIzVVdd83A4zK233ooxhh/+8Ifk5OR0rMLdXKqvd/wPxRkzZvTIDlaSfdSVR5Jm48aNiV/uI0aM2O9+8W1VVVXU1tbSq1evTyw7fvvlk8oeOXIkCxcuZMOGDQdZ6+4rldf7YCxZsgSI3f4eMmRIUsrMdF11zR944AE2btzI2WefzYQJEzpc3+4uldd727ZtVFZWAjBmzBg+/vhjHn74YRYvXkxdXR29e/dm3LhxfP7zn2f8+PFJ+GpEUk8tdZI08R+QAH379t3vfvHns/Y85kB27dp1SGU3NDTQ2Nh4UGV3V6m83p9k27ZtiSE2pk2bRn5+flLKzXRdcc1Xr17NI488QnFxMd/5zncOvZJZJJXXe8uWLYnlZcuWcemll/Lqq6/S0NBAIBBg586dzJ8/n8svv5wHHnigA7UX6XoKdZI0bUPUgW4X5ebm7vOYdJXdXaXrmjQ3N/OLX/yCUChEUVERl112WafL7C5Sfc2j0Si33XYbruty5ZVX9vghNFJ5vevq6hLLf/7znykpKeF3v/sdL7/8Mi+++CIPPvggxx57LMYY/vznP/P666934CsQ6VoKdSJy0KLRKDfeeCOrVq3C5/Nx/fXXt2slkc55+OGHWbNmDSeeeCLTpk1Ld3WyWtvnQI0xiZ61th37tTh8+HBuueUWiouLAbj//vvTUU2RQ6JQJ0mTl5eXWD7QEBehUGifx6Sr7O6qq6+J67r86le/4o033sBxHG644QYmT57c4fK6o1Re8w0bNvDggw8SDAa56qqrOl7JLNJVP1OOP/74ffb2zsvL4/zzzwfg448/pqqq6qDKFkkXhTpJmrYtNvEppfal7TMvB9vKU1JSckhl5+fnZ32oS+X13pPruvz6179m/vz5OI7Dz3/+c0477bQOldWdpfKa//73vycSifCVr3yFwsJCGhsb273is6YYYxLrotFoB7+S7iGV17vtfsOGDdvvfm3HrYvPaCGSqdT7VZJm2LBh2LaN53msX79+v0MQrF+/HojNIXqwvQJHjhzZ7vj9DcQa7yXbEwZqTeX1biveQjdv3rxEoDv99NM7VffuKpXXvLy8HIB77rmHe+65Z7/7bd++nZkzZwJw+eWXZ/X4aqm83sOHD8dxnERY3p+2ky5p2BPJdGqpk6TJzc1NDA66cOHCfe5jjGHRokUATJo06aDLHjJkCP379z9g2U1NTSxduvSQy+6uUnm941zX5cYbb1Sga9EV11xapfJ65+TkJMa1PNDg2fFtlmUlBjkWyVQKdZJU8RaEJUuW8NFHH+21ff78+Wzbtq3dvgfDsizOPPNMAObNm5do1Wjr6aefpqmpCcdxOOOMMzpS/W4nVdcbWlvo2t5y7cmBLi5V1/zvf/87//73v/f7ipdVVlaWWJfNrXRxqfwej8+K8t5777Fq1aq9tjc2NvL0008DcOSRR9K7d+9DKl+kqynUSVLNnDmTkSNHYozh+uuvT8zF2HbybYjNCnH88ce3O/Yvf/kLp5xyCqeccso+Q9sXv/hFiouLCYVC/PjHP078EI5EIjzzzDP8+c9/BuCcc87pMYPhpup6x5+hi7fQ3XDDDQp0LVL5PS57S+X1PuOMMzjiiCPalR3vFbthwwauu+46qqqqsG2bOXPmpPgrFek8PVMnSeXz+bjlllv4/ve/T0VFBVdddRW5ubl4nkc4HAZg9OjR3HDDDYdcdkFBAbfddhvXXnstGzZs4Fvf+hZ5eXmEw+HEA+OTJk3i8ssvT+rXlMlSdb2XLVvGv/71LyDWSnrXXXdx11137Xf/K664oseEvlR+j8veUnm9bdvm5ptv5qqrrmLDhg2Jsn0+H/X19YnzX3XVVXsFRpFMpFAnSTdgwADuv/9+HnvsMV5//XUqKirw+XyMGDGC008/nQsuuAC/39+hsseMGcMDDzzAI488wttvv82OHTvIzc1l5MiRzJw5k1mzZiXGmeopUnG92z4cHo1GP3Eoh/gv154ild/jsrdUXu+SkhLuu+8+nnrqKebNm8eWLVtobm6mrKyM4447jgsvvLBdRy2RTGaZtj+9RURERKRb6llNGiIiIiJZSqFOREREJAso1ImIiIhkAYU6ERERkSygUCciIiKSBRTqRERERLKAQp2IiIhIFlCoExEREckCCnUiIiIiWUChTkRERCQLKNSJiIiIZAGFOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIllAoU5EREQkC/x/U9RFDR8v76IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dwell_time_map.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(grb_data.binned_data, \n", + " bkg_data.binned_data, \n", + " response, \n", + " coordsys_conv_matrix,\n", + " is_miniDC2_format = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b23f1fbe", + "metadata": {}, + "source": [ + "DataLoader is a data container for the image deconvolution. It also calculates several auxiliary matrices for the analysis." + ] + }, + { + "cell_type": "markdown", + "id": "2a662f5e", + "metadata": {}, + "source": [ + "## 4-2. Load the response file\n", + "\n", + "The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size. \n", + "\n", + "So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "0ab4b84c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1a521607127c4c91ac231a0bf55a4a08", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-4. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = path_data + \"imagedeconvolution_parfile_GRB_miniDC2.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> /Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/miniDC2/example_notebook//imagedeconvolution_parfile_GRB_miniDC2.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 200.0\n", + "- 500.0\n", + "- 1000.0\n", + "- 2000.0\n", + "- 5000.0\n", + "nside: 8\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 0.01\n", + " - 0.01\n", + " - 0.01\n", + " - 0.01\n", + " - 0.01\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f279be405a4e4dc5aa58bc0b1eadae2c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.5256721171422285\n", + " loglikelihood: 6995.070394357579\n", + " background_normalization: 1.9156089682929596\n", + " Iteration 2/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.5763136603313757\n", + " loglikelihood: 24101.13650415292\n", + " background_normalization: 1.3793746628449184\n", + " Iteration 3/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.754476734122631\n", + " loglikelihood: 25829.656262774864\n", + " background_normalization: 1.479120638470411\n", + " Iteration 4/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 34610.09484775503\n", + " background_normalization: 1.140883891972013\n", + " Iteration 5/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.4263935825449847\n", + " loglikelihood: 37662.53238253783\n", + " background_normalization: 1.1319257143160566\n", + " Iteration 6/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.668194082009493\n", + " loglikelihood: 38299.615754495215\n", + " background_normalization: 1.1295989219552447\n", + " Iteration 7/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 39858.418284489395\n", + " background_normalization: 1.0799082948115535\n", + " Iteration 8/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.8684961126184034\n", + " loglikelihood: 40363.58462270266\n", + " background_normalization: 1.0818626699366012\n", + " Iteration 9/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 40570.94251969077\n", + " background_normalization: 1.0738451636325703\n", + " Iteration 10/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 41080.54992554475\n", + " background_normalization: 1.066440377077784\n", + " Iteration 11/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 41138.27262775572\n", + " background_normalization: 1.0595887797500194\n", + " Iteration 12/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 39847.17913641907\n", + " background_normalization: 1.0709417721994\n", + " Iteration 13/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.641716609686848\n", + " loglikelihood: 36816.09679192316\n", + " background_normalization: 1.043498291472631\n", + " Iteration 14/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 30229.09255082757\n", + " background_normalization: 1.1553698114239597\n", + " Iteration 15/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 41537.200529306385\n", + " background_normalization: 1.0033923366898276\n", + " Iteration 16/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.7585896423313874\n", + " loglikelihood: 40430.5509247969\n", + " background_normalization: 1.0328992830046098\n", + " Iteration 17/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 36053.06814056434\n", + " background_normalization: 1.0799429722914526\n", + " Iteration 18/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 41759.14057063087\n", + " background_normalization: 1.043171038622194\n", + " Iteration 19/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.110837759570481\n", + " loglikelihood: 41535.22859804242\n", + " background_normalization: 1.0672547025579957\n", + " Iteration 20/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 39393.39610815875\n", + " background_normalization: 1.083620371401302\n", + " Iteration 21/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 41974.71796854968\n", + " background_normalization: 1.077260302610239\n", + " Iteration 22/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.658680215314738\n", + " loglikelihood: 42005.25984799916\n", + " background_normalization: 1.0927078821997471\n", + " Iteration 23/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 41313.415314215395\n", + " background_normalization: 1.0965179439302204\n", + " Iteration 24/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.1069742422022726\n", + " loglikelihood: 42167.76054529962\n", + " background_normalization: 1.0924953496158092\n", + " Iteration 25/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 42195.94131658095\n", + " background_normalization: 1.1032397527185536\n", + " Iteration 26/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.6880846888173346\n", + " loglikelihood: 42216.08916197458\n", + " background_normalization: 1.1050458594984143\n", + " Iteration 27/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 42218.889833384645\n", + " background_normalization: 1.1044301502208802\n", + " Iteration 28/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0176671300651505\n", + " loglikelihood: 42250.46201818339\n", + " background_normalization: 1.1080259897693703\n", + " Iteration 29/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 42256.80433165385\n", + " background_normalization: 1.1098973588984038\n", + " Iteration 30/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 42278.085994665526\n", + " background_normalization: 1.11037784844894\n", + "#### Done ####\n", + "\n", + "CPU times: user 1min 56s, sys: 50.1 s, total: 2min 46s\n", + "Wall time: 36.1 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.9156089682929596,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 6995.070394357579,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.3793746628449184,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 24101.13650415292,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.479120638470411,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 25829.656262774864,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.140883891972013,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 34610.09484775503,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1319257143160566,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 37662.53238253783,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1295989219552447,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 38299.615754495215,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0799082948115535,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 39858.418284489395,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0818626699366012,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 40363.58462270266,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0738451636325703,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 40570.94251969077,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.066440377077784,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 41080.54992554475,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0595887797500194,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 41138.27262775572,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0709417721994,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 39847.17913641907,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.043498291472631,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 36816.09679192316,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.1553698114239597,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 30229.09255082757,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0033923366898276,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 41537.200529306385,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0328992830046098,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 40430.5509247969,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0799429722914526,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 36053.06814056434,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.043171038622194,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 41759.14057063087,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0672547025579957,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 41535.22859804242,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.083620371401302,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 39393.39610815875,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.077260302610239,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': 41974.71796854968,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0927078821997471,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': 42005.25984799916,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0965179439302204,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': 41313.415314215395,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0924953496158092,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': 42167.76054529962,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.1032397527185536,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': 42195.94131658095,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1050458594984143,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': 42216.08916197458,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.1044301502208802,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': 42218.889833384645,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1080259897693703,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': 42250.46201818339,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.1098973588984038,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': 42256.80433165385,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.11037784844894,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': 42278.085994665526,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAG5CAYAAABWY5pbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABq9UlEQVR4nO3deXxU1fk/8M8smewbk4UlIQuBkLAriEBYgwguVCqg9JvWDQQLVORrEfrDVpGqbbV+QUQRrNiigNWyWCVqbQgCssoSkxDCkhCWbJN1MksyM/f3xzCXGSaBJDOTmWQ+79fLkrn3zJnDcQqP5zz3ORJBEAQQERERkdNJ3T0AIiIioq6KgRYRERGRizDQIiIiInIRBlpERERELsJAi4iIiMhFGGgRERERuQgDLSIiIiIXYaDlZjqdDgUFBdDpdO4eChERETkZAy03Ky4uxrx581BcXNzs/fPnz3fwiLoGzlvbcc7ah/PWPpy39uG8tZ2754yBlofT6/XuHkKnxHlrO85Z+3De2ofz1j6ct7Zz95wx0CIiIiJyEQZaRERERC7CQIuIiIjIRRhoEREREbkIAy0iIiIiF2GgRUREROQiDLSIiIiIXISBFhEREZGLMNAiIiIichEGWkREREQuwkCLiIiIyEUYaBERERG5CAMtIiIiIheRu3sARERE1PkIggDBKMBkFGAymmAyXP/VJNz4+fo9wShAEMQ3ij8LguV/rvcnABBu9A/h+kuTAMEkwHT9V8Fk/lzzz4DJZIJgwk3Xzf+UltZCUX0VSWN6duwEXcdAi4iIyMUEQcC1vCpUX66/HnxcD1JM5gDFEiBYghPB+mdL4GISUFdbh0sBmhuBhGAfWJgDEtz0WrAKaCyDsvwiWA305nvib0Act/UYOwtDuYyBFhERUVd0NVeFY9vPovxcjVP6q4bWKf14E5PR5LbPZqBFRESdRuWFWhTuvwKD3tTs6s+NX69vWV1fCbLe2gqODEDypFgkjIiGVO66VOXyczU49ulZXP1J5bLPuJlEKoFEav5VKpVcf231j9jQ9lerOzeu3dRYKpNAIpNAKpNCKpNAKrf6Wfz1+s/X70msrkFyvScJIJGIH3zTz9dHI47P/LNEAkhkErvfl1Rm9XML169cuYy+A/o4dZ7bgoEWERF1CpoaPb569QgaNQaH+qkv1+JqrgqHw3zRf3Is+k/qjYAwXyeNEqgqqcfxfxai+FiZzfXwmCAMuDcOikAfMRiwBCgSmTlQkMql5oBBfv31TfcLzxUiOSXZNqiw+pnsafOqEN0v3G2fz0CLiMjLGBqNOJt9GcYmE0KiAxASHYDgqADIFTJ3D+2Wfvh7XtuDLAlsAhoAYh+aGj1+/OwcTu44j4SR3ZE6JQ5RfcNurLC0UV1ZA45/dg7nD16FddpTcJQ/7pzZF4mje0LqYDDkEyiDX5DCoT6oYzHQIiLyMid2nMepXeftrgeE+94IvKIDEBJ142d3/+V+6cdyXDxUCgDwDfLBvcuGw8dPZrNNZQmoxO2q66tD1ixJ6XnfFKP4WBkEATAZBZw/eA3nD15DREIIUqfEIXFUj1YHng1VOpzYcQ4Fey/bJIgHhPti2M+TkDw+xqVblOTZGGgREbWT6lIdqs9rYeovOLxS0ZEuHrrW7HVNtR6aaj1Kz1Tb3VMEyG8EYNGBiIgPRvyI7h2yXdWkM+DAh7ni67t/mYKopLB29SWRSNBzgBI9ByihrtQi/z+XUJBVAl19EwCg8mId9m3IweGPz6D/pFikTO6NoAj/ZvvS1TXi1BcXkPdNMYxNN5KtfYN8MORnfZB6T2+PXyUk12OgRUTUDupKLXb9v4MwGQVU/XgY4xcMQkh0oLuHdVu11xpQV6YBAITHBiN+RDTqyzWoK9WgrlwDXV1js+9r1BhQebEOlRfrxGvxI6KRvmRYu7faWuv4PwvRoNIBAHoOVCIpzTmP6QdF+GPEo8kY9vMkXDh0DXlfF4u/P726Cad2X8DpLy6g9/BoDJgShx6p3SCRSNCoaULOV0X4ac9FNGmNYn8+/jIMui8BA6fFQxHg45QxUufHQIuIqB1Kz1TBdH2bqKygGv9afgB3/SIZKem9PTopueRUhfhzUlpPDHkw0eZ+o6YJ9eVa1JVrUFemQX2Z+de6cg0aKrU3ajABKDpahpyvijD4/gSXjbfifA1yM4sAADIfKdKeGuD0wE6ukKHfuBj0HdsLFedqkPt1MS4eLjU/0SgAxUfLUHy0DGG9ghAzJAKF+65Ar24S3y/zkSJ1ShyGPJgIvxDmT5EtBlpERO1QW6qxeW3QG3HwwzwUHSnDuPmDWtxucrfLVoFW7JBIu/uKAB8o432gjA+xu2c0mKCu0OJafhX2b/oJAHB0awGi+oSie/9uTh+ryWDC95t+EoO7Ox5OcumqoUQiQVTfcET1DcfIDD0K/luC/O8uQVOtBwDUXFGj5or6RnuZBMkTYjBsRhICu/m5bFzUuTHQIiIIggCDzoQGlRaGRhMMTUYYG00wNFr/aoShyWT+tdH2V2OTCcqEECRPiDHXy/ECdaUN4s9xw6PFR/mv5qrw+Qvf4+5fpqDf+BiXb6u1hUFvxLW8KgBAQDdfhMcGten9MrkUoT0CEdojEOpKLU7uPA/BJOC/b5/EjFfHwD/UeSUSAOCnPUWoKq4HAHTrHYxB97lu5exmAWHmRPYh0xNRdKwMuV8Xo6zgeu6aBEga09PlgR91DQy0iLyUySSgvLAGxcfKUHysDHVlGhxBiUN9XvjhGib9Zij8Q5z7F64nqrNa0Zq4aAjKCqqx7/0cNKh0aNIa8f37P6HoaBnGzh2IgHDPWO24lqcSk7Zjh0Q6FATeMbMvys5W41peFTTVemS9cwpTl49w2kMBdWUaHP+80PxCAqTNHeiWJ/ekcikS7+6BxLt7QFVUh6t5KsQMjkB4THCHj4U6J+/4T08iAmCun3TpRDm+35iDT379X/z75UPI+fKimBztqGt5Vdj5/w6i4nyNU/rzVIIgoPb6ipYiRAa5QoZegyLw8J/S0G98L7FdyYkKfL5sP84duGo+INfNSk5Vij/HNLNt2BZSqQQTFw2F//VCn1d/UuHEv8451KeFIAg48LdcGBvNQeGAKXHtfsrQmZTxIRh0XwKDLGoTrmgRdXF6dRMunSxH8bEyXD5VCYPeaNdGIpUgqKcCyh5hkClkkCukN371sX4tg0whhVwhg9znRhtdfRO+3/QTtDV6NKh0+OLlQxjzxAAkT4x1w+/Y9fT1TWLRS/9uN54uUwT4YNz8wYgf0V2cD31DE/a+cwpFR0sx5skBblvtEwQBJSfLAZhzi3oNVDrcZ0CYLyYtHoKvVh+BIAAndpxDdL8wxAx2LIg7f+AqruSYg8LAbn64c3Y/h8dK5C4MtIi6ILVKi+Jj5uDq2pkqmyKKFjKFFDFDIhF/ZzRih0XiQsk5pKamtvszZ/xxNP6z5gTKz9bAZBDw/cafUHGhFqN+lQKZT9eqJVRXdiM/y6+b/R+jve+IwsN/SsPBzXm48IO5ZlXRkTKUnqlG2lMDED+ie4eN1aKuVIP6cvNhxN2Tw51WfqBHihLDH+mHo9vOAgKw951TmPHqGAQq2/cwgK6+EYe2nBFfj34iFQp//lVFnRe/vURdQKOmCXWlGpScqkDxsTKbWkfW/IJ90PuOKMQNj0avgRGQ+zovAAoI98P9K0fi8D/ykfftJQDAme9KUFVcj/Qlw7rUU1nWTxxar2hZ8wtWYNLioYgfEY0Df8uFXt0EXV0j/vPWCSSl9cSoX6XCN6jjai2VnLzxtKGj24Y3G/xAIkoLqlFyogK6+iZ89/ZJPLByZLtyqo58ckas5RV/VzTi7ox26liJOhoDLaJOoElngLpSi/oKLdQV5l/rK8wrFOpKrU1Nn5sFR/kjbng04odHI6pfuEsrmMvkUox+YgAi+oTiwAe5MDaZUH6uBjt+dwDpzw5DjxTnlwBwB+snDptb0bKWeHcPdE/phgMf5IpPJp7bfxVXc1UYO28QYoc6N+hpye3KOjhCIpVg/DODsfN3B6Gu1KL8bA2ObCvA3Rkpbernaq4KZ7OvAAB8/OUY9Vj7V1iJPIXHB1p///vfsWnTJiQkJOCjjz6yuZeTk4P33nsPZ8+eRWBgICZOnIh58+YhICDApl1jYyM++OADfPPNN6ivr0efPn0wd+5cjBgxwu7zXNEnUWvo6htRebH2RjBVfj2YqtC2WK27Jcr4EMQPj0bc8GiExwZ1eImBfuNi0C02GP956wTUlebxf/XqEYz8n/4YcG+cR5U8aA/rFS2/Fla0rAWE+mLyc8Nwbv9V/PCR+WBkTbUeX//5GIb8rA9GPOLaHCSD3ohr+eayDoHd/Npc1qE1/IIUmPSbofj3y4dgMgr46asidE8Ob/U2qaHRKNbmAoC75iQj0EOe1iRyhEcHWuXl5diyZQv8/e33+gsLC/Hcc88hLi4OixYtQnl5ObZv347Lly/jL3/5i03b1157DXv37sWsWbMQExODPXv2YNmyZVizZg0GDx7s0j6JbqWuTIPi42UoPl6OsoJqCKa2PZkmkQCBSn8ERfojONIfEQkhiLsz2iOKZUYkhOKh1aPx33UncfUnFQSjgEN/z0fF+VqMnTvQqduWHc2yoiWRAH7hrftjVCKRoO/YXuiZ2g3fb/wJl0+bk71P7TqPvmN7Iqyn84Mfi6tWZR1iHCzrcCtRSWG4+5cpOLg5DwCQ/V4OuvUOblWtqZM7z4tPv0b1C0P/SV3zQQryPh4daK1fvx6pqakwmUyora21uff+++8jODgYa9euRWCg+f/EPXr0wJ///GccOXIEd911FwAgLy8P3333HZ555hnMmTMHAHDvvffi8ccfx7vvvot3333XpX0SWRMEAZUX68y1q46XobpEfes3SICAcF8ERwQgOMofQRH+CI7yR3BkAIIj/RHYzc8ttYVayy9EgakvDMexTwtx+osLAMxPlFVfrsfkJXcgJDrgNj14HnNpB3NAEBThD6msbUFLoNIf974wHEe3FeD0FxcBAIX7rmDEo8lOH6vFZav8rNihES77HABIuac3SguqceGHa2jSGvDd/53Agy+PuuXhylUl9Th1/fshlUkwdu5Ajz7GiKgtPDbQOnnyJLKzs7Fp0yasWbPG5l5DQwOOHTuG2bNniwERYA523n77bWRlZYlBUXZ2NmQyGaZPny628/X1xf3334/3338fZWVliI6OdkmfRID52JJruSoUHy9H8Y9l0FTpm20X0j0AvYdFIaxnIIKiAhAc4Y+gCL9O/8SeVCbFXXOSEZkYguz3cmDQG1FVXI9dKw9iwqIhTs8XcjVdXSOatObSDiHd2xcoSiQSDLovATlfFUEwCijcfwV3zu7nkvw5QRDE8w0lMgl6DnC8rMOtSCQSpM0dCFVRHWqvNUBVXI8fPsrH2HkDmx+fScD+jT+JT8YOmZ7IOlXUpXhkoGU0GrFmzRrcf//96NOnj939CxcuwGg0IjnZ9r8AfXx80LdvXxQWForXCgsLERMTYxM8AUBKijlJ89y5c4iOjnZJn+S99A1NuHyqAsXHylFyqkL8i/lmUUlhiBsehd53RiOsZ2Cnz126lYSRPRDWKwjf/vVH1JVqoG9owtd/Pobhs/phyPTETrOCYZ2fFdK9/cev+If6InZIJC79WA5NlR5Xc1WIGeT81SZXlXW4FYW/HOlLhmHXiwdhbDShIKsE3fuHo+/YXnZt87+7hPJzNQCA0B6BGPIz+z/ziTozjwy0du3ahbKyMrz11lvN3lepVAAApdL+v8yUSiVOnTpl07aldgBQWVnpsj6bU1lZKX4WABQXF7fYljoXY5MRZ7Ov4OKRUlzLb6F2lY8UPQcoEXdnFHrfEeUxR7N0lPCYYDy0ejT2vnsal46XAwJw7NOzqLhQi/ELBnVIEOAo6ycOQ7sHANC2u6++43rh0o/mIqKF+664JNCyFCkFnP+04a10iw3GmCcHYN97OQCAA3/LRURCiM1qVUOVDke3FYiv0+YOuOUWI1Fn5HGBVm1tLf72t7/hV7/6FcLCwppto9ebt158fOz/UFYoFGhsbLRp21I7675c0Wdzdu/ejc2bN9tdv3jxIoxG+4rdarUaeXl5LfZHzevoeTM2mpC/vRx1xfb/7uV+UoT39Ue3fv4I6+MPmUIKE9QouqYGrnXYEG+rI+es11Q/CEGhKMk2514WHyvDrj/WIvUXUR6/qlf8U7X4c02jCgq1qd3zZvITIPeXwqA14eLha1COlkHu69ycuzMHysSf9cF1HfvnSQQQNTQI5SfVMOiN+OpPhzD4yR6Q+UqhVqvx9duH0KQ1/7kXNTQI1UIZqvPKbtOpd+PfCW3nyjlrTZFnjwu0Nm3ahODgYDz88MMttvH1NR9h0dRkXzuosbFRDHgsbVtqZ92XK/pszvTp0zFmzBjxdXFxMVavXo2EhAS7bUvAnHjvSLVub9WR82bZArMOsoIi/RF3ZxTi7oxG9+Rwj05Yt+jo79qAAUDJXeXIeucUGjUG1F7UIaQxErHDojpsDO1x7dsTAMwFYQfdlYIr1cUOzVvdWAnyvimGySDAtybUqccWGfRGHC4xHxQe2M0Pw8cP6fhSH0lG7P7DD6gqrodWZUDFfgMmLhqC/TuOo6rAvBroF6LAlF+PhF+Q4ja9Ef9OaDt3z5lHBVolJSX44osvsHjxYpvtt8bGRhgMBly7dg2BgYHiFp31FpyFSqVCRMSN5XelUomKiopm2wEQ27qiz+ZERETc8j51Lto6PTJfPwZVkfkvXkWAHJOfuwM9Urt5/MqMJ4gdFoWx8wbiuzUnAQBHtp1FryGRLi2q6iixtINUguBIf6D6Nm+4jb7jeiHvG3MKwdl9V5waaFmXdYgd6rqyDrciV8iQ/pth2LnyAJq0Rlz44RqUccG4+HWV2GbUr1IYZFGX5VH/mV1ZWQmTyYQ1a9bgkUceEf/Jy8tDSUkJHnnkEWzevBkJCQmQyWQoKCiweX9TUxMKCwuRlJQkXktKSsLly5fR0NBg09ayjGhp64o+qWtrqNbhy1eOiEGWX4gC9784Ej0HKBlktUH8Xd0R2ScUAFBdUo/z+6+6eUQtsy7tEBzp75SVSnPekrmGVllBNWpLG27zjtZz5bE7bRHaIxDj5t+oL3h021k01pu3DGOGRCJxVA93DY3I5Twq0EpISMAf//hHu38SEhIQHR2NP/7xj7j//vsRFBSE4cOH45tvvoFGc+MJoK+//hparRYTJ04Ur02YMAFGoxG7d+8WrzU2NuKrr75Camqq+HSgK/qkrqu+QosvVx1GzRVzHayAbr544MWRUMaFuHlknY9EIrGpIXX8s7MwNNrnK3oCbY0eBr15bO0t7XAzSyFTi3PfX3FKv4IgiPWzpDIJeg50bVmH20m4qzsGTou3uSb3lWHMk6n8DxPq0jxq6zAsLAxjx461u/7Pf/4TAGzuzZ07FwsXLsTixYsxffp0sYr7iBEjMHLkSLFdamoqJk6ciPfffx81NTXo1asXMjMzUVpaihdeeMHmc1zRJ3U9tdca8NWrR9Cg0gEwr2zc9//uQnBU5yu+6Sl6DlAiZkgELp+qhLpSh/xvL2HQ/QnuHpYdZ5V2uFlSWk8c3VYAQQAKv7+KOx7u63C5i9prDaivMOdARSeHQ+Hv/j/uR8xJRnlhjVjO4Y6ZfREcyf/fUNfm/v/ntVNycjL++te/4r333sPbb7+NgIAA3H///Zg/f75d29/97neIjo7G119/DbVajcTERPzpT3/C0KFDXd4ndS1VJfXY8+oRaGvNDz6E9gjEfb8bgUCl+4+86exGPJpsPpZGAE7uOo9+E2LgG+hZ5R7sSzs4R0C4H3oNjsTlUxVQV2pxLb/K4cKirjxEur1kcikmPzcMhz8+Ax0aMHBqnLuHRORynSLQWrt2bbPXBw8ejPXr19/2/b6+vvj1r3+NX//617dt64o+qWuovFCLPa8fhV5tfuK0W+9gTF0xAgGhLT9lSq2njAtB0pieOLf/KvTqJpz+4oJLj6VpD1etaAFAv/G9xOCo8PsrDgda1vlZscM8I9ACzEHlxEVDkZeXB6nMo7JXiFyC33KiVigtqMaXfzwiBlmRiaG4b+VdDLKc7M5ZfSGVm7fMfsosQkO1zs0jsuWqFS0A6H1HFBQB5v/2vXi4FE265k8TaI0mnQHX8s1P9QUq/RDWy3UHVhPRrTHQIrqNKz9VIvP1o+IxOt37h2Pa70bwcXQXCI4MQOo95u0kY6MJJz4/5+YR2bKsaElkEgRFOHe7WK6QiU/fGfRGXDxS2u6+ruVVwWQwn0wQO8Q9ZR2IyIyBFtEtXPqxHN/85bj4pFmvQRGY+sKITnFUTGc19Gd94ONvPoalYO9l8clOdxNMAurKzCtaIVEBLtn26jfuxtOHhfva//RhySnPKOtARAy0iFp04dA1fPvWj2LBx7g7ozDl+Tsg9+VZbK7kF6LA4AcTAZiDm2OfnnXziMw01ToYG83fBWeVdrhZZFIYQnuYc7+u5VWhvkJzm3fYEwRBzM/yhLIORN6OgRZRM85mX0bW2yfFg6H7jO6B9GeHQebDIKsjDJwaD/8wc/5b0dEylBc6WH7dCawT4UOdnAhvIZFI0Nd6VasdNbVqrzZAfb2sQ/f+3TyirAORN2OgRXSTvG+LsW9DDgRzjIV+E2Iw/tdDOsV5hV2Fj58cdzx844SFI1sLIFj+hbiJdSK8q1a0AKBvWk/gekpV4b4rbf59224b8rgvInfj3xxE1+nVTTj+z7M4+OGNU94H3BuHsXMHevTZe11V8vgYcRut9Ey1TbkCd3BlaQdrgUp/9Lq+3VdfrkVZQdtW82zqZw1lfhaRuzHQIq8mCAKu5auwd/0pfLLwvzix47x4b8jP+uDuX6U4XKGb2kcql2L4I/3E10e3FcBkct+qlitLO9zM+kies21Iircu6xAUwbIORJ6Am/fklTQ1ehTuu4yCvZdRV2qfcDz8kX4Y+rM+bhgZWYsfEY3IPqGoOF+L6hI1zu2/gn7jYtwyFsuKllQucflJAPEjusPHPxdNWiMuHr6G0Y+ltuohjKu5KrGsQwzLOhB5BAZa5DVMRhMun65EQdZlXPqxHMJNqyO+gT5ISuuJ5Imx6NY72E2jJGsSiQQj5iTjq9VHAADH/1mIxLt7QK7o2IcSBJOA+nJzoBUSHeDyrWS5rwwJI3vg7N7LaNIaUXS0FElpvW77vsunKsWfPeXYHSJvx0CLury6Mg3OZl/G2ezL0FTr7e73HKBE8sQYxA2P7vC/wOn2eqYqETPEfA5gg8o9B06rVTqxzIcr87Os9RvXC2f3XgZg3j68XaAlCIKYCC+VSdDDwSN8iMg5GGhRl2QyCDh/8CoKsi7jaq7K7n5AuC/6jY9Bv/ExCIl2bb4NOW7Eo/1w+XSF2w6cts3P6phAKzo5HCHRAagr0+BqrgpqlRZBt9iyZFkHIs/E/ydSl9KoNeDHzwpxZu9lGLSXbO5JpBL0HhaJ5ImxiBkSwQNtOxF3Hzhd20GlHaxJJBL0HdsLxz8rBATg3PdXMfShlvMGrZ/KjOHThkQeg3/TUJfy3zUn8NOeIhi0JvFaSHQARjzaD3PenoB7/vdO9L4jikFWJ2R34HRVxx04XVfm+mKlzUka21P8ufD7W9fUsq6fFcv6WUQeg3/bUJdxOacSl0+bk4ElMqDPmJ64b+VdmPXmOAyZ3gcB4X5uHiE54uYDp3/swAOn62xqaHXcVnNwZAB6pHYDANRea0B5YU2z7Zp0BpSeYVkHIk/EQIu6BMEk4OjWAvF10oMRmLhwCHqmKlkHqwsxHzhtzng4u7ekww6ctmwdynykCOzggL01R/KwrAOR52KgRV3ChcOlUBXVAQCUccGIGMAE967IL0SBIZYDpwXgaAccOG2yLu3QPaDDA/eEu7qLNbQu/HANhkajXRvr/CxWgyfyLAy0qNMzGUw4bvUX7vBHk/lf9F3YgKlxCLh+4HTx0TKUnXXtgdMNlVpxtaijSjtY8/GTI2FkdwBAo8aA4uPlNvcFQRDrZ0nlEvRkWQcij8JAizq9M1klYrJyj9RuiBnMROCu7OYDp49uc+2B07UdePROS2y2D/ddtrlXc7UB6srrZR2Su8HHjw+TE3kSBlrUqTXpDDbnE47gapZX6Deh4w6cruugw6RvpUf/bgiKMNfQunK6Eg3VN564vMyyDkQejYEWdWq5mcXQ1pirvcePiEZUUph7B0QdQirruAOnPWFFSyKViKtaggCc239VvMf8LCLPxkCLOi1dfSNOfXEBACCRAMNn97vNO6griR8RjcikUABAdYkaxcfKXPI5nrCiBQB9rWtq7TPX1GrSGVBaYCnr4I+wnu4bHxE1j4EWdVqndl9Ak9YAwLyVxNpB3kUikeCOGTdytawPVHYmy4qW3FcmJuG7Q0h0ILr3DwcA1FxRo/JC7U1lHSK4bU7kgZg1SZ2SulKLvG+KAZhrG93xcF83j4jcoUeqElKZBCajIBbsdCaT0YT66+cHhkQHuD2Q6Tu2F0rPmJ+yLNx3xWa7lNuGRJ6JK1rUKf34eSGMTeZjdgZMjUNgN1Z990ZyXxki+4QBMFdO11Q791ie+gotBKOltIP7a7MljOwOmcL8x/b5g9dQcsKcn8WyDkSei4EWdTrVl+tRuM9cIVsRIMeQB1s+aJe6vu4p3cSfr+U7d1XLOj+rI884bIkiwAfxI8w1tfQNTeJ5j937s6wDkadioEWdzrHtZ2EpmzRkeiJ8g3zcOyByK8tZgIDzAy3rJw49YUULAPpZ1dSyiB3CbUMiT8VAizqVsrPVYmXsgHBfDLg33r0DIreL7hsGicycO9XVV7QAoMcApd1WOetnEXkuBlrUaQiCgKPbbhwcfcfDfcUz4Mh7+fjJEZloLvNQe7UBmut11ZyhzmZFyzMCLalUgqSxN1a1giJZ1oHIkzHQok6j5GSF+MRVaI9A9Btvv4VC3qmHVZ6WM58+tGwd+vjJ4B+qcFq/juo3rpd4uHX88Gi3Pw1JRC1joEWdgskk4Og2q4OjZ/eFVMavL5m5IiHeaDBBbSnt0D3Qo4KZ0B6BmPK/d+DOWX1tzn0kIs/Dx1SoUzh/4CqqS+oBAJGJoYi/q7ubR0SeJLpfOCRSCQSTgGt5zgm06ss14kMXnpIIby12WBRih0W5exhEdBtcEiCPZ2wy4vg/C8XXI+bw4GiypfCXIyIhBIC5arq21vE8LU9MhCeizoeBFnm8/O9KoK40b+H0GhTBwozULOsyD87I0/LE0g5E1Pl43NbhxYsX8eGHH6KgoABVVVXw8/NDXFwc5syZgzFjxojtXn31VWRmZtq9v3fv3tiyZYvNNZPJhG3btmHnzp2oqqpCTEwMMjIyMHnyZLv3FxUVYd26dcjJyYFcLseoUaOwaNEihIWFtbtPar9GrQEnd54XX4+Yw4OjqXk9+nfD6S8uAgCu5VcjYWQPh/rjihYROYPHBVqlpaXQaDSYOnUqIiIioNPpkJ2djRUrVuD555/H9OnTxbYKhQLLli2zeX9goP0fiBs3bsTHH3+MBx98EP3798f+/fuxatUqSCQSpKeni+3Ky8uxePFiBAUFYd68edBqtdi2bRsuXLiADRs2wMfHp819kmNyvrwIXV0jACBxVA9ExIe6eUTkqaKTwyGRAIIAXMtXOdwfV7SIyBk8LtAaNWoURo0aZXPt5z//OebNm4dPP/3UJtCSyWSYMmXKLfurqKjA9u3bMWPGDDz33HMAgAceeACLFy/G+vXrMWHCBMhk5lpMW7ZsgU6nw6ZNmxAdHQ0ASElJwdKlS7Fnzx7xs9vSJ7WftlaPn74yr1BIZBLcOYsHR1PLFAE+UCaEovJCLapL1NDVNcIvpP0lGSwrWooAOfyCPae0AxF1Lp0iR0smkyEqKgpqtdruntFoRENDQzPvMtu/fz8MBgNmzJghXpNIJHjooYdQUVGB3Nxc8Xp2djZGjx4tBlkAMHz4cMTGxiIrK6tdfVL7ndh5Hk06IwCg/6RYbt/QbVnX07rmQJ6WodEItcozSzsQUeficStaFlqtFnq9Hg0NDThw4AAOHz6MiRMn2rTR6XSYNm0adDodgoODkZ6ejgULFiAg4MYyf2FhIfz9/REXF2fz3pSUFPH+4MGDUVFRgerqaiQnJ9uNJSUlBYcOHWpzn82prKyESnVjW6O4uLg10+F16so0OPOfSwAAua8Mw2awVhDdXo+Ubsj50rwKWppfhYR2lgGpL9cA10s7hHLbkIgc4LGB1jvvvIPdu3cDAKRSKcaNGydu0wGAUqnEnDlz0K9fPwiCgMOHD2Pnzp04f/481qxZA7nc/FtTqVQIDw+3+y9SpdL85FplZaXYzvr6zW3r6urQ2NgIhULR6j6bs3v3bmzevNnu+sWLF2E0Gu2uq9Vq5OXltdhfV3V2ZyVMRvPfdN1HBKHo6nngauvf763z5oiuMGcGmMSfL568itAR7eunquBGIrxeprnlvHSFeXMHzlv7cN7azpVzlpqaets2HhtozZo1CxMmTEBlZSWysrJgNBrR1NQk3p8/f75N+/T0dMTGxmLjxo3Izs4WE9L1er1NEruFQqEQ71v/eru2CoWi1X02Z/r06TZPTxYXF2P16tVISEhodjUtLy+vVf8iuxJVcR0O5ppX+nyDfDDp8RFQBNjP961447w5qqvM2fn4WqiK6qApb0Ji7yT4BbU9v+r0hQsAKgAAfQbFoW9qy8c9dZV562ict/bhvLWdu+fMY3O04uLiMHz4cEydOhV/+tOfoNVqsXz5cgiWUs3NmD17NqRSKY4dOyZe8/X1tQnQLBobG8X71r+2tm1r2jUnIiICycnJ4j83bz8SzEftXP/XPPShPm0Ossi7iXlaAlB2/WzMtmJpByJyFo8NtG42YcIEnDlzBiUlJS228fX1RUhICOrq6sRrSqUSVVVVdgGaZaswIiJCbGd9/ea2ISEh4opVa/uktqssqsXlU+aVhEClH1Im93bziKizsS5c2t5zD+vKbgRaLO1ARI7oNIGWZTuuuScPLTQaDWpra22KiyYlJUGn09klnVv2a5OSzEnWkZGRCAsLQ0FBgV2/+fn5Yru29EltV1ZQI/486L4EyBUsk0Ft0z25G3A9fbK9gZalhpZvkE+7th6JiCw8LtCqrrZf6jcYDPj666/h6+uL+Ph46PV6aDQau3YfffQRBEHAyJEjxWtpaWmQy+XYsWOHeE0QBOzatQuRkZEYOHCgeH38+PE4ePAgysrKxGvHjx9HSUmJzROPbemT2kZVfGM1MiqJxUmp7XyDfKDsHQzA/H3Sq+23+W/F0GhEg0oHgKtZROQ4j0uGf+ONN9DQ0IAhQ4YgMjISKpUK3377LS5duoSFCxciICAA165dw1NPPYXJkyejd2/z1tKRI0dw6NAhjBw5EmlpaWJ/UVFRmDVrFrZu3QqDwYCUlBR8//33OH36NF588UWbwqIZGRnYu3cvlixZgpkzZ0Kr1WLr1q1ITEzEtGnT2tUntU3VpXrzDxIgPDbYvYOhTqt7SjeoiusBASgtqELcndG3f9N11tuGzM8iIkd5XKA1adIkfPnll9i1axdqa2sREBCA5ORkLFiwQAyggoKCMHr0aBw9ehSZmZkwmUzo1asXnn76aTz66KOQSm0X6ubPn4/g4GDs3r0bmZmZiImJwcqVK3HPPffYtIuOjsbatWuxbt06bNiwQTzrcOHChWJ+Vlv7pNYzGU2oLjEHWqHdA+Hj53FfT+okeqQokZtp3tq/lt/GQItH7xCRE3nc32Tp6em3PSswODgYK1eubHWfUqkUGRkZyMjIuG3bhIQEvPnmm07tk1qn9loDjE3mOkjd4riaRe3XvX+4+HNpG/O0avnEIRE5kcflaJH3UhXXiz8r40LcOBLq7PyCFeLWs6qoDo2a1udp2a5oMdAiIscw0CKPYZ0Ib0lmJmovS5kHQQBKC1pfT8t2RYtbh0TkGAZa5DGqrFa0usVzRYscY3PAdBu2Dy0rWn4hChbLJSKHMdAijyAIgrii5Rfsg4CwlqvrE7WGTZ5WXusCrSadAZpqc80+JsITkTMw0CKPoK3RQ1dnPsKoW1yI3YHdRG3lH+KL8JggAEBlK/O0WNqBiJyNgRZ5BNUlJsKT81m2DwWTgLKzNbdtz9IORORsDLTII1RZJcKztAM5S/c25mlZJ8KHRHNFi4gcx0CLPIKqiCta5Hy2CfH2B8bfzHpFi08cEpEzMNAij6C6ZF7RkvlIEdaDKwnkHP6hvgjrZf4+VV6oQ5POcMv2NitazNEiIidgoEVuZ9AbUXfNvJIQ1isIUjm/luQ83ftb5Wndpp6WZUXLP1QBhb/HHZxBRJ0Q/0Yjt6sqqYcgmH9Wsn4WOVmPVKX4863ytBo1TdDWmp985WoWETkLAy1yO5tEeFaEJydrbeFS29IOzM8iIudgoEVuxzMOyZUCwnwRej3vr+JCbYt5WszPIiJXYKBFbmdJhAcAJUs7kAuI9bSMAsoLa5ptwycOicgVGGiRWwkmQTzjMCjSn2fLkUtYDpgGWt4+rOOKFhG5AAMtcqu6cg0MeiMAbhuS67SmcGmtdVX4aK5oEZFzMNAit2IiPHWEwHA/8UidinM1YnBvzbJ1GBDuCx8/lnYgIudgoEVuxUR46iiWPC2TUUD5uRqbe/qGJujqzYdOc9uQiJyJgRa5lcpqRUsZzxUtch2b7cM82+N4mAhPRK7CQIvcypIIrwiQIyjC382joa7sVvW0WNqBiFyFgRa5ja6+EQ1VOgDm/CyJROLmEVFXFqT0R3CUOZgvP1cDQ+ONPC2uaBGRqzDQIrepunQjP6sb87OoA1iO4zEZbPO0uKJFRK7CQIvcRlXEQqXUsXr0t87TurF9WMfSDkTkIgy0yG2sV7T4xCF1BOuE+NIzVoHW9XMOA5V+kCtkHT4uIuq6GGiR21ieOJRIJQjrFeTm0ZA3CI70R1Dk9TytQnOelk7dCL3aXNohlNuGRORkDLTILYxNRlRfUQMAwnoFchWBOozl6UNjkwkV52tvOnqH24ZE5FwMtMgtaq40QDAKALhtSB3LusxDaX6V7dE7XNEiIifjORPkFioevUNucnM9rWhTuPiapR2IyNm4okVuwUR4cpegSH8ERfgBAMoKq1F9+cZ3kStaRORsDLTILWxWtFjagTqQRCJB9+tlHoyNJpScqLh+HQiJ4ukERORcDLSowwmCINbQCgj3hX+Ir5tHRN6mR+qN7UNjkwkAEBjhD5kPH8ogIudioEUdrkGlQ6PGAIDbhuQe1nlaFszPIiJXYKBFHY6J8ORuwVEBCOzmZ3ON+VlE5Apteurw5MmT7f6goUOHtvu91LVUFVslwsdzRYs6nkQiQfeUbjh/4Kp4jStaROQKbQq0nn32WUgkknZ90N69e1vV7uLFi/jwww9RUFCAqqoq+Pn5IS4uDnPmzMGYMWNs2hYVFWHdunXIycmBXC7HqFGjsGjRIoSFhdm0M5lM2LZtG3bu3ImqqirExMQgIyMDkydPtvt8V/RJtriiRZ6gR6ptoMUVLSJyhTYFWo899phdoJWXl4cjR44gJiYGgwYNQnh4OKqrq/HTTz+hpKQEd911F1JTU1v9GaWlpdBoNJg6dSoiIiKg0+mQnZ2NFStW4Pnnn8f06dMBAOXl5Vi8eDGCgoIwb948aLVabNu2DRcuXMCGDRvg4+Mj9rlx40Z8/PHHePDBB9G/f3/s378fq1atgkQiQXp6utjOFX2SPUugJfeV8S83chvrA6YBHr9DRK7RpkDrySeftHl96tQpfPzxx/jtb3+L+++/3yYIEwQBX3zxBdauXYtf/vKXrf6MUaNGYdSoUTbXfv7zn2PevHn49NNPxUBry5Yt0Ol02LRpE6KjowEAKSkpWLp0Kfbs2SO2q6iowPbt2zFjxgw899xzAIAHHngAixcvxvr16zFhwgTIZDKX9Um2GjVNqC/XAgC6xQZDKm3fCimRo0K6ByAg3Beaaj0kUol4BiIRkTM5lAz/wQcf4O6778YDDzxgt9IlkUgwffp0jBw5Eh988IFDg5TJZIiKioJarRavZWdnY/To0WJABADDhw9HbGwssrKyxGv79++HwWDAjBkzbMb20EMPoaKiArm5uS7tk2xZFypl/SxyJ4lEgqEP9YHcV4aB98VDJuezQUTkfA4dwVNQUICZM2fesk18fDw+++yzNvet1Wqh1+vR0NCAAwcO4PDhw5g4cSIA84pSdXU1kpOT7d6XkpKCQ4cOia8LCwvh7++PuLg4u3aW+4MHD3ZJn82prKyESqUSXxcXF99yHroaVoQnT5J6TxxS0ntDwpVVInIRhwItHx8fFBYW3rLN2bNnbXKbWuudd97B7t27AQBSqRTjxo0Tt+ksgYpSqbR7n1KpRF1dHRobG6FQKKBSqRAeHm634mZ5b2Vlpcv6bM7u3buxefNmu+sXL16E0Wi0u65Wq5GXl9dif53NuZM3gsw6kwp5eepbtG6/rjZvHYFz1j6ct/bhvLUP563tXDlnrclBdyjQGjFiBLKysrBlyxY88sgjNgFVU1MTtm/fjqNHj2LSpElt7nvWrFmYMGECKisrkZWVBaPRiKamJgCAXq8HgGYDOIVCIbZRKBTQ6/W3beeqPpszffp0m6cni4uLsXr1aiQkJDS7mpaXl9emhwk83dlPDpp/kAB3jBsEHz/XnGve1eatI3DO2ofz1j6ct/bhvLWdu+fMob/lnnnmGZw+fRqbNm3CZ599hv79+yMsLAw1NTU4c+YMampqoFQqsWDBgjb3HRcXJ27NTZ06FUuXLsXy5cuxYcMG+Pqaj2yxBF7WGhsbAUBs4+vr2+p2zu6zOREREYiIiGjxfldmMppQXWLeOgztHuiyIIuIiMhTOJT9GRUVhffffx9TpkxBQ0MDfvjhB+zZswc//PADGhoaMGXKFLz//vuIiopyeKATJkzAmTNnUFJSIm7RWec6WahUKoSEhIirS0qlElVVVRAEwa4dADHocUWfZKv2WoN4rhzrZxERkTdweElBqVTid7/7HZYtW4ZLly6hoaEBgYGBiI2NbVduVkss23FqtRq9e/dGWFgYCgoK7Nrl5+cjKSlJfJ2UlIR///vfKC4uRnx8vHjdsl9raRsZGen0PsmWqpiJ8ERE5F2c9jyzXC5HYmIiBg0ahMTExHYHWdXV1XbXDAYDvv76a/j6+oqBzfjx43Hw4EGUlZWJ7Y4fP46SkhLx6UQASEtLg1wux44dO8RrgiBg165diIyMxMCBA8XrruiTbqi6ZFURnqUdiIjICzgtSSYnJweFhYXQaDQICAhA3759MWjQoDb388Ybb6ChoQFDhgxBZGQkVCoVvv32W1y6dAkLFy5EQID5PLKMjAzs3bsXS5YswcyZM6HVarF161YkJiZi2rRpYn9RUVGYNWsWtm7dCoPBgJSUFHz//fc4ffo0XnzxRZvCoq7ok25QFXFFi4iIvIvDgVZOTg5ef/11XLlyBYB5ZcdS9iAmJgbLly9v0wrPpEmT8OWXX2LXrl2ora1FQEAAkpOTsWDBAqSlpYntoqOjsXbtWqxbtw4bNmwQzyVcuHChmEtlMX/+fAQHB2P37t3IzMxETEwMVq5ciXvuucemnSv6pBssK1p+wT4ICG/5gQEiIqKuwqFA6+LFi3j++eeh0+kwfPhwDBs2TEwUP3HiBI4ePYrnn38e7733nk0u062kp6e3+qzAhIQEvPnmm7dtJ5VKkZGRgYyMDLf0SYCmRg9trfmpzG69Q9p9ODkREVFn4lCgtXnzZjQ1NeHPf/4zRo4caXPvf/7nf3D48GGsWLECmzdvxksvveTIR1EnZzlIGgCU8dw2JCIi7+BQMvzJkycxYcIEuyDLYuTIkZgwYQJOnDjhyMdQF1BVzER4IiLyPg4FWg0NDejRo8ct2/To0QMNDQ2OfAx1ATalHXpzRYuIiLyDQ4GWUqlEbm7uLdvk5eU1e34geRdLIrxULkFYz0A3j4aIiKhjOBRojRkzBidPnsSmTZvszvfT6/X429/+hhMnTtg8LUjex6A3ovaqeVUzPCYYUrnTyrcRERF5NIeS4R977DH88MMP2LJlC3bv3o2UlBSEh4ejurpaPOuwZ8+eeOyxx5w1XuqEqkrqYTmtSMn8LCIi8iIOBVqhoaF499138d577+G7777DoUOHxHsKhQLTpk3DggULEBLCnBxvVnXpRn5WNxYqJSIiL+JwwdKwsDAsX74czz//PIqLi8XK8HFxcZDLnVZ4njoxm9IOXNEiIiIv4rRISC6Xo0+fPs7qjroQ60CrG584JCIiL+JxZx1S1yKYBFRf3zoMivCHb2D7DhsnIiLqjDzurEPqWurKNWjSGQFw25CIiLyPx511SF0LE+GJiMib8axDcilVERPhiYjIe/GsQ3Ip2ycOuaJFRETehWcdkktZtg59/OUIivR382iIiIg6Fs86JJfRqRvRoNIBMG8bWh6SICIi8hY865BcpqqYifBEROTdeNYhuYxNflZvJsITEZH34VmH5DLWK1pMhCciIm/Esw7JZVSXzCtaEqkEYTFBbh4NERFRx+NZh+QSRoMJNZfVAICwnoGQK2RuHhEREVHHcygZnqglNVfUMBkFAEyEJyIi7+XwitaxY8ewfft2nDlzBmq1GoIg2LWRSCTIyspy9KOoE2EiPBERkYOB1t69e/Hyyy/DZDIhOjoacXFxkMm4RUQ3lXaI54oWERF5J4cCrY8++ggKhQKvvvoq7rzzTmeNiboArmgRERE5mKNVUlKC9PR0BllkQxAEcUUrIMwX/qG+bh4RERGRezgUaIWEhMDXl3+Jkq0GlQ76hiYATIQnIiLv5lCgNX78eBw/fhwGg8FZ46EuwGbbMI7bhkRE5L0cCrSefvppBAUF4aWXXkJZWZmzxkSdHM84JCIiMmtTMvwjjzxid81gMCAvLw/79+9HUFAQAgMD7dpIJBJs27at/aOkToUrWkRERGZtCrSaq5Elk8kQFRV1yzbNXaOu6eKRUhQfM69uyn1lCOluH3gTERF5izYFWp9++qmrxkFdQMmpCmS9fRKWuHrgtHhIpRL3DoqIiMiNeAQPOcW1/Cr8560fxWN3+o7rhTtn9nXzqIiIiNzLaYdKO0t+fj4yMzNx4sQJlJaWIiQkBAMGDMDcuXMRGxsrtnv11VeRmZlp9/7evXtjy5YtNtdMJhO2bduGnTt3oqqqCjExMcjIyMDkyZPt3l9UVIR169YhJycHcrkco0aNwqJFixAWFtbuPru6igu1+OaNYzA2mgAACXd1x9h5AyHhahYREXm5NgVamzdvhkQiwYwZMxASEoLNmze36n0SiQSPPfZYq9p+8sknyMnJwcSJE9GnTx+oVCrs2LEDc+fOxbvvvovExESxrUKhwLJly2ze31wy/saNG/Hxxx/jwQcfRP/+/bF//36sWrUKEokE6enpYrvy8nIsXrwYQUFBmDdvHrRaLbZt24YLFy5gw4YN8PHxaXOfXV315Xpkvn4UTVojACBmSAQmLBoCqYyLpURERG0KtD788ENIJBJMmjQJISEh+PDDD1v1vrYEWrNnz8bvf/97m6Bm0qRJeOKJJ/Dxxx/jxRdfFK/LZDJMmTLllv1VVFRg+/btmDFjBp577jkAwAMPPIDFixdj/fr1mDBhgng+45YtW6DT6bBp0yZER0cDAFJSUrB06VLs2bMH06dPb3OfXVldWQP2vHoUerW5OGn3/uGYvOQOyOQMsoiIiIA2Blpr1qwBAPEpQ8trZxo0aJDdtdjYWMTHx6O4uNjuntFohE6na3YlCwD2798Pg8GAGTNmiNckEgkeeughrFq1Crm5uRg8eDAAIDs7G6NHjxaDLAAYPnw4YmNjkZWVJQZabemzq2pQafHVq0ehqdEDACISQzHl+Tsh9+36ASYREVFrtSnQGjp06C1fu4ogCKiurkZ8fLzNdZ1Oh2nTpkGn0yE4OBjp6elYsGABAgICxDaFhYXw9/dHXFyczXtTUlLE+4MHD0ZFRQWqq6uRnJxs9/kpKSk4dOhQm/tsTmVlJVQqlfi6ueDR02lr9fjqtaNQV2gBAOExQZj6wnAoAnxu804iIiLv4nHJ8M359ttvUVFRgSeffFK8plQqMWfOHPTr1w+CIODw4cPYuXMnzp8/jzVr1kAuN//WVCoVwsPDIZHYJmYrlUoA5sDH0s76+s1t6+rq0NjYCIVC0eo+m7N79+5mc9suXrwIo9Fod12tViMvL6/F/jqaQWdC7j9K0VBm3i70C5ejz8OhuFByzs0js+Vp89YZcM7ah/PWPpy39uG8tZ0r5yw1NfW2bTw+0CouLsZbb72FAQMGYOrUqeL1+fPn27RLT09HbGwsNm7ciOzsbDEhXa/X2+R7WSgUCvG+9a+3a6tQKFrdZ3OmT5+OMWPG2Pz+Vq9ejYSEhGZX0/Ly8lr1L7IjNOkM2PP6UTHICujmiwf/cDeCIwNu886O50nz1llwztqH89Y+nLf24by1nbvnrE2B1vjx4+1WcVpDIpEgKyurze9TqVR44YUXEBgYiFdeeeW2CeazZ8/GBx98gGPHjomBlq+vL5qamuzaNjY2ivetf21t29a0a05ERAQiIiJu+fvwRIZGI779648oP1sDAPALUeC+FXd5ZJBFRETkKdoUaA0ZMqRdgVZ7qNVqLFu2DGq1GuvWrWtVcOLr64uQkBDU1VmdtadU4sSJExAEwWbslq1CS7+WbT/r/CnrtiEhIeKKVWv77CpMBhOy3j6Jqz+Zf3+KADmmLR+BsF5Bbh4ZERGRZ2tToLV27VpXjcOGXq/H8uXLUVJSgr/+9a92SfAt0Wg0qK2ttSkumpSUhH//+98oLi626ceyX5uUlAQAiIyMRFhYGAoKCuz6zc/PF9u1pc+uQDAJyN6Qg+Lj5QDM5xfeu2w4lPEhbh4ZERGR5/O4gkdGoxEvvfQScnNz8fLLL2PgwIF2bfR6PTQajd31jz76CIIgYOTIkeK1tLQ0yOVy7NixQ7wmCAJ27dqFyMhIm/7Hjx+PgwcPoqysTLx2/PhxlJSUYOLEie3qszMTBAEHPszF+QNXAQBSuQT3LL0D0f3C3TwyIiKizsFpyfBFRUUoLi6GTqfDvffe2+5+3nnnHRw4cACjR49GfX09vvnmG5v7U6ZMQVVVFZ566ilMnjwZvXv3BgAcOXIEhw4dwsiRI5GWlia2j4qKwqxZs7B161YYDAakpKTg+++/x+nTp/Hiiy/a5H1lZGRg7969WLJkCWbOnAmtVoutW7ciMTER06ZNa1efnZUgCDiytQBnvisBAEikEqT/Zhh6Depa26JERESu5HCglZ+fj7/85S+4cOGCeM0SaJ08eRK//e1v8Yc//MEm+LmVc+fMZQIOHjyIgwcP2t2fMmUKgoKCMHr0aBw9ehSZmZkwmUzo1asXnn76aTz66KOQSm0X6ubPn4/g4GDs3r0bmZmZiImJwcqVK3HPPffYtIuOjsbatWuxbt06bNiwQTzrcOHChWJ+Vlv77KxO7jqPnH9fNL+QAOMXDELc8Ohbv4mIiIhsOBRoXbx4EUuWLIFUKsWsWbNw6dIlHD58WLw/ZMgQhIaGYu/eva0OtFqTBxYcHIyVK1e2epxSqRQZGRnIyMi4bduEhAS8+eabTu2zsyk/V4PjnxaKr8c8OQBJab3cOCIiIqLOyaEcrb/97W8AzAcsL1y4EP3797e5L5FIMGDAAJw5c8aRj6EOVlpQLf489KE+SEnv7cbREBERdV4OBVonT57E+PHjERMT02Kb6OjoZksmkOfS1twouNpzoH2lfCIiImodhwItrVaL8PBbP4Gm1+thMpkc+RjqYNraG4FWQGjLxVeJiIjo1hwKtCIjI22S4Jtz9uxZ9OzZ05GPoQ6mqb4RaPmHMdAiIiJqL4cCLcuTf8eOHWv2/n//+1/k5eVh7NixjnwMdTDLipbMRwpFgMcfh0lEROSxHPpb9Je//CX27t2LZcuWYerUqaiqqgIA7NixA7m5ufjuu+/QvXt3zJ492ymDpY6huZ6j5R/m22FHLhEREXVFDgVaYWFhePvtt7F69Wp8+eWX4vX/+7//AwCkpqbi97//PYKCeCZeZ2FsMkKvNh+YHcBtQyIiIoc4vC/Us2dPrF+/HoWFhcjLy0NdXR0CAgKQmpqKlJQUZ4yROpC2tlH8mflZREREjnEo0Nq3bx/GjRsHAOjbty/69u3bbLu3334bixcvduSjqINorEo7cEWLiIjIMQ4lw7/yyis4derULdu8/fbb+Pzzzx35GOpA1jW0WNqBiIjIMQ4FWj179sSKFStaLPGwbt06fPbZZ60+fofcT2NVQ8s/nIEWERGRIxwKtP7yl78gICAAv/3tb1FWVmZzb/369fjnP/+JtLQ0vPzyyw4NkjoOV7SIiIicx6FAKyoqCm+88Qb0ej3+93//F7W1tQDMQdb27dsxevRovPzyy5DJZE4ZLLmedY4Wk+GJiIgc41CgBQDx8fH405/+hIqKCvz2t7/FunXrsH37dowaNQqvvPIK5HIWvOxMtEyGJyIichqHAy0AGDBgAF566SWcO3cOn332Ge6++26sXr2aQVYnJK5oSQD/EIV7B0NERNTJtSkSyszMvOX9ESNGIC8vD2PGjMF//vMfm3tTp05t++iow1mO3/ELVkAqd0ocTkRE5LXaFGi99tprzR7JIggCJBIJBEEAAPz1r3+1uSaRSBhodQKCINw4foeJ8ERERA5rU6C1fPlyV42DPIC+oQkmgzlYZn4WERGR49oUaE2bNs1V4yAPwER4IiIi52ISDolsSzswEZ6IiMhRDLRIxBUtIiIi52rT1uH48eMhlUrx97//HbGxsRg/fnyzyfE3k0gkyMrKavcgqWPYrGgxGZ6IiMhhbQq0hgwZAolEAl9fX5vX1DVoaxvFnwN4ziEREZHD2hRorV279pavqXPTVOvEn7miRURE5DjmaJHIZkWLOVpEREQOY6BFIkuOlkwhhY8/j08iIiJyVJv+Nt28eXO7PkQikeCxxx5r13up41ieOgwI9WXuHRERkRO0KdD68MMP2/UhDLQ8n7HJCH1DEwDAn4nwRERETtGmQGvNmjWuGge5mabGKj+LifBERERO0aZAa+jQoS4aBrmbtpbFSomIiJyNyfAEANBUWx+/w0CLiIjIGRx6tKysrOy2bSQSCQIDAxEYGOjIR5GLcUWLiIjI+RwKtGbPnt3qp9PCwsIwbtw4PP744+jWrZsjH0suYHugNAMtIiIiZ3Bo6/Dee+/F4MGDIQgCgoKCMHToUEyaNAlDhw5FcHAwBEHAkCFDcPfdd0OhUGDXrl2YN28eKisrnTV+chIeKE1EROR8Dq1ozZkzBwsXLsRjjz2GX/ziF/Dz8xPv6fV6fPLJJ/jss8/wzjvvoHfv3tiyZQs++OAD/P3vf8fSpUub7TM/Px+ZmZk4ceIESktLERISggEDBmDu3LmIjY21aVtUVIR169YhJycHcrkco0aNwqJFixAWFmbTzmQyYdu2bdi5cyeqqqoQExODjIwMTJ482e7zXdFnZ6Cp5YoWERGRszm0ovXuu+8iNTUVTz75pE2QBQC+vr544oknkJqaivfeew9SqRS/+tWv0L9/fxw6dKjFPj/55BNkZ2fjzjvvxG9+8xs8+OCDOHXqFObOnYsLFy6I7crLy7F48WJcuXIF8+bNw6OPPooffvgBS5cuRVNTk02fGzduxHvvvYcRI0bg2WefRXR0NFatWoXvvvvOpp0r+uwstJZkeAngH6Jw72CIiIi6CIdWtH766SfMmDHjlm369euHHTt2iK9TU1PxxRdftNh+9uzZ+P3vfw8fHx/x2qRJk/DEE0/g448/xosvvggA2LJlC3Q6HTZt2oTo6GgAQEpKCpYuXYo9e/Zg+vTpAICKigps374dM2bMwHPPPQcAeOCBB7B48WKsX78eEyZMgEwmc1mfnYVlRcsvWAGpjA+jEhEROYNDf6OaTCZcuXLllm0uX74MQRDE1zKZDApFyysmgwYNsgmyACA2Nhbx8fEoLi4Wr2VnZ2P06NFiQAQAw4cPR2xsLLKyssRr+/fvh8FgsAkIJRIJHnroIVRUVCA3N9elfXYGgiDcOH6H24ZERERO41CgNWjQIGRnZ7e4XZaVlYV9+/Zh4MCB4rXLly9DqVS26XMEQUB1dTVCQ0MBmFeUqqurkZycbNc2JSUFhYWF4uvCwkL4+/sjLi7Orp3lvqv6bE5lZSUKCgrEf6yDR3fRq5tgMpqDYQZaREREzuPQ1uGCBQuwcOFCvPLKK/jkk08waNAghIeHo7q6Gj/99BPOnTsHPz8/LFiwAABQW1uLY8eO4f7772/T53z77beoqKjAk08+CQBQqVQA0GzAplQqUVdXh8bGRigUCqhUKoSHh9uVobC81/IEpCv6bM7u3bubPZz74sWLMBqNdtfVajXy8vJa7M8ZGspvHL+jh9bln9cROmLeuhrOWftw3tqH89Y+nLe2c+Wcpaam3raNQ4FWnz59sG7dOvzf//0fcnJycO7cOZv7gwYNwrPPPos+ffoAAIKCgrBz5067xPlbKS4uxltvvYUBAwZg6tSpAMxPNAKw22IEIG5L6vV6KBQK6PX627ZzVZ/NmT59OsaMGWPz+1u9ejUSEhKaXU3Ly8tr1b9IR1wxVuIUrgEAesZHIzXVfhydTUfMW1fDOWsfzlv7cN7ah/PWdu6eM4cCLQBISkrCunXrUFZWhnPnzqGhoQGBgYFISkqyyXUCzPlZQUFBre5bpVLhhRdeQGBgIF555RUxwdzX17y9dfOTgADQ2Nho08bX17fV7ZzdZ3MiIiIQERHR4n13sCntwAOliYiInMbhQMsiOjraLrByhFqtxrJly6BWq7Fu3Tqb4MSyRWfZ7rOmUqkQEhIiri4plUqcOHECgiDYbPVZ3mvp1xV9dhZannNIRETkEk57jr+iogI//PAD/vOf/+CHH35ARUVFu/vS6/VYvnw5SkpK8PrrryM+Pt7mfmRkJMLCwlBQUGD33vz8fCQlJYmvk5KSoNPp7JLOLfu1lrau6LOz0PCcQyIiIpdwONC6fPkyli5dilmzZmHFihVYvXo1VqxYgVmzZmHp0qW4fPlym/ozGo146aWXkJubi5dfftnmiUVr48ePx8GDB20Otj5+/DhKSkowceJE8VpaWhrkcrlNLS9BELBr1y5ERkba9O+KPjsDHr9DRETkGg5tHZaVlWHRokWorq5G7969MWTIECiVSlRVVeHUqVM4fvw4Fi1ahA0bNrR6W/Gdd97BgQMHMHr0aNTX1+Obb76xuT9lyhQAQEZGBvbu3YslS5Zg5syZ0Gq12Lp1KxITEzFt2jSxfVRUFGbNmoWtW7fCYDAgJSUF33//PU6fPo0XX3zRprCoK/rsDHigNBERkWs4FGht3rwZ1dXVWLp0KaZPn25X7mDXrl3461//io8++gjLli1rVZ+WJxcPHjyIgwcP2t23BFrR0dFYu3Yt1q1bhw0bNojnEi5cuNCuIOr8+fMRHByM3bt3IzMzEzExMVi5ciXuuecem3au6LMzsARacl8ZfPw6V5BIRETkyRwKtI4cOYLRo0fjZz/7WbP3f/azn+HQoUM4fPhwq/tcu3Ztq9smJCTgzTffvG07qVSKjIwMZGRkuKVPT2ddFf7mYJmIiIjaz6EcrZqaGiQmJt6yTWJiImpqahz5GHIhQ6MRjRoDAJZ2ICIicjaHAq2wsDAUFRXdsk1RURHCwsIc+RhyIS2fOCQiInIZhwKtESNG4MCBA/j3v//d7P0vv/wSBw8exF133eXIx5ALaZkIT0RE5DIO5Wg98cQTOHjwIN544w3885//xNChQ9GtWzfxqcOioiKEhobi8ccfd9JwydlsnzhU3KIlERERtZVDgVZ0dDTeeecdvPHGGzh58qTdNuKwYcPwv//7v06tGE/OpWENLSIiIpdx+Aie2NhYrFmzplVnHZLnsSlWymR4IiIip/LYsw6pY2hqGsWf/cMZaBERETlTmwKt119/vd0ftHz58na/l1zH5qlDrmgRERE5VZsCrT179rTrQyQSCQMtD2XJ0ZJIAD8GWkRERE7VpkBr+/btrhoHuYklR8svRAGplFXhiYiInKlNgVb37t1dNQ5yA8EkQHN965A1tIiIiJzPoYKl1Lnp1U0QjAIAlnYgIiJyBQZaXsymWCnzs4iIiJyOgZYX0/CcQyIiIpdioOXFeM4hERGRazHQ8mI8foeIiMi1GGh5MS0DLSIiIpdioOXFNNw6JCIicikGWl5My2R4IiIil2Kg5cU01eZAS+4rg4+f084XJyIiousYaHkxy4oWV7OIiIhcg4GWlzI0GtGoMQBgfhYREZGrMNDyUnzikIiIyPUYaHkpPnFIRETkegy0vBSLlRIREbkeAy0vZVPagQdKExERuQQDLS9lKe0AcOuQiIjIVRhoeSkWKyUiInI9BlpeisnwRERErsdAy0tZyjtIJIBfiMLNoyEiIuqaGGh5Kc31rUO/UF9IpRI3j4aIiKhrYqDlhQSTAG1tIwDmZxEREbkSAy0vpFM3QjAKAAB/lnYgIiJyGQZaXsimWGk4Ay0iIiJXkbt7ADfTaDTYtm0b8vLykJ+fj/r6eqxYsQLTpk2zaffqq68iMzPT7v29e/fGli1bbK6ZTCZs27YNO3fuRFVVFWJiYpCRkYHJkyfbvb+oqAjr1q1DTk4O5HI5Ro0ahUWLFiEsLKzdfXoa63MOuaJFRETkOh4XaNXW1mLz5s2Ijo5GUlISTpw40WJbhUKBZcuW2VwLDAy0a7dx40Z8/PHHePDBB9G/f3/s378fq1atgkQiQXp6utiuvLwcixcvRlBQEObNmwetVott27bhwoUL2LBhA3x8fNrcpyeyPX6HTxwSERG5iscFWkqlEjt27IBSqcSZM2fw9NNPt9hWJpNhypQpt+yvoqIC27dvx4wZM/Dcc88BAB544AEsXrwY69evx4QJEyCTyQAAW7ZsgU6nw6ZNmxAdHQ0ASElJwdKlS7Fnzx5Mnz69zX16Ii3POSQiIuoQHpejpVAooFQqW93eaDSioaGhxfv79++HwWDAjBkzxGsSiQQPPfQQKioqkJubK17Pzs7G6NGjxSALAIYPH47Y2FhkZWW1q09PZHniEODWIRERkSt53IpWW+h0OkybNg06nQ7BwcFIT0/HggULEBAQILYpLCyEv78/4uLibN6bkpIi3h88eDAqKipQXV2N5ORku89JSUnBoUOH2txncyorK6FSqcTXxcXFbfxdO876nEMmwxMREblOpw20lEol5syZg379+kEQBBw+fBg7d+7E+fPnsWbNGsjl5t+aSqVCeHg4JBKJ3fsBc+BjaWd9/ea2dXV1aGxshEKhaHWfzdm9ezc2b95sd/3ixYswGo1219VqNfLy8lrsrz0qr1aJPxdfuwiZyuMWNh3minnr6jhn7cN5ax/OW/tw3trOlXOWmpp62zadNtCaP3++zev09HTExsZi48aNyM7OFhPS9Xq9TRK7hUKhEO9b/3q7tgqFotV9Nmf69OkYM2aM+Lq4uBirV69GQkJCs6tpeXl5rfoX2Ra5TZUA9PDxl2HQ0IFO7dtTuGLeujrOWftw3tqH89Y+nLe2c/ecdamljNmzZ0MqleLYsWPiNV9fXzQ1Ndm1bWxsFO9b/9ratq1p15yIiAgkJyeL/9y8/dgRLE8dMj+LiIjItbpUoOXr64uQkBDU1dWJ15RKJaqqqiAIgk1by1ZhRESE2M76+s1tQ0JCxBWr1vbpiQx6I5q0BgB84pCIiMjVulSgpdFoUFtba1NcNCkpCTqdzi7p3LJfm5SUBACIjIxEWFgYCgoK7PrNz88X27WlT09kXUPLn4EWERGRS3XKQEuv10Oj0dhd/+ijjyAIAkaOHCleS0tLg1wux44dO8RrgiBg165diIyMxMCBN3KUxo8fj4MHD6KsrEy8dvz4cZSUlGDixInt6tPT2BQr5dYhERGRS3lkMvznn38OtVotbsUdOHAA5eXlAICHH34Y9fX1eOqppzB58mT07t0bAHDkyBEcOnQII0eORFpamthXVFQUZs2aha1bt8JgMCAlJQXff/89Tp8+jRdffNGmsGhGRgb27t2LJUuWYObMmdBqtdi6dSsSExNtjgBqS5+eRlvL0g5EREQdxSMDre3bt6O0tFR8vW/fPuzbtw8AMGXKFAQFBWH06NE4evQoMjMzYTKZ0KtXLzz99NN49NFHIZXaLtTNnz8fwcHB2L17NzIzMxETE4OVK1finnvusWkXHR2NtWvXYt26ddiwYYN41uHChQvF/Ky29ulpeM4hERFRx/HIQOvTTz+9bZuVK1e2uj+pVIqMjAxkZGTctm1CQgLefPNNp/bpSTQ8foeIiKjDdMocLWo/JsMTERF1HAZaXoYHShMREXUcBlpexrKiJZFK4BusuE1rIiIicgQDLS9jWdHyD1FAKpXcpjURERE5goGWFzGZBGjrzMcEMT+LiIjI9RhoeRF9fSMEk/nYIOZnERERuR4DLS/CJw6JiIg6FgMtL8InDomIiDoWAy0vwmKlREREHYuBlhexPueQW4dERESux0DLi2iqec4hERFRR2Kg5UU0tdw6JCIi6kgMtLwIk+GJiIg6FgMtL2JJhvfxl0PuK3PzaIiIiLo+BlpexJIMz9UsIiKijsFAy0s06Qxo0hoB8IlDIiKijsJAy0tYl3YI4BOHREREHYKBlpewLu0QEM5Ai4iIqCMw0PISNsVKQxVuHAkREZH3YKDlJTQ1jeLPzNEiIiLqGAy0vATPOSQiIup4DLS8BM85JCIi6ngMtLyETTI8Ay0iIqIOwUDLS1hWtCQyCfyCmAxPRETUERhoeQlLjpZ/qAISqcTNoyEiIvIODLS8gMkkQGc5fofFSomIiDoMAy0voKtrhCCYf2YiPBERUcdhoOUFtCztQERE5BYMtLyAxqYqPAMtIiKijsJAywtoec4hERGRWzDQ8gJc0SIiInIPBlpegMfvEBERuQcDLS/AZHgiIiL3kLt7ADfTaDTYtm0b8vLykJ+fj/r6eqxYsQLTpk2za1tUVIR169YhJycHcrkco0aNwqJFixAWFmbTzmQyYdu2bdi5cyeqqqoQExODjIwMTJ48uUP6dDfrFS2WdyAiIuo4Hhdo1dbWYvPmzYiOjkZSUhJOnDjRbLvy8nIsXrwYQUFBmDdvHrRaLbZt24YLFy5gw4YN8PHxEdtu3LgRH3/8MR588EH0798f+/fvx6pVqyCRSJCenu7SPj2BZUVLESCHXCFz82iIiIi8h8cFWkqlEjt27IBSqcSZM2fw9NNPN9tuy5Yt0Ol02LRpE6KjowEAKSkpWLp0Kfbs2YPp06cDACoqKrB9+3bMmDEDzz33HADggQcewOLFi7F+/XpMmDABMpnMZX16Ass5h0yEJyIi6lgel6OlUCigVCpv2y47OxujR48WAyIAGD58OGJjY5GVlSVe279/PwwGA2bMmCFek0gkeOihh1BRUYHc3FyX9uluTToDmnRGACztQERE1NE8LtBqjYqKClRXVyM5OdnuXkpKCgoLC8XXhYWF8Pf3R1xcnF07y31X9dmcyspKFBQUiP8UFxff7rfrEJv8LK5oERERdSiP2zpsDZVKBQDNrnwplUrU1dWhsbERCoUCKpUK4eHhkEgkdu0Ac+Djqj6bs3v3bmzevNnu+sWLF2E0Gu2uq9Vq5OXltdjf7dRd0ok/a02O9dWZODpv3ohz1j6ct/bhvLUP563tXDlnqampt23TKQMtvd68SmOdnG6hUCjENgqFAnq9/rbtXNVnc6ZPn44xY8aIr4uLi7F69WokJCQ0u5qWl5fXqn+RLblQdw1AGQAgJrEnUlMT291XZ+LovHkjzln7cN7ah/PWPpy3tnP3nHXKQMvX17wF1tTUZHevsbHRpo2vr2+r2zm7z+ZEREQgIiKixfvOxmKlRERE7tMpc7QsW3SW7T5rKpUKISEh4uqSUqlEVVUVBEGwawdADHpc0acn0LKGFhERkdt0ykArMjISYWFhKCgosLuXn5+PpKQk8XVSUhJ0Op1d0rllv9bS1hV9egKt1TmHAUyGJyIi6lCdMtACgPHjx+PgwYMoKysTrx0/fhwlJSWYOHGieC0tLQ1yuRw7duwQrwmCgF27diEyMhIDBw50aZ/uxq1DIiIi9/HIHK3PP/8carVa3Io7cOAAysvLAQAPP/wwgoKCkJGRgb1792LJkiWYOXMmtFottm7disTERJvjeqKiojBr1ixs3boVBoMBKSkp+P7773H69Gm8+OKLNoVFXdGnu1m2DiUyCXyD7BP4iYiIyHU8MtDavn07SktLxdf79u3Dvn37AABTpkxBUFAQoqOjsXbtWqxbtw4bNmwQzyVcuHChmEtlMX/+fAQHB2P37t3IzMxETEwMVq5ciXvuucemnSv6dDfLilZAqC8kUsltWhMREZEzeWSg9emnn7aqXUJCAt58883btpNKpcjIyEBGRoZb+nQXk0mArs78JCQT4YmIiDpep83RotvT1epheTCS+VlEREQdj4FWF6ap5fE7RERE7sRAqwvT1jSKP/NAaSIioo7HQKsL09TcOOfQP1Rxi5ZERETkCgy0ujCbFS3maBEREXU4BlpdGIuVEhERuRcDrS6M5xwSERG5FwOtLsx6RYtPHRIREXU8BlpdmOVAaUWAHHKF5xwLRERE5C0YaHVRgiDcOH6HpR2IiIjcgoFWF9WkM8KgNwLgtiEREZG7MNDqorR84pCIiMjtGGh1URo+cUhEROR2DLS6KK3VOYcB3DokIiJyCwZaXZSm2mpFi8nwREREbsFAq4viihYREZH7MdDqomyO3+GKFhERkVsw0OqitKwKT0RE5HYMtLoozfWtQ6lMAt8gHzePhoiIyDsx0OqiLMnw/mG+kEgkbh4NERGRd2Kg1QWZjCbo6hsBMBGeiIjIneTuHgC5gESCB/9wNzQ1esh8GEsTERG5CwOtLkgqlSC6X7i7h0FEROT1uNxBRERE5CIMtIiIiIhchIEWERERkYsw0CIiIiJyEQZaRERERC7CQIuIiIjIRRhoEREREbkIAy0iIiIiF2GgRUREROQiDLSIiIiIXISBFhEREZGLMNAiIiIichEGWkREREQuInf3ALydXq8HABQXFzd7/9KlS5DJZB05pC6B89Z2nLP24by1D+etfThvbefqOYuLi4Ofn1+L9xlouVlpaSkAYPXq1W4eCREREbXVxo0bkZyc3OJ9iSAIQgeOh25SU1ODI0eOoEePHlAoFDb3iouLsXr1aqxcuRJxcXFuGmHnw3lrO85Z+3De2ofz1j6ct7briDnjipaHCwsLw5QpU27ZJi4u7pbRMjWP89Z2nLP24by1D+etfThvbefOOWMyPBEREZGLMNAiIiIichEGWh5MqVTi8ccfh1KpdPdQOhXOW9txztqH89Y+nLf24by1nSfMGZPhiYiIiFyEK1pERERELsJAi4iIiMhFGGgRERERuQgDLSIiIiIXYcFSD9TY2IgPPvgA33zzDerr69GnTx/MnTsXI0aMcPfQPNaJEyfw7LPPNnvv3XffxYABAzp4RJ5Ho9Fg27ZtyMvLQ35+Purr67FixQpMmzbNrm1RURHWrVuHnJwcyOVyjBo1CosWLUJYWFjHD9yNWjtnr776KjIzM+3e37t3b2zZsqWjhusx8vPzkZmZiRMnTqC0tBQhISEYMGAA5s6di9jYWJu2/K6ZtXbO+F2zdfHiRXz44YcoKChAVVUV/Pz8EBcXhzlz5mDMmDE2bd31XWOg5YFee+017N27F7NmzUJMTAz27NmDZcuWYc2aNRg8eLC7h+fRHn74YaSkpNhc69Wrl5tG41lqa2uxefNmREdHIykpCSdOnGi2XXl5ORYvXoygoCDMmzcPWq0W27Ztw4ULF7Bhwwb4+Ph08Mjdp7VzBgAKhQLLli2zuRYYGOjqIXqkTz75BDk5OZg4cSL69OkDlUqFHTt2YO7cuXj33XeRmJgIgN81a62dM4DfNWulpaXQaDSYOnUqIiIioNPpkJ2djRUrVuD555/H9OnTAbj5uyaQR8nNzRXGjh0rfPLJJ+I1nU4nPProo8KCBQvcODLP9uOPPwpjx44VsrKy3D0Uj6XX64XKykpBEAQhPz9fGDt2rPDVV1/ZtXvzzTeFyZMnC6WlpeK1o0ePCmPHjhV27drVYeP1BK2dsz/+8Y/ClClTOnp4Huv06dNCY2OjzbVLly4J6enpwqpVq8Rr/K7d0No543ft9gwGg/DEE08I//M//yNec+d3jTlaHiY7OxsymUyMwgHA19cX999/P3Jzc1FWVubG0XUOGo0GBoPB3cPwOAqFolVF+7KzszF69GhER0eL14YPH47Y2FhkZWW5cogep7VzZmE0GtHQ0ODCEXUOgwYNslshiI2NRXx8PIqLi8Vr/K7d0No5s+B3rWUymQxRUVFQq9XiNXd+17h16GEKCwsRExNjtwxs2Q47d+6czReFbL322mvQarWQyWQYPHgwnnnmGfTv39/dw+o0KioqUF1d3ezhqykpKTh06JAbRtU56HQ6TJs2DTqdDsHBwUhPT8eCBQsQEBDg7qF5BEEQUF1djfj4eAD8rrXGzXNmwe+aPa1WC71ej4aGBhw4cACHDx/GxIkTAbj/u8ZAy8OoVKpm/wvacq2ysrKjh9QpyOVyjB8/HnfffTdCQ0NRVFSE7du3Y9GiRVi/fj369evn7iF2CiqVCgBa/A7W1dWhsbERCoWio4fm0ZRKJebMmYN+/fpBEAQcPnwYO3fuxPnz57FmzRrI5fyj9ttvv0VFRQWefPJJAPyutcbNcwbwu9aSd955B7t37wYASKVSjBs3Ds899xwA93/XvPPfiAfT6/XNJuVZvgB6vb6jh9QpDBo0CIMGDRJfp6WlYcKECXjiiSfw/vvv44033nDj6DoPy/frdt9Bb/7Lrznz58+3eZ2eno7Y2Fhs3LgR2dnZSE9Pd9PIPENxcTHeeustDBgwAFOnTgXA79rtNDdnAL9rLZk1axYmTJiAyspKZGVlwWg0oqmpCYD7v2vM0fIwvr6+4pfDWmNjo3ifWicmJgZpaWk4ceIEjEaju4fTKVi+X/wOOm727NmQSqU4duyYu4fiViqVCi+88AICAwPxyiuvQCaTAeB37VZamrOW8LsGxMXFYfjw4Zg6dSr+9Kc/QavVYvny5RAEwe3fNQZaHkapVIrLnNYs1yIiIjp6SJ1aVFQUmpqaoNPp3D2UTsGytN7SdzAkJMRrVxjaytfXFyEhIairq3P3UNxGrVZj2bJlUKvVeOONN2z+/OJ3rXm3mrOW8Ltmb8KECThz5gxKSkrc/l1joOVhkpKScPnyZbunSfLy8sT71HpXr16FQqGAv7+/u4fSKURGRiIsLAwFBQV29/Lz8/n9awONRoPa2lqvK7xpodfrsXz5cpSUlOD111+3S+jmd83e7easJd7+XWuOZbtQrVa7/bvGQMvDTJgwAUajUUzqA8xLm1999RVSU1P5xGELampq7K6dO3cOBw4cwIgRIyCV8qveWuPHj8fBgwdtSokcP34cJSUl4lM8dINer4dGo7G7/tFHH0EQBIwcOdINo3Ivo9GIl156Cbm5uXj55ZcxcODAZtvxu3ZDa+aM3zV71dXVdtcMBgO+/vpr+Pr6isGqO79rTIb3MKmpqZg4cSLef/991NTUoFevXsjMzERpaSleeOEFdw/PY/3hD3+Ar68vBg4ciPDwcBQVFeGLL76An5+fXfKoN/v888+hVqvFJfQDBw6gvLwcgLmqflBQEDIyMrB3714sWbIEM2fOhFarxdatW5GYmNjscT1d3e3mrL6+Hk899RQmT56M3r17AwCOHDmCQ4cOYeTIkUhLS3Pb2N3lnXfewYEDBzB69GjU19fjm2++sbk/ZcoUAOB3zUpr5qyqqorftZu88cYbaGhowJAhQxAZGQmVSoVvv/0Wly5dwsKFC8WSF+78rkkEQRBc+gnUZnq9XjzrUK1WIzExEXPnzsVdd93l7qF5rM8++wzffvstrly5goaGBoSFheHOO+/E448/jpiYGHcPz2PMnj0bpaWlzd7bvn07evToAcB8ftjNZ4ItXLgQ3bp168jheoTbzVlQUBDWrFmD3NxcqFQqmEwm9OrVC/fccw8effRRr3zc/je/+Q1OnjzZ4v19+/aJP/O7ZtaaOauvr+d37SbfffcdvvzyS1y4cAG1tbUICAhAcnIyfv7zn9sFnu76rjHQIiIiInIRJq4QERERuQgDLSIiIiIXYaBFRERE5CIMtIiIiIhchIEWERERkYsw0CIiIiJyEQZaRERERC7CQIuIiIjIRRhoEREREbkIAy0i6vSuXbuGcePG4dVXX3X3UJxiz549GDduHPbs2ePuoRCRgxhoEVGX9Jvf/Abjxo1z9zCa1dUCQyJqmfedQElEXU5kZCT+8Y9/IDAw0N1DcYqxY8ciNTUVSqXS3UMhIgcx0CKiTk8ulyMuLs7dw3CaoKAgBAUFuXsYROQEEkEQBHcPgojIEdeuXcMjjzyCqVOn4ne/+12LW4aW+xbnz5/HP/7xD5w8eRJ1dXVQKpUYM2YMnnjiCYSGhjbb/y9+8Qts3LgRp06dQl1dHbZv344ePXpg3759yMrKwpkzZ1BZWQm5XI4+ffpg5syZmDBhgtjXnj178NprrzU7vjVr1mDYsGFimxUrVmDatGk2bXJycvCPf/wDubm50Ov16N69OyZNmoRf/OIX8PPzs2k7btw4DB06FC+99BLeffddHDp0CFqtFklJSZg/fz6GDRvW1qkmojbiihYRdTmPP/44MjMzUVpaiscff1y83rdvX/Hn/fv346WXXoJEIkFaWhqioqJQVFSEf/3rXzhy5Ag2bNiA4OBgm36vXLmCZ555BomJiZg6dSrq6urg4+MDAHj//fchl8sxaNAgKJVK1NTU4MCBA/j973+PZ599Fg8//DAAICkpCTNnzsRnn32GpKQkpKWlif137979lr+vrKwsrFq1Cj4+Ppg0aRLCwsJw9OhRbN68GUeOHMGaNWvg6+tr8x61Wo2FCxciKCgIU6ZMQXV1NbKysvD8889j48aNSExMbNccE1HrMNAioi7nySefxMmTJ1FaWoonn3zS7n5tbS3++Mc/IjQ0FO+8845NgPPdd9/h5ZdfxgcffIAlS5bYvC8nJwePP/54s33++c9/Rs+ePW2uaTQa/PrXv8YHH3yA+++/H35+fujbty+CgoLEQKu5vprT0NCAv/zlL5DJZHj33XfRp08fAMDTTz+NVatW4b///S+2bduGxx57zOZ9586dw0MPPYQlS5ZAKjU//3THHXfgz3/+M/71r3/h+eefb9XnE1H78KlDIvI6X3/9NRoaGvD000/brSKlp6ejX79++O677+ze161bN/zyl79sts+bgywACAgIwLRp06BWq3HmzBmHxrx//36o1Wrcd999YpAFAFKpFM888wxkMlmz5SD8/f2xYMECMcgCzFuoMpnM4TER0e1xRYuIvE5ubi4AIC8vD1euXLG739jYiNraWtTU1CAsLEy8npSUJG4V3qy6uhoff/wxDh06hLKyMuj1epv7lZWVDo25sLAQADB06FC7e9HR0ejZsydKSkqg0WgQEBAg3ouJibF5DZgfHujWrRvUarVDYyKi22OgRURep76+HgCwY8eOW7bT6XQ2r8PDw5ttV1dXh6effhplZWUYNGgQhg8fjqCgIEilUpw7dw779+9HU1OTQ2NuaGgAYF5Va45SqURJSQkaGhpsAquWSl7IZDKYTCaHxkREt8dAi4i8jiUQ2bx5c5uSwSUSSbPXv/zyS5SVleGpp56yy5HasmUL9u/f3/7BXmcJmKqqqpq9b7neVWqJEXUVzNEioi7JkpNkNBrt7qWmpgK4sYXoKMv2o/UThBanT59ucWxtWVGyPDF58uRJu3tlZWW4cuUKevbsabdNSETuxUCLiLqkkJAQAEB5ebndvfvuuw8BAQHYuHEjLl68aHdfp9O1KQizJNTn5OTYXP/2229x6NAhu/bBwcGQSCTNjq0laWlpCAoKwldffWUzZkEQsGHDBhiNRruaW0Tkftw6JKIu6Y477sDevXvx4osvYuTIkVAoFEhKSsKYMWMQFhaGP/zhD/j973+PJ598EnfddRd69+6NpqYmlJaW4uTJkxg4cCDeeOONVn3WlClT8Mknn2DNmjU4ceIEoqOjce7cOfz4448YN24c9u3bZ9M+ICAA/fv3x6lTp7B69WrExMRAIpHg3nvvbbGWVmBgIH77299i1apVWLBgASZOnIiwsDAcP34cBQUFSElJwaOPPurwvBGRczHQIqIu6YEHHsC1a9fw3//+F5988gmMRiOmTp2KMWPGAABGjRqFDz74AFu3bsXx48dx7Ngx+Pn5ITIyEtOmTcOUKVNa/VlRUVFYu3Yt3n33XRw7dgxGoxH9+vXDm2++ifLycrtACwBWrlyJt99+GwcPHkRDQwMEQcDgwYNvWbR04sSJ6NatG7Zs2YJ9+/aJleEfe+wx/OIXv7ArVkpE7scjeIiIiIhchDlaRERERC7CQIuIiIjIRRhoEREREbkIAy0iIiIiF2GgRUREROQiDLSIiIiIXISBFhEREZGLMNAiIiIichEGWkREREQuwkCLiIiIyEUYaBERERG5CAMtIiIiIhf5/zztU6k5RGmFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9i0lEQVR4nO29eZxcVZn//7m1V2/pdHcSEsgGCUkawqICA2EJYYYv6MjMICj6dQEEZceZ4WuA14wLwuDXYV7+wojIokRxGGFEFEdBUQP5CqLIJCzpJBBIOgvZeu/q2u+9vz+qz61zbt2quvs9t/u8Xy9edKprOXX73HOe8zyf53kkVVVVCAQCgUAgEEwjIkEPQCAQCAQCgcBvhAEkEAgEAoFg2iEMIIFAIBAIBNMOYQAJBAKBQCCYdggDSCAQCAQCwbRDGEACgUAgEAimHcIAEggEAoFAMO0QBlAd8vk8tm/fjnw+H/RQBAKBQCAQuIwwgOrQ39+Pq6++Gv39/Ya/f+edd3weUfgR18we4rrZQ1w3e4jrZh1xzewR9HUTBpBNCoVC0EMIHeKa2UNcN3uI62YPcd2sI66ZPYK+bsIAEggEAoFAMO0QBpBAIBAIBIJphzCABAKBQCAQTDuEASQQCAQCgWDaIQwggUAgEAgE0w5hAAkEAoFAIJh2CANIIBAIBALBtEMYQAKBQCAQCKYdwgASCAQCgUAw7RAGkEAgEAgEgmlHLOgB6Nm0aRNuvvlmw9/df//9OO644xq+/vDhw/jWt76FV155BYqi4OSTT8aNN96IefPmeTFcgUAgEAgEIYQ7A4jwkY98BCtWrGAeO/LIIxu+JpvN4uabb8bExAQ++clPIhaL4YknnsCNN96I733ve5gxY4aXQxYIBAKBQBASuDWATjzxRKxevdrSa376059i7969eOCBBzTj6bTTTsPll1+Oxx9/HJ/73Oc8GKlAIBAIBIKwwa0BBFQ8OolEArGYuWE+//zzWL58OeM5WrhwId73vvdhw4YNwgAShI7D74xg70ujKO14J5DPb+1OY/GpcxCNR3393LGDEzj49ggWfWAO4imul6ka9rx2GJGohCOP7wl6KJYoZkvof/UQCrFy0EOxzPC+DIb6x7DwA3MQS/g7V4NkYjiPfW8MYMHJs5FqTwQ9HNOMH87hrRf2Ymh0FF3RYRyxbGYg4+B2Zbn77ruRy+UQjUZxwgkn4Nprr8Xy5cvrPl9RFLz77rv44Ac/WPO7FStW4JVXXkE2m0VLS4vh6wcGBjA4OKj9u7+/3/mXEAgcMDGYw9NfeRmqrGI3RoIbx9AynPjho337PEVW8Is7/4SJwTwGL1yEv/jUiuYv4oR9bw7gV//3zwCAv7nzDMw6Ojxh95d/uA1vPb8X6e4YTvoLFZIkBT0kU5QLMv77qy+jkCnhfZcswfsuXhr0kHzjt//fJhx6ewQL3z8bf/WP7w96OKYZOzCBTT/ZAQCY2X5YGECEWCyGc845B3/xF3+BGTNmYNeuXXj88cdxww034Nvf/jaOPfZYw9eNjY2hWCyiu7u75nfksYGBASxYsMDw9U8//TTWr19f8/jOnTshy3LN45lMBn19fRa+mUBcM2sMv5ODKqtBDwPvbt6D+DF53z6vMFbGxGDl83b37UdHn71rEMR82/3CsPbzm3/Yhjn5dl8/3wl73jwIAMgNlvHm61sQjYcjSXjiUBGFTAkAsOuNfUgtL/k+hiDmmlxScOjtEQDAgR2DoVpbB3dktZ+HRr0Ze29vb9PncGcArVy5EitXrtT+feaZZ2L16tW44oor8OCDD+Kee+4xfF2hUAAAxOPxmt8lEgnmOUZcdNFFWLVqlfbv/v5+3HnnnVi8eDGWLVtW8/y+vj5TF1hQRVwza+wc34+tOAQAWHr2kVj4/jm+fbYiK/jdvZsBAAkp5evfbXDXGF7FvspnR+1/dhDzbf+vNwEYAwDM6pqN3t7Fvn6+E/6c3af9vGTxUqQ7kgGOxjzvqYN4DfsBAKlYSyBrTBBzbXjvOP6IPZV/yJFQra07hvZhOw4DAI5cMA+9vQsDGQd3BpARRx11FM4880xs3LgRsiwjGq2N8SaTlZu1VKq1/ovFIvMcI3p6etDTE66YvWBqU8pXPY+zl3Ri0Sn+GUAA8MJ3XodcVJAfK/r6ubnx6ueV8uHSo4wemNB+pv9+vFMuyihmq9e6nJeBjgAHZIE8PV8K4ZovThg7UPWilAvhmWsAUKLGG08Fp9kKh48TwOzZs1EqlZDPG7viOzo6kEgkGB0PgTwmDBxBmKA30FgAiwQRVdIbjB8UqM8rh8iIUBU1tAZQboT1jodp7PmQzhenjB6sGkBySYFSVgIcjTXo+SUMIBO89957SCQSSKfThr+PRCI4+uijsW3btprf9fX1Yd68eXUF0AIBj5Sp02w86b+ztmoAlaCq/mmR8iH1AE0M5yEXq5tQOURjz9YYQOEZe2G86vUPk+HmlDHK2AZYrwrv0PdGLIC1jcCdATQyMlLz2I4dO/Diiy/ilFNOQSRSGfLBgwdrMrXOOeccbNu2jTGCdu/ejU2bNlmuKSQQBE3QpyRiAKmKyoRHvCZPbWhhcu2P7g/vhqQ3gMJ03cMcMnXCGOUBAsJlcAe9thG40wB9+ctfRjKZxPHHH4+ZM2di165d+PnPf45UKoXPf/7z2vPuuusubN68GRs3btQe+7u/+zv893//N9auXYvLLrsM0WgUTzzxBGbOnInLLrssiK8jENimHHCcPNVeTSjIjxeRbK1NMPAC2gOkyCrksoJojLuzWg16AyhM4ZjscHhDYEzINESGm1P0BlCY/ma0oRpEeF/77MA+uQ5nnXUWnnvuOTzxxBOYmJhAZ2cnzj77bFx++eU46qijGr62paUF69atw7e+9S384Ac/0HqB3XDDDejs7PTnCwgELsEuEsGFwIDJTeaIVl8+V685KuXLiLbxX+St1gMUnhN5TQgsRGOn5wvRwkRCYDA7QS7JmBjIMY+FyfhjDncBhsC4M4AuueQSXHLJJU2fd++99xo+Pnv2bNxxxx1uD0sg8J2g3cS0AUSHpbymoPuscl4G2nz7eNuM7g/viTw7zCaXhMl7pZ+bpbyMZNvUNoDGD+egl+WFyWgVWWACgaAhjAco6f8ikdSFwPzCyAMUBvSi1DBpMmqzwMIzdn2ZhjAZAnahU+AJYTK4ywF7twnCABIIOIXVAAUbAgvWAOJ/YZfLCsYPhdgDFNI0eFVVQzlfnDJ2cKLmsTB9b6bERwCHO4IwgAQCTtEWCQmBtCUIIgRmtKGFQdswfjBbE5IIw7gJYc0CKxdkyCW2/k2YPG92MfIAhel7k7UtEpMQiQTXc04YQAIBp5A6QNGEFEhjyiA8QKW8DKWs6h7jf2EfPWBwIg9JKEYp11b7DsM1B4wN8zB5QuyizwADwvW9ibEWSQTbcFcYQAIBp5AFLZoI5jbVp8H7gVHbjTB4I0bfMw5J+FlA0i650doeiWG45oDxvAyL8eYEQwMoJAY3UBVBB7W2EYQBJBBwCsnEicSDOSUlA/AAGW9o/G/GtAconp7Ua6lgKkPzij78BYTjmgPhnS9OUMoKxg/nah4PU+YeMVKjwgMkEAiMqC4Swdym0VgEiZbKZq5PTfeKQkhP9HQNoO6F7drPYRi7sQHE/7gBYwMoTFoYO4wP5KAqFc9i26xqa6iwGH6KomoHA+EBEggENchlBYpcWeSiAXmAAP8bohppOsJwsh2dFKWmZyTQMjOlPR6GTcnIAArDNQfqGczhGLtd6PBX98IO7eewGK10eDUo77b2+YF+ukAgMIRezIIUCpJaQIWJEhTZ+3COYUiDc21DMVvS6ujMmNvKFHbjfexAbRsMIBzjBoDcmIEIOiRjtwudAUZ7G8Oi26I9dCIEJhAIaqAXsyDdxFommFoxgrzGOKTB98JOb0gVA6has4n3sQO1RRCBcIwbqOMByoVj7HahC26yHqBwfG96nEGU96ARBtA04o1f7MQv/+VPGNw9FvRQBE1gFokAT0l+1wIyTGvm/GQ7Qul/ZhzRyhR2433sABsCI2MPw7iB6ZkFRofAuigDqBwSzxftoRNp8AJfKGRK+NN/bsd7bw7ijf/eGfRwBE0oMyEwDjxAMD5tu00+E74NjRZA60NgYRDkEgNIkoC2noqolvdrTjD0GIbEeLMLMYBiySjaelKIRCtGRFg8QOU8H95tQBhA04bcWEHLHDCK+Qv4gnUTB+kB8rcWkJGRxXs4hg5JdOhCYGHYlEgj1NSMpJb1JxcVKAr/NYymWxq8IldbrnTMaYEkSdp8C4vRWirw4d0GhAE0bShmqzfHVBcJTgVKjFAwuNs06XsIrLKh0doA3jc04gGSJKBjdpoNgXG+KSmKitxo5Zq3dCZD570iczLZVjXUeb/mTpgYzGvZoR1zWgAAscm/Ge8HBQIv3m1AGEDThmKOMoCmuEhwKsCkigapAWqjDCCDKs1uQz4j3ZlEJDbp2ufYYFdVVSuC2DYrjWg8qjMi+L7X8uNFzTPc0plkOnPzrgNSFVXzGJLQHcD/NXfCKKX/6TiiYgCR+cbzfULDi3cbEAbQtKGUrZ7ep/IJaarAyyLhZwhMUVQUMqXJz01orn2eN7TcaFE7UMyY2wYAoTIiclQ4PN2ZRDwZHuOtkC1pDWjTMxJVAfcUXt+YcOucVgBAPElCYOFovcJLggcgDKBpAx0C431hE7AZHYGmwXf41w6jOFHd0FLtcepky+98Hd2f0X6eMXfyRE4bERyPHWAzwCohMNp449uQoD2SqXbaAOL7mjuBzgDTh8DC0nqlXBAhMIHP0AZQMV8OxUmBoCgqtvxqF97auDdU43YCvYgHGgLzUQNEG1iVDY14gPjdiEf3szWAAOhE0PyOHQCyI3nt55aZSUa/xPtBiZ6PFY/hdPAAGYXAwjPfAH682wAQa/4UwVSA1gCpsgqlrCAajzZ4BT+8+4f9+MP3twIAOue1YfaSzmAH5AMlTlJFE61xSBKgqt6nwdfd0AoyVEWFFAl2sTRiVFcDCKBO5ODfG6H3ANFeFd7HXtAZzFrIlHOvmxPGDlbmWzQeQetky5VYiDyOAD8JHoDwAE0biln29B4mIfShHSPaz6PvTdR/4hSCl3LxkYikZdh4HQKjN7Rke7x6slWBcpHP+Up3gTfyAPHsvQJYDVCNCJrzsbMew+p8kUsKlDL/oSCrKIqqhcA65rRoB4J4iAxugJ8ED0AYQNMGOgQG8L+40YxRp+wwjdsJJaZhYLC3KUmFNypS6Cb0hpZuT7CeFE5PtsQDFE1E0NpVeyLnfUNiPEAzU6HLYCMkKY8hwO98cUJ2KA+lzKbAAyEPgQkPkMAP6BAYwP/CTDMyHQ0gTjxAQFUHVMrJkEvezZuaDS3Jd00aRVYwPnkin3FEq3YiZ1th8DduGtoA0meB8T52fciUDT3yPXY7MALoyXAroJ9v/K/rzNom0uAFflAKqQeoXJSRGchp/y6GKHTnBF6aoQI6IXTGOyF0zYaW5DudfPxwTitKN4PakCIRSduUeNdkEAMo2RZHNBZhw3ecj71eCAwI1wHPLGwKPO0B4vugoEeEwAS+U+MByvF/owColH2nEr/CYrg5hckCC/iU5FctoNoNje9wDB2a7ZjbyvwuDCnZqqpqneBbZiYBhEvAzcyXDv49hk4ZNUiBB/QhML7/ZkB1jJIErdhpUAgDaJpQI4Lm/HRHoLNsgPAYbk4hC3g0HtGaHQYF2xDVSw+QPquH75AGK4BuYX4X19oT8DduQnGiDLlUEQu3dFYMoHiI2nho80UCkq1xxNPhMgSsMmZQBRrQG618/82A6hhjqRgkSRhAAh+oEUGHxJCoMYBCcIO7AVnA6fh+UND9wHIetsNgNEBtcV1GEn8bGlMD6AjWA1RtUMnfuAlMDaDOSQE359echqTsJ1vjiEQjoTMErEJCYJGohNbuausPNuuQ778ZUA2B0QecoBAG0DRBb/DwvrgRRqnCX0A4bnA3KHG0SNAhMC9rARHvEtnQeA+BMTWA6oTA5JICReYzJTura4MB6PUk/F1zGqIZIx7KeDI8+iWrqFQKfPvsFkSomljxkImgybyiDbegEAbQNEAuyZqrmxCWE5K+7k8xJON2Cgmd0ELgoEi3+9MOg7x3ctLg4j2bioTAkm1xJkwI6AwJTjclfRFEgDUieLzmBLmsaIc6zQCiPUAh8XCbJTtS0Npc0OEvQO+14/97ayEwDrzbwa+uTfjBD36Ahx9+GIsXL8b3v//9hs/93ve+h/Xr19c8nkgk8Jvf/MajEfKPPvwFhGeBoHUWQLgKONpFVVWuPEBJH9phKGVFm6fVDY1f134pX8bEYCWEpPf+ALUNURMt8ZrnBA1bA6hWBM2r4Qboq0BPGswhCt9ZhVSABgzCrSGqBC2XFS1zkoe1jWsD6NChQ/jhD3+IdDrd/MkU//iP/8i8JhLhw9E1un8Cbz6zC8VsCUedNAtLzzzSl881NIA4v1EAoJApMaX5gXCccJwiFxUt840HN3HKBw8QnV5fDWnw69qnBalGBlAYuqrnDDxA0XgEkACofBsROV3NKEDnAeLYe2UHpgfYHL0HKDyZe/T6zYN3O/gRNODb3/42ent7oSgKRkdHTb/unHPOQWdnp3cDs0lhooStv9kNoHLT+mYAGXh7wuAB0nt/gHCM2ynMIsHBKcmPNHh9SjPAt2vfqAcYTRiq8xppgCRJQjQhQS6o3I4bYLMRjTyGvBsCVjHqAk8IU+sV+jDAgweID9eIAZs3b8YLL7yAG2+80dbrJyYmuOscnmytbiTFCW87a9PoU+ABfk+lNIYGEOc3uBvQi3ecgzh5PB3TUvG9EkHrawABfAtyG6XAA+E4lbNZYEntZ1J4k7drTmNkMPM8X5xi1AWeEKZeYPT6zYMBxKUHSJZlrFu3Dh/60IdwzDHHWH79xz72MeRyOaTTaZx55pm4/vrr0dXV1fA1AwMDGBwc1P7d399v+XObkWipXm6jsJRXGIbAQmBIjO2vNYCUsgq5rCAa49Z2dwztvuchBCZJElLtCWRHCp5pgBhNR5tBSIOz+TpGpcDriyAC4ajOSzRA8XSUmWek8CZv15zG2GDm3+tmF6IBkqIS2npYSUgsEZ7QH61RinGwtgU/AgN+9rOf4eDBg/jmN79p6XXt7e24+OKLcdxxxyEej+P111/HU089ha1bt+Khhx5Ca2vtQkV4+umnDQXUO3fuhCzXWtWZTAZ9fX2Wxkca2QHAyOFRy6+3y8EdmZrHRofGfft8gtVrtnv7Ye3nZGcMhZHKzf3m5i2ItwR/evCKsT3Vk/noxAgSmYTvf6saEpUMlNxYAVu2bHG9gNmBt8a1nwfHB9DXl0cxU73vhgZGLF8DO/eoWfa/W52b7w3vxsEMa5APjoxpP+98px/jyQFPxuGEzFClxUysRWKukxSrrFOlfNmTv7Ub7HlnRPv50PABlPvGUByvbv5Dh4d9vWe8nGuqqmJ4f2UNT3ZEsW37tprnROISlJKKzGg2+LWiAaO7qLVtfBixTNyz8fb29jZ9DncG0OjoKL73ve/h05/+tGUdz6WXXsr8e/Xq1VixYgW+9rWv4amnnsInP/nJuq+96KKLsGrVKu3f/f39uPPOO7F48WIsW7as5vl9fX2mLrCeVxJ7IRcVRJGw9Xo7KP278A4GmcfiEf8+n2D1mm1/9PcAACki4Yil3eh/5SAA4OiFx6B9Vm3YYaqwt3wYb6LyXY+YNxvptrLvfys9O3vGkT00BKWs4thjlrnumSps3wFgCABw9LKFWNg7B6V8GX/GXgBAOt5i+RrYvUeboaoqXh15DwDQ1pPCyhOPr3mOtH83+jEMAJjTcwSW9c53fRxOKOXLeKlY8XJ3zulgrtObqQPIQYaqAMuPXY5onL/Dxsif+gBUdKHHHrcEs5d0opgt4c/YBwBI2ZgvTvBqrgEVT90fihXtaM+CTsPP2dSyH7nRIqJqLPC1ohH9uYPYQta2o+Yg2VYMdLzcxREefvhhtLe34yMf+Ygr7/dXf/VX6OrqwquvvtrweT09PVi2bJn238KFC135fD3JyXRYI12OVxRztZ/Fu5hYVVWtCGL7rDSjn5rqqfB0HJ8HNzGgzwRzf+7q22AA/Lr2C+MlFCY1fB0GAmiA/9RkWgBN638AIEI13+Ut+45gOF84LpvgBLYJap35plUe5+c+MYK+F+IcZIFxZQDt2bMHP//5z3HJJZdgYGAA+/fvx/79+1EsFlEul7F//36MjY01fyMds2fPtvU6L0i0Vv7ovhpAIdQAZYcL2s0yY14rEumpG9/XwywSHAgFAe9T4elyB+SzJLqrOkcbGiuAbrwhAXwKU+kaQGmdARSlOnTzdN1pjDRAEWq+8GQwO6VeDzAaIrrn0dimKXGWBRa8CUYxMDAARVGwbt06rFu3rub3H/vYx3DJJZfgpptuMv2eqqriwIEDWLp0qZtDtU1i0pNRyslQZAWRqPc2KG0ASREJqqJyuSjT6NOMp3KVVz1MpkQyBv9M5fqQTBvAIwPIIK0ZqCyS5YLM1XxtlgIP8J8Flh02zgADgGi8agDxetggczASlZgmqLEkf/PFKUzNqTl1DCBd6xU/9hU7sCU+Ygj6r8SVAbR48WLcddddNY8//PDDyGazuOmmmzBv3jwAwMGDB5HP55lQ1cjISI1u6Kc//SlGRkZw2mmneTp2sySpirDFXFnLePGSEmUAtcxMYmIwz/2Noj9l00YPr255tygzIbAoHwaQx7WAyHtKEYnJloynYsiNFrnaiBv1ACPwXpvFqA0GgQmBcWpIkPmSak8wIu14Kor8GJ/X3C5sCny9kCvbBy3Rwue6rvduFxo81w+4MoA6Oztx1lln1Tz+X//1XwDA/O6uu+7C5s2bsXHjRu2xSy+9FGvWrMHRRx+NRCKBN954A7/97W+xdOlSXHTRRd5/ARMwqfATJV8MIFoD1DozpZXwL+VlJFv5vFH0mwz97ynvAWLi5FHkAhwLgfbKeFELqJCZ7APWFodENXrk0bVvJgQW47iKNaBvg5Fifkd7gHi67gRVVbVCiLRnEqC1MPyN2y5aCrwEtM0y7oqgrwXEY+sVwCAEFnCpPq4MIKf81V/9Fd5880288MILKBaLmDNnDj7+8Y/j05/+NFKpVPM38IEEUwzRn41cC4FJQHpm9bRXypcZcTFPsGGGFkxQLnuevAFeoHcTB+4nhvf9wPSdvQk8uvbJ3IxEJZMbEn/zNddQA0R7gPgbe7lQbe5cM19S1HwpK4iEvF6Yqla7wLf1pOvWPwtLDaSyvhVGvsGTfSAUBtC9995r6rEvfvGLfgzHEbRlXvBJCE0MoHgqxoqJOfakkE0mloyiZWYKCfoGn+JZYDXl4mvrQfqOlyGwckHWPA01J3rOXPuqomohiY4jWhCJGNfIYcbNoTeiURYYI4Lm0AOUZ/qAsQc4tpu9jGTIDaDCeElbv+sJoAFdE1sO5xtB790O2gAK9+wIIckAqkGTXmCJlhj32SlApTP4+KFK4GfGES2QIqzQkecTjhuUplkWWD5Tm9FD4K3Mf2ZSPwfUF0ADOhE0h0YECYFF4xEmLA/wrwEyyhgkxNP8V+C2wqiJFHggPI1geWuFIQwgn0kE0A+MpNxXDCC+XfMAMH44B1WpBIdJm4HplAVW1ofAOIDWqrkdAjOq6ULgzbXPbEh19D9AxbAgWiYeN2ISAmvpTNZUeuY9C6xexiDAf/kBqzRqgkrDeL44/t5lzmqcCQPIZ+jTVsEHD5BSViAXKyfWRDrOelI4DSUZpRlPtYWtEbw1QwUqoUiix3FbBN1oQ+PNtT9mIgMMqPRPI0Y7b/O1XJS1Qo60JpAQ4bwOUEODOcn/Ac8KZmoAAfyXXSDwtrYJA8hn/PYAFSlvSY0HiFNXqVGaMW24FafAwtYI7e8isdWQg4aEp9wOgRUMitoReJuv9NzsbGAAAdVNiYdx0+RGq/qf1s7a5BBGBM3Z2AHjIoiE2BQ7KDFVoBuEXHkvu0AoT86naDzChUA9+BFMM/zWANGfUaMB4jSUZGgATasQWGXhjiWiTEp40CQnw2D58RJU1b38VVbUWl8EzcOGRs/NRiEwoDp23rwotADayANEi6B5uOZ6GmqAQhDit4LmAZIqLYHqwZtWrh5kbDEOvD+AMIB8h84C86MdBl0DKJ5mPUC8LcwEps6KYQgs/AtbI8giwYNIkIZsNqqiulrCodGGFuOspxYxgOLpGNIdjWt4aW0Z8rKrBqNTGhVBBFgPEI9rRGMNEF/zxSlaCnx3qqE3mK07xe/6SBICeFnbhAHkM6QXGAAtDu8lDT1AnBoSZJNJdSSQbKsYjHRfKF61S25B/i5ud1x3ilftMMxuaEHPV7kkY3xgMjtxbmuNeFgPGbuqqFDKiufjM0uuiQEUoUXQHG6mTNZgnUKIAN+eEDPkM0UUMpNNdxtkgAH6EBi/35uE52IcNEIFhAHkO6wHyPvFhW6DUSOC5vBGKeXLmoten2ZMxh70Rug15OQa4+SURPCqFlBYNB1jB7Na5doZDQSpBF4347B7gGjNGDkgEWIhOOCZZdxkBhjAf+VxoHIQEB6gaU40FtEmqy8hMJ0HKMbRidoIts0Ae9NrWTVTWAOkyIpWZybOySmJ4FUtoMZp8PyEbEf3U00pm+h/AH4zc+hGqGHUAOUmQ6bxVLQmLMSTx9ApZlPgAf19wuf3Lhdl7QDBi3dbGEABQFLh/WiFwWiAWmLcV1RutMlofX4KfGkq3ETfLJAn2H5g7hnvJAQWjUdqxJE8hWzN9ACjYcISHIWSmnmApIiEaLyyNfAYAiMeIL1gHgiPGNgMTM2pJh5HXr2NNPTaxot3WxhAAUDCYL57gNI6DRCHixtdZ0Wf9qlpKmRV85JMNejFi5dMCYJXIbBCnc7eAF+ufTNd4GmYsXO0KREDSIpKdZsxk7EH7XXToyiqpotJGxlAnLcgsQLTBb6JBohXbyMNbzWAAGEABQJpQFrKy56LI9kQWJy9UTgMJY002GSmQzsMtlQ8H25iAtMQNeOOAaSqqmZM6fU/AF+u/dEGxrkRvBblIxq7lhnJumUWql3V+Rk3UKmdRpy/hh6gKbRGWAuB8eltpKEP3EIEPY2hM8G8FkLrNUDReARStLLo8XhS0DxAUu1NH+c8fOcGbKl4Pk5JhJQHHeFLuTIUubKjGW1oMV1zyyAhBlBLZ5JpKlwPHjNzFFnRDE6j8BeB1yrWbMmEWoOZ9x5sViAGUEtXsqk3OBqLIMLxug4YNHnmAGEABYCfHeFpDVCiJVYp0a/VJ+HrpKCqqhb3butJGwgcp87prh70KYmXRYLghQi6UQo8wI8IujBR0jbfZgUQCTxuxrnRoiZENRJAE8jYy0VZ68vHA40E8wDrdQvaY+iEYpaab03CXwRevXYE3hqhAsIACgQ/q0HTYa5EumJ4VdPJ+ViUCfmxonY9jDpt052eeQzfuQFzSuLETUxItbmvAWq6oXGS1TNmUJyzGTyF7wjNBNAEbe6pk9k7nMAYzAaFKGNTxEtsJfxF0IxWztZ1AqNv5CS8LwygAPCzHxhtYMUnDS/tpMCZEdFMZBqGTAenlDjMlCBEYhEtg5EORTihUQ0g8pk8hGyZuTnP2okc4Ge+0inwLSY8QAA/3itAVwTRwGCORCStjhGPSR5moQ0gMzWnAKryOEd/LxoRAhMAYDvCe50JRgygWDKKyKTgkUy+coEv93ajGkDA1BI41oNnETRQ3XTcSoNv5gGiQ7ZBtjZgDCCTG1Kcw/YEbBXo2kaoBF5DSc00QAAdCuLTEDADmwFmcr6lSO+5MpdlQpjwPifebWEABQDtASp4LYKe1ADRRhebCs/PIsFuMrWn7ATnGWxuwHMaPEAZQBMlKLLzDEY6pGEkggb40DZYLYII8JmabDoExqH3CmhuMAPUAY8jw80qTA0g0xqgyTIhKrgsE8JjgocwgAKA0QB5HAIjrTAYAyhNZ6fws0g022SmgweIRzcxTZI6dZN6LE4oNAmBAVRNmiA9QJMbkhSR0D7brAeIvywwswYQj8YbwHoe6xtAU8ADRIXA2s1qgDgtu0CgD9uiDtA0xq9+YIqiaosAEUAD/FZLJR6gaDyC1p50ze+nQxp8WEJggDtCaOZEX6e7Op2SHYRrX1VVbW62z0ojGjO3bNJGBC+dyWkDqFEWGK91Zcx4gMh1l0uKK17KICAGUHpGwlTJBYDPsgs09NomRNDTGL9E0CVdDSACa0jwsbgpioqxg5VNpmNOi6ZXoqGzwIocnnDcgCkXz8kpicbtWkDN0uCB6mKpKsFUAM+OFLS/i9nwF8Bn2YbcZBFESEC6jsEJ6Is48rOZahogCUi01dEAJfkM35mllC9rWi2z4S+A34MtgUfvtjCAAoA2RrzUAOn7gBHYDA8+FuaJgRyUcuV0X6/OCu8nHDcocdwLDHC/HQZzoq+3oQVcC8hqCwwCjxvSxEglCyzdkUAkWn/5j3FSf0kPmS/J1rjhIQngs/yAFZgUeJOCe4BPg5tG1AESAACSTAjMOw8Q2wes+pk8NkRtJoAG+L/B3SBMIbCCiwZQPB1FNG68KDIn+gAMdrsGUIyzLDBVUSuFENFY/wMEf83rQdLg63kLAX4F3GaxawDx1DfPCLbEBx9rmzCAAoBJg/ewI7y+DQaBKSjIiSHB9gAzvunj0yALrBySLDDAnRCY1gi1TlNOIHhBrl0DKBKNaF3VefCi5MeLUCfbjqQbpMADwV9zI+SSrB3Y6unFAN06waEh0IwxGxlgAP+eL7bIKx9rmzCAAiASi2ibm7ceILYNBiHG4QlpzIwHKM3fuN2GRzcxTdJFETTd2bvhiT7gmjR2agARYhy1nWEywBoIoAE+N9N8prleDNCvb3yM3QpMEUSTGWAA/54vphlqgo+1TRhAAUEaonrZC4xpg8G5CJopglin0m4sGQUmw/68jNttyMIlRSVETGYb+YmbGqBmnb0JsYDrVpGidLFkFC0zG3tO9PCUkm02BR7gczM1UwQRCF4z5hQ7KfAA6zHmJeuQhvwtYskopDr6Lb/hb4WdJiQnM8E8DYEZ9AEDdAUFOYnvkxpAiZZY3dOdJEna4jbVs8DiySgkiY9FgsbNNPgwbGhKWcHYocrcnHFEi+WFm666HjRaBhiaG0A8pvCbSYEH+OkfZxdyGEy1x7V9wgy8f29iSPPk2RYGUECQWkDlggy57E1qL9MHLF0nBMaBCLpclJEZzAGoaCwabfw8VAX2EmKQ8iiABiqGO/nzONUAhWFDGz+c03QzZrvA08QoAyjotjNMDaCmImj+NlMzJRMAPkP8ZikXZGSHrKfAA/x/bzKPeFrbuDeAfvCDH+Dss8/GZz7zGVPPP3z4ML785S/jgx/8IC644ALcdttteO+99zwepXX86AcWFhH02MEsMLk3NBOZVhu58neDu4HmJubolEQjRSQtXOXYA2RyQ2Mzkvz9u5vJTmwEUw064K7qtAHU2kQDFHTY0YiCWYOZQ+PNLMTbCFjLAAN0WjlO/mY0ZEw8rW1cG0CHDh3CD3/4Q6TTtVWBjchms7j55puxefNmfPKTn8SVV16Jt99+GzfeeCNGR0c9Hq01kkwxRG9u0noiaN4KhVnZZIgni9eGf05QVZVyE/NzStJDwlVO0+CZzt4NsnqCzEiymwFG4KkWUHak2gm+WRYYKzwPfo0AgJzZkCnT6oePsZvFThNUAs9lQhRZ0YqY8tIIFQD4GYkB3/72t9Hb2wtFUUwZMD/96U+xd+9ePPDAA1ixYgUA4LTTTsPll1+Oxx9/HJ/73Oe8HrJpEj7UAqorguaspxa9yTQLM9AN/8oFmWtDwSpySdHCJDymwBMqp+8JlPIyykXZdkaHmT5ggL4Apr/zlRHn2wmB1XgjGntevIQVQdc3OIHJLB0JgMrHGgGw86WRaD7OocbRLKQaPgB0WPQ48li6gFDmtMArtx6gzZs344UXXsCNN95o+jXPP/88li9frhk/ALBw4UK8733vw4YNG7wYpm38qAZdrxAib/V0aAOos5kBNIVT4XksFW8Evfk4aYhqWtMRYIE3xyEwjqqXExF0si1et+gkQYpImheIl/uMni+N23iEd41giiA68ADxUrqAUOK0vhmXx2dZlrFu3Tp86EMfwjHHHGPqNYqi4N1338UHP/jBmt+tWLECr7zyCrLZLFpajCfVwMAABgcHtX/39/fbG7xJ/OgHVk8DpKWTq8EvygB7ym4W965J4W8i5gwT9GmVJzexHrpoYX68iNYua6nh9GsJZk/0fs9XLSOnI4FknVYdjYhxUpRPVVXNA9QsA4wQS8UqXj5O9CRm50uMswOeFZgQmFUNEMceIF4r3PMzEoqf/exnOHjwIL75zW+afs3Y2BiKxSK6u7trfkceGxgYwIIFCwxf//TTT2P9+vU1j+/cuROyXDuZMpkM+vr6TI9Pz+DIuPZz/47dyHcM236veowPZwAAkZiEbW9tY34XjUuQiyoyoxOOvocV6l2zob1jAIBEexRvv/tW4/fIjWk/b9/6NtqGG7vyw8TEoeoCn8mPa9fK6Vxzm0yhGo7e/ubb6Jwwp9HTM/DekPbz7vd2Yv+o8ckwN1g9IAwcHDR9LZxeN7moaBk58Q7J1nuNjI9oP7/z1rsYku1dK6eUc7KmwVDi5YbfhVw3Vaqse/mJAhfzb+Rw5d6XosDb726vmy1aGKtutkOHh30Zu1v36ODeEQBALBXBu7t3WHotrYkcGxnn4m9GyOyvhl/Hs6O+rG29vb1Nn8OdATQ6Oorvfe97+PSnP43Ozk7TrysUJheqeO0pLZFIMM8x4qKLLsKqVau0f/f39+POO+/E4sWLsWzZsprn9/X1mbrA9UhnDuAdVDaA7hmz0Nt7tO33qsdrykEAJSTbEjVj3dx6ANliARE15uh7WMHomuUzRbyUrXjbuufPaDqW8U3bcBAVw27+3AWYu6LLm8EGwKHECF7DfgDArCO6tWvhdK65jbxzJ/a9VNmM5nTNwzG9c229z9sYAZADJGDl+46r25xzYjiPTahkcrak2kxfC6fXbWDXKIA9AIC5x/TYeq/yO+9iLyoG47w5R2Jx7xG2x+OE4b3j+BP2AgBmHdnV8LuQ67atYwj54XGoZXObiddsLh0AAKQ7kjjuuOPqPq+YLeFV7Ks8N9Hiy9jduEfLRRkvjVXWwpnz2m293yvJfRVtpFS75gfJfmkQr6Py95s9bxZ6e5cDCH5t484Aevjhh9He3o6PfOQjll6XTFbcuqVSbTipWCwyzzGip6cHPT09lj7TCX5qgBLp2j9zxQ1ZCFzgSLt8zYhMeUvhdxNe3cR63GqIWpjUdCRb4w07kwfVCoMU5wTsCaABvTA1uPlqpQ0GgYRh5ZICpawEWplcVVUtBNYoYxDgvx5OPcYP57RyIFbDX4RYMopyQeamdAGB/jvwFN7nSgS9Z88e/PznP8cll1yCgYEB7N+/H/v370exWES5XMb+/fsxNjZm+NqOjg4kEglGx0Mgj/lp4DTD647wqqJqCy5tbBFIvLiUCzadfPQ9ayJTHtt4uEVYRNButcPQNrQGeg4guA2N7k9nNSOHwIsI2kobDAJPTUVLeRlKubJONWqcCwCRiIRoIqK9LiywTVDtGUBa5XHODodlphM8P2sbP6YYKhodRVGwbt06rFu3rub3H/vYx3DJJZfgpptuqvldJBLB0UcfjW3bttX8rq+vD/PmzasrgA4C0gsM8EYEXcqXtdOEkQFENhVVrZzwgmpOZzXNeCpngdEeAp4yJfTQJ3C6nYUV5LKieSiTDVLggckNLR6BXFJ8/Zs7TYEHjNLgg4Fug9GsBhAhpmuIaqUtg9uwbVOa6/7iqRjkYjFUXmI2A8yZwc3b2sh4tzla27gygBYvXoy77rqr5vGHH34Y2WwWN910E+bNmwcAOHjwIPL5PBYuXKg975xzzsEDDzyAbdu2YfnySoxx9+7d2LRpEz72sY/58yVMwtYBcv8mpfuAxQ1DYGymRGAGkMVCc1PZA0SfsnlyE+th+4HZM97NVvUlxFNRyCUFZR/rumhzU3J+IgeC3ZTseYD4OWzkTdaMIsSTUeTBnyekEYwBZDcENjnf5JICRVYahpb9hEmD5yi8z89IAHR2duKss86qefy//uu/AID53V133YXNmzdj48aN2mN/93d/h//+7//G2rVrcdlllyEajeKJJ57AzJkzcdlll3n/BSzAaoDc9wCxKfAGwnCdJyU9w/UhmIKcsqWohPZZzTNkEpxoKryAXST4OSXpSbrQENVsDSBCLBUDxku+bcSqqmoGUFtP2vYBgQmBBRhGsmUAcdRagTGYm2iAgOomG7ThZgUnKfAEpvVKQUaihQ8DiNfwPlcGkFNaWlqwbt06fOtb38IPfvADKIqCk08+GTfccIOljDI/iEQjiKeiKOVlT1phsEUQDUJgTLGwYAwJVVG1m75jdospkeVUDoHR3g2eRdDxVBSRmASlrDLtLKxgthEq/ZmAfxtxfqyo3UN2CiASeKnOa0cEHeOoorJVg5kkS/DmCWkEqQIdT8dMfUcj9B5Ho8NvEPCa4MHPSBpw7733mnoMAGbPno077rjD6yG5QqIlPmkAeaABqtMHjMBkUwUUSsoO57UNzeyJZ0qHwDg9JemRJAmp9gSywwUHHiCrIY3JHnAFGYqiIhIxrgHjFk57gBHYE3mAGqBJAyiejpregHiqqJwzWQSRwKsnpB5yWUHmcA5AJdxar8ZRM3jtB0aH93nSN/I9K6Y4pBq0JyGwOn3ACHEOuj2PWkyBB6Z2Gnw5JCEwoHoKL4yXbGURWvUAMYJcH+YrK4C2nzzBjwao0gi1xaQAGuDHewWY7xtH4OW6myVzOAfVYQo8oBeu8/O9RS8wQQ3JyUwwuahALrk7Wev1ASPw0A9s5L2M9rNpA4gy3IpTzgMUjlYYQNVoqQiTrc/dgtWQhs99jpgaQE5CYBxkgZXyZZRylb9R2kLrGJ56S1kPmYbLU8ymwDvwOHIUtqThNQQmDKAA8TITjK4tFDcMgQXvKrVaBBGY2hqgEqe1MoxIOqwFZDUE5ndDVMYDNM+BAUS6qiO4E7kdATTAlxeF0QCZEkHzU8PIDKNUBtgMmxmHAF9hSxrGuy1CYAKADU25bwA1CYElg1/c7OgsovEIpEn9RxhOdlYoc1orwwinqfBmG1sS/G6ISoogRuMRtHbb79/FdFUPaCPO2TSAYhxlgTEGs4mmtPGQZYu6kQIP8PU3o2E9QPysbcIAChC6I3zBZSE0qwEyCIFx4AEiBlAsGTW9MEuS5HtGkF/wWivDiJTDVHjLWT0+ijsVRdU2pI45LY4F1+RvGZQIemLYrgco+DWCQAohxtNRROPNN1BeKnCbhUmBd+IB4tTwI2ubFJUCbamih5+RTEOSjAfIZQOoSRp80AuEXFYqvW9Q8f5YyXrQqp1ONQ/QpEEXTUQ8z3JyCtMOw0Y1aGI0SRHJ0EOpx88Q2MRATuuc3uEgA4ygeYAC2ohzkwJoAEibTIEH/A87NkJrm9KkDQaBV0OgHiQFPpaMWtJp6eG1DxpZ2+LJqO0MNy8QBlCAeKkBKjXNAgtWBD1+KAtVqaQ9WBWZkkywMCxsViDfhyeRYD2ce4BIH7C4qQWRDYF5+3dnQrMOBNAEre9eQPPVDQ1QkCJoRVE1D7kZ/Q+gMwQ49xQrcvUw2HGE/RR4wP9QsVl4XduEARQgXvYDY0TQTTxAQZwUWP2PNZcv3e+GGFFTAfJ34F3/A7inATJb8M3P+epWCjyBbMZKWYVcVhy/n1WyroTAgttMi5mS1tfQ9HxJBp/lapbMQB6qXPmCTsJfAF9hSxriAeItuUMYQAFCe4AKbougJ2/6SEwyLOMftIvYSaE5HmoYeQGvi4QR9EZUsOgBKhdkyMWKIWD+RO+faJ9JgZ/b5vj9mJYSARgSrAcofHWAchZT4IHgQ/xWIOEvwFkKPMBX2JKgqiq3hzthAAUI3V3ZfQ9QxaipVwo9aBE0u8lYDYHxecpxgqKoVJycLzexESkHafBsRo/1E73XYmIn3kkjgm4pQbLAovEI43VuBtvHLLj7rMBkDJpr7RD0NbeCGz3ACLyELWnkkqJ56nlL7hAGUIB4mQZfIgaQQfgL0MXIcwGEwOjCX1Y1QBwUcXSbcohqAAHOGqLmbW1oPobAJg2gRIv9nkw0QXsjiAeopTNpSV8SjUUQiU6WnAjQi0LPl7RJj2GCk/CdGZgUeFdDYHx8b14boQLCAAoUVgTtngdIVVUtBFYvwyYSkRBNVP78QZyQSJ2VVEeC8YSZYSoWQyxzWim1HrFEVHO3W9UAWa3qC/jXmVxVVUwMVbKm2mc7E6QS4gGGJeSSjEKm8vexkgFGIH/jIEtO0PPLTM0ogN+WEEYwmjOHBhAvYUsaen/hzbstDKAAod3RBRc7wpcLVXFwo27A1XRyf2+UYq6snUrtNJoMW5l7M5Q47ZXTCGK8WPcAWasBBPgn7izlytq9kzRRcM8MsQCFqdmR6t/GigCaUE04CO4+o8ssmE+DD0+YnHiAovEIWmaa12gZwUvYkoatb8bX2iYMoAChw1NuaoDocJpRGwz95/u9QIw57LQ9FRui8loqvhFEB1TIlCxl41ltgwH415aBPohY9UzWI8jUZLoGkBUBNCGmpfDzEQKzN1/4XSMURcX4oWrRTclh/a9oLAKJg7AlDa+NUAFhAAVKJBrRNnM3O8LT4bR6GiCAXtz8XSDYNGPhAQL4bRbYCOK9URXVkoatYCMEFvNpQ6MPIm4ZQEE2RLVbA4hA5mI5X4aqBlNygjGAzGYNctDqxwwTg3koZXdS4AlxDsKWNDyvbcIAChgSonJTBN2sDxghHlB9EqeF5sIkcDQL0wg1JB4gu0JoWyGwJO3a99IDRB0eXPMABVe2wbkBVJmLqgqtOrbf2JkvkWgE0fikxpHjNYJJgXeh6CbAR9iShmfvtjCAAoacMl0NgTXpA0YIyk3sNM3YL2+An7AiaL4WiXrQGTmWDKAxOgvM3IYWTUR86apOG0BuaYCCDIHRRRCdiKCB4MTEWtsUyZpRSpIleEkHN8KtJqg0PIQtaXhthAoIAyhwiIdGLikoF92ZsEwbjAYhsHhAqfCjpO6FZM/tOxWzwEpMqihfbuJ6JG3WAspnrGs66Ca4XmYtFrwOgfksTHXsAUrS3qtgDAkyt5JtcUs98rQebJyEgozIDlU1Wm3daVfek4ewJQ2T4CGywAQ09Imm6JKexawImjYk/MoYUFVV8wC196RNdXbWMxU1QGGrAwTY7wdGnhtNRCwZe2Tx9NLoLWZoA8idxTrIOkB222AQeEirJpoxs/ofQoyzUJARhYx3Hscgw5Y0IgtMUJckXQvIpTCYWRF0EP1ycmNF7bPsCKCBqZkFxriJOTsl1cNuPzDyXKtFBsni6VcIzD0NUHBGBMkCk6KSraKOQVcWLhdl7ZpZHT8Zu1xUoMjBGwJGeBFyDVJ0bwTPNc6EARQwXlSDNi2CptPwfVqYR9+jRH82DaBEwFWsvaDEcbXUethph6GqquVGqAQ/xJ2ehMACrQNU8QClZyRspVgHXVmYbYNhzwAC+MmI0uPFfAu68rgenmucCQMoYBIe9AOzI4L263RHp8B32vUAhajImVnKIcwCs9MQtZQra52vzep/CGS+KrJ3WYtFL+oABSQkVmQFuUnBuZ0aQECw3itAlwFmsggiIWjjzQxTzeNohMgCE9SF9tC41RG+lOVXBE1ngNn1AE35EBhnbuJ6JG2EwOy0wSD4kZFUmKA8Dq5Vgg5GBJ0bKwKTGlg7+h8AiAUsgrZTBJEQhoMS0QAlWmKWBN6N4O1787y2CQMoYJIe9ANjNEAm6gAB/t0oYw5rAAFANB6tNmmcIiLoUIbAWq2HwOz0dSL4kZFEKkFLknuLNduewL8TeY4WQNtIgQeCDyPZKYJICEM/MGIAueVtBHQHBQ5CfyWOEzyEARQwdD8wv0NgQdTTISGwaDyCtm77fW/iae8zgvyEvv68LRL1iMQimoFt3gCyf6L3IyOJ3IOJ1rjjtgSEoLqqO02BB4KvqOzEYxgPyPNmFlVRtfnmlrcR4DEERid48LW2CQMoYNiO8O6KoKVoteO7EX7X01EVFWOTNYA6jnDW94acqt0qHRA0bL8cvtzEjSCbUsGHEBgr7vTKA+T+iRwIpjqvGwaQH9e8EXaqQBMYjyGHyRKlfBmkTI9b+h8g+LClHjYNnq+1TRhAAcN2hHc3BJZIxyBJ9Y2MhM8eoMJIGcqkANZu+ItAdEA8xLjdgLjoJQlaCf8woBlAEyVTqcaONjSPT7b0idzNDQnwJ4VfT5ZqhJq2bQDx5AFy4jHkb53wogYQEGzlcSPIvIkmIq7pnNwiPCvtFCXpoQeokf4H0Kfnen+j5Iaq389uDSACOZnyXOPDCuSkFktFGxqtvEHrMvKZ5gY83QbDbh0gwJsNrZirnsjdKoJIiGlViX30ADEaIHvh5qCNCCcaIMbDzYEWRo8XKfBAcC2O6kGK7PLo2eZuRDt37sQjjzyC7du3Y2hoCKlUCgsXLsTHP/5xrFq1quFrn3nmGdx9992Gv3vqqafQ3d3txZAdkXC5EKKqqpowuJH+B/C/onJuqPr9nBtArNAv0RJuW54YoGEpgkigT+WF8SJaZjT2NOSZui4Ws3o8FneyneCtFw1sRDUEJkNVVV+M3JwbITCfmtDWo+AoBBZsEcdmMB4gN0NgnKX/kzHwlgIPcGgAHThwANlsFhdccAF6enqQz+fxwgsv4LbbbsMtt9yCiy66qOl7fPazn8XcuXOZx9ra2rwasiPiTBq8cwNILilamCneIAW+8nt/3dv5QTcNINZ4a2bs8Q5xVYdFAE2w2hGerheUtuwB8vZEz9ZkcXdp1Az2yfYEsYT3f2fNAyRVCiHagRUS+7+ZkjpG0XjE8gbKex0gL6pAA94fFKxCxsBjdit3BtDpp5+O008/nXns4osvxtVXX40nnnjClAF02mmnYfny5V4N0VUiEQnxdAylXJkpwmYXs1WgAf/T4JkQmGMNEFvF2tm7BQ+5/jy6iRthtR2GszR4b0/0XoUkgNr2BL4YQJMeoFR7ApGoPQ9pLGAvCjGYk+1xy16zoMN3zfDMAOKoDpCiqFUDiEPvdijiBtFoFLNnz0YmkzH9mmw2C1kO3vo1A1ls3agDZLYPGDCZnhsj6bk+GECD1Qwbq+EPPVOpIapcprx2HJ6SGmG1HQZ5TjwdQzRmbfnx+kRf9NAA8rs9gaqoyI5WDCC7NYCAYMMpdNsUq95CIAQeIM9CYPykwfPe5Jk/k2ySXC6HQqGAiYkJvPjii/jjH/+Ic88919Rrb775ZuRyOcTjcZxyyim4/vrrMX/+/IavGRgYwODgoPbv/v5+R+O3QqI1Bgy4I4JmPUDNb6p4KoZCpuT5olwuyiiOVT6jY26LYw0Eb0I/J7Cl4rm9JQ2x2hG+2gfM+oLv9cJeoDywCRdP5ID/2VT5TFFrOWJX/wNUPNTRRARyUfF9My3lqlmjVr2FQHAtSMzihwcoaO0Tz41QAY4NoPvuuw9PP/00ACASieDss8/G3//93zd8TTKZxIUXXoiTTz4Zra2t2L59O5544glcd911ePjhhzFnzpy6r3366aexfv36msd37txp6EnKZDLo6+uz9qXqUFYrm4JcUvDm61s0r4wdRt7NaT+PTQw3H2O0kkGVy+Rd+z5GTBykNsd02fFnDY+Paj+/+/YujEYOOXq/ICmMVheJXHGi5tq4OdfcZmygmmr93q4DSPbVN4JURdVOvWpMtvydMu9VRb2H9h9GX1/jTc3qddv7bnVOHR4+CKVv3NL4GjE2UX3vt7ftQHvGvlFiBvp+KyJn6Tror5sUA1AEsuPW3scpeSppoqhY/+zCWPW+GjxsYi10gJ179ODe6oF774E9GFYPujIWuVDNih0ZGgt07aATX7L52mvk5drW29vb9DncGkCXXnopVq9ejYGBAWzYsAGyLKNUahwiWrNmDdasWaP9+6yzzsKpp56KG2+8EY8++ihuueWWuq+96KKLmCyz/v5+3HnnnVi8eDGWLVtW8/y+vj5TF9gM+2blMLa7soEfvWCJoxPbzvH96EPlveYtmIve3qMbPn9rxyAKoxmoZcm171NvXMB+AMCCFfPQ27vE0fupe/qxGyMAgCN65mJp75EORxgcw/syeBX7AABds2bW/B3cnGtuMzpzAm+isnC3JtobjjM/VsQfsBsAMHP2DMvfaWRGBq/jAACgvaWj6eutXrfMa9u1OXXMssWY1+te1mj2zbewHxWD6si583FUb49r723E3tJhvDZ5v81ddAR6e481/Vr9dXuj9RDGszlISsTXeXhoxwj+B+8BAGYfNcvyZxezJe2+SsdbPB27nXt036/+B0BF1tF7wjK0dqddGYuiqPgj9gAAktFUoGvH4K4xbJr8G3bP6eJubePWAFq4cCEWLlwIALjgggvwD//wD7j11lvxwAMPWAqfnHDCCejt7cWrr77a8Hk9PT3o6fF2UaqHviO8EwPIiggaqArTygUZiqJ6VqhqdH9W+9mpABqYWg1ReXcTNyJpQQPkpAo04H1vJ281QP6Kiekq0K0ONEBAVQfk933G1gCyETKlheccVETWw8w3i53uGxGJSIgloygX5MC/N8+NUIGQiKABYPXq1di2bRv27Nlj+bWzZ8/G2NiYB6NyB9pQcSqEpg2guBkNUNqfhZn0AAOcp8ADU0sEHcZGqIRkS7VnVrMsMCc1gADvm6GyafBuZ4H5W5SPNoDsVoEmkDkpFxUoiurovazg1GCORCNaVXUeW2GQcHAk1rhlkR20wpsBa5+YRqgc1gEKjQFUKFRuaCuZYIT33nsPnZ2dLo/IPWixcsGhEJpthGrCA+RTpsQo1QW+Y06L4/fzu4+Zl4SxESpBikiagJOu8myEmx4gb0TQtAfIozpA8EeQ60YfMEJQ3cWdVA0nxLUWJPwdkrS+c20J1wtj8vK9We82f2sbdwbQ8PBwzWPlchm/+tWvkEwmsWjRIgCVrK3+/n6Uy9ULPDIyUvPaP/zhD9i+fTtOPfVUr4bsmKSLHeGtpMED/nlSiAHU2pVyxRXK9DELuQeIaYQasiwwoLo5NQ+B2a/qC7BlG7xY2Mm9J03W5nITv7MWc0wbDKceoGCyipzOF4AK33FQEFAP8QC5HW4F2MrjQcJ6t/lb27gb0T333IOJiQmceOKJmDVrFgYHB/Hcc89h9+7duP7669HSUvEePPjgg3j22Wfx+OOPa1Wfr732Whx77LFYtmwZWltb8dZbb+GXv/wlZs+ejU996lNBfq2GuNkR3rIGyIdKr+WirN3s7bPdEfqxHqBwG0ClQnhDYEA1pb1ckFEuynWL/Dn1AAHVsg2eeIC0DalxE2E7+F1PhwmBNWlP0oygGqK6NV8A/tYIuaxoBx8vDCDiLa10BlBsF8J0CtsJnr+1jTsDaM2aNfjFL36Bn/3sZxgdHUVLSwuWLVuGa665BmeeeWbT17788st45ZVXkM/n0d3djQ9/+MO4/PLL0dXV5dM3sA5rADnzAJWYEFjzGyvmgweowGg/3BH7MZoKDuP7VqBP1TzGyZtBb06F8SJidbJZnHT2JsRT0YoB5GErDLf1P4D/7QlIJ/hka9xx1emgxMQFl+YLUNUv8dKN3KsaQAR9D7egeiWWqfnCo3ebuxGdd955OO+885o+7/bbb8ftt9/OPHb11Vfj6quv9mponkH3HSo4bIfBiKDNhMB8yKZiXNkuZTsw4+Yww8MKvLuJm6Fvh1EvnddJY0sC2YzLLv/NVUXV9HNensgB770RqqpqHiCnAmjA/yrWhJwLByd99h0vPQOZKtBeGEA6r11Q35t3DxB3GqDpSNLFjvBkEZckc+EUP0TQ+Yzzk5yeRGrqeIB4XySaYbYhqishjSTbVd0titkyMPl2nmgyfOyqXsyWIRcrxfCcCqCB4BqiEoPZTtsUAm+d0QletcEg8NIPjNU38re2CQOIAxgPkOM0+OqiYUbH4Ic400kDzHpEYlSKK2fxfauEuQ4QYL4fmPY7yX6rCc1AVKFt8m7gZQo84K+OhskAcyiABoJriOqkbQohnvRXfG4WL2tOAcFl7ukRdYAETWE0QC6FwMy6PP3IAit44AECqptK2LPASpyfkpphtiM82dCSrXHbWgyvTrZedoIH9J4Ib+drzsUaQEAwTUUVWdH+JqkO+4cmWgbAUz8w2gPkhcHNS0NU3mucCQOIAxLpGDC5H7glgjaTAQb4FAKjQx8uVjzlNcPDKmXOF4lmmG2ISowju+EvwDtPitei1JiPjTmzw9X+bG6EwILYTAuZkhaSdG2+cKQV9FwE7XPl8XrwXuNMGEAcIEUkrWaPkzR4uSRDLlXCAuYNIO9dxKz41UUPUJqPWhdOoRfmGIdu4mbQf9NCHQNILiuace5kQ4t5VA266HEIjLQnALzfiN0sggjo9Uv+bKZu6MUAXfVwjtYJP7PAgqyBxGiAOFzbhAHECWTRLTgQQVvNANM/z6uTKdMCwQMPkFxSoJTd04P4DeMmnqIhMDdSmgHvKip7WQWa4Fd7AlYDlHL8fkHUAXKjCCLATyhIj/ciaD60T+QelSRomk2e4G9E05RkC/EAlWxnt7BFEM1qgHzwAGXcWcz00KnwxRCHwYiLOhKTELGZ7RIktEajXgjMjZRmQF+Txr0NzWtRKlA1br0OSeTc9gAFsJm6UTMK4CcbSo+/mrMANUCTHsNYKup6cVE3CN9qO0UhHiClrGphLKtY7QMGsAtE0SMxMZP9Y3JcZohPkVR4skDx6CI2QywZ1U539QwgOgyadiJq9Ujb4HUWGOBfWwbXs8DoOkA+hVMKboXAONHC6PGzDlCQ4m9tbeOwCCIgDCBuSLhQC8hqHzBAFwLzaHHLT97ssXRE6xzuBlOlHQbZEMMogAYASZK07u71DKC8Sx4gr0T7XockAP+6qmcn+4DFU1FXjGo2ldyfzTTnmgHEhydET2Gi+v28KbvAx9pIjC8eBdCAMIC4gfaM2O0IX7LhAYrGIyCeSa9bYcTT7k43xjUf4lR4IiyNcXpKMgPdENUohOtWSMOrispei1IB/7wRblaBBvytYk0ouFQ7jFcNECl3kmiJedKew6tQsVXIfOHVuy0MIE6gT532PUDWRdCSJHmaTSWXZO19Yy3ungJ4OeU4QVVVKgTG5ynJDKS8gVJWDeeRa1k9HrVloOtveeUBYnQZXjUeLsjaYcAN/Q+gu+Y+bab0fHEWMg2mk30zSG00r8KtjLEdkAEklxUoslozHp5wxSyTZRmjo6MolYw37jlz5rjxMVMa2mNjNxXejggaqJySitmyJ0ZEngoteOoB4uh0ZwW5qGj1Tng9JZlB3xBVH4J1K6sn7tHJlniApKjkWUPauA+1gEgTVABo6XSeAQZUvcSq6mcWGB0ydakSdICeEBpVVbWej54Z28ngD4f0HOfVu+1oVNu3b8eDDz6I1157DeWy8UWWJAkbNmxw8jHTAjc6whdzlAbIgti4svEWPLlRaFe26x6gKaABYgqFhTAFnqBvh9E+u4X5vVtp8F6V+CcGULI17lm2SsyHtgxE/wO4I4AGKmt4LBVDKefNIcmI/Fhx8rPZXolW4TFMXsqVoU5qwPwJtwZj+JWYTvB8rm22DaC3334bN9xwA6LRKE455RS89NJLWLJkCbq6uvDWW29hZGQEJ510Eo444gg3xztlYTvCOw+BmRVBA9XGoqTBpJsbAH2Si7nuAQp/FhjvpeLNkmxSC8iLEJirGqBM1QDyCj9CSVmX22AQ4qkoSrmyjyGwyb9He8JR4gQv6eA0XqfAA3zUAQpDk2fbBtD3v/99AMB3vvMdLFq0COeccw7OOussXH755SgUCrjvvvvw/PPP49Zbb3VtsFMZpiN8ACEwAIBaWZjdDMXQG1+8xUMDKKweILoKNKduYjM0a4dBNjQpKpnWpxnhhahVUVTNO+CtAeR9yJbxALloAMW0Gkb+hsCc1g3jsRWGH4L7SCwCKSpBlY01eX4QhibPtnekN954A6tWrcKiRYu0x0j2RzKZxBe+8AX09PTgoYcecjzI6YAbHqASYwBZCIGlvTsl0enFsbTbITD+3NtWCXsfMEKzjvD0hubEw+iFqNXrNhgEPxqiut0Gg+Bn371yUdY8TU5b50SiEa1GFS/NUP0ouSBJUrXwZkDapzB4t20bQBMTE5g3b57271gshlwuV33jSAQnnXQSXn31VWcjnCa40RHemQaogtsLnH8eID4WN6swneA5XSTMwFaDrh8Cc7qheeFF8aMNBuCPLiPnchFEAhm7IquQPW4741a4lEDGzouX2A8DCAi+WTTvjVABBwZQZ2cnxsfHtX93dXVh7969zHOKxSLy+bz+pQIDXBFBEw+QZM3l6GW8mPUAuWwATQERdJlZJPh0E5uBCYGNsR6gUr5cyXaD8w0tlnA/pOFHGwxAn5HklQeout66qQHyM6vIbQMoRmkceaDoQwgMqBodgYXA6MMdp+F92zvSokWLsHv3bu3fK1euxCuvvII333wTALBr1y5s2LABCxcudD7KaQB98nRqAMVTMUvCQa9qqwB6D5C7p4AEhxkeVgl7I1QCYwBlWAPIrRR4AJCorupuufb9aIMB6I0Ib0XQ0XjEVWPOz6wiZr44qAFE4M4D5NN8I+t6OV+23V/SCWHwbts2y04//XR861vfwsDAAHp6evCJT3wCGzduxA033ID29nZkMhkoioJPfvKTbo53yhJPxQAJgOokBFatLmrts70zJOjFTHiAagmDm9gM9Em2oNMAudXXiRBLRisF/9wKgfkWkvBPBJ3uTLqazelnVpFbJRMIxPtAWpB4UXnZCnmP+4ARyN9MVQG5pDDeUz8oh6DEh+0d6W/+5m/w5JNPYsaMGQCAJUuW4Jvf/CZOPfVUzJgxA+9///vx9a9/HWeffbZrg53KSBFJS10v2PQAlWwbQJT3yW0RNNUINZZy1wCKTYE0eFYEzaeb2AyxRFRbcPUiaLfaYBDI57glgvYjKwfQV+d134iQy4pmzLkpgAb8bYiaG6OLILrgAUrT3qvgD0q+hcB8KLzZiFII1jbbo4rFYujq6mIeW7lyJb7xjW84HtR0JdkaRzFbtpUGr5QVbWGymmbMNER1WwQ9GQ5JtsZdbYQKAJHJcEjFGxD8wmYHxk3M6SnJLMn2BEr5XI0I2q1GqIS4y5oOP9pgAN7XpMl5lAEG+NsQ1XWPoa4FiZUSIV7gm8eRDrkWykjB+bW0QhjqAIleYBxB4sHFiZLlmG2RboSatnZTeeneJpuhGwuZEbzF961SmiIiaKD6Ny6MF7VKt4C7GiCgupjKJQWK7DwjyT9Nhrcncq9S4AF/G6K6PV/8aEFiBT8KIQLBN4INQx0gx6MaHBzEW2+9hfHxcSiK8WJ0wQUXOP2YaQEJXSmyCrmoWIqbFm3WAAK8q6islJVqgTkXQh9GxFMx5EaL4Q2BhUAoaBYS3lLVShiXNEh1PQSWZMMxCYflFfzakPQncrehiyCmXUyBB2qvuZe4nwZPr2/BH5TIfIvEvOs7B+gNbv+/dxi827YNoEKhgH/913/Fb3/727reCtJWQRhA5qBPn4VsyZoBZLMGEKArKOjiwkyL/chm6Dbh9wBNJQOIbohazwByL6sHqFw/pyENv+oAeX0iz41RBtAMlw0gH70JbhvMzHXnoBo03XbFq75zQPB10sJQ5NX23f7AAw/gueeew/z583Heeedh1qxZiEb5/JJhIUl3hJ8ooXWm+W7OjjxASW88QIWMuwuZEUS/pMgq5JKMaDxcc5DNlODTTWwWfTuMGXNbAbANcd3KAiO44Y3wqxI03VXdixN5frR6v6VdSB+n8aOKNYEYQNF4xBUPSYKzgqlkvnkpgAb8NVqNCEObH9uj2rBhAxYtWoSHHnoIiYS/4qqpSsJBPzCmDYZVDZBH6eSM+LUtAcD9CrL68F3YDKCp5AFK1mmHkc94GNJwYb76FZJguqp7EEais6e89AB5HwKr6gbd8JAErYWhkcuKNoZkq7f7ZszjkGszprQIOpPJ4NRTTxXGj4vQ/cCKFvuBOfEAebVAsGJG7zRAhDCGwZhTks91OtwmXachqnaiT7hzond7vmonco9DEgCdwu+BATRKh8Bc9gD5lAWmqmq1bYpLXiwv+sfZhRXce+sV8bN4pRHkWkdiEqIxPvOtbP8FFixYgOHhYTfHAgDYuXMnHnnkEWzfvh1DQ0NIpVJYuHAhPv7xj2PVqlVNXz8+Po7vfOc72LhxIwqFAlasWIHrrrsOy5Ytc32sbkN7gAoWPUC0BijuSATt3gJR0KU/Kyg0eLY9aP1SMYQGEFmYYsmo62UC/CZZpx0G+dmtsIzb4k6yKXkZ/iJU7rWCJ8Y64wHqcNsD5I8RUcyWocoVTalbh6agQ0E0RR90kQQ/i1caQa41rxlggAMP0GWXXYbf//73Nf2/nHLgwAFks1lccMEFuOmmm/DpT38aAHDbbbfh6aefbvhaRVGwdu1a/OY3v8HFF1+Ma665BsPDw7j55puxZ88eV8fpBUkH/cAYD5DVOkAe9ShiPECeiaDDXQyRhELCHv4C9Bqgyt++cqInmgeXDCDGte/sb17JVCQhCe8NIOJJKRVk19sTEA9QPBV1PZTHrhHe3WduC+YBvfdq+niAvK471YwwrG2m/wKbN29m/j1r1iyceuqp+PznP49LL70Uxx57LFpaWgxfe9JJJ5ke0Omnn47TTz+deeziiy/G1VdfjSeeeAIXXXRR3dc+//zzePPNN3HHHXdg9erVAIA1a9bgE5/4BB555BF86UtfMj2OIKBviIKjEJi1hVyiCwq6aETkdSLorAdNpMPeDoOcpnk+JZklZaABKmbLWk0gtzY0N0+2dNV1PwwgrT2BrEIpK65q1oinza3QEY1f3gS919gNgs6GovGr6jigq3/ksW7LCFLtnFcBNGDBALr55psN4+OqquKRRx5pGDt//vnnbQ2OEI1GMXv2bGzbtq3h81544QV0dXUx7Tc6Oztx7rnn4rnnnkOxWORas8SIoC32A6NDV1Y1QEDFkHC7ojKd/ZNsTwCjrr21hpd9zPygRIXAwo4+C4z+f+X37iz4brZlYKpAe7whAbUNUd0ygBSqDYbb4S9Ad809NCJor3HaLQPIw0r3VmGrQHssgg4wBKaqKhUC43dtM71TfuYzn/FcIEiTy+VQKBQwMTGBF198EX/84x9x7rnnNnzNW2+9haVLlyISYSN7K1aswM9//nPs2bMHxxxzjOFrBwYGMDg4qP27v7/f+ZewSMJBR3gnITCgMklzcHdxYzxAbXFvDKAQe4AUWYFcqrjFeM2SsALbELU0+X/3QxputmXwqwo0Qa9HSbW78765cToDzAMPkE8iaLZtiksaIJ/Cd2ZgDSCPRdA+Fq/UIxcVYDLCy/PhzvRf4Morr/RyHDXcd999muYnEong7LPPxt///d83fM3Q0BBOPPHEmse7u7sBVKpW1zOAnn76aaxfv77m8Z07d0KWaydPJpNBX19fs69hicJodQMfODBk6f2HDlcF6e/ueQfxAWuTTkbls4u5ErZs2eKKsTt8qGrxvLtnByayE65fs8ODE9rPe3btg9w37ur7e0k5X40JFsv5utfGi7nmFbFUBOW8grHBypiH3s5qvxvLj7jyPUYO5rSf9+89gESfsbjezHUbfqf6XmNZd8bXiIl8dX5u79uOllnuGCuZA5ToXMk6+h71rpsUBVQZyIx6Nx/37aiuGQOjh9DXN9Hg2eYojFXX1cFDw56M3ew9unfXiPbzwaEDKPZ5cCqcpDhe/d5Dh7353nU/e6K6Z+ZLuUDWtt7e3qbP4TY4d+mll2L16tUYGBjAhg0bIMsySqXGXpFCoWAY4iKPFQr1s5AuuugiJsusv78fd955JxYvXmyYQdbX12fqAluhmC3hVewDACSjaUvvvyMyCiAPAFh50nGIRK3p29/tHMPEgSJUBVh+7HJXXPNvlg8DKCLREsNxxx/nyTXrzx3E2xgAAHTP6EFv7xJX399LJoby+BMq4vzO7hl1r40X180r3uw8jLEDWSiFygL01uG92IbDAID5Rx+J3t6Fjj/jUGIEfTgEAOhsm+nour0z8h62Tr7XUYvmord3sePxNWLklT4ceq2yqS84chFmL+l05X33lg7jdewHAMxdOAe9vcfafq961+3V9HsoZEqIIu7ZfMy8tg3ACABgyYqjMa+32/F7Fiaq62pLosWTsZu9R0de6QNxhS/tPca1v78RxVwZf5783qm4N9+7HmMHs/gzKglSXbM6uV3bHBtAAwMD+N3vfoe3334bmUwGbW1tWLp0KdasWYOenh7b77tw4UIsXFhZLC+44AL8wz/8A2699VY88MADdb0TyWQSxWKx5nHyWDJZPzbe09PjaLxuEE/FtEqxVgshkufHklHLxg/5bIJbBQW1eh4eNUIFwl0HqBSCZoFWSbUnMHYgi2K2DKWseJLVw4SRHLr26ZCELyEwj4SpbBFE79rOFDIlj7PAqMxRt8omUNc86FIZfnWCB3QV030Wf4ehCjTg0AD6yU9+gvvvvx+lEtu9/Ne//jUeeughXHfddfi7v/s7x4MEgNWrV+Oee+7Bnj17sGDBAsPndHV1MToeAnmMhMJ4RYpISLTGUciUrBdCnKwDZEcADdQaEk4XH0VWNKPMq0aogF4DFK40eHoDnAoaIEAnhJ4oud7ZG9ALiR1mgfnUCJXglcHOFkF0XwQNVK+7l0JiLwzmSCyCaDwCuaQE3g2+6ON8i9DZvT5Xgg5DHzDAgQH029/+FuvWrcOMGTPwqU99CieccAK6urowNDSE1157DT/+8Y+1369Zs8bxQEn4KpPJ1H3O0qVL8frrr0NRFEYIvXXrVqRSKcyfP9/xOLwm0RKrGEAWRdCkFYZtAyjtrsiRPul46wEKbxbYVGqDQaAN58J40XMPkNMNzW8DyKuq67QHyIs0eIBqPFyQoSqqJ4U76QKaKRez8uKpKOSSEriXmPU4eu8Z0Qwg3z1A4VjbbBdCfOyxxzBjxgx873vfw6c//WmcdNJJWLBgAU466SR85jOfwXe/+120t7fjscces/S+RtWly+UyfvWrXyGZTGLRokUAKqG3/v5+lMvVCX3OOedgaGgIGzdu1B4bGRnBhg0bcMYZZ3CdAk8gqfCFbNl0oTRFqaYcWu0DRnD7ZJr3ywAKsweIaYTK7yJhBTrVPTemM4Bc2phjLmb1FH2sywLoQmBu9t2jG6F65AHS1ggVKBe9udfIfEm0xBBxsX0CSeMPeo0gBnc8HbMlVbBKtfWK3x6gcKxttk3Q/v5+fOhDH6qrm5k9ezbOPfdcPPPMM5be95577sHExAROPPFEzJo1C4ODg3juueewe/duXH/99VqxxQcffBDPPvssHn/8ccydOxdAJUz24x//GHfffTd27dqFGTNm4Kc//SkURfE9i80u5BSqyirKBdmUNqTkoA8Ywe1CZ0xBMw83Fq/aePgBc0riOE5uBbrid40HyKV5EI1HIEUkqIrqeGEvUHWA/NAAMdV5XdUAUSEwjzxAtPfK7NpklQLVCNVNNEMg6DR4nzrBE+IBGX6sd5vftc32yNra2pBKpRo+J51Oo62tzdL7rlmzBr/4xS/ws5/9DKOjo2hpacGyZctwzTXX4Mwzz2z42mg0im984xv49re/jSeffBKFQgHLly/HbbfdVlc3xBu0AVPMlk1NHid9wAhul033QvthRJyjMvdWYUXQ/J6SrKBvh0E2NDdP9JIkIZ6Kopgtu1oHyM9K0IC7wtTcpAdIikqefQ99LaD0DHffX5EV7e/hugFE9EsFGYqiIhJA3z1VVbUQmB9zDah6X+SS4uv3ptc2nvWNtg2gVatW4aWXXsLVV1+NWKz2bcrlMl588cWmRoue8847D+edd17T591+++24/fbbax5vb2/H2rVrsXbtWkufywv0KbSYLaG1q7GRWXkeXQTRbgjMXS1NTRFEj5Ailc2wlHe3irUf0Jt3jONTkhWSunYYXmUCxogB5FDcSTakaDyCWML7hZrNYHNRBD3pAUq3JzxrqsuIzz0Q1dJhc7cTJxjvVb5suV2QG5TystYWxi8DSN842K/vXQ6JB8j2kezaa69FOp3GP/7jP2LLli3M795880384z/+I1paWvD5z3/e8SCnE7QHqGCyHUbRjRCYy1oaL3r61ENz83rUDPXQjhHs3zroevPKsGRKWIE2dHIjharL3+UNTTvRO5yrRR87wQO6Rq4ueYBUVdU0QCmPUuAB77xXBC+qhhPiHoUercCkwPsUAvMq5NoMNrzP79pm2zT77Gc/i3K5jMHBQVx//fWIRqOYMWMGRkdHtcrJ3d3d+OxnP8u8TpIk/OhHP3I26imMnY7wTB8wG20wAP3C7IIHiAmBedz0Lx0DRgqeeIAGd4/h6S/9AQDwwX861ZXCbAQ2U4LfU5IV6I1r9EBWK4fvlaajlK90VbdbuVwz0PwKSXhgRBQnylDkyoX2og8YweuGqF4I5gleG29mKExQh0LfDO5gvjcbAuN3bbM9MlVVtSalNPpaO/pTs9un6KmGnY7wtKFkVwPEpMG7EAIrZLw7zenRNsNc2dFmaMTB7dWsxIPbhl01gMKSKWEFxgDanzF83A3Ioqoq9ruqK2VFE8UGsSG5ZUSwNYC8u9fc1gnq8VI3yEPBVL8b7wLBfe9ySNLgbRtATzzxhJvjEExipyN80WEneMB9FzG9mCXbPDaAJr1eqlppwuemMZEdrm4u2ZH6rVTsEJZaGVZItMS0DK3MQF573H1RKyvItWMAsY1Q/TmlemFEsFWg/fEAeeFNYGoAeagBCioVnj4U+hVyDep7M/pGjg933hciEFiCzQIz6wHiUATtQfpzPWjjze1S97TR47oBxHiA+HUTW0GKSIanWx43ND/bEhC8aIWRp1LgvSqCCOjrL3kcAvMoZAr4XxOHUAjEAxTM9y6HpM2PMIA4I8lkgQUjgnbjdEc2l3ja3YJmRnhZDZrxAA3nGzzTOlNRBA0Yb15uC+HpRbVsczP2OwUeqLZlANwzInKj3vcBA3TX3JMQmIcGUJI+JAXvAfLP4A5IBB2Stc30brl+/XpbHyBJEj7zmc/Yeu10hA6B2dEA2TaAXBdBk/Rnf/srub0w50aqRo+XHiCeFwmrpDoSmGxCrZH2OARmB7+rQBNiyairfamYEJiXImgXK3Ab4a0GiAcPUAAeR4+F6/VgmqH6UF7CLqZ3y0ceecTWBwgDyBq0FsFWFpgLIminYSRFUasFzTzW/wD6FH53b/IJnQbIzR5IJAQiRSXPvWR+YmT0uu0Birkg7mQ1QP4ZQPFUpd9fuEXQHoTAxjz0AHHQMqeQ8T8E5rVwvR7EuI8lo57VpXID07vlunXrvByHYBJbImgXNECRqHsdk4uZkpb+7HUNIMC7EJgiK4xbXpVV5DNF107ZZEGKJ6OuZq4FjdHm5bYnkDnR2/RGMJoMXw2gagq/G7AeoPDWASL3mhSRbB/k6uG1fskMTBq8XxogDzRnZiAeQt4926Zn2UknneThMASEeCqqZdHYEkE7WDi0jskOjQimCrTPITA34/u50aJmyBGyIwX3DKDJhZjnUvF2MDaAXPYAuR0C89EAImMvu9RVnfYApXzKAvPCA0Q0Msm2uOteA6/1S2YIQnQfVBYYCTPynAEGOEiDp5FlGaOjoyiVjDfsOXPmuPEx0wJJqpx+CpmSeRH0ZC+waCLiKJQST8WQH3fumverDxjBqxCYkeg5O1xAt0tt5cqaB4jfLAk76I1eSXI/xOSGpiPIEBihXHTeVJRUgU60xBD1MJQaY4Tn3mmAvPBixTlIgycGdyQq+WYYsIafjxogsrZxnAEGODSAtm/fjgcffBCvvfYaymXjiytJEjZs2ODkY6YdydY4CpmSBRF05do77fNCDAnHDSYz/rp6vQqBGYmec8PuCKFVVaUWCb5PSVbRhz2TbXHXmzDGXdA2sKJU/xZq5lTuQld1rQ+Yh94fwB3heT3KBblalNKDQ5PX+iUz0J3g/Qp5x1PeCteNUGQFckkBwL932/ad9/bbb+OGG25ANBrFKaecgpdeeglLlixBV1cX3nrrLYyMjOCkk07CEUcc4eZ4pwUkjFXMmqtsTDZ9u20wCGSyyiUFiqwgErV3mvQyndUIzzxABgaQW5lgcknRGiPyXCreDvq/uRcbWtwFTQdjAPkg1iew7QnKgAPDpVyUtR54XgqgATabx20dDbtmuH9oSgSUDUVT8LnvHKBrYOvT92aqQHPu3bY9uu9///sAgO985ztYtGgRzjnnHJx11lm4/PLLUSgUcN999+H555/Hrbfe6tpgpwvEk6MqKspNToiqomqVoJ0aQAndqTrZas8AKvjYBwzQeQNcbIiaNfD2uFULaKrWAAJqDSAvjGA3sluKAXmA3PBeEegaQF4WQQQq4uRYMlrx1rjsAfL60BQLWAOklBVtbfKz5EIQPdDCUgMIcFAI8Y033sCqVauwaNEi7THS5yuZTOILX/gCenp68NBDDzke5HSDSYVvEgYr5cuaUNduHzBCzKVTUp4JgfnhAfLmdGdoALnkASqF6JRkFb3R68WG5sbCTk7k0UTEVisNu7gpTKWrQHsdAgPcz2AjeG0AeRm+M0MQNYCAYOoAlUJSBRpwYABNTExg3rx52r9jsRhyuVz1jSMRnHTSSXj11VedjXAawhRDbCKEdqMPGIH1pDgwgPwWQbs0bj3ZEQMRtEsGEF29mPc4uVVqPUDuL/hxFwS5fneCJ9SEwBzgVwo8gVx3tzdTr9cMLypwWyEoAygSi0CKViQUfhl+9P3I+9pm2wDq7OzE+Pi49u+uri7s3buXeU6xWEQ+7277gOkA0w6jiQeITYF3RwQNOLtZCtRpLulHCMyjImfEAyRJ1b+JkVfIDoybmPNUUavEklFtswE8Cmm40FWdpCX7bQAx4TuHwlS2CKL3HiCyobmdBeZlI1QCmTNut8sxA5MC72MITJIkbX3xqw5QWBqhAg4MoEWLFmH37t3av1euXIlXXnkFb775JgBg165d2LBhAxYuXOh8lNMM2pPTLBOMLYLo0APkwqYCAHnqZve6ESrg3rj15Ca9PenOJFq6UgAqXiES6nUC0wiVczexVSRJYower0NgdoxeuSRDLlYyVfwUpQLu6jIYw8EHDxDZ0EiihFv4kThR9V5NnxAY4J3Xrh7lELX4sW0AnX766Xj99dcxMDAAAPjEJz4BVVVxww034MMf/jCuuOIKZDIZfPKTn3RtsNMFphp0kxBYyYU+YAS3GqKSxSyeivqirYgloyCJcm6d7hRF1U7XLZ1JtHRWTtdKWTVdnqARU1kEDbCneM89QDZCGkF05iawDSodhsCYRqg+aICSzkOPRjAGkEeGHNEK+lkRmVAIqO8cwBbe9IMw6RttG0B/8zd/gyeffBIzZswAACxZsgTf/OY3ceqpp2LGjBl4//vfj69//es4++yzXRvsdMFKPzCvNEBO+oGREJgfbTCAisch5vLpLj9aAHH0pDuTaJlZ3VzcCINN1UaohCTjAXJ/wSetWwB7xnqQJ3I3RdBMCMwXDZA3YmIv+4ARyGZcLshQFOdeXCsEUQWaQAvX3fBeNyNMa5vtHTMWi6Grq4t5bOXKlfjGN77heFDTnaSFfmBu9AEjuFFQUFVU7Wb3I/xFiKejKOXKrrl5abFz68wUc2rLjhTQNb/d0fuHqVaGHehNzCtDWGvdYuNvHlQbDMDdzuSsB8jnhAMXQyoTpLyEVDlweAFteJYLsmPJgBWCnG/kcKgqKuSS4nl3dkYDxHl4f+q0oJ5CMBqgZh4g6vdO0+DdCIEVsiXNc+JHBhjB7Tg37eWp9QA5F/aziwTfpyQ7HLFsJoDKYt95ZJsnn0EWVzuuffpEnvCxBhDgch2gSc9JNB5h7l+viHlUV2ZisHJPpWckPWvnEVRbCCA4ETTgfy0g5nDH+drGt3k2TaFFmc00QG41QgXcERPTRRD9vNETVAjMTPXsZrAeoCTjxci5kApPaz+mWhYYACz/ywXomNOCjiNaPTtpk+tmx4gINATmYk0aEgJLdSR8aa/AtlZwSW9XVrT7rXUy2cALguwHFlTfOaBWc5aCtwfTMGWBCQOIQ5KUIdO0EGLOxSwwF9LJ/W6DQdDGrqJp9Wwz0DWA0p1J5ru4owEKj5vYDpGIhKNOnOXpZ9Ap2Va7qgeblUOHYuwbEYqiano7PwTQgE4E7ZIRkR0paMVcW7u9M4DcKJ1gl0BF0D4bfuXpUAhR4B2WPECMCNqpBsh5fJ9x9fpQA4jgdkNU2shpmZnSssD0v7PLVM8C8wNmMy5aW9h50GQAzuoAFTLFqlDfBwE0oM++c2czzQxWDxttXnqAPKoXZgYeRNCAP6G/UohCYMIA4pBYMqqdZq3UAXKsAWKMiJB6gODO4kaHwFpmJhlhphvVoMNULp5XnIQ0gg1JuKPJ8FsADXjTWmFiqGoA+RUCC0oDFE9HbTeZtoubmjMzMDXOOE/wEAYQh0iSpDVnbJoGT9cBchoCS7GxYjvkGbGf/yJowB0PUI54eaTK6TqWiFarQRu0yLBKKUTl4nkl5sBjSWdX+u4BSkQBUrfKScFRpgiiPyEwN5rQ6pkYrLZQ8jIExmphgtEAJVv9WxMJfmufwuTdFgYQp5BwltkQWCQmOU5vZJqK2jQiCuPel7Q3gh67kxpGhIlJIyfdkdBObMQLlB0uOK6nwSwSnAsFecVJdgvdsDfhsyZDikiOBNwEtg2G/x4gtzRAQXiA/NQAqWq1eKrf+h+A9cL40QdtWtQB8oqtW7fi2WefxaZNm3DgwAF0dHTguOOOw1VXXYX58+c3fO0zzzyDu+++2/B3Tz31FLq7u70YsicQt3xxotQwq4kYSE71P0C1cZ4qqw5E0HQbjHB6gFRF1cILLTOrC3LLzCRG9mUglxQUs2VHnoMS0wyVu9swFMQdaGmC9AABlTB3KS87EkEzITCfNEBe1AGaoDRArd1pV97TCMZ7ZTPEb4dSXoYqVw5MQcw1JuTqg+eLfIYUlRDxqKSBW3C38j722GN44403cO655+KYY47B4OAgnnrqKVx11VW4//77cfTRRzd9j89+9rOYO3cu81hbmze1SLyCpLSrauUGqhfeKhEDyIVUY0mSkEjFUJgo2V7c6JO1rx4gF928+fGitmDR4ucWnQ7IyWJGTs/ReAQRC9lLgioxB13VyYk8lox6VnemEfFUDLnRooseIJ9CYB6IoDUDSKqUnPAKL1L4zRCk4B7wPwuMfEY8GfWlNIMTuDOAPvrRj+JLX/oS4vHqRFmzZg2uuOIK/Md//Af++Z//uel7nHbaaVi+fLmXw/Qcphp0tmRo4KiqqoXAnNYAIsRS0UkDyGYhRKYTfEAeIIcnU30RRIK+GOJMBwX+yBh5dxHzTNzBZlzUNBn+b0iAO13Vc7QGKIgQmFsG0GQIrGVG0lOPAVsI0T8PUJBFEAH/C0AS4zIM2kbu/FMrV65kjB8AmD9/PhYtWoT+/n7T75PNZiHL/je9cwu6Om29TDBS/wRwJwQGUBWVbYaRSAgslox6XnKdxs0sMH0RREJLZ8rwOXYgYxThL/vEHGg6yD3ldwYYgQhy5ZICpWyvq3owHiB3Q2ByWUF28nt4KYAGgiuEGGTGIRCcCDoMLX74HyEqno7h4WEsWrTI1PNvvvlm5HI5xONxnHLKKbj++uub6ocGBgYwODio/duKseUFCRP9wNxMgdfeh+qYbLW4HFCpTQL4G/4C3NUA0a0u6nmAcg5rAZHTs/AA2cfuib5clCGXKkZH0uc2GAQ2HCMjacPzoWWBSf713XNbBJ0dpoogeiiABpxlDTohyCKIgLODglVUtaofDcPaFgoD6LnnnsPhw4dx5ZVXNnxeMpnEhRdeiJNPPhmtra3Yvn07nnjiCVx33XV4+OGHMWfOnLqvffrpp7F+/fqax3fu3GnoScpkMujr67P8XcwyOjGq/fzO9ncxrB6oeU72cNUFni24M55iubqxv/naFkST5hdmVVW1OkBqTKkZj5fXbOxA1Wg5sO8g+voalw9oxJ63RrSfhzKH0dc3UfkMKv19zzvvIdZnLx1eVVXNACopxabXxOu5FlYGD2e1n/fufg+Y/DsR6l234nh1Eygq+UCubbZYHXvfG1uR7LC+FI8NZAAAsXQE27Zvc21sjeabUq5mP44OjTm+dmO7q/dQQcp6+rcojFb/7kOHh139rEbX7OBb49XPHT2MPpvrhl1yQ9W1cPDgkKfXWCmrWlSiKBcCXdt6e3ubPod7A6i/vx/f/OY3cdxxx+GCCy5o+Nw1a9ZgzZo12r/POussnHrqqbjxxhvx6KOP4pZbbqn72osuugirVq1iPvfOO+/E4sWLsWzZsprn9/X1mbrAttnbj90YAQDM6ZqLpb1H1jzl0NvD2Iz9AIDZc3tcGc++njxGd1Vu0GMWLWGyoJpRzJbwB2U3AKBzVnvNeLy8ZoOtY3gTBwEAHS2djj5n+I9bAFQM0GNXLsHsJZ0AgLHuCbz5g8pnpCNttj+jlC/jD6hcp46ZtddJj+dzLaTslQewHYcBAN0zutHbeyzz+3rXbXjvOP6MfZXXHdEVyLU9PPt1DG2rGEGL5x9tuWGsqqr4Y24PAKC9q8XV79Bovqmqij9G90CVVcQjScef+87Ie8DkfTt/yTz09jZPcrFLIVPCq5N/93Tcv2tWeuddvIMhAMCiYxdice8Rrn2uGbLDeWzCewCAlpT9dcsM+fEiXp5c22Z0d3C/tnFtAA0ODmLt2rVobW3F1772NUSj1l1qJ5xwAnp7e/Hqq682fF5PTw96enrsDtV1zHSEd7MRKsFJvJiuAu1nEUTAOxF0S10NkP1TXEnUAHKFuM2mokGLUgHn2VTlggy5WAnjpXxKgQcqmaLxZBTFbNkVEbRfKfBAgBqgANtgAP6G/sLUCBXgUARNyGQy+OIXv4hMJoN77rnHkXEye/ZsjI2NuTg672H7gdUxgHK0BshdETRgXUvD1ADyMQMM0BVxdGoAUcZNCyUujSWjmqHppB8YUypeiKBtYze9N8hGqASnRfmCEEATtEQJFzbTjE9FEIFKnbNovLLl+ZkGH7gB5FLrFTPQda3C0OKHSwOoUCjg1ltvxZ49e/D1r3/dtPi5Hu+99x46OztdGZtfWBVBu+YBStuvlcGkwPt8snZTBJ2bzPBKdSRq0nK1atAj9qtBh6lUPM8wzVAtzNWgiyAC+rFb35SCKIJIIBuqKx4gygBq8zgLDKDG7qMHqBiwCDoSkbTv7bXhFzbvNncGkCzL+MpXvoItW7bgq1/9Ko4//njD5w0MDKC/vx/lcvUPOjIyUvO8P/zhD9i+fTtOPfVUr4bsCXR2Sl0PkIt9wAhMvxyL1VKD9ABF45Uq1oAz97aqqpp3hy58SCCPlQuybUNLNEJ1B7shjcIE1QYj4DpAgL35yjZC9dsDVG3j4bQlDAmBSZLx/eY2bnqvzBJ0Fhjgn+EXNu82dyO877778OKLL+KMM87A+Pg4fv3rXzO/P//88wEADz74IJ599lk8/vjjWtXna6+9FsceeyyWLVuG1tZWvPXWW/jlL3+J2bNn41Of+pTv38UJtAeoUKcfmOceIIuLRFBVoAFdFWsHHqDCeAkKqQJtUJWWFoVnRwq26i8xjVBDcEriFbu6rwIPHiCHxenyY9UQmF9FEAlkY1MVFXJJcVTvi3iA0p3eFkEk0MabXxADSIpKgd3v8WQUeXjfBDZs3m3uDKAdO3YAAF566SW89NJLNb8nBpARa9aswcsvv4xXXnkF+Xwe3d3d+PCHP4zLL78cXV1dno3ZC2iDplinECKtAXK7ECJgRwRNnXR89gABFePNSRsPgC1w2MgDRJ7bOc96NWg6dBCGRYJXoolIpau6au1ky2qAOKgD5NQD5HMITF8LyK4BJJcVTcvkdRFEAl2B206dMzsQDVCyNR5Ya4iYT56vMDVCBTg0gO69915Tz7v99ttx++23M49dffXVuPrqq70Ylu/EklFEohIUWa3bEb5Ee4BcCoHFHGhpCrQHKMCux05Od2wRxNpFmTGAbAqhRQjMHSRJQjwVRSknWzrZspoM/w11QJ8FZkMEPRZgCEzXXTwFe9cwO5z3rQgiQd9A1611sxEk5BqUtxGoGiNyUYGiqJ71H2QOdyGoBM2dBkhQQZIkpiO8EYwGyKUQWMJBw0A6Dd5vDRDAVrFWFHvahHptMAhMPzCb7TDKIUsV5Rli9FoRQbOtCYLyADnrS8VkgfktgnYpnZxOgW/zOAWe4HdfLKWsaFrKoPQ/gN5r5933ZtLgQ+ABEgYQxxCjpp4HyIsQGOsBsra4BV1fxY3FjTZq0kYhMLodhk0DKGxuYp4hmSa26wC5dN9YxWkdIKYRqt8hMDqt2oGmJEMZQC2+eYD8rQVE13AL0gCK6TxfXkEfmkUWmMARZHEuZktaeXEaYhhJUamih3ABRyLoSQ9QNB4JxLPhRkNUOqxl6AGiiyEO2yuGyJ6S+HcT80xV1GrdAxRPRX0R3hrh9ERORNCxZNT3MKpbhfX8ToEHnIcerRJ0DSBC3KdaQGFb24QBxDHEPa+qxgsNCYEl0jHXxHVORNCFSRF0sj0YsV/ChVpAdBFEIw1QutOFEBgTJ+f/lMQzZJFVyipkk13ViwF3ggec3WdAVQSd9jkDDHCvISpTBToADZAftYCKHBTdBNytlN+IsGWBCQOIY5hUeINiiGSTd1PIZ/dGoRuhBqH/AZxX1wV0bTA6a79HIh3TPkeIoIPH6masqqrmAQo2JGE/FKOUFc2zkO7wVwANuHOfAawHyK8sMGbsDgummiFoWQDBLd1WM8K2tgkDiGOYatC6YoiqWs0Oc0sADdg/3ZXyslY/JxVQZo0rIbBJr06yLY5o3PgEU60GbS8EJtLg3cNqNWi5qGgdzXk5kVsRcANAbpzOAAvAA5R0R08yMZgD4F8RRKA2C8xrWME9JyJoD783/d5CBC1wRKJBNWi5pGgGh1t9wIDJGPlk9MrKCYlpg+FzEUSC03YYqqpqwmajIogEUgyxlJNtnYDD1jCQZ6yebHnZkKIx+5XL86O0ANp/D5BrWWCkCOLMJCJRf7Yit7xXZuGhCjRQzZYEvP3eohWGwDWSDfqBeVEFGqjWVgGAooUbJU+5eoPzAFVvOCtjJxQmSpBLFR1JoxOpvhiiVcLmJuaZuMVsKl5EqQCdwWbRA8Q0Qg1CA+Q821IuyZqOqa3LnxR4QC/g9sEDxMl8c0u31QxaWB6Gw50wgDiG9gAVdB4gL/qAEcgCZ+VGYWsAhdMDRKe10y0v9DgthqhdVwmuZe9NV6xmJPHQCZ6g3WcWQxJsEUT/DSCnKfwAMDFEZVv6JIAG/DMECLzMt7hP2W/kmkbjEd+8ek7gf4TTmEYd4VkPkLs3lp2GgXkmBBZODRArgG4UAnPoAZpcgOKpaGCl8acKVje0IgdFEAkxLYXfogHEeICCFUHbNSKCEEAD/mVDEXgRQTvNOjQLuaZh0TYKA4hjki31NUBsEUS3PUCTC3OubLrbc4HuBB/Qje40w4M2gIyKIBJYD5B1ITRZgMJQKp53rGo6eDmRA7Sn1fx9BgRbBBFwx4ggAmjAXw8Q472aRh4g/7LA5MnPC8faJgwgjqFFmvpq0CUvQ2Dpav0hoolpRtBtMADnCzOd1WVUBJGg7whvlbK2SITjlMQzVivc8rIhAVXjzcp9BrAiaL/bYAC6zdR2CCwgD1DaZw8QJ/PNrxYgJJwrPEACx9CencKEXgPknQeIOSWZ9KQwrl4uDCAbITCmDYY5DZCddhjVEFg4Tkk8Y7XCLS+iVEDvjTC/KeXGAg6BMdfcrgfI/yrQQAAaoMn5Fk8HV3Uc0HlKPUqDVxW1agCFxLstDCCOaeQBov/tZho8wHqUzBoSXIig0+6FwBp7gOyLoOVytQ5NGLIkeMdqa4MiJ2nwgK6GkYXNmGRPSREpECPOjUwqxgPkpwha18nea8h8C97Y9t7zVS6Gr7yHMIA4JtmgEKK3GiDrNwsr9psKHqD6BlA8HdNucKvFEMNWKp53rLY24CUkAdgPJREPULojASniv4g+EpEQjVe2DrtF9UgjVCkiId0g49Jt/NLCAJNVxzN8GEB+eL5KIVzbhAHEMdFEBJFYZYEr6kJgtIfDbQ1QzIaYmHiAIjEpsMnvNL5PwlmJlhhiifrfQZIkLQxm1QPEdksOh5uYZ6x296ZbyvC1KZmbr6qqahqgVAAp8AQ7TWhpiAeopTOJiI9GXDRWXVO91gCVC9Xq+EEdCgl+hMDo6ylE0ALHSJKkpbgXakJglCvfSw+QyZsln5lclNsSgaV2O1ncVFXFxGRGV6MaQATiISpmy4zrtxlst+RwnJJ4xmodIJ7S4O14LIsTZW1TDaIPGCGmlcqwvpmWizLyk5lsfgqgCXbqnNmhwNFci8QimrfQKxF0GL3bwgDiHHJK1XuAGBG064UQrXmAVFWlOsEHfdKZXJgtaoBKuTLkYvMq0AS7OqCyqALtKlZd+2RTiqdjgRdqs+q9AvQC6OA9QHZCYHTpCD/1PwQ7dc7swArug10X6Qr/XoX+wljhXhhAnEO8O8VcGapSrRXipQiaDiWZ2VTKBVlL4w1KAE0gY7d6k0/QRRAbCKC159hsh1ESjVBdxWpjzgInolRAJ0w1KcjN0SnwAWSAEch1LxdkKIr5GkZAcCnwBK8NAQKriwzeINAKb3ok/qbvPyGCFriCVuVZZYXP5GdJcn8jpa13Mz218kwRxHB6gNg2GBYNIAvFEGmDMiyLBM/QYcRmXdVVVaUMoOA3JKsp/ACQpzxAQRRBJLDX3ZohkQkoBZ4Qo7xXqkXjzQo8Ce4Bymj1yPCj50EYGqECwgDinnod4cnP8XTMdc2N5eq6meA7wRNIKrxcUqDI5ovL0UaMuRCYvWKIrJs4HIsEz0RjEURMdlUvF2Sok/qZoFPgAX1Gkh0PUJAhMPuF9bIBpcATmPIDFvR7VmE7wQd7MARYz5eVyuNmYUXQ4VjbhAHEOfU6wpMQmNt9wADrqcU8VIEmJJiGqOYXN7YNRvNF2W4xRMZNHJI4Oe+Y1XSwG1LwBhBzn5n0ojCNUIMUQTtoiEp7gFq7/esET3DaMscsRUYDFPy9TtYbVVEtVR43CyuCDv77mkEYQJxTryM8uXHdzgADdOnkJhYIXhr+AfbbYdBenEZFEAmuiKBD4ibmHS2k0cRY5y4kYUcETTdCDTAE5qSuDF0FOhAPkMOmyWbh1QMEeBMGC6N3WxhAnGPUEV4uVUXHnhhAFhsG8uQBshNWAMwXQSS0dNIhMPMaoFIIT0m8Ezcp7uSpCjRgMwQ2xl8IzGo2FRFBSxHJ1L3mNlarh9uFp7YrgPdVsNkSH+FY24QBxDkJg47wTAaYyynw+vc0s7jlOegET7DqvSJY1QAlWmNaNVxrGiBRB8htyMLeTNvA84ZkNgRGN0INVATtIARGOsG3zPS3CCLBaojfLgWuDW73v7cQQQtcJ9la2w6DbYTqhQbIogh6nBZB85EFBgBFCzc5MWLi6Zgpz4zdatDMIhGSUxLvaAt7k67qUykElmiJIRoPbpOxU8UamCyCOHlgCiIFHrB33e3AkzQA0GUdelANOozebWEAcQ5t4JAy/l62wQCsNztkPEBBi6DT9hZmImQ24/0hpCd1QIVMCXLJ3ILCZEqE5JTEO2a7qtNtMLg4kdvoBk9CYEHWAALs992jawC1dfkvgAasVw+3CzG4pUhw7YFovP7edBmKsKxtwgDiHMMQmIeNUIFKs0MygU2FwDLBd4InxG1kgRVzZW0RN1MDiGCnGGIYy8XzjtmQRpGzLLCYxSywclHWDj9B6n8AdoOz4k0IuggiYN3DbRet5lRbPLD2QDTei6DDt7Zx56faunUrnn32WWzatAkHDhxAR0cHjjvuOFx11VWYP39+09ePj4/jO9/5DjZu3IhCoYAVK1bguuuuw7Jly3wYvfskmBBYefL/3vUBI8SSUZQLsikjgoTApKjkiSbJCnbEmUwRRAseIKYW0HAB7bNamr5GNEN1H7MhDd5CYJGIhGgiArmomPO0jvGh/wHsGxFBZ4AB9r1XVuGlEzzBa8NPtMJwgcceewwvvPAC3v/+9+Omm27Chz/8Ybz22mu46qqr8O677zZ8raIoWLt2LX7zm9/g4osvxjXXXIPh4WHcfPPN2LNnj0/fwF2StAdowh8RNFANrZnzAFXGleLgpBNPW7/J6SwuM41Qtefa8AAJEbT7mDV6C5zVZQHoxpzN5yqTAh9wCMxqmJzAGEAceIC8EkErsqJ567gxgCy2jbGKdi0lIJrgzrQwhLtRfvSjH8V//dd/4eabb8Zf//Vf4zOf+Qz+/d//HbIs4z/+4z8avvb555/Hm2++idtuuw1XXHEFLr74Ytx7772IRCJ45JFHfPoG7kJ7gAqaB8hbETRAVw01kwU22Qk+YP0PoBNBmwyB0SJmSx6gTuu1gMhGF4lJiMa4u/1CidmMJN7S4IGqMNXMhsQWQQzYA+RGCIwLD5A3ITC6aC0P4VbA+yww4t2Op6KBH4TNwt0KvHLlSsTj7ISZP38+Fi1ahP7+/oavfeGFF9DV1YWzzz5be6yzsxPnnnsufv/736NYLDZ4NZ/EElEt3bqqAfIhBDa5SChlFXK5fmZNuSBrXdR5uNGtpvADOgPIigZopn0PUFhcxGHA7ImeSUv26OBglZjJKtYAXx4gu0ZEZjIFHgjOA+Qkhd8svFUdB5y1LzGDtraFKLTPnQFkhKqqGB4exowZMxo+76233sLSpUsRibBfa8WKFcjn8w3DYAMDA9i+fbv2XzNjy0+0jvATBh4gj0JgZhc4VgDNgwfIepl7q0UQCXQxxJzJYojktByWLIkwwMzVBgXeyKaUaIkFUn/GCOJJkYtK067q/GqALJSbIEUQo1JgRpzdFH4r8FYDCPA+/V9b20IU2g+Fqfbcc8/h8OHDuPLKKxs+b2hoCCeeeGLN493d3QCAwcFBHHPMMYavffrpp7F+/fqax3fu3AlZrp0smUwGfX19JkbvArGKhyU3nkdfXx8OvTeo/WrPgd0YUg64/pG54oT2c9/r25DqNJ4qEweqi3KuPNHwmvhxzQqj1QVt8NCwqc/bv+tw9efBvRjpO2jqs0rZ6rw4tGfQ1GcVspXrpUiy6Wvh61wLIYcGM9rPe3buRalrFEDtdcuOTW6+CXBzPQty1XB+87UtiCXrn0n37hzSfj449B5yfUN1n+sEM/OtOFGd+8MDI6av5+ihyrqSaItg27at9gfpADtrRDP012x4R9XTNZY1f328JEOt1Yf2H0Zfn7v9wEhkQlZLXKxtvb29TZ/DvQHU39+Pb37zmzjuuONwwQUXNHxuoVBAIlF7MiKPFQr1wxQXXXQRVq1axXzunXfeicWLFxtmkPX19Zm6wG7w9swR5AZHIRdULF++Avt/vRlAZdFfcfwytPW4X09j4PdvYHBrFgCweMFizDyq3fB5++QBvIb9AIAj5s9Gb2/9bDs/rllhooRXsQ8AkI63mPq8nT/5I4DKd135geNMe9VUVcWr0X1QZBWRcrzpZ6mqipdKFc9iW4e5sQH+zrUwkh7fjx2oHAp6Zs5Cb+/RANjrpqoq/pDfDQBo6zR/7b1mX3ceozsrRtCSRUsaivAP/m4zgHEAwIoTl2HG3FZPxmRmvpULMv6MvQCAVDxt6nqWizJeylXmf+ecjsD+BoUMtUYk3JkL+mu2Y2gftuIQAOCoRfPQ27vI8Wc4ZXTmBF6fXKvbW9y9/nJZwUvy5NrW2RaatY1rA2hwcBBr165Fa2srvva1ryEabexaSyaThjof8lgyWd/l2tPTg56eHmcD9gi6I3wpW/ZFA2Q2lJSnM2t4C4FZ1ADFU1FLIUVJktAyM4nMQN6UBkguKsBklCNMbmLeMZORVMqVoU6GmHjJygGshSV46QMGTGb5SABU85lUPGSAAd6LgQG26CYvGiDme7usfQprfTNuNUCZTAZf/OIXkclkcM8995gyTrq6ujA4OFjzOHmMhMLCBtMQNVti0+A9EtOabSlRYBqhBn+jR6IRTTRuPg2+YrzYacxIXpMfKzYUi+vHI0TQ7mEmI4nZkDgygKw05sxN9gGLxiOB19uSpGp1Y7ONNXnIAAOAaCyCSKyiAfNOA0S1B+LEAGLuE5e/d1jrm3FpABUKBdx6663Ys2cPvv71r2PRokWmXrd06VK8/fbbUBR2I9q6dStSqZSpQoo8kqBqlhSyJa0SdDwdheSRmNOsUJARQbcF7wECqplgZoo4lvJlzcNlJQWeQIcs6Cwd488K5ymJd8wI9nlMgQesNebMj1XmV6ojwUWaMd2E1gy8eICA6nX3zAPEWeNdwH7tJjOEtb4ZdwaQLMv4yle+gi1btuCrX/0qjj/+eMPnDQwMoL+/H+VydcE755xzMDQ0hI0bN2qPjYyMYMOGDTjjjDMM9UFhgPEATZRRmvQAJdLe3VhmW0qwfcD4uNGt1DCiQ1dWiiBqr7FQC4j2TsRCdEriHXrBre8B4i8tGTAfAlMUVcsCCzoFnkCuu9kQWGaISoEP0AMEUGuER2nwRQ49jqTyOOC+ARTWJs/cjfS+++7Diy++iDPOOAPj4+P49a9/zfz+/PPPBwA8+OCDePbZZ/H4449j7ty5AIDVq1fjxz/+Me6++27s2rULM2bMwE9/+lMoitI0g4xn6Kq1RcoD5JX+B7CQWkx3gufNA2SmtorNNhjaa2aaN4DYEFh4Tkm8E082NyLYNhj8LHumG7lmilAn9WNBF0EkxC3UMAJYD1BbwB4gcgAxWyrDKrRnnC+DOwa5WHQ/BBbSJs/8rAST7NixAwDw0ksv4aWXXqr5PTGAjIhGo/jGN76Bb3/723jyySdRKBSwfPly3HbbbViwYIFnY/Ya2gOUHytq1nbcSwMobVIEzVEneEJcV8SxUcXlrFMDiGmH0bgWUInxAIVnkeAdM12ueesDRoibbIhK9D9A8AJoApnDitz8PgP0jVCD6QRPIOtbuSBDVVTXpQQ8eoCAymEhDyGCJnBnAN17772mnnf77bfj9ttvr3m8vb0da9euxdq1a90eWmDQnp4MdYryMgRmNl5M2mBIkrceKSuw4bsyog0Ms+ww3QfMjgHENkRtRFl4gDyB6UxeZ64WM3xqgMxmJLFFEPkIgekrcEfbzBlAkagUuBeLFuqWi7LrYRsigo6noohw1PLGSuVxK4TVu83PX0ZQF3rBzgxU4+heGhwJk+nkWsfj9oRngmyrWGmI6lgDZKEdBiuC5sNYnApEIpJmBNUL13LrAaI34gahZrYNBh8eILa5ZvMNlYTAWrpSga8VXldF1tZFjsJfQPV7m6k8bgXGux2itU0YQCGA7gjvlwHE9tRq7gHi6UY3K+AGWK+NnTR4OgSWa2oAUXHyEJ2SwoBmAJnSAPE0V81txEwIjBMNkJV6OuWCrBkFQQugAXNhU7uoqlptu8LRXAO8awPCeLdDFN4XBlAIoDVAfhlAdJZSPQ1QuShrugVe9D8A2x+tqQeIMoBabYTAUu0JSFFp8r0aa4DKwgPkGWRhr6ej4bE7N2C+cCddBDHFSRaYleaatP4naAE0YL6Brh3KBRlKmb+im4DO8HNRBxRW77YwgEIAfYqYGKpu2J6mwadNZNZk+BNAA9YaopKwVTRhr7icFJHQMrkhNQ2BCRG0ZzTLSOKxOSWgO2g09ABxGAKz4AGiu8C3cOABstvN3gy8ehsBfTFE9wwgpsRHiLzbwgAKAbSnR6Xitr6lwddZIHhO9SQ09wBVTqatM1O2i8uRMFhurAhFrl8NmqmVIQwgV4k16aqubUoSLLU78RqznghaBJ3mRARtNoUf4NsD5LYGiNeaU4C1yuNWYDxAIVrbhAEUAmKJqNbegcbLNHgz5eILHKbAAzptQgMNULkoa21F7Oh/CGkSOlNZrYYe0QrDO5ppG0gl6GRLPHABLg3bn8mECFrir+Ao0DiFH9BVge4KNgUe8FYDxFSB5swAslJ53AqsvjE8a5swgEKCkdve65Nss3LxeboPGEc3Oh3KKjbSVTisAWT02kZhsLCWiw8DzbQNVVEqX4uz6TpAkx6gVFsckSgfy7YVPQlbA4gvD5DbGqAizyEwjzxfYa0DxMedJGiKUbjL67o7ZHEu1tHRMAYQRx6ghMnT3cQwnQLvwABiqkHXF0KXhQfIMxppG1RFrXqAONuQovEISOS13oakqqrmAeKlDQZgrbkmT33AAF31cBdDQQCffcAIXnm+RDNUgackW4w8QN7eXHS1VCOYG50TtzygS+FvEALLUZWbnXmAqGKIJj1AYTolhYFGrVtK+bLWRoK3kIQkSU2L05ULMuRiRVuW4iQFHtBr7ZqJoKkiiBwclqyUyrAK3yEwbzxfYfVuCwMoJBi57v3yAJULsqGwlFcPkNlaF2wbDPunUrP9wJhMiUR4FokwEGuwsBc4rQJN0FL462xIbAYYPx4gK3WAspMhsFYOiiAC+jpn3mWB8TbfvPJ8kbUtEpOatkThifCMdJqTMPAAeSmCBpobEryedMyeTLNuhcBMFkMkC04sGeViE5hKNGqIynNaMkAXcTTekHgsggiYrwNUype1vwEP4S9Anw01fbLArHjtrEDmbpjCX4AwgEKDoQbIJxE0YHyzcOsBMimCZttgONEAVRf1iQYaIHINRQ0g92mkbeDdAKI9rUYwKfA8eYBMGhGMAJqDGkCAdxWRAd41QN6KoMMU/gKEARQa9DdSLBn1PBtE31RUj5YGL/Hl6jVbCNFpGwxCqiOhCVkbeYDIQiv0P+7TSNtQ5DgkAVTHTrqq66FDYClOiiAC5vUkvAmgAe88IQDfBreV6t1WIN7tsK1twgAKCXoPkB+d1xlDwuCEp/UBa40jwlFIx2whxOykCDoajzhaqCIRSTuZmxFBiwww92mkbShw2gaDwFaDrp2vuTFOQ2Amm6GyHqDgawAB3nlCgKoHSIpItqrLe4kXoT9VVatrmwiBCbxAf3L1xQBKN/YAkUrQPIW/gMrCo+kqGmR4EA9QujNpuwo0gYTQciMFQ8G4IiuQS5XTfdjcxGGg0Yme5xM50NyTwmiAeAqBmTQiaA8QD1WgAW9bYVRLLsQcrytu40UWmFxUgMklL2xrmzCAQoJeBO11CjygX+DYRUIuK5pxwVMKPIEYb/UWN7lU7U7tRP9DICE0VWU1GwS2DUa4TklhINagKjHPmgygeUPU3BgVquXIA2SmWjxQTYEH+NEAmR27HYjBnWzj529FMOu1s0KYK9wLAygkJAMJgTU4VTNVoDm80VPEA2R8k2dHquN3UgOo+h5ULSADIXQppM0Cw0KjEz2rAeJvgW7WEJX2APFUBwhoXi0e4K8KNMHM2K2iKKrWXodHY9uL0B9zuAvZ2iYMoJCgD4H5EVtuVFE5z3SC5+9Gpxc3Va0NSbFFEJ0vykwtIAMdEFMqXmSBuU4sxGnwzXpq5Sc9QLFklLsTthZqbpgFVukEH4lJXIXLtUOSi2nwvAvuo/GIVoLDLc8XUwQxZGubMIBCQhAi6FiDbCo6BZ5LV+/k2FVF1bQ3NG61wTB6DyMDKMxu4jDQSNvAuwHUKNQMVD1AaY4ywAhaEcdGIuhBvoogEojnzc0QGK+10QiSJFUNP5c8QGFe24QBFBJqRdDe31xstdT6ugouPUBNBNxuNUI1eg/DEFhIS8WHhUbaBnIq5zErB2DHrvcAKWVFu9fSHfwIoAlk7PU8raV8WQsJ8aL/IdAeINUgccEOvBvbQHX9cU0DVBAeIIHH1GiAfFjI2eq6DTxAHLm1Cc2yPLJuG0AzaQ2QUQiMPiWFa5EIA420DcSASLTwl5UDNO7QnRunM8D4u8+0665C61dGw9YA4iMFnqCtESpQLrrjDeG5CjQhrnm+XNIAhXhtEwZQSIjGo4gmqn8ur9tgAKwXpSasME55gLgMgTVudkh7aWjjxS7N2mGURBaYpzDaBn0WGKed4AmNqljnGQE0hx6gJgeNzBB/KfCERoanXXjPOATAhMCMvHZWYZs8h2ttEwZQiKA7wvufBVbfA8RnCKyxrsJtD1B6RgKYdC4YeYBKIT4lhQFW21C91qqiopjjNysHaKxfYlLgOfQANTMiJgZz2s+8hcAaGZ52KYYiBFb53vX0kVahr13YwvvCAAoRdAqvH3WA6MWtqNPRMCcd7kNgBh6gSQMoEpVcqWMUiUa0Gi2GWWAhjpOHBXJdaSOimC1rRdp4zMoB9NV52fuMLYLI330Wa1JXhtcUeMCbooC8i6ABVtpQr/+cFdgaZ+Fa24QBFCISfnuA0vXFmfx7gJpogCa9NC0znVeBJhBPUna0UCOqDLObOCxUSx9U/95hEKWy/Zn0HiDeQ2CNjYgJDosgEryoBh0GDZDbtYDYBI9wrW3CAAoRfhtAtK6iJg0+Q4mgOdxYEg1S+JWyolVrdtIEVQ/REqmyyhiIgMgC8wO6Jg3RNhRDsCHFG/Rnohuh8ukBatxbimcPkBd9sQqc1wECdAa3C5lgwgMk8IWWzuoC6EdJ/EY1I4gIOtka97wrvR0aeYDoTcUNATSBNqb0YbByiGtlhAWt9pOsQpnsqp4PxYbUINuS00aoBNYDZBACG6w2HOapCCLQvFSGHcIWAnPHAxTetS1co53mHHfhIozsm8Dc3i7fUkrjqRiK2XJdETS3N3mDLDCmCKKbHiCdAdS9sPq7UojLxYcFI90XK0rlc7mLNQqBMR4gHkNgjbV2xAPU2pXirgSB5xogTg1ut8XfYfZuc7ciZLNZ/OhHP0JfXx+2bt2K8fFx3HbbbbjwwgubvvaZZ57B3Xffbfi7p556Ct3d3W4P11e6F3TgojtO9/UzYwaZNYqsaMXNeDvVEegssKLeA+RyBpj2XjPrF0NkMiVEGrwnGDVEDYUGqMGJnIigpYjE5fgbVbEu5qgiiJyFvwB96NFdDVAsGUU0xp9nHHDf8Auzd5u70Y6OjmL9+vWYM2cOlixZgk2bNll+j89+9rOYO3cu81hbW5tbQ5xWJHQ9tSRJ0mWA8bcoA7rKwDr39gRTA8hNDxBVDFEfAhMeIM8xErXy3psJACKxCKLxCOSSUpsFNpkGn+5IcNVGgtBIwM1zCjzQ3Htlh2oneD7nGtA45GqHMHu3uTOAuru7NW/Ntm3b8LnPfc7ye5x22mlYvny5B6ObfmhxcrWyicdTMV0GGK8eoPqLG+sBcm9hZj1ArAEU5oaBYcGoIWoYPEBAZexySWGMCFVVtUKIKQ4F0EBjITEjgObQAHI7G0pVVc3g5nmusW1j3PAAUWtbIlxrG3c+ukQi4UqoKpvNQpbd6/I7XTFaJPLjIRD6NTjluF0EUXuvBg1RiZtYikiIxrm77aYERvVNCpnq357XuQoYdyYvTpShyJVsNh77gAGNa8qwbTD4M4BY75VzT4hcVLTCgjzPNdfT4Ce9lrFklEsvZSO48wC5wc0334xcLod4PI5TTjkF119/PebPn9/wNQMDAxgcHNT+3d/f7/UwQ0FtWCGJQiZkHiBdCCzrcid4Ai1SzdXxAMVTUe7EoFOFmrmaBgoTfJdrIBh1Jue9CjTQuJYO7x4gt0NBBc5LgxDcNvzI2hZGz/aUMoCSySQuvPBCnHzyyWhtbcX27dvxxBNP4LrrrsPDDz+MOXPm1H3t008/jfXr19c8vnPnTkNPUiaTQV9fn5vD55JMbkz7eXvf22gbSuDg9nHtsaHxAfT11VY+NnwvH68Z3eNmbJj93KEDowAAKQK8u3cHpH3uGSSxlgjKWQUjh8aZz8xlJjeDqGr5GkyXueaUwZHqXN31zm6kF6kYPjShPbZzzzuIHuLT+1ZWK5tnKS9jy5YtkCQJY7urBsREady3OWBlvuWGqt7ggYNDzOv2vlM9UB4c3Y+JvkHwRGG0uvkPHhp2dH0zmQz6Dm3X/p0tTXB7z47ur86rA+8dQl9fqcGzm5OfqKz/akTham3r7e1t+pwpZQCtWbMGa9as0f591lln4dRTT8WNN96IRx99FLfcckvd11500UVYtWqV9u/+/n7ceeedWLx4MZYtW1bz/L6+PlMXOOyMb9qGg8gAABbMW4AjlnehtOMdvIMhAMDiYxdice8Rpt7L72v25/Q+lHIyYlKc+dxN+QMAKnV7jjvuOFc/c1vPEIZ2j6OcVbBixQrN2/NneV/lM9tSlq/BdJlrToke2oOdGAYAzOk5AkrbOGIoAchDikg4/qTjuPW+7ZqZQea9ioFw7DHLEE/FsHN8P97EQQDAUUfPQ2/v0b6Mxcp8y44UsAnvAQBak63M63Y//QowuXac8IFepDirY5TPFPEqJu/LRKuje6yvrw8z2+fgNewHAMw5ahZ6e/nUoQ6kR7Flcl7NaO10vLb8sbQHANDakQ7d2jalDCAjTjjhBPT29uLVV19t+Lyenh709PT4NKrwwDQVnQwl0RogHttgEOKpGEo5uSaFn9RWaXVRAE1o6UxiaPc4lLKKQqaEVHsCqqoyITCBN+jDMVHQneBj3Bo/gE6XMZlskOO8CCLQuBlqhiqCyGO2qNsVkens2BTHGiA3W4AoVEPVsNUAAjgUQXvB7NmzMTY21vyJghrojIGiJoLmXwMEUL2hqEKIubGi1hwz7aL+h8BUg57UASllResNFsY4eVigr21ZVwgx2cbvPAV0YuLJTYlthMqnCJrO+tGn8E8MVdLgeSyCCADRWASR6GSrHxfEwGFogwHUGttOYGoAhXBtmxYG0HvvvYfOzs6ghxFKmIaoeeIBosR+HG8sZOzlfFnTBOU8qgKtvedMuhZQ5QQsGqH6A+ONKJShKqpWiC/BaRVoQswgNZmpAs2pB0iKSJrhSWeBFbMl7eDBYwYYwaiBrl3CUAUaMDa27UIbUGFrhAqE2AAaGBhAf38/yuXqH3BkZKTmeX/4wx+wfft2nHrqqT6ObupglCkRHlfvZG8otbo4e1UEUXtPg35gYS4VHyaY+iZ5GeW8ov2b5w0JMK7Oy4TAOM0CA6gmtNQ85z0DjEBC/O54gKiSCxzPt5iLBSDpGkBh9ABxabI9+eSTyGQyWlr6iy++iEOHDgEAPvKRj6CtrQ0PPvggnn32WTz++ONa1edrr70Wxx57LJYtW4bW1la89dZb+OUvf4nZs2fjU5/6VGDfJ8wY9dQiHqBESwwRTsu9A7XFEOOpmGdFELX3NCiGSOsLhAfIO2I6I6Kcr2YC8rwhAcYHjTwVAuNNQEwTT0WRH2O9CWwNIH/6FtrBqPyAXZg0eI4PhpGIhGgiArmoODaAwtwIFeDUAHr88cdx4MAB7d8bN27Exo0bAQDnn39+3bYWa9aswcsvv4xXXnkF+Xwe3d3d+PCHP4zLL78cXV1dvox9qsGIoAusB4jnmxzQG29loDPJFkEMwAMUxlNSWNCLO8v5qu6EZ00GYHwqJyGwREsM0Ti/8yZOtcshZBgPEJ/6JYAtQKkqqqNCfkzV8RCsjXKx6DwEFnLvNpcG0BNPPNH0Obfffjtuv/125rGrr74aV199tVfDmpawPbVkKIqq3eg8C6AB41N11nMNUG0xRKYRaghPSWEhrmuGKueq3skweYD0ITBeBdAEsvHJJQWKrCASjTAeoDaOPUCa0awC5aLsyItRDEnbFaByEMvDZRF0CA0gfuMXAi5gw0hlFDMlLYuKZwE0YJzu6VUbDKP3nJgUQTNx8hAuEmFB3wssVBogRgRdRrkoa2UneNb/AOzYNa3dEN9tMAhuZkQRz7gUkZh1k0fIQUzfvsQqTCPUJN/f2QhhAAkaoq/zwabAc76pMDWMKjdqdlIELUlAyoOTdTQe1dzfmgeIzpQQITDPiEQjWp+1UqEcKgNI358pPxYO/Q9g3FuK907wBDokrW+ZYxVNGsB5zSmg+r3LhYpX3y7lkIfAhAEkaEhMp6PJ0xlg3IfA6nuA0jOSiHjUuI94gbIjBaiqGno3cZjQUrLzMsq5qgHEuwZI31SULYLIdwjMqCEq8QBFExGu9TBsmQ+HHqDJEBjvcw3QJQw48ALRtZ/CqG8UBpCgIcwJqVBGga4BxL0HiDXeFEXVisulPQh/EYgOSC4pKE6URR0gH6HrujAeoDa+r3tMZ6wzNYB4D4Hpxq6qqqYB4rUIIsGtqsh0zSmeDT6CWw1Rw762CQNI0BApIlUzJXK6EFioNECVsAKpyOxFBhiBTq/PjuRDf0oKE9pc1WmAeD+V60XQYUmBB2pDYKVc1ejnWQAN6HRjDjwhbLiV778X0LiFiRXCngUmDCBBU6qCOX0IjO9NJaHLAiOVmQFvagAR9O0w2EUifKekMEEW4XJRRplqgcK7BkifsZgboz1AnIfAGOOtrPUAA/jW/wC1Y7cLawDxf4/HdJ59u5RDXgdIGECCptTzAHGfBaYrhMi0wfDSAzSTrQUkssD8Q8tEUYHieHgMICYEVpDZPmCce4DiujYeYckAA2q9xHah9Wa8r4uAPgTmRAMU7rUtfCabwHfIzVLMsxqgUImgc2VMeFwEUXtvXTHEssgC8w3aDV8Yq1z3SFTi/rrHdY1cWQ1QeDxApXxZ08IA4fIAOdEAhc0D5FYIjMkC4/weM4L/v5QgcLSeWrLKFBLkXwStCyt4XATR6L2zw/nQl4sPE4xoP1NZnBOtca6FuIBBV/Wx6u94F0HHdFlgdAr/9PQA8b0uArWie7uw+sbwrW3hG7HAd+hQ0vjhan0PnhuhAuziVsyVdW0wvFuY2Y7wBV2mRPhOSWHCyMDkPfwFVLuqlwtyJYW/UNlQo/EI90X19EZEmEJgRjWM7BBmEbSjEFjIRdB831kCLqAt+8xAxQCKp6Jc9ycCajVAWboTvA9p8ACQGykwhcbC6CYOE0aLcBgMIKByT5ULMkp5GXKpsrGkOhL8e690RkS4RNDupIPTgvtEGEJgrmW/Va6ZFJG0IqRhInwjFvgOHUqSS5WTTpJz/Q9QOT2TvaNEe4Akb8MKsUQUiZbKIpgdroqgo/EIIlFxy3mJoQeIc08lQathlCtrYSTe9T9ArRFBPECxZJR745PRwriVBh8CEXSMaV/ivA5QPBXl3lA3QqzGgqYYbSq8h78AQJKqPXkqafCTVaA7Ep4bIsQLlB0paCX2RfjLe4zqLPFeA4hAPCmFiRLUSach7xlgQK2QOCxFEAHWEHAkgg6ZBsi1OkCTxlMYw1+AMIAEJjDauHnPACPQp2piAHkZ/iKQOkPlgozsZEaPqAHkPaEOgRmISHkvggiwRsTEUDXrkffwF2DcL9AOYeo7B7iZ/TbpAQqhABoQGiCBCUIdVphc4Ji6Kh4WQSTQOiC5WFkcRRVo7zFaiMOQlgwY68NCEQKjxj26P6P9zLsAGtCF75wUBMyFKw0+5kL2m6qqWtgwrNpG4QESNMXoVB02DxCNlzWACEa9xsLqJg4TRtc4LCEwI09rGEJg9DXPDIRHAA0A0VgEkWglTOdGFlgsyX9yCOBOFphSVqDKas37hQlhAAmaYpSGG2oDyJcQWO1nhNVNHCaMFuIwhCQA47nKew0gYDLZIFKr9WkLgQcIYBvo2oV4gEIz15jq3fa+d9gboQLCABKYIGEUAuO8CCLByHjzwwNkVGcorKekMBHmcK2hpzUEITBJkgzndhg8QADVP85RIcTKa8M41+x6vsJeAwgQBpDABOEOgdWO3ctGqNXPMAqBhfOUFCZCLYI2CoGFwAMEGF/3Vs47wRO0Xoc2PSHlogx10hYIS7iV9trZrX9Ea6aEB0gwZQnzqTowD5BRCCykp6QwYRRmDMumZDT2dAf/HiDAeOxh8QBVQ2AyVFVt8uxaCpmS9nNY1kXaa+eGByisCR7CABI0ZcppgHwJgRl4gEK6SISJMHuAauaHBKRCEmrWjz2WjIaiIjJArREqmMbFZmEMoJDMNYAK/dksADkVmjwLA0jQFMM6QCE56dB1Pgh+pBbHU7Gazw6rmzhMGJ1Ew7Ip6e+zVFs8NJXD9WMPQxFEAqOHsWMATYTTACJeO7vi76nQ5Dkcd5cgUAxDYCH1AKXa44jG/Jn2eq1RWN3EYSKWiALUvhuJSYgmwrHM6TViYagBRNDfZ2GoAUSg70s7epgwhsCAqtemVLAX+hMiaMG0QH+6iyWjlY0mBOjH7mUXeD36MFhYF4kwIUUkZkNLtvHfTJRQ4wEKQQ0ggn5uhyUFHmCNtz98fytG909Yen0xrB6gyb+ZKqtQykqTZ9dSZjxA4VzbhAEkaEokGmE6/YZFlwDUnkz9qAFU77PC6iYOG7QnJQxVeQn6+REWATRg4AEKiQAaAGYv6dR+3rP5MJ784v/DHx/bhmK2VP9FFPmJcHqA4g6rQYs6QIJpAy2EDkO3Y4JewG1Uodkr9N6msJ6SwgbtAQpLBhhQKyQNSwo8UBveDUsKPAAsPedInHPdCZrHVpFVvPHfO/HEP2zE9uf3QFUah4fCLoIGbBpAdBp8SMP7wgASmIKe4KH2APkYAtMbW6IOkD/QhmaYNqSaEFiIDCD93A6TB0iSJCw980hc+m9n46S/PUbzdufHivh/D76Jn/3zSziwfbju68MbAnPWB43JAgvp2iYMIIEpwusB0mmAggyBhfSUFDbo7uRh2pBiyRCLoGs8QOExgAjxVAwf+OixuORfz8KiU+dojw/sHMN/f/VlbPjWZmQGczWvC6sImv6bOQ6BhXRt485sy2az+NGPfoS+vj5s3boV4+PjuO2223DhhReaev34+Di+853vYOPGjSgUClixYgWuu+46LFu2zOORT21od2lYagABtW08/KgBVO+zhAjaH6aKBygMjVAJ+rkdJg+QnvbZLfjLL7wP720ZxMuPbsXQ7nEAwDsv7ceuPx/EiR8+Gif89dFayLIwUdReGyYDiO0Ib8MDJLLA3Gd0dBTr169Hf38/lixZYum1iqJg7dq1+M1vfoOLL74Y11xzDYaHh3HzzTdjz549Ho14ekAbEmG6ybkSQYtmqL5AL8Zh0gDVGEBh8gBRY4+noki0hH+uzzuuG3971xlYdeVx2ponFxX8z5M78F+3bMQ7f9gPVVVRmKgYD5IULjGw047wU6EOEHej7u7uxlNPPYXu7m5s27YNn/vc50y/9vnnn8ebb76JO+64A6tXrwYArFmzBp/4xCfwyCOP4Etf+pJHo5760BM8TB6gmhCYnx6gmiywcJ6SwkY8Fc4QWCQWgRSVoMoV0W2YPED0NW/tDk8RxGZEohGs+MsFOPov5mLTUzuw5df9UGUVE4N5bPj3zej79UxkBiphsURrXOuvFQbo9ejlR7di6292I92ZRHpGEi2dSaQ7K/8nP8dTUebvymaBhXNt484ASiQS6O7utvXaF154AV1dXTj77LO1xzo7O3HuuefiueeeQ7FYRCIRnkWFJ9gQWHg2lWg8ikhUgjK5qfjpAYqnY4glo5pYMKynpLDB1AEKkQEkSZUaRsVs5WQdpjpA9DUPc/irHsm2OP7iUyuwbM18/PHRrdj7+gAA4CAljg6TZxxgPYzjh3MYP1yrb6KJJaNIz0igpTOFdGcCQ7vHmN+FEe5CYE546623sHTpUkQi7NdasWIF8vl8wzDYwMAAtm/frv3X39/v9XBDBSOCDpEHCKiOPdkWRzTu340qSVLV4JIQmorEYYfWNoSlHxWBGMmxZDRUBnOM8QCFJwXeKjOPbMP/WvsBnP9/3o+OI1qY34XJ2AaABe+bjSVnzkNbTwqRWHPPVbkgY/xQDgffGsauPx1EbrSifYrGI6Fp2aInPHeYCYaGhnDiiSfWPE48SoODgzjmmGMMX/v0009j/fr1NY/v3LkTslwbH81kMujr63M24BAhd2QBANGkhKHSAYz1HbL8HkFds7b5cRS2ltC+MO7757csiGLsIDBjYQpbt2619R7Tba45pdxWOclG4sCIeggTfYMBj8g8LUdGMTEEdCxKBPY3tzPfygUF0VQEcl4BuvNTf74mgd4rerD/lXHs/X8jkAsqEnPU0H3v2avjmL16DlRVRTmvoJSRUczI1f9PKOy/MzLKebZqdMeipO3v7eXa1tvb2/Q5U8oAKhQKhiEu8lihUKj72osuugirVq3S/t3f348777wTixcvNswg6+vrM3WBpwy9wPGnjCPdkbTtmg/qmi0/VsHArjH0LOpAxKc+YNpnL1cx8O4ouhe22/Y+Tbu55pReYMX7MujftxMnfmBl0KOxxPJlCgZ2jqF7UYdvPev02J1vx/5/xyI7WkDX/HYPRsUnx68ECh8tYfNLb+LUvzwpVBogu8glGdmRInKjBcglGbOXzrQ9V4Ne26aUAZRMJlEsFmseJ48lk/X1Hz09Pejp6fFsbFOBmUeFc2GLxCJMuXtfPzsiBfbZ05mZR7Zh/2j4dAmRaHBz1SmpjkSodEtukWyLo/2o5LQwfoCKrrJ9Vhrts8If6gxn4K4OXV1dGBysdXeTx+yKqwUCgUAgEEwtppQBtHTpUrz99ttQFDZGuXXrVqRSKcyfPz+gkQkEAoFAIOCJ0BpAAwMD6O/vR7lcLcZ0zjnnYGhoCBs3btQeGxkZwYYNG3DGGWeIFHiBQCAQCAQAONUAPfnkk8hkMlro6sUXX8ShQ5Wso4985CNoa2vDgw8+iGeffRaPP/445s6dCwBYvXo1fvzjH+Puu+/Grl27MGPGDPz0pz+Foii48sorA/s+AoFAIBAI+IJLA+jxxx/HgQMHtH9v3LhR8+qcf/75aGtrM3xdNBrFN77xDXz729/Gk08+iUKhgOXLl+O2227DggULfBm7QCAQCAQC/uHSAHriiSeaPuf222/H7bffXvN4e3s71q5di7Vr13oxNIFAIBAIBFOA0GqABAKBQCAQCOwiDCCBQCAQCATTDmEACQQCgUAgmHYIA0ggEAgEAsG0QxhAAoFAIBAIph3CABIIBAKBQDDtEAaQQCAQCASCaQeXdYB4oFAoAAD6+/sNf797925Eo+HrNh0k4prZQ1w3e4jrZg9x3awjrpk9vL5uCxcuRCqVqvt7YQDVgVSivvPOOwMeiUAgEAgEAqs89NBDWLZsWd3fS6qqqj6OJzSMjIzgT3/6E+bOnVvTRLW/vx933nkn/umf/gkLFy4MaIThQlwze4jrZg9x3ewhrpt1xDWzhx/XTXiAbNLZ2Ynzzz+/4XMWLlzY0LoU1CKumT3EdbOHuG72ENfNOuKa2SPI6yZE0AKBQCAQCKYdwgASCAQCgUAw7RAGkA26u7tx+eWXo7u7O+ihhAZxzewhrps9xHWzh7hu1hHXzB48XDchghYIBAKBQDDtEB4ggUAgEAgE0w5hAAkEAoFAIJh2CANIIBAIBALBtEMYQAKBQCAQCKYdohCiBYrFIr773e/i17/+NcbHx3HMMcfgqquuwimnnBL00Lhk06ZNuPnmmw1/d//99+O4447zeUT8kc1m8aMf/Qh9fX3YunUrxsfHcdttt+HCCy+see6uXbvwrW99C2+88QZisRhOP/103HDDDejs7PR/4AFj9rr9y7/8C5599tma1y9YsAA//OEP/RouF2zduhXPPvssNm3ahAMHDqCjowPHHXccrrrqKsyfP595rphrVcxeNzHXWHbu3IlHHnkE27dvx9DQEFKpFBYuXIiPf/zjWLVqFfPcoOabMIAscPfdd+P555/HpZdeiqOOOgrPPPMMvvjFL2LdunU44YQTgh4et3zkIx/BihUrmMeOPPLIgEbDF6Ojo1i/fj3mzJmDJUuWYNOmTYbPO3ToEG688Ua0tbXh6quvRi6Xw49+9CO8++67eOCBBxCPx30eebCYvW4AkEgk8MUvfpF5rLW11eshcsdjjz2GN954A+eeey6OOeYYDA4O4qmnnsJVV12F+++/H0cffTQAMdf0mL1ugJhrNAcOHEA2m8UFF1yAnp4e5PN5vPDCC7jttttwyy234KKLLgIQ8HxTBabYsmWLetZZZ6mPPfaY9lg+n1cvu+wy9ZprrglwZPzyP//zP+pZZ52lbtiwIeihcEuhUFAHBgZUVVXVrVu3qmeddZb6y1/+suZ5//Zv/6b+5V/+pXrgwAHtsVdeeUU966yz1J/97Ge+jZcXzF63u+66Sz3//PP9Hh6XvP7662qxWGQe2717t3reeeepd9xxh/aYmGssZq+bmGvNKZfL6hVXXKH+7//9v7XHgpxvQgNkkhdeeAHRaFSzWgEgmUziQx/6ELZs2YKDBw8GODr+yWazKJfLQQ+DOxKJhKlCYC+88ALOOOMMzJkzR3vsAx/4AObPn48NGzZ4OUQuMXvdCLIsY2JiwsMR8c/KlStrTtPz58/HokWL0N/frz0m5hqL2etGEHOtPtFoFLNnz0Ymk9EeC3K+iRCYSd5++20cddRRNe5MEtrZsWMH8wcUVLn77ruRy+UQjUZxwgkn4Nprr8Xy5cuDHlZoOHz4MIaHhw0bBq5YsQIvv/xyAKMKD/l8HhdeeCHy+Tza29tx3nnn4ZprrkFLS0vQQwscVVUxPDyMRYsWARBzzSz660YQc62WXC6HQqGAiYkJvPjii/jjH/+Ic889F0Dw800YQCYZHBw0PHGSxwYGBvweEvfEYjGcc845+Iu/+AvMmDEDu3btwuOPP44bbrgB3/72t3HssccGPcRQMDg4CAB159/Y2BiKxSISiYTfQ+Oe7u5ufPzjH8exxx4LVVXxxz/+ET/96U/xzjvvYN26dYjFpvcS+Nxzz+Hw4cO48sorAYi5Zhb9dQPEXKvHfffdh6effhoAEIlEcPbZZ+Pv//7vAQQ/36bnX8QGhULBUIxF/jCFQsHvIXHPypUrsXLlSu3fZ555JlavXo0rrrgCDz74IO65554ARxceyNxqNv+m+6ZkxOc//3nm3+eddx7mz5+Phx56CC+88ALOO++8gEYWPP39/fjmN7+J4447DhdccAEAMdfMYHTdADHX6nHppZdi9erVGBgYwIYNGyDLMkqlEoDg55vQAJkkmUxqfzSaYrGo/V7QnKOOOgpnnnkmNm3aBFmWgx5OKCBzS8w/d/joRz+KSCSCP//5z0EPJTAGBwexdu1atLa24mtf+xqi0SgAMdeaUe+61UPMNWDhwoX4wAc+gAsuuAD/9//+X+RyOdx6661QVTXw+SYMIJN0d3dr7joa8lhPT4/fQwots2fPRqlUQj6fD3oooYC4h+vNv46Ojml9IrdKMplER0cHxsbGgh5KIGQyGXzxi19EJpPBPffcw6xdYq7Vp9F1q8d0n2tGrF69Gtu2bcOePXsCn2/CADLJkiVLsHfv3hp1f19fn/Z7gTnee+89JBIJpNPpoIcSCmbNmoXOzk5s37695ndbt24Vc88i2WwWo6Oj07KoX6FQwK233oo9e/bg61//eo2IV8w1Y5pdt3pM57lWDxL2ymQygc83YQCZZPXq1ZBlWRNzARUX3S9/+Uv09vaKDDADRkZGah7bsWMHXnzxRZxyyimIRMT0M8s555yDl156iSm38Oqrr2LPnj1aRoWApVAoIJvN1jz+/e9/H6qq4rTTTgtgVMEhyzK+8pWvYMuWLfjqV7+K448/3vB5Yq6xmLluYq7VMjw8XPNYuVzGr371KySTSc2IDHK+CRG0SXp7e3HuuefiwQcfxMjICI488kg8++yzOHDgANauXRv08Ljky1/+MpLJJI4//njMnDkTu3btws9//nOkUqkaweB05sknn0Qmk9HcwC+++CIOHToEoFJFu62tDZ/85Cfx/PPP4wtf+AIuueQS5HI5/Od//ieOPvpow7YZ04Fm1218fByf/exn8Zd/+ZdYsGABAOBPf/oTXn75ZZx22mk488wzAxt7ENx333148cUXccYZZ2B8fBy//vWvmd+ff/75ACDmmg4z121oaEjMNR333HMPJiYmcOKJJ2LWrFkYHBzEc889h927d+P666/XSgMEOd8kVVVVTz9hClEoFLReYJlMBkcffTSuuuoqnHrqqUEPjUt+/OMf47nnnsO+ffswMTGBzs5OvP/978fll1+Oo446KujhccNHP/pRHDhwwPB3jz/+OObOnQug0ltH3y/n+uuvR1dXl5/D5YZm162trQ3r1q3Dli1bMDg4CEVRcOSRR+Kv/uqvcNlll027tOSbbroJmzdvrvv7jRs3aj+LuVbFzHUbHx8Xc03Hb3/7W/ziF7/Au+++i9HRUbS0tGDZsmW4+OKLawzCoOabMIAEAoFAIBBMO4QIQyAQCAQCwbRDGEACgUAgEAimHcIAEggEAoFAMO0QBpBAIBAIBIJphzCABAKBQCAQTDuEASQQCAQCgWDaIQwggUAgEAgE0w5hAAkEAoFAIJh2CANIIBAIBALBtEMYQAKBwBP279+Ps88+G//yL/8S9FBc4ZlnnsHZZ5+NZ555JuihCAQCFxAGkEAg8I2bbroJZ599dtDDMGSqGWwCgaAx069Dm0Ag8IVZs2bh0UcfRWtra9BDcYWzzjoLvb296O7uDnooAoHABYQBJBAIPCEWi2HhwoVBD8M12tra0NbWFvQwBAKBS4hu8AKBwBP279+Pj33sY7jgggtw++231w19kd8T3nnnHTz66KPYvHkzxsbG0N3djVWrVuGKK67AjBkzDN//E5/4BB566CG89tprGBsbw+OPP465c+di48aN2LBhA7Zt24aBgQHEYjEcc8wxuOSSS7B69WrtvZ555hncfffdhuNbt24dTj75ZO05t912Gy688ELmOW+88QYeffRRbNmyBYVCAUcccQTWrFmDT3ziE0ilUsxzzz77bJx00kn4yle+gvvvvx8vv/wycrkclixZgs9//vM4+eSTrV5qgUBgA+EBEggEvnD55Zfj2WefxYEDB3D55Zdrjy9dulT7+fe//z2+8pWvQJIknHnmmZg9ezZ27dqFn/zkJ/jTn/6EBx54AO3t7cz77tu3D9deey2OPvpoXHDBBRgbG0M8HgcAPPjgg4jFYli5ciW6u7sxMjKCF198EV/60pdw88034yMf+QgAYMmSJbjkkkvw4x//GEuWLMGZZ56pvf8RRxzR8Htt2LABd9xxB+LxONasWYPOzk688sorWL9+Pf70pz9h3bp1SCaTzGsymQyuv/56tLW14fzzz8fw8DA2bNiAW265BQ899BCOPvpoW9dYIBCYRxhAAoHAF6688kps3rwZBw4cwJVXXlnz+9HRUdx1112YMWMG7rvvPsbw+O1vf4uvfvWr+O53v4svfOELzOveeOMNXH755Ybv+Y1vfAPz5s1jHstms7juuuvw3e9+Fx/60IeQSqWwdOlStLW1aQaQ0XsZMTExgX/9139FNBrF/fffj2OOOQYA8LnPfQ533HEHfve73+FHP/oRPvOZzzCv27FjB/72b/8WX/jCFxCJVHJR3ve+9+Eb3/gGfvKTn+CWW24x9fkCgcA+IgtMIBBwwa9+9StMTEzgc5/7XI3X5bzzzsOxxx6L3/72tzWv6+rqwqc+9SnD99QbPwDQ0tKCCy+8EJlMBtu2bXM05t///vfIZDL44Ac/qBk/ABCJRHDttdciGo0aps2n02lcc801mvEDVEKB0WjU8ZgEAoE5hAdIIBBwwZYtWwAAfX192LdvX83vi8UiRkdHMTIygs7OTu3xJUuWaCEvPcPDw/iP//gPvPzyyzh48CAKhQLz+4GBAUdjfvvttwEAJ510Us3v5syZg3nz5mHPnj3IZrNoaWnRfnfUUUcx/wYqovGuri5kMhlHYxIIBOYQBpBAIOCC8fFxAMBTTz3V8Hn5fJ7598yZMw2fNzY2hs997nM4ePAgVq5ciQ984ANoa2tDJBLBjh078Pvf/x6lUsnRmCcmJgBUvFBGdHd3Y8+ePZiYmGAMnnqlAaLRKBRFcTQmgUBgDmEACQQCLiAGwvr16y2JgCVJMnz8F7/4BQ4ePIjPfvazNRqcH/7wh/j9739vf7CTEENmaGjI8Pfk8alSC0kgmEoIDZBAIPANonmRZbnmd729vQCqoTCnkDAandFFeP311+uOzYoHhmSwbd68ueZ3Bw8exL59+zBv3ryacJdAIAgeYQAJBALf6OjoAAAcOnSo5ncf/OAH0dLSgoceegg7d+6s+X0+n7dkHBEh9RtvvME8/txzz+Hll1+ueX57ezskSTIcWz3OPPNMtLW14Ze//CUzZlVV8cADD0CW5ZqaQQKBgA9ECEwgEPjG+973Pjz//PP453/+Z5x22mlIJBJYsmQJVq1ahc7OTnz5y1/Gl770JVx55ZU49dRTsWDBApRKJRw4cACbN2/G8ccfj3vuucfUZ51//vl47LHHsG7dOmzatAlz5szBjh078D//8z84++yzsXHjRub5LS0tWL58OV577TXceeedOOqooyBJEv7X//pfdWsBtba24v/8n/+DO+64A9dccw3OPfdcdHZ24tVXX8X27duxYsUKXHbZZY6vm0AgcB9hAAkEAt/467/+a+zfvx+/+93v8Nhjj0GWZVxwwQVYtWoVAOD000/Hd7/7Xfznf/4nXn31Vfz5z39GKpXCrFmzcOGFF+L88883/VmzZ8/Gvffei/vvvx9//vOfIcsyjj32WPzbv/0bDh06VGMAAcA//dM/4d///d/x0ksvYWJiAqqq4oQTTmhYDPHcc89FV1cXfvjDH2Ljxo1aJejPfOYz+MQnPlFTBFEgEPCBaIUhEAgEAoFg2iE0QAKBQCAQCKYdwgASCAQCgUAw7RAGkEAgEAgEgmmHMIAEAoFAIBBMO4QBJBAIBAKBYNohDCCBQCAQCATTDmEACQQCgUAgmHYIA0ggEAgEAsG0QxhAAoFAIBAIph3CABIIBAKBQDDtEAaQQCAQCASCaYcwgAQCgUAgEEw7/n9G2hjBq8Vd6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1. In this case, the background is slightly off from one, which may be because the background events are extracted from different time intervals of the GRB events." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAG5CAYAAACJLeBEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfPUlEQVR4nO3deXxTVf4//leStknbdE1Ld9ayFVrKLrbsyqIOzgyO+3zBDREdZUYGlZ/jiIPjhqO4DAgfR1AHQUVHVEARgQqyC1IopRRKge7pnrVpcn9/hIaGtKXpTZo2eT0fDx5N7pJ7OGamL849930kgiAIICIiIvIxUk83gIiIiMgTGIKIiIjIJzEEERERkU9iCCIiIiKfxBBEREREPokhiIiIiHwSQxARERH5JIagNhgMBpw+fRoGg8HTTSEiIiIXYwhqQ2FhIR566CEUFha2uP/s2bOd3CLvwH5zHvusY9hvHcN+cx77rGM83W8MQSIYjUZPN6FbYr85j33WMey3jmG/OY991jGe7jeGICIiIvJJDEFERETkkxiCiIiIyCcxBBEREZFPYggiIiIin8QQRERERD6JIYiIiIh8EkMQERER+SSGICIiIvJJDEFERETkkxiCiIiIyCcxBBEREZFPYggiIiIin+Tn6Qb4mgadCWd/LoGhvgGhscHoNy7O000iIiLySQxBncxkMGPvf04CAHqNjmEIIiIi8hDeDutkcqW/7bWxvsGDLSEiIvJtDEGdzC9ABn+FDABgYAgiIiLyGIYgD5CHBAAADHUMQURERJ7CEOQBisshyKgxwWIRPNwaIiIi38QQ5AGKEOu8IEEAGrQmD7eGiIjINzEEeUDTSBDAeUFERESewhDkAfYhiCNBREREnsAQ5AHNQxAfkyciIvIMhiAPaJoTBAB6hiAiIiKPYAjyADlHgoiIiDyOIcgDOCeIiIjI8xiCPKD57TA+HUZEROQZDEEeoAjlI/JERESexhDkAfJgf0Bifc0QRERE5BkMQR4glUmtQQiAkXOCiIiIPIIhyEOaJkfruYgqERGRRzAEeYj88uRok74R5kaLh1tDRETkexiCPIRVo4mIiDyLIchDWCuIiIjIsxiCPIQryRMREXkWQ5CHsGAiERGRZzEEeQhHgoiIiDyLIchDGIKIiIg8iyHIQ+xvh3FiNBERUWdjCPIQOR+RJyIi8iiGIA8J5CKqREREHsUQ5CH+gX6QyKyrqPJ2GBERUedjCPIQiURimxzNkSAiIqLOxxDkQU2Tow11DRAEwcOtISIi8i0MQR7UNBJkNlnQaDR7uDVERES+hSHIgxRKrh9GRETkKQxBHqQI5WPyREREnsIQ5EFcP4yIiMhzGII8SM6lM4iIiDyGIciD7NcP45wgIiKizsQQ5EG8HUZEROQ5DEEexJXkiYiIPMfP0w1ojU6nw4YNG5CTk4NTp06hvr4ezzzzDGbOnNmu80+fPo3//Oc/OH36NPR6PeLi4nDLLbfgd7/7HWQymZtb3z4Krh9GRETkMV12JKi2thZr165FYWEhkpOTnTr39OnTWLBgAUpLS3H33XdjwYIFiI+Px1tvvYV33nnHTS12HusEEREReU6XHQlSqVT48ssvoVKpkJubi3nz5rX73M2bNwMA3n77bYSGhgIAbr31VvzpT3/Ctm3b8MQTT7ilzc7yk8vgJ5eh0WhmnSAiIqJO1mVHggICAqBSqTp0rlarRUBAAJRKpd12lUoFuVzuiua5jG39MIYgIiKiTtVlQ5AYw4cPh1arxfLly3H+/HmUlpbiq6++QlZWFu655x5PN8+OXNm0krwJgoWLqBIREXWWLns7TIxbbrkFBQUF2Lx5M7755hsAgEwmw8KFC3Hrrbe2ep5arUZlZaXtfWFhodvb2vSEmGAR0KBrhFzpf40ziIiIyBW8MgTJZDLEx8djzJgxmDRpEgICArBjxw68+eabiIyMxPjx41s8b/PmzVi7dq3D9oKCApjNjqu8azQa5OTkiGqr0aKzvT5xLAeBkd4fglzRb76GfdYx7LeOYb85j33WMe7st5SUlGseIzoEnT9/Hl988QVyc3NRX18Pi8XicIxEIsGGDRvEXqrdPv74Y3z++edYv349goKCAABTpkzBE088gTfeeAPjxo2Dn5/jX33WrFnIyMiwvS8sLMSyZcvQp08fDBw40OH4nJycdnVyW2oP50B90jrilNijJ2IGRIj6vO7AFf3ma9hnHcN+6xj2m/PYZx3j6X4TFYKOHTuGRYsWwWQyQSaTISIiosUaPILQuXNd/ve//2HEiBG2ANQkIyMD77zzDkpLS5GYmOhwXlRUFKKiojqrmQBYMJGIiMhTRIWg9957D2azGYsXL8aMGTO6TBHC6urqFkekGhsbAaDFW1ue0jwEGVkriIiIqNOIejosPz8fU6dOxc033+yxAKRWq1FYWGgLOACQmJiIw4cPo7a21rbNbDZj586dCAoKQkJCgiea2iKuH0ZEROQZokaCFAoFwsPDXdQUR5s2bYJGo7E9sbV3716Ul5cDAGbPng2lUonVq1dj27Zt2LhxI+Li4gAA99xzD5YtW4b58+fjN7/5DeRyOX744QecPn0aDz74YIvzgTxF3mwkSM8QRERE1GlEpYHrrrsOx48fd1VbHGzcuBGlpaW291lZWcjKygIATJs2zaEYYpNp06YhPDwcH3/8MT755BPodDokJSXhySefbPMReU+wvx3GEERERNRZRIWgBQsW4NFHH8WKFSvw8MMPQ6FQuKpdAIBPP/30mscsWbIES5Yscdg+ZswYjBkzxqXtcQf7RVQ5J4iIiKiziApBzz//PAIDA/Hll19i69atSEpKcngiC7A+Iv/mm2+KuZTXUgRzThAREZEniH5Evoler0deXl6Lx0kkEjGX8WpSPykCgvzQoGtkCCIiIupEokLQ7t27XdUOn6YICUCDrpGPyBMREXUir1xAtbtpmhxt1JpgaXSsb0RERESu59IQpNfroVarodfrXfmxXk/evFaQlqNBREREnUF0wRyTyYRPPvkEW7duRUlJiW17XFwcbrrpJtx5553w9/f+RUHFCAy1f0w+KEzuwdYQERH5BlEhyGg0YuHChTh16hSkUikSExOhUqlQWVmJ4uJivP/++/j555/x5ptvQi7nL/bWyLl+GBERUacTFYL++9//IicnB1OmTMH8+fMRExNj21deXo5Vq1Zhx44dWL9+Pe677z7RjfVW9ouo8nYYERFRZxA1J+jHH3/EgAED8Pe//90uAAFAjx498Nxzz2HgwIHYsWOHqEZ6O64fRkRE1PlEhaDS0lKMHj26zWNGjhxpt/QFOVLwdhgREVGnExWCFAoFampq2jympqbG5ctpeBu7EFTHEERERNQZRIWglJQU7NixAwUFBS3uP3/+PH788UcMGTJEzGW8HucEERERdT5RE6P/+Mc/4tChQ5g3bx5uvvlmpKenIyIiAtXV1Th69Ci2bt2KxsZG3Hvvva5qr1fiSvJERESdT1QISk1NxXPPPYfXXnsNX375Jf73v//Z9gmCgODgYCxZsgSpqali2+nVAoL8IJFKIFgEzgkiIiLqJKKLJU6ePBljx47Fnj17kJeXB51Oh6CgIAwYMACZmZktripP9iRSCeRKfxjqGng7jIiIqJOIDkEAEBQUhGnTpmHatGmu+DifpAgJuByCOBJERETUGbiAahfRVCuo0WhGY4PZw60hIiLyfk6NBG3btg0AMGHCBAQFBdnet8eMGTOca5mPubpWkFIV6MHWEBEReT+nQtBLL70EiUSCIUOGICgoyPa+LYIgQCKRMARdgyKUIYiIiKgzORWCnn76aQCASqWye0/isVYQERFR53IqBM2cObPN99RxzdcPY60gIiIi9xM1MfrYsWMoKytr85iysjIcO3ZMzGV8gpzrhxEREXUqUSFo4cKF2Lp1a5vHfPfdd1i4cKGYy/gE3g4jIiLqXKJCkCAI7TrmWpOniYuoEhERdTa31wm6dOkSgoOD3X2Zbq/5nCDeDiMiInI/pytGv/zyy3bvf/rpJ5SWljocZzabUV5ejuPHj2Ps2LEdb6GPuLpOEBEREbmX0yGo+RwgiUSC/Px85Ofnt3isRCLBoEGD8Nhjj3W8hT7CTy6DzF8Ks8nCOUFERESdwOkQtHHjRgDWuT533nkn/vCHP+C2225zOE4qlSIkJASBgSz61x4SiQSKkABoqwx8RJ6IiKgTOB2CYmNjba+ffvppDBgwwG4bdZwixB/aKgMM9Q2cUE5ERORmolaRZ7FE12qqFWQxCzDpGxEQ5H+NM4iIiKijRIWgJkajEbm5uVCr1TCZWp7PwrXDru3qydEMQURERO4jOgR98cUXeP/996HValvczwVU289+EVUTQmM82BgiIiIvJ6pO0O7du7FixQr06NEDCxYsgCAIyMjIwEMPPYQxY8ZAEARMnDgRTz31lKva69VYK4iIiKjziApBn332GSIiIrBy5UrcfvvtAID+/fvjnnvuwauvvopnn30WP/30EydOtxNrBREREXUeUSHo3LlzyMjIgEKhsG2zWCy21zfeeCNGjBiBtWvXirmMz+D6YURERJ1HVAhqbGxEeHi47b1cLkd9fb3dMcnJyThz5oyYy/iM5iGItYKIiIjcS1QIUqlUqKystL2PiYlxCDylpaWQyWRiLuMz5M3mBOm5iCoREZFbiQpBgwcPRl5enu392LFjceLECXz88ccoKCjAV199haysLAwaNEh0Q31BIEeCiIiIOo2oEDRp0iQ0NDSgpKQEAHDvvfciOjoa//d//4f77rsP//rXvxAYGIj58+e7pLHeTs45QURERJ1GVJ2gCRMmYMKECbb34eHh+M9//oNvvvkGxcXFiImJwfTp0xEdHS26ob5A5ieFf6AfTPpGPh1GRETkZi6pGN1cSEgI7rrrLld/rM9QhPgzBBEREXUCUbfDtm3bhl27drV5zNmzZ7Ft2zYxl/EpTU+IGbUmWCyCh1tDRETkvUSNBL300kuQSCTIzMzE3/72N8jlcodjsrKysG7dOi6b0U62x+QFoEFjsltKg4iIiFxH1EgQYJ0H9NNPP+FPf/oTqqqqXNEmn9a8VpCet8SIiIjcRnQI+u1vf4t58+YhLy8PDz/8MM6ePeuKdvms5iM/fEyeiIjIfUSHIAC45557sHTpUtTV1eHRRx/Fvn37XPGxPomLqBIREXUOl4QgAJg4cSJWrFgBhUKBJUuW4LPPPnPVR/sU1goiIiLqHC4LQQAwaNAgvPfee+jduzfeffdd/Otf/4LZbHblJbyeQsmV5ImIiDqDy+sExcTE4N1338Xzzz+Pr776ym6Febo23g4jIiLqHC4dCWoSFBSEl19+Gb/73e9gMBjccQmv1fzpMAMXUSUiInIbUSNBu3fvbnWfVCrFwoULMX36dBiNRjGX8SnNnw7jnCAiIiL3cfntsKsNHjzY3ZfwKgHB/pBIAEHgI/JERETu5JbbYdRxUqkEcqV1XhDnBBEREbmPUyNBEydOhFQqxYcffoikpCRMnDgREonkmudJJBLs3Lmzw430NfKQABjqTTBoGIKIiIjcxakQNGzYMEgkEtsaYU3vybUUIQGohRYmvRlmkxkyf5mnm0REROR1nApBb731VpvvyTXsnhDTmBAcwRBERETkapwT1AXZ1QriY/JERERuwRDUBdmNBHFyNBERkVs4dTts7dq1HbqIRCLBnDlzOnSuL1Jw/TAiIiK3cyoEffDBBx26CEOQc5qHINYKIiIicg+nQtCKFSvc1Q4HOp0OGzZsQE5ODk6dOoX6+no888wzmDlzZrs/4/Dhw/joo4+Ql5cHi8WCpKQk3HXXXZg6daobWy4e1w8jIiJyP6dCUHp6upua4ai2thZr165FTEwMkpOTcfToUafO37JlC1555RWMGjUKDz30EGQyGS5cuIDy8nI3tdh15LwdRkRE5HZuXzajo1QqFb788kuoVCrk5uZi3rx57T63pKQEb7zxBn7/+9/jiSeecGMr3YOLqBIREbmfy0KQ2WxGbW0tTKaWRy5iYmKc+ryAgACoVKoOteWrr76CxWLBAw88AMB6ay0wMLDbFHa0X0SVIYiIiMgdRIeg06dPY/Xq1fj111/R2NjY4jGdvWzGkSNH0LNnT+zfvx8rV65ERUUFQkJC8Lvf/Q73338/pNKWKwOo1WpUVlba3hcWFnZWk+34K2SQ+klgaRS4dAYREZGbiApBZ86cwWOPPQaZTIbRo0fj559/RnJyMiIjI5GXl4eamhqkp6cjNjbWVe1tl0uXLkEqleLll1/GXXfdhX79+iErKwsffvghzGYzHn744RbP27x5c4tlAAoKCmA2mx22azQa5OTkuLr5AAC/QCka6s3QVOncdg1PcWe/eSv2Wcew3zqG/eY89lnHuLPfUlJSrnmMqBC0bt06AMCqVavQu3dvTJw4EePHj8fcuXNhNBrx7rvvYteuXXj66afFXMZper0eFosFDz/8MO655x4AwKRJk1BfX4/PP/8cf/zjHxEUFORw3qxZs5CRkWF7X1hYiGXLlqFPnz4YOHCgw/E5OTnt6uSOyI2oQlV9PcwGAYMHD+42t/Law5395q3YZx3DfusY9pvz2Gcd4+l+E1UxOjs7GxkZGejdu7dtmyAIAAC5XI6FCxciKioKa9asEdVIZzUt8HrDDTfYbZ86dSqMRiPy8vJaPC8qKgoDBw60/enVq5fb29qapsnRZpMFjUbHUSgiIiISR1QI0mq1iI+Pt7338/ODXq+/8uFSKdLT03HkyBExl3Fa04TqiIgIu+1N7+vr6zu1PR0hZ60gIiIitxIVgsLDw+0CRWRkJC5dumR3TENDAwwGg5jLOK3p1pVarbbb3vQ+PDy8U9vTEYF8TJ6IiMitRIWg3r1748KFC7b3qampOHToEE6cOAEAOH/+PHbu3OnW20pqtRqFhYV2T6ZNmTIFAPDtt9/atlksFmzduhWhoaEtzu/palgwkYiIyL1ETYweN24c3nnnHajVakRFReHuu+9GVlYWHnvsMYSEhECj0cBiseDee+/t0Odv2rQJGo3G9tj63r17bRWfZ8+eDaVSidWrV2Pbtm3YuHEj4uLiAACZmZkYOXIkPv74Y9TU1CA5ORk//fQTjh8/jkWLFiEgIKDVa3YVXEmeiIjIvUSFoFtvvRWTJ09GSEgIACA5ORlvvPEGPvroIxQXF2PgwIGYPXs2xo0b16HP37hxI0pLS23vs7KykJWVBQCYNm0alEpli+dJJBK8+OKL+L//+z/8+OOP2LZtG5KSkvDss89i2rRpHWpLZ+P6YURERO4lKgT5+fkhMjLSbltqaipeffVVUY1q8umnn17zmCVLlmDJkiUO24OCgvD444/j8ccfd0lbOpuCt8OIiIjcStScIHKf5iHIyJEgIiIil3PJ2mE1NTU4f/481Gp1q0tnzJgxwxWX8hnNb4fpGYKIiIhcTlQIMhqNePPNN/H999+3uKwEYC2eKJFIGIKcJOdIEBERkVuJCkErVqzAli1b0K9fP0ycOBEqlQoymcxVbfNpfgEy+CtkMBnMnBhNRETkBqJC0O7duzFw4ECsXLmS4ccN5CEBMBn0nBhNRETkBqImRlssFgwfPpwByE2aJkcb6xsgWAQPt4aIiMi7iApBgwYNclgmg1ynaXK0IABGHUeDiIiIXElUCHrggQdw6NAh/Pzzz65qDzVj/5g8QxAREZEriZoTNHToULz++ut45plnMGDAAPTr1w/BwcEOx0kkEsyZM0fMpXxS8xCkr2tAWJxj3xIREVHHiApBtbW1eO+991BfX48jR47gyJEjLR7HENQxLJhIRETkPqIfkc/OzsZ1112HqVOn8hF5F+P6YURERO4jKgQdOHAA6enpeOWVV1zVHmpGzpXkiYiI3EbUxGhBEDBo0CBXtYWuwkVUiYiI3EdUCEpNTUV+fr6r2kJX4e0wIiIi9xEVghYsWIDc3Fxs2rTJVe2hZhS8HUZEROQ2ouYEffLJJ+jXrx/efvttbNq0qdVH5AHg6aefFnMpnyRX+gMSAAJDEBERkauJCkFbt261vS4qKkJRUVGLx0kkEoagDpDKpJAH+8OoMbFYIhERkYuJCkEbN250VTuoFYqQABg1Jo4EERERuZioEHTs2DFERkZizJgxrmoPXUUe4g+UAA26RlgaLZD6iZrGRURERJeJ+o36yiuv4MCBA65qC7XAbnK0hrfEiIiIXEVUCFKpVDCbza5qC7WAT4gRERG5h6gQlJGRgcOHD6Ohgb+c3cUuBNWxn4mIiFxFVAh66KGHoFAo8Oyzz6KgoMBVbaJmWDCRiIjIPURNjH7ggQdgMpmQn5+PgwcPIiAgAOHh4ZBIJHbHSSQSbNiwQVRDfRVvhxEREbmHqBAkCAL8/PzQo0cPh+1tvaf2ax6CWCuIiIjIdUSFoE8//dRV7aBW8HYYERGRe7DoTBcn5+0wIiIitxA1EtRcY2MjLl68CK1Wi+DgYCQlJcHPz2Uf77MCQ5uHIN4OIyIichXRKaWurg6rVq3CDz/8YPeovFwuxw033IB58+YhLCxM7GV8ln+gHyQyCQSzwJEgIiIiFxIVgurq6jB//nwUFRUhNDQUaWlpUKlUqKqqQm5uLr755hscO3YMK1euRGhoqKva7FMkEgkUIQHQ1xgZgoiIiFxIVAhat24dioqKcOedd2Lu3LkIDAy07TMYDFi3bh3Wr1+PDz/8EI899pjoxvoqRYg/QxAREZGLiZoYvWfPHqSnp+ORRx6xC0AAoFAo8PDDDyM9PR0//fSTqEb6uqbH5M0NFjQauUwJERGRK4gKQZWVlRg6dGibxwwdOhSVlZViLuPzFEo+IUZERORqokJQcHAwSktL2zymtLQUwcHBYi7j8+SsFURERORyokJQeno6du3ahcOHD7e4/8iRI9i1axfS09PFXMbn2T0mL3IR1aITamStzkblhTqxzSIiIurWRE2Mnjt3Lvbt24dFixbhuuuuw7BhwxAZGYmqqiocO3YMBw4cgFwux9y5c13UXN/kqoKJDToTfvjXLzAZzKgv1+HmZ8e6onlERETdkqgQ1KdPHyxfvhwvvfQS9u3bh3379kEikdjWCouPj8eSJUvQp08flzTWV9kvotrxgol5u4tgMlgnVldfrBfdLiIiou5MdLHEtLQ0rF+/HtnZ2Thz5oytYnT//v2RmprqsKI8Oc8V64cJFgE52wubfY4JJkMj/BWs6k1ERL7JJb8BJRIJ0tLSkJaW5oqPo6soXHA7rChbjbpSnd02jVqPiMQQUW0jIiLqrriAajfQPAQZO3g77OT3hQ7b6iv0HW4TERFRdyd6JKimpgZbtmxBbm4uNBoNzGbHYn4SiQRvvvmm2Ev5LLuRII3zI0F1ZVpcPFbhsF3DEERERD5MVAg6e/YsFi5ciPr6ettk6JZwXpA4fnIZ/OQyNBrNHXpE/tQPF4HL/3kSUlUoyrYWr+RIEBER+TJRIejdd99FXV0d/t//+3+4+eabER0dDZlM5qq2UTOKEH9ojGan5wSZDI04vfMiAEDmL8XIPwxAUfY+ANY5QURERL5KVAg6efIkMjMz8cADD7iqPdQKuTIAGrUBhnoTBEFo9+ja2Z9L0KBrBAD0HRcHVe9QSCSAIPB2GBER+TZRE6P9/PyQkJDgqrZQG5rmBQkWwRZqrkUQBOQ0mxCdMq0XZH5SBEUqAAD1HAkiIiIfJnrZjNOnT7uqLdSGjtQKKs2tRtUFa1HEHsnhiO4bBgAIiQ60fk5dA0yG9gUqIiIibyMqBC1YsADnzp3DJ5984qr2UCvsH5NvXwiyHwXqaXutjAq0vea8ICIi8lWi5gR99NFH6Nu3L9577z1s3rwZycnJra4Y//TTT4u5lM9TNFtEVd+OJ8S0VQacP1RmO7fP2FjbvqaRIMA6L4gFE4mIyBeJCkFbt261vS4uLkZxcXGLx0kkEoYgkZwtmHjqhwsQLNbn4gdPTYLM/8pTe8pmIYjzgoiIyFeJCkEbN250VTvoGpyZE2Q2mZH7o/WxeIlUgkFTe9rtD4kOsr1mrSAiIvJVokJQbGzstQ9qQVlZGUpKSpCeni7m8j5F7kTV6IIDpbaiir1HxyD48tNgTezmBDEEERGRj/LI2mFbtmzBwoULPXHpbst+EdW2b4c1XydsyPReDvuDVQo0lRliCCIiIl/FBVS7ifauJF9xtgYV+bUAgMieIYgZGOFwDGsFERERMQR1Gwpl++YE5Wy/YHudMq1Xq5WlWSuIiIh8HUNQNyH1kyIgyDqFq7VFVPV1RpzbVwIACAjyQ3JGfKufx1pBRETk6xiCupGmW2KtPSJ/euclmE0WAMDAyUnwk7e+mO3VtYKIiIh8DUNQN2ILQVoTLGaL3T6L2YJTP1y+FSYBBt/Q8+rT7bBWEBER+TqGoG5E3qxWkFFjPxpUeKQc2koDACApPRqhMUFoC2sFERGRr2MI6kbaekKs+TphQ6Y5PhZ/NdYKIiIiX8cQ1I00Xz+sea2g6kv1KMmpAgCExgYhITXqmp8VrFIArBVEREQ+zCMhKDg4GD169GjzGJ1Oh//85z9YtGgRbr75ZkyYMMFurTJnvPrqq5gwYQKeeuqpDp3fVbQ2EnTyu+arxfeCRNryY/HNyfykCI5grSAiIvJdHglBt99+Oz799NM2j6mtrcXatWtRWFiI5OTkDl8rNzcXW7duRUBAwLUP7uJaWj/MqDUhf4914Vo/uQwDJiS0+/OUrBVEREQ+zKm1w9auXduhi0gkEsyZM8epc1QqFb788kuoVCrk5uZi3rx5Tl9XEASsWLEC06dPxy+//OL0+V1NSyNBZ7KK0Gg0AwD6j09AQJB/i+e2JCQ6EGWnqwFYawVFJIa4sLVERERdm1Mh6IMPPnDY1rwisSAIDtsFQehQCAoICIBKpXLqnKt99913KCgowLJly/DII4+I+qyuoHkIMtabIFgEuwnRKdPafiz+aldPjmYIIiIiX+JUCFqxYoXDtg0bNuDw4cOYNm0a0tLSEBkZiaqqKvz666/Yvn07Ro8ejTvuuMNlDW4vnU6HVatW4d577213mFKr1aisrLS9LywsbOPoznf1SNClbDXqynQAgPghKqdDTAhrBRERkQ9zKgSlp6fbvf/mm29w7NgxrFmzBn369LHbN2PGDNx2221YsGABMjMzHc51t7Vr10Iul+P2229v9zmbN29u8ZZfQUEBzGazw3aNRoOcnBwxzXSKSX+lDeqSKlRuqra9DxksdbotNborwed87iUgQSu+ke3Q2f3mDdhnHcN+6xj2m/PYZx3jzn5LSUm55jFOhaCrffbZZ5g6dapDAGrSr18/TJ06FZ9++iluvvlmMZdyysWLF/H555/jueeec2pC9KxZs5CRkWF7X1hYiGXLlqFPnz4YOHCgw/E5OTnt6mRXESwCDkuLIFgEGCsF6GutxRGVUQpk3DoCUplz89zrVFrk/LccACAXgjrt79LZ/eYN2Gcdw37rGPab89hnHePpfhMVgoqKinD99de3eUxoaCiKi4vFXMZpb731FoYOHYpJkyY5dV5UVBSioq5dY8dTJFIJ5Ep/GOoaoK8x2rYPvqGn0wEIAIJVgdZaQQJrBRERke8R9Yh8eHg4Dhw4YDchujmLxYIDBw4gLCxMzGWccuTIERw4cAC33XYbSkpKbH/MZjOMRiNKSkqg1XbObR93aD4vCABk/lIMnJTUoc+yqxXEEERERD5G1EjQDTfcgE8++QRPP/00HnroIbt6PmfOnMGaNWtQUFCAu+66S3RD26u83Hp759lnn3XYV1FRgTvuuAOPPfaYU3OFupLmtYIAoO+4OLtK0s5SRgdCW2WAoa4BjUZzmyvPExEReRNRIei+++5DXl4e9u/fjwMHDkChUCA8PBw1NTUwGAwQBAEjR47E3LlzXdRcR2q1GlqtFgkJCfDz88OIESPw4osvOhz32muvITY2Fn/84x/Rt29ft7XH3a4eCWrPOmFtaV4rqF6tR0SCUtTnERERdReiQpBcLsfrr7+Obdu2Ydu2bTh37hzKysqgVCoxaNAgTJ8+HTNmzLCrJeSMTZs2QaPR2B5b37t3r22kZ/bs2VAqlVi9ejW2bduGjRs3Ii4uDjExMYiJiXH4rLfffhsREREYP358x//CXUDzENQjORxRfcXdanSoFcQQREREPkJUCAKsRRFnzpyJmTNnuqI9djZu3IjS0lLb+6ysLGRlZQEApk2bBqXS935hB0cpbK+dLY7YErtaQRU60Z9HRETUXYgOQe50rfXFAGDJkiVYsmSJSz6rOxg4KQnqc3VQRinQ9/p40Z+nbBaCNCyYSEREPsQlIaixsREXL16ERqNpsagg4FhokTomKFyOG/8ywmWfZz8SxBBERES+Q1QIEgQB77//Pr744gvodG3fStm1a5eYS5GbsFYQERH5KlEhaN26dfjoo4+gVCoxffp0REdHQybjI9bdSVOtIG2VgSNBRETkU0SFoC1btiAmJgZr1qzp1IKI5FrKKNYKIiIi3yOqYnRVVRXGjx/PANTNKbmaPBER+SBRISg2NrZbL0FBVs0nR3NeEBER+QpRIei3v/0t9u3bh+rqale1hzxAyVpBRETkg0TNCcrMzMTx48exYMECzJkzBwMGDEBwcHCLx7ZUxZm6hpAo1goiIiLfIyoE3XHHHZBIJBAEAS+//HKrx0kkEuzcuVPMpciNlKwVREREPkhUCJo+fXqH1wWjrkOpUrBWEBER+RxRIag9y1VQ1yfzlyEoQg5dlZEjQURE5DNETYwm7xESFQQAtlpBRERE3o4hiACwVhAREfke0ROj20MikWDDhg1iLkVudnWtoIgEpQdbQ0RE5H6iF1BtiVarhUajAQCoVCr4+blksXpyI9YKIiIiXyMqnXz66aet7ispKcE777yD6upq/Otf/xJzGeoE9rWCDB5sCRERUedw25yguLg4LF26FPX19VizZo27LkMuouTSGURE5GPcOjHaz88Po0aNYqHEbsBWKwhAvZq3w4iIyPu5/ekwo9GIuro6d1+GRGqqFQRwJIiIiHyDW0PQr7/+ih07dqBnz57uvAy5SFOtIH1tAxobWCuIiIi8m6iJ0U888USL281mM9RqNUpLSwEAc+bMEXMZ6iTK6ECU5VUDsI4GhfMxeSIi8mKiQtCxY8da3C6RSBASEoLRo0fj9ttvx+jRo8VchjpJyFUFExmCiIjIm4kKQbt373ZVO6gLUEbxCTEiIvIdXDaDbOwLJjIEERGRd3NZKefGxkZcvHgRWq0WwcHBSEpKYqXobiaEI0FERORDRKeUuro6rFq1Cj/88AMaGhps2+VyOW644QbMmzcPYWFhYi9DnUAZpbC9Zq0gIiLydqJCUF1dHebPn4+ioiKEhoYiLS0NKpUKVVVVyM3NxTfffINjx45h5cqVCA0NdVWbyU2aagXpqo0cCSIiIq8nKgStW7cORUVFuPPOOzF37lwEBl65nWIwGLBu3TqsX78eH374IR577DHRjSX3U0YHQldttNUK8guQebpJREREbiFqYvSePXuQnp6ORx55xC4AAYBCocDDDz+M9PR0/PTTT6IaSZ2H84KIiMhXiApBlZWVGDp0aJvHDB06FJWVlWIuQ51IGR1ke12vZggiIiLvJSoEBQcH26pCt6a0tBTBwcFiLkOdKISryRMRkY8QFYLS09Oxa9cuHD58uMX9R44cwa5du5Ceni7mMtSJWCuIiIh8haiJ0XPnzsW+ffuwaNEiXHfddRg2bBgiIyNRVVWFY8eO4cCBA5DL5Zg7d66LmkvuxjlBRETkK0SFoD59+mD58uV46aWXsG/fPuzbtw8SiQSCIAAA4uPjsWTJEvTp08cljSX3Y60gIiLyFaKLJaalpWH9+vXIzs7GmTNnbBWj+/fvj9TUVEgkEle0kzoJawUREZGvEBWCXn75ZfTt2xe333470tLSkJaW5qp2kQexVhAREfkCUROjf/jhB1RXV7uqLdRFcF4QERH5AlEhKD4+njWAvBBrBRERkS8QFYJuuukm7Nu3DxUVFa5qD3UBrBVERES+QNScoIkTJ+Lo0aNYsGAB7rrrLgwaNAiRkZEtToaOiYkRcynqRM1rBWk4EkRERF5KVAi68847bY/Ev/XWW60eJ5FIsHPnTjGXok7UfE4QCyYSEZG3EhWCpk+fzkfgvVCw6kqtIN4OIyIibyUqBC1ZssRV7aAuxC9AhqBwOXQ1Rk6MJiIiryVqYjR5r6Z5QfoaIxobzB5uDRERkesxBFGLQjg5moiIvJyo22F33HHHNY+RSqUICgpCz549MX78eEyZMkXMJamTKK8qmBger/Rga4iIiFxPVAgSBAFmsxlqtRoAIJPJEBYWhtraWpjN1lsoUVFRqK6uRn5+Pnbu3IlvvvkGr7zyCvz9/cW3ntym+UgQ5wUREZE3EhWC3n//fTz55JPo2bMnHnzwQaSkpNgemc/JycH7778PjUaDtWvXora2Fu+88w7279+PjRs34t5773XV34HcQMmCiURE5OVEzQlatWoVGhoa8Prrr2PIkCG2x+UlEgmGDBmC1157DQ0NDXjvvfeQmJiIpUuXIiYmBjt27HBJ48l9QpovncEQREREXkhUCNq7dy+uu+46SKUtf4xMJsN1112HPXv2AADkcjlGjBiBoqIiMZelTsBaQURE5O1EhSCtVgudTnfNY7Rare19WFiYmEtSJ2mqFQRwThAREXknUSGod+/e+OGHH1BcXNzi/uLiYuzYsQO9e/e2bSsvL0d4eLiYy1InYa0gIiLyZqImRt9777147rnncP/99+OWW27B0KFDERERgerqapw4cQLffvst9Hq9bRK0yWTCoUOHMHr0aJc0ntwrJDoQ5WdqAFhrBfExeSIi8iaiV5FfvHgx3n77bXz22Wf4/PPPbfsEQUBgYCAWLVqEiRMnAgAMBgMWL16MPn36iGs1dQrWCiIiIm8mKgQBwM0334yJEydiz549yM/Ph06nQ1BQEJKTk5GZmQml8sovzpCQEIwfP17sJamTsFYQERF5M9EhCACUSiVmzJjR6n6z2QyZTOaKS1EnYq0gIiLyZqImRn/xxRfXPMZsNmPp0qViLkMewlpBRETkzUSFoLfeegu7du1qdb/FYsHSpUuRlZUl5jLkIawVRERE3kxUCEpNTcWyZcvwyy+/OOxrCkC7d+/G7373OzGXIQ/xC5AhkLWCiIjIS4maE/Tyyy/jsccew7PPPosVK1agf//+AKwB6B//+Ad27dqF3/72t3jiiSec+lydTocNGzYgJycHp06dQn19PZ555hnMnDnzmuceOXIE27dvx/Hjx1FRUYHIyEiMGDECDzzwAKKiojr09/RlIVGB0NcYbbWC/AI4t4uIiLyDqJGg4OBgLF++HEqlEn/9619RXFwMQRDwwgsv4Mcff8Stt96KP//5z05/bm1tLdauXYvCwkIkJyc7de6qVatw9OhRjB8/Hk888QSmTp2KnTt34sEHH0RlZaXTbfF1dpOjORpEREReRPTTYSqVCq+//joeffRRPPnkk+jfvz92796NW265BX/5y186/JlffvklVCoVcnNzMW/evHaf++ijjyItLc1uPbMxY8bg8ccfxxdffIGHHnqoQ23yVSHRrBVERETeSdRIUJOkpCS8+uqrqK6uRlZWFm655Rb89a9/7fDnBQQEQKVSdejc9PR0hwVd09PTERoaisLCwg63yVdxJIiIiLyVUyNBa9eubXP/4MGDkZ+fD5VKZXesRCLBnDlzOtI+l9DpdNDr9Vy8tQNCmlWN5mPyRETkTZwKQR988EG7jlu3bp3de0+HoM8++wwmkwlTpkxp8zi1Wm03b4gjRxwJIiIi7+VUCFqxYoW72uE2x44dw9q1azF58mSMHDmyzWM3b97c4mhXQUEBzGbHVdQ1Gg1ycnJc1dQuyWyy2F6XX6hyyd/XF/rN1dhnHcN+6xj2m/PYZx3jzn5LSUm55jFOhaD09PSOtsUjCgsL8eyzz6Jv37546qmnrnn8rFmzkJGRYXf+smXL0KdPHwwcONDh+JycnHZ1cnd3PLwc+hojzJr2famuxVf6zZXYZx3DfusY9pvz2Gcd4+l+c8naYV1RWVkZnnzySQQHB+OVV15BUFDQNc+JiopiLaEWNNUK0rFWEBEReRFRT4dt3boVDz74INRqdYv71Wo1HnzwQWzfvl3MZZxWW1uLJ598EiaTCcuXL2ewEan5vCBtpcGDLSEiInIdUSFo27Zt8Pf3bzVkREVFQS6X49tvvxVzmVap1WoUFhaisbHRtk2v12Px4sVQq9V49dVXkZSU5JZr+5LmtYLqK3QebAkREZHriLoddv78eUycOLHNY5KTk7F7926nP3vTpk3QaDS2p7X27t2L8vJyAMDs2bOhVCqxevVqbNu2DRs3bkRcXBwA4B//+AdOnTqFm266CYWFhXZPeAUGBmL8+PFOt8XXKa8qmEhEROQNRIUgrVaLkJCQNo8JDg6GRqNx+rM3btyI0tJS2/usrCzbavTTpk2DUtly5eL8/HwAwJYtW7Blyxa7fbGxsQxBHcBaQURE5I1EhSCVSoUzZ860eUx+fj4iIiKc/uxPP/30mscsWbIES5Yscfo8cg5rBRERkTcSNSdo1KhROHToEA4dOtTi/oMHD+LgwYMYM2aMmMuQhyk5EkRERF5I1EjQPffcgx9//BGLFy/G9OnTMWrUKERFRUGtVuPQoUP4/vvvERQUhHvuucdV7SUP8AuQITBcDn2NkXOCiIjIa4gKQfHx8XjllVewdOlSbN26Fdu2bbPtEwQB0dHRWLp0KeLj40U3lDyLtYKIiMjbiC6WmJaWhg0bNmDPnj04deoUtFotlEolBg8ejIyMDPj7+7uineRhyuhAlOfXALDWCgqLC/Zsg4iIiERyScVof39/TJ48GZMnT3bFx1EXZD8vSMcQRERE3Z6oidHkO0JYK4iIiLyMS0aCysvLcfToUajVaphMJof9EokEc+bMccWlyEOU0XxCjDqXttqA4uxKJA2PhiIkwNPNISIvJDoE/fvf/8bnn38Oi8Vi2yYIAiQSid1rhqDurXnBRNYKIncTBAHfvXIYVRfqkTgsGjOeGuXpJhGRFxJ1O+zrr7/Gxo0bMXz4cLzwwgsQBAEzZszAc889h1mzZkEmk2HSpEl48803XdRc8hSOBFFnKs2tRtWFegBA0fEKGDWOI8xERGKJGgn6+uuvERsbi9deew1SqTVPxcbGYurUqZg6dSqmTJmCv/zlL5ww7QX8AmQIDAuAvraBc4LI7fJ2X7K9FgSg+KQafcbGebBFROSNRI0EFRYWYuzYsbYABABms9n2Oj09HePGjcOGDRvEXIa6iKbRoKZaQUTuYDI0ouBAqd22S8fVHmoNEXkz0U+HNV/IVKFQoLa21m5/UlISCgoKxF6GuoCQqCDba22lwYMtIW9WcKAUjUb7kH3puBqCIHioRUTkrUTdDouOjkZFRYXtfUJCAk6dOmV3TEFBAQIDA68+lbqh5vOCvn/9CGIHRiC6Xzii+4UhIlEJqYwVF0i8vKwi2+ugSDl0VUZoKw2oKdYiIkHZxplERM4RFYKGDh2K48eP295nZmbiww8/xGuvvYbMzEwcP34cBw4cwMSJE0U3lDwvMunKL6DaYi1qi7U4vdM6d8NPLkNUn1BbKIruFw5llML2lCBRe9SV6VB6qgoAEBYXjIFTknDwv7kAgEu/VjAEEZFLiQpB06dPR2VlJUpLSxEbG4s777wTP//8M7755ht8++23EAQBsbGxeOSRR1zVXvKgPmNjUVOsxcWj5ai6qIFguXJ7otFoRmluNUpzq23bAsMCrKEo2RqKovuGQR7MZVSodWeyrkyIHjAxAUnDonDwv9b3RcfVSL2pj4daRkTeSFQIGj58OIYPH257HxQUhFWrVmHPnj0oKipCbGwsrr/+et4O8xIyfxlG3T4Ao24fAJOhEZXn61BxthblZ2tQcbbW4akxfW0DLvxSjgu/lNu2hcYGAf5mXIzSISDQD/6X/zS9Dghq9vqqn35yGUeWvJhgEXDmJ+utMIkESB6fgKBwue2WWMmpKi7eS0Qu5ZKK0QBQW1uL/Px8aLVahISE4JZbbkFYWJirPp66GH+FH2IHRSJ2UKRtm77WiIqztai4HIoqztbCqLWv71JXqrP+vFgBZ0kkQHRyOCbMS0U4b4t4neKcSmjU1gn3CWnRCI5QAAAS06KRt+sSzCYLSnOrkJgW7clmEpEXER2CSkpK8NZbb2H//v12T29IJBKMGzcOf/rTnxAXx/oeviAwTI6eI3qg54geAKxVf+tKdag4W4Pyy+Go6kI9zA2Wa3xSywQBKD9Tg+9ePYxZ/xiHwFC5K5tPHnam2YToARMTbK8T06KQt8t6m+zScTVDEBG5jKgQVFRUhEcffRTV1dVITExEamoqIiIiUF1djRMnTmDv3r3IycnBv//9b8THx7uqzdRNSCQShMUFIywuGMmZV36pncg+ieRe/dGgb4RJ39j6T539+5piDXTVRtRX6PHDv47ipv9vNGT+vDXiDRp0JhQctNYGkgf724I0AMQPVUEisYbgItYLIiIXEhWCVq1ahZqaGjz55JP4zW9+YzdfQxAEbN68GW+88QZWrVqFF154QXRjyTtIZRIoQgOgCHVuUUxtpR5f/W0fdDVGlOVVI2v1CUxakMZ5Ql7g3P5S2whhv+vj7Ob9KJQBiOoXhor8WlRf0kBbqUewivMMiUg8UYVdjhw5goyMDMyaNcvhF5FEIsGtt96KcePG4fDhw6IaSQQAwapATFs0En5y6y/Is3uLcfTLfA+3ilwhz+6psESH/c1vgV3K5mgQEbmGqBBksVjQu3fvNo/p27ev3QrzRGJE9Q3DpAXDgMuZ+5fP83H252LPNopEqSnWoDyvBgAQkaSEqk+owzGJaVG211xCg4hcRVQIGjBgAM6fP9/mMQUFBRg4cKCYyxDZ6T06BmPuvPKdynovG2V51W2cQV2Z3YToCYkt3t6M7heGgCDr3fvi7EpYLFxCg4jEEzUn6KGHHsKf//xnfPPNN7jlllsc9m/evBkHDx7EG2+8IeYyRA5Sb+mD2lJrxWqzyYLt//oFt74wDiE9gq59MnUZlua1gaQS9Mts+QEKqUyKhKFRKDhYCqPWBPXZGvToH9GZTSXyWmaTGSajGY2Gyz+NZpgMjWhs8XXzn40wGc0QzAIEiwCLxfrT+ge21xaLAEFw3GexCGgwNqB+vBRj7xnkkb+7UyFo7dq1DtuGDx+O5cuXY8OGDUhNTUVkZCSqqqqQnZ2NS5cuYfTo0fjll1+QmprqqjYTQSKRIOO+Iagv16P4ZCUMdQ347rUjmLX0OgQEsSp1d1GUrYau2ggASBoejaCw1sseJAyLsj1Bdum4miGIqBVmkxmGugbo6xpsP62vjdDXNsBQ3wBDbdN2Y4fLlriKob7BY9d2KgR98MEHre67ePEiLl686LD94MGDOHToEObMmeN864jaIPWTYuoTw7H57/tQW6JFTZEGO1Ycw/TFI7mYazdxZrf9rbC2XD0vaMTs/m5rF5EzGnQm1F0w4IKx3DpiYhtRsY6gNI2uNP9jsnvdCMEsQCKTQCqVQiK1jn5KpBJIZRLrT6nEuv/y++b7AMCoNcFwOfQ06Bo93CPNSKz/aJVIceXv0eyP2WJGQKDL6jY7zakrr1ixwl3tIOoQudIf0xePxFd/2wejxoSibDV+XpuDjPuH8NH5Ls6oMaHwSBkAQBHij6ThbRdBVKoCEZ4QjJoiLSrya2DUmCBXctSPOp/J0Iiy09UozqlCSU4l1AV1ECwCTqDM001rPwmgCAlAYGgA5Ep/+Mn94C+XwU8hs/30k8vgL/e7sq3562bb7IKZ9ErgkUgl1/z/4ZycHKSkpHTSX9qRUyEoPT3dTc0g6rjQmGDc+JcR2PLiQVjMAnJ3XER4fDCGzuRim13Z2X3FMJusw/DJmQmQ+V179C4xLRo1RVoIAlB8Uo0+Y1mNntyvscGM8jM1KD5ZiZKcKpSfrYFgFj85XyqTwO9yoJBKpVfmz5gtECzWJ7Atl+fbCGYBwjUuGRDkB0VoAAJD5VCEWQOOIiQAgWEBUITKERh6+XVIAOQhAZBK+Q9Fz41BEblQ7KBIjJ+Xit0rjwMA9n+ci5AeQeg1MsbDLaPWNL8V1n9CQhtHXpGQFoUTW88DsN4SYwjyHYIgoEHbCH2tEfrLc1v0tfY/G/SNUIT4IyhMjsAIOYLC5AgKlyOw6U9oQLtulZtNZpTn16IkpxLFOVUoP1MNS2PrCSQiUYmAGCChT+yVERV500iKzBZ0/OV+dtul7Qj+dn1gsZ+AbDE3hSMBAUF+rKDfAQxB5DX6j09AbYkWx/53FhCAne/8it/8/TqoejvWnSHPqr5Uj4pztQAAVe9QqHq1779R3KBIyPylMJssuHRcDUEQeNvTSzQ2mFF8ohJ1ZbrLQefqkGNsM4i0y+VbQEHhV8JRULgcgWFyBIYF2B60KDtT3eZk4bC4YMSlRCIuRYW4lEgEhckv39Zx7zw12y0nt17FtzAEkVcZeVt/1JXqcG5/CRqNZny//Ahm/WOcbUVy6hryOjAKBAB+chliB0WgKLsS2koDaoq1iEhQuqOJ1AkEQUDZ6Wqc+akYBQdK3D+hV4Bt8nDVhfp2nxYSHYi4IdbAE5+iQnAk///EWzAEkVeRSCWYMD8VGrUe5fk10FYZsH35Edz8t7HwV/Dr3hVYGi3I32MNQVKZBMnXO7e4ckJaNIqyKwEARccrGIK6odpSLfL3FCN/TxHqy/VtHiuRwDrP5fJojfVn0/yW5tsC4B/oB0O9CfpaI3TV1tEjXY0R+hojdLWXf15+b2ljTk+wSoH4y6M8cSkqhERzrTpvxd8K5HX8AmS44ckR2Py3fdCo9VAX1GH3yuOY+sRw2+Ok5DkXf62AvtZaF6TnyB5OL6SbmBaFg/+1vr70q5oT4LsJg6YBBftLcWZPkW2ZlOb85DL0GRuL+CEq6/ydy+FG4eQEXn+F3zVDiyAIMGpMtpDUFIzkwf6IHRyJ0Jgg3mb1EQxB5JWCwuSY9teR+Pr5fTDpzTh/qAyHNuZhzF2tL+FiabRcrpraCNPlOh8mQ6O15oehEVI/KSJ7hiC0RxDDlAhXL5PhrIhEJYIi5dBVGVFyqgqNDWa7VefJeYIgoORUFfJ2XULhkTIIEJCfVIuw2GCExwcjLM76JzQmyKnJt+ZGCy79WoEzPxXhwi/lDnN6JBIgfmgUksfHo/eomE4brZVIJFCEWJ+SikgM6ZRrUtfEEEReKzIpBFMfH47vXjsCwSLg+NfnUHm+FhazYF/2/XLIae+kS/9AGSJ7WifzqnqHQNU7FBEJSj6Z0Q6GugZc+KUcABAYFoDEYVHXOMORRCJBYlo08nZZl0wpza2yW2Xe0wSLgFM7LkBf24ChM3p36VpG2moDzmQVIW/XJdSV6ez2lefVOIzYSCSAMioQYfHBCIsNtv68HJCCIxSQSCUQBAHqc7U481Mxzv5cDKPG5HDdiCQl+mcmoF9GPOfXkEcxBJFXSxwWjXFzBuPnD3IAwDaXRAyT3oyy09UoO31l0VapTILwRKU1GPUKvfzEUwiX8LhK/t5i21yM5MyEDlf2TkyLQt6uSwCsj8p3lRAkCAL2fXQKOd8VAgAKDpRg+uJRCInuOmvaWRotuHC0Aqd3XcSlYxUOtWcCgvwAmYCGerPDuYIA1FfoUV+hx6Vf1Xb7/OQyhMYGwdxgQW2J1uFcRWgAkjPi0X98AiJ7hfB2E3UJDEHk9VJu7AWN2oDjX5+7slEC+Ctktpoe/goZ/BR+8FdcVSG1aZtCBqO2EVWFdagsrIdGbT+Z02IWUFVYj6rCepzBlds9IT0CbaEosmcIIpNCoIwK9NnbaWeyLtleD5jY/qfCrhY/VAWJxPpLuei4+tondJLjX5+zBSAAqCnSYvNz+zD9r6MQ1TfMgy0Daoo1yNt9CWeyimxzspqLH6rCwEmJ6DUqBnn5p9G/7wDUlmpRW6JDbYnm8k8taks0MOkdA1Kj0YyqQvsnrmT+UvQaFYP+mfFISIvicjbU5TAEkU8Yc9dApN7cGxCsEydlAVJR/xI1aBpQVViPyvN1qCysQ+X5OtQUayFY7P9ZXV+uR325HucPXSmn76+QISIxBBFJIYjsqbT+TAxxeoKwuwmCgOpLGmjUesQPUYmed2PtK+svyeh+YaLmYiiUAYjqF4aK/FpUX9JAW6lHsMqzT/CcySrCoQ15tvdBEfLLTyg14Jt/HMCUP6Wj54gendomk6ERBQdLcXrnJbuRyybBkQoMmJiAARMTEdLDfrTKX+GHqN5hiOptH94EQYC+tuGqYGT9U1eug2AWEDs4Ev0z49FnbCxHQ6lLYwginxEY2voK5c5SKAMQP0SF+CEq27bGBjOqL9bbftlXnq9D1cV6NBrt/9VsMphRnl+D8vwa+/aFyxGZdDkUXf4Tnqjs1Em/umoDik5UoihbjeITldDVWFd4D4sLxvh5qYgd2PGV2/OajQI5UxuoNYlp0ajItxZcvJStxsBJSaI/s6Mu/lqBrDXZtvej7hiAQVOSsP1fv6DsdDUajWZsf/0Ixs1NQcqNvdzaFkEQUHG2Fnm7LuHsvmKHURupTIJeI2MwYHIiElKjnF46QSKR2IoNxg1W2e2zNFpgbrSwHAV1G/ymErmIX4AM0f3CEd0v3LbNYhFQV6JFZWEdqi7Uo+pivXV0pcKxNoq+xoiiGqPdvCWJBAiNDYYsTIBuUB4iEpUIj1ciLD7YJeHIZGhE6akqa/A5oUb1RU2Lx9WWaPHNC/uRMq0XRt8xwOlfcuZGC87uLQZgvUXSb5xztYFakpgWhaNf5AOwzgvyVAiqOFuDHW8eta0llXJjTwyb1RcSiQQznxmNrFXZOLe/BIIA/PxBDurL9Rhz10C33BItza3CgY9zbdW4mwtPUGLgpEQkj4936T8ImpP6SZ1eCoLIkxiCiNxIKpUgPEGJ8AQl+l1/ZXuDzoTqSxpUX6xH1UWNNRxdrHd4kkYQrAEEJUBV7tkrOyRAaI8ghMUH24JR03UCAlv/n7XFYn1yp+iEGkXZlSjPq261aJy1OnMkjPUN1l+qApDzXSEuHClH5oNDnJqMfOGXchjqrX+3XiNjXPLEVHS/MAQE+aFB14ji7EpYLEKnLwhZW6rFd68dsY329R4Tg+vmpNhutfoFyDD5sWFQRgfa5qRlf1sAjVqPiY+kuWyUr75ch4OfnEbBgVK77f4KGfpcF4dBkxMRnRzOychEV2EIIvKAgCB/xAyIQMyAK7eXBEGArsaI6qYRo8vhqKZIY1tt/crBQF2ZDnVlOlw8WmG3KzhScTkQBSMiQYnQuGDUlmhRlK1GyckqGLWOjywD1lGnqL5hSEiNQkKqCj36R0DmJ4XFIuDktvM4/GkezA0WaNR6bHv5MPpPSMDYewdBobz2XCa72kAiJkQ3J5VJET9UhfMHy2DUmqA+V4seyeEu+ez20NUase3lQzDUWScZxw6KwKQFwxyCmEQqwZi7BiKkRyB+/s9JCAJQcKAU2moDpv1lpKi5YA36Rvz61Vmc2Hre7jsSkRSCoTN7oe91cbw1RdQG/q+DqIuQSCQIjlAgOEKBxGFXRlksFgFH9x5HVGAsaoo1qL6kQU2xFjVFGof5RgCgrTJAW2VAUfa1n5oKjQlC/FAVElKjEJ+ianGERiqVIPWmPug1MgZ7/u8Eik9ab9edySrCpV8rcP19Q9BnTGyr19DVGHHxmDWoBUXKEZ/qfG2g1iQOi8b5g9ZJ55d+rei0ENSgb8R3rxy2LfkQkaTEjU+ObHNkZ/DUnlBGKrDjrWNoNJpRnleDzc/vw/TFoxAWG+zU9S0WAWeyLuHwxjy7J70UoQEYdfsADJiU2OmjYkTdEUMQURcnlUoQqPJHr5QY9EKMbbtgEaCpNKCmWIOaSxprQCqyvm5tIUq50h/xQ1RIuBx8rn4iqC2hMUGYuWQ0Tu+6hAMf58Kkb4S+tgE73jyK3mNicP3cIQgKd5xrkr+nyPbUXP/MBJf+ck5MuxKoLh1XY8Rs967iDVjnN+148xdUnq8DYF1nasbiUZAHX/sWX9LwHrjlubH4/rUj0NUYUVeqw9d/34cbnxxpNyrYlpJTldj/Ua7t+gAg9ZNg6MzeSL+1H5/GInICQxBRNyWRShASHYiQ6EAkNRs5anqEuaZIg5oiDWpLtQgMkyMhNQqq3qGiQohEIsGgyUlIGhaNvR+cxIUj1urP5w+WoeRkFcbeOwj9JyTY5p4IgnDVrTDnl8loi1IViPCEYNQUaVGRXwOjxuTWCs2CRUDWe9m2yevyYH/MeGqUU4/nR/UJw6wXxuG7Vw+j+pIGhnoTtrx4EJMeHdbmiFpdmQ4HP8m1jXw16T06BmPuHojQGOdGk4iIIYjI6zR/hLn5I/yuFBypwI1/GYFz+0uxb10ODHUNMGpNyHovG2d/LkHmg0MQEh0E9TlrHR8A6DEgHGFxrv9FnZgWjZoiLQQBKD6pRp+xcS6/RpODG07bPeV246KRHap3pIwKxG+evw4/vHEUxScrYTZZsGPFUYy9exCG3tTbbgJzg86EY1+dw4mtBXZLu6h6hWDsHwcjPsU9/42JfAGfZSSiDpFIJOg3Lg63vToe/TKuPPJelK3GpsV7cPK78zi9q3mFaNeOAjVJuOqWmLuc2FqA7G8KAFgnkU9+LF1U3aSAIH9Mf2rUlZpJAnDgv7nYt+4ULBYBFouA3J0X8elfsnD863O2AKQIDcD4h4bi1hczGICIROJIEBGJoggNwORHh6Hf9XHY+/5JaKsMaDSasW/dKdsxsgAp+o5t/VaPGHGDIiHzl8JssuDScTUEQXD5o+Bnfy7G/o9ybe+vv38Ieo+OaeOM9pH5STHh4VSERAfil03Wmkc53xeirkwLfY3RVmEbsM77Sb2pD4bN6st5P0QuwhBERC7Rc3gPxL4agYOfnEbujot2+/qMcd/yCdZ6RhEoyq6EttKAmmItIhKULvv84pOV2L3yuO398N8nY/DUni77fIlEghGz+0MZHYif1pyAYBYcFiftMyYWo+8aiNCYrrMQK5E3YAgiIpcJCPJH5gND0XdcHPasOYG6Mh0AYNAU91ZzTkiLtk1WLjpe4bIQVHm+Dtv/dcRWUHLg5CSMmJ3sks++2oAJiQiOVOCHN47CpLc+3afqHYrr/jgYcYMj3XJNIl/HEERELhefosLvX85EXtYlBIXLETvIvb/EE9OicPC/1teXjqsxdGYf0Z9ZX6HDtlcP29be6jmiBzLuT3Fr1eWEoVG49YVxyPnhAqL7hqFfRjzr/RC5EUMQEbmFn1zm9sVCm0QkKhEUKYeuyoiSnCo0NphFLUlhqGvAtpcPQ395Adke/cMx5U/pkMrc/yxJeIIS189Jcft1iIhPhxGRF5BIJLa1zMwmC0pzqzr8WWV51fjquZ+ta7YBCIsPxrRFI+End806X0TUdTAEEZFXuLp6tLMsjRYc/jQP3yzdb1sOIyhcjhlPjYYipOPrexFR18XbYUTkFeKHqiCRAIIAFDkZgmqKNdj17+NQn6u1bevRPxyTFgxDSHT7q0ETUffCEEREXkGhDEBUvzBU5FurVGsr9dc8RxAEnPrhAg78NxfmBusq7BKZBCNmJ2PYb/p2yhwgIvIchiAi8hqJadGoyLeO5lzKVgM9Wj9WV21A1upsu5o8YXHBmPToMET3DXN3U4moC+A/c4jIa7R3XtD5Q6XY9NQeuwCUcmNP/O6fGQxARD6EI0FE5DWi+4UhIMgPDbpGFGdXInaK/WKqDfpG7P8wB3m7r6xsHxgux4SHU5E0LLqzm0tEHsYQREReQyqTIn6oCucPlsGoNUFT0gAMte4rPV2N3f/+FfUVV+YK9R4dg8wHhkIRyqe/iHxRlw1BOp0OGzZsQE5ODk6dOoX6+no888wzmDlzZrvOr6+vx6pVq5CVlQWj0YjBgwdjwYIFGDhwoJtbTkSelJgWjfMHywAANWf1ME+24JdN+Ti++SwE6+oX8FfIMG5OCvpPSHBrBWgi6tq67Jyg2tparF27FoWFhUhOdm6tHovFgqeeego//PADfv/732P+/Pmorq7GE088gYsXL177A4io22o+L0ido8Pm5/bh16+uBKCYARH43UuZGDAxkQGIyMd12ZEglUqFL7/8EiqVCrm5uZg3b167z921axdOnDiBF154AZMmTQIATJkyBXfffTc++OADPPfcc25qNRF5mjIqEOEJwagp0kKvNkGvNgGwPvo+cnZ/pM3qy/W4iAhAFw5BAQEBUKlUHTp39+7diIyMxIQJE2zbwsPDMXnyZGzfvh0NDQ0ICOAcACJvlZgWjZoire19eEIwJi0Yhqg+fPKLiK7osrfDxMjLy0P//v0hldr/9QYPHgyDwdDqLTG1Wo3Tp0/b/hQWFnZGc4nIxZIz49F0pytlei/89sUMBiAictBlR4LEqKqqwrBhwxy2N40sVVZWol+/fg77N2/ejLVr1zpsLygogNlsdtiu0WiQk5MjvsE+hv3mPPaZ89Lnx0On0yE8CcjLP+3p5nQr/L45j33WMe7st5SUlGse45UhyGg0tni7q2mb0Whs8bxZs2YhIyPD9r6wsBDLli1Dnz59WnyqLCcnp12dTPbYb85jn3UM+61j2G/OY591jKf7zStDkFwuR0NDg8P2pm1yubzF86KiohAVFdXiPiIiIvIuXjknKDIyEpWVlQ7bm7Z1dMI1EREReQ+vDEH9+/fHmTNnYLFY7LafOnUKCoUCSUlJHmoZERERdRXdPgSp1WoUFhaisbHRtm3ixImoqqpCVlaWbVtNTQ127tyJ66+/no/HExERUdeeE7Rp0yZoNBrbbay9e/eivLwcADB79mwolUqsXr0a27Ztw8aNGxEXZ10scdKkSfj888/x0ksv4fz58wgLC8P//vc/WCwW3H///R77+xAREVHX0aVD0MaNG1FaWmp7n5WVZRvdmTZtGpRKZYvnyWQyvPrqq/j3v/+NTZs2wWg0YtCgQXjmmWfQs2fPTmk7ERERdW1dOgR9+umn1zxmyZIlWLJkicP2kJAQPPXUU3jqqafc0TQiIiLq5rr9nCAiIiKijmAIIiIiIp/EEEREREQ+iSGIiIiIfBJDEBEREfkkhiAiIiLySV36EXlPa1ptvrCwsMX9Fy5cgEwm68wmeQX2m/PYZx3DfusY9pvz2Gcd4+5+69WrFxQKRav7GYLa0FSocdmyZR5uCRERETlrzZo1GDhwYKv7JYIgCJ3Ynm6lpqYGBw8eRFxcnMN6Y4WFhVi2bBmeffZZ9OrVy0Mt7H7Yb85jn3UM+61j2G/OY591TGf0G0eCRAgPD8e0adPaPKZXr15tpkxqGfvNeeyzjmG/dQz7zXnss47xZL9xYjQRERH5JIYgIiIi8kkMQR2kUqkwd+5cqFQqTzelW2G/OY991jHst45hvzmPfdYxXaHfODGaiIiIfBJHgoiIiMgnMQQRERGRT2IIIiIiIp/EEEREREQ+icUSndTQ0ID3338f33//Perr69GvXz88+OCDGD16tKeb1mUdPXoUTzzxRIv7Vq5ciSFDhnRyi7oenU6HDRs2ICcnB6dOnUJ9fT2eeeYZzJw50+HY8+fP45133kF2djb8/Pwwbtw4PPbYYwgPD+/8hntQe/vsn//8J7Zt2+Zwfs+ePfHxxx93VnO7hFOnTmHbtm04evQoSktLERoaiiFDhuDBBx9EUlKS3bH8nl3R3n7jd81eQUEBPvjgA5w+fRpVVVVQKBTo1asX7rrrLmRkZNgd66nvG0OQk1566SXs2rULf/jDH5CYmIitW7di8eLFWLFiBdLS0jzdvC5t9uzZGDx4sN22hIQED7Wma6mtrcXatWsRExOD5ORkHD16tMXjysvL8ac//QlKpRIPPfQQ9Ho9NmzYgHPnzuG9996Dv79/J7fcc9rbZwAQEBCAxYsX220LDg52dxO7nPXr1yM7OxuTJ09Gv379UFlZiS+//BIPPvggVq5cib59+wLg9+xq7e03gN+15kpLS6HT6TBjxgxERUXBYDBg9+7deOaZZ7Bo0SLMmjULgIe/bwK128mTJ4Xx48cL69evt20zGAzCnXfeKcyfP9+DLevafvnlF2H8+PHCzp07Pd2ULstoNApqtVoQBEE4deqUMH78eGHLli0Ox73++uvCDTfcIJSWltq2HTp0SBg/frzw1VdfdVp7u4L29tmLL74oTJs2rbOb1yUdP35caGhosNt24cIFYerUqcILL7xg28bvmb329hu/a9fW2Ngo3HfffcI999xj2+bJ7xvnBDlh9+7dkMlktvQKAHK5HDfffDNOnjyJsrIyD7aue9DpdGhsbPR0M7qcgICAdhUM2717N66//nrExMTYto0aNQpJSUnYuXOnO5vY5bS3z5qYzWZotVo3tqjrS01NdfhXdVJSEnr37o3CwkLbNn7P7LW335rwu9Y6mUyGHj16QKPR2LZ58vvG22FOOHPmDBITEx2GNptu8eTn59v9RyR7L730EvR6PWQyGdLS0vDII49g0KBBnm5Wt1FRUYHq6uoWFxocPHgw9u/f74FWdQ8GgwEzZ86EwWBASEgIpk6divnz5yMoKMjTTfM4QRBQXV2N3r17A+D3rL2u7rcm/K450uv1MBqN0Gq12Lt3Lw4cOIDJkycD8Pz3jSHICZWVlS3+y7Npm1qt7uwmdQt+fn6YOHEirrvuOoSFheH8+fPYuHEjHnvsMfz73//GgAEDPN3EbqGyshIAWv0O1tXVoaGhAQEBAZ3dtC5NpVLhrrvuwoABAyAIAg4cOID//e9/OHv2LFasWAE/P9/+v8Ht27ejoqIC999/PwB+z9rr6n4D+F1rzbvvvovNmzcDAKRSKSZMmIA///nPADz/ffPN/yIdZDQaW5yg1fQfx2g0dnaTuoXU1FSkpqba3mdmZmLSpEm47777sHr1aixfvtyDres+mr5f1/oO+vovp6s9/PDDdu+nTp2KpKQkrFmzBrt378bUqVM91DLPKywsxBtvvIEhQ4ZgxowZAPg9a4+W+g3gd601f/jDHzBp0iSo1Wrs3LkTZrMZJpMJgOe/b5wT5AS5XG77D9dcQ0ODbT+1T2JiIjIzM3H06FGYzWZPN6dbaPp+8Tso3u233w6pVIrDhw97uikeU1lZiaeeegrBwcH4xz/+AZlMBoDfs2tprd9aw+8a0KtXL4waNQozZszAK6+8Ar1ej6effhqCIHj8+8YQ5ASVSmUbumuuaVtUVFRnN6lb69GjB0wmEwwGg6eb0i00DRe39h0MDQ316X+dO0MulyM0NBR1dXWebopHaDQaLF68GBqNBsuXL7f7/y5+z1rXVr+1xte/ay2ZNGkScnNzcfHiRY9/3xiCnJCcnIxLly45zPrPycmx7af2Ky4uRkBAAAIDAz3dlG4hOjoa4eHhOH36tMO+U6dO8fvnBJ1Oh9raWp8s/Gc0GvH000/j4sWLePnllx0m9vJ71rJr9VtrfPm71pqmW2Aajcbj3zeGICdMmjQJZrPZNsELsA7XbdmyBSkpKXwyrBU1NTUO2/Lz87F3716MHj0aUim/hu01ceJE/Pzzz3blGI4cOYKLFy/anragK4xGI3Q6ncP2devWQRAEjB071gOt8hyz2Yznn38eJ0+exNKlSzF06NAWj+P3zF57+o3fNUfV1dUO2xobG/Hdd99BLpfbgqQnv2+cGO2ElJQUTJ48GatXr0ZNTQ0SEhKwbds2lJaW4qmnnvJ087qsv//975DL5Rg6dCgiIiJw/vx5fP3111AoFA4TCX3Zpk2boNFobMPCe/fuRXl5OQBrtW2lUol7770Xu3btwsKFC3HbbbdBr9fjk08+Qd++fVtcYsPbXavP6uvr8cADD+CGG25Az549AQAHDx7E/v37MXbsWGRmZnqs7Z7w7rvvYu/evbj++utRX1+P77//3m7/tGnTAIDfs6u0p9+qqqr4XbvK8uXLodVqMWzYMERHR6OyshLbt2/HhQsX8Oijj9rKBnjy+yYRBEFw6xW8jNFotK0dptFo0LdvXzz44IMYM2aMp5vWZX3++efYvn07ioqKoNVqER4ejpEjR2Lu3LlITEz0dPO6jNtvvx2lpaUt7tu4cSPi4uIAWNfjuXqNnUcffRSRkZGd2dwu4Vp9plQqsWLFCpw8eRKVlZWwWCxISEjAjTfeiDvvvNPnHll+/PHHcezYsVb3Z2Vl2V7ze3ZFe/qtvr6e37Wr7NixA99++y3OnTuH2tpaBAUFYeDAgfj973/vEAo99X1jCCIiIiKfxMkYRERE5JMYgoiIiMgnMQQRERGRT2IIIiIiIp/EEEREREQ+iSGIiIiIfBJDEBEREfkkhiAiIiLySQxBRERE5JMYgojIbUpKSjBhwgT885//9HRTXGLr1q2YMGECtm7d6ummEJELMAQRUad6/PHHMWHCBE83o0XeFtqIqG2+t6IbEXWa6OhofPTRRwgODvZ0U1xi/PjxSElJgUql8nRTiMgFGIKIyG38/PzQq1cvTzfDZZRKJZRKpaebQUQuwlXkichtSkpKcMcdd2DGjBlYsmRJq7fBmvY3OXv2LD766CMcO3YMdXV1UKlUyMjIwH333YewsLAWP//uu+/GmjVr8Ouvv6Kurg4bN25EXFwcsrKysHPnTuTm5kKtVsPPzw/9+vXDbbfdhkmTJtk+a+vWrXjppZdabN+KFSswfPhw2zHPPPMMZs6caXdMdnY2PvroI5w8eRJGoxGxsbGYMmUK7r77bigUCrtjJ0yYgPT0dDz//PNYuXIl9u/fD71ej+TkZDz88MMYPny4s11NRB3AkSAi6jRz587Ftm3bUFpairlz59q29+/f3/Z6z549eP755yGRSJCZmYkePXrg/Pnz+OKLL3Dw4EG89957CAkJsfvcoqIiPPLII+jbty9mzJiBuro6+Pv7AwBWr14NPz8/pKamQqVSoaamBnv37sVzzz2HJ554ArNnzwYAJCcn47bbbsPnn3+O5ORkZGZm2j4/Nja2zb/Xzp078cILL8Df3x9TpkxBeHg4Dh06hLVr1+LgwYNYsWIF5HK53TkajQaPPvoolEolpk2bhurqauzcuROLFi3CmjVr0Ldv3w71MRG1H0MQEXWa+++/H8eOHUNpaSnuv/9+h/21tbV48cUXERYWhnfffdcufOzYsQNLly7F+++/j4ULF9qdl52djblz57b4ma+++iri4+Pttul0OixYsADvv/8+br75ZigUCvTv3x9KpdIWglr6rJZotVq89tprkMlkWLlyJfr16wcAmDdvHl544QX8+OOP2LBhA+bMmWN3Xn5+Pn77299i4cKFkEqtz6iMGDECr776Kr744gssWrSoXdcnoo7j02FE1GV899130Gq1mDdvnsPoy9SpUzFgwADs2LHD4bzIyEj88Y9/bPEzrw5AABAUFISZM2dCo9EgNzdXVJv37NkDjUaDm266yRaAAEAqleKRRx6BTCZr8ZH6wMBAzJ8/3xaAAOttQZlMJrpNRNQ+HAkioi7j5MmTAICcnBwUFRU57G9oaEBtbS1qamoQHh5u256cnGy7/XW16upq/Pe//8X+/ftRVlYGo9Fot1+tVotq85kzZwAA6enpDvtiYmIQHx+PixcvQqfTISgoyLYvMTHR7j1gnUgeGRkJjUYjqk1E1D4MQUTUZdTX1wMAvvzyyzaPMxgMdu8jIiJaPK6urg7z5s1DWVkZUlNTMWrUKCiVSkilUuTn52PPnj0wmUyi2qzVagFYR6NaolKpcPHiRWi1WrvQ01rZAJlMBovFIqpNRNQ+DEFE1GU0hYS1a9c6NTFYIpG0uP3bb79FWVkZHnjgAYc5OR9//DH27NnT8cZe1hRmqqqqWtzftN1baiUReRPOCSKiTtU0B8ZsNjvsS0lJAXDltphYTbfUmj/p1eT48eOtts2ZkZimJ9uOHTvmsK+srAxFRUWIj493uPVFRJ7HEEREnSo0NBQAUF5e7rDvpptuQlBQENasWYOCggKH/QaDwamA1DS5Ojs722779u3bsX//fofjQ0JCIJFIWmxbazIzM6FUKrFlyxa7NguCgPfeew9ms9mhphARdQ28HUZEnWrEiBHYtWsX/va3v2Hs2LEICAhAcnIyMjIyEB4ejr///e947rnncP/992PMmDHo2bMnTCYTSktLcezYMQwdOhTLly9v17WmTZuG9evXY8WKFTh69ChiYmKQn5+PX375BRMmTEBWVpbd8UFBQRg0aBB+/fVXLFu2DImJiZBIJJg+fXqrtYKCg4Px17/+FS+88ALmz5+PyZMnIzw8HEeOHMHp06cxePBg3HnnnaL7jYhcjyGIiDrVLbfcgpKSEvz4449Yv349zGYzZsyYgYyMDADAuHHj8P777+OTTz7BkSNHcPjwYSgUCkRHR2PmzJmYNm1au6/Vo0cPvPXWW1i5ciUOHz4Ms9mMAQMG4PXXX0d5eblDCAKAZ599Fm+//TZ+/vlnaLVaCIKAtLS0NgsmTp48GZGRkfj444+RlZVlqxg9Z84c3H333Q6FEomoa+CyGUREROSTOCeIiIiIfBJDEBEREfkkhiAiIiLySQxBRERE5JMYgoiIiMgnMQQRERGRT2IIIiIiIp/EEEREREQ+iSGIiIiIfBJDEBEREfkkhiAiIiLySQxBRERE5JP+f/Bum3WJK+5yAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "60766c21", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "e1884c5d", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "37b42c10", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACwKUlEQVR4nOzdd5gT1cIG8HdmkmzLVnbpLL3JoqKAICioYAMVrwooCoi9YO/X7vVer3gtKHYUUQRUPlRQRESaVBHpvS29LNtrypzvj2yGZDc9s5vs7vt7njy7m8ycnGSTmXnnnDlHEkIIEBERERERUa2TI10BIiIiIiKihoqBjIiIiIiIKEIYyIiIiIiIiCKEgYyIiIiIiChCGMiIiIiIiIgihIGMiIiIiIgoQhjIiIiIiIiIIoSBjIiIiIiIKEIYyIiIiIiIiCKEgYyIiIiIiChCGMiIiIiIiIgihIGMiIiIiIgoQhjIiIiIiIiIIoSBjIiIiIiIKEJ0CWT79++HJEmQJAljx47Vo8gGaeDAgdr7SETkzdixY7Vtxf79+yNdHc2UKVO0ek2ZMiXS1SGdqaqKc889F5IkYfz48ZGuDlXB7x9F0uLFi7XP34svvhjp6uiqsLAQaWlpkCQJH330UY08R621kE2ZMgUvvvhivfsn+fL9999rrzk/Pz/S1aFKNpsNv/32G5566ilcfPHFaNasGWJiYmA2m9G+fXuMHDkS33//Pex2e1Dlbt68GePHj0eXLl1gNpuRnJyM7t2746mnnkJ2dnYNvRoiaoisVis++eQTXHLJJdo2rGXLlrjqqqswc+ZMCCF0f86PP/4Y69atQ2xsLJ5++mmvy+3fvx+zZs3C008/jUsvvRSNGjXSDtQGDhwY0nPruX3Nzs7GU089he7duyM5ORlmsxldunTB+PHjsWXLlpDq58/KlSsxbtw4tG/fHvHx8UhLS8O5556Lf/3rX8jJyamR54yE7t27a//rhQsXBr3+H3/8oa1/xhlnBL2+EALLly/HSy+9hMsvvxytWrVCbGws4uPj0bp1a1x77bX48ssvUVFREVS5en5mTp48iVdeeQXnnnsu0tLSEB8fj/bt22PcuHFYtWpVUGUFqqEcn1x11VXa52fy5MlBr3/gwAEoigJJkpCWloby8nIAQFJSEh5++GEAwD//+U/k5eXpWm8AgNDBvn37BAABQIwZM8bjMgMGDNCWaSjGjBmjveZ9+/b5Xb4hvke17ffffxdpaWna++zr1qtXL7F79+6Ayp0wYYIwGo1ey0pMTBTTp0+v4VdHDUWw25ba8vnnn2v1+vzzzyNdnXpr3759okePHj63X4MGDRJ5eXm6PWdJSYlo2rSpACAeeOABr8tNnDjRZ70GDBgQ9HPruX396quvhNls9lqWyWQSb775ZtB19EZVVfHwww8LSZK8PmeTJk3EwoULw36uaPj+/e9//9PqcPPNNwe9/rhx47T1X3/99aDW3bp1q2jevHlA+/dOnTqJtWvXBlSunp+ZBQsWiMaNG3stS5Ik8dhjjwX1uv2preOTRYsWaWW+8MIL4Vc8BLNmzdLq0L9//6DXf/nll7X17733XrfHCgoKRGpqqgAgnnrqKb2qrKm1I/+GGDai9aCpIfvyyy+1/0laWpoYPny4ePPNN8X06dPF1KlTxf333y+SkpK0ZVq1aiWOHj3qs8wPPvhAW95oNIpx48aJL774Qnz66afihhtu0HbEBoNBzJs3r5ZeKVHti4YDwvouLy9PdOnSRXufu3btKiZMmCCmT58uXnnlFdGqVSvtsYsuukhYrVZdnnfChAkCgFAURRw6dMjrcm+99ZbbwV5cXJw488wzQw5kem5f586dKxRF0Q58b7jhBvHpp5+KL774QowbN87toPWTTz4Jqp7ePPnkk1qZCQkJ4oEHHhBfffWV+PDDD8XgwYO1x8xms/j777/Deq5o+P4dP35cGAwGAUDEx8eLwsLCgNctKSkRiYmJ2ufM3763qmXLlrm919dcc43473//K6ZNmyamTZsmnnzySdGkSRNtmeTkZLF582afZer5mVm7dq2Ij4/Xlh88eLD48MMPxVdffSUeeOABkZCQoD32z3/+M6jX7k1tHp9EQyCzWCwiPT1dq0egJ9Wd2rdvr637559/Vnv82Wef1T5fOTk5elVbCMFAVqMYyKLPl19+Kbp37y6+/vprUV5e7nGZQ4cOiW7dumn/u9GjR3st78iRI9oG1mAwiAULFlRbxnUn2apVK1FWVqbb6yGKJtFwQFjfPfTQQ9p7fPnll1fbnpw6dcqt9ey9994L+zmtVqsW9C699FKfy86ePVvcd9994rPPPhMbNmwQNpvNrRdNMIFMz+1rSUmJW+vJlClTqi3z66+/amHCbDaLY8eOBVxXT9atW6cd8CYnJ4sNGzZUW+aFF17Q6tSrVy+hqmrIzxct379rrrlGq8fkyZMDXm/q1KnaekOHDg36eZctWybatGkjPvzwQ69BMC8vz+149MILL/Ranp6fGVVVxTnnnKOV9eKLL1ZbZv369doJYVmWxcaNGwN85Z7V9vFJNAQyIYR48MEHtXo899xzAa+3dOlSbb2srCyPy+zcuVNb5tVXX9WrykIIBrIaxUAWffLy8gLa4W3atMntDG9JSYnH5VwPjh5//HGv5d1www26HiARRaNoOSCsr44fPy5MJpN2hvb48eMel9u0aZMWBJo2bSpsNltYzzt79mzt/zp16tSg1w81kOm5fX377be1ZW644QavZT3++OPacuF2HRs2bJhW1qRJkzwuo6qq6N27t7bc3LlzQ36+aPn+ff/991o9LrjggoDXu/jii7X1Zs2aFfTzFhUVCYvF4ne548ePu7VU7d271+Nyen5mXN+T8847z+txyKRJk7Tlrr/+er+vxZfaPj6JlkC2fv16rR6tW7cO+CSHa3fZ//3vf16X69WrlxZgwzmBUlWNX0PmGsR83bz98+x2u5g5c6YYPny4aNOmjYiLixNms1l07txZ3H333X7PILiefVq0aJEQQojffvtNjBw5UrRp00bExMRUC0xWq1X88ssv4pFHHhH9+vUTGRkZwmg0CrPZLDp27CjGjBkjlixZ4vU5XYOYr5uv98qfVatWiTvuuEN06tRJmM1mER8fL9q1aydGjx4dUF/0qjvH4uJiMWHCBHHuueeKlJQUER8fL8444wzx1FNPidzcXL/l1Ueu3YI8ndlUVVW0aNFCAI6uDAcOHPBalmtXimB2UHpYsWKFuPvuu0XXrl1FcnKyiImJEa1atRLDhw/3u/P3tIHNzs4WjzzyiOjcubOIj48XycnJom/fvmLSpEkBd48qKioSb731lhg0aJBo1qyZMJlMIjU1VfTs2VM899xz4sSJEz7Xr/pdsdls4vPPPxeDBg0SzZs3F4qiiNatW1db79ixY+Lxxx8XXbt2FfHx8SI1NVX06tVLvPHGG1robt26tbYhdzVv3jztOcePHx/Q6xw/fry2zs8//xzQOoHwd7Knpv5vc+bMEUOHDhVNmjQRMTExonXr1uKmm24SK1asEEIEd0BYUVEhPv30U3HVVVeJli1bipiYGJGcnCy6d+8uHnnkEa8nsbZv364dTCUlJXk9mBJCiNzcXK1lR5Zln9vtuuCjjz7S3t/bb7/d57KXXHKJtmy41yf94x//0E5OFRUVBb1+KIFM7+1r3759tWX++OMPr2UdOHBAC7OZmZkB1dWTwsJC7fgiKSnJ60k9Idy70t9yyy0hP2eg3781a9Zo3bpMJpOYOXNmtWXCOfayWq3adVKSJIk9e/b4rXt2drb2vqenpwcUrMJx+eWXa+/VDz/84HEZPT8zN954o1bWV1995bWskpISrZUsLi5OFBcXB/fCKkXi+CTQQLZ7927Rrl07rW7err+bN2+eGDNmjOjQoYMwm80iLi5OtGvXTowZM0YsW7bMZ11cewkEsv1z7S5rMBi8nuwSwj2o//77737LDlRUB7Ldu3eLs88+2+d6siz7bJJ0DWS///67uO+++zyW47rzHzhwYMCBqqKiotpz1mQgs1qt4o477vBb9vDhw0VpaanXclx3jnv27BFnnHGG17Jat27dIFv4nGdBAIhVq1ZVe9y1Fc1b87aT3W5364oQTL/6UBUXF4sRI0b4/awMGTLEa32qbmDnzZsnUlJSvJY1ePBgr11BnX7++WefFzUDjouMve0khXD/rpw6dUr079/f4+fW1e+//65dkOvp1r17d3HgwAGvgcxut4u2bdsKACI1NdVv146ysjLt+TIzM4Xdbve5fDCCDWTh/t9sNpvP7Zosy+K///1vwAeEf/75p/ZeeruZTCbx4Ycfelz/448/1pbr27ev1xag66+/XltOr2syIum6667TXs93333nc1nnNV+A77Pj/pSXl2sB2Ff3Ll9CCWR6bl8LCgrcug76+y66dlnfsmVLQPWtas6cOVoZ/rrfnThxQls2IyMjpOcTIrBANn/+fG2ACrPZ7LEbmx7HXo888oi27PPPP++37q6DKTz44IOBvuSQubYKzZgxo9rjen9mGjVqpD1+8uRJn2UNGTJEW/ann34K7oVVisTxSSCBbN26ddp1fAaDQXz55ZfVljlx4oRba6m322233eY1uLsOLuTrshMn1+6y11xzjc9lN2zYUCOfVQNqmHNI12effVYbGnT27NnVluvSpYvb33v27EGfPn204WD79++PoUOHonXr1rDb7fjrr78wZcoU5OXl4ZVXXoEsy36H1J8wYQLmzZuHpk2bYuzYscjKyoLNZsOaNWsQExOjLVdWVgaz2YxLLrkE5557Ltq0aYPY2FgcPXoUW7ZswbRp01BSUoIvvvgCKSkpePvtt92e54EHHsCwYcMwceJELFq0CADw0UcfoXHjxm7LZWZmBvQeurrlllswY8YMAEBsbCzGjBmD888/H4qiYO3atZg8eTKKiorwzTffoKCgAPPmzfM5r1lhYSGGDBmCHTt24JprrsHll1+OtLQ07N27Fx988AEOHDiA7OxsjB49GkuXLg26vnWVxWLBrl27tL9bt25dbZnNmzdrv5977rk+y5NlGT169MCSJUugqiq2bduG3r1761fhKioqKjBo0CBtCN327dtjxIgR6Nq1K4xGI3bv3o2pU6di586d+OmnnzBs2DAsWLAAsux9Joz169djwoQJEELgrrvuQt++fRETE4O1a9fiww8/RElJCRYsWIBXX30VL7/8sscyZs2ahREjRsBut8NoNOLqq6/GwIED0aRJExQWFmLRokX45ptvUFRUhGuvvRYLFizAxRdf7PO13nzzzfjjjz9w1lln4cYbb0SbNm1QWFiIjRs3asts3boVQ4cORWlpKQCgR48euPnmm9GyZUscP34cM2fOxPLlyzFixAjYbDaPzyPLMu644w4888wzyMvLw6xZszBq1Civ9fruu++0oXFvu+02n+9tTdLj//bAAw/giy++AACYTCaMGTMG/fv3hyzLWLNmDSZPnownn3wSw4YN81uflStXYtCgQSgtLYUkSbjssstw6aWXokWLFigrK8PKlSvx5ZdforS0FHfffTdiYmKqzW95xx13YP78+Zg1axZWrlyJl156qVrdJ0+ejO+++w4A0KdPn3ox5Uow25yePXt6XC9Yy5cv1743NbnNqkrP7evWrVu1aQDOPvtsv9/Fnj17ascrmzdvDmn49WDqn5GRgdatWyM7OxsnT57EiRMnqh0v6GH69OkYM2YMrFYrMjIy8PPPP7t9TgD9jr1uvfVWvPnmmwCAqVOn4sUXX/R5LOLcvjjXrWmuQ9V72r/r+Zk5duwYTp06pT1Xenq637J++uknrawrr7wygFfkLhqPTxYtWoRhw4ahsLAQ8fHx+O6773DFFVe4LZObm4u+fftiz549AICzzjoL//jHP9ChQwfIsozNmzdjypQpOHz4MCZPngybzeZxzr2bbroJjz32GCwWC2bNmoVJkybBbDZ7rZtrGf4+f1lZWTCbzSguLsb8+fMDfwP80SPV6T3svd1u1y5+jImJEd98843H5Y4dO6adxZFl2eNoOa4tZIBjGMyCggKfz//bb7/5bF3KycnRzsjLsuy1y4zew97PmDFDe7xJkyYez8Ls37/f7cyzt/7Aru+JyWQSc+bM8fg6XctavXq139fgTUlJiZg9e7Yut7/++ivkegTKtQvJOeec43GZl156ye/ZIFejR4/Wlvd0VkhPVfuOe+qSZrFY3Or0wQcfVFvG9YwXKlt6du7cWW251atXaxc2p6amemxtOXDggHYWLjMz02uXl9WrV4vk5GQBQLRs2dLjGbCqLe8PPfSQzzOYri1o9957r8dlq24rvHV5dI6q5e9M/4UXXigAx2hhBw8e9LlssIJpIQv3/+Z6oXNKSorHoaK3b9+uDYnuvHk6Q19YWKh1IUxJSRGLFy/2+Pp27dolMjMzBeC4VsrTGeXc3FzRsmVL7T127cKyY8cObcSypKSkgLpM+bJt2zbdtl/+zo57Y7fbtf+Voih+u5nu3btX+1+0b98+pOcUQoh///vfWjnffvttSGWE0kKm5/b1iy++8HuM4ur555/Xln/llVcCqm9Vt956q8/vQlXO7QUAv92xvPHVQjZx4kStxad169Zix44d1dbX89hLCCF69uyp1cdX164lS5Zoy/Xo0SPwFxwi1y56GRkZHlvY9fzMuL6+QD7/n332mVsrUCgicXziq4Xsu+++07rwpqWlad3cq3JedylJknj77bc9LlNUVCQuvfRS7bm8jQ7p2kPis88+81rv/fv3a9+Nxo0bB9SF39mTTpIkkZ+f73f5QERlIHOdR2DixIk+l92xY4c2JOkdd9xR7XHXg6yEhARx+PDhgF6TP3v27PG7wdY7kLn2ifV1Pcrq1avdNryeNjauB04vv/yy17I++eSTgJbzx/UzEu4tkI1jOHJzc0WzZs38HoQ8/PDD2jLvvvuu33KDXT5UR44c0S78/8c//uFzWYvFovXl7tixY7XHqx7YL1261GtZo0aN8rmc83oqRVH8Du88efJkraxp06ZVe9z1u3Luuef6DGN//vmntmxWVpbPAQ5cy/UUyIRw7+riKeQI4dguOZcZMmSIz9caimADWTj/N9cR0zyNMuY0d+5ct+f0dBDqOkfRjz/+6PM1Lly4UFvW22hWixcvFrIsa/+vvLw8YbFYxLnnnhv2wYWrqmE9nJvzWuZgFRQUaGU0atRI9+W9uemmm7RyQh31LZRApuf29Z133tEee/TRR/2WFezynlx77bVaGZ5OeIa7vCfeAtk///lP7f5u3bp5nbZAz2MvIdwHqPDVbcw1vPp73nBVVFS4TcMwYcIEj8vp+Zn54YcftMeuu+46v2UFu7wnkTg+8RbIPvzwQ2073aJFC6/dgP/66y9t/UceecTnc+Xm5monbgcPHuxxmZ9++kkrz1d3a9fw6u95ne655x5tnVBPoFQVmT40fnz55ZcAHDNj33HHHT6X7dSpk9a0+uuvv/pc9rrrrkPz5s11qWO7du3QtGlTAMDq1at1KdOX/fv34++//wYAdO/evVozr6vevXtr3byys7Px119/eV1WURTcf//9Xh937S62devWYKtd59jtdowcORJHjx4FAAwZMgTXX3+9x2WLi4u132NjY/2WHRcXp/1eVFQUZk29++abb2CxWAAAjz32mM9ljUYjRowYAQDYtWsX9u/f73XZHj164IILLvD6uK/PihAC06ZNAwBccsklOPvss33Wa8SIETAYHD2q/X2v77vvPp/dSX744Qe3ZRVF8brsgw8+6PO5AODuu+/Wfv/00089LuN6/5133um3zJoUzv+toqIC8+bNAwA0adIEN998s9dyhgwZgq5du/qsi3Pb3qlTJ1x11VU+l7344ou17bW3z8CAAQPw1FNPAXBs6+6++248++yz2jZv1KhRPutcl0Rqe5Odna39npaWFnI5wdLz9UbivYuG/YPdbscdd9yBV199FQBw/vnnY9myZWjRooXH5fU+9rrxxhu11z5r1iy398SptLRU61psMplw0003BfDKQnfvvfdq3dl79OiBBx54wONy/Pzp4+WXX8bdd98NVVXRuXNnrFixwmsXYOfnT5IkPProoz7LTU1N1bpyLl26FBUVFdWWueyyy7R9yLJly7Bv375qywghMHXqVO3vQLvLpqamar+7biPDUePXkIVi2bJlAIBmzZrhl19+8bu88wArOzsbZWVlbh8sV74OSqoqLCzEtGnT8PPPP2PTpk3IyclBSUmJx2UPHToUcLmhWrNmjfb7pZde6nf5Sy+9FAsXLgTgCIze+gN36tTJ7YNVleuG23k9TCjatGmj9ceOZg8++KC2c8nMzPTYNznaOb8/gOOz+f333/tc3vX/um3bNrRp08bjcn369PFZjq/PypYtW5CbmwsASExM9FsnADCbzcjPz8e2bdt8Lufve7127Vrt94suusjnsgMHDvRbr4suugidOnXCzp078cUXX+Bf//oXjEaj9rjVatWuh2jevDmGDBnit8yaFM7/bcOGDVq4HzBggM8wCzjCtrf/V0FBgXYg1KRJk4A/AwB8fgZeeuklLFy4EKtXr8bMmTO1+9u2bYv333/f73ME4sUXX6wX16CFwvm9BWo3kFF4ysvLccMNN2jX7F955ZX49ttvER8f73UdvY+9UlNTMWzYMMyYMQMlJSX47rvvql0P+t1332kB4Oqrr0ajRo0Cfo3BmjBhAiZPngwASE5OxsyZM2EymWrs+RoyVVVx//33Y9KkSQCAXr164eeff/Z5/Zzz85eSkuJ2zOuNM4RVVFRg79691U4IKoqC0aNH47XXXoMQAl988UW17fiyZcu069V69uyJrKysgF6f6+c0nGNjV1EXyIqLi7WLH3fs2IFrr702qPXz8vK8BjJvZ4WqWrRoEW666SYcO3YsoOULCwsDrl+onC02gCNE+eO6jOu6Vfm7uNR1sJPy8nK/z1uX/fOf/9Q2Hk2aNMGCBQt8vj+uF4gG8t6UlZVpvycmJoZRU99cW7mGDx8e1Lq+NizhfFZc6zRr1izMmjVLlzoB/r/XR44c0X5v166dz2VTU1ORkpKC/Px8r8tIkoQ777wTjz32GI4fP445c+bgH//4h/b4jz/+iBMnTgBwnG3zF2JqWjj/N9f3rkOHDn6fy9cyBw8ehKqqABw7QdcTB/74+gwYDAZ8/fXXOPvss7UDO+d9SUlJAT9HtIvU9sZ50KMoitd9a03Q8/VG4r2L9P7hqaeeQkFBAQDHwEeff/651uvAk5o69rr11lu1gcimTJlSLZC5nvQcN25ctfV9nbiJj48P6AQ1AHz88cd44oknAAAJCQn4+eef0bFjR6/L8/MXnokTJ2qfv0GDBmH27Nk+B9UATh8n5OXlhfT582Ts2LF47bXXADgGl3nhhRfcBpfx9/nzxnXf4vrehSPqApnzHxgq59lcTwLZmezatQtDhgzR3uDOnTvjiiuuQMeOHZGWlubW9HvnnXfi5MmTsNvtYdU5EK5NyAkJCX6Xd/3g+2p+jtTIb9HmX//6F/79738DcBzA/vbbb36Db0pKiva7c0QqX5w7u6rr6i2c75Cv7084n5WaqhPg/3vtbNk2GAxuLVneJCQk+AxkgGMj/89//hMVFRX45JNP3ALZJ598AsAR3G677Ta/z1fTwvm/uXZ78XVm3cnXtimcz4DVavX5eHp6OtLS0rRtXbt27fyOLFbXmM1mGAwG2Gw25Ofnw2az+TzA1mt74wzsdrsdpaWlAX0O9KDn9jUS2+pI7x9cR4stKSnx20Olpo69Bg0ahJYtW+LQoUNYunQp9u/fr/XCyM7OxuLFiwE4ehN4Cle+Dsxbt27ts5u909SpU7Wu5nFxcZgzZw7OP/98n+vw8xeeYD9/QM0cJ3Tu3Bnnn38+VqxYgX379mHp0qUYMGAAAPfusrGxsbjxxhsDfj7Xuup1oirqAplrkLjwwguxZMmSWn3+//znP1oY++c//4lXXnnF61Ct/vpY68n1jIW3rpOuXA+karI1JlClpaV+rwUKVGZmJs455xxdygKA119/Hc899xwARwvJggULAmq2dg1sgewUXPsZB9LKGSrnd0iSJNhstqgI3a7f6+effx4vvfRSrT23MyTYbDZYrVa/oSyQ71ejRo1w/fXXY9q0afj1119x4MABZGZmIjs7GwsWLADgOBBp27Zt+C8gglz/b86hz33x9d65ljV69Gi3Ya7Dde+997p9v3bu3Ilnn30W//3vf3Upf/v27di+fbsuZfXv399vq6Unsiyjffv22LFjB+x2Ow4dOuS1ezGg3/bGtZtibm5urQUyPbevkdhWR3r/8J///AczZszAihUrMHv2bIwYMQIzZ870uv2rqWMvWZYxZswYvPrqq1q3sRdeeAGAY6h754H66NGja6Q3wfTp03HrrbdCCIGYmBh8//33fruuA/z8hevBBx/Etm3bMHv2bKxcuRKXXXYZ5s+f7/N41HmZgnNfqpdbb70VK1asAOBoEXMGMtfussOGDQsqiNZEV+6oC2TJycna+P61cW1WVb/99hsAoHHjxnj55Ze9hrGioiK3f0hNa9asmfa76/xY3rguo9dAJuE4ceJE0E3Q3owZM0a3a7veeustPPnkkwAcn7358+f7HXDCyTW0+Ro4BXD0p3YOyiLLst/BD8LRokULrF+/HkIIHD58GK1ataqx5wqmTk61/b1u3ry5du3S3r170blzZ6/L5uXl+W0dc7r77rsxbdo0qKqKzz77DC+++CI+++wzrVtepAfz0IPrtmP37t1+l/e1TE19BqZNm6YNGHPuueciJycH2dnZeOONN3DZZZf5nccuEDNmzNDtJMKiRYsCulbRk6ysLOzYsQOAY5vjK5C5XjsZ6HURnrRp0wbLly8H4DgIadmyZchlBUPP7esZZ5wBWZahqirWr18PVVV9nqjS470Lpv4nT57UDkAzMjJ0mYMsMTERv/zyCy6//PKAQllNHnuNHTtWG1hk6tSpeP755wG4zz1WtSujUzjXnn/77be45ZZboKoqTCYTvvvuu4C7OOr5mWnatCkaNWqEU6dO4cCBA8jJyfF5Uqa2P381cXxiNBoxc+ZMjBw5Ev/3f/8XUChr0aIF8vPzceLEiYBOngZq+PDhePDBB7UWsffeew8JCQn4/PPPtWWCnfvO9fjf0zx2oai1U+euH2R/X7ALL7wQgOPgKZCDAD0dP34cgOOCcF9fvt9++0078PImmNfsj+ugHM4z8L64tkbV5mSedcmkSZPwyCOPAHDsvObNm4devXoFvH63bt20g5MtW7b43ImtWLFCu9awX79+Ndpq6Tz7A/gfobC29OjRQ+tzvXDhQr/fHT25TnzqnKjdG2f3mUD0798f3bp1AwB89tlnsFqt+OyzzwA4Tuhcc801wVc2ypx11lnaRe9Llizx2z3bOZCQJ+np6droWqtWrdLl2tt9+/bh3nvvBeBoCZ0+fTq++uorKIoCVVUxevRot644dd1ll12m/e5vQlLXQRkuv/zykJ/T9cDOGQZrg57b16SkJG1wm4KCAqxatcprWQcPHtRGG83MzAxpUmjAMUCQs7vn0qVLfV5n4vq/DOd/VZUzlPXr1w8AMHv2bAwfPtxrF+CaOvbq0KGDNvjS3r17sWzZMixduhR79+4F4Bj90deJslB8//33uOmmm2C322EwGDBz5kwMHTo04PX1/sw4v7tCCJ/75dLSUu362ri4OLf9eTCi4fjEGcquu+46ANBCmbdtv/O1lpeXY+nSpbrUAXD8L511KC4uxqxZs7B//36tFbhly5YYNGhQUGU6B5qSJAndu3fXpZ61Fshcm8P9dQkaM2aM9rvzTEptcXbH2Lt3r9cQZbfbteuNfAnmNfvTpk0brZvehg0bfIaytWvX4vfffwfgSO7RcC2Fc5RFPW56tI598sknGD9+PIDTF/j27ds3qDIkScINN9wAwLGRfffdd70uO3HiRO135zDzNWXkyJHaQfR///vfsD97elAUBaNGjQLg6Brhbbj4muAajCZNmuQzVLzzzjtBlX3XXXcBcOyQH3roIW2nN2bMGN3O7kVSTEyMNrTw8ePH8fXXX3tddt68eX5HxHRu20tLS7ULrUNlt9sxatQobec+ceJEdOzYEf3798czzzwDADh8+DBuv/32sJ4HcIyyqNf2K9TWMcDRrcb53Z4+fbo2eExVmzdv1vYBTZs2DfmgDgDOO+887ffamOLFSe/tq+v9vr7n7777rrbvD3ZQJFdms1n77hQWFnrdbwkh8N5773mspx6coax///4AHEHFWyiryWMv1xaIKVOmuL0fwbZO+PPzzz9jxIgRsNlsUBQFX3/9NYYNGxZ0OXp+ZlzLmjhxotfjyylTpmjbtCFDhgQ0ZoAn0XJ8YjAYMGPGDG36oJUrV+Lyyy/3GMpGjx6t/f7SSy/pOj5D1c+fa3fZMWPGBHVph91u11oxu3Tpot/gUXpMZhbIxNAPPPCAtsySJUt8lme320WvXr205R988EFRUVHhdfnS0lLx+eefi+nTp1d7zHVCz0Am5Bw8eLC2/JtvvlntcYvF4jaJIXxMIPvmm29qy3zxxRd+n9vfxNAzZ87UHm/WrJnYtm1btWWys7NF+/btteXee+89j2U5Hw9kks5glq0LvvjiC23i7Pj4+JAnahVCiMOHD4v4+HgBQBgMBvHbb79VW8Z1ss5WrVqJsrKyMGofmEcffVR7zosuukgcPXrU67J2u10sWLDA4wTn3iZ69MTfsgcPHhQpKSkCgIiJifH7nTh+/Lh4+eWXxYYNG6o9FsxE80II0b9/f235e++91+NE0lUn//X2vXaVn5+v/f9db94mjNZLMBNDh/t/W7ZsmfZ4amqqx0m9d+7c6TaZOuB5Yuji4mLRunVrAUBIkiRef/11n5N65+fni3feeUcsWLCg2mPPPfec9lzXX3+922NWq1X07dtXe/yjjz7y+R7UJQ899JD2uq644opq25Pc3FzRo0cPv/uAQJWXl4uEhAQBQFxwwQUhlRHKxNBC6Lt9LSkpEc2bN9eW9TTJ+YIFC4TBYBAAhNlsFseOHfP7enxtg9atW6fta5KTkz1uy1588UWtnF69enktKxDeJoYWQoiioiK37eA111wjLBaL2zJ6HntVVVRUpH2OzGazMJvN2j64oKAgpNfryYIFC0RsbKwAIBRFEV9//XXIZen5mVFVVZxzzjlaWS+99FK1ZTZs2KBNdizLss+J2F0/f572AULU/vGJr32J1WoV119/vfZ4nz59PP7fr7vuOm2ZESNG+PxsWK1WMWvWrIC2caqqijZt2mj7niZNmmjPs2vXrqBe54YNG7R1H3rooaDW9aXWriG75JJLtBR+22234eGHH0br1q21izg7dOigDZksyzJmzZqFvn374vDhw3jnnXfwzTff4IYbbsBZZ52F5ORkFBcX48CBA1i7di0WLlyIkpISvPLKK2HXc/z48Vrr0yOPPILFixfjsssuQ6NGjbBr1y5MnToVu3btwkUXXYRdu3b5bAa+5JJLtN+feOIJnDx5Ep07d9ZGxmrRokVQTZ3Dhw/H7NmzMWPGDBw9ehTnnHMOxo4di759+0JRFKxduxaTJ0/WzjxceumlWncecpg3bx7GjRunnRkZN24c8vPz/c6JdM455yAzM7Pa/c2bN8f//vc/3HPPPbDZbLjiiiswevRoDBgwADabDfPmzdNG8TEYDPj44499TtLoes3ivn37fF4j4st//vMfrF+/HgsXLsSiRYvQrl07XHfddejbty8yMjJgsVhw7NgxrbX12LFjuOSSS/Dss8+G9HyBaNmyJWbMmIGrr74aFRUVGDNmDN58801cffXV6NixI+Li4lBQUICdO3di1apVWL58Oex2e0AXYPvz0UcfoVevXigtLcX777+PlStX4uabb0bLli1x/PhxzJw5E8uXL0ffvn1x4MABHD58OKAzZsnJyRgxYoRbX/SBAwf6HE65runfvz/uvfdevP/++8jLy0OfPn0wZswY9O/fH7IsY82aNZg8eTJKSkowbNgwn9+lhIQEfP/99xgwYAAKCwvxxBNP4KOPPsJ1112HM844A2azGYWFhdi7dy/WrFmDxYsXw2KxaBOGOv3xxx9aL4WWLVvi448/dnvcYDBg2rRpOPvss1FYWIiHH34YAwYM0L1bVCS88MIL+OWXX7B9+3bMmzcP55xzDm6//Xa0aNECu3fvxkcffYSDBw8CcHwWw72WMSYmBpdffjlmzZqFtWvXori42O/w1VW3I64jku3bt6/a4+ecc47bSKVOem5f4+Pj8fHHH+Oaa66B3W7Hrbfeip9++glXXHEFDAYDlixZgqlTp2qjw7311lto0qSJ/zfIhx49euCJJ57Af//7XxQUFOD888/H7bffjt69e2tdp5zd18xmc7XPsZ7MZjPmzZuHK6+8EsuWLcMPP/yAG264Ad9++63Wml+Tx15msxk33HADpkyZ4jbo2HXXXadbC8P69etxzTXXaMO8X3fddYiLi/O7f+/SpQu6dOlS7X49PzOSJOHjjz/GhRdeiNLSUrzwwgtYvnw5rr/+eiQkJGDNmjX49NNPtR4tTz/9dNhd4fQ+PgmHwWDA9OnTIUkSvv32W6xatUq7psz1///ZZ59h586d2LRpE2bOnIn58+dj+PDh6NmzJ1JTU1FWVobDhw/j77//xoIFC5CXlxfQaMaSJGHs2LFabwfn5UkXXHBBQFO6uHK99CGUllev9Eh1gbSQ2Ww2t7MzVW+ezsweOXJEXHLJJV7Xcb0piiI++eSTamUE20ImhBBPP/20z+fq16+fOHHihHam19eZ9BtvvNFrOVXfq0DO+lutVnH77bf7fT+uv/56UVpa6rUc53INrYWsaitIoDdPZ/tdTZgwQRiNRq/rJyYmBnQW0XUdb2e9AlVRUSHuv/9+oShKQK9x9OjR1crQs6XFaeXKlaJdu3YB1clsNns8SxhsC5kQQvz+++9aC52nW1ZWljhw4IBo0aKFACDOPPPMgMpdvXq1WznTpk0LuE6hqs0WMiEc2+9bbrnF63sny7J4/fXXfZ6hd7V9+3a3Vhxft5iYGDFv3jxt3by8PG3bK8uyz+36V199pZXTo0cPn2f765J9+/b5ff8GDRok8vLydHm+77//Xit36tSpfpcPdvvq7bjBSa/tqxCOz4SzdcbTzWQyeewd4yrQFjIhHGfmH3roIa2lzNOtcePGYuHChQHV35dAvn/FxcXiwgsv1Ja7+uqrq7WU6XHs5cmSJUuqrf/777+H+7I1rq8/mJu/baQenxmnBQsWiIyMDK9lSZIkHn30UaGqqs9yXNfxd6yg5/fHl0D2JVarVQwfPlxb7rzzzqvWClZQUCBGjBgR8P/vueeeC6h++/btq/Y9/Oyzz4J+nb179xYARGZmpt//UzBqLZAJIURZWZl47bXXRN++fUVqaqrbgaKvL8TixYvFXXfdJbp16yZSUlKEoigiKSlJnHHGGWLEiBHigw8+EEeOHPG4biiBTAgh5s2bJ4YMGSLS09OF0WgUzZo1ExdffLH45JNPhNVqFUKIgAKZzWYTH3zwgRg4cKBIT0/XmrY9vVfBHGSuXLlS3HbbbaJDhw4iISFBxMXFibZt24qbb745oA2783kYyAK7+QtkQgixadMmcd9994lOnTqJhIQEkZiYKLKyssSTTz4p9u/f73f9kpIStw38qVOndHjFQuzatUs89dRT4rzzzhMZGRnCYDCI+Ph40bZtW3HllVeKf//73167RtREIBPCsVH+6quvxPDhw0Xbtm2F2WwWBoNBpKWliZ49e4o77rhDzJw5UxQXF3tcP5RAJoQQx44dE4899pjo3LmziIuLEykpKaJnz57ijTfeECUlJUJVVREXFycAiIEDBwZUpqqqWjeTtLQ0UV5eHlSdQlHbgcxpzpw5YsiQISIjI0PExMSIzMxMceONN4oVK1YIIQI7IHRSVVX88MMPYsyYMaJTp04iKSlJKIoiUlJSxFlnnSVGjx4tpkyZInJzc93Wc91RP/XUUz6fQwghRo0apS3/6KOP+l2+rrBYLOLjjz8WF198sWjSpIkwmUyiefPmYsiQIWLGjBm6HijYbDaRmZkpAIjBgwf7XT7Y7au/QCZE+NtXV/v37xdPPPGE6Natm0hMTBQJCQmiU6dO4r777hObN2/2u34wgcxpxYoVYuzYsaJdu3YiNjZWpKSkiHPOOUe8/PLL4uTJk0HV35tAv3+eQpmnkxXhHHt5oqqq2yUVbdq00fVzWlOBTIjwPzOuTpw4IV566SVxzjnniJSUFBEbGyvatWsnxo4dq21L/QkmkAmh7/fHm0D3JTabzW077imUCeHo8vvQQw+JHj16iEaNGgmDwSDMZrPo2LGjGDZsmHjzzTfFnj17gqrjxRdfrD1vQkKCKCoqCmr9nTt3auu/+uqrQa3rjyREmMP/EZEu5s+fr42w9cADDwQ9wASFb9OmTTjzzDMBBP4/+O233zB48GAAjrlX3n777ZqsIlFEvPXWW3jkkUegKAr2799fa8PfExFFi+effx6vvPIKEhISkJ2djUaNGulWduRnjCUiAKfnwEtMTKzRa7nIO9fRzgK9du2DDz7Qfq8Pc48ReXL33XejadOmsNvteP311yNdHSKiWlVYWIhJkyYBcIw3oWcYAxjIiKKGM5A98sgjyMjIiHBt6p9ly5b5nP9s0qRJ2kX1LVq0CGjOmvXr12sXjA8aNCjkOYuIol1cXBxefPFFAMDHH3+MI0eORLZCRES1aOLEicjNzUWjRo3wxBNP6F4+uywSRYGcnBw0btwY6enp2LNnT41OHN1QdejQAeXl5bjiiivQo0cPZGRkwGq1Ys+ePZg9ezb+/vtvbdk5c+Z4DWS//PILVFXFzp078frrr+Po0aMAHCP/OSdgJaqPVFVFr169sG7dOtx///0+5zYiIqovCgsL0bZtW+Tm5uLDDz/U5iDVEwMZETUIHTp0wJ49e3wuExcXh08++USbxNoT16kJnAK93uzXX39FaWmp/8p6kJ6erk3uSkRERPUHAxkRNQirVq3CrFmzsGrVKhw+fBinTp1CaWkpUlNT0alTJwwaNAj33HOP37mHnIHMbDajU6dOuOeeezBu3LiA5i1r06YNsrOzQ6r/gAEDsHjx4pDWJSIiouhVaxNDExFFUp8+fdCnT5+wy+E5LCIiItITW8iIiIiIiIgihKMsEhERERERRQgDGRERERERUYQwkBEREREREUUIB/UgIqKQ2O12lJWVobS0VLu5/l1SUoKKigpYLBZYLBa33z39bbFYYLfboaqq20/nTVVVt8cAx6iX3m7OkS9lWYaiKDAYDDAajdrN298mkwkxMTGIi4tDbGwsYmNjER8fr/3uen9cXBzMZjPi4+NhMHCXSkREwePeg4ioARNCoKioCIWFhSgsLKz2e0FBgXaf82dJSQlKS0tRXl4e6epHlfj4eJjNZrdbYmKi299JSUlISUlBcnIyUlJSkJKSgri4OI/z2xERUcPAURaJiOoZVVVRUFCA3Nxc5OXlVftZ9Xe73R7W8ymKgvj4eLdbXFwcEhISEBsbiwVTlkISAOwSICRAlQAVkFTn7y5/CwCo/CngWN65lxKn75ec97k8DNdMI6FyQZe/JeHoqC8JCNn5t3B7TMiVhSuO2+V3XIzy8nKUlZWhrKwM5eXl2t/OnxUVFWG9fyaTSQtnrrfU1FSkp6cjPT0djRo1Qnp6OhISEhjeiIjqGQYyIqI6xG63Iy8vDydOnMDJkydx8uTJar/n5OTAZrMFVW58fDySkpKQmJiIpKQkJCUlYcnXqyDZJMAmQ7LJgFVy/LRLkOwSYHf8DhWQ0HBDgqgMcMKgAgYBKCqEQQCGyp+KwNUPXqq1OObn52s/LRZLUM8VGxurhTNnUGvUqBEaN26Mxo0bo2nTpmjUqFFAE5UTEVF0YCAjIooidrsdOTk5OHr0aLXbsWPHcOrUqYBbtJKTk5GWlobU1FSs/2UrJKsMWGVIltM/tftEww1UkSJQ2UJnFBBGFcKoAi4/B912AU6dOoWcnBzk5OSguLg4oHINBgMaN26MJk2aoGnTptV+Nm7cGEajsYZfHRERBYqBjIiollVUVODw4cM4cOAADh065Ba6jh8/7rd1S1EUNGrUCBkZGWjcuDGWfrUaqJAhWRRIlT9hYciqb4QsAJMdwqRW3uwY/s+rtJbR48ePIycnx29gl2UZTZo0QYsWLdCyZUu0bNkSLVq0QIsWLdCsWTPExMTU0isiIiKAgYyIqEaoqorjx4/j4MGD1W7Hjx+Hr02voiho2rQpmjVrhnVzt0AqV07fLLIjbDXgLoLknYAAYlSIGLt2u3L8xTh27BiOHz+OY8eO+ewmKUkSGjdurIW0Vq1aoXXr1mjTpg0aN27MrpBERDWAgYyIKAx2ux1HjhzBvn373G6HDx/2eeBrNpuRmZmJli1bYuGny08HrgrF0drFwEU1QEA4ukXG2SFi7bjxlWtw6NAhHD58GIcOHUJpaanXdWNjY5GZmYk2bdpoIa1169Zo3rw5h/wnIgoDAxkRUQCcLV779+/H3r17teCVnZ3tNXgZjUatlWHF139BKjdAKlUglRkAm8TQRVHFEdYERKwNIs6Om/41DAcPHsT+/ftx8OBBr11pDQYDWrVqhXbt2qF9+/Zo3749OnTogPT0dI4ISUQUAAYyIqIqbDYb9u/fj127dmHnzp3YtWsXdu/e7bX1ICYmBm3atMGupdmQSg2QSg2QSxWgQmHoonpBQEDE2iHibRDxdlxy5/nIzs7GgQMHUFZW5nGd5ORkt4DWvn17tGnTBiaTqZZrT0QU3RjIiKhBKysrw+7du7Fr1y7ttm/fPlit1mrLGgwGZGZmYv+qI46WrlID5FIDUM7gRQ2T85o1Nd4GEW/DRXf0we7du3Hw4EGPg4soioLMzEx07twZXbp0QZcuXdC+fXsOJEJEDRoDGRE1GDabDfv27cPWrVuxbds2bNu2Dfv37/c4wIbZbEaHDh2w6aedkEoMkIoNkMoMHLmQKABCEo7WtAQbhj1zKfbs2YPdu3ejqKio2rKKoqBdu3ZaQOvcuTPatWvH69KIqMFgICOiekkIgRMnTmDr1q1aANuxYwcqKiqqLZuWloZOnTrhz282QSoxQC42sLshkc4EBGBSoZqtGPXfYdi+fTu2b9+OgoKCasuaTCZ06NABXbt2RVZWFrKystCkSZMI1JqIqOYxkBFRvWCz2bBz505s3LgRmzZtwpYtW5Cbm1ttuYSEBHTp0gXrv98OqcgAucgIyapEoMZEpHV5NFsx/JUh2LFjB3bs2OFxEuyMjAxkZWWhe/fuyMrKQocOHdiKRkT1AgMZEdVJpaWl2LJlCzZt2oQNGzZg69at1Vq/nF2h9iw95AheRUZIZWz5Iopm2gAiiVZc88xgbNq0CXv27Kl2TVpMTIzWgta9e3d0794dZrM5QrUmIgodAxkR1QkFBQVYv349Nm7ciI0bN2L37t3VDtASExPRvXt3rJ620RHAio2QVIYvorpOyCpEog1j3rkOmzdvxpYtW6pdjybLMjp16oSzzz4bPXr0YEAjojqDgYyIolJpaSk2btyIv/76C+vWrcPu3burDb7RpEkTnNxUALnQCKnQ5Bj5kK1fRPWegHBMbp1kxaUP9seGDRtw+PBht2UY0IiormAgI6KoYLFYsHXrVqxbtw5//fUXtm7dWq0FrHXr1ji46gTkQiPkQhOkCl77RUQOwmSHmmzB5Y9eiL///ttrQOvVqxd69eqFbt26wWg0Rqi2RESnMZARUUQIIZCdnY3Vq1djzZo12LhxY7VrwJo2bYoT6/MhF5gg55s4+AYRBcxfQIuLi0OPHj3Qq1cv9O7dGy1btoQksYWdiGofAxkR1ZrS0lL89ddfWgg7duyY2+Opqako2FkKOb8ygFVwBDUi0ocw2aGmWDDw3t5Yu3Yt8vPz3R5v2rSp1np27rnnIjExMTIVJaIGh4GMiGqMEAL79u3D6tWrsXr1amzcuBE2m0173Gg04qyzzsLf32yHnB/Da8CIqFYICIgEG8Z9eAP+/PNPbNq0CVarVXtcURRkZWXh/PPPR79+/dCqVSu2nhFRjWEgIyJd2Ww2rF+/HsuWLcPy5ctx4sQJt8ebN2+OY2vzIOfFQC4wcRREIoo4IQuoyRYMe2EQ1qxZgwMHDrg93qJFC/Tr1w99+/bFWWedxfnPiEhXDGREFLaSkhKsXr0af/zxB1atWuU2qavJZEKPHj2wdvpWyLkmSOVsBSOi6CZi7Ljnq1FYvnw51q9f79ayn5CQgN69e6Nfv37o06cPkpKSIlhTIqoPGMiIKCQ5OTlYvnw5/vjjD6xbt86tu09qaioKtpVBzo11XAvGVjAiqqOEokJNsWDwI+dj5cqVbteeKYqCHj16YODAgbjggguQmpoauYoSUZ3FQEZEATtx4gQWL16MRYsWYcuWLW6PtWrVCkdWnoJ8KgZSkZGtYERU7wgIiEQrRr4xFMuXL8fevXu1x2RZxplnnokBAwbgwgsvREZGRgRrSkR1CQMZEfmUk5OjhbBNmza5PdatWzds/ykb8qkYyGW8poKIGhY11oZbP74OS5cuxfbt290e69atGwYOHIgBAwagadOmEaohEdUFDGREVM2pU6ewZMkSLFq0CBs3boRzMyFJErp3746ts/c5WsIsnBeMiAhwXHd2x5QRWLJkCTZv3uz2WLdu3TB48GBcdNFF7NZIRNUwkBERAMfAHIsXL8avv/6KDRs2QFVV7bGsrCxs+zEbSg5DGBGRP8Jkxz3TRmHp0qVYv369dlJLURT07NkTgwcPRv/+/REfHx/hmhJRNGAgI2rAbDYb/vzzT/z6669YtmwZLBaL9tgZZ5yBHXMPQMmJZQgjIgqRMNpx55cj8dtvv7l1a4yJiUH//v0xaNAg9O7dG0ajMYK1JKJIYiAjamCEENi5cyd+/fVXLFy4ELm5udpjrVu3xqElp6CcjIVUwRBGRKQnNdaGUe9dhd9++w2HDh3S7k9KSsIll1yCK6+8Ep06deIk1EQNDAMZUQORk5OD+fPnY/78+di/f792f0pKCoq2VkA+EQep2MDREYmIapiAgDDbMOzVS6qdGGvfvj2uvPJKDB48GCkpKZGrJBHVGgYyonrMbrdjzZo1mDt3LlasWAG73Q7AMVmz7bAE+UScY54wwRBGRBQJAgIixYILHzzXreu4wWBAv379cOWVV6JXr14wGDiSLVF9xUBGVA8dP34cP/30E37++WecOHFCu79bt27Y8f0ByDmxkOxyBGtIRERVCYOKe2eMwrx587Bjxw7t/vT0dFx22WUYOnQoWrRoEcEaElFNYCAjqidsNhtWrFiBOXPmYM2aNdqoXklJSSjZZoN8PA5yKc+wEhHVBWqCFde8ejEWLFiAgoIC7f7zzjsPw4YNQ58+faAovNaXqD5gICOq43JycvDjjz/ixx9/dLsOoUePHtg0Y4+jNYxdEomI6iQhCTy78H7MnTsXa9as0e5v0qQJrr76agwZMgRpaWkRrCERhYuBjKgOEkJg69atmDVrFhYvXgybzQYASE1NReHGCkdrWDlbw4iI6hMRa8M/3hiMn3/+GYWFhQAc15oNHDgQw4YNQ/fu3TlCI1EdxEBGVIdYLBb8/vvv+L//+z+3+Wy6d++Obd8egHwqhq1hRET1nJAFHpt7O77//nts3bpVu79du3a4/vrrMXjwYMTExESwhkQUDAYyojrg5MmT+P777zFnzhzk5+cDqBwp8aAM5Ug85BJOKEpE1BCpCVZc9tz5WLBgASoqKgA4ektce+21GDZsGIfOJ6oDGMiIoti+ffswY8YMLFiwQOuWmJGRgdw/y6Aci4Nk40iJREQECEXF7V/egO+++04bXddkMuGyyy7DDTfcgDZt2kS2gkTkFQMZUZQRQmDDhg2YPn06Vq5cqd1/1llnYcuM/Y5uiZy8mYiIPBCSwNO/3oOZM2e6dW0/77zzMGLECJx77rm8zowoyjCQEUUJu92OP/74A9OnT9euCZAkCdJJE5RDCZCL2S2RiIgCIyAgkqzoc18W/vjjD20qlI4dO2LUqFEYMGAAh80nihIMZEQRZrFYMG/ePMyYMQOHDx8GUHl9WLYC5XA8R0skIqKwiFgbrvrPQPz8888oKysDALRq1QqjRo3C4MGDYTTyhB9RJDGQEUVIRUUF5s6di6+//honT54EACQmJqJ0iwrlaDwkK68PIyIi/QiDilEfDcV3332HoqIiAEDjxo1x4403YujQoRyZkShCGMiIall5eTl+/PFHTJ8+HadOnQJQOVDH6nIox2IhqQxiRERUc4Si4rap12PmzJnIzc0F4BiZceTIkbj22msRGxsb4RoSNSwMZES1pKysDD/88ANmzJih7QCbNGmCU8tLIR+P4/xhRERUq4QkMP7/bsG0adNw7NgxAEBaWhpuuukmXHPNNWwxI6olDGRENcxiseDHH3/El19+iby8PABA06ZNkbOsBPIJBjEiIoosIQk8Ovc2fPHFFzhy5AgAoFGjRrj55ptx1VVXwWQyRbiGRPUbAxlRDbHZbJg/fz6mTJmC48ePAwCaN2+OE4uLIZ+MZRAjIqKoIiSBh34Yiy+++ELbb2VkZGD06NEYMmQIDAYOMkVUExjIiHSmqiqWLFmCyZMn48CBAwAcO7S8FeVsESMioqjn7Mo4depUbdCpli1b4s4778SAAQM4jxmRzhjIiHS0du1afPjhh9i5cycAIDk5GcXr7Y5RE1XuwIiIqO4QksDdM0di6tSpyM/PBwCcccYZuPvuu3H22WdHtG5E9QkDGZEO9u/fj/fffx+rVq0CAMTHx6NimwTlSDwkO0dNJCKiuksoKm76aAhmzpypzWPWt29f3HXXXWjXrl2Ea0dU9zGQEYUhLy8Pn3/+OebMmQO73Q5FUYCDJigHzJBsDGJERFR/CKMdV/6nv7bPk2UZV155Je644w6kpqZGunpEdRYDGVEIKioq8O233+Krr75CaWkpAEA+FQNlnxlyOS96JiKi+kuNtaHfY92xePFiAEBCQgLGjBmD6667DkajMbKVI6qDGMiIgiCEwPLly/Huu+/i6NGjAIBOnTph33cnIRdyWGAiImo43tzwPN59911s374dgGPgj/vvvx99+/blwB9EQWAgIwrQoUOH8M4772D16tUAKkdO/KPCMYQ9uOMhIqKGR0Dg0Z9uw0cffYTc3FwAQK9evTB+/Hi0adMmspUjqiMYyIj8KCsrw1dffYUZM2bAarXCYDBA7DNBOZgASeV1YkREREJRcf27g/Htt99q+8qRI0di9OjRiI2NjXT1iKIaAxmRD0uXLsXEiRNx4sQJAICUZ4JhbyLkMl4nRkREVJWItaHnA52xYsUKAEDTpk3x8MMPo2/fvhGuGVH0YiAj8uDkyZN4++23sWzZMgCOHUrOojLIp2LYPZGIiMiP55c8gHfeeUc7oXnhhRfigQceQOPGjSNcM6Low0BG5EJVVfzwww/46KOPUFpa6hjGfn9sZfdEBjEiIqJACVnFde8OwjfffAO73Y64uDjcdtttuO666xz7VyICwEBGpNm3bx8mTJiAzZs3AwCkQiMMuxMhl3IIXyIiolCp8VZ0GdMCmzZtAgB069YNTz31FFq3bh3hmhFFBwYyavBsNhu+/PJLfPnll7DZbIiLi4N1swHy0Th2TyQiItKBgMD42bfggw8+QGlpKUwmE8aOHYuRI0fCYOB12dSwMZBRg7Zv3z68+uqr2LlzJwBAPmWCYU8SJAu7UhAREelNmOzoMb69NoVM586d8dRTT6F9+/YRrhlR5DCQUYNkt9sxY8YMfPbZZ7BarUhMTETZWolzihEREdUwAYHHfr4dEydORHFxMRRFwa233opRo0bx2jJqkBjIqME5ePAg/v3vf2PLli0AADnXBMNutooRERHVJmG047zHumojGmdlZeHZZ59F8+bNI1wzotrFQEYNhhACc+bMwbvvvouKigrEx8fDst4A+QRbxYiIiCLB2Vr29ttvo7S0FHFxcXjwwQdxxRVXQJK4b6aGgYGMGoTCwkK8/vrrWLp0KQBAyjfBuCsJUgVbxYiIiCJNxNjR5bbm2LhxIwDHvGWPPfYYUlJSIlsxolrAQEb13oYNG/DKK6/gxIkTjr7pu+OgHI5nqxgREVEUERAYO3UYJk+eDLvdjkaNGuGFF17A2WefHemqEdUoBjKqt2w2G6ZOnYqpU6dCVVW0aNECJ34qg1zMecWIiIii1Xvb/oVXXnkFBw4cgCzLGDduHG6++WbIshzpqhHVCAYyqpdyc3Px0ksv4e+//wYAyMdjYdibCMnOjTkREVG0E7KKi146B/PnzwcA9OrVC88++yxSU1MjXDMi/TGQUb2zadMmvPDCC8jJyXFM8rzeCOVkXKSrRUREREEQEHhk7ji89dZbqKioQHp6Op5//nl2YaR6h4GM6g0hBGbNmoVJkybBbrdDKlVg2JYCucwQ6aoRERFRiNR4G5pfa0Z2djZkWca9996LG264gaMwUr3BQEb1QmlpKSZMmICFCxcCAOSTMTDsSoKksosiERFRXSdkgYte6qF1Ybz00kvx+OOPIyYmJsI1IwofAxnVeUePHsXTTz+NvXv3OkZR3BUP5UgcR1EkIiKqRwQE7v5mpNYTplOnTnj11VfRpEmTSFeNKCxsPqA6bePGjbjrrruwd+9epKWlQV6XBMMRDmlPRERU30iQ8NHwmXjzzTeRnJyMnTt34o477sD69esjXTWisLCFjOqsefPmYcKECbDZbJCKDTBuTYFk4UTPRERE9Z2IsaP1TanYtWsXFEXBo48+iqFDh0a6WkQhYSCjOsdut+Ojjz7CjBkzAAByTgwMO5MhqWwVIyIiaiiELHDh82fit99+AwDcfPPNuP322zlfGdU5DGRUp1RUVODll1/GsmXLAADKgQQoBxLYRZGIiKgBEhC48ZMr8MUXXwAALr74Yjz99NMc7IPqFAYyqjMKCwvx9NNPY9OmTTAajRCb4qDkcH4xIiKihu6Rn8bh9ddfh91uR/fu3fHqq68iJSUl0tUiCggDGdUJx48fx2OPPYbs7GyYzWZUrDBCLjRFulpEREQUJV778yk899xzKC4uRsuWLfHmm2+iadOmka4WkV8MZBT19uzZg8cffxw5OTlAhQzjllTIpZzsmYiIiNypcTY0GmLEsWPHkJGRgf/9739o06ZNpKtF5BOveqSotmnTJowfPx45OTmQShSYNqQxjBEREZFHcpkBuT/a0KZNG5w8eRLjx4/Htm3bIl0tIp8YyChq/f3333jsscdQXFwMqcAI48Y0DmtPREREPkkWBUdmlKBr164oKCjAQw89hHXr1kW6WkReMZBRVFqzZg0ef/xxlJWVQcozwbglFZKdH1ciIiLyT7LJ2PNZDs455xyUlZXh8ccfx8qVKyNdLSKPeIRLUWf58uV4+umnYbFYIOeaHBM+c44xIiIiCoJkl7H53UO44IILYLVa8eyzzzKUUVRiIKOosnTpUjz77LOwWq2OCZ+3pUASDGNEREQUPElIWP3aDgwYMIChjKIWR1mkqLFq1So888wzsNlskE/EwrAziRM+ExERUdiEJND3ma5YsmQJjEYjXn31VfTp0yfS1SICwEBGUWLdunV44oknHN0UT8bAsCOZYYyIiIh0IySBPk93wdKlS2EymfDvf/8bvXv3jnS1iBjIKPI2bdqExx57DGVlZZBPmWDYzm6KREREpD8hCZz3VGcsW7YMsbGxePPNN5GVlRXpalEDx0BGEbVz50489NBDjqHt8yoH8GAYIyIiohoiJIEej7TF6tWrkZiYiPfeew9t27aNdLWoAWMgo4g5evQo7rnnHuTm5jrmGduSytEUiYiIqMYJWaDjHRnYsmUL0tPTMWnSJDRr1izS1aIGioGMIqKwsBD33nsvDhw4AKnEAONGzjNGREREtUcYVLS40Yx9+/ahZcuWmDRpElJTUyNdLWqAeARMta6iogJPP/00Dhw4AJTLMG5JYRgjIiKiWiXZZByeWYSmTZvi0KFDeOaZZ1BRURHpalEDxKNgqlWqquLVV1/Fpk2bAJsE49ZUSBYl0tUiqnmS5LhFugwiItJIFgWn5lqRmJiILVu24LXXXgM7j1FtYyCjWvXpp59i8eLFMBqNMG5LgVxqiHSViGqeHiHKtQyGMiIi3cjlBvzrX/+CoihYuHAhpkyZEukqUQPDQEa15vfff8dXX30FABCb4yAXmCJcI6JaUDU8hRKmGMCIiGrUE+f+G48++igA4PPPP8dvv/0W4RpRQ8JBPahW7N69G/feey/Ky8uhHIqHYX9ipKtEVPO8BalgNru+whg330REurr2vYswY8YMmEwmTJo0CZ07d450lagBYCCjGpefn48777wTx44dc8w1tiUFEnjGn+o5f61agWx69SiDiIgCJiDQ84kOWLFiBZo2bYpPP/0USUlJka4W1XPsskg1ym6346WXXsKxY8eAMgXG7ckMY1T/BdLF0N8yepRBRERBkSBh7f92oXnz5jh27Bj+9a9/QVXVSFeL6jkGMqpRX331Ff766y/ExcXBuI3D21MDoPcAHrXxfEREpJHsMl555RWYTCasWrVKu/6dqKbw6JhqzIYNG/D5558DAKzrjRxRkeq3UIak97Q8AxYRUcTd2/kZPPzwwwCAyZMn46+//opwjag+4zVkVCMKCgowbtw4nDx5EvLxWBh3JUe6SkQ1J9wQ5dwMh1MON+VERLob9J+e+Omnn9CoUSNMmTIFyck8niH9sYWMdCeEwH/+8x+cPHkSUpkCwx6OqEj1mF4tWnpMGk1ERLpa8M8/kZmZiVOnTuF///sfJ42mGsFARrr76aefsGLFChiNRhi2J0NS+TGjekiSAFnRp6xoK4eIiAAAkirhueeeg6IoWLx4MebPnx/pKlE9xCNl0tXx48fx3nvvAQDUnTGQS4wRrhGRB3q0RkmVm08pvM2opOgUosKsBxEReXZ/12cxbtw4AMDbb7+No0ePRrhGVN9wD066EUJgwoQJKC0thVRohHI4PtJVInLnOvBGqKHMNYyFW53KMCbJYZbpum44rWShDExCRNQAfDHmB3Tv3h2lpaV47bXX2HWRdMVARrr5+eefsWbNGkAFDLuSON8YRRe9hqP3FJxCCFNVW8ZCDmWe1gkllLm+PwxlRERuJEjY8dkRxMTE4O+//8Yvv/wS6SpRPcJARrrIycnRuioq2WbIZRzinqKIt4AR7HxfvgJTEGHKWzfFoEOZXt0UGcCIiPySKgxa18VJkyYhPz8/shWieoOBjHTxwQcfoKSkBFKRgV0VKbrUZMtYKEXV1jVjgbaS6RFWiYgaiMk3z0KHDh1QWFiISZMmRbo6VE8wkFHY1q9fjwULFkCSJBh2s6siRZFAQoW/ZYIJY36WCySMBdRKFmh9/IWyQF47ERFpJCHhsccegyRJmD9/PtauXRvpKlE9wEBGYbHZbHj77bcBANKRWI6qSNEj2O6I3u4PtmXMy/LBtIz5DGXB1sdbKAv0/WEoIyJy82DWC/jHP/4BAHj33Xdhs9kiXCOq6xjIKCzff/899u7dC1glGLLNka4OkYMew9rLii7dFCVFCamboiRLVe+I3DVjDGVERG7mPLYUycnJ2LdvH3766adIV4fqOAYyCllRURE+++wzAIAh2wzJxo8TRVg4w7a7DocfbvCpXD/s68V0muuME0YTEelLsssYO3YsAGDy5MkoKSmJbIWoTuMRNIVs+vTpKC4uhlSiQD4WF+nqUENXDwfvkGQJkkGnbsDOUBZuYCUiIgDAB8OnIzMzE/n5+fjqq68iXR2qwxjIKCSnTp3Cd999B8AxzD0H8qCI0iks6DUCoqTo091Rt5Y2VHaBDLelzNkCyXBGRARJSLjnnnsAAN9++y1OnDgR4RpRXcVARiGZOnUqysvLIRUaIefGRLo61JDpHMaqXbsVYjlh0+t6MZx+TSFPPu2xUIYyIqIXLngLZ511FiwWC77++utIV4fqKAYyCtrRo0cxZ84cAJXXjrF1jCKlhlrGQg1l1cJYqOHHw3qhBr2qryXcwOleGL/7RNSwSZC0a8nmzp2LnJycyFaI6iQGMgrazJkzYbPZIOWbIBeYIl0daqhquJtisMHFa2DSadh8n8/htShvw/lz009EpJcne/0H3bt3ZysZhYx7ZQpKfn6+Nryr4WB8hGtDDVY0XjPmcwF9JpYO6Lm0ory/R+y6SESkH9dWsh9//BGnTp2KbIWozmEgo6DMnj0bFRUVkIoNkNg6RrVNxwElAgk2gbSSReKaMX/PGVC9GcqIiHTz9Hn/Rbdu3WCxWPB///d/ka4O1TEMZBSw8vJybSOjHErgtWNUu3Q86A8mRPlsaQomjPkKPzUwgEfAyzKUERGFTYKEkSNHAnC0klVUVES4RlSXMJBRwObPn4+CggKgTIGcw5EVqRZFKIzpXo6n8BNiIPL0/KEM2MFBPoiI9PHKRe+iadOmKCgowIIFCyJdHapDGMgoIEII/PjjjwAA5WgcW8eo9uh1kC/J+o1UGE6ocw1gYbZOudYjrGCl5yAfDGVE1EBJkHDttdcCAL777jsIISJcI6orGMgoINu2bcOuXbsAFVBOxEW6OtRQ6BnGwp1fTJYcNz1a2CRZtxAkKYour42hjIgofJNHf4eYmBjs3bsX27Zti3R1qI5gIKOAOFvH5JxYSDZ+bKiWROPZRaGGXYSkyJAUPQOQXteB8btNRBQOyS5jwIABAICff/45wrWhuoJ7X/KrvLwcixYtAgAox9g6RrVMj1AmVAhVx3AXRiiTFBmQHTddQ1kY3N4bDvJBRBSWRf/7EwCwcOFClJeXR7g2VBdEx9EARbXly5ejrKwMKJchFRojXR2i0OgdykKghTEnPUNZiEHK43vCUEZEFDKpwIhmzZqhpKQEy5Yti3R1qA5gICO/Fi5cCABQTnIwD4oQvbou6hnKgmwlqxbGnCIYyny+FwxlREQhkSBh8ODBAIDFixdHtjJUJzCQkU9FRUVYvXo1AEA+GRvh2lCDVodDmdcw5hSBUBbQe8BQRkQUkukPzQUArF69GqWlpRGuDUU7BjLyafXq1bBarZBKFMilhkhXhxq6OjjIh98wVhP8BKmIdN1kKCOiBkQqNaBVq1awWCxYsWJFpKtDUY6BjHxybkTkXE4ETVGiDg3yEVQY03uQDy+hLOjXzeHwiYiCJkHCwIEDAYDXkZFfDGTklc1mO91dkYGM6psaDmUhtYzVcCgL+fUylBERBW3GY45ui2vXroXdbo9wbSiaMZCRV1u2bEFRURFglSAVcXRFiiLReD2Zi7C6KdZQKAv7dTKUEREFRSoywmw2o6ioCNu3b490dSiKMZCRV3///TcAQM43cXRFogDpcs2Y0Qg5OVGfCukZOjlxNBFRwCRI6NmzJwBoPY6IPOHelbzSAlmBKcI1IapCrxYWSYYk61OWZDBATk6EFBfm5OmKAtmcACkmRp9QpiiQFCX8cvTGVjIiagB69eoF4PQxFZEnDGTkkcViwZYtWwAAEgMZRRO9w5gkh93yIxkMkMwJjnIMBkgxIV5zWRnGnC1sYYcyZ9iUJf1CGVvJiIgC9vbIzwAA27dvh81mi3BtKFpxz0oe7dy5ExaLBbBIkMqi8Ow6NUw1EcZc7gupKNcw5hRKKKsSxlzvD0nVlr9oDGVsJSOiek4qU5CUlISKigrs3r070tWhKMVARh7t2LEDACAXG3n9GEWeJNVsGHN5LKiiPIUxJ4MBUlyAk6l7C2M43RUyKN66YTKUERHVKgkSunXrBgDYtGlThGtD0YqBjDzatWsXAEAq5uiKFGF6HrD7CmMuywRUlK8w5iQr/lvKfIQx7bmC6bro75o4hjIiolrVtWtXAKePrYiqYiAjj3bu3AkAkIoNEa4JNWi1HcZclvX5cCBhzMlXQAogjGnPGUgoC3SAEoYyIqJaM/XxWQCAvXv3RrgmFK0YyKgam82G/fv3AwDkEraQUYREKoy5rOPx7mDCGOC9lSyIMKY9t69QFuxokQxlRES1Qi5xnNzev38/B/YgjxjIqJpjx445Nhh2ABX8iFAERDqMuazr9mewYcyp6iAfIYQxrQ6eQlmoQ/frGcr0wlBGRPVNuYLY2FhYLBYcOXIk0rWhKMSjbarm0KFDAACp3MABPaj2RUsYq1pUqGHMyRnKwghjWl1cQ1m486jpFcr0HA6foYyI6hEJElq2bAkADGTkEQMZVaMFMg53T3WZXmFMksMPY05N01E6sGtYYUyrVlwclKaNwy4HAEMZEVENa9q0KQBHLySiqhjIqJrjx48DAKRyBjKqZXoPbQ8AQg2vKJMRcpMMSHFx4ddLllHSWEFRz5ZhlyPiYiDiYqA0zgi/XtFIiEjXgIhIN85AdvTo0QjXhKIRAxlVc+rUKccvVn48qBbVRBgLtyiTEXJGI8fkzAYFUmyQkz27Sk/BqXPTABkoTQ8jlFWGMefcbLqFMj1aycIMv6fLYRgjovpl9uu/ADh90pvIFY+4qZrc3FwAgGThx4NqSU2HsRCCghbGnN0LJSn0UJaeglO90mF3rhpqKHMNY1pFoySUMYwREXklVZ7kLigoiHBNKBrxiJuqYSCjWlVbLWNBBAbJZIScnlb9Wq9QQlnVMOYUbCjzFMZc6hXRUKZXGCMiqqcYyMgXHnFTNSUlJY5fbPx4UA2r7W6KAQQHLYx5CyXBhDJvYcwp0FDmK4xVqZcugglleoYxto4RUX1lYyAj73jETdWUlZU5flE5yhnVoEhdM+YjQPgNY9qCAYSy9BSc6ukjjDn5C2WBhLFKwmjQb5CPQEIZwxgRUUAkm2MbXlxcHOGaUDRiIKNqnIFMsjOQUQ2J9AAeHoJEwGFMW8FHKHOGsdgA6+MtlAURxpx10nXkRV+hjGGMiChwlSe5rVZrhCtC0YiBjNzYbDbY7XbHHwxkVBMiHcacXAJF0GFMW9FDKAs2jDlVDWXBhjGXOtV4KGMYIyIKjnBsy202GwS3e1QFAxm54UaCalS0hDEnoYYexrS6uISyUMOYU2UoK+zdKrQw5lKnGgtlDGNERCE4vb0rKiqKYD0oGjGQkRtJrwNmopqi4zxjcnw8pOZNQg9jWp0k2Jum4viFYYQxrVKALVYKP7xKEoQ5DnLrMCeh1uqlwzxlREQNlTi9Tdd6IhFVYiAjN26BjNmM9KZDi4ikKIAkO25hkOPjgWaNAZMRwmgIqyxbeiKOn5cIS6IEa3x4XxwhA+VpMvJ7pIdVDhQZaqwJamIs5MwW4ZXlJEuQDEZ9ygL0azElIop2Lru/+Pj4yNWDohIDGbmRXeddktidiGpAGKGsWhgIMZRpYcw5TLxBCTmU2dITcaJ3ImyVLWOqESGHMiED9hgJqgEoSw8jlCky1BgjoDha2tSkOIYyIqJIkh37PkmSYDKZIlwZijYMZORGkiTExcU5/lAYyKiGhBDKvIaAIENZtTDmFEIoqxrGnEIJZc4w5uzVoiohhjLXMObEUEZEFFGi8pgqPj6el4dQNQxkVE1CQgKA0xsPohoRTCjzF7oCDGVyfDzQNMP7BMpBhDJbeiJO9KoexpyCCWVVw5hWRrChzFMYc2IoIyKKHJdARlQVAxlV4wxkMDCQUQ0LMJQFNJiEn1CmhTF/gSuAUKaFsTjfRQUSyryFMa2MoEOZj+djKCMiiozKYyqtFxKRCwYyqiYxMREAIAw6Dm9N5I2fUBbUAb+XUBZwGHPyEcoCDWNOvkKZvzCmlRFIKHO2jvkT7aGMiKgeEkbHMVVqamqEa0LRiIGMqsnIcMxdJGIYyKiWeAllIR3oVwllQYcxJw+hLNgw5uQplAUaxrQyfIUyX10VPYnmUMZWMiKqh4TJMdR9o0aNIlwTikYMZFSNM5DBxHkyqBZVCWVhHeC7hjJZCj6MOSmyFspCDWNOrqEs2DCmleEplAUbxpwYyoiIao/JcZI7PT3MKU2oXmIgo2qcGwsRw0BGtawylOlyYC/JjtaxxmHs/CQJUGRYm6WEFcZOlxd6GHNyC2WhhjGtPgxlRES1YeCYvgDYQkaeMZBRNc2aNQMAiFgGMqplkhT2hM9aUUYDpERz6K1jlYTJANUoI/5E+N8HSzKQe5Y95DDmpCqAxSzBlhofehhzkiSIOBPkpKTwynESqm7/QyKi+uLgwYMAgJYtW0a4JhSNuNekalq3bg0AEHF2CHCkRaolrmFMhHf9omQ0QEpIAOx2SCVlOlQOiD1lQ9KB0OtlSwCsnUsRm1GGwi62sOpiKBdIPGSDapRhjw0vcEo2FXJBCSSTMfxQZncJreGGsjAmECciiiYCQgtkrVq1inBtKBoxkFE1LVq0gKIojiFaTRzYg2pBlZYxoYqQQ5kWxmQJQgigvCLkUCaMCmyJMY5yVYHYHGtIocwZxmJirJBlFbHpoYcyQ7lAUrYNSoXd0QXSEHook2wq5LwiwK4CkhReKHMJY5IsOX8JrSyGMSKqT0wqysrKoCgKWrTQqYs41SsMZFSN0WhE8+bNAQAiPrwz+UR+eemmGEoocw1jWjkhhjJnGBMuXQIlVSD2VHChzDWMOWmhrHNw3y+3MKZVKrRQJtlUyPnFjjCm3RlmKHMtXw6xKyXDGBHVM85jqWbNmsFo5DQhVB0DGXnUoUMHAIBqZiCjyAkmlHkKY1o5QYYyT2FMex57cKFMKMItjDnJsurovhhgKPMYxrRKBRfKtDBm81RWCKHM7uP6umBayRjGiKgech5Lde7cOcI1oWjFQEYedenSBQAgzNUPJIl0E8AgHoGEMl9hTCsnwFDmK4xpzxdgKLMlALYO3p9PllXEBNB90WcY0yoVWCiTrHbvYUxbKIhQ5iOMBdV1kWGMiOqpfqPPAcBARt4xkJFHXbt2BQCoDGRUU4IYUVGoAsJu9x7MJMlnGNPK8RPKAglj2lP6CWU2c/Wuip4oiu9rygIKY1qlfIcyyWqHXFDiO4xpCwcQyny1jDmLCSSUMYwRUT22fft2AKdPdhNVxUBGHnXq1AmyLAOxqja7PJFuQhze3lNrmWQ0QIqPD7wML6EsmDCmPbeXUGYzA9ZO/sOYk6+BPiQVgYUxbQXPoSyoMKat5COUBRDGtGJ8hTKGMSKqx0SMHSdOnICiKOjUqVOkq0NRioGMPIqPj9c2HGqyJcK1oXolzLnGXENZIF0VPZZRJZSFEsacqoayYMOYkyyriGnkfk2ZoVwg8WAI13FWCWXOoe2DCmNaWR5CWRBhTCsm3JEXiYjqIOcxVOfOnREfxMlDali4ZySvzjnH0edZTWEgIx3pcEAuVAFJkUMKY1oZLqFMSFJIYczJGcpic0VIYcxJUU5fUxZUV0WPlXKEMtWo+L9mzG9ZLqEshDCmFVM1lLF1jIjquUEPnA8A6NGjR4RrQtGMgYy8OvfccwE4zu5wgmjSTZiTPgOOA3shBFBREV5VhAAqLJArwr9WMq+TCUMfXIKxWavCKkdRVKS3ykf5pYWhhzEnqfKmB1WFKC0FFCWsYkIeDp+IqI4REFi3bh0ABjLyjYGMvOrevTtMJpPjOrJ4XkdGOgojlEny6S6PwmIByspDL0uSAIMBUmk5jDmlIZcDALY4Cdck/Y1B5i24seNfIZeTFF+OazI3YlTHtci+I7zwKltUGHKKHd1EDWEEKbsdanEJYLc73rMwQpnbdYASwxkR1V8i3oYTJ07AZDLhzDPPjHR1KIoxkJFXsbGxp1vJ0kI/6CXSuB6Ah9NSVtnKIoQIOZRJkgQYjY6yhIBcXBpyKMvtEoNRty4AAMRKNgwyb8HwDn8HXU5SfDmGtNiCdEMR0gzFuDVrZcihTLKqMJwsgmStvAYt1FDmDGPW062IoYYyj1MYMJQRUT2lNnL04ujZsydiY2MjXBuKZgxk5FP//v0BnN6oEIXM04F3kKHMtXVMKyKEUOYWxk4XFFIoy+0SgxH3/YbLzJu1+2IlGy5L3BRUS5lrGHMKNZRJVhXGEy5hTHsgyFDmIYydLiq4UOZzPjmGMiKqhzpe1grA6WMpIm8YyMin888/H5IkQSTaOPw9hc7XAXeAoUwLYx6uQQo6lHmbtyzIUOYpjDk5W8oCDWWKJNzCmFOwocxrGNMWCCKUCeExjJ0uKrAgFcjk3gxlRFSfiBi7Nv9Ynz59IlwbinYMZORTo0aN0L17dwCAPYPdFqmGCNXnAbuvMKYVEWAoc1435qMgyMWlMB3O9xnMcrvE4Pp7f/cYxpwC7b6YFF+Oy5tv9fp4oKFMtvgJY06BhDK7HWpJAMHUTytZQGHMtV5ERPWAPd2xLzr77LORnp4e4dpQtGMgI78GDx4MAFAbM5BRCII5yPZw4B5IGNNW9xPKPHZV9FwQJIvVa2tZbldHGLsycaPfOjm7L3oLZZ66KnriDGWxLxz1GMxkS5VrxvzxFcp8dFWsXoz3rotBhTHXehER1XGtL2kMALj00ksjXBOqCxjIyK+LL74YRqMRIsEGNT784cGpAQnl4NrTAXwQQ6V7C2WSLAcWxtwL8xjKbPFSQGHMyVsoCzSMOaUZijG08UbcmrUS+11CWdBhzMlTKAsijJ0upnooCymMudaLiKiOUuOt2Lt3L4xGIwYMGBDp6lAd4KPfDpFDYmIi+vbti6VLl0JtUg55nzHSVaK6IJyDaqECkuxxEI+AVhcCsFgcU3DFxTrCmMEQ2iTSzlAGwJoej9yuMRg5ZmHQxcRKNgwtX48Lf9+J2GUWJFWUIz7VgpPnmbHtumYoSzcFXFaaoRjjslbi8zv6ovUnsqNFL9gw5uQMZTZ7SGHsdDEShKIAdnt4Ycy1Xpw4mojqILVpGQCgb9++SExMjHBtqC6QhOAej/xbuXIlnnzyScAmwbQmA5LKM9jkR7itHJIMSVFCC1FaFSRIJhOkhHjAFOaJBElCXp/muPKZxRiauCG4VctVtHopH2nflUD2kHXsBgnb/9EUfzzTAfaYwANors2MT9f3Q5dXCyFZwmy9ttmh5heEFMZcCSEgrDZdJgCvLFCfcoiIaoGQBUyXlqK4uBhvvPEGevfuHekqUR3ALosUkN69e6NZs2aAQUDl4B5UG/wM9BFQEZXdF4XFEnZ11KR4WOMlfLauX1DrSeUqOozJQfp0z2EMABSbQLdvjmLoHRuhlAc+mume0gzEbY9Fcde0oOpUjapCFBUBavghKtCRFwPCMEZEdYyaUY7i4mI0b94cPXv2jHR1qI5gIKOAKIqCa665BgBgb1YKAR4okR/hHkxLsqPrmz3M6RZkGaK8AqKgECKQUQM9UJMTkJ+VAiEByWtj8I8l9wa8bquX8pG4usLvN0YAaPFnAfr/Z09A5f5Z2BYrfzoTMbkCpRkKis5qEnCd3Kiq472xq4AshzThsythc05EHebuhWGMiOoYAYH2Q5sBAK6++mrIMg+zKTD8pFDArrzySphMJgizDSKJg3tQAEI9qHY5mA8nlEmKonWdFFYbRFl5SKFMKAqscY5ylDIRcCgznLAj7bsSR1381bXyZ5f/O4a4HN8tes4wFnvS8f6qCkIPZapwhDGnMEKZM4xJzm6moYYyhjEiqoNEshU7duxATEwMrrzyykhXh+oQBjIKWEpKCq644goAgK1VSYRrQ3VGsAfXHg7iQwllkiR5vI4t2FCmJiegoKv7RdmBhrL0b7x3U/RGsQl0nXXU5zJFthgtjGn1DCWUObsqVhVCKNNaxiqFHMoYxoiojjrr1vYAgCFDhiAlJSWylaE6hYGMgnLjjTdCURSIVAvUBLaSUYB0OMjWQlmgwcxHV5FAQ5manID8bila65grLZQtvcfr+ubVoV1v2WJNgdfH/ixsi83zO3t8LKhQ5tpV0ZMgQlnVMOYUdChjGCOiOkpNsGLt2rVQFAUjRoyIdHWojmEgo6A0b94cF198MQDAzlYyCkYgB9t+DtyFKgJqLXPtqui1rABCmTAqsMZ7L0cpE0j+M9ZrKJOLQwsYxhLPAadqV0VPAgpl/sKYUwChzFsYcwq7+yIRUR3Q/5GzADjmbm3WrFmEa0N1DfeQFLRRo0YBANRGFVDjQpz7iBomIbwHsyAO2H2FMm9dFT2W4yOUqckJKOjkf/4YLZQtqx7KVHNoIw5aE6pPEflnYVus+Nl3GNOe11coU1WIwmL/YcxJh4E+AgplbB0jojpKjbdhyZIlAICbbropwrWhuoiBjILWrl07XHDBBYAE2NsUR7o6VBfp2YWxqiBHtfIUyrSuij5ax1wpZQLJa6q3lFX0CW3uM1M/9xMdzjAWdyLw981rKFOF31ataryEsmDK8RnKGMaIqA7rPb4LVFXFgAED0L59+0hXh+ogBjIKyR133AFZlh2tZInhz/FEDZDrQXiI3dmqhrJAuip6LMcllAUbxpyqdl+Ml20wj0qBCDKTCSOQcnMqBsTv0u4rsMYGFcacqoUyb4N4BKJKKAs61MFLKGMYI6I6TE20YPny5ZBlGbfffnukq0N1FAMZhaRNmzbakK62NsWcl4xCo2NLWTBdFT2WUxnK/F035otr90UFAjFNYoHhSY7y/T2/85cRSTA2NqGDMQYD4nfhz8K22LKgU0j1AU6HsuJuTYLrquiJLDvmdQshjDm5hTKGMSKqwwQEut7SCoBjaqDWrVtHuEZUVzGQUchuvfVWxMTEQCRboaZVRLo61MAJPQ7unZMjh0EpE0jYGIvbdzqutRSvpEP0jQ1oHjLRNxbilXQAgFFSUKDG4PcNXUNqHXMlW4C4Y6WQzAlhlQNVhbDb9RmgQ6hhBWgiokhT0yqwceNGmEwm3HrrrZGuDtVhDGQUsoyMDNxwww0AAHvbYgiJZ7spSDockEuy5AgIYUwgDQCS0QApyQy5sAwpe0M/wWCPlWBJEcje1hSXbRsKxMkQ05pD3JzktfuiMMLx+NfNgVjHZvmvCgtu/WssJJuMkpYhVweGMiBtazHkonKIuBjIKcmhFaSqjpYxtfJ7Hk43U1cMZURUBwlZIOOSeADA9ddfj4yMjAjXiOoySehyWpkaqpKSEtx88804deoUlOwEGA6aI10lqis8HYiHcJCvBTInWXJ0XwxyZEDJZIKU6ggrwmiAmhgLW6IJ+e1igirHliChpKVjs2qPVWFoXIa2GbmY33UucNIGfF0IaUUZUKICCTLE+XHATUlAhvvIir+WGnHXAscZV0mVIJdJUMolJBwKqjowFQuk/Zlz+nVabVBPngquEMARyCxV5h4UwXd/FKqovh53Q0RUx9haFcPeugQZGRn48ssvER8fH+kqUR3GQEZhW7hwIV566SVABUzrGkEqrz5kN1E13lpGgghl1cKYU5ChTDIaICUnVVteGA2oaJGMgramgMqxx0oobSagmqrer6JT1iH80uWngMr5q8KCW/4ah7KT7jt4SZVgzJMDDmVa61hh2ek7hYBUVgE13/vk09VUbR1zFUQo01rHPK3DXRER1REixgb0K4LFYsGLL76ozc9KFCp2WaSwXXzxxejZsycgA7Z2RRzgg/zz1U0twAN8r2EMcAztLgLrwugtjAGO1qSYwwUBdWH0FsYAQCmXsXNzS1y+fYjfcryFMcDRRcaaqgbUhdFjGAMASQqu66KvMAYEHKB9hrHKehER1QU9H+wMi8WCnj174qKLLop0dageYCCjsEmShIcffhhGoxFqmgVqIw7wQWEKoStcNapwjCjoL5RJvic+lqw2mI4U+g1lQoHHMObkDGWXbRvqs5xT9gSPYUx7ngBCmdcw5hRoKPMXxrTyfO9K/IYxl3oREUUze6NyrFixAgaDAQ8++KCjNwZRmBjISBetWrXSZqe3tS+CMOpwQE31U6A7Lx8H7z5bx6oW46OlzDmQhz/OUJa8z/Oce/ZYCWWN/bcMK+Uydm1p4bWl7K8KCx5aP8JvOf5CmWwX3sOYk79QFmgY08rz/P8IOIy51IuIKBoJox0JfRy/33zzzRzmnnTDQEa6ueWWWxwz1JtU2NoXsusihU+vljJvocxP65jbopXdF6uGMl9dFT3x1n3RV1dFT7yFMkMZkLyzJLDK+A1lQX6Hq4SyoMOYS72IiKKJgICtfREKCgrQoUMH3HLLLZGuEtUjDGSkG5PJhGeeeQaKokBNr4CaUR7pKlG0CeVAW6huB/TBtI5pPISyQFvHXHkKZf66KnpSNZQFG8a0564SygxlQOq2YigFflrHXHkKZc7WsVBU/d+EGqoZyogoiqgZ5VDTK6AoCp555hkYjV7mMSEKAQMZ6apjx44YO3YsgMqui6bQ54WieibcA+xwW8sqQ5mw2QBZ9jqQhz+uoSzQroqeuIYyf9eN+eIaymS7CC6MObmGsmC7KnosT64+31hI5TCUEVHkCZMdcT0d27SxY8eiQ4cOEa4R1TcMZKS7UaNGoUuXLoBBwNqpgF0XyUGPYc11CGXaBNIVnq8HC4RktSHmaCHMR+1Bt465Uspl7NzSEvetGRV6IXCEMkhA0r4wWqUlCSLGCElRwgtjbhXTocspQxkRRZCAQJfbm6OoqAidO3fGqFHhba+JPGEgI90ZDAY8++yziIuLg0ixwp4Z4PUsVL/pdGDtcWLhYMiSI3yUlgGlIbQmOdnsSMguRvr68MKLXC5DHImFZAl9c2wsUNDsDxvkUitETJjzACoKpNjgJsOuSgQw3QARUV1gzyzBxo0bER8fjxdeeAEGA+daJf0xkFGNyMzMxKOPPgoAsLcqgZrMofBJB5XXJ4UTyiRJAmTZ0X0xxFAmFBkwKJDLbUjeURRyKBMuGVW2IqRQZixQ0HyJDbHHSivrpoQWylQVKCpxTKptMIQdygAEf60fEVEUUZMroLZ2bFsff/xxtGwZwCSQRCHg3pJqzKWXXoqrrroKkABr50III8+aN1g10O1MqMLREhNMMJMlt+vGwgllkB2bT2coa/m7LahgpoUx6fQ6oYQyyQotjGllBxvKVBUoLAacA3mEEcqqtY7pEcrYbZGIapkw2pE4wHHy7qqrrsIll1wS6SpRPcZARjXqgQceQLt27QCTCmuXAgiJ15NRiHzNcxVgKHO2jrmtH2Qoc7aOuZLLbYg7WBh8a5mH70MwocxYoKDZCs+jIQYVyoQ4Hca0igQfyrx2VWQoI6I6REgCnW9vhtzcXLRt2xbjx4+PdJWonpOE0ONKeyLvsrOzcdddd6G0tBTy0TgY9yRFukpUm/Q6kPZzUO93OPzKgFE1kGnrSxKk+DggPs7n8whFBkzehztWYw0o6JyInLO9v25PrWPVyjECwuQ9aBoLFDRfakPs0VKvy0hCAKoKqcLHEPZVW8eqPe4YmVKU++527Pe6MT0G+AD0GRyGiMgLAQFbhyKoTctgNpvx4YcfIjMzM9LVonqOLWRU41q3bo3nn38ekiRBbVYGe1PvB5BEHgXQwuKvpcxT65jb+gG0lAlZqtY6VpW/68oCCWOA/5Yy2QKfYczxXJLvljJ/YQzQ75oyva4nY0sZEdUgtWkZ1KZlkCQJzz//PMMY1QoGMqoV559/Pu68804AjvnJ1OTQhxwn8sZrKKty7ZjX9StDmSgs8hzM/IQ67en8DfYRYNddb6HMWKCg6aogJm6WZc+hzFNXRY/r+w5lAY+qyFBGRFFMTbZAdHac6LrrrrvQp0+fCNeIGgoGMqo1N910EwYPHuwY5KNLPkRsEAeUVDdF4MDZUyjz1zrmtr4QEBWWaq1lgbSOufIUykQIb4enUBZI65gr4RxZ0jWUOUdVDLginkNZ0EPcc+RFIopCaqwN8f1V2O12DBo0CDfeeGOkq0QNCPeMVGskScITTzzhmDTaKGDplg9h1Om6Eqq/QjiAdxuBMcDWsWplVO3CGESoc/LYUhbCwDauoSzo1rFKQpJOB+RAuip6rIh7KAt5vjEO8kFEUUQY7Ui/yoSCggJ06dIFTz75pONEHlEt4aAeVOtOnTqFe++9F0ePHoVUZIBxUyoklecG6iU9dmhhHrxLYU50LEkSpIR4iJTEoAOZkxprQH6XyoE+whhp1FAqoelqG2KPhHYdpjbIR2kFkFcQcj2cA32oJWFeD6rHQB/chRFRGISiwto9D8JsQ4sWLfD+++8jNTU10tWiBoZHwVTrGjVqhDfeeAPJyckQiTZYu3I4/HpLj4PlcA/ahQpYraGvLgREWRmkwiC691Uhl9uQsqMYaZtDLgIAoJRLiD1RHvL6QpIAFUBBcXgVAQC7HVIILY9ERNFCSMIxJY/ZhpSUFEyYMIFhjCKCgYwiolWrVvjvf/+L2NhYiFQLbB0LIcBQVi9FQSgT9jBDmV2FKCqGFGKQEZIE2AVSdpUibVNorYbGYhnpm2xQDTJgCG3TLVntkE7mAlYLEGp3Q1VAVFQ4uivKYbSAsnWMiCJIQDiOPVItiI2NxWuvvYaWLVtGulrUQDGQUcScccYZePnll6EoCtTG5bC1K2Ioq68iGcoquzyGHcqEgCgsCjmUQQbkClvIoUyyAjE5jrnAQg1lkqoCZeWAWvn/CCWUCdXt2rGQWsn0mpOMiCgEAsIx4nPjciiKgpdeeglnnHFGpKtFDRgDGUVUnz598NRTTznmKGteBnvbYoay+kqI8IOZUIM6mJeqtOAIuwphsYQczIQQEMXBtZQJSYIwng4toYQyY7GM9M3uA3AEG8okqx1Srst1Y6GEMlVAWKq8d7IUma6LbB0johAICNjbFkNt5phr7JlnnkHfvn0jXS1q4BjIKOIuu+wyPP744wAAe4tS2FszlNVrtdla5mlAEFWE1Vom7CpEcTFwIjfwYFalGsGGMtkCxJ6oqHZ/MKFMUlXHqJFuBQQRyly7KlarYBChjF0ViShCBATsrYthb+EYkOjJJ590TMdDFGEeZgolqn1Dhw6F1WrFW2+9BXurUkBIMBwwR7paVFOECH8ERqGGNQKjsKuQYAWMxpDWhb0cqKiABEAke/6sVm0dc+UMZTGFsahIkpHb3XPIMBbLaLTF+/D0qkF25D2b96DjbB3z+AyqcFwLZrf7nh6gSlfFamQJEhTfyzCMEVEE2VuVOI4xADzyyCO48sorI1wjIgcGMooa1157LaxWK9577z3YMx0j2ikHEiCBc4HUS84D63CCmY9QVrW7osfVwwhlgKMLIwqLfIYyX/0Q5AobEg4UIy7GACDeYyjz1jrmylcok6x2yDl51VvH3ArwE8o8dVX0JJBQRkRUy7SWscowdv/992PYsGGRrRSRC3ZZpKgyfPhw3H333QAAe2YJrylrCGrqurIAW88iPtgHvHdh9Nc65spb90WPXRU9FuCj+6K/1jFX3rovsnWMiCJAQMDerkgLY/feey+GDx8e4VoRuWMgo6hz00034cEHHwTguKbM1oGjL9Z7ER4aX5dQVmWwD1/dFT2RK2xI2V2GtM2nQ1kgrWOuqoayagN5+C3AQygLtHXMVdVQxjBGRBEgIGDrUAR7c8dJqYcffhgjR46McK2IqmOXRYpK1113HeLi4vD6669DbVoGmyxg2JUESbD7Yr1Vw10Y/a5qVwFhgSRJoV9XVrX7YpBVkcutSNkFQMShqK0UcOuYK9fuiwG3jrkV4NJ9UZK9D+ThjywBevVcZBgjoiAJyTHPmNq4HLIs48knn8QVV1wR6WoReSQJwT0dRa9Fixbh5Zdfht1uh5xrgmF7CiSVoaxeC3ewD0l2XD8WxoAfkiKHfF2ZpMiQEhNhT08OuQ+CGmtERaoJMacCbx2rSimzQj52KvhA5iRLgCqgVoReB6gCwhZ6y6OGuykiCoKQVdi6FEBNs0BRFDz77LO45JJLIl0tIq8YyCjqrVy5Es899xwsFgukIgOMW1MhWdnbtl7TIZQBIU5a7CRLkEym0J5ekSElJ8GenhTa+lY75JP5QGwMrE1TQipDKbMCu7JDfg+EEI4525wtZiESFkvI61apkD7lEFG9Jox2WM/Ih0i0ISYmBi+99BLOP//8SFeLyCcGMqoTNm/ejKeffhoFBQVAmQLjlhTI5exxW+/p0VoWbCARKoQqHK1sihJaKFNVQJYhxcdBio0JOpjJZVaI7MOQFAVSo9SgQ5lssUE+dBKiqBiQQpu4WQgBUVbZuibJoYUyux1CFbyGjIhqhRprg7VbPhBnR3JyMl577TV069Yt0tUi8ovNDFQnZGVl4f3330ezZs2AODusZ+VCTdTpzDtFLx1GYAx1CHahCkegCLaFR1Ud9bZaIQoKoebmQ8kpDK0OdjvEqTwYj+UHtZ5kUx1hDACECPo90FrHwuEMY0BY3Uc14YZzIqrXVLMV8ZfYgDg7mjVrhvfff59hjOoMBjKqM1q1aoUPPvgAXbp0AYwC1u55sDcqj3S1qKZFQygrrwguoKguLUJWa1ChTLLagZN5p+sQZCiTLTZIx0653xlCKHMbaVGop0dgDJCoujxDGRHVEHt6GaTexSgoKEDnzp3xwQcfoFWrVpGuFlHAGMioTklLS8M777yDvn37AjJg61oAWybnKqv3dAploQQzoVaGmVBay5yCCGWSTYUoLXWvQxChzK11zK2QwEKZ19axYEKZt+fRI5QREVUSELBlFsPWpRAWiwV9+/bFO++8g7S0tEhXjSgo3DtSnRMXF4dXX31Vm9jRnlkCW5cCCFmH61QoegkRXjCrnEC6RrswOrsrehJkS1m15w+x+6J7IQG2lHlbJsBQVq11TE9sJSMiVI6k2LUA9swSAMCNN96If//734iPj49wzYiCx0E9qE6bN28e3njjDVitVkglBhi3pkCqCGNkPaobamqwj8oBPXyv6mOwD1X1HmacjEbIaSkeB/qQrHZIR09VayFzW8bHQB9ug3n4fBGeB/rQWsf8vQZfg3y4XjvmDQf5IKIwiJjKkRQTbDAajXj88cdx+eWXR7paRCFjCxnVaVdccYXWPUEk2GA5+xTU5DDmTaK6IRquK6uB7oueuitWe35nS9nxAs/r+wtjgO+WskDeFx8tZQG1jvF6MiIKkZpSgbhBVogEm3YZA8MY1XUMZFTnZWVl4eOPP0bnzp0dg31k5cPWiteV1Xs6dGEM57qy2rqmzOPz2+0QObluoczjYB4+C3EPZUGPrOgplAXzXvJ6MiIKgoCArVUxbN0LtME7PvroI2RlZUW6akRhY5dFqjcqKiowceJEzJkzBwAg5Zlg3JEMycYDv3pPry6MAXRZdF9N0rrvSSZTYF0WXbl0X5SsdkjHcyGKSwJ/fkWBlJ4Ga5NkKKUWYFd24M+tFeLovug271hQ65/uviistuDWZddFIgqAMKiwdi6ASHWcNLr66qsxfvx4xMTERLhmRPpgIKN6Z968eXjzzTdRUVEBlMsw7kiGXBTC5L5Ut+gRymQppAEptOvKFMV9yPtAVIYykRAHkX04+OeuDGVqYlxogayScyTJkChKYNeOeXxihjIi8k41W2Htkg/EqoiJicGjjz7KLopU7zCQUb20Z88ePPfcczh06BCgAkq2GcrheEjgdSf1mg6hLKzVFQWSEkIZRiOk2Fi/14/5el7ExECUBN665kZVoVqsjmAZorBGVgw3lHE3RlTvCAjYW5QCHcpgt9vRsmVLvPLKK2jfvn2kq0akOwYyqrdKSkrw+uuvY9GiRQAquzDuSoJk4SiM9Zoegz2EEcxCDWVCCEiSo6UthJUd3QVlz6Mn+lUZyACEHMq069GCfe/YQkZEVQiTHdZOhRApji6KAwcOxBNPPAGz2RzhmhHVDAYyqteEEJgzZw7effddRxdGqwTDriQoubGRrhrVpEiEMmewkGTIJmPQTydstspr2eTgQ5kzkAGhhTKXQAYEH8qEKtyDVTDvnaicuy2c/xl3Y0T1hj2tHAl9gYKCAsTGxuKBBx7AkCFDHCesiOopBjJqELKzs/Hyyy9j165dAAD5aBwM+xIhqdzA11u13X3RJZAF20om7GqV9YMIZc7REl27DAYTylQVwmar1uUwmFDmcaTKQN8/UWUy7VD+b9yNEdV5QhawtSmC2twxuFDHjh3xwgsvIDMzM8I1I6p5DGTUYFgsFnz66aeYMWMGAEAqVWDYlcQBP+qr2mwlq9rtLshQJmxVRicMJpS5to65CjSUVWkdc69GYO+h16kDAnn/qgYyIPj/HXdjRHWammiBrVMhRJxjWzJixAjccccdMJm4f6aGgYGMGpy1a9fi1VdfxalTpwABKIfjoWSbIQm2ltU7tRHKvF0DFUQoqxbItPUDCGXeAhkQWCjzEcgc1fD/Hvqcyy2Q98/TbiiY/x13Y0R1kpAE7K2LobYqgxACGRkZePLJJ9G7d+9IV42oVjGQUYNUVFSEiRMnYv78+QAqW8t2JkMuDv7aH4pyNR3KfA1KEUAoc+uu6HF9H6HMU3fFqnyFMi/dFT1Xxfv7GNDk2t7eQ2+BTFsvgP8fd2NEdY5qtsLWqQAi3rH9uPzyyzF+/HgkJiZGuGZEtY+BjBq0P/74A2+88QZyc3MdrWWH4qEcYGtZvVNToSyQEQL9hDKPrWPV1vcSyny1jrnyFsr8tI5Vr0r197HagB6+C6h+n79ABvj//3E3RlRnCFnA3qoYonU5VFVFWloaHnvsMfTv3z/SVSOKGAYyavAKCwvxzjvvYMGCBQAqW8v2JEEuYN/1ekOv0bmqBooggoinUOazdaza+h5CWaCBDAAqw5RbMAsykDmq4v5eBtQ65l6A+9+BBDLA9/+QuzGiOkFNroC1QxFQea3YoEGD8OCDDyI5OTnCNSOKLAYyokrLli3Dm2++6bi2DIB8PNYxEqMtvMmCKUro3UoW7PxZHkKZ39axauu7hLJAuit64tpaFkIgc1Tl9HsZdCA7XUhlAQEGMm09D/9H7saIopowqLC1LYLapBwAkJ6ejoceeggXXnhhhGtGFB0YyIhcFBcX4+OPP8YPP/wAIYRj3rJ9iZBPxEICuzHWeXqGslAmNHYJZQG3jlVbvzKUBdM6VpUsQZKkgK8f814dKfRA5igg+EAGVP8/cjdGFJUEBNSMctjaFQFGAUmSMGzYMNx5551ISEiIdPWIogYDGZEHmzdvxoQJE7Bv3z4AgJRvgmFPIuQyQ4RrRrqI5ASjkhz0xMtV13d2Pwy6dayKsMKUVkgIwdRt/TBeg/P/yN0YUdRR42ywtS+CSLEAANq2bYsnnngC3bp1i3DNiKIPAxmRFzabDTNmzMCUKVNgsVhOD5F/MAGSnd0Y67RQA5lzc6lTS1s4wczZshXwBNDVC3AEsmAnwK5SRti4CyKqV4Siwp5ZAmRWwG63w2QyYezYsRg5ciQMBp7UJPKEgYzIjyNHjmDixIlYsWKF4w6LDMN+M7sx1nWhhCrXzWWEQ5nWulXZDTK4ldXqoyMGG8z0CGMAAxlRPSEgoDYuh61NMWBybB8uuOAC3HfffWjevHmEa0cU3RjIiAK0atUqTJw4EYcOHQIASIVGGPYmcu6yuizcyYcjFMo8hamgQpmzdcxDXYIpQxfcBRHVeWqC1dE9MckxSFCrVq3w4IMPcoJnogAxkBEFwWq14ttvv8UXX3yBsrIyQADyiVgYss2QLCF2HaPICjRUedtURiCUeQtTAYcyb4GsspxAy9AFd0FEdZYw2WFrUwy1sWP0xLi4OIwdOxbXX389jEaerCQKFAMZUQhycnLw4Ycf4tdff3XcoQLK4QQoh+J5fVldFO7Ew7UYynxOxBxIKPPUXdFDOQFUxP8ygeAuiKjOEYoKe8sSKO1tjmusAVx66aW46667kJGREeHaEdU9DGREYdi6dSvef/99bNy40XGHRYLhoBnysThIgteX1SneQlWgm8haCmV+R0asDFNeg5mv1jEvZXkrRxfcBRHVGUISUJuUwZZZDJgc392zzz4b9913Hzp37hzh2hHVXQxkRGESQuCPP/7Ahx9+iIMHDwIApFIFSrYZ8qkYDvxRl4Q76XANhzK/LVtVy/EUyoIJZJXleCpDN9wFEUU9AQG1UQXsrYsh4h3bj8zMTNx9993o168fpEhOJUJUDzCQEenEZrNhzpw5+Pzzz5Gfnw8AkIoMjuvL8k0MZnWBHhMO6zj5dNVgFvS8YVVDWSDdFf3UyVmObrgLIopaAgJqqsURxMyOieiTk5Mxbtw4XHXVVRzGnkgnDGREOispKcH06dPx7bffOgb+ACAVGGHINkMuNEW4duSXHpMN63W22KW1LJwgpYWyYFvHPJTlLEcX3P0QRS01yQJb62KIZMfIifHx8Rg+fDhGjBiBhISECNeOqH5hICOqIfn5+Zg2bRpmz56tXfQs5ZkcwYxD5dd/OocyPYJU2OU4y2IgI6q3VLPVEcRSHfstk8mEf/zjH7jpppuQkpIS2coR1VMMZEQ17OTJk/jyyy8xd+5c2GyOLh9yrgnKwQTIRWwxq9d0DGW6hCA9w5QeuPshihpqkgW2ViVaEFMUBUOHDsXo0aM5ciJRDWMgI6olR44cwRdffIFff/0V9spWCinfBMPBBEgFRl5jVl/Vx4vdhdDndXH3QxRRAgIi2QJbZonWNVFRFAwePBhjx45F8+bNI1xDooaBgYyolh0+fBjTpk3DvHnzTgezAqMjmHHwj/ornACjVwDSi+tuI9zXRUS1Thuso1UJRJIjiBkMBlxxxRUYNWoUgxhRLWMgI4qQ48ePY9q0afjpp59gtTp2iFKRAcrhBMg5HC6/XgolvFTdREdDMPO029DjtRFRjdKGr29Voo2aaDKZcNVVV2HkyJFo0qRJhGtI1DAxkBFFWE5ODmbMmIEffvgBFRUVjjvLFRgOx0M+HgtJ9TE5L9U9wQYXvcKPXnztMvR4bUSkOyFXTujcvBSIc/TMiI2NxbBhwzBixAg0atQowjUkatgYyIiiRF5eHmbPno3Zs2ejoKDAcadVgnIsHsqROEhWD5P8Ut0UaHDRM/zoJZBdRiB1466HqMYJox325mWwNy0FjI7vXFJSEoYNG4brr7+eoyYSRQkGMqIoU15ejl9++QUzZ87E4cOHHXeqgHwi1tGdsYwTcdYLeoWW2g5mge4y/NWLux6iGqPG22BvXgK1cTlQ2cmiRYsWuOGGG3DFFVcgLi4ushUkIjcMZERRym63448//sCMGTOwZcsW7X4pzwTlSDzkPA4AUi94Cy7BbJprM5QFu8vQ4/URkV/aQB3NSiHSLNr9WVlZGDlyJPr16wdFYU8LomjEQEZUB2zatAkzZszAH3/8Ae0rWy5DORoP5XgcJBuvM6vTPIUWvYKPnsLZXVStH3c9RLoQBhX2JmWwNy3Trg+TJAkXXnghRowYgaysrAjXkIj8YSAjqkOOHDmC77//Hj/99BOKioocdzq7Mx6Nh1xijGwFKXSugUXP4KMnPXYXzvpx10MUFjXBCnvzUqgZp7slms1mXHnllbj22mvRokWLyFaQiALGQEZUB5WXl2PhwoX4v//7P+zatUu7Xyo0QjkaBzknFpJgd8YGyzX06BXQuKsgijghCajp5bA3L4VItGn3d+zYEddeey0GDRqE2NjYCNaQiELBQEZUhwkhsHnzZsyePRuLFy+GzVa5g7ZKUE7GQj4WB7mUrWYETuBMVIep8VaoTctgzyjXRks0GAy46KKLMGzYMGRlZUGKhjkKiSgkDGRE9cSpU6cwd+5czJ07F8ePH9ful4oMUI7HQT4ZC8nOa80atFAP2LibIKp1QlGhZpTD3qTMrTWscePGuPrqqzF06FCkpaVFsIZEpBcGMqJ6xm6346+//sJPP/2EZcuWnW41s0uQc2KgHIuDVGTkCI0NGSdwJopKAgIiyQp7kzKo6eVA5aCIBoMB/fr1w5AhQ9CrVy+OlkhUzzCQEdVj+fn5mD9/PubOnYvs7GztfqlUgXwyFsqJOEgV3LE3SHpMTk1EuhAxdtgzyqE2KYOoHCkRANq0aYMhQ4bgsssu4yTORPUYAxlRAyCEwJYtWzB37lz8/vvvKC8v1x6TCoyO681yYjl8fkPECZyJIkIYVMcAHRnlEMlW7f64uDhcfPHFGDp0KM444wxeG0bUADCQETUwpaWlWLJkCRYsWIC//vrr9LxmKiDnxUA+EQs5N4ajNDY0nMCZqMYJSUBNq4DauBxqaoU2XL0kSejRowcuvfRSDBw4EPHx8ZGtKBHVKgYyogbs5MmT+O2337BgwQLs3r379AM2CXJOLJScGEj5Jl5v1pDoNR8aEQGovC4s2eLokpheARhOf686dOiAwYMH45JLLkHjxo0jWEsiiiQGMiICAOzZswe//vorfvvtN5w8efL0A1YJ8qnKcFZgYstZQyFJDGREIRIQECkW2BtVQG1UDphOf5eaNGmCQYMGYfDgwWjXrl0Ea0lE0YKBjIjc2O12rF+/Hr///juWLl2KgoKC0w9aJcinYqDkxDKcERG5EFJlS1h6OdRGFdp8YQCQnJyMCy+8EIMHD8aZZ54JWeb1ukR0GgMZEXlls9mwfv16LFq0yGs4k0/FQs5nOCOihkdIAmqKBWp6OdQ09xCWkpKCCy+8EAMHDsTZZ58Ng8EQwZoSUTRjICOigNhsNmzYsEELZ/n5+acftFcOCJLruHG0RiKqr4RBdQzMkVYBNcXidk1YWlqaFsLOPPNMhjAiCggDGREFzRnOlixZguXLl7tfcyYAqdCohTO5jAckRFR3CQiIOLsWwkSSFa7jHKWnp2shrHv37py0mYiCxkBGRGERQmDnzp1Yvnw5li9fjl27drk9LpUqjmCWFwOp0MiujUQU9YQkIJKsp0OYy2TNANCxY0f069cP/fr1Q6dOnThXGBGFhYGMiHR1/PhxLZz9/fffsNlspx+0S5DzjY7ujXkmSBVsPSOi6CBibFBTLY5bsntXRKPRiB49eqBfv344//zz0aRJkwjWlIjqGwYyIqoxxcXFWLNmDVauXIk1a9YgLy/P7XGpTIGUZ3IEtAITJJVnmYmodghZhZpihZpSAZFqqdYKlpKSgvPOOw/9+vVD7969OVkzEdUYBjIiqhWqqmL37t1Ys2YNVq9ejc2bN8NudzkAUgGp0AQ53wS5wAipyMgJqYlINwICwmxzjIqYUnktmMv4Q4qiICsrC71790bv3r3RsWNHDk9PRLWCgYyIIqKkpATr1q3D6tWrsWbNGhw7dsx9AZsEudAIqcAR0qQSAwMaEQVMQEAkOAKYSLZATbK6dUMEgGbNmmkB7JxzzkFCQkKEaktEDRkDGRFFnBACBw4cwNq1a7Fu3TqsX78eRUVF7gvZJEe3RmcLWikDGhGdJiAg4p0BzFrtOjAAMJvNOPvss3Huueeid+/eaNmyJQfkIKKIYyAjoqjj7N74999/Y926ddiwYQNKS0vdF3K2oBWaHD+LjbwGjagBEZKASLRCTbJCJFmgJlrdJmYGgPj4eJx11lno0aMHevTogQ4dOnBYeiKKOgxkRBT1bDYbdu7ciXXr1mHdunXYvHkzysvL3RdSAanYWBnSjJALTZygmqgeEUYVaqLFMRx9khXC7H4NGADExcXhzDPPRI8ePXD22WejU6dOnJyZiKIeAxkR1Tk2mw27d+/Gxo0bsXnzZmzcuBG5ubnVlpNKFUhFRshFlS1oJQbOg0ZUBwjJ0f1QJFqhJlohkqzVRkEEgLS0NHTv3h3du3dHVlYWAxgR1UkMZERU5wkhcPToUWzcuBGbNm3Cpk2bsH///uoLqnCEMteQVqbwWjSiCBIQEHF2R/gyWyESrRAJtmqtXwDQtm1bZGVlaSGsefPmvAaMiOo8BjIiqpcKCgqwdetWbNu2TbsVFhZWX9AmOQJasQFSSWUrGkMaUY0QEBCxdgizDcJcGcDMtmqDbwBAYmIiunTpgi5duiArKwtZWVlITEyMQK2JiGoWAxkRNQhCCBw5cgTbtm3D9u3bsW3bNuzYsQMWi6X6wnZo4UwLaqUGDhpCFAQhV3Y7NFuhJtggKm9Qqh92xMTEoHPnzloA69q1K1u/iKjBYCAjogbLZrNh37592LZtG3bu3Indu3djz549qKioqL6wgKPlrLgynJUqkEsNQDlb06hhExBArB1qvN0RwBIcXQ5FnB2evhomkwnt27dHx44dtfDVunVrXvtFRA0WAxkRkQu73Y5Dhw5h9+7d2LVrl/YzLy/PywqAVGaoDGkMalR/ad0N420QzvAVb4OIswFeRpJPS0tDhw4d0KFDB3Ts2BEdOnRAy5YtOfQ8EZELBjIiIj+EEDh16hR2796N3bt3Y9++fdi/fz+ys7M9d3kETge1MsXxs1w5/TuH46coJgwqRJzNEb7i7I7f4xwBzNNAG4Cj1SszMxNt2rTRWr/at2+PRo0a1W7liYjqIAYyIqIQ2e12HD16FPv27UN2dnZgQQ0ArFL1kFauQCpXHIOMsGWNaphQVEfIiq0MW87gFWuvNrmyK5PJhNatW6NNmzZo27at9nuzZs3Y5ZCIKEQMZEREOnMGtf379+PQoUM4dOgQDh48iEOHDuHkyZO+V7ZJkCoUSOUypArF0fWxQtECm2Rn6xr5JiAApbJ7YawdIsYOxNohYlSIGMd9nkY1dJWRkYGWLVtqt8zMTLRt2xZNmjRhd0MiIp0xkBER1aKysjIcOXJEC2jOn4cPH/Y4uXU1zsBWIQMWx0/J4vo7W9nqMwEBGASEyRGwYFIdv5tUIOZ06PIXuADH9V2uoatly5Zo1aoVmjdvjri4uFp4NUREBDCQERFFjYqKChw7dgzHjh3D0aNHcfToUbe/8/PzAyvIDkdAs8iVNwWwypCsUuXPyhBnVTiUfxQQEIAsAKMKYRSOcGVUIYyVPysDlyOA2b1ex1VVWloamjZtqt2aNWuGJk2aaH/HxsbW7AsjIqKAMJAREdURZWVlOH78OI4dO4acnBycPHmy2s+CgoLgCrXjdEizyoBNhmRzBDftd08/BYOcJ0IWgEGFUCp/Ghw/YRAQrj8rA5czdHkbpdCb5ORkZGRkoFGjRsjIyEB6ejoyMjKQkZGhBS8GLiKiuoGBjIioHqmoqMCpU6e0kJaTk4P8/Hzk5eVpP/Py8pCbm+t74BF/7ADsMmCXINkloPImqVKV+2TH7yoAVXLchATJ7W/H75JauZyovA9Vf3f88NcdU5xe0OWncPyU4GiNkgSE7Py98qcsIFx+hwxHsJJVxzVZiuPaLCjCEbxc/64MYIG2XnliMpmQlpaGlJQUpKSkIDU1FSkpKWjUqJEWuJy/m0ym0J+IiIiiCgMZEVEDJIRAWVmZW0jLz89HUVGRdissLERRURGKi4u1v4uLixHx3YaAe0hzC17wOBlxbZJlGWazGWazGYmJidrN+bfZbNYClzN0paSkIC4uDpLElkciooaGgYyIiAKmqipKSkpQVFSEsrIylJaWevxZ9feKigpYLBZYrVa3n57uU1W1Rl+DoigwmUwwGo3azfVv5+8mkwnx8fH/396dB1dV3/8ff50bCAkECFa+kBCgioBRoWGXtYAYFnWgCAhlBinyA1HE0TrTTmRRELFFChaUWmZ0yuaClsVRmxaEIhJ2CIyBEFZlMc1CwpYQcu/5/XFzT87NSm5CjgnPx0wm557P+XzOm0t08uJz7uej0NBQ6yskJEShoaHFzoeGhlqBq379+nK5WA0TAHBrCGQAgJ8Vt9st0zTldrvl8XhKPLZ/NwxDLpfL+u77KnreMAzVqVOHZdsBAD8rBDIAAAAAcAjPVAAAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQ+o4XQCA2s80TeXm5jpdBgBUSEhIiAzDcLoMALUcgQzAbZebm6vBgwc7XQYAVEh8fLxCQ0OdLgNALccjiwAAAADgEGbIAFSr4D3/J8Ms+LcgwyXDZUiGS3IZkmHIcPnaCs4bhuQyZPiusdoMq4/1JdnOufzbvR2tc6ZhFP6TlG0M67xReC/7OdPwDmO1ubzjes8bVpuvj1lwzmqXCsdwFVzva5f/Pfz6FJRvukpo87tefjUWnjOKtRXrI3sdRdpVyvlSxiutjmJ9yhrXOm8W72/rY7XbxjILzsvWz9tm2urxthv2NutaX5tpjWnYrzdMq836EfOd9w1XcI33R8G0Xvv6uApee9u8r339rDbDlKHCfq6Cc9aXTKufy5DfeW9/T2E/+a73KMjXp+B14Vgea7wg2/hB8p4P8o1nXetRkG9M+erwFF6vwrG9Y3rkkvf+3jbveEEF5wx5FOTrb+sTJHn7yXsf3/vhe+29l1lwrII2U66C9yVIhlySggr+sl0yCs4ZCjIMueSSUfA3dzMvSE/+v+YCgOpCIANQvdxGwa9G8gYyFYSngt90C9sMyVWYPgxvuikYxPebuUvFfuMuTDv+KcA3ZrHf0FXknP0eKuFc0X4qDGK2QFbsnC1A2V8XLdH/+hL6uMpoK+2PUayOUv7YZbWV9lYFOp5tzJLC2m0NZCW1q+hr0xrbXof9niW1WQFOtmvs1xfrY5ZwL9Pvyx7ICkNewVdpbfKFNu+Q9vDmC26SL1jJCjT2Nm8g8xQGGsMeaLzHLsPwhqWC77KODaufdxwVjOnrq4J+BedLarP1CSoIk0FWnb5AZpYbyOzjBfneD/mfc8leo+3vEACqAY8sAgAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIR9yABUryBTpundDNa7r5Zh+24U2azZ9912LPs503Z8C222TakKt+8t7Xzhd9PvWH79TEkyfecLxzRlSKasvvZ2awy/zbPstZTw2vQrqcj7UcpX0WtvZa+xstpu+V632Ga/ZZn9zHLGNEupsfSNof33DrO1WdcGvjF0YR22fcgU+D5kpgr7mYbp/yXvd2+b/M57DFMyPIVjyncvj22/tIJrCtpNw2ONJ7/xC7777lXw2lVwje+7pGLnPLb/rH3HHkPyqHAfMk/BOUOl7UNmWJs5B6nw78z32lXQp+jeZre+MbShwo2hS/rvEgBuHwIZgGqV1/1/Tpdwe/h+3w1Q0TwB+Nh/tDxOFhIweyLmwRwAKIr/MwIAAACAQwzTNCvxb7oAUD7TNJWbm+t0GXeE3NxcDR8+XJK0ceNGhYSEOFxR7cb7Xb2q+/0OCQmRYTBnDeD24pFFALedYRgKDQ11uow7TkhICO97NeL9rl683wBqCx5ZBAAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABzCKosAAAAA4BBmyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAh9RxugAAQOXk5ubq0KFDSk5O1vHjx3X8+HGlpqZKkiZOnKhJkyY5XGHtkp2dre+++0779++33mu3263w8HC1b99eQ4YMUb9+/Zwus1ZITk7Wzp07lZycrHPnzikrK0vXrl1TgwYN1KpVKz388MMaMWKEGjVq5HSpABAwwzRN0+kiAACBO3jwoF588cUS2whkVW/AgAFyu93W6+DgYAUFBSknJ8c616NHD82bN08hISFOlFhrLF68WOvXr7deBwcHq06dOrp+/bp1rnHjxlqwYIEeeughJ0oEgEpjhgwAaoGGDRuqXbt21tfSpUuVmZnpdFm1ktvtVnR0tIYOHaru3bsrMjJSknTx4kWtXLlSX375pXbv3q23335bM2fOdLjami06OlrNmzdXx44d1apVKzVs2FCSdP36dW3fvl3vvfeesrKy9Oqrr2rNmjUKCwtzuGIAqDhmyACghnO73QoKCvI7N2bMGP3000/MkN0GBw4cUOfOnUttf/vtt7Vp0yZJ0rp169SsWbPqKu2Os2fPHr3yyiuSpJkzZyo2NtbhigCg4ljUAwBquKJhDLdXWWFMkh577DHrODk5+XaXc0d78MEHreO0tDQHKwGAwBHIAACoQsHBwdaxx+NxsJLa7/Dhw9ZxixYtHKwEAALHZ8gAAKhChw4dso7vvfde5wqppfLy8pSRkaGdO3fqgw8+kOQNY7169XK4MgAIDIEMAIAqcuXKFa1evVqSrIUoUDUGDRqkvLy8Yuc7dOig2bNn+81MAkBNQiADAKAKeDwezZ8/XxkZGQoODtZLL73kdEm1yl133aW8vDzl5ORYWwx06tRJ06ZNY+EUADUagQwAgCrw17/+VTt37pQkvfTSS2rTpo3DFdUun376qXV86dIlxcfHa9WqVZo6daomTJigZ555xsHqACBwLOoBAEAlvfvuu/rnP/8pSZo+fbrfSouoek2aNNHYsWO1cOFCGYahf/zjH1YYBoCahkAGAEAlLF++XJ988okk6bnnntOYMWMcrujO8cADD6hDhw6SZO39BgA1DY8sAgAQoPfee08ff/yxJGnatGkaO3aswxXdeZo2bSpJOn/+vMOVAEBgCGQAAATg3XfftWbGpk2bpnHjxjlc0Z3pwoULkqT69es7XAkABIZHFgEAqCB7GHvuuecIY7eB2+2WaZplXrN//34dPXpUkhQTE1MNVQFA1WOGDABqgStXrsjtdluvPR6PJOnGjRvKysqyzgcHBzOTUEn2z4xNnz6dz4zdJv/73//06quvavjw4erWrZsiIiJkGIYkKTU1Vf/5z3+0atUqmaapRo0a8fcAoMYyzPL++QkA8LM3ZswY/fTTT+VeN2TIEMXFxVVDRbVTamqqRo8eLUlyuVwKDw8v8/qnnnqK2bMAXbx4UU899ZT1um7duqpfv761F5lPRESE5s2bp3bt2jlRJgBUGjNkAADcIt/Mo+84MzOzzOvtwQEVc/fdd2vu3Lk6ePCgjh49qvT0dGVnZ8vlcqlZs2Zq06aN+vTpo0cffVT16tVzulwACBgzZAAAAADgEBb1AAAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAH7eeecd9evXTy+88ILTpcBhV69e1WOPPaZ+/fpp+/btTpcDALVSHacLAIDa4tq1a0pJSdGxY8eUnJys5ORknT9/XqZpSpI++eQTRURE3JZ7m6apUaNGKS0tTePHj9fUqVMDGiclJUUbNmyQJE2ZMqUKK3TWqVOntGfPHh05ckSnTp1SRkaG3G63GjZsqDZt2qhnz54aMmSIwsLCnC71ZyUsLExjx47VihUrtHTpUvXo0UP16tVzuiwAqFUIZABQRWbMmKGUlBRH7n3s2DGlpaVJkvr27RvwOMuXL5fb7VaPHj3UoUOHqirPUTNmzNChQ4dKbMvMzFRmZqb27t2r1atXKy4uTt27d6/eAn/mRo0apXXr1ik1NVWfffaZxo8f73RJAFCr8MgiAFQR30yY5J1Z6NSpk+66665qufe3334rSWratKmio6MDGuPw4cPat2+fJNWqX7p9QbVhw4YaNmyY4uLitGzZMq1YsUJz585Vz549JXnDWVxcnBITE50s92cnNDRUTz75pCRp7dq1un79usMVAUDtwgwZAFSRYcOGKTw8XO3bt1dUVJQMw9CMGTOUmZl52+/tC2S9e/eWYRgBjfHRRx9JkiIiIvSrX/2qympzWlRUlCZMmKBHHnlEwcHBfm3t27dX//79tWbNGr3//vvKy8vTokWLtHLlSoeq/XmKjY3VBx98oCtXrujLL7/U6NGjnS4JAGoNZsgAoIqMGjVKgwYNUsuWLQMORYH48ccfdfbsWUmBP66YlpamhIQESdLgwYOrtf7bbeHChRo6dGixMGY3fvx4tW3bVpJ05swZnTx5srrKqxEiIiLUsWNHSdKmTZscrgYAahdmyACghvOtfud7TDIQmzdvlsfjkSQNHDjwlvrk5+frm2++0Y4dO3Ts2DFlZWXJ7XYrPDxc9957r7p27apBgwbpF7/4hV+/fv36SZKGDBmiuLg4/fDDD/rss8+0d+9epaenq0GDBmrXrp1++9vfKiYmxup348YNff3114qPj9e5c+eUm5uryMhIPfrooxo9enSlF5vo3Lmz9RnAH3/8UW3atAl4rDNnzmjjxo1KTEzUxYsXlZubq7CwMDVs2FARERHq0qWL+vTpo1atWgU0fn5+vv79739r69atOnXqlLKzs2UYhho1aqTw8HBFR0era9eu6t27t+rWrevXt+j7f+bMGa1fv1779u1Tenq6cnJyNH/+/GLhfuDAgUpMTNTZs2d17Ngx3X///YG9OQAAPwQyAKjhfI8r9uzZU3XqBPa/9Z07d0ryfs6qdevW5V5/4sQJzZ49W+fOnSvWlpaWprS0NO3evVsnT55UXFxcqeNs27ZNb775pnJzc61zN27c0K5du7R792698soreuKJJ5Senq64uDgdO3bMr//p06f197//Xbt27dKiRYsqFcry8/OtY5cr8AdINm7cqCVLlsjtdvudz87OVnZ2ts6dO6e9e/fq5MmTmjVrVoXHz8rK0u9///sSF5DxvfcpKSnatGmT1q5dq6ioqFLH+vrrr7Vo0SLl5eWVe1/7Ii87d+4kkAFAFSGQAUANlp6erqNHj0oK/HHFvLw8ff/995Kk6Ojoch9XTElJ0fTp05WTkyNJ6tSpk2JjY9W6dWvVrVtXGRkZSkpKKnffqpMnT+qbb75RkyZNNGXKFOve+/fv16pVq5Sbm6vFixcrJiZGb7zxhk6cOKERI0aoT58+Cg8P1/nz57Vy5UqdPHlShw8f1tq1a/W73/0uoPdAkg4cOGAd33PPPQGNcerUKSuMNWrUSE888YRiYmIUHh4ut9utjIwMJScna9euXQE/FrpkyRIrjHXp0kWxsbGKiIhQgwYNdO3aNZ09e1aJiYnWI6ilSU5O1ubNm9WoUSONHj1aHTp0UN26dXXmzBk1b9682PX33HOPQkNDlZOTowMHDmjSpEkB1Q8A8EcgA4AabMeOHTJNU8HBwerRo0dAY5w8edKaHWrfvn2Z1+bn52v27NlWGHvxxRetFfjsevXqpcmTJys1NbXUsVJSUtS2bVstWbJEDRs2tM4/8MADioqK0pw5c5Sfn6/p06fr8uXLWrhwobp27Wpd165dO3Xr1k0TJkxQenq6NmzYoAkTJigoKKhCf37J+9jn6dOnJXlDacuWLSs8hiRt3brVmhlbvHix9bk0u759+2ry5MnKzs6u8Pg3btywgm7fvn31xhtvFAt2MTExGj58uHJycsqc6Tt9+rSioqK0bNkyv9VAS1ulMygoSO3atVNiYqKOHz8uj8dTqZlEAIAX/ycFgBrM97hi165dFRoaGtAY9scOy1umf/PmzTp//rwk76qSJYUxu2bNmpXZ/sc//tEvjPn0799fTZs2lSRdunRJI0eO9AtjPmFhYRo6dKh13ZkzZ8q8X0nS09P1l7/8RZJkGIamTZtW4TF8fCtqhoWFlRjG7Bo3blzh8a9cuWKF55iYmDJn2UJDQ8t9hPPll1+u0NYMvmtzc3OVnp5+y/0AAKUjkAFADXX16lUdPHhQUuU2g87IyLCOGzVqVOa1vgAoSePGjQv4npL3EbjSQothGH5tsbGxpY5jv+7ChQsVqiE3N1dxcXFWkCq6kEhF+ULk1atXtXXr1oDHKU3jxo2t1SK3bNlSqT3BmjZtWmLILYv958P+cwMACByBDABqqISEBOXn5ysoKEi9e/cOeJwbN25YxyXNVtkdP35cknem5FYW/yhLef3ttZS1GqH9uooElJs3b2rmzJnWQiF9+vTR5MmTb7l/SWJjY61ZqTlz5uj555/XmjVrdPjwYesxz8qoW7euhgwZIklKSkrSmDFjtHDhQm3ZsqXCYTSQVSTtgcy+EAsAIHB8hgwAaijfbNVDDz2k8PDwgMexf+aqvNX2srKyJBXOBFVGSEhIme32x/HKehzT/jkm39L95cnPz9esWbO0Z88eSVL37t312muvBfT5M7vIyEi99dZbevPNN5WWlqYjR47oyJEjkrzv8/33369+/frp8ccfLzf8luaFF15QXl6e4uPjdfnyZX3xxRf64osvJHmDcvfu3TVs2LByZ/rKmw0tiT28B7qiJwDAHzNkAFAD5eXlaffu3ZIq97ii5P28k8/ly5crNVZNkJ+frzlz5lhL/Xft2lXz588vc+PoiujSpYs++ugjvf766xo2bJi17Lzb7db333+v5cuXa9y4cVYYrKh69eopLi5Oq1ev1jPPPKPOnTtbgTUzM1P/+te/NGPGDM2cOdMvQBUVyIIc9oVI7D83AIDA8c9bAFAD7du3z3oErrKBzL7EeXmBLDw8XKmpqTV2QQdfGPPNLnbu3FkLFiyo9KbSRQUHB2vAgAEaMGCAJO/M4v79+xUfH69du3bp8uXLmjVrltauXVts4+xb1bJlSz399NN6+umn5Xa7lZKSop07d2rjxo26dOmStm/frhUrVmj69OlV9ue6cuWKdVzegi0AgFvDDBkA1EC+QNG2bVtFRERUaiz7nls//PBDmdf6lsXPyMgo99qfm6JhrFOnTnrrrbeqPIyVJDw8XI888oj+/Oc/a8SIEZKknJwc7dixo0rG9z0OOWnSJP3tb3+zHgfdvHlzlYzvc/bsWUlSRESE6tevX6VjA8CdikAGADWMx+PRd999J8m7EEVlNWvWTHfffbckWZtMl6Zfv37W8dq1ayt97+qSn5+v1157zQpjMTEx+tOf/lTu59huh+7du1vHvs/kVaWIiAhrH7VA9jorTVZWlrXlwYMPPlhl4wLAnY5ABgA1zJEjR6xf5O0BqTJ8IeHs2bO6du1aqdcNHDjQ+mX/q6++0ueff17muGVtDF1d8vPzNXfuXGtD5dsZxv773/+WG7J8n/2TpBYtWlRo/AsXLmjfvn1lXnPx4kVrJisyMrJC45clKSnJOn744YerbFwAuNPxGTIAqCLnzp2zVtTz8e1vJUnbtm3zWw0xNDRU/fv3r/B9fLM8kZGRAS1dXpIBAwboq6++ksfj0b59+/TrX/+6xOvq1Kmj119/Xc8//7xycnL0zjvvaPv27Ro8eLBat26tunXrKiMjQ8eOHdO2bdvUvn17xcXFVUmNgZo3b562bdsmyRuAnn32WV28eLHMPk2aNFGTJk0qfK/PP/9c8+bNU5cuXdSlSxf98pe/VOPGjXXz5k2lpqZq8+bN1uxm8+bNK7xdQWpqql5++WVFRkaqd+/eio6OVrNmzVSvXj1lZ2crKSlJGzZssFbLLG/j7orYu3evJO/n43r27Fll4wLAnY5ABgBV5MiRI1qwYEGp7cuXL/d73bx580oFsqp4XNGna9euatq0qdLS0hQfH19qIJOk++67T0uXLtXs2bN14cIFHTx40NqguijfZ86cZN+g+fz583r22WfL7TNx4kRNmjQpoPvl5eUpISFBCQkJpV7TokULLViwoMzl/Mty4cIFrVu3rtR2l8ulcePG6Te/+U1A4xeVn5+vLVu2SPLOyga6ZD8AoDgCGQDUICdOnLBmdyq7uqJdUFCQRo4cqffff1+7du1SVlZWmXubtWvXTqtXr1Z8fLy+/fZbpaSkWJ9XatKkidq0aaNu3bpp0KBBVVZjTTBnzhzt2bNHiYmJOnXqlDIzM61HGBs3bqz77rtPffv2VWxsbEDL7Hfs2FHLli3Tvn37lJSUpNTUVF26dEnXrl1TSEiIIiMj1bFjRz3++ONVNnsqyfqZkKRRo0ZV2bgAAMkwTdN0uggAwK358MMP9eGHH6pJkyZav359QHtJlebq1asaO3asLl++rKlTp2r8+PFVNjZqtj/84Q9KSEhQly5dtHjxYqfLAYBahUU9AKAG8T2u2KtXryoNY5J3o19fCPv44491/fr1Kh0fNVNSUpISEhJkGIamTJnidDkAUOsQyACghrh586b69u2riRMnauTIkbflHk8++aSioqKUnZ2tTz/99LbcAzXLihUrJEmDBw9WdHS0w9UAQO3DI4sAAD9Hjx5VQkKCwsLCNGbMGKfLgYOuXr2qdevWyTRNjRw5sszPFQIAAkMgAwAAAACH8MgiAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBD/j9HUbXbgxitswAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACYRElEQVR4nOzdd3QU1d8G8GdmS9qmJ4QaelGCihRBEFBBFFBREVAUEMWOWFCx99f6s6DYUUBRUBEVEBGQJlVEegk11IT0nmyZ+/6x2WFDtiXZZDbJ8zlnTzY7Zb9JNrvzzL1zrySEECAiIiIiIqJaJ2tdABERERERUUPFQEZERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGmEgIyIiIiIi0ggDGRERERERkUYYyIiIiIiIiDTCQEZERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGvFLIDt69CgkSYIkSRg/frw/dtkgDRgwQP09EhG5M378ePW94ujRo1qXo5o5c6Za18yZM7Uuh/xMURR069YNkiRh0qRJWpdD5+D/H2lp1apV6uvvxRdf1Locv8rLy0NMTAwkScJnn31WI89Ray1kM2fOxIsvvljv/kie/PLLL+rPnJOTo3U5VMZqtWL58uWYOnUqrrjiCjRp0gRBQUEwmUxo27YtRo8ejV9++QU2m61S+921axcmTZqETp06wWQyITIyEl26dMHUqVORkpJSQz8NETUkZrMZ//77Lz7//HPcfffd6NatG4xGY60ciH/++efYunUrgoOD8dRTT7lcpy68v6akpGDq1Kno0qULIiMjYTKZ0KlTJ0yaNAm7d++u1L58tWHDBkyYMAFt27ZFaGgoYmJi0K1bN7z66qvIyMiokefUQpcuXdTX4ooVKyq9/d9//61uf/7551d6e+dQ6stt1apVPu3Xn6+Z9PR0vPLKK+jWrRtiYmIQGhqKtm3bYsKECdi4cWOlf2ZfNJTjk2uvvVb9286YMaPS2x87dgw6nQ6SJCEmJgYlJSUAgIiICDzyyCMAgGeeeQbZ2dl+rRsAIPzgyJEjAoAAIMaNG+dynf79+6vrNBTjxo1Tf+YjR454Xb8h/o5q219//SViYmLU37OnW48ePcTBgwd92u/bb78tDAaD232Fh4eL77//voZ/OmooKvveUlu+/vprta6vv/5a63LqpYsvvtjj+1ZN/d4LCwtF48aNBQDx0EMPuVynLry/fvvtt8JkMrndl9FoFO+++67PvxdvFEURjzzyiJAkye1zJiQkiBUrVlT7uQLh/+9///ufWsNtt91W6e0nTJigbv/WW29Venvn34Evt5UrV3rdpz9fM8uWLRONGjVyuy9JksSUKVMq/XN7UlvHJytXrlT3+cILL1S/8CqYP3++WkPfvn0rvf3LL7+sbn///feXW5abmyuio6MFADF16lR/lazSu49qvmvVqhWEEP7YVYPm65kaqrqTJ08iKysLABATE4OBAweiV69eaNKkCSwWCzZv3ozZs2cjLy8P//zzDy6//HJs3rwZjRs3drvPTz/9FI8//jgAwGAw4Pbbb0f//v1hsViwdOlS/PTTT8jPz8ftt9+OqKgoXH311bXys1L9NXPmTHZJaqDObVlq3LgxgoKCavws98cff4zU1FTodDo88cQTLtcJ9PfXxYsXY9y4cbDZbJAkCSNGjMDgwYNhMBiwevVqfPPNNzCbzXj00UcRHh6Ou+66qxq/MbunnnoK7733HgAgLCwMd955J3r27ImCggLMnz8fy5YtQ1paGq6//nqsXbsWF110UbWfU0u33XYbnnzySVitVvz888/4+OOPER4e7tO2RUVF+PHHHwEAOp0Ot99+e7VqmTRpEq644gqP6yQlJXlc7s/XzL///ovrr78eRUVFAIBBgwbhpptugslkwubNmzFjxgwUFhbinXfeQVBQEF599dXK/9DnaGjHJ9deey3i4uKQkZGBv//+G4cOHULbtm193n7WrFnq/TvuuKPcsoiICDzwwAN49dVX8eGHH2LKlCmIjY31W+211hTTEFt/AvUsdkP2zTffiC5duojvvvtOlJSUuFznxIkTonPnzurfbuzYsW73d+rUKREaGioACL1eL5YtW1ZhHeczdi1atBDFxcV++3mIAkkgnKGv7x555BHx/PPPi19//VWcPHlSCCHECy+8UKO/d4vFIlq0aCEAiKuuusrteoH8/lpYWCiaNm2qrjtz5swK6/z5559Cr9cLAMJkMonU1FS3tfli69atastYZGSk2L59e4V1nP92PXr0EIqiVPn5AuX/7/rrr1frmDFjhs/bzZ49W91u2LBhVXpuf/4O/PmaURSlXOv2iy++WGGdbdu2iYiICAFAyLIsduzYUa36a/v4JBBayIQQYvLkyWodzz33nM/brVmzRt0uKSnJ5TrJycnqOq+99pq/ShZCCMFAVoMYyAJPdna2Tx94O3fuVP92ISEhorCw0OV6Dz/8sLre448/7nZ/N998s7reRx99VOX6iQJZoBwQNjQ1HcgWLFig7n/27Nlu1wvk99f3339fXefmm292u6/HH39cXa+6XceGDx+u7mv69Oku11EURfTs2VNdb9GiRVV+vkD5//vll1/UOi677DKft7viiivU7ebPn1+l5/bn78Cfrxnn38kll1zi9v9k+vTp6nojRoyoVv21fXwSKIFs27Ztah0tW7b0+SSHc3fZ//3vf27X69Gjhxpgq3MC5Vw1fg2ZcxDzdHP3x7PZbGLevHli5MiRolWrViIkJESYTCbRsWNHce+993o9g+D8QeXoK7x8+XIxevRo0apVKxEUFFQhMFksFvHHH3+IRx99VPTp00fEx8cLg8EgTCaTaN++vRg3bpxYvXq12+d0DmKebp5+V95s3LhRTJw4UXTo0EGYTCYRGhoq2rRpI8aOHetTX3TH8/Tv318IIURBQYF4++23Rbdu3URUVJQIDQ0V559/vpg6darIysryur/6qFOnTurvydWZTUVRRLNmzQRg7/d97Ngxt/tau3ZtlT6g/GH9+vXi3nvvFeedd56IjIwUQUFBokWLFmLkyJFeP/xdvcGmpKSIRx99VHTs2FGEhoaKyMhI0bt3bzF9+nRhsVh8qik/P1+89957YuDAgaJJkybCaDSK6Oho0b17d/Hcc8+JM2fOeNz+3P8Vq9Uqvv76azFw4EDRtGlTodPpRMuWLStsl5qaKh5//HFx3nnnidDQUBEdHS169Ogh3nnnHfWgsGXLluobubMlS5aozzlp0iSffs5Jkyap2/z+++8+beMLbyd7aurvtnDhQjFs2DCRkJAggoKCRMuWLcWtt94q1q9fL4So3MFQaWmp+PLLL8W1114rmjdvLoKCgkRkZKTo0qWLePTRR92exNq3b5961jciIkIcPnzY7XNkZWWpLTuyLHt8367LajqQ3XjjjWp4ys/P98s+a/v9tXfv3uo6f//9t9t9HTt2TG3VSkxMrPwPViYvL089voiIiHAbOoWwtyw6arv99tur/Jy+/v9t3rxZxMXFCcB+/dO8efMqrFOdYy+LxaJeJyVJkjh06JDX2lNSUtTfe1xcnDCbzT79zOfyZyDz52vmlltuUff17bffut1XYWGh2koWEhIiCgoKqlS7FscnvgaygwcPijZt2qi1ubv+bsmSJWLcuHGiXbt2wmQyiZCQENGmTRsxbtw4sXbtWo+1dO3aVa3Fl2PiwsJCER4eLgB7a2JaWprbdZ2D+l9//eV1374K6EB28OBBcdFFF3ncTpZlj02Szh9Uf/31l3jggQdc7sf5w3/AgAE+B6rS0tIKz1mTgcxisYiJEyd63ffIkSNFUVGR2/04B7JDhw6J888/3+2+WrZs2SBb+BxnQQCIjRs3VljufJbXXfO2g81mK9cVIS8vr6bKVhUUFIhRo0Z5fa0MHTrUbT3nvsEuWbJEREVFud3XoEGD3HZVcvj99989XtQM2C8y/vXXX93uw/l/JTMzU/Tt29fl69bZX3/9pV6Q6+rWpUsXcezYMbeBzGazidatWwsAIjo62mvXjuLiYvX5EhMThc1m87h+ZVQ2kFX372a1Wj2+r8myLN58802fD4b++ecf9Xfp7mY0GsWnn37qcvvPP/9cXa93797CarW6XG/EiBHqes8884zH32ldVpOBrKSkRA3A/fr189t+a/P9NTc3t1zXQW//i85dKnfv3l35H07YT1449uGt+92ZM2fUdePj46v0fEL4FkaWLl2qDlBhMplcdmPzx7HXo48+qq77/PPPe63deTCFyZMn+/ojV+CvQObv10xsbKy6PD093eO+hg4dqq67ePHiKtWvxfGJL4Fs69atIiEhQQD24PPNN99UWOfMmTPlWkvd3e688063wX3atGnqep66RTs4d5e9/vrrPa67fft2v7xWz+WXQT08cQzp+uyzz6pDgy5YsKDCep06dSr3/aFDh9CrVy91ONi+ffti2LBhaNmyJWw2G/7991/MnDkT2dnZeOWVVyDLstch9d9++20sWbIEjRs3xvjx45GUlASr1YrNmzcjKChIXa+4uBgmkwlXXnklunXrhlatWiE4OBinT5/G7t27MWfOHBQWFmLWrFmIiorC+++/X+55HnroIQwfPhzTpk3DypUrAQCfffYZGjVqVG69xMREn36Hzm6//XbMnTsXABAcHIxx48bh0ksvhU6nw5YtWzBjxgzk5+fjhx9+QG5uLpYsWeJxXrO8vDwMHToU+/fvx/XXX4+rr74aMTExOHz4MD755BMcO3YMKSkpGDt2LNasWVPpeusqs9mMAwcOqN+3bNmywjq7du1S73fr1s3j/mRZRteuXbF69WooioK9e/eiZ8+e/iv4HKWlpRg4cKA6hG7btm0xatQonHfeeTAYDDh48CBmz56N5ORkLF68GMOHD8eyZcsgy+5nwti2bRvefvttCCFwzz33oHfv3ggKCsKWLVvw6aeforCwEMuWLcNrr72Gl19+2eU+5s+fj1GjRsFms8FgMOC6667DgAEDkJCQgLy8PKxcuRI//PAD8vPzccMNN2DZsmVeL8q+7bbb8Pfff+PCCy/ELbfcglatWiEvLw87duxQ19mzZw+GDRumXkzdtWtX3HbbbWjevDnS0tIwb948rFu3DqNGjYLVanX5PLIsY+LEiXj66aeRnZ2N+fPnY8yYMW7r+umnn9Shce+8806Pv9ua5I+/20MPPaRe7Gw0GjFu3Dj07dsXsiyrF6M/+eSTGD58uNd6NmzYgIEDB6KoqAiSJGHw4MG46qqr0KxZMxQXF2PDhg345ptvUFRUhHvvvRdBQUEV5recOHEili5divnz52PDhg146aWXKtQ+Y8YM/PTTTwCAXr16NagpV/xp3bp16v+Nv96zavv9dc+ePerAYxdddJHX/8Xu3burxyu7du2q0vDrlak/Pj4eLVu2REpKCtLT03HmzJkKxwv+8P3332PcuHGwWCyIj4/H77//ju7du5dbx1/HXnfccQfeffddAMDs2bPx4osvejwW8TSYQlV9/PHHeOONN3D8+HEA9t9zjx49MHz4cIwaNQp6vftDYH++ZlJTU5GZmQnA/lqPi4vzuq/Fixer+xoyZIiXn7SiQDw+WblyJYYPH468vDyEhobip59+wjXXXFNunaysLPTu3RuHDh0CAFx44YW48cYb0a5dO8iyjF27dmHmzJk4efIkZsyYAavV6nKAq1tvvRVTpkyB2WzG/PnzMX36dJhMJre1Oe/D2+svKSkJJpMJBQUFWLp0qe+/AG/8ker8Pey9zWZTL34MCgoSP/zwg8v1UlNT1bM4siyLXbt2VVjH+cwhYB8GMzc31+PzL1++3GPrUkZGhnpGXpZlt11m/D3s/dy5c9XlCQkJLs/CHD16tNyZZ3f9gZ1/J0ajUSxcuNDlz+m8r02bNnn9GdwpLCwUCxYs8Mvt33//rXIdvnLuQnLxxRe7XOell17yejbI2dixY9X1XZ0V8qdz+4676pJmNpvL1fTJJ59UWMf5jBfKWnqSk5MrrLdp0yb1wubo6GiXrS3Hjh1Tz8IlJia67fKyadMmERkZKQCI5s2buzwDdm7L+8MPP+zxDKZzC9r999/vct1z3yvcdXl0DB/s6O7rTr9+/QQAodPpxPHjxz2uW1mVaSGr7t/N+ULnqKgosWXLlgrr7Nu3Tx0S3XFzdXY6Ly9P7UIYFRUlVq1a5fLnO3DggEhMTBQARFhYmMszyllZWaJ58+bq79i5C8v+/ftFWFiYAOzdxXzpMuXJ3r17/fb+5e3seFXUZAvZ//3f/6n7/vHHH/2yz9p+f501a5bXYxRnzz//vLr+K6+84suPVMEdd9xRqb+J4/0CgNfuWO54ah2aNm2a2uLTsmVLsX///grb+/PYSwghunfvrtbjqWvX6tWr1fW6du3q+w/sgq/D3nfs2NFlV1kHf75mnH8+b58bQgjx1VdflWsFqgotjk88tZD99NNPahfemJgYtZv7uRzXXUqSJN5//32X6+Tn54urrrpKfa4lS5a4XM+5h8RXX33ltu6jR4+q/xuNGjXyqQu/oyedJEkiJyfH6/q+CMhA5jyPwLRp0zyuu3//fqHT6QQAMXHixArLnT+owsLC1FGpquvQoUNe37D9Hcic+8R6uh5l06ZN5d54XXXncX5jevnll93u64svvvBpPW+cXyPVvfny5lgdWVlZokmTJl4PQh555BF1nQ8//NDrfiu7flWdOnVKGI1GAUDceOONHtc1m81qX+727dtXWH7ugf2aNWvc7mvMmDEe13NcT6XT6cR///3nsa4ZM2ao+5ozZ06F5c7/K926dfMYxv755x913aSkJLfd287dr6tAJkT5C6BdhRwh7O9LjnWGDh3q8WetisoGsur83ZxHTHM1ypjDokWLyj2nq4NQ5zmKfvvtN48/44oVK9R13Y1mtWrVKiHLsvr3ys7OFmazWXTr1q3aBxfOzg3r1bn5Mu9RderzdyC79dZb1X1Xd9Q3IbR5f/3ggw/UZY899pjXfVV2fVduuOEGdR+uTnhWd31X3AWyZ555Rn28c+fO4sSJEy639+exlxDlB6jw1G3MObx6e15vvv76a6HX60X//v3Fc889J2bNmiV+/PFH8fHHH4vbbrtNBAcHq88VHh7uNpT58zXz66+/qstuuukmr/uq7PquaHF84i6Qffrpp+r7dLNmzdx2A/7333/V7R999FGPz5WVlaWeuB00aJDLdRYvXqzuz1N3a+fw6u15He677z51m6qeQDmXNn1ovPjmm28A2Mf8nzhxosd1O3TooDat/vnnnx7Xvemmm9C0aVO/1NimTRt17pRNmzb5ZZ+eHD16FP/99x8AoEuXLhWaeZ317NlT7eaVkpKCf//91+26Op0ODz74oNvlzt3F9uzZU9my6xybzYbRo0fj9OnTAIChQ4dixIgRLtctKChQ7wcHB3vdd0hIiHo/Pz+/mpW698MPP8BsNgMApkyZ4nFdg8GAUaNGAQAOHDiAo0ePul23a9euuOyyy9wu9/RaEUJgzpw5AIArr7zS61w7zt1JvP1fP/DAAx67k/z666/l1tXpdG7XnTx5ssfnAoB7771Xvf/ll1+6XMf58bvvvtvrPmtSdf5upaWlWLJkCQAgISEBt912m9v9DB06FOedd57HWhzv7R06dMC1117rcd0rrrhCfb929xro378/pk6dCsD+Xnfvvffi2WefVd/zxowZ47Fm8s55frOYmJhq7Uur91ct3qsD4fPBZrNh4sSJeO211wAAl156KdauXYtmzZq5XN/fx1633HKL+rPPnz+/3O/EoaioSO1abDQaceutt/rwk7nXt29fpKSkYNWqVXj55ZcxduxYjBgxAvfddx+++eYbJCcno0ePHgDsv2dHF/pz8fXnHy+//DLuvfdeKIqCjh07Yv369W67ADtef5Ik4bHHHvO43+joaLUr55o1a1BaWlphncGDB6ufIWvXrsWRI0cqrCOEwOzZs9Xvfe0uGx0drd731xyQNX4NWVWsXbsWANCkSRP88ccfXtd3HGClpKSguLi43AvLmaeDknPl5eVhzpw5+P3337Fz505kZGSgsLDQ5bonTpzweb9VtXnzZvX+VVdd5XX9q666CitWrABgD4zu+gN36NCh3AvrXM5v3I7rYaqirkwePnnyZPXDJTExsU5Ovuv4/wHsr81ffvnF4/rOf9e9e/eiVatWLtfr1auXx/14eq3s3r1bnTA2PDzca00AYDKZkJOTg71793pcz9v/9ZYtW9T7l19+ucd1BwwY4LWuyy+/HB06dEBycjJmzZqFV199FQaDQV1usVjU6yGaNm2KoUOHet1nTarO32379u1quO/fv7/HMAvYw7a7v1dubq56XV9CQoLPrwEAHl8DL730ElasWIFNmzZh3rx56uOtW7fGxx9/7PU5fPHiiy822GvQHP+3QPUDWX14f60rSkpKcPPNN6vX7A8ZMgQ//vgjQkND3W7j72Ov6OhoDB8+HHPnzkVhYSF++umnCteDOiYmBoDrrruu2hPttmvXzuPyFi1aYMmSJUhKSkJqair27duHn376ST0xSf6hKAoefPBBTJ8+HQDQo0cP/P777x6vn3O8/qKiosod87rjCGGlpaU4fPhwhROCOp0OY8eOxRtvvAEhBGbNmlXhfXzt2rXq9Wrdu3f3OlG4g/PrtDrHxs4CLpAVFBSoFz/u378fN9xwQ6W2z87OdhvI3J0VOtfKlStx6623IjU11af18/LyfK6vqhxnFAF7iPLGeR3nbc/l7eJS58FOSkpKvD5vXfbMM8+obx4JCQlYtmyZx9+P8wWivvxuiouL1fvh4eHVqNQz51aukSNHVmpbT28s1XmtONc0f/58zJ8/3y81Ad7/r0+dOqXeb9Omjcd1o6OjERUVhZycHLfrSJKEu+++G1OmTEFaWhoWLlyIG2+8UV3+22+/4cyZMwDsZ9u8hZiaVp2/m/PvztuBjrd1jh8/DkVRANg/BJ1PHHjj6TWg1+vx3Xff4aKLLlIP7ByPRURE+Pwc5JrjoEen07n9bPWFlu+vWrxXa/35MHXqVOTm5gKwD3z09ddfexzEoqaOve644w51ILKZM2dWCGTOoXzChAkVtvd04iY0NNSnE9Tnio2NxeTJk/HUU08BABYvXlwhkPH1Vz3Tpk1TX38DBw7EggULPA6qAZw9TsjOzq7S68+V8ePH44033gBgH1zmhRdeKDe4jLfXnzvOny3Ov7vqCLhA5vgDVpXjbK4rvnyYHDhwAEOHDlV/wR07dsQ111yD9u3bIyYmplzT791334309HSXzd3+5tyEHBYW5nV95xe+p+ZnrUZ+CzSvvvoq/u///g+A/QB2+fLlXoNvVFSUet8xIpUnjg+7c7f1t+r8D3n6/6nOa6WmagK8/187Wrb1en25lix3wsLCPAYywP4m/8wzz6C0tBRffPFFuUD2xRdfALAHtzvvvNPr89W06vzdnLu9eDqz7uDpvak6rwGLxeJxeVxcHGJiYtT3ujZt2ngdWYx84wjsNpsNRUVFPr0OzqX1+6sW79Vafz44jxZbWFjotYdKTR17DRw4EM2bN8eJEyewZs0aHD16VO2F4ehaCNh7E7gKV54OzFu2bOmxm70nzr0h9u3bV2E5X3/VU9nXH1AzxwkdO3bEpZdeivXr1+PIkSNYs2YN+vfvD6B8d9ng4GDccsstPj+fc63VOVHlLOACmXOQ6NevH1avXl2rz//666+rYeyZZ57BK6+84naoVm99rP3J+YyFu66TzpwPpGqyNcZXRUVFXq8F8lViYiIuvvhiv+wLAN566y0899xzAOwtJMuWLfOp2dr5gMKXDwXnfsa+tHJWleN/SJIkWK3WgAjdzv/Xzz//PF566aVae25HSLBarbBYLF5DmS//X7GxsRgxYgTmzJmDP//8E8eOHUNiYiJSUlKwbNkyAPYDkdatW1f/B9CQ89/NMfS5J55+d877Gjt2bLlhrqvr/vvvL/f/lZycjGeffRZvvvmmX/a/b98+lwdtVdG3b1+vrZaBxLmbYlZWVqUDWSC8v2rxXq3158Prr7+OuXPnYv369ViwYAFGjRqFefPmuX3/q6ljL1mWMW7cOLz22mtqt7EXXngBgH2oe8eB+tixY2u1N4FzlzNXJ+D4+queyZMnY+/evViwYAE2bNiAwYMHY+nSpR6PRx2XKTg+S/3ljjvuwPr16wHYW8Qcgcy5u+zw4cMrFUT92ZXbIeACWWRkpDq+f21cm3Wu5cuXAwAaNWqEl19+2W0Yy8/PL/cHqWlNmjRR7zvP3+KO8zr+GsikOs6cOVPpJmh3xo0b57drD9577z08+eSTAOyvvaVLl3odcMLB+aDC08ApgL0/tWNQFlmWvQ5+UB3NmjXDtm3bIITAyZMn0aJFixp7rsrU5FDb/9dNmzZVr106fPgwOnbs6Hbd7Oxsr61jDvfeey/mzJkDRVHw1Vdf4cUXX8RXX32ldsvTejAPf3B+7zh48KDX9T2tU1OvgTlz5qgDxnTr1g0ZGRlISUnBO++8g8GDB3udx84Xc+fO9dtJhJUrV/p0rWKgaNWqFdatWwfAfhDSvHlzn7cNlPfX888/H7IsQ1EUbNu2DYqieDxR5Xzdqa/XlJyrMvWnp6erB6Dx8fF+mYMsPDwcf/zxB66++mqfQllNHnuNHz9eHVhk9uzZeP755wGUn3vs3K6MDjV17bm3FiF/vmYaN26M2NhYZGZm4tixY8jIyPB4Uqa2X381cXxiMBgwb948jB49Gj///LNPoaxZs2bIycnBmTNnfDp56quRI0di8uTJaovYRx99hLCwMHz99dfqOpWd+875+N/VPIpVUWunzp1fyN7+wfr16wfAfvDky0GAP6WlpQGwXxDu6Z9v+fLl6oGXO5X5mb1xHpTDcQbeE+fWqJqcgLgumz59Oh599FEA9g+vJUuWqKMv+aJz587qwcnu3bs9foitX79evdawT58+Ndpq6Tj7A3gfobC2dO3aVe1zvWLFCq//O/7kPPGpY6J2dxzdZ3zRt29fdO7cGQDw1VdfwWKx4KuvvgJgP6Fz/fXXV77YAHPhhRfCaDQCAFavXu21e7ZjICFX4uLi1NG1Nm7c6Jdrb48cOYL7778fgL0l9Pvvv8e3334LnU4HRVEwduzYcgdeVHnOB3b79+/3ebtAen+NiIhQB7fJzc3Fxo0b3e7r+PHj6mijiYmJVZoUGrB3iXN091yzZo3H60ycJ5e9+uqrq/R8rjhCWZ8+fQAACxYswMiRI912Aa6pY6927dqpgy8dPnwYa9euxZo1a3D48GEA9tEfPZ0oqwnOLYCuWoT8/ZoZPHgwAPuxoKfP5aKiIvX62pCQkHKf55URCMcnjlB20003AYAayty99zt+1pKSEqxZs8YvNQD2v6WjhoKCAsyfPx9Hjx5VXwPNmzfHwIEDK7VPx0BTkiShS5cufqmz1gKZc3O4ty5B48aNU+87zqTUFkd3jMOHD7sNUTabTe0P70llfmZvWrVqpXbT2759u8dQtmXLFvz1118A7Mk9EK6lcIyy6I+bP1rHvvjiC0yaNAmA/UDu999/R+/evSu1D0mScPPNNwOwv8l++OGHbtedNm2aer+mR3MaPXq0ehD95ptvVvu15w86nQ5jxowBYO8a4W64+JrgHIymT5/uMVR88MEHldr3PffcA8D+gfzwww+rH3rjxo3z29k9LQUFBalDC6elpeG7775zu+6SJUu8jojpeG8vKipSL7SuKpvNhjFjxqgf7tOmTUP79u3Rt29fPP300wCAkydP4q677qrW8wD2URb99f5Vl1rHAOCSSy5R7/s6xUsgvr86P+7p//zDDz9UP/srOyiSM5PJpP7v5OXluf3cEkLgo48+clmnPzhCWd++fQHYB8lwF8pq8tjLuQVi5syZ5X4flW2dqK6srKxyrwHH3+lc/nzNOO9r2rRpbo8vZ86cqb6nDR061KcxA1wJlOMTvV6PuXPnqtNbbNiwAVdffbXLUDZ27Fj1/ksvveTX8RnOff05d5cdN25cpS7tsNlsaitmp06d/Dd4lD8mM/NlYuiHHnpIXWf16tUe92ez2USPHj3U9SdPnixKS0vdrl9UVCS+/vpr8f3331dY5jxhpi8Tcg4aNEhd/913362w3Gw2l5vEEB4mkH333XfVdWbNmuX1ub1NDD1v3jx1eZMmTcTevXsrrJOSkiLatm2rrvfRRx+53JdjuS+zxldm3bpg1qxZ6sTZoaGh1Zqo9eTJkyI0NFQAEHq9XixfvrzCOs6TdbZo0UIUFxdXo3rfPPbYY+pzXn755eL06dNu17XZbGLZsmUuJzh3N9GjK97WPX78uIiKihIARFBQkNf/ibS0NPHyyy+7nLizMhPNCyFE37591fXvv/9+lxNJnzv5r7v/a2c5OTnq39/55m7CaH+pzMTQ1f27rV27Vl0eHR3tclLv5OTkcpP9ws0ExQUFBaJly5YCgJAkSbz11lseJ/XOyckRH3zwgVi2bFmFZc8995z6XCNGjCi3zGKxiN69e6vLP/vsM4+/g7quJieGLikpEWFhYQKAuOyyy7yuH6jvr4WFhaJp06bquq4mOV+2bJnQ6/UCgDCZTCI1NdXlvpyPeTy9B23dulX9XURGRrp8L3vxxRfV/fTo0cPtvnzhbmJoIYTIz88v9z54/fXXC7PZXG4dfx57nSs/P199HZlMJmEymdTXSG5ubpV+3nOtX79efPHFF6KkpMTtOsePHxc9e/ZUf8b27dsLi8Xicl1/vmYURREXX3yxuq+XXnqpwjrbt29XJzuWZdnjROzOrz9XnwFC1P7xiafPEovFIkaMGKEu79Wrl8u/+0033aSuM2rUKI+vDYvFIubPn+/2ONeZoiiiVatW6mdPQkKC+jwHDhyo1M+5fft2dduHH364Utt6UmvXkF155ZVqCr/zzjvxyCOPoGXLlupFnO3atVOHTJZlGfPnz0fv3r1x8uRJfPDBB/jhhx9w880348ILL0RkZCQKCgpw7NgxbNmyBStWrEBhYSFeeeWVatc5adIktfXp0UcfxapVqzB48GDExsbiwIEDmD17Ng4cOIDLL78cBw4c8NgMfOWVV6r3n3jiCaSnp6Njx47q0LPNmjWrVFPnyJEjsWDBAsydOxenT5/GxRdfjPHjx6N3797Q6XTYsmULZsyYoZ55uOqqq9TuPGS3ZMkSTJgwQT0zMmHCBOTk5HidE+niiy9GYmJihcebNm2K//3vf7jvvvtgtVpxzTXXYOzYsejfvz+sViuWLFmijuKj1+vx+eefe5yk0fmaxSNHjridE8yb119/Hdu2bcOKFSuwcuVKtGnTBjfddBN69+6N+Ph4mM1mpKamqq2tqampuPLKK/Hss89W6fl80bx5c8ydOxfXXXcdSktLMW7cOLz77ru47rrr0L59e4SEhCA3NxfJycnYuHEj1q1bB5vN5nXuMF989tln6NGjB4qKivDxxx9jw4YNuO2229C8eXOkpaVh3rx5WLduHXr37o1jx47h5MmTPp0xi4yMxKhRo8r1RR8wYADat29f7ZoDRd++fXH//ffj448/RnZ2Nnr16oVx48ahb9++kGUZmzdvxowZM1BYWIjhw4d7/F8KCwvDL7/8gv79+yMvLw9PPPEEPvvsM9x00004//zzYTKZkJeXh8OHD2Pz5s1YtWoVzGazOmGow99//632UmjevDk+//zzcsv1ej3mzJmDiy66CHl5eXjkkUfQv3//Wu8WVRP++++/CtNGOHfv+fnnnyt0N7vzzjurPMBMUFAQrr76asyfPx9btmxBQUGB2+GrA/n9NTQ0FJ9//jmuv/562Gw23HHHHVi8eDGuueYa6PV6rF69GrNnz1ZHh3vvvfeQkJDg66/Jpa5du+KJJ57Am2++idzcXFx66aW466670LNnT7XrlKP7mslkqvA69ieTyYQlS5ZgyJAhWLt2LX799VfcfPPN+PHHH9XW/Jo89jKZTLj55psxc+bMcoOO3XTTTX5rYUhLS8PEiRPx2GOPYfDgwejWrRuaNWuG4OBgZGZmYt26dfjpp5/U7qPh4eGYN2+e2+kA/PmakSQJn3/+Ofr164eioiK88MILWLduHUaMGIGwsDBs3rwZX375pdqj5amnnqp2Vzh/H59Uh16vx/fffw9JkvDjjz9i48aN6jVlzn//r776CsnJydi5cyfmzZuHpUuXYuTIkejevTuio6NRXFyMkydP4r///sOyZcuQnZ3t02jGkiRh/Pjxam8Hx+VJl112mU9TujhzvvRh+PDhldrWI3+kOl9ayKxWa7mzM+feXJ2ZPXXqlLjyyivdbuN80+l04osvvqiwj8q2kAkhxFNPPeXxufr06SPOnDmjnun1dCb9lltucbufc39Xvpz1t1gs4q677vL6+xgxYoQoKipyux/Heg2thezcVhBfb97OOr/99tvCYDC43T48PNyns4jO27g76+Wr0tJS8eCDDwqdTufTzzh27NgK+/BnS4vDhg0bRJs2bXyqyWQyuTxLWNkWMiGE+Ouvv9QWOle3pKQkcezYMdGsWTMBQFxwwQU+7XfTpk3l9jNnzhyfa6qq2mwhE8L+/n377be7/d3Jsizeeustj2fone3bt0907drVp9dAUFCQWLJkibptdna2+t4ry7LH9/Vvv/1W3U/Xrl09nu2vK5x/x77eqtNKJYQQv/zyi7qv2bNnu10v0N9fhbC/JhytM65uRqPRZe8YZ762kAlhPzP/8MMPqy1lrm6NGjUSK1as8Kl+T3z5/ysoKBD9+vVT17vuuusqtJT549jLldWrV1fY/q+//qruj61asGCBz6+5pKQkly2WrvjjNeOwbNkyER8f73ZfkiSJxx57TCiK4nE/ztt4O1bw5/+PJ758llgsFjFy5Eh1vUsuuaRCK1hubq4YNWqUz3/L5557zqf6jhw5UuH/8Kuvvqr0z+loYU1MTPT6d6qMWgtkQghRXFws3njjDdG7d28RHR1d7kDR00HDqlWrxD333CM6d+4soqKihE6nExEREeL8888Xo0aNEp988ok4deqUy22rEsiEEGLJkiVi6NChIi4uThgMBtGkSRNxxRVXiC+++EJt3vYlkFmtVvHJJ5+IAQMGiLi4OLVp29XvqjIHmRs2bBB33nmnaNeunQgLCxMhISGidevW4rbbbvPpjd3xPAxk/jlgEEKInTt3igceeEB06NBBhIWFifDwcJGUlCSefPJJcfToUa/bFxYWlnuDz8zM9MNPLMSBAwfE1KlTxSWXXCLi4+OFXq8XoaGhonXr1mLIkCHi//7v/9x2jaiJQCaE/U3522+/FSNHjhStW7cWJpNJ6PV6ERMTI7p37y4mTpwo5s2bJwoKClxuX5VAJoQQqampYsqUKaJjx44iJCREREVFie7du4t33nlHFBYWCkVRREhIiAAgBgwY4NM+FUVRu5nExMR47C7jL7UdyBwWLlwohg4dKuLj40VQUJBITEwUt9xyi1i/fr0QwrcDQgdFUcSvv/4qxo0bJzp06CAiIiKETqcTUVFR4sILLxRjx44VM2fOFFlZWeW2c/6gnjp1qsfnEEKIMWPGqOs/9thjXtcPdFoEMqvVKhITEwUAMWjQILfrBfL7q7OjR4+KJ554QnTu3FmEh4eLsLAw0aFDB/HAAw+IXbt2ed2+MoHMYf369WL8+PGiTZs2Ijg4WERFRYmLL75YvPzyyyI9Pb1S9bvj6/+fq1Dm6mRFdY69XFEUpdwlFa1atfLrAW1+fr749ddfxdSpU8UVV1whOnToIGJiYoRerxdRUVHivPPOE+PGjRO//fabx67SrlT3NePszJkz4qWXXhIXX3yxiIqKEsHBwaJNmzZi/Pjx6nupN5UJZEL49//HHV8/S6xWa7n3cVehTAh7l9+HH35YdO3aVcTGxgq9Xi9MJpNo3769GD58uHj33XfFoUOHKlXjFVdcoT5vWFiYyM/Pr9T2ycnJ6vavvfZapbb1RhKihsYUJaJKWbp0qTrC1kMPPVTpASao+nbu3IkLLrgAgO9/g+XLl2PQoEEA7HOvvP/++zVZIpEm3nvvPTz66KPQ6XQ4evRopYa/JyKqD55//nm88sorCAsLQ0pKSrn57KpL+xljiQjA2TnwwsPDa/RaLnLPebQzX69d++STT9T79WHuMSJX7r33XjRu3Bg2mw1vvfWW1uUQEdWqvLw8TJ8+HYB9vAl/hjGAgYwoYDgC2aOPPor4+HiNq6l/1q5d63H+s+nTp6sX1Tdr1gzDhg3zus9t27apAxYMHDiwynMWEQW6kJAQvPjiiwCAzz//HKdOndK2ICKiWjRt2jRkZWUhNjYWTzzxhN/3zy6LRAEgIyMDjRo1QlxcHA4dOlSjE0c3VO3atUNJSQmuueYadO3aFfHx8bBYLDh06BAWLFiA//77T1134cKFbgPZH3/8AUVRkJycjLfeegunT58GYB/5zzEBK1F9pCgKevToga1bt+LBBx/0OLcREVF9kZeXh9atWyMrKwuffvqpOgepPzGQEVGD0K5dOxw6dMjjOiEhIfjiiy/USaxdcZ6awMHX683+/PNPFBUVeS/Whbi4OHVyVyIiIqo/GMiIqEHYuHEj5s+fj40bN+LkyZPIzMxEUVERoqOj0aFDBwwcOBD33Xef17mHHIHMZDKhQ4cOuO+++zBhwgSf5i1r1aoVUlJSqlR///79sWrVqiptS0RERIGr1iaGJiLSUq9evdCrV69q74fnsIiIiMif2EJGRERERESkEY6ySEREREREpBEGMiIiIiIiIo0wkBEREREREWmEg3oQEVGV2Gw2FBcXo6ioSL05f19YWIjS0lKYzWaYzeZy9119bzabYbPZoChKua+Om6Io5ZYB9lEv3d0cI1/KsgydTge9Xg+DwaDe3H1vNBoRFBSEkJAQBAcHIzg4GKGhoep958dDQkJgMpkQGhoKvZ4fqUREVHn89CAiasCEEMjPz0deXh7y8vIq3M/NzVUfc3wtLCxEUVERSkpKtC4/oISGhsJkMpW7hYeHl/s+IiICUVFRiIyMRFRUFKKiohASEuJyfjsiImoYOMoiEVE9oygKcnNzkZWVhezs7Apfz71vs9mq9Xw6nQ6hoaHlbiEhIQgLC0NwcDCWzVwDSQCwSYCQAEUCFEBSHPedvhcAUPZVwL6+41NKnH1ccjzmtBjOmUZC2YpO30vC3lFfEhCy43tRbpmQy3aus9+unngFSkpKUFxcjOLiYpSUlKjfO76WlpZW6/dnNBrVcOZ8i46ORlxcHOLi4hAbG4u4uDiEhYUxvBER1TMMZEREdYjNZkN2djbOnDmD9PR0pKenV7ifkZEBq9Vaqf2GhoYiIiIC4eHhiIiIQEREBFZ/txGSVQKsMiSrDFgk+1ebBMkmATb7fSiAhIYbEkRZgBN6BdALQKdA6AWgL/uqE7hu8lVqi2NOTo761Ww2V+q5goOD1XDmCGqxsbFo1KgRGjVqhMaNGyM2NtanicqJiCgwMJAREQUQm82GjIwMnD59usItNTUVmZmZPrdoRUZGIiYmBtHR0dj2xx5IFhmwyJDMZ7+qj4mGG6i0IlDWQmcQEAYFwqAATl8H3nkZMjMzkZGRgYyMDBQUFPi0X71ej0aNGiEhIQGNGzeu8LVRo0YwGAw1/NMREZGvGMiIiGpZaWkpTp48iWPHjuHEiRPlQldaWprX1i2dTofY2FjEx8ejUaNGWPPtJqBUhmTWQSr7CjNDVn0jZAEYbRBGpexmw8hnrlVbRtPS0pCRkeE1sMuyjISEBDRr1gzNmzdH8+bN0axZMzRr1gxNmjRBUFBQLf1EREQEMJAREdUIRVGQlpaG48ePV7ilpaXB01uvTqdD48aN0aRJE2xdtBtSie7szSzbw1YD7iJI7gkIIEiBCLKptyGTrkBqairS0tKQmprqsZukJElo1KiRGtJatGiBli1bolWrVmjUqBG7QhIR1QAGMiKiarDZbDh16hSOHDlS7nby5EmPB74mkwmJiYlo3rw5Vny57mzgKtXZW7sYuKgGCAh7t8gQG0SwDbe8cj1OnDiBkydP4sSJEygqKnK7bXBwMBITE9GqVSs1pLVs2RJNmzblkP9ERNXAQEZE5ANHi9fRo0dx+PBhNXilpKS4DV4Gg0FtZVj/3b+QSvSQinSQivWAVWLoooBiD2sCItgKEWLDra8Ox/Hjx3H06FEcP37cbVdavV6PFi1aoE2bNmjbti3atm2Ldu3aIS4ujiNCEhH5gIGMiOgcVqsVR48exYEDB5CcnIwDBw7g4MGDblsPgoKC0KpVKxxYkwKpSA+pSA+5SAeU6hi6qF4QEBDBNohQK0SoDVfefSlSUlJw7NgxFBcXu9wmMjKyXEBr27YtWrVqBaPRWMvVExEFNgYyImrQiouLcfDgQRw4cEC9HTlyBBaLpcK6er0eiYmJOLrxlL2lq0gPuUgPlDB4UcPkuGZNCbVChFpx+cReOHjwII4fP+5ycBGdTofExER07NgRnTp1QqdOndC2bVsOJEJEDRoDGRE1GFarFUeOHMGePXuwd+9e7N27F0ePHnU5wIbJZEK7du2wc3EypEI9pAI9pGI9Ry4k8oGQhL01LcyK4U9fhUOHDuHgwYPIz8+vsK5Op0ObNm3UgNaxY0e0adOG16URUYPBQEZE9ZIQAmfOnMGePXvUALZ//36UlpZWWDcmJgYdOnTAPz/shFSoh1ygZ3dDIj8TEIBRgWKyYMybw7Fv3z7s27cPubm5FdY1Go1o164dzjvvPCQlJSEpKQkJCQkaVE1EVPMYyIioXrBarUhOTsaOHTuwc+dO7N69G1lZWRXWCwsLQ6dOnbDtl32Q8vWQ8w2QLDoNKiYitcujyYKRrwzF/v37sX//fpeTYMfHxyMpKQldunRBUlIS2rVrx1Y0IqoXGMiIqE4qKirC7t27sXPnTmzfvh179uyp0Prl6Ap1aM0Je/DKN0AqZssXUSBTBxAJt+D6pwdh586dOHToUIVr0oKCgtQWtC5duqBLly4wmUwaVU1EVHUMZERUJ+Tm5mLbtm3YsWMHduzYgYMHD1Y4QAsPD0eXLl2wac4OewArMEBSGL6I6johKxDhVoz74Cbs2rULu3fvrnA9mizL6NChAy666CJ07dqVAY2I6gwGMiIKSEVFRdixYwf+/fdfbN26FQcPHqww+EZCQgLSd+ZCzjNAyjPaRz5k6xdRvScg7JNbR1hw1eS+2L59O06ePFluHQY0IqorGMiIKCCYzWbs2bMHW7duxb///os9e/ZUaAFr2bIljm88AznPADnPCKmU134RkZ0w2qBEmnH1Y/3w33//uQ1oPXr0QI8ePdC5c2cYDAaNqiUiOouBjIg0IYRASkoKNm3ahM2bN2PHjh0VrgFr3LgxzmzLgZxrhJxj5OAbROQzbwEtJCQEXbt2RY8ePdCzZ080b94cksQWdiKqfQxkRFRrioqK8O+//6ohLDU1tdzy6Oho5CYXQc4pC2ClHEGNiPxDGG1QoswYcH9PbNmyBTk5OeWWN27cWG0969atG8LDw7UplIgaHAYyIqoxQggcOXIEmzZtwqZNm7Bjxw5YrVZ1ucFgwIUXXoj/ftgHOSeI14ARUa0QEBBhVkz49Gb8888/2LlzJywWi7pcp9MhKSkJl156Kfr06YMWLVqw9YyIagwDGRH5ldVqxbZt27B27VqsW7cOZ86cKbe8adOmSN2SDTk7CHKukaMgEpHmhCygRJox/IWB2Lx5M44dO1ZuebNmzdCnTx/07t0bF154Iec/IyK/YiAjomorLCzEpk2b8Pfff2Pjxo3lJnU1Go3o2rUrtny/B3KWEVIJW8GIKLCJIBvu+3YM1q1bh23btpVr2Q8LC0PPnj3Rp08f9OrVCxERERpWSkT1AQMZEVVJRkYG1q1bh7///htbt24t190nOjoauXuLIWcF268FYysYEdVRQqdAiTJj0KOXYsOGDeWuPdPpdOjatSsGDBiAyy67DNHR0doVSkR1FgMZEfnszJkzWLVqFVauXIndu3eXW9aiRQuc2pAJOTMIUr6BrWBEVO8ICIhwC0a/Mwzr1q3D4cOH1WWyLOOCCy5A//790a9fP8THx2tYKRHVJQxkRORRRkaGGsJ27txZblnnzp2xb3EK5MwgyMW8poKIGhYl2Io7Pr8Ja9aswb59+8ot69y5MwYMGID+/fujcePGGlVIRHUBAxkRVZCZmYnVq1dj5cqV2LFjBxxvE5IkoUuXLtiz4Ii9JczMecGIiAD7dWcTZ47C6tWrsWvXrnLLOnfujEGDBuHyyy9nt0YiqoCBjIgA2AfmWLVqFf78809s374diqKoy5KSkrD3txToMhjCiIi8EUYb7pszBmvWrMG2bdvUk1o6nQ7du3fHoEGD0LdvX4SGhmpcKREFAgYyogbMarXin3/+wZ9//om1a9fCbDary84//3zsX3QMuoxghjAioioSBhvu/mY0li9fXq5bY1BQEPr27YuBAweiZ8+eMBgMGlZJRFpiICNqYIQQSE5Oxp9//okVK1YgKytLXdayZUucWJ0JXXowpFKGMCIif1KCrRjz0bVYvnw5Tpw4oT4eERGBK6+8EkOGDEGHDh04CTVRA8NARtRAZGRkYOnSpVi6dCmOHj2qPh4VFYX8PaWQz4RAKtBzdEQiohomICBMVgx/7coKJ8batm2LIUOGYNCgQYiKitKuSCKqNQxkRPWYzWbD5s2bsWjRIqxfvx42mw2AfbJm60kJ8pkQ+zxhgiGMiEgLAgIiyox+k7uV6zqu1+vRp08fDBkyBD169IBez5FsieorBjKieigtLQ2LFy/G77//jjNnzqiPd+7cGft/OQY5IxiSTdawQiIiOpfQK7h/7hgsWbIE+/fvVx+Pi4vD4MGDMWzYMDRr1kzDComoJjCQEdUTVqsV69evx8KFC7F582Z1VK+IiAgU7rVCTguBXMQzrEREdYESZsH1r12BZcuWITc3V338kksuwfDhw9GrVy/odLzWl6g+YCAjquMyMjLw22+/4bfffit3HULXrl2xc+4he2sYuyQSEdVJQhJ4dsWDWLRoETZv3qw+npCQgOuuuw5Dhw5FTEyMhhUSUXUxkBHVQUII7NmzB/Pnz8eqVatgtVoBANHR0cjbUWpvDSthaxgRUX0igq248Z1B+P3335GXlwfAfq3ZgAEDMHz4cHTp0oUjNBLVQQxkRHWI2WzGX3/9hZ9//rncfDZdunTB3h+PQc4MYmsYEVE9J2SBKYvuwi+//II9e/aoj7dp0wYjRozAoEGDEBQUpGGFRFQZDGREdUB6ejp++eUXLFy4EDk5OQDKRko8LkN3KhRyIScUJSJqiJQwCwY/dymWLVuG0tJSAPbeEjfccAOGDx/OofOJ6gAGMqIAduTIEcydOxfLli1TuyXGx8cj659i6FJDIFk5UiIREQFCp+Cub27GTz/9pI6uazQaMXjwYNx8881o1aqVtgUSkVsMZEQBRgiB7du34/vvv8eGDRvUxy+88ELsnnvU3i2RkzcTEZELQhJ46s/7MG/evHJd2y+55BKMGjUK3bp143VmRAGGgYwoQNhsNvz999/4/vvv1WsCJEmClG6E7kQY5AJ2SyQiIt8ICIgIC3o9kIS///5bnQqlffv2GDNmDPr3789h84kCBAMZkcbMZjOWLFmCuXPn4uTJkwDKrg9L0UF3MpSjJRIRUbWIYCuufX0Afv/9dxQXFwMAWrRogTFjxmDQoEEwGHjCj0hLDGREGiktLcWiRYvw3XffIT09HQAQHh6Oot0KdKdDIVl4fRgREfmP0CsY89kw/PTTT8jPzwcANGrUCLfccguGDRvGkRmJNMJARlTLSkpK8Ntvv+H7779HZmYmgLKBOjaVQJcaDElhECMiopojdArunD0C8+bNQ1ZWFgD7yIyjR4/GDTfcgODgYI0rJGpYGMiIaklxcTF+/fVXzJ07V/0ATEhIQOa6IshpIZw/jIiIapWQBCb9fDvmzJmD1NRUAEBMTAxuvfVWXH/99WwxI6olDGRENcxsNuO3337DN998g+zsbABA48aNkbG2EPIZBjEiItKWkAQeW3QnZs2ahVOnTgEAYmNjcdttt+Haa6+F0WjUuEKi+o2BjKiGWK1WLF26FDNnzkRaWhoAoGnTpjizqgByejCDGBERBRQhCTz863jMmjVL/dyKj4/H2LFjMXToUOj1HGSKqCYwkBH5maIoWL16NWbMmIFjx44BsH+gZa8vYYsYEREFPEdXxtmzZ6uDTjVv3hx33303+vfvz3nMiPyMgYzIj7Zs2YJPP/0UycnJAIDIyEgUbLPZR01U+AFGRER1h5AE7p03GrNnz0ZOTg4A4Pzzz8e9996Liy66SNPaiOoTBjIiPzh69Cg+/vhjbNy4EQAQGhqK0r0SdKdCIdk4aiIREdVdQqfg1s+GYt68eeo8Zr1798Y999yDNm3aaFwdUd3HQEZUDdnZ2fj666+xcOFC2Gw26HQ64LgRumMmSFYGMSIiqj+EwYYhr/dVP/NkWcaQIUMwceJEREdHa10eUZ3FQEZUBaWlpfjxxx/x7bffoqioCAAgZwZBd8QEuYQXPRMRUf2lBFvRZ0oXrFq1CgAQFhaGcePG4aabboLBYNC2OKI6iIGMqBKEEFi3bh0+/PBDnD59GgDQoUMHHPkpHXIehwUmIqKG493tz+PDDz/Evn37ANgH/njwwQfRu3dvDvxBVAkMZEQ+OnHiBD744ANs2rQJQNnIiX+X2oewBz94iIio4REQeGzxnfjss8+QlZUFAOjRowcmTZqEVq1aaVscUR3BQEbkRXFxMb799lvMnTsXFosFer0e4ogRuuNhkBReJ0ZERCR0CkZ8OAg//vij+lk5evRojB07FsHBwVqXRxTQGMiIPFizZg2mTZuGM2fOAACkbCP0h8MhF/M6MSIionOJYCu6P9QR69evBwA0btwYjzzyCHr37q1xZUSBi4GMyIX09HS8//77WLt2LQD7B0rGymLImUHsnkhEROTF86sfwgcffKCe0OzXrx8eeughNGrUSOPKiAIPAxmRE0VR8Ouvv+Kzzz5DUVGRfRj7o8Fl3RMZxIiIiHwlZAU3fTgQP/zwA2w2G0JCQnDnnXfipptusn++EhEABjIi1ZEjR/D2229j165dAAApzwD9wXDIRRzCl4iIqKqUUAs6jWuGnTt3AgA6d+6MqVOnomXLlhpXRhQYGMiowbNarfjmm2/wzTffwGq1IiQkBJZdesinQ9g9kYiIyA8EBCYtuB2ffPIJioqKYDQaMX78eIwePRp6Pa/LpoaNgYwatCNHjuC1115DcnIyAEDONEJ/KAKSmV0piIiI/E0Ybeg6qa06hUzHjh0xdepUtG3bVuPKiLTDQEYNks1mw9y5c/HVV1/BYrEgPDwcxVskzilGRERUwwQEpvx+F6ZNm4aCggLodDrccccdGDNmDK8towaJgYwanOPHj+P//u//sHv3bgCAnGWE/iBbxYiIiGqTMNhwyZTz1BGNk5KS8Oyzz6Jp06YaV0ZUuxjIqMEQQmDhwoX48MMPUVpaitDQUJi36SGfYasYERGRFhytZe+//z6KiooQEhKCyZMn45prroEk8bOZGgYGMmoQ8vLy8NZbb2HNmjUAACnHCMOBCEilbBUjIiLSmgiyodOdTbFjxw4A9nnLpkyZgqioKG0LI6oFDGRU723fvh2vvPIKzpw5Y++bfjAEupOhbBUjIiIKIAIC42cPx4wZM2Cz2RAbG4sXXngBF110kdalEdUoBjKqt6xWK2bPno3Zs2dDURQ0a9YMZxYXQy7gvGJERESB6qO9r+KVV17BsWPHIMsyJkyYgNtuuw2yLGtdGlGNYCCjeikrKwsvvfQS/vvvPwCAnBYM/eFwSDa+mRMREQU6ISu4/KWLsXTpUgBAjx498OyzzyI6Olrjyoj8j4GM6p2dO3fihRdeQEZGhn2S520G6NJDtC6LiIiIKkFA4NFFE/Dee++htLQUcXFxeP7559mFkeodBjKqN4QQmD9/PqZPnw6bzQapSAf93ijIxXqtSyMiIqIqUkKtaHqDCSkpKZBlGffffz9uvvlmjsJI9QYDGdULRUVFePvtt7FixQoAgJweBP2BCEgKuygSERHVdUIWuPylrmoXxquuugqPP/44goKCNK6MqPoYyKjOO336NJ566ikcPnzYPorigVDoToVwFEUiIqJ6REDg3h9Gqz1hOnTogNdeew0JCQlal0ZULWw+oDptx44duOeee3D48GHExMRA3hoB/SkOaU9ERFTfSJDw2ch5ePfddxEZGYnk5GRMnDgR27Zt07o0omphCxnVWUuWLMHbb78Nq9UKqUAPw54oSGZO9ExERFTfiSAbWt4ajQMHDkCn0+Gxxx7DsGHDtC6LqEoYyKjOsdls+OyzzzB37lwAgJwRBH1yJCSFrWJEREQNhZAF+j1/AZYvXw4AuO2223DXXXdxvjKqcxjIqE4pLS3Fyy+/jLVr1wIAdMfCoDsWxi6KREREDZCAwC1fXINZs2YBAK644go89dRTHOyD6hQGMqoz8vLy8NRTT2Hnzp0wGAwQO0Ogy+D8YkRERA3do4sn4K233oLNZkOXLl3w2muvISoqSuuyiHzCQEZ1QlpaGqZMmYKUlBSYTCaUrjdAzjNqXRYREREFiDf+mYrnnnsOBQUFaN68Od599100btxY67KIvGIgo4B36NAhPP7448jIyABKZRh2R0Mu4mTPREREVJ4SYkXsUANSU1MRHx+P//3vf2jVqpXWZRF5xKseKaDt3LkTkyZNQkZGBqRCHYzbYxjGiIiIyCW5WI+s36xo1aoV0tPTMWnSJOzdu1frsog8YiCjgPXff/9hypQpKCgogJRrgGFHDIe1JyIiIo8ksw6n5hbivPPOQ25uLh5++GFs3bpV67KI3GIgo4C0efNmPP744yguLoaUbYRhdzQkG1+uRERE5J1klXHoqwxcfPHFKC4uxuOPP44NGzZoXRaRSzzCpYCzbt06PPXUUzCbzZCzjPYJnznHGBEREVWCZJOx68MTuOyyy2CxWPDss88ylFFAYiCjgLJmzRo8++yzsFgs9gmf90ZBEgxjREREVHmSkLDpjf3o378/QxkFLI6ySAFj48aNePrpp2G1WiGfCYY+OYITPhMREVG1CUmg99PnYfXq1TAYDHjttdfQq1cvrcsiAsBARgFi69ateOKJJ+zdFNODoN8fyTBGREREfiMkgV5PdcKaNWtgNBrxf//3f+jZs6fWZRExkJH2du7ciSlTpqC4uBhyphH6feymSERERP4nJIFLpnbE2rVrERwcjHfffRdJSUlal0UNHAMZaSo5ORkPP/ywfWj77LIBPBjGiIiIqIYISaDro62xadMmhIeH46OPPkLr1q21LosaMAYy0szp06dx3333ISsryz7P2O5ojqZIRERENU7IAu0nxmP37t2Ii4vD9OnT0aRJE63LogaKgYw0kZeXh/vvvx/Hjh2DVKiHYQfnGSMiIqLaI/QKmt1iwpEjR9C8eXNMnz4d0dHRWpdFDRCPgKnWlZaW4qmnnsKxY8eAEhmG3VEMY0RERFSrJKuMk/Py0bhxY5w4cQJPP/00SktLtS6LGiAeBVOtUhQFr732Gnbu3AlYJRj2REMy67Qui4iIiBogyaxD5iILwsPDsXv3brzxxhtg5zGqbQxkVKu+/PJLrFq1CgaDAYa9UZCL9FqXRERERA2YXKLHq6++Cp1OhxUrVmDmzJlal0QNDAMZ1Zq//voL3377LQBA7AqBnGvUuCIiIiIi4Ilu/4fHHnsMAPD1119j+fLlGldEDQkH9aBacfDgQdx///0oKSmB7kQo9EfDtS6JiIiIqJwbProcc+fOhdFoxPTp09GxY0etS6IGgIGMalxOTg7uvvtupKam2uca2x0FCRzenoiIiAKLgED3J9ph/fr1aNy4Mb788ktERERoXRbVc+yySDXKZrPhpZdeQmpqKlCsg2FfJMMYERERBSQJErb87wCaNm2K1NRUvPrqq1AUReuyqJ5jIKMa9e233+Lff/9FSEgIDHs5vD0REREFNskm45VXXoHRaMTGjRvV69+JagqPjqnGbN++HV9//TUAwLLNwBEViYiIqE64v+PTeOSRRwAAM2bMwL///qtxRVSf8RoyqhG5ubmYMGEC0tPTIacFw3AgUuuSiIiIiCpl4OvdsXjxYsTGxmLmzJmIjOTxDPkfW8jI74QQeP3115Geng6pWAf9IY6oSERERHXPsmf+QWJiIjIzM/G///2Pk0ZTjWAgI79bvHgx1q9fD4PBAP2+SEgKX2ZERERU90iKhOeeew46nQ6rVq3C0qVLtS6J6iEeKZNfpaWl4aOPPgIAKMlBkAsNGldEREREVHUPnvcsJkyYAAB4//33cfr0aY0rovqGgYz8RgiBt99+G0VFRZDyDNCdDNW6JCIiIqJqmzXuV3Tp0gVFRUV444032HWR/IqBjPzm999/x+bNmwEF0B+I4HxjREREVC9IkLD/q1MICgrCf//9hz/++EPrkqgeYSAjv8jIyFC7KupSTJCLOcQ9ERER1R9SqV7tujh9+nTk5ORoWxDVGwxk5BeffPIJCgsLIeXr2VWRiIiI6qUZt81Hu3btkJeXh+nTp2tdDtUTDGRUbdu2bcOyZcsgSRL0B9lVkYiIiOonSUiYMmUKJEnC0qVLsWXLFq1LonqAgYyqxWq14v333wcASKeCOaoiERER1WuTk17AjTfeCAD48MMPYbVaNa6I6joGMqqWX375BYcPHwYsEvQpJq3LISIiIqpxC6esQWRkJI4cOYLFixdrXQ7VcQxkVGX5+fn46quvAAD6FBMkK19OREREVP9JNhnjx48HAMyYMQOFhYXaFkR1Go+gqcq+//57FBQUQCrUQU4N0bocIiIiolrzycjvkZiYiJycHHz77bdal0N1GAMZVUlmZiZ++uknAPZh7jmQBxERETUkkpBw3333AQB+/PFHnDlzRuOKqK5iIKMqmT17NkpKSiDlGSBnBWldDhEREVGte+Gy93DhhRfCbDbju+++07ocqqMYyKjSTp8+jYULFwIou3aMrWNERETUAEmQ1GvJFi1ahIyMDG0LojqJgYwqbd68ebBarZByjJBzjVqXQ0RERKSZJ3u8ji5durCVjKqMgYwqJScnRx3eVX88VONqiIiIiLTl3Er222+/ITMzU9uCqM5hIKNKWbBgAUpLSyEV6CGxdYyIiIgIT13yJjp37gyz2Yyff/5Z63KojmEgI5+VlJSobzK6E2G8doyIiIgI9lay0aNHA7C3kpWWlmpcEdUlDGTks6VLlyI3Nxco1kHO4MiKRERERA6vXP4hGjdujNzcXCxbtkzrcqgOYSAjnwgh8NtvvwEAdKdD2DpGRERE5ESChBtuuAEA8NNPP0EIoXFFVFcwkJFP9u7diwMHDgAKoDsTonU5RERERAFnxtifEBQUhMOHD2Pv3r1al0N1BAMZ+cTROiZnBEOy8mVDREREdC7JJqN///4AgN9//13jaqiu4JE1eVVSUoKVK1cCAHSpbB0jIiIicmfl//4BAKxYsQIlJSUaV0N1AQMZebVu3ToUFxcDJTKkPIPW5RAREREFLCnXgCZNmqCwsBBr167VuhyqAxjIyKsVK1YAAHTpHMyDiIiIyBMJEgYNGgQAWLVqlbbFUJ3AQEYe5efnY9OmTQAAOT1Y42qIiIiIAt/3Dy8CAGzatAlFRUUaV0OBjoGMPNq0aRMsFgukQh3kIr3W5RAREREFPKlIjxYtWsBsNmP9+vVal0MBjoGMPHK8ichZnAiaiIiIyBcSJAwYMAAAeB0ZecVARm5Zrdaz3RUZyIiIiIh8NneKvdvili1bYLPZNK6GAhkDGbm1e/du5OfnAxYJUj5HVyQiIiLylZRvgMlkQn5+Pvbt26d1ORTAGMjIrf/++w8AIOcYOboiERERUSVIkNC9e3cAUHscEbnCQEZuqYEs16hxJURERER1T48ePQCcPaYicoWBjFwym83YvXs3AEBiICMiIiKqtPdHfwUA2LdvH6xWq8bVUKBiICOXkpOTYTabAbMEqVindTlEREREdY5UrENERARKS0tx8OBBrcuhAMVARi7t378fACAXGHj9GBEREVEVSJDQuXNnAMDOnTs1roYCFQMZuXTgwAEAgFTA0RWJiIiIquq8884DcPbYiuhcDGTkUnJyMgBAKtBrXAkRERFR3TX78fkAgMOHD2tcCQUqBjKqwGq14ujRowAAuZAtZERERERVJRfaT24fPXqUA3uQSwxkVEFqaqr9DcMGoJQvESIiIqIqK9EhODgYZrMZp06d0roaCkA82qYKTpw4AQCQSvQc0IOIiIioGiRIaN68OQAwkJFLDGRUgRrIONw9kX/JOsjBwVpXQUREtaxx48YA7L2QiM7FQEYVpKWlAQCkEgYyIr8zGBjKiIgaGEcgO336tMaVUCBiIKMKMjMz7XcsfHkQ+Y2sgxxSFsQYyoiIGpQFb/0B4OxJbyJnPOKmCrKysgAAkpkvDyK/cIQx2el/iqGMiKjBkMpOcufm5mpcCQUiHnFTBQxkRH7kKow5MJQRETUIDGTkCY+4qYLCwkL7HStfHkTV4imMOTCUERHVf1YGMnKPR9xUQXFxsf2OwiHviarMlzDmwFBGRFSvSVb7MVVBQYHGlVAgYiCjChyBTLIxkBFVSWXCmANDGRFR/VV2kttisWhcCAUiBjIqx2q1wmaz2b9hICOqvKqEMQeGMiKi+knYj6msViuEEBoXQ4GGgYzK4ZsEUTVUJ4w5MJQREdVDZ4+v8vPzNayDApFe6wIosEgSW8WIqkLS6yGHhvrnpEZ1Ah0REQUecfb4Su2JRFSGn/pUTrlAxmxG5BNHGINOB0lXvbdVSZIgGQ2Qw8L8VB0REWnO6VxdaGiodnVQQGIgo3Jk5zPzErsvEnnjHMbsD8hVDmWSJAGyZN+HQc9QRkRUX8j2YypJkmA0GjUuhgINAxmVI0kSQkJC7N/oGMiIPKkQxtQFlQ9lzmFM3QdDGRFRvSDKjqlCQ0N5eQhVwEBGFYSVHQAKBjIi92Sd6zDmUIlQViGMOe+DoYyIqO5zCmRE52IgowocgQx6BjIiVyS9HjpTmPswpq7oPZS5DWPO+2AoIyKq28qOqdReSEROGMiogvDwcACA0CsaV0IUeNx2U3S7gftQ5jWMOe+DoYyIqM4SBvsxVXR0tMaVUCBiIKMK4uPjAQAiiIGMyFmlw5i6YcVQ5nMYc94HQxkRUZ0kjPah7mNjYzWuhAIRAxlV4AhkMHKeDCKHKocxdQdnQ1mlw5jzPhjKiIjqHqP9JHdcXJzGhVAgYiCjChxvFiKIgYwI8EMYc95XVcOYugOGMiKiumbAuN4A2EJGrjGQUQVNmjQBAIhgBjIiSBKEIiDM5urvKjwctvNbVT2MqTuSAVkGOHQyEVGdcPz4cQBA8+bNNa6EAhEDGVXQsmVLAIAIsUGAIy0SAYBitkAUF1d5e8kUhuLzGqM0Jgi2ji2qV4zNdrYWhjIiooAmINRA1qJFNd//qV5iIKMKmjVrBp1OZx+i1ciBPagBk8p3LaxqKHOEMZtRhpCl6oUymw1KURGEzakFm6GMiChwGRUUFxdDp9OhWbNmWldDAYiBjCowGAxo2rQpAECEWjWuhkgjkuvrvCobyiRTGIo7JsBmPLuvKocyV2HMuV4iIgo4jmOpJk2awGAwaFwNBSIGMnKpXbt2AADFxEBGDZCbMOZQqVCmk2ELrjgYSKVDmacw5sBQRkQUcBzHUh07dtS4EgpUDGTkUqdOnQAAwmTRuBKiWuYljDn4EsokUxiK28W7Xe5zKPMljKlPylBGRBRI+oy9GAADGbnHQEYunXfeeQAAhYGMGhIfw5iDp1CmdlV00TrmzGsoq0wYU5+coYyIKFDs27cPwNmT3UTnYiAjlzp06ABZloFgRZ1dnqheq2QYc3AVynwNYw6eQpkQonJhTC2CoYyISGsiyIYzZ85Ap9OhQ4cOWpdDAYqBjFwKDQ1V3ziUyOrPv0QU0KoYxhycQ1llw5iDy1DmPLx9VTCUERFpynEM1bFjR4SGhmpcDQUqBjJy6+KL7X2elSgGMiJvFLMF0OurFMYcyoWyqnRVdIWhjIhIMwMfuhQA0LVrV40roUDGQEZudevWDYD97A4niKZ6TVT/9S1dfB4OfNAMR26qWhhTS5ElZHcKw5FHk6ofxoiISDMCAlu3bgXAQEaeMZCRW126dIHRaLRfRxbKA0Oq50T1JkG3hRlwYYsT6NjxJI4Nrfp+ChN0KLw2D+E90nHs+d7VqgmAX8ImERFVngi14syZMzAajbjgggu0LocCGAMZuRUcHHy2lSymRONqiGqYEFUOZdLF5+HkJPuIpCZDaZVDWWGCDkXX5KNxZD7Cg0oR3jMdx56rRihjGCMi0owSWwoA6N69O4KDgzWuhgIZAxl51LdvXwBn31SI6rUqhDLp4vNwbCpwfkKq+lhVQpkjjDWJylMfCw8qRfglVQxlDGNERJpqP9g+SJPjWIrIHQYy8ujSSy+FJEkQ4VYOf08NQyVCmasw5lDZUKYYUC6MOaihrDLdFxnGiIg0JYJs6vxjvXr10rgaCnQMZORRbGwsunTpAgCwxbPbIjUQQgCKzWMwky4+DylPSi7DmIOvoawwQYeSgflul1eq+yLDGBGR5mxx9mOmiy66CHFxcRpXQ4GOgYy8GjRoEABAacRARg2Mm9Yyqdv5SHlSQufGp73uwlsoc9VV0RVHS1ny593dBzOGMSKigNDyykYAgKuuukrjSqguYCAjr6644goYDAaIMCuUUIvW5RDVLhehzBpm8CmMOZgMpejQ4RSODSn/eGGCDoVXF3gNYw7hQaVo0zrN9XVlDGNERAFBCbXg8OHDMBgM6N+/v9blUB2g17oACnzh4eHo3bs31qxZAyWhBPIRg9YlEdUuIQAogCRD6nY+Tj5gQVQldxFuLEHP+APoKR1D//WHESybkddYj31KY/x+TRKyY8J831dQKVAWyhJf2VDJSoiIqCYpjYsBAL1790Z4eLjG1VBdIAnB06rk3YYNG/Dkk08CVgnGzfGQFEnrkohqndStM44+KSOpie+tYwBgLLViwvvrcMWS/dBbK3aBtOhl/DG4Mz588HJYjL6fJ8svDULBxni0eGV9peohIqKaIWQB41VFKCgowDvvvIOePXtqXRLVAeyySD7p2bMnmjRpAugFFA7uQQ2RrIMuNRumZaZKbWYsteLZxxbjqoV7XYYxADBYFVy7eCfemvozjKW+dwvOyAxH4qJcyJzfhogoICjxJSgoKEDTpk3RvXt3rcuhOoKBjHyi0+lw/fXXAwBsTYogwIZVakBkHXSmMIjCQiT8cRxHZ7f3edMJ769D0rbTXv9jBICLtp/Ag9NX+bTfI6fi0OG9UsiHjgMGA0MZEZHGBATaDmsCALjuuusgyzzMJt/wlUI+GzJkCIxGI4TJChHBwT2o4ZBkCZDt3XRFfr7PoSwqswhXLNlv34e35yj7evXS3YjOKvS47pFTcejwQVkYAyBJEkMZEZHGRKQF+/fvR1BQEIYMGeJ9A6IyDGTks6ioKFxzzTUAAGsLzweMRPWGrIMcGlruIV9D2ZWL3HdTdMdgVTBkyS6P64gSHeQDx8s9xlBGRKStC+9oCwAYOnQooqKitC2G6hQGMqqUW265BTqdDiLaDCWMrWRUz8k6yGGhauuYM0coO/KN+1DWeVvlBv9wuHD7CbfLjpyKQ8fPi10uYygjItKGEmbBli1boNPpMGrUKK3LoTqGgYwqpWnTprjiiisAADa2klE9J8kSJJ37t0mRn4/GS9yHspCiqp20CC0yu3z8yKk4dJhmhpx8zO22DGVERLWv76MXArDP3dqkSRONq6G6hoGMKm3MmDEAACW2FEqIVeNqiGqIrIMUEuJ1NU+hrDi0anP2FYUaKzzmSxhzYCgjIqo9SqgVq1evBgDceuutGldDdREDGVVamzZtcNlllwESYGtVoHU5RP5X1lXRU+uYM0coO/eashM9oqv09KH9y7eQVSaMOTCUERHVjp6TOkFRFPTv3x9t27bVuhyqgxjIqEomTpwIWZbtrWThrrtXEdVJlQxjDucO9NE8NAcX3ZkKUclGMmEAWo2VManlX2cfK9ZVKow5MJQREdUsJdyMdevWQZZl3HXXXVqXQ3UUAxlVSatWrdQhXa2tCjgvGdUb3q4b88R5oI9Q2YymTSOBkRH2Zd62ddwZFYGQhBBcFZKFSS3/sg/i8WXVJ2NnKCMiqhkCAufd3gKAfWqgli1balwR1VUMZFRld9xxB4KCgiAiLVBiSrUuhyggiPx8NF5+Gj//1tf+/StxEL2DfZqHTPQOhnglDgAQKhtx1ByHVrMlyPtTqleUokAxc1RUIiJ/UmJKsWPHDhiNRtxxxx1al0N1GAMZVVl8fDxuvvlmAICtdQGExFYyqvuEzQaluOotUjAYIXQyEpcWot139wIhMsScphC3RbjtvigMsC//rikQbH9bnpHbGPNeuxrBJ/MgRUdWuRz151FsVd4HERGVJ2SB+Cvtc1SOGDEC8fHxGldEdZkkhOBRNFVZYWEhbrvtNmRmZkKXEgb9cZPWJRFVnyRB0ukAnQ5ySCW7+gUFATH2AGWNCkVWUihyOgocvPVTIN0KfJcHaX0xUKgAYTLEpSHArRFAvL7cbl5I74x/buls/0YIwGKFZLVBZOVUqhxhs0Ep5BQVRET+ZG1RAFvLQsTHx+Obb75BaGio1iVRHcZARtW2YsUKvPTSS4ACGLfGQirRe9+IqC6QJEhGo++hzGAEosIBva7cw9boUBy+KQQHb/nUp93MyG2ML18ZjuhtWeUXCAGpqAQiO9en/bB1jIjI/0SQFeiTD7PZjBdffFGdn5WoqthlkartiiuuQPfu3QEZsLbJ5wAfVH8IAWE2+9aF0U0YAwB9dhHazC9Gu+/v9bqbz3Obug5jACBJEKHBPnVhZBgjIqoZ3Sd3hNlsRvfu3XH55ZdrXQ7VAwxkVG2SJOGRRx6BwWCAEmOGEssBPqge8TWUyZLLMOaghrLvPIeyoyVxrsOYgw+hjGGMiKhm2GJLsH79euj1ekyePNk+ki1RNTGQkV+0aNFCnZ3e2jYfwqBoXBGRH3kLZQYjEOH9+kl9dhHa/Oy+pezz3Kb4651LvdfjS0sZwxgRkV8Jgw1hvez3b7vtNg5zT37DQEZ+c/vtt9tnqDcqsLbNY9dFql/chTIPXRVdcdd98fPcpvjq1esQ85+H1jFnbkJZtUeJJCKiCgQErG3zkZubi3bt2uH222/XuiSqRxjIyG+MRiOefvpp6HQ6KHGlUOJ5UEj1jKtQ5qWroiuOUNZ2rj2UzchtjK9eq0QYczgnlLGrIhFRzVDiS6DElUKn0+Hpp5+GweBmHhOiKmAgI79q3749xo8fD6Cs66KRB4ZUzziHMh+7Krqizy5C25/soexQSSPEbK1kGHM4t6WMYYyIyK+E0YaQ7vZeP+PHj0e7du00rojqGwYy8rsxY8agU6dOgF7A0iGXXRep/ikLZSgtrXTrmDN9dhHa/liMlW/5cN2YJ5IE6HTsqkhE5GcCAp3uaor8/Hx07NgRY8aM0bokqoc4DxnViGPHjmHixIkoLi6G7lgY9Mc4YTTVQ7IOupgoID6m6vtQBGCzAbJc9XBntkCcOA2lhIGMiMifrIkFsCUWIjQ0FF9++SWaN2+udUlUD7GFjGpEYmIiHnvsMQCArUUhlEgOhU/1kGKDLSsHSK9id8OyMCYpAlAUwFqF7oYMY0RENUKJLIXSsggA8PjjjzOMUY1hIKMac9VVV+Haa68FJMDSMQ/CwGtbqB4qC2Xi2KnKBTPnMAZUOZRJimAYIyLyM2GwIby/DCEErr32Wlx55ZVal0T1GAMZ1aiHHnoIbdq0AYwKLJ1yIST2kKV6SLFBKSysdGuZI4yV+74yocxsgZJ6phKFEhGRN0IS6HhXE2RlZaF169aYNGmS1iVRPcdryKjGpaSk4J577kFRURHk0yEwHIrQuiSimuPLdWXntI6dS8iS92vKzBaIU2lQioqqVy8REakEBKzt8qE0LobJZMKnn36KxMRErcuieo4tZFTjWrZsieeffx6SJEFpUgxbYx5AUj3m7boyL2EM8K2lTLIpDGNERH6mNC6G0rgYkiTh+eefZxijWsFARrXi0ksvxd133w3APj+ZEmnWuCKiGuQllHkKY+XWcRfKzBYoaenVLJKIiJwpkWaIjvYTXffccw969eqlcUXUUDCQUa259dZbMWjQIPsgH51yIIKtWpdEVHNchTLHEPc+chfK2DpGRORfSrAVoX0V2Gw2DBw4ELfccovWJVEDwkBGtUaSJDzxxBP2SaMNAubOORAGReuyiGqOi1DmS+uYswqhjK1jRER+JQw2xF1rRG5uLjp16oQnn3wSkiRpXRY1IBzUg2pdZmYm7r//fpw+fRpSvh6GndGQFJ4boHpM1kEXHQlER1Y6kDkIWYJktUE5k8HWMSIiPxE6BZYu2RAmK5o1a4aPP/4Y0dHRWpdFDQyPgqnWxcbG4p133kFkZCREuBWW8zgcPtVzig227FwgM6fKu5AUAVhtUIqL/VcXEVEDJiRhn5LHZEVUVBTefvtthjHSBAMZaaJFixZ48803ERwcDBFthrV9HgQYyqiekiRAKFDy8yGyc6u2D4sVSlY2IMn2/RERUZUJCPuxR7QZwcHBeOONN9C8eXOty6IGioGMNHP++efj5Zdfhk6ng9KoBNY2+QxlVH9JMoQiqh7KhIBSUqrui6GMiKhqBIR9xOdGJdDpdHjppZdw/vnna10WNWAMZKSpXr16YerUqfY5ypoWw9a6gKGM6pdzglOVQpmjdazcfhnKiIgqS0DA1roAShP7XGNPP/00evfurXVZ1MAxkJHmBg8ejMcffxwAYGtWBFtLhjKqZ6Tyb7WVDmXOrWPn7pehjIjIJwICtpYFsDWzD4z05JNP2qfjIdKYXusCiABg2LBhsFgseO+992BrUQQICfpjJq3LIqoeD2HJEcokqxWSXg8pOtL1iq5ax8o9hwxAAThgLhGRR7YWhfZjDACPPvoohgwZonFFRHYMZBQwbrjhBlgsFnz00UewJRYCAHTHwiCBLQBUh0nuOyIIRUAUFkGSJciA61DmrnWswnMwlBERuaK2jJWFsQcffBDDhw/XtigiJ+yySAFl5MiRuPfeewEAtsRCXlNGDYLbLozeWsecsfsiEVEFAgK2NvlqGLv//vsxcuRIjasiKo+BjALOrbfeismTJwOwX1NmbcfRF6kOqmQ4UkNZbp7Tgz60jpV7ToYyIiIHAQFru3zYmtrnb3zkkUcwevRojasiqkgSgn1cKDD9/vvveOutt6AoCuQzwdAfiIAkeLBJdYQkeeyu6HYzWYIcGQEpNBRKZlblApmDYPdFImrYhGSfZ0xpVAJZlvHkk0/immuu0bosIpcYyCigrVy5Ei+//DJsNhvkLCP0+6IgKQxlVAdUMZAB9lAmGY1VC2MODGVE1EAJWYG1Uy6UGDN0Oh2effZZXHnllVqXReQWAxkFvA0bNuC5556D2WyGlK+HYU80JAt721KAq0YgU8OUP/ZBRNSACIMNlvNzIMKtCAoKwksvvYRLL71U67KIPGIgozph165deOqpp5CbmwsU62DYHQW5hIOEUh1QlVDlHKaquz0RUQOhBFth6ZwDhNgQGRmJN954A507d9a6LCKv2MxAdUJSUhI+/vhjNGnSBAixwXJhFpRws9ZlEXknhD0gabU9EVEDoJgsCL3SCoTY0KRJE3z88ccMY1RnsIWM6pSsrCxMnToV+/btAxRAvz8Susxgrcsi8s7Xli53rVvV3Z6IqJ6yxRVDvqAEZrMZHTt2xJtvvomYmBityyLyGVvIqE6JiYnBBx98gN69ewMyYD0vF9ZEzlVGdQBbyoiI/EpAwJpYAGunPJjNZvTu3RsffPABwxjVOWwhozrJarXi008/xQ8//AAAkDOCoE+OgKTwHAMFOG8tXd5auKq7PRFRPSBkBdaOeVBi7aPR3nLLLbj77ruh0+k0royo8hjIqE5bsmQJ3nnnHVgsFkiFehj2REEq5ZsxBTh3ocrXMFXd7YmI6jARVDaSYpgVBoMBjz/+OK6++mqtyyKqMgYyqvN27dqFZ599FllZWYBFgmFfJOTcIK3LIvLMVaiqTKCq7vZERHWQElWK0D4Cubm5iImJwauvvoqkpCStyyKqFgYyqhfOnDmDZ555Bvv37wcEoDsWBt3xMEjgJNIUwM4NVZUNVM7bM4wRUT0mIGBrUQilVRGEEOjYsSNeffVVJCQkaF0aUbUxkFG9UVpaimnTpmHhwoUAACnbCMP+SEhWXldGAcwRqqoaqKq7PRFRgBN6BZaOuRDR9ulurrvuOkyaNAlBQewNQ/UDAxnVO0uWLMG7776L0tJSoESGYX8k5Hyj1mURuSeVteRW9e24utsTEQUoxWSBpVMOEKwgKCgIjz32GK8Xo3qHgYzqpUOHDuG5557DiRMnAAXQpZigOxnKLoxERER1gICArVkR0K4YNpsNzZs3xyuvvIK2bdtqXRqR3zGQUb1VWFiIt956CytXrgRQ1oXxQAQkM0dhJCIiClTCaIOlQx5ElL2L4oABA/DEE0/AZDJpXBlRzWAgo3pNCIGFCxfiww8/tHdhtEjQH4iALitY69KIiIjoHLaYEoT1BnJzcxEcHIyHHnoIQ4cOhSSxhwvVXwxk1CCkpKTg5ZdfxoEDBwAA8ukQ6I+EQ1L4Bk9ERKQ1IQtYW+VDaVoMAGjfvj1eeOEFJCYmalwZUc1jIKMGw2w248svv8TcuXMBAFKRDvoDERzwg4iISENKuBnWDnkQITYAwKhRozBx4kQYjfx8poaBgYwanC1btuC1115DZmamfc6yk6HQpZggCbaWERER1RYhCdhaFkBpUQwhBOLj4/Hkk0+iZ8+eWpdGVKsYyKhBys/Px7Rp07B06VIAZa1lyZGQCwwaV0ZERFT/KSYLrB1yIULtrWJXX301Jk2ahPDwcI0rI6p9DGTUoP3999945513kJWVZW8tOxEK3TG2lhEREdUEIQvYWhRAtCyBoiiIiYnBlClT0LdvX61LI9IMAxk1eHl5efjggw+wbNkyAGWtZYciIOey7zoREZG/KJGlsLTLB8quFRs4cCAmT56MyMhIjSsj0hYDGVGZtWvX4t1337VfWwZATgu2j8RolTWujIiIqO4SegXW1vlQEkoAAHFxcXj44YfRr18/jSsjCgwMZEROCgoK8Pnnn+PXX3+FEMI+b9mRcMhngiGB3RiJiIh8JSCgxJfA2iYfMAhIkoThw4fj7rvvRlhYmNblEQUMBjIiF3bt2oW3334bR44cAQBIOUboD4VDLtZrXBkREVHgU0KssLbNh4gyAwBat26NJ554Ap07d9a4MqLAw0BG5IbVasXcuXMxc+ZMmM3ms0PkHw+DZGM3RiIionMJnQJbYiGQWAqbzQaj0Yjx48dj9OjR0Ot5UpPIFQYyIi9OnTqFadOmYf369fYHzDL0R03sxkhERFRGQEBpVAJrqwLAqAAALrvsMjzwwANo2rSpxtURBTYGMiIfbdy4EdOmTcOJEycAAFKeAfrD4Zy7jIiIGjQlzGLvnhhhAQC0aNECkydP5gTPRD5iICOqBIvFgh9//BGzZs1CcXExIAD5TDD0KSZIZp3W5REREdUaYbTB2qoASiP76IkhISEYP348RowYAYOBJyuJfMVARlQFGRkZ+PTTT/Hnn3/aH1AA3ckw6E6E8voyIiKq14ROga15IXRtrfZrrAFcddVVuOeeexAfH69xdUR1DwMZUTXs2bMHH3/8MXbs2GF/wCxBf9wEOTUEkuD1ZUREVH8ISUBJKIY1sQAw2g8fL7roIjzwwAPo2LGjxtUR1V0MZETVJITA33//jU8//RTHjx8HAEhFOuhSTJAzgzjwBxER1WkCAkpsKWwtCyBCbQCAxMRE3HvvvejTpw8kiZ9zRNXBQEbkJ1arFQsXLsTXX3+NnJwcAICUr7dfX5ZjZDAjIqI6RUBAiTbbg5jJCgCIjIzEhAkTcO2113IYeyI/YSAj8rPCwkJ8//33+PHHH+0DfwCQcg3Qp5gg5xk1ro6IiMg7JcIMa8sCiEj7yImhoaEYOXIkRo0ahbCwMI2rI6pfGMiIakhOTg7mzJmDBQsWqBc9S9lGezDjUPlERBSAFJPFHsSi7Z9bRqMRN954I2699VZERUVpWxxRPcVARlTD0tPT8c0332DRokWwWu1dPuQsI3THwyDns8WMiIi0p0SYYW1RqAYxnU6HYcOGYezYsRw5kaiGMZAR1ZJTp05h1qxZ+PPPP2Gz2S+KlnKM0B8Pg5Rr4DVmRERUqwQERKQZ1sRCtWuiTqfDoEGDMH78eDRt2lTjCokaBgYyolp28uRJzJkzB0uWLDkbzHIN9mDGwT+IiKiGqYN1tCiEiLAHMb1ej2uuuQZjxoxhECOqZQxkRBpJS0vDnDlzsHjxYlgs9g9EKV8P3ckwyBkcLp+IiPxLHb6+RaE6aqLRaMS1116L0aNHIyEhQeMKiRomBjIijWVkZGDu3Ln49ddfUVpaan+wRAf9yVDIacGQFFnbAomIqE4TctmEzk2LgBB7z4zg4GAMHz4co0aNQmxsrMYVEjVsDGREASI7OxsLFizAggULkJuba3/QIkGXGgrdqRBIFp22BRIRUZ0iDDbYmhbD1rgIMNgP9yIiIjB8+HCMGDGCoyYSBQgGMqIAU1JSgj/++APz5s3DyZMn7Q8qgHwm2N6dsZgTcRIRkXtKqBW2poVQGpUAZZ0smjVrhptvvhnXXHMNQkJCtC2QiMphICMKUDabDX///Tfmzp2L3bt3q49L2UboToVCzuYAIEREZKcO1NGkCCLGrD6elJSE0aNHo0+fPtDp2NOCKBAxkBHVATt37sTcuXPx999/Q/2XLZGhOx0KXVoIJCuvMyMiaoiEXoEtoRi2xsXq9WGSJKFfv34YNWoUkpKSNK6QiLxhICOqQ06dOoVffvkFixcvRn5+vv1BR3fG06GQCw3aFkhERLVCCbPA1rQISvzZbokmkwlDhgzBDTfcgGbNmmlbIBH5jIGMqA4qKSnBihUr8PPPP+PAgQPq41KeAbrTIZAzgiEJdmckIqpPhCSgxJXA1rQIItyqPt6+fXvccMMNGDhwIIKDgzWskIiqgoGMqA4TQmDXrl1YsGABVq1aBau17APaIkGXHgw5NQRyEVvNiIjqMiXUAqVxMWzxJepoiXq9HpdffjmGDx+OpKQkSBJPwhHVVQxkRPVEZmYmFi1ahEWLFiEtLU19XMrXQ5cWAjk9GJKN15oREdUFQqdAiS+BLaG4XGtYo0aNcN1112HYsGGIiYnRsEIi8hcGMqJ6xmaz4d9//8XixYuxdu3as61mNglyRhB0qSGQ8g0coZGIKMAICIgIC2wJxVDiSoCyQRH1ej369OmDoUOHokePHhwtkaieYSAjqsdycnKwdOlSLFq0CCkpKerjUpEOcnowdGdCIJXyg52ISEsiyAZbfAmUhGKIspESAaBVq1YYOnQoBg8ezEmcieoxBjKiBkAIgd27d2PRokX466+/UFJSoi6Tcg32680ygjl8PhFRLRF6xT5AR3wJRKRFfTwkJARXXHEFhg0bhvPPP5/XhhE1AAxkRA1MUVERVq9ejWXLluHff/89O6+ZAsjZQZDPBEPOCuIojUREfiYkASWmFEqjEijRpepw9ZIkoWvXrrjqqqswYMAAhIaGalsoEdUqBjKiBiw9PR3Lly/HsmXLcPDgwbMLrBLkjGDoMoIg5Rh5vRkRURUJCIhIs71LYlwpoD972NWuXTsMGjQIV155JRo1aqRhlUSkJQYyIgIAHDp0CH/++SeWL1+O9PT0swssEuTMsnCWa2TLGRGRFwICIsoMW2wplNgSwHj2UCshIQEDBw7EoEGD0KZNGw2rJKJAwUBGROXYbDZs27YNf/31F9asWYPc3NyzCy0S5Mwg6DKCGc6IiJwIqawlLK4ESmypOl8YAERGRqJfv34YNGgQLrjgAsgyr9clorMYyIjILavVim3btmHlypVuw5mcGQw5h+GMiBoeIQkoUWYocSVQYsqHsKioKPTr1w8DBgzARRddBL1er2GlRBTIGMiIyCdWqxXbt29Xw1lOTs7ZhbayAUGy7DeO1khE9ZXQK/aBOWJKoUSZy10TFhMTo4awCy64gCGMiHzCQEZEleYIZ6tXr8a6devKX3MmACnPoIYzuZgHJERUdwkIiBCbGsJEhAXO4xzFxcWpIaxLly6ctJmIKo2BjIiqRQiB5ORkrFu3DuvWrcOBAwfKLZeKdPZglh0EKc/Aro1EFPCEJCAiLGdDmNNkzQDQvn179OnTB3369EGHDh04VxgRVQsDGRH5VVpamhrO/vvvP1it1rMLbRLkHIO9e2O2EVIpW8+IKDCIICuUaLP9Flm+K6LBYEDXrl3Rp08fXHrppUhISNCwUiKqbxjIiKjGFBQUYPPmzdiwYQM2b96M7OzscsulYh2kbKM9oOUaISk8y0xEtUPICpQoC5SoUohoc4VWsKioKFxyySXo06cPevbsycmaiajGMJARUa1QFAUHDx7E5s2bsWnTJuzatQs2m9MBkAJIeUbIOUbIuQZI+QZOSE1EfiMgIExW+6iIUWXXgjmNP6TT6ZCUlISePXuiZ8+eaN++PYenJ6JawUBGRJooLCzE1q1bsWnTJmzevBmpqanlV7BKkPMMkHLtIU0q1DOgEZHPBAREmD2AiUgzlAhLuW6IANCkSRM1gF188cUICwvTqFoiasgYyIhIc0IIHDt2DFu2bMHWrVuxbds25Ofnl1/JKtm7NTpa0IoY0IjoLAEBEeoIYJYK14EBgMlkwkUXXYRu3bqhZ8+eaN68OQfkICLNMZARUcBxdG/877//sHXrVmzfvh1FRUXlV3K0oOUZ7V8LDLwGjagBEZKACLdAibBARJihhFvKTcwMAKGhobjwwgvRtWtXdO3aFe3ateOw9EQUcBjIiCjgWa1WJCcnY+vWrdi6dSt27dqFkpKS8ispgFRgKAtpBsh5Rk5QTVSPCIMCJdxsH44+wgJhKn8NGACEhITgggsuQNeuXXHRRRehQ4cOnJyZiAIeAxkR1TlWqxUHDx7Ejh07sGvXLuzYsQNZWVkV1pOKdJDyDZDzy1rQCvWcB42oDhCSvfuhCLdACbdARFgqjIIIADExMejSpQu6dOmCpKQkBjAiqpMYyIiozhNC4PTp09ixYwd27tyJnTt34ujRoxVXVGAPZc4hrVjHa9GINCQgIEJs9vBlskCEWyDCrBVavwCgdevWSEpKUkNY06ZNeQ0YEdV5DGREVC/l5uZiz5492Lt3r3rLy8uruKJVsge0Aj2kwrJWNIY0ohohICCCbRAmK4SpLICZrBUG3wCA8PBwdOrUCZ06dUJSUhKSkpIQHh6uQdVERDWLgYyIGgQhBE6dOoW9e/di37592Lt3L/bv3w+z2VxxZRvUcKYGtSI9Bw0hqgQhl3U7NFmghFkhym7QVTzsCAoKQseOHdUAdt5557H1i4gaDAYyImqwrFYrjhw5gr179yI5ORkHDx7EoUOHUFpaWnFlAXvLWUFZOCvSQS7SAyVsTaOGTUAAwTYooTZ7AAuzdzkUITa4+tcwGo1o27Yt2rdvr4avli1b8tovImqwGMiIiJzYbDacOHECBw8exIEDB9Sv2dnZbjYApGJ9WUhjUKP6S+1uGGqFcISvUCtEiBVwM5J8TEwM2rVrh3bt2qF9+/Zo164dmjdvzqHniYicMJAREXkhhEBmZiYOHjyIgwcP4siRIzh69ChSUlJcd3kEzga1Yp39a4nu7H0Ox08BTOgViBCrPXyF2Oz3Q+wBzNVAG4C91SsxMRGtWrVSW7/atm2L2NjY2i2eiKgOYiAjIqoim82G06dP48iRI0hJSfEtqAGARaoY0kp0kEp09kFG2LJGNUzoFHvICi4LW47gFWyrMLmyM6PRiJYtW6JVq1Zo3bq1er9JkybsckhEVEUMZEREfuYIakePHsWJEydw4sQJHD9+HCdOnEB6errnja0SpFIdpBIZUqnO3vWxVKcGNsnG1jXyTEAAurLuhcE2iCAbEGyDCFIgguyPuRrV0Fl8fDyaN2+u3hITE9G6dWskJCSwuyERkZ8xkBER1aLi4mKcOnVKDWiOrydPnnQ5uXUFjsBWKgNm+1fJ7HyfrWz1mYAA9ALCaA9YMCr2+0YFCDoburwFLsB+fZdz6GrevDlatGiBpk2bIiQkpBZ+GiIiAhjIiIgCRmlpKVJTU5GamorTp0/j9OnT5b7PycnxbUc22AOaWS676QCLDMkilX0tC3EWHYfyDwACApAFYFAgDMIergwKhKHsa1ngsgcwm9vruM4VExODxo0bq7cmTZogISFB/T44OLhmfzAiIvIJAxkRUR1RXFyMtLQ0pKamIiMjA+np6RW+5ubmVm6nNpwNaRYZsMqQrPbgpt539VUwyLkiZAHoFQhd2Ve9/Sv0AsL5a1ngcoQud6MUuhMZGYn4+HjExsYiPj4ecXFxiI+PR3x8vBq8GLiIiOoGBjIionqktLQUmZmZakjLyMhATk4OsrOz1a/Z2dnIysryPPCINzYANhmwSZBsElB2kxTpnMdk+30FgCLZb0KCVO57+31JKVtPlD2Gc+/bv3jrjinOruj0Vdi/SrC3RkkCQnbcL/sqCwin+5BhD1ayYr8mS2e/Ngs6YQ9ezt+XBTBfW69cMRqNiImJQVRUFKKiohAdHY2oqCjExsaqgctx32g0Vv2JiIgooDCQERE1QEIIFBcXlwtpOTk5yM/PV295eXnIz89HQUGB+n1BQQE0/9gQKB/SygUvuJyMuDbJsgyTyQSTyYTw8HD15vjeZDKpgcsRuqKiohASEgJJYssjEVFDw0BGREQ+UxQFhYWFyM/PR3FxMYqKilx+Pfd+aWkpzGYzLBZLua+uHlMUpUZ/Bp1OB6PRCIPBoN6cv3fcNxqNCA0NRUhIiHoLDg5GSEhIhcdDQkLUwBUaGgpZ5miYRETkGwYyIiIKKDabDUII2Gw2KIri8r7zV0mSIMuy+tVxO/dxSZKg1+s5bDsREQUUBjIiIiIiIiKNsE8FERERERGRRhjIiIiIiIiINMJARkREREREpBEGMiIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQaYSAjIiIiIiLSCAMZERERERGRRhjIiIiIiIiINMJARkREREREpBEGMiIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQaYSAjIiIiIiLSCAMZERERERGRRhjIiIiIiIiINMJARkREREREpBEGMiIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQaYSAjIiIiIiLSCAMZERERERGRRvRaF0BE9Z8QAiUlJVqXQURUKcHBwZAkSesyiKieYyAjohpXUlKCwYMHa10GEVGlLF26FCEhIVqXQUT1HLssEhERERERaYQtZERUq4ybG0ESZeeCJBmSLAGSDMgSIEmQZMeyssclCZAlSI511GWSuo16A5wek8svt2+oPiYk6ewpKad9qI9LZ5/L+TEh2XejLpPt+7U/LqnLHNuIssfU5cDZfchl6zuWo/xzlNumrHwhu1hWbn2Uq/HsY1KFZRW2gXMd5yyHm8fd7M9dHRW28bRf9XFRcXunbdTlTvsSZY/DaTv7MuFUj3255LxMXdexTKj7lJzXl4S6TH2JOR537K5sHftLQajfO7aRy763L7N/79hOXSYJSDi7nVz2mHqDULeTJZR73L69cnY7ONZXoHNsU/b92X0p6v50TvvXwf64zrE/dV0FOsc+4ahDObs+zu7bvk8FMuzPb19m35+u7DEJCnSO7Z220QH27WB/Hsfvw/G9/blE2X2ULROQy34vOkiQAejK/tgypLLHJOgkCTJkSGV/OYtZh5smNgYRUW1hICOi2mWTyg6NYA9kKAtPZUe6Z5dJgHw2fUj2dFO2E8eRuYwKR9xn0075FODYZ4UjdJzzmPNzwMVj526Hs0HMKZBVeMwpQDl/f26J5dd3sY3sYZm7H6NCHW5+bE/L3P2qqro/p326Cms1GshcLce53wt13851OD+nq2VqgIPTOs7rV9hGuHguUe7mHMjOhryym7tlcIQ2+y6dw5sjuAGOYAU10Dgvswcy5WygkZwDjf2+LEn2sFT2Fep9Sd3Ovh+U7dOxLcq2K3vc1TKnbXRlYVKn1ukIZMJrIHPen87x+0D5x2Q41+j0NyQiqgXsskhERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGmEgIyIiIiIi0ggDGRERERERkUY4DxkR1S6dgBD2yWDt82pJTl+lcyZrdnx1ug/nx4TTfR+WOU1KdXb6XnePn/0qyt1Hue0EAAjH42f3KSABAuq2zsvVfZSbPMu5Fhffi3IlnfP7cHM7d11f5hrztMzn5/JxmfNTetxOeNmncFOj+4mhy88d5rRMXbfqE0OfrcNpHjJUfR4ygbPbCUmUv8H+1b4M5R5XJAFIytl9wvFcitN8aWXrlC0XkqLuD+X2X/bV8Vxl38tl6zi+AqjwmOL0b+24r0iAgrPzkCllj0lwNw+ZpE7mrMPZv5nje7lsm3PnNvN9YmgJZyeGdvV/SURUcxjIiKhWmXue0bqEmuE43q2ic/MEkYPzS0vRspAqc07E7JhDRHQuvjMSERERERFpRBJCVOOcLhGRd0IIlJSUaF0GBYiSkhJcf/31AIBff/0VwcHBGldEWgn010JwcDAkiW3WRFSz2GWRiGqcJEkICQnRugwKQMHBwXxtEAC+Foio4WKXRSIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQa4SiLREREREREGmELGRERERERkUYYyIiIiIiIiDTCQEZERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGmEgIyIiIiIi0ohe6wKIiKj+W7JkCV5//XWv67377rvo3r17LVRENaWkpATbtm3D/v37kZycjOTkZKSlpQEAxo8fjwkTJnjdR1ZWFr777jts2LABaWlpCAoKQuvWrXH11Vdj6NChkCSppn8MIqJaw0BGRES1RpZlREVFuV1uMBhqrxiqEXv37sUTTzxR5e3379+PKVOmIDc3FwAQEhKCoqIi7NixAzt27MCqVavw+uuv87VCRPUGAxkREdWaRo0a4YcfftC6DKph4eHh6NChg3r78MMPkZWV5XW7goICPPnkk8jNzUViYiKeffZZdOrUCRaLBQsXLsRHH32EzZs348MPP8Sjjz5aCz8JEVHNYyAjIiIiv7nggguwePHico999tlnPm07d+5cZGVlISgoCG+99RaaNm0KwN5yeuONN6KoqAiff/45Fi5ciJtvvhktWrTwe/1ERLWNg3oQERGR3+h0uipvu3TpUgDAlVdeqYYxZzfeeCNCQkJgs9mwbNmyKj8PEVEgYSAjIiIizR07dkwd/OOSSy5xuU5oaCguuOACAMA///xTa7UREdUkdlkkIqJak5OTg7vuugvHjx+HzWZDbGwskpKSMGzYMHTt2lXr8khDhw8fVu+3bt3a7Xpt2rTBpk2bcPTo0Vqoioio5rGFjIiIak1JSQmSk5Oh1+shhMDp06exbNkyTJ48GW+88QasVqvWJZJGMjMz1fvx8fFu14uLiwMAFBYWoqioqMbrIiKqaWwhIyKiGhcbG4vx48ejf//+aNGiBYxGI2w2G/bs2YOvv/4aW7Zswe+//47g4GA8/PDDWpdLGnAOV0FBQW7XCw4OLrdNaGhojdZFRFTT2EJGREQ1rmfPnpgwYQLatm0Lo9EIwD74Q5cuXfDOO++gb9++AIBffvkFx48f17JUIiKiWsVARkREmpJlGffffz8AQFEUrF+/XuOKSAvOLV2lpaVu1yspKXG5DRFRXcVARkREmmvevDkiIyMBAKdOndK4GtJCbGysej89Pd3tehkZGQCAsLAwBjIiqhcYyIiIiEhzbdq0Ue8fOXLE7XqO0RhbtWpV0yUREdUKBjIiItLcyZMnkZubCwBo0qSJxtWQFlq0aIGEhAQAwKZNm1yuU1xcjB07dgAAevToUWu1ERHVJAYyIiKqUUIIr8s//vhjAPbryS699NLaKIsCjCRJGDx4MADgr7/+wunTpyuss2DBAhQXF0On02HQoEG1XSIRUY1gICMiohqVmpqKu+++G7/++itOnTqlBjRFUbB79248/vjjWLt2LQDguuuuQ2Jiopblkh/k5+cjJydHvSmKAsA+WIfz4+fOIzZ69GjExMSgpKQETz75JPbv3w8AsFgs+OWXXzBjxgwAwLXXXosWLVrU7g9FRFRDJOHt1CUREVE1nD59GqNGjVK/NxqNCAkJQXFxMcxms/r4kCFDMGXKFOj1nCKzrhs5ciRSU1O9rnf11Vfj6aefLvfY/v37MWXKFLULa2hoKMxmszppeI8ePfD666+r0ycQEdV1/NQjIqIaFRMTg8mTJ2P37t04ePAgcnJykJ+fD6PRiMTERCQlJWHo0KHo0qWL1qVSAOjYsSNmzZqF7777DuvXr8eZM2cQHByMNm3a4Oqrr8aQIUMgy+zgQ0T1B1vIiIiIiIiINMJTTERERERERBphICMiIiIiItIIAxkREREREZFGGMiIiIiIiIg0wkBGRERERESkEQYyIiIiIiIijTCQERERERERaYSBjIiIiIiISCMMZERERERERBphICMiIiIiItIIAxkREREREZFGGMiIiIiIiIg0wkBGRERERESkEQYyIiIq54MPPkC/fv0wadIkrUshjRUUFGDo0KHo168f1qxZo3U5RET1kl7rAoiI6ovCwkIcOHAA+/btw/79+7F//36cPHkSQggAwLx589CkSZMaeW4hBEaMGIH09HSMGTMG99xzT5X2c+DAAfzyyy8AgLvvvtuPFWrr8OHD2Lx5M3bu3InDhw8jMzMTNpsN4eHhaNu2LXr37o2rr74aJpNJ61IDislkwujRo/HFF1/gww8/xCWXXIKgoCCtyyIiqlcYyIiI/OShhx7CgQMHNHnuffv2IT09HQBw2WWXVXk/n3zyCWw2Gy655BJ06dLFX+Vp6qGHHsK2bdtcLsvKykJWVhb++ecffPvtt3j66afRs2fP2i0wwI0YMQI//vgj0tL+v717j6m6/uM4/iRCJREOFVMQM1NBuhgKWoqYt1CZLsPLMjc1c2bTbLO22pmKdy1n2nIzc8vNFFvqvC2Nhkpqgoo6ZCKKKCjiGKCAKBcP+PuDne/voFzkcOx07PX468j5ft/fD2eM8fLz+bw/+ezYsYNJkyY5e0giIk8VLVkUEXEQ60wY1M4s9OrVi+eff/4fefbRo0cB8PPzIyQkxK4a586dIyUlBeCp+qPbGlTbtWtHdHQ0ZrOZdevWsXHjRhYvXky/fv2A2nBmNptJTU115nD/dTw9PRk7diwAcXFx3Lt3z8kjEhF5umiGTETEQaKjozGZTAQHBxMYGIibmxtz5szh1q1bT/zZ1kAWERGBm5ubXTW2bdsGgL+/P2+++abDxuZsgYGBTJ48maFDh9KqVas67wUHBzNo0CC2bt3Khg0bqKqqYvXq1WzevNlJo/13ioqK4ueff+bOnTv8/vvvjB8/3tlDEhF5amiGTETEQcaNG8ewYcPo1KmT3aHIHtevXycnJwewf7liQUEBSUlJAAwfPvwfHf+TtmrVKkaOHPlIGLM1adIkunfvDkB2djZZWVn/1PBcgr+/Pz179gRg7969Th6NiMjTRTNkIiIuztr9zrpM0h4JCQnU1NQAMGTIkMe6x2KxcOjQIY4dO0ZGRgbFxcVUV1djMpl45ZVXCA8PZ9iwYbzwwgt17hs4cCAAI0aMwGw2c+3aNXbs2MGpU6coLCykbdu2BAUF8eGHHxIaGmrcV1lZyYEDB4iPjyc3N5eKigoCAgJ49913GT9+fIubTfTu3dvYA3j9+nW6du1qd63s7Gz27NlDamoqN2/epKKiAi8vL9q1a4e/vz9hYWEMGDCAl156ya76FouFP//8k8OHD3PlyhVKSkpwc3PD29sbk8lESEgI4eHhRERE4OHhUefehz//7Oxsdu3aRUpKCoWFhZSXl7Ns2bJHwv2QIUNITU0lJyeHjIwMevToYd+HIyIidSiQiYi4OOtyxX79+vHss/b9Wj9+/DhQu8+qc+fOTV5/+fJlFixYQG5u7iPvFRQUUFBQwIkTJ8jKysJsNjdYJzExkeXLl1NRUWF8rbKykuTkZE6cOMGXX37J6NGjKSwsxGw2k5GRUef+q1ev8tNPP5GcnMzq1atbFMosFovx+pln7F9AsmfPHtauXUt1dXWdr5eUlFBSUkJubi6nTp0iKyuL+fPnN7t+cXExX3zxRb0NZKyffWZmJnv37iUuLo7AwMAGax04cIDVq1dTVVXV5HNtm7wcP35cgUxExEEUyEREXFhhYSEXLlwA7F+uWFVVxfnz5wEICQlpcrliZmYms2fPpry8HIBevXoRFRVF586d8fDwoKioiPT09CbPrcrKyuLQoUP4+voyY8YM49mnT5/ml19+oaKigjVr1hAaGsrSpUu5fPkyY8aMYcCAAZhMJm7cuMHmzZvJysri3LlzxMXF8dFHH9n1GQCcOXPGeN2lSxe7aly5csUIY97e3owePZrQ0FBMJhPV1dUUFRVx8eJFkpOT7V4WunbtWiOMhYWFERUVhb+/P23btuXu3bvk5OSQmppqLEFtyMWLF0lISMDb25vx48fzxhtv4OHhQXZ2Nh06dHjk+i5duuDp6Ul5eTlnzpxh2rRpdo1fRETqUiATEXFhx44d48GDB7Rq1Yq33nrLrhpZWVnG7FBwcHCj11osFhYsWGCEsc8//9zowGerf//+TJ8+nfz8/AZrZWZm0r17d9auXUu7du2Mr7/66qsEBgYSGxuLxWJh9uzZlJaWsmrVKsLDw43rgoKC6NOnD5MnT6awsJDdu3czefJk3N3dm/X9Q+2yz6tXrwK1obRTp07NrgFw+PBhY2ZszZo1xr40W5GRkUyfPp2SkpJm16+srDSCbmRkJEuXLn0k2IWGhvLee+9RXl7e6Ezf1atXCQwMZN26dXW6gTbUpdPd3Z2goCBSU1O5dOkSNTU1LZpJFBGRWvpNKiLiwqzLFcPDw/H09LSrhu2yw6ba9CckJHDjxg2gtqtkfWHMVvv27Rt9/+uvv64TxqwGDRqEn58fALdv3yYmJqZOGLPy8vJi5MiRxnXZ2dmNPq8+hYWFfPfddwC4ubnx6aefNruGlbWjppeXV71hzJaPj0+z69+5c8cIz6GhoY3Osnl6eja5hHPu3LnNOprBem1FRQWFhYWPfZ+IiDRMgUxExEWVlZVx9uxZoGWHQRcVFRmvvb29G73WGgABJk6caPczoXYJXEOhxc3Nrc57UVFRDdaxvS4vL69ZY6ioqMBsNhtB6uFGIs1lDZFlZWUcPnzY7joN8fHxMbpFHjx4sEVngvn5+dUbchtj+/Nh+3MjIiL2UyATEXFRSUlJWCwW3N3diYiIsLtOZWWl8bq+2Spbly5dAmpnSh6n+UdjmrrfdiyNdSO0va45AeX+/fvMmzfPaBQyYMAApk+f/tj31ycqKsqYlYqNjWXWrFls3bqVc+fOGcs8W8LDw4MRI0YAkJ6ezoQJE1i1ahUHDx5sdhi1p4ukbSCzbcQiIiL20x4yEREXZZ2tev311zGZTHbXsd1z1VS3veLiYuD/M0Et0aZNm0bft12O19hyTNt9TNbW/U2xWCzMnz+fkydPAtC3b18WLlxo1/4zWwEBAaxcuZLly5dTUFBAWloaaWlpQO3n3KNHDwYOHMioUaOaDL8N+eyzz6iqqiI+Pp7S0lL27dvHvn37gNqg3LdvX6Kjo5uc6WtqNrQ+tuHd3o6eIiJSl2bIRERcUFVVFSdOnABatlwRavc7WZWWlraoliuwWCzExsYarf7Dw8NZtmxZowdHN0dYWBjbtm1j0aJFREdHG23nq6urOX/+POvXr2fixIlGGGyu1q1bYzab2bJlCx9//DG9e/c2AuutW7f4448/mDNnDvPmzasToB5mT0MO20Yktj83IiJiP/33loiIC0pJSTGWwLU0kNm2OG8qkJlMJvLz8122oYM1jFlnF3v37s2KFStafKj0w1q1asXgwYMZPHgwUDuzePr0aeLj40lOTqa0tJT58+cTFxf3yMHZj6tTp05MmTKFKVOmUF1dTWZmJsePH2fPnj3cvn2bI0eOsHHjRmbPnu2w7+vOnTvG66YatoiIyOPRDJmIiAuyBoru3bvj7+/folq2Z25du3at0WutbfGLioqavPbf5uEw1qtXL1auXOnwMFYfk8nE0KFD+fbbbxkzZgwA5eXlHDt2zCH1rcshp02bxo8//mgsB01ISHBIfaucnBwA/P39ee655xxaW0Tkv0qBTETExdTU1PD3338DtY0oWqp9+/a8+OKLAMYh0w0ZOHCg8TouLq7Fz/6nWCwWFi5caISx0NBQvvnmmyb3sT0Jffv2NV5b9+Q5kr+/v3GOmj1nnTWkuLjYOPLgtddec1hdEZH/OgUyEREXk5aWZvwhbxuQWsIaEnJycrh7926D1w0ZMsT4Y3///v3s3Lmz0bqNHQz9T7FYLCxevNg4UPlJhrG//vqryZBl3fsH0LFjx2bVz8vLIyUlpdFrbt68acxkBQQENKt+Y9LT043Xb7/9tsPqioj812kPmYiIg+Tm5hod9ays51sBJCYm1umG6OnpyaBBg5r9HOssT0BAgF2ty+szePBg9u/fT01NDSkpKbzzzjv1Xvfss8+yaNEiZs2aRXl5Od9//z1Hjhxh+PDhdO7cGQ8PD4qKisjIyCAxMZHg4GDMZrNDxmivJUuWkJiYCNQGoJkzZ3Lz5s1G7/H19cXX17fZz9q5cydLliwhLCyMsLAwXn75ZXx8fLh//z75+fkkJCQYs5sdOnRo9nEF+fn5zJ07l4CAACIiIggJCaF9+/a0bt2akpIS0tPT2b17t9Ets6mDu5vj1KlTQO3+uH79+jmsrojIf50CmYiIg6SlpbFixYoG31+/fn2df3fo0KFFgcwRyxWtwsPD8fPzo6CggPj4+AYDGUC3bt344YcfWLBgAXl5eZw9e9Y4oPph1j1nzmR7QPONGzeYOXNmk/dMnTqVadOm2fW8qqoqkpKSSEpKavCajh07smLFikbb+TcmLy+P7du3N/j+M888w8SJE3n//fftqv8wi8XCwYMHgdpZWXtb9ouIyKMUyEREXMjly5eN2Z2Wdle05e7uTkxMDBs2bCA5OZni4uJGzzYLCgpiy5YtxMfHc/ToUTIzM439Sr6+vnTt2pU+ffowbNgwh43RFcTGxnLy5ElSU1O5cuUKt27dMpYw+vj40K1bNyIjI4mKirKrzX7Pnj1Zt24dKSkppKenk5+fz+3bt7l79y5t2rQhICCAnj17MmrUKIfNngLGzwTAuHHjHFZXRETA7cGDBw+cPQgREXk8mzZtYtOmTfj6+rJr1y67zpJqSFlZGR988AGlpaV88sknTJo0yWG1xbV99dVXJCUlERYWxpo1a5w9HBGRp4qaeoiIuBDrcsX+/fs7NIxB7UG/1hD266+/cu/ePYfWF9eUnp5OUlISbm5uzJgxw9nDERF56iiQiYi4iPv37xMZGcnUqVOJiYl5Is8YO3YsgYGBlJSU8Ntvvz2RZ4hr2bhxIwDDhw8nJCTEyaMREXn6aMmiiIjUceHCBZKSkvDy8mLChAnOHo44UVlZGdu3b+fBgwfExMQ0uq9QRETso0AmIiIiIiLiJFqyKCIiIiIi4iQKZCIiIiIiIk6iQCYiIiIiIuIkCmQiIiIiIiJOokAmIiIiIiLiJApkIiIiIiIiTqJAJiIiIiIi4iQKZCIiIiIiIk6iQCYiIiIiIuIkCmQiIiIiIiJOokAmIiIiIiLiJApkIiIiIiIiTqJAJiIiIiIi4iQKZCIiIiIiIk6iQCYiIiIiIuIk/wPEnt5b2BreSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHiCAYAAABLBzXPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACXIElEQVR4nOzdd3xT5f4H8M85SZqOdFBaShll7w0CshEQGSpOUFFBEPWnFwd6vbhxXL2OKyqOKy7AgagoqIjsLXvJ3rSsUqB7Jjnn+f2R5pDSJE3btKdNP+/XK6+mOSPftBnnk+c5zyMJIQSIiIiIiIioWpP1LoCIiIiIiIjKj+GOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAKAX8LdyZMnIUkSJEnC+PHj/bHLGmngwIHa35GIyJPx48dr7xUnT57UuxzNrFmztLpmzZqldznkZ6qqolu3bpAkCZMnT9a7HLoCX38UKAI5VyiKglatWkGSJDzzzDMVch+V1nI3a9YsTJs2DdOmTausu9TdggULtMecnp6udzlUyG63Y/ny5Zg6dSoGDRqE+Ph4mM1mWCwWNGvWDHfccQcWLFgARVFKtd+9e/di8uTJaN26NSwWCyIjI9GhQwdMnToViYmJFfRoiKgmSUlJwZw5czBhwgR06dIFUVFRMJlMqF27Nrp3744nn3wSBw4cqJD7njlzJnbs2IHg4GCPByXTpk3TDsp8ufj65YQ/318TExMxdepUdOjQAZGRkbBYLGjdujUmT56Mffv2lWpfvtq4cSMmTJiAZs2aITQ0FNHR0ejWrRtee+01XLx4sULuUw8dOnTQ/rcrVqwo9fbr16/Xtm/btm2Zajh37hx+++03TJs2Dddffz3i4+O1fTZu3LhM+/Tnc+bChQt49dVX0a1bN0RHRyM0NBTNmjXDhAkTsGnTplLtKycnB++++y769OmDOnXqIDg4GI0aNcKYMWOwZMmSUu3LV3q8fvQwefJk7XnzwgsvlHr73NxcREZGQpIkGI1GnD17FgBgMBjw/PPPAwDeffddHD161K91AwCEH5w4cUIAEADEuHHj3K4zYMAAbZ2aYty4cdpjPnHiRInr18S/UWVbuXKliI6O1v7O3i7du3cXR48e9Wm/b7/9tjCZTB73FR4eLubOnVvBj45qitK+t1SWr776Sqvrq6++0rucgDN58mRhMBhKfO+SZVk8+eSTwm63++2+c3JyRN26dQUA8eijj3pc76WXXvLp/bU0z19/vr9+8803wmKxeNxXUFCQePfdd339s5RIVVXxxBNPCEmSPN5nXFycWLFiRbnvqyq8/v773/9qNdx9992l3n7ChAna9m+99Vapt//111+9Pt8aNWpU6n368zmzbNkyUadOHY/7kiRJPPXUUz7ta8eOHaJp06ZeH+/YsWNFQUFBqR+zJ5X1+vElV1S07du3azUkJCQIVVVLtf2cOXO07UeMGFFkmd1uFy1bthQAxB133OHPsoUQQlRaiqiJwaWqHoDVZF9//bX2P4mOjhajR48W7777rpg7d66YM2eO+Mc//iEiIiK0dRo2bCjOnTvndZ+ffPKJtr7JZBITJkwQs2fPFp9//rm4/fbbtQ91o9EoFi9eXEmPlKjyVYWDy0A2ePBg7e/brl07MXnyZDFz5kzxww8/iA8//FAMHz68yIHW/fff77f7fvvttwUAYTAYxOnTpz2u5xruXn31VfHLL794veTk5Hi9X3++v/7+++9aOJYkSdx+++3i888/F7NnzxYTJkwoEiA/++yzMv2drvSvf/1L22dYWJh49NFHxTfffCP+97//iWuvvVZbZrFYxM6dO8t1X1Xh9Xf+/HlhNBoFABEaGioyMzN93jYnJ0eEh4drz7OSPnvd+eWXX4q8Bkwmk+jSpUuZw50/nzPbtm0ToaGh2vrXXnut+N///ie++eYb8eijj4qwsDBt2XPPPed1XydPnhRxcXHa+j169BAffPCB+O6778QzzzwjateuXa6QXdF/i5JUhXAnhBAdO3bU6li+fHmpth00aJC27Y8//lhs+eeffy4Ax5dx+/bt81fJQgiGuwrFcFf1fP3116JDhw7iu+++E/n5+W7XOX36tGjXrp32v7v33ns97u/s2bPam7XRaBTLli0rto7rB27Dhg1FXl6e3x4PUVVSFQ4uA9nQoUPF2LFjxbZt2zyu8+OPP2oH1wD80iJks9lEw4YNBQAxdOhQr+u6hrtVq1aV6379+f6ak5Mj6tWrp607a9asYussXbpU+9tZLBaRnJxcrvp37Nihhc/IyEixe/fuYuu4/r26d+9e6tYBV1Xl9Tdq1Citji+++MLn7VxbOq6//voy3feGDRvEpEmTxP/+9z+xdetWrdWqLOHOn88ZVVVF165dtX1Nmzat2Dq7du3SvlyWZVn8/fffHmu76aabtH1NmDBBKIpSZPnJkydFQkKCts7vv//u8+N2p7JfP1Ul3E2fPl2r45577vF5u8TERO21X7t2bbetpxkZGSI4OFgAEJMmTfJn2Qx3FYnhrupJS0vz6cNzz5492v8uJCTE47fLjz/+uLbeP//5T4/7u/3227X1PvzwwzLXT1SVVZWDy0CVmprq03pPPvmkT19O+cq1NWTOnDle1/VnuPPn++t7772nrXP77bd73Nc///lPbT1fu8d54noA/tFHH7ldR1VV0aNHD78chFeV19+CBQu0Ovr16+fzdq4tHfPnz/drTWUJd/58zrj+TXr27OnxOOSjjz7S1rvtttvcrrNr1y5tnYSEBI9faCxatEhb76qrrirh0XpX2a+fqhLuUlJStBbJsLAwkZWV5dN2r7zyilb/5MmTPa7nfO8KCQkpVSt3SSr8nDvXUOft8tJLL7ndt6IoYt68eWL06NGicePGIiQkRFgsFtGqVSvx0EMPef1mQwj3HzTLly8Xd9xxh2jcuLEwm83FwpfNZhN//vmnmDJliujTp4+IjY0VJpNJWCwW0aJFCzFu3DixZs0aj/fpGuq8Xbz9rUqyadMmMWnSJNGyZUthsVhEaGioaNq0qbj33nt9+qbWeT8DBgwQQgiRnZ0t3n77bdGtWzcRFRUlQkNDRdu2bcXUqVN9PqAINK1bt9b+Tu6+cVVVVdSvX18Aji4KSUlJHve1bt26Mn3Y+cNff/0lHnroIdGmTRsRGRkpzGazaNiwoRg9enSJBxKrVq0q9hpNTEwUU6ZMEa1atRKhoaEiMjJS9OrVS3z00UfCZrP5VFNWVpaYPn26GDJkiIiPjxdBQUGiVq1a4qqrrhIvvPCCSElJ8br9la8Vu90uvvrqKzFkyBBRr149YTAY3H6IJycni3/+85+iTZs2IjQ0VNSqVUt0795dvPPOO1qAb9SokduDgMWLF/v0Zu1q8uTJ2jZ//PGHT9v4oqQvjirq//bbb7+J66+/XsTFxQmz2SwaNWok7rrrLvHXX38JIUp3cFlQUCA+//xzccMNN4gGDRoIs9ksIiMjRYcOHcSUKVM8fiF28OBBrTUnIiJCHD9+3ON9pKamai1Osix7fd8OJJs2bdL+D126dCn3/m655RbtAKSkgxt/hTt/v7/26tVLW2f9+vUe95WUlKR9456QkFDm+jMzM7Xji4iICK/dT11PFyhN68CVfH39bdmyRcTExAjAcY7UvHnziq1TnmMvm82mnVcmSZI4duxYibW7tnTExMQIq9Xq02P2VVnCnT+fM3feeae2r2+++cbjvnJycrTWu5CQEJGdnV1snWeeeUbb12uvveZxX6qqiubNm2vr+vJ/8KSyXz++hruUlBRx1VVXaes+8cQTboNzeY6Dbr75Zm3/vrZEN2vWTNtmx44dHtdzDf1ffvmlT/v2RZUOd0ePHhWdO3f2up0sy+KFF17wWJvrB83KlSvFI4884nY/rgcSAwcO9DmcuWtqrchwZ7PZxKRJk0rc9+jRo0Vubq7H/biGu2PHjom2bdt63FejRo1qZMtj9+7dtb/Bpk2bii13bd1r3769130pilKku4U/v6HxJDs7W4wZM6bE58rIkSM91nNlSFi8eLGIioryuK9rr73WY3dXpz/++MPrCeWAY4CEhQsXetyH62vl0qVLom/fvm6ft65WrlwpatWq5fE+O3ToIJKSkjyGO0VRRJMmTQQAUatWrRK71+bl5Wn3l5CQUKzbTHmUNtyV9/9mt9u9vq/JsizefPNNnw8ut27dqv0tPV2CgoLE//73P7fbz5w5U1uvV69eHgcOue2227T1SjqHJZDs27dPe9ytW7cu177y8/O1MN2/f/8S1/dXuPPn+2tGRkaR7pElvRZdu+WX9VyY3377TdtHSV0MU1JStHVjY2PLdH9C+BbulixZog2IYbFY3HZ19cex15QpU7R1X3zxxRJrd23peOyxx3x9yD7z9Lngib+fM67nwF24cMHrvkaOHKmtu2jRomLLu3Xrpi331kVbCFHkmNdT63FJ9Hj9+BLuTpw4oQ1KAkC88cYbxdbxx3GQ6yA9vrwHrl27Vlu/U6dOXtdNT0/X/rajRo0qcd++MqKCOYf5ff7557UhUn/55Zdi67Vu3brI78eOHcPVV1+tDRHct29fXH/99WjUqBEURcH27dsxa9YspKWl4dVXX4UsyyVOs/D2229j8eLFqFu3LsaPH4/27dvDbrdjy5YtMJvN2np5eXmwWCwYPHgwunXrhsaNGyM4OBjnzp3Dvn378O233yInJwezZ89GVFQU3nvvvSL38+ijj+Kmm27CBx98gFWrVgEAPv30U9SpU6fIegkJCT79DV3dc889+P777wEAwcHBGDduHHr37g2DwYBt27bhiy++QFZWFn744QdkZGRg8eLFXufNy8zMxMiRI3Ho0CGMGjUKw4YNQ3R0NI4fP45PPvkESUlJSExMxL333ou1a9eWut7qymq14siRI9rvjRo1KrbO3r17tevdunXzuj9ZltGlSxesWbMGqqriwIED6NGjh/8KvkJBQQGGDBmiDavcrFkzjBkzBm3atIHJZMLRo0cxZ84cHD58GIsWLcJNN92EZcuWQZY9z46ya9cuvP322xBC4MEHH0SvXr1gNpuxbds2/O9//0NOTg6WLVuGf//733jllVfc7mP+/PkYM2YMFEWByWTCjTfeiIEDByIuLg6ZmZlYtWoVfvjhB2RlZeHmm2/GsmXLMGjQIK+P9e6778b69evRqVMn3HnnnWjcuDEyMzPx999/a+vs378f119/PXJzcwEAXbp0wd13340GDRrg/PnzmDdvHjZs2IAxY8bAbre7vR9ZljFp0iQ8++yzSEtLw/z58zF27FiPdf30009IS0sDAEycONHr37Yi+eP/9uijj2L27NkAgKCgIIwbNw59+/aFLMvYsmULvvjiC/zrX//CTTfdVGI9GzduxJAhQ5CbmwtJknDddddh6NChqF+/PvLy8rBx40Z8/fXXyM3NxUMPPQSz2VxsnqNJkyZhyZIlmD9/PjZu3IiXX365WO1ffPEFfvrpJwDA1VdfXaOm4XF9b3L33lUaGzZs0F43pX3PevHFF3HmzBmcOXMGQUFBiIuLw9VXX43Ro0fj+uuv9/rZ5M/31/3790MIAQDo3Llzia/Fq666Sjte2bt3b5mG5C9N/bGxsWjUqBESExNx4cIFpKSkFDte8Ie5c+di3LhxsNlsiI2NxR9//IGrrrqqyDr+Ova677778O677wIA5syZo02R4Ynz/cW5rd78+ZxJTk7GpUuXADhejzExMSXua9GiRdq+RowYoS1TVRX79+8HABiNRnTq1KnEfTm5PidLQ4/XT0n27NmDYcOG4ezZszAYDJg5cyYmTJhQZB1/HQcNHz4ccXFxOH/+PNatW4fjx4+jadOmHmtznWOypOdyZGQkWrdujQMHDmDFihVQFAUGg6GUfw03/JEQ/T0VgqIo2omnZrNZ/PDDD27XS05O1r5dkmVZ7N27t9g6Vw7L3LdvX5GRkeH1/pcvX+611evixYtaS4Esyx67Bfl7KoTvv/9eWx4XF+f2G5GTJ08W+Ubc0/kHrn+ToKAg8dtvv7l9nK772rx5c4mPwZOcnJwSR03z9bJ9+/Yy1+Er124yXbt2dbvOyy+/XKR1pCT33nuvtv7XX3/t54qLuvJcFXfd7qxWa5GaPvnkk2LruLYAobAF6vDhw8XW27x5s3Yida1atdy2AiUlJWnfrickJHjs1rN582YRGRkpAIgGDRq47Z5zZY+Axx9/3Ou3ia4tew8//LDbda98r/DUrdPZ/97ZpdmT/v37C8Ax6tupU6e8rltapWm5K+//zfVbyKioKLffFB88eFAbJt95cddykJmZqXWTjIqKEqtXr3b7+I4cOaINBhAWFub2m+7U1FTRoEED7W+8bt06bdmhQ4e0keciIiLK1R1JCCEOHDjgt/evkr619wfXUTU/+OCDcu3r9ddf1/blbsS3K/k6FULPnj3FyZMnPe7Hn++vs2fPLvEYxdWLL76orf/qq6+WuL479913n9fXwpWc7xcAijyXS8Nby90HH3ygtRA0atRIHDp0qNj2/jz2EkIU6S63cuVKj3WvWbNGW88f3Yjd8fa+7o4/nzOuj6+kzw0hhPjyyy+19SdOnFhkWWJiYqkey8qVK7X1Bw8eXOL67ujx+vGWK9atW6f1RAkODhYLFixwuw9/HQcJIcRTTz2lreOtJdp1xFeTyeTT+/348eO1fbs7BagsqmS4mz9/vs8fTIcOHdKGZnU32ozrB01YWJg4c+aMT4+pJMeOHSvxyevvcOc6nK+383c2b95c5E3cXZcl1w/ZV155xeO+PvvsM5/WK4nrc6S8l4o+uTY1NVXEx8eXeEDzxBNPaOvMmDGjxP2Wdv2yOnv2rAgKChIAxC233OJ1XavVqs2T06JFi2LLrwwJa9eu9bivsWPHel3Pef6ZwWAoccjvL774QtvXt99+W2y562ulW7duXoPd1q1btXXbt2/vde4v1/16+uB0HbzBXWASwvG+5Fxn5MiRXh9rWZQ23JXn/+Y68p27EdKcfv/99yL36e6A1nUOrF9//dXrY1yxYoW27r///W+366xevVrIsqz9v9LS0oTVai3SbckfX6SUdu42b5fyDjJSkrlz52r3FRcX5/acndK46667tP2VdI67EI6/VXBwsBg+fLh45ZVXxNdffy3mzZsn3n//fXHLLbcUmaevXr16HqdV8Of76/vvv68te/LJJ0vcV2nXd8f1PB13X56Wd313PIW75557Tru9Xbt2Hv/m/jz2EqLo4CDeBvZxDcLl/TLCk5Le16/kz+fMwoULtWW33nprifvytv7u3buLfPaVpLTru6PH68dTrli4cKEICQkRgKOLqKfzqP15HCRE0a7ujRs39jggjmsQLul+nd58802/fl4JIYQ+/YRK8PXXXwMAIiIiMGnSJK/rtmzZUut+sXTpUq/r3nrrrahXr55famzatCnq1q0LANi8ebNf9unNyZMnsXPnTgBAhw4dMHz4cI/r9ujRQ+vKlpiYiO3bt3tc12Aw4B//+IfH5a5d4pxdAQKZoii44447cO7cOQDAyJEjcdttt7ldNzs7W7seHBxc4r5DQkK061lZWeWs1LMffvgBVqsVAPDUU095XddkMmHMmDEAgCNHjuDkyZMe1+3SpQv69evncbm354oQAt9++y0AYPDgwejcubPXusaMGQOj0dFrvKTX9SOPPOK1m8jChQuLrOuty8Njjz3m9b4A4KGHHtKuf/75527Xcb39gQceKHGfFak8/7eCggIsXrwYABAXF4e7777b435GjhyJNm3aeK3F+d7esmVL3HDDDV7XHTRokPZ+7ek5MGDAAEydOhWA473uoYcewvPPP6+9540dO9ZrzYFm//79RZ5vM2bMQFhYWLn2mZiYqF2Pjo4ucf3bbrsNZ86cwR9//IEXXngBd999N0aPHo1HH30U8+fPx+7du9G8eXMAwNmzZ4t1uXXy5/urHu/VVeHzQVEUTJo0Cf/+978BAL1798a6detQv359t+v7+9jrzjvv1B77/Pnzi/xNnHJzc7Xu00FBQbjrrrt8eGQVr6o+/2rqcxkAvvzyS9xyyy3Iy8tD3bp1sWbNGvTv39/tuv4+Dmrbtq32fD958iTWrFnjdl+l6ZLpVKtWLe266/tteVT4OXdlsW7dOgBAfHw8/vzzzxLXdx6sJSYmIi8vr8gTy5W3A5wrZWZm4ttvv8Uff/yBPXv24OLFi8jJyXG77unTp33eb1lt2bJFuz506NAS1x86dChWrFgBwBE+PZ0r0bJlyyJPrCu5fgg4zx8qi8aNG2t9tquyxx57TPugSkhIKPJCrS6crx/A8dxcsGCB1/Vd/68HDhxA48aN3a539dVXe92Pt+fKvn37kJqaCgAIDw8vsSYAsFgsSE9Px4EDB7yuV9Lretu2bdr1a665xuu6AwcOLLGua665Bi1btsThw4cxe/ZsvPbaazCZTNpym82mnT9Sr149jBw5ssR9VqTy/N92796tfUAOGDCgxHMBBg8e7PH/lZGRoZ0HGRcX5/NzAIDX58DLL7+MFStWYPPmzZg3b552e5MmTfDxxx+XeB++mDZtWpU/Zy85ORk33HCDdjD18MMP4/bbby/3fp2vW8C3cNe+fXuvy9u1a4c///wT7du3R35+PpYvX47NmzejZ8+e5a6VLsvPz8ftt9+ujXEwYsQI/PjjjwgNDfW4jb+PvWrVqoWbbroJ33//PXJycvDTTz8VC/M//fST9py98cYbUbt2bZ8fI9Ucb775pvZFXrNmzbB06VKv571VxHHQhAkTtGPxWbNmFTteSExMxOrVqwEAdevWxbBhw7zep5Prc748x9muqly4y87O1k48PXToEG6++eZSbZ+WluYx3Hn6tupKq1atwl133YXk5GSf1s/MzPS5vrJytiQBjkBWEtd1XLe9Ukkn9roONJOfn1/i/VZnzz33HD766CMAjoPPZcuWef37OA88Ad/+Nnl5edr18PDwclTqneu3TqNHjy7Vtt7eWMrzXHGtaf78+Zg/f75fagJKfl2fPXtWu+7twwBwHIxERUUhPT3d4zqSJOGBBx7AU089hfPnz+O3337DLbfcoi3/9ddfkZKSAsDxzZ1fTo4uh/L831z/ds7WFm+8rXPq1CmoqgrA8cHr+uFbEm/PAaPRiO+++w6dO3fWDhKdt0VERPh8H9VZamoqhg4diuPHjwNwtJ598MEHftl3QUEBAMeBvKfP1tJq1qwZxo0bh08//RQAsGjRomLhzp/vr3q8V+v9+TB16lRkZGQAcAw69dVXX2m9IdypqGOv++67TxsEbtasWcXCnesXqFcOiAHA60F5aGioT192l0VVff7VxOfyggULtC9MO3XqhCVLliAuLs7rNhVxHHTHHXfgiSeeQF5eHn766Sd8+OGHRf42s2fP1hox7r33Xq+vN1eun1Ouf7vyqHLhzvlmVFbOb5nd8eWD6ciRIxg5cqT2B27VqhWGDx+OFi1aIDo6ukiT9AMPPIALFy5AUZRy1ewL16ZtX7rZuD7hvDWL6zWCX1Xz2muv4fXXXwfgOBhevnx5iSE6KipKu+4cWcwb5wfnldv6W3leQ95eP+V5rlRUTUDJr2tni7vRaCzSwuZJWFiY13AHAOPHj8dzzz2HgoICfPbZZ0XC3WeffQbAEQInTpxY4v1VtPL831y743j7xt/J23tTeZ4DNpvN6/KYmBhER0dr73VNmzYtcYTCQJGRkYGhQ4diz549AIAbbrgB3333nd++VHCGf0VRkJub69PzwBcDBw7Uwt3BgweLLffn+6se79V6fz64jvqbk5NTYs+Zijr2GjJkCBo0aIDTp09j7dq1OHnypNYq4trSUa9ePbdBzVvIbNSokddTCcqjqj7/avpzOS8vz6dj7oo45oiMjMTNN9+M7777Djk5OZg/fz7GjRsHwHHqyZw5c7R1SzPiq2ut/voCrcqFO9dQ0r9/f4/9WivKG2+8oQW75557Dq+++qrH4XtL6pPuT67ffnjqHurK9aCsIluJfJWbm1viuVO+SkhIQNeuXf2yLwB466238MILLwBwtNwsW7asxK5FQNHWUV8+YFz7UvvS+lpWzteQJEmw2+1VIsC7vq5ffPFFvPzyy5V2387AYbfbYbPZSgx4vry+ateujdtuuw3ffvstli5diqSkJCQkJCAxMRHLli0D4DioadKkSfkfgI5c/2/O4fC98fa3c93XvffeW2To8/J6+OGHi7y+Dh8+jOeffx5vvvmmX/Z/8OBBtwGkLPr27Vtia6qvsrKycN1112nnGF533XX48ccfffoSw1euXTFTU1P9Fu5cuyK5+zLFn++verxX6/358MYbb+D777/HX3/9hV9++QVjxozBvHnzPD43KurYS5ZljBs3Dv/+978hhMDs2bPx0ksvASje0qF3LwdXVfX516BBA4SEhCAvLw9nzpyB3W732kIUCM/l2267DREREZgxYwYOHz6Ma665BqtWrfI6hkZFHQfdd999+O677wA4Wp2d4W7dunU4duwYAMepEFdO7+ZNabu++6LKhbvIyEhYLBZkZ2dXyrlsV1q+fDkAoE6dOnjllVc8BrusrKwi/5CKFh8fr113nX/NE9d1/DWITHmkpKSUupuHJ+PGjfPbuXDTp0/Hv/71LwCO596SJUtKHOzDyTUAehu0BnDMTeMcEEeW5RIHniiP+vXrY9euXRBC4MyZM2jYsGGF3VdpanKq7Nd1vXr1tHO9jh8/jlatWnlcNy0trcRWO6eHHnoI3377LVRVxZdffolp06bhyy+/1Loe6j2Qij+4vnccPXq0xPW9rVNRz4Fvv/1WG6ynW7duuHjxIhITE/HOO+/guuuuK3GeRF98//33fvtCYtWqVT6d21mS7OxsDB8+XBvQa9CgQViwYEGRbrb+0LhxY2zYsAGA4yCkQYMGftlvSd/u+/P9tW3btpBlGaqqYteuXVBV1evBnut5ur580edOaeq/cOGCdkAcGxvrlznuwsPD8eeff2LYsGE+BbyKPPYaP368NqjLnDlz8OKLLwIoOredp4F19DpX35/Pmbp166J27dq4dOkSkpKScPHiRa9f8HjblyzLaNu2LbZv3w673Y7du3d77aXgj+eyHq+fK33wwQeQJAkffPCBTwGvoo6DBg0ahISEBCQlJWHNmjVaS/RXX32lrVPaeRpds0R55yV1qrSv9F2fCCW9WJ2j3xw/ftynAwp/On/+PADHyfjenrzLly/XDuI8Kc1jLonrgCjOlgFvXFvJKnKy7Orso48+wpQpUwA4PggXL16M7t27+7x9u3bttAOdffv2ef1A/Ouvv7RzM/v06VOhrakDBgzQrvurtbS8unTpovUrX7FiRYmvHX9yncR11apVXtd1dhHyRd++fdGuXTsAjlG8bDYbvvzySwCOL4dGjRpV+mKrmE6dOiEoKAgAsGbNmhK7wzgHcXInJiZGm8x206ZNfjlX+cSJE3j44YcBOFpo586di2+++QYGgwGqquLee+8tEiICRW5uLq6//notdPXv3x+//fabTyPZlZbrwdmhQ4f8tl/XliF33+778/01IiJCG1goIyNDm9TYnVOnTmmjxiYkJJR5AuaBAwdqQXvt2rVez6VZsmSJdt3XQRh84Qx4ffr0AQD88ssvGD16tMduzhV17NW8eXNt4Kvjx49j3bp1WLt2rXaOaO/evb1+6aYHfz9nrrvuOgCOY0Fvn8u5ubna+cghISFFPs+v3BdQ9LlzJSGEX55berx+3Hn//fe1Ea0PHz6MgQMHFjkv3FVFHQc5W6KBy10xnYMFAY7/mXPkTV+5DhjWsWNH/9Tpl734wLXJv6RuT84/HADtG57K4uxycvz4cY+BTFEU7fwsb0rzmEvSuHFjrSvi7t27vQa8bdu2YeXKlQAc3wJUhXNPnKNl+uPij1a7zz77DJMnTwbgOCj8448/0KtXr1LtQ5IkbTQ6IQRmzJjhcV3XwQ1K+8IvrTvuuEM7IH/zzTfL/dzzB4PBgLFjxwJwdNnwNIVARXANWR999JHXgPL++++Xat8PPvggAMcH2uOPP64dgI4bN86vXeP0YjabMWLECACOL76c3VHcWbx4cYkjmzrf23Nzc/Gf//ynXLUpioKxY8dqB/UffPABWrRogb59++LZZ58FAJw5cwb3339/ue4HcIyW6a/3r/K22uXn52PUqFFaOOrTpw8WLVrkt+6SV3Id6MRf0/4cO3asSKuN8znmyt/vr663e3udz5gxQ/vsL+1ADK4sFov2uDIzMz1+bgkh8OGHH7qt0x+cAa9v374AHINTeAp4FXns5dqaMWvWrDINGV/Z/Pmccd3XBx984PH4ctasWdp72siRI92ex+x6H59++qnHQU4WL16shfSrrrqqxAHFvKns148n7733Hh5//HEAjh5qngJeRR4HjR8/XuvVN2fOHPz444/aqVC33HILIiMjS7U/5/tqeHi4/8KwPybL82US80cffVRbx9Okg06Kooju3btr6z/22GOioKDA4/q5ubniq6++EnPnzi22zHXyWV8mj7322mu19d99991iy61Wa5EJN+FlUsx3331XW2f27Nkl3ndJk5jPmzdPWx4fHy8OHDhQbJ3ExETRrFkzbb0PP/zQ7b6cywcMGFBiXaVZtzqYPXu2Nsl7aGhouSYVPnPmjAgNDRUAhNFoFMuXLy+2juvEsg0bNhR5eXnlqN43Tz75pHaf11xzjTh37pzHdRVFEcuWLROvvvpqsWWuk2G/9NJLXu+zpHVPnToloqKiBABhNptLfE2cP39evPLKK2L37t3FlpX0WrlS3759tfUffvhht5OeXzlRtS+T3aanp2v/f9eLp8nN/aU0k5iX9/+2bt06bXmtWrXcTkB/+PBhER8fX+Rv4G4S8+zsbNGoUSMBQEiSJN566y2vE9Cnp6eL999/XyxbtqzYshdeeEG7r9tuu63IMpvNJnr16qUt//TTT73+DaqLgoICMWLECO1x9ezZU2RkZFTofebn54uwsDABQPTr18/rur/++qv48ccfhd1u97jO3r17RfPmzbXHMHDgQI/r+vP9NScnR9SrV09bd9asWcXWWbZsmTAajQKAsFgsIjk52e2+XI95vL0H7dixQ/usiYyMdPteNm3aNG0/3bt397gvX3iaxFwIIbKysoq8D44aNUpYrdYi6/jz2OtKWVlZ2vPIYrEIi8WifQZX9HNYiNJPYi6Ef58zqqqKrl27avt6+eWXi62ze/duERkZKQAIWZbF33//7bG2m266SdvXxIkTi72PJiYmioSEBG2d33//3eO+nO/J3o6T/fm38EVJueLxxx/Xlrdo0UKcPn262Dr+Og5yx/UYxPWzz917lDfp6enae8RNN91Uqm29qbRz7gYPHqx9uzZx4kQ88cQTaNSokXYCbfPmzbVhtGVZxvz589GrVy+cOXMG77//Pn744Qfcfvvt6NSpEyIjI5GdnY2kpCRs27YNK1asQE5ODl599dVy1zl58mStVWzKlClYvXo1rrvuOtSuXRtHjhzBnDlzcOTIEVxzzTU4cuSI164igwcP1q4//fTTuHDhAlq1aqWd/Fq/fn106NDB59pGjx6NX375Bd9//z3OnTuHrl27Yvz48ejVqxcMBgO2bduGL774QvvWZ+jQoVqXJXJYvHgxJkyYoH2zNGHCBKSnp5c4B0rXrl2RkJBQ7PZ69erhv//9L/7v//4Pdrsdw4cPx7333osBAwbAbrdj8eLFWnO90WjEzJkzvXadcj3H88SJEx7nnCvJG2+8gV27dmHFihVYtWoVmjZtiltvvRW9evVCbGwsrFYrkpOTtVbg5ORkDB48GM8//3yZ7s8XDRo0wPfff48bb7wRBQUFGDduHN59913ceOONaNGiBUJCQpCRkYHDhw9j06ZN2LBhAxRFKXFuOl98+umn6N69O3Jzc/Hxxx9j48aNuPvuu9GgQQOcP38e8+bNw4YNG9CrVy8kJSXhzJkzPp2AHRkZiTFjxhTpbz9w4EC0aNGi3DVXFX379sXDDz+Mjz/+GGlpabj66qsxbtw49O3bF7IsY8uWLfjiiy+Qk5ODm266yetrKSwsDAsWLMCAAQOQmZmJp59+Gp9++iluvfVWtG3bFhaLBZmZmTh+/Di2bNmC1atXw2q1apMrO61fv17rPdGgQQPMnDmzyHKj0Yhvv/0WnTt3RmZmJp544gkMGDCgynX9Kq3x48fjjz/+AOD4lvf//u//tF4a3tx0001lvk+z2Yxhw4Zh/vz52LZtG7Kzs4v0SnF17NgxPPHEE4iNjcWwYcPQuXNn1K1bFyaTCefPn8fq1auxcOFCbfS7evXqeR1Yx5/vr6GhoZg5cyZGjRoFRVFw3333YdGiRRg+fDiMRiPWrFmDOXPmaLVNnz69xOHWS9KlSxc8/fTTePPNN5GRkYHevXvj/vvvR48ePZCdnY358+drXcYsFkux57E/WSwWLF68GCNGjMC6deuwcOFC3H777UUG4KnIYy+LxYLbb78ds2bNKjLg26233ur3KUv++9//ehzOPj09vdjnXJMmTdyObOzP54wkSZg5cyb69++P3NxcvPTSS9iwYQNuu+02hIWFYcuWLfj888+1FqZnnnnG6/Hhe++9h40bN+L8+fP44osvsHfvXtxzzz2oXbs29uzZg08//VTrkj527Nhyz7eqx+vHm+nTp0OSJEyfPl07Jl+1alWRc7sr8jjovvvu03pPOKcba9SoUanP8V69erV2PFqe9+li/JEQfWm5s9vtRb41uvLi7hvjs2fPisGDB3vcxvViMBjEZ599VmwfpW25E0KIZ555xut99enTR6SkpGjfdnj7JujOO+/0uJ8r/1a+tEbYbDZx//33l/j3uO2220Rubq7H/TjXq2ktd1e2zvh6cdcK4ertt98WJpPJ4/bh4eE+fbvpuo27FpnSKCgoEP/4xz+EwWDw6THee++9xfbhzxYgp40bN4qmTZv6VJPFYnH77WVpW+6EEGLlypVay6G7S/v27UVSUpKoX7++ACA6duzo0343b95cZD/ffvutzzWVVWW23AnheP++5557PP7tZFkWb731lteWA1cHDx4UXbp08ek5YDabxeLFi7Vt09LStPdeWZa9vq9/88032n66dOnitRWiOnD9hr00l/JasGCBtq85c+Z4XG/69Ok+19SvXz9x8uRJn+7fX++vQjieE85WI3eXoKAgt712XPnacieEo8Xm8ccf176dd3epU6eOWLFihU/1e+PL6y87O1v0799fW+/GG28s1oLnj2Mvd9asWVNs+5UrV5b3YRdT2tdJScc2/njOOC1btkzExsZ63JckSeLJJ58UqqqWuK8dO3aU+Fl61113lfi+50vLXUX8LbzxJVcIIcSUKVO09Zo3b16sBc8fx0HuZGdnF/s7vPjii6V+nKNHjxYAREhIiMjMzCz19p5UWrgTQoi8vDzxn//8R/Tq1UvUqlWryB/b2wHI6tWrxYMPPijatWsnoqKihMFgEBEREaJt27ZizJgx4pNPPhFnz551u21Zwp0QQixevFiMHDlSxMTECJPJJOLj48WgQYPEZ599Jmw2mxBC+BTu7Ha7+OSTT8TAgQNFTEyM1mTt7m9VmgPWjRs3iokTJ4rmzZuLsLAwERISIpo0aSLuvvtunz4kfH1TK+26VV1FhTshhNizZ4945JFHRMuWLUVYWJgIDw8X7du3F//61798OojJyckp8gZ56dIlPzxiIY4cOSKmTp0qevbsKWJjY4XRaBShoaGiSZMmYsSIEeL111/32P2jIsKdEI4vKb755hsxevRo0aRJE2GxWITRaBTR0dHiqquuEpMmTRLz5s0T2dnZbrcvS7gTQojk5GTx1FNPiVatWomQkBARFRUlrrrqKvHOO++InJwcoaqqCAkJEYD37mKuVFXVutJER0eL/Pz8UtVUFpUd7px+++03MXLkSBEbGyvMZrNISEgQd955p/jrr7+EEL4dXDqpqioWLlwoxo0bJ1q2bCkiIiKEwWAQUVFRolOnTuLee+8Vs2bNEqmpqUW2GzNmjHYfU6dO9XofQggxduxYbf0nn3yyxPWrMr3Cnd1u17p4XXvttR7Xu3jxovjhhx/EE088Ifr16yeaNWsmIiMjtdd2p06dxIMPPlimrvDlfX91dfLkSfH000+Ldu3aifDwcBEWFiZatmwpHnnkEbF3794Sty9NuHP666+/xPjx40XTpk1FcHCwiIqKEl27dhWvvPKKuHDhQqnq98TX15+7gOcuAJTn2MsdVVWLnDbSuHFjn0JMafk73AlR/ueMq5SUFPHyyy+Lrl27iqioKBEcHCyaNm0qxo8fr72X+io7O1v897//Fb169RIxMTHCbDaLhg0bittvv73Il2LelCbcCeHfv4UnvuYKIYp2v3QX8IQo33GQJxMmTCgSyo8fP16q7TMyMrTjjUmTJpVq25JIQug0ziwRFbFkyRJtNKtHH3201IN7UPnt2bNHG63K1//B8uXLce211wIAHnvsMbz33nsVWSKRLqZPn44pU6bAYDDg5MmTfpsSgYioJvryyy8xceJESJKEvXv3+nVkUf1nNyYiAJfnWAwPD6/Qc9/IM9dR63w91++TTz7RrgfC3HZE7jz00EOoW7cuFEXBW2+9pXc5RETVluv76JgxY/wa7ACGO6IqwxnupkyZgtjYWJ2rCTzr1q3zOr/eRx99pA1oUL9+fVx//fUl7nPXrl3aACJDhgzx+xs0UVUREhKCadOmAQBmzpzpcX4pIiLybu7cuTh06BCCgoL8Mhjkldgtk6gKuHjxIurUqYOYmBgcO3asQic5r6maN2+O/Px8DB8+HF26dEFsbCxsNhuOHTuGX375BTt37tTW/e233zyGuz///BOqquLw4cN46623tJGy1q9fr00WTBSIVFVF9+7dsWPHDvzjH//wOvccEREVpygK2rVrh0OHDmHq1Kl44403/H4fDHdEVCM0b94cx44d87pOSEgIPvvsM23CdXdcp6tw8vX8vKVLlyI3N7fkYt2IiYnRJiImIiIicofhjohqhE2bNmH+/PnYtGkTzpw5g0uXLiE3Nxe1atVCy5YtMWTIEPzf//1fiXPzOMOdxWJBy5Yt8X//93+YMGGCT/PiNW7cGImJiWWqf8CAAVi9enWZtiUiIqKaodImMSci0tPVV1+Nq6++utz74fdhREREVFWx5Y6IiIiIiCgAcLRMIiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAB1QhIqIKZbVakZub6/GSl5eHgoICWK1W7afr5crb7HY7FEWBoihQVdXtT+d152nlkiRpI5rKsgxJkopdZFmGwWBAUFAQjEYjTCYTjEZjkd+dF6PRCLPZjODgYISEhCA4ONjtdefvoaGhsFgsCA4OdjudBhERkT8w3BERUYmsVisyMzO1S1ZWltvrzt+zsrK08Ga32/Uuv8owGAywWCywWCwIDw/XrrtewsPDERkZiaioKERFRSEyMhKRkZEwGvmRTURE3nG0TCKiGqqgoACpqalIS0sr9vPK27Kzs8t9f2azGaGhoW4vZrMZf36+CpKQAFUCVACqBMnluvMiCQBCAgQcF1zxu3C0jEnO3wsbygQuX4d2XbhcL/wpC0ASEHLhTq74qd1uEIAsIAwC147vj/z8fOTn5yMvL6/Yz7y8PCiKUq6/X3h4uBb4XC+1a9dG7dq1ERMTg5iYGERHR8NkMpXrvoiIqHpiuCMiCkB5eXm4ePEiUlJSkJKSggsXLhS5pKSkICMjo1T7NBgMCA8PR0REhPYzIiICy79cB9glSHYZsEuAXYbk/KlIQOFFQs3tjijgCIIwCgijAIwqhMHxE0YBYXD8HP7QIGRmZiI9PR3p6enIyMhAZmZmqedXjIqKQkxMTJHQFxMTgzp16iAuLg5169ZFaGhoBT1aIiLSC8MdEVE1lJeXh3Pnzrm9pKSkICsry6f9BAUFoVatWqhVqxaio6Ox6ecdkGwGwCpDsjkuzuuw1+yApheBwlBoUgGTWuSnMKnoe0d3XLp0CZcuXcLFixd97gYbHh6OunXrIi4uTgt8zuvx8fGIjIzk+YFERNUMwx0RURUkhEBaWhpOnTqFU6dO4cyZM0UCXHp6eon7CAkJQZ06dRAbG4s6depgyf/WQCqQAasBUoEMyWpgYAswWhAMUoAgFcKsQgQpuOGxa7UW2+TkZJ/Cf2hoKOrXr48GDRqgfv36Ra7Xrl2bwY+IqApiuCMi0lFeXp4W4E6fPo2kpCTteknnuYWHhyM+Ph7x8fFY/+1WSPkGoMAAqaAwvCmc7YbcE4bC4GdWALMCEaxgwL1X4/z580hOTsalS5e8bh8cHKwFvvr166Nx48Zo1KgRGjVqhLCwsEp6FEREdCWGOyKiSpCTk4OTJ0/ixIkTOH78OE6ePInExERcuHDB4zaSJKFu3bpo2LAh6tevj1/fXQYp33D5wvBGFURIAiJYgQhRIILtuGHKEJw5cwZnzpxBcnIyVFX1uG1sbKwW9Jyhr3HjxoiKiqq8B0BEVEMx3BER+VF+fj4SExNx4sSJIkHu/PnzHreJiopCw4YN0bBhQyz5aK0juOUZIeUZHKNHElUhQhIQZmfwU3DjU0OQlJSEkydPem3xi4yMROPGjdGsWTM0b94czZo1Q5MmTRAcHFyJ1RMRBTaGOyKiMkpPT8eRI0eKXE6dOuVxZMOYmBg0adIEOxbsg5RrhJRbGOLsbIGjwCAMKkSoHSJUgQixo/ttHZGYmIjk5GS3rwtZltGgQYMiga9Zs2aoU6cOz+kjIioDhjsiohIIIZCSkoLDhw8XCXIpKSlu14+MjETTpk2xe9FByLlGR5DLMbIbJdVYQhYQIXZH8Auzo8tNbXHs2DGkpaW5XT88PBwtWrRAq1at0KZNG7Rq1Qp169Zl4CMiKgHDHRHRFTIzM3HgwAHs378fBw4cwIEDBzzOCVe/fn20bNkSa7/aCjm7MMTZDJVcMVH1JEwKRJgdapgd10y6GseOHUNSUpLbCd8jIyPRunVrtGrVCq1bt0br1q0RExOjQ9VERFUXwx0R1WhWqxVHjx7Vwtz+/ftx5syZYusZDAY0btwYLVq0wLKPN1wOcmyNI/IrIQlHC5/FhuFTBuLQoUM4duyY28AXExODVq1aoV27dujQoQNat24Ns9msQ9VERFUDwx0R1ShpaWnYs2cP/v77b+zZswdHjx6FzWYrtl79+vXRtm1brPrfJkhZJkeQ4+AmRLoQkoAIcwS+ayf3xcGDB5GYmFhs1E6DwYCWLVuiffv22iU2NlanqomIKh/DHREFLCEEzp49i7///lsLc0lJScXWc3b32vbDXshZJkjZJg5yQlTFCVlAWGxQw23oO74b9uzZg9TU1GLrxcXFaUGvU6dOaNq0KWSZr28iCkwMd0QUMFRVxYkTJ7Br1y4t0Lkbmr1Jkybo0KED/nh7NeQsE5BvgAS2yhFVZwICMKtQI6y4Yepg7N27F8eOHSvWuhceHo7OnTujc+fO6NKlC8MeEQUUhjsiqraEEDhz5gx27NiB7du3Y+fOnUhPTy+yjtFoRKtWrXBwyQlImUGQM9kqR1RTCFmFCLdDjbCi2+3tsGfPHuTl5RVZh2GPiAIJwx0RVSsXL17Ejh07tEB35eTgwcHB6NChA3b8tB9yRpCji6XKVjkiunzunhppxVV3tMPff/9dLOxFRESgS5cu6N69O7p37474+HidqiUiKj2GOyKq0goKCrBz505s3rwZW7duLXbOnNFoRNu2bbHvt2OOMJdl4sAnROQTX8JegwYN0KNHD3Tv3h1dunRBaGioTtUSEZWM4Y6IqhQhBE6fPo1NmzZh8+bN2LVrF6xWq7ZckiS0bNkSR1ecgpweBCkziC1zROQXQiocpCXKinY3NMO+ffuKTMFgMBjQvn17rVWvVatW7MJJRFUKwx0R6S4vLw87d+7Epk2bsGXLFpw9e7bI8tjYWFx99dVY/NZaR+scz5kjokogDCrUSCuuf/YabN26tdgcmFFRUejVqxd69eqFHj16sFWPiHTHcEdEurh48SI2bNiA9evXY+fOnUVa54xGIzp27Ijd8w9DTjNDyuVolkSkPxFshxplRa/7OmPHjh3IycnRlplMJnTu3Bm9e/dG7969ea4eEemC4Y6IKoUQAomJiVi/fj3Wr1+P/fv3F1keFxeHnj174o//rHG0zilsnSOiqktIAiLChptfvRYbNmwo1qrXpEkTLei1a9eO3TeJqFIw3BFRhVEUBfv378e6deuwfv16nD59usjytm3b4tAfSZBT2TpHRNWXgIAIUaBGF6D9Tc2wd+/eIufqRUdHo3///hgwYAA6deoEo9GoY7VEFMgY7ojIrxRFwd9//41Vq1ZhzZo1SEtL05aZTCZ07doV27/d7wh0VoOOlRIRVQxhVKHWKsDAR3pg06ZNyM7O1pZFRkaiX79+GDBgALp27QqTyaRjpUQUaBjuiKjcVFXFnj17sGrVKqxevRqpqanaMovFgl69emHVB1sco1uyuyUR1SBCElCjrLju6T5Yv349MjIytGUWiwV9+vTBgAED0L17d5jNZh0rJaJAwHBHRGWiqir27duHlStXYs2aNbh48aK2LDw8HP369cOyt/6ClBHEeeeIiFDYfTPSipEvDMTatWuLfBEWFhaGAQMGYMiQIejSpQsMBvZsIKLSY7gjolI5duwYlixZghUrVuDChQva7RaLxRHo3tnoaKFjoCMi8kjAMSDLqFcGY82aNUXeT6OjozF48GAMGTIErVu3hiTx/ZSIfMNwR0QlunjxIpYvX46lS5fi6NGj2u2hoaHo168fVry7mYGOiKiMnEFv+PP9sHr1amRmZmrLGjRogCFDhuDaa69Fw4YNdaySiKoDhjsicisvLw/r1q3D0qVLsW3bNqiqCsAxB13v3r3x16e7HYOiMNAREfmNkATUWlYMmNwN69evR0FBgbasdevWGD58OIYMGYLw8HAdqySiqorhjog0Qgjs2rULixcvxpo1a5CXl6cta9++PQ4uSIR8MRiSnYOiEBFVNGFQoUYXoNu9bbBt2zZteoWgoCD0798fw4cPR7du3TiHHhFpGO6ICKmpqVi8eDF+//33IhPxxsfHI2VzJgwpwZDyOS8TEZFehEmFEpuHRkPq4Pjx49rtcXFxGD58OIYNG4Z69erpWCERVQUMd0Q1lKqq2LZtG3777TesX79e+0Y4JCQEQ4YMwZ+vrYeUZeLE4kREVYiAgLDYMXJafyxfvrzIHHpdunTByJEjMWDAAE6rQFRDMdwR1TAXLlzAH3/8gUWLFiE5OVm7vW3btji88DTkC2ZIKrv4EBFVdUIWUKPz0fnulti+fTuch3SRkZEYMWIERo0axdY8ohqG4Y6oBhBCYMeOHfj555+xYcMGbXAUi8WC6667Dr8+twpyrknnKomIqKyEWcHYj2/AokWLkJKSAgCQJAk9e/bEzTffjB49enDuPKIagOGOKIDl5eVh6dKl+Pnnn3HixAnt9k6dOmHfDycgXwqGpLLbJRFRoBAQUKML0GVcS2zdulW7vW7durjxxhtx/fXXIyoqSr8CiahCMdwRBaAzZ87gl19+wR9//KGdjxESEoLrrrsOi15YBzmPg6MQEQU6NdiOW94egj/++ANZWVkAAJPJhGuuuQajR49Gy5Ytda6QiPyN4Y4oQAghsHXrVsyfPx+bNm3Szr2oX78+ktdlwnA+GJLCc+mIiGoaIQuoMflofmM9HDx4ULu9S5cuGDNmDK6++mpOp0AUIBjuiKo5u92OFStWYO7cuUWGx+7Zsye2f3kIcloQR7wkIiIAgGqxYcBTXbFq1SptlOSGDRti9OjRuO666xAcHKxzhURUHgx3RNVUbm4ufv/9d/zwww/ayfMhISEYMWIEfn1mNWTOS0dERB6IIAW3Tr8Wv/32m9Z9PyIiAqNGjcLNN9+MmJgYnSskorJguCOqZi5duoT58+djwYIF2gdydHQ0MnZYYTgXwq6XRETkM2FQodbJR51+4Th79iwAwGg0YtiwYbjrrrvQoEEDnSskotJguCOqJk6dOoXvv/8ef/75J2w2GwAgISEBZ1ekQ04JhiTY9ZKIiMpGQECtXYA2oxOwZ88eAIAsyxg0aBDGjh2LZs2a6VwhEfmC4Y6oiktMTMTXX3+N5cuXa/PTtW/fHgd/OAU51czz6YiIyK/UcCu6PdgKmzZt0m7r06cP7rnnHrRt21bHyoioJAx3RFXUiRMnMGfOHKxcuVIb+bJ3797Y+skByFlBOldHRESBTg2zoe+UTli9erX2OdStWzfcd9996Nixo87VEZE7DHdEVcyxY8cwZ86cIh+m/fr1w6YP9kHOMelcHRER1TRqiB3XvtATS5Ys0UbY7N69OyZMmIB27drpXB0RuWK4I6oikpKS8MUXX2DVqlXabQMGDMBf7+1hqCMiIt0Js4Jhr/bGokWLtJB39dVXY8KECWjdurXO1RERwHBHpLvz589j1qxZ+PPPP6EoCiRJwsCBA7H+v39DzuV0BkREVLUIs4IhL/Uo0pLXp08fTJw4Ec2bN9e5OqKajeGOSCdpaWn4+uuvsXDhQm30yz59+mDLjAOQc9lSR0REVZsItuOa567CsmXLoKoqJEnC0KFDMXHiRNStW1fv8ohqJIY7okqWm5uLuXPn4ocffkBeXh4AoEuXLtg76yQHSiEiompHDbGj3z87YeXKlQAAk8mEW265BXfffTciIyN1ro6oZmG4I6okiqJg8eLF+Pzzz5GamgoAaN26NY79mAwpI4hTGhARUbWmWmzoMKExduzYAQCwWCwYO3YsbrvtNpjNZp2rI6oZGO6IKsGWLVvw8ccf4/jx4wCA+vXr4/zybMiXOE8dEREFDgEBEWVFwqjaOHbsGAAgNjYWDz30EIYMGQJJ4mceUUViuCOqQCdOnMDHH3+MzZs3AwDCw8ORu1vAcC4UkuAHHBERBSYBATU2H7X7h+D8+fMAgPbt22Py5Mlo06aNztURBS6GO6IKkJWVhS+//BILFiyAoigwGo24+eabsfDJ1ZDsst7lERERVQohCYyffRO+/vpr7Tzz4cOHY9KkSYiJidG5OqLAw3BH5EeqqmLJkiX43//+h7S0NACFE5BP3w85n9MaEBFRzSSCFFzzQjcsWbIEABASEoJ77rkHo0ePRlAQBxMj8heGOyI/OXToEN577z3s27cPAJCQkIBzf2RCTudJ5ERERIBj0JUWd9XF/v37ATg+K6dMmYKuXbvqXBlRYGC4IyqnrKwsfPbZZ1i4cCGEEAgJCYF1vwGGszyvjoiI6ErO8/Eiehm10aOHDh2Khx9+GNHR0TpXR1S9MdwRlZEQAmvWrMF7772nfTgNGTIEa1/fBclq0Lk6IiKiqk0YVIx8qy8WLFgAIQQsFgsefPBB3HDDDZBlnp9OVBYMd0RlkJKSgunTp2PDhg0AgIYNGyL5j2zIGTxvgIiIqDRUiw1NRsfg8OHDAIA2bdrg6aefRrNmzXSujKj6YbgjKgVFUbBgwQJ89tlnyM3NhdFohDhuhuFUGLtgEhERlZGAgBqfh6AOivb5es899+Duu++GyWTSuzyiaoPhjshHSUlJeOONN7QBU9q1a4fDXydDzuUomERERP4gghT0mNIa69evBwA0a9YMU6dORatWrXSujKh6YLgjKoGqqvjpp58wc+ZMWK1WhIaGwrrHAPlcCCSwtY6IiMifBATUmAKE9QQyMjJgMBhw5513Yty4cTCbOQI1kTcMd0RenD17Fm+88QZ2794NALjqqqvw98cnOWAKERFRBRNGFX2f7YCVK1cCABo1aoTnn3+erXhEXjDcEbkhhMCvv/6Kjz/+GHl5eQgJCYFtjxFyMlvriIiIKpNSOx8RfQxITU2FwWDAxIkTceedd8Jg4BetRFdiuCO6QlpaGl5//XVs3rwZANCxY0cc/OIMpAKeW0dERKQHYVRx9dNtsHbtWgCOz+Znn30W9erV07kyoqqF4Y7IxZYtW/D6668jNTUVQUFBUA4GOSYjZ2sdERGRrgQE1Dr5MHWyIS8vD6GhoXjssccwbNgwSBI/p4kAhjsiAIDNZsPnn3+OuXPnAgCaNGmC0/MzIOdy+GUiIqKqRJjtaDWhHvbs2QMAGDx4MP75z38iNDRU58qI9CfrXQCR3k6dOoVHHnlEC3Y33XQTznybw2BHRERUBUkFRhz65DwmTZoEg8GAFStW4P7778fRo0f1Lo1Id2y5oxpt9erVeOONN5CXl4fw8HDkbZZhSA3WuywiIiLygRpuRdQQIy5cuICgoCBMnjwZN954I7tpUo3FcEc1kt1ux6effop58+YBKBw05fOznOKAiIiomhFGFd2eaI6NGzcCAIYMGYKnnnqK3TSpRmK4oxrn0qVLmDZtmjZ3neF0KAwnLRw0hYiIqJoSEFDq5wLN86AoChISEvD6668jISFB79KIKhXDHdUou3fvxksvvYTU1FSEhobCut0EwyV2wyQiIgoErt00w8LC8OKLL6JXr156l0VUaRjuqMZYuHAh3nvvPSiK4hgN86dMyHmcu46IiCiQCJOC1pPq4e+//4YkSZgwYQLuueceyDLHEaTAx3BHAc9ut+Ojjz7C/PnzATiGTF736h5IKrthEhERBSIhCYx4uzcWLFgAAOjfvz+effZZnodHAY/hjgJaVlYWpk2bhq1btwIADCctMJzmpOREREQ1gRKXC6ltPmw2G5o2bYo333wTcXFxepdFVGEY7ihgnTp1Cs888wySkpIQHBwM+04zz68jIiKqYdRwK8KvkZCamoqYmBj85z//QcuWLfUui6hCsPMxBaQ9e/bg//7v/5CUlITY2FgoG0MZ7IiIiGogOSsI2UtkNGnSBBcvXsTkyZPx119/6V0WUYVguKOAs27dOjzxxBPIzMxEmzZtkPG7gJxj0rssIiIi0olUYMCZ77Jx1VVXIS8vD88++yx+/vlnvcsi8jt2y6SAsnDhQkyfPh2qqqJ3797Y9s5RDpxCREREABwDrVz7encsWrQIAHDXXXfhwQcfhCTxWIECA8MdBQQhBL766ivMmjULACAnB8N4NIIDpxAREVERAgJKg1wojbMBADfccAOmTJkCg8Ggc2VE5cdwR9WeqqqYPn06Fi5cCAAwJIXBkBTGYEdEREQeKXG5UFvlQFVVXHPNNXjuuecQFBSkd1lE5cJwR9Waoih488038eeff0KSJBiOWGBI5hw2REREVDKldj6kjrmw2Wzo3r07XnvtNYSEhOhdFlGZMdxRtWW32/Haa69h5cqVMBgMkPaFwXCRb8hERETkOzWqAMbuBcjLy0O7du3wzjvvICwsTO+yiMqE4Y6qJavVipdffhnr1q2D0WgE9oRxqgMiIiIqEzXciuC+dmRlZTHgUbXGcEfVjtVqxfPPP49NmzYhKCgI6s5QGNLMepdFRERE1ZgaZkNwfxuysrLQvn17vPPOOwgN5akeVL1wnjuqVux2O15++WVs2rQJZrMZYjuDHREREZWfnGNC/loTLBYL9u7di6eeegq5ubl6l0VUKgx3VG0oioLXX38d69atc7TYbQuBnMFgR0RERP4h55hQsC5IC3j//Oc/kZeXp3dZRD5juKNqQVVVvPPOO1i+fDkMBgPUnaEMdkREROR3co4JBesdAW/Pnj144YUXYLPZ9C6LyCcMd1TlCSEwY8YMLFq0CLIsQ9prYVdMIiIiqjBytgkFG0wIDg7Gli1b8Prrr0NVVb3LIioRwx1Ved999x3mz58PAJAPWjgqJhEREVU4OSsIyrZgGI1GrFixAu+//z44DiFVdQx3VKUtXboUn376KQDAcCwchhTOY0dERESVQ043A3vDIEkSfvnlF8yaNUvvkoi8YrijKmv79u34z3/+AwAwnA6F8RyHIyYiIqLKZbgYDMMRCwDgq6++wuLFi3WuiMgzhjuqko4dO4bnn38edrsd8gUzDCctepdERERENZQhORSGJMek5m+//TZ27dqlb0FEHjDcUZWTlpaGqVOnIicnBx07doTxcCQkSHqXRURERDWYISkM11xzDex2O55//nmcPn1a75KIipEEzwylKsRut+OJJ57A7t270aBBA6T8VADJzu8giIiISH9CFmg6IRoHDx5EQkICPvnkE4SHh+tdFpGGR81UpcyYMQO7d+9GaGgozi/MY7AjIiKiKkNSJRyffRGxsbFISkrCyy+/DEVR9C6LSMMjZ6oyfv/9d/zyyy8AAOs2E+Q8o84VERERERUl2QxIX6rAbDZjy5YtmD17tt4lEWkY7qhK2L9/P6ZPnw4AMCSGwZDKueyIiIioapJzTFD+NgMAZs+ejc2bN+tcEZEDwx3pLisrC9OmTYPNZkO/fv1gOBWmd0lEREREXhkuhGDUqFEQQuDVV19FcnKy3iURcUAV0pcQAtOmTcOqVasQHx+PSz/bISn8zoGIiIiqPiEJNJ3oGGCldevW+PDDDxEUFKR3WVSD8SiadPXbb79h1apVMBgMuLi4gMGOiIiIqg1JSDj+9UVERETg4MGD+PLLL/UuiWo4HkmTbo4fP44PPvjA8cvREMjZJn0LIiIiIiolqcCA3M2O+Xjnzp3LCc5JVwx3pAu73Y7XXnsNVqsVPXr0gOFMqN4lEREREZWJ4VIwRowYASEEXn/9dWRnZ+tdEtVQDHeki2+++QZHjx5FREQEds04DgmS3iURERERldnyF7aiXr16SE5Oxvvvv693OVRDMdxRpTt69Kg2J0zuFsd8MURERETVmaTIuLA4D7IsY8mSJVi3bp3eJVENxHBHlcput+ONN96AoiiQL5khX+R8dkRERBQY5KwgSImOY5v33nsPubm5OldENQ3DHVWquXPn4siRI4iIiIDxaDi7YxIREVFAMZyyoH79+rhw4QI+++wzvcuhGobhjipNcnIy5syZAwDI3crumERERBR4JFVCyp85AICff/4ZBw4c0LkiqkkY7qjSfPjhhygoKEDnzp0hX2B3TCIiIgpMcoYZQ4cOhRACb7/9Nux2u94lUQ3BcEeVYsuWLVi7di0MBgP2fXmK3TGJiIgooK1+ZSciIiJw9OhRLFq0SO9yqIZguKMKZ7PZLk9WnmSGnGvUtyAiIiKiCibZZeTuFACAL774Ajk5OTpXRDUBwx1VuAULFiApKQnR0dEwJIXpXQ4RERFRpZCTQ5CQkID09HR88803epdDNQDDHVWo3NxcfP311wCAzM02SAqfckRERFQzSELC2T8zAQA//vgjzp07p3NFFOh4pE0V6scff0R6ejrq168POSVE73KIiIiIKpWcGoSuXbvCarXi888/17scCnAMd1RhMjIy8P333wMAzq/IhiQ4iAoRERHVLBIk7PniJABgxYoVOHXqlL4FUUBjuKMK89133yEnJwctWrSAfNGsdzlEREREupBzTOjduzdUVdXm/CWqCJIQQuhdBAWerKws3HbbbcjLy4NxXxQMaQx3REREVHOpFhtsnVNhMBjw9ddfo0GDBnqXRAGILXdUIRYuXIi8vDw0adIEclqQ3uUQERER6UrONuHqq6+GoijaYHNE/saWO/K7goICjBkzBqmpqTAeioDhAgdSISIiInJtvfvhhx8QGxurd0kUYNhyR363dOlSpKamok6dOpAvButdDhEREVGVIGeb0LFjRyiKggULFuhdDgUghjvyKyEE5s2bBwC4tCmXI2QSERERudg/LxEA8Ouvv6KgoEDnaijQMNyRX+3evRtJSUkICQmB4Ty7YxIRERG5ki+ZERcXh4yMDCxfvlzvcijAMNyRX/36668AgIITgKTw6UVERETkSoKEi5tyAAC///67ztVQoOHRN/lNeno61qxZAwAwnGOrHREREZE7hpRgGAwG7Nu3DydPntS7HAogDHfkNytWrIDNZoOUbYScY9K7HCIiIqIqSbIZIFKMAIDFixfrXA0FEoY78htnv3E5ha12RERERN7I5x0jii9ZsgSKouhcDQUKhjvyi7Nnz2Lfvn2QZRmGC2a9yyEiIiKq0uQ0M8LDw5Gamoo9e/boXQ4FCIY78ouVK1cCAESqEZLNoHM1RERERFWbJCTkHLUBAFatWqVzNRQoGO7IL9atWwcAbLUjIiIi8pF80dE1c82aNeyaSX7BcEfllpqaigMHDgAA5FSGOyIiIiJfyOlBsFgsSE1Nxf79+/UuhwIAwx2V28aNGwEAUha7ZBIRERH5ShISck84umZu3bpV52ooEDDcUbk5wx1b7YiIiIhKR053HD9t2bJF50ooEDDcUbmoqopdu3YBcIz6RERERES+k9OCAAAHDhxARkaGztVQdcdwR+Vy4sQJZGZmIiQkBFKOUe9yiIiIiKoVyWpA48aNIYTA7t279S6HqjmGOyoXZ6td/lkFkpD0LYaIiIioGkraeB4AsG/fPp0roeqO4Y7K5e+//wYAyBlBOldCREREVD3JWSYAwN69e3WuhKo7hjsql8OHDwMA5Cx2ySQiIiIqCznTEe4OHToEq9WqczVUnTHcUZllZWXhzJkzAAApx6RzNURERETVVL4B4eHhsFqtSExM1LsaqsYY7qjMjh496riSL0Oy86lEREREVBYSJGSfzgcAHD9+XOdqqDrjETmV2bFjxwAAMlvtiIiIiMrFOeo4wx2VB8MdldmpU6cAAFKuQedKiIiIiKo3meGO/IDhjsrs9OnTAAApn4OpEBEREZWH83jq7NmzOldC1RnDHZWZFu7y2HJH5HcS540kIqpJpHzH8dT58+ehqqrO1VB1xXBHZaKqKlJSUgBcfjMiIj9jwCMiqjkKZBgMBlitVqSmpupdDVVTDHdUJpmZmVAUxfGLjU8jIr9yDXUMeERENYIECUqOAOBovSMqCx6VU5lcunTJccUmQRI8+CTyG3dhjgGPiKhGkAq/MM/IyNC5EqquGO6oTJzdBSQrn0JEfuMtxDHgEREFPjvDHZUPj8ypTHJychxXOHk5kX/4Et4Y8IiIAhpb7qi8eGROZZKXl+e4ovBgk6jcShPaGPCIiAKX3fEen52drXMhVF0x3FGZOMOdpPJAk6hcyhLWGPCIiAKS87jKZrPpXAlVVwx3VCYFBQWOK2y5Iyq78oQ0BjwiosDjGCyT4Y7KjOGOykQIoXcJRNWbP8IZAx4RUUBR6uUCAH766SedK6HqiuGOykTiQSVR2fH1Q0RERBWA4Y7KRAt3PEYlKh3ZAEiy40JEROTCcD4EADBo0CCdK6HqikcXVCayXPjUkdg9k8hnsqHo7/4IeGwFJCIKHIUDqtSuXVvnQqi6YrijMgkNDXVcMTDcEfnkymDnxIBHRESFROFxVVhYmM6VUHXFcEdl4nzTEQx3RCXzFOycGPCIiAjQvjQPCQnRuRCqrhjuqEy0b5SMDHdEXpUU7JwY8IiIqDDcaT2kiEqJ4Y7KJDw8HAAgjKrOlRBVYb4GOycGPCKiGk2YHMdVtWrV0rkSqq4Y7qhMYmNjHVeCVAiw9Y6omNIGOycGPCKiGksEKQA4oAqVHcMdlUmtWrVgMBgcUyEEsfWOqIiyBjsnBjwiohpHQGjHVDExMTpXQ9UVwx2VicFgQHR0NABAMNwRXVbeYOdPDHhERNWHSQVkx1zCzmMsotJiuKMyi4+PBwCIELvOlRBVIapS7l3IQSYY/PWtLQMeEVG1IEIcnx9xcXEwmUw6V0PVFcMdlVmjRo0AXH4zIqJC5Qh4cpAJcmwMpLAQ/wQ8wXNiiYiqA+fxVMOGDXWuhKozhjsqMy3chbLljqiYMgQ8Z7CD0QBIUvkDHoMdEVG14ewJlZCQoHMlVJ0x3FGZOd982C2TyINSBLwiwc6pPAGPwY6IqFpxflnOcEflwXBHZda8eXMAgAhVIGQeSBK55WvAk+Wiwc6pLAGPwY6IqFoREFAtjnDXqlUrnauh6ozhjsosJibGMd+dBAiLTe9yiKquEgKeHGSCXNvLyGilCXgMdkRE1U+QCgSpMBgMaNasmd7VUDXGcEfl0rp1awCAynBH5J2HgOe2O6Y7vgQ8BjsiompJDXccRzVt2hRms1nnaqg6Y7ijcmnTpg0AQEQw3BGV6IqA53Owc/LHICtERFTlOI+jnMdVRGXFcEfl0qlTJwCAGmmFAFsNiEokVABlCHZOngIeW+2IiKotNdIKAOjSpYvOlVB1x3BH5dKmTRuEhIQAJgERxlEziUokBCSTsWzBzunKgMdgR0RUbQmjCoQ7enZ07txZ32Ko2mO4o3IxGo1FWu+IyDtDmxY49kpXJN1RzqGuJQn2FvVw8YGr/VMYERHpQo20QgiBRo0aoXbt2nqXQ9Ucwx2VW7du3QAAai2GO6KSqKFBUOvlI7u1FUm31S/zfmz1auHkjaFIa6fi4oO9/FghERFVJjW6AADQvXt3nSuhQMBwR+XWu3dvAICItEIYVJ2rIaq6DG1a4MjYcACAHKSUOeDZ6tXCyRtCYItSIIKEI+A9wIBHRFTdCAiotRzhrk+fPjpXQ4GA4Y7KrWHDhmjcuDEgX/72iYiKMrRpgUOTagOxl18jZQl4rsHOSQQJpLVnwCMiqm5EuA0IErBYLNppLkTlwXBHftGvXz8AgFqb4Y7oSu6CnVNpA54aJBcJdk5awGMXTSKiasN53NSzZ08YjUadq6FAwHBHftG/f38AgFqrgF0ziVx4C3ZOvgY8W71aSLrO8+S27KJJRFR9CAgosfkAgEGDBulcDQUKhjvyi5YtWyIhIQEwAGoMW++IAMDQtmWJwc6ppIDnrjumO84WvKQXezPkERFVYSLSBphVhIeHo2fPnnqXQwGC4Y78QpIkXHfddQAAJTZP52qIqgY1xORTsHPSAt6tRQOerV4tnLy+5GDnJIIE8uvZeR4eEVEV5jxeGjhwIIKCgnSuhgIFwx35zbXXXgvA8U2UMPt2EEoUqAxtWuDoXeGl3q5OXgbGH/0Tz6u/4d0z3+HV1AUYHrYBkYb0Uu+LA60QEVVNwqBCLfzyb+jQoTpXQ4FEEkIIvYugwDFlyhRs27YNhlOhMCaW/sCWKBAY2rTA4ftrQ9TxvdXObLXhpa9/x61rdyJIKf7liNVgwI+9r8LLY25EgclUqnokq4Rae2XEzNxYqu2IiKhiKHVzYW+ehUaNGmHOnDmQJEnvkihAsOWO/Ormm28GACh18yAkfm9ANZM4nYx663wfWMhstWHWW7Nx56ptboMdAAQpCsau24zZH3wBs9VWqnqC0mXUXXqmVNsQEVHFEBBQ4h1dMkeNGsVgR37FcEd+1atXL9SpUwcwCagx+XqXQ1T5JAlqdjbCVhxA/fm+tbC99PXvuPrgCZT0dYgA0Ovwcbz0w68+l2M+b0SzL8/AfjLJ522IiKjiiAgbRJgdZrNZG6+AyF8Y7sivjEYjbrzxRgCAUj8XosTDVaLApGZnw7LyYIkBLyY9C7eu3QkAKOm7W+fy2//ahpjMrBJrMKcY0GwWgx0RUVWi1M8B4DjXLjycp7CQfzHckd+NGjUKISEhEBY7RJRV73KIKs8VXWuUrKwSW/DGrPHcFdOTIEXBmPVbS1xPLpBgP5FYqn0TEVHFUUPtUGtbIUkS7rjjDr3LoQDEcEd+FxkZiRtuuAEAYG+Yo3M1RJXEwzkTJbXg9Txwskx3d/XhY16Xm1MMaPIdz7MjIqpKnK12/fv3R8OGDXWuhgIRwx1ViDFjxsBoNEJE2qCGs/WOajYlK8tjwAvL931ETVcWL9uZUwxo9tVZttoREVUhwqxAqucYEOuuu+7SuRoKVAx3VCFiY2MxbNgwAGy9oxrAh5HOnAGv3s9FJ6rNCTaX6S4j6+a6vd1xnt05BjsioirG3iAHiqKga9euaNOmjd7lUIBiuKMKc9ddd8FgMEBEW6FGsPWOAlQphrBWsrIQfsU5eJvbNC7T3dbrb8Wk3muK3GY+b3QEu+Mny7RPIiKqGGqwHVIDx7HQhAkTdK6GAhnDHVWYBg0aXD73rkkWR86kwFOGuYmu7KK54qbWUEs3JzmECTCPjcYj0buKBDxDARjsiIiqIKVRNhRFQa9evdCxY0e9y6EAxnBHFWrcuHGOkTPD7VBrl+3cIqJA49pFMzfODGl0BAD4NM8dAGBMBBBrRKQcgkeid2Fi77Uwnzei8fdnK7JsIiIqA9VigxpbAEmS8MADD+hdDgU4hjuqULVr18aYMWMAAErjbAiJrXdEQGEXzdWHcenP+hCvxkD0CvZpnjvRKxji1Rjttkg5BADQ9IdLbLUjIqpiBATsjbMBOOa1a9asmc4VUaBjuKMKd8cddyAqKgoiRIES734QCKJqSZT9ywrJaAJkCQ1+T0Gr7x+B+LYexN0REB66aAoTHMu/qwcEX37rnpHWCCue7gecSYYcGlrmeoiIyP/U2gUQUVYEBQXxXDuqFEa9C6DAFxoaigceeABvvfUWlEY5MFwMhmQ16F0WkX84A15pz7+TJUA2AKkZaDYH6LX3YaS2l3Bo+wyI7zIh/ZUH5KhAmAzROwS4y9EV80on82sjZPNRQJIhBZkgG8IBRYGayy9SiIj0JGQV9qZZAByDzMXHx+tcEdUEkhDl+OqZyEeqquKRRx7Bvn37IF8ww3QoSu+SiPzPx4AnGU2QIyyOcOcqOhJHx8Xi8PhPfNrPR+kN8eOTwxC66WjRBUKFsNoY8IiIdGRvnAWlQS7i4+MxZ84cmM1lm/qGqDTYLZMqhSzLePLJJyHLMtTYAqhRHFyFApAP35V5DHYAkJqB5rMvoOWs/ytxPzPSGrkPdsDlVjx20yQi0oUaYgcaOY51HnvsMQY7qjQMd1RpmjdvjltvvRUAYG+WBSGz0ZgCUEkBz9kd05PCgNfqK+8B71h+rPtg58SAR0SkCwEBe/NMKIqCPn36oHfv3nqXRDUIwx1VqgkTJiA2NtYxuEqjbL3LIaoYHgKeZPQxbKVmoNkczy14M9IaYdcLXUreDwMeEVGlU+rlQkTaEBISgscee0zvcqiGYbijShUWFoann34aAKDUz4UaYdW5IqIKckXAk4wmyJYwwOjjOFYeumjOSGuE+f8citCNXlrtitwxAx4RUWVRQ+xQCqc++Mc//oG6devqXBHVNAx3VOl69uyJG264AQBga5kJYVB1roiogrgGPFnyPdg5pWag+dcX0XK2I+DNSGuE+U+XItg5MeAREVU4AQF7i0xABrp3747rr79e75KoBuJomaSL3NxcjB8/HsnJyZDPhcB0LELvkogqjGQKKl2r3ZVionD03hiMGLoVh4eEl70QjqJJRFRh7A1yoDTORlhYGGbNmoW4uDi9S6IaiC13pIvQ0FBMnToVAKDG50Gpna9zRUQVrKzBDgAupqP5rAvY9aIP59l5I8mAgXNMEhH5mxpuBZrlAQAmT57MYEe6Ybgj3XTt2hV33nknAMDeIhPCbNe5IqKKIew2iJyc8u3kUhpCNxwGRDm6MSsK1By22hER+ZMwqrC1yoCiKBgyZAiGDx+ud0lUgzHcka4mTZqEdu3aAUYBW+sMCIm9hCkACQE1L6/sAU+ogN1e9PfSUhQo2TmAqpStBiIiKkY7zy5YRf369fHkk09CkiS9y6IajOGOdGU0GjFt2jRERERAhF8eYYoo4BQGPDU9o3Qh78pg53p7qe5eMNgREfmZUi8Pau0CmEwmTJs2DWFhYXqXRDUcwx3pLi4uDs8++ywAx/QISgzPv6MAJQSEzVq+Vrwi+/Mx4LE7JhGR36kRVqCF47314YcfRqtWrXSuiIjhjqqI3r17Fzn/Tg2z6VwRUQXytZump1a7K9fxht0xiYj8TpgV2NqkQ1EUDB48GLfccoveJREBYLijKuSBBx5Az549AYOArW06hIkHoxTASgp4vgQ713U93g27YxIR+ZOQBWxt0gGTQMuWLfGvf/2L59lRlcFwR1WGwWDAiy++iISEBMCswtaGA6xQgCvvQCtF9uUm4LE7JhGRXzkGUMmAsNhRq1Yt/Pvf/0ZwcLDeZRFpGO6oSgkPD8cbb7wBi8UCEWGDvXkmBBjwKIC5C3ilabUrsq+iAY+tdkRE/qUk5ECNLYDRaMSrr77K+eyoymG4oyqnYcOGmDZtGmRZhhqXDyXBD60aRFVZRbTgsdWOiMivlLhc7ZhkypQp6Nixo84VERXHcEdVUo8ePTBlyhQAjm/JlLo8SKUA5wx4WVlla7Vz3ZXdzkFUiIj8SIkugL15FgBg/PjxuP7663WuiMg9hjuqsm688UaMHz8eAGBvlgWlNqdIoAAnBNT8fKh55XyuqyqDHRGRn6gWG+ytMgAJGDFiBO677z69SyLyiOGOqrT77rsPN9xwAyAB9lYZjjlliAKcsFrLHPCEokIUFPi5IiKimkkNscPWLg0wCPTs2RNPPfUUR8akKo3hjqo0SZLwxBNPoE+fPoAM2NqmQ7VwDjwKcEKUPeCpKkQ5u3USEREggu2wtU8DTAKtW7fGyy+/DKPRqHdZRF4x3FGVZzQa8dJLL6FTp06AUcDWPo2TnFPgK0PAY6sdEZF/CLMCa/s0wKyiSZMmeOuttxAaGqp3WUQlYrijaiE4OBhvvvkm2rVrdznghbJ1ggJcaQMeW+2IiMpNBBUGu2AVCQkJmD59OqKiovQui8gnkhCCk4hRtZGdnY0pU6bg4MGDgFWGaU8tyHnsIkEBTpIgGQyAwQA5xP1kuUJRIfLyGO6IiMpBmBTYOqRBhCqoV68eZsyYgdjYWL3LIvIZW+6oWrFYLHjnnXfQokULIEiFrQNb8KgGEALCbvfeisdWOyKichFBl4NdnTp18N577zHYUbXDcEfVTkREBP773/+iadOmhQEvlefgUc3goZsmz7UjIiofYbbD2jEVIlRB3bp18f7776Nu3bp6l0VUagx3VC1FRUXhgw8+QJs2bQCTcLTgcZoEqgncBTy22hERlZkaYoe1o+Mcu/r162PGjBmoX7++3mURlQnDHVVbERERmD59Ojp37uwYZKVdOtRItl5QDeAS8NhqR0RUdmqYDbYOjlExGzdujBkzZiAuLk7vsojKjAOqULWXn5+PF154AZs3bwZUwHgoEoZL7gedIAoohQOtsNWOiKj01EgrbG3SAaNAixYt8N///pejYlK1x3BHAcFms+HVV1/F6tWrAQEYTlhgPBumd1lERERUBSkx+bC3zABkoGPHjnjjjTcQHh6ud1lE5cZwRwFDURTMmDEDP//8MwDAcCYUhhMWSJB0royIiIiqAgEBpX4ulCbZAICBAwfiueeeg9ls1rkyIv9guKOAIoTA999/j08++QQAIF80w3g4EpLKgEdERFSTCQgoTbKh1M8FANx66634xz/+AYPBoHNlRP7DcEcBacWKFXj99ddhs9kgZZpgOhAJycY3byIioppIGFTYW2ZAre0YWfvhhx/GmDFjIEn88pcCC8MdBaydO3fiueeeQ3Z2NpAvw3QgCnKOSe+yiIiIqBIJsx22tukQYQqCgoLwzDPPYPDgwXqXRVQhGO4ooCUlJeGZZ57BqVOnAEWC8XAER9IkIiKqIdSIwhExTQK1a9fGv//9b7Rt21bvsogqDMMdBbysrCy8/PLL2LJlCwDAkBQGQ1IYB1ohIiIKYEpcLuzNswAJaNWqFV5//XXExsbqXRZRhWK4oxrBbrfj008/xbx58wAA8iUzjIcjICmyzpURERGRPwlJwN4sC2rdPADAoEGDMHXqVAQHs+cOBT6GO6pRFi9ejHfeeQc2mw3IM8B0MJLn4REREQUIYbbD1iYDwmKHJEmYOHEi7rnnHg6cQjUGwx3VOAcPHsSLL76I5ORkQAWMxyIgnw9mN00iIqJqTIkucExMbhSIjIzEiy++iO7du+tdFlGlYrijGikzMxP//ve/sXHjRgCAfD4YxmMRnA+PiIiomhEQUBplQ2nomL+ubdu2ePnllxEXF6dzZUSVj+GOaixVVfHdd9/h888/h6qqkHKMMB6KhJxr1Ls0IiIi8oEwK7C1zICItAFwTEz+8MMPw2TiKRdUMzHcUY23c+dOvPzyy0hNTXV00zwRDvlcCLtpEhERVWFKTD7szTMBo0BoaCj++c9/cv46qvEY7ogApKam4o033sDmzZsBAHJqEIxHIiHZOJomERFRVSJk1TEaZlw+AKBdu3Z44YUXUK9ePZ0rI9Ifwx1RISEEfv75Z3zyySewWq2AVYbpcATkdLPepREREREA1WKDvVUGRIgCSZJwzz33YPz48TAaeUoFEcBwR1TMsWPH8Morr+DEiRMAAPlsCIwnLZBUtuIRERHpQUgCSsMcKA1zAAmIjY3FCy+8gM6dO+tdGlGVwnBH5EZBQQE++eQT/Pzzz44b8g0wHYmAnBGkb2FEREQ1jBpmg71lJkSYHYBjUvIpU6YgIiJC58qIqh6GOyIvtm/fjv/85z84f/48AGcrXjinTCAiIqpgQhJQGuRASXC01kVGRmLKlCm45ppr9C6NqMpiuCMqQW5uLj7++GP8+uuvjhvyClvxMtmKR0REVBHUMBvszTMhwh2tdf369cOTTz6J6OhonSsjqtoY7oh8tHXrVrz55ptISUkBAMjJITCesEBSeC4eERGRPwhZQEnIhlI/F5CA8PBwPP744xgyZAgkib1miErCcEdUCjk5Ofj444/x22+/OW6wyjAet0C+GMx58YiIiMpBjSqArXkWEKwAAAYMGIDHHnsMMTExOldGVH0w3BGVwe7du/HOO+8gMTERACClBcF0NBxSAYdiJiIiKg1hUmFvkgW1jmPeutjYWDzxxBPo27evzpURVT8Md0RlZLVaMXfuXHz99deOefFUwJBkgeFMKCTBVjwiIiJvBATUunmwN8oGTAKSJOHWW2/F/fffj9DQUL3LI6qWGO6IyunUqVN45513sHPnTgCAlGeA4Xg4DGmc/JyIiMgdNdwKe7MsCItjwJTmzZvjqaeeQtu2bXWujKh6Y7gj8gMhBJYuXYpPPvkEqampAAA5NQjG4+GQ8tlVk4iICACESYG9cTbUOEcXTIvFgokTJ2LUqFEwGvl5SVReDHdEfpSTk4PZs2fjxx9/hKIojq6aZ0JhOBUGSeWomkREVDMJSUCJz3XMWWd0dMEcMWIEHnjgAdSqVUvv8ogCBsMdUQVITEzEjBkzsGXLFscNBTKMSRbI5zmqJhER1RwCAmrtAiiNsyFCHKNgtm7dGo8//ji7YBJVAIY7ogoihMCGDRvw4Ycf4uzZswAAKccI4wkL5HSej0dERIFNtdhgb5IFEWkDAERHR+P+++/HiBEjIMvszUJUERjuiCqY1WrFzz//jDlz5iA7OxuAY+oE40kL5ByTztURERH5lzArsDfOghpbAAAwm8248847cccdd3AUTKIKxnBHVEkyMzMxZ84c/PLLL7DZbIAA5JRgGJMskAoMepdHRERULsKkQmmQAyU+F5ABSZIwfPhwTJw4EbGxsXqXR1QjMNwRVbKzZ89i5syZWLlypeMGFZCTQ2A8FQbJxpBHRETVizCoUOrnQqmfCxgch5VXXXUVHn74YTRv3lzn6ohqFoY7Ip3s378fM2fOxI4dOxw3KBIM50JgOB0Gyc5zEYiIqGoTsoBSLxdKA8cImIBjsJT7778f3bt3hyRxADGiysZwR6Sz7du34/PPP8e+ffscN9glGM6GwnAmFJLCkEdERFWLkAWUuDwoDXOAIBUA0KRJE0ycOBH9+vVjqCPSEcMdURUghMCmTZvw+eef48iRI44bbYUh7yxDHhER6U/IKpT4PEf3y8JQV69ePUyYMAGDBw+GwcBTC4j0xnBHVIWoqoq1a9fiiy++QGJiouNGe2F3zTPsrklERJVPGJyhLgcwOQ4b4+LicPfdd2PEiBEwmTjyM1FVwXBHVAUpioK1a9dizpw5OHbsWOGNEgzJITCcDuXAK0REVOGEUXWcU1cvVzunrn79+hg7diyuu+46hjqiKojhjqgKU1UVGzZswJw5c3Do0KHCGwH5fAgMZ0Ih5xv1LZCIiAKOMCmFoS5PG/0yISEB9957LwYNGgSjkZ89RFUVwx1RNSCEwJYtWzB79mzs3bu38EZAvmR2hLysIH0LJCKiak8NtUOpnwM1Nh8oPAugWbNmuPfee9G/f3+eU0dUDTDcEVUjQgjs3r0bc+fOxcaNG7XbpUyTI+RdMkMCRykjIiLfCAiISCvs9XMhoq3a7e3bt8edd96JPn36QJZ5vjdRdcFwR1RNnTx5EvPmzcPSpUths9kAAFKewRHyUkIgqQx5RETknpAE1Jh8KPVzISx2AIAsy+jXrx/GjBmD9u3b61whEZUFwx1RNXfp0iX8/PPPWLBgAbKyshw32iQYzofAcC4UUgG70RARkYMwqlDq5kGJzwXMjukMgoODMXLkSNx+++2oV6+ezhUSUXkw3BEFiNzcXCxevBg//PADzp0757hRAHKqGYZzIZDSg9hlk4ioBhIQEOE2KPF5UGMun08XHR2NW2+9FaNGjUJERIS+RRKRXzDcEQUYRVGwceNG/Pzzz9i2bZt2u5RrgHwuFIaUYE6KTkRUAwhZQI3NhxJ/ueslALRu3Ro333wzBg8ejKAgDshFFEgY7ogCWFJSEn755RcsXrwYubm5jhsVCXJKMAznQiDnco4iIqJAI4Ltjq6XcXnapONBQUEYNGgQbr75ZrRp00bnComoojDcEdUAubm5WLp0KX7++WecPHlSu13KMsKQHAL5IlvziIiqMyEJqLXzodTNh4i6POpl3bp1cdNNN2HEiBGIiorSr0AiqhQMd0Q1iBACu3btwi+//IL169fDbi/spqNIkC+aYUgOgZRl4rl5RETVhBpmgxKX55ibrrCVTpIk9OjRAzfffDN69uzJ+emIahCGO6IaKj09HUuWLMHvv/+OxMRE7XYp1wD5fAgMKSGQbGzNIyKqaoRBdZxLVzevyLl0derUwYgRIzB8+HDEx8frWCER6YXhjqiGE0Jg7969WLRoEVauXIn8/HzHAhWQ08yQU4Ihp5ohCbbmERHpRUBARFmh1MkvMuKl0WhEv379MHLkSHTr1o2tdEQ1HMMdEWlycnKwcuVK/P777zhw4MDlBXYJ8sVgx0ibmey2SURUGQQEhMXuaKWLzQeCVG1ZkyZNMHLkSAwdOpTn0hGRhuGOiNw6ceIEli5dimXLliElJeXygnwZhgvBkC+EQM416lcgEVGAEma7o4UuNh8iVNFuj4yMxDXXXINhw4ahTZs2kCR+0UZERTHcEZFXqqpi9+7dWLp0KVavXo2cnBxtmZRthHwhGIaLwZAK2BWIiKishEl1jHZZJx8iwqbdHhQUhL59+2Lo0KHo3r07TCZOYUNEnjHcEZHPCgoK8Ndff2Hp0qXYtGkTFOXyN8pSltHRdZNBj4jIJ8KkQK1dACUmHyLSBmePd1mW0bVrV1x77bXo378/wsLC9C2UiKoNhjsiKpP09HSsXr0aq1atwu7du6Gql88FuRz0zJAK2HWTiMhJBLkEuojLgQ4AWrdujcGDB2Pw4MGIiYnRr0giqrYY7oio3FJTU7F27Vr3QS/bEfTkS2ZIeQYOxkJENY4IUqDEFECtXTzQtW3bFgMGDMDAgQM5fQERlRvDHRH5VWpqKtatW4dVq1Zh165dRYNengHyJbNjagWOuklEAUpAQITZodYugBpdUGQuOgBo3749Bg4ciAEDBiAuLk6nKokoEDHcEVGFSUtLw9q1a7Fu3Trs2LEDdrvLAY5NgpzqCHpyWhAklROmE1H1JSQBNcoKNdoR6GC+/MWWLMtaoOvfvz/q1KmjY6VEFMgY7oioUuTk5GDLli3YsGEDNm7ciKysrMsLVUBOD7oc9HieHhFVA8KkQK1ldbTQRRUALmNJhYSEoHv37ujTpw969erFueiIqFIw3BFRpbPb7di7dy/Wr1+PDRs24MyZM0WWS3kGR8hLM0POCIKksvsmEelPSAIiwga1VgHUKGux7paxsbHo06cP+vTpg86dO8NsNutUKRHVVAx3RKQrIQQSExOxfv16bN68GXv37i0yxQJUQMoIcrTspZkh5XJQFiKqPCLY7midq1UANdIGGIoeNrVq1Qq9e/dGnz590KJFC04sTkS6YrgjoiolJycHO3bswObNm7F582acP3++6AoFsiPopQc5WvWsnFOPiPxHGFWokVbH+XNRViBEKbI8Ojoa3bt3R48ePdC9e3d2tySiKoXhjoiqLCEEkpKSsHnzZmzZsgW7du2C1Wotso6UZ4BUGPTkDBMkG8MeEflOGBxhTkTaHF0tw4p2tTQajejQoQO6d++Onj17olmzZpBlDgBFRFUTwx0RVRsFBQXYvXs3tm/fjp07d+Lw4cNFploAACnH4GjRyyhs2bPzIIyILhMGFWqEDaKwdU6E2XFlT+8mTZqgS5cuuOqqq9C1a1eEhobqUywRUSkx3BFRtZWVlYXdu3dj586d2LlzJ44ePVpsHSnXACkzCHKmCXKmCcjnOXtENYkIUhxhLsLq+OkmzCUkJKBLly7apVatWvoUS0RUTgx3RBQw0tPTsWvXLuzYsQM7d+5EYmJi8ZWsMuRME6RME+TMIEg5RkiCYY8oEDgnDxfhNqgRNqgRViBYLbZe/fr1i4S5mJgYHaolIvI/hjsiCljp6enYu3cv9uzZgz179uDgwYNFJ1IHAAWQskyQs02On1kmwCqzdY+oGhAmFarF5ghz4Y6fMBY9rJFlGc2aNUPHjh3Rvn17dOjQgZOIE1HAYrgjohqjoKAAhw4dwt9//409e/Zg7969RSdTd7LKkLNMkLKMWuiTFJ67R6QnYVAhLPbLYc5ic9sqFxoairZt26JDhw7o0KED2rZty3PmiKjGYLgjohpLVVUkJiZi3759OHDgAA4ePIjjx48XnWevkJRncIS8bCPkHJOjOycHayGqEMKgQoTaL4c5iw0iVCl2rpwkSWjYsCHatGmDNm3aoEOHDmjatCkMBo6aS0Q1E8MdEZGL/Px8HDlyRAt7Bw4cwJkzZzysLEPOMUIqDHtytgkoYJdOIl8JCCBIhRpmdwS4MLvjElL8CxYAiIuLQ+vWrdG6dWu0adMGrVq1QlhYWCVXTURUdTHcERGVICMjA4cOHcKBAwdw5MgRHD16FGfPnnW/sl1yBL0cI6Rclwtb+aiGE7IKEao4WuTC7I5AF2YDTO4PQ2JjY9GsWTMtzLVu3RrR0dGVXDURUfXCcEdEVAbZ2dk4duwYjh49iiNHjuDIkSM4efIkbDab+w2sMqRcI+Rcw+XAl2PkuXwUcIRBhQhRClvg7BChdqihdrfnxwGAwWBAQkICWrRogebNm6NFixZo1qwZoqKiKrdwIqIAwHBHROQnNpsNSUlJOHz4MI4fP46TJ0/i5MmTOH/+vOeNCmTH+Xx5Rkj5hT/zDI7rnKKBqigBAQQrEMGKI8iF2KGGOFrlYHYf4gAgOjoajRo1QpMmTbQw17hxY5jN5kqsnogocDHcERFVsNzcXC3onThxQvuZkpLieSMBx4Tr+QbIeZdDH/INkAoY/KjiCQjArDpa31xCnCgMdfDS6Fy7dm00adIEjRo1QuPGjbVLZGRk5T0AIqIaiOGOiEgnOTk5SExMRFJSEk6fPo1Tp07h9OnTOH36NPLy8jxvKODo5ukMetpPx22wMvxRybTwZi5sgSvyUwWCvAe4oKAg1K9fHw0aNECDBg3QsGFDLcyFh4dX3gMhIiINwx0RURUjhMClS5e0oOcMfadOncK5c+dQUFBQwg7g6O5pNUAq/Amr7AiAVhlSgcwAGOCE5BiFUgQpEEEqhNkR1hzXHQEOZrXY1AJXMplMiI+PLxLgnNdjY2MhyzxnlIioKmG4IyKqRoQQSE9Px7lz55CcnKz9dL1utVp925lN0gIgrDIkmwzYHD8l6+XrsHF6h6pAQABGARGkAiYVwnT5pzCpgLkwvAWpQJDn895cmUwmxMXFoW7duoiPj0fdunURFxenXa9duzYDHBFRNcJwR0QUQFRVRVpaGpKTk3HhwgWkpKTg4sWLuHjxIi5cuKD99DkAAo6WQLt0OfDZZcAuQ7JLxX/aLv8ORWIodENAAIbCoGZUXX6qEEZR9KfJNciJElvaXJlMJtSuXRsxMTGIjY1FTEyMdnGGuejoaIY3IqIAwnBHRFTDCCGQlZWFCxcuaIEvNTUVaWlpSE9PR1pamnY9IyMDqupbK1DxOwKgSI6QV/jz8vXC8KdecbsqASoA4bguqXDcJi4vk5y/i8L7AC7/Xni/voRK4dzAuaoEQCq8TRaAXNi9US68Xb58XTivy47bhaEwsLleNxRelwVgUB3XjYXLypF5IyIiEBUVhVq1aqFWrVqIiopCVFRUkQAXGxuLiIgIBjciohqG4Y6IiDxSFAVZWVlIS0vTAmBmZiaysrKKXTIzM5GdnY2srCzk5+frXfrl8Of8lCsS4nSpqIigoCCEh4drF4vFUuT38PDwYgEuMjISRqNR79KJiKiKYrgjIiK/s1qtyMrKQnZ2NvLz85Gbm4u8vDzk5eV5vW61WmGz2Yr8dHebx8ni/SgoKAgmk0m7uP7uej04OBihoaEICQkpdgkODkZISIi2PDQ0VAtynNuNiIj8jeGOiIiqHSEEFEWBEAKqqrq9rigKVFWFEAJCCMiyDFmWIUmS9tNgMBT53bmO0WiEJFWB5j0iIqJSYLgjIiIiIiIKADzTmoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIiIiIiIAgDDHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAY9S6AiMhJCIH8/Hy9yyAiKpXg4GBIkqR3GUREDHdEVHXk5+fjuuuu07sMIqJSWbJkCUJCQvQug4iI3TKJiIiIiIgCAVvuiKhKCtpSB5KQAUmGJEuAVPhdlCwBkgRJlgGp8HZndyhZgiTJ2jqQJMd14PLvztuc21y5PopuIyTJ8TWY6/ZAsdu137XtHLuCJEHIKPwFhbdLgIQi2wjttiu21x4zii/HFbc5f5fdLHPdvsgy159SsWVut0HR5a6/O2vwdF9Frnuo48p9arxuI4rVdeX+IAk3NYnL+3a3r8LtoD09RNF9wrnM5Wfh/pzrS5Jwfepo9+H411xeDgAyRJHb5MLrl5ddvq3IMklAwuXbZZfbZUlAhvN2FF2mbaNqvzvvS5ZUGLRt1cvbufxucNk3ABjgvF11WU8tXFa4T+2nqtXh3E6Gc9vCbbRljvUNkoCkLXPc5tzGAFzeDo77kQq3NxSpURT+XlhT4b/F8bsEGYBBkiBDgqHwHy1DKrxNhgQJBkmGtcCAmyfVARFRVcJwR0RVkyI5DrMkx8GUFu4Kj5odyyRAluGaBiTIVxzhu2znNl1csb7kuszdddff3d3ubju4hElo4U77CdfbrrheuKxIUCmynZttij1kqXiZkruL5HmZx218/FOVc58lB0I/hzupeLhzXXZluLt8+5X7E26XXQ6BLsuL/C6Kbl/svkTRZS7hznkBcPl3T8uuCH1auLviNtdQaHD53RHuVO37EAMkR0iSXEJS4fPKAECWJJefUuF9ObZz7AswSJefwgbJuZ3jp9tl2vXL9TtCoSgMjsKncHfl/uTCmlHkNmeNl++LiKgqYbdMIiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKABwnjsiqpoMAkKohfO2uczr5pxwXJtAHC7zs7nOH+e8CJdlV1yAwrnCXG8rOqGa8DB525W3X/7dud0V14VzO+c2hfsoXFGg6PIiM2gJ131f3r7YbeKKRa7z1/k0v5zkeRm8bO/rMm/7LOH+JJS0jbv56q7cn3CzD8+TmF+5nb8nMb+8b3HF/so2z50o3FYUXgBo1wWct6PoMgiokgAktXBfrvelFj4e1+WOZUJSHftx2fflZUVvd84vJwrnmnP9CUC7rha+rJ0/UXhdheNlrxb+7vxTFZ/nzjHxOFA4bx4cf3Pn9ctz8RWdO690k5hLkAqvWwvcvQ6JiPTFcEdEVZK1R4reJVQM1+PnMpCu+Enk5HxqqXoXUmbO1MxORUREZcV3UCKqMvLz8/UugYiIiKjaYssdEVUZZrNZu75w4UIEBwfrWA1R1ZGfn49Ro0YB4GujKuL/g4iqCoY7IqoyJOlyZ8Pg4GCEhIToWA1R1cTXBhERecJumURERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiACAJIcox4xIRERERERFVBWy5IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAMOpdABFRbm4uvv/+e6xZswbJycmQZRkNGzbEoEGDcOutt8JkMuldIpHf5efnY9euXTh06BAOHz6Mw4cP4/z58wCA8ePHY8KECSXuIzU1Fd999x02btyI8+fPw2w2o0mTJhg2bBhGjhwJSZIq+mEQEVEVIgkhhN5FEFHNlZycjEcffRTJyckAgODgYKiqCqvVCgBo0aIF3nvvPYSHh+tZJpHf7dy5E4899pjbZb6Eu0OHDuGpp55CRkYGACAkJARWqxWKogAAevTogTfeeINfjhAR1SDslklEurHb7Zg6dSqSk5NRu3ZtvPvuu1i6dCmWLl2Kl156CaGhoThy5AheffVVvUslqhDh4eHo1q0b7rzzTrz00kuIjo72abvs7Gz861//QkZGBhISEjBz5kwsWbIES5cuxeOPPw6j0YgtW7ZgxowZFfwIiIioKmG3TCLSzZ9//onjx48DAF599VW0b98eACDLMgYPHgwhBF555RVs2rQJ27dvR7du3fQsl8ivOnbsiEWLFhW57dNPP/Vp2++//x6pqakwm8146623UK9ePQCAyWTCLbfcgtzcXMycORO//fYbbr/9djRs2NDv9RMRUdXDljsi0s2ff/4JAOjSpYsW7FwNHjwY8fHxRdYlChQGg6HM2y5ZsgSA4zXiDHaubrnlFoSEhEBRFCxbtqzM90NERNULwx0R6SI/Px979+4FAFx99dVu15EkCT179gQAbN26tdJqI6rKkpKStIFXnK+PK4WGhqJjx44A+NohIqpJGO6ISBeJiYlQVRUA0KRJE4/rOZelpqYiMzOzUmojqsqcXZkB76+dpk2bAgBOnjxZ0SUREVEVwXBHRLq4ePGidj02NtbjejExMW63IaqpLl26pF335bWTk5OD3NzcCq+LiIj0x3BHRLpwPdg0m80e1wsODna7DVFNxdcOERF5wnBHREREREQUABjuiEgXoaGh2vWCggKP6+Xn57vdhqim4muHiIg8YbgjIl24nkt34cIFj+u5nmfnug1RTVW7dm3tui+vnbCwMIY7IqIaguGOiHTRqFEjyLLjLejEiRMe13Mui46ORkRERKXURlSVOUfBBLy/dpyjajZu3LiiSyIioiqC4Y6IdBEcHKxNXL5582a36wghsGXLFgBA9+7dK602oqqsYcOGiIuLA+D5tZOXl4e///4bAF87REQ1CcMdEelm2LBhAICdO3di//79xZavWrUKZ8+eLbIuUU0nSRKuu+46AMDKlStx7ty5Yuv88ssvyMvLg8FgwLXXXlvZJRIRkU4Y7ohIN8OGDUPTpk0hhMALL7yA7du3AwBUVcWqVavw9ttvAwB69uyJbt266VkqUYXIyspCenq6dlFVFYBjoBTX26+cyuCOO+5AdHQ08vPz8a9//QuHDh0CANhsNixYsABffPEFAOCGG25Aw4YNK/dBERGRbiQhhNC7CCKquc6dO4fHHnsMycnJABzdNVVVhdVqBQC0aNEC7733HsLDw/Usk6hCjB49WnvuezNs2DA8++yzRW47dOgQnnrqKWRkZABwjIhptVpht9sBOLpjvvHGGwgKCvJ/4UREVCUZ9S6AiGq2+Ph4zJo1C99//z3WrFmD5ORkGI1GNGnSBIMHD8att94Kk8mkd5lEVU6rVq0we/ZsfPfdd/jrr7+QkpKC4OBgNG3aFMOGDcOIESO0QYuIiKhmYMsdERERERFRAOBXekRERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIioTN5//330798fkydP1rsU0ll2djZGjhyJ/v37Y+3atXqXQ0RUYxn1LoCIqKbJycnBkSNHcPDgQRw6dAiHDh3CmTNnIIQAAMybNw/x8fEVct9CCNx22224cOECxo4diwcffLBM+zly5AgWLFgAAHjggQf8WKG+jh8/ji1btmDPnj04fvw4Ll26BEVREB4ejmbNmqFXr14YNmwYLBaL3qVWKRaLBXfccQc+++wzzJgxAz179oTZbNa7LCKiGofhjoiokj366KM4cuSILvd98OBBXLhwAQDQr1+/Mu/nk08+gaIo6NmzJzp06OCv8nT16KOPYteuXW6XpaamIjU1FVu3bsU333yDZ599Fj169KjcAqu42267DT/++CPOnz+Pn376CWPHjtW7JCKiGofdMomIKpmzhQ5wtHh06dIF0dHRlXLf69atAwDExsaiTZs2ZdrH33//jW3btgFAQB3AO0NveHg4RowYgWeffRYffvghPvvsM7zyyivo1asXAEfQe/bZZ7F79249y61yQkJCcOuttwIAvvvuO+Tm5upcERFRzcOWOyKiSjZixAhERUWhVatWaNCgASRJwqOPPorU1NQKv29nuOvTpw8kSSrTPubOnQsAiI+PR6dOnfxWm94aNGiAe++9F//f3r3HVF3/fwB/IoKSCIcVA44QmQLShR0BKeUSIB3U6TISF7mpETObVJu11c4ENC9YjKTlZuaWmym1zCm6NBoIGXFAUIfMIwqHi3IZ4yD3OMABfn+w8/kdFM7xXJCvh+fjr4983p/X583ZmduT923lypWwt7cfd8/Pzw+RkZE4deoUjh49isHBQWRmZuLEiRPT1Nv/TVKpFD/99BN6enrwxx9/ID4+frq7REQ0o3DkjojoCduwYQNiYmLg5eVlcsAyxf3799HQ0ADA9CmZbW1tkMvlAIDY2Ngn2v+plpGRgdWrVz8S7HRt2rQJPj4+AID6+noolcon1b2ngoeHBwICAgAA58+fn+beEBHNPBy5IyKaIbS7GGqngpoiLy8PIyMjAIDo6OjHekaj0eDy5csoKipCVVUVOjs7MTw8DJFIhBdffBHBwcGIiYnBs88+O+65iIgIAMCqVasgk8lw7949/P777ygrK4NKpcK8efPg6+uL9957DxKJRHhuYGAAly5dQm5uLhobG6FWqyEWi/Hmm28iPj7e7I0+AgMDhTWT9+/fx6JFi0yuVV9fj5ycHFRUVKClpQVqtRqOjo6YP38+PDw8EBQUhLCwMDz//PMm1ddoNPjrr79QUFCA2tpadHV1wcbGBk5OThCJRPD390dwcDBCQ0NhZ2c37tmHP//6+nqcPXsW5eXlUKlU6O/vx/79+x/5Q0F0dDQqKirQ0NCAqqoqLFmyxLQPh4iIjMZwR0Q0Q2inZC5fvhyzZ5v2339xcTGAsXVp3t7eBtvX1NQgNTUVjY2Nj9xra2tDW1sbSktLoVQqIZPJJq1TWFiIAwcOQK1WCz8bGBhASUkJSktL8fnnn2PdunVQqVSQyWSoqqoa93xdXR1+/PFHlJSUIDMz06yAp9FohOtZs0yfAJOTk4OsrCwMDw+P+3lXVxe6urrQ2NiIsrIyKJVKpKSkGF2/s7MTn3322YSb92g/++rqapw/fx7Z2dnw9PSctNalS5eQmZmJwcFBg+/V3WCnuLiY4Y6I6AliuCMimgFUKhVu374NwPQpmYODg7h16xYAwN/f3+CUzOrqaiQnJ6O/vx8AsHTpUkilUnh7e8POzg7t7e1QKBQGz0VTKpW4fPkyXFxcsG3bNuHd165dw88//wy1Wo1Dhw5BIpFg3759qKmpwfr16xEWFgaRSISmpiacOHECSqUSN2/eRHZ2Nt5//32TPgMAuH79unC9cOFCk2rU1tYKwc7JyQnr1q2DRCKBSCTC8PAw2tvbcefOHZSUlJg89TUrK0sIdkFBQZBKpfDw8MC8efPQ19eHhoYGVFRUCNNsJ3Pnzh3k5eXByckJ8fHxePXVV2FnZ4f6+nq4u7s/0n7hwoVwcHBAf38/rl+/jsTERJP6T0RExmO4IyKaAYqKijA6Ogp7e3u89tprJtVQKpXCqJWfn5/ethqNBqmpqUKw+/TTT4WdFHWtWLECSUlJaG1tnbRWdXU1fHx8kJWVhfnz5ws/f+mll+Dp6Ym0tDRoNBokJyeju7sbGRkZCA4OFtr5+vpi2bJl2Lx5M1QqFc6dO4fNmzfD1tbWqN8fGJvaWldXB2As4Hp5eRldAwAKCgqEEbtDhw4J6/h0hYeHIykpCV1dXUbXHxgYEEJzeHg49u3b90hIlEgkeOutt9Df3693BLKurg6enp44fPjwuF1dJ9tt1dbWFr6+vqioqMDdu3cxMjJi1ggnERE9Pv5vS0Q0A2inZAYHB8PBwcGkGrpTKw0d3ZCXl4empiYAY7uDThTsdLm5uem9/+WXX44LdlqRkZFwdXUFAHR0dCAuLm5csNNydHTE6tWrhXb19fV63zcRlUqFb7/9FgBgY2ODjz76yOgaWtqdUR0dHScMdrqcnZ2Nrt/T0yMEcYlEonf0z8HBweA01Z07dxp1XIe2rVqthkqleuzniIjIPAx3RERWrre3Fzdu3ABg3sHl7e3twrWTk5PettowCQAJCQkmvxMYm+Y3WQCysbEZd08qlU5aR7ddc3OzUX1Qq9WQyWRCKHt4ExdjaQNpb28vCgoKTK4zGWdnZ2HXz/z8fLPOnHN1dZ0wMOuj+/3Q/d4QEdHUYrgjIrJycrkcGo0Gtra2CA0NNbnOwMCAcD3RKJquu3fvAhgbwXmcjVf0MfS8bl/07Sqp286YsDM0NIRdu3YJm7SEhYUhKSnpsZ+fiFQqFUbL0tLSsGPHDpw6dQo3b94UprKaw87ODqtWrQIAKBQKbNy4ERkZGcjPzzc62JqyG6huuNPdBIeIiKYW19wREVk57SjaK6+8ApFIZHId3TVqhnZN7OzsBPD/I1TmmDt3rt77ulMO9U051V33pT3OwRCNRoOUlBRcvXoVABASEoLdu3ebtF5Pl1gsxsGDB3HgwAG0tbWhsrISlZWVAMY+5yVLliAiIgJr1641GKQn8/HHH2NwcBC5ubno7u7GhQsXcOHCBQBjoTskJARr1qwxOAJpaJR2Irp/CDB1Z1YiIjIeR+6IiKzY4OAgSktLAZg3JRMYWx+m1d3dbVatp4FGo0FaWppw/ENwcDD279+v95BzYwQFBeGXX37Bnj17sGbNGuEoguHhYdy6dQtHjhxBQkKCECyNNWfOHMhkMpw8eRIffPABAgMDhfD74MED/Pnnn/jkk0+wa9eucWHsYaZshqK7CYzu94aIiKYW/5xGRGTFysvLhWl+5oY73W3vDYU7kUiE1tbWp3YzDW2w0456BgYGIj093ewD0B9mb2+PqKgoREVFARgb8bx27Rpyc3NRUlKC7u5upKSkIDs7+5FD3h+Xl5cXtmzZgi1btmB4eBjV1dUoLi5GTk4OOjo6cOXKFRw7dgzJyckW+716enqEa0Ob5RARkeVw5I6IyIppw4mPjw88PDzMqqV7ptu9e/f0ttUeldDe3m6w7f+ah4Pd0qVLcfDgQYsHu4mIRCKsXLkS33zzDdavXw8A6O/vR1FRkUXqa6d8JiYm4ocffhCmvObl5VmkvlZDQwMAwMPDA88884xFaxMR0eQY7oiIrNTIyAj+/fdfAGObgJjLzc0Nzz33HAAIB6JPJiIiQrjOzs42+91Pikajwe7du4VgJ5FI8PXXXxtc9zcVQkJChGvtGkZL8vDwEM7pM+Usvcl0dnYKx2C8/PLLFqtLRESGMdwREVmpyspKIRTohi1zaANHQ0MD+vr6Jm0XHR0tBIeLFy/izJkzeuvqO8T8SdFoNPjqq6+Ew7+nMtj9/fffBgObdq0kACxYsMCo+s3NzSgvL9fbpqWlRRhhE4vFRtXXR6FQCNevv/66xeoSEZFhXHNHRPSENTY2CjsjamnPTwOAwsLCcbtaOjg4IDIy0uj3aEefxGKxSdvZTyQqKgoXL17EyMgIysvL8cYbb0zYbvbs2dizZw927NiB/v5+fPfdd7hy5QpiY2Ph7e0NOzs7tLe3o6qqCoWFhfDz84NMJrNIH021d+9eFBYWAhgLU9u3b0dLS4veZ1xcXODi4mL0u86cOYO9e/ciKCgIQUFBeOGFF+Ds7IyhoSG0trYiLy9PGHV1d3c3+giL1tZW7Ny5E2KxGKGhofD394ebmxvmzJmDrq4uKBQKnDt3Ttj11NAh88YoKysDMLaecPny5RarS0REhjHcERE9YZWVlUhPT5/0/pEjR8b9293d3axwZ4kpmVrBwcFwdXVFW1sbcnNzJw13ALB48WJ8//33SE1NRXNzM27cuCEcpv4w7Rq96aR7mHhTUxO2b99u8JmtW7ciMTHRpPcNDg5CLpdDLpdP2mbBggVIT0/Xe8SDPs3NzTh9+vSk92fNmoWEhAS8/fbbJtV/mEajQX5+PoCx0WJTj3EgIiLTMNwREVmhmpoaYdTJ3F0yddna2iIuLg5Hjx5FSUkJOjs79Z6d5+vri5MnTyI3Nxf//PMPqqurhfVdLi4uWLRoEZYtW4aYmBiL9fFpkJaWhqtXr6KiogK1tbV48OCBME3T2dkZixcvRnh4OKRSqUlHLwQEBODw4cMoLy+HQqFAa2srOjo60NfXh7lz50IsFiMgIABr16612KguAOE7AQAbNmywWF0iIno8NqOjo6PT3QkiIrKs48eP4/jx43BxccHZs2dNOqtsMr29vXj33XfR3d2NDz/8EJs2bbJYbXq6ffHFF5DL5QgKCsKhQ4emuztERDMON1QhIrJC2imZK1assGiwA8YOpdYGul9//RX//fefRevT00mhUEAul8PGxgbbtm2b7u4QEc1IDHdERFZmaGgI4eHh2Lp1K+Li4qbkHe+88w48PT3R1dWF3377bUreQU+XY8eOAQBiY2Ph7+8/zb0hIpqZOC2TiIhMcvv2bcjlcjg6OmLjxo3T3R2aRr29vTh9+jRGR0cRFxendx0mERFNHYY7IiIiIiIiK8BpmURERERERFaA4Y6IiIiIiMgKMNwRERERERFZAYY7IiIiIiIiK8BwR0REREREZAUY7oiIiIiIiKwAwx0REREREZEVYLgjIiIiIiKyAgx3REREREREVoDhjoiIiIiIyAow3BEREREREVkBhjsiIiIiIiIrwHBHRERERERkBRjuiIiIiIiIrADDHRERERERkRX4PyA76xcGk2L4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACbL0lEQVR4nOzdd3wT9f8H8Nddkrbpnqwyyt6yRRQF2YqDr0xFQXF+cSHuiYgTFddXUVyAoIDyEwUZgoBskL2hQgerhdK90iT3+f2R5kjaJk3btNfxej4eeTTNfe7yTptc7nWfu89JQggBIiIiIiIiokKy1gUQERERERFR9cKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkxCtBMT4+HpIkQZIk3Hvvvd5YZJ3Uv39/9e9IROTKvffeq64r4uPjtS5HNXfuXLWuuXPnal0OeZmiKOjRowckScLjjz+udTlUiTZu3Kh+ll9//XWtyyGqEPt7uX///lqX4nWDBg2CJEm48847K2X5VdajOHfuXLz++ut1aoWzbNky9TWnp6drXQ4VslgsWLduHV544QUMGDAADRs2hK+vLwIDA9GyZUuMGzcOy5Ytg9VqLdNyDx8+jMcffxzt2rVDYGAgQkJC0LlzZ7zwwgtISEiopFdDRHWF2WzG+vXr8d5772HUqFHo0qULoqOj4efnh4CAAMTExGDEiBH4/vvvkZeX5/XnnzNnDvbu3Qs/Pz+8+OKLLtvFx8dj6dKlePHFFzFkyBBERERUeEPNm+vXhIQEvPDCC+jcuTNCQkIQGBiIdu3a4fHHH8eRI0fKtKxLly5hxowZ6NGjB8LDw+Hv74+WLVti0qRJ2LFjR5mW5am68l1z6623qu+bb7/9tszzJyYmQqfTQZIkhIeHIz8/v8zL2LdvH9577z3ceuutaN68Ofz9/eHn54fo6GjcfPPN+Pzzz5GVlVWmZXrzPZOTk4NZs2bhuuuuQ7169eDn54dmzZph7NixWLNmTZmWZTab8fXXX2PgwIHqdlHjxo1x6623YvHixRBClGl5ntDi86OFDz/8UH0v33PPPeVaRuvWrdVl7Ny5U3182rRpAIBFixZh06ZNXqnXifCCuLg4AUAAEBMnTiyxTb9+/dQ2dcXEiRPV1xwXF1dq+7r4N6pq69evF+Hh4erf2d2tV69e4t9///Voue+//74wGAwulxUUFCR++umnSn51VFeUdd1SVb7//nu1ru+//17rcmqdY8eOebTuAiBiYmLE1q1bvfbcOTk5okGDBgKAeOKJJ1y2+/TTT93W1a9fvzI/tzfXrwsWLBCBgYEul+Xj4yNmzZrl0bLWrl0r6tWr53JZkiSJZ555psyv152q+q7ZsGGDusxp06ZVvPByWLp0qVpD3759yzz/G2+8oc4/efLkMs17+fJl0bJlS48+aw0bNhRr1qzxaLnefM/s3btXtGjRwm1t48ePFyaTqdRlxcXFiW7durld1qBBg0RaWppHtXmiKj8/FVn/eENSUpLQ6/UCgPD39xeZmZllmn/Tpk3qa+jQoUOx6QMGDBAARJ8+fbxVsqrKEkldDEHVdWOuLvvhhx/U/0l4eLgYM2aMmDVrlvjpp5/E/PnzxWOPPSaCg4PVNk2aNBEXLlxwu8zZs2er7Q0Gg5g0aZKYN2+e+Oabb8To0aOFJEkCgNDr9WLVqlVV9EqJqh6DYuWyB8UWLVqIO++8U7z55pti/vz54pdffhHff/+9mDp1qoiOjlb/B/7+/uLQoUNeee73339fABA6nU6cPXvWZbuPPvrIaWPPaDSKq666qtwbat5cv65YsULodDp1I3T06NHim2++EfPmzROTJk1yCmBff/2122Xt3r1b+Pv7q+0HDx4svvzyS7FgwQLxxBNPiICAAHXayy+/XKbXXBV/i9JUh6BYUFAgIiMj1To83XFr5xj0/vnnnzLNe+bMGaedB0OHDhUzZswQ8+bNEz/99JN4/fXXRfPmzZ3arF+/3u0yvfmeiY+PF/Xr11fbX3311eLTTz8VP/74o3jxxRdFRESEOu3uu+92u6y0tDTRrl07tX379u3F+++/L3766ScxY8YM0aRJE3XajTfeKMxmc5n+lpX9t/CE1kFRCCFuu+02tY5vvvmmTPNOmjRJnff9998vNn3dunXqdG9vZzIoViIGxernhx9+EJ07dxY//vijyM/PL7HN2bNnRceOHdX/3YQJE1wu7/z58+rKTq/Xi7Vr1xZr47jx3KRJE5GXl+e110NUnTAoVq7s7Gxx+vRpt21yc3OdNkiGDRtW4ec1m83qxuKQIUPctv3111/Fo48+Kr777jtx4MABYbFYnI46KsuGmjfXrzk5OaJRo0Zq27lz5xZr8+eff6p7/QMDA0VSUlKJy1IURXTv3l1d1uuvv16szf79+9WdjrIsi4MHD3r8uktS1d811SEoCiHEk08+qdbx6quvejyfYw9Mp06dyvy8Z86cEfXq1RMzZ84Uly5dKrFNXl6eGDt2rPo8LVq0cBmivP2eGTFihLqsSZMmCavV6jQ9Pj5eNG3aVG2zYsUKl8uaMmWK0/qi6Pvm8uXLTr2N//vf/1wuyxNafH6qQ1D89ddf1Tquv/56j+fLyckRQUFB6me/pPWS1WoVjRs3VkO3NzEoViIGxeonLS1NKIpSartDhw457RHPyckpsZ3jCvbZZ591ubzRo0d7bSVLVF0xKFYPFy9eVHvO9Hq9R4eeueO4gTN//vwyz1/eoOjN9evHH3+sthk9erTLZT377LNqO1eHvS1btkxt07t3b5ffKZ9//rnabtSoUW5eaemq+rumugTF/fv3q3U0a9bMo+9vIZx7YD788MMyP6/JZBLZ2dmltsvLy1M30AG47FX05nvG8W/StGlTlzsE/vjjD7Vdz549S2yTnJwsfHx8BAAREBAgkpOTS2x36NAhtce6QYMGwmKxlNjOE1p8fqpDUCwoKBBRUVECsB3RcOrUKY/mmz9/vlr/rbfe6rKd47rr5MmT3irbO0HR3TmKjgHR3c3VishqtYrFixeLMWPGiJiYGGE0GkVgYKBo27ateOSRR0rdyzBt2jT1OTZs2CCEsHXRjhs3TsTExAhfX99iQc5sNovVq1eLqVOniuuuu05ERUUJg8EgAgMDRevWrcXEiRPF33//7fI5HQOiu5u7v1VpduzYIR588EHRpk0bERgYKPz9/UWLFi3EhAkTxF9//VXq/EU/NNnZ2eL9998XPXr0EKGhocLf31906NBBvPDCCyI1NbXU5dVGjodiHDhwoNh0RVHUw7wkSRKJiYkul7V58+Zy7Unyhm3btolHHnlEtG/fXoSEhAhfX1/RpEkTMWbMGLd7GYUoeWMhISFBTJ06VbRt21b4+/uLkJAQ0adPH/H55597fEhKVlaW+Oijj8SgQYNEw4YNhY+PjwgLCxM9e/YUr776qrh48aLb+Yt+ViwWi/j+++/FoEGDRKNGjYROpxPNmjUrNl9SUpJ49tlnRfv27YW/v78ICwsTvXr1Eh988IG6M6BZs2bqRomjVatWqc/5+OOPe/Q6H3/8cXWelStXejSPJ0rbCVVZ/7fly5eLW265RdSvX1/4+vqKZs2aibvuukts27ZNCFG2oGgymcQ333wjbr31VtG4cWPh6+srQkJCROfOncXUqVNd7lw7fvy42rMSHBzstoctNTVV7QmTZdnteru2sZ9PCECcO3euQsu644471J1mWVlZZZ6/PEHR2+vXPn36qG22bNniclmJiYnqBnHTpk1LbHPnnXeqy1qwYIHLZeXk5Ki9Ikaj0aPgURItvms8DYr//vuvep6cJEkuz+9ctWqVmDhxomjVqpUIDAwURqNRtGjRQkycOFFs3rzZbS2OvVmebN8U7YFxFX685ZFHHlHr++STT0ps4833zIsvvqgu680333S5LEVRRKtWrdS2JQWTr776Sp3+wAMPuH2dAwcOLNP/wZWq/vwI4VlQzMnJETfffLPadsyYMSXuZDt8+LB46qmnRJcuXURYWJjw8fERjRo1ErfeeqtYsGBBsd5dR0899ZS6fE97yO3nHwIQ//d//+eyneMOhNdee82jZXuiWgfFf//9V3Tt2tXtfLIsu/1jOwbF9evXi0cffbTE5ThulPTv39/joFfSm6gyg6LZbBYPPvhgqcseM2aMyM3Ndbkcxw/NqVOnRIcOHVwuq1mzZnWyR7RXr17q32DHjh3Fpjv2OpZ2aIvVanU6jKKsJzKXR3Z2ttNhMa5uw4cPd1lP0Y2FVatWidDQUJfLGjx4sMtDeu1Wrlzp9gR2wDYgw2+//eZyGY6flcuXL4u+ffuW+L51tH79ehEWFubyOTt37iwSExNdBkWr1aqekxIWFlbqYV15eXnq8zVt2tTtl0dZlTUoVvT/ZrFY3K7XZFkW7733nsdB8Z9//nE6v6ekm4+Pj/jyyy9LnH/OnDlquz59+rjcuz1q1Ci1nbfOE6sJ0tPT1fPtDAZDhQ5BzM/PV4P5DTfcUK5llCcoenP9mpGRoYa/kJCQUj+LjqceHDlypNh0x/O/XB2WaDd8+HC17R9//OG2rStafNd4EhT37t2rnien1+vFDz/8UKzNxYsXnTZ0Xd3uv/9+UVBQUOLzOA6Q5O5UEDvHHpjbb7+9LC+7XBx7ct59990S23jzPdOjRw91+u7du90uy3Gb9/PPPy82feTIker0X375xe2y7OcpA+57tUtT1Z8fIUoPipcvXxbXXHON2u7RRx8ttp4wm83iiSeeELIsu30v9+7d2+XYFgcPHlTbxcTElNpDnpCQoK67IiMjXX5G7OyDNXbp0sVtu7LQo5K9+eabSElJwSuvvKIOO/3rr78Wa9euXTun30+dOoVrrrkGKSkpAIC+ffvilltuQbNmzWC1WrFnzx7MnTsXaWlpmDFjBmRZLvXSG++//z5WrVqFBg0a4N5770WnTp1gsViwa9cu+Pr6qu3y8vIQGBiIgQMHokePHoiJiYGfnx8uXLiAI0eOYOHChcjJycG8efMQGhqKjz/+2Ol5nnjiCYwYMQKffvopNmzYAAD46quvUK9ePad2TZs29ehv6Oiee+7BokWLAAB+fn6YOHEirr32Wuh0OuzevRvffvstsrKysGTJEmRkZGDVqlVur8uYmZmJ4cOH48SJE7j99tsxbNgwhIeH4/Tp05g9ezYSExORkJCACRMmVM6wu9VUQUEBYmNj1d+bNWtWrM3hw4fV+z169HC7PFmW0a1bN/z9999QFAXHjh3D1Vdf7b2CizCZTBg0aJA6vHTLli0xduxYtG/fHgaDAf/++y/mz5+PkydP4o8//sCIESOwdu1ayLLrK+bs378f77//PoQQePjhh9GnTx/4+vpi9+7d+PLLL5GTk4O1a9firbfewhtvvFHiMpYuXYqxY8fCarXCYDDgtttuQ//+/VG/fn1kZmZiw4YNWLJkCbKysvCf//wHa9euxYABA9y+1rvvvhtbtmxBly5dcOeddyImJgaZmZk4ePCg2ubo0aO45ZZbkJubCwDo1q0b7r77bjRu3BjJyclYvHgxtm7dirFjx8JisZT4PLIs48EHH8RLL72EtLQ0LF26FOPHj3dZ1y+//IK0tDQAwP333+/2b1uZvPF/e+KJJzBv3jwAgI+PDyZOnIi+fftClmXs2rUL3377LZ5//nmMGDGi1Hq2b9+OQYMGITc3F5IkYejQoRgyZAiio6ORl5eH7du344cffkBubi4eeeQR+Pr6Frs+74MPPog1a9Zg6dKl2L59O6ZPn16s9m+//Ra//PILAOCaa66pM5dmslgseOyxx2A2mwEAN998M/z8/Mq9vK1bt6qfm8pcZxXlzfXr0aNH1aH9u3btWupnsWfPnur2yuHDh9GhQwd1WlJSEi5fvgzA9r0QGRlZ6rL++OMPdVk333yz2/YlqY7fNRs2bMCIESOQmZkJf39//PLLL7jpppuc2qSmpqJPnz44deoUAKBLly6444470KpVK8iyjMOHD2Pu3Lk4d+4cvv32W1gslhKvv3rXXXfhmWeeQUFBAZYuXYrPP/8cgYGBLmtzXMZ9993nldfrjuP/p6RtBW++ZxRFwdGjRwEAer0eXbp0KXVZJdVZ0mOlvbdKW5YntPj8lObMmTMYOnQojh07BsB2uYmi3xdCCIwZM0bNLw0bNsS4cePQpUsX+Pv7IyEhAYsWLcKePXuwc+dODBw4EP/88w/8/f2dltO5c2f06NEDe/bsQXx8PDZu3Igbb7zRZW3z5s1T11133303DAaD29fSu3dvrFq1CgcOHEBSUhIaNGhQ1j9Hcd5Im96+PIbValVPdPX19RVLliwpsV1SUpLa4yjLsjh8+HCxNo49ioBtiOWMjAy3z79u3Tq3vXEpKSlqD4Ysyy4PffL25TEWLVqkTq9fv36Jezrj4+Od9tS7OkfB8W/i4+Mjli9fXuLrdFzWzp07S30NruTk5Ihff/3VK7c9e/aUuw5POY6O2r179xLbTJ8+vdQ9ro4mTJigti9pz6s3FT2fpaRDCwsKCpxqmj17drE2jnuVAVvPWEnHvu/cuVMdBCIsLKzE3qnExER1T3fTpk1dHja+c+dOERISIgCIxo0bl7gHreiRClOmTHHbS+DY4zh58uQS2xZdV7g6dNXeU1Naz8gNN9wgANsokWfOnHHbtqzK0qNY0f+b46AQoaGhJe7BPn78uNOhjkDJPYqZmZnqoaChoaFi48aNJb6+2NhYdSCGgICAEvc6p6amqucG6XQ6p8PXTpw4oY6aFxwc7PG5IK4cO3bMa+uv0vage8pqtTot94cffhAvvfSS00iPMTExIj4+vkLP8/bbb6vL+/nnn8u1jPL0KHpz/Tpv3rxSt1Ecvfbaa2r7GTNmOE37+++/y/RavvvuO6des/LQ4rvGXY/iL7/8op62Ex4erh56XpR9wBVJksTHH39cYpusrCwxZMgQ9blcjdjoeHTAd99957Lu+Ph4tQemXr16Xhmh0524uDh1HWowGERKSkqxNt58zyQkJLj9jipq/fr1avuBAwc6TbNarWrtOp2u1L/V6dOn1WW1bNmy1OcuiRafHyFc9ygePXrU6fSEL774osT5Hc9xvvvuu0sct0JRFPHSSy+p7Z5//vkSl/W///1PbeOuh1xRFKf1eUmnQBX1+uuvq+3dHZVVFtUyKDpeO+fTTz912/bEiRPqSfsPPvhgsemOG38BAQEVPlfD7tSpUy6/SOy8HRQdj9N3d77Tzp071RVls2bNSjwsy3GD7o033nC5rK+//tqjdqVxfI9U9ObJF31FpKamioYNG5a6ceR4rPlnn31W6nLL2r68zp8/r56cfscdd7htW1BQoJ5f0rp162LTiwaOTZs2uVzW+PHj3bazn6+n0+nEvn373Nb17bffqstauHBhsemOn5UePXq4DYn//POP2rZTp05uT8J3XK6rL2HHwSJcnTB+4sQJtc3w4cPdvtbyKGtQrMj/7fbbb1enlzRSpN2KFSucnrOkoPjhhx+q03///Xe3r/Gvv/5S27711lslttm4caN6GFCzZs1EWlqaKCgocDo0yxs7ZYruRKjIzX6ufEXl5eW5fI7AwEAxadIkr4TSu+66S11ueUceLE9Q9Ob69ZNPPlGnPf3006Uuy1373377TZ02cuTIUpdV1vYl0eK7xlVQ/PLLL9XPXHR0dIk7rIUQYs+ePer8U6dOdftcqamp6s5BVyM2Og7M4u4QaMdQXdrzVpSiKGLYsGHq8z366KMltvPme+bAgQNO332lcdc+IyNDnRYREVHqssraviRafH6EKDkobt++XT1U08fHx2WnVF5ennq6TK9evUo9dP36668XgG0nZUmH/aempqo7WgICAlye9+0Yql11WBS1ePFidR5X2aSstDkWqhQ//PADACA4OBgPPvig27Zt2rRRD6v4888/3bYdOXIkGjVq5JUaW7RooXbp7ty50yvLdCc+Ph779u0DYOu6LnqIh6Orr75aPVwvISEBe/bscdlWp9Phsccecznd8bA/++EOtZnVasW4ceNw4cIFAMDw4cMxatSoEttmZ2er9z05tMtoNKr3s7KyKlipa0uWLEFBQQEA4JlnnnHb1mAwYOzYsQCA2NhYxMfHu2zbrVs3XH/99S6nu3uvCCGwcOFCAMDAgQPRtWtXt3WNHTsWer3tyPjSPtePPvqo20PJfvvtN6e2Op3OZdsnn3zS7XMBwCOPPKLe/+abb0ps4/j4Qw89VOoyK1NF/m8mkwmrVq0CANSvXx933323y+UMHz4c7du3d1uLfd3epk0b3HrrrW7bDhgwQF1fu3oP9OvXDy+88AIA27rukUcewSuvvKKu88aPH++25tqqa9euGDBgAEJCQiq8rISEBPV+eHh4hZfnKW+uX6vrsjxVXb5r3njjDTzyyCNQFAVt27bFtm3bnA7LdWT/rEuShKefftrtcsPCwtRDCjdt2gSTyVSszdChQ9X1webNmxEXF1esjRAC8+fPV3+v7MNO33zzTaxevRoA0KRJE5eH7lfX919dfi+vXr0aAwcORGpqKgIDA/HHH39g9OjRJbZds2YNLl68CAB46qmnSj103f6dk5mZqZ7+4ygsLAy33347ACAnJ0c9RaKo8hxCHRYWpt53XHdXRKWfo1gemzdvBmA7Btj+IXTHvuGXkJCAvLw8pzeWI3cbS0VlZmZi4cKFWLlyJQ4dOoSUlBTk5OSU2Pbs2bMeL7e8du3apd4fMmRIqe2HDBmCv/76C4AtyLo6R6FNmzZOb6yioqOj1fv2863KIyYmRj3Oujp78skn1Y3Spk2blni+RHVn//wAtvfmsmXL3LZ3/L8eO3YMMTExJba75ppr3C7H3XvlyJEjSE1NBQAEBQWVWhMABAYGIj09XT1vwJXSPte7d+9W77s7FwAA+vfvX2pdN954I9q0aYOTJ09i3rx5ePPNN53OGzCbzer5fI0aNcLw4cNLXWZlqsj/7cCBA+pOh379+rkN2YBtJ4Cr/1dGRoZ63mj9+vU9fg8AcPsemD59Ov766y/s3LkTixcvVh9v3rw5vvjii1KfwxOvv/56tTvH0c/PT12nCiGQlpaG/fv345tvvsFPP/2ELVu2YM6cOfjll18QFRVV7uexf26Bqg2KVH0oioLHHnsMn3/+OQCgV69eWLlypdvzy+zfQ6GhoU7bL67Yw6HJZMLp06eL7XTS6XSYMGEC3n33XQghMG/evGKfyc2bN6vnQ/bs2ROdOnXy+DWW1eLFizFt2jQAtvO2f/zxR34+aogFCxZg0qRJMJvNiIqKwsqVK53OvyzKcZsqLS2t1O+uc+fOqfePHTtW4nbFpEmTsGTJEgC2QFj0PPzc3Fw1QPr6+uKuu+4q5VXZREREONXqDdUuKGZnZ6snup44cQL/+c9/yjR/Wlqay6DouEHkzoYNG3DXXXchKSnJo/aZmZke11de9h4uwBbuSuPYxnHeoko7kdhxkJ/8/PxSn7cme/nll9Uvwvr162Pt2rVu/z6OJ9N78rfJy8tT7wcFBVWgUvccewXHjBlTpnndrVgq8l5xrGnp0qVYunSpV2oCSv9cnz9/Xr3fokULt23DwsIQGhqK9PR0l20kScJDDz2EZ555BsnJyVi+fDnuuOMOdfrvv/+u7n287777Sg1Xla0i/zfHv12rVq1KfS53bc6cOQNFUQDYvngdv3xL4+49oNfr8eOPP6Jr167qHmf7Y8HBwR4/R00mSRLCw8MxYMAA9fbggw9i06ZNuPXWW7F9+3a3g5q5Y9+A1+l0Lr9bK4M316/VdVme0vq75tNPP0VGRgYAYNCgQfj111/dDiYDXFnnp6WllWs7riT33nsv3n33XQDA/PnzMW3aNKf3teOO3UmTJhWb/88//1QHZiqJJ4NxAcAff/yBe+65B0II6HQ6/Pjjj+jbt6/L9tX1/VcX38t79+7FhAkTIIRA06ZNsXbt2lK3qR23Xx599NEyPZ+r9/LgwYPRuHFjnD17Fps2bUJcXByaN2+uTv/ll1/U77Pbb7/d450Qjt95jn+7iqh2QdG+Miov+97vknjyJRcbG4vhw4erf+C2bdvipptuQuvWrREeHu7UVf7QQw/h0qVLsFqtFarZE45d7gEBAaW2d/wwuuuu12okxurmzTffxNtvvw3AtmG9bt26UlceoaGh6n376Lzu2HeAFJ3X2yryGXL3+anIe6WyagJK/1zbjwTQ6/WljhgG2D5f7oIiYNtgefnll2EymfD11187BcWvv/4agG3j/f777y/1+SpbRf5vjocJFR29rSTu1k0VeQ/YR/B0JTIyEuHh4eq6rkWLFqWO4FebPfDAA1i0aJHa07p69Wq3pyu4Y9+RYLVakZub69H7wBu8uX6trsvylNbfNY4jQefk5Hh0dFBlrPPbtm2La6+9Ftu2bUNcXBw2bdqEfv36AXDugfHz88Odd95ZbP6HHnrI7eF4nryudevWYdSoUTCbzZBlGfPmzcPIkSPdzlNd33+BgYHQ6/WwWCxIT0+HxWJRT/ko67I8pfV72Wq1qv/n/Px8l6OcO6qM97Isy5gwYQLefvtt9ZBpew81UP6Rex1r9daOvWoXFB0Dzg033IC///67Sp//nXfeUUPiyy+/jBkzZrjcE1va+ZPe5LgnxdUhsI4cN/Aqs/fKU7m5uaWea+appk2bonv37l5ZFgDMnDkTr776KgBbj9LatWs9OmTFMUi6O7fPzvELypNe4fKyf4YkSYLFYqkWOwMcP9evvfYapk+fXmXPbQ8vFosFZrO51LDoyecrIiICo0aNwsKFC/Hnn38iMTERTZs2RUJCAtauXQvAtufdcQ9hTeT4f3O3J97O3d/OcVkTJkxQD8/1hsmTJzt9vk6ePIlXXnkF7733nleWf/z4cRw/ftwry+rbt2+pvbzeMGzYMPX0g40bN5Y7KDruyU5NTa2yoOjN9Wt1XZantP6uefLJJ3Hs2DH8+uuv2L59O4YOHYo1a9a43bawnzpgXy96y3333Ydt27YBsG1M24OiYw/MiBEjKmVn7MaNG3HbbbchPz8fkiThm2++cXuJJDtv/v8aN24Mo9GIvLw8nDt3rtRw525ZsiyjZcuWOHHiBKxWK86ePevy1JPSluUprd/LvXr1wi233IJnn30WFy9exI033ogNGza4PNcWcP7uOn36tNe+1++99161g2L+/Pl47bXXIEmSetkMwHbE1ODBgz1eZmWcKlDtgmJISAgCAwORnZ1dJef+FbVu3ToAQL169fDGG2+4DIlZWVlO/5DK1rBhQ/W+4/X9XHFs460BfCri4sWLZT78xJWJEyd67dzBjz76CM8//zwA23tvzZo1pQ60YucYJt0NGATYzvGwD0Yky3Kpg35URHR0NPbv3w8hBM6dO4cmTZpU2nOVpSa7qv5cN2rUSD037vTp02jbtq3LtmlpaaX2Jto98sgjWLhwIRRFwXfffYfXX38d3333nXp4pdaD2HiD47rj33//LbW9uzaV9R5YuHChOlBSjx49kJKSgoSEBHzwwQcYOnRoqdfh9MSiRYu8tnNjw4YNHp0LW1GOG/GevqdLEhMTg61btwKwbYQ0bty4oqV5xJvr1w4dOkCWZSiKgv3790NRFLc70BzPay6607BBgwaIiIjA5cuXkZiYiJSUFLfB392yPKX1d43BYMDixYsxbtw4/N///Z9HYTE6Ohrp6em4ePGiRzvoPDVmzBg8+eSTag/i//73PwQEBOD7779X27jqgfEkmLiyZcsW3HLLLcjLy4MkSZg9e7bHPT3efM/IsowOHTpgz549sFgsOHDggNujJ0p7/3Xq1AknTpwAYHtvuQuK3ngva/H5KeqZZ56BJEl45pln1LC4fv16dOzYscT2Rb+7vBUUW7dujb59+2LLli04ffq02kPueO3ECRMmlOn0FcdcUtI1PcujyroaHFfKpXXv33DDDQBsG3WebJx4U3JyMgDbQAjuvkjWrVunbhC6UpbXXBrHwWjsPRbuOPbeVeVFkmuSzz//HFOnTgVg26hatWoVevXq5fH8HTt2VDeajhw54nbjd9u2beq5rNddd12l9vLa97ACpY8YWlW6deumHjv/119/lfrZ8SbHk9Q3bNjgtq19L54n+vbtq36xfPfddzCbzfjuu+8A2HY02Uc1q8m6dOkCHx8fAMDff/9d6mH29h6skkRGRqp7bXfs2OGVc7vj4uIwefJkALae459++gkLFiyATqeDoiiYMGGC06FLdYnjd2dFejAdN87sG5RVwZvr1+DgYHVQp4yMjBJHIrQ7c+aMOvpv06ZNS+xpGDp0KADb97q7dWxubq56Lq7RaHRaN5dFdfiusYdF+2GW9rDo6nNsf635+fnYtGmTV2oAbP9Lew3Z2dlYunQp4uPj1aPPGjdujEGDBnnt+QDb+urmm29Wj5j49NNP8fDDD5dpGd58z9iXBdhG5HRFCOE0fdiwYeVeFgCnwSVLWpanqvrzU5Knn34aH374IQBbR8aAAQNw5MiREttW5jaV484Ge0B0HLm36CA3pXEc+O2qq66qcH1AFQZFx67b0g7tmjhxonr/tddeq7SaSmI/rOb06dMuw53ValW7i90py2suTUxMjHq45YEDB9yGxd27d2P9+vUAbHsUqsO5OvZRT71x80Zv4tdff43HH38cgG0Dc+XKlejTp0+ZliFJkjqcshACn332mcu2n376qXrffjmKyjJu3Dh14/69996r8HvPG3Q6nXqITkJCgsvLSlQGx8D2+eefuw07n3zySZmWbd9YOHPmDKZMmaJuwE2cONFre9C15Ovrqw5bn5ycjB9//NFl21WrVpU6Qq193Z6bm6sOSlFeVqsV48ePVzdUP/30U3UP7UsvvQTANvrcAw88UKHnAWyjnnpr/VUVvYnZ2dlO/6trr7223Mvq3bu3er8qLgVl5+31q+Pj7j7nn332mfrd72owMMdlffrppy63FebOnau+P4cPH+7R+AIlqS7fNXq9HosWLVIvGbV9+3YMGzasxLA4YcIE9f706dO9OpaD48b13LlznXpgJk6c6NXTLfbs2YNhw4aph7XOmjXL7SXFXPHme8bxffnVV1+5HBRm1apV6g6jnj17ljiY24gRI9TthZ9++kkdiK2ow4cPq9uVDRo0qFBoq+rPjytTp07FrFmzALgPizfffLO6s+2LL75wO0BkWY0ZM0Z9Xb/88gtWr16N06dPA7Dt6Cnr4baO62ivdRJV9EKMQjhfTNfVxdCfeOIJtc3ff//tdnlWq1X06tVLbf/kk08Kk8nksn1ubq74/vvvxU8//VRsmuOFkj250PHgwYPV9rNmzSo2vaCgQNx3331OFzd2dWHuWbNmqW3mzZtX6nM7Xuy7JI4X0mzYsKE4duxYsTYJCQmiZcuWarv//e9/JS7LPt2Tix+XpW1NMG/ePCFJkgAg/P39K3QB7HPnzgl/f38BQOj1erFu3bpibb7//nv1b9ikSZMSL8DqbU8//bT6nDfeeKO4cOGCy7ZWq1WsXbu2xIuzurrocklKa3vmzBkRGhoqAAhfX99SPxPJycnijTfeEAcOHCg2rbTPSlF9+/ZV20+ePLnEC+YWvai6q8+1o/T0dPX/73g7efKkR3WV18SJE9XniouLKzbdm/+3zZs3q9PDwsLEvn37irU5efKkaNiwodPf4Pvvvy/WLjs7WzRr1kwAEJIkiZkzZ7q9eHF6err45JNPxNq1a4tNe/XVV9XnGjVqlNM0s9ks+vTpo07/6quv3P4Naoo33nhDHD582G2bpKQkMXDgQPW1t27d2u33Z2ny8/NFQECAACCuv/76ci3DcRuhLN8j3ly/5uTkiEaNGqlt586dW6zN2rVrhV6vFwBEYGCgSEpKKnFZiqKI7t27q8uaPn16sTYHDhxQLyIvy7I4ePCgy9fp+Lkp6fPs7b+FJ9ytF8xmsxg1apQ6/ZprrhEZGRnFljFy5Ei1zdixY0ts47jMpUuXutxmcaQoioiJiVHXI/Xr11efJzY2tsyv1ZUDBw6oF2QHIN57771yL8vb75kRI0aoy7r//vuLrUcTEhJE06ZN1TYrVqxwuawpU6ao7W666aZi75vU1FTRrVu3UrcrhXD+bi7pO6Ay/haecLf++eijj9TpUVFRJa5jP/vsM7XNVVddVep3/I4dO8Szzz7rUW2O3+eO36PffPONR/M7sr9fu3btWuZ5XamycxQHDhyo7um6//778dRTT6FZs2bqsbetWrVSh1aXZRlLly5Fnz59cO7cOXzyySdYsmQJRo8ejS5duiAkJATZ2dlITEzE7t278ddffyEnJwczZsyocJ2PP/642ls3depUbNy4EUOHDkVERARiY2Mxf/58xMbG4sYbb0RsbKzbQ0AGDhyo3n/uuedw6dIltG3bVj3xODo6Gp07d/a4tjFjxuDXX3/FokWLcOHCBXTv3h333nsv+vTpA51Oh927d+Pbb79V98AMGTJEPSyLbFatWoVJkyape7AmTZqE9PT0Uq+L0717dzRt2rTY440aNcKHH36I//73v7BYLLjpppswYcIE9OvXDxaLBatWrVJHYtPr9ZgzZ47bi8w6nhMbFxfn9nwBd9555x3s378ff/31FzZs2IAWLVpg5MiR6NOnD6KiolBQUICkpCS1dzopKQkDBw7EK6+8Uq7n80Tjxo2xaNEi3HbbbTCZTJg4cSJmzZqF2267Da1bt4bRaERGRgZOnjyJHTt2YOvWrbBaraVe+9ATX331FXr16oXc3Fx88cUX2L59O+6++240btwYycnJWLx4MbZu3Yo+ffogMTER586d82ivdEhICMaOHet0fkz//v3RunXrCtdcXfTt2xeTJ0/GF198gbS0NFxzzTWYOHEi+vbtC1mWsWvXLnz77bfIycnBiBEj3H6WAgICsGzZMvTr1w+ZmZl47rnn8NVXX2HkyJHo0KEDAgMDkZmZidOnT2PXrl3YuHEjCgoK1It3223ZskU9qqNx48aYM2eO03S9Xo+FCxeia9euyMzMxFNPPYV+/fq5PT+1Jli6dClee+01dOnSBTfccAM6dOiA8PBwCCGQnJyMnTt34rffflOPIggMDMS8efPUHoPy8PX1xbBhw7B06VLs3r0b2dnZpV4aoeh6xHEkvri4uGLTu3fv7jRysJ0316/+/v6YM2cObr/9dlitVtx33334448/cNNNN0Gv1+Pvv//G/Pnz1VEQP/roI9SvX7/EZUmShDlz5uCGG25Abm4upk2bhq1bt2LUqFEICAjArl278M0336j/hxdffLFM3/Ul8fZ3TUXo9Xr89NNPkCQJP//8M3bs2KGes+g4PP93332HkydP4tChQ1i8eDHWrFmDMWPGoGfPnggLC1MHZNm3bx/Wrl2LtLQ0j0aKliQJ9957r9rTbz9l6Prrr/foMj6eOHv2LAYPHqye89W/f3+0adOm1G0FV4Ptefs98/HHH2P79u1ITk7Gt99+i8OHD+Oee+5BREQEDh06hK+++ko97H78+PFur+c7bdo0rF69GsePH8eqVavQvXt3PPDAA4iOjsa///6Lr776CmfOnFH/DhU9/16Lz487U6ZMgSRJmDJlCi5duqSes+h42P1jjz2Gf/75B/Pnz8fBgwfRoUMH3HbbbbjhhhvQsGFDWK1WXLp0CYcOHcJff/2FuLg4tGzZEjNnziz1+e+77z51cDd7b6W/v3+ZL2924MAB9f3q6aVePOKNtOlJj6LFYnHaq1/0VtKe7PPnzzvtGXV30+l04uuvvy62jLL2KAohxIsvvuj2ua677jpx8eJFdc+4u56HO++80+Vyiv6tPOklMZvN4oEHHij17zFq1CiRm5vrcjn2dnWtR7For5GnN1d7xuzef/99YTAYXM4fFBRUYo93UY7zuNqz7CmTySQee+wxodPpPHqNEyZMKLYMb/ZM2W3fvl20aNHCo5oCAwNL3JNY1h5FIYRYv3692qNZ0q1Tp04iMTFRREdHq3sNPbFz506n5SxcuNDjmsqrKnsUhbCtv++55x6XfztZlsXMmTOdejTcfWaOHz/utIfa3c3X11esWrVKnTctLU1d98qy7Ha9vmDBAnU53bp1q1DPWnXQpUsXj9dZXbt2FXv27PHK8y5btkxd7vz580ttX9b1q6vtBjtvrV+FsL0nAgMDXS7Lx8enxKOJSrJ27VoRFRXlclmSJImnn35aKIri8d+rtPW+N/8W7niyXjCbzWLMmDFqu969exfrNczIyBBjx471+L3w6quvelRfXFycemSQ/fbdd99V9GWrHF+/N9/L3nrPCCHE3r17S/0uveuuuzxa78XFxZW6Th40aJBIS0tzuxxPehQr429RGvsy3W3HfvLJJ2q7qKgocejQIafpiqKIGTNmCF9fX4/eC55uMyuKUuz/WNL2WGmee+45dX5v9qxXWVAUQoi8vDzx7rvvij59+oiwsDCnDVh3GzMbN24UDz/8sOjYsaMIDQ0VOp1OBAcHiw4dOoixY8eK2bNni/Pnz5c4b3mCohBCrFq1SgwfPlxERkYKg8EgGjZsKAYMGCC+/vprYTabhRDCo6BosVjE7NmzRf/+/UVkZKR6WEtJf6uybPxu375d3H///aJVq1YiICBAGI1G0bx5c3H33XeLv/76q9T5y/JGLuubvjqrrKAohBCHDh0Sjz76qGjTpo0ICAgQQUFBolOnTuL5558X8fHxpc6fk5PjtLFy+fJlL7xiIWJjY8ULL7wgevfuLaKiooRerxf+/v6iefPm4uabbxZvv/22y8M6KiMoCmHbwFiwYIEYM2aMaN68uQgMDBR6vV6Eh4eLnj17igcffFAsXrxYZGdnlzh/eYKiELbD8p555hnRtm1bYTQaRWhoqOjZs6f44IMPRE5OjlAURRiNRgFA9O/f36NlKoqiHiITHh4u8vPzy1RTeVR1ULRbvny5GD58uIiKihK+vr6iadOm4s477xTbtm0TQgiPg6IQtr/bb7/9JiZOnCjatGkjgoODhU6nE6GhoaJLly5iwoQJYu7cuSI1NdVpPseNzhdeeMHtcwghxPjx49X2Tz/9dKntq7MLFy6IuXPnigcffFBcffXVIioqShgMBuHj4yMiIyNFjx49xEMPPSTWrFnj9pDesrJYLOphbIMHDy61vbc3roWo+PrVUXx8vHjuuedEx44dRVBQkAgICBBt2rQRjz76aKmH9hZ18eJFMX36dNG9e3cRGhoq/Pz8RIsWLcS9996rfi5K4/i38GQHoTf/Fq54ul6wWCxOn8mSwqIQtlAzZcoU0a1bNxERESH0er0IDAwUrVu3FiNGjBCzZs0Sp06dKlONAwYMUJ83ICBAZGVllfVlulRZQVEI77xn7LKzs8WHH34o+vTpIyIjI4Wvr69o0qSJGD16tNMONk8UFBSIOXPmiAEDBoj69esLHx8f0ahRIzF8+HCxaNEijwJbWYKiEN79W7jj6Xbsp59+6jYsCmHrxHrjjTdEv379RIMGDYSPj4/w8/MTjRs3FoMGDRKvvvqq2L59e5nqe+ONN5zeR2U9JUpRFNGkSROP19FlIQlRweE4icgr1qxZo44k9sQTT5R5YBWquEOHDqkjhXn6P1i3bp16naMnn3wSH3/8cWWWSKSJjz76CFOnToVOp0N8fHyVXSaDiIjcW79+vXq626pVqyo0Km1R2l+Jm4gAXLmGZ1BQUKWeK0iu/e9//1Pve3pu5OzZs9X7teHaiUQleeSRR9CgQQNYrVaPzrshIqKqYT9nv0+fPl4NiQCDIlG1YQ+KU6dORVRUlMbV1D6bN292e/3Gzz//XB0UJTo6Grfcckupy9y/f786uMGgQYNKvOYaUW1gNBrx+uuvAwDmzJmD8+fPa1sQERFhy5Yt6jWMK3rZqZLw0FOiaiAlJQX16tVDZGQkTp065bWLJNMVrVq1Qn5+Pm666SZ069YNUVFRMJvNOHXqFH799Vfs27dPbbt8+XKXQXH16tVQFAUnT57EzJkz1VHKtmzZguuuu65KXguRFhRFQa9evbB371489thjbq/nR0RElW/QoEH466+/MG7cOPz0009eXz6DIhHVCa1atcKpU6fctjEajfj6668xfvx4l20cL2Fi5+n5jH/++Sdyc3NLL7YEkZGR6Nu3b7nmJSIiIiorBkUiqhN27NiBpUuXYseOHTh37hwuX76M3NxchIWFoU2bNhg0aBD++9//urx2mp09KAYGBqJNmzb473//i0mTJnl03cWYmBgkJCSUq/5+/fph48aN5ZqXiIiIqKz0WhdARFQVrrnmGlxzzTUVXg73rREREVFdwB5FIiIiIiIicsJRT4mIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJxzMhoiINKcoCvLz85Gbm6vecnJykJubi7y8PPVnQUGBejOZTC5/N5vNsFqtsFqtUBRFve/4u6Io6n3ANqKtq5t9VFtJkqDT6WAwGKDX6+Hj4wO9Xq/+bjAYit38/PzUm9FodHnfaDQiICAAgYGB0Ov59UxERNriNxEREXmFEAI5OTnIzMxUb1lZWSXet98cwyBdYTQaERgY6PYWHByM0NBQp5u/v3+J1/okIiIqK456SkRELgkhkJmZibS0NKSmppb4034/PT0dBQUFFXo+WZbh7+8Po9EIf39/BAQEqL8bjUasm78ZkgJAkRxugFTkdwjJ1g4SIFB4K7wPh/sCkOyPOUyGY9aSUNjQ4XdJ2E7ekARE4U/HxyADwv67TgCywE0PD0B+fj7y8vKQn5/vdN/xZ0UYDAaEhIQ4hceQkBCEh4cjMjISERERiIyMRGRkJIKCghgqiYjIJQZFIqI6SlEUpKen49KlS7h48SIuXbrkdLM/VtbwZzQaERQUhODgYPXn5sW7IFkkwCzbflpkSBYZsEiAVYJklQCrbAt9qLvhRUAAegHoFQid7b7QK7afOtvPEU8NQ1ZWFjIyMpCRkYH09HSkp6cjPz+/TM/l4+OjBkjHEBkVFYX69eujQYMGiIiI4GGwRER1FIMiEVEtJYTA5cuXceHChRJvKSkpsFgsHi0rKCgIYWFhCA8Px8G1xyCZZaBAtv006yCp92Vb7x5VOSELwKDYgqVBgSi8waBg6MP9kZKSgpSUFFy+fBkZGRkeLVOn0yEyMlINjiX99PX1reRXRkREWmBQJCKqwcxmM86fP48zZ87g7NmzOH/+vBoEk5KSSu0NlCQJERERiIqKQlRUFLYu+gcwFQY/kw6SSQYKdJAEw19tIiQB+CgQPlYIHwXwUTD2tduQkpKCixcvIjk5GRcvXix1R4IkSYiKikJ0dDQaN26M6Oho9X6jRo1gNBqr6BUREZG3MSgSEVVzQgikpKTgzJkz6i0xMRFnzpxBUlKSOmpnSWRZRr169dCwYUMcWH0MUr7uys2ks/UAMgRSCQQKw6Sv1XbzU3DrlEFISkpCcnIykpKSSj2nMjIyUg2PTZo0QbNmzdCsWTM0atQIOp2uil4JERGVB4MiEVE1oSgKkpOTER8fj9OnTyMuLg5xcXE4e/as2w1yo9GIJk2aoHHjxvh73k5I+bIaBtkbSJXFfj6lMFog/Ky4+507cPbsWZw7dw7nzp1DZmamy3l9fHzQuHFjxMTEoFmzZurPxo0bw8fHpwpfBRERucKgSERUxeznDp4+fdopFMbHx7sMhDqdDg0bNkTTpk2x8+f9kPJ0kPL0kPJ0tnMF6/AAMFQ9Cb0C4WeF8LNgwsxRSExMREJCAhITE2EymUqcR6fToVGjRmjevDlatWqFli1bomXLlmjYsCFHaCUiqmIMikRElchqteLMmTOIjY11urnqbdHr9WjWrBnitp+DlKuHlKuz/TSxZ5BqBwEB+CpQ/C0Q/hYMffQGJCQkICEhAdnZ2SXOExAQgJYtW6JFixZo1aoVWrVqhebNm/McSCKiSsSgSETkJSaTCXFxcU6B8NSpUyVetkCWZTRu3Bhn9ybbgmCO3vYzn4GQ6ib1nEijBUqABYMn98WpU6cQHx8Ps9lcrL0kSWjcuDHatm2Ltm3bol27dmjdujX8/f01qJ6IqPZhUCQiKgdFUZCYmIhjx47h6NGjOHbsGE6dOlXiwDJ+fn5o2bIljq09DTlHDynbYAuFDIREpRJS4XmQARaMfn04/v33X5w6dQqpqanF2sqyjGbNmqnhsX379mjZsiUv4UFEVA4MikREHrh8+TKOHTumBsPjx48jJyenWLvg4GC0bt0a+387BilbDynHYDufkOcQEnmVMFghAiyY+PEonDhxAsePH8elS5eKtdPpdGjRogXat2+PTp06oVOnToiOjuY5j0REpWBQJCIqwmq1Ii4uDgcOHMChQ4dw5MgRJCcnF2vn6+uLtm3b4sjKfyFlGSBnGwATB5Yh0oowWKEEWXD3zBE4duwYjh8/joyMjGLtQkND1dDYqVMntG3blr2ORERFMCgSUZ1nMplw/PhxHDx4EAcPHsSRI0eKDaohSRKaNWuGxJ1JkLMMkLIMtvMKGQqJqi114JxAM0ZNvwmHDx/GiRMnip3zqNfr0aZNGzU4du3aFaGhodoUTURUTTAoElGdk5ubiwMHDqjB8Pjx48U2HI1GIzp27Ih9S49BzjTYziu0yhpVTETeIiQBEWjGg1/dicOHD+Pw4cMlnu/YvHlzdOvWDV27dmVwJKI6iUGRiGo9k8mEI0eOYO/evdizZw+OHz9ebNCZ8PBwpJ/MgZTpAzmDvYVEdYWt19EKJdiMW54fgAMHDiAuLq5YOwZHIqprGBSJqNaxWCw4efKkGgwPHTqEgoICpzaNGjVC0r5UyBk+kDINtstSMBgSEQChV6CEFOC2lwdi3759LoNjr169cPXVV+Oqq66Cn5+fBpUSEVUeBkUiqhUuXLiAnTt3YufOndi/f3+xEUnDw8ORfjwXcoYP5HQfSCadRpUSUU1TWnD08fHBVVddhV69eqFXr15o2bIlR1UlohqPQZGIaiSTyYQDBw6o4TAxMdFpemBgIHITzLZQmO7DS1QQkdcIvQIltABDn+6LXbt2FbssR3h4uBoae/bsifDwcI0qJSIqPwZFIqoxzp07hx07dmDXrl3Yt28f8vPz1Wk6nQ4dO3bEkd9P28JhNs8xJKLKJyAgjFb8d954/PPPP8XWTQDQrl07XHvttbj22mvRunVr9jYSUY3AoEhE1ZbVasXRo0exZcsWbNmyBWfOnHGaHhERgbQjOZDTfG3hkKOSEpHGhCQggs0Y8+7N+Oeff3Dy5Emn6VFRUejTpw+uu+46dO/enddvJKJqi0GRiKoVk8mEPXv2YPPmzdi2bRvS0tLUaTqdDp07d8ahZf9CTvPhyKREVO0JgxVTlk7Ctm3bsHv3bqfeRl9fX/To0UPtbYyMjNSwUiIiZwyKRKS5jIwMbN++HVu2bMGuXbucNqQCAwORe9oCOdXXFg7Za0hENZSQBJTQAtzycn9s27YNFy9eVKdJkoROnTqhX79+6NevH+rXr69hpUREDIpEpJH09HRs2rQJGzZswP79+52uaxgVFYXLB7Khu+wLKdMHkmCvIRHVLgICIsCCiZ/fgW3btuHo0aNO09u1a6eGxsaNG2tUJRHVZQyKRFRlMjMz1XC4d+9ep3DYsmVLxG9IgnzZl4eUElGdI3ys+O/C8di4cSMOHjwIx82zVq1aqaExJiZGuyKJqE5hUCSiSpWVlYUtW7Zg/fr12L17t1M4bNOmDU6tOQ9dii8kk17DKomIqg9hsOLxJRPx999/Y9++fcV2qg0aNAiDBg3i4alEVKkYFInI60wmE7Zu3Yo///wTu3btgsViUae1atUKceuSbOEwn+GQiMgdoVcwddn92LhxI3bv3u20Pr3qqqswePBg9O/fHyEhIRpWSUS1EYMiEXmFoig4ePAg/vzzT2zYsAE5OTnqtBYtWiBhQzLkFD/IeQyHRETlIfQKnlx6L9atW4f9+/erh6fqdDr07t0bgwcPxrXXXguj0ahxpURUGzAoElGFJCYmYs2aNVi7di2SkpLUx+vXr4+Uf7IhX2I4JCLyNuFjxf3fj8a6desQGxurPm40GnHDDTdg+PDh6NKlCySJ53sTUfkwKBJRmWVlZWHt2rVYs2YNjh07pj7u7++P/NMKdBeNkDINHJCGiKgKKEYLxn18M9atW4cLFy6oj0dHR2PYsGEYNmwYz2ckojJjUCQijwghcODAAaxYsQIbN25EQUEBANshT+KSDvJFI+RUX0gKwyERkRYEBESQGUNfvg5//fUX8vLyANiu0dirVy/cfPPN6Nu3L3x8fDSulIhqAgZFInIrPT0dq1evxooVK5CYmKg+3qJFCySsuwjdJT9IZp2GFRIRUVFCFnhmxQNYuXIl9u/frz4eHByMQYMG4dZbb0XLli21K5CIqj0GRSIqRlEU7N27F8uXL8fmzZvVUfaMRiNMcQK6JH9I2bzWIRFRTSD8LBj7yc1YvXo1Ll26pD7euXNnjBgxAv369WMvIxEVw6BIRKqsrCysXLkSy5Ytw7lz59TH27Vrh3+Xn4Oc4gfJKmtYIRERlZeAwNs7nsOKFSuwefNm9fqMoaGhGD58OG677TY0bNhQ4yqJqLpgUCQixMXFYenSpfjzzz+Rn58PAAgICEBerAJdshFyjkHjComIyJuEwYp75tyO33//Xe1llCQJffr0wYgRI3D11VdDlrljkKguY1AkqqOsViu2bt2KpUuXYt++ferjLVq0QOKaS5AvGTkwDRFRLScg8NrGJ7Bs2TLs3r1bfbxhw4YYOXIkhg8fjoCAAA0rJCKtMCgS1TGZmZlYsWIFli1bpl73UJZl4KIBuvP+vKwFEVEdpfhZ8J+ZA7Fy5UpkZ2cDsF326JZbbsGoUaPQoEEDjSskoqrEoEhUR1y4cAFLlizBypUr1SHTQ0JCkH3YbBucxsSRS4mIyDZi6hP/NwFLlixRR7vW6XTo168fxowZgw4dOmhcIRFVBQZFolouNjYWP/30EzZs2KAOXNCqVSvEr7xoG5yGh5cSEVEJBATe3PYMlixZ4nRYaufOnTFmzBj07dsXOh13MhLVVgyKRLWQEAJ79uzBTz/9hH/++Ud9XErzgf6sP6QMHx5eSkREHlMCzBj0Um+sXbtWvWRSdHQ07rrrLgwdOpSX1yCqhRgUiWoRq9WKjRs34scff0RsbCwA2+FC4oIBunP+HL2UiIgqRBisGPf5zVi2bBkyMzMBAFFRURg7dixuvfVWGI1GjSskIm9hUCSqBSwWC9avX4/58+er55P4+fnBfFqC7lwAzz8kIiKvErLAQz+OweLFi9XLa4SEhGDUqFG44447EBQUpHGFRFRRDIpENZjFYsHatWsxf/58nDt3DgAQHByMnENW6C74Q7LwGlhERFR5hCQw5bd7sXDhQvV7yN/fHyNHjsTYsWMRHByscYVEVF4MikQ1kNlsxpo1a7BgwQKcP38eQOEIpges0F0wQrIyIBIRUdUREHjhz0fwww8/IC4uDgAQEBCA0aNHY/To0exhJKqBGBSJahCr1Yp169bhu+++w4ULFwAAoaGhyNpnsQVEhQGRiIi0IyAw7e8n8d133+HUqVMAgMDAQIwdOxajRo1CQECAxhUSkacYFIlqACEENm/ejG+++Qbx8fEAgPDwcGTsLrBdA5GXuCAiompEQOCV9Y/hu+++U7+3goODMW7cOIwcOZKD3hDVAAyKRNWY/TIXc+bMwfHjxwEAQUFByD0obOcgMiASEVE1JiDw4tr/4vvvv1cHW4uIiMCkSZNw0003Qa/Xa1whEbnCoEhUTR0/fhyzZ8/Gvn37AABGoxEFJ2TozvnzHEQiIqpRBASeXfWg06kTTZs2xcMPP4y+fftCkrjjk6i6YVAkqmaSk5Px9ddf488//wQAGAwGKPEG6M76QzLzMhdERFRzCUng4UVjMX/+fGRkZAAAOnXqhP/+97/o3LmzxtURkSMGRaJqIjc3FwsXLsTixYtRUFAAAJAv+kGfEMjrIBIRUa0idArGfjEMS5YsgclkAgDccMMNmDx5Mho1aqRxdUQEMCgSac5isWDlypX47rvvkJqaCgCQMgzQxwVBzjZoXB0REVHlET5WDJ3RBytXroTVaoWPjw/GjBmDu+++G/7+/lqXR1SnMSgSaejgwYP4+OOP8e+//wIAoqOjkbw2G3KqLyTwfA0iIqob5pyaic8++wy7d+8GYBvw5qGHHsLQoUMhyzwvn0gLDIpEGkhJScGXX36pnocYFBSE3AOwXQtRMCASEVHdIyDw+qYp+Pzzz3Hu3DkAQLt27fDkk0+iY8eOGldHVPcwKBJVIYvFgv/7v//Dd999h9zcXEiSBOmCH/TxgZAs3GNKREQkJIH7F4zEvHnzkJubCwC49dZb8fDDDyM4OFjj6ojqDgZFoiqyf/9+fPTRR4iLiwMASFl66E8F8zxEIiKiEgiDFQNf74VVq1YBAEJDQzF58mQMHTqUl9MgqgIMikSVLCsrC7Nnz8aKFSsAACEhIcjZrUBONvI8RCIiolJ8sO8VzJo1S93R2rVrV0ydOhUxMTHaFkZUyzEoElUSIQQ2bNiATz/9VB3NVL5gtF3ugoeZEhEReUxIAvfN/w/mzp0Lk8kEvV6PO++8ExMmTICvr6/W5RHVSgyKRJUgOTkZH330EbZt2wYAkHJ10P8bDDnTR+PKiIiIai7ha0XPJ9uo36/NmjXDCy+8wMFuiCoBgyKRFwkh8Ntvv2H27NnIy8uDXq+HOO0L3ZkAjmZKRETkJa9seAwfffQRUlNTIUkSRo8ejQceeAB+fn5al0ZUazAoEnlJcnIy3nvvPfUaUFKmAfrYYMh5eo0rIyIiqn2EXsGN07pjzZo1AGzXIn7++efRtWtXbQsjqiUYFIkqSAiBVatW4bPPPkNOTg58fHxgPe4L3XkOVkNERFTZ3tg6FR988AEuXboEABg5ciQeeeQRnrtIVEEMikQVkJKSgg8++ODKuYjsRSQiIqpyQqdg6NvXYPny5QCAmJgYvPLKK2jTpo3GlRHVXAyKROW0efNmvPfee8jMzITBYIBy0he6c/7sRSQiItLIjG1P491330Vqair0ej3uv/9+jBs3DjqdTuvSiGocBkWiMjKZTPj888+xbNkyAICUrYf+ZDDkXIO2hRERERGEXkHvZ9th8+bNAICrrroKL7/8Mho2bKhxZUQ1C4MiURmcPn0a06dPVy/6qzvrD11CIEc0JSIiqkYEBJ5afh8+/fRT5OXlISAgAM8//zz69++vdWlENQaDIpEHhBD4/fff8dlnn6GgoADh4eHI2qRATueJ8kRERNXV3DMf480338SRI0cAAHfccQcmT54MHx9e15ioNAyKRKXIzc3Fe++9hw0bNgAApFQfGGKDIZl5vgMREVF1JySBkf8biJ9++gkA0LZtW7z++uuIjo7WuDKi6o1BkciN+Ph4vPLKK0hMTLSdCP+vkQPWEBER1UBvbJ2Kt956C5mZmTwUlcgDDIpELqxfvx7vvfce8vLyAJMMw/EQyFk8VIWIiKimEj5WtJnUAIcPHwYAjBs3Dg899BD0el7WiqgoBkWiIiwWC2bPno2ff/4ZACClG2A4EQrJLGtcGREREVVU0UNRe/bsiddffx3BwcEaV0ZUvTAoEjnIyMjAa6+9hn379gEAdGcKRzXloaZERES1ykt/TcY777yD/Px8NGrUCG+99RZatmypdVlE1QaDIlGh+Ph4vPDCCzh//jyMRiPMe3ygS/XTuiwiIiKqJF/GvouXXnoJFy5cgJ+fH1588UXceOONWpdFVC0wKBIB2LFjB6ZPn46cnBwgXwfD0VDIuTxfgYiIqLYTegVXPdYMu3fvBgBMmjQJEydOhCTxaCKq2xgUqU4TQuDnn3/GF198AUVRIGUYYDgWCsnC8xGJiIjqCgGB/3x2IxYvXgwAGDZsGJ599lkYDAaNKyPSDoMi1VlWqxWffPIJli1bBgCQk/ygPxUMSXAPIhERUV30+LJ78NFHH8FqtaJbt2548803ERQUpHVZRJpgUKQ6yWQyYcaMGdi0aRMkSYJ8OoDXRyQiIiK8uf0ZTJs2Dbm5uWjatClmzpyJRo0aaV0WUZVjUKQ6JysrCy+++CIOHjwIg8EAccgfuhQOWkNEREQ2X8a+i+eeew6XLl1CWFgYPvjgA7Ru3VrrsoiqFIMi1SnJycl49tlnER8fD1gkGI6FQs7w0bosIiIiqmaEjxXNxochNjYWAQEBePfdd9GlSxetyyKqMhyxg+qMM2fOYPLkybaQaJJhOBjGkEhEREQlkgp0SJifjquuugo5OTl4+umnsX37dq3LIqoyDIpUJ5w+fRqPP/44Ll26BClXB5+D4ZBzOZIZERERuSZZZRz/MgnXXnstCgoK8NJLL2HdunVal0VUJXjoKdV6J0+exNNPP42MjAxI2XoYDofx8hdERETkMSEJ9Hu9C9auXQtJkvDMM8/g1ltv1bosokrFrWWq1Y4ePYopU6bYQmIWQyIRERGVnSQk/D3tAP7zn/9ACIH3338fy5cv17osokrFLWaqtQ4fPoypU6ciOzsbUqaBIZGIiIjKTYKEP57eilGjRgEA3n//faxYsULjqogqDw89pVrpxIkTmDJlCnJyciClG2A4GgpJYUgkIiKiihEQuO3jG/DLL78AAJ577jnccsstGldF5H3ccqZa5/Tp03jmmWdsITHDAMPRMIZEIiIi8goJEn6fsgkjR44EYOtZXLlypcZVEXkft56pVjlz5gymTp165ZzEo6GQFEnrsoiIiKgWkSBh+VObMXLkSAghMHPmTGzatEnrsoi8ioeeUq2RlJSExx57DBcvXuTopkRERFTpBAQGv9MLf/zxB3x8fDBz5kx0795d67KIvIJBkWqFzMxMPProo0hISICUq4PhUDgkM0MiERERVS4Bgd4vtsXmzZvh7++PTz75BG3bttW6LKIKY1CkGs9kMuHpp5/GwYMHAZMMnwPhkAp0WpdFREREdYSQBDo+Fo19+/YhNDQUn3/+OZo0aaJ1WUQVwi4XqtEURcHbb79tC4kWCYYjYQyJREREVKUkIeHIF2fRpk0bpKen47nnnkN6errWZRFVCIMi1WizZ8/Ghg0bAAUwHAuFnKvXuiQiIiKqgySrjPgf0tCwYUOcO3cOr7zyCgoKCrQui6jcGBSpxvr999+xePFiAIA+Nhhyho/GFREREVFdJpllvPfeewgICMDBgwfxwQcfgGd5UU3FoEg10qFDh/Dxxx8DAHTxAdBdMmpbEBERERGAB1s8i+nTp0OWZaxevRo//vij1iURlQuDItU4Fy9exKuvvgqLxQL5ki90ZwO0LomIiIhI9fI17+OJJ54AAHz11VfYunWrxhURlR1HPaUaxWQy4fHHH8fx48ch5ehhOBAOSZG0LouIiIiomJs+6INly5YhMDAQ33zzDRo1aqR1SUQeY48i1SizZs3C8ePHAbMEw9FQhkQiIiKqtlY+uw0dO3ZEdnY2Xn31VZhMJq1LIvIYgyLVGKtXr8aqVasgyzIMx0MhmXgZDCIiIqq+JCFh+vTpCAkJQWxsLD755BOtSyLyGIMi1QhnzpzBRx99BACQ4owc4ZSIiIhqhPENHsVrr70GSZKwYsUKrFy5UuuSiDzCoEjVnslkwuuvv468vDxI6QboznDwGiIiIqo5Xuo9E5MmTQIAfPLJJzh79qzGFRGVjkGRqr0vv/wSsbGxtvMST4ZAAs9LJCIioprlh/uWo1u3bsjLy8Obb74Ji8WidUlEbjEoUrW2a9cuLF26FACgPxkCqYDnJRIREVHNI0HCSy+9hMDAQBw9ehQLFizQuiQitxgUqdrKycnB+++/DwCQzxuhS/PVuCIiIiKi8ru74WN46qmnAADz5s3D0aNHNa6IyDUGRaq2Zs+ejeTkZCBfB318oNblEBEREVXYzKFzMHDgQFitVrz99tsoKCjQuiSiEjEoUrW0e/du/P777wAAQ2wwJIVvVSIiIqodNr95EOHh4UhMTOQhqFRtceubqp28vDzMnDkTgO2QU14Kg4iIiGoTySrjySefBAAsXLgQCQkJGldEVByDIlU7CxYsQFJSEpAv85BTIiIiqpXeGvg5+vTpA7PZjA8++ACKomhdEpETBkWqVs6cOYNFixYBAPSng3jIKREREdVKEiQ89dRT8PPzw4EDB7By5UqtSyJywq1wqjaEEPj0009hNpshpfpATuUop0RERFR73dPocdx///0AgDlz5iAnJ0fjioiuYFCkamPr1q3YuXMnoBT2JkLSuiQiIiKiSvX1XT+jadOmSE9P58A2VK0wKFK1YLFY8MUXXwAAdOf8IefrNa6IiIiIqPJJQsLkyZMBAD///DMuXLigcUVENgyKVC2sXLkSZ8+eBQok6M4GaF0OERERUZV5re8sdO/eHQUFBZgzZ47W5RABYFCkasBkMmHu3LkAAN3ZQEhWvi2JiIio7pAg4dFHH4UkSfjrr79w7NgxrUsiYlAk7f3f//0fUlJSgHwZugtGrcshIiIiqnKT276EIUOGAADmzZuncTVEDIqksZycHCxcuBAAoE8MhCQ4gA0RERHVTRMmTIAsy9i2bRtOnDihdTlUxzEokqaWL1+OzMxMSLk6yBf9tC6HiIiISDOTmk3FwIEDAbBXkbTHoEiaMZvN+PnnnwEAunMBvBwGERER1XkTJkyAJEnYsmULYmNjtS6H6jAGRdLMunXrcOnSJcAkszeRiIiICMADzZ/BgAEDAAA//fSTxtVQXcagSJpQFAWLFi0CAOjO+/PcRCIiIqJC48aNAwBs2LDBNuAfkQYYFEkTu3fvRlxcHGCRoEviSKdEREREdo+1fwVXXXUVrFYrli1bpnU5VEcxKJImfvvtNwCA7qIfr5tIREREVMSoUaMA2LaZTCaTxtVQXcQtdKpyKSkp2LZtGwBAvuCvcTVERERE1c+bA/6HqKgoZGRkYOvWrVqXQ3UQgyJVuT/++ANWqxVShgFynl7rcoiIiIiqHQkSbrrpJgDAypUrNa6G6iIGRapSQgisWrUKAHhuIhEREZEbi574AwDwzz//IDk5WeNqqK5hUKQqdezYMZw/fx6wSpAv85IYRERERK5I+Xp069YNQgj8+eefWpdDdQyDIlWpdevWAQDky76QFF4Sg4iIiMidwYMHAwA2btyobSFU5zAoUpWxWq1Yv349AEC+xN5EIiIiotJ8fMf30Ol0iI2NxdmzZ7Uuh+oQBkWqMseOHUNqaipgkSCn+2hdDhEREVG1J1lkdO/eHQB7FalqMShSldm+fTsAQE7zgSR42CkRERGRJ/r37w8A2LRpk7aFUJ3CoEhVxn4NIDnVV+NKiIiIiGqOT0Z/DwA4ceIE0tPTtS2G6gwGRaoSycnJOH36NCAAOY1BkYiIiMhTUoEOLVq0gBACe/bs0bocqiMYFKlK7Nu3DwAgZRkgWfi2IyIiIiqLq6++GgCwc+dOjSuhuoJb7FQl9u/fDwCQMwzaFkJERERUA/Xq1QvAlZ3vRJWNQZGqhD0oSpkc7ZSIiIiorF689l3Isozk5GRcunRJ63KoDmBQpEqXkpKC8+fP285PzGSPIhEREVFZSVYZLVu2BAAcOXJE42qoLmBQpEp38uRJAICUq4dk5VuOiIiIqDw6deoEADh06JDGlVBdwK12qnRqUMzWa1wJERERUc3Vvn17AEBsbKzGlVBdwKBIlU4Nijk87JSIiIiovN4f/SUA4PTp0xBCaFwN1XYMilTpTp06BQCQ2aNIREREVG5Srh46nQ6ZmZm4fPmy1uVQLcegSJWqoKAAycnJAAApT6dxNUREREQ1lyQkNG7cGICtV5GoMjEoUqU6f/48FEUBLBJg5tuNiIiIqCKaNGkCwLaNRVSZuOVOlers2bMAAClfBwmSxtUQERER1WwNGjQAAFy4cEHjSqi2Y1CkSqUedprPw06JiIiIKsoeFJOSkjSuhGo7BkWqVKmpqbY7BXyrEREREVXUl4/+AODKzniiysKtd6pU9hG5JAZFIiIiogqzb1NlZGRoXAnVdtx6p0pl71GUOJANERERUcVZGBSpanDrnSpVTk6O7Y6FbzUiIiKiirLvfM/OzobFYtG4GqrNuPVOlSovLw8AIFk54ikRERFRhVmubFOpO+SJKgGDIlUqe1AEgyIRERFRhUmQAGG7bzabtS2GajUGRapUJpPJdkdhUCQiIiLyCsX2g0GRKhODIlUqIYTWJRARERHVLoWXp46NjdW2DqrVGBSpUkkSexKJiIiIKgMHs6HKxKBIlYpBkYiIiKhyxMTEaF0C1WIMilSpdLrCYyOYF4mIiIi8o/AcRX9/f23roFqNQZEqldFotN3RKdoWQkRERFQLCEmoW/ABAQHaFkO1GoMiVSr7CkzoOagNERERUYXprmxTqTvkiSoBgyJVKnVPl45BkYiIiKjCCrepfHx8oNfrNS6GajMGRapUQUFBAABh4KGnRERERBVl36YKCwvTuBKq7RgUqVJFRUXZ7vgwKBIRERFVlPC1AgAiIiI0roRqOwZFqlT2oGhfqRERERFRBRTufGdQpMrGoEiVKjIyEgAg2KNIREREVGFjX7sNwJVtLKLKwqBIlaphw4YAAOFn0bgSotpF0ushF54DTEREdceZM2cAANHR0RpXQrUdgyJVqqZNm9ru+AgIPXsVibxB0ushhwRD8vVhWCQiqmPsQVHdxiKqJAyKVKmMRiPq168PABBG9ioSVZQ9JELWAZLMsEhEVIcICJw7dw4AgyJVPgZFqnT2FZnwZ1AkqginkKg+yLBIRFRXCD8rCgoK4OPjo+6IJ6osDIpU6Vq1agUAUAIZFIkqRJKdQ6LD4wyLRES1nwg0AwBat24Nna6E7wMiL2JQpErXvn17AIAIMmtcCVHNJen1kIMD3TRgWCQiqu3ueG0YAKBt27YaV0J1AYMiVbp27doBsB16KiShcTVENU+Jh5yW2JBhkYioNjt+/DgABkWqGgyKVOnq16+PsLAwQGavIlFZeRwS1RkYFomIaiMhCTUodujQQeNqqC5gUKRKJ0kSunbtCgBQQgq0LYaoBilzSFRnZFgkIqptRJAZBQUFCA8P54inVCUYFKlKdO/eHQCDIpGnyh0S1QUwLBIR1SbjZ90OAOjWrRskSdK4GqoLGBSpStiDogg2Q8g8T5HIHV3bVjj9Ri+cu7tdxRYkyZCaNkL2mGu8UxgREWlm7969AGxBkagqMChSlWjcuDHq1asHyOxVJCqN4u8LS6MCZHYw49xdrcu9HFE/AmeHRiC9lcywSERUgwm9giNHjgAAevbsqXE1VFcwKFKVkCQJ1113HQBAiTBpXA1R9aVr2wr/3hUMAJB8lXKHRVE/AueGhMMcBCgGMCwSEdVgSpgJVqsVLVq0QKNGjbQuh+oIBkWqMn379gUAKOEmCPDwU6KidG1b4eQDUVCirvS6lycsOoZEO4ZFIqKa6/pHegCAutOdqCowKFKV6dq1KwIDAwEfhZfJICqipJBoV9awKAw6p5Box7BIRFTzCFlgx44dABgUqWoxKFKVMRgMuPbaawEA1qh8jashqj7chUQ7T8OiqB+BC/1DXE5nWCQiqlmUcBPy8vLQoEEDtG/fXutyqA5hUKQqNWTIEACAEpUPIfHwUyJd+9alhkS70sKiqB+B84PDURDsfjn2sHhx8rUMjERE1dzVkzoCAAYPHszLYlCVYlCkKtW9e3eEh4cDBgEljIPaECl+Ph6FRDt7WDx/p3NY9DQkqs9rAPKjCnsXR/cuS8lERFRFhF7Bzp07AdiCIlFVYlCkKqXX6zFo0CAAgFKPh59S3aZr3xqn7vQw2TmQfBUYmqTi5lbxeCttOWZl/Y5pmUtw3/51iMjOKtOyFAOQ3lrHnkUiomrIWi8PVqsVbdq0QUxMjNblUB0jCSF4/B9Vqbi4OEycOBEQgM8/kZAKdFqXRFTldG1bIfb+KFjrle26or4FZkxbsByjtuyFj9VabLpZ1mFpt154a9h/UGAweLxc2QyExloR+PPOMtVDRESVQ0Cg/p2+OHPmDJ5++mncfvvtWpdEdQx7FKnKNW/eHF27dgUkwNogT+tyiDQhzl5Ao83Fg547vgVmzPvwe9z19z8lhkQAMChWjNuzA98smANfs+ch1JAFhG5JKFM9RERUeUSIGWfOnIG/vz8POyVNMCiSJkaMGAHAFhQ5qA3VRUpODvzXH0GTpZ73qE9bsBzXHI8r9SqkAkDvhFN4afUyj5brmwpE/3IalgtJHtdCRESV69rHrgJgGwjQ399f42qoLmJQJE3ccMMNiIiIAHwUKLxUBtVRalj8pfSwGJWehVFb9gIAShvzzj595L5/Sj1nkSGRiKj6Ufws2LRpE4ArO9eJqhqDImlCr9dj1KhRAABr4xyIUvtIiGonJScH/htKD4tjNu12ebipKwbFilF73Z9zqCsQDIlERNXMsOnXQgiBa6+9Fi1atNC6HKqjGBRJMyNGjEBgYCCEvxVKBC+VQXWXGhbdHIba+/jpci376vh/XU7zTQUarOB5iURE1YkwWLF69WoAwF133aVxNVSXMSiSZgICAvCf//wHAHsViUo7ZzEwv3w7UwIKSp7PNxWI/r94WM6dL9dyiYiocoz8eDDMZjM6d+6Mq666SutyqA5jUCRNjR49Gr6+vhBBFojQsl0mgKi2sYfFxr8WD4vZfr7lWmaOT/H5GBKJiKonYVCwbNkyAOxNJO0xKJKmQkNDcdtttwEALDHZ7FWkOk/JyUHAuuI9iwe7RZdreZeHGZ1+Z0gkIqq+bp15A/Ly8tC2bVtce+21WpdDdRyDImnunnvugb+/P0SgBUokR0AlKnoYalhEFvo/eRLCULblCANw/YNJGHjLHvUxXYFgSCQiqoaErxW//fYbAODhhx+GJJU2xjVR5WJQJM2Fhoaqh1dYYnJ4XUUiOB+GajRY0KFxADAmGAA8uo4iAGBsMEIbBGFGgw0YeMse2+A1fyRWZtlERFRO/V/uDovFgp49e6Jnz55al0PEoEjVw+jRo23XVfSzwtowT+tyiKoFJScHAeuPIfuPBgAAMSMSoo+fR9dRFH38IGZEAgDCdP4INeQi+vczsJw9V7lFExFRmSkBZqxduxaArTeRqDpgUKRqwWg04r777gMAWJtkQ+gVjSsiqgYkCSLfhOhfE9D+q8mAUYZY2Aji7mCXh6EKA2zTf2wE+NlW8R+nxWDHU71gPZ8MyO6v10hERFVLQKDdhGgIITBgwAC0bdtW65KIAACSEILH+VG1YLFY8NBDD+Hff/+FnOQHw78hWpdEpC1JguTjAwDQRUUi8+rGSOmsw7GHvwAuWYAfMyFtywNyFCBAhrjWCNwVDETpnRbzxPleONnHoR9SKBCKABRrVb4aIiIqgbVeHixtMmE0GvHDDz+gXr16WpdEBIBBkaqZw4cPY/LkyQAAw4EwyFk+GldEpBFJgqQ3ALLzgaa6qEicfqAZjj30hUeL+TgtBssfHwjD5kPFpgmrlWGRiEhDQqfA/yYz0tPT8cgjj/CSGFSt8NBTqlY6deqEW265BQBgaZXFy2VQ3eQiJAKA9VIKWnyTgPZzJpe6mFmpLVyGRACQdDoeikpEpKFb3r8e6enpaNasGUaPHq11OUROGBSp2nn44YcREhICEWCBNTpX63KItFFCSLRTw+JX7sPi6bwolyHRjmGRiEgbSlABli1bBgCYMmUKDIYyXgOJqJIxKFK1ExISgkceeQQAYG2WDcVo0bgioipk700shfVSClp867pn8eO0GBx7oZNnT8mwSERUpYQs0OCWQCiKgqFDh6JHjx5al0RUDIMiVUs333wzevfuDciApU0GD0GlusHNIaclcXUY6sdpMVj+xEAYNrnvTXR6aoZFIqIqY22WjTNnziAyMhJPPPGE1uUQlYhBkaolSZLw3HPPITAwECLIAmtjHoJKdYSHIdHOHhbbfW0Lix+nxeD3J8sWEu0YFomIKp8SXAClse2a0c8++yyCgoI0roioZAyKVG1FRUVhypQpAABr02woAWZtCyKqTB4ecloS66UUtPzaFhb/za0Pn7/LHhLVMhgWiYgqjdApqHeTP4QQuPnmm9GnTx+tSyJyiUGRqrXBgwfj+uuvtx2C2jYDQla0Lomo8pSxN9GRPSwefblzhcuQKlAHERGVTEDghle74Ny5c6hXrx4ee+wxrUsicovXUaRqLz09HZMmTUJKSgrkZD8YYkO0Lomocsg6SAZ9xZZhtQJSBfYBCgXCwgGkiIi8zVo/D5bWmdDpdPj000/RuXPFd+wRVSb2KFK1Fxoaitdeew2yLEOpnw9rvTytSyKqHIoVwlyBkKYU7vcT5ex5Z0gkIqoUir8Fuk4mAMD999/PkEg1AoMi1Qhdu3bF/fffDwCwtMyC4s+NWaqlFCtEQUHZA6MinANiecMiERF5lZAFou8IgslkQq9evXDXXXdpXRKRRxgUqcYYP348evXqBegELO3SIXTcEKZaSoiy9y6WFAzLEhbZm0hE5HUCAte93BHx8fEIDw/HK6+8Alnm5jfVDDxHkWqUtLQ0PPDAA7h06RLkVB/oj4ZCAgfeoFrMk/MWi/YmFlXaOYsMiURElcLSOAfWmGzo9Xp89NFH6NKli9YlEXmMuzSoRgkLC8Nbb70FHx8fKOEFsMZka10SUeUqrWextJAI8DBUIiINWMNNUJrnAACmTJnCkEg1DoMi1Tjt2rXDiy++CACwNs6FNYqD21At5y4sehoCXbVjbyIRkdcpRgt8ehZACIERI0bgtttu07okojJjUKQaaeDAgbjnnnsAAJbWmVCCCjSuiKiSlRQWlTKeOcCeRSKiSicMCurd5ofc3Fx06dIFTzzxhNYlEZULgyLVWPfffz/69u0LyIC5QzoUI3tFqJYrGhbLE/yKjIzK3kQiIu8RsoIWEyNw7tw5NGzYEDNmzIBeX8Hr4xJphIPZUI2Wm5uLKVOm4Pjx40C+DJ8D4ZDMOq3LIqpcsg6STlfhHkJhtdpGWCUiogoTELB0SIcSXoCQkBB88cUXaNKkidZlEZUbexSpRvP398fMmTMRHR0N+Ckwd+RlM6gOUKwQFnOFFiEUwZBIROQlAgKWVplQwgvg6+uLd999lyGRajwGRarxQkND8eGHHyIsLAwi0AJz+wwIiRvAVMsJYesRLC+lAvMSEZETa9McKA3yIcsypk2bho4dO2pdElGFMShSrdCoUSPMnDkTRqMRIrQAlnYMi1QHlDMsirIOgkNERC5ZGufA2tR2GYynnnrKNn4CUS3AoEi1Rtu2bfH222/brrEYYYKlbQYEuEFMtVx5wiJ7E4mIvMLSKEe9pvPDDz+M22+/XeOKiLyHQZFqlR49euDNN9+EwWCAEmmCpU0mwyLVfmUIi+xNJCLyDmuDXFhb2ELifffdh/Hjx2tcEZF3MShSrXPNNdfg9ddfh06ng1IvH5bWDItUBxSGxVIDI3sTiYgqzFovD5ZWWQCAu+66C/fee6+2BRFVAgZFqpWuv/56vPbaa5BlGUp9hkWqI4Rw27vI3kQiooqzNsiFpU0mAGDkyJF4+OGHIUmSxlUReR+DItVaN954I1555RVbz2L9fNs5ixzghuoCV2GRvYlERBViaZSj9iSOHDkSTzzxBEMi1VqSELyQFtVuf//9N6ZPnw6LxQI51Qf646GQFK7UqQ6QJEg6HYDC3kQGRSKichEQsDbJgbWZbXTT8ePH46GHHmJIpFqNQZHqhF27duHll1+GyWSClG6A4WgoJIUd6lQHFIZFYbFoXQkRUY0kIGBtlg1rk1wAwP33348JEyYwJFKtx6BIdcb+/fvxwgsvIDc3F1KWHoYjYZAsDItERERUMiEJWFpmQmmQDwB49NFHMXbsWI2rIqoaDIpUpxw7dgzPPvssMjMzIeXpYDgSCilfr3VZREREVM0IWYGlXQaU8ALIsoypU6fitttu07osoirDoEh1TmJiIp555hkkJSUBZgmGI2GQsw1al0VERETVhDBYYe6QDhFkga+vL6ZNm4a+fftqXRZRleJxd1TnNG3aFLNnz0bbtm0Bg4C5cxqs4flal0VERETVgOJnQeR/fCCCLAgJCcHHH3/MkEh1EnsUqc7Kzc3FtGnTsHPnTkAAurgg6M4bIYEnpxMREdVFSkgB/K61ICsrC40aNcL777+PJk2aaF0WkSYYFKlOs1gsmDVrFlasWAEAkJP8oD8VDEkwLBIREdUl1ga5EG1zYbVa0b59e7zzzjsIDw/XuiwizTAoUp0nhMCSJUswe/ZsKIoCKcMAw/FQSGYemU1ERFTbCUnA0iILSsM8AMDgwYPx3HPPwdfXV+PKiLTFoEhUaOfOnZg+fTqys7OBfBmGY6GQczjIDRERUW0l9ArM7dIhQs2QJAkPPvggxo8fz2skEoFBkchJYmIiXnzxRZw5cwawStD/GwTdJaPWZREREZGXKYFmRAzzQVJSEoxGI1599VUOWkPkgEGRqIisrCxMnz4du3btAgDIF4zQnw7ieYtERES1gICA0iAPUvt8mM1mNGrUCG+99RZatmypdWlE1QqDIlEJrFYr5s6di3nz5gEApCy97bxFk07jyoiIiKi8hCxgaZUJpZ7tsljXXXcdXnrpJQQFBWlcGVH1w6BI5MaOHTvw5ptvIjMzEzBL0J8MgS6NJ7cTERHVNIqfBZb2GRABFsiyjAcffBB33nknZJmD1xGVhEGRqBTJycl47bXXcOzYMQCA7qw/dAmBPBSViIioBhAQUOrlw9DFjLy8PISHh2PatGno1q2b1qURVWsMikQeMJvN+Pzzz/F///d/AAApWw/9iRDIeXqNKyMiIiJXhE6xHWoaZQIAdO3aFa+99hoiIyM1royo+mNQJCqDzZs347333rMdimqVoD8dCDnZCAnsXSQiIqpOlKACRAz1RVJSEnQ6HSZNmoS77roLOh3HGyDyBIMiURmlpKTgrbfewp49ewAAcoov9P8GQ7LwHAciIiKtCQhYm+QALfJhtVrRsGFDTJs2DR06dNC6NKIahUGRqBwURcHixYvx9ddfw2KxACYZ+n+DOdANERGRhhSjBZY2GRBBFgDAkCFD8NRTTyEgIEDjyohqHgZFogo4ceIEZsyYgcTERACAnOxnu+ailb2LREREVUVAwBqdC13bAhQUFCAwMBBTpkzBkCFDtC6NqMZiUCSqIJPJhG+++QZLliyBEAIwyTDEBkNOZ+8iERFRZVP8LLC0yYQINgMAevfujeeeew5RUVEaV0ZUszEoEnnJoUOH8M477+Ds2bMAADnJD/o49i4SERFVBgEBa6Nc6NrZehH9/f3x+OOP4+abb4YkcZA5oopiUCTyovz8fHzzzTf4+eef1d5F/ekgyJd9OTIqERGRlygBZlhaZ0IE2s5F7NmzJ55//nnUr19f48qIag8GRaJKcODAAbz33ntXehdTfaA/FQzJxCG5iYiIykvIAtam2RBN86EoCgIDA/Hf//4Xt9xyC3sRibyMQZGokphMJixYsAALFy60jYxqlaBLCIDuvD97F4mIiMrIGmaCpWUm4KcAAAYMGIDHH38cERERGldGVDsxKBJVsvj4eHzwwQc4ePAgAEDK1kP/bzDkbIPGlREREVV/wtcKS0wWlCgTAKB+/fqYOnUq+vTpo3FlRLUbgyJRFVAUBStXrsQXX3yB7OxsAIWX0ogPhGTm4ahERERFCUnAGp0DQzsr8vPzIcsyRo0ahUmTJsHf31/r8ohqPQZFoiqUmpqKr776CqtWrbI9YJGgSwyA7oI/JMHDUYmIiIDCw0xbZAFGKwDgqquuwpQpU9CqVSuNKyOqOxgUiTRw5MgRfPLJJzh+/DgAQMrV2UZH5bUXiYioDlP8LLC2yIISXgAAiIyMxH//+18MGjSIg9UQVTEGRSKN2A9HnTNnDtLT0wEA8mUf6OKDIOfptS2OiIioCgm9AmuTHKCpCVarFXq9HmPGjMGECRN4mCmRRhgUiTSWlZWF77//Hr/++iusVisgADnJCH1iAM9fJCKiWk1IAtZGuTB2hnoO/zXXXIPHHnsMTZs21bg6orqNQZGomkhISMBXX32FLVu22B6wStCd9YfuXAAkhYfbEBFR7SEgoESaYInJUi930apVK0yePBk9e/bUuDoiAhgUiaqd/fv344svvlDPX4RJhj4xEHKyH6+/SERENZ4SYoIlJhsiyAIAiIqKwgMPPIAhQ4ZAp+ORNETVBYMiUTWkKAo2bNiAr776CklJSQAAKU8HXUIA5BQGRiIiqnmUoAJYmmVDhJoBAEajEXfddRfGjh0LPz8/jasjoqIYFImqsYKCAvz6669YsGABMjIyAABSjt4WGFN9GRiJiKjaUwLMsDbLVkcyNRgMuP3223H33XcjPDxc4+qIyBUGRaIaIDc3Fz///DMWL16snuwvZemhTwiElO7DwEhERNWOYrTA2jQbSpQJAKDT6TBs2DDce++9qF+/vsbVEVFpGBSJapCsrCwsWrQIv/zyC/Ly8gAAUqYBujMBkNMYGImISHuKvxnWJjkQ9Qpg38wcOHAgJk2ahCZNmmhcHRF5ikGRqAZKS0vDwoULsWzZMhQU2A7lkbL0tsDIQ1KJiEgDSqAtICoRJvWxvn374r777kPr1q01rIyIyoNBkagGu3z5MhYtWoTffvsN+fn5AArPYTwTADmFgZGIiCqfElQAS5MciMJzECVJQv/+/TFhwgS0bNlS4+qIqLwYFIlqgfT0dCxZsgT/93//h9zcXACAlKuD7pw/5ItGSIKBkYiIvEdAQIQUBsTCUUx1Oh0GDRqEu+++G82aNdO4QiKqKAZFolokKysLv/zyC37++Wd10BsUyNBdMEJ3wR+SRda2QCIiqtGEJKBE5sPaOBciwHYdRL1ej2HDhmH8+PGIjo7WuEIi8hYGRaJaKCcnBytWrMDPP/+Mixcv2h60SpCT/aA/5w/JpNe2QCIiqlGEToG1QR6sjXIBXwUA4Ofnh+HDh2PcuHEcxZSoFmJQJKrFLBYL1q9fj8WLFyM2Ntb2oADky77QnQ2AnG3QtkAiIqrWhK8V1ka5sDbIA3S2TcaIiAiMHDkSt912G4KDgzWukIgqC4MiUR0ghMDevXuxaNEi7Ny5U31cyjRAd8EIOcWP5zESERGAwvMPg82wNsyF1MACq9UKAGjevDnGjRuHgQMHwsfHR+MqiaiyMSgS1TGnTp3C4sWLsW7dOlgstvNLUCBDl2SELskIqUCnbYFERKQJIStQ6uXD2jBPPf8QAHr27Ilx48ahV69ekCTuVCSqKxgUieqoy5cvY8WKFfjtt9+QkpJie9B+WOp5f0iZBl5eg4ioDlCMFigNc2Gtlw/obZuFvr6+GDx4MO644w60atVK4wqJSAsMikR1nMViwebNm/Hrr79i//796uNSjt52WOolP0hWjpZKRFSbCAgo4SZb72FYgfp4dHQ0/vOf/+Cmm25CUFCQhhUSkdYYFIlIderUKfz666/4888/kZ+fb3vQKkFO8bUdlprFXkYioppM+FlgrZ8Pa708dfRSSZLQp08f3HHHHejZsydkmTsHiYhBkYhKkJWVhVWrVmH58uVISEhQH5dydZCTjdBdNEIyc0OCiKgmELKAEpEPa/08iFCz+nhISAiGDx+O22+/HQ0bNtSwQiKqjhgUicglIQQOHz6MP/74A+vXr7/Sy6gAcmphL2O6D3sZiYiqISXADGv9PCgO5x5KkoRevXph+PDhuO666zh6KRG5xKBIRB7JycnB+vXrsWLFChw7duzKhHwZukt+kC8ZIefqtSuQiIggDFZYI01Q6udBBF4ZubRBgwa46aabcPPNN6N+/foaVkhENQWDIhGV2alTp7BixQqsXbsWmZmZ6uNSth7yJT/oLvnxMhtERFVEyAqUCBOsUfm2gWkKD/IwGAy4/vrrMXz4cPTo0YPnHhJRmTAoElG5mUwmbN++HX/++Sd27Nhx5bqMApDSfWw9jZd9OWoqEZGXCQgoYQVQovKhRJgA3ZXNufbt22PIkCEYNGgQQkJCNKySiGoyBkUi8oqMjAxs3LgRa9asweHDh69MsNrOZ5Qv+UFO84UkeD4jEVF5CAiIIDOUqHxYI02Aj6JOi46OxuDBgzF48GA0adJEwyqJqLZgUCQirzt//jzWrl2LNWvW4OzZs1cmWCRbaEzxhZzuC0lhaCQickcNh5EmWCPyAb8r4TA0NBQDBw7E4MGD0b59e0gS16lE5D0MikRUaYQQOH78ONatW4eNGzfi0qVLVybaQ+NlX1tPI0MjERGAwnAYbIYSmQ9rhEm93iEAGI1GXHfddRgyZAh69uwJvZ6DiBFR5WBQJKIqoSgKjh49io0bN2Ljxo24ePHilYkWCXKaD+QUP8jpPjynkYjqHAEBEWKGNaLwnEOHcBgQEIDrrrsO/fr1w9VXXw1fX18NKyWiuoJBkYiqnKIoOHbsGDZs2FA8NCqAlOED3WVfyKm+HD2ViGotoVOghBZAiTBBCTMBhiubZIGBgejbty/69++Pnj178nqHRFTlGBSJSFNCCDU0btmyBefOnXOaLmXrbYenpvpCytFDAg9RJaKaS/haoYSbYA03QYQUAA4HUAQHB6vhsEePHjAYDNoVSkR1HoMiEVUbQggkJCRg69at2Lp1K44cOQKnVVS+bDuvMc0XcoYPz2skompPQEAEWqCEm6BEmCACLE7TmzZtimuvvRbXXXcdOnbsyHMOiajaYFAkomorLS0N27dvx5YtW/DPP//AZDJdmVh4iKqc7mMbDCdXx95GIqoWhI/VdkhpmAlKaIHTIaWyLKNz585qOGzatKmGlRIRucagSEQ1gslkwp49e7B161bs2rULycnJRRrItgFx0nw5IA4RVSkhCYjgAihhtlvRXsPAwED07NkT1113Ha655hqEhIRoVCkRkecYFImoxhFCIDExETt37sSuXbuwf/9+FBQUODQApCyDrbcxwwdSpgGSYG8jEXmHgIAIsEAJKYAILYASUgA4jLslSRLatm2L3r174+qrr0b79u15SCkR1TgMikRU45lMJhw4cAA7d+7Ezp07kZiY6NxAAaRMH8gZtvAoZTM4EpHnBASEvxUixBYKlRDnw0kBIDw8HFdffTV69+6NHj16IDQ0VJtiiYi8hEGRiGqdpKQk/PPPP9i3bx/27t2L1NRU5wZWCVKGAXJGYY9jNkdTJaIrBASEn1XtLVRCzICP4tTGaDSic+fO6N69O3r37o0WLVpAkrgeIaLag0GRiGo1+0iq9tC4f/9+ZGRkODeySrZDVTNtNynLwHMcieoQIRUeShpcABFshhJkdrrgPQD4+Pigc+fO6NatG7p168bDSYmo1mNQJKI6RVEUnD59Gnv37sW+fftw4MABZGdnOzcSgJSjt4XGTB/bzwJdyQskohpH6BQowWaIILMtHAaZnc4xBACDwYCOHTuqwbBDhw686D0R1SkMikRUpymKgri4OBw+fBgHDx7EoUOHkJSUVLxhvgw5y9bbKGcZIOUYeB1HohrAdn6hBSLIAiXQDBFshvC3oOjR5kFBQejUqRM6d+6MTp06oX379vD19dWmaCKiaoBBkYioiIsXL+LQoUNqeDx16hQUxfkwNHuvo5RtgJyltx2umstzHYm0JCAAXyuUIIuttzDQDBFoAXTFN3Wio6PRuXNn9da0aVPIMg85JyKyY1AkIipFbm4ujh49imPHjuHYsWM4evRo8QFyAMAKW3DMNtgGyMnRQ8rTc4RVokpgC4UKlABbGFQCbYeSFh2NFLANPNO2bVu0a9cOHTt2ROfOnREeHq5B1URENQeDIhFRGQkhcOnSJTU4Hj9+HMePH0dubm7xxgpsPY3Zesg5Blt4zNFzsByiMhBS4eGjARaIQDOUANt96ItvwhgMBrRs2RLt2rVD+/bt0b59ezRp0gQ6Hc8zJiIqCwZFIiIvUBQFiYmJOHbsGE6ePInY2Fj8+++/JYdHAMjTQbaHxtzCW76OvY9Up9l7CYXRooZBEWCBMFqAEvat6PV6NG/eHK1atUK7du3Qrl07tGzZkoPOEBF5AYMiEVElURQFSUlJamiMjY1FbGwsLl265GIGQMrTXQmODJBUS6mHjfpbbD2F9pvRWmIvIWAbbKZVq1Zo3bq1+rNp06YwGAxVXD0RUd3AoEhEVMXS09Nx6tQpxMbGIj4+HnFxcYiPj0deXl7JM9gDZJ7e9jO/8GeeDjDLHECHqi2hU2wXrjdaIYyWKz/9rSUOMAMAOp0OjRs3RkxMDFq1aqXe6tWrxwvaExFVIQZFIqJqQAiB5ORkp+AYFxeHhIQE1wESACySrcfRKUjabgyRVBWErNgCoGMgLLwPH8XlfHq9Hk2aNEFMTAxiYmLQvHlzxMTEIDo6mr2ERETVAIMiEVE1pigKLl68iPj4eJw9exZnzpxRfyYnJ8PtKtwKSKbC0JivU++rj1kkBkkqldApEL5WCD8F8C0MhL6FNz9riaOMOgoLC0Pjxo3VW5MmTdC8eXNER0dDr9dX0asgIqKyYlAkIqqhTCYTLly4oIZHe4A8d+4cUlJS3IdIALBKkPJloEAHqUC2BciCwt9NMqQCHWBmmKytBASgExC+CuBjhfBRIHyshb8rahgsLQgCQEhIiFMYdLwFBARUwashIiJvY1AkIqqFCgoKcPHiRSQlJSEpKQkXLlzAhQsX1PuXL1/2bEEKgAJbaJRMsu1w1sIbzLItYBbeh5WhsjoQsgAMCkThDY4/CwMgCkMhPLxiREhICBo0aODyxjBIRFT7MCgSEdVBJpNJDZIpKSm4dOmSektJSUFKSgrS0tJK75V0ZA+V9iBpkW2Ht5b4U4ZkkWxtFDBglkBIAtArEHrnn9ALCKefCoRBQPgo6vSyCAwMRFRUFCIjIxEVFYWIiAhERUUhKioKDRs2RIMGDeDv719Jr5KIiKorBkUiIiqRxWLB5cuX1fB46dIlpKenIz09HWlpaU43twPulEYBYJEARYZklYDCW4n3FRmSFYAiAUKyhUxFKvy98HFFgqSgcHrh4yj8HbD9XvhYaQFVXGlY5Kew3ZdtP4Us1Pu2nwJCLrwvC0AubKOz3xSn34X9cbnwvl7xuLevJAaDAaGhoQgLC3P6GR4ergbCyMhIREZGws/Pr/xPREREtRaDIhERVVh+fr4aIO0/MzMzkZWV5fKWnZ0Nq9WqbeHC4af9voTiwVAjkiQhICAAgYGBCAoKcrrZHwsNDVVvYWFhCAsLg7+/Py8lQUREFcKgSEREmhBCIDc3F1lZWcjNzUVubi7y8vKQl5fn9n5+fj7MZjPMZjMKCgpgNpthMpmcfrffr+wgqtPpYDAY1JuPj4/L+/7+/vDz84PRaIS/vz+MRqPTzT7NaDSqYdDf3x86XQW6FomIiMqJQZGIiGotRVGgKAqsViuEEMXuO05XFAWyLEOSJMiyrN4cf7fflyQJer2eIY6IiGotBkUiIiIiIiJyImtdABEREREREVUvDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiIneq0LICIqCyEE8vPztS6DiKhM/Pz8IEmS1mUQEXmMQZGIapT8/HwMHTpU6zKIiMpkzZo1MBqNWpdBROQxHnpKRERERERETtijSEQ1ls+uepBE4f4uSYYkS4AkA7IEFB7iJcmy7b5U+FOWIEmF89jbFT6u3geKPOa8TNvPK9OFJF3Z7SZdWY76uMN8jo8J+1FoUuHvsu0XITnOA3UeIUmFv8NheYXzy1LhcmyT7MuwT3dcprAvV4bL5Tn9RNHHitbhYh5cecxpOtzMV8Lzuaqj2Dwulutch3Cav2iN6nSHZYnCx1GkPkjCYX6hTpOKtXecZrt/5eeV5UiSuPIWLHz8yr9GqNNlCPV3+/PJhb/bptnmUR9z/IkrzyUXvRVOs/0Op8ftzyVLivqYDAFZUqCzTyv8XZ0uKerydOpjAjrY2gCATlIc5lOgc5jPft/e3nE+GaJwXtvz26bZ57M9JkGBzj4/rjyfDrDNB9vz2f8e9t9tzyXUabJUWIt6X1I/7jpJggyp8DGp8He58C0iwVygw8gHG4CIqCZiUCSimssqXdlkk2RIKAx16hY4bNMlCZCvpCJ1HqfEIQNFk8CVFFY8xUgO8zollZIeL5Koit13aCPZA5/k0Ewq8hNF2sI5NBabDyUsE4WB1dXyXJRbYh0ubq6mufpTeTKfu3ngOkRWWlAsOr3ItKJB8crjwuk5S5pmD2dXpjlOFw7zOTxW7Lmcb45BsdjN1bTC8ATgSoCEcAqUgD0oQg1acmEdV4KiciVoFU6zBavCn5JkC3GF71P7fXt7HSSHUAropCs/dYW12ecrNg3257OHPlEYMK+EY3s4dBcUS1qejCuP2X53rNHhf0hEVMPw0FMiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInPA6ikRUc+kEhLBdZNt2XUDJ4af9Im4och1Cqch1A+03ceW+J9McLuJ35bLocPH4lZ/C6T6c5hMAINSr2alTBCRAQJ1XFJ2ncL7iij5mv3CgU0lF/h4ofkPRxyQ304o8bVmnlbZMd/PY77qdT5SyTIGSa3RxHUUUn09ycx1FyfEaiZJDW9ivX+j49nJxHUWU/zqKwv6OkQRE0VvhNFF4LUnHxxX1uZQrzwMBSIrD9R6F03QhKery7M8t1GkOdRT+Lhfet1+X0X7f8afi8LFWpCs/FVy5jqJS+JgEV9dRlCDDdn1Gnf1PVfi4/XqMOkCdJjssQ70OpLq8K8uSIam/2/4tEswFJX0uiYhqBgZFIqqxCq6+qHUJlcO+HV4BRSMqEXDlbSVgC1Q1j+M7mwdFERFVJq5liahGyc/P17oEIiIiolqPPYpEVKP4+vqq93/77Tf4+flpWA3VRPn5+bj99tsB8D1E5VOe9xDfZ0RU0zAoElGNIklXDqb08/OD0WjUsBqq6fgeoorie4iIaiseekpEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIieSEKKCV+siIiIiIiKi2oQ9ikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJ3qtCyAi8lRubi4WLVqEv//+G0lJSZBlGU2aNMGAAQMwcuRIGAwGrUukamrVqlV45513Sm03a9Ys9OzZswoqouokPz8f+/fvx4kTJ3Dy5EmcPHkSycnJAIB7770XkyZNKnUZqamp+PHHH7F9+3YkJyfD19cXzZs3x7BhwzB8+HBIklTZL4OIyKsYFImoRkhKSsITTzyBpKQkAICfnx/MZjOOHz+O48ePY+3atfj4448RFBSkcaVUncmyjNDQUJfTubOhbjp27Biee+65cs9/4sQJPPPMM8jIyAAAGI1G5Obm4uDBgzh48CA2btyId955h+8vIqpRGBSJqNqzWCx44YUXkJSUhIiICLz88svo2bMnFEXBhg0b8P777yM2NhYzZszAzJkztS6XqrF69ephyZIlWpdB1VBQUBDatGmj3j777DOkpqaWOl92djaef/55ZGRkoGnTpnjllVfQrl07mM1mLF++HP/73/+wa9cufPbZZ5g6dWoVvBIiIu9gUCSiam/16tU4ffo0AGDGjBno1KkTAFvv0MCBAyGEwBtvvIEdO3Zgz5496NGjh5blElENc9VVV+GPP/5weuyrr77yaN5FixYhNTUVvr6+mDlzJho1agTA1jt9xx13IDc3F3PmzMHy5csxevRoNGnSxOv1ExFVBg5mQ0TV3urVqwEA3bp1U0Oio4EDB6Jhw4ZObYmIPKXT6co975o1awDY1kP2kOjojjvugNFohNVqxdq1a8v9PEREVY1BkYiqtfz8fBw+fBgAcM0115TYRpIk9O7dGwDwzz//VFltRFS3JSYmqoPe2NdBRfn7++Oqq64CwPUTEdUsPPSUiKq1hIQEKIoCAGjevLnLdvZpqampyMzMRHBwcJXURzVLeno6HnjgAZw5cwZWqxURERHo1KkTbrnlFnTr1k3r8qiGsR8SD7hfP7Vo0QI7d+5EfHx8FVRFROQd7FEkomotJSVFvR8VFeWyXWRkZInzEDnKz8/HyZMnodfrIYTAhQsXsHbtWjz55JN49913YbFYtC6RapDLly+r9z1ZP+Xk5CA3N7fS6yIi8gb2KBJRtea4UeXr6+uynZ+fX4nzEAFAREQE7r33XvTr1w9NmjSBj48PrFYrjh49iu+//x67d+/GypUr4efnhylTpmhdLtUQ5V0/+fv7V2pdRETewB5FIiKq9a6++mpMmjQJLVu2hI+PDwDbACadO3fGBx98gL59+wIAli1bhjNnzmhZKhERUbXAoEhE1ZrjnneTyeSyXX5+fonzEJVGlmVMnjwZAKAoCrZt26ZxRVRTcP1ERLUZgyIRVWuO5x5eunTJZTvH8xId5yHyROPGjRESEgIAOH/+vMbVUE0RERGh3vdk/RQQEMCgSEQ1BoMiEVVrzZo1gyzbVlVxcXEu29mnhYeHc8RTIqoSLVq0UO+7Wz/ZR0eNiYmp7JKIiLyGQZGIqjU/Pz906tQJALBz584S2wghsGvXLgBAr169qqw2qj3OnTuHjIwMAMD/t3fvQVFWfxzH34SgFChoji6BpqZEqaGQ5gV+3kKi7OItzRktc6wm05myqdlJ7W7lmDo5WTndjS7WqDVZNCimJqiYISNCCEIpSFzkZou4wO8PZp/fbnKJZXHh5+c148y6z3nO892dnWU+e85zjslkcnM10lkEBwfTp08foOnvJ4vFwrFjxwB9P4lI56KgKCIdXkxMDABHjx4lPT39kuOJiYnGdEFbWxGb+vr6Fo+//fbbQMP9imPHjr0cZcn/AQ8PD6ZOnQrA7t27KSgouKTNtm3bsFgseHp6cvvtt1/uEkVEnKagKCIdXkxMDAMHDqS+vp4VK1Zw5MgRoGHhkcTERNasWQPA6NGjCQ8Pd2ep0gGdPXuWxYsXs2PHDvLz843gWFdXx/Hjx3n66afZt28fAHfffTf9+vVzZ7niJpWVlZSVlRn/6urqgIZFauyf/+f2O3PmzKFnz55UV1fzzDPPkJmZCcDFixfZvn0777//PgDTpk0jODj48r4oEZE28Khv6adWEZEOoKCggGXLlnH27FmgYUpqXV0dNTU1AAwePJj169fj5+fnzjKlAyooKOD+++83/u/t7Y2Pjw8Wi8X4/ADExsayfPlyunTRFsNXotmzZxvfL82JiYnBbDY7PJeZmcny5cuN6ctXX301NTU1WK1WoGHK6erVq42tWUREOgP9NRSRTsFkMvHRRx/xxRdf8PPPP3P27Fm6dOnCgAEDmDx5MjNmzMDLy8vdZUoH1LNnT5YtW8bx48c5efIkZWVlVFZW4u3tTb9+/Rg6dCh33nknw4YNc3ep0kmFhITw8ccfExcXx4EDB/jrr7/o1q0bAwcOJCYmhtjYWGNRLhGRzkIjiiIiIiIiIuJAP2+JiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIgDBUURERERERFxoKAoIiIiIiIiDhQURURERERExIGCooiIiIiIiDhQUBQRkXazYcMGoqKieOKJJ9xdirhZVVUVd955J1FRUezdu9fd5YiISAu6uLsAERG51Pnz58nKyiIjI4PMzEwyMzM5c+YM9fX1AHz55ZeYTKZ2uXZ9fT0zZ86kqKiIefPm8cgjjzjVT1ZWFtu3bwdg8eLFLqzQvXJycjh06BBpaWnk5ORQUlJCbW0tfn5+DBo0iDFjxhATE4Ovr6+7S+1QfH19mTNnDps3b+att95i9OjRdO3a1d1liYhIExQURUQ6oKVLl5KVleWWa2dkZFBUVARAZGSk0/1s2rSJ2tpaRo8ezbBhw1xVnlstXbqU3377rdFjpaWllJaWcvjwYbZs2YLZbGbUqFGXt8AObubMmWzdupXCwkK+/vpr5s2b5+6SRESkCZp6KiLSAdlGDqFhJGbEiBH07Nnzslx73759APTu3ZvQ0FCn+jh27BgpKSkA/1dhwBag/fz8iI2NxWw2s3HjRjZv3syLL77ImDFjgIbQaDabSU1NdWe5HY6Pjw8zZswAIC4ujr///tvNFYmISFM0oigi0gHFxsbi7+9PSEgIQUFBeHh4sHTpUkpLS9v92ragOG7cODw8PJzq4/PPPwfAZDJxyy23uKw2dwsKCmL+/PlMnjwZb29vh2MhISFMmDCBzz77jHfffZeamhrWrl3LJ5984qZqO6bo6Gg++OADKisr+f7775k1a5a7SxIRkUZoRFFEpAOaOXMmU6ZMITg42Omw5ow///yTvLw8wPlpp0VFRSQlJQEwderUy1p/e1uzZg133HHHJSHR3rx58xg8eDAAubm5ZGdnX67yOgWTycTw4cMB+Pbbb91cjYiINEUjiiIiYrCtRmmb7uqMhIQE6urqAJg0adK/OsdqtbJ79272799PRkYGZWVl1NbW4u/vz8CBA4mIiGDKlCn06tXL4byoqCgAYmJiMJvN/PHHH3z99dccPnyY4uJirrnmGoYMGcIDDzxAWFiYcd6FCxf44YcfiI+P5/Tp01RXVxMYGMjtt9/OrFmz2rzIysiRI417TP/8808GDRrkdF+5ubns2LGD1NRUCgoKqK6uxtfXFz8/P0wmE+Hh4YwfP55+/fo51b/VauWnn34iMTGRnJwcysvL8fDwoHv37vj7+xMaGkpERATjxo3Dy8vL4dx/vv+5ubls27aNlJQUiouLsVgsvPLKK5f86DBp0iRSU1PJy8sjIyODG2+80bk3R0RE2o2CooiIGGzTTseMGUOXLs79iThw4ADQcB9f//79W2x/8uRJVq5cyenTpy85VlRURFFREQcPHiQ7Oxuz2dxkP3v27OHVV1+lurraeO7ChQskJydz8OBBli9fzrRp0yguLsZsNpORkeFw/qlTp3jvvfdITk5m7dq1bQqLVqvVeHzVVc5P3tmxYwfr16+ntrbW4fny8nLKy8s5ffo0hw8fJjs7mxUrVrS6/7KyMp566qlGF06yvfdZWVl8++23xMXFERQU1GRfP/zwA2vXrqWmpqbF69ovbnTgwAEFRRGRDkhBUUREACguLubEiROA89NOa2pqOH78OAChoaEtTjvNyspiyZIlWCwWAEaMGEF0dDT9+/fHy8uLkpIS0tPTW9x3Lzs7m927dxMQEMDixYuNax85coRPP/2U6upq1q1bR1hYGC+//DInT57k3nvvZfz48fj7+3PmzBk++eQTsrOzOXbsGHFxcTz00ENOvQcAv/76q/F4wIABTvWRk5NjhMTu3bszbdo0wsLC8Pf3p7a2lpKSEjIzM0lOTnZ6eu/69euNkBgeHk50dDQmk4lrrrmG8+fPk5eXR2pqqjGVuCmZmZkkJCTQvXt3Zs2axbBhw/Dy8iI3N5e+ffte0n7AgAH4+PhgsVj49ddfWbhwoVP1i4hI+1FQFBERAPbv3099fT3e3t6MHj3aqT6ys7ON0bSQkJBm21qtVlauXGmExGXLlhkrYtobO3YsixYtorCwsMm+srKyGDx4MOvXr8fPz894/qabbiIoKIhVq1ZhtVpZsmQJFRUVrFmzhoiICKPdkCFDuPXWW5k/fz7FxcVs376d+fPn4+np2arXDw3Td0+dOgU0hOXg4OBW9wGQmJhojCSuW7fOuO/RXmRkJIsWLaK8vLzV/V+4cMEI4JGRkbz88suXBM6wsDDuueceLBZLsyOjp06dIigoiI0bNzqsztvUqrmenp4MGTKE1NRUfv/9d+rq6to08ioiIq6nb2UREQH+N+00IiICHx8fp/qwnz7a0nYeCQkJnDlzBmhY5bWxkGivT58+zR5/9tlnHUKizYQJE+jduzcA586dY/r06Q4h0cbX15c77rjDaJebm9vs9RpTXFzMm2++CYCHhwePPfZYq/uwsa1w6+vr22hItNejR49W919ZWWmE+rCwsGZHJX18fFqcivvkk0+2agsXW9vq6mqKi4v/9XkiInJ5KCiKiAhVVVUcPXoUcH7aKUBJSYnxuHv37s22tQVTgLlz5zp9TWiYythUmPLw8HA4Fh0d3WQ/9u3y8/NbVUN1dTVms9kIeP9cQKe1bOG2qqqKxMREp/tpSo8ePYzVW3ft2tWmPQ179+7daPhujv3nw/5zIyIiHYOCooiIkJSUhNVqxdPTk3Hjxjndz4ULF4zHjY3u2fv999+BhpGlf7PoTXNaOt++luZWB7Vv15rgdPHiRZ577jljgZzx48ezaNGif31+Y6Kjo41RvFWrVvH444/z2WefcezYMWO6blt4eXkRExMDQHp6OrNnz2bNmjXs2rWr1SHZmVVd7YOi/QJEIiLSMegeRRERMUb3hg4dir+/v9P92N/T19Lql2VlZcD/Rs7aolu3bs0et59W2dy0Wvv75GxbfLTEarWyYsUKDh06BMCoUaN4/vnnnbq/0V5gYCCvvfYar776KkVFRaSlpZGWlgY0vM833ngjUVFR3HXXXS2G8qY88cQT1NTUEB8fT0VFBd999x3fffcd0BDgR40aRWxsbIsjoy2NHjfG/kcFZ1fYFRGR9qMRRRGRK1xNTQ0HDx4E2jbtFBrup7OpqKhoU1+dgdVqZdWqVcaWIBEREbzyyivGlM62Cg8P5/PPP+eFF14gNjbW2J6itraW48ePs2nTJubOnWuE1Nbq2rUrZrOZLVu28PDDDzNy5EgjSJeWlvLjjz+ydOlSnnvuOYdg90/OLERjvwCP/edGREQ6Bv2EJyJyhUtJSTGmMrY1KNpvhdBSUPT396ewsLDTLmRiC4m20diRI0eyevXqNu2/2Bhvb28mTpzIxIkTgYaR2CNHjhAfH09ycjIVFRWsWLGCuLg4evXq5dQ1goODWbBgAQsWLKC2tpasrCwOHDjAjh07OHfuHHv37mXz5s0sWbLEZa+rsrLSeNzSQkUiInL5aURRROQKZws6gwcPxmQytakv+z0D//jjj2bb2rbPKCkpabFtR/PPkDhixAhee+01l4fExvj7+zN58mTeeOMN7r33XgAsFgv79+93Sf+2aa0LFy7knXfeMab1JiQkuKR/m7y8PABMJhNXX321S/sWEZG2U1AUEbmC1dXV8csvvwANC7C0VZ8+fbj22msBOHHiRLNto6KijMdxcXFtvvblYrVaef75542QGBYWxuuvv97ifZLtYdSoUcZj2z2frmQymYx9IJ3Zq7EpZWVlxtYoN998s8v6FRER11FQFBG5gqWlpRkBwz64tYUtvOTl5XH+/Pkm202aNMkIITt37uSbb75ptt/CwkKX1NcWVquVF1980diovj1D4s8//9xi+LPdWwpw3XXXtar//Px8UlJSmm1TUFBgjPwFBga2qv/mpKenG49vu+02l/UrIiKuo3sURUQ6oNOnTxsrXNrY9ucD2LNnj8PqpD4+PkyYMKHV17GNigUGBjq1xUFjJk6cyM6dO6mrqyMlJYX//Oc/jbbr0qULL7zwAo8//jgWi4UNGzawd+9epk6dSv/+/fHy8qKkpISMjAz27NlDSEgIZrPZJTU666WXXmLPnj1AQzB79NFHKSgoaPacgIAAAgICWn2tb775hpdeeonw8HDCw8O5/vrr6dGjBxcvXqSwsJCEhARjNLhv376t3taksLCQJ598ksDAQMaNG0doaCh9+vSha9eulJeXk56ezvbt243Va2fMmNHq19CUw4cPAw33X44ZM8Zl/YqIiOsoKIqIdEBpaWmsXr26yeObNm1y+H/fvn3bFBRdMe3UJiIigt69e1NUVER8fHyTQRHghhtu4K233mLlypXk5+dz9OhRjh492mhb2z2N7mS/8f2ZM2d49NFHWzznwQcfZOHChU5dr6amhqSkJJKSkppsc91117F69epmt/1oTn5+Plu3bm3y+FVXXcXcuXO57777nOr/n6xWK7t27QIaRrGd3dpDRETal4KiiMgV6uTJk8ZoWFtXO7Xn6enJ9OnTeffdd0lOTqasrKzZvRmHDBnCli1biI+PZ9++fWRlZRn3wwUEBDBo0CBuvfVWpkyZ4rIaO4NVq1Zx6NAhUlNTycnJobS01JiK2qNHD2644QYiIyOJjo52ajuO4cOHs3HjRlJSUkhPT6ewsJBz585x/vx5unXrRmBgIMOHD+euu+5y2WgzYHwmAGbOnOmyfkVExLU86uvr691dhIiIXH4ffvghH374IQEBAWzbts2pvfCaUlVVxZw5c6ioqOCRRx5h3rx5LutbOrdnnnmGpKQkwsPDWbdunbvLERGRJmgxGxGRK5Rt2unYsWNdGhKhYQN1Wzj84osv+Pvvv13av3RO6enpJCUl4eHhweLFi91djoiINENBUUTkCnTx4kUiIyN58MEHmT59ertcY8aMGQQFBVFeXs5XX33VLteQzmXz5s0ATJ06ldDQUDdXIyIizdHUUxERaTcnTpwgKSkJX19fZs+e7e5yxI2qqqrYunUr9fX1TJ8+vdn7VkVExP0UFEVERERERMSBpp6KiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIgDBUURERERERFxoKAoIiIiIiIiDhQURURERERExIGCooiIiIiIiDhQUBQREREREREHCooiIiIiIiLi4L8Op/0JyIiTJQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACYXUlEQVR4nOzdd3wT9f8H8NddkrbpbmnZlL2HskQEF1sR9StT8YsKiorIck/ALe6BKPpDQPiyHKgICggIiqDI3hVomS2U0t2mSe7z+yPNkbRZbdNe2r6ej0ceTXOfu7ybJpd73edzd5IQQoCIiIiIiIioiKx1AURERERERBRYGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJz4JSgmJSVBkiRIkoR7773XH4uskW644Qb1dSQicufee+9V1xVJSUlal6OaP3++Wtf8+fO1Lof8TFEUdO3aFZIk4dFHH9W6HKpAmzZtUj/LM2bM0LoconKxv5dvuOEGrUvxu379+kGSJNx5550VsvxK61GcP38+ZsyYUaNWOCtXrlT/5oyMDK3LoSIWiwXr16/H008/jT59+qBevXoIDg5GeHg4mjdvjlGjRmHlypWwWq2lWu7+/fvx6KOPok2bNggPD0dUVBQ6duyIp59+GsnJyRX01xARAYWFhejQoYO6QSRJEjZt2uTX55g7dy527tyJkJAQPPPMMy7bVIX1a3JyMp5++ml07NgRUVFRCA8PR5s2bfDoo4/iwIEDpVrWhQsX8PLLL6Nr166IjY1FaGgomjdvjrFjx2Lbtm2lWpavasp3zZAhQ9T38v/93/+Vev6TJ09Cp9NBkiTExsaioKCgVPM7hmVfbr7uHPPneyY3NxfvvvsuevXqhdq1ayMkJASNGzfGyJEj8csvv5RqWWazGZ9//jn69u2rfm4bNmyIIUOGYNmyZRBClGp5vtDi86OFd955R32f/Pe//y3TMlq2bKkuY/v27erj06dPBwAsXboUmzdv9ku9ToQfnDhxQgAQAMQ999zjss3111+vtqkp7rnnHvVvPnHihNf2NfE1qmwbNmwQsbGx6uvs6da9e3fx77//+rTct956SxgMBrfLioiIEEuWLKngv45qitKuWyrLl19+qdb15Zdfal1OjTJjxowS652NGzf6bfm5ubmibt26AoCYNGmSyzZVYf26aNEiER4e7nZZQUFB4t133/VpWevWrRO1a9d2uyxJksTjjz/u07J8VVnfNRs3blSXOX369PIXXgbffPONWkPv3r1LPf9LL72kzj9hwoRSz+/4Gvhy82Wd58/3zM6dO0WzZs081jR69GhhMpm8LuvEiROic+fOHpfVr18/cenSJZ9q80Vlfn7sy7z++uv9srzSSklJEXq9XgAQoaGhIisrq1Tzb968Wf0b2rVrV2J6nz59BADRs2dPf5WsqrREUhNDUKBuzNVkX331lfo/iY2NFSNGjBDvvvuuWLJkiVi4cKGYOHGiiIyMVNs0atRInDt3zuMy58yZo7Y3GAxi7NixYsGCBeKLL74Qw4cPF5IkCQBCr9eLNWvWVNJfSlT5GBS1ceDAAREUFCQAiLCwsAoJim+99ZYAIHQ6nTh9+rTLNoG+fl21apXQ6XTqRujw4cPFF198IRYsWCDGjh3rFMA+//xzj8vasWOHCA0NVdv3799ffPrpp2LRokVi0qRJTv+H5557zvOL66PK/K4JhKBYWFgo4uLi1Dp83bFg17x5c3Xev//+u9TP7/gajBw5Unz33Xceb8nJyR6X58/3TFJSkqhTp47a/qqrrhIffvih+N///ieeeeYZUatWLXXa3Xff7XFZly5dEm3atFHbt23bVrz11ltiyZIl4uWXXxaNGjVSp914443CbDaX+rWsyNfCF1oHRSGEuPXWW9U6vvjii1LNO3bsWHXet956q8T09evXq9P9vZ3JoFiBGBQDz1dffSU6duwo/ve//4mCggKXbU6fPi3at2+v/u/GjBnjdnlnz55VV3Z6vV6sW7euRBvHjedGjRqJ/Px8v/09RIGEQbHyWa1WcfXVVwsAYsiQIU7ftf4KimazWd1YHDBggNt2gbx+zc3NFfXr11fbzp8/v0SbtWvXqnv9w8PDRUpKistlKYoiunTpoi5rxowZJdrs3r1bDcWyLIu9e/e6/Tt9UdnfNYEQFIUQYvLkyWodL7zwgs/zOfbAdOjQoUzP7c/XwN/vmdtvv11d1tixY4XVanWanpSUJBISEtQ2q1atcrusKVOmqO0GDRpU4n1z8eJFp97Gjz/+uJR/vTMtPj+BEBS/++47tY5rr73W5/lyc3NFRESE+tl3tV6yWq2iYcOGauj2JwbFCsSgGHguXbokFEXx2m7fvn3q/85oNIrc3FyX7RxXsE888YTb5Q0fPtxvK1miQMWgWPk++OADtScxOTm5QoKi4wbOwoUL3bYL5PXr+++/r7YZPny422U98cQTajt3w95WrlyptunRo4fbv3n27Nlqu2HDhrl9Tl9U9ndNoATF3bt3q3U0btzYp/eXEM49MO+8806Zntufr4E/3zOOr0lCQoLbHQI//fST2q5bt24u26SmpjqNRkhNTXXZbt++fWqPdd26dYXFYvHhr3ZNi89PIATFwsJCER8fLwDbiIZjx475NN/ChQvV+ocMGeK2neO66+jRo/4q2z9B0dMxio5fWp5u7j6EVqtVLFu2TIwYMUI0adJEGI1GER4eLlq3bi0eeughr3sZpk+fXuJLc/369WLUqFGiSZMmIjg4uESQM5vN4ueffxbTpk0TvXr1EvHx8cJgMIjw8HDRsmVLcc8994jffvvN7XM6BkRPN0+vlTfbtm0TDzzwgGjVqpUIDw8XoaGholmzZmLMmDHi119/9Tp/8Q9NTk6OeOutt0TXrl1FdHS0CA0NFe3atRNPP/20SE9P97q86shxKMaePXtKTFcURTRo0ED90J88edLtsrZs2VKmPUn+sHXrVvHQQw+Jtm3biqioKBEcHCwaNWokRowY4XEvoxCuvyiTk5PFtGnTROvWrUVoaKiIiooSPXv2FLNnz/Z5SEp2drZ47733RL9+/US9evVEUFCQiImJEd26dRMvvPCCOH/+vMf5i39WLBaL+PLLL0W/fv1E/fr1hU6nE40bNy4xX0pKinjiiSdE27ZtRWhoqIiJiRHdu3cXb7/9trqx2rhxY3WjxNGaNWvU53z00Ud9+jsfffRRdZ7Vq1f7NI8vvO2Eqqj/248//ihuueUWUadOHREcHCwaN24s7rrrLrF161YhROmCoslkEl988YUYMmSIaNiwoQgODhZRUVGiY8eOYtq0aW53rh0+fFjtWYmMjBTHjx93+xzp6elqT5gsyx7X21VRUlKSeryd/bi6igiKd9xxhxrqsrOz/bLMyl6/9uzZU23z+++/u13WyZMn1Q3ihIQEl23uvPNOdVmLFi1yu6zc3Fy1V8RoNIqcnBy3bT3R4rvG15D077//qsfJSZLk9vjONWvWiHvuuUe0aNFChIeHC6PRKJo1aybuuecesWXLFo+1OPZm+bJ9U7wHxl348cafQdGf75lnnnlGXdYrr7zidlmKoogWLVqobV0Fk88++0ydfv/993v8G/r27Vuq/4M7lf35EcK3oJibmytuvvlmte2IESNcHt+5f/9+MXXqVHHFFVeImJgYERQUJOrXry+GDBkiFi1aVKJ319HUqVPV5fvaQ24//hCA+Pbbb922c9yB8OKLL/q0bF8EdFD8999/xZVXXulxPlmWPb7YjkFxw4YN4pFHHnG5HMeNkhtuuMHnoOfqTVSRQdFsNosHHnjA67JHjBgh8vLy3C7H8UNz7Ngx0a5dO7fLaty4cY3sEe3evbv6Gmzbtq3EdMe94t6GtlitVqdhFKU9kLkscnJyxMiRI72+VwYPHuy2nuJflGvWrBHR0dFul9W/f3+3Q87sVq9e7fEAdsB2Qobvv//e7TIcPysXL14UvXv3dvm+dbRhwwYRExPj9jk7duwoTp486TYoWq1W0bRpUwFAxMTEeB3WlZ+frz5fQkKCxy+P0iptUCzv/81isXhcr8myLN58802fg+Lff/+tvpbubkFBQeLTTz91Of/cuXPVdj179nS7d3vYsGFqO38dJxZIBg4cKACILl26qK+Bv4NiQUGBGsyvu+66ci/PrjLXr5mZmWr4i4qK8vpZdBwae+DAgRLTHY//unDhgsdlDR48WG37008/eWzrjhbfNb6EpJ07d6rHyen1evHVV1+VaHP+/HmnDV13t3HjxonCwkKXz/Phhx+q7TwNVbZz7IG57bbbSvNnO/FnUPTne6Zr167q9B07dnhcluM27+zZs0tMHzp0qDr966+/9rgs+3HKgOdebW8q+/MjhPegePHiRXUIPwDxyCOPlFhPmM1mMWnSJCHLssf3co8ePdwee7137161XZMmTbz2kCcnJ6vrrri4OLefETv7ycSuuOIKj+1Ko8KD4pYtW8R3333ntOJ1dRDwoUOHnOb7999/nQ5i7t27t3jjjTfEkiVLxKJFi8TUqVOdNvrcfYgdg+JNN90kAFu3+dNPPy0WLVok5s+fLyZMmCDOnj2rztOjRw8RHh4ubrvtNvHSSy+JhQsXiuXLl4sPPvhAjB8/3ukg28mTJ5d4zn/++Ud899134sYbb1TbffbZZyX+5n/++cdpPl+C4qhRo9Q2ISEh4sEHHxQLFiwQixYtElOmTFH3ogEQAwcOdPsmtLfp3LmzaNOmjZAkSdx2221izpw5YtmyZeL11193Gt9e2b1gWjOZTE4b1q4+9EuWLHH7vnfF8f+7ffv2Cqj6soKCAqeVXvPmzcWzzz4rvvrqK7F06VLxyiuviFatWqnT+/Tp43LjyfGL8rbbbhOhoaHCaDSKBx98UMyfP18sWbJEPPbYY06fCU87br7++mv1ZBIGg0EMHTpUfPTRR2L58uXiiy++EKNHj1ZPKCHLstu9lo6vpf1zfcUVV4g33nhDLF26VMydO1dMnDhRbX/gwAGnA+c7d+4s3nnnHbFs2TLx4Ycfil69eqmhw77n3lWP5GuvvaYuw9OeUCGcT+wxc+ZMj21LqzRB0R//twkTJqjtgoKCxAMPPCAWLFggvvrqK/Hoo4+qr63jcTPuguLWrVvV9pIkiUGDBol3331XLFu2TMyfP188+OCDTv8rd8tx3MBxVfsXX3yhTr/66qv9cgKGQGLfGNbpdE4bi/4Oir/++qu6PH+dgbCy169//vmn1w1FR46fr2XLljlNO3funDrN1TqiOMdtkDfffNNre1e0+K7xFpI2bNigBtLQ0FCXIyYuXrzodEKZK664QsycOVMsXrxYLFmyRDz33HPq+tbT35aWluY0PNJbr7ZjMF25cmVZ/nwhhPNr0KFDB9GxY0cRHh4uQkJCRMOGDcUtt9wi5syZ43GnvBD+fc9YrVZhNBoFYAvn3tZrjjvvHn744RLTW7du7fG7xJHj63HTTTd5/Ttc0eLzI4TnoHjy5EnRtm1bj+93RVHEf/7zH7VNvXr1xNSpU8X8+fPF8uXL1RF59unt2rVzO6Tesd2GDRs81u145t4pU6Z4/Tvt20Pu1qtlEZCXx7BareqBrsHBwWL58uUu26WkpKg9jrIsi/3795do4/gmA2yBMzMz0+Pzr1+/3uMHPy0tTe3BkGXZ7dAnf18eY+nSper0OnXquNzTmZSU5LSn3t0xCo6vSVBQkPjxxx9d/p2OyypPuMnNzfV6xjBfb8UDdkVw3Mjv0qWLyzYzZ870uGIpbsyYMWp7V3te/an48SyuvkwKCwudapozZ06JNsVPD56QkOBy7Pv27dvVk0DExMS47J06efKkumGRkJDgdtj49u3bRVRUlAAgGjZs6HIPWvGRClOmTPHYS+DY4zhhwgSXbYuvK9wNXbUHWW8bnNddd526IX/q1CmPbUurNEGxvP83x5NCREdHu9yDffjwYfXSCZ4CXlZWljoUNDo6WmzatMnl35eYmKjuqAoLC3O51zk9PV09eF+n0zkNXzty5IgagiMjI30+FsSdQ4cO+W395W0Pui/Onz+v7pWfOnWq0zR/B0XHnSMrVqwo9/KEqPz164IFC0oVtF588UW1/csvv+w07bfffvO40VncvHnz1Pbjxo3z2t4VLb5rPAXFr7/+Wj1sJzY2Vh16Xpx9x5EkSeL999932SY7O1sMGDBAfS53Z2x0HB0wb948t3UnJSWpPTC1a9cu1w4iXy+PUa9ePY8b/P58zyQnJ5cqaG3YsEFt37dvX6dpVqtVXf/rdDqvr9Xx48fVZTVv3tzrc7uixedHCPdB8eDBg06HJ3zyyScu53c8xvnuu+92GQIVRRHPPvus2u6pp55yuayPP/5YbeOph1xRFKcdLa6G6BfneJkkT6OySiMgg6LjtXM+/PBDj22PHDmi9lA88MADJaY7bvyFhYWJM2fO+PQ3eXPs2DG3XyR2/g6KjuP0PR3vtH37dnVF2bhxY5fDshxXci+99JLbZX3++ec+tfPG8T1S3psvX/TlkZ6eLurVq+d148hxrPlHH33kdbmlbV9WZ8+eVfe+3nHHHR7bFhYWqseXtGzZssT04l+Umzdvdrus0aNHe2xnP15Pp9OJXbt2eazr//7v/9RlLV68uMR0x89K165dPYbEv//+W23boUMHjwfhOy7X3Zew48ki3B0wfuTIEbXN4MGDPf6tZVHaoFie/9ttt92mTnd1pki7VatWOT2nq6D4zjvvqNN/+OEHj3+jY0/Wq6++6rLNpk2b1GFAjRs3FpcuXRKFhYVOe2z9sVOm+E6E8tz8Ed7sI0saNWpUonfF30HxrrvuUpdX3jMPCqHN+tV+wh8A4rHHHvO6LE/tv//+e3Xa0KFDvS6rtO1d0eK7xl1Q/PTTT9XPXIMGDVzusBbCNrLKPv+0adM8Pld6erq6c9DdGRsdT8ziaQi0Y6j29rzebNy4UUiSJK666irx1FNPiXnz5okVK1aIzz//XIwfP16tGbD17q1du9blcvz5ntmzZ4/Td583ntpnZmaq02rVquV1WaVt74oWnx8hXAfFP//8Ux2qGRQU5LZTKj8/Xz1cpnv37l6Hrl977bUCsO2kdHWISnp6urqjxVMPuWOodrdDrbhly5ap87jLJqUlIwB99dVXAIDIyEg88MADHtu2atUKV111FQBg7dq1HtsOHToU9evX90uNzZo1Q926dQEA27dv98syPUlKSsKuXbsAAB07dsRNN93ktu1VV12FPn36AACSk5Pxzz//uG2r0+kwceJEt9PtywGAgwcPlrbsKsdqtWLUqFE4d+4cAGDw4MEYNmyYy7Y5OTnq/ZCQEK/LNhqN6v3s7OxyVure8uXLUVhYCAB4/PHHPbY1GAwYOXIkACAxMRFJSUlu23bu3BnXXnut2+me3itCCCxevBgA0LdvX1x55ZUe6xo5ciT0ej0A75/rRx55BLLsflX2/fffO7XV6XRu206ePNnjcwHAQw89pN7/4osvXLZxfHz8+PFel1mRyvN/M5lMWLNmDQCgTp06uPvuu90uZ/DgwWjbtq3HWuzr9latWmHIkCEe2/bp00ddX7t7D1x//fV4+umnAdjWdQ899BCef/55dZ03evRojzVXRatWrcLSpUsBALNnz0Z4eHiFPl9ycrJ6PzY2tlzL0mr9GqjL8lWgfNe89NJLeOihh6AoClq3bo2tW7eiXbt2LtvaP+uSJOGxxx7zuNyYmBjcfPPNAIDNmzfDZDKVaDNw4EB1fbBlyxacOHGiRBshBBYuXKj+ft999/n2h7nRunVrHDlyBNu3b8cbb7yB++67D8OGDcP999+Pzz77DCdOnFDrtlgsuPPOO5GVlVViOYH6/qvJ7+Wff/4Zffv2RXp6OsLDw/HTTz9h+PDhLtv+8ssvOH/+PABg6tSpHrc3AKjfOVlZWdi2bVuJ6TExMbjtttsAALm5ufj6669dLmf+/PnqfV/fyzExMep9x3V3eej9shQ/27JlCwCgXr16+Pnnn722t2/4JScnIz8/3+mN5cjTxlJxWVlZWLx4MVavXo19+/YhLS0Nubm5LtuePn3a5+WW1V9//aXeHzBggNf2AwYMwK+//grAFmTtYbq4Vq1aOb2ximvQoIF6/9KlS76WW0KTJk0ghCjz/JVl8uTJ6kZpQkKC0we1qrB/fgDbe3PlypUe2zv+Xw8dOoQmTZq4bHf11Vd7XI6n98qBAweQnp4OAIiIiPBaEwCEh4cjIyMDhw4d8tjO2+d6x44d6v0bb7zRY9sbbrjBa1033ngjWrVqhaNHj2LBggV45ZVXYDAY1OlmsxkLFiwAANSvXx+DBw/2usyKVJ7/2549e9SdDtdff73HkA3YdgK4+39lZmZi7969AGyh09f3AACP74GZM2fi119/xfbt27Fs2TL18aZNm+KTTz7x+hy+mDFjBmbMmOGXZZVHdnY2Hn74YQC2HZ/ewrY/2D+3QPmDYnVYv9ZEiqJg4sSJmD17NgCge/fuWL16NeLi4tzOY/8eio6Odtp+ccceDk0mE44fP15ip5NOp8OYMWPwxhtvQAiBBQsWlPhMbtmyBceOHQMAdOvWDR06dPD5b3SlXr16HqfHxMTgm2++wVVXXYV9+/bh4sWLmDNnDp566qlyPS9VrEWLFmHs2LEwm82Ij4/H6tWr0a1bN7ftHbepLl265PW768yZM+r9Q4cOudyuGDt2LJYvXw7AFgjvvfdep+l5eXlqgAwODsZdd93l5a+yqVWrllOt/hBwQTEnJwcXL14EABw5cgT/+c9/SjX/pUuX3AZFxw0iTzZu3Ii77roLKSkpPrV3tQfJ3+x7YAFbuPPGsY3jvMV5WtEDtjeoXUFBgdfnrcqee+459YuwTp06WLduncfXx3FPvi+vTX5+vno/IiKiHJV65tgrOGLEiFLN62nFUp73imNN33zzDb755hu/1AR4/1yfPXtWvd+sWTOPbWNiYhAdHY2MjAy3bSRJwvjx4/H4448jNTUVP/74I+644w51+g8//KDufbzvvvu8hquKVp7/m+Nr16JFC6/P5anNqVOnoCgKANsXr+OXrzee3gN6vR7/+9//cOWVV6p7nO2PRUZG+vwcVcFTTz2F06dPIzIyEh9++GGlPKd9A16n07n9bvWFluvXQF2Wr7T+rvnwww+RmZkJAOjXrx++++47rz3Z9nX+pUuXyrQd58q9996LN954AwCwcOFCTJ8+HZIkqdMddzyMHTu2xPxr165FXl6e2+e9/fbbS1UnYOsVe/bZZ3HnnXcCAH766acSQTFQ33818b28c+dOjBkzBkIIJCQkYN26dV63qR23Xx555JFSPZ+793L//v3RsGFDnD59Gps3b8aJEyfQtGlTdfrXX3+tfp/ddtttPu+kc/zOc3ztyiPggqJ9ZVRW9r3frvjyJZeYmIjBgwerL3Dr1q1x0003oWXLloiNjXXqKh8/fjwuXLgAq9Varpp94djlHhYW5rW944fRU3e9ty70muKVV17Ba6+9BsC2Yb1+/XqvK4/o6Gj1flpamtfnsO8AKT6vv5XnM+Tp81Oe90pF1QR4/1zbRwLo9Xqnnj93wsLCPAZFwLbB8txzz8FkMuHzzz93Coqff/45AFugHDdunNfnq2jl+b85DhMKDQ312t7Tuqk87wGz2exxelxcHGJjY9V1XbNmzdC1a9cyP18g2rJlCz799FMAwOuvv+63wyi8se9IsFqtyMvL8+l9UJzW69dAXZavtP6usVgs6v3c3FyfRgdVxDq/devWuOaaa7B161acOHECmzdvxvXXXw/AuQcmJCREDW6Oxo8f73E4XllHPTn2GB0+fLjE9EB9/4WHh0Ov18NisSAjIwMWi0U95KO0y/KV1u9lq9Wq/p8LCgqc3tvuVMR7WZZljBkzBq+99po6ZHr69Onq9LIMOy1ea3l27DkKuKDoGHCuu+46/Pbbb5X6/K+//roaEp977jm8/PLLTnusHHk7ftKfHPekuBsC68hxA68ie698lZeX5/VYM18lJCSgS5cuflkWAMyaNQsvvPACAFuP0rp163wasuK4oePp2D47xy8oX3qFy8r+GZIkCRaLJSB2Bjh+rl988UXMnDmz0p7bHl4sFgvMZrPXsOjL56tWrVoYNmwYFi9ejLVr1+LkyZNISEhAcnIy1q1bB8C2591xD2FV5Ph/87Qn3s7Ta+e4rDFjxqjDc/1hwoQJTp+vo0eP4vnnn8ebb77pl+UfPnzY5QZgWfTu3dtrL68r8+bNgxACRqMRaWlpeOWVV1y2c3wdvvrqK/z+++8AbKMLyrLecdyTnZ6eXuqgGAjr10Bdlq+0/q6ZPHkyDh06hO+++w5//vknBg4ciF9++cXjtoX90AH7etFf7rvvPmzduhWAbWPaHhQde2Buv/32Ct0ZW5zjcD9XOxn9+f9r2LAhjEYj8vPzcebMGa/hztOyZFlG8+bNceTIEVitVpw+fdrtoSfeluUrrd/L3bt3xy233IInnngC58+fx4033oiNGze6PdYWcP7uOn78uN++1++99151B9rChQvx4osvQpIkJCUlYdOmTQBsI6b69+/v8zL9eaiAXcAFxaioKISHhyMnJ6dSjv0rbv369QCA2rVr46WXXnIbErOzs53+IRXNcax8YmKi1/aObSprz7Mn58+fL/XwE3fuuecevx3b8t5776nDRKKiovDLL794PdGKnePGjqcTBgG2YzzsJyOSZdnrST/Ko0GDBti9ezeEEDhz5gwaNWpUYc9VmprsKvtzXb9+ffXYuOPHj6N169Zu2166dMlrb6LdQw89hMWLF0NRFMybNw8zZszAvHnz1OGVWp/Exh8c1x3//vuv1/ae2lTUe2Dx4sXqiZK6du2KtLQ0JCcn4+2338bAgQOdTtZTVkuXLvXbzo2NGzf6dCxscfa94Pn5+U57nj2ZN2+eer9Dhw5l2tBq0qQJ/vjjDwC2jZCGDRv6PG+grF/btWsHWZahKAp2794NRVE87kBzPK65eKitW7cuatWqhYsXL+LkyZNIS0vzGPw9LctXWn/XGAwGLFu2DKNGjcK3337rU1hs0KABMjIycP78eZ920PlqxIgRmDx5stqD+PHHHyMsLAxffvml2sZdD4wvwaQsvPV6+fM9I8sy2rVrh3/++QcWiwV79uzxOHrC2/uvQ4cOOHLkCADbe8tTUPTHe1mLz09xjz/+OCRJwuOPP66GxQ0bNqB9+/Yu2xf/7vJXUGzZsiV69+6N33//HcePH1d7yBcsWKCu78eMGVOqw1ccc0njxo39UmeldTU4rpS9de9fd911AGwbdb5snPhTamoqANuJEDx9kaxfv17dIHSnNH+zN44no7H3WHji2Hvn7kQ2Nd3s2bMxbdo0ALZe1zVr1qB79+4+z9++fXt1o+nAgQMeN363bt2qHsvaq1evCu3lte9hBbyfMbSydO7cWR07/+uvv3r97PiT40HqGzdu9NjWvhfPF71791a/WObNmwez2axumNeuXVs9q1lVdsUVVyAoKAgA8Ntvv3kdZm8/gZYrcXFx6l7bbdu2+eXY7hMnTmDChAkAbD3HS5YswaJFi6DT6aAoCsaMGeO0EUel57hxZt+g9EUgrV8jIyPVkzplZma6PBOh3alTp9Sz/yYkJLjsaRg4cCAA2/e6p3VsXl6eeiyu0Wh0WjeXRiB819jD4tChQwFADYvuPsf2v7WgoACbN2/2Sw2A7X9pryEnJwfffPMNkpKS1NFnDRs2RL9+/fz2fL5wHPnmbmeMP98z9mUBtjNyuiOEcJo+aNCgMi8LgNPJJV0ty1eV/flx5bHHHsM777wDwNaR0adPHxw4cMBl24rcpnLcqWEPiI5n7i1+khtvHE/81qlTp3LXBwCVdh3FIUOGqG3cXTPEzvE6IHfeeWe5anO8/pUv15SKjo4WAER8fLxQFMVlG4vFIrp166Yu19311uzXjQMg9u3b5/W5vV1HsUuXLup0d9frEcJ23TjHa4t5uo6iLxc8LU3bqmLu3LnqtSbDwsKcLtZdGo7Xq3ryySfdtnO89t7HH39c1rJ9cvLkSfU6ii1bthQ5OTllXpaniy6Xtu3DDz+sTv/ss8/KXJMQpbsuq7+vo+joww8/VNtPmDBBvf/EE0+U5s8ptdJcR7G8/zf7RbMBiIULF7pdzurVq9V2gOvrKL755pvq9GeeecbLX+mZxWIRPXv2VJf3f//3f+q0F154QX389ttvL9fzVDX+vo6i4wW7fbkGoRCBuX51vDbiiBEj3C7riSeeUNs9/vjjLts4XtutR48ebrcVZs+erbYbNmyYh7/Uu8r+rnG3XjCbzWLYsGHqtJ49e4rMzMwS82/btk1tc+2113pc75aW43vyxhtvdLrI+HPPPee35/FFQUGB6NSpk/r87q756s/3zO7du9U2CQkJLq/VJ4TztSe7devmss358+fV7YXw8HCRmprqst2+ffvUz3TdunXL9f/U4vPjbjv23XffVafVrl1b7N+/v8S8OTk5Ii4uTgAQsbGx4uzZs+WqxVF2drYICwsTAERERITT92ivXr1KvbxBgwap86ekpPilxkoLipMmTVLb/Pbbbx6XZ7VaRffu3dX2kydPFiaTyW37vLw88eWXX4olS5aUmFbaoNi/f3+1/bvvvltiemFhobjvvvucNojcbVA6vgEXLFjg9bm9bfw6Buh69eqJQ4cOlWiTnJwsmjdv7vWLoiYHxQULFqgrvNDQ0HJtTJ05c0aEhoYKwHbB3fXr15do8+WXX6qvYaNGjdyu1P3psccec/oiPXfunNu2VqtVrFu3zuXFWf0ZOE6dOqXuiAkODvb6mUhNTRUvvfSS2LNnT4lppQmKQgjRu3dvp0Dn6oK5xS+q7ktQzMjIUP//jrejR4/6VFdZVWZQ3LJlizo9JiZG7Nq1q0Sbo0ePOl1E3V1QzMnJEY0bNxYAhCRJYtasWR4vXpyRkSE++OADsW7duhLTHMNg8Y0Is9nsFCLLu2OiKvF3UCwoKFA3ZK699lqv7QN1/Zqbmyvq16+vtp0/f36JNuvWrRN6vV7daHa3oaUoitOO25kzZ5Zos2fPHvWC7LIsi71797r9Ox0/N64+z/5+LXzhab1QPCxeffXVLsPi0KFD1TYjR4502cZxmd98841P4VZRFNGkSRN1PVKnTh31eRITE0v9t7qSmJgo3nrrLZGVleW2TXp6urj55pud1o+XLl1yW7M/3zOOO/DGjRtXYj2anJwsEhIS1DarVq1yu6wpU6ao7W666aYS75v09HTRuXNnr9uVQjivf1x9B1TEa+ELT9ux7733njo9Pj7eZVj86KOP1DadOnXy+h2/bds2n3cYO36fO36PfvHFFz7N7yg2NlYAEFdeeWWp53Wn0oKi4x6EFi1aiNmzZ4tVq1aJNWvWiDVr1pT4cJ88eVI0aNDA6cWbNGmS+L//+z/x9ddfi/nz54uXXnpJ3HrrreqXmKsN3dIGxR9++MFppX3rrbeK2bNni6VLl4qXX35ZtGzZUt34btiwoccNyj179qjLqVOnjnj77bfFjz/+qP7Nxd/4vmz8jho1Sm1jNBrFww8/LBYuXCgWL14spk6dKiIjI9XpAwYMcLunpqYGxdWrVwudTqf+TRMnThTfffed11tycrLbZc6ZM0ddnsFgEOPGjRMLFy4U8+bNE8OHD1c3mvR6vVizZo3H+nzZYPBFYWGh6Nu3r9N75e677xazZ88Wy5cvF4sWLRJvv/22+O9//yvq1q0rAIi+ffuWWI4/A4cQQvz888/q3ksA4oorrhAvvPCCWLhwoVixYoX44osvxJNPPimuu+469f/kqjeitEHxwIEDToGuc+fO4p133hHLli0TH374oejVq5cAbHvH7eudpk2b+rTs4juObrjhBp/mK4/KDIpCCKfe0uDgYDF+/HixcOFCsWjRIjFp0iR1Hey48eJuI2HXrl1O66nmzZuLJ598UsyfP198/fXXYt68eeL5558XAwYMUN8rX331ldMytmzZor4/GjZsKNLT00s8z/Hjx9XnCQ0NFYcPH/b4OlQX/g6KQlze4DcajR5HBAX6+nXVqlVqfZIkieHDh4t58+aJhQsXinHjxgmDwaA+1+eff+5xWTt27HBapwwYMEDMnTtXLF68WEyePFn9TADee7l8Xe/787Xwxtt6wWw2O/VeugqLmZmZomPHjmqb6OhoMX78eDF37lyxYsUKsXDhQvH666+LESNGiJiYGDX0+MKxF9F+82VHhq927dolAIiQkBAxZMgQ8dJLL4kFCxaIr7/+WnzxxRfiwQcfVIOMr6+5P98zSUlJTgG5R48e4uOPPxZLliwRzz77rKhVq5Y6bfTo0R6XdenSJdGmTRu1fdu2bcU777wjli5dKl555RXRqFEjp++3wsJCt8vyJSj6+7Xwhbft2Pfff19tEx8f73IU4JgxY5z+33fccYd4//33xbJly8T//vc/8cEHH4j7779fNG3aVP1u88WmTZtKvJdDQ0M97qRwxbGnecaMGaWa15NKC4oWi8Vpr37xm6sV0dmzZ502dj3ddDqdyxV7aYOiEEI888wzHp+rV69e4vz58+qecU89D3feeafb5RR/rXzZ+DWbzeL+++/3+noMGzZM5OXluV2Otw9NWdsGuuK9Rr7ePK3whBDirbfectrIKH6LiIhw2eNdnK8bDL4wmUxi4sSJThtunm5jxowpsQx/Bw4hhPjzzz9Fs2bNfKopPDzc5Z7E0gZFIWzDlew9mq5uHTp0cNpB1alTJ5+Wu337dqflLF682Oeayqqyg6LFYhH//e9/3b52siyLWbNmOfVoePrMHD582GkPtadbcHCw0wbYpUuX1HWvLMse1+uLFi1Sl9O5c2ePI1Oqi4oIiitXrlSX6Wn4caCvX4WwvSfCw8PdLisoKMjlaCJX1q1bJ+Lj490uS5Ik8dhjj7ndYWtXmvW+P18LT3xZL5jNZjFixAi1XY8ePVyGxZEjR/r8XnjhhRd8qu/EiRNqMLbf5s2bV94/W2UPir7cEhISfP6s+es9I4QQO3fu9Ppdetddd/m03jtx4oTXdXK/fv3c9pja+RoU/f1aeGNfpqftWMfh6a7CoqIo4uWXXxbBwcE+vS983WZWFKXE/9HV9pg3Tz75pDq/v3rWhajEoCiEEPn5+eKNN94QPXv2FDExMU4bsJ42ZjZt2iQefPBB0b59exEdHS10Op2IjIwU7dq1EyNHjhRz5sxxO2a4LEFRCCHWrFkjBg8eLOLi4oTBYBD16tUTffr0EZ9//rkwm81CCOFTULRYLGLOnDnihhtuEHFxceqwFlevVWk2fv/8808xbtw40aJFCxEWFiaMRqNo2rSpuPvuu8Wvv/7qdf7SvJFL+6YPZBW1ISOEbQz/I488Ilq1aiXCwsJERESE6NChg3jqqadEUlKS1/lzc3OdNlYuXrzoh7/YNoTm6aefFj169BDx8fFCr9eL0NBQ0bRpU3HzzTeL1157ze2wjooIikLYNjAWLVokRowYIZo2bSrCw8OFXq8XsbGxolu3buKBBx4Qy5Ytc3t8ZVmCohBCpKSkiMcff1y0bt1aGI1GER0dLbp16ybefvttkZubKxRFEUajUQC+9wwqiqLuWY6NjRUFBQWlqqksKjso2v34449i8ODBIj4+XgQHB4uEhARx5513iq1btwohhM9BUQjb6/b999+Le+65R7Rq1UpERkYKnU4noqOjxRVXXCHGjBkj5s+fX6K30HGj8+mnn/b4HEIIMXr0aLW9r8fYVWUVERQtFos6jK1///5u2wXy+tVRUlKSePLJJ0X79u1FRESECAsLE61atRKPPPKIy2Fnnpw/f17MnDlTdOnSRURHR4uQkBDRrFkzce+996qfC28cXwtfdhD687Vwx9f1gsVicfpMugqLQthCzZQpU0Tnzp1FrVq1hF6vF+Hh4aJly5bi9ttvF++++644duxYqWrs06eP+rxhYWFez39RGgUFBeLnn38W06dPFwMHDhRt2rRRt+EiIyNFixYtxKhRo8TixYtLvQPKH+8Zu5ycHPHOO++Inj17iri4OBEcHCwaNWokhg8fXupe5cLCQjF37lzRp08fUadOHREUFCTq168vBg8eLJYuXepTYCtNUBTCv6+FJ75uxzqed8Bdz+LZs2fFSy+9JK6//npRt25dERQUJEJCQkTDhg1Fv379xAsvvCD+/PPPUtX30ksvOa0HSrvuVhRF7fn1tI4uC0mIcp6Ok4j84pdfflHPJDZp0iR88MEHGldU8+zbt089U5iv/4P169er1zmaPHky3n///YoskUgT7733HqZNmwadToekpKRSXSaDiIgqzoYNG9C3b18AwJo1a8p1VtritL8SNxEBuHwNz4iICDz//PMaV1Mzffzxx+r9G2+80ad55syZo96vDtdOJHLloYceQt26dWG1WjFr1iytyyEioiKvvfYaAKBnz55+DYkAgyJRwLAHxWnTpiE+Pl7jaqqfLVu2eLx+4+zZszF37lwAtgvs3nLLLV6XuXv3bqxcuRIA0K9fP5fXXCOqDoxGI2bMmAEAmDt3Ls6ePattQUREhN9//129hvEbb7zh9+Vz6ClRAEhLS0Pt2rURFxeHY8eO+e0iyXRZixYtUFBQgJtuugmdO3dGfHw8zGYzjh07hu+++w67du1S2/74449ug+LPP/8MRVFw9OhRzJo1C+fOnQNgW1n36tWrUv4WIi0oioLu3btj586dmDhxIj766COtSyIiqtH69euHX3/9FaNGjcKSJUv8vnwGRSKqEVq0aIFjx455bGM0GvH5559j9OjRbttIklTiMV+PZ1y7di3y8vK8F+tCXFwcevfuXaZ5iYiIiEqLQZGIaoRt27bhm2++wbZt23DmzBlcvHgReXl5iImJQatWrdCvXz88/PDDqFOnjsfl2INieHg4WrVqhYcffhhjx46FLHsfyd+kSRMkJyeXqf7rr78emzZtKtO8RERERKWl17oAIqLKcPXVV+Pqq68u93K4b42IiIhqAvYoEhERERERkROe9ZSIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKT2RARkeYURUFBQQHy8vLUW25uLvLy8pCfn6/+LCwsVG8mk8nt72azGVarFVarFYqiqPcdf1cURb0P2M5o6+5mP6utJEnQ6XQwGAzQ6/UICgqCXq9XfzcYDCVuISEh6s1oNLq9bzQaERYWhvDwcOj1/HomIiJt8ZuIiIj8QgiB3NxcZGVlqbfs7GyX9+03xzBIlxmNRoSHh3u8RUZGIjo62ukWGhrq8lqfREREpcWznhIRkVtCCGRlZeHSpUtIT093+dN+PyMjA4WFheV6PlmWERoaCqPRiNDQUISFham/G41GrF+4BZICQJEcboBU7HcIydYOEiBQdCu6D4f7ApDsjzlMhmPWklDU0OF3SdgO3pAERNFPx8cgA8L+u04AssBND/ZBQUEB8vPzUVBQ4HTf8Wd5GAwGREVFOYXHqKgoxMbGIi4uDrVq1UJcXBzi4uIQERHBUElERG4xKBIR1VCKoiAjIwMXLlzA+fPnceHCBaeb/bHShj+j0YiIiAhERkaqP7cs+wuSRQLMsu2nRYZkkQGLBFglSFYJsMq20IeaG14EBKAXgF6B0NnuC71i+6mz/bx96iBkZ2cjMzMTmZmZyMjIQEZGBgoKCkr1XEFBQWqAdAyR8fHxqFOnDurWrYtatWpxGCwRUQ3FoEhEVE0JIXDx4kWcO3fO5S0tLQ0Wi8WnZUVERCAmJgaxsbHYu+4QJLMMFMq2n2YdJPW+bOvdo0onZAEYFFuwNCgQRTcYFAx88AakpaUhLS0NFy9eRGZmpk/L1Ol0iIuLU4Ojq5/BwcEV/JcREZEWGBSJiKows9mMs2fP4tSpUzh9+jTOnj2rBsGUlBSvvYGSJKFWrVqIj49HfHw8/lj6N2AqCn4mHSSTDBTqIAmGv+pESAIIUiCCrBBBChCkYOSLtyItLQ3nz59Hamoqzp8/73VHgiRJiI+PR4MGDdCwYUM0aNBAvV+/fn0YjcZK+ouIiMjfGBSJiAKcEAJpaWk4deqUejt58iROnTqFlJQU9aydrsiyjNq1a6NevXrY8/MhSAW6yzeTztYDyBBILggUhclgq+0WomDIlH5ISUlBamoqUlJSvB5TGRcXp4bHRo0aoXHjxmjcuDHq168PnU5XSX8JERGVBYMiEVGAUBQFqampSEpKwvHjx3HixAmcOHECp0+f9rhBbjQa0ahRIzRs2BC/LdgOqUBWwyB7A6mi2I+nFEYLRIgVd79+B06fPo0zZ87gzJkzyMrKcjtvUFAQGjZsiCZNmqBx48bqz4YNGyIoKKgS/woiInKHQZGIqJLZjx08fvy4UyhMSkpyGwh1Oh3q1auHhIQEbF+xG1K+DlK+HlK+znasYA0+AQwFJqFXIEKsECEWjJk1DCdPnkRycjJOnjwJk8nkch6dTof69eujadOmaNGiBZo3b47mzZujXr16PEMrEVElY1AkIqpAVqsVp06dQmJiotPNXW+LXq9H48aNceLPM5Dy9JDydLafJvYMUvUgIIBgBUqoBSLUgoGPXIfk5GQkJycjJyfH5TxhYWFo3rw5mjVrhhYtWqBFixZo2rQpj4EkIqpADIpERH5iMplw4sQJp0B47Ngxl5ctkGUZDRs2xOmdqbYgmKu3/SxgIKSaST0m0miBEmZB/wm9cezYMSQlJcFsNpdoL0kSGjZsiNatW6N169Zo06YNWrZsidDQUA2qJyKqfhgUiYjKQFEUnDx5EocOHcLBgwdx6NAhHDt2zOWJZUJCQtC8eXMcWncccq4eUo7BFgoZCIm8ElLRcZBhFgyfMRj//vsvjh07hvT09BJtZVlG48aN1fDYtm1bNG/enJfwICIqAwZFIiIfXLx4EYcOHVKD4eHDh5Gbm1uiXWRkJFq2bInd3x+ClKOHlGuwHU/IYwiJ/EoYrBBhFtzz/jAcOXIEhw8fxoULF0q00+l0aNasGdq2bYsOHTqgQ4cOaNCgAY95JCLygkGRiKgYq9WKEydOYM+ePdi3bx8OHDiA1NTUEu2Cg4PRunVrHFj9L6RsA+QcA2DiiWWItCIMVigRFtw963YcOnQIhw8fRmZmZol20dHRamjs0KEDWrduzV5HIqJiGBSJqMYzmUw4fPgw9u7di7179+LAgQMlTqohSRIaN26Mk9tTIGcbIGUbbMcVMhQSBSz1xDnhZgybeRP279+PI0eOlDjmUa/Xo1WrVmpwvPLKKxEdHa1N0UREAYJBkYhqnLy8POzZs0cNhocPHy6x4Wg0GtG+fXvs+uYQ5CyD7bhCq6xRxUTkL0ISEOFmPPDZndi/fz/279/v8njHpk2bonPnzrjyyisZHImoRmJQJKJqz2Qy4cCBA9i5cyf++ecfHD58uMRJZ2JjY5FxNBdSVhDkTPYWEtUUtl5HK5RIM255qg/27NmDEydOlGjH4EhENQ2DIhFVOxaLBUePHlWD4b59+1BYWOjUpn79+kjZlQ45MwhSlsF2WQoGQyICIPQKlKhC3PpcX+zatcttcOzevTuuuuoqdOrUCSEhIRpUSkRUcRgUiahaOHfuHLZv347t27dj9+7dJc5IGhsbi4zDeZAzgyBnBEEy6TSqlIiqGm/BMSgoCJ06dUL37t3RvXt3NG/enGdVJaIqj0GRiKokk8mEPXv2qOHw5MmTTtPDw8ORl2y2hcKMIF6igoj8RugVKNGFGPhYb/z1118lLssRGxurhsZu3bohNjZWo0qJiMqOQZGIqowzZ85g27Zt+Ouvv7Br1y4UFBSo03Q6Hdq3b48DPxy3hcMcHmNIRBVPQEAYrXh4wWj8/fffJdZNANCmTRtcc801uOaaa9CyZUv2NhJRlcCgSEQBy2q14uDBg/j999/x+++/49SpU07Ta9WqhUsHciFfCraFQ56VlIg0JiQBEWnGiDduxt9//42jR486TY+Pj0fPnj3Rq1cvdOnShddvJKKAxaBIRAHFZDLhn3/+wZYtW7B161ZcunRJnabT6dCxY0fsW/kv5EtBPDMpEQU8YbBiyjdjsXXrVuzYscOptzE4OBhdu3ZVexvj4uI0rJSIyBmDIhFpLjMzE3/++Sd+//13/PXXX04bUuHh4cg7boGcHmwLh+w1JKIqSkgCSnQhbnnuBmzduhXnz59Xp0mShA4dOuD666/H9ddfjzp16mhYKRERgyIRaSQjIwObN2/Gxo0bsXv3bqfrGsbHx+PinhzoLgZDygqCJNhrSETVi4CACLPgntl3YOvWrTh48KDT9DZt2qihsWHDhhpVSUQ1GYMiEVWarKwsNRzu3LnTKRw2b94cSRtTIF8M5pBSIqpxRJAVDy8ejU2bNmHv3r1w3Dxr0aKFGhqbNGmiXZFEVKMwKBJRhcrOzsbvv/+ODRs2YMeOHU7hsFWrVjj2y1no0oIhmfQaVklEFDiEwYpHl9+D3377Dbt27SqxU61fv37o168fh6cSUYViUCQivzOZTPjjjz+wdu1a/PXXX7BYLOq0Fi1a4MT6FFs4LGA4JCLyROgVTFs5Dps2bcKOHTuc1qedOnVC//79ccMNNyAqKkrDKomoOmJQJCK/UBQFe/fuxdq1a7Fx40bk5uaq05o1a4bkjamQ00Ig5zMcEhGVhdArmPzNvVi/fj12796tDk/V6XTo0aMH+vfvj2uuuQZGo1HjSomoOmBQJKJyOXnyJH755ResW7cOKSkp6uN16tRB2t85kC8wHBIR+ZsIsmLcl8Oxfv16JCYmqo8bjUZcd911GDx4MK644gpIEo/3JqKyYVAkolLLzs7GunXr8Msvv+DQoUPq46GhoSg4rkB33ggpy8AT0hARVQLFaMGo92/G+vXrce7cOfXxBg0aYNCgQRg0aBCPZySiUmNQJCKfCCGwZ88erFq1Cps2bUJhYSEA25AncUEH+bwRcnowJIXhkIhICwICIsKMgc/1wq+//or8/HwAtms0du/eHTfffDN69+6NoKAgjSsloqqAQZGIPMrIyMDPP/+MVatW4eTJk+rjzZo1Q/L689BdCIFk1mlYIRERFSdkgcdX3Y/Vq1dj9+7d6uORkZHo168fhgwZgubNm2tXIBEFPAZFIipBURTs3LkTP/74I7Zs2aKeZc9oNMJ0QkCXEgoph9c6JCKqCkSIBSM/uBk///wzLly4oD7esWNH3H777bj++uvZy0hEJTAoEpEqOzsbq1evxsqVK3HmzBn18TZt2uDfH89ATguBZJU1rJCIiMpKQOC1bU9i1apV2LJli3p9xujoaAwePBi33nor6tWrp3GVRBQoGBSJCCdOnMA333yDtWvXoqCgAAAQFhaG/EQFulQj5FyDxhUSEZE/CYMV/517G3744Qe1l1GSJPTs2RO33347rrrqKsgydwwS1WQMikQ1lNVqxR9//IFvvvkGu3btUh9v1qwZTv5yAfIFI09MQ0RUzQkIvLhpElauXIkdO3aoj9erVw9Dhw7F4MGDERYWpmGFRKQVBkWiGiYrKwurVq3CypUr1eseyrIMnDdAdzaUl7UgIqqhlBAL/jOrL1avXo2cnBwAtsse3XLLLRg2bBjq1q2rcYVEVJkYFIlqiHPnzmH58uVYvXq1esr0qKgo5Ow3205OY+KZS4mIyHbG1EnfjsHy5cvVs13rdDpcf/31GDFiBNq1a6dxhURUGRgUiaq5xMRELFmyBBs3blRPXNCiRQskrT5vOzkNh5cSEZELAgKvbH0cy5cvdxqW2rFjR4wYMQK9e/eGTsedjETVFYMiUTUkhMA///yDJUuW4O+//1Yfly4FQX86FFJmEIeXEhGRz5QwM/o92wPr1q1TL5nUoEED3HXXXRg4cCAvr0FUDTEoElUjVqsVmzZtwv/+9z8kJiYCsA0XEucM0J0J5dlLiYioXITBilGzb8bKlSuRlZUFAIiPj8fIkSMxZMgQGI1GjSskIn9hUCSqBiwWCzZs2ICFCxeqx5OEhITAfFyC7kwYjz8kIiK/ErLA+P+NwLJly9TLa0RFRWHYsGG44447EBERoXGFRFReDIpEVZjFYsG6deuwcOFCnDlzBgAQGRmJ3H1W6M6FQrLwGlhERFRxhCQw5ft7sXjxYvV7KDQ0FEOHDsXIkSMRGRmpcYVEVFYMikRVkNlsxi+//IJFixbh7NmzAIrOYLrHCt05IyQrAyIREVUeAYGn1z6Er776CidOnAAAhIWFYfjw4Rg+fDh7GImqIAZFoirEarVi/fr1mDdvHs6dOwcAiI6ORvYuiy0gKgyIRESkHQGB6b9Nxrx583Ds2DEAQHh4OEaOHIlhw4YhLCxM4wqJyFcMikRVgBACW7ZswRdffIGkpCQAQGxsLDJ3FNqugchLXBARUQAREHh+w0TMmzdP/d6KjIzEqFGjMHToUJ70hqgKYFAkCmD2y1zMnTsXhw8fBgBEREQgb6+wHYPIgEhERAFMQOCZdQ/jyy+/VE+2VqtWLYwdOxY33XQT9Hq9xhUSkTsMikQB6vDhw5gzZw527doFADAajSg8IkN3JpTHIBIRUZUiIPDEmgecDp1ISEjAgw8+iN69e0OSuOOTKNAwKBIFmNTUVHz++edYu3YtAMBgMEBJMkB3OhSSmZe5ICKiqktIAg8uHYmFCxciMzMTANChQwc8/PDD6Nixo8bVEZEjBkWiAJGXl4fFixdj2bJlKCwsBADI50OgTw7ndRCJiKhaEToFIz8ZhOXLl8NkMgEArrvuOkyYMAH169fXuDoiAhgUiTRnsViwevVqzJs3D+np6QAAKdMA/YkIyDkGjasjIiKqOCLIioEv98Tq1athtVoRFBSEESNG4O6770ZoaKjW5RHVaAyKRBrau3cv3n//ffz7778AgAYNGiB1XQ7k9GBI4PEaRERUM8w9NgsfffQRduzYAcB2wpvx48dj4MCBkGUel0+kBQZFIg2kpaXh008/VY9DjIiIQN4e2K6FKBgQiYio5hEQmLF5CmbPno0zZ84AANq0aYPJkyejffv2GldHVPMwKBJVIovFgm+//Rbz5s1DXl4eJEmCdC4E+qRwSBbuMSUiIhKSwLhFQ7FgwQLk5eUBAIYMGYIHH3wQkZGRGldHVHMwKBJVkt27d+O9997DiRMnAABSth76Y5E8DpGIiMgFYbCi74zuWLNmDQAgOjoaEyZMwMCBA3k5DaJKwKBIVMGys7MxZ84crFq1CgAQFRWF3B0K5FQjj0MkIiLy4u1dz+Pdd99Vd7ReeeWVmDZtGpo0aaJtYUTVHIMiUQURQmDjxo348MMP1bOZyueMtstdcJgpERGRz4QkcN/C/2D+/PkwmUzQ6/W48847MWbMGAQHB2tdHlG1xKBIVAFSU1Px3nvvYevWrQAAKU8H/b+RkLOCNK6MiIio6hLBVnSb3Er9fm3cuDGefvppnuyGqAIwKBL5kRAC33//PebMmYP8/Hzo9XqI48HQnQrj2UyJiIj85PmNE/Hee+8hPT0dkiRh+PDhuP/++xESEqJ1aUTVBoMikZ+kpqbizTffVK8BJWUZoE+MhJyv17gyIiKi6kfoFdw4vQt++eUXALZrET/11FO48sortS2MqJpgUCQqJyEE1qxZg48++gi5ubkICgqC9XAwdGd5shoiIqKK9tIf0/D222/jwoULAIChQ4fioYce4rGLROXEoEhUDmlpaXj77bcvH4vIXkQiIqJKJ3QKBr52NX788UcAQJMmTfD888+jVatWGldGVHUxKBKV0ZYtW/Dmm28iKysLBoMBytFg6M6EsheRiIhIIy9vfQxvvPEG0tPTodfrMW7cOIwaNQo6nU7r0oiqHAZFolIymUyYPXs2Vq5cCQCQcvTQH42EnGfQtjAiIiKC0Cvo8UQbbNmyBQDQqVMnPPfcc6hXr57GlRFVLQyKRKVw/PhxzJw5U73or+50KHTJ4TyjKRERUQAREJj643348MMPkZ+fj7CwMDz11FO44YYbtC6NqMpgUCTygRACP/zwAz766CMUFhYiNjYW2ZsVyBk8UJ6IiChQzT/1Pl555RUcOHAAAHDHHXdgwoQJCAridY2JvGFQJPIiLy8Pb775JjZu3AgAkNKDYEiMhGTm8Q5ERESBTkgCQz/uiyVLlgAAWrdujRkzZqBBgwYaV0YU2BgUiTxISkrC888/j5MnT9oOhP/XyBPWEBERVUEv/TENr776KrKysjgUlcgHDIpEbmzYsAFvvvkm8vPzAZMMw+EoyNkcqkJERFRViSArWo2ti/379wMARo0ahfHjx0Ov52WtiIpjUCQqxmKxYM6cOVixYgUAQMowwHAkGpJZ1rgyIiIiKq/iQ1G7deuGGTNmIDIyUuPKiAILgyKRg8zMTLz44ovYtWsXAEB3quisphxqSkREVK08++sEvP766ygoKED9+vXx6quvonnz5lqXRRQwGBSJiiQlJeHpp5/G2bNnYTQaYf4nCLr0EK3LIiIiogryaeIbePbZZ3Hu3DmEhITgmWeewY033qh1WUQBgUGRCMC2bdswc+ZM5ObmAgU6GA5GQ87j8QpERETVndAr6DSxMXbs2AEAGDt2LO655x5IEkcTUc3GoEg1mhACK1aswCeffAJFUSBlGmA4FA3JwuMRiYiIagoBgf98dCOWLVsGABg0aBCeeOIJGAwGjSsj0g6DItVYVqsVH3zwAVauXAkAkFNCoD8WCUlwDyIREVFN9OjK/+K9996D1WpF586d8corryAiIkLrsog0waBINZLJZMLLL7+MzZs3Q5IkyMfDeH1EIiIiwit/Po7p06cjLy8PCQkJmDVrFurXr691WUSVjkGRapzs7Gw888wz2Lt3LwwGA8S+UOjSeNIaIiIisvk08Q08+eSTuHDhAmJiYvD222+jZcuWWpdFVKkYFKlGSU1NxRNPPIGkpCTAIsFwKBpyZpDWZREREVGAEUFWNB4dg8TERISFheGNN97AFVdcoXVZRJWGZ+ygGuPUqVOYMGGCLSSaZBj2xjAkEhERkUtSoQ7JCzPQqVMn5Obm4rHHHsOff/6pdVlElYZBkWqE48eP49FHH8WFCxcg5ekQtDcWch7PZEZERETuSVYZhz9NwTXXXIPCwkI8++yzWL9+vdZlEVUKDj2lau/o0aN47LHHkJmZCSlHD8P+GF7+goiIiHwmJIHrZ1yBdevWQZIkPP744xgyZIjWZRFVKG4tU7V28OBBTJkyxRYSsxkSiYiIqPQkIeG36Xvwn//8B0IIvPXWW/jxxx+1LouoQnGLmaqt/fv3Y9q0acjJyYGUZWBIJCIiojKTIOGnx/7AsGHDAABvvfUWVq1apXFVRBWHQ0+pWjpy5AimTJmC3NxcSBkGGA5GQ1IYEomIiKh8BARuff86fP311wCAJ598ErfccovGVRH5H7ecqdo5fvw4Hn/8cVtIzDTAcDCGIZGIiIj8QoKEH6ZsxtChQwHYehZXr16tcVVE/setZ6pWTp06hWnTpl0+JvFgNCRF0rosIiIiqkYkSPhx6hYMHToUQgjMmjULmzdv1rosIr/i0FOqNlJSUjBx4kScP3+eZzclIiKiCicg0P/17vjpp58QFBSEWbNmoUuXLlqXReQXDIpULWRlZeGRRx5BcnIypDwdDPtiIZkZEomIiKhiCQj0eKY1tmzZgtDQUHzwwQdo3bq11mURlRuDIlV5JpMJjz32GPbu3QuYZATtiYVUqNO6LCIiIqohhCTQfmID7Nq1C9HR0Zg9ezYaNWqkdVlE5cIuF6rSFEXBa6+9ZguJFgmGAzEMiURERFSpJCHhwCen0apVK2RkZODJJ59ERkaG1mURlQuDIlVpc+bMwcaNGwEFMByKhpyn17okIiLyN0my3YgCmGSVkfTVJdSrVw9nzpzB888/j8LCQq3LIiozBkWqsn744QcsW7YMAKBPjIScGaRxRUREVKEYFinASWYZb775JsLCwrB37168/fbb4FFeVFUxKFKVtG/fPrz//vsAAF1SGHQXjNoWREREFaN4OGRYpAD3QLMnMHPmTMiyjJ9//hn/+9//tC6JqEwYFKnKOX/+PF544QVYLBbIF4KhOx2mdUlERFSZOBSVAtxzV7+FSZMmAQA+++wz/PHHHxpXRFR6POspVSkmkwmPPvooDh8+DClXD8OeWEgKNxaIiKolX8IgN2MogN30dk+sXLkS4eHh+OKLL1C/fn2tSyLyGXsUqUp59913cfjwYcAswXAwmiGRiKimY88iBbDVT2xF+/btkZOTgxdeeAEmk0nrkoh8xqBIVcbPP/+MNWvWQJZlGA5HQzLxMhhERNVWaQIgwyIFKElImDlzJqKiopCYmIgPPvhA65KIfMagSFXCqVOn8N577wEApBNGnuGUiIicMSxSgBpd9xG8+OKLkCQJq1atwurVq7UuicgnDIoU8EwmE2bMmIH8/HxIGQboTvHkNURE1VpZQx/DIgWoZ3vMwtixYwEAH3zwAU6fPq1xRUTeMShSwPv000+RmJhoOy7xaBQkcEOAiIjcYFikAPXVfT+ic+fOyM/PxyuvvAKLxaJ1SUQeMShSQPvrr7/wzTffAAD0R6MgFfK4RCIi8oJhkQKQBAnPPvsswsPDcfDgQSxatEjrkog8YlCkgJWbm4u33noLACCfNUJ3KVjjioiIqFKU95IXvGQGBai7603E1KlTAQALFizAwYMHNa6IyD0GRQpYc+bMQWpqKlCggz4pXOtyiIioMpU17DEkUoCbNXAu+vbtC6vVitdeew2FhYVal0TkEoMiBaQdO3bghx9+AAAYEiMhKXyrEhHVOAx9VE1teWUvYmNjcfLkSQ5BpYDFrW8KOPn5+Zg1axYA25BTXgqDiKgGK01YZLCkKkKyypg8eTIAYPHixUhOTta4IqKSGBQp4CxatAgpKSlAgcwhp0RExABI1dKrfWejZ8+eMJvNePvtt6EoitYlETlhUKSAcurUKSxduhQAoD8ewSGnRERk4y0sMkxSFSNBwtSpUxESEoI9e/Zg9erVWpdE5IRb4RQwhBD48MMPYTabIaUHQU7nWU6JiMiBuzDIkEhV1H/rP4px48YBAObOnYvc3FyNKyK6jEGRAsYff/yB7du3A0pRbyJ4HSwiIipGCAZDqlY+v2sFEhISkJGRwRPbUEBhUKSAYLFY8MknnwAAdGdCIRfoNa6IiIgCmj0sMjRSFScJCRMmTAAArFixAufOndO4IiIbBkUKCKtXr8bp06eBQgm602Fal0NERFUBQyJVEy/2fhddunRBYWEh5s6dq3U5RAAYFCkAmEwmzJ8/HwCgOx0Oycq3JREREdUcEiQ88sgjkCQJv/76Kw4dOqR1SUQMiqS9b7/9FmlpaUCBDN05o9blEBEREVW6Ca2fxYABAwAACxYs0LgaIgZF0lhubi4WL14MANCfDIckeAIbIiIiqpnGjBkDWZaxdetWHDlyROtyqIZjUCRN/fjjj8jKyoKUp4N8PkTrcoiIiIg0M7bxNPTt2xcAexVJewyKpBmz2YwVK1YAAHRnwng5DCIiIqrxxowZA0mS8PvvvyMxMVHrcqgGY1Akzaxfvx4XLlwATDJ7E4mIiIgA3N/0cfTp0wcAsGTJEo2roZqMQZE0oSgKli5dCgDQnQ3lsYlERERERUaNGgUA2Lhxo+2Ef0QaYFAkTezYsQMnTpwALBJ0KTzTKREREZHdxLbPo1OnTrBarVi5cqXW5VANxaBImvj+++8BALrzIbxuIhEREVExw4YNA2DbZjKZTBpXQzURt9Cp0qWlpWHr1q0AAPlcqMbVEBEREQWeV/p8jPj4eGRmZuKPP/7QuhyqgRgUqdL99NNPsFqtkDINkPP1WpdDREREFHAkSLjpppsAAKtXr9a4GqqJGBSpUgkhsGbNGgDgsYlEREREHiyd9BMA4O+//0ZqaqrG1VBNw6BIlerQoUM4e/YsYJUgX+QlMYiIiIjckQr06Ny5M4QQWLt2rdblUA3DoEiVav369QAA+WIwJIWXxCAiIiLypH///gCATZs2aVsI1TgMilRprFYrNmzYAACQL7A3kYiIiMib9+/4EjqdDomJiTh9+rTW5VANwqBIlebQoUNIT08HLBLkjCCtyyEiIiIKeJJFRpcuXQCwV5EqF4MiVZo///wTACBfCoIkOOyUiIiIyBc33HADAGDz5s3aFkI1CoMiVRr7NYDk9GCNKyEiIiKqOj4Y/iUA4MiRI8jIyNC2GKoxGBSpUqSmpuL48eOAAORLDIpEREREvpIKdWjWrBmEEPjnn3+0LodqCAZFqhS7du0CAEjZBkgWvu2IiIiISuOqq64CAGzfvl3jSqim4BY7VYrdu3cDAORMg7aFEBEREVVB3bt3B3B55ztRRWNQpEphD4pSFs92SkRERFRaz1zzBmRZRmpqKi5cuKB1OVQDMChShUtLS8PZs2dtxydmsUeRiIiIqLQkq4zmzZsDAA4cOKBxNVQTMChShTt69CgAQMrTQ7LyLUdERERUFh06dAAA7Nu3T+NKqCbgVjtVODUo5ug1roSIiIio6mrbti0AIDExUeNKqCZgUKQKpwbFXA47JSIiIiqrt4Z/CgA4fvw4hBAaV0PVHYMiVbhjx44BAGT2KBIRERGVmZSnh06nQ1ZWFi5evKh1OVTNMShShSosLERqaioAQMrXaVwNERERUdUlCQkNGzYEYOtVJKpIDIpUoc6ePQtFUQCLBJj5diMiIiIqj0aNGgGwbWMRVSRuuVOFOn36NABAKtBBgqRxNUTViCRB0nM4NxFRTVO3bl0AwLlz5zSuhKo7BkWqUOqw0wIOOyXyO0lmWCQiqmHsQTElJUXjSqi6Y1CkCpWenm67U8i3GpHfSBIkfdFZhBkWiYhqlE8f+QrA5Z3xRBWFW+9Uoexn5JIYFIn8wzEkqo8xLBIR1RT2barMzEyNK6HqjlvvVKHsPYoST2RDVH6uQqI6jWGRiKhGsDAoUuXg1jtVqNzcXNsdC99qROXiKSSqbRgWiYiqO/vO95ycHFgsFo2roeqMW+9UofLz8wEAkpVnPCUqM19CotqWYZGIqFqzXN6mUnfIE1UABkWqUPagCAZForIpTUhU52FYJCKqriRIgLDdN5vN2hZD1RqDIlUok8lku6MwKBKVWllCojovwyIRUbWl2H4wKFJFYlCkCiWE0LoEoqqpPCFRXQbDIhFRtVR0eerExERt66BqjUGRKpQksSeRqNT8ERKJiKja48lsqCIxKFKFYlAkKiVJgqTT+WdZsgRJr4dkCPLP8oiIKKA0adJE6xKoGmNQpAqls2/wMi8SeWcPiZIfVs2ypO6okXQywyIRUXVSdIxiaGiotnVQtcagSBXKaDTa7ugUbQshCnQVFBLVxTMsEhFVC0IS6hZ8WFiYtsVQtcagSBXKvgITep7UhsitCg6J6tMwLBIRVX26y9tU6g55ogrAoEgVSt3TpWNQJHKpkkKi+nQMi0REVVvRNlVQUBD0PLM1VSAGRapQERERAABh4NBTohIqOSSqT8uwSERUZdm3qWJiYjSuhKo7BkWqUPHx8bY7QQyKRE40Conq0zMsEhFVSSLYCgCoVauWxpVQdcegSBXKHhTtKzUiguYhUS2DYZGIqOop2vnOoEgVjUGRKlRcXBwAQLBHkcgmQEKiWg7DIhFRlTLyxVsBXN7GIqooDIpUoerVqwcAECEWjSshChBCQCjlP7mTHB4GuXFDPxQEQOaFTomIqopTp04BABo0aKBxJVTdMShShUpISLDdCRIQevYqEgEAFCuEtezDseUwI0TjelCiQiEllG9DQQgBUVhYrmUQEVHlsQdFdRuLqIIwKFKFMhqNqFOnDgBAGNmrSKQqY1iUw4wQTRpACdJBSChXWFRDouDla4iIqgIBgTNnzgBgUKSKx6BIFc6+IhOhDIpETkoZFh1Dol1ZwyJDIhFR1SNCrCgsLERQUJC6I56oojAoUoVr0aIFAEAJZ1AkKqE0YVGncwqJdqUNiwyJRERVkwg3AwBatmwJna7k9wGRPzEoUoVr27YtAEBEmDWuhChA+RAW5TAjRKO6bqf7GhYZEomIqq47XhwEAGjdurXGlVBNwKBIFa5NmzYAbENPhcSNUyKXPIRFOTysxJBTV7yFRYZEIqKq7fDhwwAYFKlyMChShatTpw5iYmIAmb2KRB65CItyeJjtDKdeQqKd155FhkQioipJSEINiu3atdO4GqoJGBSpwkmShCuvvBIAoETxNPxEHjmERfUyGD6GRDtXYZGXwSAiqtpEhBmFhYWIjY3lGU+pUjAoUqXo0qULAAZFIp8oVkghwT4NN3XHMSxyyCkRUdU3+t3bAACdO3eGJEkaV0M1AYMiVQp7UBSRZgiZG6tEnujatULi9PZIHhJdruUICchpVwunpnVlSCQiquJ27twJwBYUiSoDgyJVioYNG6J27dqAzF5FIm+U0CBI9QtQ0KIApwZGlHk5eQ1DcfoOC0TXLJx+5ho/VkhERJVJ6BUcOHAAANCtWzeNq6GagkGRKoUkSejVqxcAQKll0rgaosCla9cKR/8bbrtvUGxhcUDpw2Jew1Ccud2MmJgcGIMLIbpm4czTDItERFWREmOC1WpFs2bNUL9+fa3LoRqCQZEqTe/evQEASqwJAhwGR1Scrl0rHH4wFrr4gsuPGRQUtCxdz6JjSLQzBhdC6cawSERUFV37UFcAUHe6E1UGBkWqNFdeeSXCw8OBIIWXySAqxlVIVKfZexZ9DItWg+QUEu3sYZHDUImIqg4hC2zbtg0AgyJVLgZFqjQGgwHXXGPbQLW62Bgmqqk8hUS1jY9hMa9hKFJudn8csH0YKsMiEVHVoMSakJ+fj7p166Jt27Zal0M1CIMiVaoBAwYAAJT4AgiJw0+JdO1bew2JalsvYTGvYSjO3GZGTGzJ3kRH9rCY+HEPBkYiogB31dj2AID+/fvzshhUqRgUqVJ16dIFsbGxgEFAieFJbYiU0CCfQqKduxPc+BoS7YzBhYhpfIknuSEiCmBCr2D79u0AbEGRqDIxKFKl0uv16NevHwBAqc3hp1Sz6dq3RuLosNLPZ1AQXvsCbg7dhjcOLcR7if+H1498hsfW/4LYS74FRTset0hEFListfNhtVrRqlUrNGnSROtyqIaRhOBVmKlynThxAvfccw8ggKC/4yAV6rQuiajS6dq1wpHxsZBLucMkuNCMFxf8hDt+24kgq1Jiulkv4/t+nfDW+AEoDNL7vNx8UxDkHZFo8MbWUtVDREQVQ0Cgzp3BOHXqFB577DHcdtttWpdENQx7FKnSNW3aFFdeeSUgAda6+VqXQ1T5JAk4m4p6W0q3ny640Ix5byzAqA07XIZEADBYFAz7eTdmv7gUwSbfzy6cf9GIhO8vADJ33BARBQIRZcapU6cQGhrKYaekCQZF0sTtt98OwBYUeVIbqlEkCZJOByU3H5EbjqLON8E+z/rigp9w9aEkr1chFQC67T+Jxz9f59Ny089Eo+37GVAST0CSJYZFIqIAcM3ETgBsJwIMDQ3VuBqqiRgUSRPXXXcdatWqBQQpUHipDKppJNuqV8nJ9TksxmVk447fdtpm97b4op+3rd/r9ZjF9DPRaPuhLSReLo9hkYhIS0qIBZs3bwZweec6UWVjUCRN6PV6DBs2DABgbZgL4bWPhKgaKOpNdORrWByx8R+3w03dMVgU3L5uj+eSTDKUo8dLPs6wSESkmUEzr4EQAtdccw2aNWumdTlUQzEokmZuv/12hIeHQ4RaodTipTKomrOHRKnkateXsHjVoRNup3nSbd9Jt9PSz0SjzWfpbqczLBIRVT5hsOLnn38GANx1110aV0M1GYMiaSYsLAz/+c9/ALBXkWoIFyHRzltYDCsoLNNThuW5nk8dcuqiN9ERwyIRUeUa+n5/mM1mdOzYEZ06ddK6HKrBGBRJU8OHD0dwcDBEhAUiumwbwkQBz8WQU1fUsPhtybCYGxJUpqfODS05X/rZKLT9KNNrSLRjWCQiqhzCoGDlypUA2JtI2mNQJE1FR0fj1ltvBQBYmuSwV5GqHw9DTl1RcnIR+WvJnsUDXeqX6elDbnC+RIatJzELypFjpVoOwyIRUcUbMus65Ofno3Xr1rjmmmu0LodqOAZF0tx///tfhIaGQoRboMTxDKhUjZQyJNoVH4ZaOzYL109MhDCU7umFAWh1j8C0Vr9eLskklzokqvMyLBIRVRgRbMX3338PAHjwwQchSd7OcU1UsRgUSXPR0dHq8ApLk1xeV5Gql1KGRDvHYaihBjNaNwwHRkQCgE/XUQQAjIyEsY4R/wk7h8ktN9hOXjP3UpnqsWNYJCKqGDc81wUWiwXdunVDt27dtC6HiEGRAsPw4cNt11UMscJaL1/rcogCgpKTi8jfjiNlTSMAgHg5DqJniE/XURQ9QyBejgMAhMpBSLVEoeVXhWXuTbQTigAUa7mWQUREzpQwM9atWwfA1ptIFAgYFCkgGI1G3HfffQAAa6McCH3prhdHFJCEgLCWPVRJOhkQChr9dAGtv3wYMMoQi+tD3B3pdhiqMMA2/X/1gRDbKv7TjAb4fno/GM6kQ46JKXM9DIlERP4nINBmTAMIIdCnTx+0bt1a65KIAACSEILj/CggWCwWjB8/Hv/++y/klBAY/o3SuiQi/5AkQJJ9OvOp02wGPaSIcNsvsVG41LkW0ttLOHLfHOCCBfhfFqSt+UCuAoTJENcYgbsigXi903KeTe2EPXc0tf0iBGC2QBSaoVwq3TBUBkUiIv+z1s6HpVUWjEYjvvrqK9SuXVvrkogAMChSgNm/fz8mTJgAADDsiYGcXbZLAhAFJFnnc1iUdDKk8DCgePvYKPz73zgcvXeOT8uZm1kfC18Ygqh/UpwnCAGRm+9zWGRIJCLyP6FTEHqTGRkZGXjooYd4SQwKKBx6SgGlQ4cOuOWWWwAAlhbZvFwGVS+K1aehqG5DIgCkZ6LFV2loNf9hr8v5NKOB65AI2M7IGmb0aSgqQyIRUcW45a1rkZGRgcaNG2P48OFal0PkhEGRAs6DDz6IqKgoiDALrA3ytC6HyL98CYuy7Dok2hWFxdZfeg6LJ0zxrkOinQ9hkSGRiKhiKBGFWLlyJQBgypQpMBhKeQ0kogrGoEgBJyoqCg899BAAwNo4B4rRonFFRH7mISxKOhlSqNH7MtIz0XyR+57FTzMa4PfXenhfTil6FomIyD+ELFD3lnAoioKBAweia9euWpdEVAKDIgWkm2++GT169ABkwNIqk0NQqfpxERY9Djl1xc0w1E8zGuCr6bcgeoeH3kSnJ3YdFtmbSERUMayNc3Dq1CnExcVh0qRJWpdD5BKDIgUkSZLw5JNPIjw8HCLCAmtDDkGlaqh4WPQ25NSV9Ey0WHQRrRbYwuKnGQ3w1YwhvodEu2JhkSGRiKhiKJGFUBrarhn9xBNPICIiQuOKiFxjUKSAFR8fjylTpgAArAk5UMLM2hZEVBGKwqLPQ05duZiBFl/ZwuIJUzyi/z5XtuVwGCoRUYUSOgW1bwqFEAI333wzevbsqXVJRG4xKFJA69+/P6699lrbENTWmRCyonVJRP6nWCGEKH1voqOisPjHKz4cl+iJJEEKMrA3kYjIzwQErnvhCpw5cwa1a9fGxIkTtS6JyCNeR5ECXkZGBsaOHYu0tDTIqSEwJEZpXRKR/0kSZKMRUkR4ORcjAXo9YNCXbQFmC6wX0iBMpnLVQUREzqx18mFpmQWdTocPP/wQHTt21LokIo/Yo0gBLzo6Gi+++CJkWYZSpwDW2vlal0Tkf0JAyc+HyM4p52IEYLEA5jKcLZghkYioQiihFug62Nat48aNY0ikKoFBkaqEK6+8EuPGjQMAWJpnQwnlJTOoGioKi0p6RrkCY5nDohAMiUREfiZkgQZ3RMBkMqF79+646667tC6JyCcMilRljB49Gt27dwd0ApY2GRA6Hq9I1ZAQEObCcvculjosmi2wpl0s8/MREVFJAgK9nmuPpKQkxMbG4vnnn4csc/ObqgYeo0hVyqVLl3D//ffjwoULkNODoD8YDQmS1mURVQw/HLfo0zGLHHJKRFQhLA1zYW2SA71ej/feew9XXHGF1iUR+Yy7NKhKiYmJwauvvoqgoCAosYWwNinf8VxEAc0Pxy361LPIIadERH5njTVBaZoLAJgyZQpDIlU5DIpU5bRp0wbPPPMMAMDaMA/WeJ7chqqxig6LHHJKROR3itGCoG6FEELg9ttvx6233qp1SUSlxqBIVVLfvn3x3//+FwBgaZkFJaJQ44qIKlBFhkX2JhIR+ZUwKKh9awjy8vJwxRVXYNKkSVqXRFQmDIpUZY0bNw69e/cGZMDcLgOKkWdCpWqsIsIiexOJiPxKyAqa3VMLZ86cQb169fDyyy9Dry/jdW2JNMaT2VCVlpeXhylTpuDw4cNAgYygPbGQzDqtyyKqOH46wY0QAkpGJnsTiYj8REDA0i4DSmwhoqKi8Mknn6BRo0Zal0VUZuxRpCotNDQUs2bNQoMGDYAQBeb2vGwGVXP2nsWc3HIswtazyJBIROQfAgKWFllQYgsRHByMN954gyGRqjwGRaryoqOj8c477yAmJgYi3AJz20wIiR3lVL0p+QVlD4tWK5SsHEDipWWIiPzBmpALpW4BZFnG9OnT0b59e61LIio3BkWqFurXr49Zs2bBaDRCRBfC0oZhkao5oZQ9LAoBYTHb7jMsEhGVi6VhLqwJtnXx1KlTbedPIKoGGBSp2mjdujVee+012zUWa5lgaZ0JAYZFqmYcg11ZwqK9N9HdMomIyGeW+rnqNZ0ffPBB3HbbbRpXROQ/DIpUrXTt2hWvvPIKDAYDlDgTLK2yGBapeittWHTsTXTEsEhEVCrWunmwNrOFxPvuuw+jR4/WuCIi/2JQpGrn6quvxowZM6DT6aDULoClJcMiVRPuwlxRWFQyMj0HRle9ib4sn4iInFhr58PSIhsAcNddd+Hee+/VtiCiCsCgSNXStddeixdffBGyLEOpw7BINYBQIAoLPfcuuutNdMSwSETkkbVuHiytsgAAQ4cOxYMPPgiJ606qhhgUqdq68cYb8fzzz9t6FusU2I5Z5AluqLpzNxTVW2+iI27wEBG5ZKmfq/YkDh06FJMmTWJIpGpLEkJwy5mqtd9++w0zZ86ExWKBnB4E/eFoSApX6lTFlHZDRJIhG0MghYfZfrdYYE2/VLpl8OuBiAiA7TqJ1ka5sDa27YQbPXo0xo8fz5BI1RqDItUIf/31F5577jmYTCZIGQYYDkZDUtihTlVIWTZG7GHRGAIlM9v7sFNX+BVBRDWcgIC1cQ6sjfIAAOPGjcOYMWMYEqnaY1CkGmP37t14+umnkZeXBylbD8OBGEgWhkWqAsqzMSLJkHS6soVEO35NEFENJSQBS/MsKHULAACPPPIIRo4cqXFVRJWDQZFqlEOHDuGJJ55AVlYWpHwdDAeiIRXotS6LyLvyhEX7ar6sy+DXBBHVQEJWYGmTCSW2ELIsY9q0abj11lu1Louo0jAoUo1z8uRJPP7440hJSQHMEgwHYiDnGLQui8g3pQ17xVfxZQmL/JogohpGGKwwt8uAiLAgODgY06dPR+/evbUui6hScdwd1TgJCQmYM2cOWrduDRgEzB0vwRpboHVZRL4pb2gr7fwMiURUwyghFsT9JwgiwoKoqCi8//77DIlUI7FHkWqsvLw8TJ8+Hdu3bwcEoDsRAd1ZIyTw4HSqAnztGXS3ii/v/ERE1ZASVYiQayzIzs5G/fr18dZbb6FRo0Zal0WkCQZFqtEsFgveffddrFq1CgAgp4RAfywSkmBYpCrAW9jztnov7/xERNWItW4eROs8WK1WtG3bFq+//jpiY2O1LotIMwyKVOMJIbB8+XLMmTMHiqJAyjTAcDgakpkjs6kK8BT2fFm9l3d+IqIqTkgClmbZUOrlAwD69++PJ598EsHBwRpXRqQtBkWiItu3b8fMmTORk5MDFMgwHIqGnMuT3FAV4C7s+bp6L+/8RERVlNArMLfJgIg2Q5IkPPDAAxg9ejSvkUgEBkUiJydPnsQzzzyDU6dOAVYJ+n8joLtg1LosIu+Kb9SUdtVe3vmJiKoYJdyMWoOCkJKSAqPRiBdeeIEnrSFywKBIVEx2djZmzpyJv/76CwAgnzNCfzyCxy1S4HMMe2VZtZd3fiKiKkBAQKmbD6ltAcxmM+rXr49XX30VzZs317o0ooDCoEjkgtVqxfz587FgwQIAgJSttx23aNJpXBmRF/awV9ZVuyQxJBJRtSVkAUuLLCi1bZfF6tWrF5599llERERoXBlR4GFQJPJg27ZteOWVV5CVlQWYJeiPRkF3iQe3ExERVTVKiAWWtpkQYRbIsowHHngAd955J2SZJ68jcoVBkciL1NRUvPjiizh06BAAQHc6FLrkcA5FJSIiqgIEBJTaBTBcYUZ+fj5iY2Mxffp0dO7cWevSiAIagyKRD8xmM2bPno1vv/0WACDl6KE/EgU5X69xZUREROSO0Cm2oabxJgDAlVdeiRdffBFxcXEaV0YU+BgUiUphy5YtePPNN21DUa0S9MfDIacaIYG9i0RERIFEiShErYHBSElJgU6nw9ixY3HXXXdBp+P5Boh8waBIVEppaWl49dVX8c8//wAA5LRg6P+NhGThMQ5ERERaExCwNsoFmhXAarWiXr16mD59Otq1a6d1aURVCoMiURkoioJly5bh888/h8ViAUwy9P9G8kQ3REREGlKMFlhaZUJEWAAAAwYMwNSpUxEWFqZxZURVD4MiUTkcOXIEL7/8Mk6ePAkAkFNDbNdctLJ3kYiIqLIICFgb5EHXuhCFhYUIDw/HlClTMGDAAK1LI6qyGBSJyslkMuGLL77A8uXLIYQATDIMiZGQM9i7SEREVNGUEAssrbIgIs0AgB49euDJJ59EfHy8xpURVW0MikR+sm/fPrz++us4ffo0AEBOCYH+BHsXiYiIKoKAgLV+HnRtbL2IoaGhePTRR3HzzTdDkniSOaLyYlAk8qOCggJ88cUXWLFihdq7qD8eAfliMM+MSkRE5CdKmBmWllkQ4bZjEbt164annnoKderU0bgyouqDQZGoAuzZswdvvvnm5d7F9CDoj0VCMvGU3ERERGUlZAFrQg5EQgEURUF4eDgefvhh3HLLLexFJPIzBkWiCmIymbBo0SIsXrzYdmZUqwRdchh0Z0PZu0hERFRK1hgTLM2zgBAFANCnTx88+uijqFWrlsaVEVVPDIpEFSwpKQlvv/029u7dCwCQcvTQ/xsJOcegcWVERESBTwRbYWmSDSXeBACoU6cOpk2bhp49e2pcGVH1xqBIVAkURcHq1avxySefICcnB0DRpTSSwiGZORyViIioOCEJWBvkwtDGioKCAsiyjGHDhmHs2LEIDQ3Vujyiao9BkagSpaen47PPPsOaNWtsD1gk6E6GQXcuFJLgcFQiIiKgaJhps2zAaAUAdOrUCVOmTEGLFi00royo5mBQJNLAgQMH8MEHH+Dw4cMAAClPZzs7Kq+9SERENZgSYoG1WTaU2EIAQFxcHB5++GH069ePJ6shqmQMikQasQ9HnTt3LjIyMgAA8sUg6JIiIOfrtS2OiIioEgm9AmujXCDBBKvVCr1ejxEjRmDMmDEcZkqkEQZFIo1lZ2fjyy+/xHfffQer1QoIQE4xQn8yjMcvEhFRtSYkAWv9PBg7Qj2G/+qrr8bEiRORkJCgcXVENRuDIlGASE5OxmeffYbff//d9oBVgu50KHRnwiApHG5DRETVh4CAEmeCpUm2ermLFi1aYMKECejWrZvG1RERwKBIFHB2796NTz75RD1+ESYZ+pPhkFNDeP1FIiKq8pQoEyxNciAiLACA+Ph43H///RgwYAB0Oo6kIQoUDIpEAUhRFGzcuBGfffYZUlJSAABSvg665DDIaQyMRERU9SgRhbA0zoGINgMAjEYj7rrrLowcORIhISEaV0dExTEoEgWwwsJCfPfdd1i0aBEyMzMBAFKu3hYY04MZGImIKOApYWZYG+eoZzI1GAy47bbbcPfddyM2Nlbj6ojIHQZFoiogLy8PK1aswLJly9SD/aVsPfTJ4ZAyghgYiYgo4ChGC6wJOVDiTQAAnU6HQYMG4d5770WdOnU0ro6IvGFQJKpCsrOzsXTpUnz99dfIz88HAEhZBuhOhUG+xMBIRETaU0LNsDbKhahdCPtmZt++fTF27Fg0atRI4+qIyFcMikRV0KVLl7B48WKsXLkShYW2oTxStt4WGDkklYiINKCE2wKiUsukPta7d2/cd999aNmypYaVEVFZMCgSVWEXL17E0qVL8f3336OgoABA0TGMp8IgpzEwEhFRxVMiCmFplAtRdAyiJEm44YYbMGbMGDRv3lzj6oiorBgUiaqBjIwMLF++HN9++y3y8vIAAFKeDrozoZDPGyEJBkYiIvIfAQERVRQQi85iqtPp0K9fP9x9991o3LixxhUSUXkxKBJVI9nZ2fj666+xYsUK9aQ3KJShO2eE7lwoJIusbYFERFSlCUlAiSuAtWEeRJjtOoh6vR6DBg3C6NGj0aBBA40rJCJ/YVAkqoZyc3OxatUqrFixAufPn7c9aJUgp4ZAfyYUkkmvbYFERFSlCJ0Ca918WOvnAcEKACAkJASDBw/GqFGjeBZTomqIQZGoGrNYLNiwYQOWLVuGxMRE24MCkC8GQ3c6DHKOQdsCiYgooIlgK6z182Ctmw/obJuMtWrVwtChQ3HrrbciMjJS4wqJqKIwKBLVAEII7Ny5E0uXLsX27dvVx6UsA3TnjJDTQngcIxERASg6/jDSDGu9PEh1LbBarQCApk2bYtSoUejbty+CgoI0rpKIKhqDIlENc+zYMSxbtgzr16+HxWI7vgSFMnQpRuhSjJAKddoWSEREmhCyAqV2Aaz18tXjDwGgW7duGDVqFLp37w5J4k5FopqCQZGohrp48SJWrVqF77//HmlpabYH7cNSz4ZCyjLw8hpERDWAYrRAqZcHa+0CQG/bLAwODkb//v1xxx13oEWLFhpXSERaYFAkquEsFgu2bNmC7777Drt371Yfl3L1tmGpF0IgWXm2VCKi6kRAQIk12XoPYwrVxxs0aID//Oc/uOmmmxAREaFhhUSkNQZFIlIdO3YM3333HdauXYuCggLbg1YJclqwbVhqNnsZiYiqMhFigbVOAay189Wzl0qShJ49e+KOO+5At27dIMvcOUhEDIpE5EJ2djbWrFmDH3/8EcnJyerjUp4OcqoRuvNGSGZuSBARVQVCFlBqFcBaJx8i2qw+HhUVhcGDB+O2225DvXr1NKyQiAIRgyIRuSWEwP79+/HTTz9hw4YNl3sZFUBOL+plzAhiLyMRUQBSwsyw1smH4nDsoSRJ6N69OwYPHoxevXrx7KVE5BaDIhH5JDc3Fxs2bMCqVatw6NChyxMKZOguhEC+YIScp9euQCIigjBYYY0zQamTDxF++cyldevWxU033YSbb74ZderU0bBCIqoqGBSJqNSOHTuGVatWYd26dcjKylIfl3L0kC+EQHchhJfZICKqJEJWoNQywRpfYDsxTdEgD4PBgGuvvRaDBw9G165deewhEZUKgyIRlZnJZMKff/6JtWvXYtu2bZevyygAKSPI1tN4MZhnTSUi8jMBASWmEEp8AZRaJkB3eXOubdu2GDBgAPr164eoqCgNqySiqoxBkYj8IjMzE5s2bcIvv/yC/fv3X55gtR3PKF8IgXwpGJLg8YxERGUhICAizFDiC2CNMwFBijqtQYMG6N+/P/r3749GjRppWCURVRcMikTkd2fPnsW6devwyy+/4PTp05cnWCRbaEwLhpwRDElhaCQi8kQNh3EmWGsVACGXw2F0dDT69u2L/v37o23btpAkrlOJyH8YFImowgghcPjwYaxfvx6bNm3ChQsXLk+0h8aLwbaeRoZGIiIAReEw0gwlrgDWWib1eocAYDQa0atXLwwYMADdunWDXs+TiBFRxWBQJKJKoSgKDh48iE2bNmHTpk04f/785YkWCfKlIMhpIZAzgnhMIxHVOAICIsoMa62iYw4dwmFYWBh69eqF66+/HldddRWCg4M1rJSIagoGRSKqdIqi4NChQ9i4cWPJ0KgAUmYQdBeDIacH8+ypRFRtCZ0CJboQSi0TlBgTYLi8SRYeHo7evXvjhhtuQLdu3Xi9QyKqdAyKRKQpIYQaGn///XecOXPGabqUo7cNT00PhpSrhwQOUSWiqksEW6HEmmCNNUFEFQIOAygiIyPVcNi1a1cYDAbtCiWiGo9BkYgChhACycnJ+OOPP/DHH3/gwIEDcFpFFci24xovBUPODOJxjUQU8AQERLgFSqwJSi0TRJjFaXpCQgKuueYa9OrVC+3bt+cxh0QUMBgUiShgXbp0CX/++Sd+//13/P333zCZTJcnFg1RlTOCbCfDydOxt5GIAoIIstqGlMaYoEQXOg0plWUZHTt2VMNhQkKChpUSEbnHoEhEVYLJZMI///yDP/74A3/99RdSU1OLNZBtJ8S5FMwT4hBRpRKSgIgshBJjuxXvNQwPD0e3bt3Qq1cvXH311YiKitKoUiIi3zEoElGVI4TAyZMnsX37dvz111/YvXs3CgsLHRoAUrbB1tuYGQQpywBJsLeRiPxDQECEWaBEFUJEF0KJKgQczrslSRJat26NHj164KqrrkLbtm05pJSIqhwGRSKq8kwmE/bs2YPt27dj+/btOHnypHMDBZCygiBn2sKjlMPgSES+ExAQoVaIKFsoVKKch5MCQGxsLK666ir06NEDXbt2RXR0tDbFEhH5CYMiEVU7KSkp+Pvvv7Fr1y7s3LkT6enpzg2sEqRMA+TMoh7HHJ5NlYguExAQIVa1t1CJMgNBilMbo9GIjh07okuXLujRoweaNWsGSeJ6hIiqDwZFIqrW7GdStYfG3bt3IzMz07mRVbINVc2y3aRsA49xJKpBhFQ0lDSyECLSDCXC7HTBewAICgpCx44d0blzZ3Tu3JnDSYmo2mNQJKIaRVEUHD9+HDt37sSuXbuwZ88e5OTkODcSgJSrt4XGrCDbz0Kd6wUSUZUjdAqUSDNEhNkWDiPMTscYAoDBYED79u3VYNiuXTte9J6IahQGRSKq0RRFwYkTJ7B//37s3bsX+/btQ0pKSsmGBTLkbFtvo5xtgJRr4HUciaoA2/GFFogIC5RwM0SkGSLUguKjzSMiItChQwd07NgRHTp0QNu2bREcHKxN0UREAYBBkYiomPPnz2Pfvn1qeDx27BgUxXkYmr3XUcoxQM7W24ar5vFYRyItCQgg2AolwmLrLQw3Q4RbAF3JTZ0GDRqgY8eO6i0hIQGyzCHnRER2DIpERF7k5eXh4MGDOHToEA4dOoSDBw+WPEEOAFhhC445BtsJcnL1kPL1PMMqUQWwhUIFSpgtDCrhtqGkxc9GCthOPNO6dWu0adMG7du3R8eOHREbG6tB1UREVQeDIhFRKQkhcOHCBTU4Hj58GIcPH0ZeXl7JxgpsPY05esi5Blt4zNXzZDlEpSCkouGjYRaIcDOUMNt96EtuwhgMBjRv3hxt2rRB27Zt0bZtWzRq1Ag6HY8zJiIqDQZFIiI/UBQFJ0+exKFDh3D06FEkJibi33//dR0eASBfB9keGvOKbgU69j5SjWbvJRRGixoGRZgFwmgBXOxb0ev1aNq0KVq0aIE2bdqgTZs2aN68OU86Q0TkBwyKREQVRFEUpKSkqKExMTERiYmJuHDhgpsZAClfdzk4MkBSNaUOGw212HoK7Tej1WUvIWA72UyLFi3QsmVL9WdCQgIMBkMlV09EVDMwKBIRVbKMjAwcO3YMiYmJSEpKwokTJ5CUlIT8/HzXM9gDZL7e9rOg6Ge+DjDLPIEOBSyhU2wXrjdaIYyWyz9DrS5PMAMAOp0ODRs2RJMmTdCiRQv1Vrt2bV7QnoioEjEoEhEFACEEUlNTnYLjiRMnkJyc7D5AAoBFsvU4OgVJ240hkiqDkBVbAHQMhEX3EaS4nU+v16NRo0Zo0qQJmjRpgqZNm6JJkyZo0KABewmJiAIAgyIRUQBTFAXnz59HUlISTp8+jVOnTqk/U1NT4XEVbgUkU1FoLNCp99XHLBKDJHkldApEsBUiRAGCiwJhcNEtxOryLKOOYmJi0LBhQ/XWqFEjNG3aFA0aNIBer6+kv4KIiEqLQZGIqIoymUw4d+6cGh7tAfLMmTNIS0vzHCIBwCpBKpCBQh2kQtkWIAuLfjfJkAp1gJlhsroSEIBOQAQrQJAVIkiBCLIW/a6oYdBbEASAqKgopzDoeAsLC6uEv4aIiPyNQZGIqBoqLCzE+fPnkZKSgpSUFJw7dw7nzp1T71+8eNG3BSkACm2hUTLJtuGsRTeYZVvALLoPK0NlIBCyAAwKRNENjj+LAiCKQiF8vGJEVFQU6tat6/bGMEhEVP0wKBIR1UAmk0kNkmlpabhw4YJ6S0tLQ1paGi5duuS9V9KRPVTag6RFtg1vdflThmSRbG0UMGC6ICQB6BUIvfNP6AWE008FwiAgghR1emmEh4cjPj4ecXFxiI+PR61atRAfH4/4+HjUq1cPdevWRWhoaAX9lUREFKgYFImIyCWLxYKLFy+q4fHChQvIyMhARkYGLl265HTzeMIdbxQAFglQZEhWCSi6ubyvyJCsABQJEJItZCpS0e9FjysSJAVF04seR9HvgO33ose8BVRxuWGxn8J2X7b9FLJQ79t+Cgi56L4sALmojc5+U5x+F/bH5aL7esXn3j5XDAYDoqOjERMT4/QzNjZWDYRxcXGIi4tDSEhI2Z+IiIiqLQZFIiIqt4KCAjVA2n9mZWUhOzvb7S0nJwdWq1XbwoXDT/t9CSWDoUYkSUJYWBjCw8MRERHhdLM/Fh0drd5iYmIQExOD0NBQXkqCiIjKhUGRiIg0IYRAXl4esrOzkZeXh7y8POTn5yM/P9/j/YKCApjNZpjNZhQWFsJsNsNkMjn9br9f0UFUp9PBYDCot6CgILf3Q0NDERISAqPRiNDQUBiNRqebfZrRaFTDYGhoKHS6cnQtEhERlRGDIhERVVuKokBRFFitVgghStx3nK4oCmRZhiRJkGVZvTn+br8vSRL0ej1DHBERVVsMikRERERERORE1roAIiIiIiIiCiwMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIid6rQsgIioNIQQKCgq0LoOIqFRCQkIgSZLWZRAR+YxBkYiqlIKCAgwcOFDrMoiISuWXX36B0WjUugwiIp9x6CkRERERERE5YY8iEVVZQX/VhiSK9ndJMiRZAiQZkCWgaIiXJMu2+1LRT1mCJBXNY29X9Lh6Hyj2mPMybT8vTxeSdHm3m3R5OerjDvM5Pibso9Ckot9l2y9CcpwH6jxCkop+h8PyiuaXpaLl2CbZl2Gf7rhMYV+uDLfLc/qJ4o8Vr8PNPLj8mNN0eJjPxfO5q6PEPG6W61yHcJq/eI3qdIdliaLHUaw+SMJhfqFOk0q0d5xmu3/55+XlSJK4/BYsevzyv0ao02UI9Xf788lFv9um2eZRH3P8icvPJRe/FU2z/Q6nx+3PJUuK+pgMAVlSoLNPK/pdnS4p6vJ06mMCOtjaAIBOUhzmU6BzmM9+397ecT4Zomhe2/Pbptnnsz0mQYHOPj8uP58OsM0H2/PZXw/777bnEuo0WSqqRb0vqR93nSRBhlT0mFT0u1z0FpFgLtRh6AN1QURUFTEoElHVZZUub7JJMiQUhTp1Cxy26ZIEyJdTkTqPU+KQgeJJ4HIKK5liJId5nZKKq8eLJaoS9x3aSPbAJzk0k4r9RLG2cA6NJeaDi2WiKLC6W56bcl3W4ebmbpq7l8qX+TzNA/chssKCYvHpxaYVD4qXHxdOz+lqmj2cXZ7mOF04zOfwWInncr45BsUSN3fTisITgMsBEsIpUAL2oAg1aMlFdVwOisrloFU0zRasin5Kki3EFb1P7fft7XWQHEIpoJMu/9QV1Wafr8Q02J/PHvpEUcC8HI7t4dBTUHS1PBmXH7P97lijw/+QiKiK4dBTIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJzwOopEVHXpBISwXWTbdl1AyeGn/SJuKHYdQqnYdQPtN3H5vi/THC7id/my6HDz+OWfwuk+nOYTACDUq9mpUwQkQECdVxSfp2i+koo/Zr9woFNJxV4PlLyh+GOSh2nFnra007wt09M89rse5xNelingukY311FEyfkkD9dRlByvkSg5tIX9+oWOby8311FE2a+jKOzvGElAFL8VTRNF15J0fFxRn0u5/DwQgKQ4XO9ROE0XkqIuz/7cQp3mUEfR73LRfft1Ge33HX8qDh9rRbr8U8Hl6ygqRY9JcHcdRQkybNdn1NlfqqLH7ddj1AHqNNlhGep1INXlXV6WDEn93fZvkWAudPW5JCKqGhgUiajKKrzqvNYlVAz7dng5FI+oRMDlt5WALVBVPY7vbA6KIiKqSFzLElGVUlBQoHUJRERERNUeexSJqEoJDg5W73///fcICQnRsBqqCgoKCnDbbbcB4HuGvKuo9wvfd0RU1TAoElGVIkmXB1OGhITAaDRqWA1VNXzPUGnw/UJENRmHnhIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyIkkhCjn1bqIiIiIiIioOmGPIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjIiV7rAoiIfJWXl4elS5fit99+Q0pKCmRZRqNGjdCnTx8MHToUBoNB6xIpABQUFGD37t04cuQIjh49iqNHjyI1NRUAcO+992Ls2LEaV0iBJjMzE3/88Qf++ecf9f1itVoRHR2N1q1bY9CgQbjuuuu0LpOIqFJJQgihdRFERN6kpKRg0qRJSElJAQCEhIRAURQUFhYCAFq2bIn3338fERERWpZJAWDXrl2YPHmyy2kMiuTKjTfeCKvVqv4eFBQEnU6H/Px89bEePXrg5ZdfRkhIiBYlEhFVOg49JaKAZ7FY8PTTTyMlJQW1atXCu+++i7Vr12Lt2rWYPn06QkNDkZiYiJdfflnrUilAREREoGvXrrjzzjsxffp0xMbGal0SBTCr1Yq2bdti2rRpWLp0KdavX49ffvkFy5Ytw+DBgwEA27dvx9tvv61xpURElYc9ikQU8FatWoVZs2YBAD755BN06NDBafr69evx0ksvAQDee+89dO3atdJrpMBhtVqh0+mcHhsxYgRSUlLYo0gu7dy5E126dHE7/e2338YPP/wAAFixYgXq1KlTWaUREWmGPYpEFPB+/vlnAEDnzp1LhEQA6Nu3L+rVq+fUlmqu4iGRyBtPIRGA2qsIAEeOHKnocoiIAgKDIhEFtIKCAuzfvx8AcPXVV7tsI0kSevToAQD4+++/K602IqoZgoKC1PuKomhYCRFR5WFQJKKAlpycrG6YNW3a1G07+7T09HRkZWVVSm1EVDPs3r1bvd+sWTPtCiEiqkQMikQU0NLS0tT78fHxbtvFxcW5nIeIqDyys7OxaNEiAECnTp2QkJCgcUVERJWDQZGIAlpeXp56Pzg42G07x1PWO85DRFRWiqLg1VdfxcWLFxEUFISpU6dqXRIRUaVhUCQiIiJy4cMPP8TWrVsBAFOnTkXz5s01roiIqPIwKBJRQAsNDVXvm0wmt+0KCgpczkNEVBazZ8/Gt99+CwCYOHGi05lPiYhqAgZFIgpojsceXrhwwW07x+MSHechIiqtOXPmYNmyZQCACRMmYMSIERpXRERU+RgUiSigNW7cGLJsW1WdOHHCbTv7tNjYWERGRlZKbURU/XzyySdYsmQJAODhhx/GqFGjNK6IiEgbDIpEFNBCQkLQoUMHAMD27dtdthFC4K+//gIAdO/evdJqI6LqZfbs2Vi6dCkAW0i88847Na6IiEg7DIpEFPAGDRoEANi1axcOHjxYYvrGjRtx9uxZp7ZERKUxe/Zsp+GmDIlEVNMxKBJRwBs0aBCaNWsGIQReeOEF/PPPPwBsp67fuHEj3nrrLQBAjx490LVrVy1LpQCRnZ2NjIwM9aYoCgDbCZEcH+elVAhwPiZx4sSJHG5KRARAEkIIrYsgIvLm3LlzmDx5MlJSUgDYhqQqioLCwkIAQMuWLfH+++8jIiJCyzIpQIwYMUJ9r3gyaNAgPPvss5VQEQWq1NRUDB8+HAAgyzKio6M9th85ciR7G4moRtBrXQARkS/q1auH+fPnY+nSpfjtt9+QkpICvV6Ppk2bom/fvhg6dCgMBoPWZRJRFWPvbbbfT09P99g+Pz+/oksiIgoI7FEkIiIiIiIiJzxGkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiERFVmA8++ADXXXcdHn30Ua1LIY3l5ORg8ODBuO6667B582atyyEiIi/0WhdAREQl5ebmIjExEYcPH8aRI0dw5MgRnDlzBkIIAMCyZctQr169CnluIQSGDRuGCxcuYPTo0XjwwQfLtJzExESsXLkSADB+/Hg/Vqit48eP46+//sK+fftw/PhxXLx4EVarFREREWjevDl69uyJQYMGITw8XOtSA0p4eDhGjRqFzz//HB999BF69OiB4OBgrcsiIiI3GBSJiALQpEmTkJiYqMlzHz58GBcuXAAAXHvttWVezpw5c2C1WtGjRw907NjRX+VpatKkSdi9e7fLaenp6UhPT8fff/+NRYsW4dlnn8VVV11VuQUGuGHDhmHFihVITU3F119/jdGjR2tdEhERucGhp0REAcjecwjYemI6d+6M2NjYSnnuLVu2AADi4+PRtm3bMi1j79692LFjBwBUqzBgD9ARERG4+eab8eyzz+Ljjz/G559/jpdeegk9e/YEYAuNzz77LPbs2aNluQHHaDRi6NCh+P/27j2m6vqP4/iTEJVEOMycHsTMVJAuhoKWIuYtvEyX4WWZm5o5s2m2WVuNqWhey5m23MzccjPFljlvS6OhkpkHFXXIRBRRUMQxDgqIcvGAvz/Y+f7OKTjE4SA6X4+/vvH9fN/fD2dnthefG0BCQgL3799v4R6JiEh9NKIoIvIYGjt2LCaTidDQUIKDg/Hy8mLBggXcvn272d9tD4pRUVF4eXm5VWPnzp0AmM1mXnvtNY/1raUFBwczffp0RowYQevWrZ3uhYaGMnToUHbs2MHmzZupqqpi3bp1bNu2rYV6+3iKiYnhxx9/5O7du/z2229Mnjy5pbskIiJ10IiiiMhjaNKkSYwcOZKuXbu6HdbccePGDXJzcwH3p50WFhZisVgAGDVq1CPtf3Nbu3YtY8aM+VdIdDRt2jR69eoFQE5ODtnZ2Y+qe08Es9lMnz59ANi/f38L90ZEROqjEUURETHYd6O0T3d1R1JSEjU1NQAMHz78Pz1js9k4cuQIx48fJzMzk+LiYqqrqzGZTLz44otERkYycuRIOnTo4PTckCFDABg9ejRxcXFcv36dX3/9ldOnT2O1WmnXrh0hISG89957hIeHG89VVlZy6NAhEhMTycvLo6KigqCgIN566y0mT57c5E1W+vXrZ6wxvXHjBj169HC7Vk5ODvv27SMtLY1bt25RUVGBn58f7du3x2w2ExERweDBg3n++efdqm+z2fjjjz84evQoV69epaSkBC8vL/z9/TGZTISFhREZGUlUVBQ+Pj5Oz/7z88/JyWHPnj2kpqZitVopLy9n5cqV//qjw/Dhw0lLSyM3N5fMzEx69+7t3ocjIiLNRkFRREQM9mmnAwcOpFUr9/4XceLECaB2HV+3bt0abH/lyhWWLFlCXl7ev+4VFhZSWFjIyZMnyc7OJi4urt46ycnJrFq1ioqKCuNnlZWVpKSkcPLkST777DPGjx+P1WolLi6OzMxMp+evXbvGDz/8QEpKCuvWrWtSWLTZbMb1M8+4P3ln3759bNiwgerqaqefl5SUUFJSQl5eHqdPnyY7O5vFixc3un5xcTGffvppnRsn2T/7rKws9u/fT0JCAsHBwfXWOnToEOvWraOqqqrB9zpubnTixAkFRRGRx5CCooiIAGC1Wrl48SLg/rTTqqoqLly4AEBYWFiD006zsrKYP38+5eXlAPTt25eYmBi6deuGj48PRUVFZGRkNHjuXnZ2NkeOHCEwMJA5c+YY7z5z5gw//fQTFRUVrF+/nvDwcFasWMGVK1eYMGECgwcPxmQycfPmTbZt20Z2djbnz58nISGB999/363PAODs2bPGdffu3d2qcfXqVSMk+vv7M378eMLDwzGZTFRXV1NUVMSlS5dISUlxe3rvhg0bjJAYERFBTEwMZrOZdu3ace/ePXJzc0lLSzOmEtfn0qVLJCUl4e/vz+TJk3n11Vfx8fEhJyeHzp07/6t99+7d8fX1pby8nLNnzzJr1iy3+i8iIs1HQVFERAA4fvw4Dx8+pHXr1rz++utu1cjOzjZG00JDQ122tdlsLFmyxAiJn3zyibEjpqNBgwYxe/ZsCgoK6q2VlZVFr1692LBhA+3btzd+/tJLLxEcHEx8fDw2m4358+dTWlrK2rVriYyMNNqFhITQv39/pk+fjtVqZe/evUyfPh1vb+9G/f5QO3332rVrQG1Y7tq1a6NrABw9etQYSVy/fr2x7tFRdHQ0s2fPpqSkpNH1KysrjQAeHR3NihUr/hU4w8PDefvttykvL3c5Mnrt2jWCg4PZuHGj0+689e2a6+3tTUhICGlpaVy+fJmampomjbyKiIjn6V9lEREB/j/tNDIyEl9fX7dqOE4fbeg4j6SkJG7evAnU7vJaV0h01KlTJ5f3v/jiC6eQaDd06FA6duwIwJ07d4iNjXUKiXZ+fn6MGTPGaJeTk+PyfXWxWq188803AHh5efHRRx81uoadfYdbPz+/OkOio4CAgEbXv3v3rhHqw8PDXY5K+vr6NjgVd+HChY06wsXetqKiAqvV+p+fExGRR0NBUUREKCsr49y5c4D7004BioqKjGt/f3+Xbe3BFGDq1KluvxNqpzLWF6a8vLyc7sXExNRbx7Fdfn5+o/pQUVFBXFycEfD+uYFOY9nDbVlZGUePHnW7Tn0CAgKM3VsPHz7cpDMNO3bsWGf4dsXx++H4vRERkceDgqKIiGCxWLDZbHh7exMVFeV2ncrKSuO6rtE9R5cvXwZqR5b+y6Y3rjT0vGNfXO0O6tiuMcHpwYMHLFq0yNggZ/DgwcyePfs/P1+XmJgYYxQvPj6eefPmsWPHDs6fP29M120KHx8fRo8eDUBGRgZTpkxh7dq1HD58uNEh2Z1dXR2DouMGRCIi8njQGkURETFG91555RVMJpPbdRzX9DW0+2VxcTHw/5Gzpmjbtq3L+47TKl1Nq3VcJ2c/4qMhNpuNxYsXc+rUKQAGDBjA0qVL3Vrf6CgoKIg1a9awatUqCgsLSU9PJz09Haj9nHv37s2QIUMYN25cg6G8Ph9//DFVVVUkJiZSWlrKgQMHOHDgAFAb4AcMGMDYsWMbHBltaPS4Lo5/VHB3h10REWk+GlEUEXnKVVVVcfLkSaBp006hdj2dXWlpaZNqPQlsNhvx8fHGkSCRkZGsXLnSmNLZVBEREezcuZNly5YxduxY43iK6upqLly4wKZNm5g6daoRUhurTZs2xMXFsX37dj744AP69etnBOnbt2/z+++/s2DBAhYtWuQU7P7JnY1oHDfgcfzeiIjI40F/whMRecqlpqYaUxmbGhQdj0JoKCiaTCYKCgqe2I1M7CHRPhrbr18/Vq9e3aTzF+vSunVrhg0bxrBhw4DakdgzZ86QmJhISkoKpaWlLF68mISEBDp06ODWO7p27cqMGTOYMWMG1dXVZGVlceLECfbt28edO3c4duwYW7ZsYf78+R77ve7evWtcN7RRkYiIPHoaURQRecrZg06vXr0wm81NquV4ZuD169ddtrUfn1FUVNRg28fNP0Ni3759WbNmjcdDYl1MJhMjRozg66+/ZsKECQCUl5dz/Phxj9S3T2udNWsW33//vTGtNykpySP17XJzcwEwm808++yzHq0tIiJNp6AoIvIUq6mp4e+//wZqN2Bpqk6dOvHcc88BcPHiRZdthwwZYlwnJCQ0+d2Pis1mY+nSpUZIDA8P56uvvmpwnWRzGDBggHFtX/PpSWaz2TgH0p2zGutTXFxsHI3y8ssve6yuiIh4joKiiMhTLD093QgYjsGtKezhJTc3l3v37tXbbvjw4UYIOXjwILt373ZZt6CgwCP9awqbzcaXX35pHFTfnCHxzz//bDD82deWAnTp0qVR9fPz80lNTXXZ5tatW8bIX1BQUKPqu5KRkWFcv/HGGx6rKyIinqM1iiIij6G8vDxjh0s7+/l8AMnJyU67k/r6+jJ06NBGv8c+KhYUFOTWEQd1GTZsGAcPHqSmpobU1FTefPPNOtu1atWKZcuWMW/ePMrLy/n22285duwYo0aNolu3bvj4+FBUVERmZibJycmEhoYSFxfnkT66a/ny5SQnJwO1wWzu3LncunXL5TOBgYEEBgY2+l27d+9m+fLlREREEBERwQsvvEBAQAAPHjygoKCApKQkYzS4c+fOjT7WpKCggIULFxIUFERUVBRhYWF06tSJNm3aUFJSQkZGBnv37jV2r504cWKjf4f6nD59Gqhdfzlw4ECP1RUREc9RUBQReQylp6ezevXqeu9v2rTJ6b87d+7cpKDoiWmndpGRkXTs2JHCwkISExPrDYoAPXv25LvvvmPJkiXk5+dz7tw5zp07V2db+5rGluR48P3NmzeZO3dug8/MnDmTWbNmufW+qqoqLBYLFoul3jZdunRh9erVLo/9cCU/P59du3bVe/+ZZ55h6tSpvPPOO27V/yebzcbhw4eB2lFsd4/2EBGR5qWgKCLylLpy5YoxGtbU3U4deXt7Exsby+bNm0lJSaG4uNjl2YwhISFs376dxMRE/vrrL7Kysoz1cIGBgfTo0YP+/fszcuRIj/XxSRAfH8+pU6dIS0vj6tWr3L5925iKGhAQQM+ePYmOjiYmJsat4zj69OnDxo0bSU1NJSMjg4KCAu7cucO9e/do27YtQUFB9OnTh3HjxnlstBkwvhMAkyZN8lhdERHxLK+HDx8+bOlOiIjIo7d161a2bt1KYGAge/bscessvPqUlZXx7rvvUlpayocffsi0adM8VluebJ9//jkWi4WIiAjWr1/f0t0REZF6aDMbEZGnlH3a6aBBgzwaEqH2AHV7OPz555+5f/++R+vLkykjIwOLxYKXlxdz5sxp6e6IiIgLCooiIk+hBw8eEB0dzcyZM4mNjW2Wd0ycOJHg4GBKSkr45ZdfmuUd8mTZsmULAKNGjSIsLKyFeyMiIq5o6qmIiDSbixcvYrFY8PPzY8qUKS3dHWlBZWVl7Nq1i4cPHxIbG+ty3aqIiLQ8BUURERERERFxoqmnIiIiIiIi4kRBUURERERERJwoKIqIiIiIiIgTBUURERERERFxoqAoIiIiIiIiThQURURERERExImCooiIiIiIiDhRUBQREREREREnCooiIiIiIiLiREFRREREREREnCgoioiIiIiIiBMFRREREREREXGioCgiIiIiIiJOFBRFRERERETEiYKiiIiIiIiIOPkfX1csUOO4GI0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration], source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "0cc8b065", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_reconstructed_image(result, source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "dc5d9f13", + "metadata": {}, + "source": [ + "## Delta image\n", + "checking the difference between images before/after each iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "04af53e9", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_delta_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['delta_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "a8664171", + "metadata": {}, + "source": [ + "Plotting the difference between 19th and 20th reconstructed images." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "95ae9307", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADPnklEQVR4nOydd5zUdPrHP0lmZnvfpfeugAoCiqJYwIYFG1gBu+fZu57d836eeJ7l7A1RFE45VFRERBEEAVHp0ntn2V5nJvn+/pidMLObZNJ2k5l53q/Xvlh2kifPpH7f+TaOMcZAEARBEARBEARBtDi80wkQBEEQBEEQBEEkKyRkBEEQBEEQBEEQDkFCRhAEQRAEQRAE4RAkZARBEARBEARBEA5BQkYQBEEQBEEQBOEQJGQEQRAEQRAEQRAOQUJGEARBEARBEAThECRkBEEQBEEQBEEQDkFCRhAEQRAEQRAE4RAkZARBEARBEARBEA5BQkYQBEEQBEEQBOEQJGQEQRAEQRAEQRAOQUJGEARBEARBEAThECRkBEEQBEEQBEEQDmGLkG3btg0cx4HjOEyYMMGOkEnJKaecIu9HgiAINSZMmCDfK7Zt2+Z0OjKTJk2S85o0aZLT6RA2I0kSjj32WHAch9tuu83pdIhG0PVHOMm8efPk8++JJ55wOh1bqaioQH5+PjiOw5tvvtks22ixGrJJkybhiSeeSLiDpMXnn38uf+eysjKn0yEaCAaD+P777/Hggw/itNNOQ9u2bZGSkoLMzEx0794dl112GT7//HOIomgo7urVq3HbbbehT58+yMzMRE5ODvr3748HH3wQ27dvb6ZvQxBEMhIIBPD222/j9NNPl+9hHTp0wHnnnYdp06aBMWb7Nt966y38/vvvSE1NxUMPPaS63LZt2zB9+nQ89NBDOOOMM1BQUCAX1E455RRT27bz/rp9+3Y8+OCD6N+/P3JycpCZmYk+ffrgtttuw5o1a0zlF4tffvkF1157Lbp374709HTk5+fj2GOPxd///ncUFxc3yzadoH///vKxnjt3ruH1f/75Z3n9I4880vD6jDEsXLgQTz75JM466yx07NgRqampSE9PR+fOnXHhhRfiww8/RH19vaG4dp4zBw8exNNPP41jjz0W+fn5SE9PR/fu3XHttddi8eLFhmLpJVnKJ+edd558/rz77ruG19+xYwcEQQDHccjPz0ddXR0AIDs7G3fddRcA4G9/+xtKS0ttzRsAwGxg69atDAADwMaPH6+4zPDhw+VlkoXx48fL33nr1q0xl0/GfdTS/PDDDyw/P1/ez1o/gwcPZps2bdIVd+LEiczr9arGysrKYp988kkzfzsiWTB6b2kp3n//fTmv999/3+l0EpatW7eyAQMGaN6/RowYwUpLS23bZnV1NWvTpg0DwG6//XbV5V5++WXNvIYPH25423beXz/66COWmZmpGsvn87EXXnjBcI5qSJLE7rrrLsZxnOo2W7duzebOnWt5W264/v71r3/JOVx11VWG17/22mvl9Z977jlD665du5a1a9dO1/O9V69ebNmyZbri2nnOzJkzh7Vq1Uo1Fsdx7N577zX0vWPRUuWTH3/8UY75+OOPW0/cBNOnT5dzGDZsmOH1n3rqKXn9W265Jeqz8vJylpeXxwCwBx980K6UZVqs5J+MsuHWQlMy8+GHH8rHJD8/n40ZM4a98MIL7JNPPmGTJ09mt956K8vOzpaX6dixI9u7d69mzNdff11e3uv1smuvvZZ98MEH7J133mGXXnqp/CD2eDxs1qxZLfRNCaLlcUOBMNEpLS1lffr0kffzEUccwSZOnMg++eQT9vTTT7OOHTvKn5166qksEAjYst2JEycyAEwQBLZr1y7V5f79739HFfbS0tLYUUcdZVrI7Ly/fvXVV0wQBLnge+mll7J33nmHffDBB+zaa6+NKrS+/fbbhvJU44EHHpBjZmRksNtvv5199NFH7I033mAjR46UP8vMzGR//PGHpW254frbv38/83g8DABLT09nFRUVutetrq5mWVlZ8nkW69nbmAULFkTt6wsuuID985//ZFOmTGFTpkxhDzzwAGvdurW8TE5ODlu9erVmTDvPmWXLlrH09HR5+ZEjR7I33niDffTRR+z2229nGRkZ8md/+9vfDH13NVqyfOIGIfP7/aywsFDOQ+9L9TDdu3eX1/3111+bfP7II4/I51dxcbFdaTPGSMiaFRIy9/Hhhx+y/v37s48//pjV1dUpLrNr1y7Wt29f+diNGzdONd6ePXvkG6zH42Fz5sxpskzkQ7Jjx46strbWtu9DEG7CDQXCROfOO++U9/FZZ53V5H5y6NChqNqz//znP5a3GQgEZNE744wzNJedMWMG++tf/8ree+89tmLFChYMBqNa0RgRMjvvr9XV1VG1J5MmTWqyzHfffSfLRGZmJtu3b5/uXJX4/fff5QJvTk4OW7FiRZNlHn/8cTmnwYMHM0mSTG/PLdffBRdcIOfx7rvv6l5v8uTJ8nrnnnuu4e0uWLCAdenShb3xxhuqIlhaWhpVHj355JNV49l5zkiSxAYOHCjHeuKJJ5oss3z5cvmFMM/zbOXKlTq/uTItXT5xg5Axxtgdd9wh5/Hoo4/qXm/+/Pnyev369VNcZsOGDfIyzzzzjF0pM8ZIyJoVEjL3UVpaquuBt2rVqqg3vNXV1YrLRRaO7rvvPtV4l156qa0FJIJwI24pECYq+/fvZz6fT35Du3//fsXlVq1aJYtAmzZtWDAYtLTdGTNmyMd18uTJhtc3K2R23l9ffPFFeZlLL71UNdZ9990nL2e16djo0aPlWK+++qriMpIksSFDhsjLffXVV6a355br7/PPP5fzOOmkk3Svd9ppp8nrTZ8+3fB2Kysrmd/vj7nc/v37o2qqtmzZoricnedM5D457rjjVMshr776qrzcJZdcEvO7aNHS5RO3CNny5cvlPDp37qz7JUdkc9l//etfqssNHjxYFlgrL1Aa0+x9yCJFTOtH7eCJosimTZvGxowZw7p06cLS0tJYZmYm6927N7v55ptjvkGIfPv0448/MsYY+/7779lll13GunTpwlJSUpoIUyAQYN9++y27++672YknnsiKioqY1+tlmZmZrGfPnmz8+PHsp59+Ut1mpIhp/Wjtq1gsXryY3XDDDaxXr14sMzOTpaens27durFx48bpaove+OFYVVXFJk6cyI499liWm5vL0tPT2ZFHHskefPBBVlJSEjNeIhLZLEjpzaYkSax9+/YMCDVl2LFjh2qsyKYURh5QdrBo0SJ28803syOOOILl5OSwlJQU1rFjRzZmzJiYD3+lG+z27dvZ3XffzXr37s3S09NZTk4OGzp0KHv11Vd1N4+qrKxk//73v9mIESNY27Ztmc/nY3l5eWzQoEHs0UcfZQcOHNBcv/G1EgwG2fvvv89GjBjB2rVrxwRBYJ07d26y3r59+9h9993HjjjiCJaens7y8vLY4MGD2fPPPy9Ld+fOneUbeSSzZs2St3nbbbfp+p633XabvM4333yjax09xHrZ01zHbebMmezcc89lrVu3ZikpKaxz587siiuuYIsWLWKMGSsQ1tfXs3feeYedd955rEOHDiwlJYXl5OSw/v37s7vvvlv1Jda6devkwlR2drZqYYoxxkpKSuSaHZ7nNe/b8cCbb74p79/rr79ec9nTTz9dXtZq/6SLLrpIfjlVWVlpeH0zQmb3/XXo0KHyMj///LNqrB07dsgy26lTJ125KlFRUSGXL7Kzs1Vf6jEW3ZT+6quvNr1Nvdff0qVL5WZdPp+PTZs2rckyVspegUBA7ifFcRzbvHlzzNy3b98u7/fCwkJdYmWFs846S95XX3zxheIydp4zl19+uRzro48+Uo1VXV0t15KlpaWxqqoqY1+sASfKJ3qFbNOmTaxbt25ybmr972bNmsXGjx/PevTowTIzM1laWhrr1q0bGz9+PFuwYIFmLpGtBPTc/yKby3o8HtWXXYxFi/oPP/wQM7ZeXC1kmzZtYsccc4zmejzPa1ZJRgrZDz/8wP76178qxol8+J9yyim6haq+vr7JNptTyAKBALvhhhtixh4zZgyrqalRjRP5cNy8eTM78sgjVWN17tw5KWv4wm9BALDFixc3+TyyFk2tejuMKIpRTRGMtKs3S1VVFRs7dmzMc2XUqFGq+TS+wc6aNYvl5uaqxho5cqRqU9Aw33zzjWanZiDUyVjtIclY9LVy6NAhNmzYMMXzNpIffvhB7pCr9NO/f3+2Y8cOVSETRZF17dqVAWB5eXkxm3bU1tbK2+vUqRMTRVFzeSMYFTKrxy0YDGre13ieZ//85z91Fwh//fVXeV+q/fh8PvbGG28orv/WW2/Jyw0dOlS1BuiSSy6Rl7OrT4aTXHzxxfL3+eyzzzSXDff5ArTfjseirq5OFmCt5l1amBEyO++v5eXlUU0HY12LkU3W16xZoyvfxsycOVOOEav53YEDB+Rli4qKTG2PMX1CNnv2bHmAiszMTMVmbHaUve6++2552cceeyxm7pGDKdxxxx16v7JpImuFpk6d2uRzu8+ZgoIC+fODBw9qxho1apS87Ndff23sizXgRPlEj5D9/vvvcj8+j8fDPvzwwybLHDhwIKq2VO3nuuuuUxX3yMGFtLqdhIlsLnvBBRdoLrtixYpmOVc9aGbCQ7o+8sgj8tCgM2bMaLJcnz59ov6/efNmHH/88fJwsMOGDcO5556Lzp07QxRF/Pbbb5g0aRJKS0vx9NNPg+f5mEPqT5w4EbNmzUKbNm0wYcIE9OvXD8FgEEuXLkVKSoq8XG1tLTIzM3H66afj2GOPRZcuXZCamoq9e/dizZo1mDJlCqqrq/HBBx8gNzcXL774YtR2br/9dowePRovv/wyfvzxRwDAm2++iVatWkUt16lTJ137MJKrr74aU6dOBQCkpqZi/PjxOOGEEyAIApYtW4Z3330XlZWV+O9//4vy8nLMmjVLc16ziooKjBo1CuvXr8cFF1yAs846C/n5+diyZQtef/117NixA9u3b8e4ceMwf/58w/nGK36/Hxs3bpT/37lz5ybLrF69Wv792GOP1YzH8zwGDBiAn376CZIk4c8//8SQIUPsS7gR9fX1GDFihDyEbvfu3TF27FgcccQR8Hq92LRpEyZPnowNGzbg66+/xujRozFnzhzwvPpMGMuXL8fEiRPBGMNNN92EoUOHIiUlBcuWLcMbb7yB6upqzJkzB8888wyeeuopxRjTp0/H2LFjIYoivF4vzj//fJxyyilo3bo1Kioq8OOPP+K///0vKisrceGFF2LOnDk47bTTNL/rVVddhZ9//hlHH300Lr/8cnTp0gUVFRVYuXKlvMzatWtx7rnnoqamBgAwYMAAXHXVVejQoQP279+PadOmYeHChRg7diyCwaDidniexw033ICHH34YpaWlmD59Oq688krVvD777DN5aNzrrrtOc982J3Yct9tvvx0ffPABAMDn82H8+PEYNmwYeJ7H0qVL8e677+KBBx7A6NGjY+bzyy+/YMSIEaipqQHHcTjzzDNxxhlnoH379qitrcUvv/yCDz/8EDU1Nbj55puRkpLSZH7LG264AbNnz8b06dPxyy+/4Mknn2yS+7vvvovPPvsMAHD88ccnxJQrRu45gwYNUlzPKAsXLpSvm+a8ZzXGzvvr2rVr5WkAjjnmmJjX4qBBg+TyyurVq00Nv24k/6KiInTu3Bnbt2/HwYMHceDAgSblBTv45JNPMH78eAQCARQVFeGbb76JOk8A+8pe11xzDV544QUAwOTJk/HEE09olkXC95fwus1N5FD1Ss93O8+Zffv24dChQ/K2CgsLY8b6+uuv5VjnnHOOjm8UjRvLJz/++CNGjx6NiooKpKen47PPPsPZZ58dtUxJSQmGDh2KzZs3AwCOPvpoXHTRRejRowd4nsfq1asxadIk7N69G++++y6CwaDinHtXXHEF7r33Xvj9fkyfPh2vvvoqMjMzVXOLjBHr/OvXrx8yMzNRVVWF2bNn698BsbDD6uwe9l4URbnzY0pKCvvvf/+ruNy+ffvktzg8zyuOlhNZQwaEhsEsLy/X3P7333+vWbtUXFwsv5HneV61yYzdw95PnTpV/rx169aKb2G2bdsW9eZZrT1w5D7x+Xxs5syZit8zMtaSJUtifgc1qqur2YwZM2z5+e2330znoZfIJiQDBw5UXObJJ5+M+TYoknHjxsnLK70VspPGbceVmqT5/f6onF5//fUmy0S+8UJDTc+GDRuaLLdkyRK5Y3NeXp5ibcuOHTvkt3CdOnVSbfKyZMkSlpOTwwCwDh06KL4Ba1zzfuedd2q+wYysQbvlllsUl218r1Br8hgeVSvWm/6TTz6ZAaHRwnbu3Km5rFGM1JBZPW6RHZ1zc3MVh4pet26dPCR6+EfpDX1FRYXchDA3N5fNmzdP8ftt3LiRderUiQGhvlJKb5RLSkpYhw4d5H0c2YRl/fr18ohl2dnZuppMafHnn3/adv+K9XZcDVEU5WMlCELMZqZbtmyRj0X37t1NbZMxxv7xj3/IcT799FNTMczUkNl5f/3ggw9illEieeyxx+Tln376aV35Nuaaa67RvBYaE75fAIjZHEsNrRqyl19+Wa7x6dy5M1u/fn2T9e0sezHG2KBBg+R8tJp2/fTTT/JyAwYM0P+FTRLZRK+oqEixht3Ocyby++k5/997772oWiAzOFE+0aoh++yzz+QmvPn5+XIz98aE+11yHMdefPFFxWUqKyvZGWecIW9LbXTIyBYS7733nmre27Ztk6+NVq1a6WrCH25Jx3EcKysri7m8HlwpZJHzCLz88suay65fv14ekvSGG25o8nlkISsjI4Pt3r1b13eKxebNm2PesO0Wssg2sVr9UZYsWRJ141W62UQWnJ566inVWG+//bau5WIReY5Y/dFzc7RCSUkJa9u2bcxCyF133SUv88orr8SMa3R5s+zZs0fu+H/RRRdpLuv3++W23D179mzyeeOC/fz581VjXXnllZrLhftTCYIQc3jnd999V441ZcqUJp9HXivHHnuspoz9+uuv8rL9+vXTHOAgMq6SkDEW3dRFSXIYC92XwsuMGjVK87uawaiQWTlukSOmKY0yFuarr76K2qZSITRyjqIvv/xS8zvOnTtXXlZtNKt58+Yxnufl41VaWsr8fj879thjLRcuImks61Z+wn2ZjVJeXi7HKCgosH15Na644go5jtlR38wImZ3315deekn+7J577okZy+jySlx44YVyDKUXnlaXV0JNyP72t7/Jf+/bt6/qtAV2lr0Yix6gQqvZWKS8xtquVerr66OmYZg4caLicnaeM1988YX82cUXXxwzltHllXCifKImZG+88YZ8n27fvr1qM+DffvtNXv/uu+/W3FZJSYn84nbkyJGKy3z99ddyPK3m1pHyGmu7Yf7yl7/I65h9gdIYZ9rQxODDDz8EEJoZ+4YbbtBctlevXnLV6nfffae57MUXX4x27drZkmO3bt3Qpk0bAMCSJUtsianFtm3b8McffwAA+vfv36SaN5IhQ4bIzby2b9+O3377TXVZQRBw6623qn4e2Vxs7dq1RtOOO0RRxGWXXYa9e/cCAEaNGoVLLrlEcdmqqir599TU1Jix09LS5N8rKystZqrOf//7X/j9fgDAvffeq7ms1+vF2LFjAQAbN27Etm3bVJcdMGAATjrpJNXPtc4VxhimTJkCADj99NNxzDHHaOY1duxYeDyhFtWxruu//vWvms1Jvvjii6hlBUFQXfaOO+7Q3BYA3HzzzfLv77zzjuIykX+/8cYbY8ZsTqwct/r6esyaNQsA0Lp1a1x11VWqcUaNGoUjjjhCM5fwvb1Xr14477zzNJc97bTT5Pu12jkwfPhwPPjggwBC97qbb74ZjzzyiHzPu/LKKzVzjiecut9s375d/j0/P990HKPY+X2d2HdueD6IoogbbrgBzzzzDADghBNOwIIFC9C+fXvF5e0ue11++eXyd58+fXrUPglTU1MjNy32+Xy44oordHwz89xyyy1yc/YBAwbg9ttvV1yOzj97eOqpp3DzzTdDkiT07t0bixYtUm0CHD7/OI7DPffcoxk3Ly9Pbso5f/581NfXN1nmzDPPlJ8hCxYswNatW5sswxjD5MmT5f/rbS6bl5cn/x55j7RCs/chM8OCBQsAAG3btsW3334bc/lwAWv79u2ora2NOrEi0SqUNKaiogJTpkzBN998g1WrVqG4uBjV1dWKy+7atUt3XLMsXbpU/v2MM86IufwZZ5yBuXPnAggJo1p74F69ekWdWI2JvHGH+8OYoUuXLnJ7bDdzxx13yA+XTp06KbZNdjvh6wcInZuff/655vKRx/XPP/9Ely5dFJc7/vjjNeNonStr1qxBSUkJACArKytmTgCQmZmJsrIy/Pnnn5rLxbquly1bJv9+6qmnai57yimnxMzr1FNPRa9evbBhwwZ88MEH+Pvf/w6v1yt/HggE5P4Q7dq1w6hRo2LGbE6sHLcVK1bIcj98+HBNmQVCsq12vMrLy+WCUOvWrXWfAwA0z4Enn3wSc+fOxZIlSzBt2jT57127dsVrr70Wcxt6eOKJJxKiD5oZwtct0LJCRlijrq4Ol156qdxn/5xzzsGnn36K9PR01XXsLnvl5eVh9OjRmDp1Kqqrq/HZZ5816Q/62WefyQJw/vnno6CgQPd3NMrEiRPx7rvvAgBycnIwbdo0+Hy+ZtteMiNJEm699Va8+uqrAIDBgwfjm2++0ew/Fz7/cnNzo8q8aoQlrL6+Hlu2bGnyQlAQBIwbNw7PPvssGGP44IMPmtzHFyxYIPdXGzRoEPr166fr+0Wep1bKxpG4Tsiqqqrkzo/r16/HhRdeaGj90tJSVSFTeyvUmB9//BFXXHEF9u3bp2v5iooK3fmZJVxjA4QkKhaRy0Su25hYnUsjBzupq6uLud145m9/+5t882jdujXmzJmjuX8iO4jq2Te1tbXy71lZWRYy1SaylmvMmDGG1tW6sVg5VyJzmj59OqZPn25LTkDs63rPnj3y7926ddNcNi8vD7m5uSgrK1NdhuM43Hjjjbj33nuxf/9+zJw5ExdddJH8+ZdffokDBw4ACL1tiyUxzY2V4xa573r06BFzW1rL7Ny5E5IkAQg9BCNfHMRC6xzweDz4+OOPccwxx8gFu/DfsrOzdW/D7Th1vwkXegRBUH22Ngd2fl8n9p3Tz4cHH3wQ5eXlAEIDH73//vtyqwMlmqvsdc0118gDkU2aNKmJkEW+9Lz22mubrK/14iY9PV3XC2oAeOutt3D//fcDADIyMvDNN9+gZ8+eqsvT+WeNl19+WT7/RowYgRkzZmgOqgEcLieUlpaaOv+UmDBhAp599lkAocFlHn/88ajBZWKdf2pEPlsi950VXCdk4QNolvDbXCX0PEw2btyIUaNGyTu4d+/eOPvss9GzZ0/k5+dHVf3eeOONOHjwIERRtJSzHiKrkDMyMmIuH3nia1U/OzXym9v4+9//jn/84x8AQgXY77//Pqb45ubmyr+HR6TSIvywa7yu3Vi5hrSuHyvnSnPlBMS+rsM12x6PJ6omS42MjAxNIQNCN/m//e1vqK+vx9tvvx0lZG+//TaAkLhdd911MbfX3Fg5bpHNXrTerIfRujdZOQcCgYDm54WFhcjPz5fvdd26dYs5sli8kZmZCY/Hg2AwiLKyMgSDQc0Ctl33m7Cwi6KImpoaXeeBHdh5f3XiXu308yFytNjq6uqYLVSaq+w1YsQIdOjQAbt27cL8+fOxbds2uRXG9u3bMW/ePACh1gRKcqVVMO/cubNmM/swkydPlpuap6WlYebMmTjhhBM016HzzxpGzz+gecoJvXv3xgknnIBFixZh69atmD9/PoYPHw4gurlsamoqLr/8ct3bi8zVrhdVrhOySJE4+eST8dNPP7Xo9v/v//5PlrG//e1vePrpp1WHao3VxtpOIt9YqDWdjCSyINWctTF6qampidkXSC+dOnXCwIEDbYkFAM899xweffRRAKEakjlz5uiqto4UNj0Phch2xnpqOc0SvoY4jkMwGHSFdEde14899hiefPLJFtt2WBKCwSACgUBMKdNzfRUUFOCSSy7BlClT8N1332HHjh3o1KkTtm/fjjlz5gAIFUS6du1q/Qs4SORxCw99roXWvouMNW7cuKhhrq1yyy23RF1fGzZswCOPPIJ//vOftsRft24d1q1bZ0usYcOGxay1VILneXTv3h3r16+HKIrYtWuXavNiwL77TWQzxZKSkhYTMjvvr07cq51+Pvzf//0fpk6dikWLFmHGjBkYO3Yspk2bpnr/a66yF8/zGD9+PJ555hm52djjjz8OIDTUfbigPm7cuGZpTfDJJ5/gmmuuAWMMKSkp+Pzzz2M2XQfo/LPKHXfcgT///BMzZszAL7/8gjPPPBOzZ8/WLI+GuymEn6V2cc0112DRokUAQjViYSGLbC47evRoQyLaHE25XSdkOTk58vj+LdE3qzHff/89AKBVq1Z46qmnVGWssrIy6oA0N23btpV/j5wfS43IZewayMQKBw4cMFwFrcb48eNt69v173//Gw888ACA0Lk3e/bsmANOhImUNq2BU4BQe+rwoCw8z8cc/MAK7du3x/Lly8EYw+7du9GxY8dm25aRnMK09HXdrl07ue/Sli1b0Lt3b9VlS0tLY9aOhbn55psxZcoUSJKE9957D0888QTee+89uVme04N52EHkvWPTpk0xl9daprnOgSlTpsgDxhx77LEoLi7G9u3b8fzzz+PMM8+MOY+dHqZOnWrbS4Qff/xRV19FJfr164f169cDCN1ztIQssu+k3n4RSnTp0gULFy4EECqEdOjQwXQsI9h5fz3yyCPB8zwkScLy5cshSZLmiyo79p2R/A8ePCgXQIuKimyZgywrKwvffvstzjrrLF1S1pxlrwkTJsgDi0yePBmPPfYYgOi5xxo3ZQxjpe/5p59+iquvvhqSJMHn8+Gzzz7T3cTRznOmTZs2KCgowKFDh7Bjxw4UFxdrvpRp6fOvOconXq8X06ZNw2WXXYb//e9/uqSsffv2KCsrw4EDB3S9PNXLmDFjcMcdd8g1Yv/5z3+QkZGB999/X17G6Nx3keV/pXnszNBir84jT+RYF9jJJ58MIFR40lMIsJP9+/cDCHUI17r4vv/+e7ngpYaR7xyLyEE5wm/gtYisjWrJyTzjiVdffRV33303gNDDa9asWRg8eLDu9fv27SsXTtasWaP5EFu0aJHc1/DEE09s1lrL8NsfIPYIhS3FgAED5DbXc+fOjXnt2EnkxKfhidrVCDef0cOwYcPQt29fAMB7772HQCCA9957D0Dohc4FF1xgPFmXcfTRR8ud3n/66aeYzbPDAwkpUVhYKI+utXjxYlv63m7duhW33HILgFBN6CeffIKPPvoIgiBAkiSMGzcuqilOvHPmmWfKv8eakDRyUIazzjrL9DYjC3ZhGWwJ7Ly/Zmdny4PblJeXY/Hixaqxdu7cKY822qlTJ1OTQgOhAYLCzT3nz5+v2c8k8lhaOVaNCUvZiSeeCACYMWMGxowZo9oEuLnKXj169JAHX9qyZQsWLFiA+fPnY8uWLQBCoz9qvSgzw+eff44rrrgCoijC4/Fg2rRpOPfcc3Wvb/c5E752GWOaz+Wamhq5f21aWlrU89wIbiifhKXs4osvBgBZytTu/eHvWldXh/nz59uSAxA6luEcqqqqMH36dGzbtk2uBe7QoQNGjBhhKGZ4oCmO49C/f39b8mwxIYusDo/VJGj8+PHy7+E3KS1FuDnGli1bVCVKFEW5v5EWRr5zLLp06SI301uxYoWmlC1btgw//PADgJC5u6EvRXiURTt+7Kgde/vtt3HbbbcBONzBd+jQoYZicByHSy+9FEDoJvvKK6+oLvvyyy/Lv4eHmW8uLrvsMrkQ/c9//tPyuWcHgiDgyiuvBBBqGqE2XHxzEClGr776qqZUvPTSS4Zi33TTTQBCD+Q777xTfuiNHz/etrd7TpKSkiIPLbx//358/PHHqsvOmjUr5oiY4Xt7TU2N3NHaLKIo4sorr5Qf7i+//DJ69uyJYcOG4eGHHwYA7N69G9dff72l7QChURbtun+ZrR0DQs1qwtf2J598Ig8e05jVq1fLz4A2bdqYLtQBwHHHHSf/3hJTvISx+/4a+Xet6/yVV16Rn/1GB0WKJDMzU752KioqVJ9bjDH85z//UczTDsJSNmzYMAAhUVGTsuYse0XWQEyaNClqfxitnYjFN998g7FjxyIYDEIQBHz88ccYPXq04Th2njORsV5++WXV8uWkSZPke9qoUaN0jRmghFvKJx6PB1OnTpWnD/rll19w1llnKUrZuHHj5N+ffPJJW8dnaHz+RTaXHT9+vKGuHaIoyrWYffr0sW/wKDsmM9MzMfTtt98uL/PTTz9pxhNFkQ0ePFhe/o477mD19fWqy9fU1LD333+fffLJJ00+i5zQU8+EnCNHjpSXf+GFF5p87vf7oyYxhMYEsi+88IK8zAcffBBz27Emhp42bZr8edu2bdmff/7ZZJnt27ez7t27y8v95z//UYwV/lzPJJ1Glo0HPvjgA3ni7PT0dNMTtTLG2O7du1l6ejoDwDweD/v++++bLBM5WWfHjh1ZbW2thez1cc8998jbPPXUU9nevXtVlxVFkc2ZM0dxgnO1iR6ViLXszp07WW5uLgPAUlJSYl4T+/fvZ0899RRbsWJFk8+MTDTPGGPDhg2Tl7/lllsUJ5JuPPmv2nUdSVlZmXz8I3/UJoy2CyMTQ1s9bgsWLJA/z8vLU5zUe8OGDVGTqQPKE0NXVVWxzp07MwCM4zj23HPPaU7qXVZWxl566SU2Z86cJp89+uij8rYuueSSqM8CgQAbOnSo/Pmbb76puQ/iiTvvvFP+XmeffXaT+0lJSQkbMGBAzGeAXurq6lhGRgYDwE466SRTMcxMDM2YvffX6upq1q5dO3lZpUnO58yZwzweDwPAMjMz2b59+2J+H6170O+//y4/a3JychTvZU888YQcZ/Dgwaqx9KA2MTRjjFVWVkbdBy+44ALm9/ujlrGz7NWYyspK+TzKzMxkmZmZ8jO4vLzc1PdVYs6cOSw1NZUBYIIgsI8//th0LDvPGUmS2MCBA+VYTz75ZJNlVqxYIU92zPO85kTskeef0jOAsZYvn2g9SwKBALvkkkvkz48//njF437xxRfLy4wdO1bz3AgEAmz69Om67nGSJLEuXbrIz57WrVvL29m4caOh77lixQp53TvvvNPQulq0WB+y008/Xbbw6667DnfddRc6d+4sd+Ls0aOHPGQyz/OYPn06hg4dit27d+Oll17Cf//7X1x66aU4+uijkZOTg6qqKuzYsQPLli3D3LlzUV1djaefftpynrfddptc+3T33Xdj3rx5OPPMM1FQUICNGzdi8uTJ2LhxI0499VRs3LhRsxr49NNPl3+///77cfDgQfTu3VseGat9+/aGqjrHjBmDGTNmYOrUqdi7dy8GDhyICRMmYOjQoRAEAcuWLcO7774rv3k444wz5OY8RIhZs2bh2muvld+MXHvttSgrK4s5J9LAgQPRqVOnJn9v164d/vWvf+Evf/kLgsEgzj77bIwbNw7Dhw9HMBjErFmz5FF8PB4P3nrrLc1JGiP7LG7dulWzj4gW//d//4fly5dj7ty5+PHHH9GtWzdcfPHFGDp0KIqKiuD3+7Fv3z65tnXfvn04/fTT8cgjj5janh46dOiAqVOn4vzzz0d9fT3Gjx+PF154Aeeffz569uyJtLQ0lJeXY8OGDVi8eDEWLlwIURR1dcCOxZtvvonBgwejpqYGr732Gn755RdcddVV6NChA/bv349p06Zh4cKFGDp0KHbs2IHdu3fremOWk5ODsWPHRrVFP+WUUzSHU443hg0bhltuuQWvvfYaSktLcfzxx2P8+PEYNmwYeJ7H0qVL8e6776K6uhqjR4/WvJYyMjLw+eefY/jw4aioqMD999+PN998ExdffDGOPPJIZGZmoqKiAlu2bMHSpUsxb948+P1+ecLQMD///LPcSqFDhw546623oj73eDyYMmUKjjnmGFRUVOCuu+7C8OHDbW8W5QSPP/44vv32W6xbtw6zZs3CwIEDcf3116N9+/bYtGkT3nzzTezcuRNA6Fy02pcxJSUFZ511FqZPn45ly5ahqqoq5vDVje8jkSOSbd26tcnnAwcOjBqpNIyd99f09HS89dZbuOCCCyCKIq655hp8/fXXOPvss+HxePDTTz9h8uTJ8uhw//73v9G6devYO0iDAQMG4P7778c///lPlJeX44QTTsD111+PIUOGyE2nws3XMjMzm5zHdpKZmYlZs2bhnHPOwYIFC/DFF1/g0ksvxaeffirX5jdn2SszMxOXXnopJk2aFDXo2MUXX2xbDcPy5ctxwQUXyMO8X3zxxUhLS4v5fO/Tpw/69OnT5O92njMcx+Gtt97CySefjJqaGjz++ONYuHAhLrnkEmRkZGDp0qV455135BYtDz30kOWmcHaXT6zg8XjwySefgOM4fPrpp1i8eLHcpyzy+L/33nvYsGEDVq1ahWnTpmH27NkYM2YMBg0ahLy8PNTW1mL37t34448/MGfOHJSWluoazZjjOEyYMEFu7RDunnTSSSfpmtIlksiuD2ZqXlWxw+r01JAFg8GotzONf5TezO7Zs4edfvrpqutE/giCwN5+++0mMYzWkDHG2EMPPaS5rRNPPJEdOHBAftOr9Sb98ssvV43TeF/peesfCATY9ddfH3N/XHLJJaympkY1Tni5ZKsha1wLovdH6W1/JBMnTmRer1d1/aysLF1vESPXUXvrpZf6+np26623MkEQdH3HcePGNYlhZ01LmF9++YV169ZNV06ZmZmKbwmN1pAxxtgPP/wg19Ap/fTr14/t2LGDtW/fngFgRx11lK64S5YsiYozZcoU3TmZpSVryBgL3b+vvvpq1X3H8zx77rnnNN/QR7Ju3bqoWhytn5SUFDZr1ix53dLSUvney/O85n39o48+kuMMGDBA821/PLF169aY+2/EiBGstLTUlu19/vnnctzJkyfHXN7o/VWt3BDGrvsrY6FzIlw7o/Tj8/kUW8dEoreGjLHQm/k777xTrilT+mnVqhWbO3eurvy10HP9VVVVsZNPPlle7vzzz29SU2ZH2UuJn376qcn6P/zwg9WvLRP5/Y38xLpH2nHOhJkzZw4rKipSjcVxHLvnnnuYJEmacSLXiVVWsPP60ULPsyQQCLAxY8bIyx133HFNasHKy8vZ2LFjdR+/Rx99VFd+W7dubXIdvvfee4a/55AhQxgA1qlTp5jHyQgtJmSMMVZbW8ueffZZNnToUJaXlxdVUNS6IObNm8duuukm1rdvX5abm8sEQWDZ2dnsyCOPZGPHjmWvv/4627Nnj+K6ZoSMMcZmzZrFRo0axQoLC5nX62Vt27Zlp512Gnv77bdZIBBgjDFdQhYMBtnrr7/OTjnlFFZYWChXbSvtKyOFzF9++YVdd911rEePHiwjI4OlpaWxrl27squuukrXjT28HRIyfT+xhIwxxlatWsX++te/sl69erGMjAyWlZXF+vXrxx544AG2bdu2mOtXV1dH3eAPHTpkwzdmbOPGjezBBx9kxx13HCsqKmIej4elp6ezrl27snPOOYf94x//UG0a0RxCxljopvzRRx+xMWPGsK5du7LMzEzm8XhYfn4+GzRoELvhhhvYtGnTWFVVleL6ZoSMMcb27dvH7r33Xta7d2+WlpbGcnNz2aBBg9jzzz/PqqurmSRJLC0tjQFgp5xyiq6YkiTJzUzy8/NZXV2doZzM0NJCFmbmzJls1KhRrKioiKWkpLBOnTqxyy+/nC1atIgxpq9AGEaSJPbFF1+w8ePHs169erHs7GwmCALLzc1lRx99NBs3bhybNGkSKykpiVov8kH94IMPam6DMcauvPJKefl77rkn5vLxgt/vZ2+99RY77bTTWOvWrZnP52Pt2rVjo0aNYlOnTrW1oBAMBlmnTp0YADZy5MiYyxu9v8YSMsas318j2bZtG7v//vtZ3759WVZWFsvIyGC9evVif/3rX9nq1atjrm9EyMIsWrSITZgwgXXr1o2lpqay3NxcNnDgQPbUU0+xgwcPGspfDb3Xn5KUKb2ssFL2UkKSpKguFV26dLH1PG0uIWPM+jkTyYEDB9iTTz7JBg4cyHJzc1lqairr1q0bmzBhgnwvjYURIWPM3utHDb3PkmAwGHUfV5IyxkJNfu+88042YMAAVlBQwDweD8vMzGQ9e/Zko0ePZi+88ALbvHmzoRxPO+00ebsZGRmssrLS0PobNmyQ13/mmWcMrRsLjjGLw/8RBGELs2fPlkfYuv322w0PMEFYZ9WqVTjqqKMA6D8G33//PUaOHAkgNPfKiy++2JwpEoQj/Pvf/8bdd98NQRCwbdu2Fhv+niAIwi089thjePrpp5GRkYHt27ejoKDAttjOzxhLEASAw3PgZWVlNWtfLkKdyNHO9PZde/311+XfE2HuMYJQ4uabb0abNm0giiKee+45p9MhCIJoUSoqKvDqq68CCI03YaeMASRkBOEawkJ29913o6ioyOFsEo8FCxZozn/26quvyp3q27dvr2vOmuXLl8sdxkeMGGF6ziKCcDtpaWl44oknAABvvfUW9uzZ42xCBEEQLcjLL7+MkpISFBQU4P7777c9PjVZJAgXUFxcjFatWqGwsBCbN29u1omjk5UePXqgrq4OZ599NgYMGICioiIEAgFs3rwZM2bMwB9//CEvO3PmTFUh+/bbbyFJEjZs2IDnnnsOe/fuBRAa+S88AStBJCKSJGHw4MH4/fffceutt2rObUQQBJEoVFRUoGvXrigpKcEbb7whz0FqJyRkBEEkBT169MDmzZs1l0lLS8Pbb78tT2KtROTUBGH09jf77rvvUFNTEztZBQoLC+XJXQmCIAiCSBxIyAiCSAoWL16M6dOnY/Hixdi9ezcOHTqEmpoa5OXloVevXhgxYgT+8pe/xJx7KCxkmZmZ6NWrF/7yl7/g2muv1TVvWZcuXbB9+3ZT+Q8fPhzz5s0ztS5BEARBEO6lxSaGJgiCcJLjjz8exx9/vOU49A6LIAiCIAg7oRoygiAIgiAIgiAIh6BRFgmCIAiCIAiCIByChIwgCIIgCIIgCMIhSMgIgiAIgiAIgiAcggb1IAiCIEwhiiJqa2tRU1Mj/0T+v7q6GvX19fD7/fD7/VG/K/3f7/dDFEVIkhT1b/hHkqSoz4DQqJdqP+GRL3mehyAI8Hg88Hq98o/a/30+H1JSUpCWlobU1FSkpqYiPT1d/j3y72lpacjMzER6ejo8HnqkEgRBEMahpwdBEEQSwxhDZWUlKioqUFFR0eT38vJy+W/hf6urq1FTU4O6ujqn03cV6enpyMzMjPrJysqK+n92djZyc3ORk5OD3Nxc5ObmIi0tTXF+O4IgCCI5oFEWCYIgEgxJklBeXo6SkhKUlpY2+bfx76IoWtqeIAhIT0+P+klLS0NGRgZSU1Pxzc/rwDgB4Hgg4t/Gf2PgAY4D5H8bfhR+ZxECw8mPsYh/5ScbO/zDGMBEgDFwkADW8BPxO8ckACIgiQATccHwI1BXV4fa2lrU1tairq5O/n/43/r6ekv7z+fzyXIW+ZOXl4fCwkIUFhaioKAAhYWFyMjIIHkjCIJIMEjICIIg4ghRFFFaWooDBw7g4MGDOHjwYJPfi4uLEQwGDcVNT09HdnY2srKykJ2djezsbHy/dCsY7wV4X6N/vWC8B+DCP2GBSlKYBEgBcFIAkAIAC4CTgof/xgK49PS+co1jWVmZ/K/f7ze0qdTUVFnOwqJWUFCAVq1aoVWrVmjTpg0KCgp0TVROEARBuAMSMoIgCBchiiKKi4uxd+/eJj/79u3DoUOHdNdo5eTkID8/H3l5efh13X4wPgUQUhr+TQWTf08JSRXRsoRr7KR6cKIfnFQPSH5wYujfUSd0x6FDh1BcXIzi4mJUVVXpCuvxeNCqVSu0bt0abdq0afJvq1at4PV6m/nLEQRBEHohISMIgmhh6uvrsXv3buzYsQO7du2Kkq79+/fHrN0SBAEFBQUoKipCq1atMOfXHYAnFUxIa/hJBYRUkqxEQwo2yFud/HP12f3lmtH9+/ejuLg4prDzPI/WrVujffv26NChAzp06ID27dujffv2aNu2LVJSUlroCxEEQRAACRlBEESzIEkS9u/fj507dzb52b9/P7RuvYIgoE2bNmjbti2W/HkQzJMO5skIyZYnDeBTk7uJIKEOkwCxDpxYCy5YA06swYUn98S+ffuwf/9+7Nu3T7OZJMdxaNWqlSxpHTt2ROfOndGlSxe0atWKmkISBEE0AyRkBEEQFhBFEXv27MHWrVujfnbv3q1Z8M3MzESnTp3QoUMHfLN4e0i6hHQwTzogpJFwEc0DY6FatmA1uEAVrj23P3bt2oXdu3dj165dqKmpUV01NTUVnTp1QpcuXWRJ69y5M9q1a0dD/hMEQViAhIwgCEIH4Rqvbdu2YcuWLbJ4bd++XVW8vF6vXMvw4/K9YJ5MMG8mmCcT4H0kXYS7YCzUhy1YDS5YhevO7Y+dO3di27Zt2Llzp2pTWo/Hg44dO6Jbt27o3r07unfvjh49eqCwsJBGhCQIgtABCRlBEEQjgsEgtm3bho0bN2LDhg3YuHEjNm3apFp7kJKSgi5dumDtzhowbxaYNxuSNxMQ0km6iMSASaEmkIFKcMFKnHNcR2zfvh07duxAbW2t4io5OTlRgta9e3d06dIFPp+vhZMnCIJwNyRkBEEkNbW1tdi0aRM2btwo/2zduhWBQKDJsh6PB506dcLGffUR4pVN4kUkL4wBYi34QCW4QAXOGtwOmzZtws6dOxUHFxEEAZ06dULv3r3Rp08f9OnTB927d6eBRAiCSGpIyAiCSBqCwSC2bt2KtWvX4s8//8Sff/6Jbdu2KQ6wkZmZiR49emDZpgowXw6YNxfMm0kjFxKEHpgYqk3zl+Py03tg8+bN2LRpEyorK5ssKggCunXrJgta79690a1bN+qXRhBE0kBCRhBEQsIYw4EDB7B27VpZwNavX4/6+vomy+bn56NXr174eW0JmDcHki+Har0Iwm4YA8Q68IEyXD/qCKxbtw7r1q1DeXl5k0V9Ph969OiBI444Av369UO/fv3QunVrB5ImCIJofkjICIJICILBIDZs2ICVK1di1apVWLNmDUpKSposl5GRgT59+mDJhgqwlDxIvrzQnF0EQbQ84SaP/jKMP7Mn1q9fj/Xr1ytOgl1UVIR+/fqhf//+6NevH3r06EG1aARBJAQkZARBxCU1NTVYs2YNVq1ahRUrVmDt2rVNar/CTaHW7QlASskD8+WFRjikmi+CcC+MhUZ69JfhslO7YNWqVdi8eXOTPmkpKSlyDVr//v3Rv39/ZGZmOpQ0QRCEeUjICIKIC8rLy7F8+XKsXLkSK1euxKZNm5oU0LKystC/f3/MX1MGKSUfzJsD8PQGnSDiHikIzl+KWy44EqtXr8aaNWua9EfjeR69evXCMcccgwEDBpCgEQQRN5CQEQThSmpqarBy5Ur89ttv+P3337Fp06Ymg2+0bt0aeyq9IflKKQDzZFHtF0EkA4yBC1aBqy/BBUPbYcWKFdi9e3fUIiRoBEHECyRkBEG4Ar/fj7Vr1+L333/Hb7/9hrVr1zapAevcuTO2FHOQUgogpeQDnnSHsiUIwnUEa8HXF+PCE9rhjz/+UBW0wYMHY/Dgwejbty+8Xq9DyRIEQRyGhIwgCEdgjGH79u1YsmQJli5dipUrVzbpA9amTRvsrvRBSimClFpIg28QBKGfGIKWlpaGAQMGYPDgwRgyZAg6dOgAjmrYCYJwABIygiBajJqaGvz222+yhO3bty/q87y8PBTXpx8WME+GQ5kSBJFwBGvB1x/E2QMLsGzZMpSVlUV93KZNG7n27Nhjj0VWVpYzeRIEkXSQkBEE0WwwxrB161YsWbIES5YswcqVKxEMBuXPvV4vjj76aCzeVAcppQjMS33ACIJoARgDFyjHbaP74Ndff8WqVasQCATkjwVBQL9+/XDCCSfgxBNPRMeOHan2jCCIZoOEjCAIWwkGg1i+fDkWLFiAhQsX4sCBA1Gft2vXDjsrUiCltoKUUkijIBIE4TxSEHz9IVx+SgcsXboUO3bsiPq4ffv2OPHEEzF06FAcffTRNP8ZQRC2QkJGEIRlqqursWTJEvz8889YvHhx1KSuPp8PAwYMwML11ZBSW4N5MqgWjCAIdxOsxv1j+mLhwoVYvnx5VM1+RkYGhgwZghNPPBHHH388srOzHUyUIIhEgISMIAhTFBcXY+HChfj555/x+++/RzX3ycvLQ7E/C1JaW6oFIwgivpEC4OsO4vwhhfjll1+i+p4JgoABAwbglFNOwUknnYS8vDzn8iQIIm4hISMIQjcHDhzAvHnz8OOPP2LNmjVRn3Xs2BFby1IgpbUF8+VRLRhBEIkHY+D8pbjuzC5YuHAhtmzZIn/E8zyOOuooDB8+HCeffDKKioocTJQgiHiChIwgCE2Ki4tlCVu1alXUZ3379sWKXVJIwrw0IhlBEMkFF6jCred3x/z587Fu3bqoz/r27YtTTjkFw4cPR5s2bRzKkCCIeICEjCCIJhw6dAg//fQTfvzxR6xcuRLh2wTHcejfvz9+28EgpbcFhDSHMyUIgnAJwRrcfVEv/PTTT1i9enXUR3379sXIkSNx6qmnUrNGgiCaQEJGEASA0MAc8+bNw3fffYcVK1ZAkiT5s379+mH5LkBMawd4SMIIgiA0Cdbi/jFHYP78+Vi+fLn8UksQBAwaNAgjR47EsGHDkJ6e7nCiBEG4ARIygkhigsEgfv31V3z33XdYsGAB/H6//NmRRx6JlXt4kjCCIAgriHW456Ke+P7776OaNaakpGDYsGEYMWIEhgwZAq/X62CSBEE4CQkZQSQZjDFs2LAB3333HebOnYuSkhL5s86dO2NzWTrE9A6Ah97cEgRB2AkXqMKNZ3XE999/j127dsl/z87Oxumnn45zzjkHvXr1okmoCSLJICEjiCShuLgYs2fPxuzZs7Ft2zb577m5uSgO5kPK6ADmzaXREQmCIJobxsAFynDlya2bvBjr3r07zjnnHIwcORK5ubnO5UgQRItBQkYQCYwoili6dCm++uorLFq0CKIoAghN1lwrFELK6AgptRXA8Q5nShAEkaQwBq7+IM4+Kj2q6bjH48GJJ56Ic845B4MHD4bHQ/M5EkSiQkJGEAnI/v378fXXX+Obb77BgQMH5L/37dsXy/d4IaW3A3jqr0AQBOEqRD8eGNMbs2bNwvr16+U/FxYW4swzz8S5556L9u3bO5ggQRDNAQkZQSQIwWAQixYtwsyZM7F06VJ5VK/s7GyUSIWQMjuDebMdzpIgCILQA+cvxxUnFWLOnDkoLy+X/37cccdh9OjROP744yEIgoMZEgRhFyRkBBHnFBcX48svv8SXX34Z1Q9hwIABWLqdD80XxtFDmyAIIi5hIv554xB89dVXWLp0qfzn1q1b4/zzz8eoUaOQn5/vYIIEQViFhIwg4hDGGNauXYvp06dj3rx5CAaDAIC8vDwcDBZAyugM5s10OEuCIAjCVoLVGD+8EN988w0qKioAhPqanXLKKRg9ejT69+9PIzQSRBxCQkYQcYTf78cPP/yA//3vf1Hz2fTv3x+/70mBlNaWBuhoYTgGMJvKP26NRRCEy5BEPDn+KHz++edYu3at/Odu3brhkksuwciRI5GSkuJgggRBGIGEjCDigIMHD+Lzzz/HzJkzUVZWBqBhpERPa4hZ3cB8uY7ml6xwEXdPq/LTHLHsEDK3xiIIIgTnL8NFg7MwZ84c1NfXAwi1lrjwwgsxevRoGjqfIOIAEjKCcDFbt27F1KlTMWfOHLlZYlFREfb6CyFmdAYEegPqFJzCndOsaNgVq3EcK+Lj1lgEQagg+XHXBV3x2WefyaPr+nw+nHnmmbj00kvRpUsXZ/MjCEIVEjKCcBmMMaxYsQKffPIJfvnlF/nvRx99NJbt8kFKa0PNEh1GSaAA46KhFsfOWHaIndlYduZEEIROmIR/XDcQ06ZNi2raftxxx2Hs2LE49thjqZ8ZQbgMEjKCcAmiKOLnn3/GJ598IvcJ4DgOwdS2ELN6gKXkOZwhAWhLFKBfNmLFsSuWEfmx67vFikVCRhAtAGPg/CU4vTeHn3/+WZ4KpWfPnrjyyisxfPhwGjafIFwCCRlBOIzf78esWbMwdepU7N69G0BD/zBvO4hZ3Wm0RJegR6DCxBIOvbFaKo7eWHbF0RuLIAibCFbjihNy8M0336C2thYA0LFjR1x55ZUYOXIkvF6vwwkSRHJDQkYQDlFfX4+vvvoKH3/8MQ4ePAgAyMrKQinXFmJmN+of5iKMyFgYNeEwGsuOOFry44Ro6olFEEQzIPpx85lt8Nlnn6GyshIA0KpVK1x++eU499xzaWRGgnAIEjKCaGHq6urw5Zdf4pNPPsGhQ4cANAzUEWgdGqiD9zicIRGJGRkDlIXDLrFL1DgEQbQQUgB3nt8Z06ZNQ0lJCYDQyIyXXXYZLrzwQqSmpjqcIEEkFyRkBNFC1NbW4osvvsDUqVPlB2Dr1q2xy98aUkYngKO2/G7DrIyFCUuHG+JECpDb4hAE4RBMxMNje2PKlCnYt28fACA/Px9XXHEFLrjgAqoxI4gWgoSMIJoZv9+PL7/8Eh9++CFKS0sBAG3atMHO+rCI0YiJbsSqRNkJ49whdc0RhyAIF8AkPHF1P3zwwQfYs2cPAKCgoABXXXUVzjvvPPh8PocTJIjEhoSMIJqJYDCI2bNnY9KkSdi/fz8AoF27dthe2wpSRkcSMZfiJhFLZEjIkhgOgNXrzI4YdsZJFJiER684Ah988IH83CoqKsK4ceMwatQoeDzUpJ4gmgMSMoKwGUmS8NNPP+Hdd9/Fjh07AIQeaHuC7ahGzMWQiLUsJGRJTvj4W7nuIs8hN8RJJJiEh8f2wuTJk+VBpzp06IAbb7wRw4cPp3nMCMJmSMgIwkaWLVuGN954Axs2bAAA5OTk4BA6QMzsCvDUR8xtkIQ5BwkZgcbngJnr0Y4YdsZJNJiI+y7qhsmTJ6OsrAwAcOSRR+Lmm2/GMccc42hqBJFIkJARhA1s27YNr732GhYvXgwASE9PR4WnI8Ss7gBP87u4DRIxd0BSluSoHX+j16cdcezKJVGRArhpZCtMmzZNnsds6NChuOmmm9CtWzeHkyOI+IeEjCAsUFpaivfffx8zZ86EKIoQBAH1aZ0hZveiecRcBkmY+yAhI1RFKIze61Yrjh0xjMRJZMQ6jB2SJj/zeJ7HOeecgxtuuAF5eXlOZ0cQcQsJGUGYoL6+Hp9++ik++ugj1NTUAADEtDYQc/qCeTMdzo6IhETMvZCQEQBiixAQW4b0nkt2xKF7CrhAFc7oI2LevHkAgIyMDIwfPx4XX3wxvF5qFUIQRiEhIwgDMMawcOFCvPLKK9i7dy8AoFevXlhdWgSWWuhwdkQYkrD4gISMkDFyLqhd326JkUS88+AZeOWVV7Bu3ToAoYE/br31VgwdOpQG/iAIA5CQEYROdu3ahZdeeglLliwB0DByotgRUnoHgB48roBELL4gISOiMHo+KF3vbomRTDCGJ67uizfffBMlJSUAgMGDB+O2225Dly5dnM2NIOIEEjKCiEFtbS0++ugjTJ06FYFAAB6PB3VpXUP9xHiak8UNkIjFJyRkRBPMnBONr3+3xEg2pACuGZ6LTz/9VH5WXnbZZRg3bhxSU1Odzo4gXA0JGUFoMH/+fLz88ss4cOAAAEBKLUIwtz+YN8vhzAiSsPiHhIxQxMp5wSyub0eMZL83BatxatcaLFq0CADQpk0b3HXXXRg6dKjDiRGEeyEhIwgFDh48iBdffBELFiwAEHqg7Ax0hJTWlponOgyJWOJAQkYokijnRZLfq56/eQheeukl+YXmySefjNtvvx2tWrVyODOCcB8kZAQRgSRJ+OKLL/Dmm2+ipqYmNIx9ejdqnugCSMQSE5IyQpFEOS+S/b4lBTHh5Gz897//hSiKSEtLw3XXXYeLL74YgiA4nR1BuAYSMoJoYOvWrZg4cSJWr14NAJB8eQjmHQPmy3Y4s+SGRCzxISkjFEmE84LuXwAAzl+BY1sVY9WqVQCAvn374sEHH0Tnzp0dzowg3AEJGZH0BINBfPjhh/jwww8RDAaRlpaGipQekDK7UvNEhyAJSy5IyAhVEuHcoPtZCMbw8NieeP3111FTUwOfz4cJEybgsssug8dDLVCI5IaEjEhqtm7dimeeeQYbNmwAAIipbRDMOwrwpDmcWXJCIpackJARmsT7+UH3tWiCtTi5U7k8hUzv3r3x4IMPonv37g4nRhDOQUJGJCWiKGLq1Kl47733EAgEkJWVhRJvL0jp7alWzAFIxJIbEjJCk0Q4P+geFw1jeHJcP7z88suoqqqCIAi45pprcOWVV1LfMiIpISEjko6dO3fiH//4B9asWQMAEFNbI5h/NCBQrVhLQyJGACRkhA7i/Ryhe50yYh1GdK+RRzTu168fHnnkEbRr187hxAiiZSEhI5IGxhhmzpyJV155BfX19UhPT0d5Si9IGZ2oVqyFIREjIiEhI3QR7+cJ3feUaagte/HFF1FTU4O0tDTccccdOPvss8HRs5lIEkjIiKSgoqICzz33HObPnw8AkFIKEcgfAHjSHc4suSARI5QgISN0E8/nCt3/tAnWYHDRfqxcuRJAaN6ye++9F7m5uc7mRRAtAAkZkfCsWLECTz/9NA4cOBCaVyyzD8Ss7lQr1oKQiBFakJARuon3c4XuhdowhtvOaYN3330XoiiioKAAjz/+OI455hinMyOIZoWEjEhYgsEgJk+ejMmTJ0OSJLRv3x5bg93BfHlOp5ZUkIwRsSAhIwwRz+cL3Q91Mfmxc/H0009jx44d4Hke1157La666irwPO90agTRLJCQEQlJSUkJnnzySfzxxx8AADG9I4J5/QHe63BmyQOJGKEXEjLCMPF8ztC9UR9SEOf3C2L27NkAgMGDB+ORRx5BXh69VCUSD3rVQCQcq1atwvXXX48//vgDaWlpCOQPRLBgIMlYC8ExkjFTWN1ncbzP6XwhDBPP50w8y2RLwnvw5ZoUPPjgg0hJScGvv/6K6667DsuXL3c6M4KwHaohIxIGxhimT5+OV199FaIoQvJkIlg4BMyb5XRqSUNSF6zD391MYcvKunat73AhkWrJCFPE83mTzPdLg3CBCvRM2YLt27eD53nccsstuPTSS2kURiJhICEjEoKamhpMnDgRc+fOBQCIae0RzD8G4D3OJpZEJK2MNf7eRssHdq7vhAzaCEkZYYp4P2+S9d5plEZNGM844wzcd999SElJcTgxgrAOCRkR9+zduxcPPfQQtmzZEhpFMesIiJndaBTFFiJpRQxQLkgZOe3ctj7VkhHxTDyfP8l8HzUCY7jvoi5yS5hevXrhmWeeQevWrZ3OjCAsQX3IiLhm5cqVuOmmm7Blyxbk5+ejtmAoDWnfgpCMJfH6zUBSn0+EdeL5/OEQ30LZUnAcJs7YjhdeeAE5OTnYsGEDbrjhBupXRsQ9VENGxC2zZs3CxIkTEQwGIXlzECg8DvCkOZ1WUpD0BWet76+nUBVr/8WK0Zzru6BQSDVlhCXi/fxJ9vurXoI16Je5DRs3boQgCLjnnntw7rnnOp0VQZiChIyIO0RRxJtvvompU6eG/p/WFsH8gdRfrIUgGdOxjFaB0O3ru6AwS0JG2EK8n0fJfq/VgxTEqCPq8f333wMArrrqKlx//fU0XxkRd5CQEXFFfX09nnrqKSxYsAAAEMzuBTG7DzVRbAGSXsQA/QUktdMx3tdvQUjKCFuI9/OI7ruxYQw3np6HDz74AABw2mmn4aGHHqLBPoi4goSMiBsqKirw0EMPYdWqVfB6vajJOgpSRgen00oKkl7GjH5/pUKg1Rgtub5LCrEkZYQtJMJ5lOz3YB08cdWReO655yCKIvr3749nnnkGubm5TqdFELogISPigv379+Pee+/F9u3bkZmZiZK0o8FSC51OK+FJehEDzBeEIguBZmK4aX2HICEjbCNRziW6J2vy2t2n4NFHH0VVVRU6dOiAF154AW3atHE6LYKICQkZ4Xo2b96M++67D8XFxWBCKgKFQ8F82U6nlfCQjMFa4YezYX0nc3BJAZakjLCVRDif6N6sCReoRCesxb59+1BUVIR//etf6NKli9NpEYQmJGSEq1m1ahUeeOABVFVVQfJkIVA0lEZSbGZIxBqg/eCawitJGWEriXI+0T1KnWAteqdswLZt25CTk4PnnnsORxxxhNNZEYQqNAwN4Vr++OMP3HvvvSEZ8+Uj0HoYyRjR/DBYLuhwzLrY2rG+ZbmmAp9t0IsOF0HHIvHxpGG9/wgcccQRKC8vx5133onff//d6awIQhUSMsKVLF26FPfddx9qa2shpRSFasZ4n9NpJTS2FODjmQgRs7If7NiHnMU87DqOnA1yagfxfl5aPZ5EM+CSc5toRgQflld0xcCBA1FbW4v77rsPv/zyi9NZEYQiJGSE61i4cCEeeugh+P1+iKmtESg6juYYa2aSvqAYUWC2U8bMxLK7Zs2q1JGUWcOu40E0E3Q8Ehvei18OtMNJJ52EQCCARx55hKSMcCUkZISrmD9/Ph555BEEAoHQhM+FQwBOcDqthCbpC4g21V7YWTNmNq6tNWMuxK15GSVRvkfCQMcjseEEfL81F8OHDycpI1wLDepBuIbFixfj4YcfRjAYhJjeHsH8gQBH7wyaCyoUQlPGjAwkobUv9caxGiPW8bSaB+PgisEQ4mmAD7uOCdGCxMsxofu3cZiEM7pX4KeffoLX68UzzzyD448/3umsCAIACRnhEn7//Xfcf//9oWaKae0QLBgEcPHyZIw/SMagq2bMDhGKFUfvsWjuGLHiuEXIgPgRGavnBuEQ8XBM6B5uDiZhZLdyzJ8/Hz6fD//4xz8wZMgQp7MiCBIywnlWrVqFe++9F7W1tRBT2yBYOJhqxpoJErEGdDZTtEOCtOK4JYbeOCRl+rHruBAO4fZjQvdy8zAJI7qWYcGCBUhNTcULL7yAfv36OZ0VkeSQkBGOsmHDBtx5552hoe1TikIDeFCfsWaBZAxRhRgrtRdm9mXjWG6JYTQOSVls7DouhAtw63Gh+7k1mIST2x/AkiVLkJWVhf/85z/o2rWr01kRSQwJGeEYe/fuxV/+8heUlJRASilAoPB4Gk2xGSARa8Dk4B12SFDjOG6JYSYOCVls7Do2hEtw43Gh+7p1pCAG5m7DmjVrUFhYiFdffRVt27Z1OisiSaF2YYQjVFRU4L777gvJmDcbgUIa2r45IBlrwAUjKdoxF5WdMczGccsw+IA7z2+n57AjmgE6LokJ78HvpZ3QtWtXFBcX45577kFpaanTWRFJCgkZ0eLU19fjoYcewo4dO8CEtIaaMa/TaSUcVLhrwIZJlu2aNNtNMSyLg0vOLzed5245vkQzQMclMRF8WFfXE23atMGuXbvw8MMPo76+3umsiCSEhIxoUSRJwjPPPINVq1aBcR4Eio4HPGlOp5Uw2CkPiYTj+4MxcCIDJ1lIhIXWtxTDJtzWtM7x49uAXfvFLd+HcDEuuwbjGk8adqAvsrKysGbNGjz77LOg3jxES0NCRrQo77zzDubNmwev14tA4XFg3mynU0oISMIUiKjFsVxQtvJwZgycZH37UU0NHZSyqH3ponPOLee/22SVsBEX1QwDCEkZnW+2wLyZ+Pvf/w5BEDB37lxMmjTJ6ZSIJIOEjGgxfvjhB3z00UcAgJqs/mCphQ5nlBi4pSDqKuzcJ3bKGDMhU41kzEkUZcMluQHuuRbskDK3fBdCAbcdG5IyW7j5+R9wzz33AADef/99fP/99w5nRCQTNMoi0SJs2rQJt9xyC+rq6hDM6gExt6/TKSUEVGhTQGOfGN5fjW+PRiYrV6sZ4wDG64wTQ8Z0x7GBmJLhkkKhm2qo7Lg+3fR9iEa47djQ88AWxp+YhqlTp8Ln8+HVV19F7969nU6JSAJIyIhmp6ysDDfeeCP27dsHKbUIgcKhxgq2RBNIxFSIsV907ze126Le8zZWM0U9UqajZqylhEyXFLjoknaTxJCUJQFuOz70fLAGYzi1UzEWLVqENm3a4J133kF2NnWvIJoXarJINCuiKOLJJ5/Evn37wDwZCBQMIhmzCMmYChYmeo5eSKtKSs9GdPQZi9V0UWczxZboS6ZbBlx0XrrpGqHmi0mA244PPWKtwXH4cXsu2rVrh3379uHvf/87JMlqR2CC0IaEjGhWPvroI/z2229IS0tDoHAIwPucTiluoYE7NLBrv1htMNAMA3jEojmlzLBMuOj8dNO1QlKWBLjt+NCAH9bgvXj66afh8/mwePFiuf87QTQXJGREs7FixQq8//77AICKtCNoREULUGFMBROjnqkWjvXKmNJy8rD2RhJRkCm3D+Cha0Vb07CEW/YlQFKWFLhtFEaApMwCVz3xJe666y4AwLvvvovffvvN4YyIRIb6kBHNQnl5Oa699locPHgQYnpHBAsGOp1S3EKFMBWsTmwcFctgsMhmt1ZrxcL9ySzKmJ39ySzLg8sKgW7qg0V9ypIEtx0jeo6Y5qKjgvj6669RUFCASZMmIScnx+mUiASEasgI22GM4f/+7/9w8OBBSJ4MBPOOcjqluISaKGpgtWVh1FxaJoKF17GjiWI4jsXvZFfTRVsK+3TeqkI1ZUmC244RNWE0zf+WA506dcKhQ4fwr3/9iyaNJpoFEjLCdr7++mssWrQIXq8XwYJBAO9xOqW4gwpcKtjdJMjCg5WTGISA9WQ4EfDU2VFtAgh+i3bImH190ugcJpIdugYSA96DRx99FIIgYN68eZg9e7bTGREJCDVZJGxl//79GD9+PGpqahDM6Qsxu4fTKcUdJGMq2LBfuEb9tszWVnAM4MMyxgGSYC4QJ4UkinEcxFQLr68ZwAcZwAGiz+R7tohaOmZkrrRYuOStvBub+VlqourC70NoYPV4hc8Vu+IQhrn1rFZ4++23kZ6ejvfffx9t27Z1OiUigaAaMsI2GGOYOHEiampqIPnyIGZ1dzqluINkTAGbasUay1j4b2bi8IFQU0UrzRXDMhYe3EOoN/klG2SMk0K1baZqyRo1mVTaV/GOG68ts1JFMhaH2DYSrAtySFL+M2s/+vfvj5qaGjz77LPUdJGwFRIywja++eYbLF26FIzjEcwfQPONGYD6i6lg0z6xSzAiZUyGAbxoLHakjMl/E01IWYSMHY5jUMqae2RHF53XbrzGjMoVyVgcY/b8azIIkdVECFNwHJYVt0ZKSgr++OMPfPvtt05nRCQQJGSELRQXF+M///kPAEDMPgLMm+VwRvGDGwuJrqCFZEzv/leUMTTUkhmQMiUZkz8zImUKMmYYDRmztZbMRee4G683kqwkwq5+sG4cYj8Z8GTg2muvBQC8+uqrKCsrczYfImEgISNs4fXXX0d1dTUkXy41VTSAGwuHriAeasYiP9cpRVoyJqMn3RgypquWTEfNGElZy6FHykjcEgi952Cs5eyKQ+jmxZm70KNHD1RUVODVV191Oh0iQSAhIyyzfPlyzJkzBxzHIZh3NDVV1AE1UdTAARnTOhaxZEwmRi2ZLhmDjv5kOmvGNKXMQDNFkrKWQ0u4SMYSEDf0KyOMw/G49957wXEcZs+ejWXLljmdEZEAkJARlggGg3jxxRdDv6d3BvPlOppPPODGgqBrcLBmTOm46JYxaDdd1Ctj8vJqTRcNNlNUlDITfcZIyloOJfEiGUtgrNaW2x2H0MU1z8zCRRddBAB45ZVXEAwGHc6IiHdIyAhLfP7559iyZQsY70Uw5win03E9biwAugIbR1LkRetzaXEMEPxMt4zJ6yn0L/PUSYZkTIZF/84HmPU+YwRBuA87+5URLcbHi2uRk5ODrVu34uuvv3Y6HSLOISEjTFNZWYn33nsPABDMORIQfA5n5F6oiaIGLuovFj5Oloa1l6UwolbMzPD64aaLkcPam8gnqpbMwoiKVEvWckTWiFHtWBLBVH43GsOOOERseC8mTJgAAHj33XdRXV3tbD5EXENCRpjmk08+QVVVFSRPFqSMzk6n41rcWOBLNGwbvEMChDprtVCcBHBBQKgzUSvWOFaQwVstWa4VC0uZ1XORpKzlYBzJWFJCozDGFc9N34JOnTqhrKwMH330kdPpEHEMCRlhikOHDuGzzz4DAIi5R1gbyCPBCx1UqNLApmaKtslYvQTO6mSf4RotqylFNL/kA9a/H+9nEOrs2U9G511ThQqMqlCtehzCwZ7nmV1xiOaH4/GXv/wFAPDpp5/iwIEDDidExCskZIQpJk+ejLq6Oki+PEhpbcwH4hr9SyQPdsqYxbfBYRkLxzEteA0yBhb6MV2zFWPERqNwwdA+4kSLUsYO/5tIUua2lyaRIkZSFidwKr9bjemyc5Noyt2v/YKjjz4afr8fH3/8sdPpEHEKCRlhmL1792LmzJkAgKDZ2rEke9C4rcDnOHbLmIW4UTIWEcewlEXKmPw3E1KmIDtWasm4YKNYZmsAG6+WIFIWD9cmSVkcYvYZp7ROHJyjSQ3HyX3JvvrqKxQXFzubDxGXkJARhpk2bRqCwSCklEKw1CLjAdQeLvTQSXxsHE2xiYyZiaMkY2GMSJmSjMmfGZAyDckxI2WNZQwA0NBPzhAtIQQOSIcbZUxNvkjKXIzWeWTkHLMrDtHi3PLCj+jfvz/VkhGmISEjDFFWViYP7xrM6XX4A70PiyR+qLix8Nei2D2aolo8ndvRlDEjaMmY0TgxapyMSJmijIU/M9J0UWsxm5tWJjuxpIukLE6xswkj4S7kbheHa8m+/PJLHDp0yLGUiPiEhIwwxIwZM1BfXw/JmwOWUqh/xSRrokg0wqZaMXmOsVjxYhVs9cpYrFoyvTIWq5bMgNjokTItGZOX0SNlelKK06aLbntBole2SMpchl0vI+mlZtxz64s/oW/fvvD7/fjf//7ndDpEnEFCRuimrq5OvsmI2T2b9h2zoyligj9s3FYIbBFcNHgHYKJmTE3KjNaMqUmZGaHR2KYeGZOX1ZIyIynFmZS57To0KlkkZS7B6HlkV3N9esHpDhofA47DZZddBiBUS1ZfX9/yORFxCwkZoZvZs2ejvLwczJMOKb2tvpXooZHcONlfTGF5x5spNpYykyITnry6yd8NyNjhWMqyaZg4kTK3yZhZSMriFDvPvwQ5lxOJ+9/6FW3atEF5eTnmzJnjdDpEHEFCRuiCMYYvv/wSACBmdgM4lVMnchh7sw+LBH/IJEqBMCZuGLyjYT1OAjy1knkZi6wls9pnLCxlFgWmcdNFMzIGoOkgH1aOm8ulzI3XnhWxIilzECvnUuTz0eo56cJzOilQre3kcOGFFwIAPvvsMzCrfYuJpIGEjNDFn3/+iY0bN4JxPMSMjtoL0wMiJm4sGNqKG2QsHEcKNc2z3NyRheLYM4AHs0VcOImB90vmZSwcJ9x00Y6yg0ulzI3XnB1CRVLmAG4bpMOF57YraaH99OLMbUhJScGWLVvw559/tsxGibiHhIzQRbh2TEprBwi+5t0YFTCSHlnGXBJHjmd2oufIGAzw1IngAzYEi4hpLUDoh7cods2CTSm5TVzsyseNopnQuHV/uzUvt2HHfooVg/dh+PDhAIBvvvnGhg0SyQAJGRGTuro6/PjjjwAAMbNL827MZYWm5oQKUso0kSiT+ykqDgcwwdoOj5IxM5OhN+Qk1IsN8ZhlKbPlHIrYN5xkk5TZWUvWEM8O3CJlbsmDSDBosA91OJXfm4mvllcBAObOnYu6urrm3yAR95CQETFZuHAhamtrwYR0sJT85tmIDaPnxSMJK2V2SJSVzSvEYYJ5KbOrZiwsY4fjmpeyqHOHMXOFfAVRJSlrXuzcfsLeP9xKvOzveMnTSczKq851WEoh2rZti+rqaixYsMDEhohkg4SMiMncuXMBAGJGe9M1A5okoYglBQZPFU0ZMxBLK44ZKVOVMQPXgpKMHY5vTMoYp1IQNyplGrWGJGXNA8lYHBNv+zve8m1OtPZFc+0njsPIkSMBAPPmzWumjRCJBAkZoUllZSWWLFkCAJDSO9i/AZKxxC5Y6fhuURM+2xArVhy9UsZJOmrGdEiZlowd3pY+KYt5ruiVMh1NOEnK7IVkLI6J1/0dr3nbiZ590EyTcr/z3Q4AwJIlS1BTU2NsZSLpICEjNFmyZAkCgQAkbxaYL9ve4CRjMslawDLcRFFjPxmJxWLc+Qw1UdSQMj0ydjipGB/rPUdiSZkN/ekMY7eU2YTTzRfNkKz3CsIkdL7oI9Z+MrEfmTcbHTt2hN/vx6JFi0ylRSQPJGSEJuGbiJTWxt7AcVgQIkyi8iAz3V9MIZ4ZsdNqrmc8p6axDMkYAI6p15IZLoSrSZlBGbOtlgxw7XD4LSFlNKJiHJMI+zwRvoMZjH5vu/cTx+GUU04BAOpHRsSEhIxQJRgMHm6uaJeQJengHXpI6MJWo+9m53D0ZmMpNV20NHhHhJQZlbHD228qZabPi8ZSZrJmjKTMHbET+v7gVhJpnyfSd2lOlAb7sLDv3v1uGwBg2bJlEEXjzwQieSAhI1RZs2YNKisrwXgfmC/PekASsZgkdKGr4bvZImM2xYqUMjtGUgznZEbG5PUjpMzy+RCWMovNFEnKnI2Z0PcFt5KI+zyZhsW3+j25Rv+ahPlykZmZicrKSqxbt85iUkQiQ0JGqPLHH38AAKTUIuujK5KMEQ3YO1GzTbVsNgmCVRkLw9eJSNlfbUNGIezoM2a3lNl2HrhUyuKxfxqRJCSLlFnFlnkeeQwaNAgA5BZHBKEECRmhiixkKQUOZ0IkBCxUSLXlbT8LCQKz+KKAEwHeL9lSeBbqRKTuLIentNZaTn4JnkNV4GrqkbrPupTxAQlCvU3Vf7CpdouzsdmqzYVLt9VqUe2YQyS6UCf6eeWi4zd48GAAh8tUBKEECRmhiN/vx5o1awAALLXQWjAX3RjjgYQsgLHogq6l78iimxealbImMsbMn6hCnQjf3gogEARX6zctZWEZgySFmhvW1CN1v/nhkvkgC+0vkVmWMnlkSqtNDu08v5vpWnGLlCXkvSCeSPRnV6KfXy45fs989BsAYN26dQgGgw5nQ7gVEjJCkQ0bNsDv94f6j3kyzQWhATxMk1AFsUYyFm7+auo7NpIx+c8GpUypZoxjMCVlsoyFO2wzZkrKomQsDGNA0JxIhWUsFMealDWZJsCslNk5uEszXyNOS1lC3QPimUR/hiX6eeaC48c8mcjOzkZ9fT02bdrkdDqESyEhIxRZv349AEDy5ZnrP+aCm2C8kxAFssYyFsaolLGQRNkx8IZWM0WjUtZExsKEpeyQPilTlLHwZ/V+w7VkUTIm52ROylTnbDMqZXZOf9BC14ZTUpYQ134ikejPs0Q/35w+fhyHvn37AgBWrVrlcDKEWyEhIxTZuHEjgNAIQYZx+uaXQMR1wUxNxsLolTKVWrEmi+l4caCnz5heKVOVMTkhBq4+dk2ZlozJcarrdEuZoozJsYxJWawJtHVLWYxDY0jKWviaaGkpi+trPpFJ9Odaop93Dh+/I444AsDhshVBNIaEjFBkw4YNAADmyzG2YqI/tAh9xJKxMLEkSqeMyYtrxDMygEcsKYspY3JCTHMEx5gyFhlHh5RpypgcS5+UxZSxiHiaUqazoKdLyhwqNLaUlJGMuZxEf74l+vnn4PF788tQzdiWLVucS4JwNSRkRBOCwSC2bdsGAJCMCFmiP6wcIu4KaXplLHIVpe9oUMYOx2oazMxoimpSplvGwvgDirVkumUsTAwp0yVjcixtKdMtYzajKWXxdh2ooHY9x911nqwk+nMu0c9Dh46f5M0GAGzbto0G9iAUISEjmrBv3z4Eg0EwjgeENH0rJfpDymHiprBmQsYUmy6alDF59QgpszK0fWMpMyxjgOIgH4ZlLDKWgpQZkjE5lrKUmZIxtVoyE+etopS54Py3c16xxtdz3FzfRIhEf94l+vnoxPHzZCA1NRV+vx979uxxIAHC7ZCQEU3YtWsXAIB5MvQN6JHoDyeX4PpCmxkZCxMpZRZlTE6H42yZZyy8rikZk5M5LGWmZSwyVoSUmZIxOVa0lFmqGWssZRbO1ygpc9F53xxS5vrrmlAm0Z97iX5etvQo0ByHDh06AAAJGaEICRnRhMNCpmO4+0R/KNmEnQU5V2JFxsJYnOS5STiJgQ8wW/a9pzZoXsbCMAa+qg7eXYfMy1hkrIoapG0psX4NNkgZ77fDghukzIZDydlxTjUDzVlTRsQZLjw/bYXOT1tp06YNgFArJIJojMfpBAj3sX//fgAA86THXrihRoNQJ1yA45i1ApgbC6e2wtjhmjGL5xUnMQj1DGAMjLO27zxVAXi3hB6gLFPHNaEFY2B+PzhJAktLMR2GEyWwmlpAYkhhDPWd8s3n1HBO2jdwBQdOst4PLVRbysBJnGN92pQgiSJkEv1cSPRnTgsfv7CQ7d27t2U3TMQFLnrMEW7h0KFDoV+EVH0rJPpDyQKNC7lmC72ulrGG3CwVVCNlLBzLZLxIGbOKpyoAz+a9YPV+sEAAXJWx+cCi8hIloLYOkBhYMAiutt50HFZTG6qtYxJQXoWUHSUmk4qMyyDUWaslYzx3WPAs9QGM/A+zpQmrHZCMEUmDm585duDAtTz1+3UADr/0JohISMiIJpSUhAp3TDDwBp8KKk1QkyijchUPMib/18x5oFLgNiNlajJmJq+wjMEfCP1BYqalLCxjTJQOxzIhZVEyFsaslCnsEz5oXsoiZUzehKlRMpX+6LyUkYwRUSTy+eDmZ44dOHTsmOADAJSXlzuTAOFqSMiIJpgSMiCxH1AGiSVReiUrnmRM/rOR8yBGQduIlMWqGTOSVxMZC2NCyprIWGQsA1KmKGNhmARUViNlZ6nOpNQ/MiNlSjImb8oukXJQykjGiCgS+Xxw8zMnzmE8CRmhDgkZ0YTq6urQLw03D0Mk8oNKJ3bJVjzKmPyxnvNAZwFbj5TpbaaoJy9VGQtjQMpUZSwylg4p05SxMKIITi3nqGCxFzEiZVoyJm9S71RrsXJzQMpIxogoEvl8cPMzxy6cPH4kZIQGJGREE2prG+ZL4gRnE4lD7JKoeJYxeTGtB5/BgrVWLKN9xrRiyQN4xBIbHVIWU8YiY2lImS4Za4DV1WvXkhkojOiRMj0yJm86xm7QLT4tKGUkY0QUdD7ENw4fP8Z7AQBVVVXOJkK4EhIyoglhIWOcyUE4k/ShZXriYRvitBgGc7O1P5BCLLMDeCjlFZYxVu/XF0RDynTLWGQsBSkzImMAQstVVClLmYnrUkvKjMiYnILK7jAsPi0gZSRjRBSJfj64+bljB244fg0vuQMBHS0ZiKSDhIyIIhgMQgwX/ngLNWRuuPm1IHZMPGw1TrNjMje7Rsxr3HTR6miKkXkZlrEwClJmWMYiY0VImWEZC6MkZRauRyUpMyNjciqNdotp8WlGKSMZI6JI9PPBzc8dO3DL8eNCRe5gMAhmwyjARGJBQkZEEX2TsHgXc8tNsJmxQ6LcOgmujMXcwgVcqwXosJTZNbQ94yzIWJgIKTMtY5GxgkFwVTXmZCxMpJTZcB1GSpkVGQsTPg8si08zSBnJGBFFop8Pbn7u2IGrjt/hnV1ZWelgHoQbISEjouC4qOoMx/IgXITLTgNOZPDUSrbMM+atCMDz5w7zMhZGYiEJkyTzMtY4llkZCyOKQGk5UjfYM+cNH2zY764q4NgLyRgRBZ0P8Y3rjt/hhESr93ci4SAhI6KIEjKr5V2XFeSbi4QvxNnw/TiGkEBZjMUHGTzVIrggAydaO8FCMrYNUk0NmN+ikHk84DLSAJ4Hl2pwuojG8Bw4jwDOY7IPZxjGwGpqIR0qsUXKOImBD0jwVlkvSDAOgB21whwnx7IlJ4IIQ+cDYTcR5av09HQHEyHcCAkZEQXPR54SFt70J4mMhUn4wpyF7xdZ6DYz2XMYWcYaTktOgmkpk2Wsti6UVzBoXsrCMhZ+2HoE81LGc+DC1yDHmZcyxsBq6wApVGtnVco46fB+tiplrFElvGkpC8tYRCxbciKIZDofEvW7uvF7sdDDi+M4+HwmphUiEhoSMiIKjuOQlpYW+o8UNBckyWQsTMIX6kx8P7mwHdG80IyUNZYxOb4JKWssY3JeZqSssYzJfzchZZEyFsaMlEXKWBgLUhYpY3KqJqVMedRNE1LWWMYiYtmSE5G8JOP5kGjf2aXfh2soU6WnpzfqHkIQJGSEAhkZGQAAjpkUsiQm4Qt3Br6fkoyFMSNlaoM3GJEyb6WyjMl5GZEyNRmTPzcgZUoyFsaIlCnJWBgTUqYkY2GMSpn2vHQGpExNxiJi2ZITkXwk8/mQKN/dzd+DHRYygmgMCRnRhLCQQTIxV0aS1o5FkvCFPB3fT0vGwuiVsnDtmOb2dEiZtyIAz1p1GZPz0iNlsWRMXk6HlGnJWBi9UiYxZRmTP9cvZVoyFkavlOm6JvRIWSwZi4hlS05E8kDnQ/zj9mPYUEMmt0IiiAhIyIgmZGVlAQA4o0JGMiaT8IU9je+nR8bCxJIytaaKitvVkDK1ZoqqeWlJmV4Zk5fXkDI9MhYmlpQxBlZfr/55GB1SpkfGwsSSMtuuBb0yJm/Ypu0SiU+i36/1Es/7IQ5y58TQ/TkvL8/hTAg3QkJGNKGoqAgAwAVr9a9EhZ8mJKOUGZGxMGpSZkTG5O0rSJlRGZPzUpIyozImr6cgZUZkLIyalGk1VVRCQ8qMyFgYNSkzfA2o1ZIZlbGIeIp/TvRrk9APnQvRxOP+iJOcOTH0DCooKHA4E8KNkJARTQgLGUSdBViSMVUSvuAX8f3MyFiYxlJmRsbkPBpJGSdKhmVMzitSyszKWJhIKTMjY2EaS5lRGQujIGVmZCwMH5CimpaaPvcbS5lZGYuIF/XfRL8mCf3QuaBMPO2XeMq1oUxVWFjocCKEGyEhI5oQvllwoo4aMpKxmCR8ATBq6HHzJ0RYyqzImJxSg5R5KwIQNuwwHwghKYMoWpOxMDxnTcbChKXMrIyFsWFI/EgEf0jKLJ/zYSmzKmMR8YAkuBYJ/dC5oE087J94yDGCM4d0BkA1ZIQyJGREE9q2bQsA4ILVDmdCxAV2SjkD+ACzJGNhPLUivHtKTNeOyUgMYmUlpEOllnMS87NReWJXy3EAgIkSpKpq8zIWRpLAyiuQsqfCek4cB8ZzEPw2nRQWBJ8gkpZkuGziTMYAYOfOnQCADh06OJwJ4UZIyIgmdO4ceovDBapiF4ji8KbY0pie+DbOCNVwmT8hOAkQ/AyM5yD5rN2ahHoRngMVAMeBz82xFAsAwBikqipIxSWmQ4j5mSg+NhtVbQRUDO1sLR1JglRRAYgimGhRyAQBXEY6uKpa+PZVms+J4yCm8AAXavpoScq4w7VZtl0/ViahJhKPRD0XWKN/rcZxKzbeF1oExmQh69ixYwttlIgnSMiIJrRv3x6CIITmIdPTj4ykLHlR6p9jQsrCMhaOJ3nMS1lYxrigGGral5ZqXsokBhZo6ENmQcrE/EwUD8hGMI0DE2BJypgkQSorB0Qx/AfzUiYI4LOzAEEAGDMtZZEyFvqDBSnjGjUtZIykjGgeEu1caPx9zH6/eNkvVvJksE9e9SDWoba2FoIgoH379i2wQSLeICEjmuD1etGuXTsAABfQWTgjKVMkoQt/WiPYGZCyxjIWxoyURcmYvAGTUhYpY2FMSFmkjMlhwlJ2vDEpayJjhz8wLmWRMibHMS9lTe4BkQUeAzEU+3mRlBHNRaKcC2rfw+j3i7f9YSZfB75juCzVtm1beL3elk+AcD0kZIQiPXr0AADw/jL9K5GURZHQhb4Y381wTZlKPCNSpihjYYxKmZKMybkakzIm8FEydvjvQFVb/VKmKmOHF9AvZUoyJscxJmVy7ZgCHDNQS6YmY5F5kZQRRFPirfmek9glrgYJl6V69+7dvBsi4hYSMkKRPn36AAA4I0IGkJQ1kNCFPZ3fTY+UybVjWnEExJQyTRmTN6ZTyrRkTE5Kn5SJ+Zk4dFSmepiwlMVovhhTxg4vGFvKtGRMjqNPypo0VWyygM6mi7FkLDIvkjLCbuL1PNBbC23XMm5Fb+6xlmvGfXDa0aHphEjICDVIyAhFjjjiCAAGa8jCJLmUJXQhz+B305IytaaKTWNwkDwcxFReXcwkpi1j8kZjSJkeGZMT05YypaaKimFi9CnTLWOHV1CXMj0yJsfRlrKYMiYvGEPK9MpYZF4kZYTdxNt5YGdTxHj77krYJVvNtC/WrVsH4PDLboJoDAkZoUivXr3A83xoLrKgjvnIGtNool8iATD5oFKSMr0yFhWH5xSbMAr1IjzFBvo8qUmZERmTk1KWMr0yJofRkjKJ6ZcxOaCClBmRMTmOspTpljF5BRUpMypjkXmRlBF2Ey/ngZ2DdcTLd9aDW/vRBWtw4MABCIKAXr162RycSBRIyAhF0tPT5RsHX19sPlCSSRkV7JSJlDIzMhYVK6IJo66miko0ljIzMiYnFC1lYn4mio/RL2NyGIWBPuTh7U3lFSFlZmRMjhMtZYZlTI5jw3D4jfOi642wG7efU3YOZ+/272oHLviOfF2oDNW7d2+kp6c7nA3hVkjICFUGDhwIAODrDloLlCRSRoVDbRgX2kdWZCwUJzR0PMeYORkLY3VI/KikQlIGxkIylm7upI/sU2a4qaJiwJCQmZYxOU6DlB2oNidjcpwIKTNbO9Y4LzuuO6olIyJx67lgZ15u/Y5WsUs4bdw/5w1pDQAYMGCAfUGJhIOEjFDl2GOPBdDwdifWBNGE9cKlm7GrUoMLSYf1QKF/pByLbxs5DlxqCviMNOspnXA0uEkBeC629gKDCUBJbwFb/trdmoxFBbXhAHoEiFkp8NRZzKlByjiL81k3B3ZJGUeCRwD6B91oadyYk53Ytd9ticHw+++/AyAhI7QhISNU6d+/P3w+HzixVv98ZEok+s0/goSUMpsLqZLAgXksxBEZhLpQaV7M8EIsyDIfTJKAoAguNRVCdrb5OAACmR5c3nYpru6yBKlnHzAdx58DeI4rRfaxxdj+tyGWcoIggMvMAGMMCAbNx/F6ECzKBhN4cAEJnloLUsYBkpdrEDPzYUKxGprB2niPsRorcn2SsjjGjU0DE/H54nas3g8CFThw4AB8Ph+OOuooe3IiEhISMkKV1NTUw7VktXvNBUnCAklCSplFuIZaEblmy6qUNdT4MJ4LSVm++tDyqjTIGCQpVFOWnmZaytgJR6P1Y1sAALlCDa7usgS+s4zXlPlzAO+gUhRmViMrpR5ZQw6alzJBAJ+VKTdVZMzE4CDAYRnzhuJwDOalrEHGWER/QtNS1nigGCv3mkbXrNlYSuuRlMUxdg6eYRf0fGl5LBxPvnYfAGDQoEFITU21KSEiESEhIzQZNmwYgMM3FUIfCSNlNhQsGstYGDNSxkkMQn10CZ7xHMRMn7GaskgZk4ObkzJ2wtHIn7gT5xWukP+WK9RgfNfFhmrKImUsjGkpayRjcq6SZEzKGslYGFNS1kjG5D+bkTK1qRTMnK8q16rRWFrLk5TFMXaN0GfnOZAoz5ckoF/b0L/hshRBqEFCRmhywgkngOO40HxkRoe/T/JCCLNj0AInaYEO5EakjJNCTRU5hf5Qck2ZUSlrshFjUqYkY2HCNWV6pYx5ECVjYQxLmYqMyduRJP3NFzmuiYzJH4VFW1ccZRmTP7ZSU6aQl/6FbYxFEHbNhUW4DzPHLlgjzz92/PHH25sPkXCQkBGaFBQUoH///gAAoWaX/hXpwSMTl1JmZ7+xGIV2SeAg+bTFTEvGwuiWsnDtmOrGGqSssEBTzNgJRyP3uV2KMhZGb/NFfw7gO6ZU9XPdUhZDxuTc9TRf9HoQLIyxL0UWu5YshozJi+mVshhxdKMzjB4ps2sZwqXoOXZ6jy/1J4tfDB47oWY3AOCYY45BYWFhMyREJBIkZERMRo4cCQDgqw0IGRFFXEqZRdSaKirBOPXasvAgHloyJseJJWVKTRUVk+fAeb2qtWXsxGOQ+9wuXFC0PGZO4eaLalKm1FRRibCUrX/jGGUx0yljYTSbL6o0VWxMzKaLOmVMXjyWlOmNE+tUMXg92tUckaQsjtE6dk4d1yR8rsQTvfLrAABnnHGGw5kQ8QAJGRGT0047DV6vF3ygApy/PPYKVOhQJG6krBn7jcVCVcoMDNuuOtCHXhmL2rByE0Z/tleXjIVRkzJ/DuDRIWNhslLq0a3LgVBt2cMRUmZQxsIoSplOGQujKmUGZUxeTU3KjMZRO2VMXod2DdhBUhbHKB07M8eT+pPFL3pbafsrsGXLFni9XgwfPrx5cyISAgvjnBHJQlZWFoYOHYr58+eDr94J0WfDRLpJSnhyZNfigolHJYEDDwYu2FA7Vm+8c1F4oA9wWRAOVZqTsTBhKQMgVlSAnXgMCh/eajhMrlCDm7Pmw18m4Jgf9yFdqkdNkYC1u9vim7P7oTQ/Q3esrJR64LhQE8bOzywFx3GmJ35mkhQq0wmCYRkLwzEAAQkeAME0wbSMyfEaDhMLvzI0G4c1ehFisfAaGc/KddwkLyI+sTrxMJ0DCQtftR0AMHToUGRlWZiahUgaOMZoxl8iNr/88gseeOABMM4Lf/szAF7D5emMiokrpczufmMW4wl+Bk+1aKh2rEkuEoNQ5YdQXAH4A9YSYgw1R3dE3t+24+LWvxtaVaiTMPjv29Dtf8UQgk2/T8DD49sz++KVW09FwKf/PVllfQoqfy1C1/+sNy1kYTifD8G2eYZlLBLGAczLI5guQPRZb4DBeIAJ1kutjINthV87X6qQlBG2SZkbnymJjNZxk4IoKPsJVVVVeP755zFkiMX5JImkgJosEroYMmQI2rZtC44FwDd0VCXM4UoZcyGShwtNIGwBxnMQ032QsvTXPqnGYgzpGw5i0xc9Da0n1Ek47fp16Pnfg4oyBgDeoITzvl6F5x78H3z1+sXxUEkmOn1bZV3GvF6IhTkAb21/Gxp5MWawhh+73hna+MKBIFwFnZMtS4zbJF+zG1VVVWjXrh0GDRrUMjkRcQ8JGaELQRBwwQUXhH6v3KpeSKIHQ3xiZ2GVMcs1EhwD+CAD83CWalo4iYETJUiZPojtCsDyzTW3DQ8Vz8oq0HH6LvzzrbG61x38921os7RS14jYx6zYhVtfnacr7tY9hejxqghhq7U5AjmvF1JhDpiXBxr2l1kYzyGY5gEYwAestOlrqB0Ln0MWpCyqFspl9yeSO8LyOUnnUMuh57nGGPoVhaYIOv/888HzVMwm9EFnCqGbc845Bz6fD3ygHFz9IafTiUsSvgAWUXA2K2VcuDDPAMZxpqWMkxi4QEguGM9BSvFAzEoxLWVoqPlh5ZW6pSz1oB/d/lccyidWvg3/njV7DfJKtAf52La3AD1ety5joQ1zkHwRNWwmpYzxHIIZHrnfFycxc1LWWMbsJtGvQSJ5oHO55dA7TUZ9MdavX4+UlBScc845zZsTkVCQkBG6yc3Nxdlnnw0A8FRsbLoAPRzik2ZsymVUyiJl7HAM81LWJB+eMyxlShMp65WyHp+pN1NUwxuUcM6s1ZrLSHUeeLbsNRRXCc7rhVSgMNeaQSlrLGNyfKNSpiVjJmrJVKXORfeqhH9JQ8TG6DnATKxDmMfAM+yETn4AwKhRo5Cbm9s8+RAJCQkZYYjLL78cgiCArzsAzl/mdDpxhSsLXjY3VVTchBEpUylohKUsmKZvsIjI2rEmsQxImSxjCv2iWHklOv5vN559W13KWi+tiLkNJY5eoT7n37a9Bej5nt9U3EjCTRWjasci0SllajImb0evlOmpGTMy/UHMpkW6QzU7rrw3EC1LS08sTcTG6AtFfxmWLVsGQRAwdqz+Zu0EAZCQEQZp164dTjvtNACAUB5RS0YPieQmRkFZj5SF+42px+DA+Ni1ZVoyJscyUlOmMUgFK6tAp+nqUuatNtcfK71GWbi27S1A99cky7VjMWUsTAwpiyVj8vZ0SpmuZop6JgiPw9ELScqImNA50nKYuIeceUToRnjaaaehbdu2NidEJDokZIRhrrzySgCAULsHXKDS4WziA1cWtlp41DnWUAOi9KBTaqqoHseeJoyxpEypqaLicmEpe6eplAUyzOVYk+5r8rdtewvQ/fUWlLEwWlLGI6aMydvVkjJOfxwAmlJmSMZcdl268j5BtBxax5/OjZbDTN9nfwV++uknAMAVV1xhc0JEMkBCRhimW7duOOmkkwAAQtlah7MhTGHrBNDGginWlhnsE6EmZZzEwBnos6UmZVpNFRXjlFWg02dNa8oqj0vVnUsk6cOja8i27ikMydhm6/3GmgzioQcFKZNHVDSyaSUpMzuIh8J5Z6pmjAq6hJtQOh/pHG0ZLIwOfGp3PyRJwvDhw9G9e3db0yKSAxIywhQ33HADeJ6HULsPXF2J0+m4mkR+6232u0VKWaymiuoxoqVMljGjgthIyozKmBynUfPFAqEKra/mwbyGwoB5gS7jeNzW+YfDf6sTbJEx1UE89BAhZXqbKirmECllVkdUbDyqp1lcdI0m8v2CMAgN3tFyWJmmpf4QFi5cCJ7ncf3119uXE5FUkJARpujSpYs8pKunbI19k7cSzU8LDOShKw154l/zOTWpKTOZT5OaMpOTG0c2X/RyQWS3yQTGhARIzzxkAICx2UhrnYYz0kpwS6d5oUE8PtA/WbQahpsqKiGFhNesjMm5SCw0z5wdw9uH572ziotuYSRlSQ6JWMti6WUOw6DWocGbzjnnHHTu3NmenIikg4SMMM0111yDlJQU8P4S8HU2zIdEJCWcRZlnHAcmhAb8sBSH58C8gmkZk+OUVaDjN4dww7ehN6Xs6UKwoam65iFjQ1PBni4EAKTzPojgkLMwFZ5NeyzlBImB1fvBl2vPbxYTnoOUIoCzuI/AAUwAOPNzUEfE4uwTGCoEE0RyYfFlDl+7DytXroTP58M111xjT05EUkJCRpimqKgIl156KQBAKFsDMNHhjNyH6950250PZ/5pxrFQgTwkVBZSYOHaFhN9oyLg64PgD1UAPAcI5m+NXEY6AoXpaDsP6PrVDUAaDzalHdhV2arNF5kXoc8/bgekhrb9dU0qHvnsCvBBoOZYC29dJQYwCWASWFUNPAfNDcUPnoOY5gHjOXAiM9XMFADAAZKn4bxhAG/lthFx/iWSlMXjKJEEEZdYud4lEZ28OwEAl1xyCYqKiuzJiUhKOMaorRlhnurqalx11VU4dOgQgtl9IOb0djolV5HoQhb1/QzeSjgGcGLk/0OjLHIGC+icxMD7pcP5sPDfjAUSagLg9hYf/kNYZAxMkAwAXE4Wavq0BgAEMnmU9RBQ3S2Aree+DRwMAh9XgFtUC1RLQAYPdkIacEU2UBQ9QMa75W3w6ksXAgD4IOCrZPBVikj/bbuhfOTvEc4vJQXB9gXGYgBgAg8x/XCOjAMkMyNdcoDkPWwcjOMgGRsbJCJWtLnYJjIOCxEJGUG0ICYHAxLK18FTsR5FRUX48MMPkZ6ebntqRPJAQkZYZu7cuXjyySfBOB7+NqcBngynU3IFiS5jkcjfVeftJFw7ppQTJzHdUsaxhgEiGjWhC8mefinj64MQDpSD+RXm/xJF3VLGZaTD371Vk9EH/Vk89pwhYeuot3XF+bYmBbd/ei0yG7kXHwQy9wT1S1kjGQslyYPLTEewyMDgHhG1Y5EwgTtc26WHcO1YxCqMC/1fMlq5qVI7G+9SRjJGEC2M4RFeAQSrkXVoPvx+P5544gl5flaCMAs1WSQsc9ppp2HQoEHgmARP6Soa4CMJkQuRRpowqpwmjNfXhFFNxsL5MEFfE0ZNGQMAQdDVhFFNxgDAVymh3Xc8un59Q8w4X9ekKsoYAEgeoKqdR18TRiUZA4w3XVSRMQDGmi4qyBhwuGbUUNNFjfMsnpsukowRhAPovdYjBls5tWsN/H4/Bg0ahFNPPbW5MiOSCBIywjIcx+Guu+6C1+uFULcffK0NcyUR9tIChUu9UibXjmnF0iNlDJoDcOiVMk5k6jIWRo+UeQTNeblkKftKW8p2B/IVZSyMLilTk7EweqVMQ8bC6JIyFRmTPzYiZTqkPx6ljGSMIFxMxL2Ar9mNRYsWwePx4I477gBnoS81QYQhISNsoWPHjvLs9J7SFYBY73BGzuK65oothO6aMh37R0vKwgN56MlHS8rkgTz0oCFlXEY6/J1j98vyVUpoN0e9puzrmlQ8//kFMeMYqilTI5aU6ZCxMJpSFkPG5MX0SJmBgk88SRnJGEG4lMZTEIh1KAxuBABcddVVNMw9YRskZIRtXH311ejevTs4yR+SMmq66A5a+DBESVmjArSe2rGoWGpSFqN2rHE+alKmq3YsEgUp02qqqIRa88Wva1Jx16fXaNaORaIqZbFqxyLRkDLGGZtKQFHKdMqYvLiWlJl4Cx0PUkYyRhAuQOkab/w3xuApXYny8nL06NEDV199dUtkRiQJJGSEbfh8Pjz88MMQBAFC7V7wNbudTolwCMY1rS3TGshDMxbPgXkgi5ne2rEm+TSSMkO1Y5E0lrIYTRWVkKXsm9BcZV/XpOKuz/TLWBhZygY2SJkRGQujJGU8BynV+BQCalJmKIaSlFmcXsGtkIwRhAtRmZibr9kNoXYvBEHAww8/DK9XZR4TgjABCRlhKz179sSECRMAAJ7SlUCw1tmEHMDNBcCWpkkTRpP7JlxbwwQYqh1rnAsTOIipntCQxVoDecSiQcr0NlVUwlcpod1sAV2/uT7Ub2ybuVQkD1DVPkLKzBApZQaaKiohS1nkfGNGY5gZ6KO5sfm6JhkjCBeidp0Ha5Ef2AAAmDBhAnr06NFyORFJAQkZYTtXXnkl+vTpA44F4C35nZouJjnhgqctBVAOloYjZxzAeID5eLD0VGu5CALg8xquHYvEVymh7fce/HvqaEupSB6gPlcITWptFiYBdfXgAqJpGYvOSX9TRSXkeekS8PZBMkYQLkTtXsMkDC7ah8rKSvTu3RtXXnlli6ZFJAckZITteDwePPLII0hLSwNfXwyhYr3TKbUoritsuSQfjoVkyGo+jOfMTUgczkMCOL8EKSsVyDUwF5cS9X6k7qm0FMJXKSJvvQRvjfkY3mogb2VpaLQvwXhTQxnGwAVEeCpN1hwidP6LFo7P4TgNQpdgQua6+wNBEJoIFeuxcuVKpKen4/HHH4fHY/4lHEGoQUJGNAudOnXCPffcAwDwVKwHV3fQ4YxaFtcVuizWLFmmobYDaNg3JnIJ15gwPtwfzNztK9QHTQI4zrKUsWCoH5pZKWM8EEzjQ00o/cyUlHmrgYLfS8CVlAMcZ17KBAEsJwuQAL4uYF7KIgdisdBEFRH9EDkTTVQPxzK9ajQ2xHHdfYEgCE24ugPwVoZGVbzvvvvQoUMHhzMiEhUSMqLZOOOMM3DeeecBALyHfgPEOoczalmiBrZwCw7kwyk0OzMrZfL6fLg/mGBIzDgJ4OsiOibZKGVpmw8ZEjPGA8F0HpJwuH+d4GfwGOx2yQdZSMbCmJEyQQBys8G8DW9+TUqZYu2Y0UFcGslYOIYZKXOTjBEEEWeIdWgjrgdjDOeddx5OP/10pzMiEhgSMqJZuf3229GtWzdwUj28h5YZHwEuAUh6KYuoHYv6swEp4xRihKTMWG2ZXDsW9Ud7pAwVVcZqyzgcljE5EOCp119TFm6q2DS2MSnjeP6wjIUxKGWMA8RUQX2aAgMoXjMGpcxtMua6+wBBEOowCYMK9qCkpARdu3bFbbfd5nRGRILDMUYjLhDNy/bt23HTTTehpqYGYkYXBPOPdjolR3Dl4ATNnBMXLkRrbIdTGWI4epkYMaSG0f386sLPSYBQG2wqZGEYA19ZB5SZGAo/cjseD6SCbNS1y1JdpkntWJMgQDCFQzBNfTtRTRVVN8TAGANEjeEKG9eONYYHpFQvglk+9c1oyVgYHUKiWDumECfWoCMkYwRBmIYxeEpXQKjejszMTLzxxhvo1KmT01kRCQ7VkBHNTufOnfHYY4+B4zgI1dvAV211OiVHSMomjDFECjg88qFaLrFkDNDXr0yxdixqAes1ZUDsfmUxZQyQa8q0mi82aaqoRKyaslgyBuirKVObwDuSmOeBDhlriKNVU+a2a8xt+RAEoQ1ftQ1C9XZwHIfHHnuMZIxoEUjIiBbhhBNOwI033ggA8JauSrpBPiJxXQHNJfnY1a9MScqa9B1To0HKWOv85hvsQ6mpomIQdSlTbaqohIaUKTZVVEJDygyNqqjiUbplLEYcW6FBPAgi6eDqipFauQYAcNNNN+H44493OCMiWSAhI1qMK664AiNHjgTA4D30KxCocjolx3BdbVkzjMKoNJhHLJpLymLWjkUtzIGleJtlBEZ5VEXdQZSlTFftWCRKUiYIYNmZ+mMoSJmupoqNaTLAi0EZa0CplsxNTRVddX0TBBETLlCFIv9qiKKIESNG4PLLL3c6JSKJICEjWgyO43D//feHJo2WAvAVLwbEeqfTchTXFdrszEdHU0PF1SKkTE9zxSbrNxqBUXftWGOaY1h8vbVjUUGipcxQ7VgkYSkD9DVVVCJCykzJWBilUTdNxIiUMpIxgiBMI9ahM7cW5eXl6NOnDx544IHD90uCaAFoUA+ixTl06BBuueUW7N27F5I3B4FWwwCeJlp01aAfNuTCsdBAG1bWNzvcuRxDAoR6Cb5SC+Jvw2AfnMcDsVUeqrpnGhcyOQjABxiy1peDP1RmLkbDIB8cz0MqyDUXAwB4QMxIQV2rFPMxAHmADksCY0ZyNWJZhWSMIOIMKQDvgYXgA+Vo3749XnvtNeTl5TmdFZFkUA0Z0eIUFBTg+eefR05ODvhAObyHliblcPiuxq4mjFaaH4ZzsNiEUfJyENMtCH+4piw/x3wewSCEg2XI2GFi5mc5COCpk8CXmZuEGkColsznsyZjAMDzYB4eQp2F69bGEQxd9TKDIIj4gUnwHloGPlCO3NxcTJw4kWSMcAQSMsIROnbsiH/+859ITU0FX3cQnpI/Qk3cCHdhsdDMeM56DM58jNBw+IDo5U1LGeMA5uEhWpQyBIPw7C1F1tZqU6t76iSkb6sAjE76HBXEAyk/CyzNC+Y1G4NHMNMH5uHM14CG58LmOEu1sSz8BGPMHimzqWaYIIg4gDF4Sv4AX3cAqampePbZZ9GhQwensyKSFBIywjGOPPJIPPXUUxAEAULNLnjKVpKUuRGnpYyzIGUMoWZ6AmdRyjgwwQYpCwTg2VNiSsr4IANX0bCeWSnjOTBfwz7w8KaljHlDjw5OgulaMhbRP8MemaJ7B0EQOmEMntKVEGp2QRAEPPnkkzjyyCOdzopIYkjICEc5/vjj8eCDD4bmKKvaBqFsDRWs3IjlpoOc5lxjerbPOM6Q3HFSSGLkHBqkLJjp1S1mjAMQMQmxWSmL6hxuoqZMrh2LDmpMyjweSLmNRlU0KmUNtWNyCoyBDzBjUqZ0/MyMyKnw9KJaMoIgYsIYhLLVEKq3geM4PPzwwxg6dKjTWRFJDgkZ4Thnnnkm7rvvPgCAp2ozhPI/Scrcil4ZUjp8RoWqcYwGKdRdW9ZQOxb1J4GD6OMN1ZaxRiNthaWMtSkwX1sWCBiSsqjasUiMSFlk7VgkeqUs3FTRqzClgF4pi2yq2BgDUqYkY6EPqOkiQRAaMAah/E94qrYAAB544IGG6XgIwllIyAhXcO655+Kuu+4CAHgqN0KoWO9wRoQqNtSWOdaEMZyD1SaMAg8x3aertkx16OQGKctdrS1mirVj0RuILWVKtWNRn8eWMsZxTWRMTsGAlCnKmPxhbJFRlTF5AZukjCCIhEOo2ABP5UYAwN13341zzjnH4YwIIgQJGeEaLrzwQtx6660AAE/FeqopczsuaMKotn7j5oqKOcSQssbNFZVjWOxXFgiAO1SmWVumWjsWiZaUhQfyUKodi1pOQ8o8PMQMr3YKsaRM77E20XyxaQwb7htUS0YQiQNjEMrWwlOxDgBw6623YvTo0c7mRBARkJARrmLMmDG4+eabAQCeig3Up8ztWKrpUm/CqKsgq9WvTKG5ohKxpSz2F7RtsA8FKYtZOxaJmpSpNVVUQkXKtGrHolJQkzKtpopKqBy6mLVjUbnoX9ZoHgRBxBENfcbCNWO33HILxowZ43BSBBENCRnhOq644grccccdAEJ9yjylK0jK3IyTTRiN9itT2r7F5ouhGMpSptpcUYmwlG0/PFeZrtqx6A1GS1mspopKNJYyHbVjUSmoSJluGZPjRP/fiIyFVnBH00U35EAQSQtj8JSukPuM3XXXXbjsssscToogmmJhtlSCaD4uvvhipKWl4bnnngOqtwNMRDB/AMDROwTXwsF0jQLjucMFaDMxOICBAwdman0mcBDBg2V6wUkMfG0wZnPFpjFCUiYAQEm58SSAkJTtLkGWxFDbNg1p201MAh2WMlE0VjsWiYcHQ0iulAbyiJkCY+CDgAiYl23WcEpxJmRMjtFwVlipyWWwPPUDx2AtB4IgjMMkeEr+gFCzCzzP44EHHsDZZ5/tdFYEoQjHGFU9EO7lxx9/xFNPPQVRFCGmtkawYBDAJ+Z7hIR4k25D/x9OYuDMTW0V2r7EINQz07WqnMggBCRwfnNJcKIEobIOXKnOpoZKeL1gWengKmtiL6uGwEPKyTAnZBEEM/XXjkXCOA6Sj4eYyhmuHYuCAySTc1jLuRiUa7U8LOVAQkYQLYcUhOfQrxDqDkAQBDzyyCM4/fTTnc6KIFSh6gbC1Zx66qn4xz/+AZ/PB6FuP7wHFwJivdNpNQsJUWDjrH8PZiUGFyp8S14OzGMuCBM4BFMFayMw5qRBKswztX4YKcULKc9gc8PIPDwCxMwU8+sLHPw5PkgGa8fCcIyBC5o168axrKzsjgsrIV64EEQ8INbBe+BnCHUHkJKSgmeeeYZkjHA9VENGxAWrV6/GQw89hPLycjAhHYGioWBe84VVt5IQhbaG72Dpu0Q0XzQVhx3uy8TFGG2xCRwH1lAjI9RJEGqCxrffIIZCXRCcPwj+QKmx9VNT4O+QH6rtq6oHX1plbH2vB8FW2ZBSBHBBBt4vGlsfgOTh4c8NTQLNiwx8wJhcMZ6DmMpD8nCH+/kZRR4MxHyzRVtqxyJysUJCvHQhCBfDBargPfgLOLEGOTk5ePbZZ9G3b1+n0yKImFANGREX9OvXD6+99hratm0LTqyB98ACcPUlTqdFaGCppguHC+FmYzDOfE0Z40LN7MRUE4N9cKFaMtYwkXIwO9V0bRnjOYiZKYZrypjAQ0z1hL6Hh4PkM9bmjwkcghmHv7dRqYmSMUAWZCuYEnM7a8doGHyCcDVcfQmKapeBE2vQtm1bvPbaayRjRNxAQkbEDR07dsTrr7+OPn36gJP88B5cCL5mt9NpETEwLFSNCu5OSVl4fTGVRyDba0jMmHB4e8zDI5hrQMq8XoiF2YfXNyplXg/EgsPLmpGy0H7jI/4Pw00Xpcb73KiURaxuqraUsziYB0EQcQNfvQuZZUtQXl6O3r174/XXX0fHjh2dTosgdENCRsQV+fn5eOmllzB06FBwTIL30DII5esSZlj8RC1AWu5XZkTKGg+X3iBlko83XVsmeXlztWXhGEakzCNATI3ejhEpC9eORf3NgJQ1rh0LIwmcLikL145ZQm1uOgOXebNcS1RLRhDugjEI5X/CW/Ib/H4/hg4dipdeegn5+flOZ0YQhqA+ZERcEgwG8cYbb+C///0vAEBMa4tg/sCEGIEx7gtsMfKP+f00bkm6ako0PovZr6yh/5hafyeOMe1+ZeHmioLK+kEJnrI68MUafcrSUuFvryxuevqUsVQf/O1zVfOP1acssu+YErH6kzGeQyBTQ/z09CdT+ZjJ885pr96stWPUl4wg3IEUhKfkNwi1+wAAl19+OW688UYIgsVhWQnCAUjIiLhm1qxZeP755xEIBCB5sxEoPA7wpDudliUSXciAWEIVOwAnacSIKYQaUsZxTZvaKayvKmUcYtZCaUqZ1wuxdW6TGq6o9bWkrGEwD831NaSMCRwCmd6YNWFqUtak75hqEhpSFmPVmFLWEk0VScoIwlmCNfAWLwEfqIDX68V9992Hs846y+msCMI01GSRiGvOPvtsuXkCH6iAb/9P4OoOOJ0WEQPLA364oF9ZszRfVGiu2GR9jeaLSs0Vmyyj0Xyxcd8xNdSaLzJOoe+YYhIq/cl0rKpZS0r9xggi4eFqD6BVzVLwgQq5GwPJGBHvkJARcU+/fv3w1ltvoXfv3uAkP3wHf4FQvj5u+5UlU4HSspSZFDM7+pW1WJ8ypfWVpKzRYB6a6ytImVrfMTUaSxnjOUgpLfNIUetP1mLXDvUlI4iWhzEI5euQcmixPHjHm2++iX79+jmdGUFYhposEglDfX09Xn75ZcycORMAIKW2QiB/ICCYnxzXKeK6sGYi96jva+KWFNWE0ei0Y5FNGHU0WVRbV6gN6mqyGLV+ZPNFrxdiqxyIaV7960c0X9TqO6aVf7j5Yqy+Y2qEmy9KAodghsG+G5FNFw3KVJOmiy1dO0bNFgmi5RDr4S35HXxDC5jzzz8ft912G1JS4u/5ThBKkJARCcesWbPwwgsvoL6+HkxIQ6BgEFhKfI24FNdCBpiuQQjVfJhbWZYyU0LYIFaiziZ3CusLdRJ4v6Q6oIfqumEpq65VHcxDc/0GKeNq/YaFDGhoOigBYgpveGj70PoAH5D09R1TDNAgZaZqOiFPwu2I3JCUEUSzw9WXwnvoV3BiLVJSUnDPPfdQE0Ui4SAhIxKSzZs349FHH8WuXbsAcAjmHAkxq7u9E8U2M3EtZRZytyxl6gMA6lg/JGVm4YMMQp3xAFxQglAvQkwxPzoYx4zPFRaG8RyC6QI40eR+Z4CYYvLa4kLNH82e77r7rTUHJGQE0XwwBqFyE1Kq1kMURXTo0AFPP/00unfv7nRmBGE7JGREwlJdXY3nnnsOP/74IwBASilCoGAAIKQ5nJk+4lrIAOtSBphvvmhGyhqav/EiA6cyqn3M9QVAqDMhZQ0TL8cakl4VgUMwzQMuKIFXG9JfA8ZzCGQJ4ESYkzIeEH0hGeQko21GDwuVmePmmJDZtEkSMoJQQKyF99Dv4OuLAQCnnHIK7r//fmRm6usnSxDxBgkZkdAwxjBz5ky88soroSaMvA/B/GMgpbV1OrWYkJBFxjIWzLCUcYebv4GZkLIGGWMcBz7A4K0yZnSM5yCm8KHmf37JuJQ1CBkAU1LGeA6BbCE0eqFRKeMAyceB8Zx8zA1JmYJQGTl2jgiZjZsjISOIaPjavSgMrEd5eTlSU1Nx++23Y9SoUeDiqIULQRiFhIxICrZv346nnnoKGzduBACIGV0QzO3r+omkScoax9MXkGsQC/0bC43YKP9XAni/OakI9SczUEvGhWqXGB9e36CUcSGZY57DX8CQlHFAMF2A5G0o7BiVMj7U/0zGqJSpCJVeKWtxIbN5UyRkBNGAFISnfA2Eqm0AgJ49e+Lxxx9Hp06dnM2LIFoAEjIiafD7/XjnnXcwdepUAIDkyUQwf4CrB/xIZiEDtCZ/1jl5tJ5CfWTtmBzfQC1ZRO2Y/CcDUhauHYsKaUTKImrHomLolDK5dizqjwakrLGQNawP6JQyDaHSc/xaVMiaaTMkZUSyw9WXwFPyO/hgNQBg7NixuOGGG+DzGR/5lSDiERIyIulYtmwZnnnmGRw6dAgAh2BWd4g5fQDO/IAKzUXcCxlgfy1ZVGztBWJKmZKMybF1SJmCjMkf6ZQyJSELra9TylSEDNAnZYpCBuiXMiUha1gf0CFlOoRK6xi2mJA14yZIyIikhYkQytfBW7UZjDEUFRXhgQcewJAhQ5zOjCBaFBIyIimprKzEyy+/jNmzZwMI15YNBEsxN1Fvc5HsQgYY2AcqtzJNKWvUVLFpzBhSFkMGYkpZo+aKTdePIWUKzRWbLKIlZY2bKzaGNew7piFmakLWsL68KTUx0ylUasew2YWsBWSJhIxIRrj60oZasSoAwFlnnYXbbrsNWVlZDmdGEC0PCRmR1Pz88894/vnnUVJSAgAIZvWEmNPbVbVlyS5lhr9/o1uaan8yrdqxqHgqUqZROxa9fXUpU6sdi15fQ8o0aseiYqhImWrtWJMFVWrLOEDycrHnXtOqLTMgVEpS1qxC1oKiRFJGJA2SCKFiPXzVmyFJEvLz83Hvvfdi2LBhTmdGEI5BQkYkPRUVFXjppZcwZ84cAIDkyUAw72iw1CKHMwuR7EIGmNwHEbe2JrVkemVMjqUgZUZEQknKYtSORa+vImU6hQxokCGJRYmZbiEDlKVMq3ZMYX05j6jEjAtV5LFsNiFrYUEiISOSAa7uILylK8A19BUbMWIE7rjjDuTk5DicGUE4CwkZQTSwYMECvPDCCw19ywAxvWNoJEYhxdG8EkLIAGekDJDFLErKYjVVVNp+5MiLOmvHotZvJGV6asei128kZTqaKyrGiagtMyRkQFMpMyJkDevLeUiH96UZoQofS9uFzCExIiEjEhqxHp6yNRBqdgIACgsLceedd+Lkk092ODGCcAckZAQRQVVVFd566y188cUXYIyF5i3L7QspvSPg4BwoJGU27APGQlLGDNaOyetH1JKZlYiwlNWLumvHotePkDIDtWNN4gQl8CLT7j+mRmS/MsaMCVlEDCC0viRw1iSI2ShkDkoRCRmRkDAGvmYXPGWrwUl+cByH0aNH48Ybb0RGRobT2RGEayAhIwgFVq9ejYkTJ2Lr1q0AACmlEMG8o8C8znQ2JiE7jKV9wZjF9Rtq2hgzVDsWCcdYqKbNZB4cCwkVAMO1Y1EwBjHNyvqhfWFY6CLWB0I1jVaRYvVh04MLhIikjEgkuEAFPKWrwNcXAwC6du2K+++/H3379nU4M4JwHyRkBKFCMBjE1KlTMWnSJPj9foSGyO8GMbs3wHtbPB+SssM4KmXA4VoiC/BBBk7v5M2NaRhMg5MAPmAuBmtobshZeAQwngPjrB0PqUHIzMZgHAzXNCrisAyRjBEJgxSAUL4eKbXbIIoifD4fJkyYgMsuuwwej7lafYJIdEjICCIGe/bswcsvv4xFixYBABifgmDukS3ejDFhhCwSC7VE1rZrXsrCBWfdE08r0RCDD5iUsnDfLRYSO6NSxjhA8jWMjhjRfNAokidyfcOrh2JE1JCZiRHvQkYiRiQMjIGv2QlP2VpwUj0A4KSTTsJf//pXtGvXzuHkCMLdkJARhE4WL16Ml19+Gbt27QIASL48BPP6g/laZu6yhBSyMCa+mxNS1rjwbErKGsUwLGVhmQpLiAkpYzwgpjZqrsiMS5ncdytysA6D+1RSaLJoJEY8CxnJGJEocP4yeEpXgveXAgA6duyIO+64gyZ4JgidkJARhAECgQA+/fRTfPDBB6itrQXQMBpjzhGAJ63Zt5/QUgYYFrOWljKlArRhKVOIYUjKlEY2NChlikLWEMeIlDUZTMNEbZmSkBmJEa9CRjJGJATBWnjK10KoCb2oTEtLw4QJE3DJJZfA6235pv0EEa+QkBGECYqLi/HGG2/gu+++AwAwjoeY2R1ids9m7V+W8EIWxkiFUQtJmVYBWreUacTQJWWNa8eiEtQnZVHNFRUX0C9liqMbGqwtUxMyvTHiUchIxoi4RwpAqNiI9PrtDX2sgTPOOAM33XQTiorcMYcnQcQTJGQEYYG1a9fitddew8qVKwEgNEx+dm9ImV0AzsIIdiokjZBFEstR7NgnMaRMTwFal5TFiBNTymLN+8VC83tpDfahWjvWKA6gLWaM57TnctNZWxZLyGLFiCchIxEj4h4mga/aDk/FOnBSSMSOOeYY/PWvf0Xv3r0dTo4g4hcSMoKwCGMMP//8M9544w3s3Bma9FLyZEDMORJSWlvbB/5ISikDNMWsuaVMb0FaU8p0xlCVMq3ascZo1JbpErKIOGpSpmvuLx21ZXqETCtGvAgZyRgR1zAGvnYvhPI/wQerAACdOnXCzTffjBNPPBGcg/N0EkQiQEJGEDYRDAYxc+ZMvP/++ygrKwMASN4cBHOOAEttZZuYJa2QRaLkK83UdNFoQVpRyozGEBsmsY4Us1i1Y41RkLKYzRVV4gBNxczQZMwqtWWMNycqkXFsEzKgWaSMRIyIaxgDX3cgJGKBcgBATk4Orr32Wpx33nk0jD1B2AQJGUHYTHV1NT755BN8+umn8sAfki+/QcwKLccnIYug0b6wW8rMFqabSJnJOHJtmZHasUgaSZmh2jGFWJFSZkjIGtYPE97HRmrHGhOO4WYhIxkj4hmurhie8j/B+0sAAOnp6RgzZgzGjh2LjIwMh7MjiMSChIwgmomysjJMmTIFM2bMkDs9SylFITFLsTZUPkmZAhbnwzocJyRlVgvTspRZjMMHGDiJGasdiySiXxknMvNCFo7FWOz+YzFiAKHjZEXIokK6UMhIxoh4hasvhadiHfi6AwAAn8+Hiy66CFdccQVyc3OdTY4gEhQSMoJoZg4ePIgPP/wQX331FYLBIABATG0FMbs3WEq+6bgkZQrYKGV2wEl29W+DLbLAScwWeTEtY3KAhn8EzpZ97bY+ZCRjRDzC1R+Cp3w9+PqDAABBEHDuuedi3LhxNHIiQTQzJGQE0ULs2bMHH3zwAb777juIoggAkFIKEczuDZZSYLqPmdkCf7jQmHBiZ2czRiu3x4bjGa6dMp0Ch5AsMOvHivHW44SaCNpz3hye3NrafrZFgEjIiGSEMXD1xfBUrAdffwhASMRGjhyJCRMmoF27dg4nSBDJAQkZQbQwu3fvxpQpUzBr1qzDYubLD4lZalGLiVnjQmNCiZmdg36YvUU2iALHIDeDNCpmsozJf2gIbVbCwzVbFuKEhSyMJblrXLNlZl/bIWTUd4xINsKDdVSsB+8vBQB4PB6cffbZuPLKK0nECKKFISEjCIfYv38/pkyZgq+//hqBQAAAIHlzIWb3aBgu31y7MCMFZKWCY8KImZ3D5Bu9TSpIAseM15Y1ETL5A5MC3jiWmTgqIyOakju1poZG9rcVIWtGcSIpI1xJePj6ig3yqIk+nw/nnXceLrvsMrRu3drhBAkiOSEhIwiHKS4uxtSpU/HFF1+gvr4eAMCEdASzukPK6ATw5oYV1lNA1io0JoSY6fgOur+nDZJgRMpUZUxewKB8q/m9gdqyxrVjjTEudzGsRc8+NyNkNAk0kWxIQfDVO+Cp3AxOrAEApKamYvTo0Rg7diwKCgocTpAgkhsSMoJwCaWlpZgxYwZmzJiB8vLQm0vGeyFmdIGY1Q0QUk3H1ioo6yk4xrWcGfEoPcvGumXGEAS9UhZTyADdMqU3lp44egb00P0yQE/zXIv7O3pZncvZAAkZ4QrEOgiVWyBUbwMnhVpiZGdnY/To0bjkkkto1ESCcAkkZAThMurq6vDtt99i2rRp2L17NwCAgYeU0QFiVg8wb5bp2FYnPo5bMTPTNUlrHbXbpk45iCVlugQqaoUY0q239WsMwdMrZFoxDudkdB4za/u8JWUMICEjnIULVECo3Ay+ehc4hG407du3x6WXXoqzzz4baWlpDmdIEEQkJGQE4VJEUcTPP/+MqVOnYs2aNfLfpdRWEDO7QkptbdsAIGYKj3EnZ1YG8lNat/Gt02DTOa3BPgwLGaAqZbbGUuk/poWq3Jkdqt7ofndQjEjKiBYlPFBH1RZ5DjEA6NevHy677DKceOKJEASbJv8jCMJWSMgIIg5YtWoVpk6dip9//hnhS5YJ6RAzu0DM6AwIPtOxrU6CHFdiZkOuUd838vZpcnCJxrVlpgRKzic6R7tjWZl/rMlLAKtzh4X3vdp+d4EMkZARLYLoh1C9A0LVVrl/GMdxOPnkkzF27Fj069fP4QQJgogFCRlBxBF79uzB559/jq+//hqVlZUAAMbxkNI7QMzsCubLdTS/uJAzG3MM13JZHXo9LGV2TQAdruGyJGQRseRfrU4IjQjBs2My5wai9r2LJIiEjGhOOH8ZhKqt4Gt2gWOhNzqZmZk455xzcOGFF6J9+/YOZ0gQhF5IyAgiDqmrq8PcuXPxv//9Dxs3bpT/LvnyQs0Z09sBnLNNU1wvZzblZ7WGMTJOuNbHrn0nz4NmUyxbMdncVglbxLMZICEjbIeJ4Gv2hJol+svkP/fs2RMXXnghRowYgdRU8wNAEQThDCRkBBHHMMawevVqzJgxA/PmzUMwGAz9nff+f3v3Hh1lfeB//PPM5DYhgRCIEAxyDZcuUBCEKkIR5CJK66J2dd2DLvVnu6eW7ul6FpdTxdZWbD1WPHqO23oW3VbRrvYI1aoggngLdwSUW7iFWxJzISGXmSQz8/z+mMyTmdwzuTyZ4f06Z87MPN/n+32+MxPCfPJ9nu9XvuQs+fsMk5nQz7b+XSmhrCuFXlvWGdYshl0U8sJGtDr730YXhjGpa0buuguhDF3BqC2Xo+qsnNXnrNkS4+LidNNNN+n222/XhAkTZHTxvysAPYdABsSIkpISvfvuu3r33XdVWFhobfcnpMnXZ5j8yVdLjvge71evD2VSrwtmnQ1lwTAWDANdEfL8TqOhLetAETZIIAPa5q+To/q8nJVn5agrszZfddVV+t73vqfbbrtN6enp9vUPQJchkAExxufzae/evfr73/+uTz/9tGHUzHDK7xoiX8owmQnpXf6luDVREcqCeklfrfesg0GqcRgLay/C0TLT0UJ71g4dWzS7qxHIEDNMU0ZNiZxVZ+VwX5Rh+iQFRsNmzpypW2+9Vddddx2zJQIxhkAGxLCysjJt2rRJ7777rvLy8qzt/riUwEQgfbKkuD7d3o+oCmShekG/Ozq6FZgNseUUEMloWXB0rMX2pPaHsisskEmEMrSDt1rO6vNyVJ2Vw1tlbR4+fLhuvfVWLVy4kEWcgRhGIAOuAKZp6uuvv9a7776rrVu3yuPxWGX+hHT5+gyV3zWkU9PntyVqQ1kom15De0fLWhoda7a9DoyWtRbImrTR1n8pBDIgwFcrh/uinFXn5KgttTa7XC7NnTtXt912m771rW9xbRhwBSCQAVeY6upqbd++XR9++KH27t3bsK6ZDPldg+RPHiq/a1C3zNIYE6EsyIbX0tboVlujYy21Zz1urs1mTldstT2rYgsNEshwJTN9crgL5ag+J4e7UEb9LxLDMDRlyhQtWLBAc+bMUXJyss0dBdCTCGTAFayoqEhbtmzRhx9+qBMnTljbTSNO/uSr5UseIjNxoGR03TfemAploXrodbU0Wtbe0bEW22whmLU1OtZqH6WmwewKDGQSoeyKZvoD14VVn5ej+qIM02sVjR49WvPnz9e8efN01VVX2dhJAHYikAGQJJ08eVKbN2/Wli1bVFRUZG03HQnyuzK7NJzFbCgL6oHX1+TarU4uTm21GRLMOjI61mJ7QfULaHcHAhl6HdMvo6ZYzuqLcrjzZfhrraJBgwbp5ptv1vz58zVy5EgbOwmgtyCQAQjj8/n05ZdfauvWrfrkk09UXl5ulQXC2WD5XFfLTIo8nMV8IGusG19v8L3syi/8Xd1m45G8rv78oyGQSYSymGf6ZXiK5XRfkMNdEBbC+vXrp9mzZ2v+/PmaNGmSHI4o+aEF0CMIZABa5PV69eWXX2rbtm3NhLN4+V2ZgVtSRkTXnF1xwUzqFTM39hZd8fkHTtXsfDs9gUAWg0yfHJ5iOdzBkbA6qygtLU2zZ8/WnDlzNHnyZMXFxdnYUQC9GYEMQLt4vV4dOHDACmdlZWVWmWk45U+6Sn7XYPmTBknOxA63f8WFsyvt9baiM599NAUyiVAWE3w1cngK5XAXyOH5xlorTJLS09OtEDZp0iRCGIB2IZAB6LBgONu+fbs+//zz8GvOJJkJ6YFw5hosMz61w+1fMeHsSnmdHdDhRasJZOhupinDWxkIYO4CGbWlYT9yAwcOtELYxIkTWbQZQIcRyAB0immaOn78uD7//HN9/vnnys3NDSv3x6XUj5xdJTNxQETXncV8QIv11xeBjiyEHU2BTCKURQXTL6OmtH4UrCBssWZJys7O1syZMzVz5kyNGTOGtcIAdAqBDECXKiwstMLZ/v375fU2TPFsGk75EzPqT2+8Sorr0+H2YzqcxfJr64S2F8Pusa50CQJZL+WtksP9jRyeb+SoKQo7FTE+Pl5TpkzRzJkzdcMNN2jQoEE2dhRArCGQAeg2lZWV2rVrl3JycrRr1y5dunQprNwf10dm0lWBgJY4UHJ0/HqLmAtosfZ6ulBzn3U0BjKJUNYr+L1y1BQHrgPzfNNkFCwtLU0zZszQzJkzNX36dBZrBtBtCGQAeoTf79eJEye0a9cu7dy5U1999ZV8voa/QJtyyExMlz8pQ/7EgTIT0q7s0xtj5XV0k7Cp+aMw3BDIbGD6ZdSW1YewIhk1JTJC/qE5nU5NmDBB06dP1/Tp05Wdnc309AB6BIEMgC2qqqq0b98+7dy5U7t27VJBQUFYeeD0xoEyEwfKnzRQZny/iBYWjomAFguvoTtFabghlHUz05RRVy6Hp1hGTbEcNSUyTG/YLpmZmVYAu/baa9WnT8dPowaAziKQAbCdaZo6e/as9uzZo3379unLL79URUVF+D5GvPxJAwIBLTEjMHtjBwMa4awFRje12/gY6objRHmoIZR1IdOUUXdZjppiGZ5gAKsL2yUlJUWTJ0/W1KlTNX36dGVlZTEhBwDbEcgA9DrB0xv379+vffv26cCBA6qurg7bxzTi5U9MD5zmmDhAZnya5GjfdNMEs0ZCv492V+BrTlccKwa+S0dDKAs7RbS3tG/66k9BLAnMiFhbGrYwsyQlJyfr29/+tqZMmaIpU6Zo9OjRTEsPoNchkAHo9bxer44fP659+/Zp3759+uqrr+TxeML2MWXITEgLhLPEdPkT0ltdoDomQpnU+VDT2hfgngxMkR4rCsJMW3pbIGtx8hS7j+GrkaOmVEZtaSCE1ZaFXQMmSS6XS5MmTdKUKVM0efJkjRkzhsWZAfR6BDIAUcfr9erEiRM6ePCgvvrqKx08eFClpaVN9vPHpchM6C9/Qn+ZCWkyE/pKRsNfx2MmlEmRBZruDksdOUakx+tlYSZSdoWytv4NdEW/IjqG6ZdRd1lG7SU5ai4FQlijWRAlKT09XRMnTtTEiRM1YcIEAhiAqEQgAxD1TNNUfn6+Dh48qEOHDunQoUM6c+ZM0/3kkJnQNzykxaXIiJVv9VL7w0ykL7mnw1Jbx4ulj66bX0tH/wARSX8iOoZpyvBWBsJXbZmM2ksyai/LkL/J/iNGjNCECROsEDZkyBCuAQMQ9QhkAGJSeXm5Dh8+rCNHjli3y5cvN9nPNOJkBsNZfD/54/tKcSkRzejYq7T2m72rXpodYanxMaP8Y2qsq0JZZ0Z/29uHiI5hmoEFmOvKpbqy+gBW1mT2Q0lKTU3VuHHjNG7cOE2YMEETJkxQampqBAcFgN6NQAbgimCapi5evKgjR47o6NGjOnLkiI4dO6ba2tqm+xpOmfF9Zcb3C9wS+smMS41o4epeIfhbvjvDS4wHpZ7UkVDWlafdmkagveaOH9Fx/N7AaYd1l2XUldffLsswfU12TUxM1NixY60ANn78eEa/AFwxCGQArlher1enT5/WkSNHdPz4cZ04cUInT55UTU1Nk31NSYpLkT++X31YSw1Mve/sE/2jaeiVQoNRT1zvGAxkHa9oSr5qGXUVVgBz1JVL3spmc3lCQoJGjRql7OxsK3wNGzaMa78AXLEIZAAQwufz6fz58zpx4oRyc3Ot+0uXLjW7vymHFc7MuFSCGmJX/emGhrciEL6s+8pmR72kwKQbo0eP1ujRo5Wdna3Ro0crKyuLqecBIASBDADaYJqmSkpKdOLECZ04cUKnT5/WmTNnlJeX1+wpj1JIUIvrI8WlyIzrIzMuRWZciuRM6OFXAHSArzYQsrxVMryVISGsstmJNqTAqNc111yj4cOHW6Nfo0aN0oABA3q48wAQfQhkABAhn8+n/Px8nT59Wnl5ee0KapJkOuLrw1kgpCmuT+Cxs4/kiGdkDd3PX2eFLtUHL6OuPoSZdS1WS0hI0LBhwzR8+HCNGDHCepyZmckphwAQIQIZAHSxYFA7c+aMzp8/r/Pnz+vcuXM6f/68ioqKWq1rGnEy45IlZ7LMuGSZzmSZcS7J2Sew3RHfQ68CUcs0JbNOhrc6cG2X1y3DVx3yvLrZWQ1DZWRkKCsry7pdc801GjFihAYNGsTphgDQxQhkANCD3G63Ll68aAW04P2FCxeaXdy6sYbAliTT6ZLpTJKcLpmOJGsbo2wxzDQDo1s+t+TzyPB7Avc+twyfR/K52xW4pMD1XaGhKysrS0OHDtWQIUPkcrl64MUAACQCGQD0GjU1NSooKFBBQYHy8/OVn58f9rysrKxd7ZhyNApsiTIdifX3CZIjUaYzUXIkRu9U/rHENCXTJ/lrZPhqJH+tDH+N5KuR4a9tFLg8LV7H1Vh6eroGDx5s3TIzMzVo0CDreVJSUje/MABAexDIACBKuN1uFRYWqqCgQMXFxSoqKmpyX15e3qE2TcMZCGiOhPrAFi85EgL3RshjR7xVFhiB47S1Zpk+yV8bGMXy1zXcm8HHtQ33vppA8PLXtjhLYUv69eunjIwMDRgwQBkZGRo4cKAyMjKUkZFhBS8CFwBEBwIZAMSQmpoalZSUWCGtuLhYZWVlunTpknV/6dIllZaWtjrxSFtMwykZcZIRJ9PR8FiOuPqQV19Wvy0Q4BwyDUfgseEI3BR4bgaf1+/XcMqlUf84eFPbp2Na/62ZslasNusfm35J/sC96Zdh+gMhKmSbTL8M+QKP/V7J9AYCU5PHvvrn3sBzf127R6+ak5CQoPT0dKWlpSktLU39+/dXWlqaBgwYYAWu4OOEBGbqBIBYQSADgCuQaZpyu91hIa2srEwVFRXW7fLly6qoqFBlZaX1vLKyUnb/txE4en1AM4yGsFVfavfVcw6HQykpKUpJSVFqaqp1Cz5PSUmxAlcwdKWlpcnlcsng2j8AuOIQyAAA7eb3+1VVVaWKigq53W5VV1c3e9/4cU1NjWpra1VXVxd239w2vz/yUab2cDqdSkhIUHx8vHULfR58nJCQoOTkZLlcLuuWlJQkl8vVZLvL5bICV3JyshwOR7e+BgBA7CCQAQB6FZ/PJ9M05fP55Pf7m30cem8YhhwOh3UfvDXebhiG4uLimLYdANCrEMgAAAAAwCacUwEAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANomzuwMAYp9pmvJ4PHZ3AwA6JCkpSYZh2N0NADGOQAag23k8Hi1cuNDubgBAh2zatEkul8vubgCIcZyyCAAAAAA2YYQMQI9K2HWVDLP+b0GGQ4bDkAyH5DAkw5DhCJbVbzcMyWHICO5jlRlWHesmhWxzhJcHKlrbTMNo+JNUSBvWdqPhWKHbTCPQjFXmCLQb2G5YZcE6Zv02q1xqaMNRv3+wXOHHCKtT333T0UxZ2P4K62PDNqNJWZM6Cu1Ho3K1sL2F9lrqR5M6rbVrbTeb1g+pY5WHtGXWb1dIvUCZGdKfQLkRWmbtGywzrTaN0P0N0yqzfsSC24PN1e8T+FEwrefBOo7654GywPNgPavMMGWooZ6jfpt1k2nVcxgK2x6o72+op+D+fjmDdeqfN7Tlt9pzhrTvVGC7M9ieta9fzmCbCvbD37C/GtoOtOmXQ4HjB8oC7TnrtxnyyxmsH1LHKQXqKXCc4PsRfB44lln/WPVlphz174tThhySnPUftkNG/TZDTsOQQw4Z9Z9cXa1Td/y/wQKAnkIgA9CzfEb9VyMFApnqw1P9N92GMkNyNKQPI5Bu6hsJfjN3qMk37oa0E54Cgm02+YauRttCj6FmtjWup4YgFhLImmwLCVChzxt3MXz/Zuo4Wilr6WU06UcLL7u1spbeqkjbC2mzubDWrYGsuXI1fm5abYf2I/SYzZVZAU4h+4Tu36SO2cyxzLBbaCBrCHn1t5bKFAxtgSZDw1swuEnBYCUr0ISWBQKZvyHQGKGBJvDYYRiBsFR/L+uxYdULtKP6NoN1VV+vfntzZSF1nPVh0mn1MxjIzDYDWWh7zuD7ofBtDoX2MeQzBIAewCmLAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANmEdMgA9y2nKNAOLwQbW1TJC7o1GizUH70MeK3SbGfK4HWUhi1I1LN/b0vaGezPsscLqmZJkBrc3tGnKkExZdUPLrTbCFs8K7Uszz82wLjV6P1q4Nd63PWuNtVbW7mO1syz0kK3WM9to02yhjy0vDB2+dlhImbVv5AtDN/QjZB0yRb4OmamGeqZhht8UuA+UKWy73zAlw9/QpoLH8oesl1a/T325afit9hTWfv198Fj1zx31+wTvJTXZ5g/5Zx187DckvxrWIfPXbzPU0jpkhrWYs1MNn1nwuaO+TuO1zdq/MLShhoWhm/t3CQDdh0AGoEfVTv/G7i50j+D33Qg1zhNAUOiPlt/OjkQsNBFzYg4ANMZvRgAAAACwiWGaZif+pgsAbTNNUx6Px+5uxByPx6Pvf//7kqSNGzcqKSnJ5h6hNXxe0ScpKUmGwZg1gO7FKYsAup1hGHK5XHZ3I6YlJSXxHkcRPi8AQBCnLAIAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2YZZFAAAAALAJI2QAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE3i7O4AAFwJqqur9cYbb2j79u0qKCiQw+HQ0KFDNXfuXN1xxx2Kj4+PuO3S0lKtX79eOTk5KiwsVGJiokaMGKFFixbp1ltvlWEYrda/cOGC1q9fr927d6u0tFQul0tjxozRkiVLNGfOnIj7Fc164+dVUlKiAwcO6Pjx49bt8uXLkqTnnntOU6ZMibhPAAD7GKZpmnZ3AgBiWUFBgVasWKGCggJJUlJSkvx+v2prayVJ2dnZWrt2rVJTUzvc9rFjx/Twww+rvLxckuRyuVRbWyufzydJmj59utasWdNigMjJydHq1avl8XgkSX369JHb7Zbf75ckLV68WCtXrmwz1MWS3vp5rVu3Tq+88kqz7RLIACB6ccoiAHQjr9erRx55RAUFBRowYIB+//vfa/Pmzdq8ebNWr16t5ORk5ebm6oknnuhw25WVlVq5cqXKy8t1zTXX6I9//KM2bdqkzZs369///d8VFxenXbt26fnnn2+2/sWLF/X444/L4/Fo4sSJeu211/T+++/rvffe0/333y9Jeu+99/T666935i2IKr358zIMQ1dddZVuvPFG/fCHP9R//ud/dvblAgB6AQIZAHSjDz74QKdOnZIkPfHEE5o2bZokyeFwaN68eXr44YclSTt27NDevXs71PYbb7yh0tJSJSYm6ne/+53GjRsnSYqPj9fSpUu1fPlySdI777yjc+fONam/bt06ud1upaen66mnntLQoUMlScnJyVq+fLmWLFkiSfrzn/+sioqKCF599OnNn9eyZcv01ltv6cknn9R9992nqVOnRvw6AQC9B4EMALrRBx98IEmaMmWKJkyY0KR83rx5yszMDNu3vTZt2mS1MWTIkCblS5culcvlks/n04cffhhW5na7tX37dknS7bff3uzpd//yL/8iSaqqqtKnn37aob5Fq976eUmS0+ns0PEAANGBQAYA3cTj8eirr76SJH3nO99pdh/DMDRjxgxJ0u7du9vd9tmzZ1VYWChJVv3GkpOTNWnSpGbbPnTokGpqalqtn5mZqWHDhnW4b9GqN39eAIDYRSADgG6Sl5dnTY4xYsSIFvcLlpWWllqz5rUleFpdW22PHDlSknTmzJkW6wf3aa3+6dOn29WvaNabPy8AQOwikAFANykuLrYeZ2RktLjfwIEDm63TmpKSkg61XVVVperq6ibHSU1NVWJiYpv1Q48Xq3rz5wUAiF0EMgDoJqFfqFsLPUlJSc3W6c623W53k/LW6l8J4aA3f14AgNhFIAMAAAAAmxDIAKCbJCcnW4+DE2g0J7goc+M63dm2y+VqUt5a/fb2K5r15s8LABC7CGQA0E1CrzUqKipqcb/Q65BC67RmwIABHWq7T58+YV/wg8epqKhoNSAE64ceL1b15s8LABC7CGQA0E2GDRsmhyPwa7a1WQqDZenp6erbt2+72g6dGbG1toOz+w0fPrzF+qEzALZUv7WZAWNFb/68AACxi0AGAN0kKSnJWlx4586dze5jmqZ27dolSbruuuva3fbQoUM1aNCgVtt2u906ePBgs21PnDjRmlwiePzGCgoKlJeX1+G+Rave/HkBAGIXgQwAutGiRYskSfv379fhw4eblG/btk0XL14M27c9DMPQwoULJUlbt25Vfn5+k33efvttud1uOZ1OzZ8/P6zM5XLpu9/9riRpw4YNqqysbFJ//fr1kgLXMs2aNavdfYtmvfXzAgDELgIZAHSjRYsWaeTIkTJNU48++qj27t0rSfL7/dq2bZuefvppSdKMGTM0derUsLrr1q3T7NmzNXv27Ga/wN99991KT0+Xx+PRypUrdezYMUlSXV2dNmzYoP/5n/+RJC1ZskRDhw5tUn/58uVyuVwqKSnRI488onPnzkkKjNS88sor2rhxoyRp2bJlSk1N7aJ3pHfrzZ+X3+9XWVmZdauoqLDKKisrw8pqa2u75g0BAHQ7wzRN0+5OAEAsy8/P189+9jMVFBRICpwa5/f7rS/N2dnZWrt2bZPQs27dOr3yyiuSpL/85S/KzMxs0vaxY8f08MMPq7y8XFJgNKu2tlZer1dS4NS3NWvWKCEhodm+5eTkaPXq1dbsfikpKXK73fL5fJKkxYsXa+XKlTIMo5PvQvTorZ9Xfn6+/umf/qldr+G//uu/dMstt7TvBQMAbBVndwcAINZlZmbqlVde0RtvvKHt27eroKBAcXFxGjFihObNm6c77rhD8fHxEbU9duxY/e///q/Wr1+vL774Qt98842SkpI0cuRILVq0SIsXL7YmqmjO9ddfr5dfflnr16/X7t27VVpaqpSUFGVnZ+t73/ue5syZE+Grjl69+fMCAMQeRsgAAAAAwCb8GQ4AAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwCEee655zR79mz99Kc/tbsrsFllZaVuvfVWzZ49W5988ond3QGAmBRndwcAIFZUVVUpNzdXR48e1bFjx3Ts2DFduHBBpmlKkv7yl78oMzOzW45tmqbuvPNOFRUV6d5779WPfvSjiNrJzc3Vhg0bJEkPPvhgF/bQXqdOndKuXbt06NAhnTp1SiUlJfL5fEpNTdWoUaN0/fXXa9GiRUpJSbG7q71KSkqK7r77br300kt6/vnnNWPGDCUmJtrdLQCIKQQyAOgiK1asUG5uri3HPnr0qIqKiiRJs2bNiridF198UT6fTzNmzNDEiRO7qnu2WrFihb788stmy0pLS1VaWqrdu3fr1Vdf1apVqzR9+vSe7WAvd+edd+rNN99UYWGh3nrrLd177712dwkAYgqnLAJAFwmOhEmBkYUpU6YoPT29R4796aefSpIyMjI0fvz4iNo4ePCg9uzZI0kx9aU7GFRTU1O1ePFirVq1Si+88IJeeukl/epXv9L1118vKRDOVq1apQMHDtjZ3V7H5XLpjjvukCStX79e1dXVNvcIAGILI2QA0EUWL16stLQ0jR07VllZWTIMQytWrFBpaWm3HzsYyGbOnCnDMCJq4/XXX5ckZWZm6tvf/naX9c1uWVlZWrZsmebNm6eEhISwsrFjx2rOnDl67bXX9Ic//EG1tbV65pln9Kc//cmm3vZOCxYs0Lp161RRUaG///3vuuuuu+zuEgDEDEbIAKCL3Hnnnbr55ps1dOjQiENRJM6dO6e8vDxJkZ+uWFRUpJycHEnSwoULe7T/3e3pp5/WLbfc0iSMhbr33nuVnZ0tSTpz5oxOnjzZU92LCpmZmZo0aZIk6W9/+5vNvQGA2MIIGQBEueDsd8HTJCOxZcsW+f1+SdLcuXPbVcfr9Wrr1q367LPPdPToUZWVlcnn8yktLU0jR47UtGnTdPPNN2vAgAFh9WbPni1JWrRokVatWqWzZ8/qrbfe0u7du1VcXKw+ffpozJgx+ud//mdNnjzZqldTU6P3339fmzZt0vnz5+XxeDRkyBDNnz9fd911V6cnm7j22mutawDPnTunUaNGRdzWmTNntHHjRh04cED5+fnyeDxKSUlRamqqMjMzNXXqVN1444265pprImrf6/Vq8+bN2rZtm06dOqXy8nIZhqG+ffsqLS1N48eP17Rp0zRz5kzFx8eH1W38/p85c0Zvv/229uzZo+LiYrndbv3mN79pEu7nzp2rAwcOKC8vT0ePHtW4ceMie3MAAGEIZAAQ5YKnK15//fWKi4vs1/oXX3whKXCd1bBhw9rc/8SJE3rsscd0/vz5JmVFRUUqKirSzp07dfLkSa1atarFdj7++GM9+eST8ng81raamhrt2LFDO3fu1MMPP6wlS5aouLhYq1at0tGjR8Pqnz59Wn/84x+1Y8cOPfPMM50KZV6v13rscER+AsnGjRu1du1a+Xy+sO3l5eUqLy/X+fPntXv3bp08eVKPPvpoh9svKyvTf/zHfzQ7gUzwvc/NzdXf/vY3rV+/XllZWS229f777+uZZ55RbW1tm8cNneTliy++IJABQBchkAFAFCsuLtaRI0ckRX66Ym1trb7++mtJ0vjx49s8XTE3N1cPPfSQ3G63JGnKlClasGCBhg0bpvj4eJWUlOjw4cNtrlt18uRJbd26Vf3799eDDz5oHXvv3r3685//LI/Ho2effVaTJ0/Wr3/9a504cUK33367brzxRqWlpenChQv605/+pJMnT+rgwYNav369/vVf/zWi90CS9u3bZz0eMWJERG2cOnXKCmN9+/bVkiVLNHnyZKWlpcnn86mkpETHjh3Tjh07Ij4tdO3atVYYmzp1qhYsWKDMzEz16dNHVVVVysvL04EDB6xTUFty7NgxbdmyRX379tVdd92liRMnKj4+XmfOnNHgwYOb7D9ixAi5XC653W7t27dPy5cvj6j/AIBwBDIAiGKfffaZTNNUQkKCZsyYEVEbJ0+etEaHxo4d2+q+Xq9Xjz32mBXGfvazn1kz8IW64YYb9MADD6iwsLDFtnJzc5Wdna21a9cqNTXV2v6tb31LWVlZWr16tbxerx566CFdvnxZTz/9tKZNm2btN2bMGF133XVatmyZiouLtWHDBi1btkxOp7NDr18KnPZ5+vRpSYFQOnTo0A63IUnbtm2zRsaeffZZ67q0ULNmzdIDDzyg8vLyDrdfU1NjBd1Zs2bp17/+dZNgN3nyZH3/+9+X2+1udaTv9OnTysrK0gsvvBA2G2hLs3Q6nU6NGTNGBw4c0PHjx+X3+zs1kggACOA3KQBEseDpitOmTZPL5YqojdDTDtuapn/Lli26cOGCpMCsks2FsVCDBg1qtfyRRx4JC2NBc+bMUUZGhiTp0qVLWrp0aVgYC0pJSdEtt9xi7XfmzJlWj9ec4uJi/f73v5ckGYahf/u3f+twG0HBGTVTUlKaDWOh+vXr1+H2KyoqrPA8efLkVkfZXC5Xm6dw/vznP+/Q0gzBfT0ej4qLi9tdDwDQMgIZAESpyspK7d+/X1LnFoMuKSmxHvft27fVfYMBUJLuueeeiI8pBU6Baym0GIYRVrZgwYIW2wnd7+LFix3qg8fj0apVq6wg1XgikY4KhsjKykpt27Yt4nZa0q9fP2u2yI8++qhTa4JlZGQ0G3JbE/rzEfpzAwCIHIEMAKJUTk6OvF6vnE6nZs6cGXE7NTU11uPmRqtCHT9+XFJgpKQ9k3+0pq36oX1pbTbC0P06ElDq6ur0i1/8wpoo5MYbb9QDDzzQ7vrNWbBggTUqtXr1av3kJz/Ra6+9poMHD1qneXZGfHy8Fi1aJEk6fPiwfvCDH+jpp5/WRx991OEwGskskqGBLHQiFgBA5LiGDACiVHC0asKECUpLS4u4ndBrrtqaba+srExSw0hQZyQlJbVaHno6XmunY4ZexxScur8tXq9Xjz76qHbt2iVJmj59uh5//PGIrj8LNWTIED311FN68sknVVRUpEOHDunQoUOSAu/zuHHjNHv2bN12221tht+W/PSnP1Vtba02bdqky5cv65133tE777wjKRCUp0+frsWLF7c50tfWaGhzQsN7pDN6AgDCMUIGAFGotrZWO3fulNS50xWlwPVOQZcvX+5UW9HA6/Vq9erV1lT/06ZN029+85tWF47uiKlTp+r111/XL3/5Sy1evNiadt7n8+nrr7/Wiy++qHvuuccKgx2VmJioVatW6dVXX9UPf/hDXXvttVZgLS0t1QcffKAVK1boF7/4RViAaiySCTlCJyIJ/bkBAESOP28BQBTas2ePdQpcZwNZ6BTnbQWytLQ0FRYWRu2EDsEwFhxdvPbaa7VmzZpOLyrdWEJCgm666SbddNNNkgIji3v37tWmTZu0Y8cOXb58WY8++qjWr1/fZOHs9ho6dKjuu+8+3XffffL5fMrNzdUXX3yhjRs36tKlS/rkk0/00ksv6aGHHuqy11VRUWE9bmvCFgBA+zBCBgBRKBgosrOzlZmZ2am2QtfcOnv2bKv7BqfFLykpaXPf3qZxGJsyZYqeeuqpLg9jzUlLS9O8efP0u9/9Trfffrskye1267PPPuuS9oOnQy5fvlz//d//bZ0OumXLli5pPygvL0+SlJmZqeTk5C5tGwCuVAQyAIgyfr9fn3/+uaTARBSdNWjQIA0cOFCSrEWmWzJ79mzr8fr16zt97J7i9Xr1+OOPW2Fs8uTJ+u1vf9vmdWzdYfr06dbj4DV5XSkzM9NaRy2Stc5aUlZWZi158A//8A9d1i4AXOkIZAAQZQ4dOmR9kQ8NSJ0RDAl5eXmqqqpqcb+5c+daX/bfe+89/fWvf2213dYWhu4pXq9Xv/rVr6wFlbszjG3fvr3NkBW89k+Srr766g61f/HiRe3Zs6fVffLz862RrCFDhnSo/dYcPnzYevyd73yny9oFgCsd15ABQBc5f/68NaNeUHB9K0n6+OOPw2ZDdLlcmjNnToePExzlGTJkSERTlzfnpptu0nvvvSe/3689e/bou9/9brP7xcXF6Ze//KV+8pOfyO1267nnntMnn3yihQsXatiwYYqPj1dJSYmOHj2qjz/+WGPHjtWqVau6pI+ReuKJJ/Txxx9LCgSgH//4x8rPz2+1Tv/+/dW/f/8OH+uvf/2rnnjiCU2dOlVTp07V8OHD1a9fP9XV1amwsFBbtmyxRjcHDx7c4eUKCgsL9fOf/1xDhgzRzJkzNX78eA0aNEiJiYkqLy/X4cOHtWHDBmu2zLYW7u6I3bt3SwpcH3f99dd3WbsAcKUjkAFAFzl06JDWrFnTYvmLL74Y9nzw4MGdCmRdcbpi0LRp05SRkaGioiJt2rSpxUAmSaNHj9bzzz+vxx57TBcvXtT+/futBaobC15zZqfQBZovXLigH//4x23Wuf/++7V8+fKIjldbW6ucnBzl5OS0uM/VV1+tNWvWtDqdf2suXryoN998s8Vyh8Ohe+65R//4j/8YUfuNeb1effTRR5ICo7KRTtkPAGiKQAYAUeTEiRPW6E5nZ1cM5XQ6tXTpUv3hD3/Qjh07VFZW1uraZmPGjNGrr76qTZs26dNPP1Vubq51vVL//v01atQoXXfddbr55pu7rI/RYPXq1dq1a5cOHDigU6dOqbS01DqFsV+/fho9erRmzZqlBQsWRDTN/qRJk/TCCy9oz549Onz4sAoLC3Xp0iVVVVUpKSlJQ4YM0aRJk3Tbbbd12eipJOtnQpLuvPPOLmsXACAZpmmadncCANA+L7/8sl5++WX1799fb7/9dkRrSbWksrJSd999ty5fvqwf/ehHuvfee7usbUS3lStXKicnR1OnTtWzzz5rd3cAIKYwqQcARJHg6Yo33HBDl4YxKbDQbzCEvfHGG6quru7S9hGdDh8+rJycHBmGoQcffNDu7gBAzCGQAUCUqKur06xZs3T//fdr6dKl3XKMO+64Q1lZWSovL9f//d//dcsxEF1eeuklSdLChQs1fvx4m3sDALGHUxYBAGGOHDminJwcpaSk6Ac/+IHd3YGNKisr9eabb8o0TS1durTV6woBAJEhkAEAAACATThlEQAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJv8fIZe1+sWt2RQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACgZUlEQVR4nOzdd3xTVR8G8Cez6R60QKEtZa9WNrJBpggKKgIKAg7cilvcghs3ihsElFdQEJUlS/aUvSmrZbbQvTPP+0fIJaVJmrZpb9o+Xz75NOSO/NImN/e559xzFUIIASIiIiIiIqp0SrkLICIiIiIiqqkYyIiIiIiIiGTCQEZERERERCQTBjIiIiIiIiKZMJARERERERHJhIGMiIiIiIhIJgxkREREREREMmEgIyIiIiIikgkDGRERERERkUwYyIiIiIiIiGTCQEZERERERCQTBjIiIiIiIiKZMJARERERERHJhIGMiIiIiIhIJh4JZImJiVAoFFAoFJgwYYInVlkj9enTR/o9EhE5M2HCBGlbkZiYKHc5ktmzZ0t1zZ49W+5yyMMsFgs6dOgAhUKBJ598Uu5y6Dr8/JGc1q9fL73/3nrrLbnL8ajs7GyEhYVBoVDgu+++q5DnqLQWstmzZ+Ott96qdn8kV/7880/pNWdmZspdDl1lMpmwZs0aTJ48GX379kVkZCR8fHwQEBCAxo0bY/To0fjzzz9hNptLtd5Dhw7hySefRIsWLRAQEIDg4GDEx8dj8uTJSEpKqqBXQ0Q1icFgwO7du/H999/joYceQocOHaDVaitlR/z777/Hnj17oNPp8PLLLzucpypsX5OSkjB58mTEx8cjODgYAQEBaNGiBZ588kkcPny4VOty17Zt23D//fejcePG8PPzQ1hYGDp06IB33nkHqampFfKccoiPj5fei2vXri318ps3b5aWb9WqVamXtw+l7tzWr1/v1no9+Z65cuUK3n77bXTo0AFhYWHw8/ND48aNcf/992P79u2lfs3uqCn7J7feeqv0t505c2aplz979ixUKhUUCgXCwsJQWFgIAAgKCsIzzzwDAHj11VeRkZHh0boBAMIDzpw5IwAIAGL8+PEO5+ndu7c0T00xfvx46TWfOXOmxPlr4u+osv37778iLCxM+j27unXq1EmcPHnSrfV+9NFHQqPROF1XYGCg+PXXXyv41VFNUdptS2X56aefpLp++uknucupltq3b+9yu1VRv/e8vDxRt25dAUA89dRTDuepCtvXX375RQQEBDhdl1arFZ9++qnbv5eSWCwW8cwzzwiFQuH0OevUqSPWrl1b7ufyhs/fJ598ItUwduzYUi9///33S8tPmzat1Mvb/w7cua1bt67EdXryPbN69WpRu3Ztp+tSKBTi+eefL/XrdqWy9k/WrVsnrfPNN98sf+FlsGjRIqmGHj16lHr5qVOnSss/9thjRaZlZWWJ0NBQAUBMnjzZUyVL1M6jmvtiY2MhhPDEqmo0d4/UUNlduHAB6enpAICwsDD0798fXbp0QWRkJIxGI3bu3Im5c+ciOzsb//33H2666Sbs3LkTdevWdbrOb7/9Fi+88AIAQKPR4N5770Xv3r1hNBqxcuVKLFy4EDk5Obj33nsREhKCm2++uVJeK1Vfs2fPZpekGur6lqW6devCx8enwo9yf/3110hOToZKpcKLL77ocB5v374uW7YM48ePh9lshkKhwIgRIzBo0CBoNBps2LABP//8MwwGA5599lkEBgbiwQcfLMdvzOrll1/GZ599BgDw9/fHAw88gM6dOyM3NxeLFi3C6tWrkZKSgmHDhmHTpk1o27ZtuZ9TTmPHjsVLL70Ek8mEP/74A19//TUCAwPdWjY/Px+///47AEClUuHee+8tVy1PPvkk+vbt63KeuLg4l9M9+Z7ZvXs3hg0bhvz8fADAgAEDcOeddyIgIAA7d+7EzJkzkZeXh48//hg+Pj545513Sv+ir1PT9k9uvfVWhIeHIzU1FZs3b8apU6fQuHFjt5efM2eOdP++++4rMi0oKAiPP/443nnnHXz55Zd4/vnnUatWLY/VXmlNMTWx9cdbj2LXZD///LOIj48X//vf/0RhYaHDec6fPy9at24t/e3GjRvndH0XL14Ufn5+AoBQq9Vi9erVxeaxP2IXHR0tCgoKPPZ6iLyJNxyhr+6eeeYZ8cYbb4i//vpLXLhwQQghxJtvvlmhv3ej0Siio6MFADFw4ECn83nz9jUvL0/Uq1dPmnf27NnF5lm1apVQq9UCgAgICBDJyclOa3PHnj17pJax4OBgsX///mLz2P/tOnXqJCwWS5mfz1s+f8OGDZPqmDlzptvLzZ07V1pu6NChZXpuT/4OPPmesVgsRVq333rrrWLz7Nu3TwQFBQkAQqlUigMHDpSr/sreP/GGFjIhhJg0aZJUx+uvv+72chs3bpSWi4uLczhPQkKCNM+7777rqZKFEEIwkFUgBjLvk5GR4dYX3sGDB6W/na+vr8jLy3M439NPPy3N98ILLzhd31133SXN99VXX5W5fiJv5i07hDVNRQeyxYsXS+ufO3eu0/m8efv6+eefS/PcddddTtf1wgsvSPOVt+vY8OHDpXXNmDHD4TwWi0V07txZmm/p0qVlfj5v+fz9+eefUh09e/Z0e7m+fftKyy1atKhMz+3J34En3zP2v5Mbb7zR6edkxowZ0nwjRowoV/2VvX/iLYFs3759Uh0NGjRw+yCHfXfZTz75xOl8nTp1kgJseQ6gXK/CzyGzD2Kubs7+eGazWSxYsECMHDlSxMbGCl9fXxEQECCaN28uHnnkkRKPINh/Udn6Cq9Zs0aMHj1axMbGCh8fn2KByWg0in/++Uc8++yzonv37iIiIkJoNBoREBAgmjZtKsaPHy82bNjg9Dntg5irm6vfVUm2b98uJk6cKJo1ayYCAgKEn5+faNSokRg3bpxbfdFtz9O7d28hhBC5ubnio48+Eh06dBAhISHCz89PtGrVSkyePFmkp6eXuL7qqEWLFtLvydGRTYvFIurXry8Aa7/vs2fPOl3Xpk2byvQF5Qlbt24VjzzyiGjZsqUIDg4WPj4+Ijo6WowcObLEL39HG9ikpCTx7LPPiubNmws/Pz8RHBwsunbtKmbMmCGMRqNbNeXk5IjPPvtM9O/fX0RGRgqtVitCQ0NFx44dxeuvvy4uX77scvnrPysmk0n89NNPon///qJevXpCpVKJBg0aFFsuOTlZvPDCC6Jly5bCz89PhIaGik6dOomPP/5Y2ils0KCBtCG3t2LFCuk5n3zySbde55NPPikts3z5creWcUdJB3sq6u+2ZMkSMXToUFGnTh3h4+MjGjRoIO655x6xdetWIUTpdob0er348ccfxa233iqioqKEj4+PCA4OFvHx8eLZZ591ehDr2LFj0lHfoKAgcfr0aafPkZ6eLrXsKJVKl9vtqqyiA9kdd9whhaecnByPrLOyt69du3aV5tm8ebPTdZ09e1Zq1YqJiSn9C7sqOztb2r8ICgpyGjqFsLYs2mq79957y/yc7n7+du7cKcLDwwVgPf9pwYIFxeYpz76X0WiUzpNSKBTi1KlTJdaelJQk/d7Dw8OFwWBw6zVfz5OBzJPvmbvvvlta1y+//OJ0XXl5eVIrma+vr8jNzS1T7XLsn7gbyE6ePCkaNWok1ebs/LsVK1aI8ePHiyZNmoiAgADh6+srGjVqJMaPHy82bdrkspZ27dpJtbizT5yXlycCAwMFYG1NTElJcTqvfVD/999/S1y3u7w6kJ08eVK0bdvW5XJKpdJlk6T9F9W///4rHn/8cYfrsf/y79Onj9uBSq/XF3vOigxkRqNRTJw4scR1jxw5UuTn5ztdj30gO3XqlGjVqpXTdTVo0KBGtvDZjoIAENu3by823f4or7PmbRuz2VykK0J2dnZFlS3Jzc0Vo0aNKvG9MmTIEKf1XL+BXbFihQgJCXG6rgEDBjjtqmSzfPlylyc1A9aTjP/66y+n67D/rKSlpYkePXo4fN/a+/fff6UTch3d4uPjxdmzZ50GMrPZLBo2bCgAiNDQ0BK7dhQUFEjPFxMTI8xms8v5S6O0gay8fzeTyeRyu6ZUKsWHH37o9s7Qf//9J/0und20Wq349ttvHS7//fffS/N17dpVmEwmh/ONGDFCmu/VV191+TutyioykBUWFkoBuFevXh5bb2VuX7Oysop0HSzps2jfpfLw4cOlf3HCevDCto6Sut9dvnxZmjciIqJMzyeEe2Fk5cqV0gAVAQEBDruxeWLf69lnn5XmfeONN0qs3X4whUmTJrn7kovxVCDz9HumVq1a0vQrV664XNeQIUOkeZctW1am+uXYP3EnkO3Zs0fUqVNHANbg8/PPPxeb5/Lly0VaS53dHnjgAafBffr06dJ8rrpF29h3lx02bJjLeffv3++R9+r1PDKohyu2IV1fe+01aWjQxYsXF5uvRYsWRf5/6tQpdOnSRRoOtkePHhg6dCgaNGgAs9mM3bt3Y/bs2cjIyMDbb78NpVJZ4pD6H330EVasWIG6detiwoQJiIuLg8lkws6dO+Hj4yPNV1BQgICAAPTr1w8dOnRAbGwsdDodLl26hMOHD2PevHnIy8vDnDlzEBISgs8//7zI8zz11FMYPnw4pk+fjnXr1gEAvvvuO9SuXbvIfDExMW79Du3de++9mD9/PgBAp9Nh/Pjx6NatG1QqFXbt2oWZM2ciJycHv/32G7KysrBixQqX1zXLzs7GkCFDcPz4cQwbNgw333wzwsLCcPr0aXzzzTc4e/YskpKSMG7cOGzcuLHU9VZVBoMBJ06ckP7foEGDYvMcOnRIut+hQweX61MqlWjXrh02bNgAi8WCo0ePonPnzp4r+Dp6vR79+/eXhtBt3LgxRo0ahZYtW0Kj0eDkyZOYO3cuEhISsGzZMgwfPhyrV6+GUun8Shj79u3DRx99BCEEHn74YXTt2hU+Pj7YtWsXvv32W+Tl5WH16tV49913MXXqVIfrWLRoEUaNGgWz2QyNRoPbbrsNffr0QZ06dZCdnY1169bht99+Q05ODm6//XasXr26xJOyx44di82bN6NNmza4++67ERsbi+zsbBw4cECa58iRIxg6dKh0MnW7du0wduxYREVFISUlBQsWLMCWLVswatQomEwmh8+jVCoxceJEvPLKK8jIyMCiRYswZswYp3UtXLhQGhr3gQcecPm7rUie+Ls99dRT0snOWq0W48ePR48ePaBUKqWT0V966SUMHz68xHq2bduG/v37Iz8/HwqFAoMGDcLAgQNRv359FBQUYNu2bfj555+Rn5+PRx55BD4+PsWubzlx4kSsXLkSixYtwrZt2zBlypRitc+cORMLFy4EAHTp0qVGXXLFk7Zs2SJ9bjy1zars7euRI0ekgcfatm1b4mexY8eO0v7KoUOHyjT8emnqj4iIQIMGDZCUlIQrV67g8uXLxfYXPOHXX3/F+PHjYTQaERERgeXLl6Njx45F5vHUvtd9992HTz/9FAAwd+5cvPXWWy73RVwNplBWX3/9NT744AOcO3cOgPX33KlTJwwfPhyjRo2CWu18F9iT75nk5GSkpaUBsL7Xw8PDS1zXsmXLpHXdcsstJbzS4rxx/2TdunUYPnw4srOz4efnh4ULF2Lw4MFF5klPT0fXrl1x6tQpAECbNm1wxx13oEmTJlAqlTh06BBmz56NCxcuYObMmTCZTA4HuLrnnnvw/PPPw2AwYNGiRZgxYwYCAgKc1ma/jpLef3FxcQgICEBubi5Wrlzp/i+gJJ5IdZ4e9t5sNksnP/r4+IjffvvN4XzJycnSURylUikOHTpUbB77I4eAdRjMrKwsl8+/Zs0al61Lqamp0hF5pVLptMuMp4e9nz9/vjS9Tp06Do/CJCYmFjny7Kw/sP3vRKvViiVLljh8nfbr2rFjR4mvwZm8vDyxePFij9x2795d5jrcZd+FpH379g7nmTJlSolHg+yNGzdOmt/RUSFPur7vuKMuaQaDoUhN33zzTbF57I944WpLT0JCQrH5duzYIZ3YHBoa6rC15ezZs9JRuJiYGKddXnbs2CGCg4MFABEVFeXwCNj1Le9PP/20yyOY9i1ojz32mMN5r99WOOvyaBs+2Nbd15levXoJAEKlUolz5865nLe0StNCVt6/m/2JziEhIWLXrl3F5jl27Jg0JLrt5ujodHZ2ttSFMCQkRKxfv97h6ztx4oSIiYkRAIS/v7/DI8rp6ekiKipK+h3bd2E5fvy48Pf3F4C1u5g7XaZcOXr0qMe2XyUdHS+Limwhe++996R1//777x5ZZ2VvX+fMmVPiPoq9N954Q5r/7bffduclFXPfffeV6m9i214AKLE7ljOuWoemT58utfg0aNBAHD9+vNjyntz3EkKIjh07SvW46tq1YcMGab527dq5/4IdcHfY++bNmzvsKmvjyfeM/esr6XtDCCFmzZpVpBWoLOTYP3HVQrZw4UKpC29YWJjUzf16tvMuFQqF+Pzzzx3Ok5OTIwYOHCg914oVKxzOZ99DYtasWU7rTkxMlD4btWvXdqsLv60nnUKhEJmZmSXO7w6vDGT21xGYPn26y3mPHz8uVCqVACAmTpxYbLr9F5W/v780KlV5nTp1qsQNtqcDmX2fWFfno+zYsaPIhtdRdx77DdPUqVOdruuHH35wa76S2L9HyntzZ+NYHunp6SIyMrLEnZBnnnlGmufLL78scb2lnb+sLl68KLRarQAg7rjjDpfzGgwGqS9306ZNi02/fsd+48aNTtc1ZswYl/PZzqdSqVRi7969LuuaOXOmtK558+YVm27/WenQoYPLMPbff/9J88bFxTnt3nb9eh0FMiGKngDtKOQIYd0u2eYZMmSIy9daFqUNZOX5u9mPmOZolDGbpUuXFnlORzuh9tco+vvvv12+xrVr10rzOhvNav369UKpVEp/r4yMDGEwGESHDh3KvXNh7/qwXp6bO9c9Kk99ng5k99xzj7Tu8o76JoQ829cvvvhCmvbcc8+VuK7Szu/I7bffLq3D0QHP8s7viLNA9uqrr0qPt27dWpw/f97h8p7c9xKi6AAVrrqN2YfXkp63JD/99JNQq9Wid+/e4vXXXxdz5swRv//+u/j666/F2LFjhU6nk54rMDDQaSjz5Hvmr7/+kqbdeeedJa6rtPM7Isf+ibNA9u2330rb6fr16zvtBrx7925p+Weffdblc6Wnp0sHbgcMGOBwnmXLlknrc9Xd2j68lvS8No8++qi0TFkPoFxPnj40Jfj5558BWMf8nzhxost5mzVrJjWtrlq1yuW8d955J+rVq+eRGhs1aiRdO2XHjh0eWacriYmJ2Lt3LwAgPj6+WDOvvc6dO0vdvJKSkrB7926n86pUKjzxxBNOp9t3Fzty5Ehpy65yzGYzRo8ejUuXLgEAhgwZghEjRjicNzc3V7qv0+lKXLevr690Pycnp5yVOvfbb7/BYDAAAJ5//nmX82o0GowaNQoAcOLECSQmJjqdt127dujZs6fT6a7eK0IIzJs3DwDQr1+/Eq+1Y9+dpKTP9eOPP+6yO8lff/1VZF6VSuV03kmTJrl8LgB45JFHpPs//vijw3nsH3/ooYdKXGdFKs/fTa/XY8WKFQCAOnXqYOzYsU7XM2TIELRs2dJlLbZte7NmzXDrrbe6nLdv377S9trZe6B3796YPHkyAOu27pFHHsFrr70mbfPGjBnjsmYqmf31zcLCwsq1Lrm2r3Jsq73h+8FsNmPixIl49913AQDdunXDpk2bUL9+fYfze3rf6+6775Ze+6JFi4r8Tmzy8/OlrsVarRb33HOPG6/MuR49eiApKQnr16/H1KlTMW7cOIwYMQKPPvoofv75ZyQkJKBTp04ArL9nWxf66/H95xlTp07FI488AovFgubNm2Pr1q1OuwDb3n8KhQLPPfecy/WGhoZKXTk3btwIvV5fbJ5BgwZJ3yGbNm3CmTNnis0jhMDcuXOl/7vbXTY0NFS676lrQFb4OWRlsWnTJgBAZGQk/vnnnxLnt+1gJSUloaCgoMgby56rnZLrZWdnY968eVi+fDkOHjyI1NRU5OXlOZz3/Pnzbq+3rHbu3CndHzhwYInzDxw4EGvXrgVgDYzO+gM3a9asyBvrevYbbtv5MGVRVS4ePmnSJOnLJSYmpkpefNf2+QGs780///zT5fz2f9ejR48iNjbW4XxdunRxuR5X75XDhw9LF4wNDAwssSYACAgIQGZmJo4ePepyvpI+17t27ZLu33TTTS7n7dOnT4l13XTTTWjWrBkSEhIwZ84cvPPOO9BoNNJ0o9EonQ9Rr149DBkypMR1VqTy/N32798vhfvevXu7DLOANWw7+3tlZWVJ5/XVqVPH7fcAAJfvgSlTpmDt2rXYsWMHFixYID3esGFDfP311yU+hzveeuutGnsOmu1zC5Q/kFWH7WtVUVhYiLvuuks6Z/+WW27B77//Dj8/P6fLeHrfKzQ0FMOHD8f8+fORl5eHhQsXFjsf1HZhYgC47bbbyn2h3SZNmricHh0djRUrViAuLg7Jyck4duwYFi5cKB2YJM+wWCx44oknMGPGDABAp06dsHz5cpfnz9nefyEhIUX2eZ2xhTC9Xo/Tp08XOyCoUqkwbtw4fPDBBxBCYM6cOcW245s2bZLOV+vYsWOJFwq3sX+flmff2J7XBbLc3Fzp5Mfjx4/j9ttvL9XyGRkZTgOZs6NC11u3bh3uueceJCcnuzV/dna22/WVle2IImANUSWxn8d+2euVdHKp/WAnhYWFJT5vVfbqq69KG486depg9erVLn8/9ieIuvO7KSgokO4HBgaWo1LX7Fu5Ro4cWaplXW1YyvNesa9p0aJFWLRokUdqAkr+XF+8eFG636hRI5fzhoaGIiQkBJmZmU7nUSgUeOihh/D8888jJSUFS5YswR133CFN//vvv3H58mUA1qNtJYWYilaev5v9766kHZ2S5jl37hwsFgsA65eg/YGDkrh6D6jVavzvf/9D27ZtpR0722NBQUFuPwc5ZtvpUalUTr9b3SHn9lWObbXc3w+TJ09GVlYWAOvARz/99JPLQSwqat/rvvvukwYimz17drFAZh/K77///mLLuzpw4+fn59YB6uvVqlULkyZNwssvvwwAWLZsWbFAxvdf+UyfPl16//Xv3x+LFy92OagGcG0/ISMjo0zvP0cmTJiADz74AIB1cJk333yzyOAyJb3/nLH/brH/3ZWH1wUy2x+wrGxHcx1x58vkxIkTGDJkiPQLbt68OQYPHoymTZsiLCysSNPvQw89hCtXrjhs7vY0+yZkf3//Eue3f+O7an6Wa+Q3b/POO+/gvffeA2DdgV2zZk2JwTckJES6bxuRyhXbl931y3paeT5Drj4/5XmvVFRNQMmfa1vLtlqtLtKS5Yy/v7/LQAZYN/Kvvvoq9Ho9fvjhhyKB7IcffgBgDW4PPPBAic9X0crzd7Pv9uLqyLqNq21Ted4DRqPR5fTw8HCEhYVJ27pGjRqVOLIYuccW2M1mM/Lz8916H1xP7u2rHNtqub8f7EeLzcvLK7GHSkXte/Xv3x9RUVE4f/48Nm7ciMTERKkXhq1rIWDtTeAoXLnaMW/QoIHLbvau2PeGOHbsWLHpfP+VT2nff0DF7Cc0b94c3bp1w9atW3HmzBls3LgRvXv3BlC0u6xOp8Pdd9/t9vPZ11qeA1X2vC6Q2QeJXr16YcOGDZX6/O+//74Uxl599VW8/fbbTodqLamPtSfZH7Fw1nXSnv2OVEW2xrgrPz+/xHOB3BUTE4P27dt7ZF0AMG3aNLz++usArC0kq1evdqvZ2n6Hwp0vBft+xu60cpaV7TOkUChgMpm8InTbf67feOMNTJkypdKe2xYSTCYTjEZjiaHMnc9XrVq1MGLECMybNw+rVq3C2bNnERMTg6SkJKxevRqAdUekYcOG5X8BMrL/u9mGPnfF1e/Ofl3jxo0rMsx1eT322GNFPl8JCQl47bXX8OGHH3pk/ceOHXO401YWPXr0KLHV0pvYd1NMT08vdSDzhu2rHNtqub8f3n//fcyfPx9bt27F4sWLMWrUKCxYsMDp9q+i9r2USiXGjx+Pd999V+o29uabbwKwDnVv21EfN25cpfYmsO9y5ugAHN9/5TNp0iQcPXoUixcvxrZt2zBo0CCsXLnS5f6o7TQF23epp9x3333YunUrAGuLmC2Q2XeXHT58eKmCqCe7ctt4XSALDg6WxvevjHOzrrdmzRoAQO3atTF16lSnYSwnJ6fIH6SiRUZGSvftr9/ijP08nhrIpDwuX75c6iZoZ8aPH++xcw8+++wzvPTSSwCs772VK1eWOOCEjf1OhauBUwBrf2rboCxKpbLEwQ/Ko379+ti3bx+EELhw4QKio6Mr7LlKU5NNZX+u69WrJ527dPr0aTRv3tzpvBkZGSW2jtk88sgjmDdvHiwWC2bNmoW33noLs2bNkrrlyT2YhyfYbztOnjxZ4vyu5qmo98C8efOkAWM6dOiA1NRUJCUl4eOPP8agQYNKvI6dO+bPn++xgwjr1q1z61xFbxEbG4stW7YAsO6EREVFub2st2xfW7VqBaVSCYvFgn379sFisbg8UGV/3qm755RcrzT1X7lyRdoBjYiI8Mg1yAIDA/HPP//g5ptvdiuUVeS+14QJE6SBRebOnYs33ngDQNFrj13fldGmos49L6lFyJPvmbp166JWrVpIS0vD2bNnkZqa6vKgTGW//ypi/0Sj0WDBggUYPXo0/vjjD7dCWf369ZGZmYnLly+7dfDUXSNHjsSkSZOkFrGvvvoK/v7++Omnn6R5SnvtO/v9f0fXUSyLSjt0bv9GLukD1qtXLwDWnSd3dgI8KSUlBYD1hHBXH741a9ZIO17OlOY1l8R+UA7bEXhX7FujKvICxFXZjBkz8OyzzwKwfnmtWLFCGn3JHa1bt5Z2Tg4fPuzyS2zr1q3SuYbdu3ev0FZL29EfoOQRCitLu3btpD7Xa9euLfGz40n2Fz61XajdGVv3GXf06NEDrVu3BgDMmjULRqMRs2bNAmA9oDNs2LDSF+tl2rRpA61WCwDYsGFDid2zbQMJORIeHi6NrrV9+3aPnHt75swZPPbYYwCsLaG//vorfvnlF6hUKlgsFowbN67IjheVnv2O3fHjx91ezpu2r0FBQdLgNllZWdi+fbvTdZ07d04abTQmJqZMF4UGrF3ibN09N27c6PI8E/uLy958881lej5HbKGse/fuAIDFixdj5MiRTrsAV9S+V5MmTaTBl06fPo1NmzZh48aNOH36NADr6I+uDpRVBPsWQEctQp5+zwwaNAiAdV/Q1fdyfn6+dH6tr69vke/z0vCG/RNbKLvzzjsBQAplzrb9ttdaWFiIjRs3eqQGwPq3tNWQm5uLRYsWITExUXoPREVFoX///qVap22gKYVCgfj4eI/UWWmBzL45vKQuQePHj5fu246kVBZbd4zTp087DVFms1nqD+9KaV5zSWJjY6Vuevv373cZynbt2oV///0XgDW5e8O5FLZRFj1x80Tr2A8//IAnn3wSgHVHbvny5ejatWup1qFQKHDXXXcBsG5kv/zyS6fzTp8+Xbpf0aM5jR49WtqJ/vDDD8v93vMElUqFMWPGALB2jXA2XHxFsA9GM2bMcBkqvvjii1Kt++GHHwZg/UJ++umnpS+98ePHe+zonpx8fHykoYVTUlLwv//9z+m8K1asKHFETNu2PT8/XzrRuqzMZjPGjBkjfblPnz4dTZs2RY8ePfDKK68AAC5cuIAHH3ywXM8DWEdZ9NT2qyq1jgHAjTfeKN139xIv3rh9tX/c1ef8yy+/lL77Szsokr2AgADps5Odne30e0sIga+++sphnZ5gC2U9evQAYB0kw1koq8h9L/sWiNmzZxf5fZS2daK80tPTi7wHbH+n63nyPWO/runTpzvdv5w9e7a0TRsyZIhbYwY44i37J2q1GvPnz5cub7Ft2zbcfPPNDkPZuHHjpPtTpkzx6PgM17//7LvLjh8/vlSndpjNZqkVs0WLFp4bPMoTFzNz58LQTz31lDTPhg0bXK7PbDaLTp06SfNPmjRJ6PV6p/Pn5+eLn376Sfz666/FptlfMNOdC3IOGDBAmv/TTz8tNt1gMBS5iCFcXED2008/leaZM2dOic9d0oWhFyxYIE2PjIwUR48eLTZPUlKSaNy4sTTfV1995XBdtunuXDW+NPNWBXPmzJEunO3n51euC7VeuHBB+Pn5CQBCrVaLNWvWFJvH/mKd0dHRoqCgoBzVu+e5556TnvOmm24Sly5dcjqv2WwWq1evdniBc2cXenSkpHnPnTsnQkJCBADh4+NT4mciJSVFTJ061eGFO0tzoXkhhOjRo4c0/2OPPebwQtLXX/zX2efaXmZmpvT3t785u2C0p5TmwtDl/btt2rRJmh4aGurwot4JCQlFLvYLJxcozs3NFQ0aNBAAhEKhENOmTXN5Ue/MzEzxxRdfiNWrVxeb9vrrr0vPNWLEiCLTjEaj6Nq1qzT9u+++c/k7qOoq8sLQhYWFwt/fXwAQPXv2LHF+b92+5uXliXr16knzOrrI+erVq4VarRYAREBAgEhOTna4Lvt9HlfboD179ki/i+DgYIfbsrfeektaT6dOnZyuyx3OLgwthBA5OTlFtoPDhg0TBoOhyDye3Pe6Xk5OjvQ+CggIEAEBAdJ7JCsrq0yv93pbt24VP/zwgygsLHQ6z7lz50Tnzp2l19i0aVNhNBodzuvJ94zFYhHt27eX1jVlypRi8+zfv1+62LFSqXR5IXb795+j7wAhKn//xNV3idFoFCNGjJCmd+nSxeHf/c4775TmGTVqlMv3htFoFIsWLXK6n2vPYrGI2NhY6bunTp060vOcOHGiVK9z//790rJPP/10qZZ1pdLOIevXr5+Uwh944AE888wzaNCggXQSZ5MmTaQhk5VKJRYtWoSuXbviwoUL+OKLL/Dbb7/hrrvuQps2bRAcHIzc3FycPXsWu3btwtq1a5GXl4e333673HU++eSTUuvTs88+i/Xr12PQoEGoVasWTpw4gblz5+LEiRO46aabcOLECZfNwP369ZPuv/jii7hy5QqaN28uDT1bv379UjV1jhw5EosXL8b8+fNx6dIltG/fHhMmTEDXrl2hUqmwa9cuzJw5UzryMHDgQKk7D1mtWLEC999/v3Rk5P7770dmZmaJ10Rq3749YmJiij1er149fPLJJ3j00UdhMpkwePBgjBs3Dr1794bJZMKKFSukUXzUajW+//57lxdptD9n8cyZM06vCVaS999/H/v27cPatWuxbt06NGrUCHfeeSe6du2KiIgIGAwGJCcnS62tycnJ6NevH1577bUyPZ87oqKiMH/+fNx2223Q6/UYP348Pv30U9x2221o2rQpfH19kZWVhYSEBGzfvh1btmyB2Wwu8dph7vjuu+/QqVMn5Ofn4+uvv8a2bdswduxYREVFISUlBQsWLMCWLVvQtWtXnD17FhcuXHDriFlwcDBGjRpVpC96nz590LRp03LX7C169OiBxx57DF9//TUyMjLQpUsXjB8/Hj169IBSqcTOnTsxc+ZM5OXlYfjw4S4/S/7+/vjzzz/Ru3dvZGdn48UXX8R3332HO++8E61atUJAQACys7Nx+vRp7Ny5E+vXr4fBYJAuGGqzefNmqZdCVFQUvv/++yLT1Wo15s2bh7Zt2yI7OxvPPPMMevfuXendoirC3r17i102wr57zx9//FGsu9kDDzxQ5gFmfHx8cPPNN2PRokXYtWsXcnNznQ5f7c3bVz8/P3z//fcYNmwYzGYz7rvvPixbtgyDBw+GWq3Ghg0bMHfuXGl0uM8++wx16tRx99fkULt27fDiiy/iww8/RFZWFrp164YHH3wQnTt3lrpO2bqvBQQEFHsfe1JAQABWrFiBW265BZs2bcJff/2Fu+66C7///rvUml+R+14BAQG46667MHv27CKDjt15550ea2FISUnBxIkT8dxzz2HQoEHo0KED6tevD51Oh7S0NGzZsgULFy6Uuo8GBgZiwYIFTi8H4Mn3jEKhwPfff49evXohPz8fb775JrZs2YIRI0bA398fO3fuxI8//ij1aHn55ZfL3RXO0/sn5aFWq/Hrr79CoVDg999/x/bt26Vzyuz//rNmzUJCQgIOHjyIBQsWYOXKlRg5ciQ6duyI0NBQFBQU4MKFC9i7dy9Wr16NjIwMt0YzVigUmDBhgtTbwXZ6Us+ePd26pIs9+1Mfhg8fXqplXfJEqnOnhcxkMhU5OnP9zdGR2YsXL4p+/fo5Xcb+plKpxA8//FBsHaVtIRNCiJdfftnlc3Xv3l1cvnxZOtLr6kj63Xff7XQ91/+u3DnqbzQaxYMPPlji72PEiBEiPz/f6Xps89W0FrLrW0HcvZV01Pmjjz4SGo3G6fKBgYFuHUW0X8bZUS936fV68cQTTwiVSuXWaxw3blyxdXiypcVm27ZtolGjRm7VFBAQ4PAoYWlbyIQQ4t9//5Va6Bzd4uLixNmzZ0X9+vUFAHHDDTe4td4dO3YUWc+8efPcrqmsKrOFTAjr9vvee+91+rtTKpVi2rRpLo/Q2zt27Jho166dW+8BHx8fsWLFCmnZjIwMadurVCpdbtd/+eUXaT3t2rVzebS/qrD/Hbt7K08rlRBC/Pnnn9K65s6d63Q+b9++CmF9T9haZxzdtFqtw94x9txtIRPCemT+6aefllrKHN1q164t1q5d61b9rrjz+cvNzRW9evWS5rvtttuKtZR5Yt/LkQ0bNhRb/t9//y3vy5YsXrzY7fdcXFycwxZLRzzxnrFZvXq1iIiIcLouhUIhnnvuOWGxWFyux36ZkvYVPPn5ccWd7xKj0ShGjhwpzXfjjTcWawXLysoSo0aNcvtv+frrr7tV35kzZ4p9DmfNmlXq12lrYY2JiSnx71QalRbIhBCioKBAfPDBB6Jr164iNDS0yI6iq52G9evXi4cffli0bt1ahISECJVKJYKCgkSrVq3EqFGjxDfffCMuXrzocNmyBDIhhFixYoUYMmSICA8PFxqNRkRGRoq+ffuKH374QWredieQmUwm8c0334g+ffqI8PBwqWnb0e+qNDuZ27ZtEw888IBo0qSJ8Pf3F76+vqJhw4Zi7Nixbm3Ybc/DQOaZHQYhhDh48KB4/PHHRbNmzYS/v78IDAwUcXFx4qWXXhKJiYklLp+Xl1dkA5+WluaBVyzEiRMnxOTJk8WNN94oIiIihFqtFn5+fqJhw4billtuEe+9957TrhEVEciEsG6Uf/nlFzFy5EjRsGFDERAQINRqtQgLCxMdO3YUEydOFAsWLBC5ubkOly9LIBNCiOTkZPH888+L5s2bC19fXxESEiI6duwoPv74Y5GXlycsFovw9fUVAESfPn3cWqfFYpG6mYSFhbnsLuMplR3IbJYsWSKGDBkiIiIihI+Pj4iJiRF333232Lp1qxDCvR1CG4vFIv766y8xfvx40axZMxEUFCRUKpUICQkRbdq0EePGjROzZ88W6enpRZaz/6KePHmyy+cQQogxY8ZI8z/33HMlzu/t5AhkJpNJxMTECABiwIABTufz5u2rvcTERPHiiy+K1q1bi8DAQOHv7y+aNWsmHn/8cXHo0KESly9NILPZunWrmDBhgmjUqJHQ6XQiJCREtG/fXkydOlVcuXKlVPU74+7nz1Eoc3Swojz7Xo5YLJYip1TExsZ6dIc2JydH/PXXX2Ly5Mmib9++olmzZiIsLEyo1WoREhIiWrZsKcaPHy/+/vtvl12lHSnve8be5cuXxZQpU0T79u1FSEiI0Ol0olGjRmLChAnStrQkpQlkQnj28+OMu98lJpOpyHbcUSgTwtrl9+mnnxbt2rUTtWrVEmq1WgQEBIimTZuK4cOHi08//VScOnWqVDX27dtXel5/f3+Rk5NTquUTEhKk5d99991SLVsShRAVNKYoEZXKypUrpRG2nnrqqVIPMEHld/DgQdxwww0A3P8brFmzBgMGDABgvfbK559/XpElEsnis88+w7PPPguVSoXExMRSDX9PRFQdvPHGG3j77bfh7++PpKSkItezKy/5rxhLRACuXQMvMDCwQs/lIufsRztz99y1b775RrpfHa49RuTII488grp168JsNmPatGlyl0NEVKmys7MxY8YMANbxJjwZxgAGMiKvYQtkzz77LCIiImSupvrZtGmTy+ufzZgxQzqpvn79+hg6dGiJ69y3b580YEH//v3LfM0iIm/n6+uLt956CwDw/fff4+LFi/IWRERUiaZPn4709HTUqlULL774osfXzy6LRF4gNTUVtWvXRnh4OE6dOlWhF46uqZo0aYLCwkIMHjwY7dq1Q0REBIxGI06dOoXFixdj79690rxLlixxGsj++ecfWCwWJCQkYNq0abh06RIA68h/tguwElVHFosFnTp1wp49e/DEE0+4vLYREVF1kZ2djYYNGyI9PR3ffvutdA1ST2IgI6IaoUmTJjh16pTLeXx9ffHDDz9IF7F2xP7SBDbunm+2atUq5Ofnl1ysA+Hh4dLFXYmIiKj6YCAjohph+/btWLRoEbZv344LFy4gLS0N+fn5CA0NRbNmzdC/f388+uijJV57yBbIAgIC0KxZMzz66KO4//773bpuWWxsLJKSkspUf+/evbF+/foyLUtERETeq9IuDE1EJKcuXbqgS5cu5V4Pj2ERERGRJ7GFjIiIiIiISCYcZZGIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQf1ICKiMjGbzSgoKEB+fr50s/9/Xl4e9Ho9DAYDDAZDkfuO/m8wGGA2m2GxWIr8tN0sFkuRaYB11EtnN9vIl0qlEiqVCmq1GhqNRro5+79Wq4WPjw98fX2h0+mg0+ng5+cn3bd/3NfXFwEBAfDz84Naza9UIiIqPX57EBHVYEII5OTkIDs7G9nZ2cXuZ2VlSY/Zfubl5SE/Px+FhYVyl+9V/Pz8EBAQUOQWGBhY5P9BQUEICQlBcHAwQkJCEBISAl9fX4fXtyMiopqBoywSEVUzFosFWVlZSE9PR0ZGRrGf1983m83lej6VSgU/P78iN19fX/j7+0On00Fr/gNaDaDVCmg1Qvrpo0WR/2s0gEopoFJd+6lUAkqlgEppva9SXbsPAEJcu1kEAKGAAHC1AQ0Wi3Wa2aKAyQQYjQoYTYDJpIDBdPUxk/00BQxGBQoLFSjUK1CoHInCwkIUFBSgoKAAhYWF0v9tP/V6fbl+f1qtVgpn9rfQ0FCEh4cjPDwctWrVQnh4OPz9/RneiIiqGQYyIqIqxGw2IyMjA5cvX8aVK1dw5cqVYvdTU1NhMplKtV4/Pz8EBQUhMDAQQUFBCAoKQoBqKYICBAIDLAgKsCAwwILAAAF/Pwv8dAJ+vgJ+vhZoNUBNzghGE5CXr0RungK5eUrk5iuQe93/88Q4qcUxMzNT+mkwGEr1XDqdTgpntqBWq1Yt1K5dG7Vr10bdunVRq1Ytty5UTkRE3oGBjIjIi5jNZqSmpuLSpUvFbsnJyUhLS3O7RSs4OBhhYWEIDQ1FqO8WhAabERpiQViwBaHBFoSGmK0/gy3QsAN7pRMCKNArkJWtRKbdzfb/DP2dSEtLQ2pqKlJTU5Gbm+vWetVqNWrXro06deqgbt26xX7Wrl0bGo2mgl8dERG5i4GMiKiS6fV6XLhwAWfPnsX58+eLhK6UlJQSW7dUKhVq1aqFiIgI1K5dG+F+SxBRy4KIMDMiallvtUIs4BgT1UuhHkjLUCEtQ4nUDBXS0lVINz4stYympKQgNTW1xMCuVCpRp04d1K9fH1FRUYiKikL9+vVRv359REZGwsfHp5JeERERAQxkREQVwmKxICUlBefOnSt2S0lJgatNr0qlQt26dREZGYm6wRsRWceEyNpm1I0wo3YtayuXij3SyAGTGUjLUCLligrJV9RISVXhct49SE5ORkpKCpKTk112k1QoFKhdu7YU0qKjo9GgQQPExsaidu3a7ApJRFQBGMiIiMrBbDbj4sWLOHPmTJHbhQsXXO74BgQEICYmBlFRUYgMWoS6tc2IrG1GZG0TwsMYuKhiCAGkZypxIVmFC8lqXMx9EufPn8eFCxdw/vx55OfnO11Wp9MhJiYGsbGxUkhr0KAB6tWrxyH/iYjKgYGMiMgNthavxMREnD59WgpeSUlJToOXRqORWhmiwlYgOtKE6HomRNczIzjQUqMHwiDvIwSQmX0trF3IeQrnzp1DYmIizp0757QrrVqtRnR0NBo1aoTGjRujcePGaNKkCcLDwzkiJBGRGxjIiIiuYzKZkJiYiBMnTiAhIQEnTpzAyZMnnbYe+Pj4IDY2FrF196JhtAmxUSbE1DehToSZLV1ULZjMwKUUFRLPq3H2ghpJaSOQlJSEs2fPoqCgwOEywcHBRQJa48aNERsbC61WW8nVExF5NwYyIqrRCgoKcPLkSZw4cUK6nTlzBkajsdi8arUaMTExaBh5GLHRJjSMNqJhtAl1azN4Uc1ksQCX01RIOq/GqSQ1Tl++AydPnsS5c+ccDi6iUqkQExOD5s2bo0WLFmjRogUaN27MgUSIqEZjICOiGsNkMuHMmTM4cuQIjh49iqNHjyIxMdHhABsBAQFo0qQJmtTbjKYNTWja0IiYeiaOXEjkBr0BV0OaBqeuPIhTp07h5MmTyMnJKTavSqVCo0aNpIDWvHlzNGrUiOelEVGNwUBGRNWSEAKXL1/GkSNHpAB2/Phx6PX6YvOGhYWhWbNmaFJvNZrGWsNXZG0zz/Ei8iAhgCtpSpxI1CAh5RkcO3YMx44dQ1ZWVrF5tVotmjRpgpYtWyIuLg5xcXGoU6eODFUTEVU8BjIiqhZMJhMSEhJw4MABHDx4EIcPH0Z6enqx+fz9/dGiRQu0jNmAlk0NaNHYiFqhFhkqJiIhgJRUFY6f0uB48uM4fvw4jh8/7vAi2BEREYiLi0N8fDzi4uLQpEkTtqIRUbXAQEZEVVJ+fj4OHz6MgwcPYv/+/Thy5Eix1i9bV6iWsfvQsqkRrZoYEV3PBF5Kich7WSzAxRQVjp3S4OiFB3Hw4EGcOnWq2DlpPj4+UgtafHw84uPjERAQIFPVRERlx0BGRFVCVlYW9u3bhwMHDuDAgQM4efJksR20wMBAxMfH44ZG/6BVMwOaNTRCx7ECiKq8/EIFjp/U4PDFl3Do0CEcPny42PloSqUSzZo1Q9u2bdGuXTsGNCKqMhjIiMgr5efn48CBA9i9ezf27NmDkydPFht8o06dOohvmoj4Fgbc0NKABvXZ+kVUE1gswLmLahxK0ODw2Xuwf/9+XLhwocg8DGhEVFUwkBGRVzAYDDhy5Aj27NmD3bt348iRI8VawBo0aIC2zY8gvoUB8S0MqBPOc7+IyOpymhL7j2ix/8y92Lt3r9OA1qlTJ3Tq1AmtW7eGRqORqVoiomsYyIhIFkIIJCUlYceOHdi5cycOHDhQ7BywunXron2r02gfp0e7OANqhTCAEZF7Sgpovr6+aNeuHTp16oTOnTsjKioKCg6tSkQyYCAjokqTn5+P3bt3SyEsOTm5yPTQ0FC0a3kR7eP1aB9nQL06xS8sS0RUFpfTlNh7yAf/HR+BXbt2ITMzs8j0unXrSq1nHTp0QGBgoDyFElGNw0BGRBVGCIEzZ85gx44d2LFjBw4cOACTySRN12g0aNOmDW5s9S863KBHw2gTr/1FRBXOYgFOJamx6/Rr+O+//3Dw4EEYjUZpukqlQlxcHLp164bu3bsjOjqarWdEVGEYyIjIo0wmE/bt24dNmzZhy5YtuHz5cpHp9erVQ+f4E7ixnR5tWxngq+MmiIjkVVCowP4jWuw6+RB27tyJs2fPFplev359dO/eHV27dkWbNm14/TMi8igGMiIqt7y8POzYsQObN2/G9u3bi1zUVavVWs/TaLkKN7bVIyrSzFYwIvJqly6rsP3Eu9iyZQv27dtXpGXf398fnTt3Rvfu3dGlSxcEBQXJWCkRVQcMZERUJqmpqdiyZQs2b96MPXv2FOnuExoaiq7tLqBHx0K0j9fzWmBEVGXlFyjw334fbD96D7Zt21bk3DOVSoV27dqhT58+6NmzJ0JDQ+UrlIiqLAYyInLb5cuXsX79eqxbtw6HDx8uMi06Ohrd2x1Fj06FaNnUCBWvB0ZE1YzZAhw7qcH2489gy5YtOH36tDRNqVTihhtuQO/evdGrVy9ERETIWCkRVSUMZETkUmpqqhTCDh48WGRa69at0a3NNvToVIgG9TkiIhHVLOcvqbDx8GvYuHEjjh07VmRa69at0adPH/Tu3Rt169aVqUIiqgoYyIiomLS0NGzYsAHr1q3DgQMHYNtMKBQKxMfHo0/HTejVuRDhYbwuGBERYD3vbPPRKdiwYQMOHTpUZFrr1q0xYMAA3HTTTezWSETFMJAREQDrwBzr16/HqlWrsH//flgs18JWXFwc+nTcgt5dChHBEEZE5NKVdCU2H30PGzduxL59+6SDWiqVCh07dsSAAQPQo0cP+Pn5yVwpEXkDBjKiGsxkMuG///7DqlWrsGnTJhgMBmlaq1atcFPH7ejdpQC1wxnCiIjKIi1DiXUH38aaNWuKdGv08fFBjx490L9/f3Tu3BkajUbGKolITgxkRDWMEAIJCQlYtWoV1q5di/T0dGlagwYNMLDbQfTtXojI2jwnjIjIk85dVGHtvhexZs0anD9/Xno8KCgI/fr1wy233IJmzZrxItRENQwDGVENkZqaipUrV2LlypVITEyUHg8JCUG/rhcwoFcBmjcy8hphREQVTAjg+GkN1u55tNiBscaNG+OWW27BgAEDEBISIl+RRFRpGMiIqjGz2YydO3di6dKl2Lp1K8xma6uXVqtF9w5ZGNCrAJ3b6KFWy1woEVENZbYAew5q8c/2kUW6jqvVanTv3h233HILOnXqBDU31ETVFgMZUTWUkpKCZcuWYfny5bh8+bL0eOvWrTG4h3VwjkB/fvSJiLxJdq4C/x74ACtWrMDx48elx8PDwzFo0CAMHToU9evXl7FCIqoIDGRE1YTJZMLWrVuxZMkS7Ny5UxrVKygoCAN7XMSQfgVoGG2SuUoiInLHyUQ1/tn5KFavXo2srCzp8RtvvBHDhw9Hly5doFKpZKyQiDyFgYyoiktNTcXff/+Nv//+u8h5CO3atcOQnv+iZ+dC+GhlLJCIiMrMYAS2n/oBS5cuxc6dO6XH69Spg9tuuw1DhgxBWFiYjBUSUXkxkBFVQUIIHDlyBIsWLcL69ethMllbvkJDQ3Fzr3MY0jcfUZEcJZGIqDq5kKzCkq1PYfny5cjOzgZgPdesT58+GD58OOLj4zlCI1EVxEBGVIUYDAb8+++/+OOPP4pczyY+Ph6399uInp0LoeF530RE1ZreAGw48iX+/PNPHDlyRHq8UaNGGDFiBAYMGAAfHx8ZKySi0mAgI6oCrly5gj///BNLlixBZmYmAOtIiX27ZeKOm/PQrBHPDSMiqokSTqvx9+b7sHr1auj1egDW3hK33347hg8fzqHziaoABjIiL3bmzBnMnz8fq1evlrolRkREYHj/UxjSrwAhQRaZKyQiIm+Qk6vAil1TsXDhQml0Xa1Wi0GDBuGuu+5CbGysvAUSkVMMZEReRgiB/fv349dff8W2bdukx9u0aYM7+q1H906FUHNgLSIicsBkAjYd/xYLFiwo0rX9xhtvxKhRo9ChQweeZ0bkZRjIiLyE2WzG5s2b8euvv0rnBCgUCvS6MR+jb8tDyyZGmSskIqKqQgjg4HENfl99OzZv3ixdCqVp06YYM2YMevfuzWHzibwEAxmRzAwGA1asWIH58+fjwoULAKzdTG7unYGRQ/M4WiIREZXLhWQV/tjwKJYvX46CggIAQHR0NMaMGYMBAwZAo9HIXCFRzcZARiQTvV6PpUuX4n//+x+uXLkCAAgMDMTtAy/i9pvzERrM88OIiMhzsnMVWLzpZSxcuBA5OTkAgNq1a+Puu+/G0KFDOTIjkUwYyIgqWWFhIf7++2/8+uuvSEtLA2AdqGPUkJO4pW8B/HT8SBIRUcXJL1BgyfYpWLBgAdLT0wFYR2YcPXo0br/9duh0OpkrJKpZGMiIKklBQQH++usvzJ8/X/oCrFOnDu65NQGDb8qHlj1GiIioEukNwKq9H2PevHlITk4GAISFheGee+7BsGHD2GJGVEkYyIgqmMFgwN9//42ff/4ZGRkZAIC6deti7G3HMKhPAS/kTEREsjKZgLUHp2POnDm4ePEiAKBWrVoYO3Ysbr31Vmi1WpkrJKreGMiIKojJZMLKlSsxe/ZspKSkAADq1auHe4cdwYCeBVAziBERkRcxmYBV+z7DnDlzpO+tiIgIjBs3DkOGDIGaX1xEFYKBjMjDLBYLNmzYgJkzZ+Ls2bMArn6h3X4Cg/swiBERkXczmoB/dn+MuXPnSoNORUVF4aGHHkLv3r15HTMiD2MgI/KgXbt24dtvv0VCQgIAIDg4GPfcdg7DB+XBhz0+iIioCtEbgGU738fcuXORmZkJAGjVqhUeeeQRtG3bVtbaiKoTBjIiD0hMTMTXX3+N7du3AwD8/PwwckgK7hqSB38/fsSIiKjqyi9Q4Ld1k7FgwQLpOmZdu3bFww8/jEaNGslcHVHVx0BGVA4ZGRn46aefsGTJEpjNZqhUKgwfmI1778xBSBA/WkREVH2kZSrx8/KHpe88pVKJW265BRMnTkRoaKjc5RFVWQxkRGWg1+vx+++/45dffkF+fj4AoEenQjw8JhvR9cwyV0dERFRxzl1UYeafI7F+/XoAgL+/P8aPH48777wTGg2v4UJUWgxkRKUghMCWLVvw5Zdf4tKlSwCAZs2a4bF7tqFtK4PM1REREVWew1f+wJdffoljx44BsA788cQTT6Br164c+IOoFBjIiNx0/vx5fPHFF9ixYwcA68iJE0edQP8eBVAqZS6OiIhIBhYLsHr/dHz33XdIT08HAHTq1AlPPvkkYmNj5S2OqIpgICMqQUFBAX755RfMnz8fRqMRarUaI4dmYuwdufDT8eNDRESUl6/AvFXP4vfff5e+K0ePHo1x48ZBp9PJXR6RV2MgI3Jh48aNmD59Oi5fvgwA6NRGjyfvy0IMzxMjIiIq5kKyCjPmD8fWrVsBAHXr1sUzzzyDrl27ylwZkfdiICNy4MqVK/j888+xadMmANYvlMfHHkGPTnqwWzwREZFrW07MwhdffCEd0OzVqxeeeuop1K5dW+bKiLwPAxmRHYvFgr/++gvfffcd8vPzoVKpcPdtWRh7Rw50PnJXR0REVHXkFyrw84pn8Ntvv8FsNsPX1xcPPPAA7rzzTqhUKrnLI/IaDGREV505cwYfffQRDh06BABo2dSAFx7OQqMYk8yVERERVV2nz6rx2Zy+OHjwIACgdevWmDx5Mho0aCBzZUTegYGMajyTyYSff/4ZP//8M0wmE3x9fTHx7mQMG5gPFUdPJCIiKjeLBVj238f45ptvkJ+fD61WiwkTJmD06NFQq9Vyl0ckKwYyqtHOnDmDd999FwkJCQCAbh0K8fQDWagdbpG5MiIiourncqoSn8y5TbqETPPmzTF58mQ0btxY5sqI5MNARjWS2WzG/PnzMWvWLBiNRgQGBmLSfWfRr3shB+0gIiKqQEIAq/d/ienTpyM3NxcqlQr33XcfxowZw3PLqEZiIKMa59y5c3jvvfdw+PBhAECX9oV4/qEshIexVYyIiKiypGUo8fkvI6QRjePi4vDaa6+hXr16MldGVLkYyKjGEEJgyZIl+PLLL6HX6+Hn54cnx1/EzX0K2CpGREQkA1tr2eeff478/Hz4+vpi0qRJGDx4MBT8cqYagoGMaoTs7GxMmzYNGzduBAC0j9PjxUezUDeCF3gmIiKS26XLKrz/fX8cOHAAgPW6Zc8//zxCQkLkLYyoEjCQUbW3f/9+vP3227h8+TJUKhUm3p2BkUPzoOQIikRERF7DbAEW/PsmZs6cCbPZjFq1auHNN99E27Zt5S6NqEIxkFG1ZTKZMHfuXMydOxcWiwX169fH60/sR4vGRrlLIyIiIidOZC3F22+/jbNnz0KpVOL+++/H2LFjoeSRVKqmGMioWkpPT8eUKVOwd+9eAMCgXvmY9EA2/Hz5diciIvJ2+YUKfDFvPFauXAkA6NSpE1577TWEhobKXBmR5zGQUbVz8OBBvPnmm0hNTYWvry+effAiBvQslLssIiIiKgUhgJV7v8Bnn30GvV6P8PBwvPHGG+zCSNUOAxlVG0IILFq0CDNmzIDZbEaD+kZMfS4TDaJMcpdGREREZXTmnBpvTe+IpKQkKJVKPPbYY7jrrrs4CiNVGwxkVC3k5+fjo48+wtq1awEAN3UrwAuPZMFPx7c3ERFRVVdQqMDndl0YBw4ciBdeeAE+Pj4yV0ZUfgxkVOVdunQJL7/8Mk6fPg2VSoVH703HnYPzeW0xIiKiakQIYPGW96WeMM2aNcO7776LOnXqyF0aUbkwkFGVduDAAbz22mvIzMxEWFgYpjydgPgWHEWRiIioutp/6Te88cYbyMrKQkhICKZOncrzyqhKYyCjKmvFihX46KOPYDKZ0LShEe++mI7atSxyl0VEREQVLPmKCq9/3h0nTpyASqXCc889h6FDh8pdFlGZMJBRlWM2m/Hdd99h/vz5AIBeNxbg5cez4MvzxYiIiGqMQj3w8Zx7sWbNGgDA2LFj8eCDD/J6ZVTlMJBRlaLX6zF16lRs2rQJADDuzhxMuCsX3PYSERHVPEIAs5dPxpw5cwAAffv2xcsvv8zBPqhKYSCjKiM7Oxsvv/wyDh48CI1Gg8mPXka/Hry+GBERUU23cu90TJs2DWazGfHx8Xj33XcREhIid1lEbmEgoyohJSUFzz//PJKSkhAQEIB3nk9C21YGucsiIiIiL7H3wny8/vrryM3NRVRUFD799FPUrVtX7rKISsRARl7v1KlTeOGFF5CamorwMDOmvZKORjG82DMREREVlXRejZemxSM5ORkRERH45JNPEBsbK3dZRC4xkJFXO3jwIF566SXk5uYiNsqIaa+ko3Y4R1IkIiIix66kK/HCBzciMTERwcHBmDZtGlq2bCl3WUROMZCR19q7dy8mT56MgoICxDU34P2X0hEYwLcrERERuZaVo8Dkj2/C0aNH4evri/fffx/t27eXuywihzg2HXmlnTt34oUXXkBBQQE6xOvx8WtpDGNERETkluBAgU8mr0P79u1RUFCAF154Adu2bZO7LCKHGMjI62zZsgUvv/wyDAYDurQvxHsvpUPH0WuJiIioFPx8Bd5/dhl69uwJo9GI1157jaGMvBK7LJJX2bhxI958802YzWb06lyA15/OhEYtd1VERERUVZlMwNvfjcaGDRug0WjwzjvvoGvXrnKXRSRhICOvsX37drzyyiswmUzo170ALz+RCbVK7qqIiIioqrs+lL377rvo0qWL3GURAWAgIy+xZ88evPjiizAYDLipawFem5QJFTvUEhERkYeYTMDUb0dh48aN0Gq1eO+999C5c2e5yyJiICP5HTx4EM8//zwKCgrQrUMhpj6XATW7KRIREZGHmUzAlG9GYtOmTdDpdPj0008RFxcnd1lUwzGQkawSEhLw9NNPIzc3Fx1v0OPdF9Pho5W7KiIiIqqujCbgtS+GY8eOHQgMDMRXX32Fhg0byl0W1WAMZCSbS5cu4dFHH0V6ejpuaKnHtFc4miIRERFVvIJCBZ7/sB8OHz6M8PBwzJgxA5GRkXKXRTUUz9IhWWRnZ+OFF15Aeno6Gjcw4v2XMhjGiIiIqFL46gTef24tGjZsiNTUVDz33HPIyMiQuyyqoRjIqNLp9Xq8/PLLOHv2LGrXMuODl9Ph78eGWiIiIqo8QQEC017ajrp16+L8+fN45ZVXoNfr5S6LaiAGMqpUFosF7777Lg4ePAh/Pws+fCUdEWEWucsiIiKiGigizIKPJh9AYGAgDh8+jA8++AA8m4cqGwMZVaoff/wR69evt16Y8YUMNIw2yV0SERER1WDR9cx45513oFKpsHbtWsyePVvukqiGYSCjSvPvv//il19+AQC88PAVtGttkLkiIiIiIqBN5Eg899xzAICffvoJa9askbkiqkkYyKhSnDx5Eh988AEAYNStuRjYq0DmioiIiIiuuaXjMxg9ejQA4IMPPsDx48dlrohqCgYyqnCZmZl45ZVXUFhYiE5t9HhoTI7cJREREREVM3H4Z+jWrRsMBgNef/11ZGdny10S1QAMZFShzGYzpkyZguTkZNSrY8IbkzKg4ruOiIiIvJBKCbw88Q/Uq1cPycnJeOedd2CxcPAxqljcNaYK9csvv2D37t3w9fXFuy9mIDCAIxcRERGR9wr0F3j77beh1Wqxfft26fx3oorCQEYVZv/+/fjpp58AAM88cIkjKhIREVGV0DjwFjzzzDMAgJkzZ2L37t0yV0TVGQMZVYisrCxMnToVFosFg3rlcxAPIiIiqlIGd3gaQ4YMgRAC77zzDrKysuQuiaopBjLyOCEE3n//fVy5cgVRkSZMepAnxBIREVHV8+ToHxETE4O0tDR88sknvGg0VQgGMvK4ZcuWYevWrdBoNHjz6Qz46bjxIiIioqpH5wO8/vrrUKlUWL9+PVauXCl3SVQNMZCRR6WkpOCrr74CADwwKg1NG/K8MSIiIqq6mgYPxf333w8A+Pzzz3Hp0iWZK6LqhoGMPEYIgY8++gj5+flo1dSAu4bmyV0SERERUbmN7jcV8fHxyM/PxwcffMCui+RRDGTkMcuXL8fOnTuh0Qi89FgmrzdGRERE1YJKCbz80Fr4+Phg7969+Oeff+QuiaoR7jKTR6Smptp1VcxBg/pmmSsiIiIi8px6dcxS18UZM2YgMzNT3oKo2mAgI4/45ptvkJeXh5ZN2FWRiIiIqqc7e76BJk2aIDs7GzNmzJC7HKomGMio3Pbt24fVq1dDoVDg6Qez2FWRiIiIqiW1Gnj++eehUCiwcuVK7Nq1S+6SqBrgrjOVi8lkwueffw4AuLV/Lpo34qiKREREVH21CBuGO+64AwDw5ZdfwmTivg+VDwMZlcuff/6J06dPIyjAggdG58hdDhEREVGFmzB0BoKDg3HmzBksW7ZM7nKoimMgozLLycnBrFmzAAAP3p2D4EAOAUtERETVX6C/wIQJEwAAM2fORF4ez5+nsmMgozL79ddfkZubi9hoI4b0y5e7HCIiIqJKc+uNkxETE4PMzEz88ssvcpdDVRgDGZVJWloaFi5cCAB4cHQOB/IgIiKiGkWtBh599FEAwO+//47Lly/LXBFVVdyNpjKZO3cuCgsL0aqpAd076uUuh4iIiKjSdWk0AW3atIHBYMD//vc/ucuhKoqBjErt0qVLWLJkCQBg4t05UChkLoiIiIhIBgoFpHPJli5ditTUVHkLoiqJgYxKbcGCBTCZTGgfr0e7OIPc5RARERHJpm290YiPj2crGZUZAxmVSmZmpjS865jhuTJXQ0RERCQv+1ayv//+G2lpafIWRFUOAxmVyuLFi6HX69GsoRHt2TpGREREhPZR96B169YwGAz4448/5C6HqhgGMnJbYWGhtJG5e1guzx0jIiIigrWVbPTo0QCsrWR6PQc8I/cxkJHbVq5ciaysLNSrY0LPGwvlLoeIiIjIa3Rr+iDq1q2LrKwsrF69Wu5yqAphICO3CCHw999/AwBuH5QPtUrmgoiIiIi8iEoJ3H777QCAhQsXQgghc0VUVTCQkVuOHj2KEydOQKMRGNQnX+5yiIiIiLzOLZ3ehI+PD06fPo2jR4/KXQ5VEQxk5BZb61ifLgUICuARHyIiIqLrBQYI9O7dGwCwfPlymauhqoKBjEpUWFiIdevWAQBu7c/WMSIiIiJnBnf5FQCwdu1aFBbynHsqGQMZlWjLli0oKChA3QgT4lsY5S6HiIiIyGu1aWVAZGQk8vLysGnTJrnLoSqAgYxKtHbtWgBA/x6FHOqeiIiIyAWlEhgwYAAAYP369fIWQ1UCAxm5lJOTgx07dgAA+nYvkLkaIiIiIu/XO/4TAMCOHTuQn8/TPcg1BjJyaceOHTAajYiNMqJRjEnucoiIiIi8XqMYE6Kjo2EwGLB161a5yyEvx0BGLtk2It068orzRERERO5QKIA+ffoAAM8joxIxkJFTJpNJ6q7YrQNHCSIiIiJyV5fmnwEAdu3aBbPZLHM15M0YyMipw4cPIycnB0GBFrRsytEViYiIiNzVvLERAQEByMnJwbFjx+Quh7wYAxk5tXfvXgBAx3g9VHynEBEREblNrQI6duwIAFKPIyJHuJtNTtkCWZtWBpkrISIiIqp6OnXqBODaPhWRIwxk5JDBYMDhw4cBAG0ZyIiIiIhKLS7yRQDAsWPHYDJxtGpyjIGMHEpISIDBYEBIkBkx9bkBISIiIiqt6HomBAUFQa/X4+TJk3KXQ16KgYwcOn78OACgZRMjFAqZiyEiIiKqgpRKoHXr1gCAgwcPylwNeSsGMnLoxIkTAIBmjTi6IhEREVFZtWzZEsC1fSui6zGQkUMJCQkAgKYNGciIiIiIyqph2McAgNOnT8tcCXkrBjIqxmQyITExEQDQJJbnjxERERGVVcMY675UYmIiB/YghxjIqJjk5GSYTCZoNQK1a/HK8kRERERlVa+2GTqdDgaDARcvXpS7HPJCDGRUzPnz5wEA9euaoOQ7hIiIiKjMlEogKioKABjIyCHublMxtkAWFcnWMSJPyrcYcNaU67H1mYXFY+siIqKKU7duXQDWXkhE12Mgo2JSUlIAAJG12c+ZCLAGH0+EHwssyLSoccZY/lBmq4ehjIjI+9kC2aVLl2SuhLwRAxkVk5aWBgCoFcodPSL7wFOe8JNvMSDJJGARCuQIdblayq6vg6GMiMi71fGbBeDaQW8iewxkVEx6ejoAICyEXRapZnMUdMoSfvItBpwxmWEU1k2uRSiQaSlbKHP2/AxlRETeKyTYuk+VlZUlcyXkjRjIqBhbIAsN5g4e1VyuAk5pws/1YcymLKGspOdlKCMi8k5BgQIAAxk5xkBGxeTl5QEAggK4c0c1kzvBxp15nIUxG1soc+ecMoYtIqKqK/jqPhUDGTnCQEbFFBQUAAB0OiFzJUSVrzTBx9W8JYUxG3fOKfNUTUREJI+Aq4EsN9dzI+1S9cFARsXYApkvAxnVMGUJM46WcTeM2bjqvuipmoiISD5ajXWfymg0ylwJeSMGMirCZDLBbLaeeKrTMpBRzVGeEGO/bGnDmI2jUOapmoiISF4atfWnyWSCENy/oqIYyKgI+42Egu8OqiE8EV7MwlLmMGZjf06Zp2oiIiL5WewyWE5OjnyFkFfiLjcVoVAopPvcl6OawFOhJVfocdSIMocxG4tQwAhFyTO6iaGMiEh+KruvBltPJCIbBjIqokggk7EOospgFhZYPPBOzxV6HDeqkSe0KBTq8tUEBdLNOiQYC8tdlwUCFgiGMiIimamU175r/Pz8ZKyEvBEDGRWhVF57S5hMnjtKT+Rt7MNYeUKZLYwVCg0AwABVmUOZGQoUCrU1lFnKF8rsXxNDGRGRvAxG6z6VQqGAVquVuRryNgxkVIRCoYCvry8AIL+QgYyqJ0ctY2UJZdeHMZuyhDJbGLNX1lDm6LUwlBERySe/wLpP5efnV6Q3EhHAQEYO+Pv7AwDy87nBoOrHVTfF0oQyZ2HMpjShzFEYsyltKHP1GhjKiIjkYTvIze6K5AgDGRVjC2R5+Xx7UPXizjlj7oSyksKYjTuhzFUYsylv90V7DGVERJUvv8C6T2XrhURkj3vcVExgYCAAICuXbw+qPkozgIer+dwNYzauQpk7YczGnVBWmtfHUEZEVHkysqz7VKGhoTJXQt6Ie9xUTEREBAAgNZ1vD6oeyjKaoqP5SxvGbByFstKEMRtXoawsr4+hjIiocqSlqwAAtWrVkrkS8kbc46ZibIHsSppK5kqIPKOsoyjaL1fWMGZjH8rKEsZsHIWy8rw+hjIiooqXmmHd5Q4PD5e5EvJGDGRUjG1jwUBG1UF5A4cFotxhTKoFinKFMRv7UFbe66gxlBERVbzU/GEA2EJGjjGQUTGRkZEAgIspDGRUtXniws8WWMNKhFJf7npOGWrj65S+5V4PAOiFCnph8si6PHFxbCIicu7cuXMAgKioKJkrIW/EQEbFNGjQAABw9qIagvtpVIWpFEoo4ZnLN4SpVIhW5ZZ5+URDOOac74ZjmbXx4+Xe5apFpzChgdoMCywwCnO51gXAY78jIiIqTohrgSw6OlrmasgbMZBRMfXr14dKpUJ+gVLq80xUVZUnlF0feMoaymxhLEfvA6NZhYTMiDKHMp3ChEZqEzQKpcMaS0sJBVQKfs6JiCpKWoYSBQUFUKlUqF+/vtzlkBfitzAVo9FoUK9ePQBA0vnynetC5A3KEspsQcd8XXe+0oYy+zBmU9ZQdn0Yu77W0mIYIyKqeGfOWfelIiMjodGU71xkqp74TUwONWnSBABw/DQ3HFQ9lCaUOQtjNqUJZYVCWySM2ZQ2lDkLY9fX7C6GMSKiypFwdV+qefPmMldC3orfxuRQixYtAADHTzKQUfXhTigrKYzZuBPKEg3h+P1iB6fT3Q1lJYUxG3dDGcMYEVHlOX5hKAAGMnKO38jkUMuWLQEAx05pZa6EyLNchTJ3w5iNq1CWaAjHzxe6IqtQ53IdJYUyd8OYTUmhjGGMiKhyHTt2DMC1g91E1+O3MjnUrFkzKJVKXE5T4XIa3yZUvTgKZaUNYzaOQpm7YczGVShTQbgdxmychTKGMSKiypV8RYXLly9DpVKhWbNmcpdDXorfzOSQn5+ftOHYd7j4+S9EVZ19KCtrGLOxD2WlDWM2tlA263Iv6THb8PZlcX0oYxgjIqp8+w5bexo1b94cfn5+MldD3orfzuRU+/btAQB7DrHbIlVP9qGsrGHMJkylgkUoyxTGbIxmlXSdstJ2VXTEcvUfwxgRkTz2nR4NAGjXrp3MlZA34zc0OdWhg3Uwgj0HfXiBaKq2rKGs/JvCGelt8fz7D+Py0vJd9NNoVmHTqSYYufipcoUxGzM/vEREshAC2LNnDwAGMnKNgYycio+Ph1arxeU0FRJ5PTKqpszC2oKkU5TvPZ5sCELoiULUOmyAfk1EmdeTmhaI8OU+iNwicMOip8tVkxJK+Fx9XWZhKde6iIiodE6fVePy5cvQarW44YYb5C6HvBgDGTml0+mkVrLN/5WtCxaRN7MPKWqoyhzKZqS3xfYvOwIAVHpzmUNZalogaq/UQpdhhrrAgnobBW74Y1KZarIPYzYMZURElWfLLuu+U8eOHaHTcT+KnGMgI5d69OgBANjyHwf2oOrFUTgpSyibkd4Wf37SF8GJhdJjZQll9mFMqqfAgnobUOpQ5iiM2TCUERFVjq37OwG4ti9F5AwDGbnUrVs3KBQKHDulxeVUvl2o+itNKHMUxmxKG8qEUVkkjEn12EKZm90XXYUxG4YyIqKKlZKqlK4/1qVLF5mrIW/HPWxyqVatWoiPjwcA/LvVV+ZqiDyjpECihgp+Cq3LYPZtxg3481PHYczG3VCWmhaIOuucP5e73RfdCWM2DGVERBVn7WbrPlPbtm0RHh4uczXk7RjIqEQDBgwAAKzayEBGVZ+7QUQJhdPWshnpbbHok/4IPuM8jNmUFMpS0wJRe5UWunTX1xuztZR1/+RZh8GsNGHMhqGMiKhirNneFgAwcOBAeQuhKoGBjErUt29faDQanD6rwakkjrZIVVdZAoijUHZRH+JWGLNxFsrcDWNSLQUWhB43FjuvrCxhzIahjIjIs06fVeP06dPQaDTo3bu33OVQFcC9aypRYGAgunbtio0bN+Kf9b54fHyO3CURlVp5goc1lAGFwoQZ6W2xc0Z7BMP9QAZYQ1mTPWm4acc+dM4/Cm2OGYY8XxwIaohl0Z2Q4RPofj0FFtTboMQNmIQDd3xR2pdTjFlYeOFoIiIPWbbWDwDQtWtXBAa6v22nmkshBK8aSiXbtm0bXnrpJQT4W7Dw2xToOOgiVTGeaAn6IqMJfv1kEEJOly6Mac1GPH5yKQYl74VGFG8NMypUWBHdAdNb3QaDSuP2ek2+SlzsA5y445tS1eMIAxkRUfkVFCpw12NNkJubi48//hidO3eWuySqAvgNTG7p3LkzIiMjkZunxL9beC4Z1Ty5Qo8mPsnIGpRXquW0ZiPePzAHQy/tchjGAEAjzLjt7E58tHMWtGaj2+vOr63Evb02I9GUX6qaiIioYqzbqkNubi7q1auHjh07yl0OVREMZOQWlUqFYcOGAQD+XOkPtqtSVaNSKMvcCpQr9DhpVCFElY+p7ZYg6VH3zvkCgMdPLkXbrDMo6SMjALRLP42njvzt1nqzG6hxy8ObMSRoHzIt2nKFMraOERGVnxDAX+tuBADcdtttUCq5bSX38J1Cbrvlllug1WqRcEaD/Ue1cpdDVCZlCR8WIZAnrO/5epoMt0NZqD4Hg5L3AgAUJcxrmz743G6E6l2fp2kLY7cF7wEAmKFApkWLs2wpIyKSzd7DWhw/fhw+Pj645ZZb5C6HqhAGMnJbSEgIBg8eDACYt9hf5mqIyq40oSxX6HHaVHT8I3dD2eBk590UndEIM4ac+8/lPCZfhRTGbMxQIL0MLWVsHSMi8oz/LR8EABgyZAhCQkLkLYaqFH4TU6ncfffdUKlU+G+/DsdPc5BOqrrcCSK2roq21jF7Uih7xPlgIW0yE8tUW7u0006nZTdQY+i9mx1OK21LGcMYEZFnJJxWY9euXVCpVBg1apTc5VAVw29jKpV69eqhb9++AID//RkgczVE5VNSILHvquhIPU0Gprb/22ko8zPry1SXr8nxctkN1Lj5oS0YHrLb6bK2lrKSQhnDGBGR5/y6ciQA67VbIyMjZa6Gqhp+I1OpjRkzBgCwcYcOSefZSkZVm7Ng4qiroiP1NBl4s/1Sh6EsX1W260MUqIsvl91AjQEPbXMZxmxKCmUMY0REnnPmnBobNmwAANxzzz0yV0NVEb+VqdQaNWqEnj17QggFfviVFzykqu/6gOKqq6Ij0Zo0h6HsoF9Mmeo5bK5d5P+2MHZniOtzy+y521JGRETl8+Mfw2GxWNC7d280btxY7nKoCmIgozKZOHEilEolNv+nw6Hj7l/Ilshb2UJZacOYTbQmrUj3RVWeESszwmEscXzFooxQYFlWOPyPpEiPmfwUpQpjNo5CGVvHiIg85+AxDbZs2QKlUokHH3xQ7nKoiuI3M5VJbGysNKTrt78E8bpkVC2oFMoSzxtzxb77osJkQVqBBasQCwBuXYcMAFYiFplCA/P5i/A/koLsBmoMHru1TPUARUMZwxgRkecIAfyw0Hpe/S233IIGDRrIXBFVVfx2pjK777774OPjg0PHtdiyq2znyhBVN9GaNDzbZg1O3BsEAPgabbEf4W5dh2w/wvE12gIAhMkEc61AxIw+XabWMXsahQURKjXMwvmIkEREVDpbd/vgwIED0Gq1uO++++Quh6owBjIqs4iICNx1110AgG9+DoLeIHNBROVkFhb4KTVopM4t8zpyLDpkmf3Qs/thnHmvKwwKFV5BTyxFQ6fdF41QYCka4mX0hFGhAgAo27TE5TdNaBNyHvsKy37UVacwo5Ea8FVYW/0YyoiIyk9vAL76uTUAYMSIEYiIiJC5IqrKFEKwsxmVXV5eHsaOHYu0tDTcPzIH40aUfUeWSG62sGKCGfkWI/KEBadNpbu8Q7o5ALvyGgIALhSGYEtiQ+C0Pxq+sg0hohCDcQZtcAW+MKEAauxHBFagITIVuiLrsfRoi05fWi/+rFGaEaAqRKCyEO19E0tVj7/ChBaaoi3Y7LpIRFQ+s38PwOzfAxEREYGff/4Zfn5+cpdEVRgDGZXb2rVrMWXKFGg0ArM/uYL6dc1yl0RUao5ajkww44pZ73Yoy7HocKggGjnmouHqQmEItq6NQ+yr29xaj7JNSyRPFRgcc6TI4xqlGfW1GWirS3JrPde3jtljKCMiKpuLKSpMeC4KBoMBb731lnR9VqKy4jcylVvfvn3RsWNHGI0KfPkTB/igqsdZNz41VIhQ+bjVhdFZGAOA+rpMdOt3CInvdi1xPc7CGAAYLSpcMIS61YXRVRgD2HWRiKisvvp1OAwGAzp27IibbrpJ7nKoGmAgo3JTKBR45plnoNFosH2vDht2FN8hJaqq3A1lRqF2GMZsbKHszHuuQ5kpSOcwjEnP40YoKymM2TCUERGVzvptOmzduhVqtRqTJk2CQlG6S5sQOcJARh4RHR0tXZ3+8x+DkJHFtxZVDe6EkpJCWY5Fh+OFkSWup74uE937Om8pU7ZpicvPFZa4npJCmQqixDBmw1BGROSe9EwlPpsVCwAYO3Ysh7knj+FeM3nMvffei8aNGyMzW4XPfmDXRapenIUyV10VHXHWfVHZpiUuTgGGNDjs1nqchTKdwowG6tIdsWUoIyJyTQjgsx+DkZWVhSZNmuDee++VuySqRhjIyGO0Wi1eeeUVqFQqbNzpi7Vb2HWRvFtpg4gtlMXahbKSuio6IoWyd6yhTNmmJS6UIoxJz31dKHO3q6IjDGVERM6t3aLDpp06qFQqvPLKK9BoNHKXRNUIAxl5VNOmTTFhwgQAwOczg3ElnW8x8k5lDSBqqFDnakuZu10VHamvy0S3/tZQZgrSYWgpw5iNfSgrTVdFRxjKiIiKu5KuxBc/xQAAJkyYgCZNmshcEVU33FsmjxszZgxatGiB3Dwl3v0yBGbu41E1Y2spq6/KKnXrmL36ukz06H8Q6S/mlaseo0UFvUVT6q6KRETkmskMvP31AOTk5KB58+YYM2aM3CVRNcRARh6nVqvx2muvwdfXF/sO+2DuwtJdWJeoMpT3OlxKKNFEIzAw6GC51hPjm44xDXchQKUv8zrCNbkYFni4XK1jRERU3JzfA3DgwAH4+fnhzTffhFqtlrskqoYYyKhCxMTE4LnnngMAzF0UgN0HuaNI3qesocwC64g1PgoN2msLyxzKVAoL/K4GMZ3SWKZQFq7JxYigA6iv8itTDUXr4VcCEZHNrgNa/LI4CADwwgsvICoqSuaKqLrity9VmIEDB+LWW2+FEAq8Mz0EaZl8u5H3KW8IsYWycaHbSxXMVAoLAlSFUOHacKRlCWU+SiPDGBGRh6VlKvHe100hhMCtt96Kfv36yV0SVWP8BqYK9dRTT6FRo0bIyFJh6mchMJnkroiouNKEEQuKX8/BR6FBQ7WuVK1lSogiYcymNKEsXJOLWwOOujUvERG5x2gC3vqyP9LT09GwYUM8+eSTcpdE1RwDGVUoHx8fTJkyBX5+fth/1AfTfwqSuyQihzzRQuRuF0b7roqOuBPK2FWRiMjzhAC+mBmMgwcPIiAgAG+//TZ0Ol7GhyoWv4WpwjVo0ABvvPEGFAoF/l7tj79WlX8HkqgilBRMHLWOXa+kUOaoq6IjJYUydlUkIvK8v1b5YelaPygUCrzxxhuIiYmRuySqAfhNTJWiW7dueOihhwAAX8wKwt5DHOSDvJNKofTYeWWOQpmzroqOOAtl7KpIROR5ew9r8eXsMADAww8/jC5dushcEdUUDGRUae655x4MGDAAFosCb34aivPJKrlLInLq+lDmTuuYPUehrKSuio44CmVsHSMi8qxzF1V46/NGMJvN6N+/P+6++265S6IahN/GVGkUCgVefPFFtGjRAtm5Srz4bhgysvgWJO/l6Zay0rSO2bMPZZ5qHWMYIyKySstU4sUP2yArKwstWrTASy+9BIVCIXdZVIMohBCl3zsgKoe0tDQ89thjuHTpEpo1MuDzt9Lhp+PbkLyXWVhK3UJmTy+M2G/QYmt+0zIFMpsAVSFu9k9g6xgRkYfkFyjw9Fu1kHBGg/r16+Prr79GaGio3GVRDcNvZKp0tWrVwscff4zg4GAknNbizU9CYeRw+OTFVAollCj70VIfhQZttAb09EsoVx3+Sj3qqHzKtQ6AYYyICABMJuDNT0OQcEaDkJAQfPTRRwxjJAt+K5MsoqOj8eGHH0Kn0+G//T746NtgWCxyV0XkXHlDmRJKNNfo0c3vRJmWD1PnoosuCUZhhgnmMtfBMEZEBFgswLRvg/Hffh10Oh0++OADREVFyV0W1VD8ZibZtGrVClOnToVKpcKqjX6YPisI7EBL3qysocxy9Z9GUfZQplGYUUelBoByhzIioppMCOCzH4OwaqMfVCoVpkyZglatWsldFtVgDGQkqy5dumDy5MlQKBT4c5U/vp4byFBGXq0socxs96a2hbIb/U66vbytdcxeWUIZW8eIqKYTApgxJxBL1vhDoVDglVdeQdeuXeUui2o4fjuT7AYNGoQXXngBAPD7sgD88CtDGXk3lUIJjULlVjCztY7Z0yiUaKUpdDuU2beO2WNLGRGR+4QAfvw1EAuXBwAAXnrpJQwYMEDmqog4yiJ5kcWLF+Ozzz4DAIwfkYP7RubKXBFRyUoagdEozMUC2bVpFiSbgSyLD7bmN3U4T5g6Fz19TzsMZDYahQpquL6uH1vHiKimm7MwAD/9FggAePbZZzF8+HB5CyK6it/Q5DVuv/12PPHEEwCAOQsDMWtBAFvKyOu56sLoqHXMnkahRLTadRdGZ61j9kpqKWMYI6KaTAjgh/8FSmHsiSeeYBgjr8JvafIqI0eOxCOPPAIAmLsokOeUUZVQ3hEYnXVhdHTumDPsvkhEVJwQwFezgzDvT2s3xcceewwjR46UuSqiohjIyOvcc889mDRpEgDrOWWffB8MM4fEJy/nKJSZS3E0wVEoc6d1zJ6jUMbWMSKqqcwW4JPvg7FohT8A4JlnnsHo0aNlroqoOJ5DRl5r+fLlmDZtGiwWC/r3KMDkxzKhdn/flEgWtnPKLLDAKErfYmUUFhwx6nDCULfEc8ecsT+njIGMiGoikwn48JtgrN7kB6VSiZdeegmDBw+WuywihxjIyKutW7cOU6dOhdlsRtf2hXjj6Uz46viWJe9mFhbohcnl+WOuGIUF6RZLmcKYjUahgo9CU+bliYiqqvxCBaZ8FoIde3VQqVR47bXX0K9fP7nLInKKgYy83rZt2/D666/DYDCgZRMD3nspA6HB7MNI3s0ozNALY5mWVUIJH4UaFohyrcNPqS3TskREVVV6phKTPwhFwmktfHx8MGXKFHTr1k3usohcYiCjKuHQoUN4+eWXkZWVhXp1TJj2SjqiIjmAAXk3W/fF0oYq+zBVlmBnC3TsrkhENcn5Syq8+F4YLqaoERwcjA8++ACtW7eWuyyiEjGQUZVx7tw5PP/887h06RKCAi14/6V0tG5WttYDospU2lB1fetWeZcnIqrujpzQ4OVpjZGVlYXIyEh8/PHHiI6OlrssIrcwkFGVkp6ejsmTJ+PYsWPQagReeSITfboWyl0WUYncDVXOWrfKuzwRUXW1drMOH35bBwaDAc2bN8eHH36IsLAwucsichsDGVU5BQUFeOutt7Bt2zYAwPgRORg/IhdK7n+Sl3MnVLkajMOd5dk6RkQ1hcUCzPotAL/8Yb3gc9euXfHmm2/Cz89P5sqISoeBjKokk8mEb7/9Fr/99hsAoGfnQrz8RCb8OAIjebmSQlVJoyOWtDwDGRHVBPmFCrz3ZQg2/6cDANx999146KGHoFKpZK6MqPQYyKhKW7FiBT7++GMYjUY0ijHi3RczEFmbg32Qd3MWqtztblje5YmIqrLkKyq8Oi0Up5I00Gg0eOGFF3DzzTfLXRZRmTGQUZV36NAhvPbaa0hPT0dwoAWvT8pAxxsMcpdF5JKjUFWaa4c5Wp6tY0RU3e3cp8W7MxohKysLYWFheOeddxAXFyd3WUTlwkBG1cLly5fx6quv4vjx41AoBO67Kxdj7+B5ZeTdrg9Vpb2Ys/3ybB0jourMYgHmLgrAnIVBEEKgefPmeOedd1CnTh25SyMqNwYyqjb0ej2mT5+OJUuWAAA6tSnEq09mIiSIb3HyXrZQVdZAZb88W8eIqDrKzFbg3S9D8N9+6/lit912G5588kn4+PjIXBmRZzCQUbWzYsUKfPrpp9Dr9ahdy4w3n8ng9crIqxmFGRZYStU6dv3yRmFmICOiaufoSQ3e/CQUl9NU8PHxwXPPPcfzxajaYSCjaunUqVN4/fXXcf78eahVAhPvycFdQ/LYhZG8lllYytXdsLzLExF5E4sFWLDEHz/OD4XZbEZUVBTefvttNG7cWO7SiDyOgYyqrby8PEybNg3r1q0DAHS8QY/Jj2UiPMwic2VERETkTGq6Eu99FYI9h6xdEvv06YMXX3wRAQEBMldGVDEYyKhaE0JgyZIl+PLLL6HX6xEUaMFLj2aie0e93KURERHRdbbs8sG07xoiKysLOp0OTz31FIYMGQKFQiF3aUQVhoGMaoSkpCRMnToVJ06cAAAMG5iHR+/Nho7nAxMREcmuUA98+3MQ/lzlDwBo2rQp3nzzTcTExMhcGVHFYyCjGsNgMODHH3/E/PnzAQDR9UyY/FgmB/wgIiKS0aHjGnzwdQjOX1IDAEaNGoWJEydCq+VARVQzMJBRjbNr1y68++67SEtLg1IhMOrWPEwYmQMfbveJiIgqjd4AzFoQiN+WBkIIgYiICLz00kvo3Lmz3KURVSoGMqqRcnJyMH36dKxcuRIA0KC+EZMfz0LLJmwtIyIiqmhHT2rw/owQnL1gbRW7+eab8eSTTyIwMFDmyogqHwMZ1WibN2/Gxx9/jPT0dCgVAqOH5WH8CLaWERERVQS9AZizMBDz/w6CxWJBWFgYnn/+efTo0UPu0ohkw0BGNV52dja++OILrF69GgAQHWnCsxOz0C7OIHNlRERE1cfug1p88n0wLqZYW8X69++PSZMmITg4WObKiOTFQEZ01aZNm/Dpp58iLS0NAHBzn3w8MjYbIUH8iBAREZVVZrYC38wNwsqNfgCA8PBwPP300+jVq5fMlRF5BwYyIju5ubn4/vvv8ddff0EIgaBACx4fl42BvQrAS6AQERG5Twhg9SZffDUnCNk5SigUCgwfPhwPPfQQ/P395S6PyGswkBE5cOjQIXz00Uc4c+YMAKB9nB6THshCg/pmmSsjIiLyfonn1Zg+Kwh7Dlkv+NmwYUO8+OKLaN26tcyVEXkfBjIiJ0wmE+bPn4/Zs2fDYDBApRK4c3Aexo/Ihb8fPzZERETXy81XYM7vAfjjn2CYzWZotVpMmDABo0ePhlqtlrs8Iq/EQEZUgosXL2L69OnYunUrACA02IyHx+RgYK8CKJUyF0dEROQFLBZr98RvfwlERpYKANCzZ088/vjjqFevnszVEXk3BjIiN23fvh3Tp0/H+fPnAQCtmhrw1P3ZaNGY1y4jIqKa6/hpNabPCsbhBOs1Y6KjozFp0iRe4JnITQxkRKVgNBrx+++/Y86cOSgoKIBCITCwZwEeGJ2D2uEWucsjIiKqNJdTlfhxfiBWXR090dfXFxMmTMCIESOg0Whkro6o6mAgIyqD1NRUfPvtt1i1ahUAQKsRGDk0D3cP4/llRERUveXlK/C/PwPw+/IwGAzWa3YOHDgQDz/8MCIiImSujqjqYSAjKocjR47g66+/xoEDBwAAIUFmjB+Ri1v754PnLhMRUXViMgFL1/ph9u8ByMy2nifWtm1bPP7442jevLnM1RFVXQxkROUkhMDmzZvx7bff4ty5cwCA6EgTJt6Tg56dC3n9MiIiqtIsFmDjTh1mzg/EuYvWo40xMTF45JFH0L17dyj4RUdULgxkRB5iMpmwZMkS/PTTT8jMzAQANGtkwAOjc9G5jZ7BjIiIqhQhgJ37fPDj/ECcOGM9Jyw4OBj3338/br31Vg5jT+QhDGREHpaXl4dff/0Vv//+OwoKCgAA8S0MeGB0Dtq2MshcHRERUcn2H9Hih18Dcei4deREPz8/jBw5EqNGjYK/v7/M1RFVLwxkRBUkMzMT8+bNw+LFi6WTnjveoMcDo3PQsgmHyiciIu9z9KQGsxYE4L/9OgCAVqvFHXfcgXvuuQchISHyFkdUTTGQEVWwK1eu4Oeff8bSpUthMpkAADe2K8S4O3PRuhmDGRERye/AUQ3mLgrErgM+AACVSoWhQ4di3LhxHDmRqIIxkBFVkosXL2LOnDlYtWoVzGYzAKB9nB733pmLtq0MPMeMiIgqlRDAnkNazF0UgP1HrgWxAQMGYMKECahXr57MFRLVDAxkRJXswoULmDdvHlasWCEFs/gWBtx7Rw46tWEwIyKiiiUEsGOvD+YuCsCRE9ZzxNRqNQYPHowxY8YwiBFVMgYyIpmkpKRg3rx5WLZsGYxGa9fF5o0NGH1rHnreWAi1SuYCiYioWjFbgM07dZi3OAAJV0dN1Gq1uPXWWzF69GjUqVNH5gqJaiYGMiKZpaamYv78+fjrr7+g1+sBAJG1TbhrSB5uvqkAfjp+RImIqOwKChVYsd4XC5f542KKdah6nU6H4cOHY9SoUahVq5bMFRLVbAxkRF4iIyMDixcvxuLFi5GVlQUACPS3YNjAfNw+OA+1QiwyV0hERFVJWoYSi//xx1+r/JCTpwQABAUFYfjw4RgxYgRHTSTyEgxkRF6msLAQ//zzDxYsWIALFy4AADRqgQG9CjBqaB4aRJlkrpCIiLzZmXNq/L7UH6s3+cJosp6YXL9+fdx1110YPHgwfH19Za6QiOwxkBF5KbPZjM2bN2P+/Pk4fPiw9HinNoW4/eZ83NhOD5VSxgKJiMhrWCzAzn0++OMfP+zcp5Mej4uLw+jRo9G9e3eoVDw5mcgbMZARVQEHDx7E/PnzsXnzZtg+snUjTBg+KB+Db8pHcCA/xkRENVF2rgLL//XD36v9pPPDFAoFevXqhVGjRiEuLk7mComoJAxkRFXIxYsX8eeff2LZsmXIyckBAGg1Av17FGD4oDw0a8TujERENcHx02r8+Y8/1m7xhcFo7ZYYEBCAW265Bbfffjvq168vc4VE5C4GMqIqqLCwEGvXrsUff/yBEydOSI+3bmbA8EF56HVjIXy0MhZIREQepzcAG7b7YvE/fjh68tpGvmnTprj99tvRv39/6HQ6F2sgIm/EQEZUhQkhcOjQISxevBjr16+HyWRtIQv0t2BAzwIM6ZePxg3YakZEVJWdSlJj+b9+WL3JF9m51pOH1Wo1brrpJgwfPhxxcXFQKBQyV0lEZcVARlRNpKWlYenSpVi6dClSUlKkx1s0NuCWvgXo170A/n78uBMRVQW5+Qqs3eyL5et8cfzUtdaw2rVr47bbbsPQoUMRFhYmY4VE5CkMZETVjNlsxu7du7Fs2TJs2rRJajXT+Qj06VqAIX3zEdfcCB5MJSLyLkIAB45qsfxfX6zf7gu9wbqhVqvV6N69O4YMGYJOnTpxtESiaoaBjKgay8zMxMqVK7F06VIkJSVJj0fXM2FAzwIM6FmAyNpmGSskIqJLl1VYu1mHfzb44fwltfR4bGwshgwZgkGDBvEizkTVGAMZUQ0ghMDhw4exdOlS/PvvvygsLJSmxbcwYEDPAvTpWoCgAG4OiIgqQ3auAuu3+WL1Jl8cPHatS6Kvry/69u2LoUOHolWrVjw3jKgGYCAjqmHy8/OxYcMGrF69Grt375aua6ZWCXRpr8eAngXo0p6jNBIReZreAGzbo8Pqjb7YsdcHJrM1bCkUCrRr1w4DBw5Enz594OfnJ3OlRFSZGMiIarArV65gzZo1WL16NU6ePCk97u9nQZ8uhbipWwHatjZAzdMViIjKxGQG9h/RYu1mX2zYrkNegVKa1qRJEwwYMAD9+vVD7dq1ZaySiOTEQEZEAIBTp05h1apVWLNmDa5cuSI9HhRoQc9OhejTtQDtWhugVrtYCRERwWQG9h3WYsN2HTbt1CEz+9pRrTp16qB///4YMGAAGjVqJGOVROQtGMiIqAiz2Yx9+/bh33//xcaNG5GVlSVNCwq0oEenQvTpUoD2cQxnREQ2JhOw55AW67f7YvN/OmTnXGsJCw4ORq9evTBgwADccMMNUCqVLtZERDUNAxkROWUymbBv3z6sW7eueDgLsIaznjcWon2cnuecEVGNYzACew76YMN2HTb/p0NO3rWgFRISgl69eqFPnz5o27Yt1DyCRUROMJARkVtMJhP2798vhbPMzExpms7Hgk5tDOjWsRBd2+sREmSRr1AiogqUma3A9j06bN3tg//2+6Cg8FoICwsLk0LYDTfcwBBGRG5hICOiUrOFsw0bNmDLli1FzjlTKgRaNzeie8dCdOtYiJh6vM4ZEVVdQgBnL6qwdZcOW3frcPi4BhZxbSj68PBwKYTFx8fzos1EVGoMZERULkIIJCQkYMuWLdiyZQtOnDhRZHp0PRO6dShEl3Z6xLUwQMMDxkTk5Ywm4NBxLbbt9sHW3boiF2sGgKZNm6J79+7o3r07mjVrxmuFEVG5MJARkUelpKRI4Wzv3r0wmUzSNJ2PBe3jDOjcVo/ObfWoV4etZ0TkHS6mqLBzn7Ub4p5D2iJdETUaDdq1a4fu3bujW7duqFOnjoyVElF1w0BGRBUmNzcXO3fuxLZt27Bz505kZGQUmR4VaUKnNtZw1raVAb46bo6IqHLkFyqw75AWO/dbQ9iF5KKtYCEhIbjxxhvRvXt3dO7cmRdrJqIKw0BGRJXCYrHg5MmT2LlzJ3bs2IFDhw7BbL7WQqZRC8S3NKB9az3axRnQvLGRF6QmIo8xmYGE0xrsPazFrv0+OHhMC5P5WldDlUqFuLg4dO7cGZ07d0bTpk05PD0RVQoGMiKSRV5eHvbs2YMdO3Zg586dSE5OLjLdV2dBm5YGtG1tQPs4PRrHmqDivhERuclsAU4mqrH3kA/2HdbiwDEt8guKbkQiIyOlANa+fXv4+/vLVC0R1WQMZEQkOyEEzp49i127dmHPnj3Yt28fcnJyiswT4G9B21YGtLvaghYbZQIPXhORjcUCnDmnxp5DWuw77IP9R7XIzSu6kQgICEDbtm3RoUMHdO7cGVFRURyQg4hkx0BGRF7H1r1x79692LNnD/bv34/8/Pwi8wT4WxDX3ID45gbEt7B2ceTFqYlqDr0BOH5Kg4PHtTh0TIvDCVpk5xYNYH5+fmjTpg3atWuHdu3aoUmTJhyWnoi8DgMZEXk9k8mEhIQE7NmzB3v27MGhQ4dQWFhYZB61SqB5Y6M1pLUwIK65kReoJqpGMrKUOHRcg0PHtTh4TIuE05oi54ABgK+vL2644Qa0a9cObdu2RbNmzXhxZiLyegxkRFTlmEwmnDx5EgcOHMChQ4dw4MABpKenF5svup4JrZoa0LKJES0aG9GogRFajQwFE1GpGE3A6bNqHDupxdGT1hB2/bXAACAsLAzx8fGIj49HXFwcAxgRVUkMZERU5QkhcOnSJRw4cAAHDx7EwYMHkZiYWGw+jVqgSawRLZoYrSGtiQFRdc08F41IRhYLcO6iGsdOaay3kxqcTNLAaCx+blfDhg0RFxcnhbB69erxHDAiqvIYyIioWsrKysKRI0dw9OhR6ZadnV1sPn8/C1o0NqJ5YyOaxFpv9euaOaIjUQWwWIALySqcTNQg4bQ1gCWc1iCvoPgHLjAwEC1atECLFi0QFxeHuLg4BAYGylA1EVHFYiAjohpBCIGLFy/i6NGjOHbsGI4ePYrjx4/DYDAUm1fnY0GjGBOaNrSFNBMaRhuh85GhcKIqqlAPnD6rwclEDU4mqnEqSYNTSWoU6ouHLx8fHzRv3lwKYC1btmTrFxHVGAxkRFRjmUwmnDlzBkePHkVCQgJOnjyJU6dOQa/XF5tXqRCIrmeSwllstAmx0SZE1mZrGtVsZguQfFmFpPNqnDmnxskkawg7f0kFIYoHKq1Wi8aNG6Np06ZS+GrQoAHP/SKiGouBjIjIjtlsxvnz53Hy5EmcOHFC+pmRkeFwfq1GIKa+CbFR1qDWIIpBjaonswW4lKJC4nk1Es+pkXheg6QLapy9oIbe4LglKywsDE2aNEGTJk3QtGlTNGnSBFFRURx6nojIDgMZEVEJhBBIS0vDyZMncfLkSZw5cwaJiYlISkpy2OURuBbUoiNNiIo0ISrSfPWnCcGB3OyS98rKUeD8JTUuJKtx/pIK5y+prcHrotrhQBuAtdUrJiYGsbGxUutX48aNUatWrUqunoio6mEgIyIqI7PZjEuXLuHMmTNISkpyK6gBQFCABfUjTYiqa0J0pBn1I02oX9eMyNomBAUI8LQZqmg5eQpcSFbjwiUVztsFr/OX1MjJc960q9Vq0aBBA8TGxqJhw4bS/cjISHY5JCIqIwYyIiIPswW1xMREnD9/HufPn8e5c+dw/vx5XLlyxeWyfr4W1I0wo26EGZG1rT/r1jah7tX7gf7cZJNrQgC5eQokX1FZb5fV1+5fveXlu+5PGxERgaioKOkWExODhg0bok6dOuxuSETkYQxkRESVqKCgABcvXpQCmu3nhQsXHF7c+nr+ftbAFh5mRnioBRG1rPcjwizWx8LMbGWrxoQAsnMVSE1XWW8Zyqv3lbiSrsLlVGvgyncwjPz1wsLCioSuqKgoREdHo169evD19a2EV0NERAADGRGR19Dr9UhOTkZycjIuXbqES5cuFfl/ZmamW+vRasTVkGZGrVALQkMsCA0yIyTYgtBgC0KCrD9Dgy3w1fErQG5CAAV6BTKzlMjMViIzS4mM7Gv3UzNUUuhKzVA5PY/remFhYahbt650i4yMRJ06daT/63S6Cn5lRETkDgYyIqIqoqCgACkpKUhOTkZqaiquXLlS7GdWVlap1qnzuRbQQoIsCAywINBfXP1pQWCAQID/tfuB/hYE+Fvgo62gF1nF6Q1ATq4SuflK5OQqkJOnRG6eErl51vu2x7Ky7UOXyukohc4EBwcjIiICtWrVQkREBMLDwxEREYGIiAgpeDFwERFVDQxkRETViF6vR1pamhTSUlNTkZmZiYyMDOlnRkYG0tPTXQ48UhIfrYCfr7WFzXaz/7+f9LgFfr4CWq2AVmNtvdNqBDQa6/810v1r09VqAaUSUCpg/am8+v+rj5XUHVMIwCIAYbn6UwBmiwLCAhhNgNGkgNFovRlMkO4bTYDBqIDBqIDRaL1fUKhAQaHy6s+it0L9tWn5Bdag5W7rlSNarRZhYWEICQlBSEgIQkNDERISglq1akmBy3Zfq2UiJiKqLhjIiIhqICEECgoKioS0zMxM5OTkSLfs7Gzk5OQgNzdX+n9ubi7k/tpQKIoGtuvDl6OLEVcmpVKJgIAABAQEIDAwULrZ/h8QECAFLlvoCgkJga+vLxQ8+Y+IqMZhICMiIrdZLBbk5eUhJycHBQUFyM/Pd/jz+vt6vR4GgwFGo7HIT0ePWSyWCn0NKpUKWq0WGo1Gutn/33Zfq9XCz88Pvr6+0k2n08HX17fY476+vlLg8vPzg1LJq4ITEZF7GMiIiMirmM1mCCFgNpthsVgc3rf/qVAooFQqpZ+22/WPKxQKqNVqDttORERehYGMiIiIiIhIJuxTQUREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQMZERERERGRTBjIiIiIiIiIZMJARkREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQMZERERERGRTBjIiIiIiIiIZMJARkREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQMZERERERGRTBjIiIiIiIiIZMJARkREREREJBO13AUQUfUnhEBhYaHcZRARlYpOp4NCoZC7DCKq5hjIiKjCFRYWYtCgQXKXQURUKitXroSvr6/cZRBRNccui0RERERERDJhCxkRVSrtztpQiKvHghRKKJQKQKEElApAoYBCaZt29XGFAlAqoLDNI01TSMtIN8DuMWXR6dYFpceEQnHtkJTdOqTHFdeey/4xobCuRpqmtK7X+rhCmmZbRlx9TJoOXFuH8ur8tuko+hxFlrlavlA6mFZkfhSp8dpjimLTii0D+zqumw4njztZn7M6ii3jar3S46L48nbLSNPt1iWuPg675azThF091ukK+2nSvLZpQlqnwn5+hZCmSW8x2+O21V2dx/pWENL/bcsor/7fOs36f9ty0jSFgALXllNefUy6QUjLKRUo8rh1ecu15WCb3wKVbZmr/7+2Lou0PpXd+lWwPq6yrU+a1wKVbZ2w1WG5Nj+urdu6TguUsD6/dZp1faqrjylggcq2vN0yKsC6HKzPY/t92P5vfS5x9T6uThNQXv29qKCAEoDq6h9bCcXVxxRQKRRQQgnF1b+c0aDCnRPrgoiosjCQEVHlMiuu7hrBGshwNTxd3dO9Nk0BKK+lD4U13VxdiW3PXIlie9zX0k7RFGBbZ7E9dFz3mP1zwMFj1y+Ha0HMLpAVe8wuQNn///oSi87vYBmli2nOXkaxOpy8bFfTnP2qyro+u3U6CmsVGsgcTcf1/xfSuu3rsH9OR9OkAAe7eeznL7aMcPBcosjNPpBdC3lXb86mwRbarKu0D2+24AbYghWkQGM/zRrILNcCjcI+0FjvKxUKa1i6+hPSfYW0nHU9uLpO27K4utzVxx1Ns1tGdTVMqqQ6bYFMlBjI7Nensv0+UPQxJexrtPsbEhFVAnZZJCIiIiIikgkDGRERERERkUwYyIiIiIiIiGTCQEZERERERCQTBjIiIiIiIiKZMJARERERERHJhIGMiIiIiIhIJrwOGRFVLpWAENaLwVqvq6Ww+6m47mLNtp9292H/mLC778Y0u4tSXbt8r7PHr/0URe6jyHICAITt8WvrFFAAAtKy9tOldRS5eJZ9LQ7+L4qUdN3vw8nt+nndudaYq2luP5eb0+yf0uVyooR1Cic1Or8wdNFrh9lNk+Yt+4Whr9Vhdx0ylP06ZALXlhMKUfQG60/rNBR53KIQgMJybZ2wPZfF7nppV+e5Ol0oLNL6UGT9V3/anuvq/5VX57H9BFDsMYvdx9p236IALLh2HTLL1ccUcHYdMoV0MWcVrv3NbP9XXl3m+mubuX9haAWuXRja0eeSiKjiMJARUaUydL4sdwkVw7a/W0bX5wkiG/u3lkXOQsrMPhGzYw4R0fW4ZSQiIiIiIpKJQghRjmO6REQlE0KgsLBQ7jKqvMLCQgwbNgwA8Ndff0Gn08lcEZWEf7OqTafTQaFgmzURVSx2WSSiCqdQKODr6yt3GdWKTqfj77SK4d+MiIgcYZdFIiIiIiIimTCQERERERERyYSBjIiIiIiISCYMZERERERERDLhKItEREREREQyYQsZERERERGRTBjIiIiIiIiIZMJARkREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSiVruAoiIyLH8/HzMnz8fGzZsQHJyMpRKJaKjo9G3b1/ceeed0Gg0Hn2+jz/+GH///TcAoG7duvjtt988uv6aoKL+ZleuXMHmzZuxd+9enDhxAleuXAEAhIWFoXXr1hg6dCg6dOjgyZdCRESVRCGEEHIXQURERSUnJ+Opp55CcnIyAED3//buPKiq8w7j+BdZBAVFE0YhWDXGLU0sCmrcqIpFQpJp6jaxzpjEOppM1IxpMs0wCol7yhh14oyNzMTWKkljbDSZqjgoRq2gohapBEUQEkUZFgUXFu/l9g/mnl6URS4XLuDz+evIec/vvHAY4PF9z/t6elJdXU1VVRUAAwcOZOPGjfj4+DjkfmfPnmXp0qVYfyUokDVdSz2zgoICZs2ahe2va09PTywWC5WVlcbHIiMj+eCDD3B1dXXAZyMiIq1FUxZFRNoYk8nEhx9+yI0bN3jiiSf49NNPOXjwIAcPHiQmJoYuXbqQlZXFypUrHXK/iooKYmNjcXV1ZciQIQ6p+bhpyWdWXV2NxWIhODiYqKgo/vnPf3Lw4EESEhLYvn0748ePB2Dfvn1s27bN0Z+aiIi0MAUyEZE25sCBA+Tk5ACwcuVKQkJCAOjUqRNhYWG8//77AKSkpHDmzJlm3y8uLo5r164xe/Zs+vXr1+x6j6OWfGY+Pj7ExcWxYcMGIiIiePLJJ43a/fr1Y/Xq1YwePRqAXbt21Ro1ExGRtk+BTESkjTlw4AAAw4cP57nnnnvofFhYGP7+/rXa2uvChQvs3r2bPn36MHfu3GbVepy15DPz9vZm8ODB9Z53cXEhMjISgPLycvLy8ppUX0REnEuBTESkDamoqOC///0vAC+88EKdbVxcXIwRkdOnT9t9r6qqKtatW4fFYuGDDz6gc+fOdtd6nLXmM6uPh4eHcVxdXe3w+iIi0nIUyERE2pC8vDzjD+r+/fvX2856rqSkhLKyMrvu9be//Y28vDxeeuklgoKC7KohrfvM6nPu3DkA3N3d6dOnj0Nri4hIy1IgExFpQ4qKioxjPz+/ettZ3yN68JpHdenSJeLj4+nZsydvv/12k6+X/2utZ1af/Px8Y7uCyZMn07VrV4fVFhGRlqdAJiLShty7d884bmgKoaenZ53XPAqTycQnn3yC2WxmyZIlDls6/3HVGs+sPpWVlcTExFBRUUH37t1ZuHChQ+qKiEjr0cbQIiLNtH//ftauXWv39bGxscb7Ra1h586dZGVlMXbsWCZPntxq921L2tszq4vJZGLFihVcvHgRNzc3li9fXmsUTkRE2geNkImItCFdunQxjhtavryioqLOaxqTm5vL9u3b8fLyYunSpfZ1Umpp6WdWF7PZzMqVKzl27Biurq5ER0czatSoZtUUERHn0AiZiEgzhYWFMWbMGLuv9/b2No5tRzgKCwsZMGBAndfYvoPUlFGRDRs2cP/+fd588018fHwemjpnNpsBsFgsxjkPDw/c3DrWr4v29MweZDabWbVqFUlJSbi6urJs2TImTpxodz0REXGujvUbVkTECTw8PGotO94cffv2pVOnTlRXV3PlypV6l1G/cuUKAD179qRbt26PXP/69esAbN26la1bt9bbrqCggIiICAAWLVrErFmzHvke7UF7ema2rCNjhw8fNsJYWFiY3X0XERHn05RFEZE2xNPT09hY+OTJk3W2sVgsnDp1CoCRI0e2Wt+kbq31zMxmMytWrFAYExHpYDRCJiLSxkRERHD+/HnOnTtHRkYGzz77bK3zSUlJ5OfnG22b4uuvv27w/Jo1azhw4AC9e/dutK38X0s+M/j/yJjtNEWFMRGRjkEjZCIibUxERARPP/00FouF5cuXc+bMGQCqq6tJSkoiNjYWgNGjRxMcHPzQ9V988QWhoaGEhoYaUxSlZbXkM7O+M2YdGYuOjlYYExHpQDRCJiLSxri5ubF27Vreffddbty4wdKlS/H09KS6upqqqioABg4cSHR0tJN7KlYt+czS09M5dOgQAC4uLmzatIlNmzbV237x4sUKbCIi7YgCmYhIG+Tv789f//pXvvrqK3744Qdu3LiBm5sb/fv3JywsjOnTp+Pu7u7sboqNlnpmFovFODaZTJSUlDTY3hoARUSkfXCx2P6kFxERERERkVajd8hEREREREScRIFMRERERETESRTIREREREREnESBTERERERExEkUyERERERERJxEgUxERERERMRJFMhEREREREScRIFMRERERETESRTIREREREREnESBTERERERExEkUyERERERERJxEgUxERERERMRJFMhEREREREScRIFMRERq2bRpE6GhoSxevNjZXREnu3PnDi+99BKhoaEcPXrU2d0REemQ3JzdARGRjuLu3btkZWWRmZnJxYsXuXjxIteuXcNisQDwj3/8A39//xa5t8ViYcaMGRQWFjJnzhwWLlxoV52srCz27NkDwIIFCxzYQ+fKycnh1KlTpKenk5OTQ3FxMWazGR8fHwYMGMCYMWOIiIjA29vb2V1tU7y9vXnttdeIi4vjs88+Y/To0XTu3NnZ3RIR6VAUyEREHGTJkiVkZWU55d6ZmZkUFhYCMGHCBLvrbNmyBbPZzOjRo3n++ecd1T2nWrJkCf/5z3/qPFdSUkJJSQmnT59mx44dREVFMWrUqNbtYBs3Y8YMdu3aRUFBAd988w1z5sxxdpdERDoUTVkUEXEQ60gY1IwsDB8+nJ49e7bKvY8dOwaAn58fQ4cOtavG+fPnSU1NBehQf3Rbg6qPjw+RkZFERUWxefNm4uLiWLFiBWPGjAFqwllUVBRpaWnO7G6b4+XlxfTp0wGIj4/n3r17Tu6RiEjHohEyEREHiYyMxNfXl8GDBxMYGIiLiwtLliyhpKSkxe9tDWTjxo3DxcXFrhpffvklAP7+/vzqV79yWN+cLTAwkLlz5xIWFoaHh0etc4MHD2bixIns3LmTzz//nKqqKtavX8/27dud1Nu2KTw8nC+++ILbt2/zr3/9i5kzZzq7SyIiHYZGyEREHGTGjBlMmTKFPn362B2K7PHzzz+Tl5cH2D9dsbCwkOTkZACmTp3aqv1vabGxsbz44osPhTFbc+bMYeDAgQDk5uaSnZ3dWt1rF/z9/Rk2bBgA3333nZN7IyLSsWiETESknbOufmedJmmPxMREqqurAZg8efIjXWMymTh8+DDHjx8nMzOTW7duYTab8fX15emnnyYkJIQpU6bwxBNP1LouNDQUgIiICKKiovjpp5/45ptvOH36NEVFRXTt2pVBgwbx+9//nqCgIOO6yspK9u/fT0JCAlevXqWiooKAgAB+85vfMHPmzGYvNjFixAjjHcCff/6ZAQMG2F0rNzeXvXv3kpaWxvXr16moqMDb2xsfHx/8/f0JDg5m/Pjx/OIXv7Crvslk4uDBgyQlJZGTk0NpaSkuLi5069YNX19fhg4dSkhICOPGjcPd3b3WtQ9+/XNzc/n2229JTU2lqKiI8vJyVq9e/VC4nzx5MmlpaeTl5ZGZmcmQIUPs++KIiEgtCmQiIu2cdbrimDFjcHOz78f6iRMngJr3rPr27dto+8uXLxMdHc3Vq1cfOldYWEhhYSEnT54kOzubqKioeuscOXKENWvWUFFRYXyssrKSlJQUTp48yfvvv88rr7xCUVERUVFRZGZm1rr+ypUrbN26lZSUFNavX9+sUGYymYzjTp3sn0Cyd+9eNm7ciNlsrvXx0tJSSktLuXr1KqdPnyY7O5vly5c3uf6tW7f44x//WOcCMtavfVZWFt999x3x8fEEBgbWW2v//v2sX7+eqqqqRu9ru8jLiRMnFMhERBxEgUxEpB0rKirixx9/BOyfrlhVVcWFCxcAGDp0aKPTFbOysli0aBHl5eUADB8+nPDwcPr27Yu7uzvFxcVkZGQ0um9VdnY2hw8fpkePHixYsMC495kzZ/j73/9ORUUFGzZsICgoiFWrVnH58mVeffVVxo8fj6+vL9euXWP79u1kZ2dz/vx54uPjefPNN+36GgCcPXvWOO7fv79dNXJycoww1q1bN1555RWCgoLw9fXFbDZTXFzMxYsXSUlJsXta6MaNG40wFhwcTHh4OP7+/nTt2pW7d++Sl5dHWlqaMQW1PhcvXiQxMZFu3boxc+ZMnn/+edzd3cnNzaV3794Pte/fvz9eXl6Ul5dz9uxZ5s2bZ1f/RUSkNgUyEZF27Pjx41gsFjw8PBg9erRdNbKzs43RocGDBzfY1mQyER0dbYSxd99911iBz9bYsWOZP38+BQUF9dbKyspi4MCBbNy4ER8fH+Pjzz77LIGBgcTExGAymVi0aBFlZWXExsYSEhJitBs0aBAjR45k7ty5FBUVsWfPHubOnYurq2uTPn+omfZ55coVoCaU9unTp8k1AJKSkoyRsQ0bNhjvpdmaMGEC8+fPp7S0tMn1KysrjaA7YcIEVq1a9VCwCwoK4re//S3l5eUNjvRduXKFwMBANm/eXGs10PpW6XR1dWXQoEGkpaVx6dIlqqurmzWSKCIiNfSTVESkHbNOVwwJCcHLy8uuGrbTDhtbpj8xMZFr164BNatK1hXGbPXq1avB8x9++GGtMGY1ceJE/Pz8ALh58ybTpk2rFcasvL29efHFF412ubm5Dd6vLkVFRXz66acAuLi48Pbbbze5hpV1RU1vb+86w5it7t27N7n+7du3jfAcFBTU4Cibl5dXo1M433vvvSZtzWBtW1FRQVFR0SNfJyIi9VMgExFpp+7cucO5c+eA5m0GXVxcbBx369atwbbWAAgwe/Zsu+8JNVPg6gstLi4utc6Fh4fXW8e2XX5+fpP6UFFRQVRUlBGkHlxIpKmsIfLOnTskJSXZXac+3bt3N1aLPHToULP2BPPz86sz5DbE9vvD9vtGRETsp0AmItJOJScnYzKZcHV1Zdy4cXbXqaysNI7rGq2ydenSJaBmpORRFv9oSGPX2/alodUIbds1JaDcv3+fZcuWGQuFjB8/nvnz5z/y9XUJDw83RqViYmJ455132LlzJ+fPnzemeTaHu7s7ERERAGRkZDBr1ixiY2M5dOhQk8OoPatI2gYy24VYRETEfnqHTESknbKOVj333HP4+vraXcf2navGVtu7desW8P+RoObw9PRs8LztdLyGpmPavsdkXbq/MSaTieXLl3Pq1CkARo0axUcffWTX+2e2AgICWLduHWvWrKGwsJD09HTS09OBmq/zkCFDCA0N5eWXX240/NZn8eLFVFVVkZCQQFlZGd9//z3ff/89UBOUR40aRWRkZKMjfY2NhtbFNrzbu6KniIjUphEyEZF2qKqqipMnTwLNm64INe87WZWVlTWrVntgMpmIiYkxlvoPCQlh9erVDW4c3RTBwcF8+eWXfPzxx0RGRhrLzpvNZi5cuMCWLVuYPXu2EQabqnPnzkRFRbFjxw7+8Ic/MGLECCOwlpSUcODAAZYsWcKyZctqBagH2bMgh+1CJLbfNyIiYj/995aISDuUmppqTIFrbiCzXeK8sUDm6+tLQUFBu13QwRrGrKOLI0aMYO3atc3eVPpBHh4eTJo0iUmTJgE1I4tnzpwhISGBlJQUysrKWL58OfHx8Q9tnP2o+vTpw+uvv87rr7+O2WwmKyuLEydOsHfvXm7evMnRo0eJi4tj0aJFDvu8bt++bRw3tmCLiIg8Go2QiYi0Q9ZAMXDgQPz9/ZtVy3bPrZ9++qnBttZl8YuLixtt29Y8GMaGDx/OunXrHB7G6uLr60tYWBh//vOfefXVVwEoLy/n+PHjDqlvnQ45b948/vKXvxjTQRMTEx1S3yovLw8Af39/unTp4tDaIiKPKwUyEZF2prq6mn//+99AzUIUzdWrVy+efPJJAGOT6fqEhoYax/Hx8c2+d2sxmUx89NFHRhgLCgrik08+afQ9tpYwatQo49j6Tp4j+fv7G/uo2bPXWX1u3bplbHnwy1/+0mF1RUQedwpkIiLtTHp6uvGHvG1Aag5rSMjLy+Pu3bv1tps8ebLxx/6+ffvYvXt3g3Ub2hi6tZhMJlasWGFsqNySYeyHH35oNGRZ3/0DeOqpp5pUPz8/n9TU1AbbXL9+3RjJCggIaFL9hmRkZBjHL7zwgsPqiog87vQOmYiIg1y9etVYUc/Kur8VwJEjR2qthujl5cXEiRObfB/rKE9AQIBdS5fXZdKkSezbt4/q6mpSU1P59a9/XWc7Nzc3Pv74Y9555x3Ky8vZtGkTR48eZerUqfTt2xd3d3eKi4vJzMzkyJEjDB48mKioKIf00V4rV67kyJEjQE0Aeuutt7h+/XqD1/To0YMePXo0+V67d+9m5cqVBAcHExwcTL9+/ejevTv379+noKCAxMREY3Szd+/eTd6uoKCggPfee4+AgADGjRvH0KFD6dWrF507d6a0tJSMjAz27NljrJbZ2MbdTXH69Gmg5v24MWPGOKyuiMjjToFMRMRB0tPTWbt2bb3nt2zZUuvfvXv3blYgc8R0RauQkBD8/PwoLCwkISGh3kAG8Mwzz/DZZ58RHR1Nfn4+586dMzaofpD1nTNnst2g+dq1a7z11luNXvPGG28wb948u+5XVVVFcnIyycnJ9bZ56qmnWLt2bYPL+TckPz+fXbt21Xu+U6dOzJ49m9/97nd21X+QyWTi0KFDQM2orL1L9ouIyMMUyERE2pHLly8bozvNXV3RlqurK9OmTePzzz8nJSWFW7duNbi32aBBg9ixYwcJCQkcO3aMrKws432lHj16MGDAAEaOHMmUKVMc1sf2ICYmhlOnTpGWlkZOTg4lJSXGFMbu3bvzzDPPMGHCBMLDw+1aZn/YsGFs3ryZ1NRUMjIyKCgo4ObNm9y9exdPT08CAgIYNmwYL7/8ssNGTwHjewJgxowZDqsrIiLgYrFYLM7uhIiIPJpt27axbds2evTowbfffmvXXlL1uXPnDq+99hplZWUsXLiQOXPmOKy2tG9/+tOfSE5OJjg4mA0bNji7OyIiHYoW9RARaUes0xXHjh3r0DAGNRv9WkPYV199xb179xxaX9qnjIwMkpOTcXFxYcGCBc7ujohIh6NAJiLSTty/f58JEybwxhtvMG3atBa5x/Tp0wkMDKS0tJSvv/66Re4h7UtcXBwAU6dOZejQoU7ujYhIx6MpiyIiUsuPP/5IcnIy3t7ezJo1y9ndESe6c+cOu3btwmKxMG3atAbfKxQREfsokImIiIiIiDiJpiyKiIiIiIg4iQKZiIiIiIiIkyiQiYiIiIiIOIkCmYiIiIiIiJMokImIiIiIiDiJApmIiIiIiIiTKJCJiIiIiIg4iQKZiIiIiIiIkyiQiYiIiIiIOIkCmYiIiIiIiJMokImIiIiIiDiJApmIiIiIiIiTKJCJiIiIiIg4iQKZiIiIiIiIkyiQiYiIiIiIOMn/AOQoVmneyOISAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHiCAYAAABLBzXPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACYyUlEQVR4nOzdd3hTZf8G8PucJE3TpoPSUkqh7D1kIxsBkaHiQFBRQRDXKw4cL84X98/xiorjdTNUREVARGRvGbL3hpZVCnTPjPP8/khzSGmSpm3KadP7c125muaMfNNmnDvPc55HEkIIEBERERERUZUma10AERERERERlR/DHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAL+Eu5MnT0KSJEiShLFjx/pjl9VSv3791L8jEZEnY8eOVd8rTp48qXU5qunTp6t1TZ8+XetyyM8URUGnTp0gSRImTpyodTl0Bb7+KFAEcq6w2+1o3rw5JEnC888/XyH3cdVa7qZPn44pU6ZgypQpV+suNTd//nz1Maenp2tdDhWy2WxYvnw5Jk+ejP79+yMuLg5GoxFmsxmNGzfGnXfeifnz58Nut5dqv3v37sXEiRPRokULmM1mREREoG3btpg8eTISExMr6NEQUXWSkpKCmTNnYty4cejQoQMiIyNhMBhQs2ZNdOnSBU8//TQOHDhQIff95ZdfYvv27QgODvZ4UDJlyhT1oMyXi69fTvjz/TUxMRGTJ09G27ZtERERAbPZjBYtWmDixInYt29fqfblq40bN2LcuHFo3LgxQkJCEBUVhU6dOuGNN97AxYsXK+Q+tdC2bVv1f7tixYpSb79+/Xp1+1atWpWphnPnzmHhwoWYMmUKbrzxRsTFxan7bNCgQZn26c/nzIULF/D666+jU6dOiIqKQkhICBo3boxx48Zh06ZNpdpXTk4OPvjgA/Ts2RO1atVCcHAw6tevj1GjRmHJkiWl2pevtHj9aGHixInq8+bll18u9fa5ubmIiIiAJEnQ6/U4e/YsAECn0+Gll14CAHzwwQc4evSoX+sGAAg/OHHihAAgAIgxY8a4Xadv377qOtXFmDFj1Md84sSJEtevjn+jq23lypUiKipK/Tt7u3Tp0kUcPXrUp/2+9957wmAweNxXWFiYmD17dgU/OqouSvvecrV89913al3fffed1uUEnIkTJwqdTlfie5csy+Lpp58WNpvNb/edk5MjateuLQCIxx9/3ON6//nPf3x6fy3N89ef76/ff/+9MJvNHvcVFBQkPvjgA1//LCVSFEU89dRTQpIkj/cZGxsrVqxYUe77qgyvv//+979qDffcc0+ptx83bpy6/bvvvlvq7X///Xevz7f69euXep/+fM4sW7ZM1KpVy+O+JEkSzzzzjE/72r59u2jUqJHXxzt69GhRUFBQ6sfsydV6/fiSKyratm3b1BoSEhKEoiil2n7mzJnq9kOHDi2yzGaziWbNmgkA4s477/Rn2UIIIa5aiqiOwaWyHoBVZ7NmzVL/J1FRUWLkyJHigw8+ELNnzxYzZ84Ujz32mAgPD1fXqVevnjh37pzXfX7++efq+gaDQYwbN07MmDFDfP311+KOO+5QP9T1er1YvHjxVXqkRFdfZTi4DGQDBgxQ/76tW7cWEydOFF9++aX4+eefxSeffCKGDBlS5EDrgQce8Nt9v/feewKA0Ol04vTp0x7Xcw13r7/+upg3b57XS05Ojtf79ef76x9//KGGY0mSxB133CG+/vprMWPGDDFu3LgiAfKrr74q09/pSv/+97/VfYaGhorHH39cfP/99+J///ufuP7669VlZrNZ7Nixo1z3VRlef+fPnxd6vV4AECEhISIzM9PnbXNyckRYWJj6PCvps9edefPmFXkNGAwG0aFDhzKHO38+Z7Zu3SpCQkLU9a+//nrxv//9T3z//ffi8ccfF6GhoeqyF1980eu+Tp48KWJjY9X1u3btKj7++GPx448/iueff17UrFmzXCG7ov8WJakM4U4IIdq1a6fWsXz58lJt279/f3XbX375pdjyr7/+WgCOL+P27dvnr5KFEAx3FYrhrvKZNWuWaNu2rfjxxx9Ffn6+23VOnz4tWrdurf7v7rvvPo/7O3v2rPpmrdfrxbJly4qt4/qBW69ePZGXl+e3x0NUmVSGg8tANmjQIDF69GixdetWj+v88ssv6sE1AL+0CFmtVlGvXj0BQAwaNMjruq7hbtWqVeW6X3++v+bk5Ig6deqo606fPr3YOkuXLlX/dmazWSQnJ5er/u3bt6vhMyIiQuzatavYOq5/ry5dupS6dcBVZXn9DR8+XK3jm2++8Xk715aOG2+8sUz3vWHDBjFhwgTxv//9T/zzzz9qq1VZwp0/nzOKooiOHTuq+5oyZUqxdXbu3Kl+uSzLsti9e7fH2m655RZ1X+PGjRN2u73I8pMnT4qEhAR1nT/++MPnx+3O1X79VJZwN3XqVLWOe++91+ftEhMT1dd+zZo13baeZmRkiODgYAFATJgwwZ9lM9xVJIa7yictLc2nD889e/ao/zuTyeTx2+Unn3xSXe/ZZ5/1uL877rhDXe+TTz4pc/1ElVllObgMVKmpqT6t9/TTT/v05ZSvXFtDZs6c6XVdf4Y7f76/fvjhh+o6d9xxh8d9Pfvss+p6vnaP88T1APzTTz91u46iKKJr165+OQivLK+/+fPnq3X07t3b5+1cWzrmzp3r15rKEu78+Zxx/Zt069bN43HIp59+qq43YsQIt+vs3LlTXSchIcHjFxqLFi1S1+vcuXMJj9a7q/36qSzhLiUlRW2RDA0NFVlZWT5t99prr6n1T5w40eN6zvcuk8lUqlbuklT4OXeuoc7b5T//+Y/bfdvtdjFnzhwxcuRI0aBBA2EymYTZbBbNmzcXDz/8sNdvNoRw/0GzfPlyceedd4oGDRoIo9FYLHxZrVbx119/iUmTJomePXuKmJgYYTAYhNlsFk2bNhVjxowRa9as8XifrqHO28Xb36okmzZtEhMmTBDNmjUTZrNZhISEiEaNGon77rvPp29qnffTt29fIYQQ2dnZ4r333hOdOnUSkZGRIiQkRLRq1UpMnjzZ5wOKQNOiRQv17+TuG1dFUUR8fLwAHF0UkpKSPO5r3bp1Zfqw84e///5bPPzww6Jly5YiIiJCGI1GUa9ePTFy5MgSDyRWrVpV7DWamJgoJk2aJJo3by5CQkJERESE6N69u/j000+F1Wr1qaasrCwxdepUMXDgQBEXFyeCgoJEjRo1ROfOncXLL78sUlJSvG5/5WvFZrOJ7777TgwcOFDUqVNH6HQ6tx/iycnJ4tlnnxUtW7YUISEhokaNGqJLly7i/fffVwN8/fr13R4ELF682Kc3a1cTJ05Ut/nzzz992sYXJX1xVFH/t4ULF4obb7xRxMbGCqPRKOrXry/uvvtu8ffffwshSndwWVBQIL7++mtx0003ibp16wqj0SgiIiJE27ZtxaRJkzx+IXbw4EG1NSc8PFwcP37c432kpqaqLU6yLHt93w4kmzZtUv8PHTp0KPf+brvtNvUApKSDG3+FO3+/v3bv3l1dZ/369R73lZSUpH7jnpCQUOb6MzMz1eOL8PBwr91PXU8XKE3rwJV8ff1t2bJFREdHC8BxjtScOXOKrVOeYy+r1aqeVyZJkjh27FiJtbu2dERHRwuLxeLTY/ZVWcKdP58zd911l7qv77//3uO+cnJy1NY7k8kksrOzi63z/PPPq/t64403PO5LURTRpEkTdV1f/g+eXO3Xj6/hLiUlRXTu3Fld96mnnnIbnMtzHHTrrbeq+/e1Jbpx48bqNtu3b/e4nmvo//bbb33aty8qdbg7evSoaN++vdftZFkWL7/8ssfaXD9oVq5cKf71r3+53Y/rgUS/fv18DmfumlorMtxZrVYxYcKEEvc9cuRIkZub63E/ruHu2LFjolWrVh73Vb9+/WrZ8tilSxf1b7Bp06Ziy11b99q0aeN1X3a7vUh3C39+Q+NJdna2GDVqVInPlWHDhnms58qQsHjxYhEZGelxX9dff73H7q5Of/75p9cTygHHAAkLFizwuA/X18qlS5dEr1693D5vXa1cuVLUqFHD4322bdtWJCUleQx3drtdNGzYUAAQNWrUKLF7bV5ennp/CQkJxbrNlEdpw115/282m83r+5osy+Kdd97x+eDyn3/+Uf+Wni5BQUHif//7n9vtv/zyS3W97t27exw4ZMSIEep6JZ3DEkj27dunPu4WLVqUa1/5+flqmO7Tp0+J6/sr3Pnz/TUjI6NI98iSXouu3fLLei7MwoUL1X2U1MUwJSVFXTcmJqZM9yeEb+FuyZIl6oAYZrPZbVdXfxx7TZo0SV33lVdeKbF215aOJ554wteH7DNPnwue+Ps543oO3IULF7zua9iwYeq6ixYtKra8U6dO6nJvXbSFEEWOeT21HpdEi9ePL+HuxIkT6qAkAMTbb79dbB1/HAe5DtLjy3vg2rVr1fWvueYar+ump6erf9vhw4eXuG9f6VHBnMP8vvTSS+oQqfPmzSu2XosWLYr8fuzYMVx77bXqEMG9evXCjTfeiPr168Nut2Pbtm2YPn060tLS8Prrr0OW5RKnWXjvvfewePFi1K5dG2PHjkWbNm1gs9mwZcsWGI1Gdb28vDyYzWYMGDAAnTp1QoMGDRAcHIxz585h3759+OGHH5CTk4MZM2YgMjISH374YZH7efzxx3HLLbfg448/xqpVqwAAX3zxBWrVqlVkvYSEBJ/+hq7uvfde/PTTTwCA4OBgjBkzBj169IBOp8PWrVvxzTffICsrCz///DMyMjKwePFir/PmZWZmYtiwYTh06BCGDx+OwYMHIyoqCsePH8fnn3+OpKQkJCYm4r777sPatWtLXW9VZbFYcOTIEfX3+vXrF1tn79696vVOnTp53Z8sy+jQoQPWrFkDRVFw4MABdO3a1X8FX6GgoAADBw5Uh1Vu3LgxRo0ahZYtW8JgMODo0aOYOXMmDh8+jEWLFuGWW27BsmXLIMueZ0fZuXMn3nvvPQgh8NBDD6F79+4wGo3YunUr/ve//yEnJwfLli3Dm2++iddee83tPubOnYtRo0bBbrfDYDDg5ptvRr9+/RAbG4vMzEysWrUKP//8M7KysnDrrbdi2bJl6N+/v9fHes8992D9+vW45pprcNddd6FBgwbIzMzE7t271XX279+PG2+8Ebm5uQCADh064J577kHdunVx/vx5zJkzBxs2bMCoUaNgs9nc3o8sy5gwYQJeeOEFpKWlYe7cuRg9erTHun799VekpaUBAMaPH+/1b1uR/PF/e/zxxzFjxgwAQFBQEMaMGYNevXpBlmVs2bIF33zzDf7973/jlltuKbGejRs3YuDAgcjNzYUkSbjhhhswaNAgxMfHIy8vDxs3bsSsWbOQm5uLhx9+GEajsdg8RxMmTMCSJUswd+5cbNy4Ea+++mqx2r/55hv8+uuvAIBrr722Wk3D4/re5O69qzQ2bNigvm5K+571yiuv4MyZMzhz5gyCgoIQGxuLa6+9FiNHjsSNN97o9bPJn++v+/fvhxACANC+ffsSX4udO3dWj1f27t1bpiH5S1N/TEwM6tevj8TERFy4cAEpKSnFjhf8Yfbs2RgzZgysVitiYmLw559/onPnzkXW8dex1/33348PPvgAADBz5kx1igxPnO8vzm215s/nTHJyMi5dugTA8XqMjo4ucV+LFi1S9zV06FB1maIo2L9/PwBAr9fjmmuuKXFfTq7PydLQ4vVTkj179mDw4ME4e/YsdDodvvzyS4wbN67IOv46DhoyZAhiY2Nx/vx5rFu3DsePH0ejRo081uY6x2RJz+WIiAi0aNECBw4cwIoVK2C326HT6Ur513DDHwnR31Mh2O129cRTo9Eofv75Z7frJScnq98uybIs9u7dW2ydK4dl7tWrl8jIyPB6/8uXL/fa6nXx4kW1pUCWZY/dgvw9FcJPP/2kLo+NjXX7jcjJkyeLfCPu6fwD179JUFCQWLhwodvH6bqvzZs3l/gYPMnJySlx1DRfL9u2bStzHb5y7SbTsWNHt+u8+uqrRVpHSnLfffep68+aNcvPFRd15bkq7rrdWSyWIjV9/vnnxdZxbQFCYQvU4cOHi623efNm9UTqGjVquG0FSkpKUr9dT0hI8NitZ/PmzSIiIkIAEHXr1nXbPefKHgFPPvmk128TXVv2Hn30UbfrXvle4albp7P/vbNLsyd9+vQRgGPUt1OnTnldt7RK03JX3v+b67eQkZGRbr8pPnjwoDpMvvPiruUgMzNT7SYZGRkpVq9e7fbxHTlyRB0MIDQ01O033ampqaJu3brq33jdunXqskOHDqkjz4WHh5erO5IQQhw4cMBv718lfWvvD66jan788cfl2tdbb72l7svdiG9X8nUqhG7duomTJ0963I8/319nzJhR4jGKq1deeUVd//XXXy9xfXfuv/9+r6+FKznfLwAUeS6XhreWu48//lhtIahfv744dOhQse39eewlhCjSXW7lypUe616zZo26nj+6Ebvj7X3dHX8+Z1wfX0mfG0II8e2336rrjx8/vsiyxMTEUj2WlStXqusPGDCgxPXd0eL14y1XrFu3Tu2JEhwcLObPn+92H/46DhJCiGeeeUZdx1tLtOuIrwaDwaf3+7Fjx6r7dncKUFlUynA3d+5cnz+YDh06pA7N6m60GdcPmtDQUHHmzBmfHlNJjh07VuKT19/hznU4X2/n72zevLnIm7i7LkuuH7Kvvfaax3199dVXPq1XEtfnSHkvFX1ybWpqqoiLiyvxgOapp55S15k2bVqJ+y3t+mV19uxZERQUJACI2267zeu6FotFnSenadOmxZZfGRLWrl3rcV+jR4/2up7z/DOdTlfikN/ffPONuq8ffvih2HLX10qnTp28Brt//vlHXbdNmzZe5/5y3a+nD07XwRvcBSYhHO9LznWGDRvm9bGWRWnDXXn+b64j37kbIc3pjz/+KHKf7g5oXefA+v33370+xhUrVqjrvvnmm27XWb16tZBlWf1/paWlCYvFUqTbkj++SCnt3G3eLuUdZKQks2fPVu8rNjbW7Tk7pXH33Xer+yvpHHchHH+r4OBgMWTIEPHaa6+JWbNmiTlz5oiPPvpI3HbbbUXm6atTp47HaRX8+f760UcfqcuefvrpEvdV2vXdcT1Px92Xp+Vd3x1P4e7FF19Ub2/durXHv7k/j72EKDo4iLeBfVyDcHm/jPCkpPf1K/nzObNgwQJ12e23317ivrytv2vXriKffSUp7fruaPH68ZQrFixYIEwmkwAcXUQ9nUftz+MgIYp2dW/QoIHHAXFcg3BJ9+v0zjvv+PXzSgghtOknVIJZs2YBAMLDwzFhwgSv6zZr1kztfrF06VKv695+++2oU6eOX2ps1KgRateuDQDYvHmzX/bpzcmTJ7Fjxw4AQNu2bTFkyBCP63bt2lXtypaYmIht27Z5XFen0+Gxxx7zuNy1S5yzK0Ags9vtuPPOO3Hu3DkAwLBhwzBixAi362ZnZ6vXg4ODS9y3yWRSr2dlZZWzUs9+/vlnWCwWAMAzzzzjdV2DwYBRo0YBAI4cOYKTJ096XLdDhw7o3bu3x+XenitCCPzwww8AgAEDBqB9+/Ze6xo1ahT0ekev8ZJe1//617+8dhNZsGBBkXW9dXl44oknvN4XADz88MPq9a+//trtOq63P/jggyXusyKV5/9WUFCAxYsXAwBiY2Nxzz33eNzPsGHD0LJlS6+1ON/bmzVrhptuusnruv3791ffrz09B/r27YvJkycDcLzXPfzww3jppZfU97zRo0d7rTnQ7N+/v8jzbdq0aQgNDS3XPhMTE9XrUVFRJa4/YsQInDlzBn/++Sdefvll3HPPPRg5ciQef/xxzJ07F7t27UKTJk0AAGfPni3W5dbJn++vWrxXV4bPB7vdjgkTJuDNN98EAPTo0QPr1q1DfHy82/X9fex11113qY997ty5Rf4mTrm5uWr36aCgINx9990+PLKKV1mff9X1uQwA3377LW677Tbk5eWhdu3aWLNmDfr06eN2XX8fB7Vq1Up9vp88eRJr1qxxu6/SdMl0qlGjhnrd9f22PCr8nLuyWLduHQAgLi4Of/31V4nrOw/WEhMTkZeXV+SJ5crbAc6VMjMz8cMPP+DPP//Enj17cPHiReTk5Lhd9/Tp0z7vt6y2bNmiXh80aFCJ6w8aNAgrVqwA4Aifns6VaNasWZEn1pVcPwSc5w+VRYMGDdQ+25XZE088oX5QJSQkFHmhVhXO1w/geG7Onz/f6/qu/9cDBw6gQYMGbte79tprve7H23Nl3759SE1NBQCEhYWVWBMAmM1mpKen48CBA17XK+l1vXXrVvX6dddd53Xdfv36lVjXddddh2bNmuHw4cOYMWMG3njjDRgMBnW51WpVzx+pU6cOhg0bVuI+K1J5/m+7du1SPyD79u1b4rkAAwYM8Pj/ysjIUM+DjI2N9fk5AMDrc+DVV1/FihUrsHnzZsyZM0e9vWHDhvjss89KvA9fTJkypdKfs5ecnIybbrpJPZh69NFHcccdd5R7v87XLeBbuGvTpo3X5a1bt8Zff/2FNm3aID8/H8uXL8fmzZvRrVu3ctdKl+Xn5+OOO+5QxzgYOnQofvnlF4SEhHjcxt/HXjVq1MAtt9yCn376CTk5Ofj111+Lhflff/1Vfc7efPPNqFmzps+PkaqPd955R/0ir3Hjxli6dKnX894q4jho3Lhx6rH49OnTix0vJCYmYvXq1QCA2rVrY/DgwV7v08n1OV+e42xXlS7cZWdnqyeeHjp0CLfeemuptk9LS/MY7jx9W3WlVatW4e6770ZycrJP62dmZvpcX1k5W5IARyAries6rtteqaQTe10HmsnPzy/xfquyF198EZ9++ikAx8HnsmXLvP59nAeegG9/m7y8PPV6WFhYOSr1zvVbp5EjR5ZqW29vLOV5rrjWNHfuXMydO9cvNQElv67Pnj2rXvf2YQA4DkYiIyORnp7ucR1JkvDggw/imWeewfnz57Fw4ULcdttt6vLff/8dKSkpABzf3Pnl5OhyKM//zfVv52xt8cbbOqdOnYKiKAAcH7yuH74l8fYc0Ov1+PHHH9G+fXv1INF5W3h4uM/3UZWlpqZi0KBBOH78OABH69nHH3/sl30XFBQAcBzIe/psLa3GjRtjzJgx+OKLLwAAixYtKhbu/Pn+qsV7tdafD5MnT0ZGRgYAx6BT3333ndobwp2KOva6//771UHgpk+fXizcuX6BeuWAGAC8HpSHhIT49GV3WVTW5191fC7Pnz9f/cL0mmuuwZIlSxAbG+t1m4o4Drrzzjvx1FNPIS8vD7/++is++eSTIn+bGTNmqI0Y9913n9fXmyvXzynXv115VLpw53wzKivnt8zu+PLBdOTIEQwbNkz9Azdv3hxDhgxB06ZNERUVVaRJ+sEHH8SFCxdgt9vLVbMvXJu2felm4/qE89YsrtUIfpXNG2+8gbfeeguA42B4+fLlJYboyMhI9bpzZDFvnB+cV27rb+V5DXl7/ZTnuVJRNQElv66dLe56vb5IC5snoaGhXsMdAIwdOxYvvvgiCgoK8NVXXxUJd1999RUARwgcP358ifdX0crzf3PtjuPtG38nb+9N5XkOWK1Wr8ujo6MRFRWlvtc1atSoxBEKA0VGRgYGDRqEPXv2AABuuukm/Pjjj377UsEZ/u12O3Jzc316HviiX79+arg7ePBgseX+fH/V4r1a688H11F/c3JySuw5U1HHXgMHDkTdunVx+vRprF27FidPnlRbRVxbOurUqeM2qHkLmfXr1/d6KkF5VNbnX3V/Lufl5fl0zF0RxxwRERG49dZb8eOPPyInJwdz587FmDFjADhOPZk5c6a6bmlGfHWt1V9foFW6cOcaSvr06eOxX2tFefvtt9Vg9+KLL+L111/3OHxvSX3S/cn12w9P3UNduR6UVWQrka9yc3NLPHfKVwkJCejYsaNf9gUA7777Ll5++WUAjpabZcuWldi1CCjaOurLB4xrX2pfWl/LyvkakiQJNputUgR419f1K6+8gldfffWq3bczcNhsNlit1hIDni+vr5o1a2LEiBH44YcfsHTpUiQlJSEhIQGJiYlYtmwZAMdBTcOGDcv/ADTk+n9zDofvjbe/neu+7rvvviJDn5fXo48+WuT1dfjwYbz00kt45513/LL/gwcPug0gZdGrV68SW1N9lZWVhRtuuEE9x/CGG27AL7/84tOXGL5y7YqZmprqt3Dn2hXJ3Zcp/nx/1eK9WuvPh7fffhs//fQT/v77b8ybNw+jRo3CnDlzPD43KurYS5ZljBkzBm+++SaEEJgxYwb+85//ACje0qF1LwdXlfX5V7duXZhMJuTl5eHMmTOw2WxeW4gC4bk8YsQIhIeHY9q0aTh8+DCuu+46rFq1yusYGhV1HHT//ffjxx9/BOBodXaGu3Xr1uHYsWMAHKdCXDm9mzel7frui0oX7iIiImA2m5GdnX1VzmW70vLlywEAtWrVwmuvveYx2GVlZRX5h1S0uLg49brr/GueuK7jr0FkyiMlJaXU3Tw8GTNmjN/OhZs6dSr+/e9/A3A895YsWVLiYB9OrgHQ26A1gGNuGueAOLIslzjwRHnEx8dj586dEELgzJkzqFevXoXdV2lqcrrar+s6deqo53odP34czZs397huWlpaia12Tg8//DB++OEHKIqCb7/9FlOmTMG3336rdj3UeiAVf3B97zh69GiJ63tbp6KeAz/88IM6WE+nTp1w8eJFJCYm4v3338cNN9xQ4jyJvvjpp5/89oXEqlWrfDq3syTZ2dkYMmSIOqBX//79MX/+/CLdbP2hQYMG2LBhAwDHQUjdunX9st+Svt335/trq1atIMsyFEXBzp07oSiK14M91/N0ffmiz53S1H/hwgX1gDgmJsYvc9yFhYXhr7/+wuDBg30KeBV57DV27Fh1UJeZM2filVdeAVB0bjtPA+toda6+P58ztWvXRs2aNXHp0iUkJSXh4sWLXr/g8bYvWZbRqlUrbNu2DTabDbt27fLaS8Efz2UtXj9X+vjjjyFJEj7++GOfAl5FHQf1798fCQkJSEpKwpo1a9SW6O+++05dp7TzNLpmifLOS+p01b7Sd30ilPRidY5+c/z4cZ8OKPzp/PnzABwn43t78i5fvlw9iPOkNI+5JK4DojhbBrxxbSWryMmyq7JPP/0UkyZNAuD4IFy8eDG6dOni8/atW7dWD3T27dvn9QPx77//Vs/N7NmzZ4W2pvbt21e97q/W0vLq0KGD2q98xYoVJb52/Ml1EtdVq1Z5XdfZRcgXvXr1QuvWrQE4RvGyWq349ttvATi+HBo+fHjpi61krrnmGgQFBQEA1qxZU2J3GOcgTu5ER0erk9lu2rTJL+cqnzhxAo8++igARwvt7Nmz8f3330On00FRFNx3331FQkSgyM3NxY033qiGrj59+mDhwoU+jWRXWq4HZ4cOHfLbfl1bhtx9u+/P99fw8HB1YKGMjAx1UmN3Tp06pY4am5CQUOYJmPv166cG7bVr13o9l2bJkiXqdV8HYfCFM+D17NkTADBv3jyMHDnSYzfnijr2atKkiTrw1fHjx7Fu3TqsXbtWPUe0R48eXr9004K/nzM33HADAMexoLfP5dzcXPV8ZJPJVOTz/Mp9AUWfO1cSQvjluaXF68edjz76SB3R+vDhw+jXr1+R88JdVdRxkLMlGrjcFdM5WBDg+J85R970leuAYe3atfNPnX7Ziw9cm/xL6vbk/MMBUL/huVqcXU6OHz/uMZDZ7Xb1/CxvSvOYS9KgQQO1K+KuXbu8BrytW7di5cqVABzfAlSGc0+co2X64+KPVruvvvoKEydOBOA4KPzzzz/RvXv3Uu1DkiR1NDohBKZNm+ZxXdfBDUr7wi+tO++8Uz0gf+edd8r93PMHnU6H0aNHA3B02fA0hUBFcA1Zn376qdeA8tFHH5Vq3w899BAAxwfak08+qR6Ajhkzxq9d47RiNBoxdOhQAI4vvpzdUdxZvHhxiSObOt/bc3Nz8X//93/lqs1ut2P06NHqQf3HH3+Mpk2bolevXnjhhRcAAGfOnMEDDzxQrvsBHKNl+uv9q7ytdvn5+Rg+fLgajnr27IlFixb5rbvklVwHOvHXtD/Hjh0r0mrjfI658vf7q+vt3l7n06ZNUz/7SzsQgyuz2aw+rszMTI+fW0IIfPLJJ27r9AdnwOvVqxcAx+AUngJeRR57ubZmTJ8+vUxDxl9t/nzOuO7r448/9nh8OX36dPU9bdiwYW7PY3a9jy+++MLjICeLFy9WQ3rnzp1LHFDMm6v9+vHkww8/xJNPPgnA0UPNU8CryOOgsWPHqr36Zs6ciV9++UU9Feq2225DREREqfbnfF8NCwvzXxj2x2R5vkxi/vjjj6vreJp00Mlut4suXbqo6z/xxBOioKDA4/q5ubniu+++E7Nnzy62zHXyWV8mj73++uvV9T/44INiyy0WS5EJN+FlUswPPvhAXWfGjBkl3ndJk5jPmTNHXR4XFycOHDhQbJ3ExETRuHFjdb1PPvnE7b6cy/v27VtiXaVZtyqYMWOGOsl7SEhIuSYVPnPmjAgJCREAhF6vF8uXLy+2juvEsvXq1RN5eXnlqN43Tz/9tHqf1113nTh37pzHde12u1i2bJl4/fXXiy1znQz7P//5j9f7LGndU6dOicjISAFAGI3GEl8T58+fF6+99prYtWtXsWUlvVau1KtXL3X9Rx991O2k51dOVO3LZLfp6enq/9/14mlyc38pzSTm5f2/rVu3Tl1eo0YNtxPQHz58WMTFxRX5G7ibxDw7O1vUr19fABCSJIl3333X6wT06enp4qOPPhLLli0rtuzll19W72vEiBFFllmtVtG9e3d1+RdffOH1b1BVFBQUiKFDh6qPq1u3biIjI6NC7zM/P1+EhoYKAKJ3795e1/3999/FL7/8Imw2m8d19u7dK5o0aaI+hn79+nlc15/vrzk5OaJOnTrqutOnTy+2zrJly4RerxcAhNlsFsnJyW735XrM4+09aPv27epnTUREhNv3silTpqj76dKli8d9+cLTJOZCCJGVlVXkfXD48OHCYrEUWcefx15XysrKUp9HZrNZmM1m9TO4op/DQpR+EnMh/PucURRFdOzYUd3Xq6++WmydXbt2iYiICAFAyLIsdu/e7bG2W265Rd3X+PHji72PJiYmioSEBHWdP/74w+O+nO/J3o6T/fm38EVJueLJJ59Ulzdt2lScPn262Dr+Og5yx/UYxPWzz917lDfp6enqe8Qtt9xSqm29uWrn3A0YMED9dm38+PF46qmnUL9+ffUE2iZNmqjDaMuyjLlz56J79+44c+YMPvroI/z888+44447cM011yAiIgLZ2dlISkrC1q1bsWLFCuTk5OD1118vd50TJ05UW8UmTZqE1atX44YbbkDNmjVx5MgRzJw5E0eOHMF1112HI0eOeO0qMmDAAPX6c889hwsXLqB58+bqya/x8fFo27atz7WNHDkS8+bNw08//YRz586hY8eOGDt2LLp37w6dToetW7fim2++Ub/1GTRokNpliRwWL16McePGqd8sjRs3Dunp6SXOgdKxY0ckJCQUu71OnTr473//i0ceeQQ2mw1DhgzBfffdh759+8Jms2Hx4sVqc71er8eXX37pteuU6zmeJ06c8DjnXEnefvtt7Ny5EytWrMCqVavQqFEj3H777ejevTtiYmJgsViQnJystgInJydjwIABeOmll8p0f76oW7cufvrpJ9x8880oKCjAmDFj8MEHH+Dmm29G06ZNYTKZkJGRgcOHD2PTpk3YsGED7HZ7iXPT+eKLL75Aly5dkJubi88++wwbN27EPffcg7p16+L8+fOYM2cONmzYgO7duyMpKQlnzpzx6QTsiIgIjBo1qkh/+379+qFp06blrrmy6NWrFx599FF89tlnSEtLw7XXXosxY8agV69ekGUZW7ZswTfffIOcnBzccsstXl9LoaGhmD9/Pvr27YvMzEw899xz+OKLL3D77bejVatWMJvNyMzMxPHjx7FlyxasXr0aFotFnVzZaf369Wrvibp16+LLL78sslyv1+OHH35A+/btkZmZiaeeegp9+/atdF2/Smvs2LH4888/ATi+5X3kkUfUXhre3HLLLWW+T6PRiMGDB2Pu3LnYunUrsrOzi/RKcXXs2DE89dRTiImJweDBg9G+fXvUrl0bBoMB58+fx+rVq7FgwQJ19Ls6dep4HVjHn++vISEh+PLLLzF8+HDY7Xbcf//9WLRoEYYMGQK9Xo81a9Zg5syZam1Tp04tcbj1knTo0AHPPfcc3nnnHWRkZKBHjx544IEH0LVrV2RnZ2Pu3LlqlzGz2VzseexPZrMZixcvxtChQ7Fu3TosWLAAd9xxR5EBeCry2MtsNuOOO+7A9OnTiwz4dvvtt/t9ypL//ve/HoezT09PL/Y517BhQ7cjG/vzOSNJEr788kv06dMHubm5+M9//oMNGzZgxIgRCA0NxZYtW/D111+rLUzPP/+81+PDDz/8EBs3bsT58+fxzTffYO/evbj33ntRs2ZN7NmzB1988YXaJX306NHlnm9Vi9ePN1OnToUkSZg6dap6TL5q1aoi53ZX5HHQ/fffr/aecE43Vr9+/VKf47169Wr1eLQ879PF+CMh+tJyZ7PZinxrdOXF3TfGZ8+eFQMGDPC4jetFp9OJr776qtg+SttyJ4QQzz//vNf76tmzp0hJSVG/7fD2TdBdd93lcT9X/q18aY2wWq3igQceKPHvMWLECJGbm+txP871qlvL3ZWtM75e3LVCuHrvvfeEwWDwuH1YWJhP3266buOuRaY0CgoKxGOPPSZ0Op1Pj/G+++4rtg9/tgA5bdy4UTRq1Minmsxms9tvL0vbcieEECtXrlRbDt1d2rRpI5KSkkR8fLwAINq1a+fTfjdv3lxkPz/88IPPNZXV1Wy5E8Lx/n3vvfd6/NvJsizeffddry0Hrg4ePCg6dOjg03PAaDSKxYsXq9umpaWp772yLHt9X//+++/V/XTo0MFrK0RV4PoNe2ku5TV//nx1XzNnzvS43tSpU32uqXfv3uLkyZM+3b+/3l+FcDwnnK1G7i5BQUFue+248rXlTghHi82TTz6pfjvv7lKrVi2xYsUKn+r3xpfXX3Z2tujTp4+63s0331ysBc8fx17urFmzptj2K1euLO/DLqa0r5OSjm388ZxxWrZsmYiJifG4L0mSxNNPPy0URSlxX9u3by/xs/Tuu+8u8X3Pl5a7ivhbeONLrhBCiEmTJqnrNWnSpFgLnj+Og9zJzs4u9nd45ZVXSv04R44cKQAIk8kkMjMzS729J1ct3AkhRF5envi///s/0b17d1GjRo0if2xvByCrV68WDz30kGjdurWIjIwUOp1OhIeHi1atWolRo0aJzz//XJw9e9bttmUJd0IIsXjxYjFs2DARHR0tDAaDiIuLE/379xdfffWVsFqtQgjhU7iz2Wzi888/F/369RPR0dFqk7W7v1VpDlg3btwoxo8fL5o0aSJCQ0OFyWQSDRs2FPfcc49PHxK+vqmVdt3KrqLCnRBC7NmzR/zrX/8SzZo1E6GhoSIsLEy0adNG/Pvf//bpICYnJ6fIG+SlS5f88IiFOHLkiJg8ebLo1q2biImJEXq9XoSEhIiGDRuKoUOHirfeestj94+KCHdCOL6k+P7778XIkSNFw4YNhdlsFnq9XkRFRYnOnTuLCRMmiDlz5ojs7Gy325cl3AkhRHJysnjmmWdE8+bNhclkEpGRkaJz587i/fffFzk5OUJRFGEymQTgvbuYK0VR1K40UVFRIj8/v1Q1lcXVDndOCxcuFMOGDRMxMTHCaDSKhIQEcdddd4m///5bCOHbwaWToihiwYIFYsyYMaJZs2YiPDxc6HQ6ERkZKa655hpx3333ienTp4vU1NQi240aNUq9j8mTJ3u9DyGEGD16tLr+008/XeL6lZlW4c5ms6ldvK6//nqP6128eFH8/PPP4qmnnhK9e/cWjRs3FhEREepr+5prrhEPPfRQmbrCl/f91dXJkyfFc889J1q3bi3CwsJEaGioaNasmfjXv/4l9u7dW+L2pQl3Tn///bcYO3asaNSokQgODhaRkZGiY8eO4rXXXhMXLlwoVf2e+Pr6cxfw3AWA8hx7uaMoSpHTRho0aOBTiCktf4c7Icr/nHGVkpIiXn31VdGxY0cRGRkpgoODRaNGjcTYsWPV91JfZWdni//+97+ie/fuIjo6WhiNRlGvXj1xxx13FPlSzJvShDsh/Pu38MTXXCFE0e6X7gKeEOU7DvJk3LhxRUL58ePHS7V9RkaGerwxYcKEUm1bEkkIjcaZJaIilixZoo5m9fjjj5d6cA8qvz179qijVfn6P1i+fDmuv/56AMATTzyBDz/8sCJLJNLE1KlTMWnSJOh0Opw8edJvUyIQEVVH3377LcaPHw9JkrB3716/jiyq/ezGRATg8hyLYWFhFXruG3nmOmqdr+f6ff755+r1QJjbjsidhx9+GLVr14bdbse7776rdTlERFWW6/voqFGj/BrsAIY7okrDGe4mTZqEmJgYjasJPOvWrfM6v96nn36qDmgQHx+PG2+8scR97ty5Ux1AZODAgX5/gyaqLEwmE6ZMmQIA+PLLLz3OL0VERN7Nnj0bhw4dQlBQkF8Gg7wSu2USVQIXL15ErVq1EB0djWPHjlXoJOfVVZMmTZCfn48hQ4agQ4cOiImJgdVqxbFjxzBv3jzs2LFDXXfhwoUew91ff/0FRVFw+PBhvPvuu+pIWevXr1cnCyYKRIqioEuXLti+fTsee+wxr3PPERFRcXa7Ha1bt8ahQ4cwefJkvP32236/D4Y7IqoWmjRpgmPHjnldx2Qy4auvvlInXHfHdboKJ1/Pz1u6dClyc3NLLtaN6OhodSJiIiIiIncY7oioWti0aRPmzp2LTZs24cyZM7h06RJyc3NRo0YNNGvWDAMHDsQjjzxS4tw8znBnNpvRrFkzPPLIIxg3bpxP8+I1aNAAiYmJZaq/b9++WL16dZm2JSIiourhqk1iTkSkpWuvvRbXXnttuffD78OIiIiosmLLHRERERERUQDgaJlEREREREQBgOGOiIiIiIgoADDcERERERERBQAOqEJERBXKYrEgNzfX4yUvLw8FBQWwWCzqT9fLlbfZbDbY7XbY7XYoiuL2p/O687RySZLUEU1lWYYkScUusixDp9MhKCgIer0eBoMBer2+yO/Oi16vh9FoRHBwMEwmE4KDg91ed/4eEhICs9mM4OBgt9NpEBER+QPDHRERlchisSAzM1O9ZGVlub3u/D0rK0sNbzabTevyKw2dTgez2Qyz2YywsDD1uuslLCwMERERiIyMRGRkJCIiIhAREQG9nh/ZRETkHUfLJCKqpgoKCpCamoq0tLRiP6+8LTs7u9z3ZzQaERIS4vZiNBrx19erIAkJUCRAAaBIkFyuOy+SACAkQMBxwRW/C0fLmOT8vbChTODydajXhcv1wp+yACQBIRfu5Iqf6u06AcgCQidw/dg+yM/PR35+PvLy8or9zMvLg91uL9ffLywsTA18rpeaNWuiZs2aiI6ORnR0NKKiomAwGMp1X0REVDUx3BERBaC8vDxcvHgRKSkpSElJwYULF4pcUlJSkJGRUap96nQ6hIWFITw8XP0ZHh6O5d+uA2wSJJsM2CTAJkNy/rRLQOFFQvXtjijgCILQCwi9APQKhM7xE3oBoXP8HPJwf2RmZiI9PR3p6enIyMhAZmZmqedXjIyMRHR0dJHQFx0djVq1aiE2Nha1a9dGSEhIBT1aIiLSCsMdEVEVlJeXh3Pnzrm9pKSkICsry6f9BAUFoUaNGqhRowaioqKw6bftkKw6wCJDsjouzuuwVe+AphWBwlBoUACDUuSnMCjodWcXXLp0CZcuXcLFixd97gYbFhaG2rVrIzY2Vg18zutxcXGIiIjg+YFERFUMwx0RUSUkhEBaWhpOnTqFU6dO4cyZM0UCXHp6eon7MJlMqFWrFmJiYlCrVi0s+d8aSAUyYNFBKpAhWXQMbAFGDYJBdiBIgTAqEEF23PTE9WqLbXJysk/hPyQkBPHx8ahbty7i4+OLXK9ZsyaDHxFRJcRwR0Skoby8PDXAnT59GklJSer1ks5zCwsLQ1xcHOLi4rD+h38g5euAAh2kgsLwZudsN+Se0BUGP6MdMNohgu3oe9+1OH/+PJKTk3Hp0iWv2wcHB6uBLz4+Hg0aNED9+vVRv359hIaGXqVHQUREV2K4IyK6CnJycnDy5EmcOHECx48fx8mTJ5GYmIgLFy543EaSJNSuXRv16tVDfHw8fv9gGaR83eULwxtVECEJiGA7hMkOEWzDTZMG4syZMzhz5gySk5OhKIrHbWNiYtSg5wx9DRo0QGRk5NV7AERE1RTDHRGRH+Xn5yMxMREnTpwoEuTOnz/vcZvIyEjUq1cP9erVw5JP1zqCW54eUp7OMXokUSUiJAFhdAY/O25+ZiCSkpJw8uRJry1+ERERaNCgARo3bowmTZqgcePGaNiwIYKDg69i9UREgY3hjoiojNLT03HkyJEil1OnTnkc2TA6OhoNGzbE9vn7IOXqIeUWhjgbW+AoMAidAhFigwixQ5hs6DKiHRITE5GcnOz2dSHLMurWrVsk8DVu3Bi1atXiOX1ERGXAcEdEVAIhBFJSUnD48OEiQS4lJcXt+hEREWjUqBF2LToIOVfvCHI5enajpGpLyALCZHMEv1AbOtzSCseOHUNaWprb9cPCwtC0aVM0b94cLVu2RPPmzVG7dm0GPiKiEjDcERFdITMzEwcOHMD+/ftx4MABHDhwwOOccPHx8WjWrBnWfvcP5OzCEGfVXeWKiaomYbBDhNqghNpw3YRrcezYMSQlJbmd8D0iIgItWrRA8+bN0aJFC7Ro0QLR0dEaVE1EVHkx3BFRtWaxWHD06FE1zO3fvx9nzpwptp5Op0ODBg3QtGlTLPtsw+Ugx9Y4Ir8SknC08JmtGDKpHw4dOoRjx465DXzR0dFo3rw5WrdujbZt26JFixYwGo0aVE1EVDkw3BFRtZKWloY9e/Zg9+7d2LNnD44ePQqr1Vpsvfj4eLRq1Qqr/rcJUpbBEeQ4uAmRJoQkIEIdge/6ib1w8OBBJCYmFhu1U6fToVmzZmjTpo16iYmJ0ahqIqKrj+GOiAKWEAJnz57F7t271TCXlJRUbD1nd6+tP++FnGWAlG3gICdElZyQBYTZCiXMil5jO2HPnj1ITU0ttl5sbKwa9K655ho0atQIsszXNxEFJoY7IgoYiqLgxIkT2Llzpxro3A3N3rBhQ7Rt2xZ/vrcacpYByNdBAlvliKoyAQEYFSjhFtw0eQD27t2LY8eOFWvdCwsLQ/v27dG+fXt06NCBYY+IAgrDHRFVWUIInDlzBtu3b8e2bduwY8cOpKenF1lHr9ejefPmOLjkBKTMIMiZbJUjqi6ErECE2aCEW9DpjtbYs2cP8vLyiqzDsEdEgYThjoiqlIsXL2L79u1qoLtycvDg4GC0bdsW23/dDzkjyNHFUmGrHBFdPndPibCg852tsXv37mJhLzw8HB06dECXLl3QpUsXxMXFaVQtEVHpMdwRUaVWUFCAHTt2YPPmzfjnn3+KnTOn1+vRqlUr7Ft4zBHmsgwc+ISIfOJL2Ktbty66du2KLl26oEOHDggJCdGoWiKikjHcEVGlIoTA6dOnsWnTJmzevBk7d+6ExWJRl0uShGbNmuHoilOQ04MgZQaxZY6I/EJIhYO0RFrQ+qbG2LdvX5EpGHQ6Hdq0aaO26jVv3pxdOImoUmG4IyLN5eXlYceOHdi0aRO2bNmCs2fPFlkeExODa6+9FovfXetoneM5c0R0FQidAiXCghtfuA7//PNPsTkwIyMj0b17d3Tv3h1du3Zlqx4RaY7hjog0cfHiRWzYsAHr16/Hjh07irTO6fV6tGvXDrvmHoacZoSUy9EsiUh7ItgGJdKC7ve3x/bt25GTk6MuMxgMaN++PXr06IEePXrwXD0i0gTDHRFdFUIIJCYmYv369Vi/fj32799fZHlsbCy6deuGP/9vjaN1zs7WOSKqvIQkIMKtuPX167Fhw4ZirXoNGzZUg17r1q3ZfZOIrgqGOyKqMHa7Hfv378e6deuwfv16nD59usjyVq1a4dCfSZBT2TpHRFWXgIAw2aFEFaDNLY2xd+/eIufqRUVFoU+fPujbty+uueYa6PV6DaslokDGcEdEfmW327F7926sWrUKa9asQVpamrrMYDCgY8eO2PbDfkegs+g0rJSIqGIIvQKlRgH6/asrNm3ahOzsbHVZREQEevfujb59+6Jjx44wGAwaVkpEgYbhjojKTVEU7NmzB6tWrcLq1auRmpqqLjObzejevTtWfbzFMbolu1sSUTUiJAEl0oIbnuuJ9evXIyMjQ11mNpvRs2dP9O3bF126dIHRaNSwUiIKBAx3RFQmiqJg3759WLlyJdasWYOLFy+qy8LCwtC7d28se/dvSBlBnHeOiAiF3TcjLBj2cj+sXbu2yBdhoaGh6Nu3LwYOHIgOHTpAp2PPBiIqPYY7IiqVY8eOYcmSJVixYgUuXLig3m42mx2B7v2NjhY6BjoiIo8EHAOyDH9tANasWVPk/TQqKgoDBgzAwIED0aJFC0gS30+JyDcMd0RUoosXL2L58uVYunQpjh49qt4eEhKC3r17Y8UHmxnoiIjKyBn0hrzUG6tXr0ZmZqa6rG7duhg4cCCuv/561KtXT8MqiagqYLgjIrfy8vKwbt06LF26FFu3boWiKAAcc9D16NEDf3+xyzEoCgMdEZHfCElAqWFB34mdsH79ehQUFKjLWrRogSFDhmDgwIEICwvTsEoiqqwY7ohIJYTAzp07sXjxYqxZswZ5eXnqsjZt2uDg/ETIF4Mh2TgoChFRRRM6BUpUATrd1xJbt25Vp1cICgpCnz59MGTIEHTq1Ilz6BGRiuGOiJCamorFixfjjz/+KDIRb1xcHFI2Z0KXEgwpn/MyERFpRRgU2GPyUH9gLRw/fly9PTY2FkOGDMHgwYNRp04dDSskosqA4Y6omlIUBVu3bsXChQuxfv169Rthk8mEgQMH4q831kPKMnBicSKiSkRAQJhtGDalD5YvX15kDr0OHTpg2LBh6Nu3L6dVIKqmGO6IqpkLFy7gzz//xKJFi5CcnKze3qpVKxxecBryBSMkhV18iIgqOyELKFH5aH9PM2zbtg3OQ7qIiAgMHToUw4cPZ2seUTXDcEdUDQghsH37dvz222/YsGGDOjiK2WzGDTfcgN9fXAU516BxlUREVFbCaMfoz27CokWLkJKSAgCQJAndunXDrbfeiq5du3LuPKJqgOGOKIDl5eVh6dKl+O2333DixAn19muuuQb7fj4B+VIwJIXdLomIAoWAgBJVgA5jmuGff/5Rb69duzZuvvlm3HjjjYiMjNSuQCKqUAx3RAHozJkzmDdvHv7880/1fAyTyYQbbrgBi15eBzmPg6MQEQU6JdiG294biD///BNZWVkAAIPBgOuuuw4jR45Es2bNNK6QiPyN4Y4oQAgh8M8//2Du3LnYtGmTeu5FfHw8ktdlQnc+GJKd59IREVU3QhZQovPR5OY6OHjwoHp7hw4dMGrUKFx77bWcToEoQDDcEVVxNpsNK1aswOzZs4sMj92tWzds+/YQ5LQgjnhJREQAAMVsRd9nOmLVqlXqKMn16tXDyJEjccMNNyA4OFjjComoPBjuiKqo3Nxc/PHHH/j555/Vk+dNJhOGDh2K359fDZnz0hERkQciyI7bp16PhQsXqt33w8PDMXz4cNx6662Ijo7WuEIiKguGO6Iq5tKlS5g7dy7mz5+vfiBHRUUhY7sFunMmdr0kIiKfCZ0CpVY+avUOw9mzZwEAer0egwcPxt133426detqXCERlQbDHVEVcerUKfz000/466+/YLVaAQAJCQk4uyIdckowJMGul0REVDYCAkrNArQcmYA9e/YAAGRZRv/+/TF69Gg0btxY4wqJyBcMd0SVXGJiImbNmoXly5er89O1adMGB38+BTnVyPPpiIjIr5QwCzo91BybNm1Sb+vZsyfuvfdetGrVSsPKiKgkDHdEldSJEycwc+ZMrFy5Uh35skePHvjn8wOQs4I0ro6IiAKdEmpFr0nXYPXq1ernUKdOnXD//fejXbt2GldHRO4w3BFVMseOHcPMmTOLfJj27t0bmz7eBznHoHF1RERU3SgmG65/uRuWLFmijrDZpUsXjBs3Dq1bt9a4OiJyxXBHVEkkJSXhm2++wapVq9Tb+vbti78/3MNQR0REmhNGOwa/3gOLFi1SQ961116LcePGoUWLFhpXR0QAwx2R5s6fP4/p06fjr7/+gt1uhyRJ6NevH9b/dzfkXE5nQERElYsw2jHwP12LtOT17NkT48ePR5MmTTSujqh6Y7gj0khaWhpmzZqFBQsWqKNf9uzZE1umHYCcy5Y6IiKq3ESwDde92BnLli2DoiiQJAmDBg3C+PHjUbt2ba3LI6qWGO6IrrLc3FzMnj0bP//8M/Ly8gAAHTp0wN7pJzlQChERVTmKyYbez16DlStXAgAMBgNuu+023HPPPYiIiNC4OqLqheGO6Cqx2+1YvHgxvv76a6SmpgIAWrRogWO/JEPKCOKUBkREVKUpZivajmuA7du3AwDMZjNGjx6NESNGwGg0alwdUfXAcEd0FWzZsgWfffYZjh8/DgCIj4/H+eXZkC9xnjoiIgocAgIi0oKE4TVx7NgxAEBMTAwefvhhDBw4EJLEzzyiisRwR1SBTpw4gc8++wybN28GAISFhSF3l4DuXAgkwQ84IiIKTAICSkw+avYx4fz58wCANm3aYOLEiWjZsqXG1REFLoY7ogqQlZWFb7/9FvPnz4fdboder8ett96KBU+vhmSTtS6PiIjoqhCSwNgZt2DWrFnqeeZDhgzBhAkTEB0drXF1RIGH4Y7IjxRFwZIlS/C///0PaWlpAAonIJ+6H3I+pzUgIqLqSQTZcd3LnbBkyRIAgMlkwr333ouRI0ciKIiDiRH5C8MdkZ8cOnQIH374Ifbt2wcASEhIwLk/MyGn8yRyIiIiwDHoStO7a2P//v0AHJ+VkyZNQseOHTWujCgwMNwRlVNWVha++uorLFiwAEIImEwmWPbroDvL8+qIiIiu5DwfL7y7Xh09etCgQXj00UcRFRWlcXVEVRvDHVEZCSGwZs0afPjhh+qH08CBA7H2rZ2QLDqNqyMiIqrchE7BsHd7Yf78+RBCwGw246GHHsJNN90EWeb56URlwXBHVAYpKSmYOnUqNmzYAACoV68ekv/MhpzB8waIiIhKQzFb0XBkNA4fPgwAaNmyJZ577jk0btxY48qIqh6GO6JSsNvtmD9/Pr766ivk5uZCr9dDHDdCdyqUXTCJiIjKSEBAictDUFu7+vl677334p577oHBYNC6PKIqg+GOyEdJSUl4++231QFTWrdujcOzkiHnchRMIiIifxBBdnSd1ALr168HADRu3BiTJ09G8+bNNa6MqGpguCMqgaIo+PXXX/Hll1/CYrEgJCQElj06yOdMkMDWOiIiIn8SEFCiCxDaDcjIyIBOp8Ndd92FMWPGwGjkCNRE3jDcEXlx9uxZvP3229i1axcAoHPnztj92UkOmEJERFTBhF5BrxfaYuXKlQCA+vXr46WXXmIrHpEXDHdEbggh8Pvvv+Ozzz5DXl4eTCYTrHv0kJPZWkdERHQ12WvmI7ynDqmpqdDpdBg/fjzuuusu6HT8opXoSgx3RFdIS0vDW2+9hc2bNwMA2rVrh4PfnIFUwHPriIiItCD0Cq59riXWrl0LwPHZ/MILL6BOnToaV0ZUuTDcEbnYsmUL3nrrLaSmpiIoKAj2g0GOycjZWkdERKQpAQGlVj4M11iRl5eHkJAQPPHEExg8eDAkiZ/TRADDHREAwGq14uuvv8bs2bMBAA0bNsTpuRmQczn8MhERUWUijDY0H1cHe/bsAQAMGDAAzz77LEJCQjSujEh7stYFEGnt1KlT+Ne//qUGu1tuuQVnfshhsCMiIqqEpAI9Dn1+HhMmTIBOp8OKFSvwwAMP4OjRo1qXRqQ5ttxRtbZ69Wq8/fbbyMvLQ1hYGPI2y9ClBmtdFhEREflACbMgcqAeFy5cQFBQECZOnIibb76Z3TSp2mK4o2rJZrPhiy++wJw5cwAUDpry9VlOcUBERFTFCL2CTk81wcaNGwEAAwcOxDPPPMNumlQtMdxRtXPp0iVMmTJFnbtOdzoEupNmDppCRERURQkI2ONzgSZ5sNvtSEhIwFtvvYWEhAStSyO6qhjuqFrZtWsX/vOf/yA1NRUhISGwbDNAd4ndMImIiAKBazfN0NBQvPLKK+jevbvWZRFdNQx3VG0sWLAAH374Iex2u2M0zF8zIedx7joiIqJAIgx2tJhQB7t374YkSRg3bhzuvfdeyDLHEaTAx3BHAc9ms+HTTz/F3LlzATiGTF73+h5ICrthEhERBSIhCQx9rwfmz58PAOjTpw9eeOEFnodHAY/hjgJaVlYWpkyZgn/++QcAoDtphu40JyUnIiKqDuyxuZBa5cNqtaJRo0Z45513EBsbq3VZRBWG4Y4C1qlTp/D8888jKSkJwcHBsO0w8vw6IiKiakYJsyDsOgmpqamIjo7G//3f/6FZs2Zal0VUIdj5mALSnj178MgjjyApKQkxMTGwbwxhsCMiIqqG5KwgZC+R0bBhQ1y8eBETJ07E33//rXVZRBWC4Y4Czrp16/DUU08hMzMTLVu2RMYfAnKOQeuyiIiISCNSgQ5nfsxG586dkZeXhxdeeAG//fab1mUR+R27ZVJAWbBgAaZOnQpFUdCjRw9sff8oB04hIiIiAI6BVq5/qwsWLVoEALj77rvx0EMPQZJ4rECBgeGOAoIQAt999x2mT58OAJCTg6E/Gs6BU4iIiKgIAQF73VzYG2QDAG666SZMmjQJOp1O48qIyo/hjqo8RVEwdepULFiwAACgSwqFLimUwY6IiIg8ssfmQmmeA0VRcN111+HFF19EUFCQ1mURlQvDHVVpdrsd77zzDv766y9IkgTdETN0yZzDhoiIiEpmr5kPqV0urFYrunTpgjfeeAMmk0nrsojKjOGOqiybzYY33ngDK1euhE6ng7QvFLqLfEMmIiIi3ymRBdB3KUBeXh5at26N999/H6GhoVqXRVQmDHdUJVksFrz66qtYt24d9Ho9sCeUUx0QERFRmShhFgT3siErK4sBj6o0hjuqciwWC1566SVs2rQJQUFBUHaEQJdm1LosIiIiqsKUUCuC+1iRlZWFNm3a4P3330dICE/1oKqF89xRlWKz2fDqq69i06ZNMBqNENsY7IiIiKj85BwD8tcaYDabsXfvXjzzzDPIzc3VuiyiUmG4oyrDbrfjrbfewrp16xwtdltNkDMY7IiIiMg/5BwDCtYFqQHv2WefRV5entZlEfmM4Y6qBEVR8P7772P58uXQ6XRQdoQw2BEREZHfyTkGFKx3BLw9e/bg5ZdfhtVq1bosIp8w3FGlJ4TAtGnTsGjRIsiyDGmvmV0xiYiIqMLI2QYUbDAgODgYW7ZswVtvvQVFUbQui6hEDHdU6f3444+YO3cuAEA+aOaomERERFTh5Kwg2LcGQ6/XY8WKFfjoo4/AcQipsmO4o0pt6dKl+OKLLwAAumNh0KVwHjsiIiK6OuR0I7A3FJIkYd68eZg+fbrWJRF5xXBHlda2bdvwf//3fwAA3ekQ6M9xOGIiIiK6unQXg6E7YgYAfPfdd1i8eLHGFRF5xnBHldKxY8fw0ksvwWazQb5ghO6kWeuSiIiIqJrSJYdAl+SY1Py9997Dzp07tS2IyAOGO6p00tLSMHnyZOTk5KBdu3bQH46ABEnrsoiIiKga0yWF4rrrroPNZsNLL72E06dPa10SUTGS4JmhVInYbDY89dRT2LVrF+rWrYuUXwsg2fgdBBEREWlPyAKNxkXh4MGDSEhIwOeff46wsDCtyyJS8aiZKpVp06Zh165dCAkJwfkFeQx2REREVGlIioTjMy4iJiYGSUlJePXVV2G327Uui0jFI2eqNP744w/MmzcPAGDZaoCcp9e4IiIiIqKiJKsO6UvtMBqN2LJlC2bMmKF1SUQqhjuqFPbv34+pU6cCAHSJodClci47IiIiqpzkHAPsu40AgBkzZmDz5s0aV0TkwHBHmsvKysKUKVNgtVrRu3dv6E6Fal0SERERkVe6CyYMHz4cQgi8/vrrSE5O1rokIg6oQtoSQmDKlClYtWoV4uLicOk3GyQ7v3MgIiKiyk9IAo3GOwZYadGiBT755BMEBQVpXRZVYzyKJk0tXLgQq1atgk6nw8XFBQx2REREVGVIQsLxWRcRHh6OgwcP4ttvv9W6JKrmeCRNmjl+/Dg+/vhjxy9HTZCzDdoWRERERFRKUoEOuZsd8/HOnj2bE5yTphjuSBM2mw1vvPEGLBYLunbtCt2ZEK1LIiIiIioT3aVgDB06FEIIvPXWW8jOzta6JKqmGO5IE99//z2OHj2K8PBw7Jx2HBIkrUsiIiIiKrPlL/+DOnXqIDk5GR999JHW5VA1xXBHV93Ro0fVOWFytzjmiyEiIiKqyiS7jAuL8yDLMpYsWYJ169ZpXRJVQwx3dFXZbDa8/fbbsNvtkC8ZIV/kfHZEREQUGOSsIEiJjmObDz/8ELm5uRpXRNUNwx1dVbNnz8aRI0cQHh4O/dEwdsckIiKigKI7ZUZ8fDwuXLiAr776SutyqJphuKOrJjk5GTNnzgQA5P7D7phEREQUeCRFQspfOQCA3377DQcOHNC4IqpOGO7oqvnkk09QUFCA9u3bQ77A7phEREQUmOQMIwYNGgQhBN577z3YbDatS6JqguGOrootW7Zg7dq10Ol02PftKXbHJCIiooC2+rUdCA8Px9GjR7Fo0SKty6FqguGOKpzVar08WXmSEXKuXtuCiIiIiCqYZJORu0MAAL755hvk5ORoXBFVBwx3VOHmz5+PpKQkREVFQZcUqnU5RERERFeFnGxCQkIC0tPT8f3332tdDlUDDHdUoXJzczFr1iwAQOZmKyQ7n3JERERUPUhCwtm/MgEAv/zyC86dO6dxRRToeKRNFeqXX35Beno64uPjIaeYtC6HiIiI6KqSU4PQsWNHWCwWfP3111qXQwGO4Y4qTEZGBn766ScAwPkV2ZAEB1EhIiKi6kWChD3fnAQArFixAqdOndK2IApoDHdUYX788Ufk5OSgadOmkC8atS6HiIiISBNyjgE9evSAoijqnL9EFUESQgiti6DAk5WVhREjRiAvLw/6fZHQpTHcERERUfWlmK2wtk+FTqfDrFmzULduXa1LogDEljuqEAsWLEBeXh4aNmwIOS1I63KIiIiINCVnG3DttdfCbrerg80R+Rtb7sjvCgoKMGrUKKSmpkJ/KBy6CxxIhYiIiMi19e7nn39GTEyM1iVRgGHLHfnd0qVLkZqailq1akG+GKx1OURERESVgpxtQLt27WC32zF//nyty6EAxHBHfiWEwJw5cwAAlzblcoRMIiIiIhf75yQCAH7//XcUFBRoXA0FGoY78qtdu3YhKSkJJpMJuvPsjklERETkSr5kRGxsLDIyMrB8+XKty6EAw3BHfvX7778DAApOAJKdTy8iIiIiVxIkXNyUAwD4448/NK6GAg2Pvslv0tPTsWbNGgCA7hxb7YiIiIjc0aUEQ6fTYd++fTh58qTW5VAAYbgjv1mxYgWsViukbD3kHIPW5RARERFVSpJVB5GiBwAsXrxY42ookDDckd84+43LKWy1IyIiIvJGPu8YUXzJkiWw2+0aV0OBguGO/OLs2bPYt28fZFmG7oJR63KIiIiIKjU5zYiwsDCkpqZiz549WpdDAYLhjvxi5cqVAACRqodk1WlcDREREVHlJgkJOUetAIBVq1ZpXA0FCoY78ot169YBAFvtiIiIiHwkX3R0zVyzZg27ZpJfMNxRuaWmpuLAgQMAADmV4Y6IiIjIF3J6EMxmM1JTU7F//36ty6EAwHBH5bZx40YAgJTFLplEREREvpKEhNwTjq6Z//zzj8bVUCBguKNyc4Y7ttoRERERlY6c7jh+2rJli8aVUCBguKNyURQFO3fuBOAY9YmIiIiIfCenBQEADhw4gIyMDI2roaqO4Y7K5cSJE8jMzITJZIKUo9e6HCIiIqIqRbLo0KBBAwghsGvXLq3LoSqO4Y7Kxdlql3/WDklI2hZDREREVAUlbTwPANi3b5/GlVBVx3BH5bJ7924AgJwRpHElRERERFWTnGUAAOzdu1fjSqiqY7ijcjl8+DAAQM5il0wiIiKispAzHeHu0KFDsFgsGldDVRnDHZVZVlYWzpw5AwCQcgwaV0NERERUReXrEBYWBovFgsTERK2roSqM4Y7K7OjRo44r+TIkG59KRERERGUhQUL26XwAwPHjxzWuhqoyHpFTmR07dgwAILPVjoiIiKhcnKOOM9xReTDcUZmdOnUKACDl6jSuhIiIiKhqkxnuyA8Y7qjMTp8+DQCQ8jmYChEREVF5OI+nzp49q3ElVJUx3FGZqeEujy13REREROUh5TuOp86fPw9FUTSuhqoqhjsqE0VRkJKSAuDymxER+ZEkaV0BERFdTQUydDodLBYLUlNTta6GqiiGOyqTzMxM2O12xy9WPo2I/MoZ7BjwiIiqDQkS7DkCgKP1jqgseFROZXLp0iXHFasESfAAlMhvrgx0DHhERNWGVPiFeUZGhsaVUFXFcEdl4uwuIFn4FCKqcAx4RETVg43hjsqHR+ZUJjk5OY4rnLycyH+8hTgGPCKigMeWOyovHplTmeTl5Tmu2HnASeQXvoQ3BjwiosBmc7zPZ2dna1wIVVUMd1QmznAnKTzYJCq30oQ2BjwiooDlPK6yWq0aV0JVFcMdlUlBQYHjClvuiMqnLGGNAY+IKDA5BstkuKMyY7ijMhFCaF0CUdVXnpDGgEdEFHDsdXIBAL/++qvGlVBVpde6AKqaJB5YEpUdXz9ERERUAdhyR2WihjseoxKVDoMdERF5oDtvAgD0799f40qoqmK4ozKR5cKnjsTumUQ+Y7AjIiJvCgdUqVmzpsaFUFXFcEdlEhIS4riiY7gj8om/gx3PeyUiCjii8LgqNDRU40qoqmK4ozJxvukIhjuikjHYERGRLwqPq0wmk8aFUFXFcEdlon6jpOdBJpFXDHZEROSrwnCn9pAiKiWGOyqTsLAwAIDQKxpXQlSJMdgREVEpCIPjuKpGjRoaV0JVFcMdlUlMTIzjSpACAR5wEhXDYEdERKUkguwAOKAKlR3DHZVJjRo1oNPpHFMhBLH1jqgIBjsiIiolAaEeU0VHR2tcDVVVDHdUJjqdDlFRUQAAwXBHdBmDHRERlYVBAWTHXMLOYyyi0mK4ozKLi4sDAAiTTeNKiCoRP4QxKSgIuqgaDHZERNWIMDm6ZMbGxsJgMGhcDVVVDHdUZvXr1wdw+c2IiAqVI5Q5g51kMkFXk9/cEhFVF87jqXr16mlcCVVlDHdUZmq4C2HLHVExZQh4aoudXg9IEgMeEVE14uwJlZCQoHElVJUx3FGZOd982C2TyINSBLwiwU69kQGPiKi6cH5ZznBH5cFwR2XWpEkTAIAIsUPIPDeIyC0fA54kSUWD3eUFDHhERAFOQEAxO8Jd8+bNNa6GqjKGOyqz6Ohox3x3EiDMVq3LIaq8Sgh4UlAQ5BqRXlZgwCMiCmhBChCkQKfToXHjxlpXQ1UYwx2VS4sWLQAACsMdkXceAp7b7phuV2TAIyIKVEqY4ziqUaNGMBqNGldDVRnDHZVLy5YtAQAinOGOqERXBDyfg526AQMeEVEgch5HOY+riMqK4Y7K5ZprrgEAKBEWCPC8O6ISFQa8Ugc7JwY8IqKAo0RYAAAdOnTQuBKq6hjuqFxatmwJk8kEGAREKEfNJPKFpDeULdipO2DAIyIKFEKvAGGOOe7at2+vbTFU5THcUbno9foirXdE5J2ueROcmNIJp+9sVL4dSRKURvG4NL67fwojIiJNKBEWCCFQv3591KxZU+tyqIpjuKNy69SpEwBAqcFwR1QSYQqCJc6KzOY2nB5R9rmMbHE1cOJmM9JbCQY8IqIqTIkqAAB06dJF40ooEDDcUbn16NEDACAiLBA6ReNqiCovXfMmOHp3hOOXIMUR8G4vfcCzxdXAyZvMsEYqUIIEAx4RURUlIKDUcIS7nj17alwNBQKGOyq3evXqoUGDBoB8+dsnIipK17wJjoyPgS3aZWTZIAWZLUrXguca7JwY8IiIqiYRZgWCBMxms3qaC1F5MNyRX/Tu3RsAoNRkuCO6kttg5+RswfMx4ClBuiLB7vLtDHhERFWN87ipW7du0Jd1kC0iFwx35Bd9+vQBACg1Ctg1k8iFrnkTHBnnIdg5+dhF0xZXA0k3mDwuZ8AjIqo6BATsMfkAgP79+2tcDQUKhjvyi2bNmiEhIQHQAUo0W++IAJdgF+Ml2Dk5u2h6CHi2+Khi3THdcQa808/3YMgjIqrERIQVMCoICwtDt27dtC6HAgTDHfmFJEm44YYbAAD2mDyNqyGqHJQQo2/BzslDwLPFRyFxaGiJwU693yCBvDp2pLcSSB3HgEdEVBk5j5f69euHoKAgjauhQMFwR35z/fXXA3B8EyWMdo2rIdKWrnkTHLszvNTbRedl4L7jS/Ay/sQHyT/hjYyFGBK6EeG6jFLvSwkSSGvNbppERJWN0ClQYhw9nQYNGqRxNRRIJCGE0LoIChyTJk3C1q1boTsVAn1imNblEGlC17wJjtwfA1st31vtjBYrpvy4ECPWb0OQvfiXIxadDr9e2xmvjhiOAoOhVPXIFgk19kmI+nZjqbYjIqKKYa+dC1uTLNSvXx8zZ86EJElal0QBgi135Fe33norAMBeOw9C4vcGVD2J0+dQZ73vrddGixUzPvgWd6/Z4jbYAUCQ3Y67N2zGjE+/htFSiq6eAILSZdRacbpU2xARUcUQELDHObpkDh8+nMGO/Irhjvyqe/fuqFWrFmAQUKLztS6H6OqTJCi5uQhZcwAJv/n2Fjvlx4XofugESvo6RAC49uhx/GfuAp/LCU7RoeHMU7AlnvJ5GyIiqjgi3AoRaoPRaFTHKyDyF4Y78iu9Xo+bb74ZAGCPz4Uo8XCVKDAp2dk+BbyYjCyMWL8NAFDSd7fO5SM2bUV0ZlaJNTDYERFVPvb4HACOc+3CwngKC/kXwx353fDhw2EymSDMNohIi9blEF09V3St8SXgjVr7j8eumJ4E2e0YuXFLievJVjDYERFVIkqIDUpNCyRJwp133ql1ORSAGO7I7yIiInDTTTcBAGz1cjSuhugq8XDOhBrw5rl/u+126ESZ7u7aI8e8Lg9O0aH+TzzPjoioMnG22vXp0wf16tXTuBoKRAx3VCFGjRoFvV4PEWGFEsbWO6relOxshKx2H/DM+QVl2qe37YJTdGg46zRsJ5PKtG8iIvI/YbRDquMYEOvuu+/WuBoKVAx3VCFiYmIwePBgAGy9o2rAh5HOPAW87GBjme4yvHCktSsx2BERVU62ujmw2+3o2LEjWrZsqXU5FKAY7qjC3H333dDpdBBRFijhbL2jAFWKIazdBbzNzRuW6W7j+xRgTJ91RW5jsCMiqpyUYBukuo5joXHjxmlcDQUyhjuqMHXr1r187l3DLI6cSYGnDHMTXRnw/rqlJZTSzUkOYQCMo6PwZM1tRQKebAGDHRFRJWSvnw273Y7u3bujXbt2WpdDAYzhjirUmDFjHCNnhtmg1CzbuUVEgcY14OXGGiGNDAcAn+a5AwCMCgdi9IiQTXiy5jbc22e9YwCVn89UZNlERFQGitkKJaYAkiThwQcf1LocCnAMd1ShatasiVGjRgEA7A2yISS23hEBjoAXuu4QspfUhng9GqJ7sE/z3InuwRCvR6u3RcgmyBBo8OsF2E4kVmjNRERUOgICtgbZABzz2jVu3FjjiijQMdxRhbvzzjsRGRkJYbLDHperdTlE/iPK/mWFpNMBAOL/SEbz2f+C+KEOxD3hEB66aAoDHMt/rAMEX37rnpZWH6uf6wFxOhlycHCZ6yEiIv9TahZARFoQFBTEc+3oqtBrXQAFvpCQEDz44IN49913Ya+fA93FYEgWndZlEfmHM+CV9vw7SQZ0OiA1HY1nAD32PopLbSQc2jYN4sdMSH/nATkKECpD9DABdzu6Yl7pZH5NmDYeBiQJwmCArNMBdjuU/Hw/PDgiIiorISuwNcoC4BhkLi4uTuOKqDqQhCjHV89EPlIUBf/617+wb98+yBeMMByK1LokIv/zMeBJOh1kc6gj3LmKisSxsbE4dP/nPu1nWlp9/Pb0IJj+PlTkdiEEYLUy4BERacjWIAv2urmIi4vDzJkzYTSWbeobotJgt0y6KmRZxtNPPw1ZlqHEFECJ5OAqFIB8+K7MY7ADHK1408+j+XePlLifD9MauA12ACBJEmAwsJsmEZFGFJMNqO841nniiScY7OiqYbijq6ZJkya4/fbbAQC2xlkQMhuNKQCVFPCc3TE9cQa8b70HvON5MW6DnXo3DHhERJoQELA1yYTdbkfPnj3Ro0cPrUuiaoThjq6qcePGISYmxjG4Sv1srcshqhgeAp6k00EONZW8fWo6Gs/w3II3La0+dr/cvsTdMOAREV199jq5EBFWmEwmPPHEE1qXQ9UMwx1dVaGhoXjuuecAAPb4XCjhFo0rIqogVwQ8r90x3fHQRXNaWn3MfWYQQjZ4brUrcr8MeEREV41issFeOPXBY489htq1a2tcEVU3DHd01XXr1g033XQTAMDaLBNCp2hcEVEFcQ14JXXHdCc1HY1npKDZdEfAm5ZWH3Of9T3YqXfNgEdEVOEEBGxNMwEZ6NKlC2688UatS6JqiKNlkiZyc3MxduxYJCcnQz5nguFYuNYlEVUYSa8vXavdlWrWwNGxtTB40FYc7e9Dt04POIomEVHFsdXNgb1BNkJDQzF9+nTExsZqXRJVQ2y5I02EhIRg8uTJAAAlLg/2mjzYpABX1mAHAJfS0OS789j9SvtylSBJUvnqICIit5QwC9A4DwAwceJEBjvSDMMdaaZjx4646667AAC2ppkQRpvGFRFVDGGzQeTklm8nF9NgWncQ5elsIex2KHn8IoWIyJ+EXoG1eQbsdjsGDhyIIUOGaF0SVWMMd6SpCRMmoHXr1oBewNoiA0JiL2EKTEp+ftkDniIAu139tSwBTw12ir3klYmIyCfqeXbBCuLj4/H00087ekkQaYThjjSl1+sxZcoUhIeHQ4RdHmGKKBAp+flQMjJLF/IKg92Vga5MLXgMdkREfmWvkwelZgEMBgOmTJmC0NBQrUuiao7hjjQXGxuLF154AYBjegR7NLuNUeASNlupW/E8BTlfAx67YxIR+Z8SbgGaOt7LH330UTRv3lzjiogY7qiS6NGjR5Hz75RQq8YVEVUsnwLeFd0x3Skp4LE7JhGR/wmjHdaW6bDb7RgwYABuu+02rUsiAsBwR5XIgw8+iG7dugE6AWurdAgDD0YpsHkNeB66Y7pT4joMdkREfiNkAWvLdMAg0KxZM/z73//meXZUaTDcUaWh0+nwyiuvICEhATAqsLbkACsU+JSCAo8BrzTn1blbl90xiYj8yzGASgaE2YYaNWrgzTffRHBwsNZlEakY7qhSCQsLw9tvvw2z2QwRboWtSSYEGPAogAlRvAXPh+6Y7nfl5rXCVjsiIr+xJ+RAiSmAXq/H66+/zvnsqNJhuKNKp169epgyZQpkWYYSmw97Qo7WJRFVuCsDXlnns3Nux1Y7IiL/ssfmqsckkyZNQrt27TSuiKg4hjuqlLp27YpJkyYBcHxLZq9dzgmgiaoAJT8fSnZOmVrtXHEQFSIi/7JHFcDWJAsAMHbsWNx4440aV0TkHsMdVVo333wzxo4dCwCwNc6CvSZbISjwiYKC8re4CcFgR0TkJ4rZClvzDEAChg4divvvv1/rkog8YrijSu3+++/HTTfdBEiArXmGY04ZogAnbFaI/IKybawoUMq6LRERFaGYbLC2TgN0At26dcMzzzzDkTGpUmO4o0pNkiQ89dRT6NmzJyAD1lbpUMycA48CnBBlD3hstSMi8gsRbIO1TRpgEGjRogVeffVV6PV6rcsi8koSZT1rn+gqys/Px7PPPotdu3YBNgmGPTUg5xi0LouoYkkSJL0BUrDRt/UVhefaERH5gTDaYWmbCgQraNiwIT766CNERkZqXRZRidhyR1VCcHAw3nnnHbRu3RrQC1jbpEEJsWldFlHFKm0LHlvtiIjKTQTZYWmTBgQrSEhIwNSpUxnsqMpgyx1VKdnZ2Zg0aRIOHjwIWGRHC14eu0hQgJMkSDodIMmeW/HYakdEVG7CYIe1bRpEiB116tTBtGnTEBMTo3VZRD5jyx1VKWazGe+//z6aNm0KBCmwtmULHlUDQkDYbN5b8dhqR0RULiLocrCrVasWPvzwQwY7qnIY7qjKCQ8Px3//+180atSoMOClQgnlICtUDXjqpskRMomIykUYbbC0S4UIsaN27dr46KOPULt2ba3LIio1hjuqkiIjI/Hxxx+jZcuWgEE4WvA4TQJVB+4CHlvtiIjKTDHZYGnnOMcuPj4e06ZNQ3x8vNZlEZUJwx1VWeHh4Zg6dSrat2/vGGSldTqUCLZeUDXgGvDYakdEVGZKqBXWtmmAUUGDBg0wbdo0xMbGal0WUZlxQBWq8vLz8/Hyyy9j8+bNgALoD0VAdylY67KIKp4kAZLMVjsiojJQIiywtkwH9AJNmzbFf//7X46KSVUewx0FBKvVitdffx2rV68GBKA7YYb+bKjWZREREVElZI/Oh61ZBiAD7dq1w9tvv42wsDCtyyIqN4Y7Chh2ux3Tpk3Db7/9BgDQnQmB7oQZEiSNKyMiIqLKQEDAHp8Le8NsAEC/fv3w4osvwmj0MM0MURXDcEcBRQiBn376CZ9//jkAQL5ohP5wBCSFAY+IiKg6ExCwN8yGPT4XAHD77bfjscceg06n07gyIv9huKOAtGLFCrz11luwWq2QMg0wHIiAZOWbNxERUXUkdApszTKg1HSMrP3oo49i1KhRkCR++UuBheGOAtaOHTvw4osvIjs7G8iXYTgQCTnHoHVZREREdBUJow3WVukQoXYEBQXh+eefx4ABA7Qui6hCMNxRQEtKSsLzzz+PU6dOAXYJ+sPhHEmTiIiomlDCC0fENAjUrFkTb775Jlq1aqV1WUQVhuGOAl5WVhZeffVVbNmyBQCgSwqFLimUA60QEREFMHtsLmxNsgAJaN68Od566y3ExMRoXRZRhWK4o2rBZrPhiy++wJw5cwAA8iUj9IfDIdlljSsjIiIifxKSgK1xFpTaeQCA/v37Y/LkyQgOZs8dCnwMd1StLF68GO+//z6sViuQp4PhYATPwyMiIgoQwmiDtWUGhNkGSZIwfvx43HvvvRw4haoNhjuqdg4ePIhXXnkFycnJgALoj4VDPh/MbppERERVmD2qwDExuV4gIiICr7zyCrp06aJ1WURXFcMdVUuZmZl48803sXHjRgCAfD4Y+mPhnA+PiIioihEQsNfPhr2eY/66Vq1a4dVXX0VsbKzGlRFdfQx3VG0pioIff/wRX3/9NRRFgZSjh/5QBORcvdalERERkQ+E0Q5rswyICCsAx8Tkjz76KAwGnnJB1RPDHVV7O3bswKuvvorU1FRHN80TYZDPmdhNk4iIqBKzR+fD1iQT0AuEhITg2Wef5fx1VO0x3BEBSE1Nxdtvv43NmzcDAOTUIOiPRECycjRNIiKiykTIimM0zNh8AEDr1q3x8ssvo06dOhpXRqQ9hjuiQkII/Pbbb/j8889hsVgAiwzD4XDI6UatSyMiIiIAitkKW/MMCJMdkiTh3nvvxdixY6HX85QKIoDhjqiYY8eO4bXXXsOJEycAAPJZE/QnzZAUtuIRERFpQUgC9no5sNfLASQgJiYGL7/8Mtq3b691aUSVCsMdkRsFBQX4/PPP8dtvvzluyNfBcCQcckaQtoURERFVM0qoFbZmmRChNgCOScknTZqE8PBwjSsjqnwY7oi82LZtG/7v//4P58+fB+BsxQvjlAlEREQVTEgC9ro5sCc4WusiIiIwadIkXHfddVqXRlRpMdwRlSA3NxefffYZfv/9d8cNeYWteJlsxSMiIqoISqgVtiaZEGGO1rrevXvj6aefRlRUlMaVEVVuDHdEPvrnn3/wzjvvICUlBQAgJ5ugP2GGZOe5eERERP4gZAF7Qjbs8bmABISFheHJJ5/EwIEDIUnsNUNUEoY7olLIycnBZ599hoULFzpusMjQHzdDvhjMefGIiIjKQYksgLVJFhBsBwD07dsXTzzxBKKjozWujKjqYLgjKoNdu3bh/fffR2JiIgBASguC4WgYpAIOxUxERFQawqDA1jALSi3HvHUxMTF46qmn0KtXL40rI6p6GO6IyshisWD27NmYNWuWY148BdAlmaE7EwJJsBWPiIjIGwEBpXYebPWzAYOAJEm4/fbb8cADDyAkJETr8oiqJIY7onI6deoU3n//fezYsQMAIOXpoDseBl0aJz8nIiJyRwmzwNY4C8LsGDClSZMmeOaZZ9CqVSuNKyOq2hjuiPxACIGlS5fi888/R2pqKgBATg2C/ngYpHx21SQiIgIAYbDD1iAbSqyjC6bZbMb48eMxfPhw6PX8vCQqL4Y7Ij/KycnBjBkz8Msvv8Butzu6ap4Jge5UKCSFo2oSEVH1JCQBe1yuY846vaML5tChQ/Hggw+iRo0aWpdHFDAY7ogqQGJiIqZNm4YtW7Y4biiQoU8yQz7PUTWJiKj6EBBQahbA3iAbwuQYBbNFixZ48skn2QWTqAIw3BFVECEENmzYgE8++QRnz54FAEg5euhPmCGn83w8IiIKbIrZClvDLIgIKwAgKioKDzzwAIYOHQpZZm8WoorAcEdUwSwWC3777TfMnDkT2dnZABxTJ+hPmiHnGDSujoiIyL+E0Q5bgywoMQUAAKPRiLvuugt33nknR8EkqmAMd0RXSWZmJmbOnIl58+bBarUCApBTgqFPMkMq0GldHhERUbkIgwJ73RzY43IBGZAkCUOGDMH48eMRExOjdXlE1QLDHdFVdvbsWXz55ZdYuXKl4wYFkJNN0J8KhWRlyCMioqpF6BTY43Nhj88FdI7Dys6dO+PRRx9FkyZNNK6OqHphuCPSyP79+/Hll19i+/btjhvsEnTnTNCdDoVk47kIRERUuQlZwF4nF/a6jhEwAcdgKQ888AC6dOkCSeIAYkRXG8Mdkca2bduGr7/+Gvv27XPcYJOgOxsC3ZkQSHaGPCIiqlyELGCPzYO9Xg4QpAAAGjZsiPHjx6N3794MdUQaYrgjqgSEENi0aRO+/vprHDlyxHGjtTDknWXIIyIi7QlZgT0uz9H9sjDU1alTB+PGjcOAAQOg0/HUAiKtMdwRVSKKomDt2rX45ptvkJiY6LjRVthd8wy7axIR0dUndM5QlwMYHIeNsbGxuOeeezB06FAYDBz5maiyYLgjqoTsdjvWrl2LmTNn4tixY4U3StAlm6A7HcKBV4iIqMIJveI4p65OrnpOXXx8PEaPHo0bbriBoY6oEmK4I6rEFEXBhg0bMHPmTBw6dKjwRkA+b4LuTAjkfL22BRIRUcARBnthqMtTR79MSEjAfffdh/79+0Ov52cPUWXFcEdUBQghsGXLFsyYMQN79+4tvBGQLxkdIS8rSNsCiYioylNCbLDH50CJyQcKzwJo3Lgx7rvvPvTp04fn1BFVAQx3RFWIEAK7du3C7NmzsXHjRvV2KdPgCHmXjJDAUcqIiMg3AgIiwgJbfC5ElEW9vU2bNrjrrrvQs2dPyDLP9yaqKhjuiKqokydPYs6cOVi6dCmsVisAQMrTOUJeigmSwpBHRETuCUlAic6HPT4XwmwDAMiyjN69e2PUqFFo06aNxhUSUVkw3BFVcZcuXcJvv/2G+fPnIysry3GjVYLuvAm6cyGQCtiNhoiIHIRegb12HuxxuYDRMZ1BcHAwhg0bhjvuuAN16tTRuEIiKg+GO6IAkZubi8WLF+Pnn3/GuXPnHDcKQE41QnfOBCk9iF02iYiqIQEBEWaFPS4PSvTl8+mioqJw++23Y/jw4QgPD9e2SCLyC4Y7ogBjt9uxceNG/Pbbb9i6dat6u5Srg3wuBLqUYE6KTkRUDQhZQInJhz3uctdLAGjRogVuvfVWDBgwAEFBHJCLKJAw3BEFsKSkJMybNw+LFy9Gbm6u40a7BDklGLpzJsi5nKOIiCjQiGCbo+tlbJ466XhQUBD69++PW2+9FS1bttS4QiKqKAx3RNVAbm4uli5dit9++w0nT55Ub5ey9NAlmyBfZGseEVFVJiQBpWY+7LXzISIvj3pZu3Zt3HLLLRg6dCgiIyO1K5CIrgqGO6JqRAiBnTt3Yt68eVi/fj1stsJuOnYJ8kUjdMkmSFkGnptHRFRFKKFW2GPzHHPTFbbSSZKErl274tZbb0W3bt04Px1RNcJwR1RNpaenY8mSJfjjjz+QmJio3i7l6iCfN0GXYoJkZWseEVFlI3SK41y62nlFzqWrVasWhg4diiFDhiAuLk7DColIKwx3RNWcEAJ79+7FokWLsHLlSuTn5zsWKICcZoScEgw51QhJsDWPiEgrAgIi0gJ7rfwiI17q9Xr07t0bw4YNQ6dOndhKR1TNMdwRkSonJwcrV67EH3/8gQMHDlxeYJMgXwx2jLSZyW6bRERXg4CAMNscrXQx+UCQoi5r2LAhhg0bhkGDBvFcOiJSMdwRkVsnTpzA0qVLsWzZMqSkpFxekC9DdyEY8gUT5Fy9dgUSEQUoYbQ5Wuhi8iFC7OrtERERuO666zB48GC0bNkSksQv2oioKIY7IvJKURTs2rULS5cuxerVq5GTk6Muk7L1kC8EQ3cxGFIBuwIREZWVMCiO0S5r5UOEW9Xbg4KC0KtXLwwaNAhdunSBwcApbIjIM4Y7IvJZQUEB/v77byxduhSbNm2C3X75G2UpS+/ousmgR0TkE2GwQ6lZAHt0PkSEFc4e77Iso2PHjrj++uvRp08fhIaGalsoEVUZDHdEVCbp6elYvXo1Vq1ahV27dkFRLp8LcjnoGSEVsOsmEZGTCHIJdOGXAx0AtGjRAgMGDMCAAQMQHR2tXZFEVGUx3BFRuaWmpmLt2rXug162I+jJl4yQ8nQcjIWIqh0RZIc9ugBKzeKBrlWrVujbty/69evH6QuIqNwY7ojIr1JTU7Fu3TqsWrUKO3fuLBr08nSQLxkdUytw1E0iClACAiLUBqVmAZSogiJz0QFAmzZt0K9fP/Tt2xexsbEaVUlEgYjhjogqTFpaGtauXYt169Zh+/btsNlcDnCsEuRUR9CT04IgKZwwnYiqLiEJKJEWKFGOQAfj5S+2ZFlWA12fPn1Qq1YtDSslokDGcEdEV0VOTg62bNmCDRs2YOPGjcjKyrq8UAHk9KDLQY/n6RFRFSAMdig1LI4WusgCwGUsKZPJhC5duqBnz57o3r0756IjoquC4Y6IrjqbzYa9e/di/fr12LBhA86cOVNkuZSnc4S8NCPkjCBICrtvEpH2hCQgwq1QahRAibQU624ZExODnj17omfPnmjfvj2MRqNGlRJRdcVwR0SaEkIgMTER69evx+bNm7F3794iUyxAAaSMIEfLXpoRUi4HZSGiq0cE2xytczUKoERYAV3Rw6bmzZujR48e6NmzJ5o2bcqJxYlIUwx3RFSp5OTkYPv27di8eTM2b96M8+fPF12hQHYEvfQgR6uehXPqEZH/CL0CJcLiOH8u0gKY7EWWR0VFoUuXLujatSu6dOnC7pZEVKkw3BFRpSWEQFJSEjZv3owtW7Zg586dsFgsRdaR8nSQCoOenGGAZGXYIyLfCZ0jzIkIq6OrZWjRrpZ6vR5t27ZFly5d0K1bNzRu3BiyzAGgiKhyYrgjoiqjoKAAu3btwrZt27Bjxw4cPny4yFQLACDl6BwtehmFLXs2HoQR0WVCp0AJt0IUts6JUBuu7OndsGFDdOjQAZ07d0bHjh0REhKiTbFERKXEcEdEVVZWVhZ27dqFHTt2YMeOHTh69GixdaRcHaTMIMiZBsiZBiCf5+wRVSciyO4Ic+EWx083YS4hIQEdOnRQLzVq1NCmWCKicmK4I6KAkZ6ejp07d2L79u3YsWMHEhMTi69kkSFnGiBlGiBnBkHK0UMSDHtEgcA5ebgIs0IJt0IJtwDBSrH14uPji4S56OhoDaolIvI/hjsiCljp6enYu3cv9uzZgz179uDgwYNFJ1IHADsgZRkgZxscP7MMgEVm6x5RFSAMChSz1RHmwhw/oS96WCPLMho3box27dqhTZs2aNu2LScRJ6KAxXBHRNVGQUEBDh06hN27d2PPnj3Yu3dv0cnUnSwy5CwDpCy9GvokO8/dI9KS0CkQZtvlMGe2um2VCwkJQatWrdC2bVu0bdsWrVq14jlzRFRtMNwRUbWlKAoSExOxb98+HDhwAAcPHsTx48eLzrNXSMrTOUJeth5yjsHRnZODtRBVCKFTIEJsl8Oc2QoRYi92rpwkSahXrx5atmyJli1bom3btmjUqBF0Oo6aS0TVE8MdEZGL/Px8HDlyRA17Bw4cwJkzZzysLEPO0UMqDHtytgEoYJdOIl8JCCBIgRJqcwS4UJvjYir+BQsAxMbGokWLFmjRogVatmyJ5s2bIzQ09CpXTURUeTHcERGVICMjA4cOHcKBAwdw5MgRHD16FGfPnnW/sk1yBL0cPaRclwtb+aiaE7ICEWJ3tMiF2hyBLtQKGNwfhsTExKBx48ZqmGvRogWioqKuctVERFULwx0RURlkZ2fj2LFjOHr0KI4cOYIjR47g5MmTsFqt7jewyJBy9ZBzdZcDX46e5/JRwBE6BcJkL2yBs0GE2KCE2NyeHwcAOp0OCQkJaNq0KZo0aYKmTZuicePGiIyMvLqFExEFAIY7IiI/sVqtSEpKwuHDh3H8+HGcPHkSJ0+exPnz5z1vVCA7zufL00PKL/yZp3Nc5xQNVEkJCCDYDhFsdwQ5kw2KydEqB6P7EAcAUVFRqF+/Pho2bKiGuQYNGsBoNF7F6omIAhfDHRFRBcvNzVWD3okTJ9SfKSkpnjcScEy4nq+DnHc59CFfB6mAwY8qnoAAjIqj9c0lxInCUAcvjc41a9ZEw4YNUb9+fTRo0EC9REREXL0HQERUDTHcERFpJCcnB4mJiUhKSsLp06dx6tQpnD59GqdPn0ZeXp7nDQUc3TydQU/96bgNFoY/Kpka3oyFLXBFfipAkPcAFxQUhPj4eNStWxd169ZFvXr11DAXFhZ29R4IERGpGO6IiCoZIQQuXbqkBj1n6Dt16hTOnTuHgoKCEnYAR3dPiw5S4U9YZEcAtMiQCmQGwAAnJMcolCLIDhGkQBgdYc1x3RHgYFSKTS1wJYPBgLi4uCIBznk9JiYGssxzRomIKhOGOyKiKkQIgfT0dJw7dw7JycnqT9frFovFt51ZJTUAwiJDssqA1fFTsly+Diund6gMBASgFxBBCmBQIAyXfwqDAhgLw1uQAgR5Pu/NlcFgQGxsLGrXro24uDjUrl0bsbGx6vWaNWsywBERVSEMd0REAURRFKSlpSE5ORkXLlxASkoKLl68iIsXL+LChQvqT58DIOBoCbRJlwOfTQZsMiSbVPyn9fLvsEsMhW4ICEBXGNT0istPBUIviv40uAY5UWJLmyuDwYCaNWsiOjoaMTExiI6OVi/OMBcVFcXwRkQUQBjuiIiqGSEEsrKycOHCBTXwpaamIi0tDenp6UhLS1OvZ2RkQFF8awUqfkcA7JIj5BX+vHy9MPwpV9yuSIACQDiuSwoct4nLyyTn76LwPoDLvxfery+hUjg3cK4qAZAKb5MFIBd2b5QLb5cvXxfO67LjdqErDGyu13WF12UB6BTHdX3hsnJk3vDwcERGRqJGjRqoUaMGIiMjERkZWSTAxcTEIDw8nMGNiKiaYbgjIiKP7HY7srKykJaWpgbAzMxMZGVlFbtkZmYiOzsbWVlZyM/P17r0y+HP+SlXJMRpUlERQUFBCAsLUy9ms7nI72FhYcUCXEREBPR6vdalExFRJcVwR0REfmexWJCVlYXs7Gzk5+cjNzcXeXl5yMvL83rdYrHAarUW+enuNo+TxftRUFAQDAaDenH93fV6cHAwQkJCYDKZil2Cg4NhMpnU5SEhIWqQ49xuRETkbwx3RERU5QghYLfbIYSAoihur9vtdiiKAiEEhBCQZRmyLEOSJPWnTqcr8rtzHb1eD0mqBM17REREpcBwR0REREREFAB4pjUREREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIiIiIiIAgDDHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEA0GtdABGRkxAC+fn5WpdBRFQqwcHBkCRJ6zKIiBjuiKjyyM/Pxw033KB1GUREpbJkyRKYTCatyyAiYrdMIiIiIiKiQMCWOyKqlIK21IIkZECSIckSIBV+FyVLgCRBkmVAKrzd2R1KliBJsroOJMlxHbj8u/M25zZXro+i2whJcnwN5ro9UOx29Xd1O8euIEkQMgp/QeHtEiChyDZCve2K7dXHjOLLccVtzt9lN8tcty+yzPWnVGyZ221QdLnr784aPN1Xkese6rhynyqv24hidV25P0jCTU3i8r7d7atwO6hPD1F0n3Auc/lZuD/n+pIkXJ866n04/jWXlwOADFHkNrnw+uVll28rskwSkHD5dtnldlkSkOG8HUWXqdso6u/O+5IlBTp1W+Xydi6/61z2DQA6OG9XXNZTCpcV7lP9qah1OLeT4dy2cBt1mWN9nSQgqcsctzm30QGXt4PjfqTC7XVFahSFvxfWVPhvcfwuQQagkyTIkKAr/EfLkApvkyFBgk6SYSnQ4dYJtUBEVJkw3BFR5WSXHIdZkuNgSg13hUfNjmUSIMtwTQMS5CuO8F22c5surlhfcl3m7rrr7+5ud7cdXMIk1HCn/oTrbVdcL1xWJKgU2c7NNsUeslS8TMndRfK8zOM2Pv6pyrnPkgOhn8OdVDzcuS67Mtxdvv3K/Qm3yy6HQJflRX4XRbcvdl+i6DKXcOe8ALj8u6dlV4Q+NdxdcZtrKNS5/O4Id4r6fYgOkiMkSS4hqfB5pQMgS5LLT6nwvhzbOfYF6KTLT2Gd5NzO8dPtMvX65fodoVAUBkfhU7i7cn9yYc0ocpuzxsv3RURUmbBbJhERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAOM8dEVVOOgEhlMJ521zmdXNOOK5OIA6X+dlc549zXoTLsisuQOFcYa63FZ1QTXiYvO3K2y//7tzuiuvCuZ1zm8J9FK4oUHR5kRm0hOu+L29f7DZxxSLX+et8ml9O8rwMXrb3dZm3fZZwfxJK2sbdfHVX7k+42YfnScyv3M7fk5hf3re4Yn9lm+dOFG4rCi8A1OsCzttRdBkEFEkAklK4L9f7Ugofj+tyxzIhKY79uOz78rKitzvnlxOFc825/gSgXlcKX9bOnyi8rsDxslcKf3f+qYrPc+eYeBwonDcPjr+58/rlufiKzp1XuknMJUiF1y0F7l6HRETaYrgjokrJ0jVF6xIqhuvxcxlIV/wkcnI+tRStCykzZ2pmpyIiorLiOygRVRr5+flal0BERERUZbHljogqDaPRqF5fsGABgoODNayGSiM/Px/Dhw8HwP9dVcP/Xfnxb0ZElQXDHRFVGpJ0ubNhcHAwTCaThtVQWfF/V3Xxf0dEVLWxWyYREREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKABIQohyzLhERERERERElQFb7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUAPRaF0BEgSc3Nxc//fQT1qxZg+TkZMiyjHr16qF///64/fbbYTAYyrzv1NRU/Pjjj9i4cSPOnz8Po9GIhg0bYvDgwRg2bBgkSfLjI6l+KuJ/9+2332L69Oklrvfjjz+ibt26Zaia8vPzsXPnThw6dAiHDx/G4cOHcf78eQDA2LFjMW7cuHLfB197RESVH8MdEflVcnIyHn/8cSQnJwMAgoODYbVacfDgQRw8eBDLli3Dhx9+iLCwsFLv+9ChQ3jmmWeQkZEBADCZTMjNzcXu3buxe/durF69Gm+//Xa5wmN1VpH/OwDQ6/UIDw/3uFyn05VpvwQcOHAAzz33XIXtn689IqKqgeGOiPzGZrNh8uTJSE5ORs2aNfHiiy+ic+fOUBQFq1atwnvvvYcjR47g9ddfx7vvvluqfWdnZ+Pf//43MjIykJCQgJdeegktWrSA1WrFwoUL8cknn2DLli2YNm0aJk2aVEGPMHBV5P/OqU2bNvj444/9XDk5hYWFoVmzZupl2rRpSE1NLfd++dojIqo6eM4dEfnNX3/9hePHjwMAXn/9dXTu3BkAIMsyBgwYgGeeeQYAsGnTJmzbtq1U+/7pp5+QmpoKo9GId999Fy1atAAAGAwG3HbbbWq3s4ULF+LUqVP+ekjVRkX+76jitWvXDosWLcLUqVPxyCOPYMCAAQgKCvLLvvnaIyKqOhjuiMhv/vrrLwBAhw4d0KZNm2LLBwwYgLi4uCLr+mrJkiXqPurUqVNs+W233QaTyQS73Y5ly5aVtvRqryL/d1TxKrJLK197RERVB8MdEflFfn4+9u7dCwC49tpr3a4jSRK6desGAPjnn3983ndSUpI6OIRz+yuFhISgXbt2pd43Vez/jqo2vvaIiKoWnnNHRH6RmJgIRVEAAA0bNvS4nnNZamoqMjMzvQ6w4eTsLljSvhs1aoTNmzfj5MmTPlZNQMX+71ydOHECY8aMwdmzZyHLMqKjo3HNNdfglltuQbNmzcr+AKjC8LVHRFS1sOWOiPzi4sWL6vWYmBiP60VHR7vdxptLly6Vat85OTnIzc31ad9Usf87VxkZGUhMTITRaITFYsGpU6fwxx9/YMKECfjqq69KvT+qeHztERFVLWy5IyK/cD2gMxqNHtcLDg52u01F7DskJMSn/Vd3Ffm/A4C6devikUceQa9evRAXFwe9Xg+r1YodO3bgq6++wqFDhzBr1iyEhYXhzjvvLNuDoArB1x4RUdXCljsiIqpQgwYNwl133YV69epBr3d8p2gwGNC1a1d88skn6uiL3333HbKzs7UslYiIqEpjuCMiv3D9pr6goMDjevn5+W630WrfpO3f12g04sEHHwQA5OXlcZqFSoavPSKiqoXhjoj8wvV8rAsXLnhcz/VcLddtvKlZs2ap9h0aGsoDzFKoyP+dL1q3bq1eP3v2rN/2S+XH1x4RUdXCcEdEflG/fn3IsuMt5cSJEx7Xcy6LioryebTFRo0aFdveHefIfg0aNPBpv+RQkf87qtr42iMiqloY7ojIL4KDg9XJrzdv3ux2HSEEtmzZAgDo0qWLz/uuV68eYmNjve47Ly8Pu3fvLvW+qWL/d77Yv3+/et05UTpVDnztERFVLQx3ROQ3gwcPBgDs2LGjyAG706pVq9Rud851fSFJEm644QYAwMqVK3Hu3Lli68ybNw95eXnQ6XS4/vrry1J+tVZR/zshhNflFotFnQbBZDKhU6dOPu+bKh5fe0REVQvDHRH5zeDBg9GoUSMIIfDyyy+rg2MoioJVq1bhvffeAwB069at2EH8t99+iz59+qBPnz5uDyDvvPNOREVFIT8/H//+979x6NAhAIDVasX8+fPxzTffAABuuukm1KtXryIfZkCqqP/drl278NRTT2HJkiVISUlRb7fZbNi2bRsee+wxNUyOGTMGYWFhFfkwA1pWVhbS09PVi3Ni+oKCgiK3XzmNBV97RESBQxIlfa1KRFQK586dwxNPPIHk5GQAji5/iqLAYrEAAJo2bYoPP/yw2EH8t99+i+nTpwMA5syZ47Z73qFDh/DMM88gIyMDgGNUPovFApvNBsDRJeztt99GUFBQRT28gFYR/7sdO3bgiSeeUH83Go0IDg5GTk6O+n+TZRmjR4/GhAkTKvLhBbyRI0eq/ztvBg8ejBdeeEH9na89IqLAwUnMiciv4uLiMH36dPz0009Ys2YNkpOTodfr0bBhQwwYMAC33347DAZDmfbdvHlzzJgxAz/++CP+/vtvpKSkIDg4GI0aNcLgwYMxdOhQdWAQKr2K+N81atQIjz76KPbt24fjx48jIyMD2dnZCA4ORoMGDdCuXTvcdNNNaNy4cQU9KvIHvvaIiKoGttwREREREREFAH7NRkREREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIiIiIiIAgDDHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIjK5KOPPkKfPn0wceJErUshjWVnZ2PYsGHo06cP1q5dq3U5RETVll7rAoiIqpucnBwcOXIEBw8exKFDh3Do0CGcOXMGQggAwJw5cxAXF1ch9y2EwIgRI3DhwgWMHj0aDz30UJn2c+TIEcyfPx8A8OCDD/qxQm0dP34cW7ZswZ49e3D8+HFcunQJdrsdYWFhaNy4Mbp3747BgwfDbDb/f3v3HpNl/f9x/EmESqJAxRTEzFSQSkNBzAN+PYWH6TI8THNTM2c2jTZrq91T8azlTJtuZmy5mWJLnael0VBJTVBQQyaiiIIHHOMgIMrBG/z9we7rd6Mc5AYhb16Pvy65Ptf7+nCPMV98Ts3d1f8UFxcXpk6dSkREBJs2baJ///60bt26ubslItLiKNyJiDSxsLAwUlNTm+XdKSkpZGdnAxAcHGxznS1btlBeXk7//v3p1atXY3WvWYWFhfHvv/9Wey8vL4+8vDzi4+PZsWMHJpOJoKCgpu3gf9ykSZPYvXs3WVlZ7Nmzh+nTpzd3l0REWhxNyxQRaWKWETqoHPHo06cPr776apO8++TJkwB4eHjg5+dnU42LFy+SkJAAYFf/gbeE3nbt2jF27FhMJhObN28mIiKC5cuXM2DAAKAy6JlMJhITE5uzu/85zs7OTJw4EYDIyEgePnzYzD0SEWl5NHInItLExo4di5ubG76+vnh7e+Pg4EBYWBh5eXnP/d2WcDdo0CAcHBxsqrFr1y4APD09ee+99xqtb83N29ubGTNmMGLECFq1alXlnq+vL0OHDmXnzp1s3bqVsrIy1q9fz/bt25upt/9NISEh/PLLL9y/f58//viDyZMnN3eXRERaFI3ciYg0sUmTJjFy5Eg6d+5sc8Cyxa1bt8jIyABsn5KZnZ1NbGwsAKNGjWrS/j9v69atY8yYMU8FO2vTp0+nR48eAKSnp5OWltZU3XsheHp60rt3bwAOHjzYzL0REWl5NHInItJCWHYxtEwFtUV0dDQVFRUADB8+/JmeMZvNHDt2jFOnTpGSkkJ+fj7l5eW4ubnx1ltvERgYyMiRI3nttdeqPDdkyBAARo8ejclk4ubNm+zZs4f4+HhycnJo27YtPj4+fPzxx/j7+xvPlZaWcuTIEaKiorh9+zYlJSV4eXnxwQcfMHny5AZv9NG3b19jzeStW7fo1q2bzbXS09M5cOAAiYmJ3L17l5KSElxcXGjXrh2enp4EBAQwePBg3njjDZvqm81m/vrrL44fP87169cpKCjAwcGB9u3b4+bmhp+fH4GBgQwaNAgnJ6cqzz75+aenp7Nv3z4SEhLIycmhuLiYVatWPfWHguHDh5OYmEhGRgYpKSn07NnTtg9HRETqTeFORKSFsEzJHDBgAC+/bNuv/9OnTwOV69K6dOlSZ/tr166xZMkSbt++/dS97OxssrOzOXPmDGlpaZhMphrrxMTEsHr1akpKSoyvlZaWEhcXx5kzZ/j6668ZP348OTk5mEwmUlJSqjx/48YNfv75Z+Li4li/fn2DAp7ZbDauX3rJ9gkwBw4cYOPGjZSXl1f5ekFBAQUFBdy+fZv4+HjS0tJYvHhxvevn5+fz1VdfVbt5j+WzT01N5eDBg0RGRuLt7V1jrSNHjrB+/XrKysrqfK/1BjunT59WuBMRaUIKdyIiLUBOTg6XL18GbJ+SWVZWxqVLlwDw8/Orc0pmamoqCxYsoLi4GIA+ffoQEhJCly5dcHJyIjc3l+Tk5DrPRUtLS+PYsWO4u7szd+5c493nzp3j119/paSkhA0bNuDv78/KlSu5du0aEyZMYPDgwbi5uXHnzh22b99OWloaFy9eJDIykk8++cSmzwDg/PnzxnXXrl1tqnH9+nUj2LVv357x48fj7++Pm5sb5eXl5ObmcuXKFeLi4mye+rpx40Yj2AUEBBASEoKnpydt27blwYMHZGRkkJiYaEyzrcmVK1eIjo6mffv2TJ48mV69euHk5ER6ejodO3Z8qn3Xrl1xdnamuLiY8+fPM3v2bJv6LyIi9adwJyLSApw6dYrHjx/TqlUr+vfvb1ONtLQ0Y9TK19e31rZms5klS5YYwe7LL780dlK0NnDgQObMmUNWVlaNtVJTU+nRowcbN26kXbt2xtfffvttvL29CQ8Px2w2s2DBAgoLC1m3bh2BgYFGOx8fH/r168eMGTPIyclh//79zJgxA0dHx3p9/1A5tfXGjRtAZcDt3LlzvWsAHD9+3Bix27Bhg7GOz1pwcDBz5syhoKCg3vVLS0uN0BwcHMzKlSufCon+/v58+OGHFBcX1zoCeePGDby9vdm8eXOVXV1r2m3V0dERHx8fEhMTuXr1KhUVFQ0a4RQRkWen37YiIi2AZUpmYGAgzs7ONtWwnlpZ19EN0dHR3LlzB6jcHbS6YGetQ4cOtd7/9ttvqwQ7i6FDh+Lh4QHAvXv3CA0NrRLsLFxcXBgzZozRLj09vdb3VScnJ4cffvgBAAcHBz7//PN617Cw7Izq4uJSbbCz5urqWu/69+/fN4K4v79/raN/zs7OdU5TXbhwYb2O67C0LSkpIScn55mfExGRhlG4ExGxc0VFRVy4cAFo2MHlubm5xnX79u1rbWsJkwDTpk2z+Z1QOc2vpgDk4OBQ5V5ISEiNdazbZWZm1qsPJSUlmEwmI5Q9uYlLfVkCaVFREcePH7e5Tk1cXV2NXT+PHj3aoDPnPDw8qg3MtbH++bD+uRERkedL4U5ExM7FxsZiNptxdHRk0KBBNtcpLS01rqsbRbN29epVoHIE51k2XqlNXc9b96W2XSWt29Un7Dx69IhFixYZm7QMHjyYOXPmPPPz1QkJCTFGy8LDw5k/fz47d+7k4sWLxlTWhnBycmL06NEAJCcnM2XKFNatW8fRo0frHWxt2Q3UOtxZb4IjIiLPl9bciYjYOcso2rvvvoubm5vNdazXqNW1a2J+fj7w/yNUDdGmTZta71tPOaxtyqn1ui/LcQ51MZvNLF68mLNnzwIQFBTE0qVLbVqvZ83Ly4u1a9eyevVqsrOzSUpKIikpCaj8nHv27MmQIUMYN25cnUG6Jl988QVlZWVERUVRWFjIoUOHOHToEFAZuoOCghg7dmydI5B1jdJWx/oPAbbuzCoiIvWnkTsRETtWVlbGmTNngIZNyYTK9WEWhYWFDar1IjCbzYSHhxvHPwQGBrJq1apaDzmvj4CAAHbt2sWyZcsYO3ascRRBeXk5ly5dYsuWLUybNs0IlvXVunVrTCYTO3bs4NNPP6Vv375G+M3Ly+PPP/8kLCyMRYsWVQljT7JlMxTrTWCsf25EROT50p/TRETsWEJCgjHNr6Hhznrb+7rCnZubG1lZWS/sZhqWYGcZ9ezbty9r1qxp8AHoT2rVqhXDhg1j2LBhQOWI57lz54iKiiIuLo7CwkIWL15MZGTkU4e8P6vOnTszc+ZMZs6cSXl5OampqZw+fZoDBw5w7949Tpw4QUREBAsWLGi07+v+/fvGdV2b5YiISOPRyJ2IiB2zhJMePXrg6enZoFrWZ7rdvHmz1raWoxJyc3PrbPtf82Sw69OnD2vXrm30YFcdNzc3RowYwffff8+ECRMAKC4u5tSpU41S3zLlc/bs2fz000/GlNfo6OhGqW+RkZEBgKenJ6+88kqj1hYRkZop3ImI2KmKigr++ecfoHITkIbq0KEDr7/+OoBxIHpNhgwZYlxHRkY2+N1NxWw2s3TpUiPY+fv7891339W57u95CAoKMq4taxgbk6enp3FOny1n6dUkPz/fOAbjnXfeabS6IiJSN4U7ERE7lZSUZIQC67DVEJbAkZGRwYMHD2psN3z4cCM4HD58mL1799Zat7ZDzJuK2Wxm+fLlxuHfzzPY/f3333UGNstaSYBOnTrVq35mZiYJCQm1trl7964xwubl5VWv+rVJTk42rt9///1GqysiInXTmjsRkSZ2+/ZtY2dEC8v5aQAxMTFVdrV0dnZm6NCh9X6PZfTJy8vLpu3sqzNs2DAOHz5MRUUFCQkJ/O9//6u23csvv8yyZcuYP38+xcXF/Pjjj5w4cYJRo0bRpUsXnJycyM3NJSUlhZiYGHx9fTGZTI3SR1utWLGCmJgYoDJMzZs3j7t379b6jLu7O+7u7vV+1969e1mxYgUBAQEEBATw5ptv4urqyqNHj8jKyiI6OtoYde3YsWO9j7DIyspi4cKFeHl5MWjQIPz8/OjQoQOtW7emoKCA5ORk9u/fb+x6Wtch8/URHx8PVK4nHDBgQKPVFRGRuinciYg0saSkJNasWVPj/S1btlT5d8eOHRsU7hpjSqZFYGAgHh4eZGdnExUVVWO4A+jevTubNm1iyZIlZGZmcuHCBeMw9SdZ1ug1J+vDxO/cucO8efPqfGbWrFnMnj3bpveVlZURGxtLbGxsjW06derEmjVraj3ioTaZmZns3r27xvsvvfQS06ZN46OPPrKp/pPMZjNHjx4FKkeLbT3GQUREbKNwJyJih65du2aMOjV0l0xrjo6OhIaGsnXrVuLi4sjPz6/17DwfHx927NhBVFQUJ0+eJDU11Vjf5e7uTrdu3ejXrx8jR45stD6+CMLDwzl79iyJiYlcv36dvLw8Y5qmq6sr3bt3Jzg4mJCQEJuOXujduzebN28mISGB5ORksrKyuHfvHg8ePKBNmzZ4eXnRu3dvxo0b12ijuoDxMwEwadKkRqsrIiLPxuHx48ePm7sTIiLSuLZt28a2bdtwd3dn3759Np1VVpOioiKmTp1KYWEhn332GdOnT2+02vJi++abb4iNjSUgIIANGzY0d3dERFocbagiImKHLFMyBw4c2KjBDioPpbYEut9++42HDx82an15MSUnJxMbG4uDgwNz585t7u6IiLRICnciInbm0aNHBAcHM2vWLEJDQ5/LOyZOnIi3tzcFBQX8/vvvz+Ud8mKJiIgAYNSoUfj5+TVzb0REWiZNyxQREZtcvnyZ2NhYXFxcmDJlSnN3R5pRUVERu3fv5vHjx4SGhta6DlNERJ4fhTsRERERERE7oGmZIiIiIiIidkDhTkRERERExA4o3ImIiIiIiNgBhTsRERERERE7oHAnIiIiIiJiBxTuRERERERE7IDCnYiIiIiIiB1QuBMREREREbEDCnciIiIiIiJ2QOFORERERETEDijciYiIiIiI2AGFOxERERERETugcCciIiIiImIHFO5ERERERETsgMKdiIiIiIiIHfg/WMsRcAA+unYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACbhklEQVR4nOzdd3xT1QIH8N+9Sdqmu6Vllb2nbBFFQbbi4AkCioLixoW4t7ieos+BA0VFQBFQeeIDQQQB2SDIngU6WC2U7pUmuef9keaStEmatklvx+/7+eTTNPfk5KS9ubm/e849VxJCCBAREREREREVk7VuABEREREREVUvDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE58EhQTExMhSRIkScJdd93liyrrpIEDB6p/RyIid+666y51W5GYmKh1c1Rz585V2zV37lytm0M+pigKevXqBUmS8Oijj2rdHPKj9evXq5/l1157TevmEFWKfV0eOHCg1k3xuSFDhkCSJNx2221+qb/KehTnzp2L1157rU5tcJYuXaq+58zMTK2bQ8UsFgvWrFmD5557DoMGDUKjRo0QGBiI0NBQtG7dGuPHj8fSpUthtVrLVe+BAwfw6KOPokOHDggNDUVERAS6du2K5557DklJSX56N0RUV5jNZqxduxbvvvsuxowZg27duiEuLg5BQUEICQlBixYtMGrUKHz77bcoKCjw+evPnj0b//zzD4KCgvD888+7LZeYmIglS5bg+eefx7Bhw1CvXr1K76j5cvualJSE5557Dl27dkVERARCQ0PRoUMHPProozh48GC56rpw4QLeeOMN9OrVC9HR0QgODkbr1q0xefJkbNu2rVx1eauufNfceOON6nrzzTfflPv5ycnJ0Ol0kCQJ0dHRKCwsLHcdu3fvxrvvvosbb7wRLVu2RHBwMIKCghAXF4frr78en332GXJycspVpy/Xmby8PHzwwQe46qqrUL9+fQQFBaF58+YYN24cVq1aVa66zGYzvvrqKwwePFjdL2rSpAluvPFGLF68GEKIctXnDS0+P1r4z3/+o67Ld955Z4XqaNu2rVrH9u3b1cdfffVVAMCiRYuwYcMGn7TXifCBhIQEAUAAEJMmTXJZZsCAAWqZumLSpEnqe05ISCizfF38G1W1tWvXiujoaPXv7OnWp08fcfz4ca/qfe+994TBYHBbV1hYmFi4cKGf3x3VFeXdtlSVb7/9Vm3Xt99+q3Vzap3Dhw97te0CIFq0aCE2b97ss9fOy8sTDRs2FADEY4895rbczJkzPbZrwIAB5X5tX25fv//+exEaGuq2roCAAPHBBx94Vdfq1atF/fr13dYlSZJ46qmnyv1+Pamq75p169apdb766quVb3gFLFmyRG1D//79y/38119/XX3+lClTyvXcixcvitatW3v1WWvUqJFYtWqVV/X6cp35559/RKtWrTy2bcKECcJkMpVZV0JCgujRo4fHuoYMGSIyMjK8aps3qvLzU5ntjy+kpKQIvV4vAIjg4GCRnZ1drudv2LBBfQ+dOnUqtXzQoEECgOjXr5+vmqyqskRSF0NQdd2Zq8u+++479X8SHR0txo4dKz744AOxcOFCMX/+fPHII4+I8PBwtUzTpk3FuXPnPNY5a9YstbzBYBCTJ08W8+bNE19//bW49dZbhSRJAoDQ6/Vi5cqVVfROiaoeg6J/2YNiq1atxG233SbefPNNMX/+fPHzzz+Lb7/9VkybNk3ExcWp/4Pg4GCxf/9+n7z2e++9JwAInU4nTp8+7bbchx9+6LSzZzQaxWWXXVbhHTVfbl+XL18udDqduhN66623iq+//lrMmzdPTJ482SmAffXVVx7r2rlzpwgODlbLDx06VHzxxRfi+++/F4899pgICQlRl7344ovles9V8bcoS3UIikVFRSImJkZth7cHbu0cg97ff/9drueeOnXK6eDB8OHDxRtvvCHmzZsnFi5cKF577TXRsmVLpzJr1671WKcv15nExETRoEEDtfzll18uZs6cKX744Qfx/PPPi3r16qnL7rjjDo91ZWRkiA4dOqjlO3bsKN577z2xcOFC8cYbb4imTZuqy6699lphNpvL9bf099/CG1oHRSGEuOmmm9R2fP311+V67uTJk9Xnvvfee6WWr1mzRl3u6/1MBkU/YlCsfr777jvRtWtX8cMPP4jCwkKXZU6fPi06d+6s/u8mTpzotr6zZ8+qGzu9Xi9Wr15dqozjznPTpk1FQUGBz94PUXXCoOhfubm54uTJkx7L5OfnO+2QjBgxotKvazab1Z3FYcOGeSz7yy+/iIcffljMmTNH7N27V1gsFqdRR+XZUfPl9jUvL080btxYLTt37txSZf744w/1qH9oaKhISUlxWZeiKKJnz55qXa+99lqpMnv27FEPOsqyLPbt2+f1+3alqr9rqkNQFEKIxx9/XG3Hyy+/7PXzHHtgunTpUu7XPXXqlKhfv76YMWOGuHDhgssyBQUFYty4cerrtGrVym2I8vU6M2rUKLWuyZMnC6vV6rQ8MTFRNGvWTC2zfPlyt3VNnTrVaXtRcr25ePGiU2/jp59+6rYub2jx+akOQfGXX35R23H11Vd7/by8vDwRFhamfvZdbZesVqto0qSJGrp9iUHRjxgUq5+MjAyhKEqZ5fbv3+90RDwvL89lOccN7NNPP+22vltvvdVnG1mi6opBsXo4f/682nOm1+u9GnrmieMOzvz588v9/IoGRV9uXz/66CO1zK233uq2rqefflot527Y29KlS9Uyffv2dfud8tlnn6nlxowZ4+Gdlq2qv2uqS1Dcs2eP2o7mzZt79f0thHMPzH/+859yv67JZBK5ublllisoKFB30AG47VX05Trj+Ddp1qyZ2wMCv/32m1qud+/eLsukpqaKgIAAAUCEhISI1NRUl+X279+v9lg3bNhQWCwWl+W8ocXnpzoExaKiIhEbGysA24iGEydOePW8+fPnq+2/8cYb3ZZz3HYdO3bMV832TVD0dI6iY0D0dHO3IbJarWLx4sVi7NixokWLFsJoNIrQ0FDRvn178eCDD5Z5lOHVV19VX2PdunVCCFsX7fjx40WLFi1EYGBgqSBnNpvF77//LqZNmyauuuoqERsbKwwGgwgNDRVt27YVkyZNEn/99Zfb13QMiJ5unv5WZdm2bZu47777RLt27URoaKgIDg4WrVq1EhMnThR//vlnmc8v+aHJzc0V7733nujVq5eIjIwUwcHBolOnTuK5554T6enpZdZXGzkOxdi7d2+p5YqiqMO8JEkSycnJbuvauHFjhY4k+cKWLVvEgw8+KDp27CgiIiJEYGCgaNq0qRg7dqzHo4xCuN5ZSEpKEtOmTRPt27cXwcHBIiIiQvTr10989tlnXg9JycnJER9++KEYMmSIaNSokQgICBBRUVGid+/e4uWXXxbnz5/3+PySnxWLxSK+/fZbMWTIENG4cWOh0+lE8+bNSz0vJSVFPP3006Jjx44iODhYREVFiT59+oj3339fPRjQvHlzdafE0cqVK9XXfPTRR716n48++qj6nBUrVnj1HG+UdRDKX/+3ZcuWiRtuuEE0aNBABAYGiubNm4vbb79dbNmyRQhRvqBoMpnE119/LW688UbRpEkTERgYKCIiIkTXrl3FtGnT3B5cO3LkiNqzEh4e7rGHLT09Xe0Jk2XZ43a7trGfTwhAnDlzplJ13XLLLepBs5ycnHI/vyJB0dfb1379+qllNm3a5Lau5ORkdYe4WbNmLsvcdtttal3ff/+927ry8vLUXhGj0ehV8HBFi+8ab4Pi8ePH1fPkJElye37nypUrxaRJk0SbNm1EaGioMBqNolWrVmLSpEli48aNHtvi2Jvlzf5NyR4Yd+HHVx588EG1fR9//LHLMr5cZ55//nm1rjfffNNtXYqiiDZt2qhlXQWTL7/8Ul1+7733enyfgwcPLtf/wZ2q/vwI4V1QzMvLE9dff71aduzYsS4Psh04cEA88cQTolu3biIqKkoEBASIxo0bixtvvFF8//33pXp3HT3xxBNq/d72kNvPPwQg/vvf/7ot53gA4ZVXXvGqbm9U66B4/Phx0b17d4/Pk2XZ4x/bMSiuXbtWPPzwwy7rcdwpGThwoNdBz9VK5M+gaDabxX333Vdm3WPHjhX5+flu63H80Jw4cUJ06tTJbV3Nmzevkz2iffr0Uf8G27ZtK7XcsdexrKEtVqvVaRhFeU9krojc3FynYTHubiNHjnTbnpI7CytXrhSRkZFu6xo6dKjbIb12K1as8HgCO2CbkOHXX391W4fjZ+XixYuif//+LtdbR2vXrhVRUVFuX7Nr164iOTnZbVC0Wq3qOSlRUVFlDusqKChQX69Zs2YevzzKq7xBsbL/N4vF4nG7JsuyePfdd70Oin///bfT+T2ubgEBAeKLL75w+fzZs2er5fr16+f26PaYMWPUcr46T6wmyMzMVM+3MxgMlRqCWFhYqAbza665pkJ1VCQo+nL7mpWVpYa/iIiIMj+LjqceHDx4sNRyx/O/3A1LtBs5cqRa9rfffvNY1h0tvmu8CYr//POPep6cXq8X3333Xaky58+fd9rRdXe75557RFFRkcvXcZwgydOpIHaOPTA333xzed52hTj25Lzzzjsuy/hynenVq5e6fOfOnR7rctzn/eyzz0otHz16tLr8559/9liX/TxlwHOvdlmq+vMjRNlB8eLFi+KKK65Qyz388MOlthNms1k89thjQpZlj+ty37593c5tsW/fPrVcixYtyuwhT0pKUrddMTExbj8jdvbJGrt16+axXHno4Wdvvvkm0tLS8NJLL6nTTv/yyy+lynXo0MHp9xMnTuCKK65AWloaAKB///644YYb0Lx5c1itVuzatQtz585FRkYG3njjDciyXOalN9577z2sXLkSDRs2xF133YUuXbrAYrFgx44dCAwMVMsVFBQgNDQUgwcPRq9evdCiRQsEBQXh3LlzOHjwIBYsWIC8vDzMmzcPkZGR+Oijj5xe57HHHsOoUaMwc+ZMrFu3DgDw5Zdfon79+k7lmjVr5tXf0NGdd96JRYsWAQCCgoIwadIkXHnlldDpdNi5cye++eYb5OTk4Mcff0RWVhZWrlzp8bqM2dnZGDlyJI4ePYqbb74ZI0aMQHR0NE6ePIlZs2YhOTkZSUlJmDhxon+m3a2mioqKEB8fr/7evHnzUmUOHDig3u/Vq5fH+mRZRo8ePfDXX39BURQcPnwYl19+ue8aXILJZMKQIUPU6aVbt26NcePGoWPHjjAYDDh+/Djmz5+PY8eO4bfffsOoUaOwevVqyLL7K+bs2bMH7733HoQQeOCBB9CvXz8EBgZi586d+OKLL5CXl4fVq1fjrbfewuuvv+6yjiVLlmDcuHGwWq0wGAy46aabMHDgQDRo0ADZ2dlYt24dfvzxR+Tk5OBf//oXVq9ejUGDBnl8r3fccQc2bdqEbt264bbbbkOLFi2QnZ2Nffv2qWUOHTqEG264Afn5+QCAHj164I477kCTJk2QmpqKxYsXY/PmzRg3bhwsFovL15FlGffddx9eeOEFZGRkYMmSJZgwYYLbdv3888/IyMgAANxzzz0e/7b+5Iv/22OPPYZ58+YBAAICAjBp0iT0798fsixjx44d+Oabb/Dss89i1KhRZbZn69atGDJkCPLz8yFJEoYPH45hw4YhLi4OBQUF2Lp1K7777jvk5+fjwQcfRGBgYKnr8953331YtWoVlixZgq1bt2L69Oml2v7NN9/g559/BgBcccUVdebSTBaLBY888gjMZjMA4Prrr0dQUFCF69u8ebP6ufHnNqskX25fDx06pE7t37179zI/i71791b3Vw4cOIBOnTqpy1JSUnDx4kUAtu+FmJiYMuv67bff1Lquv/56j+VdqY7fNevWrcOoUaOQnZ2N4OBg/Pzzz7juuuucyqSnp6Nfv344ceIEAKBbt2645ZZb0KZNG8iyjAMHDmDu3Lk4c+YMvvnmG1gsFpfXX7399tvx1FNPoaioCEuWLMFnn32G0NBQt21zrOPuu+/2yfv1xPH/42pfwZfrjKIoOHToEABAr9ejW7duZdblqp2uHitr3SqrLm9o8fkpy6lTpzB8+HAcPnwYgO1yEyW/L4QQGDt2rJpfGjVqhPHjx6Nbt24IDg5GUlISFi1ahF27dmH79u0YPHgw/v77bwQHBzvV07VrV/Tq1Qu7du1CYmIi1q9fj2uvvdZt2+bNm6duu+644w4YDAaP76Vv375YuXIl9u7di5SUFDRs2LC8f47SfJE2fX15DKvVqp7oGhgYKH788UeX5VJSUtQeR1mWxYEDB0qVcexRBGxTLGdlZXl8/TVr1njsjUtLS1N7MGRZdjv0ydeXx1i0aJG6vEGDBi6PdCYmJjodqXd3joLj3yQgIEAsW7bM5ft0rGv79u1lvgd38vLyxC+//OKT265duyrcDm85zo7as2dPl2WmT59e5hFXRxMnTlTLuzry6kslz2dxNbSwqKjIqU2zZs0qVcbxqDJg6xlzNfZ9+/bt6iQQUVFRLnunkpOT1SPdzZo1cztsfPv27SIiIkIAEE2aNHF5BK3kSIWpU6d67CVw7HGcMmWKy7IltxXuhq7ae2rK6hm55pprBGCbJfLUqVMey5ZXeXoUK/t/c5wUIjIy0uUR7CNHjjgNdQRc9yhmZ2erQ0EjIyPF+vXrXb6/+Ph4dSKGkJAQl0ed09PT1XODdDqd0/C1o0ePqrPmhYeHe30uiDuHDx/22farrCPo3rJarU71fvfdd+KFF15wmumxRYsWIjExsVKv8/bbb6v1/fTTTxWqoyI9ir7cvs6bN6/MfRRHr7zyilr+jTfecFr2119/leu9zJkzx6nXrCK0+K7x1KP4888/q6ftREdHq0PPS7JPuCJJkvjoo49clsnJyRHDhg1TX8vdjI2OowPmzJnjtt2JiYlqD0z9+vV9MkOnJwkJCeo21GAwiLS0tFJlfLnOJCUlefyOKmnt2rVq+cGDBzsts1qtatt1Ol2Zf6uTJ0+qdbVu3brM13ZFi8+PEO57FA8dOuR0esLnn3/u8vmO5zjfcccdLuetUBRFvPDCC2q5Z5991mVdn376qVrGUw+5oihO23NXp0CV9Nprr6nlPY3KKo9qGRQdr50zc+ZMj2WPHj2qnrR/3333lVruuPMXEhJS6XM17E6cOOH2i8TO10HRcZy+p/Odtm/frm4omzdv7nJYluMO3euvv+62rq+++sqrcmVxXEcqe/Pmi74y0tPTRaNGjcrcOXIca/7JJ5+UWW95y1fU2bNn1ZPTb7nlFo9li4qK1PNL2rZtW2p5ycCxYcMGt3VNmDDBYzn7+Xo6nU7s3r3bY7u++eYbta4FCxaUWu74WenVq5fHkPj333+rZbt06eLxJHzHet19CTtOFuHuhPGjR4+qZUaOHOnxvVZEeYNiZf5vN998s7rc1UyRdsuXL3d6TVdB8T//+Y+6/H//+5/H9/jnn3+qZd966y2XZdavX68OA2revLnIyMgQRUVFTkOzfHFQpuRBhMrc7OfKV1ZBQYHb1wgNDRWTJ0/2SSi9/fbb1XorOvNgRYKiL7evH3/8sbrsySefLLMuT+V//fVXddno0aPLrKu85V3R4rvGXVD84osv1M9cXFycywPWQgixa9cu9fnTpk3z+Frp6enqwUF3MzY6TsziaQi0Y6gu63UrS1EUMWLECPX1Hn74YZflfLnO7N271+m7ryyeymdlZanL6tWrV2Zd5S3vihafHyFcB8WtW7eqQzUDAgLcdkoVFBSop8v06dOnzKHrV199tQBsByldDftPT09XD7SEhIS4Pe/bMVS767AoafHixepz3GWT8tJmLFQZvvvuOwBAeHg47rvvPo9l27Vrpw6r+OOPPzyWHT16NBo3buyTNrZq1Urt0t2+fbtP6vQkMTERu3fvBmDrui45xMPR5Zdfrg7XS0pKwq5du9yW1el0eOSRR9wudxz2Zx/uUJtZrVaMHz8e586dAwCMHDkSY8aMcVk2NzdXve/N0C6j0ajez8nJqWRL3fvxxx9RVFQEAHjqqac8ljUYDBg3bhwAID4+HomJiW7L9ujRA1dffbXb5Z7WFSEEFixYAAAYPHgwunfv7rFd48aNg15vGxlf1uf64Ycf9jiU7Ndff3Uqq9Pp3JZ9/PHHPb4WADz44IPq/a+//tplGcfH77///jLr9KfK/N9MJhNWrlwJAGjQoAHuuOMOt/WMHDkSHTt29NgW+7a9Xbt2uPHGGz2WHTRokLq9drcODBgwAM899xwA27buwQcfxEsvvaRu8yZMmOCxzbVV9+7dMWjQIERERFS6rqSkJPV+dHR0pevzli+3r9W1Lm9Vl++a119/HQ8++CAURUH79u2xZcsWp2G5juyfdUmS8OSTT3qsNyoqSh1SuGHDBphMplJlhg8frm4PNm7ciISEhFJlhBCYP3+++ru/h52++eab+P333wEATZs2dTt0v7quf3V5Xf79998xePBgpKenIzQ0FL/99htuvfVWl2VXrVqF8+fPAwCeeOKJMoeu279zsrOz1dN/HEVFReHmm28GAOTl5amnSJRUkSHUUVFR6n3HbXdl+P0cxYrYuHEjANsYYPuH0BP7jl9SUhIKCgqcVixHnnaWSsrOzsaCBQuwYsUK7N+/H2lpacjLy3NZ9vTp017XW1E7duxQ7w8bNqzM8sOGDcOff/4JwBZk3Z2j0K5dO6cVq6S4uDj1vv18q4po0aKFOs66Onv88cfVndJmzZq5PF+iurN/fgDburl06VKP5R3/r4cPH0aLFi1clrviiis81uNpXTl48CDS09MBAGFhYWW2CQBCQ0ORmZmpnjfgTlmf6507d6r3PZ0LAAADBw4ss13XXnst2rVrh2PHjmHevHl48803nc4bMJvN6vl8jRs3xsiRI8us058q83/bu3evetBhwIABHkM2YDsI4O7/lZWVpZ432qBBA6/XAQAe14Hp06fjzz//xPbt27F48WL18ZYtW+Lzzz8v8zW88dprr1W7cxyDgoLUbaoQAhkZGdizZw++/vprLFy4EJs2bcLs2bPx888/IzY2tsKvY//cAlUbFKn6UBQFjzzyCD777DMAQJ8+fbBixQqP55fZv4ciIyOd9l/csYdDk8mEkydPljropNPpMHHiRLzzzjsQQmDevHmlPpMbN25Uz4fs3bs3unTp4vV7LK/Fixfj1VdfBWA7b/uHH37g56OG+P777zF58mSYzWbExsZixYoVTudfluS4T5WRkVHmd9eZM2fU+4cPH3a5XzF58mT8+OOPAGyBsOR5+Pn5+WqADAwMxO23317Gu7KpV6+eU1t9odoFxdzcXPVE16NHj+Jf//pXuZ6fkZHhNig67hB5sm7dOtx+++1ISUnxqnx2drbX7asoew8XYAt3ZXEs4/jckso6kdhxkp/CwsIyX7cme/HFF9UvwgYNGmD16tUe/z6OJ9N787cpKChQ74eFhVWipZ459gqOHTu2XM/1tGGpzLri2KYlS5ZgyZIlPmkTUPbn+uzZs+r9Vq1aeSwbFRWFyMhIZGZmui0jSRLuv/9+PPXUU0hNTcWyZctwyy23qMv/97//qUcf77777jLDlb9V5v/m+Ldr06ZNma/lqcypU6egKAoA2xev45dvWTytA3q9Hj/88AO6d++uHnG2PxYeHu71a9RkkiQhOjoagwYNUm/33XcfNmzYgBtvvBFbt271OKmZJ/YdeJ1O5/a71R98uX2trnV5S+vvmpkzZyIrKwsAMGTIEPzyyy8eJ5MBLm3zMzIyKrQf58pdd92Fd955BwAwf/58vPrqq07rteOB3cmTJ5d6/h9//KFOzOSKN5NxAcBvv/2GO++8E0II6HQ6/PDDD+jfv7/b8tV1/auL6/I///yDiRMnQgiBZs2aYfXq1WXuUzvuvzz88MPlej136/LQoUPRpEkTnD59Ghs2bEBCQgJatmypLv/555/V77Obb77Z64MQjt95jn+7yqh2QdG+Maoo+9FvV7z5kouPj8fIkSPVP3D79u1x3XXXoW3btoiOjnbqKr///vtx4cIFWK3WSrXZG45d7iEhIWWWd/wweuqu12omxurmzTffxNtvvw3AtmO9Zs2aMjcekZGR6n377Lye2A+AlHyur1XmM+Tp81OZdcVfbQLK/lzbRwLo9foyZwwDbJ8vT0ERsO2wvPjiizCZTPjqq6+cguJXX30FwLbzfs8995T5ev5Wmf+b4zChkrO3ueJp21SZdcA+g6c7MTExiI6OVrd1rVq1KnMGv9rs3nvvxaJFi9Se1t9//93j6Qqe2A8kWK1W5Ofne7Ue+IIvt6/VtS5vaf1d4zgTdF5enlejg/yxzW/fvj2uvPJKbNmyBQkJCdiwYQMGDBgAwLkHJigoCLfddlup599///0eh+N5877WrFmDMWPGwGw2Q5ZlzJs3D6NHj/b4nOq6/oWGhkKv18NisSAzMxMWi0U95aO8dXlL63XZarWq/+fCwkK3s5w78se6LMsyJk6ciLffflsdMm3voQYqPnOvY1t9dWCv2gVFx4BzzTXX4K+//qrS1//3v/+thsQXX3wRb7zxhtsjsWWdP+lLjkdS3A2BdeS4g+fP3itv5efnl3mumbeaNWuGnj17+qQuAJgxYwZefvllALYepdWrV3s1ZMUxSHo6t8/O8QvKm17hirJ/hiRJgsViqRYHAxw/16+88gqmT59eZa9tDy8WiwVms7nMsOjN56tevXoYM2YMFixYgD/++APJyclo1qwZkpKSsHr1agC2I++ORwhrIsf/m6cj8Xae/naOdU2cOFEdnusLU6ZMcfp8HTt2DC+99BLeffddn9R/5MgRHDlyxCd19e/fv8xeXl8YMWKEevrB+vXrKxwUHY9kp6enV1lQ9OX2tbrW5S2tv2sef/xxHD58GL/88gu2bt2K4cOHY9WqVR73LeynDti3i75y9913Y8uWLQBsO9P2oOjYAzNq1Ci/HIxdv349brrpJhQWFkKSJHz99dceL5Fk58v/X5MmTWA0GlFQUIAzZ86UGe481SXLMlq3bo2jR4/CarXi9OnTbk89Kasub2m9Lvfp0wc33HADnn76aZw/fx7XXnst1q1b5/ZcW8D5u+vkyZM++16/66671A6K+fPn45VXXoEkSeplMwDbiKmhQ4d6Xac/ThWodkExIiICoaGhyM3NrZJz/0pas2YNAKB+/fp4/fXX3YbEnJwcp3+IvzVq1Ei973h9P3ccy/hqAp/KOH/+fLmHn7gzadIkn507+OGHH+LZZ58FYFv3Vq1aVeZEK3aOYdLThEGA7RwP+2REsiyXOelHZcTFxWHPnj0QQuDMmTNo2rSp316rPG2yq+rPdePGjdVz406ePIn27du7LZuRkVFmb6Ldgw8+iAULFkBRFMyZMwevvfYa5syZow6v1HoSG19w3HYcP368zPKeyvhrHViwYIE6UVKvXr2QlpaGpKQkvP/++xg+fHiZ1+H0xqJFi3x2cGPdunVenQtbWY478d6u0660aNECmzdvBmDbCWnSpEllm+YVX25fO3XqBFmWoSgK9uzZA0VRPB5AczyvueRBw4YNG6JevXq4ePEikpOTkZaW5jH4e6rLW1p/1xgMBixevBjjx4/Hf//7X6/CYlxcHDIzM3H+/HmvDtB5a+zYsXj88cfVHsRPP/0UISEh+Pbbb9Uy7npgvAkm7mzatAk33HADCgoKIEkSZs2a5XVPjy/XGVmW0alTJ+zatQsWiwV79+71OHqirPWvS5cuOHr0KADbuuUpKPpiXdbi81PSU089BUmS8NRTT6lhce3atejcubPL8iW/u3wVFNu2bYv+/ftj06ZNOHnypNpD7njtxIkTJ5br9BXHXOLqmp4VUWVdDY4b5bK696+55hoAtp06b3ZOfCk1NRWAbSIET18ka9asUXcI3SnPey6L42Q09h4LTxx776ryIsk1yWeffYZp06YBsO1UrVy5En369PH6+Z07d1Z3mg4ePOhx53fLli3quaxXXXWVX3t57UdYgbJnDK0qPXr0UMfO//nnn2V+dnzJ8ST1devWeSxrP4rnjf79+6tfLHPmzIHZbMacOXMA2A402Wc1q8m6deuGgIAAAMBff/1V5jB7ew+WKzExMepR223btvnk3O6EhARMmTIFgK3neOHChfj++++h0+mgKAomTpzoNHSpLnH87qxMD6bjzpl9h7Iq+HL7Gh4erk7qlJWV5XImQrtTp06ps/82a9bMZU/D8OHDAdi+1z1tY/Pz89VzcY1Go9O2uTyqw3eNPSzah1naw6K7z7H9vRYWFmLDhg0+aQNg+1/a25Cbm4slS5YgMTFRHX3WpEkTDBkyxGevB9i2V9dff706YmLmzJl44IEHylWHL9cZe12AbUZOd4QQTstHjBhR4boAOE0u6aoub1X158eVJ598Ev/5z38A2DoyBg0ahIMHD7os6899KseDDfaA6Dhzb8lJbsriOPHbZZddVun2AVUYFB27bssa2jVp0iT1/iuvvOK3NrliH1Zz8uRJt+HOarWq3cWelOc9l6VFixbqcMu9e/d6DIs7d+7E2rVrAdiOKFSHc3Xss5764uaL3sSvvvoKjz76KADbDuaKFSvQr1+/ctUhSZI6nbIQAp988onbsjNnzlTv2y9H4S/jx49Xd+7ffffdSq97vqDT6dQhOklJSW4vK+EPjoHts88+8xh2Pv7443LVbd9ZOHXqFKZOnaruwE2aNMlnR9C1FBgYqE5bn5qaih9++MFt2ZUrV5Y5Q619256fn69OSlFRVqsVEyZMUHdUZ86cqR6hfeGFFwDYZp+79957K/U6gG3WU19tv6qiNzE3N9fpf3XllVdWuK6+ffuq96viUlB2vt6+Oj7u6XP+ySefqN/97iYDc6xr5syZbvcV5s6dq66fI0eO9Gp+AVeqy3eNXq/HokWL1EtGbd26FSNGjHAZFidOnKjenz59uk/ncnDcuZ47d65TD8ykSZN8errFrl27MGLECHVY6wcffODxkmLu+HKdcVwvv/zyS7eTwqxcuVI9YNS7d2+Xk7mNGjVK3V9YuHChOhFbSQcOHFD3Kxs2bFip0FbVnx93pk2bhg8++ACA57B4/fXXqwfbPv/8c48TRJbX2LFj1ff1888/4/fff8fJkycB2A70lHe4reM22medRJW9EKMQzhfTdXcx9Mcee0wt89dff3msz2q1ij59+qjlH3/8cWEymdyWz8/PF99++61YuHBhqWWOF0r25kLHQ4cOVct/8MEHpZYXFRWJu+++2+nixu4uzP3BBx+oZebNm1fmazte7NsVxwtpNmrUSBw+fLhUmaSkJNG6dWu13KeffuqyLvtyby5+XJ6yNcG8efOEJEkCgAgODq7UBbDPnDkjgoODBQCh1+vFmjVrSpX59ttv1b9h06ZNXV6A1deefPJJ9TWvvfZace7cObdlrVarWL16tcuLs7q76LIrZZU9deqUiIyMFABEYGBgmZ+J1NRU8frrr4u9e/eWWlbWZ6Wk/v37q+WnTJni8oK5JS+q7u5z7SgzM1P9/zvejh075lW7KmrSpEnqayUkJJRa7sv/28aNG9XlUVFRYvfu3aXKHDt2TDRq1Mjpb/Dtt9+WKpebmyuaN28uAAhJksSMGTM8Xrw4MzNTfPzxx2L16tWllr388svqa40ZM8ZpmdlsFv369VOXf/nllx7/BjXF66+/Lg4cOOCxTEpKihg8eLD63tu2bevx+7MshYWFIiQkRAAQV199dYXqcNxHKM/3iC+3r3l5eaJx48Zq2blz55Yqs3r1aqHX6wUAERoaKlJSUlzWpSiK6Nmzp1rX9OnTS5XZu3evehF5WZbFvn373L5Px8+Nq8+zr/8W3vC0XTCbzWLMmDHq8iuuuEJkZWWVqmP06NFqmXHjxrks41jnkiVL3O6zOFIURbRo0ULdjjRo0EB9nfj4+HK/V3f27t2rXpAdgHj33XcrXJev15lRo0apdd1zzz2ltqNJSUmiWbNmapnly5e7rWvq1Klqueuuu67UepOeni569OhR5n6lEM7fza6+A/zxt/CGp+3Phx9+qC6PjY11uY395JNP1DKXXXZZmd/x27ZtE08//bRXbXP8Pnf8Hv3666+9er4j+/ravXv3cj/XnSo7R3Hw4MHqka577rkHTzzxBJo3b66OvW3Tpo06tbosy1iyZAn69euHM2fO4OOPP8aPP/6IW2+9Fd26dUNERARyc3ORnJyMnTt34s8//0ReXh7eeOONSrfz0UcfVXvrpk2bhvXr12P48OGoV68e4uPjMX/+fMTHx+Paa69FfHy8xyEggwcPVu8/88wzuHDhAtq3b6+eeBwXF4euXbt63baxY8fil19+waJFi3Du3Dn07NkTd911F/r16wedToedO3fim2++UY/ADBs2TB2WRTYrV67E5MmT1SNYkydPRmZmZpnXxenZsyeaNWtW6vHGjRvjP//5Dx566CFYLBZcd911mDhxIgYMGACLxYKVK1eqM7Hp9XrMnj3b40VmHc+JTUhI8Hi+gCf//ve/sWfPHvz5559Yt24dWrVqhdGjR6Nfv36IjY1FUVERUlJS1N7plJQUDB48GC+99FKFXs8bTZo0waJFi3DTTTfBZDJh0qRJ+OCDD3DTTTehbdu2MBqNyMrKwrFjx7Bt2zZs3rwZVqu1zGsfeuPLL79Enz59kJ+fj88//xxbt27FHXfcgSZNmiA1NRWLFy/G5s2b0a9fPyQnJ+PMmTNeHZWOiIjAuHHjnM6PGThwINq2bVvpNlcX/fv3x5QpU/D5558jIyMDV1xxBSZNmoT+/ftDlmXs2LED33zzDfLy8jBq1CiPn6WQkBAsXboUAwYMQHZ2Np555hl8+eWXGD16NDp16oTQ0FBkZ2fj5MmT2LFjB9avX4+ioiL14t12mzZtUkd1NGnSBLNnz3ZartfrsWDBAnTv3h3Z2dl44oknMGDAAI/np9YES5YswSuvvIJu3brhmmuuQadOnRAdHQ0hBFJTU7F9+3b8+uuv6iiC0NBQzJs3T+0xqIjAwECMGDECS5Yswc6dO5Gbm1vmpRFKbkccZ+JLSEgotbxnz55OMwfb+XL7GhwcjNmzZ+Pmm2+G1WrF3Xffjd9++w3XXXcd9Ho9/vrrL8yfP1+dBfHDDz9EgwYNXNYlSRJmz56Na665Bvn5+Xj11VexefNmjBkzBiEhIdixYwe+/vpr9f/w/PPPl+u73hVff9dUhl6vx8KFCyFJEn766Sds27ZNPWfRcXr+OXPm4NixY9i/fz8WL16MVatWYezYsejduzeioqLUCVl2796N1atXIyMjw6uZoiVJwl133aX29NtPGbr66qu9uoyPN06fPo2hQ4eq53wNHDgQ7dq1K3Nfwd1ke75eZz766CNs3boVqamp+Oabb3DgwAHceeedqFevHvbv348vv/xSHXY/YcIEj9fzffXVV/H777/jyJEjWLlyJXr27Il7770XcXFxOH78OL788kucOnVK/TtU9vx7LT4/nkydOhWSJGHq1Km4cOGCes6i47D7Rx55BH///Tfmz5+Pffv2oVOnTrjppptwzTXXoFGjRrBarbhw4QL279+PP//8EwkJCWjdujVmzJhR5uvffffd6uRu9t7K4ODgcl/ebO/ever66u2lXrzii7TpTY+ixWJxOqpf8ubqSPbZs2edjox6uul0OvHVV1+VqqO8PYpCCPH88897fK2rrrpKnD9/Xj0y7qnn4bbbbnNbT8m/lTe9JGazWdx7771l/j3GjBkj8vPz3dZjL1fXehRL9hp5e3N3ZMzuvffeEwaDwe3zw8LCXPZ4l+T4HHdHlr1lMpnEI488InQ6nVfvceLEiaXq8GXPlN3WrVtFq1atvGpTaGioyyOJ5e1RFEKItWvXqj2arm5dunQRycnJIi4uTj1q6I3t27c71bNgwQKv21RRVdmjKIRt+33nnXe6/dvJsixmzJjh1KPh6TNz5MgRpyPUnm6BgYFi5cqV6nMzMjLUba8syx63699//71aT48ePSrVs1YddOvWzettVvfu3cWuXbt88rpLly5V650/f36Z5cu7fXW332Dnq+2rELZ1IjQ01G1dAQEBLkcTubJ69WoRGxvrti5JksSTTz4pFEXx+u9V1nbfl38LT7zZLpjNZjF27Fi1XN++fUv1GmZlZYlx48Z5vS68/PLLXrUvISFBHRlkv82ZM6eyb1vl+P59uS77ap0RQoh//vmnzO/S22+/3avtXkJCQpnb5CFDhoiMjAyP9XjTo+iPv0VZ7HV62o/9+OOP1XKxsbFi//79TssVRRFvvPGGCAwM9Gpd8HafWVGUUv9HV/tjZXnmmWfU5/uyZ73KgqIQQhQUFIh33nlH9OvXT0RFRTntwHramVm/fr144IEHROfOnUVkZKTQ6XQiPDxcdOrUSYwbN07MmjVLnD171uVzKxIUhRBi5cqVYuTIkSImJkYYDAbRqFEjMWjQIPHVV18Js9kshBBeBUWLxSJmzZolBg4cKGJiYtRhLa7+VuXZ+d26dau45557RJs2bURISIgwGo2iZcuW4o477hB//vlnmc8vz4pc3pW+OvNXUBRCiP3794uHH35YtGvXToSEhIiwsDDRpUsX8eyzz4rExMQyn5+Xl+e0s3Lx4kUfvGMh4uPjxXPPPSf69u0rYmNjhV6vF8HBwaJly5bi+uuvF2+//bbbYR3+CIpC2HYwvv/+ezF27FjRsmVLERoaKvR6vYiOjha9e/cW9913n1i8eLHIzc11+fyKBEUhbMPynnrqKdG+fXthNBpFZGSk6N27t3j//fdFXl6eUBRFGI1GAUAMHDjQqzoVRVGHyERHR4vCwsJytakiqjoo2i1btkyMHDlSxMbGisDAQNGsWTNx2223iS1btgghhNdBUQjb3+3XX38VkyZNEu3atRPh4eFCp9OJyMhI0a1bNzFx4kQxd+5ckZ6e7vQ8x53O5557zuNrCCHEhAkT1PJPPvlkmeWrs3Pnzom5c+eK++67T1x++eUiNjZWGAwGERAQIGJiYkSvXr3E/fffL1atWuVxSG95WSwWdRjb0KFDyyzv651rISq/fXWUmJgonnnmGdG5c2cRFhYmQkJCRLt27cTDDz9c5tDeks6fPy+mT58uevbsKSIjI0VQUJBo1aqVuOuuu9TPRVkc/xbeHCD05d/CHW+3CxaLxekz6SosCmELNVOnThU9evQQ9erVE3q9XoSGhoq2bduKUaNGiQ8++ECcOHGiXG0cNGiQ+rohISEiJyenvG/TLX8FRSF8s87Y5ebmiv/85z+iX79+IiYmRgQGBoqmTZuKW2+91ekAmzeKiorE7NmzxaBBg0SDBg1EQECAaNy4sRg5cqRYtGiRV4GtPEFRCN/+LTzxdj925syZHsOiELZOrNdff10MGDBANGzYUAQEBIigoCDRpEkTMWTIEPHyyy+LrVu3lqt9r7/+utN6VN5TohRFEU2bNvV6G10ekhCVnI6TiHxi1apV6kxijz32WLknVqHK279/vzpTmLf/gzVr1qjXOXr88cfx0Ucf+bOJRJr48MMPMW3aNOh0OiQmJlbZZTKIiMiztWvXqqe7rVy5slKz0pak/ZW4iQjApWt4hoWF+fVcQXLv008/Ve97e27krFmz1Pu14dqJRK48+OCDaNiwIaxWq1fn3RARUdWwn7Pfr18/n4ZEgEGRqNqwB8Vp06YhNjZW49bUPhs3bvR4/cbPPvtMnRQlLi4ON9xwQ5l17tmzR53cYMiQIS6vuUZUGxiNRrz22msAgNmzZ+Ps2bPaNoiIiLBp0yb1GsaVveyUKxx6SlQNpKWloX79+oiJicGJEyd8dpFkuqRNmzYoLCzEddddhx49eiA2NhZmsxknTpzAL7/8gt27d6tlly1b5jYo/v7771AUBceOHcOMGTPUWco2bdqEq666qkreC5EWFEVBnz598M8//+CRRx7xeD0/IiLyvyFDhuDPP//E+PHjsXDhQp/Xz6BIRHVCmzZtcOLECY9ljEYjvvrqK0yYMMFtGcdLmNh5ez7jH3/8gfz8/LIb60JMTAz69+9foecSERERlReDIhHVCdu2bcOSJUuwbds2nDlzBhcvXkR+fj6ioqLQrl07DBkyBA899JDba6fZ2YNiaGgo2rVrh4ceegiTJ0/26rqLLVq0QFJSUoXaP2DAAKxfv75CzyUiIiIqL73WDSAiqgpXXHEFrrjiikrXw2NrREREVBewR5GIiIiIiIiccNZTIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJJ7MhIiLNKYqCwsJC5Ofnq7e8vDzk5+ejoKBA/VlUVKTeTCaT29/NZjOsViusVisURVHvO/6uKIp6H7DNaOvuZp/VVpIk6HQ6GAwG6PV6BAQEQK/Xq78bDIZSt6CgIPVmNBrd3jcajQgJCUFoaCj0en49ExGRtvhNREREPiGEQF5eHrKzs9VbTk6Oy/v2m2MYpEuMRiNCQ0M93sLDwxEZGel0Cw4OdnmtTyIiovLirKdEROSWEALZ2dnIyMhAenq6y5/2+5mZmSgqKqrU68myjODgYBiNRgQHByMkJET93Wg0Ys38jZAUAIrkcAOkEr9DSLZykACB4lvxfTjcF4Bkf8xhMRyzloTigg6/S8J28oYkIIp/Oj4GGRD233UCkAWue2AQCgsLUVBQgMLCQqf7jj8rw2AwICIiwik8RkREIDo6GjExMahXrx5iYmIQExODsLAwhkoiInKLQZGIqI5SFAWZmZm4cOECzp8/jwsXLjjd7I+VN/wZjUaEhYUhPDxc/blx8Q5IFgkwy7afFhmSRQYsEmCVIFklwCrbQh/qbngREIBeAHoFQme7L/SK7afO9nPUEyOQk5ODrKwsZGVlITMzE5mZmSgsLCzXawUEBKgB0jFExsbGokGDBmjYsCHq1avHYbBERHUUgyIRUS0lhMDFixdx7tw5l7e0tDRYLBav6goLC0NUVBSio6Oxb/VhSGYZKJJtP806SOp92da7R1VOyAIwKLZgaVAgim8wKBj+wECkpaUhLS0NFy9eRFZWlld16nQ6xMTEqMHR1c/AwEA/vzMiItICgyIRUQ1mNptx9uxZnDp1CqdPn8bZs2fVIJiSklJmb6AkSahXrx5iY2MRGxuLzYv+BkzFwc+kg2SSgSIdJMHwV5sISQABCkSAFSJAAQIUjHvlJqSlpeH8+fNITU3F+fPnyzyQIEkSYmNjERcXhyZNmiAuLk6937hxYxiNxip6R0RE5GsMikRE1ZwQAmlpaTh16pR6S05OxqlTp5CSkqLO2umKLMuoX78+GjVqhL2/H4ZUqLt0M+lsPYAMgeSCQHGYDLTabkEKbpw6BCkpKUhNTUVKSkqZ51TGxMSo4bFp06Zo3rw5mjdvjsaNG0On01XROyEioopgUCQiqiYURUFqaioSExNx8uRJJCQkICEhAadPn/a4Q240GtG0aVM0adIEf83bDqlQVsMgewPJX+znUwqjBSLIijv+fQtOnz6NM2fO4MyZM8jOznb73ICAADRp0gQtWrRA8+bN1Z9NmjRBQEBAFb4LIiJyh0GRiKiK2c8dPHnypFMoTExMdBsIdTodGjVqhGbNmmH7T3sgFeggFeghFehs5wrW4QlgqHoSegUiyAoRZMHEGWOQnJyMpKQkJCcnw2QyuXyOTqdD48aN0bJlS7Rp0watW7dG69at0ahRI87QSkRUxRgUiYj8yGq14tSpU4iPj3e6uett0ev1aN68ORK2noGUr4eUr7P9NLFnkGoHAQEEKlCCLRDBFgx/+BokJSUhKSkJubm5Lp8TEhKC1q1bo1WrVmjTpg3atGmDli1b8hxIIiI/YlAkIvIRk8mEhIQEp0B44sQJl5ctkGUZTZo0wel/Um1BME9v+1nIQEh1k3pOpNECJcSCoVP648SJE0hMTITZbC5VXpIkNGnSBO3bt0f79u3RoUMHtG3bFsHBwRq0noio9mFQJCKqAEVRkJycjMOHD+PQoUM4fPgwTpw44XJimaCgILRu3RqHV5+EnKeHlGuwhUIGQqIyCan4PMgQC259bSSOHz+OEydOID09vVRZWZbRvHlzNTx27NgRrVu35iU8iIgqgEGRiMgLFy9exOHDh9VgeOTIEeTl5ZUqFx4ejrZt22LPr4ch5eoh5Rls5xPyHEIinxIGK0SIBZM+GoOjR4/iyJEjuHDhQqlyOp0OrVq1QseOHdGlSxd06dIFcXFxPOeRiKgMDIpERCVYrVYkJCRg79692L9/Pw4ePIjU1NRS5QIDA9G+fXscXHEcUo4Bcq4BMHFiGSKtCIMVSpgFd8wYhcOHD+PIkSPIysoqVS4yMlINjV26dEH79u3Z60hEVAKDIhHVeSaTCUeOHMG+ffuwb98+HDx4sNSkGpIkoXnz5kjengI5xwApx2A7r5ChkKjaUifOCTVjzPTrcODAARw9erTUOY96vR7t2rVTg2P37t0RGRmpTaOJiKoJBkUiqnPy8/Oxd+9eNRgeOXKk1I6j0WhE586dsXvJYcjZBtt5hVZZoxYTka8ISUCEmnHfl7fhwIEDOHDggMvzHVu2bIkePXqge/fuDI5EVCcxKBJRrWcymXDw4EH8888/2LVrF44cOVJq0pno6GhkHsuDlB0AOYu9hUR1ha3X0Qol3Iwbnh2EvXv3IiEhoVQ5BkciqmsYFImo1rFYLDh27JgaDPfv34+ioiKnMo0bN0bK7nTIWQGQsg22y1IwGBIRAKFXoEQU4aYXB2P37t1ug2OfPn1w+eWX47LLLkNQUJAGLSUi8h8GRSKqFc6dO4ft27dj+/bt2LNnT6kZSaOjo5F5JB9yVgDkzABIJp1GLSWimqas4BgQEIDLLrsMffr0QZ8+fdC6dWvOqkpENR6DIhHVSCaTCXv37lXDYXJystPy0NBQ5CeZbaEwM4CXqCAinxF6BUpkEYY/2R87duwodVmO6OhoNTT27t0b0dHRGrWUiKjiGBSJqMY4c+YMtm3bhh07dmD37t0oLCxUl+l0OnTu3BkH/3fSFg5zeY4hEfmfgIAwWvHQvAn4+++/S22bAKBDhw648sorceWVV6Jt27bsbSSiGoFBkYiqLavVikOHDmHTpk3YtGkTTp065bS8Xr16yDiYBzkj0BYOOSspEWlMSAIi3Iyx71yPv//+G8eOHXNaHhsbi379+uGqq65Cz549ef1GIqq2GBSJqFoxmUzYtWsXNm7ciC1btiAjI0NdptPp0LVrV+xfehxyRgBnJiWiak8YrJi6ZDK2bNmCnTt3OvU2BgYGolevXmpvY0xMjIYtJSJyxqBIRJrLysrC1q1bsWnTJuzYscNpRyo0NBT5Jy2Q0wNt4ZC9hkRUQwlJQIkswg0vDsSWLVtw/vx5dZkkSejSpQsGDBiAAQMGoEGDBhq2lIiIQZGINJKZmYkNGzZg3bp12LNnj9N1DWNjY3Fxby50FwMhZQdAEuw1JKLaRUBAhFgw6bNbsGXLFhw6dMhpeYcOHdTQ2KRJE41aSUR1GYMiEVWZ7OxsNRz+888/TuGwdevWSFyXAvliIIeUElGdIwKseGjBBKxfvx779u2D4+5ZmzZt1NDYokUL7RpJRHUKgyIR+VVOTg42bdqEtWvXYufOnU7hsF27djix6ix0aYGQTHoNW0lEVH0IgxWP/jgJf/31F3bv3l3qoNqQIUMwZMgQDk8lIr9iUCQinzOZTNi8eTP++OMP7NixAxaLRV3Wpk0bJKxJsYXDQoZDIiJPhF7BtKX3YP369di5c6fT9vSyyy7D0KFDMXDgQERERGjYSiKqjRgUicgnFEXBvn378Mcff2DdunXIy8tTl7Vq1QpJ61IhpwVBLmA4JCKqCKFX8PiSu7BmzRrs2bNHHZ6q0+nQt29fDB06FFdeeSWMRqPGLSWi2oBBkYgqJTk5GatWrcLq1auRkpKiPt6gQQOk/Z0L+QLDIRGRr4kAK+759lasWbMG8fHx6uNGoxHXXHMNRo4ciW7dukGSeL43EVUMgyIRlVtOTg5Wr16NVatW4fDhw+rjwcHBKDypQHfeCCnbwAlpiIiqgGK0YPxH12PNmjU4d+6c+nhcXBxGjBiBESNG8HxGIio3BkUi8ooQAnv37sXy5cuxfv16FBUVAbANeRIXdJDPGyGnB0JSGA6JiLQgICDCzBj+4lX4888/UVBQAMB2jcY+ffrg+uuvR//+/REQEKBxS4moJmBQJCKPMjMz8fvvv2P58uVITk5WH2/VqhWS1pyH7kIQJLNOwxYSEVFJQhZ4avm9WLFiBfbs2aM+Hh4ejiFDhuDGG29E69attWsgEVV7DIpEVIqiKPjnn3+wbNkybNy4UZ1lz2g0wpQgoEsJhpTLax0SEdUEIsiCcR9fj99//x0XLlxQH+/atStGjRqFAQMGsJeRiEphUCQiVU5ODlasWIGlS5fizJkz6uMdOnTA8WVnIKcFQbLKGraQiIgqSkDg7W3PYPny5di4caN6fcbIyEiMHDkSN910Exo1aqRxK4moumBQJCIkJCRgyZIl+OOPP1BYWAgACAkJQUG8Al2qEXKeQeMWEhGRLwmDFXfOvhn/+9//1F5GSZLQr18/jBo1CpdffjlkmQcGieoyBkWiOspqtWLz5s1YsmQJdu/erT7eqlUrJK+6APmCkRPTEBHVcgICr6x/DEuXLsXOnTvVxxs1aoTRo0dj5MiRCAkJ0bCFRKQVBkWiOiY7OxvLly/H0qVL1eseyrIMnDdAdzaYl7UgIqqjlCAL/jVjMFasWIHc3FwAtsse3XDDDRgzZgwaNmyocQuJqCoxKBLVEefOncOPP/6IFStWqFOmR0REIPeA2TY5jYkzlxIRkW3G1Mf+OxE//vijOtu1TqfDgAEDMHbsWHTq1EnjFhJRVWBQJKrl4uPjsXDhQqxbt06duKBNmzZIXHHeNjkNh5cSEZELAgJvbnkKP/74o9Ow1K5du2Ls2LHo378/dDoeZCSqrRgUiWohIQR27dqFhQsX4u+//1YflzICoD8dDCkrgMNLiYjIa0qIGUNe6IvVq1erl0yKi4vD7bffjuHDh/PyGkS1EIMiUS1itVqxfv16/PDDD4iPjwdgGy4kzhmgOxPM2UuJiKhShMGK8Z9dj6VLlyI7OxsAEBsbi3HjxuHGG2+E0WjUuIVE5CsMikS1gMViwdq1azF//nz1fJKgoCCYT0rQnQnh+YdERORTQha4/4exWLx4sXp5jYiICIwZMwa33HILwsLCNG4hEVUWgyJRDWaxWLB69WrMnz8fZ86cAQCEh4cjb78VunPBkCy8BhYREfmPkASm/noXFixYoH4PBQcHY/To0Rg3bhzCw8M1biERVRSDIlENZDabsWrVKnz//fc4e/YsgOIZTPdaoTtnhGRlQCQioqojIPDcHw/iu+++Q0JCAgAgJCQEt956K2699Vb2MBLVQAyKRDWI1WrFmjVrMGfOHJw7dw4AEBkZiZzdFltAVBgQiYhIOwICr/71OObMmYMTJ04AAEJDQzFu3DiMGTMGISEhGreQiLzFoEhUAwghsHHjRnz99ddITEwEAERHRyNrZ5HtGoi8xAUREVUjAgIvrX0Ec+bMUb+3wsPDMX78eIwePZqT3hDVAAyKRNWY/TIXs2fPxpEjRwAAYWFhyN8nbOcgMiASEVE1JiDw/OqH8O2336qTrdWrVw+TJ0/GddddB71er3ELicgdBkWiaurIkSOYNWsWdu/eDQAwGo0oOipDdyaY5yASEVGNIiDw9Mr7nE6daNasGR544AH0798fksQDn0TVDYMiUTWTmpqKr776Cn/88QcAwGAwQEk0QHc6GJKZl7kgIqKaS0gCDywah/nz5yMrKwsA0KVLFzz00EPo2rWrxq0jIkcMikTVRH5+PhYsWIDFixejqKgIACCfD4I+KZTXQSQiolpF6BSM+3wEfvzxR5hMJgDANddcgylTpqBx48Yat46IAAZFIs1ZLBasWLECc+bMQXp6OgBAyjJAnxAGOdegceuIiIj8RwRYMfyNflixYgWsVisCAgIwduxY3HHHHQgODta6eUR1GoMikYb27duHjz76CMePHwcAxMXFIXV1LuT0QEjg+RpERFQ3zD4xA5988gl27twJwDbhzf3334/hw4dDlnlePpEWGBSJNJCWloYvvvhCPQ8xLCwM+XthuxaiYEAkIqK6R0DgtQ1T8dlnn+HMmTMAgA4dOuDxxx9H586dNW4dUd3DoEhUhSwWC/773/9izpw5yM/PhyRJkM4FQZ8YCsnCI6ZERERCErjn+9GYN28e8vPzAQA33ngjHnjgAYSHh2vcOqK6g0GRqIrs2bMHH374IRISEgAAUo4e+hPhPA+RiIjIBWGwYvBrfbBy5UoAQGRkJKZMmYLhw4fzchpEVYBBkcjPcnJyMGvWLCxfvhwAEBERgbydCuRUI89DJCIiKsP7u1/CBx98oB5o7d69O6ZNm4YWLVpo2zCiWo5BkchPhBBYt24dZs6cqc5mKp8z2i53wWGmREREXhOSwN3z/4W5c+fCZDJBr9fjtttuw8SJExEYGKh184hqJQZFIj9ITU3Fhx9+iC1btgAApHwd9MfDIWcHaNwyIiKimksEWtH78Xbq92vz5s3x3HPPcbIbIj9gUCTyISEEfv31V8yaNQsFBQXQ6/UQJwOhOxXC2UyJiIh85KV1j+DDDz9Eeno6JEnCrbfeinvvvRdBQUFaN42o1mBQJPKR1NRUvPvuu+o1oKRsA/Tx4ZAL9Bq3jIiIqPYRegXXvtoTq1atAmC7FvGzzz6L7t27a9swolqCQZGokoQQWLlyJT755BPk5eUhICAA1iOB0J3lZDVERET+9vrmaXj//fdx4cIFAMDo0aPx4IMP8txFokpiUCSqhLS0NLz//vuXzkVkLyIREVGVEzoFw9++AsuWLQMAtGjRAi+99BLatWunccuIai4GRaIK2rhxI959911kZ2fDYDBAORYI3Zlg9iISERFp5I0tT+Kdd95Beno69Ho97rnnHowfPx46nU7rphHVOAyKROVkMpnw2WefYenSpQAAKVcP/bFwyPkGbRtGREREEHoFfZ/ugI0bNwIALrvsMrz44oto1KiRxi0jqlkYFInK4eTJk5g+fbp60V/d6WDokkI5oykREVE1IiDwxLK7MXPmTBQUFCAkJATPPvssBg4cqHXTiGoMBkUiLwgh8L///Q+ffPIJioqKEB0djZwNCuRMnihPRERUXc099RHefPNNHDx4EABwyy23YMqUKQgI4HWNicrCoEhUhvz8fLz77rtYt24dAEBKD4AhPhySmec7EBERVXdCEhj96WAsXLgQANC+fXu89tpriIuL07hlRNUbgyKRB4mJiXjppZeQnJxsOxH+uJET1hAREdVAr2+ehrfeegvZ2dkcikrkBQZFIjfWrl2Ld999FwUFBYBJhuFIBOQcDlUhIiKqqUSAFe0mN8SBAwcAAOPHj8f9998PvZ6XtSIqiUGRqASLxYJZs2bhp59+AgBImQYYjkZCMssat4yIiIgqq+RQ1N69e+O1115DeHi4xi0jql4YFIkcZGVl4ZVXXsHu3bsBALpTxbOacqgpERFRrfLCn1Pw73//G4WFhWjcuDHeeusttG7dWutmEVUbDIpExRITE/Hcc8/h7NmzMBqNMO8KgC49SOtmERERkZ98Ef8OXnjhBZw7dw5BQUF4/vnnce2112rdLKJqgUGRCMC2bdswffp05OXlAYU6GA5FQs7n+QpERES1ndAruOyR5ti5cycAYPLkyZg0aRIkiaOJqG5jUKQ6TQiBn376CZ9//jkURYGUZYDhcCQkC89HJCIiqisEBP71ybVYvHgxAGDEiBF4+umnYTAYNG4ZkXYYFKnOslqt+Pjjj7F06VIAgJwSBP2JcEiCRxCJiIjqokeX3okPP/wQVqsVPXr0wJtvvomwsDCtm0WkCQZFqpNMJhPeeOMNbNiwAZIkQT4ZwusjEhEREd7c+hReffVV5Ofno1mzZpgxYwYaN26sdbOIqhyDItU5OTk5eP7557Fv3z4YDAaI/cHQpXHSGiIiIrL5Iv4dPPPMM7hw4QKioqLw/vvvo23btlo3i6hKMShSnZKamoqnn34aiYmJgEWC4XAk5KwArZtFRERE1YwIsKL5hCjEx8cjJCQE77zzDrp166Z1s4iqDGfsoDrj1KlTmDJlii0kmmQY9kUxJBIREZFLUpEOSfMzcdlllyEvLw9PPvkktm7dqnWziKoMgyLVCSdPnsSjjz6KCxcuQMrXIWBfNOR8zmRGRERE7klWGUe+SMGVV16JoqIivPDCC1izZo3WzSKqEhx6SrXesWPH8OSTTyIrKwtSrh6GA1G8/AURERF5TUgCA17rhtWrV0OSJDz11FO48cYbtW4WkV9xb5lqtUOHDmHq1Km2kJjDkEhERETlJwkJf726F//6178ghMB7772HZcuWad0sIr/iHjPVWgcOHMC0adOQm5sLKdvAkEhEREQVJkHCb09uxpgxYwAA7733HpYvX65xq4j8h0NPqVY6evQopk6diry8PEiZBhgORUJSGBKJiIiocgQEbvroGvz8888AgGeeeQY33HCDxq0i8j3uOVOtc/LkSTz11FO2kJhlgOFQFEMiERER+YQECf+bugGjR48GYOtZXLFihcatIvI97j1TrXLq1ClMmzbt0jmJhyIhKZLWzSIiIqJaRIKEZU9sxOjRoyGEwIwZM7Bhwwatm0XkUxx6SrVGSkoKHnnkEZw/f56zmxIREZHfCQgM/Xcf/PbbbwgICMCMGTPQs2dPrZtF5BMMilQrZGdn4+GHH0ZSUhKkfB0M+6MhmRkSiYiIyL8EBPo+3x4bN25EcHAwPv74Y7Rv317rZhFVGoMi1XgmkwlPPvkk9u3bB5hkBOyNhlSk07pZREREVEcISaDzI3HYvXs3IiMj8dlnn6Fp06ZaN4uoUtjlQjWaoih4++23bSHRIsFwMIohkYiIiKqUJCQc/Pw02rVrh8zMTDzzzDPIzMzUullElcKgSDXarFmzsG7dOkABDIcjIefrtW4SERER1UGSVUbidxlo1KgRzpw5g5deeglFRUVaN4uowhgUqcb63//+h8WLFwMA9PHhkLMCNG4RERER1WWSWca7776LkJAQ7Nu3D++//z54lhfVVAyKVCPt378fH330EQBAlxgC3QWjtg0iIiIiAnBfq6cxffp0yLKM33//HT/88IPWTSKqEAZFqnHOnz+Pl19+GRaLBfKFQOhOh2jdJCIiIiLVi1e8h8ceewwA8OWXX2Lz5s0at4io/DjrKdUoJpMJjz76KI4cOQIpTw/D3mhIiqR1s4iIiIhKue79fli6dClCQ0Px9ddfo3Hjxlo3ichr7FGkGuWDDz7AkSNHALMEw6FIhkQiIiKqtlY8vQWdO3dGbm4uXn75ZZhMJq2bROQ1BkWqMX7//XesXLkSsizDcCQSkomXwSAiIqLqSxISpk+fjoiICMTHx+Pjjz/WuklEXmNQpBrh1KlT+PDDDwEAUoKRM5wSERFRjTCh4cN45ZVXIEkSli9fjhUrVmjdJCKvMChStWcymfDaa6+hoKAAUqYBulOcvIaIiIhqjhf6zsDkyZMBAB9//DFOnz6tcYuIysagSNXeF198gfj4eNt5icciIIHnJRIREVHN8t3dy9CjRw8UFBTgzTffhMVi0bpJRB4xKFK1tmPHDixZsgQAoD8WAamI5yUSERFRzSNBwgsvvIDQ0FAcOnQI33//vdZNIvKIQZGqrby8PLz33nsAAPmsEbqMQI1bRERERFRxdzR6BE888QQAYN68eTh06JDGLSJyj0GRqq1Zs2YhNTUVKNRBnxiqdXOIiIiIKm3G8NkYPHgwrFYr3n77bRQVFWndJCKXGBSpWtq5cyf+97//AQAM8eGQFK6qREREVDtsfHMfoqOjkZyczCGoVG1x75uqnYKCAsyYMQOAbcgpL4VBREREtYlklfH4448DABYsWICkpCSNW0RUGoMiVTvff/89UlJSgEKZQ06JiIioVnpr8Gfo168fzGYz3n//fSiKonWTiJwwKFK1curUKSxatAgAoD8ZxiGnREREVCtJkPDEE08gKCgIe/fuxYoVK7RuEpET7oVTtSGEwMyZM2E2myGlB0BO5yynREREVHvd2fhR3HPPPQCA2bNnIy8vT+MWEV3CoEjVxubNm7F9+3ZAKe5NhKR1k4iIiIj86qvbf0KzZs2QmZnJiW2oWmFQpGrBYrHg888/BwDozgRDLtRr3CIiIiIi/5OEhClTpgAAfvrpJ5w7d07jFhHZMChStbBixQqcPn0aKJKgOx2idXOIiIiIqswr/T9Az549UVRUhNmzZ2vdHCIADIpUDZhMJsydOxcAoDsdCsnK1ZKIiIjqDgkSHn74YUiShD///BOHDx/WuklEDIqkvf/+979IS0sDCmXozhm1bg4RERFRlZvS/gUMGzYMADBv3jyNW0PEoEgay8vLw4IFCwAA+uRQSIIT2BAREVHdNHHiRMiyjC1btuDo0aNaN4fqOAZF0tSyZcuQnZ0NKV8H+XyQ1s0hIiIi0szk5tMwePBgAOxVJO0xKJJmzGYzfvrpJwCA7kwIL4dBREREdd7EiRMhSRI2bdqE+Ph4rZtDdRiDImlmzZo1uHDhAmCS2ZtIREREBODelk9h0KBBAICFCxdq3BqqyxgUSROKomDRokUAAN3ZYJ6bSERERFRs/PjxAIB169bZJvwj0gCDImli586dSEhIACwSdCmc6ZSIiIjI7pGOL+Gyyy6D1WrF0qVLtW4O1VEMiqSJX3/9FQCgOx/E6yYSERERlTBmzBgAtn0mk8mkcWuoLuIeOlW5tLQ0bNmyBQAgnwvWuDVERERE1c+bgz5FbGwssrKysHnzZq2bQ3UQgyJVud9++w1WqxVSlgFygV7r5hARERFVOxIkXHfddQCAFStWaNwaqosYFKlKCSGwcuVKAOC5iUREREQeLHrsNwDA33//jdTUVI1bQ3UNgyJVqcOHD+Ps2bOAVYJ8kZfEICIiInJHKtSjR48eEELgjz/+0Lo5VMcwKFKVWrNmDQBAvhgISeElMYiIiIg8GTp0KABg/fr12jaE6hwGRaoyVqsVa9euBQDIF9ibSERERFSWj275FjqdDvHx8Th9+rTWzaE6hEGRqszhw4eRnp4OWCTImQFaN4eIiIio2pMsMnr27AmAvYpUtRgUqcps3boVACBnBEASHHZKRERE5I2BAwcCADZs2KBtQ6hOYVCkKmO/BpCcHqhxS4iIiIhqjo9v/RYAcPToUWRmZmrbGKozGBSpSqSmpuLkyZOAAOQMBkUiIiIib0lFOrRq1QpCCOzatUvr5lAdwaBIVWL37t0AACnHAMnC1Y6IiIioPC6//HIAwPbt2zVuCdUV3GOnKrFnzx4AgJxl0LYhRERERDVQnz59AFw6+E7kbwyKVCXsQVHK5mynREREROX1/JXvQJZlpKam4sKFC1o3h+oABkXyu7S0NJw9e9Z2fmI2exSJiIiIykuyymjdujUA4ODBgxq3huoCBkXyu2PHjgEApHw9JCtXOSIiIqKK6NKlCwBg//79GreE6gLutZPfqUExV69xS4iIiIhqro4dOwIA4uPjNW4J1QUMiuR3alDM47BTIiIioop679YvAAAnT56EEELj1lBtx6BIfnfixAkAgMweRSIiIqIKk/L10Ol0yM7OxsWLF7VuDtVyDIrkV0VFRUhNTQUASAU6jVtDREREVHNJQkKTJk0A2HoVifyJQZH86uzZs1AUBbBIgJmrGxEREVFlNG3aFIBtH4vIn7jnTn51+vRpAIBUqIMESePWEBEREdVsDRs2BACcO3dO45ZQbcegSH6lDjst5LBTIiIiosqyB8WUlBSNW0K1HYMi+VV6errtThFXNSIiIqLK+uLh7wBcOhhP5C/ceye/ss/IJTEoEhEREVWafZ8qKytL45ZQbce9d/Ire4+ixIlsiIiIiCrPwqBIVYN77+RXeXl5tjsWrmpERERElWU/+J6bmwuLxaJxa6g24947+VVBQQEAQLJyxlMiIiKiSrNc2qdSD8gT+QGDIvmVPSiCQZGIiIio0iRIgLDdN5vN2jaGajUGRfIrk8lku6MwKBIRERH5hGL7waBI/sSgSH4lhNC6CURERES1S/HlqePj47VtB9VqDIrkV5LEnkQiIiIif+BkNuRPDIrkVwyKRERERP7RokULrZtAtRiDIvmVTlc8NoJ5kYiIiMg3is9RDA4O1rYdVKsxKJJfGY1G2x2dom1DiIiIiGoBIQl1Dz4kJETbxlCtxqBIfmXfgAk9J7UhIiIiqjTdpX0q9YA8kR8wKJJfqUe6dAyKRERERJVWvE8VEBAAvV6vcWOoNmNQJL8KCwsDAAgDh54SERERVZZ9nyoqKkrjllBtx6BIfhUbG2u7E8CgSERERFRZItAKAKhXr57GLaHajkGR/MoeFO0bNSIiIiKqhOKD7wyK5G8MiuRXMTExAADBHkUiIiKiShv3yk0ALu1jEfkLgyL5VaNGjQAAIsiicUuIahdJr4dcfA4wERHVHadOnQIAxMXFadwSqu0YFMmvmjVrZrsTICD07FUk8gV7SJQCDAyLRER1jD0oqvtYRH7CoEh+ZTQa0aBBAwCAMLJXkaiy1J5EnQxIEsMiEVEdIiBw5swZAAyK5H8MiuR39g2ZCGZQJKoMp5CoPsiwSERUV4ggK4qKihAQEKAeiCfyFwZF8rs2bdoAAJRQBkWiStO52GwzLBIR1Qki1AwAaNu2LXQ6ncatodqOQZH8rmPHjgAAEWbWuCVENVeZk9cwLBIR1Xq3vDICANC+fXuNW0J1AYMi+V2HDh0A2IaeCklo3BqimsflkFOXBRkWiYhqsyNHjgBgUKSqwaBIftegQQNERUUBMnsVicrL65CoPoFhkYioNhKSUINip06dNG4N1QUMiuR3kiShe/fuAAAlokjbxhDVIOUOieoTi8NiSIh/GkZERFVOhJlRVFSE6OhoznhKVYJBkapEz549ATAoEnlN1lUsJNpJEqSgQPYsEhHVEhM+uBkA0KNHD0iSpHFrqC5gUKQqYQ+KItwMIfM8RSJPdO3bIHH65Th7R8fKVSRJkJo0RN6Yvr5pGBERaeaff/4BYAuKRFWBQZGqRJMmTVC/fn1AZq8iUVmEMQBFjczI6mTB2dsqMWFB/Xo4MywWGW11DItERDWY0Cs4ePAgAKB3794at4bqCgZFqhKSJOGqq64CACj1TBq3hqj60rVvg+PjI2y/GBRkdbLg3PgKhMX69XBmaAzMYYDQAZltGBaJiGoqJcoEq9WKVq1aoXHjxlo3h+oIBkWqMv379wcAKNEmCHD4KVFJuvZtEH93LCwxDrMDGxRkdi5nz6JDSLRT9AyLREQ11dUP9gIA9aA7UVVgUKQq0717d4SGhgIBCi+TQVSCy5BoV9yz6G1YFAF6p5Box7BIRFTzCFlg27ZtABgUqWoxKFKVMRgMuPLKKwEA1thCjVtDVH3o2rV2HxLtvB2GWr8ezg6IdLuYYZGIqGZRok0oKChAw4YN0bFjJSc5IyoHBkWqUsOGDQMAKLGFEBKHnxLp2rdB/OT6nkOiXfEwVLdhsUFMqSGnrtjDYtoD/RgYiYiqucsndwYADB06lJfFoCrFoEhVqmfPnoiOjgYMAkoUJ7UhEsYA70KinbuwWL8ezg6uV2ZItFP0QEGsxN5FIqJqTOgVbN++HYAtKBJVJQZFqlJ6vR5DhgwBACj1OfyU6jZd+zY4YZ/htDwMCvRNMzCydTLeyvwNH+Yuxys5P+PufWtQLzenXFVxKCoRUfVlrV8Aq9WKdu3aoUWLFlo3h+oYSQjB8X9UpRISEjBp0iRAAAF/x0Aq0mndJKIqp2vfBsfvjoW5PL2JAAKLzHht4TKM2bwLAVZrqeVmWYf/du+Dt4b/C0V6g9f1yhYg8rgVIT9vL1d7iIjIPwQEGtwWiFOnTuHJJ5/EzTffrHWTqI5hjyJVuZYtW6J79+6ABFgbFmjdHCJNiNPn0HijpVzPCSwyY95Hc3D7hh0uQyIAGBQrxv2zDV//MBuB5iKv6zbkABGbk8rVHiIi8h8RYcapU6cQHBzMYaekCQZF0sSoUaMA2IIiJ7WhukjJy4Nx/SE0/8X7iQleW7gM/Y4mlHkVUgHg8qQTeOGPpV7VG5gONP7vSVjOpXjdFiIi8q8rH7kMgG0iwODgYI1bQ3URgyJp4pprrkG9evWAAAUKL5VBdVR5wmJsVg7GbN4FACirtH35LXv+LvOcxcB0oPEvDIlERNWJEmTBhg0bAFw6uE5U1RgUSRN6vR5jxowBAFib5EGU2UdCVDt5GxbHbfzb7XBTdwyKFWP2eD7nUGcWDIlERNXMiOlXQgiBK6+8Eq1atdK6OVRHMSiSZkaNGoXQ0FCIYCuUerxUBtVd9rDYbKn7TXLfowkVqvvypONulwWmAw2WV6xeIiLyD2Gw4vfffwcA3H777Rq3huoyBkXSTEhICP71r38BYK8ikZKXh+B1B92GxdDCih1MCTG5fh6HnBIRVU+jPxoKs9mMrl274rLLLtO6OVSHMSiSpm699VYEBgZChFkgIr2foZGoNvIUFnODAitUZ15g6ecFZgCNf01kSCQiqmaEQcHSpUsBsDeRtMegSJqKjIzETTfdBACwtMhlryLVefawWPKcxT094ipU34URzjPlBaYDjZcmwnLmbIXbSERE/nHjjGtQUFCA9u3b48orr9S6OVTHMSiS5u68804EBwdDhFqgxHAGVKKSE9yEx+Rh4OPHIAzlq0cYgGvuO4eBN/+jPqYzC4ZEIqJqSARa8euvvwIAHnjgAUiS95dPIvIHBkXSXGRkpDq8wtIij9dVJILzBDfGADO6NA0GxoYDgFfXUQQAjAtHZMMwvNVwLQbe/I9t8poVSf5sNhERVdDAF3vCYrGgd+/e6N27t9bNIWJQpOrh1ltvtV1XMcgKa6MCrZtDVC0oeXkI/uswTCvqAwDEGzEQ/YK8uo6i6BcE8UYMACBKF4xoQx4aL0tmbyIRUTWkhJixevVqALbeRKLqgEGRqgWj0Yi7774bAGBtmguhVzRuEVE1IEkQhSY0/iURHb+cAhhliAWNIe4IdzsMVRhgW/5DYyDIton/KKMFtj3RB9ZzKYCsq8I3QEREZREQ6DAxDkIIDBo0CO3bt9e6SUQAAEkIwXF+VC1YLBbcf//9OH78OOSUIBiOR2jdJCJtSRKkgAAAgC6mHrIvb4q0y3Q4/MDnwAUL8EM2pC0FQJ4ChMgQVxqB28OBWL1TNY+d7YNj/Yr7IYVS/EMAirVK3w4REZVmrV8AS7tsGI1GfPfdd6hfv77WTSICwKBI1cyBAwcwZcoUAIBhbxTknACNW0SkEUmCpDcAsvNAU11MPZy8rwUO3/+5V9V8lNECyx4dDMPG/c4LhMKwSESkMaFTEHydGZmZmXjwwQd5SQyqVjj0lKqVLl264IYbbgAAWNrk8HIZVDe5CYkAYE27iFZfJaLj7CllVvNBeivXIREAJBmSLHEoKhGRhm5472pkZmaiefPmuPXWW7VuDpETBkWqdh544AFERERAhFhgjcvXujlE2nAREu3UsPil57B4siDWdUi0Y1gkItKMElaEpUuXAgCmTp0Kg6Gc10Ai8jMGRap2IiIi8OCDDwIArM1zoRgtGreIqArZexPLYE27iFZfu+9Z/CC9FQ4/18WL12NYJCKqakIWaHhDKBRFwfDhw9GrVy+tm0RUCoMiVUvXX389+vbtC8iApV0Wh6BS3eBhyKkr7oahfpDeCr89fi0MGzz0Jjq9LsMiEVFVsjbPxalTpxATE4PHHntM6+YQucSgSNWSJEl45plnEBoaChFmgbUJh6BSHeFlSLSz9SwmocNXtrD4UUYLLJ9ajpBox7BIRFQllPAiKE1s14x++umnERYWpnGLiFxjUKRqKzY2FlOnTgUAWJvlQgkxa9sgIn/ycsipK9YLaWj9lS0sHs9vgIC/yhkS1TYwLBIR+ZPQKah/XTCEELj++uvRr18/rZtE5BaDIlVrQ4cOxdVXX20bgto+C0JWtG4Skf+UszfRkT0sHnrei/MSPbGHRSIi8ikBgWte7oYzZ86gfv36eOSRR7RuEpFHvI4iVXuZmZmYPHky0tLSIKcGwRAfoXWTiPxD1kEy6Cv+fEUAovhgilTB44BCgbBwAikiIl+zNiiApW02dDodZs6cia5du2rdJCKP2KNI1V5kZCReeeUVyLIMpUEhrPULtG4SkX8oVghzBUOaY0gEnO97iyGRiMgvlGALdF1MAIB77rmHIZFqBAZFqhG6d++Oe+65BwBgaZ0DJZg7s1RLKVaIoqLyBcaSIdGuImGRiIh8SsgCcbeEwWQyoU+fPrj99tu1bhKRVxgUqcaYMGEC+vTpA+gELB0yIXTcCaZaSojK9S461eXl54S9iUREPicgcNWLnZGYmIjo6Gi89NJLkGXuflPNwHMUqUbJyMjAvffeiwsXLkBOD4D+UCQkcOINqsXKOm/RXW9iSZ7OWWRIJCLyC0uTPFhb5EKv1+PDDz9Et27dtG4Skdd4SINqlKioKLz11lsICAiAEl0Ea4tcrZtE5F+eeha9DYkAh6ESEVUxa7QJSss8AMDUqVMZEqnGYVCkGqdDhw54/vnnAQDWJvmwxnJyG6rl/DkMlb2JREQ+pxgtCOhdBCEERo0ahZtuuknrJhGVG4Mi1UiDBw/GnXfeCQCwtM2GElakcYuI/KxkWCxPb6Ij9iwSEfmVMCiof1MQ8vPz0a1bNzz22GNaN4moQhgUqca655570L9/f0AGzJ0yoRjZK0K1nK97FtmbSETkU0JW0GpSPZw5cwaNGjXCG2+8Ab2+EtfHJdIQJ7OhGi0/Px9Tp07FkSNHgEIZAXujIZl1WjeLyL8kCZKucuu5UGwzqxIRkW8ICFg6ZUKJLkJERAQ+//xzNG3aVOtmEVUYexSpRgsODsaMGTMQFxcHBCkwd+ZlM6gOEALCypBHRFRdCAhY2mRDiS5CYGAg3nnnHYZEqvEYFKnGi4yMxH/+8x9ERUVBhFpg7pgFIbGjnGq5SoRF9iYSEfmWtVkelIaFkGUZr776Kjp37qx1k4gqjUGRaoXGjRtjxowZMBqNEJFFsHRgWKQ6gD2LRESaszTJg7WZ7TIYTzzxhG3+BKJagEGRao327dvj7bfftl1jsZ4JlvZZEGBYpFqunGGRvYlERL5jaZynXtP5gQcewM0336xxi4h8h0GRapVevXrhzTffhMFggBJjgqVdNsMi1X7sWSQiqnLWhvmwtrKFxLvvvhsTJkzQuEVEvsWgSLXOFVdcgddeew06nQ5K/UJY2jIsUh0gBITF4jEwsjeRiMg3rPULYGmTAwC4/fbbcdddd2nbICI/YFCkWunqq6/GK6+8AlmWoTRgWKQ6hL2LRER+ZW2YD0u7bADA6NGj8cADD0CSJI1bReR7DIpUa1177bV46aWXbD2LDQpt5yxyghuqC1yERfYmEhFVnqVxntqTOHr0aDz22GMMiVRrSUII7jlTrfbXX39h+vTpsFgskNMDoD8SCUnhRp3qAEmCpNMBYFAkIqoMAQFr0zxYm9tmN50wYQLuv/9+hkSq1RgUqU7YsWMHXnzxRZhMJkiZBhgORUJS2KFOdYAkAZLMkEhEVEECAtbmubA2zQcA3HPPPZg4cSJDItV6DIpUZ+zZswfPPfcc8vPzIeXoYTgYBcnCsEhERESuCUnA0jobSsNCAMDDDz+McePGadwqoqrBoEh1yuHDh/H0008jOzsbUoEOhoORkAr1WjeLiIiIqhkhK7B0yIISXQRZljFt2jTcdNNNWjeLqMowKFKdk5ycjKeeegopKSmAWYLhYBTkXIPWzSIiIqJqQhisMHfKhAizIDAwEK+++ir69++vdbOIqhTH3VGd06xZM8yaNQvt27cHDALmrhmwRhdq3SwiIiKqBpQgC2L+FQARZkFERAQ++ugjhkSqk9ijSHVWfn4+Xn31VWzfvh0QgC4hDLqzRkjgyelERER1kRJRhKArLcjJyUHjxo3x3nvvoWnTplo3i0gTDIpUp1ksFnzwwQdYvnw5AEBOCYL+RDgkwbBIRERUl1gb5kO0z4fVakXHjh3x73//G9HR0Vo3i0gzDIpU5wkh8OOPP2LWrFlQFAVSlgGGI5GQzByZTUREVNsJScDSKgdKowIAwNChQ/HMM88gMDBQ45YRaYtBkajY9u3bMX36dOTm5gKFMgyHIyHncZIbIiKi2kroFZg7ZEJEmiFJEu677z5MmDCB10gkAoMikZPk5GQ8//zzOHXqFGCVoD8eBt0Fo9bNIiIiIh9TQs2oNyIAKSkpMBqNePnllzlpDZEDBkWiEnJycjB9+nTs2LEDACCfM0J/MoznLRIREdUCAgJKwwJIHQthNpvRuHFjvPXWW2jdurXWTSOqVhgUiVywWq2YO3cu5s2bBwCQcvS28xZNOo1bRkRERBUlZAFLm2wo9W2XxbrqqqvwwgsvICwsTOOWEVU/DIpEHmzbtg1vvvkmsrOzAbME/bEI6DJ4cjsREVFNowRZYOmYBRFigSzLuO+++3DbbbdBljl5HZErDIpEZUhNTcUrr7yCw4cPAwB0p4OhSwrlUFQiIqIaQEBAqV8IQzczCgoKEB0djVdffRU9evTQumlE1RqDIpEXzGYzPvvsM/z3v/8FAEi5euiPRkAu0GvcMiIiInJH6BTbUNNYEwCge/fueOWVVxATE6Nxy4iqPwZFonLYuHEj3n33XdtQVKsE/clQyKlGSGDvIhERUXWihBWh3vBApKSkQKfTYfLkybj99tuh03G+ASJvMCgSlVNaWhreeust7Nq1CwAgpwVCfzwckoXnOBAREWlNQMDaNA9oVQir1YpGjRrh1VdfRadOnbRuGlGNwqBIVAGKomDx4sX46quvYLFYAJMM/fFwTnRDRESkIcVogaVdFkSYBQAwbNgwPPHEEwgJCdG4ZUQ1D4MiUSUcPXoUb7zxBpKTkwEAcmqQ7ZqLVvYuEhERVRUBAWtcPnTti1BUVITQ0FBMnToVw4YN07ppRDUWgyJRJZlMJnz99df48ccfIYQATDIM8eGQM9m7SERE5G9KkAWWdtkQ4WYAQN++ffHMM88gNjZW45YR1WwMikQ+sn//fvz73//G6dOnAQByShD0CexdJCIi8gcBAWvjfOg62HoRg4OD8eijj+L666+HJHGSOaLKYlAk8qHCwkJ8/fXX+Omnn9TeRf3JMMgXAzkzKhERkY8oIWZY2mZDhNrORezduzeeffZZNGjQQOOWEdUeDIpEfrB37168++67l3oX0wOgPxEOycQpuYmIiCpKyALWZrkQzQqhKApCQ0Px0EMP4YYbbmAvIpGPMSgS+YnJZML333+PBQsW2GZGtUrQJYVAdzaYvYtERETlZI0ywdI6GwhSAACDBg3Co48+inr16mncMqLaiUGRyM8SExPx/vvvY9++fQAAKVcP/fFwyLkGjVtGRERU/YlAKywtcqDEmgAADRo0wLRp09CvXz+NW0ZUuzEoElUBRVGwYsUKfP7558jNzQVQfCmNxFBIZg5HJSIiKklIAta4PBg6WFFYWAhZljFmzBhMnjwZwcHBWjePqNZjUCSqQunp6fjyyy+xcuVK2wMWCbrkEOjOBUMSHI5KREQEFA8zbZUDGK0AgMsuuwxTp05FmzZtNG4ZUd3BoEikgYMHD+Ljjz/GkSNHAABSvs42OyqvvUhERHWYEmSBtVUOlOgiAEBMTAweeughDBkyhJPVEFUxBkUijdiHo86ePRuZmZkAAPliAHSJYZAL9No2joiIqAoJvQJr0zygmQlWqxV6vR5jx47FxIkTOcyUSCMMikQay8nJwbfffotffvkFVqsVEICcYoQ+OYTnLxIRUa0mJAFr43wYu0I9h/+KK67AI488gmbNmmncOqK6jUGRqJpISkrCl19+iU2bNtkesErQnQ6G7kwIJIXDbYiIqPYQEFBiTLC0yFEvd9GmTRtMmTIFvXv31rh1RAQwKBJVO3v27MHnn3+unr8Ikwx9cijk1CBef5GIiGo8JcIES4tciDALACA2Nhb33nsvhg0bBp2OI2mIqgsGRaJqSFEUrFu3Dl9++SVSUlIAAFKBDrqkEMhpDIxERFTzKGFFsDTPhYg0AwCMRiNuv/12jBs3DkFBQRq3johKYlAkqsaKiorwyy+/4Pvvv0dWVhYAQMrT2wJjeiADIxERVXtKiBnW5rnqTKYGgwE333wz7rjjDkRHR2vcOiJyh0GRqAbIz8/HTz/9hMWLF6sn+0s5euiTQiFlBjAwEhFRtaMYLbA2y4USawIA6HQ6jBgxAnfddRcaNGigceuIqCwMikQ1SE5ODhYtWoSff/4ZBQUFAAAp2wDdqRDIGQyMRESkPSXYDGvTPIj6RbDvZg4ePBiTJ09G06ZNNW4dEXmLQZGoBsrIyMCCBQuwdOlSFBXZhvJIOXpbYOSQVCIi0oASaguISj2T+lj//v1x9913o23bthq2jIgqgkGRqAa7ePEiFi1ahF9//RWFhYUAis9hPBUCOY2BkYiI/E8JK4KlaR5E8TmIkiRh4MCBmDhxIlq3bq1x64ioohgUiWqBzMxM/Pjjj/jvf/+L/Px8AICUr4PuTDDk80ZIgoGRiIh8R0BARBQHxOJZTHU6HYYMGYI77rgDzZs317iFRFRZDIpEtUhOTg5+/vln/PTTT+qkNyiSoTtnhO5cMCSLrG0DiYioRhOSgBJTCGuTfIgQ23UQ9Xo9RowYgQkTJiAuLk7jFhKRrzAoEtVCeXl5WL58OX766SecP3/e9qBVgpwaBP2ZYEgmvbYNJCKiGkXoFFgbFsDaOB8IVAAAQUFBGDlyJMaPH89ZTIlqIQZFolrMYrFg7dq1WLx4MeLj420PCkC+GAjd6RDIuQZtG0hERNWaCLTC2jgf1oYFgM62y1ivXj2MHj0aN910E8LDwzVuIRH5C4MiUR0ghMA///yDRYsWYfv27erjUrYBunNGyGlBPI+RiIgAFJ9/GG6GtVE+pIYWWK1WAEDLli0xfvx4DB48GAEBARq3koj8jUGRqI45ceIEFi9ejDVr1sBisZ1fgiIZuhQjdClGSEU6bRtIRESaELICpX4hrI0K1PMPAaB3794YP348+vTpA0niQUWiuoJBkaiOunjxIpYvX45ff/0VaWlptgftw1LPBkPKNvDyGkREdYBitEBplA9r/UJAb9stDAwMxNChQ3HLLbegTZs2GreQiLTAoEhUx1ksFmzcuBG//PIL9uzZoz4u5eltw1IvBEGycrZUIqLaREBAiTbZeg+jitTH4+Li8K9//QvXXXcdwsLCNGwhEWmNQZGIVCdOnMAvv/yCP/74A4WFhbYHrRLktEDbsNQc9jISEdVkIsgCa4NCWOsXqLOXSpKEfv364ZZbbkHv3r0hyzw4SEQMikTkQk5ODlauXIlly5YhKSlJfVzK10FONUJ33gjJzB0JIqKaQMgCSr1CWBsUQESa1ccjIiIwcuRI3HzzzWjUqJGGLSSi6ohBkYjcEkLgwIED+O2337B27dpLvYwKIKcX9zJmBrCXkYioGlJCzLA2KIDicO6hJEno06cPRo4ciauuuoqzlxKRWwyKROSVvLw8rF27FsuXL8fhw4cvLSiUobsQBPmCEXK+XrsGEhERhMEKa4wJSoMCiNBLM5c2bNgQ1113Ha6//no0aNBAwxYSUU3BoEhE5XbixAksX74cq1evRnZ2tvq4lKuHfCEIugtBvMwGEVEVEbICpZ4J1thC28Q0xYM8DAYDrr76aowcORK9evXiuYdEVC4MikRUYSaTCVu3bsUff/yBbdu2XbouowCkzABbT+PFQM6aSkTkYwICSlQRlNhCKPVMgO7S7lzHjh0xbNgwDBkyBBERERq2kohqMgZFIvKJrKwsrF+/HqtWrcKBAwcuLbDazmeULwRBzgiEJHg+IxFRRQgIiDAzlNhCWGNMQICiLouLi8PQoUMxdOhQNG3aVMNWElFtwaBIRD539uxZrF69GqtWrcLp06cvLbBIttCYFgg5MxCSwtBIROSJGg5jTLDWKwSCLoXDyMhIDB48GEOHDkXHjh0hSdymEpHvMCgSkd8IIXDkyBGsWbMG69evx4ULFy4ttIfGi4G2nkaGRiIiAMXhMNwMJaYQ1nom9XqHAGA0GnHVVVdh2LBh6N27N/R6TiJGRP7BoEhEVUJRFBw6dAjr16/H+vXrcf78+UsLLRLkjADIaUGQMwN4TiMR1TkCAiLCDGu94nMOHcJhSEgIrrrqKgwYMACXX345AgMDNWwpEdUVDIpEVOUURcHhw4exbt260qFRAaSsAOguBkJOD+TsqURUawmdAiWyCEo9E5QoE2C4tEsWGhqK/v37Y+DAgejduzevd0hEVY5BkYg0JYRQQ+OmTZtw5swZp+VSrt42PDU9EFKeHhI4RJWIai4RaIUSbYI12gQRUQQ4DKAIDw9Xw2GvXr1gMBi0aygR1XkMikRUbQghkJSUhM2bN2Pz5s04ePAgnDZRhbLtvMaMQMhZATyvkYiqPQEBEWqBEm2CUs8EEWJxWt6sWTNceeWVuOqqq9C5c2eec0hE1QaDIhFVWxkZGdi6dSs2bdqEv//+GyaT6dLC4iGqcmaAbTKcfB17G4moWhABVtuQ0igTlMgipyGlsiyja9euajhs1qyZhi0lInKPQZGIagSTyYRdu3Zh8+bN2LFjB1JTU0sUkG0T4mQEckIcIqpSQhIQ4UVQomy3kr2GoaGh6N27N6666ipcccUViIiI0KilRETeY1AkohpHCIHk5GRs374dO3bswJ49e1BUVORQAJByDLbexqwASNkGSIK9jUTkGwICIsQCJaIIIrIISkQR4DDvliRJaN++Pfr27YvLL78cHTt25JBSIqpxGBSJqMYzmUzYu3cvtm/fju3btyM5Odm5gAJI2QGQs2zhUcplcCQi7wkIiGArRIQtFCoRzsNJASA6OhqXX345+vbti169eiEyMlKbxhIR+QiDIhHVOikpKfj777+xe/du/PPPP0hPT3cuYJUgZRkgZxX3OOZyNlUiukRAQARZ1d5CJcIMBChOZYxGI7p27YqePXuib9++aNWqFSSJ2xEiqj0YFImoVrPPpGoPjXv27EFWVpZzIatkG6qabbtJOQae40hUhwipeChpeBFEuBlKmNnpgvcAEBAQgK5du6JHjx7o0aMHh5MSUa3HoEhEdYqiKDh58iT++ecf7N69G3v37kVubq5zIQFIeXpbaMwOsP0s0rmukIhqHKFToISbIcLMtnAYZnY6xxAADAYDOnfurAbDTp068aL3RFSnMCgSUZ2mKAoSEhJw4MAB7Nu3D/v370dKSkrpgoUy5Bxbb6OcY4CUZ+B1HIlqANv5hRaIMAuUUDNEuBki2IKSo83DwsLQpUsXdO3aFV26dEHHjh0RGBioTaOJiKoBBkUiohLOnz+P/fv3q+HxxIkTUBTnYWj2Xkcp1wA5R28brprPcx2JtCQggEArlDCLrbcw1AwRagF0pXd14uLi0LVrV/XWrFkzyDKHnBMR2TEoEhGVIT8/H4cOHcLhw4dx+PBhHDp0qPQEOQBghS045hpsE+Tk6SEV6DnDKpEf2EKhAiXEFgaVUNtQ0pKzkQK2iWfat2+PDh06oHPnzujatSuio6M1aDURUc3BoEhEVE5CCFy4cEENjkeOHMGRI0eQn59furACW09jrh5ynsEWHvP0nCyHqByEVDx8NMQCEWqGEmK7D33pXRiDwYDWrVujQ4cO6NixIzp27IimTZtCp+N5xkRE5cGgSETkA4qiIDk5GYcPH8axY8cQHx+P48ePuw6PAFCgg2wPjfnFt0Idex+pTrP3EgqjRQ2DIsQCYbQALo6t6PV6tGzZEm3atEGHDh3QoUMHtG7dmpPOEBH5AIMiEZGfKIqClJQUNTTGx8cjPj4eFy5ccPMEQCrQXQqODJBUS6nDRoMttp5C+81oddlLCNgmm2nTpg3atm2r/mzWrBkMBkMVt56IqG5gUCQiqmKZmZk4ceIE4uPjkZiYiISEBCQmJqKgoMD1E+wBskBv+1lY/LNAB5hlTqBD1ZbQKbYL1xutEEbLpZ/BVpcTzACATqdDkyZN0KJFC7Rp00a91a9fnxe0JyKqQgyKRETVgBACqampTsExISEBSUlJ7gMkAFgkW4+jU5C03RgiqSoIWbEFQMdAWHwfAYrb5+n1ejRt2hQtWrRAixYt0LJlS7Ro0QJxcXHsJSQiqgYYFImIqjFFUXD+/HkkJibi9OnTOHXqlPozNTUVHjfhVkAyFYfGQp16X33MIjFIUpmEToEItEIEKUBgcSAMLL4FWV3OMuooKioKTZo0UW9NmzZFy5YtERcXB71eX0XvgoiIyotBkYiohjKZTDh37pwaHu0B8syZM0hLS/McIgHAKkEqlIEiHaQi2RYgi4p/N8mQinSAmWGythIQgE5ABCpAgBUiQIEIsBb/rqhhsKwgCAARERFOYdDxFhISUgXvhoiIfI1BkYioFioqKsL58+eRkpKClJQUnDt3DufOnVPvX7x40buKFABFttAomWTbcNbiG8yyLWAW34eVobI6ELIADApE8Q2OP4sDIIpDIby8YkRERAQaNmzo9sYwSERU+zAoEhHVQSaTSQ2SaWlpuHDhgnpLS0tDWloaMjIyyu6VdGQPlfYgaZFtw1td/pQhWSRbGQUMmC4ISQB6BULv/BN6AeH0U4EwCIgARV1eHqGhoYiNjUVMTAxiY2NRr149xMbGIjY2Fo0aNULDhg0RHBzsp3dJRETVFYMiERG5ZLFYcPHiRTU8XrhwAZmZmcjMzERGRobTzeOEO2VRAFgkQJEhWSWg+ObyviJDsgJQJEBItpCpSMW/Fz+uSJAUFC8vfhzFvwO234sfKyugiksFS/wUtvuy7aeQhXrf9lNAyMX3ZQHIxWV09pvi9LuwPy4X39crXvf2uWIwGBAZGYmoqCinn9HR0WogjImJQUxMDIKCgir+QkREVGsxKBIRUaUVFhaqAdL+Mzs7Gzk5OW5vubm5sFqt2jZcOPy035dQOhhqRJIkhISEIDQ0FGFhYU43+2ORkZHqLSoqClFRUQgODualJIiIqFIYFImISBNCCOTn5yMnJwf5+fnIz89HQUEBCgoKPN4vLCyE2WyG2WxGUVERzGYzTCaT0+/2+/4OojqdDgaDQb0FBAS4vR8cHIygoCAYjUYEBwfDaDQ63ezLjEajGgaDg4Oh01Wia5GIiKiCGBSJiKjWUhQFiqLAarVCCFHqvuNyRVEgyzIkSYIsy+rN8Xf7fUmSoNfrGeKIiKjWYlAkIiIiIiIiJ7LWDSAiIiIiIqLqhUGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkRK91A4iIykMIgcLCQq2bQURULkFBQZAkSetmEBF5jUGRiGqUwsJCDB8+XOtmEBGVy6pVq2A0GrVuBhGR1zj0lIiIiIiIiJywR5GIaqyAHfUhieLjXZIMSZYASQZkCSge4iXJsu2+VPxTliBJxc+xlyt+XL0PlHjMuU7bz0vLhSRdOuwmXapHfdzheY6PCfsoNKn4d9n2i5AcnwP1OUKSin+HQ33Fz5el4npsi+x12Jc71ins9cpwW5/TT5R8rGQ73DwHlx5zWg4Pz3Pxeu7aUeo5bup1bodwen7JNqrLHeoSxY+jRPsgCYfnC3WZVKq84zLb/Us/L9UjSeLSKlj8+KV/jVCXyxDq7/bXk4t/ty2zPUd9zPEnLr2WXPJWvMz2O5wet7+WLCnqYzIEZEmBzr6s+Hd1uaSo9enUxwR0sJUBAJ2kODxPgc7hefb79vKOz5Mhip9re33bMvvzbI9JUKCzPx+XXk8H2J4H2+vZ/x72322vJdRlslTcFvW+pH7cdZIEGVLxY1Lx73LxKiLBXKTD6PsagoioJmJQJKKayypd2mWTZEgoDnXqHjhsyyUJkC+lIvU5TolDBkomgUsprHSKkRye65RUXD1eIlGVuu9QRrIHPsmhmFTiJ0qUhXNoLPU8uKgTxYHVXX1umuuyHW5u7pa5+1N58zxPz4H7EOm3oFhyeYllJYPipceF02u6WmYPZ5eWOS4XDs9zeKzUaznfHINiqZu7ZcXhCcClAAnhFCgBe1CEGrTk4nZcCorKpaBVvMwWrIp/SpItxBWvp/b79vI6SA6hFNBJl37qittmf16pZbC/nj30ieKAeSkc28Ohp6Doqj4Zlx6z/e7YRof/IRFRDcOhp0REREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE54XUUiajm0gkIYbvItu26gJLDT/tF3FDiOoRSiesG2m/i0n1vljlcxO/SZdHh5vFLP4XTfTg9TwCAUK9mpy4RkAAB9bmi5HOKn1daycfsFw50alKJvwdK31DyMcnDshIvW95lZdXp6Tn2ux6fJ8qoU8B1G91cRxGlnyd5uI6i5HiNRMmhLOzXL3RcvdxcRxEVv46isK8xkoAoeSteJoqvJen4uKK+lnLpdSAASXG43qNwWi4kRa3P/tpCXebQjuLf5eL79usy2u87/lQcPtaKdOmngkvXUVSKH5Pg7jqKEmTYrs+os/+pih+3X49RB6jLZIc61OtAqvVdqkuGpP5u+7dIMBe5+lwSEdUMDIpEVGMVXX5e6yb4h30/vBJKRlQi4NJqJWALVDWP45rNQVFERP7ErSwR1SiFhYVaN4GIiIio1mOPIhHVKIGBger9X3/9FUFBQRq2hrRQWFiIm2++GQDXgbqopv7/a0o7iYjsGBSJqEaRpEuDKYOCgmA0GjVsDWmN60Ddxv8/EZH/cOgpEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicSEKISl6ti4iIiIiIiGoT9igSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJzotW4AEdVd+fn5WLRoEf766y+kpKRAlmU0bdoUgwYNwujRo2EwGCpcd3p6On744Qds3boVqampCAwMRMuWLTFixAiMHDkSkiT58J1QRfljHZgzZw7mzp1bZrkffvgBTZo0qUCrqbIKCwuxZ88eHD16FMeOHcOxY8eQmpoKALjrrrswefLkSr8GtwFERJXDoEhEmkhJScFjjz2GlJQUAEBQUBDMZjOOHDmCI0eOYPXq1fjoo48QFhZW7rqPHj2Kp556CllZWQAAo9GI/Px87Nu3D/v27cP69evx73//u1JBlCrPn+sAAOj1eoSHh7tdrtPpKlQvVd7hw4fxzDPP+K1+bgOIiCqPQZGIqpzFYsFzzz2HlJQU1KtXDy+++CJ69+4NRVGwbt06vPfee4iPj8cbb7yBGTNmlKvu3NxcPPvss8jKykKzZs3w0ksvoUOHDjCbzVi2bBk+/fRT7NixA5988gmmTZvmp3dIZfHnOmDXpUsXzJw508ctJ18JCwtDu3bt1Nsnn3yC9PT0StfLbQARkW/wHEUiqnK///47Tp48CQB444030Lt3bwCALMsYPHgwnnrqKQDAtm3bsGvXrnLVvWjRIqSnpyMwMBAzZsxAhw4dAAAGgwG33HKLOqRt2bJlOHXqlK/eEpWTP9cBqv4uu+wy/Pbbb/jwww/x0EMPYfDgwQgICPBJ3dwGEBH5BoMiEVW533//HQDQo0cPdOnSpdTywYMHo1GjRk5lvbVq1Sq1jsaNG5dafsstt8BoNMJqtWL16tXlbTr5iD/XAar+/Dnsl9sAIiLfYFAkoipVWFiIAwcOAACuuOIKl2UkSULfvn0BAH///bfXdScnJ6sTYtifX1JwcDAuu+yyctdNvuPPdYDqNm4DiIh8h+coElGVSkpKgqIoAICWLVu6LWdflp6ejuzsbI+TktjZhzKWVXerVq2wfft2JCYmetlq8iV/rgOOEhISMGnSJJw9exayLCMmJgbdunXDqFGj0K5du4q/Aaq2uA0gIvId9igSUZVKS0tT78fGxrotFxMT4/I5nly8eLFcdefl5SE/P9+rusl3/LkOOMrKykJSUhICAwNRVFSEU6dOYfny5bjvvvvw1Vdflbs+qv64DSAi8h32KBJRlXLcKQsMDHRbLigoyOVz/FF3cHCwV/WTb/hzHQCAJk2a4KGHHkL//v3RqFEj6PV6mM1m7N69G1999RWOHj2K7777DmFhYRg/fnzF3gRVS9wGEBH5DnsUiYioVhk2bBhuu+02NG3aFHq97XiowWDA5Zdfjk8//VSdBfPbb79Fbm6ulk0lIiKqthgUiahKOR65N5lMbssVFha6fI5WdZPvaPl/CgwMxP333w8AKCgo4KU3ahluA4iIfIdBkYiqlON5ZxcuXHBbzvGcNMfneFKvXr1y1R0SEsKdRA34cx3wRufOndX7Z8+e9Vm9pD1uA4iIfIdBkYiqVPPmzSHLtk1PQkKC23L2ZdHR0V7PdtmqVatSz3fFPjNiixYtvKqXfMuf6wDVbdwGEBH5DoMiEVWpoKAg9QLr27dvd1lGCIEdO3YAAPr06eN13U2bNkWDBg081l1QUIB9+/aVu27yHX+uA944dOiQer/R/9u796Coq/+P409EFAoEKkeXMG8p0cVQSDOFvIVEOZW30ZjRMrOb6XSZqdlJ7aJZOaZNzlg5qZXRxRq1pgsNipkJKkbIiBCCUCoRFwEhcF3g9wezn+9uwiLL4uLP12PGmWX3fN6fs8vOymvP+ZxjMrm1tniWPgNERNxHQVFELrq4uDgAMjIyHP5ot0lJSTGmBNraXggvLy8mT54MwK5duyguLj6vzbZt26irq8Pb25u77rrLle6LG3TWe6Cpqcnp4xaLxdgaw8/Pj8jIyAuuLV2fPgNERNxHQVFELrq4uDgGDRpEU1MTS5YsMRYUaWxsJCUlhVWrVgEwatSo8/6Q37hxIzExMcTExLT4R+CsWbO46qqrqK+v54UXXiA3NxeAc+fOsX37dj788EMApkyZQr9+/TrzaYoTnfUeyMzM5JlnniEpKYl//vnHuN9qtXLo0CEWLlxoBNO5c+cSEBDQmU9TnDhz5gyVlZXGv8bGRqB5ERr7+/+7NYo+A0RELg6vpra+fhUR6QTFxcUsXryYv//+G2iejtjY2IjFYgFgyJAhrF279rw/5Ddu3MjmzZsB+OKLL1qcOpibm8vzzz9PVVUV0LyqocViwWq1As3TzVauXEmPHj066+nJBeiM90BGRgaLFy82fu7Zsye+vr7U1tYav/9u3bqRkJDAo48+2plPT9owc+ZM43fvTFxcHGaz2fhZnwEiIhdHd093QEQuTyaTic2bN/P555/z888/8/fff9O9e3cGDhzIxIkTmTZtGj4+Pi7VDgsL46OPPiIxMZF9+/bxzz//4Ovry6BBg4iLiyM+Pt5YTEU8pzPeA4MGDeLJJ5/kyJEjFBQUUFVVRU1NDb6+vgwYMIBhw4YxZcoUBg8e3EnPSroCfQaIiHScRhRFRERERETEgb5OExEREREREQcKiiIiIiIiIuJAQVFEREREREQcKCiKiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIgDBUURERERERFxoKAoIiKd5p133iEmJoann37a010RD6upqeGee+4hJiaGPXv2eLo7IiLShu6e7oCIiJyvtraWvLw8cnJyyM3NJTc3l5MnT9LU1ATAF198gclk6pRzNzU1MX36dEpLS0lISOCxxx5zqU5eXh7bt28HYMGCBW7soWcVFBRw4MABsrKyKCgooLy8nIaGBgICAhg8eDCjR48mLi4Of39/T3e1S/H392fWrFls2LCBd999l1GjRtGzZ09Pd0tERFqhoCgi0gUtWrSIvLw8j5w7JyeH0tJSAKKjo12us379ehoaGhg1ahS33HKLu7rnUYsWLeL3339v8bGKigoqKio4ePAgW7ZswWw2M3LkyIvbwS5u+vTpbN26lZKSEr766isSEhI83SUREWmFpp6KiHRBtpFDaB6JGT58OFddddVFOfcvv/wCQO/evQkPD3epxuHDh0lPTwf4fxUGbAE6ICCA+Ph4zGYz69atY8OGDbz66quMHj0aaA6NZrOZzMxMT3a3y/Hz82PatGkAJCYm8u+//3q4RyIi0hqNKIqIdEHx8fEEBQURFhZGaGgoXl5eLFq0iIqKik4/ty0ojhkzBi8vL5dqfPbZZwCYTCZuvfVWt/XN00JDQ5kzZw4TJ06kR48eDo+FhYUxbtw4Pv30U95//30sFgurV6/m448/9lBvu6bY2Fg2btzImTNn+O6775gxY4anuyQiIi3QiKKISBc0ffp0Jk2aRL9+/VwOa67466+/KCoqAlyfdlpaWkpqaioAkydPvqj972yrVq3i7rvvPi8k2ktISGDIkCEAFBYWkp+ff7G6d0kwmUwMGzYMgG+++cbDvRERkdZoRFFERAy21Sht011dkZycTGNjIwATJky4oGOsViu7du1i79695OTkUFlZSUNDA0FBQQwaNIioqCgmTZrE1Vdf7XBcTEwMAHFxcZjNZv7880+++uorDh48SFlZGVdeeSVDhw7lwQcfJCIiwjju7Nmz/PDDDyQlJXHixAnq6+sJCQnhrrvuYsaMGR1eZGXEiBHGNaZ//fUXgwcPdrlWYWEhO3bsIDMzk+LiYurr6/H39ycgIACTyURkZCRjx47luuuuc6m+1Wrlp59+IiUlhYKCAqqqqvDy8qJXr14EBQURHh5OVFQUY8aMwcfHx+HY/77+hYWFbNu2jfT0dMrKyqirq2PFihXnfekwYcIEMjMzKSoqIicnhxtuuMG1F0dERDqNgqKIiBhs005Hjx5N9+6u/Rexb98+oPk6vv79+7fZ/tixYyxdupQTJ06c91hpaSmlpaXs37+f/Px8zGZzq3V2797N66+/Tn19vXHf2bNnSUtLY//+/Tz//PNMmTKFsrIyzGYzOTk5DscfP36cDz74gLS0NFavXt2hsGi1Wo3b3bq5Pnlnx44drF27loaGBof7q6qqqKqq4sSJExw8eJD8/HyWLFnS7vqVlZU899xzLS6cZHvt8/Ly+Oabb0hMTCQ0NLTVWj/88AOrV6/GYrG0eV77xY327dunoCgi0gUpKIqICABlZWUcPXoUcH3aqcVi4ciRIwCEh4e3Oe00Ly+PhQsXUldXB8Dw4cOJjY2lf//++Pj4UF5eTnZ2dpv77uXn57Nr1y6Cg4NZsGCBce5Dhw7xySefUF9fz5o1a4iIiGD58uUcO3aM+++/n7FjxxIUFMTJkyf5+OOPyc/P5/DhwyQmJvLwww+79BoA/Pbbb8btgQMHulSjoKDACIm9evViypQpREREEBQURENDA+Xl5eTm5pKWluby9N61a9caITEyMpLY2FhMJhNXXnkltbW1FBUVkZmZaUwlbk1ubi7Jycn06tWLGTNmcMstt+Dj40NhYSF9+/Y9r/3AgQPx8/Ojrq6O3377jXnz5rnUfxER6TwKiiIiAsDevXtpamqiR48ejBo1yqUa+fn5xmhaWFiY07ZWq5WlS5caIXHx4sXGipj27rjjDubPn09JSUmrtfLy8hgyZAhr164lICDAuP/GG28kNDSUZcuWYbVaWbhwIdXV1axatYqoqCij3dChQ7ntttuYM2cOZWVlbN++nTlz5uDt7d2u5w/N03ePHz8ONIflfv36tbsGQEpKijGSuGbNGuO6R3vR0dHMnz+fqqqqdtc/e/asEcCjo6NZvnz5eYEzIiKC++67j7q6Oqcjo8ePHyc0NJR169Y5rM7b2qq53t7eDB06lMzMTP744w8aGxs7NPIqIiLup09lEREB/jftNCoqCj8/P5dq2E8fbWs7j+TkZE6ePAk0r/LaUki016dPH6ePv/jiiw4h0WbcuHH07t0bgNOnTzN16lSHkGjj7+/P3XffbbQrLCx0er6WlJWV8fbbbwPg5eXFE0880e4aNrYVbv39/VsMifYCAwPbXf/MmTNGqI+IiHA6Kunn59fmVNxnn322XVu42NrW19dTVlZ2wceJiMjFoaAoIiLU1NSQkZEBuD7tFKC8vNy43atXL6dtbcEUYPbs2S6fE5qnMrYWpry8vBwei42NbbWOfbtTp061qw/19fWYzWYj4P13AZ32soXbmpoaUlJSXK7TmsDAQGP11p07d3ZoT8PevXu3GL6dsX9/2L9vRESka1BQFBERUlNTsVqteHt7M2bMGJfrnD171rjd0uievT/++ANoHlm6kEVvnGnrePu+OFsd1L5de4LTuXPneOmll4wFcsaOHcv8+fMv+PiWxMbGGqN4y5Yt46mnnuLTTz/l8OHDxnTdjvDx8SEuLg6A7OxsZs6cyapVq9i5c2e7Q7Irq7raB0X7BYhERKRr0DWKIiJijO7dfPPNBAUFuVzH/pq+tla/rKysBP43ctYRvr6+Th+3n1bpbFqt/XVyti0+2mK1WlmyZAkHDhwAYOTIkbz88ssuXd9oLyQkhDfeeIPXX3+d0tJSsrKyyMrKAppf5xtuuIGYmBjuvffeNkN5a55++mksFgtJSUlUV1fz7bff8u233wLNAX7kyJHEx8e3OTLa1uhxS+y/VHB1hV0REek8GlEUEbnMWSwW9u/fD3Rs2ik0X09nU11d3aFalwKr1cqyZcuMLUGioqJYsWKFMaWzoyIjI/nss8945ZVXiI+PN7anaGho4MiRI6xfv57Zs2cbIbW9evbsidlsZsuWLTzyyCOMGDHCCNIVFRX8+OOPLFq0iJdeeskh2P2XKwvR2C/AY/++ERGRrkFf4YmIXObS09ONqYwdDYr2WyG0FRSDgoIoKSm5ZBcysYVE22jsiBEjWLlyZYf2X2xJjx49GD9+POPHjweaR2IPHTpEUlISaWlpVFdXs2TJEhITE7n66qtdOke/fv2YO3cuc+fOpaGhgby8PPbt28eOHTs4ffo0e/bsYcOGDSxcuNBtz+vMmTPG7bYWKhIRkYtPI4oiIpc5W9AZMmQIJpOpQ7Xs9wz8888/nba1bZ9RXl7eZtuu5r8hcfjw4bzxxhtuD4ktCQoKYuLEibz11lvcf//9ANTV1bF371631LdNa503bx7vvfeeMa03OTnZLfVtioqKADCZTFxxxRVurS0iIh2noCgichlrbGzk119/BZoXYOmoPn36cM011wBw9OhRp21jYmKM24mJiR0+98VitVp5+eWXjZAYERHBm2++2eZ1kp1h5MiRxm3bNZ/uZDKZjH0gXdmrsTWVlZXG1ig33XST2+qKiIj7KCiKiFzGsrKyjIBhH9w6whZeioqKqK2tbbXdhAkTjBDy/fff8/XXXzutW1JS4pb+dYTVauXVV181NqrvzJD4888/txn+bNeWAlx77bXtqn/q1CnS09OdtikuLjZG/kJCQtpV35ns7Gzj9u233+62uiIi4j66RlFEpAs6ceKEscKljW1/PoDdu3c7rE7q5+fHuHHj2n0e26hYSEiIS1sctGT8+PF8//33NDY2kp6ezp133tliu+7du/PKK6/w1FNPUVdXxzvvvMOePXuYPHky/fv3x8fHh/LycnJycti9ezdhYWGYzWa39NFVr732Grt37waag9njjz9OcXGx02OCg4MJDg5u97m+/vprXnvtNSIjI4mMjGTAgAEEBgZy7tw5SkpKSE5ONkaD+/bt2+5tTUpKSnj22WcJCQlhzJgxhIeH06dPH3r27ElVVRXZ2dls377dWL122rRp7X4OrTl48CDQfP3l6NGj3VZXRETcR0FRRKQLysrKYuXKla0+vn79eoef+/bt26Gg6I5ppzZRUVH07t2b0tJSkpKSWg2KANdffz3vvvsuS5cu5dSpU2RkZJCRkdFiW9s1jZ5kv/H9yZMnefzxx9s85qGHHmLevHkunc9isZCamkpqamqrba699lpWrlzpdNsPZ06dOsXWrVtbfbxbt27Mnj2bBx54wKX6/2W1Wtm5cyfQPIrt6tYeIiLSuRQURUQuU8eOHTNGwzq62qk9b29vpk6dyvvvv09aWhqVlZVO92YcOnQoW7ZsISkpiV9++YW8vDzjerjg4GAGDx7MbbfdxqRJk9zWx0vBsmXLOHDgAJmZmRQUFFBRUWFMRQ0MDOT6668nOjqa2NhYl7bjGDZsGOvWrSM9PZ3s7GxKSko4ffo0tbW1+Pr6EhISwrBhw7j33nvdNtoMGO8JgOnTp7utroiIuJdXU1NTk6c7ISIiF9+mTZvYtGkTwcHBbNu2zaW98FpTU1PDrFmzqK6u5rHHHiMhIcFtteXS9sILL5CamkpkZCRr1qzxdHdERKQVWsxGROQyZZt2escdd7g1JELzBuq2cPj555/z77//urW+XJqys7NJTU3Fy8uLBQsWeLo7IiLihIKiiMhl6Ny5c0RHR/PQQw8xderUTjnHtGnTCA0Npaqqii+//LJTziGXlg0bNgAwefJkwsPDPdwbERFxRlNPRUSk0xw9epTU1FT8/f2ZOXOmp7sjHlRTU8PWrVtpampi6tSpTq9bFRERz1NQFBEREREREQeaeioiIiIiIiIOFBRFRERERETEgYKiiIiIiIiIOFBQFBEREREREQcKiiIiIiIiIuJAQVFEREREREQcKCiKiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIiD/wORm36Pn6v73gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAChs0lEQVR4nOzdd3wT9f8H8NddkrbpbmnZlL2HoCAiOFkqoijThQqKigtxT3AL7oEo8kNAkKF+RUGQIaAggiJ7I3SwWijdK01yn98faY6kTdK0TXpp+3o+Hnk0zX3u8m6aXO51n8/dSUIIASIiIiIiIqISstYFEBERERERUWBhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicuKToJiUlARJkiBJEu655x5fLLJOuvrqq9XXkYjInXvuuUddVyQlJWldjmru3LlqXXPnztW6HPIxRVFwySWXQJIkPProo1qXQ360ceNG9bM8depUrcshqhL7e/nqq6/WuhSfGzBgACRJwm233eaX5Vdbj+LcuXMxderUOrXCWbZsmfo3Z2VlaV0OlbBYLFi3bh2ee+45XHvttWjUqBGCg4MRHh6O1q1bY8yYMVi2bBmsVmuFlrtv3z48+uij6NChA8LDwxEVFYWuXbviueeeQ3Jysp/+GiIioLi4GF26dFE3iCRJwsaNG336HLNmzcKOHTsQEhKC559/3mWbmrB+TU5OxnPPPYeuXbsiKioK4eHh6NChAx599FHs37+/Qss6d+4cXn/9dVxyySWIjY1FaGgoWrdujXHjxmHr1q0VWpa36sp3zdChQ9X38v/93/9VeP6UlBTodDpIkoTY2FgUFRVVaH7HsOzNzdudY758z+Tn5+ODDz5A3759Ub9+fYSEhKB58+YYPXo0Vq9eXaFlmc1mfPXVV+jfv7/6uW3atCmGDh2KJUuWQAhRoeV5Q4vPjxbef/999X1y1113VWoZbdu2VZexbds29fEpU6YAABYvXow//vjDJ/U6ET6QmJgoAAgA4u6773bZ5qqrrlLb1BV33323+jcnJiaW274uvkbVbf369SI2NlZ9nT3devXqJf777z+vlvvuu+8Kg8HgdlkRERFi0aJFfv7rqK6o6Lqlunz99ddqXV9//bXW5dQpU6dOLbPe2bBhg8+Wn5+fLxo2bCgAiMcee8xlm5qwfl2wYIEIDw93u6ygoCDxwQcfeLWstWvXivr167tdliRJ4qmnnvJqWd6qru+aDRs2qMucMmVK1QuvhB9++EGtoV+/fhWe/7XXXlPnnzhxYoXnd3wNvLl5s87z5Xtmx44dolWrVh5ruuOOO4TJZCp3WYmJiaJHjx4elzVgwACRmZnpVW3eqM7Pj32ZV111lU+WV1GpqalCr9cLACI0NFTk5ORUaP4//vhD/Rs6depUZvq1114rAIg+ffr4qmRVtSWSuhiCAnVjri775ptv1P9JbGysGDVqlPjggw/EokWLxPz588UjjzwiIiMj1TbNmjUTZ86c8bjMmTNnqu0NBoMYN26cmDdvnpg9e7YYOXKkkCRJABB6vV6sWrWqmv5SourHoKiN/fv3i6CgIAFAhIWF+SUovvvuuwKA0Ol04uTJky7bBPr6dcWKFUKn06kboSNHjhSzZ88W8+bNE+PGjXMKYF999ZXHZW3fvl2Ehoaq7QcOHCi++OILsWDBAvHYY485/R9efPFFzy+ul6rzuyYQgmJxcbGIi4tT6/B2x4Jd69at1Xn/+eefCj+/42swevRo8eOPP3q8JScne1yeL98zSUlJokGDBmr7Sy+9VHzyySfi22+/Fc8//7yoV6+eOu3OO+/0uKzMzEzRoUMHtX3Hjh3Fu+++KxYtWiRef/110axZM3XaNddcI8xmc4VfS3++Ft7QOigKIcRNN92k1jF79uwKzTtu3Dh13nfffbfM9HXr1qnTfb2dyaDoRwyKgeebb74RXbt2Fd9++60oKipy2ebkyZOic+fO6v9u7Nixbpd3+vRpdWWn1+vF2rVry7Rx3Hhu1qyZKCws9NnfQxRIGBSrn9VqFZdddpkAIIYOHer0XeuroGg2m9WNxUGDBrltF8jr1/z8fNG4cWO17dy5c8u0WbNmjbrXPzw8XKSmprpclqIo4uKLL1aXNXXq1DJtdu3apYZiWZbFnj173P6d3qju75pACIpCCPH444+rdbz88stez+fYA9OlS5dKPbcvXwNfv2eGDRumLmvcuHHCarU6TU9KShIJCQlqmxUrVrhd1qRJk9R21113XZn3zfnz5516Gz/77LMK/vXOtPj8BEJQ/PHHH9U6rrjiCq/ny8/PFxEREepn39V6yWq1iqZNm6qh25cYFP2IQTHwZGZmCkVRym23d+9e9X9nNBpFfn6+y3aOK9inn37a7fJGjhzps5UsUaBiUKx+H3/8sdqTmJyc7Jeg6LiBM3/+fLftAnn9+tFHH6ltRo4c6XZZTz/9tNrO3bC3ZcuWqW169+7t9m+eMWOG2m7EiBFun9Mb1f1dEyhBcdeuXWodzZs39+r9JYRzD8z7779fqef25Wvgy/eM42uSkJDgdofAL7/8orbr2bOnyzZpaWlOoxHS0tJcttu7d6/aY92wYUNhsVi8+Ktd0+LzEwhBsbi4WMTHxwvANqLh2LFjXs03f/58tf6hQ4e6bee47jpy5IivyvZNUPR0jKLjl5anm7sPodVqFUuWLBGjRo0SLVq0EEajUYSHh4v27duLBx98sNy9DFOmTCnzpblu3ToxZswY0aJFCxEcHFwmyJnNZvHrr7+KyZMni759+4r4+HhhMBhEeHi4aNu2rbj77rvF77//7vY5HQOip5un16o8W7duFffff79o166dCA8PF6GhoaJVq1Zi7Nix4rfffit3/tIfmry8PPHuu++KSy65RERHR4vQ0FDRqVMn8dxzz4mMjIxyl1cbOQ7F2L17d5npiqKIJk2aqB/6lJQUt8vatGlTpfYk+cKWLVvEgw8+KDp27CiioqJEcHCwaNasmRg1apTHvYxCuP6iTE5OFpMnTxbt27cXoaGhIioqSvTp00fMmDHD6yEpubm54sMPPxQDBgwQjRo1EkFBQSImJkb07NlTvPzyy+Ls2bMe5y/9WbFYLOLrr78WAwYMEI0bNxY6nU40b968zHypqani6aefFh07dhShoaEiJiZG9OrVS7z33nvqxmrz5s3VjRJHq1atUp/z0Ucf9ervfPTRR9V5Vq5c6dU83ihvJ5S//m/Lly8XN954o2jQoIEIDg4WzZs3F7fffrvYsmWLEKJiQdFkMonZs2eLoUOHiqZNm4rg4GARFRUlunbtKiZPnux259qhQ4fUnpXIyEhx/Phxt8+RkZGh9oTJsuxxvV0TJSUlqcfb2Y+r80dQvPXWW9VQl5ub65NlVvf6tU+fPmqbzZs3u11WSkqKukGckJDgss1tt92mLmvBggVul5Wfn6/2ihiNRpGXl+e2rSdafNd4G5L+++8/9Tg5SZLcHt+5atUqcffdd4s2bdqI8PBwYTQaRatWrcTdd98tNm3a5LEWx94sb7ZvSvfAuAs/5fFlUPTle+b5559Xl/XGG2+4XZaiKKJNmzZqW1fB5Msvv1Sn33fffR7/hv79+1fo/+BOdX9+hPAuKObn54sbbrhBbTtq1CiXx3fu27dPPPHEE+Kiiy4SMTExIigoSDRu3FgMHTpULFiwoEzvrqMnnnhCXb63PeT24w8BiP/9739u2znuQHjllVe8WrY3Ajoo/vfff6J79+4e55Nl2eOL7RgU169fLx5++GGXy3HcKLn66qu9Dnqu3kT+DIpms1ncf//95S571KhRoqCgwO1yHD80x44dE506dXK7rObNm9fJHtFevXqpr8HWrVvLTHfcK17e0Bar1eo0jKKiBzJXRl5enhg9enS575UhQ4a4raf0F+WqVatEdHS022UNHDjQ7ZAzu5UrV3o8gB2wnZDhp59+crsMx8/K+fPnRb9+/Vy+bx2tX79exMTEuH3Orl27ipSUFLdB0Wq1ipYtWwoAIiYmptxhXYWFherzJSQkePzyqKiKBsWq/t8sFovH9Zosy2LatGleB8V//vlHfS3d3YKCgsQXX3zhcv5Zs2ap7fr06eN27/aIESPUdr46TiyQDB48WAAQF198sfoa+DooFhUVqcH8yiuvrPLy7Kpz/Zqdna2Gv6ioqHI/i45DY/fv319muuPxX+fOnfO4rCFDhqhtf/nlF49t3dHiu8abkLRjxw71ODm9Xi+++eabMm3Onj3rtKHr7jZ+/HhRXFzs8nk++eQTtZ2nocp2jj0wN998c0X+bCe+DIq+fM9ccskl6vTt27d7XJbjNu+MGTPKTB8+fLg6/fvvv/e4LPtxyoDnXu3yVPfnR4jyg+L58+fVIfwAxMMPP1xmPWE2m8Vjjz0mZFn2+F7u3bu322Ov9+zZo7Zr0aJFuT3kycnJ6rorLi7O7WfEzn4ysYsuushju4rwe1DctGmT+PHHH51WvK4OAj548KDTfP/995/TQcz9+vUT77zzjli0aJFYsGCBeOKJJ5w2+tx9iB2D4vXXXy8AW7f5c889JxYsWCDmzp0rJk6cKE6fPq3O07t3bxEeHi5uvvlm8dprr4n58+eLpUuXio8//lhMmDDB6SDbxx9/vMxz/vvvv+LHH38U11xzjdruyy+/LPM3//vvv07zeRMUx4wZo7YJCQkRDzzwgJg3b55YsGCBmDRpkroXDYAYPHiw2zehvU2PHj1Ehw4dhCRJ4uabbxYzZ84US5YsEW+//bbT+Pbq7gXTmslkctqwdvWhX7Rokdv3vSuO/99t27b5oeoLioqKnFZ6rVu3Fi+88IL45ptvxOLFi8Ubb7wh2rVrp06/9tprXW48OX5R3nzzzSI0NFQYjUbxwAMPiLlz54pFixaJJ5980ukz4WnHzffff6+eTMJgMIjhw4eLTz/9VCxdulTMnj1b3HHHHeoJJWRZdrvX0vG1tH+uL7roIvHOO++IxYsXi1mzZolHHnlEbb9//36nA+d79Ogh3n//fbFkyRLxySefiL59+6qhw77n3lWP5FtvvaUuw9OeUCGcT+zx6quvemxbURUJir74v02cOFFtFxQUJO6//34xb9488c0334hHH31UfW0dj5txFxS3bNmitpckSVx33XXigw8+EEuWLBFz584VDzzwgNP/yt1yHDdwXNU+e/Zsdfpll13mkxMwBBL7xrBOp3PaWPR1UPztt9/U5fnqDITVvX7966+/yt1QdOT4+VqyZInTtDNnzqjTXK0jSnPcBpk2bVq57V3R4rumvJC0fv16NZCGhoa6HDFx/vx5pxPKXHTRReLVV18VCxcuFIsWLRIvvviiur719Lelp6c7DY8sr1fbMZguW7asMn++EML5NejSpYvo2rWrCA8PFyEhIaJp06bixhtvFDNnzvS4U14I375nrFarMBqNArCF8/LWa4477x566KEy09u3b+/xu8SR4+tx/fXXl/t3uKLF50cIz0ExJSVFdOzY0eP7XVEUccstt6htGjVqJJ544gkxd+5csXTpUnVEnn16p06d3A6pd2y3fv16j3U7nrl30qRJ5f6d9u0hd+vVygjIy2NYrVb1QNfg4GCxdOlSl+1SU1PVHkdZlsW+ffvKtHF8kwG2wJmdne3x+detW+fxg5+enq72YMiy7Hbok68vj7F48WJ1eoMGDVzu6UxKSnLaU+/uGAXH1yQoKEgsX77c5d/puKyqhJv8/Pxyzxjm7a10wPYHx438iy++2GWbV1991eOKpbSxY8eq7V3tefWl0sezuPoyKS4udqpp5syZZdqUPj14QkKCy7Hv27ZtU08CERMT47J3KiUlRd2wSEhIcDtsfNu2bSIqKkoAEE2bNnW5B630SIVJkyZ57CVw7HGcOHGiy7al1xXuhq7ag2x5G5xXXnmluiF/4sQJj20rqiJBsar/N8eTQkRHR7vcg33o0CH10gmeAl5OTo46FDQ6Olps3LjR5d939OhRdUdVWFiYy73OGRkZ6sH7Op3Oafja4cOH1RAcGRnp9bEg7hw8eNBn66/y9qB74+zZs+pe+SeeeMJpmq+DouPOke+++67KyxOi+tev8+bNq1DQeuWVV9T2r7/+utO033//3eNGZ2lz5sxR248fP77c9q5o8V3jKSh+//336mE7sbGx6tDz0uw7jiRJEh999JHLNrm5uWLQoEHqc7k7Y6Pj6IA5c+a4rTspKUntgalfv36VdhB5e3mMRo0aedzg9+V7Jjk5uUJBa/369Wr7/v37O02zWq3q+l+n05X7Wh0/flxdVuvWrct9ble0+PwI4T4oHjhwwOnwhM8//9zl/I7HON95550uQ6CiKOKFF15Q2z377LMul/XZZ5+pbTz1kCuK4rSjxdUQ/dIcL5PkaVRWRQRkUHS8ds4nn3zise3hw4fVHor777+/zHTHjb+wsDBx6tQpr/6m8hw7dsztF4mdr4Oi4zh9T8c7bdu2TV1RNm/e3OWwLMeV3GuvveZ2WV999ZVX7crj+B6p6s2bL/qqyMjIEI0aNSp348hxrPmnn35a7nIr2r6yTp8+re59vfXWWz22LS4uVo8vadu2bZnppb8o//jjD7fLuuOOOzy2sx+vp9PpxM6dOz3W9X//93/qshYuXFhmuuNn5ZJLLvEYEv/55x+1bZcuXTwehO+4XHdfwo4ni3B3wPjhw4fVNkOGDPH4t1ZGRYNiVf5vN998szrd1Zki7VasWOH0nK6C4vvvv69O//nnnz3+jY49WW+++abLNhs3blSHATVv3lxkZmaK4uJipz22vtgpU3onQlVuvghv9pElzZo1K9O74uugePvtt6vLq+qZB4XQZv1qP+EPAPHkk0+WuyxP7X/66Sd12vDhw8tdVkXbu6LFd427oPjFF1+on7kmTZq43GEthG1klX3+yZMne3yujIwMdeeguzM2Op6YxdMQaMdQXd7zlmfDhg1CkiRx6aWXimeffVbMmTNHfPfdd+Krr74SEyZMUGsGbL17a9ascbkcX75ndu/e7fTdVx5P7bOzs9Vp9erVK3dZFW3vihafHyFcB8W//vpLHaoZFBTktlOqsLBQPVymV69e5Q5dv+KKKwRg20np6hCVjIwMdUeLpx5yx1DtbodaaUuWLFHncZdNKkpGAPrmm28AAJGRkbj//vs9tm3Xrh0uvfRSAMCaNWs8th0+fDgaN27skxpbtWqFhg0bAgC2bdvmk2V6kpSUhJ07dwIAunbtiuuvv95t20svvRTXXnstACA5ORn//vuv27Y6nQ6PPPKI2+n25QDAgQMHKlp2jWO1WjFmzBicOXMGADBkyBCMGDHCZdu8vDz1fkhISLnLNhqN6v3c3NwqVure0qVLUVxcDAB46qmnPLY1GAwYPXo0AODo0aNISkpy27ZHjx644oor3E739F4RQmDhwoUAgP79+6N79+4e6xo9ejT0ej2A8j/XDz/8MGTZ/arsp59+cmqr0+nctn388cc9PhcAPPjgg+r92bNnu2zj+PiECRPKXaY/VeX/ZjKZsGrVKgBAgwYNcOedd7pdzpAhQ9CxY0ePtdjX7e3atcPQoUM9tr322mvV9bW798BVV12F5557DoBtXffggw/ipZdeUtd5d9xxh8eaa6IVK1Zg8eLFAIAZM2YgPDzcr8+XnJys3o+Nja3SsrRavwbqsrwVKN81r732Gh588EEoioL27dtjy5Yt6NSpk8u29s+6JEl48sknPS43JiYGN9xwAwDgjz/+gMlkKtNm8ODB6vpg06ZNSExMLNNGCIH58+erv997773e/WFutG/fHocPH8a2bdvwzjvv4N5778WIESNw33334csvv0RiYqJat8ViwW233YacnJwyywnU919dfi//+uuv6N+/PzIyMhAeHo5ffvkFI0eOdNl29erVOHv2LADgiSee8Li9AUD9zsnJycHWrVvLTI+JicHNN98MAMjPz8f333/vcjlz585V73v7Xo6JiVHvO667q0Lvk6X42KZNmwAAjRo1wq+//lpue/uGX3JyMgoLC53eWI48bSyVlpOTg4ULF2LlypXYu3cv0tPTkZ+f77LtyZMnvV5uZf3999/q/UGDBpXbftCgQfjtt98A2IKsPUyX1q5dO6c3VmlNmjRR72dmZnpbbhktWrSAEKLS81eXxx9/XN0oTUhIcPqg1hT2zw9ge28uW7bMY3vH/+vBgwfRokULl+0uu+wyj8vx9F7Zv38/MjIyAAARERHl1gQA4eHhyMrKwsGDBz22K+9zvX37dvX+Nddc47Ht1VdfXW5d11xzDdq1a4cjR45g3rx5eOONN2AwGNTpZrMZ8+bNAwA0btwYQ4YMKXeZ/lSV/9vu3bvVnQ5XXXWVx5AN2HYCuPt/ZWdnY8+ePQBsodPb9wAAj++BV199Fb/99hu2bduGJUuWqI+3bNkSn3/+ebnP4Y2pU6di6tSpPllWVeTm5uKhhx4CYNvxWV7Y9gX75xaoelCsDevXukhRFDzyyCOYMWMGAKBXr15YuXIl4uLi3M5j/x6Kjo522n5xxx4OTSYTjh8/Xmank06nw9ixY/HOO+9ACIF58+aV+Uxu2rQJx44dAwD07NkTXbp08fpvdKVRo0Yep8fExOCHH37ApZdeir179+L8+fOYOXMmnn322So9L/nXggULMG7cOJjNZsTHx2PlypXo2bOn2/aO21SZmZnlfnedOnVKvX/w4EGX2xXjxo3D0qVLAdgC4T333OM0vaCgQA2QwcHBuP3228v5q2zq1avnVKsvBFxQzMvLw/nz5wEAhw8fxi233FKh+TMzM90GRccNIk82bNiA22+/HampqV61d7UHydfse2ABW7grj2Mbx3lL87SiB2xvULuioqJyn7cme/HFF9UvwgYNGmDt2rUeXx/HPfnevDaFhYXq/YiIiCpU6pljr+CoUaMqNK+nFUtV3iuONf3www/44YcffFITUP7n+vTp0+r9Vq1aeWwbExOD6OhoZGVluW0jSRImTJiAp556CmlpaVi+fDluvfVWdfrPP/+s7n289957yw1X/laV/5vja9emTZtyn8tTmxMnTkBRFAC2L17HL9/yeHoP6PV6fPvtt+jevbu6x9n+WGRkpNfPURM8++yzOHnyJCIjI/HJJ59Uy3PaN+B1Op3b71ZvaLl+DdRleUvr75pPPvkE2dnZAIABAwbgxx9/LLcn277Oz8zMrNR2nCv33HMP3nnnHQDA/PnzMWXKFEiSpE533PEwbty4MvOvWbMGBQUFbp932LBhFaoTsPWKvfDCC7jtttsAAL/88kuZoBio77+6+F7esWMHxo4dCyEEEhISsHbt2nK3qR23Xx5++OEKPZ+79/LAgQPRtGlTnDx5En/88QcSExPRsmVLdfr333+vfp/dfPPNXu+kc/zOc3ztqiLggqJ9ZVRZ9r3frnjzJXf06FEMGTJEfYHbt2+P66+/Hm3btkVsbKxTV/mECRNw7tw5WK3WKtXsDccu97CwsHLbO34YPXXXl9eFXle88cYbeOuttwDYNqzXrVtX7sojOjpavZ+enl7uc9h3gJSe19eq8hny9PmpynvFXzUB5X+u7SMB9Hq9U8+fO2FhYR6DImDbYHnxxRdhMpnw1VdfOQXFr776CoAtUI4fP77c5/O3qvzfHIcJhYaGltve07qpKu8Bs9nscXpcXBxiY2PVdV2rVq1wySWXVPr5AtGmTZvwxRdfAADefvttnx1GUR77jgSr1YqCggKv3gelab1+DdRleUvr7xqLxaLez8/P92p0kD/W+e3bt8fll1+OLVu2IDExEX/88QeuuuoqAM49MCEhIWpwczRhwgSPw/EqO+rJscfo0KFDZaYH6vsvPDwcer0eFosFWVlZsFgs6iEfFV2Wt7R+L1utVvX/XFRU5PTedscf72VZljF27Fi89dZb6pDpKVOmqNMrM+y0dK1V2bHnKOCComPAufLKK/H7779X6/O//fbbakh88cUX8frrrzvtsXJU3vGTvuS4J8XdEFhHjht4/uy98lZBQUG5x5p5KyEhARdffLFPlgUA06dPx8svvwzA1qO0du1ar4asOG7oeDq2z87xC8qbXuHKsn+GJEmCxWIJiJ0Bjp/rV155Ba+++mq1Pbc9vFgsFpjN5nLDojefr3r16mHEiBFYuHAh1qxZg5SUFCQkJCA5ORlr164FYNvz7riHsCZy/L952hNv5+m1c1zW2LFj1eG5vjBx4kSnz9eRI0fw0ksvYdq0aT5Z/qFDh1xuAFZGv379yu3ldWXOnDkQQsBoNCI9PR1vvPGGy3aOr8M333yDzZs3A7CNLqjMesdxT3ZGRkaFg2IgrF8DdVne0vq75vHHH8fBgwfx448/4q+//sLgwYOxevVqj9sW9kMH7OtFX7n33nuxZcsWALaNaXtQdOyBGTZsmF93xpbmONzP1U5GX/7/mjZtCqPRiMLCQpw6darccOdpWbIso3Xr1jh8+DCsVitOnjzp9tCT8pblLa3fy7169cKNN96Ip59+GmfPnsU111yDDRs2uD3WFnD+7jp+/LjPvtfvuecedQfa/Pnz8corr0CSJCQlJWHjxo0AbCOmBg4c6PUyfXmogF3ABcWoqCiEh4cjLy+vWo79K23dunUAgPr16+O1115zGxJzc3Od/iH+5jhW/ujRo+W2d2xTXXuePTl79myFh5+4c/fdd/vs2JYPP/xQHSYSFRWF1atXl3uiFTvHjR1PJwwCbMd42E9GJMtyuSf9qIomTZpg165dEELg1KlTaNasmd+eqyI12VX357px48bqsXHHjx9H+/bt3bbNzMwstzfR7sEHH8TChQuhKArmzJmDqVOnYs6cOerwSq1PYuMLjuuO//77r9z2ntr46z2wcOFC9URJl1xyCdLT05GcnIz33nsPgwcPdjpZT2UtXrzYZzs3NmzY4NWxsKXZ94IXFhY67Xn2ZM6cOer9Ll26VGpDq0WLFvjzzz8B2DZCmjZt6vW8gbJ+7dSpE2RZhqIo2LVrFxRF8bgDzfG45tKhtmHDhqhXrx7Onz+PlJQUpKenewz+npblLa2/awwGA5YsWYIxY8bgf//7n1dhsUmTJsjKysLZs2e92kHnrVGjRuHxxx9XexA/++wzhIWF4euvv1bbuOuB8SaYVEZ5vV6+fM/IsoxOnTrh33//hcViwe7duz2Onijv/delSxccPnwYgO295Sko+uK9rMXnp7SnnnoKkiThqaeeUsPi+vXr0blzZ5ftS393+Sootm3bFv369cPmzZtx/PhxtYd83rx56vp+7NixFTp8xTGXNG/e3Cd1VltXg+NKubzu/SuvvBKAbaPOm40TX0pLSwNgOxGCpy+SdevWqRuE7lTkby6P48lo7D0Wnjj23rk7kU1dN2PGDEyePBmArdd11apV6NWrl9fzd+7cWd1o2r9/v8eN3y1btqjHsvbt29evvbz2PaxA+WcMrS49evRQx87/9ttv5X52fMnxIPUNGzZ4bGvfi+eNfv36qV8sc+bMgdlsVjfM69evr57VrCa76KKLEBQUBAD4/fffyx1mbz+BlitxcXHqXtutW7f65NjuxMRETJw4EYCt53jRokVYsGABdDodFEXB2LFjnTbiqOIcN87sG5TeCKT1a2RkpHpSp+zsbJdnIrQ7ceKEevbfhIQElz0NgwcPBmD7Xve0ji0oKFCPxTUajU7r5ooIhO8ae1gcPnw4AKhh0d3n2P63FhUV4Y8//vBJDYDtf2mvIS8vDz/88AOSkpLU0WdNmzbFgAEDfPZ83nAc+eZuZ4wv3zP2ZQG2M3K6I4Rwmn7ddddVelkAnE4u6WpZ3qruz48rTz75JN5//30Ato6Ma6+9Fvv373fZ1p/bVI47NewB0fHMvaVPclMexxO/devWrcr1AUC1XUdx6NChaht31wyxc7wOyG233Val2hyvf+XNNaWio6MFABEfHy8URXHZxmKxiJ49e6rLdXe9Nft14wCIvXv3lvvc5V1H8eKLL1anu7tejxC268Y5XlvM03UUvbngaUXa1hSzZs1SrzUZFhbmdLHuinC8XtUzzzzjtp3jtfc+++yzypbtlZSUFPU6im3bthV5eXmVXpaniy5XtO1DDz2kTv/yyy8rXZMQFbsuq6+vo+jok08+UdtPnDhRvf/0009X5M+psIpcR7Gq/zf7RbMBiPnz57tdzsqVK9V2gOvrKE6bNk2d/vzzz5fzV3pmsVhEnz591OX93//9nzrt5ZdfVh8fNmxYlZ6npvH1dRQdL9jtzTUIhQjM9avjtRFHjRrldllPP/202u6pp55y2cbx2m69e/d2u60wY8YMtd2IESM8/KXlq+7vGnfrBbPZLEaMGKFO69Onj8jOzi4z/9atW9U2V1xxhcf1bkU5vievueYap4uMv/jiiz57Hm8UFRWJbt26qc/v7pqvvnzP7Nq1S22TkJDg8lp9Qjhfe7Jnz54u25w9e1bdXggPDxdpaWku2+3du1f9TDds2LBK/08tPj/utmM/+OADdVr9+vXFvn37ysybl5cn4uLiBAARGxsrTp8+XaVaHOXm5oqwsDABQERERDh9j/bt27fCy7vuuuvU+VNTU31SY7UFxccee0xt8/vvv3tcntVqFb169VLbP/7448JkMrltX1BQIL7++muxaNGiMtMqGhQHDhyotv/ggw/KTC8uLhb33nuv0waRuw1KxzfgvHnzyn3u8jZ+HQN0o0aNxMGDB8u0SU5OFq1bty73i6IuB8V58+apK7zQ0NAqbUydOnVKhIaGCsB2wd1169aVafP111+rr2GzZs3crtR96cknn3T6Ij1z5ozbtlarVaxdu9blxVl9GThOnDih7ogJDg4u9zORlpYmXnvtNbF79+4y0yoSFIUQol+/fk6BztUFc0tfVN2boJiVlaX+/x1vR44c8aquyqrOoLhp0yZ1ekxMjNi5c2eZNkeOHHG6iLq7oJiXlyeaN28uAAhJksT06dM9Xrw4KytLfPzxx2Lt2rVlpjmGwdIbEWaz2SlEVnXHRE3i66BYVFSkbshcccUV5bYP1PVrfn6+aNy4sdp27ty5ZdqsXbtW6PV6daPZ3YaWoihOO25fffXVMm12796tXpBdlmWxZ88et3+n4+fG1efZ16+FNzytF0qHxcsuu8xlWBw+fLjaZvTo0S7bOC7zhx9+8CrcKooiWrRooa5HGjRooD7P0aNHK/y3unL06FHx7rvvipycHLdtMjIyxA033OC0fszMzHRbsy/fM4478MaPH19mPZqcnCwSEhLUNitWrHC7rEmTJqntrr/++jLvm4yMDNGjR49ytyuFcF7/uPoO8Mdr4Q1P27EffvihOj0+Pt5lWPz000/VNt26dSv3O37r1q1e7zB2/D53/B6dPXu2V/M7io2NFQBE9+7dKzyvO9UWFB33ILRp00bMmDFDrFixQqxatUqsWrWqzIc7JSVFNGnSxOnFe+yxx8T//d//ie+//17MnTtXvPbaa+Kmm25Sv8RcbehWNCj+/PPPTivtm266ScyYMUMsXrxYvP7666Jt27bqxnfTpk09blDu3r1bXU6DBg3Ee++9J5YvX67+zaXf+N5s/I4ZM0ZtYzQaxUMPPSTmz58vFi5cKJ544gkRGRmpTh80aJDbPTV1NSiuXLlS6HQ69W965JFHxI8//ljuLTk52e0yZ86cqS7PYDCI8ePHi/nz54s5c+aIkSNHqhtNer1erFq1ymN93mwweKO4uFj079/f6b1y5513ihkzZoilS5eKBQsWiPfee0/cddddomHDhgKA6N+/f5nl+DJwCCHEr7/+qu69BCAuuugi8fLLL4v58+eL7777TsyePVs888wz4sorr1T/T656IyoaFPfv3+8U6Hr06CHef/99sWTJEvHJJ5+Ivn37CsC2d9y+3mnZsqVXyy694+jqq6/2ar6qqM6gKIRw6i0NDg4WEyZMEPPnzxcLFiwQjz32mLoOdtx4cbeRsHPnTqf1VOvWrcUzzzwj5s6dK77//nsxZ84c8dJLL4lBgwap75VvvvnGaRmbNm1S3x9NmzYVGRkZZZ7n+PHj6vOEhoaKQ4cOeXwdagtfB0UhLmzwG41GjyOCAn39umLFCrU+SZLEyJEjxZw5c8T8+fPF+PHjhcFgUJ/rq6++8ris7du3O61TBg0aJGbNmiUWLlwoHn/8cfUzAZTfy+Xtet+Xr0V5ylsvmM1mp95LV2ExOztbdO3aVW0THR0tJkyYIGbNmiW+++47MX/+fPH222+LUaNGiZiYGDX0eMOxF9F+82ZHhrd27twpAIiQkBAxdOhQ8dprr4l58+aJ77//XsyePVs88MADapDx9jX35XsmKSnJKSD37t1bfPbZZ2LRokXihRdeEPXq1VOn3XHHHR6XlZmZKTp06KC279ixo3j//ffF4sWLxRtvvCGaNWvm9P1WXFzsdlneBEVfvxbeKG879qOPPlLbxMfHuxwFOHbsWKf/96233io++ugjsWTJEvHtt9+Kjz/+WNx3332iZcuW6nebNzZu3FjmvRwaGupxJ4Urjj3NU6dOrdC8nlRbULRYLE579UvfXK2ITp8+7bSx6+mm0+lcrtgrGhSFEOL555/3+Fx9+/YVZ8+eVfeMe+p5uO2229wup/Rr5c3Gr9lsFvfdd1+5r8eIESNEQUGB2+WU96GpbNtAV7rXyNubpxWeEEK8++67ThsZpW8REREue7xL83aDwRsmk0k88sgjThtunm5jx44tswxfBw4hhPjrr79Eq1atvKopPDzc5Z7EigZFIWzDlew9mq5uXbp0cdpB1a1bN6+Wu23bNqflLFy40OuaKqu6g6LFYhF33XWX29dOlmUxffp0px4NT5+ZQ4cOOe2h9nQLDg522gDLzMxU172yLHtcry9YsEBdTo8ePTyOTKkt/BEUly1bpi7T0/DjQF+/CmF7T4SHh7tdVlBQkMvRRK6sXbtWxMfHu12WJEniySefdLvD1q4i631fvhaeeLNeMJvNYtSoUWq73r17uwyLo0eP9vq98PLLL3tVX2JiohqM7bc5c+ZU9c9W2YOiN7eEhASvP2u+es8IIcSOHTvK/S69/fbbvVrvJSYmlrtOHjBggNseUztvg6KvX4vy2JfpaTvWcXi6q7CoKIp4/fXXRXBwsFfvC2+3mRVFKfN/dLU9Vp5nnnlGnd9XPetCVGNQFEKIwsJC8c4774g+ffqImJgYpw1YTxszGzduFA888IDo3LmziI6OFjqdTkRGRopOnTqJ0aNHi5kzZ7odM1yZoCiEEKtWrRJDhgwRcXFxwmAwiEaNGolrr71WfPXVV8JsNgshhFdB0WKxiJkzZ4qrr75axMXFqcNaXL1WFdn4/euvv8T48eNFmzZtRFhYmDAajaJly5bizjvvFL/99lu581fkjVzRN30g89eGjBC2MfwPP/ywaNeunQgLCxMRERGiS5cu4tlnnxVJSUnlzp+fn++0sXL+/Hkf/MW2ITTPPfec6N27t4iPjxd6vV6EhoaKli1bihtuuEG89dZbbod1+CMoCmHbwFiwYIEYNWqUaNmypQgPDxd6vV7ExsaKnj17ivvvv18sWbLE7fGVlQmKQgiRmpoqnnrqKdG+fXthNBpFdHS06Nmzp3jvvfdEfn6+UBRFGI1GAXjfM6goirpnOTY2VhQVFVWopsqo7qBot3z5cjFkyBARHx8vgoODRUJCgrjtttvEli1bhBDC66AohO11++mnn8Tdd98t2rVrJyIjI4VOpxPR0dHioosuEmPHjhVz584t01vouNH53HPPeXwOIYS444471PbeHmNXk/kjKFosFnUY28CBA922C+T1q6OkpCTxzDPPiM6dO4uIiAgRFhYm2rVrJx5++GGXw848OXv2rHj11VfFxRdfLKKjo0VISIho1aqVuOeee9TPRXkcXwtvdhD68rVwx9v1gsVicfpMugqLQthCzaRJk0SPHj1EvXr1hF6vF+Hh4aJt27Zi2LBh4oMPPhDHjh2rUI3XXnut+rxhYWHlnv+iIoqKisSvv/4qpkyZIgYPHiw6dOigbsNFRkaKNm3aiDFjxoiFCxdWeAeUL94zdnl5eeL9998Xffr0EXFxcSI4OFg0a9ZMjBw5ssK9ysXFxWLWrFni2muvFQ0aNBBBQUGicePGYsiQIWLx4sVeBbaKBEUhfPtaeOLtdqzjeQfc9SyePn1avPbaa+Kqq64SDRs2FEFBQSIkJEQ0bdpUDBgwQLz88svir7/+qlB9r732mtN6oKLrbkVR1J5fT+voypCEqOLpOInIJ1avXq2eSeyxxx7Dxx9/rHFFdc/evXvVM4V5+z9Yt26dep2jxx9/HB999JE/SyTSxIcffojJkydDp9MhKSmpQpfJICIi/1m/fj369+8PAFi1alWVzkpbmvZX4iYiABeu4RkREYGXXnpJ42rqps8++0y9f80113g1z8yZM9X7teHaiUSuPPjgg2jYsCGsViumT5+udTlERFTirbfeAgD06dPHpyERYFAkChj2oDh58mTEx8drXE3ts2nTJo/Xb5wxYwZmzZoFwHaB3RtvvLHcZe7atQvLli0DAAwYMMDlNdeIagOj0YipU6cCAGbNmoXTp09rWxAREWHz5s3qNYzfeecdny+fQ0+JAkB6ejrq16+PuLg4HDt2zGcXSaYL2rRpg6KiIlx//fXo0aMH4uPjYTabcezYMfz444/YuXOn2nb58uVug+Kvv/4KRVFw5MgRTJ8+HWfOnAFgW1n37du3Wv4WIi0oioJevXphx44deOSRR/Dpp59qXRIRUZ02YMAA/PbbbxgzZgwWLVrk8+UzKBJRndCmTRscO3bMYxuj0YivvvoKd9xxh9s2kiSVeczb4xnXrFmDgoKC8ot1IS4uDv369avUvEREREQVxaBIRHXC1q1b8cMPP2Dr1q04deoUzp8/j4KCAsTExKBdu3YYMGAAHnroITRo0MDjcuxBMTw8HO3atcNDDz2EcePGQZbLH8nfokULJCcnV6r+q666Chs3bqzUvEREREQVpde6ACKi6nDZZZfhsssuq/JyuG+NiIiI6gL2KBIREREREZETnvWUiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCk9kQEZHmFEVBUVERCgoK1Ft+fj4KCgpQWFio/iwuLlZvJpPJ7e9msxlWqxVWqxWKoqj3HX9XFEW9D9jOaOvuZj+rrSRJ0Ol0MBgM0Ov1CAoKgl6vV383GAxlbiEhIerNaDS6vW80GhEWFobw8HDo9fx6JiIibfGbiIiIfEIIgfz8fOTk5Ki33Nxcl/ftN8cwSBcYjUaEh4d7vEVGRiI6OtrpFhoa6vJan0RERBXFs54SEZFbQgjk5OQgMzMTGRkZLn/a72dlZaG4uLhKzyfLMkJDQ2E0GhEaGoqwsDD1d6PRiHXzN0FSJECRAAW2n0Iqeazk95KbZP92ExIgUHIrCVHiwuNqu5Jm9vsqyeFrUrLfSmaUAVHy0/YYANk2Tcgl92UB6ASun3AtioqKUFhYiKKiIqf7jj+rwmAwICoqyik8RkVFITY2FnFxcahXrx7i4uIQFxeHiIgIhkoiInKLQZGIqI5SFAVZWVk4d+4czp49i3Pnzjnd7I9VNPwZjUZEREQgMjJS/blpyd+QLDJgkUp+ypAsEmCRAasEySoBVhlQAAl1N7wICEAvAL0CoSv1s+TxYZOuQ25uLrKzs5GdnY2srCxkZWWhqKioQs8VFBSkBkjHEBkfH48GDRqgYcOGqFevHofBEhHVUQyKRES1lBAC58+fx5kzZ1ze0tPTYbFYvFpWREQEYmJiEBsbiz3rDkEqlgGzDMksA8W2n5JZZ3tMqbtBT0tCLgmUBgUw2H7a7w+ecBXS09ORnp6O8+fPIzs726tl6nQ6xMXFqcHR1c/g4GA//2VERKQFBkUiohrMbDbj9OnTOHHiBE6ePInTp0+rQTA1NbXc3kBJklCvXj3Ex8cjPj4efy7ebgt+Jh2kYh0kkwwU6yAJhr/aREgCCLJCBCkQQQoQZMXol29Ceno6zp49i7S0NJw9e7bcHQmSJCE+Ph5NmjRB06ZN0aRJE/V+48aNYTQaq+kvIiIiX2NQJCIKcEIIpKen48SJE+otJSUFJ06cQGpqqnrWTldkWUb9+vXRqFEj7P71EKQinS0ElvyEWWYIJJcEBBCkQARb1dvQSQOQmpqKtLQ0pKamlntMZVxcnBoemzVrhubNm6N58+Zo3LgxdDpdNf0lRERUGQyKREQBQlEUpKWlISkpCcePH0diYiISExNx8uRJjxvkRqMRzZo1Q9OmTfH7vG0XgmCRjr2B5Df24ylFiAXCaMWdb92CkydP4tSpUzh16hRycnLczhsUFISmTZuiRYsWaN68ufqzadOmCAoKqsa/goiI3GFQJCKqZvZjB48fP+4UCpOSktwGQp1Oh0aNGiEhIQHbvtsFqVAPqVAHqUhvGypah08AQ4FJ6BWIECtEiAVjpw1HSkoKkpOTkZKSApPJ5HIenU6Hxo0bo2XLlmjTpg1at26N1q1bo1GjRjxDKxFRNWNQJCLyI6vVihMnTuDo0aNON3e9LXq9Hs2bN0fi1lOQCvQXbib2DFLtICCAYCuUUFtP5OCHr0BycjKSk5ORl5fncp6wsDC0bt0arVq1Qps2bdCmTRu0bNmSx0ASEfkRgyIRkY+YTCYkJiY6BcJjx465vGyBLMto2rQpTu5IKwmDBtvPIgZCqpvUYyKNFihhFgx8qC+OHTuGpKQkmM3mMu0lSULTpk3Rvn17tG/fHh06dEDbtm0RGhqqQfVERLUPgyIRUSUoioKUlBQcPHgQBw4cwMGDB3Hs2DGXJ5YJCQlB69atcXBdIuR8PaS8klDIQEhULiEJCKMFIsyCkVNuwH///Ydjx44hIyOjTFtZltG8eXM1PHbs2BGtW7fmJTyIiCqBQZGIyAvnz5/HwYMH1WB46NAh5Ofnl2kXGRmJtm3bYtdPhyDl6yHlG2zHEvIYQiKfEgYrRJgFd384HIcPH8ahQ4dw7ty5Mu10Oh1atWqFjh07okuXLujSpQuaNGnCYx6JiMrBoEhEVIrVakViYiJ2796NvXv3Yv/+/UhLSyvTLjg4GO3bt8f+Vf9Byg2CnGcATDyxDJFWhMEKJdyMO6cPw8GDB3Ho0CFkZ2eXaRcdHa2Gxi5duqB9+/bsdSQiKoVBkYjqPJPJhEOHDmHPnj3Ys2cP9u/fX+akGpIkoXnz5kjZlgY512AbPpqvZygkCmD24x6VCDNGTL0O+/btw+HDh8sc86jX69GuXTs1OHbv3h3R0dHaFE1EFCAYFImozikoKMDu3bvVYHjo0KEyG45GoxGdO3fGzh8OXQiGVlmjionIV4QkIMLNuP+LMdi3bx/27dvn8njHli1bokePHujevTuDIxHVSQyKRFTrmUwm7N+/Hzt27MC///6LQ4cOlTnpTGxsLLKO5EPKCYKcE8TeQqI6Qr1cR6QZNz5zDXbv3o3ExMQy7RgciaiuYVAkolrHYrHgyJEjajDcu3cviouLndo0btwYqTszIecYIOUE2S5LwWBIRACEXoESVYybXrgWO3fudBsce/XqhUsvvRTdunVDSEiIBpUSEfkPgyIR1QpnzpzBtm3bsG3bNuzatavMGUljY2ORdbgAclYQ5OwgSCa9RpUSUU1TXnAMCgpCt27d0KtXL/Tq1QutW7fmWVWJqMZjUCSiGslkMmH37t1qOExJSXGaHh4ejoJkM+SsIEjZwbxEBRH5jC04mjD4yX74+++/y1yWIzY2Vg2NPXv2RGxsrEaVEhFVHoMiEdUYp06dwtatW/H3339j586dKCoqUqfpdDp07twZ+5cfh5wVDCmPxxgSkf8JCAijFQ/NvR3//PNPmXUTAHTo0AGXX345Lr/8crRt25a9jURUIzAoElHAslqtOHDgADZv3ozNmzfjxIkTTtPr1auHzAMFkDODbT2HPCspEWlMSAIishij3r4B//zzD44cOeI0PT4+Hn369EHfvn1x8cUX8/qNRBSwGBSJKKCYTCb8+++/2LRpE7Zs2YLMzEx1mk6nQ9euXbF32X+QM4MhFbDXkIgCmzBYMen7e7FlyxZs377dqbcxODgYl1xyidrbGBcXp2GlRETOGBSJSHPZ2dn466+/sHnzZvz9999OG1Lh4eEoSLRAzgi2hUP2GhJRDSUkASWqGDe+eBW2bNmCs2fPqtMkSUKXLl1w1VVX4aqrrkKDBg00rJSIiEGRiDSSlZWFP/74Axs2bMCuXbucrmsYHx+P83vyoTsfbLt0hWCvIRHVLgICItSCu2fcgi1btuDAgQNO0zt06KCGxqZNm2pUJRHVZQyKRFRtcnJy1HC4Y8cOp3DYunVrJG1MhXw+hBe7J6I6RwRZ8dCC27Fx40bs2bMHjptnbdq0UUNjixYttCuSiOoUBkUi8qvc3Fxs3rwZ69evx/bt253CYbt27XBszWno0kN4XUMiohLCYMWjS8bi999/x86dO8vsVBswYAAGDBjA4alE5FcMikTkcyaTCX/++SfWrFmDv//+GxaLRZ3Wpk0bJP6WaguHRQyHRESeCL2CyT+Ow8aNG7F9+3an9Wm3bt0wcOBAXH311YiKitKwSiKqjRgUicgnFEXBnj17sGbNGmzYsAH5+fnqtFatWiF5w1nI50MgFzIcEhFVhtArePz7u7Fu3Trs2rVLHZ6q0+nQu3dvDBw4EJdffjmMRqPGlRJRbcCgSERVkpKSgtWrV2Pt2rVITU1VH2/QoAHSt+dBPmdkOCQi8jERZMX4OSOwbt06HD16VH3caDTiyiuvxJAhQ3DRRRdBkni8NxFVDoMiEVVYbm4u1q5di9WrV+PgwYPq46GhoShKFNCdNULKMfCENERE1UAxWjDmw+uxbt06nDlzRn28SZMmuO6663DdddfxeEYiqjAGRSLyihACu3fvxooVK7Bx40YUFxcDsA15Euf0kM+FQM4IgaQwHBIRaUFAQESYMfiFy/Hbb7+hsLAQgO0ajb169cINN9yAfv36ISgoSONKiagmYFAkIo+ysrLw66+/YsWKFUhJSVEfb9WqFZJ/OwfduRBIZp2GFRIRUWlCVvDU8vuwcuVK7Nq1S308MjISAwYMwNChQ9G6dWvtCiSigMegSERlKIqCHTt2YPny5di0aZN6lj2j0QhTEqBLNULK49BSIqKaQIRYMPqj6/Hrr7/i3Llz6uNdu3bFsGHDcNVVV7GXkYjKYFAkIlVubi5WrlyJZcuW4dSpU+rjHTp0wH8rTkNOD4FklTWskIiIKktA4K2/nsaKFSuwadMm9fqM0dHRGDJkCG666SY0atRI4yqJKFAwKBIREhMT8cMPP2DNmjUoKioCAISFhaHwPwFdmhFyvkHjComIyJeEwYq7vrwJP//8s9rLKEkS+vTpg2HDhuHSSy+FLHPHIFFdxqBIVEdZrVb8+eef+OGHH7Bz50718VatWiFlTTrkcyGQFG4kEBHVZgICr2x4FMuWLcP27dvVxxs1aoThw4djyJAhCAsL07BCItIKgyJRHZOTk4MVK1Zg2bJl6nUPZVkGzhqgOxPGy1oQEdVRSogFt0y7FitXrkReXh4A22WPbrzxRowYMQINGzbUuEIiqk4MikR1xJkzZ7B06VKsXLlSPWV6VFQU8vZboDsTCqmYZy4lIiJAyAKP/XAXli5dqp7tWqfT4aqrrsKoUaPQqVMnjSskourAoEhUyx09ehSLFi3Chg0b1BMXtGnTBkmrzkJON/K6h0RE5JKAwBt/PomlS5c6DUvt2rUrRo0ahX79+kGn405GotqKQZGoFhJC4N9//8WiRYvwzz//qI9LmUHQnwqDlB3E4aVEROQ1JdSMAS9cirVr16qXTGrSpAluv/12DB48mJfXIKqFGBSJahGr1YqNGzfi22+/xdGjRwHYhguJVAN0p8J49lIiIqoSYbBizGfXY9myZcjJyQEAxMfHY/To0Rg6dCiMRqPGFRKRrzAoEtUCFosF69evx/z589XjSUJCQmA+LkN3OhSSSa9xhUREVJsIWcGEhaOwZMkS9fIaUVFRGDFiBG699VZERERoXCERVRWDIlENZrFYsHbtWsyfPx+nTp0CAERGRiJ/n2I7QY2Fl7cgIiL/EZLApGV3Y+HCher3UGhoKIYPH47Ro0cjMjJS4wqJqLIYFIlqILPZjNWrV2PBggU4ffo0gJIzmO62QpcaCsnKgEhERNVHQOC51Q/gm2++QWJiIgAgLCwMI0eOxMiRI9nDSFQDMSgS1SBWqxXr1q3DnDlzcObMGQBAdHQ0cndZoTtjhKQwIBIRkXYEBKZsfAxz5szBsWPHAADh4eEYPXo0RowYgbCwMI0rJCJvMSgS1QBCCGzatAmzZ89GUlISACA2NhbZ/5ptPYi8xAUREQUQAYGXfnsYc+bMUb+3IiMjMWbMGAwfPpwnvSGqARgUiQKY/TIXs2bNwqFDhwAAERERKNgroDsTxoBIREQBTUDg+TUP4uuvv1ZPtlavXj2MGzcO119/PfR6nmyNKFAxKBIFqEOHDmHmzJnYuXMnAMBoNKL4iAzdqTAeg0hERDWKgMDTK+9zOnQiISEBDzzwAPr16wdJ4o5PokDDoEgUYNLS0vDVV19hzZo1AACDwQAl2QDdyTBIZp3G1REREVWekAQeWDQK8+fPR3Z2NgCgS5cueOihh9C1a1eNqyMiRwyKRAGioKAACxcuxJIlS1BcXAwAkM+GQJ8SAcnEgEhERLWH0CkYPWMwli5dCpPJBAC48sorMXHiRDRu3Fjj6ogIYFAk0pzFYsHKlSsxZ84cZGRkAACkbAP0SZGQ8wwaV0dEROQ/IsiKwa9dhpUrV8JqtSIoKAijRo3CnXfeidDQUK3LI6rTGBSJNLRnzx589NFH+O+//wAATZo0Qdq6fMgZwZDA4zWIiKhumPXfNHz66afYvn07ANsJbyZMmIDBgwdDlnlcPpEWGBSJNJCeno4vvvhCPQ4xIiICBbthu9SFYEAkIqK6R0Bg6u+PY8aMGTh16hQAoEOHDnj88cfRuXNnjasjqnsYFImqkcViwf/+9z/MmTMHBQUFkCQJ0pkQ6JMjIFm4x5SIiEhIAuO/uRXz5s1DQUEBAGDo0KF44IEHEBkZqXF1RHUHgyJRNdm1axc+/PBDJCYmAgCkXAP0x3kcIhERkSvCYEX/KT2xatUqAEB0dDQmTpyIwYMH83IaRNWAQZHIz3JzczFz5kysWLECABAVFYX8fwXkNCOPQyQiIirHeztexAcffKDuaO3evTsmT56MFi1aaFsYUS3HoEjkJ0IIbNiwAZ988ol6NlM51chhpkRERBUkJIF75w3D3LlzYTKZoNfrcdttt2Hs2LEIDg7WujyiWolBkcgP0tLS8OGHH2LLli0AAKlAB/2xKMg5QRpXRkREVHOJYAt6PtZO/X5t3rw5nnvuOZ7shsgPGBSJfEgIgZ9++gkzZ85EYWEh9Ho9xPFg6E6G82ymREREPvLS+ofx4YcfIiMjA5IkYeTIkbjvvvsQEhKidWlEtQaDIpGPpKWlYdq0aeo1oKQcA/T/RUEu1GtcGRERUe0j9AqueaUHVq9eDcB2LeJnn30W3bt317YwolqCQZGoioQQWLVqFT799FPk5+cjKCgI1kPB0J0J5clqiIiI/Oy1zU/gvffew7lz5wAAw4cPx4MPPshjF4mqiEGRqArS09Px3nvvXTgWkb2IRERE1U7oFAx+szeWL18OAGjRogVeeukltGvXTuPKiGouBkWiStq0aROmTZuGnJwcGAwGKEeDoTsVxl5EIiIijbz+52S88847yMjIgF6vx/jx4zFmzBjodDqtSyOqcRgUiSrIZDJhxowZWLZsGQBAytNDfzQKcoFB28KIiIgIQq+g91PtsWnTJgBAt27d8OKLL6JRo0YaV0ZUszAoElXA8ePH8eqrr6oX/dWdCoUuOYJnNCUiIgogAgJP/HwPPvnkExQWFiIsLAzPPvssrr76aq1LI6oxGBSJvCCEwM8//4xPP/0UxcXFiI2NRe4mATmLB8oTEREFqrkpH+KNN97A/v37AQC33norJk6ciKAgXteYqDwMikTlKCgowLRp07BhwwYAgJQZBMPRKEhmHu9AREQU6IQkMPzTa7Fo0SIAQPv27TF16lQ0adJE48qIAhuDIpEHSUlJeOmll5CSkmI7EP6/UOhO87IXREROJBkQitZVEHn02uYn8OabbyInJ4dDUYm8wKBI5Mb69esxbdo0FBYWAiYZhsPRkHM5VIWIqAxJtv2sTFisyrxEFSSCrGh3bwPs27cPADBmzBhMmDABej0va0VUGoMiUSkWiwUzZ87Ed999BwCQsoJgOMKhpkRELtmDnl1FA19V5yeqoNJDUXv27ImpU6ciMjJS48qIAguDIpGD7OxsvPLKK9i5cycAQHcyDLrkcA41JSJyp3TQAyoW9qo6P1ElvbDuIbz99tsoKipC48aN8eabb6J169Zal0UUMBgUiUokJSXhueeew+nTp2E0GmHeEQxdRojWZRERBTZXQQ/wPuxVdX6iKvjiyNt44YUXcObMGYSEhOD555/HNddco3VZRAGBQZEIwNatW/Hqq68iPz8fKNLBcCAacqFB67KIiAKbu5Bn503Y87QMhkWqBkKvoNvDCdi+fTsAYNy4cbj77rshSRxNRHUbgyLVaUIIfPfdd/j888+hKAqkbAMMh2IgWcrZ+CEiovKDIuA57FV1fiIfERC45ZOrsWTJEgDAddddh6effhoGA3caU93FoEh1ltVqxccff4xly5YBAOQ0I/THIiEJ7kEkIvKKN0EPcB/2qjo/kY89+uOd+PDDD2G1WtGjRw+88cYbiIiI0LosIk0wKFKdZDKZ8Prrr+OPP/6AJEmQj4fz+ohERBXhbcizcxX2fLEMIh97Y8uTmDJlCgoKCpCQkIDp06ejcePGWpdFVO0YFKnOyc3NxfPPP489e/bAYDBA7A2F7rxR67KIiGqWioY8wDnoVWb+0ssg8pMvjryNZ555BufOnUNMTAzee+89tG3bVuuyiKoVgyLVKWlpaXj66aeRlJQEWCQYDkZDzgnWuiwiopqnskEPsIW9qs5P5GciyIrmt0fj6NGjCAsLwzvvvIOLLrpI67KIqg3P2EF1xokTJzBx4kRbSDTJMOyNZUgkIqqMqoS8QJifyAtSsQ7J32SjW7duyM/Px5NPPom//vpL67KIqg3XtFQnHD9+HI8++ijOnTsHqUCHoD31IBfwTGZERJUSCD16DItUDSSrjENfpuHyyy9HcXExXnjhBaxbt07rsoiqBYeeUq135MgRPPnkk8jOzoaUp4dhfywvf0FE5AuVDGuSbDtxmFB8tAkSCMGVajUhCVw1pRvWrl0LSZLw1FNPYejQoVqXReRX3FqmWu3AgQOYNGmSLSTmGhgSiYh8qYoBzR4Yq4y9i+RnkpDw+9Q9uOWWWyCEwLvvvovly5drXRaRX3HNSrXWvn37MHnyZOTl5UHKMcCwP4YhkYjI1yoYFkuHQ4ZFqikkSPjlqS0YMWIEAODdd9/FihUrNK6KyH849JRqpcOHD2PSpEnIz8+HlB0Ew4FoSAo3IoiI/MbLoOYuGHIYKtUUAgI3fXgFvv/+ewDAM888gxtvvFHjqoh8j1vOVOscP34cTz31VElINMBwIIYhkYjI34RSpZDGnkWqKSRI+PmJTRg+fDgAW8/iypUrNa6KyPe4NqVa5cSJE5g8efKFYxIPxkBSfLTxQURE5fMQFssLgwyLVFNIkLB88mYMHz4cQghMnz4df/zxh9ZlEfkUh55SrZGamopHHnkEZ8+e5dlNiYi05iKsVSQIcigq1QQCAgPf6olffvkFQUFBmD59Oi6++GKtyyLyCQZFqhVycnLw8MMPIzk5GVKBDoZ9sZDMOq3LIiKq2xzCYmV6CxkWqSYQEOj9XDts2rQJoaGh+Pjjj9G+fXutyyKqMgZFqvFMJhOefPJJ7NmzBzDJCNpTD1IxQyIRUUAoCYuVHVbKsEg1gZAEOj/cGDt37kR0dDRmzJiBZs2aaV0WUZVwXB7VaIqi4K233rKFRItkO3ENQyIRUeAQSpWOPeRxi1QTSELC/pmn0K5dO2RlZeGZZ55BVlaW1mURVQnXmlSjzZw5Exs2bAAUwHAoGnKBQeuSiIjIkSRXuVdQkiXfBUYiP5GsMpIWZKJRo0Y4deoUXnrpJRQXF2tdFlGlMShSjfXzzz9jyZIlAAD90SjI2cEaV0RERO74YghplcIih55SNZDMOkybNg1hYWHYs2cP3nvvPfAoL6qpGBSpRtq7dy8++ugjAIAuORy6dKO2BRERUVmlhntqHhaJqsH9rZ/Bq6++ClmW8euvv+Lbb7/VuiSiSmFQpBrn7NmzePnll2GxWCCnh0B3MkzrkoiIyEu+CosVCozsTaRq9mKf9/DYY48BAL788kv8+eefGldEVHE86ynVKCaTCY8++igOHToEKV8Pw55YSAr3dxARBZxyTh7jq55Br4IngyJp5Pp3L8OyZcsQHh6O2bNno3HjxlqXROQ1bmFTjfLBBx/g0KFDgFmC4WA0QyIRUSDy4gyjvrrsRbmBkyGRNLTymb/QuXNn5OXl4eWXX4bJZNK6JCKvcSubaoxff/0Vq1atgizLMByOhmTSa10SERFVQbWFRSKNSELCq6++iqioKBw9ehQff/yx1iUReY1BkWqEEydO4MMPPwQASImhPMMpEVGgquD1CoUi/HeSG/YmUgC4o9EjeOWVVyBJElasWIGVK1dqXRKRVxgUKeCZTCZMnToVhYWFkLKDePIaIqJAVYWL2vOMqFSbvXDZuxg3bhwA4OOPP8bJkyc1roiofAyKFPC++OILHD16FDDLMByJggRuCBAR1UY+DYvsTaQA8824FejRowcKCwvxxhtvwGKxaF0SkUcMihTQ/v77b/zwww8AAP3RSEjFOo0rIiKiQMeeRQpEEiS88MILCA8Px4EDB7BgwQKtSyLyiEGRAlZ+fj7effddAIB8JhS6zBCNKyIiIo8CpBdPKMI2DLYKQ2GJ/OHOxo/iiSeeAADMmzcPBw4c0LgiIve4BqWANXPmTKSlpQFFOuiTwrUuh4iIvFGFsOiLnsAyw1cZFinATL/uK/Tv3x9WqxVvvfUWiouLtS6JyCWuPSkgbd++HT///DMAwHA0ktdLJCKqSQKkZ1HFsEgBZtObexEbG4uUlBQOQaWAxTUnBZzCwkJMnz4dgG3IqZzDS2EQEdU4FQyLfulNdH6CKi+fyFckq4zHH38cALBw4UIkJydrXBFRWVxrUsBZsGABUlNTgSKZQ06JiGoyL8NitZ18hmGRAsibAz5Hnz59YDab8d5770FRAqwnnuo8rjEpoJw4cQKLFy8GAOgTOeSUiKjGq6ZhqF5fWoNhkQKEBAlPPPEEQkJCsHv3bqxcuVLrkoiccG1JAUMIgU8++QRmsxlSZhDkDA45JSKqFTyERb8POXX9pFV+TiJfuKvJYxg/fjwAYNasWcjPz9e4IqILuKakgPHnn39i27ZtgALoj0dCAq+DRURUawilTGDU9HqHvHwGBYiv7vgeCQkJyMrK4oltKKBwDUkBwWKx4PPPPwcA6E6HQS7Sa1wRERH5hY+Hola4N7E0hkXSmCQkTJw4EQDw3Xff4cyZMxpXRGTDtSMFhJUrV+LkyZNAsQzdyTCtyyEiIj/TtDeRKMC8csWHuPjii1FcXIxZs2ZpXQ4RAAZFCgAmkwlz584FAOhOhkGyavy2tA9H4l5mIiL/EErVewKJahEJEh5++GFIkoTffvsNBw8e1LokIgZF0t7//vc/pKenA0UydKmh2hZTOhwyLBIR+YePwiJ7Jqm2mNjhRQwaNAgAMG/ePI2rIWJQJI3l5+dj4cKFAAD9iXBIQqMvfPYgEhFVv0AIi9V0+Q4ib4wdOxayLGPLli04fPiw1uVQHcctY9LU8uXLkZOTA6lQB/msUZsiyguIDJBERP6jZVhkSKQAM67Fk+jfvz8A9iqS9rgFTJoxm8347rvvAJQcm6jF5TAYAomItBcIPYtEAWLs2LGQJAmbN2/G0aNHtS6H6jBuJZNm1q1bh3PnzgHFMuRz1dybWNGhpgyURET+Vd1hkb2JFKDua/U0rr32WgDAokWLNK6G6jJu/ZImFEXB4sWLAQC606HVe2wiQx8RUWCqrrDIkEgBbsyYMQCADRs22E74R6QBbjGTJrZv347ExETAIlXvmU6rEhIZMImI/I/DUInwSKeX0a1bN1itVixbtkzrcqiO4pYvaeKnn34CAOjOGqvvuokMekRENYM/wyJ7E6mGGDFiBADbNpPJZNK4GqqLuOVM1S49PR1btmwBAMjV0Zvoy0tfMGwSEVUPf4RFhkSqQd7oPwPx8fHIzs7Gn3/+qXU5VAdxq5eq3S+//AKr1Qop2wC5UO/fJ/NlsBMKNzKIiLzhqx10PgqLKu7soxpEgoTrr78eALBy5UqNq6G6iGtMqlZCCKxatQoAoEvzc2+ir0MiERGVz3HdGwBhscy8DItUgyx+3BYQ//nnH6SlpWlcDdU1XFtStTp48CBOnz4NWCXI54P98yS+HGoKMCQSEXnL1bpXw7Dodh6GRaohpCI9evToASEE1qxZo3U5VMdwTUnVat26dQAAOSMYkuKHt5+vv/wZEomIvONp/atBWCy3LcMi1RADBw4EAGzcuFHbQqjO4VqSqo3VasX69esBAPK5EN8/AUMiEZE2vFn/+jAslhcCvQ6UDItUA3w0fC50Oh2OHj2KkydPal0O1SFcQ1K1OXjwIDIyMgCLBDnLx8NOedIaIqLA56Ow6NOT3DAsUoCTLDIuvvhiAOxVpOrFtSNVm7/++gsAIGcGQxI+vBAyj0ckItJORdfBvlpnuwmLlQqQDIsU4K6++moAwB9//KFtIVSncM1I1cZ+DSA5w0e9iTxpDRGRtiq7DvZTWKxSLyPDIgWwj0fNBQAcPnwYWVlZmtZCdQfXilQt0tLScPz4cUDAN8NOeTwiEZG2qroe9nFY9MlQVIZFClBSsQ6tWrWCEAL//vuv1uVQHcE1IlWLnTt3AgCkXAMkS4BsXNgxJBIRacOHYdFnGBYpQF166aUAgG3btmlcCdUVXBtStdi1axcAQM4JqvrCGOyIiLQXaOtiX52ILND+LqISvXr1AnBh5zuRvzEoUrWwB0Up2wdBEeAXORFRIKjqutgf6/KqLJPfLRTAnu87DbIsIy0tDefOndO6HKoDGBTJ79LT03H69Gnb8Ym5Bq3LKYvDjIiIKq+y4cqfoawyy2ZIpAAnWWW0bt0aALB//36Nq6G6gFvI5HdHjhwBAEgFekjWAD1LKcMiEVHlVXR9XB2hjMGPaqEuXboAAPbu3atxJVQXcOuY/E4Nivl63y+cYZGIKDB4uz6uzgAXiDURVUHHjh0BAEePHtW4EqoLuGVMfqcGxTw/DTvlFzwRUWAob32sxfo6EGsiqqR3R30JADh+/DiE8MElYYg8YFAkvzt27BgAQM734/GJvvqiZ68iEVHVBGLwcldTINZK5IFUoIdOp0NOTg7Onz+vdTlUy3GrmPyquLgYaWlpAACpUKdxNV5iWCQiqhpXAUzrUFb6+bWuh6gSJCGhadOmAGy9ikT+xC1i8qvTp09DURTAKgFmP7/deLwiEVHgcFwnB0oos9cRKPUQVUKzZs0A2LaxiPyJW8PkVydPngRg602UIPn/CfnlT0QUOIQSeOvlQKuHqIIaNmwIADhz5ozGlVBtx6BIfqUOOy2qxmGn3Aio2SSZPbre4okMiIjqHHtQTE1N1bgSqu24NUZ+lZGRYbtTXM3HJ1Y1LDJsasMxIDIsemYPiQyLRER1yhcPLwBwYWc8kb9wS4z8yn5GLsnfxye6Utmwx5CoDVfBkGHRtdLhkGGRiKjOsG9TZWdna1wJ1XbcCiO/svcoahIUK4MhURueAiHDojN3oZBhkYiobrAwKFL14BYY+VV+fr7tjlZBsSLBjyFRG94EQYZFm/LCIMMiEVGtZ9/5npeXB4vFonE1VJtx64v8qrCwEAAgKdVwxlN3vAmADInaqEgArOth0dsQyLBIRFS7WS5sU6k75In8oI5veZG/2YMirBoGRcBzEGRI1EZlgl9dDYsVDX8Mi0REtZYECShZzZvNZm2LoVqtjm51UXUxmUy2O1r2KNq5CoQMidqoSuCra2GxsqGPYZGIqPYq2XxhUCR/qmNbXFTdhHoKf23rUDkGQ4ZEbfgi6NWVsFjVsMewSERUO5Vcdezo0aPa1kG1ml7rAqh2k6SSnsQA6FBUMSBqp64EPF/wVcgTApAC6QNIRES+wpPZkD9xq438SuIGKtkxJHrPlz2B/AwSEdVaLVq00LoEqsW45UZ+pdOVjI2QOASuTvNHSKytwZMhkYiIylMyOCo0NFTbOqhWq6VbWhQojEaj7Y6OQbHO8megq21hkSGRiIjKISShbsGHhYVpWwzVarVsK4sCjX0FJhgU66bqCHK1JSwyJBIRkTcctqnUHfJEflBLtrAoUKl7uvQ8gUydU50BrqaHRYZEIiLyls62TRUUFAS9nuelJP+p4VtXFOgiIiIAAELPHsU6RYvgVlPDIkMiERFVgDDYgmJMTIzGlVBtV0O3rKimiI+Pt90JtmpbCFUfLQNbTQuLDIlERFRBIsgWFOvVq6dxJVTb1bCtKqpp7EFRBDEo1gmBENQCoQZvMCQSEVFllGxTMSiSv9WQLSqqqeLi4gBc2PtFVC0CPSwyJBIRUSWNfuUmABe2sYj8JcC3pqima9SoEQBAhLBHsdYLtHAWaPX4mGQIgq5erNZlEBFRNTtx4gQAoEmTJhpXQrVd7d6SIs0lJCTY7gQpEDzzKVUnEcDvtyr2AkqGIOjiYiGFhEAXy5MZEBHVJfagqG5jEfkJgyL5ldFoRIMGDQAAwmjRuBrym0DrvQvkkGhXybBoD4nQ6QBJYlgkIqpDBAROnToFgEGR/C/Atu6oNrKvyEQog2KtxJBYeRUMi7bhpjG2kOiwDIZFIqK6QYRYUVxcjKCgIHVHPJG/BNgWHtVGbdq0AQAo4WaNKyGfC7SQWBNVJCzKEuDq4soMi0REdYIo2ZZq27YtdI47DYn8gFt55HcdO3YEcGHlRrVEIIbEmtSb6MiLsCgZgqCLifa4DIZFIqLa7daXBwMA2rdvr3ElVBcE4JYe1TYdOnQAYBt6KiQfXhaAtMOQ6HsewqI65NRVb2KpZTAsEhHVXocOHQLAoEjVIwC39qi2adCgAWJiYgCZvYrkJzU9JNq5CIteh0SHZTAsEhHVPkISalDs1KmTxtVQXcCgSH4nSRK6d+8OAFCiirUthqou0HoTa0tItHMIixUOiQ7LYFgkIqpdRIQZxcXFiI2N5RlPqVoE2BYf1VYXX3wxAECJZlCs0RgSq4ckVT4kOi6DYZGIqNa44/2bAAA9evSAVMXr8RJ5I8C2+qi2sgdFEVEMIfM4xTpLKLU33PmQrk1LpDzTE2eGtaragiQJ1rZNcfahPr4pjIiINLNjxw4AtqBIVB0YFKlaNG3aFPXr1wdkQIkyaV0OVVZVQp7jvL4Ii7U4cApjEIoaWJHTRuDMjZUfXmRuFodjw8OQ1dXCsEhEVIMJvYL9+/cDAHr27KlxNVRXMChStZAkCX379gUAKLEMijWarwKar0JnLaNr0xJJt8QCAJQgUemwaG4Wh8RbQmGNMQMGBVldLTj34GW+LpeIiKqBEmOC1WpFq1at0LhxY63LoTqCQZGqTb9+/QDYgqIAh5/WaBUNau7aVybw1fKQmHh7Q5jqWdXHKhMW7SHREutwlmGDgsxuVoZFIqIa6IoHbIfw2He6E1UHBkWqNt27d0d4eDgQpEBE8DIZNZ63ga28drU4+FWEq5BoV9GwqATrnEOiXUlY5DBUIqKaQ8gCW7duBcCgSNWLQZGqjcFgwOWXXw4AsMYXaVwN+UR5J6fxVZisaLsaxlNItPM2LJqbxSH5hmD3DTgMlYioRlFii1BYWIiGDRuiY8eOWpdDdQiDIlWrQYMGAQCUuEIIicNPa43qODlNHQ6JduWFRZdDTl0p6VlMntqHgZGIKMBdem9nAMDAgQN5WQyqVgyKVK0uvvhixMbGAgYBJYYntalVSgc5Xx5/WEtDImA7w6k3IdHOHhZThziHRa9Dop1BgalJMTK78rhFIqJAJfQKtm3bBsAWFImqE4MiVSu9Xo8BAwYAAJT6hRpXQz5nD3Q8o6lXHM9wWhFKkIChYQ6GNDqCN8/+iPcz/4cp577BA3+tQVx2bsUWFqQwLBIRBShr/UJYrVa0a9cOLVq00LocqmMkIQTH/1G1SkxMxN133w0IIGh7PKRindYlEVU7XZuWSLytIUxx3vcmAkBwsRlTfvgJI7ZtR5C17LzFOh2+63cJXr1tKEwGg/cLLpYRs1eH+C+2VqgeIiLyDwGBBmOCcOLECTz55JO4+eabtS6J6hj2KFK1a9myJbp37w5IgLVhgdblEGlCnEpFo63FFZonuNiMeTNn4/Yt21yGRAAIslpxx+9/Y96HcxBc7P3ZhQ1ZOjRadQrgvkMiooAgoopx4sQJhIaGctgpaYJBkTQxbNgwAIC1AU9qQ3WQEFAKChC8+QBarPC+R3HKDz/hsv+Ol3sVUgGgz+FETFm83KvlBqUZ0HbWKViSUtT6iIhIW5c/3A2A7USAoaGhGldDdRGDImniyiuvRL169YAgBUocL5VBdVNFwmJ8Tg5GbNsOACjvnHf26SM3/1vuMYtBaQa0mX36Qki0Y1gkItKMEmLBH3/8AeDCznWi6sagSJrQ6/UYMWIEAMDaNA+i3D4SolqiVADzNiyO+usft8NN3QmyWjF683aPbWSTBEtisle1EhFR9bhuah8IIXD55ZejVatWWpdDdRSDImlm2LBhCA8Phwi1QonlpTKoDnATvOxhsfkv7oNg7/+OVeopLzt03O20oDQDWn1zyvMCGBaJiKqVMFjx66+/AgBuv/12jauhuoxBkTQTFhaGW265BQB7FYmUggKEbHIfFsOLKrczxd186pBTd72JjhgWiYiqzfAPB8BsNqNr167o1q2b1uVQHcagSJoaOXIkgoODISIsENEVOwMkUY3iRdhSCgoQsvmgy7CYFxJcqad1NV9QmgFt/u+MdyHRjmGRiMjvhMGKZcuWAWBvImmPQZE0FR0djZtuugkAYGmey15Fqp0qELKU/HyXYfGfixIq99SlzqiuhsTjSZVYGD+fRET+NHTalSgsLET79u1x+eWXa10O1XEMiqS5u+66C6GhoRDhFp4BlWqfSoQrJT/faRiqvn4hrn7yMIShgk9tAC6+Nw8TL9ugPiabpMqFRHWhDItERP4ggi346aefAAAPPPAAJKm8c1wT+ReDImkuOjpaHV5haZ7H6yoSwXkYanCwBT2ahQCjIgHAq+soAgBGRyKsQRgmRO/Dg71/t528ZsHpqhfHsEhE5HNXv3AxLBYLevbsiZ49e2pdDhGDIgWGkSNH2q6rGGKFtWGB1uUQBQT7MFT92mgAgHg9DqJPiFfXURR9QiBejwMARMlGFCkGtF6QXrXeRPUJuJebiMiXlDAz1q5dC8DWm0gUCBgUKSAYjUbce++9AABrszwIvaJxRUQ+UpVQJUkQJhMa/5SEjl9MBIwyxMLGEHdGuh2GKgywTf+2MRBiW8V/mtkcvz99OUTKaUjBlTspjmNNRETkOwICHe5qDCEErr32WrRv317rkogAAJIQHENEgcFisWDChAn477//IKcZYfgvSuuSiHyroqtbSYKktyVCXVwsci5rjvSuOhx88HPgnAX4NgfSlkIgXwHCZIjLjcDtkUC83mkxk870xOErHQKi1QohBISpEpfcYFAkIvIpa3whLO2yYTQa8c0336B+/fpal0QEgEGRAsy+ffswceJEAIBhTyzk3CCNKyLyMW9XuZIESacDJOeBH7r6cTh+XwscfOBzrxbzaWZz/G/yQIRsPli2FIulYmGRIZGIyKeETkHodcXIysrCgw8+yEtiUEDh0FMKKF26dMGNN94IALC0zuHlMqj28SZsuQmJAGA9m45Ws5PQ8cuJ5S7mo8wWbkMiAEh6vfdDURkSiYh87sbp/ZCVlYXmzZtj5MiRWpdD5IRBkQLOAw88gKioKIgwC6yNeWIbqoW8CovuV89qWPzCc1g8XhjvNiSqT+NNWGRIJCLyOSWiGMuWLQMATJo0CQZDBa+BRORnDIoUcKKiovDggw8CAKzNc6EYLRpXROQH7sKXvTexHNaz6Wj1f+57Fj/KbIG9L3X3rpSK9CwSEVGVCVmg4ZAwKIqCwYMH45JLLtG6JKIyGBQpIN1www3o3bs3IAOWttkcgkq1U+mw6GHIqSvuhqF+lNkCPz05ECGbDnhfiruwyN5EIiKfsybk4sSJE4iLi8Njjz2mdTlELjEoUkCSJAnPPPMMwsPDISLMsDbN17okIv8oExYrtlpWw+IsW1j8NLM5lj1VsZCoPnXpsMiQSETkc0pkMZSmhQCAp59+GhERERpXROQagyIFrPj4eEyaNAmA7dqKSqhZ24KI/EWSvB5y6or1bDpafWULi0cL68P4R8VDoloKh6ESEfmN0Cmof50RQgjccMMN6NOnj9YlEbnFoEgBbeDAgbjiiitsQ1DbZ0HIitYlEfmHJFe4N9GRrWcxGXtfvKjqpeh07E0kIvIxAYErX+qGU6dOoX79+njkkUe0LonII15HkQJeVlYWxo0bh/T0dMhnQ2A4Gq11SUT+IcmV7lVUyRIkSQIquxwhIIqLIazWqtVBREROrPULYGmbA51Oh08++QRdu3bVuiQij9ijSAEvOjoar7zyCmRZhlK/CNb6vGQG1VJC8UlAE0IAlVkOQyIRkV8ooWboupgAAOPHj2dIpBqBQZFqhO7du2P8+PEAAEurXChGHq9ItVRJWKxUWJMvDBetbFhkSCQi8i0hK2hySwRMJhN69eqF22+/XeuSiLzCoEg1xh133IFevXoBOgFLhywIHY9XpFpKKBXvXZTLHlNYobBY0ptIRES+IyDQ94XOSEpKQmxsLF566SXIMje/qWbgMYpUo2RmZuK+++7DuXPnIGcEQ38wGhJ40g2qxbw9btFFUFQXUd4xixxySkTkF5amebA2z4Ner8eHH36Iiy6q+gnHiKoLd2lQjRITE4M333wTQUFBUGJNsDbP07okIv/ypmfRQ0gEvOtZZEgkIvIta0wRlBa260BPmjSJIZFqHAZFqnE6dOiA559/HgBgbZoPa3yhxhUR+ZmnsFhOSFQX4S4scsgpEZHPKUYLgnoWQwiBYcOG4aabbtK6JKIKY1CkGql///646667AACWNtlQIrihS7WcD86I6i4ssjeRiMh3hMGK+kODUVBQgIsuugiPPfaY1iURVQqDItVY48ePR79+/QAZMHfMhGK0aF0SkX+VDote9iY6LcIxLLI3kYjIp4SsoNXYejh16hQaNWqE119/HXq9XuuyiCqFJ7OhGq2goACTJk3CoUOHgCIdgvbEQjJX8YLlRIHOfoKbSgRFJ5W9DAcREZUhIGDpmAUl1oSoqCh8/vnnaNasmdZlEVUaexSpRgsNDcX06dPRpEkTIMQKc6dMXjaDaj8fDEOFIhgSiYh8REDA0iYHSqwJwcHBeOeddxgSqcZjUKQaLzo6Gu+//z5iYmIgwi0wd8iCkNhRTrWcUCDMlRxurQgIi9m39RAR1WHWhDwoDQohyzKmTJmCzp07a10SUZUxKFKt0LhxY0yfPh1GoxEiuhiW9gyLVAdUJSwSEZFPWJrkwdrMdhmMJ554wnb+BKJagEGRao327dvjrbfesl1jsZ4JlnZZEGBYpFquomGRvYlERD5jaZQPawvbNZ0feOAB3HzzzRpXROQ7DIpUq1xyySV44403YDAYoMSZYGmXzbBItR97FomIqp21QQGsrXIBAPfeey/uuOMOjSsi8i0GRap1LrvsMkydOhU6nQ5KfBEsbXIYFqn2KwmLHgMjexOJiHzCWr8AljY5AIDbb78d99xzj7YFEfkBgyLVSldccQVeeeUVyLIMpUEhwyLVDUJh7yIRkZ9ZGxbA0tYWEocPH44HHngAklTFyxURBSAGRaq1rrnmGrz00ku2nsUGhbC0z+YJbqhucBUW2ZtIRFRllsb5sLS+EBIfe+wxhkSqtSQhBLecqVb7/fff8eqrr8JisUDOCIb+cDQkhSt1qgMkGZJBb7vPoEhEVGkCAtam+bA2t5245o477sCECRMYEqlWY1CkOuHvv//Giy++CJPJBCkrCIaD0ZAUdqhTHSDJkHQ6hkQiokoSELA2z4O1qe0SGOPHj8fYsWMZEqnWY1CkOmPXrl147rnnUFBQACnXAMOBGEgWhkWqAyTZdvwiERFViJAELK1zoDQoBAA8/PDDGD16tMZVEVUPBkWqUw4ePIinn34aOTk5kAp1trBYpNe6LCIiIgowQlZgaZ8FJbYYsixj8uTJuOmmm7Qui6jaMChSnZOSkoKnnnoKqampgFmG4UA05LwgrcsiIiKiACEMVpg7ZUKEWxAcHIwpU6agX79+WpdFVK047o7qnISEBMycORPt27cHDArMXTJhjS3SuiwiIiIKAEqIBXHDDBDhFkRFReGjjz5iSKQ6iT2KVGcVFBRgypQp2LZtGyAAXWIEdGdCIYEHpxMREdVFSpQJIX0syM3NRePGjfHuu++iWbNmWpdFpAkGRarTLBYLPvjgA6xYsQIAIKcZoT8WCUkwLBIREdUl1oYFEO3yYbVa0bFjR7z99tuIjY3VuiwizTAoUp0nhMDSpUsxc+ZMKIoCKccAw6FoSGad1qURERGRnwlJwNIyB0oj25lNBw4ciGeeeQbBwcEaV0akLQZFohLbtm3Dq6++iry8PMAkw3AwBnK+QeuyiIiIyE+EXoG5fRZEdDEkScL999+PO+64g9dIJAKDIpGTlJQUPP/88zhx4gRglaD/LxK6dKPWZREREZGPKeFm1BtsQGpqKoxGI15++WWetIbIAYMiUSm5ubl49dVX8ffffwMA5DNG6BN53CIREVFtICCgNCiE1LEQZrMZjRs3xptvvonWrVtrXRpRQGFQJHLBarVi7ty5mDdvHgBAytXDcDgakkmvcWVERERUWUIWsLTOhlLfdlmsvn374oUXXkBERITGlREFHgZFIg+2bt2KN954Azk5OYBFgv5IFHSZIVqXRURERBWkhFhg6ZAFEWaBLMu4//77cdttt0GWeVlxIlcYFInKkZaWhldeeQUHDx4EAOhOhkGXEs6hqERERDWAgIASXwTDRcUoLCxEbGwspkyZgh49emhdGlFAY1Ak8oLZbMaMGTPwv//9DwAg5emhPxINuZBDUYmIiAKV0CmwtM6BEm8batq9e3e88soriIuL07gyosDHoEhUAZs2bcK0adNsQ1GtEvSJEZDTjJDA3kUiIqJAokQUo96gIKSmpkKn02HcuHG4/fbbodPxOslE3mBQJKqg9PR0vPnmm/j3338BAHJ6MPTHoiBZeIwDERGR1gQErM3ygZaFsFqtaNSoEaZMmYJOnTppXRpRjcKgSFQJiqJgyZIl+Oqrr2CxWACTDP2xSJ7ohoiISEOK0QJL2yyICAsAYNCgQXjiiScQFhamcWVENQ+DIlEVHD58GK+//jpSUlIAAHKaEfrECEhW9i4SERFVFwEBa5MC6NqZUFxcjPDwcEyaNAmDBg3SujSiGotBkaiKTCYTZs+ejaVLl0IIAZhkGP6LgpwVrHVpREREtZ4SYoGlbTZEpBkA0Lt3bzzzzDOIj4/XuDKimo1BkchH9u7di7fffhsnT54EwN5FIiIifxIQsDYugK69rRcxNDQUjz76KG644QZIEk8yR1RVDIpEPlRUVITZs2fju+++s/UuFsvQH4+EfD6YZ0YlIiLyESXMDEubbIhw27GIPXv2xLPPPosGDRpoXBlR7cGgSOQHu3fvxrRp0y70LmYEQ388EpKJp+QmIiKqLCErsCbkQTQrgqIoCA8Px0MPPYQbb7yRvYhEPsagSOQnJpMJCxYswMKFC21nRrVK0KWEQ3c6lL2LREREFWSNMcHSKhsIUQAA1157LR599FHUq1dP48qIaicGRSI/S0pKwnvvvYc9e/YAAKQ8PfTHIiHnBWlcGRERUeATQVZYWuZCiSsCADRo0ACTJ09Gnz59NK6MqHZjUCSqBoqiYOXKlfj888+Rl5cHoORkN8nhkMwcjkpERFSakASsTfJhaG9BUVERZFnGiBEjMG7cOISGhmpdHlGtx6BIVI0yMjLw5ZdfYtWqVbYHLBJ0J8KhOxMKSXA4KhEREQBYY4pgaZkLGK0AgG7dumHSpElo06aNxpUR1R0MikQa2L9/Pz7++GMcOnQIACAV6GxnR83mtReJiKjuUkIssLbMhRJrAgDExcXhoYcewoABA3iyGqJqxqBIpBH7cNRZs2YhKysLgO3sqLqkCMiFem2LIyIiqkZCr8DaLA9oZoLVaoVer8eoUaMwduxYDjMl0giDIpHGcnNz8fXXX+PHH3+E1WoFBCCnGqE/weMXiYiodhOSgLVRAYxdhXoM/2WXXYZHHnkECQkJGldHVLcxKBIFiOTkZHz55ZfYvHmz7QGrBN3JMOhOh0FSONyGiIhqDwEBJa4IluZ5QIjtOMQ2bdpg4sSJ6Nmzp8bVERHAoEgUcHbt2oXPP/9cPX4RJhn6lHDIZ428/iIREdV4SpQJluZ5EBFmAEB8fDzuu+8+DBo0CDodR9IQBQoGRaIApCgKNmzYgC+//BKpqakAAKlQB11KOOT0EAZGIiKqcZSIYlgS8iCiiwEARqMRt99+O0aPHo2QkBCNqyOi0hgUiQJYcXExfvzxRyxYsADZ2dkAAClfbwuMGcEMjEREFPCUUDOszfPUM5kaDAbcfPPNuPPOOxEbG6txdUTkDoMiUQ1QUFCA7777DkuWLFEP9pdyDdCnhEPKCmJgJCKigKMYLbA2y4MSXwQA0Ol0uO6663DPPfegQYMGGldHROVhUCSqQXJzc7F48WJ8//33KCwsBABIOQboToRDZmAkIqIAoISaYW2WDxFvgn0zs3///hg3bhyaNWumcXVE5C0GRaIaKDMzEwsXLsSyZctQXGw71kPK09sCI4ekEhGRBpRwM6xN86DUM6mP9evXD/feey/atm2rYWVEVBkMikQ12Pnz57F48WL89NNPKCqyDe2R8vXQnQiDfJ4nvSEiIv9TIophaZYHEVOy41KScPXVV2Ps2LFo3bq1xtURUWUxKBLVAllZWVi6dCn+97//oaCgAAAgFeigOx1mu6yGYGAkIiLfERAQUcWwNM1Xz2Kq0+kwYMAA3HnnnWjevLnGFRJRVTEoEtUiubm5+P777/Hdd9+pJ71BsQzdmVDoUkMhWWRtCyQiohpNSAJKXBGsTfIhwiwAAL1ej+uuuw533HEHmjRponGFROQrDIpEtVB+fj5WrFiB7777DmfPnrU9aJUgpxmhPx0KyaTXtkAiIqpRhE6BtWEBrI0KgGAFABASEoIhQ4ZgzJgxPIspUS3EoEhUi1ksFqxfvx5LlizB0aNHbQ8KQD4fDN2pMMh5QdoWSEREAU0EW2BtXABrg0JAZ9tkrFevHoYPH46bbroJkZGRGldIRP7CoEhUBwghsGPHDixevBjbtm1TH5dyDNCdCbWd+IbHMRIREUqOP4w0w9qoAFIDM6xWKwCgZcuWGDNmDPr374+gIO5oJKrtGBSJ6phjx45hyZIlWLduHSwW2/ElKJahSzPajmMs1mlbIBERaULICpT4IlgbFajHHwJAz549MWbMGPTq1QuSxJ2KRHUFgyJRHXX+/HmsWLECP/30E9LT020P2oelngmDlGPg5TWIiOoAxWiB0rAA1vqFgN62WRgcHIyBAwfi1ltvRZs2bTSukIi0wKBIVMdZLBZs2rQJP/74I3bt2qU+LuXroUsNhXwuBJKVZ0slIqpNBASUWJOt97Dk8hYA0KRJE9xyyy24/vrrERERoWGFRKQ1BkUiUh07dgw//vgj1qxZg6KiItuDVglyegh0aUZIuexlJCKqyUSIBdb6hbbew5Kzl0qShD59+uDWW29Fz549IcvcOUhEDIpE5EJubi5WrVqF5cuXIzk5WX1cKtBBTguF7lwIJDOPZSQiqgmELKDUK4K1fqFT72FUVBSGDBmCm2++GY0aNdKwQiIKRAyKROSWEAL79u3DL7/8gvXr11/oZVQAOSMYurRQSFlB7GUkIgpASpgZ1gaFUOIvHHsoSRJ69eqFIUOGoG/fvjx7KRG5xaBIRF7Jz8/H+vXrsWLFChw8ePDCBJMM3Tkj5LMhkAsN2hVIREQQBiuscUVQ6hdChF84c2nDhg1x/fXX44YbbkCDBg00rJCIagoGRSKqsGPHjmHFihVYu3YtcnJy1MelPD3kc0bo0kN4mQ0iomoiZAVKPROs8SVDS0sGeRgMBlxxxRUYMmQILrnkEh57SEQVwqBIRJVmMpnw119/Yc2aNdi6deuF6zIKQMoKsvU0ZgTzrKlERD4mIKBEF0OJL4RSzwToLmzOdezYEYMGDcKAAQMQFRWlYZVEVJMxKBKRT2RnZ2Pjxo1YvXo19u3bd2GCFZAzQiCnh0DODIYkeDwjEVFlCAiIcDOU+CJY44qAIEWd1qRJEwwcOBADBw5Es2bNNKySiGoLBkUi8rnTp09j7dq1WL16NU6ePHlhglWCnBFsC41ZwZAUhkYiIk8EBESEGUpcEaz1itRLWgBAdHQ0+vfvj4EDB6Jjx46QJK5Tich3GBSJyG+EEDh06BDWrVuHjRs34ty5cxcmMjQSEbkkICAizbZLWpQKh0ajEX379sWgQYPQs2dP6PV6DSslotqMQZGIqoWiKDhw4AA2btyIjRs34uzZsxcm2kPj+RDIWUE8ppGI6hxbOCyGNc4EpZ7zsNKwsDD07dsXV111FS699FIEBwdrWCkR1RUMikRU7RRFwcGDB7Fhw4ayoVEBpOwg6DJCbCfC4dlTiaiWEjrFdkKa2CIoMSbAcGGTLDw8HP369cPVV1+Nnj178nqHRFTtGBSJSFNCCDU0bt68GadOnXKaLuXpbSfDyQiGlK+HBA5RJaKaSwRbocQUwRprgogqBhwGUERGRqrh8JJLLoHBwGvTEpF2GBSJKGAIIZCcnIw///wTf/75J/bv3w+nVZRJtoXGzGDI2UE8rpGIAp56ptJYE5RYE0SYxWl6QkICLr/8cvTt2xedO3fmMYdEFDAYFIkoYGVmZuKvv/7C5s2b8c8//8BkMl2YqABSTpAtNGYGQSpkbyMRBQYRZIUSbbINK412HlIqyzK6du2qhsOEhAQNKyUico9BkYhqBJPJhH///Rd//vkn/v77b6SlpZVqIEPOCrYFR54Qh4iqkZBsJ6JRYmzhsHSvYXh4OHr27Im+ffvisssuQ1RUlEaVEhF5j0GRiGocIQRSUlKwbds2/P3339i1axeKi4sdGgBSrgFydpAtNOYGQRLsbSQi3xAQEKEWKFHFENHFUKKKAd2FzSlJktC+fXv07t0bl156KTp27MghpURU4zAoElGNZzKZsHv3bmzbtg3btm1DSkqKcwP7MNVs203KMzA4EpHXBASE0QIRZQuFSlSx03BSAIiNjcWll16K3r1745JLLkF0dLQ2xRIR+QiDIhHVOqmpqfjnn3+wc+dO7NixAxkZGc4NrBKknJIex+xgSHk8vpGILhAQECFW52DocF1DwHbh+65du+Liiy9G79690apVK0gS1yNEVHswKBJRrWY/k6o9NO7atQvZ2dnOjaySbahqjgFyTkmPI49xJKozhCQgwixQIoptxxpGmssEw6CgIHTt2hU9evRAjx49OJyUiGo9BkUiqlMURcHx48exY8cO7Ny5E7t370ZeXp5zIwFI+XpbaMwtCY/FOm0KJiKfEzoFSoRZDYUi3Ox0jCEAGAwGdO7cWQ2GnTp14kXviahOYVAkojpNURQkJiZi37592LNnD/bu3YvU1NSyDYtkyLm23kY51wAp38DrOBLVAPYTz4hwsy0cRpghQi0oPdo8IiICXbp0QdeuXdGlSxd07NgRwcHB2hRNRBQAGBSJiEo5e/Ys9u7dq4bHY8eOQVGch6HZex2lPAPkPAOkXAOkAh7rSKQlAQEEW22BMNwMJdwMEW4p01sIAE2aNEHXrl3VW0JCAmSZQ86JiOwYFImIylFQUIADBw7g4MGDOHjwIA4cOFD2BDmA7VjHPL0tOOYbbEGyUM8zrBL5gRoKwywOodBc5mykgO3EM+3bt0eHDh3QuXNndO3aFbGxsRpUTURUczAoEhFVkBAC586dU4PjoUOHcOjQIRQUFJRtrMDW05hvgJxn+ykV6HmyHKIKEFLJ8NEws+2kMyU/oS+7CWMwGNC6dWt06NABHTt2RMeOHdGsWTPodDzOmIioIhgUiYh8QFEUpKSk4ODBgzhy5AiOHj2K//77z3V4BIBCHeR8PaSCkuBYoIdUpGPvI9VpAgIIUmwXs3cIhsJoAVzsW9Hr9WjZsiXatGmDDh06oEOHDmjdujVPOkNE5AMMikREfqIoClJTU9XQePToURw9ehTnzp1zMwNsQ1UL9RfCIwMk1ULqsNFQq+1C9qEXbq6OJwRsJ5tp06YN2rZtq/5MSEiAwWCo5uqJiOoGBkUiomqWlZWFY8eO4ejRo0hKSkJiYiKSkpJQWFjoegY1QOogFTn/hFnmCXQoYAmdYrtwvdFy4afRAhFqdRsIdTodmjZtihYtWqBNmzbqrX79+rygPRFRNWJQJCIKAEIIpKWlOQXHxMREJCcnuw+QAGCRbD2OhfoLPwt1kEwMkVQ9hKxAGK1lA2GItcxF6x3p9Xo0a9YMLVq0QIsWLdCyZUu0aNECTZo0YS8hEVEAYFAkIgpgiqLg7NmzSEpKwsmTJ3HixAn1Z1paGjyuwq2AZNJBKtIBJr16X33MIjFIUrmEToEItkIEW4EQq3pflNx3dZZRRzExMWjatKl6a9asGVq2bIkmTZpAr9dX019BREQVxaBIRFRDmUwmnDlzRg2P9gB56tQppKenew6RgO1yHiYdYJIhFesgFdt+Ov7OXsnaS0AAOgERZOv5E8FWiCDF+XcvgiAAREVFOYVBx1tYWFg1/DVERORrDIpERLVQcXExzp49i9TUVKSmpuLMmTM4c+aMev/8+fPeLUgBUGwPjjrbfbPtBrPzfVjZQxkIhCwAgwJRcoPBWvJTcQ6CQYrb4wRLi4qKQsOGDd3eGAaJiGofBkUiojrIZDKpQTI9PR3nzp1Tb+np6UhPT0dmZmb5vZKOFFwIj8UyYLHdJKtke9xSEiYtsm3Ya8l0KGDAdEFIAtArEHrnn9CVeswpFHof/uzCw8MRHx+PuLg4xMfHo169eoiPj0d8fDwaNWqEhg0bIjQ01E9/JRERBSoGRSIicsliseD8+fNqeDx37hyysrKQlZWFzMxMp5vHE+6UR0FJYJRsobLkpt5XZOfHFQlQJNt8ouzvUCRIDvdh/5YTAFDye8lj5QVUcaGhw09h+ykBkAUgCQgZgCRsv5fcFw73IQsIXcl0XcmQz5KftmlKqccVoArXhzcYDIiOjkZMTIzTz9jYWDUQxsXFIS4uDiEhIZV/IiIiqrUYFImIqMqKiorUAGn/mZOTg9zcXLe3vLw8WK1WbQt3DJH2+/YQCIefGpEkCWFhYQgPD0dERITTzf5YdHS0eouJiUFMTAxCQ0N5KQkiIqoSBkUiItKEEAIFBQXIzc1FQUEBCgoKUFhYiMLCQo/3i4qKYDabYTabUVxcDLPZDJPJ5PS7/b6/g6hOp4PBYFBvQUFBbu+HhoYiJCQERqMRoaGhMBqNTjf7NKPRqIbB0NBQ6HRV6FokIiKqJAZFIiKqtRRFgaIosFqtEEKUue84XVEUyLIMSZIgy7J6c/zdfl+SJOj1eoY4IiKqtRgUiYiIiIiIyImsdQFEREREREQUWBgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIRERERERETvRaF0BEVBFCCBQVFWldBhFRhYSEhECSJK3LICLyGoMiEdUoRUVFGDx4sNZlEBFVyOrVq2E0GrUug4jIaxx6SkRERERERE7Yo0hENVbQ3/UhiZL9XZIMSZYASQZkCSgZ4iXJsu2+VPJTliBJJfPY25U8rt4HSj3mvEzbzwvThSRd2O0mXViO+rjDfI6PCfsoNKnkd9n2i5Ac54E6j5Ckkt/hsLyS+WWpZDm2SfZl2Kc7LlPYlyvD7fKcfqL0Y6XrcDMPLjzmNB0e5nPxfO7qKDOPm+U61yGc5i9dozrdYVmi5HGUqg+ScJhfqNOkMu0dp9nuX/h5YTmSJC68BUsev/CvEep0GUL93f58csnvtmm2edTHHH/iwnPJpW8l02y/w+lx+3PJkqI+JkNAlhTo7NNKflenS4q6PJ36mIAOtjYAoJMUh/kU6Bzms9+3t3ecT4Yomdf2/LZp9vlsj0lQoLPPjwvPpwNs88H2fPbXw/677bmEOk2WSmpR70vqx10nSZAhlTwmlfwul7xFJJiLdRh+f0MQEdVEDIpEVHNZpQubbJIMCSWhTt0Ch226JAHyhVSkzuOUOGSgdBK4kMLKphjJYV6npOLq8VKJqsx9hzaSPfBJDs2kUj9Rqi2cQ2OZ+eBimSgJrO6W56Zcl3W4ubmb5u6l8mY+T/PAfYj0W1AsPb3UtNJB8cLjwuk5XU2zh7ML0xynC4f5HB4r81zON8egWObmblpJeAJwIUBCOAVKwB4UoQYtuaSOC0FRuRC0SqbZglXJT0myhbiS96n9vr29DpJDKAV00oWfupLa7POVmQb789lDnygJmBfCsT0cegqKrpYn48Jjtt8da3T4HxIR1TAcekpEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGRE15HkYhqLp2AELaLbNuuCyg5/LRfxA2lrkMolbpuoP0mLtz3ZprDRfwuXBYdbh6/8FM43YfTfAIAhHo1O3WKgAQIqPOK0vOUzFdW6cfsFw50KqnU64GyN5R+TPIwrdTTVnRaecv0NI/9rsf5RDnLFHBdo5vrKKLsfJKH6yhKjtdIlBzawn79Qse3l5vrKKLy11EU9neMJCBK30qmiZJrSTo+rqjPpVx4HghAUhyu9yicpgtJUZdnf26hTnOoo+R3ueS+/bqM9vuOPxWHj7UiXfip4MJ1FJWSxyS4u46iBBm26zPq7C9VyeP26zHqAHWa7LAM9TqQ6vIuLEuGpP5u+7dIMBe7+lwSEdUMDIpEVGMVX3pW6xL8w74dXgWlIyoRcOFtJWALVDWP4zubg6KIiPyJa1kiIiIiIiJyIgkhqrjfmoio+gghUFRUhKKiItx8880AgJ9++gkhISEaV1Z78bWuHnydq48Wr3VISAgkiX38RFRzcOgpEdUokiTBaDQ6PRYSElLmMfIPvtbVg69z9eFrTUTkGoeeEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICc96SkRERERERE7Yo0hEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicqLXugAiqv0KCgqwePFi/P7770hNTYUsy2jWrBmuvfZaDB8+HAaDodLLzsjIwLfffou//voLaWlpCA4ORsuWLXHddddhyJAhkCTJ4/ynTp3Ct99+i3/++QcZGRkwGo1o164dhg4diquvvrrSdWklEF/rkydPYvPmzdi1axeOHTuGjIwM6HQ6xMXFoVu3brjlllvQvn37StelhUB8nd15+umnsW3bNgBA9+7d8cknn1S6Ni0E+mt98uRJLFu2DP/88w/Onj0Lq9WKmJgYtG7dGr169cItt9xS6fqIiLQkCSGE1kUQUe2VmpqKxx57DKmpqQCAkJAQKIqC4uJiAEDbtm3x0UcfISIiosLLPnz4MJ566ilkZ2cDAIxGI4qLi2G1WgEAl156Kd5++223G5J//fUXpkyZgqKiIgBAWFgYCgsLoSgKAOCGG27As88+W+ENc60E4mu9d+9ePPzww06PhYaGwmw2w2w2AwBkWcZdd92F8ePHV7guLQTi6+zOqlWr8Pbbb6u/17SgGOiv9dKlSzFr1iy1npCQEEiShMLCQgBAeHg4Vq5cWeHaiIgCAYMiEfmNxWLBfffdh+PHj6NevXp48cUX0bNnTyiKgg0bNuDdd99FQUEBLrvsMkyfPr1Cy87Ly8Odd96JjIwMJCQk4KWXXkKHDh1gNpuxfPlyfPbZZ7BYLBg2bBgmT55cZv7Tp0/j3nvvRWFhIbp27YrnnnsOzZo1U3sv5s6dCwB48MEHcfvtt/vi5fCrQH2td+7cicmTJ+Pyyy/HwIED0aNHD0RFRcFqteLIkSOYMWMG9uzZAwB45plncOONN/rsNfGHQH2dXTl//jzGjh0LIQTq1auH5OTkGhUUA/21XrJkCWbMmAGdTofbbrsNN954Ixo3bgwAyM3NxcGDB/HPP/+U2VFCRFRT8BhFIvKbX3/9FcePHwcAvP766+jZsycAWw9S//798dRTTwEAtm7din///bdCy168eDEyMjIQHByM6dOno0OHDgAAg8GAW2+9FePGjQMALF++HCdOnCgz/5w5c1BYWIjY2Fi88847aNasGQBbb9e4ceMwdOhQAMA333yD3NzcSvz11StQX+smTZpg/vz5ePPNN3H11VcjKioKAKDT6dCxY0d8+OGHaN26NQBg4cKFlfzrq0+gvs6ufPDBB8jNzcXEiRMRExNToVoCQSC/1seOHcOXX34JAJgyZQomTJighkQAiIiIwKWXXsqQSEQ1GoMiEfnNr7/+CgDo0aMHunTpUmZ6//790ahRI6e23lq9erW6DMcNNLtbb70VRqMRVqsVa9eudZpWWFiI33//HQAwbNgwl8PW7rzzTgBAfn4+Nm3aVKHatBCor3X9+vXVEO6KwWDAoEGDANiOFw30UB6or3Np69evx6ZNm9C9e3cMGTKkQnUEikB+rRcsWACLxYIrrriiRh7LTETkDQZFIvKLoqIi7Nu3DwBw2WWXuWwjSRJ69+4NAPjnn3+8XnZKSgrS0tIAQJ2/tNDQUHTr1s3lsvfu3QuTyeRx/kaNGqF58+YVrk0LgfxaeyMoKEi9bz8+LBDVlNc5OzsbH3/8MYKCgvD000/XmGNsHQXya+24o8m+k4OIqDZiUCQiv0hOTlZPCtOyZUu37ezTMjIykJOT49Wy7cPRylt2q1atAABJSUlu57e38TR/YmKiV3VpJZBfa2/s3LkTAFCvXj11aGogqimv88cff4zMzEyMHTvWY29uIAvk1/rgwYOwWCwAgPbt22PPnj14/vnnMXToUAwYMACjRo3C22+/7fQ8REQ1EYMiEflFenq6ej8+Pt5tu7i4OJfzeHL+/PkKLTs/Px8FBQVlniciIgLBwcHlzu/4fIEokF/r8uzbtw+bN28GANx4440B3ftVE17nP//8E+vWrUPLli1rxEmY3Ank19rxmMUNGzbg0UcfxZ9//oni4mLodDqkpqZi1apVuO+++3jGUyKq0RgUicgvHDesPIWxkJAQl/P4c9n2U9c7Tvc0f0WCjxYC+bX2JCsrC6+99hoURUHTpk1x2223eTWfVgL9dc7Ly8P7778PWZbxzDPPQK+vuZdKDuTX2vE42i+//BJt2rTBF198gdWrV2P16tX44osv0Lp1a1gsFrz77rs4cOCAV3UREQUaBkUiIqp2BQUFeP7555GamorQ0FC89tprCA0N1bqsGm3GjBlIT0/HsGHD0LlzZ63LqbUcryoWFBSEadOmoVOnTupjnTp1wjvvvIPg4GBYrVZ88803WpRJRFRlDIpE5BeOG/32E8e4Yr/Yfel5/Llso9FYZrqn+QM9wATya+1KYWEhnn32Wezfvx9GoxHTp09HmzZtvKpHS4H8Om/fvh2//PIL4uPjMWHCBK+eM5AF8mvteH/AgAFOw1/tGjRogAEDBgAAduzYEdAnaSIicodBkYj8wnHj6dy5c27bOR5X5GqDy5V69epVaNlhYWFOG3f258nNzfW4oWif3/H5AlEgv9al2UPi7t27YTQaMW3aNPXskoEukF9n+wXnH3roIQC2HlvHm/3EMIqiqI8FcngJ5Nfa8XnsZ0Z2pUWLFgBs73lvT7RDRBRIGBSJyC+aN28OWbatYjydNdQ+LTY2FpGRkV4t2/FMpZ6WbT/roH2DzdX8ns5MaJ/m6cyIgSCQX2tH9pC4a9cuhISEYNq0aejevbtXdQSCQH6dU1NTAQCvvfYarrvuujK3PXv2AAD27Pn/9u4+purrjuP4myIKExTaGbkU69QiZZsOBbWoUJ+KyOrW+TSdiXbO2C61NHHNNKRKW1vtZpx2NXGdmdrO0gfbiG3WlgXFqgMUrCIpQhGEVqGMBwGxF/AC+4Pc3+5VHuQC3kv9vJImt9zz+/7OPSHIh3N+55w3vpaWlnZbfXMGVx7rMWPG3NZ9bJeouvImTSIiHVFQFJE+4enpaRySferUqXbbtLa2cvr0aQAmTZp027VHjBjB8OHDO61tNpuNX45vrj1u3DhjEwvr/W/27bffUlJS0u2+OYMrj7Vtmz/+8Y+cO3fOWG7an0Ii9I9x/r5w5bEODAwkICAAwPgZ0R7rsRqDBw++7RArIuJKFBRFpM/ExMQAbefktbfzX2pqKqWlpXZtb4ebmxtz584F4OjRo5SVld3S5tChQ5jNZtzd3Xn00Uft3vPy8uKRRx4BICkpifr6+luuT0xMBNqeR4qMjLztvjmLq441/D8k2i437W8h0cpVx/n48eOd/mcd79DQUONrrv597apjDTBv3jwAUlJS2j2Wo7y8nCNHjgDw8MMPG7OjIiL9iX5yiUifiYmJYfTo0bS2trJx40bOnDkDtD0nlZqayrZt2wCYMmUKYWFhdtfu3buXqKgooqKi2v1FbunSpdx77700NDSwfv168vPzAbhx4wZJSUn84x//AGD+/PntHjq+atUqvLy8qKqqYsOGDcbZaGazmf3793P48GEAVqxYgY+PTy+NSN9x1bFuaGhgw4YNRkjsjzOJtlx1nL+PXHmslyxZgr+/v3G9bZDNzc1lw4YNNDY2MmjQIFauXNk7AyIicoe5tdouohcR6WVlZWU8++yzxjNUnp6etLS00NTUBEBQUBA7d+68JYzt3buX/fv3A/Dee+9hMpluqZ2fn89zzz1HbW0t0Db719TUhMViAdqWjG3dupWBAwe227f09HQSEhKM3Q29vb0xm83GJh+xsbGsX7++3zxf5Ipj/dlnn7Flyxag7SgBb2/vTj/D5s2bGTduXDc/+Z3liuPclbi4OM6dO0doaCh//etfu3WtM7nyWJeUlLBu3TpjQxzrbsrWc1q9vLxISEhg6tSpPRkCERGn6b+n8YpIv2Aymdi/fz/vvvsun3/+Od9++y0DBgxg1KhRzJ49m4ULF+Lh4eFQ7eDgYN58800SExNJS0vjv//9L56enowePZqYmBhiY2M7XfIVERHBvn37SExMJDMzk+rqary9vQkKCuIXv/gFM2bMcPBTO4crjrXt3yKbmpqorq7u9D7WX9JdmSuO8/eVK4/1yJEjefPNN3n//fc5ceIEpaWltLS08MADDzBp0iR+/etf4+/v7+hHFxFxOs0oioiIiIiIiJ2758+SIiIiIiIiclsUFEVERERERMSOgqKIiIiIiIjYUVAUEREREREROwqKIiIiIiIiYkdBUUREREREROwoKIqIiIiIiIgdBUURERERERGxo6AoIiIiIiIidhQURURERERExI6CooiIiIiIiNhRUBQRERERERE7CooiIiIiIiJiR0FRRET6zGuvvUZUVBTPPPOMs7siTlZfX8/Pf/5zoqKiOH78uLO7IyIiXRjg7A6IiMitrl+/TkFBAXl5eeTn55Ofn8+VK1dobW0F4L333sNkMvXJvVtbW1m0aBEVFRUsX76cJ5980qE6BQUFJCUlAbBmzZpe7KFzFRUVcfr0aXJycigqKqKqqorm5mZ8fHwYM2YMERERxMTE4O3t7eyuuhRvb2+WLl3Knj17eP3115kyZQqDBg1ydrdERKQDCooiIi4oLi6OgoICp9w7Ly+PiooKACIjIx2us3v3bpqbm5kyZQrjxo3rre45VVxcHOfOnWv3verqaqqrq8nMzOTAgQPEx8czefLkO9tBF7do0SIOHjxIeXk5H3zwAcuXL3d2l0REpANaeioi4oKsM4fQNhMzYcIE7r333jty7xMnTgAwbNgwQkJCHKpx/vx5srKyAL5XYcAaoH18fIiNjSU+Pp5du3axZ88eXnrpJSIiIoC20BgfH092drYzu+tyvLy8WLhwIQCJiYl89913Tu6RiIh0RDOKIiIuKDY2Fl9fX4KDgwkMDMTNzY24uDiqq6v7/N7WoDht2jTc3NwcqvHOO+8AYDKZ+NnPftZrfXO2wMBAVqxYwezZsxk4cKDde8HBwcyYMYO3336bN954g6amJrZv385bb73lpN66pujoaPbu3cu1a9f417/+xeLFi53dJRERaYdmFEVEXNCiRYuYM2cOI0aMcDisOeKbb76hpKQEcHzZaUVFBenp6QDMnTv3jva/r23bto158+bdEhJtLV++nKCgIACKi4spLCy8U93rF0wmE+PHjwfgo48+cnJvRESkI5pRFBERg3U3SutyV0ekpKTQ0tICwKxZs27rGovFwtGjRzl58iR5eXnU1NTQ3NyMr68vo0ePJjw8nDlz5nDffffZXRcVFQVATEwM8fHxfP3113zwwQdkZmZSWVnJ4MGDGTt2LL/5zW8IDQ01rmtsbOTTTz8lOTmZy5cv09DQQEBAAI8++iiLFy/u8SYrEydONJ4x/eabbxgzZozDtYqLizl8+DDZ2dmUlZXR0NCAt7c3Pj4+mEwmwsLCmD59Og888IBD9S0WC//+979JTU2lqKiI2tpa3NzcGDJkCL6+voSEhBAeHs60adPw8PCwu/bm8S8uLubQoUNkZWVRWVmJ2WzmlVdeueWPDrNmzSI7O5uSkhLy8vJ46KGHHBscERHpMwqKIiJisC47jYiIYMAAx/6JSEtLA9qe4xs5cmSX7S9evMimTZu4fPnyLe9VVFRQUVHBqVOnKCwsJD4+vsM6x44dY8uWLTQ0NBhfa2xsJCMjg1OnTvHcc88xf/58KisriY+PJy8vz+76S5cu8fe//52MjAy2b9/eo7BosViM1/fc4/jincOHD7Nz506am5vtvl5bW0ttbS2XL18mMzOTwsJCNm7c2O36NTU1/OEPf2h34yTr2BcUFPDRRx+RmJhIYGBgh7U+/fRTtm/fTlNTU5f3td3cKC0tTUFRRMQFKSiKiAgAlZWVXLhwAXB82WlTUxNffvklACEhIV0uOy0oKGDt2rWYzWYAJkyYQHR0NCNHjsTDw4Oqqipyc3O7PHevsLCQo0eP4ufnx5o1a4x7nzlzhn/+8580NDSwY8cOQkNDefnll7l48SKPP/4406dPx9fXlytXrvDWW29RWFjI+fPnSUxM5Le//a1DYwDwxRdfGK9HjRrlUI2ioiIjJA4ZMoT58+cTGhqKr68vzc3NVFVVkZ+fT0ZGhsPLe3fu3GmExLCwMKKjozGZTAwePJjr169TUlJCdna2sZS4I/n5+aSkpDBkyBAWL17MuHHj8PDwoLi4GH9//1vajxo1Ci8vL8xmM1988QWrVq1yqP8iItJ3FBRFRASAkydP0traysCBA5kyZYpDNQoLC43ZtODg4E7bWiwWNm3aZITEZ5991tgR09bUqVNZvXo15eXlHdYqKCggKCiInTt34uPjY3z9xz/+MYGBgSQkJGCxWFi7di11dXVs27aN8PBwo93YsWOZNGkSK1asoLKykqSkJFasWIG7u3u3Pj+0Ld+9dOkS0BaWR4wY0e0aAKmpqcZM4o4dO4znHm1FRkayevVqamtru12/sbHRCOCRkZG8/PLLtwTO0NBQfvnLX2I2mzudGb106RKBgYHs2rXLbnfejnbNdXd3Z+zYsWRnZ/PVV1/R0tLSo5lXERHpffqpLCIiwP+XnYaHh+Pl5eVQDdvlo10d55GSksKVK1eAtl1e2wuJtoYPH97p+xs2bLALiVYzZsxg2LBhAFy9epUFCxbYhUQrb29v5s2bZ7QrLi7u9H7tqays5C9/+QsAbm5u/P73v+92DSvrDrfe3t7thkRbQ4cO7Xb9a9euGaE+NDS001lJLy+vLpfirlu3rltHuFjbNjQ0UFlZedvXiYjInaGgKCIi1NfXc/bsWcDxZacAVVVVxushQ4Z02tYaTAGWLVvm8D2hbSljR2HKzc3N7r3o6OgO69i2Ky0t7VYfGhoaiI+PNwLezRvodJc13NbX15OamupwnY4MHTrU2L31yJEjPTrTcNiwYe2G787Yfn/Yft+IiIhrUFAUERHS09OxWCy4u7szbdo0h+s0NjYar9ub3bP11VdfAW0zS7ez6U1nurreti+d7Q5q2647wenGjRs8//zzxgY506dPZ/Xq1bd9fXuio6ONWbyEhASefvpp3n77bc6fP28s1+0JDw8PYmJiAMjNzWXJkiVs27aNI0eOdDskO7Krq21QtN2ASEREXIOeURQREWN276c//Sm+vr4O17F9pq+r3S9ramqA/8+c9YSnp2en79suq+xsWa3tc3LWIz66YrFY2LhxI6dPnwZg8uTJvPDCCw4932grICCAV199lS1btlBRUUFOTg45OTlA2zg/9NBDREVF8dhjj3UZyjvyzDPP0NTURHJyMnV1dXz88cd8/PHHQFuAnzx5MrGxsV3OjHY1e9we2z8qOLrDroiI9B3NKIqI3OWampo4deoU0LNlp9D2PJ1VXV1dj2r1BxaLhYSEBONIkPDwcF555RVjSWdPhYWF8c477/Diiy8SGxtrHE/R3NzMl19+ye7du1m2bJkRUrtr0KBBxMfHc+DAAX73u98xceJEI0hXV1fz2WefERcXx/PPP28X7G7myEY0thvw2H7fiIiIa9Cf8ERE7nJZWVnGUsaeBkXboxC6Coq+vr6Ul5f3241MrCHROhs7ceJEtm7d2qPzF9szcOBAZs6cycyZM4G2mdgzZ86QnJxMRkYGdXV1bNy4kcTERO677z6H7jFixAhWrlzJypUraW5upqCggLS0NA4fPszVq1c5fvw4e/bsYe3atb32ua5du2a87mqjIhERufM0oygicpezBp2goCBMJlOPatmeGfj111932tZ6fEZVVVWXbV3NzSFxwoQJvPrqq70eEtvj6+vL7Nmz+fOf/8zjjz8OgNls5uTJk71S37qsddWqVfztb38zlvWmpKT0Sn2rkpISAEwmEz/4wQ96tbaIiPScgqKIyF2spaWF//znP0DbBiw9NXz4cH74wx8CcOHChU7bRkVFGa8TExN7fO87xWKx8MILLxghMTQ0lD/96U9dPifZFyZPnmy8tj7z2ZtMJpNxDqQjZzV2pKamxjga5Sc/+Umv1RURkd6joCgichfLyckxAoZtcOsJa3gpKSnh+vXrHbabNWuWEUI++eQTPvzww07rlpeX90r/esJisfDSSy8ZB9X3ZUj8/PPPuwx/1mdLAe6///5u1S8tLSUrK6vTNmVlZcbMX0BAQLfqdyY3N9d4/fDDD/daXRER6T16RlFExAVdvnzZ2OHSyno+H8CxY8fsdif18vJixowZ3b6PdVYsICDAoSMO2jNz5kw++eQTWlpayMrK4pFHHmm33YABA3jxxRd5+umnMZvNvPbaaxw/fpy5c+cycuRIPDw8qKqqIi8vj2PHjhEcHEx8fHyv9NFRmzdv5tixY0BbMHvqqacoKyvr9Bo/Pz/8/Py6fa8PP/yQzZs3ExYWRlhYGD/60Y8YOnQoN27coLy8nJSUFGM22N/fv9vHmpSXl7Nu3ToCAgKYNm0aISEhDB8+nEGDBlFbW0tubi5JSUnG7rULFy7s9mfoSGZmJtD2/GVERESv1RURkd6joCgi4oJycnLYunVrh+/v3r3b7v/9/f17FBR7Y9mpVXh4OMOGDaOiooLk5OQOgyLAgw8+yOuvv86mTZsoLS3l7NmznD17tt221mcancn24PsrV67w1FNPdXnNE088wapVqxy6X1NTE+np6aSnp3fY5v7772fr1q2dHvvRmdLSUg4ePNjh+/fccw/Lli3jV7/6lUP1b2axWDhy5AjQNovt6NEeIiLStxQURUTuUhcvXjRmw3q626ktd3d3FixYwBtvvEFGRgY1NTWdns04duxYDhw4QHJyMidOnKCgoMB4Hs7Pz48xY8YwadIk5syZ02t97A8SEhI4ffo02dnZFBUVUV1dbSxFHTp0KA8++CCRkZFER0c7dBzH+PHj2bVrF1lZWeTm5lJeXs7Vq1e5fv06np6eBAQEMH78eB577LFem20GjO8JgEWLFvVaXRER6V1ura2trc7uhIiI3Hn79u1j3759+Pn5cejQIYfOwutIfX09S5cupa6ujieffJLly5f3Wm3p39avX096ejphYWHs2LHD2d0REZEOaDMbEZG7lHXZ6dSpU3s1JELbAerWcPjuu+/y3Xff9Wp96Z9yc3NJT0/Hzc2NNWvWOLs7IiLSCQVFEZG70I0bN4iMjOSJJ55gwYIFfXKPhQsXEhgYSG1tLe+//36f3EP6lz179gAwd+5cQkJCnNwbERHpjJaeiohIn7lw4QLp6el4e3uzZMkSZ3dHnKi+vp6DBw/S2trKggULOn1uVUREnE9BUUREREREROxo6amIiIiIiIjYUVAUEREREREROwqKIiIiIiIiYkdBUUREREREROwoKIqIiIiIiIgdBUURERERERGxo6AoIiIiIiIidhQURURERERExI6CooiIiIiIiNhRUBQRERERERE7CooiIiIiIiJiR0FRRERERERE7CgoioiIiIiIiB0FRREREREREbGjoCgiIiIiIiJ2/gcK/kyk+ukYQQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_delta_image(all_results[iteration], source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "5264ad17", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "924732e5", + "metadata": {}, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_delta_image(result, source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "6175189d", + "metadata": {}, + "source": [ + "## Integrated flux over the sky" + ] + }, + { + "cell_type": "markdown", + "id": "3d8055a2", + "metadata": {}, + "source": [ + "Define the actual GRB spectral model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "ec9921d3", + "metadata": {}, + "outputs": [], + "source": [ + "alpha_inj = -1.\n", + "beta_inj = -3.\n", + "E0_inj = 1000. * u.keV \n", + "K_inj = 5. / u.cm / u.cm / u.s / u.keV \n", + "Emin_inj = 10. * u.keV\n", + "Emax_inj = 5000. * u.keV\n", + "\n", + "spectrum_inj = Band_Eflux(alpha=alpha_inj,\n", + " beta=beta_inj,\n", + " E0=E0_inj.value,\n", + " K=K_inj.value,\n", + " a=Emin_inj.value,\n", + " b=Emax_inj.value)\n", + "\n", + "spectrum_inj.E0.unit = E0_inj.unit\n", + "spectrum_inj.K.unit = K_inj.unit\n", + "spectrum_inj.a.unit = Emin_inj.unit\n", + "spectrum_inj.b.unit = Emax_inj.unit" + ] + }, + { + "cell_type": "markdown", + "id": "8ac97cea", + "metadata": {}, + "source": [ + "Calculate the integrated photon flux in each energy band" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "68380bfb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0 keV 200.0 keV\n", + " truth: 0.7418347986463156 1 / (cm2 s)\n", + "200.0 keV 500.0 keV\n", + " truth: 0.8192020113325374 1 / (cm2 s)\n", + "500.0 keV 1000.0 keV\n", + " truth: 0.420663133134687 1 / (cm2 s)\n", + "1000.0 keV 2000.0 keV\n", + " truth: 0.21068821854253272 1 / (cm2 s)\n", + "2000.0 keV 5000.0 keV\n", + " truth: 0.07024548561978913 1 / (cm2 s)\n" + ] + } + ], + "source": [ + "integrated_flux_each_band_truth = []\n", + "integrated_flux_truth = 0.0 / u.cm**2 / u.s\n", + "\n", + "for energy_index in range(all_results[0]['model_map'].axes[\"Ei\"].nbins):\n", + " emin, emax = all_results[0]['model_map'].axes[\"Ei\"].bounds[energy_index]\n", + "\n", + " integrated_flux_each_band_truth.append(integrate.quad(spectrum_inj, emin.value, emax.value)[0] / u.cm**2 / u.s)\n", + " \n", + " print(emin, emax)\n", + " print(\" truth:\", integrated_flux_each_band_truth[energy_index])\n", + " \n", + " integrated_flux_truth += integrated_flux_each_band_truth[-1]" + ] + }, + { + "cell_type": "markdown", + "id": "43dabc45", + "metadata": {}, + "source": [ + "Plotting the integratd flux in each energy band vs the number of interations" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d9bca0f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG5CAYAAACTEQDKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1iT1xfHv2HvvURUcIAbcBYVt7i31oqtdWLdra2jWlerdujPVffeu1Zx1oWKogLuAbhAZSp7hkByf39c8yYhgYSQMPR+nud9eNe970l4c9/znnPuOTxCCAGDwWAwGAwGo0R0KloABoPBYDAYjKoAU5oYDAaDwWAwVIApTQwGg8FgMBgqwJQmBoPBYDAYDBVgShODwWAwGAyGCjClicFgMBgMBkMFmNLEYDAYDAaDoQJMadIgfD4fUVFR4PP5FS0Kg8FgMBgMDcOUJg3y5s0bjB8/Hm/evKloURgMBoPBYGgYpjQxGAwGg8FgqABTmhgMBoPBYDBUgClNDAaDwWAwGCrAlCYGg8FgMBgMFdCraAEYDAaDwSgvhEIhCgoKKloMRgWhr68PXV1dtdszpYnBYDAYnwXZ2dmIjY0FIaSiRWFUEDweDy4uLjAzM1OrPVOaGAwGg/HJIxQKERsbCxMTE9jb24PH41W0SIxyhhCCDx8+IDY2FvXq1VPL4sSUJgaDwWB88hQUFIAQAnt7exgbG1e0OIwKwt7eHjExMSgoKFBLaWKB4AwGg8H4bGAWps+bsv7/mdLEYDAYDAaDoQJMaWIwGAwGowJYtGiRSrVKV69ejcTERJX6HDVqFFavXl1GyRjFwZQmBoPBYDAqgMWLF2tcaWJoFxYIzmAwGIzPjhYtWmhVEXFyckJ4eHixx7/77jsAgK+vL3R1dXHhwgV89913ePHiBQghmDp1KiZMmIBff/0V8fHxGDZsGIyNjbFr1y6kpKTgl19+AZ/Ph0AgwIwZMzB27FitfRaGBKY0aYBLly7h0qVLyM7OrmhRGAwGg6ECiYmJiIuLq7Drb9q0CZs3b0ZwcDCsrKwwbNgweHh44Pjx43j//j2aN28OT09PLFiwADt27MDhw4fh5eUFAEhLS8ONGzegq6uL1NRUeHt7o3v37nBxcamwz/O5wJQmDdC1a1d07doVUVFRGD9+fEWLw2B8lrx9+xZXr17F4MGDYWpqWtHiMCo5Tk5Olar/S5cu4e7duwAABwcHDBo0CJcuXcIXX3whd25KSgrGjh2L58+fQ09PDykpKXjy5AlTmsoBpjQxGIwqj1AoRLdu3fD8+XPs2LEDQUFBbGo5o0RKcp1VBkq6f7/77jv06tUL//zzD3g8Hpo1a6ZSbBSj7LBAcAaDUeUJCgrC8+fPAQDXrl3D4cOHK1giBkM55ubmyMjIAEA9Flu3bgUAfPjwAcePH0e3bt0AABYWFtx5AHXP1apVCzweD9evX8fDhw/LX/jPFKY0MRiMKs/BgwdltmfNmoW8vLwKkobBUI0ff/wR3bp1g5eXF9auXYuIiAg0adIEnTp1wrx589C6dWsAwLRp0zB+/Hh4eXnhwYMH+OOPPzBnzhx4eXlhx44d3HkM7cMjrHKhxhDHNG3duhUeHh4VLQ6D8VmQn58PR0dHmTdxAPj1118xf/78CpKKUdng8/mIjo6Gm5sbjIyMKlocRgVR1vuAWZoYDEaV5vz585zC1LZtW66e1B9//FGhs6MYDManB1OaGAxGlUbaNTd37lxMmjQJAJCbm4uff/65osRiMBifIExpYjAYVZbs7GwEBgYCAGxtbdGtWzcsWrQINjY2AIC9e/fizp07FSkig8H4hGBKE4PBqLIEBgZyAd9DhgyBvr4+bGxssHjxYu6c77//Hix0k8FgaAKmNDEYjCqLtGtu+PDh3PqECRPQoEEDAMDt27flZtcxGAyGOjClicFgVElSU1Px33//AQCqV68OX19f7pi+vj5WrVrFbc+ePRs5OTnlLiODwfi0YEoTg8Gokvzzzz8oKCgAAAwbNgw6OrLDWffu3dGrVy8AQGxsLFasWFHuMjIYjE8LpjQxGIwqSXGuOWlWrlwJPT1aLerPP//Eu3fvykU2BqOqw+PxkJ6ertVr2NnZISYmRmP9LVmyBHXq1EGdOnUwb948jfUrDVOaGAxGlSM+Ph5Xr14FANStWxfNmzdXeJ6HhwemTJkCAMjLy6u0KQhycnKQmZlZ0WIwPjEKCwsrWoRy4/r16zh48CAePXqEZ8+e4b///sOZM2c0fh2mNDEYjCrHkSNHuBlxw4cPL7G46YIFC2BrawsA2L9/P27fvl0uMqrK06dP4erqCmdnZy59AkP7tGgBuLhob2nRQrkMYWFh6Ny5M1q0aAFvb28cPXoUABATEwMrKyssXLgQzZs3R926dXH27FmV282ePRvNmjXDunXrEBkZCR8fHzRq1AiDBg2Cn58fdu3ahfj4eDg6OiI3N5fr19/fHxs3buS2V6xYAW9vb7i7u2P//v3c/hEjRqBFixZo2rQpevfujcTERJXkDgwMRIMGDdC0aVPMmjVLvX9cMRw+fBjffPMNTE1NYWhoiDFjxmhnAghhaIzIyEji6+tLIiMjK1oUBuOTplWrVgQAAUCePXum9Pz169dz57dq1YoIhcJykFI5ubm5pHHjxpxs+vr65OzZsxUt1idJXl4eefbsGcnLyyOEEFK9OiGA9pbq1UuWJy0tjXh5eZH4+HhCCCEfPnwgNWrUILGxsSQ6OpoAIMeOHSOEEHLu3Dni7u6ucrvdu3dz12nRogXZsWMHIYSQZ8+eEUNDQ7Jz505CCCH+/v5k8+bNhBBCEhMTib29PcnKyiKEEAKA/PLLL4QQQl69ekWsra1JdHQ0IYSQ9+/fc/3//vvvZMKECYQQUqLcSUlJxMbGhjx9+pQQQsjmzZsJAK5PaSIjI4mnp6fCZdSoUQq/zz59+pADBw5w22fOnCG+vr5y5xW9D0qLnubVMAaDwdAer169QmhoKADA09OTSy1QEgEBAdiwYQOePn2K0NBQHDhwAF9//bW2RVXKrFmz8OTJE267oKAAAwcOxOnTp9G1a9cKlOzTx8mpYvsPCQnB69ev0bNnT5n9UVFRqF27NoyMjDBo0CAAgI+PD169eqVSO319fe7ezszMxIMHDzBy5EgAQIMGDdCuXTuuzfTp0zF+/HgEBARg69atGD58OMzMzLjj48aNAwDUrl0b7du3x/Xr1+Hq6ooDBw5g79694PP54PP5sLOz49oUJ/ft27fRtGlTNGzYEAAwduxYTJ06VeF34+HhgQcPHpT8BVYQTGlilMjhw4dx+PBhLFiwAF5eXhUtDoOBQ4cOcevFBYAXRU9PD6tWrYKfnx8AYM6cORg4cCBMTU21IqMqnDp1CuvWrQNAHzQdO3bE+fPnkZ+fj379+uHcuXPo0KFDhcn3qRMeXrHXJ4SgUaNGCAkJkTsWExMDQ0NDzu2sq6sLoVCoUjsTExO5maTSSLuyW7VqBRMTEwQFBWHLli24dOlSiTLzeDzcuHEDa9euxa1bt+Dg4IDAwEAsWLCAO6c4uUuSoyhRUVEYNmyYwmPe3t7YuXOn3P6aNWvizZs33HZMTAxq1qxZ4udRC7XsUwyFfGruuaysLGJkZEQAEBcXF5KdnV3RIjEYpFGjRpw7KyYmplRt+/bty7VdsGCBliRUTlxcHLG1teVk2bBhAxEIBGTgwIHcPlNTU3Ljxo0Kk/FTo6xuGU2TmppKnJycyMWLF7l99+/fJ/n5+SQ6OppYWlpy+7Oysoj4cV2adoQQ0rx5c7Jr1y5CCH1GGRkZce45Qgg5ePAgcXFxIX5+fjLtAJCFCxcSQqjbzcbGhkRHR5PAwEDi6elJCgsLSX5+PunVqxfx9PTkzitO7vfv3xMbGxsSERFBCCFk69atxbrn1CEoKIg0bNiQZGdnEz6fT5o3b05OnTold15Z7wMWCM4ollu3boHP5wOgeW7++OOPCpaI8bnz+PFjPH36FADQpk0b1KpVq1TtV6xYAX19fQDAX3/9hbdv32pcRmWIRCJ8++23SElJAQAMGDAA3333HfT19XHo0CH07t0bAJ1R17NnT1Y77xPF2toaZ86cwbJly+Dp6YmGDRtizpw5EIlEGm23Z88ebNy4EY0bN8bs2bPRsmVLWFlZcceHDBmC7OxsbpapNEKhEN7e3vDz88PatWvh6uqKHj16wMPDAx4eHvD19VXZA2Fvb48dO3Zg4MCB8PT0xIsXL7gJGpqgY8eOGDZsGJo0aYIGDRqgW7du6NOnj8b65yirdseQ8KlZmn755RfurRcAMTQ0JK9fv65osRifMT///DN3P/79999q9TFjxgyuj6+++krDEirnr7/+4q7v7OxMkpOTZY7n5eURPz8/7hxLS0sSHh5e7nJ+alQ2S1N5kZWVRUQiESGEkNevXxNHR0fy9u1b7nhYWBipV69epZkcoW2YpYmhNa5fvy6znZ+fjx9//LGCpGFUBQghyMjI0Frf4ngmHR0dDB06VK1+5s+fzwWuHjp0SGFsiLYIDw/H3LlzAdCYjn379sm9bRsZGeHEiRPo3LkzACAjIwN+fn54+PBhucnJ+HQICQmBl5cXPD090bdvX6xatQo1atQAQAO9Bw0ahHXr1pUYB8WQwCOElf/WFFFRURg/fjy2bt0KDw8Pjfa9cuVKrFy5Uul5zZo1k8v10q9fP9y7d09p2xkzZmDGjBkAAD6fD0tLSwgEAujq6oIQwpl/7ezsYGhoKNP25MmTMgkGT58+je+++07pNc3MzBAZGSmzb+bMmSrl1+jduzc2b94ss69FixZczpCS+Ouvv+Dv789tR0VFoUuXLkrbATRHSrVq1bjtLVu24Ndff1Xazt3dHVeuXJHZN2LECFy7dk1p2/Hjx2PhwoUy+1xcXFSSd9++fejYsSO3ffXqVZVnjsXGxspsL168GFu3blV4bkFBAVJTU1FYWIjmzZsjvEikbefOnfH8+XOl11ywYAECAgK47YSEBLRs2RICgQAfPnwAQINNpWfsiLl8+bLMb+/AgQMK88Hk5ORw2Y719fXRtGlTOXknTJigUnK84cOHY/ny5TL76tevj+zsbJl9hBAkJSVxgbHm5uY4cOCAjAvh7t276N+/P3d+cnIyBAIBAKoo2tvbcxnOIyIiYG5uzrUt7zECALKyslSavQhU/BjB5/MRHR0NoVBYbHCyNC4uLjIKLZ/PR1RUlNJ2AJ2lZmBgwG1/+PAB8fHxStsZGRnJPTtev36NrKwspW3t7e3h7Owss09VRbt27doy91JWVhZev36tUltPT0+Z7fj4eO53WhLm5uaoXbu2zL6oqCguJKQ4HB0d4VSGqY/i+8DNzQ1GRkalbs9mz1URMjMzERcXp/Q88RuENB8+fFCprXRG4rCwMG6wLjrAJCcny7UVnysmLy9PpWtK/1DFpKWlqdQ2NTVVbl9iYqJKbaUTugE0c64q7QD57yM7O1ultpaWlnL7kpOTVWqryHqjqrz5+fly26q2VSSHKm3v3buHhw8fygyoSUlJKrUtqmwIhUK5dsV9hqIZkHNzc5Ves6CgQOEDIjU1VSV509LS5PbFx8crfdBlZWUhLy9PZp9AICj2miKRCElJSdx20ffd8h4jCCE4ePCgyvdSZRkjCgsLVcqUXTRGiBDC1TosLUKhUKW2urq6cvsKCwtVaqtIEVRV3qKfVSQSaf2zKvofFBQUKG2rLOZL2zClqZKTm5uLa9euISgoSKGFpyj29vYK91WvXl3ptSwsLLj14OBgbt3a2homJib48OEDN/BZWlrK5POQfqsCAGNjY5WuKd2H9PVUaWtjYyO3T9U3EBMTE5ltPT09la4JyA9sZmZmKrV1dHSU22dnZ6dSW0UKl6ryFr1nDA0NVW6rSA7ptoQQpKamyr0dEkIwatQohIaGcoHXjo6OKrnuit4Turq6qF69OhISErgB09nZWeGUZbEVRoyJiUmxnzU/P597AcjOzkZ2drbMtW1sbFT6nqytreX2OTs7yyh/eXl53AOcx+PBwcEBenp6MDY2lmlnYGAgd01CCD58+MA9TMQWp6Kf38LCQiV5NTFGJCUlYcKECTh58qTMcXNzc5ibmyv831SWMUJPT6/E6e5iirqreDwedy+XFl1dXZXaKjpHT09PpbaKFC5V5S36WXV0dLT+WYv+VgEqrzIrYIW7EcseVsUQo41A8LNnz3IBoQEBARrrVxndu3fnrvvy5UtCCCGhoaGEx+MRAMTCwoIkJSWVmzyMysedO3eIq6urzGSB6dOny2S4/vXXXzVyrUuXLnF9DhgwQCN9EkJI//79uX7nzZunsX6liY6OJhYWFtx19u7dW+o+UlJSiJeXF9dHjRo1NDZVu7QcOXJEJl1C0cXZ2Zns2bOn0gUWf66B4AxZynofMKVJg2hDacrOziYGBgYEAHF1deVmQWiTgoICYmZmxg2A0tccO3YsNziOHTtW67IwKh8ikYj873//I3p6ety9YG1tTU6ePEkIobNxdHV1ubIgDx8+LPM1pe+7w4cPl7k/MS9evCD6+vrc7NDS5n1SRkFBAfHx8eFkHzFihNp9ffjwQUYhdXV1lZkFpW2Sk5PJV199JaMg2dvbk/3795MffvhB5n4AQFq2bElu3rxZbvIpgylNDEKY0lSp0FbKgc6dO3MD0YsXLzTatyLCwsK46w0bNkzmWFJSEvfWzOPxSFhYmNblYVQekpOTSZ8+fWQejm3atCFv3ryROW/u3Lnc8WbNmhGBQKD2Nfl8PrGysiIAiJmZGcnJySnrx5Dhp59+4mT98ssvNdr3ggULuL7d3NxIRkZGmfpLSkoi9evX5/qsW7cuiYuL05C0xXPq1Cni5OQk838fPHiwTA2yqKgouXsDABk+fLjc/VERMKWpdAAgaWlpWr2Gra2txiymoaGhxMfHhxgbG5P+/fsXex5TmioR2lKa/vjjD24AWr9+vUb7VsT//ve/Eq+3atUq7riPj0+lM8MTQotajh49mgwdOpRcvny5XCx0nzrBwcHExcVF5oE4Z84chQoRn88nDRs25M5bsmSJ2tc9efKkRiw1xZGenk7s7e25a3Tv3p2EhISUud/r168THR0dAoDo6uqSW7duaUBaQuLj40m9evU4eevXr08SExM10ndR0tPTyejRo2X+59bW1uTAgQPF/qYuXLggk7UdADEyMiLz58/nisFWBNIPS5FIRDIzM0lycvInrUQVFBSo3baqKU3v3r0jd+7cIZs2bWJKU1VBW0rT3bt3ucGnpJtBUwwYMIC73uPHj+WOCwQC0qBBA+6cPXv2aF2m0pCTk0PatWsn5yr4559/SGFhYUWLV+UQCoVk6dKlnMtN7JY5d+5cie1CQ0M5pUFfX1/hvaQK0i6h06dPq9WHMrZv3y5nIenWrZvaZUxSU1NJjRo1uL6WLl2qUXnfvXtH3NzcuP4bNWqkccXp4sWLMp8BAOnVq5dKlq2CggKyYcMGudgnZ2dnsnv37gp50crOzib37t0jr169Ig8ePCANVjUgDn84EIc/HIjjn47EabkTcV7hTKr/r7pGluabmyuVKTQ0lHTq1Ik0b96ceHl5kSNHjhBCJOVIFixYQJo1a0bq1KlDzpw5o3K7WbNmEW9vb7Jq1SoSERFBvvjiC9KwYUMycOBA0q1bN7Jz504SFxdHHBwcZCy3w4cPJxs2bCCEEC7Oz8vLi9SrV4/s27ePO8/f3580b96cNGnShPTq1YskJCSoJPfJkydJ/fr1SZMmTcjMmTM1qjSJ2blzJ1OaqgraUpqEQiGxs7PjArDL4upQ5Vrigc7GxqbYwe3ChQvcQOjk5EQyMzO1JlNpEAgEpFevXsUGqbq7u5Nt27YRPp9f0aJqDJFIRKKjo8mJEyfI4sWLyaBBg0i3bt3Ijz/+SA4ePEhevHihtqUtMTGRdOvWTeY77Nixo8ouoTlz5nDtmjdvXuo33+zsbGJiYsLdj/n5+ep8DJXYs2ePXGA7ANK1a1cSHByscj8ikYgMGTJE5vvShrIeHR1NatasyV1HV1eXtG7dmsyePZucO3dO7d9kVlYWmTRpksx3YG5uTrZt21bq+ygtLY3MmDFDLt6pRYsW5VJXTyAQkIsXL5IJEyaQZs2akXPnzpGwsDASFhZGHP5wIFgErS3V/1dd6Xfj5eVF4uPjCSE0Zq1GjRokNjaWREdHEwDk2LFjhBBCzp07R9zd3VVut3v3bu46LVq0IDt27CCEEPLs2TNiaGjI1Z7z9/cnmzdvJoTQ37q9vT1nDQRAfvnlF0IIIa9evSLW1tacgiPtlv3999/JhAkTCCGkRLmTkpKIjY0Nefr0KSGEkM2bNxNAce25yMhI4unpqXAZNWpUid8rU5qqENosozJ8+HBuwNHmYPPkyROVrVrSFqlZs2ZpTSZVEQqFMt+Tubk5WbVqlcysI+k33uXLl5c5xqS8yc3NJaGhoWTr1q1kypQpxNfXl1haWharJIoXKysr0qVLFzJ79mxy7NgxEhMTo/QBeOnSJZk4Fh6PRxYtWlQqBSAvL0/GKrls2bJSfd4DBw5wbctj9qhAICDbt28ntWvXlvsOO3fuTK5du6a0D3EhUrGi9+7dO63J+/LlS1K9enWF/3NdXV3SqlUrMmvWLHLmzBmV7vXg4GBSp04duc9d1gD5qKgo0q9fPzkZhw0bpvHg+/z8fHL27FkyZswYGUtXrVq1OKUpPDycNF7bmDj95UQc/3TkLE6KFqe/1LNAKbM0nTlzhlhYWMgoBDVq1CCXL18m0dHRxMjIiPuNpqenE11dXZXa6evrcy+7GRkZRE9PT+Y326VLF05punPnDmnatCkhhJDffvuNTJs2jTsPkC2I3b9/f04ZW716NWnevDlp1KgRqVOnDmndujUhhJQo98mTJ0nHjh25/goLC4mBgQGzNH3OaFNp2rlzJ/fj12Z19g0bNnDXWbFiRYnnvnr1ihgaGnLul6ioKK3JpQyRSCTzdmxoaEiuXr3KHTt//jzp2LGjQmVi7ty5lS59gkgkIrGxseTMmTNk2bJlZNiwYaR+/fqcu0sTi52dHenRowf55ZdfyIkTJ0hsbCwRiUSkoKCAzJ8/n0svIbYmXrlyRa3Pcvv2bU5uAwMD8uTJE5Xb9u3bl5MhKChIreurg0AgIDt37pRTIACQTp06cfdWUSIiIjjLGABy/Phxrcv69u1bMmXKFJkYMkWLjo4OadmyJfnpp5/I6dOnSXp6OtdHbm4u+fHHH2X+58bGxuTvv//WqCvt4sWLMjMAxXJVr16dtGrVigwaNIhMmzaN/Pnnn2T//v3k6tWr5OXLl0ofcHl5eSQwMJCMHDmy2JcIDw8Pcu3aNRIfHy+n+Ofn55OkpCQSGRnJWaKKLvfv3yevX78maWlpGvlOTp8+TXx8fBQeE7u5xGRlZREApW6nSGnq2rUrpzQRQsgXX3xBrly5QmrUqCEzhitSmvbs2UOCg4NJ7dq1uTHz5MmTxNPTU6ncRZUmoVBYrNL0yVma4uLiyKlTp8iyZcvIDz/8QMaMGUMmTpxIfv75Z7J161YSFhamVRdSZUWbSlNsbCz34//iiy803r8Y6fiR0NBQpedLF/Xt1auX1uRSxvz582XesAMDAxWed/v2bTJw4ECZhwNAA1UnTZpEXr16pVU58/Pzybt370h4eDg5c+YM2bFjB/n999/J999/T4YPH046d+5MGjVqRKytrVVWflxcXEjv3r3J3LlzyeHDh0lkZCRJSEggZ8+eJb/++ivp168fqVatmkp9OTk5yczOAkD8/PzKrFTOmjWL669ly5YquelSUlK4dADOzs4VEo9WUFBAdu3aRerWrSv3XXXo0EFGkePz+TJWTbHLojxJTEwkR44cIZMnT5YLxlakRDVv3pz88MMPMtZAgM6IfP78uVZkLCgoIBs3buRCDlRdbG1tiaenJ+nVqxcJCAggixcvJhs2bCD+/v7E3NxcYRtTU1MybNgwcvToUZKSkqLSw1IgEJAPHz6Q58+fk/DwcIUK1N27d8nLly9JfHw8iY+PJ3FxcSQuLo7ExsZyy7t378i7d+/I27dvueXNmzfkzZs3JCYmhjx8+JBL2SDef+7cOfLy5UsSEhJCLCwsyLt370hsbCyJiooiAEhcXBx5+vQpcXBwIAcPHuSu+99//5HXr1+TW7duce3E127SpAn53//+R968eUOuXLlCDA0NyfLly8mbN2/Iu3fvyPr160m1atVIhw4dSGJiIklKSiIfPnwgAPUgpKWlkUePHhFra2vy5MkTcvToUdKkSROSlZVF0tPTSffu3UmTJk1Ibm4uiYiIIJaWliQvL4/k5eVx/eTl5ZG3b98SGxsb8vDhQ8Ln87kX9KioKCIQCLiloKCAWwoLC0lhYSERCoXcIhKJSrSSa1tpUrn2HCEEly9fxsmTJ/H48WNunyJ4PB7Mzc3Ro0cPDBw4UK4ezqfGpUuXcOnSJWRnZ+PRo0daqT0HAI0aNcKzZ8+go6ODlJQUWFlZabR/Qghq1KiBuLg4mJqaIj09XWHWVmlycnJQv359rkbZ6dOn0bt3b43KpYzVq1fjhx9+4Lb37NmDb775psQ2kZGRWL58Ofbu3SuTtl9HRwfDhg3D7Nmz5WoqSUMIQW5uLtLS0pCens4t0tvJyclISkrilsTERIUlN1TFwMAAjRo1gqenJ7c0bdpUruBrccTHxyM8PFxmKalGlK6uLpYsWYJZs2aVOQsvn8+Ht7c3V0Pszz//VFgTTppt27Zh/PjxAIAffvhBpbpq2qKwsBAHDhzAkiVL8OLFC5lj7du3x8KFC3H69GmsWrUKANCwYUOEhYXJZZ4vb96/f4/r16/j2rVruHr1Kp48eVLi+QYGBli6dCl++OEHhRmmNUl6ejr++usvXLhwAXFxcUhKSir2mVIazM3N0a9fPwwZMgTdu3fnsq6rU3NMKBQiIyMDaWlpyMjI0HgJj8jISKxZswYZGRkoLCyEo6MjVqxYgZSUFIwYMQJBQUEAaGWIDh06ICwsrFTtAFq77rfffkNubi5q1KiBzMxM+Pv7c/UoCwsL4efnh0WLFqF9+/Zcu5YtW2LMmDG4ceMG+Hw+xo0bh549e6KwsBDz589HZGQkLC0t0apVK9y4cQMHDhxAfHx8iXJfu3YN69atg76+Pnx8fHDy5Ens2bOn1DqCvb09atWqJbNPXD80NzcXeXl5sLW1xdy5czFp0iSZ88pae04lpenOnTvYuHEjoqOjYWlpCV9fXzRq1AgeHh6wsbGBubk5BAIBMjMz8fbtW0RERCAsLAxPnjyBnp4eBgwYgG+//VZhDaFPCW0W7AXog2P16tUAgH/++QeDBg3SaP+vX79GnTp1AAB+fn7477//VGp3+PBhfPXVVwCAevXq4fHjx0rLvWiK3bt3Y9SoUdz2mjVrMG3aNJXbx8bGYvXq1di8ebNczTM/Pz+4urrKKELS66rUr1IHY2NjODo6wt3dXUZB8vDwULu0gSIIIXj37p2cIpWWloaaNWviwIEDaNu2rcaud/v2bbRt2xYikQiGhoa4f/9+icVeu3TpwhU4Dg0NRcuWLTUmi7oUFhbi0KFD+O2334otPmxoaIjQ0FA0bdq0nKVTzocPH2SUKPELMAA0b94cu3fvRqNGjSpENoFAgISEBMTFxSE2NhaxsbFy63FxcQp/d1ZWVujfvz+GDBmCbt26KRx/yvqwFIlEyMzM1PrvX9Pk5ubC2NgYPB4PcXFxGDNmDHbv3s2VnHr27Bnmz5+Po0ePVnyJEhVxcHBAzZo11WpbLkpThw4d0KRJE/j7+6NVq1ZKrQ9iEhMTcerUKfz777/48ssvZR5unyLaVprOnTuHXr16AaAV2Ddt2qTR/nft2oXRo0cDAJYsWYJ58+ap1I4Qgo4dO+L69esAVLMiaIKTJ09i8ODBXK2ihQsXYtGiRWr1lZqaig0bNmDt2rUqVeguLaampnB0dJRbnJyc5PaZmZmpVBtLGxBCEBcXB3t7e60ovjNnzsSKFSsAAK1bt8bNmzcVWjQSEhJQvXp1EEJQp04dvHjxosK+E0UIhUJOeYqKipI5VlrFvSJJTk5GcHAw8vPzMXjwYI0q5dpAJBLh/fv3nDKVkJAANzc3dOrUSa62XVHK+rCUhhCC7OxsbuyRvjfF6yXtE/+VfvwqWle2T5XrXb58Gb/88gsAet/OnDkTw4YNg0gkwuTJk3HlyhWsWbMGnTp1gkgkAqFhO9y6on1FZShOjShJvSjpMyo7bm1trbCWpyqU+T5QxYcXHh6ulu9PTGZmZoUGCZcX2oxpIkS2pIqbm5vG+5dOYqfKLCFpHjx4wAX7mpmZaT1Lsdg3L5Z36tSpGklgmZOTQ9atW6dw6jmPxyPW1tbEzc2NNGvWjHTu3JkMGjSIjBkzhvz444/kt99+I3///TfZu3cvOX36NLl58yZ59eoVyc7O1sAn/jTIzc0l7u7u3He6fPlyheetXr2aO0c87bkyUlhYSA4cOMDFgQ0fPpwlUq2ksIzgDELY7LlKhbaVJkII6dSpE/cwERfS1RTimUIGBgZq3VATJ07kZPvmm280Kps0YWFhXG08AOTrr7/WeLK8goICcvfuXfLgwQMSExNDMjIyKmXm86rIjRs3uEB8Q0NDEhERIXdO69atuf+vOK9LZUYoFJL4+HimMFVimNLEIKTs90HVcGAyOPz8/Lj1CxcuaKzf+Ph4vHr1CgB1m6hjtvztt99gbW0NANi7dy9CQkI0Jp+YiIgI9OjRg4s/6tOnD3bs2KFxX7yenh6aNWsGT09P1KpVCxYWFlXG31/Zadu2Lb7//nsAQH5+PsaMGcO5OQAaW3fnzh0AQNOmTdGwYcOKELNU6OjooFq1apXKhchgMDSP1p4CmZmZSEpK0lb3ny3aUpqCg4O5dekZFKXB1tYWS5Ys4banTZsm8zAsK2/evIGfnx9SUlIAUDmPHDlS6eMwGPIsWbIEdevWBQDcunULa9as4Y4dOnSIWx8+fHi5y8ZgMBjFoTWlaf369dyMKobm8PLygp2dHQDgypUrGpvBIQ7iBtRXmgAgICCAmzV09+5d7Ny5s8yyAXTqdLdu3bjUBt7e3ggMDOSmEzOqFiYmJtixYwdnmZk3bx43G+3gwYPceWwMYTAYlQmt+huIBnJuMGTR0dFB165dAVBrXmhoqEb6FStNOjo68PHxUbsfPT09rF27ltv++eefkZ6eXibZMjIy0KNHDy4/jru7O86fPw9LS8sy9cuoWHx9fblZZnw+H2PGjMGjR4+4XEI+Pj5wdXWtQAkZDAZDFhakUQXRtIsuJSWFe1A1a9aszPm0OnTogGHDhgGgU5rnzJmDt2/fIicnp9SKdF5eHvr27Yv79+8DAFxcXHDhwgU4ODiUSUZG5WDp0qVcbrCbN29iyJAh3DHmmmMwKg4ej1fmF15l2NnZISYmRiN9HTp0CF5eXmjcuDEaN26M//3vfxrptyiqJVwCuIegqmRkZJRaGIZqdOvWjVu/cOGC2rmJxNy8eZNbL4trTprly5cjMDAQeXl52Lx5MzZv3gwAMDIygq2tLezs7JT+tbGxwfTp07l4Kzs7O1y8eFEuEyyj6mJqaoodO3agQ4cOAMBZE3V0dPDll19WpGgMRpWnsLBQ5byKVZ0aNWrg/PnzcHJyQkZGBpo3b47mzZtzmc81hcrfZmJiInR0dFROra/JAGCGLC4uLmjQoAEiIiIQGhqK9PT0MpVU0VQ8kzQ1atTA3LlzMX/+fJn9fD6fy+xbGszMzHDu3DnUr19fI/IxKg/t27fH1KlT8ffff3P7OnfurHbyOgZDJVq0ABITtde/kxMQHl7iKWFhYZg9ezYyMzMhFAoxd+5cDB06FDExMfDy8sL06dNx+vRpZGRkYO3atVxyY2XtJkyYgIsXL2LkyJHo0aMHRo8ejczMTHh4eCA7Oxv+/v7w8/ODt7c3oqOjuXI//v7+8PX1xcSJEwEAK1aswJkzZ5CTk4OFCxdixIgRAIARI0YgKioKAoEANWrUwPbt2+Hk5KRU7sDAQMyePRv6+vro0aOHRr9u6eoFlpaWqF+/vsasWDKomptg0KBBSqsLS7N06VLSoUOH0idBqMKUR54mMdOnT+fy2JS1knrLli25vpKTkzUkIU389/fff5MJEyaQwYMHk44dO5LGjRuTatWqcYVYVVkMDQ3JlStXNCYXo/KRnZ1Nateuzf3Pt2/fXtEiMT4x5PLzVK9OCKC9pXr1EuVJS0sjXl5eJD4+nhBCyIcPH0iNGjVIbGwsiY6OJgDIsWPHCCGEnDt3jri7u6vcbvfu3dx1WrRoQXbs2EEIIeTZs2fE0NCQ7Ny5kxBCiL+/P9m8eTMhhBZ7tre3J1lZWYQQIpNY9tWrV8Ta2ppER0cTQgh5//491//vv//OFacuSe6kpCRiY2PD5V3bvHkzAcD1KU1kZCTx9PRUuKiihzx9+pTY2NiQd+/eyR0ra54mlS1N7u7uuHPnDgQCgdJ09QBYvhIt4+fnx03TvnDhAgYOHKhWP1lZWbh37x4AWhBY1eKvqqCrq4spU6YoPEY+liFISUlBcnJysX/5fD6mTZuGTp06aUwuRuXD1NQUBw4cwNChQ1G7dm02a46hfT7WXquo/kNCQvD69Wv07NlTZn9UVBRq164NIyMjrr6oj48Pl0dPWTt9fX18/fXXAOhkoQcPHmDkyJEAgAYNGqBdu3Zcm+nTp2P8+PEICAjA1q1bMXz4cJiZmXHHx40bBwCoXbs22rdvj+vXr8PV1RUHDhzA3r17wefzwefzuRndAIqV+/bt2zJ518aOHYupU6cq/G48PDzw4MGDEr+/4oiNjUX//v2xadMmuLi4qNVHSaisNNWrVw8hISF4+fKlSsnmiIL6NAzN0aFDB+jr66OgoKBMweC3bt3iXKmacs2pAo/Hg7m5OczNzdkMKQYAmlT17du3FS0G43NBietM2xBC0KhRI4VJgGNiYmBoaMgZH3R1dblxWlk7ExOTEhPxShs0WrVqBRMTEwQFBWHLli24dOlSiTLzeDzcuHEDa9euxa1bt+Dg4IDAwEAsWLCAO6c4uUuSoyhRUVHFxlF7e3sXm8omPj4eXbt2xS+//IKhQ4eW+FnUReXZcz169MCcOXO4jM/KmDx5Mg4fPqy2YIySMTU15Xy4r1+/5rT50qKJpJYMBoPBKB1t2rRBdHS0jKLy4MEDCAQCjbWzsLCAp6cn9u3bB4AqIzdu3JA5Z/r06Rg5ciQaNGgAd3d3mWNi5SQmJgbBwcHw9fVFWloazM3NYWtrC4FAwE3yUYaPjw8ePXqEyMhIAMCOHTuK/axiS5OipTiFKSEhAV26dMHs2bPx7bffqiSTOqisNDk7O6Nnz56oVq2aSudbWlrCSdvmz88c6dQDFy9eVKsP6SBwX1/fMsvEYDAYDOVYW1vjzJkzWLZsGTw9PdGwYUPMmTMHIpFIo+327NmDjRs3onHjxpg9ezZatmwpM3FoyJAhyM7OVhhKIRQK4e3tDT8/P6xduxaurq7o0aMHPDw84OHhAV9fX3h5ean0ee3t7bFjxw4MHDgQnp6eePHihUbDQRYsWIC3b99izZo18PLygpeXl8aSK0vDI8yHpjGioqIwfvx4bN26FR4eHlq/3t27d9GiRQsAwMCBA3H8+PFStefz+bCyskJ+fj7q1KmDly9fakNMBoPBqHD4fD6io6Ph5uamVm3Nqkp2djZMTU3B4/EQHR0NHx8fhIWFoUaNGgCA8PBw+Pv7IzIy8rOor1nW+0AjCRzEZrNRo0ZpojuGinh7e8PW1hYpKSm4fPlyqXNyhIWFIT8/HwCzMjEYDManSEhICGbOnAmAWo5WrVrFKUzjxo3DhQsXsG3bts9CYdIEGlGa7t+/j927dzOlqZwRl1Q5fPgwMjMzERYWVqoSKNrIz8RgMBiMyoOfn59MKIc027ZtK2dpqj5MtazilKWkCgsCZzAYDAZDdZjSVMUpWlJFVQoLC7nyKc7Ozqhdu7bGZWMwGAwG41OCKU1VnBo1anClRe7cuaNyzb8HDx4gOzsbALUysWSkDAaDwWCUjEaUprp166J79+6a6IqhBmIXnVAoRFBQkEptWKoBBoPBYDBKh0aUJl9fX/z888+a6IqhBurENbEgcAaDwWAUB4/HQ3p6ulavYWdnp7Giuv/++y+aNm0KLy8vNGzYEPPmzdNKVRKNzJ4Tk5CQgPDwcBgYGMDX15ernMzQLqUtqSISibissDY2NiqVxWEwGAxG1aK0aWiqMl27dkX//v2ho6MDgUCAdu3aoUWLFmrXZS0Otb7NvXv34tSpU9i+fTvMzc0B0LQDc+bM4fL+7N69G5s2bYKFhYXmpGUoxMzMDG3atMG1a9fw6tUrvH79usTA7oiICKSkpACgVkKWn4PBYHxutAgPR6KSkiVlwcnAAOEfkw8XR1hYGGbPno3MzEwIhULMnTsXQ4cORUxMDLy8vDB9+nScPn0aGRkZWLt2LXr16qVSuwkTJuDixYsYOXIkevTogdGjRyMzMxMeHh7Izs6Gv78//Pz84O3tjejoaM7A4e/vD19fX0ycOBEAsGLFCpw5cwY5OTlYuHAhRowYAQAYMWIEoqKiIBAIUKNGDWzfvh1OTk5K5Q4MDMTs2bOhr6+PHj16aPT7FusiAE1gmZ+fr5VYXbWelsHBwahWrZqMkJs2bYJIJMLo0aPRv39/xMXF4ejRoxoTlFEypSmpwlxzDAbjcydRIECcFhdlCll6ejoCAgKwf/9+hIeH4+LFi/jxxx8RFxcHAMjIyEDTpk1x9+5drFu3Dj/88IPK7Ro1aoR79+7h+++/xzfffIOAgAA8ffoUS5cu5cZ/Z2dndO3alatLl5SUhEuXLuGbb77hZOTxeLh//z7Onz+PqVOncq601atXIzw8HI8ePYKvry8WLVrEtSlO7vfv32P06NH4559/8OjRI9StW5d7eS9KVFQUVwql6DJ69Ohiv9OQkBA0adIEDg4O6Ny5M/r371/i/0Ad1LI0JSYmomPHjtx2cnIyIiMjMWzYMK5Q3rt373D9+nWMHTtWI4IySsbPzw/z5s0DQOOaJkyYUOy5LAicwWB87jgZGFRo/yEhIXj9+jV69uwpsz8qKgq1a9eGkZERBg0aBIAWuxUXZVfWTl9fH19//TUAIDMzEw8ePMDIkSMBAA0aNEC7du24NtOnT8f48eMREBCArVu3Yvjw4TAzM+OOjxs3DgBQu3ZttG/fHtevX4erqysOHDiAvXv3gs/ng8/nw87OjmtTnNy3b99G06ZNuXCQsWPHYurUqQq/G3HB3tLSpk0bPH78GB8+fMDgwYMRHBysccOAWkpTbm6ujJXp4cOH4PF4aNOmDbevXr16iIiIKLuEDJVQtaQKIYRTmkxNTeHt7V3eojIYDEaFo8x1pm0IIWjUqBFCQkLkjsXExMDQ0JBzL+nq6kIoFKrUzsTEpMSQC2mXVatWrWBiYoKgoCBs2bIFly5dKlFmHo+HGzduYO3atbh16xYcHBwQGBiIBQsWcOcUJ3dJchQlKioKw4YNU3jM29tbaSFee3t79OrVC0ePHtW40qSWe87a2hqJiYncdlhYGPT19WUCigUCAcv9U47o6uqiS5cuAKh5NCwsTOF50dHRiI+PBwC0bdv2swkSZDAYjMpEmzZtEB0dLaOoPHjwAAIlbr3StLOwsICnpyfngouKiuImAYmZPn06Ro4ciQYNGsDd3V3mmFg5iYmJQXBwMHx9fZGWlgZzc3PY2tpCIBBg8+bNKn1eHx8fPHr0CJGRkQCAHTt2FPtZxZYmRUtxClNkZCREIhEAICsrC2fOnEHTpk1Vkq00qKU01a9fHzdu3EBISAjCw8MRFBQEb29vGEiZIxMSEmBra6sxQRnKUSWuicUzMRgMRsVjbW2NM2fOYNmyZfD09ETDhg0xZ84c7sGvqXZ79uzBxo0b0bhxY8yePRstW7aElZUVd3zIkCHIzs7GlClT5NoKhUJ4e3vDz88Pa9euhaurK3r06AEPDw94eHjA19cXXl5eKn1ee3t77NixAwMHDoSnpydevHihUR3h8OHDaNy4MTw9PeHj44MuXbpw7kVNwiNqJDKIiorC5MmTUVhYSDvh8bB27Vo0adIEALUyDRgw4LPL3xQVFYXx48dj69at8PDwKPfrv337FrVq1QJArUhF3ygAYMyYMZymfu3aNaY4MRiMzwI+n4/o6Gi4ubnByMioosUpN7Kzs2Fqagoej4fo6Gj4+PggLCwMNWrUAACEh4fD398fkZGRn8VM6rLeB2r5Zjw8PLBp0yb8999/AIBOnTrJuOZevHgBb29vdO3aVZ3uGWpSs2ZN1K9fH5GRkbh9+zYyMjJgaWkpc47Y0mRgYIBWrVpVhJgMBoPBKCdCQkIwc+ZMANRytGrVKk5hGjduHC5cuIBt27Z9FgqTJlA7oKVu3bqoW7euwmONGjXC0qVL1RaKoT7dunVDZGQkV1JlwIAB3LH4+HhuJkPr1q0/q7ctBoPB+Bzx8/OTCd2QZtu2beUsTdWHqZafGCXFNQUHB3PrzC3HYDAYDEbpYErTJ0bHjh2hr68PQL4OHQsCZzAYDAZDfZjS9IkhLqkCAC9fvsTr16+5Y2KlSUdHBz4+PhUiH4PBYDAYVRWmNH2CdOvWjVsXu+hSUlLw5MkTAECzZs1kkpMyGAwGg8FQDlOaPkEUxTVJpx9grjkGg8FgMEoPU5o+QZo1awYbGxsA4EqqsCBwBoPBYKgKj8dDenq6Vq9hZ2fHFQHWFHl5eWjYsKHKSTdLC1OaPkF0dXW5HFnp6ekIDw+XCQKXLtjIYDAYjE8TcQLqz4nZs2ejbdu2WuufFR77ROnWrRuOHDkCADh+/Dju3bsHgObQYuVtGAzG5054i3AIEkuu81YWDJwM0CK85KLAYWFhmD17NjIzMyEUCjF37lwMHToUMTEx8PLywvTp03H69GlkZGRg7dq16NWrl0rtJkyYgIsXL2LkyJHo0aMHRo8ejczMTHh4eCA7Oxv+/v7w8/ODt7c3oqOjYWJiAgDw9/eHr68vJk6cCABYsWIFzpw5g5ycHCxcuBAjRowAAIwYMQJRUVEQCASoUaMGtm/fDicnJ6VyBwYGYvbs2dDX10ePHj00/p1funQJcXFxmDp1arH1V8tKqZSm9PR07Nq1Cw8ePICuri5atWqF4cOHw8LCQu7cnTt3Ys+ePQgKCtKYsAzVkQ4G37BhA1dpmrnmGAwGAxAkCiCI057SpIz09HQEBATg7NmzqFatGpKTk9GsWTNu9nNGRgaaNm2KxYsX4/z585g+fTp69eqlUrtGjRrhzz//BAC0bNkSkyZNwujRoxEREQFvb2/4+/vD2dkZXbt2xb59+xAQEICkpCRcunQJW7Zs4WTk8Xi4f/8+Xr9+jRYtWqBt27ZwdXXF6tWrYW9vDwD4448/sGjRImzatKlEud+/f4/Ro0cjODgYDRs2xJYtW5CSkqLwu4mKisKwYcMUHvP29lZYtDc9PR2zZs3C+fPn8ezZMzX/K8pRWWnKzs7GxIkTkZCQAHG5upcvX+L8+fNYuHChQv+hGmXtGBqiVq1a8PDwQFRUFHJycrj9TGliMBgMagmqyP5DQkLw+vVr9OzZU2Z/VFQUateuDSMjIwwaNAgA4OPjw1VzUNZOX18fX3/9NQAgMzMTDx48wMiRIwEADRo0kAnPmD59OsaPH4+AgABs3boVw4cPh5mZGXdcXPC2du3aaN++Pa5fvw5XV1ccOHAAe/fuBZ/PB5/Ph52dHdemOLlv376Npk2bciXXxo4di6lTpyr8bjw8PPDgwYMSv7+iTJkyBXPnzoWDg0PlUJr27duH+Ph49O/fH99++y309PRw5swZ7N69GzNnzsRvv/2GL774QmuCMkqPn58foqKiZPb5+vpWkDQMBoNReVDmOtM2hBA0atQIISEhcsdiYmJgaGgIHo8HgMapir0FytqZmJiUWEdO3CcAtGrVCiYmJggKCsKWLVtw6dKlEmXm8Xi4ceMG1q5di1u3bsHBwQGBgYFYsGABd05xcpckR1HUsTTduHEDN27cwE8//QQ+n4/U1FTOcKBJVA4Ev3HjBtzd3TFjxgzY2trC0tIS/v7+WLduHczNzfHLL78o/CcyKg5pFx0A1KlTB9WrV68gaRgMBoMhpk2bNoiOjpZRVB48eACBoGSXYWnaWVhYwNPTE/v27QNAlRHp9DMAtTaNHDkSDRo0gLu7u8wxsXISExOD4OBg+Pr6Ii0tDebm5rC1tYVAIMDmzZtV+rw+Pj549OgRIiMjAQA7duwo9rOKLU2KFkUKk1hG8XLo0CE0bNhQ4woTUAqlKTExUaELrl69eli3bh2sra2xYMECuX8Io+Lo2LEj9PQkxkRmZWIwGIzKgbW1Nc6cOYNly5bB09MTDRs2xJw5cyASiTTabs+ePdi4cSMaN26M2bNno2XLlrCysuKODxkyBNnZ2ZgyZYpcW6FQCG9vb/j5+WHt2rVwdXVFjx494OHhAQ8PD/j6+qo8td/e3h47duzAwIED4enpiRcvXlTJSUk8omLgUd++fdG9e3eFXywAxMfHY/r06UhLS8PChQvx8uVL7N69G1evXtWkvJWaqKgojB8/Hlu3boWHh0dFiwMA6NChA5duYMeOHRg9enQFS8RgMBjlD5/PR3R0NNzc3GBkZFTR4pQb2dnZMDU1BY/HQ3R0NHx8fBAWFoYaNWoAAMLDw+Hv74/IyMgS3XqfCmW9D1T+hpycnPDixYtijzs7O2PNmjWwtrbGokWLtDbdj1E6hg8fDgAwMTFB9+7dK1gaBoPBYJQnISEh8PLygqenJ/r27YtVq1ZxCtO4ceMwaNAgrFu37rNQmDSByoHgnp6eOH78OFJTU7ls00URK07Tp0/H06dPSwz0YpQPAQEBqFWrFlxdXeHs7FzR4jAYDAajHPHz85MprSXNtm3bylmaqo/KqmWHDh1gYWGB//77r8TzxIqTo6NjmYUrb8R5Hvz8/DBixAjcvXu3okUqMzo6OujZsycaNGhQ0aIwGAxGhcNS4XzelPX/r7KlqUmTJjhx4oRK5zo7O3PZqKsSq1atgo2NDQIDAxEeHo6FCxfiwIEDCpN3MhgMBqPqoK+vDx6Phw8fPsDe3p55Qj5DCCH48OEDeDwe9PX11eqDlVH5SG5uLoKDg3Ho0CEYGRmhXbt2qF27Nm7cuMGlgGcwGAxG1URXVxcuLi6IjY3VeJFYRtWBx+PBxcUFurq6arXXiNIUHByMmzdvYs6cOZroTiVyc3Nx6NAhPHv2DBEREcjKysLPP/8slyUVAAQCAbZv344LFy4gKysLderUwbhx49CyZUvunNjYWBgbG8PBwYHbV7t2bURHR5fL52EwGAyGdjEzM0O9evVQUFBQ0aIwKgh9fX21FSZAQ0qTuJxKeSpNGRkZ2LVrFxwdHVG3bl3cv3+/2HN///13XL16FUOHDoWLiwvOnTuHWbNmYc2aNWjatCkAIC8vD6ampjLtTE1NkZGRodXPwWAwGIzyQ1dXt0wPTcbnTZWdY2hra4t///0XR48e5SoyK+LZs2e4fPkyAgICMGnSJPTr1w+rV6+Gk5MTNm7cyJ1nbGwsU6MNAHJycmBsbKy1z8BgMBgMBqPqUGWVJgMDA5WyiV67dg26urro168ft8/Q0BC9e/fG06dPkZSUBABwcXFBXl4ePnz4wJ0nToDFYDAYDAaDUWWVJlV58eIFXFxc5Fxv4in4L1++BECTP7Zr1w47duxAfn4+QkJC8OrVK5mK0EVJTk5GVFQUt7x580Z7H4TBYDAYDEaFopGYJm9vb010oxVSUlIUWqTE+5KTk7l9M2bMwNKlS9GnTx/Y29tj0aJFJaYbCAwMxK5duzQuM4PBYDAYjMqHRpQmLy8vlYv2lTf5+fkK8zEYGBhwx8VYWVlh+fLlKvfdr18/tG3bltt+8+YNlixZUgZpGQwGg8FgVFY++TxNhoaGCqeXCgQC7ri62NnZwc7OTu32DAaDwWAwqg5qK03x8fE4duwYXr16heTkZBQWFsqdw+PxcOjQoTIJWFZsbW1lgrvFpKSkAABTehgMBoPBYKiEWkrTnTt3MG/ePBQUFEBPTw9WVlYK815Uhho/4hxOOTk5MsHgz549444zGAwGg8FgKEMtpWnTpk3Q0dHBokWL0KFDB+joVN5JeB07dsShQ4cQGBiI4cOHA6CuubNnz6Jhw4ZVsrAwg8FgMBiM8kctpendu3fw8/NDp06dNC1Pqfjnn3+QnZ3Nudpu3ryJ9+/fAwAGDx4MMzMzNGzYEJ06dcKWLVuQnp6O6tWr4/z580hMTMTs2bMrUnwGg8FgMBhVCLWUJhsbG272WUVy+PBhJCYmctvXr1/H9evXAQB+fn4wMzMDAMydOxeOjo7477//kJ2djdq1a+PPP/+stDP+GAyGGhw7BuzdC8ydC7RuXdHSMBiMTxC1lKZu3brhypUryM/PL9Pss7Jy5MgRlc4zNDTEpEmTMGnSJC1LxGAwKgSRCBg3DsjIAN6+BUqoRclgMBjqopbSNHr0aLx8+RI//fQTAgICUKdOHZiYmGhatirDpUuXcOnSJWRnZ1e0KAzG50l8PFWYAODBAyAhAahWrUJFYjAYnx48ouYUt9DQUCxevFiuyK1M5zwegoKC1BauqhEVFYXx48dj69at8PDwqGhxGIzPhxs3AF9fyfaePcA331ScPAwG45NELUvT5cuXsWTJEohEIjg7O8PW1lZhygFG1ScxOxGhcaHoVrsbjPWNK1ocBkMx0dGy2xcuMKWJwWBoHLWUpt27d8PU1BTLly/nCt8yPj2EIiE67uqIqJQoeDl54az/WVQzZy4PRiWkqNJ08SKNc6rE6VAYDEbVQ60RJSEhAZ07d2YK0ydOyLsQRKVEAQAeJD5Amx1t8DzleQVLxWAoICZGdjspCXj8uEJEYTAYny5qKU0ODg4QiUSaloVRyTgReUJmOyY9Bm13tMWd2DsVIxCDURxFLU0AddExGAyGBlFLaerTpw9CQkKQmZmpaXkYlQRCCE5EnQAA6PJ00cShCQAgOTcZnfd0xpnnZypQOgajCGKlSTq2kilNDAZDw6gV09SxY0c8efIEkyZNwsiRI1G3bl2Zum7SsDIlmmHlrZVYeWul0vOaVWuGwOGBMvv6HeyHewn3lLad4TMDM3xmAACevH+C12mvAQB6OnpIyU2Boa4h8oX5yC3IRZ+DfWBtZA0TfZpq4uRXJ9HcuTnX1+nnp/Hd6e+UXtPMwAyRUyJl9s28MBMHnxxU2rZ3vd7Y3HezzL4WW1ogMTuxmBYS/ur2F/yb+HPbUclR6LKni9J2ABA2PkwmtmvL3S349dqvStu527rjyrdXZPaNOD4C12KuKW07vtl4LOy4UGafy0oXleTdN2gfOrp25LavxlzF18e/Vqlt7IxYme3FVxdj672tStt1cO2A/YP2y+zrvLuzSu7dBR0WIKB5ALedkJWAlltbFnu+rpDg1bt46AHgN/SAUWYO8OYNEByMw6E78eON+Uqv6WTmhPCAcJl9E05NwJkXyl8OhjUeBmsja/wT8Q++b/09vvX6FvXX1Ue2QHkKkk19NqGPex9u+278XfQ/1F9pOwCImBwBc0Nzbru8xwgAyMrPQoP1qoVpsDGCjRHSqDtGFL0Hyxu1lKavvvoKPB4PhBAsW7as2PM+t5QD2iQzPxNxWXFKz6thWUNu34fcDyq1zcyXWA5PRp3k1vOF+YjPjpc7P42fhjR+GgBAIBTIHMsryFPpmuYG5nL70vhpKrVN5afK7UvMTlSpbW5Brsx2oahQpXYAICRCme1sQbZKbS2NLOX2Jecmq9Q2Iz9Dbp+q8uYX5sttq9pWkRyqtE3OTZbbl5STpFLbosqGkAhLbOeaBuh9jBYQ1HSGkbMbsHUrkJ8Pi9CHan/WVH6qSm33PdqH9zm0fNOYwDGob1cf8VnxyBJkKW2bV5Ansy0QClSWl0A2W4y6Y0R0WjSi06JLPUaIZVBVXjZGsDFCGnXHiKL3YHmjltLUvXt38Hg8TcvCKAELQwtUN6+u9Dx7E3uF+1Rpa2Fowa1LxzM5mTlBlydxe2TwM5BdIHmwmeqbQldHNuWEsb6xStc0MzCT22dtZM21FRKhzLWlsTGykdvnZOak9JoAOAuZGD0dPZXkBSAnj5mBmUptHU3lra52JnYqtbU0lB9MVZXXUM9QblvVtorkUKWtnYmd3D5HU0dk8OUH9qIUvSd0ebolXrNlYj4AOgAX1qoBdPKjShMA17DnqO6pXF5F942NkU2J180rzENaXhqnMAGAiIgw6uQoVDOrBosCi2LbiimaxsNA10Dl/w0PsmOwOmPEoSeH8O2JbyEQCmBpaKnw91j0GkVlUFVeA13Z0luaGiNKgo0Rn94YUfQeLG/UTm7JkCCdEfzRo0dVPrnlu4x3qLm6JgBqyr8bcFfmOCEEK0JWYNalWdy+QQ0GYf+g/TDSMyrz9dPy0rDt3jasD1uPNxlv8IXLF9jSZwuaODYpc98M5XzI+QArIyvo6+pXtCiqsWMHMHYsXf/7b8DfH7C3pykHGjfW+Cy6vII8/HThJ2wI38Dtq2VZCxaGFnj8nl7rR58fscJvhUavq2lW3lqJHy/8yG0b6BrgbsBdNHZoXIFSMRiVG7UsTQxZunbtiq5du3IZwTXKu3f0ofD8OdClCzBmjGb7V4C0a26AxwC54zweDzPbzoSTmRPGBI5BoagQxyOOo/u+7jgx7ASsja3Vum7EhwisvbMWex7tkTGN3469jWZbmmF229n4pf0vGlHMtEWOIAcHnxzE9vvb8Sb9DVwsXFDLqhZqWtRETUu61LKqhZqWNWFrbFtpLLYJWQk4/PQwDjw+gLD4MNSyrIW9A/fCt5av8sYVjfTMOTc3wMYGaNECCA0FnjyhJVacnTVyqYgPERh2bBinHAHA0IZDsaXvFsRnxaPZ5mbIF+Zj5a2VGFh/INrWbKuR62oSERHhpws/YdXtVTL7BUIBRv47ErfH3ZazCjEYDIpaSlNMTAzCw8PRtWtXWFlZyR1PS0vD5cuX0aJFC7i6upZRxM+cjAxg0SK6rqNTLkqTtGvu6zhbWgh15kygiPXsG89v4GjmiEGHByGnIAfX31yH705fnP/6PFwsVAtAFBERzr88jzV31uDCK/nZTg6mDnif8x6FokIsDV6KI0+PYEvfLTJBi5WBp++fYlP4Jux5tEfG556QnYCw+DCFbUz0TThFSqxUiRWqmpY1UcuylpzbU5Nk8DNwPOI4Djw5gCvRVyAikjQibzLeoOPujpjnOw8LOiyAno72368KhAU49/IcsvKz4GHnAQ9bD5lA52IpqjQBgJ8fVZoAmujy22/LJBshBNvvb8e0c9OQV0jjkIz0jLCmxxqMbzYePB4PVkZW+K3Tb5h1aRYICEadHIWH3z2Uc/NUJPmF+Rh5YiSOPJUUO5/ffj6ORxzH0w9PcT/xPpZcX4JfOykPWq5oXqW+wto7a9HAvgECmgdAh8cSmTK0j1ruuaVLl+Lu3bs4duwYdBRk3BUKhfjyyy/RokUL/PzzzxoRtCqgldpzeXmAqSlACNCqFXBHuzmS0vLSYL/cHkIihLuFGyIXp4KXkQG0awcEBytsEx4fjl77e+FD7gcAgIuFC/77+j80tG9Y7HWy8rOw++Fu/B36t9xsCVN9U4zyGoWpraaillUtLL2+FH/c/AOFokLunLHeY7G823K1rVqaIL8wH8cjjmNj+EYEv5X/buxM7JCSmyIXsKsqFoYWaFW9FXxcfPCFyxf4wuUL2BjLx2iUBn4hH2dfnMWBxwdw+vlp5Avz5c4RK6pifFx8sH/QfrhZu5Xp2iVx/c11TDozCU8/PJXZX82sGqdAedh6cOuuVq4ShbJdO+DmTbqenU1/L8HBQPv2dN+IEcC+fWrLlsHPwITTE3D46WFuXyP7Rjg05JCcK0soEsJ3py9uxd4CAExrNQ1req5R+9qaJJ2fjoGHB+JqzFUANO5mc5/NGNtsLO4l3EPrba1RKCqELk8XIWND0Kp6q4oVuBhERIT1oesx5/IcziL9ZaMvsav/LlbqiaF11FKavvzyS3h6emLevHnFnrNs2TI8evQIhw4dKpOAVQmtFex1daVTqC0tgbQ0QIsunX2P9uGbf2nNrt+rj8Kc8bskB9++BWrIz84DgJepL9FjXw+8SnsFgAZqBg4PRLua7WTOe532Gn/f+Rs7HuyQmwXhZuWGqa2mYrT3aFgZWckce/L+CQJOBXAPI4AGDa7tuRZDGw4tVzdXdFo0Nt/djB33d3CKohhjPWP4N/HHdy2+QwvnFnQ2VGYc3ma8xZuMN3ib8ZZbxNtFZ+mUhIetB75w+QI+Lj7wqeGDRvaNlFqjhCIhrr25hv2P9uOfiH8UzrKpbV0bI5qMwPDGw+Fu644/b/6JBUELuFlA5gbm2NRnk8wUbE2QlJ2EmRdnYu+jvaVqZ6BrgLo2deFh64Gdky/CMiUbAjtr5Lx9RRXpggLqpsvOBhwcgIQEtUqqhMaF4qtjXyE6XWLNmtB8AlZ2X1msBel5ynN4bvIEv5APALj67VV0cO1Q6mtrktjMWPTc3xNP3j8BQK2cR4YcQW/33tw5v177FQuv0inrHrYeuD/hfqVTQl6nvcaYk2Nw7Y38FPxW1Vvh5FcnVQ70ZjDUQS2lqWvXrhg2bFiJ8Ttbt27FkSNHcPHixTIJWJXQmtLUvbskUV9SEn0IaIkhR4bgn4h/AABPqi9Do/FzJQdXrwamTy+27fuc9+i1vxfuJtDAcSM9IxwcfBD9PfojKCYIa+6swamoU3KWl06unTC99XT0ce9TogIgIiJsDNuIny//LDOdu497H6zvtR41LWuq8YlVQygS4syLM9gUvgnnX56X+wwN7BrguxbfYaTnSDmFryQIIUjNS5VTqF6mvkRoXCgSshNKbG9mYCZnjbIzsQMhBPcS7uHA4wM49PQQ4rPkU0Y4mDpgWKNhGNFkBFpVbyWneN6JvQP/4/5cvi4A+Lrp11jfa32ZZ7AIRUJsvrsZcy/PlVHiWjq3xOAGg/Ei9QWiUqIQlRwlp5hKY1gA8JfS9dvVAZ/xQD2bemhTow0WrXoA1+sP6cH79wEvL5XlExERVoSswLwr8zgLp6WhJbb124YhDYcobb/69mr88N8PAOjLwKOJj5TOTNMWT94/Qc/9PRGbSfPp2JnY4Yz/GTlLUoGwAG13tOXcydNbT8fqHqvLW1yFiIgIG8I2YPal2TIvGcMaDcPp56eRU5ADAKhpWROnh5/+pCeN5BbkIiY9BkZ6RnCzcqs0cZGfC2opTX379oWvry9mzZpV7Dl//fUXrl27hjNnPp/M0VpTmqZOBdatAwAMtAtGmGG7Yk9t1gwIlM1bh379gHvK89Zh6g98/JZvh5yCHNiZ2OFt/kwYz5/NHQ81aItB9jcUtj15EmjenOYjGXxksCQ+SaQDvcx6KLSKkm1QaASTlyNgHz0NMbebyhyaORM4WELeOqFpLNLbTAHfVRKwbmZghqWdl2L35MlISlQeB/TXX3SSlZioKBpnL3ct4wTk1N+O3PpbIDR7J3NMX0cfgxoMgkvCRBz8s73cFPCiuLsDV2Tz1mHECOBaMXnrCAiEpu8gcLwFjy63Qarfwr2EeygQFZR4Hd2MeuARHgqt5JPEmRmYoY31INzdOQKG8Z3BIyXHKj17lYmp56Ziz8M9kv4z3WATdAAG778otl2HDsB+2bx16NyZzmcQ2Icive0kFNhLZmXy8q1gGfY7TCLHY+F8XQRIclsiIiYNHQZFocAyCoWWUSi0+vjX8gXqpQnwnP40cLAx4C+lz0wKBdafpetzW7pjnePXMEhqA4MPraBTIBsr5eQEhH/MbZmUnYSRJ0bKxNgZJPnA+soB6GW7yn3W4cOB5ctl93nUFyGmY0cIqlG3remzibC6uUGu7aZNQB9JbkvcvQv0Vy23JSIiAHOpj7FyJV2kyXe6hhS/ASCG6QAA3Yw66PDuPC4frStznniMKLCMxPtB3oAetZLZnb4Cw4RO3HkzZtBFTFYWoGoJUvEYIeb0aeA75bktYeD4GrWmjeXcigBgIaoFg3M7YBjfGQKbB0jt3hdCM6oU8gTmsLl8GEaxPdG7N7BZNrclWrQAEpXntlR5jFBEWBhQTaq2+ZYtwK8qhIm5uwOXLxMk5SThVeorvE57jeXbXuNl2isIzV+j0OIVRCYS4XVyqsEw0RcGie3h37Y91i1oJBPb5aJaaCn27QM6dpRsX70KfK1abkvEyua2xOLFXMaPEilpjCAgILp5IAZZIPqZEBlk0r/6WejRPxPff+2BltWLT3irTdSK7qxXrx6Cg4MxceJEmJvLB2pmZWUhODgY7u7uZRaQAfpL+oh18nPEoXilSZH37MMHIE6FPGUPsy4jh0ff2Pq694Xu8Rcyx1sJboLExSEe8jk4BB/z1pkZmOHU8FPo9vc4XM/YC+iIZBWmzOpA2CTgbgByc+2QqiDONy1NmbwuwPN/8cWY44hpOAWJ2YnIFmRj+vnp0G+9HwXHtgHvS37TzC3iESssBOISCgDraMD2OWDzAqh5E/A4CegWypzrYlYLk1pNwBjvMXA0c8TKlUC8Ct+vpXwaFSQnl/RZeQBqAs9rwqfFMKxcSGOS7ifcx63YW/hx1S3A5TZgKTtqCS1l/296PH30du8F/yb+6OveF9evGKNHqHJ5ARpXtXvAbnSv0x0Tz0xEZn4mhBbR+NC3HRC0GLgxByDySmqyfN46xKelIs5rHtBiM8CTele7Pwrk0p9Iz3FAOqhHTRpzPWt8uP8FgCJKGk8IN9O9AEYDAGLyvOFpY4SIjLsQCAW4UEdyaufk5/i99wK6IdIBkpoC79p8XNqCJNYCwMPFVxfxzb/fICkniZ5LeMCNORAELUaSSHEKhrQ0+X0J8ToQHNkJTGwKGOQip+FG5IQPAl53lTkvT5zbkk+VFIHASKXfKkDDHKXJzCxyLzU6AvT8BtD7+OOMawHhgTPIbSJvqebGiLj6gMXvQA9qJUtuNwrY+BjIt+CuUVQGVeUVjxFi8vKUtOWJgBYbgW6zER2Tw+3+rvl3yDn5F/aGfRw84ryA6FBgeD+gejiIQRZSuvcBzq9GaupUuW4TE1WTWeEYoeJnFcrmtkR2dpG2enzAKgawfg1Yv/r49zWSq72C6bLX3GQDAIDdx0UBItME5NU5grw6R7ARwKG/rOFbyxfta7ZH+1rtEZfgDYiUP+bz8+W3S/6shH4GPT7is/KQV5AHfiEfeYV5eJbNR5xhHqCf9/Gcj3/18+i6fh5gkI1rlpn48mgmsgRZyMzPRGZ+JqJaZKKgVRZgmAnoCBVe+QAfqPb0x6qlNA0cOBC//PILvv/+e0ydOhVeUmbvBw8eYO3atcjKysKgQYM0JefnjZTVqoVZFC4oePiKsZfPbQl7e6C6CnnKXhucAD4aMQbUHwCdl/J5ZsZYHsdOM/mByEBqhrKBrgF+qrMb93Y4I9vrT7ovyQemT6bDOHoQeEQfsAZgDZgp8FhYW6siLw9N9Qbj3OQumHNpDjbfpa+TBQ6hwHfNYPZwJizuzwdPKBuTQSCC0DQWr/EcG8Ke40XKCzxPfY6nCc+BX6KL/aGC8GD0tjdMI77DrWM94FJdoiiYman2/SqqKGRnp1pbscJlpGcEnxo0nmnlULpPaBoLgcMtCBxuQ+B4CwK7u4BOAQwSOsDkpT92zxmMft0kAeSGhqpdUxr/Jv7wcfFB+7UjEItb9Hvq8gsMGl6AddA+6OXIaut2UoO8iIiw5+EevO41EzCQaFN6KU1gdXMDDJPaAVagC+TvCV3d4uTVhXcOn9tKT/kOh/0C4FonH/cS7uHm2xuI27cI1dNy4fsWMBYAeQYAdERAtQd0aUWtPx/41dBtbyNcen2J689Y6AST83thFN8VqIZisVYwF8HZGcjOroPssL+Q0XYKlXbgWDj88xg6UkkvjY1BXe6enkBODiy2haB6ddVcS0W9MhYWku8pu9EaZPj8wCmnhm97wubyEehYmSkdI8i7aUiOPwmB81XA6i1MBn0P6+s7uGsUlUHVe8mgSBYDY+Pi2xaaRyOt/VgInCUVJWpZ1sL2ftvRpXYXzLxWtG01iP67hrRO34Dvdpz+j3tNQ0T2cxSKVsnM/nRSMeTJpEjImp6e6p+VpyNCbGY8Xqe9RnRaNK6Q1zAeEQ2heTQKzV9DZCrvLgeAfAAoVHgIAKCT6wS9zNrQzaoNkVEyBI43QAwkbxlp/DQERgUiMIq6G3g/m8IgqS0MEn1hmNAeBh9agSeUT9liaEhDBTLzM5GQnYBnuQmwbp8AoUkCRCb0r9AkASLjBAhNEjnLJQBUL1q5xwzASOXfURyAo8+K7FRcjU2OiswKrnZyy3Xr1uHo0aPg8XjQ19eHjY0NUlNTUVBQAEIIvvrqK0ycOFHT8lZqtOaei4mRTKUeMAD491/N9f0RoUgI55XOeJ/zHib6JkiemQzjGm50QDcwkLwm+voC16+r3O/9hPvQ09HTeoxB8JtgBJwOQGSypEZVXZu6mNZqGuKy4vAi9QWepzzHy9SXXICuKjiYOmCc9zgENA9ALata2hBd4+QX5qNQVAhTAxVHoFJQKCrEb9d+w5LgJVyKAisjK2ztu1VhrM/jpMeYdHYSbryVuHXNDMzwa8dfMaXVlLIn0JwzB/iTKua4cAHo1k32+IQJ1DcC4PKGmThWIwshsSF4nPS4xFmNPer2wO4Bu+FgWrb4QRERoeuergiKoQ//cd7jsLVfEd/Fhg3A5Ml03d9f3mdRyuvNvjgbK25JXnjGeI3Bpj6bSvVdx6THoOnGplzsYOBXgejr0VdtuVRFRETYHL4ZMy/O5OKUABp8v7zbcqUpKEREhHmX5+GPm39w+3rW7YlDQw5pPJN0tiAbz1OeIzotmipH6ZK/MekxcmVjVMFA1wBuVm6oY1MHta1qo7Z1bbpuXRtuVm5yv+lCUSEeJj7E9TfXcf3tdQS/CUZKXkqJ/beu3hpfuHyB/EJaHishKwEJ2QlIzE4s1aQUTWOibwJzA3NYGFpwi7nhx20DqXVDCzR1bIr2tdpXiJxlyggeEhKCf//9F5GRkcjJyYGZmRkaNGiAgQMH4osvio93+FTRmtIkFNJp1Pn5QMOGwNOnytuUkptvb6LdTur2G1h/II732AmIc3C1bw+8fw9ERtJXy7g4WYd9JSG/MB+/3/gdy4KXKY37KYqpvinq2daDu6073G3cufVm1ZqxRH8KuPH2BkYcH4G3GW+5fWO9x2JNjzUwNTBFVn4WFl1dhDV31sjU4fqy0ZdY6bcS1S3UK9Egx7BhwJGPOYeePwfq1ZM9/s8/wJCPytwPP3BBP5n5mbgTewch70IQEhuCW+9uIUuQBT0dPfze5XfM8Jmhsbw/MekxaLKxCVdT76z/WfSs11NywpgxwM6ddN3QkCbjtCl9aon8wnyMOjkKh55IZiwvaL8AizouUitYePu97Rh3ahwAOlP1yaQnCktfaIqY9BiMDRyLK9GSwL+aljWxvd92dK3dtYSW8uy8vxMBpwO4IP7GDo1xevjpMr/45Bfm4/Tz09j3eB/OPD9T6nEGoC9iblZucLN2Qx3rOqhjXYdTjpzNnct034mICBEfIhD8NhjX31zHtTfXFE4CURcTfRNUM6sGWxNbmOibwEjPCMZ6xtxfY33l60Z6RjIKkLmBOcwNzcslF5wmYGVUNIjWlCYAaNKEZjc2MKDOdl3NJj2ceWEm93a6e8BujMyvD7RuTQ+OH09t2r/9RrfXrZO8GVdCnn14hoBTAbj57qbMfn0dfdS1qUsVIht3uNtKlKNqZtXYLJRSks5Px4TTE2QSJbrbumNyy8n48+afMoN1PZt6WN9rPbrV6aaoK/Vp1YpG3fJ4NEjGULaGFtLSqK9QJAIaNaK/IQUIRUJEJkfC0shS5cSspWHL3S2YcHoCAMDZ3BlPJj6R5BgT/7bFrFkDTJtWqv4z+BkYeHggZ9HS4elgY++NCGgeoKRl8RBC0O9QP5x+fhoAMLjBYBwdelTjvxNCCDbfpdYl6WLNAc0CsNxvudoWoqsxVzHo8CCuqLiDqQMCvwpEa5fWpepHRES4+fYm9j7ai6PPjiKdn17i+Sb6JnCzcuOsQ7WtqcXIzdoNrlau5TqLkhCC6PRoaon6uIjTwkhjZWSFambVUM28Gv0rvS7119zA/LMfJ5nSpAHKo/Ycv39vGAV+nAr06hVQu7bG+iaEoN7f9fAq7RV0ebpI+ikJtsfPAd/QfE1YvpxmWPb0pNsdOwJBQcX2VxkQERHOvjiLN+lvUMemDtxt3VHTsmaVeZupKhBCsPvhbkw5O0XGnSLGSM8Iv/j+gp/a/CRXFFQjODjQKGYXF1pySBE+PsDt23Q9Nrb0AV0agBCCHvt7cDPyvvX8FrsG7AJycmigkEiSjR2NGwOPHqmcj+1V6isMOjIIj5IeAaC5wg4POawRd1pidiIab2jMuXz2DdyHEU1HlLlfMW/S32Bs4Fhcjr7M7athUQPb+23XiIL9POU5+hzogxepdHKEkZ4Rdg/YjS8bfam0bWRyJPY+3Iv9j/fjTcYbuePVzKqhe93uqGtdF27WEiXJwdShUisW8VnxeJj4EJZGlqhmVg1OZk6VLh9XZYYpTRpEG5amDzkfsDR4KZyX/Y1ZwR8H1nPngB49NNI/QEuANN5IMxt3cu2EK99eAebPB5YsoScEBtJ50fXrUxeIjg51ISiKbGZ8lrxIeQH/4/4Ijw/n9vVx74O1PdZqL5N4drZkzn0JGeuxcKFkvvfOncCoUdqRRwnvMt6h8cbGXBDrya9Ool+yLZW9KLdvSyy9xfAy9SWWBS/Dnod7OBeorbEtTvufxhcumguPOPr0KL48RpUMKyMrPJn4pMzu1az8LPx18y/879b/ZGaKjW82Hiv8Vmg0/iglNwWDjwyWSYj5W6ffMM93npxyk5SdhENPDmHvo71cvjlpTPVNMajBIHzT9Bt0duus1TJHjMoJK9ZTybn0+hLW3FmDZzZSb6JRUcU3UAPpAr39PfrLX8PDg771imNDRCLg+HGNysCo2tSzrYebY27it06/oWfdnjgx7ARODT+l1dIriImRrLuVcB0/P8n6hQvFn6dlaljWwOruq7ntCacnIOfmVckJ0nGg27YV209UchS+PfEt6q+rj50PdnIKk5uVG0LGhmhUYQKAoY2GYnjj4QCoS3Zs4Fio+65dKCrElrtbUO/velgSvIRTmGpY1MB/X/+HLX23aDxg29bEFhe+uYBRXqO4ffOD5uPbE98ivzAfuQW5OPD4AHrt74XqK6vj+/++l1GYdHg66FG3B/YN3Iekn5KwZ+AedKvTjSlMnynM0qRBtGFpEhERmm1uBpOwhwjZ8XHnpEnA+vUa6R8AWm1txWUBjp4eDVcrV5o9+eFDOs82NxfQ1wcePAC8vWmjzp2By5eL65LB0D6nTwN9P7qgFiygWfUUUVAA2NrSTIz29jRRjxolVTQBIQR9DvbB2RfU1R58uRbaBX90/Vy7Ri26WVl04kdCgkz2ymcfnmFp8FIcenJIpriylZEVfvjiB0xvPR2WRiXkIykDqXmpaLyhMZehfmPvjfiuhQqZKT9CCMH5l+cx8+JMmfqC+jr6mNJqChZ2WKg12aVl+PPmn/j5sqQeqoetB+Ky4mRiqcQ0q9YM3zT9Bl81/oqVZmFwMEtTJUeHp4Pfu/yO57aSfSINWppiM2M5hcnLyYsqTCIRdcMBNHZK/+NUZU9PoO7HTMJXr9IZdQxGRREtqQcHV9fiz9PXp0o+QOOfHj7UqlglwePxsLXvVq7Ujt2zjwqTgQG1NA2nFh3k5ACHaYHgx0mPMezYMDTe0BgHHh/gFCYbYxss7bwUb75/gwUdFmhV6bAxtsGO/ju47R8v/IiXqS9Vavso6RG67+uOXgd6yShMQxoOQcTkCKzsvlLrChNAv/s57ebg2NBjMNajMTxRKVEyClNNy5r4ud3PeDrpKe4G3MX3X3zPFCaGDExpqgL0qNsDjRq2R8rHWL3cJ/c11rc4CRoADPAYQFdiYyWpiqUtZkVddCdOaEwOBqPUSCtNJbnngErjogPo7Lm/e/4Ncz5Q/2NKnYKmjaniJFXPM2fjWgw5MgRNNzXFkadHuLxSdiZ2+KPLH4iZHoO5vnM17s4qjh51e2BCczoDMLcgF6NOjIJQVEwyWNCA47Enx8JrkxcuvpbUIG1dvTVujL6Bo0OPoo5NnWLba4vBDQfj2qhrnDJkaWiJcd7jcPXbq4ieHo1lXZahoX3DcpeLUTVgSlMVgMfj4Y8uf3DWJrOkVORlFJ/ArDSciDzBrQ+oP4CuiK1MgEwJFwDA0KGS9aNHNSIDg6EWqsY0AZVKaQKAEU1GYJpeG277sk0GjRNq3hy5DelvzvTeY0Rd/Yc7x8HUAcu7LUfM9BjMbjdbaaJHbbDCbwVqW9OZuzff3cT/bv1P7pwcQQ4WX12Men/Xw44HOzhlz9XKFYcGH8KtsbfQtmbbcpW7KC2rt0TUlCgEjw5G4k+J2NpvKzq4dtBYbi7Gpwu7Q6oIPjV8kOcmKVVx+MTSMveZzk/n8rq4WrmiqePHwrlFg8Cl8faWPKCCghQXGWMwygOxpan4OisS6tSR3Lc3blD3VwXC4/Ew21BS/fWw8SssDV6Kvof6Yaar5KVl3D3AycwJq7qvQvT0aPzU5ietZHpXFTMDM+zqv4srTj0/aD4eJz0GQHNd7bi/A/X+rodF1xZx2aUtDS2xvNtyREyOwLDGwyrNdHwLQwu0q9kORnryZUUYjOJQO2lNeHg4Dh8+jMjISGRnZyucTcHj8RBUyfP5VCUatR0ABP8NALh2YQsGDFvAxUaow9kXZ7mMuQM8BkgGs5KUJh6PWpv++otmKj9xAhg3Tm0ZGAy1EStNNWvSCQslweNRa9PmzbQk0PXrQM+eJbfRMuaPJb+zcGdgV9B8AIBVE2DFBcC4EJgQYYKAgGcwNldQ4K6C8K3lix99fsSKWysgEArwzb/f4Pcuv2PO5TlcrigA0NPRw8QWE7GgwwKtZhJnMMoTtSxNV69excyZMxEaGgpjY2M0atQInp6eckvTpk01Le9njWNzSa0d58QcLL+5vEz9KXTNASW75wBJXBPAXHSMiiE9HcjIoOvKXHNiKpmLDuE0pxXfUBcRUjqFuWMNvO3WCgBglJkL41PnKkK6Evmt829oZN8IAPAw6SF6HeglozD19+iPp5OeYm3PtUxhYnxSqGVp2r17NwwMDLBs2TI0b95c0zIxikNKgXFPASbdWY0praagmnnp68DlF+bj3Es6GNsY28jGGIgtTRYWihNYtmgB1KoFvHlD0w6kpNAp3QxGeaHqzDlpOnemqQZEoopXmlJSgNevAQC6zZqjUz0LpOSm4LsW3+Fbz29h2PwOcK4DPXfbNlrItxJhpGeEPQP3oPW21py1GgCaV2uO//n9Dx1cO1SgdAyG9lDL0vTu3Tt06dKFKUzljXi6P6jSlFuQiyXXl6jV1ZXoK9xU277ufSXlRfh8qgwBkqSWRZGeRScUAidPyp/DYGiT0sycE2NlJcmy/ewZnSVaRt6+paUYu3WjJe5atwZmzACOHaNplorlriR5on4rH1z85iLuTbiHgOYBtNyMr6/kJSkoCHip2vT+8qRZtWZY6bcSOjwd1LCogb0D9yJ0fChTmBifNGopTRYWFjAsWhiToX1MTGj8BgCPFAAE2HJvi8r5UqQp1jX38iUgjk9T5JoTIz2L7tixUl+fwSgTpZk5J420i+7ixeLPKwZCaI7XxYuBZs2owXXqVODSJWo8Cg0FVq2iPw9nZ5rm7OuvgY0baXoooXiGfrik3AxatJC/EI8nGyu4fXupZS0PplYfiNxXwxHjsAxfN/2azT5jfPKo5Z7r0KED7t69i8LCQugpC8D8DJAu2Kt13N2Bt29hkwfY5gIppoVYELQABwYfULkLERFxpVOM9YzhV0fqQVJSELg0rVoBNWrQIqmXLtFq8taVJ1iV8YkjZWl6ku2K58epZSczkyoy7u50sSiawsjPT5I5/MIFYPRopZcqKKDJuk+epGUY375VfJ6NDZCaKi9mdDSwfz/dNjenOSzXvAtDA/FJLVsq7nDkSGDuXKCwkNbM+/VXSaLZysKkSTA8dQrYsx9wqw20aaO8DYNRhVFL4wkICMCPP/6IRYsWYerUqXD8zAu3du3aFV27duXKqGgVd3eqpABolWOJc6YZOPjkIGa1nQUvJy+VurgTewdJOUkAAL86fjDRN5EclA4CL0lpErvoVq2iT5XAQODbb0v7aRgVCCH0IZ+QILskJdHntL4+nZSmzl99fZqrUdF6Scd0dWkVkaIyiZfERPp35YtodP/4Ofy+c0NxnjAnJ4kC5e4OeNRphd5mFtDNzqS/I5FIYUmVzExaF/vkSeDsWUnMeVGaNwf696dLkybU2nT7NnDzJhASQi1PfL7k/KwsauAyA7U0ZcIcHYfVg09boHFjakw2MhIvjmjWtj/sr/0DJCUhbusZCPsMgLGx5Bw9PVkPukhEsynk5NB6xqquGxlRZc7Xl35nKpGRAfz3n2R76lT6gXVZTTbGp4tKStOwYcPk9hUWFuLZs2e4ceMGzMzMYGoqnzuEx+Ph0KFDZZeSIUFKkfnBuhfO4SAAYO7luTg74qxKXRTrmgNkLU0luecA6oNYtYquHz3KlKZKAiES5aKkJTGRzr6vilRHDACAD0MkovinfGIiXa5fF+/Rwz/ogkH4F0hOxlTfB9Bt2Qzu7kC9esCLF1RRCgqi7wJF0dcHOnWiSlK/foCLi+xxOztaPq5PH7otEFB33s2bkoUkJqIGaDzVXTTH/Yc6uF9MZZfuGIfzoAkuH0zeij6TB8gc19GhCo+hIVXOxIn8y0LdukC7dlSBateOfi8KUyudPSt7A927R92IAQFlF4LBqKSopDQpysGkq6sLBweHEs9htYC1gJQi06mgOmra1cTbjLc49/IcrsVcUxqESQjBv5H/AqB17fq495E9QVppqlevZFlat6ZJBePiqKsjPZ0G2zIqBJGIhpctWCD7b/zUMDYiqJ0fDRAg1awWJo/SQbVqQLVq1P0VHU0///PndElKkm1/AX5UaQJgGnIBf4Y0K/F6lpZA795UUerenW6rioEB9WS3agX88ANVaJN23AU+hiu9sW8JXrIkjLAoF9ENb1ATtfAWPXAeLniHWEiS3IpEtJ52bq7qMinj5Uu67NpFtx0cZJUoL6+PabGOH5dvPHcutUDb2GhOIAajEqGS0nTkyBFty8FQFSmlSe/la/w6/FeMOjkKADDn8hyEjAkpMeNuZHIkXqS+AAD41vSVz6Eids+5uNBK6yWho0MHyDVr6Gv5qVPAN9+U+iMxygYhVGf9+WfgvoplCe3swCkaRRcnJ/qwLyyk/1ZFfxUeExB0PjwBtSPO4GS/7Yio1QMFBfS4QACV183NJXIoks+C/wE8J6olOLd1w99/l/xZMzKoBUmsRKXf8wNO0WN+uIA/MUeuTc2aErdb+/aaCyXi8QCnd2Hc9qh1LTCoB3DnDp3Mx+cXXXTx7NoY1LqzCLoQYUWjXdhfe77MOXl5QH4+tTiZmdGframp8nXpfUlJNFF6cDD1sEkbkN6/p/qRWEcyNQU6tMrDvzfOwgAAsbUDr3Mnam1OSaFa+7p1Mp9bJCp+EQpll8JC5fvE2yIRzYpSt27lC/difJqwKO6qRq1a9IkmEABRUfi66df4K+QvPPvwDLdjbyMwKhD96/cvtrk4ABygCehkSE6WRLKWFM8kjVhpAuigyZSmcuXWLaosXbsmu791a8DTU7HS4eiopQfMnVDgx60AgK/j/wL29dDCRQBExUjWi8ycKxCJoF8kRsnSkk5Qk0xSqw3UqQ28fo1O+jdwPTAHke9M8eKFxKrk6VmMS0oTFJk5Z2FBUxYUy7sxQK3FACEYlr0dw07MUxiHVVZ69aJ/+XwqoliJunlTNqYrJwfQD/oPBqCK6/bUAfjfuYUIxxmYIhfC9RvRevN4PIQnpxhpGz09+j7ZoAHQsCFdGjSgw5gRq5LC0CSkjKSnp5Pw8HBy7do1Eh4eTtLT08vaZZUlMjKS+Pr6ksjISO1eqGFDQgBCDA0JKSwkJyJOECwCwSKQhusbkkJhYbFNW29tzZ37KvWV7MEbN2i/ACGTJqkmi1BISLVqtI2BASEZGWX4YBomJISQ4OCKlkIrPH5MSL9+kn+XePH2JuT8eUJEogoQavx4iSBWVtoT4tAhyXX++IPbPfX5c2Jw9SpZFxurvI/vvpP0ceaMduRUhEhEiKMjva6NjerfUc+eEnn/+0+7MhahsJCQhw8JWbeOkK++IqR6dUJ24xtOnh44SwBC5mAZt+8afAkgkrs/y3vR0SGkbl1C+vYlZPZsQnbvJiQ0lJCsrHL9CjlEIvp9CgR0qZDfKaNMqG1pSkhIwNq1a3H79m2Z2CUejwcfHx9MnToV1aqVPlM1QwXc3Wlyvvx84N079PPoBx8XH9yKvYVnH55h36N9+NZLPig7Pised+LuAACaOjblqpVzKCufoggdHWDwYGqOFwioi27ECHU/mea4epVmgCaE1hv7RIJTo6OBhQuBfftk42Dq1QOWLKGGPy0YIZSTkwNIT/pIT6e5lEqTQ0lVFCS2LBSJsCEuDkIAv795g0nOziUXhvXzAzZtousXLkjMLNomLk4SZNWihermrHHj6HQ+ANi6VTbflJbR1QWaNqXL5MkAyRdA5HAKyATy9C2Q0qAz6guAc5iB717vQC3BS7RHMH52O4xLdl9BRwdyi66u/LZ40dOT3S5pP49HU0A8e0bj2IpObBCJJDFap07JHqtZk9Zx5vFK5xKU3haJ6O9Q2t1Y3LaiuDVdXeruNDGRuEpLs25mJu9uFe8zNtaitfQzRi2lKS4uDpMnT0ZaWhpcXFzQpEkTWFtbIy0tDU+ePMHNmzfx7NkzbNiwAc7OzpqWmSGt0ERFgefqij+6/oEOu2gQ+IKrC/BV469oZmEpAqMCufUBHgPk+1U1R1NRhg6VxDAcO1Y5lKb//U8ySk2bJvFXVVGSkoClS+lzXnpWl7MzsGgRMGpUBcd0HD1K59NLc/++dpQmBYktkwsKIM4bGScQIIbPh5uxcfF9dOpEn1hCYfmWVAmTxDMpTGpZHH370ojs9+/p9L737+l2BcC7dhW6mekAAOOhfRC6XzzOGAJnVnNTB5cJfsKyK33oE7wcKCyk+vSzZ3SJiJD8VRQo//Zt8Tm3yguhkKa3yMzUfN88nmwcm7RSZWJCj5fGbgfIrouvoaND/6q66OjQCBPp1BnS60W3Fa3b2gL29pr/zlRBLaVp06ZNSE9Px48//oi+ffvKvNERQhAYGIhVq1Zh06ZN+PXXXzUmLOMj0grN8+dA9+5oX6s9etbtiXMvz+FtxltsDN+I77/4XqZZiakGAPWVprZtaaBMUhJ9G87KotG8FcWbN8CZM5Lt/Hyq2N29W7FyqUFGBrBiBc3skJMj2W9tTScqTZ5MB5IKR1HG6vv3gUGDNH8tBXXnkorkB7iWnl6y0iQuqRISQp+q797RZK3aRlkm8OLQ16ea8V9/Ua15zx7gp580Lp5KSM+aK/r/7d2bLmfOUKvasmV0KQf09KjFtV49GsAvRiSi/96iytSzZ4rzb/F4ii1b0tvi9aIWNLFSoMo2ITSIX5wzKzeX/pXO61UWCKF5uLKz5WeQVnXGjwe2bKmYa6ulNN29exdt27ZFv3795I7xeDz0798ft2/fRrj0AMHQHNKWJimX2rIuy7givEuDl2KM9xhYGNKUyBn8DFyJvgIAqGlZU3EiTHFfhoZcuRaV0NWlLroNG6iCcvo0MHx4qT6SRtm2TfI6JA6af/ECmDCBpmauAjbrvDxqvPvjD9ks0yYmdOr6Tz9VouwOUVE0ahiQKM+A6lP5SotYaTI1pdMAASQV8ctcz8jAKGXhAX5+VGkCaMbJMWM0Lak86ipNAHXR/fUXXd+2Dfjxx/K/l4VC4MQJum5kBPRQEOy/ahX9PgUCavEdM0ambmZ5o6ND58/UqgX07CnZL1YqiroHK8S9LYVQKEkjUVShkl5ycyXJSaX/Kton/pufX7GfTVNU5IuiWkqTSCSCq5LK4rVr18Z9bQ2anzvFKE1eTl4Y3ng4Dj45iOTcZKy8tRKLOi4CAJx7eQ4FIvo2PsBjgHy8h1AoKQpat27ps/oOGUKVJoC66CpKaSoooA8UgH6Gy5fpm29mJnDwIHXLaDtru4oUFNCX8bdv6Zuw2F3w7h01iiUmSs7V1we++w6YN4/qJZWKHTsk67Nm0eCqtDTtKE0ikaSgtJsbpzTIKU3p6cr78vOjvk2Auui0rTQRIlGaHB3lM2Mqo149oEMHOlUyKopOa2vXTvNylsStWxKluEcPxWlJ6tWjVYv/+IMqTt9/T1+kKhk8XuU0POvqUrm0IVthoUTpAkrnVhM/MsTr0q47ccyWKotIRG8LcbqMoukzituWXhfX3a4I1FKa3N3dESMdV6CA6OhoeJTGxcNQHXt7amZIT5fLYvhrp19x9NlRFIoK8b9b/8OklpPgYOqg3DUXEyOJolTn/9a+vSTm4uxZ+lpTTrEMMpw8KdE2+venD5Xt2yUFhsXxTU2balUMQmgGB2llqKhylJBQfFJDMTweLfi6eLF2woPKTEEBsHs3XdfToyknTp+mKbXj4+kDVpNaXkKC5D6VenErqjS94vMRl5+P6iUVFm/ZkuYYyMiglhGhULslQKKjJWbD0gSBSzN+vCS/xNat5a80leSak2bePGDvXvpWcOYMXXr31r58jBLR06O3fGkStDJkUcsQOX78eNy5cweni3l7CAwMRGhoKMZJV+lmaA4eT2JtevtWpnZCXZu6CGhGZ4plC7KxLHgZ8gvzcfYFLbFibWQN31q+8n2qM3NOGl1dySDK51PFqSIQz4gCqGkGoFawyZPpOp9PFaiiQcsa5MYNWofMwYHWJhs4EJg+nXoqjhyhtcni40tWmAwNgQEDgEePaPhKpVSYABrDJrY89OtHFXpvb8lxTVubFMycA4D3CmqeKLU26ekBXbrQ9dRU7bkTxZTFNSdm0CCJX/boUfriVF4QIlGa9PQktWIUYWYGLF8u2f7++8rnG/rwgSr3QqHycxmMj6gd0+Tt7Y0VK1bg0KFDaNKkCWxsbJCamorHjx8jNjYWLVu2xN27d3H37l2uHY/Hw7esPplmcHenqXsJAV69otU+P/JL+1+w6+Eu5BbkYmP4RjSwa4AsAVUS+rj3gZ6Ogn+7ukHg0gwZIlFajh4FvvxSvX7U5flz6o4DqItR/EAEaDT1rVu0Ptbz58DEifRNWIMxIXl59AV79WrlFiRHRxo2Jr3UqCFZt7ev+NgKlZAOAB87lv4tqjQpintRFwUz5wB5SxNA45qGK7Ny+flJFIELF9RXZlRBWmlq2VK9PoyNqelx3Tp6wx04AEyapBn5lHH/vsQ12rkznY1QEl99RceD69ep63/lSpqJtTKQnU0rFL9+TdNNnDjBUoozVEItpWnnzp3c+rt37/Du3Tu5c0JDQxEaGiqz71NVmi5duoRLly4hOzu7/C4qrdhERckoTdXMq+H71t9j2Y1lEAgFmHpuKndMoWtO3IeivktDhw40MDc5mVqacnKUl2LRJJs3S9YnTJDVOoyMgMOHgWbNqJVp/34a3yR+0JeRW7fo5CZpg13TptQTWFQhcnGhlqQqT0KCZJZi9eq0MBtQfpamEtxzAJ1BpxTpfEcXL9IpidpCOt1A8+bq9zN+vCTFx7Zt5ac0qeqaE8PjAWvX0t+cSERj3b75pvSxXNrg99+pwgTQsWr0aGrSrRJvKoyKRC2laY24bAYDANC1a1d07doVUVFRGF9eQcbFBIOLmdl2JjaGb0QaP40LADfSM0L3Ot0V91dW9xxATfYDB9JYi9xc6roZMkS9vkpLXh4gVuYNDakGU5S6delDZtgwuj1lCq2k2qSJ2pfl82myyRUrJOUiDA3p8+GHH7QbIlPh7NkjcW2MGiX5sB4e1CKSl1du7jlxygE9Hg/eZmYIy8pCRG4u3gsEcDAwKL4/Nzd6X7x8SQOrtRWLJxLR6H6AKg1OTur31bQptVSFhdHv9+7dsilhqiJWmng82Tn9JeHpSa2669fTMWHWLGodq0iio6mvXJr9++kL36pVVWJ2LaMCqeiU5J8S5VZGhRBC7t+XTEgYNUrhKX/d+IsrmYJFIH0P9C2+v+rVaV+2tmWT68IFiVxfflm2vkrD7t2S6379dcnnTpwoObd+fbVrKoSGEtKggezckFatCHn2TK3uqhYiESHu7pIP/qpISZ7WrSXHNFlap1MnSb9padzuajdvEgQFEeebN8nMly8JgoIIgoLIP+/fK+9z0iRJn6dPa05WaSIjJdcYMKDs/W3ZIunvu+/K3p8ynj2TXK9du9K1TUmh44q4/bVr2pFRVQYPlsjStSshurqS7SVLKlY2RqWH2SKrKvXqSdaLzKATM6XVFFQ3r85tF+uay86ms1wA9V1zYjp2BGxs6PqZM4pT8WoDRQHgxbFyJeDlRdcjI6l7Q1kQkhT5+TR2yceHJsoDaDqo33+nxooGDUonepXkxg2JdbJTJ6B2kZI80i66hw81d12xpcnKiguIFhGC9x/dc44GBmgvNTWo1C46bWUH10Q8kzRffSVxfR84IJv5VBv8+69kvbQJS21saDp7MVOn0rnvFUFQEPDPP3Td0ZGub90qOf7LL7JufgajCCopTU+fPi3TRfLy8hAtbVZnlB1TU0lsgAL3HAAY6xtjTY810NPRg5uVGwY1KGawe/FCsq6ua06Mvj510QF0ID9/vmz9qcLDhzSoCKCutjZtSj7fyIhOYxO7YfbuBXbtUulS9+7RWOFlyySeqebNqYdkzhzqofwskM7NpCi/kTbimgoLac4GQMY1lypVQsXRwADtLC0hdrBcV5TyuSgdO0pci9pSmtQtn1Ic5uZUcQJoDrKjR8veZ0lIxzOJf9+lYdw4GtsE0CmhFaGYFBbSWXxili0DLCxoPJM4aShA3YnHjpW7eIyqgUpK06RJkzBr1iw8ePCgVJ2npqZi3759GDZsGK6Jc4swNIdYwUlJoYsCBjccjHc/vMPjiY9hZWSluB9NBIFLIx3HVB6DT1ErkyoxCfXqyb5hTp4MlPByIBDQ2KVWrYAnT+g+fX3gt9+oviYVh//pk5lJlU6AJnwZPFj+HGml6d49zVw3NlaiqSqIZwIAR319WOnrw/OjQvwwOxvpCtIRyGBpSWdSAdTyqI2CZNKWJk3FH0mndBEndNUGb95I4rGaNZMJwFcZXV3g778l2/Pn0wkj5cm2bVRhA+j/QDruceZMugDU6jxihGQmLoMhhUpK05IlSxAXF4fvv/8eX375JdavX4+goCDEx8cj72OOIKFQiPT0dDx69AiHDh3CTz/9hCFDhmDHjh3o2LEjBgwYoM3P8XmiJBhcjJOZE0wNSpjFJt1WE0pTly6S6cinTsnkkdI4WVnAvn103dSUTsdWla++orPsACrj0KEK3RwPH9JZcL/+Knlme3lR48Evv3yGM5UPH5a4Xf39Fdc0aNJEYr3RlKVJhZlzjh+DvsUuOgLghirWJmkXndh9oykKCyXfgZsbrTaqCVq3lmjrN2/SYmraoCyuOWnatKGz5wCaMX7evLLJVRrS0uiPVcyaNfIz5f78k1qdAPqWNGCArLLLYEBFpcnX1xe7d+/GzJkzYWVlhSNHjmDx4sXw9/dHz5490blzZ3Tp0gUDBgzAtGnTsHHjRjx9+hR9+vTB7t27MWPGDFhVmkJZnxBFC/eqi7SlqazuOYBqEeLZNdnZ2q0iv38/vQZA3w4tLErXftUqSXbwiAhJEkzQZNdLltAQFLGRVU+PWpzu3KETgz5LFOVmKoqRkSS469kzzSQ2LC6xpSKlSWq8UclFJ84YD9BKoKWIcVNKRIREySwmnuktn4/npY3/4/FkrU2KiiZrgtKmGiiJP/+U1AfZulVzVkhl/PqrxBo/fDgtMl4UHo/+78U1VbOzabG6YmJGGZ8nKgeC6+npoXfv3tiyZQt27dqFKVOmoEOHDmjYsCGcnZ1Rp04dNGvWDEOGDMHSpUtx/PhxzJgxAzXKo3L454qKlialiAcFHR3NFdaUfghpK96CkNIFgCvC2Fg2vmn3bsQs2oVt22ig9/z5VHkCqPHkzh1arqykWeyfNE+f0i8BoFqjOE5FEWIXXWGhxKdZFopLbCnlfnP4aPaTDgZXqQ5dgwaA78dM+ZGRkgLEmkBJJvBXeXmoe+cO6oeGqiarNF9/LbkZd+7UvMsrKUnyXdSvX/ZZDtWqAQsW0HVCaFC4JhVURURESPJaGRtTxa049PSAQ4doWSiAfp9+ftQ1zGBAzTxNbm5ucHNzw5DyysHDUIy00qTu2xAhEoXL1VVzWRe7dpXU9QoMpAmNjIw007eYO3ckM7NatZKNo1EBPh94/Bi4d88Dui03Y1zQCACAw+JJWIWWeIZGAKiXac4cqkB9Ekkpy0JRK1NJ8WPe3jTIHqDuqbLG8pTCPWdvYIAGJiaIyM1FeFYWsgsLYaYsSn/CBCA4mK5v3ixRosqKEqXpv9RUFHxUHLYmJMhYyZRia0tdpLt2URfU7NmatTidPClRaspqZRIzbRqNL4qKAkJCqHtd7LbTNITQhGni2XqzZ9NMsyVhbEzHrA4d6Pjy9i1N3Hr9uuZcq4wqC0s5UJVxdZUE1KhraUpMlNRh04RrToyBgcRFl5VFp/lrmo0bJesTJ5Z4am4urfm2fj191nt5US9Bq1bUQDU+yB9bQBOTmiAPR/AlTJCDBg1ooPeSJUxhgkAgUYIMDKg7tCQ0PYOuFEoTAHT4qHwIAdzKzFTe/+DBknQZx44VO7mi1CgJAn8pFfN3JiUFBeIsqaoingUG0FmNmrSSadI1J8bAgGYKFzNrFp1coA3OngX++4+u16ghCfZWhqUlnfkrTqXx7Bmttaft1A6MSg9TmqoyenpAnTp0/cULSUrq0qDpmXPSTJggsUTMnw9cvaq5vlNTaUAyQPP1FKlzRwhNX/Ptt9StZmFB3W1TptDnysOH8qlivscaRBnS7OCN8Awve07Fo0eaSavzSXDqlMT9M3CgRMEoDnEuLEAzSpPYPefgIFOepzilScZFp0pck5ERvWEAGoMlVhDLgkAgCYjz8FAYc/dCSmlKKyxEsCqySlOtmmwepIkTJT7lspCeLplBVqtWya7Y0uLnJ3mpSkykAdgKSuGUCYEAmDFDsr18OWBionp7JycajymuX3j7NlWsNS0no0rBlKaqjtg6xOer53fX9Mw5adq0kcQviER0tlpCgmb63r1bElw8apTcYLhnDzWE7NlDw2mKFjLX0aETj779lk6kuXEDeJ9lDI8HR7gHcrVzO6G3cysYH1ElAFwaKyvJm/rDh2WrJp+fD8TH0/UiU97FMU06AOykpjJKu7lUSnIJ0LpuYjZvLnu8zZMnkodsMfmZXhQJAD+pTlzSxIkSK9aTJ7RqdFk5fVryZjFokObLi6xaJZl5efw4vQafr7n+162TjG/t2qlXQLxOHWqpEivg//1Hxxt1XlAZnwRMaarqFC3cW1o0PXOuKPPnA9260fWkJDpzpazZgIsGgIvTBnwkJQX48UfJtp4eNXqMGUPdc7duUY/h48c0FGTaNDqZxswMNNhVuu+AAPoWXNoA3YpAIKDuiPHjaSB+WSYHFCU2VuLmqFWLppVQBbGLLjdXNolqaXnzRqLASAWBAxJLk52+PnSlHuzVDQ1R52Mc3Z3MTPBVUdoaNJAEAWsiIFxJPFOhSITXRRSFk8nJIKVV1nR16X0r/vyLFpU935Q2XHPSuLnRdAbiWMczZ4C+fTXjAnv/Hli8mK7zePTNSF2lz9OTWlnFch48SJNkajuAnVEp+VzyF1dZ8oRCPMzORsS//6Lenj1oV/RBKD3AfPklDV4NDJQ9p1+/4qf2SsdtXLsm+zDMylJ9tszJk7LxGqdPS2aziUTUtCMS0WvY2EjcFGZm9OEkzcyZdGAqjvx8iZuoY0eq6Ihp0QI6EYl48PHl3dgYsLEGeB8A/PdxAWgGYH9/SbuoKNnPbmoq+W537aKuGmtrGtgUFkZdImK2bKFTmpXh7g5cuSK7b8QI+p0oY/x4mutAGhcXOnDn59M8U3l5sgP58eOAvT2dDdSxo2T/1auq57MSWy937ZK8XaemAjVrltyuQweaDsLbW5L3aPBgOjFAGQsWUGVVTEKC7BTxs2e5bPgEQNLOnYC+PhxfvaJFV6VeJNqnpuKViQkEhCDUzw/ti3uxcHKSKDgBATToF6ABwMrckMOHU9ePNPXr0ynr0sr2smW0srMUbzdvRoGpbA61N/n5eNi2LbyUKT0REZLp+wCV2cSE3re5ufR7UBS43KyZ8jGCEIllT0dHkn18xgxZl5cmxggzM3oPEwJcukS/bzs7iZKjzhiRni75/Y4ZI+tabNGCugSVIT1G+PrSIr/ilCR//02t3dLfvzSVaYwoSkEBfcHS1aUxsbq6NBi/rGOEmMWLZRMHF4d4jJCmc2flL3tF78FyhilNlZyH2dnwuX8fcHXFBC8vtAsKKv7k9HTgwwf5/R8+SGrLlUTRNzFCVGsHyPv58/KKb5uVJQk+VzTopKWpft0iAeD5bxNhnRsHa06Oj0tRiubEKSws+ZpCoURRy8iQHRCla/eVhFSMDUdysmptpZWN7GyqOChrJxJR696bN7L78/NV/37F/UiXTZH+/xWH+LuSDgZPSlItuFqcd0uM9Hdf5PqZpqYQfHTJOb5/L2fFbJ+VhZ0fXbfXqldH+6IPJEUMHkzNj6mpJd/HYtLS5PfFx8t/Rwp+my+kYo/s9PWR/HH7ZL168BKXBiqOopaOzEzZlyg+X7HsimaPlTRGiESSY0UDtrUxRggEEoUNKNsYoacnG+8FUIVJlbZFx4gOHWS3MzOLD2AvatUs7zFCjKr/m0mTqGLYtCkNAlX1msXJoUpbRW7opCTlbbU1aUBFmNJUyakvFasTWa8eUL267AkikSROyNCQWhaKYm8v306M+AbV15f/wfJ44Lu6IrJaNTR59w66JZmjiyYuMjaWv2Z2tuSHzePRAEtFg4S1dfHySn9eIyOatfcjBQXAy2wniHu0spSkX5KjaEConp7iawqFdICWTs7YtSsNlurcmW6bmRUvrzTigFJp7OxUa2toSN8G//mHzupRFPvB49Hv3ciIDixiBWLOHGpFE791Ghqqdk0xV69KZq7VqaNa3ImdHf0rrTSJRKpdt+g/TVeX7hMrU3Z23FTGJCcn7jTH/Hy54n/Sj7nrLVvKv8WLkeqHCwhftYpuW5Z0I0GS/V4aZ2eqNIkf/np6Cv//L6WyqU92dsbijwruyU6dsFBZGY+iLzkWFvT7zcujCh9AvztHR9lzVRkjxAojIPN9ywWy83iq30vKxoiCAvogFVs09fXptRUlrC1pjPjwQaKgNW8u/71L/69LorgxQnocK4qODv3Ox42jvxUXF9omNpbKoatbspuwLGOE9FiakkLdncbG9PeqzJUYESGpPi5GbInS06N/xYsqcqgir3iMkMbRUbk1urQJjDUNUYO4uDiVzgsJCVGn+ypLZGQk8fX1JZGRkRrt1+nmTYKgIOJw44b8QZGIEAsLQgBC3NxK13FEBG0HEDJsmIKuReSLu3cJgoLIzJcv1ZS+iKyDBkmu2aIFIXx+6fpYskTS/uefZQ4tXy451Lw5IYWFZReZk3vTJkJMTSUXAAiZPJmQ7GwNXUQBycmEbN9OSK9ehOjry15bvNjaEjJmDCFnzxKSny9pm5hIiIeH5Dx3d0ISEtSTw99f0s/hw6Vv7+hI29rY0O9SHYYNk8jw/Dm3+3paGkFQEEFQEPnhxQu5ZiKRiLiEhBAEBRGTa9eIQChU7XrPnkmuV7++enLfvi3pY9QohadMf/6ck/9qWhppHhbGbb/Jyyv9NQmhsnbpIrn27Nmla8/nS8YUKyvZ+0rbPH4suV8AQho0IETF5w0hhJAjRyRt69XTnuyzZin+PaqyWFoS0qgRId27EzJhAiF//EF/V2Fh9Dev7m/kxQtCVqwgpH17QnR0FF/b0JCQ3r0JWb2akF9+IaRfP0JcXVWXXV+fkCZNCBk4kJCvvyYkIICQ778nZO5cOjavXEnHyj17CDl2jI5LV68SEhpKyJMnhLx+TcemnBz1P2cFo5alaezYsfjhhx/gJ12vSYqCggJs2LAB//77L65qcpr5Z0p9ExMkCgR4X1CA1IIC2Ehr+zwe9YOHh9Mp2fn5qicUkvYdKwgCTxQIcPujKXRTfDwWu7rCWFxPTB14PMl8/1evqMwzZtDobFUQCmlsgLgvqbiXt28l7nwej8bElkVUObknTKDTpMeMkaROWL8eOHeOxvtoKhHiq1f0DfHUKSAoSPGMM0dHGpg7eDB1GShK2ujoSKeLd+hA+3z+nFqbrl5VbGkojrQ0SUySjY1kmnhp8Pam1rHUVODdO+XxUIoQW7p4PJn2xaUbEMPj8dDe0hIH3r9HrkiEu1lZ+EKRdbMo4oDw69clAeGl/R+HhUnWi8lbIZ1uoJ6xMfrb2eHuR4vayeRkTFUUk6IMHg/YsIG6WQQCGovzzTdAo0aqtb9yReIC6du3fNPfN25Mv/MuXah1JiKC/h8uX6YTEEoiLw/46SfJ9sqV2pP9jz+AXr1ogt3YWGqxF/9NSCh5dl1GBl2KKxBubk5nnbq5SRbxtqurxAImFAKhoTRWLDBQ3lIkxs6O5pjq14+OYUVi6ADQ//eTJ3R2zKNHkr9FrT4FBfTY48dKvyKl6OpSq5F4MTeX3S5pv4uLeuOIBlBLaTIxMcGyZcsQGhqKGTNmwETKjBkTE4Nff/0Vr169gudnW5xLszQwMcHVjwGlkbm5aFN00PfwoAoIIcDLl6oPjkpyNEVI+fSzhEKcTU3F4NI8cBVhaUkTB/r4ULPxhg00yFc6KLs4zp2TzAjq2VNm6vn06ZIQhEmTip3dXTbc3OjgvX49zSyclwe8fk0Vk++/p7ETiorXloRAQB/IZ87QpbhAZRcXqiQNHkxTOaiiEVavTh+A7dvTuKZnz+igefmy8uBmMQcPSlyTX3+tXoZPsdIE0HxNZVGanJ1lZJAuoeJYjOugg5UVDrx/D4Dma1JJaQJkA8LVyRCuZOYcIFGaTHR0UM3AAP3t7LDgYz4qtZUmgL4EzZlDg48LC2ns37Vrqs0g0/asOWW4u0sUp+hoqvSLFaeSyjytWCEZH7p3B3r31p6MPB793ReNcwLo952UJK9MFf1bnJs7K4u+WIqrHRTF0ZGORa9f01mCivDwoEpSv350rFU2XlhY0HGlTRvJPkKorNJK1OPH9CWirDOgAUnog6KYQGWMGaO9WotKUEtp2rlzJ/744w9cvHgRT58+xfz589GwYUOcPHkSGzZsQEFBAcaOHYtvtJUav5Jx6dIlXLp0CdlFA1g1hExckyKlqWgNOi0oTQBw6P37sitNAJ3/v26dpNhoQAB9sCqbhSOdCkAqADwwEDhxgq47OcnHfWoUHR1aL6tHD5qvJSSEDi6rVlGlZ/du4IsvSu4jMZEqgGfO0OR5xQVVu7kBQ4ZQRallS/mq7KpQs6bE4hQXRxMt9ugBXLyoOJ6sKKXNzaQI6ZlL9++X3lqVkyMJoi4m3QCg2NIEyNehm6Wq0iYdEH7sGJ22XpoyGmKlSU9PUhRaikKRCNEfH5x1jY3B4/HQxNQUrkZGiOHzcS0jA+kFBbBSJY5EET//TGcnvXpFy8Ps3k3v2ZIQCiU/JhMTqmRXBG5uEsXp+XOqDLVvT2fXNWwof35sLLX+AFRBWLlS83mlVEUc+1RSXA8hNH4rJoYqP9HRdBGvv3lTvGKSlEQXaXg8+vIpVpQ0kXOPx6OTBmrUkFVA8/Pp7zEvj76plnbJyaFxYeJAevEiZXVVSgXGNamlNFlYWGDZsmX4999/sXHjRkyZMgUeHh6IiIiAk5MTFixYgIaKbuxPlK5du6Jr166IiorCeOnkeBqiQRGlSQ51C/cqcc89K5Iv5XRKCjILC2GhrIaXKowZQy0su3bRH9GQIdTUrMh0DNDB5exZul6jBrU0gTadOlVy2sqVqukCZaZePTqor14NzJtHB5Lnz+nA9dNPdNqtOK+LSATcvSuxJklbIKTR1aVver1706VRI80M/HXqSBSnpCTqNurVi+ZdKinA+cEDyTT0Fi0UPvhVoqzlVIop1AuopjR5mJjAQV8f7wsKEJyRASEhMvmcikU6IDw/nwb///CDajJnZ0vcJU2aKKy7GMPno/BjgG69jxZKHo+HAXZ2WB0bi0JCcDY1Ff6KgoNVwciIWnK7d6fbP/1E3W0lKX43bkhmNfXsWboM2prGxYX+xrp2pa6jhAR6D1+8KJttHqBWNfHYOHmyYsWqMsHjUTe5vb1i161QSF9yFClU0dH0uzAxof/bfv3oeKGJF1pVMDRUnMqgrBQW0hfIosqUon2KLHzlRVmDoo4dO0bat29P2rdvT/r27UtSUlI0EWtVJdFWIPjbvDwuOLTPo0fyJ9y9KwnUGz1a9Y4dHGgbJyeFhzvdv89dV7zsVTeYWBE5OTSoUCz7iBHFBwfOnSs577ffuN2zZ0t2d+1aQbGFERGEtGolGzDZsCEh27bRAGDpwFZFgdxff03IwYOEpKZqV84nTwixs5Ncu2NH+j8ojilTJOdu3Kj+dYVCSWCxi0vp2586JZFj/nyZQ/0fPeLuzdgSJhUMefKEO+9eZqbq11Y3IPz6dUm7gACFp5xLTuZkmvPqFbc/KDWV2z/0yRPVZS2OL7+UyDJuXMnnTpsmOXf//rJfWxMkJxPSrJlELisrQu7ckRy/eVP296Tt31FlIC+PkIKCipbis0TtjOBCoRCbN2/GunXrYGxsjCZNmiAjIwPff/89Xr16pUm97rPHxdAQph9dMxqzNKWnS/zhxZhyxe456Xfyg8X50NXBxIS6PcR5WPbvlwR6SyMQSNxEenqcm+jJExrjCtB4z/XrK8giX78+cPMm8PvvksDTZ8+o+3HXLnlTupcXtU6FhNBje/fS5IGKpq5rkkaN6Fu6uLzI1au0hpyi2Ao+X5J4ztiYJnBUFx0diWUgNlZxfpaSKMnSJBXT5FCCG6vUdejEFM0QHhysWrtSxDMBEksTALSztITNR2vuudRU5Je1ZMeqVZLf2LZt9L5TBCGSeCZ9fe3GBJUGW1tqKfXxodvp6dT6FBxMrbjTp0vO/e037f+OKgNGRoongDC0jlpKU3x8PCZPnowDBw7A3d0dO3bswLp16zBx4kTEx8djwoQJOHLkiKZl/Wzh8XhcXNPrvDz5chBmZjRAFlBdaVLimksrKEDiR9dHO0tLuHwMvr2QloYUTRQDlb62dNzMtGnUlSXNiRMSxWPAAKBaNYhENKxJ7Pb/+WftVIFRGT096iK4e1e+sKmpKY3j2bKFKg337wNLlqgWoKlpvLxoHJX4IXrhAi25UjTx4L//SgI0hwwpu8+zLC46cRA4IKc0vf8ot42eHvRLiPlSqw6dGOns5IqUekWUQWnS09FBn48utGyhEEHqBMpK4+xM7zcx332nuKBveLgku3PXruXk51YRKyt6r4qzVmdlUdfU5MmS77pJE9nagQyGFlBLaRozZgyioqIwYsQIrF+/Hs4fH9hfffUVNmzYACcnJ2zYsAEzZ87UqLCfM2KlSQTgpaKAObHG8OGDarMRShEE3sjUFF85OAAACgnBP4qyjpeFoUOpsgTQh/fQobKfQToA/GNplt27JWXB6tal+kqloHFjWg19zRpa6uG//2iiuRMn6IBemqSS2qJlSxqILo4fO31aviagdAbwMWPKfk1NKU1Fi/V+VJoclEwtb2JqCquPb+bX09NLV9tt8GDJbMNjx1TLai5+kBsa0ntCAcUpTQDQXyrx3wl1CvgWZdIkyf/g8WNg7Vr5cyp61pwyzMxoXGOPHnQ7L092bFi9mllfGFpHLaXJ1NQUK1euREBAAPSK3KTu7u7Ytm0bev6/vTMPb6JA//h3kjRp0vu+KdDS0kKhIIJyiCgieK2K94kIeKLoev9c8Vpl1V1FBVZYFW9wVVBXQTlVDuWWAqW0lJbS+25zNOf8/phkOknTdnI1KX0/z8NDMplJ3k4mM995z1mzsFfYp4TwCMcKui4IhY8Yb5MLoilHpeJFE8BV0Xmd118HJkzgHp86xVX5sCwXErGNjsnKAi66CI2NnB6xsXy50zxb/xEUxInA117jqo/cKdP3NZMmcWLJtuO++Qa44w4uAbWsjKtSArgkcm8kXXoimmzhOanULgFVYzZDYw1dddduwIaEYTDF6jlpNJm6VIb2iC0hHOhMCO+JlpbO32B+frddlIutNoRKpV2S2GdERUFhjTV/19gIiysizxkymf1A38WLuZ5ZNli2sx+XRMIlF4vAZLHg56YmVAo75vsSpZK7ARFMAgDAhZltHfoJwoe4JZo+/PBDjBGeBB0IDg7Gk08+iRdsU6YJj8kRVJU5PeG7mtfUS3iuUFA5l6NSYWxoKH83vL2lBVXePknK5cCXX3be0X/3Hdd35b33Ote55x6AYfDkk503+zfdBFxyiXdNGTBceCHXGM92wf7iCy4PSxgunTvXO4liOTmd4tFdT9OgQXaeBDGVc0KEeU0eh+h6EjHCwbfdhOaMFgvKHNoNCAmVyTDdmptTbTBgX2+z/sQwfnznEG2Nxj4X6NgxoLiYezxlCiC4SeqJF8rLcenhwxi/fz/avdG7RwwKBXeusOXZhYV1GYRMEL7CLdEULrJHwlR/lgWeZfTqaXJVNNk8TTJZlzwRoKuniWEY3tvEAvivt0N0AHdR/Oyzzov0009ziasAd6KcMwc7dnRe08PDuRYDhAfMmMF5GGxiZPVq4JVXuMcSSaeHxVOCgjrDVCdOdB3K2x0tLdw/oNvQHCBONE0V5DW5lAwOcMn+YhPCReQznerogC0z0TE0Z+NqQYjuW2+E6ADuu7UJonXrOG8j4HZo7hvreaDKYMCHNTXesVEMQUHcuWLrVk6EDx3ad59NDGjcrp4j+pZMpRK2lGGnniZhiK27rtI2LJbOu8qMDKfhg2PWzwiTSpFi9RAIQ3RfOFaEeYuZM4Fnn+Uem82dF9cbb4QxLFrY0xJ//zuQlOQbMwYUV1wBrFnTmZRuq9aaNcu7OVg27zTLct2FxeBhjya7jw8N5atQXc5rAsQnhIsYn1LSQz6TjStjY/nKVa/kNQFcQrXwTmPhQq6/kVA0XXONqLdqNhr58wQAvH3mDMyehhFdgWGAadO4cxhB9BFuZc1NnTq1izvZGQzDYJstH4XwCIVEgqFKJYp1OhRptbCwLCTC72DwYM5bYDL17mk6c6az+6qT0JzWbEa5NXRg8zIBQG5ICEaFhOCwRoM/2ttxSqfDEFfHhohh8WKuLFo45f3ee/HWW1ybAYAbXi4UUISHzJ7NtT649dbO0JO7HcC7w7EzuHBkQ3f0UDknZoSKEJlEgkkREfi5uRlVBgNO6nTIdKV5o9gO4TZPk0rFeaic0FMSuI0EuRznhYdjd1sbjmm1KNFqXbO3O265hUv037qVE6Xz5nGNTAFO5KWliXob21xKGyc7OvC/xka7JHaCONtwy9M0evRop/8yMjKgUCjAsiwyMjIwyt0OwoRTbCE6rcWCM445RUFBnS7q4uKeB0b2kgRepNXCdr+Y43CSvtnXCeEA5/H4/PPONgoTJqA86Tw8/zz31OsDeQmOm2/myhIjIrhEsSuu8O77C/MghXk/PSGicg4Q52kCPAzRiUkIt43GADiR2M1BWizw0AzrQQgJBci3Yqr2xGAb6CvMZbPhQmhut4NoAoC3bC0LCOIsxS1P09vOylWtdHR04L333sMff/yBf9o6DxJeIUelwvfWE2ehVotBjiVj2dmcl0mr5Vrwd3fHKPRE9VY55zDW5Mb4eDxtvZCtqavD071NHneX+HguzLFuHXDttXj4PsZuSoJPBvISwO23c94md+bcWeniBbUxahT3vhaL+GRwL4bngK5z6Oa6Gt9dsIBrFglwIbpFi+wT5YU9xno4SMV4mgAur+mp0lIAXF7TX0V6gXolOxt44gn7/k2AS6Jpl0B0JsnlqDYYsL2lBYfa25Fv6wNGEGcZXs9pCg4OxsMPP4zQ0FCsWLHC228/oPFaMrjQ09TLzLlch7vgIUolzrMWAhzWaLrMp/MqycnAAw/g2z1J+PZbblFiYtfzPOFl3BRMLMvitmPHELVjh/PEZZWqU6QfOdK1oaYzempsKQzPiRRN54aHI9j69/3iqqcJ6D0hXEQ+E9ApmsKkUsT1EFrMVqmQbRVVO1tbUS9mn4nlmWfsE6hHjBDdIdZkseAPa0VfqkKBvwlunsjbRJzN+CwRfNSoUdi9e7ev3n5AIgyVFToTK+6IJhE9mhzxec8mARpNZ99LgLvJD6RGxUQnRzUafFZXhzazGcsrK52vZAvRGY1cmXtv2ESTQsEpZgFCT1NPI1SEKCQSXvSXdXTgtLMRMr1xzz2djx0TwkVUzhksFj5ncJiTdgOO2EJ0FnBDs72GUsnNHrJx222iNz2i0UBtnUxwfng47khMRJS1AvOLujrU9FXfJoLoY3wmmlpaWqBz1rmacJtsVzxNPVXQ2QRVRITTfiw20aRgGKeJ3jfExfFVPV/U1bleheQCL74InD7NPb7kEuDGG332UYSH/Czo4l7enRhxpckly3aG59LTu3jAbKIpTCqF0oUEN2GI7jd3vE3XXtuZAO7YIdwmmsLDuVb1TjjV0QFbxmFPoTkbPmk9YGPmTK7L9rJlwGOPid5slyCfaWJ4OEKkUiywhjoNLIsVVVXetZMgAgSviyaLxYKffvoJW7duRWY3Jw3CPaKCgvgqIbe7gut0QHk59zgrq0vjQqPFwocOslQqSJ3cBScpFLjQmlBbotPhgNieOy5SUNBZHa1Q+HEgLyGKn5ua+Men9XrnYtoV0dTQwLkaAae9xGyiSWxozoZHc+iA7hPCq6u5XEKA8zJ1E+YUmwRuY0J4OP+7/7m5GVrH2ZOeMmsWN2bFhREkwnymiVYR+mBKCt8WZUVVVdcZmQRxFuBWIviN3dzum81mtLS0wGQyQSaT4R6hG5vwCjkhIahtaUGt0YhmoxFRwrBEYiI3n0mt7l40lZR0lpQ7Cc2V6HQwWV93zGcScnN8PLZZLzhf1NbiHC8nfrIsdx4XDuQdNsyrH0F4kQ6z2a4aTWexoMFoRJyjoHFFNPVQOddhNqPVelEW025AyPnh4ZAxDEwsi1/dEU0AN0fQpuhtCeEiQnOA+CRwGxKGwZWxsfhPdTV0Fgs2NTf7vazfVjkXLJEgPzQUAJAaHIzr4+Oxpq4O9UYjPq+rcz3RniACHLc8TSzLOv0nk8kwZMgQXHnllVi1ahXy8/O9bC7RYzI4w3SG6E6d4u6CHeltfEoPlXNCro2Lg8zq9llbX+/5bCwHPv/cfiDvk0+6tj3LslheWYm3Kir6tuHeAGVnWxt0Dm0uTjs7/qKjuc7vANcbqKfWGD1UzrmTBG5DJZXiXKvIL9Lp3Mu/cZYQ7iPRBAB/EfSD8nqIzkVq9HqUWsOv54aFQS7wqD0imA341pkzPg3dE4Q/cMvT9OWXX3rbDkIkdsngWi3Od8yKzs7meuBYLEBpKTfzS4iHSeA2YoKCcGlUFH5oasIZvR47W1sxRRD28IT2dvuBvO+84/pA3q/r6/GAtet5u9mMvzl4KgjvIgzN2Tjd0eHcAzl2LJeoplZzns/uKrZ6amzpRrsBIRdERPDekt9aW3G9yFlrdtxzD/Drr9zjlSsBQU6Xt0XTxVFRCJFIoLFY8H1jI8ws6zR03hcI+zOd7zBSa3x4OM63NuQs0GiwtaUFF1tn6BHE2QCNUelneNx2oDfR5DCotyfsxqp4sYru5Ze59BCAG7Y+c6br77FWMBvv1dOnu09MJryCMAnchlNPEyA+ROflxpZCPGpyacMxIXzXLu5xTEwXe4XYcpoipFLEiAwtKqVSXGodZt1gNNrlFPU1dkngTkpZhd6mNysq+sQmgugrSDT1M1wSTc4q6IRCykmivm2WlARcInhP/CU2lu9589/6eph6CrWIpKios3egQtH52BU6zGZsFHg+dBYL/lpS4rFthHPqDAYcshYDyAXeD48r6HpqbOniCBVHJkVE8Cc/t5LBga4J4bb3GTeu24oFvcXCi8lhghFFYviLL6voXEAo2Bw9TQBwTWwsBlnnVf7Q1IQTzs5TBNFPERWeW7Jkidsf8NRTT7m9LdGVVIWCd9P3OrjX0dPEsp1CKi0NcMhZsrAsL8QylEooemlyGCaT4cqYGPy3vh4NRiO2tLTwd8PuwLJcPq3tevj44+4NL9/a0sL3kLHxdUMDNjU14RIP7COcs1ngZbomNpb38nXbA8lVT1NICOCQ+FznoacpXCbDmNBQ7FerUaDRoMloRLQb4ssuIdxGD6G5Up2OH1EkNjRn4/KYGEgBmMGNVHk9I8Ml0eUN9BYL9lubWmYqlYh3su9lEgkWpqTgcWsn86VnzmCZyKaZBBHoiBJNGzZscOvNGYYh0eRlJAyDbJUKB9RqlOp00Fss9uJGWGLmKJoaGjrzLpyE5k53dPDJvL2F5mzcFB+P/1ovkmvq6jwSTd9/D2zcyD1OS+Mq5txBeBd+bWwsvrE+f6ikBH+OG2eXuEp4jjCf6a6kJPy3vh4W9BCeS0nhRFBDAyeaWLarZ8Zi6fQ0DR7c5XW7xpZuiCaAaz2w3+oh29HaiqvcqUgbPhyYOhX45ZfOZV7OZ7IRExSEKZGR2N7SghKdDoVaLXJ7KNbwBQfb26G3JndPdOJlsjEvKQnPl5VBY7FgdU0NXh4yxL7SlyD6KaJE09q1a31tR79m8+bN2Lx5M9Q+6lfkSI5VNFnA5UeMtJb8AuCa6iUmAjU1XUWTK5VzIkXTZdHRCJNK0W4245v6eqwYNgzBbkzS7egAHnmk8/k//8lN3XAVC8viO2uzwWCJBB8NH47qw4exu60Nx7VavH3mDB6zVW8RHsOyLJ/PpJRIcGFkJJIVCpzR67v3NDEM523atAmorweqqjghJaSmpnPMirMeTR6G5wAuGfxN68iPX1pa3BNNADePTiiaRIxPAVwXTQBXRbfdGgZc39DQ56Kpt3wmG5FBQbgrKQnvVlZCa7FgVXU1ngiw352ZZdFmMpGYI1xC1C13SUkJjEYjEhMTXf43EJg+fTqWLFmChQsX9snn9ZrXZPMi1dYCwoTRXpLAjwneS+zJOFgqxTXWi02bQy6RK7zxBlfsBwDTpgHXXefW22BPWxtqrBfbGVFRCJXJ8O6wYXwH8xfKy1FFIx68xjGtFtXW/T01MhIKiYTPZ6k1GrtvcNhbiK6HyjnA80RwAHbVnm4ngwP2CeGpqdzMxG5wtbGlI/7Oa+otn0nIQykp/O/uncpKGL2Q8+gtLCyLyw4fRvTOnXjNNnKAIEQgSjQ9++yz2LJlC//8xhtvxFdffeUzo4iecbuCzouVc0Ju9rCK7vRp4JVXuMdSKddiwN1UjW8FIy1sF5ixYWG4x3ohU5vNeOLkSffenOiCMDQ3w1paPkjQH+KMuxV0PVTOAZ2iSSmRINQNzybAhbtGWm8ODrS3o93WSdVVgoOBTz/lOmuvXNnjwSv0NGW64WkaolRilNXmPe3tfXoDwLIs72kKk0oxopcbq2EqFa6wiskzej0fJg8EtrW08B7SZ0pLsU/gQSOInhAlmmQyGUyCE0pNTU2fhaKIrgibTjpNBu9ONLkQnhvugmi6OCoKMdYRDN83NkLt4sXnsce46S4A8OCD3LB1d1lvPTFLAFwpaAj48pAhiLba+FldnfudoAk7hK0GZljz2WyeJgAod1c09VA5B9iPUPEkGdo2h84CYKcn3ibbDLdZs3pczSaaomQy0e0GHBF6m77rQyFyWq/nvYrnhYeL6hO1yKHZZaDwnmA2nhnA3KIiGALIE0YELqJEU3x8PAoKCmAWuNr7umqD6CRTqeS/uF5n0Am9S7bHCkVnV2YrLMvyoilVoUCYC3OogiQSvjmgzmLhc4rEsHUr8N//co/j4oDnnxe9aRdOaLX8/pgYEWE3wiMmKAivCErxFhYXe6VFwkCmw2zmy/WT5XJ+7I7Q09RtXtOwYZ3VmwcOdH29h/Cc0WJBo1WYu5vPZMMr/ZpEojObUWFrN+CGl8mGXYjOhd+ap9jNm+slNGdjWmQk7xn7va0Nv/uxv5SNWoMB6xzEZoFGgyUUpiNEIOrKOH36dHz00Ue44oorEG79sXz55Zf48ccfe9yOYRisWbPGcysJOxQSCTKUShTrdDiu1cLCspAIRawzT5PZzHVfBrgLlkNIo9ZgQLP1QtTTzLnuuCk+Hv+23r2tqavDLQkJvW5jNAIPPdT5fMkSwJOm4sIcD+HYCRvzkpKwsqoKB9RqHNZo8O+qKjwouBMmXGOXYHTKJVFR/I2U0NPUbQWdRALk5wM7d3IDpJuauBErNnoIz9V7MELFkSmCZGZfex9LBQLSE9E0NjQUqdZk+63NzWg3mVy6yXEXsUngQhiGwaLUVMy13rC9deYM1ojc1lesrqnh52teERODDY2NMAN4ubwc18bG2hfWEIQDojxNd9xxB+bPn48Ma18QhmG6nT8n/GehO3mfYQufaS2WrnkjQ4Z0iiKbaCor62yA5KXKOSFTIiKQbL2AbWxqQpPgwtYdy5cDR49yj8ePB+bMcflj7VgvFE1OKqGkDIN3BS0Z/lZWZtfvh3ANu3wmgeBJF+NpAuxDdIcO2b9mC89FRnZR0t5IAreRpFDwAmZPezu03SWuewFPk8BtMAzD3xQYWNbt4gtXsXmaGAATRHqaAC7nMd7qEfyqvr7nY8LHWFgWKwWhubcyM/Gk1etuZFnMLSoiDzTRI6JuT2QyGW677TbcdtttAICpU6fihhtuwBxPr3KE2wxXqfC91TVfqNXahUQgl3PCqaSEE03CppZA7zPn3ChjljAMboyPx5tnzsDIsljX0IC7e5hwXlcHLF7c+fyddzjng7vUGgz8TKxclarbi9L5ERGYk5iI1TU1aDGZ8ExpKf4zfLj7HzyAEeYzTRfMFxPlaQK65jVddBH32GTiqgMAp/lMwmG98V4oF58aGYlinQ5GlsUfbW2Y5qNZaZ62GxDyl9hYLLNe/Nc3NLg3O88F1CYT/rTmsY4ICUGEC56tYKkU9yUn44XycpgBLKusxD8yMnxkac9saW7mPX6XREUhQ6nE39LT8U1DA45rtdjb3o43z5zB4wHWHoEIHNy6TM2ZMwf5+fleNoVwhRyxbQc0Gq4PjjAJ3INBvT1hV0VXW9vjuk8/3dkNYe5cztPkCd83NPCdlq/upd/OkqFDEW71xL1fU4M9VDnjMnUGAw5aL6JjQkPtGkxGyGQIs+7fHmf+dZcMfuYMF04GeqycAzz3NAGdyeCAb/OavCmapkZG8sfwj01NPi/n39veDpsPTmw+k5D7UlL4ETsrq6tdLhbxFsIE8AXWm7pgqRQfZGfz7RGeKyuj0S9Et7glmu666y4STX2MYxTJ5bYDQk+Tk/DcMUG7AXdymgBgXFgYMqwer20tLajpxsuwZw/wwQfc44gI4NVX3fo4O5y1GuiOBLkcLwo8GA8UF8PCsj1sQTiyReBlusTBM8MwDO9tOt3RAba7fTtiBGDzFAlFk8jKOcBLokkQ/nN7Dp0IPG03IEQukeAya4iuxWTyeRL7bjfymYQkyOV8nmOLyYSPe7mp8gU1ej1/nkgICrI7T5wfEYGHrfmNHRYL5hUV0TmBcArNk+gHfPYZkJfHNUm2IRRNwv5KPI6De0WG52KDghDr5oWIYRjcZPU2WQB+vIoQi4VrK2DjhRcATyMLapMJm6x5HUlyOcaFhfW6zQPJyXyPnn3t7figutozIwYYzloNCLGFi/Usa5e4bYdc3tlf4vhxwCb++6CxpZD04GCkW0Xe7rY2n5Wel1hFU4xM5pUu1Ff3YaNLdyrnHHFsP9DXouQDQQL43KQkBDnkA7w8ZAiGWo/b31pbsULglSIIGySaApzVq4HbbuOcRZddBlhnZSIqKIgvt+617cCJE53hudhY+yolAK0mE99/xd3QnI2bBApojZNGl6tXA3v3co9HjADuv9+jjwPAXcBt87D+EhtrX0nYDTKJBO9kZvLPnyotFZW8TlhHp1hFqlIiwSQnF1GXk8EtFqCggHvcW2NLL4xQccTmbeqwWLDX9iPzIlqzmS/Y8CQJXMis6GgEWY/19Q0N3Xv0PMTCsrynKTYoyG0v2ejQUEyz7udinQ4b+iiBHeD+hlXWGyMGwHwn+ZYhUilWCc6bT548iTKBd5AgABJNAc+MGZ0tlQ4eBK6/vrMIzuZtqjUa0ex4wRd6mg4cACoruy634m4ncGeMDA3lPTi72trsclpaWgDh/OZ33umMznhCb60GuuPCqChe5DWaTHhOeLEmuuWYVosqwegUZ7MG3UoGt/Vr6uPwHGDfr2m7D0J0J72Yz2QjXCbjRUiFXo9DPmo4fEKrRZM1B+n88HCPevQ9IvA2vVlR4bFtYtnU3Iwy67loRlQUhnTzHVwUFcXnOmksFiw4ccJnYpTon5BoCnCSk4ENGzqrrn/6iZsPyrL2VW5dvE3JyZ3NA3fs6FzeSxK4NwaACr1NawXepuef5+azApz4mzbN44+CyWLB/6x5CmFSqcuVT68PHYoQq5t+RVUVDvnAy3C2sUngIXDMZ7IhqsEl4DwZXOQIFTnDINJL/YkuFIimbYLQo7fwZhK4kL4I0dn1Z3IzNGfj8pgY3lO1paUFBX00WcIuAbyH2YAA8FpGBlKton9TczNWC/MiiAEPiaZ+QG4u8N13XCNvgAtxLV7cSzI4w3R6lYS9Z3oZ1OuppwmwF022WXRHjgDvvsstUyq5Ab3eYEdrK38XPCs6GgoX+xakBgfjb9YLswXAg8XFdGfZC3b5TN2JJjGjVABg9OjOWW2OoikurlP4C7CJpngPR6gIGRoczNu8s60Nei/nNflKNF0lEE3rfSSaPE0CFyJhGDycksI/74vRKlV6PT9uJlEutxuv5IwImQzvCTzyj5SU0JBvgodEUz9hyhRuJqjtGvHSS8CpXwTJ4L1V0PWwzJvhOQDIUCpxrjUZ+5BajUKNBg891KndnnmmyxQXt3Glaq47FqWmIst6IdvZ1obP/FDZ01/QWyx8+CpJLu92aKtoT1NYGNehHuBymmwtMgCnoTmLILHcW/lMAFfEME2Q1/S7l9tQCBtbelo5JyRFoeB/a39qNDjoA0+pLQlcxjCiiix6Y05iIiKsId3Pamt93mD2g+pqvl3C3YmJXRLAnXFZTAxut1b7tZrNuJ/CdIQVEk39iOuuA/71r87n7zzuQtsBGz2E50KlUt4t7SnCnk3Pba/Dtm3c46FDuQG93oBlWf7uWsYwuMxJFZcYFBIJ3hZ0Cn+8tBRtfuojE+jsbG3lR6fMEIxOcSRZLudPLj3mNAGdITq9Hvj5Zy72DDgVTY1GI2w+oHgv5TPZEIZ2vR2iKxF6mryUCG5jbmIi/9jbFV/NRiPviR4TGgqVk/w1VwmVyTDfGiLTsyw/fskXmFkW/xEmgPcSmhPyZmYm3zz128ZGfOmkGpgYeIhKCJg6dapbbnCGYbDNdrUkvMKiRUBFBSeeLDUKoEMCBFuce5ocBZJEAjh04tWZzThl9QTkqFReC3fcEB+Pv548CRbA+rY6AIMBMHjzTUDYvNwTCjQaPrnzwshIRHrgebg0OhpXx8ZifUMDagwGvFhWhjcE1XUExyZhf6YeRGqQRIIUhQIVen3vYzPGjAHWruUef/NN5/I+aGwpZJowr6mlBc978b1t4bm4oCCXummL4daEBDxRWop2sxmf1dbitaFDPfotCBF63M73MJ9JyIMpKfhXRQUsAJZXVuLJQYNcDq2L4eemJj48PDM62q6qszdigoKwPCsL11lnPT1YXIyLIiPtBoETAw9Rv97Ro0d3uZi2t7fj5MmTkEgkiI+PR3R0NJqamlBXVweLxYKMjAyEecGVS3Tl9de5Yri1axngtArIUqNUp4PeYrE/8Th6mgYP7kyMslKk1fKdtB1DcwYDsHQp8OOPXEudiAjuX3h418eOy6IjFLggIgK/tLbClKQDctswc1AErrzSe/vB3aq57vhXRgY2NjWhw2LB0spKzE1K8kpi/NmEcN7c9F6S7gdZRVOd0Qid2Qxld14KYTL49993PnZWOeeDdgM2BgUHIyM4GCc7OrC7rQ1as9krnhWN2cxXG3ozn8lGmEyGOxISsKyqClqLBR/X1uIhLw2idmdIrxjSg4MxOy4O/62vR63RiE9ra3scu+QuwgTwe1zwMtmYHReH2bGx+LqhAQ1GIx4uKcHnubneNJHoZ4gSTW+//bbd87q6OjzwwAOYPn06FixYgATBRPva2lq89957OHLkCJYsWeJdawkAnMPoo4+4Zpe/WEWTBcCeSh2mpAku8oKQEwCXxqfs2MFV6RUWum+n9MoE4FHrkM/7T+Kt6WO85skCeh/Q6ypDlEo8NWgQni8rg4ll8VBxMTY5uWEYqNQbDDhgrXbKDw3t1dMzKDgYO60X3Qq9HlndhaWEoknY2bqP2g0ImRYVhZPV1TCyLHa1tmK6myFfISU+SgIXcl9KCj+LbnllJRampHjluN3thaaW3bEoNZVvgPvEyZO4NCoKqd5yQwOo1Ov5ytpkuRyXu/ldvjtsGLa2tKDZZMIXdXW4KT7eLgGfGFi45Q9dvnw5YmJi8Le//c1OMAFAQkICnnvuOURHR2PFihVeMZLoikIBrFsHxOs6L0RzX9DALkoXGWnfbttZErjDoN7mZk4sTZnimWACAPOGROA0d5FgR7Rhf2TXZpfuUtHRwV/Ax4aGIs1LJ9sn0tIw2PpeW1pa8DXlMfBsFlE1J8SuV1NPIbq4OEBQUcXTx+E5ALjIIUTnDYRJ4N7OZ7IxIiQEU62eoCKdziu2mywW/GFNLE9VKLz2G7MxMSIC18XFAQCaTCbcfvw4zF5Mtn5fmACelASZm+G/RIUCSwWh+ntPnEALNcIdsLh1FO3fvx/nnHNOj+uMHTsW+/btc8soQhxRUcAL8zpPwiV6LW66iRsSzyP0LvXiaSrdpkJODrBqVefr557L9RxsbuZ6Dh4+DPz2G/DDD8DnnwMrVgD/+AdXEffAA8DttwNXXQVMnQqMyZMg8ZvOk80TJ09CI2x/4AHC0FxvA3pdQSmV4i2HE+SffdRLxhuwLIttzc1YU1vr1QsQ4JDPJEY0CSvoxCaD22AYID29y2q+Fk3Cfk1bvSWa+sDTBAD3C4TnclszWw84otFAbf29etvLZGNlVhbSrOJ6e0sL/nH6tFfeV5gALgEwz8PQ320JCZhl9VRVGwz468mTnppI9FPcykg0GAxoFJR6O6OhoQEGH5eSEsDkNBVgq5BP1+L7vwMLFwLLl1vbE2RlcSoHcN6jydpugDExePSmYNhKk0JDgVde4cac2NI6BNcTF4jBFYej8UNTEyoNBiw5fRovOQm7uIo3Wg10x1UxMbgiJgb/a2xEo8mEiw4dwubRozEmgHP0LCyLdQ0NeKW8nPfA/draiuXOKijdQDg6JVgiwWQR+S2iPU0AJ5r+97/O58nJXfLvAN/mNAFAkkKB4SoVjmu12NvWhnaTCWEeJm57c1BvT1wdG4tEuRw1BgPWNzSgUq9HigfVsLt8lAQuJCooCJ/m5GDaoUOwAHju1ClcFBmJ8zzMn9rY1IQKq1CfFR1tJ+DdgWEYvJeVhRF796LdbMYHNTW4KT6+x2II4uzELU9TVlYWtmzZgiNHjjh9vaCgAFu3bsXw4cM9Mo7onWEqVeeXmM55jf79b+DVV63L5s/nXFLnncfF3AToDBYUqbkTOntaBVi4d7rmGi40t3Bhp2DyhH9lZvIzsl4/fdrjeU4tRiPfK2hwcDDyvJyszTAMPsvJ4S8UTSYTLv7zTxwIwG7hJosFn9TUYOTevbju6FFeMAFc+flvXvKWFGq1qLSNTomIcDo6xZF0TzxN3QhrX3uagM4QnRlc81RP6YucJgCQSyS8R8UMYJWHpfx2Q3q9mATuyAWRkfg/q1fRDOCWwkK0etjyw9MEcGekBQfjdUH18fyiIqj7YWuSYxoNVlZVYWNjI4UZ3cAt0TR//nxYLBYsXLgQ//d//4c1a9bgp59+wpo1a/DMM8/goYceAgDMmzfPq8YSXVFIJBhqPRErMrQAw4Vk/u//gI8/BjBhAlBbC+zaZTfobc8eYMwVHTBLrCGc0yqkpADr13NV314qvgEAZKlUeNj6hnqWxWMeurZ/bGrip5VfHRvrk0TtcJkMP40axQ+jbbYKp31ebnroLnqLBe9VVSFrzx7ccfy4XZhV2GtrwYkTXuluLQzNzRB5dy26wSUAjB1r/9xJPhMAvhGiBFxJuC+Y5uUQnc3TlBAU5LHXqjcWJCXxJ/WV1dUwevDd2zxNwRIJ8kNDvWBd9zyXns6HAE91dHjUTLKiowM/WD3RKXI5H1bzBvOTkvjjo1yvx8KSEhRptR7t576gxWjEvysrMWH/fozYuxf3nDiBWQUFiNq5EyP27MH8oiJ8UF2N4xoNLNTEs0fc+gWPGjUKr732Gl5//XXs2LEDO3bsAMMw/EGelJSExx9/HHl5eV41lnBOjkqFEp0OeokFT/1TjyWPcheru+8GkpKASy7pvLi0tQHPPsuNNGEndnYCH5+gwuZCrkGzL3g2PR0f19SgzmjE1w0N2Nbc7PKcOBvebjXQHWEyGTaMGoXLCwrwW2srWkwmTP/zT/w8ejTG+yhc0Rsasxkrq6rwRkUFX8ZuY1J4OP4vPR2XREVh0sGD2NPejuNaLV4tL8fzHoZEfxYxb86RCJkM4VIp2szmnkepAFyL+KgoLnkO6N7TZL0zjgsKgsRHVY3enEPXbjKhxtZuwEdJ4ELSgoNxlbXfWLXBgO8aGzHbmmztCjV6Pd+/7dywMMh90ENJiEwiwWc5ORi9bx/azGZ8XleHmdHRuF3QuFMs71dX8w1Q53mQAO4MCcNgVXY28vbuhc5iweqaGqyuqYGMYZCpVGK4SoUclQrDBf/CfSyUu8PCstja3IwPamqwrqEBHd0Iu2NaLY5ptXwOWJRMhvPDw3F+eDgmRkRgfFgYQv30NwQibu+Jc845B1988QUOHz6MkpISaDQahISEIDMzE6NGjaIy7T5kuEqF7613VhfeoUX7yWAsW8YlhM+eDfz6K5Cfz1XbLVzI9XgCAAzu9E48OjvEZ4IJ4C6grw4diruLigAAD5eU4MA557h8QtNbLPjRegGPlslE5dZ4QphMhh/z8nB5QQF+bW1Fq9mMS6zCaUIfCqcWoxHvVlbirTNn0OgQEpgRFYX/S0/HBYKL/arsbJyzfz9MLItXTp/GjfHxdgOeXUE4OiVRLsdIF95nUHAwjmg0qOjogIVluxc6DMOF6LZu5Z47EU0sy/KeJl+F5gAgVi5HXkgICjQaHFSr0Ww0IspNr1ZfheaE3J+czLfjWF5Z6ZZo2u3FIb1iGaxU4r2sLNxsLdu9v7gY54eHI9MFsWmyWLyaAO6MDKUSS4YOxcMlJZ2fy7I4rtXiuFaL9Q7rJ8vldiLKJqpSFAqfXCdLdTqsrqnBRzU1TsPio0NCcGN8PKoNBuxua8PB9nYIy3OaTSb82NTEn2clAEaFhnIiyiqkhgQHD9hrvEfykWEYjB49GqNHj/aWPYQb2A3u1WmxdGk0Kiu5UFt7O3DZZVwV3HffdW6jUgHDr9HigPW5N2bO9cacxEQsr6zEfrUaBRoNVlVX4z5npeY9sK25ma/ouSImxqt3kd0RKpPhx1GjcEVBAba3tKDNKpx+GjUK5/tYtNUbDHjzzBksq6xEm0Pl4TWxsXh60CCc6+SiNio0FI+lpWHJ6dMwsizmFxXh1zFj3PLO7GpthVbE6BRnDFIocESjgd46M65HsTN+fKdoclK00GIywWD1ZvtSNAFcXlOBRgMLuIR6d4sN+qpyTsjFUVEYplSiWKfD1pYWFGo0LgtmXzW17I2bEhLwU3MzVtfUQG0245bCQuwYM0a0p2uDteAEAC6PifFq3ychC1NSkKlU4o+2Nl4sFWm10DsJbVUZDKgyGLqEekOlUmQplci2iqhslQrZSiWyVCqXm6pqzGZ8VV+PD6ur8YuTPLxomQy3JiTgrsTELgUtWrMZ+9rbsau1Fbvb2rCrrQ0NglwnC7gZoofUan5Mj0oiQbhMhlCpFKFSKUIkEv6x478QJ8vCrV7ocJkMEVIpFBJJvxFhHvvcysrKUF5ejo6ODlx66aXesIlwEaHgOa7VQirl2gFcfDGwezdQXW0vmGbN4qrrrmvQAGruTiKrD07oEobB28OGYZJ1mv2zp07hxvh4RLtwF+/LqrmeCJFK8UNeHq4sKMDWlha0m82YcfgwNo4ahUk+uKic6ejAGxUVWFldzc96A7jv6ub4eDydnt7tsFwbz6Wn4791dTjZ0YGdbW1YVV3tVlKsO/lMNtId8pp6FDuLFgFHjnCjfs4/v8vLfZEEbmNaVBSWWl2y25qbvSKafFk5J0TCMLgvORmPWnMH/11VhaWOjW57QZgEfl4fh6LfyczEztZWFOt02NvejudOncISh/FP3eGLBHBnMAyDy2JicJkgPcDMsijv6OBFVKH1/+NarZ0IsaE2m3FArbYr3rCRplB0iimrsMpWqZCqUPA3PizLYmdrKz6sqcGX9fX8zaQNCbjRMXclJuLK2Nhux9SopFJcEBnJe6pZlsVJnQ672to4EdXaiiPWGwgbWosFWi9WxwcxDMKlUi6kbxVUEUJh5SCyhqtUGOenFAmGdTPbrrCwEK+//jpKS0v5Zdu3bwcAHDp0CI8//jgWL16MyZMne8XQ/kBRURHmz5+PVatWIdvJnbIn/KuiAv+qqHD6mgVc7xAAiJHJ0GDd5w0NwKRJwIk7CoCsdkgkXNsA27m7ymAAC0AKLuzyaFoaHk1L49+33WRCzp49ouz7Ni8P5wjuYP7X0IB7T5xwum6TycQLgUiZDM0Ox8jjJ0/ii9paZ5ui2mDgf7x3JSbiA4cKzXH79vE5JD3xWkYGbhE0Zi3SanHxoUO9bseCc8//Zr2ohEgkuC85GV/U9d64M0ulwtb8fLtltx47hl8Ed6BGloXabOY9OzYk4Br0PTloEDKsX2Dqrl29fqaeZfkTdrhUisLx43FCq8VtIjuXnpk4EeP27cN+64n9sbS0br8bIVMjI/FZbi6WlJfj6VOnAAAjQ0LQLKJa57nBg7FAcMGr1utx7v79dn9LqFSKCCd341vy85EtuIn4vLYWT4goPEiUy7Fv3Dj+ebPRiOidOwFwJ/T4HoT9zQkJdlVVADD8jz+gNpvRbDLx32V8UBBfRWrj31lZuEIgyPa3t+MvBQW92gsAhePH2yWWC88RwnMCAyBJLoftk8eGheE7h3zTqwoK7KpDbd4a27nBRl+dI4wsizrBsbJ59GhcLMilc3aOMAP8b99m9+UxMXjP4Vzs63MEAOw95xwkCQoy/nX6NJZUVMDIsjCxLEwWC4wsC3MP7+EMBtxwchnDwGixwFntXrZSibuSknB7QgLG798v6n0/zcnBhYL9u7252e4cwQIwsCwMFgv0FgvM4MSVBdzvw9DHyePzkpKwysvXWLG45Wk6deoUFi1aBIlEguuvvx6nT5/GH3/8wb8+evRoREREYPv27QNKNPmSNpOJP5H1uJ7gbiM2Fti0CTjndyMa4jix0QQADm9jBneSbHPIlWEBUZ8JAAaHi7zOYhG1bYvJhCNqNUYKqnOajUZR27Y7aZRZYzCI2lbrsK2JZUX/rdvz8/FgcTF+bm6GxmLB25WVok4azga1Noj8W+cmJmKlw0lCrL2XREVhU3Mz2sxmPFRcjPnJyaK3FY5OGR0SArPI/WQTN8IKunqDwa7PUnc43jE7+0y12dxlPQB8VaUNrdks+m8VEhUUhEipFC1mM4y9/M3OhGCVwdDl+Kxzsp7O4XdjEPm7AQDHI667cwRrtcdGmhM76rs5Dm3nBuFnOL63r88RAHB7YSEOjxuHWKuA6+0cYbO7yUlLgL44R3RpLMswqBdx7EdIpcgJCcFxrRYtTmxnwQlKo5PzzciQEKzMysJ54eF8qEusvY5hRb0Lf6t+6lQYLRZorL/JZ0+dwkcibqyS5HKMCwtDm8mEVrMZbSYTyjs6RAnJcG/0wnETt0TTBx98AABYtWoVUlNT8eGHH9qJJoZhMGLECBw/ftw7VhIIl8mQ0kNIot5ohMH6YxImrg4aBJzfGoQD7fbbdlgsfEKx7a7dscqDAXr8TCGOOQdKiaTHbdvNZl7gLSopsZvxFhUU5HTbNrOZvxBFyWSIdiJCEkXa65gzIGMY0X9rqFSKb0eOxDVHj2JjUxMMLAsGXAm8ooe4vGNIqcNsRqvJBBnDdLnYM9bPCZVKIQGc5maItfeBlBQcUqtRb61czA8NFb3tluZm/uI8IzoaIVKpqG1jbcef4G47SOQ+DnX4bqTW7dRmM1oF37/KSbhB5rD/VSLtdXbcDAoORou1+Wu0TAZlN+ENZ0niyVZ7bZ5RCbiLhCOO7ynv5XcjxPFIczxHCL01Qm9ZnBN74wS/OeF+jpTJECKwsS/PEQAnvvUsi2qDAXOLivDtyJFgGMbpOULohU6UyyEF/HaOkDoch6Eij0ObN5q15gAWabV47ORJHNNqeQ+VUEopGAYqqRRKiQTXxcV1ybEUa6/jeUvhwt8KAEESCSIlEkQGBWGIUilqW5s3WshFhw7hhHWIPAuuApAF5zm1ebYujIjw6hQIV3ErPHfllVfi/PPPxzPPPAMA+PDDD/HRRx/x4TmAm0/3/fffY8OGDV4zNtDxZXiuN+4tKsJ71qqRXWPG9Jqg/GZFBZ/z8GF2Nub4oMqkJ3RmM3L37kWZtax53YgRuLqXKp8Re/bgmFYLBkD1xIk+z2vpjQ6zGbOPHuWrTJQSCf6Xl4eLeinJrzcYsLyqCssqK7vcfWYEB2NRairmJCZ6tcz389pa3Gp1t6fI5Tg2fryoUui7jx/HBzU1AIBNo0a5PMD2dEcH0n//HQCXuP7NyJEuWt7Js6Wl+Lt1zMbGUaNwqY+7Mf/Y2IjLraGy+5OTsczF7uptJhMiduwAAFwQEYFfHBt49gET9u/HHmvYTcx5AQCuO3IEX1ur7w6PG4c8H/do6olqvR6j9u3jPZfvDhuGB5wUj6yvr8c1R48C4NqQrD+L290YLBac6uhAhFSKRA86vhPu4VbpkU6nQ1QvFwa9Xg9LgDf8OpsQVscct5va6xxhM8RcL3fUFoNSKsU/BXkgj548iY4e5tIVW3uJANxIB38LJgAIlkrxzciRuMKaDKqzWHB5QQE2C3oaCSnUaLCgqAhpu3fj+bIyO8E0JSIC60aMQNGECXgwNdXrfVFujo/HpdbfbKXBgP+z5hn1BMuy+NmaBC52dIojydY7fkBEg8teEIa3fDFCxZEpERG87e4MwPVH5ZwjdvPoRHQIZ1kWO62Vc2FSqV/ODUKSFAqsFuQt/rWkBAVOEqdXWm8YAd8mgAcCcokE2SoVCSY/4ZZoiouLs0sAd8aJEyeQfJYfvIHEcIcKut6wzZxz3LYvuSY2lu+ue6qjA2+eOdPtur4a0OspCokEX40YgauswqnDYsGVR47wzSBZlsWW5mZcfvgwcvfuxarqaj5/QArgpvh4/DF2LH4dMwZXx8V1cet7C4ZhsCIriw9pLausxO5eRoQc12pxxtrn5QKRo1MckUkk/PyzXkep9IKwei6+D0RzmEzGt3Mo1GpR7aL9xYLfYV80tnTGDXFxfIjqy7o61PeSp1Le0cEnSZ8XHu6z49EVLo+JwUKr+NOzLG4+dgw6wQ1WmU6Hjdbf2yCFwuUKT4JwBbdE08SJE7F3717s27fP6etbt27FsWPHMMVh1tnZyubNm/HUU0/hnXfe8ZsNQuFT2ItoYlmWXydFLvdbx1qGYbA0M5M/CP9eXo7Kbi5M/mo1IAaFRIL/jhjBi7kOiwVXFRTgxbIyjNm3D9P//JMP4QFcEuNfU1Nx8rzz8EVubp91Fx+iVOJFa9NIFtyIFcfkXCE/e9BqQIgtGbzeaLS72LmKUDQ5y8vxBcKRKttd9Db5o92AI0qpFHOtoXcDy/Kh1u7Y5YemlmJ4behQjLJ6vY5a83xs/Ke6ms+7m5+UFBBCjzh7cUs03X777YiJicETTzyB1157DUXWLs/r1q3Dyy+/jJdeegmJiYm44YYbvGpsoDJ9+nQsWbIECxcu9JsNaQoF70XozdNUbzTyVSXudon2FnmhobjX6pHUWCx42okHs85g4PvGDFepkOWnu/aekEsk+DI3F9dahZOeZbG4rAx/Cjx66QoF/pWRgYrzz8cbmZl2PYz6iodTUnCONUfliEaD17tpYwEAmwRCb4abI28A+2RwT7xNtsq7GJkMQX3Q1BSwF02uhuj80Q3cGfcKPP7/rqrqWtklYLefmlr2RrBUii9yc/nE+eVVVfi2oQFGiwXvW4WgFOAFIkH4CrfOPJGRkXjnnXcwfPhw/PDDD9i9ezdYlsVbb72FTZs2Yfjw4XjrrbcQ6scEwoGGhGH4/jQndboeh7Ta5TMFgAB5ccgQRFm9XZ/U1uJ3h7DR/xob+aqYQArNORIkkWBNbi6uc0honxAWhi9zc1EyYQIeSUvzm2cP4MJlq7Kz+Vydl8rKcMKJyNZbLLxIcHV0iiMuDe7tBpZleU9TX+azTYqI4HsrbXVxDl0geJoArq/YTKunsKyjgw9lOcN2c8IAfTomSAy5ISF4MzOTfz73+HG8V1XFhxOvio1FMuX5ED7G7bN3cnIyli9fjuLiYhw7dgxtbW1QqVTIzc1FTk6ON20kRJKjUuGgWg0LuLvc7jpGC/OZ+mJ8Sm/EBAXhpSFD8GBxMQDgoZIS/D52LN/5tq8G9HqDIIkEn+fkYGRICCr1esxJTMT5gr4pgcCYsDA8kpaGNyoqoGdZ3HPiBLYKWj4AwG7B6JRLXByd4og3PE1qs5nvadSXokklleK88HD81tqKkx0dqOjoQJpID6FNNKXI5S6PxfA29ycn82JpRWUlLnfyO1KbTPjTmmQ9IiTEaV8xf7MgKQkbm5qwvqEBTSYTFgrmv53tCeBEYOCxj3vYsGH4y1/+gttvvx2zZ88mweRHxCaDCz1N/g7P2bgnKYn3Zuxtb8fHVpe7xmzmc2sS5fI+y//xhCCJBIsHD8bK7GxMjIgIKMFk4/nBgzHEevHf3tKCDx1yXezymTwIzQFdR6m4Q1+OUHHEnRBdi9HIl8n7KwlcyGUxMbx4/bGpCacEXjAbewWDWwMpn0kIwzD4T3Z2lz5Ag4ODcYmHxylBiMEt0XTjjTfiq6++6nGdb775BjfeeKNbRhHuYZcMLvAmOWInmgLghA5wYaO3BK73p0pL0WYyYVNTEzqsHoarYmLcGjhLdCVEKsW/BX2HHjt50k6YCOfNTffwYuQNT1NtH7cbECLsuyU2RBcI7QaESBmGz21iYT+jzYa/hvS6SkxQED7NybFr7jk/KYnODUSf4JZoqqmpgdpJrwwharUatSJaqRPew3Fwb3fYBFWMTNZnVUhiuDgqCtdYc5ZqjUb8vbw8oKvm+jszoqNxm3W2VrPJhEXWUEeDwYD91oaIo0JCPO4HI8xpKu+HnqbzwsMRbE1A3tbSAjH9gAMln0nI3UlJfH7W+zU1XfqiCVtQBKqnycaFUVFYPHgwAK6S8m5KACf6CJ+VoGg0GgQF0AV5IDBMpeK/0O7aDrQK5lPlhIQEXOjojYwMvqX/m2fOYF19PQBuDMFFgjAJ4R3+lZGBGGvuypq6OvzY2IgtLS12o1M8xTaZHHA/PFfXxz2ahCgkEl5EnNbrcUrE3xAolXNC4uVyXG8tUmgwGvGV9bcFcOMqbJVzsUFBASP0emLx4MHYO3YsDo4bFxDNbomBgehMv0MO051ramq6LAMAi8WCuro6bNq0CWmCadiE71FIJBiqVKJEp8NxrRYWlu3isj4egKE5IUOVSvw1LQ2vnD4NI8vyM7BmRke71VyR6Jk4uRz/yszEndY5kfedOIHzBF4GT/OZbAwKDkaBRoMKvd7pcdkb/gzPAVyIbqs1n2lrczOG9iIqAi08Z+O+5GR8XlcHgCvbvy0xEQBwQqvl25BMDLDChZ4YF+AeMeLsQ7Roevjhh/kfEsMw2LhxIzZu3Oh0XZZlwTAM7rnnHu9YSYhmuEqFEp0OWosFlXp9l0qfwgCrnHPG04MGYXVNjd1k9kBuNdDfuT0hAZ/U1mJzczNO6/U4bfVAuDs6xRmDFAoUaDQwsCzqDAaXQ37+DM8BXZPB5/VSqSXsBp4RQKJpUkQE8kJCUKDRYHdbGw62t2NMWJhdPtP5JEQIoltEi6Y777wTDMOAZVl89NFHyM/PR35+fpf1JBIJwsPDMWbMGAy2xpyJvmO4SoX/WfOACrXarqLJzzPnxBAqk+EfQ4fidqv3QwrgMhqN4DMYhsG/s7Iwcu9ePuke4GavKb3k3bOroNPr+51oOjcsDCESCTTW/lW2G8PusHma0hQKr+1Db8AwDO5PTsZ91vYeK6qqsDI7m+/PBAR2EjhB+BvRomnu3Ln84z///BOzZs3CzJkzfWIU4T6OyeCOOSmBWDnnjFsTEvB5XR02NDXhzsRERFF+nE/JUCrx/ODBeErQkd1boTmga4NLV1tH2M2d88OxECSRYEpkJDY2NaHaYECRVovh3dx0NAk67gdSaM7GrQkJeKK0FO1mMz6rrcVrQ4fy+UwyhsG4sDA/W0gQgYtbieBLly4lwRSg9DaDztbYMkQiQVoAd89lGAbfjRyJgnHjsEJQGk/4jkdTUzFaIAQu9aJ3T9h2oNyNtgO2nKYIqdRvuW1i+zUFaj6TjTCZDHdYqya1FguWVlbimPVcMSY01O+NOAkikOmbAU5En9FTg8sOs5mv/BmuUgV8sqdMIsHI0FDI+2jO2EAnSCLBNyNHYnZsLN7IyECeF8cgeTpKxR8jVBwRK5pKArDdgCP3paTwj18pL+cfB3qrAYLwN273ya+trcXHH3+M/fv3o6GhASarO1oIwzDYtm2bRwYSrhEdFIT4oCDUGY1dRNMJnY6f4Rao+UyEfxmqVOKrkSO9/r6eNLjUmc1ot1ZR+lM0jQkNRbhUijazGdtaWrqtAhQmgQdCN3BnjAgJwdSICPzS2gqDoO/U+ZTPRBA94tYtfFVVFebNm4cff/wRSqUSRqMR8fHxSE1NhVQqBcuyyMjIwKhRo7xtLyECm7epxmBAi6BUu7/kMxFnH8kKBT8k2FVPk7+TwG3IJBJMtXqbGoxGHO2m636gh+ds3C/wNtkgTxNB9IxbounDDz+ERqPBm2++iQ8//BAAcNlll+HTTz/F2rVrMWnSJOh0Orz44oteNZYQR3edwQNtUC8xcJAyDFKt3iZXPU11AuHvjyRwIWJCdDbRxAAYKnK4rz+4OjYWiQIRmqpQiB5GTBADFbdE0/79+3HeeefZtRywjRaIjY3F888/DwBYuXKlxwYSrtNdMnggDuolBg62vKYGoxEahxEePREonibAXjQ5m0PHsiwvmgYpFAHdkFUukWC+YPwIeZkIonfcEk2tra0YNGgQ/1wqlaJD4HKXy+UYN24cdu/e7bmFhMsIBdFxJ6IpiGGQQXeURB8jzGuqcCFEF0iiaVRoKKKtY2d+aW2F2WEOXaPRiBZbu4F+4M29NzmZH6Nzc3y8n60hiMDHLdEUERFhJ5IiIiJQU1Njt45UKu11qC/hG5xV0JksFpywPs5SKiGjijSijxnk0OBSLP4eoSJEwjC40OptajGZ8KfDOS4QB/X2RLJCgePjx+PE+PG42jqXjiCI7nHrypmamorKykr+eU5ODvbu3YuqqioAQEtLC3755Rck9zJqgPANaQoFVFZRZPMulXZ08FUyFJoj/IFdBV0/9TQBPec1BeKg3t6Ilcv7hVeMIAIBt0TThAkTcPDgQbS3twMArr/+emi1Wtx1111YsGABbrnlFjQ1NWH27NleNZYQh4RhkG09CZbqdNBbLFQ5R/gdx1EqYgk00XSRoFO6Y15Tf6mcIwjCPdwSTVdffTXefvttSK1JjmPGjMHixYuRkJCA0tJSREdH46GHHsKVV17pVWMJ8dhCdGZwd7/CQb25JJoIP+Bug8tAE005KhUfJvyttRUmwbw+Ek0EcXbjVnPLkJAQ5Obm2i2bNm0apk2b5hWjCM9xbDtAlXOEv0lzc5SKLacpRCJBSABUozHWvKa19fVoN5uxX63GBGvlma2xpQRco1CCIM4u3PI0Pfzww/jPf/7jbVsIL+KYDG6bLcWASwQniL4mXCZDpLVSyx1PUyB4mWxMcxKiE7YbSA8OpvE/BHEW4tavurCwEBaBS5oIPISi6ZhGw1fRDQkOhjIA7taJgYktGbxCr4fFoVzfGQaLBc3WEv74ABJNFzlJBq83GtFm7T9FoTmCODtxSzQNGjSoS4sBIrAYplTyX+7WlhaorSdzmjlH+BNbMriRZe1ylbqjPoDaDQjJVCqRYhVxO1pbYbBY+sWgXoIgPMMt0TR79mzs3LkTZWVlXjaH8BbBUimGWC9QNYKLE1XOEf7E1cG9gZYEboNhGD5Ep7NY8EdbGyWBE8QAwK1E8KSkJOTn5+Pee+/FVVddheHDhyM6OtrpusJRK0TfkhMSgpMOuSMkmgh/IqygK+/o4BOouyNQRRPAheg+ra0FwIXoDIKUBep7RBBnJ26JpocffhgMw4BlWaxduxYMw3S77vbt2921jfCQ4SoV/tfYaLeMRBPhT1xtcBnIosmxyaVwmDB5mgji7MQt0XTnnXf2KJSIwGC4E4FE7QYIf+LqKJVAGqHiyGClEoODg1HW0YFdra3IsAolKcCHxgmCOLtwSzTNnTvX23YQPsDRq5QslyNC5tZXThBe4WzyNAFciO6DmhoYWJbvhTY4OBhB1G6AIM5K6Jd9FuPoaaLQHOFvkhQKyKxe6v6cCG5DGKKzQZVzBHH2QqLpLCY6KMguz4JCc4S/kTIMUq3eJjGepjpBeC4+wMJzgH2TSxuUBE4QZy9uxWqmTp3aa04TwzBQqVQYNGgQpkyZgtmzZ0MhcM0TfcNwlQp1ra0AaOYcERgMUihQ1tGBRpMJGrO5x9EoNk+TnGECMrScolAgS6nECWo3QBADArc8TaNHj0ZGRgZYlgXDMEhMTEROTg4SExP5qrqhQ4ciLi4OJ0+exMqVK3HvvfdCIxgaS/QNwmaW1NiSCARcGdwrHKESqMUnjiE6Ek0Ecfbilmh69tln0d7ejksvvRRr167FmjVrsGLFCqxZswZffvklZs6cifb2drz++utYv349rrjiCpSWluKTTz7xtv1EL9yfnIyhwcG4KiYGkyMi/G0OQYhucGlmWTRYw3OBmM9kwzFER6KJIM5e3BJNy5cvR0xMDJ555hnEx8fbvRYXF4enn34asbGxWL58OVQqFR599FEMHjwYv/32m1eMJsSTFxqKk+edh2/z8iAN0Dt1YmAh1tPUYDTC1i4y0NoNCLlQ4GmSMQwGU7sBgjhrcUs07d+/H2PHju1xnfz8fOzbt4/7EIkEo0aNQq21ey5BEAOXdJGepkCvnLORIJdjkrWz+fnh4ZBRuwGCOGtxK7PSYDCg0aHTtCONjY0wCE56KpUK0h4SPgmCGBg4jlLpjv4imgDgyxEj8H1jI66MifG3KQRB+BC3bomGDRuGLVu24MiRI05fP3bsGLZu3YqsrCx+WVVVVbfz6QiCGDikiWxw2Z9EU7JCgXuSk5FMFcIEcVbjlqdp3rx5ePTRR7Fw4UJMnDgReXl5iIqKQnNzMwoKCrBr1y5IJBLcfffdAACtVos9e/Zg2rRpXjWeIIj+R5hMhiiZDM0mU8/huQAeoUIQxMDELdGUn5+PJUuW4I033sCOHTuwY8cOvtUAACQkJOCvf/0r8vPzAXA5TcuWLUNsbKzXDCcIov8ySKFAs8mEM3o9zCzrtEihTuBpig9wTxNBEAMDt7vFjR8/HmvWrMHhw4dx8uRJaDQahISEICMjA6NGjYJEkAwZHByMzMxMrxhMEET/Jz04GH9qNDCyLGoNBqdhrf4UniMIYmDgUYtdiUSC/Px83qNEEAQhBse2A05FE4XnCIIIMDyeS1BWVoby8nJ0dHTg0ksv9YZNBEGc5QgbXJbr9TjPyTo2T5MU3BxFgiAIf+O2aCosLMTrr7+O0tJSfplNNB06dAiPP/44Fi9ejMmTJ3tuJUEQZxViGlzaRFO8XA4JNWYlCCIAcKvlwKlTp7Bo0SJUV1fj+uuvx4QJE+xeHz16NCIiIrB9+3Zv2EgQxFlGb6NULCyLun4wQoUgiIGFW6Lpgw8+AACsWrUKDzzwAIYPH273OsMwGDFiBI4fP+65hQRBnHX05mlqNplgslXjUmiOIIgAwS3RdOjQIUydOhWpqandrpOQkNBr13Ai8DHUG9C4oRFmndnfphBnEUlyOYKsITdnniZXK+dYlkXpM6XYnbYbJ584SccrQRA+wS3RpNPpEOUw2dsRvV4Pi8XS4zpEYGMxWXBwykEUXFaAffn70Lanzd8mEWcJEoZBqjVE52yUiquiqfo/1Tj96mnoz+hR8XoF9o3eh5bfWrxmL0EQBOCmaIqLi7NLAHfGiRMnkJyc7JZR/mT9+vW4++67MW3aND4MOVBp3twMXZEOAKA7ocOBiQdQ9kIZLEYSw4Tn2PKamk0mtJtMdq/VCdoNxPcSnlMfVqPkoRK7ZbpiHQ5NPYTih4phUpu62ZIgCMI13BJNEydOxN69e7Fv3z6nr2/duhXHjh3DlClTPDLOH8TExOCuu+7C1KlT/W2K36n9uNZ+gRkoe74MBycfhPaE1j9GEWcNwrymCocQnVhPk0ltwtEbjsLSwQn5+JvjEX5eOPciC1S+U4l9efvQvKXZi5Z7H2OTEYZ6Q+8rEgThV9wSTbfffjtiYmLwxBNP4LXXXkNRUREAYN26dXj55Zfx0ksvITExETfccINXje0LpkyZgsmTJyM0NNTfpvgVU5sJDesaAACyaBnSn0vnGuYAaN/Tjn35+1C5opIfnUMQrjKoh8G9YkVT8QPFvDc0ND8U2R9kY8yOMch4MwMSJXd66yjrwJ/T/0TRPUUwtQae16n191b8PvR37ErYhaM3HIX6iNrfJhEE0Q1uiabIyEi88847GD58OH744Qfs3r0bLMvirbfewqZNmzB8+HC89dZbbgsPrVaLDz74AI899hguv/xyXHDBBdiwYYPTdQ0GA1asWIFrrrkG06dPxz333IO9e/e69blEJ/Vf1dvdvQ95YQjG7hoL5TAlAMCis6D4/mIUXF4AfXX3Q1cJojvShRV0bniaqldX895QaagUuV/mQhosBSNlkLYoDeMOj0PE1IjO9VdWY+/IvWj8MXAKVPRVehy99ijMrWaABer/W499eftw9PqjUBeQeCKIQMPt5pbJyclYvnw5iouLcezYMbS1tUGlUiE3Nxc5OTkeGdXa2orVq1cjISEBmZmZOHjwYLfrvvrqq9i+fTuuv/56pKamYsOGDXjiiSewdOlSjBo1yiM7BjI1H9fwjxPvSAQAhI8Px7iD43DyiZOoWl4FAGja0IS9eXuR/V424mbH+cVWon/SU9uB3kaoaI5pUPxAMf88a2UWVMNUduuoMlXI35qPqveqUPpEKcxqM/Rn9Ci4vAAJdyQg881MBEX7r52BucOMI9ccgaHaKhAZAFbHbf1X9aj/qh6xs2Mx+LnBCB01sD3fBBEoeDxGZdiwYRg2bJg3bOGJiYnBunXrEBMTg+PHj2PBggVO1zt27Bi2bNmC++67DzfffDMAriv5nDlzsGLFCqxYsYJf94EHHkBBQYHT97n99tsxf/58r/4N/RldmQ6tv7QCAJTZSoSdG8a/Jg2RImtZFmKuiEHR3CIYagwwNZpw9LqjSLgjAcPeHgZZhMeHFTEAcBylIsTmaWIAxDqIJrPWzOUxaTlPaNL8JCTcnOD0MxgJg5T7UhBzWQyKFhSh+Wcut6n241o0/dSErBVZiLum78U+y7I4ce8JtO9pBwAo0hUY8+sY1H9dj9P/OA1jLScaG75uQMPXDYi91iqeRpN4Igh/4lZ47sYbb8RXX33V4zrffPMNbrzxRreMksvliImJ6XW9X375BVKpFFdddRW/TKFQ4PLLL8fRo0dRW9uZyLxs2TL8+uuvTv+RYLKn9tPO/ZZ4RyIYJyMsYmbFYFzBOMTOju3c7uNa7B21Fy2/tPSFmUQ/J01ETlNsUBBkEvvTVPFDxdAe5QoRQkaGIHNpZq+fFZwejFEbRyH7/WxII7jkPGOtEUevPYqjNx7t8yTsyrcrUfsR9zuTKCUYuX4kggcFI+2RNJxXeh4y3syAPLEzLNnwTQP25e/DkWuPoP1Qe5/aShBEJ26JppqaGqjVPcfb1Wq1nWjxBcXFxUhNTUVISIjdclt4sKSkxNlmPWIymfgeU2azGXq9Hmaz80Z5DQ0NKCoq4v+Vl5e7/kcEGCzL2lXNJdzm/A4eAOSxcoz47wgM/3g4pOHchUh/Wo9D0w7h5OMnYdFTawKie0JlMkTLOK+kMKeJZVleNDnmM9V+Voua97nQsUQl4fKYlFJRn8cwDJLmJmH80fGIuaLzpqz+y3rszd2L2jW1fVLY0LylGSV/7Tw3DV89HGH5Am+uSoq0RWmYUDoBmW9l2oundQ3YP2Y/jlxD4okg/IHP4igajQZBPh5/0NjY6NQjZVvW0NDg8nt+/PHHWL16Nf/8k08+wdNPP41Zs2Z1Wfe7776zW/dsoO2PNuiKuWqkyGmRCB4U3OP6DMMg8fZERF4QicI7C7mwHgtUvFGBpp+akPNpjl/yMbTFWpQ8VAJTiwkRUyMQdXEUIiZHiL7AEn3DoOBgNKnVOKPXw8yykDIM2sxm6K3iRdijSXtCi6J7ivjnWSuyEJIT0uU9e0ORosDI70ai7os6FC8shqnJBGODEYU3F6J+bT2yP8hGUJRvzl26Uh2O3nAUsN6HDXp6EOJviHe6rlQpRerDqUhakITqVdU4veQ0n//UsL4BDesbEPOXGAxePBhhY8KcvocvYc0sKt6owOnXTkORrED0ZdGIuTwG4eeHQxLk1v04QQQ8okXToUOH7J7X1NR0WQYAFosFdXV12LRpE9LS0jy1r0f0er1TYSa33p3qnYxn6I25c+di7ty5ota96qqrMGnSJP55eXk5Xn75ZZc/M5Cw8zLd0b2XyZHg9GDkb83HmTfPoPSZUrAGFpoCDfafux9DXhqC1EdTIZH5/kTKsixqP6nFiftPwKLhPF1tv7eh4h8VYOQMIiZxAiry4kiEjQvrE5sGGizLOg3pOiNdocAhtRomlkWNwYAUhQJ1TirnzB3WPCbrd5o4J5EvUHAHhmGQcEsCoi6OQvGDxaj/qh4AJ0Y0RzUY+d1IhAx3XZD1hEltwpGrj8DUxLU9iL48GkNeGtLrdlKlFKkPpSJpfhLf+dwmnhq/bUTjt42IuSoGQ14a0mc3KLqTOhTeUYi2XdyUAFOTCZojGlS8VgFphBTRl0Yj5rIYRM+KhjyeBi4TZw+iRdPDDz/MnwgZhsHGjRuxceNGp+vaTpr33HOPd6zsBoVCAaOgysaGwXrSVQhyJnxBbGwsYmNje1+xn2DRW1C3pg4Al2fhajUcI2GQ9tc0RM2IQuFthdAc1oA1sCh9shT1/61H9n+yfZrIamoz4cR9J1D3eZ3T11kDi5ZtLWjZ1gI8C0jDpYicGomo6VGIujgKqlyV6Is9YY/FaEH9f+txZukZaI9pkTQ/CenPpSMosmePjbCCrryjAykKhdN2AycfOQnNnxoAgCpHhWHveqf4RJ7AhZjrvqrDiXtPwNRogq5YhwMTDiB3TS5iZvWeWykGlmVxfM5xaAq4v0GZrUTuZ7lgpOKPN6lSitSFDuKpyiqevmtE4/8akXxfMoa8NMRnnjKWZVG9qholj5bwAha2P8Ea2TS3mlH/ZT3qv+SEaNi5YbwXKuycMDAS+o0R/RfRounOO+8EwzBgWRYfffQR8vPzkZ+f32U9iUSC8PBwjBkzBoMHD/aiqV2JiYlBfX19l+W2QcFnk6DpCxp/aISpmbsLjr02FrIw96K3oXmhOGfPOTi1+BQqXqsAWKB9Xzv2j9uPtCfSkP63dEiDvRsma9vThmM3H0NHaWdCceLdiUh/Nh3tf7SjeXMzmrc0o+NU5+vmNjMav29E4/fc8SJPlCPyokhEXRyFqOlRvYYmCa6TddXKKlS+WwlDZafYOfPmGdR+UovBLw1G0rykbj16jg0uJ0ZEdGk3UPdlHar+zbW4kCiteUwh3j1+4q+LR9i4MBz5yxFoDmtgbjOj4PICDP3HUKQ9luaxmC7/ezkavubSBaThUuR9m+d2lak0WIrUB1ORNC8JNe/XoPzVcm7fW4CqZVWoX1uPIa8OQdLcJK8KFH2NHkXzitD0QxO/LHhoMHI+zoEyS4mmn5rQ9EMTmn5q4s8jANC+tx3te9tR/kI5guKDED2L80JFzYjqVVQTRKAh+lcrDFn9+eefmDVrFmbOnOkTo8Ri6+Gk0WjsksGPHTvGv06Ix1lvJneRKCTIWJKB2L/EomheEbTHtGBNLE6/chr1X9Uje2U2IqdGemgxwFpYVLxegVPPngJr4m51peFSZK/MRvyNXK6IcrCSf6w7pUPzlmY0b25Gy9YWGOs7L9CGGgPqPq/jPVXKTCUipkYgYjL3T5mhJE+UFW2RFmeWnkHNRzV86T+PBIAFMDYYUXxfMaqWVSHzrUxEXdx1yPcgJw0uhZ6mlCqgaF5nHtOwd4YhdKRvvJXKwUqM2TkGx+88joZvGgAWKH2iFJrDGmStynJb6Dd814Cyv5VxTxgg9/NcqLJVPW4jBmmwFCkPpCDx7kRULq1E2UtlsGgsMDYYcWL+CVSvrMawd4chfHy4x58l9MTZSJqfhIx/ZUAWyl1GEm9LROJtibCYLGj7vQ1NPzah8YdGaA5r+G2MdUbUflTLVQ5KgYhJEXwYLyQvpE9/X8YmIzpOdUCRpkBQXBD9tglRuHWrs3TpUm/b4RYXXngh1qxZg++++47v02QwGPDjjz8iNzcXCQnic3IGOoYGA38HKU+SO73AuUPE+REYd2AcTi85jfK/l4M1stCd0OHQhYeQtCAJQ/8x1O27TX21HsfvOI7mzZ1zxcLPC0fOFzlQDlY63UY5RAnlPCWS5yWDtbDQHNF0iqhfWjpDDgB0JTroSnR8tVZQQhAvoCKnRCJkdEhA5URZTBaYGk0w1HFeB9VwFSQK79nHsixatrag4s0KO28DAIABYv8Si9RHUhE8OBilT5Wi7gtOfGqOaPDn9D8Rc1UMMv6ZAVVmp2BwNkrFJpqCDEDKw9Uwt3NZ0/G3xCNxrmdivjdkoTKM+O8IlL9UjrLnyzh7Pq2F9oQWI9eNhCLZtZC/plCDwtsK+edD/j4EMZd7J+RnQxosxaAnByH+1niUPl7Kh9jb97bjwIQDSJybiKGvDnUrt8jYYkTJwhK7NiRBCUEY/v7wbv8OiUyCyMmRiJwciaGvDEXHmQ5OQP3YiObNzZ2/MTPQ+msrWn9tRelTpZAnyRF9aTSiZ0Yj6pIorzceNevMaN3ZynmdNzdDfUDNhxSl4VIohymhzFRCNUzFP1YOUyIolgQV0QnDelhjq9PpoFarYbE4Ly93V7h8/fXXUKvVaGxsxPr163HBBRfwTTRnz57Nj2hZvHgxfv31V9xwww1ISUnBxo0bUVhYiDfffNNp+NCXFBUVYf78+Vi1ahWys7P79LM95cy7Z1CykCuDTns8DRmvZXj9MzTHNCiaV4S23W38MnmSHMOWDXO5wWDjj404fudxGBusniIGGPTMIAxePNjtyh2L0YL2Pe28iGr7vQ2ssfufhyREgojzOz1RYRPC+Ltub8CyLMztZhjqDDDWGbn/a432zwX/GxuN/EUAABgZg5CRIQg9JxRh54QhbGwYQkaFuFxBaNFbUPt5Lc68dcbOawBw+yDp7iSkPpQKZYa9UG3d1YqSh0vQvq+zNJ4JYpD6cCrSn02HLEKGar0eybt3AwCujInBd3l5uLeoCO9VV2Ph28C167jtlFlKnLPvHLdDxu5Q/3U9Cu8o5D1p8iQ5Rq4fKdpzY2w24sCEA3w1atyNccj9ItfnF+Dm7c0oWVgCzZHO70oaIcWQF4cg+f5k0UK/eUszjt91HPqKzoKa2NmxyPp3FuSx7iV3W/QWtPzawnuhbPumCxJuAkHUpVGInhmN8HPDXcr/ArjqvvYD7bxIat3ZClbv+uVOGiHlhJRVRNkJqhgSVAMNt0XT//73P6xduxYVFRXdvznDYNu2bW4ZdsMNN6Cmpsbpa2vXrkVSUhIArkLu/fffx88//wy1Wo2hQ4di3rx5GD9+vFuf6wn9WTTtH78f7Xu5i9u4gnE+C4GwFhZVK6pQ+hQ31sJG7LWxGPbuMCiSer6Tt+gtOPnkSVQureSXyZPlyPk0B1HTvOMds2HWmtG+tx2tO1q5f7taYW5z3rMLACAFwsaEdYbzspWwaC0wq80wt5u5/9VmmNpN/GPhcrt12rgyeHdO8j0iBUJGhCBsbBgvpkJHh0Kq6iqkDHUGVP27CpXLKmGssy+4UAxSIGVhCpLmJfXoKWQtLGo/rUXpU6Wd40IABMUFYcjLQ5AwNxHKnb/ByLIYHRKCQ+eei2uOHEHDuga89By3LqNgMPb3sXa9jPoK9Z9qFPylAPpyPW9L9qpsJN7es8eLNbMouKIATRs5j1zI6BCM3TnW67lY3WExWVC1vAqn/nbK7pgNGRmCzHcyEXVh978Vs86M0qdL7X5j0nAphr07DAm3JXhVJGiLtWja2ISmjU1o2dYCi875zbcsSoaoGVGcJ+rSaKceP5ZloSvW8fmLLVtbYGrpfkBzyKgQhJ0TBn2lHrpiHTrKOwBXW8sxXCoCo2AgUUj4f4y883m3rwVLIA2XQhYpgyxC8C9SBmmElH8uDZWKyk1jLSxMLSYYG7kbKFOjCcYmweNGI4xN3GNTiwmMjIEk2GpfsIS3yfF//nXhsiAGjLTzH6Rw6XmXzwyWgJEx/UKAuiWa1q9fjzfffBNSqRR5eXmIi4uDVOr8ZPD00097bGR/ob+KJk2hBntzuSHHoWNCMe7AOJ9/ZsfpDpy47wSafuwM80gjpMh4IwNJdyc5/fFoi7Q4dtMxqA91NlaNuSoG2e9nu33n6wqsmQvn2URUy28tdsnP/kKilECeIEdQfBDk8dz/rJG7y9YWanu/EEi4ijSbN0qZpUT91/Wo/bS2i2gLPy8cqY+kIvbaWJdCkya1CaeXnEbFGxV27xkyOgSLFxiwIdeISJkMzZMn47L/7cN9N6sRZv2ahy0fhpT7UkR/lrcx1Btw9LqjaP21lV+W9ngahr46tFvvx8knT3JFEACCYoMwdu/YbkPGvsRQa0Dp06Wo+dD+BjT+pngMfX0oglPtix3a9rXh+O3HoT2u5ZdFXhSJ4R8O93lhhLnDjNYdrbyIsnV9d0bIqBBEX8qF8Yz1Rt6bJPSKOaJIV3CVstOjEHVRVJdwpUVvQUdZB7TFWuiKddy/El2noPJ931PnSABZuEBIWUUWa2a5HmM2kdRs8p+N3kCCLkLKUazZ/kXPjEbyPcl+MdMt0XTrrbeivb0dy5Yt83kvpv7A5s2bsXnzZqjVahw+fLjfiabSZ0px+tXTAICMNzOQtqhvvlOWZVG3tg4lD5XYJWRHXhhpN4CVZVnUfFiD4oXFfKiEUTDI/Gcmku9P9tvdCcuy0J/Wd3qidrTahUTcggGkoVJIQ6UIig2yE0LC/4UiqSfvhVljhvqwGu3726E+wP2vOarhmyuKQgrEzY5D6iOpiDgvwqM/T1em41pQfGlf9frrFODf9wLHrp6Ib87djaHHuNNS3PVxyF3r+5BWb1gMFhQ/VIzq96r5ZdGzopHzeU4XT1vt57UovNWaxyQFRm8e3aNnpy9o/b0VxQ8WQ72/84ZDEiJB+rPpSHskDZACp185jfKXyvmCCkmwBEOXDEXKwhS/tAnoONOB5p+aORG1qQnmVlcOWkAWLUPURVG8UAoeGuz2cWTRW6Ar7RRRNkFlajXBorfAoreA1bP8Y9tz274MOATDofsjyfcnI2tZll8+2y3RNH36dFx++eV45JFHfGFTv6U/eppYC4vf03+H/owekAITKydCntC3zeiMjUaUPFpi11hTEizB4OcHI/HuRK754NrOi6wqR4XcNbkBOfnd2GxE2+42tO5ohaHGwAmgMCkvhOweh0ohC5PZPZeoJD4XCGadGZoCDdr3t3Niar8amiOaLid4aYQUyfOTkbIwxetehpbfWlCyqIRLxrViCAJU54TC9Du3rD6FwTVHJwXUAOjKFZUoeaiE31fKbCXyvsuDKosT+O0H2nFw0kFYOjhxP+zdYUh5wH9eMiGsmUX1B9UofbrUrgpOOUwJWaSMD88DQOg5ocj5JMetjuu+wGLi8g1tXqj2fe1dLvqSYAkipkTwIik0P9TvPaFYCwuLwbmgMuvMMLeZYWo1wdRqgrnVDFOLiX/e3TJH7680QoqgmCD+nyxGhqBowWPb8ujOx9IwKcByNwOWDqt9HVb7Oiz2j/VO1jFYADN3TNn+ufKcF5kdFvt/eovTZazB/m9OfTQVmf/0T3W8W6LphhtuwIQJE/DXv/7VFzb1W/qjaGre2ow/L/4TANeheNT/RvnNlqafm3DinhPoKOvspcQEMXbJ2EkLkpD5ZqbTHBzCfSx6C9QFaqgPqKEt1EKZpUTCbQk+TbxmLSxqVtfg8JPFUDTYxxCNMuCD1SH44tZzffb57tK8rRlHrz/KCw9phBQj1o5A6JhQ7B+3nw8RJd6diOxV2X73kjlibDLi1HOnULWiqmvoVgqk/1860p9ND+hRKIYGA5o3NaP1t1Yu3+niKIRPDPd6/7dAxNxh5rxuEi7XK5AqeH0Fa2HtBJUkWOKzBq694dYZcebMmdi4cSN0Oh2Uyr6P0xPew5u9mTwlekY0xhWMQ9lzZTiz9AxgAS+YZJEyZK3KQvx1zud0EZ4hUUgQPi4c4eM87+kjFkbCDdD9cbIZv79Qguv/C8itUdp/3wtI8z3vZeQLoqZF4Zy95+DIVUegOaKBudWMw5cdhnKokhdM4eeHI2tZVsAJJgAIig5C1rtZSJqXhOIHi9G2k6tmVWYpkfNxDsIn9N0x4C7yWDkSbk5Aws0Dr62MNFg6IMShEEbCQKqUBsTsULck6h133IHhw4fj0UcfxaFDh6DVdp+wRwQuZo2Zn7kljZAi5krv9o9xB1moDJn/ysTY3WMRkseFBiImR2DcoXEkmM5S0mJV+M98YM5qYOccBf71CPDNtZ0jVAIR5RAlxuwag9irrVMHLFxfL4Cr5hzx9Qiv9sjyBWH5YRjz2xiM/HYkhq0YhnEHx/ULwUQQ/sQtT9P06dMBcImwixYt6nY9T1oOEL6nfl0932gu/ob4gFDxNsLHh2PcoXHoON2B4HT3EziJwMfW4LI6GXhtrgm2CvkEJ8O4AwlZmAwjvh6BshfKUP5iOQCuQGHkupG9ts4IFBiGQexVNG6KIMTilmgaNWoUXcTOAoSJ1wl3BJ6bm5EwfinTJvqWNMEolTZzZ4VUIHuabDASBkNeGIKwc8NQt6YOSfOSvDK2hCCIwMQt0fT222972w6ij9FX6vnxI8FDghExybNScoJwlxCpFDEyGRpN9o0I+4NoshF7RSxiryCPDUGc7QR20J3wGbWf1fIluwl3eLfLL0G4inBwr43+JJoIghgYkGgagLAsi5qPBFVzvYyEIAhfk+5ENMUHeE4TQRADD1HhuSVLlgAAFixYgOjoaP65GJ566in3LOtHCDuC9wfUB9XQHuMqHsMnhXcZtEoQfY0tGVwIeZoIggg0RImmDRs2gGEY3HrrrYiOjsaGDRtEvTnDMANCNE2fPh3Tp0/nm1sGOoHUm4kggK7huVCpFKpu5lkSBEH4C1Giae3atQCA2NhYu+dE/8NitKDu8zoAXHl03PVxfraIILp6mgK93QBBEAMTUaIpMTGxx+dE/6HppyZ+OG7sVbF+a0VPEEIcPU0UmiMIIhChRPABRqD3ZiIGJumOniYSTQRBBCAkmgYQxmYjGr5rAAAExQUh+tJoP1tEEBzxcjnkgrYXJJoIgghESDQNIOr/Ww9WzzVnir8lPqCnmBMDCwnDIE3gbaKcJoIgAhG6ag4gqGqOCGSEeU3kaSIIIhAh0TRA0J3UoW1nGwBANUKF0DGhfraIIOwRVtDFk2giCCIAIdE0QKj5xN7LRGNTiEBjTFgY/3iESuVHSwiCIJzj1sBeon/Bsmxn1RwDJNxKVXNE4DE/KQlqsxlDgoMxPCTE3+YQBEF0gURTP6HiXxWo+FdFr+uFjQ1D3nd5dssOTjmIjlMdAABGzmD/hP1Ot017NA1pj6bxz03tJuzJ2SPKvrxv8xB2TqenoOF/DThx74let5OGSjHh+AS7ZScfP4naL2q72aKTmMtjkP1ett2yfeP2wVBj6HXbjNcykHBLp3jUFmlx6OJDvW4HAOfsPQeKpM5QUtXKKpS9WNbrdqosFfK35tstO3brMbT80tLrtsnzkzF48WC7ZbtSd4mwFsj5NAdRF0bxz5u3N6PwtkJR2048M9HuedkLZahaVdXrdpFTI5H7Wa7dskMXHYL2hLbH7aYBGPzcYGBB5zJ9tR77z3V+zDqSvyUfquxOL1Xt57U4+cTJXreTJ8oxbt84u2VF9xSh8YfGXrdNuDkBGa9n2C37Y/gfMKvNvW6b9e8sxF4Ryz9v39+Ogr8U9LodAIwvHA9ZWOcp3JNzRMFVBWg/0N7rtnSOONTrdgCdI3x5jnA8BvsaEk1eoC9mz5naTDBU9v5DN6YZuyzTFev4x6ye7fZ9TG0m+wUsRH0mAFgMFvvnOouobaVhXUdlGJuNorY1NZm6LDPUGERta9baX9BYU/f7xRHWzNq/l9osaltZRNefm7FB5N/a6uRvFWuvnu3yXOy2zuwQdRw2dD0ODbUivxsHscGaXfhuTA7fjVbcd+MMU5PIv7XZyd9aZYC5vXfRZNE5/G4M4n43AAD7P9Wjc4SxXuRxSOeIXrcD6Bzhy3NEl2OwjyHR5AX6YvacLFwGeUrvybFBcfal2madGcYm68HJAPIkOdBNOpMs3OFwYCDqMwFAIrdPj5MoJaK2lYZ2PSEGRQWJ2lYW3fXwlSeKs1eqsv9cRsaI/lsZqf0OlIZKRW0rT+i6TlCsyL/VyclUtL0Kpstzsds6s0PUcRjbtWWAPEHu9MTuiOMxwUhd+G5kDt+NSuR34+S4kUWL/FuddNWXJ8tFeZokSoffjVzc7wZAl9+xu+cI2zJRxyGdI0RtS+cI350juhyDfQzDsizb+2qEGGyiadWqVcjOzu59gz6gcnklih8oTuy/mwAAE1BJREFUBgAk3JmAnNU5fraIIAiCIPonVD13lsKyLCr+WYHiB4v5ZdSbiSAIgiDch8JzZyGsmUXJohJUvlvJL0ual4TIaZH+M4ogCIIg+jkkms4yzBozjt1yDI3fdVb9DH5+MNKfS6feTARBEAThASSaziL0NXocufII2vdxpcOMjEH2f7KReCeF5QiCIAjCU0g0nSVoCjUouKwAHWVcPyZpuBQjvxmJqIujetmSIAiCIAgxkGg6C2j5pQVHrj4CUwtXqqlIUyDvhzyE5tF8OYIgCILwFiSa+jm1n9fi+F3HwRq4zhGh+aHI+yEPimRFL1sSBEEQBOEKJJr6KSzL4vSS0zj1zCl+WfTMaOR+mWs3WoEgCIIgCO9AV9d+iMVkQfH9xaheVc0vS1qQhGHLhkEio9ZbBEEQBOELSDT1M0ztJhy74RiaNjbxy4a8OgSDnhxELQUIgiAIwoeQaPICfTGwFwD0VXoUXF4A9SHucxg5g+GrhyPh5oRetiQIgiAIwlNINHmBvhjYqy5Qo+CyAujP6AEAsigZRq4ficgLIn3yeQRBEARB2EOiqR/QtLkJR2cfhbmNm5oePDgYeRvyEDI8xM+WEQRBEMTAgURTgFP3VR0Kby4Ea+JaCoSdG4a87/MgT5D72TKCIAiCGFhQqVWAE5ofCmmEFAAQc1UM8rflk2AiCIIgCD9AnqYAR5WpQt53eaj/uh4Zr2WAkVKFHEEQBEH4AxJN/YCIiRGImBjhbzMIgiAIYkBD4TmCIAiCIAgRkGgiCIIgCIIQAYkmgiAIgiAIEZBoIgiCIAiCEAGJJoIgCIIgCBGQaCIIgiAIghABiSaCIAiCIAgRkGgiCIIgCIIQAYkmgiAIgiAIEVBHcC+wefNmbN68GWq12t+mEARBEAThI0g0eYHp06dj+vTpKCoqwvz58/1tDkEQBEEQPoDCcwRBEARBECIg0UQQBEEQBCECCs95Eb1eDwAoLy/3syUEQRAEQbhKeno6goODu32dRJMXqampAQC8/PLLfraEIAiCIAhXWbVqFbKzs7t9nWFZlu1De85qWlpasGfPHiQlJUEul9u9Vl5ejpdffhnPPvss0tPT/WRh/4L2mXvQfnMP2m/uQfvNdWifuUdf7DfyNPUhkZGRmDFjRo/rpKen96hiia7QPnMP2m/uQfvNPWi/uQ7tM/fw536jRHCCIAiCIAgRkGgiCIIgCIIQAYmmPiImJgZz5sxBTEyMv03pN9A+cw/ab+5B+809aL+5Du0z9wiE/UaJ4ARBEARBECIgTxNBEARBEIQISDQRBEEQBEGIgEQTQRAEQRCECEg0EQRBEARBiICaW/oYg8GA999/Hz///DPa29uRkZGBefPm4dxzz/W3aQHJwYMH8fDDDzt9bcWKFRgxYkQfWxSYaLVarFmzBseOHUNhYSHa29vx9NNPY9asWV3WLSsrw7vvvouCggLIZDKcf/75ePDBBxEZGdn3hvsRsfvslVdewcaNG7tsP2jQIHz66ad9ZW5AUFhYiI0bN+LgwYOoqalBeHg4RowYgXnz5iEtLc1uXTrOOhG73+hYs+fUqVP48MMPUVRUhKamJgQHByM9PR0333wzJk2aZLeuv443Ek0+5tVXX8X27dtx/fXXIzU1FRs2bMATTzyBpUuXYtSoUf42L2CZPXs2cnJy7JalpKT4yZrAo7W1FatXr0ZCQgIyMzNx8OBBp+vV1dVh4cKFCA0Nxfz586HT6bBmzRqUlpbivffeQ1BQUB9b7j/E7jMAkMvleOKJJ+yWhYSE+NrEgOPzzz9HQUEBpk2bhoyMDDQ2NmLdunWYN28eVqxYgaFDhwKg48wRsfsNoGNNSE1NDbRaLWbOnInY2Fh0dHTgl19+wdNPP43HHnsMV111FQA/H28s4TOOHj3KTpkyhf3888/5ZR0dHexNN93E3nvvvX60LHA5cOAAO2XKFHbbtm3+NiWg0ev1bENDA8uyLFtYWMhOmTKF/fHHH7us989//pOdPn06W1NTwy/bu3cvO2XKFPbbb7/tM3sDAbH77O9//zs7Y8aMvjYvIDl8+DBrMBjslp0+fZq9+OKL2RdffJFfRseZPWL3Gx1rvWMymdi77rqLvfXWW/ll/jzeKKfJh/zyyy+QSqW8OgYAhUKByy+/HEePHkVtba0frQt8tFotTCaTv80ISORyuagGb7/88gsmTpyIhIQEftm4ceOQlpaGbdu2+dLEgEPsPrNhNpuh0Wh8aFHgk5eX1+WuPS0tDYMHD0Z5eTm/jI4ze8TuNxt0rHWPVCpFfHw81Go1v8yfxxuF53xIcXExUlNTu7habWGnkpISuy+d6OTVV1+FTqeDVCrFqFGjcN9992H48OH+NqtfUV9fj+bmZqeDLXNycvD777/7war+QUdHB2bNmoWOjg6EhYXh4osvxr333guVSuVv0/wOy7Jobm7G4MGDAdBxJhbH/WaDjrWu6HQ66PV6aDQa7Ny5E3/88QemTZsGwP/HG4kmH9LY2Oj0zta2rKGhoa9NCnhkMhmmTp2K8847DxERESgrK8PatWvx4IMPYvny5cjKyvK3if2GxsZGAOj2GGxra4PBYIBcLu9r0wKamJgY3HzzzcjKygLLsvjjjz+wfv16nDx5EkuXLoVMNrBPm5s2bUJ9fT3mzp0LgI4zsTjuN4COte5YtmwZvvvuOwCARCLBBRdcgEceeQSA/4+3gfmN9BF6vd5pQprty9Tr9X1tUsCTl5eHvLw8/vnkyZNx4YUX4q677sLKlSvxxhtv+NG6/oXt+OrtGBzoFzNH7rnnHrvnF198MdLS0rBq1Sr88ssvuPjii/1kmf8pLy/Hm2++iREjRmDmzJkA6DgTg7P9BtCx1h3XX389LrzwQjQ0NGDbtm0wm80wGo0A/H+8UU6TD1EoFPwXLcRgMPCvE72TmpqKyZMn4+DBgzCbzf42p99gO77oGPScG264ARKJBPv27fO3KX6jsbERTz75JEJCQvDSSy9BKpUCoOOsN7rbb91BxxqQnp6OcePGYebMmfjHP/4BnU6Hp556CizL+v14I9HkQ2JiYnhXohDbstjY2L42qd8SHx8Po9GIjo4Of5vSb7C5r7s7BsPDwwf03b8rKBQKhIeHo62tzd+m+AW1Wo0nnngCarUab7zxht25i46z7ulpv3XHQD/WnHHhhRfi+PHjqKio8PvxRqLJh2RmZuLMmTNdqiKOHTvGv06Io6qqCnK5HEql0t+m9Bvi4uIQGRmJoqKiLq8VFhbS8ecCWq0Wra2tA7JRo16vx1NPPYWKigosWbKkSyIzHWfO6W2/dcdAPta6wxaSU6vVfj/eSDT5kAsvvBBms5lPaAM49+GPP/6I3NxcqpxzQktLS5dlJSUl2LlzJ84991xIJHTIusLUqVOxa9cuu/YW+/fvR0VFBV+NQnSi1+uh1Wq7LP/oo4/AsiwmTJjgB6v8h9lsxvPPP4+jR4/ihRdewMiRI52uR8eZPWL2Gx1rXWlubu6yzGQy4aeffoJCoeCFpz+PN0oE9yG5ubmYNm0aVq5ciZaWFqSkpGDjxo2oqanBk08+6W/zApLFixdDoVBg5MiRiIqKQllZGb7//nsEBwd3SZoc6Hz99ddQq9W8m3rnzp2oq6sDwHVUDw0NxW233Ybt27dj0aJFuO6666DT6fDFF19g6NChTkeunO30ts/a29tx9913Y/r06Rg0aBAAYM+ePfj9998xYcIETJ482W+2+4Nly5Zh586dmDhxItrb2/Hzzz/bvT5jxgwAoOPMATH7rampiY41B9544w1oNBqMHj0acXFxaGxsxKZNm3D69Gk88MADfBsGfx5vDMuyrE8/YYCj1+v52XNqtRpDhw7FvHnzMH78eH+bFpB89dVX2LRpEyorK6HRaBAZGYlzzjkHc+bMQWpqqr/NCyhuuOEG1NTUOH1t7dq1SEpKAsDNc3Kc0fTAAw8gOjq6L80NCHrbZ6GhoVi6dCmOHj2KxsZGWCwWpKSk4JJLLsFNN9004ErAH3roIRw6dKjb13/99Vf+MR1nnYjZb+3t7XSsObBlyxb88MMPKC0tRWtrK1QqFbKzs3Httdd2EZH+Ot5INBEEQRAEQYiAEkQIgiAIgiBEQKKJIAiCIAhCBCSaCIIgCIIgRECiiSAIgiAIQgQkmgiCIAiCIERAookgCIIgCEIEJJoIgiAIgiBEQKKJIAiCIAhCBCSaCIIgCIIgRECiiSCIgKG6uhoXXHABXnnlFX+b4hU2bNiACy64ABs2bPC3KQRBeAESTQRBBDQPPfQQLrjgAn+b4ZSzTeQRBNEzA28iIEEQAUtcXBw++eQThISE+NsUrzBlyhTk5uYiJibG36YQBOEFSDQRBBEwyGQypKen+9sMrxEaGorQ0FB/m0EQhJdgWJZl/W0EQRAEwIW7brzxRsycORPPPPNMt2E52+s2Tp48iU8++QSHDh1CW1sbYmJiMGnSJNx1112IiIhw+v633HILVq1ahT///BNtbW1Yu3YtkpKS8Ouvv2Lbtm04fvw4GhoaIJPJkJGRgeuuuw4XXngh/14bNmzAq6++6tS+pUuXYsyYMfw6Tz/9NGbNmmW3TkFBAT755BMcPXoUer0eiYmJuOiii3DLLbcgODjYbt0LLrgA+fn5eP7557FixQr8/vvv0Ol0yMzMxD333IMxY8a4uqsJgnAD8jQRBBGwzJkzBxs3bkRNTQ3mzJnDLx82bBj/eMeOHXj++efBMAwmT56M+Ph4lJWV4ZtvvsGePXvw3nvvISwszO59Kysrcd9992Ho0KGYOXMm2traEBQUBABYuXIlZDIZ8vLyEBMTg5aWFuzcuRPPPfccHn74YcyePRsAkJmZieuuuw5fffUVMjMzMXnyZP79ExMTe/y7tm3bhhdffBFBQUG46KKLEBkZib1792L16tXYs2cPli5dCoVCYbeNWq3GAw88gNDQUMyYMQPNzc3Ytm0bHnvsMaxatQpDhw51ax8TBCEeEk0EQQQsc+fOxaFDh1BTU4O5c+d2eb21tRV///vfERERgWXLltmJlS1btuCFF17A+++/j0WLFtltV1BQgDlz5jh9z9deew3Jycl2y7RaLe6//368//77uPzyyxEcHIxhw4YhNDSUF03O3ssZGo0Gr7/+OqRSKVasWIGMjAwAwIIFC/Diiy9i69atWLNmDe6880677UpKSnD11Vdj0aJFkEi4Gp6xY8fitddewzfffIPHHntM1OcTBOE+VD1HEES/5aeffoJGo8GCBQu6eHcuvvhiZGVlYcuWLV22i46Oxu233+70PR0FEwCoVCrMmjULarUax48f98jmHTt2QK1W47LLLuMFEwBIJBLcd999kEqlTlsUKJVK3HvvvbxgArgwpVQq9dgmgiDEQZ4mgiD6LUePHgUAHDt2DJWVlV1eNxgMaG1tRUtLCyIjI/nlmZmZfDjOkebmZnz22Wf4/fffUVtbC71eb/d6Q0ODRzYXFxcDAPLz87u8lpCQgOTkZFRUVECr1UKlUvGvpaam2j0HuMT56OhoqNVqj2wiCEIcJJoIgui3tLe3AwDWrVvX43odHR12z6Oiopyu19bWhgULFqC2thZ5eXkYN24cQkNDIZFIUFJSgh07dsBoNHpks0ajAcB5u5wRExODiooKaDQaO5HUXRsGqVQKi8XikU0EQYiDRBNBEP0Wm6hYvXq1S4nQDMM4Xf7DDz+gtrYWd999d5ecok8//RQ7duxw31grNvHT1NTk9HXb8rOlVxVBnE1QThNBEAGNLYfHbDZ3eS03NxdAZ5jOU2whPmElnI3Dhw93a5srnh5b5d+hQ4e6vFZbW4vKykokJyd3CcURBOF/SDQRBBHQhIeHAwDq6uq6vHbZZZdBpVJh1apVOHXqVJfXOzo6XBJUtmTygoICu+WbNm3C77//3mX9sLAwMAzj1LbumDx5MkJDQ/Hjjz/a2cyyLN577z2YzeYuPZ0IgggMKDxHEERAM3bsWGzfvh1/+9vfMGHCBMjlcmRmZmLSpEmIjIzE4sWL8dxzz2Hu3LkYP348Bg0aBKPRiJqaGhw6dAgjR47EG2+8IeqzZsyYgc8//xxLly7FwYMHkZCQgJKSEhw4cAAXXHABfv31V7v1VSoVhg8fjj///BMvv/wyUlNTwTAMLr300m57NYWEhODxxx/Hiy++iHvvvRfTpk1DZGQk9u/fj6KiIuTk5OCmm27yeL8RBOF9SDQRBBHQXHHFFaiursbWrVvx+eefw2w2Y+bMmZg0aRIA4Pzzz8f777+PL774Avv378e+ffsQHByMuLg4zJo1CzNmzBD9WfHx8Xj77bexYsUK7Nu3D2azGVlZWfjnP/+Jurq6LqIJAJ599lm888472LVrFzQaDViWxahRo3pscDlt2jRER0fj008/xa+//sp3BL/zzjtxyy23dGlsSRBEYEBjVAiCIAiCIERAOU0EQRAEQRAiINFEEARBEAQhAhJNBEEQBEEQIiDRRBAEQRAEIQISTQRBEARBECIg0UQQBEEQBCECEk0EQRAEQRAiINFEEARBEAQhAhJNBEEQBEEQIiDRRBAEQRAEIQISTQRBEARBECIg0UQQBEEQBCGC/wcOwH2oeT8A1gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = []\n", + "integrated_flux = []\n", + "integrated_flux_each_band = [[],[],[],[],[]]\n", + "\n", + "for result in all_results:\n", + " iteration.append(result['iteration'])\n", + " image = result['model_map']\n", + " pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr\n", + "\n", + " integrated_flux.append(np.sum(image) * pixelarea)\n", + "\n", + " for energy_band in range(image.axes['Ei'].nbins):\n", + " integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)\n", + " \n", + "plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')\n", + "plt.plot(iteration, np.full(len(iteration), integrated_flux_truth), color = 'black', linestyle = \"--\")\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"integrated flux (ph cm-2 s-1)\")\n", + "plt.yscale(\"log\")\n", + "\n", + "colors = ['b', 'g', 'r', 'c', 'm']\n", + "for energy_band in range(5):\n", + " plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = \"energyband = {}\".format(energy_band))\n", + " plt.plot(iteration, np.full(len(iteration), integrated_flux_each_band_truth[energy_band]), color = colors[energy_band], linestyle = \"--\")\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "718b60f4", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at 20th interation. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixel at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "b05459a3", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "81f5ab8c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABa7klEQVR4nO3deVxU1f8/8NfMyL4KKLiQgiiKqahpmIoo44KYWy5lpWbikrmkZlqWWvbJzBLTT1p+Sz7aoqWkpeACCmpqqEGiLG6IWywiIItsM/f3hz8mkWEb7jALr+fj4SO598w97xlofHHumXMkgiAIICIiIqI6k+q6ACIiIiJDxSBFREREpCEGKSIiIiINMUgRERERaYhBioiIiEhDDFJEREREGmKQIiIiItIQgxQRERGRhhikiIiIiDTEIEVE1AhIJBL4+fnpugwio8MgRaQFCoUCW7duxYABA+Dg4AATExM0b94cXbt2xfTp0/Hbb7/pusRqRUVFQSKRYOXKlboupUH5+flBIpEgKiqqwvG2bduibdu2OqmptgyhxoZSUFCAH374AZMmTULHjh1hZWUFGxsbPPPMM/j8889RUlJS5WMTEhIwYcIENG/eHObm5vD09MSKFSvw8OHDBnwGZEia6LoAImOjUCgwYsQIHDx4EPb29ggMDETr1q1RUlKCS5cu4ccff0RSUhJGjhyp61KpEUlMTISlpaWuy2gQJ06cwCuvvAIHBwcMHDgQo0ePRnZ2Nn777TcsXrwYoaGhiIyMhLm5eYXH/fnnnxg0aBBKS0sxbtw4uLq64ujRo/jwww8RGRmJyMhImJmZ6ehZkb5ikCIS2U8//YSDBw+iW7duiI6Ohp2dXYXzhYWF+PPPP3VUHTVWHTt21HUJDcbFxQXff/89xo8fD1NTU9XxdevWwc/PD6dOncJ///tfLFq0SHVOoVDgtddeQ2FhIfbt26f6RUepVGLChAnYs2cP1q9fj6VLlzb48yE9JxCRqGbPni0AENavX1/rx2zbtk0AIGzbtk3Yv3+/0KdPH8HS0lKwt7cXXnjhBeHy5ctqH1dQUCD85z//Ebp16yZYWloKVlZWgo+Pj/Djjz9W2dehQ4eEESNGCM2aNRNMTU2F1q1bCyNHjhSOHDkiCIIgTJkyRQCg9s+xY8cq1RseHi4MGDBAsLW1FcrfUlJSUgQAwpQpU9TWMGDAAOHJt59jx44JAIQVK1YIZ8+eFYYOHSrY2toK9vb2wtixY4WbN28KgiAI165dEyZOnCg4OTkJ5ubmgp+fnxAXF1fr17o65XWVP8/ymtT9efK5JSYmClOmTBFat24tmJiYCM2bNxdeeuklISkpqVI/5a/xtWvXhC+//FLo0qWLYG5uLgwYMEAQBEEoLi4WNm7cKAQEBAhPPfWUYGpqKjRt2lTw9/cXwsLC1L5uNdUIQHX9x+Xk5AhLly4VOnToIJiZmQn29vbCkCFDVD8P6vpasWKFEBsbKwwfPlyws7MTLCwsBF9fX+GPP/6o0+utCz/88IMAQBgxYkSF45GRkQIAwdfXt9Jjrl27JgAQ2rRpIyiVyoYqlQwER6SIRObo6AgAuHz5cp0fGxoaivDwcIwZMwZ+fn6Ii4vDnj17cOzYMZw6dQqenp6qtjk5ORg0aBBiY2PRo0cPTJs2DUqlEocOHcKkSZNw6dIlrF69usL1V6xYgQ8//BDW1tYYPXo0XF1dcffuXZw6dQrff/895HI5Ro8eDQD43//+hwEDBlSYoPzkHJzdu3fj4MGDCAgIwKxZs5Camlrn5/yks2fP4tNPP8WAAQMQFBSE+Ph4hIaG4uLFi9i3bx/69euHjh07YvLkyUhNTUVoaCgGDx6M69evw9raut79P65t27ZYsWIFgoODAQALFixQnfP29lb9/eDBgxg7dixKS0vx/PPPw8PDA7dv30ZoaCgOHDiAY8eOoUePHpWuP3/+fJw4cQKBgYEYPnw4ZDIZAOD+/fuYP38+nnvuOQwePBjNmjXDP//8g99//x3Dhw/H1q1bMX369DrVqE5OTg769u2LhIQE9OrVCwsWLMC9e/fw888/Y8iQIdi8eTNmzpxZ6XHnzp3D2rVr0adPH0yfPh03b97Enj174O/vj7i4uAo/p/rGxMQEANCkScV//o4ePQoAGDZsWKXHuLu7o0OHDrh8+TKuX7+Odu3aab9QMhy6TnJExuavv/4STExMBIlEIrzyyivCnj17hBs3blT7mPIRHgDC77//XuFccHCwAEAYNGhQhePloxqffvppheMPHz4Uhg4dKkgkEiE2NlZ1/NChQwIAwc3NTbh9+3alGm7duqX6++MjD9XVK5FIhPDw8Ern6zMiBUD4/vvvK5ybNm2aAEBo2rSpsHr16grnPvzwQwGAEBwcrLavunhyRKpcmzZthDZt2qh9zP379wV7e3vB0dFRuHTpUoVz8fHxgpWVldC9e/cKx8u/dy1bthSuX79e6ZpFRUUVvh/lcnJyhM6dOwtNmzYVCgsLa12jIKgfkZoxY4YAQJgxY0aFkZbLly8Ltra2gqmpqZCSkqI6/vj3aNu2bRWutWXLFgGAMHv27CpreNL69euFFStW1PrPr7/+WutrV2XYsGECAGHLli0Vjo8bN04AIOzevVvt4wIDAwUAlUYEiRikiLRg165dgouLS4XbLA4ODsLo0aOF3377rVL78mDyZFgSBEEoKysT2rVrJwBQBbJ79+4JMplMeOaZZ9T2HxcXJwAQ3n77bdWxESNGCACE0NDQGuuvbZAaPXq02vP1CVL9+vWr1D46OloAILRt21YoKyurcO7GjRsCAGHq1Kk1Pq+aaBKkyoPupk2b1J5fsGCBAKBCyCoPUpqEv88//1wAIERHR9e6RkGoHKSKi4sFS0tLwdraWsjKyqrUfvny5QIAYdWqVapj5d+jvn37VmpfUlIiNGnSROjZs2etn0ubNm2qvC2p7k9VP0+1tXHjRgGA4O3tLZSUlFQ4N3jwYAGA2luagiAIkyZNEgBUe9ucGife2iPSggkTJmDMmDE4duwYTp48idjYWJw8eRJ79+7F3r17MXnyZISEhEAikVR43IABAypdSyaToV+/frh27RpiY2PRpk0bnD17FgqFosolCkpLSwE8+qRWuTNnzkAikai9daGp3r17i3atcs8880ylYy1btgTw6FZV+e2vcq1atQIA3L59W/RaauP06dMAgL///lvt96L8Fm9iYiK8vLwqnKvu9bt06RI+++wzHD9+HP/88w+KiooqnL9z50696k5OTkZhYSH69u0LBweHSucHDRqE1atXIzY2ttI5dd8jExMTODs7Izs7u9Y13Lhxo04110doaCgWLFgAFxcX7NmzR3WLj6i+GKSItMTExARDhgzBkCFDADz6VNCePXswbdo0bN++HWPGjFHNRyrn7Oys9louLi4AgNzcXABAVlYWgEfzic6ePVtlDfn5+aq/5+TkoGnTprCwsND4OVVVl5ie/JQj8O98lurOlYfHhlb+vdi6dWu17R7/XpSr6vU7c+YMBg0ahLKyMvj7+2PkyJGwtbWFVCpFXFwc9u3bh+Li4nrVXf6z1KJFC7Xny4/n5ORUOmdvb6/2MU2aNIFCoahXXdqwd+9evPjii2jevDmOHTsGd3f3Sm3Kf7bKX5cnlR+v6rlT48UgRdRAZDIZJkyYgPj4eKxevRpHjx6tFKTS09PVPjYtLQ3Av2/25f9966238MUXX9Sqf3t7e2RlZeHhw4eihaknR9TKSaWP1votKytTe17dP86Gqvx78ffff6Nr1651emxVr9/q1avx8OFDHDt2rNJq5J988gn27dunUa2PK6+7/GfrSf/880+FdtoQHBxcp58Fb2/vSv/P1OSXX37BpEmT4OLigqNHj6J9+/Zq25VPkK/qQyJXrlwBAHTo0KFO/ZPxY5AiamA2NjYAAEEQKp2Ljo6udEyhUODkyZMAgO7duwN4dEtIKpXixIkTte7Xx8cH+/fvx8GDBzFmzJhq25bfPtN0dKFp06YAgFu3blU69+DBA40+0ahLMpmsytWwfXx8sGfPHpw4caLOQaoqV69ehYODg9otXdT9jNRUozqenp6wtLTE33//jZycnEojLceOHQMAtZ82FEtwcHCdPuk5ZcqUOgWpH374AVOmTEGrVq2qHIkqN2jQIHz88cc4ePAgli1bVuHc9evXcfnyZbRp06baa1DjxC1iiET2008/4ciRI1AqlZXOpaWlqW4B+fr6Vjp/9OhR7N+/v8KxTZs24dq1axg4cCDatGkDAGjevDlefvllnDt3Dh999JHawHPt2jWkpKSovp47dy4AYNGiRWrn1zx+rHwJh5s3b9b4fNWxsbFBx44d8ccffyAhIUF1XKFQYOHChQ2y3caNGzcgkUhE2TbF0dERmZmZaut+7bXXYG9vj1WrViEmJqbSeaVSWWnLmZq0bdsW9+/fx4ULFyoc//bbb3Ho0KE616iOqakpXn75ZeTl5eH999+vcO7atWv48ssvYWJigldffbVOtdfFjRs3IDz60FOt/oSEhNT62v/73/8wefJkPPXUUzh+/HiNAWjAgAHo1KkTjh8/XmELJ6VSiXfeeQcAMGvWrCpHEanx4ogUkcj+/PNPbNiwAS4uLujXrx/c3NwAACkpKThw4AAePnyIUaNGYdy4cZUe+/zzz2PMmDEYM2YMPDw8EBcXh/DwcDg4OOCrr76q0HbTpk24cuUKPvjgA+zYsQP9+vWDs7Mz7t69i8TERJw9exY//fSTqv8hQ4Zg+fLlWL16NTp16qRaRyo9PR0nT56Ej4+P6h8qT09PtGrVCjt37oSJiQnatGkDiUSCV199VRXmavL222/j9ddfR9++fTF+/HiYm5vj2LFjKC0tRbdu3fD333/X41WuWXmQfXK9IE34+/vj7NmzGDZsGHx9fWFmZoZu3brh+eefh6OjI3bv3o0xY8bAx8cH/v7+6Ny5MyQSCW7duoXTp08jKyur0mTx6ixYsACHDh1Cv379MGHCBNjZ2eHcuXM4efIkxo0bh927d9epxqqsWbMGJ06cwKZNm3D27FkMHDhQtY5UXl4eNm3apPr5MSTHjh1Tras2cOBAbNu2rVIbe3v7CmtuyWQybNu2DYMGDcK4ceMwbtw4PPXUU4iMjMS5c+fQt29fvPXWWw34LMhg6ObDgkTG6+bNm8KmTZuE0aNHCx06dBBsbGwEExMTwcXFRQgICBB27NghKBSKCo95fKXw33//XfDx8REsLS0FOzs7YezYsUJycrLavspXwO7Tp49q3R9XV1dh0KBBwvr164V79+5VesyBAweEoUOHCk2bNlWtbD569GghMjKyQruYmBhh0KBBgq2trSCRSKpc2bw6//d//yd4eXkJpqamgrOzszBjxgzh3r17Na5s/qSallOAmjWS9u7dKwAQ3nvvvWprfFxVyx/k5+cLs2bNElq1aiXIZDK1taSkpAhz5swRPDw8BDMzM8HGxkbw9PQUXnnllUrrH5Uvf/D4Gk1P+v3334Vnn31WsLa2Fuzs7ITBgwcL0dHRVb72NdWo7jUSBEHIzs4WlixZInh4eAimpqaCnZ2dIJfLhUOHDlVqW9OyGDUtwdBQHl+Xrao/VdV56dIlYdy4cYKjo6NgamoqtG/fXvjggw8qrdtFVE4iCGomahBRgwoJCcFrr72Gbdu2YerUqbouxygsXLgQX3/9NVJTU+Hk5KTrcojISHGOFBEZpejoaAQFBTFEEZFWcY4UERml8+fP67oEImoEOCJFREREpCHOkSIiIiLSEEekiIiIiDTEIEVERESkIQYpLSsqKkJycnKdFuMjIiIiw8AgpWWpqakICgqq035StXXt2jXRr0lExoXvE0TaxSBlwIqLi3VdAhHpOb5PEGkXgxQRERGRhhikiIiIiDTEIEVERESkIW4RQ0REVEcKhQKlpaW6LoNEYGJiAplMpvHjGaS0JCIiAhEREcjPz9d1KUREJKL8/Hzcvn0b3BjEOEgkErRu3RrW1tYaPZ5BSkvkcjnkcjmSk5MRFBSk63KIiEgECoUCt2/fhqWlJZo1awaJRKLrkqgeBEFAZmYmbt++jfbt22s0MsUgRUREVEulpaUQBAHNmjWDhYWFrsshETRr1gw3btxAaWkpgxQREVFDqOtIlFIpIC3pPh7mFMPC3gwuHR0glXI0Sx/Ud1SRQYqIiEiLUmLScGZ7Igru/7tVmJWDOXwmd4JbbxcdVqY9K1euxNKlS2Fubi7qdUNCQuDj44OOHTvW+bGbNm3CuXPnEBISImpNXP6AiIhIS1Ji0hAZHFshRAFAwf0iRAbHIiUmTdT+ysrKRL2eplatWlXlHrP1qTEkJARJSUkaP14bGKS0JCIiAkuXLsXGjRt1XUqDUwhKnM27ivD7f+Fs3lUoBKWuSyIianBKpYAz2xOrbXNmRyKUyvp9+k8ikWDFihXo1asXli1bhry8PAQFBaF3797o2rUrZsyYgZKSEgDAnTt3MG7cOHTp0gVdu3bF+++/DwDIyMjA2LFj0aVLFzz99NP4+uuvVddv27YtPvjgA/Tp0wdubm5YvXq16tzq1avRqVMneHt7w9vbG6mpqZg1axYAoH///vD29kZGRgamTp2KadOmwdfXF08//bSq7pycHNW1nJyccOPGDQBAYmIihg4diq5du6Jr167YsmUL/u///g/nzp3DW2+9BW9vb4SFhQEA1q1bh969e6NHjx4YNmyYam/bvLw8TJw4EZ6enujXrx/i4+Pr9TpXhbf2tKSxfmovIvsC1t76FemluapjziZ2WOI6BvKmXXVYGRFRwzodcqnSSNSTCrKK8MPsSHiPbIcugW4a9yWTyXD27FkAwIwZM9C/f39s3boVgiAgKCgIGzZswNtvv41XXnkFQ4YMwe7duwEAmZmZAIC5c+fC09MToaGhyMjIQM+ePdGtWzf4+PgAAHJycnD69Gncu3cP7dq1w2uvvQZLS0usW7cO//zzDywsLFBYWAipVIotW7bg66+/xokTJ2Bvb6+q8fz58zh58iRsbGyqfS5lZWUYNWoUVq1ahZdeegkAcO/ePTg5OeH777/HggULMHr0aADAjz/+iOTkZJw+fRoymQw7duzAG2+8gQMHDuDDDz+EmZkZkpKS8ODBA/j4+ODZZ5/V+DWuCoMUiSYi+wIWXw/Bk79bZZTmYvH1EKxzn8owRUSNRmFuSa3aFeeVouRh/W7JTZs2TfX3vXv34vTp0/jiiy8AAA8fPoRMJkN+fj5OnjyJQ4cOqdo2a9YMwKO7KOfPnwcANG/eHGPHjkVERIQqSE2aNAnAo1Ejd3d3pKSkoE+fPmjfvr0qnAUGBqJ169ZV1jh+/PgaQxQAJCcno6ioSBWiyvtVZ+/evTh79ix69uwJ4NHyFOUiIyOxfv16SCQS2NnZYdKkSbh27VqN/dcVgxSJQiEosfbWr5VCFAAIACQA1t7ai4H2T0Mm4R1lIjJ+lnamtWpnZmMCU4v6/XP8+GKSgiBgz5496NChQ4U2dVkg+slPsj0+aVwmk6GsrAwymQxnzpzBqVOnEBUVBR8fH/z000/o379/jTWWX+fx4FPVnKrqCIKAZcuWYcaMGTW21daaXwxSBuxAaTzmX/hF12UAAEqUZchRFFR5XgCQXpqDQX+vgKlUP37sXnUegMnOfroug4iMVJ+pnXHzr8xqb+9ZOZpj4gY/UZdCGD16ND799FN8/fXXaNKkCbKzs5GVlQUPDw/4+vri888/x7JlywA8urXXrFkzyOVybN26FR9//DEyMzMRGhqKX36p/t+XvLw85OXloX///ujfvz8uXbqE2NhY9O/fHzY2NsjNza1wa+9JHh4e+PPPPzF8+HCEhoaioODRvyGenp6wtLTETz/9VOnWnq2tLXJz/506Mnr0aHz++ecYN24cHBwcUFpaiosXL6J79+6Qy+XYtm0bfH19kZeXh59++gm9evWq56tbmX78i0YaeYgSZDw2F8kQ5CgKAEXN7RpCgaLuv/0QEdWWVCqBz+ROiAyOrbKNz6udRF9Pav369Vi6dCm8vb0hlUrRpEkTrF27Fh4eHtixYwfmzp2Lzp07w8TERDUX6csvv8Ts2bPRpUsXCIKA9957r8b5RLm5uRg3bhwKCgogkUjQvn17TJkyBQCwaNEiDB48GJaWljh8+HCVdc6bNw/Lly9HYGAgHB0dAQBNmjTBvn37MHfuXPznP/+BVCrFG2+8gZkzZ2LGjBlYtGgR1q9fj//85z94+eWXkZWVhYEDBwJ4NL9q2rRp6N69O95//31Mnz4dHTt2RLNmzdCvXz8UFxeL+Eo/IhG4WZBWlU8237p1Kzw9PUW99md/78JhiX58DLSmEaly9jIrjkgRNaCEhAR4eXnpugyjUVRUhJSUFLi5udV6jSS160g5msPnVeNdR8qQaPI9fZx+/ItGGgk06YK3vSbqugwAj+ZIBcR/hIzSXLXzpCQAmpvYI7zLcs6RIqJGxa23C9o848yVzY0Ug5SWREREICIiok6T+wyZTCLFEtcxWHw9BBKgQpgqf6tY4jqaIYqIGiWpVIKWXo66LoO0gP+qaYlcLseaNWswd+5cXZfSYORNu2Kd+1Q0N7GrcLy5iT2XPiAiIqPEESkSlbxpVwy0fxp/5V/HvdIHcDKxRQ9rd45EERGRUWKQItHJJFL0svHQdRlERERax2ECIiIiIg1xRIqIiEjLFIKSUx6MFIMUERGRFjXEZu4rV67E0qVLNVoHKTg4GC+++CJcXFxU18rJyUFwcLAotRk7xmEiIiItKd/MPf2JXSjKN3OPyL4gSj+rVq1Su1ddWVnNmyEHBwcjLS1NlDoaI45IERERaUFDbeY+a9YsAED//v0hk8nQsmVLuLi44OrVq8jIyEBSUhIkEgmys7NVe985OTnh3Llz2L59O+7evYuJEyfCwsICISEhAIB//vkHzz//PK5duwYXFxfs3r0bDg4OGtdozDgipSURERFYunQpNm7cqOtSGpxSKeBuQhaunbqLuwlZUCq5CxERNT5rboZWGol63OObuW9Pj9K4ny1btgAATpw4gbi4ODRv3hznz5/HgQMHkJRU/TZiH3zwAVq2bIldu3YhLi4O3t7eAIA///wTISEhSEhIQPPmzfH1119rXJ+x44iUlsjlcsjlctVee42F2j2lHMzhM5l7ShFR45JVllerdjmKAtE3UR8/fjxsbGw0fvywYcNUmwj36dMH8fHxYpVmdDgiRaJJiUlDZHBshRAFAAX3ixAZHIuUGN6DJ6LGw7FJ7YKMvcwKVrK6TxKvjrW1dYWvZTIZFAqF6mt186ke9/ikdZlMVqu5Vo0VgxSJQqkUcGZ7YrVtzuxI5G0+Imo0lj41Fs4mdqhqa2IJAGcTexzttgqTnf3q1ZeNjQ1yc6u+jejh4YE///wTABAaGoqCggLVOVtb22ofS9XjrT0DdvfMA8R9dVTXZQAAFKVKFOeVVtumIKsIP8yOhMxEP/J7lwA3dAl003UZRGSkGnIz90WLFmHw4MGwtLREy5YtK51fv3495s2bh+XLlyMwMFB12w4A5s2bh6CgIFhaWqomm1PtSQRB4BCBFpXPkdq6dSs8PT1FvfbBzadw+wR/i9BU97Ee6Dmuva7LINKqhIQEeHl56boMo1FUVISUlBS4ubnVes0m9etI2WOJ62hu5q4HNPmePo4jUgasiZkUlg5mui4DQO1GpADAzMZEb0akTC34409E2sfN3I0b/yUxYC19bCGf5qPrMgA8miO1a15UpYnmj7NyNMfEDX6QSquaMUBEZJy4mbvxYhwmUUilEvhM7lRtG59XOzFEERGRUWGQItG49XaB/4LusHKoeI/ZytEc/gu6cx0pIjIanF5sPOr7veStPRKVW28XtHnGGWlJ9/EwpxgW9mZw6ejAkSgiMgomJiaQSCTIzMxEs2bNIJHwvc2QCYKAzMxMSCQSmJiYaHQNBiktiYiIQEREBPLz83VdSoOTSiVo6eVYc0MiIgMjk8nQunVr3L59Gzdu3NB1OSQCiUSC1q1bQyaTafR4BiktaaxbxBARGTtra2u0b98epaU1f1KZ9J+JiYnGIQpgkCIiIqozmUxWr398yXiIEqT++usvnD9/HhcvXkRGRgZyc3Nhbm4Oe3t7uLu7w9vbG3369KmwkioRERGRodM4SD18+BB79uzB77//jvT0dNWsd1NTU9ja2qK4uBgpKSm4du0ajhw5giZNmuC5557DhAkT0KVLF9GeABEREZGuaBSk9u3bh23btiE7Oxvt2rXD66+/js6dO6Njx46wtLRUtRMEAbdv30ZCQgLOnj2LkydP4sSJE+jbty/mzJmjdj8gIiIiIkOhUZAKDg6GXC7HSy+9BHd39yrbSSQSuLq6wtXVFUOHDkVxcTGOHDmC77//HocPH8bUqVM1rZuIiIhI5zQKUtu3b4erq2udH2dmZoYRI0YgICAA6enpmnRNREREpDc0WtlckxD1OJlMxtt6REREZPC4RQwRERGRhhikiIiIiDQkapDKy8vDwYMHxbwkERERkd4SNUilp6djzZo1Yl6SiIiISG/V6VN7NX3S7t69e/Uqxpg05k2LiYiIGos6BakJEyZAIpFUeV4QhGrPNybctJiIiMj41SlI2djY4PXXX4e3t7fa86mpqVi5cqUIZRERERHpvzoFqQ4dOiAvLw9ubm5qzysUCtWee0RERETGrk5BavTo0SgqKqryvLOzM5YuXVrvooiIiIgMQZ2ClK+vb7XnbWxsEBAQUK+CiIiIiAwFF+QkIiIi0lC9g5Sfnx9u3bolRi1EREREBqXeQYqTy4mIiKix4q09IiIiIg0xSBERERFpiEGKiIiISEMMUkREREQaYpAiIiIi0hCDFBEREZGG6h2kJk2aBFtbWzFqISIiIjIoddoiRp2ZM2eKUQcRERGRwdE4SJWUlMDU1FTMWoxKREQEIiIikJ+fr+tSqBFQCEr8lX8d90ofwMnEFj2s3SGT8M49EZG2aRykxowZA7lcjuHDh8PT01PMmoyCXC6HXC5HcnIygoKCdF0OGbGI7AtYe+tXpJfmqo45m9hhiesYyJt21WFlRETGT+NfWUtKSrB3717MnDkTr7/+OkJDQ5GXlydmbURUg4jsC1h8PaRCiAKAjNJcLL4egojsCzqqjIiocdA4SO3btw8LFy6Ep6cnrl69ii+//BJjx47Fhx9+iPPnz4tZIxGpoRCUWHvrV6jb7bL82Npbe6EQlA1ZFhFRo6LxrT1LS0uMGjUKo0aNwo0bN3DgwAEcOXIEkZGROHr0KJo3b47AwEAMGzYMzs7OYtZMJIrt6VHYkR6t6zI0VqIsQ46ioMrzAoD00hwM+nsFTKX1/lyJzrzqPACTnf10XQYRkVqivLu2bdsWc+bMwaxZs3Dq1CkcOHAAMTEx+O677xASEoJnnnkGgYGB6NevH5o0Mdw3dDIuBYoiZDxxS8wY5SgKAIWuq9BcgaJI1yUQEVVJ1FQjk8nQv39/9O/fH/fv38ehQ4cQFhaGmJgYnD17Fra2tvjtt9/E7JJIY1YyczQ3sdN1GRqraUSqnL3MyqBHpKxk5rougYioSlp7d3VwcMBLL72E3r17Y/369YiPj8eDBw+01R1RnU129jPoW0YKQYmA+I+QUZqrdp6UBEBzE3uEd1nOpRCIiLREK0GqsLAQR44cwYEDB3D58mUIggBzc3MMHDhQG90RNUoyiRRLXMdg8fUQSIAKYUry//+7xHU0QxQRkRaJGqT++usvhIWF4cSJEyguLoYgCPDy8kJgYCAGDRoES0tLMbsjavTkTbtinfvUSutINTexxxLX0VxHiohIy+odpDIyMhAeHo7w8HCkpaVBEATY29tj5MiRCAwMRNu2bUUok4iqIm/aFQPtn+bK5kREOqBxkIqMjERYWBj++usvKJVKSKVS9OrVi5/OI9IBmUSKXjYeui6DiKjR0TjtfPjhhwCAFi1aICAgAAEBAWjevLlohRERERHpO42DlL+/PwIDA9GzZ08x6yEiIiIyGBoHqQ8++EDMOoiIiIgMjmgTmcrKyhAaGoqIiAjcvHkTxcXFOHbsGADgypUr+P333zF+/Hi4urqK1SURERGRTokSpIqLi7Fo0SJcvHgRdnZ2sLKyQlHRv9s6tGjRAmFhYbCxsUFQUJAYXRIRERHpnCifj96xYwfi4+MxY8YM7N27F4GBgRXOW1tbw9vbG2fPnhWjOyJ6glIp4G5CFq6duou7CVlQKtWtdU5ERGITZUTq6NGj6N69OyZNmgQAkEgkldq0bNkSV65cEaM7InpMSkwazmxPRMH9f0eBrRzM4TO5E9x6u+iwMiIi4yfKiFRGRgY8PT2rbWNhYYGCgpo3WCWi2kuJSUNkcGyFEAUABfeLEBkci5SYNB1VRkTUOIgSpCwsLJCTk1Ntm7t378LOzk6M7ogIj27nndmeWG2bMzsSeZuPiEiLRLm117lzZ5w6dQp5eXmwsbGpdD49PR1nzpxB//79xeiOSBTxB1IQH56i6zI0pihVojivtNo2BVlF+GF2JGQmhrtdTJcAN3QJdNN1GUREaokSpF588UUsWLAAb731FubPnw+FQgEAKCoqwqVLlxAcHAyFQoGJEyeK0R2RKEoelqHwfrGuy9C6msKWvit5WKbrEoiIqiRKkPL29saCBQvw5ZdfYu7cuarjw4YNAwBIpVIsXLiwxnlUxiQiIgIRERHIz8/XdSlUBVOLJrB0MNN1GRqrzYgUAJjZmBj0iJSpBfftJCL9JREEQbQJFDdu3MC+ffuQmJiIBw8ewMrKCp06dcKYMWPg5tY4h+aTk5MRFBSErVu3ih4kExIS4OXlJeo1yXAolQJ2zYuqNNH8cVaO5pi4wQ9SaeVP0lLjwPcJIu0S9Ve9tm3bYv78+VWeVygUkMlkYnZJ1GhJpRL4TO6EyODYKtv4vNqJIYqISItEGe8PDQ2tsY1CocCqVavE6I6I/j+33i7wX9AdVg7mFY5bOZrDf0F3riNFRKRlooxIffnll3BwcICfn5/a80qlEqtWrcLx48fF6I6IHuPW2wVtnnFGWtJ9PMwphoW9GVw6OnAkioioAYgSpLp06YLVq1fD1tYWPXr0qHCuPERFR0dj7NixYnRHRE+QSiVo6eWo6zKIiBodUW7trVmzBq6urli+fHmFbWCUSiU++ugjREVFYfTo0dXOnyIiIiIyNKIEKSsrK6xbtw7W1tZ4++23cffuXQiCgA8//BBHjx7FqFGj8NZbb4nRFREREZHeEG1xGUdHR3z++edQKpVYtGgRVqxYgWPHjmHEiBFYuHChWN0QERER6Q1RV+lzdXXF2rVrkZ2djePHj2PEiBF4++23xeyCiIiISG9oNNk8JCSk2vOdOnXC1atX4ejoWKGtRCLBlClTNOmSiIiISO9oFKS2bdtWq3b/+9//KnzNIEVERETGRKMgtWHDBrHrICIiIjI4GgUpb29vkcsgIiIiMjyGuyU8ERERkY4xSBERERFpiEGKiIiISEMMUkREREQaYpAiIiIi0hCDFBEREZGGGKSIiIiINFTnIKVUKnH9+nXcu3ev0rmysjLExcWJURcRERGR3qvTgpxpaWlYsmQJUlNTIZFI4OPjg2XLlsHOzg4A8ODBAyxYsABRUVHaqJWIiIhIr9RpRGrz5s1wcnLCzp07sXXrVhQXF2POnDkVRqcEQRC9SCIiIiJ9VKcg9ffff+ONN95AixYt0L59e3z++efo2rUr3nzzTaSnpwN4tDExERERUWNQpyBVVFQEExOTfx8slWLJkiXo1asX5s6dizt37oheIBEREZG+qlOQeuqpp5CcnFzp+KJFi+Dj44OlS5eKVhgRkT5TKgXcTcjCtVN3cTchC0olpzUQNUZ1mmzu6+uLI0eOYMiQIZXOLVy4EACwb98+cSojItJTKTFpOLM9EQX3i1THrBzM4TO5E9x6u+iwMiJqaHUakXrllVfw2WefVXl+4cKFiI6OrndRRET6KiUmDZHBsRVCFAAU3C9CZHAsUmLSdFQZEekCF+QkIqolpVLAme2J1bY5syORt/mIGpE63dojImpo8QdSEB+eousyAACKUiWK80qrbVOQVYQfZkdCZqIfv6c272EJLy9dV0FkvOodpPz8/LBjxw64urqKUQ8RUQUlD8tQeL9Y12XUSU1hqyGVFZvrugQio1bvINUYFuD87LPP8Mcff6CoqAjOzs6YMWMG+vbtq+uyiBoFU4smsHQw03UZAGo3IgUAZjYmejMi1cRMP+ogMla8tVcLEyZMwPz582FqaorExEQsXLgQO3fuVG2NQ0Ta0yXQDV0C3XRdBoBHc6R2zYuqNNH8cVaO5pi4wQ9SqX4sTpyQkKDrEoiMGn9VqYU2bdrA1NQUwKOV20tLS9Vu2kxExk0qlcBncqdq2/i82klvQhQRaZ/BjEgVFhZi586dSEhIQGJiIvLy8rBs2TIEBARUaltSUoJvv/0Whw8fRl5eHtq1a4fp06ejV69eGvf/xRdfICwsDCUlJfDx8YG7u3t9ng4RGSi33i7wX9C98jpSjubweZXrSBE1NgYTpHJzcxESEgJnZ2d4eHggNja2yraffPIJoqKiMH78eLRu3Rrh4eFYsmQJNmzYgK5du2rU/8KFCzF//nzExcXh+vXr3FOQqBFz6+2CNs84Iy3pPh7mFMPC3gwuHR04EkXUCBlMkHJ0dMSvv/4KR0dHJCUlYcaMGWrbJSQkIDIyErNnz8ZLL70EABg6dCimTp2KzZs3Y/Pmzaq2c+bMQXx8vNrrvPrqqwgKCqpwTCaToWfPnvjll1/QunVr9OnTR6RnR0SGRiqVoKWXo67LICIdM5ggZWpqCkfHmt+0oqOjIZPJMHLkSNUxMzMzBAYG4ptvvkF6ejqcnZ0BAP/97381qkWhUHCDZiIiIqr/ZPNJkybB1tZWjFpEceXKFbRu3RpWVlYVjnfq9GiC6NWrV+t0vfz8fBw5cgSFhYUoKyvDsWPHEBsbi27duolWMxERERmmeo9IzZw5U4w6RJOVlaV25Kr8WF0/bSeRSLB//36sX78egiCgVatWeP/999G+fXu17e/du4esrCzV16mpqXXqj4iIiAyHwdzaq63i4mKYmJhUOl6+fEFxcd1WSLayssKGDRtq3f63335DSEhIpeMpKSlQKBR16rsm+fn5XCOGiKrF9wkizXnVYn8lUYOUQqFAZmYm7t27h7KyMrVtvL29xeyyEjMzM5SWVl55uKSkRHVem0aOHFlh1fPU1FSsXr0abm5u8PT0FLWvhISEWn2Tiajx4vsEkXaJEqSUSiV27NiB3bt3Iy8vr9q2UVFRYnRZJUdHR2RmZlY6Xn67zcnJSav9Ozk5ab0PIiIi0g+iBKmvv/4aO3fuRNOmTREQEABHR0fIZDIxLl1n5WtMFRQUVJhwXj607eHhoZO6iIiIyPiIEqQOHToEV1dXfPPNN7C0tBTjkhrz8/PDzp078dtvv6nWkSopKUFYWBi8vLxUSx8QERER1ZcoQerhw4cYPHiw1kPUnj17kJ+fr7pN98cffyAjIwMA8MILL8Da2hpeXl4YOHAgvvnmG+Tk5KBVq1Y4ePAg0tLS8M4772i1PiJqPBSCEn/lX8e90gdwMrFFD2t3yCTcvpSosRElSLm7u1f4yL+27Nq1C2lpaaqvjx8/juPHjwMAhgwZAmtrawDAu+++C2dnZxw6dAj5+flwd3fHp59+qvWJ7o+LiIhAREQE8vPzG6xPImoYEdkXsPbWr0gvzVUdczaxwxLXMZA31WwbKiIyTBJBEIT6XuT06dP44IMPsGnTJtE/mWbokpOTERQUhK1bt/JTe0RGICL7AhZfD8GTb5zlu+ytc5+qV2GK7xNE2iXKiFSfPn2wbNkyLFmyBH379kW7du0qrSxebtiwYWJ0SUTU4BSCEmtv/VopRAGAgEdhau2tvRho/zRv8xE1EqIEqZKSEpw6dQq5ubk4cOAAgEcrgj9OEARIJBIGKSKqk+3pUdiRHq3rMgAAJcoy5CgKqjwvAEgvzcGgv1fAVKof6x0PETrCCxyRItIWUf5P37RpE44cOYJ27dphwIABOl3+gIiMS4GiCBmPzUUyBDmKAkDcjQw09rBJia5LIDJqogSpqKgoeHp64quvvkKTJvrxWxgRGQcrmTmam9jpugwANY9IlbOXWenNiJSFYKrrEoiMmmi39rp3784QRUSim+zsh8nOfrouA8CjOVIB8R8hozRX7TwpCYDmJvYI77Jcb+ZIcZ89Iu0SJfl4enri9u3bYlzKaHD5AyLjI5NIscR1DBZfD4EEqBCmymeFLnEdrTchioi0T5T/24OCghATE4NTp06JcTmjIJfLsWbNGsydO1fXpRCRiORNu2Kd+9RKtxubm9jr3dIHRKR9ooxInTt3Dt7e3nj33XfRo0ePKpc/kEgkmDJlihhdEhHpjLxpVwy0f5ormxOROEFq27Ztqr+fP38e58+fV9uOQYqIjIVMIkUvG26CTtTYiRKkNmzYIMZliIiIiAyKKEGqIfewIyIiItIXvKFPREREpCFRglR8fDw2bdqErKwstefv3buHTZs24dKlS2J0R0RERKQXRLm1t2vXLly7dg1vvvmm2vNOTk44deoUMjMzsWrVKjG61HtcR4qIiMj4iRKkkpKS0LNnz2rbdOvWDefOnROjO4Mgl8shl8uRnJyMoKAgXZdDREREWiDKrb2cnBw4OTlV28bBwQHZ2dlidEdERESkF0QJUtbW1sjIyKi2TXp6OiwsLMTojoiIiEgviBKkvLy8cPz4caSnp6s9n56ejhMnTuDpp58WozsiIiIivSBKkJowYQKKi4sxZ84cHDx4EPfu3QPw6NN64eHheOONN1BSUoKJEyeK0R0RERGRXhBtQc45c+bgq6++wpo1awA82g5GEATV3+fOncuFO4mIiMioiBKkAGD8+PHo0aMH9u3bh6SkJOTn58Pa2hqdOnXCqFGj4O7uLlZXRERERHpBtCAFAO3atcPChQvFvCQRERGR3hI1SNG/uCAnERGR8WOQ0hIuyElERGT8uGkxERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiINMUgRERERaUjUIJWXl4eDBw+KeUkiIiIivSVqkEpPT1dtEUNERERk7Oq0jlR6enq158s3KyYiIiJqDOoUpCZMmACJRFLleUEQqj3fmHBlcyIiIuNXpyBlY2OD119/Hd7e3mrPp6amYuXKlSKUZfi4sjkREZHxq1OQ6tChA/Ly8uDm5qb2vEKhgCAIohRGREREpO/qFKRGjx6NoqKiKs87Oztj6dKl9S6KiIiIyBDUKUj5+vpWe97GxgYBAQH1KoiIiIjIUHBBTiIiIiINMUgRERERaajeQcrPzw+3bt0SoxYiIiIig1LvIMVP6REREVFjxVt7RERERBpikCIiIiLSEIMUERERkYYYpIiIiIg0VKcFOan2uGkxERGR8WOQ0hJuWkxEVDWlUkBa0n08zCmGhb0ZXDo6QCqV6Losojqrd5CaNGkSbG1txaiFiIgagZSYNJzZnoiC+//u3WrlYA6fyZ3g1ttFh5UR1V2950jNnDkTdnZ2YtRCRERGLiUmDZHBsRVCFAAU3C9CZHAsUmLSdFQZkWa0OtlcEATcunUL6enp2uyGiIgMgFIp4Mz2xGrbnNmRCKWSCz2T4RBljlR0dDROnjyJefPmwcbGBgDwzz//YOnSpUhNTQXwaCuZ999/HzKZTIwuiYioFu6eeYC4r47qugwAgKJUieK80mrbFGQV4YfZkZCZ6MeHyrsEuKFLoJuuyyA9JkqQ2rdvH+7fv68KUQCwadMm3LhxAz169MCDBw8QFRWFnj174vnnnxejSyIiqoWyYiUK7xfruow6qSlsNaSSh2W6LoH0nChB6saNG3j22WdVXxcWFuL06dMYNGgQVqxYgbKyMrz++usICwtjkCIiakBNzKSwdDDTdRkAajciBQBmNiZ6MyJlasEPt1P1RPkJefDgARwcHFRfX7hwAQqFAv7+/o86adIEzzzzDI4cOSJGd0REVEstfWwhn+aj6zIAPJojtWteVKWJ5o+zcjTHxA1+XAqBDIYokd/KygoPHjxQfR0bGwupVIpu3bqpjjVp0gRFRVX/z0NERMZNKpXAZ3Knatv4vNqJIYoMiihB6qmnnsKpU6eQm5uLvLw8REREoEOHDhXmTKWlpaFp06ZidEdERAbKrbcL/Bd0h5WDeYXjVo7m8F/QnetIkcER5dbeCy+8gBUrVuCFF15QjTxNnz69QpuEhAR06NBBjO6IiMiAufV2QZtnnLmyORkFUYKUn58f3nrrLRw4cAAAMGjQIAQEBKjOx8XFoaCgAL179xajOyIiMnBSqQQtvRx1XQZRvYn2cYTRo0dj9OjRas95e3sjLCxMrK6IiIiI9IJ+fL6UiIiIyAAxSBERERFpSKMgtXjxYiQmVr9fUlUePnyI77//HqGhoRo9noiIiEhfaDRHKicnB7Nnz0a3bt0wdOhQ+Pr6wtrautrHXLp0CYcPH8bRo0dRXFyMd999V6OCDUVERAQiIiKQn5+v61KIiIhISySCIGi0zXZ4eDhCQkKQlpYGqVQKV1dXeHp6omnTprC2tkZJSQkePHiAW7duITk5GYWFhZBKpfD398f06dPh7Ows9nPRS8nJyQgKCsLWrVvh6ekp6rUTEhLg5eUl6jWJyLjwfYJIuzT+1F5AQACGDRuGM2fOICwsDHFxcTh8+HCldlKpFO7u7vD19UVgYCCcnJzqVTARERGRvqjX8gcSiQR9+vRBnz59ADzavDgzMxMPHjyAqakp7O3t4ebmVuNtPyIiIiJDJOq21m3btkXbtm3FvCQRERGR3uLyB0REREQaYpAiIiIi0hCDFBEREZGGGKSIiIiINMQgRURERKQhBikiIiIiDYkSpI4dO1ZjG4VCgc2bN4vRHREREZFeECVIrVy5Ep9++imKiorUnr99+zZmz56NXbt2idEdERERkV4QJUj17t0bYWFhmD59Oq5cuVLhXHh4uOr4K6+8IkZ3RERERHpBlCD12WefYc6cOUhLS8Ps2bOxc+dO5OXlYdWqVfj0009hY2OD4OBgTJ8+XYzuiIiIiPSCaFvETJgwAd27d8eHH36ILVu24LvvvkNJSQl8fX3x9ttvw8bGRqyuiIiIiPSCqJ/a8/DwwHPPPQdBEFBcXAxbW1tMmzaNIYqIiCpQCEqczbuK8Pt/4WzeVSgEpa5LItKIaCNS6enp+Oijj3Dx4kV4eHjAx8cHP/30E2bMmIE5c+Zg1KhRYnVFREQGLCL7Atbe+hXppbmqY84mdljiOgbypl11WBlR3Ym2/MG0adNw8eJFjBs3Dlu2bEFQUBA2bdoEBwcHrF+/Hu+99x4ePHggRndERGSgIrIvYPH1kAohCgAySnOx+HoIIrIv6KgyIs2ItvyBiYkJ1q5dizfffBMmJiYAAC8vL3z33XeQy+U4efIkXnvtNTG6IyIiA6QQlFh761cIas6VH1t7ay9v85FBEeXW3rPPPotly5ahadOmlc5ZWlpi+fLl6N27N4KDg8XojoiIaulAaTzmX/hF12UAAEqUZchRFFR5XgCQXpqDQX+vgKlUtJkn9fKq8wBMdvbTdRmkx0T5SV27dm2NbYYMGYIuXbqI0R0REdXSQ5Qg44nbaPouR1EAKHRdxSMFCvULTROVa9DI36JFi4bsjoio0bOAKZqb2Om6DAA1j0iVs5dZ6c2IlJXMXNclkJ7Tj59UIiLSikCTLnjba6KuywDwaI5UQPxHyCjNVTtPSgKguYk9wrssh0wi6uo8RFojSpAKCQmpVTuJRIIpU6aI0aXei4iIQEREBPLz83VdChGRXpBJpFjiOgaLr4dAAlQIU5L//98lrqMZosigiBKktm3bVu15iUQCQRAaVZCSy+WQy+VITk5GUFCQrsshItIL8qZdsc59aqV1pJqb2GOJ62iuI0UGR5QgtWHDBrXH8/PzcfnyZezZswfPPPMMxowZI0Z3RERkwORNu2Kg/dP4K/867pU+gJOJLXpYu3MkigySKEHK29u7ynP9+vXD4MGDMX36dPj6+orRHRERGTiZRIpeNh66LoOo3hok/ru6usLX1xc//vhjQ3RHRERE1CAabBzV3t4eN2/ebKjuiIiIiLSuQYJUSUkJYmJiYG1t3RDdERERETUIUeZIHTx4UO1xhUKBe/fuITIyEjdv3sQLL7wgRndEREREekGUIPXJJ59AIpFUOi4Ij1YJkUgk8Pf3x8yZM8XojoiIiEgviBKkli5dqva4VCqFjY0NOnToACcnJzG6IiIiItIbogSpgIAAMS5DREREZFC4+hkRERGRhjQakVqzZo3GHVZ1G5CIiIjI0GgUpMLDwzXqTCKRMEgRERGR0dAoSO3atUvsOoiIiIgMjkZBysXFRew6iIiIiAyOxpPNCwoKUFpaKmYtRERERAZF4yAVGBhYaRPihIQE7N69u95FERERERkCjYOUIAiqlcvL/fnnn9i0aVO9iyIiIiIyBFxHioiIiEhDDFJEREREGmKQIiIiItIQgxQRERGRhuq1afHhw4dx6dIl1dd37twBALz99ttq20skEqxdu7Y+XRIRERHpjXoFqTt37qjC0+NiYmLUtpdIJPXpjoiIiEivaBykuE0MERERNXYaByluE0NERESNHSebExEREWmIQYqIiIhIQwxSRERERBpikCIiIiLSEINULV28eBEDBgzA//73P12XQkRERHqCQaoWlEolNm3ahI4dO+q6FCIiItIj9VqQs7H4/fff0alTJxQUFOi6FCIiItIjBjEiVVhYiO+++w6LFy9GYGAgfH19ER4errZtSUkJNm/ejDFjxkAul2PmzJk4e/asxn3n5ubil19+wbRp0zS+BhERERkn0UakSktLceLECSQlJSE/Px9KpVJtu6VLl9b52rm5uQgJCYGzszM8PDwQGxtbZdtPPvkEUVFRGD9+PFq3bo3w8HAsWbIEGzZsQNeuXevc99atWzF+/HjY2NjU+bFERERk3EQJUmlpaVi4cCHu3r0LQRCqbCeRSDQKUo6Ojvj111/h6OiIpKQkzJgxQ227hIQEREZGYvbs2XjppZcAAEOHDsXUqVOxefNmbN68WdV2zpw5iI+PV3udV199FUFBQbh8+TKSkpLw1ltv1blmIiIiMn6iBKmNGzfizp07GDJkCAIDA9GsWTPIZDIxLg0AMDU1haOjY43toqOjIZPJMHLkSNUxMzMzBAYG4ptvvkF6ejqcnZ0BAP/9739rvF5cXBxu3bqFF154AQCQn58PmUyGu3fvYtmyZRo+GyIiIjIWogSp2NhY9OzZE++9954Yl9PYlStX0Lp1a1hZWVU43qlTJwDA1atXVUGqNkaOHAl/f3/V119++SVatGiBl19+WZyCiYiIyKCJEqSUSiXat28vxqXqJSsrS+3IVfmxe/fu1el65ubmMDc3V31tZmYGCwuLaudL3bt3D1lZWaqvU1NT69QnERERGQ5RgpSXl5deBIbi4mKYmJhUOm5qaqo6Xx/vvvtujW1+++03hISEVDqekpIChUJRr/6flJ+fj4SEBFGvSUTGhe8TRJrz8vKqsY0oQWrmzJmYO3cuoqKi4OfnJ8YlNWJmZobS0tJKx0tKSlTntW3kyJHo27ev6uvU1FSsXr0abm5u8PT0FLWvhISEWn2Tiajx4vsEkXaJEqROnz6N7t27Y+XKlejWrRs6dOhQaZ4S8OhTe1OmTBGjS7UcHR2RmZlZ6Xj5rTYnJyet9V3OycmpQfohIiIi3RMlSG3btk3197i4OMTFxaltp+0gVb7GVEFBQYUgVz6s7eHhobW+iYiIqPERJUht2LBBjMvUm5+fH3bu3InffvtNtY5USUkJwsLC4OXlVadP7BERERHVRJQg5e3tLcZlqrVnzx7k5+erbtP98ccfyMjIAAC88MILsLa2hpeXFwYOHIhvvvkGOTk5aNWqFQ4ePIi0tDS88847Wq+RiIiIGheD2bR4165dSEtLU319/PhxHD9+HAAwZMgQWFtbA3j0yTpnZ2ccOnQI+fn5cHd3x6efftogYe9xERERiIiIQH5+foP2S0RERA1HIlS3p0sdxcfHIzw8HFevXlXNU2rfvj2GDh2q0T53xiA5ORlBQUHYunUrP7VHRA2O7xNE2iXaiNTGjRuxZ88e1V57EokEgiAgOTkZBw4cwLhx4/Dmm2+K1R0RERGRzokSpMLDw7F79264urpi6tSp6N69OxwcHJCdnY3Y2Fhs27YNu3fvhoeHB4YNGyZGl0REREQ6JxXjIvv27UOzZs2wZcsWyOVyODo6QiKRwMHBAf7+/tiyZQucnJywd+9eMbojIiIi0guiBKmUlBQMGDBANeH7SdbW1hgwYABSUlLE6I6IiIhIL4gSpGpDIpE0VFdEREREDUKUOVJubm6Ijo7G66+/DktLy0rnCwsLER0dDTc3NzG6Mwhc/oCIiMj4iTIiNXLkSGRmZmL27NmIiopCTk4OACAnJwdRUVGYPXs2MjMzMWrUKDG6MwhyuRxr1qzB3LlzdV0KERERaYkoI1LDhw/HlStXEBoaipUrVwL4d/kDABAEAWPHjkVAQIAY3RERERHpBdHWkZo/fz78/PzULsg5bNgwdOvWTayuiIiIiPSCKEEqPT0d1tbW6NatW5WBqbCwEHl5edw4mIiIiIyGKHOkJk6ciF9++aXaNrt378bEiRPF6I6IiIhIL4gSpGqzXZ+IW/oRERER6YUGW0cqMzNT7dIIRERERIZK4zlSISEhFb6OjY1V206pVCIjIwORkZGNagdyriNFRERk/DQOUtu2bVP9XSKRIC4uDnFxcVW2d3JywqxZszTtzuDI5XLI5XIkJycjKChI1+UQERGRFmgcpDZs2ADg0dynBQsWICAgAMOGDavUTiqVwtbWFk899RSk0ga7k0hERESkdRoHKW9vb9Xfp06diu7du1c4RkRERGTsRFlH6rXXXhPjMkREREQGRbSVzQEgPj5e7crmQ4cORdeuXcXsioiIiEjnRAtSGzduxJ49e1TrRZXvtZecnIwDBw5g3LhxePPNN8XqjoiIiEjnRAlS4eHh2L17N1xdXVXzpRwcHJCdnY3Y2Fhs27YNu3fvhoeHh9oJ6URERESGSJSP0e3btw/NmjXDli1bIJfL4ejoCIlEAgcHB/j7+2PLli1wcnLC3r17xeiOiIiISC+IMiKVkpKCESNGwNraWu15a2trDBgwAPv37xejO4PABTmJiIiMn6iTzasjkUgaqiu9wAU5iYiIjJ8ot/bc3NwQHR2NwsJCtecLCwsRHR0NNzc3MbojIiIi0guiBKmRI0ciMzMTs2fPRlRUFHJycgAAOTk5iIqKwuzZs5GZmYlRo0aJ0R0RERGRXhDl1t7w4cNx5coVhIaGYuXKlQD+Xf4AeLSNzNixYxEQECBGd0RERER6QbQ5UvPnz4efn5/aBTmHDRuGbt26idUVERERkV4QdbJ5t27dGJiIiIio0RBljhQRERFRY8QgRURERKQh0W7tlZaW4sSJE0hKSkJ+fj6USqXadkuXLhWrSyIiIiKdEiVIpaWlYeHChbh7967qk3rqSCQSBikiIiIyGqIEqY0bN+LOnTsYMmQIAgMD0axZM8hkMjEubbC4RQwREZHxEyVIxcbGomfPnnjvvffEuJxR4BYxRERExk+UyeZKpRLt27cX41JEREREBkOUIOXl5YXU1FQxLkVERERkMEQJUjNnzsRff/2FqKgoMS5HREREZBA0miMVEhJS6Vj37t2xcuVKdOvWDR06dICVlVWlNhKJBFOmTNGkSyIiIiK9o1GQ2rZtW5Xn4uLiEBcXp/YcgxQREREZE42C1IYNG8Sug4iIiMjgaBSkvL29RS6DiIiIyPDUax2pixcvYuvWrUhKSoJEIoGXlxemT58OLy8vseojIiIi0lsaB6lr165hwYIFKC0tVR07f/48Ll68iK+//hpubm6iFEhERESkrzRe/uCHH35AaWkpXn31Vezduxd79+7FlClTUFxcjB9//FHMGomIiIj0ksYjUhcuXECXLl0wffp01bFp06YhNja2yk/tERERERkTjYNUdnY2/P39Kx338vJCYmJivYoyBty0mIiIyPhpHKTKyspgYWFR6bi5uTnKysrqVZQx4KbFRERExk+ULWKIiIiIGqN6LX9w+PBhXLp0qcKxO3fuAADefvvtSu0lEgnWrl1bny6JiIiI9Ea9gtSdO3dUwelJMTExlY5JJJL6dEdERESkVzQOUrt27RKzDiIiIiKDo3GQcnFxEbMOIiIi0iKlUkBa0n08zCmGhb0ZXDo6QCrlnaL6qtetPSIiItJ/KTFpOLM9EQX3i1THrBzM4TO5E9x6c2CkPvipPSIiIiOWEpOGyODYCiEKAAruFyEyOBYpMWk6qsw4MEgREREZKaVSwJnt1S+SfWZHIpRKoYEqMj68tUdERFSF+AMpiA9P0XUZGlOUKlGcV1ptm4KsIvwwOxIyE8McW+kS4IYugW46659BioiIqAolD8tQeL9Y12VoXU1hS5+VPNTtbioMUkRERFUwtWgCSwczXZehsdqMSAGAmY2JwY5ImVroNsowSBEREVWhS6BubxvVl1IpYNe8qEoTzR9n5WiOiRv8uBSChgwzfhIREVGNpFIJfCZ3qraNz6udGKLqgUGKiIjIiLn1doH/gu6wcjCvcNzK0Rz+C7pzHal64q09LYmIiEBERATy8/N1XQoRETVybr1d0OYZZ65srgUMUloil8shl8uRnJyMoKAgXZdDRESNnFQqQUsvR12XYXR4a4+IiIhIQwxSRERERBpikCIiIiLSEIMUERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiINMUgRERERaYgLchIRETUCCkGJv/Kv417pAziZ2KKHtTtkEo6n1BeDFBERkZGLyL6Atbd+RXppruqYs4kdlriOgbxpVx1WZvgYRYmIiIxYRPYFLL4eUiFEAUBGaS4WXw9BRPYFHVVmHBikiIiIjJRCUGLtrV8hqDlXfmztrb1QCMqGLMuo8NYeERFRFbanR2FHerSuy9BYibIMOYqCKs8LANJLczDo7xUwlRpmJHjVeQAmO/vprH/DfNWIiIgaQIGiCBlP3BIzRjmKAkCh6yo0U6Ao0mn/DFJERERVsJKZo7mJna7L0FhNI1Ll7GVWBjsiZSUz12n/hvmqERERNYDJzn46vW1UXwpBiYD4j5BRmqt2npQEQHMTe4R3Wc6lEDTEV42IiMhIySRSLHEdA+BRaHpc+ddLXEczRNUDXzkiIiIjJm/aFevcp1a6RdncxB7r3KdyHal64q09IiIiIydv2hUD7Z/myuZawCBFRETUCMgkUvSy8dB1GUaHUZSIiIhIQwxSRERERBrirT0tiYiIQEREBPLz83VdChEREWkJg5SWyOVyyOVyJCcnIygoSNflEBERkRbw1h4RERGRhhikiIiIiDTEIEVERESkIQYpIiIiIg0xSBERERFpiJ/a07Li4mIAQGpqqujXvnnzJmQymejXJSLjwfcJovpp06YNzM3NqzzPIKVlaWlpAIDVq1fruBIiIiKqq61bt8LT07PK8xJBEIQGrKfRycnJQUxMDFq0aAFTU9Nq227cuBFz586t1XVTU1OxevVqLF++HG3atBGj1EanLq+3vtGH2huqBm30I9Y163MdTR/L94mGpQ//r2lKH2pviBq0/R7BESkds7e3x5AhQ2rV1trautrUq06bNm3q/Bh6RJPXW1/oQ+0NVYM2+hHrmvW5jqaP5ftEw9KH/9c0pQ+1N0QNun6P4GRzPSKXy3VdQqNiyK+3PtTeUDVoox+xrlmf62j6WH343jcmhvx660PtDVGDrt8jeGvPQJVvPVPTvVsiarz4PkGkfRyRMlCOjo6YOnUqHB0ddV0KEekpvk8QaR9HpIiIiIg0xBEpIiIiIg0xSBERERFpiMsfGLGSkhJ88cUXOHfuHPLz89G2bVu8+eabePrpp3VdGhHpic8++wx//PEHioqK4OzsjBkzZqBv3766LovIYHCOlBF7+PAhdu3ahYCAADRr1gzHjh1DcHAwdu3aBUtLS12XR0R6IDU1VbVgcGJiIhYuXIidO3fCzs5O16URGQTe2jNiFhYWmDp1KpydnSGVSuHv748mTZrg1q1bui6NiPREmzZtVLsuSCQSlJaW4t69ezquishw8NaeHiksLMTOnTuRkJCAxMRE5OXlYdmyZQgICKjUtqSkBN9++y0OHz6MvLw8tGvXDtOnT0evXr2qvP6tW7eQl5eHVq1aafNpEJGWaOs94osvvkBYWBhKSkrg4+MDd3f3hng6REaBI1J6JDc3FyEhIUhNTYWHh0e1bT/55BP8/PPPGDx4MObNmwepVIolS5bgwoULatsXFxdj9erVePnll2Ftba2N8olIy7T1HrFw4UIcOnQI69evR69evSCRSLT1FIiMDoOUHnF0dMSvv/6KX375BbNnz66yXUJCAiIjIzFjxgy88cYbGDlyJIKDg+Hi4oLNmzdXal9WVoYPPvgArVq1wtSpU7X4DIhIm7T1HgEAMpkMPXv2xPnz53H69GltPQUio8MgpUdMTU1rtQJxdHQ0ZDIZRo4cqTpmZmaGwMBAXLp0Cenp6arjSqUSq1evhkQiwbvvvsvfNIkMmDbeI56kUChw584dUeolagwYpAzQlStX0Lp1a1hZWVU43qlTJwDA1atXVcfWrVuHrKwsrFq1Ck2acEocUWNQ2/eI/Px8HDlyBIWFhSgrK8OxY8cQGxuLbt26NXjNRIaK/7IaoKysLLW/lZYfK//ETVpaGvbv3w9TU9MKv5muXbuWb5RERqy27xESiQT79+/H+vXrIQgCWrVqhffffx/t27dv0HqJDBmDlAEqLi6GiYlJpePlH2EuLi4GALi4uOD48eMNWhsR6V5t3yOsrKywYcOGBq2NyNjw1p4BMjMzQ2lpaaXjJSUlqvNE1HjxPYKo4TBIGSBHR0dkZWVVOl5+zMnJqaFLIiI9wvcIoobDIGWAPDw8cPv2bRQUFFQ4npCQoDpPRI0X3yOIGg6DlAHy8/ODQqHAb7/9pjpWUlKCsLAweHl5wdnZWYfVEZGu8T2CqOFwsrme2bNnD/Lz81VD8H/88QcyMjIAAC+88AKsra3h5eWFgQMH4ptvvkFOTg5atWqFgwcPIi0tDe+8844uyyciLeN7BJF+kQiCIOi6CPrXhAkTkJaWpvbcrl270KJFCwCPPnVTvo9Wfn4+3N3dMX36dPTu3bshyyWiBsb3CCL9wiBFREREpCHOkSIiIiLSEIMUERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiINMUgRERERaYhBioiIiEhDDFJEREREGmKQIiIiItIQgxQRkY78/PPPGDRoEP755x/VsfDwcPj6+iI8PFyHlf1r//798PPzw7Vr13RdCpFeYpAiIlH8888/8PX1rfbPhAkTdF2m3sjLy8P27dsxfPhw1f542hITEwNfX18sWrSoxrYffvghfH19ceTIEQDAsGHD4OzsjM2bN2u1RiJD1UTXBRCRcWnVqhUGDx6s9py1tXUDV6O/fv75Zzx48AAvvfSS1vt65pln4OzsjPPnzyM9PR3Ozs5q2+Xn5+PEiROwtraGr68vAKBJkyaYMGECNmzYgPj4eHTp0kXr9RIZEgYpIhJVq1atMG3aNF2XodfKysqwf/9+dOnSBa1atdJ6f1KpFAEBAQgJCcHBgwcxZcoUte0iIiJQXFyM4cOHw8zMTHXc398fmzZtwr59+xikiJ7AW3tEpDO+vr6YN28e7t+/j48//hjPP/885HI5Zs2ahdjYWLWPKSwsxHfffYfJkydDLpdj+PDhWLRoES5cuFCp7bx58+Dr64vi4mJs3boVL774IgYOHIjvvvtO1SY6OhpBQUGQy+UYNWoU1q5di7y8PEyYMKHCrciPPvoIvr6+SEhIUFvXt99+C19fX0RERNT4vGNiYpCVlQU/P78a25bLyMjAlClTIJfLERUVpTqenZ2NjRs34qWXXoK/vz+ef/55LF++HNevX6/w+OHDh0MikSA8PByCIKjtIywsDAAQGBhY4bi9vT26d++OqKgoFBYW1rpmosaAQYqIdCo/Px9z5szBjRs3MGTIEPj6+iI5ORmLFy+uFAYePHiA2bNnIyQkBDY2Nhg1ahR8fX1x+fJlzJ8/HydOnFDbx/vvv4+DBw+ie/fuGDdunGpO0oEDB/D+++/j9u3bGDp0KIYNG4ZLly5h4cKFKCsrq3CNkSNHqh7zJIVCgbCwMNjZ2aluiVXn/PnzAIDOnTvX/AIBuHHjBt544w1kZGTgs88+UwWwO3fuYPr06fjll1/QsmVLjB07Fj4+PoiJicHs2bMrhD4XFxf07NkTd+/eVRtSr1+/jqSkJLRv3x4dOnSodL5z584oKSnBxYsXa1UzUWPBW3tEJKo7d+5UGPF5XOfOnfHss89WOHb16lWMHj0aCxYsgFT66He7Hj16YO3atQgNDcXixYtVbYODg5GSkoIlS5ZgxIgRquPZ2dkICgrCZ599ht69e1e4LQUAWVlZ2LZtG2xtbVXH8vLy8OWXX8LCwgLffPMNXF1dAQBBQUFYvHgxkpOT4eLiomrfrVs3tG3bFpGRkXjzzTdhYWGhOhcTE4PMzEyMHz8epqamNb5G8fHxkEql8PDwqLHtpUuX8M4776BJkybYuHFjhcd8/PHHuH//PtatW4fevXurjk+ePBlBQUFYu3YtQkJCVMcDAwNx7tw5hIWFoUePHhX6qWo0qpynpycA4OLFixX6ImrsOCJFRKK6c+cOQkJC1P75888/K7W3sLDArFmzVCEKePRJMZlMhqSkJNWxnJwcHDt2DD169KgQogCgadOmeOmll5CTk6Ma7Xnca6+9ViFEAcDJkyfx8OFDDB8+XBWigEeTq6dPn672uY0cORKFhYWIjIyscHz//v0AgOeff76ql6WCzMxMWFtb1xi6Tp8+jbfeegs2Njb46quvKoSoy5cv4+LFixg6dGilYOPq6ooRI0bg+vXrFUb1+vfvDzs7O0RHR6OgoEB1vKysDIcPH4apqWmVHxRwcHAA8OgWIxH9iyNSRCSq3r17Y926dbVu37p1a1haWlY41qRJEzg4OCA/P191LCkpCQqFAqWlpWpHvG7fvg0ASE1NxXPPPVfhXKdOnSq1L18XqWvXrpXOeXl5QSaTVTo+dOhQfP3119i/f78qzN2/fx+nTp3C008/jbZt29bwbB958OABmjVrVm2bY8eO4ezZs2jXrh0+++wzNG3atML58tt22dnZal+Pmzdvqv7r7u4OAKqgtHv3bkRERGDUqFEAgD/++AM5OTmQy+WwsbFRW0/58dzc3Fo9R6LGgkGKiHTKyspK7XGZTAalUqn6+sGDBwAe3RaLj4+v8npFRUWVjpWPpjyufETmyYACPPqUm52dXaXjNjY2GDhwIA4ePIjr16/D3d0d4eHhUCgUtR6NAgAzMzOUlJRU2+bSpUtQKBTo2rWr2hrLX4/Tp0/j9OnTVV7n4cOHFb4ODAzE7t27ERYWpgpSNd3WA6Cq19zcvNq6iRobBikiMgjlgWvixImYM2dOnR4rkUiqvF52dnalc0qlErm5uWpHjUaNGoWDBw/i999/x/z583HgwAFYWVlh4MCBta7Hzs4OmZmZ1baZMWMGTp48id27d0Mmk1V6zuX1z58/Hy+88EKt+27Xrh06duyIxMREpKSkwMbGBjExMWjRokWleVOPKw9u9vb2te6LqDHgHCkiMggdO3aERCLBpUuXRLleu3btAEDt6FZiYiIUCoXax3Xu3Bnt2rXDkSNHEBMTg9u3b2Pw4MF1Gqlxd3dHSUkJ0tPTq2xjamqKjz/+GH369MGuXbuwadOmCufLb1dq8nqUjzwdOHAAhw4dgkKhUC2PUJXyW4XltwmJ6BEGKSIyCI6Ojhg4cCAuXryIn376Se1aSAkJCWpv7anTr18/WFhY4MCBA7hz547qeFlZGb799ttqHzty5Eg8ePAAa9asAYBKk99r4u3traq3Oqampli9ejWee+45/Pzzz9i4caPqnJeXF7y8vBAZGVlp8jvwaFQtLi5O7XXlcjnMzc1x+PBhhIWFQSqVYtiwYdXWkpiYWKF2InqEt/aISFTVLX8AAC+//HKl5Qlqa+HChbh16xY2b96MQ4cOoXPnzrC2tkZmZiaSkpJw+/Zt/Prrr7UaHbKxscGbb76Jzz77DEFBQRg0aBCsrKxw5swZmJqawsnJqcoRmiFDhmDLli24d+8ePD091a67VJ1+/frhv//9L86dO1fjLUETExN89NFH+OCDD/DLL79AEATMmzcPAPDBBx9gwYIFWLVqFXbv3o327dvDzMwMGRkZuHjxInJzc9UuEGplZYUBAwbg0KFDyMnJwbPPPlvltjEAIAgCzp8/jzZt2lT4hCMRMUgRkcjKlz+oyvjx4zUOUra2tvjqq68QGhqKo0ePIiIiAkqlEg4ODvDw8MCUKVPUThKvyvPPPw8bGxvs2LEDBw8ehJWVFfr27YtZs2Zh/PjxVW7fYmVlhf79++Pw4cN1Ho0CgBYtWqBXr16IiorC/Pnza1wGoTxMrVixArt374YgCJg/fz5atmyJb7/9Frt27cKJEycQHh4OqVQKR0dHdOvWrdqV0wMDA3Ho0CEAj1Y9r87ff/+N9PR0zJ07t87PlcjYSYSq9gogImqkbt++jUmTJmHgwIFYtWqV2jZTpkxBWloaQkNDq/zkYXXOnz+Pt956C8uXL8eQIUPqW7JWffTRR/jzzz/x008/Vbk8AlFjxTlSRNRo5eXlVVqGoLi4WDWxu3///mofd+bMGaSkpEAul2sUogCgZ8+eePbZZ7F9+/YKyzzom1u3buHo0aOYPHkyQxSRGry1R0SNVlxcHD799FP06tULzZs3R25uLv766y+kpaWhR48eGDRoUIX2e/fuRUZGBvbv3w9TU1O8/PLL9ep/3rx5OHLkCDIzM6udo6RLGRkZmDp1KsaMGaPrUoj0Em/tEVGjdevWLXz77be4ePEicnJyAACtWrXCoEGD8OKLL1aayzVhwgRkZmbC1dUVs2bNqrSCOhE1PgxSRERERBriHCkiIiIiDTFIEREREWmIQYqIiIhIQwxSRERERBpikCIiIiLSEIMUERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiIN/T9/KLALnYCymwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux_truth = [ integrated_flux / width for integrated_flux, width in zip(integrated_flux_each_band_truth, model_map.axes['Ei'].widths)]\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.errorbar(energy_band, [_.value for _ in differential_flux_truth], xerr=err_energy, fmt='o', label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "be10a7cd", + "metadata": {}, + "source": [ + "## Find the location with the maximum flux\n", + "As an example, here it calculate the location of the maximum flux at the 20th iteration's map at the highest energy bin " + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "ce7a856e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The source position is around (l ,b) = (50.62499999999999 deg., -19.47122063449069 deg.) in galactic\n", + "The source position is around (ra, dec) = (308.30194136772735 deg., 5.913074059175163 deg.) in icrs\n" + ] + } + ], + "source": [ + "idx_iteration = 19\n", + "idx_energy = 4\n", + "\n", + "argmax = np.argmax(all_results[idx_iteration][\"model_map\"].contents[:,idx_energy:idx_energy+1])\n", + "nside = all_results[idx_iteration][\"model_map\"].axes[\"lb\"].nside\n", + "coordsys = all_results[idx_iteration][\"model_map\"].axes[\"lb\"].coordsys\n", + "\n", + "theta, phi = hp.pix2ang(nside, argmax)\n", + "\n", + "l, b = phi * 180 / np.pi, 90 - theta * 180 / np.pi\n", + "\n", + "c = SkyCoord(l, b, unit=\"deg\", frame = coordsys)\n", + "\n", + "print(f\"The source position is around (l ,b) = ({c.galactic.l.deg} deg., {c.galactic.b.deg} deg.) in galactic\")\n", + "print(f\"The source position is around (ra, dec) = ({c.icrs.ra.deg} deg., {c.icrs.dec.deg} deg.) in icrs\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c517885b", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/index.rst.txt b/_sources/tutorials/index.rst.txt new file mode 100644 index 00000000..e87a2ea8 --- /dev/null +++ b/_sources/tutorials/index.rst.txt @@ -0,0 +1,79 @@ +Tutorials +========= + +This is a series of tutorials explaining step by step the various components of the `cosipy` library and how to use it. Although they are rendered as a webpage here, these are interactive Python notebooks (ipynb) that you can execute and modify, distributed as part of the cosipy repository. You can download them using the links below, or by cloning the whole repository running :code:`git clone git@github.com:cositools/cosipy.git`. + +If you are interested instead of the description of each class and method, please see our `API <../api/index.html>`_ section. + +See also `COSI's second data challenge `_ for the scientific description of the simulated data used in the tutorials, as well as an explanation of the statistical tools used by cosipy. + +List of tutorials and contents, as a link to the corresponding Python notebook in the repository: + +1. Data format and handling `(ipynb) `_ + + - Data format, binned and unbinned + - Binning the data in both local and galactic coordinates + - Combining files. + - Inspecting and plotting the data + +2. Spacecraft orientation and location `(ipynb) `_ + + - SC file format and manipulation it —e.g. get a time range, rebin it. + - The dwell time map and how to obtain it + - Generate point source response and export to the format that can be read by XSPEC + - The scatt map and how to obtain it + +3. Detector response and signal expectation `(ipynb) `_ + + - Explanation of the detector response format and meaning + - Visualizing the response + - Convolving the detector response with a point source model (location + spectrum) + spacecraft file to obtain the expected signal counts. Both in SC and galactic coordinates. + +4. TS Map: localizing a GRB `(ipynb) `_ + - TS calculation + - Meaning of the TS map and how to compute confidence contours + - Computing a TS map, getting the best location and estimating the error + +5. Fitting the spectrum of a GRB `(ipynb) `_ + + - Introduction to 3ML and astromodels + - Likelihood analysis. + - Mechanics of background estimation. + - Fitting a simple power law, assuming you know the time of the GRB + - Plotting the result + - Comparing the result with the data + +6. Fitting the spectrum of the Crab `(ipynb) `_ + + - Analysing a continuous source transiting in the sky. + +7. Extended source model fitting `(ipynb) `_ + + - Obtaining the extended source response as a convolution of multiple point sources + - Pre-computing a response in galactic coordinates for all-sky + - Fitting an extended source + +8. Image deconvolution `(ipynb) `_ + - Explain the RL algorithm. Reference the previous example. Explain the difference with a TS map. + - Scatt binning and its advantages/disadvantages + - Fitting the 511 diffuse emission. + +9. TODO: Source injector + - Nice to have: allow theorist to test the sensitivity of their models + +.. warning:: + Under construction. Some of the explanations described above might be missing. However, the notebooks are fully functional. If you have a question not yet covered by the tutorials, please discuss `issue `_ so we can prioritize it. + +.. toctree:: + :maxdepth: 1 + + Data format and handling + response/SpacecraftFile.ipynb + Detector response and signal expectation + TS Map: localizing a GRB + Fitting the spectrum of a GRB + Fitting the spectrum of the Crab + Extended source model fitting + Image deconvolution + + diff --git a/_sources/tutorials/other_examples.rst.txt b/_sources/tutorials/other_examples.rst.txt new file mode 100644 index 00000000..ac9ddc9e --- /dev/null +++ b/_sources/tutorials/other_examples.rst.txt @@ -0,0 +1,9 @@ +Other examples +============== + +.. warning:: + Under construction. + +.. toctree:: + :maxdepth: 1 + diff --git a/_sources/tutorials/response/DetectorResponse.ipynb.txt b/_sources/tutorials/response/DetectorResponse.ipynb.txt new file mode 100644 index 00000000..71000116 --- /dev/null +++ b/_sources/tutorials/response/DetectorResponse.ipynb.txt @@ -0,0 +1,1033 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a3e92e8e-7c4e-41ae-9fea-040dada717b2", + "metadata": {}, + "source": [ + "# Full detector response" + ] + }, + { + "cell_type": "markdown", + "id": "693f2144-561f-4699-9624-1122b9f730e3", + "metadata": {}, + "source": [ + "The detector response provides us with the the following information:\n", + "- The effective area at given energy for given direction. This allows us to convert from counts to physical quantities like flux\n", + "- The expected distribution of measured energy and other reconstructed quantities. This allows us to account for all sorts of detector effects when we do our analysis.\n", + "\n", + "This tutorial will show you how to handle detector response and extrat useful information from it." + ] + }, + { + "cell_type": "markdown", + "id": "9ec5eb17-f83d-4a9c-b45c-42c7d71bd6a8", + "metadata": {}, + "source": [ + "## Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "366b09f0-aff2-47cd-93ee-2dcff45185e5", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "import numpy as np\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.io import fits\n", + "from astropy.time import Time\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.pyplot as ply\n", + "\n", + "from mhealpy import HealpixMap, HealpixBase\n", + "import pandas as pd\n", + "from pathlib import Path\n", + "\n", + "from scoords import Attitude, SpacecraftFrame\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy import test_data\n", + "from cosipy.util import fetch_wasabi_file\n", + "from histpy import Histogram\n", + "import gc\n", + "\n", + "from threeML import Model, Powerlaw\n", + "\n", + "from cosipy.response import FullDetectorResponse" + ] + }, + { + "cell_type": "markdown", + "id": "ba883bb8-fa61-4f9c-a551-25e8c4649bad", + "metadata": {}, + "source": [ + "## File downloads" + ] + }, + { + "cell_type": "markdown", + "id": "2d7fca99-a643-4a09-b60e-f09bf0145049", + "metadata": {}, + "source": [ + "You can skip this step if you already downloaded the files. Make sure that paths point to the right files" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "89945d9d-7d38-4871-bf20-4000ca93c06b", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you can want a different path\n", + "\n", + "ori_path = data_dir/\"20280301_3_month.ori\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "\n", + "# download orientation file ~684.38 MB\n", + "if not ori_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", ori_path)\n", + "\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " \n", + " response_path_zip = str(response_path) + '.zip'\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\",response_path_zip)\n", + " \n", + " # unzip the response file\n", + " shutil.unpack_archive(response_path_zip)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(response_path_zip)" + ] + }, + { + "cell_type": "markdown", + "id": "d2a3629d-b7a0-4c2e-bfc5-786b17ed06f8", + "metadata": {}, + "source": [ + "## Opening a full detector response" + ] + }, + { + "cell_type": "markdown", + "id": "a571dd15-b4f7-4f3e-9ab1-ac399afb6c3c", + "metadata": {}, + "source": [ + "The response of the instrument in encoded in a series of matrices cointained in a file. you can open the file like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a7c37c72-a197-4e87-849a-93bf491eac88", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\n" + ] + } + ], + "source": [ + "response = FullDetectorResponse.open(response_path)\n", + "\n", + "print(response.filename)\n", + "\n", + "response.close()" + ] + }, + { + "cell_type": "markdown", + "id": "02ab5663-6255-47f6-938a-be52dbb1ba2e", + "metadata": {}, + "source": [ + "Or if you don't want to worry about closing the file, use a context manager statement:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f5921a20-9560-4bfd-be91-29490aac144a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FILENAME: '/Users/imartin5/software/cosipy/docs/tutorials/response/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + "\n" + ] + } + ], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + "\n", + " print(repr(response))" + ] + }, + { + "cell_type": "markdown", + "id": "f6750d71-cc53-4aef-b023-835a646a2ff2", + "metadata": {}, + "source": [ + "Although opening a detector response does not load the matrices, it loads all the header information above. This allows us to pass it around for various analysis at a very low cost." + ] + }, + { + "cell_type": "markdown", + "id": "b7b4c8fa-4565-4a51-932f-3feecafa42d4", + "metadata": {}, + "source": [ + "## Detector response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "c69e16d8-4822-43ec-bc4e-135abe25d6fd", + "metadata": {}, + "source": [ + "The full --i.e. all-sky-- detector response is encoded in a HEALPix grid. For each pixel there is a multidimensional matrix describing the response of the instrument for that particular direction in the spacefraft coordinates. For this response has the following grid:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cad81d6b-7c7b-41d5-9868-da58d25d4a3d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NSIDE = 8\n", + "SCHEME = RING\n", + "NPIX = 768\n", + "Pixel size = 7.33 deg\n" + ] + } + ], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " \n", + " print(f\"NSIDE = {response.nside}\")\n", + " print(f\"SCHEME = {response.scheme}\")\n", + " print(f\"NPIX = {response.npix}\")\n", + " print(f\"Pixel size = {np.sqrt(response.pixarea()).to(u.deg):.2f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "5c18a7b2-0190-4027-afe7-2f631fc245e1", + "metadata": {}, + "source": [ + "To retrieve the detector response matrix for a given pixel simply use the `[]` operator" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "d4972c53-f653-4694-8190-8524362b6ef7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pixel 0 centered at \n" + ] + } + ], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " \n", + " print(f\"Pixel 0 centered at {response.pix2skycoord(0)}\")\n", + " drm = response[0]" + ] + }, + { + "cell_type": "markdown", + "id": "9bf2f221-0300-4dd1-8dc7-eb4e0e694997", + "metadata": {}, + "source": [ + "Or better, get the interpolated matrix for a given direction. In this case, for the on-axis response:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5a621225-5619-4d43-9670-b4bd03b1d801", + "metadata": {}, + "outputs": [], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " \n", + " drm = response.get_interp_response(SkyCoord(lon = 0*u.deg, lat = 0*u.deg, frame = SpacecraftFrame()))" + ] + }, + { + "cell_type": "markdown", + "id": "05e40223-2d93-4a82-95b3-c30d00499742", + "metadata": {}, + "source": [ + "The matrix has multiple dimensions, including real photon initial energy, the measured energy, the Compton data space, and possibly other:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6680c76c-3483-462e-bb40-5a00b282cdba", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Ei', 'Em', 'Phi', 'PsiChi'], dtype='" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "drm.get_spectral_response().plot();" + ] + }, + { + "cell_type": "markdown", + "id": "f37ad594-0be7-41f0-b7ec-16e2251a78b8", + "metadata": {}, + "source": [ + "You can further project it into the initial energy to get the effective area:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a20f628e-b891-4dcb-b305-8a94c01f2d4a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG7CAYAAADTx9GGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0TklEQVR4nO3dd3xU9Z7/8fekTEgBggmEgFICSFVBadJ7E3LhUgRFjQUsF0QBaVddkSh6RSmirODFCK4Xoly4lIBKl6YQQVGKUZYBxQAJLYX0+f3hZn7GhMNkMpOZCa/n48FjH/Mt53wOu0fe+z3fOWOyWq1WAQAAoEQ+7i4AAADAkxGWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWyigrK0vHjx9XVlaWu0sBAAAuQFgqI4vFojFjxshisbi7FAAA4AKEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAN+7i4AAOA8J/b9psRPk5SblefuUkrFv5KfWg9vpPrtIt1dClAMYQkAKpDET5N0+UyGu8twQLYOfJJEWIJHIiwBQAVSuKJkMkmB1QLcXI19rl7MltUqr1sNw42DsAQAFVBgtQDdt7CHu8uwy8fjtirzQra7ywCuiQ3eAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABvzcXQAAAJJ09WK2Ph631d1llIp/JT+1Ht5I9dtFursUuBBhCQDgVv6V/CRly2qVMi9ku7ucUsrWgU+SCEsVHGEJAOBWrYc30oFPkpSblefuUkrl6sXfA5631Y3SIywBANyqfrtIr1yZ+XjcVi9cCYMj2OANAABgwCNXljIzM7VixQodOXJER48eVVpamqZPn67+/fsXGffqq69q06ZNxebXqVNHH330kV3n2rVrlz744ANZLBaFhoZqwIABevDBB+Xn55F/NQAAoJx5ZCK4fPmy4uLiFBERoYYNG+rgwYPXHGs2mzVlypQibcHBwXadZ9++ffr73/+uli1basKECTpx4oSWLVumixcvatKkSWW6BgDe78S+35T4qXftpbl6kcdCgLN5ZFgKCwvT6tWrFRYWpmPHjmns2LHXHOvr66s+ffo4dJ53331XDRo00JtvvmlbSQoKCtJHH32kYcOGqW7dug4dF0DFkPhpki6fyXB3GQ75/RtmAJzBI+8ms9mssLAwu8fn5+crKyvL7hUlSTp58qROnjypZ599tsgjtyFDhmj58uXavn27HnrooVLVDaBiKVxRMpmkwGoBbq7GfoXv/gHgHB4ZlkojKytL/fv3V1ZWlipXrqyePXvqiSeeUFBQkOG8H3/8UZLUuHHjIu3h4eGqXr26kpKSSpyXkpKi1NRU22eLxVLGKwDg6QKrBei+hT3cXQYAN/HqsBQWFqZRo0bp1ltvldVq1VdffaU1a9bo559/1vz58w03aRcGnpJWsMLCwooEoj9au3at4uLinFI/AADwfF4dlh5//PEin3v27KlbbrlFS5Ys0Y4dO9SzZ89rzs3JyZH0+yO/PzObzcrMzCxxXnR0tDp27Gj7bLFYFBsb60j5AADAC1S49yyNGDFCPj4+OnDggOG4wpBUGJr+KCcnRwEBJe9PCA8PV+PGjW1/2AQOAEDFVuHCUkBAgKpUqaIrV64Yjit8/FbS47bU1NRSbTAHAAAVV4ULS5mZmbp8+bJCQ0MNxzVq9Ps3RY4fP16kPSUlRefPn7f1AwCAG5vXhqXs7OwS9xV9+OGHslqtateuna0tLy9PFotFKSkptrb69eurTp06WrdunfLz823ta9askclkUteuXV17AQAAwCt47AbvVatWKT093faYbPfu3Tp37pwkaejQoUpLS9Ojjz6qXr16qU6dOpKkr7/+Wvv27VO7du3UqVMn27HOnz+vBx54QP369dOMGTNs7U899ZSmT5+uSZMmqWfPnjpx4oRWr16tgQMHql69euV3sQAAwGN5bFhauXKlkpOTbZ937typnTt3SpL69OmjkJAQdejQQfv379emTZtUUFCg2rVra+zYsRo5cqR8fK6/aNahQwfFxsYqLi5O8+fPV9WqVTV69GjFxMS46rIAAICX8diwFB8ff90xzz//vF3HioyMtAWtP+vcubM6d+5cqtoAAMCNw2v3LAEAAJQHwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABP3cXAACAN7t6MVsfj9vq7jLs5l/JT62HN1L9dpHuLsVrEJYAAHCAfyU/SdmyWqXMC9nuLqcUsnXgkyTCUikQlgAAcEDr4Y104JMk5WblubsUu129+Hu486aaPQFhCQAAB9RvF+l1qzMfj9vqZatgnoEN3gAAAAYISwAAAAYISwAAAAYISwAAAAY8boN3ZmamVqxYoSNHjujo0aNKS0vT9OnT1b9/f9uYgoICffbZZ9qxY4eSkpKUlpamyMhI9ejRQyNHjlRAQMB1z/P000/r0KFDxdrbtm2rOXPmOPOSAACAF/O4sHT58mXFxcUpIiJCDRs21MGDB4uNycrK0uzZs9W8eXP95S9/UbVq1fTDDz/ogw8+0DfffKN58+bJZDJd91zVq1fX448/XqQtLCzMadcCAAC8n8eFpbCwMK1evVphYWE6duyYxo4dW2yMv7+/3nnnHd122222tkGDBqlmzZpaunSpEhMT1bp16+ueKyQkRH369HFq/QAAoGLxuD1LZrP5uqs7/v7+RYJSoc6dO0uSLBaL3efLy8tTZmZm6YoEAAA3DI9bWSqLCxcuSJKqVq1q1/jTp0+rb9++ys3N1U033aSBAwcqJiZGfn7X/mtJSUlRamqq7XNpghkAAPA+FSos/etf/1JwcLDatWt33bG1atVSq1atFBUVpaysLG3fvl3Lli3T6dOnNXPmzGvOW7t2reLi4pxYNQAA8GQVJiwtX75cBw4c0MSJE1W5cuXrjp82bVqRz3379tUbb7yhdevWacSIEWrevHmJ86Kjo9WxY0fbZ4vFotjY2LIVDwAAPFaFCEtbtmzR+++/r3vuuUeDBw92+Dj33nuv1q1bpwMHDlwzLIWHhys8PNzhcwAAAO/icRu8S2v//v169dVXdffdd2vSpEllOlaNGjUkSWlpac4oDQAAVABeHZaOHDmi559/Xo0bN9bMmTMNN2bb48yZM5Kk0NBQJ1QHAAAqAq8NSydPntTUqVNVs2ZNvf7664Zv7bZYLDp79qztc0ZGhnJycoqMsVqtWrZsmSSpTZs2rikaAAB4HY/cs7Rq1Sqlp6fbvqK/e/dunTt3TpI0dOhQ+fj4aPLkyUpLS9PIkSO1d+/eIvNr1aqlFi1a2D4/8MADatmypRYsWCBJ+vHHHzVz5kz16tVLtWvXVnZ2tr788ksdPnxYgwYNUuPGjcvpSgEAgKfzyLC0cuVKJScn2z7v3LlTO3fulCTbG7cLw9N7771XbH6/fv2KhKU/i4iI0B133KGdO3fqwoUL8vHxUd26dTVp0iRFR0c781IAAICX88iwFB8ff90xheHJHn8eW6tWLcN3KQEAABTy2j1LAAAA5YGwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYMAjf0gXQMVzYt9vSvw0SblZee4uxW5XL2a7uwQAHoCwBKBcJH6apMtnMtxdhkP8K/GfSuBGxn8BAJSLwhUlk0kKrBbg5mrs51/JT62HN3J3GQDciLAEoFwFVgvQfQt7uLsMALAbG7wBAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAM+Nkz6LXXXivziTp16qROnTqV+TgAAADlya6wtHHjxjKdxGQyqWbNmoQlAADgdewKS5I0fPhwDRs2rNQnsFqtGjlyZKnnAQAAeAK7w1JISIhq1qzpyloAAAA8jl1haeLEiWrSpInDJynrfAAAAHexKyz95S9/KdNJyjofAADAXXh1AAAAgAG79yyVp8zMTK1YsUJHjhzR0aNHlZaWpunTp6t///7Fxp48eVILFy7U4cOH5efnp7vvvlvjxo1TaGioXefatWuXPvjgA1ksFoWGhmrAgAF68MEH5efnkX81AACgnJU6EWzfvl3ffvutfH191bZtW7Vt27bEcRs3btSmTZs0f/78Uhd1+fJlxcXFKSIiQg0bNtTBgwdLHHfu3DmNHz9eISEhGjNmjK5evaoVK1boxIkTeu+99+Tv7294nn379unvf/+7WrZsqQkTJujEiRNatmyZLl68qEmTJpW6bgAAUPHYHZYKCgr097//XXv37pXVapUkffrpp7rzzjv1/PPP66abbioyPjk5Wd9++61DRYWFhWn16tUKCwvTsWPHNHbs2BLHffTRR8rKytL777+viIgISVLTpk01ceJEbdy4UdHR0Ybneffdd9WgQQO9+eabtpWkoKAgffTRRxo2bJjq1q3rUP0AAKDisHvP0rp167Rnzx7deuutevHFFzVz5ky1adNGiYmJeuqpp5ScnOy0osxms8LCwq47bseOHerQoYMtKElS69atdcstt2jbtm2Gc0+ePKmTJ09q0KBBRR65DRkyRFarVdu3b3e4fgAAUHHYvbK0ceNGhYeH6+2331ZAQIAkqVu3blq7dq3mz5+vp59+WvPmzVOtWrVcVuwfnT9/XhcvXlTjxo2L9TVt2lT79u0znP/jjz9KUrH54eHhql69upKSkkqcl5KSotTUVNtni8VS2tIBAIAXsTssnTx5Un369LEFpULR0dEKDw/Xiy++qAkTJmj+/PnlEpgKA0tJK1BhYWG6cuWKcnJyZDabHZr/x0D0R2vXrlVcXJyDVQMAAG9jd1iyWq0KDg4usa9Dhw6aNWuWXnjhBY0fP17z5s1zVn3XlJ2dLUklbuIuDEjZ2dnXDEs5OTlFxv55fmZmZonzoqOj1bFjR9tni8Wi2NjY0hUPAAC8ht17lmrUqKFTp05ds//uu+/WrFmzdPnyZU2YMEGnT592SoHXUrjClZubW6yvMAj9eRXsjwpDUuHYP8+/1tzw8HA1btzY9odN4AAAVGx2h6UmTZrom2++sa3olKQwMF25ckVbt251SoHXUvj4rKTHZampqapSpco1V5XsmW/PBnMAAFDx2R2WOnbsqMzMTG3atMlw3N13363Y2FiXv9SxevXqCg0N1fHjx4v1HT16VA0bNjSc36hRI0kqNj8lJUXnz5+39QMAgBub3WGpU6dOWr58eZH9OtfSvn17LV261OV7l7p27ao9e/bo7NmztrbExESdPn1a3bt3t7Xl5eXJYrEoJSXF1la/fn3VqVNH69atU35+vq19zZo1MplM6tq1q0trBwAA3sHu5R8/Pz/VqVPH7gPXqVOnVOP/bNWqVUpPT7c9Jtu9e7fOnTsnSRo6dKhCQkI0evRobd++Xc8884yGDRumq1ev6l//+peioqKK/DTK+fPn9cADD6hfv36aMWOGrf2pp57S9OnTNWnSJPXs2VMnTpzQ6tWrNXDgQNWrV8/h2gEAQMXhsT+AtnLlyiIvuty5c6d27twpSerTp49CQkIUERGhBQsWaOHChXrvvfdsvw33t7/9zXC/UqEOHTooNjZWcXFxmj9/vqpWrarRo0crJibGVZcFAIDbXb2YrY/HuXZvsTP5V/JT6+GNVL9dpFvO73BYyszM1Pr16/Xzzz8rJSVFeXl5xcaYTCaHH8XFx8fbNa5+/fp68803DcdERkbagtafde7cWZ07dy51fQAAeBv/Sn6SsmW1SpkXrv2FLc+TrQOfJHlXWDp69KimTJmitLQ02+/ElcRkMjlcGAAAcK7WwxvpwCdJys0qvsDhqa5e/D3cubNmh8LSggULlJ6erscff1w9e/ZUWFiYfH19nV0bAABwovrtIt22OuOoj8dtdfsqmENhKSkpST169NCoUaOcXQ8AAIBHsfvVAX9UpUoVhYaGOrkUAAAAz+NQWOrUqZO++eYbFRQUOLseAAAAj+JQWHr88cfl5+enWbNm6fz5886uCQAAwGM4tGcpODhYkydP1sSJE7Vt2zZVrlxZQUFBxcaZTCatWLGizEUCAAC4i0MrS4mJiRo3bpzS09Pl6+srs9ksq9Va7A+P6QAAgLdzaGXpv//7v2W1WvXSSy+pW7duvE8JAABUWA6FpZMnT6pPnz5FfqwWAACgInLoMVxoaKgCAgKcXQsAAIDHcSgs9e7dW/v27VN2tjf9rgwAAEDpORSWHn74YUVFRWny5Mk6fPiwMjMznV0XAACAR3Boz1Lv3r0lSVarVePHj7/mOJPJpG3btjlWGQAAgAdwKCzdfvvtfAMOAADcEBwKSwsWLHB2HQAAAB7JoT1LAAAANwqHwtK5c+e0a9cupaWlldiflpamXbt28btxAADA6zkUlpYtW6bXXnvtmu9aCggI0Ouvv66PPvqoTMUBAAC4m0Nh6ZtvvlGbNm1kNptL7DebzWrTpo0SExPLVBwAAIC7ORSWUlJSVLNmTcMxERERPIYDAABez6Gw5Ofnp4yMDMMxGRkZvF4AAAB4PYfCUlRUlPbs2aOcnJwS+7Ozs7V7925FRUWVqTgAAAB3cygsDRgwQOfPn9f06dN15syZIn2//vqrZsyYodTUVA0cONApRQIAALiLQy+lHDBggPbt26cdO3Zo9OjRioyMVHh4uFJSUvTbb78pPz9fPXr00IABA5xdLwAAQLlyKCxJ0syZM/Xvf/9ba9as0alTp/TLL79IkurVq6chQ4Zo8ODBzqoRAADAbRwOSyaTSUOHDtXQoUN19epVZWRkKDg4WIGBgc6sDwAAwK0cDkt/FBgYSEgCAAAVEr8NBwAAYMCusDRkyBCtXLnS4ZOUdT4AAIC72BWWLly4oKtXrzp8krLOBwAAcBe79yx9+eWXSk5OdugkvMkbAAB4K7vD0k8//aSffvrJlbUAAAB4HLvCkjP2G4WEhJT5GAAAAOXNrrBUs2ZNV9cBAADgkXh1AAAAgAHCEgAAgAGnvMHbXV599VVt2rTpmv2rVq1S9erVS+xbunSp4uLiirWbzWZt3rzZWSUCAAAv59VhKTo6Wq1bty7SZrVa9eabb6pmzZrXDEp/NGnSpCI/1eLjw2IbAAD4/7w6LLVo0UItWrQo0vbdd98pKytLvXv3tusYXbt2VWhoqAuqAwAAFYFdyyi7du3S6dOnXV2LU2zevFkmk0m9evWye05GRoasVqsLqwIAAN7KrrD0/PPPa8uWLbbP9957rz799FOXFeWovLw8bdu2TS1atFBkZKRdc+699171799f/fr106xZs3ThwgXD8SkpKTp+/Ljtj8VicUbpAADAQ9n1GM7Pz095eXm2z8nJyUpPT3dZUY76+uuvdfnyZbsewVWuXFl//etf1bx5c/n7++u7777T6tWrdfToUS1ZskTBwcElzlu7dm2JG8MBAEDFZFdYqlGjhg4fPqz8/Hz5+vpK8szfe9u8ebP8/PzUvXv3644dPnx4kc/dunVT06ZNNWvWLK1evVqjR48ucV50dLQ6duxo+2yxWBQbG1u2wgEAgMeyKyz16tVLH374oQYOHKgqVapIkuLj45WQkGA4z2QyacWKFWWv0g6ZmZnatWuX2rZtq6pVqzp0jN69e+udd95RYmLiNcNSeHi4wsPDy1IqAADwInaFpQcffFBms1n79u1TSkqKTCaTrFbrdTdFl+em6V27dpXqW3DXUqNGDV25csVJVQEAAG9n956l0aNH21ZbunbtqhEjRigmJsaVtZXKF198ocDAwCKPyErLarUqOTlZjRo1cmJlAADAmzn06oCYmBi1bNnSVTWV2qVLl3TgwAF16dJFlSpVKtZ/9uzZYt9au3TpUrFxa9as0aVLl9SuXTtXlQoAALyMXStLzz//vGJiYmwrSZs2bVLlypU9JjBt2bJF+fn513wE98orr+jQoUPauXOnrW348OHq0aOHoqKiZDabdfjwYW3ZskWNGjVSdHR0eZUOAAA8XIV4dcDmzZtVrVo13XXXXXbP6d27t77//nvt2LFDOTk5ioiI0KhRo/Tggw+WuDoFAABuTBXi1QGLFi0y7F+wYEGxtilTpriqHAAAUIFUmFcHAAAAuEKFeXUAAACAK1SYVwcAAAC4gl2vDvgzT3t1AAAAgKvYtbL0Zw8//LCz6wAAAPBIDoUlScrLy9O///1vbd68WadOnVJ2dra2bdsmSUpKStK6des0fPhw3XLLLU4rFgAAoLw5FJays7M1adIkff/996pataqCg4OVlZVl64+MjFRCQoIqV66sMWPGOK1YAACA8ubQnqXly5fr8OHDGjt2rNasWaN77rmnSH9ISIhatmyp/fv3O6VIAAAAd3EoLG3dulWtWrXSfffdJ5PJVOILKmvVqqWzZ8+WuUAAAAB3cigsnTt3To0bNzYcExgYqIyMDIeKAgAA8BQOhaXAwEBdunTJcMyZM2dUtWpVRw4PAADgMRwKS82bN9eePXuUlpZWYv/Zs2e1b98+3XHHHWUqDgAAwN0cCksjR45UWlqann32WdsP7EpSVlaWEhMTNXnyZOXn5+vee+91arEAAADlzaFXB7Rs2VLPPPOMFixYoPHjx9va+/XrJ0ny8fHRxIkTr7uvCQAAwNM5/FLKwYMHq2XLlvrPf/6jo0eP6sqVKwoODlbTpk01ZMgQ1a9f35l1AgAAuIXDYUmS6tWrpwkTJlyzPycnR2azuSynAAAAcCuH9ixdz/Hjx/XWW2/pr3/9qysODwAAUG7KtLL0R2lpafr888+VkJCgn3/+WVarVQEBAc46PAAAgFuUOSwdOHBAGzZs0K5du5Sbmyur1armzZtrwIAB6tGjhzNqBPAnJ/b9psRPk5SblefuUux29WK2u0sAAIc4FJbOnj2rjRs3KiEhQefOnZPValV4eLhSUlLUv39/TZs2zdl1AviDxE+TdPmMd74h37+S0xa0AaBc2P1frby8PH355ZfasGGDEhMTVVBQoEqVKql3797q27ev7rzzTnXv3l2+vr6urBeAZFtRMpmkwGre87jbv5KfWg9v5O4yAKBU7A5LQ4YMUVpamkwmk1q1aqW+ffuqS5cuCgwMdGV9AAwEVgvQfQt53A0ArmR3WLpy5Yp8fHw0fPhw3XfffQoNDXVhWQAAAJ7B7lcH9O/fX2azWfHx8Ro6dKimTZumbdu2KTc315X1AQAAuJXdK0vTpk3T008/ra1bt2rDhg3au3ev9u3bp6CgIHXv3l19+/Z1ZZ0AAABuUaqvpQQFBWngwIEaOHCgTp48qfXr1+uLL77Q+vXrtWHDBplMJp06dUrJycmqWbOmq2oGAAAoNw6/wbtevXoaN26cVq1apZkzZ6pNmzYymUz67rvvNGrUKD3zzDP67LPPnFkrAABAuSvzC0/8/PzUrVs3devWTefOndPGjRu1ceNGHTx4UIcOHeLxHAAA8GpOfTtcjRo19NBDD+mhhx5SYmKiNmzY4MzDAwAAlDuXvUr3rrvu0l133eWqwwMAAJQLh/csAQAA3AgISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAZc9p6l8nDw4EFNmDChxL5FixapefPmhvPPnz+vhQsXav/+/SooKFCrVq00fvx41apVyxXlAgAAL+TVYanQ0KFD1bRp0yJttWvXNpyTmZmpCRMmKCMjQ6NHj5afn5/i4+M1fvx4LV26VFWrVnVlyQAAwEtUiLB0xx13qFu3bqWas2bNGv3yyy967733bEGrXbt2iomJ0cqVKzV27FgXVAoAALxNhdmzlJmZqby8PLvHb9++XU2aNCmyIlW3bl3deeed2rZtmytKBAAAXqhCrCzNnj1bV69ela+vr26//XY9+eSTatKkyTXHFxQU6MSJExowYECxvqZNm2r//v3KzMxUUFBQsf6UlBSlpqbaPlssFudcBAAA8EheHZb8/PzUtWtXtW/fXlWrVtXJkye1cuVKjRs3Tu+++65uvfXWEudduXJFOTk5CgsLK9ZX2JaSkqI6deoU61+7dq3i4uKceh0AAMBzeXVYuu2223TbbbfZPnfq1EndunXTww8/rMWLF2vOnDklzsvOzpYk+fv7F+szm81FxvxZdHS0OnbsaPtssVgUGxvr8DUAAADP5tVhqSQ333yzOnXqpJ07dyo/P1++vr7FxgQEBEiScnNzi/Xl5OQUGfNn4eHhCg8Pd2LFAADAk1WYDd5/VKNGDeXm5iorK6vE/ipVqshsNhfZe1SosI1ABAAApAoals6cOSOz2azAwMAS+318fBQVFaVjx44V6zty5Ihq1apV4uZuAABw4/HqsHTp0qVibT/99JN2796tNm3ayMfn98s7e/ZssW+tde3aVceOHSsSmE6dOqWDBw+W+p1NAACg4vLqPUv/9V//pYCAALVo0ULVqlXTyZMntW7dOlWqVEmPP/64bdwrr7yiQ4cOaefOnba2IUOGaP369Zo6dapGjhwpX19fxcfHq1q1aho5cqQ7LgcAAHggrw5LnTt31hdffKH4+HhlZGQoNDRUXbp0UUxMjG6++WbDuUFBQZo/f74WLlyoZcuW2X4bbty4cQoNDS2fCwAAAB7Pq8PSsGHDNGzYsOuOW7BgQYntNWrU0Msvv+zssgAAQAXi1XuWAAAAXI2wBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYMDP3QU46ujRo9q0aZMOHjyo5ORkValSRc2bN9djjz2mW265xXDuxo0bNXv27BL7Vq9erbCwMFeUDAAAvJDXhqWPP/5Yhw8fVvfu3dWgQQOlpqZq9erVeuyxx7Ro0SJFRUVd9xiPPvqoIiMji7SFhIS4qmQAAOCFvDYsjRgxQi+++KL8/f1tbT169NDDDz+s//mf/9ELL7xw3WO0a9dOTZo0cWWZAADAy3ntnqXbbrutSFCSpFtuuUX16tWTxWKx+ziZmZnKz893dnkAAKCC8NqVpZJYrVZdvHhR9erVs2v8hAkTdPXqVfn7+6tNmzb629/+dt39TikpKUpNTbV9Lk0wAwAA3qdChaUvvvhC58+f1yOPPGI4LiAgQP3791erVq0UHBys48ePKz4+Xk899ZTef/99RUREXHPu2rVrFRcX5+TKAQCAp6owYclisWju3Llq3ry5+vXrZzi2R48e6tGjh+1z586d1bZtW40fP17Lly/X5MmTrzk3OjpaHTt2LHLe2NjYsl8AAADwSBUiLKWmpmrq1KkKDg7WrFmz5OvrW+pj3H777WrWrJkSExMNx4WHhys8PNzRUgEAgJfx2g3ehdLT0zVlyhSlp6drzpw5ZQoyNWrU0JUrV5xYHQAA8HZevbKUnZ2tadOm6fTp03rrrbfs3th9LWfOnFFoaKhTagMAABWD164s5efn66WXXtIPP/ygmTNnqkWLFiWOS0lJkcViUV5enq3t0qVLxcbt3btXx48fV9u2bV1VMgAA8EJeu7L0zjvvaPfu3erQoYPS0tL0+eefF+nv06ePJGnx4sXatGmTVq5caXtb95NPPqlbb71VjRs3VnBwsH788UclJCSoRo0aeuCBB8r9WgAAgOfy2rD0008/SZL27NmjPXv2FOsvDEsl6dGjh/bt26f9+/crKytLYWFhGjRokGJiYnTTTTe5rGYAAOB9vDYsLViwwK5xM2bM0IwZM4q0jRkzRmPGjHFFWQAAoILx2j1LAAAA5YGwBAAAYMBrH8MBznJi329K/DRJuVl51x/sIa5ezHZ3CQBwwyAs4YaX+GmSLp/JcHcZDvGvxC0MAK7Gf2lxwytcUTKZpMBqAW6uxn7+lfzUengjd5cBABUeYQn4P4HVAnTfwh7XHwgAuKGwwRsAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMCAn7sLQMVyYt9vSvw0SblZee4uxW5XL2a7uwQAgAcjLMGpEj9N0uUzGe4uwyH+lbgdAADF8a8DnKpwRclkkgKrBbi5Gvv5V/JT6+GN3F0GAMADEZbgEoHVAnTfwh7uLgMAgDJjgzcAAIABwhIAAIABwhIAAIABr96zlJOTo3/+85/6/PPPlZaWpgYNGuixxx5TmzZtrjv3/PnzWrhwofbv36+CggK1atVK48ePV61atcqhcgAA4C28emVp9uzZio+PV+/evfX000/Lx8dHU6ZM0XfffWc4LzMzUxMmTNChQ4c0evRoPfLII0pKStL48eN1+fLlcqoeAAB4A69dWTpy5Ii2bNmiJ598UqNGjZIk9e3bVzExMVq0aJEWLVp0zblr1qzRL7/8ovfee09NmzaVJLVr104xMTFauXKlxo4dWy7XcD284BEAAPfz2rC0Y8cO+fr6Kjo62tYWEBCge+65R4sXL9bZs2cVERFR4tzt27erSZMmtqAkSXXr1tWdd96pbdu2eUxY4gWPAAC4n9f+i5aUlKSbb75ZwcHBRdoLA9BPP/1UYlgqKCjQiRMnNGDAgGJ9TZs21f79+5WZmamgoKASz5uSkqLU1FTbZ4vFUpbLMMQLHgEAcD+vDUupqakKCwsr1l7YlpKSUuK8K1euKCcn57pz69SpU+L8tWvXKi4uzsGqHcMLHgEAcB+vDUvZ2dny9/cv1m42m23915onyaG5khQdHa2OHTvaPlssFsXGxtpfeCkEVQ0o8j8BALjReMK/hV4blgICApSbm1usPScnx9Z/rXmSHJorSeHh4QoPDy91vY4Y/ErH6w8CAKAC84R/C7321QFhYWFF9g4VKmy7VqCpUqWKzGazQ3MBAMCNx2vDUsOGDfXLL78oI6Pot8WOHDli6y+Jj4+PoqKidOzYsWJ9R44cUa1ata65uRsAANx4vDYsdevWTfn5+Vq7dq2tLScnRwkJCWrWrJntm3Bnz54t9o21rl276tixY0UC06lTp3Tw4EF169atXOoHAADewWv3LDVr1kzdu3fX4sWLdenSJdWuXVubNm1ScnKypk6dahv3yiuv6NChQ9q5c6etbciQIVq/fr2mTp2qkSNHytfXV/Hx8apWrZpGjhzpjssBAAAeymvDkiTNmDFDERER+uyzz5Senq6oqCi9/vrratmypeG8oKAgzZ8/XwsXLtSyZctsvw03btw4hYaGlkvtAADAO5isVqvV3UV4s+PHj2vMmDFasmSJGjdu7O5yAACAk3ntniUAAIDyQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAw4NUvpfQE2dnZklTsJ1UAAIDnq1u3ripVqmQ4hrBURsnJyZKk2NhYN1cCAABKy56XSvMG7zK6dOmSvv76a61Zs0YTJkywe97bb7+t8ePHG46xWCyKjY3V888/r7p165a11ArBnr83d3FHba44p7OOWZbjODK3tHO4Bx3jyfegVP71uep8N8J9aO9YV9+HrCyVg9DQUPXp00dbt24t1c+dhISE2D2+bt26/JTK/ynN31t5c0dtrjins45ZluM4Mre0c7gHHePJ96BU/vW56nw3wn1Y2uO78z5kg7eT9OrVy6Xj8TtP/ntzR22uOKezjlmW4zgyl3uwfHj631t51+eq890I96Gn/9/SH/EYzoPxI72Ae3EPAu7nCfchK0seLCwsTDExMQoLC3N3KcANiXsQcD9PuA9ZWQIAADDAyhIAAIABwhIAAIABwpIXy8nJ0WuvvaZhw4apX79+euKJJ/T999+7uyzghvLGG29o8ODB6tevnx566CHt3r3b3SUBN6zvv/9eXbt21YcffujU47JnyYtdvXpVK1euVP/+/VW9enVt27ZN8+bN08qVKxUUFOTu8oAbgsViUWRkpMxms44ePaqJEydqxYoVqlq1qrtLA24oBQUFeuqpp2S1WtWhQwc99NBDTjs2K0teLDAwUDExMYqIiJCPj4969uwpPz8/nT592t2lATeMunXrymw2S5JMJpNyc3OVkpLi5qqAG8+6devUtGlTl7zlmzd4l6PMzEytWLFCR44c0dGjR5WWlqbp06erf//+xcbm5OTon//8pz7//HOlpaWpQYMGeuyxx9SmTZtrHv/06dNKS0tT7dq1XXkZgNdy1T341ltvKSEhQTk5OWrfvr2ioqLK43IAr+SK+/Dy5cv65JNPtGjRIr399ttOr5mVpXJ0+fJlxcXFyWKxqGHDhoZjZ8+erfj4ePXu3VtPP/20fHx8NGXKFH333Xcljs/OzlZsbKzuv/9+hYSEuKJ8wOu56h6cOHGiPvvsM82dO1dt2rSRyWRy1SUAXs8V9+GSJUs0fPhwVa5c2TVFW1FusrOzrSkpKVar1Wo9evSotXPnztaEhIRi43744Qdr586drR9//LGtLSsryzpy5EjrE088UWx8bm6udcqUKdaZM2daCwoKXHcBgJdz1T34R1OnTrXu2bPHuYUDFYiz78Pjx49bH330UWteXp7VarVaX3nlFWtcXJxTa2ZlqRyZzWa73kC6Y8cO+fr6Kjo62tYWEBCge+65Rz/88IPOnj1ray8oKFBsbKxMJpNmzJjB/0cLGHDFPfhn+fn5+vXXX51SL1AROfs+PHTokE6fPq2hQ4dq8ODB2rp1qz7++GPNnj3baTWzZ8kDJSUl6eabb1ZwcHCR9qZNm0qSfvrpJ0VEREiS5syZo9TUVM2ZM0d+fvyvE3AGe+/B9PR07d27Vx07dpTZbNaXX36pgwcPauzYse4oG6hQ7L0Po6Oj1bNnT1v/ggULFBkZqfvvv99ptfCvqwdKTU0tMXUXthV+0yY5OVnr16+X2Wwukrz/8Y9/6I477iifYoEKyN570GQyaf369Zo7d66sVqtq166tF154QY0aNSrXeoGKyN77sFKlSqpUqZKtPyAgQIGBgU7dv0RY8kDZ2dny9/cv1l749eTs7GxJUs2aNbVz585yrQ24Edh7DwYHB2v+/PnlWhtwo7D3PvyzGTNmOL0W9ix5oICAAOXm5hZrz8nJsfUDcB3uQcD9POk+JCx5oLCwMKWmphZrL2wLDw8v75KAGwr3IOB+nnQfEpY8UMOGDfXLL78oIyOjSPuRI0ds/QBch3sQcD9Pug8JSx6oW7duys/P19q1a21tOTk5SkhIULNmzWzfhAPgGtyDgPt50n3IBu9ytmrVKqWnp9uWEXfv3q1z585JkoYOHaqQkBA1a9ZM3bt31+LFi3Xp0iXVrl1bmzZtUnJysqZOnerO8gGvxz0IuJ+33Ycmq9VqLdcz3uBGjBih5OTkEvtWrlypyMhISb/v8i/8PZz09HRFRUXpscceU9u2bcuzXKDC4R4E3M/b7kPCEgAAgAH2LAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAHweiNGjNCIESPsGrtx40Z16dLF9uell14q0v/000+rS5cuLqjSMU888USReg8ePOjukoAbjp+7CwCAP/rtt9907733Go6pWbOm4uPjy3SeTp06qWHDhoqKiirTcezx8ssva/PmzXrxxRfVq1eva47LyMjQ4MGD5e/vr9WrVysgIEADBw5U27ZtdejQIR06dMjltQIojrAEwCPVrl1bvXv3LrEvJCSkyOe5c+eW+vidO3dW//79HaqttO655x5t3rxZCQkJhmFp8+bNys7OVr9+/RQQECBJGjhwoCRp6dKlhCXATQhLADxS7dq19cgjj9g91pPdeeedioyM1DfffKOzZ88qIiKixHEJCQmSfg9XADwHe5YAeL3S7Fly1JYtW9SzZ089/PDDSklJsbUfOnRI06ZN06BBg9SzZ0+NGjVKS5YsUVZWlm2MyWTSgAEDVFBQYAtEf/a///u/Onr0qBo0aKAmTZq49FoAlA5hCQCuY9WqVXr55ZfVrFkzvf322woPD5ckrVmzRhMmTNDhw4fVvn17DR06VDVq1NDy5cs1ceJE5ebm2o7Rr18/+fj4aOPGjbJarcXOwaoS4Ll4DAfAI/36669aunRpiX3NmzdXu3btyqWOJUuWaPny5ercubNefPFF216ikydPav78+WrQoIHmzp2rqlWr2uZ89NFHWrx4sVatWqWRI0dKkiIiItSmTRt99dVX+uabb3TXXXfZxufl5emLL76Q2WxWnz59yuW6ANiPsATAI/3666+Ki4srsW/YsGEuD0v5+fmaM2eONmzYoEGDBmnixIny9fW19f/nP/9Rfn6+JkyYUCQoSdJ9992n+Ph4bdmyxRaWpN9Xjb766itt2LChSFjau3evLly4oO7du6tKlSouvS4ApUdYAuCR2rZtqzlz5rjt/C+88IJ27dqlBx54QGPGjCnWf+TIEUnS119/rcTExGL9fn5+OnXqVJG2Tp06KTQ0VF9++aXS09Nt3+rbsGGDJB7BAZ6KsAQAJfj2229lNpvVvn37EvuvXLkiSVq+fLndx/Tz81OfPn0UHx+vzZs3a/DgwUpNTdVXX32liIgItW7d2im1A3AuwhIAlGDu3LmaOHGinnvuOb3xxhu67bbbivQHBwdLkjZt2qSgoCC7jztw4EDFx8drw4YNGjx4sD7//HPl5+erf//+8vHhOzeAJ+LOBIAS3HrrrZo3b578/f313HPP6fDhw0X6mzVrJkn64YcfSnXcevXqqXnz5jp+/Lh+/vlnJSQk2F4tAMAzEZYA4BoaNmxoC0yTJ0/Wd999Z+sbPHiwfH19NX/+fJ09e7bY3LS0NP34448lHrdwb9Jbb70li8Wiu+66SzVr1nTNRQAoMx7DAfBIRq8OkKT777/f9jV+V2rQoIHmzZunZ599Vs8995z+8Y9/6I477lBUVJQmTpyot956S/fff7/at2+v2rVrKzMzU2fOnNG3336rfv36afLkycWO2aNHD7399tu21So2dgOejbAEwCMZvTpAkoYPH14uYUkqGpimTJmi119/XS1bttSgQYPUsGFDxcfH69tvv9WePXsUHBysiIgIDR8+XP369SvxeEFBQerevbsSEhJUpUoVde7cuVyuA4BjTNaSXiULABXUxo0bNXv2bE2fPr3cfkjXGZYuXaq4uDjNnz9frVq1cnc5wA2FPUsAbkizZ89Wly5d9NJLL7m7FENPPPGEunTpYrjKBsC1eAwH4IbSsGFDxcTE2D5HRUW5rxg7DBw4UG3btrV9ZiM4UP54DAcAAGCAx3AAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAG/h/4fuzU5Zo38gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax,plot = drm.get_effective_area().plot();\n", + "\n", + "ax.set_ylabel(f'Aeff [{drm.unit}]');" + ] + }, + { + "cell_type": "markdown", + "id": "64edb047-2d80-4011-9fa3-665a1bdd282e", + "metadata": {}, + "source": [ + "Get the interpolated effective area" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6ad17044-46a6-4646-b5d2-1cec399228f2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$6.3406481 \\; \\mathrm{cm^{2}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drm.get_effective_area(511*u.keV)" + ] + }, + { + "cell_type": "markdown", + "id": "983b731f-1dad-434a-8430-544c76b0e862", + "metadata": {}, + "source": [ + "Or the energy dispersion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2003abb9-c2a5-487f-b869-f0e4b46bc053", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHECAYAAAAnGhD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5gklEQVR4nO3de3yU5Z3///fkiBAPNOiASRsfIRaIXcXaIB6AUIKAwZQuQkHXmmWBlbTilgoIa22lYSnKchA1u6h8sXRbCVJalHAaWsHS/jxUIkowQtUU0ESIJWaIZsLM/fsjzZQ4SZiZO5mZi7yej8c8Hua6r+uez2Bu5sN1dFiWZQkAAMAgcdEOAAAAIFQkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDjdLoF5++23NWLECD377LPRDgUAAISpWyUwPp9Pjz/+uAYOHBjtUAAAgA0J0Q4gkl544QUNGjRIp0+fjnYoAADAhpjsgWloaNDatWt1//33Kz8/X8OHD9e2bdvarOvxeFRSUqJvf/vbysvL07//+7/rtddeC6hXV1enjRs3atq0aV0dPgAA6GIxmcDU1dVp3bp1qqqqUlZWVod1lyxZotLSUo0ePVqzZ89WXFyc5s2bpwMHDrSq99RTT2nSpEm68MILuzJ0AAAQATGZwKSmpmrz5s3auHGjZs2a1W69iooK7d69WzNnzlRRUZEKCgq0cuVK9e3bVyUlJf567777rt555x2NHz8+EuEDAIAuFpNzYJKSkpSamnrOenv27FF8fLwKCgr8ZcnJycrPz9eaNWtUU1Mjp9Op8vJyHT16VBMnTpQkud1uxcfH68MPP9SCBQu67HMAAICuEZMJTLAOHz6s9PR09erVq1X5oEGDJElHjhyR0+lUQUGBRo0a5b/+2GOPqV+/frrzzjsjGi8AAOgcRicwtbW1bfbUtJSdPHlSktSjRw/16NHDfz05OVkXXHBBu/NhTp48qdraWv/PjY2N+uyzz3TNNde0ug8AANFSU1OjU6dO2b7PJZdcIqfTaT+gCDM6gWlsbFRiYmJAeVJSkv96WxYuXNjhfbds2aJ169YFlCfu/5LiTge+HwAgsk7dfUO0Q+jQa/9vTpfev6amRnf9y0R93mh/KmuPHj20fv1645IYoxOY5ORkNTU1BZR7PB7/9XAUFBTopptu8v9cVVWl4uLi8IIEAKCTnTp1Sp83xmnhvX/TV9LOhH2fvx5P0H+t7q1Tp06RwERSamqqTpw4EVDeMvzTp0+fsO7bp0+fsNsCABApX0k7o69mBv5DvjuIyWXUwcrKytKxY8cCdtatqKjwXwcA4Hzls3zy2nj5LF+0P0LYjE5gcnNz5fV6tWXLFn+Zx+NRWVmZsrOzjesOAwAgFD5Ztl+mitkhpE2bNsntdvuHg/bt26ePP/5YkjRx4kSlpKQoOztbI0eO1Jo1a3Tq1CmlpaVp+/btqq6u1vz586MZPgAA6EIxm8Bs2LBB1dXV/p/37t2rvXv3SpJuueUWpaSkSGpeUeR0OrVjxw653W5lZmZq6dKlGjx4cDTCBgAgYixZ8in8YSCLHpjOV1paGlS95ORkFRUVqaioqIsjAgAgtnhlyWuFn4R4SWDOTy6XSy6XS263O9qhAACAs5DAdCAvL095eXmqrKzUjBkzoh0OAACtWDYn4jKEBAAAIs4ry9YwkMlDSEYvowYAAN0TPTAAABiKISQAAGAcryV7q5DMzV9IYAAAMJUl2dgFRgb3vzAHBgAAGIgeGAAADNWdVyGRwAAAYCifZW8ei8/c/IUEpiPsxAsAQGwigekAO/ECAGKZT/Ym8dppG20kMAAAGMonh7xy2GpvKlYhAQAA49ADAwCAoXyWvYm4TOIFAAAR55NsDiGZiyEkAABgHHpgAAAwlNfmJF47baONBAYAAENZlkM+K/wkxLLRNtpIYAAAMFR37oFhDgwAADAOPTAd4CgBAEAsa97ILvy+CJM3siOB6QBHCQAAYplP9ubAmJzAMIQEAACMQw8MAACG6s5nIZHAAABgKK8VJ68V/mCKnbbRZm7kAACg26IHBgAAQ1lyyGejL8JiCAkAAERad97IjgQGANCm6jk3RjuEdl32+mfRDgFRRgIDAIChfDYn8foMnsRLAgMAgKF8srcU2td5oUQcCQwAAIbyKU5eWbbam4oEpgOchQQAQGwigekAZyEBAGJZ8xwYGz0wzIEBAACR5rO5D4zJRwmYm3oBAIBuix4YAAAM5bMc8lo2ViHZaBttJDAAABjKqzh5bbY3lbmRAwCAboseGAAADGXJYWslEYc5AgCAiPPa3MjO5MMcGUICAADGoQcGAABDNa9CstfeVCQwAAAYqnkjOw5zBAAABmk+SsBO+86LJdKYAwMAAIxDDwwAAIZqHkKy095cJDAdcLlccrlccrvd0Q4FAIAA9o8SMHcMiQSmA3l5ecrLy1NlZaVmzJgR7XAAAMDfkcAAAGCo5o3swu+Bad4Ez8yBJBIYAAAMZVkOW3u5GDyCxCokAABgHnpgAAAwlFcOeW30RXgNHT6SSGAAADCWpTibp1GbiyEkAABgHHpgAAAwVPMQkp1VSBzmCAAAIqx5FZKNISSDlyGRwAAAYKho9MB4PB4988wz2rlzp+rr69W/f39Nnz5dOTk552z7+uuva/369Xrvvffk9XqVnp6uiRMnasyYMSHHwRwYAAAQtCVLlqi0tFSjR4/W7NmzFRcXp3nz5unAgQMdtvvDH/6gH/7wh2pqalJhYaGmT5+u5ORkLV68WKWlpSHHQQ8MAACGsiybq5BCHEKqqKjQ7t27NWvWLE2dOlWSNGbMGBUWFqqkpEQlJSXttv31r3+t1NRUrVy5UklJSZKkgoIC3XXXXdq2bZsmT54cUiz0wAAAYCiv5ZDXirPxCm0Iac+ePYqPj1dBQYG/LDk5Wfn5+Tp48KBqamrabdvQ0KALL7zQn7xIUkJCgi6++GIlJyeH/NlJYAAAQFAOHz6s9PR09erVq1X5oEGDJElHjhxpt+3gwYP1/vvv6+mnn9axY8d0/PhxPfvss6qsrPT35oSCISQAAAxlySGfjUm81t/bVlVVtSpPTU1Vnz59AurX1tYqNTU1oLyl7OTJk+2+1913362PPvpI69ev189//nNJUo8ePbRo0SINGzYs5NhJYAAAMFTLUJCd9pJUXFzcqrywsFDTpk0LqN/Y2KjExMSA8pZhocbGxnbfKzExUV/+8peVm5ur4cOHy+v16oUXXlBxcbGWL1+uq666KqTYSWAAAOjmHnzwQWVkZPh/bquXRWqe79LU1BRQ7vF4/Nfbs3LlSlVUVOjpp59WXFxz4vTNb35T3/3ud/XYY4/pf//3f0OKmQSmAy6XSy6XS263O9qhADgPfTjvxmiH0KF+f2yIdgjtSjxaG+0QYoIlh3whTsT9YntJysjI0IABA85ZPzU1VSdOnAgor61t/v/R1rCTJDU1NWnr1q264447/MmL1DyJ9/rrr9fmzZvV1NTUZu9Oe0hgOpCXl6e8vDxVVlZqxowZ0Q4HAIBW7J9GHVryk5WVpf379+v06dOtJvJWVFT4r7elrq5OXq9XXq83MAavVz6fTz5faCdjswoJAAAEJTc3V16vV1u2bPGXeTwelZWVKTs7W06nU5JUU1PTamJw7969lZKSopdffrnVEFRDQ4P27dunr3zlKyEvpaYHBgAAQzWfhWRjCCnEttnZ2Ro5cqTWrFmjU6dOKS0tTdu3b1d1dbXmz5/vr7d48WKVl5dr7969kqT4+HhNmTJFTz/9tO655x6NGTNGPp9PW7du1YkTJ/Tggw+GHDsJDAAAhvIpTj4bgynhtF24cKGcTqd27Nght9utzMxMLV26VIMHD+6w3Xe/+13169dPzz//vNatW6empib1799fixYtUm5ubshxkMAAAGAon6WQd9P9YvtQJScnq6ioSEVFRe3Weeyxx9osHz16tEaPHh36m7aBOTAAAMA49MAAAGAon805MHbaRhsJDAAAhvLZPI3aTttoMzdyAADQbdEDAwCAoXxyhLwZ3Rfbm4oEBgAAQ/kse/NYwlmFFCsYQgIAAMahBwYAAENZsjeJ1zK4H4MEBgAAQ/nksDWPxeQ5MOamXgAAoNuiBwYAAEP5LIfNowTM7YEhgQEAwFDNO/Ha2ciOBAYAAERYdz5KgDkwAADAOPTAAABgKMvmKiTL4FVIJDAAABiKISQAAACD0APTAZfLJZfLJbfbHe1QAAAIYMneKiSGkM5TeXl5ysvLU2VlpWbMmBHtcAAAaIUhJAAAAIPQAwMAgKG681lIJDAAABjKsjmEZDGEBAAAEDn0wAAAYCifZW8irs/qxGAijAQGAABDdechJBIYAAAM5ZNDDjs9MAZP4mUODAAAMA49MAAAGMonhxwsowYAACbpznNgGEICAADGoQcGAABD+SyH1E3PQiKBAXDeOvrQjdEOoUP9/uiJdggdSvzwVLRDaF/TmWhHEBMsm/vAWAbvA8MQEgAAMA49MAAAGMpn2dsHxuRJvCQwAAAYypK9OTCWwcuoGUICAADGoQcGAABDWXLY7EUxtweGBAYAAEPZXUYty2HsUAwJDAAAhrIs2UxgOi2UiDM18QIAAN0YPTAAABiqM4aQ4jsvnIgigQEAwFSWw9ZeLnb2kIk2hpAAAIBx6IEBAMBQPtnsgWEZNQAAiDTLsnkgI6uQAAAAIoceGAAADGXJIZ+NYaA4hpAAAECkNQ8h2TmNuhODiTCGkAAAgHHogemAy+WSy+WS2+2OdigAAATwWY7mzezCZfA+MCQwHcjLy1NeXp4qKys1Y8aMaIcDAEArdlchmTyERAIDAICx7O0DI4Mn8TIHBgAAGIceGAAADGXZPAvJXu9NdJHAAABgKLuTeDnMEQAAIILogQEAwFCsQgIAAOaxuRMvhzkCAABEED0wAAAYyrK5D4xl8D4wJDAAABjKkr1RIINHkEhgAABA8Dwej5555hnt3LlT9fX16t+/v6ZPn66cnJyg2u/evVvPP/+8/vKXvyghIUEZGRmaPn26rrvuupDiIIEBAMBQ0djIbsmSJXrppZc0adIkpaena9u2bZo3b55WrVqlq6++usO2a9eu1bPPPqvc3FyNHTtWZ86c0fvvv6+TJ0+GHEdQCczPfvazkG/8RTfffLNuvvlm2/cBAAB/F+ExpIqKCu3evVuzZs3S1KlTJUljxoxRYWGhSkpKVFJS0m7bgwcP6tlnn9X3vvc9TZ482UbQzYJKYLZt22brTRwOh/r27UsCAwBAJ4p0D8yePXsUHx+vgoICf1lycrLy8/O1Zs0a1dTUyOl0ttl248aN+tKXvqTbb79dlmXps88+U8+ePcOOPeghpEmTJun2228P+Q0sy9KUKVNCbgcAAGLL4cOHlZ6erl69erUqHzRokCTpyJEj7SYwf/7zn/W1r31Nzz//vNavX6+6ujp96Utf0l133aWJEyeGHEvQCUxKSor69u0b8hsAAIAuYnMn3pYhpKqqqlbFqamp6tOnT0D12tpapaamBpS3lLU3l6W+vl51dXV6++239cYbb6iwsFBOp1Pbtm3TqlWrlJCQoG9961shhR5UAjNnzhwNHDgwpBt3ZnsAABCos/aBKS4ublVeWFioadOmBdRvbGxUYmJiQHlSUpL/elsaGhokSXV1dfrxj3+sUaNGSZJyc3NVWFion//8512TwIR6085uDyB2VS26MdohtOvyfU3RDqFDPar+Fu0QOtboiXYE7fN6ox3BeeXBBx9URkaG/+e2elmk5vkuTU2Bz5XH4/Ffb6+dJCUkJCg3N9dfHhcXp29+85tau3Zth/Nn2hL0ENLu3bs1fPjwNjMvAAAQBZakTjgLKSMjQwMGDDhn9dTUVJ04cSKgvLa2VpLaHHaSpIsuukhJSUlKSUlRfHx8q2u9e/eW1DzMFEoCE/RZSIsWLdI///M/a9WqVTpy5EjQbwAAALpGy2nUdl6hyMrK0rFjx3T69OlW5RUVFf7rbYmLi9OVV16purq6gB6clnkzl1xySUixBJ3AjBo1So2Njfr1r3+t6dOna+bMmfrtb38rt9sd0hsCAAAz5ebmyuv1asuWLf4yj8ejsrIyZWdn+3tQampqAiYGjxw5Ul6vV9u3b/eXNTY2ateuXbriiiva7b1pT9BDSA899JBOnz6tXbt2qaysTJWVlXr33Xf1xBNPaPjw4crPz9e1114b0psDAAAbIryRXXZ2tkaOHKk1a9bo1KlTSktL0/bt21VdXa358+f76y1evFjl5eXau3evv+xb3/qWtm7dqhUrVujo0aNyOp3asWOHampqtGTJkpBDD+kogV69emnChAmaMGGC3n//fW3dulW7du3Srl275HK51K9fP916660aO3asLr300pCDAQAAwYvGUQILFy70Jx9ut1uZmZlaunSpBg8e3GG75ORkrVy5UiUlJSorK9Pnn3+urKwsLV26VEOGDAk5Dodl2VpBrjNnzmjfvn0qKyvTq6++Kp/Pp7i4OOXk5Cg/P18jRoywc/uYUFlZqRkzZihx/5cUd5pJzMDZWIUUvgve+yTaIXSs4bNoR9C+M2eiHUGHtn30RJfev+V7qfqfb1TTpReHfZ/EE3Xq++s/6qmnngpqEm8ssX2YY0JCgkaMGKERI0aotrZWO3bsUFlZmV555RW99tpr+v3vf98ZcQIAgLbY6oYwV6eeRl1fX6+//e1v/om9Njt3AABAB6IxhBQrbCcwDQ0N2r17t8rKynTo0CFZlqUePXpozJgxys/P74wYAQBAWyI8iTeWhJ3AlJeXa+vWrdq7d68aGxtlWZYGDhyo/Px85eXl2TphEgAAoCMhJTAnTpzQtm3btG3bNn300UeyLEsXXXSRxo8fr/z8fGVmZnZVnAAAIIDj7y877c0UdAIzd+5cvf766/L5fHI4HLruuuuUn5+vYcOGcbwAAADRwBDSub366qtyOp0aN26cbr311pDOKwAAAOhMQScwy5Yt0ze+8Q05HOZ2NwEAcF6hB+bccnJy2iz/4IMPVFVVpc8//1xjxozptMAAAMA5WA6bp1Gb2ykR9iqkQ4cO6dFHH9V7773nL2tJYMrLyzV37lz9+Mc/1s0332w/SgAAgLMEfRr12d5//339x3/8hz766CNNmjRJ119/favr11xzjS6++GK99NJLnREjAABoh2WF/zJZWAnM2rVrJUlPPfWUvve972ngwIGtrjscDl111VV655137EcIAADaZnXCy1BhJTDl5eUaMWKE0tPT263jdDpVW1sbdmAAAOAcLP1jHkxYr2h/gPCFlcB89tln6t27d4d1Ghsb5fP5wgoKAACgI2FN4r300ktbTd5ty7vvvqvLL788rKAAAEAQLMnRTZdRh9UDc+ONN+q1117T66+/3ub13/3ud6qoqNCwYcNsBQcAADrQjefAhNUDc9ddd+mll17SvHnzNHbsWH3yySeSpM2bN+vgwYPavXu3+vbtq8mTJ3dqsAAAAFKYCcwll1yi1atXq7i4WFu3bvWXr1y5UpKUnZ2thx56SCkpKZ0SJAAAaIvNjey6w2GOX3T55ZfrySef1OHDh1VRUaFPP/1UPXv2VHZ2tgYNGtSZMQIAgLZwlEBo9u7dq+HDh0uSrrzySl155ZVt1lu9erXuvffe8KMDAABoQ1iTeH/605/qzTff7LDO6tWrtWnTprCCAgAAQejGk3jDSmAuv/xyLViwoN2l1I8//rief/75mDoH6dFHH9WECRM0duxY3X333dq3b1+0QwIAwB4SmNA8+uij6tmzp+bOnauamppW15588klt3LhRN998sx5++OFOCbIzTJ48WaWlpdq+fbseeOABFRcXq66uLtphAQCAMISVwFx22WVatmyZGhsb9cMf/tCfCDz55JPasGGDbrzxRj388MOKj4/v1GDtyMjIUFJSkqTms5qampp08uTJKEcFAIANto4RsLuCKbrCXoV0xRVXaOnSpZozZ47mzp2rq6++Whs3btQNN9ygn/70p0pICPvWamho0HPPPaeKigodOnRI9fX1WrBggcaNGxdQ1+Px6JlnntHOnTtVX1+v/v37a/r06crJyQmou3z5cpWVlcnj8Wjo0KHKzMwMO0YAAKLNIXs78ZqbvoTZA9Piqquu0k9+8hMdOXJEzz//vIYOHari4mJbyYsk1dXVad26daqqqlJWVlaHdZcsWaLS0lKNHj1as2fPVlxcnObNm6cDBw4E1J0zZ4527NihFStWKCcnRw6Hyf/rAADdXjeeAxNUprF9+/YOr+fk5KiiokI33XSTXC5Xq2tjx44NOajU1FRt3rxZqampeueddzRz5sw261VUVGj37t2aNWuWpk6dKkkaM2aMCgsLVVJSopKSkoA28fHxuu6667Rx40alp6frhhtuCDk+AAAQXUElMEuWLGmzt8KyLDkcDllWcwq3fPnyVmUOhyOsBCYpKUmpqannrLdnzx7Fx8eroKDAX5acnKz8/HytWbNGNTU1cjqdbbb1er06fvx4yLEBAIDoCyqBeeCBB7o6jrAcPnxY6enp6tWrV6vylp2Ajxw5IqfTKbfbrT/96U+66aablJSUpJdffln79+9vt2cHAAATOGyeRm3rJOsoCyqBaWvybCyora1ts6empaxllZHD4dCLL76oFStWyLIspaWl6Uc/+lG7OwifPHlStbW1/p+rqqq6IHoAABAue7Nto6yxsVGJiYkB5S3LpRsbGyVJvXr10qpVq4K+75YtW7Ru3bpOiRGw671lsT1P6/KXvdEOoV09jn8a7RA65vFEO4KO+XzRjgDnYncp9Pm+jLqpqUnx8fGKiwtv0ZLd9u1JTk5WU1NTQLnn738pJCcnh3XfgoIC3XTTTf6fq6qqVFxcHF6QAAB0lW58mGNQGcXo0aO1fv36sN/Ebvv2pKamthrqadFS1qdPn7Du26dPHw0YMMD/ysjIsBUnAADoXEElMJZl+VcahcNu+/ZkZWXp2LFjOn36dKvyiooK/3UAAM5r3XAPGCmEOTDbtm3T/v37w3qTrtowLjc3V88995y2bNni3wfG4/GorKxM2dnZ7S6hBgDgfMAqpCBUV1erurq6K2NpZdOmTXK73f7hoH379unjjz+WJE2cOFEpKSnKzs7WyJEjtWbNGp06dUppaWnavn27qqurNX/+/IjFCgAAIiuoBGbPnj1dHUeADRs2tEqY9u7dq71790qSbrnlFqWkpEiSFi5cKKfTqR07dsjtdiszM1NLly7V4MGDIx4zAAAR1Y0n8cbsMurS0tKg6iUnJ6uoqEhFRUVdHBEAADGGBAZtcblccrlccrvd0Q4FAIAAzIFBm/Ly8pSXl6fKykrNmDEj2uEAAIC/I4EBAMBYNnfi1Xm+Ey8AAIhB3XgOTOfu7Q8AABAB9MAAAGAqm5N4Te6BIYEBAMBU3XgIyVYCc/jwYR05ckS1tbU6c+ZMwHWHw6G7777bzlsAAAAECCuB+dvf/qZFixb5z0Zq76BGEhgAALoO+8CEaMWKFXrjjTc0dOhQjRo1SqmpqYqPj+/s2AAAwLkYnITYEVYC8+qrr+raa6/V0qVLOzuemMJOvAAAxKawEpiEhAQNGDCgs2OJOezECwCIaUziDc3VV1+tw4cPd3YsAAAgBN15DkxYG9nNnDlTlZWV2rRpU2fHAwAAcE5h9cBcccUVevzxx/X9739fmzZtUv/+/dWrV6826z7wwAO2AgQAAPiisBKYDz/8UAsXLpTb7Zbb7dbx48fbrOdwOEhgAADoKsyBCc2qVav04Ycf6lvf+pby8vJYRg0AQBR05zkwYSUwb775pm688UbNmTOns+MBAAA4p7ASmMTERH35y1/u7FgAAECoDO5FsSOsBCYnJ0dvv/12Z8cCAABC0Y3nwIS1jLqoqEi1tbV68skn1djY2NkxxQyXy6UHHnhAq1evjnYoAADgLGH1wPz0pz9VSkqKSktL9cILLyg9PV09e/YMqOdwOLRy5Uq7MUYNO/ECAGIZk3hDVF5e7v/vhoYGvfvuu23WczgcYQUFAACCEIUhJI/Ho2eeeUY7d+5UfX29+vfvr+nTpysnJyek+8yZM0evv/66vv3tb+sHP/hByHGElcDs2bMnnGYAAMBwS5Ys0UsvvaRJkyYpPT1d27Zt07x587Rq1SpdffXVQd1jz549OnjwoK04wpoDAwAAYoD1j2GkcF6h9sBUVFRo9+7dmjlzpoqKilRQUKCVK1eqb9++KikpCeoejY2NeuKJJ3THHXeE/nnP0mUJTFNTk06fPt1VtwcAANI/hpHCeYVoz549io+PV0FBgb8sOTlZ+fn5OnjwoGpqas55j1/96leyLEtTpkwJPYCzBJ3AfOc739Hzzz/fquzVV1/V448/3mb9X/ziF8rPz7cVHAAA6ICd5CWMJObw4cNKT08POP9w0KBBkqQjR4502L6mpkb/93//p3vuuUfJycmhvfkXBJ3AVFdXy+12tyo7ePBgQFIDAADMUlVVpcrKSv/r5MmTbdarra1VampqQHlLWXvtWjzxxBO68sorNWrUKNsxhzWJFwAARF9nLaMuLi5uVV5YWKhp06YF1G9sbFRiYmJAeVJSkv96e9544w3t2bNH//M//xN+wGchgUG3d/j/fSPaIXSo3/bY3qih5wf10Q6hXY6GGN9o04rt/7dKCvyiihltfIl2S520jPrBBx9URkaGv7itXhapeb5LU1NTQLnH4/Ffb8uZM2e0atUq3XLLLf7hJrtIYAAA6OYyMjI0YMCAc9ZLTU3ViRMnAspra2slSX369Gmz3Y4dO3T06FHdf//9+uijj1pda2ho0EcffaTevXurR48eQcdMAgMAgKkivJFdVlaW9u/fr9OnT7eayFtRUeG/3paamhqdOXNG3/ve9wKu7dixQzt27NDixYs1bNiwoGMhgQEAwFAO2ZwDE2L93NxcPffcc9qyZYumTp0qqXn4qKysTNnZ2XI6nZKaE5bPP//cPyw1atQoXXnllQH3+8///E8NHTpUt912W8hDSyElMDt37my1c97x48clSXPnzg2o23LNZC6XSy6XK2D1FQAA3VF2drZGjhypNWvW6NSpU0pLS9P27dtVXV2t+fPn++stXrxY5eXl2rt3r6TmIaqz59icrV+/fiH1vLQIKYE5fvx4m4nJq6++2mZ9089C4jBHAEBMi8JZSAsXLpTT6dSOHTvkdruVmZmppUuXavDgwTYCCV3QCcyGDRu6Mg4AABCiaJxGnZycrKKiIhUVFbVb57HHHgvqXi09NOEIOoHp27dv2G8CAADQmZjECwCAqaIwhBQrSGAAADAVCQwAADCNQ6Evhf5ie1MFfZgjAABArKAHBgAAkxk8DGQHCQwAAKayuYza5OSHISQAAGAcemAAADAVq5AAAIBxunECwxASAAAwDj0wHeA0agBALIvGWUixggSmA5xGDQCIaQwhAQAAmIMeGAAADOWQzSGkTosk8khgAAAwVTceQiKBAQDAUN15Ei9zYAAAgHHogQEAwFQMIQEAAON04wSGISQAAGAcemAAADAUy6gBAIB5GEICAAAwBz0wAACYyrLksGx0o9hpG2UkMAAAmIohJAAAAHPQAwMAgKEcNntgTD5KgAQGAACTGZyE2EEC0wGXyyWXyyW32x3tUAAACEAPDNqUl5envLw8VVZWasaMGdEOp2OO2J7OdGZXerRDaFe/p2P7MbjocH20Q+hQnPuzaIfQvjNnoh1Bx7y+aEfQsVheoXLGG+0IEGWx/Tc3AABoXzdehUQCAwCAobrzEFJsjzsAAAC0gR4YAABMxRASAAAwjUOyN4TUWYFEAUNIAADAOPTAAABgKsuyt9w9lpfKnwMJDAAAprJsriQyN39hCAkAAJiHHhgAAEzFKiQAAGAahyXJzokUJDAAACDiunEPDHNgAACAceiBAQDAUHbPQjK5B4YEBgAAU3XjfWAYQgIAAMahBwYAAEMxhAQAAMxkcBJiB0NIAADAOPTAAABgKIaQAACAebrxKiQSmA64XC65XC653e5ohwIAAM5CAtOBvLw85eXlqbKyUjNmzIh2OAAAtMIQEgAAMA8JDAAAMJHDzhSYzgsj4lhGDQAAjEMPDAAApvLJXheMr9MiiTgSGAAATNWN58AwhAQAAIxDDwwAAIZyWPZGkGSF3gnj8Xj0zDPPaOfOnaqvr1f//v01ffp05eTkdNhuz549+t3vfqd33nlHn3zyiS677DLdcMMNuvvuu3XhhReGHDo9MAAAGMv6x2684bzCGENasmSJSktLNXr0aM2ePVtxcXGaN2+eDhw40GG7ZcuWqaqqSrfccovuu+8+DRkyRJs3b9asWbPU2NgYchz0wAAAgKBUVFRo9+7dmjVrlqZOnSpJGjNmjAoLC1VSUqKSkpJ22y5atEjXXnttq7IBAwbov/7rv7Rr1y6NHz8+pFjogQEAwFAtQ0h2XqHYs2eP4uPjVVBQ4C9LTk5Wfn6+Dh48qJqamnbbfjF5kaThw4dLkj744IPQAhEJDAAA5rI64RWCw4cPKz09Xb169WpVPmjQIEnSkSNHQrpfbW2tJOmSSy4JLRAxhAQAQLdXVVXV6ufU1FT16dMnoF5tba1SU1MDylvKTp48GdL7/vKXv1R8fLxGjBgRUjuJBAYAAGM5LEsOy85ZAs1ti4uLWxUXFhZq2rRpAdUbGxuVmJgYUJ6UlOS/Hqxdu3Zp69atmjp1qr785S+HErUkEpjQOOKaXzHo1rf/Fu0QOrTpPzteXhdNF//lVLRD6JCjzh3tEDr2eeirByLF8jRFO4SO2fniiQRfDG/TGhebfxdHnCV7u+n+/VfwwQcfVEZGhr+4rV4WqXm+S1NT4HPl8Xj814Px5ptvaunSpRoyZIhmzJgRYtDNSGAAADCUw7LksLOd7t+T6IyMDA0YMOCc1VNTU3XixImA8pa5LG0NO33RkSNHtGDBAmVmZmrRokVKSAgvFSGFBQAAQcnKytKxY8d0+vTpVuUVFRX+6x05fvy47r//fvXu3VuPPPKIevbsGXYsJDAAAJgqwquQcnNz5fV6tWXLFn+Zx+NRWVmZsrOz5XQ6JUk1NTUBE4Nra2v1wx/+UHFxcVq2bFlYK4/OxhASAACmCnM33dbtg5edna2RI0dqzZo1OnXqlNLS0rR9+3ZVV1dr/vz5/nqLFy9WeXm59u7d6y+bO3euPvzwQ02dOlVvvfWW3nrrLf+13r17n/Mogi8igQEAAEFbuHChnE6nduzYIbfbrczMTC1dulSDBw/usF3LHjG/+tWvAq4NHjyYBAYAgG7Dkhx2mofReZOcnKyioiIVFRW1W+exxx4LKDu7N6YzkMAAAGCyWF+O30WYxAsAAIxDDwwAAIZy+OwNITkkY7sySGAAADCV3VVIttpGl6F5FwAA6M7ogQEAwFTmdqDYRgIDAICh7J6FZOscpSgjgQEAwFiWvWXUDnMTGObAAAAA49ADAwCAqXyyNw/GzhrsKCOBAQDAUA7LksPGEBJzYM5TLpdLLpdLbrc72qEAAICzkMB0IC8vT3l5eaqsrNSMGTOiHQ4AAK1Z6rZnIZHAAABgLFYhAQAAGIMeGAAATOX7+6sbIoEBAMBQtlchGTx/hiEkAABgHHpgAAAwlWVzEq/BPTAkMAAAGMtmAsNGdgAAIOLs7gNjbv7CHBgAAGAeemAAADCV3WXUHOYIAAAizuYyapMn8TKEBAAAjEMPDAAAxmIVEgAAMI3Pan7ZaW8ohpAAAIBx6IEBAMBU7MQLAACM0403siOBCcET29/RVzPPRDuMNo2Z+N1oh9ChC997P9ohtMtX7452CB2yzsTm71wLK5bH0C07G2QAiGUkMAAAGItVSAAAwDTdeBUSCQwAAKayfPaGSg0eZmUZNQAAMA49MAAAmIpVSAAAwDiWzTkwBu8DwxASAAAwDj0wAACYip14AQCAcbpxAsMQEgAAMA49MAAAmKob98CQwAAAYCrLknx2NrIzN4FhCAkAABiHHhgAAEzFEBIAADAOCQwAADAOO/ECAACYgx4YAABMZVmyrO65CokEBgAAU/lsDiHZaRtlDCEBAADj0AMDAICpWIUEAACMY/ls7sRro22UMYQEAACMQw8MAACmsmRzCKnTIok4EhgAAAxl+XyybAwh2WkbbQwhAQAA49ADAwCAqViFdH7zeDxavny5Xn/9dbndbl1xxRX6/ve/r6997WvRDg0AgPBxFtL5zev1qm/fvnriiSdUVlamSZMmacGCBWpoaIh2aAAAhM+ympdCh/0igYlpF1xwgQoLC+V0OhUXF6dRo0YpISFBR48ejXZoAAAgDDE5hNTQ0KDnnntOFRUVOnTokOrr67VgwQKNGzcuoK7H49EzzzyjnTt3qr6+Xv3799f06dOVk5PT7v2PHj2q+vp6paWldeXHAACgS1k+S5aNIaRw2obzvdvixIkTevzxx/Xaa6/J5/Pp2muv1b333qvLL7885Dhisgemrq5O69atU1VVlbKysjqsu2TJEpWWlmr06NGaPXu24uLiNG/ePB04cKDN+o2NjSouLtadd96plJSUrggfAIAIsTN85GtuH6JQv3dbNDQ06L777lN5ebn+5V/+RdOmTdPhw4d17733qq6uLuQ4YjKBSU1N1ebNm7Vx40bNmjWr3XoVFRXavXu3Zs6cqaKiIhUUFGjlypXq27evSkpKAuqfOXNGDz30kNLS0lRYWNiFnwAAgPNPqN+7Z/vNb36jY8eO6Wc/+5nuuOMOTZ48Wf/93/+tTz75RBs2bAg5lphMYJKSkpSamnrOenv27FF8fLwKCgr8ZcnJycrPz9fBgwdVU1PjL/f5fCouLpbD4dDChQvlcDi6JHYAACKluSPFsvEK7f1C+d79opdeekkDBw7UoEGD/GUZGRn6+te/rt///vchf/aYTGCCdfjwYaWnp6tXr16tylv+cI4cOeIvW7ZsmWpra/Xwww8rISEmp/4AABAaWyuQWoaRghfK9+7ZfD6f3nvvPQ0cODDg2qBBg3T8+PGQVwYb/U1eW1vbZk9NS9nJkyclSdXV1XrxxReVlJTUKmt85JFHdM011wS0P3nypGpra/0/t/wPqToe36nxdyafPo12CB3yJn8W7RDaZZ1pjHYIHfN6ox1Bh+xMIOx65m6TDrNVVlYqIyNDPXr06NL3sXqesfVbbvU8I0mqqqpqVZ6amqo+ffoE1A/2e/eLPv30U3k8nnO2/cpXvhJ07EYnMI2NjUpMTAwoT0pK8l+XpL59+2rv3r1B33fLli1at25dQPni1b3DCzQS4v+/aEfQoabgfycBwHgzZszQo48+quuvv75L7n/JJZeoR48e+nyA/X+8JiQkqLi4uFVZYWGhpk2bFlA32O/dttpJCqttu3GHVDvGJCcnq6mpKaDc4/H4r4ejoKBAN910k//nQ4cOafny5Zo/f/45V0WdL1avXq1777032mFIikwsnfkedu8VTvtQ2nRm3aqqKhUXF+vBBx9URkZGUPc0Gc9F9O7V1c9FKPWDfS4uuOCCoN87VE6nU+vXr9epU6ds38vn8ykurvWMkvbmoYb7vdtS3pnf2UYnMKmpqTpx4kRAecvwT1vdX8Ho06dPm22zsrI0YMCAsO5pmpSUlJj5rJGIpTPfw+69wmkfSpuuqJuRkREzvy9diecievfq6ucilPrB1gv3H9HBcjqdcjqdXfoeXxTu9+5FF12kpKSkVtMzgm3bHqMn8WZlZenYsWM6ffp0q/KKigr/dYQnLy8v2iH4RSKWznwPu/cKp30obbqqbncQS38ePBed3ybY+rH0exBp4X7vxsXFKTMzU++8807AtYqKCl1++eXq2bNnSLEYncDk5ubK6/Vqy5Yt/jKPx6OysjJlZ2dHPDM9n8TSA8pf1J3bhgQmfLH058Fz0fltSGDOLdjv3ZqamoCJwSNGjNA777zTKon561//qv379ys3NzfkWGJ2CGnTpk1yu93+rqV9+/bp448/liRNnDhRKSkpys7O1siRI7VmzRqdOnVKaWlp2r59u6qrqzV//vxOiyU1NVWFhYVB7U0DdCc8G0Cg8/m5CPZ7d/HixSovL2+1gObb3/62XnzxRc2fP19TpkxRfHy8SktL1bt3b02ZMiXkWByWFZtHUU6ePFnV1dVtXtuwYYP69esnqXnWcsuZDG63W5mZmZo+fbqGDBkSyXABAOgWgvnenT17dkACI0kff/xxwFlI3//+95Wenh5yHDGbwAAAALTH6DkwscTj8ehnP/uZbr/9do0dO1b33HOP3n777WiHBUTdo48+qgkTJmjs2LG6++67tW/fvmiHBMSMt99+WyNGjNCzzz4b7VCMQw9MJ/nss8+0YcMGjRs3Tpdeeql+//vfa+XKldqwYUPIM6uB80lVVZX69eunpKQkHTp0SHPmzNFzzz2niy++ONqhAVHl8/lUVFQky7J044036u677452SEahB6aTXHDBBSosLJTT6VRcXJxGjRqlhIQEHT16NNqhAVGVkZHh32nT4XCoqamp3e3Gge7khRde0KBBg7rFJpBdIWZXIXW1hoYGPffcc6qoqNChQ4dUX1+vBQsWaNy4cQF1PR6Pf8JSfX29+vfvr+nTpysnJ6fd+x89elT19fVKS0vryo8BdKquei6WL1+usrIyeTweDR06VJmZmZH4OECn6Irnoq6uThs3blRJSYlWr14dqY9yXum2PTB1dXVat26dqqqqzrnh3ZIlS1RaWqrRo0dr9uzZiouL07x583TgwIE26zc2Nqq4uFh33nmnUlJSuiJ8oEt01XMxZ84c7dixQytWrFBOTo4cDkdXfQSg03XFc/HUU09p0qRJuvDCC7sy9POb1U01NjZaJ0+etCzLsg4dOmQNGzbMKisrC6h38OBBa9iwYdYvf/lLf9nnn39uTZkyxbrnnnsC6jc1NVnz5s2zHn74Ycvn83XdBwC6QFc9F2ebP3++9cc//rFzAwe6UGc/F5WVlda//du/WWfOnLEsy7IWL15srVu3ros/xfmn2/bAJCUlBbXJ0J49exQfH6+CggJ/WXJysvLz83Xw4EHV1NT4y30+n4qLi+VwOLRw4UL+lQnjdMVz8UVer1fHjx/vlHiBSOjs56K8vFxHjx7VxIkTNWHCBP3ud7/TL3/5Sy1ZsqTLPsP5qNvOgQnW4cOHlZ6erl69erUqHzRokCTpyJEj/q2Tly1bptraWi1btkwJCfzR4vwV7HPhdrv1pz/9STfddJOSkpL08ssva//+/Zo5c2Y0wga6VLDPRUFBgUaNGuW//thjj6lfv3668847Ixqv6fiWPYfa2to2M++WspbVFNXV1XrxxReVlJTUKvt+5JFHdM0110QmWCBCgn0uHA6HXnzxRa1YsUKWZSktLU0/+tGPdOWVV0Y0XiASgn0uevTooR49evivJycn64ILLmA+TIhIYM6hsbFRiYmJAeUty0IbGxslSX379g3YMhk4XwX7XPTq1UurVq2KaGxAtAT7XHzRwoULuzSu81W3nQMTrOTkZDU1NQWUezwe/3Wgu+G5AALxXEQWCcw5pKam+k/EPltLWZ8+fSIdEhB1PBdAIJ6LyCKBOYesrCwdO3ZMp0+fblVeUVHhvw50NzwXQCCei8gigTmH3Nxceb1ebdmyxV/m8XhUVlam7Oxs/wokoDvhuQAC8VxEVreexLtp0ya53W5/996+ffv08ccfS5ImTpyolJQUZWdna+TIkVqzZo1OnTqltLQ0bd++XdXV1Zo/f340wwe6BM8FEIjnIvZ069OoJ0+erOrq6javbdiwQf369ZPUPHO85WwLt9utzMxMTZ8+XUOGDIlkuEBE8FwAgXguYk+3TmAAAICZmAMDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDnOcmT56syZMnB1V327ZtGj58uP/1k5/8pNX12bNna/jw4V0QZXjuueeeVvHu378/2iEBiJCEaAcAIHgfffSRvvOd73RYp2/fviotLbX1PjfffLOysrKUmZlp6z7BWLRokVwulx566CHl5eW1W+/06dOaMGGCEhMTtXnzZiUnJ2v8+PEaMmSIysvLVV5e3uWxAogdJDCAgdLS0jR69Og2r6WkpLT6ecWKFSHff9iwYRo3blxYsYUqPz9fLpdLZWVlHSYwLpdLjY2NGjt2rJKTkyVJ48ePlyStXbuWBAboZkhgAAOlpaVp2rRpQdeNZV//+tfVr18/vfHGG6qpqZHT6WyzXllZmaTmhAcAmAMDnOdCmQMTrt27d2vUqFH613/9V508edJfXl5ergceeEC33XabRo0apalTp+qpp57S559/7q/jcDh06623yufz+ZOUL3r//fd16NAh9e/fXwMHDuzSzwLADCQwAGzZtGmTFi1apOzsbK1evVp9+vSRJP3mN7/Rfffdp7feektDhw7VxIkTddlll2n9+vWaM2eOmpqa/PcYO3as4uLitG3bNlmWFfAe9L4A+CKGkAADHT9+XGvXrm3z2lVXXaXrr78+InE89dRTWr9+vYYNG6aHHnrIPzflgw8+0KpVq9S/f3+tWLFCF198sb/NL37xC61Zs0abNm3SlClTJElOp1M5OTl65ZVX9MYbb+i6667z1z9z5ox27dqlpKQk3XLLLRH5XABiHwkMYKDjx49r3bp1bV67/fbbuzyB8Xq9WrZsmbZu3arbbrtNc+bMUXx8vP/6b3/7W3m9Xt13332tkhdJuuOOO1RaWqrdu3f7ExipuXfllVde0datW1slMH/605/0ySefaOTIkbrooou69HMBMAcJDGCgIUOGaNmyZVF7/x/96Ef6wx/+oLvuukszZswIuF5RUSFJevXVV/XnP/854HpCQoL++te/tiq7+eabdckll+jll1+W2+32r6baunWrJIaPALRGAgMgZG+++aaSkpI0dOjQNq9/+umnkqT169cHfc+EhATdcsstKi0tlcvl0oQJE1RbW6tXXnlFTqdT3/jGNzoldgDnBxIYACFbsWKF5syZo7lz5+rRRx/VP/3TP7W63qtXL0nS9u3b1bNnz6DvO378eJWWlmrr1q2aMGGCdu7cKa/Xq3HjxikujjUHAP6BvxEAhOyrX/2qVq5cqcTERM2dO1dvvfVWq+vZ2dmSpIMHD4Z03yuuuEJXXXWVKisr9Ze//EVlZWX+ZdYAcDYSGABhycrK8icx999/vw4cOOC/NmHCBMXHx2vVqlWqqakJaFtfX6933323zfu2zHVZvny5qqqqdN1116lv375d8yEAGIshJMBAHS2jlqQ777zTv6S5K/Xv318rV67UD37wA82dO1ePPPKIrrnmGmVmZmrOnDlavny57rzzTg0dOlRpaWlqaGjQhx9+qDfffFNjx47V/fffH3DPb37zm1q9erW/V4fJuwDaQgIDGKijZdSSNGnSpIgkMFLrJGbevHlaunSpBg8erNtuu01ZWVkqLS3Vm2++qT/+8Y/q1auXnE6nJk2apLFjx7Z5v549e2rkyJEqKyvTRRddpGHDhkXkcwAwi8Nqa9tLAN3Stm3btGTJEi1YsCBihzl2hrVr12rdunVatWqVrr322miHAyACmAMDIMCSJUs0fPhw/eQnP4l2KB265557NHz48A57owCcnxhCAuCXlZWlwsJC/8+ZmZnRCyYI48eP15AhQ/w/M9kX6D4YQgIAAMZhCAkAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABjn/wd5LNJINnmjcwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "drm.get_dispersion_matrix().plot();" + ] + }, + { + "cell_type": "markdown", + "id": "aac9aaff-8b5b-4ce6-a84e-5552ea0ac5ad", + "metadata": {}, + "source": [ + "## Point source response and expected counts" + ] + }, + { + "cell_type": "markdown", + "id": "efb6da4d-1c70-473a-8137-05a9bb2ba063", + "metadata": {}, + "source": [ + "Once we have the response, the next step is usually to get the expected counts for a specific source. However, it is not trivial for the case of a spacecraft because the response we have here is the detector response. This response records the detector effects to given points viewed from the reference frame attached to the spacecraft (SC).\n", + "\n", + "A source with a fixed position on the sky is moving from the perspective of the spacecraft (detector). Therefore, we need to convert the coordinate of a source to the reference frame, which results in a moving point viewed the spacecraft. By convolving the trajectory of the source in the spacecraft frame with the detector response, we will get the so-called point source response.\n", + "\n", + "See the spacecraft file tutorial for a discussion of the SC attitude history, transformations to/from galactic coordinates, and the dwell time map." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "cd6dd9bd-02c3-4116-b291-b8eaba8a05cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n" + ] + } + ], + "source": [ + "# read the full oritation\n", + "ori = SpacecraftFile.parse_from_file(ori_path)\n", + "\n", + "# define the target coordinates (Crab)\n", + "target_coord = SkyCoord(184.5551, -05.7877, unit = \"deg\", frame = \"galactic\")\n", + "\n", + "# get the target movement in the reference frame attached to the detector\n", + "target_in_sc_frame = ori.get_target_in_sc_frame(target_name = \"Crab\", target_coord = target_coord)\n", + "\n", + "# Get the dwell time map\n", + "dwell_time_map = ori.get_dwell_map(response = response_path, src_path = target_in_sc_frame)" + ] + }, + { + "cell_type": "markdown", + "id": "17277018-0380-4daf-bf41-fe1fac44d0ab", + "metadata": {}, + "source": [ + "We can now convolve the exposure map with the full detector response, and get a PointSourceResponse" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "f6edcf60-c017-40d9-92b5-e85f612d7eeb", + "metadata": {}, + "outputs": [], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " psr = response.get_point_source_response(exposure_map = dwell_time_map, coord = target_coord)" + ] + }, + { + "cell_type": "markdown", + "id": "e7ce6363-066e-4a2b-9fdc-bf2ca03d0d89", + "metadata": {}, + "source": [ + "Note that a PointSourceResponse only depends on the path of the source, not on the spectrum of the source. It has units of area*time" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "62b557b0-c988-4859-b5c7-f3709e47a9ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\mathrm{cm^{2}\\,s}$" + ], + "text/plain": [ + "Unit(\"cm2 s\")" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "psr.unit" + ] + }, + { + "cell_type": "markdown", + "id": "5b014e8e-21ca-4d97-8436-2292b2a5c132", + "metadata": {}, + "source": [ + "Finally, we convolve a spectrum to get the spected excess for each *measured* energy bin:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9976cfa6-fec0-4ef5-b448-20aee8678946", + "metadata": {}, + "outputs": [], + "source": [ + "index = -2.2\n", + "K = 10**-3 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + " \n", + "expectation = psr.get_expectation(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0c929b25-4b09-475f-bcdd-ac7dfba10e84", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Expected counts')" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHOCAYAAABwyLYDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCH0lEQVR4nO3deViVdf7/8RegLAKKQpKpaaKxVJJlOqUpYiVmOaVpVpZWauaS1bcRpbJNs8XJLMsyTVrGCZfRrBSXVCjMskYrRVwTcUEFAdk8IJzfH/04MwyLcDiHc+B+Pq6rK89nuc/7NHNfvfrcn/u+Xcxms1kAAAAG4uroAgAAAOobAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABhOE0cX0BAUFBToiy++UHJysvbu3avc3FxNnz5dAwcOrNNxf/75Z3322Wfav3+/SktL1b59e913333q37+/jSoHAACVIQDVQE5OjmJjYxUYGKjOnTtr586ddT7m2rVr9frrr6t79+4aO3as3NzcdPToUZ0+fdoGFQMAgOoQgGrA399fq1atkr+/v1JSUjRu3Lg6He/kyZOaO3euhgwZoilTptioSgAAUFMEoBpwd3eXv79/jcZu375dn3/+ufbv3y8XFxeFh4fr8ccf1xVXXGEZ8+WXX6q0tFSPPvqopD8vsXl5ecnFxcUu9QMAgPLYBG1D69evV3R0tLy8vPTYY49p1KhROnLkiCZOnKiTJ09axv3yyy+6/PLLtX37dg0dOlRRUVG64447tGjRIpWWljrwFwAAYAysANlIQUGB5s2bpzvuuEN/+9vfLO1RUVEaOXKkPv/8c0v7sWPH5Orqqtdee0333XefgoKClJiYqE8//VQlJSV67LHHHPUzAAAwBAKQjfz888/Ky8tT//79lZ2dbWl3dXVVaGio/v3vf1vaCgsLVVpaqscee0wPPPCAJCkiIkK5ublasWKFHnzwQTVr1qy+fwIAAIZBALKRY8eOSZKefPLJSvu9vb0tf/bw8FBhYaFuueWWcmP69++vH3/8Ufv379e1115rr1IBADA8ApCNlO3dee6559SqVasK/W5ubpY/+/v769ixY2rZsmW5MWWfc3Nz7VgpAAAgANlI27ZtJUl+fn7q3r17tWODg4N17NgxZWRk6LLLLrO0Z2RkWI4BAADsh7vAbKRHjx7y9vbW559/rgsXLlTo/+99QZGRkZKkb775xtJWWlqqdevWqXnz5goODrZ7vQAAGBkrQDW0cuVK5eXlKTMzU5KUlJRkeWrz0KFD5ePjo6efflqzZs3So48+qv79+8vPz0+nTp3S9u3bdfXVV+upp56SJPXu3VvXX3+9Pv/8c2VnZ6tz58767rvv9Ntvv+mZZ56Ru7u7w34nAABG4GI2m82OLqIhGD58uNLT0yvti4uLU5s2bSRJO3fu1D/+8Q8lJyerqKhIl1xyibp27aohQ4aUW9kpKCjQokWLtHnzZuXm5qp9+/a6//77ddttt9XL7wEAwMgIQAAAwHDYAwQAAAyHAAQAAAyHAFSF8+fPa9++fTp//ryjSwEAADZGAKpCamqqxo4dq9TUVEeXAgAAbIwABAAADIcABAAADMfpH4T46aefatGiRbriiiv0ySefXHT8mTNnNH/+fO3YsUOlpaXq1q2bJk+eXO6VEwAAwNicegXo9OnT+vzzz+Xl5VWj8QUFBZoyZYp27dqlkSNH6pFHHtGBAwc0efJk5eTk2LlaAADQUDj1CtD777+vsLAwlZaW1ijArF69WseOHdOHH36o0NBQSVLPnj01evRoxcXFady4cfYuGQAANABOuwK0a9cuJSQkaPLkyTWes3XrVoWEhFjCjyR16NBB1113nbZs2WKPMgEAQAPklAGopKRE8+bN06BBgxQUFFSjOaWlpTp8+LBCQkIq9IWGhur48eMqKCiwdakAAKABcspLYF9++aVOnTqluXPn1njOuXPnVFRUJH9//wp9ZW0ZGRm6/PLLK52fkZFhedO7JJ7/AwBAI+Z0ASgnJ0cff/yxHnroIfn5+dV4nslkkiQ1bdq0Qp+7u3u5MZVZs2aNYmNja1UrAABomJwuAC1atEi+vr4aOnRoreZ5eHhIkoqLiyv0FRUVlRtTmcGDB6tXr16Wz6mpqZo5c2atagAAAA2DUwWgtLQ0ffXVV5o8ebIyMjIs7UVFRbpw4YJOnjwpb29vNW/evMLc5s2by93dvdxlrDJlbQEBAVV+d0BAQLX9AACg8XCqAJSRkaHS0lLNmzdP8+bNq9B/77336p577tETTzxRoc/V1VWdOnVSSkpKhb7k5GRddtllatasmV3qBgAADYtTBaArrrhCs2bNqtC+aNEiFRQU6IknnrA80fnUqVM6f/68OnToYBnXt29fffjhh0pJSbHcDXb06FHt3LlT9957b/38CAAA4PScKgD5+fnp5ptvrtC+fPlySSrXN2vWLO3atUuJiYmWtrvvvltff/21oqOjNWLECLm5uWnZsmVq2bKlRowYYf8fAAAAGgSnCkB11axZM82bN0/z58/Xp59+ankX2KRJk2p1RxkAAGjcXMxms9nRRTijffv2aezYsfroo48UHBzs6HIc6vD2k/plxQEVn7/g6FJqpalnE3Uf1kVX9Gzj6FIAAE6mUa0AwT5+WXFAOSfyHV2GFUz6efkBAhAAoAICEC6qbOXHxUXyaln1s5ScSWGWSWazGtyqFQCgfhCAUGNeLT10//xIR5dRI0snbVbB2aqf/A0AMDanfBkqAACAPRGAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4TRxdAH/648//tCSJUu0b98+nT17Vp6enurQoYPuu+8+9erVq9q569at0+zZsyvtW7Vqlfz9/e1RMgAAaGCcLgClp6eroKBAUVFRCggI0Pnz55WQkKDp06frmWee0eDBgy96jEcffVRt2rQp1+bj42OvkgEAQAPjdAHoxhtv1I033liubciQIRo7dqyWLVtWowDUs2dPhYSE2KtEAADQwDWIPUBubm5q3bq18vLyajynoKBAJSUldqwKAAA0VE63AlSmsLBQJpNJ+fn5SkpK0o8//qh+/frVaO6UKVNUWFiopk2b6oYbbtDEiRPVvn17O1cMAAAaCqcNQO+9957WrFkjSXJ1dVWfPn301FNPVTvHw8NDAwcOVLdu3eTt7a19+/Zp2bJlmjBhghYtWqTAwMAq52ZkZCgzM9PyOTU11TY/BAAAOB2nDUDDhg1TRESEMjIytGXLFpWUlKi4uLjaOZGRkYqMjLR8vvnmm9WjRw9NnjxZn332mZ555pkq565Zs0axsbG2Kh8AADgxpw1AHTp0UIcOHSRJUVFRevrppzVt2jR9+OGHcnFxqfFxunbtqrCwMP3yyy/Vjhs8eHC52+xTU1M1c+ZM64oHAABOzWkD0P+KiIjQnDlzlJaWpssvv7xWc1u3bq2jR49WOyYgIEABAQF1KREAADQQDeIuMEkymUySVKs7wcqcOHFCfn5+Nq4IAAA0VE4XgLKysiq0XbhwQevXr5eHh4c6duwo6c9Ny6mpqbpw4YJlXHZ2doW5P/zwg/bt26cePXrYq2QAANDAON0lsDlz5ig/P1/h4eG65JJLlJmZqY0bN+ro0aOaOHGimjVrJklauHCh4uPjFRcXZ3nq8+OPP64rr7xSwcHB8vb21v79+7V27Vq1bt1aDz74oCN/FgAAcCJOF4AiIyP1zTff6Msvv1ROTo6aNWum4OBgjR8/Xr17977o3O3bt2vHjh06f/68/P39deedd2r06NFq1apVPf0CAADg7JwuAPXv31/9+/e/6LiYmBjFxMSUaxs7dqzGjh1rr9IAAEAj4XR7gAAAAOyNAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyniaML+F9//PGHlixZon379uns2bPy9PRUhw4ddN9996lXr14XnZ+bm6sPPvhAiYmJMplMCg0N1YQJExQcHFwP1QMAgIbA6VaA0tPTVVBQoKioKD3xxBN66KGHJEnTp0/XmjVrqp1bWlqq6Ohobdq0SUOGDNH48eOVlZWlKVOmKC0trT7KBwAADYDTrQDdeOONuvHGG8u1DRkyRGPHjtWyZcs0ePDgKudu3bpVu3fv1ssvv6yIiAhJUmRkpO6//34tWbJEM2bMsGfpAACggXC6AFQZNzc3tW7dWikpKdWOS0hIUKtWrdSnTx9Lm5+fn/r166eNGzeqqKhI7u7u9i4XTqQwy6SlkzY7uowaa+rZRN2HddEVPds4uhQAaNScNgAVFhbKZDIpPz9fSUlJ+vHHH9WvX79q5+zfv19dunSRq2v5K3uhoaH66quvlJaWpqCgIHuWDSfR1LOJJJPMZqngrMnR5dSCST8vP0AAAgA7c9oA9N5771n2/Li6uqpPnz566qmnqp1z9uxZhYeHV2j39/eXJGVmZlYZgDIyMpSZmWn5nJqaam3pcALdh3XRz8sPqPj8BUeXUmOFWX8GtoZUMwA0VE4bgIYNG6aIiAhlZGRoy5YtKikpUXFxcbVzTCZTpZe4ytpMpqpXAtasWaPY2Ng61QzncUXPNg1uFWXppM0NbLUKABoupw1AHTp0UIcOHSRJUVFRevrppzVt2jR9+OGHcnFxqXSOh4eHioqKKrSXtXl4eFT5fYMHDy53m31qaqpmzpxZl58AAACclNMGoP8VERGhOXPmKC0tTZdffnmlY1q1alXuMlaZsrayS2GVCQgIUEBAgG2KBQAATs3pngNUlbLLV3l5eVWO6dKliw4cOKDS0tJy7Xv37pWnp6fat29v1xoBAEDD4HQBKCsrq0LbhQsXtH79enl4eKhjx46S/ty0nJqaqgsX/rNhtG/fvjp79qwSExMtbdnZ2dqyZYtuuukmboEHAACSnPAS2Jw5c5Sfn6/w8HBdcsklyszM1MaNG3X06FFNnDhRzZo1kyQtXLhQ8fHxiouLU5s2f252jYiI0IoVKzR79mwdOXJELVq00OrVq1VaWqpHHnnEkT8LAAA4EacLQJGRkfrmm2/05ZdfKicnR82aNVNwcLDGjx+v3r17VzvXzc1Nb7zxht5//32tXLlSJpNJISEhmj59epX7hgAAgPE4XQDq37+/+vfvf9FxMTExiomJqdDu6+ur6OhoRUdH26M8AADQCDjdHiAAAAB7IwABAADDsWkAMpvNSktL06lTp2x5WAAAAJuyag9QQkKCvv/+ez3xxBPy9fWVJJ08eVLTpk2zvEMrIiJCzz//vNzc3GxXLQAAgA1YtQL05Zdf6sCBA5bwI0nz58/XkSNH1K1bNwUFBWnr1q1au3atzQoFAACwFasC0JEjRxQaGmr5XFBQoB9++EGRkZGaO3euPvzwQ3Xo0IEABAAAnJJVAejcuXNq1aqV5fNvv/2mkpISy+3rTZo0Uffu3XX8+HHbVAkAAGBDVgUgb29vnTt3zvJ5586dcnV1VXh4uKWtSZMmOn/+fN0rBAAAsDGrAtDll1+ubdu2KScnR7m5udq0aZOuvPLKcnuC0tPT1bJlS5sVCgAAYCtWBaChQ4cqIyNDQ4cO1bBhw5SZmam77rqr3Jjk5GR17tzZFjUCAADYlFW3wUdEROipp57SN998I+nP93cNHDjQ0r9r1y7l5+erR48etqkSAADAhqx+F9hdd91VYdWnzLXXXssdYAAAwGlZdQksNjZWu3btqnbMb7/9ptjYWGsODwAAYFdWBaAlS5ZcNADt2rWLAAQAAJyS3V6GeuHCBbm68q5VAADgfKxOKC4uLlX2FRcX69dff+U2eAAA4JRqvAn63nvvLfd52bJllW50Li0tVU5OjoqKinTHHXfUvUIAAAAbq3EAMpvNlj+7uLjIbDaXa7McsEkTdezYUdddd51GjRplmyoBAABsqMYBaNmyZZY/9+3bV8OHD9fo0aPtURMAAIBdWfUcoLi4OPn4+Ni6FgAAgHphVQC69NJLbV0HAABAvbH6SdDZ2dlau3atUlJSlJeXp5KSkgpjXFxc9Pbbb9elPgAAAJuzKgAdOnRITz75pHJzcyvdCF2mulvlAQAAHMWqAPTee+/p3LlzeuihhzRo0CBdcsklcnNzs3VtAAAAdmFVANqzZ4969+6tRx991Nb1AAAA2J1VT4Ju0qSJ2rZta+taAAAA6oVVAejaa6/Vvn37bF0LAABAvbAqAE2YMEGHDx/WP//5T1vXAwAAYHdW7QH67LPP1KlTJ3344Ydas2aNOnfuLG9v70rHTps2rU4FAgAA2JpVAWjdunWWP584cUInTpyodJyLi0utA9DevXsVHx+vnTt3Kj09Xc2bN9dVV12lMWPGqH379heta/bs2ZX2rVq1Sv7+/rWqBQAANE5WvwrDXpYuXarff/9d/fr1U1BQkDIzM7Vq1SqNGTNGCxYsUKdOnS56jEcffVRt2rQp18arOwAAQBmnexXG8OHDNWPGDDVt2tTSFhkZqYcfflj/+Mc/9Pzzz1/0GD179lRISIjdagQAAA2bVZug7emaa64pF34kqX379urYsaNSU1NrfJyCgoJKX88BAABg1QpQfHx8jcdGRUVZ8xXlmM1mZWVlqWPHjjUaP2XKFBUWFqpp06a64YYbNHHixIvuHwIAAMZhVQCaPXv2Rd/zZTab5eLiYpMAtHHjRp05c0aPPPJIteM8PDw0cOBAdevWTd7e3tq3b5+WLVumCRMmaNGiRQoMDKxybkZGhjIzMy2fa7PaBAAAGharAlBVd3bl5+dr//792rRpk3r16qWbbrqpTsVJfwaRuXPn6qqrrrpomIqMjFRkZKTl880336wePXpo8uTJ+uyzz/TMM89UOXfNmjWKjY2tc70AAMD5WRWABg4cWG3/4MGD9eSTT+quu+6y5vAWmZmZio6Olre3t1555RWrXrjatWtXhYWF6Zdffql23ODBg9WrVy/L59TUVM2cObPW3wcAAJyfVQHoYq6++mr16tVLixcv1vXXX2/VMfLy8jR16lTl5eVp/vz5CggIsLqe1q1b6+jRo9WOCQgIqNN3AACAhsNud4FdeumlOnTokFVzTSaTpk2bprS0NL322ms13vxclRMnTsjPz69OxwAAAI2HXQKQ2WzWr7/+Knd391rPLSkp0Ysvvqg9e/bopZde0tVXX13puIyMDKWmpurChQuWtuzs7ArjfvjhB+3bt089evSodS0AAKBxsuoS2K5duyptLykpUUZGhtavX6+UlBQNGDCg1sd+7733lJSUpJtuukm5ubnasGFDuf7bbrtNkrRw4ULFx8crLi7O8tTnxx9/XFdeeaWCg4Pl7e2t/fv3a+3atWrdurUefPDBWtcCAAAaJ6sC0JQpU6q9Dd5sNuuaa67RpEmTan3sgwcPSpK2bdumbdu2VegvC0CViYyM1Pbt27Vjxw6dP39e/v7+uvPOOzV69Gi1atWq1rUAAIDGyaoANGrUqEoDkKurq3x8fBQaGqqwsDCrCnrnnXdqNC4mJkYxMTHl2saOHauxY8da9b0AAMA4rApAF3sgIQAAgDNzuneBAQAA2FudngN08uRJbdy4UQcPHlR+fr68vb3VuXNn3XrrrZaNyQAAAM7G6gC0fPlyffDBByopKZHZbLa0JyQk6JNPPtH48eM1bNgwmxQJAABgS1YFoG3btmn+/Plq0aKFhg8frm7dusnf319nz57Vv//9by1btkzvvfee2rVrpxtvvNHWNQMAANSJVQEoLi5OzZs316JFi9S6dWtL+6WXXqqwsDDdeuutGjNmjOLi4ghAAADA6Vi1CfrAgQPq169fufDz3wIDA9WvXz/t37+/TsUBAADYg1UBqLi4WF5eXtWO8fLyUnFxsVVFAQAA2JNVAah9+/ZKSkoq9x6u/3bhwgVt27ZN7du3r1NxAAAA9mBVABowYIDS0tL0zDPPaN++feX6UlJSNHXqVKWlpSkqKsomRQIAANiSVZug77nnHv36669KSkrSY489Jg8PD7Vs2VJZWVkymUwym83q3bu37rnnHlvXCwAAUGdWBSA3Nze9+uqrio+PV3x8vA4ePKhTp07J29tbYWFhioqKsupN8AAAAPWhTk+CjoqK4jIXAABocHgXGAAAMByrAtC2bdv07LPPKiMjo9L+jIwMPfvss9q+fXudigMAALAHqwLQqlWrdOLECQUEBFTaHxAQoPT0dK1atapOxQEAANiDVQHo4MGDCgsLq3ZMaGioDh48aFVRAAAA9mRVAMrNzZWfn1+1Y1q0aKGcnBxrDg8AAGBXVgWgFi1aKC0trdoxaWlp8vX1taooAAAAe7IqAIWHh2vbtm06dOhQpf0HDx5UUlKSrr322rrUBgAAYBdWPQfogQceUGJioiZOnKgRI0aoe/fuuuSSS3TmzBnt2LFDcXFxcnFx0ciRI21db4N3ePtJ/bLigIrPV/4eNWdUmGVydAkAANiUVQEoKChIzz33nGbPnq3Y2FjFxsZa+sxms7y8vPTCCy8oKCjIVnU2Gr+sOKCcE/mOLsMqTT3r9NxMAACchtX/RouIiFB4eLjWrVunlJQU5eXlydfXVyEhIRo4cOBFN0kbVdnKj4uL5NXSw8HV1FxTzybqPqyLo8sAAMAm6vSf9C1bttT9999vq1oMxaulh+6fH+noMgAAMCRehQEAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAzH6R7ssnfvXsXHx2vnzp1KT09X8+bNddVVV2nMmDFq3779Refn5ubqgw8+UGJiokwmk0JDQzVhwgQFBwfXQ/UAAKAhcLoVoKVLlyohIUHXX3+9nnjiCd1555369ddfNWbMGB0+fLjauaWlpYqOjtamTZs0ZMgQjR8/XllZWZoyZcpF310GAACMo0YrQKdOnbL6CwIDA2s1fvjw4ZoxY4aaNm1qaYuMjNTDDz+sf/zjH3r++eernLt161bt3r1bL7/8siIiIixz77//fi1ZskQzZsyw6jcAAIDGpUYBaPjw4XJxcan1wV1cXLRly5ZazbnmmmsqtLVv314dO3ZUampqtXMTEhLUqlUr9enTx9Lm5+enfv36aePGjSoqKpK7u3ut6gEAAI1PjQLQgAEDKgSgEydO6LfffpOPj486d+6sVq1a6ezZszp48KDy8vLUtWtXXXbZZTYp0mw2KysrSx07dqx23P79+9WlSxe5upa/shcaGqqvvvpKaWlpvJ8MAADULADFxMSU+/zHH39o4sSJGjlypEaOHCkvLy9LX2FhoT777DOtXr1a//d//2eTIjdu3KgzZ87okUceqXbc2bNnFR4eXqHd399fkpSZmVllAMrIyFBmZqbl88VWmwAAQMNl1V1gCxYsUEhIiMaOHVuhz8vLS+PGjVNKSoo++OADvfbaa3UqMDU1VXPnztVVV12lqKioaseaTKZKL3GVtZlMpirnrlmzptxb7QEAQONlVQDavXu37r777mrHhIaGatWqVVYVVSYzM1PR0dHy9vbWK6+8Ijc3t2rHe3h4qKioqEJ7WZuHR9VvXx88eLB69epl+ZyamqqZM2daWTkAAHBmVgWg0tJSHT9+vNoxx44dk9lstqooScrLy9PUqVOVl5en+fPnKyAg4KJzWrVqVe4yVpmytrJLYZUJCAio0XcAAICGz6rnAIWHhyshIUHffvttpf2bNm1SYmJipftxasJkMmnatGlKS0vTa6+9dtHNz2W6dOmiAwcOqLS0tFz73r175enpWaMHKQIAgMbPqhWgxx9/XL/99pteeeUVLV26VNdcc41atmyprKws/f777zp06JCaNWum8ePH1/rYJSUlevHFF7Vnzx69+uqruvrqqysdl5GRofz8fLVt21ZNmvz5M/r27autW7cqMTHR8hyg7OxsbdmyRTfddBO3wAMAAElWBqCOHTvqvffe09tvv61ff/1VBw8eLNcfHh6up556qsYrN//tvffeU1JSkm666Sbl5uZqw4YN5fpvu+02SdLChQsVHx+vuLg4tWnTRpIUERGhFStWaPbs2Tpy5IhatGih1atXq7S09KJ3kAEAAOOw+l1gnTp10jvvvKNTp07p0KFDysvLk4+Pj4KCgmr99Of/Vhamtm3bpm3btlXoLwtAlXFzc9Mbb7yh999/XytXrpTJZFJISIimT5+uyy+/3OqaAABA41Lnl6EGBgbWKfD8r3feeadG42JiYio8n0iSfH19FR0drejoaJvVBAAAGpc6BaDi4mL9/PPPOnr0qM6fP69Ro0ZJ+nMTc0FBgVq0aFHhqcwAAACOZnUA+v777zVnzhxlZ2fLbDbLxcXFEoAOHTqkCRMm6Nlnn9Wtt95qs2IBAABswarlmd9//93yxvbJkyfrlltuKdcfFhamtm3bKiEhwSZFAgAA2JJVK0CffPKJfHx89NFHH8nPz0/nzp2rMCY4OFh79+6tc4EAAAC2ZtUKUHJysnr37i0/P78qx7Ru3Vpnz561ti4AAAC7sSoAFRcXq1mzZtWOycvLk4uLi1VFAQAA2JNVAeiyyy5TSkpKtWP27NnDs3cAAIBTsioA9e3bV7t379batWsr7f/nP/+pP/74Q5GRkXUqDgAAwB6s2gQ9YsQIJSQk6I033tCmTZtUVFQkSVqwYIH27Nmj3bt3q3PnzhoyZIhNiwUAALAFqwJQs2bNNH/+fM2dO1dbtmyxvH39iy++kIuLi/r166enn36al48CAACnZPWDEH19fTVjxgxNmTJFKSkpOnfunLy9vRUSEqJWrVrZskYAAACbqvO7wFq0aKGePXvaohYAAIB6YdUm6IiICH3yySfVjvn000/Vr18/q4oCAACwJ6sCkNlsltlsrtE4AAAAZ2O3V7VnZ2fLw8PDXocHAACwWo33AMXHx5f7fODAgQptklRaWqrTp09r/fr1uuKKK+peIQAAgI3VOADNnj3b8moLFxcXJSUlKSkpqcK4ssteHh4eevjhh21UJgAAgO3UOABNmzbN8ufXXntNvXv3Vu/evSuMc3Nzk6+vr66++mr5+vrapkoAAAAbqnEAGjhwoOXPu3bt0s0331xpAAIAAHB2Vj0HaPr06bauAwAAoN5YdRfYtm3b9OyzzyojI6PS/oyMDD377LPavn17nYoDAACwB6sC0KpVq3TixAkFBARU2h8QEKD09HStWrWqTsUBAADYg1UB6ODBgwoLC6t2TGhoqA4ePGhVUQAAAPZk1R6g3Nxc+fn5VTumRYsWysnJsebwgKEVZpm0dNJmR5dRK009m6j7sC66omcbR5cCADViVQBq0aKF0tLSqh2TlpbGbfBALTT1bCLJJLNZKjhrcnQ5tWTSz8sPEIAANBhWBaDw8HAlJibq0KFDCgoKqtB/8OBBJSUlqU+fPnUuEDCK7sO66OflB1R8/oKjS6mVwqw/Q1tDqxuAsVkVgB544AElJiZq4sSJGjFihLp3765LLrlEZ86c0Y4dOxQXFycXFxeNHDnS1vUCjdYVPds0yBWUpZM2N8AVKwBGZ1UACgoK0nPPPafZs2crNjZWsbGxlj6z2SwvLy+98MILla4OAQAAOJpVAUiSIiIiFB4ernXr1iklJUV5eXny9fVVSEiIBg4ceNFN0gAAAI5idQCSpJYtW+r++++3VS2SpIKCAn3xxRdKTk7W3r17lZubq+nTp5d7FUdV1q1bp9mzZ1fat2rVKvn7+9u0VgAA0DDVKQCVOXfunAoLCxUYGFjnY+Xk5Cg2NlaBgYHq3Lmzdu7cWetjPProo2rTpvxeCh8fnzrXBgAAGgerA1BeXp4WL16szZs3KycnRy4uLtqyZYskKTk5WUuWLNGYMWMUHBxcq+P6+/tbVmtSUlI0bty4WtfWs2dPhYSE1HoeAAAwBqueBH3u3DmNHz9e//rXv9S6dWt16NBBZrPZ0h8UFKTdu3dr48aNtT62u7u7TS5VFRQUqKSkpM7HAQAAjY9VAWjJkiVKS0vTCy+8oI8++kgRERHl+j08PBQeHq5///vftqix1qZMmaKoqCjddtttmjZt2kUf2ggAAIzFqktgSUlJuvHGGxUZGVnlmDZt2mjPnj1WF2YNDw8PDRw4UN26dZO3t7f27dunZcuWacKECVq0aFG1e5QyMjKUmZlp+ZyamlofJQMAAAewKgBlZmZWG34kqWnTpiosLLSqKGtFRkaWq+vmm29Wjx49NHnyZH322Wd65plnqpy7Zs2acs8zAgAAjZdVAah58+Y6ffp0tWOOHj3qFLedd+3aVWFhYfrll1+qHTd48GD16tXL8jk1NVUzZ860d3kAAMABrH4XWFJSkk6fPq3WrVtX6D9y5Ih+/PFH3X777XUu0BZat26to0ePVjsmICBAAQEB9VQRAABwJKs2QT/44IMqKSnRxIkTtWHDBuXk5Ej6M/h8/fXXevLJJ+Xu7q4RI0bYtFhrnThxgidTAwAAC6vfBfbiiy9q1qxZevXVVyX9+Q6w0aNHy2w2q1mzZnrxxRfVvn17mxb73zIyMpSfn6+2bduqSZM/f0Z2dnaFoPPDDz9o3759Gjp0qN1qAQAADYvVD0Ls3bu34uLiFB8fr+TkZJ07d07e3t4KCwur87vAVq5cqby8PMtdWWWX2yRp6NCh8vHx0cKFCxUfH6+4uDjLU58ff/xxXXnllQoODpa3t7f279+vtWvXqnXr1nrwwQetrgcAADQudXoVRvPmzTV8+HBb1WIRFxen9PR0y+fExEQlJiZKkm677bYqX2sRGRmp7du3a8eOHTp//rz8/f115513avTo0WrVqpXN6wQAAA2TTd4FduHCBRUWFsrLy8tyOaouli1bdtExMTExiomJKdc2duxYjR07ts7fDwAAGjer00pJSYlWrlypdevW6ciRIzKbzXJxcVHHjh01cOBADRkyxCZhCAAAwNasSigFBQV65plnlJycLBcXF7Vu3VqtWrXS2bNndeTIEb3//vtKSEjQnDlz5OXlZeuaAQAA6sSqAPTxxx9rz549uuWWWzRu3Lhyr5g4deqUPvzwQ3377bdavHixJk2aZLNiAQAAbMGq5wBt2bJFwcHBev755yu8XyswMFAzZsxQcHCwtmzZYpMiAQAAbMmqAJSTk6Pu3btXO+b666/XuXPnrCoKAADAnqwKQO3atVNWVla1Y7Kzs9W2bVurigIAALAnqwLQPffco82bN+uPP/6otP/QoUPavHmzhg0bVqfiAAAA7MGqTdDt2rXTddddp7FjxyoqKkpdu3ZVy5YtlZWVpV9//VXr169Xjx491LZtW+3atavc3GuvvdYGZQMAAFjPqgA0ZcoUubi4yGw266uvvtLXX39t6TObzZKkbdu2adu2bRXmbt261bpKAQAAbMSqADRq1Ci5uLjYuhYAAIB6YVUAeuSRR2xdBwAAQL2xahN0TZWWltrz8AAAAFaxKgC99dZbKioqqnbMyZMneQo0AABwSlYFoC+//FLjxo2r8jb4b7/9Vo8++qj27t1bp+IAAADswaoANHbsWKWlpWncuHH617/+ZWkvLCzUq6++qldeeUUeHh568803bVYoAACArVi1CXrkyJG67rrr9Morr+idd97RTz/9pCFDhujtt9/W8ePHdeONN2ratGny8/OzcbkAAAB1Z1UAkqSwsDAtXrxYc+fO1YYNG7R9+3a5u7vrySef1N13323LGgEAAGyqTneBFRQU6PTp05L+fACiq6urPD09bVIYAACAvVgdgL7//ns9/PDD2rVrl/76179qzpw58vX11euvv66XXnpJ+fn5tqwTAADAZqy6BPbWW29pzZo18vX11axZs9S7d29J0pIlS/Tmm29q8+bN2rNnj55//nldc801Ni0YAACgrqy+Db5bt25asmSJJfxIko+Pj1566SX97W9/U05OjqZMmWKzQgEAAGzFqhWgcePG6f7776/yfWB33HGHwsPD9fLLL9epOAAAAHuwKgA98MADFx3Tvn17LViwwJrDAwAA2JXd3gVWXFwsk8lkr8MDAABYrcYB6N5779WKFSvKtf3000+aP39+peM///xzDRo0qG7VAQAA2EGNA1B6erry8vLKte3Zs6dCKAIAAHB2drsEBgAA4KwIQAAAwHAIQAAAwHCsfhmqvRQUFOiLL75QcnKy9u7dq9zcXE2fPl0DBw6s0fzc3Fx98MEHSkxMlMlkUmhoqCZMmKDg4GA7Vw4AABoKp1sBysnJUWxsrFJTU9W5c+dazS0tLVV0dLQ2bdqkIUOGaPz48crKytKUKVOUlpZmp4oBAEBDU6sVoA0bNmjPnj2Wz8ePH5ck/e1vf6swtqyvtvz9/bVq1Sr5+/srJSVF48aNq/HcrVu3avfu3Xr55ZcVEREhSYqMjNT999+vJUuWaMaMGVbVBAAAGpdaBaDjx49XGmx++umnSsdX9aqM6ri7u8vf37/W8yQpISFBrVq1Up8+fSxtfn5+6tevnzZu3KiioiK5u7tbdWwAANB41DgAxcXF2bMOm9i/f7+6dOkiV9fyV/ZCQ0P11VdfKS0tTUFBQQ6qDgAAOIsaB6BLL73UnnXYxNmzZxUeHl6hvWxFKTMzs8oAlJGRoczMTMvn1NRU+xQJAAAczunuAqsLk8lU6SWusrbq3k22Zs0axcbG2qs0AADgRBpVAPLw8FBRUVGF9rI2Dw+PKucOHjxYvXr1snxOTU3VzJkzbV8kAABwuEYVgFq1alXuMlaZsrbqNlcHBAQoICDAbrUBAADn4XTPAaqLLl266MCBAyotLS3XvnfvXnl6eqp9+/YOqgwAADiTBhuAMjIylJqaqgsXLlja+vbtq7NnzyoxMdHSlp2drS1btuimm27iFngAACDJSS+BrVy5Unl5eZZLV0lJSTp9+rQkaejQofLx8dHChQsVHx+vuLg4tWnTRpIUERGhFStWaPbs2Tpy5IhatGih1atXq7S0VI888ojDfg8AAHAuThmA4uLilJ6ebvmcmJhoWdW57bbb5OPjU+k8Nzc3vfHGG3r//fe1cuVKmUwmhYSEaPr06br88svrpXYAAOD8nDIALVu27KJjYmJiFBMTU6Hd19dX0dHRio6OtkdpAACgEWiwe4AAAACsRQACAACGQwACAACGQwACAACGQwACAACG45R3gQFoeAqzTFo6abOjy6ixpp5N1H1YF13Rs42jSwHgAAQgAHXS1LOJJJPMZqngrMnR5dSCST8vP0AAAgyKAASgTroP66Kflx9Q8fkLFx/sJAqz/gxsDalmALZFAAJQJ1f0bNPgVlGWTtrcwFarANgam6ABAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhNHF0AZUpKirS4sWLtWHDBuXm5iooKEhjxozRDTfcUO28jz/+WLGxsRXa3d3dtWnTJjtVCwAAGhqnDECzZ8/W1q1bNWzYMLVr107r1q3T1KlTNW/ePHXt2vWi8//v//5PXl5els+urix0AQCA/3C6AJScnKxvv/1Wjz/+uO677z5J0oABAzR69GgtWLBACxYsuOgx+vbtKz8/PztXCgAAGiqnWxpJSEiQm5ubBg8ebGnz8PDQoEGDtGfPHp06dapGx8nPz5fZbLZXmQAAoAFzuhWgAwcOqF27dvL29i7XHhoaKkk6ePCgAgMDqz3Gvffeq8LCQnl5eal3796aOHGiWrVqZbeaAQBAw+J0ASgzM1P+/v4V2svaMjIyqpzr6+urIUOG6KqrrlLTpk3122+/adWqVdq7d68++uijCqHqv2VkZCgzM9PyOTU1tQ6/AgAAODOnC0Amk0lNmzat0O7u7m7pr8qwYcPKfY6IiFBoaKheeeUVrVq1SiNHjqxy7po1ayq9gwwAADQ+TheAPDw8VFxcXKG9qKjI0l8bt956q9577z398ssv1QagwYMHq1evXpbPqampmjlzZq2+CwAANAxOF4D8/f115syZCu1ll6cCAgJqfczWrVvr3Llz1Y4JCAiw6tgAAKDhcbq7wDp37qxjx44pPz+/XHtycrKlvzbMZrPS09O5LR4AAFg4XQCKiIhQSUmJ1qxZY2krKirS2rVrFRYWZrkD7NSpUxU2KmdnZ1c43urVq5Wdna2ePXvatW4AANBwON0lsLCwMPXr108LFy5Udna22rZtq/j4eKWnpys6OtoybtasWdq1a5cSExMtbcOGDVNkZKQ6deokd3d3/f777/r222/VpUuXcs8VAgAAxuZ0AUiSYmJiFBgYqPXr1ysvL0+dOnXS66+/rmuvvbbaebfeeqt2796thIQEFRUVKTAwUPfdd58eeugheXp61k/xABqMwiyTlk7a7OgyaqypZxN1H9ZFV/Rs4+hSgAbPKQOQh4eHJkyYoAkTJlQ55p133qnQNnXqVHuWBaCRaOrZRJJJZrNUcLbqR2s4H5N+Xn6AAATYgFMGIACwp+7Duujn5QdUfP6Co0upscKsPwNbQ6oZcGYEIACGc0XPNg1uFWXppM0NbLUKcG5OdxcYAACAvRGAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4TRxdAEAgJorzDJp6aTNji6jxpp6NlH3YV10Rc82ji4FKIcABAANQFPPJpJMMpulgrMmR5dTCyb9vPwAAQhOhwAEAA1A92Fd9PPyAyo+f8HRpdRYYdafga0h1QzjIAABQANwRc82DW4VZemkzQ1stQpGwiZoAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgONwFBgCwKx7eCGdEAAIA2AUPb4QzIwABAOyChzfCmTllACoqKtLixYu1YcMG5ebmKigoSGPGjNENN9xw0blnzpzR/PnztWPHDpWWlqpbt26aPHmyLrvssnqoHABQhoc3wpk5ZQCaPXu2tm7dqmHDhqldu3Zat26dpk6dqnnz5qlr165VzisoKNCUKVOUn5+vkSNHqkmTJlq2bJkmT56sjz/+WC1atKjHXwEAaKjYt9T4OV0ASk5O1rfffqvHH39c9913nyRpwIABGj16tBYsWKAFCxZUOXf16tU6duyYPvzwQ4WGhkqSevbsqdGjRysuLk7jxo2rl98AAGiY2LdkHE4XgBISEuTm5qbBgwdb2jw8PDRo0CAtXLhQp06dUmBgYKVzt27dqpCQEEv4kaQOHTrouuuu05YtWwhAAIBqsW/JOJwuAB04cEDt2rWTt7d3ufayUHPw4MFKA1BpaakOHz6s22+/vUJfaGioduzYoYKCAjVr1sw+hQMAGryGvG+Jy3a143QBKDMzU/7+/hXay9oyMjIqnXfu3DkVFRVddO7ll19e6fyMjAxlZmZaPqempta6dgAA6huX7azjdAHIZDKpadOmFdrd3d0t/VXNk2TVXElas2aNYmNja1suAAAO1RAv25UFNUfW7HQByMPDQ8XFxRXai4qKLP1VzZNk1VxJGjx4sHr16mX5nJqaqpkzZ9a88Bpq1sKj3N8BAKiLhnjZbvWzSSrIMTn034VOF4D8/f115syZCu1ll6cCAgIqnde8eXO5u7uXu4xV07llfdX128pds3pdfBAAAI2YM/y70Olehtq5c2cdO3ZM+fn55dqTk5Mt/ZVxdXVVp06dlJKSUqEvOTlZl112GRugAQCAJCcMQBERESopKdGaNWssbUVFRVq7dq3CwsIsd4CdOnWqwkblvn37KiUlpVwIOnr0qHbu3KmIiIh6qR8AADg/p7sEFhYWpn79+mnhwoXKzs5W27ZtFR8fr/T0dEVHR1vGzZo1S7t27VJiYqKl7e6779bXX3+t6OhojRgxQm5ublq2bJlatmypESNGOOLnAAAAJ+R0AUiSYmJiFBgYqPXr1ysvL0+dOnXS66+/rmuvvbbaec2aNdO8efM0f/58ffrpp5Z3gU2aNEl+fn71UjsAAHB+Lmaz2ezoIpzRvn37NHbsWH300UcKDg52dDkAAMCGnG4PEAAAgL0RgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOE45ZOgnYHJZJKkCu8bAwAAzq9Dhw7y9PSssp8AVIX09HRJ0syZMx1cCQAAqK2LvcmBAFSFHj16qHPnznrqqafk7u5eoznvvvuuJk+eXO2Y1NRUzZw5U88995w6dOhgi1IbvJr8c3Ok+q7PXt9nq+PW5TjWzK3NnJqO5TysyJnPQ85B2x3H3udgTcfXxzl4seMSgKrg5+en1q1b65prrqnxHB8fnxq/N6xDhw68Y+z/q80/N0eo7/rs9X22Om5djmPN3NrMqe3xOQ//w5nPQ85B2x3H3udgbcc78hxkE3Q1brnlFruOx5+c/Z9bfddnr++z1XHrchxr5tZmjrP/f8mZOfM/O85B2x3H3uegtd/hCLwNvp7xlnnA8TgPAcdyhnOQFaB65u/vr9GjR8vf39/RpQCGxXkIOJYznIOsAAEAAMNhBQgAABgOAQgAABgOAcjJFBUV6bXXXtM999yjqKgojR8/Xrt373Z0WYDhvPnmm7rrrrsUFRWlUaNGKSkpydElAYa0e/du9e3bV5988olNj8seICdTWFiouLg4DRw4UJdccom2bNmit99+W3FxcWrWrJmjywMMIzU1VW3atJG7u7v27t2rp59+Wl988YVatGjh6NIAwygtLdWECRNkNpt10003adSoUTY7NitATsbLy0ujR49WYGCgXF1d1b9/fzVp0kRpaWmOLg0wlA4dOlieAu/i4qLi4mJlZGQ4uCrAWL766iuFhoba5WnRPAm6jgoKCvTFF18oOTlZe/fuVW5urqZPn66BAwdWGFtUVKTFixdrw4YNys3NVVBQkMaMGaMbbrihyuOnpaUpNzdXbdu2tefPABo0e52Hb731ltauXauioiL95S9/UadOnerj5wANjj3OwZycHC1fvlwLFizQu+++a/OaWQGqo5ycHMXGxio1NVWdO3euduzs2bO1bNky3XrrrXriiSfk6uqqqVOn6rfffqt0vMlk0syZM/XAAw/Ix8fHHuUDjYK9zsOnn35a69ev19y5c3XDDTfIxcXFXj8BaNDscQ5+9NFHGjZsmHx9fe1TtBl1YjKZzBkZGWaz2Wzeu3ev+eabbzavXbu2wrg9e/aYb775ZvPSpUstbefPnzePGDHCPH78+Arji4uLzVOnTjW/9NJL5tLSUvv9AKARsNd5+N+io6PN27Zts23hQCNh63Nw37595kcffdR84cIFs9lsNs+aNcscGxtr05pZAaojd3f3Gj3JMiEhQW5ubho8eLClzcPDQ4MGDdKePXt06tQpS3tpaalmzpwpFxcXxcTE8F+dwEXY4zz8XyUlJTp+/LhN6gUaG1ufg7t27VJaWpqGDh2qu+66S5s3b9bSpUs1e/Zsm9XMHqB6cuDAAbVr107e3t7l2kNDQyVJBw8eVGBgoCRpzpw5yszM1Jw5c9SkCf8TAbZS0/MwLy9PP/zwg3r16iV3d3d999132rlzp8aNG+eIsoFGo6bn4ODBg9W/f39L/zvvvKM2bdrogQcesFkt/Nu1nmRmZlaajsvayu4uSU9P19dffy13d/dyCfmNN95QeHh4/RQLNFI1PQ9dXFz09ddfa+7cuTKbzWrbtq2ef/55denSpV7rBRqbmp6Dnp6e8vT0tPR7eHjIy8vLpvuBCED1xGQyqWnTphXay26zNZlMkqRLL71UiYmJ9VobYBQ1PQ+9vb01b968eq0NMIKanoP/KyYmxua1sAeonnh4eKi4uLhCe1FRkaUfgH1xHgKO5UznIAGonvj7+yszM7NCe1lbQEBAfZcEGA7nIeBYznQOEoDqSefOnXXs2DHl5+eXa09OTrb0A7AvzkPAsZzpHCQA1ZOIiAiVlJRozZo1lraioiKtXbtWYWFhljvAANgP5yHgWM50DrIJ2gZWrlypvLw8yxJeUlKSTp8+LUkaOnSofHx8FBYWpn79+mnhwoXKzs5W27ZtFR8fr/T0dEVHRzuyfKBR4DwEHKuhnYO8Dd4Ghg8frvT09Er74uLi1KZNG0l/7m4ve/9JXl6eOnXqpDFjxqhHjx71WS7QKHEeAo7V0M5BAhAAADAc9gABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABaPT69OlT7i+TyWTpW7dunfr06aN169Y5sML/+PLLL8vV+uqrrzq6JKBR4m3wAGzm5MmTuvfee6sdc+mll2rZsmX1VFH5742KipIkubm52fW7fvrpJz3zzDO64YYb9Pe//73asS+//LI2bdqk559/XrfeequCg4M1evRo5eXlacWKFXatEzAyAhAAm2vbtq1uvfXWSvt8fHzquZo/XXrppXrkkUfq5bu6d++uwMBA/fLLLzp16pQCAwMrHZeXl6fvvvtOPj4+6tOnjyQpJCREISEhOnnyJAEIsCMCEACba9u2bb2FDWfk6uqqgQMHKjY2VvHx8Ro1alSl4zZt2iSTyaTbb79dHh4e9VwlYGzsAQLgUH369NETTzyhM2fO6OWXX9add96pAQMGaOrUqTpx4oQk6ciRI4qJidGgQYM0YMAAPf/88zp79qxd6zp9+rRGjRqlW265RVu3brW0Z2Vl6d1339V9992n/v37684779Rzzz2nw4cPl5t/++23y8XFRevWrZPZbK70O9auXStJGjRokN1+B4DKEYAAOFxubq4mTpyokydPasCAAerWrZu2b9+up59+WocPH9aECRNUWFio22+/XSEhIUpISNBLL71kt3qOHDmiCRMm6PTp03rzzTcVEREhSTp+/LjGjBmj5cuX67LLLtOQIUP0l7/8RT/99JMef/xxJScnW45x6aWX6vrrr9eJEye0c+fOCt9x+PBhpaSkqEuXLrryyivt9lsAVI5LYABs7vjx4/r4448r7bvqqqvUs2fPcm2HDh3S8OHDNWnSJEvbW2+9pdWrV2vSpEl6+OGHNWzYMEmS2WxWdHS0tm/frn379ik4ONimte/Zs0fR0dFq0qSJ3n33XXXu3NnSN2vWLJ09e1Zz5sxRjx49LO0PPfSQxo4dqzfeeEOxsbGW9kGDBunnn3/W2rVrdd1115X7HlZ/AMdiBQiAzR0/flyxsbGV/vXjjz9WGO/l5aUxY8aUa+vfv78kqUWLFrrnnnss7S4uLpa+Q4cO2bTuH374QU899ZR8fX31/vvvlws/+/fv1+7duzVgwIBy4UeS2rdvrzvuuEOHDx8udyns5ptvVosWLZSQkKD8/HxL+4ULF7Rhwwa5u7tXuVkcgH2xAgTA5nr06KE5c+bUeHy7du3k6elZrs3f31+S1KlTJ7m4uFTal5GRUcdK/2PLli3asWOHgoKC9Oabb6ply5bl+ssub2VlZVW6unX06FHL3zt16iRJloCzYsUKbdq0SX/9618lSUlJScrOztYtt9wiX19fm/0GADVHAALgcN7e3hXayp7VU13fhQsXbFbDnj17VFJSoq5du1YIP5J07tw5SX+uEv3www9VHqewsLDc50GDBmnFihVau3atJQBx+QtwPAIQAEgaN26cvv/+e61YsUJubm6aOHFiuf6yIDZlyhQNHTq0xscNCgpSSEiI9u7dqz/++EO+vr766aef1KZNmwr7ggDUH/YAAYD+vFw1a9Ys3XjjjYqLi9P8+fPL9YeGhkr6c6WotspWer755hutX79eJSUlltvkATgGAQgA/j93d3fNnDlTN910k5YtW6Z3333X0hcWFqawsDB9++23+vbbbyvMLS0t1a5duyo97i233CJPT09t2LBBa9eulaurq+W1HAAcg0tgAGyuutvgJemBBx5w2icfN23aVK+88opmzJih5cuXy2w264knnpAkzZgxQ08++aReeuklrVixQl26dJGHh4dOnz6t3bt3KycnR5s2bapwTG9vb/Xt21fr169Xdna2evbsWeXrMQDUDwIQAJsruw2+KsOGDXPaACT9JwS98MILWrFihcxms6ZMmaLLLrtMixcvVlxcnL777jutW7dOrq6u8vf3V3h4uOWBiZUZNGiQ1q9fL+nPp0QDcCwXc1XPaAeARqJPnz669tpr9c477zi6lBo7efKk7r33XkVFRSkmJsbR5QCNDitAAAxh165dljeub9y40WlXoL788kv9/e9/d3QZQKNHAALQ6I0ePbrc57LnCDmj4ODgcvV26dLFccUAjRiXwAAAgOFwGzwAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADCc/weRG/bT0ARYxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax, plot = expectation.project('Em').plot()\n", + "\n", + "ax.set_ylabel('Expected counts')" + ] + }, + { + "cell_type": "markdown", + "id": "c8f64def-a29b-4277-aa6c-9d9561117acb", + "metadata": {}, + "source": [ + "Try changing the spectrum and se how the expected excess changes." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "766ea3af-1282-4c0d-a22f-2192a7dcb938", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Expected counts')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHOCAYAAACIKE30AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGUUlEQVR4nO3deVyVdd7/8Te7CK6gSGgmSgg1Lo1L7vuuTKbYZumUOrmklaVp25SaLTaN1WRjOTJO44haLjXuKyPqbZZkiihqkqmgoGyCrOf3hz/OzAm4hMOBc8DX8/HwMZ3vdj5XM9ft+76u77kuJ5PJZBIAAABK5GzvAgAAABwZYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMCAq70LqEmysrK0atUqxcbG6sSJE8rIyNCcOXM0ZMgQq9abPn26YmJiSuxzcXHR7t27K1AtAAAoC8KSDaWlpSkiIkJ+fn5q1aqVjhw5UqH1Hn/8cQ0fPtyiLTs7W++//746duxYobUBAEDZEJZsyMfHR+vWrZOPj4/i4uI0adKkCq1XUiDatm2bJGnAgAEVWhsAAJQNYcmG3N3d5ePjU6axBw8e1BdffKFTp07JyclJbdu21eTJk9WiRQvDedu3b5enp6e6d+9ui5IBAMAtsMHbDrZu3arZs2fL09NTf/jDHzRu3DidO3dOU6dO1aVLl0qdl5qaqsOHD6t79+7y9PSswooBALh9EZaqWFZWlhYvXqzhw4frvffe06hRo/Too4/q008/lSR98cUXpc7duXOnCgoKuAUHAEAV4jZcFTt8+LAyMzPVr18/paammtudnZ0VEhKi77//vtS5O3bsUP369dWhQ4cqqBQAAEiEpSr3yy+/SJKeffbZEvu9vLxKbL948aKOHz+uBx98UK6u/NcGAEBV4W/dKlZYWChJeuWVV9SwYcNi/S4uLiXO2759uyR+BQcAQFUjLFWxgIAASSr37bQdO3YoICBA99xzT2WVBgAASsAG7yrWqVMneXl56YsvvlB+fn6x/v/dx1Tk1KlTSkhIUP/+/augQgAA8L+4smRjX375pTIzM5WSkiJJio6O1uXLlyVJo0aNkre3t55//nktWLBATz31lPr166f69esrKSlJBw8e1L333qvnnnvOYk1uwQEAYD9OJpPJZO8iapIxY8YoMTGxxL7IyEj5+/tLko4cOaJ//vOfio2NVW5urho1aqQ2bdrowQcfVHBwsHlOYWGhwsPD1aBBA33++edVcgwAAOC/CEsAAAAG2LMEAABggLAEAABggLBUQTdu3NDJkyd148YNe5cCAAAqAWGpghISEjRx4kQlJCTYuxQAAFAJHPLRAVlZWVq1apViY2N14sQJZWRkaM6cORoyZMgt506fPl0xMTEl9rm4uGj37t3mz6X9ci0sLEwvvPCC1fUDAICawyHDUlpamiIiIuTn56dWrVrpyJEjZZ77+OOPa/jw4RZt2dnZev/999WxY8di44OCgvTQQw9ZtDVt2tS6wgEAQI3jkGHJx8dH69atk4+Pj+Li4jRp0qQyzy0pEG3btk1SyQ919PX11cCBA60vFgAA1GgOuWfJ3d1dPj4+Nltv+/bt8vT0VPfu3Uvsz8vLU3Z2ts2+DwAA1BwOeWXJllJTU3X48GH17dtXnp6exfq///57DRw4UAUFBWrSpInCw8MVHh5e6nrJycnmV5lIYmM3AAA1XI0PSzt37lRBQUGJt+ACAwPVpk0bNWvWTOnp6dq8ebM++ugjJScna/LkySWut3HjRkVERFRy1QAAwFHU+LC0Y8cO1a9fXx06dCjW9/bbb1t8Hjp0qF588UWtXr1ao0aNUuPGjYvNCQsLU7du3cyfExISNH/+fNsXDgAAHIJD7lmylYsXL+r48ePq27evXF1vnQudnJw0ZswYFRQUlPr4AV9fXwUHB5v/NG/e3MZVAwAAR1Kjw9L27dsllfwruNIUXU1KT0+vlJoAAED1UqPD0o4dOxQQEKB77rmnzHMuXrwoSapfv34lVQUAAKqTah2WkpOTlZCQoPz8/GJ9p06dUkJCgvr371/i3PT0dBUUFFi05efn65///Kfc3NzUvn37SqkZAABULw67wfvLL79UZmam+Wf60dHRunz5siRp1KhR8vb21tKlS7VlyxZFRkbK39/fYv6tbsFFR0drxYoV6tWrl/z9/ZWRkaHt27frp59+0qRJk2z6nCcAAFB9OWxYioyMtHhvW1RUlKKioiRJAwcOlLe3d6lzCwsLtWvXLt1999268847SxwTGBio5s2ba/v27UpNTZWrq6uCgoL0xhtvqE+fPrY9GAAAUG05mUwmk72LqM5OnjypiRMn6rPPPlNwcLC9ywEAADZWrfcsAQAAVDaHvQ0HVJWzBy/pu7XxyrtR/IcCjsytlqs6hAepRWf/Ww8GAFiNsITb3ndr45V28bq9y7BCjg6viScsAUAlIyzhtld0RcnJSfJs4GHnasom+1qOTCZVu6thAFAdEZaA/8+zgYce/bivvcsok5XTdinrao69ywCA2wIbvAEAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAy42rsAANbLvpajldN22buMMnOr5aoO4UFq0dnf3qUAQJkRloBqyK2Wq6QcmUxS1tUce5dTDjk6vCaesASgWiEsAdVQh/AgHV4Tr7wb+fYupcyyr90Md9WpZgCQCEtAtdSis3+1uzqzctquanYVDABuYoM3AACAAYe8spSVlaVVq1YpNjZWJ06cUEZGhubMmaMhQ4bccu7mzZu1cOHCEvvWrVsnHx8fi7Z9+/Zp+fLlSkhIUP369TV06FA98cQTcnV1yH81AACgijlkIkhLS1NERIT8/PzUqlUrHTlypNxrPPXUU/L3t7xN4e3tbfH54MGDevnll9WuXTvNmDFDZ8+e1YoVK3Tt2jXNnDmzQscAAABqBocMSz4+PuarQHFxcZo0aVK51+jcubNat25tOOaTTz5Ry5Yt9f7775uvJNWuXVtffPGFRo8erebNm1tVPwAAqDkccs+Su7t7sdtl1sjKylJBQUGJfefOndO5c+c0YsQIi1tuI0eOlMlk0p49eyr8/QAAoPpzyCtLtjBjxgxlZ2fLzc1NHTt21NSpU9WsWTNz/6lTpyRJwcHBFvN8fX3VqFEjxcfHV2m9AADAMdW4sOTh4aEhQ4aoffv28vLy0smTJ7V69WpNmTJFn3/+ufz8/CRJKSkpklTiFSwfHx9z/68lJydb9CUkJFTCUQAAAEdR48JS37591bdvX/PnHj16qFOnTnrmmWf0j3/8Qy+88IIkKTc3V9LNW36/5u7urqysrBLX37hxoyIiImxfOAAAcEg1LiyVpE2bNgoNDdV3331nbisKSUWh6X/l5ubKw8OjxLXCwsLUrVs38+eEhATNnz/fxhUDAABHcVuEJUlq3Lixfv75Z/PnottvKSkp5ltzRVJSUhQSElLiOr6+vvL19a28QgEAgENxyF/DVYaLFy+qfv365s9BQUGSpJMnT1qMS05O1pUrV8z9AADg9latw1JycrISEhKUn//fF3OmpqYWG3fgwAGdPHlSnTp1Mre1aNFCd955p77++muLxwusX79eTk5O6tWrV6XWDgAAqgeHvQ335ZdfKjMz0/zLs+joaF2+fFmSNGrUKHl7e2vp0qXasmWLIiMjzU/rnjx5su6++24FBwfLy8tLp06d0qZNm9S4cWM9/vjjFt8xZcoUzZkzRzNnzlS/fv109uxZrVu3TsOHD9ddd91VpccLAAAck8OGpcjISCUmJpo/R0VFKSoqSpI0cODAYq8uKdK3b18dPHhQ3377rW7cuCEfHx+NGDFC48ePV8OGDS3Gdu3aVfPnz1dERIQWL16sevXqaezYsRo/fnylHRcAAKheHDYsrV69+pZj5s6dq7lz51q0TZw4URMnTizz9/To0UM9evQod30AAOD2UK33LAEAAFQ2whIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABV3sXgJrl7MFL+m5tvPJu5Nu7lDLLvpZj7xIAAA6MsASb+m5tvNIuXrd3GVZxq8XpAAAojr8dYFNFV5ScnCTPBh52rqbs3Gq5qkN4kL3LAAA4IMISKoVnAw89+nFfe5cBAECFOVxYysrK0qpVqxQbG6sTJ04oIyNDc+bM0ZAhQ24597vvvtP27dt19OhRXblyRQ0bNtR9992np556Sr6+vhZjp0+frpiYmGJrdOrUSYsWLbLV4QD4lexrOVo5bZe9yyizoquOLTr727sUAHbicGEpLS1NERER8vPzU6tWrXTkyJEyz/3000+Vnp6u3r17q1mzZrp48aK++uorHThwQMuWLZOPj4/F+EaNGukPf/iDRduvxwCwjZt7wnJkMklZV6vTpvocHV4TT1gCbmMOF5Z8fHy0bt06+fj4KC4uTpMmTSrz3KlTp6pNmzZydv7vExE6deqk6dOn66uvvtLEiRMtxnt7e2vgwIE2qx1A6TqEB+nwmur3S0mTSdWqZgC253Bhyd3d3eqrO+3atSuxrW7dukpISChxTn5+vnJzc1W7dm2rvhNA2bTo7F/trs6snLarml0FA1AZHC4s2VpWVpays7NVr169Yn3nz5/XoEGDlJeXp4YNG2r48OEaP368XF1L/9eSnJyslJQU8+fSQhgAAKgZbBqWTCaTfvnlF7m7u8vPz8+WS1ttzZo1ysvLU9++lr/MuuOOO9S+fXsFBgbqxo0b2rNnj1asWKHz58/rjTfeKHW9jRs3KiIiopKrBgAAjsKqsLR3717t27dP06dPV506dSRJly5d0ksvvWS+0tK7d2+9+uqrcnFxsV215RQTE6OIiAj16dNHv/3tby36XnrpJYvPgwYN0nvvvaevv/5aY8aM0T333FPimmFhYerWrZv5c0JCgubPn2/74gEAgEOw6t1wGzZsUHx8vDkoSdLHH3+sc+fOqX379mrZsqX27NmjTZs22azQ8kpISNArr7yiwMBAzZ49u0xzHnroIUnS4cOHSx3j6+ur4OBg85/mzZvbpF4AAOCYrApL586dU0hIiPlzVlaWDhw4oL59++qDDz7QX//6VzVv3txuYSkpKUkzZ86Ul5eX3nnnnTJv3m7cuLEkKSMjozLLAwAA1YhVYSk9PV0NGzY0fz569KgKCgrUr18/SZKrq6s6dOigCxcu2KbKckhLS9PMmTOVl5enRYsWFXsYpZGLFy9KkurXr19J1QEAgOrGqrDk5eWl9PR08+cjR47I2dlZbdu2Nbe5urrqxo0bFa+wFMnJyUpISFB+/n+ff5Kdna1Zs2YpOTlZ7777rpo1a1bi3OvXrys3N9eizWQyacWKFZKkjh07VlrdAACgerFqg/edd96p/fv3a8KECXJ2dtaOHTt09913W+xhSkxMVIMGDawq6ssvv1RmZqb5J/rR0dG6fPmyJGnUqFHy9vbW0qVLtWXLFkVGRsrf/+azW+bNm6cTJ05o6NChSkhIsPhZv6enp3r06CFJOnXqlN544w31799fAQEBysnJ0X/+8x/9+OOPGjFihIKDg62qGwAA1DxWhaVRo0bp9ddf16hRo8xXkCZMmGAxJjY2VnfffbdVRUVGRioxMdH8OSoqSlFRUZKkgQMHytvbu8R5p0+fliRt2rSp2H6pJk2amMOSn5+f2rZtq6ioKF29elXOzs5q3ry5Zs6cqbCwMKtqBgAANZNVYal379567rnn9O9//1uS1LdvX4sX3cbExOj69evq1KmTVUWtXr36lmPmzp2ruXPnlnuedPMZS0bPUgIAAChi9UMpH3jgAT3wwAMl9rVr186ujw0AAACwFas2eEdERCgmJsZwzNGjR3nSNQAAqPasCkvLly+/ZVgqeno2AABAdWZVWCqL/Px8OTtX2vIAAABVwuo04+TkVGpfXl6efvjhB6sfHQAAAOAoyrzBu+i9aUVWr15d4ibuwsJCpaWlKTc3V8OHD694hQAAAHZU5rBkMpnM/+zk5CSTyWTRZl7Q1VV33XWX7rvvPo0bN842VQIAANhJmcPS/z7DqFevXhozZozGjx9fGTUBAAA4DKuesxQZGVnqU7QBAABqEqvCUpMmTWxdBwAAgEOy+gneqamp2rRpk+Li4pSZmamCgoJiY5ycnPTnP/+5IvUBAADYlVVh6cyZM3r22WeVkZFR4ibvIkaPFwAAAKgOrApLf/nLX5Senq4nnnhCw4YNU6NGjeTi4mLr2gAAAOzOqrB0/Phxde/eXU899ZSt6wEAAHAoVj3B29XVVQEBAbauBQAAwOFYFZbatWunkydP2roWAAAAh2NVWJoyZYrOnj2rf/3rX7auBwAAwKFYtWfpH//4hwIDA/XXv/5VGzduVKtWreTl5VXi2JdeeqlCBQIAANiTVWFp8+bN5n++ePGiLl68WOI4JycnwhIAAKjWrH7dCQAAwO2A150AAAAYsGqDNwAAwO3CqitLW7ZsKfPYwYMHW/MVAAAADsGqsLRw4cJbvvfNZDLJycmJsAQAAKo1q8JSab9wu379uk6dOqUdO3aoW7du6tq1a4WKAwAAsDerwtKQIUMM+8PCwvTss8/qgQcesGZ5AAAAh1EpG7zvvfdedevWTcuWLauM5QEAAKpMpf0arkmTJjpz5kxlLQ8AAFAlKiUsmUwm/fDDD3J3d6+M5QEAAKqMVXuWYmJiSmwvKChQcnKytm7dqri4OA0aNKgitQEAANidVWFpxowZho8OMJlM+s1vfqNp06ZZXRgAOIrsazlaOW2XvcsoM7daruoQHqQWnf3tXQpQI1gVlsaNG1diWHJ2dpa3t7dCQkIUGhpa4eIAwJ7carlKypHJJGVdzbF3OeWQo8Nr4glLgI1YFZaefPJJW9cBAA6nQ3iQDq+JV96NfHuXUmbZ126Gu+pUM+DorApLAHA7aNHZv9pdnVk5bVc1uwoGOL4KhaVLly5p+/btOn36tK5fvy4vLy+1atVKAwYMkL9/9fo/MAAAACWxOiytWbNGn376qQoKCmQymczte/fu1d///nc9/fTTCg8Pt2rtrKwsrVq1SrGxsTpx4oQyMjI0Z86cWz45vEhGRoY+/fRTRUVFKScnRyEhIZoyZYqCg4OLjd23b5+WL1+uhIQE1a9fX0OHDtUTTzwhV1cuugEAACvD0v79+/Xxxx+rXr16GjNmjNq3by8fHx9dvXpV33//vVavXq2//OUvatq0qbp06VLu9dPS0hQRESE/Pz+1atVKR44cKfPcwsJCzZ49W2fOnNHDDz+sevXqaf369ZoxY4Y+++wzNWvWzDz24MGDevnll9WuXTvNmDFDZ8+e1YoVK3Tt2jXNnDmz3HUDAICax6qwFBkZqbp16+rzzz9X48aNze1NmjRRaGioBgwYoAkTJigyMtKqsOTj46N169bJx8dHcXFxmjRpUpnn7tmzR8eOHdObb76p3r17S5L69u2rRx99VMuXL9drr71mHvvJJ5+oZcuWev/9981XkmrXrq0vvvhCo0ePVvPmzctdOwAAqFmseoJ3fHy8+vTpYxGU/pefn5/69OmjU6dOWVWUu7u7fHx8rJq7d+9eNWzYUD179jS31a9fX3369NG+ffuUm5srSTp37pzOnTunESNGWNxyGzlypEwmk/bs2WPV9wMAgJrFqrCUl5cnT09PwzGenp7Ky8uzqqiKOHXqlIKCguTsbHloISEhunHjhs6fP28eJ6nYPiZfX181atRI8fHxVVMwAABwaFaFpWbNmik6Olr5+SU/xyM/P1/79++32B9UVa5evVriVamitpSUFIv/LG1sUf+vJScn6+TJk+Y/CQkJtiodAAA4IKv2LA0aNEiffPKJXnjhBU2ePNni6kxcXJyWLl2q8+fPa8qUKTYrtKxycnJKfIFvUVtOzs3njxTdjittbFZWVonrb9y4URERETaqFgAAODqrwtLo0aP1ww8/KDo6Wn/4wx/k4eGhBg0a6Nq1a8rJyZHJZFL37t01evRoW9d7Sx4eHuYg9L+K2jw8PCT9NySVNrZo3K+FhYWpW7du5s8JCQmaP39+hesGAACOyaqw5OLiorfeektbtmzRli1bdPr0aSUlJcnLy0uhoaEaPHiwBg0aZOtay6Rhw4Yl3kL79W23/70t5+fnV2xsSEhIiev7+vrK19fXliUDAAAHVqEnLw4ePFiDBw+2VS02ERQUpKNHj6qwsNBik/eJEydUq1Yt8z6qoKAgSdLJkyctXvqbnJysK1euKCwsrGoLBwAADsmqDd6OIjk5WQkJCRYbzXv16qWrV68qKirK3Jaamqrdu3era9eu5ttvLVq00J133qmvv/5aBQUF5rHr16+Xk5OTevXqVXUHAgAAHJbVT/D+97//reeee67EW1LJycn64IMPNGLECN1///1WFfbll18qMzPTfPssOjpaly9fliSNGjVK3t7eWrp0qbZs2aLIyEjzu+h69+6ttWvXauHChTp37pz5Cd6FhYV68sknLb5jypQpmjNnjmbOnKl+/frp7NmzWrdunYYPH6677rrLqroBAEDNYlVYWrdunZKTk0vdu+Pr66vExEStW7fO6rAUGRmpxMRE8+eoqCjz1aKBAwfK29u7xHkuLi5699139cknn+jLL79UTk6OWrdurTlz5ujOO++0GNu1a1fNnz9fERERWrx4serVq6exY8dq/PjxVtUMAABqHqvC0unTp9W1a1fDMSEhITpw4IBVRUnS6tWrbzlm7ty5mjt3brH2OnXqaPbs2Zo9e/Yt1+jRo4d69OhhVY0AAKDms2rPUkZGhurXr284pl69ekpLS7NmeQAAAIdhVViqV6+e+bUhpTl//rzq1KljVVEAAACOwqqw1LZtW+3fv19nzpwpsf/06dOKjo5Wu3btKlIbAACA3Vm1Z+mxxx5TVFSUpk6dqocfflgdOnRQo0aNdOXKFX377beKjIyUk5OTxo4da+t6AQAAqpRVYally5Z65ZVXtHDhQkVERFi8K81kMsnT01Ovv/66WrZsaas6AQAA7MLqJ3j37t1bbdu21ebNmxUXF6fMzEzVqVNHrVu31pAhQ265ARwAAKA6qNDrTho0aKBHH33UVrUAAAA4nGr9uhMAAIDKRlgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwUKbnLCUlJVn9BX5+flbPBQAAsLcyhaUxY8bIycmp3Is7OTlp9+7d5Z4HAADgKMoUlgYNGlQsLF28eFFHjx6Vt7e3WrVqpYYNG+rq1as6ffq0MjMz1aZNG91xxx2VUjQAAEBVKVNYmjt3rsXnn376SVOnTtXYsWM1duxYeXp6mvuys7P1j3/8Q+vXr9fMmTNtWy0AAEAVs+rdcEuWLFHr1q01ceLEYn2enp6aNGmS4uLi9Omnn+rtt9+ucJEAgPLJvpajldN22buMMnOr5aoO4UFq0dnf3qUAxVgVlo4dO6aRI0cajgkJCdG6deusKgoAYB23Wq6ScmQySVlXc+xdTjnk6PCaeMISHJJVYamwsFAXLlwwHPPLL7/IZDJZVRQAwDodwoN0eE288m7k27uUMsu+djPcVaeacXuxKiy1bdtWe/fu1c6dO9WvX79i/Tt27FBUVJQ6d+5c4QIBAGXXorN/tbs6s3Larmp2FQy3G6vC0uTJk3X06FHNmzdPK1eu1G9+8xs1aNBA165d048//qgzZ86odu3aevrpp21dLwAAQJWyKizddddd+stf/qI///nP+uGHH3T69GmL/rZt2+q5557TXXfdZYsaAQAA7MaqsCRJgYGB+vDDD5WUlKQzZ84oMzNT3t7eatmyJU/tBgAANYbVYamIn58f4QgAANRYFQpLeXl5Onz4sH7++WfduHFD48aNkyTl5OQoKytL9erVk7Mz7+oFAADVl9Vhad++fVq0aJFSU1NlMpnk5ORkDktnzpzRlClT9PLLL2vAgAE2KxYAAKCqWXXZ58cff9Rrr70mNzc3PfPMM+rfv79Ff2hoqAICArR3716bFAkAAGAvVl1Z+vvf/y5vb2999tlnql+/vtLT04uNCQ4O1okTJypcIAAAgD1ZdWUpNjZW3bt3V/369Usd07hxY129etXaugAAAByCVWEpLy9PtWvXNhyTmZkpJycnq4oCAABwFFaFpTvuuENxcXGGY44fP64777zTqqIAAAAchVVhqVevXjp27Jg2bdpUYv+//vUv/fTTT+rbt2+FigMAALA3qzZ4P/zww9q7d6/effdd7dixQ7m5uZKkJUuW6Pjx4zp27JhatWqlBx980KbFAgAAVDWrwlLt2rX18ccf64MPPtDu3btVWFgoSVq1apWcnJzUp08fPf/883J3d7dpsQAAAFXN6odS1qlTR6+99ppmzJihuLg4paeny8vLS61bt1bDhg0rVFRubq6WLVumbdu2KSMjQy1bttSECRPUsWNHw3ljxoxRYmJiiX0BAQH617/+Zf7cs2fPEsdNmjRJY8eOtb54AABQo1T43XD16tVT586dbVGL2cKFC7Vnzx6Fh4eradOm2rx5s2bNmqXFixerTZs2pc575plnlJ2dbdGWmJiozz//vMSg1aFDBw0ePNiiLSgoyDYHAQAAagSrwlLv3r31+9//3vx6k5KsWLFCy5cv1+7du8u1dmxsrHbu3KnJkyfrkUcekSQNGjRI48eP15IlS7RkyZJS5/bo0aNY29///ndJKvG1K82aNdPAgQPLVR8AALi9WPVrOJPJJJPJVKZx5bV37165uLgoLCzM3Obh4aFhw4bp+PHjSkpKKtd6O3bskL+/v37zm9+U2J+Tk6OcnJxy1wkAAG4PFb4NV5rU1FR5eHiUe158fLyaNm0qLy8vi/aQkBBJ0unTp+Xn51emtU6dOqWEhAQ9/vjjJfZv2bJF69evl8lkUvPmzfXEE0/c8sW/ycnJSklJMX9OSEgoUy0AAKB6KnNY2rJli8Xn+Pj4Ym2SVFhYqMuXL2vr1q1q0aJFuQtKSUmRj49PsfaituTk5DKvtX37dkkl34K799571adPH/n7+yslJUVfffWV5s2bp+vXr+uBBx4odc2NGzcqIiKizDUAAIDqrcxhaeHChebXlzg5OSk6OlrR0dHFxhXdevPw8NDvf//7cheUk5MjNze3Yu1FjyEo6y2zwsJC7dq1S0FBQbrrrruK9X/yyScWn4cOHaoJEyZo6dKlGjJkSKlXxcLCwtStWzfz54SEBM2fP79MNQEAgOqnzGHppZdeMv/z22+/re7du6t79+7Fxrm4uKhOnTq69957VadOnXIX5OHhoby8vGLtRQ++LOutvZiYGF25ckXh4eFlGu/m5qYHH3xQ77//vk6ePFnqr+58fX3l6+tbpjUBAED1V+awNGTIEPM/x8TEqEePHiWGpYry8fHRlStXirUX7RMqa1DZvn27nJ2d1b9//zJ/d+PGjSVJ6enpZZ4DAABqNqs2eM+ZM8fWdZi1atVKR44c0fXr1y02ecfGxpr7byU3N1d79+5Vu3btynUV6OLFi5Kk+vXrl69oAABQY1n16ID9+/fr5ZdfLnWzdXJysl5++WUdPHiw3Gv37t1bBQUF2rhxo7ktNzdXmzZtUmhoqPmXcElJSaX+Eu3gwYPKzMws9ZdtqampxdqysrK0du1a1atXT8HBweWuGwAA1ExWXVlat26dkpOTS71q4+vrq8TERK1bt073339/udYODQ1Vnz59tHTpUqWmpiogIEBbtmxRYmKiZs+ebR63YMECxcTEKCoqqtga27dvl7u7u3r16lXid3z11Vfat2+funbtKj8/P6WkpGjTpk1KSkrSyy+/XOIGcwAAcHuyKiydPn1aXbt2NRwTEhKiAwcOWFXU3Llz5efnp61btyozM1OBgYF655131K5du1vOvX79ug4cOKD7779f3t7eJY75zW9+o2PHjumbb75Renq6atWqpZCQEM2ePVu//e1vraoZAADUTFaFpYyMjFvu66lXr57S0tKsWV4eHh6aMmWKpkyZUuqYDz/8sMR2Ly8v7dixw3D9jh073vKlvAAAAJKVe5bq1aun8+fPG445f/68VY8OAAAAcCRWhaW2bdtq//79OnPmTIn9p0+fVnR0dJlumwEAADgyq27DPfbYY4qKitLUqVP18MMPq0OHDmrUqJGuXLmib7/9VpGRkXJyctLYsWNtXS8AAECVsiostWzZUq+88ooWLlyoiIgIi3elmUwmeXp66vXXX1fLli1tVScAAIBdWBWWpJvPQ2rbtq02b96suLg4ZWZmqk6dOmrdurWGDBnCgx0BAECNYHVYkqQGDRro0UcftVUtAAAADseqDd6/lp6erqSkJFssBQAA4FCsvrKUmZmpZcuWadeuXUpLS5OTk5N2794t6eZ73JYvX64JEybw6hAAAFCtWXVlKT09XU8//bS++uorNW7cWM2bN5fJZDL3t2zZUseOHdP27dttVigAAIA9WBWWli9frvPnz+v111/XZ599pt69e1v0e3h4qG3btvr+++9tUSMAAIDdWBWWoqOj1aVLF/Xt27fUMf7+/rpy5YrVhQEAADgCq8JSSkqK7rrrLsMxbm5uys7OtmZ5AAAAh2FVWKpbt64uX75sOObnn3+Wj4+PVUUBAAA4Cqt+Dde2bVtFR0fr8uXLaty4cbH+c+fO6f/+7/80dOjQChcIALg9ZF/L0cppu+xdRrm41XJVh/Agtejsb+9SUImsCkuPP/649u3bp6lTp2rixIlKS0uTdDMkHTt2TJ9//rnc3d318MMP27RYAEDN41bLVVKOTCYp62qOvcsppxwdXhNPWKrhrH433B//+EctWLBAb731lqSb74QbP368TCaTateurT/+8Y9q1qyZTYsFANQ8HcKDdHhNvPJu5Nu7lHLJvnYz4FW3ulF+Vj+Usnv37oqMjNSWLVsUGxur9PR0eXl5KTQ0lHfDAQDKrEVn/2p5ZWbltF3V8EoYrFGhd8PVrVtXY8aMsVUtAAAADscm74bLz89XRkaG8vO5FAkAAGoWq68sFRQU6Msvv9TmzZt17tw5mUwmOTk56a677tKQIUP04IMPytW1QheuAAAA7M6qNJOVlaUXXnhBsbGxcnJyUuPGjdWwYUNdvXpV586d0yeffKK9e/dq0aJF8vT0tHXNAAAAVcaqsPS3v/1Nx48fV//+/TVp0iT5+fmZ+5KSkvTXv/5VO3fu1LJlyzRt2jSbFQsAAFDVrNqztHv3bgUHB+vVV1+1CEqS5Ofnp9dee03BwcHavXu3TYoEAACwF6vCUlpamjp06GA45re//a3S09OtKgoAAMBRWBWWmjZtqmvXrhmOSU1NVUBAgFVFAQAAOAqrwtLo0aO1a9cu/fTTTyX2nzlzRrt27VJ4eHiFigMAALA3qzZ4N23aVPfdd58mTpyowYMHq02bNmrQoIGuXbumH374QVu3blWnTp0UEBCgmJgYi7nt2rWzQdkAAABVw6qwNGPGDDk5OclkMunrr7/WN998Y+4zmUySpP3792v//v3F5u7Zs8e6SgEAAOzAqrA0btw4OTk52boWAAAAh2NVWHryySdtXQcAAIBDssm74UpTWFhYmcsDAABUOqvC0p/+9Cfl5uYajrl06RJP7wYAANWeVWFpw4YNmjRpUqmPDti5c6eeeuopnThxokLFAQAA2JtVYWnixIk6f/68Jk2apK+++srcnp2drbfeekvz5s2Th4eH3nvvPZsVCgAAYA9WbfAeO3as7rvvPs2bN08ffvihDh06pAcffFB//vOfdeHCBXXp0kUvvfSS6tevb+NyAQAAqpZVYUmSQkNDtWzZMn3wwQfatm2bDh48KHd3dz377LMaOXJkhYrKzc3VsmXLtG3bNmVkZKhly5aaMGGCOnbsaDjvb3/7myIiIoq1u7u7a8eOHcXav/nmG61atUqJiYlq1KiRRo8erVGjRlWodgAAULNYHZYkKSsrS5cvX5Z082GUzs7OqlWrVoWLWrhwofbs2aPw8HA1bdpUmzdv1qxZs7R48WK1adPmlvNnzpwpT09P82dn5+J3Gzds2KD3339fvXr10kMPPaSjR49q8eLFunHjhh577LEKHwMAAKgZrA5L+/bt0zvvvKP09HT97ne/U48ePfTuu+/qnXfe0aFDh/TCCy/Iy8ur3OvGxsZq586dmjx5sh555BFJ0qBBgzR+/HgtWbJES5YsueUavXr1MrwFmJOTo88//1xdunTRvHnzJEkjRoxQYWGhVqxYobCwMNWpU6fctQMAgJrH6kcHvPLKK5KkBQsW6Pnnn1fHjh21fPly9erVS7t27dLvf/97/fjjj+Vee+/evXJxcVFYWJi5zcPDQ8OGDdPx48eVlJRUpnWuX79ufvXKr33//fdKS0vTAw88YNE+cuRIZWdn68CBA+WuGwAA1ExWPzqgffv2Wr58ubp3725u9/b21htvvKEXX3xRaWlpmjFjRrnXjo+PV9OmTYtdlQoJCZEknT59+pZrPPTQQxoyZIgGDx6sefPm6erVq8W+Q5Jat25t0R4cHCxnZ2edOnWq3HUDAICayarbcJMmTdKjjz5a6vvhhg8frrZt2+rNN98s99opKSny8fEp1l7UlpycXOrcOnXq6MEHH9Q999wjNzc3HT16VOvWrdOJEyf02WefmQNYSkqKXFxc1KBBA4v5bm5uqlu3rlJSUkr9juTkZIv+hISEch0fAACoXqwKS2XZAN2sWbMy7S/6tZycHLm5uRVrd3d3N/eXJjw83OJz7969FRISonnz5mndunUaO3aseQ1X15IP3d3d3fA7Nm7cWOIv7gAAQM1UoV/DGcnLy1Nubm6poaQ0Hh4eysvLK9Ze9HoVDw+Pcq03YMAA/eUvf9F3331nDkseHh7Kz88vcXxubq7hd4SFhalbt27mzwkJCZo/f365agIAANVHmfcsPfTQQ1q7dq1F26FDh/Txxx+XOP6LL77QsGHDyl2Qj49PibfBitp8fX3LvWbjxo2Vnp5u8R0FBQW6du2axbi8vDylp6eXeBuwiK+vr4KDg81/mjdvXu56AABA9VHmsJSYmKjMzEyLtuPHjxcLUBXVqlUr/fLLL7p+/bpFe2xsrLm/PEwmkxITEy0eJRAUFCRJiouLsxgbFxenwsJCcz8AAECl3YazVu/evbVq1Spt3LjR/Jyl3Nxcbdq0SaGhofLz85MkJSUl6caNGxZXdlJTU4s9X2n9+vVKTU1V586dzW333Xef6tatqw0bNqhLly7m9g0bNqhWrVoWbQAAGMm+lqOV03bZu4wyc6vlqg7hQWrR2d/epVQbDheWQkND1adPHy1dulSpqakKCAjQli1blJiYqNmzZ5vHLViwQDExMYqKijK3hYeHq2/fvgoMDJS7u7t+/PFH7dy5U0FBQcWe2/TUU0/pgw8+0GuvvaZOnTrphx9+0LZt2zRx4kTVrVu3So8ZAFD9uNVylZQjk0nKulr6D4McT44Or4knLJWDw4UlSZo7d678/Py0detWZWZmKjAwUO+8847atWtnOG/AgAE6duyY9u7dq9zcXPn5+emRRx7RE088Uew1LCNHjpSrq6siIyMVHR2txo0ba9q0acV+UQcAQEk6hAfp8Jp45d0o+QdDjij72s1wV51qdgQOGZY8PDw0ZcoUTZkypdQxH374YbG2WbNmlet7RowYoREjRpS7PgAAWnT2r3ZXZ1ZO21XNroI5Bque4A0AAHC7KNeVpW3btun48ePmzxcuXJAkvfjii8XGFvUBAABUZ+UKSxcuXCgxBB06dKjE8aW9DgUAAKC6KHNYioyMrMw6AAAAHFKZw1KTJk0qsw4AAACHxAZvAAAAA4QlAAAAAw75nCXcdPbgJX23tvo98AwAgJqEsOTAvlsbr7SL12890AHdfA0AAADVH3+jObCiK0pOTpJnAw87V1N2RS9pBACgJiAsVQOeDTz06Md97V0GAAC3JTZ4AwAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGHC1dwElyc3N1bJly7Rt2zZlZGSoZcuWmjBhgjp27Gg4b+/evdq1a5fi4uJ09epVNW7cWF26dNG4ceNUp04di7FjxoxRYmJisTXCwsL0wgsv2PR4AABA9eWQYWnhwoXas2ePwsPD1bRpU23evFmzZs3S4sWL1aZNm1LnLVq0SD4+Pho4cKD8/Px05swZrVu3TgcPHtSyZcvk4eFhMT4oKEgPPfSQRVvTpk0r5ZgAAED15HBhKTY2Vjt37tTkyZP1yCOPSJIGDRqk8ePHa8mSJVqyZEmpc9988021b9/eoi04OFhvvfWWtm/fruHDh1v0+fr6auDAgbY/CAAAUGM43J6lvXv3ysXFRWFhYeY2Dw8PDRs2TMePH1dSUlKpc38dlCSpZ8+ekqRz586VOCcvL0/Z2dkVKxoAANRYDndlKT4+Xk2bNpWXl5dFe0hIiCTp9OnT8vPzK/N6KSkpkqT69esX6/v+++81cOBAFRQUqEmTJgoPD1d4eLj1xQMAgBrH4cJSSkqKfHx8irUXtSUnJ5drvZUrV8rFxUW9evWyaA8MDFSbNm3UrFkzpaena/Pmzfroo4+UnJysyZMnl7pecnKyOYBJUkJCQrnqAQAA1YvDhaWcnBy5ubkVa3d3dzf3l9X27dv173//W4888oiaNWtm0ff2229bfB46dKhefPFFrV69WqNGjVLjxo1LXHPjxo2KiIgocw0AAKB6c7iw5OHhoby8vGLtubm55v6y+OGHH/TOO++oU6dOmjhx4i3HOzk5acyYMTp06JBiYmJK3fgdFhambt26mT8nJCRo/vz5ZaoJAABUPw4Xlnx8fHTlypVi7UW3vnx9fW+5xunTpzVnzhwFBgbqzTfflKtr2Q6z6GpSenp6qWN8fX3LVAMAAKgZHC4stWrVSkeOHNH169ctNnnHxsaa+41cuHBBL7zwgho0aKB3331XtWvXLvN3X7x4UVLJm8EBAKgpsq/laOW0XfYuo8zcarmqQ3iQWnT2t8v3O1xY6t27t1atWqWNGzean7OUm5urTZs2KTQ01PxLuKSkJN24cUPNmzc3z01JSdHMmTPl7OysRYsWlRp60tPT5eXlJRcXF3Nbfn6+/vnPf8rNza3ERxAAAFDdudVylZQjk0nKulr2PcD2l6PDa+IJS0VCQ0PVp08fLV26VKmpqQoICNCWLVuUmJio2bNnm8ctWLBAMTExioqKMre9+OKLunjxoh555BH9+OOP+vHHH819DRo0ML8uJTo6WitWrFCvXr3k7++vjIwMbd++XT/99JMmTZpU4q/xAACo7jqEB+nwmnjl3ci3dyllln3tZrizZ80OF5Ykae7cufLz89PWrVuVmZmpwMBAvfPOO2rXrp3hvNOnT0uS/vWvfxXra9eunTksBQYGqnnz5tq+fbtSU1Pl6uqqoKAgvfHGG+rTp4/NjwcAAEfQorO/3a7OWGvltF12vwrmkGHJw8NDU6ZM0ZQpU0od8+GHHxZr+9+rTEaCg4OLPToAAACgJA73uhMAAABHQlgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAw4GrvAkqSm5urZcuWadu2bcrIyFDLli01YcIEdezY8ZZzr1y5oo8//ljffvutCgsL1b59ez3zzDO64447io395ptvtGrVKiUmJqpRo0YaPXq0Ro0aVRmHBAAAqimHvLK0cOFCrV69WgMGDND06dPl7OysWbNm6ejRo4bzsrKyNGPGDMXExGjs2LF68sknFR8fr2eeeUZpaWkWYzds2KB3331XLVq00IwZM3Tvvfdq8eLF+uc//1mZhwYAAKoZh7uyFBsbq507d2ry5Ml65JFHJEmDBg3S+PHjtWTJEi1ZsqTUuevXr9cvv/yiv/71rwoJCZEkde7cWePHj1dkZKQmTZokScrJydHnn3+uLl26aN68eZKkESNGqLCwUCtWrFBYWJjq1KlTyUcKAACqA4e7srR37165uLgoLCzM3Obh4aFhw4bp+PHjSkpKKnXunj171Lp1a3NQkqTmzZvrvvvu0+7du81t33//vdLS0vTAAw9YzB85cqSys7N14MAB2x0QAACo1hwuLMXHx6tp06by8vKyaC8KQKdPny5xXmFhoc6ePavWrVsX6wsJCdGFCxeUlZVl/g5JxcYGBwfL2dlZp06dqvBxAACAmsHhbsOlpKTIx8enWHtRW3Jyconz0tPTlZube8u5d955p1JSUuTi4qIGDRpYjHNzc1PdunWVkpJSan3JyckW/QkJCbc+KAAAUG05XFjKycmRm5tbsXZ3d3dzf2nzJJVpbk5OjlxdSz50d3f3Ur9DkjZu3KiIiIjSDwAAANQoDheWPDw8lJeXV6w9NzfX3F/aPEllmuvh4aH8/PwS18nNzS31OyQpLCxM3bp1M39OSEjQ/PnzSx1fEbXreVj8JwAAtxtH+LvQ4cKSj4+Prly5Uqy96NaXr69vifPq1q0rd3f3Em+h/Xquj4+PCgoKdO3aNYtbcXl5eUpPTy/xVl4RX1/fUmuwtQcWdLv1IAAAajBH+LvQ4TZ4t2rVSr/88ouuX79u0R4bG2vuL4mzs7MCAwMVFxdXrC82NlZ33HGHateuLUkKCgqSpGJj4+LiVFhYaO4HAABwuLDUu3dvFRQUaOPGjea23Nxcbdq0SaGhofLz85MkJSUlFdtc3atXL8XFxVmEoJ9//llHjhxR7969zW333Xef6tatqw0bNljM37Bhg2rVqqUuXbpUwpEBAIDqyOFuw4WGhqpPnz5aunSpUlNTFRAQoC1btigxMVGzZ882j1uwYIFiYmIUFRVlbhs5cqS++eYbzZ49Ww8//LBcXFy0evVqNWjQQA8//LB5nIeHh5566il98MEHeu2119SpUyf98MMP2rZtmyZOnKi6detW6TEDAADH5XBhSZLmzp0rPz8/bd26VZmZmQoMDNQ777yjdu3aGc6rXbu2Fi9erI8//lgrVqwwvxtu2rRpql+/vsXYkSNHytXVVZGRkYqOjlbjxo01bdo0hYeHV96BAQCAasfJZDKZ7F1EdXby5ElNnDhRn332mYKDg+1dDgAAsDGH27MEAADgSAhLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABhzyCd7VSU5OjiQVe08dAABwfM2bN1etWrUMxxCWKigxMVGSNH/+fDtXAgAAyqssb+DgdScVlJqaqkOHDmn9+vWaMWNGmed99NFHeuaZZwzHJCQkaP78+XrllVfUvHnzipZaI5Tl35u92KO2yvhOW61ZkXWsmVveOZyD1nHkc1Cq+voq6/tuh/OwrGMr+zzkylIVqF+/vgYOHKhdu3aV691w3t7eZR7fvHlz3jv3/5Xn31tVs0dtlfGdtlqzIutYM7e8czgHrePI56BU9fVV1vfdDudhede353nIBm8b6d+/f6WOx02O/O/NHrVVxnfaas2KrGPNXM7BquHo/96qur7K+r7b4Tx09P8t/S9uwzmwkydPauLEiWW6nwrA9jgHAftzhPOQK0sOzMfHR+PHj5ePj4+9SwFuS5yDgP05wnnIlSUAAAADXFkCAAAwQFgCAAAwQFiqxnJzc/X2229r9OjRGjx4sJ5++mkdO3bM3mUBt5X33ntPDzzwgAYPHqxx48YpOjra3iUBt61jx46pV69e+vvf/27TddmzVI1lZ2crMjJSQ4YMUaNGjbR79279+c9/VmRkpGrXrm3v8oDbQkJCgvz9/eXu7q4TJ07o+eef16pVq1SvXj17lwbcVgoLCzVlyhSZTCZ17dpV48aNs9naXFmqxjw9PTV+/Hj5+fnJ2dlZ/fr1k6urq86fP2/v0oDbRvPmzeXu7i5JcnJyUl5enpKTk+1cFXD7+frrrxUSElIpT/nmCd5VKCsrS6tWrVJsbKxOnDihjIwMzZkzR0OGDCk2Njc3V8uWLdO2bduUkZGhli1basKECerYsWOp658/f14ZGRkKCAiozMMAqq3KOgf/9Kc/adOmTcrNzdX999+vwMDAqjgcoFqqjPMwLS1Na9as0ZIlS/TRRx/ZvGauLFWhtLQ0RUREKCEhQa1atTIcu3DhQq1evVoDBgzQ9OnT5ezsrFmzZuno0aMljs/JydH8+fP12GOPydvbuzLKB6q9yjoHn3/+eW3dulUffPCBOnbsKCcnp8o6BKDaq4zz8LPPPlN4eLjq1KlTOUWbUGVycnJMycnJJpPJZDpx4oSpR48epk2bNhUbd/z4cVOPHj1MK1euNLfduHHD9PDDD5uefvrpYuPz8vJMs2bNMr3xxhumwsLCyjsAoJqrrHPwf82ePdu0f/9+2xYO1CC2Pg9Pnjxpeuqpp0z5+fkmk8lkWrBggSkiIsKmNXNlqQq5u7uX6Qmke/fulYuLi8LCwsxtHh4eGjZsmI4fP66kpCRze2FhoebPny8nJyfNnTuX/48WMFAZ5+CvFRQU6MKFCzapF6iJbH0exsTE6Pz58xo1apQeeOAB7dq1SytXrtTChQttVjN7lhxQfHy8mjZtKi8vL4v2kJAQSdLp06fl5+cnSVq0aJFSUlK0aNEiubryXydgC2U9BzMzM3XgwAF169ZN7u7u+s9//qMjR45o0qRJ9igbqFHKeh6GhYWpX79+5v4PP/xQ/v7+euyxx2xWC3+7OqCUlJQSU3dRW9EvbRITE/XNN9/I3d3dInm/++67atu2bdUUC9RAZT0HnZyc9M033+iDDz6QyWRSQECAXn31VQUFBVVpvUBNVNbzsFatWqpVq5a538PDQ56enjbdv0RYckA5OTlyc3Mr1l708+ScnBxJUpMmTRQVFVWltQG3g7Keg15eXlq8eHGV1gbcLsp6Hv7a3LlzbV4Le5YckIeHh/Ly8oq15+bmmvsBVB7OQcD+HOk8JCw5IB8fH6WkpBRrL2rz9fWt6pKA2wrnIGB/jnQeEpYcUKtWrfTLL7/o+vXrFu2xsbHmfgCVh3MQsD9HOg8JSw6od+/eKigo0MaNG81tubm52rRpk0JDQ82/hANQOTgHAftzpPOQDd5V7Msvv1RmZqb5MmJ0dLQuX74sSRo1apS8vb0VGhqqPn36aOnSpUpNTVVAQIC2bNmixMREzZ49257lA9Ue5yBgf9XtPHQymUymKv3G29yYMWOUmJhYYl9kZKT8/f0l3dzlX/Q+nMzMTAUGBmrChAnq1KlTVZYL1Dicg4D9VbfzkLAEAABggD1LAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAPD/9ezZ0+JPTk6OuW/z5s3q2bOnNm/ebMcK/2vDhg0Wtb711lv2LgmosVztXQCA28+lS5f00EMPGY5p0qSJVq9eXUUVWX7v4MGDJUkuLi6V+l2HDh3SCy+8oI4dO+r99983HPvmm29qx44devXVVzVgwAAFBwdr/PjxyszM1Nq1ayu1TuB2R1gCYDcBAQEaMGBAiX3e3t5VXM1NTZo00ZNPPlkl39WhQwf5+fnpu+++U1JSkvz8/Eocl5mZqf/85z/y9vZWz549JUmtW7dW69atdenSJcISUMkISwDsJiAgoMqCiSNydnbWkCFDFBERoS1btmjcuHEljtuxY4dycnI0dOhQeXh4VHGVANizBKBa6Nmzp6ZPn64rV67ozTff1IgRIzRo0CDNmjVLFy9elCSdO3dOc+fO1bBhwzRo0CC9+uqrunr1aqXWdfnyZY0bN079+/fXnj17zO3Xrl3TRx99pEceeUT9+vXTiBEj9Morr+js2bMW84cOHSonJydt3rxZJpOpxO/YtGmTJGnYsGGVdhwASkdYAlBtZGRkaOrUqbp06ZIGDRqk9u3b6+DBg3r++ed19uxZTZkyRdnZ2Ro6dKhat26tvXv36o033qi0es6dO6cpU6bo8uXLeu+999S7d29J0oULFzRhwgStWbNGd9xxhx588EHdf//9OnTokCZPnqzY2FjzGk2aNNFvf/tbXbx4UUeOHCn2HWfPnlVcXJyCgoJ09913V9qxACgdt+EA2M2FCxf0t7/9rcS+e+65R507d7ZoO3PmjMaMGaNp06aZ2/70pz9p/fr1mjZtmn7/+98rPDxckmQymTR79mwdPHhQJ0+eVHBwsE1rP378uGbPni1XV1d99NFHatWqlblvwYIFunr1qhYtWqROnTqZ25944glNnDhR7777riIiIsztw4YN0+HDh7Vp0ybdd999Ft/DVSXA/riyBMBuLly4oIiIiBL//N///V+x8Z6enpowYYJFW79+/SRJ9erV0+jRo83tTk5O5r4zZ87YtO4DBw7oueeeU506dfTJJ59YBKVTp07p2LFjGjRokEVQkqRmzZpp+PDhOnv2rMXtuB49eqhevXrau3evrl+/bm7Pz8/Xtm3b5O7uXupGeACVjytLAOymU6dOWrRoUZnHN23aVLVq1bJo8/HxkSQFBgbKycmpxL7k5OQKVvpfu3fv1rfffquWLVvqvffeU4MGDSz6i26xXbt2rcSrZj///LP5PwMDAyXJHIbWrl2rHTt26He/+50kKTo6Wqmpqerfv7/q1Kljs2MAUD6EJQDVhpeXV7G2omchGfXl5+fbrIbjx4+roKBAbdq0KRaUJCk9PV3SzatPBw4cKHWd7Oxsi8/Dhg3T2rVrtWnTJnNY4hYc4BgISwBQDpMmTdK+ffu0du1aubi4aOrUqRb9RaFtxowZGjVqVJnXbdmypVq3bq0TJ07op59+Up06dXTo0CH5+/sX28cEoGqxZwkAysHd3V0LFixQly5dFBkZqY8//tiiPyQkRNLNK1DlVXQF6d///re2bt2qgoIC86MFANgPYQkAysnd3V3z589X165dtXr1an300UfmvtDQUIWGhmrnzp3auXNnsbmFhYWKiYkpcd3+/furVq1a2rZtmzZt2iRnZ2fzq1cA2A+34QDYjdGjAyTpsccec9gnVru5uWnevHl67bXXtGbNGplMJk2fPl2S9Nprr+nZZ5/VG2+8obVr1yooKEgeHh66fPmyjh07prS0NO3YsaPYml5eXurVq5e2bt2q1NRUde7cudRXoACoOoQlAHZT9OiA0oSHhztsWJL+G5hef/11rV27ViaTSTNmzNAdd9yhZcuWKTIyUv/5z3+0efNmOTs7y8fHR23btjU/vLIkw4YN09atWyXdfLo3APtzMpX2fH0AuM307NlT7dq104cffmjvUsrs0qVLeuihhzR48GDNnTvX3uUANRJXlgDgf8TExKhnz56SpO3btzvsla0NGzbo/ffft3cZwG2BsAQA/9/48eMtPhc9p8kRBQcHW9QbFBRkv2KAGo7bcAAAAAZ4dAAAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAICB/wckGElmhP4XwAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "spectrum.index.value = -1\n", + "\n", + "expectation = psr.get_expectation(spectrum)\n", + "\n", + "ax, plot = expectation.project('Em').plot()\n", + "\n", + "ax.set_ylabel('Expected counts')" + ] + }, + { + "cell_type": "markdown", + "id": "86bac761-903c-4c72-8138-130c2194e876", + "metadata": {}, + "source": [ + "## Point source response in inertial coordinates" + ] + }, + { + "cell_type": "markdown", + "id": "ad7b53cf-f02c-4e29-9079-d96f73f929b3", + "metadata": {}, + "source": [ + "In the previous example we obtained the response for a point source as seen in the reference frame attached to the spacecraft (SC) frame. As the spacecraft rotates, a fixed source in the sky is seen by the detector from multiple direction, so binnind the data on the spacecraft coordinate, without binning it simultenously in time, can wash out the signal. As shown in this section, we can instead rotate the response and convolve it the attitude history of the spacecraft, resulting in a point source response with a Compton data space binned in inertial coordinates.\n", + "\n", + "We use a scatt map, which tracks the amount of time the spacecraft spent in a given orientation. See spacecraft file tutorial for more details." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "cb7f52de-e3fb-4568-adaf-ccca8e55d215", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", + "\n" + ] + } + ], + "source": [ + "scatt_map = ori.get_scatt_map(nside = 16, coordsys = 'galactic')" + ] + }, + { + "cell_type": "markdown", + "id": "dfac4b7b-227f-4c4b-977b-5cc4cebc9ee5", + "metadata": {}, + "source": [ + "Now we can let cosipy perform the convolution with the scatt map and get the point source response:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "48573091-7569-4ab4-9ee6-f8e996e5b11b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 46 s, sys: 5.45 s, total: 51.4 s\n", + "Wall time: 54.3 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "from astropy.coordinates import SkyCoord\n", + "\n", + "coord = SkyCoord.from_name('Crab').galactic\n", + "\n", + "with FullDetectorResponse.open(response_path) as response:\n", + " psr = response.get_point_source_response(coord = coord, scatt_map = scatt_map)" + ] + }, + { + "cell_type": "markdown", + "id": "36326805-b595-4110-8001-08980308718d", + "metadata": {}, + "source": [ + "This is how a slice of the response looks like in galactic coordinates:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "07c397d6-63f5-4162-8cd4-536f3a5a2a6e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADKKklEQVR4nOz9ebwkVX3/j79OVS+37zr7zjADDDPAsDoDCiKKCAouGEWjEjW/oGhcYtT4NRo/LkFMPiafT8wnxqBGTcQlEVwiS0CCyL4oyLAMs8AMMwyz3zt3v7e7q87vj+pTt7q6lrN1d/Wd83w85jH39u1616nqqlPPfp+NUEopDAaDwWAwGAwdjdXuAhgMBoPBYDAY1DFSZzAYDAaDwTALMFJnMBgMBoPBMAswUmcwGAwGg8EwCzBSZzAYDAaDwTALMFJnMBgMBoPBMAswUmcwGAwGg8EwCzBSZzAYDAaDwTALMFJnMBgMBoPBMAswUmcwGAwGg8EwCzBSZzAYDAaDwTALMFJnMBgMBoPBMAvItbsABoPh6IRSinK5jImJCUxNTaFcLqNcLmN6etr/Oeq1SqUCx3H8f67r1v0ffg0ACCEghMCyLP939rNlWf7fbdtGPp9HLpdDPp/3/+VyORQKBf919ntXVxe6urpQKpXq/s/lTNVqMBhaj6l5DAaDFJVKBaOjoxgZGfH/D/48Pj6OiYmJxH+O47T7MJpCPp+vE75SqYSenh709vb6//r6+up+D/4bGBhAV1dXuw/DYDB0GIRSSttdCIPB0H4qlQqGhoYwNDSEwcFBDA4O+j+z14PyNjk5qW3fhUIB5Ykq4BIQlwAuav9I6DUCUAJQABQglHgBKOpeB4I/exDbnnmBBP5E2A/U+5lQwPJ+poGf2euUoPYaBSwX1KbomVvC1NSUVkktFouYM2dO3b+BgYGG1+bNm4f58+ejWCxq27fBYOhMjNQZDLMcx3EwNDSEgwcP+v8OHDiAgwcP4tChQ760jY6OCscmhIBWCEjVAhwLpGrVfrZBHOK95liemDkW4BAQ13svqgCdqnqvzZhV0yC5fFPjUyaFtgsQB9SigF0TQZsCtguacwGb1v53QXP1r89Z1ofR0VFUq1Xh/ff19WHBggWYP38+FixYUPdz8P98vrnnwWAwtA8jdQZDhzM5OYl9+/Zh7969ePHFF7Fv3746gTt06BB/BskFULVBKrYnaBXvZ+81C6Rqe3Lmy5vFJWSUUtByWe1AFWm21KVCXb63gc6IX94FzTmgeRfIuaB5t/bzzGv5fhtlznNLCMGCBQuwePFiLFmyJPL/UqmkcpQGg6GNGKkzGDJOtVrFgQMHsHfvXl/c2M979+7F0NBQagzLskCnCFC2Qco5T9bKOZCy7YlaxRM4XkmL2AFIaHAAk7i2Ch2pDYywSF35qMMnWNqLU4gXSzo9LRXTl8CCA5p3gILr/0wLDmjBxeI183D48GFUKpXUeAMDA1i8eDGWLl2K5cuXY8WKFVi+fDmWL1+OBQsW+ANMDAZD9jBSZzBkAEophoaGsHv37rp/u3btwosvvpjeHOdYIFM5kHIO1nSjuKFiyzdxRghb5DEkiFvTxY4ki0ZY6uJopuwlCR0vsuIH1OQvXxO+ogNarAZ+dtCzuIixsbHEGIVCoUH0VqxYgRUrVmDRokUgpPnN6AaDIR4jdQZDC6lWq9izZw927NiBnTt31gnc+Ph47HaFQgGVEQpSzsMq50HK+Zqw5UDGAeLY8oXilLYwMpKmTe5SJK7x7XxSF0aH5OmQOV5UpA8AqO2ClmpZv2IVtKsCWqxi2foF2Lt3b2IzfqlUwrHHHotjjz0Wq1at8n9etmwZbFvh+jQYDNwYqTMYmoDruti3bx+ee+457Ny50///+eefj20CI4QAUzZIuQBrugAynYc1nQeZLoBUcnWZNkopwNGU5iMpbkGE95kQR0jsBAUuOoSc1EUhInqtFLo0hIUvJGIUtJbVq4B2VX3pW3HaIuzZsydW+AqFAlasWOGL3nHHHYfjjz8ey5YtM025BoNmjNQZDIpMTExg+/bt2LZtG7Zt2+YL3NTUVPQGLoE1VQCZYvJW8OStnAehyQ+5RLHSIG5C+1OMmyh2GkSuPpw+qQuSJHhZEro0EoWPI8tGCfUkr1QB7arArf2fn0tiB3GUSiUcd9xxOOGEE3DCCSfg+OOPx3HHHYfu7m7ZwzAYjnqM1BkMAhw5cgRbt271BW7r1q3Ys2cPIm8jl3jZtqliQOKKXpOpYP82X66aIG6x+2ryPuqkTrPEhWmW1IUJSl4nSV0SvvBJNKH62b2uyozwdZcTZW/58uU4/vjjsWbNGpx44olYt24d5s6dq3IIBsNRg5E6gyGGkZERbN68GZs3b8YzzzyDbdu24eDBg5HvJeUcyFQR1qQncNZUEWQ6rzb/mkWAXA4oN1ewYBFPqqgLWqkCLVjlgVLq7atFENsGsVvY1NfCPmTEtr39sc+vmdSaS1X7RVJQrwm3uwy3uwJaKmPeCb04dOhQ5PsXL16MtWvXYt26dVi3bh3Wrl2Lvr4+pTIYDLMRI3UGA4ByuYzt27dj8+bNePrpp7F582a88MILDe/z+r3lPHkL/COOQhbIIkC+UP8adfXLHJO30H5iRUCz3LVS5EiEVLVM6lokdFHHGLn/ZsheTF84ZdnLOV7TbXcZbncZK85agN27d0dmwpcvX+4L3sknn4y1a9eaVTUMRz1G6gxHJfv378emTZvw9NNP4+mnn8b27dsjBzCQcgHWZAnWVBesyS5YYzlvRQRZogQuCHWBahVwFW7LKHmL2A/Xg15R7FolcrGCU/ee2SN1PMebWg4dsscx0EFZ9CwXdIDC7Z4CLU1j8Sn9ePHFFxvel8vlcOKJJ2L9+vX+vwULFijt22DoNIzUGWY9ruti586d2LRpk//vwIEDjW+s2rCmSrAnS7CmSrAmSyBu7cFIKSD6AEwTuDAyQscjcKF9CD/IBcUuSyJX//4WSF1WhC6IyPtlrg+JEawyokcKM/cStR24pWm43VNwu6cxZ3URg4ODDdssWbLEF7xTTz0Vq1evRq4FfSsNhnZhpM4w6yiXy9iyZQs2bdqEJ554Ak888UTDuqa2bYOO5WFNds8IXCWiDxyvzIkKXN0+ajIHJAudqMCF9qEkWilil1WRq9+286VO5fhVysYlYYrTk/CKXlDu/G1BQQtVT/J6JrH6pYvw3HPPwXXrRyd3d3fjtNNOw5lnnokzzjgDa9asMZJnmFUYqTN0PNVqFVu3bsWjjz6K3/3ud3jiiScaR9a5xBO4yRLsiW5Yk92p04fECp2KwNXFT5A5FYEL7UObbEWIXStkTklk6uI0WeqyLHRBNMWJlTCNc8/F7SNK7Bq2tdya5E3B7Z5CaSlpmODbSJ5htmGkztBxUEqxY8cOX+Ief/zxxuWNqjbsyW5YNYGzprrERqIGhU6XxNXFDzS16hK4UHztslWTuk4SufqYRurqaEJ5fQlr0qTCQcnjEbu6bUFBu8pweyfh9E6iezlpqDe6u7tx6qmn4qyzzsKGDRtw/PHHmwmSDR2FkTpDR3DgwAE8/PDDePTRR/Hoo4829p9xLNgTPbDGe2BPdIOUi2rTiTRr3jTqAs1cTL6Z01pQCndKbRmqNJohczOxm/SZWhbQ5DVPm3lemi2jNG3d4jbBI3nz5s3Dhg0bsHHjRmzYsAHz589vU2kNBj6M1BkySaVSwaZNm/DQQw/hoYcewo4dO+rf4BJYE92eyE30iGfighALJDczIEL7ou40EK9ZQtfkOcpooJmYap7qhFgk+IvW2HUE9tPUheebKqZNFLB8oNlRZfR1FIFzTzVO1RP+HFUeZ/WSN4HiEorJycm695xwwgnYuHEjNm7ciFNPPdVMoWLIHEbqDJlh//79ePDBB/HQQw/hd7/7XV2FalkWMN4Fa6IX9pg3OjW1T1wcQYkLokvoaESMTpe5IBrErk7k6v+gFDeRmH12ouC1TO6C6BC9iM9AVfKSPj8lySMUbvck3IEpHP/yhdiyZUvd34vFIs444wy87GUvw7nnnoslS5ZI78tg0IWROkPbcBwHTzzxBO677z48+OCDeP755+v+Tqo52BN9tX+9gGPLzZsWJ3EMFZmLErgwzRC6dsgcQ0HqYmWu/k1SsVNJ2beRuxBxcseQlTyOa0BG9Hg+P9nHHbEtULsKp3cCTu8E5q4pNKx+cdxxx+G8887Dueeei3Xr1sFu4aoiBgPDSJ2hpUxNTeGRRx7Bvffei/vvvx/Dw8P+31g2jomcNV3ym1QppfxClyZxQUSFjkfiGB2YnePu/yQodlwyN/Nm/veKIFCGpglep8ldmtgFEZU8gc+DV/JEPzeRx1+wT6a3pm0ZTt84Trp4GZ588sm66VPmzJnjZ/A2btyI7u5uoXIZDLIYqTM0naGhIdx///2499578cgjj9RPN+LYyI33wR7vhz3ZC+I2PkS4hE5E5GYC8wmdiMgxOiw7J9yZnVPqhGRuZiPxbXiQKIuRuxoichckTfQkPpM0wZP9zHgehXGDbajtwOkdh9M3jtIKWjfgIp/P46yzzsIFF1yAl7/85ZgzZ45U+QwGHozUGZrC/v37cdddd+Gee+7BE088UVdhkkoe9vgAcuP9sCZ7Ugc4REqdjMTVB40XOhmJC9KEgRaZkbkgCWInJXMzG8tvm4RKmdAkwTta5A6IFzzFzyVK8nR8VlGPRp4R1BQUbs8knL4xLD69B3v27PH/ZlkWTj/9dLzyla/E+eefb5YxM2jHSJ1BGwcPHsRdd92FX//613jyySfr/mZNdcEeH4A93g+rzD9StU7oVEVuJuiM0KkKXJgOETot00xESJ2SzNUH0hMniKayHfVypyJ2QYKSp+u6wYzk6fyc6r6UCkyN4610UYEzMIrV58/H1q1bZ+IQgvXr1+OCCy7ABRdcgMWLF2srr+HoxUidQYlDhw7hN7/5DX7961/XZeQIISAT3ciN1USuKj55L6UUcKkekZsJ6gnd0ShzVP90JEzstMkcI8NSxzByp3nlBTYRt06a8YWIUuk5D918GU7/GE68aDGeeuqpur+tW7cOF110ES688EKTwTNIY6TOIMzw8DB+/etf484778Tjjz9e9y3WmuxGbmwO7LEBWE5ebgeEeA833QJCqb6JUJl06J5MmLpNmQsOAOA4SlM8NOBS/XLM0Cl1rIwspm5xgGbBa9JkxtrFziLNkVCrFtPVeA+w86lxjjzYttL17+YqcPrHcPLrlmHTpk11X4jPOussXHTRRbjgggvQ29urq8SGowAjdQYuyuUyHnjgAdx+++144IEHUA3IkTXVjdzoAOzxAamMHIAZkQuiU2x0CF1YNHQIXfCh0ESZq9ul6i3fTJljaFr3NjGmkTs9NEPurFA8HYIXPpeqghc+ZoV7guaqqPaPYe3Fi+q6rhQKBbz0pS/FRRddhJe97GVmsmNDKkbqDLFQSvHkk0/i9ttvx5133onR0VH/b9Z0CbnxebDH58CalqzQwyLHKl2R6Ut4kBW6JLFQEbqoyr8ZQpcQT+q2b4XMBZEVu7gyxsUzcqdOK8QuiKzkxZ1HWcGLO2aVDF434PQdwfKN3di5c6f/ek9PDy644AK89rWvxemnn97ceRUNHYuROkMDL774Im677TbcfvvtdSO3SDWP3Pg85MbmwaqUvBdFBSxO5BjtFro0kZCRubQKvsVCBwhKXatljiEqdWllTIt3FMpd5sUOSJY7QFzw0s6hqOClHbPovZP3Wju8ufCmUO0bxtx1BAcPHvTfsnz5crz2ta/Fa1/7WjPAwlCHkToDAGB6ehp33303brrpJjz22GMzf3At5CbmeCI31Vc/apVXwNJETjQeL7xCxysPIkLHU5G3QeaCpN767ZI5Bs/nIlI+EUnM8qCKo1Hu0sSOwSt4vOePV/B4j5f3es3Xd2OhoHBLE6j2H0Fx2TQmJiYAeNfVxo0bcemll+LlL385CgXJ7i+GWYORuqOcHTt24Je//CVuv/12jIyMAPAqCmuiF7mxebAn5oDQuCaGBAnjFTmeWDKkCZ1MFihJ6ETlp81CB6RIXbuFDkhv/tYZLw6NcmfETjWmYLw0wRM9f2mCJ3q8SddwPl7OKHHh9A3j5NctxO9//3v/9f7+frzmNa/BpZdeijVr1oiVxTBrMFJ3FDI5OYm77roLv/zlL+s65ZJqHrnRBciNzYflpHzji5wQWFDk0uLJEid0Kn20ooROVnp0C51CrIbbPwsyx4j6vFTKpjL4wsidOFkQO0ac4MmeuyjBUznWqOs6QewYbn4a1f4jmHsS6ppn161bh8svvxwXXnghurq65Mtl6DiM1B1F7NixAz/72c/wq1/9CuPj4wDgLTo90ovc2ALYk/3ckwLXSVhQ5mQqyWZm6VRHUYaFTlV4MiR0DL8KyJLQMYJTx+iKpUIW5c6InRhBwdNx3oKCp3qsweucQ+r8zUDhdo/hvPccj3vuuQeVilem3t5eXHrppXjTm96EY445Rq1sho7ASN0sx3Ec3Hfffbjxxhvr+sqRSgG5MZaVE5xPjlLAdeWzcuFYuoVO17xxTOh0CEUGmlvjaMpkzLoglr6y6Zr7Lqv97TTLXaabY1XFjuE6eoW4XNF3nNQVEjt/M7uK6sAQFpxmYe/evf7rGzZswOWXX45zzz0XuZzmiaMNmcFI3SxleHgYN998M37+859j3759ALx1B8loP/KjCxoHPfBiWzOZKx2Voe5mV11C5zr6yqVT6GqrQuha25JWqlpXg6Au1RKP1paQ0lU2v1w6JzXWdd5c+RUKwvgT2Op6aFOqLRalFKQgOSF5FLrEDvA+S133KLEAXZOcA4Dk+ffWoB3DS962HA888IB/bSxcuBBvfOMb8cY3vhFz587VV05DJjBSN8vYvn07brzxRvzqV79CuVz2XnRs5EcXIDe6ML2vXBzBh07cwtyi6BC6wOWrLHQsI6SjXG6wXHqFjqEidkzoAD3iRAPHqxKPhq4t1bLFlktHszyLo3r+gmVUlLu6NUpVZUxjrLpyZVnsGKr3bPD6UhU8DVLt5sqozhlE7/FVHDlyBIA3sfHFF1+MK664AqtXr1behyEbGKmbBVBK8eCDD+JHP/pR3Wgoa7qE3Ogi5MbnglCJh0XUAyYLQhdxyUoLXbhpT6VcEeemWULHEBW7oMz5MTRKmGy8qDiyseLiRcbSNcGxitxFlVVS7qKqcykh0xUHMWXqBLFjyN7DUdeWrODpyrzmCJzeYRz3yh5s3rzZf/mcc87B2972NmzYsMFMatzhGKnrYCqVCu644w78+Mc/xo4dOwCwgQ99yI8sgjXdI9/EGke7pC7hMhUWurg+WjJCl3A+tAhdjMwxRCrgKKHz42gUMZF4STFE4iiXSddEx6Jyl1ReQbFLqsqFhUxjrLhydZTYMYQmWk/4/ETlTmMfOJKzvabZ4gTOfucy3HPPPf5ntHr1arz97W/HRRddZOa861CM1HUg4+Pj+OUvf4mf/OQnM8PYXQu50QWezOloYo2iHUKXcnlyC11aZ3uRMnGch1YIHYNH7JKEDhCTpzQR442nK47WWCITUSfF4D2fPOXmlLu0qpxbxjgeCbyxUsvUiWIH8NcVPNcTr+BpEjuSqz9Pbm4alYFDyC8dx+TkJABg3rx5+IM/+AO8+c1vRl9fn5b9GlqDkboO4tChQ7jhhhvwX//1XxgbGwMAkGoOuZFFyI8tAHElbnqRbIAOqeORJ4FLMlXqeEZO8pSJ89ib3dwaRZLUpclcXRxNIpYWizcGTyxdZQq9MfnvvKNxeeSOt+wp96lINZ4qZJyx0uIIlUmX3OkSO5Fsa9p9yvtFIU3uNGfrwlDLQaX/MOasq/rJgp6eHrz5zW/GFVdcYQZVdAhG6jqA/fv34wc/+AFuvvlmf/4hUi4iP7IYubF5IBBsOiJEvP9PK7J0gpdirNCJTIGRVB7BY26H0DGixE5E6IDWiJhoHJ2xhJuY4x7GokuTJe1X9Bhi5E60Go8VMk1xZB4rHS12QMLqOhL9I+MEr0nZuiAUFE7vESx7qe136ykUCnjDG96AP/zDPzRrzWYcI3UZZu/evbj++utx6623olq7ya2pHuSHF8OeHBDvLycjc4xmZekkL78GoZOZyyyqPJLH2U6hAxqlTlTo/DgR14eMiIVjycaIKpOO8ghuWP+77BJl4f3LHkdI7GSr8Eghk5GxiDjSZep0sWM0rLYjOSAnLHctkDoGBYXTPYLVr+rCM888A8Drs33JJZfgyiuvxIoVK7SUxaAXI3UZZM+ePfj+97+P2267DU6tcrAme1EYXgp7SqJ/g4rMAc0ROoXLjupY4SFcHoVjbGX/uSQIIdIy58fQJGIslmoMFkdXeRQDoFYQtRisHKrHU5M71SrclzJNcZTLM1vEDqivY1Sm0QnKXQvFDqjNd1caw0mXDfgT2DO5e/e7341ly5ZpKY9BD0bqMsTevXvxve99D7fffntA5vpQOLIU9nSveEBVmWPokjoNE3JSXXPbOY6W48qK0PmhFIQO0CdQOtEth4pB1KSOxbCIluuP2JayRAE1IdPxKNC0mkKmxE7jJNPKVKstl7ogTnEcp79lPh566CEAntxdeumlePe7322aZTOCkboMcPjwYVx//fX4xS9+4Tez2hP9yA8vkZM52/KWDHJVMgq1ikx1Ql/28KpELIAtUR6qGocRtSC3AJQtlaZKLY6W29BxsiNj1FWf4FdnHGiSOt2oHpumYyKEeHWGeiAtcQghQF6DvGQhWxdGl8wr1s0yUsdwiuNYf/kc/Pa3vwUA5PN5vP71r8eVV16JhQsXKpXLoIaRujYyOjqKH/3oR7jhhhswNTUFALCm+lAYXAa73CMWzLZmviWrCAchM0JHqbzUWaReDGVkLPiAcF01oQs2nSkInX+7aBS6htgy1DJ9mZC6YCZLRVqCqzZoIJNSB6gdn06pA9SELNivUyFOXf9Q21Y/xiyKHaAkd8F+lSpypyJ2AOB0jeGk1/f7zbKFQgFvectbcOWVV5qpUNqEkbo2MDU1hRtuuAE//OEP/alJrOkeFIaXw54QzMwFZY4hI3VBmWMxZCoLKxRHRujC3/ZVhC74wJQUuoZbpAlCF7kfXkJNt20Vu6iVFtoRI4LMSh0gf4wajqlh5LSskGmIEzk9T7B+kz3erIodoG/AjER9rSp1DKd7HCde0o1NmzYBAPr6+nDllVfiD/7gD1AsFrXsw8CHkboW4roubrvtNnz729/25wEilZInc1NzQCjERCpK6AAxqQvLXDAGb1nCIscQFbq4phtRqYt6QEoIXeytoSp1CZ+P0O0Y0w+vLVKXtMJCO+JEhsiw1DFEjlN3lq4hvkBZNMSILUdUHSdz7FnqXxeHwL0bO72NwDNEl9TBsrzRsqURLHsZ9adCWbRoEf7kT/4EF198sbfakaHpGKlrEY8++ii+/vWvY9u2bQAAUi2gMLwC9uS8malJeEUqTuZYDB7piJM5kXLEyRyDR+rS+uCICF3SvGKcQpd6OzRR6LjLAKQOFmmp2KWtrqAaQyROYogOkDqA/1ibkaVr2AdHWXTESCtLkhCInIdOEDtAy6TUvHKnRewCnzEFRbV3EAMnT/rJi+OOOw5/+qd/irPPPlt9X4ZEjNQ1meeffx7f+MY3cP/993svuDbyI0uRH1vcOGlwmkwlyVwwRpI0JMkcbznSZA5IFzqeDtU8QsfzAOSQOq7boAVCx1UWjpGyLZE6kZUVVOMcTVLHSDvmVkgdkH6faojBVY60uo/nfGS5GTaKtLWROVYESpM73VLn75e4qPQfRHHliN/N6Nxzz8WHPvQhHHPMMer7NERipK5JjI6O4jvf+Q5+/vOfw3Ec2LYNMjwfhZFlIG7EcP0kkeKRuWCcKHHgkbm0svDIHCNO6kRGxyVJnUgGKEbohC79FgndzNtjyiYw9UlTxU50VYVmxRCg46QOiD/uVgmdv7+YcmiIIVQO3now6fx0SrYuSMy9zLsuMBAvdzqbYCP3a1Vx2SfX4ac//Skcx0Eul8MVV1yBd7/73ejpERwQaEjFSJ1mWL+5f/mXf8HQ0BAAwJ6cg8LwCljVUvyGUSIlInMsRlgcRGQurhwiMgdEC53oVAdxQifycI8ROuFLvsVC520SUUbBueyaJnWi87TF9XFUjSFIR0odEH3srZY6IPr+1RBDuBwidWLceepEsQMi5U5E7IBouWtWti6Im5/CaW/p9+e4mzt3Lt73vvfhda97nelvpxEjdRrZsmUL/uEf/gFPPfUUAIBUulA8shL29ED6xkGZEpW5YAwmD6IyF1UOUZljBKVOZt6qKKGT6XAfEjqpS70NQjezaaC8kpMTaxc72SWyVLYPx5CkY6UOaDx+xWMRFil/v4FyaIghXQ7R+jHqfHWq2AF1cicqdYyg3LVC6hjV0jAWbaxg9+7dAIB169bhE5/4BNauXateBoOROh2MjIzgW9/6Fv7rv/6rNimthcLIMuSi+s3FwT4GlW8slHr/ZCtKJnSyMgfMCJ3KJKRM6lTnOCtX1OZ+a6PQeZvXyq6w2oQ2qVNdGktXDAU6WuoYUWvIyoSRvb+BmftaQwylcsjWlez8dbLUMWr3t6zYAZ7ctVLqAIDCRbX/EPIrj2B8fByWZeHyyy/HVVddhd5eiQn3DT5G6hSglOKOO+7A//t//w9HjhwBANgT81A4cgwstyAWTDazVl8gte11xKAUqCoseeW6oCrbA4DrgCquGMHKIo2GFSd0LImmRepUl8XSgZG6GTQ0VSnJlK4yqMZQ3d4is0PsoOHz9IKobS/xJd61Kzjv/7cEd9xxBwBg3rx5+MhHPoILL7xQzzEdhRipk2Tv3r34P//n//j9A0ilC8WhY2GX+8UC6ZA5hspHqesykF17lJ0H11UTMgWhY5WIL1MqGU8dQudSZaFSlrosCB2gReq8MGr3GnVp++UwC9k6QE2qdGTqLDJTBtnrXIPYsSyZyqOUEKK8VKCWz1O1dcK2pZ4lTtcIFmycxgsvvAAA2LBhAz7+8Y9jxYoVauU5CjFSJ0i1WsUNN9yA73znO97SXpQgP7oM+ZEl/E2tAEAIaK0yIAoPXlqr3IlL2yd1rDJxXfEsXVBq2yR0wcqwITsmWlEG1nKVrWR9ofNfUGjCVZE6VaFj15SuLy2axM4LJV6m4Llsq9ix89DJYqfary547MEyyFzvGsUOkJM7ws4HpdJyp/WzlJW7YAzB46DERWXuQZCFh1Aul1EsFnHVVVfhrW99qxlIIYCROgG2b9+Ov/3bv8WWLVsAANZ0H4pHVsOqdoldwAGhA+SkjgYqNWWhA+S2Dy8rJpKlC2coVYUOEJa6cCUY2dwpIXU0EEO0om0QOqA92TpdQgdkUuq8cIKfTdTIw1bLneYBE0CbxE6n1EWVQeSa19QM27Bsl2CdSoLNlxJyp6W5suE8CtYDUUtWipCz4eamcPLri/jd734HADj55JPx6U9/GqtWrRKLdZRipI6DarWKH/zgB/je974Hx3EA10ZhZCVyEwu9pb14T2FI5vyXBSogGlGJtzxLF1V58Gbp4pqbW5ili6r8EvuviczvV8vSJe0rfvMIofP/2KJsnY7m1vD1lFGpmwnLV76489hSsWvSvHUtFTvVaU3ijjWqDLzXvuZsXRDeRyyJ6pMmKHdN+xx55S5ppSNecra3KkXPIeSPOYTx8XHk83m8973vxTve8Q7kcjn+WEchRupS2LlzJ6699lo888wzAAB7ci4Kw6tmBkJQDqGKkTn/z5wVT5TQ+du3QuqSlhVLy9Il9R1skdAlVXipgxJ4VuEICR3Pfuv2n3QdtELqmiF0DC0duZsjdV5ojs8o4Ty2TOySzkGniJ3KJMRJx5i0f557oIliB/DJXaTYeRvzbd/Mz5BH7HhWPEojMBLXtcs44y09eOCBBwAAa9aswWc+8xkcf/zx6XGOUozUxeA4Dn7yk5/g29/+NsrlMuDaKA6vgj05f2atViBd6jQIXZzM+ds3u+k1raJIytLxDARpotRxC1XaKNOkOAlCx1OGVKHz39hEsdPZ3BpFxqXOC5/yOXF8Rk2XuyYvHdZ0sVNdLizt+HjEMu5zbLLUMZIeubFSN7Nx8vbNaIINkyZ3qmIXml6FgsLpHkRx9WGMjIwgn8/j/e9/P6644gpYstNmzWKM1EWwd+9efPnLX8amTZsAAPbUAApHjouepiRO6lJkzn9bwoMiSebqtm9Wlo6ngojL0vGO6m2S0PFWbkLThkTFTBG6tPJwCx3QPKlrttABHSF1M7uJ+ax4F1lvltjxHn+WxY7jIRy7f97j4s0YRn2eLRI7IF7uUsXO21j6S2Qq3OcvbllLgSUto4iZM49aFZxxRY+/jvpZZ52Fz3zmM1i0aBHf/o4SjNSF+J//+R/8/d//vbcAsWuhMHKs13cOMTdKlNRxCh0QL3U8Qudv3wyp460Ywlk60SlaNEudcB820XngwoNDOIQurmxCQgc0R+paIXRAR0mdt6uIfpcCn1VTxE7k+LModgJZlYb9ix6PSB+/4OfaQqljhOsPLqnzNpTu7pGI0LmLqD9El7YMkzARMutrZy3bj6mpKfT29uITn/gEXv3qV/Pvc5ZjpK7G5OQkvva1r+GWW24BAFjlXhSHjofldCVvGJQ6AZljhKWOV+bqtpf9CGMyjELbB7N0bRQ6mYpMh9RRge0bpk5p8ajUBilpldABHSd13u5CEi74eWkXO9Hjz5LYCTaTtVTqGOzz7SSx8zZu3L7VK3UE5U52iUsGx+oWbm4Kqy50sHnzZgDAxRdfjI9//OPo7u4W3/cswzRIA9i6dSve97734ZZbbgEh3rxzXYdOThe6IBJCF6alQtcQTFDIgPp5yCxL3yhHHmpCRwhpndB5G878LzjcP1Pfn1opdDLvzwDUpUrz/Gldd1dGaBX3387rtW7fMnIqc29bxPvnUsBVXNVGENl6rLYxiGXpW4FB6twpqoRg2a1qF56/vYT3vve9sCwLt99+O973vvfh2WefVSvHLOCoztRRSvHTn/4U//zP/4xKpQLi5FEcOkF4VQhRGQtCXCq9vVapE4VSr9lVtiLRkKWTXb1Cx/JbIs2uQfyZ49swKbAvGa0WOobqQ6fFmbr6XRMlSVPO2qkcezszdrat9MAnhKiVX2nVi9Zm64JQSsWydY0B5LcF1M6b66ptL3jenMIo+tYP4uDBgygUCvizP/szvP71rz9qlxk7aqVucnISX/3qV/015+zJuSgeWQ1C80JxpIWOXXAKp7+tUgfIr/FKKWilIi82CkIHwGsyVTlvkkI3s33rhc7blLZP6ICOljodKImd6rGrfPFU/dzyYnVqw/4VW0DaJnaWQvYNUF+2S+VeVV3BQbnpXrD52qrgtLeU8OCDDwIALrroInzyk588Kptjj0qp27VrFz73uc9hx44dACUojByD3PiS+MEQIahVa27kmaMuCtbUqbA9cVzpbantlZ04khUGK7uM1FEKVKty2SrqAo7r/S8pRn4fONnLvlbJSt827RQ61qSkWuG2Q+zaLXTs3CuUQ3lpMh0L2EsiLScs26RY9raJHTtumc+dLeEoe+78dW0l73t27mVbJVQ+sxZLHeANoqj07YM7fx8cx8ExxxyDL3/5y0fdShRHndTddddd+Ju/+RtMTEzUmlvXwC73cW3ryxwh3o0msxJDMEMnK4SAuNSF+/zJSF145KeI1NVkzvtRUegAKTmqG9Qgc+4DlavwbaPav0qX0AGdJ3VZETpGC8Uu3OTbcWIXbkJUKH9bxC54zApi54VSHOwhKnfhcy8qdx2WrWMEm2NLpRL+6q/+Cueff75aWTqIo0bqHMfBN7/5TfzoRz8CAFjlPhQHT4ieey5EncwxRKQuahCCqNSFtheSuqhBHKJSp0novF8lpvIICh0gtH3kCFWRcx9RmQrdNlkSOkYnid0skjpvc84WgbhlyTpJ7KL6hXVS1i58vIojkFsqdlHnXkTsOlTqAK85du3rLTz22GMAgPe+973+oIrZzlEhdRMTE/jSl77kT1qYG1+KwvAxqc2tkTIH8Atd3IhSEaGL2Z5LyOJG5IoIXVz5eaQuJHMzL3NKHZM59nMQ3qXV4iox3vMfU4ly3zZZFDqgc6Qua0LHaIHYJS5L1iliF/cQ7RSxiztWxYmguc+h6lqsceefR+7YrAYqtFPs4OJ1H1uNG2+8EQBw3nnn4a/+6q/Q09OjVqaMM+ulbu/evfj0pz8d6D93AnKT89NXckiaoiNN6tKmB+GVupgYXFm6pClWBKQwbvtUqYsROu9PHFIXlZ0LwrO8WlLFxXP+EypOrtsmq0LHyLrYZVXoGE0UO64lyTpB7JKkoBPELuk4eT7/pCUeec6h6lqsSeefR+w6OFsHALSQR7XrALBwN8rlMlauXIm//du/xfLly9XKlWFmdS5y06ZNuPrqqz2hc/IoDp7CJ3S2rdChW2K+N50xCAHN2Wpz5qnsn1KgUokVuvTtXW/bJKFLC+E4QpMCR5JSYaZWyFkXuqzTbqHjQXEkseo8durXuMIcfDxCn5blUSw/lR3oFdy/ShmofB0FeOdQKadiWWqZNNtWl7aMQ8oV5KYWgexdi4ULF2LXrl34wAc+gCeffLLdRWsaHVBzynH77bfjYx/7GI4cOQJS6UHX4Kmwq/EDIqjlyRDXYsZxKzHwTMCblKVrt8yxMsiSkJ3j2z6QnVMQOi6SsrAq0wgAR4/QqV4rWUZ16hfu3TSeBxHZy7zYpaFB7LTInVIhFOVe9TyqNpE2U+5Uj031s61hV3sx9vRKrF27FsPDw/jYxz6GX//611piZ41Z1/xKKcUPf/hDXHfddQAAe2oeCsMngMBmb6jL1KU2tYYJS52oiEVJneD2DU2noqtZxMQQ2b6u+VVQ5iKbX9OaW6MIL7EmWjmHPwfVFSJ0rCDQaqHLYhNsu7N0op+BhvIGm2JlMniZbIoVlY2sNcfqGNAjukpQeJ+i5yRch4l+BuE6tMP71QFeE6z/Mxyc9Qd53HfffQCAq6++Gu985ztn1UTFs0rqHMfBP/3TP/kdI3PjS5EfO3ZmQERA6IRljsGkTjarFpY6wRh1/elklyYLSp3sMTCpk8jO1Uld0mCINIJyrrLkFyCVnau7dTpR6AD1ChfQK3btFjpA7nPQ1L9OadWKLImdrAhkSex0zKkocU7rzqXs+WD1meznEKxPO7xfHRAWO4rLPrQCN9xwAwDgjW98I/78z/8c9ixpip41Ujc9PY0vf/nLuOuuuwAA+dFVyE8srX8TO1TZdUpVhY6VgcWQwJc6WaGrlYE4rmK/uap0U6svdTLZuSAuVWt+YteDQnOr8pJfgJ6+WSpNru3M1gX336lCx9Agdqr97NopdkBASFT7eqmUQYMEKPWrBmauBVVRVl2uS+VzYHVru6UO0JqtY1RKe+HM2QXXdfGqV70Kn/3sZ1EopE9xlnVmhdSNj4/jL//yL/H73//eG+E6fAJy0wvq32RZ3oWh0kav61S185SHmp+lcBxguixfBMedEUKV7JTCUmEA1PvSQENn7XYLHZCNbF2nCx0jA8eRCbHT0c9LEWW5y+WUy6AsqDrK0G7Y6ksqqEpdbzcQsdZ4tXgYdOEOVCoVbNy4Eddccw1KpZLSvtpN+2sgRUZHR/Hxj3/cEzrXRnHopOYInaVhVCsgf3ETAuTUFsfW0j+CxVHBIt7nofIQVc6OUeVzofx9SIfQ6RAR5ePQ0PyqvCZtRoSsRQMs4iAWUS+Djq4EqoONFNGSrVP9wqajOU91hK4OVGd0UGiZ8kPkc6B5ecEl45NARLYuNz0f1oETUCqV8Mgjj+DjH/84RkZGVIradjpa6o4cOYKPfexj2Lx5M+Dm0DV0MuzKwMwbLAu0WFC6GLw4ihe16k1BiNo3FSaEOvomKH6LVxYhV0dzp+JUEsGpCGTPh06ha2cnX51ZZ9lzwrbLithlgU4WO7YMYxZwXG0jMGXw65p2ix2g1l2Hba9B7mTLQAnxxC4kd3Z5DtwXjkdfXx+eeuopfOQjH8Hhw4eVytlOOrYGO3z4MD760Y9i27ZtIE4eXYOnwKr2en/UKXNM6BTXapVCh4ypCmEAFaFTnpMJ0DQYQV3o1MuQkQxdXVCJ49LVl06F8HnIgti1KVvXMJlxG8SuYcCEipzpmF5IF20UOwDZEjsd87CKbjI1091HJWtHCYmUO7vah8qO4zB//nzs2LEDH/vYxzpW7DpS6g4cOICPfvSj2LlzJ4hTQHHoFFhOd3Nkjl2AohXcLMrOAepCp0zE+RfqOyQr5XUhMix0rc7WNUvotDQnZ0AEslAGoLMzdrq2lyFK7LMidlmRO9Xt29gkGyV3ltON8S0rsWjRIjz//PP42Mc+hsHBQaUytoOOk7rBwUH8+Z//OXbv3g3iFGtCV/KELuYDJi5nCj1K5kTRIXPNzM7ZljfJMifUIu0VumY3t3L2q0s8Dt7zk8UMXd0OOM9zszN0vMfYzHPRYf3rEteS7SSxS5oUnBMt/eniMM2xM7R79aQavHJnjU00bhuUOwCW04WRp5dj4cKFeP755/Fnf/ZnHSd2HSV1w8PD9UI3eAos2g0U8vr6zakKmQqzLDs3G5pbvRDtn4OOOk56jFYM5MlCkyuQfi6y0AyrqxwpJAqdrnJwfLlKXzqvAzN2cZis3Qw67mkNMVIdIKHuCmbtLKcLo5tnxK7TMnYdI3VjY2P45Cc/iR07doA4eRSPnAIr1+tZusoFEczOyZL17Jwgqdk5ywKK8fP5cEmQbSdPGcApdIlNsFkQOtX1IZudnROhlUKXdMytzOR1iNhxoaMcql+0VPvJtULseD/zJLFrwUS2JmvXiK4mWcvu98Vu586d+OQnP4nR0VGlsrWKjpC6iYkJfOpTn8KWLVsAN4/i2Okgdp8+mev0ptYWZ+dojARry87paG4VKUdEE6zwsUSdt3Y0tzYrW9eODF3UsYuej1kudlxZOt3liOrfKrMyT2MQ+W1ZiGY2vUbR5uZYIINZu1kid5bdj9HtqzBv3jxs374df/mXf4np6WmlcrWCzEtdtVrF//pf/wtPPvkk4OZQHDsNhPaoBZ0NTa26YtRoe985wDS31m1+lGboEsvRxvORYbETJgsZO2D2jIwFMiF2mcnaAZ3TJJu0LSEgtBsTO1ehp6cHmzZtwuc//3lUJVdSahWZljpKKf7u7/4ODz/8MEAtFMdPheX2ygecLU2tLE4G+s4Bs0Toatk6pWNh57HdQqczW9fuBWdmy2jYJiCcpQuiUeyUFkNnYiYbIyB2Lc/ShWmz2AEZmvoEmBVZOwAgbh+q+45HoVDA/fffj//9v/833Cx9oQiRaan77ne/i1tuuQWgQGH8ZFhOv1wgoqGpVceKEjpEzNLUZFtDWugIAXI5NQli/epUhU7HMjSuazJ0YdotdAzFfol+jCyQlXIAsyNjp2P7IMpzFNKW9KdLLkKGmmOBWZG1s5y5wOAa2LaN//7v/8a3vvUt5fI0i8xK3U033YTvfe97AID85BrY1fnCMdzuPMqLeuD0FZX6zVHLUltSimUIFTNiWrAs0GIOtKsgLXTE0dD04dYqnizMHaeLrFSiWTknOr6p64IqynKWZKwG1ZLdVjwui6jfgzq+lAHq6zAD3pdllS/MrE+wjs9GBzqEV8c9rPr8swhodxG0uygfgxAMnzIHw6fMkdrcri6ANXICAOAHP/gBbr31VvmyNJFMSt0jjzyCv//7vwcA5KZWIldeJrQ9k7lqXwHUgvyACkJAbaJ2lrIgckBtHj/bOx4FtAmdhodk3cNEpfmmdjxKzUgahE7PQzojDxNCvKxHFpbdCjYlt1vOsnA+wui+F+WDyG0X+MJNHVde7oKj8VXEjmWW2y12/sT5CnU2O7e6vqCpPA9rZVARO2p5/2TlLldZgne/+90AgK9+9avemvMZI3M1zJ49e/CFL3wBjuMA9nLkplYJbe925wMyJ1mIWnZOSYCykpkDPKHTIHOkUtUvdIQAEmnxhoeITCZVV7ONbqGTffBnTej839tYzYTPiYzY6RLBJpwHLV8EvEDi24TqNymxC9+3mq5hbVk7lW2yIHZBZkvWjqhn7YJyJ8p//uNOvOpVr0K1WsVf/dVf4YUXXpAuRzPIlNRNTEzgM5/5DEZHR+EW5oIUTgUB34dfl51TlTkyS7JzgDahi6wQbAskn298PQq/uTUjWYGYCk4oW6ep30rkg1lUALIqdP7rGapqRM5VhoWO0VaxC4fQlbHjjZPwZa5tYldXCHd2NseK1JNx51BT1k5V7kSzdgQEt27vxrp16zAyMoJPf/rTGBsbky6DbjJT01JKce2112LHjh2gdhHlhRtBCF+HU23ZOSZzsmcla9m5hOZWmrPqFjSOI2vNrYkPDQ3zXHGjqf/crGxyzQpJ54Xnemx3U60ALRe7hHqOW+zSsuut7GeXNBG6aj+7FjfHcq3sMYuydjqbZLmxcvj96LFYuHAhdu3aha985SuZ6d+dmRr43//933H33XcDxEJ54dlAroTJBTlML4mfk85k52LQ1dxadVojdBxNsFw3DE8TLMfxpFaKrRI6HkHKSEXCJXStFD6e5c50rFrBQ4uOu2VixzNBua7rUse6zbqmGkkTu7S/t7I5lke42pG1i0P1+dnCrN3w+trfc114wT4J+Xwe99xzD3784x9L71snmZC6Rx99FN/5zncAAJW5p4EW5wGoZd0iPuzGgRCSOxbIzlE2v1yYDsrO8eJn57iW+4ppgm1Xc2tSBdOJGbokIegkofPf24Iqh/e8tGLgRIszlx3TFCvSB7bZGbukLF2Y2dgcG1cvinxGzczaWQTuAMeCAy0aSOEGNIAW5+IjH/kIAOCb3/xmJgZOtF3qhoaG8Nd//deglKLauxJO37GJ79c6EEIkOxf1vqzIHCCVnYtqgm1bcyshkfM7CX/jj6qIJJobIrN1mvrPHfVNrs0UHdHzEiV2HdCPLommip1gnadl6UAvUKgc4udWaWRskCixE5G9JjbHSo/gz0pzLBB9jYnEbvFAimtv2I7XvOY1cBwHX/jCF3D48GHp/eqgrVLnui6uvfZaHD58GG6+F9W5p8a/t7eg3tQK6Ok7B3S80IVpaXNrHDpG0wH1FUBWR7iKEJaDTha6ZiJ7XoJi10H96JJoitjpWkZQds7PZoyMFcnSBdGxekWzmmPbLXbB/cueJw3NsapZO4CzSZYQ/PKZAlavXo3BwUF8+ctfbuuKE22tkf/zP/8TDz30ECixUFmwEbCibzC3t4BqT146O+d051AdKOnrO5cVoWtHc2sUrAlWx/JWtq3+7Z49NBRvLP9bbxbmoGPyNFuELksyCOhvis3A8WWpKRbQODJWZSJ4FkbnRMWqgyiy0hQLzLRqqJ7jLAyiqJWDZe2Gz1wkFYIra2fl8Mz0ahSLRfz2t7/FjTfeKFdeDbSt5tm6dSuuu+46AEB17qmghcYlwI6caGHfxprQKXy2bo54TY2K2TlPCDVc7BlZNkVbLJcC1ap65a/rwappdJeudRS1PVx1kZVVHgzJ6OjXlrVrTwdZWblFF1kTOyBTzbHlY8RXk2ooByE4eIZaeZjYHfenW6L/nu/Dn/7pnwIArrvuOuzYsUNpf7K0ReoqlQq+8pWvwHEcOKWlcHob+9EdOdGCvX4YNCffd47aBG7RAs0pZufc2j9Vghe5ygWv4WYhDgWZqgBVxQrSpV4FQAiIbFMG4AmdropNsdKnlIJWq9kSOm39vDR9oVBeIzODzZw6s6C61qrNktgpxvEz36rCQIi+aTmqVfUYqhBLX+uPri9sOs6vrmOyCar9Xaj2dymFoTZw+DSCw6cqdCOwgQXFsVix+8qNz+Kcc85BuVzGNddcg3K5LL0vWdoidd///vfx7LPPgloFVOafXnchHllLcORN47DXD8O25S8qahNP5lTR9ezR9jANxKEUxBGvaIlDgUoVQpN8RsGETvXmDwodsUBkmzMcB6hUFIuiJzsHNEnodH0ZUFg6L7NCp+Mey4LYNWHghtK1GPy8tQmi5DGFP2PJOHV1TLWaDbnLGqxub2P/MJ9aK5uy2Fk1uVMQO2BG7BrkjhD8Zs8cDAwMYNu2bfjud7+rtB8ZWi5127Ztw/e//30AQGXeaYA905HxyFoC+5QRFApVX+jIqSPYfzZ/Z8e67FyASq/Xr44bndm5DDW31gldDWpbkSNPE4kSOtFsHaWAE9H0ICN2lYpy5ZN5oWPIXAtR24jGybLQMWaL2DUhjtQ1GfV5S8SJHJWpSxZ0xWmH2GnM0imtXR1HlsQO8MVOVO6eu2JO3e9M7ITkjgCrPzQjcQuKY9FZO7sLBwtrAQA//vGPsW3bNqGyqtJSqatWq/ibv/kbr9m1eync7mUAPJkbeuME7FNGGrJzuZwDl3MlqtTsHO/RJs1JKtKvLu0m470JdTa3hoROGJd6TbaqN7rO5lbF7BzQQULHEBzir0wnCB2jk8WuyRMiC12bSZ+3QJxE2RCpQzTFSfzC2MkZu2b2lRWt7zWJamR/Opa16+NP9kQ5BLXFs3YLio3LgUVl7dzupXjlK18Jx3Hw1a9+1VvLvkW0VOp++tOfYtu2bV6z67zTAEL87FyxWGl/c2sWs3NpcTiaYHmaW7mydcHsXNwNzpOt4xE63mzd0Sh0Iuj4YtFJQsfoRLFr0dJlWeljNxPnKM3YZT1LF6YdWbukmR1YXzsBuYtCV3NsOGv339sK6OnpwTPPPIOf//znSvFFaJnUHTp0yF81ojrnZBw5uRSbnQuT1AQb19wqTJb6zmmME9XcKkUz+s+pcrQLXSsywZ0odIxOEjtd2TzuEBqWqANS72Vu2UirVzTF4e7W0WkZu1aNaM9gcyxsok3sYuUu1PQaR13WLlfC1VdfDcBbbeLAgQNKZeSlZVJ33XXXYWJiAm5hDg6/5Fih7FxcE6xodq7SE9OvTvD6jG2CbVdfp5hsnajQxWbrRIUuLlsnKnRJ2bqjXegYcdeKTH+5qNc6VegYnSB2MueomWIn+pnHxBHOHiVk/3XEEe6n20yx67QsXZjE5cXaMJVJgtg999Y5XCHSmmOjml7j3regOIZVf7oV196wHaeccgomJyfxz//8z1zbq9ISqdu0aRNuu+02UACDl58Ie/2oWlNrzpLLzhHUH3EnNrfyhMli/7moAREyaBrhqnPKEj3Lfrl6BEjXtQhkYgJdQ3PRdv3qWs9UVxZI55QnWc/atWveyWZn7UQn1Y9pjnULYmGkBlFEsKg4ilUf2oZ9F02AEII777wTTz75pFJMHppea7uui6997WsAgKn1y2Ct7JYSOtYES3MWqOBAzSB+tk61FZFl67Iic7Vsnep0JX62jqf/XBIsW6fa3BrM1h1NI1xFYNeO6jWkax5FRruzdIwsZ+tUzpHG8+tfy6oiX4ujnD1i97mmONLTJDF0il2nZ+mChJ8Rmo6rskJywuFQcyxvli5MXdaOAMd+aKtUnEXFUSxfXcGll14KAPj617+uZ2WVBJoudb/+9a+xbds2uAUbU69YJR2nv3sK5QGqJHQAGrN1swnX1dN/jurpP0d19p/T1pla0/qRWRE6hs6+nLOh2TVMFsVOxznK2nkG9N3zuvoV67o3dH3+Wpeja7PUMXRm7IiGQY+1rJ1oli4MtYHD6wn+Ytl/K8V57uxHUSqV8NRTT+HOO+9UK1QKTdWbarWKb3/72wCAqY3HgHbLneHuQgUDxSlPyBQgDmBPuSBltYuPUAqislZqM9GQ8dO1viIA9YWvqatnnUZAX5ysLemTNXQ+tFQnyA6iM5OZJTScb8IyLLrWedV0r2lD25cwDXGIpaU8hJDsPYMc1/ungDvQA3ukDHtEcTUGC3CWTMNZMq0UhtpAN6niPfPvk46RH7Dxzne+E4A3vqCZK000Vepuvvlm7NmzB939Lk69TC6GL3QAlp6+D3vPlVuKijiAVXEBCjilHNxeOcEkOh8yulF56FAKUqmCVB0tx0f95hOFBa+DQmdJTJAcDBWsaBSyUNqFLqv91lRXQ9BxnwS3b7fYZVXoGFpFOgNip3Cv1xH8cqpy7wbLo3ItNmN1jqw8k4L3iMpnT4iXOKFUSey2X5kDsSmITZXE7l/e+k0A6mLXd/bfYcGCBdi3bx9uueUW6ThpNO2JMj09jX/7t38DAJz/hnEUS2IXXXehgsV9Y77QAUApV+GeiJjBsnNM6BhUopLOtNAxLIHJkRmUzsgcOz6LABJruVLXnRE6FkeGZmfoJGSqaRm6rIqdKEGh81+TPGdR27VL7LIudAxJGSNR92g7xU6j0DU0vWYpYwdIDzCJbFJu57Mp6pmjof5WETurNNMPkomdjNwts0f9n5nYychdX1cF73rXuwAA119/PSoaZnCIomlPk5tuugmHDh3CwHwHZ71qUmhblp2z0HiRimTrgtm5cCiRbF2mm1vDyEyHEpedExQ7GtenQiRbR13QajX6YSCRreuYJtcsip3M3Gk67pGkGK0Wu04ROoagjEUKnWSs2DAi96AuoUNCXzrRezmuTKJf8luxQke7nlFxZRKsf905vY2ha2InInfbr2x8bslk7b7+lm83vNZNqtJZu+71n8X8+fNx4MAB3HrrrcLb89CUJ0m1WsV//Md/AADOvWwCuTxw2dzfY+OS3anbBptbo+DN1tUJXQw82bqOyM6F4c3WJQmdCJTGCx0rD1ccjuycgNilxuIUqaO6D53IKgdx15HI9dXKe63ThI0XThlLFDrBWKlhWt3HLq3+472neeoanVk7HbT6eZV2rjn72blzemPvSdHm2GCWriGWgNgdkxuO/ZuI2F0y5wkAQK4Av2/d9ddfj2oTpstpitT95je/wb59+9Dd5+L0l3tZui5SQdGOP4Co5lYZ4ppbo3C77MRsXUcKHeDdGGlixyt0adk6SvmGaKdl63Q2t1LKHytF7FoqdFnM1gHJD3beDB3PNcJ7r+m8J9NW0+hUUmSMS+g4Y3GHSbsnm9nsGoWuufWA9Guy1St0ZPHLUeqXbL4kS5rYbX9XeuuSSnNsEN7m2C4y09Tac9rnMG/ePOzbtw+/+tWvlPYfhfanCKUUP/zhDwEAGy+aQD4wD2Bcti6puTWKuCbYpObWyLISEpmt66jm1jjibhCZARFxYscrdCxGnNiJCl1Cto7qmuQYbcrQdZLYiTa56mxWbbbYdbLQMTpp8EQrml3jiLvPRcsUd022a4WOViQlRPtvx3z+7kAPd4i05lirmy/7ldYcG9X0GkVacyzL0jHyBeCKK64AANxwww3a563T/gR59NFHsW3bNuQLFBsuqu9LF5WtS2tujSKqCZanuTWKcLauY7NzUYSzdVEDImQREbpgeRriSGboIsROOtMXUem2tck1q2IXRLYPnc4BEM26T2eD0DEiZEwoS5cSSypMM5tiZadiCt/vspKZtaZYoLnPM5l7Ja6/tMhuY5pjebJ0DbFixC6p6TWKOLELZukYfaddg2KxiG3btuHxxx8X2k8a2p8eP/vZzwAAp58/ie7exovpsrm/xzlLdyk3twazdbJCB9Rn62aV0AH1N5xq/zmWrav1n5P+dhHM1qk2uQbETvlBURMpbcsmqZJFsfNFTnFQhM6pSnQPnJhNQscIyJi00EXEUgoTvF9b3ewaB7vvVcsTvCZV7uNA87DyBMrNeK6pzGUa6GcnkqULExY73ixdQ5yQ2P2/t3xHKk64OTacpWOUeikuvvhiAF62TidanxyHDh3Cffd5B/OSC6NHvHaRChYXR4SaW6Mo5SpY8JL92L8xLy10DLfLhtudz5bQ6RLMWiWubUCEagzWDGuRzE0qbOBA5yhXXbR7DrtOgLrqQheIpSWM4+oTOkr1rByhs4+dri9mWRxAoWuJTMdVnuieUAp7rCyVpauLUxO7T7/xZzg2NyQdJ9gcG5WlYyx76fcAAPfeey8OHTokvb8wWqXulltugeM4WHFCGYtWRK+v6VALG3p24LS5e5T25YKgYDtwClRJ6OxpB7kj07DKDqjqKgqUehepjuyDrhvZcUEcV8MailTP+oeOA1TKgONoWR+SVqt61hvU2P9I28OTWPoeDLq+JOiI0wx5ypJkZhRdGWjqUlBd6ydrHP2nJZZF9KwNbWnsI6i6Ko8fSPN9p+Oey+dAxsSmPIti+zv6AIfAHRWcyDYEsSmW54ewuzqgXKY/3/p2fH7bm2L/vmiFg1NPPRWu6+K//1ttGbIg2qSOUoqbb74ZAHDWqxqbVB1qoUJzcGF5fess+RvQBUHVtUApwZzTD+HF84vpG0VgTzuwx8t6BkUERcxVePDpilN1QKbKejJ0AaFTEjHH8eLoGHXGhI6hIlIam6fY9trEzgumtr0u4dERJ3z96HzQGLFLhrrKYhfcXovYuVRdxgKfu1Ks4D2rSVpV0SZ0Ogn105Ymz7pPucpi53TPDJBUEbvPb/glAMCFpSx24+U8Jis5fH7bm2LlbtXZXsvmrbfeqm3AhLYr5qmnnsLevXuRL1KcvLFe6hxqwQ3tSiZb54Kg7Nq+0AFAd74Cpyh+MpjQ1V2UNhHP1rHsnI5vwVEZOhmxqzrRAyJkMpFM6AJxpMQuKHQBpGKFhU4FjR3JtYpcY3C57cLXTjsHJcR91kbsWoeC2EVt13axi/i8tdUNssemKUunVeh03WNRzxAN9xwTOxm52/aukHwpiN2i3MzqEUzsZOTu6i3v8n+erOR8uQtz0sZplEol7N69G08++aRUmcNou2r+53/+BwCw7iXTddOYRAkdAOFsXTA7x4SOIZqtixQ6GZKaSUVlTFeTa1DoohARuwihYwjJWIzQScVKEjpRqUpochUVtKj3a5c8EbFLaiZtx/QhaZ+xEbvWQV1QxxGSu6T3tk3sEj5n4Vhx96rosWlsdtVGK/qKit5z+agpyVyprJ3TE/EZSYgdy9IFcWFJZe3Gy437jhK7YoniggsuADDjUKpokbpqtYo777wTAHDKS2eydHFCx+DN1gWFLorufAV9Zx/kErtUoePN1vFIGK/YpcXijZMmdAye2dbLlVihEyJF6BipYue6oOVyemUtsHpFGjxSRiyS+L62iF3WJvptx5JcRuzS4czacb1Ho9hxCRnH58stdmn3qOPwyd1s70eX9tzgvecihC6IiNg1ZOnqygO4Y3xi97kNN9dl6cKIiN0Ht74z9m9RYjfn5B8D8BZtcJNWZuJEy5XzxBNPYGhoCKVeF8edUq7rP5dEF6ngvL5tiWKXJnSMtGZYe9pBfmiKL0OXJna6smoiTbdpYscrdDz7YTKXEitVxDiFLr1Mgs2taZW0pkERvMLW1GbZMKLZYV2xdDGbR6BmEQ397PxQmsROSz+7Gtq+BAIt62eX+X50SWgakMUjdtveNRCdpQviehm7NLlbwjEnHY/YfXDrOzE6nbymfLif3XGnlNHb24vDhw9raYLVcvXcf//9AIA1Z0wDdnJ2LkxSMyyv0DHimmGbNiCChzgZ0znCVUboom7ShObWOGLFTkLoImPJ9p+Lq6w1LXiuo3lWmrhsncy1rauJNg4ZSdMldiZbx0eC2IkKn65RsYliJ/i5auuuAcSL3WzuRydD3GeUkqULkiZ2qULnlwWe3MWI3ec23MxdpjSxSxM6RrCfnZ0DzjvvPADAXXfdxV2WOLRcQQ888AAA4PjTK0JCxwg3w0YNiOAhqhlWuv9cOFunMiAiLHayQhcliCoZuuDxSQgdo0HGFDJ0dbF0DogApDN0YSHLxECKsNipCIyuwRRhVB4qRuxaS4TYSQ+oaKbYSX6eWuuR8PHN9n50slN9hT8rAaFjxA2gSGx2jSNC7D634WauLF19mOgBFEnNrnFMVnL44vY3ov/E/wAAPPTQQ8IxwihL3e7du7Fr1y5YNsWq9XI3TrAZNmlABA/d+QqcLu9iUh4QwcROZ1ZNNRYTO11TlliWktA1oKHJlRCiR+iCEqXY5NqUqUpUYWKna/45XbEAPQ8VI3atJSB2ylOfNEPsFD9HbVMgATNid7T3o0tDV1NsIGvH1ewaR0jsRIVuJkz9AAqeZtc4xst5/EfXRbBtG7t378aLL74oFYehfBX97ne/AwCsOLGKYkk+ThepwCJUODsXxZzTDmHfOUU9I1wBPULnKmT6wsRNWSJVLleL0HkiRrX0oaNUX58aL2Br+9A1O0bTmM3yM5uPTSca+9jpnNBbV3+2pmbsFOjofnRpUCqVpQtDHBdkfEpe6Bg1sRNpdo0P5YmdrNAxxq0STjnlFADAI488ohRL+VN77LHHAADHrotfDoOHLlLBZQO/x9kLnleK88KhORh8egGqPRRDp/QrxSJVF2S67ImPKq4LUqmqx3JrK0RokVXXG+WqCHVc0OmylhUnKKVARb1MdWRsHVXtyzWpfjMnZOafKrriAHpFLIsDMHSt8qEb6uoVMlVcb3lCLdk/29Y2ySuIBbg6Vp8g3vG1cqR5K7EsPc9QQjC0YRHm/V49O3rNq27EcYUD6Lam09+cwtV3vQeDu+coxzn77LMBtFnqKKV4/PHHAQC/m3+qdJwuUkG3NY0eUsZlA7/HOQt3SsV54dAckF0l2GUABHAK8hc4qdaEh1W8shdlTeZIbX1S4rhqsXQKXTVQIUlWBtRhmT71B0FQ6LSs4xhktold+FzLni+dKzxkdUqSLD7own1sdcTTLYgK9zNhazzrIHCvKIldYJ1Z5fWi2bG5VI/Y1VASuyw1uwbjsM/PVXj2EYKhs5fAKRDY01AWu2Pyh/2fVcTug7/5I5AJG6RKMPjCHKUyffm5zQCAJ598Uuk6UPrkdu/ejcHBQVDLwjPD6/DPe14ltH0XqWCePYZuaxp2bQHXHlJGt1UWLgsTOitwf40dSzC0XrxDZZ3QMWTEjkmYDpohdOHjEawU6oQuiISwRGXo1NeGDZ2r2SJ2urIoOld4MELHT9xoeB3xMiB2zRI6hpTY2Y0SIC124WNTEbuo45P5DLModED0s0D0OVoTumpxJpaK2F3z6hsbXpMVOzI+UwZS8cRORu6Gds5FpW8ucrkcBgcHsXfvXqnyAIpS98wzzwAAynPmgDg5PPnEsdxix7JzNqgvdIxX9T2Ncxc+x12OKKEDADdPMbzGwtCp/GIXKXQMEbFLEDrhbF0rhE6QWKFjCAhLUpOrtNjp6hfUZITFLukhK3KudK7wYISOn6Tj0zUlTRvFrtlCx9A1EIM6rpjcxR2bjNglHV+7muW1Cl1CLN7nT4TQMWTE7ppX31iXpQsiKnYf/M0fNbxGKsSXO16Gds4FqRBQ28aJJ54IAErz1Sl9glu3bgUAlOd60kTKBOOV9A6DQaGLooeU8dqBTVxiFyd0DDdPMXyClZqxI1UXZGI6XuhE4MjQcYudLqFj/efShI7jQZgqdAwOYeHpQye2jFjK6OKMZesAAbHjebjynCudKzwYoeNH50ofae9tg9i1Suh8eMUgIksXhkvs0o5NROx460Yemrmuq0qstGPk/PyihI7BxI5H7r544U9jhY7BK3Yf/M0f1WXpwoiIHanMHB8bLLF582aubaPQI3Vz5viv7XhmaWK2Lk3oGDxilyZ0DDdPE/vXNfSfSyItWyfQ5JoqdjqFjskcz42UUElwCx0j7dso56AILrHjzc5lUOxSEWkGSzpXog8AnbGSMEIn9l7dgshD2jXYSqED+AZPcAidH09HVxkesRNtxUgii9c6j9AxUhIMQ2cvSQ1hT/Nl7VYVDnEVKU3s0oSOwSN2Qzvn1v3+L89tBwA89xx/S2UY6buQUort270CVAZmsmCkTGKbYXmFjsHELmrgxAsH53IJHSOuf11ic2sccWIn0YcuVuyaIXRCBYvqyyIodIy4fiM6R7mKNrdmTOwSs3UyfeiiKntdgylUYjWbrJZLFF1ZuBaJnbYR3TJx4uo2AaFjxIqdSH2RJHay/Y0jy5TBfnQiQseI+vwSml3jSBK7L174U6EixYndB+/mEzpGktixZtcglX5vxo7nnntOugle+pMcGhrC2NgYKIBKX2/d36LETlToGFEDJ144OBdkdxe30AGB/nUBsZMSOkZY7FQGRYT3326hYwQqDWmhYwRHsEkKXWy2Trb/XCeIncqgiOD50jHtia5YYbI04XEzkD0+Xf3lmix22ppdJcWQRn3JlhA6P164Hpc5tiixUxDfhgd8FoUOkD/G4OcnIXSMKLH74oU/5c7SBYkSOzImfl1FiV2U0AFAtb8PlmVheHgYhw8nNxXHIf1p7t69GwDgdHdH3kDB/nWyQsd4Vd/TOGfhTrxwaA5e2LREWOgYwYETSkLHYJWJ4ihX4gYqpawInV84oi50AVQzdA1ipzogIstip2OUq85543TGYhih499e51JwqtSuTa396BSoEzsFofPjsfpc5diaNd1JZoVOMZbrKgkdw54G5j3uXQOyQsfotqZ9ufvg3Y0DI3gJi12U0AEAtW0sXboUAPDCCy9I7Uv6U2A7rPb2xL5nxzNL8e295ysJHeBl69448CiOXTQIe5pICR3DzVNUugncQk7b/FA6pi0h5QrIxJQeoas6gKZJk6mrT+gAaGly9cVO1wjXDDyUgmhfdSJjx+eTRaHTKT+6YmV1kmKg5f3oktA+YlTXSkKuo+X4gDaOik2DED3H6LpKQsewp4DXbdykJHRB/uKJt0hl6YIwsQv3owvDpE52WhPpO5KtT1btiZc6a5rg0d8fj//9wutkdwMAsEExx5rG51bfhAUv2a8Uq/tFgoHnynB68nD7upViEZfqWSXCqUlYpaK+wkPVAZ2a9obqq05b4rrA9LQ2oaOOk41Uf3B79k/Hw0m3POksU9bELstCp3Mt3dmMjnqBTVquQaD8L3sapjvRGQsu1bJyD0O1Xq9D00oPALxlMBWhPSXMe3pMOc5x79+ChYVRPDC+RjnWhze9A1OTBZB54vPnhll8n4VFDybXWUuWeIND9u3bJ7UP6ZqetfdWS12RfycUgEtgTVl49PfH4ysvXCq1HxsUeeJdLAvtcXx5zc+lxa77RYK5W6ZhV1zAJkpjf4lLZ254lRUnmNAxqlWgIrncVtUBLQdiuVS6AvCFThMzzRlEi9j5la6s2DUrG6ZBnurW3lSJF942K2KXZaGL+10lVhZoUvO00nxxQSnUJHZ+PaxQroYuHrrWeJ2NYtdwruRj0d5uUJuATFeUxW5tr+cIE25BSew+vOkdmJwoAgAsiyqJ3aKHCXKTFLkpioWPxr/v+toI2JZL3eDgIADA7aqXOkIB4gJwZz5sWbELCh1DVuzqhK6GU8qD9paE4gAhoWPIiF1Y6BgyYseETkPF2BShC3WEbavYRb1fJVunUZ4iF1OXiRe3TbvFrhOELu11mVjtpJn9DakrJ3ZRWT4FsasTMQWxix2MZcSukdhzJR6LCZ0fWkHsjnv/lrrfZcUuKHQMWbFjQsfITXpiFyV3zKmYY4miLHVOceagWXYOtPHDZmL3t3v4mmKjhI6x0B7HQHGKu6xRQufthKDaWxASu0ihY4iIneMk3+DVav3arEkkCZ1gtq7pQsdol9glvU9G7DTKU6TQycRLe2+7xC6LwpPFPnQ6acUAElGxS2q2lRC7SBGTELvUuTCN2M2Qeq4EnjkhofN3MV3B3M1iYrfqfVv9LF0QGbELCx3DsijIXH6xW/iIVSd0jNwk9eUuiFPwBpiOjIzwFzZYPqmtAjt0i14BfKFL2tmUhd8+dkJqxi5J6BifWvnfWMiRrYsVOn9nntjx9K9LFDoGj9gxoUt7CFQq6Rk7ngwdp9i1TOgYrRY7HvETETuN8pQodCLx2p2JiyOLkwvrnMA3i0LXSnjFjqcfnoDYJYqYgNhxr1pjxI7//uMQuzihY1hT/GK36n1bcVJffJOliNh9ZNM7Ev9u2Xxit/ARC/mJ5PMQFjvmVMPDw+kFjSqb1FYAJicnvQLkclxC5+9wysJwOT4zxiN0gJetuyalGTZV6PydEjg9yU2xXELHSBI7XqHjQaTJNUXsWi50DN1iF4dIEy2P2OkSP3AKHU88ndk8nXSq0PG+N6tC1+ppXtLETmRgBYfY8a0yo97HrgEjdvwkiF2a0DF4xG7lVdsShY7BI3Yf2fQOTMRk6erKxSF2aULHCIqd265MHZM62DluoWM8+/SyyGwdr9AxkvrXcQudv/P4plghoWNEiZ2M0MX1r5PpQxcjdm0TOoYmsQMQ319OJo6uptWE9wsJXVI8nf3udNLpQpe2jRG6euLETmakbILYia0HnSx2QrEYR6vYSZ2riGcOp9AxksRu5VXbcEo///QfSWLHK3R+uRLEbuEjYvUrEztam2exXJYblCFVqzuO4++Qkpz4TiMGTogKHSNK7ISFzi9Eo9hJCR0jKHYqGbqw2KkMigiJXduFjqFB7CKbYVVGuUaJna7BFJAUuqh4OkfI6mS2CF3ctkboogmLncrUJxFiJyVhMWInFYtxtImd0rkKPHMEhY4RJXaiQseIEjtRofPLFSF2PM2uUeQmKeY96dXJlUpFal5CaaljUMkHcXDghKzQMRba4/jSml9gwUv2ywsdIyB2SkLHoLU5ilSbXNnACR2jXGtilxmhY+gWOx3TlgTFTlWAAtsrCV0wXhbn1wNmn9CFYxihS4aJna657Gr3i5KEhcROKRbjaBE7LefKlRY6RlDsZIWOERQ7WaHzyxUQO1mhY+SmvGudUjrTIipSFpmdWnUPXvnKzZqy8NT+Jfjd1LHSMRhL7DFsXLgL5X7ICx3DJqA5C1TnXGY6HgKVirZpS+A4nijqIrjUWZshhPj/tKBzKaSsDmTQSRaFTidZFboMQmr9g7TEyom3CjVQq6O01Q060djvT6vYaURF6BjWVAVT84mS0DEm3AJ2V+YrCR2D2BRL7idKQhdGpglWw0ypCtsun8RJi/bj4dHVeERR7H42cibu3nM8pk+dwL6N4nPPBbEmq7Amyt4agqrrCDIB01CJ+KlYVdkMfnvWuMwP0bDmopZzDngZP8vSK3Y6CK6ZmRV0LQEHZFfojhYR03CcxLbV72ViweryHpTKMkYskELeu6dVy6UjRhgdMsbqg6yJHUvgaLp/rOFx5Rj7zp8HagM/vukVyrGWF4ZQoTb+eP0DSnEogAW3dCE/7sKq6luPPCdx7yhn6npkZXn5JM445gX05adRdnN4YOR4abH72ciZ+OnO0zFdyaFYrGDyLHmxsyarsMem/T4ANJ+TrwTcwJqNtq30kGpoW5eVAvYADwpiVsSOXVeqFW8wk5wlsQvJUybEzgjd7EPheIP3r/S9HBA6AN49KCt2QaGrxZKuG2rbNiVLpyJjFqm/3rMiduGuMDruI8dVErt9589DtTb7WOEIURK75YUhFIjXWrWsMCQtdkzoisO1L+wulMQuNznz+ZdK4h4jLXWFWlq9f+c0el4UvEkCQseQFbug0DFkxS4sdAwpsQsKHUNS7GI7S4pKQVjognHaLXbhCkS28o7qk5cFsYuRp7aKnRG62YvEcUfdt8L3cljoGDJiFxa6QCzhuqGZQseQkbGw0KnEikFK7OL6NrdR7IJCx5AVu6DQMWTELix0DFmxy026gOuVq1gswpZ4Bko/yXt6erwA0xUMPFcVErtczqkTOoao2P1s5Ez87PnT6oSOISp2cULHoDmBZsEooWMoZuwa4JWCOKELxmmX2MVVIDqbStopdiny1BaxM0I3+xE4/qT7lfteJhasQj7+7yJiFyd0gVjcdUMrhI4hImNxQicTKwUhsdM1vVQSgmIXJXQMUbGLEjqGiNjFCR1DdOxnbtL1tqHe597dnb4gQhTSn97MDquwpym/2C2fxPql8W22TOwenFydGIYJ3VQ5vhLhFbs0oQMAEMIndklCxxAQO64hzWlSkCZ0wTitFru0CqTTxY5TnjLRFCuDEbqOh+c+TX0Py9Bx3M+pYpcmdIFYqXVDK4WOwSNjaUInEosTLrHjETpd9xan2CUJHYNX7JKEjsEjdmlCx7CqFN2V9CVNc5Muusss0eWVr+VS19vb6/1AvaHYXGIX0ewaRdnNpQ6eGK6WEoWOkSZ2XELHSBM7HqFjcIid0Bw1cVLAK3TBOK0SO95vhLxixxOvlWInmA1rmdjpytIZocs+KedCJKMe+960DF2YJLHjFbpArNi6oR1Cx0iSMV6h44klSKLYiWToWiR2+16eLnSMwhGCH90cL3Y8QsdYVhiK/RsFMP/WUqrQAcDSsUF8//b/g3ds/U3se3KTLt7+7N347r3/F0smBgHqjXjt6+vjKmsY6af3/PnzvR/ojIUysVvykNsod5xCx0hqiv3ZyJm4cw//4rxxYickdIw4sRMROkaC2MlMOhgvdoKxWiF2oin+NLETidcKsZMUp6aLnRG6o4+YcyLT97VhGyZ0Evdzg9iJCl0gVkPd0E6hY0TJmKjQJcXSiUyTa5PFbt/L56HaIxaqOBQtdiJCx3jP+gcbXmNC13Uk/fNYMjGIf7zvOiydHMJHNt3UIHa5SdcXug89czOWTg7hHx7+JvqnBwEACxYsECovQ/rJvXDhQu8Htz61aE9T5Mfc+qydoNAxosSOp9k1imKxgskzJ+vEzptcWG71gzqxkxE6RoTYSQkdIygFKg/wZoqdbJ+NOLGTiddMsVMUp6aJnRG6o5fQuVEZpe5vKyt0jKDYyQpdTNy2Cx0jKGOyQhcVS4GGbJ3KOW+S2MkIHaN4pP4cywgdAKwoDNaJnYjQlapTvtAxgmLH+s8xoWMsnRzCa/Z4+/QTZ4JIf5q+RdLo9mKWtSMUUkLHCIqdrNAxil1lX+z8uehkCYqd6oUdEDsloWNYRLzZNS6ObrFTrbTDYqcSrxlip3MAgk6yWC4jdK2ldo50zCfpx9BwP5NCQV3oWL2QJaFjOI660GnGFzsdEq1T7EYmlITOKw/8bJ2s0DGY2IkIHQBM5rpw4+pzG17/yKab8K6n7gJxgbftqBc6f9uXbgAgL3XSs0IuXrzY+4FOxL5nesBGfpRg055lOG/VDtldoezmYMG7CGWFjlHsKqPSVwK1LbksXRBCQK3aygU6xA4AcRw9k0YSC3A1TYrpWupSoGMVjCCtGKElA9FwrnSTxZGuRujagpYJwoFalk7HEnUzWXzlL7SWBWJb+uoa29Y3sbBLAQ2rKcBxtA0co64LoqsepVTPBPvdXWpCV6N4hODErn2oUPVztaIwCGe4wC10jP844QIAwIefrhe3D22+GW977h4snB5p2Obr6y7Di/PmAbt2YenSpVLllf5EV65c6f3gjsW+x80BxAGsLb24//nk0axJnNP/HF7TvRPvnvNb/PtZ38VrV22WjlXe1o8FmxxU+/Jw5sqNLvFxXRDHBWxL/YImtW9ytq3nRrMIYOkaNaoxY6cLHVLQrCWDFM+VlnVhZ4JpjGWEri1oyybrEzpiW+pfrIimVWhYOLu2FrKulW0somEFiyZk8HX2r9MZS/FepP09oJaFpffHJ4q4IMBr//AB5EkV3Zba2uZfeuj1+NJDrwepEuw9T/xa+I8TLsA/nXxZw+txQvefq1+BXbt2AQCOOeYY8QJDQer8HdJpUNq4GPHEohwmF3oXtD0NkGfkxa7PnsKAVcACq4CT8sCfLbxbSuzK2/qx+BEX+XEX1CKo9Bfkxc51QapOYMUIDWIHzE6xC0iKskAFs5g6Fvf2Q6mWK1ShSZ4rI3QCHE1Cp3reLFtPX80mCp3KPegLHUNFxpjQAWpiFz7fqi1DdbE09a+jtPmDMHjKURM6ALCHp+TFriZ0G3uf81+SFbsvPfR6YDTv/SNAtUfu8/uPEy7A19c1il0QJnSUVjA46A2U8BNngkjfmX19fZg3b573SyhbN7Eoh4klBMHMp6zYndP/HC4sPV/32gKrICx25e39WPxbT+gYvtgNCC7FERY6xmwXO0BcViIkRbryjmqWlokV07wtX64YuRA8V0boBDiahC7ud146QOhm/iRezgahY8jIWFDoGDJiF3W+qTv7xU7ivqR93b7QMaTELkLoGKJi96WHa0IXQiZbZ1Uo/nPV+ThY7I/8+8FiP/5zdW3Ebs2l5s2bNzNtnOj+pLaqcdxxx9UKMpNKZELnRvTWY2J3304+sTun/zm8qXcLBqxCw99Exc6eIsiPNd5Q1CKozCnyZ+zihM7fkYTYRb0/i2LHKipeWUmQFK1NniKxUvorCpcrTcTa0WydRaHTSRbLpJu461D0+uwgoZt5C395Y4WOISJjUULHEDmHSe/NstjpQiAW7esGjfmMhMQuQehE+dLDrwdGIvru17J1ImJnVbyZMd624+7IJlfAa4p92467vV9qLnXCCScIl9vfp/SWANatW+f94BzxX3NziBQ6hj3N18duQ//OWKFj8IpdeXs/FjwRf/GzjN308oF0uaM8K0YIiF3S+3SLXS6nLne8YseRdRISqLTBIzyxOAegcJeLN7PGIXbasnRZFTpdEn80Cx3v3xkdKHQzb00vd6rQMXjOQZLQBd+jY18ZFbtW969LEjqGPZyyGgMBLv7DB3Hx2x9MFTqebF2s0AX2V+1xsffc9GshKHQf2nJL4ns/9MzNeNuOu3HZRV6T69q1a1Pjx+5XeksAJ510kveDewSAl6WbWpB+Uac1xZ7T/xz+oHdzotAx0sTO70cXkaULQi0Ct2Al97NjAyN44BE7nspZp9gBerJ2aWInIChcAsU7GpgNNtFAarlEJSzh4WOEjhMjdPzv62Chm9kkvvzcQgekZ/J4hA5Ib4YVOd+6xU4D2vvXJdyvPELHWPJATLaOABe//UGc0/cszul7litWktilCl1gv9XeZLFLE7qoptgPPXMzttxzD4BAwkwCPZk6dwwTCxDb7BoFE7t771rf0BzLBkbwEid25W21fnQpQhckdgBFWrNrFEliJ/Kg6ySxkxCURIGSmd4lKp5EnNhyyUpYxMNFaz86XRihaw86um0As0LoZjZtPA4hoWNEnQ8mc6JNq5EToEucb51il8X+dXH7EBA6AMgdiWiGDQidKFFixy10gf1Xexs/O6tCU4Xu62svxVtf9Rl8fe2lda9P2DZ2DA8DaGOmbuHChViyZAkAikppkFvoGPY0UBghsLb2+GIXNTCChyixs6ej+9Gl0SB2MkLnF8ICcunrvKbSSWInQaRAqczXF4ynEKehXKoSFjhXmRwYkUWhOxqQPVfh7WaR0M2EmDkeKaEDvG2C54U3OxdFWOxUzncGpzpp1sAJ2tctLHQMe3hqJmOnIHRR/PUjl4kJXYBgto7JHChFqTqNP3j+/ob3f33tpf6giP9c/Yo6sdvU3w+HECxbtgyLFi2SKg+gKHUAcNZZZwEAcqMHpWPYU57YvTg+kNqPLgkmdt8963sgBIn96NJgYuf2l+SFLohtef8AtQr8aBE7LRMwt6gpVjigZYROhNmepdM1x2XWhA5ozjx00gEssebWJJjY6TjfGexfp3vgBJM5GaFj5I5MYcmDk1qErotU8NePXIa/fuQy0GE53wg2w/pCV2MyV8THzn4/9nbN8V8LCh0jKHaPDQwAAM444wy58tTQJnWFIXmpAzyxOzTRjQnFa2mBVcD9E2swOV7A6DFqFQq1CNy85a0+oQohXiWZU6zksip2bB47xUrOFyhdx8fOuw409n3Ttr6rzm/6ukTMCB0fOvuA2pqEDqjdzxqELpfTIz0slo6R5MEv1zpi6cAi2bzOdWXrCAGZVJsEmDG+rKgsdDYoXtfzIr573nflhS4Ybyr689vXPc8XuyihYzCxe6yWnWNOJYs2qbPHj8Ael//gyusncPUJ92J3tR97HYU1WQEcKPeDOhZG1lYxeJL8smK58SrskWkgn/PWeVXFXzVC4bSz0be1xbBV5Y4QonfKE0Wxq/uGmBGx0/qtNYC2h7BOdGSNDOloPE86s2F+s6Jiplyn0CGfE+/7FkWw3tWSHbW8GQWUyhT47HTVM4pfPgkhM1+uVcWOPfM0ZCNHTp4Dp0jwxe+9SzqGDYqLuvdjwCrhFV2KBaJA8ZANqwIMnhwth/u65+GPX/7nsULH+M7LzsOWLq9AbZe6BQsWYM2aNSAAug7sgyXhY+X1E/iLM2/HqvxBlKmN3dV+bCrbUnL3zeET8dNtpwMASJcjLXa58SpyQ5Mg7KLO50CLBTm5C1YgKmIXNZ2KZUmLHbtxsyJ2kfLUZrHzy9SkEarKYteMefB09e9SJYvZCx1kXehQu+4lxa5B6FSu8XxImmRj6cqqATNCB6iJnc7PLgh1peuryK4msmIXykRbY3KrRIycNICRk+eg2uXF6n2B4gv/Ji52QaFjfO/S68QLVJO54mFP6ACgWooXu8lcMTHc6Io8yPR+UEqxdu1aLFiwQLxMAbRc6S9/+csBAPnhvchNQVjsenumsCo/03xbpjZG3C7hrN03h0/Evzx1PsoTMydXVuyIS2eEjmER8axd1DI/OjJ2deUSF7vwzdtusUvMhrVJ7JotdIxZIXZG6PjoAKFjyIhdbIZO5hoPC51srLh6VuazCAqd/5qE2MV9drquewmx0z4hfDie4wqL3cjJc1AtWb7QMXpfEDu2KKEDgFd0CYodhSdz5UbPqQouTAV4QucUCS5e1QMAOO+888SDhNAqdbnRA0C1itwUkB/lk7vKqeP44Il3R/6NZe14xW5veU6d0DGY2O26xOaSu9x4NXnSQ1mxC79GiNfHjkfu0iY9VsjYzRQpGxm76Hhtyti1aA65WSF2upitQqeRZgsdQ6TrQWqTq8g1Hid0oqTVraJTS2np15fy2ekUO05ShY43W8eea3HxBJphg9m5ht1QcGXrbFBc0r0vUugY3M2wAaGLIy5bF2Z0Rd4XOrhV/Pa3vwWQIak74YQTsGTJEhDqID+yD3AB4iA1a1deP4GPn35HXZau4T2cYvfN4RPxi22nxv6ddDmgcyupWbuGZtc4eMSOZ/JhnqwdzyoWALfYJU7qycRO1+oTHGLH/eCw9IzI4xE7vaO/OFey6FSxMwMj+NA4KEIbPLE4snXcfejS3pPP8Qkd1yoRvJMT89bTCfF4s3W892gL+9dxZ+jSnolpQleDJ1s3ctJArNAx+nYnN8MGs3NxQsf4zuu+lVwgDqEDkpthGUzmnKJ3fPnhvZiamsLSpUuVlgdjaHkKEELwmte8BgCQH9o98wc3Wex6e6ZwXOFAavw0sYtqdo0ta0pzbGSzaxxJYhfV7BpbKI3NsSlix7X8Dusoq2tkbILYSclTk8VOa7Or4OjUjhM7I3R8ZE3o2NQeHKQ1wwoPioh7r2h2LmmfonVp0iTxhHMqlTSx09lywUtKM6y2JleRkdwpzbAjJw2gWuL7/OKaYeOaW+N4ZcmNFztOoWMkNcP62bkAr17huchrXvMaLZ+HticAk7rc6H6QamAUbIzYlddP4Oo193DHTxpAEdfsGkec2KU2u0aRNIBCOLUfIXa8WbogMWInesE0W+yUsmFNEjvt/egk0CJ2uuUurguBLozQpYfRKXSCxImdtlGuss2tkStFaOyqIXofxYmdjNA1uX+dlEBEJTxkpuaJaIYdOWlASOiAWjPsv9dn60SFjvHKUqhMwQERguMEorJ1UUJHqtN4+OGHAcw4lCraav5Vq1Zh7dq1IKDIH3mh/o81sQv2s+PN0gWJGkCR1uwaR5TYCWXpgoQHUKiMHgyKnYzQ+WXK2JQnuvvYAdrFrlUDI3jQNYmsVsKDfXRhhC49TBuFjhEWOyWhC26n2n+ubqUIlcmJQ9e3rvtHpd5rQv+6uilLZAg+IxXmWgxm65jMiQgdo3f3zDmSFTqGn61LGBDBQzBbV9d/LkT+yAtwHAcnnngijj32WKkyh9Fa67/2ta8FABQO72i8GAP97CZPnBbK0oUJNseKZumC+AMoLrYxvConnqULk8+BsgpKl9ipUsvaqdzE2sVO10zsgP6MXQaEjpFZsTNCx8csEjoGEzstGbral2Ft6JokXlXoWLaOZcxVz5PG/nVNH+EqguPCGp8Uzs41FIMCX/j+u/Ca0l4loQNq2TrB5tY4Bk8qNPSfq4NSrMsPAwBe//rXq+0sgNYa/5JLLkFXVxfs6VHY44ej3+QCxHbRZ6sJVJnauG9yFabdHOYvGJWOQ7ocFEYs9O+qghY1TjCsI4ampXpgq68964udKoEY2pffyhLN6NsmC3u4ZKlMgBE6rjgas0W6vrDo+lKm83rU1uSq6T4htZUrMjbBONUwCTB1XNBqVcs1Tm257FxdDAJMLXLwuiferSR0AHD3FPBHr7hXWegAYOTEarTM1bDHD+P5559HqVTS1vQKaJa63t5ev3CFw89FvufI+iouPHErXijPw9PTy3HQ6Zfa1+7KfDw1uQIuJThtwYtKYmdPArkJB053AW63wrIhrvyEnXWwZlcdYsduPEWx8xd5VpVWl9b18dAidqriy7IPfkYyOw9kXatO+HGyInZG6Dji1LoFqMpY8DNXXW0gl/PuNx1lUu47yjfaUqhMOiGWvrKp3i+ajs2XQpeCluXNhxbzoMU8QAjmPjUiH4cAhza4QH8FBw7KuQTj7ingiNONl3TvwGvf8qB0nIkVVUysqAJFF8Pr4rtzvXGV1/XroosuQk9Pj/T+wmiv4S+//HIAQH74RZBy4wgX0lPFsaXDqFAbY04XXijPkxK7KZrHpOOdlJ7ctLTYFXcWMf+pKgCA2kRN7CgFaUYH+wxl7HxUxa4uVBvFLtxPKDjyVwcZEDu2fWbEzggdRxyNmacwsqsNMKEDa4aV/Bx1CZ1OmnVPtPteiyiDbLauYTvJz5/JHPsMrVG5Vrug0DFe9vhbpGLdN+XiiNPt/35B/zNScZjMoeidK9oTLXWkPI7f/OY3AGacSRfar7g1a9bgzDPPBAFF8dD2ur8dWV/Fq9dtqXutQm1hsdtdmY9d0/PrXpMVO3sSyI9V/d+Z2FXn9YjJne4sXUNBJcQuquJjUxkIVIp+lo4nfhIsSxdBJjJ2AWaL2IW3a7vYGaHjiNP42Uhl6zR+xkGhY0iJ3dEkdH78NmXrNHa5iBNB0WydL3R1L1LMfZr/uU0JcHCj2yB0ALD/wIBQeQBP6A47vQ2vv+YtDwvF8YUuRFS27o9P6YPjONiwYQPWrFkjtJ80mnI1v+td3hDjwuDOuulNWJYuTIXaeLEyh7s5NpilC8LE7qzjn+eSu+LOIuY/XW14ndoEbt4Sy9o1K0sXxLa8FShU5YUQbrGLFbpgLB5Cza7RoVosdmnzb80SsYuN02qxM0LHESf+MxESu7TPViBWlND5ZRIRu6wJXav6mbajGTbluHizddRxk98rcB1FCl0Na2SSL0YwOxcSOgZvtu6+KTdW6ADgwv6nueIEm1sjyxzK1pHqNG666SYAwDvf+U6ufYjQlCt648aN3vQmroPCoWcBAMOnOA1ZuiDTbh5jThderMyR7mcHeGK3rDTMlbWzJ4H8aKPUMbibY5udpQvC08+Ot5+JruZYEbFLDaVJ7NLkjnNdy04Wu6T3tlzsjNBxxEn/LLjEjvcz5bkfE4TOLxPPZ5tFoWslrdwf577SxI5b/FKydcH+c0mkZeuimluj4MnWMZmLEzpews2tcQSzdR89exGmp6exdu1avOQlL1HafxRNudIIIX62rnj4OcCpAL2VyCxdmGk3nyh2UU2vUaQ1x8Zl6cL4zbFzu6PlzvUyWU3P0oVpQT+71CxdkKQbNqHZNTqU4jxKDE3NsZ0odkLvyUK/n06lDX3oEsVO9LNMypxzCB1PnKNe6Pz9tiBb1+Tm1kgSPvtw/7n4N1JYI5ORYkcJcHCDi0MvSRc6xnmb/iD2b0nZuTCv/oNHYv+WlJ0L42frnApuvPFGAF6LZjNmgGja1f2KV7wCK1euBHEqKB7cnr5BACZ2Uc2xcU2vUSQ1x6Zl6YJQm8At2NFZO13NrjITDTdR7ISEjpF080qco6aJHWeWrqEsHSJ2Utm8Zj7oZmuWrhMGRfAQtdqAiNAhoRnWCF1z9h11T0nEj5I3mYEUUdk6nuxc/Qa0oRmWEngyN1Dx/nGyd/+chtfSmlujuGjgqYbX0ppbk/jwWXMxOjqKlStX4vzzzxfenoemXeGWZeGqq64CABQGt+GCZY0nJ4mo5ljeLF2QqOZY3ixdGOXRsc0g3M9OtgKUGEARSzCGYJauMZRmsZMQurqyZFzsZPrdNVXsjNClxJE75w3ZuiYPiuChQeyM0EWUoQnz1mnqG5jafy6J0PUoLHRR5QkKnQTBbJ1Kc2swW8fb3BrF6LHj+MlPfgIAeP/73w9b16TiIZp6lV9wwQU46aSTYFUdVO7cJxUj2BwrkqULE8zaVXpd7ixdmLrm2K5C6/rSJaFrouLgAAqZ5dLCsYDUwRF8oUxTbHyIDA+eMEKXEkdx0lV2X+n4zNi8kZJC55eJBspkhK4RnYMmWDxFlGQuGKdc5u4/l8TczWMzza2SQgd42TqZ7FwYlq2bXO5IyRzjw3Y3pqamcMoppzQtSwc0WeoIIfjgBz8IANhzXxnj++VEgYndULUHFpF/ULCsndPjwi0oVFy15ljYTfjWpYLOpbfa3SQUDpOh1SeyKHbsX6bI0GemDcvWc01rlWcNXyzBrmsN5dKxhJhOdJ1rXV+gcpqWRsuKqAZRnQyaJTgEm1ujWLdyn5bBEKcUDmByuQPaJZ/oyI2M45e//CUA4Oqrr27q86zpV8UZZ5yBl73sZaAusOsXY9JxxpwujDpdyBNHSexu2bIeCx+y4RQsJbGzp6qwxqcBQkBVbnbVLF0wjoZvW/7qCrYmsbOIljUnAUWxC2ZUFR9cfjYiQ2KnCg03m+kiK2KnY+WB4NrHqmuDaqBO4hXFjrBMv2KGnhQLerJRGcmG+lh6JiUnbDkzVbFTXYdbN2yC8wm15T/d/hJozsKyX8q1yDFOPGY/FnSN4c6Rk5XinFI4gD6L4NqL/lMpztv2VeA4Ds455xycccYZSrHS0Liacjwf+MAH8PDDD2PP7x2csXU/+k7uxqFqn1AMh1pwqXfh5IkDFwQOZl7jjjOSR+mwAxB4YpcjsKoUVlmw47xDgWqtAiQE1CatmauuFdSkhdgWKCVy/eKComoRALVKSPWhUavsuaZRSCxTrXJVbT5nlbyupZw0ZV2UIVZ2yqJKUBAImRXNwtqa3ZlkKH7RIcVaP2N2HRMLoBL3egZlDpipdwghoJAY9MXOM4sDSERBZmWOQaty3Zrcfm/NVmpbgEvR88IkZPTkxGP2AwAWlbz+84Pl7qS3x3JK4QAAoK92fBd2vyAV570b7sehJ8q4775x2LaND33oQ1JxRGhJimD16tW44oorAAD3/iCPBXQYC3Lya7UCgEWocNaOZel8SK2PnGDWzp6qwhqL+EYimrXLaJYuCCFET9aOranajqxdkrgJPsxiZbKDs3bKa4umkZVsnQpRD1OZz6qpo4wFv5iy7Fz4HhD84jWTnQvFEf3cMyh0kdMrCd7rXv0ZkSkWzdZlXOgYotk6t78Ealue0AVYepNYtu7EY/ZjUWnUFzqGaLaOZef6FOv09264H6fnn8OhX3gDPd/2trdh1apVSjF5aNkT5L3vfS8WLlyI4YM2fndLDkvywzihuJ9L7irURoVGX9B54nDLnZ+lC8OydpxiV5ela/ijYnNsu4mRFiGxSxLVVosdE7rEMnFO1pkm4B0odlrnPEuiXWIXtV/RsiQ9TEXOUTOaXcNwih1JG1jFKXa+0EX+UaAZNqNCF7kLgbL6QtcYROyLaYcIHSCQrSPEF7oGXIre3XyrTAAzQhcFb7bulMIBX+ii+MrLb+SK894N9+O9G+7Hhp7ncOT+P8fevXuxcOFCvOc97+HaXpWWPT26u7vxkY98BADw8M1dGN3vos+exJJ8etYu2PQahUzWroGa2FW7baW+dl4s4n3zaIXcNTFLF6Zj+9nxZEN1rRvbQWKndXUCHlotdkn74y0Lz8OU5xy1QugYKWKXKnS8ZUkSOv9NPOcmY/dMgtAF35NanDihC8KTrcuS0LEWFxVqMuf2dUULnQAnHrM/Ueh44cnO8TTBMpnb0PMcBvdZ+OEPfwgA+PCHP4zubrmmYFFa2tZzwQUX4Oyzz4ZTJfjv73TDdYE8qQpl7ZLQIXZpzbGxTa+R8RKydrqaXnXCUR5iW7VpT2IuHd5jaoXYifaXS3jQCfXh6yCx46ITxY5nP6kPboHrM+kctVLo0mKICF1Cto5L6Pw3a5Dr1H20UOiQ/mWSS+jSsnWWnT2h4yS2CZYQX+Z4hC6pCTauuVWUpOwcL+/e8ADeveEBbOh5DoD36Hnw++eiXC5j48aNeOUrX6kUX4SWPjUIIfjEJz6BUqmEPVvz+N1tRQCe2MVl7ZKaXqOIa469ZespWPAwZ5yErF1i02tkrBZm7WQRnJBXaz87NumxIrGVo6g4HyUZO+F+dJ0kdiLx494r8zCNOkftErqIbJ1Uhi5C7ISEDohvhu1QoQu+v6EotsUndEGisnVZkjlAuD5raIKVyc7FNMHKZOei+tWlNbdGcc3Lf9bw2rs3PICze57F2T3P+q/99rYinnrqKfT09OBTn/pUS6fkankqYOnSpX4z7D0/LeHQnpkiRGXt0ppeo4hqjnWGC+g+JCJjcoMo4uM1oa+drqZXFkuQBrGTyTxqHEBR16lZZVRr6MEnNdIWyKzYSQ+M6ASxk4nb0BFe0wO13Rm6gNgpNbkGxE5Y6PwNFQdR8MaVoVYHiT54w1OcxA6ISA4SMRAjQ0Knq7lVIDuXhGx2LtyvTnYwxGu6d/k/s+xcUOYA4PCLFh742RwAXrPr4sWLhfahSlvady677DKcc845cCoEt367B27AtZKydqKIDKKIRXdfO4tks+lVkkz3s1M5x7VRgdJC58fJ0MNLB1kWO5V4bFvVB2pwSg8NtLzJNSmOrND5AUj9/0qF0VfvRI5w5S0Gm6JENDsXhmXrsiZ0CpCJqTqhU2HNigPa+s7pam4NZ+cAwHWAB77/UpTLZZxzzjm49NJLlfYjQ1ueFIQQ/H//3/+Hvr4+7NuRw/2/6Gp4D8va5YmDkWrj33lhWTuofIa1rJ1Vdr0Jh1WoNcdmapoHxbnaZvrZKR6TRrHThZ4lyozYNR0topCtz0nLXHQW0SN0Or68ZfC60XF/Kwsdk0odQqdtVSENcRxHi9AtuaWAxd0jLRkMkcZdk8sis3OMA3d9FJs3b0Zvb2/Lm10ZbbvLFixYgI9//OMAgAd+2YWdTzX2K8iTKmziYrhSUhK7m55djzmbcqiWLDgF+ZPs96fTMTu9juVUdMQBasuC6fr2rBCHTXKsI+UP6Dkmy1K+MbO0rJi2Oem0LSOXkc85Y2gROvYFSfVLm65lrair/lmxVg4dE2NnpZ9zYLJ3JSSakGPRVE+oCh1cit5d/FObNG5u4bF9K/DYvhV4/7Z3KhXlrsll2F+ZEyt0O57M4frrrwcAfPKTn8TChQuV9idLW786vfrVr8Yb3vAGgBLcfF0Pxo5EX5BV18JwpYS9UwNScjc1UkTXkAvXBtw8URK7OmRT9m5IyFRuRH8hdk1iJxsnuLi4ropFstKlwc7dbRa74Ez07RY77ZMMZ0HsdAtdBlbR0Cp0qPUJlRQ7ElzHVXK1AK8QmqZdivpZKWSbu8Ho2L9kn8BmwsqSOzDctjK41MLj+5dhcrKAyckCnj8wTyrOXZPLfKGLY+wIwf/860pQSvGmN70JF154oWSp1Wl7PvyjH/0ojjvuOEyMWLj5up7YuqfqWphycspZO0o8sVPN2vmI3kjhm7jdYhdeOktH1k5G7OKEQ1fGToP0amuK1XJMbb91Pdopds16iLVR7HQLHUNGXuqEDvDOi6jYUVe/0AVjq6DzS47qsoWyRPUJbGMGsqEsU4rdlSRg2TkmdCowmUsSOtcFHvr3CzE0NITjjz8eH/7wh5X2qUrbnwzFYhFf+tKXUCqVsGtzHvf/PFnYVLN2QE3sBLN2uXEHuaGYNHCrm2OjKoOg2LW4OTbygUEsr4+ISFniKmmBSoomzYTfYrELv5dVeNqydgJC1dSlwLKQsZsFNEvofESmLQoLHUNEpHTJcZz8dGq2LmGgnFATbEx2rl1NsM3KFBJK8fS3T+F6bzg7JwtPdo5x8K4/w6OPPopSqYQvfOELKBaL0vvVQdulDgBWrlyJT3ziEwCAB/6rhC2PeBMObptegmcnGtulg1k7ZbnjzNpZFRekXEkOqEvsZOMEs0CtbI5NW2oqLQZP5aGt6TIjGTugZWLX9LVdOcvBF4fznDRbAFucrWu60IG/GTZW6Bg82bpmC52u/bQ6WzfLm1ubgksx/6nxlLfoyc4FZS5O6PYFXt/ycB7//u//DgD4xCc+gWOPPVZ637rIhNQBwMUXX4wrrrgCAHDrt3qw/3kbY04XRivx1qujSVYma5eIaqZMd3NsUpzUtUxb2BzLUzmnNF0mZunqytN8seP+u2mKldhPix5mLRK7VggdIy0rlSp0QHozbKuEjvc9XLtqwRefZjW3xryvFahMB6MLndm5tKZWAJhwPSfZ/7yN27+zAADw9re/HRdffLH0vnWSkaeBxwc/+EFs2LABlTLBz/+xB+VRvspBW5NsC/raEd5vhlnM2kXAXRnKNMfGlqcNfSEbymCB2LZShdYKsWtJlo6jHGIxEs5Hqx8gTRa7VgqdT0y2jkvoGHHnRVf/OREBylK2LgrB44ltghXIzrVCtHj3kTs40pT9NyM7x8vECMHt3zgRU1NT2LhxIz7wgQ9I7183mZK6XC6HL37xi1ixYgVGDtvY9M0J0Cq/2OnM2mmRu7CUiX5Ta/cgiro4Mc2xMstNBWPIVqhZEDsgMmsn1e/OZOxCMSLOR7syAk0Su7YIHaK/iAkJHSOcrWvWgIhmbNMswmWZhc2twtm5Sc610jkJy1wrsnNBnArFvf96Afbt24fly5fjC1/4AuwMza+akafADH19ffjKV76C3t5eHHnWwdgNLwplG9o1kCIRnX3tZJfiCsaRpVnNsbIPg8BDiLvptaEsegaWZDFj1/IsXUw55GNk4yHWDLQInQqBbJ2U0AH19227hE7j/rU3wbayubVZhOqQdotlOwZCBKEuxejPXoHHH38c3d3d+MpXvoK+vj7pcjSDzEkdABx77LG+/U4/PoyJ/94vtH0wa7d/ug+oSM7rFWiSdfPqS4S1ta9duD+a6hJaOsTOsgENE25qQZPYqc5np0vs2ip0gXKox9CQrdaBxmydNqFTyA6wQRPSQseoVtsvdDq21z1gQqPQqWyviyz0nfv9/uXYdGBp0wdCJPHETx38z//8D2zbxjXXXINVq1ZJl6VZZFLqAODss8/Gpz/9aQDA5D2HMXnvIeEYVdfCRLUAa9JCflKu4mFZOxDoqXh03OwubW+zpc54lOp5+GtYCklLE7XS7vWJXdszQVlDda1QYoFYROm8qm5fh47mHsvKxqoKOupE5XuX1IqShS9DBMTWtJKNluIoxtFwrZJpBxMTRUxMSE4XQgn67u2WljkA2HaHg22/8jziL//yL7Fhwwa5sjSZzEodAFxyySW4+uqrAQDjN+/HM7+SW66GOEB+1EHXkCMtdwACS9SoNBPUphXQJXdZQPXBYBFlsfPmfsuA2OlC5ZzWMidtF5AMrM4AoP7a0vAFQum86FiIXsdDsrZWM3UUPiN2HKr1oSqahC4TsGPJSj2kAiHKa4JbZQdW2QGRXequJnN995XQu0+yiw6Ab113Gjb9xNv+Ax/4QGZGukaRaakDgHe+8514y1veAgCY/+sn8PRvSlJxiENhTznIj2ZA7IJxVGmz2GnLLs0GsVNcY7OBDGTsTMYPfpZOLQQJvyAXSKPQAZC/ZoPll62DdAudzJeILF3fs0HkGLatXBdbZce7PlWE7r4Sevc66N0rL3Tf/NezsPDxxwAAb3nLW/COd7xDOlYr0LRSc/MghODDH/4wBgcH8etf/xoLb3sUWw69FBMv6ceZq3aLx3Mo8qMO7CkKp4ugUpK88IIVkuzNyMROtc8Qq1TbVEERQrxmC7Z/paZh29teMstDat8OVda7rAXy/m9hc0xk049FxM5nxHkjFhHqYxcWENHt48rRFqLkiVj85YsROpFz4m+foQxdEOq4YisZRB0Hq8d4Ub2vZmN2bjag4Visck3AVGTu/hJAoSRz/3jzpSgeOICljz2CiuPgoosuwoc//OG29y1MI/NSBwC2beNzn/scyuUy7rvvPsz73UPITZyLJ3auQeXYaZy1epdQPOJQ2I4Dq0LU5C5qHVcZdMpdKyqriOZjdqH7csfzwHNjbjiLAC7ngzdmP4QQUMtSz57xjjjWnaULIip2EUiJmez2WRa64N/SypmSoeM5J4lCJyKXTRI6AN61yyt1cefUpYDNUfc0u7mVuuny3ClCJzvbQTvwW2zkv7hkSeYAYO6mQ5i793eYrlRw/vnn4zOf+Uympi6JI/PNrww2h90555wDQh30P3M/+rceRs8TXXjirjV4dMdK4ZizsklWZRCFBuqaY1Uqz9nQHCtAagdtnvOZIgg8TYhpEtMx8Fw7KdKnrck1TS7TaKbQ1UjtW8fTFzB1Sa/O6D/XksESWRjRrQtWz6oKnY6m1hflm1r/8eZL8Y83X4r+Z4E5Twxi/v7fYXp6Gi996UvxhS98AblcR+TAOkfqAKBQKOCaa67Bhg0bQFwH3c8/gK59h9H7AtDzRBce23lM5HZz1w1i3znxc9axJtlZNZAiTuxcTX35Eqgb/q5D7BTkrpPEjosm9pFTlT4A2cnSqSAgdHHvy3qTawNJD1PeY0j6MtkhQtcSWlmXNPOYmZgqypwvdDJQgr77utF3fylZ5ggw/SeDsX/+2i2ezPU/C9gTh7HowO8wOTmJl7zkJfjrv/5r5PN5ufK1gY6SOgAoFou49tprccYZZ4C4VXQ/fx/ssYMojFB0byrhid80Zu2OHRjE1MKULEYga6ckd0GxU5W7ZmTtWpjO1yZ2cVk73j5NhHgPNlW5i6uMm9n0GkXU+RSQqVk/eEJEpJowGlZY6OLe1yqhqxGZrdMx3VCrhS58L6i2GuikxV8Om9b/SzE7VydzMvVnUOZedND7Ynp27o9WPdzw2tduuRRfu+VSDGz3frfHDmLe3kcwPj6OM844A9deey2KRclpVNpEZ+QTQ3R1deFv//Zv8dnPfha//e1vUdr1ACaPORsFLEFhBCgPd+GJ3WtQXTklPJgirr/d9Jwc7Ml+5A5wrmOXtYEUs2EQBW8/u6SyqPaza0I/F6nmHsV+duH+YKKiFtmfLAtZOhkJCfZtU2x27bgMXZBw3zqZYwgPmGh3hk7ys6SU6hWirGT6VdHVd06kDiYEz10xB8CkJ3MP1PrNcYhcHF+79XUAJb7MAYA9ug9z9j2KqXIZZ599Nq655hp0dcmtStVOOlLqAKBUKuErX/kKvvjFL+Lee+9FaddDmFqxAdWB5SiMUE/ujpTwxK41qBwzLZySDModAFRKFpxSTvyE6ajUWAwdI2TbgNQgiiiY2AFKo2O1iB3Q/k7M7FzKngudgyc6VehC28oKXd25UBXLdghdDX8krOy5DA6YMCNcPWaT0LVpIIRz3KQ/EEK3zAFAbngPevc+irLj4Pzzz8fnP/95FAryK1e0E0IzMYW2PNVqFddeey3uuOMOAARTy05HZe6quveU+wkmlrvoftHC4ofFFxemNoGbt5AfLiN3kDNTFwUhII5CZ1Cg1ueu3c268n3+KCt/3MhX7jJQQHa9V78ciiKiIYby7acgdbqgGSgDAPWBNdqWnFMoh465CRUnfCWqDzMtS90pxiDqq2VoydSpxtDweFaaYBoAydW+ZEgKnTu/39tWek5Egn3nzwUA9O6RqPMJMPHHQxjeMg8D2xo/j/zgTnTv3wTXdXHRRRfhM5/5TMcMioiic0teI5fL4bOf/Sy6urpw0003oevF34NUplBeuNa/oQojFICFrsMU9lQVTpfYYc9k7RyQmlBRqQWwM+DPmrJMss0TXqYMAFUsh0W8GJKC62fsAKXKRqmyYuVQWodXvVlaFS9LpVgGkek94rZXQIvQqTa56hA61a4alsU3LUgz0SF0swHLUvriCqgLnV8O1e0l60gyMQ1AUuZqdL84ib1RQkcpCgefQfHgFrgALrvsMnzyk5/siGlLkpgVV79t2/iLv/gLXHnllQCA4sFnUHzxsbqHRGGEovugA2usjPyRKdhTVeH9OF05uL1dAKW+3B3NUErlhYRVvCoVuG3XZi6XbDJjo3R1VFoK2yotlq3S5MfQNVhANo5/Lchv3/bBG1kROkDhi1JtvVGV7hGqx2GETnl6kMyhIHSk6mB65Typ7bv3TqJ77yTs0ekIoXPR9eJjKB7cAgB4z3veg0996lMdL3TALJE6wKvQ3v/+9+PjH/84LMtC4cgulHY9CDgV/z2T82yUF/WATFek5I7mLNBCLctXEzsjdwpNiEGxk63MLaIkdt7uFcROpeMw26ZWiSs398j25ZLdVgfh/UqUgwmdSn84JTIgEnXXjsxDVPX6y0qTa6czm2ROEjIx7f2reM/m8oBYy1pQ5uzRaQyfMrf+DU4VF/XtR/7ILliWhU9+8pP4kz/5k8yvFMHLrLuCLr/8clxzzTUoFovIjR1A9857QSqTAACnC6j2eCZOHEda7nxq/dNaLnftzkpEIJ21C85Dp5q1y4LYacjaKdHGjJ1wti7uvQoxZEbxKqFDJJrR90vkXoy67kSawnVk5zIodC3tbp7R7Jzfn64V+wrIHBM6EcIyx5iaO3NtkcokXuJuxUMPPYRisYgvf/nLeOMb36il/Fkhe1eRBl7+8pfja1/7GubMmQN7ahjdz/0G1uRQ5HtF5c7pysHtK9W/KCB31FKswDL+baLtzbE6xE6mcg0+mFoldnHXmsr8aK0WO7Wdtb/ZVZVmdebnzdbFXW+8X1Kz0NyatHRZJ5BBmfNRLBvt7U59T6zMEYKp4xambh8nc2GsiUGsPPQItm7dioGBAXzta1/Deeedx3UcnUSGryY1Tj75ZHzjG9/AqlWrYFWn0L3jHuSO7MbkPBvTS/sb3h+UuySxq2uCbfgj5etvl3ExU0UpaweofXNvdz87XrFL+vvRkLFT/Tvbj8Drsu9LCKC2fbtHZ7a7yTWD2bmWktHsnE5oMbnpNC0zl9b0miZzrOk1d2Q35u55EIODg1i9ejWuu+46nHzyyRxH0HnM6itq+fLl+MY3voFzzz0XhLoo7fkd7OGnUO2OP2ziqA2mAGD629VoW3NsJ/ezYxwNYqdShpTYacJ2VAhd0v3Hc30lNcEaoVNjlstcGuF+c6IEs3NxUEIwNQco7H8KpT2/Q7lcxnnnnYdvfOMbWLZsmWTJs0/Hz1PHg+M4+Nd//Vdcf/313u/di5GvnIaufZOJ21HbBnIW3K5c3TQopOoiNzIFazR5e+/NXuUVngKFOArru7Lt2jVfneuCCnbGDj5A/Lnq0gg+VGTL6jhK50lpPjv/c4rYnrdSd91oORY5pqiHM+9DUXGqlMg57EQfyBHb80pZ1OTKR4XQMaJG84l8YYjcvoOErt3Z0PD2ojKnMhenjvnpFOST9nY3ZOrYFCWpMldreg1n6kr7vHlmcyPp880On9SDV6w+ggceeAAAcOWVV+Kqq66CNcuF+qiQOsYdd9yBv/mbv0G5XIab60EOZ6Jrf/p2UXKXGyvDPjzKv/OQ3BFXceLadk5CXJt8WPTSqVtZQkZKpMtbEwvJ80WT5Cx94+htRSqWKLETPRYVsdItdopSRwSmHcic1LVaMiyrXixEM8Dhc91OoZM571mSuhYKHaBB6gpqi9i782e6OXHLnL8BwciZS/1fRWQOAIbXEKzMb8XevXtRKBTwqU99ChdffDFnyTubo0rqAGDLli343Oc+h3379gGwUBg7Dvb0YhCk37xBuXNzFn+2LkhA7pSzde1cWUIiW1e/vaSUqJS5XVm7YJnZ9qIVfFjsZI4jsL6p9LaS+GInK0QKa7OqrHHbQCcJHcOeWRFAXAoDzegq5W9Xc2s7pU61G0YHSx3L0gnLHAAQgunVCzA9Jy8scxQU1eJ+kDk7US6XsWzZMnzpS1/CiSeeKHwMncpRJ3UAMDIygmuvvRb3338/AMCeWoTC+PEg4MsAMLkj5SrIZHybfiLshm9Xtq7dUgeoZZs6uTlWFiZ2SjKvQaykNlWUutr+RbJ04f13crOrklzYtlofTcX+qW3tP9duqVNp6muj1Kk2vbrz++X7zBGCytLaAAdOmQMACgfl7u1wil7z27nnnovPfvaz6OvrEy9DB3NUSh0AuK6LH/7wh/j2t78N13VBqt0ojq2D5aQPwZ4J4q0/SlS+EbmufKXXgU2w9TFkhVQxa9dOsfMCyG/runqW/pFBR7ZOkbZNYdKpQgcA+bxajLzCapLtHhDRrvOuKnQK62sDbW56dV3QnpL0IAjaVQQE58dzrXEsO3MIzz33HCzLwlVXXYV3vvOds77/XBRHrdQxHnvsMXzxi1/E4OAgQC3kx1cjN72EqzkWAFB1Zi5emUogKFai22egCZbFkb6MVMSuTU2xSn3sZoLIbVfbp1SlzR5wqpk+DcgIXkcKXbv7dKlm6Vjzq8xx6BA6i6gtWyaz23Y2uboaupmgTVLHyp7LKV33PHPb+e8FRbWwF2TuLpTLZcydOxef//zncdZZZ0nvv9M5+jQ2xJlnnolvf/vb2LBhA0BcVHqfRblvMyippG/MYHKkKjai2xOi3iyiZTZ3AiL74FBZL7JNExUT1YrbCyK3XW2fxG6faOigIyYNTprYloeMCJ0ymkReCFmRZEhsq7QGsxdAfu4511X7kqgRqbolWHbZz80VS1JQUsGGNwKVnu0ol8s455xz8N3vfveoFjrAZOp8XNfFT37yE1x33XWoVqsgbgGFsRNhV+Ykb1h1QMoBAWSVAm/lQCnAvlUFbwaR7VWzdUm/pxGuiFqZtdMxKlZlyoA2N8MCgt/Iw5Wt6ghaDYhk7Foqgp00bUkUEUInNUjC31hQsnSUP4jotSpQVm0jXFWzc4xOytJF1X9SWb6ZY6b9Palvd3JH0Lf6RRw6dAj5fB5XX3013vrWtx6Vza1hjNSF2Lp1K770pS9h165dAIDc5HLkJ1bGD6IISx2DNwMWlDqGJSCGqlLHYvC8FkWc1LRK7o7WZtjAfrkq8biHnOp8dxrgFbuWSd0sFDrhuFHHwDtIRVezaxCR65R3RZGsyRyjU6QurvxCUth4rElSR+GgUtoJp/QiKKVYuXIl/tf/+l9H1ejWNIzURTA1NYV/+qd/wn/9138BAIhTQmFsDexq4/JisVIH8GXtoqQO4M/aNUvqkl4PkyQ1zZa7Nk910jFil/Sg4z32JjbD8Yhd06VOxyoFGRU6odhxx8Ajdc0QOgbPdcpx/jMrc0DbhQ7gkLq0uo5bCqOPNU7qHHsEi045jN27dwMA3vCGN+DDH/4wSqVS5PuPVozUJXDffffhq1/9am0QBZCbWo78xLEgwa6ISVLHSMvaxYkdwCd3zRS7tL8BfELTTLlTzdYBs1/s0h52POe4BSTJXVOlrtOzcwBXH7rU/SQdR1oTbDOFjpF0nSZsq+X8NlPmGO3O0tlWvLzzlJ9nkERKXROWOgoXldLzcLv3wHVdLFiwAJ/61Kfw0pe+NL08RyFG6lIYGRnBP/7jP+L2228HAJBqyetr59TmvuGROiA5a5ckdYykJtlmSx3Pe3iFphlypyNbp6N/HZBNseMVjqRrqIWd5ePErmlSd5QIXeq+eI4j7oHfCqEDhKWuY2QOUP9iiiY2vfIeQ2qWL/0Yg1Ln2KNYetoQdu7cCQC45JJL8NGPfvSom3tOBCN1nNxzzz34+7//+1DWbiWIa3lTmvAKQZTc8UgdEJ+1a5XUJb1XVGZ0y11WVpwAsid2ItKRJs4toinLezUGVI/RbqELrBahtD/e44iSr1YJHSPqGg2vrd1JMsfIYtOr6DHESiHfsdFSEcjn/L5zbvdeuK6LefPm4ROf+ATOP/98sfIchRipE2B4eBhf+9rXcMcddwAAiFNEYfx42JMDfNm6IMEmWV6pY0TJXavFLur9kktoaZO7NjfDAhpGxHpB5LeNEjsZ8Yg6t21A6xJfQdqcnQPaN2VJw35FjyWYrdOVZRQleH0Gyt/WtVoZqksJSqK16VW2DmuQQrHjov09cHKHMeeEQ9i/31sZ4qKLLsKf/dmfYWBgQK5MRxlG6iR44IEH8H//7/+trR8L2FPzUTi8HJZbEAsUrEBUJpNltFrqwtspZqi0rE4xG/rXeYHktw2KnYp8BM9pG9GyxBdjNmTnAKU56Or2LzWpcC2zpiUbJjkfHbs2a9u2ffAD0L4MPQuho+lVtd4KSp1gHeraFZQXvQincAgAsGTJEnziE5/AOeeco1amowwjdZJMTk7iO9/5Dm644QY4jgO4NgpHliM3vpB/NYowKjOna1iCSbliyYrcGbGbETvl9WZp26VOG7NB6CxrZpJb1XKoHEtOYekwvxCKEwxjFsgckAmhA+Ct96qCbQO2JZ6dA0W19xAKxw5ibGwMtm3jiiuuwB//8R+bka0SGKlTZOvWrfi7v/s7PPPMMwAAq9yNwtBK2OVe8WC6xExlLVnZJcuCMVj/QskY1HW9c6EyM7mq2CkOnGCiTRUX5QYgfxyBh40WUZaFWNkQwzauDgEwkbLkJUCD0M2shqJwPLoydYpSp0Xo2ihztLa9ynHMfIFUuL+t2koaqudTQvSd4hiOOd/Ftm3bAABr167FX/zFX5h55xQwUqcBx3Hw85//HN/+9rcxPj4OAMiNz0f+yApYrtpEjMIEP06ZtWTDl4PUerQuqOvOVFYSMWi1Wv8QFq38XQq4ikKl0r8usM5qx4td8BzIyBn7HNstdrJSp1PoAHEZYDLHflYpgx9T8piCItau/nTQ2IQtioalvGgohsyx6JI5vww6VmIQkDrXqqAy9wVUewcBAL29vfiTP/kTXH755bAlrwmDh5E6jQwODuKb3/wmbrnlFu8F10JhZBlyo4vq57aLo1lNqCKVRjDTFrzRBWPQajWwqfhDgLpufaaMPZBFpudoVzNsRF/HtohdxANI+HZPGmnMS1im2iV3olKnczBE8F4SEQOdza0NsQWPLwsjX6FxZKvIOW2CzHnFEDsW3TLnl6NFUkdBUe07gNyKQUxMTAAALrvsMrz//e/H3Llz1ctgMFLXDJ5++mn8wz/8g98kSypdKBxZAXtqILm/XbP7xfEuOxYewSkqd4FsXf3uxeSuQewAMblrl9hFla0dYhfzIBK65XVMcRIlU+1aJJ4X3dm5ILyC0EyhAwTXco2RrxZnzFoudE2SuZmicNaFTZI5vww6zmuC1FFQOKVhLN5Q8ZfgXLduHT72sY/h5JNPVt+3wcdIXZNwXRe33norrrvuOhw5cgQAYE31eXJXiVnbTofUAekP/rQbOJitCyIid6FsXf3uOeUuIQa33LVa7FKW42qZ2KU8jLhvex0TEifJVCvljkfqmpWdC8IjCs0WOn8/HMebhZUk0GKha7LMeUVJP55mypxfDh1ZOtuOvQ6cwjhOurSExx57DAAwMDCAq6++GpdeeiksHfs21GGkrsmMjo7i+uuvx4033ohyuQwAsMfnoTC8HJZTbNyglaNYk5YdS5IPHrmLydbV7z5d7iKzdXVBOPrd6ehfB6SLHWf2sCVix/lQSrz9dawJyyNSrRK7tLI0MzsXJu7zaUb/uSTSjplHuFowtYkWoQOSs4IaRA5IlzlG0jG1Qub8cjSp6dW1yyjP2QOn1m+uUCjgiiuuwLve9S709koMJDRwYaSuRezbtw/f+ta38Ktf/cp7gRLkRxcjP7IEhAZuiHZMTRKuXKKaYKNIk7ukTFvd7knwl8YwaWLnbxuTvdOVrQOSxU6gv19TxU7w4RRbBYhci3FiJtLk2Wy5iytLK7JzYaI+o1Zl5xr2G/N+kf5uTWyG1SZ0qs3hCfCK3ExRoo+plTLnl0Nz0yu1qqj07wdZOOgnMi6++GJcddVVWLJkifq+DIkYqWsxzzzzDL7xjW/4qWi4NvIjS5AfWwRC7dY1wUbRsHQZp3iEK8q6VS6Ss3WNRYjI3nHK4UyQiOydLrGLm+pEYnSuFrEDGo9J4iEVWQ3IXIthMRMdnNBMsQuXRdOExtzZuSDhPqs65kuDpAA1DH4QHJQ0s3PxfYf328z1W2UHqyQgKnMzxZk5prp7r0Uy55dDV/NnLgdKHFT6DqB4zAjGxsYAAKeffjo+9KEPYd26dXr2Y0jFSF0boJTigQcewL/8y7/4CxXDyaEwshS5kQV8I2XTdyK/LSH82bow4eydhNh5m9bLHXe2riFQ4AHVrP51CvPpaRc7hYeVtodLUMxkpxFphtypTJETFU5FxNjnpCk7V1ceGfxpShTmjmtCM6x2oWuzzHnFqdVpOrJygNpcfxquO2oTVPsPo+f4MQwNDQEAVq9ejauuugovf/nL9WVaDVwYqWsjjuPgjjvuwHe/+128+OKLAABSLSA/vAS5sQXyK1MAepoavULKbReqLIQybQEavtHKlif4QNcpdqpyoLspVkdTkpZ1hF15oQvG0ImGFQz8UJpErC3NrVFYRM/50Sh22oROF7V7TOWRSQjJhMyxsqicH296kkHMWV/GgQMHAADLly/HH//xH+PVr361mW+uTRipywDVahW33HIL/u3f/g0HDx4EAJBK0ZO78flycscybaqVmqossBn0VZf/Qq1CdFw9D3sdl72uJbR0Zuw0xdGx7JBWVM+z7iWpVIWunc2tUeQ1LPsFaJM6YmtqFtRRHg11F4CZL4FtljlATegoXFT7hrDgDNdPRixcuBDvec97cOmllyKnYwk5gzRG6jLE9PQ0fvGLX+D666/3p0GZydzNF2uWZVkt9tBot9yFYikvW+XHarPgZUXsgs1LqmJXE3ElsQv2ZdSF6lJlOpak0pWd0xDLX79V9RznczNdJdQKBOUl4TKYpVNpatV6/TN0La0mOvExcVHtG8Tc9VXs378fgDc9yR/90R/hTW96E4rFiNkcDC3HSF0GmZiYwC9+8Qv8x3/8BwYHveHgpJpHfqTWLEsFRtgF++4As0vugJlKs51ypyJ2wSW0asciLHdhOWCfjWrTeS2OlNwFHzy6H2yyS5XJdCRvRnZOMV7D+q2y55dl58IDpMQLVPs/1MVBOE6GhI59No4jV0c1Q+YAaaFrOKciq/sQB9X+QfStncbhw4cBAPPnz8c73vEOvOENb0CpVJIqk6E5GKnLMNPT0/jlL3+JH/3oR36zLJwc8iOLkR9d6I2WTSKqD1oW5a4Wr6Ozd7JiF7WElmjWLmmSW1VBrMURFruYVTW0IrqqhehUDwzdMqcQ18/OhRE9tyw7F0ZmOiQdK4ZkReiCn4mo0DVL5ILoWlKNZ+Jj4qAycAjdx01ieHgYALBo0SK8613vwqWXXmoycxnFSF0HUC6Xceutt+IHP/gB9u3b573oWsiNLkR+dBEspxC9YdLAAt1yB6gLnoaOyF452iR4omIXN5BAROzSxEBU7FJWQeCSO55VPnTCc85lVi3Q2dQaB+c+GrJzYUTOaZzQAWJSFyd0fiyBFUfaKXRRn4GI0LVC5gD5LyXRb4j9k2uXUR04hMKKCYyPjwMAli1bhiuvvBKXXHIJ8vk8dzkMrcdIXQdRrVbxq1/9Cj/60Y9mpkKhBPb4XORHFsOudDduFGyCjUJ0XdckdGXvApdkpppnAY6VHDj3lzYylFfsRFYv0BQrVex41+XVCc/5TlsuqRn95tLg2Fdsdi5M2jmNam6NgueeSxM6P1bKaiO142q50KWc99TR+q0SuSC8128asct5TaIy5yAwZwROra5YuXIl/uiP/givfvWrzQCIDsFIXQfiui4eeugh/PjHP56ZxBiANdmH/MgS2FN9MyNmZSYRNtk7PtKW2FJdZSFN7GQmvOVd/i0tDhKydiJNRK2SuwSpa3l2LkjC/lKzc2GSzmVSdi4Mz9rRqiuF6MzOBcuVBs/nm5Sla4fMAXqXUAtOEwUKpzSKypyDcLvH/NfPOOMM/OEf/iFe+tKXmvVZOwwjdR3Oli1b8OMf/xh33XWX/+3KKpeQG12E3Pg8b1BFWrYujC65A7KdvQOaK3hxYif6QIwbQCE76W3kihhysSLFTmJ1De1ErWwRKldbZS5lv9zZuTBR51JE6BhR13PUgAiuWNGfRcuETuSzjRK6dolcEF0rbbCJj4mLau8Qlp+Tx44dOwAAtm3jla98Jd7+9rebFSA6GCN1s4S9e/fihhtuwE033YTJyUnvRcdGfmwBcqMLYE1LpM6b0TQLHF2CFxY7lRUWglk7FQmJao6VjRfO2qnModVMuYtr6muXzAUJlEE4OxcmeA55m1ujCN9Xotm5hnj1n0PThU7mcw0KXRZEjqFxhQ03X0a1/zBKx05jZGQEAFAqlfCGN7wBb33rW83arLMAI3WzjNHRUdx00034+c9/jr1793ovUsCe6ENueAHsyT65yYybkb0Djg7BY2KnY4UFV9NEqEB91k5Vbpjc6ZqktQnUTWibBZljWJa6zDHYuZPJzoVhn6Wq0AXRKXSapogB4Ald1ibcZiieMwoKp3sU1YHDcHvH/Ht0yZIlePOb34zXv/716Ovr01VaQ5sxUjdLcRwHDz/8MH7605/ioYce8l8n5QLyIwuQG50H4kos46JT7gBIrS+bFAuaxUK33CnHmSmPlocQO/eaqgFtK2MA2uWO2Fa2ZA6YETpNy5f5GUkdZbRtT/qzLHSKnyetVmdWqtGBji9vQRTOGbWqqPYPYeHpFvbs2eO/vnHjRrz5zW/Gy172MrOU1yzESN1RwO7du/Hzn/8ct956K8bGap1hXYLc+BzkRubBmuoRz97pbprVJXbBmMhY9k530w5VXPUBCK1FqWFNXNfVl0n0Y+qJR3QshaVZ6LyQGqSOPZx1lc+2Z64NTctaaRU6BZmrG9mq+YsWgLZKMAWF2zWBav8g7IUTmJ6eBgD09vbida97HS6//HIcc8wxespnyCRG6o4iJicn8atf/Qo//elP8dxzz/mvk3IRudF5yI/OBXEE5iAKV6wqlXYzxI7F9X9UWDGiIa5CWVUflMGVBBTELvzAoOwzUJoEOpBJzJjcKUlds2TOf00hvm3rLV9N6BhKYteM/nMSQlcncsFsskofV2DmXmbZUVWhk+w/R+0KKn1DWHpWAbt27fJfP+GEE/DmN78ZF110kVn54SjBSN1RCKUUTz/9NG666SbceeedMwMrKGCPDyA3Og/2BEffu6TKVWa0XTOkLrwP/0eJFSNi40qUW/ZBGX74BwZiiMhd3ANDKWsX8/llRe6kpK7ZMlf3d8F9NSE754VrjCe7VFw7hS5W5Px4CqN4w+fDIoCl0JQpMbrV7yvXPwgMjPuzH3R1deFVr3oVXv/612P9+vV6PwND5jFSd5QzMTGBO++8EzfffDOeeuop/3VSzSM3Ohe50bmwKl3xAXgqWZH5sZotdsF9+T9qnjmeV/JkxC5pRQGBrF3qA0Mma5fy2bVb7oSkTveDMDgYIvY9AvtscnYujHC2rk1ClypyfjyBuSL9eAnzMspk6STnnnPz06j2DWLgRIpDhw75r5988sm47LLLcOGFF6Knp0esLIZZg5E6g89zzz2Hm2++Gbfddps/3B0ArKkScmNzkRub09g8K9oUwjObfavELrhP/8eU20FUwtIET6SfHc/yWxxZO96HrXDWjuNza1p1w3H+UqWuGRmNtOxc3Xs53tPC7FwYLrHT3X/OC5ZYz3CLnB+PYzUXPx7H6ikiQscp7g1dI+wqqr1HUO0bgts16b8+MDCASy65BJdddhlWr17NVwbDrMZInaGBcrmMe+65B7fddhseeeQRP63vT40yNhf2+IA3sTEg32k5af3JVotdcN/+j02YVT5O8tIemKKrNCRk7YQ7Xwc/j9hzIvZ5tUPuYqWu3TJXt13M+3XLXC2m3LUQc46bNf9cRP0iLHJ+zIT1lv14nNcyr9AJNquzc0iJC6dnGNW+I0D/hF8P27aNDRs24LLLLsN5551n1mI11GGkzpDI0NAQ7rzzTtx+++3YvHnzzB9cC7nxAa95drpfbu67IOGHQTvFLliGhpdCEwsrxQ8dX9wDU3ZlgYisndJ8V0lyJ/lZtVLuGqQuSzLnbx/arkky54WUnCoj6jptcnNrw1qsMlPnhOVLRuQYaUInOfCFgsLtGUe1bwiFRdMz/Z0BrFu3DhdffDEuvPBCzJs3Tyq+YfZjpM7Aze7du3H77bfj9ttvn5nYGAAc25seZXwOrCnJyY2DEJINqQsTlcXTOZcaDTRzsrg6JqNlDy9NZW2QOw2fUyvkjqissJCGqszVxSJ655tjKMpckPAKIs0QOulsXGTMmnypiFyQqIERKiJXGofTN4zeY10cOXLE/9uyZctw8cUX4zWveY2ZisTAhZE6gzCUUjz55JO4/fbbcdddd2F4eHjmj46N3MQc2ONz5FevYLC+XLofwjpihgWvGXLHpkrQAZM7jeWsG0yhScCbWR2RnIZ56sLolDnA+7x1D4IApJpak2CfUzNi+uiYyNpx6+VYxyTDwSydish1j6HaO4zelW5dHTowMIALL7wQF198MU4++WQzetUghJE6gxLVahW///3v8etf/xp33323XsGLaurTvUyZjpjBiY41TiwcjK0FzVm7yObYDMuddqnjGdHKHasWR3eGjmWodDePaqDhMw6vkyxLUNx0rfAQlDdCZprFBaBw4XaPo9o7jO4VVYyOjvp/GxgYwCte8QpccMEFOOuss5BrxhcQw1GBkTqDNqrVKh5//HFf8ILNCHBs2JP9yE0MeILnclZatUwQpbTxoaQ42XFkTJW44VUsdM1Wr22t10AcDXJHozJ0GuSuWVVSM6QOUMxWBWUuiK0oIgGZq3u5jWIXKXH+HxVkLpx989czVpwMOCoLJyh01HLgdI/C6RlBaZkzs6IPgLlz5+IVr3gFXvnKV+L00083ImfQgpE6Q1NggnfXXXfh7rvvxtDQ0MwfKWBN9XpZvIl+WNVicjDXBQ1JghYZq4md1rhJy5PJCpSOrF3cviXlLlLo6t9Qiyv+sO4YqQPks3VxMhf8u0zcGJmre0sLxY5rYJGo0MVJXBAZoeNpSuW4htxcGU7PCJzeEZC+qZnZAwDMmzcPr3jFK/CqV70Kp512mll71aAdI3WGpuM4DjZv3ox7770X9913H55//vm6v1vTXbCZ4JW7G5tpA9m6OKSzeM2Iy7PurIzgycodz74E5S5V6mbeWIvL/+Ce1VKXJnNBRLJ1HDLnv7VJUif1RYZX6IIil9bXTkToRPrExWTpvPVWJz2R6xkBLU7X/X3lypU477zzcN555+GUU04xImdoKkbqDC1n9+7duO+++3DffffhiSeegBt84Ds52JN9yE3015ppa3MwcYgdQzjb1oy4zV6xQmilB4H3csgdt9DVb1SL274JitsqdSIyF9wmLbaAzNVtpmMEbFJzKleAhGuBJxsXRZrQyQ48Cgkdtates2r3GPqPJXUtEbZt49RTT8V5552Hc88914xaNbQUI3WGtjI8PIwHH3wQ9957Lx5++OG6eZkAwJouwZ7s97J4kyUQKv7Q55IxnuwaT9xwbIm4PjzrzepeASMcP2J7Kamb2bgWt0XrxAZoy+hXGZkLEpetk5S5uhAyEw8HUb22GFEjUkVHvsadZx2jxwkBtQnc0gSc7jE43aOgXVN1b+nu7sY555yD8847Dy996UvR39+vvl+DQQIjdYbMUKlU8NRTT+Ghhx7Cww8/jG3bttW/wbVgT/TBnuiFNdEDUilITZmSKHmcWTuh2AGUbreoh2iS3OkaqBGIpSR0dXGDfa3cwMsdJnVAY7aubqSk4oCHcLZOg8wFibtetfYJrQvsymfh4ghm5zSdFwoKmq/A6R2H2zuBwsJKwxfONWvWYOPGjTj77LNx6qmnmpUdDJnASJ0hsxw+fBiPPPIIHn74YTzyyCP106UAIJU8rMkeT/Ime2BVC1L7aVhnUeMt0czYAKJHEOqeNy8Qm1aqKW+UiT2TvetYqQtm1HRMoVEXPzDRra55C9PQef3oWA0iDtvWdk7cXAVuzzic7gm4PeOg+fpyDwwM+BK3ceNGzJ8/X8t+DQadGKkzdASO42Dr1q14+OGH8dvf/hZPPfUUqqGHBSkXfMmzJ3tAHMVvzuzhozDJaCLBB6fuSYYBPROtBnGcwHQtmmPXMoDhlQp00nSp0y1zwMx5sPTJi49u8QcANyBsLL5Giaub9FhR6NxcBW73BJyecbjdE6CFSt3fbdvGKaecgrPPPhvnnHMO1qxZA0t2nWuDoUUYqTN0JFNTU3jiiSfw2GOP4dFHH8WWLVvqpg4AAFIuwprshj3ZA2uqW7y51nFmskjhJjAdD9iggEUJgco+miB3Detv+vvS0xwbmwXU1dTYzHnALEtffA3zoyWiS+bcCFljsTWtXhL3eCK2JTZfXK051e2egFuahNM9AVos173Htm2sXbsWZ555Js4880yceuqpKJVKSuU3GFqNkTrDrGB8fBybNm3Co48+ikcffRTbt29vfCBUc7Anu2FN9cCa7IY1XUqXvKDYBWmY6kRS9IIPwYZ9aBA9XXJHA1m0yP2oxKagjsMnASoDA5otdarZurRjU83WqUhWksAFUZjUmvdRxCN03jQjU3USh1zoSx8hOPHEE32JO+2009DT0yNcboMhSxipM8xKRkZG8Pjjj+PJJ5/EE088gWeeeaahuRYugTXV7TXZTpVgTXeDOBEPfiZGabeKiuglyV04ZhiefajIXZrQRe5P4P1JWbokRKfxaPaM/TLZOlFJkxE7UcHiFbggMvMcCuL3W4yaK86uwu2a8vrDlSaRn+dgerp+vrhcLoe1a9di/fr1OO2003DGGWegr69PuBwGQ5YxUmc4KpiensaWLVuwadMmX/SCay8ySCXvid5Uyft/uguE1h4icVm7JERFT2b9SxHRE5U7GaGr21/KtiJZuiR4Jt1thdTxZOtUm5N5xY7nnMoIXJiUplYdj5hgdo4S18vClSa9f11TDf3hAKC/vx/r16/H+vXrceqpp2LdunUoFlNWrzEYOhwjdYajEtd1sWvXLl/yNm/ejF27djU+gChAyl2wpkqwp7phTRRApgsgVKGZLU30eLN2iftIWH6K7SNN7lSFLkyU4Mlm6dKIkJ6mSx0Qn63TPcghSeyiBCtK3uLey0tEdk7344QSCtpdgdtT9gWOdFfqJyyvccwxx/gCt379eqxcudIMbDAcdRipMxhqjI2NYcuWLdi8eTOeeeYZbN68GQcPHmx8IwXIdBHWVBcs9v9UF4ir0JE9diJjS03uouKFCcZ33JnpS3SPng3CVgjRkaXjwSKtkzqWrWv29COEzOwn+EWgWXPMMWqZOe0CZztwu6ZBS2W4pWm4pWnYfW5jtwkACxcuxLp163DSSSfhpJNOwoknnmiaUg0GGKkzGBI5dOhQneRt3boVIyMjke8llZwndwHZI5W81ATJM0HJzEPacbyHuMiaoNz7qcV0HW/qkmYKXQ1aLrdG6IDWSV0NYttAvkX7C14jTZifkGVSCWv+VHxkUFDQQhW0NA23y5M3WiqDFqIztn19fVi3bp0vcevWrcOCBQuUymAwzFaM1BkMAlBKceDAAWzfvh3bt2/H1q1bsX37duzduzd6A5d48+dNF2FNF70M33RRXPZ4+trpFD4mdbqbYBmuC1pu7AfVNFoldYEpcEhXk/pvNVHcov9e25/glCqevFVAuypeBq5YgdtVBu0qA1b0MSxduhQnnHAC1qxZg+OPPx5r1qzB4sWLtaxVazAcDRipMxg0MDo6imeffRbbtm3zhe/5559HuVyO3iAse+UCrHIBpJzSX4/JnVtrugwSXtkgiIrwNUPwKpWWZAN9miV1CdUnKeSzM7dcirhFzUHIMnOp04cQF7RY8aSt6Emb21UGLVZi5a1QKGD16tW+uJ1wwgk4/vjj0dvby39MBoOhASN1BkOTcBwHe/fuxY4dO7Bz507/X6LswWvGrZO84M8IDXSIkrsodAmfDsFrtdABeqVOoMpUEjuJUaii4hZFlMxRUsu6FctwawLn/V6JbTYFPHk79thjsWrVqrp/S5cuRa6FzeEGw9GCkTqDocUEZe/555/Hzp078cILL2D37t2R06z4UG/KFfbPE70cyJQNUskBU0Su/16S8AHx0hcUMx7Jc5z6pcBaiazU6ZiOI5fzBjOIyF3MxL5pI4V5xa1hO1CQLsAtVEG7XE/YCtXa/xWQkhs54pTR29uLFStWNAjckiVLYOvKVhoMhlSM1BkMGWJ4eNgXvOD/L7zwAiYnJ5M3dmvSN53zZK+c87J+FbuW/ct5zb6i4pcmfYzgyNqw5LUjOxeEV+qaWB0mZu1c6g0cSUFG2igoYFHQggNacIB81fu5WPX+FRwv25byEZdKJaxYsQLHHHMMVqxYUfdvYGDA9HszGDKAkTqDoQOglOLw4cPYs2cP9u3bh3379mHv3r3Yu3cv9u3bhwMHDjSsfRuJQ+pFr2L78oeqDVK1QSq2uPxFiJ8vca7bshG1SZBCfuaXdlR7rgvk8/W/BxAVNl/W8g6Qcz05y3uCRvMO4P/uAHb68dq2jUWLFmHJkiVYunQpFi9ejCVLlmDZsmVYsWIF5s2bZ8TNYMg4RuoMhllAtVrF4cOH60Rv//79OHjwIA4dOoSDBw9ibGyMP6ALkKrtiV6lJnvs96oNUrUAxwZxrNrPVvqEzBHS2UrRI62aYgSInGg5raqlhAK2C5pzPUmzXdCcA+S9/2neBXI1Ucu5QN5Jza4F6e3txYIFC7BgwQIsWrQIS5cuxZIlS/x/8+fPN/3cDIYOx0idwXCUMDk5iUOHDvmSFxS+w4cP48iRIxgaGsLExITcDlwCVC1P9BzbE72qBbjea3AJiGt52ULXex0VOvM3xwIoAVwCWnXV5veLQLfUUdQGqzAZs2b+p5YLWC6o7WXT6v5uz0gbctT/PW6kaBqlUgkDAwOYP38+Fi5c6IvbggUL6n4vlUpaj99gMGQPI3UGg6GOqakpX/DY/4ODg/7PQ0NDGBsbw+joKEZHRzE2NpbYiV4aF54oUgJS+7/ud7ZLWpM/GvF74GdiEfieSGpSFvRGQv2/gVCAUC97ZtGZ39nPFnuP3kMmhKC3txd9fX3o7e3FnDlzMHfuXMyZM8f/Ofj7nDlzjKwZDAYfI3UGg0EJ13UxPj5eJ3ns55GREUxOTmJychITExOpP3dqdWTbNkqlkv+vq6ur7nf2r7u7u07agv/39fWhp6fHrFdqMBikMVJnMBgyAaUUlUoF5XIZ5XK57ufg75VKBdPT06hWq3Bdb6oNSikcxwGl1H/Ndd261yzLAiGk7n/2L/x6LpdDoVBAPp9HPp9P/Jn9M4MIDAZDuzFSZzAYDAaDwTALMHl+g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhllArt0FMBgYlFJMTU21uxgGg8EgRFdXFwgh7S6GwWCkzpAdpqamcMkll7S7GAaDwSDEbbfdhlKp1O5iGAym+dVgMBgMBoNhNmAydYZMUnh4EQitfecgFohFAGIBFgEIAbHY32qvEwJYBIS9x/8b8bfx/wGB16z6v3sb+q9RQma++gRi+K+TmX0FX6PEC+P/zfLieq8T/29sG1p7zf87MBPDqr2f/R31+6jbplZ8akX8re79qCvjzGuk4W8N2yBYjtDfEfN6TLy4cjRskxTXf502bh/Yxv97IBatvY7Adt7faKA83t9J8G/+e9nfqB+TBN9PqP83/xJjr7Nwtfd4lwL1f2fbWLXfvb95v7Pt/L8RCoKZ7azaa/4/UH87i6DudW97d2Y7sPe7sNk2td9nYrl+PDsQ34b3us3i+e91YbOYYOVwZ96PmdheTBcWvP17f/Pi2bXXCFzYbPvANjbgbQdvP+x8sN+9fdHaz6j9jcKqnRcbBBYAu/ZhWyC11whsQmDBAql9cpWyjbe8bwkMhixhpM6QTRxSq17hSR1qAlZ7Ws78jQDWjMEQz5BqQdjT3ULDU3vGmOpNgsVseMoj9FpwH4h4LbwdZmQuIHUNrwUkLPh7uIj174/Yxkr4W9xhNJQj5rCT/hZ3qmTjBWJGCV9TpS7q7wj/Tv3YwXIE9xn1N18CEXhP8P0N29CIfdG6f0GpmxHF2r+4v4GJnxcyKIBM/gAmZ/ClKPg3T+rcGSkiQSnyfrYI8YSr9j/8n4m/nRcHtZhsW9S2q70e9bfANnZNSG2/nEzqaKrUBePZ7Hyg/jULwTIGPkODISOY5leDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZwP+/vfuPqbL8/zj+PByFc/gxBZPUCYItdVPUTaFsmS5rOhRs/KFYzTHWD+sfW9Kw1iasP9CWtmZrbi1ktUjcKlGiNbeWuWmp5U/aUPuhTkRLAg9wjijnfP843rf3gfOD/NQXuHk9NnbOfV/X+z4X1yWe9+77uq9bSZ2IiIiIDSipExEREbEBrVMnQ5MzQCAQXHA0uO6aw/Lq6LMgsPFqeY91X8DyfgBllkXL7i4RG2n/3ddAyHtC4gIAAWP/3WMGcEAAM9Zabh4jZHE1a1vCbAdCmtSnPyL89K07kLXoopUN+LMGWGb9yKhxgRjHDERoY+TFh0PXlrOUmXXvffHhu+2wrFPHva9TF+BuXMARCP0h+BosI2S/3xEAh//uMTE+y29ZT+9OnTvlAYffPB4hx7/zanzWne24O3WMV6DfPr/lz9p473eAn7vr1Pnv7HMQaZ06h7lgsJO7Y2Zsx92J6bv23cAXH3Zwd/HhcH+XIoNLSZ0MST151wa7Cf8N4zvzHvXNSUQM1n9a/sFsyD2zZtW6iCRyL/SXIyIiImIDjkAgoGedyJAQCATw+XyD3QyJwefzsXLlSgDq6+txuVyD3CL5N2l8/zmXy4XDoXPnMvh0+VWGDIfDgdvtHuxmyD/gcrk0Zjam8RUZXnT5VURERMQGlNSJiIiI2ICSOhEREREbUFInIiIiYgO6+1VERETEBnSmTkRERMQGlNSJiIiI2ICSOhEREREbUFInIiIiYgNK6kRERERsQEmdiIiIiA0oqRMRERGxASV1IiIiIjagpE5ERETEBkYNdgNEJLavv/6aqqqqmPW2bdvG/Pnzw5ZdvnyZ2tpajh49SltbG263m2nTplFQUMDixYtjHru5uZndu3dz4sQJ2tvbSUlJYebMmRQVFTFv3ryY8T///DOff/45TU1NeDwexo4dy9y5c1m1ahXTp0+PGX/gwAH27t3LuXPn6O7uJi0tjdzcXNasWcPkyZNjxg8mn8/HiRMnaG5u5uzZs5w9e5arV68CUFJSQmlpacxjtLW1UVtby+HDh7l69SoJCQlkZ2ezbNkyli9fjsPhiBqv8RexPz0mTGQYMJK6uLg4xo4dG7FeZWUlc+bM6bf/8OHDbNq0CZ/PB0BSUhJerxe/3w9Afn4+5eXlERODhoYGtm7dSm9vLwDJycl0dXVh/PcRKzGprq6mpqYGAIfDQVJSEp2dnQA4nU42bNjAihUrwsYGAgG2bNlCY2MjAHFxcbjdbrq6ugBwuVxUVlayYMGCiJ8/2I4fP8769evDlg0kqWtubqasrIyOjg4A3G43PT095njk5eVRVVXF6NGjw8Zr/EVGBp2pExlG0tPT2b179z+KaWlpoaKiAp/PR05ODhs3biQjI4Pu7m527dpFTU0NjY2NZGZm8vTTT/eLP3PmjPmFvnDhQtavX096ejodHR18+OGH7N27l5qaGrKysnj88cf7xX/77bfmF3phYSHPP/88Y8aM4dq1a7z33nscPHiQrVu3kpWVxaxZs/rFf/bZZ+YXeklJCcXFxSQmJnLx4kU2b97MmTNnqKioYOfOnUyaNOkf9c3/p5SUFKZNm2b+bN++nba2tphxnZ2dlJeX09HRQWZmJm+++SYzZszg1q1b7Nu3j/fff58jR46wfft2Xn311X7xGn+RkUNz6kRsrrq6Gq/XS1paGps3byYjIwOAxMRESktLKSgoAOCTTz7B4/H0i9+xYwe9vb1MnTqVyspK0tPTARgzZgxlZWXk5eWF1LPq7e1lx44dADz00EOUlZUxZswYIJigVlRUkJ2dHVLPyuPx8PHHHwPBhKC0tJTExEQAMjMz2bJlC2lpaXi9Xqqrq//nvvqvzJ49m6+++op3332Xl156iSVLlhAfHz+g2F27dtHW1kZCQgJvv/02M2bMAGD06NEUFRWZZ8j27dvHpUuX+sVr/EVGDiV1Ijbm9Xo5cOAAAE899RQpKSn96jz77LMAdHV1cfDgwZCylpYWTp06BUBxcTGjRvU/uW/Et7a2cvLkyZCyEydO0NraCsAzzzzTL3b06NEUFxcDcOrUKVpaWkLKv//+e7q7u0M+xyolJYWVK1cCwTlXXq+3X52hwOl03nPsN998A8CSJUvCnokqKirC7XbT29vL/v37Q8o0/iIji5I6ERs7ffo0N2/eBIJnSsKZOHEiU6ZMAeDo0aMhZdbtSPE5OTnm2ZO+8ceOHQOCZ4VycnLCxj/88MNhP88an5WVxYQJE8LGG+26efMmp0+fDltnuLp48aJ5Q0Wk/k9MTGT27NlA//7T+IuMLErqRIaR9vZ2nnvuOZYuXcoTTzzB6tWreeuttzh+/HjY+r/99pv5furUqRGPa5T9/vvvIfuN7dTUVFJTU8PGOp1OMjMzo8ZPmTIl4tmq1NRU8+aPP/74I2z7s7OzY7Y93OcPd9bxG0gfROo/a51o8Rp/keFNSZ3IMOLz+Th79iyjRo0iEAhw5coV9u/fz/r169m8eTO3b98Oqf/XX38BwctUCQkJEY973333AXD9+vWw8UZ5JOPHj/9X4o36BuN4Rnk4LpeL5OTksPHDnbU/o/WB0b9dXV3m5UrQ+IuMNLr7VWQYGDduHCUlJSxatIiMjAzi4+Pp7e3ll19+YefOnRw7dozGxkZcLhevvPKKGWfMMXK5XFGPb5RbEwLrdqx4I2H4r+KjJSTG8Ts7O/vFD3fW3ydaH1j7t7u727wcqvEXGVl0pk5kGMjLy6O0tJQHHnjAvGvS6XSSk5PDO++8w6OPPgrAnj17wt4BKSIi9qekTmSYi4uL4+WXXwbA7/dz6NAhs8ztdgOYi85GYpQbZ3gMxnaseGMy/n8Vb5RHEqn9w53194nWB9b+tcZo/EVGFiV1IjYwefJkc/0v67IQxlwmj8cT9YvRmIs0bty4kP1GfKy5Sn/++ee/Et937pVxPKM8HJ/PZz6dINbcreHG2p/R+sDo36SkpJDERuMvMrIoqROxMeudgdY7IfuKdJehsf3333/T3t4eNra3t5eLFy9Gjb9w4UK/hWkN1mNnZWWFbX+0uxoHeofocDTQOzuNPojUf9Y60eI1/iLDm5I6ERu4fPmy+VzQiRMnmvtzcnLMSeZHjhwJG9va2sqFCxcAyM3NDSmzbv/4449h40+fPm1OUO8bP3/+fCA44f3MmTNh463HjRR/4cIFc722vozfKyEhIeJaaMNVRkYG999/PxC5/71er7lAcN/+0/iLjCxK6kSGOOOh6dHKP/jgAyA4v+6RRx4xy9xuN4sWLQKCN1EYl6msamtrgeB8pIULF4aUTZo0yVzYtq6urt+SKQCffvopABMmTGDOnDkhZXPnzjUXjTXqWd2+fZu6ujog+Citvk9MeOyxx0hMTCQQCISN93g81NfXA7Bo0SJzDpldOBwOli5dCgSfoXrlypV+db788ku8Xi9Op5Mnn3wypEzjLzKyKKkTGeJaW1t54YUXqK+vp6WlxUzy/H4/TU1NvPbaa+bjnQoLC82FYA2lpaW43W6uX7/Oxo0bzbtjvV4vNTU15pfi2rVrwz5G6sUXX8TpdHL+/HkqKirM+U03btxg27Zt5pmWdevW9Vtg1ul0sm7dOgB++OEHtm3bxo0bN4DgPKmKigp+/fXXkHpWKSkprF27FoD6+npqamrMZTouXbrE66+/zvXr13G73eYzUIcqj8dDe3u7+eP3+4HgTQDW/X2X5SguLiYtLQ2fz0d5eTnNzc0A3Lp1iz179vDRRx8BUFBQYD7X1UrjLzJyOAKxTgOIyKC6cuUKq1evNrfj4+Nxu914vV56enrM/fn5+ZSVlYV9Pufhw4fZtGmTeZdgcnIyXq/XnOeUn59PeXk5DocjbBsaGhrYunWrWT85OZmuri4zwSwpKYn6pVpdXU1NTQ0QPPuUlJRknjVyOp1s2LCBFStWhI0NBAJs2bKFxsZGs77b7TbjXS4XlZWVLFiwIOLnDwWrVq0yn4MazbJly3jjjTdC9jU3N1NWVmZeYk9MTKSnp8c8c5abm0tVVZW53E1fGn+RkUFJncgQd/PmTRoaGmhqauL8+fO0t7fj8XiIj49n/PjxzJo1i+XLl8ecT3T58mVqa2s5evQobW1tuN1uHnzwQQoLC1m8eHHMdjQ3N1NXV8fJkydpb28nJSWFmTNnUlRUxLx582LG//TTT3zxxRc0NTXh8XgYO3Ysc+bMYfXq1UyfPj1m/HfffcfevXs5d+4cXq+XtLQ0cnNzWbNmDZMnT44ZP9j+l6QOoK2tjdraWg4dOsS1a9eIj49n6tSpLFu2jPz8fOLiol940fiL2J+SOhEREREb0Jw6ERERERtQUiciIiJiA0rqRERERGxASZ2IiIiIDSipExEREbEBJXUiIiIiNqCkTkRERMQGlNSJiIiI2ICSOhEREREbUFInIiIiYgNK6kRERERsQEmdiIiIiA0oqRMRERGxASV1IiIiIjagpE5ERETEBpTUiYiIiNiAkjoRERERG1BSJyIiImID/wdRBzfxdvdYzAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "psichi_slice = psr.slice[{'Ei':4, 'Phi':4}].project('PsiChi')\n", + "\n", + "ax,plot = psichi_slice.plot(ax_kw = {'coord':'G'})\n", + "\n", + "ax.scatter([coord.l.deg], [coord.b.deg], transform = ax.get_transform('world'), marker = 'x', color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "f8d9aa2e-345f-4b89-a298-06a2071ee1ea", + "metadata": {}, + "source": [ + "And here in ICRC (RA/Dec), the default coordinates for plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "ff08be37-22eb-422a-810f-a1f9f2f47abf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC2iUlEQVR4nOydd5wcxZn3f9U9cYN2tbvKAQWERBDIWAKMyNEmGBxwwNwd5+PM+ZwNZ+P0Gny2gbPx2a/PPmP7xZyNMbbBJmPCkZMAEySBUDBKSLvSavPu5O56/+jp2Z6enpnu6uows/X9fEbaCV3V0/E7T1U9RSilFAKBQCAQCASChkYKegUEAoFAIBAIBO4RUicQCAQCgUDQBAipEwgEAoFAIGgChNQJBAKBQCAQNAFC6gQCgUAgEAiaACF1AoFAIBAIBE2AkDqBQCAQCASCJkBInUAgEAgEAkETIKROIBAIBAKBoAkQUicQCAQCgUDQBAipEwgEAoFAIGgChNQJBAKBQCAQNAGRoFdAIBBMTSilyOVySKVSyGQyyOVyyOVyyGazpb+tXsvn81AUpfRQVbXsf/NrAEAIASEEkiSVnut/S5JUel+WZUSjUUQiEUSj0dIjEokgFouVXtefJxIJJBIJJJPJsv8jEXFpFQgE/iOuPAKBgIl8Po+xsTGMjo6W/jf+PTExgVQqVfOhKErQX8MTotFomfAlk0m0traira2t9Ghvby97bnx0dHQgkUgE/TUEAkGDQSilNOiVEAgEwZPP5zE0NIShoSEMDg5icHCw9Lf+ulHe0uk0t7pjsRhyWRWgEggkgEoAJJDi/xXPQbQHJQAAoj8vvQ7Dcx1a/jcxv06L/6oAoQBU7TUlDxAKCqq9TrTXKVG1v4mClmkxZDIZrpIaj8fR2dlZ9ujo6Kh4raurC93d3YjH49zqFggEjYmQOoGgyVEUBUNDQ+jv7y899u/fj/7+fhw4cKAkbWNjY47LJoSAKjIIjYDQCKBGQGi0+LcMQmWA6v9HtP+hfR5yFNCfl8lXCFEBksnW/AgFhSaLSkn4KFE08ZMUUKKAkkLx78n/qaQAxf87ZyQxNjaGQqHgeBXb29vR09OD7u5u9PT0lP1t/D8ajTJuBIFAEHaE1AkEDU46nUZfXx96e3uxd+9e9PX1lQncgQMH7EeQKAGhUUCNgqgxEDWqSZrhb9AIiFqUOBqxL2SEgEZCMjZLBUg253gxkssbnhDQiMxxpTSoLoZSAVTKA8X/aen/fFEKtdeiLVrfRFvrTwh6enowa9YszJ492/L/ZDLJ/TsJBAJ/EFInEIScQqGA/fv3o7e3tyRu+t+9vb0YGhqqW4YkSaD5CIgaLwqa8f8oCNWkzZGk2YVwKo8QUNlBWYziVnc1jGJnawFv5E9nUgJzoHJe+19/yNprMxe2YWBgAPl8/XXv6OjArFmzMGfOHMybNw/z58/HvHnzMG/ePPT09JQGmAgEgvAhpE4gCAGUUgwNDWH37t1lj127dmHv3r31m+NUGURNQFISRVGLVwqc302cvGSuTh1UJp4JXNVqnYpd1YK8Fb4yVBWQClDlLKicBZVzk39HcmiZLmF8fLxmEbFYrEL05s+fj/nz52PmzJkgfuxzgUBQFSF1AoGPFAoF7NmzB9u3b8eOHTvKBG5iYqLqcrFYDPmUBKImIakJECVukLiE1hQaFoK8sVMKFPwbUctN7ioK9kf2iFp++aekMCl7kSxUOQMayWDOwe3o7e2t2YyfTCZx0EEH4aCDDsKiRYtKf8+dOxey7JO4CgRTHCF1AoEHqKqKvr4+vPXWW9ixY0fp/507d1ZtAiOEAPkYpEICREmC0BZIalL7W42HfzBBmKI0PsqdZ2JnWZkme0SlQIrf6GO9bCSrp1GhoKByFmokAypnoEayoJEM5h0yDXv27KkqfLFYDPPnzy+J3pIlS7B06VLMnTtXNOUKBJwRUicQuCSVSmHbtm3YunUrtm7dWhK4TCZjvYAqQSokIRWSIPkEJCUJoraAKAktnYcb/GrKMxMmoTPjg+D5KXbUYhSup82eVqNlo+WRYQpVi+xF0qUHjaYRaS1UHcSRTCaxZMkSHHzwwTj44IOxdOlSLFmyBC0tLV58C4FgSiCkTiBwwPDwMLZs2VISuC1btmDPnj2wPI0ogZRPghSSkPLJosi1AEh6F3XzW+rCLHNmPJY7P8TOSuiq4Zno2U2JEo0YonuToqdGUoi0VZe9efPmYenSpVi2bBkOOeQQrFixAtOnT+f4BQSC5kVInUBQhdHRUWzatAmbNm3Cm2++ia1bt6K/v9/ys0SJQsq1Qsq3aI+C1mwKL/sSBRWVAxpL5ow0uNg5kTozgUueARqVQSNpqNEU1EgKajSF6fOjOHDggOXnZ82aheXLl2PFihVYsWIFli9fjvb2drdrLhA0HULqBAIAuVwO27Ztw6ZNm/DGG29g06ZNePvttys+RwgBcvFJecu3Qs63aOlACAGVPeojFKTAmWlUoTNSRe5I3nnS34py64mdJDHvTzdSZyZMkqdD47QkeUp0AvNWtGL37t2WkfB58+aVBO+www7D8uXLxawagimPkDrBlGTfvn1Yv3493njjDbzxxhvYtm2b5QAGUohDyrVBzrVCymuROG1WBHgncWERuGaQNysoBcnkyp5b/u0G1ohdHeHjKXVmPJE8DrNXUKJAbclCjU5AiY1j1tIE9u7dW/G5SCSCQw45BEcccUTp0dPT47p+gaCREFInaHpUVcWOHTuwfv360mP//v2VH1QikPOtkHJtkHKtkHNtk6lCmk3gwiBsilr5mhfb2CxxVqgW6+IWnk2xRdnzUurMhFXyAIBKBaixFJRkGmp0Ah3zCAYHBys+N3v27JLgrVy5EosXL0YkEqL0PwIBZ4TUCZqOXC6HzZs3Y/369diwYQM2bNhQMa+pLMug6cRkFC7XpuV+Mw5g8ELkxEAGa5mzws22tyNyZsIudkWoOaLsUw447pLHcQ5aCgoqZaAmJqAk01i0ahreeustqKZ92tLSgiOPPBLveMc7sGrVKixbtkxInqCpEFInaHgKhQK2bNmCl19+GX/961+xYcOGypF1qlQUuDbIuXZN4qjpZtjoEhdGgTNiV+assLNfWETOCt5yx1nsKqTOjA+SRwgBdbA/Sb39x1Hw9P1HiQI1PgElkYKaTCHRXahI8C0kT9BsCKkTNByUUmzfvr0kca+99lrl9EZKBHKuHXKuDVK2XesLZ84B1+gSZ6SZhc6McZ/xEjkzPMXOb6mzwo3oqRTI19jGRAI4iRCRJX6CZ9qHFBRqLA01OQElOY7kjELFdaOlpQUrV67E0UcfjdWrV2Pp0qUiQbKgoRBSJ2gI9u/fjxdeeAEvv/wyXn755cr+M6oMOTut+GgHKVjkgiMEVCIgHAWjbConIXSV8JQ5I5S6H6laj2YTOyN2JK+ezFnBUfBKSAQkFmNfvsp+LEleYlyTvJlKheR1dXVh9erVWLNmDVavXo3u7m729RAIfEBInSCU5PN5rF+/HuvWrcO6deuwffv28g+oUjEKp4mclG+dlDjzIc1RemzNxymaXL2ROT9EzkxIxc611JkxSx6L0JnxQvB0WESvzr4sl7wxxLrzSKfLp2I7+OCDsWbNGqxZswYrV64UKVQEoUNInSA07Nu3D88//zzWrVuHv/71r2UXVEmSgHSLFonLTIOUa609pRYn2WGeVN0PsZsqQheEzBmZKmKnQyT3QletXC/7q9kVPZv7k0ItDrwYw5JjO7F58+ay9+PxOFatWoV3vetdOP744zF79myWtRYIuCKkThAYiqJgw4YNeOaZZ/D8889j586dZe8TJQI501F6lNKLWOF3NM4OXopdGIWu2WTOiFkEsuzSY3XJJQz9tjyTOkoBfbtLHh1nXgueTi3RcyjrVMpDSY5DSY6ic7FUMfvFkiVLsHbtWhx//PFYsWIFZJ9GJQsERoTUCXwlk8ngxRdfxNNPP41nn30WIyMjpfdK0biixGmDG2rcVIKOxtWCEG9yrull+4Gi2v8OPIUuLDJnzgnH8VLp9LJbTfq4i51R6Mw0uuAB1pLHEImloKDRDAotozj0lB5s3LixLH1KZ2dnKYK3Zs0atLS0uF1zgcAWQuoEnjM0NIRnn30WTz/9NF588cXydCOqjEi6E3KmE3JmWu1oHBBukTPfeL24CfISOkq1flMuyyCmqbaoRNhHWgYpc3aT+nK6XHK57KoUoPyjo1Wlzownx7ePggeUS56LZnYqFaAkR1FoGUFydvmo2mg0iqOPPhonn3wyTjjhBHR2drpcaYGgOkLqBJ6wb98+PP7443jqqaewYcOGspsYKcQgp6cjkumElG2vHY0DuIiMLxJX9l5IhY6HzBXLMQtd1Y/aET0/hY5SV82noRO7gmm7uUzabFvqjDSD4OnVxtylVKGgUBPjKLSMYNZhMezZs6f0niRJOOqoo3DKKafgxBNPFNOYCbgjpE7Ajf7+fjz++ON47LHHsHHjxrL3pFwL5HQn5Mx0SHmLdCNm3AqMV9N62e37FEapC0DoLBc3Sp5fMudW5KzK41KMy3KspM4Ku+cCq9QZ4X3sByR3ehSUuBjhqjXTZlFIDmHxu6Zhy5YtpfcIITjiiCNw8skn4+STT8asWbNcr7JAIKRO4IoDBw7giSeewGOPPVYWkSOEgGRaEUl1Qc50QlJsXBjDKHKsiUdZb2yEgJrqJJS6lwiPmluZUVWtyZMQIOFRWghKQSfKU1IQnhHbRhM7I9XOEx5SZ4TlPKhznFJKtSnL/EgnYtG8zSx5igI1koXSNoplJ3fh9ddfL3t7xYoVOOOMM3DaaaeJCJ6AGSF1AseMjIzgsccew6OPPorXXnut7KYkZdsQSXdBTk2HpNrMI8Uqc0FH46ou7+D7WEhc2dvNLHRGeMqdhcyVVRUysQtE6szo5xFvqTNS7bxgPDbN281T0avRd9GR5CmT55Aq56C0jeLQM2Zg/fr1ZT+Ijz76aJxxxhk4+eST0dbWxrzagqmHkDqBLXK5HJ577jk89NBDeO6551Aw3ESkbKsmcunp9iJygOuonC2Zs1sH72mAqt286ghcxcebTeisZM6MG7mrI3Nl1Qixq47CSd59ota24y56Ngam1JU8i+2rynkobSM45NSusq4rsVgMxx13HM444wy8613vEsmOBXURUieoCqUUGzduxEMPPYRHH30UY2NjpfekXIvWtJruCpfI2a3Xq/kcjULnUOKMTEmhM2JX7hyIXEUVzSR2PKWOqqDFFDXEo/Q51Cg2ksSlHjvbj5vk2Rx1XFXwaoizGsmh0D6Mee9MYMeOHaXXW1tbcfLJJ+Pd7343jjrqKM/2jaCxEVInqGDv3r148MEH8dBDD5WN3CKFKCLpbkQmuiEVquRdMouERNgFqjhXKxeIi/Wwi0RAOSQcDYXQBSVzZqrJnQuZKyuel9gFLXUAV7GjNcpxKxO0ViSQg+A52Y6uJM9hOpkKwasTEdWmLctAaR9G5yHaQDSdefPm4d3vfjfe/e53iwEWgjKE1AkAANlsFk8++STuvfdevPLKK5NvqBIi6emIpHrK04/UkoawiJzVOvD8dSsR0GhRCjilCxNCVwVd7jjJXFnRzSJ2PkmdEacCVlPozPgseEDx+0gEiDqYV5YxV2BJ8mxsEy1NygQK7cOIzckglUppZRCCNWvW4JxzzsEJJ5yAmNP5cAVNh5C6Kc727dtxzz334KGHHsLo6CgA7UIhpdsRSXVDTk8HUSV7khAGmatXv1upM4qcEQ5SJ4SuNqVLFY+0LCaYxI5S0EyG+7pYfj/JZkSJk9jZlTojdgTMkdTpBCV3gH3Bc5kEmjhI2UKJikLbCA47uxuvvvpq6fVp06bhzDPPxDnnnINly5a5Wh9B4yKkbgqSTqfx+OOP45577inrlEsKMUQmehAZ64ak2PzF1wgiZ6rTWdlVJM5IWKJ0utBRypwdn7gVJg9kDrC4Kfstdl4JnBVOv5tR+HhF6wz96liwkjAmoTPjQvCYxa6s/jqS50buiHYdIw76DquRLArThtC5nJY1z65YsQIXXnghTjvtNCQSCfZ1EjQcQuqmENu3b8ef//xnPPzww5iYmAAAbdLpsXZExnq0abrqJQXWYZW5IETOVH/tcm1InBE/hY4Q0EiV761QEBcyRVRqb9RjrT6DXkbnqtbJ9/JFIrK/AlcNl9+rlB7DRdJelmidFboccZE6I4yCx0XuSutQRfJY5Y6YclTaFDwKCqVlHGsvWYynnnoK+eKcwG1tbTjnnHNwwQUXYMGCBWzrJGgohNQ1OYqi4JlnnsEdd9xR1leO5GOIjM9AZLwbkupgWpwgZY7XQAfzRdqpyBnxotm1lrxZ4ZfQVUOWuQudo8sSl1ky1Ml9EIaUHpykzoyjZj5eo2l1FIVvn1adMMgdUCl4HKJ2ZS/ZFTypgPy0QfSsJOjt7S29vnr1alx44YU4/vjjEQlihg6BLwipa1JGRkZw33334c4770RfXx8Abd5BMjYN0fEZkDI25lw1EpTM8R6xaugrwyxyOi6FjkZlKG0xREZdRIWCFjpgsskX0P53WR7TJYlFgowiZ6aJxc5MNdHzROrKKg6H4HGXu9K6FCWPU9Su7C0bgqdF78bwzg/OxXPPPVf6njNmzMB73/tevPe978X06dPZ1k0QWoTUNRnbtm3DHXfcgYcffhi5XHGuS0VGdHwGImMz7PeVA5pH5HRkyb3IGXFwraZxGfmO8r4tUl5tbKFTae0mY4eCxyWlR91KaoicmQYXO9btWZI8l/3qKqi1PUMgeI5ToThaF8I2f20NsSt9xIbgqZEcCh2DaF2cw/DwMAAtsfFZZ52Fiy66CIsXL3a+boJQIqSuCaCU4vnnn8fvfve7stFQUjaJyNhMRFJdINSBKAUhc16InJ6ewPDcUbNmLerc66wkzkjTC50RG3LH9TJkJUJOZM5I0GLnU7TOc5xsR7eCV+c712uC9lzuAGeCZ0PsSh+tI3iUUChtI1hySis2bdpUev3YY4/Fhz70IaxevVokNW5whNQ1MPl8Ho888ghuu+02bN++HUBx4MNoO6JjsyBlW0PRxFptRCV1M3K2xrqYRa6sTh5SZyF09STOjCupayShM1JF7jy5BKmUXeTMNLDYud62xQ73ALRzlTW5Nus2dCIYbiOTZUX5IHY6dgTPgdiVFrESPH3QCijUeArHXDwXTz31VOn7Ll68GB/+8IdxxhlniJx3DYqQugZkYmIC99xzD/74xz9ODmNXJUTGejSZc9LECtiXOWOHfhczNFgKoBu5qyNyZXVzkjqnEmdkSgqdGUr599ky0yxzoQYdrTOKnY5TwXO7DeuJE+fbmC56nsldrRaNapLHIHalRY2CZ1pPNZJFvuMAonMmkE5rib27urrw/ve/H+973/vQ3t7OXK/Af4TUNRAHDhzA7bffjrvvvhvj4+MAAFKIIDI6E9HxGSDUYZ8Ns8zZTKvBVebK1sdhvjmbIleq34XQ0XgUmZkJQAXkLHs/oyCbXUMjdIC2vygFtRIGngix80bqzNiRPF7b0Hyu+3ELcyCwoZe7KutHJQX5aQPoXFEoBQtaW1vxvve9DxdddJEYVNEgCKlrAPbt24ff/va3uO+++0r5h0gujujoLEQmukHg8CRn6ffGKHOO+9jVqoNB5MrWxYHUqYkosjMsInEupE4Inb4ylTdlT+VOiJ07sXO6b6oJHu/tV/xh4DmWSYhrX0u4iZ2OWfBciF2piCrJtikolLZhzD1OLnXricViOP/88/GRj3xEzDUbcoTUhZje3l7ccssteOCBB1Ao3pikdAuio7MhZzqd9ZfTcSpZfsmcEcnUVOBC5MrWqY7UVRW50gcCjNI1g9DZaELzTO7CIHYqdZ6AV5Imm87CHq2zwih4XkixPnOKVyPm7VxvatTNXe6AScHjIHZAHblrGcXiUxN48803AWh9ts8++2xccsklmD9/Ppf6BXwRUhdC9uzZg9/85jd48MEHoRQvhFK6DbHBWZDzHWxi0wgypyPL3EROx0ro6kpc2YeF0LnC7j5sZrFjkToHdZM6Hdt9jdZVg6d8VZsKj2cdTNda06wQXoidjp15aauh588zyKGV4FFQqMlxHHpuRymBvS53f//3f4+5c+eyr4OAO0LqQkRvby9uvvlmPPTQQ5Myl2pDbGiKyJxet0S4563Spc6RyBkJqtlVF7pYFPnuVkeLkoKKyOBE5RuqCpKzcZP2W+iMeCV3PMTO72idy7p12QuF1BlxK1/15jd2Wz6Pa5BhHRwlLXaCLmUsefDMiZH1+WerRO+U+ASO+kA31q1bB0CTu3POOQd///d/L5plQ4KQuhAwMDCAW265BXfddVepmVWeaEd0aBbkwrTJviNe/uILSuaq1etgUut6qC0xZGYlXRTgbZQuM7sVe0+snKotNkwwe13aUJD9OkleRWTAQujqoQtfkEKnE1ax09OluFjeb7EDyqWuXlTPEq8iqCzyVU/oeNTBO1+b09kunFxbjU2xTuXO6liuE71T4hM44sJOvPTSSwCAaDSK8847D5dccglmzJjhrH4BV4TUBcjY2Bh+97vf4fbbb0emOIG4lGpDbHA25GyrdiEiDqNWPsicZyJnxKXUqfEo8l0JUJlAjbpcX05RusycNuw9odqItsqXYsMEs19IV75hA5KrEqWzA6WTkTxKAdZZBXjdFL2QuyDFLiCpA2pH6+qKntcjlQH71yKnUue0fI8T8BK7o2lZxU7HruDVOpZrRO+UxDgOPW9aqVk2FovhAx/4AC655BKRCiUghNQFQCaTwe23345bb721lJpEyrRoMpdun5Q5wDuh81vmnNbHIHW6yOlQAlCZgEZcrDej0I0siWHi7HGom9vK37C5KrERU5TOAcxROqBc6Kq8b0vyOAqdHjHkntfOTXlNEK2rR4Xk+SF1RmpdL1ilzm75Ps+qUFPyWJtjzdQSPDvHch25O+Q9rVi/fj0AoL29HZdccgne//73Ix6P1y9bwA0hdT6iqioefPBB/PKXvyzlASLZhCZzqWkgkixkTsem1FmJXOlvt0IH2JK6kSUxJD64r+w1iVAMjLeg8OY0x1XGhglmvZgBYTg1PRU6i89XCJ4HMlf2Mk+xE9E625QEz2+xA6yvHzykrlb5AU2VxU3uao2MrSZ3do/lKk2z2mjZMcw9HqVUKDNnzsQ//dM/4ayzztJmOxJ4jpA6n3j55Zfxk5/8BFu3bgUAkHxMk7nxYmoSr5ta/ZQ5FwmKS9SQuloiZ8SrKN3I0hgSH5iUOIlQSKT8NDow3orcm9NAHJ5droSOV5Mrw7JQVM+FrvS2EDsNH6J1FagUkEhw84Pq1xWeUmcuPyRzn1oKHi+x0zELntNj2SJ6R0FRaB9Cx+GZUvBiyZIl+Nd//Vccc8wxzsoXOEZIncfs3LkT//3f/41nn31We0GVEB2ahehIDwiV2JpawyhzPETOiEnq7IqcEVdSZxC64YNjSL6/tsQZYRU6gL0fXWBCp6Pve0qBggtRsTOrCdyJnVFIKKWN2wzrc7QOQGWuvAAET193z+sNUWSpTPB4ix1QLncsx7OV3BEV+Y4DiB80VupmdPzxx+NTn/oUFixY4LwOgS2E1HnE2NgYbrrpJtx5551QFAWyLIMMdiI2OBtEjXjfb84PmeMtckZkiUnkSp91IXTDS6KY/t49yCvaBaqexJnpH2v1tdk1NEJnKteR3NmUubJFHMpYNQkIVOwaNVpnhU+CZ153nnWWjRA2lxsSySPmPJ51F3BwjY5E3P1IsZI7qYBzv3QY/vSnP0FRFEQiEVx00UX4+7//e7S2OkvTJKiPkDrO6P3mfvazn2FoaAgAIE9MQ2xgDqR8UVDC1tTqtCmDEFDZ4YTeNqHJGHLdk+lHnIhcWTkOpW54SRTdF7xdeq6obLI6pZpdgfrHmR25YxC60qI2ZMzOTb9hxS5MUmfGI8mrOYLXzYwzdbZJGCWPRG2ObmWZfcJNBgILuVOjGRx5UWcpx9306dPxz//8z3jPe94j+ttxREgdRzZv3owf/vCHeP311wEAJBdH/MA8bUQr4F9Tq6rWv5ES4vykNYgolQjfi5pEQGUZNBFBrtPdaCk7Qje8NIru975d9lqEaDdlFaQUpXPClGt2tfvDoZbYuRC6UhFVZMzJDX6qSR3AsQnWDhwFz856O62LafBIiCTPltyxTivGWe4KLaOYeUwBu3fvBgCsWLECV1xxBZYvX85ej6CEkDoOjI6O4he/+AXuvvtu7eKgSogNzkJkpAdEzxjLOzrnJjmsU6Grst6uxa4ocmVleih1QwdH0XP+pMjpEmeEVeiAKdbsytLsbpY7DkJXKsogZKzyMNXEzpdonRkOcud0vevVx+sWWFZPWAXPzXyxLHJnqk+XOwoVhY4BRA8awcTEBCRJwoUXXojLLrsMbW1tViUJbCKkzgWUUjzyyCP48Y9/jOHhYQCAPNaJ2MBcSEpxhgC30Tlemf31+jnInA6T1FmIXFmZnKXOjsgZYZW6/rFW5Dc3SLOrV/3oHNSPfIHfca0XWyjwEQZWsasldXUkKKgpvHyN1pUqndxGhGFqK9Z1rtmnkiOW9QQgeVXlzo3Y6di9j1SpS5c7Vc5j7WVz8cgjjwAAurq68JnPfAannXZacCOsGxwhdYz09vbiBz/4Qal/AMnFEe+fDzlj+JXBEp3zYndwljkjtsSujsiVledS6qhMMLgi5kjkdIKK0vna7Bq00BXXwVYXASfoU+m5GXQATtG6ICJnjGIXtNQZsSt4PG5ZFSOgOVJXRsIgeDzEDrB3X6lRly53SnIMPcfk8Pbb2nV79erV+OIXv4j58+dzWc2phJA6hxQKBdx+++246aabtKm9KEF0cBaiwzMqm1qB6nKkqpMXf8K5f5qOhzKnU1PqHMgcoAldviPONDhiZEkM2XePIior6GpN2RY5I35G6fLzcrjq2AfwnxtPd+zxuf4WHHSP/e8nZxXE9o5qT4JodjVibHJ1m/5Ex3jMNrDY+S11gTS/AraaqGsJXphvWY6jSz4LXpnc8RI7oPZ9xkY9JCJrKVA694PMHkIul0M8Hsdll12GD37wg2IghQOE1Dlg27ZtuP7667F582YAgJRuRbx//uSoVqB6dM4ocToNLHM6FVLnUOTKynIYpdNFTicZy6MrmWKq2wuhy8/P4o8n/cxyuVczC/Gfm5wLXWp/Kw66h4LBWTW56xubfEGlINmc/QJ4Cp35dRa5q3bMBi12DRSt0/oAF+t0mtLIY7EDrOWO6y3L+B3czmkNl+lVfBSXktzxFDvA+r7joA4SkaFGsjjs/a3461//CgA47LDDcNVVV2HRokWcVrK5cd6hYQpSKBTw29/+FjfffDMURQEUGbGBOYiMdWmzQegYhc5K4oyEQehcyFwZLkTOKSNLY8ierYtcBpLkUWZ5BxAK5Bdk8ccTywVOBkW0in3JRGUf58LwlaWciti+cdOLBDRpkOhakue2D12tL0sIEJGdiV2t41Y/t1yKHTMSARBg/axYSRoH0XFD2QAYhv53NTF/X1a55YXxePH4ekrzhu1qnuPXDfq0gcZ7EFVtix0tKCCFCDb9IY9Y+3xEFw/hjTfewD/90z/h0ksvxUc/+lFEeB8HTYaI1NVhx44d+O53v4s333wTACCPT0PswPzJgRDA5A3PzkW8iWSOSqSURoXazZdUq7wqkbqRpTFkztJETqvO2mriEYUpUuc0SrewfRD/OusxSERFDCpykCCDIkHs3cT/mlmA7206C6rqbB+k+otROoeuIOVUxPvGnPXXNAqeVxE6q8/ZScXjpF43ETNFYe/j2khNsA7yzpXhQ6SuKjyuofXW36HceZYE2SeJ4Sp3Ovo9iTEiSOMKVn20E8899xwAYNmyZfjqV7+KpUuX8lrDpkNIXRUURcEf//hH/PKXv0QulwMUWcs5V5yrleqROCKBOJEp3kLns8yVRM4IB6kz96ezK3I6rEIH1Jc6XeKMRItmZVfkjLyYOQjfe/1MR8uk9rfioHudCx1QlLre0fofNKNSkLzLuVGdpi2pJXYsx67DJlRqJYJC7PjjVup03FxPnXxnG4LndR6+hpY7N+sekaC0DSO+bBijo6OIRqP4xCc+gYsuugiSVzMaNTBC6izo7e3Fd77zHaxfvx4AIE+0I7pvHqSc4QBqJJnTP++m31ytZTlJXa4zXpI5OyJnhGeUrpbEGWEROuYo3b5WLLrb+anKFKXTcSt1rHnorMSO9YZpI1pnKXLmMliYClJnlDMn0RheUmfE6TWWMYlyNXxNruyD4HGXO6oCURdlxlWsurizNI/60Ucfja9+9auYOXMmpxVsDoTUmfjf//1f3HDDDdoExKqE2L5ZkEc6y/vONZLQeSlzOi6lrtCZQN/xLVCPHXEsc4D7KN2clhFbEmfGqdQxCx1jlK4hhc64vC52bm+WVaStrsyZy2ChAcSOm9QZsSN4XogdYP966zY6aRI8HlLHNLNFowieokxuM0a5o6BQpo9AWngAmUwGbW1tuOKKK3D66ae7X78mQfQ4LJJOp/GjH/0I999/PwBASiUR650HKW86+OwKXYPKnG2Rc0mhM4HxhZOjhqkEyLJ/gx7mto7gwz0voFPSZNCOxBlhidKpkBwLHQCAgqnZVVu2AYUOmBw8oXA4JkwDJxzJ3BSAEAIqgU1yiGQtZ6wRPB7YGXDAo7k56IEVRfTBJF7KHc1p/WtdyZ1x8FK+2F/XodwREESGOkEzbTj0bIJNmzbhmmuuwXPPPYcvfvGLaGlpYV+/JkFE6gBs2bIF3/rWt7Br1y4QQiD3dyN6YEZ4onNhlzkHkTqjzOn958bnS8CxI8wjWe1E6ua3DuOC7pdLz2WiIkHy6JScJ/4FmjhKFwahA/gmJi6VWXAndI0SrQuyCbYexDQq0i/M12OP+hDavkdYwG26sjBH7szngYvIHQXFh69dg1//+tdQVRULFizAt771rSk/iGJKSx2lFH/605/w05/+FPl8HiQfQax3HuRUa/kHmzQ6xy0qV0fqKqJypirHF0iQjhtiqrqW0BlFTiYqZEwe6lFSQLuUKXvNLmEfHBFYs2uYhQ7QpM5NUmGAeZtOySbYMKJfn30aGOJE8njeiktNwR6nRmGSO6tzgUXuqAoUClDac5i2egL9/f2IxWL43Oc+h/POO2/KTjM2ZZtf0+k0vve975XmnJPH2hHrnQOiVk6nEojQOZU5QMuNZwdJAo14e7LXEzmvqCVyZliEjoW/Zhbghk1nOF+wEZtd3eJRhE6HRCLuxc4pDZC3zlUTLCPUUBfxqwnTuA98aBamhu4DbqJ4zOjf1yO549IsC0wed/mcM7FTKeSRKMYfb8dx/7QUzz//PL73ve/hlVdewZVXXjklm2OnpNTt2rUL3/jGN7B9+3aAAtH9sxAZMiUSBsIhdJTW71dESOD9OnSsmle9Qo/SORE5YDJKx4JffelS+1tx0H0uRrs6xa3Q2f1BUQ07xzkLvAVOn2PWJY6iMm63rddU61dXdzFSErtABE9fZ5/6/FHT8W28t3gSpTMSJrmrlRhcpUz97Ygi47WfH0B09kyocwbwyCOPYPPmzfjOd74z5WaimHLNr48//jiuu+46pFIprbl173zIaZPN+y1z+gTnOsa5Y+vtHqepTQx1cInWSRLyM9qYo3Ks/ekWdg7jk/Mfg0IlWyJnJEoK4e9Lx5DCJNDRrm7Fg3eEro7MuYrWOUziXDZAgwXWbWtVX42ygmiCpTXq803uyiv1v06A249yR02OHjbN1pU7O1HrWk2yVAWqzGGttKQx7V1Z9Pf3I5lM4utf/zpOPPHE+vU1CVNG6hRFwc9//nP87ne/AwBIqRbE98wHUXxsbjXLWzWcJFQMUuoMQscalXPSn27R9CFcPu9xAFrTqQQVKpx/d1apc9OXbnH3IG5eerutZZ5Iz8GVz1wE2BTByEAU8x8tVM7tapcpJnQ6nohdnf5zvoqd3boMZTOLnQdSZ8R3wfNb7ozbz4VsMfUjC0ru7HZHkEil2NWQOgCgcgErLunEK6+8AgC49NJLcemll06JZMVTQupSqRS+9a1vlZIWRga6Ee2fydbcalfm7AqcFWGWOknSUk0UyXe1YGxh5dRedrEjdbrMaXOpajdihUrMQufVAIkdhen404HVpedLW/rxqa5XkacqZBDEib3eDo+kO/H5Zz5qe70oBSL7YjjoL1kQ4/RCeRWRoTr5+6ao0AGcpM7hIIhQSp2pHmr8brbr8lbqdJpS7mptOwfC5XpggEdyV1XsnPQxNUft6kgdoI2OPeeao3DHHXcAANauXYuvf/3raG1trblco9P0Utfb24urrrqq2H+OILZ3LiJjHeUfchudUxRQ881JIiAsvwqcLuOH1JlEjhouHoXpSU+kzhyV02VOx43UuY3SmeXNiGr4obC0pR9f7FrvqJ7HMtPw2ec+Cqo4+25SfwyL7suWvUZMp7al5LmRujAJHaOgMYudorqbV9YpPJtg69RTdf3qCRiD2DmVOiNNI3h2tpsN4eI22tNPuXN6Dun7PBKpK3U6hemjwNIh5HI5LFy4ENdffz3mzZvnrN4Goqmlbv369fj617+O4eFhoBBB/O0FkDPJ8g+xCJ2VxJkJu9QV66opdgaZo1UuGG6kztyfbsn0QfzzvCcAWIucERapY43S7cj34P7BI8teU81RXhOLkgP4fPdfEYX9C6QboTvogRxInRtkRRRvYCK4KB3PgREuIm6OpY4xQldeRIijdbWkruKzps/5LHU6DS93TrebhXR5kr7DD7ljHREuEUeRZCWZwbTjM+jv70dHRweuvfZaHHHEEWx1h5ymHf360EMP4brrrkOhUADJJBB/ewGkQrT8Q3abWwFN4rzKn8WKG6GrRo2oHHeKU4JZNa/WgjVKB9RPY3L36Dtwy2OTnWppZx6nrthcV+Iq6iGqI6EDtO/lWOgORHHQX+oLHVC+LwkAUApaPH6IU8EKi9C5/E1qK8WJVR0NkKaECUkCsSt2RplilDPjCFhWfB85G+RsGYC9GTNcQikt/Vjincy4bKRsrZGwtcrITLZK2BlxK6cTGH8iguXv68LmzZvx+c9/Hl/72tdw6qmnOq477DSd1FFKceutt+LGG28EAMij7Yj1zgOhppOvhtBRRZ389S8RQPI2p1sosBGV48nwIRI+eMFTeFfbVtsy5xVlIqcCRJn8/qpCHAvdouQAPtP1CuAwSveF5z/sqB4AACUgCuuIxcnlqOFcqCt4PFJs8EgNoi/PeGOwXT5nCCFcU1jUqcyz7xFGdMFrmLQobhM368c9R/EyH5teTUNWJncuzl+ay9kSO1KIYNftBaz9l7V45pln8M1vfhN79+7FxRdf3FSJiptK6hRFwX/913+VOkbaHRBRJnGA6URrXqGjsgTEJqOXXsvc8CES1p6t9TGLSApapBwSxPmURiwYc9P9eeSd+N3jayffpAAp8PvufkfpnCLlFEQOjFd9nzl6ZwfjDcONcPDM62WO1oVVgiQpvDnrJAKEKGg5laJ3VKUVCbY9qcdDuSMuI4528+QRKuHl/96HD37rg7j99ttx4403ore3F1/4whcgezz7hl80jdRls1l85zvfweOPPw4AiO6bhehQd/mHDDJXJnK1fi3pvyCaNFrnRuQKnQmML6jfn06XuYikIC5p23x2bBSrW95yXCdr0+tdQ0fjvqffqT2xKXHK9DzeteJvjuphidIxwylKV/UjVnLnttlVR+8TwyJ2Vp/nEa1zuh4ummB9jdb5BWMSYq9puOgdU5WGY8mFfNk5JrnInemcocXndmemILFYSeTKyrERtSMguP//vIZo9wwoCwZw9913Y2xsDF/72tcQczszRghoCqmbmJjAV77yFbz66qs1R7gCAM0WD4QQXnwaDkKq5qczR+V0mTMiE2/3wV9GVuLuZ95ZlJ/yZlVbECAuO2sWZonSsTS9Sv0xT6J0VlBZAigFcdOntFq/NKdiV+tzbsSOSAANUaiJJ07F2Um/urLlwhWtMzMV5E6rtrjfPIqslepxWr6Nc5PHtGN2y4gOdILkZdBlA3jssccwPj6Ob3/720gmkzWXCzsNL3VjY2O48sorsWnTJkCREN+zAHKqmIdGUScPvBBNpVUVP/LTeczwcoK1Z22oKnJecv/wkbj32aMnX9BljsJ2Il8dP6N0LE2vhMJxlK4kdCwRIkK86Z/lROw8iGyZp25yjN8DJsLcBMsIj8ESTghN0yyHwEKt7WaWO6C2gLFGjm3JncPzw24/ObdlREbboWyWkTx8EC+++CK++MUv4vrrr8e0adNc1R0kDS11w8PDuOKKK7B161ZAkZHYtRBSKg5acB7BELAztILghDM3AKgeleOBVdNrmcgVJY4LIY/SLXyQ8RhnvHATRS0XOyfl1PusHbGzW5/NaJ2lzEkyoPoXamrKJlhGdLnyU+6M9fkevfMRO02zPI7DqnLHmvqHU9Su3vLyeAuU9RLajx7G66+/js985jP4wQ9+gO7u7prLhZWGlbqBgQF84QtfwI4dO0AKMmJ/mwuSkUFhfSOmlIKoCH+0roEYODyBoy7diAhRkZTtSwZrfzoj9w8fiXufOxpQa4scS5TOT3yP0jFQMWDC7rzEdj8D1BY7zuLjOjonqI7LfnVTRu4Cwo+mWVooTJbLIYLtVu5siV06gfxL09F9fAzbt2/H5z//efzwhz9sSLFrSKnbv38/vvCFL2D37t1ATkbsrXmQso3fwbERKHQmMDE/AQBIzQXaIxmmclj6090/chTufrY42KGOzLmBten1U9NfhpNTqlGidJbYidqx9MmqSGjLsM41onV1hY4lWtcIOesarF+dUa6aumnWBW62S0XTLOeRn7RQABSFqzSa5azaYIlqy+rLVEPKxjHxjISZJ8nYuXMnPv/5z+NHP/oRurq63K24zzSc1A0ODpaEjuQiiP1tHqRctP6CjYSdEak+59UpdCYwMS8BEJQGR5hT/3nBy+lFuGPXOzAykUR2b6tnIlcGY9Or3blddRoySlfxAQdRO9uVMjTxmjGJXVijc0xNsCz96mrNRR3ySc5F9M47qEq176efK5zkjhZnqqHFqbykGJ97tNdROykXxeiTScw4cQZ27tyJz33ucw0ndg01TdjIyAg++9nPYvv27ZrQbZsHKW//YGEeLCHLzlKasEwRJknORI3DwA8ajYAmqqckKYkcUCZzADC0QsKJ737NUbOrzuzYKI5t3Vb1fV3kAEClBIpKMDaehNLrbFQS8wCJQ//mSOoWJQfw2a6XkKEq3sh31F8AwIDShmfHliGtOLvYPb93Eab/vA2RlH27lXIKIv1jjurRsZ2rzixhbi4rag0BcULxRsUkdCx96xinDvNlLthaUmdFURyZ1s2HiKXfggeET+54bQPL7+VC7miNqQd5yR3gLFJntWwtChhHx+kF9Pf3Y9GiRfjhD3/YMGLXMJG68fFxXHnlldi+fTuQl7UInQOhY8ap0DUBVlE5M1SmzEJXrT+dLnO6yAWCjSjdpsFZGHl+Zun54wtzOOHUzQC06JsdVCpBpcTRoJLn+haj/ZZpoDJFvr381CUKtRQ9T6N0ZR82ROzCIHTFdao7R7PAmpCPsA0ieleqi6quk+VyWxeXVBVVxshdLaEDADWX5x61Y122mtip2SwkRDHyv8CM02dgx44duPLKK/GjH/0I7e3tzHX6RUNIXSqVwpe+9CVs3rwZyEuIh7zJ1fGUI06jdEDxlze4DfyoFZXjjbE/nVVULky8PjAbY+tmlL1GKCAZXaEg2ZY5NygqgZy1vphTmZSJXpnk+TklFaDN68pyXPIUOgDUTVlO+9a5iE75MgqWkKZMhxIUpWS5TTILQVU4N8sCmtgB7FE7NZuteE2K10+Cb8ZK7IxlS1lN7LpO6cK2bdvwla98BTfccAPiDHX5SeibXwuFAq666iq88MILQEFC7M2ZkHNJpoOMqfmVIVJHZIeSxiJ1gOsmWBqNID+7o25UzorBwwnOfvdLjuvUm16dROXGJhJQelsAh0eq0+ZXqQBEJkhZX0GtD1v1ZVILCvj+6behXUrbrmdQacPz40uhOtjgz/QuRvJ/pleVumrIaQWJXcOOxY5pijBKAWNkzOmxyUPqVLXsu1JKmSebryt11USOob5QNsGWFnO4bir1LXVHEM2w1b6bn4LH43szNSfX+I71onTVsCt3VjJXURaDcOliV618NZlD9NgxTExM4Pjjj8e3v/1tRDxK6MyDUPeQpZTi+9//viZ0CkFsywxIaR9HufqcCdw3JAk0GoHS046J+QlQydvInM6ixAC6IuP42ub34Y87j0ZekexF5ijxTOjiQwTznlAw7wkF3Ru0tDdSYfJRd2AGgSOh03EidABAafUoXTXkrIrE7hHtiT5a1c8BNk5uPB4InWcoSrhHugZNyPqe+QVVlFIEz9N6ghBZHQ+OfT1yV/MzNoTOyeeM1GvGldIx5F9qRSwWw7PPPov/+I//gBriiHd4dRPAr371K9x///0ABaJ/64E04XHYs1klTkeSSvN5AgCtMc0XTxYlBnBa6yZIhOLZ1FLkHY745El8iKBnvSHDOqUlcfNlZK3fWElOnRGrXKJ0Oiqtf5P3UOgIKUZeWW6E5iZYIXL20a+lU3A6xinRNGtqlmWN0unUapJ1Kmr6551E7dRUqmYUUhpPQHl9GuQVQ/jLX/6C7u5uXH755Y7Wyy9CK3X33nsvbr75ZgBAZGcX5BEP5mNrdokDKkTOL3SRAwCJUESh4tn0Ety8412+r4tR5IwS55bUggK+f9ptjpbRm16d8EzvYrT8uhNOwpVlUbpq8EpHUk3odGqJXSNE6HyQuaadXYLztFiB4+A7GKN2YRM8biN5PYra6XLHEnkrlZXN2hI7fSaMsu9isb/k4RZgqwplySB++9vfYuHChXjPe97DvH5eEUqpe/HFF3HDDTcAAOS90xDpb+NX+FQQOcBTmRtaIeGEM9ZbvmeMykVRfgHMU9lxlG5sIgGlz5nQxwckzHjNOhpXjdw0GSNLHG6vEDe9AtAGLNjBIHdMUTo72InYMZVbX+iYo3UqY1OTVRJlL3A68CHowRLNJngO4BW9C7TptQa8RyOruTyXY6Se2NFClQhjlQEi8kAbPnr1efj1r3+N733ve5gzZw5WrVrlej15EjrD2bNnD66++mooigLpQAsie+zl/aoFIYQ9R12YMXcCL/aVo9GIp9E5KlO0RiZ/QS1KDODj3U/j491P44y2NxAnSoXQsVdmrz9dbFjCrHXArHVA15sKpAItPexE5igBEMLDYzJKZx9bUbpqsHS+Z00b4jZK52WETrW+qE9FHI/mt1WoNPkIAqpOPvysttjvzo++dzXXwyM5JBLhFwXkdHyo2Sx7xM9iP/3+M4/h1FNPRaFQwNe//nW8/fbbLteQL6GSulQqha9+9asYGxsDGY8huqMbhPFOq4ucJxekMCH7I3JW6DKnixxXmbNBucipkyLncMYFFlIL/Wl69TxKN1kRiN4vxqtIjvFGElahUxW2xMOCcpzc2F3cvLkIhF9yp+dwLD6CFjyq0iknd0aqRunMmAaHEBA8+/2tWLFiBUZHR3HVVVdhfJwtF6gXhEbqKKX47ne/qyUXzsmIbesBcdBMZZS4QEVO8nmEoc9kpkuQV4x5E5WzSXxIqhA5p1NnGWFreqW+NL0GhqrWly6WKB2PmwiD0NmK1POUOYYbWtP/AK1H0F1j/I7cWQhezY97JGANJXcucdNHzyh3RJWw/bYxzJgxA7t27cK1114bmj6xoZG6X//613jyyScBlWhCl6/f3S8UEmciTOvCk8x0CQNHEkwspJBl1bHMPZU+2PEgibGJBJR9Wn86XeRmrQOmb1arihxRAclhZCusTa/P9S1G8jedjpZhano1RunMeBG1U2wIo5/Ui86JJtipRQDNsmGI3nktd5wKci13ajbrbi5oXezyMkaekBCNRvHUU0/httuctdx4RSik7uWXX8ZNN90EAIjsnF41dQmRZZBYDCQSaVp5ChtGmXOTz06lxPEgifxQArOeKxe5elE5QqmWoy5kDCpteHF8saNlFJUgkvGh6bUeVlE71r50rqcRU0EZ5yS1jNaFralVVScjAnYelNr/rMAZQfS7C0HzrFdyF5YmWRKJTpbBSvGckibi+MxnPgMA+PnPf45XX32VvUxOBC51Q0ND+Pd//3dQSiH3tyJyoHyka0nkYjF3v5glEnx43wrW2SQ8RBc5HjLHwngqgaFd05HYF+HSvMqb1MICrj/1D46Xy9MGj/gEHV0rCh2/8oIXHeONm+qS5hWKUtqHlNKyh6AOAUbvdMHzex2aXe5Ky7tBUfCTj/4RZ555JhRFwdVXX42BgQF3Zbok0JQmqqriu9/9LgYGBkDSEUR2TQdQHPYtmjx8JzNdwsQCChBaVeJiB4/iF0f9hnvd46kE8geKqUsotHltbVxPWvIZpKKJup9LFrJIRyojwNkOGaOLnfen65RSZS+NqUlsy86qukieyohL9hN0svS94970aoWqaj9C/I7SWQgdpZQtYs8ic7LsPNplkdok6FGPJczrZXEKiNYQC/TjN8htYxQ7HwIVRrHjJmOGsriIo81k16UoHcOyVctUVDz5nY1Y/OHF2L59O77zne/g+9//PiQpmCBSoFL3hz/8AevWrdP60W2fBSlS/+bc8FjtaEoDvUjYkTkdWVbRIbnobGrAUuQcMHtiED954me4/eC1+N0hJ1f93Ie2P4n373wWnz/mE+hr6ap43+qGZgVRgOg4kBuO4JX0orL3FCpBrdExT7FbSZHn+xchckcX8q3lFzyiApF0jQ3lVZ45I35H7DhF6ErzwBLiz3RiYJA4H9etDIsbq8NDdmph3Ed2rt1e7dOABK8R5c5S6MzLsoqdKmHPnycQPzaOl156CXfccQcuuugiprLcEthpu2XLFtx4440AgOieHkh5D2aMcItEtKmCnHy+5vshukrKMtJzEoE0serNq/n+JKBAezAK3ZzUED6z/l58dMsTloMkPrT9SXzqzfswJz2EH77wc8xODdoqXyoAsZHyR3QcmnzSYiJlw6Oe0I0rzqa4U1QJck6TbONDlYF8q1R6FJIujimnUbriMkwjWN32pXMJZV1vVlSf6/MC/TtUewg0Aj62J9cjgCZiXhApHM2yLsRYykTxr//6rwCAG2+8UcvkEQCBWEY+n8e1116rJRgeboU8OC2I1WBDIiCyZP3QJ0yXJOtHGJBl0JY4xg7rxr7Vki8yp08PViFzNa4/8UEZXZusP9CSz5SETkcTu8fLBknoQqeji12yUB5ptBK4yARKAmd8TCyguPCs551uAq5YSR6VgMSOofoLBwHnZtfyouuX65vQBSU8QV1bhOCV45XcOW3F8XiAB88onalgz+SubpTOvAwjP/3w73Hssccil8vh29/+NnK5HHNZrARyNfjNb36Dv/3tb0BBQmzPDEcJhn3t50EsBK4R+5kURY62xEHjEYAQUBnwo99+ikbwyvhB2L+925bMlaCoOjgiFU3g9oPXVrz+6Y334UPbnwRQKXQ6fzroeK1vXfECLOdpVYGzXC0CdESc56dzwrP7F0P9wwzbny9JuT5K1eu5UP2CQ7OrpdARxsFJ1fr5CrGxjuI12ww+djEmGQ6aRojemSXKA7kjThPzM4gdicchxRN47Ze96OjowNatW/GrX/3KcTlu8b1P3datW/Gb32gd7aN7ZoAUQjL9rFVTa6NflGRZkzjA9z57KRrBgNIKFRLyVNJkjiN6H7rPrL+37PVPvXkfPrT9KczIjlYs85Pl5+APi04sXWwLLTImZkq2BmT4iaJKbLNIGNFvKnr02OJ9X5pefbi5VRsw4XmEzkbZRJbDMzjCT/RtQ9VwZh3wizCIHcCt751nUTrryor/FUdsM57LUkyL0hFZcpafzu7gC9PcsqQQQfqVBLBkBLfddhtOO+00LFu2zNE6u8HXs61QKOC6666bbHYdbqu/kFdIBIhEJh9O+s6FGYuonF9Cl6IR7C50YHehA/1KO1SPD6/fHXIyfnzkeRWvVxW6xSeVv0gA6vFFiqU/HVcobczoncsonadC1wyROT9vzgHNs9oUeHHtDtO+sCOYLiJ3utC5wmIdSTxeelghj7TilFNOgaIo+N73vgfFxx92vkrdn/70J2zdupWp2dU1RAq3xLm94eoyZxQ5n2VOFzmvZc5INbEzYil0TUQ0paLtTRsDQMLSJFQPBqEz9q2zJXQsTbB+yZwP521g3UjCJBRTnUaTbQ7Nso6bYfXlDBJXTeTMPP/jt9Da2oo333wTd955J1O9LPh29z1w4EBp1ojoni7vm11lGYhFJx8+T3bvC4SARixkzifMMhcUty07Gf1x68E2/fFp3IRuYn7wgySqYveXYDFyR5ymPglp02tllR6Kl0RE/kxeVBOKqdxUGyQ25I570yvrvrYpd9WidKxi5xRSiODyyy8HoM02sX//fl/q9e0MuvHGG5FKpUAm4pCHO/hXMBUkTscobz5H5QDvZS4+KGP6m3UuMBSQcxRyjuKjmx63bHIFtKZYffCEW6jkzyAJ5Y/2B0kwE/TsEB7ge9oSAR8aLWLUzDTSfqghd1yaXTnw07/7Mw4//HCk02n89Kc/9aVOX8xn/fr1ePDBBwEKxN7u5tPsOpUkDghE3owoSRXKnCy6W1PeR+YoIBUqb85GkZPy2vsf3vYEPv1G5ShXI5/afD83sfMaRZXY5nt1APFLfFiidE0omwIHUNWzSeUFDjDJXWiidNXKMsidnXX1LVoHgm13DIMQgkcffRQbN270vE7Pv5mqqvjRj34EAJAH2iGl2GaNILIEEosC0cjUkDggcJEDJmUOnXnMnzWETx/0mKPl7x8+Eg+9vJK5fiuR06kmdFZNsWaxK4189RA/BklE0zb707khgAgY8SP3GmtqE6fViCZbx3g172hDEYb0WdTdyFNfKeWks9e1yy+xk9JxnHPOOQCAn/zkJ57Ptez5t3rssce0wRGKhOjeyimaaqGLHIlFJ/uyhOFA9xKHIkdyeZAUn2m7jBhljkgURKKIygpaHU4RllUjIDnn+0yXObPI6VQTup8sPwcfPPWr+MnycyreKxM7H0a++gKF8zlJ/YBl6jtTlM4XsWsWJAmU0tKjWdDlriGkosnhth9C1G/SL7H73+s2IJlM4vXXX8ejjz7qaV2efqNCoYBf/vKXAIDIvg4QpfYvVqPElYncVIA1Iqfy64yuJFUos7NQZpfLnF/QGIXUnUOhtbrMAUCykMEHtj9b8bpxlOsfFp9kKXbv3/lsxYwSU44wNnHyWqdmEHUOGAWv2qPRCIXcNXtQwYyFgIViP1SBRdL8EDtSiODiiy8GoI0v8HKmCU+/zX333Yc9e/YAeRmR/srBEVNa4qwI6EKryxw68yAy1R4ByJzcngchtO60ZelIAp9dezl6k9NLr1mlLTGLXW+iE58/5hPajBIh5Nn9i6Hc7u0gCcf96dw2vbq8CYYuWidGwAZO4FIRcJeYsMC0HzyM0rmRs1rLEk6DLn77mf9FT08P+vr6cP/993Mp0wrP8opks1n8z//8DwAguq8TEokCMcPFsBF+UavaRPe+5HRiaa5yiZJUgY48QOCrxOnQGIXcngcAEOKs/r6WLnx27eX4v8/ciD8tOh5/OOhEy8/povf+nc/i88d8An0tzroA6EzMp3jvmevQJmewKHbA3jrmO7BpfLntOvqH27BgRw5qTEJmekjEgRA4nnLD/OOEEFc/WIgkOctbJxExCnYKUBKKoGat0K/XDRj1tIXNbWoUO19nnGgwCJXwsY99DD/60Y9wyy234Nxzz0U0yn+UrmdSd++99+LAgQMguQgiI9PLf92KHR8oNCoj0ykBnVnfZc4ocoBzmTPS19KFfzj1C8hIcRCL0bI6f1h8Eu5ZcKzjCF2+HZhYrE2l1TpzAidO2wIJKmRiTzAkQlFQ7d9sqCqBqBRyVkHLvvI6rETPl0ESvKgldl40Bwux8wZ9RGSI+kUBCHa9vJA7Nz/wjevhc6BAFzxLuQtplM5YhqNpxBj4+SfuQ/dJ3di/fz8eeOABvPe97+VehydbuVAo4Pe//z0AIHKgG8T/KWaDQ5+WKWTQqIxCexyF9jiUZFSLQAbYxKo/3JKO2BtNXU/o8tOA4SMLZY+JJXkgqgJRFVFZQZQUbAudK6jWTGp8aKKXLz0SQ4o/gyRYkhR7gCfNsLTBpk4LE2HNLRfkOoUgW0EFrAnAXQpYRdNsyIWuWlksTa8kGqn+wGTfultuuQWFgsP5t23giW098cQT6OvrAwoyIl4kGhbYhkZlKInibBMB/IidFslA6tY6hfKQOF5kp0kYPtJwQhEKRMKzfhVQgBguznJWQXSsODMEIfZH8gb5g8MqWudgfUQzbEjhNFk8V4KOKAbVNFutvoCid6XInYe9SSilXLtIuY7YqbRmv9tffvJBdJ3Qhb6+Pjz88MN4z3vew16XBdyPeEopbr31VgBAdHA6CA3JSW4HiVQ+GhQ9Mqcko4Dsr9BJUNEiZbWHnHMUlaO9Ccxex188ctNk9K+KlR6ji0kpCoeoyl3o+vKdeHzQfn86x1BMXqgpBVHUuoMgfEs6XHMlQnJOhT1KF5bt5JSwRfDCtC5hQY/eVTv+OYswkUj4jos6lPLislKjBYVQCRdddBEA4Pbbb+c+Ep17pO7ll1/W8tKpBJHB6fUXCAqbwhbYxNcMlKJyQCCROQkqElK+/gdroRLIWT4nfm6ajNHF2i8mKmkPACi0UORm8g97G1EgIaf6PNiBUhCFOovc1cKrplc9YscQNRTRugbCMDtE4B3owxhNDAP6OevnfY5nFLV4XPGO1rFSlmhcUapG7H79hUcRPyqOrVu34rXXXsOqVau4rQP3o/vPf/4zACAyVD8vnS8Us0yDSE0RgbMkFi2PygUUmXMtdBzIdURw4KgYDhwVw8hSGWoEUCOTQgcAIADkJr7R65E7G9G7RsR1/7qwR+makFAlERb7vxJj5I5jRK2mzLuN3nl5H+eVtqhKxI4oMs466ywAWrSOJ1wjdQcOHMAzzzyjFTzkUZSuVuoPK/MPQuD0KATLzcduahPj9yJFkfMZLpE5DmQ7ZIzP17a1MSIngCZ4qg+zZzi9SRKinR9+9PET0bpQEZoUGEFEqezAuj68RdXP6CaH6F1YonUVVInYPfyfG4GDgaeffhoHDhxAT08Pl+q47qn7778fiqJASiUhZT1O8GqMwFlF4hoxImfnpAzB9wpDZC7VI2PPyRL2nCxh4EhiHZETaBQjd44u+h4P7Qel2sWO9UbEKmkiShMqQhG9Yx0h2mzUEiKGiBqTsNuN3jVClM6IRcROysaxcuVKqKqKv/zlL9yq4nYLpJTivvu0uTgjg528itUgBJDkyYePAheK6XRCIKlqXsJYNh68zM3QZG5wJYWaKD7CPGrVJht752DurTFvK1HDJTSs5xYtKM6bbHidOyoN51y7DU4ommfDInf1BjIEiU3p4hKBrVZPowldDTb/pR8A8MADD3BzDW7Nr6+//jp6e3u1ju6j7bU/rFLrHUOI6MSqE5Ioo5qXgEywfSNTM2QMHaYd8FSioLEQXuxcohRkRMe9HbxROu94zl7CciGik2JEKQUBnK2PfqGvdh2pV7dAUIswNcv6lYqEpWy/0sY4aAYOsgmW1BNCi2ZYebQdyYNHsHv3bmzcuBErV650vR7c9sb//u//AtBW0lYaE3P0TY/ATWX0xJUhEDo1L0Edi2pCRwGnM0XxoBSVO2IyKteMQucrpamVamxHHxIOG3+VUgdRCVowRMmo6m9fORGlm1qELVpWK4LnZj3dSpApouZZP0mv/cCPKJ3p+kFUGSeffDKASYdyC5etVCgU8OijjwIAIqMd1k2jjdzXjQW7KRtCloU8aJlTuvOlvnK6zAmR4wxvEXLSrEutxci22JmbYxok75XnqCoIIZYPgUtYhclLIQxjE21R7oLuI8nUjOlns6uilLnQYz9/HYA2aYPKYeAYF6nbsGEDhoaGgIIMaaKVR5HNTchEDghe5nqmj+GTRz6Jdy7bIaJyNpByCiL7R+0vYHWxcHtDMN5UHIidq750Vti5iagUUBskylbrZq2q1o8aCNFrcoKM0lWUV8xCwLuPpJdROg5CV7fp1Ux+squNNNGKtrY2DAwMYOPGja7XhUufumeffRYAII+3gUBcMCzx8EJKJtKIEIJCd9LxsmV95gJwqJ7pY7howSuIEgXtchotkZz/K8GRjBpDX6EDD/cfhrfuWlr5/kyKI9dudV8RhTai1S7mi2u1/nVOm16NQqGn8WE81uv2r6sWlaMqAI9/afvd9BrC+aMFgppUES/XCajN5droSxva9CYWEBCsXbsWDz74IB5//HEceeSRrsrjInXPPfccAE3qfIOlkzQjTAeInofLjwOL0rJ5QetB8ip6Xh2HlG/DgWMU32VuZtcoPjD/VQAoyVzYKagSduRm2PqsSiVklAiiE5UbVt5FsKX/kIrXO4YpYv2DoFEZ+c6E6/W1hRcDJ2qJXZWm1/KPWItd1Shdqd4a14NGitIJnEMk0QzPgs/SE5r8hGZqzPzgKfkCENUU7LH/txGYD6xbt851sa6lbvfu3di1axdACeSp2vRqdXKwZr2nFFDhibCSvAoprYV9CaWIpqmvQqfLXNhFrmfWKH5y+G/LXhtTE3gjM9912ZJCIY1Xvh5Na30wSY4i1j9R9p6noscqdoz9eZiH7de7aVMVUCVvfuiJARIaYRYnPZpjZx3D1A+tWXDYPGpb8BogGbHjplcjRbGTJ1ohyzJ2796NvXv3Yu7cucxFupa6v/71rwAAKZUEcTLXJaUA1MYa8VrtAHE7bZHHmGXOb8IsczNmj+C/Dru17LUEUTBbLr+J9/l1U7eQJaPo6YKnxmUUZkxDpN9Gv7p6TXm62LlpejW/bo7W2YjSTX6UIc0JYN0MG4IoXShyXU4VnMjdVIan7Li8h1cVvFrl8m6pCypaBwD5Akg0gsMPPxzr16/Hiy++iAsuuIC5ONdS98orrwAA5FSL26ICw5bN682pTuHZtOWQoGVuUGlDi5TDRxb8NVQyl5udx+9P+28AQCspYIYc/A0g10YwckQXOjYOVr5pEL2S4FEKkrHZ/9DuQAK7+bnsROksxM6J3BjFrm7Ta1m9HnTLEFG6xiMMcqcf+0LqbVPqf8dJsBxF64IUOwDHHHNM8FJHKcVrr70GAA016tVyJ9vZ8azzufqIUeSA4GTujfQ8qCChiM6lFhbwmRMeKT2fGx3CorANyCCAGrVxDOpCpajaRciLUdR2fojY6cjPYeCE9n0d3JiN0bqwROnEoIfgCFLuSpGmYt3NKHdetbRRG614PvarrwVVFPcSmi/gN19/GFgEbNy40VXTsSup2717NwYHBwGVQMr41LnbiJud2iAjY2yTL0Ae1UTFK5Hrf7sT34xdgGuW3mX5vlHm8lQ7yKPE2U31+I6/YXRlEus3LHK1rkaRa5GymBsdKr3XKadclR0qvMp+zyvCrAZwQ+N5sc97PMuHwB/CJHdAcwieR0LHexCFH9E6HmInjUUQiUQwODiI3t5e5n51rqTuzTff1FYmk7A3i4TAOxyOgGVCIZjIlc9P2l+Yhs2ZOQBQJnOsJKQ8psXYInu1RM7ImJrAW3kFS6IZ5vUMFbUEzG6UqFqWenO5rAlPCWG/kTkd3agPmhBROoEZIsGXyJmV8JS9FmD0LsQBjVCNivUZQiUccsgheOONN7Bx40ZmqXNlYlu2bNEKYY3SOW1a4YSTaYkE1vQXpuHp8eXYlJmLLI0gSyOuhY4VeUEKl178IL580n04ON6Hg+N9VYUOABQqIedxXrNTZ2yBdP6Ap3WUUTVZLYcEwxVl+nzOSgxzQvO4rjRplE6TTe+vf0HPLFAXu10XvJAgIhUf4UtEbwsPonQVQmfnHPbiGGPsQ0s59L09/PDDAQCbNm1iLsNVpM611E0VWNJFeJTWxC0TmRieHl/OJSrnho4FI/j9qv8HAEipEewqTA9sXaxokXLobplAP7r9qTBMk5BXgUgSqJ9C6CY66BIRpWsgghzQYBW9A8IddPBD6DjjV3oTt82wd/3gSWAB8NZbbzGXwSx1lFJs27YNwBSTupAOliD5ApDOgSZj9T/MQGxIRttOYHhFO7IHc8lZzUTnwmHcdtRNaCEU8yNasuv9ygR2NWdQxRpFBcnlK1/3un8dhwg3s9hJRGtSbfZUFWG+mTc7QY9WDUvzbC0aKQWZGwIaCStltPv3W2+9xSyizHfnoaEhjI+Pa9MV5bwRCVuEZARM4HgUGdBljqiAlAekvP/bWhc5AGUyN6WpdrFnETs7Nw7jHK8u8VXsWKN1LppeXUfppmqEz7hfvRxVWY+g5Q6wHlwBuF+nEEbyXUfpbDpAI0TrSCYGSZIwMjKCgYEB9PT0OC6DWep2796trUQ+6m6QREBJiJkTnHqJz+vS/tYE8sk2HFhT2RfALHOsZNQoBgtt6IpYTKNQh86Fw/jtkb9Cu6TWFLluKYlV8f14NTuTfUXrMEMq4NiWbViXOtizOrjRAH1GfW+KFbjD6wipuXw/BK8eYbg3VHz3AJtog2h2tZPaxCtcROtYBZJQCXPmzMGePXvw9ttv+yt1b7/9trYSuShrEQIg0AuHlFO06akM8JI5Had97ySouHjGOnzlvL/UlTkdmUhIeLwdZUKQcJieJXC86EQsy8Em4/UjWhfWARJW3T5U1VZS50aZ3NwSfV8HdXMPU3/Van3wAP9H87ou0v/t6Vi2WMVOVZmFUJe63t5erFq1yvHyzFK3d+9eAICUjU69JlCWfnXGwRJhuDiY4C1zTpGgIlGsuFNK4dBY485Qwkq+lWD08C5Me91iVokwwUnsGrZ/Xb1rXd7FtnE6c40k2doXTTFVWaPIXVgii7z2eZMInd+wRutmz54NAOjr62Oql1nqBga0dA0kz6HTvNsmWEap9LUJNqTD1hODBXS9FgVRgpe5RubevpU48PsFZa9JeaCtX0FyX2XevXx7DMPLyvuiUglQYj4fI6wX/qDFznFFNqN1Qf9A9UO+Gj2dSaPIXdCY18+4vZptwJGX5y1rInbGaN2Dv3wOmB2A1A0OatEEkg8urUXT4+GBSvIKkM0h0hqDnLHfhN6xDfjNUyfg70582lX9tWSuT+nAq9kBrIrHXdVRC6cJiJ/NzMIXnvwIutZZbys5B7SMVF4opQKFlKqckiyWzWPGmMVUZYUGutgGKXZeRetclkeVBtp/jY4fcldLsoOUO7fHfYCjWB1H6Tj3q3McQXPRlMoyaEJ3Kt2xnOJe6gqRyQzuDRhSDeWACUbspDXRZY7oE7g7jAxIOUAeZz/B7ETmclRGhnqbNqVWAuJnM7NwzRvnlb1WUCVIoxG09PO5aROFgljInvYmh/xqfiV+baSIXb3tymObufkOLPtcDDYRkbsGwrNmV+Ocz42Oon2P0dFRpsWZ75ylCguydjF0uz19bIKtsHSn/VjCSo1UChUy5zNhbmZ9Kj0H3950Tul5XpGRsYhe0u4c9h0Tx6wXfJAPwHo/VctRFyRBDZ7gHa1rwChdU/SV40U9ufN8BK+ezzHAEZshxluhQzibYOE8WkcK2mdHRkaY6mOWunRa6ydEVP0GFI5oXWhHeQX0a66ezEX6xzAtJmP0IG+aOp/Ytwy9L8yBsiSN767+syd1AM7SmvQXpuGv44twINuKbYM9yCsy0un6uRaliAol4dNNtJbYhfFGzkHsCCHOJcWp2Hk5y0SzRs38TmfCq7wgxKp0bAUcPTQT8Hp4LnSlv+3Jk59NsIAzsSNBRep0qYNaPFhUCkhNFAJtYHSRA1A3MkcKCqQc/yjLE/uWoXfdHEh5glgaGJ/wNvVNvbQmfYVOvDq+EACQV2VkVRkj2SRGx5OerpeSIMjObkO8z3mePs+ToPIu163YEQKCgKJPQc9T6td3Dvp7+kmzyl2DDXLwRej8wEW0zhHFQFkuV6V7Th2YpE5RlFKFROV5sAaTiLjUbBnGJlgnIWWVak1zihpYNMcsc0FiJXJGuhMTyPZE8PaBTs/WgRICNeriuApDdnsnBCV2xGUzbAM2vTZtZJA3QUpQWCN3jYa5SbvaPnVwvwxrtI5QbZ3y+TxTWhRmqStRPGYppYBSHHQQwJxpAACVgkohboL1CmM0Tin+76GgdvwN+M3TJ+DvTpgcAas3s0p5gljKfR1uRsDqMmclckYikoK4HNJEs0a8Ejsvfnn63beOJfJkboJtxAESCHd/Oj0642lqE6/huX3NcgcIwWOllqR7PWDCr2gdtPM7nU6jpcVZzlYmqZO8jGgFFa3zA5796mo1q6oU8HDzSTlAHtMqeKzvEOx7cTY3mdNxOgL2oVQU39r2dziye29dmXMD7c5h35o4Zr3o869/L/qC6dHpsP0I8jta14hRugahKeSOJ2XHtE+C10z30qCbnl1G65ySy+X8kboySPnFlypqY0brwtwEaySg0atm2t4muO2ek7jLnBMeSkXxbxs/CADIF2Rk01FMZGNYOXOvZ3VKERVK0tn2d9WvzogX8tVsYuegfO2cb8woHRMs35XTTdTYr6pM8IK+SYeFoNOyNAIeHCtMsz54PRKWTpYdiThXtPBF6oDmjtax4LHIORkBGx9T0fJ2CplZSRSS9g+flu1RfK31ffgOhxGwf0nF8eWN70e+ICMzUT5qNVcI30Ad1/3qAEBVQdJZe8eBnZu3UUR4iR3vptd6Ymf1PZ1G6xo1StfA/enKondu+0I2G7RO9E5sK76oFJAdXvc8j9ZNXteSSecD+ZilLhaLIZfLgUoqiKmtr2GjdWHDmBzYw+9iZwSsLnNEUUHyCkgh4agOKQ8Uxt2NgK0lc6ywDJbwpQlWl7hSpaaoktsRZWYpCGvEjgW7oqBLBStUDUyuwtyfzi5EIlO3WdbOeVZP8ATW2B0sEdCxVy9aR2VtveLxOGQGh2Jufm1tbS1KnQLCoRW3gmaN1tWTNPMsDyxNwhybkksyp1KQ3OSggsT+FDq3tWH4YO/EXR8s0adM4y5zOhFJQSLiLJmvZ02wZpGrFQXyItFmGMWuWrSuGWQg7E2vgvDAGqFrtvunHewMlnB7PrgZMFHvvJe0fe20L50Os421tLRgaGgIVLY+2KiigpAAkxGzROuC6ldnJXJucTlYoprM6ZC8Ajnj7Uijm/euxRvPLUHk4DHbMpdJxbBh/1xP+9WxULUJ1onIVSwbIrHzctQrS/86r5v1qBpYGhPfonQeN/VRlYa7ObHR0gkJ7GESOpZ+dVRRQBj6u+nHUq1oHQ1K6tra2rQ/qkgdAPfDi5s5WlcReagVlfE+ghI5MI5pMRnZrmhNmXNDcmcUX//rhfj2O++s+plbe4/D3+5bCgCQskA8CkzMsR+doypx3K+uK57C/J5hT/PVleFG5CrKCpHY+QWPqBMPIQtqgATPAQ/Ndm31AiF3zYPVucPSr44F4/FT41iiEe0Hcnt7O1M1zFLX3d1dXIHqN37Rt05fjxD/Gi1C8gXEekcRGU9wlzkdOQekx6wFTZc5KQu0DE0e8KmZ3u87liZYY7+6SEpBcsewjYUoSL6gndA8ozxTQezCFK1rtChd3bxeJoToWdOIcldr3zfzfra6JnLqglA6BxXFE7fRnaqnp4dpeWapmzFjhrYCUY+Tt/odrePRBBsGiXPyPfT1VRRHQsejX92tvcdh2/1LIWfKZa5UxyCFsiWBzCEZ5jq4sTeBhQ9Nbh85nUF0/5gma1m2KV244dVk1nb6jvidcNgtUy1K5xSqgqrUu+md3GDcdkH94HArd2H5odTMQm9uJaxz3thtgi1L30aLky3YWp/K+qs1wdKodj3VA2dOYZY63SJrSR0hpDjCrF7HQA8P8mK0rhrMUTxVDccFphb1+tW5lE83/epu6X0X3rp/CeQM0GohczpSAZCzVd+2hKVfXUUTrEngAEDK5RAdNCXlkwhIyuEKFpfjfoO2PerL4X7nnUXdhxHdJXhH6xotSucC88hUnpLHpT+dj9n9LWnEyN1UxFaKp/pNsMznX7Xlqrx+1j8eh/vvv99/qZs1a5a2XjEbkR3zvG1m6m10CXAVratxs7PcUZSC2NiB+rJET2Tq5QWGZ3NYlZs6yReANAFN8h1haqTz1ShuePpiZKaTmjLnBpZ+dRFJwdsHOrHwZu2UkLNZRIZsTF7rZn94IXYFpX50lkXmOR7fpfMGsF8mpXykZqpF6RjEqVqaEeProYni+fkDoRpC7lzjSWSY47W16rWnXhOsw2OCUoq9e7VgxJw5cxwtq8MsdQsXahOlqwkbzU4qdTdI0q+OjAac3ECYslIHgZ2bkYcXpvggRfeGcajxCAD7ee68aoJ9fucizLx9Mrnj/JSKeN8Y1zrqwkPszImEAfcjuK2W5yF2PI4vp9uMV7QuqChdCNEFT8idgUaXu4CaXsOeq7CWCzhqgrVa3qIJdteuXQCABQsWMJXJLHWlCqOKlqvONNdmheS47VTotm+dV32OwgylxciNd9/bTr+6+CBF16YUSEGFlMoXpc4+PJtgjSI3J0OR2F/enEqjMkjefh8xGpGARBwkw9AE6wYrkTM/9yI1j1nsHPans+yTUu9GbBWlY5HhoKN0LuoMa7JhL5toKyuzsQ3CLneN8OPfR8IkdFbBGVfnnZPjtVgXlVQMDg4CmAycOYVZ6trb29HV1YXBwUHQRB4kZUPY6jXD1qLUPyzEKU7C1ARbdkB5OBtFjX518UGKrjfTIHkFUmpydGlkNIPWvRIm5nrXzGtugn1+5yLMuCOJOelKkSuDZf/JbqNiNgWllshV+6wfYueqKJti1ww0cNOr0+VryZ0v+enCJHdA40bvPMRzoXPqG6YWQdtCZxWwYmh2BQAa11o+u7q6JtPGOcTVVBBLlizB4OAg1EQWUspGc1oDNsPaJTRNsC4vHjz61SUGKKZvrpS5EgqFnHV2UWdpgs2+NQ1/u+1QAKgvcy6gEodoXS2x0wXNaZQobGJX5dhkFju7MkxVPjdVlZZvSz+idiGO0tUiNP3vwiB3Yai/Hj4HSsIUobPCcfer8hec1aVM9oNWW7R7yMEHH+yoDCOu9uSKFSvKVsQWbtMfUB9+5TUaejLjKoM+HDc7OTwotSZYBfFBijnPptC1cRzySMZa6Bhx0gQr98ax4PYIFjySR9vOFNp2ppDYb2PQAwAqEdCow18eEtxH64DyZnJVrXyw4GbZelQ75qp+vHbflGrHb80LrBNhkAj7w2r9Jan2w/Q9mPEpSucVVKXub+JuxdbhseoZta7VU4RmEjqLhV3VfdblxwAAli9fzlyGq0jdoYdqURC1pTx6Ujdi5bYZljVa12z96kJyYZBSObS/OYiW9gRXkXOC3BvH3Ge0HwxSLo/YkIuoGcOvatfROpU6a151VLYHEbtiSh+ezaehbYpVKduPUeP2zuerv1e1Xn+jdF7fbEvlBymcYYncAeFaF58QQmfCtO83b94MYDJgxoIrqdMrpokcqKSCqDZvGm6bYf1OSOwEv/rVeQjJF4CMBJqI1vmcApIqCr0kQXIwEIalX11ikELZmkBm2eSPCF3mXIucASoRwOGACeZonS5zXjfleSB2pX4gdmTM5gWvrCy7aUxqNcNyanp1dbG3EsJa+7usibexo3ShJUxCFfZ8p5wIu9C5QrGRSsqMeVCGpGL79p0AAozUzZgxA7Nnz0ZfXx/U1jTksVb7C7sZDRvSQROh6VdnRm+CdSIddSSjJHR6065KQTJZ0ETcXvkM/eqkAiAXfc4LmSvDy2idMSrn52hKu3UxiF89sWvEfmEA2KN0ZWWw9YWk1KJlwaMbY6hvuF4eO0EnMDYThOB5fA8N9bFlxM9WPIt9q7amoSgK5s6di5kzZzIX7XpvHn300doKtdnrs1S5BtX7sNRE1fsmOL1gNsgBVosApyEjeQXSyES50AEApSAO++5p0Tpn02u17VGx4PYI5j+WR2Jf2huhg0d969RiiplCwZ/onBG9H4+ieHaTrNovjrEcRyJodc0Ia5TODTb6/oWaMEYR/erj5rSORv0h1Ii4OHe4BHJUFR/42ikAgFWrVrkqipvUKSxSR9XqkmWz83IoB040wclICgpIZrIfEMkrkEZTkzLHI+eXg2hdbFzF9A2j6HxjBC07Rz2TuTIYo3Vl0cqSyBlkzk9qDaDxpDqL+hjqopRO6R9gzdSXrmEI2wCGMEUQWaBq+O7NVvgtdFWWeeWVVwBMOhUrrppfjStAk1lQWYGk2iyyJGUqoEruf2UaD54Am2R9a4J12rfOaRMs1ZoISV4BSWftjaItKM6aYG0QG1fRun0cRFFA0sWoXqx2Xz9euOpb51dfOSvs3phYm57M8x5XFFveFMskKHouMyfXBmPfOh5ROrdNr7yjdHapdv1rhBusmSAkK0z97byG573S6vgKUfcoS0IidDRSwObN2wGEQOp6enqwbNkybN26Fcq0CUjDHW6LdI755lRP8PwYBRu2vhpOUSlINg/kC/ajcsUmWCeX4chY1nLAhKXM6eQLkDIEap2BHFywsQ9JQQWZMESqgxI6lhsg43FaT9Rcj2TVz2FqndjaL1xFzPyO0tWLuJmvhcVtrOeR8yUZrFP0ebWDgKfchal5l8v3acAfCEZc3v95Ch0AKNNSoJRi+fLl6OnpcbFmHJpfAeCEE07QVqxjgq2AWs2wbtFDwMaHxzRsp3CgGJ1QDX2wPN5eBbWsCVZvZm3bNgJpPF0pdEBRHv3Zxua+daSgQhqZKHuQsZShiVUJpq9cgLmVqhdLQc2pPOxgvhY4uTZIJBxROr9huX6aJI9IpPQIFYQE+wM5iGZZL7+vm+/TKE2qOlbr6pXQ1bru19mfx35MyySydu1a1tUqwVXq1PYUKGHc4V6KXZB1eYlTeagnaSqHi1exCdYJkbEspm8ary9zASDlFMgDY9UFrpbEeZl6hveNxqubFmWQI/OF2On5yqnJJ4gBEmH5Qchd8HiIwFSUOy9xep443YdhbHoNWYQOAKik4qWXXgLAR+pcN78C2pQWemoTZdoEIiPtbAW56V8XxubOMK6TFTxkToehCZZk85BGJkAjDprZPGyClXLaCF8AmrAVXERsJIlv5K4R0zvoYseawgiwf21QKaC6TUESQBoTV3W5iLrYwCh2oRhUoR+jjSJYYWp6DSm+RIeDGOFqYzmlI4V8JoM5c+a4mh5Mh4tKE0Jw5plnAgAKnaPuCmuSKJpvv7jd3DyMTa08sRmtI4oCabw4opZhuD/PJlgppyDSP4pI/yikoTEgl9ceboSuVDiH08yQ5sPTYyvoiF2tc99upECl7h5FCCEVD1s0QpTOzyY0r+oK6gdzM0TsGiHYwJOQCh0ArP7oUgDAmWeeyWWQJbf4qC516rQUqFzgVawznJxoTSKPjtGbYL2QOUMdtXLWlcmcopbkkjgVqHwBUsbdtGS6zEnD43xFrqIixlOtisx5IQClOnj1JSuYrgN2yq4nALXOWR5ROqDmOtoSvUaI0jULQTbJeiV3fnwfr5tew0SIhY7KCl544QUAkw7lFm5St2jRIm1qCwIUOsfcFdZMwhXGX3QBrZOlzLlZL8ZonZRTENk3XC5zeR9+iNgVO8Pgh1qROR5iR6sJYzWxqZPOxEaFNcq2Ua4b6fOIMrlr4ihdKJpeqxEGufMxH6TvdTglDP3piORqPbwWOgBQusahKAoOOeQQHHTQQWz1meC65d/97ncDAApdo1Ddmn0TiF1DNMF6hakJlihKdZnT8Thap8ucdGAEyOb8k7mylahxyplEzs7xw3qM1Su/lti5Pq6rle2kedUreEQpJany4QWNcH30O8LT6IMpfInSTYGmV5dS6YfQUVDMXdsGADjvvPPY6rOA69Xm7LPPRiKRAE3moLZmOFz8Ve0i6+TiFcYm2DD+kvJ6nYpNsGXROVuRGP7RugqZ05sFwyLDLvvLOVnGSR1cm2IrC2cv2+q85dX0ykjdbVVD8kSUzgMaXe68pNmbXsMQJbSB2pbBzp07kUwmuTW9Apylrq2trbRySs8IAE4XLBa5CwlTOlqXL9SPzpnhGK2rKnM6QV109Zu6X4Mf4EzmzMv5InZOz22rG00jXR/cRvEa4buGQQaaPSoVRnEMUqoaROgA4ITLDwUAnHHGGWhtbeVWLvctcOGFFwIAlI5xqFF3ndgr8ELumqCZlxmvR1HWy4tXa1mHnzdG6+rKnBG/ZVhVQXN50IICqqjcZK6atPEQRiaxq7XNywvXymYRAP289WGARC20eWoZI2D69cyXFoMpEqUzE3TUzi5TtOmVSzoTl/3n/EaN5fHEE08AmHQmXnDfCsuWLcM73vEObcDEjGEAHkSrdLmrJnhh/PUSxnXyAnOzA0szBGO0Th5O2Zc54/r5IXYGmSt/ne9xYeyPx/O88yxip1JQvX+j45Uy7LegxYN1WxvXu0Z6lYrPOF4/n4UuDFE6M40id17SjE2vtb5T2GZHKXLe/zkGiqJg9erVWLZsGdeyPVHbj33sYwAApXsUVNZuBJ41LzVA0+yUaILl3YfEQVlEUUHGJkDGJkAzWftRIoa6HFNN5so+w7H+WkLgEkopqBfHmFqMWLKInaI0dpSuHlaSZzX1oY/TIDY8zSJ3YQwU+B0ta6DonA6NUtx7770AgIsvvph7+Z5skTVr1mjpTSRaitYBHsuNOXonBkzYg8dIxnpleBStI4oKMp4C0hlQVXUnHLxlxY7MlX3e5X6wEjlex7RKNVHWH/p5xhNWsaNUG8Gsr5PVw2t4ROls12XjOOUkek0VpbMiTHInml5ZFua3In4hSfjI909GNpvF8uXL8c53vpN/FdxLhDYcWI/WFbpHQKXJk9yXqJUuabXyB/mM4+/Nut5+TyYfQPlEUbUBGFVkjukY49UM61Tmypb1QA7ciJ0uc+ZIWKm/pPvpuKgxqsoidvlCRZNzRfNzPdELa5RuKhHkNTqEslMXlu3VLE2vDdZ/roQkgUoK7rjjDgBaiyaPGSQqquFeYpGTTjoJCxcuBCIqCjOGyt7TLoY+nMTGZgtaR/KCjtZVWz9fJNgH4eQQrSuTuUKBf1Mgc8RF1daHVebKynKwDnabWZ0e19VkzgwXsVMrntsWOxv9Bu2InivBCluUjhOBROmC/AEeZNTOryhdvWb7EDfjU5Vqx6QPMueFaOmj3C/6jxMwNjaGhQsX4sQTT+RfDzyUOkmScNlllwHQBkzQSHk/p5LYeSVS5oPS3DfFLFE+XExKNxSv6/YqWhfERbeggBQUbdoxBzLHHBG2u+10kdPXh3e/uHrvs4ia3c856aPmxQAKu2LHmDi6TPKK606LckdtSp7vUbpGEDrmCmnt534SpibZRsMD4SrJXKNiSFtEIwX88Y9/BAB84hOfgCzL3lTpSalFTj75ZBx66KGATJGfNVjxfumXs19D+o1YTuZt6JNnY8JvFpibBr2mVh28ZI6lHFWTOb2p1Vl1nJthrUTOq2O3Wplum1NrvWcnOmcFi9iZm14r3q8jdpxH91YUb0fw/IzS+QlrpIaneAbdbSbMcheC7kQ8qNefzixzXFKf+IkpB+W7v7YKmUwGhx9+uGdROsBjqSOE4JOf/CQAbSSsGstZfs4zuXN6kSlF8OqEpDmLnifwitYFdQFRVdBcThMoRXXfrOkEo9j5KXJmrNJd8CxTf84qc0aYxK7ePK418vjxmN7N5jliFrwpE6VzInes6+jFICueeC13U3SARC2qRucaqR+dSejUWB733HMPAODyyy/3polXr9qzkousWrUK73rXuwAC5OcO1PxsoJE7u3Doe9AQ0TqvLqZ2yi2KVGCRUUAbgBGEyJnxol7eSXt1dLFzmlKmHuZoncdRulpoyYJVpibnUqLhkEJVan09C0P/qmaXO7uENUrHQbgavqlVx2KWmNWXzYeiKDj22GOxatUqb6v3tPQi//Iv/wJZlqF2TEBpn6j7ea5yxxqtc0oYD0aWaIIfF89qdRiic1UTrzJVZ385rZ9VwCLnNVTlE50zoxabS/MFPpE0wLoZ1sconSWlqc3U8kfdOll+zPk5mr1GXbV+wHoVpQsjPOVuCkfpjE2pTSVzFkKntE/gmWeegSzL+NSnPuX9anheA4DFixfjoosuAgDk5/WDEpvNHo0QuQOaI1rn5ObkQd1lMudVio4alMlcM0PVYvMyx++p0lKuuLJRprzFDgg0SgegdoSuxjnUUM2utT9Yvl5+C11YRFCXu5BKU9jRRc7uccfUn87PPnhV5nCmREX3Wu3vD33oQ1i0aJH3q+J5DUUuvfRSzJgxAzReQGHmkKNlfZe7qRSts7oJ+SF2erSOY1Nr7eqsy55SMqcq5ULn9jtbyFxZldXErt4giWroUUC3+DQtXNm5FeLjq2qza+2FgmuWDbop1oxfYhem72zEj75uYe5PZxQ604+3j/zgJPT29mLGjBn4h3/4B39Wx5daALS0tOAzn/kMAKAwc7jqoIlalMmdowX9kJQGi9bVi8r5ceMrDkDwLD2HCeP2njIyB5RH56wGSrCg0qoyV1Z1VbFz2i1CBVUUqNmsFtXN5YA8w7RibmBNUqwoWtRAf9hayB9hYhI615VyOufCJHdOxW4KN702FVUidACgxnK49dZbAQCf/vSn0dLS4s8q+VJLkZNPPhnHHHMMIFHkF+wHhYubs9c342aM1gXZxGqGw2wELEwpmQPsNbc62Ram6JytVdDFzmWUrSyiq2r7URc825Ln87FvuY2cCp6XhGEQhFvCJHZeNcmG5Tua8SMZcBjOEytqCB0FxcEfbEcul8OaNWtwyimn+LZahPrcQaW3txeXXnop0uk0Inu7Ee2fzlQOIQwXRacHoMRwghLJ8XoxDW/261dYjQOXCQuZY5Z0p/t/qogcMClzgP3vXW97GqJzrBBCAFnWJMwh1M4sE8XvQAgBotHy93gMjnAI07byaQqxho7SVSNs0Smr78uyjk63m1/bwQ+pY03SyyiDtu7Hde6L+dmjKMwdQGtrK26++WbMmjWLaV1Y8L2hes6cOZPNsLMHocadX9wBEa1rSLjPPGBzO4dpoI0fEZpaza21qPV5DkIHFM9blnQgdvvgmaJ4XJpo/RQ6lU7ObenhHJdNKXR6HWFrlnUbvQvLdxFo1BE6NZGDtGgMgNbs6qfQAQFIHQCce+65OPbYYwGJIrdwH3MzrGNE3zrn8GiusppE3QBT1FWnnrSETOYIIe6+bz14jG616nfHQeigqkA+PznS2YkssXwfcxMty+CMMNxQzZLnUvYCEbogCJPcAf6Nlm2iKB0zXl1f6wgdBcWSD0xDLpfDsccei3POOceb9ahBIHuFEIIvf/nLaG9vB23JojCzdlJi7jjZ4WGO1oVZ7PQErTZv3NzFLizRObPMFeEudlajW92gbz+H/eeql1dM5mwYWGE3asckY2V1G/rh6YNzbC/LOHOEH9cMhptqYEIXpFyFTe6cELb19jiCXFldSJrTq+SgM3PRf56ITZs2oa2tDV/60pc8nTmiGoGpdk9PD774xS8CAAqzh6G0jju+gDKPhFVpeWdl3geOX9E6bUG25bxEVZnWi5vohFjmjJS+L4/vTCTtFzrP726cFssNetoaC2yJHe+cenblzu9mV8cVObxeBnVehOUa1YhyZ2y+9SrSV0vQfOgKUL1qEo5ooM1+5Up7CrfccgsA4Morr8SMGTO8XKuqBLrFTj/9dJx//vkAAXIH7QeNcJ5eqBbmE8UsecYbrU/RukCTqtbDVsZ8LTpHi8liff0+YZkBwobMGeHaHEskQC4+3GIQGrvfxZIaQqdDKa3aHOs6Sld1verIXZjPRcCd0AVwgw4VjSh3RqxEz630cW7idwORSLgidDagkQJaj8mBUooLLrgAp512mscrVp3Az+zPfvazWLJkCRBVkVu0H9Th1EXM0TrzSW11chgFz+nJwtjE0ZD960wyZ8Tp9/G0v5mXOJQ5M1zFjrgUuyoRKsffy4bQGbGM2vkxGMogd6X1DXOzKy/8uHGHWZ7CvG5+ESK5D5XMAfaFDhSHXToDQ0NDWLp0KT796U97vGK1CXyPxuNxfOtb30IymYTankFh9pA/udTsXEjd/vrRm3rtro9+gwmz2JlRVUuZc0NDiZ1LmTPC9Xuzil2dJkfb39Gh0OkYxc6zKJ0VxkgvYx/Chm129UruGkGaGj1q1wRwlzm3ZdnsP6fzoR+ehJdffhnJZBJXX3014vG4u/pdErjUAcDChQtxxRVXAAAKc4ahdIxrb9iUO27ROi/Qxa7eo1EwJjIuRufqEepmZVY4ypyRQMXOwaCWmt+ZUeh0dLELopNxqf7i/44SLPuBl/3opnKz7FSUu4D3dV2ZC2D9nF5zlM4J/PrXvwYAXHHFFTjooIO8WC1HhOYMPuuss3DRRRcBAHKL+qEms5NvehW5C6tMhT1aV6WptRZN0wzrkcwZCUTsGAYFWH5/l0JXhiSB8Ogf6KjOyu+kyx13cQvjdIcAH7lrVEGainLnI7rIhaqZtYjT67mazEI6bBQA8OEPfxhnnXWWF6vlmNBIHQB88pOfxOrVq7X8dUv2gUbM/Wuqy13oo3VOYRU7L6GUe1NrLUIldj7InBFPxK6aILlICl22PTgLnf4/kX2SOxvb20ruwtqPztVoVzcCGbbrFgtC7rgSVpED2AaC0YiC6aeqyGQyWLNmDf7lX/7Fo7Vzju/ThNVjbGwMl19+Od5++21I4wnEts0BoTU2uKHtm/lGKMs+JYV0Pk1ZWKYQs9PMageW7+PL7CHVME475TOlU5Pnd6cqoBj2JadZPiilTFN/WaGdxxbniqpq8/Z6gZ83nDD0o+NYV/myobqd8CVsU5C5JczztrpZNwd1Wl7X6yUYJhTLL+3Aa6+9hnnz5uHnP/852tvbna6lZ4QqUgcA7e3tuPbaa9HW1ga1LYP8wv7aM04YonfMk7WLZtiaZfESOq04hjQvAQqdX5G5euvBDWNzLMdp24gsQYrHQWIx94VVu6h6FbUTQsdcV/myIb2O8qKZondTte9kkZrX9Rr3OwqKtVcuxWuvvYaWlhZce+21oRI6IISROp0XXngBX/7yl6EoCiL7OhDd221vweINobTD7F6wwxqtA4KJ2HmcZ67e9/EkSmWXAKNzQA3x9SJix0vs9Em3qTo57yoDVaN0ZnhF7fxuEvKhHx2z1LntsxfOW4l3BP1jzw1hnxGCdf1s1Gfrul7lGpSfN4jCrBHIsozvfe97WnexkBFaXT/mmGNw1VVXAQAKs0ZQmDHsaPlS3xe7I0zDGq3zC8NE2H70m6tVftl+8xOf+81ZUXO78xIQ/eYtS5My5gbjehHJXdTObioBPWoXjTivo1RGyIWOASF0PmK4ZjYUYRc6j3B7XS/MHEFh1ggA4Ctf+UoohQ4IsdQBwNlnn43LL78cAJCfP4hC53j9hUyh07KRa7UErxkHTdhZxiBxvs8CUbEqhv3kNyGQOVvb3u20YubjT5aAaIRd7qym8iGaLDqVO8fbXtKmRiPRiHO5awSh86vZVQidexpV8MKIB9Lp6rpOCArTJ5CfPwgA+Jd/+ZfQjHS1ItRSBwAXX3wxPvCBDwAA8ov2Q5mWYi6rquDpF0O/ZCJosdNFzseRrFYY6w5DdC4ImEWaRUqqHXeEsEXt6s3NaJK7uoLnIOFneT2kJHe2EEI3WQePNClezUkq4I8TYXJxfIQlSuf6hzohUKZNQD14AADwgQ98AB/96Ec5rZ03hF7qCCH49Kc/jVNPPVWbI3bxPijtdcTOZkLcCslTFKBQaN5fWz6nJLHDVI/OucLuhdPuxdlp1M7uDaIod2bBM4oel31gJ2onhI6pDlsIuWvc769fI4wPwP8BFRzrc3VNUVVN6NpToCsGoSgKzjjjDHz6058OfuBcHUI7UMJMoVDAN77xDTzzzDOAShD722zI48nqC7D+6oc2kq/s4GKZ+9VWRd4OmmiIXRvwyNYwwGU/VduOrDfveoMo6kXpnCARLaF1Lu982Wr7UJ8VIm/Im9cIQgd4L3V+JDFuhGsPb0JyPakKkZzve8ZzPJBUJgCf63rRHZT2DMgRg8hmszjxxBNxzTXXIBJx0YfXJxpG6gAgl8vha1/7GtatWwcoBLG/zYE8kai+AKPYWea7Mx9svESPo9g10K6cvOH5/Ysw4JGtxcrLn/Pqy2i+ufPoK6VHsI3wFDq9PJWCZrP1P2um3n6kFJRj6hbb+Ny/zbbY+TUrRam+BromuSXsUucUF+d4UPnpXF3XDb6gtmQgvWMY6XQaxx13HL7zne8gGo2yl+0jDSV1AJDNZvGVr3wFL730EqBIiG+bDSlVRezcROvsJDK2OgBZcmgxil3DolLrm4vXYhd0dK5W3TwHqVTbvqwY5c4LodNhidbZ2Z961M5PuQtLk2hZ8ZyPC9sVN9Qtho1mEzqgcaJ0hvqYr+8GV1BaM4gePYqJiQm8853vxHXXXYd4PM5WbgA0nNQBQCaTwZe+9CW8+uqrWsTurRpNsV6LXcVCDidRNy7nlEYTO3N0zgqvxC5IobNbr2EieVfVSZImibym7DLDc1YH4zHMEq1zsk/9krugRqHaqsLGOehZ5Q13q7GHEDrToj5KnakuphH0BpT2NKSVw8hkMli1ahWuv/56JJM1unmFkIaUOgBIp9P42te+pkXsVILYWzMhj7ZYn2A8m2FtLSgxyCBjBKRRxM5JlMCDSFAgQsdap4uoHZGkyeO9KC/c5E7fL/p+dCt3Vseuk2idi+0LeCB3Qc3kwFRdAHLXmLea+gipMyzmZqSpgzqr1ONG6pRpKeCwIeRyORxzzDH49re/jUSiRveukNKwUgdoTbHXXHMNnn76aYACse0zIQ+3am8ad67f0TpAiB1QfpPzqYNuGX5H58yjRt1Mr8YgdmVCZ0RR3Iud1f5wK3fVjlu7Yud23/KUuwYSuvKqfW6SbdzbjTVC6EyLehylq1G+K6HrnICybACKouDEE0/EN7/5TcR4THkYAA0tdYA2Kva73/0uHnnkEYAC0V09iAyY5mKzO/VQFZibYVmkTl/WKWESO143iiA7zTqlWhoQl2Kn/Vf/FK0qdDpuonb19oNxX9sVvHrHqx2x47V/3cpdgwrd5Cr4HLVr7FvOJM0odEA4o3S8pv8CKq6The5RKIuHoKoqzjjjDHz1q19tiFGu1Wh4qQMARVFwww034N577wUARPZ2ItLXCQLzCFY2uWuIaB0QDrHj+cu/EaTOTk43N2IH1IzaEf14tntcO43aOd0HdgTP7nFaT+x4719jMmy7gtfgQmdERO0c0oxSF0SUrla9Dsqse703XSMpKApzhlGYMwwAOPfcc3HllVdC5jF1YoA0hdQBWjTjF7/4BW655RYAgHygDdFdPdZip+NA8HwTu0aN1nl1Q3ApuJ6KndOTn3PUrm50rhp2o3Zum8CtjgdFdXacVhM7r2+odqJ3TSR0OiJqZ5NmFDogmCidVb0M5dW81lsIXX7hASg92tSj//AP/4CPf/zjocld6oamkTqdO++8Ez/84Q+hqiqkkSRi22eCqIYdWm2n2bg5imZYC/z6de9iW3hyorL+muMUtWMWOiP15M6LkcgscyxbiZ1fF99qcteEQgeY8t2JqJ01TXDjtyToKJ3Le5fldd7iGkklFUddPhvr1q2DJEn44he/iPe+972u6g4TTSd1APD000/jmmuuQTabBUnFEP/bLJC8oY3cYZh2cjGfm2H1ZZ3ih9gFkfPK5bbgInc8QvMcxM5tP9EyrOTO65yBqsP+a2ax8/vGamyazbsYdNIoQjf5oo8r0CC3IiF1psVcbg9OzZ3ERiscjRaw8ANJbNmyBfF4HFdffTXWrl3Lpf6w0JRSBwBvvPEGrrrqKgwPDwM5GfG3ZkFKGRIIOjkxDQfIlBe7oBKY6gTZHMtTpAD3cgfwXR9d7njmoTNTnD3CsdQBk2IX9E3VELWzva1CLHOAjRkpvF7/RrkNBX3seUWQI1453KtK1/Ua10O1JYPW47MYHBxER0cHrr/+ehx22GGu6w4bTSt1ALBnzx585StfwY4dOwCVILqzB5GhNu1NF5mnp9zAiaBFzkwQYscpRU4FPMQO4LdOqjo5MIP3vLz68aiXyyh2gMtomVuMl0zD/qsqeGE6d0w4mjfWq+/RiLegZpI7v4XOPK+6C+xE5wCgMH0cZPkIcrkcFi9ejGuvvRZz5851VXdYaWqpA4CJiQn8+7//O5599lkAQKSvA5G907UBFG7Fruw1m2X5OXACYD9pwiZyVvjVz45jQuuqhEHuVOv+blwEz3wcuhG74rEZmNhVu2RaCV6IzyFHQle+IMeVaJLbTyNLnh9Sx2F0a1lxdvvPgaIwdwiF2SMAgLVr1+Ib3/gGWlpamOptBJpe6gAt5cn/+3//rzQyVhpJIrZjBojqIheNldiVvV/lPb+bYWutixm9WSzMFyjj4cohWXNduWPsf8lEkGJXReiMuJI7q2OQpRnWoiO/73Jn55KpquVpaPycd7YOzDJXXoj7MoDmkbpahPl66rXQccg/V1ackxGusoJ3/Ms8PPfccwCASy65BJdddhkk3j/IQ8aUkDqdRx55BNdddx1yuRxIJoLY9pmQMi6mAakndpbLkPCIndVNVb/gSy4imV5Q7TDl0DxddR8yJrN0jd9yZ0PozDgSvGrHOku0rkpnfl/Fzua2qpvrLgDR4yJ0k4W5XH7K3Hrs4/c11wup4zA7REWRDq/FajKLrtMoent7EYvF8KUvfQlnnXWW7foamSkldQCwefNmfOMb30BfX5/Wz253N+TB9sp8dnZhETtgUu6sXq8Gq9jVSiNR6yIfFrGrd4jyFjsXzfJc4CV1OvXWi5NcWIpevQu3U7Grdrz6GbXjJXVGPM4Px1XmJgt1seyUuu3Yo5GFzqPBfE7vrVQiULrHQZaNIpfLYe7cufjWt76FQw45xPn6NShTTuoAYHR0FN/97ndL/ezkgTZEd/eAUFYxYBQ7oPLA9uBXDgB3zWZBip3dw5PTSGHCQ8x4lMFb7ADr9WKI0tnF9qXFrtjZOYb9itqxNMHW/Kx3Axa4C52QOf4EcY3lIXUuZ/2pWj7D9qCSivxBQ1C6tYTCxx9/PL72ta+hvb29zpLNxZSUOgBQVRW33norfvnLX0JVVZB0TGuOzTJM4utG6gD2kbR+EYTYsR6WLvrZEcLxe4Y1agdMrpuHQgc4kDrAXv86u3LiR9SOd7SuUaROCJ03NFKUjtc0Whb3Pdb7qJrIYd57k3jrrbcgSRIuu+wyXHzxxU3ff86KKSt1Oq+88gquueYaDA4Oas2xb3dDHmBojhVixwceh6NTsTPPE8vze4ZZ7nw49blF61jEhKraKNQAt10YpE5bJODBEVP7NlObBhC6suZWHvcdTknhKSiUGeMgy8aRy+Uwffp0fPOb38TRRx/tfh0blKmnsSbe8Y534Je//CVWr14NSNp8cLnF+0Blp6PyHDS1WC7PdtPyDZV6f2HmVT51kI7FLHSl5Tmti6qWP1jh+YuT5/fjhX6RlzhOpk30nJIcplTzGkdpjthuyq4y/wuh84Yw9Fm2QD9eKo4bjoEEQiyuvQ6gsoI1XzgI+YMGkcvlcOyxx+JXv/rVlBY6QETqSqiqij/+8Y+48cYbUSgUgLyM2M4ZkMcc5rMRETvneHUI1utnZyV01crggT69F+A+nxxr/QHguBkWKI/YuYkyGWd/0NeDR+TOy8EStgpm/w6+JhwWt5fqhKwfHZcUJXZXQ3ZXjtKewbS1Cg4cOIBoNIrLL78cH/zgB6dkc6sZIXUmtmzZgm9961vYtWsXACCyrwOR3unOBlEIsbOHX4eeVXOsHaEzl+EG83flMeWYEzkJ8DR3fIkxi52bJLkWy3KRuwaWOm1xe4NOXCNuL9aEROgcRW95RukYpY4SFYX5I1Bmj4FSioULF+L//J//M6VGt9ZDSJ0FmUwG//Vf/4W7774bAEAyUcR2zoCUspnTLgipAxpL7Pw+7Ixi51TozOU4pVaOPcB7uQvBKc4kdlQF3MxDW0eoXMmd7b6CHo2ABbwTOx4yp59relkhOAZDRUBS56oJntf9hfH6q7blMPPMCHbv3g0AOP/88/HpT38ayWSSz3o1CULqavDMM8/ge9/7njaIggKR/Q6idlNB7ABncmfOY8Zrblq7FMXObejf0QXZzunlpdyF6PR23Ayr51dkjdTZjJIxyZ2D7xLWaJ1WBDW/4K7AatefWrkypxpTWejgMEonSVp0bs4w1LljUFUVPT09+NKXvoTjjjuO2zo1E0Lq6jA6Oor/+3//Lx566CEAAElHEdvlIGoHuEtQzEKYxM58UzbeNFhm1nADIYAsu5NtY1n1cHpq8WiSBSblxKdTm1Jqa5sySZ22IFsUy+EyjuSrSaSuVBSPBNT1rjtC7BpT6Ipl8MKW1OkzQ7RmMefsGHbs2AEAOPvss/HZz352yuWec4KQOps89dRTuOGGG8qjdn3TQdR6F7Li5jWfzHZFr1HFzngjrnXz8UvsdKGTJL43lloy66Y8HgMpQiZ1+mfrYhS6yQUn37MDg6Q0nNQB3MSOWm1zJ9i93kzl5tiARrq6zivH+V5SU+qK1z0qU+TnDIHO1qJzXV1duOKKK3DiiSdyXZdmREidA0ZGRvCjH/0IjzzyCACAZCOIvt0DebTOCNl6fap0qoleo4idGbs3Ca/Fzih0RrySO1659gDncudxQmEzpanBHPSTqXvJqSUYdqN2Quocwyx2LNeZqRa1Cyp1SciidICF1BmvcYRAmZbC9OMp9u3bBwA444wz8LnPfQ4dHR1c16NZEVLHwHPPPYf//M//1OaPBSAPtSL6djdIIVJ9IafTXRmRXPQD81LsrJq43AooT7krypxWfLW+PiE//O3Knc/ROa0qg2A57Pxc9bJjRyzsiJ1DqdO+S4P1qQO456p0JHZury1TSeycSl21Fh5HdYZP6ACD1OnXtOJ3pJEC8vMHoEyfAADMnj0bV1xxBY499lju69DMCKljJJ1O46abbsLtt98ORVEARUJ0bxfkAzVmo3CzqauE0LXkqvVyrXE4MZ32UXIjdzzErlp0rhphPw1qyZ3P0TnAJHQ6PMTOrlTUao71uj+dsX4vym4EseN1TSn9HfLzLwhcRve4TOflhdRFi8EPXeZAofSMIX5oBuPj45BlGRdddBH+8R//UYxsZUBInUu2bNmC73//+3jzzTcBACQVQ2x3T/WBFG42N2NH+tKNlkWW3CR+DUrsnAqdTiOcCka5CyA6p1VXI1LmphmWpfnPal28bnrV6/Wq7IClTiuyyr7gLXMV7zXAOegHbptrXUbpqEq15b2Quli09LfSmsFB57Zi69atAIDly5fj3/7t30TeORcIqeOAoii488478ctf/hITE1roWB5oQ3Rvl3WTrFuxA5g70nMZ+emEIJpjJVmTC9bBBo1wShASyHrWFDqAPVrnpqO+eZ2E1HGhQuy8FrrSZxrg/POSAITOKmchl0ifBSQW1Zpa5w5C6R4HALS1teGf/umfcOGFF0L2qN6pgpA6jgwODuLnP/857r//fu0FhSDSNx2R/g4QajG/qBtcpr/wVe7c5kdylPXclGTYzShScWpUQO0kA2YRO7ejL/V9pShM0WUvpc7xvNAhmgfa0ZRi9Qtz+Pkpev752I+u2v71KkpHCYUyN4XYIRmkUikAwLnnnotPfOITmD59Ovf6piJC6jzgjTfewA9/+MPJJtlMFNE93ZBGk+X97aaS2AHeNsdWm+e1uFxTR+18wpbQ6ThthnUrdVpB4ZQ6lvKbSezE/LH28aEfnZ39yTtKR0GhdmYw58yW0hScK1aswOc//3kcdthhXOua6gip8whVVfHAAw/gxhtvxPDwMABAGktocpeOT35QiJ09ajXHWs3talGviNqxQxVVuznb/fXuVOrcJr81i6EDEXE88lWvz8nH/ZA6wJtBE+4K4LMiQPOfgx41uzrdh7yjdGpLDof//Vy88sorAICOjg5cfvnlOOeccyDxSLYuKENInceMjY3hlltuwR133IFcLgcAkAdaEdnTCakQ49M3aqqIHVAetasWnatTb9jlzkkyXz8oCR3g7GJvQ+y4R+nM2LihMc2m0ORSx6XZ1aPIYVPKHUehc7vveEXpaKyA/IIRqD1aM2ssFsNFF12Ej33sY2hra+NSh6ASIXU+0dfXh1/84hd4+OGHtRdUAnlfG6J9nSCK4UbJKhwcpphqGLkjEiBL7L8m3cidx6eL+XQMWu7KhE6Hk9hxEzqtsNrRvho3uqaSOsDV9gy1zFXU0yS3Lg5CxwseUToqqyjMHYW8KFsKZJx11lm47LLLMHv2bB6rKaiBkDqfefPNN/Hf//3fpVA0ChIie9sh97eDqNVmlLB5kjW72OlROjvNrTbrdiR2PkXprPB7v5T6z7lNa1FP6njMOepEDi2kpemkDmASq4YSuop6G/Q2xmUeap7zsrJH6aikQpk9jsShCsbHtVGtRx11FD71qU9hxYoVvFZRUAchdQFAKcVzzz2Hn/3sZ6WJipGXEOmdBnl/e8VI2YqbYi0R4TB3aCDRoWpyZ25u5T0iy27ULkChM+LHvrGMzlWsiDux8zVKZ4VBYEIpdYBvYtfQMleqvwFvY00idJRQKDPH0f4OgqGhIQDA4sWLcdlll+GEE04IvLVhqiGkLkAURcEjjzyCX/3qV9i7d6/2YlZGZG8H5IHWyjQoRaqeJKY59Bpa7HhH5WzWbSl3IRE6I17tH9vRM6f7xCB23IWOtSyVsg2S0Ot18vEQSh23dCVBC52ZMN/SeJ63Lq+LFYMqHJZHQaHMmEDXcVHs378fADBv3jz84z/+I04//XSRby4ghNSFgEKhgPvvvx//8z//g/7+fgAAyUQg906rKXdmLCN6jSR3en8OP2XOah1gkDufTg83pyGvfeRYthjFjluzK8AWpTMubk7TYkfwGPZVIFIHWO5LrrnnatQTGvy8xfl1vWS8NhLzD2cGKKFQeiYw84RkKRgxY8YM/MM//APOOeccRCI15kAXeI6QuhCRzWZx11134ZZbbimlQSFZWZO7A2225c4IqSV1NoXPU7Ez/5rzsqnVCbrc+dHcyekUZF3Xsvr1G76HYsctSgfwlzoj1QSvkaQOKG1rT2SuSl2hhsf5FmSTosNzjofIAUWZmzGO7uPi2LdvHwAtPcnf/d3f4YILLkA8Hq9TgsAPhNSFkFQqhbvuugu///3vMTg4qL2Yk7U+dwdaQVSHJ7Wd5trqC5c+60pwqoXiaw2UcJqyhDcOZ0ZgxYtTkHn+VcDbaB1VtZsqj+3KoRnXdkJlo+A1mtQBAFX9kbpiXaGFR/qooKlzzrltVjVDJRXKzAl0HC1jYGAAANDd3Y2PfvSjOP/885FMJl2VL+CLkLoQk81mcc899+B3v/tdqVkWeQmRvmmQ+9vKU6HYgFlQ9GZcuBgdJcsuUpgEI3dE9qc+r09Bq/1es06vonWqSWzc3iDdNuPqfeocLaP6J3UAV7FjXgemykIodk0qdLwlTofKKpRZ42g9AhgZGQEAzJw5Ex/72MdwzjnniMhcSBFS1wDkcjk88MAD+O1vf4u+vj7tRYVA7m9DZF87SM5+HwZXkaei3DGLnbHPHAt+Nsk2cJSOC7zFzix0peVcbONCgX1ZOIjSmWGQozBIna/ROkOdoaCJhM4ridOhcQWFWWNIHKxiYmICADB37lxccsklOPvssxGNRrnWJ+CLkLoGolAo4OGHH8bvfve7yVQoFJAGWhDpmwYpHbNVDg+xA1xE7dzInddRuwbsS2cb/YZud7s7bdqstU+qSR3AfsPM5V3NTsIsdfl85Wt1ujKEQuqAqSd2jd5/Tl8F47XWi2ufRKAmcyjMHgWZlYVSPF4XLlyIv/u7v8Ppp58uBkA0CELqGhBVVbFu3Trcdtttk0mMAUgjCch97ZBGEyCofyEKXO7C1iTrU3ROx7dTz+ombme784rW1RK60rIOt7uilkfMGI4jrlJnhS56qsq+rz0aqeq72BXr9be+JhI6L0SOqqCgUKfnocwehdqRLb21atUqfOQjH8Fxxx0n5mdtMITUNTibN2/Gbbfdhscff7z064qkopD3tUMebKk7qMK1xDRLk2yzCV29m7Zf0To7Qlda1sH2z1lFyxwsz9KfTseu1BkIldQBwYldsW7v62iC5lZwFjrDdtfSkqSw4Izp2L59OwBAlmWccsop+PCHPyxmgGhghNQ1Cb29vbj99ttx7733Ip1Oay8WJMj7WyEfaIeUrR465yV2QAM3yfrY7Ap4JHVOb9JeROuAyf3gROhKy9pYJ3OUzoyN78UcpQP8lTqgOcWuWD//MpsjOqdDIi77r5m2sRovQJk1gdYVEkZHRwEAyWQS559/Pj74wQ+KuVmbACF1TcbY2Bjuvfde3Hnnnejt7dVepIA0nIC8rw3SSLFp1uLGF3jUDgi+SdYHufPslPNC6ozlOr0Js37PetveKkpnRY3v52qQBMMMFKGTOmPUJkixm1wJDmU0mdCxROmskk2DQu3MQpk1DtqVKx2Ls2fPxvve9z6cd955aG9v57HKghAgpK5JURQFL7zwAv70pz9h3bp1pddJWoa8vx1yf2tlShQeTZBBR+2A0MtdaKQO8K4ZFnB3k6223etF6awwf0efm14BDvvc4ym9ghQ7IpHy+v08zspWhKWVQJ95hm/U0bbQ1aiXylp+uVnHt2PPnj2l19esWYP3ve99eNe73iWm8mpChNRNAXbv3o0777wTDzzwAMbHx7UXFQJpMIHI/laQsRgIKT+5iSxpUTPWuTGF3Fni6enmtdQBwYodi9AZKc5m4WofBCV1ALvY2dhnQUldRXoOWKxLrfX3IzpX4/pRElKOUldX6GqJHChoWw7KzBQiCxRks9rgh7a2NrznPe/BhRdeiAULFnBbV0H4EFI3hUin03j44Yfxpz/9CW+99VbpdZKOQN7fAvlAC0i+KGBFmSKEVJ8Nwo7w8WiSDbq/nb4OcCd3pblVXaThqAnrjTnMYgdM7kO7za51mDJS53A/+Sl2VjJXjZrrpc9QwoJk75pUa119ETo7Uh5VoPSkMPfETuzatav0+sEHH4z3ve99OOOMM8TMD1MEIXVTEEop3njjDdx777149NFHJwdWUEAaSkDe3wppOK71vSMSSDRiLXb1hE6XPh5RO6C+3Ln4xe1oHeBc7kqnmfkGxUvw3N6Qwy52qsvZI0qr4XI9GKWOS91A/f3sUjC8FjsnMmcX1nV2uy6eCZ3NMrW+chkoM1MgM/Kl7AeJRAKnnnoqzjvvPBxxxBG+juoXBI+QuilOKpXCo48+ivvuuw+vv/765BtZGXJ/C+QDSUjZuNYcK0nVo3ZWWEmfPoesmwuqLnasFyuOcgfYE7xSlM5mmY7xS+r0ulhuZiyXGr0uTrLRlFLnwShSL+TOC6ELAsr6w8YCEjMkjLf5o0VNFKDMmMD0oxI4cOBA6fXDDjsM5557Lk477TS0tra6XjdBYyKkTlDirbfewn333YcHH3ywNNwdAMh4FPKBFsgDrZBo1LncWVASOw793QKVO8N6VJO7qlE6G2XahsdN2OtoHeBc7MwC6fJ7urrcMY585VK3eT18gJfYNYvMAe6jc2USh8mWC6ooNfcrjShQetJQelKgbZM/LDo6OnD22Wfj3HPPxeLFi5nXS9A8CKkTVJDL5fDUU0/hwQcfxIsvvlgK62upUeKQB1ohj7WDSO7nAGxGudNWRfubSehqlFsVv6TOzSjF0nI217XaDZTxu7pLK+JykIbb+svWhW+zXy3ciF0zyRzgXOjMAgdYdz+pJnRUUqFOz0DpSYH0FErXYVmWsXr1apx77rlYu3atmItVUIaQOkFNhoaG8Oijj+Khhx7Cpk2bJt9QCOShFshD7ZBSrbamJatFU8mdcV0A/nnGrG6WvOqodiPmIXNG6l127NxAHX7nppE6wLdoHeBc7JpS5rQ/an6uWhSubvm53OTfoFA7slB6UogvxGR/ZwArVqzAWWedhdNOOw1dXV02114w1RBSJ7DN7t278dBDD+Ghhx6aTGwMAHkJ8kgr5JF2SONJV4IXCrkDvJlrsVGwyOsGgH90qNalx0lUxIZ0uM8TFzKp8zFap1NP7ppN5gDr6JxVBA5gGwRGFQVUKUCdloXanUb78hiGh4dL78+dOxdnnXUWzjzzTJGKRGALIXUCx1BKsXHjRjz00EN4/PHHMTIyMvlmQYI80gZ5uM2V4Am5c4jVDZ7nunslEFaXHxZhqSMcTSd1QCBiB1TKXTPKHKB9TxKtnF7R1Qh+vWxQqO1pKNPG0HZItOwa2tHRgdNOOw1nnXUWDjvsMDF6VeAIIXUCVxQKBbz66qt47LHH8OSTT1oL3kgrpLEWJsELjdwB4RY8pzd3l9nquWK8BLkRlRpi15RSB/jaDNvUGETN2B+Wh8DpUFIUuc4JtCwmGBsbK73X0dGBk046CSeffDKOPvpoRCLV5+oWCGohpE7AjUKhgNdee60keMZmBCgS5NEWSKOtkEdbQFRnF0uucqcVyF5OGOUugIgNV/TLEA9JMckdl0ucy5Gv3NbDTBDROqvjvxGOvxqCxlPejFBJhdKRgtqZRnIBJmf0ATB9+nScdNJJOOWUU3DUUUcJkRNwQUidwBN0wXv88cfx5JNPYmhoaPJNCkjjScijrZBGWiHl7Y/e4iJ3QPNF7xrhploPPZcfr+9SlLswROl0GjZax2Fiec+pI2ZeiZsZNZbXRq1OmwDpzE1mDwDQ1dWFk046CaeeeiqOPPJIMfeqgDtC6gSeoygKNm3ahKeffhrPPPMMdu7cWfY+Sccgj7ZBHm0FScVsNdOW+pmI6J1Go0sdryZYM27negXCL3VeRuv8Oq6par+uKn34/JI2M1SWQFuyUKZNQJk2AZrMlb2/cOFCrF27FmvXrsXhhx8uRE7gKULqBL6ze/duPPPMM3jmmWewYcMGqMZmrYIMeayl9CBKeZOE+XAti9y5TSPSyNG7Rpa6aoMlAPffi0dTbNilDuAvdh7kbqyJjTmRJ3/IBfgDSk8WHClAaUtDbU9h2tJIWUuELMtYuXIl1q5di+OPP16MWhX4ipA6QaCMjIzg+eefx9NPP40XXnihLC8TAEipOKSxFshjrZBSiepRPGPEzu1oPJ6jzfwQvGYTOiNhGDjBoT8dU71OcSueXuVpdElgMmeIqFFCobZkoE5LQWlLgbZkyz7a0tKCY489FmvXrsVxxx2HadOm+buuAkERIXWC0JDP5/H6669j3bp1eOGFF7B169byDygS5PGkJnjjSZBctFLyzM2xruaY5ZxKwAvBo6omRo2Y9sDJzBIA9zQnk6tRK18evyhd3brcwiLAvI/JRpQ5q1keQIF4AUpbCmp7CrHZasUPzmXLlmHNmjU45phjsHLlSjGzgyAUCKkThJaBgQG8+OKLeOGFF/Diiy+Wp0sBQHIRbcDFRAuk8WTlgIuwRu8AfjdTXeoqyg+55DE1g/JNSFyNiktio0TqAPvbKKRROcBjmbMQOL0+NZqH2paG0pqC2pYGjRXKPtfR0VGSuDVr1qC7u5v/+gkELhFSJ2gIFEXBli1b8MILL+Cll17C66+/jkKh/KJLstGS5MnjSZBCsT8ez+gdEC7BqyZ1lvWEQPRcD1qwGbXjODUbVRT3620sy2uqiV0jROUAPjJXZTCCsR41UoDaltL6xrWmQOPl1xNZlnH44YfjmGOOwbHHHotly5ZBCrI/n0BgAyF1goYkk8lgw4YNeOWVV/Dyyy9j8+bNZakDAIBkopAmkpBTSUgTCa25VpLCLXiAs5uvE6mrWp8H38GPiBRgLS+c59rlJmKU+iN1AP/5hnXCFJWrmXeuvDyqqqCxvNYvrjUNpS0NGs+bipOxfPlyvOMd78A73vEOrFy5Eslk0vl6CQQBIqRO0BRMTExg/fr1ePnll/Hyyy9j27ZtlU1deRnyRBJSKgFpIgkpmwAhhhtDowkeD6FrdMxyx1voKOXW9AoAUBRPm2DNU0pRPfefW4KSOQfiZoSCQk1mNIlrSUFpyQBR048+QnDIIYeUJO7II49Ea2ur7e8gEIQRIXWCpmR0dBSvvfYaNm7ciA0bNuDNN9+saK6FSkqCJ6cTkDKGFCphFDygXPKE1E2iNzmGNUpXKpB/tK5m06Wqlkukk+3jlcgBk+tZN2GwvQgelRWoyTSUYiQu2qUimy0foRqJRLB8+XIcccQROPLII7Fq1Sq0t7c7+g4CQdgRUieYEmSzWWzevBnr168viZ5x7kUdkotASicgpZPaI5MAgctkoX72ZZuqp7MHETvuUTqtUNdSVzHBu92mS7PgAZXbiZPIlSUCrhGVsyttRqikQk1kJiNxySxoLF/xuWnTpuGII47AEUccgZUrV2LFihWIx+OO6xMIGgkhdYIpiaqq2LVrV0nyNm3ahF27dlXe9ChAsnFI6QTkdLHJNhsHoS46TPs9YKHZT3ErgeMgd570f2OQOmaJq0dR8ryYiYEY5zF1IYqUUKjxbFHetAdpKZQnLC+yYMGCksAdccQRWLhwoRjYIJhyCKkTCIqMj49j8+bN2LRpE958801s2rQJ/f39lR/URS+TgKT/n0mAqJxujn5IXzOc9naEzTiQwoHgeRKl0wquKXUVAgfwT+3hlSTCNH2fQ6isQE1kDY8M5Ha1stsEgBkzZmDFihU49NBDceihh+KQQw4RTakCAYTUCQQ1OXDgQJnkbdmyBaOjo5afJfmIJncG2SN5iwTJLAjRm4Q1+mYeKVtrxgmvRqkapM4XgdPhnTKkrGhj2fWPUwqqjUQtyhvV/49VyhsAtLe3Y8WKFSWJW7FiBXp6enitvkDQVAipEwgcQCnF/v37sW3bNmzbtg1btmzBtm3b0Nvba72ASkByMU3ysnEtwpeNu5e9qdhPj3eajirpULhF6arJUz5f+30eeBiN04qvL3IleYvnQOM5TeKKf0Oy3pdz5szBwQcfjGXLlmHp0qVYtmwZZs2aZS3AAoGgAiF1AgEHxsbG8Le//Q1bt24tCd/OnTuRy+WsFzDLXi4GKRcDycXY++s1Y189r/KtVYNTyhFCSHXZUfhOPVassPy5B8JYTeQoUcvlLZ6HGs/WlLdYLIbFixeXxO3ggw/G0qVL0dbWxn29BYKphJA6gcAjFEVBb28vtm/fjh07dpQeNWUPWjNumeQZ/3Ya3WvkZltCJsv2Q+6czpvKikpBLfqJOcJniaNEBU0UoMYLoLGcJnExTeJotPp3icViOOigg7Bo0aKyx5w5cxAxDqYQCARcEFInEPiMUfZ27tyJHTt24O2338bu3bst06yUoNCabYsPKRcre04KEfvS12jNWV7LnV9Cp1eXL7ib3o23xEVk0EgBNJoDjeaL0lYo/U0SiuWIU522tjbMnz+/QuBmz54N2YPRtQKBwBohdQJBiBgZGSkJnvH/t99+G+l0uvbCuvQVZU/SRa8QKUkfVKm2+IVd9ryQO5+FrlStoqddKSaRrrbtHQocMUXAKCggqUVpK2j/x/JQo3lN2oriVu/3QDKZxPz587FgwQLMnz+/7NHR0SH6vQkEIUBInUDQAFBKMTAwgD179qCvrw99fX3o7e1Fb28v+vr6sH///oq5by1RyWRUzyB7ZQ9Fri5/Yblx10uia7ucAITOKnKlKM7m/IVB1mQFNKKARvKatMVU7e9IMdIWKQBS/e8pyzJmzpyJ2bNnY86cOZg1axZmz56NuXPnYv78+ejq6hLiJhCEHCF1AkETUCgUMDAwUCZ6+/btQ39/Pw4cOID+/n6Mj4/bL1Almtwpk6Kn/R8tvi6DKJL2uiIBquwuIbNbWCTPK6Gr19woWb9PiQpIiiZpkgrICqhcjKzpfxef6+9VG4hgRVtbG3p6etDT04OZM2dizpw5mD17dunR3d0t+rkJBA2OkDqBYIqQTqdx4MCBkuQZhW9gYADDw8MYGhpCKpViq0AXQXVS+KDKIKqkRf7K/pdBVGJ6LgGUlB6uUr5Uu6zpc8Q6xULUKIp1SKomYcUHlcnka2TyPe1/BVRSQOWitEnK5P8OBM1IMplER0cHuru7MWPGjJK49fT0lD1PJpNM5QsEgsZBSJ1AICgjk8mUBE//f3BwsPT30NAQxsfHMTY2hrGxMYyPj9fsRM+MahA8SgAqaeJoED+AQHMrTQCJ/rf5fxBoT4qXO2K47BX/psbXCQUIBS3+D0l/rpbe0x58vzIhBG1tbWhvb0dbWxs6Ozsxffp0dHZ2lv42Pu/s7BSyJhAISgipEwgErlBVFRMTE2WSp/89OjqKdDqNdDqNVCpV9+9GvRzJsoxkMll6JBKJsuf6o6WlpUzajP+3t7ejtbVVzFcqEAiYEVInEAhCAaUU+XweuVwOuVyu7G/j83w+j2w2i0JBm9hdLU5MrxQTB+uvqapa9pokSSCElP2vP8yvRyIRxGIxRKNRRKPRmn/rDzGIQCAQBI2QOoFAIBAIBIImQMT5BQKBQCAQCJoAIXUCgUAgEAgETYCQOoFAIBAIBIImQEidQCAQCAQCQRMgpE4gEAgEAoGgCRBSJxAIBAKBQNAECKkTCAQCgUAgaAKE1AkEAoFAIBA0AULqBAKBQCAQCJoAIXUCgUAgEAgETYCQOoFAIBAIBIImQEidQCAQCAQCQRMgpE4gEAgEAoGgCRBSJxAIBAKBQNAECKkTCAQCgUAgaAKE1AkEAoFAIBA0AULqBAKBQCAQCJoAIXUCgUAgEAgETYCQOoFAIBAIBIImQEidQCAQCAQCQRMgpE4gEAgEAoGgCRBSJxAIBAKBQNAECKkTCAQCgUAgaAKE1AkEAoFAIBA0AULqBAKBQCAQCJqASNArIBDoUEqRyWSCXg2BQCBwRCKRACEk6NUQCITUCcJDJpPB2WefHfRqCAQCgSMefPBBJJPJoFdDIBDNrwKBQCAQCATNgIjUCUJJ7IWZILT4m4NIIBIBiARIBCAERNLfK75OCCAREP0zpfdIaZnSAzC8JpW/ry1Yeo0SMvnTx1BG6XUyWZfxNUq0YkrvSVq52uuk9J6+DC2+VnofmCxDKn5efx/ldZQtU1x9Klm8V/Z5lK3j5Guk4r2KZWBcD9P7qPJ6lfKqrUfFMrXKLb1OK5c3LFN631AWLb4Ow3Lae9SwPtr7xPhe6bP6e7RUJjF+ntDSe6VDTH9dL674Ge1QoKXn+jJS8bn2nvZcX670HqEgmFxOKr5WeoCWlpMIyl7Xllcnl4P+eRWyvkzx+WRZaqk82VC+DO11WS+v9FkVsl4m9PVQJz+PybK1MlVI0OrX3tPKk4uvEaiQ9eUNy8iAthy0evTtoT/X6qLFv1F8j0IqbhcZBBIAubizJZDiawQyIZAggRT3XD4n4wP/PBsCQZgQUicIJwopXl6hSR2KAla8W06+RwBp0mCIZkjFQvS7u4SKu/akMZWbhF5mxV0epteMdcDiNfNymJQ5g9RVvGaQMONz8yqWf95iGanGe9W+RsV6VPnatd6rtqlYyzOUaSV8nkqd1fswP6elso3rYazT6r2SBMLwGePnK5ahFnXRsodR6iZFsfio9h508dOKNAqgLn+ALmcoSZHxPU3q1EkpIkYp0v6WCNGEq/g/Sn+T0nJaOSiWqS+L4nLF163eMywjF4VULq2nLnW0rtQZy5P17YHy1yQY19GwDwWCkCCaXwUCgUAgEAiaACF1AoFAIBAIBE2AkDqBQCAQCASCJkBInUAgEAgEAkETIKROIBAIBAKBoAkQUicQCAQCgUDQBAipEwgEAoFAIGgCRJ46QTiRKSjVEo5qedeI4X9iSgis/2/4G8bXqOFvG+8ZkpZNpoit9vrk/7Tsb5QtRwGA6q9PlklBAIrSssb3S2WUJVczrovFc1q2SqbtUeVh/qydXHS13rNdl833jFXWXI7WKZNWWcfqyYfLc8sZ3it9lj358OR6GPLUgT1PHcXkcpTQ8ge0/7X3UPa6SihA1MkyodelGvLpFT9TfJ8StVQeysov/q/XVXwuFT+j/w+g4jXVcFrrf6sEUDGZp04tvkZQLU8dKSUMljG5z/TnUnEZc+47+8mHCSaTD1udlwJBsAipE4SS3DH7g14Fb9DvmYyYnUQg0DEeWmqQK8KM0apFI5JAwII4cwQCgUAgEAiaAEIpFXOdCEIBpRSZTCbo1RDUIZPJ4IILLgAA3HXXXUgkEgGvkYAnYv86J5FIgBAROxcEj2h+FYQGQgiSyWTQqyFwQCKREPusiRH7VyBoLETzq0AgEAgEAkETIKROIBAIBAKBoAkQUicQCAQCgUDQBAipEwgEAoFAIGgCxOhXgUAgEAgEgiZAROoEAoFAIBAImgAhdQKBQCAQCARNgJA6gUAgEAgEgiZASJ1AIBAIBAJBEyCkTiAQCAQCgaAJEFInEAgEAoFA0AQIqRMIBAKBQCBoAoTUCQQCgUAgEDQBQuoEAoFAIBAImoBI0CsgEAjq88ADD+Daa6+t+7kf/OAHWL16teV7e/bswa233ooXX3wRg4ODSCaTOOSQQ3D++efjlFNOqVv25s2b8Yc//AGvvvoqhoeH0d7ejsMPPxzvf//78c53vrPu8i+//DLuuOMOvP766xgbG0NnZydWrVqFD33oQ1i+fHnd5Z944gncfffd2Lp1K1KpFLq6urBmzRp89KMfxfz58+suHySZTAavvvoqNm/ejC1btmDLli3Yt28fAODSSy/Fxz/+8bplDA4O4tZbb8Vzzz2Hffv2IR6PY/HixXj3u9+Nc889F4SQmsuL/S8QND9imjCBoAHQpU6SJHR2dlb93DXXXIOjjjqq4vXnnnsO3/zmN5HJZAAAra2tSKfTUFUVAHDOOefgy1/+clUxuPfee3HDDTdAURQAQFtbGyYmJqBfPuqJyU033YSbb74ZAEAIQWtrK8bHxwEAsizjiiuuwHnnnWe5LKUU119/Pe6//34AgCRJSCaTmJiYAAAkEglcc801eNe73lW1/qB55ZVX8LnPfc7yPTtSt3nzZlx55ZUYGRkBACSTSeRyudL+OOaYY3DttdciGo1aLi/2v0AwNRCROoGggZg5cyb+8Ic/OFpm7969uPrqq5HJZLBy5UpcddVVWLBgAVKpFG677TbcfPPNuP/++7Fw4UJcfPHFFctv3LixdEM/8cQT8bnPfQ4zZ87EyMgIfvGLX+Duu+/GzTffjEWLFuG0006rWP7RRx8t3dDf+9734p//+Z/R0dGB/fv340c/+hGeeuop3HDDDVi0aBGOOOKIiuV/97vflW7ol156KT7ykY+gpaUFu3btwnXXXYeNGzfi6quvxq9+9SvMnTvX0bbxk/b2dhxyyCGlx49//GMMDg7WXW58fBxf/vKXMTIygoULF+LrX/86VqxYgXw+j3vuuQf/9V//hRdeeAE//vGP8cUvfrFiebH/BYKpg+hTJxA0OTfddBPS6TS6urpw3XXXYcGCBQCAlpYWfPzjH8f5558PAPjNb36DsbGxiuV/9rOfQVEULFmyBNdccw1mzpwJAOjo6MCVV16JY445puxzRhRFwc9+9jMAwLHHHosrr7wSHR0dADRBvfrqq7F48eKyzxkZGxvDr3/9awCaEHz84x9HS0sLAGDhwoW4/vrr0dXVhXQ6jZtuusn1tvKKI488Evfddx/+8z//E5/85Cdx+umnIxaL2Vr2tttuw+DgIOLxOP7jP/4DK1asAABEo1G8//3vL0XI7rnnHuzevbtiebH/BYKpg5A6gaCJSafTeOKJJwAAF154Idrb2ys+c8kllwAAJiYm8NRTT5W9t3fvXqxfvx4A8JGPfASRSGVwX1++r68Pr732Wtl7r776Kvr6+gAAH/vYxyqWjUaj+MhHPgIAWL9+Pfbu3Vv2/pNPPolUKlVWj5H29nZccMEFALQ+V+l0uuIzYUCWZeZlH3zwQQDA6aefbhmJev/7349kMglFUfDwww+XvSf2v0AwtRBSJxA0MRs2bEA2mwWgRUqsmDNnDg466CAAwIsvvlj2nvF5teVXrlxZip6Yl3/ppZcAaFGhlStXWi5/3HHHWdZnXH7RokWYPXu25fL6emWzWWzYsMHyM43Krl27SgMqqm3/lpYWHHnkkQAqt5/Y/wLB1EJInUDQQAwPD+Oyyy7D2WefjTPOOAMf/vCH8e///u945ZVXLD//1ltvlf5esmRJ1XL197Zv3172uv58+vTpmD59uuWysixj4cKFNZc/6KCDqkarpk+fXhr8sWPHDsv1X7x4cd11t6q/0THuPzvboNr2M36m1vJi/wsEjY2QOoGggchkMtiyZQsikQgopejt7cXDDz+Mz33uc7juuutQKBTKPn/gwAEAWjNVPB6vWm5PTw8AYGBgwHJ5/f1qzJgxg8vy+ud19PL0961IJBJoa2uzXL7RMW7PWttA374TExOl5kpA7H+BYKohRr8KBA1Ad3c3Lr30Upx88slYsGABYrEYFEXBG2+8gV/96ld46aWXcP/99yORSODzn/98aTm9j1EikahZvv6+UQiMz+strwuDV8vXEhK9/PHx8YrlGx3j96m1DYzbN5VKlZpDxf4XCKYWIlInEDQAxxxzDD7+8Y9j6dKlpVGTsixj5cqV+P73v48TTjgBAHDnnXdajoAUCAQCQfMjpE4gaHAkScK//uu/AgBUVcWzzz5bei+ZTAJAKelsNfT39QiPjv683vJ6Z3yvltffr0a19W90jN+n1jYwbl/jMmL/CwRTCyF1AkETMH/+/FL+L2NaCL0v09jYWM0bo94Xqbu7u+x1ffl6fZX6+/u5LG/ue6WXp79vRSaTKc1OUK/vVqNh3J61toG+fVtbW8vERux/gWBqIaROIGhijCMDjSMhzVQbZag/HxoawvDwsOWyiqJg165dNZffuXNnRWJaHWPZixYtslz/WqMa7Y4QbUTsjuzUt0G17Wf8TK3lxf4XCBobIXUCQROwZ8+e0rygc+bMKb2+cuXKUifzF154wXLZvr4+7Ny5EwCwZs2asveMz9etW2e5/IYNG0od1M3Lr169GoDW4X3jxo2WyxvLrbb8zp07S/nazOjfKx6PV82F1qgsWLAAs2bNAlB9+6fT6VKCYPP2E/tfIJhaCKkTCEKOPml6rfd/+tOfAtD61x1//PGl95LJJE4++WQA2iAKvZnKyK233gpA64904oknlr03d+7cUmLb3//+9xUpUwDgt7/9LQBg9uzZOOqoo8reW7VqVSlprP45I4VCAb///e8BaFNpmWdMOOmkk9DS0gJKqeXyY2NjuOuuuwAAJ598cqkPWbNACMHZZ58NQJtDtbe3t+Izf/7zn5FOpyHLMs4888yy98T+FwimFkLqBIKQ09fXh0984hO46667sHfv3pLkqaqK119/Hf/2b/9Wmt7pve/9/+3dvUsrSwDG4dezsLiagATsrASxULCQFHaWIX4UFkabIDamNxC1MVZiYf4DJVXARlSCtZUKYmGRIhgrEUFIWLLIagQ9hdzBc67XFLc4Muf3wBY7zLALU+zL7HxMm41g/7G4uCjP81Sv17WysmJWx4ZhqGKxaD6K6XT602OklpaW5DiOarWa8vm8md/UbDZVKBTMSEsmk/nXBrOO4yiTyUiSzs/PVSgU1Gw2Jb3Pk8rn87q5ufml3kfRaFTpdFqSdHh4qGKxaLbpuL291erqqur1ujzPM2egfldBEMj3fXO9vr5Kel8E8LH892055ubmFIvF9PT0pFwup2q1Kkl6eXnRwcGBdnZ2JElTU1PmXNeP6H/g79Hx1m4YAMAfdX9/r1QqZe5d15XneQrDUK1Wy5Qnk0lls9lPz+c8OzvT+vq6WSUYiUQUhqGZ55RMJpXL5dTR0fHpO5TLZW1vb5v6kUhEj4+PJmAuLCx8+VHd3d1VsViU9D761N3dbUaNHMfR8vKyJicnP2379vamra0tHR8fm/qe55n2nZ2d2tjY0NjY2H8+/zuYnZ0156B+JZFIaG1t7ZeyarWqbDZrfrF3dXWp1WqZkbN4PK7NzU2z3c3v6H/g70CoA7655+dnlctlVSoV1Wo1+b6vIAjkuq56e3s1PDysiYmJtvOJ7u7uVCqVdHFxoUajIc/zNDAwoOnpaY2Pj7d9j2q1qr29PV1dXcn3fUWjUQ0NDWlmZkajo6Nt219eXmp/f1+VSkVBEKinp0cjIyNKpVIaHBxs2/7k5ERHR0e6vr5WGIaKxWKKx+Oan59XX19f2/Z/2v8JdZLUaDRUKpV0enqqh4cHua6r/v5+JRIJJZNJ/fjx9Y8X+h+wH6EOAADAAsypAwAAsAChDgAAwAKEOgAAAAsQ6gAAACxAqAMAALAAoQ4AAMAChDoAAAALEOoAAAAsQKgDAACwAKEOAADAAoQ6AAAACxDqAAAALECoAwAAsAChDgAAwAKEOgAAAAsQ6gAAACxAqAMAALAAoQ4AAMACPwGAQuvaG7D/PAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax,plot = psichi_slice.plot()\n", + "\n", + "ax.scatter([coord.icrs.ra.deg], [coord.icrs.dec.deg], transform = ax.get_transform('world'), marker = 'x', color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "fa7196b6-5981-4951-88ce-16be5f7abbe6", + "metadata": {}, + "source": [ + "You can also used it the same way as a point source response obtained from a exposure map. e.g." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "393d7309-64f4-4e1d-86a0-82a3ee2f4ea7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Expected counts')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHOCAYAAACIKE30AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGVUlEQVR4nO3deVyVdd7/8Te7CK6gSGgmSgg1auaSW+67cueCtlg6pU4uaWVpOi13qdli41hNNpYT4zSOqGVaua+MqLdZkinimmQqKCibIOv5/eGPM3PicAnHA+eAr+fj0WM63+18Lue+bt9zXd9zXS4mk8kkAAAAWOXq6AIAAACcGWEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAgLujC6hOsrOztXLlSsXHx+vYsWPKzMzU7NmzNXDgQJvWmzZtmuLi4qz2ubm5aefOnbdQLQAAKAvCkh2lp6crKipKAQEBatGihQ4dOnRL6z3++OMaMmSIRVtOTo7ee+89tW/f/pbWBgAAZUNYsiM/Pz+tXbtWfn5+SkhI0MSJE29pPWuBaMuWLZKkvn373tLaAACgbAhLduTp6Sk/P78yjd2/f78+//xznThxQi4uLmrdurUmTZqkZs2aGc7bunWrvL291bVrV3uUDAAAboIN3g6wefNmzZo1S97e3vrDH/6gsWPH6uzZs5oyZYouXrxY6ry0tDQdPHhQXbt2lbe3dyVWDADA7YuwVMmys7O1ePFiDRkyRO+++65GjBihRx99VB9//LEk6fPPPy917vbt21VYWMgtOAAAKhG34SrZwYMHlZWVpd69eystLc3c7urqqrCwMP3www+lzt22bZvq1q2rdu3aVUKlAABAIixVul9//VWS9Oyzz1rt9/Hxsdp+4cIFHT16VMOHD5e7O/+1AQBQWfhbt5IVFRVJkl5++WXVr1+/RL+bm5vVeVu3bpXEr+AAAKhshKVKFhQUJEnlvp22bds2BQUF6Z577qmo0gAAgBVs8K5kHTp0kI+Pjz7//HMVFBSU6P/vfUzFTpw4ocTERPXp06cSKgQAAP+NK0t29sUXXygrK0upqamSpNjYWF26dEmSNGLECPn6+ur555/X/Pnz9dRTT6l3796qW7eukpOTtX//ft1777167rnnLNbkFhwAAI7jYjKZTI4uojoZNWqUkpKSrPZFR0crMDBQknTo0CH985//VHx8vPLy8tSgQQO1atVKw4cPV2hoqHlOUVGRIiMjVa9ePX366aeVcgwAAOA/CEsAAAAG2LMEAABggLAEAABggLB0i65fv67jx4/r+vXrji4FAABUAKf8NVx2drZWrlyp+Ph4HTt2TJmZmZo9e7YGDhx407nTpk1TXFyc1T43Nzft3LnT/Lm0zdgRERF64YUXylRrYmKiJkyYoE8++cRiYzYAAKgenDIspaenKyoqSgEBAWrRooUOHTpU5rmPP/64hgwZYtGWk5Oj9957T+3bty8xPiQkRKNHj7Zoa9y4sW2FAwCAascpw5Kfn5/Wrl0rPz8/JSQkaOLEiWWeay0QbdmyRZL15xT5+/urX79+thcLAACqNafcs+Tp6Sk/Pz+7rbd161Z5e3ura9euVvvz8/OVk5Njt+8DAADVh1NeWbKntLQ0HTx4UL169ZK3t3eJ/h9++EH9+vVTYWGhGjVqpMjISEVGRjqgUgAA4IyqfVjavn27CgsLrd6CCw4OVqtWrdSkSRNlZGRo48aN+uCDD5SSkqJJkyZZXS8lJcX8KhPpxgZvAABQfVX7sLRt2zbVrVtX7dq1K9H31ltvWXweNGiQXnzxRa1atUojRoxQw4YNS8xZv369oqKiKqpcAADgZKp1WLpw4YKOHj2q4cOHy9395ofq4uKiUaNG6cCBA4qLi7O68TsiIkJdunQxf05MTNS8efPsWjcAAHAe1Tosbd26VZL1X8GVpvhqUkZGhtV+f39/+fv733pxAACgSnDKX8PZy7Zt2xQUFKR77rmnzHMuXLggSapbt24FVQUAAKqSKh2WUlJSlJiYqIKCghJ9J06cUGJiovr06WN1bkZGhgoLCy3aCgoK9M9//lMeHh667777KqRmAABQtTjtbbgvvvhCWVlZ5l+excbG6tKlS5KkESNGyNfXV0uXLtWmTZsUHR2twMBAi/k3uwUXGxur5cuXq3v37goMDFRmZqa2bt2qn3/+WRMnTrTrc54AAEDV5bRhKTo62uK9bTExMYqJiZEk9evXT76+vqXOLSoq0o4dO3T33XfrzjvvtDomODhYTZs21datW5WWliZ3d3eFhITo9ddfV8+ePe17MAAAoMpyMZlMJkcXUZUdP36cF+kCAFCNVek9SwAAABWNsAQAAGDAafcsAZXlzP6L+n7NSeVfL/mrSmfmUcNd7SJD1Kxj4M0HAwBsRljCbe/7NSeVfuGao8uwQa4Orj5JWAKACkZYwm2v+IqSi4vkXc/LwdWUTc7VXJlMqnJXwwCgKiIsAf+fdz0vPfphL0eXUSYrpu5Q9pVcR5cBALcFNngDAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYcHd0AQBsl3M1Vyum7nB0GWXmUcNd7SJD1KxjoKNLAYAyIywBVZBHDXdJuTKZpOwruY4upxxydXD1ScISgCqFsARUQe0iQ3Rw9UnlXy9wdClllnP1RrirSjUDgERYAqqkZh0Dq9zVmRVTd1Sxq2AAcINThqXs7GytXLlS8fHxOnbsmDIzMzV79mwNHDjwpnM3btyoBQsWWO1bu3at/Pz8LNr27Nmjzz77TImJiapbt64GDRqkJ554Qu7uTvlHAwAAKplTJoL09HRFRUUpICBALVq00KFDh8q9xlNPPaXAQMv/5e3r62vxef/+/frjH/+oNm3aaPr06Tpz5oyWL1+uq1evasaMGbd0DAAAoHpwyrDk5+dnvgqUkJCgiRMnlnuNjh07qmXLloZjPvroIzVv3lzvvfee+UpSzZo19fnnn2vkyJFq2rSpTfUDAIDqwymfs+Tp6VnidpktsrOzVVhYaLXv7NmzOnv2rIYOHWpxy23YsGEymUzatWvXLX8/AACo+pzyypI9TJ8+XTk5OfLw8FD79u01ZcoUNWnSxNx/4sQJSVJoaKjFPH9/fzVo0EAnT56s1HoBAIBzqnZhycvLSwMHDtR9990nHx8fHT9+XKtWrdLkyZP16aefKiAgQJKUmpoqSVavYPn5+Zn7fyslJcWiLzExsQKOAgAAOItqF5Z69eqlXr16mT9369ZNHTp00DPPPKN//OMfeuGFFyRJeXl5km7c8vstT09PZWdnW11//fr1ioqKsn/hAADAKVW7sGRNq1atFB4eru+//97cVhySikPTf8vLy5OXl5fVtSIiItSlSxfz58TERM2bN8/OFQMAAGdxW4QlSWrYsKF++eUX8+fi22+pqanmW3PFUlNTFRYWZnUdf39/+fv7V1yhAADAqTjlr+EqwoULF1S3bl3z55CQEEnS8ePHLcalpKTo8uXL5n4AAHB7q9JhKSUlRYmJiSoo+M+7ptLS0kqM27dvn44fP64OHTqY25o1a6Y777xTX3/9tcXjBb766iu5uLioe/fuFVo7AACoGpz2NtwXX3yhrKws8y/PYmNjdenSJUnSiBEj5Ovrq6VLl2rTpk2Kjo42P6170qRJuvvuuxUaGiofHx+dOHFCGzZsUMOGDfX4449bfMfkyZM1e/ZszZgxQ71799aZM2e0du1aDRkyRHfddVelHi8AAHBOThuWoqOjlZSUZP4cExOjmJgYSVK/fv1KvLqkWK9evbR//3599913un79uvz8/DR06FCNGzdO9evXtxjbuXNnzZs3T1FRUVq8eLHq1KmjMWPGaNy4cRV2XAAAoGpx2rC0atWqm46ZM2eO5syZY9E2YcIETZgwoczf061bN3Xr1q3c9QEAgNtDld6zBAAAUNEISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAbcHV0Aqpcz+y/q+zUnlX+9wNGllFnO1VxHlwAAcGKEJdjV92tOKv3CNUeXYROPGpwOAICS+NsBdlV8RcnFRfKu5+XgasrOo4a72kWGOLoMAIATcrqwlJ2drZUrVyo+Pl7Hjh1TZmamZs+erYEDB9507vfff6+tW7fq8OHDunz5surXr6+2bdvqqaeekr+/v8XYadOmKS4ursQaHTp00MKFC+11OLct73peevTDXo4uA04o52quVkzd4egyyqw4SDfrGOjoUgA4iNOFpfT0dEVFRSkgIEAtWrTQoUOHyjz3448/VkZGhnr06KEmTZrowoUL+vLLL7Vv3z4tW7ZMfn5+FuMbNGigP/zhDxZtvx0DwD5u3ObMlckkZV+pSvvEcnVw9UnCEnAbc7qw5Ofnp7Vr18rPz08JCQmaOHFimedOmTJFrVq1kqvrf37k16FDB02bNk1ffvmlJkyYYDHe19dX/fr1s1vtAErXLjJEB1dXvc3/JpOqVM0A7M/pwpKnp6fNV3fatGljta127dpKTEy0OqegoEB5eXmqWbOmTd8JoGyadQyscldnVkzdUcWuggGoCE4XluwtOztbOTk5qlOnTom+c+fOqX///srPz1f9+vU1ZMgQjRs3Tu7u1f6PBQAAlFG1TwWrV69Wfn6+evWy3Gx8xx136L777lNwcLCuX7+uXbt2afny5Tp37pxef/31UtdLSUlRamqq+XNpV6wAAED1YNewZDKZ9Ouvv8rT01MBAQH2XNomcXFxioqKUs+ePXX//fdb9L300ksWn/v37693331XX3/9tUaNGqV77rnH6prr169XVFRURZUMAACcjE1haffu3dqzZ4+mTZumWrVqSZIuXryol156yXylpUePHnrllVfk5uZmv2rLITExUS+//LKCg4M1a9asMs0ZPXq0vv76ax08eLDUsBQREaEuXbpYfM+8efPsUjMAAHA+NoWldevW6cqVK+agJEkffvihzp49q7Zt2yojI0O7du3S/fffr6FDh9qt2LJKTk7WjBkz5OPjo7fffrvMm7cbNmwoScrMzCx1jL+/f4lnNgEAgOrLphfpnj17VmFhYebP2dnZ2rdvn3r16qVFixbpr3/9q5o2baoNGzbYrdCySk9P14wZM5Sfn6+FCxeWK9hcuHBBklS3bt0Kqg4AAFQ1NoWljIwM1a9f3/z58OHDKiwsVO/evSVJ7u7uateunc6fP2+fKq1ISUlRYmKiCgr+8/yTnJwczZw5UykpKXrnnXfUpEkTq3OvXbumvLw8izaTyaTly5dLktq3b19hdQMAgKrFpttwPj4+ysjIMH8+dOiQXF1d1bp16/8s7O6u69ev21TUF198oaysLPOvzmJjY3Xp0iVJ0ogRI+Tr66ulS5dq06ZNio6OVmDgjWe3zJ07V8eOHdOgQYOUmJho8Us1b29vdevWTZJ04sQJvf766+rTp4+CgoKUm5urf//73/rpp580dOhQhYaG2lQ3AACofmwKS3feeaf27t2r8ePHy9XVVdu2bdPdd99tsYcpKSlJ9erVs6mo6OhoJSUlmT/HxMQoJiZGktSvXz/5+vpanXfq1ClJ0oYNG0rcAmzUqJE5LAUEBKh169aKiYnRlStX5OrqqqZNm2rGjBmKiIiwqWYAAFA92RSWRowYoddee00jRowwX0EaP368xZj4+HjdfffdNhW1atWqm46ZM2eO5syZU+550o1nLBk9SwkAAKCYTWGpR48eeu655/Ttt99Kknr16qWBAwea++Pi4nTt2jV16NDBPlUCAAA4iM0PpXzooYf00EMPWe1r06aNQ34JBwAAYG82/RouKipKcXFxhmMOHz7Mk64BAECVZ1NY+uyzz24alopfNQIAAFCV2RSWyqKgoECurhW2PAAAQKWwOc24uLiU2pefn68ff/zR5kcHAAAAOIsyb/AePXq0xedVq1ZZ3cRdVFSk9PR05eXlaciQIbdeIQAAgAOVOSyZTCbzv7u4uMhkMlm0mRd0d9ddd92ltm3bauzYsfapEgAAwEHKHJb++4GP3bt316hRozRu3LiKqAkAAMBp2PScpejo6FJfOQIAAFCd2BSWGjVqZO86AAAAnJLNT/BOS0vThg0blJCQoKysLBUWFpYY4+Lioj//+c+3Uh8AAIBD2RSWTp8+rWeffVaZmZlWN3kXM3q8AAAAQFVgU1j6y1/+ooyMDD3xxBMaPHiwGjRoIDc3N3vXBgAA4HA2haWjR4+qa9eueuqpp+xdDwAAgFOx6Qne7u7uCgoKsnctAAAATsemsNSmTRsdP37c3rUAAAA4HZvC0uTJk3XmzBn961//snc9AAAATsWmPUv/+Mc/FBwcrL/+9a9av369WrRoIR8fH6tjX3rppVsqEAAAwJFsCksbN240//uFCxd04cIFq+NcXFwISwAAoEqz+XUnAAAAtwNedwIAAGDApg3eAAAAtwubrixt2rSpzGMHDBhgy1cAAAA4BZvC0oIFC2763jeTySQXFxfCEgAAqNJsCkul/cLt2rVrOnHihLZt26YuXbqoc+fOt1QcAACAo9kUlgYOHGjYHxERoWeffVYPPfSQLcsDAAA4jQrZ4H3vvfeqS5cuWrZsWUUsDwAAUGkq7NdwjRo10unTpytqeQAAgEpRIWHJZDLpxx9/lKenZ0UsDwAAUGls2rMUFxdntb2wsFApKSnavHmzEhIS1L9//1upDQAAwOFsCkvTp083fHSAyWTS7373O02dOtXmwgDAWeRczdWKqTscXUaZedRwV7vIEDXrGOjoUoBqwaawNHbsWKthydXVVb6+vgoLC1N4ePgtFwcAjuRRw11SrkwmKftKrqPLKYdcHVx9krAE2IlNYenJJ5+0dx0A4HTaRYbo4OqTyr9e4OhSyizn6o1wV5VqBpydTWEJAG4HzToGVrmrMyum7qhiV8EA53dLYenixYvaunWrTp06pWvXrsnHx0ctWrRQ3759FRhYtf4fDAAAgDU2h6XVq1fr448/VmFhoUwmk7l99+7d+vvf/66nn35akZGRNq2dnZ2tlStXKj4+XseOHVNmZqZmz5590yeHF8vMzNTHH3+smJgY5ebmKiwsTJMnT1ZoaGiJsXv27NFnn32mxMRE1a1bV4MGDdITTzwhd3cuugEAABvD0t69e/Xhhx+qTp06GjVqlO677z75+fnpypUr+uGHH7Rq1Sr95S9/UePGjdWpU6dyr5+enq6oqCgFBASoRYsWOnToUJnnFhUVadasWTp9+rQefvhh1alTR1999ZWmT5+uTz75RE2aNDGP3b9/v/74xz+qTZs2mj59us6cOaPly5fr6tWrmjFjRrnrBgAA1Y9NYSk6Olq1a9fWp59+qoYNG5rbGzVqpPDwcPXt21fjx49XdHS0TWHJz89Pa9eulZ+fnxISEjRx4sQyz921a5eOHDmiN954Qz169JAk9erVS48++qg+++wzvfrqq+axH330kZo3b6733nvPfCWpZs2a+vzzzzVy5Eg1bdq03LUDAIDqxaYneJ88eVI9e/a0CEr/LSAgQD179tSJEydsKsrT01N+fn42zd29e7fq16+vBx980NxWt25d9ezZU3v27FFeXp4k6ezZszp79qyGDh1qcctt2LBhMplM2rVrl03fDwAAqhebwlJ+fr68vb0Nx3h7eys/P9+mom7FiRMnFBISIldXy0MLCwvT9evXde7cOfM4SSX2Mfn7+6tBgwY6efKk1fVTUlJ0/Phx8z+JiYkVcBQAAMBZ2HQbrkmTJoqNjdWECROsboQuKCjQ3r17LfYHVZYrV66odevWJdqLr1SlpqaqefPmSk1NtWj/7dji/t9av369oqKi7FcwAABwajaFpf79++ujjz7SCy+8oEmTJllcnUlISNDSpUt17tw5TZ482W6FllVubq7VF/gWt+Xm3nj+SPHtuNLGZmdnW10/IiJCXbp0MX9OTEzUvHnzbrluAADgnGwKSyNHjtSPP/6o2NhY/eEPf5CXl5fq1aunq1evKjc3VyaTSV27dtXIkSPtXe9NeXl5mYPQfytu8/LykvSfkFTa2OJxv+Xv7y9/f397lQsAAJycTWHJzc1Nb775pjZt2qRNmzbp1KlTSk5Olo+Pj8LDwzVgwAD179/f3rWWSf369a3eQvvtbbf/vi0XEBBQYmxYWFgFVwoAAKqCW3ry4oABAzRgwAB71WIXISEhOnz4sIqKiiw2eR87dkw1atQw76MKCQmRJB0/ftzipb8pKSm6fPmyIiIiKrdwAADglGz6NZyzSElJUWJiogoK/vPCyO7du+vKlSuKiYkxt6WlpWnnzp3q3Lmz+fZbs2bNdOedd+rrr79WYWGheexXX30lFxcXde/evfIOBAAAOC2bn+D97bff6rnnnrO6fyclJUWLFi3S0KFD9cADD9hU2BdffKGsrCzz7bPY2FhdunRJkjRixAj5+vpq6dKl2rRpk6Kjo83vouvRo4fWrFmjBQsW6OzZs+YneBcVFenJJ5+0+I7Jkydr9uzZmjFjhnr37q0zZ85o7dq1GjJkiO666y6b6gYAANWLTWFp7dq1SklJKXWjs7+/v5KSkrR27Vqbw1J0dLSSkpLMn2NiYsxXi/r16ydfX1+r89zc3PTOO+/oo48+0hdffKHc3Fy1bNlSs2fP1p133mkxtnPnzpo3b56ioqK0ePFi1alTR2PGjNG4ceNsqhkAAFQ/NoWlU6dOqXPnzoZjwsLCtG/fPpuKkqRVq1bddMycOXM0Z86cEu21atXSrFmzNGvWrJuu0a1bN3Xr1s2mGgEAQPVn056lzMxM1a1b13BMnTp1lJ6ebsvyAAAATsOmsFSnTh3za0NKc+7cOdWqVcumogAAAJyFTWGpdevW2rt3r06fPm21/9SpU4qNjVWbNm1upTYAAACHs2nP0mOPPaaYmBhNmTJFDz/8sNq1a6cGDRro8uXL+u677xQdHS0XFxeNGTPG3vUCAABUKpvCUvPmzfXyyy9rwYIFioqKsnixrMlkkre3t1577TU1b97cXnUCAAA4hM1P8O7Ro4dat26tjRs3KiEhQVlZWapVq5ZatmypgQMH3nQDOAAAQFVwS687qVevnh599FF71QIAAOB0qvTrTgAAACoaYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMBAmZ6zlJycbPMXBAQE2DwXAADA0coUlkaNGiUXF5dyL+7i4qKdO3eWex4AAICzKFNY6t+/f4mwdOHCBR0+fFi+vr5q0aKF6tevrytXrujUqVPKyspSq1atdMcdd1RI0QAAAJWlTGFpzpw5Fp9//vlnTZkyRWPGjNGYMWPk7e1t7svJydE//vEPffXVV5oxY4Z9qwUAAKhkNr0bbsmSJWrZsqUmTJhQos/b21sTJ05UQkKCPv74Y7311lu3XCQAoHxyruZqxdQdji6jzDxquKtdZIiadQx0dClACTaFpSNHjmjYsGGGY8LCwrR27VqbigIA2MajhrukXJlMUvaVXEeXUw65Orj6JGEJTsmmsFRUVKTz588bjvn1119lMplsKgoAYJt2kSE6uPqk8q8XOLqUMsu5eiPcVaWacXuxKSy1bt1au3fv1vbt29W7d+8S/du2bVNMTIw6dux4ywUCAMquWcfAKnd1ZsXUHVXsKhhuNzaFpUmTJunw4cOaO3euVqxYod/97neqV6+erl69qp9++kmnT59WzZo19fTTT9u7XgAAgEplU1i666679Je//EV//vOf9eOPP+rUqVMW/a1bt9Zzzz2nu+66yx41AgAAOIxNYUmSgoOD9f777ys5OVmnT59WVlaWfH191bx5c57aDQAAqg2bw1KxgIAAwhEAAKi2biks5efn6+DBg/rll190/fp1jR07VpKUm5ur7Oxs1alTR66uvKsXAABUXTaHpT179mjhwoVKS0uTyWSSi4uLOSydPn1akydP1h//+Ef17dvXbsUCAABUNpsu+/z000969dVX5eHhoWeeeUZ9+vSx6A8PD1dQUJB2795tlyIBAAAcxaYrS3//+9/l6+urTz75RHXr1lVGRkaJMaGhoTp27NgtFwgAAOBINl1Zio+PV9euXVW3bt1SxzRs2FBXrlyxtS4AAACnYFNYys/PV82aNQ3HZGVlycXFxaaiAAAAnIVNYemOO+5QQkKC4ZijR4/qzjvvtKkoAAAAZ2FTWOrevbuOHDmiDRs2WO3/17/+pZ9//lm9evW6peIAAAAczaYN3g8//LB2796td955R9u2bVNeXp4kacmSJTp69KiOHDmiFi1aaPjw4XYtFgAAoLLZFJZq1qypDz/8UIsWLdLOnTtVVFQkSVq5cqVcXFzUs2dPPf/88/L09LSpqLy8PC1btkxbtmxRZmammjdvrvHjx6t9+/aG80aNGqWkpCSrfUFBQfrXv/5l/vzggw9aHTdx4kSNGTPGproBAED1Y/NDKWvVqqVXX31V06dPV0JCgjIyMuTj46OWLVuqfv36t1TUggULtGvXLkVGRqpx48bauHGjZs6cqcWLF6tVq1alznvmmWeUk5Nj0ZaUlKRPP/3UatBq166dBgwYYNEWEhJyS7UDAIDq5ZbfDVenTh117NjRHrVIuvFYgu3bt2vSpEl65JFHJEn9+/fXuHHjtGTJEi1ZsqTUud26dSvR9ve//12SrD5JvEmTJurXr5+dKgcAANWRTRu8e/ToYQ4hpVm+fLl69uxZ7rV3794tNzc3RUREmNu8vLw0ePBgHT16VMnJyeVab9u2bQoMDNTvfvc7q/25ubnKzc0td50AAOD2YFNYMplMMplMZRpXXidPnlTjxo3l4+Nj0R4WFiZJOnXqVJnXOnHihBITE0u8jqXYpk2b1K9fP/Xt21ePP/64tm7dWu56AQBA9XbLt+FKk5aWJi8vr3LPS01NlZ+fX4n24raUlJQyr1Ucfqzdgrv33nvVs2dPBQYGKjU1VV9++aXmzp2ra9eu6aGHHip1zZSUFKWmppo/JyYmlrkeAABQ9ZQ5LG3atMni88mTJ0u0SVJRUZEuXbqkzZs3q1mzZuUuKDc3Vx4eHiXai39ZV9ZbZkVFRdqxY4dCQkJ01113lej/6KOPLD4PGjRI48eP19KlSzVw4MBSg9769esVFRVVphoAAEDVV+awtGDBAvPrS1xcXBQbG6vY2NgS44pvvXl5een3v/99uQvy8vJSfn5+ifbiZzmV9WpVXFycLl++rMjIyDKN9/Dw0PDhw/Xee+/p+PHjpf7qLiIiQl26dDF/TkxM1Lx588r0HQAAoOopc1h66aWXzP/+1ltvqWvXruratWuJcW5ubqpVq5buvfde1apVq9wF+fn56fLlyyXai299+fv7l2mdrVu3ytXVtdT9StY0bNhQkpSRkVHqGH9//zLXAAAAqr4yh6WBAwea/z0uLk7dunWzGpZuVYsWLXTo0CFdu3bNYpN3fHy8uf9m8vLytHv3brVp06ZcwebChQuSpLp165avaAAAUG3Z9Gu42bNnV0hQkm48lqCwsFDr1683t+Xl5WnDhg0KDw9XQECAJCk5ObnUzdX79+9XVlaW1Y3d0o3N57+VnZ2tNWvWqE6dOgoNDb31AwEAANWCTb+G27t3r7799ls999xzVq/cpKSkaNGiRRo6dKgeeOCBcq0dHh6unj17aunSpUpLS1NQUJA2bdqkpKQkzZo1yzxu/vz5iouLU0xMTIk1tm7dKk9PT3Xv3t3qd3z55Zfas2ePOnfurICAAKWmpmrDhg1KTk7WH//4R6sbzAEAwO3JprC0du1apaSklHqLy9/fX0lJSVq7dm25w5IkzZkzRwEBAdq8ebOysrIUHByst99+W23atLnp3GvXrmnfvn164IEH5Ovra3XM7373Ox05ckTffPONMjIyVKNGDYWFhWnWrFm6//77y10vAACovmwKS6dOnVLnzp0Nx4SFhWnfvn02FeXl5aXJkydr8uTJpY55//33rbb7+Pho27Zthuu3b9/+pi/lBQAAkGzcs5SZmXnTTdB16tRRenq6LcsDAAA4DZvCUp06dXTu3DnDMefOnbPp0QEAAADOxKaw1Lp1a+3du1enT5+22n/q1CnFxsaWaY8RAACAM7Npz9Jjjz2mmJgYTZkyRQ8//LDatWunBg0a6PLly/ruu+8UHR0tFxcXjRkzxt71AgAAVCqbwlLz5s318ssva8GCBYqKirJ4V5rJZJK3t7dee+01NW/e3F51AgAAOIRNYUm68fDI1q1ba+PGjUpISFBWVpZq1aqlli1bauDAgTwFGwAAVAs2hyVJqlevnh599FF71QIAAOB0bNrg/VsZGRlKTk62x1IAAABOxeYrS1lZWVq2bJl27Nih9PR0ubi4aOfOnZJuvPT2s88+0/jx43nPGgAAqNJsurKUkZGhp59+Wl9++aUaNmyopk2bymQymfubN2+uI0eOaOvWrXYrFAAAwBFsCkufffaZzp07p9dee02ffPKJevToYdHv5eWl1q1b64cffrBHjQAAAA5jU1iKjY1Vp06d1KtXr1LHBAYG6vLlyzYXBgAA4AxsCkupqam66667DMd4eHgoJyfHluUBAACchk1hqXbt2rp06ZLhmF9++UV+fn42FQUAAOAsbPo1XOvWrRUbG6tLly6pYcOGJfrPnj2r//u//9OgQYNuuUAAwO0h52quVkzd4egyysWjhrvaRYaoWcdAR5eCCmRTWHr88ce1Z88eTZkyRRMmTFB6erqkGyHpyJEj+vTTT+Xp6amHH37YrsUCAKofjxruknJlMknZV3IdXU455erg6pOEpWrO5nfD/e///q/mz5+vN998U9KNd8KNGzdOJpNJNWvW1P/+7/+qSZMmdi0WAFD9tIsM0cHVJ5V/vcDRpZRLztUbAa+q1Y3ys/mhlF27dlV0dLQ2bdqk+Ph4ZWRkyMfHR+Hh4bwbDgBQZs06BlbJKzMrpu6oglfCYItbejdc7dq1NWrUKHvVAgAA4HTs8m64goICZWZmqqCAS5EAAKB6sfnKUmFhob744gtt3LhRZ8+elclkkouLi+666y4NHDhQw4cPl7v7LV24AgAAcDib0kx2drZeeOEFxcfHy8XFRQ0bNlT9+vV15coVnT17Vh999JF2796thQsXytvb2941AwAAVBqbwtLf/vY3HT16VH369NHEiRMVEBBg7ktOTtZf//pXbd++XcuWLdPUqVPtViwAAEBls2nP0s6dOxUaGqpXXnnFIihJUkBAgF599VWFhoZq586ddikSAADAUWwKS+np6WrXrp3hmPvvv18ZGRk2FQUAAOAsbApLjRs31tWrVw3HpKWlKSgoyKaiAAAAnIVNYWnkyJHasWOHfv75Z6v9p0+f1o4dOxQZGXlLxQEAADiaTRu8GzdurLZt22rChAkaMGCAWrVqpXr16unq1av68ccftXnzZnXo0EFBQUGKi4uzmNumTRs7lA0AAFA5bApL06dPl4uLi0wmk77++mt988035j6TySRJ2rt3r/bu3Vti7q5du2yrFAAAwAFsCktjx46Vi4uLvWsBAABwOjaFpSeffNLedQAAADglu7wbrjRFRUUVuTwAAECFsyks/elPf1JeXp7hmIsXL/L0bgAAUOXZFJbWrVuniRMnlvrogO3bt+upp57SsWPHbqk4AAAAR7MpLE2YMEHnzp3TxIkT9eWXX5rbc3Jy9Oabb2ru3Lny8vLSu+++a7dCAQAAHMGmDd5jxoxR27ZtNXfuXL3//vs6cOCAhg8frj//+c86f/68OnXqpJdeekl169a1c7kAAACVy6awJEnh4eFatmyZFi1apC1btmj//v3y9PTUs88+q2HDht1SUXl5eVq2bJm2bNmizMxMNW/eXOPHj1f79u0N5/3tb39TVFRUiXZPT09t27atRPs333yjlStXKikpSQ0aNNDIkSM1YsSIW6odAABULzaHJUnKzs7WpUuXJN14GKWrq6tq1Khxy0UtWLBAu3btUmRkpBo3bqyNGzdq5syZWrx4sVq1anXT+TNmzJC3t7f5s6trybuN69at03vvvafu3btr9OjROnz4sBYvXqzr16/rscceu+VjAAAA1YPNYWnPnj16++23lZGRof/5n/9Rt27d9M477+jtt9/WgQMH9MILL8jHx6fc68bHx2v79u2aNGmSHnnkEUlS//79NW7cOC1ZskRLliy56Rrdu3c3vAWYm5urTz/9VJ06ddLcuXMlSUOHDlVRUZGWL1+uiIgI1apVq9y1AwCA6sfmRwe8/PLLkqT58+fr+eefV/v27fXZZ5+pe/fu2rFjh37/+9/rp59+Kvfau3fvlpubmyIiIsxtXl5eGjx4sI4ePark5OQyrXPt2jXzq1d+64cfflB6eroeeughi/Zhw4YpJydH+/btK3fdAACgerL50QH33XefPvvsM3Xt2tXc7uvrq9dff10vvvii0tPTNX369HKvffLkSTVu3LjEVamwsDBJ0qlTp266xujRozVw4EANGDBAc+fO1ZUrV0p8hyS1bNnSoj00NFSurq46ceJEuesGAADVk0234SZOnKhHH3201PfDDRkyRK1bt9Ybb7xR7rVTU1Pl5+dXor24LSUlpdS5tWrV0vDhw3XPPffIw8NDhw8f1tq1a3Xs2DF98skn5gCWmpoqNzc31atXz2K+h4eHateurdTU1FK/IyUlxaI/MTGxXMcHAACqFpvCUlk2QDdp0qRM+4t+Kzc3Vx4eHiXaPT09zf2liYyMtPjco0cPhYWFae7cuVq7dq3GjBljXsPd3fqhe3p6Gn7H+vXrrf7iDgAAVE+39Gs4I/n5+crLyys1lJTGy8tL+fn5JdqLX6/i5eVVrvX69u2rv/zlL/r+++/NYcnLy0sFBQVWx+fl5Rl+R0REhLp06WL+nJiYqHnz5pWrJgAAUHWUec/S6NGjtWbNGou2AwcO6MMPP7Q6/vPPP9fgwYPLXZCfn5/V22DFbf7+/uVes2HDhsrIyLD4jsLCQl29etViXH5+vjIyMqzeBizm7++v0NBQ8z9NmzYtdz0AAKDqKPNln6SkJGVlZVm0HT16VGvWrLHrC3NbtGihQ4cO6dq1axabvOPj48395WEymZSUlKSQkBBzW/G/JyQkqFOnTub2hIQEFRUVWYwFAMBIztVcrZi6w9FllJlHDXe1iwxRs46Bji6lyqiw23C26tGjh1auXKn169ebn7OUl5enDRs2KDw8XAEBAZKk5ORkXb9+3eLKTlpaWonnK3311VdKS0tTx44dzW1t27ZV7dq1tW7dOouwtG7dOtWoUcOiDQAAazxquEvKlckkZV8pfa+r88nVwdUnCUvl4HRhKTw8XD179tTSpUuVlpamoKAgbdq0SUlJSZo1a5Z53Pz58xUXF6eYmBhzW2RkpHr16qXg4GB5enrqp59+0vbt2xUSElLiuU1PPfWUFi1apFdffVUdOnTQjz/+qC1btmjChAmqXbt2pR4zAKDqaRcZooOrTyr/uvU9sM4o5+qNcFeVanYGTheWJGnOnDkKCAjQ5s2blZWVpeDgYL399ttq06aN4by+ffvqyJEj2r17t/Ly8hQQEKBHHnlETzzxRInXsAwbNkzu7u6Kjo5WbGysGjZsqKlTp5b4RR0AANY06xhY5a7OrJi6o4pdBXMOThmWvLy8NHnyZE2ePLnUMe+//36JtpkzZ5bre4YOHaqhQ4eWuz4AAHD7sOkJ3gAAALeLcl1Z2rJli44ePWr+fP78eUnSiy++WGJscR8AAEBVVq6wdP78eash6MCBA1bHl/Y6FAAAgKqizGEpOjq6IusAAABwSmUOS40aNarIOgAAAJwSG7wBAAAMEJYAAAAMEJYAAAAMOOVDKXHDmf0X9f2aqvcofQAAqhPCkhP7fs1JpV+45ugybHLjBZMAAFR9/I3mxIqvKLm4SN71vBxcTdl51HBXu8gQR5cBAIBdEJaqAO96Xnr0w16OLgMAgNsSG7wBAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMuDu6AGvy8vK0bNkybdmyRZmZmWrevLnGjx+v9u3bG87bvXu3duzYoYSEBF25ckUNGzZUp06dNHbsWNWqVcti7KhRo5SUlFRijYiICL3wwgt2PR4AAFB1OWVYWrBggXbt2qXIyEg1btxYGzdu1MyZM7V48WK1atWq1HkLFy6Un5+f+vXrp4CAAJ0+fVpr167V/v37tWzZMnl5eVmMDwkJ0ejRoy3aGjduXCHHBAAAqianC0vx8fHavn27Jk2apEceeUSS1L9/f40bN05LlizRkiVLSp37xhtv6L777rNoCw0N1ZtvvqmtW7dqyJAhFn3+/v7q16+f/Q8CAABUG063Z2n37t1yc3NTRESEuc3Ly0uDBw/W0aNHlZycXOrc3wYlSXrwwQclSWfPnrU6Jz8/Xzk5ObdWNAAAqLac7srSyZMn1bhxY/n4+Fi0h4WFSZJOnTqlgICAMq+XmpoqSapbt26Jvh9++EH9+vVTYWGhGjVqpMjISEVGRtpePAAAqHacLiylpqbKz8+vRHtxW0pKSrnWW7Fihdzc3NS9e3eL9uDgYLVq1UpNmjRRRkaGNm7cqA8++EApKSmaNGlSqeulpKSYA5gkJSYmlqseAABQtThdWMrNzZWHh0eJdk9PT3N/WW3dulXffvutHnnkETVp0sSi76233rL4PGjQIL344otatWqVRowYoYYNG1pdc/369YqKiipzDQAAoGpzurDk5eWl/Pz8Eu15eXnm/rL48ccf9fbbb6tDhw6aMGHCTce7uLho1KhROnDggOLi4krd+B0REaEuXbqYPycmJmrevHllqgkAAFQ9TheW/Pz8dPny5RLtxbe+/P39b7rGqVOnNHv2bAUHB+uNN96Qu3vZDrP4alJGRkapY/z9/ctUAwAAqB6cLiy1aNFChw4d0rVr1yw2ecfHx5v7jZw/f14vvPCC6tWrp3feeUc1a9Ys83dfuHBBkvXN4AAAVBc5V3O1YuoOR5dRZh413NUuMkTNOgY65PudLiz16NFDK1eu1Pr1683PWcrLy9OGDRsUHh5u/iVccnKyrl+/rqZNm5rnpqamasaMGXJ1ddXChQtLDT0ZGRny8fGRm5ubua2goED//Oc/5eHhYfURBAAAVHUeNdwl5cpkkrKvlH0PsOPl6uDqk4SlYuHh4erZs6eWLl2qtLQ0BQUFadOmTUpKStKsWbPM4+bPn6+4uDjFxMSY21588UVduHBBjzzyiH766Sf99NNP5r569eqZX5cSGxur5cuXq3v37goMDFRmZqa2bt2qn3/+WRMnTrT6azwAAKq6dpEhOrj6pPKvFzi6lDLLuXoj3DmyZqcLS5I0Z84cBQQEaPPmzcrKylJwcLDefvtttWnTxnDeqVOnJEn/+te/SvS1adPGHJaCg4PVtGlTbd26VWlpaXJ3d1dISIhef/119ezZ0+7HAwCAM2jWMdBhV2dstWLqDodfBXPKsOTl5aXJkydr8uTJpY55//33S7T991UmI6GhoSUeHQAAAGCN073uBAAAwJkQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAy4O7oAa/Ly8rRs2TJt2bJFmZmZat68ucaPH6/27dvfdO7ly5f14Ycf6rvvvlNRUZHuu+8+PfPMM7rjjjtKjP3mm2+0cuVKJSUlqUGDBho5cqRGjBhREYcEAACqKKe8srRgwQKtWrVKffv21bRp0+Tq6qqZM2fq8OHDhvOys7M1ffp0xcXFacyYMXryySd18uRJPfPMM0pPT7cYu27dOr3zzjtq1qyZpk+frnvvvVeLFy/WP//5z4o8NAAAUMU43ZWl+Ph4bd++XZMmTdIjjzwiSerfv7/GjRunJUuWaMmSJaXO/eqrr/Trr7/qr3/9q8LCwiRJHTt21Lhx4xQdHa2JEydKknJzc/Xpp5+qU6dOmjt3riRp6NChKioq0vLlyxUREaFatWpV8JECAICqwOmuLO3evVtubm6KiIgwt3l5eWnw4ME6evSokpOTS527a9cutWzZ0hyUJKlp06Zq27atdu7caW774YcflJ6eroceeshi/rBhw5STk6N9+/bZ74AAAECV5nRh6eTJk2rcuLF8fHws2osD0KlTp6zOKyoq0pkzZ9SyZcsSfWFhYTp//ryys7PN3yGpxNjQ0FC5urrqxIkTt3wcAACgenC623Cpqany8/Mr0V7clpKSYnVeRkaG8vLybjr3zjvvVGpqqtzc3FSvXj2LcR4eHqpdu7ZSU1NLrS8lJcWiPzEx8eYHBQAAqiynC0u5ubny8PAo0e7p6WnuL22epDLNzc3Nlbu79UP39PQs9Tskaf369YqKiir9AAAAQLXidGHJy8tL+fn5Jdrz8vLM/aXNk1SmuV5eXiooKLC6Tl5eXqnfIUkRERHq0qWL+XNiYqLmzZtX6vhbUbOOl8V/AgBwu3GGvwudLiz5+fnp8uXLJdqLb335+/tbnVe7dm15enpavYX227l+fn4qLCzU1atXLW7F5efnKyMjw+qtvGL+/v6l1mBvD83vcvNBAABUY87wd6HTbfBu0aKFfv31V127ds2iPT4+3txvjaurq4KDg5WQkFCiLz4+XnfccYdq1qwpSQoJCZGkEmMTEhJUVFRk7gcAAHC6sNSjRw8VFhZq/fr15ra8vDxt2LBB4eHhCggIkCQlJyeX2FzdvXt3JSQkWISgX375RYcOHVKPHj3MbW3btlXt2rW1bt06i/nr1q1TjRo11KlTpwo4MgAAUBU53W248PBw9ezZU0uXLlVaWpqCgoK0adMmJSUladasWeZx8+fPV1xcnGJiYsxtw4YN0zfffKNZs2bp4Ycflpubm1atWqV69erp4YcfNo/z8vLSU089pUWLFunVV19Vhw4d9OOPP2rLli2aMGGCateuXanHDAAAnJfThSVJmjNnjgICArR582ZlZWUpODhYb7/9ttq0aWM4r2bNmlq8eLE+/PBDLV++3PxuuKlTp6pu3boWY4cNGyZ3d3dFR0crNjZWDRs21NSpUxUZGVlxBwYAAKocF5PJZHJ0EVXZ8ePHNWHCBH3yyScKDQ11dDkAAMDOnG7PEgAAgDMhLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABhwyid4VyW5ubmSVOI9dQAAwPk1bdpUNWrUMBxDWLpFSUlJkqR58+Y5uBIAAFBeZXkDB687uUVpaWk6cOCAvvrqK02fPr3M8z744AM988wzhmMSExM1b948vfzyy2ratOmtllotlOXPzVEcUVtFfKe91ryVdWyZW945nIO2ceZzUKr8+irq+26H87CsYyv6POTKUiWoW7eu+vXrpx07dpTr3XC+vr5lHt+0aVPeO/f/lefPrbI5oraK+E57rXkr69gyt7xzOAdt48znoFT59VXU990O52F513fkecgGbzvp06dPhY7HDc785+aI2iriO+215q2sY8tczsHK4ex/bpVdX0V93+1wHjr7/y39N27DObHjx49rwoQJZbqfCsD+OAcBx3OG85ArS07Mz89P48aNk5+fn6NLAW5LnIOA4znDeciVJQAAAANcWQIAADBAWAIAADBAWKrC8vLy9NZbb2nkyJEaMGCAnn76aR05csTRZQG3lXfffVcPPfSQBgwYoLFjxyo2NtbRJQG3rSNHjqh79+76+9//btd12bNUheXk5Cg6OloDBw5UgwYNtHPnTv35z39WdHS0atas6ejygNtCYmKiAgMD5enpqWPHjun555/XypUrVadOHUeXBtxWioqKNHnyZJlMJnXu3Fljx46129pcWarCvL29NW7cOAUEBMjV1VW9e/eWu7u7zp075+jSgNtG06ZN5enpKUlycXFRfn6+UlJSHFwVcPv5+uuvFRYWViFP+eYJ3pUoOztbK1euVHx8vI4dO6bMzEzNnj1bAwcOLDE2Ly9Py5Yt05YtW5SZmanmzZtr/Pjxat++fanrnzt3TpmZmQoKCqrIwwCqrIo6B//0pz9pw4YNysvL0wMPPKDg4ODKOBygSqqI8zA9PV2rV6/WkiVL9MEHH9i9Zq4sVaL09HRFRUUpMTFRLVq0MBy7YMECrVq1Sn379tW0adPk6uqqmTNn6vDhw1bH5+bmat68eXrsscfk6+tbEeUDVV5FnYPPP/+8Nm/erEWLFql9+/ZycXGpqEMAqryKOA8/+eQTRUZGqlatWhVTtAmVJjc315SSkmIymUymY8eOmbp162basGFDiXFHjx41devWzbRixQpz2/Xr100PP/yw6emnny4xPj8/3zRz5kzT66+/bioqKqq4AwCquIo6B//brFmzTHv37rVv4UA1Yu/z8Pjx46annnrKVFBQYDKZTKb58+eboqKi7FozV5YqkaenZ5meQLp79265ubkpIiLC3Obl5aXBgwfr6NGjSk5ONrcXFRVp3rx5cnFx0Zw5c/hftICBijgHf6uwsFDnz5+3S71AdWTv8zAuLk7nzp3TiBEj9NBDD2nHjh1asWKFFixYYLea2bPkhE6ePKnGjRvLx8fHoj0sLEySdOrUKQUEBEiSFi5cqNTUVC1cuFDu7vzXCdhDWc/BrKws7du3T126dJGnp6f+/e9/69ChQ5o4caIjygaqlbKehxEREerdu7e5//3331dgYKAee+wxu9XC365OKDU11WrqLm4r/qVNUlKSvvnmG3l6elok73feeUetW7eunGKBaqis56CLi4u++eYbLVq0SCaTSUFBQXrllVcUEhJSqfUC1VFZz8MaNWqoRo0a5n4vLy95e3vbdf8SYckJ5ebmysPDo0R78c+Tc3NzJUmNGjVSTExMpdYG3A7Keg76+Pho8eLFlVobcLso63n4W3PmzLF7LexZckJeXl7Kz88v0Z6Xl2fuB1BxOAcBx3Om85Cw5IT8/PyUmppaor24zd/fv7JLAm4rnIOA4znTeUhYckItWrTQr7/+qmvXrlm0x8fHm/sBVBzOQcDxnOk8JCw5oR49eqiwsFDr1683t+Xl5WnDhg0KDw83/xIOQMXgHAQcz5nOQzZ4V7IvvvhCWVlZ5suIsbGxunTpkiRpxIgR8vX1VXh4uHr27KmlS5cqLS1NQUFB2rRpk5KSkjRr1ixHlg9UeZyDgONVtfPQxWQymSr1G29zo0aNUlJSktW+6OhoBQYGSrqxy7/4fThZWVkKDg7W+PHj1aFDh8osF6h2OAcBx6tq5yFhCQAAwAB7lgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgDg/3vwwQct/snNzTX3bdy4UQ8++KA2btzowAr/Y926dRa1vvnmm44uCai23B1dAIDbz8WLFzV69GjDMY0aNdKqVasqqSLL7x0wYIAkyc3NrUK/68CBA3rhhRfUvn17vffee4Zj33jjDW3btk2vvPKK+vbtq9DQUI0bN05ZWVlas2ZNhdYJ3O4ISwAcJigoSH379rXa5+vrW8nV3NCoUSM9+eSTlfJd7dq1U0BAgL7//nslJycrICDA6risrCz9+9//lq+vrx588EFJUsuWLdWyZUtdvHiRsARUMMISAIcJCgqqtGDijFxdXTVw4EBFRUVp06ZNGjt2rNVx27ZtU25urgYNGiQvL69KrhIAe5YAVAkPPvigpk2bpsuXL+uNN97Q0KFD1b9/f82cOVMXLlyQJJ09e1Zz5szR4MGD1b9/f73yyiu6cuVKhdZ16dIljR07Vn369NGuXbvM7VevXtUHH3ygRx55RL1799bQoUP18ssv68yZMxbzBw0aJBcXF23cuFEmk8nqd2zYsEGSNHjw4Ao7DgClIywBqDIyMzM1ZcoUXbx4Uf3799d9992n/fv36/nnn9eZM2c0efJk5eTkaNCgQWrZsqV2796t119/vcLqOXv2rCZPnqxLly7p3XffVY8ePSRJ58+f1/jx47V69WrdcccdGj58uB544AEdOHBAkyZNUnx8vHmNRo0a6f7779eFCxd06NChEt9x5swZJSQkKCQkRHfffXeFHQuA0nEbDoDDnD9/Xn/729+s9t1zzz3q2LGjRdvp06c1atQoTZ061dz2pz/9SV999ZWmTp2q3//+94qMjJQkmUwmzZo1S/v379fx48cVGhpq19qPHj2qWbNmyd3dXR988IFatGhh7ps/f76uXLmihQsXqkOHDub2J554QhMmTNA777yjqKgoc/vgwYN18OBBbdiwQW3btrX4Hq4qAY7HlSUADnP+/HlFRUVZ/ef//u//Soz39vbW+PHjLdp69+4tSapTp45GjhxpbndxcTH3nT592q5179u3T88995xq1aqljz76yCIonThxQkeOHFH//v0tgpIkNWnSREOGDNGZM2csbsd169ZNderU0e7du3Xt2jVze0FBgbZs2SJPT89SN8IDqHhcWQLgMB06dNDChQvLPL5x48aqUaOGRZufn58kKTg4WC4uLlb7UlJSbrHS/9i5c6e+++47NW/eXO+++67q1atn0V98i+3q1atWr5r98ssv5v8MDg6WJHMYWrNmjbZt26b/+Z//kSTFxsYqLS1Nffr0Ua1atex2DADKh7AEoMrw8fEp0Vb8LCSjvoKCArvVcPToURUWFqpVq1YlgpIkZWRkSLpx9Wnfvn2lrpOTk2PxefDgwVqzZo02bNhgDkvcggOcA2EJAMph4sSJ2rNnj9asWSM3NzdNmTLFor84tE2fPl0jRowo87rNmzdXy5YtdezYMf3888+qVauWDhw4oMDAwBL7mABULvYsAUA5eHp6av78+erUqZOio6P14YcfWvSHhYVJunEFqryKryB9++232rx5swoLC82PFgDgOIQlACgnT09PzZs3T507d9aqVav0wQcfmPvCw8MVHh6u7du3a/v27SXmFhUVKS4uzuq6ffr0UY0aNbRlyxZt2LBBrq6u5levAHAcbsMBcBijRwdI0mOPPea0T6z28PDQ3Llz9eqrr2r16tUymUyaNm2aJOnVV1/Vs88+q9dff11r1qxRSEiIvLy8dOnSJR05ckTp6enatm1biTV9fHzUvXt3bd68WWlpaerYsWOpr0ABUHkISwAcpvjRAaWJjIx02rAk/Scwvfbaa1qzZo1MJpOmT5+uO+64Q8uWLVN0dLT+/e9/a+PGjXJ1dZWfn59at25tfnilNYMHD9bmzZsl3Xi6NwDHczGV9nx9ALjNPPjgg2rTpo3ef/99R5dSZhcvXtTo0aM1YMAAzZkzx9HlANUSV5YA4L/ExcXpwQcflCRt3brVaa9srVu3Tu+9956jywBuC4QlAPj/xo0bZ/G5+DlNzig0NNSi3pCQEMcVA1Rz3IYDAAAwwKMDAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADPw/UrlFIdys1ZIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "expectation = psr.get_expectation(spectrum)\n", + "\n", + "ax, plot = expectation.project('Em').plot()\n", + "\n", + "ax.set_ylabel('Expected counts')" + ] + }, + { + "cell_type": "markdown", + "id": "e4df5bfb-a811-4686-90a2-58651392085e", + "metadata": {}, + "source": [ + "Lastly, you can obtain the response for multiple coordinstes at once. This can be useful for e.g. imaging" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "f94057d8-98a9-47e4-871c-f5a4b6182952", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 55.8 s, sys: 10 s, total: 1min 5s\n", + "Wall time: 1min 6s\n" + ] + } + ], + "source": [ + "%%time\n", + "gal_grid = HealpixBase(nside = 16, coordsys = 'galactic')\n", + "\n", + "gal_coords = gal_grid.pix2skycoord(range(gal_grid.npix))\n", + "\n", + "with FullDetectorResponse.open(response_path) as response:\n", + " response.get_point_source_response(coord = gal_coords[10:12], scatt_map = scatt_map)" + ] + }, + { + "cell_type": "markdown", + "id": "339d7bd8-4c05-4638-ba1a-728d54b8c189", + "metadata": {}, + "source": [ + "You can see that the time is takes to perform this conversion is not lineas with the number of coordinates, so it's better to do it in parallel if you have enough memory." + ] + }, + { + "cell_type": "markdown", + "id": "925a766d-e677-4df6-88e8-eb4df1cd1fd3", + "metadata": {}, + "source": [ + "## XSPEC support" + ] + }, + { + "cell_type": "markdown", + "id": "145c3988-a437-42df-90c6-ac25384dd849", + "metadata": {}, + "source": [ + "You can also convert the point source response to XSPEC readable files (arf, rmf and pha) if you want to do spetral fitting or simulation in XSPEC. See the `SpacecraftFile` class functions `get_arf()`, `get_rmf()` and `get_pha()`, respectively." + ] + }, + { + "cell_type": "markdown", + "id": "6ba9dcf2-4372-4e95-8dec-7c8135931837", + "metadata": {}, + "source": [ + "
\n", + "Note: This functionality will be moved to the DetectorResponse class in the near future.
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "3c260ffd-fb4c-43cb-8795-94781b5efdb7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Getting the effective area ...\n", + "Getting the energy redistribution matrix ...\n" + ] + } + ], + "source": [ + "ori.get_psr_rsp(response = response_path);" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "e5a5d7a2-5a80-443d-bd10-4ac17bc59c1e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHXCAYAAABUEeVQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIm0lEQVR4nO3de3RNd/7/8ddJIhG5Vo5rRIKQoirtt+53UUXbjBl3NYMpqkWRdpSZdsqMll6ValV1pgxtUb2gQ1AlWur6o+JatEJpkBASyTm5nd8fVs40TaLJyU5OkvN8rJW1nM/+7M/nfdLu5WXvz97bZLPZbAIAAHAhbs4uAAAAoLwRgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAFCkxMVEjR45UgwYN5O7uLpPJpJSUFEnSjRs39OSTTyosLEweHh4ymUw6dOiQU+uVJJPJpO7duzu7DAAVnIezCwBQPkwm02/22bZtW77wMGrUKG3evFnDhg1TeHi4TCaTqlevLkmaNm2aFi9erIceekh//OMf5e7urrp165ZV+XZhYWGSpLNnz5b5XACqLhPvAgNcQ14Aev7554vsM2rUKHvAyMzMlLe3t6KiorR58+YCfRs0aCAfHx+dPHmyTOotym8FoBMnTqhGjRpq2LBh+RUFoNLhDBDgYmbOnFmsfomJicrNzVX9+vUL3X7x4kV17drVwMqMceeddzq7BACVAGuAABQQFham0NBQSdKyZctkMplkMpk0atQode/eXSaTSTabTXFxcfZtv153s2nTJvXr109ms1leXl5q0qSJ/vKXv9jXEP3aTz/9pCeffFJNmzaVt7e3atasqbZt2+qf//ynJGn79u0ymUxKSEhQQkKCfd68uvL8upbx48fLZDJp7dq1hc67Z88emUwmDRw4MF97enq65syZo8jISPn4+MjX11cdOnTQRx99VKLf5bZt2zRu3Di1aNFC/v7+8vb21l133aVZs2bJYrEU6D9z5kyZTCZt375dH374odq1aydfX1/7ma+S1paZmamFCxeqX79+Cg0NlZeXl2rWrKlevXpp48aNJfouQFXCJTDAReRdAivOIf/GG2/o7Nmzmj9/vlq3bq3+/ftLkiIjI5WSkqKzZ89q1qxZCg0NtYePsLAw+59nzZqlmTNnqmbNmnrooYdUu3ZtHT58WJs3b1aLFi307bffyt/f3z7f/v379cADD+jq1avq2rWr2rdvr/T0dB07dkzbt29XTk6Ozp49q6VLl+qNN96QJE2ZMsW+f2RkpL1Gk8mkbt26afv27ZKkb7/9Vh07dtQf/vAHffLJJwW+6xNPPKFFixZp/fr1euihhyRJKSkp6tmzpw4ePKh7771XHTt2VG5urjZt2qQzZ87ob3/7m2bPnl2s33ufPn104sQJdezYUcHBwbJYLNq5c6cOHjyo7t2768svv5S7u7u9/8yZMzVr1iw99NBD2rJlix5++GE1adJE169f16JFi0pcW2JiooKDg9WxY0dFRESoVq1a+vnnn7V+/XpdvXpVS5Ys0ZgxY4r1XYAqxQbAJUiySbI9//zzhf7MmTMnX/8ff/zRJsk2cuTIIsfr1q1bgfavvvrKJsnWoUMH27Vr1/Jte//9922SbFOmTLG3Wa1WW1hYmE2S7YMPPigw3vnz5/N9Dg0NtYWGht72e/66rmbNmtk8PT1tycnJ+dotFovtjjvusNWuXduWlZVlbx85cqRNku2ll17K1z8jI8P2wAMP2Ewmk+3gwYNF1vBLZ86cseXm5hZof/bZZ22SbCtXrszX/vzzz9sk2WrUqGH7f//v/xXYr6S1WSyWAr9Dm81mS0lJsbVs2dJ2xx132NLT04v1XYCqhAAEuIi8AFTUT0BAQL7+jgag/v372yTZjhw5Uuh+kZGRtlq1atk/r1mzxibJFh0dXazv4UgAeuGFF2ySbAsXLszX/vHHH9sk2aZOnWpvS0pKsrm7u9vuu+++Qsc/dOiQTZLtL3/5S7HqLUpycrJNkm306NH52vMC0C9DYlnV9tprr9kk2eLi4kr+BYBKjkXQgIuxlfFV72+//VbVqlXTxx9/rI8//rjA9szMTF25ckXJyckKCgrS7t27JUl9+/Yts5r+9Kc/6bnnntOyZcs0YcIEe/uyZcskKd8aon379iknJ0cmk6nQBeNZWVmSpOPHjxdr7ps3b2r+/Pn67LPP9P333ys1NTXff4MLFy4Uul/btm0LtDla29GjR/XKK69ox44d+vnnnwusPSqqBqAqIwABMFRycrKys7M1a9as2/ZLS0tTUFCQfVF0cHBwmdXUoEEDRUVFacuWLTp+/LiaN2+uy5cvKzY2VpGRkbr77rvz1S/dChv79u27bf2/JSsrSz179tTevXt11113aciQIapVq5aqVasm6dZaKavVWui+hT1TyZHadu/erZ49eyo7O1tRUVGKjo6Wv7+/3NzcdOjQIa1du7bIGoCqjAAEwFABAQHKzc3V1atXi9U/MDBQUtmfhRg5cqS2bNmiZcuWae7cufrggw+UnZ2tkSNH5usXEBAgSZo6dapef/31Us25du1a7d27V6NGjdL777+fb9vPP/9825BY2IMrHalt9uzZysjIKPCQS0maM2dOkXfHAVUdt8EDMFT79u117do1HT16tNj9JRX7lmx3d3fl5OSUuK4//OEP8vf314oVK5Sbm6tly5bJw8NDw4cPz9evbdu2cnNz09dff13iOX7t9OnT9rl/LS4ursTjOVLb6dOnVbNmzUJfD+JIDUBVQQACYKipU6dKksaOHauLFy8W2H7z5k37uh9JevjhhxUWFqZ169YV+hybn376Kd/noKAgXblyRRkZGSWqy9vbW4MHD9aFCxc0b948fffdd+rXr59q166dr1/t2rX1yCOPaP/+/frnP/9ZaNg6c+aMfvzxx9+cM+/ZPXm35Of54Ycf9Mwzz5SofkdrCwsL09WrV3X48OF8/f71r39p06ZNJa4BqCq4BAa4mNs9Cbp///6KjIws1fhRUVGaO3euZsyYoaZNm6pfv35q1KiR0tLSlJCQoLi4OHXu3FmxsbGSJE9PT3388cfq3bu3hg8frsWLF6t9+/ayWCw6fvy4tm7dquzs7Hzj79u3T3369FHXrl3l5eWl1q1b6+GHH/7N2kaOHKn33ntPM2bMsH8uzMKFC3Xq1Cn9/e9/1/Lly9W5c2fVqVNHFy9e1PHjx7Vv3z599NFHatSo0W3ne/jhhxUeHq7XX39d8fHxuueee3Tu3Dl98cUXevDBB3Xu3Lni/lodrm3KlCnatGmTOnfurMGDBysgIED79+/XN998o4EDB2rNmjUlrgGoEpx9GxqA8qHfuA1eku3999+393f0Nvg8X3/9tW3QoEG2evXq2apVq2Yzm8221q1b26ZOnWrbt29fgf4JCQm2xx9/3BYWFmarVq2arWbNmra2bdvaXnjhhXz90tLSbOPHj7cFBwfb3N3dC9T4W3WFh4fbJNlq1qxps1qtRfazWq22N99809ahQwebv7+/zdPT0xYSEmLr2bOnbd68ebakpKQi9/2lc+fO2YYPH26rX7++rXr16rYWLVrYXnrpJVtWVlahtebdBr9t2zbDalu/fr2tXbt2Nl9fX1tAQIDt/vvvt8XFxdmfy/TL/+6Aq+BJ0AAAwOWwBggAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwAqhMVi0cmTJwu8MRkAAFQNBKBCJCQkaOzYsUpISHB2KQAAoAwQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5Xg4uwAAlVtaUoYsqZnOLqNEqvt5ytfs7ewyADgRAQiAw9KSMrTmL18r25rj7FJKxMPLXQNf6UIIAlwYAQioQCrb2ZSUC2nKtuao+xN3KzDY19nlFEvKhTRtf/uwLKmZBCDAhRGAgAqiMp9NqXtnTcIEgEqFAARUEJbUzEp3NkViPQ2AyqlSBKAff/xR77//vk6ePKmrV6+qevXqCg0N1bBhw9SpUyd7vxdffFGxsbEF9m/YsKFWrFhRniUDDgsM9pW5UYCzywCAKq1SBKDExESlp6erT58+MpvNslgsiouL04wZM/T0008rOjra3tfT01PTpk3Lt7+Pj095lwwAACqwShGAOnTooA4dOuRr+8Mf/qCxY8dq9erV+QKQu7u7evfuXd4lAgCASqTSPgjR3d1dtWvXVlpaWoFtOTk5unnzphOqAgAAlUGlOAOUJyMjQ1arVTdv3tTOnTu1Z88e9ejRI18fi8Wivn37ymKxyM/PT1FRURo/frxq1KhR5LhJSUlKTk62f05ISCiz7wAAAJyvUgWgt956S+vWrZMkubm5qWvXrpo6dap9e1BQkIYNG6ZmzZrJZrNpz549+vzzz3XmzBnNnz9fHh6Ff91169Zp6dKl5fEVAABABVCpAtCgQYPUvXt3JSUladu2bcrJyVFWVpZ9+2OPPZavf1RUlEJCQrRkyRLFxcUpKiqq0HGjo6Pz3U2WkJCg2bNnl82XAAAATlep1gCFhobqvvvuU58+ffTSSy8pIyND06dPl81mK3KfwYMHy83NTfv37y+yj9lsVkREhP0nNDS0LMoHAAAVRKUKQL/WvXt3nThxQufPny+yj5eXl/z9/XXjxo1yrAwAAFRklToAWa1WSSr0TrA86enpun79ugIDA8upKgAAUNFVigB07dq1Am3Z2dnatGmTvLy8FBYWJqvVqvT09AL9li1bJpvNpnbt2pVHqQAAoBKoFIugX331Vd28eVOtW7dWrVq1lJycrC1btujcuXOaMGGCatSooZ9//lmPPvqoevXqpYYNG0qS9u7dq927d6tdu3bq3Lmzk78FAACoKCpFAOrZs6f++9//au3atbp+/bpq1KihiIgIjR8/3h5sfH191bFjR+3bt0+xsbHKzc1VcHCwxo0bp6FDh8rNrVKc7AIAAOWgUgSgqKioIm9hz+Pn56dnn322nCoCAACVWaUIQABgtJQLRd88URFV9/OUr9nb2WUAVQYBCIBLqe7nKQ8vd21/+7CzSykRDy93DXylCyEIMAgBCIBL8TV7a+ArXWRJzXR2KcWWciFN298+LEtqJgEIMAgBCIDL8TV7EyQAF8etUQAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuh5ehospKS8qodG/8BgCUDwIQqqS0pAyt+cvXyrbmOLuUEvHwcld1P09nlwEAVR4BCFWSJTVT2dYcdX/ibgUG+zq7nGKr7ucpX7O3s8sAgCqPAIQqLTDYV+ZGAc4uAwBQwbAIGgAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDL4W3wAFBJpFxIc3YJJVLdz1O+Zm9nlwEUigAEABVcdT9PeXi5a/vbh51dSol4eLlr4CtdCEGokCpFAPrxxx/1/vvv6+TJk7p69aqqV6+u0NBQDRs2TJ06dcrX9+zZs1q4cKHi4+Pl4eGhDh06aOLEiQoMDHRO8QBQSr5mbw18pYssqZnOLqXYUi6kafvbh2VJzSQAoUKqFAEoMTFR6enp6tOnj8xmsywWi+Li4jRjxgw9/fTTio6OliRdvnxZkyZNkq+vr8aOHauMjAytXLlSP/zwgxYvXqxq1ao5+ZsAgGN8zd4ECcBAlSIAdejQQR06dMjX9oc//EFjx47V6tWr7QFoxYoVslgseu+991SnTh1JUvPmzRUTE6ONGzfa+wEAANdWae8Cc3d3V+3atZWW9r9FgXFxcerYsaM9/EjSfffdp5CQEG3bts0ZZQIAgAqoUpwBypORkSGr1aqbN29q586d2rNnj3r06CFJunLliq5du6aIiIgC+zVv3ly7d+8uctykpCQlJyfbPyckJBhfPAAAqDAqVQB66623tG7dOkmSm5ubunbtqqlTp0qSPcAEBQUV2C8oKEg3btxQZmamPD09C2xft26dli5dWnaFAwCACqVSBaBBgwape/fuSkpK0rZt25STk6OsrCxJktVqlaRCFzrnhR6r1VpoAIqOjs53N1lCQoJmz55dFl8BAABUAJUqAIWGhio0NFSS1KdPH8XExGj69OlavHixvLy8JMkeiH4pM/PWraN5fX7NbDbLbDaXUdUAAKCiqbSLoCWpe/fuOnHihM6fP2+/9PXLtTx5kpOT5e/vX+jZHwAA4HoqdQDKu+yVlpamWrVqKTAwUCdPnizQ7/jx4woPDy/v8gAAQAVVKQLQtWvXCrRlZ2dr06ZN8vLyUlhYmCSpW7du2rVrly5dumTvd+DAAZ0/f95+txgAAEClWAP06quv6ubNm2rdurVq1aql5ORkbdmyRefOndOECRNUo0YNSdKIESO0fft2TZkyRQMHDlRGRoY++ugjNW7cWH379nXytwAAABVFpQhAPXv21H//+1+tXbtW169fV40aNRQREaHx48erc+fO9n516tTRggULtHDhQi1evNj+LrAJEyaw/gcAANhVigAUFRWlqKioYvVt1KiRXnvttTKuCAAAVGaVYg0QAACAkQhAAADA5RCAAACAyyEAAQAAl+PQIughQ4aUeuJBgwZp4MCBpR4HAACgpBwKQImJifLx8ZGvr69Dk16+fFlpaWkO7QsAAFBaDt8GP3jwYI0aNcqhfbt16+botAAAAKXGGiAAAOByHDoDtHz5cgUEBDg8aWn3BwAAKA2HAlDDhg1LNWlp9wcAACgNLoEBAACXQwACAAAup8QBKDc3Vz/88IOSkpIKbMvOztahQ4eMqAsAAKDMlGgNUGJioqZNm6aEhASZTCa1b99eM2bMsC9ovnHjhqZMmaLt27eXRa0AAACGKNEZoEWLFslsNmvlypVasmSJrFarJkyYkO9skM1mM7xIAAAAI5UoAH333Xd64oknVK9ePTVt2lSvvfaa7r77bk2cOFGXLl2SJJlMpjIpFAAAwCglCkAWi0XVqlX7385ubpo2bZratGmjSZMm6cKFC4YXCAAAYLQSBaCGDRvq5MmTBdqfeuoptW/fXtOnTzesMAAAgLJSogDUtWtXbdmypdBtMTExioqKYg0QAACo8EoUgEaMGKFXXnmlyO0xMTGKi4srdVEAAABliQchAgAAl+PQu8AK8+2332rv3r1KT09XnTp1FB4ermbNmqlu3bpGTQEAAGAIQwLQBx98oCVLluRb/5N3O7yvr689DDVr1ky9evUyYkoAAACHGRKAPv/8c/n4+Gj69Olq0qSJEhMTdfr0aZ06dUqnTp3S4cOHdfDgQZlMJgIQAABwOkMC0I0bN9SvXz916dJFklS/fn3de++99u1ZWVn64YcfdOrUKSOmAwAAKBVDAlB4eLgsFkuR26tVq6aIiAhFREQYMR0AAECpGHIX2KBBg7Rr1y5dv37diOEAAADKlCEBqHv37oqKitL06dN15coVI4YEAAAoM4bdBl+/fn1t3LhRI0aMUPv27XXvvfeqadOmCg8Pl6enp1HTAAAAlJohAWjRokVatWqV/Tb47du3a/v27TKZTHJzc1PDhg3VrFkzRUREaMCAAUZMCQAA4DBDAtCmTZsUGBioF154QU2aNNGVK1d06tQpff/99/Zb4Tdt2qTNmzcTgAAAgNMZEoAsFosefvhhtWzZUpIUEhKikJAQ9ezZ097n0qVL3AYPAAAqBEMCUEREhFJSUm7bp06dOqpTp44R0wEAKomUC2nOLqHEqvt5ytfs7ewyUMYMCUAjRozQ888/r8uXL6t27dpGDAkAqMSq+3nKw8td298+7OxSSszDy10DX+lCCKriDAlACQkJioyM1NNPP61Zs2apUaNGRgxrd/z4ccXGxurgwYNKTEyUv7+/WrZsqTFjxigkJMTe78UXX1RsbGyB/Rs2bKgVK1YYWhMAoGi+Zm8NfKWLLKmZzi6lRFIupGn724dlSc0kAFVxhgSgN998UyaTSTabTX/+85/VsmVL3XvvvfYXoJb2rNCHH36o+Ph49ejRQ02aNFFycrI+++wzjRkzRosWLVLjxo3tfT09PTVt2rR8+/v4+JRqfgBAyfmavQkRqLAMCUCzZs3SqVOn7C9AjY+PV3x8vP2N8AEBAWratKkiIiI0duzYEo8/ePBg/f3vf1e1atXsbT179tTo0aP1wQcf6LnnnrO3u7u7q3fv3qX/UgAAoMoyJAB1795d3bt3t39OSUmx3/6eF4oOHDig/fv3OxSAWrVqVaAtJCREYWFhSkhIKLAtJydHFouFMz8AAKBQhj0J+pcCAwPVpk0btWnTxt5mtVp15swZw+aw2Wy6du2awsLC8rVbLBb17dtXFotFfn5+ioqK0vjx41WjRg3D5gYAAJWbIQHoxx9/1JUrV9SqVSt5exd+vdfLy0stWrQwYjpJ0pYtW3TlyhX9+c9/trcFBQVp2LBhatasmWw2m/bs2aPPP/9cZ86c0fz58+XhUfjXTUpKUnJysv1zYWeVAABA1WFIAFq+fLl27NihlStXFhmAjJSQkKB58+apZcuW6tOnj739sccey9cvKipKISEhWrJkieLi4hQVFVXoeOvWrdPSpUvLsmQAAFCBGPI2+CNHjqhdu3Yym82Fbj9//ryeffZZxcfHl3qu5ORkPfPMM/Lx8dE///lPubu737b/4MGD5ebmpv379xfZJzo6WkuWLLH/PPvss6WuEwAAVFyGnAG6evVqvufx/FpISIjOnj2rNWvWFLqgubjS0tI0bdo0paWlaeHChUUGrl/y8vKSv7+/bty4UWQfs9lcrLEAAEDVYMgZIB8fH6Wnp9+2z1133aVjx445PIfVatX06dN1/vx5zZ07t8Di56Kkp6fr+vXrCgwMdHhuAABQtRgSgO68807t3r1bubm5RfYJDAzUtWvXHBo/JydHM2fO1NGjRzVr1izdddddBfpYrdZCQ9iyZctks9nUrl07h+YGAABVjyGXwB566CE9++yzWrhwoZ588slC+1y8eFGenp4Ojf/WW29p586d6tixo1JTU7V58+Z823v37q2rV6/q0UcfVa9evdSwYUNJ0t69e7V79261a9dOnTt3dmhuAABQ9RgSgLp06aIePXrok08+0YULF/TYY4/lez3FgQMH9M033ygyMtKh8U+fPi1J2rVrl3bt2lVge+/eveXr66uOHTtq3759io2NVW5uroKDgzVu3DgNHTpUbm6GnOwCAABVgGEPQnzuuefk6+ur9evXa8+ePapbt67q1q2ra9eu6dy5c7LZbBo2bJhDYy9YsOA3+/j5+XH3FgAAKBbDApC7u7uefvpp3X///fr444+1f/9+/fzzz5Kk+vXra9y4cfmeDA0AAOAshr8Ko3Xr1mrdurWkW7et22w2+fn5GT0NAACAw8rkXWB5fH19y3J4AAAAh7AyGAAAuByHAtA//vEPxcXFOTxpafcHAAAoDYcC0NatW/Xjjz86PGlp9wcAACgNh9cAnTp1SrGxsUbWAgAAUC4cDkDffPONdu7cWeL9bDabo1MCAAAYwqEANH369FJP3LRp01KPAQAA4AiHAlDfvn2NrgMAAKDccBs8AABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXI7DT4IuSk5Ojq5fv66srKxCt9epU8foKQEAAErEsAB08uRJvfvuu/ruu++UnZ1daB+TyaRt27YZNSUAAIBDDAlAp06d0sSJE+Xu7q42bdpo165dCg8PV82aNfX9998rJSVFkZGRqlu3rhHTAQAAlIohAWjZsmWSpHfeeUdhYWHq1q2bunTpolGjRslqteqtt97S9u3bDXmHGAAAQGkZsgg6Pj5enTp1UlhYmL0t763vXl5emjJlisxms5YsWWLEdAAAAKViSAC6efOm6tevb//s4eGhjIyM/03i5qbIyEgdOHDAiOkAAABKxZAAFBgYqNTUVPvnmjVr6qeffsrXJzMzUxaLxYjpAAAASsWQABQWFqZz587ZP7dq1Ur79u3TkSNHJElnz57Vtm3bFBoaasR0AAAApWLIIugOHTpo4cKFSkpKktls1vDhw7Vjxw5NnDhRfn5+SktLU25urkaMGGHEdAAAAKViSAD63e9+px49esjPz0+SFB4ernnz5mn58uW6ePGiIiIiNGDAAHXo0MGI6QAAAErFkADk4eGhmjVr5mtr1aqVXn75ZSOGBwAAMBTvAgMAAC7HsFdhZGdn69NPP9WXX36pc+fOyWq12l97cerUKa1fv16DBg1SSEiIUVMCAFAmUi6kObuEEqnu5ylfs7ezy6hUDAlAVqtVTz31lI4cOaKAgAD5+Pjku+W9Xr162rBhg/z8/DR27FgjpgQAwHDV/Tzl4eWu7W8fdnYpJeLh5a6Br3QhBJWAIQFo+fLlio+P12OPPaZhw4bp/fff13/+8x/7dl9fX0VGRmrfvn0EIABAheVr9tbAV7rIkprp7FKKLeVCmra/fViW1EwCUAkYEoC++uor3XPPPRo+fLikW299/7X69evr1KlTRkwHAECZ8TV7EyRcgCGLoC9fvqyIiIjb9vH29tbNmzeNmA4AAKBUDDkD5O3trZSUlNv2uXjxogICAoyYDk6QlpRR6U4JAwBQFEMCUMuWLbVr1y6lpqbaH4b4S5cuXdLu3bvVpUsXh8Y/fvy4YmNjdfDgQSUmJsrf318tW7bUmDFjCtxVdvbsWS1cuFDx8fHy8PBQhw4dNHHiRAUGBjo0N26FnzV/+VrZ1hxnl1IiHl7uqu7n6ewyAAAVkCEBaOjQoZoyZYqmTp2qyZMnKyfn1l+UFotFR48e1RtvvKGcnBwNGTLEofE//PBDxcfHq0ePHmrSpImSk5P12WefacyYMVq0aJEaN24s6daluEmTJsnX11djx45VRkaGVq5cqR9++EGLFy9WtWrVjPi6LseSmqlsa466P3G3AoN9nV1OsXFbKACgKIYEoMjISE2ZMkULFizQpEmT7O19+vSRJLm5uSkmJuY31wkVZfDgwfr73/+eL8D07NlTo0eP1gcffKDnnntOkrRixQpZLBa99957qlOnjiSpefPmiomJ0caNGxUdHe3oV4SkwGBfmRtxGRMAUPkZ9iDE/v37KzIyUmvXrtXx48d148YN+fj4qHnz5vr973+vRo0aOTx2q1atCrSFhIQoLCxMCQkJ9ra4uDh17NjRHn4k6b777lNISIi2bdtGAAIAAJIMDECSFBYWpsmTJxs5ZJFsNpuuXbumsLAwSdKVK1d07dq1Qs8yNW/eXLt37y6XugAAQMVnyG3w3bt31z/+8Q8jhiq2LVu26MqVK+rZs6ckKTk5WZIUFBRUoG9QUJBu3LihzMzC72JKSkrSyZMn7T+/PKsEAACqHkPOANWoUUO1a9c2YqhiSUhI0Lx589SyZUv7OiOr1SpJhS509vT0tPfJ+/MvrVu3TkuXLi27ggEAQIViSABq3ry5zpw5Y8RQvyk5OVnPPPOMfHx89M9//lPu7u6SJC8vL0lSVlZWgX3yzvzk9fm16OhoderUyf45ISFBs2fPNrp0AABQQRgSgEaPHq3JkycrNjbWfkamLKSlpWnatGlKS0vTwoULZTab7dvyLn3lXQr7peTkZPn7+xd69keSzGZzvrEAAEDVZkgA2r9/vyIjIzV37lx9+umnuvPOO3XHHXcUeCeYyWTSyJEjHZrDarVq+vTpOn/+vF5//XX74uc8tWrVUmBgoE6ePFlg3+PHjys8PNyheQEAQNVjSAB6//337X/OW0hcGEcDUE5OjmbOnKmjR4/qxRdf1F133VVov27duik2NlaXLl2y3wp/4MABnT9/XoMHDy7xvAAAoGoyJADNnz/fiGGK9NZbb2nnzp3q2LGjUlNTtXnz5nzbe/fuLUkaMWKEtm/frilTpmjgwIHKyMjQRx99pMaNG6tv375lWiMAAKg8DHsSdFk6ffq0JGnXrl3atWtXge15AahOnTpasGCBFi5cqMWLF9vfBTZhwoQi1/8AAADXY+iDEMvKggULit23UaNGeu2118qwGgAAUNkZHoBycnJ0/fr1Qm9Hl5TvNRUAAADOYFgAOnnypN5991199913ys7OLrSPyWTStm3bjJoSAADAIYYEoFOnTmnixIlyd3dXmzZttGvXLoWHh6tmzZr6/vvvlZKSosjISNWtW9eI6QAAAErFkAC0bNkySdI777yjsLAwdevWTV26dNGoUaNktVr11ltvafv27Zo+fboR0wEAAJSKIS9DjY+PV6dOnfI9nNBms0m69fqJKVOmyGw2a8mSJUZMBwAAUCqGBKCbN2+qfv369s8eHh7KyMj43yRuboqMjNSBAweMmA4AAKBUDAlAgYGBSk1NtX+uWbOmfvrpp3x9MjMzZbFYjJgOAACgVAwJQGFhYTp37pz9c6tWrbRv3z4dOXJEknT27Flt27ZNoaGhRkwHAABQKoYsgu7QoYMWLlyopKQkmc1mDR8+XDt27NDEiRPl5+entLQ05ebmasSIEUZMBwAAUCqGBKDf/e536tGjh/z8/CRJ4eHhmjdvnpYvX66LFy8qIiJCAwYMUIcOHYyYDgAAoFQMCUAeHh6qWbNmvrZWrVrp5ZdfNmJ4AAAAQxmyBggAAKAyIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcgx5DpAkZWdn69NPP9WXX36pc+fOyWq1atu2bZKkU6dOaf369Ro0aJBCQkKMmhIAAMAhhgQgq9Wqp556SkeOHFFAQIB8fHzyvfi0Xr162rBhg/z8/DR27FgjpgQAAHCYIZfAli9frvj4eI0bN06ff/65HnzwwXzbfX19FRkZqX379hkxHQAAQKkYEoC++uor3XPPPRo+fLhMJpNMJlOBPvXr19elS5eMmA4AAKBUDAlAly9fVkRExG37eHt76+bNm0ZMBwAAUCqGBCBvb2+lpKTcts/FixcVEBBgxHQAAAClYkgAatmypXbt2qXU1NRCt1+6dEm7d+9W69atjZgOAACgVAwJQEOHDlVqaqqmTp2q+Ph45eTkSJIsFosOHDigp59+Wjk5ORoyZIgR0wEAAJSKIbfBR0ZGasqUKVqwYIEmTZpkb+/Tp48kyc3NTTExMb+5TggAAKA8GPYgxP79+ysyMlJr167V8ePHdePGDfn4+Kh58+b6/e9/r0aNGhk1FQAAQKkYFoAkKSwsTJMnTzZySAAAAMPxLjAAAOByDAlAEydO1Pr164u8CwwAAKAiMeQS2NGjR3XkyBHNnz9fHTp0UO/evdWhQwd5eBh6hQ0AAMAQhiSUzz77TFu2bNHmzZu1Y8cOff311/Lz81OPHj10//33q1WrVkZMAwAAipByIc3ZJZRIdT9P+Zq9nTa/IQEoMDBQgwYN0qBBg5SQkKDNmzdry5YtWrt2rdatW6d69eqpd+/euv/++9WgQQMjpgQAALoVJDy83LX97cPOLqVEPLzcNfCVLk4LQYZfowoNDdXYsWM1duxYHTp0SJs3b9b27du1bNky/ec//9G2bduMnhIAAJfla/bWwFe6yJKa6exSii3lQpq2v31YltTMqhOAfikyMlK1a9dWQECAVq9ebX9CdEmlp6dr5cqVOnbsmI4fP67U1FTNmDFDffv2zdfvxRdfVGxsbIH9GzZsqBUrVjg0NwAAFZ2v2dupl5MqozIJQDdu3NBXX32lzZs369ixY5KkGjVqqEePHg6Nd/36dS1dulR16tRReHi4Dh48WGRfT09PTZs2LV+bj4+PQ/MCAICqybAAlJWVpZ07d2rz5s3au3evsrKy5OHhoQ4dOuiBBx5Qx44d5enp6dDYQUFB+uyzzxQUFKQTJ05o3LhxRfZ1d3dX7969Hf0aAADABRgSgF566SXFxcUpPT1dNptNzZs3V+/evRUVFaWAgIBSj+/p6amgoKBi98/JyZHFYuHMDwAAKJQhAWjDhg2qW7euBgwYoN69eyskJMSIYR1isVjUt29fWSwW+fn5KSoqSuPHj1eNGjWcVhMAAKhYDAlAb775pu6++24jhiqVoKAgDRs2TM2aNZPNZtOePXv0+eef68yZM5o/f36RD2ZMSkpScnKy/XNCQkJ5lQwAAJzAkABUEcKPJD322GP5PkdFRSkkJERLlixRXFycoqKiCt1v3bp1Wrp0aTlUCAAAKgKHAtDcuXMlSePGjVPNmjXtn4tj+vTpjkzpsMGDB+tf//qX9u/fX2QAio6OVqdOneyfExISNHv27PIqEQAAlDOHAtDGjRtlMpn0yCOPqGbNmtq4cWOx9jOZTOUegLy8vOTv768bN24U2cdsNstsNpdjVQAAwJkcCkCrVq2SJHtoyPtcEaWnp+v69esKDAx0dikAAKCCcCgA1a1b97afncFqtSonJ6fA3V7Lli2TzWZTu3btnFQZAACoaAxZBH3p0iX5+vre9rk76enpSk1NVZ06dRya45NPPlFaWpr9bq2dO3fq8uXLkqQBAwYoNTVVjz76qHr16qWGDRtKkvbu3avdu3erXbt26ty5s0PzAgCAqseQADRkyBCNHj1aI0eOLLLPmjVr9O9//1vbt293aI5Vq1YpMTHR/nnHjh3asWOHJKl3797y9fVVx44dtW/fPsXGxio3N1fBwcEaN26chg4dKjc3N4fmBQAAVY8hAchms8lms/1mn9JYvXr1b/Z59tlnSzUHAABwDeV2WuTKlSs8jRkAAFQIDp8B+vWDA4t6Q3tubq4uX76srVu3qkWLFo5OBwAAYBiHA9D7779v/7PJZNKhQ4d06NChIvubzWaNHz/e0ekAAAAM43AAmj9/vqRba3umTJmivn37qk+fPgX6ubm5yd/fXw0bNmQhMgAAqBAcDkCRkZH2P48aNUr33HNPvjYAAICKypBTMvfdd5+++eabfG9U/6WkpCQtXLhQR48eNWI6AACAUjEkAK1atUo7d+5UUFBQodvNZrN27dpVrFvZAQAAypohAejEiRO6++67b9undevWOnbsmBHTAQAAlIohASglJeU336Zes2ZNXbt2zYjpAAAASsWQAOTr62t/L1dRLl26JG9vbyOmAwAAKBVDAlCLFi20Y8cOXbp0qdDtly5d0tdff6277rrLiOkAAABKxZAANHjwYFmtVk2YMEGxsbFKSkqSdOvur40bN+qJJ55QZmamhgwZYsR0AAAApWLIy1AjIyM1YcIEvf3225o7d66kW0+HznsBqslk0qRJk3hOEAAAqBAMCUCSNGjQIN17771au3atTpw4obS0NPn6+qp58+b63e9+p8aNGxs1FQAAQKkYFoAkqUmTJoqJiTFySAAAAMPxci4AAOByDDsDlJ2drU8//VRffvmlzp07J6vVqm3btkmSTp06pfXr12vQoEEKCQkxakoAAACHGBKArFarnnrqKR05ckQBAQHy8fGRxWKxb69Xr542bNggPz8/jR071ogpAQAAHGbIJbDly5crPj5e48aN0+eff64HH3ww33ZfX19FRkZq3759RkwHAABQKoYEoK+++kr33HOPhg8fLpPJJJPJVKBP/fr1i3xQIgAAQHkyJABdvnxZERERt+3j7e2tmzdvGjEdAABAqRgSgLy9vZWSknLbPhcvXlRAQIAR0wEAAJSKIQGoZcuW2rVrl1JTUwvdfunSJe3evVutW7c2YjoAAIBSMSQADR06VKmpqZo6dari4+OVk5MjSbJYLDpw4ICefvpp5eTk8C4wAABQIRj2LrApU6ZowYIFmjRpkr29T58+kiQ3NzfFxMT85johAACA8mDYgxD79++vyMhIrV27VsePH9eNGzfk4+Oj5s2b6/e//70aNWpk1FQAAACl4lAA+uabbxQaGlrgqc5hYWGaPHmyIYUBAACUFYfWAD377LPaunWr/fOQIUO0Zs0aw4oCAAAoSw4FIA8PD2VnZ9s/JyYmKi0tzbCiAAAAypJDAah27dr57vaSVOjTnwEAACoih9YA9erVS8uWLdNDDz0kf39/SdLq1au1YcOG2+5nMpm0cuVKR6YEAAAwjEMB6E9/+pM8PT21e/duJSUlyWQyyWazyWaz3Xa/39oOAABQHhwKQB4eHhoxYoRGjBghSerWrZsGDx6sUaNGGVkbAABAmXBoDdA333yj8+fP2z+PGjVKkZGRRtUEAABQpgy5DT42NlanT582rCgAAICy5PAlsPK8DT49PV0rV67UsWPHdPz4caWmpmrGjBnq27dvgb5nz57VwoULFR8fLw8PD3Xo0EETJ05UYGBgmdUHAAAql0pxG/z169e1dOlSJSQkKDw8vMh+ly9f1qRJk3ThwgWNHTtWQ4cO1bfffquYmBhlZWWVWX0AAKByqRS3wQcFBemzzz5TUFCQTpw4oXHjxhXab8WKFbJYLHrvvfdUp04dSVLz5s0VExOjjRs3Kjo6usRzAwCAqsehM0B/+tOfNHbsWDVp0kQmkynfbfC3+8nNzXWoSE9PTwUFBf1mv7i4OHXs2NEefiTpvvvuU0hIiLZt2+bQ3AAAoOqpMrfBX7lyRdeuXVNERESBbc2bN9fu3budUBUAAKiIHApAv1YRboNPTk6WpELPFAUFBenGjRvKzMyUp6dnge1JSUn2/SUpISGh7AoFAABOZ0gAGj169G/2ycrKUmZmpnx8fIyYsgCr1SpJqlatWoFteaHHarUWGoDWrVunpUuXlkldAACg4nFoDZAkDRkyRGvWrMnXtnfvXi1cuLDQ/itWrNCDDz7o6HS/ycvLS5IKvdsrMzMzX59fi46O1pIlS+w/zz77bJnVCQAAnM/hM0CFPfvn6NGjWrNmjSZOnFjqwkoq79LXLy9l5UlOTpa/v3+hZ38kyWw2y2w2l2l9AACg4nD4DFBFU6tWLQUGBurkyZMFth0/fvy2zw8CAACupcoEIOnW3Wi7du3SpUuX7G0HDhzQ+fPn1aNHDydWBgAAKhJDFkGXh08++URpaWn2S1w7d+7U5cuXJUkDBgyQr6+vRowYoe3bt2vKlCkaOHCgMjIy9NFHH6lx48aFvjYDAAC4pkoTgFatWqXExET75x07dmjHjh2SpN69e8vX11d16tTRggULtHDhQi1evNj+LrAJEyYUuf4HAAC4nkoTgFavXl2sfo0aNdJrr71WxtUAAIDKrFQBaPPmzTp69Kj984ULFyRJf/nLXwr0zdsGAADgbKUKQBcuXCg02Ozdu7fQ/mX5xngAAIDicjgArVq1ysg6AAAAyo3DAahu3bpG1gEAAFBuqtRzgAAAAIqDAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC7Hw9kFuKK0pAxZUjOdXUaxpVxIc3YJAAAYigBUztKSMrTmL18r25rj7FJKxMPLXdX9PJ1dBgAAhiAAlTNLaqayrTnq/sTdCgz2dXY5xVbdz1O+Zm9nlwEAgCEIQE4SGOwrc6MAZ5cBAIBLYhE0AABwOQQgAADgcqrUJbCDBw9q8uTJhW5btGiRWrZsWc4VAQCAiqhKBaA8AwYMUPPmzfO1BQcHO6kaAABQ0VTJANS6dWt1797d2WUAAIAKqsquAUpPT1d2drazywAAABVQlTwDNGfOHGVkZMjd3V133323Hn/8cd15553OLgsAAFQQVSoAeXh4qFu3bmrfvr0CAgJ09uxZrVq1ShMnTtTbb7+tZs2aFbpfUlKSkpOT7Z8TEhLKq2QAAOAEVSoAtWrVSq1atbJ/7ty5s7p3767Ro0fr3Xff1auvvlrofuvWrdPSpUvLqUoAAOBsVSoAFaZBgwbq3LmzduzYoZycHLm7uxfoEx0drU6dOtk/JyQkaPbs2eVZJgAAKEdVPgBJUu3atZWVlSWLxSIfH58C281ms8xmsxMqAwAAzlBl7wL7pYsXL8rT01Pe3rzMEwAAVLEAlJKSUqDt9OnT2rlzp9q0aSM3tyr1dQEAgIOq1CWw559/Xl5eXrrrrrt0xx136OzZs1q/fr2qV6+uxx57zNnlAQCACqJKBaAuXbpoy5YtWr16tW7evKnAwEB17dpVo0aNUoMGDZxdHgAAqCCqVAAaOHCgBg4c6OwyAABABceiGAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDL8XB2AUbLzMzUv/71L23evFmpqalq0qSJxowZozZt2ji7NAAAUEFUuTNAc+bM0erVq3X//ffrySeflJubm6ZNm6bDhw87uzQAAFBBVKkAdOzYMW3dulXjxo3TE088oejoaL3xxhuqW7euFi1a5OzyAABABVGlAlBcXJzc3d0VHR1tb/Py8tKDDz6oo0eP6tKlS06sDgAAVBRVKgCdOnVKDRo0kI+PT7725s2bS5JOnz7tjLIAAEAFU6UWQScnJysoKKhAe15bUlJSofslJSUpOTnZ/jkvKCUkJBheY8rFNCVnJurM2dNKzvQ1fHwAACq6sv67MDQ0VNWrV79tnyoVgKxWq6pVq1ag3dPT0769MOvWrdPSpUsLtM+ePdvQ+n7pv8+X2dAAAFQKZfV34ZIlSxQREXHbPlUqAHl5eSkrK6tAe2Zmpn17YaKjo9WpUyf759TUVCUkJGjr1q2aPHlysed/8803NWnSpNv2SUhI0OzZs/Xss88qNDS02GNXZcX5vTmLM2orizmNGrM04ziyb0n34Rh0TEU+BqXyr6+s5nOF47C4fcv6OCzOmFUqAAUFBenKlSsF2vMub5nN5kL3M5vNBbbdd9992rdv328myF/y9fUtdv/Q0NASjV2VleT3Vt6cUVtZzGnUmKUZx5F9S7oPx6BjKvIxKJV/fWU1nyschyUd35nHYZVaBB0eHq6ffvpJN2/ezNd+7Ngx+/aS6NWrV5n2xy0V+ffmjNrKYk6jxizNOI7syzFYPir676286yur+VzhOKzo/y/9kslms9mcXYRRjh07pvHjx+vxxx/XsGHDJN26/DVy5EgFBATonXfecXKF0smTJzV27NhiXZ8EYDyOQcD5KsJxWKUugbVo0UI9evTQu+++q5SUFAUHBys2NlaJiYl65plnnF2epFuX6UaNGlXo3WoAyh7HIOB8FeE4rFJngKRbd3rlvQssLS1NjRs31pgxY9S2bVtnlwYAACqIKheAAAAAfkuVWgQNAABQHASgCiYzM1Nz587VwIED1adPH40fP15HjhxxdlmAS3nllVfUv39/9enTRyNHjtTOnTudXRLgso4cOaJu3bpp2bJlho7LJbAKJiMjQ6tWrVLfvn1Vq1Ytbdu2TW+88YZWrVqlGjVqOLs8wCUkJCSoXr168vT01PHjxxUTE6OVK1cqICDA2aUBLiU3N1dPPPGEbDabOnbsqJEjRxo2NmeAKhhvb2+NGjVKderUkZubm6KiouTh4aHz5887uzTAZYSGhtpfoWMymZSVlVXkuwQBlJ3169erefPmZfK06Cp1G7wzpKena+XKlTp27JiOHz+u1NRUzZgxQ3379i3QNzMz036HWmpqqpo0aaIxY8aoTZs2RY5//vx5paamKjg4uCy/BlBpldUx+Prrr2vDhg3KzMxU+/bt1bhx4/L4OkClVBbH4fXr1/Xxxx9r0aJFevPNNw2vmTNApXT9+nUtXbpUCQkJv/mk6Tlz5mj16tW6//779eSTT8rNzU3Tpk3T4cOHC+1vtVo1e/ZsPfLII/L15c3xQGHK6hiMiYnRpk2bNG/ePLVp00Ymk6msvgJQ6ZXFcbhkyRINGjRIfn5+ZVO0DaVitVptSUlJNpvNZjt+/LitS5cutg0bNhTod/ToUVuXLl1sH374ob3NYrHYhg4dahs/fnyB/llZWbZp06bZZs2aZcvNzS27LwBUcmV1DP7SM888Y9u1a5exhQNViNHH4cmTJ22PPvqoLTs722az2WwvvPCCbenSpYbWzBmgUvL09CzWkyzj4uLk7u6u6Ohoe5uXl5cefPBBHT16VJcuXbK35+bmavbs2TKZTPrrX//KvzyB2yiLY/DXcnJydOHCBUPqBaoio4/DQ4cO6fz58xowYID69++vr776Sh9++KHmzJljWM2sASonp06dUoMGDeTj45OvvXnz5pKk06dPq06dOpKkV199VcnJyXr11Vfl4cF/IsAIxT0G09LS9O2336pTp07y9PTU119/rYMHD2rcuHHOKBuoUop7HEZHRysqKsq+fcGCBapXr54eeeQRw2rhb9dykpycXGg6zmvLu8MkMTFRX3zxhTw9PfMl5JdfflmtW7cun2KBKqi4x6DJZNIXX3yhefPmyWazKTg4WM8995yaNm1arvUCVVFxj8Pq1aurevXq9u1eXl7y9vY2dD0QAaicWK1WVatWrUB73q22VqtVklS3bl3t2LGjXGsDXEFxj0EfHx/Nnz+/XGsDXEVxj8Nf++tf/2p4LawBKideXl7Kysoq0J6ZmWnfDqDscAwCzleRjkMCUDkJCgpScnJygfa8NrPZXN4lAS6FYxBwvop0HBKAykl4eLh++ukn3bx5M1/7sWPH7NsBlB2OQcD5KtJxSAAqJ927d1dOTo7WrVtnb8vMzNSGDRvUokUL+x1gAMoGxyDgfBXpOGQRtAE++eQTpaWl2U/h7dy5U5cvX5YkDRgwQL6+vmrRooV69Oihd999VykpKQoODlZsbKwSExP1zDPPOLN8oNLjGAScr7Idh7wN3gCDBw9WYmJiodtWrVqlevXqSbq1uj3v/SdpaWlq3LixxowZo7Zt25ZnuUCVwzEIOF9lOw4JQAAAwOWwBggAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAFCEjRs3qmvXrvafmTNnFtpvyZIl6tq1q+Lj48u3wF9JSEjIV+/gwYOdWg9QkXk4uwAAFcfPP/+sIUOG3LZP3bp1tXr16nKqqGLo3LmzwsPD1bhx40K3f//993Jzc1PTpk0Nm3PDhg2aO3euHn30UY0cObLIflarVX/84x915coVzZs3T6NGjZIkrVmzxrBagKqIAASggODgYN1///2FbvP19S3napyvS5cu6tu3b5HbT506pZCQEFWvXt2wOfPC1g8//HDbfitXrlRiYqL69++vyMhIRUZGSpJiY2MNqwWoighAAAoIDg7Wn//8Z2eXUSkkJSXp6tWr+r//+z9Dx23UqJHc3Nz0448/3nbuDz/8UP7+/hozZoyh8wNVHWuAADjs4MGD6tq1q/7973/rxIkTiomJ0QMPPKC+ffvqb3/7m37++edC9zt06JCmT5+uhx9+WFFRURo2bJiWLFkii8VS5Pjx8fGKiYlRv3791LVrV3uf7OxsrVixQkOHDlWvXr00bNgwrVixQhcvXlTXrl314osv2vvu379fXbt21euvv15oXRcuXFC3bt301FNPFft3cOrUKUlSs2bN8rUnJCToT3/6kx544AFt3brV3p6Tk6P//ve/mjRpkvr27atevXppzJgxiouLy7e/l5eXgoOD9dNPPyk7O7vQuRcvXqyMjAyNGTNG/v7+xa4ZAAEIgAFOnDihSZMmycPDQ9HR0YqIiNDXX3+tmJgYWa3WfH0///xzTZ48WfHx8Wrfvr0GDBig2rVra/ny5YqJiVFWVlaB8Y8cOaLJkyfLZDLp4YcfVs+ePe3bXnrpJb377ruSpP79+6tt27ZavXq1FixYUGCc//u//1NwcLC+/PLLAmFLkr744gvZbDY9/PDDxf7uhQWgrVu3aty4ccrOztaiRYsUFRUl6dZ6naefflovvfSS0tPT1bdvX/Xt21eXLl3Sc889p82bN+cbu3HjxsrOzlZCQkKBeY8dO6bNmzcrPDy8RPUCuIVLYAAKuHDhgv79738Xuq1ly5Zq165dvrbdu3fr+eeft/9FL0kvvPCCNm3apG+++cbefvbsWc2fP19NmjTRvHnzFBAQYO+/YsUKvfvuu/rkk080dOjQfOPv379f06dPV79+/fK1HzhwQJs2bVLTpk311ltv2dfg/PGPfyz0klBegHrnnXe0bdu2fOt6srOzFRsbqzvuuEOdO3cuzq9J0q0F0CaTSU2bNlV2drbeeustffLJJ+rUqZP+9re/5Vsz9dJLL+nAgQOaPHmyBgwYYG8fOXKkRo8erffee0+9e/e2tzdp0kRxcXE6e/asmjRpkm/eN998UzabTZMnT5a7u3ux6wVwC2eAABRw4cIFLV26tNCfPXv2FOjfunXrfOFHkj2sHD9+3N62du1a5eTkaPLkyfnCjyQNHz5cgYGB+S4X5WnWrFmB8CPJfsZk5MiR+RYgm81mDRw4sNDv1q9fP1WrVk3//e9/87V/++23Sk5OVp8+feThUfx/G546dUr169fXzZs3NWnSJH322Wd69NFH9eKLL+YLPwcOHNCXX36p6OjofOEnr9727dsrMTFRKSkp9vaiFkJv2bJFR48eVVRUlFq3bl3sWgH8D2eAABTQtm1bvfrqq8XuHxERUaCtVq1akqS0tDR727FjxyRJe/fu1YEDBwrs4+HhoXPnzhVov/POOwud9/Tp05Kku+++u8C2u+66q9B9AgMD1bVrV23dulUJCQkKDQ2VJHsgeuihhwrdrzCpqan6+eefFRwcrDFjxshms+nll19W27ZtC/T99NNPJUm5ubmFnl3Lu8yVm5trb8s76/PLhdAWi0XvvPOOvL299fjjjxe7VgD5EYAAlFqNGjUKtOVdlvnlX+g3btyQJC1fvrxE49esWbPQ9vT0dLm5uRU4m3S7fSQpOjpaW7du1RdffKEJEyYoKSlJe/bsUWRkpEJCQopdV976n9TUVN24cUMjR44sNPxIty7jSbfWGRXF09NTgYGB9s/169eXt7d3vgD04Ycf6sqVKxo7dqxq165d7FoB5EcAAlBufHx8JN16Rk1hoamkatSoodzcXF2/fj1fcJCkq1evFrnfPffco4YNG2rTpk0aN26cNmzYoJycnBKd/ZH+F4CmTZumjz76SCtWrFCLFi3UoUOHfP1SU1OVkZGhzp0757sr7beYTCaFhYXp5MmTslgsunHjhlauXKng4ODffGAlgNtjDRCActOiRQtJ0tGjRw0ZLzw8XJIKfQXFkSNHbrtvdHS0UlJS9PXXX2vDhg3y8/NTt27dSjR/XgBq0aKFXnzxRdWqVUszZ860X5r7tevXr5dofOnWZbDc3FydPXtW77zzjiwWiyZOnChPT88SjwXgfwhAAMpN//795e7urvnz5+vSpUsFtqempur7778v9nh5T6teunRpvtvtk5OTf/NVEH369JGnp6cWLlyoixcvqnfv3vLy8ir23NKtO8Bq1qwps9msO+64Q3PnzpWbm5ueeeYZJSUl2fv5+fmpQYMGOnbsWKFrn7KysooMbHkLob/44gt9+eWXateunTp16lSiOgEUxCUwAAXc7jZ4SXrkkUdKHBakW3+Zx8TE6PXXX9cjjzyi9u3bKzg4WOnp6bp48aK+++479enTR08//XSxxrvvvvvUq1cvffnllxo1apQ6d+6srKwsbdu2Tc2bN9euXbvk5lb4v/P8/f3Vo0cPbdq0SZJK/Cwdq9Wq8+fP53sCdOPGjfX8889rxowZmj59uhYuXGi/O+3xxx/Xc889p6eeekrt27dXaGioLBaLrly5ovj4eLVt27bQhdt5C6HXrVsnDw8PTZo0qUR1AigcAQhAAXm3wRdl0KBBDgUg6VbQCA8P1+rVq/Xdd99p165d8vHxUZ06dTRo0CD16dOnROP99a9/VWhoqDZs2KBPP/1UtWrV0qBBg3Tvvfdq165dt11r1KdPH23atEktW7Ys8kWnRTlz5oxycnLsl+HytG/fXhMnTtT8+fP1j3/8Q7Nnz5abm5u6dOmiN954Qx999JGOHj2qPXv2yN/fX7Vr11a/fv2KfNfYL+saOHCgGjZsWKI6ARTOZLPZbM4uAgCM9sUXX+jll19WTEyM+vfvX2ifjz76SIsWLdIzzzyjBx98sMD2jRs3as6cOZoxY8ZtX4ZaEQ0ePFiStHr1aidXAlRMrAECUKklJyfr1/+Ou3Lliv7zn//I3d29wB1ZeaxWqz777DP5+fkVeIjjr82ZM0ddu3bVzJkzjSq7TCQkJKhr167q2rWrEhMTnV0OUKFxCQxApfbBBx/o22+/VevWrRUYGKjLly9r165dSk9P1+jRo1WnTp18/Q8fPqxDhw5p7969SkxM1Lhx4/I9RfqXwsPDNWrUKPvnkl4mK28BAQH56v3lk6gB5MclMACV2p49e7Rq1SqdOXNGqamp8vT0VJMmTdS/f3/7XWK/9O9//1tLly5VQECAHnjgAY0fP75Er74AUDUQgAAAgMthDRAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5fx/mXPbp8glsIcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ori.get_arf()\n", + "ori.plot_arf()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "45ce929d-2a45-442c-b3b7-249677521675", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHXCAYAAAC7045uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdu0lEQVR4nO3de1yTdf8/8Nc4bCIj0UGoqJjgAbxLzCzTRFA0iOLWG83U/EmmpCRqdt+esjvrtjzU17Np2oGyO8HybIgGHjDRUsMjiGiJmoGCggyTwXb9/iB2t8Zh27Wxsb2ej8ced/tch8/7Guzm7ecoEQRBABEREZGDcbJ2AERERETWwCSIiIiIHBKTICIiInJITIKIiIjIITEJIiIiIofEJIiIiIgcEpMgIiIickhMgoiIiMghMQkiIiIih8QkiMhI8+fPh0QiwcGDB3XKJRIJQkNDrRITAHTs2BEdO3bUKUtMTIREIkFiYqJVYqph7c/GHtX28yYi4zAJoiZHIpHovJydndGqVSuEhoYiMTERTXEnmCtXrkAikSA2NtbaoZiEf5CN09R/3kT2wsXaARCZ6q233gIAVFZW4tKlS9i2bRsOHTqEEydOYPXq1Y0eT05ODpo3b97o9dZIT0+3Wt0NsfZnY49s+edN1FQwCaIma/78+Trvjxw5gpCQEHz44Yd4/fXX8dBDDzVqPN26dWvU+v7K39/fqvXXx9qfjT2y5Z83UVPB7jCyG/369UO3bt0gCAJOnjypd/yHH37A8OHD0bp1a0ilUrRv3x6vvPIKbty4Uev9Tp48iYiICHh4eOCBBx5AeHg4jh49Wmf9tY17KSsrw3/+8x/87W9/wwMPPAAPDw/4+/tj5MiR2hjnz5+vTdg+//xzna6+mrE8Bw8ehEQiwfz58/Hjjz8iKioKrVq1gkQiwZUrVwA03CX17bffom/fvnB3d0fLli0xfPhw5OXl6Z0XGhoKiURS6z3+OsaoJq78/Hzk5+frxP7nrp66xgSVlpZizpw56Nq1K5o1a4aWLVvi6aefRlpamt65f/4MTp06haioKHh6eqJ58+YYMGAAMjMz63z2v/pzd9Tly5cxfPhwKBQKeHh4YMiQITh37hwA4NatW4iLi0ObNm3QrFkz9O7dGwcOHNC7340bN/DOO++gX79+2t+vtm3bYvTo0cjOztY511I/7zt37qBjx46QyWR6v/8ajQZhYWGQSCTYuHGjwZ8Tkb1jSxDZJVdXV533n376KeLi4iCTyRAdHY327dsjLy8PH3/8MXbt2oVjx46hQ4cO2vMzMzMRHh4OlUqFf/zjHwgICMCpU6cQGhqKgQMHGhSDIAiIiIhAZmYmnnzySUyYMAEuLi64fv06Dhw4gP79+6NXr14IDQ1FSUkJVqxYgR49emDo0KHaewQHB+vc8+jRo1i4cCGeeuopjB8/HkVFRZBKpQ3GsnXrVuzZswfDhg1DaGgoTp06hS1btuDAgQPIzMxE165dDXqmv+rYsSPeeustLF++HAAwffr0OmP/q5KSEvTr1w/Z2dno3bs3pk+fjqKiImzevBlDhgzB2rVr8corr+hdd+LECSxZskT7mV69ehVbtmzBoEGDcOrUKaOe5cqVK3jiiScQGBiI2NhYXLlyBdu2bUNoaCiOHj2KiIgIPPDAAxg5ciRu376NpKQkREZG4uLFizq/LxkZGVi0aBHCwsIQExMDuVyOvLw8fPPNN9i5cyeOHDmCHj16AIDFft4tW7bEpk2bEBISgpEjRyIrKwseHh4AgLfffhsHDx5EbGwsxo4da/DnQ2T3BKImBoBQ26/uoUOHBCcnJ0EqlQo3btzQlufm5gqurq6Cv7+/cP36dZ1r0tLSBCcnJ2Ho0KHaMo1GI3Tt2lUAIGzfvl3n/OXLl2vrP3DggF5cAwYM0L4/c+aMAEDn3jXUarVw+/Zt7ftffvlFACCMGzeu1mc+cOCAtt5169bVeo6fn5/g5+enU/bZZ59pr9u1a1etzzJw4ECd8gEDBtT6+f75fp999lmDdf/ZXz8bQRCEuLg4AYAQFxcnaDQabfnFixeFBx54QJBKpcIvv/yiLf/zZ/DX+tetWycAECZPnlxnDH9W83kDEBYsWKBz7J133hEACC1bthReeeUVQa1Wa4998cUXAgBh+vTpOtcUFhYKd+/e1avn1KlTgru7uxAREVFr/eb+eQuCICxevFgAILzwwguCIAjC/v37BScnJyEwMFAoLy+v9V5EjopJEDU5NX8c3nrrLeGtt94S5s6dKzz//POCq6urIJFIhJUrV+qcP336dAGAsHv37lrvN3ToUMHZ2Vn7R+z7778XAAghISF651ZVVQn+/v5GJUGjRo1q8JkM/aMYHBxc5z3qS4L+muj89VmuXLmiLW+MJKiiokJo3ry5IJfLheLiYr3z582bJwAQ3n77bW1ZzWfQr18/vfNVKpXg4uIi9OrVq84Y/qzm8+7YsaNQVVWlcyw/P18AIDRv3lwvsamqqhJcXFyE0NBQg+oRBEF47rnnBJlMJqhUKr36zf3zFoTqJD4iIkIAILz33ntCmzZtBDc3N+HMmTMGx0zkKNgdRk3W22+/rfNeIpHgk08+wUsvvaRTXjOO59ChQzh+/LjefW7evAm1Wo2LFy+iV69e+OmnnwAAAwYM0DvX2dkZTz31FC5fvtxgfEFBQQgODsamTZuQn5+Pv//973jqqafw2GOPGdSFVZvHH3/cpOsaepasrCz4+fmZdG9T5Obm4t69e+jXrx9atWqld3zgwIFYsGABsrKy9I499thjemWurq7w8fHBnTt3jIojODgYzs7OOmVt27YFAHTp0kXbnVTD2dkZPj4+uH79ut69vv32W6xbtw4nTpxAUVERqqqqdI4XFRWhTZs2RsVnys9bIpHgiy++QHBwMObOnQsA+Oijj/Dwww8bfS8ie8ckiJos4Y/1gMrLy3H06FG8/PLLmDRpEvz8/HTG7RQXFwMA3n///Xrvp1QqAVQP1gUAHx+fWs9r3bq1QfE5Oztj//79eOedd/DNN99g1qxZAAAPDw+MGzcOCxcuhFwuN+hextb9Vw09S80zN5aa+upKCmrKS0pK9I55enrWeo2LiwvUarVRcbRo0aLW+9R1rOZ4ZWWlTtmKFSswffp0tGzZEoMHD0aHDh3QvHlzSCQSbN++HadPn0ZFRYVRsQGm/7y9vb0REhKCpKQkKBQKjgMiqgOTIGry3N3dER4ejl27duHRRx/FuHHjkJubq12XpuaPWWlpKR544IEG71dzfmFhYa3HCwoKDI6tZcuWWLZsGZYtW4ZLly7h0KFD+Oijj7B69WqUlJQYPVOnrllbDWnoWf78B9/JqXrSaFVVlTYhqFFbUmKKmvrq+ix/++03vbhsVVVVFebPn4/WrVvjp59+0kvs6ptR2BBTf95JSUlISkqCl5cXioqKMHXqVGzYsMHkOIjsFafIk9145JFHMHHiRFy/fh3Lli3Tlvfp0wcAcPjwYYPu8+ijjwKo7j77K7Vaje+//96k+AICAvDyyy/j0KFDkMvl2LFjh/ZYTZeMsS0ZhmroWXr27Kktb9myJQDg2rVretecOHGi1vs7OzsbFXvXrl3RvHlznD59utbEqmYaes3PwpYVFRWhpKQEffv21UuAlEqltnv1zyz587506RLi4uLg7e2NrKwshISE4OOPP0ZSUpLZ6yJq6pgEkV2ZN28eZDIZPvjgA+34kClTpsDV1RWvvfYaLl68qHeNSqXSSZD69u2Lrl27IiMjQydRAYDVq1cbNB4IAH755Rf8/PPPeuV37txBRUUF3NzctGUtW7aERCLB1atXDbq3sfbv34/du3frlNU8S1hYmM54oJpxKH9tOUhPT8emTZtqvb9CocCtW7fw+++/GxSPVCrFmDFjUFZWhjfffFPn2OXLl7Fy5Uq4uro2iW6cBx98EM2bN8fJkye1XapA9Urm06ZNQ1FRkd41lvp5q1QqvPDCC1Aqlfj888/Rrl07fPXVV1AoFHjllVcM/t0lchTsDiO74uvri0mTJmHFihVYsmQJFi5ciG7duuHTTz/F+PHj0b17d0RERKBLly6orKzE1atXcfjwYXh7e+PChQsA/jfAevDgwYiJidFZJyg9PR0RERFITU1tMJbTp0/jH//4B3r37o3AwEC0bdsWt27dwo4dO1BZWakdIwQAcrkcTzzxBA4fPowxY8agS5cucHZ2RnR0NB555BHRn8tzzz2HYcOGYdiwYdpn2bNnD1q1aoUPP/xQ59yXXnoJ77//PhYuXIjTp08jKCgIFy9e1K4ztGXLFr37Dxo0CMePH0dERARCQkIgk8nQo0cPPPfcc3XGtGjRIhw+fBirV6/G8ePHERYWpl0nqKysDKtXr270Vb9N4eTkhKlTp2LRokV4+OGH8fe//x0qlQoHDhzA7du3ERYWprfAoqV+3jNnzsTJkycxY8YMREZGAqj+TiQmJuK5557DyJEjkZmZafLAfCK7Y+3padZ29uxZISQkREhMTLR2KGQg1LFOUI2CggKhefPmQvPmzYWCggJt+ZkzZ4Rx48YJHTp0EKRSqdCyZUuhe/fuQlxcnJCenq53nxMnTghPP/20IJfLBblcLgwaNEjIzMwU3nrrLYOmyF+7dk2YM2eO0LdvX8HHx0eQSqWCr6+vEBERIaSkpOjVl5eXJzz77LNCq1atBIlEojMVvWbK9FtvvVXnc9c3Rf6zzz4Tdu3aJfTp00do3ry50KJFC+Ef//iHkJubW+u9zp07J0RGRgpyuVxwd3cXBgwYIBw8eLDOKfJKpVKYNGmS4OvrKzg7O+tN//7rZ1Pjzp07wsyZM4WAgABBKpUKLVq0EMLDw4W9e/fqndvQZ9DQNP0/a2iKel3x1lVPZWWl8H//939CYGCg0KxZM8HHx0d48cUXhStXrgjjxo0TAOiseSQI5v9579y5UwAgPPbYYzrT8Wu89tprAgBh6tSpdd6TyNFIBKEJbrltJhqNBvHx8RAEAX379sW4ceOsHRIRERE1EofuDtu1axcCAwNRXl5u7VCIiIiokTWJgdH37t3Dp59+in/+85+IiopCSEgI9uzZU+u5KpUKa9euxbBhwxAeHo5XXnml1gXySktL8fXXX2P8+PGWDp+IiIhsUJNIgkpLS5GYmIj8/HwEBATUe+7ChQuxefNmDB48GFOnToWTkxNmzpyJM2fO6Jy3YcMGjBgxQm9FWCIiInIMTSIJUigU2LZtG77++mtMnjy5zvOys7ORnp6OuLg4xMfHIzo6GsuXL0fr1q2xdu1a7XkXL17EhQsX8OyzzzZG+ERERGSDmsSYIKlUCoVC0eB5hw4d0k4zrSGTyRAVFYX169ejsLAQPj4+OHXqFK5du4aYmBgA1QuaOTs748aNG5gzZ47FnoOIiIhsR5NIggyVl5eHdu3awd3dXac8MDAQQPVKqj4+PoiOjsagQYO0x1euXIk2bdpgzJgxjRovERERWY9dJUHFxcW1thjVlNWs3NqsWTM0a9ZMe1wmk8HNza3O8UFFRUXaTTgBoKKiAr///jt69Oihcx8iIiJrKSwsNMv+fp6ennVuumxv7CoJqqiogKurq155zeqode3iPHfu3Hrvu3PnTiQmJuqVb9iwAV27djU+UCKiJmiw0whrh1Cnt385ae0Q6tXXT38LHXMqLCzE2BdjcL9C/FDfZs2aYePGjQ6RCNlVEiSTyVBZWalXrlKptMdNER0djX79+mnf5+fnY8GCBaYFSUREZGYlJSW4X+GEuQl30MG3yuT7XP3VBe+taomSkhImQU1NzSaOf1XTleXl5WXSfb28vEy+loiIqLF08K1Cl076jQFUO7tKggICApCVlYXy8nKdwdHZ2dna40RERPZKI2igFjSirgeAVatWQS6XIzw8HOHh4eYKz+Y0iXWCDBUaGgq1Wo2dO3dqy1QqFVJSUhAUFOQQTXtEROS4NBBEvwAgISEBixYtsusECGhCLUFbtmyBUqnUdm0dOXIEN2/eBADExMRALpcjKCgIYWFhWL9+PUpKSuDr64vU1FQUFBRg1qxZ1gyfiIiIbEyTSYKSk5NRUFCgfZ+RkYGMjAwAwJAhQyCXywFUz/Ty8fHB3r17oVQq0alTJyxevBjBwcHWCJuIiKjRCBCggendYcIfLUGOoskkQZs3bzboPJlMhvj4eMTHx1s4IiIiItuihgC1YHoio2YSRHVJS0tDWloalEqltUMhIiKyGEcZGM0kyAg1vwy5ubmYOHGitcMhIiLSIfxpcLOp1wPVA6MdYTFgJkFERER2Qg1BVJeWo3WH2dUUeSIiIiJDsSWIiIjITpirO8xRMAkiIiKyE2oB4maH/XEpB0YTERFRkyIAIlYJgrYdyFEGRnNMEBERETkktgQRERHZCc4OMw6TICIiIjuhEf43rsfU6x0JkyAjcMVoIiJyBBwYTXq4YjQREdkyDcQNjK651lEGRjMJIiIishMaSKCGRNT1joSzw4iIiMghsSWIiIjITmgEcYObOTCaiIiImiQNILI7zLGwO4yIiIgcEluCiIiI7IRa5MDomms5RZ6IiIiaFEGQQCOYngQJf1zLKfJERETUpJirJchRcEwQEREROSS2BBmB22YQEZEtq14s0fT2DUdbLJFJkBG4bQYREdkyDcSNCXK0JIjdYUREROSQ2BJERERkJ7h3mHGYBBEREdkJteAEtWB6J0/NtVwniIiIiBwS1wkiIiKiJkWABBoRw30FdocRERFRU8TFEo3DJIiIyEZEPjTD2iHU64Mrx6wdQp0O3+ts7RDq1dfaAVCtmAQRERHZCY3IgdEaEdc2RUyCiIiI7IQG4qa5a8wXSpPAJIiIiMhOaOAENQRR1zsSJkFG4N5hRERE9oNJkBG4dxgREdmy6jFBIlqCOCaIiIiImiKNyHWCuG0GEREROTRum0FERERNikaQQC2ImB32x7XcNoOIiIiaFDWcoBZ5vSNxrKclIiIi+gNbgoiIiOyEAImoGV7cQJWIiIiaJLXIxRIdbQNVdocRERGRQ2JLEBERkZ2onh0m7npHwiSIiIjITlQvlsgNVA3FJIiIiMhOVG+bIeZ688XSFHBMEBERETkktgQRERHZieruMDHXOxYmQUZIS0tDWloalEqltUMhIiLSI37bDMfqD2MSZISajeRyc3MxceJEa4dDREREIjAJIiIishPViyWa3hJUvdCihrvIExERUdMiCBJRa/3U9IY5yi7ynB1GREREDoktQURERHZCDQnUIto31A42P4xJEBERkZ0Q4CRyF3nHwu4wIiIickhsCSIiIrIT1d1hYmaHcQNVIiIiaoKqZ4eJ6A7jYolERETUFLElyDgcE0REREQOiS1BREREdkIQRM4OY3cYERERNUVqQQK1iCRILTjWOkHsDiMiIiKHxJYgIiIiOyFAAo2Iwc2Cgw2MZhJERERkJ9SCk8juMMfqIDIqCRo5cqToCkeMGIHhw4eLvg8RERGRGEYlQQUFBXB3d4dcLjepsps3b0KpVJp0rS1IS0tDWlpak34GIkc2pM871g6hXv+XsdnaIdRrr7K7tUOoU9bdDtYOoV5TGqkeARJoBHaHGcro7rDnn38esbGxJlU2YMAAk66zFeHh4QgPD0dubi4mTpxo7XCIiIh0iN9FvmklQdu3b8euXbvw888/Y+zYsRg/frxR1ztW5x8RERHZDYVCgZdeesnkRhajWoI2btyIO3fumFRRzfUtWrQw+XoiIiKqW/XeYSK6w0Rcaw39+/cHABw7dsyk641Kgjp06IDY2FhER0fj5ZdfhoeHh1GVdehg2322RERETZkGTtCI6OQx5dp79+4hKSkJ2dnZyMnJQVlZGebMmYPIyEi9c1UqFT755BPs27cPZWVl8Pf3x4QJE9C7d2+TYxbD6Kf18vLCtm3bMHr0aOzcudPhltgmIiKyVRqhZtVo014aE/6kl5aWIjExEfn5+QgICKj33IULF2Lz5s0YPHgwpk6dCicnJ8ycORNnzpwx8YnFMXpg9JdffolNmzbhq6++wtKlS7Fz505MmzYNDz/8sCXiIyIiIhumUCiwbds2KBQKXLhwAXFxcbWel52djfT0dEyePBmjRo0CADz99NOIjY3F2rVrsXbtWu25r776Ks6ePVvrfcaOHWu2yUlGJ0FSqRTjxo1DVFQUPvroI3z33XdISEjAoEGDMHnyZHh5eZklMCIiIjKORuSYIFOulUqlUCgUDZ536NAhODs7Izo6Wlsmk8kQFRWF9evXo7CwED4+PgCANWvWGB2HKUzuOPTy8sIbb7yBDz/8EIGBgUhLS8OLL76I//73v6iqqjJnjERERGQAzR+7yIt5WUpeXh7atWsHd3d3nfLAwEAAwKVLl4y+Z1VVFSoqKqDRaKBWq1FRUQG1Wm3w9aKfNigoCGvXrsW8efPg7u6ODRs2YNy4cTh69KjYWxMREZEV5OfnIzc3V/sqKioSfc/i4uJaW4xqykyp44svvsDgwYOxe/dubNy4EYMHD8a+ffsMvt5se4cNHjwYISEh+O9//4vk5GTMmTMHTzzxBBISEtCuXTtzVUNERER10EAiasHDms1XFyxYoFMeGxtr9EKEf1VRUQFXV1e9cqlUqj1urPHjx4uKy6wbqMpkMowfPx7PPvss1q1bh/T0dJw8eRLDhw/HpEmTzFkVERER/YVGMG1cz5+vB4B58+bBz89PW27ImJ+GyGQyVFZW6pWrVCrt8cZmkc6/Fi1aYOTIkYiOjkZlZSWSk5MtUQ0RERFZgJ+fH7p27ap9mWPSk0KhQHFxsV55TZk1JlaJaglSq9W4evUqfvnlF/zyyy/4+eef8csvv+C3337TWT+IawkRERFZngBxg5sFC+6mFRAQgKysLJSXl+sMjs7OztYeb2xGJ0FffPGFNuH59ddftTPBahKdZs2aoWvXrvD390enTp20/0tERESWpYFEO67H1OsBYNWqVZDL5dqNw80hNDQUSUlJ2Llzp3adIJVKhZSUFAQFBWmnxzcmo5OgTz75BADg5OQEX19fnUTH398fbdu2NXuQRERE1HgSEhLQtWtXg8/fsmULlEqltmvryJEjuHnzJgAgJiYGcrkcQUFBCAsLw/r161FSUgJfX1+kpqaioKAAs2bNsshzNMToJGj27Nno1KkTOnbsaJVBTERERFQ7zR/bX4i53hTJyckoKCjQvs/IyEBGRgYAYMiQIZDL5QCAuXPnwsfHB3v37oVSqUSnTp2wePFiBAcHmxyzGEYnQbVtiEZERETWV71itIgNVE1MgjZv3mzQeTKZDPHx8YiPjzepHnMz2xT50tJSCIIAT09Pc92SiIiIjGCubTMsMSbIFolOgtLS0vDxxx9rm8GkUqlRqzUSERGRbTF2TFBTJWouXEZGBv7zn//g3r17GDJkCLp06aJd9AgAzp8/j3fffRf5+fmiAyUiIqL6CX/MDjP1JYiYWdYUiUqCNm7cCE9PTyQmJmLu3Ll48skndY537doVx44dQ2pqqqggiYiIqGE13WFiXo5EVBL0yy+/YMCAAWjVqlWtx11cXPDII4/g5MmTYqohIiIiMjtRY4KkUql247O6eHt74/z582KqsRlpaWlIS0uDUqm0dihERER6BIibHSZYcLFEWyQqCQoICMDp06frPUcmk6GsrExMNTaj5pchNzcXEydOtHY4REREOsw1O4wDow3w9NNP4+LFi9i2bVud5+Tn5+vsEUJERERkC0S1BEVGRiItLQ0rVqzAL7/8ArVarXP8p59+wg8//IAnnnhCVJBERETUMHPtHeYoRCVBTk5OWLx4MRYtWoQdO3ZAIqn+8N544w2UlpZqd4YdPXq0+EiJiIioXoLI7jDBwWaHiV4sUSqV4t///jeioqKwdetWnDx5Et9//z0AoF27dpg0aRIeeeQR0YESERFR4+DAaCP16tULvXr1AgAolUoIggAPDw9z3Z6IiIgaoBFM3/+r5nqAA6MNsn///lrL5XI5EyAiIqJGJohcKNHRusNEJUFLlizBlStXzBQKERERiaGByBWjHWxgtKgk6MEHH8S8efNw7969Os+pqKjAG2+8IaYaIiIiIrMTlQT95z//QVFREd59991ajxcXF2PKlCk4cuSImGqIiIjIAGI2TxU7vb4pEpUE+fn54V//+he+//57fPnllzrHLl++jEmTJuHSpUuYOnWqqCCJiIioYRwTZBzRs8MGDRqEc+fO4ZNPPkG3bt3w2GOP4dixY3j77bchkUiwaNEiLpZIRETUhHCKfC3Onz+PgIAAyGQynfJXX30VFy5cwNtvv41hw4Zh48aNePDBB7Fo0SI89NBDZg2YiIiIaqcRJAD3DjOYUUlQfHw8nJyc0KFDB3Tp0gWdO3dGly5d0KVLF7z99tuYMGECvvjiCwQFBeG9996Dp6enhcImIlsVGrnE2iHU6aOv11k7hHqllgdZO4R6Zd3tYO0Q6lRS4WbtEGyCIHKdIEEwYzBNgFFJ0Isvvoi8vDzk5eVh37592LdvHyQSCSQSCdq0aQO5XA5BEDBq1ChoNBpLxUxEREQkmlFJ0MSJE7X/XVxcrE2ILl68iLy8PPz2228AgDfffBMA0LJlSwQEBKBLly461xIREZH5aQQJJNw7zGAmD4xWKBRQKBTo06ePtkypVGoTo5rk6MSJEzh+/DiTICIiIgsTIG5MkOBgU+TNtncYUL1dRs+ePdGzZ09tWUVFBS5fvmzOaoiIiIhEM2sSVBuZTIagINse7EdERGQPBEhEtuY4VkuQUYslvvPOOzh06JDJlYm9noiIiOomat+wP15A9TpBs2fPRlpampWfyLKMaglKT09Hhw4dMGDAAJMqE3s9ERER1U0QIGpMEP6YIs91guqQl5eH1NRUS8RCRERE1GiMToK+//57kzZEFRxtBSYiIqJGJnbFaAgSOJsvHJtnVBI0e/Zs0RV27txZ9D2IiIioFiI3QRWzxlBTZFQSFBkZaak4iIiIiBqVxafIExERUePQQGRLkINNkWcSREREZCcEQeQmqA42fNeodYKIiIiI7AVbgoiIiOyEAAk0Irq0nNgdRkRERE1RdXeYmF3kzRhME8AkiIiIiHSsWrUKcrkc4eHhCA8Pt3Y4FsMkyAhpaWlIS0uDUqm0dihERER6/rz/l0n+uNZRts0QNTD6X//6FzIyMqBWq80Vj00LDw/HokWLkJCQYO1QiIiI9NTMDhPzciSiWoJ+/PFHHD9+HJ6enoiMjERUVBTatWtnrtiIiIjIKOLWCYKDDYwW1RK0adMmjBo1Ck5OTvjqq6/w4osvYvr06UhPT0dlZaW5YiQiIiIyO1EtQW3btsUrr7yCCRMmIDMzE99++y1++OEHnDp1Ch4eHnj66afx7LPPomPHjmYKl4iIiOoiiNw7TFwrUtNjloHRzs7O6N+/P/r374+ioiKkpKRgz549+Oabb/DNN9+ge/fuePbZZzFw4EDIZDJzVElERER/IXZgtKNtoGr2FaO9vLwwevRoxMXFQaFQQBAEnDt3DosXL8bw4cOxadMmaDQac1dLREREZBSzTpG/du0adu/ejb1796KkpASurq4YMmQIIiIicPHiRWzbtg0fffQR7ty5g/j4eHNWTURE5PDEzvDi7DAjVVRU4ODBg9i9ezfOnj0LQRDQoUMHjB49GpGRkfDw8AAA9OrVCzExMZgxYwb27t3LJIiIiMjcRK4Y7WgbqIpKgpYtW4a0tDSUl5fDxcUFAwcORHR0NIKDg2s9XyqV4vHHH8e5c+fEVEtEREQkmqgkaPv27Wjbti1efPFFREZGwtPTs8FrevbsiXHjxomploiIiGohiFwnSHCwdYJEJUFLly5Fr169jLrm4YcfxsMPPyymWiIiIqqFAHE9Wg7WGyZudpixCRARERGRrRDVErRo0aIGz5FIJHB3d0f79u3Rt29feHt7i6mSiIiI6sDFEo0jKgnas2cPJJLqD0yoZV6dRCLRKV+xYgXGjRvHMUFERESWYKb+sFWrVkEulyM8PBzh4eHmiMwmiUqCNm3ahFWrViEnJwfDhw/Hww8/jFatWuH27ds4e/YstmzZgsDAQIwdOxaXL1/GF198gc8++wzt2rXDoEGDzPUMREREBPO1BCUkJKBr167mCstmiUqC9u/fj5ycHHz66ado1aqVtrx9+/bo0aMHIiMj8fLLLyMrKwujR4/GE088gf/3//4ftm/fziSIiIiIrErUwOhvv/0WYWFhOgnQnykUCoSGhmLXrl0AAG9vbzz55JO4fPmymGqJiIioNsL/Vo025eVo08NEtQTdunULrq6u9Z4jlUpx69Yt7XsfHx+oVCox1RIREVEtuE6QcUQlQd7e3jh8+DBefvnlWneHr6iowOHDh3VmhN25cwdyuVxMtUQO7cnR/2ftEOr1xYbl1g6hTinKIGuHUK+f7vpZO4R63VU1s3YIdbqvNutWmOQgRHWHRUVF4caNG5gyZQq+//57lJaWAgBKS0vx/fffY8qUKfjtt9/wzDPPaK85c+YMAgICxEVNRERE+gQAgkTEy9oP0LhEpc6jRo1Cfn4+9u3bh3nz5gHQnRYvCALCw8MxZswYAMDt27fx5JNP4oknnhAZNhEREf0Vd5E3jqgkyNnZGW+88QYiIiKwb98+XL58GeXl5XB3d0dAQAAGDx6ss6p0q1atkJCQIDpoIiIiIrHM0onaq1cvbqFBRERkbdw8zCiixgSFhobinXfeMVcsREREJELNYoliXo5EVBLUvHlzPPjgg+aKhYiIiKjRiOoOCwwM5MKHREREtsTBurTEENUS9NJLL+Gnn35CamqqueIhIiIiE7E7zDiiWoJOnDiB4OBgLFq0CFu3bkW3bt3QsmVL7c7yNSQSCXeOJyIisjQOjDaKqCTos88+0/53bm4ucnNzaz2PSRARERHZGlFJ0IoVK8wVBxEREYkm+eMl5vqmQaVSYenSpThx4gSUSiU6duyIKVOm4G9/+5vB9xCVBAUHB4u5nIiIiMzJgbrD1Go1WrdujTVr1sDb2xsHDhzAnDlzkJycjObNmxt0D1EDo4mIiIiswc3NDbGxsfDx8YGTkxMGDRoEFxcXXLt2zeB7iF4xuqqqClu3bkVaWhquXr2KiooKHDhwAACQl5eHXbt2YcSIEWjfvr3YqoiIiKg+VmgJunfvHpKSkpCdnY2cnByUlZVhzpw5iIyM1DtXpVLhk08+wb59+1BWVgZ/f39MmDABvXv3FhF0tWvXrqGsrAy+vr4GXyOqJaiiogLTp0/Hhx9+iMLCQri7u2s3TwWANm3aICUlhVPoiYiIGoOoHeT/eBmptLQUiYmJyM/PR0BAQL3nLly4EJs3b8bgwYMxdepUODk5YebMmThz5oypTwygOh9ZsGABxowZA7lcbvB1opKgjRs34uzZs4iLi8P27dsRFRWlc1wulyM4OBjHjx8XUw0RERHZKIVCgW3btuHrr7/G5MmT6zwvOzsb6enpiIuLQ3x8PKKjo7F8+XK0bt0aa9eu1Tn31VdfRUhISK2vDRs26JxbVVWFf//73/D19UVsbKxRsYvqDtu/fz969uyJ0aNHA4De+kAA0LZtW+Tl5YmphoiIiAwkNPLgZqlUCoVC0eB5hw4dgrOzM6Kjo7VlMpkMUVFRWL9+PQoLC+Hj4wMAWLNmjUF1azQaLFiwABKJBHPnzq01D6mPqJagmzdvomvXrvWe4+bmhvLycjHVEBERkSEEM7wsJC8vD+3atYO7u7tOeWBgIADg0qVLRt/zgw8+QHFxMd5++224uBjfriOqJcjNzQ0lJSX1nnPjxg20aNFCTDVERERkCAEmjevRuR5Afn6+TrFCoYCXl5fp9wVQXFxca4tRTVlRUZFR9ysoKMDu3bshlUp1WpeWLFmCHj16GHQPUUlQ9+7dkZmZibKyMnh4eOgdLywsxLFjx9C/f38x1RAREVEjWrBggc772NhYjB8/XtQ9Kyoq4OrqqlculUq1x43RunVrZGRkiIpJVBL0wgsvYPr06Xjttdcwbdo0qNVqAMD9+/dx/vx5LF++HGq1GiNHjhQVJBERERlAACRmmCI/b948+Pn5aYsNGfPTEJlMhsrKSr1ylUqlPd7YRK8YPX36dKxcuRIJCQna8oiICACAk5MTZsyY0eC4ISIiIjIDM60T5OfnZ/a/3QqFArdu3dIrLy4uBgDR3W2mEL1Y4tChQxEcHIwdO3YgJycHd+/ehbu7OwIDAzFs2DA89NBD5oiTiIiImrCAgABkZWWhvLxcZ3B0dna29nhjE50EAUDHjh0xbdo0c9yKiIiITGbagoc61wNYtWoV5HI5wsPDER4ebpbIQkNDkZSUhJ07d2LUqFEAqrvCUlJSEBQUpJ0e35jMkgQRERGRDTBTd1hCQoJR3WFbtmyBUqnUdm0dOXIEN2/eBADExMRALpcjKCgIYWFhWL9+PUpKSuDr64vU1FQUFBRg1qxZIoI2HZMgIiIiEiU5ORkFBQXa9xkZGdqZW0OGDNFuZTF37lz4+Phg7969UCqV6NSpExYvXozg4GBrhC0+CaqsrMThw4dx4cIFKJVKaDSaWs+bPXu22KqIiIioPlbYQBUANm/ebNB5MpkM8fHxiI+PN60iMxOVBBUUFGDGjBm4ceOGzsapfyWRSGwuCXr//fdx5MgR3L9/Hz4+PoiLi0O/fv2sHRYREZHpzJQEWWJMkC0SlQStWrUKv/76K4YMGYKoqCh4e3vD2dnZXLFZ1PPPP49p06ZBKpUiJycHM2bMQFJSEle3JiIih2fsmKCmSlQSlJWVhV69euGNN94wVzyN5s+LQEkkElRWVqKoqIhJEBERNV2CyNlhomaWNT2ikiCNRoPOnTubK5Y63bt3D0lJScjOzkZOTg7KysowZ84cREZG6p2rUqnwySefYN++fSgrK4O/vz8mTJiA3r176527dOlSpKSkQKVSoU+fPujUqZPFn4WIiMhSJBC3YrRjpUAid5EPCgrS22TNEkpLS5GYmIj8/PwGF1NauHAhNm/ejMGDB2Pq1KlwcnLCzJkzcebMGb1zZ8yYgb1792LZsmXo3bs3JBJH+/ETEZFdseFd5G2RqCTolVdewU8//YSDBw+aKZzaKRQKbNu2DV9//TUmT55c53nZ2dlIT09HXFwc4uPjER0djeXLl6N169ZYu3Ztrdc4OzujV69eOHnyJI4ePWqpRyAiImoyVq1ahdmzZyMtLc3aoViUqO6wo0ePomfPnpg/fz569OiBLl266CyFXUMikWDcuHEm1yOVSg3avO3QoUNwdnZGdHS0tkwmkyEqKgrr169HYWFhnStSqtVq/PrrrybHSEREZC84MNoAn332mfa/T506hVOnTtV6ntgkyFB5eXlo166dXiIWGBgIALh06RJ8fHygVCpx9OhR9OvXD1KpFIcPH0ZWVhbi4uIsHiMREZGlSETuIi9qB/omSFQStGLFCnPFYRbFxcW1thjVlBUVFQGoTsp2796NZcuWQRAE+Pr64s0336xzkHdRUZF2KXAAjTIOioiIiCxLVBJkrWWu61JRUQFXV1e9cqlUqj0OAO7u7kYlcDt37kRiYqJZYiTb9+jkZdYOoV5bl3xg7RDqlVLezdoh1Om80tfaIdTrXpXU2iHUS2PD06edHK0Joy6cIm8Uu9o7TCaTobKyUq9cpVJpj5siOjpaZzXp/Px8LFiwwLQgiYiILMVK22Y0VaKToKqqKmzduhVpaWm4evUqKioqcODAAQDVY3R27dqFESNGoH379qKDbYhCocCtW7f0ymu6sry8vEy6r5eXl8nXEhERNTXcNsMAFRUVeP3113Hu3Dm0aNEC7u7uuH//vvZ4mzZtkJKSAg8PD0ycOFF0sA0JCAhAVlYWysvLdQZHZ2dna48TERHZNTO05jjK7DBR6wRt3LgRZ8+eRVxcHLZv346oqCid43K5HMHBwTh+/LioIA0VGhoKtVqNnTt3astUKhVSUlIQFBRU5/R4IiIie1AzO0zMy5GIagnav38/evbsidGjRwNArSsut23bFnl5eWKqAQBs2bIFSqVS27V15MgR3Lx5EwAQExMDuVyOoKAghIWFYf369SgpKYGvry9SU1NRUFCAWbNmiY6BiIiI7IeoJOjmzZvo379/vee4ubmhvLxcTDUAgOTkZBQUFGjfZ2RkICMjAwAwZMgQyOVyAMDcuXPh4+ODvXv3QqlUolOnTli8eLHNzWQjIiIyOw6MNoqoJMjNzQ0lJSX1nnPjxg2z7My+efNmg86TyWSIj49HfHy86DqJiIiaFCZBRhGVBHXv3h2ZmZkoKyuDh4eH3vHCwkIcO3aswdaipiItLQ1paWlQKpXWDoWIiEiPuVaM5uwwA7zwwguYPn06XnvtNUybNg1qtRoAcP/+fZw/fx7Lly+HWq3GyJEjzRKstdX8MuTm5jbKbDciIiJrcJTZYaJXjJ4+fTpWrlyJhIQEbXlERAQAwMnJCTNmzHCID5KIiMj6RK4YDa4YbZShQ4ciODgYO3bsQE5ODu7evQt3d3cEBgZi2LBheOihh8wRJxERETWEY4KMYpZtMzp27Ihp06aZ41ZEREREjcKu9g4jIiJyaGIXPGRLEBERETVJ7A4ziqhtM4iIiIiaKrYEERER2QmuE2QcJkFERET2hLvIG4xJkBG4YjQREZH9YBJkBK4YTURENo0Do41iVBK0aNEikyuaPXu2ydcSERFRw8w1JshRGJUE7dmzp9ZyiUQCQdD/5GrKJRIJkyAiIiKyKUYlQcnJyTrvNRoNVq5ciezsbAwfPhyPPPIIWrVqhdu3b+P06dPYsmULunfvrrOvGBEREZEtMCoJat26tc77L7/8Ejk5Ofj000/h5eWlLe/QoQOCg4PxzDPP4OWXX8bBgwcxevRo80RMREREteOYIKOIWizx22+/RVhYmE4C9Gfe3t4ICwvDrl27xFRDREREBqgZEyTm5UhEJUG3bt2CVCqt9xypVIpbt26JqYaIiIjI7EQlQd7e3jh8+DAqKipqPX7//n0cPnwY3t7eYqohIiIiQwkiXg5GVBL07LPP4saNG3j11Vdx+PBhlJaWAgBKS0tx+PBhvPrqqygoKMBzzz1nlmCJiIioHmISoD8lQqtWrcLs2bORlpbWuPE3MlGLJY4aNQrXrl3Dnj178OabbwLQnS4vCAIiIyMxatQo8ZHaAK4YTUREjoDbZhjAyckJs2fPRkREBFJTU3H58mUolUrI5XL4+/vj6aefRs+ePc0Vq9VxxWgiIrJlXCzROGbZNiM4OBjBwcHmuBURERGZilPkjSJqTBARERFRUyW6Jaiqqgpbt25FWloarl69ioqKChw4cAAAkJeXh127dmHEiBFo37696GCJiIioHmLX+nGwliBRSVBFRQVef/11nDt3Di1atIC7uzvu37+vPd6mTRukpKTAw8ODY2iIiIgag4MlMmKI6g7buHEjzp49i7i4OGzfvh1RUVE6x+VyOYKDg3H8+HFRQRIREZEBzDRF3lGISoL279+Pnj17YvTo0ZBIJJBIJHrntG3bFoWFhWKqISIiIjI7UUnQzZs3G1xHwM3NDeXl5WKqISIiIgNw7zDjiBoT5ObmhpKSknrPuXHjBlq0aCGmGrJD3ecss3YIdUqf9761Q6jXDmUXa4dQr5zyttYOoU6/q12tHUK9XJzU1g6hXp6yKmuHUCepk+3G1qg4Rd4oolqCunfvjszMTJSVldV6vLCwEMeOHUOPHj3EVENERERkdqKSoBdeeAFlZWV47bXXcPbsWajV1f+KuX//Pk6ePIl//vOfUKvVGDlypFmCJSIionpwYLRRRHWHBQcHY/r06Vi5ciUSEhK05REREQCqt9WYMWOGQ+w/QkREZG0SiNw2w2yRNA2iF0scOnQogoODsWPHDuTk5ODu3btwd3dHYGAghg0bhoceesgccdoEbqBKRERkP8yyd1jHjh0xbdo0c9zKpnEDVSIismlmGhi9atUqyOVy7d89eyUqCQoNDcXAgQPx73//21zxEBERkYnMtYt8QkKCQwxlETUwunnz5njwwQfNFQsRERFRoxHVEhQYGIjLly+bKxYiIiISg+sEGUVUS9BLL72En376CampqeaKh4iIiEzFKfJGEdUSdOLECQQHB2PRokXYunUrunXrhpYtW+rtISaRSDBu3DhRgRIREVH9JBA3zZ1T5I3w2Wefaf87NzcXubm5tZ7HJIiIiIhsjagkaMWKFeaKg4iIiMzBwbq0xBC9YjQRERHZCLE7wTtYAiVqYDQRERFRU2WWFaOJiIjIBnCKvFFEJUGJiYkGnceB0URERI2ASZBRzDY7rDYSiQSCIDAJIiIiIptjkdlhSqUSFy9exJYtW/DYY49h2LBhYqqxGdxFnoiIbJm59g5zFBabHfbUU09h8ODBmDBhAkJCQsRUYzO4izwREdk0docZxaKzw9q3b4+QkBB89dVXlqyGiIiIyGgWnx3m6emJq1evWroaIiIihyeByO4ws0XSON5//30cOXIE9+/fh4+PD+Li4tCvXz+Dr7doEqRSqfDjjz9CLpdbshoiIiICHK477Pnnn8e0adMglUqRk5ODGTNmICkpCS1atDDoelFJUF27x6vVahQVFSE9PR1Xr15FTEyMmGqIiIjIAI42MNrPz0/73xKJBJWVlSgqKmqcJGjhwoV6O8YDgCAI2oAGDRqEV155RUw1REREZKPu3buHpKQkZGdnIycnB2VlZZgzZw4iIyP1zlWpVPjkk0+wb98+lJWVwd/fHxMmTEDv3r1Nrn/p0qVISUmBSqVCnz590KlTJ4OvFZUEzZ49u9ZyJycneHh4oEuXLvDy8hJTBRERERnKCt1hpaWlSExMhI+PDwICApCVlVXnuQsXLsTBgwcxYsQItGvXDnv27MHMmTOxYsUKPPLIIyaFPGPGDEybNg2nTp3Czz//XGvjTF1EJUG1ZXlERERkJVZIghQKBbZt2waFQoELFy4gLi6u1vOys7ORnp6OyZMnY9SoUQCAp59+GrGxsVi7di3Wrl2rPffVV1/F2bNna73P2LFj9ZapcXZ2Rq9evfD111+jXbt2ePLJJw2K3SIDowVBwPXr1yGVSuHj42OJKoiIiMgGSKVSKBSKBs87dOgQnJ2dER0drS2TyWSIiorC+vXrUVhYqM0Z1qxZY1IsarUav/76q8Hni1on6NChQ3j33XdRVlamLfvtt98QGxuLsWPHYuTIkZg/fz7UarWYaoiIiMgANVPkTX5ZMLa8vDy0a9cO7u7uOuWBgYEAgEuXLhl1P6VSie+++w737t1DVVUVDhw4gKysLPTo0cPge4hqCdqxYwdu374NDw8Pbdnq1atx5coVPProo7h79y4OHjyIXr164bnnnhNTFRERETXETN1h+fn5OsUKhUL0GN/i4uJaW4xqyoqKioy6n0Qiwe7du7Fs2TIIggBfX1+8+eab6Ny5s8H3EJUEXblyBU888YT2/b1793D06FEMHDgQb731FqqqqvDyyy8jJSWFSRAREVETsWDBAp33sbGxGD9+vKh7VlRUwNXVVa9cKpVqjxvD3d29zj1MDSUqCbp79y5atWqlfX/mzBmo1WoMGjSo+uYuLnjsscfw3XffiQqSiIiIDCAIkAgimoL+uHbevHk6a/AYMuanITKZDJWVlXrlKpVKe7yxiUqC3N3dcffuXe37rKwsODk56fTHubi44P79+2KqISIiIkOYqTvMz88PXbt2NUdEWgqFArdu3dIrLy4uBgCrLKkjamB0hw4dkJmZidLSUpSVlSEtLQ1dunTRGSNUUFCAli1big6UiIiImq6AgABcv34d5eXlOuXZ2dna441NVBIUExODoqIixMTEYMSIESguLsbQoUN1zsnOzrbKgxERETkaUTPD/rTlxqpVqzB79mykpaWZLbbQ0FCo1Wrs3LlTW6ZSqZCSkoKgoCCrLKkjqjssNDQUr732Gr799lsAwMCBA3UWUDx16hTKy8vx+OOPi4uSiIiIDGOG/b8SEhKM6g7bsmULlEqltmvryJEjuHnzJoDqBhO5XI6goCCEhYVh/fr1KCkpga+vL1JTU1FQUIBZs2aJD9oEohdLHDp0qF7rT43g4GCkpKSIrcJmpKWlIS0tDUql0tqhEBER6ZGIHBNk6gaqycnJKCgo0L7PyMhARkYGAGDIkCGQy+UAgLlz58LHxwd79+6FUqlEp06dsHjxYgQHB5setAgWWTHaXoWHhyM8PBy5ubl6S3bbGv8Pllo7hHplJSy3dgh12lRm+BoT1nDh9zbWDqFeSrXU2iHUqUoQNQLA4qo0ztYOoV62/PkphcafWUT/s3nzZoPOk8lkiI+PR3x8vIUjMozZkiC1Wo3S0tJap78B4PYZRERElmam2WGrVq2CXC7X/uPfXolOgnJzc7F+/XqcPn0aVVVVtZ4jkUhw4MABsVURERFRPczVHWbsmKCmSlQSlJeXhylTpsDZ2Rm9e/dGZmYmAgIC0KpVK1y8eBElJSUIDg5G69atzRUvERERkVmISoI+//xzAMC6devQsWNHDBgwAP3790dsbCwqKiqwZs0aHDx4ELNnzzZLsERERFQPM3WHOQpRo9zOnj2Lfv36oWPHjtoy4Y8lt2UyGaZPnw4vLy9s2LBBVJBERETUMFveRd4WiWoJKi8vR9u2bf93MxcX/P7779r3Tk5OCA4ORnp6uphqiIiIqBFxYLQBPD09UVZWpn3fqlUrXL9+XecclUrFvcOIiIgagyBoN0E1+Xo4zsBoUd1hHTt2xNWrV7XvH374YRw/fhznzp0DAFy5cgUHDhzQ2YmWiIiILETslhkONiZIVEvQk08+idWrV6OoqAheXl4YPXo0MjIyMGXKFHh4eECpVEKj0eDFF180V7xEREREZiEqCfr73/+OsLAw7a7xAQEBWLZsGTZu3IgbN26ga9euiImJwZNPPmmWYImIiKgenB1mFFFJkIuLC1q1aqVT9vDDD2PJkiWigiIiIiLjSQQAGhE3YBJERERETRK3zTCK6CSoqqoKW7duRVpaGq5evYqKigrtFhl5eXnYtWsXRowYgfbt24sOloiIiCzPUWaHiUqCKioq8Prrr+PcuXNo0aIF3N3ddabDt2nTBikpKfDw8LD5XdeJiIiaOtEzvBysO0zUFPmNGzfi7NmziIuLw/bt2xEVFaVzXC6XIzg4GMePHxcVJBERERmgZp0gMS8HIioJ2r9/P3r27InRo0dDIpFAItFfcLtt27YoLCwUUw0RERGR2YlKgm7evNlgn6GbmxvKy8vFVENEREQGELVvWM2CiQ5E1JggNzc3lJSU1HvOjRs30KJFCzHVEBERkaHMkMhwdpgBunfvjszMTJSVlWkXTPyzwsJCHDt2DP379xdTDRERETUiR5kdJqo77IUXXkBZWRlee+01nD17Fmq1GgBw//59nDx5Ev/85z+hVqsxcuRIswRLREREdWN3mHFEtQQFBwdj+vTpWLlyJRISErTlERERAAAnJyfMmDHDIbJJIiIiqzPTLvKOQvRiiUOHDkVwcDB27NiBnJwc3L17F+7u7ggMDMSwYcPw0EMPmSNOm5CWloa0tDQolUprh0JEREQimWXbjI4dO2LatGnmuJVNqxkglpuby8UfiYjI5nCxRONw7zAiIiJ7wSTIKEYnQaYMcpZIJEhKSjL6OiIiIjKOmMHNDpYDGZ8EFRQUwMnJCc7OzpaIh4iIiKhRmNwd1rNnTzzzzDPo378/XFzYq0ZERGR1GohrCtJU/w8XS6zDF198gd27d+O7777D22+/DQ8PDwwZMgTPPPMM/P39LREjERERGcJMY4IcZbFEo5MgPz8/vPrqq5g0aRIyMzPx7bffYtu2bdiyZQs6d+6MqKgohIeHQy6XWyJeIiIiIrMwuR/L2dkZ/fv3R//+/XH79m3s2bMHe/bswbJly/Dhhx+if//+iIuLg4+PjznjJSIiojqIXvVZcKzB0aK2zajRqlUrjBkzBl9++SWWLl0KDw8PpKenIy8vzxy3JyIiIoMI/1s12pSXQ6VAZlwnKCcnBykpKUhPT0d5eTm8vLzg7e1trtsTERERmZWoJKikpAT79u1DSkoKrly5AmdnZ/Tt2xdRUVF4/PHH4eRkloYmIiIiMgC7w4xjdBKk0Whw7NgxfPvttzh27Biqqqrw0EMPIT4+HkOGDIGnp6cFwiQiIqIGccVooxidBMXExODOnTtwd3dHVFQUnnnmGXTr1s0SsRERERFZjNFJ0O3bt+Hi4oKAgAD89ttv+OSTTxq8RiKRYMmSJSYFSERERIaRCAIkgph9MxyrKcikMUFVVVU4deqUwedLJBJTqrF5z36biMofWlg7jFpdevFja4dQr6W3u1s7hDpdu9/K2iHU68Z92/ydq6GslFo7hDqV23BsAFCltu3tiCo1HOdp8wRoV302+Xpwxeg6JScnWyIOIiIiEkkiCJCIGdjzR0sQV4yuQ+vWrS0RBxEREVGj4s6nRERE9kLskB7HGhLEJIiIiMhuiF312cEGRnOUGxERETkktgQRERHZCwEQMx/bwRqCmAQRERHZFUfLZERgdxgRERE5JLYEERER2QmJRlx3mARwqOYRJkFERET2QuzsMAebI+9A+R4RERHR/7AliIiIyF44VkOOaEyCiIiI7ITYvcNE7TvWBDEJIiIishuCuCnyEiZBRERE5MBWrVoFuVyO8PBwhIeHWzsci2ESREREZC80EDcu6I/59QkJCejatas5IrJpTIKIiIjshEQQIBHRHcYxQVSntLQ0pKWlQalUWjsUIiIiEolJkBFq+kZzc3MxceJEa4dDRESkSwD3DjMCkyAiIiK7wdlhxuCK0UREROSQ2BJERERkLzR/vMggTIKIiIjshOjZYQ42nojdYUREROSQ2BJERERkLwSRA6MdrCWISRAREZHdEJkEcbFEIiIiapLErhPkWDkQxwQRERGRY2JLEBERkb0QO0VeYq5AmgYmQURERPZC5BR5RxsYze4wIiIickhMgoiIiOyG8L9p8qa8mujI6HPnzmHAgAH4/PPPjbqO3WFERET2QiNUv8Rc38RoNBqsXr0a3bp1M/paJkFERETUZO3atQuBgYEoLy83+lp2hxEREdkLMV1hJq42fe/ePXz66af45z//iaioKISEhGDPnj21nqtSqbB27VoMGzYM4eHheOWVV3D8+HGTH7e0tBRff/01xo8fb9L1TIKIiIjsRc1iiSa/jK+ytLQUiYmJyM/PR0BAQL3nLly4EJs3b8bgwYMxdepUODk5YebMmThz5oxJj7thwwaMGDECHh4eJl3P7jARdvXZgS6dqqwdRq1eujrA2iHU63p5C2uHUKerRa2sHUK9Kn93tXYI9RIqbXehEUmVjf+7T8z6Lo1BY7s/W0ia3lgWe6FQKLBt2zYoFApcuHABcXFxtZ6XnZ2N9PR0TJ48GaNGjQIAPP3004iNjcXatWuxdu1a7bmvvvoqzp49W+t9xo4di4kTJ+LixYu4cOECXnvtNZNjZxJERERkNxp/7zCpVAqFQtHgeYcOHYKzszOio6O1ZTKZDFFRUVi/fj0KCwvh4+MDAFizZk2D9zt16hSuXbuGmJgYAIBSqYSzszNu3LiBOXPmGBQ7kyAiIiJ7YabZYfn5+TrFCoUCXl5eYiJDXl4e2rVrB3d3d53ywMBAAMClS5e0SZAhoqOjMWjQIO37lStXok2bNhgzZozB92ASREREZC8ETfVLzPUAFixYoFMcGxtr8uDjGsXFxbW2GNWUFRUVGXW/Zs2aoVmzZtr3MpkMbm5uRo0PYhJEREREOubNmwc/Pz/te0O6uxpSUVEBV1f9MY1SqVR7XIy5c+cafQ2TICIiIntRMztMzPUA/Pz80LVrV7OEVEMmk6GyslKvXKVSaY83NiZBRERE9kIQOSbIghuoKhQK3Lp1S6+8uLgYAESPOTIFkyAiIiLSsWrVKsjlcoSHhyM8PNws9wwICEBWVhbKy8t1BkdnZ2drjzc2G180g4iIiAxmphWjExISsGjRIrMlQAAQGhoKtVqNnTt3astUKhVSUlIQFBRk1Mwwc2FLEBERkb0wcesLnetNsGXLFiiVSm3X1pEjR3Dz5k0AQExMDORyOYKCghAWFob169ejpKQEvr6+SE1NRUFBAWbNmmV6zCIwCSIiIiJRkpOTUVBQoH2fkZGBjIwMAMCQIUMgl8sBVM/g8vHxwd69e6FUKtGpUycsXrwYwcHB1gibSRAREZHdMFNLkLFjgjZv3mzQ7WUyGeLj4xEfH296jGbEJIiIiMheCAKgEbNY4v/GBJl7irwt4sBoIiIickhsCSIiIrIXVhoY3VQxCSIiIrIXTIKMwiSIiIjIXphpxWhLLJZoi5gEERERkQ5HGRjNJIiIiMheCAIEQfzsMEfBJIiIiMheaER2h4m5tgniFHkiIiJySGwJIiIishecHWYUJkFERET2QtCIXDG6+lrODiMiIiKHxNlhRERE1LQIENkdZrZImgQmQURERHZC0GggiOgOE3NtU8TZYUREROSQ2BJERERkLzg7zCgOmQSpVCosXboUJ06cgFKpRMeOHTFlyhT87W9/s3ZoREREpjPT3mGOwiGTILVajdatW2PNmjXw9vbGgQMHMGfOHCQnJ6N58+bWDo+IiMg0gqCd5m7y9eAUebvm5uaG2NhY7ftBgwZh9erVuHbtmkNMCSQiIqoPp8jbkHv37iEpKQnZ2dnIyclBWVkZ5syZg8jISL1zVSoVPvnkE+zbtw9lZWXw9/fHhAkT0Lt37zrvf+3aNZSVlcHX19eSj0FERGRRgkaAIKI7TMy1TVGTmB1WWlqKxMRE5OfnIyAgoN5zFy5ciM2bN2Pw4MGYOnUqnJycMHPmTJw5c6bW8ysqKrBgwQKMGTMGcrncEuETERE1Ek11d5ipL3CKvM1RKBTYtm0bvv76a0yePLnO87Kzs5Geno64uDjEx8cjOjoay5cvR+vWrbF27Vq986uqqvDvf/8bvr6+Ot1jREREZP+aRBIklUqhUCgaPO/QoUNwdnZGdHS0tkwmkyEqKgrnz59HYWGhtlyj0WDBggWQSCSYO3cuJBKJRWInIiJqLNUNOoKIl7WfoHE1iTFBhsrLy0O7du3g7u6uUx4YGAgAuHTpEnx8fAAAH3zwAYqLi/HBBx/AxcWuPgYiInJU2m4tEdc7ELv6619cXFxri1FNWVFREQCgoKAAu3fvhlQq1Wk1WrJkCXr06KF3fVFREYqLi7XvL126BADI/9XZrPGbU0XBfWuHUC/hd9v91XMpsd3YAAAVNh5flQ23qqptODbA9odjaGz485PY9oDe3Nxc+Pn5oVmzZhatR2heJerXSGheZbZYmgIb/39T41RUVMDV1VWvXCqVao8DQOvWrZGRkWHwfXfu3InExES98ndXtTQt0EZxzdoBNFne1g6AiOzOxH0ZeP/99/HEE09Y5P6enp5o1qwZ7ne9K/pezZo1g6enp/igmgC7SoJkMhkqKyv1ylUqlfa4KaKjo9GvXz/t+5ycHCxduhSzZs1qcLaavVi1ahUSEhKsHQaAxonFnHWIvZcp1xtzjTnPzc/Px4IFCzBv3jz4+fkZdM+mjN8L693L0t8LY8439Hvh5uZmcN3G8vHxwcaNG1FSUiL6Xp6entqhI/bOrpIghUKBW7du6ZXXdGV5eXmZdF8vL69arw0ICHCIxaQAQC6X28yzNkYs5qxD7L1Mud6Yayxxrp+fn838vlgSvxfWu5elvxfGnG/oeab+Q9xQPj4+DpO8mEuTmB1mqICAAFy/fh3l5eU65dnZ2drjZBpbWja9MWIxZx1i72XK9cZcY6lzHYEtfR78Xpj/GkPPt6XfAzKOXSVBoaGhUKvV2Llzp7ZMpVIhJSUFQUFBzJBFsKUvOf/P3rzXMAkynS19HvxemP8aJkH2r8l0h23ZsgVKpVLbtXXkyBHcvHkTABATEwO5XI6goCCEhYVh/fr1KCkpga+vL1JTU1FQUIBZs2aZLRaFQoHY2FiD1i4iciT8bhDp4/fCdkkEQbDteYV/eP7551FQUFDrseTkZLRp0wZA9Qywmr3DlEolOnXqhAkTJuDxxx9vzHCJiIjIxjWZJIiIiIjInOxqTBARERGRoZgEWYhKpcKiRYswfPhwREREYNKkSTh37py1wyKyuvfffx9Dhw5FREQExo0bhyNHjlg7JCKbce7cOQwYMACff/65tUNxCOwOs5Dff/8dycnJiIyMhLe3Nw4cOIDly5cjOTkZzZs3t3Z4RFaTn5+PNm3aQCqVIicnBzNmzEBSUhJatGhh7dCIrEqj0SA+Ph6CIKBv374YN26ctUOye2wJshA3NzfExsbCx8cHTk5OGDRoEFxcXHDtGrezIMfm5+en3cpGIpGgsrJSu68fkSPbtWsXAgMDHWK1dVvRZKbIW9q9e/eQlJSE7Oxs5OTkoKysDHPmzEFkZKTeuSqVSjsDraysDP7+/pgwYQJ69+5d5/2vXbuGsrIy+Pr6WvIxiMzKUt+LpUuXIiUlBSqVCn369EGnTp0a43GIzMIS34vS0lJ8/fXXWLt2LVatWtVYj+Lw2BL0h9LSUiQmJiI/P7/BlaUXLlyIzZs3Y/DgwZg6dSqcnJwwc+ZMnDlzptbzKyoqsGDBAowZMwZyudwS4RNZhKW+FzNmzMDevXuxbNky9O7dGxKJDe9OTvQXlvhebNiwASNGjICHh4clQ6e/EkgQBEGoqKgQioqKBEEQhJycHKF///5CSkqK3nnnz58X+vfvL3z11Vfasvv37wsvvPCCMGnSJL3zKysrhZkzZwpvv/22oNFoLPcARBZgqe/Fn82aNUvIzMw0b+BEFmTu70Vubq7w8ssvC1VVVYIgCMK7774rJCYmWvgpSBAEgS1Bf5BKpQat5nno0CE4OzsjOjpaWyaTyRAVFYXz58+jsLBQW67RaLBgwQJIJBLMnTuX/9qlJscS34u/UqvV+PXXX80SL1FjMPf34tSpU7h27RpiYmIwdOhQ7N+/H1999RUWLlxosWegahwTZKS8vDy0a9cO7u7uOuWBgYEAgEuXLmn3KPvggw9QXFyMDz74AC4u/KjJfhn6vVAqlTh69Cj69esHqVSKw4cPIysrC3FxcdYIm8iiDP1eREdHY9CgQdrjK1euRJs2bTBmzJhGjdcR8S+zkYqLi2v9F0BNWc0sl4KCAuzevRtSqVTnXwFLlixBjx49GidYokZi6PdCIpFg9+7dWLZsGQRBgK+vL95880107ty5UeMlagyGfi+aNWuGZs2aaY/LZDK4ublxfFAjYBJkpIqKCri6uuqV10z5raioAAC0bt0aGRkZjRobkbUY+r1wd3fHihUrGjU2Imsx9HvxV3PnzrVoXPQ/HBNkJJlMhsrKSr1ylUqlPU7kaPi9INLH74XtYxJkJIVCgeLiYr3ymjIvL6/GDonI6vi9INLH74XtYxJkpICAAFy/fh3l5eU65dnZ2drjRI6G3wsiffxe2D4mQUYKDQ2FWq3Gzp07tWUqlQopKSkICgrSzgwjciT8XhDp4/fC9nFg9J9s2bIFSqVS21R55MgR3Lx5EwAQExMDuVyOoKAghIWFYf369SgpKYGvry9SU1NRUFCAWbNmWTN8Iovg94JIH78X9oG7yP/J888/j4KCglqPJScno02bNgCqR/TX7AWjVCrRqVMnTJgwAY8//nhjhkvUKPi9INLH74V9YBJEREREDoljgoiIiMghMQkiIiIih8QkiIiIiBwSkyAiIiJySEyCiIiIyCExCSIiIiKHxCSIiIiIHBKTICIiInJITIKIiIjIITEJIiIiIofEJIiIiIgcEpMgogb89ttvCAkJwXvvvWfRa8j27dmzByEhIdrX/Pnz9c7ZsGEDQkJCcPbs2cYP8C/y8/N14n3++eetHRKRTWESRE1OTYLxz3/+09qh2JSsrCyEhITg008/tXYodu+pp55CbGwsQkND9Y5dvHgRTk5O6Ny5s1nrTElJQUhICD7//PN6z6uoqMDzzz+PsLAw3LlzB7GxsYiNjYVcLjdrPET2wMXaARDZOm9vb2zcuBHu7u7WDoVsRP/+/REZGVnrsby8PLRv3x7NmjUza52dOnUCAPz888/1npeUlISCggIMHToUwcHBCA4OBgCkpqaaNR4ie8AkiKgBLi4u8PPzs3YY1AQUFRXh9u3b6NWrl9nv/dBDD8HJyQm//PJLvfV/9dVXeOCBBzBhwgSzx0Bkb5gEkV3IysrCtGnTEBsbi759+2L9+vU4f/48nJyc8Oijj2LKlClo06ZNrdeeOnUKmzdvxvnz56FUKuHp6Ylu3bph5MiReOSRR/Dbb79h5MiRiIiIwNy5c3WuVavVSEpKwu7du3Hr1i14e3sjKioKAwcOrDPWU6dOISkpCefPn8e9e/fw4IMPYuDAgRg7dqxO64Exz/Tpp58iMTERAJCYmKj9bwBITk6u89ktHZc56ujduzc+++wzXLhwAUqlEhkZGQCAqqoq7WdfVFSk89m/8MIL2p/XiRMnMGPGDAwdOhQzZszQi+nXX3/F6NGj8dhjj+H//u//Gvyc6pOXlwcA6NKli055fn4+3nzzTRQWFmLmzJkYNGiQ9pharUZqaipSU1Nx6dIlVFZWomPHjhg7diwGDBigPU8mk8HX1xfXr19HVVUVXFz0/+/7o48+wu+//47JkyfjgQceEPUsRI6ASRDZlQsXLmDTpk3o2bMnoqOjkZeXh8OHD+Pnn39GYmIiZDKZzvlff/01Vq9eDZlMhv79+8PHxwe3bt3C2bNncfDgQTzyyCP11vf+++8jJSUFbdq0wdChQ6FSqZCcnIxz587Vev727duxbNkyyOVy9O3bFy1btkRubi42btyIrKwsrFixAq6urkY/U8+ePVFQUIDU1FSdLhAABo0FsVRcYus4d+4cvvzyS/Ts2RPPPfccCgsLtccWL16MvXv3om3bthg6dCgqKyuxefNmvc++V69e8PX1RVpaGuLj4/W6qXbv3g1BEPDcc881+Dk1pLYkKD09HUuWLIFCocDatWu13VpA9fid2bNn4+TJk+jcuTMiIyNRWVmJgwcP4s0338S8efMwZMgQ7fmdOnXCtWvXkJ+fD39/f526s7OzsW/fPgQEBJjlWYgcAZMgsivHjh3DW2+9pfMv7XfffRd79+7F999/r1N+6dIlrFmzBgqFAmvWrNFpvRAEAcXFxfXWlZWVhZSUFAQEBGDNmjVwc3MDAIwdOxbjx4/XO//KlStYsWIF/P39sWzZMrRo0UJ77Msvv8T69euxZcsWvPDCC0Y/U8+ePQFAmwTVVn9dLBmX2DpOnDiB2bNn45lnntEpP3nyJPbu3YvOnTtjzZo12sRm7Nixet1AEokEzz33HNatW4cDBw7ojOWpqqpCamoqWrZsiaeeesrgz6wuFy9ehEQiQefOnVFVVYU1a9Zgy5Yt6NevH9544w29hHTx4sU4efIkpk2bhpiYGG35uHHj8NJLL+Hjjz/WSYL8/f1x6NAhXLlyRS8JWrVqFQRBwLRp0+Ds7Cz6WYgcAWeHkV3p0aOHzh9fANo/oDk5OTrlO3fuhEajwYQJE/S6byQSCby8vOqta+/evQCq/2DVJEBA9UDq4cOH652/Y8cOqNVqTJs2TScJAIDRo0fD09MT6enpop7JFI0Rl6l1dOnSRS8BAoB9+/YBqP7s/9yy4+XlVetn/8wzz8DV1RXffvutTvnRo0dRXFyMiIiIWruXjJWXl4e2bduivLwcCQkJ2LZtG15++WW89957egnQyZMnkZaWhujoaJ0EqOY5+vTpg4KCApSUlGjL6xoc/d133+H8+fMYNGgQevToIfo5iBwFW4LIrnTt2lWvzNvbGwCgVCp1ymv+UPfu3dukui5dugQAtf7Rqa0sOzsbAPDjjz/i5MmTesddXFxw9epVvXJjnskUjRGXqXV069at1phrPvvauiv/9re/6ZV5enoiJCQE6enpyM/P1w50r0mKnn322VrrMUZZWRl+++03+Pr6YsKECRAEAUuWLMHjjz9e6/lbt24FAGg0mlqXNcjPz9cer1HT+vPnwdH379/HunXr4ObmhsmTJ4t+DiJHwiSI7Erz5s31ymq6Bv78xwSo/kMtkUigUChMqqu8vBxOTk56LRsA0LJlS72yu3fvAgA2btxoVD3GPJMpGiMuU+to1apVreX37t2r87Ov65ro6Gikp6dj9+7dePXVV1FUVIQffvgBwcHBaN++vVFx1aZmPFBZWRnu3r2LcePG1ZkAAdVdfUD1mKS6SKVSeHp6at+3bdsWbm5uOknQV199hVu3bmHixIl48MEHRT4FkWNhEkQOy8PDQzv2p6YFwxju7u7QaDQoLS3V+UMFAHfu3Kn1fKB63E5tCYS1NEZc5q6jefPmdX72t2/frvWanj17okOHDti7dy/i4uKQkpICtVptllYg4H9J0MyZM7Fp0yZ8+eWXCAoKwpNPPql3bllZGX7//Xc89dRTRq0qLpFI0LFjR+Tm5uL+/fu4e/cukpKS4Ovri5EjR5rlOYgcCccEkcOq6Wo5fvy4SdcHBAQAAE6fPq13rLayoKAgAMD58+dNqq8hTk7VX2djW4csHZcl6qj57GvbmqKumXlAdWtQSUkJDh8+jJSUFHh4eOhMQxejJgkKCgrCe++9B29vb8yfP1/bdVeb0tJSo+vx9/eHRqPBlStXsG7dOty/fx9TpkyBVCo1OXYiR8UkiBzW3//+dzg7O+Pjjz9GQUGBzjFBEFBUVFTv9TWzdj7//HP8/vvv2vJbt27hm2++0Tt/6NChcHZ2xooVK3SmetcoKyvDxYsXTXkUANCuC3Pz5k2jrrN0XJaoY/DgwQCq10SqqKjQlhcXF9f62deIiIiAVCrF6tWrcePGDQwZMkRvKr+pLl68iFatWsHLywstW7bEokWL4OTkhFmzZun9Lnl4eKBdu3bIzs6udYxUZWVlnclczeDo3bt3Iy0tDU888QT69etnlmcgcjTsDiOH5e/vjylTpmDlypUYN24cnnrqKbRu3RrFxcU4ffo0nnzySUydOrXO6x999FE888wzSElJQWxsLPr374/Kykrs378f3bt3R2Zmps75nTp1wowZM7B06VKMGTMGffr0ga+vL+7du4cbN27g9OnTiIiIMHlPtA4dOsDLywv79++Hq6urdnxITExMvWsFWTouS9Tx2GOPITw8HGlpaYiNjcVTTz2FyspKHDhwAIGBgcjMzNS2jP3ZAw88gLCwMO3MPnOtp1NRUYFr167prBTdqVMnvPXWW5gzZw5mz56N1atX68xkmzx5Mt588028/vrr6NOnD/z8/HD//n3tOlWPP/54rYO8awZH79y5Ey4uLkhISDDLMxA5IiZB5NBiYmLQqVMnJCcn44cffsDvv/8OT09PBAUFISwsrMHr//Wvf6Fdu3bYvXs3tm3bBm9vb4wcORJhYWF6SRBQ/Uc3ICAAmzdvxunTp5GZmQl3d3f4+PhgxIgRiIiIMPlZnJ2dsWDBAqxbtw7p6em4d+8egOoWq4YWTLRkXJaqY+7cufDz80NKSgq2bt0Kb29vjBgxAo8++igyMzPrHHsUERGBvXv3onv37joLF4px+fJlqNVqbTddjT59+mDKlClYsWIF3nnnHSxYsECbnPXv3x/Lly/Hpk2bcP78efzwww944IEH8OCDD+KZZ56pc2+yP8c8fPhwdOjQwSzPQOSIJIIgCNYOgojIXHbv3o0lS5Zot8r4q02bNmHt2rWYNWsWoqKijLr3nj17sHDhQsyZM6fOJMVWPf/88wCAzZs3WzkSItvBMUFE1CQVFxfjr/+Gu3XrFr744gs4OzvXOiuroqIC27Ztg4eHh95Cj8ZYuHAhQkJCMH/+fJPv0Rjy8/MREhKCkJAQvXFvRMTuMCJqov773//i6NGj6NGjBzw9PXHz5k1kZmbi3r17eOmll+Dj46M998yZMzh16hR+/PFHFBQUIC4uTm8PMUMEBAQgNjZW+95c3WmW0qJFC514DdlHjsiRsDuMiJqkH374AcnJybh8+TLKysoglUrh7++PoUOHameP1fj000+RmJiIFi1a4Omnn8akSZPMsk0GETVtTIKIiIjIIXFMEBERETkkJkFERETkkJgEERERkUNiEkREREQOiUkQEREROSQmQUREROSQmAQRERGRQ2ISRERERA6JSRARERE5JCZBRERE5JCYBBEREZFD+v+x70usC72tEQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ori.get_rmf()\n", + "ori.plot_rmf()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "10c4fd3c-8b6f-4c63-b270-2f9dd9aced49", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cosi_nomegalib]", + "language": "python", + "name": "conda-env-cosi_nomegalib-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/response/SpacecraftFile.ipynb.txt b/_sources/tutorials/response/SpacecraftFile.ipynb.txt new file mode 100644 index 00000000..a3f7b7c1 --- /dev/null +++ b/_sources/tutorials/response/SpacecraftFile.ipynb.txt @@ -0,0 +1,580 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "772df3c7-6834-4069-9639-dff9c93068f2", + "metadata": {}, + "source": [ + "# Spacecraft file: attitude and position" + ] + }, + { + "cell_type": "markdown", + "id": "cc657b2f-2276-45f1-8fcc-d089e9c69288", + "metadata": {}, + "source": [ + "The spacecraft is always moving and changing orientations. The attitude --i.e. orientation-- vs. time is handled by the SpacecraftFile class. This allows us to transform from spacecraft coordinates to inertial coordinate --e.g. galactics coordinates." + ] + }, + { + "cell_type": "markdown", + "id": "072d15e5-87da-4ecf-8d06-f363a242ca67", + "metadata": {}, + "source": [ + "
\n", + "Note: In future versions, the SpacecraftFile class will handle the spacecraft location --i.e. latitude, longitude, and altitude-- in addition to its attitude. This will allow us to know where the Earth is located in the field of view, which we are currently ignoring for simplicity.
" + ] + }, + { + "cell_type": "markdown", + "id": "c9f731fa-3886-4db9-9f75-7bf19f6c3c60", + "metadata": {}, + "source": [ + "## Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "cefc80ac-578b-4ced-bd0a-f44fa27cfc05", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "%%capture\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.cm import get_cmap\n", + "import astropy.units as u\n", + "from astropy.io import fits\n", + "from astropy.coordinates import SkyCoord\n", + "from mhealpy import HealpixMap\n", + "import pandas as pd\n", + "from astropy.time import Time\n", + "from pathlib import Path\n", + "from scoords import Attitude, SpacecraftFrame\n", + "from pathlib import Path\n", + "import shutil\n", + "import os\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.util import fetch_wasabi_file" + ] + }, + { + "cell_type": "markdown", + "id": "65616e72-8099-4f6c-b0a0-19c5823af3e6", + "metadata": {}, + "source": [ + "## File downloads" + ] + }, + { + "cell_type": "markdown", + "id": "74d85d9a-42c4-4f69-9ddf-965af635a65d", + "metadata": {}, + "source": [ + "You can skip this step if you already downloaded the files. Make sure that paths point to the right files" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "26f552dd-5f3d-4b0b-a6b0-794d87431664", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you can want a different path\n", + "\n", + "ori_path = data_dir/\"20280301_3_month.ori\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "3f10956b-e690-4de0-b872-9a391c9d2bf8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# download orientation file ~684.38 MB\n", + "if not ori_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", ori_path)\n", + "\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " \n", + " response_path_zip = str(response_path) + '.zip'\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\",response_path_zip)\n", + " \n", + " # unzip the response file\n", + " shutil.unpack_archive(response_path_zip)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(response_path_zip)" + ] + }, + { + "cell_type": "markdown", + "id": "680b4ec4-2c3e-4e88-9f14-654e51088952", + "metadata": {}, + "source": [ + "## Orientation file format and loading" + ] + }, + { + "cell_type": "markdown", + "id": "0e3f5bfd-2a14-4684-855b-c58fb80c0d6d", + "metadata": {}, + "source": [ + "The attitude os the spacecraft is specified by the galactic coordinates that the x and z axes of the spacecraft are pointing to. The y-axis pointing can be deduced from this information (right-handed system convention).\n", + "\n", + "The following diagram shows the relation between the spacecraft --i.e. local-- and galactic --i.e. inertial-- reference frames." + ] + }, + { + "attachments": { + "04c01833-6f41-4b2a-812f-56ce5790948d.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAkACQAAD/4QB0RXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAKgAgAEAAAAAQAACaagAwAEAAAAAQAAA9AAAAAA/+0AOFBob3Rvc2hvcCAzLjAAOEJJTQQEAAAAAAAAOEJJTQQlAAAAAAAQ1B2M2Y8AsgTpgAmY7PhCfv/iDSBJQ0NfUFJPRklMRQABAQAADRBhcHBsAhAAAG1udHJSR0IgWFlaIAfnAAMAAgAKABAAIWFjc3BBUFBMAAAAAEFQUEwAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtYXBwbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWRlc2MAAAFQAAAAYmRzY20AAAG0AAAB6mNwcnQAAAOgAAAAI3d0cHQAAAPEAAAAFHJYWVoAAAPYAAAAFGdYWVoAAAPsAAAAFGJYWVoAAAQAAAAAFHJUUkMAAAQUAAAIDGFhcmcAAAwgAAAAIHZjZ3QAAAxAAAAAMG5kaW4AAAxwAAAAPm1tb2QAAAywAAAAKHZjZ3AAAAzYAAAAOGJUUkMAAAQUAAAIDGdUUkMAAAQUAAAIDGFhYmcAAAwgAAAAIGFhZ2cAAAwgAAAAIGRlc2MAAAAAAAAACERpc3BsYXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtbHVjAAAAAAAAACYAAAAMaHJIUgAAABIAAAHYa29LUgAAABIAAAHYbmJOTwAAABIAAAHYaWQAAAAAABIAAAHYaHVIVQAAABIAAAHYY3NDWgAAABIAAAHYZGFESwAAABIAAAHYbmxOTAAAABIAAAHYZmlGSQAAABIAAAHYaXRJVAAAABIAAAHYZXNFUwAAABIAAAHYcm9STwAAABIAAAHYZnJDQQAAABIAAAHYYXIAAAAAABIAAAHYdWtVQQAAABIAAAHYaGVJTAAAABIAAAHYemhUVwAAABIAAAHYdmlWTgAAABIAAAHYc2tTSwAAABIAAAHYemhDTgAAABIAAAHYcnVSVQAAABIAAAHYZW5HQgAAABIAAAHYZnJGUgAAABIAAAHYbXMAAAAAABIAAAHYaGlJTgAAABIAAAHYdGhUSAAAABIAAAHYY2FFUwAAABIAAAHYZW5BVQAAABIAAAHYZXNYTAAAABIAAAHYZGVERQAAABIAAAHYZW5VUwAAABIAAAHYcHRCUgAAABIAAAHYcGxQTAAAABIAAAHYZWxHUgAAABIAAAHYc3ZTRQAAABIAAAHYdHJUUgAAABIAAAHYcHRQVAAAABIAAAHYamFKUAAAABIAAAHYAEwAUwAyADcAQQA4ADAAMABVAAB0ZXh0AAAAAENvcHlyaWdodCBBcHBsZSBJbmMuLCAyMDIzAABYWVogAAAAAAAA89gAAQAAAAEWCFhZWiAAAAAAAACHXQAAP3v///+7WFlaIAAAAAAAAEf8AACv/AAADs5YWVogAAAAAAAAJ34AABCJAADEpGN1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANgA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCjAKgArQCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//cGFyYQAAAAAAAwAAAAJmZgAA8qcAAA1ZAAAT0AAAClt2Y2d0AAAAAAAAAAEAAQAAAAAAAAABAAAAAQAAAAAAAAABAAAAAQAAAAAAAAABAABuZGluAAAAAAAAADYAAK4AAABSAAAAQUAAAK4AAAAmgAAAD0AAAFBAAABUQAACMzMAAjMzAAIzMwAAAAAAAAAAbW1vZAAAAAAAAEwtAABxoTBCVkvcujOAAAAAAAAAAAAAAAAAAAAAAHZjZ3AAAAAAAAMAAAACZmYAAwAAAAJmZgADAAAAAmZmAAAAAjMzNAAAAAACMzM0AAAAAAIzMzQA/8AAEQgD0AmmAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/bAEMAAQEBAQEBAgEBAgMCAgIDBAMDAwMEBgQEBAQEBgcGBgYGBgYHBwcHBwcHBwgICAgICAkJCQkJCwsLCwsLCwsLC//bAEMBAgICAwMDBQMDBQsIBggLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLC//dAAQAm//aAAwDAQACEQMRAD8A/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvd3lpYWz3l9KkEMYyzyMFVR6knAFfiV/wXQ/4LH+DP8AgkL+zRa+LNMsrfxB8S/GTzWfhTRrhiIGeEKZru62sr/ZrcOm5VIaR3RAVBZ0/ie/4J1fsE/8FEP+Dm/4neJf2g/2zvjFrNr8M/DWorZ3d2586N75lExstLsFZLS38qN0aSTYFQSIdsjMcAH+oFoXifw14ot3u/DOoW2oxRtsZ7WZZlDDsShIB9q1ri4t7O3ku7uRYoolLu7kKqqoySSeAAOpr+Lzxz/wZlfs/wDgvQY/E/7Gfx28d+CvH1gvm2mpanJbXEHnpyuPsMNjPCCwHzrK5TrtYjFfz6/t2/8ABT7/AIL+/wDBObwt45/4Jbftr+Ko9Zg8S6PNp8Wu6jAt/eXei3qvA81hqYEck0c6b0Mlwsk8Zyp8t1wAD/VIsL+x1Syh1PTJo7m2uEWSKWJg6OjDIZWGQQRyCODVuvzQ/wCCMl9/aP8AwSY/ZwuM52/Drw9F/wB+rOJP/Za/S+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivnz9q79pr4W/safs5eMP2ofjTcyWvhnwXp0moXphXfNJtIWOKJcgGSaRkijBIBdhkgZIAPoOuRs/iB4D1HVv7A0/W7Ce/6fZo7mNpv++A279K/x0f2//wDgsl+3d/wVg+ObaT8Q/GN94a8FazqSWeleEdLuZINJsreeTZGJo0Kfa5VVvnmm3MSW2hEIQe0/8HE3/BNH4Df8EpP2xfA/wQ/ZmfXDpOpeCNP1q5vdWnEzzal9ru7eV4pERAuVt43ZAMIz8YUgAA/186K/jI/4M5v22v2tP2mPgN8Uvg3+0Bq2o+KvDfw5udIXw5rOqSPcTxC/S486x+0SEtIkIhieNSSYlkK5CGNR+vP7S3/BZnwT8IP+Cs3wd/4JVfDnSrbxFr/jdpZPFV605X+xInt3ntI1VQQ88qxmR1YrsiaNud4wAft9RRRQAUUV/Oz/AMHRn7U/x3/ZP/4JP694o/Z81G70PV/E2uad4cu9VsHMV1Y2F4JXmeKRSGjaTylg3r8wEp2kHBAB/QdZeIdA1LULjSNOvre4u7THnwxyq8kWem9QSV/EVsV/g3fAT9ob4z/sw/GLRfj78CfEV54c8WaBdLd2moWkrJJvU5ZZMHEkcg+WWN8pIpKsCCRX+6j8JvFWs+OvhX4Z8beI7M6dqGs6VZX11aHgwTXEKSPHzn7jMV69qAPQKKKKACiiigAooooAKKKKACivxE+Pv/BZrwN8M/8Agr18I/8Agk/8O9Jt/EWs+MI7qbxXqBuCh0TNnLdWcKIoYPNIsXmSK20LE8ZGS/y/t3QAUV/mof8ABzp8Df2nv+CXvxx8FfEn9n/9oj4o3Hhr4vya5ePpl/4mvD/Zt7Yy28kscBgeFRbMt4ghjKlkCEFmGMfmP/wRJ/bm/bX8ef8ABWP4C+DPHXxh8ba1o+p+K7W3vLC/8QX9zbXEThgySRSTMjqe4YEUAf689FFFABRRRQAUUUUAFFFFABRRRQAUV/Ot/wAFrf8Ag4d/Z5/4JS2Evwi8EW0Hj/40XUKSQ+HklKWulxyqGSfUpU5QMpDR26fvZAQT5aMJK/gg1f8A4KB/8Ft/+C5n7Stp+zz4O8b67qeoeK5JBD4W8O3T6LoNraxgtI88cTonkQrktLdPI/bczFQQD/XX8Q/ET4f+EZ1tvFeu6fpcj/dS7uo4WP0DsDXTWN/Y6naJf6bNHcQSjKSRMHRh6gjINfwk/s2/8GSXw3PhOw1X9sT4z6rc6/OnmX1j4RtoYbaGQ9Uju71Jnmx/fa3jz/d7nT+Mf/Bod8bP2c4pfin/AMEpf2jPEPh3xVp4822sNXnfTZp2UZwupaaYtjHAChrYoSfmdRzQB/ddWZpGt6N4gshqWg3cN9blmQS28iypuQ4YblJGQRgjsa/yvfiz/wAHDH/Bf79iLS/F/wCwv+1DqEFl4xtbdtOk1LX9Kj/t7To5Uws1rdWzxwTblO6K5kS43Ah1c8Gv7FP+DT52k/4IofD13JZm1jxESTySTqU9AH9INFFFABRRRQAUV8p/tnfso6X+2h8Cr74F6v418WeAIryeG5XWPBepHStVieAllVZwj/u2P30K4YCv8hX9tP8AaF/4KHfsgftc/En9ly9/aD+IWqHwD4j1HREvf+Ek1KM3MVnM0ccxT7QdpkQK5XJwTjJ60Af7S1FfxHf8GY/7Qfx8+Pfgv9oO4+OnjjxB40k0u98NLZtrup3Oom3E0eoFxEbiR9gfau7bjO0Z6Cv7caACiiigAooooAKKKKACiiigAoqpf39hpVhPqmqTx21tbRtLNNKwSOONBlmZjgBQBkknAFfi1/wSb/4LFeFP+Crfxj+P/h74X6HFZeCvhPrGmafoOsCZnl1m2vRdK1y8ZUCJWa1LxAHPluNwDA0AfthWRrHiDQfD0CXPiC+t7GORgiNcSLErMegBYjJ9q16/xcf+C4H7Vfx7/ao/4Kb/ABh1H456peTr4T8Waz4c0bS55GMGladpl3JbRQQxZKIdsQaUoB5kpZzktQB/tGghgGU5Bpa/iW/4Ms/2q/j58X/2f/i5+zv8TNTvNa8K/Da70SXw5LeSNKbJNUS7E9nG7kkQp9ljkjjX5Yy79Nwr+2mgAooooAKKKKACiivzQ/bv/wCCYngb9vHW9O8U678UviX8ONS0qwewgfwL4kl0eBwzs6yTQBZIpJFZjhioJX5ScAYAP0vor/Gp/wCCj3xE/wCCjn/BPT9t34hfsc67+0V4/wBdk8E38cEOoJ4j1KL7Ta3UEV1byMn2ltjtBMhdQSFbIBI5rX/4Jj+Mv+Chn/BSD9uLwP8AsXWf7TPj/wAISeNG1FRq765qV8tt/Z9hcXxzAL2EvvFvs/1i43Z5xggH+x/RX8Tuof8ABsD/AMFPY4GbSv8AgoL4zmlxwsq6tEpPuRrLkfka/GL/AIKM/wDBJr/g4c/4J9+BdT+NFv8AG3xh8TvAmkRme+1Pwz4p1ZrqygH3pbmyllWVY16u8XnIi/M7KAcAH+n/AEV/C9/wZg/tJ/tE/H27/aMsvjt498ReNYtITwm9iuvapc6kLVrg6oJTF9okfy/MEab9uN2xc5wK/uhoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxdc8SeHfDFr9u8S39tp0H/AD0uZViT83IFfxs/8HJP/BxT43/Yk8Vz/sI/sOXkNt8RzaxzeJvEhRJzocdygeK2tUfchu5I2Eju6lYY2XaDI2Yvzd/4Jmf8Gy/xd/4KjfCPSP28P+Cn/wAXPFUa+PbZdT0eyguBea1c2Fwd8V1cXl8LhI1nQ+ZFEsTkxsrFlPyUAf6LFlfWWp2kd/p0yXEEo3JJGwdGHqCMgioNR1fSdHSKTV7qG1WeVIIzM4QPLIcKi7iMsx4AHJPSv4hvjT/wap/tD/sa2Vx8b/8Agi9+0F4t0HxfpaGZND1m9S0k1EKNxiW9s0toMvgKIri2MLk4d0XJr8DtR/4LN/8ABT/9rb9sL9nn9jD9vO9t4JPhp8YfDV1qdv8A2Ymm6lNqun6ikH+nCPbHuhDyKFjijXJ3EMQpAB/q90UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVjp4h0CTWW8OpfW51BE8xrUSqZgnHzFM7scjnHevzE/4Ld/tF/F79k7/glT8aPj38BppLXxZouixRWF3CMy2hvrqC0kuU9Ht45nmU9mQHBxiv8AGZ0j4r/FHQPiVF8ZtE8SapaeL4L3+0o9biu5U1Fb0tvM4uQwl80sdxfduJ5zQB/vc0V8J/8ABML46fEn9pr/AIJ4fBj4/fGFMeKPFvhHS9R1OTYIxPcSwrunCr8qif8A1oAAAD4AAr7soAKKKKACiiigAooooAKKK/EX/gpt/wAFmfA37Av7UXwF/Y88MaTb+KvHPxi8U6Vp17aSXBhGk6Jf3aWZvG2hiZHlciBCNreXISRgbgD9uqKK/gh/4OtP2bv2gf2LdM0r9v79nb49/EnSLX4geKxo2r+G18RXUWm2dzcWk1xC1hHA0XkxbbWQPG2/5iCpAyKAP73qK/xR/wBlb/goL+3rqn7UHw303U/jd4+uba48U6PFLDN4k1GSORHu4gysrTkMpBwQRgjg1/tcUAFFFFABRRRQAUUUUAFFFFABRXgH7U/7THwl/Y4/Z58W/tOfHK/OneFvBunyX97IoDSvtwscMSkgNNNIyxRLkbpHUZGa/wAyjxp+35/wVW/4OWP26rL9k34N+JLjwB4I1iSeaHw9p91LbaXpmj23+tutSkh2yXkioQDvyrSsEiRN2KAP9TK08Z+D7/WH8PWOq2c2oRjLW0c6NMoHqgO4flXSV/Ft4Y/4Mmv2INP8Cx23iT4v+PLjxakS/wDExshYWtiJwOXFo1tLKF3chftWQON2ea/Mv9rGP/gvj/wbOy2Ov+AfivL8WvgRezix0661uB9RsLWVgxjtrm2nkefT3IUsn2a4EEnTcWygAP8ARsstX0nUri5tNOuobiWzfyrhI3DtE5AO1wCSpwQcHBwa0a/jy/4NC/2hPiV+1F8M/wBpX45/GK+Go+KPFvxCj1rUp1URo097agsEQcIi7dqKOFUADgV/YbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVymteO/A/hq7Ww8R6zY6fO+NsdzcRxOc9MBmBNf5rX/Bwn/wcc/tCfGf4/8AiX9j79hnxbfeDPhp4SuZtI1PV9Ika01HXb6BmjuSLlCJY7NGBjjSMr5wBdyysiJ8D/F7/gl78GPDn/BvH4F/4Kvahea7rHxS8d+NJ7W7ne482yt9PW7vrLbKhUsSXs1fzS+7zJQnTAoA/wBcSKWKeJZ4GDo4DKynIIPQg+lSV/lHf8GsP7cP7XXws/4KX+BP2WfAOs6nrPw78dve2ut+HZJZJ7K3iitZZxexRsSlvJC0al5FA3x5Q5yuP9Af/gsv/wAFWPh9/wAEkv2SJvjtrdnDr/ivWLtNM8MaBJMYft923zSM7KCywwRBpJHA67EyGkWgD9aqK8s+BfxCu/i38EvB3xWv7ZLOfxPoen6tJbxsWSJ72BJiik8kKXwCeSBXqdABRRXwd+3L+wB4H/bw0fQNK8YePvH3gGTw6101vc+BPEEuhTS/axGGE+xXSYL5SmPeh2Etj7zZAPvGiv8AIj/4LM6b/wAFAv8AglX+3Rrn7LOmftJfEbxJof2K11nRb+48SahHcvYXu7Yk6rOE82N0eNmQBX27wq7tq/HH7Hv7R3/BQr9rT9qz4c/sv237RXxA0KT4g+I9N8PrqLeIdSuRaHUJ0h80xC7j8zZu3bN67sY3DrQB/tR0V/FFd/8ABr//AMFNkiJsf+ChHjWR+wkj1VB+Y1pv5V+XH7dn/BEP/g4k/ZE8Eah8Vfhb8fPFvxh8O6VA1zdx+H/E2rxavFFHyz/YJZsygDnbbySydfkwM0Af6UlFf51H/Bnp+1Z+1N8bv2/viR4K+OHxH8U+L9LtvAFxdx2Wu6vd6hBHcx6lYxrIsdxK6q6rI67gAcMR3Nf6K9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAsX/g8d8f+KvE//BWSx8G6w8g03w14J0mDT4if3e25luJ5ZFHqzvtY9TsA6AV9hf8ABpl/wWY/Z3/ZQ0DX/wDgn3+1Lq0HhOx8U682u+G/EF9IsVgL25hht5rO5lbCwbhBG8MjnYWLqzKdm77J/wCDxz/gmB4/+KWieGP+ClXwb0yXVP8AhENM/sDxjb2yM8sOmpK81rfbVzmOF5ZY7huqq0bH5FZl/wA7agD/AH8re4gu4EurV1lilUOjodysrcggjggjoa/nj/4Oa/8Agn54O/bU/wCCY/jL4h2ukJdePfhHZTeKNAvUX9/Hb2u2TUYMjlo5rRHby+hljjbqor/Pa/4Jtf8ABfr/AIKI/wDBNCWx8KfDjxOfF3w/tmUP4R8SF7uwSLutq+4TWZxkqIXEe45eN+lf6Lf/AASl/wCDhT9h3/gqjHB8N9NmbwB8TpIv3vhHXJULXRAy/wDZ9x8qXigZyu2OYAFjEFG6gD6L/wCCFV9/aP8AwR9/Z3uM52+C9Pi/79KU/wDZa+8j+01+zcpKt8QfDQI7f2ta/wDx2vaLW1tbG3S0so1hijGFRAFVR6ADgV/l3f8AB2P/AMEwf2Uf+CfPxi+E3j79k3w2vhDS/iTZayuoaXbzSy2ou9Ie1PnRCZ5DH5iXihkUhBsBABLZAP8AS+0L4+/AnxRq8GgeGvGug6jf3TbIba11K3mmkbrhUSQsxx2Arxb9or/goR+w1+yPqsfh/wDaY+LXhTwTqksYmTT9V1SCC9aNuji2L+cUP94Jj3r/ABYv2N/iV8f/AISftP8Agvxt+yrG8vxIj1BbPw2sUQnlOpX6taw+VG3ytKGlBjDArvxuBGQf7DPjD/wZx/tPeIP2Y9a/aE8TfGVvF3x9urWbXNR0O4tXuLa/vWHmy2o1F5mmkuGO4LO8W2STCkKp8wAH963wC/as/Zk/aq0O48S/s0fELw74+sbMqtzLoGpW+oC3ZxlVmEDuYmIBwrhT7V79X+Ef+zF+1H+0B+xV8b9I+PX7O3iG88LeK9AnDxzQMVWRVYF4LiM/LLC+NskUgKsOCK/2Xv8AglV+394R/wCCmX7Dngv9rDw5FFZahqsDWevadCSVsNYtMJdQDcS2zdiSLcSxhdCeTQB+iVfL/wAeP22/2Of2XZFtv2jvip4T8DXDgFLfXNXtbKdwRkbIpZFkbjn5VPFfyp/8HV//AAW1+OX7Fl1oH7CH7IurzeGPFnirSP7b8Q+IbQhbuz024kkggtrSTJMM0zRSvJKoEkaBPLYFyV/Hf/g2M/4J4f8ABMD/AIKjp8Uk/bptNX8e/FzSbwagunXmrXdpbyaPcLGv21ZLWWG4muBdGRJzJKyKHhIXLE0Af3dfDn/gr7/wS1+LOvxeFfAP7QXgK91K5lWCC1fXLW3mnlY4VIlmkQyMTwAgJPav0ZVlZQynIPIIr/Hx/wCDib/gl/8ACX/gld+3bZ/CX4BXd5P4L8W+HbbxJpttfP509gZZ7i2ltjKfmlVXt96Ow3bZApLFSzfvX/wZ7/8ABU345+I/i7qn/BNH4xavc+IPC39iXGs+EpLyQyzaXLZOnn2kbN8xt5Y5DIqElYmjOwAO2AD/AEJKo6nqem6Lp0+r6zcRWlpao0s08ziOONFGWZmYgKAOSScCq3iDX9E8KaDfeKfE13FYabptvLdXd1cOI4oIIVLySOxwFVVBLE8ADNf5GH/Bc7/gud8cf+CqHxy1T4d/DrVL7Rfgdo94bfQfD8DtENT8lyEv75BgyzSnDxxPlYF2qo373cA/0uvEP/BZX/glB4W8Sf8ACJa3+0V8P474SGJlTXrSWNHXgh5I5GjQg8Hcwwa+3fhJ8bfgx8fvCa+PfgT4u0XxroTyGJdR0G/g1G0Mi4JXzrd5E3DIyM5Ga/hr/bP/AODY79k/9mT/AIIW658WLfQ7yT9oLwN4Zt/FOs6/9vuJEe4g2T6jafZhJ9l+zQwmVI2WISfu1dnOWDfxsf8ABPD/AIKJftIf8E0/2itH/aB/Z71ie3+y3Ef9raM0zrp+sWYJD213Ep2urKW2MQWifDoQwBoA/wBwqsvW9c0Xw1pFz4g8R3kGn2FnG0txc3MixQxRryWd2IVVA6kkAVwlp8Yvh9N8GIvj/f6glj4UbRV8QSX1z8iQ6eYPtJlk/uhYvmb0Ar/JM/4LUf8ABbz9or/grX8eL3wL4Lvr/Rvg5Y3/ANm8NeFrdmi+3BX2xXd/GpxNdSnDIjZSAHYg3b3cA/0z9S/4LO/8EmtJ8T/8Iff/ALRfw/W9DmNtuu2rwqwOCGnVzEuD6uK/RDwj4w8JeP8Aw1Z+M/AeqWet6PqMYltL6wnS5tp4z0aOWMsjqfVSRX8jFz/wac/sT2n/AASzf4U3Ph5/+GgYfDLagfFq307Sf8JIIfOMAiEn2drLzh9nCeUT5Pzg+b89fyB/8EGf+Cz3xa/4JdftOaL4a8U6zc3vwV8V38Vr4o0WaQvb2izsE/tG2U5EU0GQ8mzAmjUo3OxkAP8AYGrO1fV9J8P6Xca3r11DZWVpG0s9xcOscUUajLM7sQqqBySSAKyvEnjPwn4Q8HX/AMQvE+o29joWl2Uuo3d/LIFt4bSBDLJMz9AioCxbpgZr/In/AOC2P/Bbn9oH/grT8fL7wL4Hv7/R/g1p9+Lbw14Xgdo1vij7Y729RcebczH5kRsrApCJ8293AP8ATP1v/gsz/wAEnfDviQeE9V/aL+HyXu8xsE160liRl4IeVJGjTB4O5hX3L8KPjN8H/jx4Rj+IHwO8V6P4z0GZ2jTUtCvoNRtGdMblE1u7oSMjIByK/hf/AOChP/Bsv+yP+yX/AMEONZ+LXhrRbub49+ANDsNf1vxB/aFxLHdzJJGdSt/s3mfZVtoopJfJMcSyYiQu7Hfu/j3/AOCbP/BSP9or/gmP+0jo3x6+BerXCWUNzGNc0IzOLDWLHOJILiIEKx2FvKkILRPh1IIoA/2yfF3jnwV8P9MTWvHmsWOiWckghWe/uI7aJpGBIQNIygsQpIGc4B9K84/4ab/Zt/6KF4a/8G1r/wDHa8m/ak/ZE/ZO/wCCl37O9l8Mf2kfDsfi/wAGar5GtWKPLLbSQzvA6w3MTxOjpKsc77Tnjccg1/iZftEfDG2+Cf7QHjr4M2U73UPhHxDqeixzS4DyLYXMkAZsYGWCZOBjNAH+7b4R8ceCvH+mNrXgPWLHW7NJDC09hcR3MQkUAlS0bMAwBBIznBHrXxz8WP8AgqH/AME5fgV8ST8HvjB8cPBXh3xRHKIJ9Mvdato7i2kP8Nwpf9wef+Wuyv8AMn/4Ju/8FGf2uvAX/BOjWf8AglZ/wTh0XWNQ+Mvxe8dalqdze6MjfbLLQ/7NsYSLWQEeXLM0E3mTll+zwxlshnV0/C/49/Ar41/s1/FnWfgz+0P4dv8Awt4v0acx3+n6lGUnR25DZOQ6ODuSRSyOpDKxBBoA/wB42xvrLVLKHU9MmS4trhFliliYOkiOMqysMggg5BHBFZHirxd4U8C6DceKvG+p2mjaXaLvnvL6ZLe3iX1eSQqqj3Jr8Gf+CbPxz8TfsAf8G7Hw/wD2hv2rrW+e4+H3gGfWJrGYlLuSzEssmmWo8w/Iz2720KBsBMgEADFf5wXxq/4KUfEb/gqJ+3B4V8d/8FQPG2tL8L7rxBbDUdL0FzHaaJpEkoEosLUh41aOIkNKySTuBljI2AQD/VN8Qf8ABaP/AIJL+GNZ/sDVv2i/AH2neYz5GuW1wisOoaSJ3RcdyWAr7U+Cn7RHwB/aT8Lv42/Z38b6D470eKTypL3w/qNvqVukmM7Ge3d1VvVSQR6V/Hn/AMFc/wDg2i/4Jg+Bf+CbHjb9pn9i/R7vwj4j8BeHJfE9rfw6td6pa6vaWcXnyrMl3PMn72EMySQeWA204K5U/wAEH7Gn7aX7Rf7BHx30j9oj9mbxDPoOvaVKpkRWLWt9b5+e2uoc7ZoJBwyt0+8pVwrAA/3Tq/k+/wCDtX9of4fT/wDBI/Xvh34H8ZaTc6hq/ivRbC+061v4JbiWKCV7ho2iVy/ySwI7DHGznpX9In7Kfx60j9qf9mL4eftLaDatYWfj/wAOaZ4hjtXbe1uNRt0n8pmAALRl9hOOSK/zxf8Ag4O/4N6Phh+wj8CfGX/BQrw58SdU8Q6p4l8aBpNHubGKGCL+2p5pnxKrlj5Z4GV570Afx+/CidLX4peGrqRgix6rZsWY4AAmU5J9BX+3H8Yfgf8A8E/f+Cg1hbeEPjLoPgr4tJoZa4t4bpbTVJbLzMKzxsC8kQfADFSobABzgV/h++EtC/4SjxVpnhnzfI/tG7htfM27tnnOE3YyM4znGRmv9bj/AIJF/wDBvb8OP+CSHjzx38Qvh58T9Z8T33jbQxom64soLU2QEnmiaMq0gZwwG0MNoxyDQBwH/BWX/grT+xd/wQU/Zu/4Z0/ZN8NeHbL4lanBI+geDdDtobWy003A/wCQjqEUAUJHnDKpxLcsMAhQ8ifwa/8ABET44eIviD/wXZ+Efx9+P/iQ3mra14nv9T1nWdVnVPMuLi0uS8ksjkKuWbA6AcAADAr37/g4z/4JEJ/wS/8AiR4A8cap8Vdb+K+vfF6TXb/VdS16BY7rz9Pa0+dpPNlaVpTdHcWIxtHrX5Nf8E0f2Q9G/b1/bo+HX7IfiHWpvDtl44v5bOXUreFZ5bcR28s25Y2ZQxJjxgkdaAP9rrw78d/gf4v1mDw74T8ZaFqmoXJIhtbTUbeeaQqCx2okhY4UEnA6AmvVq/k4/wCCc/8AwanfCP8A4J3/ALZ3gn9sjw38YdX8TXvgqW8li0y50qG3in+2Wc9oQ0iTMy7ROWGAckYr+segAr49/aosf2Jv2hfhd4n/AGWf2qtX8N6l4f16AWer6NqWpQ28mMrIh/1qSxSIwWSN1KujBWUggGvsKv4hP+Duf/gmD+ylpf7Juqf8FFvAPhtdF+KCeJdMi1vVLeaUrqlreIbXbPCzmIOjLCVkRFbCkHIPAB9Nfs5f8G4f/BBL9nz47ad8bl8fTeNn0m7S8sND8R+JtNuNLjnjO6MvFbw28kwRwCElkdGxh1cZB/rO1nWtH8OaVca74hu4bCxtUMk9xcSLFFGi9Wd2IVQO5JAr/Aar/el+JXwk+HPx5+D+q/Bn4vaVFrvhjxNpzafqenzlhHc20y7XRihVgCO6kEdjQBhf8NN/s2/9FC8Nf+Da1/8Ajtdl4O+K3wu+IlxNafD/AMS6VrstsoeZNPvIbpo1Y4BYRuxAJ6E1/jb/APBdX9jj4UfsF/8ABUr4n/s0/Aq1lsfB2lS6de6TazSvO1vBqVjb3bQiSRmdlikldELszbVG4k5Ju/8ABG23/wCCi/xO+O/iH9kj/gm1qLaB4n+LOkDStc1yN3t30vRLeZJric3aZa1jBCq8kamVsiOL53AYA/1hPjX/AMFSv+CcX7OfjOT4c/G743+DPDfiC3cRz6bd6xbi7gYnGJolcvF/20C19VfCP40fB/4/eCLb4mfAvxVpHjLw7eFlg1PRL2G/tJGThlWWBnQsp4YZyDwa/wAkn/gtZ/wQZ+L3/BHnTfA/jnxP45tPiHoXjl7i2e/t7N7CS01KBVkeF43lmLq6sWjlDAtsbciHGdz/AINov2+vih+xx/wU98AfDXSNTn/4Qr4u6taeFNe0nf8A6PPNqDeRYz7TkLLBcyIQ4G7yy6Zw5oA/15aKKKACv55f+C63/Bef4O/8Ep/hfc/Dn4e3Fp4n+OOvWrDSNDDiSPS0lX5b7UApyka53RQnDzngYTc6/wBAPiPS7vXPD1/othezabPeW8sEd3b7fNt3kUqJE3AruQncuQRkcgiv8lv/AIOKf+CRsP8AwS7+KngTxLqHxS1r4q638WBrOpapqeuwCO6+0WUltl3k82VpWlNwSzMc8d80AeR/8EIfjVrfjX/gu98JPjt8evEn2rU9Y1/V9S1jWtWuFQy3Fzp94XlllchQWdu5AyQB2Ff64vhz46/BHxjrUPhvwj4y0PVdRud3k2tnqNvPNJsUs21EcscKCTgcAE9BX+Kh/wAEwf2OdF/4KA/t3/Dz9j7xFrk/huy8bXd1bS6lbQrcS24t7Sa5BWNmVWyYgvJHBzX+iP8A8E2v+DVn4Sf8E4/21PBX7Z3hn4v6v4ovvBh1AxaZdaXDbRT/ANoWNxYndIkzMuxbguMKclcd6APzj/4Pk/8AkUP2a/8Ar88Wf+gaZX8pX/BB7/lMP+zx/wBjjZf+zV/Vr/wfJ/8AIofs1/8AX54s/wDQNMr+HP8AY7+Lfxt+BX7UPgb4rfs2WY1D4gaTq0B8PW/2Y3jSalMfKgVYB/rX3uNiHIZsAgjIIB/tfftG/tw/sdfshxW7/tP/ABO8M+BJLxS9tBrOpQWtxOozlooXcSyAY5KqQK0/2df2x/2T/wBrrS7rWP2X/iP4c8fQ2Gz7WND1GC9ktt/3fOjjdniLdg6rmv8AN7/4KNf8G23/AAUG+GX7GPij/gp9+1b8Vrbxr8SLaOLWvF2gziW6uoLeZ0RyNRaUpNJbhxviSJYlRCIncBQf5rf2Sv2rvjd+xL+0B4c/aV/Z71mbRfE3hu5WeKSNiI54sjzbedAcSQTLlJEbhlPrg0Af7tNFeT/AX4taP8ffgZ4L+Ovh2Iw6f410LTteto2bcUh1K3S4RScDOFkAzjmv5jv+Dm7/AILneLP+Cc3gPTP2TP2WL1LX4ueObBr251QKHbQtHdniWaMHj7VcOjrCSD5aozkBjGaAP6EP2hv2+/2I/wBky+TSf2lvix4U8EX8qeZHZavqtvbXjpjO5bdn81hjuEIqz+zn+3d+xf8Atdyz2v7MXxT8L+Orq1TzJ7TR9TgubqJOPmkgV/NRefvMgGe9f53X/Bsb/wAElvhv/wAFUPjB8Sf2vf29LW88eeF/DE8dmkGo3s7NrGvXwMsst1MrieUW8W12BkG95kJLBWU/Jv8AwcCfsGaX/wAEYP8AgpV4e8VfsP6jqPgzQfEOmQeJ/DTWd5N9q0e8ileC4ghuGYzFFZBIpd2OyXYSQOQD/Wnor8Kv+Dfb/gqzff8ABVf9h+Lxv8SDBH8SvA90uh+KkhCxrczBA8F8kagBEuo85UAKJo5QoCha/dWgAr8mv+C1f/BSXSP+CXH7BHif9oa1aGbxffFdE8JWcw3LPrN4reUzL/FHbor3Eg4DLGUyCwr9Za/zqP8Ag93+Oeu6h8d/gl+zTFPs0zSdBv8AxNLCp/1k+o3H2WNnHfYto4T03t60AfxK/Ev4lePfjJ8Qda+K3xT1a517xH4ivJtQ1LUbxzJPc3M7F5JHY9SxP0HQcV/p5f8ABoj+wB4f/Z0/4J9/8NeeKNOh/wCE0+MlzLcw3TIDPb6DaSGG2gDYJVZpY5LltpAcPFuGUGP8tav90D9gL4Z6Z8Gf2F/g38KNHj8qDw94J0GwA7lobKJWZv8AaZgWY9yTQB9cUUUUAfzo/wDByL/wSY8K/wDBRr9ijV/ib4H0tD8XPhdY3GreH7uJf399aQAy3WmuQMusyKzQKfu3AXBVXk3ZX/Bp3/yhN+Hn/YX8Rf8Apxnr+kOvPPhZ8I/hV8DfBVt8N/gt4a0vwj4es3lkg0zRrSKxs4nndpZGSGFURS8jM7ED5mJJ5NAHodeJfGr9pf8AZ0/Zt0VfEX7Q3j3w94FsHBKT6/qdvpyPj+6bh03HPGBk54r8Ov8Ag5M/4K7eO/8Aglf+yVolh8BjHD8Tvidd3On6HezxpNHp1tZJG15eCN8rJLH50SRKylN8m9gQmxv4mv8AggT8Gf2Pv+Crn/BRnXfBf/BV7XfEXj3xd4j02S98PRX+q3CR6veW2+W6iubqORbrekAMsCRyxptSTJ4VSAf6L2if8Fpv+CSniHWj4f079oz4frcAgZn121t4iT6SyukZ/Bq/STQte0PxRo1r4j8M3kGo6ffRLPbXVrIs0M0TjKujoSrKw5BBIIr/AC+v+DoL/gip+y3/AMEybv4c/Gz9j+G80Twz44uL7TL3Qbq5lvY7S6tFSWOSCed3mKSI7KySO+0oCG+YgeWf8GvX/BU345/spft3eDf2QNS1e51P4W/FfVE0afRp5C8Njql3lbW8tQ2fKczbY5guFkRssCyIQAf6ttf4tX/Bdf8A5TB/tEf9jpf/AMxX+0rX+LV/wXX/AOUwf7RH/Y6X/wDMUAf1i/8ABjf/AMiN+0j/ANf/AIW/9F6lX96FfwX/APBjf/yI37SP/X/4W/8ARepV+yX/AAcpf8FefHv/AASx/ZQ0LRvgE0dv8TvihdXVhot/NGk0em2lisbXl2I3yryp50KQq6lN0m9gQm1gD9z/AI1/tM/s5fs2aOviH9ofx94d8C2LglJ9f1O305Hxx8puJE3HPGBk54r420L/AILSf8ElfEetHw/pv7Rnw/FwCBmfXbW3iJPpLK6Rn8GNf51H/Bv/APBH9jf/AIKuf8FEPEPgv/gq1rfiLx74x8Q6c994dhv9VuUj1i7tg8t3Hc3Uci3ZkjgHmwIkqIUSXceFU+1/8HQX/BFn9l7/AIJjat8OPjJ+yDDeaL4Y8dzX+nXmg3VzLex2d3ZCOVJIJ52eYpKkjBkkdipjBDHdgAH+ohomt6L4l0e18Q+HLyDULC9iWa3ubaRZYZonGVdHUlWVgcggkEVqV/lQf8GuP/BU345/ss/t1+D/ANjfVtXudU+FnxW1EaRLo88heKw1S5BFtd2obPls0oWOZVIWRGywZkQj/VfoACQBk1+efxT/AOCtf/BMX4KeJZvBnxP+PfgXStXtZfJuLJtbtpbiCT+7LHG7tGR3DgY71/CL/wAHM3/BfP4o/Hv42eJf+Cf37JHiGfRPhl4Snm0nxLqGmzGOXxFqEZ2XEJlTDfYoHDReWp2zsGZt6eWB9yf8Eqv+DY39lD9ob/gjynxv/aF0O81D4wfFLQrvXPDWoJqFxbrosc0b/wBl+VDFIkE3mr5c8v2hJMiTYNu3NAH9s3wK/ar/AGYv2odNudX/AGbfiJ4a8f21ls+0v4e1W21IQeZnaJfs8jmMnBwHAPBr3mWWOCNppmCIgLMzHAAHUk1/g8/s/ftD/HT9kv4v6V8bP2f/ABHf+EfFmgzrJBeWUjROCjAtFKvSSJ8bZIpAyOuVZSCRX+tLN4T8Qf8ABwH/AMEZfAGpwePtV+EUvxN060vfEFx4bTcJntvNtr+wKyOrG0kuFfK+ZkqihiylgwB/NT/wcvf8HFXhz4q6Frn/AATm/YL1tb3QbgtZ+NPF1hLuhvkHD6dYyJ9+Ani5nU7ZQDEmYy5fo/8Agyd+KHw0+HPhn9o5PiF4i0zQWu7rwoYBqN3FamUImp7tnmsu7buGcZxketfxz/8ABQn9l3Sf2Kf21/iT+yjoWrza9Z+BNam0qLUJ4hDJcLEAd7IpYKTnoCa/XT/ggZ/wQw8A/wDBZTSfilqXjb4g6h4GPw9m0aKFbGxjvPtP9qLdli3mSJt2fZhjGc7j6UAf6sMXx8+BVxos3iSDxroL6dbSpBLdLqVuYI5ZASiM/mbQzBSQCckA46V/PH/wUM/4Ih/8ES/+CjnxvuP2jPiR4+Twb4v1Pyzq154U8RadapqTRhUElxFcxXUfm7FCmSNY2bGX3Hmux/Ya/wCDZv8AY0/Za/Zw+IH7LPx21Gf4zeE/H2q6drEtvqlu2mNaXWmxTwxvE9pOJA+24fDBwRX+Xx+3Z8CNF/Ze/bW+Lf7OHhmWWfS/AvjDWtCsZZzmV7Swu5YYWcj+Jo1Ut7mgD/ZG/wCCbX7Hn7D/AOw58AP+FGfsLfYZ9Agujc6lewXyald3t/Iiq013OhO6VkVQFAVFUAIqrxX6DV/DJ/wY+/8AJAPj5/2MGi/+k09f0Wf8Fo/+Cpng7/gk3+xnqPx3uraDV/GGsTf2R4T0eZiEu9SlUt5koUhvs9ugMspGN2FjDK0imgD9B/jd+0h+z3+zR4aXxl+0T450DwJpMjbI7vX9Rg06F3/uo07oGbkfKuTXyT4E/wCCwX/BK74l65/wjXg39oXwBcX5kEUcEmvWlu8rngLF50ieYT22bs1/maf8EvPgP8Zv+Dgv/grhp1p+2v4q1bxbZC1uvEfi28e48uZdIsCqra2wUBbeGS5mhgCQqgiSRmQAivfP+DpD/glP+zh/wTP/AGkPh1qv7JWgzeGPBHxB0S6f+zXu7i9jh1LS5UW4MUt1JLNteO4gYozsFbJGAQAAf6tUckc0ayxMGRgCrA5BB6EGn1/nX/8ABnx/wVF+Ol18f77/AIJr/FnW7nX/AAdqWjXWreFxfSvPNpV5p+xpLWBmJ2WssHmP5X3UkjBQAu+7/RQoAKKKKAP8gP8A4Oi1Vf8Agut8cwoxz4aP5+H9Nqv/AMGvv/KdL4F/7/iP/wBMOo1Z/wCDo3/lOt8c/wDuWf8A1H9Nrzv/AINyvin8Mfgr/wAFmvgz8TvjJ4j0vwl4a0ttfN7q2tXkVhY24l0S/iQyzzskab5HVF3MMswA5IoA/wBj+vir9jT9uD4M/t7aF8SdS+E1nfLYfDjxzrPw91M6jHEI7u+0cRGaaDZJIHtpVnQxs+1iM7kHf8WP+Cq//Bzl+wf+yZ8B9e0b9kvx1pPxT+K2pWsltokGgSrqGm2U8q4W7uruPNuY4c7xFG7ySMAuFUs6+Gf8GXuqalrf/BMX4j61rM8l1eXnxa1ieeaVi8kkkmk6OzMzHJLMSSSeSaAPWf8Agg/+wF4t/YB/4KN/tx+A7Lwdqfhz4d6lrXhq48HXlxZzRadd2Ev9pXXk2Vw6iOdbRbmOGTy2YxkBXw1f0Uy/tLfs4wSNDN8QPDaOhKsraraggjqCPNr22v8ALj/4O0f+Cav7LX7Bn7QHww+In7LWgDwrY/E2w1eTVNLglkktRe6ZLbkzxCVnaMyrdAOikJlAVUEsSAf6Y/hz46/BDxhrMPhzwj4y0PVdRud3k2tnqNvPNJtUs21EcscKCTgcAE1g/Hz9p39nP9lfwknjz9pTx1oXgPR5nMUV3rt/DYxzSAZ2R+ay+Y+OdiZbHav8Yn/glH+1r4L/AGEv2/fAH7XHxBtJ9Q0vwO2p3zWdtxLczNp9zFBCpwQvmzOiFyCEDbjwK90/4Ke6b/wVa/aknsv+CnP7dfg/xDZ+E/iFJt8PajcwPHpNnZOPMtrW1jLMba3ZG3QGRV+0fNIGkYuxAP8AXv8A2cv2tP2Y/wBr3wnceOf2X/Hmh+PNKs5RBcz6Lex3Yt5WG4JMqEtE5HIVwpI5xivoav8ANj/4Mk/DHxZl/bQ+LvjPS47pfAsHgtLLUpAGFq2rS31u9krfwmQQJdlepClum7nuP+DpT/guh+0VD+0rr3/BN/8AZW8RXvg7wr4Rigt/Feo6ZIbe91XULmJZmt1uEIkjtYY3VHRChkk8wPuQKKAP7kvjf/wUe/YB/Zs1iTw38efjR4L8KarESH0/UdatYrxdvXNuZPNGP9ysj4Hf8FPP+Cdf7SniS18F/Ar43eCvE2uXzbLbS7TWbY387DtHbM4mf/gKGv41/wDg3a/4I1/8EZf+Ckn7AV18R/i9oWreMPijY6hc6b4o+06vd2J0q4Z2e2a0itJYUaKW3KMJJ1lLSCReApUfyZ/8FZP2L9I/4Jy/8FFviX+yJ4N1W41TS/B1/ayaZeXGFuTaahaQX9uJCmAZI47hUZ1ChmUsFXO0AH+27XE+MviV8Ofh0lvJ8QfEGm6Et2WEB1G7itRKUxu2eay7tuRnGcZFfyb/APBpD/wVH+N37anwA8a/su/tG6pP4i174SjTpNJ1q8fzLq50i+EsaQTufmke2eAgSuSzJIqkkpk/tb/wVz/4Ju/sxf8ABRb9lXX9A+PugDUda8K6LrF54X1SOaWG40u/lt9wlj8t1VwXhi3xyBkYLgigD7h/4ab/AGbf+iheGv8AwbWv/wAdrvB8SPh23gmT4lLr+nHw5FE8z6r9qi+xLHESruZ93lhVIIYlsAgg1/gd1/Vb/wAEpP8Agnj/AMFMf+C3H7Jvh79lePx5/wAKz/Zm+FFzeRR3RtpJoNT1a9upL6X/AEVJYvt1xCZ8bnkjit02hf3juWAP9B23/wCCy/8AwSeuvFn/AAhMH7Rfw+N+X8sf8T60EBbOMCcyeSTn0ev0g0zU9N1rToNY0a4iu7S6jWWGeFxJHJG4yrKykhlIOQQcEV/iYf8ABVT/AIJwfEX/AIJXfth6x+yh8QdXg8RrbWltqel6xbxG3S/0+7B8uUwl5DEwdJI3Qu2GQ4Zlwx/Rn/gkv/wVq/4KteDvgnqP/BKD9hRJ/EHiL4jahDB4SvHk33XhqNxI2oGz8zMcMci4laWRhHa7ZJVG9y6gH+n3+0R/wUP/AGE/2S9XXw3+0p8XfCfgvVXQSLp2qapBDelD0b7Nv87ac/e2Yr0L9nz9rf8AZc/ay0S58Rfsx/EPw74+s7FlS6fQdRgvjbs4yqzLE7NGxHIDhSa/zPf+Cs3/AAbOftJ/sBfsaXf7fXxI+LVt8Sdbgv7V/GlqLSZHt5NUmEP2iO+nneS9zcyxo7SQwufM344Ir8D/ANhD9tL4w/8ABP79qbwn+1H8FNQmtNR8PXkT3dtHIUi1GwLqbiznA4aKdAVYHocMuGVSAD/c5orI8Pa7pfinQLHxNoconstRt4rq3kHR4plDo34qQa/io/4Ojv8AgvV8R/2U9YP/AATu/Yw1qTRPG17ZR3Pi/wARWjFLvSra7QPBZ2kgIMVzNERLJKPmiidPLIdyyAH9Snx+/wCCk3/BP/8AZZ19/CP7Q3xl8IeEtZjGX03UNWt0vkHq1sHMwHoSmDXpf7PP7Yf7KX7Wml3Gsfsx/Ebw549gs8faf7D1KC9e3z081InZ489t6jNfwJ/8GvX/AARD/Z0/b1+F/jv9tv8Abz8PSeN9JutUk0Lw/p95dzxRzXEaiW+vpmhdJZX3SpFES+AwlYgtsZfxz/4Ks/s/ePf+CEn/AAV61XTf2KvEup+FLfTls/EvhG8huGa4t7C/BJtZWfPnxRzJLAVl8wTRKPN3FmoA/wBgeivyz/4I3f8ABR7Rf+CpP7B/hf8AacW3h0/xGjyaP4nsIDmO11myC+cEBJIjmR47iJSSVjlVSSQTX6mUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/hj/APBQfx/4q+Kf7d/xm+Ifjd5H1XVvG2uz3AlPzIxvZQI/YRgBFA4AAA4Ff6XP/BuB/wAFoP2cP2yf2SPAX7IPizWbbw78Xvh1odl4ffR72VYm1e00yFYILuyLbRMWhjUzRL+8jcMSuza5/jR/4Obv+CYHj/8AYZ/b/wDE3x20TTJZPhl8YdTudf0nUY0YwW+pXjGa+sZW6JIsxeWJejQMu3JRwv8AODp2o6ho+oQavpE8lrd2sizQzQsUkjkQ5VlZSCrKQCCDkGgD/frr+Hz/AIOav2CvB3gH9tv9mT/gpT8N9JSxvdY+IOh+HPF88C4FzcR3EM2nXEgHHmCKCeF5DyyrEvYZ/EH/AIJof8HZP7dH7IUmn/Dn9q/f8bPAcG2HzNRm8vxDaRDjMV8QftG0ZJW6Ds3CiVBX+hz+wP8A8FKP2Lf+Co3woHxK/Zi8Qwaz9j8ttS0S/RYdW0qY/dW6tWLFOQQkqF4nIOx2wcAH6EUUV/naf8HSH/Bej4pXnxg1v/gmr+xz4iuNA0Hw2TZ+N9a02Vobu/vyD5umxyoQyW8AIS42kNLLujPyIRIAf2m/GP8A4Ksf8E1v2f8AxJP4M+MXx18E6HrNq2y40+bWbZ7uFs4xJDG7SIfZlFe3fAL9sb9kz9qmG4l/Zo+Jnhfx8bNFkuY9A1a21CW3VuAZY4JHePP+2BX+fb/wa7f8EK/2S/8AgoH8F/HP7Wv7bWhz+LNDs9YbwzoOii8ubCDzoIIp7q6ke0khmc4uIo4QJAqlZCwY7Sv5lf8ABeL/AIJ+H/gin/wUc0l/2O9c1fw14d1/TIPEvha7t72VL/S5BJJBPbLdKVlbypI9yMSW8uRVZmYEkA/116838XfGP4Q+ANTXRPHfirR9EvXjEy29/fQ20pjYkBgkjqdpIIBxjIPpX85P/Btf/wAFvdf/AOCofwg1j4HftI3VsfjJ8P4I57meGMQjWtIYrGt95a4VZo5SI7kIFTLxsoG8quJ/wdL/APBN39mL48/sA/EH9t3W9AEfxX+HOkWH9l67DNKrmwhvl8y1liDiKSMpcTMpKb0cghsZUgH9FP8Aw03+zb/0ULw1/wCDa1/+O16BrXxD8AeG/DUPjPxFrmn2Gj3IjaG+ubmOK2kEoyhWVmCEOOVweR0r/A3r/aH+Av7H37Of7c3/AAR8+Bf7P/7UnhuLxT4Uvvh54QuHs5JpbcrPDpcHlypJA8ciOm47SrCgD9Af+Gm/2bf+iheGv/Bta/8Ax2vQfB/xC8A/EO0mv/AGuafrkFu/lyyafcx3KI5GdrGNmAOOcHnFf4Xv7Xfwe079nj9rD4n/AAA0eWSe08DeLdb8PwSTY8x49MvJbZWbHG4iME+9f6B3/Bkb/wAmb/Gb/sc7b/0hjoA/sh8YfFv4U/Dy9i03x/4n0nQ7idPNji1C9htndM43KsjqSMgjI4zXI/8ADTf7Nv8A0ULw1/4NrX/47X4wf8HE/wDwTV/Za/a//YI+KH7RnxI0AH4ifC3wXqer+H9fglkjuLZNJjkvmtyobypIZdroyyI2A5ZSrAEf5C1AH++/b+I/D134fXxZaX9vLpTwfalvElVrcwbd3mCQHaU2/NuzjHOcV8UfD3/gqJ/wTk+LPxch+A3wx+OHgnX/ABfdS+RbaZYa1azzXE3P7uHZIVlk4PyRlm46V/m+/EH9rT/got/wVS/YX+Gv/BNj/gnR4K8Sa58Ovgt4G0oeOf7GiZW1XUooN7RztuXdBEUZLe1BLXEqNIEk2x7P52Pg74I+Meu/Hjwz8PvhFZX6+PptbtLPSLa2V472PVROqwqo4ZJElx6FSOcYoA/3ma8E+PH7VP7M37Lmiw+Iv2k/iD4d8BWVySsEuv6nb6cJmHUR+e6Fz7KCa/LL/gvF/wAFdNN/4JJfsfR+MvDqW2p/FDxq8ul+E7Cb/VCeNAZ76VM5aC0DISmfnkeNCQGLD+Bb/gif+xz4y/4Ly/8ABUbUvFn7duv6v420LRNPl8SeLru6vHS4v1R0htbFZUIaGKSRx8kPlhII3WMxnaQAf6Ufwx/4K2/8EwPjJr0XhX4b/H7wHqOqTzC3gs/7dtIbieVjgLFHLIjSkk4GwNntX6HV/kb/APBzN/wTM+Bf/BND9unQvCX7L+kTaF4B8aeGLbWLOwluZrtLS8immtrmGOW4eSZlxHFL+8kYhpSAcAAfvf8A8Gd3/BUX46/FjxZ4r/4Jz/HDW7nxHpWg6E/iPwrd38rz3VlDbTQW89iJHJJgxOkkKH/VbXA+UgKAf3s186/tAftefsr/ALKWmQax+0x8RvDfgKC6Gbc69qdvYNPjj90kzq0h46ID0r8nv+DgL/gsTaf8ElP2VbXUvh/Hb6h8VfH0k9h4VtLlfMgtxAFNzfTJkbo7cSIFT+OV0BBQPj+E/wD4IWfsS+KP+C6H/BTbWfiH+3ZrOreOvDnhmxbxD4sur68k8/UZXcRWdiZVO+OKRyzbYigWGFkQplSAD/S7+AH/AAUu/wCCff7VHiZfBP7PPxl8IeLdcfJTTLDVYGvpAvUpblxK4GOSqECvuCv8wj/g6S/4JE/AL/gmj4/+GP7TP7Eumy+C/Dvi6a5sbvTbW6ndLDV9P2TQ3FtJK7yx+cjMSofCNDlQN2B/Rz/wa1/8FkvH3/BQ34Ha9+zJ+0xqjat8T/hhb280WqzsDc6zokp8pJpe7z20gWKeQ8yCSJmLOXYgH9X1FFFAHg3xo8Wfs1ax4c1j4L/H3WvD39na/YS2WpaRrN5bxrc2V2jRukkUrqSkikjpgiv5bdE/4Nlv+DfbRvjMvxSm+IF7faRHdfaV8K3Pi2xbSMbtwhLLGt80QGBg3ZcjqxzXu/8Awc8/8Ewf2Ufjz+wf8Tv23tS8NrbfFvwJo9pdWPiCCaVZXtLO4QPbTRB/KkjMMkgUlNyNgg8EH/KboA/30/DkXg/QfB1hD4TFpaaBZWcS2QtdiWkVnGg8vy9nyLEsYG3b8oXGOK80/wCGm/2bf+iheGv/AAbWv/x2vmT/AIJj6JpPif8A4JRfs9+G9fgW6sdQ+E3hO2uYX+7JFLo9srqfZlJBr/M7/wCDnP8A4J8/s8f8E6/+CiWm/Dn9lzR28PeEvFvhGx8SJpgmlnitLqW6u7WZImmd5Nh+zLIFLEKXIXCgAAH+sJ4U+NHwd8ear/YXgfxZo2s32wyfZ7G/guJdi4y2yN2bAyMnGBXz1+0N/wAFGf2DP2TddXwp+0j8X/Cfg3WGUP8A2dqWqQRXoRsYY2+8zBTnhimDX+PP/wAEuPHf7bPhH9r3SPDH/BPKNz8VvG1neeGNKmiQNNbJqMe2eeN2ISFooldzO+VhQNJwVDD9Vv8AgsX/AMG6v7Tn/BNT9nHSf20Pir8TrP4mXWu6tHZ+KfLgnSez1C/DyCUXNxK73kbujK8rpFJvZSUIJIAP9SL4DftM/s6/tSeE5PHX7NvjrQfHmjwyeTNd6DqEGoRRSkZ8uQwu/lvjna+Gx2r3Cv8AEz/4JJft9fFD/gnP+3P4H+PPgLU57XSJNStdP8S2KPiHUdFuJVW5hkU/KSEJeJiDslVWHIr/AGzKACiiigD8gP8Agr7/AMFj/wBnL/gkn8DpfFvj2eHXvH+sQuPDPhKCYLd30vIE02MtDaIw/eTEc42oGcha/wAtf4D/ALWHxX/a2/4LG/Cv9qz9pbXRf+IPEPxQ8MahqN7O3lW9vEmpW22NAx2xW8EShI1zhI1Azxmv23/4Oe/+CPMv7GENt+3Z4o+L/iD4m+Ivif4wnsJ4tdgQPawPBNcRIsyyMWWFY1iRAiIqABVUACv5bv2Wfg9ZftDftOfDn4A6lfPplv458UaR4flvIkEj26andxWzSqhIDFBJuAJAJGM0Af7kGl/tD/ADXNTt9F0Txz4fvLy7kWGCCDU7aSWWRyAqIqyEszEgAAEk9K/lv/4PTf8AlFZ4J/7KjpP/AKa9Wri/2Vv+DPP4L/st/tN/Dz9pbSfjdrer3Xw+8SaX4jhsZtIgijuZNLuY7lYmdZyVVzHtLAEgHOK7T/g9N/5RV+Cf+yo6T/6a9WoA/wA3z9kj/k6z4Y/9jZov/pZFX+3t8f8A9qv9mb9lPw7D4s/aX8f+H/AenXLFIJtd1GCxE7DqsQldTIwz91ATX+Fv8OfGes/Dj4haD8Q/Dkcc2oaDqNrqNrHMpeN5rWVZUDqpVipZQCAQSOhFf2IftFf8G7v/AAVa/bY/Zd8Xf8FTf22fifFN8VJ9HuPEkXgrUbeSS4j02CNrkWvnCRYbGRYwfKs44WRCQrtG+8KAf39fs4/t+/sR/tfX8+j/ALMPxX8LeOdQtYzPPY6RqcFxeRRA43vbhvOVM8bigXPevryv8Ef4VfFX4j/A74jaL8XfhDrV34d8TeHbuO+03UrGQxT288RyrKw/Ig5DAkEEEiv9sj/gmF+1nf8A7dH/AAT/APhT+1brUMcGp+MNBhn1JIeIhqFuzW93sHZDcRSFR2XA7UAfeFfN37QX7Y37J/7J9jBqH7TPxJ8NeAkuxm3XXdTt7GScc/6qOV1eTofuA9K/IT/g4W/4LLD/AIJNfsx2Nl8K1t7z4t/EI3Fp4ahuEEsNjDbhftOoTRnhhD5iLCjcPKwyGRJBX8RH/BAn9gvVf+C3/wDwUb8TfFj9u3VNV8d+GfCNkNc8UXF/eytcape3L+VZWckwYSrE+2VyI2XEcBjUqCKAP9Kv9nz/AIKSfsB/tW+If+EO/Zz+MXhLxfrRBZdN0/VYJL5lXJLLblhKygDJIQgV9sV/l1f8HQ//AASc+CP/AAS9+NPwx/aJ/Yksp/Bfhvxt9rjfT7S7nb+zNY0oxSLNbSyO0sYmSUMqhz5bxMV2ghR/T9/wa+/8Fi/HH/BSD9nbW/gN+0hqP9pfFP4WpbCXUpSBNrOkXG5IbmQDG6eF18q4fHzZjdiXdqAP6l6KKKAP5Av+D0bx/wCKvDP/AATK8F+DNDeSHT/EvxAsYdRZDhZIrayvZ44X9Q0qJIPeIV/E5/wQc/4KUeFv+CWf/BQbR/2g/iPZT3vg/WdNufDXiH7Iu+4gsL54pPPjT+MwzQRSMgwzIrKOSK/00P8AgvH/AME6tZ/4Kbf8E4/FXwF8CrG3jTR7iDxL4XEzbEk1TTw4EJJwAbi3lnt1ZiFVpAzcA1/jbeKvCvifwL4m1DwX410650jWNJuJbO9sbyJoLi2uIWKSRyxuAyOjAhlYAgjBoA/3f/gd8ePgz+0v8MdL+M3wB8Taf4u8LazGJbTUtMmWeFx3Ukco69HjcB0bKsAQRVP9ob9n/wCE37VPwS8S/s8/HTSItc8J+LbGSw1Gzl/ijfkMjdUkjYK8ci4ZHVWUggGv8Tv9i/8A4KFftj/8E+PH3/CxP2SfHeo+E7mVla8tInE2n3yr0W6tJQ8EwxkAuhZc5Uqea/vz/wCCWP8Awd7fs+/tE3+lfBn/AIKFaXbfC7xZdFLeLxLaMzeG7qU8Az+YzS2BY4GXaWEcs0sY4oA2f+DSz4FeKP2U/EP7Xn7K3jPcdS+H/j2z0mV2G3zRbpdRJMo/uypGsinurA1/Wf4n+N3wX8Eau/h/xn4v0XSL+MKz217qEFvMoYZUlJHVgCORxyK7fRn0C/tV8Q+HjbzQakiTrc2+1kuEZco4deHBU5VskEHiv5PP+Dqb/gmD+yj8TP2EPiT/AMFBYfDa2Xxe8IR6PMuuQTSq93aC7t7J4J4t/ksqwSko2zerIuGxkEA/pr/4ab/Zt/6KF4a/8G1r/wDHal+L/wC0n+zz+z74Di+KXx18daB4O8Nz7PJ1TWdRgsrSUyDKCOWZ1Vyw5UKSW7V/g5V/b3+xN/wb/wD7ZP8AwXD+BHh/9tX9vP4vXngnSJ9FtdI8AaRFp/24w6LYRLBbyrA88KW9swj3Ii5kuMmZmG8M4B/c78Bf+Cl//BPj9qHxRH4G/Z9+NHg7xXr0zOsWl2Gr2z38uwEsY7YuJnUAEllQjHOa+4K/w2P26f2N/jT/AME1/wBsHxP+y98UbgR+I/Bl5FJbalYM8cdzBKqz2t3btwyh42Vh/Ej5Uncpr/RP/wCDWD/gsr48/b9+Deufsl/tOav/AGv8TfhnaQ3Vlqc5JutY0ElYRLOxJMk9rKUjllODIssTNufzHIB/WxXmvxS+M/we+BvhpvGfxr8V6P4P0dM7r7W76HT7YY5OZZ3ROPrX5p/8Fvv+Clcn/BK79gXXv2jvDtnFqPizUruDw94Yt7kbrc6tepI6STAEFo4YoZZioOXKBMjduH+bB/wTd8afCv8A4Ktf8FZfCmlf8FkvHHiPxbY+OJ5LCzme9aGObWLhlFnZOyYNraTOTEkdqI9sjRquxSxAB/prRf8ABa3/AIJHza4PDyftG/D8XDdHbXLZYP8Av8XEQ/77r9Dfh/8AEb4e/FnwjZfED4V69p3ibQdSTzLTUtKuo72zuE/vRzQs8bj3ViK/z0f+DmL/AIIDfsRfsIfsn6R+2H+xVpd54OFnrtro2r6HJfXOo2k8F8kmyeOS8lmnjkjkjAK+YyOshOFK8/z9/wDBEv8A4KnfHP8A4Jnfti+GNb8Javcy/D/xPqlpp/i3w+8hNpeWU8ixtOIzlVubcN5kUq4bK7CdjMpAP9mSiiv4OP8Ag6U/4L3fEz4OeOLv/gmz+xVr82gara28b+N/EmnS+Xdwm5TemmW0q/NE3lsslxKhDjcsasuJQQD+uX47f8FMv+Cen7MniGfwd8fPjV4N8La3bf67TL3WLZb+P/ftg5mX8Uru/gD+3J+xl+1Xdvpv7NXxW8J+O72KIzy2eh6xa3t1FECAWkgikaVACQMso61/Cv8A8G2f/Bvv+yR+3P8Asb+If2v/ANu7QLzxOni3UbvS/C9tHqFzYrbW1ifLmvg1rJEzzNc+ZGolLxgRElG31/Ht8ZPCXxJ/Yd/bC8Y/DrwVrmoaH4n+F/inU9HttVsZ3tL2KfS7mS3EscsRVkY7MgqRweOKAP8AdYor8WP+CAP/AAUI8ef8FKP+Ca/hf46fF1opvGmj3l34b1+5hTy0urzT9hW42j5VeaCSKSQLhfMZtoVcKP5sP+Doz/gvv8UvAPxK1T/gmn+xTr8/h59KiSPxz4j0+Rorxp5kWQabazoQYkSNlN1Ih3szeTlQsgcA/sE+N/8AwVH/AOCcn7N3iibwP8cvjd4M8Oa5bNtn0261i3N5Cc4xJAjtJHz/AHlFe9/AT9qL9m39qfw1L4x/Zr8e6B480yBgk1xoOoQX6Qu2cLL5LsY2OD8rgHiv4Xv+DZ3/AIID/sj/ALWv7GWq/tnft4eET40/4Tm/vNP8NWNxeXFtBBp1i5gnugbaWGQzy3SzRhmY7FiDLgsTX86n7Wui/Hn/AIIDf8FgPG3g39kfxbfaRdeBNUhn0e6Z963mj6jDFeQW16g2pcp5MqxTqy7WdCwCkAgA/wBkOivhT/gmp+3L4K/4KO/sVeBv2uvBUC2H/CTWZXUdPD7zYalauYbu3J6kJKjeWxALxlXwN1fx/wD/AAdJf8F8fid8OviJqH/BNX9irxBP4fn02JB458RabKY7sy3CbhpltKnzRBY2VrmRCHLMIsqFkDgH9gXxy/4Kd/8ABO39mnxHP4M+O/xs8GeGdbtDifTLzWLYX0X+/bq5mX8UFek/AH9tv9jn9queWz/Zp+KfhTx5dQRefNa6Fq9rfXMMeQN0kMUjSRjJAy6jrX8M3/BuL/wby/sgftt/sLav+11+3RoF54jl8dX19p/haKHULiyWxsrBzbyXqG2kjL3DXazIBN5kYWEHYdzV/Gf490v4rfsT/tWeJfCPgrXdQ8PeLvhp4k1HSYtU06d7O8gutMuJLdnSSJldGyh6H2oA/wB2C9vbPTbObUdRmS3t7dGkllkYIiIgyzMxwAABkk8AV4x/w03+zb/0ULw1/wCDa1/+O1+Y3/BE39tTU/8AgrB/wSt8P/E79oSzttR1zUItR8J+LYkj8u3vZbYmCRygwB9ptnjkkVMKryMFAAAH+eH/AMHMv7AH7Pv/AATs/wCCkUXwv/Zj0ttB8J+KvCmn+J4dK86SeKymuLi6tJY4WlZ5PLZrQyBWZtpcquFCqAD/AFnfCXxk+EPj/U20TwJ4q0fW71IzK1vYX0FzKI1IBYpG7NtBIBOMZI9a8q/aQ/bU/ZH/AGP9OtdT/aj+JPhzwEl+GNomtahDaTXIT7xhidhJLt77FbHev8hH/gjV/wAFEtO/4JfftK+Kf2ohpR1zXE8F6rpHh/TyGMU+rX0lutv5xXBEMe1pZMEFlQopDMK83/4KQfBH/gptonxGtf2of+Ck/hjxNp2ufFHdqNrqviCIoLkf88VAytv5S4C2hEbRR7cRqm2gD/Z3+CHx++CH7S/w/t/it+z34t0nxr4buneKLUtGu47y2Mkf30LxMwDrn5kOGXuBXrZIAyeAK/hO/wCDH3wx8WbH4SfH/wAW6zHcx+CNR1TQbfSmkDfZ5NStorw3piydu5YpLUSkDn5AT8tfjN/wcY/8F0/2jf2s/wBqXxx+yB8E/El74X+DvgbU7rw/JZadKbd9du7F2hubi7kjO6WBpVcQwlvK8sK7LvPAB/oo/Fz/AIKp/wDBNb4EaxN4b+Lfx38DaLqdv/rrGXXLR7uMj+/CkjSL+Kiu6/Z//wCCgv7C/wC1XrA8Nfs3/F7wh411YxtN/Z2kaxbXN8I16ubZZDMFHclABX8nX/BIb/ggT/wRD/4KD/8ABLrwb8Y7bRtb1zxhrmn/AGTxBr51i6tr/TNfgQLeQxW0cgs1jjlJaASwSF4WjZi2c1/BL+0r8J/E37GP7YHj74HaHrc51X4YeLNU0S31e1LWszy6RdyQJcRlG3RM3lh1w2Vz14oA/wB1+vnj9of49/Db4O/D7xHN4g8XaP4f1q00W7vrWO/vYLeUFIpDHIElcErvU4OMEgj1r8X/APg2b/4KXfFb/gpH/wAE/wCbU/2gLo6n46+HWrv4c1LVGwJNTgEMc1tcyBQB5pRzFIcfO0Zc8uceX/8ABbf/AIN6Phh/wU9+MM37Y/i74k6p4Uv/AAt4NGkx6bZ2MVzDMunSXd2rtI7qwLmcqQBwFB70Af5Qt1dXN9cyXt7I000zF5HclmZmOSSTySTyTX+r3/wbj6v+zL8T/wDgg/8AB39nX42XfhnXotaXxFY3vhrWZbW4+1CbxBqDRxSWcxO/flWVShzwR2r/ACfa/vP/AODeH/g3g+Ffxw+DvwA/4K1ar8SdVsdasvEEviBfD0VjC1q0nh7WLi3jjM5fftl+yKzHbkbiB2NAH9WPxVtv+CS//BDD4J+Iv2oo/BXhT4WW0sTW5bRNOt4NX1ibl47G2wFlmd2GRHuEaAF3KIrMP8rX/gq//wAFQvjZ/wAFXf2p7/8AaB+KYOl6NaK1j4a8PxymS30nTg2RGpwA80h+eeXaDI/QKioi/wBnv/B0j/wR3vfiD8Lvin/wVV8afGHXtSPg2y0pND8F3Fsj6Zp8E1xZ2MsUEhlzGJHka4ciMFnODng1/nGUAf7fX7HX7SH7PGn/ALI3wssL/wAe+HIJ4PCGhxyRyapbK6OtlCCrAyZBB4IPIr75gnguoEurV1kikUMjqcqynkEEcEEdDX8CXwN/4Mvvgh8XPgp4P+K158ddcspvE+iafq0lumjW7rE17AkxQMZwSFL4BI5xX94vgHwpD4D8C6L4Ht5jcR6NYW1isrDaZBbxrGGIGcE7c4oA62iiigD/ACzv+DytVH/BWrRyB1+Hmjk/+Bd/X4wf8Ebf+Usf7N//AGUfw3/6XRV+0H/B5b/ylq0b/snmj/8ApXf1+Hv/AASc8YeEvh9/wU6/Z/8AHPj3VLTRNE0jx/4fvL/UNQnS2tbW3hvImklmlkKpHGiglmYgADJNAH+3lXxf+zr+3R8IP2nP2hfjP+zd8O7bUE1n4Happ2k65c3KRraXE+pW7Tr9mZJGdhGUeOTeiEOvAI5r8yf2/P8Ag5N/4Jj/ALHHwi1bxD8NviJonxZ8bfZ5Bo+geFLxNTjuLogiP7Rd25e3ghVsGRjJ5m3OxHbAr8h/+DNf4t+Ovj7rX7Wvxw+J12b/AMReL/Euh6xqVwePMur3+0pZCBk4G5jtHQDAFAH3F+wj/wAE+vE37Iv/AAcmftDfFXwP4L1LSPhd4/8Ah+NX0/VUspV0j+1NRvdPlvLWO52eR5xuIriYQK25I24UKBX9HeqftD/ADQ9TuNF1rxz4fs7y0keGeCfU7aOWKSMlWR1aQFWUggggEHrXsNf513/B4X/wTV/Za/Z40zwX+238DtAHhzxT8QfFGpWviryJZHg1K7vEe9+1NHIzLHN5iy7jGFD7+RkA0Af346T+0L8Ate1O30TQ/HPh+9vbuRYYLeDU7aSWWRzhVRFkLMxPAABJNXvjF8cPgz+zz4HuPiZ8efFmkeC/DtqypLqWt3sNhaq7/dUyzMi7m6Kuck9BX+H7+w38W/CPwB/bW+D/AMd/H7SroPgnxv4f17UmgTzJRaabfw3ExRONzeXG21c8niv1K/4KsfEj/gqn/wAFR9OvP+Cpfxp8A+IrH4Fi8ksfCxWNm0fSLFpCibF4Lb2QLPemMJLP8m4YSNQD/Vj/AGav24f2Pv2x4dRl/ZY+JXh3x62kbft0WjX8VzNbByQrSxK29FYg7WZQrYOCa+p6/wApj/g0F8MfFnVv+CvmneIvAcdz/YGk+GNZbxLLEGEAsp4gkCSkYX5rzyGRTkkpkD5SR+4f/B1l/wAFwfj5+zR4+sf+Cdv7IOuXPhLU7vSo9T8XeILFvKv1ivc/Z7K1mB3wEovmzSpiQh41R1HmBgD+vT47/t4fsT/sv3n9l/tFfFrwj4JvT0tNZ1m1tLpuM/LDJIJDx6Ka8j+FP/BWr/gmL8bvEVv4Q+F/x88C6rq95MLe2sRrdrFdXErHASGKV0eRiegQHPav4d/+DZX/AIJh/wDBJz/gp58H/iJq/wC11pmreOfi7oepl9QsbzVruxhh069X/R7u3NnLDJM7yiVZmmd9rhcoAyl/xA/4L4/8E3/h1/wS7/4KFar+z38Hb67vPCOq6TZ+ItHjvmElxa2960sZt3k48zy5YZAjkBim0NlgWIB/sp1yvi/x34I+H2mx6x491mx0O0lkEKT6hcR20bSEFggaRlBYhScZzgE9q/hk/wCDPL/gqb8c/jLr/in/AIJyfHTV7nxHp/hnQD4i8J317IZbiytLa4ht7ixMjZeSLNzFJAGJ8pVdQdmxV/sH/ba/YR/Ze/4KH/BZvgH+1l4bHiTw8l0NQtUE8ttNaXyRSwx3MMkLoyyxpNIFzlTuIZSOKAPTv+Gm/wBm3/ooXhr/AMG1r/8AHa9B8P8AxC8A+LPD83izwtrmn6npVtvEt7aXMc1vH5Y3PukRio2g5bJ4HJr/AAcPih4Lk+G/xM8RfDuWUzNoGp3enGQjaXNrK0W7HOM7c4r+gz/gjb+yd/wUw/4Kq/APWv8AgnL+z74r/wCFffAXTNfuPE3jLWzHIIbm+v7e3gitZRG6teEJaK8dqGSNSWklbPlYAP8ASJ1//gsj/wAEpPC/i5/A+u/tEeAINSidopE/t21aON1OGV5VkMSEHghnBBr9BvCPjDwl8QPDVl408B6pZ63o+pRCe0v7CdLm2uIm6PHLGWR1PYqSDX+Nb/wWc/4JCfEP/gjz+0Ro/wAHfE3ieDxtoXifS/7V0fW4bU2DTKkhimiltjLN5ckTgZxI6srqQckqvqX/AASC/wCCwn/BQn9hjSfFf7Jf7HFpJ4tv/issWneGdJmDXI0vxBcypGl7Z25DI8rxFkaNtsbP5ckm5YijAH+r9+0V+3B+x1+yMlv/AMNO/E/wx4Elu1L28GtanBaXE6jqYoXcSSAdyqmov2cv25/2Nf2vWuYf2X/ij4Y8eXFlGJbm20XU4Lq5gjY4DSwI5ljUngFlAzX+d/8At+/8GwX7cnw4/Yt8af8ABSX9pT4xQeNvinplofEXirQZoZbqX7Ou03DDVZJz501vFlmTyBGQhWNyAu7+U/4CfHn4tfsw/GLw98e/gZrdx4e8V+F7tL3T762Yq6SJ1Vh0eN1JSRGyroxVgVJFAH+81RXz3+yV8d7L9qL9ln4cftJWEKW0fj3wzpXiDyEJZYW1G2jnaPJ5/ds5Tnniv5yf+Dmn/guV4p/4Ju/DvS/2WP2XbxLb4vePLF7yXUtoc6Fo7M8QuEB4+1TyI6QZDBAjuRny8gH9An7Q37e/7E37Jd5Hpf7S/wAV/Cvge+lTzI7LV9Vt7a7dMZ3Lbs/msMdwhHNP/Zz/AG8/2K/2u55rL9mP4qeF/HN3bJ5k1po+pwXN3En954FfzVXn7zIBX+dj/wAGyn/BJ/4ff8FWfjl8Sf2t/wBvS3vfHnhbwrJFb+TqV7Oz6zr1+GkeS6nVxPKLeIB3BkG95YySyhlPzH/wcI/sBaJ/wRn/AOCj3hnxl+w/f6j4L8P+JdMi8SeHDZXswutGvreV4biGC4ZjMUUqkiFnZgJShJA5AP8AWdor8G/+Dev/AIKval/wVW/YkHiv4ntCvxN8BXSaJ4pWFVjW6cpvtr9Y1AWNbpAwZQAomjlCgIFFfvJQAUUUUAf/0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5u51Xwhreo3ngK8ubO8u/soku9Od0kk+zT7kDSQkk+W+GUFhtbBHrX8XH/BVv/g0C+E/xu1PU/jd/wAE19TtPh/4hume4uPB+olhoVxIeT9jlRXksmY5xEVkgyQF8lBWh8Vv25vD/wCxb/wd1XOk/EG9Sx8LfFTwbovg6+nmfZDb3N1FHLYytngf6TEkJYkBVmZjwK/tboA/wrP2sv2J/wBqv9hj4kSfCf8Aaw8D6n4L1kbjCt7Fm3ukQ4MltcIWguI88b4Xdc8ZzXzbomt6z4a1m08R+HLubT9QsJo7m1uraRopoJomDJJG6kMrqwBVlIIIyK/3cP2jf2Y/gB+118K9Q+Cf7SvhPTvGXhfUlxNY6jEJFVsECSJxh4ZVz8ksbLIh5Vga/wAkL/gvn/wSYg/4JLftlR/DnwHfT6p8PPGdkda8MXF0Q1zDCJDHNZzsAA8lu4GHA+eN42PzFgAD/QQ/4Nr/APgqp4o/4Kb/ALDktt8aL03/AMT/AIY3UWjeIrtlCm/gnVnsr0hQFDzRo8cmOssLvgBgK/CX/g+d/wCbXf8Audv/AHC1yH/Bjnp3i3/hPf2i9Wt9y6ENP8NQ3GR8r3fmX5hwehKp5ufTcPWuv/4Pnf8Am13/ALnb/wBwtAH8x/8Awb7xxy/8Fmf2fFlUMB4mBwRnkW8xB/AjIr/Zsr/GW/4N9P8AlM3+z7/2Mv8A7bzV/s00Af4d/wDwU++H2m/Cn/gpF8fPhxokaw2GjfELxJbWkaDCpbpqE/lKB2wm0V/a7/wY9/FvWtV+EH7QHwJvJ86foWsaFrtpCe02qw3VvcMPqtjAD+Ffxm/8Fd/Ell4t/wCCqH7Rmvac2+CX4keJkjcdGWLUJoww9jtyPav7If8Agx2+GGraf8Nv2hvjPd25Fhq+p+HtFtZz0M2nRXk86D3C3cBP1FAH3Z/wcH/8G5XxE/4KnfF7RP2qv2XvFek6D44sdJi0TVNM8QGaGwvra2eSSGaOeCKd4508xo2Vo2SRdnzRlTv+H/8AgmJ+xV+zv/wa/ap4t/a//wCCpPxk8Nw+PvFehNoWieFvDTzahdNp8k8VxMyRNFFPNJJLbwoHEKQQ7TulO/5Puz/g5O/4L6+Kf+CbGlad+yb+yZLAPi/4osRqF5qk8Inj0HTJSyRyIjgxvdzMreWHDLGilnU7kz/JR/wQO/4J4al/wW2/4KFeIfiN+2d4h1PxV4c8HwReIfFU99dyT32tXM8uy2tJJ3JkEcpRzKwIYRRlEKlgygHhH/Bfz/gqTov/AAVl/ag8L/H7wN4E1XwV4U0fQG0TRpdXdWuNUghu55HuCI18pMPIYzHHLMFKHL5OB79/waTyOn/BaTwaqnh9A8QA/T7G5/mK+uv+DzXwZ4Q+HX7aPwY8CfD/AEq00PRNJ+G8NrY6fYQpbWttBHqF4EjiijCoiKOAqgAV8hf8GlX/ACmm8F/9gHxB/wCkT0Af3Vf8HN/x71/4Bf8ABGT4sXvhWd7XUfFi2HhdJUOCINUuY47pT6iS0E0Z/wB6v8kr4J3Gj2nxm8I3fiFd2nxa1YPcg94VnQuP++c1/q3f8HXHwv1n4j/8EXPH2p6JEZ38Karomtyov3vJjvEt5GA77FnLt6KpPav8kOgD/fP8c+CfCfxL8E6x8OPHthFquheILG403UbKcborm0u42imicd1dGZWHoa/jY07/AIMof2NrT46x+NLz4r+JrrwDHeC4/wCEZa1gW7eENu+ztqKsPkI+UsLYPt6MG+Yf0Qf8EfP21fD/AO37/wAE6Phh+0Tpt39q1W40iHTPECs2ZIda05RBeK46jfIplTPJjkRu9fphQB/O7/wc5fFS4/Z0/wCCI/xE8O/D9Rpo8Qf2R4Tt1hOxYbO6uYhNGoH8LWsckWOm1q/yf/gR410X4bfHDwZ8RfElhJqmnaBrunaldWUJCyXMNrcJK8SEggM6qVBIxk1/qw/8HX/w4n8ef8EVfiBrdrG0r+FNW0HWAqjJ2/borRjgdlW5LH0AJ7V/kq6bqN9o+o2+raXK0FzayJNDIhwySIdysPcEZFAH+n1/xFVeMP8AozD4s/8AgK//AMjV/nPap+xt+2Bf6ncX1v8ACHxlBHNK8ixjQr47AxJC58kZx0zgV/tYfsU/tTfD/wDbX/ZR8B/tTfDK6S60rxnpEF98vWC5xsuYHAJxJBOskTjJwyHkjmvfPGnjPwl8OfCGqfEDx7qVto+h6JaTX2oX95IsNvbW1upeSWR2IVURQWZicACgD+Rf/gqb+038Xvhh/wAGovg/UPFkN/ovjLxx4P8AB/hHUheRPbXaNcRwrfCWOQK4M8FvMjAgZWUnpX+cX+y5caPaftNfDq78Qru0+LxPpD3IPeFbuIuP++c1/p3f8HTdh4f/AGmv+CGWp/Gn4NalaeJfDulaz4f8T2+oadMtzb3FjNMbQTRPGSrp/pakkHAXJ7V/lPRyPE6yxMVZSCCDggjuKAP98D4kfDvwX8Xvh5rvwo+JGnxat4e8Tafc6VqdlMMx3FpeRtFNG2MHDoxU455r+Ofwx/wZSfsbaL8eYPHGt/FXxLqvgK3vRc/8IxJaQR3MsKtuFvLqCMMoRhXZLdHK5wysQw/pC/4JU/to+HP+CgH7AXw0/ad0S6FxfaxpENtrSZBeDWbIeRfRsOo/fozJkAtGytjDCv0LoAq2NjZ6ZZQ6bp0SwW9uixRRoMKiIMKoA6AAYAr/AAy/+CgX/J+fxt/7H7xL/wCnGev9z6v8MH/goF/yfn8bf+x+8S/+nGegD+1j/gyI/Zv8Pf2D8bv2utUto5tVNzp/hHTZyP3kECoby8UH0mZrUn/rlX9x3j74C/A34q63p/ib4oeC9C8SalpJBsbvVdOt7ye2IJIMUkyM0eCSflI5r+UD/gyiijH/AATU+JEwA3t8TL1Se5A0rTMflk1/YvQB8uftsfsp+CP24v2UPHn7JnxEuZrHSfHOlS6dJd24DS20hIeGdFbhmilVJAp4bbg4zX+eU3/BmT+2Z4R+I0978Xfi78P9C+F2mStcaj4ma5ukuYdOjJLSm1mto4UlCDLK90Il/wCepxz/AKMH7T/7SHws/ZB/Z98W/tM/Gy8ax8L+DNOk1G/kjTzJWVMBY4143SSuVjjXIy7AZHWv8hD/AIKs/wDBbX9sj/gq58RLtPiJq0/h/wCHMN0W0bwXpsrJYQRq37p7kDBu7kDBMsoIVifLWNTtoA/re/4Kr/8ABxB+wX4Z/Yz8Y/8ABMb9gnTdV+MV5e+Br/wc2sadldJ03To9Pe2luftBRnuzbQKZWaKIQFVLecADX+chX+pb4H/4I2/BT/glH/wQV/aBs49OttS+LPiP4S+JJ/FniKRFec3EmlzM9lbSYylpA3yqox5rL5j8kBf8tKgD/au/4IiyPL/wSJ/ZzaQ5I8B6OPwECgfpX5b/APB4F/yh4vP+xx0P/wBrV+ov/BEH/lER+zp/2Imkf+iRX5df8HgX/KHi8/7HHQ//AGtQB/ls/Cb/AJKp4Z/7Ctl/6OSv97iv8Ef4Tf8AJVPDP/YVsv8A0clf73FAH+fT/wAHyv8AyMX7M/8A17eL/wD0LSq/nH/4N1P+U1XwB/7Dlz/6Q3Nf0c/8HywP/CQ/szN2Nv4v/wDQtKr+cb/g3U/5TU/AH/sOXP8A6Q3NAH+ydRRRQAV/ND/wds/8oXPGH/YweH//AEsWv6Xq/mh/4O2f+ULnjD/sYPD/AP6WLQB/ky1/v1aZ/wAg23/65J/IV/gK1/v1aZ/yDbf/AK5J/IUAf5I//B1v/wApu/if/wBg7w5/6arWv0m/4MkAP+G1vjEe/wDwhMP/AKXw1+bP/B1v/wApu/if/wBg7w5/6arWv0n/AODI/wD5PV+MX/Ykw/8ApfDQB+qv/B7XEh/YW+EcxHzL47ZQfY6fc5/kK/gx/wCCZE8lr/wUk/Z7uYTh4/iX4TZSOxGqWxFf3pf8HtX/ACYj8JP+x9P/AKb7qv4J/wDgmh/ykd/Z/wD+yk+FP/TpbUAf7j1FFFABX+ej/wAHx/8AyUH9nD/sHeJ//Rmn1/oXV/npf8Hx4P8AwsD9nBux0/xR/wCjNOoA/n2/4NuP+U2/wE/7Cmpf+my8r/Y2r/HJ/wCDbj/lNt8BP+wpqP8A6bLyv9jagD+Cf/g+T/5FD9mv/r88Wf8AoGmV/KT/AMEHwD/wWH/Z4BGf+Kxsv/Zq/q2/4Pk/+RQ/Zr/6/PFn/oGmV/KV/wAEHv8AlMP+zx/2ONl/7NQB/qdf8FxIkm/4JC/tFJIMgeBtVb8ViJH6iv8AFar/AGqf+C4H/KIf9ov/ALEXVv8A0Sa/xVqAP9uP/gkHcy3X/BKb9myWY5I+GXhVOfRNNt1H6Cv8pT/gvZ8bNc+PX/BYP4/+LNcmaT+yfFl54bt1LFljg0AjTkVR0AIt9xA/iYnqSa/1Y/8Agj1/yii/Zt/7Jp4X/wDTfBX+TZ/wW2+HE/wq/wCCuP7RPhW4jaLzvHWr6oisMHy9WmN8mM9is4I9qAP3f/4N6/8AgtTcf8E4v2MfEfwT8Pfs9eOPipNqni+71q51jw3EZbWNprSzgW3YrDJh0WAOQT0cHHNfO3/BfX9sT4/f8FiviD8OPGnw8/Zt+IfgpfA+nX9lONR0u5uXuTeSRSKV8q3UKE8s9Sc7u2Of08/4MmP2t/B2h678Xv2JPE9+LbV9caz8V6DbucLcfZka3v1Uk/6xVNs4UZLIHbohr/QeoA/zyP8AgzN8A/tL/BT9rD4w+BviZ4K8ReGfDviHwla37z6rplzZ20l7pt4kcKCSaNVMnl3cxVc5KhiBgGv9DevKrD46fBnVfjJqH7PGm+KtKn8d6VpkWs3nh9LqNtRh0+d/LS4e3DeYIi+F3YwCy5xuXPqtABX+Z7/wey+CbnT/APgoF8K/iKwbyNW+H0enLn7u+w1G8kbHvi6XNf6YVfyw/wDB2b/wTx8Tftkf8E/LP46/CzTTqXi74KXlxrTRRrunl0K4jC6ikYA5aPy4bgjP3IXABYgEA/ypa/3hf2X/ABFF4w/Zo+Hfi2Aho9U8M6RdqV6ET2sTjHtzX+D1X+xN/wAG3/7WHh79q/8A4JD/AApu7G+F1rHgCwHgvWIScyW8+ihYoFb/AH7P7PKD6P6g0AfulX8q37Xn/Byf8ZP2EXFz+1T+xt8QfCOmS3Rs4NVub62k02ebkhEu4o3t2dlUsEEm4gE44Nf1U1+Fn/Byzomma7/wRF+OsOpwrKLex0q5i3DJSWHVbNlYehBHUdjQB+IH/Eb/APs6/wDRBvEf/g3tf/jVfYf7JH/B0F48/bp1270X9lT9kLx940XTHhTULrTr63e1svPJ2edO0SxRlgGKqzhmCkgHBr/LWr/WZ/4NJvDWiaJ/wRe8H6tpdtHBcazr+v3V5IihWmmS8eBWcjliI4kQE/wqB2oA9b/4L/8A/BE+7/4LE/BjwlD8OvE1p4V+IPw8uL2XRZ9TR2066g1FYhcW9w0SvLHloInSVEk2bWXYd+V/ne/4Jyf8EK7D/giF+0fov/BSb/grV8ZvBPhDw/4D+2PoWm6XeXF1NqN/PbyW/IltoJZPLjlaRIbaOaV2A3BVUhv6Uf8AgvT/AMFj9B/4JEfsxWWv+FrODWvih45kuLLwnpt0GNsptghuby52lSYbYSx/IGDSSOijC72X/OL/AGOfh7+07/wcDf8ABU3wp8N/2pPiDqes33iaa4u9Z1e5cM1hpFijXE8dlDjyYAQvlwxxxiJZHDFcbqAP0P8A+Djn/guF8JP+CsfhPwn8Of2bvBGuWfgbwFrs8/8AwlWrqIVv7u4gKCFLdA4iXYpkXzJhKy9Y0wa/FP8A4JDSPF/wVY/ZsaM4J+J3hQfgdTtwf0r+vn/g7h/Zl+Bf7H//AATn/Z4+AH7OXhy08L+FdB8T3sVtZ2iBdzCyw0sr/elmkI3SSuS7tyxJr+QP/gkT/wApVv2a/wDsp/hP/wBOdvQB/t0V/i1f8F1/+Uwf7RH/AGOl/wDzFf7Stf4tX/Bdf/lMH+0R/wBjpf8A8xQB/WL/AMGN/wDyI37SP/X/AOFv/RepV+4f/BwF/wAESb7/AILE/B/wg3w18TWnhX4hfDye9fR5tTVzp13b6iIhcW9w0KvLH80ETxyqkm3DLsO/cv4ef8GN/wDyI37SP/X/AOFv/RepV++X/Be//gspon/BIn9max1fwhaW+s/FLx29xZ+FNOulZrWP7ME+03tyFKkxW4kQBAwaSR1UYXeygH83v/BOD/ghtpf/AAQ3/aN0f/gpR/wVr+M3grwjofgZb06BpmlXdxdTajf3FvJbElZLaCWTy45WkSC2jmkdtpbaqkN+bn/Bxz/wW++E/wDwVl8OeD/AX7OPgjW7HwN4B1u6lXxTq6iEahd3MIQQpAgcRDYpkXfN5jKeY0wa/P8A/Yr+GX7S/wDwcDf8FTvC/wAOv2pviBqms3niOS4vtc1i5kDPZaRYo080VnDjyYA2PKhjjjESPIGK4Br+k7/g7q/Zq+B37Iv/AAT8/Zz+AX7Ovhyz8LeFdB8RajDa2VmgUEizQNLK33pZpCN0krlndsliSaAP5Hf+COsjxf8ABV/9m5ozgn4leGR+B1CEH9K/2Fv+Cg/xx1b9mf8AYT+MX7QPh1zHqfg7wbrerWDDHF5bWkj2/Xj/AFoWv8eb/gjz/wApXv2bf+yl+GP/AE4QV/rsf8FXfhfrXxn/AOCZnx8+GXhuI3Gpar4D15LOEdZLlLSSSJBjuzqFH1oA/wARC5ubm9uZLy8kaaaZi7u5LMzMckknkknkk1/uCf8ABLe40e6/4Jmfs73Hh9dti3wz8JmBf7qf2XbYB9x0PvX+HpX+sd/wahftq+H/ANp//glfoPwaurvzPFfwZuZfDmpQu2ZDYyu8+nTAdozAxt1z1a3ftigD5T/av/4M3/2R/wBoT9pXWvjl8N/iXrXw/wBD8SajLqeoeHbbT4LyKKW5cySrZzM8fkRliSiPHMEzgfKAo/qg/Zj/AGcvhd+yJ+z94R/Zn+C1rJZ+F/BemxaZYJM/mTMkQ+aSV8DdJI5aSRgAC7EgAcV7tRQB/i7/APBef/lMV+0N/wBjfd/+gpX9Vf8AwY1/8iv+0t/19eEv/QNUr+VX/gvQCv8AwWL/AGhgf+hvuv8A0FK/qq/4Ma/+RX/aW/6+vCX/AKBqlAH97tf4mv8AwWZ/5SzftH/9lF8Rf+lstf7ZVf4mv/BZn/lLN+0f/wBlF8Rf+lstAH9l/wDwY+/8kA+Pn/YwaL/6TT1+YH/B6X8e9f8AGn/BQXwD+z8J3Oi+BvB0d8kBPyi/1m5lM7gf7UNvbDnn5a/T/wD4Mff+SAfHz/sYNF/9Jp6/Hn/g8s+F+teEP+CqGh/EK4iP9n+LvA2mzQTD7pls57m3lT/eULGx9nFAHrn/AAZNXGjr/wAFB/inazr/AKe/w8leE+kK6lYiUfizR/lX9uX/AAVo/wCCSX7Pn/BXX4E6d8IvjRe3mgar4dvG1DQte05Ue5sZpF2SoUkBWSCZQvmR5UsUQhgVBr/MP/4N5P21fD/7C3/BVr4c/Evx3d/YfCviR5vCmtzltqRWurgRxSyE8COG6EEshPREJr/ZDoA/nG/4I8f8G3/7PP8AwSX+Lup/tDReNNS+Ivji7sJdLsry7tI9PtbG1nZWlMVujzEyybApkaUgJkKo3En+jmiigAooooA/yBP+Do3/AJTrfHP/ALln/wBR/Ta+ZP8Aghz+yd8F/wBuP/gqT8Lv2Wv2hrGfUfB/io6yuoW9tcPayt9j0m9uoissZDLtmhRuDyBg5BIr6b/4Ojf+U63xz/7ln/1H9Nqt/wAGvv8AynS+Bf8Av+I//TDqNAH7/wD/AAVW/wCDPnwB8PPgvr3x7/4Jv+ItYutS8N2M2oXPg7XGS9e/igBeQWNzGkbrMEB2QyJJ5rcB1JAP6Ef8GVP/ACiy8ff9lV1X/wBNGj1/X7X45/8ABGT/AIJ8+O/+Ccfw3+Nvwp8VxWEGkeK/i94j8WeF4rCUyqnh+/hs4bJZQVXy5VW3IaMZC4HJzQB+xlf59H/B8r/yMf7M/wD17eLv/QtKr/QXr/Po/wCD5X/kY/2Z/wDr28Xf+haVQB/If/wS8/Z30b9rD/gol8GP2efE8K3Gj+J/FumW+qQv0l0+OYS3acf3oEkUe5r/AG5dc8IeE/E/hqbwX4k0u01DR7mIQS2FzAkttJEMfI0TgoV4HykYr/Hj/wCDcKKOX/gtl8A1lAYDV79sH1XTbsj8iK/2PqAOD+HPws+GPwe8ODwf8JPDml+FtIEjSiy0izisbYSPjc3lQqibjgZOMnFfxQ/8Frf+DVL48/tnfti+I/2wv2L/ABh4ftT45ljvNb0PxJLPaeRfKiRvLazwW9wHSbb5jpIqFHLYZgQq/wBzVfwaf8HKv/Bxf8XPgh8VdX/4J5fsEa0/h7VdGjEHjHxZajF7BcyqG+w2Eh/1TRowM1wv7xXOyNkZGJAPYP2EPEH7C/8Awaifs5eMvBv7aHxVsPG/xr8e3drqGo+FvBitfXEMVlG62sCLL5JjB82WQz3f2ZX3BUU7Mt/Ex/wV0/bL1H/goL/wUA8cftfah4OuvAieMo9KmtdHvZDNNHaW2n21vbys5ji3faIYknBVduHG1mXDH+g//g1W/wCCRHw0/b6+JPiv9v8A/a9i/wCEv8P+B9aWx07SdQP2mLVNeeNbmae+8zd50cCSxOI2yJZJMvlUKv8Amr/wdKwQ23/Bcf4yW1sixxx2/hlVVRhVUaFp4AAHQCgD9fP+DIORx+0z8dIQflbwxpZI9xdvj+Zr/Qm+NH/JHfFn/YGv/wD0Q9f563/BkJ/yc78c/wDsV9M/9K3r/Qp+NH/JHfFn/YGv/wD0Q9AH+ClX+uv/AMGqoA/4Id/CXH/P54k/9PN7X+RRX+uv/wAGq3/KDv4S/wDX54k/9PN7QB/IZ/wehxJH/wAFWvCTqMF/hlpLH3P9paoP5CvPv+DO8A/8Ffue3gjW/wD0O2r0X/g9G/5SseD/APsmOk/+nLVa87/4M7/+Uvv/AHJGt/8Aoy2oA/t6/wCDmSFLj/gh38eEk6Cz0VvxXWbAj9RX+PDX+xH/AMHL3/KD748f9eOj/wDp4sa/x3KAP92r9jq7m1D9kX4V39ycyT+ENDkY/wC01lCTX+Kp/wAFBPjZrn7R/wC3N8Xvjn4hmaa48T+LtXvV3MW8uB7mQQxKT/DFEEjT0VQK/wBqH9iz/kzj4Tf9iZoP/pDDX+Jb+2L8OJ/g7+1x8UvhJcxtE/hfxdreklWGCPsd5LF3/wB2gD+wv/giB/wXsn/YV/4J3eFf2bPDP7NPj/4jNo1/qs15r3h+Iy2NxPd3ck4VSsD4aOJ40YFs5GehFflB/wAF1fjl+0R/wVu/a+0L9pf4efs8fEHwbaaX4Ss/Ds1nqGk3VxLJNa3d5cGUNHAAFKXKqARnKH1Ff0tf8GV37W/g7xX+yd8Q/wBivU78DxT4R8QSeJrO1c4Mmj6nFBCzRjOWEN1E3m8fKZ4/71f2yUAfw6f8GXHhT9oX4VeD/j/8LfjH4T17wzpJvPD2q6Z/a2nXFlHJcTJeQ3WwzIgZtkVvkLkgAZ7V/cXXlXhH46fBnx/8RfE/wh8EeKdL1bxV4Ka2TX9ItLqOW9003iebB9ohVi8fmp8ybgNwBx0Neq0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB88fG74Jfs2ftufBbXPgl8Z9J0rx74M1dpLK/s5HWeIT27YO2SNt0U8Ljh0ZZInGQQwr/P0/4Ke/8ABnj8ePhLdal8Vv8Agm1qrfEHw0N058KarLHBrtqvUrbzEJBeKozgMYZsYULK3J/Tf/g1C/bm8P3nxM/aG/4J5+L71IdWsfGWreMfDscr/NcW1xN9nvoowf8Ani8cMu0ZJ8526Ka/tboA/wADn4g/Dvx/8JvGWofDr4paJf8AhvxBpMpgvdN1O3ktLu3lHVZIpVV0b2IFez/sg/te/Hv9hb4/aF+0n+zdrkuheJtCl3KykmG6gYjzba4j6SwSgbXRuvBGGCkf7FH/AAUt/wCCSn7HX/BUv4V3Hgj9oXw/DD4it7d49F8VWUax6vpcpyVMcuAZIt3L28m6J/QNhh/jkftcfsz+Pv2Nf2mvHH7LXxPMb654G1e40q5mhz5U4hb93PHnny5oysiZAO1hkA8UAf7PfwC/bz+H/wC0b/wTq0z/AIKF+Abdho2o+ErrxKbOVvmgmsYpDc2ztgZMM8MkLMBglcjgiv8AEh8beMvEvxF8Z6v8QfGd29/rGu3txqN9cynLzXN07SSyMe5Z2JJ9TX+qT/wbm/Crxn8Tv+DdHRfhPrzeXH4vsPGWnaWJshUtb+8vYQT32mZpGz3ByK/yota0bVfDusXfh/Xbd7S+sJpLe4glG14pYmKujDsVYEEetAH+sJ/waSaDDpH/AARd8I6hEPm1XxDr90/1W7aH+UQr8Gv+D4iwt4/jD+z1qagebNo3iCJj32xz2ZX9XNfvv/waZa1a6p/wRU8CWNv9/Tdb8Q20v++1/LN/6DIK/n2/4Pg9Xim+PHwB0EMN9toGt3BHcCe4t1B/Hyz+VAH4e/8ABtN8btf+CH/BZz4OzaRc+RaeK7u78NahGfuz2+pW0iojfS4EMg/2kFf6Q/8AwcIf8oYv2gv+xbH/AKUwV/mlf8G6fwp1r4vf8FnfgToukQmRdI1qXXbl8ErFDpNtNdFmPbLRqgJ/iZR3r/S6/wCDgqGSf/gjJ+0EkYyR4a3fgtxCT+goA/xla/3Hv+CaH/KOL9n/AP7Jt4U/9NdtX+HDX+45/wAEznWT/gnB+z86HIPw28KEH2/su2oA/wAdn/gqr/ylB/aR/wCypeMP/TtdV/dB/wAGRv8AyZt8Zv8Asc7b/wBIY6/hf/4Kq/8AKUH9pH/sqXjD/wBO11X90H/Bkb/yZt8Zv+xztv8A0hjoA/pY/wCCt/8Ayis/aU/7Jd4u/wDTVc1/iI1/t3f8Fb/+UVn7Sn/ZLvF3/pqua/xEaAP9db/g1q/Zv8PfAD/gjl8PPENlbRxax8RZ7/xTqsyD5pXuLh4LbJ6nbaQwjHQHOOpJ/cq0+AvwN0/4kyfGWw8F6FB4wmDK+ux6dbrqTBxtYG6CecQQcHLcjivgT/gh1FHF/wAEhP2dViAUHwNpTYHq0QJ/Mmv1ToA/yrf+DwX496/8T/8AgrRN8Irqd/7M+GnhjStNtrfP7tZ9Qj/tCaUDszrcRIx7iNfSv0F/4MebjR1+NX7QVpOv/EwfRNBeE+kKz3QlH4s0dfln/wAHbPwv1rwD/wAFovGHi3U4jHb+N9A0DWbNu0kMNmmnE/hJZOPwrjf+DXL9tXw/+xz/AMFXfDWneOrv7F4d+KVjN4Ku5nbEUVzfSRS2Ttnjm6hii3EjasrHpmgD/RA/4LA/8EXf2d/+Cwnw28P+HPinqt74U8T+EJp5dE8QabHHNLCl1sE8E0UmBNDJsRtu9GV1BVgCyt4V/wAEZ/8Ag30/Z9/4I++KPEfxY0DxZqPj/wAd+JLAaQ+rXlsljBa6cZEmeGC2R5SDLLHG0jvK5PloFC/Nv/oAooA/ykv+Dvb42a58TP8AgsBqvw2vpmNj8OvDOjaPawhjsU3kP9pSPt6BmN2AT1KouegrN/4Nvv8Agqf/AMOzL74vXGmfBfxX8XtQ8Zpoa58MRmQ6fDp5vCfNCxSEec042ngfuzWD/wAHa3w4n8D/APBaXxl4mmjZF8Y6B4f1hCRwyxWaWGR7ZsyPqDXtn/Bnt+1v4O+AH/BSnVvgn4+vxYWnxc8PPpGnM5xHJrNnMlxbRsSQB5kQuETu0jIg5agD3D/gvN/wU8+NX/BX/wDZ48G/BXwB+y78SPB134Y8Rf2295qOnXFwkkf2aaAxKsVuCCTIGyTj5cY548L/AODWH4S/tY/Ab/gsP4OvPFPw+8U6DoHiPQ9e0jVb2+0i7trVIPsb3cYllkjVEDXFtCF3HlyoHJFf6mteVeIfjn8GfCXxW8PfAvxR4q0rTvGfiyC6utF0S4uo47/UIbFQ1w1vCzB5BEp3NtBwoY9FYgA9VooooA/Ij/gvf/yhx/aF/wCxSuP/AENK/wAX6v8AaB/4L3/8ocf2hf8AsUrj/wBDSv8AF+oA/wBwL/glV/yi+/Zu/wCyW+D/AP002tfwLf8AB69/yko+G3/ZM7L/ANOmp1/fT/wSq/5Rffs3f9kt8H/+mm1r+Bb/AIPXv+UlHw2/7JnZf+nTU6APlf8A4NFwD/wWZ8OZ7eGde/8ARAr+yT/g7diST/gi94tdhyniLQGH1+1qP5Gv43P+DRb/AJTMeHf+xY17/wBECv7J/wDg7a/5QueL/wDsYPD/AP6VrQB/k0KzIwdDgjkEV/v22crT2kUz9XRWP1Ir/AQr/fr03/kHW/8A1zT+QoAu0UUUAfxcf8Htf/Jifwk/7Hw/+m+6r+Cn/gmf/wApHv2fv+yk+FP/AE6W1f3r/wDB7UD/AMMI/CRuw8en/wBN91X8FH/BND/lI9+z9/2Unwp/6dLagD/cdr+Q7/g9N/5RV+Cf+yo6T/6a9Wr+vGv5Dv8Ag9N/5RV+Cf8AsqOk/wDpr1agD/N7/ZJAb9qv4ZKwyD4s0X/0sir/AHCf2lYkn/Zy8fwyDKv4b1VSPY2slf4e/wCyR/ydZ8Mf+xs0X/0sir/cM/aQ/wCTd/Hv/Yuap/6TSUAf4N9f6/f/AAa6XMtz/wAELPgc0x3FP+ElQE+i6/qQH5Div8gSv9fT/g1t/wCUFfwQ/wB7xN/6f9SoA/hr/wCDtX42a78Uv+CzHi/wJqErPY/DrQ9D0KyTdlFSe0TUpCB0BMt64PrtHpXbf8G33/BVx/8AgmZo/wAXrfRfgj4u+Ll94zm0Np5fC8ZlFjFYLeCNZgsUhBladyucZ2HrivGP+DrD4cT+Av8Agtj8S9YaNo4PFWn6BrEGRwVOnQWrkeoMtu/45HavsT/gze/a38G/A7/goP4p/Z58c34sIvi5oK2ullziObVtKkM8MTEkAF4Hudmer4QcsKAOr/4L2/8ABSn42/8ABYT4MeBPhd8P/wBl/wCI/g258Ia1Pqsl1qOnXFysqTQGHy1WK3BByQxJPbpzxxn/AAahfCn9q34Cf8FcNKn8XeAPFGgaB4m8L61pOpXl/pF3bWqRLGl3H5kkkaouZraMKSRliAOTX+obXlWtfHT4M+HPi5onwC8QeKdKsvG/iSzudQ0rQp7qNNQvLWzx50kMBYO6pnJKg8Bj0ViAD1WiiigDG1fxH4e8PvZxa/f29i2oXC2lqLiVYjPcOCVij3Eb3YKSFXJIB44r8Ef+CvP/AAbt/sff8FUWuvipCzfDv4t+SETxRpsKyR3xjULGmo2uVW4CqAqyK0cygAb2RQlfC3/B3V8aPFH7OPwX/Zs/aB8E4/tjwP8AFaz16zBJVWn0+3lnRWI/hYphvYmv6hf2cPj98N/2qPgL4R/aM+EN6t/4b8Z6Xb6rYyqQSI51BMb4+7JG2Y5F6q6sp5BoA/x5/wDgo5/wRA/4KDf8ExtRuNT+O/hFtV8GLJsg8XaDuvdHkBOF82QKslszHgJcpGWP3dw5r8iq/wB+rVNL0zW9NuNG1q3ivLO7jaGeCdBJFLG4wyOrAhlYEggggiv87L/g6M/4IIfAz9l/4aP/AMFFv2L9Ii8LaCmowWfi7w1ajbYW7X7+XBe2adIEMzLDLAv7sGRDGqAOCAXv+DQj/grf8QtN+MI/4JbfHHWLjVPDuu2lzeeBGuCZG069s0e5ubJGPIgmgWSZFJ2xyREKMymv6j/+DkL/AJQl/Hz/ALBWn/8ApztK/wA1T/g3007xbqf/AAWb/Z9t/BW77YniXzpNoyfskVvM9107fZ1kz7V/pV/8HIX/AChL+Pn/AGCtP/8ATnaUAf44tf7o37BEccP7C3wWhhUIieBPDgVQMAAafBgAV/hc1/uk/sGf8mNfBj/sRfDv/pvgoA/z3P8Ag9Z+H2m6F/wUM+G3xFsY1jl8QeAore42jHmSWN/dYdvU7JVX6KK/OH/g14+LetfCn/gtX8J7TT7jybLxWmr6DqCdpYbmwnkjQ/S5ihf6rX6kf8HtviSyuv24PhB4QjbNxY+BpLx19Eu7+4RT+Jgb8q/KX/g2H+GGrfE3/gth8HWsbczWvh19W1q9cdIYrXTrkI59jO8SD3YUAf6S/wDwWk/4JbaH/wAFbv2MZ/2b5deHhjX9K1S38QaBqbxGaCLULaOWEJOi4ZoZYp5EbacoSrgNs2N/HR+yV/wa7/E/9gf9ojwx+2Z/wU2+MHgDwX8K/hhrVnr09xY6lcNJqFxp8q3FvAGu7W1SNJZEAbDNMwyiRlmDD+1D/grX/wAFLfhr/wAEqP2N9Z/ab8dW39q6pJMuk+HNIBKnUdYuEd4YmYA7IlWN5Zn7Ro23LlVP+VV4w/aI/bo/4Lyft8+Bvhr8d/Gsmoaz451+20fSrVt0Wj6JDeSBXNtaK21I4o8s5GZZQnzu7c0Af0Ff8HEf/Bwf+zb/AMFEv2ZtZ/Y2/Y68La34k8O6fq+n6lqnja6iazsYxbSERLDbsjTFJnYKJLj7OcjARsg1/FB4YkeHxLp80Zwy3MRB9w4r/SF/4L6/8E/P2bP+Cbn/AAb0T/s8fs16LHY2Vr4n8PtqGpSIp1DVrwSPvuryVQDJIxJwPuxrhECoAo/zd/Dn/Iw2H/XxF/6EKAP98zW9Xs/D+jXevaidtvZQyXEpHZI1LN+gr/B2+P3xk8V/tEfHPxj8e/HUzT6z4z1q+1u8d23Hzr6Z5mGfQFsADgAYHFf7vHjLw9F4u8Iar4TnbamqWc9ox9BOhQn9a/wUPGnhHX/h/wCMdW8B+K4Da6pol5PYXkLdY7i2cxyKf91lIoA/14/+DYS40e4/4Ia/A3+xl2okWvpKO/nDW9Q8wn6tkj2Ir5G/4Kdf8Gp/7MP/AAUM/ae1X9qzwj4+1P4Z694nkjn1+1tbCLULK8uEVUaeNGkgaGWUKDKdzq7/AD7QxYn46/4Mtv21fD/jX9mPx7+wh4hu8eIfBGqv4l0qF25l0jUxGkwjHXFvdqWkP/TynvX9t1AHwH+wb+w98CP+CVP7G1j+zr8GHu7nQ/DUd3ql/f37q13f3cgMs9xKVVUBYKFVVUBUVV5xk/4pXxi+KPij43/FvxR8Z/G8pn1nxbq17rN9IzFi1zfTNNIcnk/M5r/eQ8W+HLHxl4U1Pwhqefs2q2k1nNjrsnQo36Gv8EbxT4c1Xwd4n1HwjrsZhvtKuprO4jIwVlgco4IPowIoA/vX/wCCTf8AwcOXf7I3/BPD4Yfs4+Ev2WviL43s/Cun3Ft/bmiwtJY3sz3U0szxMsDjAld1I3EhgQeRX89//BZPxn+0v/wU9/br179rnwP8APHvhOw1fT9NshYXukXdxMGsYFhLs0cCr823gDPA61/aB/wZ4/tb+Dfi/wD8E0J/2XRfg+JvhJrV7HNZOfnGm6zNJe28y88o0z3CH+6yc4BXP9adAH8a3/BodefGj4C/8E+PjL4X+PXhjW/Dmm+FvE0uvWcer2M1k0kU+nxmcQ+eibgptgSBwrPk/er/ADd/jF8U/F3xz+Lfij41eP7hrvXPF2rXms6hMxyXub6VppTn3ZzX+5BqHxD+DX7UHg74lfBb4WeLNJ17U9HjvfDOvW9jdxzyaZfXEDIYblYyWicBuVYA8EdQQP8ACw8Q6BrHhTX77wt4ht2tNQ024ltbmBxho5oWKOh91YEGgD/YW/4NrrjR7n/giJ8BZNDXbCNO1RGA/wCeyarerKfxkDGvg/8A4KVf8Gn37L37ff7UWs/tVeC/iBqnwz1fxZcC81+xtrCLULO6uyAJJ4VaSBoZJsb5SWkVpCX2gk5+cf8AgzD/AG1fD/xF/Y+8Y/sOa7d48R/DnV5db02B2/1mi6uQW8sdT5N4JTKeg8+Pua/tIoA+Lf8Agn5+wn8Fv+Cb/wCyv4d/ZO+BH2qbRdC86aW8v3V7u9u7lzJNcTFVVdzscAKoVVCqBgV/no/8HqX/AClQ8Cf9ks0r/wBO2r1/qAV/l/8A/B6l/wApUPAn/ZLNK/8ATtq9AH5t/wDBtr+zf4e/aa/4LGfCTw14xto7zR/DVxd+KLqGUbld9Ht3ntsjoQLsQEg8EA5z0r/Xz8efDv4f/FPw3N4N+J2haf4j0e4IMtjqlrHeW0hXpuilVkOO2RX+W3/wZ4RRyf8ABX4M4BKeCNbZSex32w/kTX+qrQBzPg3wV4N+HXhq18GfD7SLLQtHsVKW1jp1ulrbQqSSQkUaqijJJwAOTX+fz/wUc/4M8f2n/ij+1l4s+Mf7Ffjbwq3hDxpq1zq507xLPdWV3pc19K0ssStb2tyk0COx8t8pIEIUoxUu3+hZX+a1/wAHDv8Awci/HD4qfGTxT+xB+wj4juPCfw+8N3E2j674g01mg1HW7yFjHcxxTgh4bNHBjHlFWnwxLGJgtAH6y/s8ftzf8E4v+DXn9ib/AIYs8cfEAfGP4wvql5rmvaJ4QUTCPVrtIojFJK7CK0iijghjImf7Q2DIIPm2D/Ps/bg+M2v/ALRf7Y/xR+Pvirw7N4R1Lxp4o1TW7nRLhmeXT5L64eY27s8cTM0e7aSY0JIztHSv7ZP+DSf/AII2fBnxz8NIv+CpP7RmnQeJdVm1O6s/Bem3iLNaWf2F/Km1F0YEPc+erxwZGIdhkGXZDH/I7/wWR/5Sx/tIf9lI8Sf+l01AH9pP/BkFI5/Zo+OsJPyr4n0sge5tXz/IV/Zt8cv+SKeMP+wJqH/oh6/jG/4Mgv8Ak2v47f8AYzaV/wCkslf2c/HL/kinjD/sCah/6IegD/BZr/X5/wCDXD/lBT8Df+5m/wDUg1Kv8gav9fn/AINcP+UFPwN/7mb/ANSDUqAOo/4OYP8AlB78eP8Ary0b/wBPFjX+O9X+xF/wcvAt/wAEPvjwB/z5aP8A+nixr/HdoA/3Yv2L/wDkzv4T/wDYm6F/6RQ19LV80/sX/wDJnfwn/wCxN0L/ANIYa+lqACiiigD/ACz/APg8t/5S1aN/2TzR/wD0rv6/Af8A4JyfBXwF+0f+358F/gF8U4Jbrw14y8aaJo+qwQytDJLZ3l3HHMiyL8yFkYjcpDDOQQcGv34/4PLf+UtWjf8AZPNH/wDSu/r8X/8Agjb/AMpY/wBm/wD7KP4b/wDS6KgD+0T/AIKBf8GZv7PmtfDXUfGf/BO3xRq2geLtPglng8P+IbhL7TtRZBlYI7jZHLbSN0WSRpkJwGCDLjmP+DI/Qta8LeGf2m/DPiS0lsNR07WPDlrdW06GOWGaFNRR43U4KsrAhgeQRiv7s6/HL/gnV/wT58d/sbftvftb/Gm/isIfCHxs8UaR4i0BbWUtNvENxJfmePaPLJurhyuC24c8dKAP2Nr+LP8A4PbP+TGfhF/2Pbf+m+5r+0yv4s/+D2z/AJMZ+EX/AGPbf+m+5oA/zpvgb8ML/wCNvxs8HfBjS5fJuvF2t6fosMhGdkl/OkCt+BcGv92bwT8Lfh/8PPhdpPwW8J6Vb23hbRNLg0az03YGgSwt4hAkOw5BQRqFwcgjrX+Jr/wS0ijm/wCCnH7OcMoDI/xP8IKwPQg6rbZr/cJoA80+GnwW+DnwXsbrTPg74T0bwnbX0vnXMWjWEFgk0vPzusCIGbk8kE81/Jn/AMF/P+DaT4q/8FKv2jIv2xf2S/FmjaR4rv8AT7bT9d0fxE00Frc/YkMcNxBcQQzssnlhI2jeMKQgYODkH+xev45f+Dlr/g4L8dfsE6pF+w9+xfdxWnxP1KyS78Qa88QlOhWl0uYIrZXBQ3cyHzN7KywxlSAXcGMA+fP+Ca37O/7Kv/BrB4a8bfHT/gpd8YdCvvij470+Cy0/wn4UMuoXS6fBIZf3cTpDNI88gUGWWOG3j2Y8xt2R/KL/AMF2v+CkVr/wVQ/bO079qLQfA2o+BdAHhm10fRodUkElxf2VpdXbC8JVFjG+WSSMrG0qq0RHmMQcfev/AAbh/wDBMbTf+Cw37a/jL9oP9s7VL3xd4X+HbWWra9FqNzJc3WvarqLy/ZYbqaQmR4SLeV5zu3MFWPo5I6//AIPHPD2geEv+CoXgzwv4VsbfTNM074X6LbWlpaRLDBBDFfakqRxxoAqIqgBVUAADAoArf8Gbkjp/wVw1FVPD+ANZB+n2myP8xX+p5X+WB/wZvf8AKXK//wCxB1n/ANKLKv8AU/oA/wAIn9rT/k6r4mf9jXrX/pZLX+kP/wAGWYH/AA6r8an/AKqhq3/pr0mv83j9rT/k6r4mf9jXrX/pZLX+kP8A8GWn/KKrxp/2VDVv/TXpNAH5T/8AB8REg+MX7PUwHzNo3iBSfYT2mP5mvwk/4NoAD/wXC+A+f+f3Wf8A0z31fu//AMHxP/JXf2ef+wP4h/8AR1nX4Q/8Gz//ACnC+A//AF+6z/6Z76gD/UV/4K5Qpcf8Eq/2lEk6D4X+LW/FdLuSP1Ff4idf7eP/AAVr/wCUV37Sv/ZLfF//AKarmv8AEOoA/wBp3/ghjdzXv/BID9naac5ZfBOmxj/djTaP0Ar/AC7P+DgD42a58eP+CxXx78T63M0g0bxPP4btkLErFBoKrp6qo6KCYC5A/iZj1Jr/AFCf+CEv/KHv9nf/ALEyw/ka/wAsX/guZ8OJ/hX/AMFfv2ifDFxG0bXPjfU9XAYYO3WH+3qeexFwCPY0AfuF/wAG8v8AwWlm/wCCcH7Hvin4MaB+z543+K1zq/i+51q51fw1EZbaIS2dpAlu+2GTDoIC/J6SV4Z/wX3/AGzPj7/wWM8afDTxV8O/2bPiJ4KHgSy1O0uBqOl3Ny1z9ukgddvlW6hQnlHOc53dsV+kH/Bkz+1v4N8OeMvi9+xR4pvxbat4kWy8UaBA5wtwbJZIL9VJPMgRrdwoySiO3RDX+hhQB/nb/wDBmj8P/wBpj4J/tjfFvwR8S/BXiPwz4c8ReDYb57jVNLubO2kvdNvoY4E8yaNUMnl3c5Vc5KhiOAa/0SK8qs/jp8GdQ+Mt5+ztY+KtKm8eadpcetXPh9LqM6lFp0snlLctb7vMERfC78YBK5xuXPqtABRRRQB//9P+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5vxl4v8PfD7whqvj3xdcfZNJ0Sznv72fY0nlW9shkkfagZ22opOFBY4wATQB/lYf8HX/h/wAR+Kv+C3WveHfCFjc6lqd34f8AD8dta2cTTTyyfZuAiICzN6ADNftT/wAEc/8Ag6z8M+BPCWnfsj/8Fcf7S0LxB4dRNPtPG8trNM08cY2omrQKpuEnUYX7QkbiT70oRg0j/oxpn/Baf/g2A0n9sDUv29bb4jQv8WNV0mPQ5dem8P8AieV0sYgqhIYXsGghYqoVpI41dlypYgkGD9qL/gsn/wAGqv7aunJp37VXiXw943aFPLhutR8Ga617An92G6XTFuIge4jkXNAH61+KP+C33/BInwj4Ib4gap+0V4EnsVhabybLV4b2+Kqu7As7dpLrdjonlbieAM8V/nVf8FeP20fi1/wcS/8ABSTw94B/Yb8Eatrmj6BZHQ/CtgItt5cxvJ5l1f3QLGO2jZyAWd1SOGNGkKsWA/bb+1P+DF/+0xqmYtyuXEfkeO/K3HH8GzBHHC/dGTxzX6vfs1/8Fyv+DYH9jrwrL4K/Zb8Z6F4E064KtcJo/gzXbd7hlGA08q6X5kzAcBpGZsd6AP0V/wCCJ3/BLTw5/wAEnP2KtO+BMl1Dq3jPW7g614s1SAHyrjUpkVPKhLYbyLeNVijyBuIaTapkKj+X3/g+d/5td/7nb/3C1+/3/EUb/wAEKP8Aouf/AJbPiH/5WV/IF/wda/8ABUf9hP8A4KUf8KF/4Yp8c/8ACaf8IX/wlP8AbP8AxLNQ077N/aP9l/Z/+P8Atrffv+zy/wCr3bdvzYyuQD+az9iD4oftBfBH9rHwN8Yv2V9Ok1fx94X1JdU0ixitjeNcvaI0kkRgX5pFeJXVlTDlSdpDYI/0KH/4PM/2Gbr9kq+8fJ4U1+w+MEVg0cHhKW3Etk2plMKRfqwQ2gk5ZmVJtoIEWcZ/hY/4I7/tAfCP9lf/AIKafB39oT486t/YXg/wrrn2zVL/AMia68iHyZU3eVbxyzP8zAYRGPPSv7b/ANpL9sL/AIMwv2tfG918SfjnJoV/r1/IZru/0/w54q0ee6lY7mknbTrO286Rj955NzN3NAH+en4B+H3xx/bA+Pdr4F+HGlXnjDx7471RzDaWqb7i7vbtzJIx6KoyWd3YhEUFmIUEj/ZC/wCCNv8AwTw03/gmH+wF4O/ZjleK48SBX1jxPdQndHPrV8FNxsPG6OEKlvG2BujiViMk1+O/7Jn/AAV4/wCDUb9ha2u4v2S/Euh+CZr9RHc3ln4S8QvfTxjGEkuptOkuHQEZCNIVzzjJJr7S/wCIo3/ghR/0XP8A8tnxD/8AKygD+Hz/AIO3fgX8Wvhx/wAFffE/xa8a21yfDXxC0nSL3w9eSDMDRWNjBZ3EKMPlDRTwuzJwwEisRhwT+VP/AATA/wCCi37Zv/BOP9oM+P8A9isx6hr3ie3Gi3GhXNm+o22qrI4aKI20TLK8qyAGIxMsgJKglWZW/wBHL47f8HAH/BtV+1B4JPw2/aN8f6L450EyicWGueC9bvoEmUECRFm0pgkgBIDrhhk4NeN/s5/8FfP+DTz9kbVX8Q/s0av4V8F6pIpjbUNM8Da1FelDnKm5/sozbTk/Lvx7UAfxk/8ABcX4Lf8ABYPVrz4e/tzf8FWLbyLr4jWk9lo9hEgiXQobRvNSxnt40EVpJIsrTJEZHmYBzKRIjgfHH/BIb9uzxT/wTl/bx8JftOeDvBsnxAv7SG+0uLw/BM1vNfSapbvbRpE6RTtvErowURMXxtABII/0fvi3/wAHFP8AwbmfHzwLefDD44fEzSvF/hzUAPtOmaz4O1y9tJSvKloptKZCVPKnGQeRg18ufAP/AIKn/wDBox+y740HxI/Z+u/CPhXxChbytTsvAutC8h3/AHhFM2ll4ge4jKjFAH7/AHwN8N/GD9sX/gn7YeDv+Ci/g3TPD3if4jeG7qy8W+HNLeRra2h1JZI/JBlLukot3TzF3P5U24KzBQx/yL/+CrP/AAS0+P8A/wAEq/2mdT+C/wAVrGe68N3U8s3hfxGsZFpq+n7j5bhwNqzouBPDndG/qjI7f6X/APxFG/8ABCj/AKLn/wCWz4h/+VleU/Gf/g4Y/wCDb/8AaM8B3Pwu+PvxH0jxp4cvCGl03WvBuuX1szrna/lzaUyh1ydrjDKeQQaAP88f/glP/wAFmf2uP+CR/jvU9a+A8tprfhjxEYzrPhnWBI9hdPHwsyeW6PDcKpKiVDyMB1cBQP6NNP8A+Cxn/BYP/g4o14fsIfsZ+DrH4SeEtXSOLxv4j0yWe5ez0uY7ZfPvpPLEMUi7gIIUE8+CgcoXFfTcfxK/4Mc4tc/4SJbbSjcb9+w6T4zMGf8ArgYDFj22Y9q/Wn4Mf8HDH/BuB+zn4CtPhd8BPiRpPg3w7ZD9zp2jeDtcs7dTgAsUi0tQXbHzOcsx5JJoA/Yzw9+wz8DtE/YUg/4J6X0N1qvgJPCZ8HzfbpjPdTWb25geRpGziU5LggAI+NgUAAf44X/BRn/gnZ+0P/wTN/aU1j9nb4/aZLF9nlkfR9YSJlsdYsM/u7m2kIwwKkeYgJaJ8o+GBr/UH/4ijf8AghR/0XP/AMtnxD/8rK8P+P3/AAX2/wCDaP8Aaq8DP8NP2kvH2i+OdCdi4s9a8Ga5eRxyEY8yPzNLJjkAPDoVcdiKAP4Vf+CRH/BwH+1z/wAEk9P1D4ceEbKz8d/DnU52u5PDWrSPCttdvt3zWlwgZ4GcKA6lXjb72zd81fvRoP7eP/BSD/g6o+Jdl+x58NfCUfwc/Z4068tLz4h31hdSXk0tnHIJBbS3zxQrJJJszb2scC5ceZKWjTK+6WHxM/4MdNN1tfEFvbaU06MWCy6T4zlgy2M5heBoiOBgFMDnHU5/Xr4Vf8HGP/Bup8C/Atj8MPgv8UNN8J+HNMTZaaZpHg/XLO1hXvtii0tVBPUnGSeTzQB+2fi79k34D+MP2Ur/APYputChtPhzfeG38KDS7YBEg0xoPsypETna0aYKPyVYBuor/G4/4Kh/8Exf2hf+CWn7S+qfAv4z2E02jyzSzeHPEKRkWWs6eGPlyxtyqyhcCeHJaJ+DlSrN/psf8RRv/BCj/ouf/ls+If8A5WV5F8bv+Dg//g23/aV8Bz/C/wDaE+Imj+NfDtywd9O1rwbrl7b+YoIVwkulMFdcna64ZeoIoA/z4P8AglD/AMFq/wBrv/gkb4t1W4+B72ev+EvETpLq/hjWBI9jPNGNqzxGNleC4C/L5iEhlAEiuFXb/RPpP/BWr/gr9/wcheIx+wx+yX4Ts/hB8P8AUfKj8eeItLkmuXtdLmbbKs99J5YRJVDBLWFFmuMFC5i8zH0tb/Er/gxztdcHiGK20ozqxcI+k+M3gycf8sWgMRHHA2YHYV+uHwf/AODiL/g3H/Z98CWfwv8AgX8S9K8H+HLAYt9N0fwdrllbIeMkRxaUq7jj5mILMeSSaAP11u/Gf7I3/BK/9kHwxoHxZ8a2fgv4feBdMtNAsdR8R3372f7JAfLjDOd9xcyJE7iKJWd9rbEwMD/FK/aV+JOn/GX9ozx/8X9IVktPFfiTVdYhVxhhHfXUk6gjsQHGa/1NfjP/AMHCH/Btl+0d4Tj8A/tDePtB8eaFDcpeR6d4i8D6xqlotzGrKkohudJkQSKrsocLuAYgHBNfLX/Dyv8A4M2/+hc+FX/hp7r/AOUdAHwl/wAGdX/BQb9kX4Lfs6+Pv2R/jZ480jwd4w1bxmutaRb63dx2Eeox31pa2ix20szKkk4lt8eSDvO9dobnH99VfyK6L/wVF/4M8/DesWniLw7o/wAMLDULCaO5tbq2+FV3FNDNEwZJI3XQwyurAFWBBBGRzX3Z/wARRv8AwQo/6Ln/AOWz4h/+VlAHSf8AByl8C/i1+0H/AMEbviz4L+DFtc6jqtgum6zNp9oN0t3ZaXew3NyoUct5cSNPtGSxiAAJIFf48Nf6/X/EUb/wQo/6Ln/5bPiH/wCVlfnR4w/4KK/8GcXj/wCIs3xY8Z2fgTUdfupnuLi5m+HurkXEztuaSaP+yfLldm5Z3RmJPJoA/C/9n39rz/g4+/4Lafsc6z+yf8KfJf4d6N4furDX/FrWLWU+uQWtuw/s6W+PmfaLm5AWFo7WNXfeDOwRnY/x739hf6Vfz6XqkEltc20jRTQyqUkjkQ4ZWU4IYEYIIyDX+un4a/4OZ/8AggH4M0C08K+D/jFbaTpdhGIbazs/CevQW8Ma9FjjTSwqqOwAAr4X+Mf/AAUw/wCDP79oL4gz/Ff4zHwb4h8SXcvnXWo3PgPWvtF1J03TsulKZm95NxoAyf8Ag1+/4KRftiftafCzwL+zHo/wostH+Dvwb8KtoeueNbq5maa/1WJgLKGyXYkW4Q83MR8wqMOZI8pHJ4//AMHcn/BRz9jXx7+wra/sg/Cb4haH4w8eXvi+0nvdN0O9i1BtOg0tZxP9raBnWCRZWSMRSFZCScLhWI/Uf4e/8HI//BvN8JfB1j8PPhX8VtP8NaBpcflWem6V4Q1yztLdOu2OGLSlRBnnCgV8leIP+Cpn/Bnz4t1++8VeKtK+GWp6pqdxLd3l5d/Cu8muLi4mYvJLLI+hlnd2JZmYksSSTmgD/MK8L60/hrxLp3iKNd7afdQ3IX1MThsfpX+4t+yR/wAFAv2M/wBunwzB4k/ZX+I+heMJHsor+506yvYm1OxilwB9rs932i3IY7SJUX5uK/nH/wCHlf8AwZt/9C58Kv8Aw091/wDKOvb/AIIf8Fxv+DWz9mXVb7Xf2btf8H/D6+1OJYLy48NfD3VNJluIkO5Ule10eNnUNyFYkA80AfL/APweVfsPfGD9of8AZV+HP7UXwn0ybWrf4PXmrDXrW1QyTQ6ZrCWxa8KjkxW8lmglwCVWXecIrsP8/P8AYD/ax1L9hj9sz4c/tbaZpi603gXWYdRlsGfyvtNvgxzRB8HYzxO4ViCFYgkEDFf6nT/8HRf/AAQlkUo/xyDKRgg+GPEBBH/gsr83PE3/AAUD/wCDNPxl42k+InibTfAN3q00jTTSt8PNXCTSOdzPJEukiKRmPJZ0JJ69aAPob/gmB/wUe/bc/wCC0H7dFl+078L9G1T4T/ssfDPTb6xks7sxTS+LdcvUCCOZ9pXbaAiUeQT5LIAzkzEL/U7X88fhf/g5k/4IA+CPDtn4Q8F/GG10jSdOiWC0srLwnr1vbwRIMKkccelqiKB0VQAK3v8AiKN/4IUf9Fz/APLZ8Q//ACsoA/f6v4z/APg7y/b5/Zag/YPv/wBiPw7400vWPibqviTS3vPD9hcJc3enW1nm5eS8WMn7Pn90ESUrI/mAqpUMR+mX/EUb/wAEKP8Aouf/AJbPiH/5WV8c/En/AIK9f8Gkvxm8b3/xM+MC/D3xX4k1Vle91bWPhlf319csiCNTLPPoryOVRVUFmOFAHQCgD/LLr/bq/ZE/4KbfsSftW/swD9oz4dfE3w7No2gaLZ6l4oabUIIJPD4miLEakkjq1pho5QDKFVvLYqWAzX4If8PK/wDgzb/6Fz4Vf+Gnuv8A5R16v4B/4LSf8Gpnwp8JeJvAPwu1DwP4b0LxpbpaeIdN0r4cajZ2mrW8YkCRXsMOjKlxGolkCrKGADtgfMcgH8JP/BwT+1R8IP2yv+CtPxU+OXwD1ePX/CFy+l6fp+pQgiK6Gm6fbW00ke4AtGZ45NjdHXDDgiv0G/4NJ/20/wBnr9kD/goB4rsf2kPFNh4N0nxz4Tk0uw1PVJltrIajFd280cUsz4ji8yNZdryMq7gFzllB/pZ/4eV/8Gbf/QufCr/w091/8o6ntf8Agpr/AMGcljcx3tloHwshmhYPHInwoulZWU5BBGh5BB5BFAH55/8AB6B+2z+zx8QvBvw4/Yy+HPiey17xp4Y8RXWseIbGxlE50sJbGCKK5Zcqk0hmY+UTvVVywAZc/wARv7JPxS0f4G/tWfDL41+It40/wf4s0XW7ry13P5On3kU77QOp2ocDvX+lT8Qv+CuP/Bo58W/GmofEj4rRfDvxP4i1eXzr7VNW+GN9e3t1JgLvlnm0RpJGwAMsxOAK43/h5X/wZt/9C58Kv/DT3X/yjoA/qS/Z/wD2kPgJ+1Z8NbX4wfs3+L9K8beGbxjGmoaRcpcxCVQC0T7STHKgYb43CuuRuAr2uv5q/g5/wcLf8G3H7OvhA/D79n74gaF4F0AzvdHTfD3gjWdMszPKAHk8m20mOPewVQzbckAZPAr1b/iKN/4IUf8ARc//AC2fEP8A8rKAP3+r+Ln/AIPM/wBh74wfHv8AZq+Gv7V/wp0ybWLL4SXGrQ+Ibe1QyTQadq62zC8KjnyreS12ykAlRKHOEVmH6kf8RRv/AAQo/wCi5/8Als+If/lZTJP+Dor/AIISSxtFL8cQysCCD4Y8QEEHsf8AiWUAf5an/BPP9ru//YL/AG1vhz+13p+lDXP+EH1ZL2bTzJ5RubZ0aGeNXwdjtDI4RiCFbBII4r/SZ/4Jbf8ABRT9t7/gsx+3HD+1b8PtI1T4Ufsr/DjS77TYtOuzFNL4t1y8VUxO+zG20GJR5DHyXRULt5zqvzb4h/4KAf8ABmh4r8ayfEPxDpngG51WaRpZZG+HmriOWRzuZ5IRpIidmPJZkJJPNfoZ4b/4OaP+CAng3QLPwp4Q+MdtpWl6fEsFrZ2fhTXoLeCJBhUjjTSwqKo4CqABQB/L9/weT/ty/s0ftKfEz4PfAX4A+L9O8Xap8OT4ik8RtpUy3VvZ3N81lFFbtNHmMzIbWbzY1YtHwGwTiv5mP+CWnx88C/su/wDBRn4LftAfE+5Nl4b8LeLtMvNVulRpPs9l5oWaXYgLMI42ZyqgsQMAE4Ff6DWvf8FSv+DPfxVrt74o8UaT8MdS1PUp5Lq7u7r4V3c09xPMxeSSSR9DLO7sSzMxJYkknNZP/Dyv/gzb/wChc+FX/hp7r/5R0AfV3/Bfb/gpt+xNoX/BILx5aeGPiToPiDUPjF4an07wha6Tex3suqpczC2mmhERb9zBiUSyNhFeMxk+ZhD/AJK1f6mHiP8A4K6/8GkHjHw3oXg3xdH8PNV0jwtBLa6NY3nwxvp7bToJ5GmljtYn0UpAjys0jrGFDOSxGSTXFf8ADyv/AIM2/wDoXPhV/wCGnuv/AJR0Afo7/wAG837cf7Nn7Tv/AATW+EXwl+Gni/Tb/wAa/D7whp2j6/4fE6rqdi2motp5kluSJPJcopSUAo24DduyK/Av/g7y/wCCQnxK+Jeu6d/wU2/Zy0GTWf7P02PS/HdlYRNJdJDaZ+zal5agtIkcZ8m4YcxxxxNjYJGX9RPgh/wXD/4Naf2ZtYvfEP7N+u+Dvh9qGpQi3u7nw18PNT0ma4hVtwjke10eNnQNyFYkZ5619In/AIOjP+CE5GD8csg/9Sz4h/8AlZQB/k0/s+/tAfGH9lj4zeH/ANoL4Ba7P4b8X+F7kXem6hbYLxSbSjAqwZXR0ZkkR1KOjFWBUkV/ZJ4d/wCD079s3xb8OLX4Y+FfgVoOqfE/UxFY2Op2l3dzWs15LhF2aUkZlkd3PyxrdjkgYPSv0E+OH7Vn/Blb+0T4vl8efFCHw5Jqtw4lnn0vwx4o0fzpM7i8iafZWySMx5ZmUlv4ia9u/ZQ/4Kd/8GjH7DutN4p/ZZ1jQPCmstH5P9qR+E/Ed1qCxngqt3c6fNOqtn5grgN3zgUAffv/AAQj/wCCb3xz/Ze8F+MP2zf29Lxtd/aP+ONymo+Jby4ZZZtNsFANvp4ZBsQr96VIsRKRHEoKwoT/AEBV+AP/ABFG/wDBCj/ouf8A5bPiH/5WUf8AEUb/AMEKP+i5/wDls+If/lZQB+/1RzQxXETQTqHRwVZWGQQeoI7g1+Av/EUb/wAEKP8Aouf/AJbPiH/5WUf8RRv/AAQo/wCi5/8Als+If/lZQB/O1/wXQ/4NT/Gcfi3W/wBrX/gl1pKajp2oyNeat8PbcCOe1lbmSXSskK8THLG0yGjPEO9SsafgF/wR+/4K5/tHf8EP/wBpnWdB8Y+Hr+78HaxcR2njTwbfxtZ3sctvkJPCswVoLyAMRtcBZFJR8HY6f6EX/EUb/wAEKP8Aouf/AJbPiH/5WV8l/tKf8FnP+DVj9sW0Ft+1B4j8N+OJEUJHdap4J1ua8iUdorn+yxPGP9yRaAPuP9nr/g5E/wCCOX7QvhSy8QW3xh0/wbe3K5m0vxYj6TdWz90keQG2Yj+9FPIh7N1r8r/+DgP/AILh/wDBLv4vf8E1vij+yn8FvitYeNPG3jKytLbT7TRIJ7uDMN7bzO0l0sf2ZAEjbgylicYBr4l8QXP/AAYxeIdRbU5pxau5yy2kHjqCM/RFjCr/AMBAr0HwD8Uf+DHb4bX66l4ettIuZUxgaro/jLVYzj1jvbedD+K0Af5+fw++G/xE+Lfi208A/CrQdR8Ta7ftsttO0q1lvLuZvRIYVZ2P0Br/AF8v+DcL9mz46fsn/wDBJfwD8HP2jPDV34R8U297rF5Npl9tW4ihvL2WaEyKrNsZkYHY2GXOGAPFfOHwa/4OBf8Ag2q/Z08P/wDCJ/s/+PNB8D6YQAbXQfBGs6dE2O7LBpKAn3OTXsf/ABFG/wDBCj/ouf8A5bPiH/5WUAfzi/8AB7j8C/i3J8Uvgz+0lDbXNz4GTSLvw7JOg3W9nqnntcAPj7j3MTfLn7wgOPu1/Gp+yD+1p8c/2HP2h/Dn7Tv7OOqDSfFnhqZ3tpHjE0MscyNFLDNGeJIpY2ZHXg4OQQwBH+pj8RP+Dkb/AIN5fi94L1D4b/Ff4raf4m8PavEYL7TNV8Ia5eWdzGSDtlhl0tkdcgHDAjIr40+Df/BTf/g0B/Z98bJ8Sfg0fBfh/X4ZDLBqFv4B1k3Fu55zA7aUxh9vL24oA/mJ/wCCt0H/AAXd/by/Yu0P/go1+39oaeHvhZomqwWWk+HLazk057VdRRgNUayYSSrbyMqQCe6m3lpYxEvlvur+fT9lb46X37L/AO078Of2lNNsF1W4+H3ifSfEkdk8nlLctpd1HciIuAxUSeXtLbTjOcGv9WXxJ/wc0f8ABAXxloF54U8X/GO21XS9Rhe3u7O88Ka9PbzxSDDJJG+llXVhwVYEEda/P3wL/wAFDv8Agzf+Gnj2H4neBbPwLp2uW0omt7mP4f6wRBKvR4UbSjHEw6hkVSD0oA/Yr9hL/gpX8R/iF+xJfft2f8FMND8Pfs8eFta1aWXwzBq2otby/wBhyhfsjXjXfl5uZmD+WEVDMm10iUMM/wCUN/wU/wDj54I/ak/4KIfGj9oP4Zztd+G/Ffi7VL7Srh0aIz2TTMIJdjgMvmRhX2sAwzggHIr/AEu/i/8A8HDv/Bt9+0J4Nb4dfHz4h6J448PvNHcNpniDwTrOp2ZmizscwXOkyRllydrbcjPFfKP/AA8r/wCDNv8A6Fz4Vf8Ahp7r/wCUdAH4s/8ABnV+3z+y3+yr46+M/wAFv2k/GuleCLjx0ugXehXWtXKWVncS6ebyOeE3EpWJZD9piMaswL4bGSMV67/we3/Av4tH4yfBv9pOO2ubjwN/Ylz4cadRut7TVEuHudr4+49xC425++IGx901+qVl/wAFOP8Agzn028h1HTtC+FtvcW7rJFLH8KLpHR0OVZWGh5BBGQRyDX2B8Rv+DkP/AIN4/jB4K1D4bfFn4q6d4n8O6tF5N9peq+D9cvLO5jznbLDLpTI4yAcMp5FAH+Wt+x5+1z8dv2F/2ifDv7Tv7N+qDSvFnhyV2t3kjE0E0cyGKWCaI8SRSxsysvB5ypVgrD95f+Cutn/wXa/bp/Y20D/go7/wUF0NPD3wv0fVYbDSPDltZyac9muoo2NTeyYSSpbysiQCe7m3lpIxGvluGP8AT78Gf+CnP/BoH+z141T4kfBc+C/D2vwyGWDUbbwDrJubdzzmCRtKZof+2ZXFfcPib/g5m/4IB+NfD154S8ZfGK21bStRha3u7K98J69cW88LjDJJG+llHVhwVYEEUAf5Uf7Jvx7vf2V/2o/hz+0zp2nrq03w+8TaV4iWxeTyluv7MuY7jyS4DFBJs2btp25zg4r/AGR/+CVX7U37Wn7av7MLftH/ALWfw3s/hd/wk+p3Nz4X0SOWaW8/4R5gv2WW9EyqRNId5DKqLJHtcRoGAr8FfAX/AAUR/wCDOH4X+Pofif4BtPA2ma7bSie3uo/h/rB+zyr0eFG0opEw6hkVSD0r9G/+Io3/AIIUf9Fz/wDLZ8Q//KygD+DP/g4X/wCCLfxG/wCCaP7T+s/FX4b6LNc/BDxxfy3ug6jbxloNKmuDvfTLgqMRGJiRbFuJYQMFnWQL+W3/AAT6/wCCiP7Tn/BM34/W37Q/7L+rR2epCFrS/sLxGm07U7NyC0F1CrIXTcAylWV0YBlYGv8ATw8Zf8HLP/Bvv8RfC1/4G+IPxds9d0TVIWt73T9R8Ja7dWtzE3VJYpdLZHU91YEGvxz8UfFr/gx78XeJZvFmq2mixXU7l2Sy0TxhY2wJIb5ba2to4FGR0WMDGRjBIoA+RoP+DoT/AIK2/wDBTaex/Yy/4J//AAk0rwz8RPFqNayavpUs1/c20JwJLiEzhILJEB+e4n8wRg5BVtrD+1T/AIJW/sJL/wAE6f2LfDP7OOqa9deKPESvPq/iPV7qeW4+2a1qLebdyRmUlli3nagwCyrvcGRnJ/IH9mf/AILj/wDBsB+xt4Rk8DfsteNNE8C6bOwadNJ8Ha7BJcMOjTyjS/NmYZwGkZiBwDivpT/iKN/4IUf9Fz/8tnxD/wDKygD+F7/g6d/Ye+MH7NX/AAVC8Y/HvXtMmfwP8W54tZ0TVlQ/Z3uBBGl3as4yFmilVm2E5MbIw6nHBf8ABAf/AILf6N/wRw8QfFGHxl4HuvHGkfESx08xQ2FyltcQ6jpJuPs4LOrL5MoupFkIDMpClVbkH+5v4qf8HGP/AAbp/HPwRefDP40/E7S/F3h3UABdaXrPg3W76zm2nI3wzaU6Ng8gkcHkV8g/Bv8A4KZ/8Gf37PnjmH4m/Bn/AIQvQPENrL59tqNv4C1k3NtJ/egkfSmaE+nl7cUAfod/wTY/ab/aN+EP7HHin9vb/gtB49sPhunxM8QPrOieHtemh0+08M6VJEFs7CLzcTGeZI2l+zszy4AJQTGXP+V5/wAFDPjd4T/aU/by+M37QPgGR5tA8Z+Ndd1jS5JEMbvY3d5LJbsyMAVZoipKkZB4Nf6cPxi/4OGP+Dbn9ojwf/wr39oD4g6H460Dz0uv7M8Q+CNZ1Oz8+LISTybnSZI96hjtbbkZODzXyr/w8r/4M2/+hc+FX/hp7r/5R0Afkb/wZxft8/st/s33Xxe/Z5/aG8a6V4K1TxheaLf6A+s3KWVtfSRC4gmhSeUrGJgXh2Rlg0m47QcGv6V/+Djb/gkXq/8AwVO/Y8tbr4PQRv8AFb4azT6n4bjkZYxfwzqou7AyNwhnWNHiZiF86NAxVWZh8T6b/wAFPv8Agzs0bUbfWNH0T4XWl3aSJNBPD8KbuOSKSMhldGXQwVZSAQQcg8ivvL/iKN/4IUf9Fz/8tnxD/wDKygD/ACKfGHg7xb8PPFWoeBvHul3Wi61pM72t7YX0L29zbzxnDxyRuAyMp4KsARX9TX7Av/B3B+3H+x18DdL+AfxT8LaT8WdN8PWyWek6jqdzNZ6pFbxjbHFPOnmLcLGoVULRiTaMM7cEf0jftZf8FSf+DSH9ubUE1z9qvWtA8XaqiLGNUl8JeIrbUvLQYVDeW2nRXJRR0QybR2FeBfBH9qj/AIMq/wBnfxba+OvhfF4ej1WxcS28+p+GfFOseVIowrouoWVwqsvUMBkHkc80Ad1/wSI8Df8ABSb/AILEftf+F/8Agrf/AMFE2n8HfDHwFHNP8NPCOnGXT7K6vLlTGbxYS7TSQLGSWnmYm5cqqfuFKV/ZvX8/6f8AB0V/wQljQRx/HEKqjAA8MeIAAB/3DKd/xFG/8EKP+i5/+Wz4h/8AlZQB+/1fMPx//bY/Y8/ZSljtP2mPin4U8BXU1sbyC117V7Wwup4ASu+GCaRZZRuVlHlq2WBAya/J/wD4ijf+CFH/AEXP/wAtnxD/APKyvmz43f8ABcH/AINZ/wBpnWrPxJ+0hrng74g6jp0BtrS68S/DzU9WnggLFjHG91o8jIhYltqkDJz1oA/z4v8AgtZ+1v8ADb9uj/gqJ8Xf2oPg7JLceFvEOo2kGmXEyGJri20uyt7BJgjfMqzC38xAwDBWG4A5Ar/8EXP2tvhr+wv/AMFPvhH+1H8YpJoPC3hvUrqLU57eMzPBbalZ3Fi82xfmZYhceYyqCxVTtBOAf7uf+Hlf/Bm3/wBC58Kv/DT3X/yjo/4eV/8ABm3/ANC58Kv/AA091/8AKOgD+lz9n79t39jj9q6ZrL9mf4qeFPHl3Fai+mtNC1e1vruC3JVd80EUjSxAMyqfMRcMQDgnFfUNfy1/BL/gt9/wayfsz67eeKP2cNb8G/D/AFPUIPst1d+G/h3qekzzwbg/lySWujxs6bgG2sSMgHGRX0t/xFG/8EKP+i5/+Wz4h/8AlZQB+/1f5kP/AAeF/t0/s0ftY/tBfCX4X/s5eMNM8a/8K703WDq95o9wt3Zw3Wpy24EAnjJieRFtcuEZtu4A4OQP64P+Io3/AIIUf9Fz/wDLZ8Q//Kyvgu//AOCnX/BnTql9Nqep6F8Lrm5uXaWWWX4U3TvI7nLMzHQySSTkk8k0Afwbf8EYf2kfhh+yL/wVE+DX7QvxovjpnhXw/rZGp3gRpBbQXcEtsZWVQWKRmUM+0E7QcAniv9mb4M/HX4KftGeBofid8APF2jeNvDtw7RR6noV9DqFoZExvTzYHdQ65G5CdynggV/Kv/wAPK/8Agzb/AOhc+FX/AIae6/8AlHX1b8H/APg4b/4NvP2evBy/Dv4A/EPRPA/h9ZnuBpnh/wAE6zplmJpcb5BDbaTHHvbA3Ntycc0Af0oV/iqf8FsfgX8Wv2f/APgqp8dPC3xitrmK+1fxhq+vWNzcj/j903VrqS6tLhG+6yvFIoO0kK4ZDgqQP9K3/iKN/wCCFH/Rc/8Ay2fEP/ysr5i/aT/4Ldf8GuP7Yul2ej/tS+K/D3j2LTt4s21rwTrd1Na+Zjf5Er6X5kW7A3bGXOBnpQB/Ct/wR1/4Ki/8FPf2J/FWr/s9/wDBO3Tk8YXnxGmjYeG59Mk1bN9GuwXVvFE6PHIsfEjFvKKKDICEUr5n/wAFmP2Z/wDgoj8AP2um8Yf8FMbr+1viL8R9LtPEU2pxOJoJFdBD9mWSONIA9n5YgeKDMcYVQhKFSf7/AH9nb/guH/wa7fsj6bcaT+zD4r8OeAorwAXLaJ4H1qzluMYx5skelB5MYGN7Gtr9oP8A4Lzf8Gyv7WHhOLwN+0z440Lx5pNtIZoLbXPBet3qwSkYLxebpTGNyONyEHHGaAP4Zf8AggR/wUb/AGjv2B/2i/FXhb9lL4YL8VvHnxZ0eLw7oWlNLJGkOopOssM8qRLukgjXzDMnmQgL8xljVWNf6bX7fX7dnwd/Yi/Yb1L4g/tneJ9D8I+K9X8K3iQaRBdGVtQ1kWgEttpsbhZ7lVnkVA/ljarK0mwEkfj9+zX/AMFkf+DU/wDY7ubnUP2Xdf8ADPga9vU8q4vNJ8Ea3Bdyx5zse4GlmVkzztLkZ7V6J8cf+C8//BsZ+07a6dY/tKeLfC/xDg0d5JLCPxN4B1bVktXmCiRoRdaRIIy4VQxXG7aM9BQB/k+1/p/f8GmX7f37LGof8E1dF/ZH8Q+N9I0bx94EvteubjRtRuo7W5k02SeXUGu4llKiSGNJX81kJ8rYxfauCWf8PK/+DNv/AKFz4Vf+Gnuv/lHXd/Dz/gr7/wAGlHwi12XxR8J/+FfeGNTntZ7GS70n4ZX9lO9rdIY5oWkh0VWMcqEpIhO11JBBFAH8f/8AwdH/ALaP7P8A+29/wU7Hjf8AZr8QW/irw54V8J6b4cbVrJvMs7m6gnurqUwSDiSNftQTePlLK20kYJ4L/g2j/bB+B/7Ff/BVPw38Sf2iddg8MeFtZ0fU9Cn1a8JW1tJbtFeFpnwdkbSRKhc4VNwZiqhiP7Av+Hlf/Bm3/wBC58Kv/DT3X/yjo/4eV/8ABm3/ANC58Kv/AA091/8AKOgDt/8Ag6N/4KO/sg6T/wAEqPFf7OPhbx9o2v8AjX4sWugXOg6dpV3HeyTaW97bX4vj5JcLay28DeTMSFlLLsLDOP8ALNr/AFL/ABr/AMFdP+DR/wCJUumT/EWP4d6++iadbaPpzal8Mb66Npp1kuy3tYTLojeXBCvyxRJhEHCgCuL/AOHlf/Bm3/0Lnwq/8NPdf/KOgD9ov+CN/wC3H+zX+2d+wt8N2+CHi/Tdc1zwv4R0Kx8SaTBOv2/Sb2O1WF47m3OJIwZYZRG5XZKELIWHNfxm/wDB25/wSE+JXgL9oS8/4KZ/AvQZdR8D+L4YF8YCxiaRtK1aBPK+1zIo+S2uolj3S/dE4beQZU3f0HfAz/gu1/wa/wD7MDam/wCzT4n8KfDw60IRqJ8M/D/VdIN2Lff5XnfZdHj8zy/MfZvzt3NjGTXu1/8A8HP/APwQa1Sxm0zU/jbHc21zG0UsUvhfxA6SI4wysp0wgqQcEHgigD/Ky/Y4/bI/aD/YL+P2jftK/sza42h+J9GLKGKiW3ubeTHm29xEfllhlAwynB4DKVdVYf19/wDEYl+31+0t4XsP2dv2WvgRpNv8XfFcg0zTtRsrufVAbm4+VWtdNaJf3ik7lMtxLGuMurKCD9mfFP8AaB/4MkfjH4pn8ZeM7Tw/FfXTM8v9k+HfFejwszAgnyLC0t4QTnOQnXnrzX13+yh/wVy/4NQP2GhdS/sn+ItB8FXV6gjuL2z8I+IHvpYx0R7qXTZLhk77DIVzzjNAH6cf8ER/+CaPiX/gnd+zPqOpfHq/HiL43fFHUX8S/EDXHl+0yz6hOWZLfzzzIluHbLZIaZ5XU7WAH7OV+Pv7MH/Be/8A4JNftl/HTQv2a/2bPiv/AMJJ418Sm4XTdO/sLWbPzzawSXMv766sYYV2wxO3zyLnGBliAf2CoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivib9t3/got+xt/wTk8G6L8QP2zPGP/AAhukeIb1tP0+f8As++1HzrlEMhTbY29w64QE5ZQvbOaAP8AHn8O/Er9p74Dft8+Kf2j/wBkwarB4r8BeKdU1SO+0u2kuRaoLmVHM6orL5EiM0cqyfI6MytkEiv9FL/gmv8A8HXH7AP7WHgjT/Dn7Wur23wX+IscaR3sOqFxoV1KOGltb3DJEh6mO6MbJnaGkA3nM/ZK/wCC0/8AwbAfsM+H/EPhr9l34jQ+GIPFmrTa5q7jw/4nup7y+n+88k1xYSSFRzsj3bEydqjJz4B+0z+3z/wZyftg+IJvF37QU/hzV9ZuWL3GpWvhPxJpd9Ox6tNcWOn280p93diKAP1//au/4OGv+CSv7K3w3vvHEvxg0Dx9qEMebTRPBl7Drd7dykErGptneGLOOXmkjVe5zgH/ADqf2bv2LP2zv+DjL/go94y+Nei6M2gaH4s8Qyap4q8ReW76XoNnM2Ut0d8efOkIWOCEHe+AzbEDuv8ARv4K8a/8GN3gLX4vEukJY3VzAVKJqWneNdQt/lAADQXMMsLjjnehyeTmv2d+HX/ByH/wbx/CDwbY/Dr4T/FXTvDHh/S4/Ks9M0rwfrlnaW6f3Y4YtKVEHsAKAP3W+AHwN+HP7MvwR8Kfs9/CKy/s/wAM+DdLttI02AncywWqBFLtxudsbnY8sxJPJr/N7/4OlP8AgiZ8Rv2dP2h/EP8AwUM/Z60ObVPhh49un1LxGllGZG0LWbglriSZFBK2t0+ZVlPypM7xttBi3/1yf8RRv/BCj/ouf/ls+If/AJWVWvP+DoH/AIIOajZy6fqHxuSe3nRo5YpPC/iBkdGGGVlOmEEEcEHgigD+ev8A4NOv+CyH7Iv7Nf7N/iv9iX9rfxnp3gG6tNdn8Q6BqetSi1sLq2vIokntzO+I45YpYfMAkZfMEuFyUIr8Uv8Ag5W/4KJfDH/gpp/wUZsrv9mO5k8Q+EPBWjW3hbSby3icjVLszyzTzQIRvZGkmWGP5RvEYZQQwJ/o/wDix+0R/wAGSnxq8TT+LvG9p4dhvrklpDpHhvxVosTMc5bytPs7aLcc5J2ZJ5617l+y1/wUa/4M/f2LfEMfjH9mq/8ADvh3XIDmHVX8JeI7/UIDjB8q6vNPnniyOux1z3zQBs/8GsX/AARQ8e/sI+ANW/bV/ao0p9I+JXj7T0sNK0a5Urc6Norssz/aEIBjurp0jZ4z80MaKrYd5EX+j/8A4KBfs43/AO15+w/8WP2Y9Gljg1Hxx4W1PSbCWY4ijvZ4GFsznn5Fm2FvYGvzA/4ijf8AghR/0XP/AMtnxD/8rKP+Io3/AIIUf9Fz/wDLZ8Q//KygD/I6+I/w48efCDx7rHwt+KOkXWg+IvD93LY6jp17GYri2uIWKvG6HkEEf1HFf2Ofstf8HUX7UmmfsFfD7/gnb+y98Hptc+N2n6LaeCtB122nN3G0drGLa1ni05YWeW6SBVBV5fK8xfNbcmYq/Zb9rj/gpL/waG/t2+KYPHX7Ves6L4q163RYxqh8MeJrK+kjTG1Jbi0sYJZUXGFWRmVRkAAE10X7Iv8AwVQ/4NKv2D7mfU/2Tde0PwfqNyhil1KHwp4judRaJsZj+2XOnzXPlnAJTzNpIyRmgD/NW/aF8HfFT4d/H7xz8P8A46zSXHjfQvEGp6f4hlmn+1SPqtrcyR3bPPlvNYzK5MmTvPOTmv7c/wDgzK/bj/Zs+Eeg/E39kn4ueL9N8MeLPF3iDSr7w3aanOtsNWlnja1a3tnchXuBIsQWHPmSeYNithsfqV4u/wCCrX/BoP8AEDxVqXjrx5YfDXW9c1m6lvtQ1G/+Ft7c3d3dXDF5ZpppNEZ5JJHJZ3YlmYkkkmjwj/wVa/4NB/h/4r0zx34DsPhromuaLdQ32n6jYfC29tru0urdg8U0M0eiK8ckbgMjoQysAQQRQB+hX/BwP+3T+zP+y5/wTe+MHwo+J/jDTNP8afEHwVq2i6B4fadW1O+bVYZLISR2ykyeSjOxeUqI12kFs8V/jsV/qz/G7/guD/wa0ftM6zZeI/2kNd8HfEHUdNhNtaXXiX4eanq00ELMWMcb3WjyMiFiWKqQMnPWvE/+Hlf/AAZt/wDQufCr/wANPdf/ACjoA+1/+Dc3/goP+yL8eP8AgnN8G/2cfBvjzSD8R/CPh5NH1HwtcXccOrq+mgq8kdq7CWWExgSCWMMgU4YhgQP6Jq/lN+En/BZT/g09+APjWH4k/Am58B+CvEVtHJFDqug/DXUNNvY45l2uqz2+ipIFdThgGwRwa+tP+Io3/ghR/wBFz/8ALZ8Q/wDysoA+f/8Ag5y/4I6eLP8AgpV+zVpPxo/Z5sPt3xY+Fq3ElnYJgSaxpU+GuLNScZnRkEtsCcE+YgG6UEf5Ter6RrnhbW7nQ9etZ9O1LT5mhuLe4RoZ4JoiQyOjAMjqwwQQCCK/15P+Io3/AIIUf9Fz/wDLZ8Q//Kyvzt/au/4KSf8ABoN+29r7eL/2n9T8P+JtckAEurDwp4jsdSlCjaoku7TT4LiQKOFDyMF7YoA/Ab9jv/g8R/br/Z0+Cen/AAf+Mvg7Rfirc6JapaWGuahcz2eovFEoWP7Y6eYtyygAGTbHI/V2ZiWP9C//AARZ+CX/AAUa/wCCif7Vtj/wWc/4Kd3F14c03SNOuLX4XeDrXzLCygg1JGjnvBaFy4gaFisbXBeW5LCQny4od3jf7P37ZX/BmH+y94yt/iF8GD4dstbs5DNbXl/4X8T6rLbyE53wm/sbjymB+6ybSvQECv1Y/wCIo3/ghR/0XP8A8tnxD/8AKygD41/4Orv+CR3xA/b2/Zy0D9pv9m/RW1r4jfCpLlbnTbVC95quhT4eWKBVBMs1tIvmxRDlleULucqrf5e3h3xD4v8Aht4zsfFXhi7utF17QL2K7tLmBmgubS8tXDxujDDJJHIoIIwVYeor/XT/AOIo3/ghR/0XP/y2fEP/AMrK/M39qD9vv/gzo/bK8Uz+O/2irrw9revXbM1zqlv4V8S6ZfXLt1ae4sbC3llb0aRmI7GgD8ivgP8A8Hqv7XngL4NW/gX4zfCnQ/Hvi+ztBbReIlv5NMFxKows11aRwSJI54LiF4FY52hc4H9BP/BC79i39sD40/G7xB/wWo/4KmxY+KnjrTl07wVocsRhXw5oEuWPl2zFjbGZW2RRkmVYjI0rNJO+Pl79m39ur/gzc/ZH8a2/xI+AU/h7SPEFk5ktdRufC3ibUrm2cnO+GS9sZ2iYdmjKkDgHHFfp/wD8RRv/AAQo/wCi5/8Als+If/lZQB+/1FfgD/xFG/8ABCj/AKLn/wCWz4h/+VlH/EUb/wAEKP8Aouf/AJbPiH/5WUAeaf8ABzH+31+yz8Cv+Ca/xX/Zn8U+NNL/AOFl+N9Ht9O0vwvDcJLqkiXk8eZ5LdSXigWJZH82UKjbNqkuQp/yUK/1UfjH/wAFov8Ag1L/AGifF4+IP7QN/wCB/HWviBLUal4h+G+o6neeRESUj8650aSTYpZiq7sDJwOa8p/4eV/8Gbf/AELnwq/8NPdf/KOgD9J/+CDv/BQv9kr9pD/gm/8ACP4c+BvHmjS+L/hz4A0rTvEmhS3ccOo6euhW0NlPcTW7sJFttyKRPjysOvzZOK/hB/4Osv20/wBnn9tb/gpPo/iH9mbxPZeMPD3g/wAF2Hh+41TTZBPZTXyXl7dSiCZfklRUuY13oWQsGAJxX9d3wj/4LSf8Gpn7P+sX/iL4D6h4H8E6hqtjJpl7daB8ONR02a5spmVpLeV7fRo2eF2RS0bEqSoJGQK8o/4eV/8ABm3/ANC58Kv/AA091/8AKOgD+Nb/AINw/wBrL4Nfsa/8FZPAXxW/aA1uDw14TvLTVdHvNVuzttrR721kWF5m52RmYIjOflTduYhQSP68/wDg7o/b7/ZZuv8Agndafsp+DPGuleIPG3jfVdE1i303S7lLt00dAbtL2RoiypDMPK8ksQZQ4ZAyhiO2/wCHlf8AwZt/9C58Kv8Aw091/wDKOu58f/8ABXv/AINJfixq1tr/AMUx8PfEt9ZWdvp1vc6r8Mr+8mis7RBHBAjzaKzLFEgCxxghUUYUAUAf5Zdf7lP7Cn7cX7Nn7efwG0j4ufs5eL9N8Tw/YrM6nb2k6vdabdTRBzBdw58yCUHcNsijOCVyOa/nR/4eV/8ABm3/ANC58Kv/AA091/8AKOvoz4H/APBe7/g2S/Zj06/0j9m3xf4Z+HtpqsiTXsHhrwFq2kx3MkYKo0q2ukRh2UEhSwJAPFAH9ONFfgD/AMRRv/BCj/ouf/ls+If/AJWUf8RRv/BCj/ouf/ls+If/AJWUAeO/8HWH7D/xf/bQ/wCCZK3vwL0ybW9e+GfiG38VS6baoZbm70+K3uLa6WFBy0kazrPtGWZImCgsQK/yuPgj8U9c+BHxq8IfG3w5DHPqXg3W9P1y1imz5bz6dOlwivjB2lkAOOcV/rU/8RRv/BCj/ouf/ls+If8A5WV+enxW/wCCk3/Bnn8cPH0/xS+K8fgnW/EN3Mbi6v5/AOsCa6mbq9wV0pfPY9zLuJoAt/sSf8Fev20/+C537a/w6h/Y/wDDOr/B34E/C27TXPiFrFxJDdy6xdeUwi0cP5flmKUsQyr+82Ezny2SMH5L/wCDzL9uX9mjxn+zX4O/Yh8A+L9O1z4g6T44g1zWtLsJluJNMt7KwvINl0UysMrvdoViciQgE7cc1+vXw2/4OPv+Dd74NeC7H4cfCL4pab4W8PaYnl2mmaR4P1yys4E9I4YdKRFGfRRXzb8Qv+CuX/Bo78XPGmofEj4rxfDvxP4i1aTzr7VNW+GN9e3tzJgLvlnm0R5JGwAMsxOABQB/mMfBzxrb/DX4u+FfiNdo0sWgaxY6k6Jjcy2sySkDPGSF4r/YR/bJ/wCCvv8AwT10D/gmr4t/am8PfFXQNW0HxNoGraf4eW0ulkutR1Y2h22Mdt/rhcK0sXmxuimAOGl2LzX5Rf8ADyv/AIM2/wDoXPhV/wCGnuv/AJR12t3/AMFdf+DSDUPAFl8J7+P4eT+FtNvJtRtNGk+GN82n295cKqSzx250TyklkREV5FUMyqoJIAoA/wAs+v8AUx/4NLP24/2bPHX/AATV8F/sX23i/TYPiZ4Ku9dE3hy4nWLUJrW5vp79biCJiGmiCXOHaMNsKkNjiuJ/4eV/8Gbf/QufCr/w091/8o69Q+EH/BZv/g1E/Z88ZJ8RfgHeeBfA/iGOKS3TVPD/AMNtR0y8WKXAdBPbaNHIFYAbl3YPegDzv/g7A/4JF/ET9uD4G+Hf2vf2a9EfXPH/AML4Li21PTbSMyXup6DK3m4gRQWlls5d8iRDlkll27nCqf8AMl8HeMPGnws8c6X488EX9zofiHw9fQ31jeWzGG5tLy1cPHIjDDK8bqCD1BFf65v/ABFG/wDBCj/ouf8A5bPiH/5WV+Yn7TP7d/8AwZv/ALYPi2fx/wDtBXHh7V9evGaS61K18K+JdLvLmRzkvPNY2FvJM5/vSMze9AH5OfBf/g9Z/a78H/ByDwR8VvhJoPjbxpb2q20PiFL6XTo7iZRtE1zYxwyK7scF1hlgUnO0ICAP6Gf+CFH7Dn7XHjn4r+KP+Cx//BUlDJ8ZfiVZJY+GNInjMX/CN+Hm+cRpbtn7K0wKqkWTLHEG8xjLNKK+Tv2Zv29v+DOX9j3xlb/EX9nq68P6J4gsyWtdTn8LeJdRu7dic7oZr2wneJu26MqwHGcGv02/4ijf+CFH/Rc//LZ8Q/8AysoA/f6ivwB/4ijf+CFH/Rc//LZ8Q/8Ayso/4ijf+CFH/Rc//LZ8Q/8AysoA/K3/AIPbf+THvhB/2PMn/pBcV/Pj/wAEPv8Agu/8ef8Agjo9p8B/2qfCuuaz8EPE8n9o2du8Dw3+lPOcvdaaJ/LSeCUndLBvVS37xGVi4k/qt/ar/wCC1H/BsD+25B4Qs/2pPiPD4utfA2tReIdItrnw/wCJ0t47+EFVeWKKwRJ0wSGimDxMOGUivZ/iz/wcS/8ABuR8evBdx8OPjf8AEnSPGHh+6/12m614M1u+tXI4BMU2lOmRng4yO1AH3L8Kv+C6/wDwSD+L/gZPH3h39oPwZptq0Yka21zUo9GvkOMlTa3xhnLDOPlQg9iRzX8jv/BzH/wX4/Z4/bF+Cqf8E6/2E76TxrZazqlpP4k1+3hkFnOLORZbezsQdr3DNcBHeQJ5f7tVjMm8lPcPFvi7/gxr8Z6s+tamtnbTSliy2Fh43sYvm6gRW8Mcaj02qMdsV9g/so/8FHf+DQH9iHWovFX7MWo+H/DetW4YQ6s/hTxJqGpRBuojvLzT57hAe4WQA96AOJ/4Naf+CE/xJ/Y6e5/4KAfti6PJonjzXNPew8MeHrpdt1pNhc4M1zdKeY7m4UBEiOHhiLB/nkKx/sd/wchf8oS/j5/2CtP/APTnaV5//wARRv8AwQo/6Ln/AOWz4h/+Vlflj/wWy/4L/wD/AASP/a5/4JcfF39nP9nn4tf8JD4y8UafZwaZp/8AYOs2nnyRX1tMw825sIoUxHGzZeRQcYHJAoA/zU6/0SP+CWP/AAdI/DT9mL9n/Qv2RP8Agqt4a1/wf4t8B6NZWmmaxZ6a00WpaUtuhsTNbrtkjma3MeyRFeGdMSbkzg/529f6UTf8FPf+DW39qH9kj4UfC39u/W9E8UeIfCPhDRdInku/C2v/AG+ymtLSJJoIr+109ZgglDZEU3lseRng0AfxX/8ABZv/AIKMyf8ABUj9vnxT+1FpdhPpPhsw2+j+HbG6INxDpViCIzLtJUSTSNJO6gsEaQoGYLuP9t//AAaTf8Eh/iF+yX8Ntf8A29f2kNFm0Pxf8RLCPTfDmnXYKXNpoDslxJPLGeUe8lSIqjAMscSn/loQOb/Zv/bF/wCDMT9kzxnafET4GSaFp+u6fJ5tpf6h4b8U6vPbSZyHhfULK5Mbj+Fkwy9iK/V3/iKN/wCCFH/Rc/8Ay2fEP/ysoA/Lz/g9R+Bfxb8f/sYfDH4y+C7a5vfDPgTxFdjX0gG5LddThjitrmUDkIkkbRB+gaYA/eFf5xnwj+LHxD+BHxR8PfGj4S6pLovifwrqFvqml30OC8F1auJI3AYFWAYDKsCrDIIIJFf60et/8HOX/BA7xLo914d8R/GeHUNPv4Xt7m1ufCuvywzRSAq6OjaYVZWUkMpBBBwa/Pbwh/wUP/4M3PAPjpfiT4Q0/wABWOsxyCaKdPh5qxWGRejRRnSTHEw6goqkHkUAfz7/ALZvxV/4ODv+Cx3/AATj8Q/tT/HXQ7bRPgX8PYLbWnsNP0+TSz4g2OsbXtvCwmnuo7VHaeWQvHaoiuyZdNo/kvt55bW4S5hOHjYMp9CORX+vY/8AwdBf8EHZLQ2EnxuRoGTyzGfC/iAoUIxtx/ZmMY4x0xX5wT/8FAP+DNK68en4mXGm+Am1gzfaDIfh7q/lGUtuLmD+yfJLbuclM5oA/W7/AIIsf8FG/wBr/wD4KffDnxL+0n8avhPZfDD4b3LWUHg1vtM1xf6m6RkX87GRI0e183aIJEjQfeT94UL1/Hb/AMHVP/BFr4i/An9obXf+Cjv7P+izan8OPHlx9u8UJZx7zomtS/66aVVGRbXjfvfNOVWdnViu6IN/WBYf8HP3/BBnSrGHS9L+NkdtbW0axQwxeF/ECRxxoMKqqNMACgDAAGAKW+/4OgP+CDep2U2m6l8bUuLe4RopYpfC/iB0dHGGVlOmEEEHBB4IoA/yk/2V/wBqb45fsXfHfw/+0j+znrkvh/xZ4bn861uY/mR0YbZIZoz8skMqEpJGwIZT+Nf156J/weD/APBS39ovw/pn7PX7OnwW8PS/FjxMU06wvtMW71BnupRt322nOSBIDl182WWNcZdWUGvu/wCKHx9/4Mjvi/4rm8aeMLTw/DfXDFpBpPh3xXo9uWYEE/Z7C0t4QTnPCdeevNfZH7Kf/BX/AP4NSf2Hra5i/ZQ8SaD4JmvF2XF5Y+EPEBvpk4wkl1Jpr3DoMZCtIVB5xkmgD9K/+CI//BPn40/sOfs4614t/a08S3viv42fFrVD4n8b3d1eNdxw3jrsitoyCYz5MfEjxjDOSqkxJEB/EB/wdQf8EhPiV+y5+114g/bs+E2gyXfwp+J13/aOoXFlEzx6Prk+PtSXO0YjS7mJnikJ2s8jx8FV3f2Qf8RRv/BCj/ouf/ls+If/AJWVj+IP+Dmz/ggR4t0K88L+KvjLb6npmoQvb3Vpd+FNemgnhkG1kkjfSyrqwJBVgQR1oA/y+v8Agn//AMFB/wBpX/gmn+0LY/tHfsx6sljqkUZtL+yuU82x1OxdleS1uosgtG5RTlWV0YBkZWANf1kXv/B2N/wUj/b703TP2Pv2EfglYeH/AIseNSdNg1axvpNUliMoO+a1t5YYY7YxrlzNcSzRxKC7AAZH1j49+NX/AAZB/EnxLceK/EdnoUF3cv5jppmg+LtLtw2Qflt7K1ghQcdFQDtjBNfd/wCyv/wWd/4NYP2ItGutD/ZQ8V6H4Gjv8fa5tN8H6+t1cgYwJrhtMaaQDHAdyAemM0AfrN/wR8/4JwaR/wAEyv2N9L+DOq3aa3481yeTXvGuuhmlfUtcvMGZvNkAkeOIYiiLAFlXewDu9fwu/wDB01/wRa+In7Nn7SGv/wDBQj4DaLNqXwv+IV42o+IPskZf+wtbuCTO0yqMrbXcmZUlPyrM7xttzHv/AK8f+Io3/ghR/wBFz/8ALZ8Q/wDysqlqX/Bz3/wQX1nTrjR9Y+Ncd3aXcbwzwTeFtfkjkjcFWR1bTCGVgSCCMEUAf5Uf7JP7Wvx5/Ye+Pmg/tKfs3a5JoPirw/KWhmUb4ponG2SCeM/LLDKvyujcEcjDAEf116T/AMHfH/BTf9qHRdM/Zw/Ze+C3h8fFnxQV06xv9MFzqLtcSLgyW1hISqsvLgzSyxIBl1ZQa+5PiV8d/wDgyK+LHiqbxl4rtNAgvbhi7rpPh7xZpFuSeCRb2FpBAPwQc89a+1/2VP8AgsV/wao/sQWFzZfsoeJtB8EPejbc3Wn+D9f+2TqMYWW6k0155FGMhWkKg8gZNAH6R/8ABG79hXx7/wAE5v2Rdc8X/tg+MZtd+KXj6+uPGfxC1rU9QM1rbXbR5aMSu3lBLaFf3swwGfcd3liML/n1f8HTv7ZvwC/bX/4KdQeMP2b/ABJZ+LvDvhLwhpvhttV05/Os57mG5vLuXyZR8sqL9qC70JQsDgnrX90Wtf8ABzp/wQP8SaPd+HfEXxohv9Pv4ZLa6tbnwrr8sM0MqlXjkRtMKsjKSGUggg4PFfCf/Dyv/gzb/wChc+FX/hp7r/5R0AfyD/8ABs3+2B8B/wBiz/gqdoPxJ/aO16Dwv4Z1nRNT0J9VuzttbWe7CPC079I42eIIZD8qlgWIXLD/AFwvh78Rvh78XPBen/Ej4U69p3ifw7q0fnWOqaTdR3tlcxgld0U8LNHIuQRlWIyCK/k1/wCHlf8AwZt/9C58Kv8Aw091/wDKOvsr4df8HIn/AAbx/B/wVp/w1+EvxU03wt4c0mMxWOlaR4O1yxsraMsWKxQQ6UkcalmLEKoGST1NAH9Fd5DJc2ktvDIYXkRlWRcEoSMAjPGR1r/B7/aQ+CPxW/Zu+PPi34FfHGxuNP8AFnhfVLiw1OK5B3meNzmQE53rKMSI4JDqwYEgg1/rHf8AEUb/AMEKP+i5/wDls+If/lZXx1+0n/wWE/4NRP2wtWtfEP7T+ueGPHGp2UawwX+q+CNbmvI4lJYRi4/ssS+WCSdm/bknjmgD+Pf/AII0/wDBUX/gtH8L/Cdz/wAE9f8Agmjp0fi7/hILqS8sba40sahLoclzhZrmKaRlgtoC2HkN0Ht1fLYBdt35gf8ABS39mf8Aas/ZO/bU8b/Cr9tS6OqfESa8/tfVNWEkk0OqPqY+0G7imkjjMqyM7AsFADqy9VIr/Sf+BX/Bfn/g2i/Zg8KHwN+zl460LwLpDsHe00LwTrVhFI4/icQ6Uu9ufvNk+9cP+0p/wWv/AODWj9sW0s7T9qXxR4d8ef2cGW0l1nwTrdzPbK/3hFM2l+ZGCeSEYAnk0Afymf8ABtP/AMFIv2xP2b/FniT9iX9i34UWXxH8XfFXW9Hvo73UrmaCw0azsS0d9cXggQt5PkOMS+YnlOAdsxZYm/0H/wDgpn/wUc/Y1/Yh+AHje1+PvxC0PRfEsvhq8n07w5JexHWr83EcsUHkWIYzukkylBIE8tSGLMArEflN+zl/wXJ/4NfP2QtEufDv7L3i/wAP+ArW+KtdDRPBOt2j3JX7pmkTSg8pHYuzY7VR+NX/AAWw/wCDVf8AaT8UweOf2itV8FePtbtbVbKHUPEfw51LVbqO2RndYVlutGkdY1d3YIDtDMxxkmgD/Klr/UQ/4NWP+Cjv7G03/BM74dfsZeJ/iLoOg/ErwzquraZH4f1W9isb6+fVNSuLy3+xxzMhujILkIFh3sHBUgcZyv8Ah5X/AMGbf/QufCr/AMNPdf8Ayjrp/BX/AAVi/wCDQ74a+LtN8f8Aw6s/hvoGvaNcR3dhqWm/C69tbu1uIjuSWGaLRFkjdSMqysCDyDQB+4H/AAVu/ZU8Yftt/wDBNz4v/swfDwofEPifQXGlRyMESa+s5Eu7eIsSAollhWPcThd2TwK/xRfG3gnxh8NfGGp/D74g6XdaJrui3Mtlf2F7E0FxbXELFZI5I3AZXVgQQRkGv9dL/iKN/wCCFH/Rc/8Ay2fEP/ysr4t/aM/4K5/8Gmv7XOvp4u/aW1Xwr4z1mNEiGpal4G1qS+8uP7qG5/soTFB2UuVHpQB+X37KX/Bdj9ub/gph8AvhB/wSu/4J4+C7/wAEfE6DT9J0nxf8Q0lWe10bRtJEUM9/bptxGZUQF/NOQWMMQeSRHX/QE021uLHTreyurh7yWGNEeeUKHlZQAXYIFUFjydqgZPAA4r+Zz4C/8F8v+DZz9lnwpJ4H/Zs8c6D4D0ieQSzWug+CdasI5pAMb5BDpS+Y+ONz5bHevcv+Io3/AIIUf9Fz/wDLZ8Q//KygD9/q8F+On7VP7Mf7L9lY6j+0p8RfDPw+g1TzvsT+I9WtdLF19n2eaIftMkfmFN6bgmSNy56jP49/8RRv/BCj/ouf/ls+If8A5WV4L8cv+C8n/BsR+09Bptr+0r4r8LfEOLRmlbT08TeAdW1ZbRp9olMIutIkEZcIm8rjdtGc4FAH8OH/AAcmftzfA/8Ab8/4Kd6z8Uv2dNS/tvwn4e0Ww8N2uqKpWG+eyaWSWWHdgmLzJmRGIG8LuHykE/lx+wt8ddB/Zf8A21fhJ+0f4qhmuNJ8CeMdE16+itgGmktdPvIppljBIBcxowUEgZxk1/oo/wDDyv8A4M2/+hc+FX/hp7r/AOUdH/Dyv/gzb/6Fz4Vf+Gnuv/lHQB/RR+zX/wAFHf2DP2wTptn+zX8XvCni7U9VtjdwaRZapbnVhEq7mMlgzi6jKDlw8Sle+K+1a/lS+EP/AAWa/wCDUP8AZ88ZJ8RvgJeeBfBHiGOKS3TVNA+G2o6ZerFKMOgnttGjkCsB8y7sHvX1f/xFG/8ABCj/AKLn/wCWz4h/+VlAH7/V/n2/8HmP7dP7NHxZ8E/Dj9kL4R+MNM8T+LvCviXUNQ8R2ml3C3X9kyWsJtRBcvGSkdwZHkVoSfMjMZ3quVz/AEKf8RRv/BCj/ouf/ls+If8A5WV8SeMf+Crv/BoV8RPFmpePfiBY/DbXdd1m5lvdQ1HUPhde3V3d3M7F5JZppNEZ5JHYlmdiWYkkkmgD/N7/AGKPi34a+AP7ZXwk+O/jMyDR/BXjTQdevjCu+QW2m30NxLtUfebZGcDua/23v2df2rP2av2uvBJ+I37MPjvQ/HmioyRzXOi3sV2LeV1DiKdUYvDLtIJjlVXAPKiv5gf+Hlf/AAZt/wDQufCr/wANPdf/ACjr6U+CP/Bfj/g2b/Zm0W88N/s3+NPDfw+07UZxc3dr4a8CavpME84UKJJEtdIjV3CgLuYE4GOlAH9NNf5D/wDwdFfAv4tfCL/gsh8TfF/xHtrk6Z48/s/W9A1CYZju7EWcFuVjbp/o8kTwFeqhAcYZSf74v+Io3/ghR/0XP/y2fEP/AMrK8H/aC/4L1f8ABsx+1f4Qj8BftMeOdC8eaPBIZ4LXXPBet3qQSkbfMi83SmMb4JG9CrY4zQB/nl/8Eof+ClP7d3/BOv4230n7CcKa5rPj6KHSrnw5Pp8mqRapLGzG2220DJM08TO/lGNg3zsCCrEH6B/4Li/AH/gq94e+J3gn9rP/AIKqjzvEfxT0hpNPSIKItJgs5X26YyRIIIJIkkWbyUZzibLsZfMx/bj+zj/wWS/4NTv2QriXUP2Yte8L+B724Ty5b3SfA2tQXkif3XuBpXnMvszkV7D8af8Ag4U/4Nu/2j/As/wx/aA+IukeNfDty6ySabrfgzW762Mifdfy5tKZQ6/wsAGHYigD/PF/4Isf8FAviL/wTf8A23LP43fCnwFL8S9e1vSL7wzZeH4JZIprm51Ly/I8vyopndhPHHmNU3OuVBBII/1k4f20dO/Ze/Yl8KftH/8ABUzWPDXwl8QXOnW5162ju2NlHqskTzNZ2YcvLPPsRyIIjM5KOEMirvP4Q/s7/wDBWP8A4NKf2TPFLeO/2b9S8KeD9dZWQanp/gbW0vUR/vKk50syorZwVVgCO1fQHxp/4OC/+Da39pLwrD4F/aJ8eaB4+0O2ukvodO8R+BtY1W0juo1dFmWG60mRBIqSOocDcFZgDgmgD/Ko+MHjSD4k/FrxT8RLVGji1/V77UUR8blW6meUA44yA3OK/v8Af+DMz9ub9m7wd+zj4z/Yf8feLdO0Px9qnjaXXdE0zUJ1t5dTgvrG0g2Wm/AmlR7Ny0SEvhgcY5r65/4eV/8ABm3/ANC58Kv/AA091/8AKOuz+Hn/AAVy/wCDR34ReNNP+JHwoi+HfhjxFpMnnWOqaT8Mb6yvbaQgruinh0RJI2wSMqwOCRQB/OH/AMHfH7dP7NH7XX7VHw18Afs3+KrHxlF8PNH1GDVtQ0qVbmyS8vp0/cJMhKSPGsALlCyjeBncGA/Fj/gif+0x8M/2Pv8Agqd8Gv2h/jLfjSvC2haxLFqd6VZ1toL+1ms2mcKGbZH5+58AkKCQDX93F3/wU2/4M5b+6lvr7QfhbNPM7SSSSfCi6Z3djksxOh5JJ5JPWq//AA8r/wCDNv8A6Fz4Vf8Ahp7r/wCUdAH3N/wW+/4Kj/sOeAv+CT/xI/sn4meH9evvjB4J1jRvCFrpF/FfS6t/aUcuntNAIGfMELs4llOERo2QneNtf5D1f6l/iP8A4K6f8Gj/AIx8O6F4P8XR/DvVdJ8LwS2ujWV58Mb6e206CeRppI7WN9FKQo8rNIyxhQzsWIySa4v/AIeV/wDBm3/0Lnwq/wDDT3X/AMo6APtX/g2k/bj/AGa/2hP+CZvwr/Z/8D+L9NuPiH4A8PvZa54aadU1O1isrhoVuDbkh2t3V4SJkDRgyKjMHyo/Gb/g7x/4JCfEr4r6jpf/AAUx/Zw0GTWZdI0xdK8c2NhE0l0La1JNtqQjQFpFiRjDcMOY40ibGxZGX9KPgn/wW2/4NXv2afEl14y/Zy1jwX4A1e9tjZXF94b+HWp6VczWzMrmJ5bXRo3aMuisUJK7lBxkCvps/wDB0b/wQnPB+Of/AJbPiH/5WUAf5MfwD+PXxd/Zf+MXh/4/fAbXLjw34u8L3QvNN1G2xvhkAKkFWDK6OjMjo6lHRirAqSD/AGT+GP8Ag9R/bK8S/DW2+Gmg/AvQNW+JuoLFZWWp2t3dyWs13JhFK6UkZlkd3PyxpdjJIAzX6FfHP9rH/gyx/aN8YS+PfipF4cl1a5fzZ7jTPDHijRzNJncXlXT7K3WRmP3mcEt/ETXs37KH/BTT/g0T/Ye10+K/2W9X0DwrrXl+SNUTwn4ju9QSM8FUurrT5p1DfxBXG7vnAoA++P8AghF/wTh+PX7Nfhbxl+29+39dtrf7SHxxnS+8Q3NwyyTaXpyBTb6eCgCRsMBpY4sRJtiiUbYVJ/oLr8fv2Xv+C9v/AASb/bO+Ouhfs1fs1fFf/hJPG3iU3I03Tv7C1mz882lvJdS/vrqxhhXbDDI/zyLnGBliAf2BoAKKKKAP/9T+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8k+P3gLWPip8CfGvww8PSQw3/iTQdS0u2kuCywpNeW8kSGQqrMEDMCxCsQOgPSvW6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmr+Xf9ob4M+HPgR8QpfAHhz4g+GviQkEYabU/Cp1BrBJckGLfqFlYyOy4yWSNo+eHJyB/vB15JcfAD4EXdw91deCdBlllYu7vptuzMzckklMkk9TQB/g4aZaQX+pW9jdXUVlFNKkb3EwcxQqxALuI1dyqjk7EZsDgE8V/R5+yJ/wAGyf7TP7efgq/+In7I3x0+D3jbR9LuEtLye01HXYjBO6CQRyJPocbqxQg4K8V/qm/8M8fAD/oRvD//AILLb/43XceFfA3gnwLay2XgjR7HRoZ23yR2NvHbq7AYywjVQTjjJoA/zLf+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/g5/wCCOX/Brx+35/wT1/4KQ/Db9sH40eL/AIf6n4Z8HPqjXttouoajPfSC+026s4/KSfTLeM4knUtulXCgkZOAf7xqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+eH/g4o/4JKftHf8FcfgH8P/hZ+zfrXhvRNQ8KeIJtVu5PEtzdW0LwyWzQhYza2l2xfcwJDKox3zxX9D1FAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TV+J3/BSP/glT47/4JfeLz8Lfjp8U/AWv+N4/s7z+GvDU2rXV/Bb3KeYk0j3Ol2tqqFccfaPMORhCM4/2rK8/8TfCb4V+NdSGseMvDOlatdhBGJ72yhnk2LkhdzqTgZOBnHNAH+CPX7A/8E+v+CPHjT/gpVe6T4Q/Z8+NnwxtPGuqw3M48J63d6zaavClruaQuE0eW2YBBvzFPIu0jJDAqP8AYW/4Z4+AH/QjeH//AAWW3/xut3w78IPhL4P1Rdc8JeF9I0u9QMq3FpZQwSgMMEB0QMARweeaAP8ANI/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP4Pf+CNv/Br3+33/wAE8v8AgpH8Nv2w/jT4v+H+qeGfBzasb220TUNRnv5Pt+mXdlH5ST6ZbxHEk6Ft0q4QEjJwD/eFRRQAUUUUAf/V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqhqd1JZWEl1EAWQZAPSgC/RRRQAUUVRsrqS5edXAHlSlBj0AB/rQBeooooAKKz7q6kgvLW3QDbMzK2evCk8flWhQAUUVHM5jheReqgn8qAJKKqWE73VjDcyABpEVjjpkjNW6ACiiqMV1I+ozWhA2xojA98tnP8AKgC9RRRQAUVQ1G6ktIUkjAJaWNDn0ZgD/Or9ABRRRQAUVQ026kvLYzSgAh3Xj0ViB/Kr9ABRRVCS6kTU4rIAbXjdye+VKgfzoAv0UUUAFFU9RuHtLCa6jALRozDPTIFW1OVBoAWiiigAoqhaXUk9zcwuBiFwq49CoPP51foAKKKoXt1Jby2yRgETS7Gz6bSePyoAv0UUUAFFIeBmqWmXMl7p0F3KAGlRWIHTJFAF6iiigAoqgt1I2pvZEDasSuD3ySR/Sr9ABRRWfqd1JZWZuIgCwZF56fMwB/nQBoUUUUAFFFUNPupLtJWkAGyV0GPRTgUAX6KKKACiqE91JFf29qoG2UOT6/LjH86v0AFFFVryZre0luEwWRGYZ6ZAzQBZoqG3kaa3jlfqygnHuKmoAKKKoW11JNe3NswG2EqFx1+YZ5oAv0UUUAFFZ9/dyWpgEYB82VYzn0Oa0KACiiigAoqhpl1Je2KXMoAZs5x04JHvV+gAoorP+1Sf2p9hwNnlb8985xQBoUUUUAFFUdTupLOxkuYgCyAYz061eoAKKKKACis7T7uS7a4EgA8qZoxj0AHX860aACiiqNxdSQ3lvbqBtmLA568DNAF6iiigAoqKdzFC8i9VUnn2qGwne6sYbmTAaSNWOOmSM0AW6KKKACiqEN1JJqM9owG2JYyD3+bOf5VfoAKKKo39zJapG0YB3yohz6McGgC9RRRQAUUVQ026kvLXzpQAd7rx0wrED+VAF+iiigAoqi91IupR2YA2vG7k98qVH9avUAFFFUdTupLLT5ruIAtGhYA9MigC9RSA5ANLQAUUVRs7qS4nuYnAAhkCDHptB5/OgC9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKypH1zzG8qOApk7cuwOO2flrVooAxt/iD/nnb/8Afbf/ABNZOvPr/wDZE/7u36D+NvUf7NdfWPr/APyB5/oP5igAL+IO0dv/AN9t/wDE0b/EH/PO3/77b/4mtiigDH3+IP8Annb/APfbf/E1kaU+v+befu7f/j4P8bf3V/2a6+sjSv8AW3n/AF8H/wBBWgBN/iDvHb/99t/8TRv8Qf8APO3/AO+2/wDia2KKAOP1B9f/ALSsP3dv/rH/AI2/uN/s1sb/ABB/zzt/++2/+JpNQ/5Cdh/10f8A9AatmgDH3+IP+edv/wB9t/8AE1Bcv4g+zSZjt/un+NvT/drfqC6/49pP90/yoA5zR31/+ybX93b/AOqT+NvT/drS3+IP+edv/wB9t/8AE1No3/IItf8Arkn8hWlQBj7/ABB/zzt/++2/+JrIt38Qf21dfu7f/Vxfxt/tf7NdfWRb/wDIbuv+ucX82oATf4g/552//fbf/E0b/EH/ADzt/wDvtv8A4mtiigDj9bfxB9mizHb/AOvh/jb++P8AZrY3+IP+edv/AN9t/wDE0muf8e0P/XxD/wChitmgDH3+IP8Annb/APfbf/E0b/EH/PO3/wC+2/8Aia2KKAOP0N9f+wtiO3/1sv8AG398/wCzWxv8Qf8APO3/AO+2/wDiaND/AOPE/wDXWX/0Nq2KAMff4g/552//AH23/wATWPM+v/27b/u7f/Uy/wAbeqf7NdhWPN/yHrf/AK4S/wDoSUAG/wAQf887f/vtv/iaN/iD/nnb/wDfbf8AxNbFFAHJ62/iD+xrr93b/wCqf+NvQ/7NaSv4g2D93b9P77f/ABNTa5/yBrr/AK5P/KtJPuD6UAZIfxB3jt/++2/+Jo3+IP8Annb/APfbf/E1sUUAcfpz6/8Abb7Edv8A61f42/uL/s1sb/EH/PO3/wC+2/8AiaNN/wCP6+/66r/6AtbFAGPv8Qf887f/AL7b/wCJrH1R9f8AtFjmO3/4+P77f3G/2a61pERgrMAW4AJ61larj7RY/wDXx/7I1ABv8Qf887f/AL7b/wCJo3+IP+edv/323/xNbFFAGMz+IMH93b/99t/8TWVoT6//AGLafu7f/VJ/G3p/u1satrelaL9mXVJhCbydLaHIJ3yvnaowD1wfbijQf+QLaf8AXJP5VKnFtxT1W43FpJtaDN/iD/nnb/8Afbf/ABNLv8Qf887f/vtv/ia2KKoRx8cniD+3pR5dv/qE/jb+83+zWxv8Qd47f/vtv/iaI/8AkPy/9cE/9CatigDH3+IP+edv/wB9t/8AE1ja8+v/ANmtmO3+/F/G399f9muxrG1//kGN/wBdIv8A0NaAFL+IO0dv/wB9t/8AE0b9f/552/8A323/AMTWxRQBj7/EH/PO3/77b/4msjRn1/yZ8R2//HxL/G394/7NdfWPov8Aqp/+viX/ANCNABv8Qf8APO3/AO+2/wDiaN/iD/nnb/8Afbf/ABNbFFAHIXb6/wD2xZ/u7f7sv8bei/7Na+/xB2jt/wDvtv8A4mi7/wCQxZ/7sv8AIVsUAY+/xB/zzt/++2/+JrntZ1y8tpP7DuDbLdXVvPLFHvfLJEAHP3ccb1/Ou5rwfxzdeX8ZPDtrn/WaRq5/L7PXJjMQ6NNTXWUF/wCBSUf1OjDUVVk4vopP7ot/oerWT+IPscP7u3+4v8ben+7Vrf4g/wCedv8A99t/8TV6x/48of8AcX+VWq6znMff4g7R2/8A323/AMTWPYvr/wDal9iO3+9H/G390f7NdhWPY/8AIVvv96P/ANBFABv8Qf8APO3/AO+2/wDiaN/iD/nnb/8Afbf/ABNbFFAHHau+v7rTdHb/APHwn8beh/2a2d/iD/nnb/8Afbf/ABNJrH3rT/r4T+RrZoAx9/iD/nnb/wDfbf8AxNG/xB/zzt/++2/+JrYooA4/QH8Qf2RDiO3/AIv429T/ALNbG/xB/wA87f8A77b/AOJo0D/kEQ/8C/ma2KAMff4g7x2//fbf/E1jb9f/AOEhH7u3/wCPf++397/drsaxv+Zh/wC3f/2agA3+IP8Annb/APfbf/E0u/xB/wA87f8A77b/AOJrYooA5DXn1/8Asif93b9B/G3qP9mtffr/APzzt/8Avtv/AIml17/kEzfQfzFa9AGPv8Qf887f/vtv/iaTf4h/552//fbf/E1s0UAcboz6/vvMR2//AB8v/G3oP9mtrf4g/wCedv8A99t/8TTNF+/e/wDXy/8AIVY0vWNP1lJpNPfetvNJbucEYkiOGHPXB4yOKlzimot6sai2m7aEW/xB/wA87f8A77b/AOJrIvn8Qf2nZYjt/vSfxt/dP+zXX1kX3/IUsv8Aek/9BNUITf4g/wCedv8A99t/8TRv8Qf887f/AL7b/wCJrYooA5+6fX/ssuY7f7h/jb0/3araQ/iD+ybXEdv/AKlP42/uj/Zrobv/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFAEG/xB/zzt/++2/+JoL+IO0dv/323/xNbFFAHH2r69/bV3+7t/8AVw/xt/tf7NbG/wAQf887f/vtv/iaS1/5Dd5/1zh/9mrZoAx9/iD/AJ52/wD323/xNZOrvr/lwfu7f/Xxfxt/e/3a66snV/8AVwf9d4v/AEIUAN3+IP8Annb/APfbf/E0b/EH/PO3/wC+2/8Aia2KKAMff4g7x2//AH23/wATWRob6/8AYOI7f/WS/wAbf32/2a6+sfQv+Qf/ANtZf/Q2oAN/iDvHb/8Afbf/ABNG/wAQf887f/vtv/ia2KKAOQlfX/7dhHl2/wDqJP42/vJ/s1r7/EH/ADzt/wDvtv8A4mll/wCQ7D/1wk/9CStegDHL+IO0dv8A99t/8TWRrz+IP7Fuv3dv/q2/jb0/3a6+sjX/APkC3X/XNv5UAMV/EG0fu7fp/fb/AOJp2/xB/wA87f8A77b/AOJrXX7opaAMff4g/wCedv8A99t/8TWXpL64b+8EscATzxkh2zjYmcfLXWVkab/x933/AF2H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9f+/iiiigAoopGZVUsxwBySaAFopqOkqCSMhlYZBHIINOoAKKKKACio1mid2iRgWTG4A8jPTNSUAFFFFABRUbyxRlVkYKXOFycZPoKkoAKKKKACigkAZNMjkjmjEsTBlYZBByCKAH0UUUAFFFRiWJpDCrAuoBK55APtQBJRRRQAUUUySWKLBlYLkgDJxkntQA+iiigAooooAKKZHLHMgkhYMp6EHIp9ABRRRQAUVGJYjKYAw3gZK55x64qSgAooooAKKjklihXdKwUZAyTjk1JQAUUUUAFFFRxyxTLvhYOMkZByMigCSiiigAooqPzYvN8ncN+M7c849cUASUUUUAFFFRySxQp5kzBFHcnAoAkooooAKKKKACio45opgWhYOAcHBzyO1SUAFFFFABRUZliEghLDeRkLnkge1SUAFFFFABRTJJI4kMkrBVHUk4FPBBGRQAUUUUAFFFRpLFIWEbBtpwcHOD6GgCSiiigAooqNpYlkWJmAZugJ5OPSgCSiiigAoopryJEhkkIVR1JOAKAHUUisrKGU5B6EUtABRRRQAUUxJY5CyowYqcEA9D70+gAooooAKKjaWJHWN2AZvugnk/SpKACiiigAoprusal3IAHJJ4AoR0kUPGQynkEcg0AOooooAKKKjWWJ3aNGBZfvAHkfWgCSiiigAooqN5Yo2VZGCljhQT1PtQBJRRRQAUUUhIUFmOAKAFopqSJKgkjIZT0IOQadQAUUUUAFFRrNC0jQqwLr1UHkZ9RUlABRRRQAUUx5YoseYwXccDJxk+lPoAKKKKACignHJpkcscyCSFg6noQcigB9FFFABRRUYmhMphDAuoyVzyAfagCSiiigAoopkkkcQBlYKCcDJxyaAH0UUUAFFFFABRUcUsUyeZCwdemVORxUlABRRRQAUVH5sXm+RuG/G7bnnHripKACiiigAoqOWWKBPMmYIuQMscDJqSgAooooAKKKZHLFKC0TBgCRkHPI60APooooAKKKYZYxIIiw3kZC55wPagB9FFFABRRTJJY4UMszBFHUk4AoAfRRRQAUUUUAFFRxyxS58pg20lTg5wR2+tSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWVJrmkRSNFLcorKSCCehFAGrWPr/wDyB5/oP5ij/hINE/5+o/8AvqsjXtf0U6RP/pUf3R39xQB19FY//CQaJ/z9R/8AfVH/AAkGif8AP1H/AN9UAbFZGlf628/6+D/6CtJ/wkGif8/Uf/fVZOl6/oglvP8ASo/+Pg9/9laAOuorH/4SDRP+fqP/AL6o/wCEg0T/AJ+o/wDvqgBNQ/5Cdh/10f8A9AatmuP1DX9F/tKwP2qP/WP3/wBhq2P+Eg0T/n6j/wC+qANioLr/AI9pP90/yrO/4SDRP+fqP/vqobnX9FNvIBdR/dP8XtQBc0b/AJBFr/1yT+QrSrltH1/RRpNqPtUf+qTv7CtH/hINE/5+o/8AvqgDYrIt/wDkNXX/AFzi/m1J/wAJBon/AD9R/wDfVZFvr+if21df6VH/AKuLv7tQB19FY/8AwkGif8/Uf/fVH/CQaJ/z9R/99UAGt/8AHtF/13h/9DFbFchrWv6J9mi/0qP/AF8P8X+2K1/+Eg0T/n6j/wC+qANiisf/AISDRP8An6j/AO+qP+Eg0T/n6j/76oAXQ/8AjxP/AF1l/wDQ2rXrkNE1/RRZHN1H/rZe/wDtmtf/AISDRP8An6j/AO+qANiseb/kPW//AFwl/mlH/CQaJ/z9R/8AfVY82v6J/btuftUf+pl7+6UAdhRWP/wkGif8/Uf/AH1R/wAJBon/AD9R/wDfVAEmuf8AIGuv+uT/AMq0k+4PpXK63r+if2Pdf6VH/qn/AIvY1pJ4g0TaP9Kj6f3qANqisf8A4SDRP+fqP/vqj/hINE/5+o/++qADTf8Aj+vv+uq/+gLXK/FDx/afDXwdceJpoWu7jckFpap9+4upjtiiX3Zjyewye1aena/ogvb7/So/9avf/YWvBb7WtN+If7RUOn3U6HSPA9ol1gn5X1K9BCH38qEEj0L15ma4mpSpRp0XapUahHybu2/+3YqUrdbW6ndgKEJ1HOr8EFzS80tEvm2o+V7mno37PGi+I9Ok134yk614lv13S3IkZFsieRHaAEeUsZ6MPmYjcT2ruPhxqmrat4C8PXOuyme8jka3mlbrI9v5kRc+7Fcn3Nejf8JBon/P1H/31XDaSugeF9M03RIL5JVju5X3nAJMpkkPH1bFRhMqpYWtGVCNlytSfWTvFpye8n8Wrvu+5VfHTr0pKrK7uml0Ss7pLZLbRdl2PUaKx/8AhINE/wCfqP8A76po8R6C0hhW7iLgZK7hkD1xXrHnnk/xynNjD4T1I8JB4k08P9JS8Q/VxXrmhcaLaD/pkn8q+d/2o9f0uH4Q3GrWtwjSadfafdrg85huomz+Fe4aH4i0I6LbSC6j2mJT97tivIw0rZjiaf8Adpy+/nj/AO2HoVo3wdGfnNfdyv8A9uOuor530b49z+Jxca14X0Ga+0KGZ4o7xbiJJbkRna0kMLEF0yCFJYFscD13vhb8e/APxbg1O68MyyJFpl2bRmnXy/MIAO5RnO05xzg8dK1o5vhKs4U4T1nflumuZLVuN0uZW1urq1tdURUy7EU4ynKGkbc2qdr7J2ej8nr9zPU4wf7elP8A0wT/ANCaq/iLxNpPhe2gudVZh9pnjtoURS7ySyH5VUDkngk9gASeBXzZ8I9a0Lx941134ravOrv9rls9J3OQIrO1ZocqAcfvXDuc9ePSuB+Ifin42weJfBml6gug3s41eaS3nS5ljjkdYJtvmJ5ZKBUbsWOQPXNefic9cMJHFQpu02lFpOWjkoptJJrmvdL5Xu7HZRypSxDoSmrxXvJtR1SbaV97Ws3+FtT7tlDmJhH97Bx9a8s8H6odW+GdhLPIZLmERQXQc5dbiJwsqtnnIYHr9elcT4b034k6lrsGvfEvxbaJb27+YmmaPGYoGYdPNmkJlkA/u4QHuK6H/hKfhvdaxr0ui3SxXtlNbQ6jyUjLkJIrEH5SwQgFxzjgngY7aWJnUqQqzg6ad4qMmk5ac10k3tyvR2drt2trzToRhCcIy5mrO8b2WtrNtLvutL2Wtz2uivmjQPHni74qTT+JPDWrweH/AA+kjxWLPbie4vQhwZm3kBImI+QAbmHzEjIFe72mu6bHaxpe3sMkwUB3X5VZsckDJwCe2TiunB42OJj7SnF8j2k7Wku61vbs2ldarQwxGGdF8s5Lm6rW68npa/o3bZ6nQVj6L/qp/wDr4l/9CNH/AAkGif8AP1H/AN9VkaNr+iiGf/So/wDj4l7/AO0a7DmOi1LUtP0fT5tV1WZLa2tkaSWWRgqIijJJJ4AAryDw/wCOfH3xC/4nngrT7ey0Jj/o9zqQkE12n/PSOJcFIz/Czncw52gYrzjX9SsPjb8T7jwbfzqvhHwrJE18hPy6jfsA6Qt6xQjDOvRnIB4FfTS67oaqES5jAHAANeNSq1cbVlKnJxoxbV1vOSdnr0jF3Wmsmm78qXN6VSnDDQiprmqSSeu0U9V6ya17JPvsXWf7Yss9dsv8hXluq/EPxnqHj3Vfh14I0q3NzpVtbXT3V/M0cDrc78BVRGYkFCM9Px4rvLvX9F/tiz/0qP7svf2FeL6d4i0yD9p/VITcJ5Vz4ctXznjdFcSj+T1pmlWcXQjCbipTUW1a9nGXdO2ttSMBCMvaylFNxjdXva9128rnR6B8V/EFh4ytfh78VdJTR7/Ulc6fdW83n2d40Yy6KxVWSQDnYy8joTXPeO5jL+0R4cs1/wCWWg6tKfozQr/OsP8AaQ1zR9SufA3hzTpkk1G58S2U8O0/NHFbbnmk9QAnBPvXlPx2+Jq+Gfi/rGr6DMkl/b+FItOsAOf9M1O72rgd9oTefYV81meZSw0KlLETc406lN3sr2SVRxdkk5JR0sldON9dX7eBwSrShUpR5XOE1bW1/gUle7Sbeuu6fTRff1l/x5xf7i/yqzXw54OsbH4HfGbw74c0nVri70bxTps8V0Lq4ecf2jahZBMC5O0yqWBAwOOlej/tH+Mp/wDhENO8FeF9RFpdeKdTt9Ja5jb54IJsmZ1PY7FIB7ZzXuQztrCV69alyzpPlcE7+9ZOKTsr8ylHWy1fkeXLLE69KlTneM1dStbS7TbWu3K/uPavDvxD8B+LtUu9F8L6zZ6jd2Bxcw28ySPEc4+YKSRzx9a2bD/kK33+9H/6CK+QPgFZeBrr4hax428IxQWHh3RrVPD2kbAB9oWFt9xOW/jDSYUMc52k11nx1/aB8OfCjw/qzabIL/XL2Mixs4TuckR5Mr45WOMAsze2BWeEzxRy2WYY5xjFc2qvZpOycb6vm+z/ADaNLWxeIyu+Njg8Ldt20drptXd+it17ap7XPoHwj428MeO7O51DwpdLeQWl1LZyOoIUTQHDgEgZwe4yDVvxV4q8P+CfD134r8U3SWdhZIZJpn6KB+pJPAA5J4Ffmp+z3bXfxV8BaX8PdI1SfQvCGjwI2q3Fs5iudU1G4HmyxrIOVjjLYcjljx06Y/xGsvBHwk+OWjeCDcajqHgLbFrV7psYkvUguYt8cbtuLOYi+1nXkZ7HivBXGGJ/s6ljnRjyz5Y87laKnLS/La7pxekpXTdm4px1PW/1cofXZ4VVXzRu+W13yrpfZTktUrNapNp6H0L4x/aF+Kul+Fx8W5PB8dp4QtJopc3tyY9RlgZtokWEKVTO7IVjnFfbUUizRLMnRwCPoa/P74pfFbQf2lm0z4SfDuO4k0a6vYJtX1SeF4LeOCFt/lJ5gBaRyMYA4/PH3Wuu6EihEuYwAMAbq9nIMTUr1q0o13WopRSm1Gzn7znycqScUuRbuzurtpnm5vQhSp0k6Sp1G5Xjd3Ufd5ea7fvX5u2lna1jaorH/wCEg0T/AJ+o/wDvqj/hINE/5+o/++q+nPCDQP8AkEQ/8C/ma2K4/QNf0UaTCPtUf8X8Xua2P+Eg0T/n6j/76oA2KwILi3utdE1q6yIbcjcpyMh8Hkeh4p8viDRvKbbdR5wcfNX53/DrX5/iR4e8KfBvTNQbT7JdMku/EFzC2yUwfaHVbdGHKtMwJdgc7M+teNmWbrCVadFQ5pTUuVX3knBJenvXb6JNnpYLL/rFOdTmsotXfZNSbf8A5LZLq2kfpDZ6hYagrtYTxziNijGNg21h1Bx0PtVuvhS/bUPhR8Zz4b+AOi6YLbVdEjlminuPstssltMy+YQqszPtcKeMngk8V0WvfGL4q+EbWNvi1Y6fa6Leypay6noN20k1k0p2rIyTR8ruIBYZxnOK5IcRRhGaxVOUXBtSajJwVuvPypWs023pHq7Js6JZNKbj7Caakk0m4qT/AO3bvW90lu+h7b8Zdan0zw9p+m2rmOTVtUs7PKnB2M/mSAEesaMK9cr4D+LXgazbxv4S0U+M9cnjuZ7u5Z3u0Pkm3hOGTEQ2sS+M88Eive/D3hPwD8M7m48ca54o1LUmtYHBn1a/aaOGM4LFUG1ATgc7SewNPCY/FzxVdzo2hFqLbmrRSipN6Xv8Xku7QsRhKEaFLlqXk02kovVuTj5fy/8AAPoGivHtA+MVhrxium0m/s7C5YLDczqgLBvus0Qcyop7FlGB1ArutN8aeEtYtvtuk6jb3MO9o98UgZdyHawyMjIIIPoa9uhi6VZJ05b7bq67pO11rvseZVoVKfxr9flp18i5oxAa9J/5+X/kK4H4IXLah8OLTWHOWv57u7P/AG3uJHH6EV57421Xx1p9pr3iHwn4o060sYBNMbe6sjOy+XHltrrLH1x/EpwfauW+Cvg3V3+Gnh0+KPGl19m/s+2lSxs1js1j3oG2PIoMr4zgncua8atjq39pQpQw8naE9bwS1lCz+Ju2j6X8tz0qeFp/UpVJVVrKPSV9FK6+G19V1t5n2JWRff8AIUsv96T/ANBNcX48+LXgf4ceGZfE3iC73RRlY44oR5k00r8LHGvVnY9B+J4ryvRP2g4NU8YaNoPi/wAO6j4cfU3lWzkuzC6SMqFtp8qR2RsDOGAHvXo181wtGsqFSdpu3Ru3M7Ru0rR5nortXexx0sBXqU3VhH3VftrZXdle7stXa9lufT9FcB4v+KHgfwNocniDxBfIkKEKqJl5ZZG+6kaD5ndjwFAya4PQ9T8Q+PiNZ8Z3H9g6Y4zDpUMu25ZT0a5lU5Ukf8sozgfxM3QXWxsI1VQguapvZdF3k+i7dXrZOzIp4aTh7WTtDa76vsl1f4Lq1dHud3/x6y/7jfyqto//ACCbX/rin/oIrLk1nw/bac1vDcxqkcZVRu6ADAqPSNf0T+ybX/So/wDUp/F7Cu1eZzHU0Vj/APCQaJ/z9R/99Uf8JBon/P1H/wB9UAJa/wDIbvP+ucP/ALNWzXH2uv6KNavD9qj/ANXD3/3q2P8AhINE/wCfqP8A76oA2KydX/1cH/XeL/0IU3/hINE/5+o/++qytX1/RPLg/wBKj/18Xf8A2hQB1tFY/wDwkGif8/Uf/fVH/CQaJ/z9R/8AfVAGxWPoX/IP/wC2sv8A6G1H/CQaJ/z9R/8AfVZGh6/ogsP+PqP/AFsvf/bagDr6Kx/+Eg0T/n6j/wC+qP8AhINE/wCfqP8A76oAWX/kOw/9cJP/AEJK165GXX9E/t2H/So/9RJ3/wBpK1v+Eg0T/n6j/wC+qANisjX/APkC3X/XNv5Un/CQaJ/z9R/99Vk69r+inRbrF1H/AKtu/tQB1q/dFLWMviDRNo/0qP8A76pf+Eg0T/n6j/76oA2KyNN/4+77/rsP/QFpP+Eg0T/n6j/76rM0nW9HlvryKK5jZnnAAB5JKLQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0P7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBW0P/AJAtp/1xT/0EVqVl6H/yBbT/AK4p/wCgitSgAooooA57TP8AkOal9Yv/AEGuhrntM/5DmpfWL/0GuhoAKKKKAMHWf+Pqw/6+B/6C1b1YOs/8fVh/18D/ANBat6gAooooAjm/1TfQ1leHv+QHa/8AXNa1Zv8AVN9DWV4e/wCQHa/9c1oA2aKKKACues/+RjvP+uUX82roa56z/wCRjvP+uUX82oA6GiiigArB177lr/18xfzrerB177lr/wBfMX86AN6iiigApr/cP0p1Nf7h+lAGL4b/AOQLD/wL/wBCNblYfhv/AJAsP/Av/QjW5QAUUUUAc/F/yM83/Xun/oRroK5+L/kZ5v8Ar3T/ANCNdBQAUUUUAYPiPH2BM/8APaP/ANCFb1YPiP8A48E/67R/+hCt6gAooooAQ9DWH4d/5Bv/AG0k/wDQjW4ehrD8O/8AIN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8AIJk+q/zrdrC8Sf8AIJk+q/zoA3B0FLSDoKWgAooooA5/w7/x7T/9d5P510Fc/wCHf+Paf/rvJ/OugoAKKKKAMCf/AJGS3/64v/MVv1gT/wDIyW//AFxf+YrfoAKKKKAMXxD/AMgebHpWrB/qU/3RWV4hONHm+lasH+pT/dFAEtFFFABWBof+tvf+vhv5Ct+sDQ/9be/9fDfyFAG/Xiv7QHxfi+B3w1ufHjWovZUmht4YGbYJJJ3CKM4OOvpXtVfnt/wUJvzN4Y8D+D1P/IY8U2EbL6rG+7+lc2MqunRlOO9j2eH8FTxeY0KFVXg3r6LV/gj7+0+ea6sILq4TypJI1ZkznaSMkZ9qy73/AJDtn/uv/Kt5RhQK+J/j9+1vovwr8f2ngDwVod3408UR28lzNpunuqfZ4AMmSaRsqgwMgEZNaVa0KUeao7I5MDl2Ixtb2OFhzS1fRJLu27JJd20j7Zoryv4J/FjRfjh8MNJ+KPh+CW2ttWi8wQzY3xsCVZTjg4IPI616pVwmpRUovRnPiKFShVlRqq0otprs1o0FZOu/8gi4/wBw1rVk67/yCLj/AHDVGJcsf+POL/cH8qtVVsf+POL/AHB/KrVABRRRQBiaV/x+Xv8A11/pW3WHpX/H5e/9df6VuUAFFFFAGDqX/IVsf95/5VvVg6l/yFbH/ef+Vb1ABRRRQBQ1X/kGz/8AXNv5U3SP+QZBn+4Kdqn/ACDZ/wDrm38qbpP/ACDIP9wUAaNFFFABWBpf/IWv/wDeT+Vb9c/pf/IWv/8AfT+VAHQUUUUAFYGsf8fth/11/pW/WBrH/H7Yf9dT/KgDfooooAKr3f8Ax6y/7jfyqxVe7/49Zf8Acb+VAFPRP+QTB/uCtSsvRP8AkEwf7grUoAKKKKAOdsf+Rhvf9yOuirnbH/kYb3/cjroqACiiigDB13paf9fC/wAjW9WDrvS0/wCvhf5Gt6gAooooAZJ/q2+hrG8N/wDIFg+lbMn+rb6Gsbw3/wAgWD6UAblFFFABXO23/Iy3P/XKP+tdFXO23/IzXP8A1yj/AK0AdFRRRQAVia7/AMe8P/XZP51t1ia7/wAe8P8A12T+dAG3RRRQAUUUUAYHhn/kEr/vyf8AoRrfrA8M/wDIJX/fk/8AQjW/QAUUUUAYB/5Gf/t2H/oRrfrAP/Iz/wDbsP8A0I1v0AFFFFAGB4l/5BZ/66Rf+hit4dBWD4l/5BZ/66Rf+hit4dBQAtFFFABWF4fH+iS/9d5f/QjW7WF4fx9kl/67y/8AoRoA3aKKKACsOX/kYof+uD/+hCtysOX/AJGKH/rg/wD6EKANyiiigArC8Tf8gK5/3f6it2sLxN/yArn/AHf6igDcHQUtIOgpaACiiigDB0Hpef8AX1L/AErerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/AOQPP9B/MVsVj6//AMgef6D+YoA2KKKKACsjSv8AW3n/AF8H/wBBWtesjSv9bef9fB/9BWgDXooooAxtQ/5Cdh/10f8A9AatmsbUP+QnYf8AXR//AEBq2aACoLn/AI9pP90/yqeoLr/j2k/3T/KgCpo3/IItf+uSfyFaVZujf8gi1/65J/IVpUAFZFv/AMhu6/65xfzatesi3/5Dd1/1zi/m1AGvRRRQBj63/wAe0X/XeH/0MVsVj63/AMe0X/XeH/0MVsUAFFFFAGPof/Hif+usv/obVsVj6H/x4n/rrL/6G1bFABWPN/yHrf8A64S/zStiseb/AJD1v/1wl/mlAGxRRRQBl65/yBrr/rk/8q0k+4PpWbrn/IGuv+uT/wAq0k+4PpQA6iiigDH07/j+vv8Arqv/AKAtfP37N8g1i58deL35fUPE15GD38u0CQoPwCmvoHTf+P6+/wCuq/8AoC180fsr39rp9t4u8AXriPVdK8RahLNbtw4huZPMjkA7qwPB6V4WPklmWDjLb95b/Fyq3z5XL5XPVwkf9ixLjv7l/S7v8rqP4H0V4w8Vab4I8M3nivWEmktrGPzJFt42mlI6YVFBJPP+RXzH4Y/ax8J+PfEOk2Vpo+o2dldaitkt3ciNQty6OUSSMOZE34O0kYNfYNfmF4x8TeFvjF+294d0DwvdRmy0JVa+mRgEuLm0Z5EQH+MoxCjGerY4rzuJ8xxeDnh54eslzzjBQcVeTb1fM3okt7Lz5tkduR4PD4mNaNam3yxlLmu7RSXa27e2vyPtf45ePNX8E+EYLTwqFbXddu4dL00OMqs9wceYw7rGoZyO+Md6+Wv2krPwf+z58IreXQd8vi69mjEWqMxN/I6EPcXDSZ3YCg5H3RuAxivf/j14P8e6xq3hLxr4BsIdXuPDOoSXclhLOLYzLJE0fyyMCoZSc815L4o+CXxB+IHgfxn48+JEMbeKdX0mey0vTbd/NisIANyxI/AaWVgC7Dr0HFeZxHDGYieLo0qUnPltTk4vljHl5pSi9ueUvcST5k1F2UU2duTSw9GOHqVKiUOa81dc0nzWUWt+VL3m3pq1vZHq37UUT6n+zP4mkX5m/s4Tj6oVf+lc38WPHl/pP7L9jdaE5/tLxFZ2Gm2RXr51+qJkf7qlm/Cus8Lp4s+Kv7Pd3p/jDTG0q71XTp7WO1lBEyoYzGjSA9HY/NjsCO9fEWnfGHw9rXg34R6JrpltofC2qWsWtXE8bR21rPbI8cSPIwC7iV3ew5JFZZ3mkacpVlLk+sUIxi3o7qdm9dU4xquWuyTb2ZpleBc0qbjzexqttLVfDe2nRunbzbS6n3h491HS/gR+z/d/2WNkeiaYtpaKvBabaIogPdnI/Ovnb9mTRJPhbo/xK0GMbZdGa3Z+/wC+WxR3P4vk12p1mD9pr4o2MPh1vP8AA/hC5F1cXQH7rUdST/VRxno8cP3mboWwPQ16rpfwcvdF+Imv+K7HV92k+KMNqOmy24Ys6xeUDHMGBUYxkFW/rXVKhUxuOoY3BRvRpN04NW2cJxlNXavHmcI6a+42k1YwVWGGwtXC4mVqlRKck7780XGL0dpcqk9f5knZ3OB/Zu1TR/Bv7POh+I9dnW2tLfRVvbmVjwod5JHY+vJPuTWn8VNZtr7xt8K/EMW6O1u9VdlMqlGBuLSTYGBwQxzjB5zxXDeHP2V9TstRsvBfiTxbd6p4Q0cxz2ukNCkYcI7NHHNIvMiI3OCBn2r6G+L/AMNIfin4Kfw3HcmwvIJoruxu0GWt7q3bdG4HcA8EehNdGGw2YyytYeVDkdKNNRi3FucqbUnqm0ovlSjez1baRjWr4OOPdaNXmVSU7tJ2jGaaWjSbavd206K56g7pEhkkIVVGSTwABX5taJrOrfED4D/GHx14MSSefW9VuktBEMyPDEkUSlB1JKAlR617LremftSfELR/+FY+KrDTNHsrsiHUdbsbsu0lt/y0WGBkDI8g+XLNhcmuk+A/wt1b4QfDK/8AC+qRpAH1me4t4o33hLd5lEQz67QCe9Ti5V81xlKlClOFFQqXlKLi1OUeVWT/AJVJ67NvRuzHh1SwGGqVJTjKq5QtFNNOKfM7td2lpuktbXRsfDT46/Aa78Labovh/wARWFstpbRQLa3Eq28sflqF2skhVgRjB4r1LwB480P4keG18U+HSxtHmngUtj5jBI0ZIwSCCVyDnpUPiD4X/DbxZI0vifQNO1B25LXFtHIx/EqTXTaLoejeG9Lh0Pw/axWVnbrtiggQRxoPQKAAK9/AUcwpzjDESg6ajb3U029LaNtJJX0u9/I8nF1MHOLlRjLnbv7zTSWt9Ule7t0WxqVj6L/qp/8Ar4l/9CNbFY+i/wCqn/6+Jf8A0I1655x4lrP7PVhdeItQ8SeFvE2u+HpNUmNzdQafcqsDzEAF9kiOAzADOK+SPH/inw34T+Ip+G7eO/GGq3tntN5HbXeJSzjKQwRwQhpJWyMk7UUdWzxX6eVmRaLo1vqMmsQWkKXcwAknWNRIwHAywGT+Jr5XNOGKdeKWEaptyvJvmaa1bSipRSbfXtfqe9gc7lSbeJTmkrLZO/S7cW7Jfp6Hy1+z74O+KGh61ceI/Hd9qSWOoIRYaXql39uubdUAzJJKQArv/cXhR1JNcH8dvHfir4d/HG913wPpc2r6xL4WS3s7eGNpf3sl5gOyrztXkn3wMjNfbl3/AMhmz/3Zf5CvmvUdWtNP/bN07T7gkSX/AIXljiwMgtHcFzn04BrmzXLFhcvw+DoVpRftIpTerTk3qum70SSS0SRvgMc6+Lq4mrTT9xtxWiailp32Wr3e9zE/Zs+CHjHQbxviv8Zrh7rxNdxssMMj+b9kSU5kJPTzZCBu2/KqgKOBXkPiPQb3xl+3dc2jqWsNE0631KYY43wwusX5PMSPcV+ktYl/punQx3uqRW8a3M0BSSYKBI6oDtBbGSBk4BPFdFThSh9Ww2EpSfLTqRqSb1lNxT+J922r9LKyVrGMM/q+2r4ipFc04OCS0UU7bLsle3nrufOX7R1pqunaL4R+Jek2k15/wi2r215dR2yGSX7G6mOYqo5OFbJA7V4p8W9V139ryOx8MfBG2ubO30eZryXW75JbOFZPLZBDGCu9mYMdzAfKK/Qmy5soT/sL/KrQAHArXMuHXjKlWLrONGry88UtW46K0r+7dJX91vTRojBZysPCm1TvUp35W3ok+8ba2u7a211TPjPw1J+1HoHhey+HnhLwZoegw2cS28V49+Z7eJF43CJUEjHvgnk9ao6v8BNU0T4b+OLq2ll8U+OdZ097d7+fakjmVMeVECdsUYzwoPOOTX21WNY/8hW+/wB6P/0EVa4ZoOnyVqk52i4x5uX3E1a8YxjGKaW0nFtbXtcn+3Kqnz0oRjdpytf3rO/vNtytfdJpeVzhPgl8OrX4U/CzRfA1ugWSzt1+0EY+ad/mkOR1y5P4V5f8WfB/xE8NfEyx+O/wvs01q4gsW0zUdKZxE89sX8wNC54Dq3Y9RX1JRXbWyehPCU8HBuChy8jja8XH4WrprTs001dNWOWlmVWOIniZJScr8yezUt0+v3O66Hxpeftd/D6y+zWvizRNe0C5imVpIbnTZPlxnOCgIP171738JvH2qfEvw9ceKrvS5dLs5bqRLBbhSk01quAsrowBTed2B6YNdvrHW0/6+E/ka2aWDwePhVUsRiVOCT0UFFt+b5ne3ZKOv3DxGIwkqbVGg4yfVyuvkrL8Wwooor1zzjH0D/kExf8AAv5mtisfQP8AkExf8C/ma2KAAjPFfnf+wdoktrP4z1q4JZn1SWyjJ7R2zEhR7AyGv0Qrxr4VfDHTPhS13oOlzvcreT3WoO8gAO+5l3beOyjAB9q8PHZbOtmeDxaXu0lUv6yUUv1PVwuNjSwOJw99ajh90W2/0Od1mcQ/tSaFExx5/hy/A9yk8Bx+ANYn7WN5Hqfw7g+GFh+81bxZe21lZwjliEkWSWQ+ixopLHtx616B8UvhK/xAvdL8SaDrFx4f13RTL9kvrdFkwkwAkR43G10bA4PQisr4efBH/hFvFEnxC8ba3c+KfETxG3jvLpEiS3hPJSGJBtjDH7xHJ/n5uLwWMq/WsAqX7utLWpeNlCUYxkrX5ufSSWnLqm3ujsw+Jw0PYYpz9+mvgs7uSk3F3tbl1Tet9GrdTnfiedvxx8Fwv90afqxH+9th/pVj4tP/AMJn8UvCXwhnOdPn8/WtQj7SxWJQRRt6q0zqWHfbXVfGP4eXPi+z0/xJoF7/AGbregytPZTsu+NhINskUq8Fo5BwcEEYBFcL40+Hvxi1HxHofxc8IyaXbeJ9Ns59Pu7K4aSSyngmcN8kgVXUgqGGR3wenJmNHERWJpqk5RnUhN2s7wSpxnHff3XeP2ovS7ukYOrRl7GTqKMowlHXS0nzuL9PeVn0a1toz2T4n+PNL+GfgLU/GurOFSyhZkXvJKeI0UdyzEAD3r59/YYa5k/Z30+4vARLLeXzvnruadyf1zW5pHwh+I/jvxPZeLvj9qNncRaU/nWGj6ajC0jn7TStJ80jr/CCNoPNd58A/hrrPwj+HEHgPWruG9a0nuHilhRkzHLIXG4MT83zHOOP50UI47E5xSxs6ThQjTqRSdua7lTd5K+nNZ2W65bu3NZFV4WhltTDQqKVVzg21e1kpqydtbX1e2ul7XOX/aB1R9I+Afjm5jOGkt7i3H1uFWL/ANmr3Lw7YNpfhmw0uLCm3tYohxwNiAD+VeF/Hzwv4j8ZfBzxHoHhS1N7fS3UTpArBWkEcsTsAWIGdoPWvcvC99rOpaDbX2v2H9l3ci5e1MqzGLngF1+UnGM44B4yetepTUv7Wq80Xb2ULOzt8VTmV9r/AA6Xv1OGdv7Pp2avzyurq/wwtpvbfW1j4S8S6P8AGn4q/tGWng3UNX0uxbwZZjUo57e1klj827OxH8qVyPNRQSpLFVznk19DaJ8LvB3ww1iP4heLNUuNV1REl8/V9XmBMUe07gg+WOFD6Ko9M1meOvhF8SY/ihL8V/g/rNlp97qFnHZX1vqMDTQyLCSUdShDBhnBpuk/BXWNS8Saf4j+NutHxTeRyM8Fp5Qg062ZVyGSAZ3uP78hJ9MV89gcsq0cTVlLDSnVdRyU5zvBLaEvib5lFJaQ5rq10tT2MVjadShTUa6jTUEnGMbTb3ktkrOTb1la3RvQy/i/Y+L9S8W+D/jL4G0v/hK9K0iO4lOnpIIpS1yqhLiISfKzKuQAeeeOtTwftd/DewmFn490/WfC8/Rl1LT5VQH/AH0DqR75r6jmk8mFpQpbYpOB1OOwrzfQfij4M8R/DGD4o6hMljpE9uZ5WuioEQUkMr9RlWBGB1PSvWr4SrQxE6mHxShKfvyjKClH3VGLktYySS5b3m0uh59LEU6tGEK1ByjD3U4ytL3nKST0km9/sps6PQfF/hfxv4dPiDwhfwalZyKwWa3cOuQOhx0I7g81s6P/AMgm1/64p/6CK+TP2dLb/hI/EPjL4u6Bp39jeHPEDwpptvs8r7QLZGVrox4AXzSeOMkDmvrPR/8AkE2v/XFP/QRXpZNjp4zCQxE0k3fa9mk2lJX1tJJSV+j3e5xZlhY4bESoxe1t902k3F20vF6PzXTY0aKKK9M4TGtf+Q3ef9c4f/Zq2axrX/kN3n/XOH/2atmgArJ1f/Vwf9d4v/QhWtWTq/8Aq4P+u8X/AKEKANaiiigArH0L/kH/APbWX/0Nq2Kx9C/5B/8A21l/9DagDYooooAyJf8AkOw/9cJP/QkrXrIl/wCQ7D/1wk/9CStegArI1/8A5At1/wBc2/lWvWRr/wDyBbr/AK5t/KgDWX7opaav3R9KdQAVkab/AMfd9/12H/oC1r1kab/x933/AF2H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9H+/iiiigAqpf8A/HjN/wBc2/lVuqWoOgspwSP9W38qAK+h/wDIFtP+uKf+gitWsjQ5I/7FtPmH+pT/ANBFanmR/wB4fnQA+imeZH/eH51+Gn7c/wDwWdf4D/tQaf8AsIfsbfDHVPjv8Zp7RtR1HR9JnjtrXSbULuDXdzJ8iOwwdpwACNxBZQQD9rdN/wCQ5qX1i/8AQa6Gvyp/4Jw/8FIdK/bW17xv8MviP4L1T4VfFnwJLbx+I/B+tlTcQRyAiO5gkX5Z7aTGFkXjPsQT+qfmR/3h+dAD6+e/Ef7Wv7Lfg/x5/wAKt8V/EXw3pviQYB0y61S3iuwT0BiZwwJ9CK7n4yT/ABBj+EfiiT4QQwXXiwaTeHRobiQRQyX/AJTfZ1d+dqmTaGOOBX8O37Pf/Bul+z38Tf2lrD9mb9su5u/EfxNk8NT/ABC+JPiG3v3EjXmtzS29pYWGPlAhlV55p5FbftCqu1sqAf3ZanPDcyabcW7iSN5wyspyCCrYINdFX8o3/BB7xR8b/wBmj9rn4/8A/BIj4peMLvx/4d+CWoabeeFtXvMmaGw1GHzRbOzEkbUkj+QEqrh9vykV/Vt5kf8AeH50APopnmR/3h+dHmR/3h+dACTf6pvoayvD3/IDtf8ArmtaU0kflN8w6HvWV4ekj/sO1+Yf6te9AG5RTPMj/vD86PMj/vD86AH1z1n/AMjHef8AXKL+bVveZH/eH51z9m6f8JHecj/VRfzagDo6KZ5kf94fnR5kf94fnQA+sHXvuWv/AF8xfzrb8yP+8PzrC16RNlrhh/x8xd/egDoKKZ5kf94fnR5kf94fnQA+mv8AcP0pPMj/ALw/OmvJHtPzDp60AZHhv/kCw/8AAv8A0I1uVgeG5E/sWH5h/F3/ANo1ueZH/eH50APopnmR/wB4fnR5kf8AeH50AYUX/Izzf9e6f+hGugrnIpE/4SaY7h/x7p3/ANo10HmR/wB4fnQA+imeZH/eH50eZH/eH50AYniPmwT/AK7R/wDoQrernfEcif2enI/10f8A6EK3/Mj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAcehrD8O/8g3/tpJ/6Ea2TJHg/MPzrD8OyR/2b94f6yTv/ALRoA6CimeZH/eH50eZH/eH50APrzjxt4x0H4fQ3vjTxPL5Nhp1k80zgZO1SOg7k9hXonmR/3h+dfCH/AAUC1UaZ8AdanVvv/ZIz7h7mMY/WscRV9nSnUXRNno5Rg1i8dQwstpyjH72kfbmg6vFr+iWmuQRSwJeQpMscy7JFDgEBl5weeRWtWfBeWkWmpdSyKkSxByzEABQM5PoMVw/w/wDjB8MPiql7J8OdctNYXT5fJuDbSB/Lcdjj+fQ1pzJNRb1Zy+wnJTqwg+SO7s2lfa7/AKuekVheJP8AkEyfVf51teZH/eH51h+I5EOkyYI6r/OqMDeHQUtRiSPA+YfnS+ZH/eH50APopnmR/wB4fnR5kf8AeH50AYXh3/j2n/67yfzroK5zw7In2af5h/r5O/vXQeZH/eH50APopnmR/wB4fnUZubYYBkXn3oCxjz/8jJb/APXF/wCYrx39qH4o6z8Hfgrq3jnw75Yv4PKitzKu5BJK4UEjIz16Zr1+eRP+Ekt/mH+pfv7ivif/AIKTXy237L15sYZfU9OH4eeua5sbUcKFScd0mezw7hYYnNMLQqK8ZTimu6bR9zaJNc3Gi2dxesHmeCNpGAwCxUEkDtz2rUr5M/aE+LfjH4bfBzTD8MIILrxNrnkWWmpOcRiWRMlj1ztHIHSvzz1T9tf4kav+yrpPxXgkZPHXhjXl0m9tt2yO7lYlCGjTAYN6Y4IrGvmFKi3CV7pX/rz62PSy3hHG4+mq9GyjKfItdbu9m10i2uW/c/aXxD/yCJvpXj3jr9o/4OfD3xJa/DrxF4jsbDxDfxj7LazsT8zcJvKghAT/AHiM1+X37P8A8ePj14A+L3j3wJ+0Lr7601voA17Yx/dWshG7yoxxtABwQOK/P34XftL6hrnjzULjVbCDULr4gakkWs6ldRGRrS1dwIY4eQFI4OT6Yrgr53FRjyqzbas+ltOn9L5H1GWeG1apWr+2nz06cYSTg9Jc6utZLZJNtWu3ZK17r+g3wN/w2nc3Udx47bwnb23ntvitxcvL5IPBDZC5I9uK8H/bQ/a0+Edj8HPGngTQvE8Nn4n091s2tPMMN1vJViY1OGYbT95ePevsv4efFPwh4q13VPAOgzm4n8Ox26SzblZJRIpwylSehXDA4INfGX/BS7wV4Cj/AGd9Y8ZnR7FtXM1sn23yE8/G8fx43dPeunF88cLOVKV9He+vfbbU8XIfYVs8w9LHUOVuUOVQSitWmnJO90153Of0T9vO/wDibbaR8Lf2V/D194n1ySCCG41W7heHTrPCgPJI7YZ8c8cZ9a+4NY+Jnhf4ReE38R/FPUYrRDdRW0kwU7XuJdqgKoyeW6egrxj4q/HDw7+zH+yZB8RLOG2juY9Nt0srcKFSW5kjG0ELjPPJr8T/ANpv9p/xx8ePAfw+staEX2u3kj1jWfsqlIUklkCRcEsRkDgEnmuavj3hYS55807JpWsl09fP5Hs5dwtHO69L6rh/Y4VTlGUnLmnJpOTd2kraJJJJJvqz+lnxX428KeB/C1x428W30VhpVpH50tzKcIqevr+lflj+1l8V/A3xb+InwO1P4eanDqumXXiRZBNCeCYxggg4II9CAa3v+CkHjSHTv2aPCWhXMwhtte1HT4p3J4ESAO2fbFfmNqHjKDxF+1F4G+N12INH8ItrqWOnk4hh8qzAR5m6LlzyW71lmuYNS9glp7t/m739Fp952cEcKxdFZpJvmtWS2s7QcUu7k2299FF6an9Fvx8+NHhX4B/C/U/iP4snEUVpEwhUgkyTEfIgwDyTX4d/Bn4larrPhK9sPh9GPEnxb+Ks073skZ3rpVhKdqmZ+Quxc4TI7V+if/BTvXLBf2PtWaAxzpfy2yROMOuHYEMp+nQivbf2bPhx4A+HXw58KReCtKs9Na706OW4e2iWNpXaMEs5AyxJ9TXViKdSvi/ZqVoxjfz97TTzst+lzx8oxWEyzIHi6lJzq1avLa9otU0pJS0vy80k3FfE4pNpHrHwU+Gdj8HPhXonw109/NTSbVIS+Mb36s34sSa9Rry3RPjT8NPEfxG1D4U6Fqkd3rmlQrPdwRgsIlY4AZwNob/Zzn2r0/zI/wC8Pzr1aXJyqMNlp9x8JjfrDrSqYpNTn7zurN82t/R3uh9ZOu/8gi4/3DWn5kf94fnWTrskf9kXHzD7h71ochfsf+POL/cH8qtVSsZI/scXzD7g7+1WvMj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAx9K/4/L3/AK6/0rbrB0qRBeXuSP8AW+vtW35kf94fnQA+imeZH/eH50eZH/eH50AYmpf8hWx/3n/lW9XP6k6HVbHBH3n/AJVu+ZH/AHh+dAD6KZ5kf94fnR5kf94fnQBT1T/kGz/9c2/lTdJ/5BkH+4KTVJI/7Nn+Yf6tu/tSaTIg0yDLD7goA06KZ5kf94fnR5kf94fnQA+sDS/+Qtf/AO8n8q3PMj/vD86wNLkj/ta/+YfeTv7UAdFRTPMj/vD86PMj/vD86AH1gax/x+2H/XX+lbnmR/3h+dYOsSJ9tseR/rfX2oA6GimeZH/eH50eZH/eH50APqvd/wDHrL/uN/KpfMj/ALw/Oq93In2WX5h9xu/tQBW0T/kEwf7grUrI0WSP+yoPmH3B3rU8yP8AvD86AH0UzzI/7w/OjzI/7w/OgDAsf+Rhvf8Acjroq5qxkT/hIb35h9yP+VdF5kf94fnQA+imeZH/AHh+dHmR/wB4fnQBi67/AMun/Xwv8jW7XP65In+icj/j4Xv7Gt3zI/7w/OgB9FM8yP8AvD86PMj/ALw/OgAk/wBW30NYvhv/AJAsH+7WvJJH5bfMOh71jeG5I/7Fg+YdKAN+imeZH/eH50eZH/eH50APrnbb/kZrn/rlH/Wt/wAyP+8PzrnbeRP+ElueR/qo/wCtAHS0UzzI/wC8Pzo8yP8AvD86AH1ia7/x7w/9dk/nWx5kf94fnWJrskf2eH5h/rk7+9AG9RTPMj/vD86PMj/vD86AH0UzzI/7w/OjzI/7w/OgDD8M/wDIJX/fk/8AQjW/XO+GZI/7JX5h99+/+0a3/Mj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAwz/yM/wD27D/0I1v1zpkT/hJ/vD/j2Hf/AGjW/wCZH/eH50APopnmR/3h+dHmR/3h+dAGH4l/5BZ/66Rf+hit4dBXPeJZE/ss/MP9ZF3/ANsVvCSPA+YfnQBJRTPMj/vD86PMj/vD86AH1heH/wDj0l4/5by/+hGtrzI/7w/OsPQJIxaScj/Xy/8AoRoA36KZ5kf94fnR5kf94fnQA+sSX/kYYf8Arg//AKEK2PMj/vD86xJZE/4SGHkf6h//AEIUAb1FM8yP+8Pzo8yP+8PzoAfWF4m/5AVz/u/1FbXmR/3h+dYXiaSP+wrn5h9319xQBvjoKWoxJHgfMPzpfMj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAxNB6Xn/X1L/St6ue0GRMXnzD/AI+pe/0re8yP+8PzoAfRTPMj/vD86UOrcKQaAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVkyaZPJI0gvJ1DEnAK4Gew+WgDWrH1//AJA8/wBB/MUn9k3H/P8AXH5r/wDE1ka9pM/9jz5vrj7o7r6j/ZoA7Cisb+ybj/n+uPzX/wCJo/sm4/5/rj81/wDiaANmsjSv9bef9fB/9BWm/wBk3H/P9cfmv/xNZGl6VP5t5/ptx/x8Huv91f8AZoA7Cisb+ybj/n+uPzX/AOJo/sm4/wCf64/Nf/iaADUP+QnYf9dH/wDQGrZrjtQ0q4/tKw/024/1j91/uN/s1sf2Tcf8/wBcfmv/AMTQBs1Bdf8AHtJ/un+VZv8AZNx/z/XH5r/8TUNzpVwLeQ/brj7p7r6f7tAF3Rv+QRa/9ck/kK0q5XR9Kn/sm1/064/1Sd19B/s1o/2Tcf8AP9cfmv8A8TQBs1kW/wDyG7r/AK5xfzam/wBk3H/P9cfmv/xNZFvpU/8AbV1/ptx/q4u6/wC1/s0AdhRWN/ZNx/z/AFx+a/8AxNH9k3H/AD/XH5r/APE0AGt/8e0X/XxD/wChitmuO1vSrgW0X+m3H+vh7r/fH+zWx/ZNx/z/AFx+a/8AxNAGzRWN/ZNx/wA/1x+a/wDxNH9lXH/P9cfmv/xNAFS01HT9I0ObU9VnjtraF5mkllYIiKHPJY4AH1rX07UbHV7GLU9MlWa3nUPHIpyrKehFfJXxnlOn6l8OtM1O6mfTtS8XrBcB9pRnEVy8CkbcHMyoQDxuAr6kmsDbQvcXGoTRxxqWZmZAqqOSSSvAArOM7yku3/DnZWwvs6NKp1nd+Vk2ret191jerHm/5D1v/wBcJf8A0JK8R8BfHj4OfE/xM/hDwH4tOo3yxPMixqQk0cbBXaGRowkoUkZMbNjNeqzaVcf27b/6dcf6mXuvqn+zThUjNXg7ryMsRha2Hn7OvBxlvZpp/czsaKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJqzAl1z/kDXf8A1yf+VaSfcH0rlNb0m4/sa6/064/1T919D/s1pJpNxsH+nXHT1X/4mgDborG/sm4/5/rj81/+Jo/sm4/5/rj81/8AiaAF03/j+vv+uq/+gLXk3xL+BHhz4g61B4y068u/D/iO0Ty4tU05xHMY/wC5ICCsiezD8a9B07Sp/tt9/ptx/rV7r/cX/ZrX/sm4/wCf64/Nf/ia5cZgqGKp+yxEOaO/o1s09010a1XQ3w2Jq0J+0oys/wBOz6NPqnofNc37PnxM8QQnR/HnxL1TUNKkG2W2traGyeVe6tLHlsEcHGM13+ifA74S+Ate03XvCeg2tnexBLVJ1XLrEiPgAknBPdh8zdya9V/sm4/5/rj81/8AiayNU0qcXFjm9uP+Pj1X+4/+zXFh8hwNGaqKnzTW0puU5L0lNya+TR1Vs1xVSPI52i91FKKfqopJ/M7Cisb+ybj/AJ/rj81/+Jo/sm4/5/rj81/+Jr1zzjYPQ1y9nomjax4Xh0zVrSG6tp4lMkUsaujnA5KkYP41fbSbjB/064/Nf/iaytC0mf8AsW0/064/1Sd19P8AdqZRUlaSuhxk07p6nQ6bpem6NYx6Zo9vHa20QwkUKBEUegUYAq9WN/ZNx/z/AFx+a/8AxNH9k3H/AD/XH5r/APE04xUUkloDbbu9xY/+Q9L/ANcE/wDQmrYrj49Kn/t6Ufbbj/UJ3X+83+zWv/ZNx/z/AFx+a/8AxNMRs1ja/wD8gxv+ukX/AKGtH9k3H/P9cfmv/wATWRrmk3J04hb24JMkXGV/vr/s0AdhRXnXivxR4N8CWR1Pxx4ng0a2UgGW+uYbdAT0+aTaP1r4017/AIKZ/wDBPvQtT/sSL41aJrF9uZPsuiXSaxPvTqvl2KTtuGPu4zQB+iFY+i/6qf8A6+Jf/QjX51R/8FGfhRrojb4ZeFPih4wSZSUl0zwdqMcLFf4fNvLa2jU/7zAe9Y2i/te/tNa/YG68Cfs2fEaRZbiTJ1q+8P6SVBY8lW1GV8f8Az7UAfqNRX5uW3xe/wCCkOsXbQWHwQ0jSoWHyS6n40iYg/7aW2nS/jtY/Wqjap/wVvvppUt/DPwt0+In9283iDVblgP9pV0uMH8GFAH6LXf/ACGbP/dl/kK5K9+GPh2/+KNl8Wrgy/2nYWMlhEoI8vy5W3EkYzu6gc4wa/OO/wDDv/BZm91y1aHxB8H9NjCyYDWetXjHOM/8trccetdnbeCP+CuDoPt3jz4WI3fy/D2qt/PVBWNbD06ySqxvZpq/Rp3T+TNKVadNtwdrpp+j0a+Z+l1UdT/5Btx/1yf+Rr85pPA3/BWdVzB4/wDhe7f7XhzVAP01WuM1jwr/AMFm7eKVrbxZ8H7uDYwZZNK1m2bGOu5byb/0E1sZn6oWP/HlD/uL/KrVfmJaS/8ABXnTdNjB0v4UavIFXDLq2r2QIx6Gwnx+dbFz8R/+Cm+g2aHUPhJ4V1yc43DSvGMkCj1x9q0pTQB+kdY9j/yFL7/ej/8AQRX53D9p79srRZ9njH9m/wAWPEi7pJdC8QaDqC59FWe5tJGP/ARWJpP/AAUBstPu5rj4i/Cb4v8AhUzyKrfafC76isYVcFnk0tr6MLxnO6gD9RKK/Ni1/wCCov7BYmitvE/xPbwtLMzKq+JbK60LlOuTf20CgD1JxX1V8N/jr8BfjJZRal8IviPo3im3mQSRyaRqdpeqyH+IGFnyPegD2TWPvWn/AF8J/I1s1x2r6VPutP8ATbj/AI+E7r6H/ZrY/sm4/wCf64/Nf/iaANmisb+ybj/n+uPzX/4mj+yp/wDn9uPzX/4mgBdA/wCQTF/wL+ZrYrjtB0qc6TD/AKbcfxd19T/s1sf2Tcf8/wBcfmv/AMTQBs1jf8zD/wBu/wD7NR/ZNx/z/XH5r/8AE1j/ANlT/wDCQY+23H/Hv6r/AHv92gDsaKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJoAdr3/IJm+g/mK164/XtKuP7Im/0246DuvqP9mtf+yrj/AJ/rj81/+JoA2aKxv7JuP+f64/Nf/iaP7JuP+f64/Nf/AImgBui/fvf+vl/5CtuuM0fSpy95i9n/AOPl+6+g/wBmtr+ybj/n+uPzX/4mgDZrIvv+QnZf70n/AKCab/ZNx/z/AFx+a/8AxNZN7pU/9p2X+nXH3pO6/wB0/wCzQB19fLkX7H/wb/t5tXv4728tftL3kemT3Ttp8c0jbiVg4XG45wcivor+ybj/AJ/rj81/+Jo/sm4/5/rj81/+JrhxuWYTGcv1qlGfLtzJO33+i+46sNjsRhub2FRxvvZ2L00UUFg0EKhESMqqqMAADgAVDo//ACCbX/rin/oIqhdaVOLWX/Tbj7jd19P92qukaVP/AGTa/wCm3H+pTuvoP9mu45TqqKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJoALX/AJDd5/1zh/8AZq2a4610qf8Atq8H22f/AFcPdf8Aa/2a2P7JuP8An+uPzX/4mgDZrJ1f/Vwf9d4v/QhTP7JuP+f64/Nf/iaydX0m48uD/Trj/Xxd1/vD/ZoA6+isb+ybj/n+uPzX/wCJo/sm4/5/rj81/wDiaANmsfQv+Qf/ANtZf/Q2pP7KuP8An9uPzX/4msfQ9KuPsH/H9cf62Xuv99v9mgDsaKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJoAdL/AMh2H/rhJ/6Ela9chLpU/wDbsP8Aptx/qJO6/wB5P9mtb+ybj/n+uPzX/wCJoA2ayNf/AOQLdf8AXNv5U3+ybj/n+uPzX/4msnXtKnGi3X+m3H+qbuvp/u0Adcv3RS1irpNxtH+nXH5r/wDE0v8AZNx/z/XH5r/8TQBs1kab/wAfd9/12H/oC03+ybj/AJ/rj81/+JrL0jTJ47+8kN5OwWcHBK4OEXg/LQB1tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0v7+KKKKACsDWNF0q7t7i4uYVd2jbJPfAxW/VS//AOPGb/rm38qAOb0Tw5oh0a0P2Zf9Snr/AHR71qf8I5of/Psv6/41Pof/ACBbT/rin8hWpQB86ftMfEbwX+zj+z341+POvwRraeEdGvNVffwp+zRM4U8j7xAH41+C/wDwbD/syy237E+q/t5/GiE6l8Sv2gdavvEOpaldjdc/YEneO2iDn5vLYq8wAO3a6jHyiv1T/wCCvnwY+Jv7Q/8AwTK+NXwV+DWmvrHifxF4Yu7TTrGMgPcTEA+WuSBuYAgDPJ4r+Uf9nv8A4Khf8FNYf+CfngT/AIJZfsX/ALMvjbQ/izpGhW3hS48T61Zvb6fpyxr5U12pkjVUIBJUysFT73zYwQD9MPDf7ZP7LH7SP/BYnw98Xf2cYZ7fVvBniO++Dvi+5kVRBrFreWc91ayRFGPmJBeWbKjPggFiBgiv6D/iV+0R+yX8G/GFh8Pviz428O+Gtc1NQ1rY6lqMNrPKp4BCSOpwSMA9CeBzX8T3/Btn+wfN8O/26fjz+zj8U9fe/wBc+CXi7RdakvLNf3V7qFnHe27qfMy3lk3DHdwzbQeM19M/8FoP+CHfwk+Pn/BU/wCGHxw8beMr6/h+PWvw+GLzw88JD2kdjYSSyXNrdK42CKODeI3jYFieQOKAP7QLfQ/Dl3Al1axRyRyKGV1OVYHoQQeQa/C7/gpD/wAEuv2wPih+0fpf7cX/AATT+LNv8L/iXb6IvhzVbLVLYXOlarp6SNLHvGyXEkbOcbo2B4wUIJPyH/wb/fG34+/s1ftDfFv/AIIiftVay/iHVvgyqan4P1SUlnuPD0zJsTJ52oJoWQEnYHKAlVFf1XUAfht/wSh/4JOa5/wT907xb8Tv2hfGZ+Jfxf8AixrEWpeKddKssBaJZDHDBvw5RS7EsQueAFUKBX7Xf8I5of8Az7L+v+NM1n/j6sP+vgf+gtW9QBif8I5of/Psv6/40f8ACOaH/wA+y/r/AI1dtNU02/nntrG4jmktX8uZUYMY3IB2sAeDgg4PY1epRkmrpjaa0ZgS+HNEETf6MvQ+v+NZfh7w5oh0O1P2Zf8AVr6/41183+qb6Gsrw9/yA7X/AK5rTEN/4RzQ/wDn2X9f8aP+Ec0P/n2X9f8AGtuigDE/4RzQ/wDn2X9f8awLTw9op8RXgNsv+qi9fVq7ques/wDkY7z/AK5RfzagCb/hHND/AOfZf1/xo/4RzQ/+fZf1/wAa26KAMT/hHND/AOfZf1/xrC13w7ogS1H2Zf8Aj5i9fX613FYOvfctf+vmL+dADm8PaEoLNboAOuf/ANdA8O6ERkW6EH6/414N+07rU1v4V0jwlDI0Y8R6ta6fLtOCYnbLrkcjcoIOOxr6OtraCzto7S1UJFEoRFHQKowAPoK4aONVTFVcPFfAo3fnK7tbyST36nVUwzhQp1m/ibsvJW1++/3GX/wjmh/8+y/r/jTW8OaIFJ+zL09/8a3aa/3D9K7jlOL8OeHNEOjQk2y/xev94+9bf/COaH/z7L+v+NJ4a/5AsP8AwL/0I1uUAYn/AAjmh/8APsv6/wCNH/COaH/z7L+v+NbdFAHCxeHdE/4SaYfZl/4909f7x963/wDhHND/AOfZf1/xqKL/AJGeb/r3T/0I10FAGJ/wjmh/8+y/r/jR/wAI5of/AD7L+v8AjW3SEZGBxQBw/iLw7ogsFxbL/ro/X+8Pet7/AIRzRP8An3X9f8a+Gv2d/jH4w8V/ED4l/CL4hXxvL/wxr0clmzqqt9guNpRcADIQ8Z96/QCsqFaNWHPHz/B2O/MsuqYKu8PVabtF3WzUoqSa+TRif8I5of8Az7L+v+NH/COaH/z7L+v+NX9Q1Cy0qwm1PUZVht7dDJJIxwqqoySfpX5veNv279An+OGj+Evgut343tzYXEkljokIlMtySojDyNgIijLM2cD3qa+Jp0UnN7m2V5Ni8wlJYaF1FNt9FZX1eyv0u0j61+NXia1+FHhBPGFpoh1K2huoEvfL3FoLV2Akm2qCzCNSWIA7Vb0HxL8Lf+FaTfEqC5t59Dgjmumu4W3p5SEkng9vTrWz8Ptc8ft4Lk8RfGqCw0a5kLSm3glLx20BHCyyvhWcfxEAL6V80ftYfC7VPiH+zPrEPgjXbnQY7GG7vGh05Y/LvkCsfKk4+42ckrzUVKk4wlVhrpe2zOjB4PDVa9LBV2ovns6id42dtNE7tdGtNddNT6Z8L6/8OvFnhbSvF9lsgtdZijmtRc/upHWUZUbWOckHp1rtz4c0Mcm3X9f8a/LD9gP9nX4K+JPg34W/aI8TC717xBawMUk1O5eeKxktyVAhiJ2JtUDHBIrz3Xf22vHeu/s1+NNUS/SfWdY8ST+H/DxgQIwjkbYpG3rtXLbutcscy5aUalZWurqzvolfy77ant1+D3Wx1XCZfNyVOahJyXLZyk0rau6STbb5dE3Y/YwaF4dMRnEMewAktnjA981+VP7e3xJ+EHjj9n/XYvhzq9jqc+n3llDcpayh2iZbpMhgD6gjPSvJ/wBl74ieM/hF+z18Yvgv41vpJ9Y8ERTywtI5dws8ZyVLZO3dg/jXHeMvA3gXxH+xtoXws+HWnQXvxBl8Ow6w8drBuupLeKdZZN7qM5bkqpOWI4rkxOPdbDuMVa8ZXT3vtZed7nvZPwtTy7NYVa1RyVOtTUZRXuuLSnzyvtHlceul99D7V/b2+IOk/DX9ji5v9OIttQ161gs7Zl3biZ1G7BHQ7c9xXHf8Ewvg7d6N8M9U+JvibSRpcXiJ4VsbZ12t9mt02iRunMjZbJFeieNvA7/tofsK2WheEt1pqj2Vv5CXiNEUvbLAKOGAIyykZ968Q8B/Bf8Ab3+PEdj4G/aB1WPwR4N0iGO1nttJYLdagsICgeYrMVDAfMdyj0FFTneLhXUXJcq5bbXd73fT+uwsKsPHIcRlkq0KM1Wl7Xnb5uWPLyqEErybat5W3SZ+tQ8O6Ew3LboQfr/jWJ4j8O6INJk/0Zeq+vr9a6Dw/oeneGNDs/DukKy2tjCkEQdi7BIwAMsxJJwOpOah8Sf8gmT6r/OveXmflkrXfLsKPDmiYH+jr+v+NL/wjmh/8+y/r/jW0OgpaZJif8I5of8Az7L+v+NH/COaJ/z7L+v+NbdFAHC+HvDuiG2nzbL/AK+T19frW/8A8I5of/Psv6/41F4d/wCPaf8A67yfzrZurq3sraS8u3WKKJS7uxwqqOSSfQUDSvojn9R8HeHNTsJ9Nu7ceVOjRvtZkbawwcEEEH3Ffhz+2J4A/Yb+BHhzULHRtc1i58XhCbTTbbW7qRlkPdzmQIB1w2Ca+hvHnxw+N/7ZXjW7+EH7KM7aJ4QspDBq/isqcPjho7Y9z7qcn1A5r3HwP/wTr+AXgDwFqfhvRrd59b1a2eC4128AuLzdIMM6b8qhPPQZ9Sa8TFXxicaEE0r+9L/23v67H6Tkip8PThVzLEzhOTi3Rpuzt0dV/ZVvspOdv5Tj/wDgnNc6/wCM/wBnTw5rPj/zLy5IukhnuGLySW6OAhLE5OORk+lV/wDgp9p+m6Z+zHJLawqjHU7HkZ7Sivtf4d+AND+FmjaF8PPDa4stIsPs8WepCYyx9yeTWJ+0P8A/Cf7SPw1ufhl4xnntbWeSOUTWxAkR4zkEZBFdU8NU+pOgneXLb52PDw2dYVcSLNJR5aPtueyW0ea+3p0Ph79qTxLoHg28+Cuu6sUg0/7VFNcSMcIALfuelflP4S8Paz4i8LaX4x0i3kk07WfiOWjKKSrLuYjj0+YV+/fj39jb4QfEr4KaV8DfF4vLrTtGVPst005a6Vk/i8xs5z0IIxjivYfhT8HvAXwY8B2Hw48CWS2+m6dzGr/Oxc8l2J6sT3rirZZWrVuabSjb53sk16aH0uW8aYDLcvVLDwlOrzNO6Si4KU5J31d25rS2ltz8EP21fDnizQv2svFXhvw3pdzNeeM9BisNNEEZIeRyAfm6ADHJPA71zfx9/Zx8Pfs1/sz+DPhbrs8cXjnxRrMVxdtCd8kcf3Qqsv8ACmfXk1/R94ngsl0ybULiNN8KEiQqCyr3wetfzRza94j/AG1P+CiFlCA8umadqAjhTGVhs7M5Zj6biM1w5ngoUW3fmnUdorsm7s+m4N4jxGYQhFxVPD4SCnUle7m4RcYLbRaXtrqt9j9PP2YPB3hb4d/tT+K/hPp8Ki3tPD2mMmRgyOud8h9SxOSa9n/br+CfiP4q/s46x4W+GtgLrVg0U8UCnDS+UwYquSBk9q+wYPDPh221p/ElvYwJqEkSwPciNRK0a9FL4yQPStyvfjg17CVCT0d9uzPyqvxDN5lRzOnH95Dkfva3lBJNvbex/Pf4n/Z0/ay/bP0NYvGHhyTwXpPhPShBpmnXEgVr2+RQu5t2MA4+8QABwDX0B+yz/wAE3NI/4UNrXhD9oWORNc1u5jaVrWYGW0W35jVJBuXryRyK/ZCsDQ/9be/9fDfyFc1PJqCn7Wo3KVrO/X5emh7GL8Q8ynhvqeFUaNJSUoqCd007/E227y9531b620Pzt+MH/BN/RviR8HdG+Een+MNTVNJv/tYu9T/02Voyu0xDlNoA+71xX1j4c/Zg+CGh+ANF+Hd94dsNTsdCjVbf7XAkpDr1f5gcMx5NfQFFdkMFQhJzjHVpL5I+exPEeZV6MKFSu+WMpSSVl70t3dJP/K7tufOf7Qn7N/g/48fCDUvhXOq6eLqMC3njXiGRPuEL6D0GOK/JeD9nH/gqD4Xtbf4QaJr1i+jxI1vb6iJYhIkHTh2XzhgdB1Hav30rAvf+Q7Z/7r/yrPE5fTrT5+ZxdrXi7XXZnZk/FeKy+g8MqdOrTvzJVIKajLbmjfZ/gfKH7JP7HXhf9mnwXPZ6jcf234h1VxPqWoyA5kk/urklto9zk9TX1n/wjmh/8+y/r/jW3RXTRowpQVOmrJHi5jmGIx2Ini8VLmqSd2/62S2SWyMT/hHND/59l/X/ABrK1zw5og0i4/0ZfuH1/wAa7CsnXf8AkEXH+4a1OIo2XhzRDZxf6Mv3B6+n1qz/AMI5of8Az7L+v+NaNj/x5xf7g/lVqgDE/wCEc0P/AJ9l/X/Gj/hHND/59l/X/GtuigDitL8O6Iby9zbL/rff0+tbX/COaH/z7L+v+NGlf8fl7/11/pW3QBif8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAcRqPh3RBqtji2X7z+vp9a3P8AhHND/wCfZf1/xpmpf8hWx/3n/lW9QBif8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAcrqnhzRBps/8Aoy/6tvX0+tGleHdEOmwE26/cHrW3qv8AyDZ/+ubfypuk/wDIMg/3BQBV/wCEc0P/AJ9l/X/Gj/hHND/59l/X/GtuigDE/wCEc0P/AJ9l/X/GsDTPDuiHVr/Nsv3k9fT613VYGl/8ha//AN5P5UASf8I5of8Az7L+v+NH/COaH/z7L+v+NbdFAGJ/wjmh/wDPsv6/41g6v4d0QXlj/oyf60+vpXc1gax/x+2H/XX+lAEn/COaH/z7L+v+NH/COaH/AM+y/r/jW3RQBif8I5of/Psv6/41BdeHNEFrKfsy/cb19PrXRVXu/wDj1l/3G/lQBzOi+HNEOlQf6Mv3B6/41p/8I5of/Psv6/41Pon/ACCYP9wVqUAYn/COaH/z7L+v+NH/AAjmh/8APsv6/wCNbdFAHB2Xh3RP+EhvR9mX7kfr6fWuh/4RzQ/+fZf1/wAagsf+Rhvf9yOuioAxP+Ec0P8A59l/X/Gj/hHND/59l/X/ABrbooA4jW/DmiA2mLZf+PhfX0Nbn/COaJ/z7L+v+NM13n7J/wBfC/yNb1AGJ/wjmh/8+y/r/jR/wjmh/wDPsv6/41t0UAYMnhzQ/Lb/AEZeh9f8ax/Dnh3RDo0H+jL09/8AGuzk/wBW30NY3hv/AJAsH0oAX/hHND/59l/X/Gj/AIRzQ/8An2X9f8a26KAMT/hHND/59l/X/Guft/D2inxJcr9mX/VR+vvXd1ztt/yMtz/1yj/rQBP/AMI5of8Az7L+v+NH/COaH/z7L+v+NbdFAGJ/wjmh/wDPsv6/41i654c0MW8P+jL/AK5PX1+tdrWJrv8Ax7w/9dk/nQAf8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAYn/COaH/z7L+v+NH/AAjmh/8APsv6/wCNbdFAHC+GvDmif2Sv+jL99/X+8fet/wD4RzQ/+fZf1/xqPwz/AMglf9+T/wBCNb9AGJ/wjmh/8+y/r/jR/wAI5of/AD7L+v8AjW3RQBw//CPaIPE2Psy/8ew9f7xrd/4RzQ/+fZf1/wAajP8AyM//AG7D/wBCNb9AGJ/wjmh/8+y/r/jR/wAI5of/AD7L+v8AjW3RQBw3iTw5og0s/wCjL/rIvX++Pet0eHNEwP8ARl/X/GmeJf8AkFn/AK6Rf+hit4dBQBi/8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAYn/COaJ/z7L+v+NYmgeHdENnJm2X/AF8vr/ePvXbVheH/APj0l/67y/8AoRoAd/wjmh/8+y/r/jR/wjmh/wDPsv6/41t0UAYn/COaH/z7L+v+NYsnh3RR4hh/0Zf9Q/r/AHh712tYkv8AyMUP/XB//QhQAf8ACOaH/wA+y/r/AI0f8I5of/Psv6/41t0UAYn/AAjmh/8APsv6/wCNYfiXw7og0K5P2Zfu+/qK7esPxL/yArn/AHf6igAHhzRMf8ey/r/jS/8ACOaH/wA+y/r/AI1tDoKWgDE/4RzQ/wDn2X9f8aP+Ec0P/n2X9f8AGtuigDh9C8O6IVvB9mX/AI+pfX2rd/4RzQ/+fZf1/wAaZoPS8/6+pf6VvUAYn/COaH/z7L+v+NWrTSdOsJDNZxCNiMEj0rRooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsfX/APkDz/QfzFbFY+v/APIHn+g/mKANiiiigArI0r/W3n/Xwf8A0Fa16yNK/wBbef8AXwf/AEFaANeiiigDG1D/AJCdh/10f/0Bq2axtQ/5Cdh/10f/ANAatmgAqC6/49pP90/yqeoLn/j2k/3T/KgCpo3/ACCLX/rkn8hWlWbo3/IItf8Arkn8hWlQAVkW/wDyG7r/AK5xfzatesi3/wCQ3df9c4v5tQBr15R8Svizpfw8u9K8PW9lcazr2uyvFp+mWm3zZfLG6SRmcqscUYILyMQBkAZJAPq9fHXwPb/hYH7Q/wATfilqH7z+xLyHwppuefJgtIknudvp5k8vzeuwegrCtNrljHdv/gv+u56eXYanNVa9ZXhTje2122oxV+13d9bJ2admex2nj7U9TvLbw/4q0G90O9lljeLzdk9vLtYFgs0LOoYDna+0kdAecdhb+P8AwnceJNY8KC7VLzQLe3ur4SAokUNyJDGxdsKQRE5OD8uOccVta2SLaLH/AD3h/wDQxX5B/tKa/J4r/bff9mTT2dbf4g2GhQau0bbT9isJbq4njyOR5sXyH1U46GscViHQjF73dvvTt+Nj0MkyqnmlerBLkUYObtqkoyjzOz1soczte7a36H2lrf7Y/hOHwzqfj7wnomo6r4X0eNprjXpAlnpzqhwfIeYiS4JPyqYo2ViQATW54V/ay8G+JvGHhvwHd6Fruh6p4nNwbWDVrFrQhLeLzi5JJVlYcDYzMD94CuE/bSsdPi8BeAfh3bQpDpereM9B02SCMBYxbRyGQR7Rxt/dKMdK8T/av+JNtof7e3wJ8NSSFUgku5J/7q/2iDaxZPbc6kc1zVsTVpSfNLROC2/metvl6ntZdk+CxtOKpUGnKNeSfM20qdNuN9LNuejsorbzPqb9pfwFqnxB/Z51y08N5GtaVIdY0p1+8t9p032iLHuzJt+jV5X4t+I9p+1Jpfw6+GHhiZo9J8d6d/wkGveWSGXSbcJvtiQcj7RO6wtyDsVxX19feMfDHgrQk1DxXeR2cVxeG1i35LSTTSlUjRRlmZieAAT36A1+dP7FXga6+H/7Ufxf8I6k+LHwkLW00lW4WDT9RlnvggP90F/wxjtWmK/jRitp6P5Xf4rmRy5I08urV5r3sPepDzc+Wm7ecJunJdte57v8co7Pw9+0p8CbHRYktlW81q1SKJQirbmwOVCjgKCqcDgcV9iTf8h63/64S/zSvhD4X6wv7Tv7Vt58a9IPneC/h1bz6LolyP8AV3up3WBeTxnoyRoBECOCeRX3fN/yHrf/AK4S/wA0rbCPm9pUWzenySX5pnmZ9B0VhcLU/iU6fvLs5TnUs/NRmrrdO6eqNiiiiuw+fMvXP+QNdf8AXJ/5VpJ9wfSs3XP+QNd/9cn/AJVpJ9wfSgB1FFFAGPpv/H9ff9dV/wDQFrYrH03/AI/r7/rqv/oC1sUAFZGqf6+y/wCvj/2R616x9V/4+LH/AK+P/ZGoA2KKKKAEPQ1laD/yBbT/AK5J/KsHx98Rvh98K/DU/jH4na5p/h3Sbcfvb3UrmO1gT6ySMqg+2a/PbR/+ClPg/wCIumJpf7HPgPxV8aLiFBEL/R7MadoPmrwVOrak1tauB1JtzNx2PFAH6e1Xu7u1sLZ7y+lSGGIFneRgqqB3JPAFfnAvhH/gp/8AGtfN8W+KvCnwT0uY5+yeHLZvE2sqhPRr2+SCzR8ddtlKoJOC2Aa0ov8AgmF+zh4q8u6/aNu/EPxku1wzN421abULNmGcn+zozDpygkn5VtQB6cCgDS8Y/wDBS39iTwd4uuNB07x3a+LdZRFg/srwlDP4jv8AzQxBQw6bHcMrDPIfGOc4waw7T9sP9qr4nW5l+A/7OviKCF+I73x3qFp4ahPoxgRr29A68NbKw449PtbwF8O/h/8ADD/ilfhroWneHdLht0EdpplrFaQINzdI4lVR+Ar0mgD847T4f/8ABUb4ibm8d/EPwP8ADi2ZiRb+FtFuNau1XceDd6lNFETtxyLIYYdCKyNZ/wCCd7eKtOaX49/Gj4meOt8kJktv7cGgWTYYAjyNEisMq2eVd3r9M6xte/5Bjf8AXSL/ANDWgD4j8M/8Eu/+Ce/hjUYtZ/4VJ4e1i/gChLzXbb+2rkFPut51+biTcOzbs+9faPhrwb4Q8F2A0vwdpVnpNqvIhs4EgjH/AAFAo/SukooAKx9F/wBVP/18S/8AoRrYrH0X/VT/APXxL/6EaANiiiigDHu/+QxZ/wC7L/IVsVj3f/IZs/8Adl/kK2KACqOp/wDINuP+uT/yNXqo6n/yDbj/AK5P/I0ASWX/AB5Q/wC4v8qtVWsv+POH/cX+VWaACsax/wCQrff70f8A6CK2axrD/kK33+9H/wCgigDQvLKz1C3a0v4UnicEMkihlIPUEHINfI3xG/4J8fsMfFq6/tH4hfCLwlqN6MYvDpNtHdjbyMTxoso/B6+wqKAPzO1f/gmP8D/DUsVz8EvFfj74bzTS7R/wj3irUDboXydwtL6S7s8joMwEAcdK2z+z3/wUB8AR7/hf8fLXxOifctfHPhu2udwyOGuNKfTn4XgHYeeTnpX37rH3rT/r4T+RrZoA/OKD44/8FG/hraZ+LfwV0XxtHCuZLvwD4hXzXAycrZavFZkE8AKLl+c84o03/gqR+zPpV0uk/Hq08TfCDUCWHleONEutMt/lJBK3wWWwccE5S5IxzxX6O1BdWtte272l7Gs0UgKujgMrA9QQeCKAPNvhF8Tvht8VvBdt4o+FviHTPEumSglLvSruK8gbk9JIWZf1r1CvgPW/+Cbn7Fnjm/8A+E8tvA9r4W8Sz7i+teFZZvD2os24nL3GnPbvIeT/AKwsOT61zTfsv/tr/CRjcfs7fHW48QWUfMei/EjTotYiwB91dQs/sd8oyPvStcHk+1AH6Q1jf8zD/wBu/wD7NX53r+2L+1J8HIWj/au+BerfZYMCTXvh5cDxTp7Du5tNlvqcYA5Ki1lx2Zq96+A/7Y37MH7Tetyf8KP8baZrl3BAVuNPEht9Rt2ByVmspxHcxEdxJEpHegD6vooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/wBfL/yFbdYmi/fvf+vl/wCQrboAKyL7/kJ2X+9J/wCgmtesi+/5Cll/vSf+gmgDXooooAr3f/HrL/uN/Kq2j/8AIJtf+uKf+girN3/x6y/7jfyqto//ACCbX/rin/oIoA0aKKKAMa1/5Dd5/wBc4f8A2atmsa1/5Dd5/wBc4f8A2atmgArJ1f8A1cH/AF3i/wDQhWtWTq/+rg/67xf+hCgDWooooAKx9C/5B/8A21l/9DatisfQv+Qf/wBtZf8A0NqANiiiigDIl/5DsP8A1wk/9CStesiX/kOw/wDXCT/0JK16ACsjX/8AkC3X/XNv5Vr1ka//AMgW6/65t/KgDWX7opaReVBpaACsjTf+Pu+/67D/ANAWtesjTf8Aj7vv+uw/9AWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKfyFalABRRSMQqlj2oA/kD/4IY3327/guF+35JFyg8Q7P+BR3cqf0NfWn/BVn4x6X8Nv+CzH7B2l+M9Th0zw9PfeMLiWW4cRxLdfYobaEszEKM/aGXn1r45/4Nx9Ws/id/wUn/bu+OOiRltM1fxoYreYcq2bu7cqD9Np/Gv6Cf8AgoX/AMEw/wBkb/gp38ONN+G/7VOiz3sei3JutN1Cwn+y39nI2A/lS4YbZAAHVlZTgHGQCAD8Ev8Agm1420X9sv8A4OTP2kv2uvg9cJqvgPwb4TtfCCapAcwXF7utlPluuVkUNbzc56AHpzX9edfHn7EX7B/7Mn/BPH4K2/wG/Za8ProeixyG4uJZHM13eXDcGW4mPMj44HQKOFAFfYdAGDrP/H1Yf9fA/wDQWrdJwCawtZ/4+rD/AK+B/wCgtW3KcRsfY0Aj49/ZNv31bVviPqkp3NL4nnGfUIiKP0FfYtfC37DExudF8bznkv4juT+arX2xqmr6Vodm2o6zcx2tun3pJWCKPqTxXzHCNdSyejVk9+d/+TyPd4iptZlUpxW3Kv8AyVF2b/VN9DWV4eIGh2mf+ea1BpHibw74nspLvw5fQX0SggtBIsgB/wCAk18lftKeLNX8GeGvAGtWFzJb26a/ZC58tiu+PnKtjqCM5B4r1MzzSng8HPGv3oxts+7S38rnBgsBPEYmOG2k77+lz7VoqB7m2SRYXkUO/Cgnk/SvmiU/HzwJ481nWYdPXxVompTLJAkd0IZrSNVxsWKQBDzkkhsmtcbjlh+RuEpRbs3FOXLpe7Su7dNFpe70Iw2FdbmSkk0rq7Svrsm7Lz1Z9OkgDJ4ArltIvLTUNburuxlSaJ4o9roQynBYcEVojUYJdFS/1ZfsKzRguk5UFC4+6xyRkdOtfA/7LfxF8L/DW68bfD/xlqlvY2uganILR55VUG3lZ2AXJ5xnPHrXJjc5pYXFYehVsoVFL3m7WcUpJO/dc33W6nRhssnXoVqtO7lBx0SvdN2b+Tt95+iNFePeAPjj4G+KGtT6V4GNzfQ26FnvVgdbXIIG0SMAGbnPGa9gBBJAPSvQwuMoYmn7XDzUo907r7+pxV8PVoT9nWi4y7PRi1g699y1/wCvmL+dbH2iAT/Zt6+YRu25+bHrisXxA6pHas5AH2mLk8d66LoysfJn7VN2y+P/AIY6fnCya/G5H+5gf1r7Tr4G/a7uDD8WfhUwPy/2szfkUr75r5fJavNmuZx7Sp/+m4s9zMoWwGCfeM//AEthTX+4fpXJ+OPHXhf4c+G7jxZ4vu0tLK2GWdupPZVHUk9gK+T9T/av8bWPhx/iI3gO7j8KqQRfT3CRStGxwHEJG7B7c16WYZ7gcFLkxE7StzNJSk1H+ZqKfLHzdl5nHg8qxWKjzUY6XtdtJN9ldq78lqfYXhv/AJAsP/Av/QjW5XL+Cr2DU/CtjqVtny7mPzUz12ucj+ddRXrJppNbHntNOzCiiimI5+L/AJGeb/r3T/0I10Fc/F/yM83/AF7p/wChGugoAKKKKAPx78TPN8Kf+CpFqAfLs/H2lIr+jSxdPbOUX86+mP8Agod8XPFvwm/Z+lfwHdPY6xrd7b6Zb3EZw8XnthmU9iFzg9q+ff8AgpfZv4I8a/Cz9oGAbF8P60tvcyekMxB5/Fauf8FTNUtpPhz8P9V3gWT+I7OZ5T90RlSwJPTGK+fq1HSpYqmnZp3XpL/g3P1jBYWnjsbkeLqRUlKPJJPVOVFuyfe8eXTseVt+1T8U/wBlH4/+G/2cPFGqDxf4e1BbSS5vNRy9/b/axtKGQEKQrcjcCcHGa+lf2qtYtvgX+0F8LPjRbxpbaVPeTaFqJjQKqxXq5VjjHRlzXx/8OPggn7dfin4t/EW11AacTq1ja6FqPl+aqLp/OQMjKsRk4P8AFX6i/G79np/j3+z8/wAJPHF9G2qm3iK6jFGUVLyEArKqZJA3DpnpSw8a9SjUcdVe8Pk9u+tl95eb18swePwirWjU5XDEpK1/aQV52S5bx52mlreOx4f/AMFOviDZeC/2TdYsy/8ApGuPFY26qeWaQ5OPX5QTXoH7HHifSfi5+yD4fjglWZm01tPuV7pLGChVs98YP4185fDD9kD9pXxh8QPDOt/ta+IdO1fRPAoDaVZ2IY/aJUG1JJ9yrkgD3z+dfpf4O03TtK0X7HpdvFbQiWUhIkCLksc8AAV24aFWpXliJrli1y2e/e/5nzWcYjA4PLKWVYeaq1YzdR1Iv3VdWUVdJvRRbfR6H4AeA/jz41/Zu+EPiv8AYkg0LUpfG1xqVxZ6MY4iYmguztWTf14HIwD1r0z9j3/gn18dvBXxc0i6+OCW6+GvCsralZRxSrIs97Kowdo5+UjncB04r903sbJ7pb14UMyjCyFRuA9j1q1WVPJoqUHVm5KHwrbTez79O2x6GL8Q6zo16eCw8acq93Vk25Nyas3Hbk0vpr8T1PkT4q/sa/DT4leKtZ8dW091pGra/pkumX7WrgQ3MbrhTLGQQzIcEEEHiuG/Y+/Y40v9lnUb64v9Yl8Q63qVssUl5Ku0JbxMNkaKSSAO/NfelYJ/5GUf9e5/9CFd/wBSoe0Vbl95X/E+UfEeZPBywDrN0pWTWm0dlfey7XtouyNxVVBhAAPanUUV1HiBWF4k/wCQTJ9V/nW7WF4k/wCQTJ9V/nQBuDoKWkHQUtABRRRQBz/h3/j2n/67yfzr4J/bV8ZeK/iD4i0L9kH4XXJt9U8Wky6pcoSDa6ZH/rDkdC44FfeOiTR22n3VxKcLHNKxPsOa+Kf2Q/DMXjrx942/ai1f99c6/fvp2ms3IisLM7MJ6BnBJrixl58tCP2t/Rb/AH7fM+k4edPDurmdVX9ilyp7OpLSF/8ADrPz5bH1t8Kfhb4P+DPgPT/h34GtVtdP0+MIoA+Z2/idj3ZjyTXotFFdcYqKUYqyR4FatUrVJVasm5Sd23u292zAn/5GS3/64v8AzFb9YE//ACMlv/1xf+YrfqjIKKKKAMPxJGsuiXETjKsuCPUHrXgfwT/ZM+CnwG8Tav42+HunPDqWuMXnlmkMhQMdxWPI+VSecdfevfvEIzpE30rVh/1Kf7orOVKEpKUldrbyOqjjsRRpVKNKo4wnZSSdlJLVXXWxLRRRWhyhWBof+tvf+vhv5Ct+sDQ/9be/9fDfyFAG/RRRQAVgXv8AyHbP/df+Vb9YF7/yHbP/AHX/AJUAb9FFFABWTrv/ACCLj/cNa1ZOu/8AIIuP9w0AXLH/AI84v9wfyq1Xz98cPjnp3wL8JaRqk9m2o3er3ttp1rbK+wvJMQCc4PCjk8V13xL+NXwy+DllYX3xO1eDR01Kdba384n55X/hGB+Z6CsnWgnJN2tv8ztp5bipxpyp02+dtRtq3y72S10v2/I9ToqKCaK5hS4gYOkihlYcgg8gipa1OIw9K/4/b3/rqP5VuVh6V/x+3v8A11H8q3KACivlj4yfEjxlffEjQ/gR8KbuOy1bUlN7qN8yCU2djGeSqHgvIflXPA619Q20Tw28cMrmVkUAucAsQOpxxzWcKqlKSXQ7MRgp0aVOpNr31dLra9k3011trfS9rWvj6l/yFbH/AHn/AJVvV83+OPjVBoP7QXhP4LWtgbm51i3uLyScybBDHFx0wdxJ9xX0hThUjJtRe2jIr4SrRjTnUVlNcy81dq/3p7hRRRVnMUNV/wCQbP8A9c2/lTdI/wCQZB/uCnar/wAg2f8A65t/Km6SMaZB/uCgDRooooAKwNM/5Ct//vJ/KvEPjP8AtW/BX4C+INJ8K/ETUzBqGsyKkEMMbSsoYhQ77Qdi5OMmvatFniudQvJ4TuRyjKR3BXIqI1YSk4xeq38jqrYLEUqVOvVptQnflbTSlbez62OkoooqzlCsDWP+P2w/66/0rfJA61gax/x+2H/XX+lAG/RRRQAVXu/+PWX/AHG/lViq93/x6y/7jfyoAp6J/wAgmD/cFalZeif8gmD/AHBWpQAUUUUAc7Y/8jDe/wC5HXRVztj/AMjDe/7kddFQAUUUUAYOu9LT/r4X+RrerB13/l0/6+F/ka3qACiiigBkn+rb6Gsbw3/yBYPpWzJ/q2+hrG8N/wDIFg+lAG5RRRQAVztt/wAjNc/9co/610Vc7bf8jNc/9co/60AdFRRRQAVia7/x7w/9dk/nW3WJrv8Ax7w/9dk/nQBt0UUUAFFFFAGB4Z/5BK/78n/oRrfrA8M/8glf9+T/ANCNb9ABRRRQBgH/AJGf/t2H/oRrfrAP/Iz/APbsP/QjW/QAUUUUAYHiX/kFn/rpF/6GK3h0FYPiX/kFn/rpF/6GK3h0FAC0UUUAFYXh/wD49Jf+u8v/AKEa3awvD/8Ax6S/9d5f/QjQBu0UUUAFYcv/ACMUP/XB/wD0IVuVhy/8jFD/ANcH/wDQhQBuUUUUAFYfiX/kBXP+7/UVuVheJf8AkBXP+7/UUAbg6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/6+pf6VvUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVJfXySMiWcjAEgMGTB9+WrVooAx/7Q1D/nxl/wC+k/8AiqyNe1C//sifNjL0H8Seo/2q6+sfX/8AkDz/AEH8xQAv9oX/APz4y/8AfSf/ABVJ/aGof8+Mv/fSf/FVsUUAY/8AaGof8+Mv/fSf/FVk6XqF/wCbeYsZf+Pg/wASf3V/2q66sjSv9bef9fB/9BWgBP7Q1D/nxl/76T/4qj+0NQ/58Zf++k/+KrYooA4/UNQv/wC0rDNjL/rH/iT+43+1Wx/aGof8+Mv/AH0n/wAVSah/yE7D/ro//oDVs0AY/wDaGof8+Mv/AH0n/wAVUN1qF/8AZ5P9Bl+6f4k9P96t6oLr/j2k/wB0/wAqAOd0fUL/APsm1xYy/wCqT+JPQf7VaP8AaGof8+Mv/fSf/FVNo3/IItf+uSfyFaVAGP8A2hqH/PjL/wB9J/8AFVk2+oX/APbV1/oMufLi/iT/AGv9quurIt/+Q3df9c4v5tQAn9oah/z4y/8AfSf/ABVfF/7JWq3Om+MPi94PuLVzfWnjW9vZI9yBhDqEccsLctyGXOD04NfdFfJXxc+AHji7+JEfx3/Z+1y38PeLTbLZX8N9C0+napbRnKJcIhDq8eTslQ7gDjBFcuIjJOFSKvZ7eTXT8D2spq0XTr4SvNQVRK0neylGSavZN2aurpOzab0ue9eKtfOk6O2q6rbtb2tq8c00skkapHGjAszEtgAAZJr8d/Acd143/wCCgfw//aBnsZkXxtZ67f2aSgK5sLSL7PaNgnjdEBJzjh6+w/FPwo/ah+OkVp4W/aHvtB0bweLmFr/TfD5uJZ9UCupEUs0wXy4SeXVAWYcE4r7Eu/hj4EvfGGjePZ9Oj/tXw/bT2mnzKSvkQ3IUSIqghcEIByOB0rnrUp4lxdrKLTV+rTTf4XS73PYy/G4fJ6daHOqlSrTqQfI7qMZQkkr6JtycZO3wqK3baXmf7Qnwnuvjt8O28HxvcaPqNrdW+o6bqEflu1re2j74pNpYbgDwwyMqTXzHb/sg+P8A4l2HivxB+0ZqMVx4u17+z4rDUdEQRJpqaU3mW8kKytneZi0kg6HOM1+klFdNXCUqkuea/wAuv+bPGwWf47CUfYYedkndOyutYtpNq6TcYtrZ282fG/wa+BPiDQfESfE74v6zfeOfE1t50FlcXMcFtbWMbMQ5t7aNiiSSY+eQkuRwCBkUz4wfsffCn41+N38e+KbPWLS7u7dLTUI9OvzaQ6hDEfkS5VGG8L0GCOOPSvoPxL40034c/DnV/HmsI8lrpEV1dSpHjeyxMxIGcDJxxk4r0K3mW4t0uFGBIoYfjzR9WouPsnG6311+d3qNZzmMKqxtOo4tpxTjaKSVm4pRskldOySV9dzi/CWg6R4C8N2fg/wZoY0zS9PjEVvbW/lpHGg7ABvxJ6k8nmrc2oX/APbtv/oMv+ol/iT+8n+1XX1jzf8AIet/+uEv80roSSVkePOcpyc5u7erb3bD+0NQ/wCfGX/vpP8A4ql/tC//AOfGX/vpP/iq16KZJyet6hf/ANjXebGX/Uv/ABJ6f71aSahqGwf6DL0/vJ/8VU2uf8ga7/65P/I1pJ9wfSgDJ/tDUP8Anxl/76T/AOKo/tDUP+fGX/vpP/iq2KKAOQ07UL/7dfYsZf8AWr/En9xf9qtf+0NQ/wCfGX/vpP8A4qjTf+P6+/66r/6AtUPGXjXwb8OvDN541+IGrWeh6Pp0Zmur7UJ0traCNerSSSFUUD1JAoAv/wBoah/z4y/99J/8VWPquo3yy2bvZSBVnySXQAAI/J+avz9H7enj34/XX9i/sBfD278d2cgOfGevM+h+Eo+waGeSNru/55H2O3eIgf65eKyNS/YD8X/Heax1D/goB8Q7/wCI0Ml0sh8KaMH0DwnGQpYI9pBI1xfKrDj7bcyo3eMdKAPQPHX/AAUn+BGjeKrn4Z/B+y1f4s+MbVtk+i+CLddVa1c9Bd3autlac9ftFxGR6GuJbS/+Cnf7QsgfxLe6P8AvDMx+a00YQ+JPFLRkY2tdz7dNtX9fLgu9v8Ln71foZ4F+H/w/+FHhS28FfDfRrDw7oliu2Cy063jtbaIf7McYVRnvxXZBlYZU5FAH57/Dz/gnd+zL4M8VxfEvxp4av/iP4xg3bPEPje9OvX8ZbBPkfanaG2HA+W2iiUelfbWgX16mh2aR2EiqsKAANGAAAOB81dcehrK0H/kC2n/XJP5UAJ/aF/8A8+Mv/fSf/FUDUL/PNjJ/30n/AMVWvXD/ABO8SReDfht4h8XTMETS9Nu7ssewhiZ8/pSk0k2zSlTlUnGnHdtJfM/OP4LftX/FO5+NcesfE1Um8D/EPUb/AEzwvKiJG1pPp88kUUMjjG77SqMyliTvGBxX6ef2hqH/AD4y/wDfSf8AxVfAHhP9nf8A4WL+w94f+Erv9k1b/hHrDUbG56NbaoC1zFKD1BErfMe4Jr134DftU+BvGXwW07xh8U9Y0/w7rVo0mnaxb31zHbGHUbQ+XOuJGHBYblH91hXnYSrKFoVpbrmTf/ky+T1Xk7dD67PsFRxTnXy+nb2c3TlGK6Jv2c7L+aKcZf3o8z1kfUX9oah/z4y/99J/8VWPr2oX/wDZrZsZf9ZF/En99f8AargvCH7Sn7P3xA8RR+EfBHjPRtV1SXdstbW8jklfaMnaoYk4Azx2r1TXv+QY3/XSL/0Na74VIzV4O68j5TEYWtQlyV4OL3s007fMd/aGoZ/48Zf++k/+KpP7Q1D/AJ8Zf++k/wDiq2KKswMf+0NQ/wCfGX/vpP8A4qsjRtQ1DyZ/9Bl/4+Jf4k/vH/arr6x9F/1U/wD18S/+hGgA/tDUP+fGX/vpP/iqP7Q1D/nxl/76T/4qtiigDkLvUNQ/tiz/ANBl+7L/ABJ6D/arY/tC/wD+fGX/AL6T/wCKpLv/AJDNn/uy/wAhWxQBj/2hqH/PjL/30n/xVUtT1DUP7NuP9Bl/1T/xJ6H/AGq6WqOp/wDINuP+uT/yNAGZZahqH2OH/QZfuL/Enp/vVZ/tDUP+fGX/AL6T/wCKq9Zf8eUP+4v8qtUAY/8AaGof8+Mv/fSf/FVkWOoX/wDal9/oMv3o/wCJP7o/2q6+sex/5Ct9/vR/+gigA/tDUP8Anxl/76T/AOKo/tDUP+fGX/vpP/iq2KKAOP1fUL/daZsZf+PhP4k9D/tVsf2hqH/PjL/30n/xVJrH3rT/AK+E/ka2aAMf+0NQ/wCfGX/vpP8A4qj+0NQ/58Zf++k/+KrYooA5DQNQv/7Jh/0GX+L+JPU/7Va/9oah/wA+Mv8A30n/AMVRoH/IJi/4F/M1sUAY/wDaGof8+Mv/AH0n/wAVXy/8dP2Wv2ef2ltVig+OXw80/wAQz28Aa2vZ440v7Zlf5Wgu42S4hYHkNHIpHY19cVjf8zD/ANu//s1AH5rR/sp/tc/AoC6/ZG+LOp32nw42+F/iSP8AhIdPZRn5ItSWSPVIPQGSa6Uf3KtH/goF4++CVutt+3R8J9b+H8UYxN4l0Q/8JJ4YwOsj3VqgurVM9TdWkSr3cjmv04ooA8U8KfGTwD8ZPh8vjv4R6nZeKNEu1DQ32lXkF3buCR0kikZc+ozkV6n/AGhqH/PjL/30n/xVfCnxl/4J3fs9eLdfuvi58Ml1D4W+O3+ZvEfgq4/sq5nYnP8ApcCg2l6uTkrdQSj0wea48ePf+Chn7L0BHxV8P2vx88K25+bWPCkUek+J4oRj5ptKmk+yXbDqxtJ4mb+CDPBAP0b/ALQ1D/nxl/76T/4qj+0NQ/58Zf8AvpP/AIqvAP2fv2wP2d/2nVvbP4Q+I4brV9JIXU9Eu0ex1jTnIHy3VjcLHcwnnALxhT2JFfS9AHG6Nf3+69/0GT/j5f8AiT0H+1W1/aGof8+Mv/fSf/FUzRfv3v8A18v/ACFbdAGP/aGof8+Mv/fSf/FVk32oX/8Aadl/oMv3pP4k/un/AGq66si+/wCQnZf70n/oJoAT+0NQ/wCfGX/vpP8A4qj+0NQ/58Zf++k/+KrYooAwLrUNQ+yy/wCgy/cb+JPT/eqtpGoX/wDZNr/oMv8Aqk/iT+6P9qugu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAQf2hqH/PjL/30n/xVH9oah/z4y/99J/8VWxRQBx9rf3/APbV5/oMn+rh/iT/AGv9qtj+0NQ/58Zf++k/+KpLX/kN3n/XOH/2atmgDH/tDUP+fGX/AL6T/wCKrK1fUL/y4M2Mv+vi/iT+8P8AarraydX/ANXB/wBd4v8A0IUAN/tDUP8Anxl/76T/AOKo/tDUP+fGX/vpP/iq2KKAMf8AtDUP+fGX/vpP/iqyND1C/wDsHFjL/rZf4k/vt/tV19Y+hf8AIP8A+2sv/obUAH9oah/z4y/99J/8VR/aGof8+Mv/AH0n/wAVWxRQByMmoX/9uQ/6DLnyJP4k/vJ/tVrf2hqH/PjL/wB9J/8AFUsv/Idh/wCuEn/oSVr0AY/9oah/z4y/99J/8VWTr2oX/wDYt1mxl/1bfxJ/8VXXVka//wAgW6/65t/KgBq6hqG0f6DL0/vJ/wDFUv8AaGof8+Mv/fSf/FVrL90fSnUAY/8AaGof8+Mv/fSf/FVmaTfXr314jWcigzqCxZMD5F54aurrI03/AI+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//U/v4ooooAK53WYtdaG4azmhWLYcB0JPTnkEd66Kql/wD8eM3/AFzb+VAHL6JD4l/sa023Fv8A6lP+Wbeg/wBqtPyfE/8Az8W//ftv/iquaH/yBbT/AK4p/wCgitSgDn/J8T/8/Fv/AN+2/wDiqwvFF34p0bwzqOrrNAzWtrNMAIzyUQkd/au9prKrqUcAgjBB6EUAfxVf8GcXim98R/Br4/mK1uLfUrzxrHqFzcz2zC1dZ4mwiS5AMituLJj5QQe9f2P67rVz4Y0yfWvEmqWFhZ2sbSzT3H7uOONBlmZmYAADkk9K5v4V/C/4b/CZ9X8OfC/QbDw7YT3Iu5LfTrdLaJ55hl5GWMAFmPU9a/h0/wCC1/xAk/bK0X9sz423PiDV4dD/AGen8NeBPCtvp+oz2tmNTvbof2q88EZWO4EgfymEgf5UGKAP7xI08RyxrLFc2zKwBBCEgg/8Cp/k+J/+fi3/AO/bf/FV+An/AASN/wCCv+tfG3xfef8ABPb9vjTYvh9+0d4HRba50+XEdtrkEaArc2bfcLNGVZo1JyDuTK52/wBDdAHBazB4m+02Gbi3/wCPgf8ALNv7rf7VbM0PiYQuTcW+MH/lm3/xVTaz/wAfVh/18D/0Fq2ZxmBx/smhjW5+ev7CJ1iXw14xeyliQDX5929Sedq9OelY+gabqv7Wvxq1m+8TTLP4S8HTi1t7Mhhb3NyCcu6g/NjGeT0x70/9h+9e08FfEWCPJkt9VuJQB15Q/wDxNdF/wTmeOf4Oapeuc3E2rTNKe5JRCM/ma/IMjaxWGyfLautKSqzkukvZy0i+65pXa2dtT9EzSLw9fMcbDScXTjF9udatdnZWv5nMePruP4O/tSeD/DPguGy0iHWrV7e6Szh8pJBMxRCyg4JVgCp7V59+0z8DvHPh/wCC/wDwmureNNQ1i2sZoJls51ARC77QykHqm7jivIP2qviSNS/avh1zTnLW/hqa0tRIPuiSNt78+xJH4Gv1A+OPhpvG37OGt6PZL5jzaa0sQHUlBvXH5VhRpYfN6OeYWKuqUpezSbSTcLaJNJrmp31ur+rNqlStl9XK68n8ajztpNv3r6tptO0ulmecfBP9nPTNHTSvijc6xda/qc9tFcwT6jLJIIjKgJ2JuwDzjJzXfftA/GDxD8DfA8fi547e+eW6htkhwyZ8w8nOT0GTVf8AY/8AGkXjb9n7QLsPumsYjZTeoaA7R+a4P418j/8ABQ34o6ZdtpXwt0oiaezmW/vmXnyR92NT6FtxP5etfQ43M8LlfC/17AWpucIuNt3OSXe93630WuiPGwuBr4/PfqmLvNRk0/KMW+1rL0tv5n6G+JfCD+PPD0nh/wAVR2d7Y3SgvDLGxB7j+LqDyCK/OX4Z/BnwNpf7XfiL4e3Ol2dzbW9il3aR3SNMkZ+TJUMxP8Xcmv0t8B+L/D/jXw1bav4du4ryPy0VzE4fY+0EqcHgjPIr4n1WVPD3/BQnTpWOxNW0cxk9MsFf+qiurimhhK0svxrhGX76muayfuy5la/a7vbvruY5DVxFOOMwqlKP7ubtdrWNne3ey+4+2VtNV0LTSts9pb21uhYJHCVVVHPABAFfIH7IGv8AjLx4vjT4k3V/5kOo6u0cKTbmRI4RxsXdhRhh09K9E/bG+Kw+F3wYvmspNuo6t/oVsM8gyD5m/wCArk/XFfFPw3+LSfCT9iIto8mNa1u+urSzUcvvchS4H+yvP1xXLn3EOHw2dUqU5Whh6VSrJLu0oxXrZuy80b5Tk9avldSpGPvVqkIJ+SvKT9NFd+TH+D/i/rPjX9usalZXga1j8/TYfveUY40IJ256FwT1r0Gyi8U/tX/FTVbzWNSkh8JeGr1LGG2gd4kupd2CzbGB7E9emMV853Pw+m/Zk+IXgDxP4lDQLeWTy3k7DIW4fdlSfVVZc/jX1b+wW6TfCC8uSQZZNfLOe54TFfG8NVcRi8espzPedWpWqQ7+5Bxi1/LeV7bPlPpM7p0cPhHmGC2jThThLt70lJrzst91c4T9qLwJd/DHX/AdzDqU1zYxasPIiuHeX7OflyFdyXKnGcEnHav04MXiU/Mtxb4/65np/wB9V8Gf8FF77RoPh1ookuUTUYdRSeCHPzuqqQxA9BkZNfbPgTxNB4u+HWmeKrFt63tjHMCP7xTn9a+9yH2OGz3MsHSslalNJdPdcWvK1lp0TXSx8lmqqVsqwWIn3qRb76pr9dfI+B4JdR/aT/aW1Cw8S3ELeHPAjfLbyA+RNcg43OuefmB69hUnxt8e6x+0F4og/Zv+F8kN7apLG+q30CEQQRREHaGyQcY5x34FeH/s4/ATwp8ftf8AGdz4u1S/srq11Jt0VnMI/MSR3zvBBzyPwr9T/hh8IPAPwd0A6D4FshbRvzLIx3yysO7seT+gHpXzvD+EzDOMJOVRRhRrzlKpPmvOcVJpU0re4kly6t2V7K7PazjE4PLsRGMG5VKUYqEbWjF2Tc27+823fbe13oWfB2meINO8MWenWtxb+Vbx+WmY2+6hIHf2rpvJ8T/8/Fv/AN+2/wDiqk8N/wDIFh/4F/6Ea3K/W0klZH54227s5/yfE/8Az8W//ftv/iqPJ8T/APPxb/8Aftv/AIqugopiOBih8S/8JLN+/t8/Z0/5Zt/eP+1W95Pif/n4t/8Av23/AMVRF/yM83/Xun/oRroKAOf8nxP/AM/Fv/37b/4qjyfE/wDz8W//AH7b/wCKroKKAPlf9qb4HXf7QHwb1H4aa5eQW/2xojDOsbExTKwKt19evtXy54F/ZF/aW8W+C0+DH7UWv6H4g8F2UH2eCGCGQ3p8sYicTYQoU4weT2Nfpb4jx9gTP/PaP/0IVvVyVcFSqVPaSWtrPXRrs11PewPEeNwmFeEotcvNzRbScoStbmhLeLdlqu3c8K+DPwR0f4CeA7b4dfDZILXTrZmf51Z5Hd+rOxPJNeq+T4n/AOfi3/79t/8AFV0FFdMIRhFRirJHj4jEVK9SVatJynJ3berbfVs54w+J8H/SLf8A79t/8VWJ4eg8Tf2bxPb/AOsk/wCWbf3j/tV3Z6GsPw7/AMg3/tpJ/wChGqMRnk+J/wDn4t/+/bf/ABVHk+J/+fi3/wC/bf8AxVdBRQBz/k+J/wDn4t/+/bf/ABVfOf7R/wAU/FHwN+HGv/FKJrW4m0nTnkiidGCvIWAUHDdM19WV+cX/AAU+u2s/2VPFMiHBaC3T/vqdBXNjKjp4epOO6Tf4Hs8O4SGKzTC4aqrxnUhFryckmeLfAD/gq74E8fw6Z4e+Kyjw5q1z+6luzCTp/mk8APvLKCP73T1r9W7G41rVLOPUNNvbS4gmUMkkallZT0IIbBFfz2/sc/CHwdomq+Fvh98ZdLi1bwr8WdIe4t1uB/qdQtnYAIwwysy9MEdfav35+Fnws8G/BnwXbfD/AMAwPbaXZljFHJK8pXccn5nJOPbOK8/J6+Jq0712n+D+fR3Wt9D6vxAyrJ8FinHLYyi220tHBq7Tad+aLjJOLjZrS9+h0nk+J/8An4t/+/bf/FVh+I4PE39kyZuLfqv/ACzb1/3q7ysLxJ/yCZPqv869k/OyMQ+J8f8AHxb/APftv/iqXyfE/wDz8W//AH7b/wCKrfHQUtAHP+T4n/5+Lf8A79t/8VR5Pif/AJ+Lf/v23/xVdBRQB5OdP8V3nhbVbO3ng3yi4RcRtnJBA715N+yN4T8b+Dv2evD3hzV4ksLu2WcSwzxMJAxmc5PI6g5/GvpHw7/x7T/9d5P510FZumnUVTqk199v8jsjjJRws8LbSUoyv5xUl/7cc/5Pif8A5+Lf/v23/wAVR5Pif/n4t/8Av23/AMVXQUVocZwU0PiUeI4Mz2+fJf8A5Zt6j/ard8nxP/z8W/8A37b/AOKpZ/8AkZLf/ri/8xW/QBz/AJPif/n4t/8Av23/AMVR5Pif/n4t/wDv23/xVdBRQBw3iCDxN/ZE2bi36f8APNv/AIqtWGHxN5KYuLf7o/5Zt/8AFVa8Q/8AIHm+lasH+pT/AHRQBieT4n/5+Lf/AL9t/wDFUeT4n/5+Lf8A79t/8VXQUUAc/wCT4n/5+Lf/AL9t/wDFVg6JD4l8y9xPb589v+Wbeg/2q76sDQ/9be/9fDfyFACeT4n/AOfi3/79t/8AFUeT4n/5+Lf/AL9t/wDFV0FFAHP+T4n/AOfi3/79t/8AFVhXsPiX+3bPM9v91/8Alm3p/vV3tYF7/wAh2z/3X/lQAnk+J/8An4t/+/bf/FUeT4n/AOfi3/79t/8AFV0FFAHP+T4n/wCfi3/79t/8VWVrkPif+yLj/SLf7h/5Zt/8VXa1k67/AMgi4/3DQB+Vv7ceqa2nxh+C3hy8miZZNXE+FUgEqABkE818W/8ABV/xJ4l+IXxft/AukyC4h8HaW2oXnlZCxlyOSMnnpiv0g/bo/Z6+KXxW0vwj8SfgokNz4j8H3IuYrWZgizIcHAJIGQe2RmvkQfs3fFjQP2dfjF8dv2i4I4fF3iqzfEKsH8iBSDj5SwAJ6AE4FfL5lSqzlWpcr5ZWlfpaMe/e6P23g7HYDD0cvxzqxdSkpU1C/vc9Sra/LvZQbd++h+oP7MviXxH42+APhLxLHcwn7RpsAJZCTlF28nPtXunk+J/+fi3/AO/bf/FV8M/sL+O7Hw3+wpoXjTXCzWukWM0su3ltkJJIHvWR4c/4Kp/sg+INRtdOk1e6sftQX97c2sixIzdmbBAx3PT3r2KOOowo0nVmk5JbvyPz7MOGswr4/GRwOHlOFOpNPli3bV228j7j0uHxN9rvcT2/+t/55t6f71ad0/iCytpLy5ubdY4lLufLPCqMn+L0pvhfUrDWY59X0qZLi1uWWSKWMhkdGGQQR1BrF+Ll6+nfCzxHfR/ej026I/79tXdKVouR8zRoudWNJ6NtL8bHwv8AsYnxH8V/iD4//aTuZoydWvzpdjvUkLaWZIAXngFufev0L8nxP/z8W/8A37b/AOKr4c/4Jiqg/ZD0OReTJcXTsfUl6/QOuTLv93hJ7tXfq9We9xc7ZviKK+Gm+SPlGHur8Efjh8dPi3ofw4/4KF6T4j+IOqW9hY6B4claWZlbb++OQoUHJY9gK+lPgh+3x8KPj349/wCFceEbq4tNSkQyW4v7NoFuFXrsO8/XBxXw14j+HPh348f8FRtYbxyiy6N4VtY7i4WU4jP2dfkDZ/hzye1bdp47sP2h/wBuk/GDwBCD4O+F+nSiW9jXZHK0ak7FPQgnhfavHp4utCpJxatKo1a2rXV76JJH6Di8hy/EYOjTqxn7SnhYyc1JKEJO7hG1nzSnKW11psftL5Pif/n4t/8Av23/AMVR5Pif/n4t/wDv23/xVfmP8Q/+Cjy+AP2fPDHxImsrO48S+LJt1ppqu2yO18zaXc9chfwJr9PfDOrnxB4dsddKeWby3jmKg5xvUHH617lHF0qsnGm7tJP79j8zzLIMdgKUa2Kp8sZSlFO+7g7St5J6X2fQzNTg8Tf2dPm4t/8AVt/yzb0/3qTSoPE39mwYnt/uD/lm3/xVdBqn/INn/wCubfypuk8aZB/uCuk8YoeT4n/5+Lf/AL9t/wDFVk69qureGtEu/EOr3dtHa2ULzysUIwiAk/xV21fn3/wUx+JyfD39lfWrC1ulgvtbKWMK7sOyyH59o6ngYP1rDE1lRpTqvomz08ly6WPx9DBQ3qSUfS71fyWp+YWpS6z8X9H1P43+JilzrnxM8Q2+keH4GUlo7C1lBZowfurgdu3ev318M6f4msmmsfPt/wBykMf+rP8ACgH96vzg/YE/Zh8bfYtC+NfxxhFvLpNglr4c0rGFs4CMmZh/z0k6881+hPjP4oeEfhY8mqeLpmjW/vbext0RS7yTTcKqqOT6n0FeblVNwpuvV05rb/e2/Vt/Kx9hxxi4YnGQy3Be+qbkly6rpFRj3UYRim+suZ7anoXk+J/+fi3/AO/bf/FUeT4n/wCfi3/79t/8VWDoHxR+H3ijxZqXgXw/q1vdaxo4U3tpG4MkG/puHau+r2IyT1TPgKtGpTfLUi07J6q2j1T+a2PEfjH8O/GnxL+HWpeEdL1k6TeToGtru13xSRTIdyHIbpkcjuK+bv2W/j94z+MGmSeCfHDQWfjDwjeGx1WBkOXKghZl+bo4GenWvv8Ar8oNegT4cf8ABUXTJNJ/dQeM9GLXSDo80PAbHrxXDipOlVp1U9G+V/PZ/J/mfS5JShjcHisDNe9CLqwfVONuZeko/jFeZ+n/AJPif/n4t/8Av23/AMVR5Pif/n4t/wDv23/xVdBRXefLHP8Ak+J/+fi3/wC/bf8AxVQXUPib7LJme3+43/LNvT/erp6r3f8Ax6y/7jfyoA5TRYPE39lQYuLf7g/5Zt/8VWn5Pif/AJ+Lf/v23/xVXNE/5BMH+4K1KAOf8nxP/wA/Fv8A9+2/+Ko8nxP/AM/Fv/37b/4qugooA8+soPE3/CQ3uLi3+5H/AMs29P8AerofJ8T/APPxb/8Aftv/AIqm2P8AyMN7/uR10VAHP+T4n/5+Lf8A79t/8VR5Pif/AJ+Lf/v23/xVdATjk1mjWdIa6+xLdRGYfwbxu/Kpckt2NRb2RymuQeJv9FzcW/8Ar1/5Zt6H/ard8nxP/wA/Fv8A9+2/+Kp2u9LTH/Pwv8jW9VCOf8nxP/z8W/8A37b/AOKo8nxP/wA/Fv8A9+2/+KroKKAOckh8T+W3+kW/Q/8ALNv/AIqsbw5D4m/sWDFxb/d/55t/8VXlXhHxbrutftDeL/D8l07abplnaLHAfuJI6ksw9zXuvhv/AJAsH0rjwONhioSnBWSlKOveMnFv0ujpxWFlQlGMnq4xl/4Ek/1I/J8T/wDPxb/9+2/+Ko8nxP8A8/Fv/wB+2/8Aiq6Ciuw5jn/J8T/8/Fv/AN+2/wDiq563g8Tf8JLc4nt/9TH/AMs29/8Aar0Gudtv+Rmuf+uUf9aAHeT4n/5+Lf8A79t/8VR5Pif/AJ+Lf/v23/xVdBRQBz/k+J/+fi3/AO/bf/FVi65B4m+zxZuLf/XR/wDLNvX/AHq7qsTXf+PeH/rsn86AIvJ8T/8APxb/APftv/iqPJ8T/wDPxb/9+2/+KroKKAOf8nxP/wA/Fv8A9+2/+Ko8nxP/AM/Fv/37b/4qugooA4Dw1B4m/slcXFv99/8Alm394+9b/k+J/wDn4t/+/bf/ABVL4Z/5BK/78n/oRrZuLiC0ge6unWOKNSzuxwFUckk+gobtqwSMXyfE/wDz8W//AH7b/wCKo8nxP/z8W/8A37b/AOKrynwj+0d8K/HHiVfDHhy7mmllkeKGY28i28skYJZUlK7GIAJ4Pavdq5cJjsPioOphqinFO14tNX+R0YjC1qElCvBxe9mrHAmDxN/wk3/Hxb5+zD/lm394/wC1W95Pif8A5+Lf/v23/wAVSn/kZ/8At2H/AKEa366jnOf8nxP/AM/Fv/37b/4qjyfE/wDz8W//AH7b/wCKroKKAOB8SQeJf7L+a4t/9ZF/yzb++P8AardEPifH/Hxb/wDftv8A4qneJf8AkFn/AK6Rf+hit4dBQB4x4w8c+JfDPivw94Rthb3Nzr08qcKR5UUKFnc884OBj3r0jyfE/wDz8W//AH7b/wCKr5u0i+bxl+11qg+9beEtHit19BPeNvY/UKMGvoLVPH3gvRdSTR9T1O3iu5MBYDIPMOf9nr+leLl+Yqr7erUmlBVHCN7L4bRfreakenjMHyeyp043k4KTt/e1X/krRfEPif8A5+Lf/v23/wAVWHoEHib7JLi4t/8AXy/wN/ePvXbTXNvbRefcOqJx8zHA54H5msjw+c2cv/XeX/0I17V+h5lhnk+J/wDn4t/+/bf/ABVHk+J/+fi3/wC/bf8AxVdBUH2q2M/2USL5uM7Mjdj6UroLGN5Pif8A5+Lf/v23/wAVXP3Da7F4mtreW7tVkkgk2KUILYIzgbucd67/ACB1r55OoWviP9pf+znww8NaNvH+zNfPz/44g/OuXF4r2Ps0ldykor56v7opv5HRh8P7Tnb2im3+S+9tI9n8nxP/AM/Fv/37b/4qjyfE/wDz8W//AH7b/wCKreV0fOwg464p1dZznP8Ak+J/+fi3/wC/bf8AxVYfiWHxN/YVzme3+7/zzb1H+1XeVheJv+QFc/7v9RQBGIfE+P8Aj4t/+/bf/FUvk+J/+fi3/wC/bf8AxVb46CloA5/yfE//AD8W/wD37b/4qjyfE/8Az8W//ftv/iq6CigDgtCh8TbbvE9v/wAfUv8Ayzb2/wBqt3yfE/8Az8W//ftv/iqdoPS8/wCvqX+lb1AHP+T4n/5+Lf8A79t/8VVyyj1hJSdQlidMcBFKnP4k1qUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRmaEHBcZHvQBJWPr/wDyB5/oP5itPz4P76/nWPr88H9jz/OvQd/cUAbtFRefB/fX86PPg/vr+dAEtZGlf628/wCvg/8AoK1pefB/fX86yNKng828+df+Pg9/9laANyiovPg/vr+dHnwf31/OgDL1D/kJ2H/XR/8A0Bq2awdQng/tOw+df9Y/f/Yatnz4P76/nQBLUF1/x7Sf7p/lTvPg/vr+dQXM8BtpPnX7p7+1AEOjf8gi1/65J/IVpVkaPPD/AGRa5df9Unf2FaXnwf31/OgCWsi3/wCQ3df9c4v5tWl58H99fzrIt54P7auvnX/Vxd/96gDcoqLz4P76/nR58H99fzoAy9b/AOPaL/r4h/8AQxWzWFrc8H2aL51/18Pf/bFbHnwf31/OgCWiovPg/vr+dHnwf31/OgDyH4l+E5vHfwU8U+DLf/W6pYahbR/78iuq/wDjxFL+z343T4kfAvwj45U5bUtJtJZOc4l8sCQH3Dgg/SvRdDng+wn51/1svf8A22r5Z/ZCvINA0vxp8IZGCHwd4n1C2hjJ+7aXrC8gx7bZyB7CuaT5a0X3TXzWq/C57FCPtctrR605Rl/27JOMvx5D7DrHm/5D1v8A9cJf/QkrT8+D++v51jzTwf29b/Ov+ol7+6V0njm7RUXnwf31/Ojz4P76/nQBQ1v/AJA11/1yf+RrST7g+lZGuTwf2NdfOv8Aqn7+1aIubZIvMeRQqrkkngAdSaALFc14x8Z+EPh54YvfG3j7VbTRNG02Jp7u+v5kt7aCJerySSFVVR3JIFfn74x/b7vviZ4lv/hL+wF4dj+KniKxkNtf6+85tfB+jzg4ZbvUlV/tEyZ3G1slml42uYs7qn8I/sB6X488R2HxU/bq8Tv8Y/FNjKl1Z6fdwi18LaTOvQ2OkBnjZ0zxcXbXE/GQ6dAAcja/tn/Gz9pa+v8ASP8Agnv4MXVdJmkAPxB8XJNp/hpPlALWVuNt7qZGODEIbdsjFxXe+D/+CdngXXfFVv8AFL9r7xBf/GzxZbuJrY+IFRNC06Qcg2Gjx/6HCVIG2WRZrj1lNfeWlyW0d3exoyqqyKAAQAAEXgVtefB/fX86AHRxxwxrFEoVFACqBgADoAKytV/4+LH/AK+P/ZGqn4o8Y+FPBOg3HijxdqNvp2nWi7pri4kCRqO2Se5PAHUngc14vD8UfFfxDFnefDnQ3ttPebMOo63utEl+RsNHbY89lI5BcRZ7etRKpFPl69jqpYOrUg6iVoLS70V+13u/Ja+R7l4i0LQfE2iXOheKLaK80+5TbPDOoaN1HPzA8Y4zXxf8Rv2fP2VNG0CLxPp3gq81g30nlW6eGmuWeRznoYJUjReCC7sqA9TXrFr+z/pfiO5Or/GvW7rxhcu2/wCyTv5Glxeix2cZCMo6ZmMrHuaxv2ifDHjDxF4Z8OfBj4Xq2kaP4h1AWOs3lgojNjpSQySyiMqMRmYoIVbsX45xXLXjzQcpU0+2zf8AkvvZ7eV1VQxEKNDFSSbvJpyhGyV273Unov5U3stWj5d/Zq8JS+KvjDZ+MfgqNZ8O+D/D4uINZF1rE+p2mpXpBQWsCyvJGVtz80k8Z2+YNiE4LV+m+g/8gW0/65J/Ks7wr4b8LeBvDNl4P8JW8Nhpmmwrb21vFwkcaDAA/qepPJ5q5oM8H9i2nzr/AKpO/tWmFoeyhy9d32+S/rucWd5r9fxHtEmopWV3eTV27ybu23fq3ZWS0SOc+J/iPxj4S8DX+v8AgDQW8TavboDb6ak6WxmYkA/vJPlAAJY9zjA5r8VP2jf2m/2sfEfwz8ReEfjHp1p8MrbVIhYRWU2nXNyb2O6dYnA1HebVMKxLZAIUHiv3k8+D++v518aftcR2fjPWfhp8HJUS5i8R+KILi7hcB0ey0uN7qUMDwVJRFORg5x3rmzKjOdNuNRrpbo29PJ9e9vI9rg7McPQxcIVsNGbT5ud35oqC5nZO8LWi38PN2ktLcNoP7GVv4pS2i8f/ABQ8VeJ7BbOHyorS/XT7GSEZCgJaKuUwODvP1r5B+J3ww/Z4/Y6/agtYG8CweMdL8baRt0zRzGuo38esWzgDaJy7hLlW+Z2yAyk9sV2PxM1jxh+z98Y7z4YfsAu+t6hPZzXGreF2X7TpelHaxWaKRnX7PKzYxbhtrk/dHArhdQ8FfCnxH+y/r37QfgXWbvX/AIs+Fru117Vr/VV8rV7a706QPLbNAeYIQm9VjQbCO5xx5eI9m0404JTjrd67bpN/E7dOnXofbZUsXCUa2KxMpYaulFQinTa9o/dlUjCypxUkmpK/OtI3TbX2t+z5+y3qsfj2H9ob42abpmma/DE8WjaDpMMcdlo0Mow2WQDzrlhw8h4HIXjp9w6//wAgxv8ArpF/6GtU/CfijTPF3hbTfFenSKbfU7WG7iOf4JkDj9DU+vzwHTG+df8AWRd/9ta9/D0YU4Wh11v38/6/I/Ks2zHEYyu54nRx91RW0Uvspdlr3bd2222zeoqLz4P76/nR58H99fzrc8wlrH0X/VT/APXxL/6Ea0/Pg/vr+dY+jTweTP8AOv8Ax8S9/wDaNAG7RUXnwf31/Ojz4P76/nQBmXf/ACGbP/dl/kK2KwrueD+2LP51+7L39hWx58H99fzoAlqjqf8AyDbj/rk/8jVnz4P76/nVHU54P7NuPnX/AFT9/Y0AWbH/AI8of9xf5VaqjZTw/Y4cuv3F7+1WfPg/vr+dAEtY1j/yFb7/AHo//QRWp58H99fzrHsZoP7UvjvX70ff/ZFAG7RUXnwf31/Ojz4P76/nQBl6x960/wCvhP5GtmsHWJ4S1p86/wDHwnf2NbPnwf31/OgCWiovPg/vr+dHnwf31/OgDM0D/kExf8C/9CNbFYWgTwf2RD86/wAXf3NbHnwf31/OgCWsb/mYf+3f/wBmrU8+D++v51jefB/wkP31/wCPf1/2qAN6iovPg/vr+dHnwf31/OgDN17/AJBM30H8xWvWHr08H9kzfOvQd/cVr+fB/fX86APmP9oP9jX9nf8AaaltdY+J+gKPEGmrjTfEWmyyadrmnt1Btr+2aO4iwedofYT95SOK+ZpIP+Cgn7I8fmWEg/aL8DWw5hm8jS/G1pEo/hf91p+pkAdGFnKf70hr9NfPg/vr+dHnwf31/OgD5T/Zj/a6+Av7TS6vZ/DHWSNc0qc/2r4f1KGTT9b0xyANt3Y3CpPFzwGKbG/hZhzX1jXx98bv2QfgH+0zeJ4i8f2Mlj4p0SeQaR4n0e4bTtd00kD/AI9r2ErKq55MTFon/jRhxXzpN8Tf22P2LpHHxps5/jv8NbdSR4k8P2axeLdNiXHN/pkOItQQDJaewWObC/8AHsxOaAP1MrIvv+QnZf70n/oJrzv4MfHr4NftD+BofiT8EvElj4l0WdjH9pspQ/lyrw0UqHDxSoeHjkVXU8MoNd/fTw/2nZHev3pO/wDsmgDcoqLz4P76/nR58H99fzoAZd/8esv+438qraP/AMgm1/64p/6CKku54Pssvzr9xu/tVbR54P7JtfnX/Up3/wBkUAa1FRefB/fX86PPg/vr+dAGXa/8hu8/65w/+zVs1hWs0P8Abd4d6/ch7/71bHnwf31/OgCWsnV/9XB/13i/9CFaPnwf31/OsnV54PLg+df9fF3/ANoUAbdFRefB/fX86PPg/vr+dAEtY+hf8g//ALay/wDobVp+fB/fX86x9Cng/s/76/62Xv8A7bUAbtFRefB/fX86PPg/vr+dAGbL/wAh2H/rhJ/6Ela9Ycs8H9uw/Ov+ok7/AO0la/nwf31/OgCWsjX/APkC3X/XNv5VpefB/fX86yNfng/sW6+df9W3f2oA2l+6PpTqhWeDA+dfzpfPg/vr+dAEtZGm/wDH3ff9dh/6AtaXnwf31/OsjTJoTeXwDjJnHf8A2FoA3KKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBV0P/AJAtp/1xT/0EVq1l6H/yBbT/AK4p/wCgitSgAooooA+bP2iPjj4V/Zo+C3xG/aA8bTrb6X4P0efVbh3OBttoWcD6sQAPc1/CB4h+HXiLQf8Ag1S+KX7R/jmKSPxB8dPiDH4zvXkwzOl5qsEcRBz90rFuA7FjX78/8HOk3xy8Uf8ABPi4/Z6+AWi32tat8VfFuh+G50sYmlKQOxm+faDtV5I0UkkD1ryD/gvt8C9N/Zg/4NyI/wBnjSNhi8HQeEdJLIMK7211bo7j/ecFvxoA+u/+Cun/AARd8O/8FG/Bfhf48/BHWm8BfHbwHbRXPhzxFbHyvOeIB44Ll0G/aHAMcgyYyTwQSK8N/wCCbP7f3/BZvRvilof7Iv8AwUZ/Zx1e8uPtC2TeP9G2CwWFfl8+65MTDgkvFIN3ZK/pN8IEnwnpZPU2kH/oAroqAMHWf+Pqw/6+B/6C1brDcpX1rC1n/j6sP+vgf+gtW9QB+bn7MbwfDv8AaO+IXwb1rEf9pS/bLVX48xeWwPXKSf8AjtZ99+zn+0X8EPFmp3n7NV7BcaNrDFmtLl0Uwsc9nIU7c/KwOccEV9TfGL9nHQfinr1h430zUJ9A8RaYR5GoWoBbaOispxuHP9ORXv8ApdtdWem29pfTm6mijVJJioUyMowWwOBk84FfnuE4RcoPBYnmjGlOcqNWnJKSjNtuPVpq9ndWatY+wxPESUliaFpOpGMalOcbxbgklLtra61unc+DvCf7E2l3XwVvPCPxFuy2v6pd/wBpXF7Dh2inGcAE/eGCd3TOTX158MPDUvhv4b6V4Xv7yTUjbWyxNPMAGdfcD0HH0rv5v9U30NZXh7/kB2v/AFzWvqMr4ewGX2eFp2koqF7u7Sd9ejd23dq+u54WOzjF4y6rzunJytpo3pp2Vumx8Jz/ALK/xj+GviDUL39njxXHpmmanK0sljdpuWJmPO3hhx0HAOOOa7vwv+x14Wi+HWteGfHl9Lq2s+JCr6hqf/LTejbl8vdnAUgHnrX2VRXDR4NyqnNv2bcbSSi5ScI82kuWLdo3Ttp02sddXiTHzilzpPRuSSUny7c0kru3n8zyf4MfB/w38EPBEXgjwy8k0SyNNJNLjfJI+Mk44HAAAr5i/ak+HPxCvvHmjfGT4V2ov9W8MFGe1HLSxMxPA6nBGCBzg1961z1n/wAjHef9cov5tXbjchwtfL1l0FyQXLy8uji4tOLXmml69TlwubV6WM+uyfNJ35r7SUlZp7bpn50aH8M/in+1j8Rl8Z/HDSJfD/h7S7d4rSwfIZ5XGN2GAJweS2B0ArZ+E/7B134P8dWOueNdcXVdJ0WVprG0VCPnJyCwPA5AJx1Ir9H6K8ajwJlvPHEYtOrWUuZzk7OT03SsnFWVo2srHpVeK8bySo4e1Ok1yqKWiWuzd3d3d3e7ucT49+HPgz4naE/hvxvYx31qxyA/DK3qrDkH3FfnlqX7L/x3+CHiG4vP2d9ZhOlajNH/AKNdsN6MD8udw2nbn72Qcda/UOsHXvuWv/XzF/OvVzfhrBZhONeonCrHapB8s15cy3Xk9Dgy/O8Vg4SpQalTe8JLmi/k+vmj4T8N/sY614zj1PxR+0PrDavr2o27wQiJiYrTcOGXIAJHYAAD3rU/Zr+Hn7UPwq1qL4e+JzYy+ELJ5GW4Lh5XVgcLGAdyjdzhl45r72orhw/BmX4etSxOHc4VIXvJS1qXd2qjd3JNry+46q3E2MrUqlGsoyhK1k46QtouRK3LZH51/FD9kn4iaD49uvit+zjrP9mX947ST2cjbEZm5bacFSGPO1hjPeuSb4jf8FB9BB0698NQXzKMeasIcH8UfFfqDTX+4fpWNXgqhGrOrgcTVoczu4wl7t3u+Vp2b8rGtLieq4Rhi6FOryqyco+9ZbK6av8AM+Jf2WdG/aNn8Sat41+Mkn2awvoVjt7HcMLIrfeVATsGMg5OTn2r7crD8N/8gWH/AIF/6Ea3K+hyrLVgcOsOqkp6tuU3eTbd3roeNmGNeLrOs4RjsrRVkklZBRRRXpHEc/F/yM83/Xun/oRroK5+L/kZ5v8Ar3T/ANCNdBQAUUUUAYPiPH2BM/8APaP/ANCFb1YHiP8A48F/67R/+hCt+gAooooAQ9DWH4d/5Bv/AG0k/wDQjW4ehrD8O/8AIN/7aSf+hGgDdooooAK+Sf2vfgZq37R3wq1f4S6HeR2F1qEMTxzTAlAYpUfBxzzjFfW1YJP/ABUo/wCvc/8AoQrOrSjUhKnPZqzOrA4yrhMRTxVB2nBqSe+qd0fnb+0l8HZPhT+zp4G8QaP+/vPhdd2N20sa43QxkLOQOuCCTX6RaZqFrq+m2+q2LiSG5jSWNlOQVcZBH1Bqtr+haT4o0W68O67CtzZ3sTQzRN0dHGCD+FQeF/DeleD/AA7ZeFtDVks9PhWCFWYuVRBgDJyTgetZUqHs6jlH4Wl96/4H5Hfjc0eLwtOnWu6kZTd+jU7Nr5Su/wDt5m9WF4k/5BMn1X+dbtYXiT/kEyfVf510njG4OgpaQdBS0AFFFFAHDf29pvhbwxqfiTWJBFa2Jnnlc9kQZNeL/swftU+Cv2o9B1HWPC1pcafLps4jkt7oASGN8mOQAE/K4GRXDftla1caJ+yb40ktm2Ncq9tnpxMwU/zr5/8A2HtOg0H9ozxv4e09RHb2mg6KjKvA3iJTn68mvOrYqccVTpL4Xv8AO9vyPsMuyTD1cjxWOqX9pF+7rolFwUrrrf2i9LH6tUUUV6J8eeGfGCL4ytLaT/BWbS01KJHZ4tVSQxSoMfKGjIKEnvg14f8AD39sWWDxzb/CH9ozw/L4G8TXbbLRpX82wvW6fuJwACT2U819iT/8jJb/APXF/wCYr44/4KH/AA10/wAe/sz61q+zGpeHVGp2Myj545YDu4PbI4NcWLVSEXWpS1Svbo7fkz6TIZYPE1aeXY2kuWbUVUV1OLeie9pRvumr22aPuaivA/2XfiHc/FX9n7wp48vm33F/YRmVj1Lp8pJ9yRmvfK6qc1OCnHZq54eLw08NXqYep8UG4v1TszF8Q/8AIIm+la0P+pT6CsrxBj+yJs+lasP+pX6CrOckooooAKwNE/1t7/18N/IVv1gaH/rb3/r4b+QoA36KKKACsC9/5Dtn/uv/ACrfrAvf+Q7Z/wC6/wDKgDfooooAKydd/wCQRcf7hrWrJ13/AJBFx/uGgC5Y/wDHnF/uD+Vfnd+2D+0H4P1j4Z/E/wCEulq80+g6L5l7dAjyY5ZiAsXXJcjnFfojY/8AHnF/uD+VfztfE39lX9sHxJ8ZvGfwh0HSnTw3401hL+61lx+6MCH5cv2x/d6kivLzWtVhTUaUW+a60V+jt+J9xwJl+CxGMlWxlaNP2XLNczstJxcn5tRvZLd2PrX4B+CtS8Vf8Errnw1GJ0mutKu3jEPDttJYAeoOK+T7r4jfsP2X7A0PgtLbTLjxxJYCH7PHADqK6gTyS2N4wffFfvV8Lfh7pPwt+HWkfDvSMNbaVapbg4+8VHJx7nJriI/2YP2eovGP/Cfx+D9MGr7/ADftHkDO/ru2/dz74zWE8sqOnBQauocrur/NeZ6eG4zwkMTiZ141OR13WhySUbvX3ZX6NW21XY8m/YB8NeK/CP7MHh3Q/GkckN9HFvMc2d6RvygIPIwO1fW3iPQ7XxN4fvvDt9xDfwSW7kdQsilT/Om6SALu9AGAJR/KtyvWpUlCnGnukrHwWOx88TjKuMatKcnLTo276eh+NPwN8QftH/sMyX/wZ8S+ANU8X+Eo7ySbTdT0dfOdY5DnDJ3+mQRX62eCfFKeNfC1n4oSyutOF5GJPs17GYZ489nQ8g11VFY4XDOguRTbj0Ttp8z0M7zqGZT+sToRhWespRb959W4ttJvd2sr9D8Rfjf+wX+0b4w/aM8Qa74N8QWuneG/HMii+uFcrcRwJyY9uMnPscHvX6YfDL9mP4bfCf4KS/BDwnE0VhdW8kNzOcedM8q4aRj3Pp2Fe2al/wAhWx/3n/lV/VNU03RLCXVdYuI7W2hG6SWVgiKPUk8Coo5fQpTlUS1d9+l9XbsdOYcWZljqFHCTklGHLZRVuZxSUXK3xNJJLt0P55v2oP2DvCP7MvwMv/Gmsa9ceItWnvrWw0kTDYlrC8mSqLlsn1xge1fr58Sfi/P+zz+ykPijJYm/m0jS7dlty2zc5VVAJxwMnnivib9vjXk+Mfx++F37OPhyVbhJ72PVbzyzuAiUgrnHYgZFa/8AwVg1DxR4d+FPhYaLZy3ujRX5F9boGMbqqYjWQDqM8jPcV5K5MN9Znh1ZRSXfXe/yuj7yf1nOXk+GzWfPOrOdRp2XuaJRVrJc3I7Wtq79bn1n+yf+0vH+1P8ABB/iLJp39lXUckttcW4fzEDx91bAyD7ivqPTrq2t7C1inkVGlUBATgscdvWvhn/gnv8ADDVPhh+yVp9rrlubW81Xz9RkiYYKeedyjHsKz/H9zq3xX/az8DfD7wwzLZ+CYG1jVp1OAryrsii47sOcV6lDEVI4alOqrzdvLV/8DU+JzLKsLVznGUMG+ShTdRp7pRjey31u7RWvVbn3Z4ti8Uz+HLuHwTLbwaq0ZFtJdqzwq/YuqkMR9DX4J/8ABRf9nzxR4U+H+m/GD4w+J5fEvia81W3tl8pfs9haQE5KQxZJ5PVic1/QdXzb+1T+zjon7UHwpn+G+rXbafL5qXFtdKu8xSp0JXIyPXmlmeD+sUJRSvK2mul/yK4L4h/srMqNSo1GlzLnainLl6q9nK3Vpb+ZueIfjN8M/gj8JdN8X/ErVoNMso7GDaZGG+QiMfKi9WJ9ADX4jftK/tgfE7xh458JfGDTvB91aeE7O+ml0QTq3m3135eyORl6BecqOpr7J+GH/BMTHi2y8WftI+Mbvx0ulBVsrGYuLdFT7obcxOAP4Rgeua/S6y03QrR7uGe3hW0sdjRqyLsiWNeNo6DAHauedHFYqDU37NaWWjenfpbyXzPXw2ZZHkuJVShH63N83NJ3hFKSatBWu3rrJq1tEr6r8Of+Cf8AoXxB8Cftravp3xJlLa1r2ijU75GyGSS4IcK2e65r72+J3/BQz4dfD746ab8E7XTpb/7XdpZ3GqCRI7OCV+Cm89XU8Fe1fOn7El4/xt/bH+KX7QkTb7Gyf+zrTvkeg/4CAa+APiB8R9A8VfDjVPglZILnxfqvj6S4ghC5mhi3435xkbj/ACry6eKlhsKvZS3lJpvW6T2+Z9risloZznc3jqV3ClRjNRfKoSnFtydulNW026M/qQR1kUOhBVhkEdCDX5K/GnUF1D/gqH8O9IgOWs9KlkfHYNnrX6leErG60vwrpunX7Fpre1ijkJ67lUA1+Of7P2pf8Ly/4KReM/itEfNsPDiDT7duq5HyDHb+EmvazCXN7Gn1lJfhq/yPzrhKkqX9oYt/BTo1Ffzn7kfvuftdRRRXpnxIVXu/+PWX/cb+VWKr3f8Ax6y/7jfyoAp6J/yCYP8AcFalZeif8gmD/cFalABRRRQBztj/AMjDe/7kddCSAMnoK56x/wCRhvf9yOvPv2gvF9x4F+DXiHxLZNtnhtHWI+jyfKD+Gc1zYzFQw1CpiKnwwTk/RK5thqEq1aFGG8mkvm7HmM3ifxH8fvF9/wCEvB91LpvhPSZDBf38B2zXcw+9FC/8Kj+Jhz2Fey6Z8G/hdpFnHZ2ehWf7sgiR4w8pYdzI2XJz3zXMfs2eGoPC3wT8P2MS4kltUnmPdpJfmYn3JNd98QfHekfDfwtceLtcinltrbbuW3jMsnzHHCivDy6hS+qLMcws5yjzSctopq/Kr7Rivver1PVxlaf1h4PB3UU+VJbye133b/DZGtrahVtEUcCdBj2wa36+StB/a1+C/j7W7Dw3p19LaX01wgjhu4XhLHB4BIxn2zXsXxh+LXhr4M+Cp/GXiRsqnyQwqfnmkPRV/qewr0KWeZfUw08XSrxlSh8Uk00rd7bHHUyvGQrRw86UlOWyaab9D1OivzWk+KX7W1x4Kuvjfq02leH9BhQzxWNzEzSvF/COBkFu2cV9taH8Q7bWPhHF8TG2bJNON6QpO3ITdgZwevFcmW8SYbGSlFQlBqPOudct4fzJXvb1SOnG5LWwyjJyjK75fdd7S7N7X9Gz56/ZuvD4h+K/xM8Tg7kfUltlb2hXGK9r0D4y/Cq3vIPBs/iCxTUx8htzMu/d6Yz19utfn38OPiJe/C79kfX/AIi2rH+1PEepzx27d98jFdw9wATW/wCI/hx4M+DP7HFz4h1S0t7jxFrEaO13PGrzfaJyD8jEZXaM4xjpnrXxWWcSYihl8fYQi+WnKvUcr2SnKUoxVvtS1t0SWzufTY7JaVbGS9rJq840oJW1cYxTbv0jp6n6mggjI6GsLxH4n0Hwlpp1fxFdJa24IXc56segA6knsBzXA/AW+1XUvg54cvtbkaa6ksYWkdzlmO0ck15t8P7kfGL4p6x451D97pPhu4fTtMiblDMn+tnx0LZ+VT2Ar7yrmjdLD+xj+8rW5U+itzNu3SK+92V1e58nDAJVK3tH7lO92uutkl6v8LvofThvLVLdbqRwkbAMCx28H618oJ8YfB9v8eNck8Ra/b6fp2jWUEMayTqkcsk2Wdjk/MVGAPSvonxl4D8JfEDTk0rxhZre26NvVGZlw3TPykGvgX4LfA/4Oa98cfH2iajoUF1a6PdQpaRylnWMFecZPOSO+a8viDE5jDE4ShhVC057ylLVqEpWaUdtL/Fukd+UUMHKjiKtdyvGPRLS8orRt76222bPfrn9p7SfE3ia08M/BW2TxXK5b7SYneOOIAZH73YY+enzMK9Bg+I3xHHy3/ge+jbvsuLaQfmJK7iaLwd8MfC11qNpbW2l6fYxNK4iRYkCqM9BgV5F+y98Vtc+MXw5k8W68UMpvbiJNi7R5aMQvHritKc8RDFQwmKxb9tNSkowjFRUY8qfxKUt3vfXXRWInGjLDyxFDD/u4NRblJuTbu+nKum1tPM6i7+JHjm1tJL5/CF1FFCpeR5rm2jVVUZJJMvQV0GieJ28Z+DtN8TNaSWX2t43EMuNwGfUZBB6g+leafEPxbaeL/irpnwHtiSjQ/2lqZHQwRkbIj/vtgt7D3r3TWY44bOCKIBVWWMADoADXfl9SpUxFW1ZzhD3XdR+LRu1orZaPfVvaxyYyEYUad6ajKXvK1/h2W7e+/p6m9RRRXtHmBRRRQBgeGf+QSv+/J/6Ea+Tv2sfFWqa1d6B+z94WmaK98WTgXbxn547JD85H+9g/gK+sfDP/IJX/fk/9CNfEXgkjxz+3L4k1e9O5fDOnpa26noDJjJ/n+dfL8VVZSoUcDB2decab78usp29Yxa+Z72QU4qrUxUldUoOa/xaKP8A5M0/kfZ/hnwP4Y8KaDpvh3SbOJLfSkC242glCBtLA44JBOT1Oa8h+Pnxvl+GdnbeHfBscGpeK9SYCy06QnMi5+Y4H04GRmvoW5ubezge6u3WOKMFmZjgADqSa/ML4PrafH39sXXvicbhbjTPDg8uyxyG/gRh7YDH6msuIsdPCQw+X4C0ataSgrW92KXvSX+GK087adC8mwscRKtjMXdwpRcnf7Um/di/8Tevlcv+Dv2yvix4g8aT+GpPh9NdaxYxeXc21vMVdNrckoyZAyfWvVPGX7Ytz4I8LajceK/Ct5ouuQW6z2tneMu2dWbZuDKTwp68ZrkbVYb7/goRcNpICfZdJzdbONxKKPm/MV8wftY+I08feNfHPiFXzZ+G4rXSbfngyyPukx+KtXweLz7NcDl+IqvGudSNSpSjeMLNQi5OWkU7xS7tc3dH1mHyrL8VjKNNYZRhKEJu0pXTk0uXVtWbfa9j6q8P/GH9tfWNFg8WW/gjTLnTp4luEWO4CSvGwyNoMhOSOny/hXvvgn9pr4WeJ/BcHizXNSt9ElZmintbyVY5Ypo+GQgkZwe/cVyut/EG9+DX7Jll4thjDXtnpNrFCrdPOdVVSfoTn8K+T/2FvhJ4P+Jum618TPiPpkeq3xvykUlyN8ecBmIT7pOT3Br2KOY5hhMwwmXYbESrVa1PnkqtuWGl004RT6Ncvpquvm1MFhMRg8Rja9FU4U58sXTveXdNSk12d/Xc+rviT+1l8DtE8I3OpabrltqlxCUZLW1kDySEMDgf41g/An9s7wh8YfEL+EtSsJNEvzG0sKyuGSVEGWw3GCBzgjpXkvx20HQfEH7Ungn4aWllb22nadD/AGhJFFGqLI27gEADI4FXP2loPC/xQ+JGl/BH4eafB/bqbp9R1G3UJJaW6qcx7lxkuOCDwMj1pYrPc5hWq4hVoclKoqSpqL/ezaTaTbbTXNZdNG3pcMPlWWyp06Lpy5qkHPncv4cU2k2kkmna766pLU9F/ZBuv+Es1Lx58R5DuOr63IiN1/dQjauD6Yr07W9S8P8Awq8U+Hvh/wCAdKhl1LxBds9wzktIttGC0szucsx7Lk4zXxb+yx+0P8LPgh8EbvSPF96U1aC9uG+wIpNw5J+UAe+OpIAr6A/Zh1HXvjT4r1b9o/xTb/ZEuE/svSrbO4RW0TbnbPcs/U4HSq4fzihXweBwWGmnip3nK1m4Rcuao29eVt+7be7TtoGcZdVpYnFYmtFqhH3Y3ulNpcsEu6W/ay8z0T4/+MtMtdV0DwFfTpbwXU/9p6hKxwIrLTyJST7NIFX35FeO/Dr9p3xh4i+KejaSNJitvCfiWa7TTZ5CRcy+SS3m46BD0Ax+NfP/AMR9A8VftE/tgar4DsXki0iyENpfuvRLW3Idlz6ySdB3OPSvX9atbJf2uPAPgPRYhFaaBYXUqxqOFRmdQPwCiueec4/EYyriqMnClGvTpL/p5aai1/hS55ecpb+6bQyzCUcPToVYqVR0p1H/AHLxck/8TfKvJLzPqv8AaG+MFp8E/hneeLyFlvWxBZQt/wAtJ34A+g6n2Ffnt4gk1j4CaT4S+Jni6Zr/AMeeJtVju7rz5GzFaONrQhQRhfnHbqMdq639s7xrLf8Ax78F+DdPszraaaBeHT4mGZrl3OxG64wEBPsa+WvH994i+K37TmjaN4hvVv777ba284gOYIGVwzxReqx9Cf4iCa8TjHiGVTHVoUruVOUKVLspu0pz7OX2I72V3pfX0+G8nUMLTlU0jOMpz7uKuox8o/affRa20/Yb4h/ByH4l38Gsv4h1nSCkQQR6fc+TGe+Su0889c18F/A74KWHxO+JfjaS88Ta8tvp18bKG5gvTHNcJDx+8cDJxxj0zX6t8QQ+yL/Kvz2/YKk+06X4mvW5aXWrwn16Rn+tfbZ3lGDrZzgYVad+f2kpavXlgkuv94+XyzMMTTy3FShO3LyJaLS8rvp5H178PPhj4N+DmiXcOiy3BSU+fc3N9cNNI20feZ3PAAHtXzvqH7XWsa1qV03wg8G3/inSLByk+oQny4iV6+XkHdj8Kj/b317xR4d+CT3Gg3/2S3u51tLqMJlpo5QeA+Rtxt545BxXn3gr9mf46al8PNM8Hv45j0rw49uh8jTrfZKySDcQX4JJzyc81zZrmONp4z+x8noyjGnBSbgqe8m+Ve+7Rjo3J2cm9l1e+X4PCzw39pZlUUpTk0uZz+zu/dV29VZXS8+i+yfg18WtC+NPgiHxtoEUtvG8jwyRTDDpIn3hxwfqK7jxN/yArn/d/qK5z4YfDbw58JvBdn4H8LKwtbQH5nOXd2OWZj6k10fiX/kBXP8Au/1Ffc5asSsLSWMadXlXNbbmtrb5ny2NdB16jwyap3fLfe3S5uDoKWkHQUtdpyhRRRQBg6D0vP8Ar6l/pW9WDoPS8/6+pf6VvUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWc+kaVK5kktomZjkkoCST+FaNFAGZ/Ymj/8+sP/AHwv+FZGv6Lo40ef/RYeg/gHqPauqrH1/wD5A8/0H8xQBL/Ymj/8+sP/AHwv+FH9iaP/AM+sP/fC/wCFadFAGZ/Ymj/8+sP/AHwv+FZGlaJo/m3n+iw/8fB/gH91fauqrI0r/W3n/Xwf/QVoAk/sTR/+fWH/AL4X/Cj+xNH/AOfWH/vhf8K06KAOT1DRdH/tOw/0WH/WP/AP7je1bP8AYmj/APPrD/3wv+FQ6h/yE7D/AK6P/wCgNWzQBmf2Jo//AD6w/wDfC/4VBc6LpAtpD9lh+6f4B6fStqoLn/j2k/3T/KgDB0bRNH/sm1/0WH/VJ/AvoPatL+xNH/59Yf8Avhf8KXRv+QRa/wDXJP5CtKgDM/sTR/8An1h/74X/AArIt9F0f+2rr/RYf9XF/AP9r2rqqyLf/kN3X/XOL+bUASf2Jo//AD6w/wDfC/4Uf2Jo/wDz6w/98L/hWnRQBymt6Lo4tov9Fh/18P8AAP749q2P7E0f/n1h/wC+F/wqLW/+PaL/AK7w/wDoYrYoAzP7E0f/AJ9Yf++F/wAKP7E0f/n1h/74X/CtOigDldD0XRzYn/RYf9bL/Av99vavkzQtP0zwX+3Nr2gSW8S2vjbwza6lGpQbTdaVK1vJgevlSpn2Ar7F0P8A48T/ANdZf/Q2r4+/apdvBXxT+Enxniwiab4gbQ7t+32XW4jCc+wlSM/XFcuL0jGp/K0/0f4NnuZCvaVquF/5+05x+aXPFfOcYo+xv7E0f/n1h/74X/CsebRNH/t63/0WH/US/wAA9U9qlfxfoMfjKPwE0p/tOWyfUFi2nHkRusbNu6fecDHWr03/ACHrf/rhL/NK6U09jxpQlG3MrX1XoS/2Jo//AD6w/wDfC/4Uf2Jo/wDz6w/98L/hT9X1fSdA0q51zXrqKysrOJ5ri4uHEcUUUYLM7uxCqqgEkkgAda/MK4/ad+Pn7bFx/wAI5+wNHH4f8BSMUvPinrFt5lvPGDhhoFk+03zHkLeTbbNfvILjpTIPev2ov2rPgP8As6R23gfWLabxH438QxSDRfCWg2wvta1AgH5lgXiKBcfPcztHBH/FIDgH57tP2R/jv+2ERrv7eV1B4a8HTAND8MPDF032V1zkDWtTjEct+2OGtoPKtOobzxhq+o/gR+yF8GP2XPDWt3fgO2uNR8R68rz654m1iY32t6vPj791dyfOwH8ES7YYx8saIoAr6yT7g+lAHIeFvh34A8D+HLLwf4K0Sw0jSdOiENpZWVtHBbwRr0WONFCqo9AMVvf2Jo//AD6w/wDfC/4Vp1zev+K9H8NXGn2epM5m1S5W0to40aRmkYFicKDhVUFmY4Cgcmk2lqyoQlN8sVdkGnaLo/26+/0WH/Wr/Av9xfavE9Z+JN14i8QXXgv4I+HINburCZra+1O7xBpdnKv3kMgUvPKnRo4VO08M6Gvf9N/4/r7/AK6r/wCgLT9F0PR/DmnjStCto7S2V5JBHENq75WLucerMxYnuTUTjJ2Sdl+J0YarRp3lUhzPont6u1m/JXS76aPyDRvglYX1/a+IvincReI9Rs5POt4zbpBY2svZobcbvmGeJJGkcdiK9K1XRtINzZE2sWTcf3B/cf2rqqx9U/4+LH/r4/8AZGqowUdiK+IqVmnN7bLZL0S0XyRL/Ymj/wDPrD/3wv8AhR/Ymj/8+sP/AHwv+FadFUYGW2iaPg/6LD/3wv8AhWVoOi6P/YtofssP+qT+BfT6V1B6GsrQf+QLaf8AXJP5UAP/ALE0f/n1h/74X/Cvzh/aq+Dv7RfxJ/aP8GQ/Atk8O6Xp+lXqX+vPFE8duL1lSRYkbJM+xBswBjOdwGa/TGisMRQVaHJJtK6emmzuenlGaTy/EfWacIylyyS5lde8nFuz0ej2d13TPnn4Jfs9/DH4EaUfBngqxVg0SzXd3c4lury4Zm3SzSEZZ2P4DoABXBftB/sXfDT45NL4j0qWXwp4pe3e1GsaYAkksMilWiuI+EnjZSQQ/I7EV9Vx/wDIel/64J/6E1bFEsNSlT9k4rl7BRznHUsW8dCs/aveV73vunfRp9U1byPJvhD8JdH+FPwu8P8Aw03rqX9hWEFj9qljVXl8lQu4jnGcdMnHqa67XtF0caY3+iw/fi/gH99faurrnfE95Z2mnIl1KkZnnijjDsAXcuCFXPU4BOB6VrGKjFRWyOKtVqV6sqtR3lJtv1erL/8AYmj/APPrD/3wP8KP7E0f/n1h/wC+F/wrToqjEzP7E0f/AJ9Yf++F/wAK8nt/E3hvTviTZfDBtMD3GqW2oais6onlxpazRxlWHXLGUYx6V7XXyDe3uz9srwzYk/f8Ma434/bbX/Csq03FJrul97O/LsPGtOcZLaE5fOMW1+KPo3Vb7wHoWo6fpOtS2VpdarK0FlDKUR7iVVLlYweWIUEkDsK3v7E0f/n1h/74X/CvyC/aV+I2o+NP2+vhlpWjDdofgXXrPTLubPynVNXhlk8tfUpBEN3oWxX7IVlh8T7WdSKWkXb10X63XyO7N8leBoYSpOXvVYc7X8t5Oy+ceWXzOUu9F0f+2LP/AEWH7sv8A9B7Vsf2Jo//AD6w/wDfC/4VFd/8hmz/AN2X+QrYrqPCMz+xNH/59Yf++F/wqjqeiaP/AGbcf6LD/qn/AIB6H2pnjG28VXnhbULXwNdW9lrEkDrZz3cZmhjmI+VnRWUsAeoBFfn18aPiN+3R8EPhJqnxC8VS+Cb6w0G1V7lkS8W4vOVQhF3KiO5PA5AJ4rnr4hUk3KLta90etlmUTx0lTpVYKbaioydm29raW1em/wCB+hllomj/AGKH/RYfuL/APT6Va/sTR/8An1h/74X/AApug3TX2h2V68ZiaaCNyh6qWUHH4Vq10HlNNNpnkOlfEH4Xap4/v/ha/k2mv2GH+xXMYiknhZQwmgB/1sfUFkztYENiuzsdF0f+1L7/AEWH70f8A/uj2riPjP8AA/wR8cPDqaP4oSS2vbNvO07U7RvKvbC4H3ZYJR8ykEDI+6w4IIrxn9mD4peNdR8UeKvgV8Zpop/GfhCSDzLqJfLTUdPlX9xdqnRSwG2RRwr/AFrm9rKNRQqbPZ/o/O33+R67wFKvhZYnCt3glzxe6TaXPF9Y3aTW8W18S1X1r/Ymj/8APrD/AN8L/hR/Ymj/APPrD/3wv+FadFdJ45yesaJo+60/0WH/AI+E/gHofatn+xNH/wCfWH/vhf8ACodY+9af9fCfyNbNAGZ/Ymj/APPrD/3wv+FH9iaP/wA+sP8A3wP8K06KAOU0DRdHOkQ/6LD/ABfwD1PtWx/Ymj/8+sP/AHwv+FRaB/yCIf8AgX8zWxQBmf2Jo/8Az6w/98L/AIVjf2Lo/wDwkP8Ax6w/8e/9wf3vpXWVjf8AMw/9u/8A7NQBN/Ymj/8APrD/AN8L/hR/Ymj/APPrD/3wv+FadFAHK69omj/2TN/osPQfwD1HtWv/AGJo/wDz6w/98D/Co9e/5BM30H8xWvQBmf2Jo/8Az6w/98L/AIUf2Jo//PrD/wB8L/hWnRQByWjaLpBe8/0WH/j5f+Aeg9q2xoukA5FrECP9gf4VW0X797/18v8AyFbdAHwF8cf+Cf3w/wDG/jW5+O/wB1Sb4T/FOWPa3iPQ4Y2h1Dbyseq2D4ttQi7ZlUTKP9XLH1ryzQf2wtc+CnjPSPhb/wAFD/C+n+AtQu7v7FpXjLTyZvCOtSyLhALhxv024c5AtrzALcRzS5FfqhXEeOfCnhfx3pp8F+N9OtdY0fU45re8sb2JZ7e4idDuSSNwVdT3BBFAHRJo+iSIJI7aFlYZBCKQQfwp39iaP/z6w/8AfC/4V+X7/s+ftG/sKn+2/wBipp/Hvw2iZpLv4aaxeE3djExLMfD+oXDfuwuTtsLtzbkfLFJAMA/ZP7On7VHwY/ak8P32r/CvUJDfaNP9j1nRr+FrPVtJuwMmC9tJQJYZPTcNrj5kZlwaAPb7vRNH+yy/6LD9xv4F9PpVbR9E0f8Asm1/0WH/AFKfwL/dHtW5d/8AHrL/ALjfyqto/wDyCbX/AK4p/wCgigBv9iaP/wA+sP8A3wv+FH9iaP8A8+sP/fC/4Vp0UAcpa6LpH9t3g+yw/wCrh/gH+17Vsf2Jo/8Az6w/98L/AIVDa/8AIbvP+ucP/s1bNAGZ/Ymj/wDPrD/3wv8AhWTq+iaP5cH+iw/6+L+Bf7w9q6msnV/9XB/13i/9CFAD/wCxNH/59Yf++F/wo/sTR/8An1h/74X/AArTooAzP7E0f/n1h/74X/CsfQtF0c6f/wAesP8ArZf4F/vt7V1dY+hf8g//ALay/wDobUAS/wBiaP8A8+sP/fC/4Uf2Jo//AD6w/wDfC/4Vp0UAcrLomj/27D/osP8AqJP4F/vJ7Vr/ANiaP/z6w/8AfC/4VHL/AMh2H/rhJ/6Ela9AGZ/Ymj/8+sP/AHwv+FZGvaLo40W6/wBFh/1bfwD0+ldVWRr/APyBbr/rm38qAHLomj7R/osPT+4P8Kd/Ymj/APPrD/3wv+FaS/dFLQBmf2Jo/wDz6w/98L/hWVpOkaVHfXkkdtErLOCCEAIIRa6isjTf+Pu+/wCuw/8AQFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1v7+KKKKACue1jWILWC4t3jlYqjcrGzDkZ6gY/Wuhqpf/wDHjN/1zb+VAHMaJ4gtho1p+5n/ANSn/LJv7o9q1P8AhILb/njP/wB+m/8AiataH/yBbT/rin8hWpQBg/8ACQW3/PGf/v03+FH/AAkFt/zxn/79N/hW9RQBwWna9bDXNSPkz9Yf+WTf3fpX87n/AAdaeJrUf8EefFVlslVrrX9BjXejKDi8R+pA/u1/R/pv/Ic1L6xf+g1/OB/wdHWdn4z/AGLfhx8FbiQB/HHxN8N6UsROPMWSY7h+HFAH9E/hrXrWPw5p6CGf5baIf6pv7o9q2/8AhILb/njP/wB+m/wrS0+2+x2EFn/zyjVP++RirlAHB6z4gtvtVh+5n/4+B/yyb+63tW9/wkFt/wA8Z/8Av03/AMTRrP8Ax9WH/XwP/QWreoAwf+Egtv8AnjP/AN+m/wAKX/hILYf8sZ/+/Tf4Vu0UAc7N4gthC37mfof+WTf4VleHvEFt/Ydr+5n/ANWv/LJv8K7Ob/VN9DWV4e/5Adr/ANc1oAi/4SC2/wCeM/8A36b/AAo/4SC2/wCeM/8A36b/AAreooAwf+Egtv8AnjP/AN+m/wDiawLTX7YeI7z9zP8A6qL/AJZN6t7V3tc9Z/8AIx3n/XKL+bUAP/4SC2/54z/9+m/wpf8AhILb/njP/wB+m/wrdooAwv8AhILb/njP/wB+m/wrB17X7bZa/uZ/+PmL/lk3r9K7usHXvuWv/XzF/OgA/wCEgtv+eM//AH6b/Cj/AISC2/54z/8Afpv8K3qKAMH/AISC2/54z/8Afpv/AImmv4gtth/cz9P+eTf4V0FNf7h+lAHEeG/EFt/Y0I8mf+L/AJZN/ePtW5/wkFt08mf/AL9N/hS+G/8AkCw/8C/9CNblAGF/wkFt08mf/v03+FJ/wkFt/wA8Z/8Av03/AMTW9RQBwUWv23/CTTHyZ/8Aj3T/AJZN/ePtW/8A8JBbf88Z/wDv03+FNi/5Geb/AK90/wDQjXQUAYP/AAkFt/zxn/79N/8AE0f8JBbf88Z/+/Tf4VvUUAcH4j8QWxsEzDP/AK2P/lk394e1b/8AwkFt/wA8Z/8Av03+FJ4j/wCPBP8ArtH/AOhCt6gDC/4SC2/54z/9+m/wpP8AhILb/njP/wB+m/wreooAwD4gtsH9zP8A9+m/+JrD8OeIbb+zc+TP/rJP+WTf3j7V3R6GsPw7/wAg3/tpJ/6EaAE/4SC2/wCeM/8A36b/AOJo/wCEgtv+eM//AH6b/Ct6igDB/wCEgtv+eM//AH6b/CsE+ILb/hJV/cz/APHuf+WTf3h7V3lctqF5Hp+rS3833ILN5G+ikE0DSbdkXP8AhILY/wDLGf8A79N/hXgH7Svx/uPgb8MJfiBpuntdmC6toZFmVkRY5pFRmzj+EHNct+x/4r8YfFrw3qvxw8U6nPNBrt7cRadYfKLe1s7eQohUAZLvjcxJPXFd5+1l4Bj+Jf7O3izwiy7nn0+V4/aSMblP5iuSdWVTDyqUtG02v0PeoYClhM3p4TG2lGM4xna9t1zL5aq/lpoey23iixvLaO7t4p2jlVXUiJsEMMjtWT4j8QW39kyZhn6r/wAsm9fpXhn7GHxOj+JH7L3hXxbqUw86GzFrcu5xiS2/dnJPsAa93vvEega9pM/9iXsF35bKH8mRX2nPfBOK2pVY1IRmuquedj8BVwuJrYea1pycX6p2NceILbH+pn/79N/hS/8ACQW3/PGf/v03+Fbo6ClrU4TC/wCEgtv+eM//AH6b/Ck/4SC2P/LGf/v03+Fb1FAH5tft7+Ibdf2T9fbZKi/b4SxaMqAolUnkiuN/4J46tB4t1vx/8bY4pntdbu7SztWEbMDHZwhCQQO5q5/wUh+Ifh3Rf2btR+G7xve614kumjsrWEbpP3Z3NIQOdqgcmu//AGQviJ8KfhP+wfoPxAWdLbStPsXmu2JBY3AY7gcdWJwAPpXiTcXmN3JWjG79dV+TP0vD06tPhBRhTbnWrOEfOL5ZaddZU0l6M+2dY8e+HPD1hJqmvSmztoVLPJMpRVUdySBXG/D34/8Awm+K8d3L8NtYh1tbF/LuDZnzfLY9m25xXxtPoWjfHj4CN+0l+0b4bF7JZxXN9p+lfaHt4msAd0SzqXCMxAz8wxzXxX+x/wDtGaP8JLrxL8QIPAGrxS+OdQhXSbWytRDYpAPkjQTErHknqR3rWpmXJVpqVlCSv1va2+3fSxw4Tg1V8FiZU5SlXpSUbLk5Oa+sU+a7tG75rJK3U/cafxBanxHB+5n/ANS//LJvUe1eE/thePNF8Pfsz+Mr7VFljjbTZYl3xlQXkGFGSOpNeyyeM9FsvEekWPia5g0zUr+1LLZyzL5m84JVefmweMivk39qH4QfEb9pj4o6B8Iri2lsPAOmlNT1a93ALeSKfkt0GcnHVs9K68XN+xkqavJ6Jeb79vM8HIMND+0KU8VLkpwfPJvqou75e7drK19Wb37ApuPDf7JPg3T9UgnWU2hkx5bHAdiR29K+w/8AhILb/njP/wB+m/wq9pOlafoemW+jaTCsFraxrFFGgwqogwAPoK0K2oUvZ040+yS+48/NMb9cxlbF2tzylK3a7bOJ8Qa/anSJswz9P+eTf4VqQ+ILbyU/cz/dH/LJv8Ks+IDjSJvpWrD/AKlfoK1OAxf+Egtv+eM//fpv/iaP+Egtv+eM/wD36b/4mtqWaKBS8zBFHdjgV4T8UP2pv2a/gnp0ur/F7x7oHhq2g/1kmpahDbKv1LuKAPXP+Egtv+eM/wD36b/4msHRPEFr5t6RDP8A69v+WTeg9q/IH4mf8HFv/BHz4XzTWl98Y9N1aeElTHpEct/kj0MKMp/A18Rah/wdP/sY3kmoWf7P/wAP/H3xGvvOLRQ6Zo0iCRSOCDJtwPqKAP6ev+Egtv8AnjP/AN+m/wAKP+Egtv8AnjP/AN+m/wAK/lmP/BeX/gpX8U0W4/Zw/Yc8Z31rPxFcazKbMA9iQsTr/wCPCkj/AG4P+Dnb4gO9r4V/ZZ8MeGUkGY5tT1ZCVB9R5y8+vAoA/qZ/4SC2/wCeM/8A36b/AArBvdftjrtmfJn+6/8Ayyb0+lfy2/2t/wAHc+vXhVNE+F2jQS8hmlSQxg+uLliT+FfLX7XPxa/4Oa/2TfD/AIa8cfFr4h/D+2HiPXLPw/ZQ2VmsjC51BxGmQQflB5JzwKAP7Vf+Egtv+eM//fpv8KP+Egtv+eM//fpv/ia/lm/4UH/wdaNnPxb+HK/SyH/xug/AL/g6zTlfi78OW9vsQ/8AjVAH9TP/AAkFt/zxn/79N/hWVrviC2/si4Hkz/cP/LJv8K/l6Pwn/wCDsLSR5lt8QPhnqBX+F7bbn9FrGn8X/wDB2l4OWe617wj8M/E9jAvzR29wkDyj2zcZH/fNAH9FHxW/bD+AnwFFlpnxN1j7BeXUatHb+U7ylD/EVUEge5r2nwn8TPCfjnw7aeLPCUz3+nXqCSGeFGZWU++K/i0+K3xJ+LPxX8bXXjH44RpbeJ5Qkd/axEmK2ljADRR5J+VDkDnnrXvnwj/4LEfEv/gnv4Pi+FWtfALx78QtEupPtlprGhWnm2qLL95AXxnHXg4r53L86nicXOhy+6r2fXTv6n61xX4d4fJ8hoZj7Zus3HmTtyvmV7R66ervvof14/8ACQW3/PGf/v03+FH/AAkFt/zxn/79N/hX80ml/wDB1p/wT+sLmLTfiv4W8deD7s/66O/0OUiH/eKZP5CvqX4f/wDByT/wR1+IEiQR/Fy00iVyFCarbT2fJ9TJGAPxNfRH5Kfs3pXiC2+2Xp8mf/W/88m9PpW3/wAJBbf88Z/+/Tf/ABNfMPwS/bZ/ZB+Oq3WpfB34meGvEkMkowdP1KCc5I6EK5IPtX1lbXtlep5lnMkqnujBh+lAGX/wkFt/zxn/AO/Tf4Uf8JBbf88Z/wDv03+Fb1FAHCalr9sdVsf3M/3n/wCWTen0rl/i34Z0T4ufDXWfhtq6XEVvrFs9uziFiV3dDjHY16LqX/IVsf8Aef8AlW9UyipJxlszWjWnRqRq03aUWmn2a1R+Yv7If7E1n+zv4xu/iV491m58Ua80QtbOZoZNtvbjgAbwTuxx6AdK/Ra41fTruIwXdrLKh6q8LMD+BFdJRWWHw1OhD2dJWR35tnOLzLEvF4yfNPRdEklsklZJehyWp69aLpk6iGcARt/yyb0+lY/hz/hGtMD6vp+nGG7vlRriZLch5SowCzBcnA6ZrttU/wCQbP8A9c2/lSaT/wAgyD/cFb2PNUmk0nuUf+Egtv8AnjP/AN+m/wAKP+Egtv8AnjP/AN+m/wAK3qKCTB/4SC2/54z/APfpv8K+b/j+/wAQvE3wp8X+HPhHE39vX0HkQearIMOuGw2ODgnGa+rqwNM/5C1//vJ/KoqQ54uL6nRhcQ6FaFeKTcWnZ6p2d9V27nyD+xL8DLP9mX4K2nhLU7dzrd4ftOpyxxswadu27HIUcV6xp3wX+A+kfEGX4qab4Tgh8QTEs16ts2/cerDjAY9yBmvoWis6eGpwhGmo6R2OzF5zjMRia2KnVanVvzWbV79PTyOel1y0ljaF4bjDAg4ibofwr5k+DvwN+F37On2i08A298X1vUXvbqW5UvIzvk4BCr8o7DFfXlYGsHF7Y/8AXX+laSpxclNrVbfM5KeMr06M6EJtQnbmXR22v6XF/wCEgtv+eM//AH6b/Cl/4SC2P/LGf/v03+FbtFWcxg/8JBbf88Z/+/Tf4VBdeILY2sv7mf7h/wCWTen0rpar3f8Ax6y/7jfyoA+efFPxa8a+EoLOLwt4N1DX7d4QzS25VCr5+6VfB6dxXmN5+0Z8f522aN8K9QH/AF3lVf5A19YjX9F8O+G01TXruK0t4o9zySuFUAe5r4d+Jf7YuoeKrmfwP+zfZPq19tbzdRK4t4EHVgTgHA5ycD618XxHi44NupUzCcHL4acI05SflFODk/n82fTZNhpYlKEMHGVt5yc1FecmpJL+tCPwD+2x4s1n4r2/ws8aeEm066mmMDiKXzJImAJyV2jI+lfef/CQW3/PGf8A79N/hX5p/sJ/CzVNd8S6t8cvGshvbkyvb208h3F3z+8kBP5A1+pVHAmJzHFZc8VmE3Lnk3C6Sahsr8qSu9w4roYOhjfYYOCXKkpWbacutrtvTY4Cy1+2/wCEhvT5M/3I/wDlk3p9K8c/ant73xf8C9d0fRLaeS48oSBPKYFghye3pX0BY/8AIw3v+5HXQkBgVYZB6ivqMwwccXhauFm7KcXG/qrHhYPEvD16deKu4tP7nc+Vf2e/jz8O/FPw30jTrO9UX1nbRwXFuwxIkiDBBFeh+Mfj/wDCrwJYPfeKNTjt1QfcPLsfQL1Jrzzx1+xp8DvHOrSa9JYy6beSks8ljIYck9TtAx+Qqn4U/Yl+Anhi/TVLjT5dVnQ5DX0plH/fPAP418zQfEdGjHCxo0m4pJVHOVrLS7hy3v3XNbzPcqrJalR13UqJN35OVX9Obmtbzt8j8xfjB8Un+NXx50bxVBbf2TpscsItWlARvIjfc0rfXBNfZv7YFnrvjix8G+LPCOm3HiDSNMnFxcRwIzCRRtIPQ8MBjNex+Lf2R/hZrPxNi+JWspLc+ZJFGtg2BaqEGBhQBxx93pX1za2trY2yWdlGsUUShURBtVQOgAHQV8/lXBeOnSzGlmdVfv5J80dX7runy25Un/Lrpp0PXx/E+FjPB1MDB/uotcr295Wavu3599T8ovjF8evjT8X/AIcah4W8IeCrzRdKjty19cXS5Iij6qvAA/nXYeHPi54d1T9iLUNG0OV5r7SNKS2ulVGxGzEDBbGOh9a/S27tLa/tZLG9jWWGZSjowyGVhggj0IrhPDPwn+HPg/w9c+FPD2kW8Gn3pZp4du5ZC3XdnOa9N8KZisVUxDxnO6lKdOTlFK1/h5Ixskk9Xff56cP9v4N0IUVhuTkqRmlF3vb4uZu7emx+QHi29sF/Zy+HA07deabpV55+p+QN/luzBtrY7kZ61jftC/Ebxr8dPC0fiPw/p1za+D/D2yBWkXAkmfgucccYx7fjX7ReHvht4A8G6RPo3hfR7SytbglpYo4gFc+rA9fxqxoOhaJc+Eo9Fns4Hs5E2tAY18sj0K4x+leVV8PcVWw88PLFqEJwhGUYxvd048sfebT5PtONtX1PQp8YUKVaNaOH5pRlJpt9JyvLS1ubonfbocF8LfEujXXwk0g6AXuYhp6LG8SMylgmOCB618d/szftG/C34W+BtQ8IfEfUTpuq22o3cksUsbbjvkLDGAefbrX6P6PoukeH9Oj0jQraKztYRhIoVCIo9gOBXEa98HPhT4o1M6z4h8PWF5dk5MskClyfUnHP419Xjcpx98LXwc4KrSi4tSUnFqSje1mmrOKt5Hz+GzDCWr0sTCThOSkmmlJWbte6trfU+evAfx/8afGnx9Dd+AtPlsfBlgW+0Xs8JaS8fGAsYGdoB5J614X4f+Luifs8/tC+Obv4lW13b2uvSx3FpKsLMGUZ/wAa/TfT9O0/SbOPT9LgjtreIYSOJQiKPYDAFctdaNo2s+I7iLWLSG7VYoyomjWQDr03A1lX4fxtSlRq/Wr4mE3Pmcbwu4uLioJq0bPTW99Xds0pZxhYTqQ+r/uZR5bJ2lo1JNys7u610tbRHwB4w8Z+NP2r0uItOsrvRvAOnRyTzySRkTX7xqWVRjOFyBnn9a739grWLa0+CDW/2eYBb+4wVQspBbsRnp0r7uWztEtfsSRIIdu3ywAF2njGOmKztA8OaD4V05dI8N2cNjaoSwigQIoLHJOB6mpwPDFWjmVPM61fnqcs4zbVr8zjZRW0Yxs7Lzu222Vis9p1cDPA06XJDmi4pO9rXu293J3Wvl0Pzl8bePoPgb+1xefE/wAb2tyug65YR20VyIiQjIFBBBx0KnpzXs3iz9tj9n6DQf7R03VmvpY3V1t4omEjEdsMAB+NfW2ueHtB8TWJ0zxFZQX1u3JjnjEi5+jA147c/AH4K6NeQazpvhjT4rlZk2uIRwc9h0/Ss1k+cYSrXWW1qfs6k5T9+MnKLlrK1mk1fVJ+hX9pZbiKdJ42lPnhFR92SSko6K91dab2Nz4X/E6+8deCbPxXrWk3Gly3gZ1gZGchMnaSQO4wa9A/4SC2/wCeM/8A36b/AArdVVRQiDAHAApa+uw1OdOlCFSfNJJJysld9XZaK/kfPVpxnUlKEeVN6Lsu2vYwf+Egtv8AnjP/AN+m/wAKP+Egtv8AnjP/AN+m/wAK3qK2MjgvDPiC2/slf3M/33/5ZN/ePtXwl4t8OfHf4UfHPXfir8ItFGvWfiJUM0UilHjK9sHB69xmv0L8M/8AIJX/AH5P/QjW/Xj5xk1PMIU1KpKEoS5oyi0mnZrqmtU2tUelluZTwcptQUoyXLKMr2aun0s90up+a95oH7TP7RNymlfFeNvCHhlWBntLRWae5H90kZ4+uB7GvIfCsnxK/ZL+IXia38MeELvVdP1htumyIrlFCk7M8EnGeR1r9hqK+fxHBFOcoYmniqixMXdVZWlLZq1mlFKzdkktddT16PFE4xlQnQg6Elb2avFbp3undvTdt6aH59/ss/Dzxb4X8T6t8UfiskzeIvEMZlaMxMTDGzHg8cE+g6AAV8g6N+zv8cPE/j258H+JdLuLXQLjWDqN7dPGdsqjjg4+bK5wPVjmv2jP/Iz/APbsP/QjW/RiuAsBXw+Gws5y5aTbeus3LWXM7fae9raNoKHFuLpVq9eMY81RJLTSPL8PKvLp954n8SPBPhH4nfDyb4b61Fdw2UqIqtDGwdDHgqRlSOMd6v8Awx8LeEfhN4NtPBPhW2uVtbUH5njYu7NyzMQvJJ9q9dor6xZfhlifrapr2vLy83Xlve3pc+feMrOj9Xc3yX5rdL7XPzw/aM+FfxN1j4o2fxl+E10lveRWqWLpcRMCuWOGXKkHr+GK9c/Zz+EFl8GtJutU195tT8Sau/m6he+U53MTnapIB2gnPua+k/EzKul/McZliA/77Fb46CvLocM4Glj5ZhFN1G3KzbcYykkpSjHZNpWb7HfWzzFVMJHBtpQSSulZtLVJvqk3seG678M/hNrt5daxN4fjj1K6jdftiWf75WcEbwSuNwzkEjrXXeC7Hw/4D8LWPhDQba4S0sIlijzE2SB3PHUnk+9ei0V6tLAYanVdanTSm9LpJPXV/fZXPPqYutOCpzm3FdG+xxNgPDOl6hdarpummC6vmDXEsduVeVl4BcgZOPevkD4o/ArWfiH41g+J/wAPteuvDurwpLZyyCB2DRb2+6QMg84NfetYfh//AI85P+u8v/oRrDMcowuNofV68PdupaNxaad7pxs079TbB5jXwtX21KXvWtqk7razTumj4Cuf2H/hveaLAZtV1hdeV2ln1QKxeVn65U9AO2Dn1rovAn7Inw++HfxH0Px3oVxeumkwuJIpoWZ57hs4kLYwMA9AOwr73oryKfBWSU6kKsMLFSi009d4tNPffTV7vrc9CfE+aThKnKu3F3TWmz3W23ZdOljAbX7RlKtDPg8H90/+FfFfwg+DXi74K/FK4fw7rRm8NajJNdy2Utq/nZbgAMBgEHbz0IHSvvOsOX/kYof+uD/+hCvYxmVYfFVqOIqp89JtxabVr7rRq6dtU7pnm4bH1qFOpRg1yzVmmk9tnrs10aPG/jv4D0f43fDa98CXnn20kuJbebyWIjmT7pIxyOcH2NfFnhzxb+3H8I9Ki8FQ+H08QWlivlW9x5bOTGvCjIZTgD1ANfqnRXmZrw1TxeJWMo1p0a1uVyg0rx3SkmmnZ7aXO/L87nhqLw1SlGpTvdKS2fdNNNX6nzj8BNS+K9v4Ql1D41SSS6tfXDzrbxwYW2iIAWPKjnGCep69a9U8S+ILY6HcjyZ/u/8APJvUe1d1WH4l/wCQFc/7v9RXtYLCrDUIUFNy5Va8neT82+7PLxVd16sqrio36JWS8khg8QW2P9TP/wB+m/wpf+Egtv8AnjP/AN+m/wDia3R0FLXUYGD/AMJBbf8APGf/AL9N/wDE0f8ACQW3/PGf/v03+Fb1FAHCaD4gtsXn7mf/AI+pP+WTe3tW7/wkFt/zxn/79N/hRoPS8/6+pf6VvUAYP/CQW3/PGf8A79N/hVuy1SG+lMUccqEDOXRlH5kCtOigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorKkg1gyMYriJVJOAYySB/30KANWsfX/8AkDz/AEH8xS/Z9c/5+Yv+/R/+KrI16DWxpE+bmL7o/wCWR9R/tUAddRWR9n1zP/HzF/36P/xdJ9n1z/n5i/79H/4qgDYrI0r/AFt5/wBfB/8AQVpPs+uf8/MX/fo//FVk6VBrfm3n+kxf8fDf8sj/AHV/2qAOuorH+z65/wA/MX/fo/8AxdL9n1v/AJ+Yv+/R/wDiqAG6h/yE7D/ro/8A6A1bNcfqEGt/2lYf6TF/rH/5ZH+43+3Wz9n1z/n5i/79H/4qgDXqC6/49pP90/yrO+z65/z8xf8Afo//ABVRXEGti3kzcxfdP/LI+n+9QBb0b/kEWv8A1yT+QrSrltHg1s6Ta4uYh+6T/lkfQf7daX2fW/8An5i/79H/AOKoA16yLf8A5Dd1/wBc4v5tSfZ9c/5+Yv8Av0f/AIusm3t9b/tq6/0mL/Vxf8sj/tf7VAHXUVzGq2Xiy40y4g0m/gt7p42EMr25dUcjhiu8ZA9M15JrPg74v6hYST+KPHUOj2kSlpX02ySAhQOSZZ3l2j1IAxXHisVOl8FKU/RxS+fNJHTQoRqfFUUfXmv+CZ7TrZAtov8ArvD/AOhitmvzM8aaT8PrzwFrPjDTbTUdf0+xgkP/AAkGp3M+2Wb7qC2Dy5ky5ADqipnkE193+AdO8X2fgXRrPWrtWvYrG3ScyRlmMgRQ247uTnOT3NeflmcSxdWVNwSSipJxk5KzbXWMVrZ2cXJOz10OvHZcsPTU1J3vazSXS/ST7q6aTV1pqeiUVkfZ9b/5+Yv+/R/+KoFvrmebmL/v0f8A4uvcPLE0P/jxb/rrL/6G1fkZ+3zqfiDwR411vwrrt3MfDvxK0VX0qWRyY9P8R6IRNBsycRidVRTjGW57Gv1d0SDWzYnFzF/rZf8Alkf77f7deE/tTfs2W37T/wAIr34a6/exW0+5bmwuxCS1vdR52N97lSCVYf3Se+K4swoTq0JRp/F08/L5q6PpOE8zoYHMqdXFfwnpJ2u46pqS/wAMlGVuqTXU8p+FnxLt/ir+054W8W6a4aLUPhqmoyBeitd3cRx+akfhXqH7Tf7Vfwk/ZYttM1n4hz3F7q2sia00Lw9pMJvNa1q8Gwi3sbRDvlfHLNxHGvzSOigtX5E+FvG/jv8AY18a6p8Efhvq2ifEH4sw6PYaQ8shktfDfg/SUkd4bjXL1mHltLJOTDaR5ubjACKqZkX9JP2c/wBjO1+DfxAuPjX8RvEL/EL4qeILaUal4r1SAeZFCxQ/Y9NhDlLCwQ8rBFyx+aV5H+ajA+09neqrSerX9eguJ/qqxfJgZc9GKUYySaTtq7XS25rM8x0f9lf4y/tmarbfEX/goOsVh4VgmW50n4Vafcefpkew7opdcuEwNSuV4P2Yf6FEw+7MwElfqDZWVnptnDp2nQpb29uixxRRqEREQYVVUYAAAwAOAKo/Z9b/AOfmL/v0f/iqT7Prn/PzF/36P/xddp84Sa5/yBrv/rk/8q0k+4PpXLa3b63/AGNdZuYv9U//ACyPp/vVk+Fx8Qr63fUvEclvZ+cf3NosW9okGcGRw+GdhyQvyr0GepV9bFqF4uV9v6/r/hjqdbfXVtY18PJC07yxqzTkhUiz87YHLELnaMjnGTitcqpIYjkdDWT9n1v/AJ+Yv+/R/wDiqT7Prn/PzF/36P8A8XTE5aJWDTf+P6+/66r/AOgLWxXIadBrf22+/wBJi/1q/wDLI/3F/wButj7Prf8Az8xf9+j/APFUEmvWPqv/AB8WP/Xx/wCyNR9n1z/n5i/79H/4qsnU4NbFxY5uYv8Aj4/55H+43+3QB11FY/2fXP8An5i/79H/AOKpfs+t/wDPzF/36P8A8VQBrHoaytB/5Atp/wBck/lTDb65g/6TF/36P/xdZehW+t/2Laf6TF/qk/5ZH0/36AOtorH+z65/z8xf9+j/APFUfZ9c/wCfmL/v0f8A4qgD5e+N+rav4h+NXgv4H6XfXGnWuvx3WoarLZytBcNZaeuRCkqEOgllkQOykNtBAIzXrPxb8bap8Lfh9HP4TsjqmrXM9rpemW88jbZLq5dYozNIctsXO+Rs52g9zXzn4mbVD/wUA8K2cs8e4eDNSdD5Zxk3UIPG7rgetfYOreHptdtls9YNvcxJIkyq8JO2SJgyMPn4KsAQRXHTvN1bPW9vTRf8OfQYr2dCOBVSN4cnO1/M3Od7/JJei3R+e/i3w/8AEL9mb4t/D74u+LPGGpeIU8U6mfD/AIm+0yFLAPfrm1a3th8lukUy7RjLEN8zEmvpLR9bX4nfFHxD4jh/eaT4Omj0SyP8L37Mj3kg/wBwGOEHsRIO9eZ/8FB7eCf9lvXNM1qfzb69ms4dGjt4j9ofVTOhtVi+Y/NvHPoua8m+CHxm0vwZ+w5ovirwsyXWo2t9a6bqVpdAi5/tm6vUS6E5znzDJI0nI5BHauRTjRxEqTfu25/0f+fqe/KhVzDKaWOjC9dz9holFWb5k9LJaN01pZR00skfqNRXjfwu+ImofFHTtW1OxCWqaVrGoaQQ6bvMawmaEyDDDAYrkDtVH48eJ/Gnw/8Agz4m8c+H7yBLzR9PmvIi0O4ZhG8ggsQcgEfjXpurHk9otrXPi44Kq8SsJJWm5KOvRt21Pcq/LD9qv4t6n8Cf2kfCXxDsNJutXuLvQNc0rTba2iaT7RqU1xC0MJK9MkAn0UE1+lmny6xqVhBqENxEEnjWQAxHowB/v1n6VZarLHI8k0DGO5lKkw5IO48j5uKzxNF1afLGVndO++zudeT4+ngcV7WvS9pG0ouN7X5ouO9n3/4bc/Lfxz8IdU+Cnw5+C0Xi2f7X4m1P4mabrGvXXUzaheiYy8/3UDCNe2Fr9e6/Pf8Abvj1WKx+Fzyzxsw8f6Ns2xkfN+8/2jn6V9OfHPxl4m+GXwc8UfEHT7iE3Gj6Zc3UIaIkeZGhKZG7kbsZrmw8Y0Z1Utkl+R7WbVK+Y4fA1Ja1Kkqi7K7mrLySvZLoj1S7/wCQzZ/7sv8AIVsV55p48Qzro9xdXkUkj2xZ38rG5iiknAbAyea39OubzV7KLU9L1C2ubadQ8csSb0dT3DByCPpXoJnyMoNX8jyLx94/+NngLXZ7nTPBf/CW6C4Von0q6jiv4ePmV4LhkSTnJVklHHBXIyfzr+NX7THhL9pD4laH8JvEWla74d8JeF7z+0vFK3+nSs73luN1pZyC3EwVGb94xYgMAK/Qv9pf4peIfgZ8CPE3xUtXhuLnSbQtbRmMhWuJWEcQPzfd3uufavI/gBpXgn4FeCtK+Ed34ksrnxh4ot7rWbyZh5kmpXzjfcuJQ21ypYBVzu2AEDANeZiYynUVFTtHd3tbfRdHq79dlbqfbZLWo4fBvMJYW9RNwg4OSd1G85u/NFckWmmor3mpfZZ9Z+G/HXhHX/CVh4u03UYX0698tIbhj5aO7tsVRv2ncX+ULjJPGK7Ovij9tGbXdE/Zzk8Zi4jb/hHtS0XVmAjI3LZ3sEhH3jwQK+vUj1iZBNDdRFHGVPlHoen8dd0Kjc3Te6Sf33/yPl6+EjHDQxUNpSnGz1tyqD30vpPsjar87vi4i+Ff2/fhd4q0oeXP4htNV0W9K/8ALWCGAXEYb12Pkivvn7Prn/PzF/36P/xVfnl4r/tP4lf8FDvDHhrSpo5o/h7pF3quoSqh2RTajGIIY2+b7xX5sZHHNY434IrrzRt96b/C/wAj0uGk/b15v4FRrc3bWnJRv/2+4pedj9JaKyPs+t/8/MX/AH6P/wAVSfZ9c/5+Yv8Av0f/AIquw+dE1j71p/18J/I1s1x+rwa1us83MX/Hyn/LI+h/2q2Ps+uf8/MX/fo//F0AbFFY/wBn1z/n5i/79H/4ul+z65/z8xf9+j/8VQAmgf8AIIh/4F/M1sVyOgwa3/ZMP+kxfxf8sj/eP+1Wv9n1z/n5i/79H/4qgDXrG/5mH/t3/wDZqX7Prn/PzF/36P8A8VWR5Gt/8JBj7TF/x7/88j/e/wB+gDr6Kx/s+uf8/MX/AH6P/wAXR9n1z/n5i/79H/4qgBde/wCQTN9B/MVr1yOuwa2NJnzcxdB/yyPqP9qtfyNb/wCfmL/v0f8A4qgDXorH+z65/wA/MX/fo/8AxdL9n1v/AJ+Yv+/R/wDiqAI9F+/e/wDXy/8AIVt1x2jwa2XvMXMQ/wBJf/lkfQf7dbP2fXP+fmL/AL9H/wCKoA2KyL7/AJCdl/vSf+gmk+z65/z8xf8Afo//ABVZN7Brf9pWQNzF95/+WR/un/boA66vi39pH9ivwj8bfFFl8avh5q118O/ivokXlaZ4w0dF+0mEZ/0W+gbEWoWTE5a2nyAfmjaN8OPrr7Prn/PzF/36P/xdL9n1z/n5i/79H/4qgD8/vhb+2X4s8JePrP8AZl/bi0m28E+PdS3Q6HrFozN4a8UlQf8AkH3EmDDdkcvp8585esbTJ89foRpAI0q1B4IiT+QryT40/BLwN8fvhrqfws+M+laf4j8PalHi4sry33oWT5kdTvDJIjANHIhV0YBlIIBr849O8d/tEf8ABN3TLLT/AI2apffEj4EJEoi8XyxPeeIfCqHlU1dEy99YIDgXyKZ4VH+kK65moA/YeiuN8Oa5F4x0Cy8V+EtXstT0vUYUubS8tMTQTwyDcjxujlWVgcggkEVtfZ9c/wCfmL/v0f8A4qgBLX/kN3n/AFzh/wDZq2a5G1g1r+2rwC5i/wBXD/yyP+1/t1rfZ9c/5+Yv+/R/+LoA2KydX/1cH/XeL/0IUn2fW/8An5i/79H/AOKrJ1eDXPKgzcxf6+L/AJZH+8P9ugDraKyPs+uf8/MX/fo//FUn2fXP+fmL/v0f/iqANisfQv8AkH/9tZf/AENqX7Prf/PzF/36P/xVY+hwa2bDi5iH72X/AJZH++3+3QB19FZH2fXP+fmL/v0f/iqT7Prn/PzF/wB+j/8AFUALL/yHYf8ArhJ/6Ela9cjLb65/bsP+kxf6iT/lkf7yf7Va/wBn1z/n5i/79H/4qgDXrI1//kC3X/XNv5Un2fXP+fmL/v0f/iqyteg1saLdf6TEf3bf8sj/APF0AdWv3R9KdWMLfXMD/SYv+/R/+Kpfs+uf8/MX/fo//FUAbFZGm/8AH3ff9dh/6AtJ9n1z/n5i/wC/R/8Aiqy9Ig1gX14ZbiMqJxuAjIJGxf8AaoA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigD//1/7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBW0P/AJAtp/1xT+QrUrL0P/kC2n/XFP5CtSgAooooA57TP+Q5qX1i/wDQa/nR/wCC8Gl6T44/as/Ye+GGtLvt9Q+LEd26nofskBZcj2Ygiv6LtM/5DupfWL/0Gv5yP+C1cn/Gx/8AYKh9fiHdtj6Qp/jQB/SxRRRQBg6z/wAfVh/18D/0Fq3qwdZ/4+rD/r4H/oLVvUAFFFFAEc3+qb6Gsrw9/wAgO1/65rWrN/qm+hrK8Pf8gO1/65rQBs0UUUAFc9Z/8jHef9cov5tXQ1z1n/yMd5/1yi/m1AHQ0UUUAFYOvfctf+vmL+db1YOvfctf+vmL+dAG9RRRQAU1/uH6U6mv9w/SgDF8N/8AIFh/4F/6Ea3Kw/Df/IFh/wCBf+hGtygAooooA5+L/kZ5v+vdP/QjXQVz8X/Izzf9e6f+hGugoAKKKKAMHxGcWCf9do//AEIVvVg+I/8AjwT/AK7R/wDoQreoAKKKKAEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAK8j+Kt82meGdd1BDgw6Rctn6CvXK8V+NFncah4J8R2VqC0kujXSqB6kVFT4JW7HTgkniKaltzL8zwv/gnQQ37IHhNx/FHOfzlavtDU7NNR0240+QZWeNozn0YEV8L/wDBNDVbfVP2P/DUcBybRriBx6Msh/xr72rmwDTwtL/CvyPX4qThneN7qrP/ANKZ/Mn8FbXx948+LUv7AL6hPpPhuHxDqN5qLW7bJJrePLeWCOQGCg496+r9R+GfhL9j/wDbr8F+DPhBHLp+heMdPlhvbQyM6vIhADncTzkg/hXjPxN1/wD4Zl/4Knr4zFibq31xkYJu2Z+2J5LNnGPlIzivb9V1hv2rf+CgsfiDwg5Ph/4bWkkL3qDKtcMcEKehw+Mf7pr5rDxjH3N6saiS7qK7eVr3/E/Zs2rVqtsR8OCq4SVSf8sqkk1d95c7jy31002Z+xviPxp4Q8G2sd54s1O102KRgiNcyrGGY8ADcRya6SOSOWNZYmDKwBBHIIPev5i/2qfhv8OR400jwqnxB1T4j+I77VWE4RzcLp1sj5dREhcl/wCEAY+lf0c/C7UbTVPh9pNxYWd3YQJbRxRQX0RhuFSMbV3o3IJAzzXv4LHSr1Z05RS5bdb/AJaH5VxFwxSy3BYbFU6rm6nNe8HBJLZq/va67pbX2tfvqa6h1KHoRjivi3xv8cvGmg/tneEvgpo7JcaPq2mXNxewhMvEyDKSbuw4xivtSu2nWjNyUejt/X3nzmMy+rho0Z1LWqR516Xa1+aZ8ofDf9ln4WeHvGWqfEm8W71nV7x54Fm1Kdrn7PDKTuSINwinOPXFfIT/APBMS5j8eNptj4xnj+G02orqcnh3acGVTu2A5xtz+nav1M8O/wDHtP8A9d5P510FYVMvw80lKG2v+d+9+tz1MHxZmuGlOVKu7ySWtnZLa10+Vxu7NWau7bnwH/wUOtPGVr+zBP4Z+G+lXF7DPPbWt1BYoXkSxDAOFUc/dGK+avCXwq/aG/at/wCEY0HxNop+Hnwu8LyW09tYTYN9eNa4MZYfw8jPYc96/Yue4t7WJp7p1jRRksxwAPqa/OP9pX/grt/wTl/ZLaez+NXxY0Gx1G3yG0+C5W5vNw/h8mIs+fwrOtl8atV1JSdmkren428jqy/iupg8CsNRox9opSkqju2nJJNpfDzJLSTu1d211Pyw/ac1PW/iF8e9b8J+IdO1C4+IP/CQW0GguA4jttPRgcx44+bqTX9LXh+2vrPQLG01R/MuYreJJmzndIqgMfxNfyreL/8Ag43T4yeLkH/BPf8AZp8dfFy/ETR2+qvppsrQljwQxV5cA9cqo96nt9c/4Oiv2yYCtlpXgr9nbQrwcS3Z+26nHG44O3MuHXvujX6UYPAuhOpNyu5eVu+/d67hxFxMszw+Fw0KPJGkn1vq1Fe7ouWPu35ddW3fU/qn1PWdI0W2a81i6itYkGWeZwigfUkV+Z37RX/BZ/8A4JkfstzT2Hxa+L2gw39tkPZWU4vbkMP4THBvYH2Ir8l9C/4Nu/ir8c1Go/8ABRv9qTx38S5ZSWm07TLg6bp7BuqFMsCM/wDTNfpX6Pfs9f8ABAr/AIJP/s3+Rd+FfhFpWt38BBF5r6nU5Sw7lZt0ZPf7legfJn53ePf+DnP4U/EppfC37DHwU8e/GK9kyiXFnpzWdkJAeAzyAvg9ciM1gyftB/8ABz1+1nbi3+Enwk8KfArSbgYW+8QXS3V5Gp5DeWSTnH/TE1/T9b+DfCHgfwu+k+C9LtNItYlCpDZQJBGoHAAVAAMCu6h5hU+woA/k/tv+CGP/AAVS/aLvft37cf7aGvGwuebjSfCVv9jjw33kWRTCFA7fu2r6F+GX/BrN/wAEt/C13FrvxZsPEPxM1hV2y3viPVZZXlPYsIynT61/R/RQB+dHwm/4JGf8EzfgkFPw7+CPhK3dQB5lzp0d6/HfNyJDn3r7T8C+C/BvhSO4s/C+kWWmQwTFI0tLeOFVUAcAIAAK9ErA0P8A1t7/ANfDfyFAG/RRRQAV/O5/wcH2t7feHP2ebO1ztk+KWjB/ThwRX9EdfCn7bv7HmiftjReA/D+taq+kf8Ij4lsvEkUkcYlMj2Db/KwSMB+mecelAH3XRRXj3xv+Onw7/Z+8FS+OPiJefZ4AfLghQb5riY/djiQcsx7AVvhsNVxFWNChFynJ2SWrbM6tWFODqVHaK3bPWLy9s9OtZL6/lSGGJSzu5CqoHUkngV89TfFqz+MfgnV5/gLqMF1JYXCW73k0Tm1YA/vPLbAEmBkZUkZr5P8AD3w5+OP7bN7F4v8Aj8lx4P8Ah3vEll4XiYx3l8gPyteuOVQ/88xjPev0Pj8O6F4S8Gjw54Ys4rCws4RFDbwIEjRF6AAcV7ONwWGy9KnOaqYhNXSs4Q8m9eeXdR91d5PRcNCvVxT5ox5aXRvSUvNL7K9dX2R8weL/ANgv9l34leLk+Inivw3HLqUu2ScxyNHHO+B8zopAJPfpnvX13o2i6T4e0m30LQ7eO1s7VBFDDEu1EReAAPSrNj/x5xf7g/lVqvmqdCnBuUIpN72W59Bis0xmJpwpYitKcYaRTk2l6J7HJa34A8CeJYJLXxHolhqEUow6XNtHKrD3DKQa+LPin/wSp/4JvfGhSPiL8E/CF4zZJeHTIbVyT3LQCMk+5NfoBRWpwn85nxB/4NgP+CSXxE1K61Hwv4P1HwVqEDnybnQtTmhaNiOGUOXAI7V806r/AMG437VfwYkW+/YY/bH8deE/LJZbLXWbUYS3uwcAD28pq/qt0r/j9vf+uo/lW5QB/JfD4N/4OqP2S2M2la54J/aA0e248q48uxvWjT0OLclm/wCB/StjSP8Ag5B+MH7PGpR+HP8Agpd+zJ4y+Gew7JtY06E6hp4I6t91Wxnpt31/VxWTrWg6H4jsH0rxDZQX9rKMPDcRrLGw9CrAg0Afk5+zr/wW4/4Jifta6vplj8KvixpEWpSsQNP1SQ6fdbmGAuy4CEt7DNfrRpmsaTrVst7o91FdQuMq8Lh1I9iCa/HX9qb/AIIPf8Er/wBqLUlufG3wp03RtSvS5fUPD4/sufdj72IQIyc85KZz1r81Na/4Nxf2jv2dpBqn/BNL9qvxl4BWFt0Wka5KdQsAB91Bj5VUf9cTQB/WNRX8lN/8cP8Ag5+/YkjH/Cxvh54W/aF8PWvDXegEw6iyLxny1KsWI5OISK9J+Gf/AAdDfAfw3rMHgr9vP4U+NfgbrDsI2l1bT3msd3fEiKHAHUlowPegD+n7Vf8AkGz/APXNv5U3SMf2ZBj+4K+LvgZ/wUW/Yd/au0lv+Gf/AIoeHfEs80LOLa1vojcAY7xFg4/EV9oaOyNpduyEEFByKANKiiigArA0z/kK3/8AvJ/Kt+sDTP8AkLX/APvJ/KgDfooooAK4Hx74q8O+Dra11zxPeRWNpDIWeSVgoAx715r8d/2gNI+D9nBpWnwNqviHUfkstPi5d2PAZgOQufzrwHQf2cfF3xM1mx8eftMX7301xJui0eJittbqRkBgOp9cfnXzePzyp7d4HLaftay+K7tCF9ueXftFXk/JantYTK4eyWKxs+Sk9uspf4V2/vPQ6TU/2yj4l1B9F+Bfhi+8VTKdv2gKYbcH/eIJP5CqTeJv28dX/wBJtPD2j6ejchJZgzD6/PX2xoegaH4a06PSfD9pFZW0Q2pHCgRQB7CtesFkOPrrmxmYTT7UlGEV6XUpP5yNnm2EpPlw2EjbvNuTf4qK+SPgpr3/AIKAHpY6EP8AgY/+LrNvdH/b91+B4Lm/0fSIyDueIKxx3xnfX6D1Xu/+PWX/AHG/lSfCaeksdiGv+vlvySf4jXEDXw4Win/gv+bZ+fXh79ijUPGXka18cvFt7r/RhaxsUhHtk/0UV9YJ8E/Aml/Dy++G/hG1XRrO+haF5LYAS4bqSxySfrXpOif8gmD/AHBWpXdgeGMtwin7KiuaSalJtyk097ybcvxOTFZ5jsQ4+0qaRd0kkoq391WX4HJeBfBWifDzwpZeD/DqbLSxjEaZ6nHUn3PU11tFFe1SpQpQjTpq0UrJLolsjzKlSU5Oc3dvVs52x/5GG9/3I66Kudsf+Rhvf9yOuirQgKKKKAMHXelr/wBfC/yNb1YOu9LT/r4X+RreoAKKKKAGSf6tvoaxvDf/ACBYPpWzJ/q2+hrG8N86LAfagDcooooAK522P/FTXI/6ZR/1roq522P/ABU1yP8AplH/AFoA6KiiigArE13/AI94f+uyfzrbrE13/j3h/wCuyfzoA26KKKACiiigDA8M/wDIJX/fk/8AQjW/WB4Z/wCQSv8Avyf+hGt+gAoor4/+IfxD8d/Ef4oTfAn4SXQ0wWESy6xqu3c0Ct0jiHTeR3PT8K87Msyp4OnGUk5Sk1GMVvKT2S2XRtt6JJtnZgsFPEzcYtJRV5N7JLq/ySWreiPpWbUdPg8VeXNPGjfZhwWAP3jXUqyuu5CCD3FfMWifsz/CrTdZEGsWs2s3LQB5Lq+nkklZyxyc7gB+Ar33wv4W0fwfpY0XQldLZWZlR5Gk27ucAuScegzTwlXGzd8TSjFeU3J/P3UvubDEQw0V+5nKT84pL/0pv70dFRXzlrn7TXgaw1XUPD/h601DXtQ0ydre4t9Ot2mKMoGckfKB269RV34YftFeEfiT4jn8GSWd5omtQJ5v2LUYvKlaP+8vJBA71zwz/LpVo4eNeLm3Zdm+19r6bXuayyjGRputKk+VK79O9t7eexyH7UerXNnd+A9LtZGjN54kttwUkbljViQcdRX1cOgr4P8A2qdcsrf4y/Dex1CZYbeyuLjUZ2Y8LHEoG4/Tmuq+FH7XWlfEz4jR+C20efT7PUUlk0q8lPy3awkhiBgY6Ejk14uGzzCUM1xVDEVbSnOEIrXdQh92skruyu7bnqVsqxFXAUKtGF4xjKUn/wBvy+/SN9Omp9j0V4X+0B8btJ+Bvgk6/cx/ar+7fyLG1X70sx6e+B3rw39lD45/Fv4r+LPEOj/ECC1+zaakRWS1UhY5nzmInJBIHX0NepiOJMFRzGnlbbdafRK6Wja5n0uk7ffscFHJcTUwU8eklTj3dm9UtF1s2j7mrC8P/wDHnL/13l/9CNedfEz48/DH4R31jpnjfUVtri/YLHGAWYAnG5gM4X3NfJPxG/aJ8eeKfGR+B/7OEaXOptLI93qOA0UCsx6HpwCMscjPAyaWZ8S4DBKSnPmqJqPJH3puUtoqPd+Y8DkmLxTi4w5YNN80tIpLd37I/RivjL4w/tl+Fvhr4iuPDHh7TLjxDcaanm6i1sQI7VAcHcxyM89OnvXybrv7Svxw+B1l4l+DHxEnbU/EBRF0q/Vf+e5GTwFyMHKcdeDVr4qeFtH+A/7OEHwwtT9s8aeOpYjeHO6Zy7BmHrtDYQepJNfFZtxxVxGGq/2delKlFuo5JOUJXcY0ktU5Tkt9Uo6rV6fT5dwtTo1qf1y1RVGlBRbtKNk5Tb0ajGL8nfyR+qPg7xRp3jbwrp/i3SdwttRt47iMNwwWQZwfcVYl/wCRih/64P8A+hCsL4ZeGn8HfDzRPC0v37Cyhgf/AHkQA/rW7L/yMUP/AFwf/wBCFfpmElUlQpyrfG0r+ttfxPh8QoKrNU/hu7el9DcoooroMQrD8S/8gK5/3f6itysLxL/yArn/AHf6igDcHQUtIOgpaACiiigDB0Hpef8AX1L/AErerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/AOQPP9B/MVsVj6//AMgef6D+YoA2KKKKACsjSv8AW3n/AF8H/wBBWtesjSv9bef9fB/9BWgDXooooAxtQ/5Cdh/10f8A9AatmsbUP+QnYf8AXR//AEBq2aACoLr/AI9pP90/yqeoLr/j2k/3T/KgCpo3/IItf+uSfyFaVZujf8gi1/65J/IVpUAFZFv/AMhu6/65xfzateuF8S+LPD/gW21bxb4quVtNPsbeOSaV+gALcDuSTwAOSeBUVKkKcHUqO0UrtvRJLdsqEJTkoQV29Ei5458deGPhx4auPFvi65FrZ2w5PVnY/dRFHLOx4VRyTXz9o/gXxj8eLuLxd8Zon07w6GEth4bzjzFHKyXxH327iH7q98nNS/Dzwh4g+Lnie3+NvxXtWtre3Jbw9o0vS0jbpcTL0M8gwQD/AKscDnp9VV8/SozzRqtiE1h/swenP/emuz+zB9NZ62jH151I4Fezou9b7Ul9n+7Hz7y76R01fyT8Spk+Ivxb0T4Q6Ui/2N4Ze21XWAo/dl9wFpb4HHXMhHoor62r57+Fnw71XwL4f1C/8VFZNb1zW3vr2ZG3B9022IA9lWIKAO3NfQldeT0KihPFV42qVXdr+WK0hH5R3/vOT6nPmNWDlGhSd4QVr93vKXze391LsFFFZ2saxpHh3SbrX9fuobGwsYnnuLm4dYooYowWd3diFVVUEliQABk17B5xBohxYMT082X/ANDavzK8VftE/Fr9tjxdqvwR/YZ1P+w/B+jXb6d4p+J3lCWJJE+Wex0AMDHdXiH5Zbsh7a1bIHmSjYvCQXXxM/4KfXb6N4SvL3wl+zVHLMt3qduzWuq+PQWYGK0cbZbPR+oe4G2e9HyxFISXf7R+J3x2+AP7EngzQ/Bt9pNzo2gWdoINPtdH012s7W3t8IsY8tRFEAMBVJFZ1asKcXOo7JdWdWDwVfF1o4fDQc5vZJXb+R8vfEj9lH4JfD3wv8Nv2HPhbpP9n+H/ABVrV5qmtSNI815fLZQPNPc3dzIWluLiedoy8srMzHvwAPoL9irxxrXiX4ZWvgrxg7N4h8Cz3vhrU9/3mksHRI5PcSRbGz35r5Og/bO8J/EL9qLTviX4P8H+LNd0/SPC8kNpBa6YTMZtRuAfN2lgBE8cO1XzhiCB0Neaaz+1v4q/Z6/aL8S/Fe9+GmtaTo/jjTUn+w6zNb6azXumriadWZ3UhodgK/fZsYBrxPrtGNZ4jm0bs9G9LK2395fiz9K/1azCtl0cp9laaiqkU5Ri/ac8uZWbW9KSb/69o/dKmSOsaNI/CqCT9BXgX7M3xk8UfHr4U2vxM8UeF5/CZv5HNra3EoleW2wCk33UKh8nAKg4GehFfQFe5TqRqRU47M/NMXhKmFrzw9ZWnFtOzT1W+qun8meLaHN438STar41113sNIltXg03S2QB9nU3M5I3CSTGEjyAifeyzEL7On3B9Kzdc/5A13/1yf8AlWkn3B9KcY2VrkV6vtJcyiktkl2/Xzb1Y6iiiqMTH03/AI/r7/rqv/oC1sVj6b/x/X3/AF1X/wBAWtigArH1Uf6RYn/p4/8AZGrYrH1X/j4sf+vj/wBkagDYooooAQ9DWVoP/IFtP+uSfyrVPQ1laD/yBbT/AK5J/KgDWooooA+Ef2oNM8W+B/i74N/aa8H6Xca1F4TjnsdasbJDLdSaXf8ADyRIOXaB1DlByRmvTvA/7ZP7PPxF1ez8O+Fdamm1G+kWKO1ewu45VduzhoQEx3LEAdzX0RH/AMh+X/rgn/oTVsVzKjONRyhKyerTV9dtNVbReZ7LzHD1cLToYmk3OmmoyjJR0bcrSThK9m3azi7O3RHyp8bfhZ40+Ifxy+F2vW9vHdeFvDF9e6jqKGVUdbsQhbSTY33wjFzgcgkHpXCfEb9iT4c698XLf4zaXqN/pKPqVnqeq6RauBYaleWrgwzSoRw6k5Zl+935yT9zVja//wAgxv8ArpF/6GtEsJSk25q93f5pW/T8x0OIMbQhThh58ijBw06pycne903d6OyatG2qTPMvgp8Mb/4V6Vr2lXtzHdJqmv6lq8BQEFIr+UzBGz/EpYg44rwb9sbxJdeMoNE/ZV8GN5uueOrmIXoTk2eiwSK93PJj7oZV8pM43MxA5Ffb9crpngjwjo3ibUvGemadBDq2riJby7Vf30ywrtRWbrtUdF6d8ZoqUL0vZQ0Wz9Ov+X4k4PNFDGvH11zTXvR7c/2W/JP3rdbW0TbXSwQxW0KW8I2pGoVQOwHArz7xNqmvaH8P/EOteFbYXmp2cN9PaQEE+bPGrNGmBydzADivRqx9F/1U/wD18S/+hGuhq6seVTmozU5K9nez6+R+Lfws8WT/ALUVz8Jfhz4Nj1XVpvDetR+LvGms6jbywxR38auxt1aQAFjK5RUQbVRVxwDX6z/HL4eXHxa+Dnib4Z2c62s+uabcWcUzjKpJIhCswHOA2M47V6oAB0pa48Pg+SEozd29H00tbz/Pc+gzbiB4nE0q2Gp+zjTbcVfmfM5ObbdorfRJRSUUl5nyR8UPiB4m+Cv7Msnjbx2sFvrujaDKjpayGWI3xRYowjMqFt0pXHyg845r2j4J+D5Ph98HvC/gifJl0rSrS2lJ6mSONQ5P1bJrT8ceDvC3jxLbw34z0+DU7CRvNa3uEEkZeFkkQkHjKuoYe4rvK3jSanzN6JWX6/oedWxsJ4X2MY2k5uUu1rJRS66Xn96MTxJ4a8P+MdBu/C/iuyh1HTr6MxXFtcIJIpEbqGUggivmzw9+xb+y18O9bj8deC/Bdhp+q6eHltbiPeTC5UruRWYqDgkDA4r6uqjqf/INuP8Ark/8jVTo05tSlFNra6MsPmOLoU5UqFaUYy3Sk0n01SdnppqeX/GH4W2Pxs+DerfCvUbp7KHWrMQNPGodozlWDBSQDggcZr1OwtEsLGGxjJZYY1jBPUhRjmlsv+PKH/cX+VWqrkXM59dv6+8weIqOlGg37ibaXm0k381Ffcct42l8Yw+EtQk+H0VrPrYhb7El67R25mP3TIyBm2jqcDJ6e9eEfsyfAk/BLTdbk8Q6i2veKdfuxqGt6q67TcXMi52oP4Yowdsa9h9cV9QVj2P/ACFb7/ej/wDQRUulFzVR7rb+u5tTx1WGGnhYaRm05d3bZN9k9bbN6u9lbYooorQ4zG1j71p/18J/I1s1jax960/6+E/ka2aACiiigDH0D/kExf8AAv5mtisfQP8AkEw/8C/ma2KACsb/AJmH/t3/APZq2axv+Zh/7d//AGagDZooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/18v/IVt1iaL9+9/wCvl/5CtugArIvv+QnZf70n/oJrXrIvv+QnZf70n/oJoA16KKKAK93/AMesv+438qp6XGkui28UqhlaBAQRkEFRwauXf/HrL/uN/Kq2j/8AIJtf+uKf+gigD8vPFnwE+Mf7DHiS++MH7D+kt4k8AX9w974l+F6SCPyy5LTXvh0thILknLyWDFbe5OfLMUpy/wB5fAf49/Cn9pX4aWPxZ+Dmqpquj3peMna0U9vcRHbLb3ELgSQXELZSWGRVdGGGAr2Kvzm+PP7KXj7wJ8StT/bB/Yea30z4i3kcZ8QeHbqXyNF8ZQ24wkd3gEW98q5W3v0XcvCTCSLhQD9ALX/kN3n/AFzh/wDZq2a+Vv2WP2oPAH7Umgal4m8Kw3Wj6zpEkWn+IPDuqIINV0TUkDGS1u4cnawzlHUtFKhDxuyEGvqmgArJ1f8A1cH/AF3i/wDQhWtWTq/+rg/67xf+hCgDWooooAKx9C/5B/8A21l/9DatisfQv+Qf/wBtZf8A0NqANiiiigDIl/5DsP8A1wk/9CStesiX/kOw/wDXCT/0JK16ACsjX/8AkC3X/XNv5Vr1ka//AMgW6/65t/KgDVX7o+lOpF+6KWgArI03/j7vv+uw/wDQFrXrI0z/AI+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKp6gyixnBP8Ayzb+VXK53WdC028guLm4Ri7RtkhmHQY7GgC5obr/AGLacj/Up/6CK1N6+orjtD8M6QdFtMo3+pT+Nv7o961P+EZ0f+43/fbf/FUAbu9fUUb19RWF/wAIzo/9xv8Avtv/AIqj/hGdH/uN/wB9t/8AFUAR6ay/25qXPeL/ANBr+bz/AILVSg/8FNf2BoAevj6+P5RRf41/RPpvhrSP7c1IeW3WL+Nv7v1r+bL/AILSaZp9r/wVO/YFsoVYCXxtqJbLE/dSD1PvQB/UVvX1FG9fUVhHwzpB52N/323+NH/CM6P/AHG/77b/AOKoATWXX7VYcj/j4H/oLVvb19RXCaz4Y0f7VYfI3/HwP42/ut71vf8ACM6P/cb/AL7b/wCKoA3d6+oo3r6isL/hGdH/ALjf99t/8VR/wjOj/wBxv++2/wDiqANmZ18puR0NZXh51/sO15H+rWq83hjRzC42N0P8bf41leHvDOj/ANh2vyN/q1/jb/GgDtt6+oo3r6isL/hGdH/uN/323/xVH/CM6P8A3G/77b/4qgDd3r6iufs2X/hI7w5H+qi/m1P/AOEZ0f8AuN/323/xVc/Z+GdI/wCEjvBsb/VRfxt6t70Ad7vX1FG9fUVhf8Izo/8Acb/vtv8A4qj/AIRnR/7jf99t/wDFUAbu9fUVg68ylLXkf8fMX86X/hGdH/uN/wB9t/8AFVg694Z0fZa/I3/HzF/G3r9aAO73r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqgDd3r6imu67DyOlYn/CM6P/cb/vtv/iqa/hnR9h+Run99v8aAH+G2UaLDyP4v/QjW5vX1FcN4b8M6P/YsP7tv4v42/vH3rc/4RnR/7jf99t/8VQBu719RRvX1FYX/AAjOj/3G/wC+2/8AiqP+EZ0f+43/AH23/wAVQAyJ1/4Sebkf8e6f+hGug3r6iuCi8M6P/wAJNN8jf8e6fxt/eP8AtV0H/CM6P/cb/vtv/iqAN3evqKN6+orC/wCEZ0f+43/fbf8AxVH/AAjOj/3G/wC+2/8AiqAE8ROv2BOf+W0f/oQre3r6iuE8R+GdH+wJlG/10f8AG394e9b3/CM6P/cb/vtv/iqAN3evqKN6+orC/wCEZ0f+43/fbf8AxVH/AAjOj/3G/wC+2/8AiqANwuuDyK5fTdU03SNCkv8AVJ47aCN5WaSRgqgBj1JqzL4X0lo2VFZSQcHe3H/j1fltH/wTw8b/ABU8R3158cfiNqGqeGZL2aaDSrQtEuwucK5PAx04BrnxFWpBJUoczfmkl6/8BM9fKcFg8RKTxuJVKMf7spSl5RS0v6tI+9PBf7TfwH+InjaX4d+CfE9lqWsQqztBBIGOF64I4OO+Ca913r6ivwz/AGbPgp8M5/8AgoRrVp8IdMFh4Z8A6d9llKOx8y7cFSSxJJYlv/HTX7X/APCM6P8A3G/77b/4qscBiKlanKVRK6bWmzsd/FWU4TL8TSpYOUnGVOE3z25k5K9nbRaWdul9zd3r6iuW1C2h1DVpbGUgpNaPGfoxAq5/wjOj/wBxv++2/wDiqwD4Y0f/AISVfkb/AI9z/G394f7Vdx80m07o/M7/AIJ3eKrT4U+PvH/7Kniudba/0zV5r3TopTtMtvMc/ID1wNvSv1t3r6ivi79oz9inwD8cJYPGGhXE3hzxhp2GstXtWPmKy8qJBn5lz+Nbn7PGk/HW2t7zwb+0Jp0EtzpoUW+s2Ux8m+Q8ZMZIZHHU8YrzsHGdD/Z5q8fstduz7Nfcz6/iCrhczvm1ColVaXtKb0fNZJyh0lGT1a+JN7Nankv7bX7Cdh+1VeaV4s8PauND8QaZ+5FwwLI8BOSCFwdw6qc17N8Bf2bvBX7MXwk/4Qfwu5uriZ1mvr2QASXMxPLHrgDsM8V9Gf8ACM6P/cb/AL7b/wCKrC8SeGdI/smT5G6r/G3r9a3hgqMazxCj776nl1+I8xrZfTyqpVboQd1HT8Xu0tbJuyP5+fiL8RPi98Fv2lfib8WNB+H0n29Ee2sb54PLs7O1xhp8qAGZ+xyMk195f8E1Pj38SvG+laz8HvizG82q+HkivPtkkvmO8d584Rs9CAwI5PFfWP7UPwCuvjh8DdZ+Gfhi7Gn3t+ieTLKzmMMjBgGGTwcY6V5F+xL+x1f/ALOnhLU7j4iXyar4j1uZZLqaFm2LHENqICcE4HWvKo4KvRxkeWTdPVva2t9PXbU+6zDiPK8w4dqKvShHErkhFLmcrQUUpXeijbnuu76vU9r8IfAxtJ/aD8SfHnxFdx3dzqVtBYadGox9mto8lwSf4mY9u1fR+9fUV+bH7b3/AAUh/YT/AOCfnhp9X/aI8XW9nqToTa6NbTG41K6bssUCMXJJ4yQB71+F1x+0Z/wWe/4K/ObD9h7wm/7OPwmuWKN4t8UBhrF3CerW0Xzbcjuqn/eFe5Tpxgmo92/vPzLFYyriZRlVd7JRXkoqyX9ddT+gr9o3/goZ+xr+xJ4UufEX7Svj/SvDY86Qx20swe6mPpHCmZGJ7ALX4far/wAF9f2vP2wPEU/gj/gk3+zhr3jO1Y7Y/FXiVG0zSlHTzMMB8vcB2Qn0r6V/Yw/4N1P2Hfgnrn/C4f2glvvjV8RmmZ7nXPFUrXEfnZBLR25JUDPTeW/Cv3u0nwH4S0DTIdF0GyjsbO3XbFBb/uokUdlVSAPwFWcx/LUf+CRP/BYD9u24/tv/AIKO/tMT+DtCux+98J+Ao/IiVCfuNMChORwSWk+lfo3+y1/wb+f8Esv2V3i1fRPhza+LNcQh21XxO39p3DSD+PbL+7BzzkJn3r9if+EZ0f8AuN/323/xVH/CM6P/AHG/77b/AOKoAxdI0Dw94W1O10jwxZW2nWiQMFhtY1ijABHRUAFdvvX1FcHP4Y0f/hJIPkb/AFL/AMbeo963/wDhGdH/ALjf99t/8VQBu719RRvX1FYX/CM6P/cb/vtv/iqP+EZ0f+43/fbf/FUAP8Qsp0iYZ7VqwOvkpyPuiuN8Q+GdI/sibCN0/vt/8VWtD4Z0jyU+Rug/jb/4qgDod6+oo3r6isL/AIRnR/7jf99t/wDFUf8ACM6P/cb/AL7b/wCKoA3d6+orA0R18295H/Hw38hTv+EZ0f8AuN/323/xVYGh+GdH829Gxv8AXt/G3oPegDvN6+oo3r6isL/hGdH/ALjf99t/8VR/wjOj/wBxv++2/wDiqAN3evqK+IP2wv2mNZ/Z58S/DHSvDmmQ6neeOvE9v4fHnyGNII5wS8hIByVUcDue9fSXjrWPht8M/DN14w8d3semabZoXlnnmKKAPqeT7V8T/FH4TeDf25/C3w6+IPgG6m0u20LxDBrtpNeRSKbiO0JDBVJyFlUnDV0rCVnR+s8j9ne3NbS+9r97dDJ1qftPZcy5rXt1t3PtPw/8a/hj4r8e33w08M6tDf6vpsfm3cUH7xYQTjDuPlDf7JOa0fFvwt+HnjvX9I8T+MNNh1C80GRprF5sssMjDBYLnaTjoSDjtWP4A+BXwp+FmmT6R8P9Hi0uC5me4mEJYGSVzkszFssST3Nd5/wjOj/3G/77b/4qta9alSrc2AlKMbWu3aTurPbZPXS700uyKdOc6dsQk32W3lvvbvpr0Ru709RWTrrr/ZFxyPuGoP8AhGdH/uN/323/AMVWTrvhnR/7IuPkb7h/jb/4quE6DqbJlFnFyPuL/KrW9fUVzFj4Z0f7HF8jfcH8ben+9Vr/AIRnR/7jf99t/wDFUAbu9fUUb19RWF/wjOj/ANxv++2/+Ko/4RnR/wC43/fbf/FUAO0plF5enI/1v9K296+orh9K8M6R9tvfkb/Wj+NvT61t/wDCM6P/AHG/77b/AOKoA3d6+oo3r6isL/hGdH/uN/323/xVH/CM6P8A3G/77b/4qgBNSdf7VseR95v5Vvb19RXCal4Z0f8AtWx+RvvP/G3p/vVvf8Izo/8Acb/vtv8A4qgDd3r6ivOPiT8IPhJ8ZNDl8M/Fnw3pfiXT51KPb6naxXUZU9RiRWFdV/wjOj/3G/77b/4qj/hGdH/uN/323/xVAH8+f7Tn/Bsn/wAEwPjLJdeMPhjol/8ACrxEA0kN/wCFrp7dY5OoYQsSuM84UqPTFfG+nf8ABMP/AIL2/sORprP7EP7SkHxR0G2QGLw741i+Zox/AJHLkHHAImUe1f1i6p4Z0f8As2f5G/1bfxt6f71JpPhnR/7Mg+RvuD+Nv/iqAP5TLH/g4J/bp/ZC12Lwl/wVI/Zc8QeG7WNtk3iLw0rXtiUHBkUEbGHc7ZWr9vv2P/8Agrh/wT9/blsY3+APxG0281FgC+l3j/Y7+Mns0E218j6V99ah4K8MatYy6Xq1ot1bTArJDNmSNweoZWJB/EV+JH7Y/wDwbnf8E1P2t7+bxnp/hmX4deL2JePW/C0pspVlPO9oh+7Y57gKfegD93UlikQSRsGVuQQcg1haY6/2tf8AI+8n8q/j+H7NX/BwV/wSfeS++CniG1/aj+F9g3yaLqLyLrcNsn9xiQ5YKMYVpcnoK+u/2Rf+DiX9hr4reNZPhX+1LpesfArxzIyRyaf4sR7a3aYDaVScnaOegfaaAP6Zd6+orjviB410v4feDdR8Y6q4ENhC0uCcbiBwPxPFU/C83gDxtosHiTwfew6pp90gkhubW482J1PQqysQQa+Qf2qtMTxb4z8IfA7RVZRrF0Lm9+diPs8RyQeT15rx8/zGWCwNStSV56Riu8pNRj+LV/I9LKcHHE4qFKbtDVyfaKV3+CNf9l74eal4t1C5/aO+Jy+drOtEtYxyci2tv4doPQkfpX2LrDr9tsOf+Wp/lVex8GaBp1lFYWsRSKFAigOwACjA71k6z4Y0g3tgPLb/AFp/jb0+tXk2VwwGFjQi7y3lJ7yk9ZSfm3+GhGZ4+WLryqtWW0V0jFbJeiO93r6ijevqKwv+EZ0f+43/AH23/wAVR/wjOj/3G/77b/4qvVOA3d6+oqvduv2WXkfcb+VZX/CM6P8A3G/77b/4qq934Z0f7LL8jfcb+NvT/eoA0dFdf7Kg5H3BWpvX1FcdonhnR/7Kg/dt9wfxt/jWp/wjOj/3G/77b/4qgDd3r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqgCKydf+EhveR9yP8AlXRb19RXAWPhnR/+Ehvf3bfcj/jb0+tdF/wjOj/3G/77b/4qgDd3r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqgA1xlP2Xkf69f5Gt3evqK4TXfDOkf6Idjf69f429D71vf8Izo/wDcb/vtv/iqAN3evqKN6+orC/4RnR/7jf8Afbf/ABVH/CM6P/cb/vtv/iqANqR18tuR0NY3ht1/sWDJH3ajk8M6P5bfI3Q/xt/8VWL4a8M6P/YsHyN93++3+NAHdb19RRvX1FYX/CM6P/cb/vtv/iqP+EZ0f+43/fbf/FUAbu9fUVztuy/8JLc8j/VR/wBal/4RnR/7jf8Afbf/ABVc7beGdH/4Sa5+Rv8AVR/xt7+9AHf719RRvX1FYX/CM6P/AHG/77b/AOKo/wCEZ0f+43/fbf8AxVAG7vX1FYuuspt4eR/rk/nTP+EZ0f8AuN/323/xVYmveGNH+zw/I3+uj/jb1+tAHcb19RRvX1FYX/CM6P8A3G/77b/Gj/hGdH/uN/323/xVAG7vX1FG9fUVhf8ACM6P/cb/AL7b/wCKo/4RnR/7jf8Afbf/ABVADfDTr/ZK8j77/wDoRrf3r6iuD8NeGdH/ALJX5G++/wDG394/7Vb/APwjOj/3G/77b/4qgDd3r6iviv4g/s8fEnT/AIj6h8WfgR4jj0vUNU2m8tLpN8MrL3zg/wAuPWvrf/hGdH/uN/323/xVH/CM6P8A3G/77b/4qvNzTKcPj6cYV7+6+aLi3GUXqrprVaNo7sDmFbCTcqVtVZppNNdmmfB114u/bX8G3smo65pmi6kIIMu6zCEeWCeeWwKk+H37RnxW/aRtm8HeDNJGhtGxi1TVfMEkcCHtD/ekYdPTrXXfG39m7xP8YviJbaa2unTfDCWytNbRbjLIwY5BycHJ6ZPHpX0T4A+DHw/+Gnh2Lwz4TtDBbx8sd7bnY9WY5GSa+Pw2T5tPHyorEVY4SOjc5RlKf+C0eaMe8nK76Wep9HXzHL44SNR0abxD1XLGSUP8V3aT8krd77HzJ8I/E/gD4Fx/ES61KT7PY6brIgTPzzTOIYwFHUu7Nn8TXH6t4sj+IP7Y/gi/8OQPDc2WmPJqcbY3wLKjEJIQSNwLLkZr5+1T4EfEn4yfGHxfP8PL2C2h0bX5QyXDkBZCBiQDByQBj14r9A/gR+zL4b+D+lTXOozvqmuagd15fMzAseu1ec7c+vJrw8ohmWZTp4KFH2eEpVObn015KkpWj1u2lHskm3dtJepmEsFgozxUqvPiKkOXl105oJXfyu+7bVrJO/w7+2hY6x8RP2m9C+HWjOyvLZw25Zf4UnclyfYDk16p+0Zo+k/A/wAZfCfxPpa+RpehymwlcdEiIUEsfcMxP0NfXfib4M/Do+Iv+FiGwzq4SK3E5kfITeO2evbNdb4q+FXgLxxor6B4r09b60kwTHIzEZHQg5yD7ivbq8F1Z/2hiOde3rTjKD1aioSjKCfq171vLex5lPianH6pR5H7KnBxktLtyTUmvk9L+fc/KX9q/wAfWf7QPxs8N+CPhRqEd59nUQxzq2IluJGyzBjwdqgHI9OK+sLrxd8Mf2I/hPD4TsZBqmvXP7wQocy3Nw/BdsZ2oDwM9hgc10Hjz9hz4O+JNGtrLwhE/hy7s2LRXNqS7En+9ubJx2OQRUfwn/Yo8CeAtb/4Szxdez+JtVU5jmushYyOhAySSOxJ49K8bDZBn9HM8Ri/ZQdetb99zXjTjZJqMGuZy0sm9HZbK6fo183yirgqOH9pP2VO/wC7taU3dtNyWiWu26162Pgr43/DDxUnwin+O/xluCfFGv30C21qxx9ntsOSu3txjj+Ee5r74/Yj+E+m/D/4S23iS5jX+1tcHnzyMPmVD9xAeuAOT6k10v7RP7NEHxw0vSdNsb/+zlsLrzZdwaQPG2AwHPBwOK9h8G+CtB0vRF022jYRW7vEg3t91CQO/pXq5DwbHBZ5VxkoNxjCKhOTu5zld1JvrzX06aOy0ODNuJXicrp4aMrSlJuUUrKMVZQivLr6rU/O/wD4KJaRp9x4x8F317iyt5vOhuL9Uy0ahkIzjrsyWA/Kui+Anwg+DeleL7f4m+KviBbeK7uzQCzE0oAiI6E72JyvYcAHmvvDxd8Jfh9470ltD8Xact9bE7gkjMdreoOcg+4r5c1f/gnr8B9RnM1mb60B/gSUMB9Nyk/rXLmvCWMhnNTNsNQp1lJxklOUouMopLZXjLa6bV7nRgOIcNLLYZfXqzpOKkm4xjJNN362ku2jtY7vW/2m9Hm+OPhz4SeBXt9VTUPON/PG+4QhVJUAjjPBJ9q+kZWX/hIojkf6h/8A0IV4R8Kv2T/hB8I7ptU8PWss18ylPtE8mXVT1C7doGe9etS+GdH/AOEih+Rv9Q/8bf3h/tV9tkdPMlTqVMzceeUrqMdVCNklG9lfVNt92fL5rPBOcIYFPlirNvRyd227dN7L0O53r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqvbPLN3evqKw/Err/YVzyPu/1FJ/wjOj/3G/77b/4qsPxL4Z0gaFc/I33f77eo96AO4Drgcil3r6isEeGdHwPkb/vtv/iqX/hGdH/uN/323/xVAG7vX1FG9fUVhf8ACM6P/cb/AL7b/wCKo/4RnR/7jf8Afbf/ABVACaEygXnI/wCPqX+lb29fUVwmg+GdHxefI3/H1L/G3t71vf8ACM6P/cb/AL7b/wCKoA3d6+opQwPQ5rB/4RnR/wC43/fbf/FVcstHsNPlM1qpDEbeWJ4/EmgDTooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArJk1i2ikaNkmJUkHETkcehA5rWooAxv7btP+ec//fl/8KyNe1u1OkT4jn+6P+WL+o9q7CsfX/8AkDz/AEH8xQAn9t2n/POf/vy/+FH9t2n/ADzn/wC/L/4Vs0UAY39t2n/POf8A78v/AIVk6Xrdr5t5+7n/AOPg/wDLF/7q+1dfWRpX+tvP+vg/+grQA3+27T/nnP8A9+X/AMKP7btP+ec//fl/8K2aKAOO1DW7X+0rA+XP/rH/AOWL/wBxvatj+27T/nnP/wB+X/wo1D/kJ2H/AF0f/wBAatmgDG/tu0/55z/9+X/wqG51u1NvIPLn+6f+WL+n0rfqC5/49pP90/yoA5zR9btBpNr+7n/1Sf8ALF/Qe1aP9t2n/POf/vy/+FT6N/yCLX/rkn8hWlQBjDW7X/nnP/35f/CvkGXU7H9oL4xMEEk/gzwlKjSARM0d/qkZbaOAcxwZJOeC/qK7f4ueNtf8Z+Jx8APhbOYtSuow+s6jHyNNsn64P/PeUcRjqPve9exeBPB/h/wBZJ4O8LQC2sLC2hjiQdeC+ST3ZjyxPJJzXz1eX9pYh4eP8Cm/ffSclqoLuovWfnaGvvpexSX1Kj7aX8Wa91fyxe8vV7R8ry/lZ0v9t2n/ADzn/wC/L/4Uf23af885/wDvy/8AhWzRX0J45x2t63aG2i/dz/6+H/li/wDfHtWx/bdp/wA85/8Avy/+FLrf/HtF/wBd4f8A0MVV8XeLvC3gDwtqPjjxvqFvpOj6RbyXd7e3cgigt4IVLPJI7EBVVQSST0oAx/FvxJ8F+AfC2o+N/HF6ukaNpNvJd3t9eKYbe3giUs8kjsAqqoBJJNflxH4f8U/8FOtcsvGHxYsNR0H9niwniu9I8NXFvLBeeNJIjujvNUjIDR6UDh7excBrkgSXAEe2I9B4N8IeLv8AgpN4o0/4yfGfTrjR/gVpNzHe+FPCd7GYp/E80LbodW1aJuVtAwEllYuPn+WecZ2Iv6wABQFUYA6CgDi/Dmp6bZ6Slpa28sUUTyIiJAyqqqxAVQAAAAMADoK1LvUNKv7aSyvraSaGVSjxyW7MrKeoIIIIPoas6H/x4n/rrL/6G1bFA07ao/EPWtXb9kT4w/Ej49fCFbLTvCGnanpmk6h4cmRoRel7dZpDZuc+XOjzFkiACMC3Ary34u+LvHP7UXg4ftl+Jvs58N+AtTjudM8KrGLjbbW1xEt21+xGBM0fPl8AKPz+yP2a/wBmu7+JPxY8R/tK/Gsrf23/AAkWpT+GtKMhktbYxzNbvdNGVAMreSAhOcKAeuMdR+0n+y54si1/WfiV+zUltHqviTT7m18Q6BcnZYa1BIuxm7CK5AfKycBiPm75+aeFqyoykk/Zu7Ueu7albstPd+e+h+yQzzAUMfSpTmnioqEZVmtLKMYypN92k06z1TfJdQXMvvTR/Fui6xpFpq+kiV7W7hjmhZYX2mORQykYHQgitH+27T/nnP8A9+X/AMK8H/ZB8OfEHwf+zR4N8JfFK2a01zTNPS1nhd1dkWElYwxUlciMLnBNfSNfQ0puUIyas2lofkuPw8aGJq0YTUoxlJJrVNJtJp9nuclret2n9jXX7uf/AFT/APLF/Q+1aSa3abB+7n6f88X/AMKn1z/kDXX/AFyf+VaSfcH0rQ5DI/tu0/55z/8Afl/8KP7btP8AnnP/AN+X/wAK2aKAOP07W7X7dffu5/8AWr/yxf8AuL7Vr/23af8APOf/AL8v/hS6b/x/X3/XVf8A0Ba2KAMb+27T/nnP/wB+X/wrI1PWrU3FliOf/j4/54v/AHG9q7CsjVP9fZf9fH/sjUAN/tu0/wCec/8A35f/AAo/tu0/55z/APfl/wDCtmigDFOt2mD+7n/78v8A4VlaFrdp/Ytp+7n/ANUn/LF/T6V1x6GsrQf+QLaf9ck/lQAz+27T/nnP/wB+X/wo/tu0/wCec/8A35f/AArZooA4+PW7X+3pf3c/+oT/AJYv/eb2rX/tu0/55z/9+X/wpY/+Q9L/ANcE/wDQmrYoAxv7btP+ec//AH5f/CsfXdatTprYjn+/F/yxf++vtXY1ja//AMgxv+ukX/oa0AH9t2n/ADzn/wC/L/4Uf23af885/wDvy/8AhWzRQBjf23af885/+/L/AOFZGja3aiGfMc//AB8S/wDLF/7x9q7CsfRf9VP/ANfEv/oRoAT+27T/AJ5z/wDfl/8ACj+27T/nnP8A9+X/AMK2aKAOPutbtTrFn+7n+7L/AMsX9B7Vr/23af8APOf/AL8v/hS3f/IYs/8Adl/kK2KAMb+27T/nnP8A9+X/AMKpanrdqdNuP3c/+qf/AJYv6H2rpqo6n/yDbj/rk/8AI0AZdlrdqLOIGOf7i/8ALF/T6VZ/tu0/55z/APfl/wDCr9l/x5Q/7i/yq1QBjf23af8APOf/AL8v/hWPY63a/wBqX37uf70f/LF/7o9q7Gsaw/5Ct9/vR/8AoIoAP7btP+ec/wD35f8Awo/tu0/55z/9+X/wrZooA47V9btd1p+7n/4+E/5Yv6H2rY/tu0/55z/9+X/wo1j71p/18J/I1s0AY39t2n/POf8A78v/AIUf23af885/+/L/AOFbNFAHH6DrdqNJhzHP/F/yxf1PtWv/AG3af885/wDvy/8AhS6B/wAgmH/gX8zWxQBjf23af885/wDvy/8AhWP/AG3a/wDCQZ8uf/j3/wCeL/3vpXY1jf8AMw/9u/8A7NQAf23af885/wDvy/8AhR/bdp/zzn/78v8A4Vs0UAchrut2v9kzfu5+g/5Yv6j2rW/tu0/55z/9+X/wp2vf8gmb6D+YrXoAxv7btP8AnnP/AN+X/wAKP7btP+ec/wD35f8AwrZooA4zR9btQ95mOf8A4+X/AOWL+g9q2v7btP8AnnP/AN+X/wAKbov373/r5f8AkK26AMb+27T/AJ5z/wDfl/8ACsm91u1/tOyPlz/ek/5Yv/dPtXX1kXv/ACE7L/ek/wDQTQA3+27T/nnP/wB+X/wo/tu0/wCec/8A35f/AArZooA5+61u1+yy/u5/uN/yxf0+lVdI1u0/sm1/dz/6lP8Ali/oPauiu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAV/7btP8AnnP/AN+X/wAKP7btP+ec/wD35f8AwrZooA/OP9p79nDxR4y+IA/aV/ZY1EeEvjF4etIoba6uYJf7L16yUsx0zWI0XMtu5z5Uw/fWrnzIzjcj+t/ssftieE/2lPD+pafqGkX/AIR8d+FZksvFXhLUU3aho9467lDFMpNbzL89tcxkxzR8ghgyr9UWv/IbvP8ArnD/AOzV8cftWfso638Tde0z9ob9nvVIfCPxj8JQPFpGryIWtNRtGO99L1WNPmnsJ2GeP3kEmJYSGBDAH2P/AG3af885/wDvy/8AhWTq+t2nlwfu5/8AXxf8sX/vD2r59/ZR/as0P9pTQNU0jWdMl8JfEDwhOlh4s8KXrhrzSb1hlSGGBNazqPMtblB5c8RyMMGVfpvV/wDVwf8AXeL/ANCFADP7btP+ec//AH5f/Cj+27T/AJ5z/wDfl/8ACtmigDG/tu0/55z/APfl/wDCsjQ9btfsH+rn/wBbL/yxf++3tXYVj6F/yD/+2sv/AKG1ACf23af885/+/L/4Uf23af8APOf/AL8v/hWzRQBx8ut2n9uw/u5/9RJ/yxf+8ntWv/bdp/zzn/78v/hTpf8AkOw/9cJP/QkrXoAxv7btP+ec/wD35f8AwrJ17W7U6LdYjn/1bf8ALF/T6V19ZGv/APIFuv8Arm38qAGLrdptH7uf/vy/+FL/AG3af885/wDvy/8AhWuv3R9KdQBjf23af885/wDvy/8AhWXpGsW0l/eRqkwLTgDMTgcovUkcV1tZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9H+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAOe03/AJDmpfWL/wBBr+Zb/gtbJ/xts/4J+wZ6+L9WbH0W2/xr+mnTf+Q5qX1i/wDQa/l7/wCC116P+HzH/BPbS+8niTXJf++PsQ/9moA/qlooooAwdZ/4+rD/AK+B/wCgtW9WDrP/AB9WH/XwP/QWreoAKKKKAI5v9U30NZXh7/kB2v8A1zWtWb/VN9DWV4e/5Adr/wBc1oA2aKKKACues/8AkY7z/rlF/Nq6Gues/wDkY7z/AK5RfzagDoaKKKACsHXvuWv/AF8xfzrerB177lr/ANfMX86AN6iiigApr/cP0p1Nf7h+lAGL4b/5AsP/AAL/ANCNblYfhv8A5AsP/Av/AEI1uUAFFFFAHPxf8jPN/wBe6f8AoRroK5+L/kZ5v+vdP/QjXQUAFFFFAGD4jx9gTP8Az2j/APQhW9WD4j/48E/67R/+hCt6gAooooAa7KiF3OABkk18gfFH9qH4W/Db4NeIfFWn69YXd7p8Nz5UEU6O7TZIVcAk53V9ezRRzQvDKAyuCCD0INfgd/wUJ/Zu+A3gLwr4Zn8CeHINN1rxT4hW1luYnf7hZmf5SxUZxjgV5+ZV6tGhKpSS07/hY+r4OyzA4/MaeFxkpK7VuVJppXcuZtppWW6T9D2P/gnp8Tvgf8GPgZceM/ih4t0y18ReLb2XUb0S3CGcAk7QwyWB6nB9a+7vBv7Zn7PXxC8Z2ngPwVrZ1LUL1isQggkaPIGeXC7R+Jr5s+M/wJ/ZS/Zh+B1/410Pw34dtdYsrQG1fVVaZJ51HTazMSWPp3r3/wDYo+Ill8X/AID6X8R18MW3hi4uy8TwWsSxxv5ZxvTCg7T2z6Vy4N1aThhHKKaV9E3ddddLM9ziGOBx1PEZ7ClVlGc3FNyhBKTV4pRtJuKSto+lnY5r9rn9tDRP2YLnRvD1npE3iLXdbdhBYWzYk2D+LGCeTgAAc1L+yh+1roP7UGo6okek3WhaxoS+TfWN0PmjLMMYP1BBBAIry/8Aa1/Zn+Nev/GPQ/2lP2epbG58Q6PbNaNZakAYyhzh0JIAYZPcGtT9hr9mnx78D9S8R+Nfi7cwz+KfF8rXd2kB3JEN2duRwSSe3Aq41MX9dcWv3fppa2jv3v0MK2DyCPDqrQknirL7T5+fmd4uGygobS6s/RSiiivXPz8KwvEn/IJk+q/zrB+JPxP+Hnwd8HXvxA+KWtWegaLp8ZluL2+lWGGNR1JZiBX8uH7QH/BaD9qz/goH4s1H9mb/AIIleDZ9ajik+z6n8SdUiMWj2AzgvAZBtkI6hjkHsDQB++/7Y3/BQn9kX9grwO3jn9pvxlZaBEVPkWhfzLy5bssUCZkcn2Ffz2+JP28P+CwX/BXqaXwj/wAE1PBEnwZ+FV45hl8f+KUMN7PAeGa1hIyOOQVDn/dNfX/7Gv8Awb5fBfwN4yh/aU/4KCa7cfH74vXBE8+oa6Wl020kPOy3tmOwqh+7uXHfaK/oa0/TtP0ixi0zSoI7W2gUJFFEoREUdAqjAAHYCgD8KP2Hv+Df39kT9mHxGPjX8dpLr41fFS52y3fiTxYftmJRzmGGQsqgH7pbcR2xX7vwww28K29ugjjQBVVRgADoAB0AqSigDn/Dv/HtP/13k/nXQVz/AId/49p/+u8n866CgAooooAwJ/8AkZLf/ri/8xW/WBP/AMjJb/8AXF/5it+gAooooAxfEP8AyB5vpWrD/qU/3RWV4hONIm+la0P+pT6CgCSiiigArA0P/W3v/Xw38hW/WBof+tvf+vhv5CgDfoyOlcF8Trnx9aeBdQk+GFvDda6Y9tolw22IO3G5j6L1x3rn/g38Odc+Hvhto/Fut3Wv61fMJr66uG+QykcrEg+VIx0AH411xw8Pq7rSqK97KPV935Jd3u9tnbF1X7VU1F2tdvp6eb/L7jx74tfsXfDD46fE60+IfxUvdT1a0sdjQ6JJcY00SJ0dogBuJ75NfSgsLLS9R03TdOiSC3gjaOOOMBVRVGAABwABXVV8U/t5eNfi38PvgLqPif4Hxs/iOJoI4GRd7RpJKiyOFIIO1CT0qsTmWKxFKnRrVG4U1aK6JeS216vd9SaWFo0pyqU4pSlq31fzPtaiszRWnbRrRrlzLIYYy7kYLNtGTj3NadcR0BWTrv8AyCLj/cNa1ZOu/wDIIuP9w0AXLH/jzi/3B/KrVVbH/jzi/wBwfyq1QAUUUUAYelf8ft7/ANdR/KtysPSv+P29/wCuo/lW5QAUUUUAYOpf8hWx/wB5/wCVb1YOpf8AIVsf95/5VvUAFFFFAFDVP+QbP/1zb+VN0n/kGQf7gp2qf8g2f/rm38qTSf8AkGQf7goA0KKKKACvhv8Aae/YC/Y//bg0nVfCX7TPgPS/EqSBUS7lhVL2HK9Y7hAJFI/3sV9yVgaX/wAha/8A95P5UAfyO+Of+CIP/BRz/gnTrz/Ez/gjH8Zby40G3fzj8P8AxVMZrRlHPlws58sg9P8Alk3uTVv4Nf8ABeHQvBv7TOgeFv8Agq/4J1P4EePNKt306ae6tZJdGu3cgCSKcA+WpPOWyuP4q/r2r58/aL/ZS/Z0/a28Dz/Dr9o3wfpni3SZlK+XfwK7x57xycPG3oVYGubFYOliIxjWV1GSkvWLun95vQxNSi3Km7XTT9GrM9J+HXxO+Hfxd8K2vjj4X63Za/pF6gkgu7GZZ4nU9CGQkVt6wM3th/11/pX8n3xO/wCCCX7Yf7DniG7+LH/BEn4w3vhK3Z/tE/gbX5jcaZORyViZwygnp8wU/wC3Wh8L/wDg4V+Kv7NvjLSvgp/wWS+EurfCjW4pRF/wktpbvPot0Rx5mRkop65UsB610mB/WhRXifwK/aP+BX7TXgq3+InwE8Vab4q0e6UMlzp1wky89jtJIPsQDXtlABVe7/49Zf8Acb+VWKr3f/HrL/uN/KgCnon/ACCYP9wVqVl6J/yCYP8AcFalABRRRQBztj/yMN7/ALkddFXO2P8AyMN7/uR10VABRRRQBg67/wAun/Xwv8jW9WFrn/Lpj/n4X+RrdoAKKKKAGSf6tvoaxfDX/IFg/wB2tqT/AFbfQ1i+Gv8AkCwf7tAG7RRRQAVztt/yM1z/ANco/wCtdFXO23/Iy3P/AFyj/rQB0VFFFABWJrv/AB7w/wDXZP51t1ia7/x7w/8AXZP50AbdFFFABRRRQBgeGf8AkEr/AL8n/oRrfrA8M/8AIJX/AH5P/QjW/QAUUUUAYB/5Gf8A7dh/6Ea36wD/AMjP/wBuw/8AQjW/QB8o/Bz4R+OvAfxt8c+LdTlQaLr1wLi2RWBLOxJJI6gqDj3r6uoorgy3LqWBouhRvy80pau+spOT+V3odeNxtTFVPa1bXslp/dSS+dkYHiX/AJBZ/wCukX/oYreHQVg+Jf8AkFn/AK6Rf+hit4dBXecgtFFFABWH4f8A+POT/rvL/wChGtysPQP+POT/AK7y/wDoRoA3KKKKACsOX/kYof8Arg//AKEK3Kw5f+Rih/64P/6EKANyiiigArC8Tf8AICuf93+ordrC8S/8gK5/3f6igDcHQUtIOgpaACiiigDB0Hpef9fUv9K3qwdB6Xn/AF9S/wBK3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f8A+QPP9B/MVsVj6/8A8gef6D+YoA2KKKKACsjSv9bef9fB/wDQVrXrI0r/AFt5/wBfB/8AQVoA16KKKAMbUP8AkJ2H/XR//QGrZrG1D/kJ2H/XR/8A0Bq2aACoLn/j2k/3T/Kp6guv+PaT/dP8qAKmjf8AIItf+uSfyFeWfHH4mz/DTwgr6HF9r17VplsNJteplu5uFyP7qfeY9MD3r0uxu7Ww8PRX17IsUMNuryO5wqqq5JJPQAcmvmX4S21x8aPiHP8AtCayjDSLRZLHwzBIMfuc4lu8dmmIwh67B7142b4qolDB4Z2rVbpP+WK+Kf8A26nZd5OK2uell1CHvYmur04br+Zv4Y/Pr/dTZ6z8GvhZafCvwr9gmmN9q9+5utUv35kurp+WYnrtHRR2FeiW/wDyG7r/AK5xfzatesi3/wCQ3df9c4v5tXo4XC0sNRjQoq0YqyX9bvu929WceIr1K9SVWq7yer/r8l0NeiignHJroMTmfF2padouiPrOsXEVpZ2bpPPPM4jiiijYM7uzEBVVQSSTgCvy18F2usf8FQ/GFt8UvGFtLZ/s6aFdpP4c0i5Qxv42u7dgyaneRsAw0uJwGsrdx/pTATyDy/KU5Xi7UNS/4KdfEibwZosrR/s4eD9UFrrNyuQPHWr2swVrKFujaPaSKRcyDi8mXylJiSQv+v1tbW1lbR2dnGsMMKhERAFVVUYAAHAAHAAoAmVVVQqjAHAApaKKAMfQ/wDjxb/rrL/6G1bFY+h/8eJ/66y/+htWxQBFDBDbxiK3RUQZIVRgc8nge9Zk3/Iet/8ArhL/ADStiseb/kPW/wD1wl/mlAGxRRRQBl65/wAga7/65P8AyrST7g+lZut/8ga6/wCuT/yNaSfcH0oAdRXH+PvEeoeEfB2oeJ9Lsn1CWwi8828YJd0QgvtAySwTJCjkkY71qeGvEugeMdAtPFPhW8iv9Ovo1mt7iBg8ciN0II/yDweanmV+Xqa+xn7P2tvdva/nv/w3fXsyTTf+P6+/66r/AOgLWxWPpv8Ax/X3/XVf/QFrYqjIKx9V/wCPix/6+P8A2Rq2Kx9U/wCPix/6+P8A2RqANiiiigBD0NZWg/8AIFtP+uSfyrVPQ1laD/yBbT/rkn8qANaiiigDHj/5D0v/AFwT/wBCatiseP8A5D0v/XBP/QmrYoAKxtf/AOQY3/XSL/0Na2axtf8A+QY3/XSL/wBDWgDZooooAKx9F/1U/wD18S/+hGtisfRf9VP/ANfEv/oRoA2KKKKAMe7/AOQzZ/7sv8hWxWPd/wDIYs/92X+QrYoAKo6n/wAg24/65P8AyNXqo6n/AMg24/65P/I0ASWX/HlD/uL/ACq1VWy/48of9xf5VaoAKxrD/kK33+9H/wCgitmsax/5Ct9/vR/+gigDZooooAxtY+9af9fCfyNbNY2sfetP+vhP5GtmgAooooAx9A/5BEP/AAL+ZrYrH0D/AJBMP/Av5mtigArG/wCZh/7d/wD2atmsb/mYf+3f/wBmoA2aKKKAMjXv+QTN9B/MVr1ka9/yCZvoP5itegAooooAxNF+/e/9fL/yFbdYmi/fvf8Ar5f+QrboAKyL7/kKWX+9J/6Ca16yL7/kJ2X+9J/6CaANeiiigCvd/wDHrL/uN/Kq2j/8gm1/64p/6CKs3f8Ax6y/7jfyqto//IJtf+uKf+gigDRooooAxrX/AJDd5/1zh/8AZq2axrX/AJDd5/1zh/8AZq2aAPhD9rH9lPxR488TaX+05+zPf2/hj4zeEoDBY30wIsta07dvk0jVFXmS0mOTG+DJaykSxc71f0P9nP8Aac8J/tP/AA9PiDTbO40HxFoeorpfiXw7f4F/ouqQlTLbTgcEYIeKVcxzRMsiEqwr6sr84/2uf2efHPh7x7a/tu/snWaP8UNEt4rLVdGMot7Xxho0T7/7PuSfkW5iJZ7C5YZikJjY+VI4AB+jlFeJfs7/ALQXw2/af+E2mfGL4W3EkmnagHjmt7mMwXljdwMUuLS7hb5obm3kDRyxNyrA9Rg17bQAVj6F/wAg/wD7ay/+htWxWPoX/IP/AO2sv/obUAbFFFFAGRL/AMh2H/rhJ/6Ela9ZEv8AyHYf+uEn/oSVr0AFZGv/APIFuv8Arm38q16yNf8A+QLdf9c2/lQBqr90fSnU1fuj6U6gArI03/j7vv8ArsP/AEBa16yNN/4+77/rsP8A0BaANeiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0v7+KKKKACql/wD8eM3/AFzb+VW6wNYGs+RcfZDF5fltjdnPSgC3of8AyBbT/rin/oIrUrj9DHiH+xrTmD/Up/e9BWrjxD6wfrQBt0ViY8Q+sH60Y8Q+sH60AQ6Z/wAh3UvrF/6DX8xX/BWaxtvGv/Be39gLwdCf3+mzeKNTkH+wsdu6/rA1f0t6aNf/ALc1LBg6xev92v5gf2531fVP+DoD9kXR7goWsfBmt3ahc7R5i3qk/wDjgoA/q5orEx4h9YP1ox4h9YP1oAZrP/H1Yf8AXwP/AEFq3q4XWR4i+1WHMH/HwPX+61b+PEPrB+tAG3RWJjxD6wfrRjxD6wfrQBrzf6pvoayvD3/IDtf+ua1BMPEXkvgwdD61l+Hh4h/sO15g/wBWvrQB2lFYmPEPrB+tGPEPrB+tAG3XPWf/ACMd5/1yi/m1S48ResH61gWg8Qf8JFeD9x/qovX1agDu6Kw8eIvWD9aXHiH1g/8AHv8ACgDbrB177lr/ANfMX86djxF6wfrWFrw8Q7LXJg/4+YvX1+lAHc0ViY8Q+sH60Y8Q+sH60AbdNf7h+lYuPEXrB+tNceIth5g6e9ADvDX/ACBYf+Bf+hGtyuI8NjxD/YsODB/F/e/vGtzHiH1g/WgDborEx4h9YP1pMeIvWD9aAI4v+Rnm/wCvdP8A0I10FcJEPEP/AAk0wzB/x7p6/wB410GPEPrB+tAG3RWHjxF6wfrRjxF6wfrQA3xHzYJ/12j/APQhW9XC+Ih4h+wJzB/rY/X+8K38eIfWD/x7/CgDborEx4h9YP8Ax7/Ckx4h9YP1oA2z0NfI37QP7Lfg79qX4e2nhnxNd3GnXGm3r3Vnd2pxJFKCwzz1BB9q+nWHiLHWD9axPDo8Q/2b1g/1knr/AHjWdWlCpBwmrpnVgcdXwdeGJw03GpF3TXQ/Obwn/wAEs/Ax8S2viD4yeLtZ8bRWLBobW+mYxcdm3Mxx6gYzX6f6Po+leH9Lg0TQ7eO0tLVBHFDEoVERegAHAFVceIvWD9aCPEXYwfrWWHwlGhf2UbX/AK3O7Ns/zDMnF42s5KOy0SXolZL7jcry/wAW/EPwJ4E15Lnxlq9ppiNAQPtEqx5+YeprptTn8UWum3F1AIGeON2Uc8kAkV/Fr8cPH3i34m/EfV/FPju+mvNSlvbhHjlJKwojkKig8ADpj2rgzfNfqUYtRu3+h9RwFwP/AKxVqqnW9nCna9ldtu9ktVbZ3Z/a14f8R6B4r0uPWvDV5DfWkv3JoHDofxFflB/wUr/4LI/szf8ABOnS4PCeqyS+MPiTrA8vRvCWjjz764lbhS6rny03EZZse2a/Bnwb+1l/wUK8M+C4v2Mv+CevhlNU8WePrw/8T26Ym28P2oXbLcsuNo6jBJAz2J4r9j/+Can/AARO+Gf7D2q3fx4+LOor8U/jVr0hutV8W60DLLHK/LJbK2fLUEn5uuOmBxXZl+L+s4eNa1rngcU5E8nzStl7lzKDVntdNJrT5n52fC3/AIJbft0f8FffFFl+0X/wWV1y68K+BVlW60P4W6LM0EQhPzKb4gnLYxkHL9fu1+8HxM8ffso/8E5vgXY/D/wVpFnoFjAqW+laBo8KrNO64wAi8knu7c+pr7fvIPEtzay28UsMTSIVV1zlSR1H0r4D8AfsH+B/hd4tvvjH4w1Gbxt4tZzIuoaw5l+zIzFgIo+QmOx7dsV9Pk0MsUpVsylJxjtCK1m+3NtFd3q+yPjsfLF2VPCJXe8ntHztu32W3dnSfsVftr3n7VOpeJvDXiTwzN4W1bw7JGzWsz7mMEwypbIBVumRjvX35X4W/sPfFXwb4V+Ifxt/aH+I+vafo9pqHiB7KKW7lCB0tSwO0Hk4wK+r/g//AMFGfAX7QPxuj+D3wY0661yBUd7nV0iZLSEIOCS3JBPAOPpX0vFPCldY/Ezy3CSjQpxjKW7jB8kZSXNLs21a9+h5WT5zTeGpRxdZOpJtLa795pOy8vkfpHRWHjxF6wfrRjxFnrB+v+Ffn59KR+Hf+Paf/rvJ/OugrhPDo8Q/Zp8GD/Xyf3vX6V0GPEOesH60AbdFYePEWesH60Y8ResH60AMn/5GS3/64v8AzFb9cLOPEP8AwkcH+o/1L+vqK3seIvWD9aANyisPHiL1g/WjHiL1g/X/AAoAf4gIGkTZ9K1Yf9Sn0Fcd4g/4SEaRNkwdPf1+lasI8Q+UvMHQetAHQUVh48ResH614L8Z/iH8ZfDNxpvg/wCF3h/+19X1liiXbKRY2SDrJO/t1Cjlq6cJhZ4iqqULXfVtJK27beySMq1aNKDnL8NWfS1fFXjjwR8fvi58RJPD2j6sfB3g3TbxZp7q1YPf6i64OxOoii7MT8xr6r0yHxhBptvDqk1tPcpGgmkRWRWcD5iBzgE9s1n6J/wkPm3v+o/4+G/vegrXB4yWEqOpTjFy1SbV7eaT0v2unbe17NRXoKtFRk2l1Sdr+Ta1+5/gdvGnlxrHkttAGT1OKfWHjxF6wfrRjxF6wfrXCdBuVz1+qvrlmrgEFX4P0qXHiL1g/WuJ8XeIJ/CY/wCEo8SXVrZ2Gn289xczykqkcUa5ZmJ6AAZNAHqVFcD4Q8WL488L2HjPwheWl/peqQpc2tzESUlikGVZT3BHSuiA8RdzB+tAG5WTrv8AyCLj/cNQ48ResH61la4PEP8AZFxzB9w+tAHT2P8Ax5xf7g/lVquasR4h+xxcwfcH970qzjxF6wfrQBuUVh48ResH60Y8RY6wfrQAaV/x+3v/AF1H8q3K4nSh4h+2XvMH+tH970+lbWPEWOsH60AblFYePEXrB+tGPEXrB+tADdS/5Ctj/vP/ACrerh9RHiD+1LHPkfef19PpW5jxF3MH60AblFYePEXrB+tGPEXrB+tAF3VP+QbP/wBc2/lTdJ/5BkH+4KxtUHiH+zZ8mD/Vt6+n0pulf8JCdMg2mD7g9aAOsorEx4h9YP1pMeIvWD9aANysDS/+Qtf/AO+n8qfjxF6wfrWDpg8Rf2tf8wfeT19PpQB3VFYePEXrB+tBHiLsYP1oA3K8U+OHwZ+E3x28ORfD/wCMvhzT/E+i3jsktpqNuk8RBHowOD7jBr0/HiL1g/WsHWP+EhF5Y/6j/Wn19KAP5hvjv/wbseMf2dvGl9+0b/wRi+JGo/CTxcXM7+G7q4abQ7znPlbWztB7bwwHqKp/s9f8HA/xb/Zj+JNr+yx/wWo+H9x8MfFPmLb2/iqzheTRLzPCyMw3BA394My/Sv6pCPEPYwfrXhn7Qf7M/wAKf2q/h3efCn9oTwxpPinQr1Cr297Fv25/iRsbkYdmUg0AeteAPiN4D+Kvhe18a/DfV7TXNJvUEkF1ZSrNE6sMghlJFdZd/wDHrL/uN/Kv48/Gv/BH7/goj/wST8R33x4/4I2eNp/EvhLzGutR+GmuuZopIx8zLbMSAWwMLt2v/vV93f8ABP8A/wCDgf4GftZeIZP2ff2h7A/Br4v2mYLnw74g3wJNMvDeRM6qGOf4ThqAP6EtE/5BMH+4K1K43Qm16XR7aWJrdlZAQRkgg+9a2PEXYwfrQBuUVhkeIuxg/WjHiL1g/WgCGx/5GG9/3I66KuCsh4h/4SG95g+5H6+ldFjxD6wfrQBt0Vh48ResH60Y8ResH6/4UAN104+yH/p4X+RrerhtcHiEfZeYP9evr6Gt3HiL1g/WgDcorDx4i7GD9aMeIvWD9aANmT/Vt9DWL4a/5AsH+7TZB4h2NzBjB9axvDY8Q/2LBzB93/aoA7iisTHiH1g/WjHiH1g/WgDbrnbb/kZbn/rlH/WpseIfWD9a562/4SD/AISa55g/1Mfr70Ad7RWHjxF6wfrRjxF6wfrQBuVia7/x7w/9dk/nSY8ResH61i66PEP2eHmD/XR/3vWgDtqKw8eIvWD9aXHiH1g/WgDborDx4i9YP1ox4h9YP1oAZ4Z/5BK/78n/AKEa364TwyPEX9krzB99/X+8a3wPEXrB+tAG5RWHjxF6wfrS48Q+sH60ARn/AJGf/t2H/oRrfrhSPEP/AAk/WD/j2H97+8fat8jxD6wfrQBt0Vh48Q+sH60Y8Q+sH60AM8S/8gs/9dIv/QxW8OgrhvEg8QjSznyP9ZH6/wB8VvAeIcdYP1oA3KKw8eIvWD9aXHiH1g/8e/woA26w/D//AB5yf9d5f/QjS48Q+sH61heHx4h+xycwf6+X1/vH2oA7iisTHiH1g/WjHiH1g/WgDbrDl/5GKH/rg/8A6EKMeIvWD9axJR4h/wCEihwYP9Q/r/eFAHb0ViY8Q+sH60Y8ResH60AbdYfiX/kBXP8Au/1FLjxD6wfrWH4lHiH+w7jmD7o9fUe1AHbDoKWsMDxDgYMH60uPEPrB+tAG3RWHjxF6wfrS48Q+sH60AM0Hpef9fUv9K3q4bQh4hxeYMH/H1J/e9q3seIvWD9aANuisTHiL1g/WrVoNV80/bjHsxxsznP40AaNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZUmjWUsjSuZcsSTiVwOfYGtWigDH/ALCsPWX/AL/P/wDFVj69odiNHn+ab7o/5bP6j/arsKx9f/5A8/0H8xQAf2HYnvL/AN/X/wDiqP7CsPWX/v6//wAVWxRQBj/2FYdMy/8Af1//AIqsjS9CsTLeHdN/x8H/AJbP/dX/AGq6+sjSv9bef9fB/wDQVoAT+wrDOcy/9/X/APiqT+wrD+9N/wB/n/8Aiq2aKAOO1DQ7EalYDMv+sf8A5av/AHG/2q2f7CsPWX/v8/8A8VSah/yE7D/ro/8A6A1bNAGP/YVh0zL/AN/X/wDiqhudDsRbyHMv3T/y1f0/3q3qz472z1PTTeadKk8MitteNgytjI4I4PNK6vbqOztc+RvjZZnxU3hH4EaRLNH/AMJQ3makyyuSum2ih5hyTjzDtTPua+prHwpommWUOm6cjwW9uixRRpI4VEQYAADcAAV82/BHb8QPiz4n+Kr/AD2ulJF4b049RttgJLhh/vSsBn/Zr61rwsmXt6lfMH9uXLH/AAQvFW8nLmn/ANvI9XMn7KFLCL7KvL/FLV/NLlj8jH/sKw9Zf+/r/wDxVZFvodj/AG1dcy/6uL/lq/8Atf7VdfWRb/8AIbuv+ucX82r3jyRP7CsPWX/v8/8A8VX5dftA674i/bJ+L+p/sL/AvUb7S/CmiiMfE/xVY3LxvbwzKHXQrGUNkXt3GQbqRcG1tm4IllTb7P8Ati/tAfETSNa0X9k/9mBoZfiz49ikkt7qVPNt/DujxsEutZuk6MsO7ZbQsR9ouSqD5VkK/Qv7OX7Pnw+/Zf8AhFpfwe+HEcrWdj5k1zeXT+beahe3DGS5vLqXAMtxcSs0ksh6s3GBgAA29G+GHgT4ceB9G8AeAtPTR9E0RLSxsLG0ZooLe2gKpHHGinCqqgACu+/sOwznMv8A39f/AOKrxTRPjDc+PtVlh0Hw9evodvqhsE1ffD5Uk1rL5cpEe/zfLEisgcKckZxjmuB+O9zrHxf+IWm/sxeGLqazsZ4Rqniq8tZDFLFpoYrFbI68q93ICpIIIiRyOtYTxEVDmjr0Xm/669tT1KGVVJV/Y1nyJJyk9HyxW90nv0UXZuTUd2fVP9hWHrL/AN/n/wDiqUaHYjvL/wB/X/8Aiq+DfgL8XU+CPwa8eeDfiPczXs3wn1K4sIi7F7i5spcS6euTks8iSLEnqQK+uvhHoXizSPB8V94/unudd1Q/bb8FiYoJpQD5EK5wscQwi4643HJJNKjiFUSstba+XS333+5l5jlM8I6nNK8VK0X/ADppSTXlyuLfbmidBomh2JsTzL/rZf8Alq/99v8AarX/ALCsMYzL/wB/X/8AiqXQ/wDjxP8A11l/9Dateug8g8r17X/DFlpniNtMuWlvfDls01zGZZMRMYjMgbkDlcHg9DXOfCTWIfiR4G8J+P7wNHNrWjRXsqxyybA8yRuwXLE4BJxz0r4u+LXjO+h8Q/Gb4N6BOE8ReMdS0jStOGcuE1LTo0lkA6lYYYZnJ6DHNfQX7E+qLe/sx/Du8ncBYdCMJZjgAW7CPn6Ba4KWKc6/J0Sf4St+X5n1WPySOGyxYnrKVO3e06XPf0bul/hZ9Xf2FYesv/f5/wD4qoLrQIJLWWO0lkilZWCOZHYKxHBxuGcHnHetSw1Cw1S0S/0yeO5gkGUkiYOjD2IyDXJeLfiR4J8BzwReM79NMjuASk9wGS3yOoMxHlq3oGYE9s12uSSu3ofNU6VSc+SEW5drXf3HxX8bfCnx0+G3wZ1vxZq3xEYPp9oUs7fT7ARyXV5KRHCkstxLcM3mysoIQJjPFfdGn6CgsIBqDObgRr5pSWTbvx82Pm6Z6V8VfFT4s/C/4tfFvw78P7DxFps+i+HY28RahIt1GY5rpA0djAG3YLCQtMy8keWnqK+rfit8V/C3wY8FSeO/GKXcljC8cbCytpLuXMhwDsiVmx6noO9clGcE5zUvdWmrvtu9/O3yPfzGhiKlPDUJUf3023ZQUW1JpRjaKV3o5a9JI7T+w7EdGl/7/P8A/FV8anR7b9n79orTfD+nGSPwd8S5bgJbLK4Sx1yJTKWQA/Kl3GGLKOPNXPG419beB/Hfg/4leGLbxl4E1CHVNMvATFcQNlTg4IPcMDwVIBB4IzXyv+2xKNP0P4ea8nEtj470NkPtJI0bD8QxFVimvZqrHpZp+XX70ZZJTm8ZLAVU0qilCSfR2fK7dHGVn962bPqTTtCsDfX3Mv8ArV/5av8A3F/2q2P7CsPWX/v6/wD8VRpv/H9ff9dV/wDQFrYrrPAMcaHYDvL/AN/X/wDiqx9T0OxW5sfml/4+P+ez/wBxveuwrH1X/j4sf+vj/wBkagA/sKwxjMv/AH9f/wCKpP7CsP703/f5/wD4qtmigDGbQrDb1l/7/P8A/FVlaFoVh/YtpzL/AKpP+Wz+n+9XWnoaytB/5Atp/wBck/lQA3+w7D1l/wC/r/8AxVH9hWHrL/3+f/4qtiigDj49DsBr0vMv+oT/AJbP/eb/AGq1/wCwrD+9N/3+f/4qlj/5D8v/AFwT/wBCatigDG/sKw/vTf8Af5//AIqsjXtDsRpjYMv34v8Alq/99f8AarsKxtf/AOQY3/XSL/0NaAF/sOxJzmX/AL+v/wDFUf2HYesv/f1//iq2KKAMf+wrD1l/7/P/APFVj6NodiYZxmX/AI+Jf+Wr/wB4/wC1XYVj6L/qp/8Ar4l/9CNACf2FYf3pv+/z/wDxVL/YVhjGZf8Av6//AMVWxRQBx93odj/bNnzL92X/AJav6D/arY/sOw9Zf+/r/wDxVF3/AMhmz/3Zf5CtigDG/sKw/vTf9/n/APiqpanodiNNuDmX/VP/AMtX9D/tV0UsqQxNNJnagLHAycD2HJr5A8Q/tzfsu2enTW8Pib7ZdNGwFrZ2dzc3IYg/KYo4mdTnghgMHrXbg8uxeLbWFoynbfli3b1snYwr4qjRt7aajfu0vzPqGy0OwNlDzL9xf+Wr+n+9Vr+wrD1l/wC/r/8AxVfK3gj9sz4beJ/F+heALrQ/E+hz687W2nXWs6Lc2FrcTJG0nlrJMq/MUVioIGcV9g0sbl+JwkowxNNwbV1dbq9r/emvVBh8VSrpyoyTS00Mf+wrD1l/7/P/APFVj2Oh2P8Aal9zL96P/lq/90f7VdhWNYf8hW+/3o//AEEVxm4p0KwPeX/v6/8A8VSf2FYf3pv+/wA//wAVWzRQBx2r6HYhrTBl/wCPlP8Alq/of9qtj+wrD+9N/wB/n/8AiqNY+9af9fCfyNbNAGOdDsD3l/7+v/8AFUf2HYjnMv8A39f/AOKrYooA4/QdCsTpMPMv8X/LZ/U/7Va/9hWH96b/AL/P/wDFUugf8gmL/gX8zWxQBjf2FYf3pv8Av8//AMVWP/Ydj/wkGMy/8e//AD1f+9/vV2NY3/Mw/wDbv/7NQAv9hWHrL/39k/8AiqT+wrD+9N/3+f8A+KrZooA5DXtCsP7In5l6D/ls/qP9qtc6FYk53Tf9/n/+Kpde/wCQTN9B/MVr0AY39hWH96b/AL/P/wDFUf2FYf3pv+/z/wDxVbNFAHG6NodiWveZf+Pl/wDlq/ov+1Wz/YVh/em/7/P/APFU3Rfv3v8A18v/ACFbdAGN/YVh/em/7/P/APFVk32h2H9p2IzL96T/AJbP/dP+1XX1kX3/ACE7L/ek/wDQTQA3+wrD+9N/3+f/AOKo/sKw/vTf9/n/APiq2aKAOfutCsBaynMv3G/5bP6f71VtH0Kw/sm15l/1Kf8ALZ/Qf7VdDd/8esv+438qraP/AMgm1/64p/6CKAK/9hWH96b/AL/P/wDFUf2FYf3pv+/z/wDxVbNFAHH2uh2J1q8GZf8AVw/8tn/2v9qtf+wrD+9N/wB/n/8AiqLX/kN3n/XOH/2atmgDG/sKw/vTf9/n/wDiqytX0Kw8qAZl/wBfF/y1f+8P9quurJ1f/Vwf9d4v/QhQB+XP7SHww8RfsdfFbUf27vgRYXeoeGdTVW+KPhWx8ySS+tYFCrrdlEhydRso1xPGvN3bDbzLHHn9GfAut+Afib4M0r4ifD/U11jQ9ctIb6wvrW4eSG4t51DxyIwbBVlIIr0OvySt3f8A4Jn/AB3h0p96fs+/FLVyIZHcC38FeJr9+IuceVpeqTN+7H3La9bb8sc67AD9VP7CsP703/f5/wD4qsjQ9CsDYZzL/rZf+Wz/AN9v9quwrH0L/kH/APbWX/0NqAD+wrD1l/7/AEn/AMVR/YVh6y/9/pP/AIqtiigDkJdCsP7dh5l/1En/AC1k/vJ/tVrf2FYf3pv+/wA//wAVTpf+Q7D/ANcJP/QkrXoAxv7CsP703/f5/wD4qsnXtDsBot1zL/qm/wCWz+n+9XX1ka//AMgW6/65t/KgBq6FYbRzL/39k/8AiqP7CsP703/f5/8A4qthfujFLQBj/wBhWHrL/wB/pP8A4qsrSdGsor+8lQy5WcEZlcjhF7E811tZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/kK1Ky9D/5Atp/1xT+QrUoAKKKKAOe0z/kOal9Yv8A0Gv5dP2lJh4j/wCDsH9n7TRz/Y/wz1Zz7ZS/b/2av6i9M/5DupfWL/0Gv5TvGtzcax/wd5+CraEbl0n4X3jP/srJbz4/VxQB/WlRRRQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/ACA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/ACMd5/1yi/m1AHQ0UUUAFYOvfctf+vmL+db1YOvfctf+vmL+dAG9RRRQAU1/uH6U6mv9w/SgDF8N86LD/wAC/wDQjW5WH4b50WH/AIF/6Ea3KACiiigDn4v+Rnm/690/9CNdBXPxf8jPN/17p/6Ea6CgAooooAwfEf8Ax4J/12j/APQhW9WD4j/48E7/AL6P/wBCFb1ABRRRQAh6GsPw7/yDf+2kn/oRrcPQ1h+Hf+Qb/wBtJP8A0I0AbtFFfD/7d3/BQn9mb/gnd8Ipvi3+0XriWMbnyrDT4v3l7fTn7sUES5ZiT3xgdTQB9Q/E/wCKPw7+DPgbUfiR8VdXtdC0LS4Wmury8kWKKNFGSSWwPwr+Or4OeJ/+HvP7Y3jPWP2J/BN9onwtsZJPN8Xat+5sLu8ViHa3QAuyyHBAGeuTjNel/Dv9kv8Abh/4L8ePrD49f8FBI734Zfs5WVwt74e8BW8hiu9YRTlJL0jDBWXk5Hf5R3r+qn4VfCf4cfA7RNL+Ffwk0a10Dw/o9j5FnY2cYjijRSBwB1J7k5JPJNcuLwVHEw5Kyuj3Mh4jx+TV3iMBU5ZNWeiaa809PQ/kT+PmgfHL/gnb+0rFo/gnxFNDqENnBcpcW2VhnR87lZDw67h3r9sP2Mv+Cs/hD4tPp/w//aBt18M+IroBbe8Py2V2TwMMfuMT2PHoa5L/AIKZ+CPCa/tZfBPxp4otEurHUr5tJvY2GRLG7DAP0ycfWvKfB3wk+Fn7Nn7TEn7Iv7SmiWus+BfEtwb7wnqV2vzWsztnyPNGGAzgY3Yzg9zX9IUsJkGO4VwOFng/30KLlF07KbVOUoz5b/G1ZTcZbptppo/IMwzLOJZ/i8fWxF/aVPe5tY3kk43t8K+ymtrJWsf0Oo6yKHQgqwyCOhBr8xf2+v2f538EeKf2gPD/AI713wvNY6WzXdrZTZtrhYASuUJG084JU81+mdna29haRWNouyKFFRFHZVGAPyrxP9pf4WW/xs+BviL4V3V21imt2rWpnQbim/jOOM/SvxXh7MngcwpVlPlhzJSdk/cur6NNPTyeux9nmeEWIw06bjd2dtba2010P5odM+DP7K3wT/Zw8MfEf4oWd742+JfjGI3OnaAbhvK3zMdsjxoN2O5JPzV+w3/BMX9jzxV+zj4P1b4g/EEraa54xKTyaXANsNlECWVMf3ufwHFb37JH/BNT4c/s467H8QvGOpS+MfFEEaw2t5eL+7tYlGFWJCTjA6Ht2r9L6+/444++t0q2XYGvKrTqSvOcrpNXvGFOD+CEdNbKUmtdND5vh/hz2M4YrEU1CUVaMV00s5SfWT+5LzCiiivyQ+0Of8O/8e0//XeT+ddBXP8Ah3/j2n/67yfzroKACiiigDAn/wCRkt/+uL/zFb9YE/8AyMlv/wBcX/mK36ACims21S3oM1+S3xM/bx/aP8R+MdQ+G/7Mfwm1PUbq1le3/tPVUa3tgyEqWAIGV4yCSMivYyfIsXmc5RwyjaKvJylGMUu7cml+pw47MaOEipVb67JJtv0SP1R8Q86RN9KsXeo2Oj6TJqupSrDbW0RkkkY4VUUZJP0Ffy1ftNftK/t1eCLn+wPH3xJsrPxLdkCPw74fjW4ljz08x0Vwn0LE19+f8Ekf2gfjp8etE8ZeEvjzeNrUOjvHEjXUa7wXyHjfAAYexFfZZp4Z4zA5TLOJ4inOlG11Fyu02leLcUpK73V12bPCwfFlDEYxYGNKUZu+9rXSvZ2d16bn3v8AAv48eOfj94tvvEfhvRRp/gC03wWt/d5W51CZTjzIU6CEf3j97tX1pVWysrLTbSOw06FLeCFQkccahUVR0AA4AFWq+Cx+Io1qzlh6XJDZK93ZdW+rfV6LsktD6PDUpwharPml1e33LouwVgaH/rb3/r4b+QrfrA0P/W3v/Xw38hXEdBv0UUUAFfnr/wAFPtVudL/Y18cfYpWhmu9Me0jdTgg3Dqn9a/QqvnD9pj4H6T+0V4Fb4T65ey2FrfvHI80KhmHkOsmMHjkrg0AeifBjw+nhP4Q+FvDEYAGn6TZ2+AMDMcSg/wAq9LqtZ2sdjZxWUP3IUVF+ijAqzQAVk67/AMgi4/3DWtWTrv8AyCLj/cNAFyx/484v9wfyq1VWx/484v8AcH8qtUAFFFFAGHpX/H7e/wDXUfyrcrD0r/j9vf8ArqP5VuUAFFFFAGDqX/IVsf8Aef8AlW9WDqX/ACFbH/ef+Vb1ABRRRQBQ1T/kGz/9c2/lTdIx/ZkGP7gp2qf8g2f/AK5t/Km6Tj+zIMf3BQBo0UUUAFYGmf8AIVv/APeT+Vb9YGmf8ha//wB5P5UAb9FFFABWBrH/AB+2H/XX+lb9YGsf8fth/wBdf6UAb9FFFABX5cf8FFP+CRP7GX/BSHwfNbfGvQF0/wAS26brHxLpQW31S1kXlSJQPnAP8L59sda/Ueq93/x6y/7jfyoA/jH0z4u/8Fev+CBghs/jdaXX7Rn7OsJVYdYs90ms6Tb5wPN3ZYhRxh8r6NX9Kf7Df/BSD9kr/goX8O4PH/7OHim21KTaPtemSsI7+zk7pNCTuUj6YNfZ9lY2Wp+HV07UoUuLeeLZJFKodHVuCGU5BB7g1/OH+2//AMG8vgbxN8Qp/wBrH/gml4muPgX8X4GNwr6Y7R6XfydSk0K5CBj1wCnqtAH9LVFfyTfA/wD4Lq/tO/sIeObL9mb/AILh+A7jwpeu/k2PjvS4jPpV6o4Dy+WGVT0JZSRzyBX9SPwo+MHww+Ofgmy+I3wh12y8RaJqEay295YzLNE6sMjlScfQ0AdNY/8AIw3v+5HXRVztj/yMN7/uR10VABRRRQBg670tf+u6/wAjW9WDrvAtf+vhf5Gt6gAooooAZJ/q2+hrG8N/8gWD6Vsyf6tvoaxvDf8AyBYPpQBuUUUUAFc7bf8AIzXP/XKP+tdFXO23/IzXP/XKP+tAHRUUUUAFYmu/8e8P/XZP51t1ia7/AMe8P/XZP50AbdFFFABRRRQBgeGf+QSv+/J/6Ea36wPDP/IJX/fk/wDQjW/QAUUUUAYB/wCRn/7dh/6Ea36wD/yM/wD27D/0I1v0AFFFFAGB4l/5BZ/66Rf+hit4dBWD4l/5BZ/66Rf+hit4dBQAtFFFABWH4f8A+POT/rvL/wChGtysLw//AMecn/XeX/0I0AbtFFFABWHL/wAjFD/1wf8A9CFblYcv/IxQ/wDXB/8A0IUAblFFFABWH4l/5AVz/u/1FblYXiXnQrkf7P8AUUAbg6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/wCvqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVlSTayJGEUERXJwTIQSPptoA1ax9f/wCQPP8AQfzFHna7/wA+8P8A39P/AMRWRr82u/2PPm3h+6P+Wp9R/sUAdfRWP52u/wDPvD/39P8A8RR52u/8+8P/AH9P/wARQBsVkaV/rbz/AK+D/wCgrSedrv8Az7w/9/T/APEVkaXNrvm3n+jw/wDHwf8Alqf7q/7FAHX0Vj+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAJqH/ITsP+uj/+gNWzXH6hNrv9pWH+jw/6x/8Alqf7jf7FbHna7/z7w/8Af0//ABFAGX491w+GfA2s+IlO02FjcXAJ9Y0LD9RXi9l4ih+Dv7Kdr4kuPv6VoMUoB6tO8Q2j6tIwH1NL+1Bq+tad8BfEu6GNTdWwtF2yEsTdOsWANo5+euM+OVvqWuX3gT4HiGLy9QvVurpFkJBtNLQSMG+XgM+wd6+TzjGTp4iu6T/eRpRUf8VabhH/AMmgr+R9Bl2HjOlSVT4XOTl/hpxUn+Emew/s+eCv+EA+Dmg+H5hi5NstxdN3a4uP3khPvuYj8K9lrxt/iRJpWtaJ4DtrRL3VdQhWVoIZM/Z7ZR800pK4VM/Kvdm4HevTPO13/n3h/wC/p/8AiK97L4UKVFYXDu6pJQ9LJaetrXPJxkqtSo69ZazvL1u9/S5sV8vftOftHeGP2XPh7qnxL12zuNYv5mtNN0XRbEBr3V9WvGZLWyt1PWSZ+CT8qIGdsIrGve9U1q60PTLjWta+y2dnZxPPPPNPsjiijBZndioCqoBJJOABX5cfsx2Pi79tL9oBv29/HViYfBeiQSWPwr0i6LR5tJt8dz4glQr/AK7UFzHZ7gGis+es7Y7jlPpj9jP9nDxZ8ItE1n4tfHW7h1n4t/EOWLUfFWoQZMEBjUi302zzytlYIxihHV23yt88jV9q1j+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAfKn7JN0tz+zxpkTn99b6zqEM47rKmozbgfQ5r1DwZ8OvE3hT40+MfG7G0m0vxSbKcSbn+1xyWkCQCIrs2GP5WcNvzlyNvc/L2l+JJv2Z/jdrnw/8AGvlWPhnx7qqa5oV9PIUtIr+Ur9stHkK7UZ2Xzow2A25gMmvr7xv4517RNCuo/C1tZalr81lPcaXp32tUkvHiTIC7go25xls4GetcNBx9nFS3hp80rfitvU+nzSNZYyrUoq9PEq6b2tKSm9dlySVpPZOLvofmh8XB4F1j/gpj4d8J/wBoypp2pw2MmvWyJm1n1fTknn06GV+m/Z8+3vtUd+P1Wh8d+Gbjx1c/DeGctq1nYxajNEEbalvO7xoS+NoLNG2FznAzjFfnFpf7HHxdu/2YrrStfurL/haF3rQ8XrqYc/u9XRw8cbPg5VUzDlcKFPAwMn3/APZt8FfGeVfF3xQ+NmlQaT4j8ZXaK1lFciX7HZWkQhhjDqGU875OD/HzzXNg/awm7wtzvm9Fbb1vb72+57HEH1HEYWDhiFL6vFUkrq85Jq1RK13Bx5knulTim9YnyV8MPF/xD0nxH4H+NkfifVb1fHfjbUtDurC5uPM06404vceRLb2/PkeV5QxjDH5t2QRX6h2XxF0S9+JuofCpUkTUdP0+21IswGx4bmSSMbTnOVaM7sgdRivz6+Bv7J/xz8LeKPBek+ONT0i+8G/DSfUbjRVt/NS8u57ouqNchlKAwhnwVPzE17Z8Pm13xR+2V4+8XWUUbWmgaLpegM3mHY105e7kUHbyUSRN3puAowbq04xU0020tf8ADq/vT9d+ouII4LFVKk6E4yVOnKScVZWdW1OL0WqhKKa6Xt9my+l7v4XfDu48df8AC1JdGtG8SJaNZrqRjH2gQHPyB+uOSPXBx04r81fhXZR6/wD8E4NP0G4meCK8s7uxeRD8ypNqQib0zwx46Hoa/Um+u9egsZphbREpGzYEhJOB6bK/Ob9inwF4j8Zfse6N4F+Iln5dnqiamYVV3tbiK3a73xNnBIkDDerfTit69NOsoRW8Z/jy7nn5Vi3DASr1pu1Oth7a3aSVZ2in27bHuP7OHhnw74A+MnxN+Hvw9t47Dw3p0+lSRWVuNtvb3lxbFpxGg4TcBGzKuBk5xzXuvgn4i23if4aTeP8AxDElrBbvfidV+ZVjsZ5YmPPqI8msz4TfCu2+D+g3OiaAsl7LqF3Lf319fXJmuru5mwGklfYMnaFUYAAVQAOKh8F/DjU9E+Glx8N/EUNve295JqXn7JWUNFfzzSlfu5GFl2k+vStaNOcIqNrfFp0V3dL5Hn5ji8Pias6rk2701d/FJRg4yl6yaT1119TxX4Zy+Hvh98C7743/ABQgS0vPGU/9r38vk+YLVL7bHaxsQpKxwQ+UjMflUhmOBmva/iv4xtfh7qegeMddF2NHtnuI7uS0t5rryzJF+7LxwK77dwxu2kAkdM14fe/si6F/YosPFmsa94k0qwjU2+l6lq0j2QEI/dh4o44/NC4GBIWBxyDX2Gk+u7R/o8PT/nqf/iKKNOoocrVrWt116t+v+ZWYYvCSxHt4Sc7uV1blSi1aMY3u00rrVWWlk7M+dv2WPDer2OieKfHWp6dJo0XjLxBdazZ6fKnlSQWrpFDGZI/4JJRF5zr1BfB5zXnX7Ytz/wAJJ41+Efwhsvnu9Y8W22pOg5ItdJVp5Wx6DKjPqa+0PO13/n3h/wC/p/8AiK8ZHwM8NH45n9oeayMviMacNLjaS6ZoIoc5Zo4ymFdhwzDqKVXDy9kqUO6v6Xu/v/UeDzamsfPH1001GXKlr73LywTbe0dG3q3bu7ns2m/8f19/11X/ANAWtiuP06bXft19/o8P+tX/AJan+4v+xWx52u/8+8P/AH9P/wARXYfPGxWPqv8Ax8WP/Xx/7I1Hna7/AM+8P/f0/wDxFZGqTa4bixzbw/8AHx/z1P8Acb/YoA6+isfztd/594f+/p/+Io87Xf8An3h/7+n/AOIoA1z0NZWg/wDIFtP+uSfyphm13B/0eH/v6f8A4isrQptd/sW0/wBHh/1Sf8tT6f7lAHXUVj+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAEf/Ifl/64J/6E1bFchHNrv9vS/wCjw/6hP+Wp/vN/sVr+drv/AD7w/wDf0/8AxFAGxWNr/wDyDG/66Rf+hrS+drv/AD7w/wDf0/8AxFY+vTa5/ZjZt4fvxf8ALU/31/2KAOworH87Xf8An3h/7+n/AOIo87Xf+feH/v6f/iKANisfRf8AVT/9fEv/AKEaPO13/n3h/wC/p/8AiKyNGm13yZ/9Hh/4+Jf+Wp/vH/YoA6+isfztd/594f8Av6f/AIijztd/594f+/p/+IoALv8A5DFn/uy/yFbFchdTa6dYsz9nh+7L/wAtT6D/AGK1/O13/n3h/wC/p/8AiKANis7UYo47C5ljUKxjfJAwehryn4g6j+0DZSw3Pwv0rQtQhCHzoNRvZ7aQvnjY8cEq4x1yvWvkX4zftjftAfAjwTf+L/iz8Hmh0yHbALvT9etbpHmmIjjVYnSGU73YABVLe3FezgMjxWN5Y4VwcpaKPtIRk3tbllJNt+SZwYnMaOHu6ykkuvLJr70ml8zoPHN/N8Z/2zfBPwv0YF9N+GFq/ibW5xyq3t5E1vY2+ezlWkmYf3QPWv0Br8Uf2af2ndM/Zj8Haje/tMeDvFmheKfFGoTav4g1q80ieSykuJeEVZYBJthhiCogIGApOBmv1J+Ffxu8C/HDw6PFnwi1jTPEOn5AaWzud5jY8hZF2bkbH8LgH2r2OKcqxWG9nBUn9XpRUFUSvCTu5SkpLT3pyfLrfl5bnDk+Mo1eeTmvazfM431SsklbfRJX6Xuey1jWP/IVvv8Aej/9BFL52u/8+8P/AH9P/wARWRYza5/al9/o8P3o/wDlqf7o/wBivjj3Tr6Kx/O13/n3h/7+n/4ijztd/wCfeH/v6f8A4igBNY+9af8AXwn8jWzXH6vNru60/wBHh/4+E/5an0P+xWx52u/8+8P/AH9P/wARQBsUVj+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAJ4f8A+QRD/wAC/ma2a4/QJtc/smHFvD/F/wAtT6n/AGK2PO13/n3h/wC/p/8AiKANisb/AJmH/t3/APZqXztd/wCfeH/v6f8A4isfztd/4SD/AI94f+Pf/nqf73+5QB2FFY/na7/z7w/9/T/8RR52u/8APvD/AN/T/wDEUALr3/IJm+g/mK165DXptd/sib/R4eg/5an1H+xWv52u/wDPvD/39P8A8RQBsUVj+drv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUAM0X797/ANfL/wAhW3XG6NNrm+8xbw/8fL/8tT6D/Yra87Xf+feH/v6f/iKANisi+/5Cll/vSf8AoJpPO13/AJ94f+/p/wDiKyL6bXf7Tsv9Hh+9J/y1P90/7FAHX0Vj+drv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUAaF3/wAesv8AuN/Kq2j/APIJtf8Arin/AKCKo3U2u/ZZf9Hh+43/AC1Pp/uVV0ibXf7Jtf8AR4f9Sn/LU/3R/sUAdTRWP52u/wDPvD/39P8A8RR52u/8+8P/AH9P/wARQAlr/wAhu8/65w/+zVs1x9rNrn9tXn7iH/Vw/wDLU/7X+xWx52u/8+8P/f0//EUAbFZOr/6uD/rvF/6EKb52u/8APvD/AN/T/wDEVk6vNrvlwf6PD/r4v+Wp/vD/AGKAOurh/iX8NfAfxj+H2s/Cr4oaVb634d8QWktjqFhdJvhnt5lKujD3B4IwQeQQQDXQedrv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUAfnR+yB8SPHHwO+Jl3/wT2/aF1K41TWNDtH1DwL4jv2Bl8S+G4yF2yOAA2oaaWWC7GA0kflXGD5j7f0X0L/kH/8AbWX/ANDavlH9r79m/XP2kvhvbQ+FriDw7488KXa654P8QBi76Zq9upEbMAoL28yloLqLOJYJHU9iIP2Mv2l9S/aT+Esusavo8Xh/xh4d1C50TxZoEkzGXSdatW/fw5KfPE4ZZbeUfLLBIjg/NQB9m0Vj+drv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUALL/AMh2H/rhJ/6Ela9chLNrv9uw/wCjw/6iT/lqf7yf7Fa/na7/AM+8P/f0/wDxFAGxWRr/APyBbr/rm38qTztd/wCfeH/v6f8A4isnXptc/sW6zbw/6tv+Wp9P9ygDrV6ClrGWfXdo/wBHh/7+n/4il87Xf+feH/v6f/iKANisjTf+Pu+/67D/ANAWk87Xf+feH/v6f/iKy9Jm1k394JYIgvnjJEhJA2L220AdZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKACql/wD8eM3/AFzb+VW657WNb0+0guLWdiHWM5wpPUUAXdD/AOQLaf8AXFP/AEEVqVxmh+JdJ/sW0yzf6mP+E+g9q1f+El0n+83/AHyf8KAN6isD/hJtJ/vN/wB8n/Cj/hJtJxnc3/fJ/wAKAG6Z/wAh3UvrF/6DX8uPwngg8d/8HZ/xF1eIBh4S+FFrET/daVoVP/o2v6cdN8R6UNc1I7m6xfwn+7X8uP7DUkN3/wAHRH7V3iuWRjDZ+CtKtBwTgyixb8MeWaAP6zKKwf8AhJdK/vN/3yf8KP8AhJdJ/vN/3yf8KADWf+Pqw/6+B/6C1b1cHrPiXSftVh8zf8fA/hP91vat3/hJtJ/vN/3yf8KAN+isH/hJdJ/vN/3yf8KP+El0n+83/fJ/woA2pv8AVN9DWV4e/wCQHa/9c1qtN4l0nyW+Zuh/hP8AhWV4e8SaUNDtRub/AFa/wn/CgDt6Kwf+El0n+83/AHyf8KP+El0n+83/AHyf8KAN6ues/wDkY7z/AK5Rfzanf8JNpP8Aeb/vk/4VgWniPSh4ivDub/VRfwn1b2oA76isD/hJtJxnc3/fJ/wo/wCEm0n+83/fJ/woA36wde+5a/8AXzF/Og+JdJH8Tf8AfJ/wrB17xJpRS1+Zv+PmL+E+v0oA7yisH/hJdJ/vN/3yaP8AhJdK/vN/3yf8KAN6mv8AcP0rD/4SXSf7zf8AfJpr+JdJ2H5m6f3TQBJ4b/5AsP8AwL/0I1uVwvhzxLpI0aEbm/i/hP8AePtW5/wkuk/3m/75NAG9RWD/AMJLpP8Aeb/vk0f8JLpX95v++T/hQA2L/kZ5v+vdP/QjXQVwMXiTSf8AhJpvmb/j3T+E/wB4+1dB/wAJLpX95v8Avk/4UAb1FYP/AAkulf3m/wC+T/hR/wAJLpX95v8Avk/4UAHiP/jwT/rtH/6EK3q4PxF4l0n7AnzN/ro/4T/eHtW9/wAJLpX95v8Avk/4UAb1FYP/AAkulf3m/wC+T/hR/wAJLpX95v8Avk/4UAbp6GsPw7/yDf8AtpJ/6EaafEulYPzN/wB8n/CvxA/4Kg/8FivBn7Cvg+x+DPwTsG8d/HDxlK9r4d8MWgLyh5XKiecLkpGpOeeWoA9j/wCCpn/BWv4U/wDBPHwnbeC/D9s3jL4u+KB9n8M+EbD97d3VxJ8qPIq5KRBurEc9BX54fsD/APBHv4y/tG/F62/4KO/8FlLoeKviNcsLnQPBzHdpPh+E8orQklTIODt5wfvZPA9b/wCCUX/BK3VfhB4xu/2+P+ChOof8J1+0P4t/0mW4uVMsGgxPyLa2ByqsgOCy/d6Dua/oR/4SXSv7zf8AfJ/woA2oYYreJYIFCIgCqqjAAHQAdhWKf+RlH/Xuf/QhR/wkuk/3m/75P+FYJ8S6V/wkq/M3/Huf4T/eHtQB4X+03+yf4Z/aZv8AwlqWuajPp03hPVI9ShaFQ3mbOqHPTPrWR+21+y3pP7UXwauPDcR+z6/pf+maPeLw8NzHyvPXDYwa+qf+El0r+83/AHyf8KP+El0r+83/AHyf8K9nCcQY/DTw06VVr2Dbh5Xd36pvdM4a2W4erGrGcP4itLzsrL7uh8Jf8E8f2n9W+OvwyufA3xIBtvHHguX+ztXgk4dzH8qy46/Njn3+tfd3iT/kEyfVf51+Mv7ZHhvxH+yr8erH9u34JQPPp8m228WadGpVZoDgebjHUDqexANfZsvijWf2jPCdt460LxOdL8I6jFHLbR6eu65mVgMiSQj5CDkEDkYrt43w0KcKedZVQc6OIfwxsvZ1N5wk27RS3j3i1ZNox4em5yngMbUUZ0vtO/vR+zJJbvo+z3PqPxj8XPht8P4DL4u1m2syB9x3G8/RRya8Iuf2rJNdYw/Crwnq3iAnhJhEYYT77nxx+FdX4U+CfwK8KXA1GHSxfXvU3N8GuJSfXL5Gfwr3CHXtDtoxDbjYi8BVQgD8AK/OHQzjEfxKsKMe0Fzy/wDApWj/AOSP1PrFVy6j8NOVR95PlX3Ru/8AyY+Vl1n9tHxWfOstK0fw7C3Ki5lM8gHvt/wFWP8AhAP2v7n95N4y0uEnqqWrECvqb/hJdK/vN/3yf8K+cf2hf2zfgR+zR4dbWviPqqx3DKTb2UY3XMzDsqdfxPFdOA4OrY2tHD061erVlslNpv5QUV+BniOIoYem6jpUoQXeKf4yu/xOQ0j4c/tYSQyNa+N9PUCVwQbQ9c81LcxftueEzm0bRvEsQ+sEn/jxAr50/Yl/bC+PH7TfjvUfFt54Wi0P4bbZRa3MpLXEs+eMHof9rAwPWv1D/wCEl0r+83/fJ/wrqzzgGeV4l4SriakKqSvy1nPlb6O7lG66q2hjl/FSxlJVoUISg9r01G/mrWduzPjpPjt+1Bo52+Ifho9wq/ee1n3fkMf1qwP2w9S0og+MfAeuacg+84i8xR+Rr69/4SXSv7zf98n/AApr+ItHkUrISQeoKE/0rxlkuZQ/hZjN/wCKFOX5Ri/xO/8AtPBS/iYOP/bspr82zw74fftF/Cf4o+JIIfDmpqlyImU29wDFKCSONrYzX0iDnkV8j/Fb4K/B/wCJ+rxG6tzp2oCJnjvbNDFKrgjB+UDOPevE1+OHxI/ZZuodF+MEp8Q+GpW8q11RfluFPZXU/eNQs2x2Aly5rTTp/wDP2mnyr/HHVx/xJuPdop5fhcWubL5tT/59zau/8MtFL0sn2ufoP4l8TeH/AAdodz4l8U3kVhYWiGSaeZgiIo6kk1+JfxQ/bO+Pf7aHjS5+Bf7Cdo9toqsYNR8USqVRFPBMbfwj0PJPYVwHiG5+On/BUL4p3HhvVvtPgz4SaHcbZkH+vvmU8AgdSe3ZR71+0Xwg+H/wk+BPgq18AfDHT003TrYD5UQ7nbuztjLMe5NftmF/srIcPTxVRwxOMmlKMU1KlTTV1KTWk59VFPlXW5+d11jMxqyox5qNCLabaanJrdJPWK7vd9D8qfGv7N/wI/4Jw/s5a78Wddk/4ST4g6lC1vBqN7+8mkvZxgCFWyRgnJblq+rf+CYPwG1H4J/szWWoeJ4mTXfFMratfFx8+ZuUB+gOfxr5/wDix8GfHn7W/wC1Z/wlHxctJ9J+HPw+kUadayqQdTueGMgH9zPGT9K+nf24f2i/Fn7Pfwc034hfDuMGCz1K0TUP3RYJZMwD4HbjjPavVzPH4rMcPQydYj2uLxUozqyb0jo/ZUk1orXu0tFJpbo4sJhqOGq1Mc6fJQopxgrav+effW1k3ulc++WZVGWOB70tfjZ/wU6/ajsNO/ZR8P8AjX4V6zJFJrWo2VxBNaSmNmiQiRlypB6cMK/TL4S/FXQfiB8L/D/ja2lLrqlhBcEgE/MyDdzjs2RXw+N4exGGy2jmVTSNSc4WtqnC2/rd/cz6ChmdKriqmFhvGMZX7qV/+B957DWBof8Arb3/AK+G/kKX/hJdJ/vN/wB8n/CsHRPEmlCW9+Zv9e38J9BXgHpHeUVg/wDCS6V/eb/vk/4Uf8JLpX95v++T/hQBvVymuahYaXqdrfanMlvCivueRgqjPA5PFXf+El0r+83/AHyf8K/HH/guD48vtD/Yxe+8PTSRAa5pC3JTch+zm7j3jIwRmgD9q1YMAynIPIpa4/RfE2kNo1oyswBgjIG09CorS/4SXSv7zf8AfJ/woA3qydd/5BFx/uGq/wDwkuk/3m/75P8AhWTrviXSv7IuPmb7h/hP+FAHVWP/AB5xf7g/lVquXsfEulfY4vmb7g/hPp9Ktf8ACS6V/eb/AL5P+FAG9RWD/wAJLpX95v8Avk/4Uf8ACS6V/eb/AL5P+FADtK/4/L3/AK6/0rcrhtK8SaULy9O5uZR/CfT6Vt/8JLpX95v++T/hQBvUVg/8JLpP95v++T/hR/wkulf3m/75P+FABqX/ACFbH/ef+Vb1cHqXiXSv7Vsfmb7z/wAJ9PpW9/wkulf3m/75P+FAG9RWD/wkulf3m/75P+FH/CS6V/eb/vk/4UAX9U/5Bs//AFzb+VN0nH9mQY/uCsPVPEmlHTZxub/Vt/CfT6Umk+JNKGmwDc33B/Cf8KAOuorB/wCEl0r+83/fJ/wo/wCEl0nONzf98n/CgDerA0v/AJC1/wD7yfypf+El0r+83/fJ/wAKwNM8SaV/a1/8zfeT+E+n0oA72isH/hJdK/vN/wB8n/Cj/hJdK/vN/wB8n/CgDerA1j/j9sP+up/lS/8ACS6V/eb/AL5P+FYGseJNKN7YHc3Ep/hPp9KAO9orB/4SXSv7zf8AfJ/wo/4SXSf7zf8AfJ/woA3qr3f/AB6y/wC438qyf+El0r+83/fJ/wAKr3fiXSvssvzN9xv4T6fSgDS0T/kEwf7grUrjdF8SaUNKg+ZvuD+E1qf8JLpX95v++T/hQB578cvgB8GP2lfh7e/Cv47eG7HxPoOoIUltL6ISLz3UnlWHZlIIr+Vn4v8A/BH/APbh/wCCTni28/aY/wCCKviq71fwwjNc6v8ADPWZTcQTxg5b7NnAJxwAMP8A71f10f8ACS6V/eb/AL5P+FH/AAkulf3m/wC+T/hQB+Nf/BLT/gsp8CP+Chl3qPgLWYJPAnxX0VEi1rwlqv7m6imj4cwhsGRM9wMjuK/bKv50v+Cpv/BHT4f/ALZPi6X9pf8AZY1d/hj8efDYS60zX9OUwLeyIMrFdbMZ3YxvIPuCK4b/AIJkf8FvfEniD4mn9gH/AIKbaMfhz8bNFAtoLm5Hl2OuCPgSRO2FDv12gkN1FAH9M1FYA8TaQwDK7EHuFNL/AMJLpX95v++T/hQAa7wLX/r4X+Rrerg9d8SaUfsnzN/x8L/CfQ+1b3/CS6V/eb/vk/4UAb1FYP8Awkulf3m/75P+FH/CS6V/eb/vk/4UAbcn+rb6GsXw3/yBYP8AdqOTxLpXlt8zdD/Cf8KxvDfiTShosHzN93+6f8KAO6orB/4SXSv7zf8AfJ/wo/4SXSv7zf8AfJ/woA3q522/5GW5/wCuUf8AWpP+El0r+83/AHyf8K5638SaUPE1z8zf6mP+E+/tQB39FYP/AAkulf3m/wC+T/hR/wAJLpX95v8Avk/4UAb1Ymu/8e8P/XZP50z/AISXSv7zf98n/CsTXfEukm3h+Zv9dH/CfX6UAdzRWD/wkuk/3m/75P8AhR/wkulf3m/75P8AhQBvUVg/8JLpX95v++T/AIUf8JLpP95v++TQAnhn/kEr/vyf+hGt+uC8NeJdJ/slfmb77/wn+8a3/wDhJdJ/vN/3yaAN6isD/hJdJ/vt/wB8ml/4SXSf7zf98mgBD/yM/wD27D/0I1v1wZ8SaV/wk2dzf8ew/hP941vf8JLpP95v++TQBvUVg/8ACS6T/eb/AL5NH/CS6T/eb/vk0AJ4l/5BZ/66Rf8AoYreHQVwfiXxLpR0sjc3+si/hP8AfHtW8PEuk4HzN/3yf8KAN+isD/hJtJ/vt/3yf8KP+Em0n+83/fJ/woA36wvD/wDx5yf9d5f/AEI0n/CS6V/eb/vk/wCFYXh/xJpQtJcu3+vl/hP94+1AHd0Vg/8ACS6T/eb/AL5P+FH/AAkuk/3m/wC+T/hQBvVhy/8AIxQ/9cH/APQhTf8AhJdJ/vN/3yf8Kw5fEuk/8JFCdzf6h/4T/eFAHdUVgf8ACTaT/eb/AL5P+FL/AMJLpP8Aeb/vk/4UAb1YfiX/AJAVz/u/1FN/4SXSf7zf98n/AArD8S+JNJOhXI3N93+6fUe1AHcjoKWsAeJdJwPmb/vk/wCFL/wkuk/3m/75P+FAG9RWB/wk2k/3m/75P+FL/wAJLpP95v8Avk/4UAGg9Lz/AK+pf6VvVweg+JdJxefM3/H1J/Cfb2re/wCEl0n+83/fJ/woA3qKwf8AhJdJ/vN/3yf8Kt2er2N/KYbYksBu5BHH+TQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY+v8A/IHn+g/mK2Kx9f8A+QPP9B/MUAbFFFFABWRpX+tvP+vg/wDoK1r1kaV/rbz/AK+D/wCgrQBr0UUUAY2of8hOw/66P/6A1bNY2of8hOw/66P/AOgNWzQB8uftZ6rpeneBdEg1y4jtbG58Q6YtzLK21Fiil85ixPQDy+a8vu4/ib8dvifB8VvhM48P6HY6dNp8GqalB5j3CyuHeW2tyQcEKFDyYBHQV9watouja/afYNdtIb2DcH8ueNZE3L0OGBGR2NWp0VLR44wFUIQAOABivmsbkE8Xi51atVqk+R2jdSvC7Xvp3STbfu2d+qtr7eGzeOHw8acKd5rm1dnG0rJ+7bV2Vtbq3Tt5T8IPhbo/w70iW+juZ9T1XVtk19qF2waedguFGQAFRBwqDgV6/Wbo3/IItf8Arkn8hXzV+2H+0lF+zF8HpPFekWH9ueLNcu4NC8KaIpIfVNcvyUtbcYyVjzmSeTpFAkkh4U172GwtLD01RoxtFdPxfm23q29W9XqeTXr1K03UqO7f9fh0XQ+Wv2qNRvf2zfjin/BPbwVPKvhHSorXV/irqFu5TGnTfvLTQldTkTant33IBBWxDAkGdK/SrSLGx0u9k0zTIUt7a2t4IooolCJGibgqqowAABgADAFfPH7HX7N8n7Mvwbi8K+I9T/4SHxhrd1NrfivXWTy31XW70hrmfbztjBAigjyRHBHGg4WvpK3/AOQ3df8AXOL+bVuZGvRRRQBw3xE8J+F/G/hpvDHjHTrfVdOupoVltrqNZY2G8dVYEfQ9RXJ/C/8AZ6+CvwWubm8+F3hyz0ee7UJLLCpLlAc7QzFiFzztBAz2r03W/wDj2i/67w/+hitiodODkptK669TphjMRClKhCpJQlvFN2fqtmFFFFWcxj6H/wAeJ/66y/8AobVLpuiaPozXL6TaxWxvJmuZzEgXzZnADO2OrEAAk88CotD/AOPE/wDXWX/0Nq2KLDUmk0mFY83/ACHrf/rhL/NK2Kx5v+Q9b/8AXCX+aUCNiiiigDL1z/kDXX/XJ/5VpJ9wfSs3XP8AkDXX/XJ/5VpJ9wfSgB1FFFAGPpv/AB/X3/XVf/QFrYrH03/j+vv+uq/+gLWxQAVj6qf9Isf+vj/2Rq2Kx9V/4+LH/r4/9kagDYooooAQ9DWVoP8AyBbT/rkn8q1T0NZWg/8AIFtP+uSfyoA1qKKKAMeP/kPS/wDXBP8A0Jq2Kx4/+Q9L/wBcE/8AQmrYoAKxtf8A+QY3/XSL/wBDWtmsbX/+QY3/AF0i/wDQ1oA2aKKKACsfRf8AVT/9fEv/AKEa2Kx9F/1U/wD18S/+hGgDYrI1/XdJ8L6Fe+JtfnW2sdOgkubiZzhY4olLOx9goJNa9flf/wAFdvi3q/gf9l9fhh4R3PrvxE1CHQ7aNPvtE53TY9dwCx/9tK9jh/KJ5pmWHy+Dt7SSTfZfafyV38jhzPGxwmFqYmX2U36vovm7I+Hvh5+2X8XPjd+2N8N/2lPF8K6J8Kr7WtS8JaJA0pVTPLCds8yk4Mjs6KHxtXBUYwSf6Ma/CH9rL9kLS9E+A/7Pv7JGl3ZspW1h7NryLg/b3s5pWmyOcG4+Y99vAr9G/wBiP496l8cPg4ln44U2vjbwlM2h+JbN+JIr+1+VnI/uzAb1PQ5IHSvuuOMLg8ZgcPmeVwUaVPmp8q6U1UmqU33crSUn/Ny31kj57h+tXoYirhMXJucrSu/5uSLnFemll2v2PsIkAZPQV+aWhh/20vjtN8T7tRL8Mfhjczw6Ch5j1fXogUlvMdGhteY4T0MmWB4r339t+L4x3n7MviXSfgVZ3F7r2oRx2hWyKi6S1mdUuXgDMoMqwltg3A55HIr5l8BftCfE/wAFfDPTvhV8Dv2d/F1vp2jWS2VsusS2mmRoka43OzSOWJPzMQuSST3rwshy+qsBVxmFcXWk3TV5wh7ONlzS9+UbOSfJF9FzvflZ6GZYqH1mGHrJ8iSk7Rk+Z30Xup6Jq78+Xpc/T618t7OKF8HdGMqecjHNea+EfgX8H/APjfUviN4H8O2Wj6zrEKwXtxZxiH7QituG9UwjMD/EV3e9fnp4q+GX/BQj45+MvCXjq4svCnw2m8N3aTRXdvf3V9ftaSFfPtpFRFgljlUDcj8ZAIIIzX6xV4+YYOWX04QpYqMnUT54wldKz0TcW4yT0a13TutE33YausTOUp0WlFrlcla91uk0mmttvnukVjWH/IVvv96P/wBBFbNY9j/yFb7/AHo//QRXhHomxRRRQBjax960/wCvhP5GtmsbWPvWn/Xwn8jWzQAUUUUAY+gf8gmH/gX8zWxWPoH/ACCYf+BfzNbFABWN/wAzD/27/wDs1bNY3/Mw/wDbv/7NQBs0UUUAZGvf8gmb6D+YrXrI17/kEzfQfzFa9ABRRRQBiaL9+9/6+X/kK26xNF+/e/8AXy/8hW3QAVkX3/ITsv8Aek/9BNa9ZF9/yFLL/ek/9BNAGvRRRQBXu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EVZu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAaNFFFAGNa/8AIbvP+ucP/s1bNY1r/wAhu8/65w/+zVs0AFZOr/6uD/rvF/6EK1qydX/1cH/XeL/0IUAa1FFFABX5SftPaRq/7JvxUtf+Cinw8tmk0MRjSPipp8CktdaBDI/2fVkRQd1zpLMWfu9k0q5zHGK/Vuue0+ys9S0ObTtRhS4t7gzxyxSKHR0dmDKynIIIOCDwRQBoaPq+leIdJtdf0K5ivLG+hS4t7iBxJFLFKoZHRhkMrKQQRwQc1o1+W37JF1efsd/G69/4J3+LZXPhe6gude+Fl5MchtHRgbvRSxPMulO4MA6tZSRgf6lyP1JoAyJf+Q7D/wBcJP8A0JK16yJf+Q7D/wBcJP8A0JK16ACsjX/+QLdf9c2/lWvWRr//ACBbr/rm38qANZfuilpq/dH0p1ABWRpv/H3ff9dh/wCgLWvWRpv/AB933/XYf+gLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//V/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntN/wCQ5qX1i/8AQa/l3/4JYTjxP/wcJftyeJQdw0+30TT89cFeMf8AkOv6iNN/5DmpfWL/ANBr+VT/AIIY2M9//wAFjv8AgoL4uDeZA/i62tFbrzHPdcfgMAUAf1mUUUUAYOs/8fVh/wBfA/8AQWrerB1n/j6sP+vgf+gtW9QAUUUUARzf6pvoayvDv/IDtf8Armtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/wAjHef9cov5tXQ1z1n/AMjHef8AXKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/wCvmL+dAG9RRRQAU1/uH6U6mv8AcP0oAxfDf/IFh/4F/wChGtysPw3/AMgWH/gX/oRrcoAKKKKAOfi/5Gab/r3T/wBCNdBXPxf8jPN/17p/6Ea6CgAooooAwfERxYIf+m0f/oQrerB8R/8AHgn/AF2j/wDQhW9QAUUV/Pb/AMFV/wDgr94k+DvjK1/YQ/4J+aX/AMLB/aD8V/6PBZ2o82DRY5Bj7RdMPlUr1Ckj1PFAHpP/AAVj/wCCvmlfsYf2d+zX+zfpbeP/AI8eNf8ARtD8P2X702zSfKLi52/djU84PJ+lecf8Efv+CQ2p/s5a/qX7cv7a2ojxz+0N42Z7jUNRn/eRaQsmQbe2zwpAO1mHAHA7k+m/8Emv+CQmkfsS2t/+0T+0Zqh+IPx68Zj7Tr3iK9PnG2aT5mt7Utnaik4LLjOOMCv2m8O/8g3/ALaSf+hGgDdooooAKwT/AMjKP+vc/wDoQrerBP8AyMo/69z/AOhCgDeooooAw/EvhzR/F/h+88L+IIFubK/heCaJxlWRxggivxf/AGPtc1j9lT4/eLf2FvG05/su5lbVvC8kh+VoZGyYlJ9B29V96/byvyv/AOCn/wADdc17wFpf7SPwxTy/Fvw8nW/jeMfvJbVTmROOTjrivtOEMVSqyq5Li5WpYlJJvaFVfw5/f7sv7smeDndGcFDH0VedLVr+aD+JfdqvNH6njoKydd1/RPDGlTa54iu4rKzt1LyTTMERVHUkkgV+VOvf8Fb/AIH6X8I9C17wzHL4j8Y6zaRldDsVLSR3JGGWQjO0BuncivDtG/ZS/bA/bz1uHxz+11rE3hDwc5EkHhyxYpI8Z5AkHbI6l8n0FbYXgevRUsRnlRYWjFtXkrzk1uqcN5eukfMirxBTm1Ty+Ptqjs9PhV+spbL038jvPjN/wUw8U/E7xTN8Ef2EdDl8Va5ITE+r7P8ARLfPBZf72P7xwK/Pb9rz9jHV/hD8K7Txr8f9fm8XfFHx1qUFja5kJhtA5Bk2/wB4gcDACiv6Tvg58CPhR8A/DEfhL4V6Nb6VaooDNGo82Uju7/eY/U1+WP7WsEfxq/4KVfCT4P58208OxyaveR9RhTuGR2yFxX2fCHEuFo5h7DJqPssNSjOpUm9atRU4uSUpbRi5JLljZa63PCzvKq1TDe0x1TnqzcYxitIRcnbRdWlfVm9ql54o/YHg+HHjK3lnuPAUdrF4f160U5jtZXwy3QHb5yQx7g1+v+manYazp0Gr6XKs9tcxrLFIhyrIwyCD6EV5b4x+G3hj4vfDXXPhx4wgW40/VvPgkVhnG7ow9CDyDX5+/sD/ABR8QfCbxvrX7B/xdndtW8LM0uhXU3/L5pzfMoBPUoD/AD9K+IrwWdZbPGRX+1ULup/fpyd+f1hJ2l/dafRnv039QxUaD/g1NI/3ZJfD6SSuvNPufrFRRXxh+1n+298Jf2UtAxr8/wDaPiG6Uix0m2O+eVzwMgfdXPc18vl2W4rH4iOFwdNzqS2S/rRd3sj18ViqOGpOtXkoxXVnX/tL/tJ/DT9l/wAPn4g/Ee7EaJBItvbKQZriXjCIvcn8hX5X/CH9n/43f8FGfiJbftGftQSXGi+BLSXzNE0CNjGZUByrN6Ajq3U9uK2v2f8A9lH4vftb/F61/ac/bejZLPBn0Tw42fKijBBUyIeg6cHlu/Ffufa2ttY20dnZxrFDEoREQBVVRwAAOABX3OJxuE4boywWXyjUxsk1UqrWNNPeFLu+kp/KJ89SoVs1qRr4lOFBO8YbOXaU/LtH5s+JvE37LGveBtXPjP8AZr1RtDu1A8zTpWLWkwHbBzgn/Jqz4a/a1k8N6pH4Q/aA0ebw1qOdv2kjdaSe4fsDX2vkZxXN+KPCHhjxrpcmjeKrGG+tpAQUlQNjPpnofcV+H1OHqmGnKtlFX2Tbu4Nc1OT/AMO8W+8WvNM/R4ZxCtFU8xp+0S0UlpNfP7XpJP1RDeatpmt+Gn1LSJ0uYJVDJJGwZSD7iovGXgjwx8R/Bt54H8ZWiX2malAYLiGQZDIwwfx9DXxf4m/Zp+InwnefxB+zzrrw2hy0mkXrF4Dz0Qnp+lbuiftcaj4Puk0D4/8Ah268Oz8KLtFMts/vuA4qqHFUsJUiszpyw809J702+jVRbf8Ab3KxVchWIi3gZqrFrWO07dnB7/8Abt0fBfjb/gjV4StdM1aW38Zapf6DYW11caVo0xzHBcMpK4bcRgewBNfSv/BJH4kzeM/2ULXwjqbf6f4Su5tLmU9RsYkf1r9CrX4g+Ada0eHU7TV7SS0vhsicyqFcsOgyevtX44/8EvrtfCn7UHxx+Flu4NtFqf2yMKcry5HHbo1fvNPP8dxFw5j/AK/V9o6PsqkHZWtzOErWSTvzJt7t7n5nPLcPlea4dYeHJz88JLXspLfa1tEfuLWBon+tvf8Ar4b+QrfrA0P/AFt7/wBfDfyFflp9eb9FFFABX54f8FOfgH4p/aY/ZX1v4R+CrdrvVLxrae3hVgpdraeOTAJ4HCmv0Pr51/aM+Pvw+/Zs8MW/xN+JU0kWnpPFZqIUMkkk104jjVVHJJYigD2/w1b3Np4c0+1vF2TRW0SSL1wyqAR+BrbqOGTzYllwV3AHB6jNSUAFZOu/8gi4/wBw1rVk67/yCLj/AHDQBcsf+POL/cH8qtVVsf8Ajzi/3B/KrVACEhRljiub8S+MfC3g6wfU/FF/BYwIMl5nCj9a+fv2vdS1/T/hSq+Grt7G7nvraJJkYqVLNjPFcf4S/Y18NXdzF4k+L2r3fiy/OHK3DkW6k+iZ/wAK+bx2b4363PA4DDqUoqLcpS5Yx5r2uleT22S+aPbwuX4X6vHFYus4xbaUVG8na3olv1ZqR/tn/s86be3fma35m+TIMcTsDx2IGKzL39vP4GxNt01r2+P/AExt2/rXveh/Cr4ZW0t1bQ+H9PCRuFUG3Q4GPcGuxs/A/grTzmw0iyhPqluin9BWDwvEUt8TRj6U5P8AOZqq+TR/5cVH6zivyifHq/t+fC0SYuNK1WKPu7QHAru9O/bY/Z31CASvrf2diOUljZSP0r6al0DQp4zDPZQOh6q0akfliuDvvgj8IdTlM194b092PU+Qo/kKn6nxHT+DF0p/4qbj/wCkzY/rOTT+LD1I+k0/zieTSftafs+ahqlm0PiS2UIzbi+VAyPU16NB+0N8EblBJB4n09gf+my1z+t/s7/BG5vLS1fwzYhJCwbbHtJ49qxJ/wBjb9na4be3h6NT/suw/rT/AOMmj/z4l/4MX+Yf8Icv+fsf/AH/AJHX337SvwH04ZuvFOnr7CYE1kw/tXfs9zSeWPFNkp9WfA/Os+z/AGQP2ebIho/DsLEf3mY/1rXm/ZZ+AU0flN4atQPYEH+dTfid62w68v3j/HQdsjWl6z/8ARZ1D9or4HS6ZMYvFGntuRsYmX0rFtf2p/2f7Gyhgn8U2RYIAdr5wfwrK1D9kD9niK0muE8OxBlQkfO/XH1rX0b9lv4BppsLf8I1asWQElgSf502+JnssOvnUYWyNdaz+UF+rOn039or4Iaum+w8T2D/APbZQf1q3ffHz4MabH5t94l0+NfUzr/jXn2pfscfs8am2+Xw/HGf+mbsv9ap2P7Fn7OtjIZV0JZD/tyMR/MUe04mXu+zoPz5p/lb9Q5Mj356vpaP53/Q6p/2p/2fEOD4rsD9JQapaT+0j8Cn1C9nHinT9jspUmYc8VLH+yh+z9GML4atvx3H+tc3bfsmfs/XmpXkc3hyHEbKFwzDqPrQnxP2w/8A5UC2R963/khs6z+11+z1ogPn+JLaYjtATKf/AB3NcBP+3r+z9CxVLy5ceogb/CvWtG/Zj+BGhNvsfDVmT6yL5n/oRNd3F8K/hnAu2Lw/pwH/AF7R/wDxNS6PE09fbUIekJy/OSH7XI46KnVl6yivyTPmE/t+fAPtPdn/ALYN/hWHqP7e3wOubm2kh+2sIpNx/cH0r7CHw2+HY6aDp3/gNH/8TWRqvgLwLFd2Qi0SwUGU5xbRjt/u0vqfEv8A0F0f/BUv/kw+s5J0w9T/AMGL/wCRPmhP+CgPwKJw/wBtT3MDVpR/t6/s/OMteXC/WBv8K+on+H3gKQYfRLA/W2j/APiaz3+FHwxkO5/D2nE/9e0f/wATR9T4mX/MXR/8FS/+TD6zkj3w9Rf9vr/5E+cx+3h+z2et/P8A9+H/AMKguf27/wBn14HjW+nJZSP9Q/f8K+jT8IfhYf8AmXdO/wDAdP8ACobj4SfC5LaRl8PacCFJ/wCPdPT6UfVeJ/8AoJo/+C5f/Jh7fI/+fFX/AMDj/wDIny7aft8fAmxs4rUPeSFFAJWBqkb/AIKC/A8dI78/9sDX1HoXw5+H0elQFNC08ZUf8u0f/wATWyPAPgQdNEsP/AaP/wCJpPBcTf8AQXR/8FS/+TH9ayT/AKBqn/gxf/Inx7J/wUF+Dw/497LUpf8AdgqBv+CgvwtB40nVT/2x/wDr19oxeC/B0P8AqdJs0/3YEH9KsDwt4ZHTTrX/AL8p/hT/ALO4je+Ppr0pf5zF9dyZbYSf/gz/AO1PhC3/AG+fhlFq1xeNpOqbZVUAeTz8v41+ZH/BUP4Q/sQ/8FPPhV/YPj3T9S8NeN9HBm8PeKLW323ljcLymWXDNHu6rnjqOa/oGs/DPhtvEF4p0+2ICx4Hkp6fStiXwX4Pn/1+k2b/AO9Ah/pR/Z3Ea1WPpv1o/wCUw+u5M98JP/wZ/wDan843/BKT9sD9sH4DeAV/Z/8A+CgN1a+KbPRP9H0bxXZSF7me2ThFuo2AYuBj5xye/Nf0J+APjD8N/idbC48F6rBeEjJjDYkH1Q8ivO/jx+yl8F/2hfhhqnws8ZaWlpa6lEUF1pwFpdwP/DJFLGAysp5Hb1r+YnwR+zl+37/wTW/apXwx8RNbn8ffC66Pn+GvFJXF3bvEcmzvdvdkyFYjDY61x4vGcQZVRljMXKnXpR1koxcJKPVrWSdlrZ2OnDYbKMwqLDYeM6VSWkW2pRb6J6Jq/fU/ro1z/l0/6+F/ka3a8e8E/Enwz8V/BWkeMfCt5FdwzyoJDEwby5QCGRsdGU8EGvYa+4pVY1IRqQd4tJr0Z8tUpyhJwkrNaMKKKK0IGSf6tvoaxfDX/IFg/wB2tqT/AFbfQ1i+Gv8AkCwf7tAG7RRRQAVztt/yMtz/ANco/wCtdFXO23/Iy3P/AFyj/rQB0VFFFABWJrv/AB7w/wDXZP51t1ia7/x7w/8AXZP50AbdFFFABRRRQBgeGf8AkEr/AL8n/oRrfrA8M/8AIJX/AH5P/QjW/QAUUUUAYB/5Gf8A7dh/6Ea36wD/AMjP/wBuw/8AQjW/QAUUUUAYHiX/AJBZ/wCukX/oYreHQVg+Jf8AkFn/AK6Rf+hit4dBQAtFFFABWH4f/wCPOT/rvL/6Ea3Kw9A/485P+u8v/oRoA3KKKKACsOX/AJGKH/rg/wD6EK3Kw5f+Rih/64P/AOhCgDcooooAKwvE3/ICuf8Ad/qK3aw/Ev8AyArn/d/qKANsdBS0g6CloAKKKKAMHQel5/19S/0rerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArNk1nSInaKS6iVlJBBcAgitKmGNDyQPyoAzf7c0X/AJ+4f++x/jWPr+uaL/Y8/wDpcPQfxj1HvXVeXH/dH5Vka9Gn9kT/ACjoO3vQBL/bmi/8/cP/AH2P8aP7c0X/AJ+4f++x/jWl5cf90flR5cf90flQBm/25ov/AD9w/wDfY/xrI0rXNF828/0uH/j4P8Y/ur711Plx/wB0flWRpUcfm3nyj/j4Pb/ZWgCX+3NF/wCfuH/vsf40f25ov/P3D/32P8a0vLj/ALo/Kjy4/wC6PyoA5TUNc0X+07D/AEuH/WP/ABj+43vWz/bmi/8AP3D/AN9j/GoNQjj/ALTsPlH+sft/sNWz5cf90flQBm/25ov/AD9w/wDfY/xqC51zRfs0n+lw/dP8Y9PrWz5cf90flUFzHH9mk+UfdPb2oAwtG1zRf7Itf9Lh/wBUn8Y9B71+Z37PGsaV+2Z+09qX7aWsXMcngPwK194Y+HELuPKu5g3k6rrYU9fNkRrK0f8A54RyOvyz11/7cXjjxd4s8P8AhP8AYg+DF9PpvjL4wJLa3Wp2bbZ9E8NWyp/auohhykgjdba1bj/SZ0IPynH3r8PPh54L+FPgPRvhj8PtOh0vQvD9lBp2n2cK7Y4La2QJGij0CgD3oA3/AO3NF/5+4f8Avsf41kW+uaL/AG1df6XD/q4v4x/tV1Plx/3R+VZFvGn9tXXyj/VxdvdqAJf7c0X/AJ+4f++x/jR/bmi/8/cP/fY/xrS8uP8Auj8qPLj/ALo/KgDldb1zRfs0X+lw/wCvh/jH98e9bH9uaL/z9w/99j/Godbjj+zRfKP9fD/6GK2PLj/uj8qAM3+3NF/5+4f++x/jR/bmi/8AP3D/AN9j/GtLy4/7o/Kjy4/7o/KgDldD1zRfsJ/0uH/Wy/xj++3vWx/bmi/8/cP/AH2P8ai0ONPsJyo/1svb/batfy4/7o/KgDN/tzRf+fuH/vsf41jza5ov9vW/+lw/6iX+Meqe9dV5cf8AdH5VjzRp/b1v8o/1Evb3SgCb+3NF/wCfuH/vsf40f25ov/P3D/32P8a0vLj/ALo/Kjy4/wC6PyoA5nXNc0X+xrr/AEuH/VP/ABj0+taSa5ouwf6XD0/vj/GjW44/7GuuB/qn7e1aSRx7R8o6elAGf/bmi/8AP3D/AN9j/Gj+3NF/5+4f++x/jWl5cf8AdH5UeXH/AHR+VAHK6drmi/br7/S4f9av8Y/uL71sf25ov/P3D/32P8ah06NPt198o/1q9v8AYWtjy4/7o/KgDN/tzRf+fuH/AL7H+NY+qa5o32ixAu4v+Pj++P7je9dV5cf90flWPqkafaLHCj/j49P9hqAJv7c0X/n7h/77H+NH9uaL/wA/cP8A32P8a0vLj/uj8qPLj/uj8qAMw65ouD/pcP8A32P8aytB1zRf7FtP9Lh/1Sfxj0rpzHHg/KPyrK0GOP8AsW0+Uf6pO3tQBJ/bmi/8/cP/AH2P8aP7c0X/AJ+4f++x/jWl5cf90flR5cf90flQByseuaL/AG9L/pcP+oT+Mf3mrY/tzRf+fuH/AL7H+NQxxp/b0vyj/UJ2/wBpq2PLj/uj8qAM3+3NF/5+4f8Avsf41j69rmi/2Y3+lw/fi/jH99feuq8uP+6PyrG1+OP+zG+Uf6yLt/trQBP/AG5ov/P3D/32P8aP7c0X/n7h/wC+x/jWl5cf90flR5cf90flQBm/25ov/P3D/wB9j/GsfRtc0XyZ/wDS4f8Aj4l/jH94+9dV5cf90flWPo0aeVP8o/4+Je3+0aAJv7c0X/n7h/77H+Nfmv8AE/4Wax8bv+CifhDxT4tgI8D/AA20M6nZzyEfZ7jWLqVlVVPQtGERyO20etfp15cf90flR5cf90flXqZVmtXL51KtFLmlCUE+sedcra8+VtfM48Zg4YmMYVHopKVu9ndJ+V7P5H50/tm6tpkvxq+ADRXEbBfGpLEMDgfZJetfSdt8Hvhlpfx1l/aA8OX7aZq+oWJsNVht5UW21JFIMMlwhBzLDghHBDbSVORgD54/bPRf+F4fs+KAOfGj/pZzV+hXlx/3R+Vetj8VVo5bgVSk1zU6kX5p1Z6Pvsn5NJrVI48NRhUxWI51e0oteT5I6/100M3+3NF/5+4f++x/jVHU9c0X+zbj/S4f9U/8Y9D710Hlx/3R+VUdTjj/ALNuPlH+qft7GvlT2ClZa5oos4f9Lh+4v8Y9Ks/25ov/AD9w/wDfY/xqzZRxmzhO0fcXt7VZ8uP+6PyoAzf7c0X/AJ+4f++x/jWPY65o39qX3+lw/ej/AIx/dHvXVeXH/dH5Vj2Mcf8Aat98o+9H2/2RQBN/bmi/8/cP/fY/xo/tzRf+fuH/AL7H+NaXlx/3R+VHlx/3R+VAHKaxrmilrT/S4f8Aj4T+Meh962f7c0X/AJ+4f++x/jUGsRputPlH/Hwnb2NbPlx/3R+VAGb/AG5ov/P3D/32P8aP7c0X/n7h/wC+x/jWl5cf90flR5cf90flQByuga5ov9kw/wClw/xfxj+8fetj+3NF/wCfuH/vsf41DoEaf2TF8o/i7e5rY8uP+6PyoAzf7c0X/n7h/wC+x/jWN/bmi/8ACQf8fcP/AB7/AN8f3vrXV+XH/dH5VjeXH/wkONo/49/T/aoAn/tzRf8An7h/77H+NH9uaL/z9w/99j/GtLy4/wC6Pyo8uP8Auj8qAOW17XNF/sib/S4eg/jHqK1/7c0X/n7h/wC+x/jUWvRx/wBkzfKOg7e4rX8uP+6PyoAzf7c0X/n7h/77H+NH9uaL/wA/cP8A32P8a0vLj/uj8qPLj/uj8qAOT0bW9GD3mbuH/j5f+Meg962v7c0X/n7h/wC+x/jVbRo033nyj/j5ft7Ctvy4/wC6PyoAzf7c0X/n7h/77H+NZF9rmi/2nZf6XD96T+Mf3T711Plx/wB0flWRfRx/2nZcD70nb/ZNAEv9uaL/AM/cP/fY/wAaP7c0X/n7h/77H+NaXlx/3R+VHlx/3R+VAGLd65ov2WX/AEuH7jfxj0qtpGuaL/ZNr/pcP+pT+Mf3R71t3ccf2WX5R9xu3tVbSI4/7JtflH+pTt/sigBP7c0X/n7h/wC+x/jR/bmi/wDP3D/32P8AGtLy4/7o/Kjy4/7o/KgDlbXW9G/tu8/0uL/Vw/xj/a962P7c0X/n7h/77H+NQWscf9t3g2j/AFcPb/erZ8uP+6PyoAzf7c0X/n7h/wC+x/jWTq+uaL5UH+lw/wCvi/jH94e9dR5cf90flWTq8aeXB8o/18Xb/aFAEn9uaL/z9w/99j/Gj+3NF/5+4f8Avsf41peXH/dH5UeXH/dH5UAZv9uaL/z9w/8AfY/xrH0LXNF/s/8A4+4f9bL/ABj++3vXVeXH/dH5Vj6HGh0/lR/rZe3+21AHyT+2n8EW/aF+EsQ+G2sW2jfELwffQ+IvB2rOwItNYsw2xZO5t7mNpLW5X+KCVx1wa7X9lb9p7wl+078D9H+LFrEdF1CfzLPWNHunUXOlatZsYbyzmGfvwTKyZ6MuHGVYGvpny4/7o/Kvy78ZQW37Fn7btp8U7ZFtvhx8fbu30jXwMLDp3jGJBHp96R0VdThUWczY5nit8klzQB+jcuuaL/bsP+lw/wCok/jH95Petf8AtzRf+fuH/vsf41FLHH/bsPyj/USdv9pK1/Lj/uj8qAM3+3NF/wCfuH/vsf41ka/rmi/2Ldf6XD/q2/jHp9a6ny4/7o/KsjX40/sW6+Uf6tu3tQA9dc0XaP8AS4en98f407+3NF/5+4f++x/jWisce0fKPypfLj/uj8qAM3+3NF/5+4f++x/jWXpOsaRLfXkcd1EzNOAAHBJJRa6by4/7o/KsjTET7XfYA4mHb/YWgDaooooAKKKKACiiigAooooAKKKKACiiigAooooA/9b+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAOc0/jW9TP/XL/ANBr+W3/AINxLiHxD+1Z+3d4xk+e4m+K80G//ZSW84/Sv6krD/kMan/2y/8AQa/lR/4NeY3f4i/tr6i5yZvjBfqT67Zro/8As1AH9aNFFFAGDrP/AB9WH/XwP/QWrerB1n/j6sP+vgf+gtW9QAUUUUARzf6pvoayvD3/ACA7X/rmtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/Ix3n/XKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/6+Yv50Ab1FFFABTX+4fpTqa/3D9KAMXw1/wAgWH/gX/oRrcrD8N/8gWH/AIF/6Ea3KACiiigDn4v+Rnm/690/9CNdBXPxf8jNN/17p/6Ea6CgAooooAwfEf8Ax4J/12j/APQhW9WD4i/48E/66x/+hCvy9/4K4/8ABTzwN/wTW/Z6fxJAi618Q/EzHTvCXh+L57i+v5BhDsX5vLQkFjj26mgD5c/4LLf8FTfHn7O1xon7EP7ENh/wlf7QHxJP2TTbS3Hm/wBk28nDXc6jO3aDlAcdMngV7x/wSY/4JMeAf+Cd/gO68c+Nrn/hL/jL4wBuvFXiq6JluJ55TueKJm5WJTxxjdj0wK8F/wCCK/8AwTN8cfAu31n9vT9tGc698fvisBf6lPcDd/ZFrKNyWkOc7CFIDgdMbfWv6BaAEPQ1h+Hf+Qb/ANtJP/QjW4ehrD8O/wDIN/7aSf8AoRoA3aKKKACsE/8AIyj/AK9z/wChCt6sE/8AIyj/AK9z/wChCgDeoorzn4sfFPwj8GPAV/8AEXxvMYNP09NzlVLMxPCqoHJLHgCtaNGpWqRpUotyk7JLdt7JEVKkYRc5uyWrZ0Pi/wAZeF/APh658WeMr6HTdOs0Mk087hEVR6k1+KPxP/aO/aK/b41e8+Ff7J1rLoHgONzBqPii5QqJ0zgrFkdD2xyfatzRPBnir/gojND8av2jNT/4Rr4U2t2Y9L0FJfKe7dX2hrp84GW4C/lX66WfhDwt4D8CweFPBdjDp2m2aJHBBAoVFUYx06/Xqa+8isFw4r1IKtjl0avSpNfhUqLqvhi+7PnW6+aaRk6eH8tJzX/tsX978j8DPhR8HtF/4JhftfaVZ/EW2h1nwj4vhS2tPENzCN9neHqMnITLfjg+1f0ZQyxXESzwMHRwGVgcgg9CK8D/AGlv2efBn7Tfwl1D4XeMkwlyu+2uF+/bzrykinsQevtX5mfszftuT/sw2Gv/ALNX7ZV0bHVfA8LNp2oSAkajZp9wKT958Yx6jjtXXmbxHFmFjmFK88dSSjUgt5xvaNSK7q/LNLylbcwwnssmrPDT93DzbcH/ACvrFv8AGLfmj9siQBk9BX4pfsgyj4zf8FJfi38ZJf3lt4ejTR7Ruwx8pA/Jq8ln+KH7Y/7dyaz8SNA1K4+Gvwo0eKeaOaIbLy8SFSeG6nd7YArl/wDgn98Dfib4l/Y/134w/CzVLi08XyeIG1Swd3O28+yAjypv76yhiDnvzXtZdwvHKMrx7xeKgq9RU6LSu1SdSXM1OS0vaHvJX5Vv2ODFZu8bi8MqFGTpxcpp7c/KrXit7Xel9+h/Qh4d/wCPaf8A67yfzr83P+Cj/wAD/E1xoOmftVfBsG38a+AHF0rR8NcWanMkbeoA5xXrfwI/bQ+Ffir4KX3xF+IV9B4bvtEmkh1uyu3CSWtyn3l2nkgkfLgc1+fPjD4t/H//AIKeeMpvhZ8B0ufC3wrt5Nuo65IjRyXiA8qh44bso696+e4TyLM8FmcsVWSpUqDtVlP4OV6Sh/f54uyjG973Wmp6edZhhK+EVGnec6i9xR+K/SX93le7exoa9/wU3+LH7Smi6T8Lf2MPDk9z4s1O1Q6lfSp+40524bBPHB53HjHrXNeAv2Z/F/7MPxLn+Kvxy8LT/EzxTcxpPFqkrtNBFMeWwpBAI7ccdq5vxX4M8Qf8EivjjpvjX4axy698PfFUcdpf2bspulnj6svT6g9Oxr+gzw5q6+I/Dtjr3ktAL63jn8qT7yCRQ20+4zg1XiHGph8BRhwpWeGwla7VWFnUqPaVOpzapRvpFWWzu7lcKzpzxVSWdUlWrU7LkldRj1UoW6vv6qx+att+3n4jvNaiC+B7prhUaMRIxJJP/Aa4fxz8Zv20vF2o507Rr7w/p0x+Vba1MjhT6kgnP4Cv1Tk0+wj8UQSxwRq5hclgoB6jviuqr+e6/Cma4mn7PFZrO1/sRjD72tX96P1Oln+X0J8+Hy+N/wC9Jy+6+n4M/Kf4f/CL9s3UBJ43j8SXFlKgLwW+oH5psdmjGQoPavpv4Q/tK3mq+Ih8L/jLYHw/4nThFfiG594ye59K+va8J+O/wP0P4yeGjA3+i6vZ/vLC9Th4pRyORzjPUVpS4bxWVUlVyuvOc1rKFSXNGp3tf4JdmtO9zOedUMfUdPH0oxi9pQVnD7viXdP5HrniA/8AEom+lJqugaJ4l0k6Vr9pFeW0i4aOZQykEehr4/8Agt8ctW1O0vPg78Wh9j8VaSPLBk+UXca9HQnqcdcda+14f9Sn0FfTZbmOHzLDKtT1i9HFrVPrGS6NdV+h4mNwdbBV/Zz3Wqa2a6NPsz8xv2h/+Cbngv4k6Yw8A3UmmlJDOlm0jiJZf70bA5Rq+dP2UPhD4l/YJ8T+INb8UeEtX1mfW9qS6jE4uAsaHOB3PPUk5r9yKQgMMMMilTwmNwmGqYPKMbUw9GfxU4tSpPW/8OV1HXV8nLfrc0ljMPXqwr5hhoVpx2m9Jrp8as3p/Nc+QtK/bc+CN5iPWJrrSpOhW6gZMfU4xXZ+Ff2jvgdqMlybfxNYjzZiyh5ApIIHrXs2qeDPCOuKU1jTLW6B6+bCrfzFeGyfsx/AjxNLenVPDVpuEzANGDGQMDptIFeXKlxDTXuVaNT/ABRnB/hKS/A7FUyeb96FSHpKMvzUT2iy+IHgbUY/NsdXtJV9VmX/ABrQHirwwemo23/f1f8AGvlu6/YW/Z7uG3xWFxCf+mc5Aqif2DfgVn5Fv1+lyf8ACo+ucQrR4Sk/SrJfnTH9Xyd7Yiov+4a/+TPrX/hJ/DZ6X9v/AN/V/wAa/KH/AIKq6NpXxN0X4Q+EYLlJ7eb4iaHJdLG4I8qKQuS2DwoIGc8V9TH9gz4H9m1Ef9vJ/wAKxbz9hH4InVLW1c37K25uZycFehHHFH17iD/oDp/+DX/8rD6rk/8A0Ez/APBa/wDkz7S/4Sbw5/z/ANv/AN/F/wAaUeJfDp4F/b/9/F/xr5CP7BXwSP8Ay11L/wACT/hTD+wT8Fj0uNTH0uT/AIUfXuIf+gKn/wCDn/8AKw+qZP8A9BM//Ba/+TPsMeItAPS9gP8A20X/ABr5W+Lvgr4wyapdeL/hF4wjWOZcy6bd7XhOP7hHIz6ZrD/4YJ+Dg+5eaqv0uT/hXhvxv+BHwV+B+gC9fWdam1G5ylnYxXTF5X+g7epryM7xmaPCynjsLGEI680a7i16NQV/TW+1mejleGwP1hRwtdylLS0qSafreX46W7nrfhP9qD4heCvEWneC/j94eOmjUHWC21C3O6B3PA/P2NfeYIIyOhr8x/2fP2X/ABx4pudO8dfG27uTZWL+fp2mTSmRlJ5DOT0+nWv05AAGBXpcG1cyq4adTH83I2vZ89ufltrzWS67XSdtzi4kp4KnXjDCW5kvf5b8l76ct2+m9na+x8jftlS+V8NtP99WtP8A0MV9X2P/AB5Q/wC4v8q+Q/21n2/DbTB66vaf+hivruw/48Yf+ua/yrswL/4Wsav7lL/3Ic2KX/CZhn/eqf8Atp4Xp/xIvE+P918LRGht2sftm/8Aj35xj6Yr3+vgLT7+ST9va6tlPyppIU/iM195X19Z6ZZy6hqEiwwQqXd3OFVR1JNbZJj5YhYp1HpCrOPoo2M80wkaPsFBaypxl83ct0V5V4D+Nvwv+JmoXGleCtXhvri2+/Gh+bA4yPUVR+MPxu8I/BnS4LvXhJc3d4/l2tnbjdNM3oB/Wu6WbYOOGeMdaPslvJNNdt1fW+lt7nLHL8S66w3s37R9LWf4noupf8hWx/3n/lW9Xzn4C+Ndn8QvENpo2p6Te6DqShpVtr5NpePH3lIyD719GVtg8bRxVJVqErx/rRp6p+TMsThqtCfs6qs/6+TCmSyCKJpW6KCfyp9UdUO3TLhvSJ/5GumTsmzGKu0j5o/Z9+Iniz4neE/EXiLxLcRyRx39zb20aJt8uOIlQCe+a+lNJ/5BkH+4K+Ff2Hbw3Hwt8TQHrFqt1/48Sa+6tI/5BkH+4K+e4TxM8RlGHrVZOUpK7b1bd2exxBQjRzGtSgrJPRLtZGjRRRX0R4w13WNS7kADkk9K4/w1rWkaxqupNpV1FciORVbynDYIHQ4NfLfxa8S+JfjF8UV/Z+8D3T2Wn2iCbXLyI4cRnpEp7E9663wD8JdN+EXj/WNb8IW4tdFh01EeMOSZJowWLNnPJHevnoZ1VrYmUcNS5qMJcsp36215VbVRekm2tdFex7Mssp06ClWqWqyXNGNunS7vo3ulZ6avc+qaK+DfFf7QnxiufhQ3xq8I2FhZ6PajdJFcuZJpQG2nbt4H419TRfFPwtYfDuy+Iniq6j060ubeOYmQ4wXGcD1NbYTiDB4icoxbSUVO8lypxd7STfTTrYyxOT4mjGMpJNuTjZO7UlbR266nplc/rP8Ax+WP/XU/yrxzQP2oPg54iuktbTUWi8w7UeeJ40YnphmAHP1rqPih8RPD/gNNFvtWZpPt97HbwJENzO0vAIHoM5PtXVTzfA1KUq8K0XCO7TTS9TCeXYqFSNKdKSk9k09T1uisXX/EOj+FtFn8Qa/OttaWyF5JHOAAK+CdX/bL8bH/AIrnw/4ZL+DVu0tReTPsklLnGUXvXNmvEGBy7lWKnZu7sk5Oy3k0k7RXVvQ2y/KMVjbuhHRaXbSV3sk3u30R+iFV7v8A49Zf9xv5UyzvI7uxivx8qSIJOewIzzXydrP7RPiHXNa1eL4Y6MuraL4fDDUL1pNoZh95YRj5io5NdOOzXDYSMHWl8WySbbsrt2V3ZLVvoYYXAVsQ5Kmvh3baSXRavS7ei7n1Ron/ACCYP9wVqVzXhnVLO88KWmso2IJIFl3HspGefpVHTviH4K1aWyt9O1KCWTUVZ7ZFcFpFXqQOuBXW8RSXLeaV9td/T7195gqNR3tF6b+X9WOzoqmNR08ymETx716ruGR+Gar6Vreka7A1zo1zHdRo5RmiYMAy9Rx3FX7SN1G6uRySte2h5/408b6P8OdP1zxnrrbbext1kI7sccKPcnivKPg78X/iV4g1uy074m6XDYQ69bNeaa8ROQinmOTP8YBBryf9sK8m1jxD4a+GEWSuvanB5yjvFFj9OTX154h8ESajf+HbrTmSIaJNuOepjKbSo+vFfK1cTi8TmdWGHm1Ch7NOKtaTnrK/+GDVrdWe/Chh6OBpyrRTlV52m/sqOit6yvfyPR68y+M3g+Hx58Ltc8LyqHNzaSeXkZ+dRuXHvkV2kniHRo9cTw29wn26SMzCHPzbAcZx6ZrXdFkQxt0YYP419JXpU8TRqUJappxfzVmvxPFpTnQqQqrRppr5M/hh139p39qT/gkh+1Mv7VrWl14h/Zw8b6nDZeLrSHMn9jamoCG6Vf4Ny/Mez896/tY+EXxc+HXx3+G+kfFv4T6rb634f122S6s7y2cPHJHIMggjv6jsa/MD4V/CP4efGGf4q/sy/FXS4dX8Ma3dNDd2cwBVo5d6HGejDGVI5BGa/CX4P/EH40/8G1P7XUX7NnxsubzxF+yh8RdQY+G9bkzI2gXEzf6uU/woCQGHTHzDvXzfA1eVTJMPGbvKF4P/ALck4/kj2uKaUYZnWlFaStL/AMCSl+p/bDRWH4a8S6B4x0Cz8U+F7uK/06/iWe3uIWDxyRuMqykcEEVuV9afPDJP9W30NYvhr/kCwf7tbUn+rb6GsXw3/wAgWD/doA3aKKKACudtv+Rluf8ArlH/AFroq523/wCRmuf+uUf9aAOiooooAKxNd/494f8Arsn8626xNd/494f+uyfzoA26KKKACiiigDA8M/8AIJX/AH5P/QjW/WB4a/5BK/77/wDoRrfoAKKKKAMA/wDIz/8AbsP/AEI1v1gH/kZ/+3Yf+hGt+gAooooAwPEv/ILP/XSL/wBDFbw6CsHxL/yCz/10i/8AQxW8OgoAWiiigArD8P8A/HnJ/wBd5f8A0I1uVh+H/wDjzk/67y/+hGgDcooooAKw5f8AkYof+uD/APoQrcrDl/5GKH/rg/8A6EKANyiiigArD8S/8gO5/wB3+orcrD8S/wDICuf93+ooA2x0FLSDoKWgAooooAwdB6Xn/X1L/St6sHQel5/19S/0reoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArH1//AJA8/wBB/MVsVj6//wAgef6D+YoA2KKKKACsjSv9bef9fB/9BWtesjSv9bef9fB/9BWgDXooooAxtQ/5Cdh/10f/ANAatmsbUP8AkJ2H/XR//QGrZoAKxPE2uaL4Y8N6h4l8S3cVhp2nW0tzdXM7BIoYIVLvI7HgKqgkk9AK26/Mj9vae6/aB8ZeDv8Agnn4edvs3j3zNa8byRkgweDtMdPtMJZeVbUrhorNf70TTn+CgA/4J46B4i+LsniP9v8A+Jdk1nqnxQS3tvDFpN/rdN8G2Bb+zYj12yXheS/mAPWdEPMYx+m9Y/h62tbPQLGzsokhhigjSOOMBURVUAKoHAAHAFbFABWRb/8AIbuv+ucX82rXrIt/+Q3df9c4v5tQBr0UUUAY+t/8e0X/AF3h/wDQxWxWPrf/AB7Rf9d4f/QxWxQAUUUUAY+h/wDHif8ArrL/AOhtWxWPof8Ax4n/AK6y/wDobVsUAFY83/Iet/8ArhL/ADStiseb/kPW/wD1xl/mlAGxRRRQBl65/wAga7/65P8AyrST7g+lZuuf8ga7/wCuT/yrST7g+lADqKKKAMfTf+P6+/66r/6AtbFY+m/8f19/11X/ANAWtigArH1T/j4sf+vj/wBkatisfVf+Pix/6+P/AGRqANiiiigBD0NZWg/8gW0/65J/KtU9DWVoP/IFtP8Arkn8qANaiiigDHj/AOQ/L/1wT/0Jq2Kx4/8AkPS/9cE/9CatigArG1//AJBjf9dIv/Q1rZrG1/8A5Bjf9dIv/Q1oA2aKKKACsfRf9VP/ANfEv/oRrYrH0X/VT/8AXxL/AOhGgDYooooA/PX9s0Z+O/7PY/6nOX/0imr9Cq/PX9s7j47fs9t/1Ocg/Oymr9Cq+jzf/kXZd/gn/wCnZnmYL/ecT/ij/wCkRCqOp/8AINuP+uT/AMjV6qOp/wDINuP+uT/yNfOHpktl/wAecOf7i/yqzVay/wCPOH/cX+VWaACsex/5Ct9/vR/+gitisax/5Ct9/vR/+gigDZooooAxtY+9af8AXwn8jWzWNrH3rT/r4T+RrZoAKKKKAMfQP+QRDj/a/ma2Kx9A/wCQRD/wL+ZrYoAKxv8AmYf+3f8A9mrZrG/5mH/t3/8AZqANmiiigDI17/kEzfQfzFa9ZGvf8gmb6D+YrXoAKKKKAMTRfv3v/Xy/8hW3WJov373/AK+X/kK26ACsi+/5Cll/vSf+gmtesi+/5Cdl/vSf+gmgDXooooAr3f8Ax6y/7jfyqto//IJtf+uKf+girN3/AMesv+438qraP/yCbX/rin/oIoA0aKKKAMa1/wCQ3ef9c4f/AGatmsa0/wCQ3ef9c4f/AGatmgArJ1f/AFcH/XeL/wBCFa1ZOr/6uD/rvF/6EKANaiiigArH0L/kH/8AbWX/ANDatisfQv8AkH/9tZf/AENqANivGP2iPgZ4M/aX+CPiX4FeP1b+y/Elk9q8sfEtvLw8NxEf4ZYJVSWJuquintXs9FAHwd+wp8cvGfxa+H8vgb4zsi/Ez4a3Nx4V8XxoNiy39oImjvY1P/LG/t2iu4uwEpXqpr7xr8s/2lph+yd+2Z4M/bEsYo4PCXjuK28CePpS2wQNJNjQ9RboCIrqZ7OVmPEdyh6JX6mUAFZGv/8AIFuv+ubfyrXrI1//AJAt1/1zb+VAGsvQUtNX7o+lOoAKyNM/4+77/rsP/QFrXrI03/j7vv8ArsP/AEBaANeiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9f+/iiiigArndY0a3uobi5kklUlDwrkDgY6V0VVL/8A48Zv+ubfyoA5fRPDtodGtD5s/wDqU/5aH0Faf/COWg/5az/9/DVzQ/8AkC2n/XFP5CtSgDnx4ctP+es//fw0Dw5af89Z/wDv4a6CigDz2z0Kzj1bU3Mk3yeUf9Yey1/LL/wawaRBrnhz9q7xVI8g+3fGHVQCrEZ2Avz/AN/K/qt3FbvWmHaND/44a/lw/wCDS9RL+zd+0Nfn783xk1vJ+lvan+tAH9T3/COWneWf/v4aP+EctP8AnrP/AN/DXQUUAcFrPh20+02A82f/AI+B/wAtD/dat3/hHLT/AJ6z/wDfw07Wf+Pqw/6+B/6C1b1AHP8A/COWn/PWf/v4aP8AhHLT/nrP/wB/DXQUUAc3L4ctPKb97P0P/LQ1l+H/AA7aHRLU+bP/AKtf+WhrtJv9U30NZXh7/kB2v/XNaAIP+EctP+es/wD38NH/AAjlp/z1n/7+GugooA5//hHLT/nrP/38NYFp4etD4hu182f/AFUX/LQ+rV39c9Z/8jHef9cov5tQAv8AwjlpjHmz/wDfw0f8I5af89Z/+/hroKKAOf8A+EctP+es/wD38NYeu+HbQJbHzZ/+PiL/AJaH1rvKwde+5a/9fMX86AG/8I5af89Z/wDv4aP+EctP+es//fw10FFAHP8A/COWn/PWf/v4aa/hy0KH97P0/wCehroqa/3D9KAOF8OeHbQ6LCfNn/i/5aH+8a3P+EctP+es/wD38NSeG/8AkCw/8C/9CNblAHP/APCOWn/PWf8A7+Gj/hHLT/nrP/38NdBRQBwEXh20/wCElmHmz/8AHun/AC0P941v/wDCOWn/AD1n/wC/hoi/5Geb/r3T/wBCNdBQBz//AAjlp/z1n/7+Gj/hHLT/AJ6z/wDfw10Fea/GH4vfDv4C/DPWfi/8V9Ug0bw/oFrJeXt3cMESOKMZPJ7+g7mgD5e/b0/aj+CP7Cn7Nut/tD/GvU5LXTNHCNFCJf3t1cE/u4Yl6s7tgAD61+FH/BKv9if4uf8ABQj9og/8Flf+ChdhNb3VwSvw38K3GTHpWnA5iuWVv426rxyfm7CvFPgR8OviX/wcIftdW/7b3x9srrTP2YvhzqXk+C/Dd0GRdeuo2AN1MnRkDDPPb5R3r+yOxsbLS7KHTdNhS3t7dFjiijUKiIgwqqBwABwAKAMn/hHLT/nrP/38NH/COWn/AD1n/wC/hroKKAOePhy0x/rZ/wDv4axPDvhy0/s3/Wz/AOsk/wCWh/vGu7PQ1h+Hf+Qb/wBtJP8A0I0AM/4Ry0/56z/9/DR/wjlpnPmz/wDfw10FFAHP/wDCOWmc+bP/AN/DWGfDtn/wkgHmzf8AHuf+Wh/vCu8rBP8AyMo/69z/AOhCgBv/AAjlpn/Wz/8Afw184ftc6jpHw8/Zz8WeL7vfMbSwkMSynevmsMIcHIyCRivq+vze/wCCpOtNa/s1ReF4mIfX9b02wwP4ledSw/75Br3eGMIsTm+EoS2lON/S+v4HnZtW9lgq1RbqL++2h7j8Mf2fPA+rfszeHvhZ4ytWubGbSrb7VAXIDSuokZuOQd5JyOc16rf6Z4VtLR/B+nXshuLCCEmDziZEiztUnvzjGT1r0vSrRdO0q2sF4EESR/8AfIAr8t/2yP2svhT+z18QRrPg2c+IPHeo2f8AZ39h2f70y4bdE0pX7mxvxIJFbYDB4zOsXPD0eaUpOU0ltzN6t9IpreTt0u7GeIr0MBQjVqWSSUW+tl0Xf09bH1b+0p8e/hJ+y54Am8c/EXUJVbG21tElJnuZT0VF6nPc9q/DDx/+yz+1D+3n4Z1v9rXxzANFi0+1M3hrRJE3yTwxndtYnBwwHU9T04r7X/Zg/Y08Z/tB+M7f9rT9szUY9evZ2Mul6Grb7SzAPAZfu5U8bfUc+lfs9HbwQwLawoqRKoVUAAUKOMAdMV9ZRzrC8JzVLK3GrjE/3lW14xXWnTT3vtKfXaPc8aeArZzFzxicKH2YdX2lL81H7z4B/Yy+Ifw4/ar/AGYbS1MBtHt7U6Rq+mRt5YglRdjqFH3Qw5FfPXxK/aH+En7HenWH7KX7Jmh3XivxVGWSDTLWVpEt3kOd07qOue1ZfxN/Zy+K37NX7W1r8Yf2dpoLbwt49l+xa5YSzCGOKebI81FJAJydwxzn619i/sefszfDD4AaPqFlp11ba74ya4d9c1UHfcPNKSwVicsg2kfLxV4tZPhfaZgpyrYarapCgpNJTfMmqrWypvRdZKSs9xUXjq3LhnFQqwvGVSy+HRrk85LXsrPyPxE+K37BX7QS6Tc/tgfG63t9euBqCXmt+GbIlAbSP72WX7zKOvU+9fvD+zt4l+FXjj4ZeF9V+BVi0fhe/t22/ZnWOOzZB/q3TOd27g/nXrfgHw3rsD69J4o1L+1LXUbt/ItWiCx28OMFO5bd1JNflT4ug17/AIJn/H5/iBo6ST/BzxtdBb+1jBK6VeSHiRR0VCfT6VdfOKvFOH/s6rKPt6SboxjeNOUeXWmo6e/H7D+1ZxbehNPAwyer9agn7Oek27OSd/ib191/aXS99NT279vbw1ofirxH8M/g/BCZtQ8T6/DG8rnc8VlD+8mweoDYANfo3F4YsIY1hikmVEAVQJDwB0r4G1K60j4pft+eDNc064S70zSPC1zqVpIjBkdrp1RWX8DX6OV8jnrdLB4DBv7MHN/4pzf/ALbGJ7eXJTr4iv3kor0jFfq2cDN4dtB4jgHmzf6l/wDlofUVvf8ACOWn/PWf/v4aWf8A5GS3/wCuL/zFb9fMHrHPjw5aD/lrP/38NA8OWn/PWf8A7+GugooA+Wfj3+zr4c+I+jDXLGeWx17Txus71WyysOgPqM1434B+O2seA9ai+Gv7SUM+l3vCW+phz9muB2JPQGvvDxDxo830H86wPGnw88H/ABK8Onw/4ysY723kTA3j5lJHVT1Br5vMMkqqu8flk1Trv4k/gqW2U137SWq81oe3g80puksJjoc9JbNfFD/C+3eL0fkaNro+lX9sl3ZXMssUgDK6S5BB9DVj/hHLP/nrP/38NfA9z4a+NP7JF8+reEHm8U+Ct2ZLJiWuLZf9n2H5V9WfC/8AaC+GHxYsUm8OajGl0R+8tJiEmQ+hU/0p5dxFSrVfqmMj7HEL7Env5wltJemvdInG5NOnD6xh5e0o/wAy6eUlvF+unZnpg8OWf/PWf/v4awdE8O2hlvf3s3+vb/lofQV3oIIyKwdE/wBbe/8AXw38hX0Z4wg8OWg/5az/APfw0Dw5af8APWf/AL+GugooA5//AIRy0/56z/8Afw1hXnh20GuWY82b7r/8tD6V2lxeWlope6lSMDqWYD+dfkr8dPjfeeGv+ClHw2muNYeLwLZeGdYfUZIZC1sL1iohWXbxuIztBrmxGMw+HjzV6kYrzaX5m1HDVqz5aUHJ+Sb/ACP1T/4Ryz/56z/9/DR/wjlp/wA9Z/8Av4a+RdY/bu+E0Ept/C1nqGtydP8ARoDjP1NY6/tS/GjxMB/wgvw21B1b7sl0fLWvAlxllHNy0q3tH/cjKf8A6Smj2I8NZjbmnT5F/eaj/wClNH2l/wAI5Z4/1s//AH8NeVeOfgj4K1ya58WyJIusLbGGC7Ll2hHYqDkAivAD4h/br8Tj/QdI0rQ0bvM3mMP1FY+q/Bn9sDxBZSTeKfHlvaQ4y0dtGR+RA/rXLic+WJiowy6tUV7q8FFX6Nc8k0+ztdG9HKXQlzSxlOD8pOWnb3U0/Qi8SfDX9qTwVpMmsaT47tr23tojII7tNjsqjO3PAzXrn7L3xPX45eA5dW1gSW+p2Ext7pI5Dt3DoR9a+Efjh8FdS0W/0n4fL4o1PxN4n1tk2QM5EMMR6swyeK/UH4G/CDRPgt4CtfCelqpnwHupgMGWU9Sfp0FeFw1UzCec1KcIzhQpxanGdV1feesUnraSWrSk9HrqerncMJHLYTnKMqs3eLjDk91bt7XT6XS12Pn/APbS0m2svhzpbxvI2dXtB8zk9XFfXFj4etHsYW82bmNf+Wh9K+WP24Dj4b6T/wBhe0/9DFfYunH/AIl8B/6Zr/IV9VgP+R3jf8FH/wByHg4v/kV4X/FU/wDbT87fAGk2+r/txeJyHkMdlZKm4Mc5Ix1r1L9rR9PX4X6p4J0W8lbW722aWG1VyzvFHy5wO2K89/ZdP9t/tI/EnxG3zBJlhU/Rq67Sddguf22dW03Uyu2LR0jiD4xjq2M+vevk8FW58pnSvb61Xqwv2UpTV/W0dD6DFUuXMI1LX9hSpyt3cVF2+96nyl4H0/wJoXjz4Ua98Oz9nfVo2tNRETYYyAHcG9DkV7ZoWkW3xQ/bT1JNRZ5rHwpahYAzFtsp/iH41ix6R4N8cftmabp3w1s4orHw2Hur6S3GIzOfpxntXW/s6t/Z/wC1h8RdNu+JZdjKD1IBrxMrouNajhZcvsnikvd+GTp0t0vOcb+q3e56ePqp06tdX9oqDevxJTqdfSL+4+pfiFp/g/wytv408SySJFpSyzea0hyo28gfXpivmjwBrfx3+PzSeMfB13H4Y8OBylqbhWnmuAp+9jIwDWn/AMFAtQuLX4O21lA5QXl7HC5HHynrXa+Lvi14N/Z7+A+nQ2s0TXosY4rK1jILvKyjBwOwJya+xzXMIvMq1GtVdLD0aanNxfK5yldJNqzslHZO7bS8j5zL8JJYKnUpU1OtVm4RurqKVm3Z6Xbe72R5N8Hvix428S/tJ6v8J/Fl6k1rYW7Kn2ZiFaWLG5gTzznkdq+6L3w3aNZTKss2TGw/1h7ivxs+FlprvwH+Onhr4g/FCX7LH4mgluJpZOBH5x6MT36V+mnwl+LmsfGHxRqeqaBbLH4Usx5EFy4O+5mB+Zl/2BXDwTxDKtRnhcdKXt3UlaL1kotKSv2ST3fpvodPE+Txp1I18LFeyUI3ktIuSbi7eba2+Z8ofsQwQXGleONElkkU21/I2Fcr1yK/QfSvDtm2mwN5s/3B/wAtDX5z/soSy+Gfjj8RvA97+7kkaSZEPGQGJ4/A1+m+k/8AIMg/3BXrcAVHLJaUHvCU4vyanI4OLo2zOc1tJRl98UUD4ctP+es//fw0v/COWmQfNn4/6aGt+ivsz5k/Knw34q8Tfs+fELxY3jfwvq2oyavfGeK8s/mVouwz3rudM/aE8NfGLRdf8M+AbfULfWbmJl8q5PEUYQh5GIyPlHb1r6T/AGkdH+MniTwhB4a+DzxwTX0pju7hm2tHCR1U/wA8VxXwk+A2hfBb4e+INOjf7Vqk9rIbq8P32ZoySATyADX5nTy7N8Ni55fhKr+qJScnKEV8V5csJLWUrt3k1ZebPt54zL6+HjjMRBfWG4qKjJv4bK8k9EtNEt/I/PP4d6hr/wAZfCnh79m3wv5whjuJJdWuMnYsKuePTkfqa+j/AAd4R0/4+/Hm88P3zSSeEfAqpbwWxYlJZ0GMn8s12f7AHgvTtM+HWqeL7di93qN1JG2QPlEZIGD15714v8Bvjf4R+Ba/EKbxjJs1T+0XeG2x+8mbkAD8etfJ5Zh4UMNl1fNanuVtZX+FU6MG6cPNX95rqz6HHVZ1a+NpYCHv09I235qkvfl93up9EfSfxB+Imi6P8d/D3wG0ywivLXUEzeBjnyhglcDGO1cfrkVr47/bD07wSrO+m+FbXzihbIE8g4I9MDivl79nzxDqN/8AtWQ+O/i2xsLvVInuLYTgruM2BGF/DpX0B8HNShj/AGx/G51aRYp3kCoHOCVBPTNetgM8nmkqTrO0KmKsouycYQhzRi/WSTs+p5+LyqOAjNU1eUKF21qnKUuWTXonbQs/tBfa/i58cNH/AGb9CuZV0+Pbd6q28nKjnb+X6ms3x1oekfE344aB+zz4IVl8P+F9lzqBRsoGj6L6ZB/XNfPXi/4peJfCP7UnjC/8F2xvdY1Ivp9ls+bYzkDcPoOlfpF+zN8Ef+FP+EHvfETi48Qas32i/uGOW3Nztyew/nWeWSlnmYYmik2nVftZdFSpu1Okv8TV5W6XvuXjlHK8HQqN6qmvZx6uc179R/4U7Lz9Dl/2q/Esvw7+G8Wi+GJZv7V16dNOtB5h+XzOGb8Aa9O+GfwY8PfDv4a2/hK38zItybkhseZI4+cn6k189/HfHiv9qz4e+EJCGt7ZJLwr1BcE4P6Cvsvx14w8PeBPC154m8T3C21pbxsWZjyTjgD1J7Cvt8BUhWzPHY2u0oUbU432SUVOb+bav5RR8vi4Tp4HC4WkveqXm7bt3cYr5JO3qfHn7TvjbQ/gr8C00nRZZI77U4ja2kQkPyqR8zfQD+dfPVh4Wh+BP7PWl+P7B5Lrxj4nEVrZSyMc26zfwoOwGfzNfNfxQ1/xt8ePjhp2h67C9sJ5YYLS2P8Ayzgcg5x6leTX3D+2ZcWnw/v/AIcXN3Ex0jR7ndKEGR+6C4H1OK/N8Zm/9o1swzWK5aWHUaVJtW5XKSUp26NLVdUrH2mHy76lTwmXyfNUrOVSa/m5Y3Ub9U3p5u55R8ffAXgn4C/C+znvtQv7zxtq6BvPF064J5dyoP3R0HrXvn7E/gX/AIRn4RweKfEOryRxa1K0iW7MEQOScENnJLDtXz9dfDnxv+0X4W8X/tBeIbSQs9s0Oh2ZByI0IywH+6Dj15r6z/Z903wF8Yv2dNO8A61DI502NILmMhopIZ05BU8EEdiK7OHcOpZ6sVQoqEPZN0E2481nbmk9W3JJt3u+VptHNnNa2VfV6tRyl7Re1as+W6vZLoo7dNU0eY/EvT9P1f8AbS8JaIZmeGztHuWLSZwcHv26ivtPX9Y8AeFrNtR8Q6ylpCvVpLkAfzr8y1+APhbUf2upfhidQ1E2NtYed5puCZwSB8ofrt5r7t0j9k34H6LGJZtKbUpUBIe+leck/Rjj9K+j4dxWa1auPq0qEE5VpXcpvRxjGNrKGqVt9LnjZzQy+EMJCpVk0qaslFaptyvdy0vfzPj7wP8AtKfDHS/Hni3xXrb32o3V5d+RYLaK0h+yRDCgMOACcmvqP4MfFe/+L2v3lofDmq6RpsEYeK7u2Khz0249a85/Yh0zw82j+KLX7JB9otNZnTlFLIvYDIyB6V9zajq2laLFHJqk8dskjrEhc7QXboo9zXTwnRzGphKOMr4tKm3KTioLVuUr80229+yXYx4hqYOGIqYalh25pRSk5PRJK1opLp3ufl58HdNhi/bC8baTG8ixGbPysQThz3/GvrH9qP8AY7+B37YvwV1n4CfHfTTrGga1EUdJGy0Un8MsZ/hdTyCK+XPh3/xL/wBu3xTZtx54Lj8wf61+o9dnA+mCrx7Vqy/8nZzcVf7zSl3pU/8A0lH8T/wO+On7SX/BvH+0FY/sh/tqXl/4q/Zs8R3fk+E/GILMdJMjfLDOecIucEE/L1HFf2O+ELvwb498MWPjPwZqZ1PStThS4tbq3n3xSxOMqysMggiuB/ad/Zg+Cv7YPwa1f4EfHzRINc8P6xE0ckUygtG5BCyRt1R1zlWFfyY/AL4x/tG/8G6P7VOnfshftT6lc+Kv2YfG94YfCPiWbLtokkjfLBM5+6gyAy9B1HFfZnzJ/ZY/hy0CN+9n6f8APQ1j+HPDtodGgPmz/d/56Gum0rWdK8Q6LBruh3CXVneRLNBNEwZJI3GVZSOCCDUHhv8A5AsH0oAjHhy0/wCes/8A38NH/COWn/PWf/v4a6CigDn/APhHLTvLP/38Nc/b+HrQ+JblfNm/1Uf/AC0PvXoFc7bf8jNc/wDXKP8ArQA7/hHLT/nrP/38NH/COWn/AD1n/wC/hroKKAOf/wCEctP+es//AH8NYuueHLMW8P72f/XR/wDLQ+td1WJrv/HvD/12T+dAEQ8OWg/5az/9/DR/wjlp/wA9Z/8Av4a6CigDn/8AhHLT/nrP/wB/DR/wjlp/z1n/AO/hroKKAOB8NeHbQ6Sv72f77/8ALQ/3jW9/wjlp/wA9Z/8Av4aXwz/yCV/35P8A0I1v0Ac//wAI5aYx5s//AH8NH/COWn/PWf8A7+GugooA4E+HbT/hJdvmz/8AHsP+Wh/vGt7/AIRy0/56z/8Afw0p/wCRn/7dh/6Ea36AOf8A+EctP+es/wD38NH/AAjlp/z1n/7+GugooA4HxJ4dsxpZPmz/AOsi/wCWh/vCt0eHLTA/ez/9/DTvEv8AyCz/ANdIv/QxW8OgoAwP+EctD/y1n/7+Gj/hHLT/AJ6z/wDfw10FFAHP/wDCOWn/AD1n/wC/hrE0Dw7Zmzk/ez/6+X/lof7xru6wvD//AB5yf9d5f/QjQAz/AIRy0/56z/8Afw0f8I5af89Z/wDv4a6CigDn/wDhHLT/AJ6z/wDfw1iS+HbT/hIYR5s/+of/AJaH+8K7usOX/kYof+uD/wDoQoAj/wCEctP+es//AH8NB8OWh/5az/8Afw10FFAHP/8ACOWn/PWf/v4axPEnh2zGh3P72f7v/PQ+oru6w/Ev/ICuf93+ooAiHhy0wP3s/wD38NKPDlp/z1n/AO/hrfHQUtAHP/8ACOWn/PWf/v4aP+EctP8AnrP/AN/DXQUUAcFoXh20IvP3s/8Ax9Sf8tD7Vu/8I5aH/lrP/wB/DTtB6Xn/AF9S/wBK3qAOf/4Ry0/56z/9/DVyy0mCxmM0TyMSNuHbcK1KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsuTT7p5GdbyZQSSAAmB7crWpRQBkf2Zd/8/035J/8TWPr+mXf9jz/AOnTfdHZPUf7NdfWPr//ACB5/oP5igBf7Mu85+3Tfkn/AMTSf2Zd/wDP9P8Akn/xNbFFAGR/Zl3/AM/035J/8TWRpWm3fm3n+nTf8fDdk/ur/s111ZGlf628/wCvg/8AoK0AJ/Zl3/z/AE/5J/8AEUv9mXf/AD/Tfkn/AMTWvRQBx+oabd/2lYD7dN/rH7J/cb/ZrZ/sy7/5/pvyT/4mm6h/yE7D/ro//oDVs0AcrrU1r4d0e78Qa7qz2ljYQyXFxPKY1jiiiUs7sSuAqqCSewr85/8Agn14X8QfFXSPGH7e3jpLqw1r4yzx3GkW9yqedY+EtP8AMj0aDBU7DNE73sqg/wCtuSDyK3P+Ch9/ffFe38FfsH+FruS3vvjHqDw629u2JbfwnpYWfV5MggoJ0MVgG7NdDHI4/RO306w0fRk0jSoUtrW1hEMMUahUjjRdqqoHAAAAAHagDJ0fTLs6Ra/6dN/qU7J6D/ZrS/sy7/5/pvyT/wCJqXRv+QRa/wDXJP5CtKgDI/sy7/5/pvyT/wCJrIt9NuzrV1/p03+ri7J/tf7NddWRb/8AIbuv+ucX82oAP7Mu/wDn+m/JP/iaP7Mu/wDn+m/JP/ia16KAOP1vTbv7NF/p03/HxD2T++P9mtj+zLv/AJ/p/wAk/wDiKTW/+PaL/r4h/wDQxWzQBkf2bd/8/wBN+Sf/ABNH9mXf/P8ATfkn/wATWvRQByGiabdmxP8Ap03+tl7J/fP+zWx/Zl3/AM/035J/8TSaH/x4n/rrL/6G1bFAGR/Zt3/z/Tfkn/xNY82m3Y163H26b/US9k9U/wBmuvrHm/5D1v8A9cJf5pQAv9mXf/P9N+Sf/E0f2Zd/8/035J/8TWvRQBymt6ZdjRrr/Tpv9U/ZPQ/7NaSaZd7B/p03T0T/AOJqXXP+QNd/9cn/AJGtJPuD6UAZX9mXf/P9N+Sf/E0f2Zd/8/035J/8TWvRQByGnabd/bb7/Tpv9avZP7i/7NbH9m3f/P8ATfkn/wATSab/AMf19/11X/0Ba2KAMf8Asy7/AOf6f8k/+JrJ1PTbsXFjm+m/4+PRP7jf7NddWPqv/HxY/wDXx/7I1AC/2Zd/8/035J/8TR/Zt3/z/Tfkn/xNa9FAGMdMu8H/AE6f8k/+JrL0HTbv+xLT/Tpv9UnZPT/drrD0NZWg/wDIFtP+uSfyoAT+zLv/AJ/pvyT/AOJpP7Mu/wDn+n/JP/ia2KKAOQj0y7/t6X/Tpv8AUJ2T+83+zWx/Zl3/AM/035J/8TSR/wDIel/64J/6E1bFAGR/Zl3/AM/035J/8TWPr2m3Y0xv9Om+/F2T++v+zXX1ja//AMgxv+ukX/oa0AO/sy7/AOf6b8k/+JpP7Mu/+f6f8k/+JrYooAyP7Mu/+f6b8k/+JrI0bTbswz/6dN/x8Tdk/vH/AGa66sfRf9VP/wBfEv8A6EaAF/sy7/5/pvyT/wCJo/sy7/5/pvyT/wCJrXooA/OD9tO0uLT4y/s/zyXUrj/hNwmWC8GS1lA6L/Ov0I/sy7/5/pvyT/4mvz9/b/JtvEvwM1ROGh+I+kx59pg6H+dfozX0ea65Xl8v7tRfdUb/APbjy8H/AL3iV5xf/kqX6GR/Zl3/AM/035J/8TVHU9Muxptx/p03+qfsnof9mulqjqf/ACDbj/rk/wDI184eoZtlpt39ji/06b7i9k9P92rP9mXf/P8ATfkn/wATV2x/48of9xf5VaoAx/7Mu/8An+n/ACT/AOIrIsdNu/7Uvv8ATpvvR9k/uj/Zrr6xrH/kK33+9H/6CKAHf2Zd/wDP9N+Sf/E0f2Zd/wDP9N+Sf/E1r0UAcfq+m3YNp/p03/HwnZPQ/wCzWz/Zt3/z/Tfkn/xNN1j71p/18J/I1s0AY/8AZl3/AM/0/wCSf/EUv9mXf/P9N+Sf/E1r0UAchoGm3f8AZMP+nTfxdk9T/s1sf2Zd/wDP9N+Sf/E0mgf8gmL/AIF/M1sUAY/9mXf/AD/T/kn/AMTWP/Zt3/wkGPt03/Hv6J/e/wB2uwrG/wCZh/7d/wD2agB39mXf/P8ATfkn/wATSf2Zd/8AP9P+Sf8AxNbFFAHI69pl3/ZE/wDp03Qdk9R/s1r/ANm3f/P9N+Sf/E0a9/yCZvoP5itegDI/sy7/AOf6b8k/+Jo/sy7/AOf6b8k/+JrXooA47R9Nuy97/p03/Hy/ZPQf7NbP9mXf/P8AT/kn/wATTNF+/e/9fL/yFbdAGP8A2Zd/8/0/5J/8TWTe6bd/2nZf6dN95+yf3T/s111ZF9/yFLH/AHpP/QTQAf2Zd/8AP9N+Sf8AxNH9mXf/AD/Tfkn/AMTWvRQBgXWmXf2WT/TpvuN2T0/3aq6Rpl3/AGTa/wCnT/6lOyf3R/sV0N3/AMesv+438qraP/yCbX/rin/oIoAg/sy7/wCf6f8AJP8A4ml/sy7/AOf6b8k/+JrXooA5C1027/tu8/06b7kPZP8Aa/2a1/7Mu/8An+n/ACT/AOJpLX/kN3n/AFzh/wDZq2aAMj+zLv8A5/pvyT/4msnV9Mu/Lg/06b/Xxdk/vD/ZrraydX/1cH/XeL/0IUAJ/Zl3/wA/035J/wDE0n9mXf8Az/T/AJJ/8TWxRQBkf2Zd/wDP9N+Sf/E1j6Hpl2dP/wCP6b/Wy9k/vt/s119Y+hf8g/8A7ay/+htQAv8AZl3/AM/035J/8TR/Zl3/AM/035J/8TWvRQB4D8cPgZ4Q/aB+H2v/AAQ+Jjy32geKtHvNMvYjsB8q4CqWU7cq6EhkYcqwBGCK8B/YA+JPxF8f/BW5+Gnxn1KV/iH8L9Sn8IeJXAUfabiwCm3vV3KTsvrN4LoH1lK9VNfcsv8AyHYf+uEn/oSV+b3xnaP9lz9vTwZ+0LCWt/Cvxljg8A+J9v8Aqo9bg3y6FeOOzSZnsGbuZIFP3VwAfpD/AGZd/wDP9N+Sf/E1ka9pt5/Yt1/p03+rbsnp/u111ZGv/wDIFuv+ubfyoAaumXZUf6dN09E/+Jp39mXf/P8ATfkn/wATWqv3R9KdQBj/ANmXf/P9P+Sf/E1maTp90l9eO15MwE4JBCYOEXjha6usjTf+Pu+/67D/ANAWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAONkOJ9cJ7RL/6LNfy7/8ABpMN/wCyh8erodJPjJrpH/gNZ/41/UFesUGvt6Qg/wDkM1/Md/waR2pT9hv4samf+X74r67Nn1/c2q/0oA/qpooooAwdZ/4+rD/r4H/oLVvVg6z/AMfVh/18D/0Fq3qACiiigCOb/VN9DWV4e/5Adr/1zWtWb/VN9DWV4e/5Adr/ANc1oA2aKKKACues/wDkY7z/AK5RfzauhrnrP/kY7z/rlF/NqAOhooooAKwde+5a/wDXzF/Ot6sHXvuWv/XzF/OgDeooooAKa/3D9KdTX+4fpQBi+G/+QLD/AMC/9CNblYfhv/kCw/8AAv8A0I1uUAFFFFAHPxf8jPN/17p/6Ea6Cufi/wCRnm/690/9CNdBQBBc3NvZ28l3dOI4olLuzHAVRySTX8dX7RXjD4if8HDf7clx+xt8GNRn039mP4Tagr+NdYgyg1zUIHx9kiboyAggdurdhX1j/wAFyf26PjF4s8a+Gv8Agkd+whKbn4r/ABXHk6xe2rZbQ9Hc4llcr/q2ddxDH7qgn0r9kP8Agnv+w18Kf+Cef7L/AIf/AGcfhZApXT4Vl1K+K/vr+/cAzTyN1JZs4z0GBQB7/wCD/hf4C+Cnwu0X4VfC7TING0DQUgtLGzt12xxRRkAAD9SepPNeuVg+IziwQj/ntH/6EK3qACiiigBD0NYfh3/kG/8AbST/ANCNbh6GsPw7/wAg3/tpJ/6EaAN2iiigArBP/Iyj/r3P/oQrerBP/Iyj/r3P/oQoA3q/KT/go5qEOvfEn4NfCuZ18rUfEiXs6k4AitRksT6DNfq3X5N/t4/sPfGH9qz43+C/EXhPWotI0DSIJobyZXK3EYlI37AOpZRj2r6/garhKWbwq4ysqcIxqPmfR8klHRbu7Vl1PE4hhWngpQoQc5Nx0XbmV/wOR+KH7TPx1/bH8eX3wJ/YkkGnaHp0hg1rxXIMInOCkB7nryOvavpX4FfsE/Bf9nPRZtfSFtf8VXXN3rWofvbh3f7xXdnYD7c+9eS+KPDSf8E4b7R/Gvw40+S5+GUkEWn+ILdAXmtZFPyXvHXOSJPbFfo5H4n0Hxp4It/Ffhe6jvdPv445oJozlXR8EEGvU4gzKph8DTo5OuTAT0uvjnJfEqslrzdVD4VFppPc48swsauIlUx3vYiPR/DFPbkXb+9ve9zzX4W6BD8BtFXwL4l1SGSxvdTlTRiQVk23DGQRP2LBicEdRXvOoahZ6TYTanqMiwwW6NJI7HAVVGST9BXm/wAYvAHhz4h+BbjS/Ec72SWpW8hu4jtktpYPnWRT/skfiK/F79qf9qL41/HzxZ4e/Y2+Bktvd2/i+zT7drUB/eyWrna8mwHMIwCTk8jpXm5PkVXPq/tIzUXdurKWkYxSu5X2bte63bV9turHZlDLafK43Wiglq29rffbXa34+yfCnX/EP/BQL9qf/haUgeP4W/Di6ZdMjbhdQ1FOPNI7qvUf/Xr9X/Cfw/8AB/ge41K78L2MdpNq9ybu8kXJaaYjG5ieTxwPSuS+BHwY8I/s/wDwr0j4V+C4hHaaZCqM+MNLIfvu3qWPNecftL/tffCD9l7Qftvje88/VLgYs9Ltvnurh+wVBzgnuaWaYurm+OjgMopy9jFKFOC3cU780u7k7yk3s/JFYOjDBYd4nGyXO/elJ9G+i8ktEl+p7rZavpehaLeatrVxHa2sEsrySysERVHUkngV+S37SX7bGhftIwap+zB+zH4Sb4jXuoo1vdXUqFdOt+28ydyvUEHrXMeFfgV+09/wUBuv+Eq/aJvJ/BHw6aZpbXw9aMY7q5UnI85vQj1/Kv1w+EvwX+GfwN8KQeDPhhpMGl2MChcRqN7kd3bqx9zXfTo5XkElUxEvrGMi7qEZWp02v5prWck/swaSf2mc0qmLzJONJeyoP7TXvyXlF/Cn3evkfiR+xv8A8E6/2rvgf+0t4W8dfEjVI7zQNIs3B8q7ZhFuBIgCE5KhjnH3a/oIoorw+JuKMZnuJjisaoqUY8vuqytdvbvdnoZTlFDLqTo4e9m76u72S/QwJ/8AkZLf/ri/8xW/WBP/AMjJb/8AXF/5it+vnD1AooooAxfEP/IHm+g/nWrB/qU/3RWV4i/5A830rVg/1Kf7ooAeyq6lHAIPBB6GvmL4ifsjfB/x9dtrMNo+j6kTuF1YsYn3epA4/lX0/RXDj8swmNp+yxdJTj5q9vTt8jqwmOxGFnz4eo4vyf59z4OP7L/x00UeT4T+Jd2sI+6tym4gfXmsjT/gX+1a73C2nxGjXZKVbMR5OBz92v0IrA0P/W3v/Xw38hXhPg3L9oSqRXZVaiX/AKUer/rJi/tKDfnTh/8AInxN/wAKI/a76f8ACyIf+/R/+JoX9nv9qm6/d3/xKCoevlxHP/oNffFFSuDMD1qVX/3Gqf8AyQ/9ZMV0hT/8Fw/+RPhGH9ieXWnEvxE8a6vq395FcxIfyP8ASt2z/Yp+Ami+K9Hv4dOlla081mSWUukxIwPMB646j3r7RrAvf+Q7Z/7r/wAq6sPwlk9GXOsNGUu8vff3yuzGtxDmNRcrrtLtH3V90bEOi+DfCfh1Fj0LTba0C9PKiVT+YGa6WiivoKdOEFywSS8jx5zlN80ndhWTrv8AyCLj/cNUvFXi3QPBWjvrviScW9tGQCxBPJ6AAc8180+Lf2nbI6PczeGvDWrahbKvzXLQ+TCAeh3PjiuDG5xg8I+XEVEna9tW7d7JN287HXhcuxOIV6MLrvsvvdkeoeEvg5oGj/EG/wDitdyNeanqEaRxmQcW8SjG1Pr3r2mvmf4WfHq/8X+NP+Fc+ItAuNHvVs1u0Lurq0R6E4PGe1fTFRlFXBVKMp4Fe65Svo0+Zu8rp639Ssxp4mFRRxXxWVtU1y20tbSx8V/tyHHw20n/ALC9p/6GK+xdPBOmQAd4l/lXxx+3N/yTTSj6ava/+hivsjS+dMtz/wBMk/kK87Af8jvHf4KP/uQ7sX/yK8L/AIqn/tp8Gfsr6L4k8F/GPx1oviPS7qE6hdmeK5KfuSg7bvU5r1n43/sseHPjDr8Hi+11G40XVok8pri2PLp6HkV9G6V/x+3v/XUfyrbp4bhfCRy/+zcQvaU+ZyV9Gryct11Tb10ZNfPsRLGfXaPuTsk7ap2SXXvbY8S+CvwG8FfA/RpNP8NI011cHNxdy8yyn3PYe1eP/GP9nzx1c/EeL4z/AAQ1GLTtd2eVcxTD91Ovqf619m0V1Yjh3A1cHDBKHJCDTjyvlcWtnFrVPz69TCjnOLp4mWKcuacrqXNqpJ9Gux8Fa98I/j38YILPwl8drrSl0p5C7LZIwn3KOCrZIFdR8PP2Ivhj4J8QxeJNXubrXZrUg263rbkjx04yc4r6v1L/AJCtj/vP/Kt6uSnwjlvtY18RB1ai2lUbk9Nt9NOmmh0S4ixvs3Roy9nB7xguVef39Tzf4i/CT4f/ABW0qPRvHOnJeQwndH/CyH/ZIwRXVeGfDOheDtDt/Dnhu2S0srVQkcaDAAreor3Y4OhGtLERppVGrOVldpdG97HkyxNWVNUXN8id0r6J+hxV54M8K2eo3ni+1sIY9TnhaOS5VcSMuOhNdJpP/IMg/wBwU7VP+QbP/wBc2/lTdJ/5BkH+4K2hShC6hFK7vp3fX1M5zlKzk79DRoooqyQrzrX8nRvEn/XvJ/6LNei1w99Abq1122HJkiZR+MZrKur0pLyf5GlF2nF+aPkH/gn/AOI9IvPhheeG4J1a9s7yWSWIfeVXY7SfrX0R4i/Zz+DPivxavjfXtDgn1EMHMhyAzDoWUHBP1r4R/wCCc9lc2vi/xmsqFVj8uM57MHbiv1cr4fgilSzDh7CrGUoyUbpJq/wyaT166H1PFM6mDziu8NUa5rNtO3xJNrTocld+AvBd/rNr4hvdLtpb2yUJBM0YLRqOgH07V82fHH9lTwH8UfFNt4rW4uNI1S4bZLcWjbS4A4JHHPvX2BXP6z/x+2B/6an+VfVY7JsDjKTo4mjGUW7vTr3utb+e54GFzLFYaoqtCo1JK2/Tt6eR+eetfsA3+iXVt4h+Fnime01aHJee6BYsT3DDJBrqtA/ZK+MGpyB/iT8RL2aLvFZsy5Hpk4xX6BUV4NPgPJqc+anTlFfyqc1Fvu4p2PWnxZmU48s5pvu4xcvvaPz9+LXwR+J/g7x74X+I/wAGrca02g2htGhu5cyMOfmLHk5zVrRPg38Y/jL4jj8YftGvFa6Zp/7y10a3bMZccgyeuPevviq93/x6y/7jfyrZ8IYN15VHOfs5SUnTv+7ckkk2rXa0WjdtNjP/AFjxPsowUY86Tip299Jtuyd7Ld6pXPAND/Z6+Hg+I0HxlaFjqnkKiqT+7UgbdwHrjivZvEvhPw14xsP7L8U2MN/bhgwjmUMAR3q7on/IJg/3BWpXvUcuwtKNSFOkkptykrKzb3b73PIqY2vUlCU5tuKSWuyWyRUsrCy020jsNPiWGCJQqIgwqgdgKW2sbKy3fY4Ui3nc2xQuT6nFWqjlRpImRDtJBAPpXXypWstjn5m93ufnl4dYP+3/AKwD/Dpq/wDoK1+iNfj/APsu3Ovz/th64nie4kubyGO5hZ5D82EYAD8BX7AV8RwFifrGExNe1uavVdnurvY+p4toexxFCle9qUFfvofnb4/+GPxh+BXxQv8A4ufA23Gq6Xqx83UNM77+5UfyIrjr/wAafGH9qHx94a8M3Hhm58P6Xo94l9fPOCFLR8jkgfgPev1DowK1r8HKU5U6OJnDDylzSpKzi3fmaTesU3ulpv3M6XEjUVOrQjKtFcsZ6ppWsrrZtLZtH5d2kYtP+ChN5HH0kt0z/wB+1r9RK/L9vl/4KGT5726f+i1r9QKXBWkMcv8AqIq/mg4m+LCP/pzT/JhXyf8Atr/sb/Bn9vD9nbX/ANnL44ael7pWswMsUxX97aXIB8ueJuqujc8dRwa+sKK+1PmT+Rr/AIIy/tffGP8AYP8A2lNY/wCCIf7e+oPLrOhl5fAOu3Dlo9S01stHAHbqVTBQHnGV6iv6yfDYxosA9q/Cz/gvB/wTR1r9sr4G2P7Qn7Pn/Et+NXwkk/tvw3fQDbNcC2PmPbEry27blAe/HevYf+CJ/wDwUv0D/go/+yXaeIdajGmfEDwk/wDZHirSn4kgvoRgvtPOyTG4enTtQB+x1FFFABXO23/Iy3P/AFyj/rXRVztt/wAjNc/9co/60AdFRRRQAVia7/x7w/8AXZP51t1ia7/x7w/9dk/nQBt0UUUAFFFFAGB4Z/5BK/78n/oRrfrA8M/8glf9+T/0I1v0AFFFFAGAf+Rn/wC3Yf8AoRrfrAP/ACM//bsP/QjW/QAUUUUAYHiX/kFn/rpF/wChit4dBWD4l/5BZ/66Rf8AoYreHQUALRRRQAVheH/+POT/AK7y/wDoRrdrC8PjFnL/ANd5f/QjQBu0UUUAFYcv/IxQ/wDXB/8A0IVuVhy/8jFD/wBcH/8AQhQBuUUUUAFYfiX/AJAVz/u/1FblYfiX/kBXP+7/AFFAG2OgpaQdBS0AFFFFAGDoPS8/6+pf6VvVg6D0vP8Ar6l/pW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZUmoXaSMi2crAEgEFMHHflqANWsfX/+QPP9B/MUf2nef8+M35p/8VWRr+p3f9kT/wCgzfdHdPUf7VAHX0VjnU7z/nxm/NP/AIqj+07z/nxm/NP/AIqgDYrI0r/W3n/Xwf8A0FaT+07z/nxm/NP/AIqsnS9SvBLef6DN/wAfB7p/dX/aoA66isf+07z/AJ8ZvzT/AOKo/tO8/wCfGb80/wDiqAE1D/kJ2H/XR/8A0Bq2a4/UNSvP7SsD9hm/1j90/uN/tV8jft/fHDxl8Jv2ZdXt/hxBNB418ZT23hHwttKbxrOuSC1t5ByeLfe1w56BImJ4FAHnP7HEa/tA/tF/FH9t++Al02W6bwD4OfqP7F0GZhe3CHoRean5xyPvRQRGv0ouv+PaT/dP8q8V+Avwr8Ofs6fBXwr8CPAOnTJo/hHS7XSrUkpudLaMJvb5sl5CC7E8liSeTXqdzqV2beQGxm+6e6en+9QBc0b/AJBFr/1yT+QrSrltH1K8/si1xYzf6pO6eg/2q0f7TvP+fGb80/8AiqANisi3/wCQ3df9c4v5tSf2nef8+M35p/8AFVkW+p3n9tXX+gzf6uLun+1/tUAdfRWP/ad5/wA+M35p/wDFUf2nef8APjN+af8AxVABrf8Ax7Rf9d4f/QxWxXH61qd4baL/AEGb/Xw90/vj/arY/tO8/wCfGb80/wDiqANiisf+07z/AJ8ZvzT/AOKo/tO8/wCfGb80/wDiqADQ/wDjxP8A11l/9DatiuQ0TUrwWJ/0Gb/Wy90/vt/tVr/2nef8+M35p/8AFUAbFY83/Iet/wDrhL/NKP7TvP8Anxm/NP8A4qsebUrz+3bc/YZv9TL3T1T/AGqAOworH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoAk1v/kDXX/XJ/5GtJPuD6Vyuuanef2Ndf6DN/qn7p6f71aSanebR/oM3T1T/wCKoA2qKx/7TvP+fGb80/8AiqP7TvP+fGb80/8AiqADTf8Aj+vv+uq/+gLWxXH6dqd39tvv9Bm/1q90/uL/ALVbH9p3n/PjN+af/FUAbFY+q/8AHxY/9fH/ALI1H9p3n/PjN+af/FVkanqV2bixzZTD/SPVP7j/AO1QB19FY/8Aad5/z4zfmn/xVH9p3n/PjN+af/FUAa56GsrQf+QLaf8AXJP5Uw6nebT/AKDN+af/ABVZWhand/2LaYsZv9UndPT/AHqAOuorH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoAI/+Q9L/wBcE/8AQmrYrkI9Su/7el/0Gb/UJ3T+83+1Wv8A2nef8+M35p/8VQBsVja//wAgxv8ArpF/6GtL/ad5/wA+M35p/wDFVj69qV4dMb/QZvvxd0/vr/tUAdhRWP8A2neZx9hm/NP/AIqj+07z/nxm/NP/AIqgDYrH0X/VT/8AXxL/AOhGj+07z/nxm/NP/iqyNG1K7EM+LKb/AI+Je6f3j/tUAdfRWP8A2nef8+M35p/8VR/ad5/z4zfmn/xVAH59f8FFT5dv8H5/+efxI0E/+RGr9Ha/Mz/go1f3LaJ8KppLWWMRfEPQmyxXnEp44bvX6OHUrz/nxm/NP/iq+kzH/kT4D1q/nE8rCf79if8Atz8ma9UdT/5Btx/1yf8Akaq/2nef8+M35p/8VVLU9SvDptwDYzf6p+6eh/2q+bPVNux/48of9xf5VarnrLU7v7HCBYzfcXunp/vVZ/tO8/58ZvzT/wCKoA2KxrH/AJCt9/vR/wDoIpf7TvP+fGb80/8AiqyLHUrv+1L7/QpvvR90/uD/AGqAOvorH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoATWPvWn/Xwn8jWzXH6vqV2WtP8AQpv+PhO6eh/2q2P7TvP+fGb80/8AiqANiisf+07z/nxm/NP/AIqganeE/wDHjN+af/FUAGgf8gmL/gX8zWxXH6Dqd3/ZEP8AoM38XdP7x/2q2P7TvP8Anxm/NP8A4qgDYrG/5mH/ALd//ZqX+07z/nxm/NP/AIqsf+07v/hIP+PGb/j39U/vf71AHYUVj/2nef8APjN+af8AxVH9p3n/AD4zfmn/AMVQAuvf8gmb6D+YrXrkNe1O8/sif/QZug7p6j/arX/tO8/58ZvzT/4qgDYorH/tO8/58ZvzT/4qj+07z/nxm/NP/iqAGaL9+9/6+X/kK2643RtSuw95iymP+kv3T0H+1W1/ad5/z4zfmn/xVAGxWRff8hOy/wB6T/0E0n9p3mf+PGb80/8AiqyL7U7v+0rL/QZvvSd0/un/AGqAOvorH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoA0Lv/j1l/3G/lVbR/8AkE2v/XFP/QRVG61O8NtIDYzD5G7p6f71VdI1O8/si1/0Gb/Up3T+6P8AaoA6misf+07z/nxm/NP/AIqj+07z/nxm/NP/AIqgBLX/AJDd5/1zh/8AZq2a4+11K7/tq7IsZv8AVw90/wBr/arY/tO8/wCfGb80/wDiqANisnV/9XB/13i/9CFN/tO8/wCfGb80/wDiqydX1O78qA/YZv8AXxd0/vf71AHXUVj/ANp3n/PjN+af/FUf2neZ/wCPGb80/wDiqANisfQv+Qf/ANtZf/Q2oGp3n/PjN+af/FVj6Hqd5/Z//HjN/rZe6f32/wBqgDsKKx/7TvP+fGb80/8AiqP7TvP+fGb80/8AiqAFl/5DsP8A1wk/9CSvD/2sPgNZftNfs7+K/gncXJsLrWrJhp98v37HUYCJrO6T/at7hI5V91r1iXU7z+3Yf9Bm/wBRJ3T+8n+1Wv8A2nef8+M35p/8VQB84/sW/H68/aX/AGa/DXxT162Gn+IHil07X7HobPWtNka1v4COo8u5ikAB524Pevo/X/8AkC3X/XNv5V+afws1G8/Zy/4KHeNvg7PZSw+G/jXp48c6GoKhE13TRFZ6zAPm2hpoTZ3SgH5m85scE1+iuvandnRbrNjMP3bd09P96gDrV+6M0tYy6nebR/oM35p/8VS/2nef8+M35p/8VQBsVkab/wAfd9/12H/oC0n9p3n/AD4zfmn/AMVWVpGo3T394jWcqgzgFiVwMovP3qAOtooooAKKKKACiiigAooooAKKKKACiiigAooooA//0f7+KKKKACue1mXWlguFtIomj8tsFmIPSuhqpf8A/HjN/wBc2/lQBzGiTeI/7FtMQwf6lP4j6CtTzvEf/PGD/vo/4Va0P/kC2n/XFP8A0EVqUAYPneI/+eMH/fR/wo87xH/zxg/76P8AhW9RQB5JrF3rtvZ+I7iWKHaltuPzHoIifSv5xv8Ag1Bg1eD/AIJ0eK7+yiiKXnxF1+XLMQc5iX+lf0ZfEi4Np4I8b3a8GLS5n/75gc1+AP8AwagQgf8ABKw3ve68a+IZD7/vwP6UAf0hed4j/wCeMH/fR/wo87xH/wA8YP8Avo/4VvUUAcHrM3iP7VYfuYf+PgfxH+61b3neI/8AnjB/30f8KNZ/4+rD/r4H/oLVvUAYPneI/wDnjB/30f8ACjzvEf8Azxg/76P+Fb1FAHOzTeI/Kb9zB0P8R/wrK8PTeI/7Dtf3MH+rX+I12c3+qb6Gsrw9/wAgO1/65rQBF53iP/njB/30f8KPO8R/88YP++j/AIVvUUAYPneI/wDnjB/30f8ACufs5vEX/CR3n7mD/VRfxH1au+rnrP8A5GO8/wCuUX82oAf53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQBg+d4j/54wf8AfR/wrB16bxHstf3MH/HzF/EfWu8rB177lr/18xfzoAPO8R/88YP++j/hR53iP/njB/30f8K3qKAMHzvEf/PGD/vo/wCFNebxHsP7mDp/eP8AhXQU1/uH6UAcP4bm8R/2LD+5g/i/iP8AePtW553iP/njB/30f8Kd4b/5AsP/AAL/ANCNblAGD53iP/njB/30f8KPO8R/88YP++j/AIVvUUAcFFN4i/4Sab9zD/x7p/Ef7xr4M/4Ke/8ABQ/wt/wTb/ZW1n48+OYoLrUmAstD0uNz59/qM3yxRIvU88sewBr731zxBo3hO51LxP4iuEtLDT7E3FxPIdqRxR5ZmJPQADNfyS/sw+FNR/4L9f8ABSm+/ba+JEEkv7OvwP1CTTPB2mTgmDV9VgOWumU8Fejf7u0dzQB9wf8ABDL/AIJ/fF74U6B4g/4KD/tcxpqnxs+ND/2ndveZ83StPm+eK0TIJT5SNwGMAAetf0K+d4j/AOeMH/fR/wAK3VVVUKowBwAKWgDg/Ec3iP7An7mH/Wx/xH+8K3vO8R/88YP++j/hSeI/+PBf+u0f/oQrfoAwfO8R/wDPGD/vo/4Ued4j/wCeMH/fR/wreooAwDN4jwf3MH/fR/wrD8OzeIxpv+ph/wBZJ/Ef7x9q7o9DWH4d/wCQb/20k/8AQjQAnneI/wDnjB/30f8ACjzvEf8Azxg/76P+Fb1FAGD53iP/AJ4wf99H/CsEzeI/+ElH7mD/AI9z/Ef7w9q7ysE/8jKP+vc/+hCgA87xH/zxg/76P+FHneI/+eMH/fR/wreooA4jxFot14s0K78NeIbG1urG+iaGaKQlldHGCCCK/H3wN4m8cfsA/F//AIZx8dyfaPh34tuTJ4bv5mPl2Mztk2zMei9hmv25r5c/bF+DPgH43/AfWfCvxAdLW3iiNxDetwbSWPlZQe23v7V9Nw5mlKlKeAxycsNWspJauL+zUj/ei/8AwJXj1PJzTBzmo4jDu1WGq7NdYvyf4OzOI/bX/aRl/Zv+AGpeOb+zs9QuLkLaWlk8pH2l5/lwMDJ4OeK8A/4J3/su678IvCVz8fviNbwf8JZ4tiWeTzSVFjZkZjhXP3QFxn2r8W/BPjO5/aq12bw1+0b42gt9P+HOk3H9gPPuiivntm2rMWP3iFUH1I4r9aU1L9o//goNbQ+HfBpuPAXwnjVIp9QYFL/Vo0GCIhwUjbHWv0vMOFqmTZW8rddU1OXNiKrTS5NHTpwvrNvWTjFX5tHomfKYbOI47GLGKm5OKtTgrN832pS/ltorvS2q1Z3/AMaP27/G3iPxrL8Av2Q9Hj8WeKm/dXGoREtYaeTwWd8bSV64zXQ/s4/sCj4eeJ5PjP8AHS7j8dePbwiR729JaG1Y87YUPAA7HH0r7Q+CHwD+F37PPg2HwR8LtMjsLWMDzJMZmmfu0j9WJr2Svz7GcR0sPQlgMki6dJ6Sm/4lT/E18Mf7kdO7kfTUMrnVqLE49qc1qo/Yh6Lq/wC8/lY4Lw7N4iFrMBDD/r5P4j61v+d4j/54wf8AfR/wpvh3/j2n/wCu8n866Cvjz2zB87xH/wA8YP8Avo/4Ued4j/54wf8AfR/wreooA4KebxH/AMJJB+5h/wBS/wDEfUVv+d4j/wCeMH/fR/wpJ/8AkZLf/ri/8xW/QBg+d4j/AOeMH/fR/wAKPO8R/wDPGD/vo/4VvUUAcR4gm8RnSJv3MHQfxH1+lasM3iMQoPJg+6P4j/hVjxD/AMgibjPFasP+pT/dFAGN53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wrB0SbxF5t6fJg/4+G/iPoK7ysDQ/wDW3v8A18N/IUAL53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wr5e8S/tHQ6T+1l4Z/ZjOnmXWNY0W81oTqT5MUFswTDHrlmOBX1/X5m+K/BniP8A4eweE/HqWEzaSvgHULR7wKfJSY3KMELdAxHOKAP0U87xH/zxg/76P+FBn8Rjkwwf99GvEvip+1D8LfhYTp93df2jqbcJZWn7yUn3xwPxr59eT9qr9owlbZR4G8OS/wATf8fUiH9RkfSvm8dxPhqVV4bDRdasvsQ1t/il8Mfmz2sLkdepTVeu1SpfzS0v6LeXyR7j8Vv2kPA3wxtzb+JZrW8u8/JZwN50rN2+UA4/Gvl3xh4r/aK/aQ8I31tY6TF4U8JmJnnmus+bLEvJwD9O1fUvwq/ZS+FnwwkXVjbHVtWPL3t5+8ct3IB4FP8A2tfE9x4V+BerjTVJuL5Vs4gg6NMdvavDzXDZlXwdbFZrU9nSjFt0qe8kltKpu77NRSXmergK+CpYmlQwEOeo5Jc89k77xhtpveTfoeK/sXeHtfu9C1D4n3eLmW+YWVs85O4W1t8q468HrX3F53iP/njB/wB9H/CuO+C/hGLwN8LdD8MRjBtrSPf/AL7DJ/U16fX0vDmAeDy2hQl8XKnL/E9ZfizxM6xf1nG1aq2vZei0X4Hwt+25Jq7fDPTTeRxqBqttjaxPO4V9eaVP4iOl2xWGEjyk/iPoPavlj9upW/4VLZzDpHqdsx+m6vr3QJBNoVlKvRoIz+aiuLAP/hdxq/uUf/ch1Yv/AJFOFf8Aeqf+2nO6XN4i+2XuIYP9aP4j6fStvzvEf/PGD/vo/wCFO0r/AI/b3/rqP5V80/En49+I7nxi3wm+B9imra6o/wBJuHP+jWgPdz3PtXsZjmdDBU1Urvd2SSvKT7RS1b/4d6HmYLA1cVNwpLZXbeiS7t9EfSnneI/+eMH/AH0f8KPO8R/88YP++j/hXzR8KfGfxl074tXPwt+Kl1Z6kfsC3qT2iGPy8tja2etfWtGW5jDGUnUhFxs3FqSs01utG19zHjcHLDTUJSTuk01qmn935HCalN4j/tWx/cw/ef8AiPpW753iP/njB/30f8KNS/5Ctj/vP/Kt4nHJr0DjMHzvEf8Azxg/76P+FMku9fiXdLHbqOmS5FaK6vpT3H2RLmIy/wBwON35ZzXzB+2DqV3pvw402SzleFm1mxBKEqSPM5HHavNzTMY4PB1cXbmUFe1/wO3A4N4jEU8Pe3M7XPoLVJvEf9mz/uYP9W38R9KTSZvEX9mQYhg+4P4jWxdN5miO/rDn9Km0n/kGQf7gr0ltc42ij53iP/njB/30f8KPO8R/88YP++j/AIVvUUCMHzvEf/PGD/vo/wCFYGmy+Iv7Vv8A9zB95P4j6fSu9rA0v/kLX/8AvJ/KgDkvDHgq08GT3t14Y0qzs5NQlM1wYyQZHPc113neI/8AnjB/30f8K3qKzpUYUo8lOKS7JWRdSpKcuabu/MwfO8R/88YP++j/AIVg6xN4i+22BMMH+tP8R9PpXeVz+s/8ftif+mp/lWhA7zvEf/PGD/vo/wCFHneI/wDnjB/30f8ACt6igDB87xH/AM8YP++j/hVe7m8R/ZZf3MH3G/iPpXTVXu/+PWX/AHG/lQByuizeIxpUH7mD7g/iNanneI/+eMH/AH0f8KtaJ/yCYP8AcFalAGD53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQB8I+C/gX428O/tVa78U4Vt/sF3EX27+fMmwSMYz1FfaHneI/+eMH/AH0f8Kjsf+Rhvf8Acjroq83LMqw+AhUp4dNKcpTd+8nd28ux247MKuLlCVbeMVFei2+Zg+d4j/54wf8AfR/wo87xH/zxg/76P+Fb1FekcR+V9y+pj/goE7BI/ONuvy5O3/VjvX6Zed4j/wCeMH/fR/wr83Lzn/gocf8Ar3X/ANFiv1Br4vgv4cf/ANhFX80fTcTb4T/rzD9TB87xH/zxg/76P+FHneI/+eMH/fR/wreor7Q+ZOekm8R+W37mDof4j/hX8Zn/AAUP+E3xk/4ItftraZ/wV9/Zg0lrr4Y+L3Sx+JHh6yJESyTNg3IQDAz94Njh8g8Gv7UZP9W30NeTeMPhd4F+Nfwf1L4UfEzT4tW0HX7OSzvbWZdySRSjBHPfuD2PNAGL8DPjn4b/AGjPhNoXxq+E15Z6toHiG0jvLS4hk3KUkAODjoy9COxr1jzvEf8Azxg/76P+FfxufsB+PviB/wAEGf8Agojdf8Ewf2gtRmu/gp8T7t7/AOHmtXHENpcTMSbdmPA3EhSOz8/xV/Z+rK6h0OQRkEdxQBh+d4j/AOeMH/fR/wAK563m8Rf8JLc/uYf9TH/Efeu/rnbb/kZbn/rlH/WgCTzvEf8Azxg/76P+FHneI/8AnjB/30f8K3qKAMHzvEf/ADxg/wC+j/hWJrs3iP7PD+5g/wBcn8R9fpXc1ia7/wAe8P8A12T+dADPO8R/88YP++j/AIUed4j/AOeMH/fR/wAK3qKAMHzvEf8Azxg/76P+FHneI/8AnjB/30f8K3qKAOC8MzeIxpK/uYPvv/Ef7x9q3/O8R/8APGD/AL6P+FJ4Z/5BK/78n/oRrfoAwfO8R/8APGD/AL6P+FHneI/+eMH/AH0f8K3qKAODM3iL/hJs+TD/AMew/iP941ved4j/AOeMH/fR/wAKQ/8AIz/9uw/9CNb9AGD53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQBwXiWbxH/AGWf3MH+si/iP98e1bwm8R4H7mD/AL6P+FHiX/kFn/rpF/6GK3h0FAGF53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wrD8PzeIxZy/uYP9fL/Ef7x9q7qsPQP+POT/AK7y/wDoRoAb53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wrEll8RHxDCfKg/1D/xH+8Pau5rDl/5GKH/rg/8A6EKAG+d4j/54wf8AfR/wo87xH/zxg/76P+Fb1FAGD53iP/njB/30f8Kw/Es3iM6FcjyYPu/3j6iu6rD8S/8AICuf93+ooAYJvEeB+5g/76P+FL53iP8A54wf99H/AArdHQUtAGD53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQBwmhTeItt5iGH/j6l/iPtW753iP8A54wf99H/AAo0Hpef9fUv9K3qAMHzvEf/ADxg/wC+j/hVuyk1Z5SL+ONExwUJJzWnRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY+v/wDIHn+g/mK2Kx9f/wCQPP8AQfzFAGxRRRQAVkaV/rbz/r4P/oK1r1kaV/rbz/r4P/oK0Aa9FFFAGNqH/ITsP+uj/wDoDV+d/ix2/aD/AOClXh/wQn73w78B9CfxFfjqj+I/EKva2CMDxm3sUupfUG4jNfoD4m1XTtCEOt6vMtvaWYmnnlc4WOOOJmZiewABJr4L/wCCZOjzeJfghrH7VmtxOur/ABy1688au0qlZF0y52waRFg8hY9MhtRt/vFj1Y0Afo5UF1/x7Sf7p/lU9QXX/HtJ/un+VAFTR/8AkEWv/XJP5CtKs3Rv+QRa/wDXJP5CtKgArIt/+Q3df9c4v5tWvWRb/wDIbuv+ucX82oA16KKKAMfWxm2i/wCu8P8A6GK2Kx9b/wCPaL/rvD/6GK2KACiiigDH0P8A48T/ANdZf/Q2rYrH0P8A48T/ANdZf/Q2rYoAKx5v+Q9b/wDXCX+aVsVjTf8AIet/+uMv80oA2aKKKAMvW/8AkDXX/XJ/5GtJPuD6Vm65/wAga7/65P8AyrST7g+lADqKKKAMfTf+P6+/66r/AOgLWxWPpv8Ax/X3/XVf/QFrYoAKx9U/4+LH/r4/9katisfVf+Pix/6+P/ZGoA2KKKKAEPQ1laD/AMgW0/65J/KtU9DWVoP/ACBbT/rkn8qANaiiigDHj/5D8v8A1wT/ANCatiseP/kPy/8AXBP/AEJq2KACsbX/APkGN/10i/8AQ1rZrG17/kGN/wBdIv8A0NaANmiiigArH0X/AFU//XxL/wChGtisfRf9VP8A9fEv/oRoA2KKKKAPzb/4Ka5t/hh4G1Yf8uXjrQJPzuVX+tfpJX5u/wDBUT5P2ftHuj0tvFegzH6Lexf41+kVfSY7XJME/wDp5WX4Un+p5WG0zDEf4af/ALf/AJBVHU/+Qbcf9cn/AJGr1UdT/wCQbcf9cn/ka+bPVJLL/jyh/wBxf5VaqtZf8ecX+4v8qs0AFY1h/wAhW+/3o/8A0EVs1jWH/IVvv96P/wBBFAGzRRRQBjax960/6+E/ka2axtY+9af9fCfyNbNABRRRQBj6B/yCIf8AgX8zWxWN4f8A+QRD/wAC/ma2aACsb/mYf+3f/wBmrZrG/wCZh/7d/wD2agDZooooAyNe/wCQTN9B/MVr1ka9/wAgmb6D+YrXoAKKKKAMTRfv3v8A18v/ACFbdYmi/fvf+vl/5CtugArIvv8AkKWX+9J/6Ca16yL7/kJ2X+9J/wCgmgDXooooAr3f/HrL/uN/Kq2j/wDIJtf+uKf+girN3/x6y/7jfyqto/8AyCbX/rin/oIoA0aKKKAMa1/5Dd5/1zh/9mrZrGtf+Q3ef9c4f/Zq2aACsnV/9XB/13i/9CFa1ZOr/wCrg/67xf8AoQoA1qKKKACsfQv+Qf8A9tZf/Q2rYrH0L/kH/wDbWX/0NqANiiiigDIl/wCQ7D/1wk/9CStesiX/AJDsP/XCT/0JK16APzo/4KWaJf8Ahv4PaH+1h4XiaTW/gbrdv4wXy/vy6VErW+sQe4k02a4IHTeiHsK+7ptY0zxD4NGv6LOtzZ31qtxbzIcrJFKoZWB7gggitXXNE0nxLot54c1+3S7sdQgktrmCUbklhlUq6MDwQykgjuDX5wf8E5Ne1DRf2b9f/Ze8TyySa18DtZvvA8vntulk06yCy6TM3fEumzWzAnqc9SDQB+mS/dFLSL90UtABWRpv/H3ff9dh/wCgLWvWRpv/AB933/XYf+gLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDw34utt+Gnj9hxjR7n/0nevwc/4NQcf8Ok9Pb+94u8Qn/wAma/d/4xnHwv8AiCfTRrr/ANJnr8If+DUD/lEbpbevizxD/wClNAH9KlFFFAGDrP8Ax9WH/XwP/QWrerB1n/j6sP8Ar4H/AKC1b1ABRRRQBHN/qm+hrK8Pf8gO1/65rWrN/qm+hrK8Pf8AIDtf+ua0AbNFFFABXPWf/Ix3n/XKL+bV0Nc9Z/8AIx3n/XKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/6+Yv50Ab1FFFABTX+4fpTqa/3D9KAMXw1/yBYf+Bf+hGtysPw3/wAgWH/gX/oRrcoAKKK+cP2t/wBp34afscfs7+Kf2jfi1eJZaL4ZsnuZGY4MknSONfVnchVHcmgD+fv/AIL5/tQfEn4reO/CP/BIH9km6LfEL4ztDb65cwE50vQt5855CvKeYuc/7ANfv5+x7+y18Nf2Lv2cPCn7NvwotUttJ8M2UdvuVQrXE+B5sz46vI+WJPPbtX4Gf8EBf2bPiJ8YvG/jj/gsH+1dZn/hPvjG7v4fgnU7tM0BXKxIgP3fMVQAe6jP8Vf1FUAFFFFAGD4j/wCPBf8ArrH/AOhCt6sHxF/x4L/11j/9CFb1ABRRRQAh6GsPw7/yDf8AtpJ/6Ea3D0NYfh3/AJBv/bST/wBCNAG7RRRQAVgn/kZR/wBe5/8AQhW9WCf+RlH/AF7n/wBCFAG9RRRQAV+NH7dnxY8UftF/E2y/YU+B87ZuWSfxTfQn5bWzBGYyw7nuPw719f8A7dP7U1p+zF8IZb7RwLrxRrTfYtGs15eS4k4DYHOFzk15/wDsT/stz/AX4QXHjPx4Td+OvFzrqGs3cnMgaUhhFk9AueR6/SvuuH6MMrwb4gxMbzu40Iv7U1vNrrGn+M7Loz57MqksZX/s2k7K16jXSPSK85fgrmd+0H/wTW+EHxX+CWifDrwZDFomr+FYETStQWMElkHIlGPnVzy2e5r7E/Z+8N/EXwf8H9D8MfFee1utdsYBDcS2a7IW2khdoGAPlxnFexFlRN7kAAck9K8u8SfHD4SeEnMXiHxBZW7r1UyAn8hmvmM04sxE8DHC5jXXs4yc05tXTl8VpPWzerW19T18FklNYh1sJSfM0otRTs0ttF1WyfY9Uor5cv8A9sT4G2uVsdQmv2Ha2geTP5CsJv2vdIu2xoHhXXL5T0ZbYqD+dfGy4pylOyxMW/7r5v8A0m59DHIcwevsJL1VvzsfUHh3/j2n/wCu8n866CvibR/2oNes4JWk8B62YjK7FljBxk+me1d94R/aw+FniPUk0LWZJ9Bv3OFg1GMwkn0BPBp0+J8snJQ9uk3tzJxv6cyQp5Fjoxc/ZNpdrS/Js+m6KjhmhuIlnt2DowyGU5BH1qSveTPJMCf/AJGS3/64v/MVv1gT/wDIyW//AFxf+YrfoAKKKKAMXxD/AMgib6D+dasP+pT/AHRWV4hONHm+lasH+pT/AHRQBLRRRQAVgaH/AK29/wCvhv5Ct+ub0qeG2N/NcOI0WdiWY4A4HehsDpKRmVQWY4A6k18zfET9qz4YeCLg6LpUza7qxO1LOwHmuW9yOBXjyeF/2m/2hJPN8X3R8E+HZDn7LbnN1Ih7E9q+cxXEuHVR4fBRder/ACw1S/xS+GPzd/I9qhklVwVbFSVKn3lu/wDDHd/JW8z2r4m/tSfDD4c3J0VLhtW1dvlSysh5shbsDjIFfPd3pX7Tf7Quq2415/8AhCNBnDbI4jm7dO+e4yK+q/hn+z98L/hVGsnhvTke8x893P8AvJnPqWOefpXpd7/yHbP/AHX/AJVzPJ8fj9c0rcsP+fdJtL0lP4peaXKvU2/tLCYTTAUuaX887N/9ux2XzuzyL4X/ALNnwr+FaC40ixF5fnl7y7/ezM3rk9Pwr3wDHAoor6HBYDD4SkqOFpqEV0SsePicXWxE3Urzcpd27hWD4mtLS90SeK8iSVQuQHUMMjocHvW9WTrv/IIuP9w11NJqzME2tUXLH/jyi/3F/lVqqtj/AMecX+4P5VapiPjz9uiHf+z/AH046w3EDD/vqvpP4e3AuvAmjXAOd9lAf/HBXhf7Ztib79nfXsDPkokv/fJr0f4B6gdU+DHhq/brJYRfoMV8nQko8SV4/wA1GD+6c1+p9BWV8lpPtVkvvjF/oYHxn8bXvw7+F3irxdpv/HzaxkxH0ZhgH8M1zv7K3w/sfCPwntdaikW41XXE+2Xl0TuZ5ZOQCfQeleyal4Z0Xxjpur+GfEMIuLO8PlyxnupFfBHxM+Fnij9lvRJvHnwq8XTRWFmRI2kXjeYrpnG1M81hnrrYPHxzadL2lGnTadmk4Nu8pJOyd42WjvpotTbKo0sThJZfGpyVZzT1TalpZRbW2uuqsfZnhH4X3mga5rXjbW9Q+161q6CIzom1IYkB2Ki+3U+prlP2eviHrHir4Z32reKrr7RcaXd3du87ALuSBjgnHHSvZfCOtzeKvBlhr8kflSX1qkpT+6XXOK/KHRfHvjLw74K8UfAPw7p91/wkmq6rc87CEjtpCSzlsYxiufNcyo5VUwtain7OUarsrvmm+WUV5yk72vrqzXL8FUx8K9OpbnjKGui5Yq6fpFK1+h9dfs7fFLUPF/gu88a+LL0zwWupXpWV+NkEecD6AVS0HUfHn7Ul9Pq9ne3GgeB4nMcP2c7Lm9KnBO7qqemK8O/Zs8Mat4k/Zg1jwjpJ/wBMnnvYE93Axj8cV1Hwl/adsfg/8P8ATvhz438MarbXukx+RIY4CyMVPUEDvXiYTN1PCZfDNKrjQlScpPX353soSktbWbbV9fTQ9XE5c44jGSwNNSqxnypae7G3xJPrfS/T1PsPQPgP8NfC8sV7o1gReQfNHcSyPJJu9SSea+Kv2wJvjrYeE7K08Rf2bc6cNTgME8JZJWkDfIGQ8Y9cGvbtG/be+E+panBp1/bahp4uJFiEtxbskYZjgZPbJrC/btuVHwz0WWM5VtVtmBHpkGuziCrleKyPFSyuqkoR1VNpLW3xK2u3b5nLlFPHUM1oLH023J6Oeu3Z3KCeFf2y/GWni38Sa1p2hae0Q3GzXfIUx0B55xWboGr/ABS+KXiWX4WfDTXZNL0XwtElveam6iS4uLjHIGeOK+0NWTUbj4eSppEwguWsf3UhGQrbODivy8/Zch/aE1/QNfsfhxPYWkV1qMn23UJzmZZOh2p9OlZZrQWCxOFwqlXqe15nJqTcmoq6grOPKm2nJq2i1ZeX1XiqGIrtUoezsknFKKcn8T0fM7JpJ316H2P8DfGPju2+JXiH4QeM9RGtjRo4por7btfEn8D44yK+g/iD4i/4RHwNq3iYdbG1lmH1VSR+tcF8H/hDo/wc0O7uLy8a/wBSvmNxqGoTn5pG+vZR2r5o+OPx7k8feBvGOieAbUXWhabYyRXepkkKZ2IASP8Ave5r2/r88qylrGTaqtTcY3cpJaySvq3yK3NLZdzzPqkcfmCeGj+7TgpO3Knsm7bLmey38j2bUfjXoHwc+BeleN/GU73U91bo0aZzJNLIN2B9M10f7P3xZ0/40+Fp/HOnW7Wgll8t4nOSrIMHmvzk8ASXX7SviizN+rP4d8EaNgRsPlkuBGRkj6j9K9Z/Y/8Aib4c+F/7PHiHxX4ilEcNlqE21Ohdz91QPU18/knF1etjqTnJRwbpzs3u3TUOad+120vS56+Z8O0qeEqKMW8Tzxul0U3K0bd7JN+p94eMvjD8O/AGuWHhvxVqUdream4SCNupJ4GfQE9zXpisGAZeQea/AP4m6B8RvH/hO8/aj8VM8SXF/GllEeghByCPQAgAV+4/w21tPEfgDRtcjfeLmzifd6kqM17nC3FdbNcXiKNWlyQSjOnfeUJNq79bX9GeXn2QU8Bh6NSFTmk24z7KSs7L0vb5HbVz+s5+22P/AF1P8q6CsDWeb2xH/TX+lfcHyxv0UUUAFV7v/j1l/wBxv5VYqvd/8esv+438qAKeif8AIJg/3BWpWXon/IJg/wBwVqUAFFFFAHO2P/Iw3v8AuR10Vc7Y/wDIw3v+5HXRUAFFFFAH5eXf/KQ4/wDXuv8A6LFfqHX5eXvy/wDBQ4A94F/9Fiv1Dr4vgv4cf/2EVf0Pp+Jt8J/15h+oUUUV9ofMDJP9W30NYvhr/kCwf7tbUn+rb6GsXw1/yBYP92gD8qP+C0X/AATb0L/gpL+xzq/w/wBKjW28eeHVbVfCmor8ssF/CNwQP1VZdoU4PBwe1eAf8EBf+Ci2rftifsyzfA343M9p8XvhFL/wj/iazuTieRrb5EuMHk7wvzHswNfvnX8bX/BWT4aeK/8Agj3/AMFGvCn/AAWR+AWnyf8ACBeMblNG+JWnWvCH7QwzclRxlgN+f76n+9QB/ZLXO23/ACMtz/1yj/rWB8KPij4I+Nfw30X4r/De/i1PQ9ftIr2yuYW3JJFKoYEEfWt+2/5Ga5/65R/1oA6KiiigArE13/j3h/67J/OtusTXf+PeH/rsn86ANuiiigAooooAwPDP/IJX/fk/9CNb9YHhn/kEr/vyf+hGt+gAooooAwD/AMjP/wBuw/8AQjW/WAf+Rn/7dh/6Ea36ACiiigDA8S/8gs/9dIv/AEMVvDoKwfEv/ILP/XSL/wBDFbw6CgBaKKKACsPw/wD8ecn/AF3l/wDQjW5WH4f/AOPOT/rvL/6EaANyiiigArDl/wCRih/64P8A+hCtysOX/kYof+uD/wDoQoA3KKKKACsPxL/yA7n/AHf6itysPxLzoVyP9n+ooA2x0FLSDoKWgAooooAwdB6Xn/X1L/St6sHQel5/19S/0reoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisuTRNIlkaWW2jZmJJJUZJNAGpWPr/8AyB5/oP5il/sDRP8An0i/75H+FZGvaBon9kT/AOiRdB/CPWgDrqKyP7A0T/n0i/75H+FH9gaJ/wA+kX/fI/woA16yNK/1t5/18H/0FaP7A0T/AJ9Iv++R/hWTpeg6IZbz/RIv+Pg/wj+6tAHW0Vkf2Bon/PpF/wB8j/Cj+wNE/wCfSL/vkf4UAfnt/wAFRfEOoTfs52nwJ8NySR638ZNasvAFkYQTJHFrRZL6YbeQILBLmVm4Chc5r9BfDXhzRfB/hzT/AAj4at0tNO0q2is7WCMbUiggUIiKBwAqgAD0Ffmj43sdL+MX/BUrwZ4Chs4pdH+DfhO88SXjYyq6z4kZ7GxUjGNyWltev6qJF6bq/TL+wNE/59Iv++R/hQBr1Bdf8e0n+6f5Vn/2Bon/AD6Rf98j/CobnQdFFvIfssX3T/CPSgC3o3/IItf+uSfyFaVcto2gaJ/ZNr/okX+qT+EegrS/sDRP+fSL/vkf4UAa9ZFv/wAhu6/65xfzaj+wNE/59Iv++R/hWRb6Don9tXQ+yRf6uL+EerUAddRWR/YGif8APpF/3yP8KP7A0T/n0i/75H+FACa3/wAe0X/XeH/0MVsVyGt6Dogtov8ARIv9fD/CP74rY/sDRP8An0i/75H+FAGvRWR/YGif8+kX/fI/wo/sDRP+fSL/AL5FACaH/wAeLf8AXWX/ANDatiuR0TQdENkf9Ei/1sv8I/vmtf8AsDRP+fSL/vkf4UAa9Y83/Iet/wDrhL/NKX+wNE/59Iv++R/hWPNoOif27bj7JF/qZf4R6pQB19FZH9gaJ/z6Rf8AfI/wo/sDRP8An0i/75H+FAD9c/5A13/1yf8AlWkn3B9K5bXNA0T+xrv/AESL/VP/AAj0NaSaBom0f6JF0/uigDZorI/sDRP+fSL/AL5H+FH9gaJ/z6Rf98j/AAoATTf+P6+/66r/AOgLWxXI6doOifbr7/RIv9av8I/uLWv/AGBon/PpF/3yP8KANesfVP8Aj4sf+vj/ANkal/sDRP8An0i/75H+FZGqaDoguLH/AESL/j4/uj+41AHXUVkf2Bon/PpF/wB8j/Cj+wNE/wCfSL/vkf4UAax6GsrQf+QLaf8AXJP5U06BomD/AKJF/wB8isvQtB0Q6LaH7JF/qk/hHpQB1lFZH9gaJ/z6Rf8AfI/wo/sDRP8An0i/75H+FACR/wDIel/64J/6E1bFcjHoOif29KPskX+oT+Ef3mrX/sDRP+fSL/vkf4UAa9Y2v/8AIMb/AK6Rf+hrTv7A0T/n0i/75H+FY+vaDog0xv8ARIvvxfwj++tAHX0Vkf2Bon/PpF/3yKP7A0T/AJ9Iv++R/hQBr1j6L/qp/wDr4l/9CNL/AGBon/PpF/3yP8KyNG0HRTDP/okX/HxL/CP7xoA66isj+wNE/wCfSL/vkf4Uf2Bon/PpF/3yP8KAPz1/4Kprs/ZK1HUP+fLUNKuM+my/tx/Wv0difzIlf+8Afzr82P8Agqdo2lW/7GXiqe3t40dBZMGVQCMXttX6FWOh6JJZQyfZYjuRT90dxX0mK/5EGEf/AE+r/wDpGHPKo/8AIyr/APXun/6VVOhqjqf/ACDbj/rk/wDI1W/sDRP+fSL/AL5H+FUtT0HRBptwfskX+qf+Eehr5s9U2rH/AI8of9xf5Varn7LQNE+xxf6JF9xf4R6VZ/sDRP8An0i/75H+FAGvWPY/8hW+/wB6P/0EUv8AYGif8+kX/fI/wrHsdB0X+1L4fZIvvR/wj+6KAOvorI/sDRP+fSL/AL5H+FH9gaJ/z6Rf98j/AAoAbrH3rT/r4T+RrZrj9X0DRQ1p/okX/Hwn8I9DWz/YGif8+kX/AHyP8KANeisj+wNE/wCfSL/vkf4Uf2Bon/PpF/3yP8KAE0D/AJBEP/Av5mtiuQ0DQNE/smH/AESL+L+Ef3jWx/YGif8APpF/3yP8KANesb/mYf8At3/9mp39gaJ/z6Rf98j/AArH/sHRP+Egx9ki/wCPf+6P71AHX0Vkf2Bon/PpF/3yP8KP7A0T/n0i/wC+R/hQAa9/yCZvoP5iteuR13QNE/smb/RIug/hHqK1/wCwNE/59Iv++RQBr0Vkf2Bon/PpF/3yP8KP7A0T/n0i/wC+R/hQBHov373/AK+X/kK2647RtB0Uvef6JF/x8v8Awj0FbX9gaJ/z6Rf98j/CgDXrIvv+QnZf70n/AKCaP7A0T/n0i/75H+FZF9oGif2nZf6JF96T+Ef3TQB11FZH9gaJ/wA+kX/fI/wo/sDRP+fSL/vkf4UAX7v/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFUbvQNE+yy/6JF9xv4R6VW0jQNEOk2p+yRf6lP4R6CgDqKKyP7A0T/n0i/wC+R/hR/YGif8+kX/fI/wAKAG2v/IbvP+ucP/s1bNcha6Dov9tXn+iRf6uH+Ef7VbH9gaJ/z6Rf98j/AAoA16ydX/1cH/XeL/0IUn9gaJ/z6Rf98j/CsnV9A0Ty4P8ARIv9fF/CP7woA62isj+wNE/59Iv++R/hR/YGif8APpF/3yP8KANesfQv+Qf/ANtZf/Q2pf7A0T/n0i/75FZGh6DohsP+PSL/AFsv8I/vtQB11FZH9gaJ/wA+kX/fI/wo/sDRP+fSL/vkf4UAEv8AyHYf+uEn/oSVr1yMugaJ/bsP+iRf6iT+Ef3krX/sDRP+fSL/AL5H+FAGvX5h+KhcfBD/AIKUJdIgi0H46+DpraRwBt/4SHwoTJFn/auNPuZQPa0+lfpL/YGif8+kX/fI/wAK/N7/AIKleHP+EU/Zusv2j/C1kj6l8HvEOmeMdqxhmfT7aTyNUQcj72nT3PfqB16UAfpsn3R9KdXPWOm+GdRsodQ0+CGWCdFkjdVBDIwyCOOhBq1/YGif8+kX/fI/woA16yNN/wCPu+/67D/0BaP7A0T/AJ9Iv++R/hWXpOiaRFfXksVrErJOCCFGQQi0AdXRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9P+/iiiigArC1fWNOtbe4t55ArrG2R9RW7VHUI42spyygny2/lQBgaJ4g0j+xrT98P9SnY/3RWp/wAJBpH/AD2H5Gl0OKL+xbT5B/qU7ew9q1PKi/uD8v8A61AGV/wkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f8A1qPKi/uD8v8A61AHzp8ZNd0tvhb8QwsoP/Eluux/59nr8KP+DUjV9Ptf+CR+kw3Em1v+Er8QHB97mv3q+MsUf/CrPiH8o/5At12/6dnr8I/+DUBEb/gkXpW5QSPFniH/ANKaAP6P/wDhINI/57D8jR/wkGkf89h+RrV8qL+4Py/+tR5UX9wfl/8AWoA4zWfEGkfarD98P+Pgdj/dat7/AISDSP8AnsPyNVtZhh+1WHyD/j4Hb/Zat7yov7g/L/61AGV/wkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f/Wo8qL+4Py/+tQBjTeINI8lv3w6HsayvD3iDSP7Dtf3w/wBWvY11U0UPlN8g6HtWV4dih/sO1+Qf6te1AEn/AAkGkf8APYfkaP8AhINI/wCew/I1q+VF/cH5f/Wo8qL+4Py/+tQBlf8ACQaR/wA9h+Rrn7TXtJHiO8/ej/VRdj6tXa+VF/cH5f8A1q5+zii/4SO8+Uf6qLt7tQBb/wCEg0j/AJ7D8jR/wkGkf89h+RrV8qL+4Py/+tR5UX9wfl/9agDK/wCEg0j/AJ7D8jWDr3iDSSlriUf8fMXY+tdn5UX9wfl/9asHXootlr8o/wCPmLt70AWf+Eg0j/nsPyNH/CQaR/z2H5GtXyov7g/L/wCtR5UX9wfl/wDWoAyv+Eg0j/nsPyNNfxBpGw/vh09DWv5UX9wfl/8AWprxRbD8g6en/wBagDj/AA14g0j+xYf3w/i7H+8a3f8AhINI/wCew/I1B4bii/sWHKj+Lt/tGtzyov7g/L/61AGUNf0g8ecPyNfyTf8ABTbxpef8Fcv+CnPg7/gkl4Du5h8MvADxeJ/iTfWxOyRofnitCwyAfu8H+Jh6Gv3p/wCCoX7bfhD/AIJ7/sW+Mv2j9f8ALe+0+0a30m1bAa61GcbIIlHfLkE47Amvhv8A4N+v2KfEn7PP7JE37RfxyU3XxV+N123irxDdTrmZEuiXt4MnkKqENjsWx2oA/ZfwjB4K8Fta+EPC0cVjpul6fBa2tvEu1IoYflRVA6AAAV3v/CQaR/z2H5GqkUUX/CTzfIP+PdO3+0faug8qL+4Py/8ArUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArUAcZ4j1/SfsCfvh/ro+x/vCt7/hINI/57D8jVbxHFEbBMKP9bH2/wBoVveVF/cH5f8A1qAMr/hINI/57D8jR/wkGkf89h+RrV8qL+4Py/8ArUeVF/cH5f8A1qAMk+INIwf3w/I1h+HfEGk/2bnzh/rJOx/vGuxMUWD8g/L/AOtWH4dih/s37g/1knb/AGjQBY/4SDSP+ew/I0f8JBpH/PYfka1fKi/uD8v/AK1HlRf3B+X/ANagDK/4SDSP+ew/I1gnxBpH/CSj98P+Pc9j/eFdn5UX9wfl/wDWrBMUP/CSj5B/x7nt/tCgCz/wkGkf89h+RqlqXjHw5pGnT6rqN0sVvbRtLI7cBVUZJP4V0XlRf3B+X/1q/EX/AIKX/tUPr+sR/sd/Cm6EV3qW0+INQi5FpaE8x5H8TDqPSvVyfLVjK/LVqKnSinKpUk7RhBfFKTfRLbu7Jas5MbiXRp/u4OdSTtGK1cpPZJf1ZakP7PMcP7c/7W+qftUeOQx8GeCZjYeGbaUHy5ZlPzTY6HkZ/Kv0p+PP7R/w4+FXh2RdRuludQkwYrSI5kYjnn+6Pc18Z/Ay8+Lmp/DbTvhH+zRoUfh3wxpUIt11W8X95Kf4pMd2Y5PGa9s8NfsUeE9Cnk8a/Ey/m8Taw7K7NPxEGJ9Op/GvluLuOMZxBiFDhmg1hoLkpTqLlhGC+0k/enKTvJtKzb3Z7+R8NYbKqfPnVW9VvmnCGsnJ9G9opbLW9lsfPmj+Jf2h/wBq3XUk1Oe48P8AhJ5MObY+Udh9zy/vivsT4Vfs1fBT4XtcXGP7YnuSpaS/USlSP7uRxmvq2z0+wsLWOzsoUiijUKiIoCgDsAKs+VF/cH5f/Wrxcq4Pw2HksTjpOviN3Oetr9IrZLsjuzDiOtWi6GFiqVH+WOl/V7tnH2cXgbT122FtbQj0SIL/ACFbCa5okY2xyKB6AY/pWx5UX9wfl/8AWo8qL+4Py/8ArV9XGnGKtFWPn5TlLVs4rw74g0j7LPmYf6+TsfWsPxz4S+F3xG0x9J8YWcF3G/RmT51PqrYyDXY+HYovs0/yD/Xydvf6V0HlRf3B+X/1qmvQp1oOnWipRe6aumVSqzpyU6cmmuq0Z+fstr8Uf2Z7o3fgOeXxX4R3bnsJSWurZe/lk/eA9K+jfh/+0l8JviFZiXT9SS0ul4ktbo+VMjehVsV7r5UX90flXiHxA/Zw+EHxJuDf+IdJjS7P/Lxb/upfzXrXziyrG4B/8Jc1Kl/z7qN2X+Cau4r+61JdrHtPH4XFr/botT/ngld/4o6JvzTT73O5fxHosviG3kinV18l+RyOo9K6H+39I/57D8jXxTN+yFdaJrkcPgTxrrGlho2ZVLiULgjj5q2R8C/2ktMwNJ+IpmA6faLZSf0q1nGYw0rZfL/t2dOS/GUX+BDy3BS1p4yP/b0Zp/gpL8T69/4SDSP+ew/I0f2/pH/PYfka+Q/+FW/tbJwvjeyb62tL/wAKu/a3bhvG1iv0tar+3MT/ANAFX/yn/wDLA/smj/0GU/8Ayf8A+RPqHxD4g0n+yJsTDoOxrRHibQ7e3Rp7hIxtHLHaP1r471j4C/HzUdOkk8SfEWZEx8yWsCoCPyq3a/sXaRqO2bxj4s1nVQQCVaby1/IVLzfM5/wcvl6znCP5OT/AP7PwMf4mMX/bsZP81FH0fq3xl+FmhoX1XXrOEL1zKM14rrv7aPwX09mt9AmudbnHASxhaQE/XGK3tB/ZD+Aehus39hpeSD+K6Yykn15r3HRPBXhDw5EINB0y2tFXoIolX+Qocc+rbypUl5KVR/jyL8GCllNPpUqPztBfhzP8j4un/aI+P/j9vs/w08H/ANlwMcC71RtuB67aytI+B3jf4kTz3Pxq8aTtD5p8yx07MMTHAzk9a/Qoxxnqo/Kuf0OKLzb35B/x8N29hU/6sxra5hiJ1vJvlh/4DCyfzuV/bkqWmDoxp+aXNL/wKV391jzT4e/DP4N/C+AReD7CCCTGDMy75W+rEZr1X/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArV9BhsLRw9NUqEFGK6JJL7kePXr1K03UqycpPq3dmV/wkGkf89h+RrAvfEGkf29Z/vh91+x9K7Tyov7g/L/61YF7FF/btn8g+6/b2+lbmRa/4SDSP+ew/I0f8JBpH/PYfka1fKi/uD8v/rUeVF/cH5f/AFqAMr/hINI/57D8jWTruv6R/ZFx++H3D2NdX5UX9wfl/wDWrJ12KH+yLj5R9w9v/rUAVrLxBpH2OL98PuDsfSrX/CQaR/z2H5GrdjFF9ji+QfcHb2+lWvKi/uD8v/rUAfPf7SN1puufAvxPptvIGkksX2jB6jB/pWR+yn4p0y5+APhvzZgGjthGfqpNe8eMNEi17wpqWi7Bm6tpYhx3ZSK+Pv2Etaib4b6h4AvQFvPD99LA6N1CE8GvksS1R4jw85bVKU4L1jJSt9zf3H0NBe0yWtFfYqRl8pJx/NI+s9L8QaT9svv3o/1g7H0r84L34T/EP9oH493nib4pGTTPDemTeXDCScSxxnICjuG6k1+mmlRRfbb35B/rR29q3PKi/uj8q9LOshoZoqUMTJ+zhLmcU7KVtlLyXY4sszargPaSoJc8lZSe8e9vMwrPVtAsbWOytJFSKFQiKAcBV4ArG13U/DUOmX2oJ5QnNvIDIEwxG098ZrtvKi/uD8v/AK1eI638TPDet+GfGVvpqndoEU0EzkDaXMZPH513YzEUaNO02k7Oy9E3p6JHLhqNSpO8U3qr/N2/M+Uf2NfE+ieHfhZPqmtXCwQQ6neSu7dAuetfbM3xJ+GTaMniO61Oz+xyJvWZ2XaV+pr5J/Y08O2eo/AewtdVhEkOqXN2XUjhkk4NT23/AAT/APhuNWM2patqFzpquXjsC+I1BOdufSviskrZpRybArA4eNRSpq/NLl5W9U3o7qz2Wp9PmlPAVMyxTxVaUGpu1o811s1urO/fQ83+InxAg/al8cWPw0+G0Aj8NafdR3OoakY8K5iOQqHH/wCuvSv237OTVPg9Zf8ACOq1yNMvIZHVFLMI04zgemK+yPCHgXwl4D0aPQPCdjFZWsfREXGT6k9zXTPb28iGOSNWU8EEZB/SvQjwtUr4LFU8bVvXxCtKUV7sUvhjFdo+eru2zjefQpYnDzwtO1Ki7pN6u+7k+78tFoeX+F/HHhrxD8OrTVNPn3xS2a9VIPC4Iwfevz+uIPij+y948vfFnwysG1/wzrp8+a1QHdHIevTkex71+n99Z2dtpM0NvEkaCNsKqgAcegFSaRHH/ZkHyj7g7V6WZ5F9do0b1XCtT1jOO6drPR3TT6pnDgc1+q1KlqalSno4y6q91qraro0fmPqXjf8AaC/ajvY/CrWD+D/DZI+2ytuEkid1BIB59BX1B44+E/hmP9nvUfg78ODFbtNbiOIvxvkBByxx1OOtfVPlRf3R+VJ5UX9wfl/9aufCcL0oQrPF1ZVqtWLjKcrJqLVuWKWkV6bvVm+Iz6pKVNYemqdODUlFXtddZN6yfqfKX7Nfwo0P4PfCz/hFdYkjbUL/AHPfOmSCzjG0HHQDivlLSP2LLa48b3Wmar4jL+Forv7SbNAwZ2bkAjp04zX6teVF/cH5f/WrA0uGL+1r87R95O3tRX4Nyqth8PhqtK8KKtFXa06p2tdO13fdhS4lzClWrV6dS0qmstFv0avtbp2PJPif8PvBvjr4R3fwt0947SBoBHbYX5Y2T7px/OuR/Zi8LeM/hZ4EPhT4h6tDeC3fbaJECRHEOgz3z+lfVHlRf3B+X/1qPKi/uD8v/rV6byXC/XYZhFNVIx5FZ2Tj2a2dunb7jhWZ1/qssG3eEpc2qu790+l+plf8JBpH/PYfkawNZ1/Sftlh+9H+tPY+ldp5UX9wfl/9asDWIovttgAq/wCtPb2r1Tzy1/wkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f8A1qPKi/uD8v8A61AGV/wkGkf89h+Rqvd+INI+yyfvh91ux9K3fKi/uD8v/rVXu4ovssvyD7jdvb6UAc9oniDSP7Jt/wB8PuDsa1P+Eg0j/nsPyNLokUX9kwfIPuDt/wDWrU8qL+4Py/8ArUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArUAcRY6/pH/CQ3v74fcj7H0rov8AhINI/wCew/I1SsYov+EivfkH3I+3tXReVF/cH5f/AFqAMr/hINI/57D8jR/wkGkf89h+RrV8qL+4Py/+tR5UX9wfl/8AWoA/LTWtQsoP+Cgttes/7qS3X5v+2dfpt/wkGkf89h+Rr83PjAsGkft4+FL5tsUc9su8nhcBX5J6dq/TWMW0qCSIKysMgjkEV8Vwe1GrmVLqsRN/eov9T6fiP3qeCqd6MfwbRm/8JBpH/PYfkaP+Eg0j/nsPyNavlRf3B+X/ANajyov7g/L/AOtX2p8wY8niDSPLb98Oh7Gsbw34g0j+xYP3w6ehrrpIovLb5B0Pb/61YvhqKIaLB8o6elAFj/hINI/57D8jXhf7S3wY+Dn7V3wM8S/s+fF+2j1Dw/4nspLO5jdcldw+V1OOHRsMp7EV9E+VF/cH5f8A1qPKi/uD8v8A61AH8fP/AAQ3/aL8e/8ABPf9rLxp/wAEQ/2qdQd00a4m1L4falcE7LvT5D5nkIx6/Kd6AdPmHav6z7fX9JHia5zKP9TH2PvX85v/AAcg/sUeKvFfwb8P/wDBR/8AZwje0+KvwFuY9Wgltl/eXWnI4Msb7eWCct/ulhX6xf8ABNb9srwb+37+y54T/ac8J+Wp13TIRfW6nJt76HKTxH3VwfwoA+8v+Eg0j/nsPyNH/CQaR/z2H5GtXyov7g/L/wCtR5UX9wfl/wDWoAyv+Eg0j/nsPyNYmu+INI+zw/vh/ro+x9a7Dyov7g/L/wCtWJrsUP2eH5B/rk7e9AE3/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/wDWo8qL+4Py/wDrUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/wDWo8qL+4Py/wDrUAcX4Z8QaR/ZK/vh99+x/vGt/wD4SDSP+ew/I1V8MwwjSV+Qffft/tGt/wAqL+4Py/8ArUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArUAcWdf0n/hJ/wDXD/j2HY/3jW//AMJBpH/PYfkaqmKL/hJ/uj/j2Hb/AGjW/wCVF/cH5f8A1qAMr/hINI/57D8jR/wkGkf89h+RrV8qL+4Py/8ArUeVF/cH5f8A1qAOL8SeINIOln98P9ZH2P8AfFby+INIx/rh+Rqt4lih/sv7g/1kXb/bFbwiiwPkH5f/AFqAMv8A4SDSP+ew/I0f8JBpH/PYfka1fKi/uD8v/rUeVF/cH5f/AFqAMr+39I/57D8jWF4f8Q6QbOT98P8AXy9j/eNdl5UX9wfl/wDWrC8PxRfY5fkH+vl7f7RoAsf8JBpH/PYfkaP+Eg0j/nsPyNavlRf3B+X/ANajyov7g/L/AOtQBlf8JBpH/PYfkaw5df0n/hIoT5o/4937H+8K7Hyov7g/L/61YcsMP/CRwnYP9Q/b/aFAE/8AwkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f/Wo8qL+4Py/+tQBlf8JBpH/PYfkaw/EviDSP7Cuf3w+76H1Fdj5UX9wfl/8AWrD8SxQ/2Fc5Qfd9PcUATDxBpGP9cPyNL/wkGkf89h+RrUEUWB8g/L/61L5UX9wfl/8AWoAyv+Eg0j/nsPyNH/CQaR/z2H5GtXyov7g/L/61HlRf3B+X/wBagDjNB1/ScXn74f8AH1L2PtW9/wAJBpH/AD2H5Gq2gxQ4vPkH/H1L2+lb3lRf3B+X/wBagDK/4SDSP+ew/I1ZtdUsb2QxWsgdgM49queVF/cH5f8A1qcqIpyqgfSgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWPr//ACB5/oP5itisfX/+QPP9B/MUAbFFFFABWRpX+tvP+vg/+grWvWRpX+tvP+vg/wDoK0Aa9FFfMv7Z/wAbT+zh+yZ8RfjnCvmXXhnw/f3lnFkAzXixMLaIZIG6SYog5HLDmgD5f/4J+3K/EzWfif8AtWMN8fxI8e6nFpkpAy2j+GkOjWpBGcpI9rPOvPIlzxmv06r5d/ZW+Df/AAz3+zj8MfgpLzceG9FtbK6fqZLpLf8AfueTy8pdjyeT1NfUVABUF1/x7Sf7p/lU9QXX/HtJ/un+VAFTRv8AkEWv/XJP5CtKs3Rv+QRa/wDXJP5CtKgArIt/+Q3df9c4v5tWvWRb/wDIbuv+ucX82oA16KKKAMfW/wDj2i/67w/+hitisbW/+PaL/r4h/wDQxWzQAUUUUAY+h/8AHif+usv/AKG1bFY+h/8AHif+usv/AKG1bFABWPN/yHrf/rhL/wChJWxWPN/yHrf/AK4S/wA0oA2KKKKAMvW/+QNdf9cn/ka0k+4PpWbrn/IGu/8Ark/8q0k+4PpQA6iiigDH03/j+vv+uq/+gLWxWPpv/H9ff9dV/wDQFrYoAKx9Vx9osf8Ar4/9katisfVf+Pix/wCvj/2RqANiiiigBD0NZWg/8gW0/wCuSfyrVPQ1laD/AMgW0/65J/KgDWooooAx4/8AkPS/9cE/9CatiseP/kPy/wDXBP8A0Jq2KACsbX/+QY3/AF0i/wDQ1rZrG1//AJBjf9dIv/Q1oA2aKKKACsfRf9VP/wBfEv8A6Ea2Kx9F/wBVP/18S/8AoRoA2KKKKAPzx/4KkQGf9i3xnj/lnaRS/wDfu6t2/pX3l4ZuPtfhvT7r/nrbRP8AmoNfD/8AwU2Gf2L/AB57aU5/KWGvtHwGc+BtGPrY23/ota+lxGvD+G8q9b/03Q/yPKp/8jOr/wBe4f8ApVQ6uqOp/wDINuP+uT/yNXqo6n/yDbj/AK5P/I180eqSWP8Ax5Q/7i/yq1VWy/48of8AcX+VWqACsex/5Ct9/vR/+gitisex/wCQrff70f8A6CKANiiiigDG1j71p/18J/I1s1jax960/wCvhP5GtmgAooooAx9A/wCQTF/wL+ZrYrH0D/kEw/8AAv5mtigArG/5mH/t3/8AZq2axv8AmYf+3f8A9moA2aKKKAMjXv8AkEzfQfzFa9ZGvf8AIJm+g/mK16ACiiigDE0X797/ANfL/wAhW3WJov373/r5f+QrboAKyL7/AJCll/vSf+gmtesi+/5Cdl/vSf8AoJoA16KKKAK93/x6y/7jfyqto/8AyCbX/rin/oIqzd/8esv+438qraP/AMgm1/64p/6CKANGiiigDGtf+Q3ef9c4f/Zq2axrX/kN3n/XOH/2atmgArJ1f/Vwf9d4v/QhWtWTq/8Aq4P+u8X/AKEKANaiiigArH0L/kH/APbWX/0Nq2Kx9C/5B/8A21l/9DagDYooooAyJf8AkOw/9cJP/QkrXrIl/wCQ7D/1wk/9CStegArgvip4N0L4i/DLxF8PfFEfnaZr2m3Wm3af3oLuJopB+Ksa72sjX/8AkC3X/XNv5UAfDv8AwTI8ZeJ/Ev7GHhPwr4+k8zxL4DN34L1hs5Zrzw5PJp5kbhcGZIUm6DiQV981+bf7MEE/wp/bm+P3wPlxHp3iSXRfiJpKf9hW3NhqAUZ6C6sBK2APmn5yTX6SUAFZGm/8fd9/12H/AKAta9ZGmf8AH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9T+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAPCfjGN3wv+IS+ujXX/pM9fg5/waesD/wSR05P7vi3xAP/ACYr96Pi4pf4a+P1HfR7kf8Aku9fgh/wadNn/gk5bR/3PGHiAf8AkcUAf0wUUUUAYOs/8fVh/wBfA/8AQWrerB1n/j6sP+vgf+gtW9QAUUUUARzf6pvoayvD3/IDtf8Armtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/wAjHef9cov5tXQ1z1n/AMjHef8AXKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/wCvmL+dAG9RRRQAU1/uH6U6mv8AcP0oAxfDX/IFh/4F/wChGtysPw1/yBYf+Bf+hGvj7/got+2T4M/YK/Y98aftMeMpUX+wrFxYwMfmub6X5LeFR3LyEDigD8A/255o/wDgrj/wWg8B/wDBPTSmN38MfgOI/GHjVlO6C5v1IENq2OONwUg/3z6V/WlbW1vZW0dnaIsUUShERRhVVRgAAdAB0r8AP+DeT9j/AMYfBj9lLUv2r/jzBv8Ail8edQl8V61PKMyx290xe2hyeQArb9vbcB2r+gagDn4v+Rnm/wCvdP8A0I10Fc/F/wAjPN/17p/6Ea6CgAooooAwfEf/AB4L/wBdY/8A0IVvVg+I8/YEx/z2j/8AQhW9QAUUUUAIehrD8O/8g3/tpJ/6Ea3D0NYfh3/kG/8AbST/ANCNAG7RRRQAVgn/AJGUf9e5/wDQhXzj+2l8U9V+Ef7Pur+IfD0xg1O7eCws5F+8s13Isake43Zr07U/EGn/AAu8LnxF40vP3Gh6P5l3cyHlvJVdzE+rEZ+teh/ZtV4eliFr7SUoxXVuKjf/ANKSOb61D2s6T+yk2+lnf/Jnyr+31+1xc/s++DbTwF8OYzqHj3xaxs9ItI/mZGf5fNYei549TXLfsn/8E9fA/wANvA0OvfGiIeIfGuqz/wBo6neTsW/fPz5fuq559TXgX7BngHVf2qPjj4g/b2+K1u0ls9w9n4Wt5uVhgjOPMUHvjofUn0r9Ff2kf2tvgt+yxolvq3xT1ExTXjbba0gXzLiUjqVQc4HrX2We5d7PDx4RwNH2tWdnXsuZzqL3lTX92n17zu3sjw8txbdV53XqckY3VPW3LF6OXrP8tOp9IWdlZ6dbJZWESQwxjCogCqB7AVj+I5oTp0kAYbxtO3POM9cV5D8DP2mvhF+0P8PJPiX8NtSFxYW+4XKyDZLAyjJDqeRxXyp+zn8RbLxyfEv7Q/jvU1tU8X6y2jeHoJpMIbSzcqgjU8FpWDN+FfLwyDEwhiPbQcHRtFxad+ZvSNumilJ+SPWlmVKUqXJJSU7u99LLrf1aXqz9KR0FLSDoKWvFO8KKKKAOf8O/8e0//XeT+ddBXP8Ah3/j2n/67yfzroKACiiigDAn/wCRkt/+uL/zFb9YE/8AyMlv/wBcX/mK36ACiiigDF8Rf8gef6f1rVg/1Cf7orK8Rf8AIHm+lasH+oT/AHRQBLRRRQAVgaH/AK29/wCvhv5Ct+sDQ/8AW3v/AF8N/IUAb9FFFABX59/C79qTxH8RP2+/iR+zFf2cEWm+BNL0y8tbhM+bI9+rFw/bA2jGK/QSvyR/Y9+F/iZP2/P2gfj/AOI7aW1i1rULDRrDzFIWWDT4OXXPUbmxQB+t1FFFABWTrv8AyCLj/cNa1ZOu/wDIIuP9w0AXLH/jzi/3B/KrVVbH/jzi/wBwfyq1QAV+bnxZ0PxZ+zJ8Ypvjz4OtHvvD2rnGqWsfVGPVsfqDX6R1VvbKz1K1ksb+JZoZQVdHGVYHsQa8XPMnWYUYqE3CrB80JreMl5dU1o11R6eV5i8JUblHmpyXLKL6r9Gt0+jPIPhN8YPAHxPsJta8LahFIJ3DGJmCyKcdCp54r2kEEZFfCPif9iP4d+ItbvdZ8F3l14avFk+U2bYjz1+7xXIv8B/2wvBJ2+B/HC6jCn3Y7njI9Durxo51nWFXLjcA6lvtUpJp+fLJqS9NT0nlmWYh82Fxahf7NRNW8uZXT/A/Rw5xxX4v6x8XofB3hL4l/D68LDxBrWrGKCDB3MknGRX0Mur/APBQXSf3c1hp19j+Jdv+NefXvhv9q3UPFS+NdR8AaNPqq4IuWVS2R0PXGR618txRnFbMIUvq1CtTnHmT5qMn7s48rty/aXToe9kWX0sHKft6tKcXytWqRWsXdXv0fXqfa3wM8GTeAfhh4S8M3S7ZoYN0o/23GT/OvoWvzau/Hf7dv2y2MvhmxDqT5YBGDxz3rR/4WJ+3qnL+FLFvoR/jX0eC4owmGw9PD08LX5YRUV+5lslY8bE5DiK9adaeIpXk23+8j1dz9FKK/Oc/Fr9uaHiXwZbN9D/9elX4r/t0XPyweDbVD6sf/r10/wCumF2+r1//AATP/Ix/1Yr/APP6l/4Mj/mfoRqn/INn/wCubfypukHOmQf7gr88L3xj+3xdW0vmaBYQoVOeV4H51HZ+I/2/BaRi30rT9m0bfu9KX+udLpg8R/4KYf6tT64mj/4MR+klFfnJ/wAJJ/wUBHJ0nTz/AN8/41BdeM/2+LGBrq80rTYokGWd2VVA9yTSfGdJK7weI/8ABTGuGpvRYmj/AODEfpFXP6X/AMha/wD99P5V8BLr/wDwUBvkDW9hpsYcAhsqRg/jWfbaf/wUAu724MVzpsMmV342jnHH6Uf64p/BgMQ/+4X+bQv9W2vixdFf9v8A+SP0tor84f8AhGf+Cgkpw+raeg9itA+Ef7cus/LqnjOG0RuoiI/oKP8AWzES/h5ZXfrGMfzkP/V+kvjxtJf9vN/lE/RxnVeWIH1rl9cvrGO8sTLPGoEpzlgO1fCf/DIfxz1cbvEnxIumz1Ee7/61Ubv9hWY3FtHrXjfVLkzPtIzjHHbmqee5zL+Flcv+3qkF+rF/ZWWR+PHr5Qk/8j9Bp/FPhm1Ba41C2QD1lUf1rAufil8N7LP2rXbFMes6f418fW//AAT2+Gx+bU9b1W5PfM2BW9a/8E//AICxHN3Hd3J/25jS/tDiWXw4GnH1qt/lAPqeSR3xU36U/wDOR7/d/tA/BSxz9q8TWC4/6ag/yri9Z/a0/Z8sbeRG8SW0pKkfust2rmLP9hz9na0IP9kNJj+/ITXSR/skfs96fbvJD4bt2KqSCxJ6D60ufime0MPH51H+iHyZDHeVaXygv1Z52f26/gDo9hFbxXs906LgiKImuem/4KHfCbJFhpuo3P8Aux4r6Q8MfAj4Oadp8E9n4bsUcqCT5QJ/WvQ7fwL4KtFC22kWcYH92BB/Sp+pcUVNZYulD/DTcv8A0qX6D+tZFH4cPUl6zS/JHw+f+Chngo8x+GtWYeuwU0/8FCvCOfl8Lauf+AD/AAr7zXw54eQYSwtx/wBsl/wp40DQh0soP+/a/wCFCyjiLrmcf/BMf8xf2hk3/QFL/wAGP/I/POD9v3wxFqlxep4V1ZvNVRt2DI2/hVx/+CgMEpxY+CtVf6r/APWr7hsdF0b/AISG8H2SHhI/+Wa+n0rqF0zTU+5bxj6IP8Kp5PxA980Xyox/zD+0cnW2Bf8A4Ml/kfnif28tdbmPwFqRH0P+FA/b41GL/j78C6mv0B/wr9ExaWo6RJ/3yKa1jZN96FD9VFL+w896Zr/5Sh/mH9qZV/0Af+VJH4+/Ejxbqv7W/jPQtN8PeErvSLmOVYptSmypSAn5hxgdM1+vGh6VBoWjWujWxJjtYliUnrhRis/WIIIFtRAipm4X7oA7GukrvyLh94CrWxVet7WtVtzS5VHRLRJL8XuzkzXN1iqdKhSp8lKF7K7lvvq/wXQKKKK+kPFGSf6tvoaxfDf/ACBYP92tqT/Vt9DWL4a/5AsH+7QBu0UUUAZWu6HpPibRLzw5r0CXVjfwyW9xDINySRSqVZSD1BBINfxv/wDBI3XL/wD4JUf8Fgviz/wSd8eXLx+D/Hsz+JfA0krERDePMMKZ4y0Z5A/iQ1/ZrX8mH/BzP+zn428L2Hw+/wCCpPwIgb/hL/gRqlrdX/kj5p9LkkydxHOEbKn/AGXPpQB/WfRXzp+yT+0X4L/az/Zu8HftEeAJ1uNM8VaZb3yFTnY0iguh9CrZBHqK+i6ACsTXf+PeH/rsn8626xNd/wCPeH/rsn86ANuiiigAooooAwPDP/IJX/fk/wDQjW/WB4Z/5BK/78n/AKEa36ACiiigDAP/ACM//bsP/QjW/WAf+Rn/AO3Yf+hGt+gAooooAwPEv/ILP/XSL/0MVvDoKwfEv/ILP/XSL/0MVvDoKAFooooAKwvD/wDx5yf9d5f/AEI1u1heHwPscv8A13l/9CNAG7RRRQAVhy/8jFD/ANcH/wDQhW5WHL/yMUP/AFwf/wBCFAG5RRRQAVh+Jf8AkBXP+7/UVuVh+Jf+QFc/7v8AUUAbY6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/wCvqX+lb1ABRRRQAUUVT1DULDSbGbVNVnjtra3QySzSsEjRFGSzMcAADqTxQ2NJt2Rcor8aP2lv+CzvwH+GurD4dfs8Wj/EvxZcyrawCyYrpwnkIVV88AmYliMLCrK3Tepr9YfhtH48j8BaR/wtCW3l8RvaxvqRs0KW63LjdIkQJY+WjEohJLFQCSSTXDhsyw+IqTpUJczju1svK+1/T5nu5nwzmWXYWjisfSdNVb8ilpKSW75d0ldatK99L627aiiiu48EKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKypItaMjGKeEJk4BjJOO3O8V+O/iH/gqxF+zH+0drf7Nn7ZOivYw2c4fTfEulxs8NxYT/NBLPbcupCfLI0JceYGAjAFfrB8Nvil8OPjD4Wg8bfC3W7PX9KuPuXNlKsqZ7q205Vh3VsMOhArhwmZYfESlTpz9+Ls4vRq3l+u3me/m/DGZZbTp4jFUX7Kok4TWsJJq6tJaXt0dpLqkdN5Ou/8APeH/AL9N/wDF1j69Drv9jz/v4Og/5ZN6j/brr6x9f/5A8/0H8xXceAHk67/z3g/79N/8XR5Ou/8APeD/AL9N/wDF1sUUAY/k67/z8Qf9+m/+LrJ0uHXfNvP38P8Ax8H/AJZN/dX/AG666sjSv9bef9fB/wDQVoAPJ13/AJ7w/wDfpv8A4uvzk/4KJvqfjC0+En7NjNFct8SPiHo0FzCqEE6dofma1dMR5mSu2xVDwRlwCMGv0yr84fGlra/En/gqh4H0iZfMj+F/gDVtdzwRHd+I7uKxgJBHDGGzugpBzgsOhoA+7tQh13+07D9/D/rH/wCWTf3G/wButjyde/5+IP8Av03/AMXSah/yE7D/AK6P/wCgNWzQBj+Trv8Az3g/79N/8XUNzDrv2aTM8P3T/wAsm9P9+t6oLr/j2k/3T/KgDndHh13+ybX9/B/qU/5ZN6D/AG60vJ13/nvD/wB+m/8Ai6l0b/kEWv8A1yT+QrSoAx/J13/nvB/36b/4usi3h13+2rr/AEiD/Vxf8sm/2v8Abrr6yLf/AJDd1/1zi/m1ACeTrv8Az8Qf9+m/+LpfJ13/AJ7w/wDfpv8A4uteigDkNbh137NFmeD/AF8P/LJv74/262PJ13/nvD/36b/4uk1v/j2i/wCu8P8A6GK2KAMjydd/57w/9+m/+Lo8nXf+e8P/AH6b/wCLrXooA5DRIdd+wn9/B/rZf+WTf32/262PJ13/AJ7w/wDfpv8A4uk0P/jxP/XWX/0Nq2KAMfydd/5+IP8Av03/AMXWRNDrv9vW/wC/h/1Mv/LJvVP9uuvrHm/5D1v/ANcJf5pQAvk67/z3h/79N/8AF0nk67/z3g/79N/8XWxRQByetw67/Y91+/g/1T/8sj6H/brSSHXdg/0iDp/zyb/4uptc/wCQNd/9cn/lWkn3B9KAMnydd/57wf8Afpv/AIujydd/57wf9+m/+LrYooA5DTodd+3X2J4f9av/ACyb+4v+3Wv5Ou/894P+/Tf/ABdGm/8AH9ff9dV/9AWtigDH8nXf+fiD/v03/wAXWRqcOu/aLEmeD/j4/wCeR/uN/t119Y+qf8fFj/18f+yNQAvk67/z3h/79N/8XSeTrv8Az8Qf9+m/+LrYooAx2h13B/fw/wDfpv8A4usrQYdd/sW0/fwf6pP+WTen+/XWHoaytB/5Atp/1yT+VADfJ13/AJ+IP+/Tf/F0eTrv/PxB/wB+m/8Ai62KKAOQjh13+3pf38H+oT/lk395v9utfydd/wCfiD/v03/xdEf/ACH5f+uCf+hNWxQBkeTrv/PeH/v03/xdY2vQ67/Zrfv4fvxf8sm/vr/t1y/xf+Mvg74LeH7fWPFLTTXOo3KWOnWFpH515fXcv3IYIgQWY9TyFVQSxABNfKGueNv+CisOki5bwN4NukJiYxrq1xDKcsCAQ0JVTngjeQD3Netg8lr4in7VSjCL0TnKME7b2cmr269jir4+nSnyWcn15U5W9bXtfp3Pu/ydd/57wf8Afpv/AIujydd/57wf9+m/+Lr4JPxx/wCCiEPyy/AvS5SP4o/E9uAf++owaT/hd/8AwUTuPkg+BukwE/xTeJ4CB+Cxk13f6rYr/n9Q/wDCih/8sOf+2KP8lT/wVU/+RPvfydd/57wf9+m/+LrI0aLXPJn/AH8P/HxL/wAsj/eP+3XxL/wkf/BTzW0xa+GvAOhh+hub68unT6iNFU/gaybHwr/wU9v45fL8W/D+wHnSbhFpt7Kd2455eQd/aj/Vy2lTGUY/9v8AN/6QpB/al/hoVH/27b82j9B/J13/AJ7wf9+m/wDi6PJ13tPB/wB+m/8Ai6/P5/hf/wAFOLwbJfin4Ss8/wAUGgvIR9A8uKQfs+/8FCr4btS+P1nAfS18MWoH/j0hNV/q/hV8WZUF/wCDn+VFk/2nWfw4So//AABfnNF//gpXDq//AAxp48NxNEyf2TJkLGQcebF33n+VfY/gGLWz4E0QpPCAbC26xE/8s1/26/HP9uP4Eftb+GP2Y/F+u/ET42SeI9KttNke400aHa2q3CB4wUMiMWUEkHI54r6U8Ifsk/tT6l4S0u+X9ojX7dJbOB44otKslSNSgIXpyAOOete/WyfBf2JQhLMaVlWqO6jWabcKWn8JO6td6W1Vm3e3mwx2I/tCclhZ35I6Xp/zT1+O2v3n6SeTrv8Az3g/79N/8XVLU4dd/s24zPD/AKp/+WTeh/26+B2/Zf8A25tHAk8NftE3Fww6LqPh6zlX8SrAms+9+DX/AAUwgtJs/Gjw9NGEbJfw4ikjHs5FeD/YGDfwZnR+arr86J6TzOuviwdT5ezf/uQ/Qyyh137FF+/g+4v/ACyb0/36teTrv/PeH/v03/xdfnhafBL/AIKT3MCGf44aJboVH+p8MwsQMf7Un9KuL+zX+3pcfNe/tDeWfSHw1Zgfq9L+wMGvizOh91d/+4Q/tOu9sJU++n/8sP0C8nXf+fiD/v03/wAXWPYxa7/al9+/h+9H/wAsj/dH+3Xwx/wzB+3EPu/tF3P4+HLL/wCKrNtf2Z/24jf3UcX7REwZCm4nw5Zc5X/eo/sLA/8AQ0o/+A4j/wCUj/tDEf8AQHP76X/yw/RLydd/57w/9+m/+LpPJ13/AJ7wf9+m/wDi6/P/AP4Zi/bml+Wb9oqdV9U8N2QP/oVKP2Pv2pr9v+Kh/aN8RSL6WemWVofzUNR/YmAXxZnS+UK/60V+Yf2hiXthJ/N0/wD5Nn3Pq8Ou5tMzwf8AHwn/ACyb0P8At1seTrv/AD3g/wC/Tf8AxdfnzqH7EXxMBtvtnx88fyF5lXi5tkAPPIxCMVoH9hPx433/AI8/EQ/9v8I/9o1P9k5Z1zGP/gup/wDIlPGYvphX/wCBR/zPvbydd/5+IP8Av03/AMXR5Ou/894P+/Tf/F18Ef8ADCHjjv8AHf4if+DCH/4zR/wwX4sf/XfHP4isP+wlGP5RUf2Vlf8A0MV/4Lqf5E/XcZ/0Cv8A8Cj/AJn3BoMOu/2TD+/h/i/5ZN6n/brX8nXf+e8H/fpv/i6/Hv41fA/4Xfs/eBLbX/iD8WfiZrGq6m5ttJ0XT9ccX2pXROFigijTJyfvN91RyewPmngf9mn40fs86f4Y/ad+LvijW5vEdx4q0i2tNButUmv7fTrDUpxbSwzSSMRPM0cuGYAKhHy5PI9fD8I4Sth1XhjfifLTTpte0l2jeV7J/FK1o+btF8dTO68Kvs5YfbWVpJ8q7vTd9Fe79NT90PJ13/nvD/36b/4usXydd/4SD/Xwf8e//PJv73+/XY1jf8zD/wBu/wD7NXwh9EO8nXf+e8P/AH6b/wCLpPJ17/n4g/79N/8AF1sUUAcjr0Ou/wBkTfv4eg/5ZN6j/brX8nXf+e8P/fpv/i6Ne/5BM30H8xWvQBkeTrv/AD3h/wC/Tf8AxdJ5Ou/8/EH/AH6b/wCLrYooA43Rotd3XmJ4f+Pl/wDlkfQf7dbXk67/AM/EH/fpv/i6Zov373/r5f8AkK26AMfydd/5+IP+/Tf/ABdZN9Frv9p2X7+D70n/ACyb+6f9uuurIvv+QnZf70n/AKCaADydd/57w/8Afpv/AIuk8nXf+e8H/fpv/i62KKAMC7h137LL+/g+43/LJvT/AH6raRDrv9k2v7+D/Up/yyb+6P8AbroLv/j1l/3G/lVbR/8AkE2v/XFP/QRQBB5Ou/8APxB/36b/AOLpfJ13/nvD/wB+m/8Ai616KAOPtYtd/tu8/fw/6uH/AJZH/a/262fJ13/nvD/36b/4um2v/IbvP+ucP/s1bNAGP5Ou/wDPxB/36b/4usrV4dd8qD9/B/r4v+WTf3h/t11tZOr/AOrg/wCu8X/oQoAb5Ou/894P+/Tf/F0eTrv/AD8Qf9+m/wDi62KKAMjydd/57w/9+m/+LrH0KHXfsH+vg/1sv/LJv77f7ddfWPoX/IP/AO2sv/obUAHk67/z8Qf9+m/+Lo8nXf8An4g/79N/8XWxRQByMsOu/wBuw/v4f9RJ/wAsm/vJ/t1reTrv/PeD/v03/wAXSy/8h2H/AK4Sf+hJWvQBkeTrv/PeH/v03/xdZGvQ67/Yt1+/h/1bf8sm9P8AfrrqyNf/AOQLdf8AXNv5UAfnH8f5tb+Fv/BQP4E/FFriKOy8a2XiDwBfP5TbTPNAmrWG478cNYXCLnvLgck1+jfk69/z8Qf9+m/+Lr89/wDgqUf+EX/ZjsfjxFtWX4VeK/Dvi9nbACWlhfRJfNuOdoFjLcZPpkd6/R5WV1DocgjII9KAMnydd/5+IP8Av03/AMXWZpMWsi/vDJNCV88bgIyCRsXvvrq6yNN/4+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAqpf8A/HjN/wBc2/lVuud1jSftMNxcfaJU3Rt8qtgDAoAvaH/yBbT/AK4p/wCgitSuM0TQidGtD9rnH7lP4vYVp/2Cf+fuf/vqgDoKK5/+wT/z9z/99Uv9gnGPtc//AH1QB5z8S4TceBPHFuOr6XOv5271/Pt/waazBv8AgllcWve38b6+n/kVD/Wv6Ddf8NJfab4msZbqfbLaGM/N2aJhX83H/Bpki6l/wTv8aaWlxLH/AGZ8SNdtyqNgD5YH/wDZqAP6qKKwP7BOP+Puf/vqj+wTj/j7n/76oAXWf+Pqw/6+B/6C1b1cHrGhYubAG7n/AOPgfx/7LVuf2Cf+fuf/AL6oA6Ciuf8A7BP/AD9z/wDfVKdBJ6Xc/wD31QBtzf6pvoayvD3/ACA7X/rmtVZtCPlN/pc/Q/xVl+H9CJ0S1Iu5/wDVj+KgDt6KwP7BOMfa5/8Avqj+wTjH2uf/AL6oA3656z/5GO8/65Rfzanf2Cf+fuf/AL6rBtNEz4hvB9qn/wBVF/H7tQB3tFYH9gnP/H3P/wB9UHQTn/j7n/76oA36wde+5a/9fMX86Q6Cc/8AH3P/AN9Vh67oeEtf9Kn/AOPiL+P3oA7uisA6CT0u5x/wKg6Cf+fuf/vqgDfpr/cP0rC/sE/8/c//AH1TW0E7T/pc/T+9QBL4b/5AsP8AwL/0I1/Jx/wUO+0f8Ff/APgrt4C/4Jr+Fbh5/hf8GJI/FfxBkhOYprpSDDasRxnHy47F89RX7cf8FCP2tvCf7An7D3i39pHxNfy/aNLs5YtMtmf5rnUJiUt4lHUlnI4HbJr4g/4N+P2EvF/7PP7JVz+0X8ennf4sfG28bxR4iuZD++WO4Je3hJPIwrbyvYtjtQB+/um6bYaNp1vpGlQrb2trGkMMSDCpGgCqoHYADAq7WB/YJzn7XP8A99UHQT/z9z/99UAJF/yM83/Xun/oRroK4KLQ8+JZl+1z/wDHun8X+0a3joJPS7nH/AqAN+isD+wT/wA/c/8A31QNBP8Az9z/APfVAC+I8/YFx/z1j/8AQhW9XBeItDK2C/6XP/ro/wCL/aFb39hHOTdz/wDfVAG/RWANBOf+Puf/AL6o/sE5/wCPuf8A76oA3j0NYfh3/kG/9tJP/QjTDoJ5P2uf/vqsTw9oROnf8fc/+sk/i/2jQB3dFYH9gn/n7n/76o/sE4x9rn/76oA/Oz/go3ePqNz8Jvh+pO3W/Gdgsqj+KOIlz+oBrw7/AIKXfEHxF8V/iB4Z/Ye+E82/VvFro2rtGcmCyVgx3Y6BgCT7Csz/AIKJ/FHwp8Nf2l/hTL4rvZPsfh8XutzKzc5hTEePctwKxf8Agnl4Cn1TVfEf7eX7Q96NOvvFHnPp813IIxb2QbGQWxjIwox1A96/aMpwccBk+BzqvG/sozdKNvjrVKklDTryqHO/Rdz4PG1nicbiMBTl8bipv+WnGKcvvbsvVn7H/Cz4c+Hfg/8ADjSPhv4VjEVho1qlvGAMZ2jlj7sck/WvyZ/Zc+GOmfta/tX/ABC/aU+MEK6pa+FdTk0HRLKcboYvs+Q7FTkE/wCNfrD4N1Twx8QfDVr4v8Hau+o6ZfKWguIpMo6gkEg/UGvnP4N/s/z/ALOnizx3rT6wkXhDXLo6ygZtkltcOP3+9uhQ4yK+HynNqmFo5jzSccXUSim782s/3iXVSl120uj6DGYONWphbJOjFttdNI+6/Rf5H40/t/fDHx3+wD401P4l/s96gum+FfiPFNY6hp+flhnkBJKL9CSpHQ8V618Y/FXw30z9lj9nS4+GmoxX9hp/iHTklkiPKzhCZQw6hg5Oc11Wi6Naf8FKP2wzrl0k198KPh8jxQvLnyr67k4JXsRn9B71z3xF/wCCP/iPQfipp+sfCfxN5HgePU4tRl0y5Zi1u6tyY+x44Hev12nm2X06eCwefYj2eMpR9pN8ukrwlGFObWvtIwas33s9T4uWDxMpV6+XUuahN8sVfa0k3KK25XJPbtfY/oDRxIgdehGRTq5yPw/siWNbu4woA+96VJ/YJxj7XP8A99V/OR+oG/RWB/YRxj7XP/31QNCI63c5/wCBUAJ4d/49p/8ArvJ/OugrgvD2h5tZ/wDSp/8AXyfx+9bw0E/8/c//AH1QBv0VgDQT/wA/c/8A31QNBP8Az9z/APfVABP/AMjJb/8AXF/5it+uCm0IjxHAPtc/+pf+L3Fbx0E/8/c//fVAG/RWB/YRxj7XP/31R/YJxj7XP/31QBN4hONHm+n9a1If9Sn+6K43X9DxpE2bufp/e961ItCJhX/S5+g/ioA6OisD+wT/AM/c/wD31R/YJ/5+5/8AvqgDfrA0P/W3v/Xw38hQdBP/AD9z/wDfVYOi6GTJej7XP/r2/i9hQB3tFYB0Inpdzj/gVB0Inpdzj/gVAG/XO3cccevWhjULuEhOBjJxT/7BOMfa5/8AvqsK80PGuWYN3P8Adf8Ai9qAO8orA/sE4/4+5/8Avqj+wTj/AI+5/wDvqgDfrJ13/kEXH+4arf2Cc5+1z/8AfVZWuaERpNwftc/3D/FQB1Vj/wAecX+4P5VarlrLQf8ARIiLufG0fxe1WjoJPS7nH/AqAN+isA6Cf+fuf/vqg6Cf+fuf/vqgB+lf8ft7/wBdR/KtyuF0vQs3d6Bdz8Sj+L2rb/sE/wDP3P8A99UAb9FYA0E/8/c//fVH9gnOftc//fVAC6l/yFbH/ef+Vb1cHqOhY1Wx/wBLn+8/8XtW7/YRzn7XP/31QBv0VgHQSel3OP8AgVB0Enpdzj/gVAGhqn/INn/65t/Km6T/AMgyD/cFYeqaFjTpz9qn/wBW38ftTdK0InTYD9rnHyD+KgDr6+cv2tb1rD9nvxLOhwfs6qPxda9uGgkdbuc/8Cr5d/bJ01rH9nnXZvtMr5WMYZuD8wrxOJZ8uUYyS/59z/8ASWepkkebMMOv78fzR9H/AA7k87wHo0vrZw/+gitPS/8AkLX/APvJ/KuG+GOjed8PNEl+1TjdZQ8Bv9kVuaZoY/tW/wAXU/3k/j9q9HAu+GpP+6vyOLFK1aa83+Z3lFYH9gnOftc//fVH9gnOftc//fVdRgb9YGsf8fth/wBdT/Kg6Cf+fuf/AL6rB1fQ8Xljm7n/ANaf4vagDvaKwP7BP/P3P/31QNBI63c5/wCBUAb9V7v/AI9Zf9xv5VkDQSOt3Of+BVBc6ERayk3c5+U/xe1AGlon/IJg/wBwVqVxui6ETpcB+1z/AHB/FWn/AGCc5+1z/wDfVAG/RWB/YJzn7XP/AN9Uf2Ccf8fc/wD31QAyx/5GG9/3I66KvP7LQyfEF6Ptc/3I/wCL2roRoJx/x9z/APfVAG/RWANBOP8Aj7n/AO+qBoJx/wAfc/8A31QA7Xelr/18L/I1u1wmt6Fj7Lm7n/16/wAXsa3BoJz/AMfc/wD31QBv0VgDQT/z9z/99Uf2Cf8An7n/AO+qANyT/Vt9DWL4a/5AsH+7UUmgnyz/AKXP0P8AFWP4d0PdosH+lTj5f71AHdUVgf2CcY+1z/8AfVH9gnGPtc//AH1QBv14f8YfhN4R+PHgnxd8GPHtut1o3ijSJNNu42GQY7hGQn6jOR7ivURoJ/5+5/8Avquft9D/AOKkuR9rn/1Mf8X1oA/lA/4N0vi54x/Y9/aF+MP/AARd+PE7w6l4C1a51Twp9oODcaXK2WEeeq8rIMdnr+v6v41v+Dh/4Z+If2I/2yfgL/wWF+F/nRjw9qsWgeKpIiQz2kuQpkI6homdOe6j2r+uLwTf6T4+8HaV430DUJZrLVrSG7gkR8qyTKGBB+hoA9HrE13/AI94f+uyfzqM6Cf+fuf/AL6rF1zQv9Gh/wBKn/1yfx+9AHc0VgHQTj/j7n/76oOgnH/H3P8A99UAb9FYH9gnGPtc/wD31R/YJxj7XP8A99UAHhn/AJBK/wC/J/6Ea364Lw3oROkri7n++/8AF/tGt7+wTnP2uf8A76oA36KwDoJ/5+5/++qDoJPS7nH/AAKgAP8AyM//AG7D/wBCNb9cEdDP/CTY+1T/APHsP4/9o1vHQSel3OP+BUAb9FYH9gn/AJ+5/wDvqj+wTjH2uf8A76oAPEv/ACCz/wBdIv8A0MVvDoK4TxHoeNL5u5/9ZH/F/titwaCeD9rn/wC+qAOgorA/sE5/4+5/++qDoJz/AMfc/wD31QBv1h+H/wDjzk/67y/+hGmf2Ec5F3P/AN9Vh6DoJNpJi7n/ANfL/F/tGgDu6K5/+wT/AM/c/wD31SnQT/z9z/8AfVAG/WHL/wAjFD/1wf8A9CFM/sE/8/c//fVYsmhkeIYR9rn/ANQ/8X+0PagDuaKwBoJHW7n/AO+qP7BOc/a5/wDvqgDfrC8S86Fcj/Z/qKb/AGCc5+1z/wDfVYfiTQj/AGHc/wClz/d/ve4oA7odBS1zw0E4/wCPuf8A76pToJ/5+5/++qAOgorA/sE/8/c//fVA0Ejrdz/99UALoPS8/wCvqX+lb1cJoWh5F5/pU/8Ax9Sfx/StwaCR1u5z/wACoA36p6hqFhpNjNqmqzx21tboZJZpWCRoijJZmOAAB1J4rJk0CUxsIryYOQdpY5APbIyM/mK/lq/4Kgfs4f8ABT7V7u81/wAcarN468BwuZYoPDqPFbWyKcgz2AZpMryfMZpwo6yDpXlZxmU8FQdWFGU35dPXql8mfXcGcMUM8x6wdfGQw67z3l5RWib8nJeV9j9D/wBq3/gtp+zp8FvtPhf4JJ/wsHX48p5ts/l6XC/q1xgmXHXEKsrdN6mv5q/2nf28f2mv2tr5x8WPEMg0nfvi0axzbadFg5H7oEmQjs0rO49a+PCCDg8EUlfj2a8R43H3jUnaH8q0Xz6v5n9o8J+GWRZAo1MNR56y/wCXk7Sl8ukf+3Un3bP1l/4JA+DfgW/7R5+Mvx+8V6D4c03wXGtzp8Gs6hb2bXWoy5WJkWZ0LLAA0hZfuv5frX9Yf/Daf7HP/RWfBn/g+sf/AI9X+evRXdk3FU8uw/sKVFPW7bbu3/w2h4fGvhLR4lzD6/isZONoqMYqKtFLtfu22/W3Q/0KP+G0/wBjn/orPgz/AMH1j/8AHqP+G0/2Of8AorPgz/wfWP8A8er/AD16K9X/AIiDiP8AnzH72fIf8S6Zd/0HVP8AwGJ/oUf8Np/sc/8ARWfBn/g+sf8A49R/w2n+xz/0VnwZ/wCD6x/+PV/nr0Uf8RBxH/PmP3sP+JdMu/6Dqn/gMT/Qo/4bT/Y5/wCis+DP/B9Y/wDx6j/htP8AY5/6Kz4M/wDB9Y//AB6v89eij/iIOI/58x+9h/xLpl3/AEHVP/AYn+hR/wANp/sc/wDRWfBn/g+sf/j1H/Daf7HP/RWfBn/g+sf/AI9X+evRR/xEHEf8+Y/ew/4l0y7/AKDqn/gMT/Qo/wCG0/2Of+is+DP/AAfWP/x6j/htP9jn/orPgz/wfWP/AMer/PXoo/4iDiP+fMfvYf8AEumXf9B1T/wGJ/oUf8Np/sc/9FZ8Gf8Ag+sf/j1H/Daf7HP/AEVnwZ/4PrH/AOPV/nr0Uf8AEQcR/wA+Y/ew/wCJdMu/6Dqn/gMT/Qo/4bT/AGOf+is+DP8AwfWP/wAeo/4bT/Y5/wCis+DP/B9Y/wDx6v8APXoo/wCIg4j/AJ8x+9h/xLpl3/QdU/8AAYn+hR/w2n+xz/0VnwZ/4PrH/wCPUf8ADaf7HP8A0VnwZ/4PrH/49X+evRR/xEHEf8+Y/ew/4l0y7/oOqf8AgMT/AEKP+G0/2Of+is+DP/B9Y/8Ax6j/AIbT/Y5/6Kz4M/8AB9Y//Hq/z16KP+Ig4j/nzH72H/EumXf9B1T/AMBif6FH/Daf7HP/AEVnwZ/4PrH/AOPUf8Np/sc/9FZ8Gf8Ag+sf/j1f569FH/EQcR/z5j97D/iXTLv+g6p/4DE/0KP+G0/2Of8AorPgz/wfWP8A8eo/4bT/AGOf+is+DP8AwfWP/wAer/PXoo/4iDiP+fMfvYf8S6Zd/wBB1T/wGJ/oUf8ADaf7HP8A0VnwZ/4PrH/49R/w2n+xz/0VnwZ/4PrH/wCPV/nr0Uf8RBxH/PmP3sP+JdMu/wCg6p/4DE/0KP8AhtP9jn/orPgz/wAH1j/8eo/4bT/Y5/6Kz4M/8H1j/wDHq/z16KP+Ig4j/nzH72H/ABLpl3/QdU/8Bif03/8ABah/2Wf2gfhVpPxl+FPxC8K6v4t8KSC2ltLHWLSe6u9OuWwVSOOUu7QykOqgcK0hr+ez4N/Hr4x/s+eKV8Z/BjxFeeH9QGN7Wr4jlVeQssbZjlXP8MisvtXkdFfKZnmssXivrkY8k9Nm9119bH67wtwjSyjKFk1Wp7ekm7c8V8L15WtU1e71726H9P8A+yl/wXo0PUvs3hL9rnRv7PmOE/t7SI2eA9t09rkuvqWiL5PSNRX72eFfin8OPjD8Pv8AhNvhZrdnr+lXCjZc2UyypnjKttOVYd1bDDoQK/zlK/Qf9hn4M/t1+I/FK+Nv2Uv7S0C1DBLnWWZoNMKqfuy5VkuAp6xiOUjrt719TkfGGO544etTdX0+L/J/O3mz8l498GMi9hUzDBYiOEa1am/3Tfz1jfyuuiif3c0V5P8AC288daT4C03T/i/qdtrHiOKIC9u9PsZbS3kf1WNmkI44JyAx5CqDtHoH9u6f/wBNf+/T/wDxNfqcJc0U2reR/JlamoVJQUlJJtXV7PzV0nZ9LpM2KyNK/wBbef8AXwf/AEFaT+3dP/6a/wDfp/8A4msjStd0/wA28/1v/Hwf+WT/AN1f9mqMzr6/Ob9kxk8c/tjftI/GBZPOit9Z0PwXbHcSEj0LT1uZVCnhf9J1GbOPvYHpX6BDXNPJx+8/79P/APE1+cn/AAS21W31f9mS/wDi9fCTz/iP4w8U+KchXkBgvtUuFtSrBeR9kjhx6DigD9GdQ/5Cdh/10f8A9AatmuP1DXNP/tOw/wBZ/rH/AOWT/wBxv9mtj+3dP/6a/wDfp/8A4mgDYqC5/wCPaT/dP8qzv7d0/wD6a/8Afp//AImobnXdP+zSf6z7p/5ZP6f7tAFzRv8AkEWv/XJP5CtKuV0bXdP/ALItf9b/AKpP+WT+g/2a0v7d0/8A6a/9+n/+JoA2KyLf/kN3X/XOL+bUn9u6f/01/wC/T/8AxNZFvrth/bd1/rf9XF/yyf1b/ZoA6+isf+3dP/6a/wDfp/8A4mj+3dP/AOmv/fp//iaADW/+PaL/AK7w/wDoYrYrjtb13T/s0X+t/wCPiH/lk/8AfH+zWz/bun/9Nf8Av0//AMTQBsUVj/27p/8A01/79P8A/E0f27p//TX/AL9P/wDE0AGh/wDHi3/XWX/0Nq2K5DQ9d0/7Cf8AW/62X/lk/wDfb/ZrX/t3T/8Apr/36f8A+JoA2Kx5v+Q9b/8AXCX+aUf27p//AE1/79P/APE1jza7p/8Ab1v/AK3/AFEv/LJ/VP8AZoA7Cisf+3dP/wCmv/fp/wD4mj+3dP8A+mv/AH6f/wCJoAk1z/kDXf8A1yf+VaSfcH0rldc13T/7Gu/9b/qn/wCWT+h/2a0k13T9g/1vT/nk/wD8TQBtUVj/ANu6f/01/wC/T/8AxNH9u6f/ANNf+/T/APxNABpv/H9ff9dV/wDQFrYrj9O13T/tt9/rf9av/LJ/7i/7NbH9u6f/ANNf+/T/APxNAGxWPqv/AB8WP/Xx/wCyNR/bun/9Nf8Av0//AMTWPqmuaf8AaLHiX/j4/wCeT/3G/wBmgDsKKx/7d0//AKa/9+n/APiaP7d0/wD6a/8Afp//AImgDXPQ1laD/wAgW0/65J/KmHXdPwf9b/36f/4msrQdd0/+xbT/AFv+qT/lk/p/u0AddRWP/bun/wDTX/v0/wD8TR/bun/9Nf8Av0//AMTQAR/8h6X/AK4J/wChNXlvx1+PXgT9n3wcPFXjN5Z57qVbXTtOtE8291C7f7kFvEOXdj+CjkkCvNfj9+1H4N+BMsNtHa3Ou+KdbjW30PQLONjeahcbmwFBHyRr1klb5UXnk8VxnwJ+CGuReMf+Giv2mLpdb+IlzCYraGCKQ6foVtJ1trJSD83aWc/PIcjO3r7+ByylTorH5hdUvsxWkqjXSPaKekp7LZXloebiMXOVR4bC6z6vpBefd9o/N2Wpo/Aj4M/ETxL48P7Tn7S6xjxZNC8Gi6LE3mWvh6xl+9GjdHupRjz5h1xsX5Rz6N8KPG3iDxjpXjK18RTfaJNE8V3mmwsVCkW8ckTxLwBnasgGepA5r3j+3dP/AOmv/fp//ia8T8IeGYfAUPiu5nmMw8Qa+2rRhIZBsWZYE2tleSDGTxxzUYnM1i4VpV0k7RUElZRSfwx7Kzd9bt3bbk226WEdCVONO7V25N7ttbvu7/dsrI+hKKx/7d0//pr/AN+n/wDiaP7d0/8A6a/9+n/+Jrwz0TYrH0X/AFU//XxL/wChGj+3dP8A+mv/AH6f/wCJrI0bXNP8qf8A1n/HxL/yyf8AvH/ZoA6+isf+3dP/AOmv/fp//iaP7d0//pr/AN+n/wDiaAPh7/gpkSP2MPHpH/QIk/8ARsVfZfw/GPAeiD0sLb/0WtfDn/BTHWbKX9jTxzDH5m59MZRmNwOZoR1KgV9peCNYsYfBejwsJMrZW4/1T9o1/wBmvpK//JP4f/r/AFf/AE3RPKp/8jKp/wBe4f8ApVQ7+qOp/wDINuP+uT/yNVf7d0//AKa/9+n/APiao6nrun/2bcf63/VP/wAsn9D/ALNfNnqm5Zf8eUP+4v8AKrVc9Za7p/2KH/W/cX/lk/p/u1Z/t3T/APpr/wB+n/8AiaANisax/wCQrff70f8A6CKX+3dP/wCmv/fp/wD4msex1zT/AO1L4/vfvR/8sn/uj/ZoA7Cisf8At3T/APpr/wB+n/8AiaP7d0//AKa/9+n/APiaAE1j71p/18J/I1s1x2sa5p+60/1v/Hwn/LJ/Q/7NbP8Abun/APTX/v0//wATQBsV8l/tJ/tU6R8E7iw+HfgvT38V/ETxECmjeHrU/vHPTz7hukNsnV5GxwDjuRwH7Rf7YF94b8Sp+z/+zfp48V/E7UUBFsVb7JpELY/0q/cD5EUHKp95uOmRnqv2Zv2dfC/wKTUPG/iq/uPFPxB8SES674huoX82d+D5UI2/urdOiRrgYAz0AH0+Eyyhg6McfmkbqSvTpXs6naUusafnpKe0NLyj5FfF1K9R4bBvbSU91HyXRz8to7vonz37MH7LF/4W1xv2hPj/AKgnin4m6pGyPd4P2TSoGJ/0SwjPEca5IZ8bn57E51/275PJ+D2izf3fF3hs/wDlRgr6j0DXdP8A7Ih4l/i/5ZP6n/Zr5A/b31izk+CmlCPzMjxZ4cPMbDpqEJ7gVplOY18dnmFrYh3fPFJJWUUnpGKWkYroloLF4Wnh8vrQpL7Mm3u27atvq31Z931jf8zD/wBu/wD7NTjrmng4Pm/9+n/+JrF/tyw/4SH/AJaf8e//ADyf+9/u18oewdjRWP8A27p//TX/AL9P/wDE0f27p/8A01/79P8A/E0ALr3/ACCZvoP5iteuQ17XdP8A7Im/1vQf8sn9R/s1r/27p/8A01/79P8A/E0AbFFY/wDbun/9Nf8Av0//AMTR/bun/wDTX/v0/wD8TQAzRfv3v/Xy/wDIVt1xuja5YB7zPm/8fL/8sn9B/s1tf27p/wD01/79P/8AE0AbFZF9/wAhOy/3pP8A0E0n9u6f/wBNf+/T/wDxNZF9run/ANp2X+t+9J/yyf8Aun/ZoA6+isf+3dP/AOmv/fp//iaP7d0//pr/AN+n/wDiaANC7/49Zf8Acb+VVtH/AOQTa/8AXFP/AEEVQu9c082sv+t+43/LJ/T/AHaraRrun/2Ta/63/Up/yyf+6P8AZoA6misf+3dP/wCmv/fp/wD4mj+3dP8A+mv/AH6f/wCJoAS1/wCQ3ef9c4f/AGatmuPtdcsP7avD+8/1cP8Ayyf/AGv9mtj+3dP/AOmv/fp//iaANisnV/8AVwf9d4v/AEIU3+3dP/6a/wDfp/8A4msnV9d0/wAqD/W/6+L/AJZP/eH+zQB11FY/9u6f/wBNf+/T/wDxNH9u6f8A9Nf+/T//ABNAGxWPoX/IP/7ay/8AobUf27p//TX/AL9P/wDE1j6Frun/ANn/APLX/Wy/8sn/AL7f7NAHYUVj/wBu6f8A9Nf+/T//ABNH9u6f/wBNf+/T/wDxNACy/wDIdh/64Sf+hJWvXIS67p/9uw/63/USf8sn/vJ/s1r/ANu6f/01/wC/T/8AxNAGxWRr/wDyBbr/AK5t/Kk/t3T/APpr/wB+n/8Aiayde13T/wCxbr/Wf6tv+WT+n+7QB5v+078LYvjf+zV4++Dc8fmjxV4c1PSguQMtd2zxLycgHLDB7Vxf7DHxNl+Mv7Gnwt+J91L51zrPhfS57ltxb/Sfs6LMMnBJEgYE+tfSCa7p+0f63p/zyf8A+Jr87P8AgmJq1v4Z+AXiP4OXRmJ+HvjzxZ4fj3ozMLVNTnurUEKvygWtzCFH90CgD9LayNN/4+77/rsP/QFpP7d0/wD6a/8Afp//AImsvSdZsZb+8iTzMtOAMxuByi9ytAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/W/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDjZYvPm1yH+/Eo/OM1/LN/waQTmx/Zk+P/g9uul/F7WBj0D29suPzjNf1SWq79V1VT3EY/8AHDX8qH/BqN+48KftV6d2h+L2pcfUEf0oA/rWooooAwdZ/wCPqw/6+B/6C1b1YOs/8fVh/wBfA/8AQWreoAKKKKAI5v8AVN9DWV4e/wCQHa/9c1rVm/1TfQ1leHv+QHa/9c1oA2aKKKACues/+RjvP+uUX82roa56z/5GO8/65RfzagDoaKKKACsHXvuWv/XzF/Ot6sHXvuWv/XzF/OgDeooooAKa/wBw/SnV8Y/8FCP2tvC/7Dv7Hfjv9pfxQyEeG9LmmtIWbabi7ZSsES+7yECgD+dH9tiwuf8Agrn/AMFg/h7/AME8NIna4+FvwKVfF3jgxH93PqBY+TbORxkAquD/AHz6V/XrbW1vZ20dnaII4olCIijAVVGAAPQCv57f+Dcj9kjxb8Hf2O779qv43RGT4lfHjUpvFmr3Eq/vktrli1vESeQNpLhewYDtX9DNABRRRQBz8X/Izzf9e6f+hGugrn4v+Rnm/wCvdP8A0I10FABRRRQBg+I/+PBf+usf/oQrerB8Rf8AHgv/AF1j/wDQhW9QAUUUUAIehrD8O/8AIN/7aSf+hGtw9DWH4d/5Bv8A20k/9CNAG7RRVW9vrPTbSS/1CVIIIVLvJIQqqo6kk8AU0m3ZA2fyk/8ABWrTPiF45/bgttLtNBvtTtLOwtIbWGCJ2E4ZmZwpAI5OAfpX2V8Ov2Ff2h/2qLvS779rfVZPDfhSwtkGn+FtPbYI7ePAVJMcDjGScmv3bsh4e16O28SWKwXayIHguVCvlDyCreh9qYf+RlH/AF7n/wBCFfqGJ8T8XDLcJl2DoRpToR5VU+KS7uN1aDfV2b7NHyFLhKhLFVsVXqOcajvy7LyTtul0W3kZ3gHwJ4V+GPg7T/AXgm0Wx0rS4RBbwp0VB/Unkn1rf1bSdN13TZ9H1iBLm1uUMcsUgyro3BBHcGtCivzKdapOo6spNybu31vve/c+tjCKioJabW8jm/Cvg/wr4G0hNA8Hadb6ZZR/dhtoxGg/AAVP4k/5BMn1X+dbtYXiT/kEyfVf51M5ynJzm7t7t7jjFRVoqyNwdBS0g6ClqRhRRRQBz/h3/j2n/wCu8n866Cuf8O/8e0//AF3k/nXQUAFFFFAGBP8A8jJb/wDXF/5it+sCf/kZLf8A64v/ADFb9ABRRRQBi+ISRo8xHpWrD/qU/wB0VleISRo8xHpWrB/qU/3RQBLRRRQAVgaH/rb3/r4b+QrfrA0P/W3v/Xw38hQBv0UUUAFeNeF/ir4N+IHj/VvC3hmczXnha5NlqClcBJnTeAD34r2Wvz5/ZY+DnxO+GXx++L3izx7Ekdh4u8RC/wBIKPuLWyQBCWHY7h0oA/QaiiigArJ13/kEXH+4a1qydd/5BFx/uGgC5Y/8ecX+4P5VaqrY/wDHnF/uD+VWqACiiigDD0r/AI/b3/rqP5VuVh6V/wAft7/11H8q3KACiiigDB1L/kK2P+8/8q3qwdS/5Ctj/vP/ACreoAKKKKAKGqf8g2f/AK5t/Kk0n/kGQf7gpdU/5Bs//XNv5U3SM/2ZBn+4KANGvlH9thGf9nLXtvYRn/x6vq6vij46eOtO+KnwG+IWl6dC0b6FK9o+453NEVO4egr53imtTWWYmhKXvTp1OVd7Qbf4Hs5DTl9eo1UvdjOF/K8kj6P+D0wuPhZ4fmXo1jD/AOgiup0v/kLX/wDvJ/KvFv2f/FOn2v7Omg+JtXlEVvbaeryux4UIOa539mr4q+I/jHd+JPGFzCsGjG7EOnrjDsiDBYnvmqy/NqEaWCw7d51YJpLXRRTbfZdL92kTjMvqupiayXuU5NN+bk0ku76+iPqqiiivoDyArn9Z/wCPyx/66n+VdBXP6z/x+WP/AF1P8qAOgooooAKr3f8Ax6y/7jfyqxVe7/49Zf8Acb+VAFPRP+QTB/uCtSsvRP8AkEwf7grUoAKKKKAOdsf+Rhvf9yOuirnbH/kYb3/cjroqACiiigDB13pa5/57r/I1vVha70tf+u6/yNbtABRRRQAyT/Vt9DWL4a/5AsH+7W1J/q2+hrF8Nf8AIFg/3aAN2iiigArnbb/kZbn/AK5R/wBa6Kudtv8AkZrn/rlH/WgD4Q/4KvfsmWX7bX/BP34mfs+SRLJfanpE1xpxYZ231qPNhI+rLt+hr8/f+DaD9rS//aS/4Jq6H4G8YXBk8UfC66m8K6mjnMo+xnEJbPPMZXmv6EmVWUqwyDwRX8Zn7B0H/Drv/g4g+LX7HGqH7L4M+PNuPEXhwsdsX2gbpvLUdNw3SJxydlAH9mlYmu/8e8P/AF2T+dbdYmu/8e8P/XZP50AbdFFFABRRRQBgeGf+QSv+/J/6Ea36wPDP/IJX/fk/9CNb9ABRRRQBgH/kZ/8At2H/AKEa36wD/wAjP/27D/0I1v0AFFFFAGB4l/5BZ/66Rf8AoYreHQVg+Jf+QWf+ukX/AKGK3h0FAC0UUUAFYfh//jzk/wCu8v8A6Ea3Kw/D/wDx5yf9d5f/AEI0AblFFFABWHL/AMjFD/1wf/0IVuVhy/8AIxQ/9cH/APQhQBuUUUUAFYfiX/kBXP8Au/1FblYfiX/kBXP+7/UUAbY6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/6+pf6VvUAFFFFAH52/tWf8Ewf2Vv2rRc65rukf8I74mmy39taQFgmdz3njx5c+TjJdd+OA4r+aD9q3/gkV+1R+zV9p8RaDZf8Jx4Yhy39oaRGzTxRjvPa8yJgckp5iKOriv7caK+czXhbA4683Hln/NHT71s/z8z9M4S8V8+yLlpQqe1oL7E7tJf3Zbx8kvd8mfxY/wDBHD9qw/s8/tQweAPE1z5Phvx95el3O84SG9BP2SU+nzsYj0AEmT92v7Tq/PH9qf8A4Jjfst/tTST+ItW0o+GvFMhLrrejBbe4aTqGmQDy5ucZZ18zAwHFfbHw20fxh4e8BaRoHj/Uo9Z1mxtY7e71COMxC7kiG3zihLbGkADsuSFYkAkYNLh3LsVgITwlZqUE7xkvPdNdO/VavUfiRxJlPENelnGBi6deS5asH3XwzUlpJW913s9I+6dtRRRX0h+ZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH88H/BeP9q3/AIRnwPpH7J3hO5xeeINmp63sPKWUL/uIj/11lUuR1AjHZq/CH9mL9g/9pr9ra+T/AIVP4ek/snfsl1i+zbadFg4P70g+YR3SJXcf3a/rE0T/AIJffBrxX8cdb/aU/aZkPj/xRrN4bmO1uV2aVZRJhYYUgyTMIowseZiVbGfLUmv0t0/TtP0ixh0vSoI7W2t0EcUMShI0RRgKqgAAAcAAYr4bEcL1cyxssXjp8sNoxW/KtrvZX3dr77o/fMt8VsHwzklLKMgo+0rW5qlWSajzy35Y6SlbSKb5dIrRn4xfspf8ES/2dfgv9m8UfG6T/hYOvx4fyrlPL0uFxzhbfJMuOmZmZW6+Wpr9hb7T7DSPDJ0vSYI7W2t41jihiUJGiLgBVVQAABwABgV0lY+v/wDIHn+g/mK+swOXYbBw9nhoKK/F+r3fzPyDPuJszzqv9YzOvKpLpfZf4YrSPySNiiiiu08IKyNK/wBbef8AXwf/AEFa16yNK/1t5/18H/0FaAPMP2jfHyfCn9nvx38UJJTAvhzw9qepmQDJT7JbSS7gO+Nua8w/YI8AJ8Lf2IvhH8Pgqq+l+ENGhl2LtBl+yxmRsf7Tlifc14//AMFadVlsP+CdXxS0i3u2sZvEemw+G4pl+8suv3MOmpj3LXIH41+g+l6da6RptvpNioSC1iSGNQMAKgAAA9gKAKmof8hOw/66P/6A1bNY2of8hOw/66P/AOgNWzQAVBc/8e0n+6f5VPUF1/x7Sf7p/lQBU0f/AJBNr/1yT+QrSrN0b/kEWv8A1yT+QrSoAKyLf/kNXX/XOL+bVr1kW/8AyG7r/rnF/NqANeiiigDH1skW0WP+e8P/AKGK2Kxtb/49ov8Ar4h/9DFbNABRRRQBkaH/AMeJ/wCusv8A6G1a9Y+h/wDHif8ArrL/AOhtWxQAVjzf8h23/wCuEv8A6ElbFY83/Iet/wDrhL/NKANiiiigDL1z/kDXf/XJ/wCRrST7o+lZut/8ga6/65P/ACNaSfcH0oAdRRRQBj6cT9uvv+uq/wDoC1sVj6b/AMf19/11X/0Ba2KACsfVP+Pix/6+P/ZHrYrH1X/j4sf+vj/2RqANiiiigBD0NZWhf8gW0/65J/KtU9DWVoP/ACBbT/rkn8qANavj/wDaP/advfhrren/AAY+DmljxX8S/EKFtP0oNthtYOhu72Qf6q3Q+uGc8L6ih+0T+1NfeCvEUHwK+A2nL4t+J2rR7rfT1b/RtOhbj7VfyD/VRLnIUkNJ0HXNdZ+zL+zXafArS9Q8R+KtRbxL478TSC58Qa/OuJbqb+GOMf8ALO3iHyxRjgAZ69PpsHgKODoxx+ZRvfWnTd05/wB6VrNU130c37sdOaUfJr4mdeo8NhXa3xT/AJfJdHP8I7vonzf7O37M3/Cr/FuofFD4p6q3jD4ja1bp/aGtzptWJCzYtrOPpBbp0Crgt1b0H2PWPH/yH5f+uCf+hNWxXi4/H18ZWdfESvJ6dkktkkrJRS0SSSS2O/DYanQgqdJWX4t9W3u2+rerCuU1TWdKvo7zS7O4SW5sZbdbiNTlojIVZQw7ZUgj2rq6+evBkUsXib4hfaD87a9aMvr5ZtLQL+GQcVnRoqcKk2/hSf8A5Ml+pVSo4ygl1f6N/ofQtFFFc5qFY+jf6qf/AK+Jf/QjWxWPov8Aqp/+viX/ANCNAGxRRRQB+ev/AAVEk8v9i7xpn+KzjX/vq5gH9a+7vDEfk+GtOh/u20I/JBXwJ/wVSbb+xb4t/wBpLRfzvbYV+hWmxiLTreIfwxoPyFfSYn/kQYX/AK/Vv/SKB5NL/kZ1v+vdP/0qqXao6n/yDbj/AK5P/I1eqjqf/INuP+uT/wAjXzZ6xJZf8eUP+4v8qtVVsv8Ajyh/3F/lVqgArHsf+Qrff70f/oIrYrGsf+Qrff70f/oIoA2aKKq3t9ZabbG81GZLeFSAXkYKoLEAcnA5JAHuaaTbsgbKGsfetP8Ar4T+Rr8/vjj+0j8SPir8RLr9lb9jZ45fENvhPEfid18yy8PxNwVH8Mt2QCFjB+U9eQdvk37Qf7Wl7+0L8Yrf9iv9lXxJa6ZqE8pTXfE4mX/Qo1B8yCxXIM1yV3AlMiP1ByV/RH4FfAj4b/s6fDy0+Gvwxsha2Vvl5ZXO6e6nb780z9Xkc8kn6DAAA+wp5fTyWlDF5jT5sRNc1OlJaJPapUXVfyQ+1vP3bKfhSxMsfOVDCytSi7Smnq31jF/nLpstdVzn7On7NPw6/Zq8IyaB4OSS81K/f7Rq2sXjebf6ldNy0s8p5JJJwv3VB47mvoWiivl8ZjK+KrSxGIm5Tk7tvd/107LRHsUKFOjTVKlG0VskY+gf8gmL/gX8zXxn/wAFBW2/A7Sm9PFnhz/04Q19maB/yCYf+BfzNfFv/BQ9tnwDsH9PFPh0/wDlQhr1uFv+RxhP+vkfzOPN/wDcq3+F/kfdVY3/ADMH/bv/AOzVs1jf8zD/ANu//s1eAeibNFFFAGRrv/IJm+g/mK16yNe/5BM30H8xWvQAUUUUAYmjffvP+vl/5CtusTRfv3v/AF8v/IVt0AFZF9/yE7L/AHpP/QTWvWRff8hOy/3pP/QTQBr0UUUAV7v/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFWbv/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFAGjRRRQBjWv/ACG7z/rnD/7NWzWNa/8AIbvP+ucP/s1bNABWTq/+rg/67xf+hCtasnV/9XB/13i/9CFAGtRRRQAVj6GSdP5/56y/+htWxWPoX/IP/wC2sv8A6G1AGxRRRQBkS/8AIdh/64Sf+hJWvWRL/wAh2H/rhJ/6Ela9ABWTr3/IFuv+ubfyrWrI1/8A5At1/wBc2/lQBrLyoNfnJ+yHcW3hj9sD9pr4UwGNFTxFofihIkGGCa3pMETO3qXmspfyr9G1+6K/Obw09z4W/wCCsXi3TFZEtvGXwu0a+CAYdp9D1S9hdm9cJfRgelAH6NVkaaT9rvs/89h/6Ata9ZGm/wDH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1/7+KKKKACql/wD8eM3/AFzb+VW653WbjWI4LhbW3SSMRthi+CePSgC9of8AyBbT/rin8hWpXGaJd+IP7FtMWif6mP8A5aewrU+1+If+fSP/AL+f/WoA36KwPtfiH/n0T/v5/wDWo+1+If8An0T/AL+f/WoAhsedY1Qf9cv/AEGv5Tv+DVz9zcftf2B/5Y/F7UePq0o/pX9S+nXWuHW9S32qAZiziTttr+VX/g18utSh8dftoWtnAr7Pi9fEgtjGZbof0oA/rporn/tfiH/n0T/v5/8AWpftfiH/AJ9E/wC/n/1qAF1n/j6sP+vgf+gtW9XBazd+IPtNh/oif8fA/wCWn+y1b32vxD/z6J/38/8ArUAb9FYH2vxD/wA+kf8A38/+tR9r8Q/8+if9/P8A61AG3N/qm+hrK8Pf8gO1/wCua1Vmu/EPlN/oidD/AMtKyvD154g/sO1ItE/1a/8ALT/61AHcUVz5u/EP/Pon/fz/AOtQbvxD/wA+if8Afz/61AHQVz1n/wAjHef9cov5tSm88Q/8+if9/P8A61YFpd6+PEV5/oiZ8qL/AJae7e1AHf0Vgfa/EP8Az6R/9/P/AK1J9s8Q/wDPon/fz/61AHQVg699y1/6+Yv5037Z4h/59E/7+f8A1qw9eu/EGy1zaJ/x8xf8tPegDvKK5/7Z4gzj7In/AH8/+tR9s8Q9Psif9/P/AK1AHQV/Jd/wWJ1bV/8Ago//AMFOvgn/AMEjfA0zzeGNBu4vGvxCER/diztvmigl+qgkKf4mWv6gPiJ8RD8MvAWs/ETxVHDa6bodlPfXUzygKkUCF2JPoAK/mo/4N3vA3iz9oPxL8av+Cu/j+wMmsfGvXprXRDO2Gg0SwbYiqDnG4qoOD/BQB/T94I0zTtE8J2Oi6PCtvaWcQggiQYVI4ztVQPQAAV1VcJ4bu/EH9jQ4tE/i/wCWn+0fatz7X4h/59I/+/n/ANagDforA+2eIf8An0T/AL+f/Wo+1+Ic4+yJ/wB/P/rUAJF/yM83/Xun/oRroK4GK78Qf8JLN/oiZ+zp/wAtP9o+1b32zxDnH2RP+/n/ANagDoKK5/7Z4hzj7In/AH8/+tS/a/EP/PpH/wB/P/rUAL4jGbBf+usf/oQrergvEV3r/wBgXNon+uj/AOWn+0K3vtfiH/n0j/7+f/WoA36KwPtniH/n0T/v5/8AWpPtniH/AJ9E/wC/n/1qAN89DWH4d/5Bv/bST/0I0w3fiHBH2RP+/n/1qw/Dt54g/s7i0T/WSf8ALT/aNAHeV83fHz4O+Jfjfd6L4OuNQ+xeEVmM+tQRErNeKmDHBkdI2PL+oGK7/wCIPxI/4Vl4N1Dx14pgWKx02FppCr5Y46ADHJJ4ArE+D/in4o+K/Alr4q8baZFZ3WpFrmK1DbWgt5OYkf1cLy3ucdq9PBPEYaKzClZcr5U3/M0/h84rW/2XZ72OTEKlVf1aet1dryv18ntbrqevaXpmn6LpsGkaTClva2yLFFEgwqIowAB6AVQP/Iyj/r3P/oQpPtniHr9kT/v5/wDWrBN54g/4SRf9ET/j3P8Ay0/2hXmttu73OpK2iO9orA+2eIf+fRP+/n/1qPtfiH/n0j/7+f8A1qQzfrC8Sf8AIJk+q/zpn2zxD/z6J/38/wDrVh+I7zxB/ZMmbROq/wDLT3oA7sdBS1z4vPEGP+PRP+/n/wBal+2eIf8An0T/AL+f/WoA36KwPtniH/n0T/v5/wDWo+1+IP8An0T/AL+f/WoATw7/AMe0/wD13k/nXQVwHh278QfZZ/8ARE/18n/LT3roPtniH/n0T/v5/wDWoA36KwBd+IT/AMuif9/P/rUn2zxD1+yJ/wB/P/rUALP/AMjJb/8AXF/5it+uBmvNf/4SODNmmfJf/lp7it/7Z4h6/ZE/7+f/AFqAN+isD7Z4hH/Lon/fz/61IbzxCP8Al0T/AL+f/WoAm8Rf8geb6Vqwf6lP90Vxmv3fiD+yJs2idP8Anp7/AErViu/EHlJi0ToP+WlAHR0Vgfa/EP8Az6R/9/P/AK1J9s8Q4z9kT/v5/wDWoA6CsDQ/9be/9fDfyFJ9s8Q4z9kT/v5/9asLRLvX/NvcWif8fDfx+woA72isD7Z4h/59E/7+f/WpDeeIR/y6J/38/wDrUAdBWBe/8h2z/wB1/wCVH2zxD/z6J/38/wDrVg3t3r/9u2ebRPuyf8tPagDvaK583niH/n0T/v5/9al+1+IcZ+yJ/wB/P/rUAb9ZOu/8gi4/3DVX7Z4g/wCfRP8Av5/9asrXbvxANIuM2ifcP/LSgDq7H/jzi/3B/KrVctZXfiD7HF/oifcH/LT2+lWftniHp9kT/v5/9agDoKRmVFLscAck1gfbPEPT7In/AH8/+tXK+O9S8RWvgrV7hbZEKWczBhJyMIeazrVPZ05T7Jv7i6cOeah3djc8Kaxpeu/bNR0a4S5gaYqJIzlcrwRn2NddXxL+xJqmsXPwMtWtrdZQLibLF8Ektk19dm78Qj/l0T/v5/8AWrjynHfXMFRxdrc8Yyt2urnTmOF+rYqrh078smvudjforA+2eIf+fRP+/n/1qPtfiH/n0j/7+f8A1q9A4xdS/wCQrY/7z/yrerg9Su9f/tWxzaJ95v8Alp7VufbPEOcfZE/7+f8A1qAOgorn/tniHOPsif8Afz/61L9s8Q/8+if9/P8A61AGhqn/ACDZ/wDrm38qbpGf7Mgz/cFYWqXniD+zZ/8ARE/1bf8ALT2pNKvPEH9m2/8AoifcX/lpQB19fkL8RrXxLaa18XvA/h+4eCV5I9V2J/y1hIw6/THNfq39r8Q/8+kf/fz/AOtX59ftD+B/i/4Z+Kj/ABZ+H2ijU49V099OvLdDv+8MAkV8Nx7hZ1MHTrRUmoyalypuSjOEoNpLV2umfVcJV4wxM6cmk5JW5rJc0ZKSTb01s0fMfhLx/wCJfi18LPCn7MfgMus1wzHUpR0SBWyAT6Y5Nfrp8MfB2keANH/4RDQ4xHb2KRRjAxkheSfcnmvmD9kX9nvXvg1oE/iHxDYxHWtT+Zvn5hj6hPr619Xabd6//a1/ttE+8n/LT2rPgTJcTh8LHG5h/HlGMUn9iEVaMbdG/il5vyL4rzSjWxEsNg/4UZOTf8029X6LZeR3tFc/9s8Qn/l0T/v5/wDWo+2eIT/y6J/38/8ArV96fJHQVgaz/wAfth/11/pR9s8Q/wDPon/fz/61YGsXev8A2yxzaJ/rT/y09qAO+orA+1+If+fSP/v5/wDWo+2eIf8An0T/AL+f/WoA36r3f/HrL/uN/Ksj7X4h/wCfSP8A7+f/AFqr3V54g+yy5tE+43/LT2+lAGnon/IJg/3BWpXGaLeeIP7KgxaJ9wf8tP8A61af2zxD/wA+if8Afz/61AHQUVgfbPEP/Pon/fz/AOtR9s8Q/wDPon/fz/61ADLH/kYb3/cjroq8/sbvxB/wkN7i0T7kf/LT2+ldD9r8Q/8APpH/AN/P/rUAb9FeI/GnxZ4j8K/CnXfEEcKwPbWjMrrJ8yk4GR+ddf4T1bxHf+GNPvXtkdpbeNyxk5JKjnpXKsXB4l4X7SipfJtr9GdDw8lQVfo2180k/wBTode6Wv8A13X+Rrerg9bu/EBFrmzT/Xr/AMtPY1ufbPEH/Pon/fyuo5zoKK5/7Z4h6/ZE/wC/n/1qX7Z4h/59E/7+f/WoA3JP9W30NY3hv/kCwfSoXu/EBjb/AESPof8Alp/9asbw5d6+NFgxaJ93/np/9agDu6KwPtniH/n0T/v5/wDWo+1+IcZ+yJ/38/8ArUAb9c7bf8jNc/8AXKP+tO+2eIcZ+yJ/38/+tXPW93r/APwktz/oif6mP/lp9fagD0Gv5M/+Dob4KeMPh74e+EH/AAVG+EMH/E/+B/iGCTUGjBEj6fPIpGSP4VYMp9pK/qs+2eIf+fRP+/n/ANavm79sP4DJ+1b+y747/Z28V2Eb2fi3RrqwzvBKSuh8pxx1SQKw+lAHoH7NHxx8KftLfADwh8evBEwn0vxZpVrqUDD+7OgbB9wTg16trv8Ax7w/9dk/nX8tn/BrX+0P4xuf2WfGX7Cvj5F/4Sr4F+ILnR5LeWTEgspHYxHHXarB0/4DX9Omu3niD7PF/oif66P/AJae9AHdUVz/ANs8Qf8APon/AH8/+tSm78Q/8+kf/fz/AOtQBv0Vz/2zxD/z6J/38/8ArUfbPEP/AD6J/wB/P/rUAL4Z/wCQSv8Avyf+hGt+uB8NXniD+yVxZp99/wDlp/tH2rf+1+If+fSP/v5/9agDforA+1+If+fSP/v5/wDWo+1+If8An0j/AO/n/wBagAP/ACM//bsP/QjW/XBfa9f/AOEm/wCPRM/Zh/y0/wBo+1bv2zxD/wA+if8Afz/61AHQUVgG78Qj/l0T/v5/9akN54hH/Lon/fz/AOtQAviX/kFn/rpF/wChit4dBXB+JLvX/wCyyDaJ/rIv+Wn+2Pat0XfiDtaJ/wB/P/rUAdBRWB9r8Q/8+kf/AH8/+tSfbPEP/Pon/fz/AOtQB0FYXh85s5f+u8v/AKEaaLzxBn/j0T/v5/8AWrC8P3fiD7JIPsif6+X/AJaf7RoA7yisD7X4h/59E/7+f/WpPtfiHP8Ax6J/38/+tQB0FYcv/IxQ/wDXB/8A0IVH9r8Q5/49E/7+f/WrFlu9f/4SKH/REz5D/wDLT/aFAHdUVgfa/EP/AD6R/wDfz/61Au/EP/Pon/fz/wCtQBv1h+JeNCuT/s/1FM+1+If+fRP+/n/1qw/El34g/sO5zaJ90f8ALT3FAHdDoKWufF34h6fZE/7+f/WpftfiHP8Ax6J/38/+tQBv0Vz/ANr8Q/8APon/AH8/+tS/a/EP/Pon/fz/AOtQAug9Lz/r6l/pW9XBaFd+INt5i0T/AI+pf+Wn0re+1+If+fRP+/n/ANagDforn/tfiH/n0T/v5/8AWq5ZT6rLKVvoFiTHBDbuaANSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisuTSYZJGkMs4LEnAlYDn0GaANSsfX/APkDz/QfzFL/AGNB/wA9rj/v8/8A8VWPr+jQf2PP++uPuj/ls/qPegDr6KyP7Gg/57XH/f5//iqP7Gg/57XH/f5//iqANesjSv8AW3n/AF8H/wBBWj+xoP8Antcf9/n/APiqyNK0aDzbz99cf8fB/wCWz/3V/wBqgD4V/wCCl1tc6/8ADH4dfD+3KEeI/if4MtpI36SRWupRXzr/AN82pP4V+jFfmh+3NpVjq3xr/Zl8DvPMJL34mfb1DSucjS9F1S4I6+qiv0Y/saD/AJ7XH/f5/wD4qgBuof8AITsP+uj/APoDVs1x+oaNB/adh++uP9Y//LZ/7je9bP8AY0H/AD2uP+/z/wDxVAGvUF1/x7Sf7p/lWf8A2NB/z2uP+/z/APxVQXOjQfZpP31x90/8tn9P96gC5o3/ACCLX/rkn8hWlXLaPo0B0m1/fXH+qT/ls/oPetL+xoP+e1x/3+f/AOKoA16yLf8A5Dd1/wBc4v5tR/Y0H/Pa4/7/AD//ABVZFvo0H9tXX764/wBXF/y2f/a96AOuorI/saD/AJ7XH/f5/wD4qj+xoP8Antcf9/n/APiqAG63/wAe0X/XxD/6GK2a5DW9Fg+zRfvrj/Xw/wDLZ/74962P7Gg/57XH/f5//iqANeisj+xoP+e1x/3+f/4qj+xoP+e1x/3+f/GgA0P/AI8T/wBdZf8A0Nq165HRNGgNif31x/rZf+Wz/wB9vetf+xoP+e1x/wB/n/8AiqANeseb/kPW/wD1wl/mlL/Y0H/Pa4/7/P8A/FVjzaNB/b1v++uP9TL/AMtn9U96AOvorI/saD/ntcf9/n/+Ko/saD/ntcf9/n/+KoAfrn/IGu/+uT/yrST7g+lctrejQf2Ndfvrj/VP/wAtn9P96tJNGg2D99cdP+ez/wDxVAGzRWR/Y0H/AD2uP+/z/wDxVH9jQf8APa4/7/P/APFUAJpv/H9ff9dV/wDQFrYrkNO0aD7dffvrj/Wr/wAtn/uL71sf2NB/z2uP+/z/APxVAGvWPqv/AB8WP/Xx/wCyNS/2NB/z2uP+/wA//wAVWRqmjQC4sf30/wDx8f8APZ/7je9AHXUVkf2NB/z2uP8Av8//AMVR/Y0H/Pa4/wC/z/8AxVAGsehr87vib+0L8RPiJ4m/4Zf/AGRDFN4mtoIxr/iOVfN0/wAPROOh7S3jDOyEfdPLdDjO+Lvxi8efG7x/e/sxfsjX00V7ZkR+J/F3mPJaaJGfvQwc7Zb1hwFBxH1bkHb9R/s//AD4c/Ar4Yaf4G+HsM1tbhRPcTNKxnu7mQAyTzPkF5HPJP4DAAFfVUMLSyqlHFY6ClXkk6dJ7JPapUXbrCD+L4pe5ZT8epWnjJujh5WprSU11/uwff8Aml02XvaxP2ev2bvh9+zl4Yn0jwoJb7VdTk+06vrN63m3+pXR+9LPIeTkk7VHyqDgDrn6ArI/saD/AJ7XH/f5/wD4qj+xoP8Antcf9/n/APiq+exeLrYqtLEYiblOW7e/9dlsloj06FCnRgqdKNorZISP/kPy/wDXBP8A0Jq2K5CPRoP7el/fXH+oT/ls/wDeb3rY/saD/ntcf9/n/wDiq5jU165bVdJ02yiu9StIEjuL2WBp5FGGkKMqqWPfCgAe1aX9jQf89rj/AL/P/wDFV5zaaxpPi211mDTmu1XSNSXT3d5mxJJH5TOVwx4Uvt5xyp7VpCE3GUo7Lf7/APMiTjdJ79D12isj+xoP+e1x/wB/n/xo/saD/ntcf9/n/wDiqzLNesfRf9VP/wBfEv8A6EaX+xoP+e1x/wB/n/8Aiqx9G0aDyZ/31x/x8S/8tn/vH3oA6+isj+xoP+e1x/3+f/4qj+xoP+e1x/3+f/4qgD8+f+Cq/wDyZb4q/wC3H/0utq/RSz/484v9xf5V+bX/AAVQ0yKD9jPxRKsszEGx4aRmHN9a9iTX6H2mjwG0iPnT/cX/AJbP6fWvpMV/yIMJ/wBfq/8A6Rhzy6X/ACMq3/Xun/6VVN+qOp/8g24/65P/ACNVv7Gg/wCe1x/3+f8A+KqjqejQf2bcfvrj/VP/AMtn9D7182eobdl/x5Q/7i/yq1XP2WjQfYof31x9xf8Als/p9as/2NB/z2uP+/z/APxVAGvWPY/8hW+/3o//AEEUv9jQf89rj/v8/wD8VWPY6NB/at8POuPvR/8ALZ/7o96AOvr8/f2/10L4qfD2D9k/TLWfWPFfjd45LGytbj7MLeKzkWRry6kCsUtYmUbvlJkbCJ8xyPpP42/EvwT8BfhvqHxL8aXN0bazCpDbxSu091cynbFBCuctJK5CqB65PAJryj9mL4H+KNDt9S+NnxqZ2+IPjPZNfqkzMunWi5Nvp8LZ/wBXAp+c/wAcpZjnivo8kX1JLOKmns5L2a25qis158sNJSa/uxuua68rMP8AaL4GP2l7z7Ren3y2j83razg/ZZ/Y/wDhp+yD8ONO8IeEIUutWuZ431TVWQLNdzYOfUrGvREBwo65Ykn7Nrj9Y0aDdafvrj/j4T/ls/ofetn+xoP+e1x/3+f/AOKryMwzDEY7ETxeLm51Ju7b3b/rZbJaLQ7sNhqWHpRo0Y8sY6JI16KyP7Gg/wCe1x/3+f8A+Ko/saD/AJ7XH/f5/wD4quM3E0D/AJBEP/Av5mvir/gop/yb5Zn08T+Hv/ThBX19oGjQHSYf30/8X/LZ/U+9fF//AAUP0yGD9ny1YSzH/ipvD33pGP8AzEIfU19Bwp/yOcH/ANfIfmjzc4/3Gv8A4Zfkff8AWN/zMP8A27/+zU86NATnzp/+/wA/+NYv9jQf8JD/AK64/wCPf/ns/wDe+tfPnpHYUVkf2NB/z2uP+/z/APxVH9jQf89rj/v8/wD8VQAa9/yCZvoP5iteuR17RoP7Jm/fXHQf8tn9R71r/wBjQf8APa4/7/P/AI0Aa9FZH9jQf89rj/v8/wD8VR/Y0H/Pa4/7/P8A/FUAR6L9+9/6+X/kK2643RtGg33v764/4+X/AOWz+g962/7Gg/57XH/f5/8A4qgDXrIvv+QnZf70n/oJo/saD/ntcf8Af5//AIqsi+0aD+07L99cfek/5bP/AHT70AddRWR/Y0H/AD2uP+/z/wDxVH9jQf8APa4/7/P/APFUAX7v/j1l/wBxv5VW0f8A5BNr/wBcU/8AQRVG70aD7LL++uPuN/y2f0+tVtI0aD+ybX99cf6lP+Wz/wB0e9AHUUVkf2NB/wA9rj/v8/8A8VR/Y0H/AD2uP+/z/wDxVADbX/kN3n/XOH/2atmuQtdHgOtXg86f/Vw/8tn/ANr3rY/saD/ntcf9/n/+KoA16ydX/wBXB/13i/8AQhSf2NB/z2uP+/z/APxVZOsaLAYoP31x/r4v+Wz/AN4e9AHW0Vkf2NB/z2uP+/z/APxVH9jQf89rj/v8/wD8VQBr1j6F/wAg/wD7ay/+htS/2NB/z2uP+/z/APxVY+haNB/Z/wDrrj/Wy/8ALZ/77f7VAHX0Vkf2NB/z2uP+/wA//wAVR/Y0H/Pa4/7/AD//ABVABL/yHYf+uEn/AKEla9cjLo0H9uw/vrj/AFEn/LZ/7yf7Va/9jQf89rj/AL/P/wDFUAa9ZGv/APIFuv8Arm38qP7Gg/57XH/f5/8A4qsjXtGg/sW6/fXH+rb/AJbP6fWgDrV+6K/Oz4r3T+HP+CnnwcvYY0UeJPBPjDTJZSfmP2OfS7pEH5u34V99rosG0fvrjp/z2f8Axr85P2u/Dttpf7Zv7LXjeS4njVPE3iLRSfNbLf2joV5KFznoWtFP4UAfppWRpv8Ax933/XYf+gLR/Y0H/Pa4/wC/z/8AxVZek6TDHfXkglnJWcHBlYjhF6jPNAHV0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Q/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWVof/IFtP8Arin/AKCK1aACiiigDm7D/kM6p/2y/wDQa/lC/wCDXTcvxW/bchbqvxcu8/8Af+9/wr+r7T/+Q1qf/bL/ANBr+U//AINi4xB8cv25YR/D8Xbo/nPfUAf1p0UUUAYOs/8AH1Yf9fA/9Bat6sHWf+Pqw/6+B/6C1b1ABRRRQBHN/qm+hrK8Pf8AIDtf+ua1qzf6pvoayvD3/IDtf+ua0AbNFFFABXPWf/Ix3n/XKL+bV0Nc9Z/8jHef9cov5tQB0NFFFABWDr33LX/r5i/nW9WDr33LX/r5i/nQBvUUUUAfz7f8HKv7QuqfCX/gm1q/wi8FTH/hKvi5qNp4Q0uCNsSy/bpAJ9o6nEQbP1r9Tv2Df2adE/Y8/Y1+HX7NmhIEj8KaHbWsxxjfcld87n/elZz+Nfz+ftb3dv8A8FAP+DiX4P8A7LdqPt3hT9nrTZfF2vL96IalMoe3Rh03DEX/AH39a/q8f7h+lAGL4a/5AsP/AAL/ANCNblYfhv8A5AsP/Av/AEI1uUAFFFFAHPxf8jPN/wBe6f8AoRroK5+L/kZ5v+vdP/QjXQUAFFFFAGD4jGbBf+usf/oQrerB8R/8eCf9do//AEIVvUAFFFFACHoaw/Dv/IN/7aSf+hGtw9DXlXiTx1p/w68A3Pia/RpjHI6QwxjLyzO5VEUerMQK0pUp1ZxpwV5N2RM5qEXKT0R6Vf6fYapbNZalClxC2NySKGU49QeKtgBQFUYArzj4V6V4y07wmlz8QLo3OrX0jXM6D/VweZ0hT/ZQYHucmvSKqvDkm6aldJ7rb5Cpy5oqbVm/vCsE/wDIyj/r3P8A6EK3qwT/AMjKP+vc/wDoQrEs3qKKKACsLxJ/yCZPqv8AOt2sLxJ/yCZPqv8AOgDcHQUtIOgpaACiiigDn/Dv/HtP/wBd5P510Fc/4d/49p/+u8n866CgAooooAwJ/wDkZLf/AK4v/MVv1gT/APIyW/8A1xf+YrfoAKKKKAMXxD/yB5vp/WtWD/UJ/uisrxD/AMgeb6f1rVg/1Cf7ooAlooooAKwND/1t7/18N/IVv1gaH/rb3/r4b+QoA36KKKACuNTWtJ1fxDHFpdzHcNaPJDMI2DGOQDJVsdD7Guyr87P2Lrlm+IPxXsJ5RJPB41vdwzkhWhQr+lAH6J0UUUAFZOu/8gi4/wBw1rVk67/yCLj/AHDQBcsf+POL/cH8qtVVsf8Ajzi/3B/KvP8A4weOI/hv8NNY8ZvjdY27ume79F/WscTiIUKU69V2jFNv0SuzWjRlVqRpQWsmkvVnRzeNfCFvq40CfU7ZL08eQ0qiTP0zmqPxI/5J9rf/AF4z/wDoBr5I+Bn7Ofg3xh8LYvF3xFtje654g3Xst2zESxGQ5UI2cjb2rn/C3xe8WSeJPGH7P+uSRX9voGl3AivcnzpAqHG/sSBwa+RlxDVWHpvHUlBV0/Z2bbu4tpSVlZ8ut1ddPX6FZPT9tNYWo5Ok1z3VtE0m46u6vpZ2fU6j/gn9Pv8AgMoY/cvJh+tfXfhTxl4f8bWc9/4cm8+G3me3dsYG+M4YD8a+GP2JdRbTf2YtWv0OGt5Ltx9QpNeJ+Gv2jNV+Df7PPhy70Eo1/rGqzySiQbv3AfL/AJ5xXiZPxPRyzKcvWIdqfsOaT3fu8kUl6uR6eY5HUxuYYz2Px+15V215m7/JH68SyxQRtNOwRFGSzHAA9zXOar408J6LoU3ibUtQgjsIM7594KDHbIJ59q+If2wfGWreIPDHgzwhoNzJaxeKruITmJsMYmAOMjtzXO+O/B/h0/Fjwf8AsyeFI/K0eyxqepJuLeYU5G/J5z1r28w4qnTr1qGGpKXL7OKbfxVKnwpK2yWsnfbZHm4Ph+M6VOrWm1zc8mktoQ+J3vu3olY+0fD3xI8F/EG9s7nwlfJdBGYsuCrgEddrAHHvXq1fmZ4F+IMHi/8AbgurLRmRNN0u0ktIljAVD5YGTx719L/D/wDaN0zx54+8W+F7OJFsvDUe5bgNnzNud/4AiujKOKaGIglXmlJ1J001tJwV20tbK3n+ZhmOQ1qMm6UXyqEZu+8VJ2Sb0u/l+R9OVz3ijxV4f8GaNN4g8TXSWlpAMs7nH4D1J7AV87/Ab9oL/hYXww1jx94rMcS6Tc3CyGMYHlRklfxIryf4W2Wv/tV+LD8V/HSGLwpp0xGk6cfuyuh/1jj+KtKnEtOtSw6y9c9SsrwT0Sit5S7Jfe3oiIZJOnOs8Y+WFJ2k1u29ox7t/clqz7A8M+NLXx74Ol8R2FrcWsEquIxcpsZ1HRgPQ9q7DSOdMg/3BSajGkWlTRxgKqxkADgAAUuk86ZB/uCvo6MZxpxjUleVtXa136dDxaji5twVl0W5o1ysnjjwhFLdwzalbxtYOsdxvcL5bt0DZ6E11Vfgh+0sPEGrfHbxf4U06do7Qym+lQHAJiQcn6V8txjxNPJMNTrwpc7lLlte32W1+K18j3+G8jjmladKdTkUVe+/VJ/gz97I5I5o1liYMrDIIOQQawtL/wCQtf8A++n8q+FZf2rdO+Df7Pfg7Vr23Op6nqNomId+CEThmY/yr7J8D+IrXxHpjeKYBshvIYrgA9gyA/pXqZZn+Dx0vY0p/vFGM5R7KSutdjgx2UYnCx9pUj7jlKKfdxdmeg0V+dHin9uPxDpr3HiPw94Ve88OWN09nPd+Zz5iHHboD719O+F/jppvin4gad4IsrfjUNKXU1mDggBsfL79etc+D4ryzFVXRo1byultJX5m0mrrVNp6rQ3xPD+OoQVSpT0s3una2rvZ6NX23Peq5/Wf+P2w/wCup/lWo+o6fHerpsk8a3DqWWIsN5A7gdcV8e/tb/FDxD4dh0X4cfD1yviLX5/KhdesUZ4Le31r0M0zSjgMLPFVdVHotW29FFebbSRxYDAVcXXjQp6N9XsktW35Jan2aCD0OabJJHDGZZmCKoySTgAV+cX7Mja54A+NPi3wRq2tz6lp+lWcU13LcuWVZ+rkE9B1r1HQNW179qLXp76KWSy8B2MpjREJSTUJEOCWI5EYPbvXi4LihYmhBqi1XlKcVTunrB2k3LblXV28km7Hp4rInRqyTqJ0oqMnOzWkldJL+Z9F83ZH2LZX1lqNut3p8qTxN0dGDKfxFOu/+PWX/cb+VVdI0fTNB06LSdHhW3t4RtSNBgAVau/+PWX/AHG/lX1UOblXPv1tseDK13y7FPRP+QTB/uCtSsvRP+QTB/uCvmnXv2hvEWofEC98A/CTw+fEEmkYF/OZRFHG5/gB7tXFj8yw+DjGVdv3nZJJtt76JJt6avTRHThMFWxLkqS2V220kl5t2SPqqivgP4y/taeIfB2n6XokOlT6H4gu76FJILtQ6G3LAMyMODnOK9f+OHxQ8dfD3+w/EGjxxjSWuLaO+Z1yX+0Nt2r6beua8v8A1qwD9vyNv2XK5WT05r7p2atZuV0rI7/7Axa9kpJL2nNy678vppreyse92P8AyMN7/uR10VfJo/ai+G9n8cW+FpZ3urrZD5648pZsZ2H37fWvRvjL8c/DHwZs7P8AtWGa+vtRk8q1s7cZlkPfA9BXYs/y50qtdV48lN8snfZ9vX03OZ5TjFUp0nSfNNXiu67+hw37ZmojT/2fNaQHBufKhH1dxXvngeIw+DdKiPVbWIf+Oivzm/ad+PPh34m/DrTfCNlBc6dqdxqtss9jdxmORV3dR2Ye4r9MdIhFvpNtAowEiRcfQCvGyjH0cbnOKrYealCNOlG673qN/NX1R6WY4SphstoU60bSc5v8IIpa90tf+u6/yNb1YOvdLX/ruv8AI1vV9gfOBRRRQAyT/Vt9DWL4b/5AsH+7W1J/q2+hrF8Nf8gWD/doA3aKKKACudtv+Rluf+uUf9a6Kudtv+Rmuf8ArlH/AFoA6KiiigD+Mvw1Ywf8E1f+DonVNOuHNl4N/aY0drm3LZER1Nj5hX0yJUlA9mFf2M67/wAe8P8A12T+dfyqf8HWPww1zwd8EPhP/wAFBfh/ATr/AMGfF1pcPInDm0nYPgkfwh4wPT5q/pE+CPxe0H4+/s/+CvjV4YlE1h4o0+w1KF1OQVuED/1oA+gqKKKACiiigDA8M/8AIJX/AH5P/QjW/WB4Z/5BK/78n/oRrfoAKKKKAMA/8jP/ANuw/wDQjW/WAf8AkZ/+3Yf+hGt+gAooooAwPEv/ACCz/wBdIv8A0MVvDoKwfEv/ACCz/wBdIv8A0MVvDoKAFooooAKwvD//AB5yf9d5f/QjW7WH4f8A+POT/rvL/wChGgDcooooAKw5f+Rih/64P/6EK3Kw5f8AkYof+uD/APoQoA3KKKKACsPxL/yArn/d/qK3Kw/Ev/ICuf8Ad/qKANsdBS0g6CloAKKKKAMHQel5/wBfUv8ASt6sHQel5/19S/0reoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArH1/8A5A8/0H8xWxWPr/8AyB5/oP5igDYooooAKyNK/wBbef8AXwf/AEFa16yNK/1t5/18H/0FaAPgf9pqWzv/ANun9mjw9c4LxXnizVoweubXSWt+Pwu6/Q+vzh+O2lw6p/wU3/Z6uW5fTPC3j+4A7DzDo0WfyYj8a/R6gDG1D/kJ2H/XR/8A0Bq2axtQ/wCQnYf9dH/9AatmgAqC6/49pP8AdP8AKp6guv8Aj2k/3T/KgCpo3/IItf8Arkn8hWlWbo3/ACCLX/rkn8hWlQAVkW//ACG7r/rnF/Nq16yLf/kN3X/XOL+bUAa9FFFAGPrf/HtF/wBd4f8A0MVsVj63/wAe0X/XeH/0MVsUAFFFFAGPof8Ax4n/AK6y/wDobVsVj6H/AMeJ/wCusv8A6G1bFABWPN/yHrf/AK4y/wA0rYrHm/5D1v8A9cJf/QkoA2KKKKAMvXP+QNd/9cn/AJVpJ9wfSs3XP+QNd/8AXJ/5VpJ9wfSgB1FFFAGPpv8Ax/X3/XVf/QFrYrH03/j+vv8Arqv/AKAtbFABWPqv/HxY/wDXx/7I1bFZGqf6+y/6+P8A2R6ANevgn/goJqvx/k+GuhfDz9nZxFrHi7VhplwyXC2lwbQW808qQTuGSGR1iKhyCRnjmvvavk79q+7fR4/h14kjGPsPjjR1Zv7qXhktW/Savc4aqezzKjPkjJptpSV4uVny3Wl1zWPOzaLlhKkeZq9rtaO11e3yufLHwl8Q/tffA3wFZfDT4V/s22Ol6VZKdq/8JXaMzu33pJH8rdJI55Z25JrstM+NP/BRmTTLddP+CeiRxiNQpl8SxHIx14jr9JT0NZWg/wDIFtP+uSfyrurcS0KtSVarl1GU5O7bddtt7tt13qYQyqpCChDFTSWiSVNJL5Uz892+IP8AwVF1phBpvw78FaJu482+1ia6C++2FBn86s/8Iv8A8FTL/wDfT+Kfh7YE/wDLOGxvZgPxdga/RWis/wDWRR/hYKhH/txy/wDS5TK/slv48RUf/b1v/SUj81l8C/8ABT1tVkQePfA6yeUpJGk3BGMtj+OtRfht/wAFObgbbj4meDrfPeLQ5XP/AI9KK+/Y/wDkPS/9cE/9Catil/rRW6Yeh/4Jp/8AyI1lFNf8van/AIMl/mfnXF+z7/wUD1LMus/H22smP8Fj4atCg/GVia840P8AY/8A2v7Sx1ZNf+PGq6fFNqss4FjpNlGbjznQ+dkZKFiT8vbHpX6t1zer39jd2dxa2sySSW00KTKpBKMWRgGHYlSDz2NaR4ux6jKMKdFJ22w9DT/yn+ZDyTDNpylN+tSp/wDJHwSf2Ffizec61+0F4+mJ6+TPb24/JIqb/wAMAeL+v/C+PiPu9f7Tj/8AjVfo5RUf64ZqtqkV6U6a/KA/7CwXWD/8Cl/8kfnIP2GPjDF8tp+0L49VR0Dy2zn8zFzVHTv2Pf2mtNSS78IftE+J0nilkULqNjZ3sRIY9VKrnP1r9Kax9F/1U/8A18S/+hGj/W7Mn8Tg/WjRf50x/wBiYRbKS9JzX/tx+fJ8Bf8ABUfQSsGlePvBGvRpx5mo6XcWsjY/vC3Yrn6YqKfVf+Cr+iMW/sn4ca4o/hhnvrYn8XBxX6R0U1xPJ/xMHQl/3CUf/SOX8Bf2Ql8Neov+32//AEq5+BX7fnxm/bE1T9mLXfCnxv8AhHDotjObPzNY0zWIby3jKXduy5h2iQb2UIOerA9Aa+2bT9vPxvZ26Q6x8BviNC6KAfJ06OdePRllAP1qL/gq1/yZp4iHrNpw/wDJ+1r9GbT/AI9Yv9xf5V7+JzbASyTDTq5fCzq1tIzqxSahQu9Zyet0mr20Vktb+dRwWJjmFWMMTL4KerjBv4qmmkVt9+uvQ/Os/wDBSDw1p77PE3ws+I2me8mgPJ/6A5qrff8ABTT4OS2c0J8G+PVLow58N3IxkfSv0mqjqZxptwR/zyf+Rr5/+0cle+Al8qz/AFg/zPTWFx6/5iV/4Av/AJJH51Wn/BSDwtfxR2vhT4XfEXVpNoAEegSR5/GR1qc/tlftN68n/FB/s7+JpCxwraveWumr+Icuw/Kv0TsjmzhJ/uL/ACqzR/a2VQ/h5cn/AI6lR/8ApDpi+pYx/Fimv8MIr81I/NiX4tf8FQNYffovwl8K6Oh6LqOvGdh+MC4/Ss60+Jn/AAVC0W/ub3Uvhj4O1hNyGWDT9ZkgmPyjG1pwV6etfpxWPY/8hS+/3o//AEEU/wDWPD7f2bQt2tV/P2t/xF/ZdTf61Uv6w/Lkt+B+Yfwe1H4lftBfGPTfj1+1x4Zm8DaTo11Fp/gnw7eSiUSapOsnnXUgChmmVUIgLIqqpLLz81fqpXyR+1PPLZ+IfhLdq22MeOrKN/8AtraXaD/x5hX1vWef4lYmOHxEIKEHFqMI35YKMmrK7bbfxSbbblJsrLKTourSlJykmm5O15Nq93bTTZJLRJIxtY+9af8AXwn8jWzWNrH3rT/r4T+RrZr5w9UKKKKAMfQP+QRD/wAC/ma+Kf8Agot/yb1a/wDYz+Hv/ThBX2toH/IJh/4F/M18U/8ABRb/AJN6tf8AsZ/D3/pwgr6DhT/kc4P/AK+Q/NHm5z/uNf8Awy/I+7qxv+Zh/wC3f/2atmsb/mYf+3f/ANmr589I2aKKKAMjXv8AkEzfQfzFa9ZGvf8AIJm+g/mK16ACiiigDE0X797/ANfL/wAhW3WJov373/r5f+QrboAKyL7/AJCdl/vSf+gmtesi+/5Clj/vSf8AoJoA16KKKAK93/x6y/7jfyqto/8AyCbX/rin/oIqzd/8esv+438qraP/AMgm1/64p/6CKANGiiigDGtf+Q3ef9c4f/Zq2axrX/kN3n/XOH/2atmgArJ1f/Vwf9d4v/QhWtWTq/8Aq4P+u8X/AKEKANaiiigArH0L/kH/APbWX/0Nq2Kx9C/5B/8A21l/9DagDYooooAyJf8AkOw/9cJP/QkrXrIl/wCQ7D/1wk/9CStegArI1/8A5At1/wBc2/lWvWRr/wDyBbr/AK5t/KgDWX7or82v+ChOmr/wnf7NvipnZP7I+LmmHKnH/H7pupWeD7EzgV+kifdH0r83v+ClJuYvD/wXvLYf6j4weCy3skl55Z/R6AP0jrI03/j7vv8ArsP/AEBa16yNN/4+77/rsP8A0BaANeiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0f7+KKKKACql/wD8eM3/AFzb+VW6xNW1bTba2uILiZUdY2yCfUUAT6H/AMgW0/64p/6CK1K5XQ9d0caLaf6Qn+pTv/sitT+3tH/5+E/P/wCtQBrUVk/29o//AD8J+f8A9aj+3tH/AOfhPz/+tQBS0/8A5DWp/wDbL/0Gv5Uf+DZE5+PX7c//AGVu5/8AR99X9TWna3pR1rUgJ1OTFjn1Wv5VP+DZbVbC3+Pf7cpnlVQ/xauSue48++oA/riorJ/t7R/+fhPz/wDrUf29o/8Az8J+f/1qAK+s/wDH1Yf9fA/9Bat6uL1nXdH+1WH+kJ/x8Dv/ALLVvf29o/8Az8J+f/1qANaisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1qANKb/VN9DWV4e/5Adr/ANc1pJtd0fym/wBIToe9ZXh7XdH/ALDtf9IT/Vr3/wDrUAdfRWT/AG9o/wDz8J+f/wBaj+3tH/5+E/P/AOtQBrVz1n/yMd5/1yi/m1W/7e0f/n4T8/8A61YFprekDxFeH7Qn+qi/m1AHa0Vk/wBvaP8A8/Cfn/8AWo/t7R/+fhPz/wDrUAa1YOvfctf+vmL+dWP7e0f/AJ+E/P8A+tWDr2u6Pstf9IT/AI+Yu/vQB2lcx418V6R4F8H6p401+VYLHSbSa7nkY4CRwqWYn6AVo/29o/8Az8J+f/1q/CP/AION/wBqQ/An/gl14z8O+D7wr4h+Izw+EdNSFiJWfUjsk245yIt54oA+WP8Ag248Aaj8Z9c+P/8AwVI8YI0l58aPF1zBoryjLJo9g7BNpPIDkqMdP3Yr+pd/uH6V8J/8E4vgT4a/ZE/YZ+F/7Pds0cE/h7w/Zx3gHGbyWMSXBPHJ81mr7WfXdH2n/SE6etAEfhv/AJAsP/Av/QjW5XG+G9d0f+xYf9IT+Lv/ALR9q3P7e0f/AJ+E/P8A+tQBrUVk/wBvaP8A8/Cfn/8AWo/t7R/+fhPz/wDrUAVYv+Rnm/690/8AQjXQVxMWu6P/AMJNMftCf8e6d/8AaNdB/b2j/wDPwn5//WoA1qKyf7e0f/n4T8//AK1H9vaP/wA/Cfn/APWoAreI/wDjwX/rtH/6EK364vxHrukfYFxcJ/rY+/8AtD2re/t7R/8An4T8/wD61AGtRWT/AG9o/wDz8J+f/wBaj+3tH/5+E/P/AOtQBqt0Nc3olraXmmKLqNZQkzuu4A4YMcEe4r55+MvjfxL4s8Q2vwW+HFw9hJfR+fqmrBSFtLPOCI26GZzwvp1r2bwJceHtC8L22i2VwDDaAwoXYsxVDgZJySfU12VcK6NKFSUvelql1S6N9r9FvbXZq+EK3POUEtF18+y9Ov3dz0Wisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1q4zc1qwT/wAjKP8Ar3P/AKEKsf29o/8Az8J+f/1qwTr2j/8ACSj/AEhP+Pc9/wDaFAHaUVk/29o//Pwn5/8A1qP7e0f/AJ+E/P8A+tQBrVheJP8AkEyfVf51P/b2j/8APwn5/wD1qwvEmu6P/ZMn+kJ1Xv7/AEoA7IdBS1kDXtHwP9IT8/8A61L/AG9o/wDz8J+f/wBagDWorJ/t7R/+fhPz/wDrUf29o/8Az8J+f/1qAKvh3/j2n/67yfzroK4nw7ruj/Zp/wDSE/18nf3+ldB/b2j/APPwn5//AFqANaisn+3tH/5+E/P/AOtR/b2j/wDPwn5//WoArT/8jJb/APXF/wCYrfrip9d0f/hI7c/aE/1L9/cVv/29o/8Az8J+f/1qANaisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1qAGeIP8AkETfQfzrUh/1Kf7orlfEGu6QdImH2hOnr71qw67pAhQfaE6DvQBtUVk/29o//Pwn5/8A1qP7e0f/AJ+E/P8A+tQBrVgaH/rb3/r4b+Qqz/b2j/8APwn5/wD1qwdE13SPNvT9oT/j4bv7CgDtKKyf7e0f/n4T8/8A61H9vaP/AM/Cfn/9agDWr8m/2WNbGg/8FGfj78Ko4mWN20nXVYn5SbuBkYAf8B5r9Tv7e0f/AJ+E/P8A+tX5I/C++07Tv+Cx3xQkSZRFe+CtElb0LKzj+VAH7CUVk/29o/8Az8J+f/1qP7e0f/n4T8//AK1AGtWTrv8AyCLj/cNH9vaP/wA/Cfn/APWrJ13XdH/si4/0hPuHv/8AWoA6Kx/484v9wfyr5R/bhFyf2ddX+zAt88W/H9zdzX0xZa7o/wBji/0hPuDv7fSq+sS+FPEGmT6NrJiubW5QpJG/Ksp7EYrzs4wLxmBr4SMrOcZRv2urHbluKWGxVLENXUZJ29GfLK/tH/Df4c/s8abr1tqENzdJYRxQW0TBpDMFxgr1GD1r80Php4o+IXhD4sXdxrOmPcal4ts5QUfIPl3Kk7x9BX6c6L+yX+zbofiVfEtvZiRo23pDJIWhVuuQpr6OksfAU2qQ63LBbNd2yeXFKUG9E9AccCvgMVwnnOZSw9TGV40vYWUVC8k+kpO6WrWiVtD67D8QZbgo1oYalKp7W/M5WTXWKVr6J7vqfmD+zB8S/Dmk/A/xB8KWeRtalS+lESoSERFOSx7V8wfCX4eeIPjR4T1kMrSWvhbTZWtwOnmud354BNftR4a8G/CfSNb1fU9MsLOC4vmKTuiAF1Ycg+x71u+C/Cfww+HunT6T4Otbext7li8qRjhyfX1rnfh5iq8cJQxleLpUYzg1FNXWnJvu01d+iSNlxjQoyxFXDUmp1JRldtaPXm/B2R+YXgTxtb/G74jfCrw9ZkySaDbl71CPuPFxz+lZfxi+I/iD4dftPeL7zTrWSbVdQtRY6fgHI80ABh+HTFfpt4Q+GXwa8B+IrrxV4UsbazvrzPmSJ78nHpn2rrr3Svh5qOtxeJL+2tZr+AYjndAXUexxW8eB8wnglCpiVGv7SM+ZJtWjD2ate3vW19TJ8VYOGJcoUG6XI48ret3Lnfyvp6H4hp4N+LX7PfxBS1s7Ge61fXNP8uKVFLASXQ+bBx1XPNerx/Af49/Bq7utA8IafJqX/CX6dHbXFyp4glc5kye2M9a/WbVdU0CXWNPlkliZkZ8EjJHHatLWPGvhbQNLn1rV72OC2tkLyOx4VRSpeGWFoRk3ipqMW3Bqy5E17+r35lu9LJBU44xFVxSoRcmkpbvma+HTpZ7I/Nz9kb4ei88PfEP4DeIZiNkwhkePsWXGR+NaWi/sh/GDw+r+HfA3xFaC0szt8hM5jz2IB4rS/ZX8V6Hqf7QfxA1jTrhWsr1kmifoGBPBqT4n2nx4+G/xi1fxh8FIY9TsvEkSCQOwKwyrxnB6fWvJwWX4F5PhsRUoTqKnOpTvTlLmUOedrcrvJXt99z0MTjMUsxrUY1Ywc4wnaajyuXLG/wAS0dr/AHWND4X3PxR+G/x0k+EPjDxM/iO3u9Kkun3/APLF16fTNfoHpP8AyDIP9wV8efAb4SyfD+z1X4g/EnUk1DxTrCMZ5SdwiQjOxT/Ovq3Sdd0f+zIP9IT7g71+hcJ4Svh8C1XUo80pSjGUnKUIvaLbbd+r10bsfH8QYilVxV6TTsknKKSUpLdpK2nTztc6avxP+JdqLj9pb4izkZEGlXJ/NVFfs1/b2j/8/Cfn/wDWr4H8Rfs96zrHxQ8d+MYr61Fv4h0421nljuEjDncMcDivJ48yrE46hhoYeDk4zbdui5JfrZfM9DhPH0cLVryrT5bwsv8AwKP6XPhL4baFqXj34R+LvHGvr5tv4b0ZLCyyMqrMyk498V9t6r8XZ/Bf7Oej+HfDp83XvEVpBZWcY5YB0wz/AEAr0n4XfAPSPC/7ON78HdbvYUvdVik+1TRHcokfpj1AwK8//Z8/Zxl8H+Mm8S/E7WYdUn0aEWunRrkpEhHDc98V8llHDebYGFGlRptTrUuWpO6/dtzbd+t1C0Y+a8j6HMc6y7Fzq1Ks1y0qnNCP865bK3k5avyOI/ZI8PWl9+z3498M+JVWZY5bkShuRvSMnP4EV41+xF4ku7r422VvqEpaKy0yeFCx6Rqc/kKvzXnxe+FF14z+DnhnRJbweKLtjbXqZ8tI5OCc9OR+Vea+JrK+/Zg+IMVnArTz3Ggm2Esf3TPcLhseu05FfL1cRPBvLq0qcoxwj5ajaa1c24xu99FfS61R7sKMcT9cpxnFyxC5oJNPTlSb8tXb5HY6/wDHLWrr9p6P41TGb/hHtP1D+zhIM+WsQGCPTJ+9XT/Fn4+eGrP9qOb4kWsy6haaTp4j08R/MrTOnH6nmvrL9nL4NeC7P9n638J/Ea3huZNWJvLqKUch36fQgV8UfEP4d+Dv2dP2gLbxJc6G+reEjiWCNMuFfHQ57qexr0Mwy/OsHgKWNq1FyVqsK021JulNp7pJ+6tH5NJHHg8ZlmJxdTDU4PmpwlTik0lOKts39p6+qbPpj4W/CbWof2cPFfjDxjeLp2s+L4pLqa4nO3y4zyoY9RkdvevOPgZ8Z/2jvBXw2sLHw/4NTWtDtg0cFxCCjSKpwT759cc1c1Dx/wCKv2xfGFr4U063n0LwNYFZbsuCrThP4eMZz0AHSvX5/wBt74OeDfDY8OeCtOuZ72yLWtvYJHt5jO0Z9jjPrXq4epgYSpYijjJYejTg4Rqda0rqU2oyTurvteTemxw1oYqSnRqYZVqk5KcodKStaKbTVnZd7JLzPUvg3+09F8RvFTeAPFuh3Xh3WvKM0cNwPlkQddpr6lu/+PWX/cb+VfCXwC8JeMvFXxAm/aD+M0yWt/PCYbCxHHkQtzz719r3eu6P9ll/0hPuN39vpX6VwvXxtbBe0xrbbk+VyioycPsuUVom+3a19T4jPaWFpYnkwtkklzJPmipdUm90vzMPWtVbQvh3eazGcNa2Usq/VVJH618rfsYzaR4e+BN58Q9clEbX11c3t3cOecBj1PsOlfSusHSvEvw+u/Dsd0iNe2ckKtnoXUgV+Vvh7wR+0Drfhu1/Zqu7T+ytCgu3kutQDcSQls4z3HoPzrxeJsXiMJmeGxNOhKpanUjBRTa9pJxtd7RVr6vpc9TI8PRxGBrUJ1VD34OTbt7iUr2769F1scJ8btf134v6pJ+0FfFoNCtdUgsNPRu8cbZZv0yfevtr9r7xpput/ss2PiLRnZY7ye1kgZhtb5QSDj8K9N+I37P3w/8AGnwesfhDpN6mm2tg8bxyIMklfvE+7ZPPrWv8Tfgr4G+JXgjQ/Al1qJtbPRJoZFWPGJFiAG0g9jXh0+Fc2o0sxgrTniKcbu+9RuXNbXRRT08rWPVnn+AqTwUtYxozdlbaCS5fVtrX5n5X6n4E1D4daV4D8da+W/tDVtSS7nlf7wVypUEn25r7Y8b3UXiP9uLwhY3DCaC10wzxjOVDEE5H519G+Nvh18LvifaXHg3xYiS2lukXk7TtaMqMAqR04r5E+KX7NXiHwFq+kePv2eL97rUdORoXjupi8hVgQCpbsAelcuM4XxmUxk8LS9pQ5qE2ov3/AN3ZS923vOT97c2w2fYbMGliJ8lXlqxV/h9/4fe6W22PKP2lPHqfEn9p/RtG0pQ1joeoW1kZAB80pcM/Pfpiv2WiAWJVHYCvzD8Nfsza3pHgfw7f3c8E3iJNdj1XUiz9EP3hu77R+tfpSuu6QFANwn5//Wr6TgrBY6nXxuLx8HGdZxnZ9E07R9YqyZ4vE+Kws6WGw+EknGkpR9dVr890Qa7jFrn/AJ7r/I1vVxut67o/+i/6Qn+vXv7Gtz+3tH/5+E/P/wCtX3x8ia1FZP8Ab2j/APPwn5//AFqP7e0f/n4T8/8A61AGnJ/q2+hrF8Nf8gWD/dqSTXdH8tv9IToe/wD9asbw3rujjRYP9IT7vrQB2VFZP9vaP/z8J+f/ANaj+3tH/wCfhPz/APrUAa1c7bf8jLc/9co/61c/t7R/+fhPz/8ArVz1vrukDxLc/wCkJ/qo+/1oA7eisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1qAPhj/gqZ+z3H+1J/wAE9fi38FVtxc3ep+HL2SyQjJN3bIZoQPcugUfWvyn/AODYH43XXxX/AOCSfhHwjrFw02peBNWvNBnVzl0WCZjGOucBGAH0r+ji61PQb61ksrmZHjmUo6noVYYI6elfxv8A/Bvdrlv+zl/wUC/a7/YVvnjt7PSfFMevabEMhfLlleJwo7KFEX50Af2e0Vk/29o//Pwn5/8A1qP7e0f/AJ+E/P8A+tQBrUVk/wBvaP8A8/Cfn/8AWo/t7R/+fhPz/wDrUAVvDP8AyCV/35P/AEI1v1xXhrXdH/slf9IT779/9o1v/wBvaP8A8/Cfn/8AWoA1qKyf7e0f/n4T8/8A61H9vaP/AM/Cfn/9agCsf+Rn/wC3Yf8AoRrfrizrmkf8JNn7Qn/HsO/+0a3v7e0f/n4T8/8A61AGtRWT/b2j/wDPwn5//Wo/t7R/+fhPz/8ArUAVvEv/ACCz/wBdIv8A0MVvDoK4zxLrujnSz/pCf6yPv/tit0a9o+B/pCfn/wDWoA16Kyf7e0f/AJ+E/P8A+tR/b2j/APPwn5//AFqANasPw/8A8ecn/XeX/wBCNTf27o//AD8J+dYega7o4tJB9oT/AF8vf/aNAHZUVk/29o//AD8J+f8A9aj+3tH/AOfhPz/+tQBrVhy/8jFD/wBcH/8AQhU39vaP/wA/Cfn/APWrEl1zSD4ihPnr/qH/APQhQB2NFZP9vaP/AM/Cfn/9aj+3tH/5+E/P/wCtQBrVh+Jf+QFc/wC7/UVN/b2j/wDPwn5//WrD8S67o50K5H2hPu+vuKAOxHQUtZA17R8D/SE/P/61L/b2j/8APwn5/wD1qANaisn+3tH/AOfhPz/+tR/b2j/8/Cfn/wDWoAr6D0vP+vqX+lb1cZoWu6QBef6Qn/H1L3+lbv8Ab2j/APPwn5//AFqANaisn+3tH/5+E/P/AOtVi21KwvJDFayq7AZwPSgC9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVJcawJGEVtGygnBMmCR9NtatFAGR9p1v8A59Y/+/p/+JrH1651r+yJ/wDRY+g/5a+/+7XX1j6//wAgef6D+YoAX7Trf/PrH/39P/xNH2nWv+fWP/v7/wDY1r0UAY/2nW/+fWP/AL+//Y1k6Vc615t5/osf/Hwf+Wv+yv8As111ZGlf628/6+D/AOgrQB+fnxHm1af/AIKdfCdGt490Hw+8ZyAeZx817oi/3a/QP7TrX/PrH/39P/xNfB/xFxH/AMFQfhU7f8tPh34yQfUX2iGv0HoA4/ULjWv7SsP9Fj/1j/8ALX/YP+zWz9p1v/n1j/7+n/4mm6h/yE7D/ro//oDVs0AY/wBp1v8A59Y/+/v/ANjUNxc619mkzax/dP8Ay1Pp/u1vVBdf8e0n+6f5UAc7o9zrX9k2uLWP/VJ/y19h/s1pfada/wCfWP8A7+n/AOJqXRv+QRa/9ck/kK0qAMf7Trf/AD6x/wDf3/7Gsm3uda/tq6/0WP8A1cX/AC1/3v8AZrrqyLf/AJDd1/1zi/m1ACfadb/59Y/+/v8A9jR9p1v/AJ9Y/wDv7/8AY1sUUAchrdzrX2aLNrH/AK+H/lqf74/2a2PtOt/8+sf/AH9P/wATTdb/AOPaL/r4h/8AQxWzQBkfadb/AOfWP/v6f/iaT7Trf/PrH/39P/xNbFFAHIaJca19hOLWP/Wy/wDLX/bP+zWv9p1v/n1j/wC/p/8AiaND/wCPE/8AXWX/ANDatigDI+063/z6x/8Af0//ABNY81xrX9u2/wDosf8AqJf+Wp9U/wBmuvrHm/5D1v8A9cJf/QkoAX7TrX/PrH/39P8A8TR9p1v/AJ9Y/wDv6f8A4mteigDlNcuda/sa6/0WP/VP/wAtT6H/AGa0kuda2D/RY+n/AD1P/wATUut/8ga6/wCuT/yNaSfcH0oAyvtOt/8APrH/AN/T/wDE0fada/59Y/8Av6f/AImteigDkNOuda+3X3+ix/61f+Wp/uL/ALNbH2nWv+fWP/v6f/iaTTf+P6+/66r/AOgLWxQBkfadb7Wsf/f0/wDxNY+qXGs/abHNrH/x8f8APX/Yb/Zrr6x9Vx9osf8Ar4/9kagBftOt/wDPrH/39P8A8TXyF+3Hcata/AGXX5reNV0jWtDvyRJk4g1G3J/hr7Ur5R/bo06bUv2P/iKtqC01rolzeRAdfMtB56/+PIK9nh2SWa4Rvb2kPu5kcOaJvB1rb8svyZ9LNca1zi1j/wC/p/8AiaytBuda/sW0/wBFj/1Sf8tT6f7tXfCurxeIPCum69AwdL20huFYdCJEDA/jmrWg/wDIFtP+uSfyryJxcZOL3R2xaaTQn2nW/wDn1j/7+n/4mj7TrX/PrH/39P8A8TWvRUjOQjuda/t6X/RY/wDUJ/y1/wBpv9mtj7TrX/PrH/39P/xNJH/yH5f+uCf+hNWxQBkfada/59Y/+/p/+JrwfwLLq2PGd19mjMkviRt2ZMfcjtkX+H+6or6PrjbnQNM0Syv59OQo2o3kd1Pkk7pSY0JGenCDgV0UqqjTqQe8kvwaZnODcoy7f5G39p1r/n1j/wC/p/8AiaPtOt/8+sf/AH9P/wATWvRXOaGR9p1r/n1j/wC/p/8Aiax9GuNa8qfFrH/x8S/8tT/eP+zXX1j6L/qp/wDr4l/9CNAC/ada/wCfWP8A7+n/AOJo+063/wA+sf8A39P/AMTWvRQB+Zv/AAVSm1Nv2OPERubdERZdPYlZMkYv7XttFfopbXOtfZo9trHjaP8AlqfT/dr4R/4KjWiXf7FnjUP/AMsbKOcf70NzA4/UV91eELyXUPCWl6hMdzz2kEjH1LICf519LideH8K+1av+MMP/AJHlUn/wpVl/07p/+lVC39p1r/n1j/7+n/4mqOp3Otf2bcf6LH/qn/5an0P+zXS1R1P/AJBtx/1yf+Rr5o9UzbK41r7HF/osf3F/5an0/wB2rP2nWv8An1j/AO/p/wDiau2P/HlD/uL/ACq1QBkfada/59Y/+/p/+JrHsbjWv7UviLWP70f/AC1P90f7NdfWRYqw1S+JHBaPH/fIoA+N/wBtu81bTPh34W8XTwJHFoXjTw5eyMJM7Y/tscTfwjqJMfjX2R9o1r/n1j/7+n/4mvlr9vTSZNW/ZC8ctApaXT7AakmOoawkS5B/Dy819UaJqUOs6LZ6xbnMd3BHMp9pFDD+de5ifeynDS6qpVXytSa/Fs8+lpjaq7xg/wAZp/kjD1i41rNp/osf/Hwn/LU+h/2a2ftOtf8APrH/AN/T/wDE0mrglrTA/wCXhP5GtGW6tYTiaRUP+0QK8NK+x6Bn/adb/wCfWP8A7+n/AOJo+061/wA+sf8A39P/AMTVhtV0tBlrmIfVx/jVQ+JPDoODf22f+uq/41apyeyJ5l3MrQbnWv7Ji/0WP+L/AJan+8f9mvi//godNqj/ALP1os9uig+J/D3STPP9oQ/7Ir7R8O69oUulwxxXtux+bgSKe596+QP+ChxEvwC09U53+KvDoGP+whDXvcLRaznB3X/LyP5o8/N2nga9v5ZfkfaxuNazxax/9/T/APE1jfaNa/4SAf6LH/x7/wDPU/3v92uwrH2t/b+7HH2fGf8AgVfPHpC/adb/AOfWP/v6f/iaPtOtf8+sf/f0/wDxNa9FAHI67ca3/ZM/+ixdB/y1PqP9mtf7TrX/AD6x/wDf0/8AxNGvf8gmb6D+YrXoAyPtOt/8+sf/AH9P/wATR9p1v/n1j/7+n/4mteigDjtGuNa33mLWP/j5f/lqfQf7NbX2nWv+fWP/AL+n/wCJqPRfv3v/AF8v/IVt0AZH2nW/+fWP/v6f/iayL251r+07LNrH95/+Wv8Asn/ZrrqyL7/kJ2R7bn/9BNAB9p1r/n1j/wC/p/8Aiap3+s3mlWb6hqiW9tBEMvJLPsRQeOWKgDmt9pokOGYD6mszV9M0HxLpc+ha9b29/ZXSGOa3nVZYpEPVWRgQQfQirglzLm262FK9ny7la5u9YezkZbaIgoSCJfb/AHar6Rc61/ZNri1j/wBSn/LU+g/2a+cvHXwM0/wL4Y1DxP8ADDxfrHgaDTbaW5eK3cahp6RxKWb/AEO5EqhQB92Ex+1eQ/s7/tM/EjUfi9pHwF+I1xoniePW/Dg8RaTr3h/zId1kCgT7ZayF/JaQP8jK5ViCMDt7VPI5YihUxODqKcYJtppxkkldvrB2WtlNytrY8+WYqnUjSrx5XLRNNNXe3975uKXmffn2nWv+fWP/AL+n/wCJo+063/z6x/8Af0//ABNa9FeEeicha3Gtf21eH7LH9yH/AJa/73+zWx9p1v8A59Y/+/p/+Jptr/yG7z/rnD/7NWzQBkfada/59Y/+/p/+JrJ1e51ry4P9Fj/18X/LU/3h/s11tZOr/wCrg/67xf8AoQoAT7TrX/PrH/39P/xNH2nW/wDn1j/7+n/4mteigDI+061/z6x/9/T/APE1j6Hc619g/wCPWP8A1sv/AC1/22/2a6+sfQv+Qf8A9tZf/Q2oAX7Trf8Az6x/9/T/APE0fada/wCfWP8A7+n/AOJrXooA5GW51r+3Yf8ARY/9RJ/y1P8AeT/ZrX+063/z6x/9/T/8TRL/AMh2H/rhJ/6Ela9AGR9p1r/n1j/7+n/4msjXrnWv7Fuv9Fj/ANW3/LU+n+7XXVka/wD8gW6/65t/KgBq3Gt7R/osXT/nqf8A4mvgP/goe+pyeA/htNNbRjyfij4KdcSZyf7UhH933r9FF+6K/P3/AIKJyongP4aQuced8UvBKf8AlUhP9KAPuw3Gt9rWP/v6f/iay9Jn1c314JbaNVM4yRJkgbF7ba6usjTf+Pu+/wCuw/8AQFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/0v7+KKKKACs7Uba3eznkdFJMbcke1aNVL/8A48Zv+ubfyoAzdDsrT+xbT92v+pTsPQVqfYrT/nmv5Cqmh/8AIFtP+uKfyFalAFb7Faf881/IUv2O16eWv5CrFFAHK6faWw1rUj5a8eV2H92v5S/+DZKGCT9oH9udHQHHxZucZH/TxfV/V3p//Ia1P/tl/wCg1/KN/wAGx7f8ZD/t0L/1Vi5P/kxfUAf1p/YrT/nmv5Cj7Faf881/IVZooA5jWbK0+1WH7tf+Pgdh/dat77Faf881/IVlaz/x9WH/AF8D/wBBat6gCt9itD/yzX8hS/Y7U/8ALNfyFWKKAKc1na+U37teh7Csnw9ZWn9h2v7tf9WvYVvTf6pvoayvD3/IDtf+ua0AaH2K06eWv5Cj7FadPLX8hVmigCt9itP+ea/kK5+ztLX/AISO8Hlr/qouw9Wrqa56z/5GO8/65RfzagDY+xWn/PNfyFKbO1P/ACzX8hViigCubO1P/LNfyFYOvWdrttT5a/8AHzF2HrXTVg699y1/6+Yv50Aa32O1P/LNfyFfyu/8FQrOP9tP/gtp+zF+wfZRrc6D4Cab4heJIl5Crb5ECuP9ooV/4FX9Ud1cxWdrJdznakSl2J7BRk1/Kf8A8EPxqP7Yv/BTT9q//gpdqx+0aS+rR+B/Dcx5T7LY48zyz6YjQnHBMhNAH9V32K07RL+Qpr2VptP7tenoKt01/uH6UAc54bsrT+xYf3a/xdh/eNbn2O0/55r+QrM8N/8AIFh/4F/6Ea3KAK32O0/55r+Qo+xWn/PNfyFWaKAOWis7T/hJph5a/wDHunYf3jXQfYrT/nmv5CsiL/kZ5v8Ar3T/ANCNdBQBW+xWn/PNfyFH2K0/55r+QqzRQBzHiOztRYL+7X/Wx9h/eFb32O0/55r+QrK8Rf8AHgv/AF1j/wDQhW9QBW+x2n/PNfyFU7iTRbSeG1u2hiluWKxIxAZ2AyQoPU4GeK1a8G8L/CzW7r4lXnxV+I90t5eQs9vpNrHnyLK2PG4A9ZZB95uw4HFdOHpU5Kcqs7WWi6t9Ev1fRd3ZGNWc04qEb3fyS6v/AC8z282Vngnykz67RWH4ds7T+zf9Wv8ArJOw/vGulPQ1h+Hf+Qb/ANtJP/QjXMbGp9itP+ea/kKPsVp/zzX8hVmigCt9itP+ea/kKwTZWn/CSj92v/Huew/vCunrBP8AyMo/69z/AOhCgDV+xWn/ADzX8hR9itP+ea/kKs0UAVvsVp/zzX8hWF4ksrT+yZP3a9V7D1rpqwvEn/IJk+q/zoA0xZWmB+7X8hS/YrT/AJ5r+QqwOgpaAK32K0/55r+Qo+xWn/PNfyFWaKAOX8O2dqbWceWv+vk7D1rf+xWn/PNfyFZHh3/j2n/67yfzroKAK32K0/55r+Qo+xWn/PNfyFWaKAOXnsrT/hJLceWv+pfsPUVv/YrT/nmv5Csmf/kZLf8A64v/ADFb9AFb7Faf881/IUfYrT/nmv5CrNFAHO+ILK1/sibEa9PQetasNlaeUn7teg7CqXiHP9kTY9BWtD/qU+goAi+xWn/PNfyFH2K0/wCea/kKs0UAVvsVp/zzX8hWBolna+bejy1/4+G7D0FdRWBof+tvf+vhv5CgDW+xWn/PNfyFH2K0/wCea/kKs0UAVvsVp/zzX8hXyRov7Ntl4d/bJ1z9pb7WsjeI9DtdINps/wBX9jJIbPvmvsCsC9/5Dtn/ALr/AMqANb7Faf8APNfyFH2K0/55r+QqzRQBW+xWn/PNfyFZOu2Vp/ZFx+7X7h7Ct+snXf8AkEXH+4aAH2NlafY4v3a/cHYelWvsVp/zzX8hWJqfiLRfCnhptf8AEFwlraW0QeSRzgAAV418Lv2lPBfxV8Vz+EtItru0nSLz4GuY9gniBxuTPOK4a+Z4WhWp4arUSqT+FdWdVHA4irSnWpwbhHd9EfQH2K0/55r+Qo+xWn/PNfyFct4n+IfgbwYhfxVq1rYY7TSBT+XX9KseGvHPg/xjbi68Lalb36EZzDIG/Qc1ssXQdT2KqLn7XV/u3M/q9Xk9pyPl72dvvJdKs7Q3t7+7X/WjsPStWNNLmleCHynePh1GCVJ9R2rw7xj8efh58LNdu9M8WyzpM7BwIoHkG0j1Ax+tfHnwJ/aj+H2ieKfGOteImvZpdX1My2/lQtJ+5AwoIH3fpXhZjxVgMJi6WEqVY3k2pXkvdtFvX1dl0PWweQYzEYepiIU5WSVtPiu7aei1P07+xWn/ADzX8hR9itP+ea/kK5vwR4z0rx94fi8SaLHNHbykgC4jMT8f7J5rra+hpVYVYKpTd4vVPujxqlOUJOE1Zrc5fU7OzGqWJMaY3P2HpXzL+29Fewfs96pJo8WcyReaUHPl556dq0P2yNdvdA+Er3FhM8Ek88cG+M7WAkIBwR0r2Oz1bwV4e8CWOneLNQtxbi1iV/tkiksNo+9uPNfP5vVhjY4rKXLkvS1nfbn5ktNNuW+56+XQlhnh8wUea0/h78vK/wBT4U/4J6eFb69i8QfEPU7fy4r1o4INy4UhByVz2r9MfsdqP+Wa/lXnvhX4h/Ce+ZNC8H6tp7lOFgt5EH5AGtzx3458PfDrwvdeLvE8whtLVdxPdj2UDuT2qeG8HhsqyqFCNdTjBNyndWu25Se+m/fYrOsTXx+YSquk4ylZKOt7Wsl5mvqllaf2bP8Au1/1bdh6Umk2Vr/ZkH7tfuDsK+bvBWm+Pfilaf8ACzvHlzPplowaXT9KgYooj/habHLMRzjoK+mdJ/5BkH+4K9jAYx4qn7bkcYv4b7td7dL9E9bb22PNxeGVCfs+ZOS3tsn2v1+WnqWPsVp/zzX8hR9itP8Anmv5CrNFdxylb7Faf881/IVgaZZWh1a//dr95Ow9K2pNT06K+TS5J0W5kUssRYbyo6kDris7TP8AkLX/APvJ/KkpJ7MbTW5rfY7TOfKTI9hWNqnhHwvrcsM+r6fb3LwNujaSMMVPqMisb4k6L4p8QeDrvTfBd+dO1JgGhmHqpzg+x6Guk0BtTOi2n9tqI7zylEyqdw3gc4PeuaUlOq6E6d42Tu0mnrt6qyevfQ2jFxgqsZ63ast1pv6MvfYrTtEg/AVxHjkaPp9hHqOoWqTw22+VkKg5CKSRz9Kb8UvHcfw28E3fi+SHz/sxQCPO3JdgvX8a8F+JX7Rnws+2v4Avr7ydSltmYLt3RkyxEhQwzzzjpXHmGb4TDKVOtVjGVlbm0Wt+Va6auL0OnB5diK3LOlTclfprta+3a6PoH4fav4a8X+DrDxP4ftEt7W+iEqIFAwD2OBirsHgHwRa6m+s2+k2qXchy0oiXcT65xXgf7GGqtqfwB0pWOfszzQ59kcivqJbu0e5azSVDMgDMgYbgD0JHWpyivDG4DDYmrFNyjGWy0bWtuxWY0pYbF16EG7Rk18k+on2K0/55r+Qqvd2Vp9ll/dr9xuw9K0ar3f8Ax6y/7jfyr2DzTK0WytP7Kg/dr9wdhWr9ktSMeWv5VT0T/kEwf7grzH45fEu++FHggeK9OtBey/aoIPJ7sJWwcY746Vz4vFU8NRniKztGKu/RG2Hw869WNGmvek7I9Ru49PsrWS8njUJEjOxwOijJrF8Ka54e8aaBb+JdCUPa3S7kJUA46dKwdT8VaX4m+GWoeINDlEkcljM3B5VthyCOxHcGvnf9nL4neFvBf7Men+LPGN2tpaWjSxs7cksHOAB3J9K8ytnFOnjKdKUkqcqcp819LRcdb7Ws2d1LLZzw06ii+dTjG3qpdO+h9T2Vna/8JDe/u1+5H2HpXQ/YrT/nmv5CvI/hP8UvBnxaN74m8E3P2i2GyNtw2srDsR2pvxU+PHgH4R+TaeIZnnv7r/U2VsvmTv7hR2rsnmmDhhljJVo+yevNdWfozmjgMRKv9WjTftP5ba/cevfYrT/nmv5Cj7Faf881/IV4B8Nv2l/AfxG8QjwgkN3pWqOpeO2vojE0ijqVz1xX0RV4HMMNjKftcLUUo7XXfs+zJxWErYafs68HF769jmdcs7QC1/dr/r17D0Nbv2K0/wCea/kKy9d6Wv8A13X+RrdrsOYrfYrT/nmv5Cj7Faf881/IVZooApyWVp5bfu16HsKxvDdnaHRYP3a/d9BXRSf6tvoaxfDf/IFg/wB2gDU+xWn/ADzX8hR9itP+ea/kKs0UAVvsVp/zzX8hXPW9nanxLc/u1/1MfYe9dVXO23/IzXP/AFyj/rQBs/YrT/nmv5Cj7Faf881/IVZooArfYrT/AJ5r+Qr+MPWoR+yr/wAHavlGE2+kfGnwzEy5ICSzrArE49pIHH1r+0Wv48f+DkLTY/2ff26f2Qf28LRBF/Y3ihdFvp8f8sXkQ4Y/7ksmB9aAP7Bfsdp/zzX8hR9itP8Anmv5CodLv4dU0y31O3OY7iJJVI9HAI/nV+gCt9itP+ea/kKPsVp/zzX8hVmigDl/DVlaf2Sv7tfvv2H941v/AGK0/wCea/kKyfDP/IJX/fk/9CNb9AFb7Faf881/IUfYrT/nmv5CrNFAHMGztf8AhJ/9Wv8Ax7DsP7xrfNnan/lmv5Csg/8AIz/9uw/9CNb9AFb7Faf881/IUfYrTp5a/kKs0UAcv4ls7X+yj+7X/WRdh/fFby2VoAP3a/kKyvEv/ILP/XSL/wBDFbw6CgCv9itP+ea/kKX7Ha9fLX8hViigCv8AY7Xr5a/kKwtAs7Q2ch8tf9fL2H9410tYfh//AI85P+u8v/oRoA0/sVp/zzX8hR9itP8Anmv5CrNFAFb7Faf881/IViS2lr/wkUI8tf8AUP2/2hXSVhy/8jFD/wBcH/8AQhQBp/YrT/nmv5Cj7FaHny1/IVZooAr/AGO16+Wv5CsLxLZ2v9hXJ8tfu+g9RXS1h+Jf+QFc/wC7/UUAaQsrTA/dr+QpfsVp/wA81/IVYHQUtAFb7Faf881/IUfYrTp5a/kKs0UAczoNna4vP3a/8fUnYe1bv2K0HPlr+QrK0Hpef9fUv9K3qAK4s7Uf8s1/IU6O3giO6JAp6cDFTUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFUH1TTI3MclzErKcEFwCCPxoAv1j6//wAgef6D+Yqf+19J/wCfqH/vsf41zmo+JvDep6BPdadqFtPFyu+OVWXKtgjIOODwaXMr2vqOztc7Sis7+19J/wCfqH/vtf8AGj+19J/5+of++1/xpiNGsjSv9bef9fB/9BWpv7X0n/n6h/77X/GsjStX0nzbz/Sof+Pg/wAa/wB1fegD4T+Nd7Bp3/BTX4CRs2JNR8I+PYAPURSaLJ/Sv0Ur83P2khoift+/s1eLpbiLMf8AwmWlo+8feu9OjnxnPcWp/Kv0S/tfSf8An6h/77X/ABoAr6h/yE7D/ro//oDVs1yuoavpP9p2H+lQ/wCsf+Nf7je9bP8Aa+k/8/UP/fa/40AYvjHxpoHgTSV1jxDL5ccs0dvEoxukmlOFRckDJ9yAAMk4FaD65otzaO1vdwOCp+7Ip7exqlrlv4M8Taa+j+I1sr+0l+/DcBJY2x6q2RXiuofs6fsy3Mckr+G9JVsE/IAg/JWFeZipZhGo3howlCy0lKUWnrfVRnfp0R20FhHC1aUlLySat85Rt+J7R4X8Q6FqtudL027inubBIkuIkcF4mdAy7h1GQcj1rqq/LrXPhb+z3efF/SdH8MWUNhpnh/T5r7xNdw3MkUSK8f7mMurg+YGy+FOQPyr6X/ZZv7o+DtQ1m6vrhdD1C9eXQ7fUbgzXMVkAFDMzndiRgXVTnaCK8fK+IMRXxjwdelFNOSvCbkvdSu7OEdE3yN3+NNW0dvSx2UUaWHWIpVJbRdpRSfvXstJPVpcyVvhad9j6urIt/wDkN3X/AFzi/m1Tf2vpP/P1D/32v+NZFvq+k/23df6VD/q4v419W96+rPAOoorO/tfSf+fqH/vtf8aP7X0n/n6h/wC+1/xoAr63/wAe0X/XxD/6GK2a5bW9X0n7NF/pUP8Ar4f41/vj3rY/tfSf+fqH/vtf8aANGis7+19J/wCfqH/vtf8AGj+19J/5+of++1/xoAh0P/jxP/XWX/0Nq165fQ9X0n7Cc3UP+tl/jX++3vWv/a+k/wDP1D/32v8AjQBo1jzf8h63/wCuEv8ANKn/ALX0n/n6h/77X/GsebV9J/t63/0qH/Uy/wAY9U96AOporO/tfSf+fqH/AL7X/Gj+19J/5+of++1/xoAZrn/IGu/+uT/yrST7g+lc5rmr6T/Y13/pUP8Aqn/jX0+taSavpOwf6VD0/vr/AI0AadFZ39r6T/z9Q/8Afa/40f2vpP8Az9Q/99r/AI0AQab/AMf19/11X/0Ba2K5bTtX0n7dff6VD/rV/jX+4vvWx/a+k/8AP1D/AN9r/jQBo1j6r/x8WP8A18f+yNU/9r6T/wA/UP8A32v+NY+qavpP2ix/0qH/AI+P74/uN70AdTXmvxm0NfE3wf8AFfht+RqGj31t/wB/YXX+tdz/AGvpP/P1D/32v+NZet3mlX+i3liLqEmaCSP76/xKR61thqjp1YVF0af3MzqwUoSi+qZ41+yNrEmvfsr/AA71Wbl5PDmmhj6lIEXP6V7poP8AyBbT/rkn8q+Rf2B9esJ/2OfAC3NzGrw6YICGcAjyHeP1/wBmvqnQdY0k6Jaf6VD/AKpP4x6fWvQz+mqeZ4qmulSa+6TObLZ82Doy7xj+SOnorO/tfSf+fqH/AL7X/Gj+19J/5+of++1/xryTtII/+Q/L/wBcE/8AQmrYrlo9X0n+3pf9Kh/1Cfxr/eb3rY/tfSf+fqH/AL7X/GgDRrx/w/4t1LxYPE4u1RbbS9ZXT7YKPmKQrAXLHPJ8xnA9gK9P/tfSf+fqH/vtf8a8L8ES6fo8Pi3T7i6g8xvED3OFkU4S48mRc4PBIPSuuhGDo1W1qkrferv9PmY1HLngltr+R9C0Vnf2vpP/AD9Q/wDfa/40f2vpP/P1D/32v+NchsaNY+i/6qf/AK+Jf/QjU/8Aa+k/8/UP/fa/41jaPrOkJBcO11CAJ5iSXXAAY+9AHVV5N8Y/jh8MvgJ4Tbxj8TtTSwt2by7eIAyXF1MfuxQRLl5ZGPAVQT64HNfKvjb9svVviD4nuvhN+xtp9t4t1q1fyb/X7uTy/D+lt3Lzjm4kH/PKHPPVhzXb/Bv9mHwX4I8Vf8Lf+LOvnx78QZVw2takU2Wgbkx2NuD5dtGP9gbz3avo4ZNSwkVWzaTjfVU1/El2ve6pxfeS5mtYwktTypY+dduGCV+838K9P5n5LTvJM8Z8WfBb4zftreG9RHxn1LUvh14b1+2a107w9Z+S90LTckjS6gZEkUTSlVxGmDCo27tzNXaR/sn/ALTFpaRadpf7QGu29vAixRINI047UQAAZ8vsBX2rd6vpP9s2f+lQ/dl/jHovvWx/a+k/8/UP/fa/403xTjIx9lRjCNJO8YezpyUdEtOeMndpK7bu7XbEsmoN89Ryc+suaSb/APAWl1dlay6HwJN+yL+1FdfLc/tF+JNvpFpenxn8xHmsi/8A2IfjO9nNNfftCeOXIRiRG9tEDgegjr9Ev7X0n/n6h/77X/GqOp6vpP8AZtx/pUP+qf8AjX0PvTXFuYr4XTXpRor8qY3kuFfxKT9Zzf8A7cfn1b/sGfEi6gje6/aB+IpUqDiK+hj6j2ipf+Hb+nXh3a/8YPiVft3La6Uz/wB8xCv0JstX0n7HD/pUP3F/jHp9as/2vpP/AD9Q/wDfa/41X+uObr4ayXpCC/KKJ/sLA9ad/WUn+bPzx/4dn/Dg/f8AiN8RmPv4jl/+IrLt/wDgm14LF9dR6b8TviNavEU2uviB2PK553Ic1+kX9r6T/wA/UP8A32v+NY9jq+k/2pff6VF96P8AjH90e9L/AFyzr/oKl+H+Q/7DwP8Az6X4/wCZ+bHj7/gnDqF74F1rT4PjJ8RbxZrG4T7Jc6sssE26Nh5cimL5kbow7g159+zV+xlq/wAXP2ffBnxFuvjV8Rbcaxo9pcPa22rqkETtGN0cY8okIrAqoJJwK/X59U0iRTGbqHDDH317/jXxj/wT51XTbX9k7w5octzEp0mfU9OwXAIW0vp4lHX+6o/CvapcW5rLKq1R1lzRqU0vchtKNS/2f7qPPnkeCWMhFQ0cJdZbpwt1/vM8q1H/AIJn/DG4+zL4q8feP9bWSdVZLvX5dhznsir+hroh/wAEr/2OHwbzR9Tum7vNrF67H6/vq+6tY1fSd1p/pUX/AB8J/GPQ+9bP9r6T/wA/UP8A32v+NeK+M88+zjakf8MnH/0mx6H9hZd1oRfqr/nc/P4f8Eq/2Jc5k8MXUns+p3hH/o6tSL/glx+wdGgV/h9ayH+89zdMT+PnV92/2vpP/P1D/wB9r/jR/a+k/wDP1D/32v8AjUPjHPnvmFb/AMGT/wAxrIstW2Gh/wCAR/yPz3sP+CXX7DeoaZFMnghLaQ5+e3vbqNuCe4mr5O/bH/4J8/s7fDXwBoF/4H/tqwn1PxRoml4/ta5ljWO7uVRyFkdwGC5KtjKnBFftDoGr6T/ZEObqL+L+Mep96+Kv2/dS06bwD4EjiuI3z4+8OZw4OALnPr7V7vDPFmd1M0w9OpjasouSunOTX4tnn5tk2AjhKs44eCdt1FL8kc2v/BMX4Sxn/RvHXxAhHoniKYD/ANBrPb/gmt8PRq/2aD4jfEWP9zu3DxFKTndjulfpCdX0kcG6h/77H+NY39r6T/wkP/H1D/x7/wB9f731rxv9c8764qX4f5Hf/YeA/wCfS/E+Bl/4J0TWB3eHvjX8S7EjpjWhJ/6FEad/wwh8W4flsv2hfiAq/wDTW5hkP5mMV+iH9r6T/wA/UP8A32v+NH9r6T/z9Q/99r/jR/rjmz+Kqn606b/ODF/YWB6Qa9JSX5M/ODVP2IvjlbafJIP2h/GzKoHDC3bPP+4K0f8AhiT9oEcD9orxl+MVqf8A2SvvfXtX0n+yZv8ASoeg/jX1HvWv/a+k/wDP1D/32v8AjS/1wzP+aH/gmj/8rD+w8H2l/wCBz/8Akj88P+GJf2hf+jivGP8A35tf/iaP+GJP2gz1/aK8Zf8Afq1/+Ir9D/7X0n/n6h/77X/Gj+19J/5+of8Avtf8af8Arhmfen/4Jo//ACsP7DwnaX/gc/8A5I/N7Tv2KPj5M9zt/aH8ZLsmZTiO25IA5+7Wkf2G/jjN8t1+0R44K/8ATM28Z/MJX3ro2r6VvvM3UX/Hy/8AGPQe9bX9r6T/AM/UP/fa/wCNL/W/M/5of+CaP/ysP7Dwf8sv/A5//JH53H/gnTLqpB8ZfGn4k6qO6nWhCv8A45EMfnVB/wDgl7+zmNRthruq+LNXaVn3Pe69cu3Ck9VK1+kH9r6T/wA/UP8A32v+NZF9q+k/2nY/6VD96T+Nf7p96f8ArnnS+DFSj/htH/0lIFkWA60U/W7/ADufCp/4JZfseN/rdK1Zz3LazfHP/kakH/BLH9jlf9XpGqIfVdZvh/7Wr9Av7X0n/n6h/wC+1/xrxH9oT4w658LPhldeIfhxo0nivxFPJHZ6Zp1sQRJdXB2o0zA/u4U+9I5IAUdQSK1wvFXEOIrQoU8fV5pNJXqSS17tuyXdt2XUmtlGWU4Sqzw0LJX+BP8ABK7Pyl/aq/ZW/ZJ+Dn9n/DD4b6FrXin4i+Kw0WjaCNcvjHt6NcXX775LaPksSRuwQO5H6CfsTfsieGf2W/h0rTSrqnivWoYH1bUyMbhGoEdvCDylvAvyxp7ZPJwKn7MH7PVv8IrPVvir8WtYg8R/E3xWvna3qzMpWIYytpag/wCrt4uAoGNxGT2A+vtI1fSf7Jtf9Kh/1Kfxr/dHvXfxFxViauG/smnip1aad5zlKT9pJdIp7U0/hW8mueX2Yx58syelGr9dnRjCX2YpJcq87byfXotl1b+J/wDgo5ovi3XP2Z/FL6Xdz6fpWk6LqOq3U1rMYZZbm1jBtYcqQ2wyEyPjg+WFPBIP2D8L9WuNf+Gnh3XbtzJLe6ZaTu56s0kSsT+JNfPH7dd1DqP7G3xMstLkS4nfw7fbY42DMcRknAByeM1832/7f/wg8E/s6eDPDPwY1C08deP9T0iw0/StB06UTSm8ECKTc7T+4jjOTIXKnAIHqM8LluLzLJKFHC0uZxrTWi0ScINym9ktNZNpJR7IdbFUcLmFSpWnZOEXr1tJqyXX0Wt35ntmoftTSp+3npv7KXhmC2u4JdBm1PWLgljNbSx8wRrg7RlTucMCcMuMd/uSvw1/ZE+CV78L/wDgoXqOo+PNZj1jxVJ4JOq+Ir/eDHJqeq3gLJFk4EcUcaxoP7ozgZwP25/tfSf+fqH/AL7X/GuTi7AYLBV8PQwL5oqlByl/NJ3bkr9GmuXb3bXVzbJMTiK9OrUxCs+eVl2SskvVdfO5o1k6v/q4P+u8X/oQqX+19J/5+of++1/xrJ1fV9J8uD/Sof8AXxfxr/eHvXyZ7R09FZ39r6T/AM/UP/fa/wCNH9r6T/z9Q/8Afa/40AaNY+hf8g//ALay/wDobVP/AGvpP/P1D/32v+NY+havpP8AZ/8Ax9Q/62X+Nf77e9AHU0Vnf2vpP/P1D/32v+NH9r6T/wA/UP8A32v+NAEMv/Idh/64Sf8AoSVr1y8ur6T/AG7D/pUP+ok/jX+8nvWv/a+k/wDP1D/32v8AjQBo1ka//wAgW6/65t/Kpv7X0n/n6h/77X/GsjX9X0n+xbr/AEqH/Vt/GP8AGgDp1+6K/N3/AIKULcz6B8FrO2OPN+MHgzd7pHeeYf0Sv0RXV9J2j/Sof++1/wAa/N3/AIKC+JNNk8ffs2eFo5VmGrfFvTdwRgcCy0zU7vJ54AMI/HFAH6aVkaZ/x933/XYf+gLU39r6T/z9Q/8Afa/41laVqmlyX17HHcxMzTgABxkkovvQB01FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/kK1Ky9D/5Atp/1xT/ANBFalABRRRQBzmn/wDIa1P/ALZf+g1/KB/wbINj9pD9uiP/AKqtcn/yZvq/q/0//kNamf8Arl/6DX8nf/Bs2wi/ap/bptB2+KVw3/kze0Af1z0UUUAYOs/8fVh/18D/ANBat6sHWf8Aj6sP+vgf+gtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/IDtf8ArmtAGzRRRQAVz1n/AMjHef8AXKL+bV0Nc9Z/8jHef9cov5tQB0NFFFABWDr33LX/AK+Yv51vVg699y1/6+Yv50AfAv8AwVr/AGmD+yJ/wTq+K/x1tWAv9L0G5isFLbS95dL5MAHuZHXpXgH/AAQF/Znm/Zd/4JW/DDwtq9u0Gs+IrJvEeqeYMSG51RvO+fvkRlBz6V8Bf8HLPijUvi7H+z5/wTn8LuxvfjJ47svtkaYObDT3RnBHvI6H0+U1/T54e0PTfDGgWPhrR4hDaafbxW0EajASOJQqgewAAoA2Ka/3D9KdTX+4fpQBi+G/+QLD/wAC/wDQjW5WH4b/AOQLD/wL/wBCNblABRRRQBz8X/Izzf8AXun/AKEa6Cufi/5Geb/r3T/0I10FABRRRQBg+I8fYEz/AM9o/wD0IVvVg+IsfYEz/wA9o/8A0IVsTLFMjW0h++pBGecHg00B5z4W+Knh3xn401fwd4bElz/YYRLu6UfuFnf/AJZBu7gcsB0716ZXKeDPBHhf4faIvh7wlaJZ2od5Sq9WkkO5mY9SxJySa6ut8U6LqP6umodL7vzfa+9um2u5lRVTl/etc3lt6fLv1EPQ1h+Hf+Qb/wBtJP8A0I1uHoaw/Dv/ACDf+2kn/oRrnNTdooooAKwT/wAjKP8Ar3P/AKEK3qwT/wAjKP8Ar3P/AKEKAN6iiigArC8Sf8gmT6r/ADrdrC8Sf8gmT6r/ADoA3B0FLSDoKWgAooooA5/w7/x7T/8AXeT+ddBXP+Hf+Paf/rvJ/OugoAKKKKAMCf8A5GS3/wCuL/zFb9YE/wDyMlv/ANcX/mK36ACiiigDF8QgnR5selasP+pT/dFZXiLP9jzY9K1YP9Sn+6KAJaKKKACsDQ/9be/9fDfyFb9YGh/629/6+G/kKAN+iiigArAvf+Q7Z/7r/wAq36wL3/kO2f8Auv8AyoA36KKKACsnXf8AkEXH+4a1qydd/wCQRcf7hoA858T/AAxsfH+raVfeJZjPpenpvFiR+7km7O/94L2B4r4D/a5+IWq/B748aXr3g6FRdyaQ9rCqjAVpGwCAOuO1fqdY/wDHnF/uD+Vfmv8AHrQbPxl+2n4M0G+XdCkKyOD3CHdXwHHeEccBfCPlrVKtNKXW/MktfLoj6/hTEKWLaxHvU4U5vl6Wtd/efO/xg+Ak3gj4WaR44+IV3NqXiPxFfQiUyuSsKSYYqB68819H/tE/ATRfBPgKP4z/AA/v59D1DSLS3xDbHZDIVA5IHc/rXdf8FANGvZ/hNp+v2KFl0m/jmcDstecftMfG/wAOeOPgFoXgvwdcpean4l+zxiGMgugXAbcByOfWvjcxyrLMuqZnhqkUnGlTlTbb5nL3lzJ7uTm1f/I+kwWPx2Nhga8JaOpNTX2VH3XZrZLlR9h/BXXB8QPhpYeMNegjlub22jlk3oD823k8+uM189fsT22nXy+ObqeCJsa3JtJQHA56ccV9O/Cvw43g/wCH0HhlhhrG1SJh/tBOf1r5C/Y2v2sfA/xF1EHBh1G5kB/3VY19rinKnj8pWI1koVHL1VNX/G58xh1GWEzD2WkXKCXo5ux1NjqXiD9of4j+IFsNVutF8M+FiYIDZP5bTXI5Z2I6hcdKZ8C/j949+NOh694J0S5trfX9FkEcN5Mm9JYQSu9lz944+lfPnwz+KKfDf9k3WteibdqviLUbiC1UfeaSQkE/gDVr9lXwVrHwW/aMi8Ja6x36zpC3OT0LsNxH1BNfIYLOq88ZgZQnL9/d1mm9Pa39lH+64pe7az+8+ixOWUo4fFKUV+6/hJpa+zt7R+d763/Qt/tb/D/4t6P8PrfWviJ4ubVY5byKMWkMQhhBY9eO47VxX7Rnwz8BeB9L8MeDNDhu73VteWOae5ld7iWOEAbtiZPNfZP7cPhrXPE/wpt7fQLZ7ua3vI52jjG5iiHkgd8V458dbPxj4T+I3gT44abo9xq2m6bYxxTQRKTIjbehGMj8qOJ8kpUq+MShJpxo+/LmqOMXOSnJNtvRb228h5FmlSpSw3vJO9X3VaCbUYuCdrLV99/M83m+Fej/ABCh07wb8DvBNzpL2zx+f4gvFNu67DywHUk19AftjaV4j0vwb4RvGtp9X03Rr2KXUljG5pFjA+Zh7kUzSvF/x3/aQ1iCw0vTbjwZ4WgkV7meQ7bmcKc7F4GAe/FfUPxN+KvgT4QaRZP48eRLO7byBJsMiggfx/WvXwOVYKrl2MkpunTmoL2jgqcPdenLDT3U9HKWsr2vZHnYvH4qGMw0XFTnFyfIpOctVreeuttlHSNr2PE9H/bU/Z917SjZ/wBpnTpDEVEdxGV2nGMcZr6e8GeINE8TeG7XVvD93HeW0iDbJE25TivzD+Lfxf8AgL8QfN8NfB3wXD4h1y6youPs2xI8/wAWRzx15wK+zf2UfhHqfwf+FcOi61L5l3eSNdSop+SMv/CvsK9bhziDH4vHSwkpU61KKd6lNSST6LW8W32i3Y8/OsowmHwqxCjOnUb0hNptrq9LNJee59MUUUV98fInxX4J1B9e/bL8U/aTvXStNghiB6Lu5OPrXjHxB+N+t6z+1/oPgLwrfPFplnerFciM/LLLsO4N644rP1L4mWXwi/aB+KPinUXCzrZRfZUPWSRuFA/HmvIdF8Nt8NvGXw68R+MXEd7qd9Pql9I/VRIhYAn2FfimOzet7L6tQna2IlOq+0fb8kYt+b/CPY/UMNl1L2ir1Y3vRUYLvL2Tk38vzkfeH7WXxf13wF4f07wb4EmMfiLxDcLb2xTl40JwXFUodP8AGOveI7H4OeJdeuU1HT9OTUBqlufLnMzEggj7pAHHNeSfAbSr/wDaF+Omq/tAeIlZtI0qRrbSI3+7leNwHsO/rXqvizWJNA/bJ8PpIcRappMsA92U5Fe/HF1MY5ZpWk/YVakKUI3aXs+a3NbTWctU90krM8d4eGGSwFNL2sISnJ2V+e1+W/aMdGtr3PD/ANp34LeIfDvgSPWfE3jTVtZ8+9t7dbedlWLEjc8KO3avcJf2cvhH8PfCh1zRNLV742krG4nJlkz5RPBasb9vLVY9M+HOiGdtsR1i3dz/ALMZya9H8G+NL340fDcarDa/ZbW8ae2siT80kYQqHI7ZNVhsuyyGd4vCqmpVFTi4815taSu7yu1vHr2sTWxmOllWHr87UHOSla0V9mysrX2Z53+xFrNjpH7Ob6tqcgigtLq8kkdjgBVck14Z+y98WLz4oftZ+IvETMy299aSCGMngRxMAvHTpXiXg+6+K+o+DX/ZQ0DTLm0vLnU5GvrllKoluWyecdO/vXrnhvw/ov7O/wC2Npuj3C/Y9MvbCO2hmYYR3ZQDz6lh+dfJYXN8ROnlMYpxoYedONRtNXqNONtekFu+8rH0WIy+jGeYttOrWjOUEtfcTTv/ANvdPJH6zVXu/wDj1l/3G/lU4IIyOhqC7/49Zf8Acb+Vfu5+Tni/xJ/4W0ngixufhB9na/hkR5YrjgSxDqoPbPrXwb+0N8Sf2npfDFlbeOvC9np1quo2zxSwyl90ytlF69Ca/U7RP+QTB/uCvjT9vG9XT/hbpV05wsesWrk+gRs18Nxrl83l+JxccTOCUdYprldvJxbXnZo+r4XxkPrdDDyoQleWjafMr+jX4pnyd4s8G/tfeIry78Z2elx+GojbO139mm2RyoFOSycgkivP/gjLd/GK/wDBHwTXL2Gk3FxqOor/AAsQ+QD6joPxr9JvhN4+1v486B4lvLQLHoEkZsNOLLhnYJtdyfQseK86/ZG/Zr174Iya34p8apG2oXLFIFhO/EK5Pp1Y9q+JjwrLEY/CV8HUqVMPV5vaSna3LGUZaJJJKbiunvLU+nefxo4XEUsTCEK1Pl5Ix3u4ta3u24qXyZ5f+yjqtr4C+J/xQ0xAEs9Nd7gIOABGW6enArsf2T9P0jxZ/bn7SHxGuIpL6+uZVgkuGG23t4z2ycCvOv2YfCWu+ONc+Kmq3UMls+rCW1j8xSvzvu9fqK+XPhX4f+EWnXl54E+PGp6pol3ZXDK0CMVt5UB6EDkf1riwmYVcHTy6c6adK9dw55ckFPnfK22mtI3svN21OnE4OniJ4yMZtVLUlLlXNLl5feSV1u7X/E+3PD2vp+0N+1hZeL/BsX/Eg8HQvEbxRhZpXyMA/jx7V+jVfnQv7RHwv8ETeGvhP+zRFDcy6hexRTbYztWLPzkk8liM81+iy52jd1r9L4Rq0ZRxHLWVWq581SUfg5pJWjF9VGKS/M+I4ip1Iujem4U1HlgpfFZPVyXS7bZha70tf+u6/wAjW9WDrvS1/wCvhf5Gt6vsT5sKKKKAGSf6tvoaxvDf/IFg+lbMn+rb6Gsbw3/yBYPpQBuUUUUAFc7bf8jNc/8AXKP+tdFXO23/ACM1z/1yj/rQB0VFFFABX84v/B0/8DU+Ln/BJXxP4us492peAtSsNftJAcNGUk8p2GP9mSv6Oq+Q/wBvf4Kw/tG/sb/Ef4FyxiR/FGhXljCD089o2MX/AJEC0Aeef8EsP2gLb9qH/gnp8JPjbDIry6x4csjc7TuC3MUYSVc9yrqQa+/6/lY/4NHPi/ceK/8AgnNrHwQ1aXde/DfxRf6WYy2SkcjCZeOwy7Yr+qegAooooAwPDP8AyCV/35P/AEI1v1geGf8AkEr/AL8n/oRrfoAKKKKAMA/8jP8A9uw/9CNb9YB/5Gf/ALdh/wChGt+gAooooAwPEv8AyCz/ANdIv/QxW8OgrB8S/wDILP8A10i/9DFbw6CgBaKKKACsLw/n7HLn/nvL/wChGt2sLw//AMecn/XeX/0I0AbtFFFABWHL/wAjFD/1wf8A9CFblYcv/IxQ/wDXB/8A0IUAblFFFABWH4l/5AVz/u/1FblYfiX/AJAVz/u/1FAG2OgpaQdBS0AFFFFAGDoPS8/6+pf6VvVg6D0vP+vqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8h/tc654q8KaF4a1rwxfXmnwy6zFaXraf5fntHco6jb5gKE7sYDcZPY819eV80/tfaDLrv7PHiI2wPn6fEl/ER1VrV1kz+ABrwuJ4VJZViXSbUlFyVnZ3j71rrvax6uRSgswoKok4uSTvqtdPwvc828HfDDwb8VnksdX+IOu+IIbZsXmj3Uy2kikfwTxIkcoHqDgH1Ir6xuNA0PQPCv9j6JaQ2tpbxhIoYkCoigjgAcV5Uvw88D/HTwPoPjrW7d7TVrmwt7iHUbKQ295C0kYb5ZU5IBP3WyvtXJ6tZ/tH/DnT5YYZrXx3pCgY84iy1NFB/vD9zL9SEJrzsutgV7Z4fmjNJ+0hzTdt1zRk5VF6Rc110O3GXxT9mq3K4t+5K0VfZ2aSg/WXK+mp9U/Zrf+4v5Cj7Nb/3F/IV876T+1F8NGvU0Xx0LvwhqLHb9n1qE2wJ/2ZeYmHoQ9fQVhqFhqlqt7pk8dzC/KyRMHU/QjINfQYPMsLi7/V6qk1uk9V6rdejSPHxOCr4e3toNX2bWj9Hs/kTfZrf+4v5CsjSre3828/dr/wAfB7D+6tbtZGlf628/6+D/AOgrXccp+e37bsFlon7Qn7MHjWc7EtviLc6cQMDcdT0LVIVB9twFfo19mt/7i/kK/Ov/AIKRyRaN4V+EnjqSDzv7A+K3hGUH+59tujp5Y+gAujX6NUAYGoW8H9p2HyL/AKx+w/uNWz9mt/7i/kKzNQ/5Cdh/10f/ANAatG6u7Wxt3vL6VIYYxud3YKqgdyTwBSbSV2NK+iHfZrf+4v5Cvmv4z/E7VoNTT4P/AAjiiuvFupRlnkIBi022PW4mPIH+wp5Y/rj+I/j1rfxD1GbwJ+zXAmrXwPl3Otyg/wBmWPqd/wDy2kHZUyPXIyK9Q+Fnwh0T4UeH7uOGaTUdW1EmfUtTuPmnupiDkseyjoqjgD8TXzlbHTzGTw2XytT2nVW1usab6yezktId+bQ9qlhY4JKtjI+/9mm/zmukfJ6y/wAOp84w/AP7TFoPwQ0a3mXwyqR6z4l1KUYfU7hjlIN/U7mXdIBwqBR3r7misbOCJYIIkREAVVVQAAOgA9qr6N/yCLX/AK5J/IVpV6GW5RQwTm6K+Ky9Ix0jFeS1fnJyb1Zx43MKuJUVUe1/m3vJ+b0Xkkl0Ifs1v/cX8hWRb28H9tXQ8tf9XF2Hq1btZFv/AMhu6/65xfzavUOA0fs1v/cX8hR9mt/7i/kKmooAwdat7cW0XyL/AK+HsP74rY+zW/8AcX8hWZrf/HtF/wBfEP8A6GK2aAIfs1v/AHF/IUfZ7f8AuL+QqaigDC0O3gNifkX/AFsvYf32rX+zW/8AcX8hWbof/Hi3/XWX/wBDatigCH7Nb/3F/IVjzW8H9u242L/qZew9UrerHm/5D1v/ANcJf5pQBpfZrf8AuL+Qo+zW/wDcX8hU1FAGLrdvB/Y11+7X/VP2Hoa0kt7faPkXp6Cqeuf8ga7/AOuT/wAq0k+4PpQBH9mt/wC4v5Cj7Nb/ANxfyFTUUAYWnW8Bvr792v8ArV7D+4ta/wBmt/7i/kKzdN/4/r7/AK6r/wCgLWxQBD9mt/7i/kKyNUt7cXFj+7X/AI+PQf3GrdrH1X/j4sf+vj/2RqANL7Nb/wBxfyFH2a3/ALi/kKmooA+If+CewQ/sr6RpM6L5mk6hrOnMCOQbXULiMj9K+wtCt4Dotodi/wCqTsPSvjb9hdjZ6B8S/C4P7vR/iH4hgjHoksyz/qZTX2foP/IFtP8Arkn8q97ihf8ACtipfzTcv/AnzL8zzcnf+xUV2il92n6Gh9mt/wC4v5Cj7Nb/ANxfyFTUV4J6RhR28H9vSjy1/wBQnYf3mrX+zW/9xfyFZsf/ACHpf+uCf+hNWxQBD9mt/wC4v5CvnrwtcwXXjz4h2W1T9m1TTRjA43Wtsa9x8Q+IdI8K6LceINdmEFrbLudjyfQAAcszHAVRkkkAZJrk7Cxtm0KXxO+lrpeoay9tcXkfBlLrsRRIR1ZUCqeuMY7V2UJclGq5R0kuVPz5oy/JdNrruYVFzVIJPZ3fpZr83+DPQPs1v/cX8hR9mt/7i/kK8/0/4wfCbVtX/wCEf0vxPpNzfh/K+zRXsLS78427A5bOeMYzmvMvj5+1P8MfgAtro2stPrPifVfk0vw7pSfadTvZD0CRA5VM9ZHwgGee1XQyvF1q0cPSpSc5bKzvbv6LdvZLV6E1MZQp03VnNcq63/D18tz2vxb4l8IeA/Dd74x8aXltpeladE01zdXLLHFEi9SzHj/E8DmvzW0nTPiL/wAFA55pbn7Z4Q+CIuHZI03W2p+KV3Zyx+V7ey44Aw8oPYdO68N/s3fFf9pPxHafE79td4YtKtJFudK8B2UnmafbMvKSX79Ludf7v+qU9AeRX35oMccNrLDCoREnkVVAwAAxAAHoBXt+3w+Tq2GkqmK/nWsKf+DpKf8Af+GO8Lu015/s6uO/ipwo/wAr0lP/ABdo/wB3d/asrxef4P8AAvg34f8Ahqz8G+CNLttK0qwjEVva20axxRqPQD9T1J5PNdL9mt/7i/kKmor5ipUlOTnN3b1be7fmexGKilGKskYN3bwf2xZ/u1+7L2HotbH2a3/uL+QrLvGUa1ZKSASsvH4CtqoGQ/Zrf+4v5CqOp28A024Oxf8AVP2Hoa1Ko6n/AMg24/65P/I0AJZW8H2OLKL9xew9Ks/Zrf8AuL+QqOx/48of9xf5VaoAh+zW/wDcX8hWPY28H9qXw2L96PsP7orerGsf+Qrff70f/oIoA0/s8A52L+Qr4m/YUitLf4feMfDqIMaR448R2uCPug3bSgflIK+36+Hv2PmbTfH/AMbvCUg2taeO7m7x/s39pbTD885r3svXNluNh29nL7pOP/t55uJ0xeHl35l96v8A+2n2Hq9vAGtPkX/j4TsPQ1sfZrf+4v5CszWPvWn/AF8J/I1rSSRxLvlYKOmScDmvBPSGfZrf+4v5Cj7Nb/3F/IVNVZ72ziuVs5JUWZxlULAMR7DqaaTewGVoFvbnSYTsX+LsPU18Sf8ABQKKFPA/w+Coo3fEHw4On/Twa+4dA/5BMP8AwL+Zr4e/4KCAt4P+G8Q6v8RPDg/8jMf6V9Bwp/yN8P8A4v0Z5Wd/7jV9P1R95/Z4DzsX8hWN9ng/4SDHlr/x7+g/vVv1jf8AMw/9u/8A7NXzx6pp/Zrf+4v5Cj7Nb/3F/IVNRQBha7b240mb5F6DsPUVr/Zrf+4v5Cs7Xv8AkEzfQfzFa9AEP2a3/uL+Qo+zW/8AcX8hU1FAHP6NBAXvMov/AB8v2HoK2vs1v/cX8hWVov373/r5f+QrboAh+zW/9xfyFZF7bwf2nZDy1+9J2H901u1kX3/ITsv96T/0E0AaP2a3/uL+QpRbwDoi/kKlooAo3dvbi1kOxfuN2HpVbSLeA6TanYv+pTsPQVfu/wDj1l/3G/lVbR/+QTa/9cU/9BFAFl7S1dSjxoVYYIKjBBrhPDPwj+FPgrVZ9d8HeGdK0q9uQRLcWdnFBK4PUMyKCQfrXodcNB8S/Ad1Dr81rqtvIPC7vHqwDjNoyRiYiQHG392Q2TwRXRRdfllGleztdK9t7K9vN6X6mVT2d052v0v+h8LfsztbeMv25/j743RUeHS20Pw/EwGebe3aSUD6O2D7iv0c+zW/9xfyFfm3/wAExdLvtT+E/iX42ashS5+JXiG/8RqGGGFvPK8cOf8AgEeR7Gv0qr3uL2lmlShH/l0oUvnShGm/xizzskTeDjUf23Kf/gcnJfg0Q/Zrf+4v5CsnV7eARwfIv+vi7D+8K3KydX/1cH/XeL/0IV8yesaH2a3/ALi/kKPs1v8A3F/IVNRQBD9mt/7i/kKyNDt4Dp/3F/1svYf32rdrH0L/AJB//bWX/wBDagDS+zW/9xfyFH2a3/uL+QqaigDClt7f+3YR5a/6iTsP7yVr/Zrf+4v5Cs6X/kOw/wDXCT/0JK16AIfs1v8A3F/IVk69bwDRbo7F/wBW3YelblZGv/8AIFuv+ubfyoA0FtoNo+RfyFfm/wDtc3Nvf/tq/ss+A2gEiS+I/EetNgD5P7N0K7iVj7B7tR9SK/SVfuj6V+dvxVtm8R/8FPvg9ZQyqR4b8EeMNTliI5H2y40q2Rx+Tj8aAP0O+zW/9xfyFZOmQQC8vSEUETjsP7i1uVkab/x933/XYf8AoC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1P7+KKKKACuf1jT7meC4mjupIwUb5VxgcV0FVL//AI8Zv+ubfyoA5rRNJuzo1p/ps3+pj9P7o9q0/wCybv8A5/pv0/wqxof/ACBbT/rin/oIrVoAwv7Ju/8An+m/T/Cj+ybv/n+m/T/Ct2igDg9O0u6Gtalm8lODF6f3fpX8n3/BttaTj9s79urTVuJIynxJnY4xk/6Vecmv629O/wCQ3qf/AGy/9Br+Sv8A4N3JRpP/AAUw/b38HPxJD46NwV9pLu8AoA/rZ/sm7/5/pv0/wo/sm7/5/pv0/wAK3aKAOF1nSrz7TYD7bL/x8D0/ut7Vu/2Td/8AP9N+n+FJrP8Ax9WH/XwP/QWreoAwv7Ju/wDn+m/T/Cj+ybv/AJ/pv0/wrdooA56XSbvym/06XofT/Csvw9pN3/Ydr/p03+rX0/wrsZv9U30NZXh7/kB2v/XNaAI/7Ju/+f6b9P8ACj+ybv8A5/pv0/wrdooAwv7Ju/8An+m/T/CsC00q7PiK8H22X/VRenq1d5XPWf8AyMd5/wBcov5tQBJ/ZN3/AM/036f4Uf2Td/8AP9N+n+FbtFAGF/ZN3/z/AE36f4Vh67pV2Etf9Nl/4+YvT1+ldzXC/EXWofDXhefxHcDMeng3LD2iBY/yoA/mM1fTf+Gxv+DnHS9La4e70b9m3wXJdO4YMsWqaquFVlxwwWRGHuAa/qQ/sm7/AOf6b9P8K/lX/wCDZAeKv2hvFv7Tf/BRnx3CBefFHxs1lZuRytrpwb5B7KrxKMHHy1/WLQBhf2Td/wDP9N+n+FNfSbvaf9Om6e3+Fb9Nf7h+lAHE+HNJuzo0J+3Tfxen94+1bf8AZN3/AM/036f4Uvhv/kCw/wDAv/QjW5QBhf2Td/8AP9N+n+FH9k3f/P8ATfp/hW7RQBwkWlXf/CSzD7bL/wAe6en941vf2Td/8/036f4UyL/kZ5v+vdP/AEI10FAGF/ZN3/z/AE36f4Uf2Td/8/036f4Vu0UAeJ/GPxNpPwy8AXnjjxTqU0VlYFJH2jczHcMKoAyWY4AHqa4v4G+FPHuupc/F74kXFxZ6rrigW1iW4srHO6OMjp5h+9IfXjtXo154s8GePzqnhuxKXx0W9gguwybolmJDhQTwzLwTjocV61Xo+29hQlQ9napK12/5bJpJdL7t9VZKyvfl5PaVFU5rxWyXfZtvy2S6a+VsL+ybv/n+m/T/AAo/sm7/AOf6b9P8K3aK846jBbSbvB/06b9P8KxPDuk3n9m/8fsv+sk9P7x9q7g9DWH4d/5Bv/bST/0I0AH9k3f/AD/Tfp/hR/ZN3/z/AE36f4Vu0UAYX9k3f/P9N+n+FYR0q8/4SRR9ul/49z6f3h7V3VYJ/wCRlH/Xuf8A0IUAL/ZN3/z/AE36f4Uf2Td/8/036f4Vu0UAYX9k3f8Az/Tfp/hWH4j0m7GkyH7dL1X09fpXc1heJP8AkEyfVf50AINJu8D/AE6b9P8ACl/sm7/5/pv0/wAK3B0FLQBhf2Td/wDP9N+n+FH9k3f/AD/Tfp/hW7RQBwfh3Sbw20+b6X/Xyenr9K3/AOybv/n+m/T/AApnh3/j2n/67yfzroKAML+ybv8A5/pv0/wo/sm7/wCf6b9P8K3aKAOEm0m7HiOAfbZf9S/p6it7+ybv/n+m/T/Cmz/8jJb/APXF/wCYrfoAwv7Ju/8An+m/T/Cj+ybv/n+m/T/Ct2igDifEGlXY0iY/bZuntWrDpN35K/6dL90en+FT+If+QPNj0/rWrB/qU/3RQBj/ANk3f/P9N+n+FH9k3f8Az/Tfp/hW7RQBhf2Td/8AP9N+n+FYOiaTd+Zej7bL/wAfDenoK7usDQ/9be/9fDfyFADv7Ju/+f6b9P8ACj+ybv8A5/pv0/wrdooAwv7Ju/8An+m/T/CvlLRPjpF4l/a81z9mWKK5iufDOjWurPel1KSrekgIExkFcdc819lV+PPwL1o6z/wWL+NdtnP9neFtAg+m4SNQB+tP9k3f/P8ATfp/hR/ZN3/z/Tfp/hW7RQBhf2Td/wDP9N+n+FZWuaTdjSLg/bpvuH0/wrsqydd/5BFx/uGgDPstJvDZxH7dL9wenp9KwLr4aaBfeJrfxndjzNUtEMcVyVHmIrdQDiu7sf8Ajzi/3B/KuZ+IHig+CvBOqeK1QSGwt3mCnoSo4Fc+K9kqbqV0nGPvaq9ra39UbUPaOahSestNPPS3zIfEPgiy8V6LceHvEEz3NndIUljcAhlP4V8+eBP2LvhD8PfFMfi7Q1uGuoCWhEr71jJ7gGvoT4c6tq2veCNM13XHR7m9gSdti7VHmDIAHtnFdrXDUy3A46VHGVqEZSik4uSTavr/AF5nVDG4rCqphqVVqLupJN2fQ4bTtHupbm+ia9l2mTB6dxXwxpPwA/aJ+F3iPXNI+G11Y3Xh/XpnllFycOBJkHt1AJ6V9b/E3xvN8PfA3iDxRaAG4hIWAN0Mj4Vf1Nei+D49Sj8LaeNYnNzdGBGllYYLOwyT+tceaZfhcwxUKM5SjUpLmUouzSleNut+azurdDpwOMr4PDyqRUXCb5WpK93HW/yuvvPgD4Z/sNa3oPiqzu/G2ti80fSpTc2lpGDgTNzk5yOD+dfY2u/BzQPEHjHSvHd5cTrqWjhlgkQhflfqreor12iryzhjLcBQeHoUvdbUtW27xty6v+Wyt2Jx2eY3F1VWq1NUmtNNHvou/XucLqek3Z1SxU3spBZ/T0+lbZ0a5ZdjXkpHpxUOuXVtZXtpd3kixRRF2d3OFUAdST0ryPxh8TLlvip4W8CeGbqPyb9ZL26kUhg0EYwAD7nvXp4zG0sNFSqPdxSXVuTUV+LOHDYWpWk1Dom79NFdnsY0e6UYW9lA9sf4Vj694G0zxTpr6R4jb7dayfeimVXU/gRWjq/jPwjoEYl1rU7W1BIA8yVVyTwMZNbVpqFjqCeZYzJMvqjBh+lbOVGpzUm0+60enmjNRqQtUSa7P/gnmOmfCrwp4K0m4i8JW8enqUb/AFEar29cV1mlaTeHTYD9tm+4PStrWpYoNIuZp2CIsbFmY4AGO5rlPB/j7wR4jjTS9B1e0vLmJAGjhlVmGPYHNRD6vQUaMeWN9lovuX+Q5KtVvUd5d3q/vZ0P9k3f/P8ATfp/hR/ZN3/z/Tfp/hW7RXSYnyj8Qv2RfAHxJ+INt8Qtfubg3EWzzY1ICTeX93dx2rzL9o79l/xF8ar+yXw1qKQNpkgjcTcARMoHy47gdq++8jOK5/S/+Qtf/wC+n8q+fxnC+WYmjiKM6KSrNOdtHJp3Tv6/r3PYw2fY6jUo1Y1Lummo31ST02OL+HPwusvht4NsfB2hXUkcFnGE4x8zdyfqa8n+JvwX8XeKPjP4P8f6NdD7NoxkFyznDhWzjaMc9a+rKK7sTlOGrYaGEcbQg4tJaW5GnH8kctHMK1OtLEJ3lJSTv15k0/zPB/jJ8BtE+NfhmPwx4nvrhYoplmVkIBBHXt3FdFZ+Cbbwlp2jeG9EuJIbWzIiiQY4VVxXpOoalp+k2rX2qTx20KDLSSsEUfUnArzaz+IHh7xfrtvY+HzLOkD7jceWwhbI6KxwG/Cn7DBUsY69oqvNJX+00r2Xohe1xNTDqldulFt26Jvc7JPDzRzG4S5cSN1YBQT+OM1j618PtF8SPDLr4F41s4kiMqKxRh0IJHFd5RXdOlCcXGcU12aOWM5RfNF2ZhDSLscC9lx+FQXWkXn2aT/TZvun09PpXNWHxHstQ+KF98M4IiZbCziunlB4/eEgLj14zUnxb8ZQfD/4baz4vnIH2K1dlz3cjC/qRXM8woKjUr83uw5uZ9uX4vusbLCVXUhS5fela3nzbfeeIXX7RHww8MauPCGo6zdyXFqoFxJDCZYoSezsoIFdz4/+Ffg39oLwHFpep6lLd6ZcMlxDLAw5I6EH8a8x/Yz+HltpXweXxJrsCy33iOV72cyKGJWQ/KvPYCvpjwd4G0HwJBdWXh1WhtrmZp/JzlI2bqEH8IzzgV4OWPGZlhIzzCEHRrRbcLNOKeyerUrrfSNmetjlhsFiHHBykqlN25rqza3a0Vtdt7oxfAvwx0n4deF7Xwj4WnlgsrRdqLwSSepJ7kmuu/sm7/5/pv0/wrdor6ajRhShGlTjaKVklsktkeHUqSqTc5u7erfdnnumaFJB4gvlhupEBWMnaAMnHsK47x5+zz8NfiZKtx41slvJl6SkBZP++hzXqNj/AMjDe/7kddFWeJwlDEU/ZV6alHs0mvuZdHEVaM/aUpuMu6bTPnnwH+zD8J/hrqf9s+D7H7Nd9BM3zuv0J6fhXtP9k3f/AD/Tfp/hW7RSwmCw+Fh7LDU1CPaKSX4DxGJrV589eblLu22/xOF1zSrwC1xey/8AHwvp6H2rd/sm7/5/pv0/wpNd6Wn/AF8L/I1vV0mBhf2Td/8AP9N+n+FH9k3f/P8ATfp/hW7RQBgSaTeeW3+nTdD6f4VjeG9JuzosH+my/d9q7WT/AFbfQ1i+Gv8AkCwf7tAB/ZN3/wA/036f4Uf2Td/8/wBN+n+FbtFAGF/ZN3/z/Tfp/hXPW+lXf/CS3I+2y/6mP09/au+rnbb/AJGa5/65R/1oAl/sm7/5/pv0/wAKP7Ju/wDn+m/T/Ct2igDC/sm7/wCf6b9P8KxNd0e6e2iR72Uq0yAg45GfpXcVia7/AMe8P/XZP50Afxuf8EE4779nr/gsH+2N+xQt0baw/tX+37KGNQo5mdWI9gjxgV/ZD/ZN3/z/AE36f4V/HdfRW37L/wDwdyJcySPbWXxj8IcfLtSS4EKnGeh5t2z71/ZdQBhf2Td/8/036f4Uf2Td/wDP9N+n+FbtFAHB+GtJvP7JX/Tpvvv6f3j7Vv8A9k3f/P8ATfp/hTfDP/IJX/fk/wDQjW/QBhf2Td/8/wBN+n+FH9k3f/P9N+n+FbtFAHCnSrv/AISbH22X/j2Hp/ePtW7/AGTd/wDP9N+n+FNP/Iz/APbsP/QjW/QBhf2Td/8AP9N+n+FH9k3f/P8ATfp/hW7RQBwviTSrsaWT9tl/1kXp/fFbg0m7x/x/Tfp/hSeJf+QWf+ukX/oYreHQUAYf9k3f/P8ATfp/hR/ZN3/z/Tfp/hW7RQBh/wBk3f8Az/Tfp/hWFoGk3htJP9Nm/wBfL6f3j7V3NYfh/wD485P+u8v/AKEaAE/sm7/5/pv0/wAKP7Ju/wDn+m/T/Ct2igDC/sm7/wCf6b9P8KxZdKu/+EhhH22X/UP6f3h7V29Ycv8AyMUP/XB//QhQAn9k3f8Az/Tfp/hR/ZN3/wA/036f4Vu0UAYX9k3f/P8ATfp/hWH4l0m7GhXP+mzfd9vUe1dzWH4l/wCQFc/7v9RQA0aTd4H+nTfp/hS/2Td/8/036f4VuDoKWgDC/sm7/wCf6b9P8KP7Ju/+f6b9P8K3aKAOF0LSrwrd/wCmy/8AH1L6e3tW7/ZN3/z/AE36f4Umg9Lz/r6l/pW9QBhf2Td/8/036f4Vbs7Ge2lMkty8wIxhsY+taVFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWXrmjaf4i0W70DVk8y1voXgmXOMpIpVhn6GtSsqSx1B5GZL2RASSAEQ4HpytTOClFxkrpjjJxaknqit4W8N6X4P8N2HhTRFZbPToI7aEOxZgkYCjJPJOB1qbX/+QPP9B/MUn9n6l/z/AMn/AHxH/wDE1ka9p+pf2RPm/k+6P4E9R/s0qdOMIqEFZLRLskOc3KTlJ3bNzWND0XxFYvpmv2cN9bSDDRXEayIfqrAivnq8/ZR+GVtctqHgKfUvCNyxzv0a7e3Qn3iO6Mj2219A/wBn6l/z/wAn/fCf/E0f2fqX/P8Ayf8AfEf/AMTXHjMqweLaeIpRk1s2tV6PdfJnThsfiMPdUajSe6vo/VbP5o+dj8Jv2gdHG3w18S5LhF+6mp6dDOfxdNhP5Vk2Okfth2T3K2GseF7/ABMQxuLa4hJO0f8APNiBX0//AGfqX/P/ACf98J/8TWRpen6l5t5/p8n/AB8H+BP7q/7NcLyCiv4dWrH0qzf4Sk0dX9r1X8dOD/7hwX5JH5S/8FHR8fv+GNfGHiD40x6Pa+GvC39n+Jry70IzvfxDQL231FGiSQbW+e3UOCR8hbHNfbEHiD9sy5iSaDRfCmyRQyt9quSMHkH7ta37Wnw0vvih+yv8SvhtLeSyDX/C2r6eFWNC2bm1kjGBt65PHvVL9jnxdffFT9kn4X/EmO/l/wCJ74U0a+bcqM26e0iZsnHXJOfep/sKXTGVv/Ao/wDyI/7Uj1w9P7n/APJGbd6T+19rl9aRanq/hvQg7ttazt5rqRflOf8AWlV6dK1Yv2W9I8Rzpf8Axm8Qap4ylU7vIupfIsgfa3h2r+ZNe6ahp+o/2lYf6fJ/rH/gT+43+zWz/Z+pf8/8n/fEf/xNUuHcJL/eXKr5VJylH/wG/J/5KL+2cRH+Co0/8MUn/wCBfF+JJouh6N4c0yLRvD9pDZWkA2xwwII41HsqgAVduv8Aj2k/3T/Ks7+z9S/5/wCT/vhP/iagudP1IW8h+3yfdP8AAnp/u17cIRjFRirJdDy5Scm5Sd2XdG/5BFr/ANck/kK0q5bR9P1H+ybX/T5P9Un8Ceg/2a0P7P1L/n/k/wC+I/8A4mqEbNZFv/yG7r/rnF/NqT+z9S/5/wCT/viP/wCJrIt9P1L+2rr/AE+T/VxfwJ/tf7NAHX0Vj/2fqX/P/J/3wn/xNH9n6l/z/wAn/fCf/E0AJrf/AB7Rf9fEP/oYrZrj9a0/URbRZv5P9fD/AAR/3x/s1r/2fqX/AEEJP++I/wD4mgDZorH/ALP1L/n/AJP++E/+Jo/s/Uv+f+T/AL4T/wCJoAND/wCPE/8AXWX/ANDatiuP0PT9R+wnF/J/rZf4E/vn/ZrY/s/Uv+f+T/vhP/iaANiseb/kPW//AFwl/mlH9n6l/wA/8n/fEf8A8TWPNp+pf29b/wCnyf6iX+BPVP8AZoA7Cisf+z9S/wCf+T/viP8A+Jo/s/Uv+f8Ak/74j/8AiaAJNc/5A11/1yf+VaSfcH0rldb0/Uv7Guv9Pk/1T/wJ6H/ZrSTT9S2D/T5On9xP/iaANqisb+z9S/5/5P8AviP/AOJpf7P1L/n/AJP++E/+JoANN/4/r7/rqv8A6AtbFcfp2n6l9uvv9Pk/1q/wJ/cX/ZrY/s/Uv+f+T/vhP/iaANisfVP+Pix/6+P/AGRqP7P1L/n/AJP++E/+JrI1TT9RFxY5v5P+Pj+4n9xv9mgDr6Kx/wCz9S/5/wCT/viP/wCJo/s/Uv8An/k/74T/AOJoA+Lv2Lht8S/GqMdB8Q9TP/fUNua+09B/5Atp/wBck/lXwz+xtaXr+LfjXGl26FfiBf5IVDnNvb88r/Kvs7QtP1L+xbT/AE+T/VJ/Anp/u17/ABP/AMjGfpD/ANIieXk3+6R9Zf8ApTOuorH/ALP1L/n/AJP++E/+JpP7P1L/AJ/5P++I/wD4mvAPUM/VNY0nw/dXmt69dRWVla2iyTXE7iOKNFLEszMQAB3JIrxO1+M3jP4oAp8B9EM2ntwuv6yr22nsP71vDgT3I9GAjibtIa5b/hUWv/F74oX3iP4yvI2iaNKqaHokgja3kMLEfbrpACsrs4JgRsrEgDY3nK/Uo07UQMC/kx/uR/8AxNeq/q2GilZVKnX+SPlprJrrqop6WktTiXtqzevLD/yZ/wCS7det0ee6B8LJF1K38SfEHVrjxJqdq3mQGZVhtLeTGN0Nug2qR2dzJIOz81u/E7xn4S+H3gq78XeONSt9J0uyMck91dSCKJFDg8k/oBye1fLnxr/a10zwH4q/4U78Io7r4gfEWdSYtD00R7Lb/ppe3G3y7aMd9x3HsO9efaP+x54x+I9/afFv9s/Xk8Wa/ayxTWOh2yBdB0pi44jgYf6RKM4MsoOew716UcsbhHGZvU9nTa92KS55r+5DRRi/53aO/LztWOV4tKToYKPPLq2/dT/vS1bf91Xfey1OfuPiV8YP2u7uOD9lnw1a+FPCaS5PjjxBYKZ5cH/WaXZuAzHPKzS7V9Bmvqz4D/sp/Cz4BzXXiHRkuNa8UapzqXiLVpPtWp3bHrulb7qekabVHp3r3uPS76GNYob10RAAqiOMAAdAPlp/9n6l/wA/8n/fEf8A8TWGOz+pUpPCYSPsqHWKbcpf457y720gnqoI0w+WxjNV6756ndqyX+GOy9dZd2zD8c+CLTx5pKaVd3+o6b5cgkWbTbuS0mBAIxujIyCDyDkV5Z4E+AnhXw/f/wBtSav4h1G5trqR0N7rN5KmVY43R+aI2HqGUg969v8A7P1L/n/k/wC+E/8Aiax9G0/UvJn/ANPkH+kS/wACf3j/ALNeVTx+Ip03Sp1Go9kzsnhqUp88ops7CvKviL8FvAHxVnguPGcV3K1shRPs1/dWg2scnIt5Yw31IJrvf7P1L/n/AJP++E/+Jo/s/Uv+f+T/AL4j/wDiayoYirQmqlGbjJdU2n96NKlKFSPJUimuzV0eH+FP2bvgh8PPF+n+IfC3h+GPUIVlMd3O8l1OhwBlXmd2BwSMgivoiuPu9P1H+2LPN/J92X+BPQf7NbH9n6l/z/yf98J/8TVYnFV8RLnr1HOXeTbf4k0qNOkuWnFJeSsYXjLwFo3jiOAapPfW0lqWMUljeT2bjfjOTC6Bug4YEDtXAQfA7wxpGdWutT1zU5bbMsQvtWupow6jIzH5gRsHsykV63/Z+pf8/wDJ/wB8R/8AxNUtT0/Uv7NuP9Pk/wBU/wDAnof9mqp47EQh7OFRqPa4pYalKXPKKubll/x5Q/7i/wAqj1Ox/tPT5tP86W385SvmQtskXPdTg4PvWXZafqX2OH/T5PuL/Anp/u1a/s/Uv+f+T/vhP/ia5k2ndGrV1ZmF4Y8D2fhe6kvY7/Ub6WRPLJvbuSdQM54RjsB9woNblj/yFb7/AHo//QRS/wBn6l/z/wAn/fEf/wATWPY6fqP9qX3+nyfej/gT+6P9mrqVZ1Jc03dijBRVorQ7CviD4QlfDX7b3xe8MMCo17TvD+vRZ6ErFLZyEf8AflB+FfY/9n6l/wA/8n/fEf8A8TXw94rs77wv/wAFCvCF+LtlHivwZqunF9qZaTTbmC4UYxj7srfgDXtZH78cXQ/npS/8kcav5QZ5+Y+66FT+Wa/8mTh/7cfZnjPR7HxBpkWjal5nkXE6K/kyvA+OT8rxsrqeOqsK5nSPgt8NdG1GPWI9Pa7u4SGjmv7ia9dGHQqbh5CpHqMGui1fT9R3Wmb+T/j4T+BPQ/7NbP8AZ+pf8/8AJ/3wn/xNeRTxVanFwpzaT3SbSZ3Sowk1KUU36HF+LPh1f+JNQfU9N8T6zokjoqbbGWIxjb3Ec8Mqgnucc15Rc/suWGreILPxT4o8Y+INVv8ATiTazzNZRyw5BB2SQ2kbrkEg7WGQTX0X/Z+pf8/8n/fCf/E1BdQ3FjbSXt9qbQwwqXkkdY1VVUZJJK4AA5JPSuqhmmKpLlpSt02je21r2v8AiYVcHRm7zXnu7fdexwfjPxxoXwv+El9478T6tBo2n6TAZ7i9ulMiJGjc5UMpZmHyqAcliMAng/IngT4afEX9rrxLonx9+Pgu/D3hfSL6LVfCnhONvKkzEcw3mpnkvK33khBCxA4OSWrkvAWmat+3F49tPGeqTSN8IPBt2X0iKVFC+IdVgZh9rZCMNaW54hB4kkG7oMV+lf8AZ+pf8/8AJ/3xH/8AE17NWo8mpewh/vcl7z60k18C7Ta+N7w+BWlznDCKx0/aS/grZdJtfaf91fZWz+J3XKbFY3/Mw/8Abv8A+zUv9n6l/wA/8n/fEf8A8TWN/Z+o/wDCQf8AH/J/x7/3E/vf7tfKnsnY0Vj/ANn6l/z/AMn/AHxH/wDE0f2fqX/P/J/3wn/xNAC69/yCZvoP5iteuQ13T9S/smf/AE+ToP4E9R/s1r/2fqX/AD/yf98R/wDxNAGxRWP/AGfqX/P/ACf98J/8TR/Z+pf8/wDJ/wB8R/8AxNADNF+/e/8AXy/8hW3XG6Np+o773/T5P+Pl/wCBPQf7NbX9n6l/z/yf98R//E0AbFZF9/yE7L/ek/8AQTSf2fqX/P8Ayf8AfCf/ABNZF9p+pf2nZf6fJ96T+BP7p/2aAOvorH/s/Uv+f+T/AL4T/wCJo/s/Uv8An/k/74j/APiaANC7/wCPWX/cb+VVtH/5BNr/ANcU/wDQRVC60/Uvssub+T7jfwJ6f7tVtI0/Uv7Jtf8AT5P9Sn8Ef90f7NAHU18LftBfsJeEPjz48n8bReJtZ8LprlpHp3iW00iVYotas4DmNJsg7WUZTevJQ7elfaP9n6l/z/yf98J/8TR/Z+pf8/8AJ/3wn/xNehluaYrAVvb4Opyzta+m3o7rdJrs0mrNJnNi8HRxMPZ143j/AF2+7002MDwX4Y0HwTaR+DvCtqllpmlWdraWlvGMLFDErKij6AD3rt64+10/Uf7au/8AT5PuQ/wJ/tf7NbH9n6l/z/yf98J/8TXDOcpycpO7erZ0RiopJKyRsVk6v/q4P+u8X/oQpv8AZ+pf8/8AJ/3wn/xNZOr6fqXlwf6fJ/r4v4E/vD/ZqRnXUVj/ANn6l/z/AMn/AHxH/wDE0f2fqX/P/J/3wn/xNAGxWPoX/IP/AO2sv/obUf2fqX/P/J/3xH/8TWPoWn6l/Z//AB/yf62X+BP77f7NAHYUVj/2fqX/AD/yf98R/wDxNH9n6l/z/wAn/fCf/E0ALL/yHYf+uEn/AKEla9chLp+pf27D/p8n+ok/gT+8n+zWv/Z+pf8AP/J/3wn/AMTQBsVka/8A8gW6/wCubfypP7P1L/n/AJP++E/+JrI17T9SGi3Wb+Q/u2/gT0/3aAOtX7o+lfnR4YSbxV/wVg8X6moR7fwb8L9FsAwPzJPrmp307qfTKWMRFff66fqW0f6fJ0/uJ/8AE1+dX7Iumz+Kf2uv2mPinb3gYHxJonhdJkVSxTRNJgkZGBXjZNey9PWgD9L6yNN/4+77/rsP/QFpP7P1L/n/AJP++I//AImsvSbG/W/vGe9kYCcEqUTkbF44WgDrKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/V/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntN/wCQ5qX1i/8AQa/kq/4IcXUOm/8ABcr/AIKA+HXXy5J/EENyqHjKi6n5x7+YD+Nf1q6b/wAhzUvrF/6DX8lf/BOK0bwN/wAHRf7XXg+3YCDWfDFtqjjoTKz2Tj9JWzQB/XrRRRQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/ACA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/ACMd5/1yi/m1AHQ0UUUAFfmX/wAFjvjXH+z1/wAEzvjF8VvMMc2n+HLyO3Ktsbz7hDFHtPY7nGK/TSv5OP8Ag8L/AGgYvhf/AMEybL4R2kxS++IXiG0slRTy0Fpm4kyOpX5FH1IoA+yf+DYnw1F4c/4I1/DGRVAl1GTUr2V8YLvLdScn1OABn2r9/q/K7/giH8Orr4W/8EnPgR4Vv4vJuH8K2t9IuMHN9m4GR67ZBmv1RoAKa/3D9KdTX+4fpQBi+G/+QLD/AMC/9CNblYfhv/kCw/8AAv8A0I1uUAFFFFAHPxf8jPN/17p/6Ea6Cufi/wCRnm/690/9CNdBQAVyPj3T/FOreDdR0zwVdx2Oq3EDx21xKu9IpGGAxUEZx1pdX8c+GdD8Sab4Qv7gDUtWL/ZoFG52WMZZiB0UdyeMkDvXW1tFTpShUcfNXWjs/PdXVjN8s1KCfk7dP8jxvwZ8N9H+FHw3sPBekM03kSI89xJzJcTyPuklc92diSfyr2SsDxH/AMeC/wDXaP8A9CFb9KtWnVqSq1HeUndvzY6dOMIqEFZIKKKKyLEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8ADv8Ax7T/APXeT+ddBXP+Hf8Aj2n/AOu8n866CgAooooAwJ/+Rkt/+uL/AMxW/WBP/wAjJb/9cX/mK36ACiiigDG8Qf8AIIm+g/nWrD/qV+grK8QDOkTD2/rWrD/qU+goAkooooAKwND/ANbe/wDXw38hW/WBof8Arb3/AK+G/kKAN+iiigAr8Zf2a9Pa2/4LD/tBXT/8ttC8OkfTy5K/Zqvz6+HHwP8AGnhL/god8Rfjff2qpoPirQtJtbScOCzz2YcSAr1GMjnvQB+gtFFFABWTrv8AyCLj/cNa1ZOu/wDIIuP9w0AebfE34xeD/g14Sh17xXIxMoWOCCIbpZnI6KK+U/iB+1J4R+JHwh8U+G57K70LVhp7yR2t8hRpU45QkDP5VB8RoYvFf7Zng/wzrAEtpYWH2lIn5UvjPSuS/b50601u+tVsgivpGnXFzcSLgFQxCohP+0egr8t4jzvMJYfH1qE4qlSk6XJy3crxXNLmvpbmuklay1PvMmyvBxrYSlVi3Umvac19I2fuq3W9tdeuh9k+HfH3hr4dfAfSPGHiy4FvZ22nQFj1LHaMBR3Jrw+L9tOU241648D6ymiHkXoTI2f39uOn414f8fXTxF8KfhP4QunZbLU5IEm2nGQFA617L4l+Ff7VmkaDP8PvA+uaff6DLG1vE95Hi4jhYY2kgHOB3orZ1mtSbo4HmVOlCC9yEZtzlBSXMpNWjbT3db7hTyvAQgquKs51JT+KUopRjKzs0neXqeB/tL/H3X/EumxxeHdMa58J6nPazwX0Y+aWVSCY/Y9sYr2Gb9uWfRdIEk/gPWIo7eMBpJVKoABjJJTgV5d8YvADfCL4T+Cfh083ntb65CZZAOGk4Jx7Z6V9F/tw3d5Yfs63S6euFnkgjlZR0jPXPtXm1KmcUZ5hjni3CpTp05SjyRlq4uXIm9lFtpb+dzthDLqscHhVQUoTnOMXzSWnMlzPu2vT5HC+HP2sPjd4s0C4+IuieB1fw5aZaSRpsStGv3imeuPpXbeNPjTrPxP1nwz8N/hRdnT38R2wv7m9HMkFsOqr/tHpmvI/C2hftQfEz4WaZ4D0WLStD8NXNqkTXcDl5XgI5x7kdelRxaVo3wM/a18MaPfSeVpkmjLY28z8KZAMHJ6DJrWnmWZuhSderUdCo6UZznFQ1lLX2dkmotaXfdWZEsDgfa1PZU4KrBTcYxblpFac17pyvrZdndH1lN8CfBFvBFol6bq8F7FJBcSTzu7urDk8ng/SvhjSP2Y/BOu/tLat8NbS+1CHTtI06KVWWc+YrSH7obqF9q/Rv4mePvC/w5sbXxR4puBDaxsQNvzO7MMBVHcmvkLwN4z0Pwf+1j4l1Pxk76eviGztTp7zIwEgPIXODg89K9vifLspeIwVGrThpUXNsrRcZ2TfaUkrX3Z5eR43MVSxNWE5awdvOScb280n02Rj/Ev9mP4U/DTSraO1Fzq2ta3cLYWH22ZpFieTrJjPOwc15V+z18M7/RPilrvwk1jWb7SvEmmfvrO8glPlzR+8bEgjv9K+l/2ltei0j42fDV759lobxyWbhQzDArjNXmi1X9v/AE8aOQxtdN/0hk5H3e+K+czDK8BSzSM8PSUfZ1qdLlWl1UhdvTXmu7qV9OXTqezg8di6mBlGtNy56U53etnCVktdLWVmra3Mb4j/ABG8X/GrXbD9nC3ma0vYXlOu3EOVBit/T0D9fxr2KT9jj4cwWGn638N3l8Oa1ZhHjvIGJ3EYzvUnDZ71wv7OGm/8JB8V/iR8Rr+3aOc3L2kRZcYVeuM+tfe+k/8AIMg/3BX03D+TUMzw9THZjFVJzk1FveMINxjZ7puzk2rNtnh5vmVXA1YYXBS5IxinJLZykryutmtbJPSyLFpHPFaxxXL+ZIqgM+MbmA5OPerFFFfoCVlY+RbvqeYeNPhjB4w1eHWo9Vv9MnijMR+xzGMOuc4I/rXQeH7aLR2u7aSZnS3CAyStliFXqxP866LUrpLHTri9kOFhjZyfZQTXgf7Ol3e+IPh62o63I1yb53cmQ5JRycA/hXnL2NLF8kIe/OLk3/hcVr63R2v2lTD885e7FpJet3+hy3xH8byr+0R4G8OWl5tsZoLm5cI+Ec4wM44I9K921H4ofD7S9YtvD93q9t9uu3EcUCOHkZj7Lkj8a/N34l/BLwBJ+1r4f8A2kU8Nhf2zzTpHO4IPJ+U5yo9ga++Ph/8As/8Awn+Gd1/aHhXSo47vGPtEpMsv/fTZNfKZHjM1r4vGRVOCiqtm3KTtaENIrlV9O7Wr27+9mmGy+lh8M3KTbp3SUUr3lLVu7t9z0/D5l8Ba/oPxv+M/iJfijfKqeH7s2+n6PM+yPav/AC1ZTjec19sX0FrbS6dDZIqRLJhQgwoGO2K+av2gvgR8AfEsx8a/EC7XQbzGDeRS+S749R/Efwr89PDnjnWvA3xUtLL9njV9T8Y20G8zW9yD5ZGD0JPQdc8V5zzypkFd0cdTjUdSb9+M71Gm9L02uZ8qdrRdklodqyuGb0va4SbgoR+GUbQTS1tPbV63et9z7p+Kv7TXjSHxpqPgH4LaVFqM+hxNPqV3ctiCIIMleO/9a9x+CPxfg+KXw00rxvq8cenT6gzRCIvw0iEg7M8nOMgV+an7Pvws8Y/GfTfEuu+I9e/sXQLi/kl1SGLiaV05Ks56IBX0d8A9PtPin8S18Q+HYTbeCvBaGy0iLoJZ+jyn1PvXLkPEGaYjF08VVu4V21CDtayl8SSV1GEE7uTvKTSt1N82yfA0cPOhCylSs5SV73t8Lb0blJ6JaRim7s6z9mDU28b/ABV+IXxDflZL5bKE/wDTOEcVW/4KBeIZNM+CaaHCcNqt5HEfdV5I/lXqPhL9nu5+HWqeIb3wBrs9jBrm+VbdkV0guHOfMXPP4V+ev7XHhf436PfeHdA+IHiSHWo7y6xabYRFskyBlgPwoz2tjcu4arYWvQk5z51KScXG85vX4ubXm008nYeVU8NjM7pV6VVKMeW0XdO0YeltLa6n6zfDOxh0f4daNYjCJDZxD0Awoq74X8d+E/Gk99b+GL2O8bTZjb3HlnISQc4z3/Cvz4i/Zj/aa+IGnW9n428d+RpxRQI7fd9zHTGR2r7Q+CPwT8NfA3wmfDXh93neZ/NuLiU5eWQ8ZP8ASvrcpzHMq9aFL6k6VCK1lNrmdlZKMYt282+h87mGCwVKnKf1lVKreiinZa6ttpfgey0UUV9WeAc7Y/8AIw3v+5HXRVztj/yMN7/uR10VABRRRQBha5/y6f8AXwv8jW7WFrn/AC6f9fC/yNbtABRRRQAyT/Vt9DWL4a/5AsH+7W1J/q2+hrF8Nf8AIFg/3aAN2iiigArnbb/kZbn/AK5R/wBa6Kudtv8AkZbn/rlH/WgDoqKKKACsTXf+PeH/AK7J/OtusTXf+PeH/rsn86AP48f+DmXRLv8AZ8/bO/ZK/wCCgukbov8AhHvFEGi30qEj9x56y4YjsUkkHvzX9imharb67otprdoQ0V3CkyEd1cAj+dfz2f8AB0n8DV+M3/BInxlq9tb+df8Agq/sNftXBwYjC5idgfZJWr9H/wDglD8aD+0H/wAE4/g38XJCDLq/hbT3mAbdtlSJVcE+oYEH3oA/QmiiigDA8M/8glf9+T/0I1v1geGf+QSv+/J/6Ea36ACiiigDAP8AyM//AG7D/wBCNb9YB/5Gf/t2H/oRrfoAKKKKAMDxL/yCz/10i/8AQxW8OgrB8S/8gs/9dIv/AEMVvDoKAFooooAKw/D/APx5yf8AXeX/ANCNblYfh/8A485P+u8v/oRoA3KKKKACsOX/AJGKH/rg/wD6EK3Kw5f+Rih/64P/AOhCgDcooooAKw/Ev/ICuf8Ad/qK3Kw/Ev8AyArn/d/qKANsdBS0g6CloAKKKKAMHQel5/19S/0rerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/wCQPP8AQfzFbFY+v/8AIHn+g/mKANiiiigArI0r/W3n/Xwf/QVrXrI0r/W3n/Xwf/QVoA1WVXUo4yCMEGvzi/4JRXB079jTTfhZcbFufh1rviLwdKiMXCLomqXVtCMnkk26RMfrX6P1+cv7GRh8FftM/tJfBYMf9G8XWHiuBGbJFv4j06BiQvQKbm1uQPVgxoA/QHUP+QnYf9dH/wDQGrZrG1D/AJCdh/10f/0Bq2aACoLr/j2k/wB0/wAqnqC6/wCPaT/dP8qAKmjf8gi1/wCuSfyFaVZujf8AIItf+uSfyFaVABWRb/8AIbuv+ucX82rXrIt/+Q3df9c4v5tQBr0UUUAY2t/8e0X/AF8Q/wDoYrZrH1s4tov+u8P/AKGK2KACiiigDH0P/jxP/XWX/wBDatisfQ/+PE/9dZf/AENq2KACseb/AJD1v/1wl/mlbFY83/Iet/8ArjL/ADSgDYooooAy9b/5A11/1yf+RrST7g+lZuuf8ga7/wCuT/yNaSfcH0oAdRRRQBj6b/x/X3/XVf8A0Ba2Kx9N/wCP6+/66r/6AtbFABWPqv8Ax8WP/Xx/7I1bFY+q/wDHxY/9fH/sjUAbFFFFAHwv+x0pi8ffHG3Ixjx7dN/33aWzV9paD/yBbT/rkn8q+M/2YS9j+0H8edCYbQviOwvAP+vrToOfx2V7Lqfxht9H8RaP8J/B9i2ueJLu2iuZ4Efy4bCzPH2i6lw3lqxBESAF5WGFGAzD6XPcPUr5i1TV/wB3Tl5Jeyg7t7Ja7s8nLqsKeFXM/tSXz55I9V8YeM/DXgLQZfEniu6W1tYiFycszu3CoijLO7HhUUFmPAFZvgHUvGOuaXLr3i+0Gmfa5N9rYnBmt7fACiZgSDK33mC8JnbkkEnbv/CvhzVNdsvEupWcVxf6csi2s0i7mh83G8pnhSQACRzjjODXxv8AFX9sSabxnP8AA/8AZZ0cePvHMfyXbRvt0nSM8b765GQCP+eKZkbGODiuLL8vqYyPscLTvLeUm0owiu7ekV3lJ66RVvtb4nExoP2laVo7JK7cn6LVvsl6vy95+L/xt+GHwD0258c/FXVotKsVhRIg/wA01xKWbEUMa5eWRjwFUE/hXyMsX7Wn7Y48yd7v4N/Di4PyomP+En1KE+p5SxRx2G6XHsa734MfsiQaJ8R/+Fz/ALQ+rn4gfEIQq8d/cx7LLTQxb91YW3KwqP75zI3XIyRX3VXoPG4LLPdwKVWt1qyXuxf/AE7hLf8AxzV/5YRauc/sMRi9cReFP+RPV/4pL/0mL9ZPY8g+DHwG+E/7P3hUeEPhPo0Ol2zEPPIvz3FzJ3knlbLyue7MT7cV6Nr/APyDG/66Rf8Aoa1s1j69/wAgxv8Afi/9DWvncRiauIqyrV5uU5att3bfm2enSpQpQVOnFKK2S0SNiiiisTQKx9F/1U//AF8S/wDoRrYrH0X/AFU//XxL/wChGgDYooooAx7v/kMWf+7L/IVsVj3f/IYs/wDdl/kK2KACqOp/8g24/wCuT/yNXqo6n/yDbj/rk/8AI0ASWX/HlD/uL/KrVVrL/jzhx/cX+VWaACsaw/5Ct9/vR/8AoIrZrGsf+Qrff70f/oIoA2a+If2nV/sb9oL4FeNQQvleIr7SmJ6ldR0+dQPxaMfjivt6vhf9va4OheB/Avj0KCPD3jrw/dOx6Kk1x9mY/T99zXvcMrmzGnSX21OH/gcJQ/8Abjzc20wsp/yuMv8AwGSl+h9n6x960/6+E/ka2axtY+9af9fCfyNeNfHT9o7wD8B7O0tdaFxq3iHVyY9J0HTU8/UdQlHaKIdFH8cjYRByT2rycJhK2JqxoYeDlN7Jf1st29ktXodtavTowdSpK0Uey+IvEegeEdCu/E/im9h07TrGNpri5uXEcUUa8lmZiAAPevzsu5/Gf/BQTUEsbBLrw/8ABCGQNNO4a3vfFWw5CRg4eLTyfvMcNMOBhTkdfof7OfxG/aH160+JH7ZTxf2fayLcaX4Gs5DJpto68pJfScfbLgehHkoegbrX3zDDDbQpb26COOMBVVRgADgAAdAK9+NfD5Trh5Kpiv51rCn/AIH9ua/n+GO8OZ8s15sqdXG6VU40e32pf4v5Y/3d39qyvF854L0rTND8K2Oi6Lbx2lnaRCGCCFQkccafKqqo4AAGABXT1j6B/wAgiH/gX8zWxXzLbbbb1PWSSVkFY3/Mw/8Abv8A+zVs1jf8zD/27/8As1IZs0UUUAZGvf8AIJm+g/mK16yNe/5BM30H8xWvQAUUUUAYmi/fvf8Ar5f+QrbrE0X797/18v8AyFbdABWRff8AITsv96T/ANBNa9ZF9/yFLL/ek/8AQTQBr0UUUAV7v/j1l/3G/lVbR/8AkE2v/XFP/QRVm7/49Zf9xv5VW0f/AJBNr/1xT/0EUAaNFFFAGNa/8hu8/wCucP8A7NWzWNaf8hu8/wCucP8A7NWzQAVk6v8A6uD/AK7xf+hCtasnV/8AVwf9d4v/AEIUAa1FFFABWPoX/IP/AO2sv/obVsVj6F/yD/8AtrL/AOhtQBsUUUUAZEv/ACHYf+uEn/oSVr1kS/8AIdh/64Sf+hJWvQAVka//AMgW6/65t/KtesjX/wDkC3X/AFzb+VAGsv3RX5zf8EwDL4h+AXiT4yThw3xD8eeLfEMfmABjbPqc9tanI6g2tvEVP90ivqb9pz4ow/BD9mzx98ZJ38seFfDmp6sGwCQ1pbPKMA4BOVGB3NcR+wt8Mpfg1+xl8LPhhdReTc6N4W0uC5XaV/0n7OjTHB5BMhYkepoA+q6yNN/4+77/AK7D/wBAWtesjTf+Pu+/67D/ANAWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA/9b+/iiiigArnNZ1DUYYriGCzaVAhwwYAHiujqpf/wDHjN/1zb+VAHK6JqurDRrQDT2/1Kfxj+6K0/7W1f8A6B7/APfYq9of/IFtP+uKfyFalAHO/wBrav8A9A9/++xR/a2r/wDQPf8A77FdFRQB5/p2qasNb1EjT35MX8Y/u1/JN8Pr6++F3/B314o063tmH/Ce/DvzZEDDlobVHBP/AIDgV/Xxpn/Id1L6xf8AoNfEd7/wTh/Z8v8A/gobZf8ABSyeO7/4WDYeH38PRATEWvkuChkMfd/LZk9MHPWgD7b/ALW1f/oHv/32KP7W1f8A6B7/APfYroqKAOA1nVdX+02B/s9/+Pgfxj+61bv9rav/ANA9/wDvsVJrP/H1Yf8AXwP/AEFq3qAOd/tbV/8AoHv/AN9ij+1tX/6B7/8AfYroqKAOal1XVzE3/Evfof4xWV4e1XVxolqP7Pf/AFa/xiu2m/1TfQ1leHv+QHa/9c1oArf2tq//AED3/wC+xR/a2r/9A9/++xXRUUAc7/a2r/8AQPf/AL7FYNrqerDxDeEWDf6qL+MerV6BXPWf/Ix3n/XKL+bUAJ/a2r/9A9/++xR/a2r/APQPf/vsV0VFAHO/2tq//QPf/vsV/ni/8HafxG1X9on/AIKPfAn9jLS3ZTp9vE7wKQ5S51m5SIEgd9kQ61/orXE8VrA9zOQqRqWYnoAOTX+XP4a+Id9/wUm/4OotG8aWjG/0a28cpDYkYYDTfDv8Q/2SYmf8aAP9MX4Z6HdfDv4ceH/AOnaaUg0TTbWwjCMoULbxLGMDsPlrt/7W1f8A6B7/APfYroqKAOd/tbV/+ge//fYpr6tq+0/8S9+n98V0lNf7h+lAHCeHdV1YaNCBp7/xfxj+8a2/7W1f/oHv/wB9ipvDf/IFh/4F/wChGtygDnf7W1f/AKB7/wDfYo/tbV/+ge//AH2K6KigDz+LVNW/4SSVv7Pf/j3X+Mf3jR4p8WeItA8N3+t2GiTX89pA8sdvE675WUEhVz3J4raa4gtfEFzc3LiOOO1VmZjgAAnJJryb4H/HzS/j1ca5qng6wmHh/S7trK21OQ4jvpYsiUxLjJjU8Bs4Y9K68PhasoSxChenC3N0Wr0V+77LW13smY1K0FJUnK0pXt8uvy+48j/Zi8FfFKEX3xw+N9iz+MPEvP2feCmm2QOY7aPrjHWQj7zfSvrn+1tX/wCge/8A32K6KiqzDHTxdeVeaSvsloopaKKXZLRfjqThcPGhTVOLv5vdvq35s4HxDqmrNYLmwf8A1sf8Y/vCtz+1dX/6B7/99ipPEZxYJ/12j/8AQhW9XEdBzv8Aa2r/APQPf/vsUf2tq/8A0D3/AO+xXRUUAc4dV1fB/wCJe/8A32KxPD2qauNN/wCQe3+sk/jH9413p6GsPw7/AMg3/tpJ/wChGgCL+1tX/wCge/8A32KP7W1f/oHv/wB9iuiooA53+1tX/wCge/8A32Kwjqmrf8JGp/s9/wDj3P8AGP7wrv6wT/yMo/69z/6EKAI/7W1f/oHv/wB9ij+1tX/6B7/99iuiooA53+1tX/6B7/8AfYrE8Rarqx0mTOnv1X+Metd7WF4k/wCQTJ9V/nQBCNV1fH/IPf8A77FL/a2r/wDQPf8A77FdCOgpaAOd/tbV/wDoHv8A99ij+1dX/wCge/8A32K6KigDz7w9quri2m/4l7/6+T+Metb/APa2r/8AQPf/AL7FO8O/8e0//XeT+ddBQBzv9rav/wBA9/8AvsUf2tq//QPf/vsV0VFAHn8+qasfEcB/s9v9S/8AGPUVvf2tq/8A0D3/AO+xT5/+Rkt/+uL/AMxW/QBzv9rav/0D3/77FH9rav8A9A9/++xXRUUAcLr+qas2kzA6e/T++K1ItV1cRKP7PfoP4xVzxCM6RN9B/OtaH/Up9BQBg/2tq/8A0D3/AO+xR/a2r/8AQPf/AL7FdFRQBzv9rav/ANA9/wDvsVhaLqmrCW9I09v9e38Y9BXf1gaH/rb3/r4b+QoAZ/a2r/8AQPf/AL7FH9rav/0D3/77FdFRQBzv9rav/wBA9/8AvsVw2ueOrPSvGWjaFqax297qImFrBJMqyTFFy2xepwOTivW6/P34w2nnf8FBfhBPcgNDHpGu7Nw4Evljke+KAPuD+1tX/wCge/8A32KP7W1f/oHv/wB9iuiooA53+1tX/wCge/8A32Kytc1XVzpFx/xL3+4f4xXb1k67/wAgi4/3DQB8KftHfD/4jP4i0D46fDXTnk1XQlAnhDBjLD1wB344r5+8dax4s/ar1H/hE/BHhm80TzFa61eWdCnmzRrhE3MBwD0FfrxY/wDHnF/uD+VTJDDESYkCk9cDGa+KzTg2GLr1JRruFKq06kEk+ZpWvF7xclpK26Pp8BxLLD0oKVJSqU01CV3onrZraVnqr7M/NHW/hD8Sfib+zZomhTaRNpniPwu+628x1G9ovTngEdKNF/bY8feFNCTwv478F6hJr1qnk70Rtksg4BOFPXvg1+mVV3tLWRxJJGjMOhKgmnPhSvRnGtl2MlTqckYSbjGSmoq0W1olJLS66CjxBSqRlTxmHU4czlFXcXFy1aT10fZn5q2Hwf8Ai58evAt7rvxGln0/Wri/jvbCPjy7QIPlGzryOvevr2Lwjr3iL4Y/8K/+KFv/AGw88Hk3EyhYw3oQOxFes6V/x+3o/wCmo/lW5Xq4DhzC4Xmk7znKPLNybfPvrJbN6vpotFoefi85xFeyVoxjLmikkuXyT3touu+u5+aWjfsgfFHw7M2keH/GOp2WihiY4ImAZQe2c4/SvU9U/ZR8Ma74Ibwprw1K+uhL50eoT3G+eOTGPlJ4A9R0r7aornocG5RShKmqF4tWtKUpJLsk20vlaxvV4kzGpJTdWzTvdJJ37tpK/wAz87fCH7KOoeHvGelap441S/8AElrYuWtbW6ceWjKMgn1xX27dxC/mjuL3RVleH7jPtJXHoT0rX1L/AJCtj/vP/Kt6vSy3JMFgKcqWFp2Td3e7bfS7bb06a6dDixuaYrFzU687taLZJfJWWvXufPnxm+FGkfG7w4mgeJtPmieB/Mt7iJwJIn9Qa4j4G/s8aZ8E9TvPEMCXeraneKI2ubp1LBB2FfXVFKpkWAqYyOYTop1ltLr29LpbPdBDNcXDDPBxqP2b3X9fkcPd3N5bafdG20vyvMVmbaVGTjqfep9K1XVxpsH/ABL2+4P4xXRap/yDZ/8Arm38qbpAxpkH+4K9VJLRHA23uZ39rav/ANA9/wDvsUf2tq//AED3/wC+xXRUUxHinxi1XxW3ws1+PRdMlkunspUjVCGYlhjgd+tYPwKj17w/4A0/SLrTJI5oLWBZFLAENs5yPWvomsDTP+Qrf/7yfyrh+or659c5teTkt03vf12Or60/q31a2nNzX+VrHwr8c/hx8dZ/jhpXxg+Femw3E1vbfZ9tw42xt0yRxkV9W/Dl/ibpfhSC3+IQGoaqSXmki2og3c7QB2HSvXKK4sDkVHC4ytjKc5XqO7i37qbtdpd3Zb3t0OrFZrUxGHpYecY+4rJ296yvZN9lfpbzPzl+Lv7Jfjf4z/FGfxb4p1eZdIbAhtUwXiQfwgk7R9cZr6A8A/Cbwn8HbKy0fwZoJiMsmJpmcNLLx/Ex5NfTVYGsf8fth/11/pUYLhnLcLiqmOpUv30225NuT13s23ZelisTneNr0IYWpU/dxSSirJad7Wv8z84PFH7Inxaj1zVrP4ca3Jpnh7XZjLd2hbkbjkgYOD7V9w/DXwlb/C7wbZeC/DmlslvaJjO4Zdj1Y+5PNeu0UZXwzl+X154jCwalLTVt2Td2op/Cm9WkGOzvF4ylGjXleK7JK7ta7tu7aXZzv9rav/0D3/77Ffm5+3Te3tx408CC4tmiIuwQCwOfnFfpvqdtcXmm3FpaSmCWWNlSQdUYjAP4GvxH+K3iX4qeKvin4X+GnxItHfVdD1AItyFI+0xFwQ/oeB1FfN+I+OVPLlhHB3qyik0rq6nF2fZtXa72Z7fBeEc8a8QpK0FK662cZaryT39T9jdA1XVxotqP7Pf/AFa/xj0rX/tbV/8AoHv/AN9irmhDGj2y+kYFa1foR8cznf7W1f8A6B7/APfYo/tbV/8AoHv/AN9iuiooA89stU1f/hIb0/2e33I/4x6V0H9rav8A9A9/++xRY/8AIw3v+5HXRUAc7/a2r/8AQPf/AL7FH9rav/0D3/77FdFRQBwOt6pqx+y509/9ev8AGPQ1uf2tq/8A0D3/AO+xUmu9LXP/AD3X+RreoA53+1tX/wCge/8A32KP7W1f/oHv/wB9iuiooA5uTVdXMZ/4l79D/GKxvDmq6sNFgxp7/d/viu6k/wBW30NY3hv/AJAsH0oAh/tbV/8AoHv/AN9ij+1tX/6B7/8AfYroqKAOd/tbV/8AoHv/AN9iuft9U1YeJLk/2e/+pj/jHvXoVc7bD/iprk/9Mo/60AH9rav/ANA9/wDvsUf2tq//AED3/wC+xXRUUAc7/a2r/wDQPf8A77FYuuarq5t4f+Je/wDrk/jHrXeVia7/AMe8P/XZP50Afn5/wVS8Mz/Er/gnB8bPCGp6a7Rz+ENTlA3A/PBC0q/kVBr8y/8Ag1f+KGreLv8Agj54K0NoHuX8N6jqumbtwyFS5d1HPorgD6V/QR8Z/A0fxP8Ag94r+G0xwviDR77TST2+1QvFn/x6v5O/+DP/AMcy2H7PPxk/Zuvp2e48DeM5yImGNkdyMA/iyNQB/XZ/a2r/APQPf/vsUf2tq/8A0D3/AO+xXRUUAef+GtV1caUo/s9/vv8Axj+8a3v7W1f/AKB7/wDfYp/hn/kEr/vyf+hGt+gDnf7W1f8A6B7/APfYo/tbV/8AoHv/AN9iuiooA4D+1NW/4SXP2Bv+PYfxj+8a3f7W1f8A6B7/APfYp5/5Gf8A7dh/6Ea36AOd/tbV/wDoHv8A99ij+1tX/wCge/8A32K6KigDgPEeqasdMIOnv/rI/wCMf3hW4NV1fH/IPf8A77FSeJf+QWf+ukX/AKGK3h0FAHPf2tq//QPf/vsUf2tq/wD0D3/77FdFRQBzv9q6v/0D3/77FYmg6rq4tJP+Je/+ul/jH9411B1zSRrf/COeev24w/aPJ/i8rO3d9M8VB4f/AOPOT/rvL/6EamM4yvyu9huLW6If7W1f/oHv/wB9ij+1tX/6B7/99iuioqhHO/2tq/8A0D3/AO+xWLLqmr/8JDCf7Pf/AFD/AMY/vCu8rDl/5GKH/rg//oQoAh/tbV/+ge//AH2KP7W1f/oHv/32K6KigDnf7W1f/oHv/wB9isTxJqurnQ7n/iXv93++PUV3tYfiX/kB3P8Au/1FAEI1XV8f8g9/++xR/a2r/wDQPf8A77FdCOgpaAOd/tbV/wDoHv8A99ij+1tX/wCge/8A32K6KigDgNC1TVwLz/iXt/x9Sfxj2rd/tbV/+ge//fYqTQel5/19S/0reoA53+1tX/6B7/8AfYq7Y319czGO6tWgUDO4sDz6Vq0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZUmpyRyMgtJ2wSMgLg49PmrVooAx/7Vl/58rj8l/8AiqyNf1WU6RP/AKFcdB2X1H+1XX1j6/8A8gef6D+YoAP7Vl/587j8l/8AiqP7Wl/58rj8l/8Aiq2KKAMf+1pf+fK4/Jf/AIqsnS9VlEt5/oVx/wAfB7L/AHV/2q66sjSv9bef9fB/9BWgBP7Wl/58rj8l/wDiq/OzUdWPw6/4Kn6bdPBPFb/FH4cz2gjwP3t54VvxKp4OMiDU5MknJAGOAa/Suvzb/wCCgNnH4K8b/Aj9pmHZG/gbx/Z6dezP0XTPFMUmjzgkkYHnXFvJ35jHegD701DVZf7SsD9juP8AWP8Awr/cb/arY/taX/nyuPyX/wCKpNQ/5Cdh/wBdH/8AQGrZoAx/7Wl/58rj8l/+KqG51WX7NJ/odx909l9P96t6oLr/AI9pP90/yoA53R9VlGk2v+hXH+qTsvoP9qtH+1Zf+fO4/Jf/AIqptG/5BFr/ANck/kK0qAMf+1pf+fK4/Jf/AIqsi31WX+2rr/Qrj/Vxdl9W/wBquvrIt/8AkN3X/XOL+bUAJ/a0v/Plcfkv/wAVR/asv/Plcfkv/wAVWxRQBx+t6rMbaL/Qrj/Xw9l/vj/arY/taX/nyuPyX/4qk1v/AI9ov+viH/0MVs0AY/8Aasv/AD53H5L/APFUf2rL/wA+dx+S/wDxVbFFAHIaJqswsT/oVx/rZey/32/2q1/7Vl/58rj8l/8AiqND/wCPFv8ArrL/AOhtWxQBj/2rL/z5XH5L/wDFVjzarL/btufsVx/qJey+qf7VdhWPN/yHrf8A64y/zSgA/tWX/nzuPyX/AOKo/taX/nyuPyX/AOKrYooA5PW9Vl/se6/0K4/1T9l9D/tVpJqsu0f6FcdPRf8A4qptc/5A13/1yf8AlWkn3B9KAMn+1Zf+fK4/Jf8A4qj+1Zf+fO4/Jf8A4qtiigDkNO1WUXt8fsdx/rV7L/cX/arX/tWX/nyuPyX/AOKo03/j+vv+uq/+gLWxQBj/ANrS/wDPlcfkv/xVZGqarN9osv8AQrj/AI+PRf7j/wC1XX1j6r/x8WP/AF8f+yNQAf2rL/z5XH5L/wDFUf2rL/z5XH5L/wDFVsUhIAyeAKAPyvl/aH+HH7O37WPxgHxW1WHww/iKz0O90h9SVlhuWhtXhZlK/eCyABwpzXGfCv8Ab9/YW+BXheQXnjC41/xNrkou9WvYrCeS4vrtgFwgCYEcYxHDEGIRAAMnJPuvxW/anb4l+Lp/gv8AsleHrPx/4qsmMd5q12oOg6KTwTPcAESSDtDCSxPUjBFdT+z3+xh4Q8D6va/GX4sXzeOfH8sSn+1b2NVgsgRnyrG2A8uCNegIG89c84r9OqPLaeEVXOadSE5QppU41IqU/ZwUYtp0m4QaSl70rt2cYySTXyMVip1+XASjKKlJ8zi2o80m2k1NKUle2i0WjavZ/nb8Rv2vP2i/2qPEkvhPQfAPxA8M/Ds/Ky6FpbLq2rKeqPeTNHFZxMOoj8xyCQTivqT4T/Ff4q/BvwbB4G+B/wCy/rWkaRB8yxvqNjbSO56vKWdndz3Z2LH1r9VKK8nF8W4OpQjhKWXQjRj9lzqWb/mlyyhzS85Xa2VlodtHJa8ajrTxUnN9eWF0uyupWXkvndn5xL+1F+2IdWklj/Z21LeYlG069YjjLc56c1bf9pL9uq8+TTP2fGgJ73XiOzA/8dU199R/8h+X/rgn/oTVsV5f9t4JbZZR/wDAq/8A8uOz+z8R/wBBc/up/wDys/OsfGr/AIKOTfNF8FNDjHYSeJI8/pFWdq/xh/4KONYkXHwb8Pqm+PkeJFJzuGP+WPrX6S1ja/8A8gxv+ukX/oa0v7dw3/Quo/8Alb/5cV/Z1X/oKqf+Sf8AyB8At8df+CiVkc3vwN0q4H/Tt4khz/49EKX/AIaP/b0X737Pqn6eJLT/AOIr9FqKf9u4TrltH76//wAuJeXV+mLqfdT/APlZ+c5/aQ/b06j9nxfx8SWn/wARWbpv7RX7eaRyiD4ARnM0hJPiO1GCWOR9ztX6VVj6L/qp/wDr4l/9CNH9uYP/AKFlH76//wAuF/Z1f/oLqfdT/wDlZ+fp/aC/4KET8W3wGsoye8viS3x+kdNl+Kf/AAU31IY034WeE9L97zXHuP0hjX+dfo5RR/b2GXwZdRX/AIOf51mh/wBm1ftYqo//AABflBH5jXHij/gqtJqdszeHfhzE+2TYDPqDDGBnJGKvnxT/AMFYEP8AyLnw3k+k+orn8ya/RK7/AOQzZ/7sv8hWxT/1jj/0BUP/AAB//JC/sn/qIqf+BL/I/NtPiH/wVKtf+Pr4feCLz/rhqlxF/wChqaLz4v8A/BSlLKZbv4PeG5F2NuZPEW3jHPBir9JKo6n/AMg24/65P/I0v9YKL+LL6D+VRflVQ1lk1tian3xf5wZ+dln+0R+37pUUaav8AoLxAowbDxHbdMf9NEFWf+Gxf2oLI7NZ/Z08Sq3/AE66hZ3A/MFa/Q+y/wCPOH/cX+VWaf8AbmBfx5ZS+Uq6/wDczF/Z+JXw4ufzVN/+2L8z86T+2l+0CwxD+zv4wLf7U1oo/PzDWdaftYftbz391Lp37OussHKcTazZREYXuDn+dfpPWNYf8hW+/wB6P/0EUf21ly2yyn851v0qof1DFPfFy+Uaf6wZ+fs3x6/4KG+I8w+FPgfp2ikjiXWfEEMiqfXZboWP0BFfIv7bWlf8FBdX/Ze8U+I/jJqvhPTtG09bW9m0/R7K4lmLQXETx7LiaT5SrhWJ28gY71+6tfPn7Vvwr1v43/s5eMfhR4aaJdR1vTZbe1M7FY/O4ZNzAEgFgMnBxXqZFxPQoZlhpxwlGlBVINvllJpKSu71JztZdVZo4sxyipUwlaLr1JycZJK6Sbs7aRjG5+aPi2X9tv4f/GjwX4mvvG1h418S6xZ3Frp/h2005rCCeGVQ32m8KysqQWrlXMmA7H92uSxx+gXwI+AenfCi7u/H/jFrrxV4+1oA6r4gu4081h1EFuu7EFsnRIkx6tk1r/CH4PXnw+sLfxd46mj1HxprP2SPVb2MHykWBCI7W3B5S3hydo6uxLtlmNfTFcee8QzrR+q0OVRS5ZShCMOdJt2tFL3E3ot5aSltGMN8uytQftqt227pSk5culr6t+8+vbZdW8f+1pf+fK4/Jf8A4qj+1Zf+fK4/Jf8A4qtiivkj2zj9A1WUaRD/AKHcfxdl9T/tVsf2rL/z5XH5L/8AFUaB/wAgiH/gX8zWxQBj/wBqy/8APlcfkv8A8VWP/asv/CQZ+x3H/Hv6L/e/3q7Csb/mYf8At3/9moAX+1pf+fK4/Jf/AIqj+1pf+fK4/Jf/AIqtiigDkdd1WU6TN/oVx0HZfUf7Va39qy/8+dx+S/8AxVLr3/IJm+g/mK16AMf+1Zf+fK4/Jf8A4qj+1Zf+fO4/Jf8A4qtiigDjdG1WUPef6Hcf8fL9l9B/tVtf2tL/AM+Vx+S//FUzRfv3v/Xy/wDIVt0AY/8Aa0v/AD5XH5L/APFVk3uqy/2nZf6Hcfek7L/dP+1XXVkX3/ITsv8Aek/9BNACf2rL/wA+dx+S/wDxVH9qy/8APlcfkv8A8VWxRQBgXWqym1l/0K4+43ZfT/eqrpGqy/2Ta/6Fcf6lOy+g/wBquhu/+PWX/cb+VVtH/wCQTa/9cU/9BFAEH9rS/wDPlcfkv/xVH9qy/wDPlcfkv/xVbFFAHH2uqyjWrs/Y7j/Vw9l/2v8AarY/taX/AJ8rj8l/+KpLX/kN3n/XOH/2atmgDH/tWX/nzuPyX/4qsrV9VlMUH+hXH+vi7L/eH+1XW1k6v/q4P+u8X/oQoAb/AGrL/wA+Vx+S/wDxVH9rS/8APlcfkv8A8VWxRQBj/wBqy/8APncfkv8A8VWRoeqyjT+bK4/1svZf77f7VdfWPoX/ACD/APtrL/6G1AB/a0v/AD5XH5L/APFUf2tL/wA+Vx+S/wDxVbFFAHIy6rL/AG7CfsVx/qJOy/3k/wBqtb+1Zf8AnyuPyX/4qll/5DsP/XCT/wBCStegDH/tWX/nzuPyX/4qsnXtVlOi3X+h3H+rbsvp/vV11ZGv/wDIFuv+ubfyoA/OT/gqNfS+LP2Xbb4Ex2knm/FPxR4d8HskgUh7XUL+Jr4bd3zf6FFcZHpz2r9GV1N41EaWU4C8ABVxgf8AAq/Pb9oi1m+KH/BQL4BfChU86w8H23iH4gagCSAs1rbppVgCMEHL6jO4yQQYsjODX6RUAY/9rS/8+Vx+S/8AxVZek6lK99eIbSdQ04GSFwMovX5q6ysjTf8Aj7vv+uw/9AWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAOe0z/AJDupfWL/wBBroa57TP+Q7qX1i/9BroaACiiigDB1n/j6sP+vgf+gtU+ueINB8Mae2reJL230+1ThprmRYox9WYgVBrP/H1Yf9fA/wDQWr+PH/g4Nv8A9mvx9/wUp+CfwE/b38f638Pvgvd+EdX1Ca70+eeGCTVxMqQh/KV8kKME7TgMOgoA/sO8P+KfDHi2z/tHwrqNrqVv/wA9LWZJk/NCRW9X8Av/AAQr8EeEY/8AgtTqkf8AwTE8S+Ldf/Zy8L+H7iDxFquuTySWd/eyxt5axBwvAlMZQMN42M3AIFf39UARzf6pvoayvD3/ACA7X/rmtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/Ix3n/XKL+bUAdDRRRQB+X3/AAWW/a4t/wBij/gm98UfjhDMsOqRaPNYaVk4LX96PJhx6lWbd9BX8U//AAZz/s93XxP/AGqPG37V3iWHzE8DabFpVlKVHN3qspMjZPO/y1cZz0bFfYP/AAeb/tM694gh+H37FnguR/s1lb3Hi/xBsY7QkZEFqjgcfMzORu/iC4r9o/8Ag20/Yavv2LP+CYHhG+8V26w+I/iVew+KrzH3lt7tE+yI30hAbHYuaAP6NaKKKACmv9w/SnU1/uH6UAYvhv8A5AsP/Av/AEI1uVh+G/8AkCw/8C/9CNblABSEgDJ6Clr8+f2l/iX8Q/i54juP2Uv2cpGg1W5RV17XgD5Gk2r9VBH3p5F4VQcgHJr0sry2eNr+yjJRitZSfwxit5P07bt2Su2jlxmLjh6fO1d7JLdvol/Wm70PdviL4d0n9obwrrXgnwn4iNraX0Ysru8091d1VHxNErchWIypPUZr2HwD4E8MfDLwbp3gLwZarZ6ZpUC29vEvZV9fUnqT3NcF8GPhV4X+Cfh6w+GXg+Py7LTLKNAx5aSQsS8jnuztkk+9e2VOKxVoywlCbdBSbjdJX6KTS62Xd21t1u6NHVVqkUqjSTtrbrZeV/vCiiivPOkwfEePsCZ/57R/+hCt6sHxHj7Amf8AntH/AOhCt6gAooooAQ9DWH4d/wCQb/20k/8AQjW4ehrD8O/8g3/tpJ/6EaAN2iiigArBP/Iyj/r3P/oQrerBP/Iyj/r3P/oQoA3qKKKACsLxJ/yCZPqv863awvEn/IJk+q/zoA3B0FLSDoKWgAooooA5/wAO/wDHtP8A9d5P510Fc/4d/wCPaf8A67yfzroKACiiigDAn/5GS3/64v8AzFb9YE//ACMlv/1xf+YrfoAKKKKAMXxEM6PN9K1YP9Sn+6KyvEX/ACB5vpWrB/qU/wB0UAS0UUUAFYGh/wCtvf8Ar4b+QrfrA0P/AFt7/wBfDfyFAG/RRRQAV5b4913wN4R1jTfFfjWe2sxb+ZHFcz4BQyDBCnqM98V6fJJHDG00pCqoJJPQAV/OT+39+1Rqfiv4z+FvCmlW0s2g6pqUuk2kwOI/OhjMkj+5OMD0r5rifPpZZhk6FPnrSvyx72V5N+UVq/kup7eRZTHHVrVZ8tKNuaXq7JLzb2P6MrW5t722ju7RxJFKoZGU5BU9CKnr5+/ZZ8RnxT8BvDupO251thC31jOK+ga9nL8XHFYWlio7Tipfernm4zDvD16lB7xbX3OwVk67/wAgi4/3DWtWTrv/ACCLj/cNdhzFyx/484v9wfyq1VWx/wCPOL/cH8qtUAFFFFAGHpX/AB+3v/XUfyrcrD0r/j9vf+uo/lW5QAUUUUAYOpf8hWx/3n/lW9WDqX/IVsf95/5VvUAFFFFAFDVP+QbP/wBc2/lTdIGNMg/3BTtU/wCQbP8A9c2/lTdJ/wCQZB/uCgDRooooAKwNM/5C1/8A7yfyrfrA0v8A5C1//vJ/KgDfooooAKwNY/4/bD/rt/St+uf1n/j+sP8Arqf5UAdBRRRQAVjalpGlXLnUri2je4iRtkjKCy8dj1rZqvd/8esv+438qTino0NSa2ZT0T/kEwf7grUrL0T/AJBMH+4K1KYgooooA52x/wCRhvf9yOuirnbH/kYb3/cjroqACiiigDB13pa/9d1/ka3qwdd6Wv8A18L/ACNb1ABRRRQAyT/Vt9DWL4b/AOQLB/u1tSf6tvoaxvDf/IFgx6UAblFFFABXO2w/4qa5P/TKP+tdFXO2w/4qa5P/AEyj/rQB0VFFFABWJrv/AB7w/wDXZP51t1ia7/x7w/8AXZP50AbZAIwa/i//AODfhr/4Wf8ABZT9tn4CtGttaNrC6lFCOMD7VcAYHsriv7QK/jC/ZSaT4C/8HZ/xo8CX5ZU+IfhxtQgwMKxdYLgfkCw+tAH9ntFFFAGB4Z/5BK/78n/oRrfrA8M/8glf9+T/ANCNb9ABRRRQBgH/AJGf/t2H/oRrfrAP/Iz/APbsP/QjW/QAV5/41+JnhfwK8FnqjyT313nyLO2TzZ5MeijoPckD3rT8d+LrHwH4P1HxfqXMVhA0pXuxH3VHuxwB9a4P4QeBJ9J04+NPFhFz4i1kCe7mbny93KxJn7qIOAB9a8zF4mq6ywuGtztczb1UY3stNLtu6irpaNvaz7sPQpqm69a/LeyS6v16JdfVLrdQv8QPEGt+XZXfhm/sYJZI/wB/MY9q4YfeAYmvbh0FYPiX/kFn/rpF/wChit4dBXZh6U4RtUm5Pu0l+SRzVZxk7wjyr5v87i0UUVuZHy/JfsP2vVsM8Hw1n/yOa+g/D+fscv8A13l/9CNfJ9zf5/bqgsR28Lkn/v8AV9V6NPBa6bNcXLrHGk0xZmOABuPUmvnsgq831u72rTX5HsZtT5fq/nTj+p0VFZmn63o2rAtpV3DcgdfKdX/kTWkzKqlmOAOSTXvxnGSvF3R5Di07NC1hy/8AIxQ/9cH/APQhXGeGfiVB418STaf4VtmutLtN6TaiTiJplONkX9/HO5hwDxzWtZeJNI1bxzdaHp8nmXGlwhbkAcI0uGUZ9cckdsisKOMo1UpU5JptpebWunfZ7aaPsbVMNVptqcdUrvyXn26bnc0V8q6x8cpfhV8Stc0r4rx3UGiXMkMul3qQtJbonlqHRmQEg7wTz610Z/at+ARQND4himZvupHHI7k+gUJnNebHiPLlKUKteMJxbTjOSi9G1ezeztdPqmdksmxloyp0nKLSacU2tVfddVs10Z9D1h+Jf+QFc/7v9RXFfC34v+DvjDp15qvgszvb2NwbaR5ozHmRQCcZ64zXaeJf+QFc/wC7/UV6mGxVLEUo1qElKD2a1TOGvQqUZunVi1Jbp7m4OgpaQdBS1uZBRRRQBg6D0vP+vqX+lb1YOg9Lz/r6l/pW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWPr/8AyB5/oP5itisjX/8AkET/AEH8xQBr0UUUAFZGlf628/6+D/6Cta9ZGlf628/6+D/6CtAGvXyL+3v8G9T+P37GfxI+FXh9jHrGoaHcy6TIM5j1S0H2iykGCDlLmKNuCOnWvrqggEYNAHz7+z/8XtP+P/wR+HXxv0zAi8WaPaartX+Brq2Ejp9UYlT7ivoKvzG/4J0W83w68PeNf2V7xmL/AAo8d61ptkH4b+yNWzq+nY9VS3vBADz/AKk/Sv05oAKguv8Aj2k/3T/Kp6guf+PaT/dP8qAKmjf8gi1/65J/IVpVm6N/yCLX/rkn8hWlQAVkW/8AyG7r/rnF/Nq16yLf/kNXX/XOL+bUAa9FFFAGPrf/AB7Rf9d4f/QxWxWPrf8Ax7Rf9d4f/QxWxQAUUUUAY+h/8eJ/66y/+htWxWRoYxYn/rrL/wChtWvQAVjzf8h63/64S/8AoSVsVjzf8h63/wCuEv8ANKANiiiigDL1z/kDXX/XJ/5VpJ9wfSs3XP8AkDXX/XJ/5VpJ9wfSgB1FFFAGPpv/AB/X3/XVf/QFrYrH07/j+vv+uq/+gLWxQAVkap/r7L/r4/8AZHqTWtb0bw3pNxr3iG7hsbG0Qyz3Fw4jijRerMzEBQO5Jr84tf8A2n/i3+05q0fhL9iWwSLRo7hobnx3q8JGnRuFYMtjA2Gu3AzhsCMHGcg5r1ctyfEY3mnC0acfinJ2hH1fd9Iq8n9lNnHisdSoWjLWT2itZP0X5t2S6tH2B8bv2jfg5+zxosesfFTWY7GS6Oy0sowZr27kPASCBMySMTx8owO5FfIcvhX9pL9tmXHxJhvPhd8LZDn+x45Nmv6zEe11Ih/0SFh96JT5hHDHvXu/wO/Y5+GXwf1uT4ia5Nc+MvHN2M3XiXW2+0XrH0hBytvGOipEBgcEmvrWvT/tHBZdplq56v8Az9mtvOnDWz7TneXVRgzk+q4jFf72+WH8kXv/AIpdf8MbLo3JHE/D74ceA/hP4StvA3w20m20XSLJdsNraoI0HqTjlmPdjlieSSa6DQf+QLaf9ck/lWqehrK0H/kC2n/XJP5V83VqzqTdSpJuT1bbu2+7fU9WEIwiowVktkjWooorMox4/wDkPS/9cE/9CatiseP/AJD0v/XBP/QmrYoAKxtf/wCQY3/XSL/0Na2axtf/AOQY3/XSL/0NaANmiiigArH0X/VT/wDXxL/6Ea2Kx9F/1U//AF8S/wDoRoA2KKKKAMe7/wCQzZ/7sv8AIVsVj3f/ACGLP/dl/kK2KACqOp/8g24/65P/ACNXqo6n/wAg24/65P8AyNAElj/x5Q/7i/yq1Vay/wCPOH/cX+VWaACsex/5Cl9/vR/+gitisax/5Ct9/vR/+gigDZooooAxtY+9af8AXwn8jWzWNrH3rT/r4T+RrZoAKKKKAMfQP+QTF/wL/wBCNbFY+gf8gmL/AIF/M1sUAFY3/Mw/9u//ALNWzWN/zMP/AG7/APs1AGzRRRQBka9/yCZvoP5itesjXv8AkEzfQfzFa9ABRRRQBiaL9+9/6+X/AJCtusTRvv3v/Xy/8hW3QAVkX3/IUsf96T/0E1r1kX2f7Tsv95//AEE0Aa9FFFAFe7/49Zf9xv5VW0f/AJBNr/1xT/0EVZu/+PWX/cb+VVtH/wCQTa/9cU/9BFAGjRRRQBjWv/IbvP8ArnD/AOzVs1jWv/IbvP8ArnD/AOzVs0AFZOr/AOrg/wCu8X/oQrWrJ1f/AFcH/XeL/wBCFAGtRRRQAVj6F/yD/wDtrL/6G1bFY+hf8g//ALay/wDobUAbFFFFAGRL/wAh2H/rhJ/6Ela9ZEv/ACHYf+uEn/oSVr0AFZGv/wDIFuv+ubfyrXrifiV4q0PwJ8O9e8c+J5RBpui6fc393KeiQW0bSSN+CqTQB8Ifs0XFz8Vf28vj38Z5VEmm+FBofw70mbrl9PgbUdRI4HH2i/jibBI3QnoQRX6S1+f3/BMLwr4i0j9jTw1498cQeR4i+I017441ZCu1lufElxJfrG3fdDDLHCc8/u6/QGgArI03/j7vv+uw/wDQFrXrI03/AI+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKyNU1CwgtZ4ZpkRhG2QzAEcVr1k6pYWU1pPLLErMY2ySOelAFHRNW0saLaf6RF/qU/iHoK1P7W0v/n5i/wC+x/jWZoel6adFtD5Cf6mPt/sitT+y9N/54J+VACf2tpf/AD8xf99j/Gj+1tL/AOfiL/vsf40v9l6b/wA8E/Kj+y9N/wCeCflQBz2m6ppg1zUibiPrF/EP7tdAdX0sDP2iL/vof41gabpunHXNSHkp1i7f7NYPxWmt/Dfwv8R+IrGJFmsNMu7iM46NFEzA/mKAP42/2kf2+P8Agol/wWj/AG19c/YF/wCCdGoXPwr+EnhDUby18QfECPzI2vo7FxBOIphhT+93CKKNgX4ZjisT4z+Av+CyP/BBDS7b9qjQvjFcftB/BvSbmMeJtE1d3e6trWVgrTLuZyoGf9YhG3IyCM1+mX/BqbJa+KP+CTOneLdRt42vNT8W+IriaTaNzNJc7jk9T1r9+fjj8N/AfxG+DXirwF45sILvR9X0q7tbyGVQUeGSJgwOfb8qAOR+C37Q3wy/aW+DXgb4/fDO/S40Hxda2+p2bMwDCOeMttYZ4ZDlWHYg1F+0D+zN+y3+1Xolt4d/aL8J6J4xs7JzJbx6pBHceUzDBKFslc98V+Bn/Bq54i1TxT/wSx0zw7rsZltPC3jjW9J0yST5y1mhWVcE9laVlH0r+nj+y9N/54J+VAHjXwP+CH7Pv7NfgxPh58BfD+k+E9FRzILTTYo4Iy7dWIXGT7mvZP7W0v8A5+Yv++x/jS/2Xpv/ADwT8qP7L03/AJ4J+VAEU2raX5Tf6TF0P8Q/xrK8Patpf9h2v+kRf6tf4hWtNpem+U37hOh7VleHtL07+w7X9wn+rXtQBsf2tpf/AD8xf99j/Gj+1tL/AOfmL/vsf40v9l6b/wA8E/Kj+y9N/wCeCflQAn9raX/z8xf99j/GsOxv7FvEV4yzIR5UXRh6tW7/AGXpv/PBPyr8df2qv+CSunftVftAat8WR8Z/iF4K+1WtrF/Znh7VmtLFPKBXKRgYBbGT6nmgD9j/ALdZ/wDPVPzH+NH26z/56p+Y/wAa/nz/AOHAdh/0cp8X/wDwoH/+Jo/4cB2H/Rynxf8A/Cgf/wCJoA/md/4OTPBviTwR+1B8b/iP8Rd0S+Nv+EM0jwlLICyz2ETGTUI4jjaAkiKX5HJHrX+gT8OtM0Twn8H/AAX4W0pkjtdNsNNtYUBACxwxIij8AK/hF/4OEv8Agldpn7K3wg+FmqN8XfHfjY+JfGllpDQeI9UN5FAkqsTJECPlcbeDX71x/wDBA3T10TTZR+0h8XAJPIAUa++F3AdBjjHagD+jT7dZ/wDPVPzH+NH26z/56p+Y/wAa/nz/AOHAdh/0cp8X/wDwoH/+Jo/4cB2H/Rynxf8A/Cgf/wCJoA/oM+3Wf/PVPzH+NNe+s9h/ep09R/jX8+v/AA4DsP8Ao5T4v/8AhQP/APE0jf8ABAOxCk/8NKfF7/woH/woA/fHw3fWX9iw/vU/i7j+8fetz7dZ/wDPVPzH+Nfzv6L/AMECrC502OYftJfF1N27hdfcDgn/AGa1P+HAdj/0cp8X/wDwoH/+JoA/bH4tfG3wt8JbLTDfq9/f61fQ6fYWVuQZZppTjjPRUGWZjwAK9H0+x8N6TNcXGmRQW8l3J5s7RhVMj4A3MR1OABzX882hf8EC9S1bSns/H3x9+I3n2WpS3GmXVvrLvdxwFdgDTOCQWGSVXavPeuh/4cB2H/Rynxf/APCgf/4mvSxscPShTpUJc0rXm+jb15V5R79ZX6JM5cO6k5SnUVlf3V1sur9e3a3W5+9kV9Z/8JPN+9T/AI907j+8feug+3Wf/PVPzH+Nfzux/wDBAuwOtyWv/DSXxd+WFW3f2++eSeOla3/DgOw/6OU+L/8A4UD/APxNeadR/QZ9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH73eIr6y+wJmVP9dH3H94VvfbrP/nqn5j/Gv53tZ/4IFWFtaLIf2kvi6wMiDDa+5HJA9K1f+HAdj/0cp8X/APwoH/woA/oM+3Wf/PVPzH+NH26z/wCeqfmP8a/nz/4cB2H/AEcp8X//AAoH/wDiaP8AhwHYf9HKfF//AMKB/wD4mgD+gs31ng/vU/Mf41h+HL6yOm/61P8AWSdx/eNfgef+CAdjj/k5T4v/APhQP/8AE1l6L/wQJsbiy8z/AIaS+Lq/O4wuvuBwxHpQB/RD9us/+eqfmP8AGj7dZ/8APVPzH+Nfz5/8OA7D/o5T4v8A/hQP/wDE0f8ADgOw/wCjlPi//wCFA/8A8TQB/QZ9us/+eqfmP8awTfWX/CSj96n/AB7nuP7wr8Ef+HAdh/0cp8X/APwoH/8AiayT/wAECrD+2xbf8NJfF3/Ult39vvnqOOlAH9EX26z/AOeqfmP8aPt1n/z1T8x/jX8+f/DgOw/6OU+L/wD4UD//ABNH/DgOw/6OU+L/AP4UD/8AxNAH9Bn26z/56p+Y/wAawvEl9Z/2TJ+9Tqvcetfgh/w4DsP+jlPi/wD+FA//AMTWVrX/AAQJsLfT3lP7SXxdbBHDa+5HX6UAf0QC+s8D96n5j/Gl+3Wf/PVPzH+Nfz5D/ggHYY/5OU+L/wD4UD/4Uv8Aw4DsP+jlPi//AOFA/wD8TQB/QZ9us/8Anqn5j/Gj7dZ/89U/Mf41/Pn/AMOA7D/o5T4v/wDhQP8A/E0f8OA7H/o5T4v/APhQP/hQB+9nh29s/s0/71P9fJ3Hr9a6D7dZ/wDPVPzH+Nfzu6P/AMEC7C5glYftJfF1dsrrxr79j9K1v+HAdh/0cp8X/wDwoH/+JoA/oM+3Wf8Az1T8x/jR9us/+eqfmP8AGv58/wDhwHYf9HKfF/8A8KB//iaP+HAdh/0cp8X/APwoH/8AiaAP3tnvrL/hJLf96n+pfuPUVv8A26z/AOeqfmP8a/ncl/4IFWC61Fbf8NJfF35omO7+33zwR3xWv/w4DsP+jlPi/wD+FA//AMTQB/QZ9us/+eqfmP8AGj7dZ/8APVPzH+Nfz5/8OA7D/o5T4v8A/hQP/wDE0f8ADgOw/wCjlPi//wCFA/8A8TQB++XiG9s/7Hm/ep0/vCtaG9s/JT96nQdxX88ur/8ABAiwt9OlmP7SXxdbaOja+5H8qvxf8EBLBo1b/hpT4vcgf8zA/wD8TQB/Qf8AbrP/AJ6p+Y/xo+3Wf/PVPzH+Nfz5/wDDgOw/6OU+L/8A4UD/APxNH/DgOw/6OU+L/wD4UD//ABNAH9Bn26z/AOeqfmP8awdEvbPzb396n+vbuPQe9fgj/wAOA7D/AKOU+L//AIUD/wDxNZOl/wDBAqwne5A/aS+Lq7JivGvvzwOTxQB/Q9NqdhBE00kq7UBY8joK/PHxR+3zJca9ceHvhV4Wudakt3aMyOSASpxnaoJxn1Ir4EP/AAQBsGBU/tKfF7B/6mB/8K6b4r/8EovE/gL9n2bwV8O/iF4q1mSFP39818bbVjGvO5biEIzFe+7Oa+P4wnm1OhTq5dNxgn+85YqU+XvBPR21ut30Po+HI5fOrOGNjeTXuXbUb9pNaq/R7dz2n4k/tYftJeINO/4QW58Nx6NLrqm3gCq4nbdwdu5v1xXx/wDGH4D/ABc1TQ/Alh408MzRx+EdXfUNNa1wzm6mQozT7Cdybc53cCvMPgV+wL4T+LHwj1nwN4z+NfjPQ7fSJ1uRq0+smTWQf4lE8gJWMEY2oBXgOp/8E7bC++ItloXwP+NXxb8ZPbyZcXWvzCGQA9MLtIU9ySARX5pFYatTlmeOzOq3LmhSUeX2k4bP3VG65pLay0tdn27danOOBwuBppRtKo5X5Iy6e83b3V1112P0l+F3xz+PHw3+GckXhLULG20exnddk5QzGRuSFUgsR+ld/wCDf2pv2vfiDfiw8HqL1+5W3QIv1YgAV5b8DP2P4Pj/AGniPwDrviLUfDN/pG2Ay2PlvMpPyk7pFcbh61h2/wDwb6aBZPI2nftF/Fi1ErlykGuGNMscnCqoA+gp8G8OZ1mGFpVpY6pRw6VlFSbk+VtOy2gla1ndhxLnOWYOvUpLCwqVnq24qyur77yfW+h+43wf1L4gS+BLST4tvbJrZz5ogI247ZxxnHXFdzrt9Z/2RcfvU+4e4/xr8Cf+HAdj/wBHKfF//wAKB/8ACs/Vf+CBFhBp00x/aT+LzbVJwdfcg/pX7nhqPsaUKXM5cqSu3du3VvuflVer7SpKpypXd7LRLyXkf0JWN9Z/Y4v3qfcHcen1q19us/8Anqn5j/Gv57Lb/ggLYPbRv/w0n8XhlQcDxA/p/u1P/wAOA7D/AKOU+L//AIUD/wDxNbmR/QZ9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH74aVfWf229/ep/rR3Hp9a3Pt1n/wA9U/Mf41/PBYf8ECbCW5uUH7SXxdGx8ZGvvzx3+WtP/hwHYf8ARynxf/8ACgf/AOJoA/oM+3Wf/PVPzH+NH26z/wCeqfmP8a/nz/4cB2H/AEcp8X//AAoH/wDiaP8AhwHYf9HKfF//AMKB/wD4mgD97tSvrP8AtWx/ep95+49K3vt1n/z1T8x/jX8715/wQKsIr+1i/wCGkvi6fMLDJ198jA7cVq/8OA7D/o5T4v8A/hQP/wDE0Af0GfbrP/nqn5j/ABo+3Wf/AD1T8x/jX8+f/DgOw/6OU+L/AP4UD/8AxNH/AA4DsP8Ao5T4v/8AhQP/APE0Afv7ql9Z/wBmz/vU/wBW3cen1pukX1n/AGZB+9T7g7iv5+r7/ggNYRWUsh/aT+Lx2oTg6++Dx9KSw/4ID2M1lFKf2k/i8Nyg4HiB8D9KAP6F/t1n/wA9U/Mf40fbrP8A56p+Y/xr+fP/AIcB2H/Rynxf/wDCgf8A+Jo/4cB2H/Rynxf/APCgf/4mgD+gz7dZ/wDPVPzH+NYGl31n/a1/+9T7ydx6V+CX/DgOw/6OU+L/AP4UD/8AxNZNj/wQKsJdQu4h+0l8XR5bKMjX3ycjv8tAH9EX26z/AOeqfmP8aPt1n/z1T8x/jX8+f/DgOw/6OU+L/wD4UD//ABNH/DgOw/6OU+L/AP4UD/8AxNAH9Bn26z/56p+Y/wAawNYvrP7bYfvU/wBae49K/BL/AIcB2H/Rynxf/wDCgf8A+JrJ1H/ggXp8N1aIf2kvi63mSY5198jjtxQB/RF9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH9Bn26z/wCeqfmP8ar3d9Z/ZZf3qfcbuPT61/P3/wAOA7D/AKOU+L//AIUD/wDxNQ3H/BASwSB2/wCGlPi8cKTz4gf/AOJoA/f7RL6z/sqD96n3B3Fan26z/wCeqfmP8a/nl0z/AIIEWE9hFL/w0n8Xl3KDga+4A/Sr3/DgOw/6OU+L/wD4UD//ABNAH9Bn26z/AOeqfmP8aPt1n/z1T8x/jX8+f/DgOw/6OU+L/wD4UD//ABNH/DgOw/6OU+L/AP4UD/8AxNAH71WN9Z/8JFe/vU+5H3HpXRfbrP8A56p+Y/xr+du1/wCCBlg+sXNt/wANJfF0bFQ7hr75OfXitj/hwHYf9HKfF/8A8KB//iaAP6DPt1n/AM9U/Mf40fbrP/nqn5j/ABr+fP8A4cB2H/Rynxf/APCgf/4mj/hwHYf9HKfF/wD8KB//AImgD97tdvbM/ZP3qf8AHwvcehre+3Wf/PVPzH+Nfzvap/wQKsIPs5/4aS+LrbpVXnX3OM55HFav/DgOw/6OU+L/AP4UD/8AxNAH9Bn26z/56p+Y/wAaPt1n/wA9U/Mf41/Pn/w4DsP+jlPi/wD+FA//AMTR/wAOA7D/AKOU+L//AIUD/wDxNAH9BMl9Z+W371Oh7j/GsXw1fWR0WD96nT1Ffgc//BAOwCE/8NKfF7p/0MD/APxNZmif8ECrC50uGYftJfF1dw6Lr7gD9KAP6Ift1n/z1T8x/jR9us/+eqfmP8a/nz/4cB2H/Rynxf8A/Cgf/wCJo/4cB2H/AEcp8X//AAoH/wDiaAP6DPt1n/z1T8x/jXO297ZjxNc/vU/1Mfce9fgr/wAOA7D/AKOU+L//AIUD/wDxNY8P/BAuwfW5rb/hpL4ujbGh3f2++TnPfFAH9En26z/56p+Y/wAaPt1n/wA9U/Mf41/Pn/w4DsP+jlPi/wD+FA//AMTR/wAOA7D/AKOU+L//AIUD/wDxNAH9Bn26z/56p+Y/xrE16+svs8P71P8AXR9x61+B3/DgOw/6OU+L/wD4UD//ABNZmq/8ECdPghjY/tJfF1syIvOvuep+lAH9D/26z/56p+Yr+Oz9qqwvNG/4Oz/g3rXh4CEan4JJu5E/5aIqToc/gqj8K/Qf/hwHYf8ARynxf/8ACgf/AOJr8gviL/wQw8YS/wDBZLwP8P7P4nfEq98PnwTeajceL5tQke+tZUl8tbeO724VW3ZKdTQB/cT9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH72+Gb6yOkr+9T779x/eNb/ANus/wDnqn5j/Gv53dE/4IFWFzp6yj9pL4up8zDC6+4HBI9K1v8AhwHYf9HKfF//AMKB/wD4mgD+gz7dZ/8APVPzH+NH26z/AOeqfmP8a/nz/wCHAdh/0cp8X/8AwoH/APiaP+HAdh/0cp8X/wDwoH/+JoA/e03tn/wk/wDrU/49h3H941tHVdMBwbiP/vof41/PEf8AggXYf259l/4aS+Lv+oDbv7ffP3jx0r94Phb8MdO+GPw50T4efbbrWv7FsobP7fqL+dd3HkqF8yaQ8s7Yyx7mgDwL9srxda2Pw50rSLadGXVNZs4JArA/u1bec+3yivrS21PTBboonj4UfxD0+tfC3/BQHS2svhZpHiLToBt03VoZZCo6Lhv64Feh+Pfgsv7QGmaJ4s8NeKbzRrB7RW8uxICS7+dx9+1fFLMK9LN8fCjS9pNQouMbqN4+/d3elk27n07wlKeXYSVSpyRcql5Wbs/dtou6R9F+JtX0n+yyDcxf6yL+Mf3x71vJrGlMuVuYj9HH+NflJ8cv2NZvh54EvPH1n4rvr+LTVWW4hu3wXQEAhGXGG9Mg14tq3jOb9mnxNFc/D3Uri/s9f0CK7SK8YO0MtyMqSMYyo5HHevOx3HlfL6vLmeC9nBWbftIydndJpJa6qz1ujtwvCdHGU+bA4rnk72XI0rqzabb00d9j9evE/wAevg74M1QaJ4l8Q2lrdnH7ssWIz67Qcfjiux0Px14M8TWzXfh/VbW8iQ7WaKVWAJGcHB44r5r+EPw88DfCb4FJ408cW8Nzey2Z1HUrq4UO7vIu8rlvTO0Cvn//AIJ36np+vt40eaJA017HcLHjhVkB4A7Cu+hxHi45hg8JiowX1hSkoq/NBKPMuZt2k3too6p7nHVyXDvCYnEUHJ+xaTbtaTbs7K11bfd9Njv9E1W11P8Ab71i585DFY6HHAG3DHzeW2M/UmsHXdcuv2iPjdP8HYLw23hHw3I8+qPG+z7XPvOI9wP3fb2Ncz4d1y38N/tL/F3xdPGrHSNLaSNSOMp93j6gVtfsr6v4Z+F37NesfG3xpsaXUru4uXZ/vSMrFEQe7MDj618vhcXCvUlgasuWlKtiKtX/AK9052UX5Sla/dJrqe9Xw8qMFiqcb1I06NOn/jnG7a80r282dv8A8JJ8OfBH7TGgfCP4daNZQgW8k19dISrR/ISqgg4PHJz616H+0T48uNQvdC+CfhK8EN74qmK3M8bDdDYx8zEEdCwyoP1r49/YcuB8S/jt4q+JHirY+oPb744mGMCd+SqnsqqF+hr3Cz1LRLv9vDUINcaGGLTNBEVsJSFXc7IxIzxnDGt8tzV4nKvawtCnicRyRStHlp3s1pazcYS87u/YyxuAVDH8kvenQo80m7u8909eicl8ke/+N9W8TfD3wppvhL4HaVZ3Um0wq08wjt7VIwPmcDlie2Pxr4b+DPhH41/Fi2vPF58dDQU1a9vJp0tVAcyI4jYg5HynaAvoAK+77n4r/DDV9V1jwX4bnjvtR06wmuZ/IXfFGFBGGcfLuPpXhn7DkNlf/BzS55o1djLqGSRz/rzXr43CYXH5xh6CrylS5Kj5YT5YxcHTjZcln9qV02+2ljzsNiK+Ey6tVdJKpzQ1lG7akpu75rrorWS7n0B8Mvhz4c+Hmjz2F5rM+u3F2weefUJhMzMBjgHhR7AV41+1b4v8OfC34U3F14KtrWLW9YlWwtJIUXery/eYEdCFzg+pri/2hvjFDpPx48DfC3wlOsbjUYZNTEWOVlIRIm+oJJH0qt+3npzaNpPg7xvDbb7DSNXSS7VRxtbBBP8A3yR9TWec5nhYZVj6GXxs8PaHNvbmtzNPV3ipNt73TLyzAV5Y/CVcW7qteVtr8t7Jra0rKy7M+nvgT4I0D4SfDHTPB8NzE1wkfm3Um4ZkuJOXY8+vA9hXoXibVtL/ALCuf9Ii+7/eHqKp+E/EHgXxro1vrnhi4try3nQOrRkHg+o6g+xqLxlP4W0zQLmTUZLa3AXrIyr3HrX2+BhhqGFp08O17KMUo2atZLTU+WxUq1WvOdZPnbbemtzrRq2l4H+kRf8AfY/xpf7W0v8A5+Yv++x/jXyT8Tv2svgv4ItTYeF3i8RazI6xQ2dp8252OAC4BH5Zr6q02ztbzToLu7s1glljV3jIBKMQCVz7HiowmbYPFValHDVVOULc3Lqle9ldaX0el7rqXiMvxNCnCrXg4qV7X0btbpvbXfYuf2tpf/PzF/32P8aP7W0v/n5i/wC+x/jS/wBl6b/zwT8qP7L03/ngn5V6JxGDoOraZi8/0iP/AI+pf4h7Vu/2tpf/AD8Rf99j/GsLQdL07F5+4T/j6l7fSt7+y9N/54J+VACf2tpf/PxF/wB9j/GpoL6zuXMdvKkjAZwrAnFRf2Xpv/PBPyqaGytLdt8EaoSMZAxxQBZooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArKk0PSJpGmkgUsxJJ9Sa1aKAMb/hHtF/59krI17w/oo0ic/Zk6D+YrsKx9f8A+QPP9B/MUAJ/wj2i/wDPslL/AMI/ov8Az7JWxRQBj/8ACP6L/wA+yVkaX4f0Uy3mbZP+Pg/+grXX1kaV/rbz/r4P/oK0AN/4R7Rf+fZKP+Ee0X/n2StmigD8s9Z8O2fwc/4KraTqBijj0H41+DpLV0yRnXvCbtJG2M43TafeSA8ZxbD0r9M/+Ee0X/n2Svzt/wCComlXfh/4LeHP2mtELpqXwS8S2XjfMQy8mnWYeDVIumdsmnT3Occ5APav0d0zUrDWdNt9Y0qVZ7W7iSaGVDlXjkAZWB7gg5BoAq/8I/ov/PslQXOgaMLeQ/Z0+6f5Vv1Bdf8AHtJ/un+VAHOaP4e0X+ybU/Zk/wBUn8hWj/wj2i/8+yVPo3/IItf+uSfyFaVAGN/wj2i/8+yVk2+gaL/bV0Psyf6uL+bV19ZFv/yG7r/rnF/NqAG/8I9ov/PslL/wj+i/8+yVsUUAcfrWgaKLaL/Rk/18P/oYrX/4R7Rf+fZKXW/+PaL/AK7w/wDoYrYoAxv+Ee0X/n2SlHh/RR0t0rYooA5DRNA0U2J/0ZP9bL/6G1a3/CPaL/z7JS6H/wAeJ/66y/8AobVsUAY3/CPaL/z7JWRN4f0X+3bcfZk/1Mv80rsKx5v+Q9b/APXCX+aUAJ/wj2i/8+yUv/CP6L/z7JWxRQByet+H9FGjXX+jJ/qn/lWknh7Rdg/0ZOlTa5/yBrv/AK5P/KsDxL4/8I+Db3StJ8RXggu9an+zWUCo8ss0gGTtRAzbVHLuQFQcsRV06U6kuWnFt9lrtr+RM5xirydkbf8Awj+i/wDPslJ/wj2if8+yVs15H8afjr8LP2fPBkvjv4satFpdih2xK3zTXEvaOGNcvJI3ZVBP0FXh8NVxFWNGhBynJ2SSu2+ySJq1YU4OpUaUVu3sdZp2gaKb6+/0ZP8AWr/6AtfKPxt/ax+EHwt8Rj4X+B9Ln8eePpuIfDuhgTXCH+9cycpbRj+JpDkDnBrxvTrb9rH9s6W6upJ7z4NfDi7dSIowB4n1KIqPvMcrZI64OADJz6V9tfBP9nr4P/s8eHD4Z+EuiQaXHKd1xPzJdXMnd55mzJIxPOWY47Yr6P6hgMu1zCXtay/5dQfup/8ATyorr1jTu+jnB6Hl/WcTiv8AdlyQ/nktX/hi/wA5W/wtHx34d/Y++I3x+1qDx7+27fW9xYwuJrHwRpDsukWxHKm7k4a8lHfd+7B6AivvF/B/hXR4NL0rSdPgtbW3lWOGGFBHHGiowCqq4AA9BxXd1j6r/wAfFj/18f8AsjV5WZZxiMbyxqNKnH4YRXLCPpFdX1bvKW8m3qdmFwNLD3cNZPeT1k/V/ktl0SD/AIR/Rf8An2Sk/wCEe0X/AJ9krZoryzsMU+HtFwf9GSsvQvD+inRbQ/Zk/wBUn8q609DWVoP/ACBbT/rkn8qAG/8ACP6L/wA+6Uf8I/ov/PulbFFAHHx+H9F/t6UfZk/1Cf8AoTVsf8I/ov8Az7JRH/yH5f8Argn/AKE1bFAGN/wj2if8+yVj694f0UaY2LZP9ZF/6GtdjWNr3/IMb/rpF/6GtAC/8I/o3X7OlH/CP6L/AM+yVsUUAY3/AAj2i/8APslZGjaBophn/wBGT/j4l/8AQjXYVj6L/qp/+viX/wBCNACf8I9ov/PslH/CPaL/AM+yVs0UAcfd+H9FGsWY+zJ92X+QrY/4R/Rf+fdKLv8A5DFn/uy/yFbFAGP/AMI/ov8Az7JVHUvD+ijTbgi2T/VP/I101UdT/wCQbcf9cn/kaAMuy8P6KbOLNun3F/lVn/hHtF/59krQsv8Ajzh/3F/lVmgDG/4R7Rf+fZKyLHQNG/tS+H2dPvR/+giuwrGsP+Qrff70f/oIoAP+Ee0X/n2Sj/hHtF/59krZooA47V9A0YNaYtk/4+E/ka2P+Ee0X/n2SjWPvWn/AF8J/I1s0AY3/CPaL/z7JS/8I/ov/PulbFFAHH6DoGinSYT9mT+L+ZrX/wCEe0Xr9mSl0D/kEQ/8C/ma2KAMb/hHtF/59krH/wCEf0b/AISHH2dP+Pf/ANmrsaxv+Zh/7d//AGagA/4R7Rf+fZKP+Ee0X/n2StmigDkNd8P6KNJm/wBGToP5itc+H9FPW3Sl17/kEzfQfzFa9AGN/wAI9ov/AD7JR/wj2i/8+yVs0UAcbo+gaMXvM26f8fL/AMhW1/wj+i/8+yUzRfv3v/Xy/wDIVt0AY3/CPaL/AM+yVk33h/Rf7Tsh9mT70n/oJrr6yL7/AJCll/vSf+gmgBv/AAj2i9fsyUf8I9on/PslbNFAHP3Xh/RRaykWyfcb+VVtH8P6L/ZNr/o6f6lP5Cuhu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAV/8AhHtF/wCfZKP+Ee0X/n2StmigDj7Xw/ox1q7Btk/1cP8A7NWv/wAI9on/AD7JRa/8hu8/65w/+zVs0AY3/CPaL/z7JWVq/h/RRFB/oyf6+L/0IV11ZOr/AOrg/wCu8X/oQoAb/wAI/ov/AD7pSf8ACPaL/wA+yVs0UAY3/CPaL/z7JWRofh/RTYZ+zJ/rZf8A0Nq7CsfQv+Qf/wBtZf8A0NqAE/4R7Rf+fZKX/hH9F/59krYooA5CTQNFGuwj7Mn+ok/9CStb/hHtE/59kp0v/Idh/wCuEn/oSVr0AY3/AAj2i/8APslfnJ/wVItm1L9mFfgF4Qj8rWvjBrem+CLd48h47XUZd2oSjHI8rT4rl89iByOtfppX5jeP3vfjX/wUk0nw7F8+gfBDwhda1dYOVOv+Jy1pZgjpugsYLtuef9IUigD9FNO8IeGNL0630rTrKOK2tYkhhjUYVI4wFVR7AACrv/CP6L/z7JWuv3RS0AY//CP6L/z7pWXpOh6RFf3ksduisk4II7EItdZWRpv/AB933/XYf+gLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//R/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntN/wCQ5qX1i/8AQam8TaDY+KvDl/4Y1MFrbUbeW2lA4JSVSrfoah03/kOal9Yv/Qa6GgD+Hr/gjr+2Ho3/AARO/am+JX/BH39vS9/4RXw5Jr9xrPgPxFegpp81tdkYRpWwFWVAjbuiyB1Yjg1+y/8AwWW/4LC/sxfsm/sQeKZfht4w0fxd488Y2E2i+GtJ0e8ivp5rq9UxCVlgdiscW7cTwSQAOTX6Cftwf8E2/wBjn/gol4Ng8HftVeDrXxALLcbK9GYb21LcExTph1z3AODX51/skf8ABtX/AMExf2RPi9b/ABt8O+Hr/wAUa3ps/n6Z/wAJBdtew2T5BUxxN8hKkZVmBI9aAPXv+CGv7Ivir9in/gmH8JPg78QLd7PxHcrLrWq28oxJDdamzzmN/wDaRWVTnoRjtX7QVg6wALnTwP8An4H/AKC1b1ABRRRQBHN/qm+hrK8Pf8gO1/65rWrN/qm+hrK8Pf8AIDtf+ua0AbNFFFABXPWf/Ix3n/XKL+bV0Nc9Z/8AIx3n/XKL+bUAdDRRRQB/JX/wdiyH/hUH7PVtn/W/E7Th+Uchr+qEjGg6SPRrb+Qr+VX/AIOu4bi+8Ifsw6TbctdfFWwQD1Pky4/Wv6sbuJoNJ02F+qSQKfwxQB1lFFFABTX+4fpTqa/3D9KAOFm8U6D4J8BzeK/FFylnYWEUk080hwqqpJ//AFDvWb8IviBqnxQ8GR+NNQ0W40KK7kc2kF2R572wx5crqB8hcc7DkgYzzxVi88FeGPH3g+30LxdaJfWYmWYwycozxSbl3DuAQODxXooAUBVGAK6uegsPy8rdRvfokuiXVt7t7WVt2Y8tR1b39y23d+fp0t8xaKKK5TY5+L/kZ5v+vdP/AEI10Fc/F/yM83/Xun/oRroKACiiigDB8R/8eCf9do//AEIVvVgeI/8AjwX/AK7R/wDoQrfoAKKKKAEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8ADv8Ax7T/APXeT+ddBXP+Hf8Aj2n/AOu8n866CgAooooAwJ/+Rkt/+uL/AMxW/WBP/wAjJb/9cX/mK36ACiiigDG8Qf8AIIm+n9a1Yf8AUr9BWV4gx/ZE2fT+tasP+pT6CgCSiiigArA0P/W3v/Xw38hW/WBof+tvf+vhv5CgDfr8/P2hP2srjStW1X4NeB/Dt7qeqvGbdpArBR5gwSoUZPXrkCv0Dqj/AGXpovDqAgj88jBk2jcR9etePneBxeLw/sMJiPZNv3nyqT5bapX0T8z0srxWHw9b2uIo+0tsrtK/Ru268j8K7T9i3433vgW68cX1rHayQxh008n9/Mg5OQOAcdjya+6/2O/G3wr1zRLPw94U06HRtZsVdL61I/eswGC+T8xBPY9K+9yM8GvzT/ad+BfiPwX4zh+PHwPDQanBma7toeA4TlmAHXI+8O9fA/6qLhmUMzyyDqxirVYuzk49ZwdtGusVo0fW/wBvvPIywOOkqbbvBq6in/LJdU+jeqZD+zu7eGv2xvHXhl/lW7VpQPcEGv0yr8Zv2eviqnxG/bBt/Gy2xtZNUtWjnizkCUJhiPbI4r9ma9jw7xdKvgK7oO8FWqcvo3zL8zzuMsPOli6XtVaTpwv6pWf5BWTrv/IIuP8AcNa1ZOu/8gi4/wBw198fIlyx/wCPOL/cH8qtVVsf+POL/cH8qtUAFFFFAGHpX/H7e/8AXUfyrcrD0r/j9vf+uo/lW5QAUUUUAYOpf8hWx/3n/lW9WDqX/IVsf95/5VvUAFFFFAFDVP8AkGz/APXNv5Umk/8AIMg/3BS6p/yDZ/8Arm38qTSf+QZB/uCgDQooooAKwNL/AOQtf/7yfyrfrn9L/wCQtf8A++n8qAOgooooAKwNY/4/bD/rr/St+sDWP+P2x/66/wBKAN+iiigAqvd/8esv+438qsVXu/8Aj1l/3G/lQBT0T/kEwf7grUrL0T/kEwf7grUoAKKKKAOdsf8AkYb3/cjroq52x/5GG9/3I66KgAooooAwtc/5dP8Ar4X+RrdrC1zj7J/18L/I1u0AFFFFADJP9W30NYvhr/kCwf7tbUn+rb6GsXw1/wAgWD/doA3aKKKACudtv+Rluf8ArlH/AFroq522/wCRluf+uUf9aAOiooooAKxNd/494f8Arsn8626xNd/494f+uyfzoA26j8qIy+cVG8DG7HOPTNSUUAFFFFAGB4Z/5BK/78n/AKEa36wPDP8AyCV/35P/AEI1v0AFFFFAGAf+Rn/7dh/6Ea36wD/yM/8A27D/ANCNb9AHHeP/AAPofxI8H3/grxGm+0v4zG2OqnqGHuDyK/O7RfAP7ZX7OyyeGfht9n8S6CjFrdJCu6NT2wxUj6AkV+oVFfP5vw5Qx9WGJVSdKtFWU4O0rPo9GmvJo9jLs5q4SnKg4RnTk7uM1dX7rZp+jPyh8d+Gf2qvjJoNxqPxngXRvDmlobmWwtSPNujHyFAUsST0GT+FeJ+GPgR4o+PPwu8QfErSImk8QLexRQWLqY1jtYR9xC4APGMdsLiv2q8TAHSiD0Mkf/oYrZt7a3tY/LtkWNeuFGB+lfM4rw5w2JqqeJxE6l1JScneTbVotPRLku7Lla1Z7dDjOvQpuNCjGDTTjy6RSTu01q3zaXd76I/LO48JftUftG2+nfDjxxpq+FvDVkUF26Ha0yx4GMZJJx0H3c819UfCz9mKw+D3xRvfGXgrUWg0i/tkhl08oDl0HDbvrk/U19V0V7WX8H4OhVjiq85Va6aanN+8rJpJctko2burWd9bnm4viPE1aboUoxp0mmnGK0d2m273bd0tenQ+F/if+zZ4x1T4l+JfFngiaAWXi3R5bK8jlJVo7hVGxlwOQxAz6ZNfNvwz/Zh+OvxAstI+HPxUxpXg/wAPSu3lRurNcPvJP3SepJGTjA6Cv16rD0D/AI85P+u8v/oRrmxfAeW4jE/WJOaTbcoqXuyUpKTi1a/K5LmsmtfLQ2w/FmNo0fZRUW0klJr3lZOKa8+V2vbY8wi+AHw4svHunfEbRrVrDUtOi8kG3YokkYXYFdRwwA/lXIfGf9lP4bfGzW4vE2utc2OoxoIjcWj7GdB0DcEHFfTVFe9XyHLq1GeHqUIuEnzNW0cu+nXTc8mlm2Mp1I1oVZKUVZO/Tt6HiHww/Z++Hvwl8KXnhXwtC+NRVluriVt00u4EfM3sDwOlfEPh34b/ALXHwEmufh18MYbLVdMumme0unYBoFlYZYhiMEHBx83NfqbWHL/yMUP/AFwf/wBCFcOM4VwlWFGOHlKi6Sai6b5WoytzLZqzsnte+t7nVhs/xFOVR1kqqm05KavdrZ7rVX+7Q+AvC37EGqad4o8M+Ptd1n7XrFtfnUdYlfLGVxhkWM+gYck9c199eJ/C+g+MtCuPDXia2S8sbpdksUgyCP8AEdjW/RXVlfDuAy+lUo4anaM/iTbd9La3vut+7bfUwx+c4vGThUrz1htbS2t9LdunZWPz21T/AIJ7+ClvJJvCPiLU9Jhc58lHDKvsMjOPxrE1D/gn94YgsJbzXPFGq3yxjOwsqg/pX6SVheJf+QFc/wC7/UV5b4DyFu/1VW7Xlb7r2/A7lxZm1re3frZX++1zxH4Z/sr/AAX+Fl5Fq/h7SllvouVuLg+a4PqM8A/SvoukHQUtfR4HLsLg6fscJSjCPaKSX4HjYrGV8TP2mIm5S7t3Ciiiuw5jB0Hpef8AX1L/AErerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorKkXXPMbyXgC5O3KtnHvzQBq1j6//wAgef6D+YpNviD/AJ6W/wD3w3/xVZOvLr/9kT5e36D+BvUf7VAHX0Vj7fEH/PS3/wC+G/8AiqTb4g/v2/8A3w3/AMVQBs1kaV/rbz/r4P8A6CtJt8QZ/wBZb/8AfDf/ABVZGlpr/m3n7y3/AOPg/wADf3V/2qAOvorG2+If79v/AN8N/wDFUuzxB/z0t/8Avhv/AIqgDB8c+GtD8aaY3g7xNbpeabq0NzZXcEgyksE8LpIjA9Qykgivif8A4Jk+I9Rtv2bm/Z88U3Dz6/8ABbV73wFfGZt0rw6QwGnzP3/0jTntZwTyd9fbuoLr/wDaVhl7fPmP/A39xv8Aar88LuLWv2ev+CmFvqS/Z4tC/aB0D7LLJhgq+JvC6l4sjP3rrTZJBnOf9DA5yMAH6gVBdf8AHtJ/un+VZu3xB/ft/wDvhv8A4qobldf+zyZkt/un+BvT/eoAu6N/yCLX/rkn8hWlXK6QviD+ybXD2/8Aqk/gb0H+1Wls8Qf89Lf/AL4b/wCKoA2KyLf/AJDV1/1zi/m1N2+If+elv/3w3/xVZNuuv/21dfvLfPlxfwN/tf7VAHX0VjbfEP8Aft/++G/+KpdviDvJb/8AfDf/ABVABrf/AB7Rf9d4f/QxWxXH60mv/ZosyW/+vh/gb++P9qtfb4h/56W//fDf/FUAbNFY+zxB/wA9Lf8A74b/AOKpAviDu9v/AN8N/wDFUALof/Hif+usv/obVsVyGiJr/wBhO17f/Wy/wN/fb/arX2+IP+elv/3w3/xVAGxWPN/yHrf/AK4S/wA0o2+IP+elv/3w3/xVY8ya/wD27b/vLfPky/wN6p/tUAdhRWPs8Qf89Lf/AL4b/wCKpNviH/npb/8AfDf/ABVAEuuf8ga7zx+6f+Rr5B/Zzux8bPiT4m/afnYy6UzyeHfC277v9m2cmLm5T/r7uVOG7xxJ2rzj/gpT+0Vdfs8fsy6lJPexW2peKW/sWzaFSZoxcAieZAW5MUO5h0+fbzzXivw9s/2lP2pvh/pPw8+DUNz8HPg9p9nDZ2+pTR7Nf1W0jQKBBHk/Zo3HPmk72zkZBIr7jKMhq/2TPMKklTp1W4e0lsoxs58qXvSlJuMYqKbspp2V2vnsdmMPrscNBOcoLm5Vu27qN3skldtvq4210f1B8df2y7Twt4u/4UX+z3pR8f8AxKuBgadav/omnAnHm6hcD5YUXrszvPTjINVvgh+xzLpvjGP4+ftO6ovjv4juMxXEqf8AEu0lTz5OnwEbYwv/AD0I3seeMnPt3wO/Z78Cfs5+EF8E/CTTLPTbUt5k8pV5Lm5l7yTys2+Rz6seOwA4r2Xb4h/56W//AHw3/wAVXm4jOqOGpSwmURcIvSVR/wASou2l1CD/AJIt3+1KWluulgJ1ZqvjWm1qor4Y+f8Ael/ee3RLqum/8f19/wBdV/8AQFrYrkNOTX/tt9iS3z5q/wADf3F/2q19viD/AJ6W/wD3w3/xVfMnrGxWPqo/0ix/6+P/AGRqTb4h/wCelv8A98N/8VWTqa+IPtFll7f/AI+P7jf3G/2qAOvorG2+IP8Anpb/APfDf/FUu3xB/wA9Lf8A74b/AOKoA1z0NZWg/wDIFtP+uSfyphXxBg5kt/8Avhv/AIqsrQl1/wDsW0xJb/6pP4G9P96gDrqKxtviH/npb/8AfDf/ABVLt8QY/wBZb/8AfDf/ABVABH/yHpf+uCf+hNWxXIImv/29L+8t/wDUJ/A395v9qtfZ4g/56W//AHw3/wAVQBsVja//AMgxv+ukX/oa0bfEP9+3/wC+G/8AiqyNdTX/AOzWzJb/AH4v4G/vr/tUAdhRWPt8Qf8APS3/AO+G/wDiqNviDvJb/wDfDf8AxVAGxWPov+qn/wCviX/0I0m3xB/ft/8Avhv/AIqsnRk1/wAqfElv/wAfEv8AA394/wC1QB19FY23xD/z0t/++G/+Ko2+If8Anpb/APfDf/FUALd/8hiz/wB2X+QrYrkLtdf/ALYs8vb/AHZf4G9B/tVrbfEP/PS3/wC+G/8AiqANmqOp/wDINuP+uT/yNVdviDH+st/++G/+Kqjqa+IP7NuMvb/6p/4G9D/tUAbll/x5Q/7i/wAqtVztmviD7HFiS3+4v8Den+9Vnb4h/v2//fDf/FUAbNY1j/yFb7/ej/8AQRRt8Qf37f8A74b/AOKrJsl1/wDtS+w9v96P+Fv7o/2qAOvorH2eIP8Anpb/APfDf/FUm3xB/ft/++G/+KoANY+9af8AXwn8jWzXHauuv7rTMlv/AMfCfwN6H/arY2+If+elv/3w3/xVAGzRWNt8Q/37f/vhv/iqXb4g/v2//fDf/FUAGgf8giH/AIF/M1sVx+gJr/8AZMOJLf8Ai/gb1P8AtVsbfEH/AD0t/wDvhv8A4qgDYrG/5mH/ALd//ZqNviH/AJ6W/wD3w3/xVY+zX/8AhIPv2+fs/wDcb+9/vUAdjRWNt8Q/89Lf/vhv/iqXb4g7SW//AHw3/wAVQAuvf8gmb6D+YrXrkNdXxB/ZM2Xt+g/hb1HvWvt8Qf8APS3/AO+G/wDiqANiisbb4h/v2/8A3w3/AMVS7PEH/PS3/wC+G/8AiqAGaL9+9/6+X/kK2643R11/febXt/8Aj5f+FvQf7VbW3xBj/WW//fDf/FUAbFZF9/yE7L/ek/8AQTSbfEH/AD0t/wDvhv8A4qsi9XX/AO0rLL2+d0n8Df3T/tUAdfRWNt8Q/wB+3/74b/4qjb4g/wCelv8A98N/8VQBo3f/AB6y/wC438qraP8A8gm1/wCuKf8AoIqhdJr/ANllzJb/AHG/gb0/3qraQviD+ybXD2/+qT+BvQf7VAHU0Vj7fEHaS3/74b/4qjb4g/56W/8A3w3/AMVQAlp/yG7z/rnD/wCzVs1x9quvf21d4kt8+XD/AAN/tf7Va+3xD/ft/wDvhv8A4qgDZrJ1f/Vwf9d4v/QhTdviD/npb/8AfDf/ABVZOrL4g8qDL2/+vi/gb+8P9qgDrqKx9viD/npb/wDfDf8AxVJt8Qf37f8A74b/AOKoA2ax9C/5B/8A21l/9Dajb4g7yW//AHw3/wAVWPoi+IPsHD2/+tl/gb++3+1QB2FFY+3xB/z0t/8Avhv/AIqk2+IP79v/AN8N/wDFUAOl/wCQ7D/1wk/9CSteuQkXxB/bkP7y3z5En8Lf3k9619viDtJb/wDfDf8AxVAF6+vrPTLGbUtRlWC3t0aWWRzhURBlmJPQADJNfmj/AME7NLuvGHwP8Y/tb64HbUfjhr994shaVdrpouFtNHix2VdPghkA/vSMepNbP/BSjxJ4xuvgBb/s6eE7mKPxF8adWtfA1j5QYSR22pbjqVwPmyBbadHdTEjoVAHJFfadn4VPgj4fW/gvwrFaWel6RYx2VnbojBIre3QRxoADwFVQB9KAPS1+6KWsVU8QhR+8t/8Avhv/AIqnbfEGfv2//fDf/FUAbFZGm/8AH3ff9dh/6AtN2+If+elv/wB8N/8AFVmaSuti+vPNeAr543YVs42LnHNAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9L+/iiiigAqpf8A/HjN/wBc2/lVuud1mw1CaC4lgvHiQxthAqkDj1IzQBe0P/kC2n/XFP8A0EVqVxmiaZqx0a0/4mL/AOpT+BPQe1an9l6t/wBBGT/vhP8ACgDforA/svVv+gjJ/wB8J/hR/Zerf9BGT/vhP8KAG6b/AMhzUvrF/wCg10NcDpumaqdc1If2g/WL+BP7v0rf/svVv+gjJ/3wn+FAG/RX56+Bf2svEPjD/goX48/YhkjSG38HeE9J8SR6gCDNM+ozSxNGUxtCoI1II5O6vuv+y9W/6CMn/fCf4UALrP8Ax9WH/XwP/QWrergtZ0vVvtOn/wDEwf8A4+B/An91vat7+y9W/wCgjJ/3wn+FAG/RWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAbc3+qb6Gsrw9/yA7X/rmtVZtL1byX/wCJi/Q/wJ/hWV4e0vVjodr/AMTB/wDVr/An+FAHcUVgf2Xq3/QRk/74T/Cj+y9W/wCgjJ/3wn+FAG/XPWf/ACMd5/1yi/m1O/svVv8AoIyf98J/hXP2emat/wAJHeD+0H/1UX8Cere1AHf0Vgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAfyv/8AB0Rzefskg/8ARXtM/wDRb1/U/rf+ptP+viL+dfyff8HMMOqav8X/ANjn4crdtJLqPxRtLhCyqNvk7UzwP+mlf1Sa/pmrbLXGoOB9pi/gT1+lAHe0Vgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAb9fKFn8VvHXxW+Mc3g34ZRPYeGvCtzt1vVLiHi7nAz9ltgw5Az+8k7dF55r6MWy1B5GgXU2LrglQqZGfUYpo0XUYUcQ3zLuyTiNBknv0rswuIp0VNzpqUmrRvsr9bdXbbonrrYwrUpT5UpWSd3bd+V+mu/fYs+G/8AkCw/8C/9CNblcJ4b0zVv7FhP9oP/ABfwJ/ePtW5/Zerf9BGT/vhP8K4zc36KwP7L1b/oIyf98J/hR/Zerf8AQRk/74T/AAoASL/kZ5v+vdP/AEI10FcDFpmrf8JNMP7Qf/j3T+BP7x9q3/7L1b/oIyf98J/hQBv0Vgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAL4j/48E/67R/8AoQrergvEemauLBD/AGg/+tj/AIE/vD2re/svVv8AoIyf98J/hQBv0Vgf2Xq3/QRk/wC+E/wo/svVv+gjJ/3wn+FAG8ehrD8O/wDIN/7aSf8AoRpjaXq2D/xMZP8AvhP8Kw/Dml6v/Zv/ACEX/wBZJ/An94+1AHeUVgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAb9YJ/5GUf9e5/9CFJ/Zerf9BGT/vhP8KwTperf8JKP+JjJ/wAe5/gT+8PagDvaKwP7L1b/AKCMn/fCf4Uf2Xq3/QRk/wC+E/woA36wvEn/ACCZPqv86b/Zerf9BGT/AL4T/CsLxJpmrf2TJ/xMH6r/AAJ6/SgDux0FLWANM1bA/wCJg/8A3wn+FH9l6t/0EZP++E/woA36Kwf7M1b/AKCD/wDfCf4Uf2Zq3/QQf/vhP8KAG+Hf+Paf/rvJ/OugrgfDumasbaf/AImD/wCvk/gT1+lb/wDZerf9BGT/AL4T/CgDforB/szVv+gg/wD3wn+FJ/Zerf8AQRk/74T/AAoAJ/8AkZLf/ri/8xW/XAz6Zq3/AAkkH/Ewf/Uv/AnqPat/+y9W/wCgjJ/3wn+FAG/RWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAS+Icf2RNn0rWh/wBSn0FcV4h0vVv7Im/4mD9P7if4VrQ6ZqvlIf7QfoP4E/woA6OisD+y9W/6CMn/AHwn+FH9l6t/0EZP++E/woA36wND/wBbe/8AXw38hR/Zerf9BGT/AL4T/CsHQ9M1bzb3/iYP/wAfDfwJ6D2oA72isD+y9W/6CMn/AHwn+FNXTtTf7upOceiJ/hQB0Nc/fqra5ZowyCsgI/Cl/svVv+gjJ/3wn+FYN7pmrDXbP/iYP91/4E9PpQBh6B8DfhZ4W8ZzeP8AQdHgttVnB3TIMfe6kDoCe+K9ZrA/svVv+gjJ/wB8J/hR/Zerf9BGT/vhP8K58PhaOHi4UIKKbvZJLV7vTqbVsRVrNSqycmlbV307G/WTrv8AyCLj/cNVv7L1b/oIyf8AfCf4Vla5pmrDSLg/2jJ9w/wJ/hXQYnVWP/HnF/uD+VWq5ay0vVvscX/Exk+4P4E9PpVr+y9W/wCgjJ/3wn+FAG/RWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAP0r/j9vf+uo/lW5XC6Vpmrfbb3/iYP/rR/Anp9K2/7L1b/oIyf98J/hQBv0Vgf2Xq3/QRk/74T/Cj+y9W/wCgjJ/3wn+FAC6l/wAhWx/3n/lW9XB6lpmrDVbH/iYOfmb+BPT6Vu/2Xq3/AEEZP++E/wAKAN+isD+y9W/6CMn/AHwn+FH9l6t/0EZP++E/woA0NU/5Bs//AFzb+VN0n/kGQf7grD1TTNWGmz/8TB/9W38Cen0pulaZqx0yDGoOPkH8Cf4UAdfRWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAb9YGl/wDIWv8A/eT+VH9l6t/0EZP++E/wrA0zTNWOrX//ABMH++n8Cen0oA76isD+y9W/6CMn/fCf4Uf2Xq3/AEEZP++E/wAKAN+sDWP+P2x/66/0o/svVv8AoIyf98J/hWDrGmasLyxH9oP/AK3+4np9KAO9orA/svVv+gjJ/wB8J/hR/Zerf9BGT/vhP8KAN+q93/x6y/7jfyrI/svVv+gjJ/3wn+FQXemat9kl/wCJg/3G/gT0+lAGlon/ACCYP9wVqVxmi6Zq39lQf8TB/uD+BP8ACtX+zNW/6CD/APfCf4UAb1FYH9l6sf8AmIyD/gCf4Uv9mat/0EH/AO+E/wAKAI7H/kYb3/cjroq8/sdM1b/hIb3/AImD/cj/AIF9PpXRf2Zq3/QQf/vhP8KAN6isD+y9W/6CMn/fCf4Uv9mat/0EH/74T/CgBdc/5df+u6/yNbtcHrumasBan+0X/wBev8Ceh9q3v7M1b/oIP/3wn+FAG9RWB/Zerf8AQRk/74T/AApf7M1b/oIP/wB8J/hQBtyf6tvoaxfDX/IFg/3ajk0zVvLb/iYP0P8AAn+FYvhvTNW/sWD/AImL/d/uJ/hQB3dFYH9l6t/0EZP++E/wpf7M1b/oIP8A98J/hQBvVztt/wAjNc/9co/60/8AsvVv+gjJ/wB8J/hXPW+m6qfE1z/xMH/1Mf8AAnv7UAegUVg/2Zq3/QQf/vhP8KP7M1br/aD/APfCf4UAb1Ymu/8AHvD/ANdk/nTP7M1b/oIP/wB8J/hWHrul6t9nh/4mEn+uT+BPX6UAd1RWB/Zerf8AQRk/74T/AApf7M1b/oIP/wB8J/hQBvUVg/2Zq3/QQf8A74T/AApP7L1b/oIyf98J/hQAeGf+QSv+/J/6Ea364Hwzperf2Sv/ABMH++/8Cf3j7Vv/ANl6t/0EZP8AvhP8KAN+isH+zNW/6CD/APfCf4Uf2Zq3/QQf/vhP8KAEP/Iz/wDbsP8A0I1v1wX9mat/wk2P7Qf/AI9h/An94+1b/wDZmrf9BB/++E/woA3qKwf7M1b/AKCD/wDfCf4VyPjLxTovw90o614z8Qpp9t0DShAWPoowST7AVnVqwpQdSrJKK3bdkvVl06cqklCCu3sludb4l/5BZ/66Rf8AoYreHQV8Za5+1D8JJ7MRN4juY0aSMiWSydY8Bgc7igFfUenR3Oq2EOp6bqpnt7hFkjkRUKsrDIIOOhFcuEzPCYptYatGbW/LJO33G+IwOJw6Tr05RT2umjq6Kwf7M1Yf8xBz/wAAT/Ck/svVv+gjJ/3wn+Fdxym/WH4f/wCPOTP/AD3l/wDQjTf7M1b/AKCD/wDfCf4VhaBperfZJP8AiYP/AK+X+BP7x9qAO7orB/szVv8AoIP/AN8J/hXi+u+MfFK/GvRvhZod9lHsp9R1F2jQlYQRHGq8cFnOfoK5sVi6eHjGVT7UlFebk7L/ADfkmzehh51m1Dom36JX/wCG8z6GrDl/5GKH/rg//oQpv9mat/0EH/74T/CsKXTNW/4SOL/iYP8A6h/4E/vD2rpMDu6KwP7L1b/oIyf98J/hS/2Zq3/QQf8A74T/AAoA3qwvE3/ICuf93+opv9l6t/0EZP8AvhP8Kw/EumasNDuT/aD/AHR/AnqPagDuh0FLWANM1Ygf8TB/++E/wpf7M1b/AKCD/wDfCf4UAb1FYP8AZmrf9BB/++E/wpP7L1b/AKCMn/fCf4UALoPS8/6+pf6VvVwehaZqxF5/xMH/AOPqX+BPb2rd/svVv+gjJ/3wn+FAG/RWB/Zerf8AQRk/74T/AAq5ZWd9byl7m6adSMbSqjB9eBQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY+v8A/IHn+g/mK2Kx9f8A+QPP9B/MUAbFFFFABWRpX+tvP+vg/wDoK1r1kaV/rbz/AK+D/wCgrQBr0UUUAY2of8hOw/66P/6A1fFv/BRX4W+KPiD+zVd+M/hrA8/jX4a39p438NpFnfLqGhv55twByRdwCa0Zf4lmIr7S1D/kJ2H/AF0f/wBAatmgDzf4O/FXwd8dPhP4a+NHw9uRd6H4r0y11awmB+9b3caypn0IDYI6g5Br0G5/49pP90/yr81v2G9vwB+LnxN/YPvlW3sPDF9/wlng5BwreGvEMkkphQdhZagLmDA4WIw+uB+lN1/x7Sf7p/lQBU0b/kEWv/XJP5CtKs3Rv+QRa/8AXJP5CtKgArIt/wDkN3X/AFzi/m1a9ZFv/wAhu6/65xfzagDXooooAxtb/wCPaL/r4h/9DFbNY2t/8e0X/XxD/wChitmgAooooAx9D/48T/11l/8AQ2rYrH0P/jxP/XWX/wBDatigArHm/wCQ9b/9cJf/AEJK2Kx5v+Q9b/8AXCX+aUAbFFFFAH4nftA/Gv4K6t+2b4m0r486NeeI4/BGj22neGfD0Oly6hLeX99i5uLuOPYYxsCxRK7sBwa+ljr/APwUM+OxVvCGl6R8G/D8n3Z9WA1XW2Q9CLeMi3iP+y7Eiv0D1uOMaXdzhRv8lxuxzjB71rJ9wfSvr63E9H2VGNHCR5qcIxTqP2kU0ldwptKC55XlLnU9WeHTyipz1HUrO0pN+6uVu70TldydlorOOiPin4WfskeN/Cfjux+IXxQ+LXivxpc6exkisriZLPTTIyldz28CgPgE4DNjPUHFfbFcf498f+C/hd4SvfHfxC1KDSdI09PMuLq4baiDoB6kkkBVAJYnABNYXwj+Mfw5+OvguL4gfC3Ul1PTJZJIS4R4njliOHjkjkCvG6nqrKDyD0Irx8fXx+Oh9erxbhH3eZQUYJ78vupRT623O/DU8Nh5fV6btJ62cryfS+rbfqdrpv8Ax/X3/XVf/QFrYrkL3xBoXha21XxB4mvYNPsbV1ea4uZFiijXYoyzMQB+NdBpWqafremwaxpUontrqNZYpF6MjDII9iK8v2cuXntptfpfsdnMr8t9S/WPqv8Ax8WP/Xx/7I1bFY+q/wDHxY/9fH/sjVAzYooooAQ9DWVoP/IFtP8Arkn8q1T0NZWg/wDIFtP+uSfyoA1qKKKAMeP/AJD0v/XBP/QmrYrHj/5D0v8A1wT/ANCatigArG1//kGN/wBdIv8A0Na2axtf/wCQY3/XSL/0NaANmiiigArH0X/VT/8AXxL/AOhGtisfRf8AVT/9fEv/AKEaANiiiigDHu/+QzZ/7sv8hWxWPd/8hiz/AN2X+QrYoAKo6n/yDbj/AK5P/I1eqjqf/INuP+uT/wAjQBJY/wDHlD/uL/KrVVbH/jyh/wBxf5VaoAKxrH/kK33+9H/6CK2ax7H/AJCt9/vR/wDoIoA2KKKKAMbWPvWn/Xwn8jWzWNrH3rT/AK+E/ka2aACiiigDH0D/AJBMX/Av/QjWxWPoH/IJi/4F/wChGtigArG/5mH/ALd//Zq2axv+Zh/7d/8A2agDZooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/wBfL/yFbdYmi/fvf+vl/wCQrboAKyL7/kKWX+9J/wCgmtesi+/5Cdl/vSf+gmgDXooooAr3f/HrL/uN/Kq2j/8AIJtf+uKf+girN3/x6y/7jfyqto//ACCbX/rin/oIoA0aKKKAMa1/5Dd5/wBc4f8A2atmsa1/5Dd5/wBc4f8A2atmgArJ1f8A1cH/AF3i/wDQhWtWTq/+rg/67xf+hCgDWooooAKx9C/5B/8A21l/9DatisfQv+Qf/wBtZf8A0NqANiiiigDIl/5DsP8A1wk/9CStesiX/kOw/wDXCT/0JK8p/aS+OHh39mv4C+LPjv4pRp7Twvps96LePmS5mUYht4x3knlKRRju7AUAfH3hISftG/8ABSTXvHDN5vhj4B6R/wAI7YYOUk8T6/HHc38nputbAW0I7g3MoNfovr//ACBbr/rm38q+Vv2E/gV4i/Z//Zr0Xwz8QZFufGWtSXPiHxVdDkz67rErXV42e6pJIYk9I0UDAAFfVOv/APIFuv8Arm38qANVfuj6U6mr90fSnUAFZGm/8fd9/wBdh/6Ata9ZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKfyFalABRRRQBz2mf8h3UvrF/wCg10Nc9pn/ACHdS+sX/oNdDQB/OB+z74vkvf8Ag5n+O3hlWysHwt0JSPdJY2H/AKMr+j+v5av2S4Zbn/g6Z/aXvTnbB8PdEj9huSzP9K/qVoAwdZ/4+rD/AK+B/wCgtW9WDrP/AB9WH/XwP/QWreoAKKKKAI5v9U30NZXh7/kB2v8A1zWtWb/VN9DWV4e/5Adr/wBc1oA2aKKKACues/8AkY7z/rlF/Nq6Gues/wDkY7z/AK5RfzagDoaKKKAP5K/+Diwib9uj9hizP8fxBLflJbf41/Vtr33LX/r5i/nX8o//AAcR8ft+fsKE9P8AhPm5/wC2trX9XGvfctf+vmL+dAG9TJFLoyKdpIwCO1DfMrIjYbH5Zrzj4a/Dr/hX9pfPe6ndaxqGqXL3V1d3bZZmPCoqj5URFwqqox36kmtYQhySlKVmrWVt+/kkv8tN2olKXMklp1fY5X4M/APwr8G5NU1ixuLnU9a12dp9Q1G8kMk07FmZRgnCqgbCqoAAFe5P9w/SnU1/uH6VeKxVXE1XWrycpPq/uXyS0S2S0Jo0YUoKnTVkjF8N/wDIFh/4F/6Ea3Kw/Df/ACBYf+Bf+hGtyuc1CiiigDn4v+Rnm/690/8AQjXQVz8X/Izzf9e6f+hGugoAKKKKAMHxGcWCf9do/wD0IVvVg+IziwT/AK7R/wDoQreoAKKKKAEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8ADv8Ax7T/APXeT+ddBXP+Hf8Aj2n/AOu8n866CgAooooAwJ/+Rkt/+uL/AMxW/WBP/wAjJb/9cX/mK36ACiiigDF8QjOjzfStWD/Up/uisrxCM6PN9K1YP9Sn+6KAJaKKKACud0iWOA380zBESdizE4AAA5NdFX55/tI/EHxbr/iqD9nH4bMY9Q1+YteTrwYrc4zg9sjqa8rOc1p5dhZYiacnooxW8pN2jFer/wAzvyzATxldUYuy1bb2UVq2/RFjxt8XfiB+0F45m+EfwDuWsNLs226nrS8jHQrGf8OT9Kv65+zz4g+CGlx/En4Xa5qV9qGmETXttdTGWO7hH+sG09DjkV9TfCP4U+Gvg94MtvCHhuMBYgDLKR88sh6sx969LlijniaGUBkcFWB6EHrXg4fhieJpvFZnNvFS1TTaVLsoK9vd6veXXTQ9atnkaM1QwMUqC0aaV593L16L7PQxPC3iGx8WeHLLxLppzBfQpMn0YdPwPFF7/wAh2z/3X/lRBaaN4N8OtDpsKWtlYxO6xoMKqrljgfnXyP8AszazrPxL1G6+MGv31xK1/d3Nva2+8/Z47eLhdqdMnua92eYujXw+CmuarNNu2iSilzP72kl5nlRwaqUq2Ji7Qi0lfduV7L7k7n2vRXyF+2V8bJPhF8MJLbRZzFrGrZhtipwyL/E4+g6e9em/s33euX/wT8P3/iO5ku7ue2DvLKdztnpkms6eeUKmaTyqCvOEFOT6K7sl69fQueVVYYCOPk7RlLlS6uy1fp0PcKydd/5BFx/uGsL4h+KT4J8D6p4rCh2sLd5VU9CVHH61haH4mfV/hNbeLdbmjzPZLcTSKNqDIyfoBXoPGUlX+rt+9y83yvY41hpul7ZL3b8vztc9Gsf+POL/AHB/KrVfAXhv9t3TfEHxQ07wVpOjyHQ72X7JHqLkgvKvGVGMFc/jX37XJlWd4LMo1JYKpzqD5W9d99L7rs1ozpx+V4nBOCxMOVyV16fo/LcKKKK9U88w9K/4/b3/AK6j+VblYelf8fl6f+mv9K3KACiiigDB1L/kK2P+8/8AKt6sHUv+QrY/7z/yreoAKKKKAKGq/wDINn/65t/Km6SMaZB/uCnar/yDZ/8Arm38qbpIxpkH+4KANGiiigArA0w/8Ta//wB5P5Vv1gaWf+Jtf/7yfyoA36KKKACsDWP+P2w/67f0rfrn9Y/4/rD/AK6n+VAHQUUUUAFV7v8A49Zf9xv5VYqvd/8AHrL/ALjfyoAp6J/yCYP9wVqVl6J/yCYP9wVqUAFFFFAHO2P/ACMN7/uR10Vc7Y/8jDe/7kddFQAUUUUAYOu9LX/r4X+RrerB13paf9fC/wAjW9QAUUUUAMk/1bfQ1i+G/wDkCwf7tbUn+rb6Gsbw3/yBYPpQBuUUUUAFc7bf8jNc/wDXKP8ArXRVztt/yM1z/wBco/60AdFRRRQAVia7/wAe8P8A12T+dbdYmu/8e8P/AF2T+dAG3RRRQAUUUUAYHhn/AJBK/wC/J/6Ea36wPDP/ACCV/wB+T/0I1v0AFFFFAGAf+Rn/AO3Yf+hGt+sA/wDIz/8AbsP/AEI1v0Ac/wCK/Eul+DfDV94q1p/LtbCF5pG9lGf16V8GfB678CfEaV/2gvjzrFhJdXMjnTLC6nQRWVupIXEZP3zjJJGa+nf2nDcD4AeK/sq72OnyDA9DjP6Zr58/Zq/Z++A3jf4MeHPFupaDa317Lap9okkG/dMnD5B4zkHtXwmeSxeJzqhg6MYSjCm6nLNtRcuZRTaSfM49E9E3fex9XlaoUcsq4mrKUXKaheKTduW7WrVr9X5W2ucx8Z/i5D8fbCX4L/ArTze215IkV/q5i22sEW4ZCNjk5x/SvT/FPxF174eyeH/2avghFHf+IYrOOOW4n+aGzgjUDfIB/EQMgH+tfTN7ovh7wr4cWx0e2gsLWOSIBI1WNB849MCvyy8LfGbVfhl488fm00a61Hx7ruqPBZoYi0ccKk7ST6DOcdDgZ4ry87lUyypCvjMR+9rvllOMbclOKcuSnHV803om7tt36K3flkYY6EqWHo/u6XvKMnfmnJpc03ouWK1aWmlup9I+DfjD8cLT9oeD4Ga1d2XiCO2hE+o3kNsbfyQyZCjDEcEqMkd6+kpfH2ot8cl+HNsU+xQaOb+5JHzLI8uxOew2hjXyl/wT/wBM1HUNE8UfEDxIxuNU1LUWjlnf5nbyhyM+m4n2rkfFfxWi0DV/jH8UPMxPAbbQLDnksqlcD6Fmapy7OquGyuhja9WXLVqTmlJ3caUIyko3d29IK93duQ8ZldOtj6uFpU43pwjG6VlKcnFc1lotZO3kj7F+Dn7QXhD416pr2m+F45U/sKcQtJJjbKrZw646A7T1rw3w78Y/jF8Q/GniC1+D1rZPoXhq4kjke5BLX0+4kojAgLx0PbjNfL/7IbXvwq1rx74S1xxb6pLo8d5bxsdrSERu4256nDA15bp3xhj8D/sjL4R8MX3k67r2rXDXPlNiZIUIySRyN2FA9RmvHlxriJ4DD1MdUcJJVpVOS0ZNwlywgt7NuSb7210bPSjwxRji60MLBSTdOMOa7SU480pvvZJ29dNT9h/iXYfFzVNKth8LNQstLuskzm8hMwIIGAvOBg5zwa/O/wACxftT+KPjp4u1Hw7q+lya1pCQaddzyxYhZFyyrGu04wc56V9q/sqfEO1+IHwW0O5mvlutRt7ZY7tS+6VWUlQXHUFgM89a8V/ZHuDcfGD4qu/3zrH6BpAP5V9DmdOjmeJyzEU61SMazcvdqNJWptqyWilfdpdzx8BKpgqOOpTpwcqStrBO95pa31a7fI9F0fxd8b/hVpGoeOv2iNQ06bRLKEZXToGabzGYKDwAMc89a6TwT+0p8FviJ4gtR4f1yBZpojGkM58mQuzDCgNjJPoKyfi5q0Xi34z+FfghfHfpl7b3Wo6jDniZIAFjjb1Usckd8V8yfCP4d+CvAn7Z3iH4eWNhDdaebVL+2WVA5tZRtcBCemN2B7Yq6uaY7A4ylhsLNToOoqUnUcpT9o48+jv8Nmo7aO/QmngMLisNUr4iLjV5HUSgko8ifLqrb3u99V5n6d3V1b2VtJeXTiOKJS7s3AVVGST9BWP4Y8UaF4y0G38TeGrlbuxu1LRSp91gCR/MVxPxzlmt/gv4smtjh10i8KkdQfKavzBh+LHiaP8AZo8BfBD4cTFNc8TGSJ3jJDxwCZlxkcjcc5P90GvXz3imOWYr2VSF4+zc1b4pS54wjFerkedlWQyx1D2kJWfOo67KPLKUpP0SP2Ktr2zvAxs5kl2Ha2xg2COxx3rL8S/8gK5/3f6ivzaT9lD49fA7VLfxZ8BvEB1CRkX7ZaXbbVlf+Lj7rKe2cEetfcXhTV/H+t/DI33xL02LStWIZZYIX3pgHAYHJxnrjNdmTZ1icTUlh8bhJ0ai1/mg15TWl/J2ZzZlllChBVsLiI1IPTtJPzi9beZ6+OgpaQdBS19EeMFFFFAGDoPS8/6+pf6VvVg6D0vP+vqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVlSa3p0UjRO7blJB+RjyPwrVooAx/7e0v++3/AHw3+FZGv69pf9jz/O33R/A3qPauvrI1/wD5BE/0H8xQAn9vaX/fb/vhv8KP7e0v++3/AHw3+FbFFAGP/b2l/wB9v++G/wAKyNL17S/NvPnb/j4P8Df3V9q6+sjSv9bef9fB/wDQVoAT+3tL/vt/3w3+FH9vaX/fb/vhv8K2KKAOP1DXtL/tKwO9v9Y/8Df3G9q2P7e0v++3/fDf4Umof8hOw/66P/6A1bNAH5cf8FA9WsPghrvgP/goDoMUzv8AC69ax8UC3iYyTeENaZIdQLADLrZSi3v8dQtu+PvHP6SP4k0W5sDcW03mRyR7kdVZlZWGQQQMEEdDVjxN4b0Lxl4c1Dwh4otY77TNVtpbO7tpRujmgnUpIjDurKSCPQ1+e3/BPTxZ4h8IeDvFX7E3xJvZL3xR8EbtNHhubgkzah4cuUMmi3pJ+8WtR9nlYZzPby55oA++tG17S/7Itfnb/VJ/yzb0HtWl/b2l/wB9v++G/wAKn0f/AJBNr/1yT+QrRoAx/wC3tL/vt/3w3+FZFvr2l/23dfO3+ri/gb/a9q6+si3P/E6uh/0zi/m1ACf29pf99v8Avhv8KP7e0v8Avt/3w3+FbFFAHH63r2l/Zovnb/Xw/wADf3x7Vsf29pf99v8Avhv8KNbOLaL/AK7w/wDoYrYoAx/7e0v++3/fDf4Uf29pf99v++G/wrYooA5DQ9e0v7Cfnb/Wy/wN/fb2rX/t7S/77f8AfDf4UuhnNif+usv/AKG1a9AGP/b2l/32/wC+G/wrHm17S/7et/nb/US/wN6p7V2FY8x/4n1uP+mMv80oAP7e0v8Avt/3w3+FH9vaX/fb/vhv8K2KKAOT1zXtL/sa7+dv9U/8Deh9q0k17S9g+dun9xv8Km1v/kDXX/XJ/wCRrST7o+lAHw9c6NpP7Qn7Qt3rPjfNx4T+GlzHb6bp0kbGK61xo1mku5VxhhbRyIkAIwHZ36ha8h8YeMPD/wCx3+1yfiHqNyun/Dr4tKY9WlkBSDT/ABBaJmOdsgBVuoVKue7rk1+l9lo+labd3d9YW6QzX8gluHQYMrqqoGb1IVVGfQCvyd/aq0zxB/wUD8f6z+yR8MbxbLwr4LQ3XiLWdgkV9ZCE2djESCP3bkSXBHIA28Hg/ecO4lYzFOhXfLgo0uWpfaENPeW/v+1tKOl5TsttvnM0pewoqpT1xDnePeT10/w8l0+0bvc9d+Dc4/as8byftC/EOKaPwZY3IfwfodxE4WXaoA1S5jIw0kg5tkYYiQ7sb2yPv/8At7S/77f98N/hX4++Hv2uvFXj34QeGPgBBM2gfFrVPEln4T1qytj5VzYrYBWvbpFH3Ynt4iUYDaN+B0r9mq87irA4nDVYqvFQjeUYQWqUItJST2kpu75/ttOXVHVk2Io1YSdN8z0cpd5Nap9nFW937Ksuhj/29pf99v8Avhv8KyNU13SzcWPzt/x8f3H/ALje1dfWPqn/AB8WP/Xx/wCyPXyh7If29pf99v8Avhv8KP7e0v8Avt/3w3+FbFFAGM2vaXg/O3/fDf4VlaDr2l/2LafO3+qT+BvT6V1p6GsrQv8AkC2n/XJP5UAN/t7S/wC+3/fDf4Uf29pf99v++G/wrYooA4+PXtL/ALel+dv9Qn8Df3m9q2P7e0v++3/fDf4URk/29KP+mCf+hNWxQBj/ANvaX/fb/vhv8Kx9e17SzpjfO334v4G/vr7V2FY+vf8AIMb/AK6Rf+hrQAf29pf99v8Avhv8KP7e0v8Avt/3w3+FbFFAGP8A29pf99v++G/wrI0bXtL8mf52/wCPiX+Bv7x9q6+sfRv9VP8A9fEv/oRoAP7e0v8Avt/3w3+FH9vaX/fb/vhv8K2KKAOPu9e0v+2bP52+7L/A3oPatj+3tL/vt/3w3+FF3/yGLP8A3Zf5CtigDH/t7S/77f8AfDf4VR1PXtLOm3Hzt/qn/gb0PtXTVR1P/kG3H/XJ/wCRoAzLLXtL+xQ/O33F/gb0+lWf7e0v++3/AHw3+FX7L/jzh/3F/lVmgDH/ALe0v++3/fDf4Vj2OvaX/al987fej/gb+6PauwrGsT/xNb4f7Uf/AKCKAF/t7S/77f8AfDf4Uf29pf8Afb/vhv8ACtiigDjtX13TC1p87f8AHwn8Deh9q2f7e0v++3/fDf4UmsfetP8Ar4T+RrZoAx/7e0v++3/fDf4Uf29pf99v++G/wrYooA4/QNe0v+yIfnb+L+Bv7x9q2P7e0v8Avt/3w3+FGgc6RDn/AGv5mtigDH/t7S/77f8AfDf4Vjf29pf/AAkH32/49/7jf3vpXY1jf8zD/wBu/wD7NQAv9vaX/fb/AL4b/Cj+3tL/AL7f98N/hWxRQByGva9pf9kT/O3QfwN6j2rX/t7S/wC+3/fDf4Uuu/8AIJm+g/mK16AMf+3tL/vt/wB8N/hR/b2l/wB9v++G/wAK2KKAON0bXdMD3mXb/j5f+BvQe1bX9vaX/fb/AL4b/CmaN9+8/wCvl/5CtugDH/t7S/77f98N/hWRfa9pf9p2J3t96T+Bv7p9q6+si+/5Cdl/vSf+gmgBP7e0v++3/fDf4Uf29pf99v8Avhv8K2KKAOfu9e0v7LL87fcb+BvT6VW0fXtL/sm1+dv9Sn8Df3R7V0N3/wAesv8AuN/Kq2kf8gm1/wCuKf8AoIoAg/t7S/77f98N/hR/b2l/32/74b/CtiigDj7XXdMGtXh3t/q4f4G/2vatj+3tL/vt/wB8N/hSWv8AyG7z/rnD/wCzVs0AY/8Ab2l/32/74b/CsnV9e0vyoPnb/XxfwN/eHtXXVk6v/q4P+u8X/oQoAb/b2l/32/74b/Cj+3tL/vt/3w3+FbFFAGP/AG9pf99v++G/wrH0LXtL/s/77f62X+Bv77e1dhWPoZJ0/n/nrL/6G1AB/b2l/wB9v++G/wAKP7e0v++3/fDf4VsUUAchLr2l/wBuw/O3+ok/gb+8ntX5y/tK6xpv7TP7Y3w8/ZLs5nl8O+BvI+I/jNURtjm1laPQ7KTjpNeI92UI+ZbMZ4bn9APiV8QfCXwm8Oat8UPH96mnaF4c0m81PULqU4SG2tVEkjn2VVJr5G/4J3eBvGLfC3V/2mfi5ZGw8b/GfUm8U6jbSD95YWEiLFpVgx65tLBIVcdPOaUjG6gD7q/t7S/77f8AfDf4Vka/r2l/2LdfO3+rb+BvT6V19ZGvf8gW6x/zzb+VADV17S9o+dv++G/wpf7e0v8Avt/3w3+Fa6/dFLQBj/29pf8Afb/vhv8ACsvSNb06W/vIkdtzTgD5GHJRfausrI00k3d9n/nsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//U/v4ooooAKqX/APx4zf8AXNv5Vbrn9Y1K4gguIUtJZQEb5l24OR7mgC5of/IFtP8Arin/AKCK1K47RNYuv7FtP9Am/wBTH/d9B/tVp/2xdf8APjP/AOO//FUAb1FYP9sXX/PjP/47/wDFUf2xdf8APjP/AOO//FUAM0z/AJDupfWL/wBBroa4LTtXuhreo/6DN1i/u/3f96t/+2Lr/nxn/wDHf/iqAP5m/wBgj/if/wDByd+2HrZ5Om+F/Dlpn0zHDx/47X9QVfyzf8E1tRnH/Bwt+2/cC2kYnTfDQ2jGRiNevP8AWv6e/wC2Lr/nxn/8d/8AiqADWf8Aj6sP+vgf+gtW9XCa1rF19qsP9An/AOPgf3f7rf7Vbv8AbF1/z4z/APjv/wAVQBvUVg/2xdf8+M//AI7/APFUf2xdf8+M/wD47/8AFUAbU3+qb6Gsrw9/yA7X/rmtVptZuvKb/QZ+h/u//FVl+HtYuv7Dtf8AQZv9Wv8Ad/8AiqAO2oryX4n/ABg0H4ReA9T+I3jO2ng03SoTNMw2lj2CqN3LMSAB6mvHv2eP2wfCH7Q02paRpGj6hpGsaUscs+n3yqkwgmGY5QM8qwI+mRWMsRTjUVJy957I76WV4urhZ42nTbpQdnLonp/mr9rq+6Pruues/wDkY7z/AK5RfzanNrVygLNYzADqTt/+Krn7HWp38QXbpZTEGGIggqQQS3+1WxwHf0Vg/wBs3X/PjP8A+O//ABVQXWu3kNtJMlhMSqkj7vYf71A0r6H8tP8AwX10cfEj9sX9l7W/Bt1b3LfCzxYNb8QoH/eWtmWhYHHdmCEhRzX9MGk/EDw38VfAGneOfhnfxX1lqDo9rPglN2cDcvBGG+8Dg1/Gl8YvFutePPix4k8YeISxvdQ1G4klDdUO8gJ/wEALj2r+iX/gmNoHi/wd+ypp0/iCC5ki1XWXu7OM42pASqgrnBAZlJr5zKs6q4rFzpuK5Vdr5Pqfr/Gvh3gskySjjYVZOu3FSTas7pt8qtdWa01eh9/fBn4Xaj8OtJvL/wAVak+teItam+1anfMCqvIOFSNMkJFGvyoo+pySa9lrB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8Aiq+qxOIqV6kqtR3k/l8klokloktEtEfjdKlGnBQhsv6/4c3qa/3D9Kw/7Zuv+fGf/wAd/wDiqa2sXW0/6DP0/wBn/wCKrA0JPDf/ACBYf+Bf+hGtyuG8OaxcjRoQLGf+L+7/AHj/ALVbf9s3X/PjP/47/wDFUAb1FYP9sXX/AD4z/wDjv/xVH9sXX/PjP/47/wDFUANi/wCRnm/690/9CNdBXBxavdf8JNMfsM//AB7p/d/vH/are/ti6/58Z/8Ax3/4qgDeorB/tm6/58Z//Hf/AIqj+2br/nxn/wDHf/iqADxFxYJ/12j/APQhW9XB+ItYuvsC5sJ/9bH/AHf7w/2q3v7Yuv8Anxn/APHf/iqAN6isH+2Lr/nxn/8AHf8A4qj+2Lr/AJ8Z/wDx3/4qgDdPQ1h+Hf8AkG/9tJP/AEI006xdYP8AoM//AI7/APFVieHdYuv7N/48Zv8AWSf3f7x/2qAO6orB/tm6/wCfGf8A8d/+Ko/tm6/58Z//AB3/AOKoA3qwT/yMo/69z/6EKP7Zuv8Anxn/APHf/iqwTrF1/wAJIP8AQZ/+Pc/3f7w/2qAO8orB/ti6/wCfGf8A8d/+Ko/ti6/58Z//AB3/AOKoA3qwvEn/ACCZPqv86T+2Lr/nxn/8d/8Aiqw/EesXX9kyZsZ+q/3fX/eoA7kdBS1gDWbrA/0Cf/x3/wCKpf7Zuv8Anxn/APHf/iqAN6isH+2br/nxn/8AHf8A4qj+2Lr/AJ8Z/wDx3/4qgBvh3/j2n/67yfzroK4Lw7rF19lm/wBAn/18n931/wB6t/8Ati6/58Z//Hf/AIqgDeorB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqAEn/5GS3/64v8AzFb9cFPrN1/wklv/AKBP/qX/ALvqP9qt/wDtm6/58Z//AB3/AOKoA3qKwf7Zuv8Anxn/APHf/iqP7Zuv+fGf/wAd/wDiqAJPEP8AyB5vpWrB/qU/3RXHeINYuv7Im/0Gfp/s/wDxVakOsXXkp/oM/Qf3f/iqAOiorB/ti6/58Z//AB3/AOKo/ti6/wCfGf8A8d/+KoA3q+Jvi3+y/cfFDxi/xE8Ga7N4e121cxCaMbldQBjoQR+Br67/ALYuv+fGf/x3/wCKrB0TWbkS3v8AoM/+vb+76D/arz8zyvDZhQeHxceaN092mmtmmmmmu6Z2YHH18HV9th5WltsmmnumndNHxavwi/bh8NjzNE8d22o7Oi3KE5x67w9df8J/2iviRZ/ESD4M/H3SE0/V7pSbW8g/1M+326c+35V9MeGfiZo3jA3o8OwzXI0+draYgAASL1AJIzj2r4Y/aJ8RL4o/ac8B+HvDULyapps3m3Ea4JWMnODgnHHPNfEZjhFlFKljsvxVSSc4R5JTdSM1KSi0ua7T3aad9D6jBYh5jUqYTGYeCajKXMoqEotRbTdrK2266n2r8d9QfS/g74jvozhksZcEepGK8D/Y0t4rD4IeG5WwquLmVieOp5Nei/tK6vcH4FeJg1nKgNm43HbgfkTXxRYfFqb4b/sfaDHp0T/b9Sgms7YjGN8hIJ654B9K6c4zGlg8++tV37tPDTl/5PHT1dkjHLsHPE5T7Cl8U60V/wCSv8tzwL9qjxZqfxn8Xaz49s2/4kfh+ePTLb0d2PzEfXGa/aD4R2sdl8MNBtYhhUsYcf8AfIr8sPjJ8NLj4X/siaLpFxaPHdT3sd3eytjBeQZAPPbpzX6M+EfiT4c8L/CDSPEmuOLfT4rGEmd3QKcKOB83J9hzXicF0amHzfGV8dK1WdOFSd3a3M5NrXZRVl8j1OJakK2XYalhFeEZyhG3XlSV/Vu7+Z0fx0tlvPg94jt2Gd1hN+gr82vEnxV1fxP+z34G+CHhWQnUvEMKx3TKeUt0bBz6Zr7c1r4t6R8U/gbr/ibw3Y3i2L2txHHLOgj8wKPvKCclT2Nfnr+wx4LutU1nVPiPf28l1DpNv9ntsEYWR+uMnsKvijEVMZmuEwmCleGJpuLkv+ffOpSa9YppepGRUY4bL8RiMUrSoTUkn/PytJP0bT+R7J8c/COi/Dfxt8JfCmhRrFBaSgcD7zZG5j7k1+o1fl7+13qsp+LPw1le3ki2TAgNjJ+YdMGvsf4q/tCeEPhDYwy+JYJ3u7ohba0h2tNKx44UHp717GR4nC4HG5r7SShSpyp+SS9mkvy0POzSjXxeFwHInKpNT9W+d3Pe6K5PS/Et5qWm2+oNplzCZ41k8t9oZdwzg/N1FXv7Yuv+fGf/AMd/+Kr72MlJKS2Z8k002mO0r/j8vT/01/pW5XDaXrF0Ly9/0Gf/AFg/u+n+9W3/AGxdf8+M/wD47/8AFUxG9RWD/bF1/wA+M/8A47/8VR/bN1/z4z/+O/8AxVABqX/IVsf95/5VvVwmpaxc/wBqWP8AoM/3m/u+n+9W7/bF1/z4z/8Ajv8A8VQBvUVg/wBsXX/PjP8A+O//ABVH9sXX/PjP/wCO/wDxVAF/Vf8AkGz/APXNv5U3SBjTIP8AcFYeqaxdf2bP/oM/+rb+76f71JpWsXI02DFjP9wf3f8A4qgDrqKwf7Yuv+fGf/x3/wCKo/tm6/58Z/8Ax3/4qgDern9L/wCQtf8A++n8qd/bN1/z4z/+O/8AxVYOmaxdf2tf/wCgz/eT+7/d/wB6gDvKKwf7Yuv+fGf/AMd/+Ko/ti6/58Z//Hf/AIqgDern9Y/4/rD/AK6n+VO/ti6/58Z//Hf/AIqsHWNYuvttifsM/wDrT/d9P96gDvKKwf7Zuv8Anxn/APHf/iqP7Zuv+fGf/wAd/wDiqAN6q93/AMesv+438qyf7Zuv+fGf/wAd/wDiqgu9Yuvssv8AoE/3G/u+n+9QBo6J/wAgmD/cFalcdousXX9kwYsJ/uD+7/8AFVp/2xdf8+M//jv/AMVQBvUVg/2xdf8APjP/AOO//FUf2xdf8+M//jv/AMVQBHY/8jDe/wC5HXRVwFlrF1/wkN7/AKDP9yP+76f71dD/AGzdf8+M/wD47/8AFUAb1FYP9s3X/PjP/wCO/wDxVH9sXX/PjP8A+O//ABVABrvS0/6+F/ka3q4TXNYu/wDRP9Bn/wCPhf7vof8Aard/ti6/58Z//Hf/AIqgDeorB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqANuT/Vt9DWL4b50WA/7NRyazdeW3+gT9D/AHf/AIqsbw3rF0NFg/0Cf7v+z/8AFUAd1RWD/bN1/wA+M/8A47/8VR/bF1/z4z/+O/8AxVAG9XO23/Iy3P8A1yj/AK1J/bF1/wA+M/8A47/8VXPW+sXX/CS3P+gz/wCpj/u+/wDtUAd/RWD/AGxdf8+M/wD47/8AFUf2zdf8+M//AI7/APFUAb1Ymu/8e8P/AF2T+dM/tm6/58Z//Hf/AIqsTXdZufs8ObCf/XR/3fX/AHqAO5orB/tm6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqAN6isH+2Lr/nxn/wDHf/iqP7Yuv+fGf/x3/wCKoATwz/yCV/35P/QjW/XB+GtYuf7JXFjP99/7v94/7Vb39s3X/PjP/wCO/wDxVAG9RWD/AGzdf8+M/wD47/8AFUf2zdf8+M//AI7/APFUAIf+Rn/7dh/6Ea364M6xc/8ACTf8eM3/AB7D+7/eP+1W9/bF1/z4z/8Ajv8A8VQBo6lp1nq+nT6VqCCWC5jaKRD0ZWGCPyr827H4OftTfs6ane2PwJntta8PXUrSx2t1jdET2wSOe2QefSv0T/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8Aiq8PN8hoZhKnVlOVOpC/LOD5ZJPdX1TT6po9XLs2q4NTpqMZwla8ZK6dtn5Nd0fBum/Bn46/FS+h8W/tJ6kIbC1mjeDRbM7Yi24AGQqcY9skn1r7R8ePp3hzwTrHiaKGNJ7LT55Fk2jdlIyRz+FP8S6xdf2XzYz/AOsi/u/3x/tV5z+0Hrl3H8EPE7C0lj/4l8o3HbgbhjsfeueOVUcswOIqU25VOWUnOb5pSaTtdvt0Ssl0Rs8fVx2KowmlGN0lGKtFJtXsvPq3q+p5p+wbZfZv2erK7Iwbu6uZifXMhH9K+VPDX7LXxU8X/HbUtO8awSW3hSHWJdVkckbLklsoFwcnIwCT0GaT4afFW/ufgF4S/Z8+He99e8QGVLuSIgm2s2lfzGyDwxXOM4/UV+pOiyPomkWujW1lcGO1iSJSxUkhBgZJavj8lyvA55gMDh6l3DDwpuVn7spSim4PTWys5WfW3c+izPH4rK8Xiq0LKVaU0rrVRUmlNdr6pel+x5d8Vv2Z/hZ8X7621bxNayQ3tqgiW4tnMUhjH8LEdR9elcJ8PP2PvgV4au59ZttLa4lYTWwFxI0ihWypIBOMkd+o7V9PjWLo/wDLjN/47/8AFVheH9Yu/skn+gzf6+X+7/ePvX3VXhzK6mIeKqYWDqXvzOKvfufKwzrHwpewhXkobWu7WOf+E/wS+HvwX0+50/wJZm3F2/mTO7F3cjoCTngdhXh2p/Aj4hfD/wCMlz8W/gvewNb61Kh1bTLvKpIC3zOjDOCMkgY6+xxX1b/bF1/z4z/+O/8AxVL/AGxdf8+M3/jv/wAVRXyDBVKNKhCHIqb5ocnuuL8rd7u6ejvqgpZviYVKlWUuZzVpc2vMvO/ays910PkD9pH4bfFyH4iaF8dfgxFHe6npED2s9nIR+8jf0yQD1IIyD0Irnv2Y/h38UZPi74g+Nfxgsl03Udbh8uG1BBKIhUHoTgYAA5ya+3/7Yuv+fGf/AMd/+KrFl1i5/wCEhh/0Gf8A1D/3f7w/2q4XwphnmKzD2k/i5+S/uc/Ly89rXvbzsdSz+ssE8HyR25ea3vct+blve1r+Vzotf0e18Q6HeaDfDMN7BJA/+7IpU/oa/Of9lf8AZD8X/Db4o3PjT4g+W0OkCSDSwG379+QZMfwjaTgepNfoh/bF1/z4z/8Ajv8A8VR/bF1/z4z/APjv/wAVXZmPD2Dx2Lw2NxEbzotuPbpv3s0mvM58FnOJwuHrYWi/dqpJ9/l6p2fkb1YXib/kBXP+7/UUn9sXX/PjP/47/wDFVh+JdYujoVz/AKDP90f3fUf7Ve4eUdyOgpawRrF1j/jwn/8AHf8A4ql/ti6/58Zv/Hf/AIqgDdorB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqADQel5/wBfUv8ASt6uE0LWLoC8/wBBm/4+pP7vt/tVu/2xdf8APjP/AOO//FUAb1FYP9sXX/PjP/47/wDFVcs7+a6lMcltJCAM7nxj6cE0AaVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWPr/APyB5/oP5itisfX/APkDz/QfzFAGxRRRQAVkaV/rbz/r4P8A6Cta9ZGlf628/wCvg/8AoK0Aa9FFFAGNqH/ITsP+uj/+gNWzWNqH/ITsP+uj/wDoDVs0AFfmF+3Orfs2/FHwb/wUL0kGPS/DSnwx4+CjPmeFdTlXbdtgEk6XeeXcZ/ht3uOma/T2ua8Z+FfDfjrwfqvgnxlZRalpGsWc9lfWkw3Rz29whSSNx3V1JBHoaANHRHjk0a0kiYOjQoVZTkEFRgg9wa1K/NT/AIJ2eLvFfgLSfEH7C3xYvGvPEfwh+yw6TezMTLqvhK8Vv7JvGLAbpESOSzuCM/vrcscbwK/SugArIt/+Q3df9c4v5tWvWRb/APIauv8ArnF/NqANeiiigDH1s4tov+u8P/oYrYrH1v8A49ov+u8P/oYrYoAKKKKAMfQ/+PE/9dZf/Q2rYrH0P/jxb/rrL/6G1bFABWPN/wAh63/64y/zStiseb/kPW//AFwl/mlAGxRRRQBl65/yBrv/AK5P/I1pJ9wfSs3W/wDkDXX/AFyf+RrST7g+lAHzT+1VqX7QUfw2Twz+zXpyT+ItfuU0/wDtGaREh0mCUHzLxwx3P5YHyqoJ3EHBxg9J+zj8AvCP7Nfwn0/4XeES84t9095ezcz3t5L801xKepZ29c4GB0Fe6UV6Us0q/UVgIJRhzc0rbzey5nfVRV+VKyV293c5VhIfWHiZNuVrK+0V1t69X5LojxjT/gt8J2+MN58bv+Efsh4tSMWY1URD7T5JjUFd304zjO3jOOK9nrH03/j+vv8Arqv/AKAtbFcVXEVavL7WblypJXbdktkr7JdFsbwpwhfkild3dur7+oVj6r/x8WP/AF8f+yNWxWRqn+vsv+vj/wBkesizXooooAQ9DWVoP/IFtP8Arkn8q1T0NZWg/wDIFtP+uSfyoA1qKKKAMeP/AJD8v/XBP/QmrYrHj/5D0v8A1wT/ANCatigArG17/kGN/wBdIv8A0Na2axtf/wCQY3/XSL/0NaANmiiigArH0X/VT/8AXxL/AOhGtisfRf8AVT/9fEv/AKEaANiiiigDHu/+QzZ/7sv8hWxWPd/8hiz/AN2X+QrYoAKo6n/yDbj/AK5P/I1eqjqf/INuP+uT/wAjQBLZf8ecOP7i/wAqs1Wsv+POH/cX+VWaACsax/5Ct9/vR/8AoIrZrGsP+Qrff70f/oIoA2aKKKAMbWPvWn/Xwn8jWzWNrH3rT/r4T+RrZoAKKKKAMfQP+QRD/wAC/ma2Kx9A/wCQRD/wL+ZrYoAKxv8AmYf+3f8A9mrZrG/5mH/t3/8AZqANmiiigDI17/kEzfQfzFa9ZGvf8gmb6D+YrXoAKKKKAMTRfv3v/Xy/8hW3WJov373/AK+X/kK26ACsi+/5Cll/vSf+gmtesi9/5Cdl/vSf+gmgDXooooAr3f8Ax6y/7jfyqto//IJtf+uKf+girN3/AMesv+438qraP/yCbX/rin/oIoA0aKKKAMa1/wCQ3ef9c4f/AGatmsa1/wCQ3ef9c4f/AGatmgArJ1f/AFcH/XeL/wBCFa1ZOr/6uD/rvF/6EKANaiiigArH0L/kH/8AbWX/ANDatisfQv8AkH/9tZf/AENqANiiivOPjB8V/BXwK+FniH4yfEe6+xaF4YsJ9SvpsbmENuhdgq9WdsbUUcsxAHJoA/Pn9tGyk/al/aK8C/sE6akdx4ekjTxl8Q9xyBoen3CGxsWHQ/2lfRgOCRm3t5hzmv1MAAGB0Ffnh+wL8JvGmhaDq37SPxtsjZfEj4yTHxFrltId0mmWgVI9N0oN122FrtRh0M7zOB85r9EKACsjX/8AkC3X/XNv5Vr1ka//AMgW6/65t/KgDWX7opaav3R9KdQAVkab/wAfd9/12H/oC1r1kab/AMfd9/12H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//V/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP5CtSsvQ/+QLaf9cU/wDQRWpQAUUUUAc9pv8AyHNS+sX/AKDXQ1z2m/8AIc1L6xf+g10NAH8uv/BMkk/8HDH7cuf+fDw1/wCilr+oqv5d/wDgmcNv/Bw3+3GPXTvDR/8AIS1/URQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/ACA7X/rmtAHwv/wURtLjxF8NfCPw9RiLfxN4u0jT7oD+KB5CzD/x2vPf2sNPtv2b/j/4E/ay0KH7NpLSJ4d8QiIbVNpP8sLsB1EZ/kPSvb/22rNv+Eb8C+ITxHpPjTRJ5D6LJN5PP4yCvWv2nvhNb/G/4D+JfhtKoaW/s3NuT2nj+eM/g6ivJxFBzlWcfiSi16q7X43PvcpzKGGoZfGr/Bk6sKi7xnyxl81Hla7NJnn37W3jK+PgjRfhh4SuCmo/EDUrfR4ZYjylrMd1xKCP7sIbB9SK+iPDWkWHh+7OhaWnl21laW8EKD+FIwVUfgBX4vfsG/EjxZ+0n8avCNv4wjkA+E/h24trjzRy9/LL5CMQe4iXHPIZTX7Z2f8AyMd5/wBcov5tW2ArrEKWIWzsl8t/xb+48/inLJZVKllU378OaUrd5O0f/JIxa/xPudDQRng0UV6B8kfzhf8ABwb+zT4c8Af8E+/iZ+1X8B7IeH/HHh+3jv5L2yPl74hKvnsyD5SxQn5sZ75r9Pv+CeHxhj+Pv/BPv4J/F1dvm614c0eS42gAfaI4ljmIA9ZFY13/APwUD+EX/C+/2H/ix8HUjSWXxD4V1SyhEg3KJZLdwhIHJw2DX4r/APBrd8Z/+Fof8Ek/C/gq+kB1HwB4jvdBuIixaRFWQTJuB5XiUgD/AGayp0KcG5Qik3vZbndi8zxmKhCnia0pxhpFSbaS8rvQ/poooorU4Qpr/cP0p1Nf7h+lAGL4b/5AsP8AwL/0I1uVh+G/+QLD/wAC/wDQjW5QAUUUUAc/F/yM83/Xun/oRroK5+L/AJGeb/r3T/0I10FABRRRQBg+I/8AjwT/AK7R/wDoQrerA8R/8eC/9do//QhW/QAUUUUAIehrD8O/8g3/ALaSf+hGtw9DWH4d/wCQb/20k/8AQjQBu0UUUAFYJ/5GUf8AXuf/AEIVvVgk/wDFSj/r3P8A6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8O/8AHtP/ANd5P510Fc/4d/49p/8ArvJ/OugoAKKKKAMCf/kZLf8A64v/ADFb9YE//IyW/wD1xf8AmK36ACiiigDF8Q/8gib6VrQ/6lPoKyvEBA0ibPpWrD/qV+goAkooooAK4O8TVJNA1yPRBm8bzhCCcfOU4/Wu8rA0P/W3v/Xw38hUVIc0XG9rlQlyyUux+Unw8vv20vCHhOT4Z+DvCn2KeW4lln1KfG9nlOSwZm2/Q4Jr64/Zu/Zln+GF7c/EH4hXf9reKtRyZZySwiDckKTySe54r7Cor5DKeC8Pg6lKrWrTrOlpBTa5Yeaiklfzd2fR5hxNWxEJ06dKNNT+JxTvL1bbdvJaHGfETwfb+P8AwRqfg66fy01CB4d3XaWHB/OvzT+E37IvxRt/iBo+lfF64jl8PeHneSxiSTespB3D5ewJ5Oea/V+sC9/5Dtn/ALr/AMq9DNuF8DmWJo4rEpuUOidlJXulJdUmk7HHl+e4rBUKmHoNWn3WqdrXi+jtoYvxF+Hnhv4n+D7rwT4oi8yzulwdvDIR0ZT2I7V8T+E/2AdH03XIf+Ew8RXesaJZvvg058qmf9r5iMeuAM1+iNFa5lw1lmYVoYjF0VKcdnrtvZ2dmr9HdGeBzvG4OlKjh6rjGXpv3Wmj80cT4k8F2Wq+ArzwLpASxgntXtogi/LGCMDAHYV5L8EPguPgX8I5PB01wl3clnlmmRdodmPHByeBX0hWTrv/ACCLj/cNd0sswzxVPGOH7yEXGL7J2urbdDlWOrKhPDc3uSak/Nq9tfmfC37Ynwc+JfxAXwx4u+GNsLu80ZsmPcqsM4IYbsA4I5FX/wBn79mnxRH4jf4wftATf2n4jkObeGRvMW2Hr6bvTHAr7msf+POL/cH8qtV4kuD8BPM5ZpU5nJtPlb9zmSspctt0tr3tuj1I8R4uOBWAhZJXXMl71m7uN+ze9gooor6o8Aw9K/4/b3/rqP5VuViaV/x+Xv8A11/pW3QAUUUUAYOpf8hWx/3n/lW9WDqX/IVsf95/5VvUAFFFFAFDVP8AkGz/APXNv5Umk/8AIMg/3BS6p/yDZ/8Arm38qTSf+QZB/uCgDQooooAK5/S/+Qtf/wC+n8q6CsDS/wDkLX/+8n8qAN+iiigArA1j/j9sP+up/lW/WBrH/H7Y/wDXX+lAG/RRRQAVXu/+PWX/AHG/lViq93/x6y/7jfyoAp6J/wAgmD/cFalZeif8gmD/AHBWpQAUUUUAc7Y/8jDe/wC5HXRVztj/AMjDe/7kddFQAUUUUAYWuDP2TH/Pwv8AI1u1ha5/y6f9fC/yNbtABRRRQAyT/Vt9DWN4b50WA+1bMn+rb6GsXw1/yBYP92gDdooooAK522/5GW5/65R/1roq522/5GW5/wCuUf8AWgDoqKKKACsTXf8Aj3h/67J/OtusTXf+PeH/AK7J/OgDbooooAKKKKAMDwz/AMglf9+T/wBCNb9YHhn/AJBK/wC/J/6Ea36ACiiigDAP/Iz/APbsP/QjW/WAf+Rn/wC3Yf8AoRrfoAKKKKAMDxL/AMgs/wDXSL/0MVY1zQ9L8S6Lc+H9bhW4tLyJopo26MjDBFV/Ev8AyCz/ANdIv/QxW8OgqZwjKLjJXT3Q4ycWpRdmj5/+En7M3wp+C2q3OueDbR/tdyNnmzuZGROu1M9BX0DRRXNgcBhsHSVDC01CC6JWWpvisXWxNR1cRNyl3buwrD8PnNnJ/wBd5f8A0I1uVh6B/wAecn/XeX/0I11nOblFFFABWHL/AMjFD/1wf/0IVuVhy/8AIxQ/9cH/APQhQBuUUUUAFYXib/kBXP8Au/1FbtYXiX/kBXP+7/UUAbg6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/6+pf6VvUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVJpSySNJ5843EnAkIAz6Vq0UAY/8AY6/8/Fx/38NZGvaQg0if/SLjoP8AlofUV19Y+v8A/IHn+g/mKAA6Ov8Az8XH/fw0f2Ov/Pxcf9/DWxRQBj/2On/Pxcf9/DWTpekJ5t5/pFx/x8H/AJaH+6vtXXVkaV/rbz/r4P8A6CtACf2Ov/Pxcf8Afw0f2Ov/AD8XH/fw1sUUAcfqGkJ/aVgPtFx/rH/5aH+41bH9jr/z8XH/AH8NJqH/ACE7D/ro/wD6A1bNAGP/AGOv/Pxcf9/DUNxpCi3kP2i4+6f+Wh9K3qguv+PaT/dP8qAPy/8A23/Anib4WWPhP9vr4TQ3l94g+FUDrr9hbEvNrHhC62HU7UActLbhFvbYdfNhKD/WGv0M8H6v4V+IPhLS/HngnV21TRtatIb6xvLaffDcW1wgkjkRhwVdGDAjqDXT6VGkui28UqhlaFAQRkEFe4r8zP2V5m/Y7/aI1b9gTXN8Xg/XEu/E/wAMZ5P9WlkXD6loqsed2nzSedbocn7JMFBxC2AD9L/7HX/n5uP+/h/wrIt9IX+2rr/SLj/Vxf8ALQ/7XtXX1kW//Ibuv+ucX82oAT+x1/5+Lj/v4aP7HX/n4uP+/hrYooA5DWtIQW0X+k3H+vh/5aH++K1/7HX/AJ+Lj/v4aNb/AOPaL/rvD/6GK2KAMf8Asdf+fm4/7+H/AAo/sdf+fi4/7+H/AArYooA5DRNIU2RP2i4/1sv/AC1P99q1/wCx1/5+Lj/v4aND/wCPE/8AXWX/ANDatigDH/sdf+fm4/7+H/CsibSE/t23/wBIuP8AUy/8tD6pXX1jzf8AIet/+uEv/oSUAH9jr/z8XH/fw0f2Ov8Az83H/fw/4VsUUAcnrekL/Y11/pFx/qn/AOWh9K0l0dNo/wBIuOn/AD0NTa5/yBrr/rk/8q0k+4PpQBk/2Ov/AD8XH/fw0f2Ov/Pzcf8Afw/4VsUUAchp2kJ9tvv9IuP9av8Ay0P9xa1/7HX/AJ+bj/v4f8KNN/4/r7/rqv8A6AtbFAGP/Y6/8/Fx/wB/DWRqmkqLmx/0i4/1/wDz0P8AcauvrI1T/X2X/Xx/7I9ACf2Ov/Pxcf8Afw0f2Ov/AD83H/fw/wCFbFFAGMdHXB/0m4/7+H/CsvQtHT+xbX/SLj/VJ/y0PpXWHoaytB/5Atp/1yT+VADf7HX/AJ+Lj/v4aP7HX/n4uP8Av4a2KKAOQj0hP7dlH2i4/wBQn/LQ/wB5vatf+x1/5+Lj/v4aI/8AkPS/9cE/9CatigDH/sdf+fm4/wC/h/wrH17SEGmt/pFx9+L/AJaH++tdhWNr/wDyDG/66Rf+hrQAv9jr/wA/Fx/38NH9jr/z8XH/AH8NbFFAGP8A2Ov/AD83H/fw/wCFZOj6Qhin/wBIuP8Aj4l/5aH+8a66sfRf9VP/ANfEv/oRoAP7HX/n5uP+/h/wo/sdf+fi4/7+GtiigDkLvSF/tiz/ANIuPuy/8tD6D2rX/sdf+fi4/wC/hou/+QzZ/wC7L/IVsUAY/wDY6/8APxcf9/DVLU9IX+zbj/SLj/VP/wAtD6H2rpao6n/yDbj/AK5P/I0AZllpCmziP2i4+4v/AC0Pp9Ks/wBjr/z83H/fw/4Vesf+PKH/AHF/lVqgDH/sdf8An4uP+/hrIsdIT+1L4faLj70f/LQ/3RXX1j2P/IUvv96P/wBBFAB/Y6/8/Fx/38NH9jr/AM/Nx/38P+FbFFAHH6vpCbrT/SLj/j4T/lofQ1sf2Ov/AD83H/fw/wCFJrH3rT/r4T+RrZoAx/7HX/n4uP8Av4aP7HX/AJ+Lj/v4f8K2KKAOQ0HSE/smH/SLj+L/AJaH+8a1/wCx1/5+bj/v4f8ACjQP+QTF/wAC/wDQjWxQBj/2Ov8Az8XH/fw1j/2Qn/CQY+0XH/Hv/wA9D/e+ldhWN/zMP/bv/wCzUAL/AGOv/Pzcf9/D/hR/Y6f8/Fx/38NbFFAHI67o6f2TN/pFx0H/AC0PqPatb+x1/wCfi4/7+Gl17/kEzfQfzFa9AGP/AGOv/Pzcf9/D/hR/Y6/8/Fx/38NbFFAHG6PpCF7z/SLj/j5f/lofQe1bX9jp/wA/Fx/38NM0X797/wBfL/yFbdAGP/Y6/wDPxcf9/DWTfaQv9pWQ+0XH3n/5aH+6fauurIvv+QpY/wC9J/6CaAE/sdf+fm4/7+H/AAo/sdf+fi4/7+GtiigDAutIT7LJ/pFx9xv+Wh9KraRpCf2Ta/6Rcf6lP+Wh/uiugu/+PWX/AHG/lVbR/wDkE2v/AFxT/wBBFAEH9jr/AM/Fx/38NH9jr/z8XH/fw1sUUAcha6Qp1q7H2i4/1cP/AC0P+17Vr/2Ov/Pxcf8Afw0lr/yG7z/rnD/7NWzQBj/2Ov8Az8XH/fw1k6vo6eXB/pFx/r4v+Wh/vV11ZOr/AOrg/wCu8X/oQoAb/Y6/8/Fx/wB/DR/Y6/8APxcf9/DWxRQBjjR1/wCfi4/7+GsjQ9HT7BxcXH+tl/5aH++3tXX1j6F/yD/+2sv/AKG1AB/Y6/8APxcf9/DX5f8Axy02H9sj9rvSP2R7KaS88AfC+Sx8W+Piz747vVAwm0XSG7EB0/tC4U/wxwKeJa+uv2vf2j7X9l74J3nxBtNOfXvEN9cQaP4b0SE4m1bW79vKtLRO+Hc7pG6Rwq8h+VCaofsafs5XP7NPwXh8M+Kb9db8Za9dz694t1kJsOp67fkPdTY7RqQIoF/ggjjT+GgD3+XSF/t2H/SLj/USf8tD/eStb+x1/wCfm4/7+H/Cll/5DsP/AFwk/wDQkrXoAx/7HX/n4uP+/hrJ13SFGi3X+kXH+rb/AJaH0rrqyNf/AOQLdf8AXNv5UANXR1wP9IuP+/hpf7HX/n4uP+/hrWX7o+lOoAx/7HX/AJ+Lj/v4azNJ0pY768kE852zg4MhIOEXrXV1kab/AMfd9/12H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//W/v4ooooAKqX/APx4zf8AXNv5VbrP1GeBLKdXdQRG3BPtQBHof/IFtP8Arin/AKCK1KxNDubb+xbT94v+pTuPQVqfabb/AJ6L+Y/xoAnoqD7Tbf8APRfzH+NH2m2/56L+Y/xoAxdN/wCQ7qX1i/8AQa6GuY025tv7c1L94vWLuP7tdB9ptv8Anov5j/GgD+ZH/gnZZPpX/BxV+2tay8G50PwxcD6NEn+Nf061/Mx+wTfWerf8HGf7ZWpWsq+XaeGfCts+CMeYIo8/yr+mD7Tbf89F/Mf40AZGs/8AH1Yf9fA/9Bat6ua1m6tvtVh+8X/j4Hcf3Wre+023/PRfzH+NAE9FQfabb/nov5j/ABo+023/AD0X8x/jQA+b/VN9DWV4e/5Adr/1zWr011beU37xeh7j/Gsrw7dW39h2v7xf9Wvcf40Acx8WfhxpvxZ8A3/gXU5mtluwjRzxgF4ZomDxyLnjKuoP4V1Ohx61Y+H4Y/FNxFdXsUf7+aJPLjdh1IUk447ZNa/2m2/56L+Y/wAa+c/2t/iVB8Lv2b/GHjOKVRLb6dLHEQ2CJZh5aY/4EwrGo401Ks+i19Fqehg41sVOlgIfamrLzlaPrrpf0R+PH7E3x8s/CX7bPie5ntVsfDHxO1O9t9PlAxGbm2lOwqenzlvmHq4NfqH8OfFdxcftx/EPwi0paKLQdInVCeAweUHA7fe5r5L8NfsVWnxQ/YE8E+GNFuk0vxdpsQ1zTrwnaUu5yZNrEcgMCqkjoQD2ru/2Ifht+0RafHHxj8Yv2lLaCw1W802y0yMRSo4nEHBl+RiBu2gnOMk9BXg4GOIpulSlFtN81+iundPtZvT1P1LiWtlWMjjcbRqxjOEHRcG/ek4VIKnOPe8I+92a13P1Qor8f/8Agpl8UPi14PvtP/4Vt44Phu00zS7jU7i2tTsuLiZZI4oV3A5Ku77dvQckg4r9Kfgl4h13xB8HvC+u+M5VOq3ml2s10ThSZXjUsSOxJOTXs0sXGdedBJ3jbXofnmNyCphstw+ZyqJxqtrlV7q3e6s++je67nqNxBFdQPbTDckilWB7g8Gv4y/+CXd8f+Ca3/Bcn46f8E2fFB+x+Gfitdp4x8H72wjOS0zRrwBnaZU4/wCeY7nFf2Z/abb/AJ6L+Y/xr84f2v8A/gmz+yb+1v8AG74c/tJfFCxuYPG/w51GCfSNW0y8ezuAqyB/KkaMjfGWGdp6ZOCMmus8A/SWioPtNt/z0X8xR9ptv+ei/mP8aAJ6a/3D9Ki+023/AD0X8x/jTXubbYf3i9PUf40AZnhr/kCw/wDAv/QjW5XOeG7m2/sWH94v8Xcf3j71ufabb/nov5j/ABoAnoqD7Tbf89F/Mf40fabb/nov5j/GgDGi/wCRnm/690/9CNdBXMRXNt/wk837xf8Aj3TuP7xroPtNt/z0X8x/jQBPRUH2m2/56L+Y/wAaPtNt/wA9F/Mf40AZHiP/AI8E/wCu0f8A6EK3q5rxHdW32BP3if66PuP7w963vtNt/wA9F/Mf40AT0VB9ptv+ei/mP8aPtNt/z0X8x/jQBMehrD8O/wDIN/7aSf8AoRrVNzbYP7xfzH+NYfh26tv7N/1i/wCsk7j+8fegDpKKg+023/PRfzH+NH2m2/56L+Y/xoAnrBP/ACMo/wCvc/8AoQrX+023/PRfzH+NYJurb/hJR+8X/j3Pcf3h70AdLRUH2m2/56L+Y/xo+023/PRfzH+NAE9YXiT/AJBMn1X+da32m2/56L+Y/wAawvElzbf2TJ+8XqvcetAHRjoKWq4ubbA/eL+Y/wAaX7Tbf89F/Mf40AT0VB9ptv8Anov5j/Gj7Tbf89F/Mf40AY3h3/j2n/67yfzroK5jw7c232af94v+vk7j1+tdB9ptv+ei/mP8aAJ6Kg+023/PRfzH+NH2m2/56L+Y/wAaAMef/kZLf/ri/wDMVv1zM9zbf8JJb/vF/wBS/ceo963/ALTbf89F/Mf40AT0VB9ptv8Anov5j/Gj7Tbf89F/Mf40AZniHjSJvpWtD/qU+grD8QXNr/ZE2ZF6eorVhubbyV/eL0HcUAW6Kg+023/PRfzH+NH2m2/56L+Y/wAaAJ6wND/1t7/18N/IVsfabb/nov5j/GsDRLm2829/eL/x8N3HoKAOmoqD7Tbf89F/Mf40fabb/nov5j/GgCesC9/5Dtn/ALr/AMq2PtNt/wA9F/Mf41gXt1bf29Z/vF+6/cen1oA6aioPtNt/z0X8x/jR9ptv+ei/mP8AGgCesnXf+QRcf7hq/wDabb/nov5j/GsnXbm2/si4/eL9w9xQBp2P/HnF/uD+VWqzrG6tvscX7xfuDuPT61a+023/AD0X8x/jQBPRUH2m2/56L+Y/xo+023/PRfzH+NAGVpX/AB+3v/XUfyrcrndKubb7Ze/vF/1vqPStv7Tbf89F/Mf40AT0VB9ptv8Anov5j/Gj7Tbf89F/Mf40AZGpf8hWx/3n/lW9XNalc239q2P7xfvP3Hp9a3vtNt/z0X8x/jQBPRUH2m2/56L+Y/xo+023/PRfzH+NAFfVf+QbP/1zb+VN0j/kGQY/uCotUubb+zZ/3i/6tu49PrSaTc239mQfvF+4O4oA16Kg+023/PRfzH+NH2m2/wCei/mP8aAJ6wNM/wCQtf8A+8n8q2PtNt/z0X8x/jWBpl1bf2tf/vF+8ncen1oA6aioPtNt/wA9F/Mf40fabb/nov5j/GgCesDWP+P2w/66/wBK2PtNt/z0X8x/jWBrFzbfbLH94v8ArfUelAHTUVB9ptv+ei/mP8aPtNt/z0X8x/jQBPVe7/49Zf8Acb+VL9ptv+ei/mP8ar3dzbfZZf3i/cbuPT60ARaJ/wAgmD/cFalYmiXNt/ZMH7xfuDuP8a1PtNt/z0X8x/jQBPRUH2m2/wCei/mP8aPtNt/z0X8x/jQBiWP/ACMN7/uR10VctY3Nt/wkN7+8X7kfceldF9ptv+ei/mP8aAJ6Kg+023/PRfzH+NH2m2/56L+Y/wAaAMjXf+XT/r4X+Rrerm9durb/AET94v8Ar17j0Nbv2m2/56L+Y/xoAnoqD7Tbf89F/Mf40fabb/nov5j/ABoAkk/1bfQ1i+G/+QLB/u1pyXNt5bfvF6HuP8axvDdzbf2LB+8Xp6igDo6Kg+023/PRfzH+NH2m2/56L+Y/xoAnrnbb/kZrn/rlH/Wtv7Tbf89F/Mf41ztvc23/AAktz+8X/VR9x70AdTRUH2m2/wCei/mP8aPtNt/z0X8x/jQBPWJrv/HvD/12T+dan2m2/wCei/mP8axNdubb7PD+8X/XJ3HrQB0VFQfabb/nov5j/Gj7Tbf89F/Mf40AT0VB9ptv+ei/mP8AGj7Tbf8APRfzH+NAGP4Z/wCQSv8Avyf+hGt+uZ8M3Vt/ZK/vF++/cf3j71v/AGm2/wCei/mP8aAJ6Kg+023/AD0X8x/jR9ptv+ei/mP8aAMc/wDIz/8AbsP/AEI1v1zJubb/AISf/WL/AMew7j+8a3/tNt/z0X8x/jQBPRUH2m2/56L+Y/xo+023/PRfzH+NAGP4l/5BZ/66Rf8AoYreHQVzXiW5tv7KP7xf9ZF3H98VvC5tsD94v5igCxRUH2m2/wCei/mP8aPtNt/z0X8x/jQBPWF4f/485f8ArvL/AOhGtb7Tbf8APRfzFYXh+6tfscuJV/18vcf3jQB0lFQfabb/AJ6L+Y/xo+023/PRfzH+NAE9Ycv/ACMUP/XB/wD0IVq/abb/AJ6L+Y/xrElubb/hIof3i/6h+4/vCgDoqKg+023/AD0X8x/jR9ptv+ei/mP8aAJ6w/Ev/ICuf93+orV+023/AD0X8x/jWF4mubb+wrn94v3fUeooA6MdBS1XFzbYH7xfzFL9ptv+ei/mP8aAJ6Kg+023/PRfzH+NH2m2/wCei/mP8aAMjQel5/19S/0rermtBubbF5+8X/j6l7j2re+023/PRfzH+NAE9FQfabb/AJ6L+Y/xp6TQyHbG4Y+xzQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWTJdassjLHaKygnB80DI9cbaANasfX/wDkDz/QfzFJ9s1r/nyX/v6P/iayNdu9ZOkT5s16f89h6j/ZoA7Cisb7XrP/AD5r/wB/R/8AE0fa9a/58l/7/D/4mgDZrI0r/W3n/Xwf/QVpv2vWf+fNf+/o/wDiayNLu9a828/0Jf8Aj4P/AC2H91f9mgDsKKxvtes/8+a/9/R/8TR9s1r/AJ8l/wC/w/8AiaADUP8AkJ2H/XR//QGrZrjtQu9Z/tKw/wBDX/WP/wAth/cb/ZrY+161/wA+S/8Af4f/ABNAGzUF1/x7Sf7p/lWb9r1n/nzX/v6P/iahubvWfs8g+xr90/8ALUen+7QBd0b/AJBFr/1yT+Qr5Z/bP/Zuv/2jvhNFbeBr5NE8feEr2LxD4N1hgcWGt2YbyTJjlredWe3uU5DwSuuM4r6O0e71n+ybXFkv+qT/AJbD0H+zWj9r1r/nyX/v8P8A4mgDwL9kv9o3Tf2ofgvZfEX7A+h65azz6V4h0Sdg0+ka1Yt5V5Zy+pikB2N0kjKSD5WFe/2//Ibuv+ucX82r8s/2hhrv7EX7RK/tw+HbJYfh34ya10j4oWiPlLR02w2HiBQBhfs+Rb37Y5tSkh/1HP6YWOo6ncapPcW9rHIkkMLKyzAhlO4ggheh9aAOzorG+161/wA+S/8Af4f/ABNH2vWf+fNf+/o/+JoANc/49ov+viH/ANDFbNcdrV3rP2aL/Q1/18P/AC2H98f7NbH2vWc/8ea/9/R/8TQBs0Vjfa9a/wCfJf8Av8P/AIml+16z/wA+a/8Af0f/ABNABof/AB4n/rrL/wChtWxXIaJd6z9hOLNf9bL/AMtR/fb/AGa1vtes/wDPmv8A39H/AMTQBs1jzf8AIet/+uMv80pPtmtf8+S/9/R/8TWRNd6z/btv/oS/6mX/AJbD1T/ZoA7Cisb7XrX/AD5L/wB/h/8AE0v2vWf+fNf+/o/+JoAk1z/kDXf/AFyf+VaSfcH0rldbu9a/se6/0Jf9U/8Ay2Hof9mtFbvWtg/0Jen/AD2H/wATQBt0Vjfa9Z/581/7+j/4mj7ZrX/Pkv8A3+H/AMTQAum/8f19/wBdV/8AQFrYrj9Ou9ZF9fYsl/1q/wDLYf3F/wBmtf7XrP8Az5r/AN/R/wDE0AbNY+q/8fFj/wBfH/sjUfa9Z/581/7+j/4msfU7vWTcWWbNf9f/AM9h/cb/AGaAOworG+16z/z5r/39H/xNH2zWv+fJf+/w/wDiaANg9DWVoP8AyBbT/rkn8qjN3rWD/oS/9/h/8TWXoV3rX9i2mLJf9Un/AC2Hp/u0AddRWP8Aa9Z/581/7+j/AOJpPtetf8+S/wDf4f8AxNACx/8AIfl/64J/6E1bFcfHd6z/AG7KfsS/6hP+Wo/vN/s1r/bNa/58l/7/AA/+JoA2axtf/wCQY3/XSL/0NaPtmtf8+S/9/h/8TWPr13rP9mtmzX78X/LUf31/2aAOxorH+16z/wA+a/8Af0f/ABNH2vWf+fNf+/o/+JoA2Kx9F/1U/wD18S/+hGk+161/z5L/AN/h/wDE1kaNd6z5M+LNf+PiX/lqP7x/2aAOworG+2a1/wA+S/8Af4f/ABNH2vWf+fNf+/o/+JoAW7/5DFn/ALsv8hWxXH3d3rP9sWf+hr92X/lqPQf7NbH2vWf+fNf+/o/+JoA2Ko6n/wAg24/65P8AyNVPtmtf8+S/9/h/8TVLU7vWf7NuM2a/6t/+Wo9D/s0Abtl/x5w/7i/yqzXO2V3rX2OL/Q1+4v8Ay2Hp/u1Z+16z/wA+a/8Af0f/ABNAGzWNY/8AIVvv96P/ANBFH2vWv+fJf+/w/wDiayLG71n+1L7/AENfvR/8tR/dH+zQB2FFYxu9Z7Wa/wDf0f8AxNH2zWv+fJf+/wAP/iaADWPvWn/Xwn8jWzXHavd6yWtM2S/8fCf8tR6H/ZrY+2a1/wA+S/8Af4f/ABNAGzRWP9r1n/nzX/v6P/iaT7XrP/Pmv/f0f/E0ALoH/IIh/wCBfzNbFcfoN3rI0mHFmv8AF/y1Hqf9mtf7ZrX/AD5L/wB/h/8AE0AbNY3/ADMP/bv/AOzUfa9Z/wCfNf8Av6P/AImsf7XrP/CQf8ea/wDHv/z1H97/AHaAOxorH+16z/z5r/39H/xNJ9s1r/nyX/v8P/iaAHa9/wAgmb6D+YrXrkNdu9Z/smb/AENeg/5aj1H+zWt9r1r/AJ8l/wC/w/8AiaANmisb7XrX/Pkv/f4f/E0fbNa/58l/7+j/AOJoAbov373/AK+X/kK2643R7vWA15izX/j5f/lqPQf7NbP2vWf+fNf+/o/+JoA2ayL7/kJ2X+9J/wCgmm/bNa/58l/7+j/4msm+u9Z/tKy/0NfvSf8ALUf3T/s0AdfRWN9s1r/nyX/v8P8A4mj7XrP/AD5L/wB/R/8AE0AaN3/x6y/7jfyqto//ACCbX/rin/oIqhd3es/ZZf8AQl+63/LYen+7VbSLvWf7Jtf9DX/Up/y1HoP9mgDqaKxvtetf8+S/9/h/8TR9r1n/AJ81/wC/o/8AiaAC1/5Dd5/1zh/9mrZrjrW71n+2rs/Y1+5D/wAtR/tf7NbH2vWv+fJf+/w/+JoA2aydX/1cH/XeL/0IUz7XrX/Pkv8A3+H/AMTWVq93rPlQ/wChr/r4v+Ww/vf7tAHXUVjfa9Z/581/7+j/AOJo+2a1/wA+S/8Af0f/ABNAGzWNoZA04k9BJL/6G1H2vWv+fJf+/wAP/ia/MX9rXx949+NniXTv+Cefwakew1jxhBLf+M9WtJ8S6D4TMzRzMrgfJd6iQ1radCo82Yf6rkAl+Aok/bh/afm/bI1JjL8NfhzJe6F8OYGH7rUdQO631PXcdGU4aysW/wCeQmkXiZTX6nV574G8J6X8M/Bek/DrwDoVtpOh6FZw2Gn2Vs4SG3trdBHHGiheFVQAPYV1P2vWf+fNf+/o/wDiaAHS/wDIdh/64Sf+hJWvXIS3es/27D/oa/6iT/lqP7yf7Na32zWv+fJf+/w/+JoA2ayNf/5At1/1zb+VN+161/z5L/3+H/xNZOvXes/2LdZsl/1bf8tR6f7tAHXL90UtYy3es7R/oa/9/R/8TR9r1r/nyX/v8P8A4mgDZrI03/j7vv8ArsP/AEBab9r1n/nzX/v6P/iazNJutWa/vFktFVTOMnzQcDYvONtAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9f+/iiiigArD1bR9Lube4uLi3jdyjZLLknArcqpf/8AHjN/1zb+VAHPaJ4f0Q6Naf6LF/qU/hH90Vqf8I/of/PrF/3yP8Kk0P8A5Atp/wBcU/8AQRWpQBj/APCP6H/z6xf98j/Cj/hH9D/59Yv++R/hWxRQBxGm6Dop1zUlNrF1i/hH92t//hH9D/59Yv8Avkf4VW0z/kO6kPeL/wBBroaAP5X/APgkt4d0+/8A+C5/7e+tXkayGPUdCtFDDIVFh3AAdq/qI/4R/Q/+fWL/AL5H+FfzJf8ABGp21j/gsN+314it/ntx4n0q28wdN8cTjH/jp/Kv6haAOK1nw/ogurD/AEWL/j4H8I/ut7Vu/wDCP6H/AM+sX/fI/wAKh1n/AI+rD/r4H/oLVvUAY/8Awj+h/wDPrF/3yP8ACj/hH9D/AOfWL/vkf4VsUE45NAGHL4f0QRN/osXQ/wAIrK8PeH9EOh2p+yxf6tf4RXz3dfFfxr8ZvGd94K+BU8Vnouhzm31fxDIgmX7Qn37W0RvldwPvyNlFzgZPT6c8O8aFaD/pktZ06qnfl27/AOR2YvBVMNyqq0pNX5eqXTm7X7Xv3S0F/wCEf0P/AJ9Yv++R/hXxr+3r8E/E/wAWf2atY8IfDGwS41RpradbdMI0yQyqzoCcDJUHGete7/tH+ML3wD8BvFvjDTZDDc2Gl3MkMi8FJNhCke4ODWr8CYbuD4LeFE1CeS6nOk2jSSzMXkdmiUkszEkkk9SaxrqNXmw8usdfnod+WyrYH2Ob07NwqKyfVxtLXy2+81vA/hLSNO8FaPp0+npbvb2NvE0TKNyFI1BU4yMjGDirNnoOinxFeD7LF/qov4R6tXb1z1n/AMjHef8AXKL+bV0pWVjx6k3OTm+up4j8Tf2TPgL8YPF2k+NvH+gxX19o/EBLMqMoO4LIgIVwG5AYGvdU8OaDGojS0iVVGAAoAAH4VtUVMaUItyirN7+ZtWxlerTp0qtRyjC6im21FPV2XS7Mf/hH9D/59Yv++R/hWFr3h/RAlr/osX/HxF/CPWu1rB177lr/ANfMX86s5jJ8Qy+A/CemtrHid7SwtVZUMs5WNNznCjJwMknAFflYP2vviB4m/aR0AeEtNsY/hnqXiH/hGInkiBnvbkKTJMjdkRsAYOD+PH1L/wAFFtN067/ZO8R6nezSwTaZ5N3aNCQCblJF8oHIPBYgHvivjXUfAtn4N8ffsyfAbSlBuLCRtcvCvUusfmO7fV2avGzCvVVVQg7Jcr06tytb03P0bhTK8DLBTxWIhzzn7WNmtIxhSc3Nf3vhS7X7n7Kf8I/of/PrF/3yP8Ka/h/RNp/0WLp/dH+FbVNf7h+leyfnJxvhvw/oh0WE/ZYv4v4R/eNbn/CP6H/z6xf98j/Co/DfOiw/8C/9CNblAHDaDefD7xQ95H4dktLxtPna2uViIYxTJ1Rh1BHvXQ/8I/of/PrF/wB8j/CvzT/bE8CeN/2ffFSftl/AQOk1qyL4n0xD+5vrMdZGTpvQdWAzjntX6A/Cf4m+GfjH8O9J+Jfg+XzbDVoFmjz1U9GU+6sCD9K5aOJ5qkqM1aS19V3X69me5mGTqlhKOYYaXNRn7r7xmlrGX5xfVdmmi5FoGif8JNMPssX/AB7p/CP7xrf/AOEf0P8A59Yv++R/hVeL/kZ5v+vdP/QjXQV1HhmP/wAI/of/AD6xf98j/Cj/AIR/Q/8An1i/75H+FbFFAHFeItA0QWCYtYj++j/hH94Vu/8ACP6H/wA+sX/fI/wqHxH/AMeCf9do/wD0IVvUAY//AAj+h/8APrF/3yP8KP8AhH9D/wCfWL/vkf4VsUUAYx8P6Hg/6LF/3yP8KxPDvh/RP7N/49Yv9ZJ/CP7xrsz0NYfh3/kG/wDbST/0I0AS/wDCP6H/AM+sX/fI/wAKP+Ef0P8A59Yv++R/hWxRQBj/APCP6H/z6xf98j/CsI6Bon/CSAfZYv8Aj3P8I/vCu1rBP/Iyj/r3P/oQoAm/4R/Q/wDn1i/75H+FH/CP6H/z6xf98j/CtiigDH/4R/Q/+fWL/vkf4Vh+I9A0QaTJ/osXVf4R612lYXiT/kEyfVf50ASDw/oeP+PWL/vkUv8Awj+h/wDPrF/3yP8ACtcdBS0AY/8Awj+h/wDPrF/3yP8ACj/hH9E/59Yv++R/hWxRQBxHh3w/ohtp82sX+vk/hHrW/wD8I/of/PrF/wB8j/Cq/h3/AI9p/wDrvJ/OugoAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooA4mfw/on/CRwD7LF/qX/hHqK3v+Ef0P/n1i/75H+FQT/8AIyW//XF/5it+gDH/AOEf0P8A59Yv++R/hR/wj+h/8+sX/fI/wrYooA47xBoGhrpEx+yxdP7orVh8P6GYU/0WL7o/hFO8Q4/sebPpWrB/qU/3RQBmf8I/of8Az6xf98j/AAo/4R/Q/wDn1i/75H+FbFFAGP8A8I/of/PrF/3yP8KwdE0DRDJej7LF/wAfDfwj0FdtWBof+tvf+vhv5CgCf/hH9D/59Yv++R/hR/wj+h/8+sX/AHyP8K2KKAMf/hH9D/59Yv8Avkf4VhXugaINdsx9li+7J/CPSu1rAvf+Q7Z/7r/yoAn/AOEf0P8A59Yv++R/hR/wj+h/8+sX/fI/wrYooAx/+Ef0P/n1i/75H+FZWueH9EGkXGLWL7h/hFdbWTrv/IIuP9w0AU7Lw/ohs4v9Fi+4v8I9Ktf8I/of/PrF/wB8j/Cr1j/x5xf7g/lVqgDH/wCEf0P/AJ9Yv++R/hR/wj+h/wDPrF/3yP8ACtiigDjNK8P6Iby9/wBFi/1v90elbf8Awj+h/wDPrF/3yP8ACo9K/wCPy9/66/0rcoAx/wDhH9D/AOfWL/vkf4Uf8I/of/PrF/3yP8K2KKAOK1LQNEGq2IFrF95/4R6Vu/8ACP6H/wA+sX/fI/wqHUv+QrY/7z/yreoAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooA5jVPD+iDTZz9li/1bfwj0pNK0DRG0yA/ZYvuD+EVs6r/yDZ/+ubfypuk/8gyDH9wUAQf8I/of/PrF/wB8j/Cj/hH9D/59Yv8Avkf4VsUUAY//AAj+h/8APrF/3yP8KwdM8P6J/at//osX3k/hHpXbVgaX/wAha/8A95P5UAT/APCP6H/z6xf98j/Cj/hH9D/59Yv++R/hWxRQBj/8I/of/PrF/wB8j/CsHWPD+ifbLEfZYv8AWn+EeldtWBrH/H7Yf9dT/KgCf/hH9D/59Yv++R/hR/wj+h/8+sX/AHyP8K2KKAMf/hH9D/59Yv8Avkf4VXu/D+h/ZZf9Fi+438I9K6Cq93/x6y/7jfyoA5zRfD+iHSoCbWL7g/hFaf8Awj+h/wDPrF/3yP8ACpNE/wCQTB/uCtSgDH/4R/Q/+fWL/vkf4Uf8I/of/PrF/wB8j/CtiigDhrLQNE/4SG9H2WL7kf8ACK6H/hH9D/59Yv8Avkf4VVsf+Rhvf9yOuioAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooA4nXfD+hgWv+ixf69f4R6H2re/4R/Q/wDn1i/75H+FQ67wLT/r4X+RreoAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooAxJPD+h+W3+ixdD/CP8KxvDnh/RDo0GbWLp/dFdjJ/q2+hrG8N/wDIFg+lAEn/AAj+h/8APrF/3yP8KP8AhH9D/wCfWL/vkf4VsUUAY/8Awj+h/wDPrF/3yP8ACuet9A0X/hJbkfZY/wDUx/wj3rua522/5Ga5/wCuUf8AWgC1/wAI/of/AD6xf98j/Cj/AIR/Q/8An1i/75H+FbFFAGP/AMI/of8Az6xf98j/AArF13w/ogt4f9Fi/wBcn8I9a7KsTXf+PeH/AK7J/OgB/wDwj+if8+sX/fI/wo/4R/Q/+fWL/vkf4VsUUAY//CP6H/z6xf8AfI/wo/4R/Q/+fWL/AL5H+FbFFAHE+GvD+iHSlP2WL77/AMI/vH2re/4R/Q/+fWL/AL5H+FQeGf8AkEr/AL8n/oRrfoAx/wDhH9D/AOfWL/vkf4Uf8I/of/PrF/3yP8K2KKAOJOgaJ/wk2PssX/HsP4R/eNb3/CP6H/z6xf8AfI/wqA/8jP8A9uw/9CNb9AGP/wAI/of/AD6xf98j/Cj/AIR/Q/8An1i/75H+FbFFAHE+JPD+iDSz/okX+si/hH98Vujw/oeB/osX/fI/wqHxL/yCz/10i/8AQxW8OgoAyP8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooAx/wDhH9E/59Yv++RWH4f8P6GbST/RYv8AXy/wj+8a7SsLw+f9El/67y/+hGgCX/hH9D/59Yv++R/hR/wj+h/8+sX/AHyP8K2KKAMf/hH9D/59Yv8Avkf4ViS6Bov/AAkMI+yxf6h/4R/eHtXZ1hy/8jFD/wBcH/8AQhQBJ/wj+h/8+sX/AHyP8KP+Ef0P/n1i/wC+R/hWxRQBj/8ACP6H/wA+sX/fI/wrD8SeH9EGhXOLWL7v90eortKwvEvOhXI/2f6igCQeH9DwP9Fi/wC+R/hS/wDCP6H/AM+sX/fI/wAK1x0FLQBj/wDCP6H/AM+sX/fI/wAKP+Ef0P8A59Yv++R/hWxRQBxWheH9Exef6LF/x9S/wj2rd/4R/Q/+fWL/AL5H+FQ6D0vP+vqX+lb1AGP/AMI/of8Az6xf98j/AAqza6Xp1jIZbOFI2IwSowcVfooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsfX/8AkDz/AEH8xWxWPr//ACB5/oP5igDYooooAKyNK/1t5/18H/0Fa16yNK/1t5/18H/0FaANeiiigDG1D/kJ2H/XR/8A0Bq2axtQ/wCQnYf9dH/9AatmgAqC5/49pP8AdP8AKp6guv8Aj2k/3T/KgCpo3/IItf8Arkn8hWlWbo3/ACCLX/rkn8hWlQBi+JPDmgeMfD1/4S8V2cOo6XqlvLaXlpcIJIZ4JlKSRupyGV1JDAjBBr8yf2RNe1r9k342z/8ABO/4o3097pa2Laj8MdZvXMkl9oVux83SppWOXvNK3BVyS0tmY3OWSQ1+qFfJP7V/7NGl/tReA7rwjDqcvhzxNo01rrPhfxDaqGutF1m13+RdRBuGHLRzRn5ZoHeNuHNAH1tRXxx+xl+05qv7QXgvU/C3xS02Pw18UfAd0uj+M9AV94tb4LujuICeXsr2PFxaS/xRttPzo4H2PQBj63/x7Rf9d4f/AEMVsVj63/x7Rf8AXeH/ANDFbFABRRRQBj6H/wAeJ/66y/8AobVsVj6H/wAeLf8AXWX/ANDatigArHm/5D1v/wBcZf5pWxWPN/yHrf8A64S/zSgDYooooAy9c/5A13/1yf8AlWkn3B9Kzdc/5A11/wBcn/lWkn3B9KAHUUUUAY+m/wDH9ff9dV/9AWtisfTf+P6+/wCuq/8AoC1sUAFY+q/8fFj/ANfH/sjVsVj6r/x8WP8A18f+yNQBsUUUUAIehrK0H/kC2n/XJP5VqnoaytB/5Atp/wBck/lQBrUUUUAY8f8AyH5f+uCf+hNWxWPH/wAh6X/rgn/oTVsUAFY+vf8AIMb/AH4v/Q1rYrG1/wD5Bjf9dIv/AENaANmiiigArH0X/VT/APXxL/6Ea2Kx9F/1U/8A18S/+hGgDYooooAx7v8A5DFn/uy/yFbFY93/AMhmz/3Zf5CtigAqjqf/ACDbj/rk/wDI1eqjqf8AyDbj/rk/8jQBLZf8ecP+4v8AKrNVbL/jyh/3F/lVqgArGsP+Qrff70f/AKCK2axrH/kK33+9H/6CKANmiiigDG1j71p/18J/I1s1jax960/6+E/ka2aACiiigDH0D/kEQ/8AAv5mtisfQP8AkEQ/8C/ma2KACsb/AJmH/t3/APZq2axv+Zh/7d//AGagDZooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/18v/IVt1iaL9+9/wCvl/5CtugArIvv+QnZf70n/oJrXrIvv+QnZf70n/oJoA16KKKAK93/AMesv+438qraP/yCbX/rin/oIqzd/wDHrL/uN/Kq2j/8gm1/64p/6CKANGiiigDGtf8AkN3n/XOH/wBmrZrGtf8AkN3n/XOH/wBmrZoAKydX/wBXB/13i/8AQhWtWTq/+rg/67xf+hCgDWoorH8ReIdC8I6BfeKvFF5Dp+maZbyXV3dXDiOGCCFS8kju2AqqoJYngAZoA8G/as/aQ0D9lz4QXXxF1Gyl1rVrqeHS9A0S1I+1axrN4dlpZQ5/ilk+8x4jjDSN8qsa82/Yc/Zv134G+AtX8b/Fi7h1n4o/EPUH1zxlqkIzG98fkjtLYkBhZWMQFvaqf4FLn5nYnwz9ljQNe/bL+L8H/BQn4qWdxZ+F7KGa0+Feg30TQyWunTjZPrlxE+Ct3qS8W4ZQ0FltHDzSiv010L/kH/8AbWX/ANDagDYooooAyJf+Q7D/ANcJP/QkrXrIl/5DsP8A1wk/9CStegArI1//AJAt1/1zb+Va9ZGv/wDIFuv+ubfyoA1l+6KWmr90fSnUAFZGm/8AH3ff9dh/6Ata9ZGm/wDH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0P7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBW0P/AJAtp/1xT/0EVqVl6H/yBbTP/PFP/QRWpQAUUUUAc9pn/Id1L6xf+g1vucKT7VgaZ/yHdS+sX/oNb0vETH2NAH8pP/Btpc3fib9pH9ujx9qEhmmvfi9fWu8947ae7EY/BSBX9XNfyf8A/Brv+91v9sa8PWT4y6tn/v5Kf61/WBQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAV8yftk/EfUfhV+zR4u8Y6LIYb+KxeG1dTgrNP8Au0I9wWyK+m6/PD/gqLcT2v7I2q3EWdqXti0mP7gnXNcuOm4YepNbpP8AI93hjDQxGb4ShUV4yqQTXdcy0+Z9O/s6fDrSfhV8B/DXgnSU2i206F5nI+aWeVQ8sjHuzOSSa9Z8Pf8AIDtf+ua1meDbuHUPA2lX1ud0c1jA6kdw0YIrT8Pf8gO1/wCua1vSiowjGOyR5mOrTq4ipVqu8pSbfq3qfLf7et79g/ZF8czZxnTyn/fbKP61Pa/tG/Bf4FfA3wbq/wAW/EFroyXmlWQgSUlpJMRIDtRQWIHc4wK5T/go7cG3/Y38ZuO9vEv5yoK+JP8Agnv8PLL9pOXWP2ifi/YxajDpdlB4c0W0uVEsMEVtCBK6q3G5sjnHUmvJxGInHG+ypJc0orfZJN3bPu8pyrDVuHHjcbJqjTqyuo25pNxpqMVe6V9W3Z2Seh+y/g/xl4W+IHhu08YeC7+HUtMvk8yC5gYOjr7Eeh4I6g1LaAjxHeZ7xRfzavxB/ZQ+LXir4VfsTeKtL8BZm1STxbNoOhEn5Y5r50ijfnPyoW316x+zdrvjH9lH9qnWP2evjJ4ouNdsdf0ZNat9Sv5DhbmEM04BYnCnDnr2Hc1dHNFJUnKPxWu+ibvZfNpnNmHBE6M8YqNVP2TlyRafNOMOVyemi5VJPz1tsfsNRXh/wS+OekfHjTLvxP4S0q+t9Djk8uz1C7RY474AkM8K7i+wEcMyrntXuFenCcZxUou6Z8VisLVw9WVGtG01uu3k/Put09HqFYOvfctf+vmL+db1YOvfctf+vmL+dWYHw5/wUzv/ALF+ynqaM21Z76wjYk4GPPQn+VeMfssTy/tE/tgeJfj/AGw8zw34N0+Pw7pEvVJJdoMrr6/xdOxWk/4K7/FHwjoPwAi+F93MX1rXbqKa3gTkiK2YO8jeijp7n8a+o/2PtG+Fnwc/ZI8N6joeoQpopsBqN1fzERq0so3Su5J4wflxnjGK8KSVXMXG/uxUW/VXt+d/uP0+hKWC4RhV9m/a1p1KcHbTlkqfM15vk5F3vLsfWOr67ofh+2W8168gsYWYIHuJFiUs3QAsQMnsKTWdc0XQNNfVtdvILK1QDdNPIscYz0yzEDn61+Y/x9/Zxuf24tUf4hWviIz+CIdCaXw59jkZFbUmZsyyIQCVAAxXyF+x9/ws79tTW9B+G3xlYz+E/hVGVv4JH3jULwMywpN2YRhSMHIwvqa3qZjONVUlT+L4Xfe29+ytr5o8zC8H4argZY2eKt7LWtHl1hdPlSu1zSbXK1paT10TZ+9nheRJdCt5YmDKwYgg5BBY4INb9eQWPj74X/DjStK8J69rOn6NJInlWlrcXCQsUUlVCqxBI4wK9eVldQ6HIPII716iknpfU+IqUpRSk4tRezatcxPE2h6f4l8O33h7VYxNbXsEkMqMMhldSCD+dfl7/wAErtVvdE8NePPgreyF08J6/NFbqedsUhYD/wBBz9Sa/Ve6kWG2kmc4VVJJPoBX5Hf8ExpP+Ei+IXxj8fWfNnf6+Y427HY0nI/CvPxOmLoNbvmXyt/nY+uyW8sgzSM/hXspL/Fz2X3xcj9WIv8AkZ5v+vdP/QjXQVz8X/Izzf8AXun/AKEa6CvSPjAooooAwfEf/Hgn/XaP/wBCFb1YPiP/AI8E/wCu0f8A6EK3qACiiigBD0NYfh3/AJBv/bST/wBCNbh6GsPw7/yDf+2kn/oRoA3aKKKACsE/8jKP+vc/+hCt6sE/8jKP+vc/+hCgDeooooAKwvEn/IJk+q/zrdrC8Sf8gmT6r/OgDcHQUtIOgpaACiiigDn/AA7/AMe0/wD13k/nXQVz/h3/AI9p/wDrvJ/OugoAKKKKAMCf/kZLf/ri/wDMVv1gT/8AIyW//XF/5it+gAooooAxfEIJ0ibHpWrD/qU/3RWV4h/5BE30rVh/1Kf7ooAlooooAKwNE/1t7/18N/IVv1gaH/rb3/r4b+QoA36KKKACsC9/5Dtn/uv/ACrfrAvf+Q7Z/wC6/wDKgDfooooAKydd/wCQRcf7hrWrJ13/AJBFx/uGgC5Y/wDHnF/uD+VWqq2P/HnF/uD+VWqACiiigDE0r/j8vT/01/pW3WHpX/H5e/8AXX+lblABRRRQBg6l/wAhWx/3n/lW9WDqX/IVsf8Aef8AlW9QAUUUUAUNU/5Bs/8A1zb+VN0n/kGQf7gp2qf8g2f/AK5t/Km6T/yDIP8AcFAGjRRRQAVz+l/8ha//AN9P5V0Fc/pf/IWv/wDfT+VAHQUUUUAFYGsD/TbD/rqf5Vv1gax/x+2H/XU/yoA36KKKACq93/x6y/7jfyqxVe7/AOPWX/cb+VAFPRP+QTB/uCtSsvRP+QTB/uCtSgAooooA52x/5GG9/wByOuirnbH/AJGG9/3I66KgAooooAwtd/5dP+vhf5Gt2sHXf+XT/r4X+RreoAKKKKAGSf6tvoaxvDf/ACBYPpWzJ/q2+hrG8N/8gWDPpQBuUUUUAFc7bf8AIy3P/XKP+tdFXO23/Iy3P/XKP+tAHRUUUUAFYmu/8e8P/XZP51t1ia7/AMe8P/XZP50AbdFFFABRRRQBgeGf+QSv+/J/6Ea36wPDP/IJX/fk/wDQjW/QAUUUUAYB/wCRn/7dh/6Ea36wD/yM/wD27D/0I1v0AFFFFAGB4l/5BZ/66Rf+hit4dBWD4l/5BZ/66Rf+hit4dBQAtFFFABWF4f8A+PSX/rvL/wChGt2sLw//AMekv/XeX/0I0AbtFFFABWJL/wAjDD/1wf8A9CFbdYkv/Iww/wDXB/8A0IUAbdFFFABWF4m/5AVz/u/1FbtYXib/AJAVz/u/1FAG4OgpaQdBS0AFFFFAGDoPS8/6+pf6VvVg6D0vP+vqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVSbUtORijzxgqcEFwCCKu1XaztGJZokJPJJUUAQf2rpf/PzF/wB9j/GsjX9U0z+x5/8ASYug/jHqPetz7DZf88U/75FZGv2Vn/Y8/wC5ToP4R6igDT/tTTP+fmL/AL7H+NJ/aul/8/MX/fY/xqb7FZ/88U/75FJ9hsv+eKf98igCL+1NM/5+Yv8Avsf41k6Vqmmebef6RF/x8H+Mf3V962/sVn/zxT/vkVk6XZWZlvP3Sf8AHwf4R/dWgDR/tXS/+fmL/vsf40f2ppn/AD8xf99j/GpfsNl/zxT/AL5FH2Kz/wCeKf8AfIoAwtQ1PTf7TsP9Ii/1j/xj+43vWx/aul/8/MX/AH2P8azNQs7T+07D90n+sf8AhH9xq2PsNl/zxT/vkUARf2ppn/PzF/32P8ahudU0z7NIPtMX3T/GPT61b+xWf/PFP++RUNzZWX2aT9yn3T/CPSgDP0bVNM/si1/0iL/VJ/GPQe9aP9qaZ/z8xf8AfY/xqno9lZnSbX90n+qT+EegrR+xWf8AzxT/AL5FAEf9qaZ/z8xf99j/ABrHt9T0z+27r/SIv9VF/GPVvet37FZ/88U/75FZFvZWf9tXX7lP9XF/CPVqAPgH9sf4S+ONC8YaT+27+yvCl98SPBls1pqWhxSRxjxb4eLGSbS3ZiFFxG2Z7CVj+7nyh/dyyV9c/A74/fCr9on4U6L8ZvhbqiXmia5D5sLSfuponUlJIZo2+aKaGQNHLG2GSRSp5FeufYrMdIk/75FflJ8Z/Cmo/wDBP34xax+2B8NNOe8+E/jC5F18TNCtYzI2l3W0IPEVlCoPQADVIkGZIwLgAyRvvAP091vVNMNtF/pMX+vh/jH98e9bH9q6X/z8xf8AfY/xrl01Dwz4o8N6d4l8NS21/p2om1ubW5tyssM0MpVkkR1yrKykFWBwQciut+w2X/PFP++RQBH/AGppn/PxF/32P8aP7U0zp9oi/wC+x/jUv2Kz/wCeSf8AfIo+xWf/ADxT/vkUAYWh6ppgsWzcxf62X+Mf32962P7U0z/n5i/77H+NZmh2VmbE/uU/1sv8I/vtWx9is/8Anin/AHyKAIf7U0z/AJ+Yv++x/jWPNqmmf29b/wCkRf6mX+Meqe9bv2Kz/wCeKf8AfIrImsrP+3bf9yn+ol/hH95KANL+1NM/5+Yv++x/jR/ammf8/MX/AH2P8al+xWf/ADxT/vkUfYrP/nin/fIoAxtc1TTDo13/AKTF/qn/AIx6H3rTTVNM2D/SYun98f41S1uys/7Gu/3Sf6p/4R6GtJLKz2D9ynT+6KAI/wC1NM/5+Yv++x/jS/2ppn/PxF/32P8AGpPsVn/zxT/vkUv2Kz/55J/3yKAMLTtU0z7dff6TF/rV/jH9xfetj+1NM/5+Yv8Avsf41madZWZvb4eSn+tX+Ef3FrY+xWf/ADxT/vkUAQ/2ppn/AD8xf99j/GsjVNV0z7RYgXEX/Hx/fH9xvetz7FZ/88U/75FZGqWVmLixxCn/AB8f3R/cagDS/tTTP+fmL/vsf40f2ppn/PzF/wB9j/GpfsVn/wA8U/75FH2Kz/54p/3yKAIjqmmYP+kxf99j/GsrQdU0z+xbT/SYv9Un8Y9PrW0bKzwf3Kf98isrQrKzOi2n7lP9Un8I9KANH+1NM/5+Yv8Avsf40n9q6X/z8xf99j/GpvsVn/zxT/vkUn2Gy/54p/3yKAMOPVNM/t6X/SYv9Qn8Y/vN71r/ANqaZ/z8xf8AfY/xrNjsrP8At6UeSn+oT+Ef3mrX+xWf/PFP++RQBH/ammf8/MX/AH2P8axte1TTDpjYuIvvxfxj++tb32Kz/wCeKf8AfIrG16ysxpjERJ/rIv4R/fWgDU/tTTOn2mL/AL7H+NJ/aul/8/MX/fY/xqX7FZ/88U/75FH2Gy/54p/3yKAI/wC1NM/5+Yv++x/jWPo2qaYIp83EX/HxL/GP7x963fsVn/zxT/vkVj6NZWZin/cp/wAfEv8ACP7xoA0/7U0z/n5i/wC+x/jSf2ppn/PzF/32P8am+xWf/PFP++RSfYrP/nin/fIoAw7vVNM/tiz/ANIi+7L/ABj0X3rX/tTTP+fmL/vsf41m3dlZ/wBsWf7pPuy/wj0Wtf7FZ/8APFP++RQBF/ammf8APzF/32P8apanqmmf2bcf6RF/qn/jHofetL7FZ/8APFP++RVLU7KzGm3H7pP9U/8ACPQ0AJZappn2OEfaYvuL/GPT61a/tTTP+fmL/vsf41FY2Vn9ih/cp9xf4R6Va+xWf/PFP++RQBD/AGrpf/PzF/32P8ayLHVNN/tS+/0iL70f8Y/uj3rc+w2X/PFP++RWPY2Vn/al9+6T70f8I/uigDT/ALU0z/n5i/77H+NL/ammf8/MX/fY/wAak+xWf/PFP++RS/YrP/nin/fIoAwdY1TTCbTFxF/x8J/GPQ+9bP8Aammf8/EX/fY/xrL1eysw1p+5T/j4T+EehrZ+xWf/ADyT/vkUAQ/2rpf/AD8xf99j/Gj+1NM/5+Yv++x/jUv2Gy/54p/3yKPsVn/zxT/vkUAYWgappn9kw/6RF/F/GPU+9bH9qaZ/z8xf99j/ABrN0Gys/wCyYv3Kfxfwj1Na/wBis/8Anin/AHyKAIv7U0z/AJ+Yv++x/jWP/aemf8JD/wAfEX/Hv/fH9761u/YrP/nin/fIrH+xWf8AwkH+qT/j3/uj+9QBp/2rpf8Az8xf99j/ABo/tXS/+fmL/vsf41L9hsv+eKf98ij7DZf88U/75FAGJr2qaZ/ZM3+kRdB/GPUe9a/9qaZ/z8xf99j/ABrN16ys/wCyZv3KdB/CPUVrfYrP/nin/fIoAj/tTTP+fmL/AL7H+NJ/aul/8/MX/fY/xqb7FZ/88U/75FJ9hsv+eKf98igDA0bU9N33v+kRf8fL/wAY9B71tf2rpf8Az8xf99j/ABrK0aysy95+6T/j5f8AhHoK2vsNl/zxT/vkUARf2rpf/PzF/wB9j/Gsm+1TTP7Tsv8ASYvvSfxj+6fetv7DZf8APFP++RWTfWVn/adl+6T70n8I/umgDS/tTTP+fmL/AL7H+NJ/aul/8/MX/fY/xqb7FZ/88U/75FJ9hsv+eKf98igCndapphtZQLiL7jfxj0+tVdI1XS/7Jtf9Ji/1Kfxj+6Per91ZWf2WXEKfcP8ACPSqukWVl/ZNr+5T/Up/CP7ooAuf2rpf/PzF/wB9j/Gl/tTTP+fiL/vsf41J9hsv+eKf98il+xWf/PJP++RQBhWup6b/AG1dn7RF/q4f4x/te9a/9qaZ1+0xf99j/Gsy1srP+27weUn+rh/hH+1Wx9is/wDnin/fIoAj/tTTP+fmL/vsf41kavqumeXB/pMX+vi/jH94e9bn2Kz/AOeKf98isnV7Kz8uD9yn+vi/hH94UAaI1PTGIC3ERJ/2x/jX5K/EnU9P/wCClHxwvfgFpN1HJ8BvhzqQi8a3B/1XirXbVhImjQvkB7KycJJqLDcssu226LOK9H/an+J/jj41/E5v2Cf2W76TSdfu7WO78b+K7RQf+EV0W4yFSF+VGq3yhls0IJiQNcMMKgf7j+Enwa+GfwL+Gmi/CH4WaRBpPh/w/apaWVrEuQkad2JyWdySzuxLO5LMSSTQB3kWoaRDGsMM8KogCqqsAAB0AFZehappn9n/APHxF/rZf4x/fb3rd+xWf/PFP++RWPodnZnT/wDVJ/rZf4R/fagDS/tTTP8An5i/77H+NL/ammf8/MX/AH2P8ak+xWf/ADxT/vkUv2Kz/wCeKf8AfIoAwpdU0z+3YT9pi/1En8Y/vJ71r/2ppn/PzF/32P8AGs6Sys/7dhHkp/qJP4R/eT2rW+xWf/PFP++RQBH/AGppn/PxF/32P8ayNe1TTDot1/pMX+rb+Men1rc+xWf/ADyT/vkVka9ZWQ0W6Pkp/q2/hHpQBoLqmmBRm5i6f3x/jTv7U0z/AJ+Yv++x/jT1srPaMxJ0/uinfYrP/nin/fIoAh/tXS/+fmL/AL7H+NZWlajpz3t6kdxGxacAAOCSSi1tfYbL/nin/fIrK0uztFvL1liQETgjCj+4tAG/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//R/v4ooooAK53WbXWZIbh7W7SOMocKYtxHHruHeuiqpf8A/HjN/wBc2/lQBy+iWXiH+xrT/To/9Sn/ACx9h/tVqfYvEP8Az/R/9+f/ALKreh/8gW0/64p/6CK1KAMD7F4h/wCf6P8A78//AGVH2LxD/wA/0f8A35/+yrfooA4DTbPX/wC3NSxfR5zD/wAsf9n/AHq3ZLPxAI2LX0ZGD/yx/wDsqXTP+Q7qX1i/9BrbuW228jeik/pQB/Jj/wAGuUGq3MP7XNxaXKRbvjHqucx7snLnPUY61/Vr9i8Q/wDP9H/35/8Asq/lZ/4NRpI9T+Gf7T/iVDk3/wAYtXb8NiMP/Q6/rFoA4LWbLxD9qsP9Oj/4+B/yx/2W/wBqt77F4h/5/o/+/P8A9lS6z/x9WH/XwP8A0Fq3qAMD7F4h/wCf6P8A78//AGVeGftL/B7XfjT8CfE3w2+1xSTalZSLbgxbR56/NHzuOPmA5xX0lRUVIKcHCWzVjowmKqYavTxFJ2lBqS9U7o/Mb/gnR8c9S+JHwZX4S+IL5bLxV4HU6beWU8eZvJh+WN8FgTgfIxxwV561+gXh+y8Qf2Laj7dH/q1/5Y//AGVfBv7TH7B+s+O/iVH8e/2dfEh8D+MtpS6lQMsN0CMFm2chyOGOGDAcjPNey/sk/s5698GNFu/FPxA8VX3i3xNrqR/a7q5lcwxomSscMbE7QMnJ4J9AOK4MHLEU7YepC6WnNdWa6ab37/fc+r4gpZTilPNcJiOWVTX2PK+aM2/eXNpHk3cXe+yt1G/tq/Cv4i/Fj9mbxR4H8IMuoaldQI0FssYjaVonV9oYtgEheM96/Gjwj+038Z/2O/BMf7JUWjiLXZdJeRbdIvNuV1TU5N0Y3K5GI4iDwGy/Hav6Xa465+HngK98WRePLvRbGXW4E8uPUHt0Nyif3RIRuA56ZqcZl8qtRVqU+Wdrd9N/vNOHeLKOCwcsvx2GVahze0SvZ89kld/y23Vr67nwN+zz+xj4i8E/ssaH8ONZvorPXV1K38RTF4vMEV7HKkqo3zAkKECn3zXwp/wV2l0qH4s+CINaeSa4it3kunt08srZNIqMCcnqxwO3OO9f0K18q/Hz9m/wJ+0DpniTQ9btIU1W/wBIGn2+oMm6SBWfzFwfQSKrcelTjMuUsI6FHeyWv93VG3D3GEqWfQzPMW3Hmm3y6WdRWb9EtbeR4Z8b/in8Mk/Z48XfDzwdqaGDQdJsYPItka2WJb8KtqFlVuPvKTg8d65//gm/48+KHi7wJ4r8BeKddOrR+DdZl0u01CZPMeaFc4BYnJ24yM5ODinfsofsBt8Pvg54r+Hv7Q00HiCXxbJElykLuVWC1GIsSHDbgcMMfdwMV9UaF8B7f4HfBK/+G37MEFpo9/IHe3mvi8q/aJcBpZSMs7ADjPoB0qaNPESqQxM1ypRd4rfrZdu3Xc3zHF5RRweIyfC1HUlKpFxqSS5do80r/EteZWtqmm27I4z4G/FPx34o+K3xA+DXiTVob+48H3du0F4LdUaS3vUMio6qQu6I/LkDkYzzmvoLxRpfiG6sorX+0Vj8yZE3pDhl3HGR83Udq8v/AGav2bdB/Z58PXo+2za34i12b7XrOr3P+uu7jnnHO1FyQq54r3bXvuWv/XzF/OvQwyqKmva76+fXRX8lofI51UwssZJ4L+GlFXtZNqKUpJdFKSbS6J7LY+Ifh9/wT/8AAnhTUNb17xlrV74x1PW7WSwa71oCeSC1lBDRxdAuQeT1+lfLui/8EqPF1rqdt4H1z4kXl98OLS5+1pozK6lmznaw37MHoWAyfTNfs9RXPPK8NJJOG3r+Pf5nq4fjbOqMqkoYh3nbdRdrKycbq0Wk3ZxtufH37T//AAnPws/ZZ8Rr8KEHn6dpn2aytrO3w0UeAmUCkn5EyRx2r8av2fvgT+2N8Avin4f8J/D2O9j0Tx5Fpd/qGp28TGOGFSJZUkf+BkBZGDcsCcda/pWIBGDTXA2H6VOKy2NerGrztOO1vx+9aHRkfGVXLcFWwSoRqKq25OWt3Zcv/gMlzLu2/U/nw+Mn/BOL9ov40/HjUfFEslhPpGq3nmJq09y2+C1z/q1t8HBXHGDiv3Y8OeF9Y8M+HrDw5Zagrw2FvFbozw5YrEoUEnd1OK3fDf8AyBYf+Bf+hGtytcLgKVCc6kN5bnn51xTjs0w+HwuJtyUVaKSt0Su9XrZLay7I+Bf25fjH48+F/wAMB4M8BRz6v4p8XltN02C0tiWUuMPISCcbVPHv7V0n7Ev7OfiT9nT4Cad4N1S5ii1e6Z73UQsfmYnlx8u7IztUAfXNfaTRRO6yOoLJ90kcjPpUlWsN/tHt5O+lku3f5swlnTWVrK6NPlTlzzle7m1dRXlGKe2uutzgYrPxB/wksw+3R/8AHun/ACx/2j/tVv8A2LxD/wA/0f8A35/+ypIv+Rnm/wCvdP8A0I10FdR4ZgfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBwXiKy8QfYFzfR/62P/AJY/7Q/2q3vsXiH/AJ/o/wDvz/8AZUeI/wDkHr/12j/9CFb9AGB9i8Q/8/0f/fn/AOyo+xeIf+f6P/vz/wDZVv0UAc+bLxDg/wCnR/8Afn/7KsTw7ZeIP7N/4/o/9ZJ/yx/2j/tV3R6GsPw7/wAg3/tpJ/6EaAG/YvEP/P8AR/8Afn/7Kj7F4h/5/o/+/P8A9lW/RQBgfYvEP/P9H/35/wDsqwTZeIf+ElH+nR/8e5/5Y/7Q/wBqu9rBP/Iyj/r3P/oQoAT7F4h/5/o/+/P/ANlR9i8Q/wDP9H/35/8Asq36KAMD7F4h/wCf6P8A78//AGVYfiOy8Qf2TJm+j6r/AMsff/eru6wvEn/IJk+q/wA6AGCy8Q4H+nR/9+f/ALKl+xeIf+f6P/vz/wDZVvDoKWgDA+xeIf8An+j/AO/P/wBlR9i8Q/8AP9H/AN+f/sq36KAOA8O2XiD7NPi+T/Xyf8sff/eroPsXiH/n+j/78/8A2VJ4d/49p/8ArvJ/OugoAwPsXiH/AJ/o/wDvz/8AZUfYvEP/AD/R/wDfn/7Kt+igDgp7LxB/wkcA+3R/6l/+WPuP9qt77F4h/wCf6P8A78//AGVE/wDyMlv/ANcX/mK36AMD7F4h/wCf6P8A78//AGVH2LxD/wA/0f8A35/+yrfooA4fxBZ+IRpE2b6Pp/zx/wDsq1YbLxD5Kf6dH0H/ACx/+yq14gONIm+lasP+pX6CgDE+xeIf+f6P/vz/APZUfYvEP/P9H/35/wDsq36KAMD7F4h/5/o/+/P/ANlWDoll4g829xfR/wCvb/lj7D/arvawND/1t7/18N/IUAH2LxD/AM/0f/fn/wCyo+xeIf8An+j/AO/P/wBlW/RQBgfYvEP/AD/R/wDfn/7KsK8s/EH9u2eb6P7sn/LH2/3q7ysC9/5Dtn/uv/KgA+xeIf8An+j/AO/P/wBlR9i8Q/8AP9H/AN+f/sq36KAMD7F4h/5/o/8Avz/9lWVrll4g/si4zfR/cP8Ayx/+yrtKydd/5BFx/uGgDNsrLxB9jixfR/cH/LH2/wB6rP2LxD/z/R/9+f8A7KtWx/484v8AcH8qtUAYH2LxD/z/AEf/AH5/+yo+xeIf+f6P/vz/APZVv0UAcLpdl4g+2XuL6P8A1v8Azx9v96tv7F4h/wCf6P8A78//AGVSaV/x+Xv/AF1/pW3QBgfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBweo2fiAarY5vo/vN/yx9v96t37F4h/5/o/+/P/ANlS6l/yFbH/AHn/AJVvUAYH2LxD/wA/0f8A35/+yo+xeIf+f6P/AL8//ZVv0UAclqll4h/s2f8A06P/AFbf8sfb/epulWXiD+zIMX0f3B/yx/8Asq6DVP8AkGz/APXNv5Umk/8AIMg/3BQBQ+xeIf8An+j/AO/P/wBlR9i8Q/8AP9H/AN+f/sq36KAMD7F4h/5/o/8Avz/9lWBpll4g/ta/xfR/fT/lj/s/71d9WBpf/IWv/wDeT+VAB9i8Q/8AP9H/AN+f/sqPsXiH/n+j/wC/P/2Vb9FAGB9i8Q/8/wBH/wB+f/sqwdXsvEH2yxzfR/60/wDLH2/3q72sDWP+P2x/66/0oAPsXiH/AJ/o/wDvz/8AZUfYvEP/AD/R/wDfn/7Kt+igDA+xeIf+f6P/AL8//ZVXu7LxD9ll/wBOj+43/LH2/wB6unqvd/8AHrL/ALjfyoA5XRbLxB/ZUGL6P7g/5Y//AGVaf2LxD/z/AEf/AH5/+yq3on/IJg/3BWpQBgfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQB5/ZWXiD/hIb3/Tk+5H/wAsfb/erofsXiH/AJ/o/wDvz/8AZUyx/wCRhvf9yOuioAwPsXiH/n+j/wC/P/2VH2LxD/z/AEf/AH5/+yrfooA4PXLLxD/on+nR/wDHwv8Ayx9j/tVu/YvEP/P9H/35/wDsqdrn/Lp/18L/ACNbtAGB9i8Q/wDP9H/35/8AsqPsXiH/AJ/o/wDvz/8AZVv0UAc7JZeIdjf6dH0P/LH/AOyrG8OWfiE6LB/p0f3f+eP/ANlXcSf6tvoaxvDf/IFg+lADPsXiH/n+j/78/wD2VH2LxD/z/R/9+f8A7Kt+igDA+xeIf+f6P/vz/wDZVz1vZ+IP+ElucX0f+pj/AOWP1/2q9Arnbb/kZbn/AK5R/wBaAH/YvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBgfYvEP/P8AR/8Afn/7KsTXbLxD9nh/06P/AFyf8sff/eruqxNd/wCPeH/rsn86AI/sXiH/AJ/o/wDvz/8AZUfYvEP/AD/R/wDfn/7Kt+igDA+xeIf+f6P/AL8//ZUfYvEP/P8AR/8Afn/7Kt+igDgfDNl4h/slf9Oj++//ACx/2j/tVv8A2LxD/wA/0f8A35/+yo8M/wDIJX/fk/8AQjW/QBgfYvEP/P8AR/8Afn/7Kj7F4h/5/o/+/P8A9lW/RQBwRsvEH/CTf8f0f/HsP+WP+0f9qt77F4h/5/o/+/P/ANlQf+Rn/wC3Yf8AoRrfoAwPsXiH/n+j/wC/P/2VH2LxD/z/AEf/AH5/+yrfooA4LxJZeIP7L5vo/wDWRf8ALH/bH+1W6LLxDgf6dH/35/8AsqXxL/yCz/10i/8AQxW8OgoAwfsXiH/n+j/78/8A2VH2LxD/AM/0f/fn/wCyrfooAwPsXiH/AJ/o/wDvz/8AZVh6BZeIfscn+nJ/r5f+WP8AtH/aru6w9A/485P+u8v/AKEaAGfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBgfYvEP/P8AR/8Afn/7KsSWy8Qf8JDF/pyf6h/+WP8AtD/aruqxJf8AkYof+uD/APoQoAj+xeIf+f6P/vz/APZUfYvEP/P9H/35/wDsq36KAMD7F4h/5/o/+/P/ANlWH4lsvEP9hXOb6P7v/PH3H+1Xd1heJf8AkBXP+7/UUAMFl4hx/wAf0f8A35/+ypfsXiH/AJ/o/wDvz/8AZVvDoKWgDA+xeIf+f6P/AL8//ZUfYvEP/P8AR/8Afn/7Kt+igDgtCsvEOLzF9H/x9Sf8sfp/tVvfYvEP/P8AR/8Afn/7Kl0Hpef9fUv9K3qAMD7F4h/5/o/+/P8A9lVuyt9VilLX1ysyYwFWPYc+ucmtSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/5A8/0H8xWxWPr/APyB5/oP5igDYooooAKyNK/1t5/18H/0Fa16yNK/1t5/18H/ANBWgDXooooAxtQ/5Cdh/wBdH/8AQGrZrG1D/kJ2H/XR/wD0Bq2aACoLr/j2k/3T/Kp6guv+PaT/AHT/ACoAqaN/yCLX/rkn8hWlWbo3/IItf+uSfyFaVABWRb/8hu6/65xfzatesi3/AOQ3df8AXOL+bUAa9RTwQXUD2t0iyRSKVdGGVZTwQQeCCOoqWigD8dFe7/4JdeP7DwPeox/Zr8WanEml3hOU8CatdTAraTZ+5o11I2LeTO2ymbymxC8ez9igQRkdDXC/Evwj4W+IHgq98CeOdOt9X0XWVFlf2N3GJYLi3nISSORGBDKykgg1+afwx8eeL/8Agnf8S9F/Zc+Ol/c6t8IvE12un/D7xheyNNJpNzJ/qtA1adyTk/d067kP75QIJD5qo0oB+s9FFFAGRof/AB4n/rrL/wChtWvWPof/AB4n/rrL/wChtWxQAVjzf8h63/64S/zStiseb/kPW/8A1wl/mlAGxRRRQBl65/yBrr/rk/8AKtJPuD6Vm65/yBrv/rk/8jWkn3B9KAHUUUUAY+m/8f19/wBdV/8AQFrYrH03/j+vv+uq/wDoC1sUAFY+q/8AHxY/9fH/ALI1bFY+qZ+0WP8A18f+yNQBsUUUUAIehrK0H/kC2n/XJP5VqnoaytB/5Atp/wBck/lQBrUUUUAY8f8AyH5f+uCf+hNWxWPH/wAh+X/rgn/oTVsUAFY2v/8AIMb/AK6Rf+hrWzWNr/8AyDG/66Rf+hrQBs0UUUAFY+i/6qf/AK+Jf/QjWxWPov8Aqp/+viX/ANCNAGxRRRQBj3f/ACGLP/dl/kK2Kx7v/kMWf+7L/IVsUAFUdT/5Btx/1yf+Rq9VHU/+Qbcf9cn/AJGgCSy/48of9xf5VaqtZf8AHnDn+4v8qs0AFY1j/wAhW+/3o/8A0EVs1j2P/IVvv96P/wBBFAGxRRRQBjax960/6+E/ka2axtY+9af9fCfyNbNABRRRQBj6B/yCYv8AgX8zWxWN4f8A+QRD/wAC/ma2aACsb/mYf+3f/wBmrZrG/wCZh/7d/wD2agDZooooAyNe/wCQTN9B/MVr1ka9/wAgmb6D+YrXoAKKKKAMTRfv3v8A18v/ACFbdYmi/fvf+vl/5CtugArIvv8AkJ2X+9J/6Ca16yL7/kKWP+9J/wCgmgDXooooAr3f/HrL/uN/Kq2j/wDIJtf+uKf+girN3/x6y/7jfyqto/8AyCbX/rin/oIoA0aKKKAMa1/5Dd5/1zh/9mrZrGtf+Q3ef9c4f/Zq2aACvgH9sr9pbxn4U1nRv2Xv2Yo7XVvjL4yUTadFdKZbLQ9ORwk2sakEIK20JysMeQ1zPtiTjey9z+1f+1PP8D49I+GHwq0keL/it40MkPhnw4snlq/l4Et7eSAH7PYWuQ08xHPEaBpHVTT/AGXv2VLT9nDw1feIvGGryeL/AIk+Mr2C/wDF3im5QJPqV2pwkcaciCztlPl2lsnyRRju7OzAHof7Lf7Mvgr9lb4YL4B8L3V1rGo3txJqWu69qTCXUta1W5wbi9u5ABulkboAAkaBY0CoqgfR1FFABWPoX/IP/wC2sv8A6G1bFY+hf8g//trL/wChtQBsUUUUAZEv/Idh/wCuEn/oSVr1kS/8h2H/AK4Sf+hJWvQAVka//wAgW6/65t/KtesjX/8AkC3X/XNv5UAay/dFLSL90UtABWRpn/H3ff8AXYf+gLWvWRpn/H3ff9dh/wCgLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/S/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntM/wCQ7qX1i/8AQa0NYuYrPSbq7mOEiid2PsASaz9M/wCQ7qX1i/8AQa5v4wX7aV8JvE+pr1t9KvJR/wAAiY/0oA/mn/4NN9Fjtv2Lfir4pRf+Q38UNcuN397YIkz+lf1O1/M5/wAGmqRXf/BJa08S4xLq/i/X7mX/AHjMB/IV/THQBg6z/wAfVh/18D/0Fq3qwdZ/4+rD/r4H/oLVvUAFFFFAEc3+qb6Gsrw9/wAgO1/65rWrN/qm+hrK8Pf8gO1/65rQBs0UUUAFc9Z/8jHef9cov5tXQ1z1n/yMd5/1yi/m1AHQ0UUUAFYOvfctf+vmL+db1YOvfctf+vmL+dAG9RRRQAU1/uH6U6mv9w/SgDF8Nf8AIFh/4F/6Ea3Kw/Df/IFh/wCBf+hGtygAooooA5+L/kZ5v+vdP/QjXQVz8X/Izzf9e6f+hGugoAKKKKAMHxH/AMeCf9do/wD0IVvVg+I8/YEx/wA9o/8A0IVvUAFFFFACHoaw/Dv/ACDf+2kn/oRrcPQ1h+Hf+Qb/ANtJP/QjQBu0UUUAFYJ/5GUf9e5/9CFb1YJ/5GUf9e5/9CFAG9RRRQAVheJP+QTJ9V/nW7WF4k/5BMn1X+dAG4OgpaQdBS0AFFFFAHP+Hf8Aj2n/AOu8n866Cuf8O/8AHtP/ANd5P510FABRRRQBgT/8jJb/APXF/wCYrfrAn/5GS3/64v8AzFb9ABRRRQBi+IeNIm+la0P+pT6CsnxDgaRNn0rVh/1Kf7ooAlooooAKwND/ANbe/wDXw38hW/WBof8Arb3/AK+G/kKAN+iiigArAvf+Q7Z/7r/yrfrAvf8AkO2f+6/8qAN+iiigArJ13/kEXH+4a1qydd/5BFx/uGgC5Y/8ecX+4P5VaqrY/wDHnF/uD+VWqACiiigDD0r/AI/b3/rqP5VuVh6V/wAft7/11H8q3KACiiigDB1L/kK2P+8/8q3qwdS/5Ctj/vP/ACreoAKKKKAKGq/8g2f/AK5t/Km6R/yDIP8AcFO1X/kGz/8AXNv5U3SP+QZB/uCgDRooooAKwNM/5C1//vJ/Kt+sDTP+Qrf/AO8n8qAN+iiigArA1j/j9sP+uv8ASt+sDWP+P2x/66/0oA36KKKACq93/wAesv8AuN/KrFV7v/j1l/3G/lQBT0T/AJBMH+4K1Ky9E/5BMH+4K1KACiiigDnbH/kYb3/cjroq52x/5GG9/wByOuioAKKKKAMHXf8Al0/6+F/ka3qwdd6Wvf8A0hf5Gt6gAooooAZJ/q2+hrG8N/8AIFg+lbMn+rb6Gsbw3/yBYPpQBuUUUUAFc7bf8jNc/wDXKP8ArXRVztt/yM1z/wBco/60AdFRRRQAVia7/wAe8P8A12T+dbdYmu/8e8P/AF2T+dAG3RRRQAUUUUAYHhn/AJBK/wC/J/6Ea36wPDP/ACCV/wB+T/0I1v0AFFFFAGAf+Rn/AO3Yf+hGt+sA/wDIz/8AbsP/AEI1v0AFFFFAGB4l/wCQWf8ArpF/6GK3h0FYPiX/AJBZ/wCukX/oYreHQUALRRRQAVheH/8Aj0l/67y/+hGt2sLw+B9klx/z3l/9CNAG7RRRQAViS/8AIxQ/9cH/APQhW3WHL/yMUP8A1wf/ANCFAG5RRRQAVh+Jf+QFc/7v9RW5WF4m/wCQFc/7v9RQBuDoKWkHQUtABRRRQBg6D0vP+vqX+lb1YOg9Lz/r6l/pW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZUlnqbSM0d5tUkkL5anA9M1q0UAY32LVv+f7/yEtZGvWWrf2PPm9/hH/LNfUV2FY+v/wDIHn+g/mKAA2Wrdr7H/bNaPsWrf8/3/kNa2KKAMf7Fq3/P8f8Av2tZGl2Wrebef6cf+Pg/8s1/urXX1kaV/rbz/r4P/oK0AJ9i1b/n+/8AIa0fYtW/5/v/ACGtbFFAHHahZar/AGlYf6af9Y//ACzX+41bP2LVv+f4/wDftaTUP+QnYf8AXR//AEBq2aAMf7Fq3/P9/wCQ1qC4stW+zyZvc/Kf+Wa+lb9QXX/HtJ/un+VAHOaPZar/AGTa4vj/AKpP+Wa+grS+xat/z/f+Q1qbRv8AkEWv/XJP5CtKgDH+xat/z/f+Q1rIt7HVv7ausX3Plxf8sl9W966+si3/AOQ3df8AXOL+bUAJ9i1b/n+/8hrR9i1b/n+P/fta2KKAOO1uy1X7NFm+P+vh/wCWa/3xXNfFL4QeEfjb8PNY+E3xatbfX/DfiC1ez1DT7uBXhnhkHKnuCOqsMMrAEEEA132tnFtF/wBd4f8A0MVsUAfk78K/iJ8Uv2HPiDo/7Kv7TfiG51vwJrlwtj4B8fX4V5N5H7rRdZlOAL0AbbS6bC3ija2Jx+8/Ur7Fq3/P9/5DWuX+Knwq+HXxv+Her/Cb4taPba/4c163a1v7C7TfFNE/YjqCDgqwIZWAZSCAR+bPw/8Aiz8Sf+CfPjrTP2d/2qtWuvEPwr1q5Sx8E/ES+bfLYySELDo+vy9ps/Jaag2EuRiOYrPgygH6baJZar9iOL0/62X/AJZr/fNbH2LVv+f4/wDftaXRAVsmVuCJZf8A0Nq16AMb7Fq3/P8Af+QlrImstV/t23/00/6mX/lmvqldhWPN/wAh63/64S/zSgA+xat/z/f+Q1pPsWrf8/3/AJCWtmigDk9bstW/sa6/07/lk/8AyzX0NaSWWrbR/px6f88lqbXP+QNd/wDXJ/5GtJPuD6UAZP2LVv8An+/8hrR9i1b/AJ/v/Ia1sUUAcfp1lqv26+xfH/Wr/wAs1/uLWx9i1b/n+/8AIa0ab/x/X3/XVf8A0Ba2KAMf7Fq3/P8Af+Q1rI1Oy1X7RY5vSf8ASP8Ankv9xq6+sfVf+Pix/wCvj/2RqAD7Fq3/AD/f+Q1o+xat/wA/3/kNa2KKAMY2WrY/4/j/AN+lrK0Ky1b+xbT/AE0/6pP+Wa+ldaehrK0H/kC2n/XJP5UAM+w6v/z/AH/kJaX7Fq3/AD/f+Q1rYooA4+Oy1b+3pf8ATT/qE/5Zr/eatf7Fq3/P9/5CWlj/AOQ/L/1wT/0Jq2KAMf7Fq3/P9/5DWsfXrLVf7NbN6fvxf8s1/vrXYVja/wD8gxv+ukX/AKGtAC/YtW/5/v8AyEtH2LVv+f0/9+1rYooAx/sWrf8AP9/5DWsjRrLVfJnxen/j4l/5Zr/eNdfWPov+qn/6+Jf/AEI0AH2LVv8An+/8hrSfYtW/5/v/ACEtbNFAHH3dlqv9sWf+mn7sv/LNfQVr/YtW/wCf7/yEtLd/8hmz/wB2X+QrYoAx/sWrf8/3/kNao6nZar/Ztxm9P+qf/lmvoa6aqOp/8g24/wCuT/yNAGZZWOrfY4v9O/gX/lmvpVn7Fq3/AD/f+Q1q9Zf8eUP+4v8AKrVAGP8AYtW/5/v/ACGtY9jZaqdUvgL0/ej/AOWa/wB0V2FY1j/yFb7/AHo//QRQAv2LVv8An+P/AH7Wj7Fq3/P9/wCQ1rYooA47V7LVg1pm9z/pCf8ALJfQ1s/YtW/5/v8AyGtJrH3rT/r4T+RrZoAx/sWrf8/3/kNaPsWrf8/3/kNa2KKAOP0Cy1b+yIcXx/i/5ZL6mtj7Fq3/AD/f+Q1o0D/kEQ/8C/ma2KAMf7Fq3/P8f+/a1jfYtV/4SD/j9/5d/wDnmv8Aersaxv8AmYf+3f8A9moAPsWrf8/3/kJaX7Fq3/P9/wCQ1rYooA5DXbLVf7Im/wBNPQf8s19RWv8AYtW/5/f/ACGtLr3/ACCZvoP5itegDH+xat/z/H/v2tJ9h1f/AJ/v/IS1s0UAcbo9lqpa8xen/j5f/lmvoK2vsWrf8/x/79rTNF+/e/8AXy/8hW3QBjfYtW/5/v8AyEtZN9Zat/adl/px+9J/yyX+6a6+si+/5Cll/vSf+gmgBPsWrf8AP9/5DWj7Fq3/AD/f+Q1rYooA5+6stW+yy5vf4G/5Zr6VW0iy1b+ybXF9/wAsU/5Zr/dFdDd/8esv+438qraP/wAgm1/64p/6CKAIPsWrf8/3/kNaPsWrf8/x/wC/a1sUUAcfa2Wq/wBtXf8ApvPlw/8ALNf9qvlT9q/9qe7/AGfIdI+H3gC0fxt8UvGTSW/hbwpbbI5LqRAN91dSc/ZtPtshrm5YYRcKoaRkRq37TX7WJ+DHjCz+C/wj0geNPi14wt1bQfDkcnlxxwxllk1DUZgG+y6fAT+8lYFnb93EryECt79lj9lBPgfd6x8Wfihq58afFfxkIm8R+JpY/KDpFkxWVlDlha2FvkiGBSSTmSQvIzMQDE/ZP/ZK8QfBMav8WPi74hj8XfFvxr5cvibxELfy4yI8mGwsI2LG30+1yVgiByxzLIWkdjX1nq9lq3lwf6cf9fF/yyX+8K66snV/9XB/13i/9CFADfsWrf8AP8f+/a0n2LVv+f7/AMhLWzRQBj/YtW/5/f8AyGtY+h2Wrf2fxfH/AFkv/LJf77V2FY+hf8g//trL/wChtQAfYtW/5/v/ACGtH2LVv+f7/wAhrWxRQByEtlqv9uw/6af9RJ/yzX+8la/2LVv+f7/yGtLL/wAh2H/rhJ/6Ela9AGP9i1b/AJ/j/wB+1rI16y1b+xbrN6f9U3/LJfSuvrI1/wD5At1/1zb+VADFstWwP9O/8hrTvsWrf8/3/kNa1l+6PpTqAMb7Fq3/AD/f+QlrM0mz1Nb+8Z7wsonBK+WoyNicZrrKyNN/4+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9P+/iiiigArntX1UwRz2q2txKQhAaOPcpyO3PNdDRQBx2ka28Ok2sUlhdqyxICDFgggDjrWj/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr0f8JB/wBON3/37/8Ar10FFAHB6frEsesahM9heBXMW0mLg4XnHPNeQftU+I/Ecf7MvxCfwhomp6nqv/COamLO0tLZ57iec27hEjjj3O7s2AqqCSeAK+m6KAPwU/4NyPgz8Sf2Zf8Agkp8PPht8X/COteFvEhudVvL7TNVsJbK8gee7kK+bDOqSIWUKRuUZBB6V+5f/CQf9ON3/wB+/wD69dBRQBw2q61JLcWTR2F4wScFsRZwNp5PNbP/AAkH/Tjd/wDfv/69dBRQBz//AAkH/Tjd/wDfv/69H/CQf9ON3/37/wDr10FFAHOS6/mNgLG76H/ll/8AXrN0LW5IdHtopbC8VljAIMWCD+ddrRQBz/8AwkH/AE43f/fv/wCvR/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr1iWusSpr11O1hdhGijAPlcEgtnnNd3RQBz/8AwkH/AE43f/fv/wCvR/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr1jazrUkyW/l2F4ds8bHEWcAHk9a7migDnzr//AE5Xf/fv/wCvR/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr0ja/lSPsN3/37/wDr10NFAHD6BrcsGkxRTWF4rDdkGLB+8fetj/hIP+nG7/79/wD166CigDn/APhIP+nG7/79/wD16P8AhIP+nG7/AO/f/wBeugooA4SLWZR4hlnNhebDAoDeUcZyeM5rb/4SD/pxu/8Av3/9eugooA5//hIP+nG7/wC/f/16P+Eg/wCnG7/79/8A166CigDhde1qWayVYbC8ZhLGcCLJwGGe9bf9v8/8eV1/37/+vW/RQBz/APwkH/Tjd/8Afv8A+vR/wkH/AE43f/fv/wCvXQUUAc8df4P+hXf/AH7/APr1kaFrUkFhslsLxT5jnBiweWPqa7iigDn/APhIP+nG7/79/wD16P8AhIP+nG7/AO/f/wBeugooA5//AISD/pxu/wDv3/8AXrF/tqX/AISATf2febPII3eVxncOM5ruqKAOf/4SD/pxu/8Av3/9ej/hIP8Apxu/+/f/ANeugooA5/8A4SD/AKcbv/v3/wDXrH17WpZ9MeOGwvGYleBFk9frXcUUAc8Nf4/48rv/AL9//Xpf+Eg/6cbv/v3/APXroKKAOf8A+Eg/6cbv/v3/APXo/wCEg/6crv8A79//AF66CigDhNC1mWC3mWawvFJmcjMWOCfrW3/wkH/Tjd/9+/8A69dBRQBz/wDwkH/Tjd/9+/8A69H/AAkH/Tjd/wDfv/69dBRQBws2sytr8M4sLzYsLgt5XGcjvmtr/hIP+nG7/wC/f/166CigDn/+Eg/6cbv/AL9//Xo/4SD/AKcbv/v3/wDXroKKAOJ1zW5JtLljisLtmI4AiyT+tacWvbYlU2N3wB/yz/8Ar10dFAHP/wDCQf8ATjd/9+//AK9H/CQf9ON3/wB+/wD69dBRQBz/APwkH/Tjd/8Afv8A+vWLo+tSxSXbS2F4u6ckZixkYHI5ruqKAOf/AOEg/wCnG7/79/8A16P+Eg/6cbv/AL9//XroKKAOf/4SD/pxu/8Av3/9esW71qV9ZtJVsLwqofJ8o4GR9a7qigDn/wDhIP8Apxu/+/f/ANej/hIP+nG7/wC/f/166CigDn/+Eg/6cbv/AL9//XrM1nW5JtLnjisLtmKnAEWSf1rs6KAOWs9eZLSNWsbsEKAcxf8A16s/8JB/043f/fv/AOvXQUUAc/8A8JB/043f/fv/AOvR/wAJB/05Xf8A37/+vXQUUAcRputSRXd2z2F4A8mQTF1GPrWv/wAJB/043f8A37/+vXQUUAc//wAJB/043f8A37/+vR/wkH/Tjd/9+/8A69dBRQBw2oa1LJqVnIlheFUZtxEXA4781s/8JB/043f/AH7/APr10FFAHP8A/CQf9ON3/wB+/wD69H/CQf8ATjd/9+//AK9dBRQByWpa60lhOiWN2SUYACLOePrSaZrjR6fDG9hdghBkGLBH6111FAHP/wDCQf8ATjd/9+//AK9H/CQf9ON3/wB+/wD69dBRQBz/APwkH/Tjd/8Afv8A+vWLp+syx6neyPYXgV2XaTFweO3Nd1RQBz//AAkH/Tjd/wDfv/69H/CQf9ON3/37/wDr10FFAHP/APCQf9ON3/37/wDr1i6prMst3ZPHYXhCS5OIs4GPrXdUUAc//wAJB/043f8A37/+vR/wkH/Tjd/9+/8A69dBRQBz/wDwkH/Tjd/9+/8A69QXOvFraRVsbskqcfuvb6109FAHHaRrjxabDHJYXasFGQYsH+daP/CQf9ON3/37/wDr10FFAHP/APCQf9ON3/37/wDr0f8ACQf9ON3/AN+//r10FFAHB2msyprt3M1heBGVMExcHjsc1uf8JB/043f/AH7/APr10FFAHP8A/CQf9ON3/wB+/wD69H/CQf8ATjd/9+//AK9dBRQBw2s61JN9m8uwvG2zqTiLOBg89a2f+Eg/6crv/v3/APXroKKAOf8A+Eg/6cbv/v3/APXo/wCEg/6cbv8A79//AF66CigDnX1/KEfYbvof+WX/ANesnQNakg0mGKWwvFYDkGLBH613FFAHP/8ACQf9ON3/AN+//r0f8JB/043f/fv/AOvXQUUAc/8A8JB/043f/fv/AOvWHBrMq+ILic2F5saJAG8o4JGe+a7yigDn/wDhIP8Apxu/+/f/ANej/hIP+nG7/wC/f/166CigDn/+Eg/6cbv/AL9//XrI1nW5JYIhFYXjETISBFngH6129FAHP/8ACQf9ON3/AN+//r0f8JB/043f/fv/AOvXQUUAc/8A8JB/043f/fv/AOvR/wAJB/043f8A37/+vXQUUAcJ4e1qWDTFjm0+8Rt7nBiweWPvW3/wkH/Tjd/9+/8A69dBRQBz/wDwkH/Tjd/9+/8A69H/AAkH/Tjd/wDfv/69dBRQBwp1mX/hIftH2C72fZwN3lcZ3HjOetbX/CQf9ON3/wB+/wD69dBRQBz/APwkH/Tjd/8Afv8A+vR/wkH/AE43f/fv/wCvXQUUAcL4g1qWfTTHDYXjN5kZwIsnAYE962Rr/H/Hjd/9+/8A69dDRQBz/wDwkH/Tjd/9+/8A69H/AAkH/Tjd/wDfv/69dBRQBgf2/wA/8eV1/wB+/wD69YuiazJBayLJYXikzSHmLHBY46mu5ooA5/8A4SD/AKcbv/v3/wDXo/4SD/pxu/8Av3/9eugooA5//hIP+nG7/wC/f/16yZNZkOuxTiwu9ggcE+VxnI4zmu2ooA5//hIP+nG7/wC/f/16P+Eg/wCnG7/79/8A166CigDn/wDhIP8Apxu/+/f/ANesfxBrUk+jXEUNheMzLwBFknke9dxRQBzw1/j/AI8bv/v3/wDXpf8AhIP+nG7/AO/f/wBeugooA5//AISD/pxu/wDv3/8AXo/4SD/pxu/+/f8A9eugooA4bRtalhF15theLuuZGGYsZBxg9elbP/CQf9ON3/37/wDr10FFAHP/APCQf9ON3/37/wDr1cstU+2ymL7NPDgZzIm0fTr1rUooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKyZNWMcjR/ZZ22kjITIOPTmgDWrH1/wD5A8/0H8xTf7ZP/Ppc/wDfH/16yde1gnSJx9kufu/88/ce9AHYUVjf2yf+fS4/74/+vSf2yf8An0uf++P/AK9AG1WRpX+tvP8Ar4P/AKCtN/tk/wDPpcf98f8A16yNK1g+bef6Jc/8fB/5Z/7K+9AHYUVi/wBsnGfslz/3x/8AXo/tk/8APpc/98f/AF6AF1D/AJCdh/10f/0Bq2a47UNYP9pWB+yXH+sf/ln/ALDe9a/9sn/n0uf++P8A69AG1UFz/wAe0n+6f5Vmf2yf+fS5/wC+P/r1DcayTbyD7Jc/dP8Ayz9vrQBe0b/kEWv/AFyT+QrSrlNH1gjSbX/RLn/VJ/yz9h71o/2yf+fS5/74/wDr0AbVZFv/AMhu6/65xfzamf2yf+fS5/74/wDr1k2+sEa1dH7Jc/6uL/ln/v8AvQB2FFYv9sn/AJ9Ln/vj/wCvS/2yf+fS4/74/wDr0ALrf/HtF/13h/8AQxWxXHa1q5a2i/0S5/4+If8Aln/tj3rX/tk4z9kuf++P/r0AbVcn478B+C/ih4M1P4d/EbSrXXNB1q2ks7+wvYlmt7iCUbXSRGBDKR2IrT/tk/8APpcf98f/AF6T+2T/AM+lz/3x/wDXoA/Jjw14z+In/BMeSHwp8U7m98Vfs7PO8GmeJpi91qXgsGQqlrqrEtJcaYMhYb45e2GEuMpiUfrrp2o6frGnwatpM8d1aXUazQzQsHjkjcBlZWUkMrAggg4IrkbK7tNR0WfTdR0+a4t7hp45YpYgyOjswZWUnBBBwQeCK/L648CfF7/gnBeP4m/Zp0HUvGXwLaWS41bwLAhl1TwyshLyXOggkme0BJaTTCdyZJtT/wAsSAfr3WPN/wAh63/64S/zSvOPhN8dfhn8dvh9pnxW+D2or4i8O6xF5tpfWWJInGcEHnKujAq6MAyMCrAEEV102sH+3IG+yXP+pl/5Z+6e9AHY0Vi/2yf+fS5/74/+vQdZP/Ppc/8AfH/16AJtc/5A11/1yf8AlWkn3B9K5TW9YJ0a6H2S4/1T/wDLP2PvWkuskKP9Euen9z/69AG3RWN/bJz/AMelx/3x/wDXo/tk/wDPpcf98f8A16AF03/j+vv+uq/+gLWxXH6drBF7fH7Jc/61f+Wf+wvvWv8A2yf+fS4/74/+vQBs1kaof39l/wBfH/sj006yf+fS4/74/wDr1kanrBNxZf6Jc/6/+5/sN70AdhRWL/bJ/wCfS5/74/8Ar0f2yc/8elz/AN8f/XoA2T0NZWg/8gW0/wCuSfyqI6ycH/RLn/vj/wCvWXoWsEaLaf6Jc/6pP+Wft9aAOvorG/tk/wDPpcf98f8A16T+2Tj/AI9Ln/vj/wCvQA6P/kPS/wDXBP8A0Jq2K45NYI12U/ZLn/UJ/B/tN71sf2yc/wDHpcf98f8A16ANmsbX/wDkGN/10i/9DWk/tk5/49Ln/vj/AOvWRrusE6aw+yXH34v+Wf8Atr70AdjRWL/bJ/59Ln/vj/69H9snH/Hpc/8AfH/16ANqsfRf9VP/ANfEv/oRpv8AbJxn7Jc/98f/AF6yNH1giKf/AES5/wCPiX/ln/tH3oA7GisX+2Tn/j0uf++P/r0f2yf+fS5/74/+vQA67/5DFn/uy/yFbFcddawTrFmfslz92X+D2X3rX/tk/wDPpc/98f8A16ANqqOp/wDINuP+uT/yNU/7ZOM/ZLn/AL4/+vVLU9ZJ024/0S5/1b/wex96AN2y/wCPKH/cX+VWq5yy1k/Y4R9kufuL/B7fWrX9sn/n0uP++P8A69AGzWNY/wDIVvv96P8A9BFJ/bJ/59Ln/vj/AOvWRY6wf7Uvj9luPvR/wf7I96AOxorGGsn/AJ9Lj/vj/wCvSf2ycZ+yXP8A3x/9egBdY+9af9fCfyNbNcbq+sEtaf6Jcf8AHwn8Hsfetn+2T/z6XH/fH/16ANmisX+2T/z6XP8A3x/9ej+2T/z6XP8A3x/9egB2gf8AIJh/4F/M1sVx+g6wRpMQ+yXP8X/LP3PvWt/bJx/x6XP/AHx/9egDarG/5mH/ALd//ZqT+2T/AM+lz/3x/wDXrH/tg/2/n7Jc/wDHv/zz/wBr60AdlRWL/bJz/wAelz/3x/8AXo/tk/8APpc/98f/AF6AH69/yCZvoP5iteuP13WCdJmH2S56D/ln7j3rXGsn/n0uP++P/r0AbNFYv9snGfslz/3x/wDXo/tk/wDPpc/98f8A16AE0X797/18v/IVt1xmjawQ95/olx/x8v8A8s/Ye9bJ1k/8+lz/AN8f/XoA2qyL7/kJ2X+9J/6CaZ/bJ/59Ln/vj/69ZN7rBOp2R+yXP3n/AOWf+yfegDsKKxf7ZOP+PS5/74/+vR/bJ/59Ln/vj/69AGld/wDHrL/uN/Kq2j/8gm1/64p/6CKz7rWSbWT/AES5+43/ACz9vrVbSdZI0m1/0S5/1Sf8s/8AZHvQB1VfAf7SX7XXibSviEv7J/7JWn23i34wX9vHcTpcbjpHhmxmOBf6xLHgouATBaKwnumGECpukXy/4lftVfFf9qHxbqv7O/7A0htotNmksPFHxKkgW60zQ5F+WW105GJjv9UXONvNtbNzMWYeUfrb9nT4BfCr9lzwGfAfwt0q+BupmvdT1K9Y3Wparfy4827vblyXnnkPLMxwBhVCoFUAHI/spfso+Fv2bZdf1q+1O68XePPFJt7vxP4t1QKdQ1W5UPtGF+WC1hBK21rFiKFOACxZm+xK4611g/21dn7Jc/ci/wCWf+971r/2ycZ+yXP/AHx/9egDarJ1f/Vwf9d4v/QhTP7ZP/Ppcf8AfH/16ydX1k+VD/olz/r4v+Wf+19aAOvorFOsn/n0uf8Avj/69H9sn/n0uf8Avj/69AG1WPoX/IP/AO2sv/obUn9sn/n0uP8Avj/69ZGh6wRp/wDx6XP+sl/5Z/7be9AHYUVi/wBsn/n0uf8Avj/69H9sn/n0uf8Avj/69AD5f+Q7D/1wk/8AQkrXrj5dYP8AbkJ+yXP+ok/5Z/7Se9ax1k/8+lz/AN8f/XoA2qyNf/5At1/1zb+VN/tk5/49Lj/vj/69ZGvayTot0Pslz/q2/g9vrQB1y/dH0p1Yi6ydo/0S56f88/8A69L/AGyf+fS5/wC+P/r0AbVZGm/8fd9/12H/AKAtM/tk/wDPpc/98f8A16zNJ1XzL68T7LcLunAyyYAyicnnpQB1tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/wCQPP8AQfzFbFY+v/8AIHn+g/mKANiiiigArI0r/W3n/Xwf/QVrXrI0r/W3n/Xwf/QVoA16KKKAMbUP+QnYf9dH/wDQGrZrG1D/AJCdh/10f/0Bq2aACoLr/j2k/wB0/wAqnqC6/wCPaT/dP8qAKmj/APIItf8Arkn8hWlWbo3/ACCLX/rkn8hWlQAVkW//ACG7r/rnF/Nq16yLf/kN3X/XOL+bUAa9FFFAGPrf/HtF/wBd4f8A0MVsVja3/wAe0X/XxD/6GK2aACiiigDI0P8A48T/ANdZf/Q2rXrH0P8A48T/ANdZf/Q2rYoA/N34tfsl/Ef4SePtT/aa/YHntNG8UalI134j8G3shg8PeKnwNzybVb7DqJAwl9EnznAuEkXlfYv2af2ufhr+05qF3pOkwXnhvxl4ajaDxF4T1qP7NrGkzsUx5sWSJIXwTDcwl4Jl5Rzzj7Ar4z/ad/ZC8DftD+JdG8cadqF54L+Inhy3n/sDxjopWPU7Asylon3Ax3NrIf8AW2s6vE45wrYYAH2ZRX5r/Dv9s3x18HPG2lfs+f8ABQaws/CniPVZRaaF4wsNy+FvEcrHEcccshJsL9+9lcN8zf6iSUcD9KKAMvXP+QNdf9cn/lWkn3B9Kzdc/wCQNd/9cn/lWkn3B9KAHUUUUAY+m/8AH9ff9dV/9AWtisfTf+P6+/66r/6AtbFABWRqn+vsv+vj/wBketesfVf+Pix/6+P/AGRqANiiiigBD0NZWg/8gW0/65J/KtU9DWVoP/IFtP8Arkn8qANaiiigDHj/AOQ/L/1wT/0Jq2Kx4/8AkPy/9cE/9CatigArG1//AJBjf9dIv/Q1rZrG1/8A5Bjf9dIv/Q1oA2aKKKACsfRf9VP/ANfEv/oRrYrH0X/VT/8AXxL/AOhGgDYooooAx7v/AJDNn/uy/wAhWxWPd/8AIYs/92X+QrYoAKo6n/yDbj/rk/8AI1eqjqf/ACDbj/rk/wDI0ASWP/HlD/uL/KrVVrL/AI84f9xf5VZoAKx7H/kK33+9H/6CK2KxrH/kK33+9H/6CKANmiiigDG1j71p/wBfCfyNbNY2sfetP+vhP5GtmgAooooAx9A/5BMX/Av5mtisbw//AMgiH/gX8zWzQAVjf8zD/wBu/wD7NWzWN/zMP/bv/wCzUAbNFFFAGRr3/IJm+g/mK16yNe/5BM30H8xWvQAUUUUAYmi/fvf+vl/5CtusTRfv3v8A18v/ACFbdABWRff8hSx/3pP/AEE1r1kX3/ITsv8Aek/9BNAGvRRXyb+0p+2L8Mf2b7vTPBM8F54r8feI1f8AsDwfoaLcaxqRTgusZZVgtkP+tup2jgjH3nzgEA95+JnxD8B/CbwBq/xI+J+s2fh7w/o1s9zfajqEy29tbwqOXkkcgKP5ngc1+YWnS/tAf8FJLG3t9OfV/hV+z+8ahrgeZp/ijxnbsgGIwdk+k6c5P3+Ly4T7vkI2W77wV+yD8Sfj54tsf2gf+ChM9nrGo6VL9t8O+ArCRpvDfh6RRmOWbcF/tPUE6/aZk8qJs+RGmN7fpRpBJ0q1J6mJP5CgDl/hr8NPh98G/AWk/C34U6NZ+HvDmhW6Wmn6dYRLBbW8KdFRFAAHc9ySSeSa7iiigDGtf+Q3ef8AXOH/ANmrZrGtf+Q3ef8AXOH/ANmrZoAKydX/ANXB/wBd4v8A0IVrVk6v/q4P+u8X/oQoA1qKKKACsfQv+Qf/ANtZf/Q2rYrH0L/kH/8AbWX/ANDagDYooooAyJf+Q7D/ANcJP/QkrXrIl/5DsP8A1wk/9CStegArI1//AJAt1/1zb+Va9ZGv/wDIFuv+ubfyoA1l+6KWkX7opaACsjTP+Pu+/wCuw/8AQFrXrI03/j7vv+uw/wDQFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisuTRdMlkaWSLLMSScnqaANSsfX/+QPP9B/MUv9g6V/zx/wDHj/jWPr+haV/Y8/7n+Edz6j3oA6+isj+wdK/54/8Ajx/xo/sHSv8Anj/48f8AGgDXrI0r/W3n/Xwf/QVo/sHSv+eP/jx/xrI0rQdJ828/c/8ALwe5/ur70AddRWR/YOlf88f/AB4/40f2DpX/ADx/8eP+NADdQ/5Cdh/10f8A9AatmuQ1DQtK/tKwHk/8tH7n+43vWx/YOlf88f8Ax4/40Aa9QXP/AB7Sf7p/lWf/AGDpX/PH/wAeP+NQ3OhaV9nk/c/wn+I+n1oAt6OMaTa/9ck/kK0q5bR9C0n+yLX9z/yyTufQe9aX9g6V/wA8f/Hj/jQBr1kW/wDyGrr/AK5xfzaj+wdK/wCeP/jx/wAayLfQtJ/tq6/c/wDLOLuf9r3oA66isj+wdK/54/8Ajx/xo/sHSv8Anj/48f8AGgBNb/49ov8ArvD/AOhitiuQ1vQtJFtF+5/5bw/xH++Petj+wdK/54/+PH/GgDXorI/sHSv+eP8A48f8aP7C0r/nj/48f8aADQ+LE/8AXWX/ANDateuR0PQtJ+wn9z/y1l7n++3vWv8A2DpX/PH/AMeP+NAGvWPN/wAh63/64y/zSl/sHSv+eP8A48f8ax5tC0n+3bceT/yxl7n1T3oAh+Ivw38AfF3wTqXw2+KOjWfiDQNXhNve6ffwrPbzxt2dHBB9QeoIyMEV+cMXw9/am/YD3XHwSXUfjH8HbcZPhO6n87xVoEK9tKupmH9o26DO20unFwgAWKZ+I6/Tz+wdK/54/wDjx/xo/sLSv+eX/jx/xoA8R+Dn7SHwW/ae+F914/8AglrkOsWUYkt7qLa0N3Y3KD57e7tpQs1tOh4eKZEde4r6DT7o+lfAH7Sn7BXw8+J3iK4+PHwj1W7+GPxTt7fYvinQwu6+iiDbbfVLVv3Oo23J/dzjenWKSNua8z0H9sjxF+z/AK9Z/DX/AIKNeHbTwPNeTpZ6Z450uSWXwhq0sn3FeaQ+Zpdw/OILw+WSMRzydKAP1NorCt9J0K7t0urVVlilUOjo5ZWVuQQQcEEdDU39g6V/zx/8eP8AjQAmnA/br7/rqv8A6AtbFcjp2haV9uvv3P8Ay1Xuf7i+9a/9g6V/zx/8eP8AjQBr1j6oM3Fif+nj/wBkel/sHSv+eP8A48f8ayNU0PShcWP7r/l49T/cb3oA66isj+wdK/54/wDjx/xo/sHSv+eP/jx/xoA1j0NZWg/8gW0/65J/KmnQdKwf3P8A48f8aytB0LSf7FtP3P8AyyT+I+n1oA62isj+wdK/54/+PH/Gj+wdK/54/wDjx/xoAIx/xPpT/wBME/8AQmrXrkY9C0r+3pR5P/LBP4j/AHm961/7B0r/AJ4/+PH/ABoA16xtf/5Bjf8AXSL/ANDWnf2DpX/PH/x4/wCNY+vaFpQ0xv3P8cX8R/vr70AdfRWR/YWlf88v/Hj/AI0f2DpX/PH/AMeP+NAGvWPo3+qn/wCviX/0I0v9g6V/zx/8eP8AjWRo2haV5M/7r/l4l7n+8fegDrqKyP7B0r/nj/48f8aP7B0r/nj/AOPH/GgBLv8A5DFn/uy/yFbFchd6FpP9s2f7n+GX+I+g962P7B0r/nj/AOPH/GgDXqjqf/INuP8Ark/8jVb+wdK/54/+PH/GqOp6FpQ024/df8sn7n0PvQBuWX/HnD/uL/KrNc/ZaFpJs4f3P8C/xH0+tWf7B0r/AJ4/+PH/ABoA16x7H/kK33+9H/6CKX+wdK/54/8Ajx/xrHsdC0r+1b4eT/FH3P8AdHvQB19FZH9g6V/zx/8AHj/jR/YOlf8APH/x4/40AN1j71p/18J/I1s1x+r6FpQa0Plf8vCdz6H3rZ/sHSv+eP8A48f8aANeisj+wdK/54/+PH/Gj+wtK/55f+PH/GgBNA/5BEP/AAL+ZrYrkNA0LSjpEP7kfxfxH1PvWx/YOlf88f8Ax4/40Aa9Y3/Mw/8Abv8A+zU7+wdK/wCeP/jx/wAax/7C0r/hIP8AU/8ALv6n+99aAOvorI/sHSv+eP8A48f8aP7B0r/nj/48f8aADXv+QTN9B/MVr1yOvaFpP9kT/uew/iPqPetf+wtK/wCeX/jx/wAaANeisj+wdK/54/8Ajx/xo/sHSv8Anj/48f8AGgCPRvv3v/Xy/wDIVt1x2jaHpRe9/c/8vL9z6D3ra/sHSv8Anj/48f8AGgDXrnde1Cw0h4dX1aeO1tLRZpp5pWCRxxohLM7EgKoHJJOAK+O/2hP2xPgt8DvFkHwc8NadffED4n6hD51h4M8NgXOptGcYmuSWWGxtskZuLqSKPH3SzfKfBrf9i34oftR+ItK8af8ABQy/tbjRUd5rP4ZaDNIfDsBxuU6pOwSXV5kwPldY7RTnELcNQBtah+1p8Zv2wrubwX/wTugt4fDSy/Z7/wCKesQGXR4lGRINFtjtOqzqeBNlLJG5MkpBjP07+zR+yB8Kf2Y4NS1rw8134g8YeImWXX/Fety/a9a1aYdDNOQNsS/8sreJY4IhxHGvNfQ9j4T8OaXYwaXpdnHbWttGsUMMI2RxxoMKqquAqgcAAYAq1/YOlf8APH/x4/40AX7v/j1l/wBxv5VW0j/kE2v/AFxT/wBBFUbvQtK+yy/uf4G/iPp9araPoOlf2Ta/uf8Alin8R/uj3oA6iisj+wdK/wCeP/jx/wAaP7B0r/nj/wCPH/GgBtqP+J3eH/pnD/7NWzXIWuh6UdavB5X/ACzh7n/a962P7B0r/nj/AOPH/GgDXrJ1f/Vwf9d4v/QhSf2DpX/PH/x4/wCNZOr6FpPlQfuf+W8Xc/3h70AdbRWR/YOlf88f/Hj/AI0f2DpX/PH/AMeP+NAGvWPoX/IP/wC2sv8A6G1L/YWlf88f/Hj/AI1j6FoOk/2f/qf+Wsvc/wB9vegDr6KyP7B0r/nj/wCPH/Gj+wdK/wCeP/jx/wAaACUH+3YT/wBMJP8A0JK165GXQtJ/t2H9z/ywk/iP95Petf8AsHSv+eP/AI8f8aANesjXv+QLdf8AXNv5Uf2DpX/PH/x4/wCNZOvaFpX9i3X7kf6pv4j6fWgDrF+6KWsddC0naP3P/jx/xpf7B0r/AJ4/+PH/ABoA16yNN/4+77/rsP8A0BaP7B0r/nj/AOPH/GsvSdF0yK/vJY4sMs4IOT1CLQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/wCQPP8AQfzFbFY+v/8AIHn+g/mKANiiiigArI0r/W3n/Xwf/QVrXrI0r/W3n/Xwf/QVoA16KKKAMbUP+QnYf9dH/wDQGrZrG1D/AJCdh/10f/0Bq2aACoLr/j2k/wB0/wAqnqC6/wCPaT/dP8qAKmjf8gi1/wCuSfyFaVZujf8AIItf+uSfyFaVABWRb/8AIbuv+ucX82rXrHt/+Q3df9cov5tQBsUUUUAY+t/8e0X/AF3h/wDQxWxWNrf/AB7Rf9fEP/oYrZoAKKKKAMfQ/wDjxP8A11l/9DatisfQ/wDjxP8A11l/9DatigArHm/5D1v/ANcJf5pWxWPN/wAh63/64S/zSgDYooooAy9c/wCQNdf9cn/lUWueH9B8V6Fc+GvFFlb6lp19E0Nza3UazQTROMMjo4KspHBBBBqXXP8AkDXf/XJ/5GtJPuD6UAfmHc/sZ/Gb9lq7fxP/AME7fEMGn6IpMk/w18SyyzeG5RySNOnUSXGkuSeFiEtpn/l3H3h6n8Gf2+Php478c23wN+M+l3/wo+J0ysU8MeJtkT3uwgM+m3iFrXUYgSPmt5GcA/OiHivuuvKfjP8AAz4PftEeBLn4Z/HHw3YeKNCu8F7TUIRKgdfuuhPzRyKeVkQq6nlSDQB32nf8f19/11X/ANAWtivyys/gd+2j+yje3Vz+yn4mX4peC7Vgv/CEeOLx11K3QKuF07XiskmAOFi1COcYAAmQZr3D4M/t9fBD4oeLoPhH42TUPhr8RZVJ/wCES8XwjTtRlK/eNo5Zre+QH/lpZzTLjkkUAfbtY+q/8fFj/wBfH/sjVsVj6r/x8WP/AF8f+yNQBsUUUUAIehrK0H/kC2n/AFyT+Vap6GsrQf8AkC2n/XJP5UAa1FFFAGPH/wAh6X/rgn/oTVsVjx/8h+X/AK4J/wChNWxQAVja/wD8gxv+ukX/AKGtbNY2v/8AIMb/AK6Rf+hrQBs0UUUAFY+i/wCqn/6+Jf8A0I1sVj6L/qp/+viX/wBCNAGxRRRQBj3f/IZs/wDdl/kK2Kx7v/kM2f8Auy/yFbFABVHU/wDkG3H/AFyf+Rq9VHU/+Qbcf9cn/kaAJLL/AI8of9xf5VaqrZf8eUP+4v8AKrVABWNY/wDIVvv96P8A9BFbNY9j/wAhS+/3o/8A0EUAbFFFFAGNrH3rT/r4T+RrZrG1j71p/wBfCfyNbNABRRRQBj6B/wAgmH/gX8zWxWPoH/IJi/4F/M1sUAFY3/Mw/wDbv/7NWzWN/wAzD/27/wDs1AGzRRRQBka9/wAgmb6D+YrXrI17/kEzfQfzFa9ABRXhPx3/AGmvgL+zL4fh8SfHPxRY+HoruQQ2cEz77u9mPAitbaMNPcSk8COFHY+lfGsvxS/bv/a2LWXwF8Pn4HeCZmAPinxdarceI7qHu1hoxby7XP8ABLqDlh1NqeKAPqb40/tRfAr9lzw/L4j+NevxaUb+8eHTrGNHudR1GcgYhs7OFXuLmVjwEhjY+uBzXyo0v7c37ajGK3S+/Z3+GkrYMj+VN441WHPO1f3ttpEbjufPuwO0Dcj3T9mv9in4HfALxPq3xL02C88TePNSkaLUPF/iO4Opa3cpgHYLiQAQQ8/LBbrFCo6JX2jQB4L8AP2Y/gf+zB4Yn8L/AAX0GLSxfSm51C8dmuNQ1G5bJae8u5i89zMxJJeV2bnAwOK9jvv+QnZf70n/AKCa16yL7/kJ2X+9J/6CaANeiiigCvd/8esv+438qraP/wAgm1/64p/6CKs3f/HrL/uN/Kq2j/8AIJtf+uKf+gigDRooooAxrX/kN3n/AFzh/wDZq2axrX/kN3n/AFzh/wDZq2aACsnV/wDVwf8AXeL/ANCFa1ZOr/6uD/rvF/6EKANaiiigArH0L/kH/wDbWX/0Nq2Kx9C/5B//AG1l/wDQ2oA2KKKKAMiX/kOw/wDXCT/0JK16yJf+Q7D/ANcJP/QkrXoAKyNf/wCQLdf9c2/lWvWRr/8AyBbr/rm38qANVfuj6U6kX7ozS0AFZGm/8fd9/wBdh/6Ata9ZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9f+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyJTrvmN5It9mTt3Fs47ZrXooAxc+IvS2/Nv8KyNePiH+yJ8i2+6O7eorsax9f8A+QPP9B/MUANz4i9Lb82/woz4i9Lb82/wraooAxc+IvS2/Nv8KydLPiHzbzAtv+Pg92/ur7V2FZGlf628/wCvg/8AoK0AMz4i9Lb82/woz4i9Lb82/wAK2qKAON1A+If7SsOLbPmP3b+43tWxnxF6W35t/hS6h/yE7D/ro/8A6A1bNAGLnxF6W35t/hUNyfEP2aTi2+6e7en0roKguv8Aj2k/3T/KgDm9HPiH+ybXAtv9UndvQe1aOfEXpbfm3+FWNG/5BFr/ANck/kK0qAMXPiL0tvzb/Csm3PiH+2rri2/1cXdv9quwrIt/+Q3df9c4v5tQAzPiL0tvzb/CjPiL0tvzb/CtqigDjta/4SH7NFkW3+vh7v8A3x7Vr58Relt+bf4U7Wxm2i/67w/+hitigDFz4i9Lb82/woz4h9Lb82/wraooA4/RD4h+xHAtv9bL3b++3tWtnxF6W35t/hT9D/48T/11l/8AQ2rXoAxc+IvS2/Nv8KyJj4h/t2Di2/1Mvdv7ye1djWPN/wAh63/64S/zSgBufEXpbfm3+FGfEXpbfm3+FbVFAHI62fEP9j3XFt/qn7v6H2rSU+Ito4tunq3+FWNc/wCQNdf9cn/lWkn3B9KAMfPiL0tvzb/CjPiL0tvzb/CtqigDjtOPiH7bfcW3+tXu/wDcX2rz74yfAn4d/tD+DpPh/wDHHwvovirR5GEgttRg89UkHSSMsN0ci/wyIQ69iK9a03/j+vv+uq/+gLWxQB+W9p+yz+2V+zHGsv7HPxCj8T+HIDkeC/iLcXGoQxxf887LWVD39vgDCLcreIOnA6WY/wDgoz4X8HeItM8F/th+Hb34H65LdCOKXxLiTQbtypH+ja1bl7JskgBJ3gl9YxX6f1yni/RNF8SWMWgeI7ODULC8kMU9tcxrNDKjI4KujgqwPcEGgCXT9S1LV7GHVNJmsrq2uEEkU0Tl43RuQysuQQR0INXM+IvS2/Nv8K/Pqf8A4Ju+B/hrqD+I/wBizxZrXwSvWYudO0J0uvDczc8S6LdCS0Qc8m1FtJ/tiqH/AAvj9vz9n4yw/tB/DC2+J+hQcr4g+G0m2+8sd59EvpFk39z9lurjPZAcCgD9EyfEWOlt+bf4Vl6EfEP9i2uBbf6pO7en0r52+B37df7Kf7ROrP4T+G3i+2HiOLKz+H9USTStagYdRJYXiQ3K4x18vHoSK+o9DVl0a1VhgiJOD9KAIs+IvS2/Nv8ACjPiL0tvzb/CtqigDjoz4h/t2Xi2/wBQndv7ze1a+fEXpbfm3+FOj/5D8v8A1wT/ANCatigDFz4i9Lb82/wrH14+If7NbItvvxd2/vrXZVja/wD8gxv+ukX/AKGtACZ8Q+lt+bf4UZ8Relt+bf4VtUUAYufEXpbfm3+FZGjnxD5M+Bbf8fEvdv7x9q7GsfRf9VP/ANfEv/oRoAbnxF6W35t/hRnxF6W35t/hW1RQBx10fEP9sWeRbfdl7t6D2rXz4i9Lb82/wp13/wAhiz/3Zf5CtigDFz4i9Lb82/wqlqR8Q/2bcZFt/qn7t6H2rp6o6n/yDbj/AK5P/I0AZVkfEP2OHAtvuL3b0+lWc+IvS2/Nv8K0LL/jyh/3F/lVqgDFz4i9Lb82/wAKyLE+IP7UvsC2+9H3b+6PauxrGsf+Qrff70f/AKCKAEz4i9Lb82/woz4i9Lb82/wraooA43Vz4h3WmRbf8fCd29DWxnxF6W35t/hS6x960/6+E/ka2aAMXPiL0tvzb/CjPiL0tvzatqigDjtBPiH+yYsC2/i7t6n2rXz4i9Lb82/wp2gf8gmH/gX8zWxQBi58Relt+bf4Vj58Qf8ACQdLbP2f1b+9XZV478U/jJ8JfgdA/jX4y+JtL8K6THbkG71W7itIi27O0NIygt6AZJoA9Iz4i9Lb82/woz4i9Lb82/wr86z/AMFBfFHxjL2H7D/wr8QfEhHA8vxDqiN4a8Mckjct7ep9ouFGMk2lrOpHRuRSP+yX+1h+0FaRt+2L8XLjStMkyZ/Cvw0Emh2MikY8ufVHL6nOuDz5MloG7rj5aAPRP2jP26fgV8BNS/4Vv4o1yHWPGl2gNr4V8PwTavrs+SAuLO1V5I1J48yURxDu4ANeVtqv/BSr9p4xjQrHTf2efCFwoL3GoeVrni+ZD2SCNn02xJB5LyXjqf4ARX1x8Kv2avgJ+zP4Ju/DPwG8J6b4Xtrg+ZctZQhZ7qQnmS4nOZZ5D3eV2Y9zX0PQB8S/Ab9hj4N/s/8AiOT4i6Np58S+OLpCt34u8TXMura9cbvvD7VMCYUP/PG3WKEdAgFfYGfEXpbfm3+FbVFAHGaOfEG+8wLf/j5fu3oPatnPiL0tvzb/AApNF+/e/wDXy/8AIVt0AYufEXpbfm3+FZN6fEP9pWXFt96Tu390+1dhWRff8hOy/wB6T/0E0AMz4i9Lb82/woz4i9Lb82/wraooA527PiL7LLxbfcbu3p9KraQfEX9k2vFt/qU7t6D2ro7v/j1l/wBxv5VW0f8A5BNr/wBcU/8AQRQBWz4i9Lb82/woz4i9Lb82/wAK2qKAOOtT4g/tq7wLfPlw92/2vatfPiL0tvzb/Cltf+Q3ef8AXOH/ANmrZoAxc+IvS2/Nv8KytXPiHy4OLb/Xxd2/vV19ZOr/AOrg/wCu8X/oQoAjz4i9Lb82/wAKM+IvS2/Nv8K2qKAMXPiH0tvzb/CsjQz4h+wcC2/1kvd/77e1djWPoX/IP/7ay/8AobUANz4i9Lb82/woz4i9Lb82/wAK2qKAOPkPiH+3IeLb/USd3/vJWtnxF6W35t/hT5f+Q7D/ANcJP/QkrXoAxc+IvS2/Nv8ACsnXT4h/sa6yLb/Vt3b0+ldhWRr/APyBbr/rm38qAI1PiLA4tvzb/Clz4i9Lb82/wrZX7opaAMXPiL0tvzb/AArM0n+3ft955ot9nnjdtLZxsXOK62sjTP8Aj7vv+uw/9AWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA//9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKypNb0uKRopJQGUkEYPUUAatY+v/8AIHn+g/mKP7f0j/nsPyP+FZGva9pB0if98Og7H1HtQB19FY/9v6R/z2H5H/Cj+39I/wCew/I/4UAbFZGlf628/wCvg/8AoK0n9v6R/wA9h+R/wrJ0vXtIEt5++H/Hwex/ur7UAddRWP8A2/pH/PYfkf8ACj+39I/57D8j/hQAmof8hOw/66P/AOgNWzXH6hr2kf2lYHzh/rH7H+43tWx/b+kf89h+R/woA2Kguf8Aj2k/3T/Ks7+39I/57D8j/hUNzr2kG3kHnD7p7H0+lAFzRv8AkEWv/XJP5CtKuW0fXtIGk2o84f6pOx9B7Vo/2/pH/PYfkf8ACgDYrIt/+Q3df9c4v5tSf2/pH/PYfkf8KybfXtI/tq6PnD/Vxdj/ALXtQB11FY/9v6R/z2H5H/Cj+39I/wCew/I/4UAJrf8Ax7Rf9fEP/oYrZrkNa17SDbRfvh/r4ex/vj2rX/t/SP8AnsPyP+FAGxRWP/b+kf8APYfkf8KP7f0j/nsPyP8AhQAaH/x4n/rrL/6G1bFchomvaQLIjzh/rZex/vt7Vr/2/pH/AD2H5H/CgDYrHm/5D1v/ANcZf5pR/b+kf89h+R/wrIm17SP7dgPnD/Uy9j6p7UAdfRWP/b+kf89h+R/wo/t/SP8AnsPyP+FAEmuf8ga7/wCuT/yNaSfcH0rldb1/SP7Huv3w/wBU/Y+h9q0k1/SNo/fDp6H/AAoA2qKx/wC39I/57D8j/hR/b+kf89h+R/woANN/4/r7/rqv/oC1sVyGna9pAvb4+cP9avY/3F9q1/7f0j/nsPyP+FAGxWPqmftFj/18f+yNR/b+kf8APYfkf8KyNT17STcWWJh/x8eh/uN7UAdfRWP/AG/pH/PYfkf8KP7f0j/nsPyP+FAHknxu/Zl/Z7/aR0ZND+PHgzSPFcEJDQNqNqk0sDKchoZSPMicHkNGysD0NfHNj+wz8XvhlptlqX7Hvxr8SeD4o4lxoPib/irdCZeCECXrrfwgcgeTfIoB+6cCv0gOv6Rg/vh+R/wrL0LXtIGi2o84f6pOx9PpQB8Dj4/f8FA/g3d/Zfjl8G7Px9pCZLa38OdSV5wgxzJpOpm3lB6/LBc3B44611vgv/gpr+xn4o8Sr4C8U+Km8B+JjgHRfGlpP4cvcnPCLfpCkvTrC8inseRX3B/b+kf89h+R/wAK5fxho3wz+IeiS+GfH2m2OuabN/rLTULZbmB/rHIrKfxFAG9pl9Y6rqH9qaXNHc201tG0c0TB43BZuQwyCPoa6KvzBvP+Cbf7HmmeJ5tW+CC6z8Jb9kWUzeBNVu9DhZycEvZwv9ik+6P9Zbt+ppYfg7+378Kyp+E/x703xxYxnC6f8QfDsck+z5cAX+kPYtkYPzSW0pJPJ4oA/T2sbX/+QY3/AF0i/wDQ1r86JP2o/wBu34cBF+KfwItvFlsp/e3vgHxFb3cm3BJYWeqR6dJwABtSWRiTwMVSuv8AgqX+ztZaQ5+M2g+N/hi6Mhk/4SvwtqNrDHsIZybmGGe22qOr+bt9CaAP09or5N+HH7ef7E/xemFp8Mfix4T1u4IQ/Z7TV7Z5xv8AugxeZ5gJ7AqDX05FrukzwC5gmEkR6OoLKfxAxQBrVj6L/qp/+viX/wBCNH9v6R/z2H5H/CsjRte0kQz/AL4f8fEvY/3j7UAdfRWP/b+kf89h+R/wo/t/SP8AnsPyP+FABd/8hiz/AN2X+QrYrkLvXtIOsWf74fdl7H0HtWv/AG/pH/PYfkf8KANiqOp/8g24/wCuT/yNVf7f0j/nsPyP+FUtT17SDptx++H+qfsfQ+1AG5Zf8ecP+4v8qs1z1lr2kCzhHnD7i9j6fSrP9v6R/wA9h+R/woA2KxrH/kK33+9H/wCgil/t/SP+ew/I/wCFY9jr2kjVL4+cPvR9j/dHtQB2FFZaa1psh2xyFj7Kx/pXAeOfjl8GPhhZtqPxL8V6R4dgUEmTU7yKzUbeTzKy9KAO61j71p/18J/I1s1+cHiP/gqj+wTJfQaX4M+INt40vY5o2+zeEra58QyHfkL/AMg6G4A3HgEkDNZKf8FAfi348cW/wG/Z48e6srNtF94nS18KWIyD8x+3TfayuRg7LRjzkA0AfprRX5m3F7/wU++JjiOTV/h18J7GU5Y21vfeLNRRcg7Q0h0y2DYyMlJBnBwRxVWP9gmx8dhZf2nvjV8QPiKWcPNZLqh8O6XIQQdptdFjstyZA+WSSTPIOQTQB9I/E79sT9lj9m/Q4z8cPH+ieHJxu22lzdp9skOTgR2yFp5GPZUQknjGa8Gn/b1+I3xMiWP9kj4JeLvGyTMBHquuxDwlo+xjjzPN1IJdugHP7qzkJGMZzXtn7Pv7Mn7I37POlRS/BDwJoHhedg2+5sLBEupMnBLzlTM5OBku5J719Qf2/pH/AD2H5H/CgD87ZPgh/wAFE/jgsT/Gn4r6Z8LtKkA8/R/h1Yi5vWBOSjavqiSEYHylobKFjyVZTjHffDX/AIJ7/snfDb4jwfEOfwwPFni6C2O3xH4ruJtf1ZSzjJjuL55mhzgZEIjXjpX2p/b+kf8APYfkf8Kx/wC3tJ/4SDPnD/j39D/e+lAHYUVj/wBv6R/z2H5H/Cj+39I/57D8j/hQAuvf8gmb6D+YrXrkdd17SDpM374dB2PqPatb+39I/wCew/I/4UAbFFY/9v6R/wA9h+R/wo/t/SP+ew/I/wCFADNF+/e/9fL/AMhW3XG6Pr2kh7zMw/4+X7H0HtW1/b+kf89h+R/woA2KyL7/AJCdl/vSf+gmk/t/SP8AnsPyP+FZN7r2kf2lZHzh96Tsf7p9qAOuorH/ALf0j/nsPyP+FH9v6R/z2H5H/CgDQu/+PWX/AHG/lVbR/wDkE2v/AFxT/wBBFUbrX9JNrJiYfcbsfT6VV0jX9IGk2o84f6lOx9B7UAdTRWP/AG/pH/PYfkf8KP7f0j/nsPyP+FACWv8AyG7z/rnD/wCzVs1x9rr2kjWrw+cP9XD2P+17Vsf2/pH/AD2H5H/CgDYrJ1f/AFcH/XeL/wBCFN/t/SP+ew/I/wCFZOr6/pHlwfvh/r4ux/vD2oA66isf+39I/wCew/I/4Uf2/pH/AD2H5H/CgDYrH0L/AJB//bWX/wBDaj+39I/57D8j/hWRoevaQLD/AFw/1svY/wB9vagDr6Kx/wC39I/57D8j/hR/b+kf89h+R/woAWX/AJDsP/XCT/0JK165GXXtI/t2E+cP9RJ2P95Patb+39I/57D8j/hQBsVka/8A8gW6/wCubfypP7f0j/nsPyP+FZOva9pB0W6/fD/Vt2Pp9KAOsX7o+lOrGXX9I2j98PyP+FL/AG/pH/PYfkf8KANisjTf+Pu+/wCuw/8AQFpP7f0j/nsPyP8AhWXpOt6XLf3kUcwLNOABg9Si0AdZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArI1/P9kT49B/MVr1j6/8A8gef6D+YoA2KKKKACsjSv9bef9fB/wDQVrXrI0r/AFt5/wBfB/8AQVoA16KKKAMbUP8AkJ2H/XR//QGrZrG1D/kJ2H/XR/8A0Bq2aACoLn/j2k/3T/Kp6guf+PaT/dP8qAKmj/8AIJtf+uSfyFaVZujf8gi1/wCuSfyFaVABWRb/APIbuv8ArnF/Nq16yLf/AJDd1/1zi/m1AGvRRRQBj62cW0X/AF8Q/wDoYrYrH1v/AI9ov+u8P/oYrYoAKKKKAMjQ8/YTn/nrL/6G1a9Y+h/8eJ/66y/+htWxQAVjzZ/t63/64y/zStiseb/kPW//AFwl/mlAGxRRRQBl65/yBrv/AK4v/I1pJ90fSs3W/wDkDXX/AFyf+RrST7g+lADqKKKAMfTift19/wBdV/8AQFrYrH03/j+vv+uq/wDoC1sUAFY+qf8AHxY/9fH/ALI1bFY+qf8AHxY/9fH/ALI1AGxRRRQAh6GsrQv+QLaf9ck/lWqehrK0H/kC2n/XJP5UAa1FFFAGPGT/AG9KP+mCf+hNWxWPH/yHpf8Argn/AKE1bFABWPrxxprf78X/AKGtbFY2v/8AIMb/AK6Rf+hrQB5H8Sf2Xf2a/jJKbj4s/D/w54lmJz5up6XbXUgJ7h5I2YH3BzXyzJ/wSe/Yb093uvh54Z1DwLcsrKs/hLXdU0Fk3dSq2N1DHu9ypNfo3RQB+dVv+wH4v8MIf+Fa/tA/FHSCkflxR32qWutxJjuRqNncSOfdpDWTp/7Of/BQPRvm8G/tHw30MEkqmLxD4OsrppGDdWksp7E/kBX6V1j6L/qp/wDr4l/9CNAH58Wnh3/grdoMU3neK/hP4mbcfKEmiatpB29tzJf3oz64Wrdv4v8A+Crmj2gbV/Anwu1ubv8AYvEuqWQ/KbSpv51+ilFAH5z2vxb/AOCkg1G3k174K+ENyLJhbXxrIxYcdPM0lK6OT47/ALecIw3wAsZSO8XjG2IP/fdop/Svt27/AOQxZ/7sv8hWxQB8CJ8fv28nOD+z3bL9fGFnj9LY1HqXxm/4KBXmnTiy+B2hW2Y2H+l+MlHb/pnpz19/1R1P/kG3H/XJ/wCRoA/PSx+Jv/BUa+jWGD4RfD+xXACyXHjO8lAHqVj0Xn8D+NOjl/4K2ancyxzQfCPRIG/1brNrOpuv1Ux2Yb/voV+htj/x5Q/7i/yq1QB+a0Pwd/4KpeI7R4/FHxw8D+H5C5KHQfBE8pCE8Am91eYEgd9g57VPbfseftJ+JNQv4vH/AO0t41kjlVFkj0TT9G0kK23rG4sZpF/77P1r9IqxrH/kK33+9H/6CKAPz6f/AIJg/A/xE0p+LnjD4i+O1nRUkh1rxlqq2zbc8/Z7Oe1gB9cRgV6J4G/4JtfsDfDq5F/4W+EPhZboOJftF1p0V7P5gGN3m3Akfd6tuya+2qKAOWOk6V4esrDStBtorG1inRUht0EUarg8BVAAH4V1NY2sfetP+vhP5GtmgAooooAx9Az/AGTFn/a/ma2Kx9A/5BMX/Av5mtigArG/5mH/ALd//Zq2axv+Zh/7d/8A2agDZooooAyNd/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0b795/wBfL/yFbdYmi/fvf+vl/wCQrboAKyL4/wDEzsh/tSf+gmtesi+/5Cdl/vSf+gmgDXooooAr3f8Ax6y/7jfyqtpH/IJtf+uKf+girN3/AMesv+438qraP/yCbX/rin/oIoA0aKKKAMe1J/tu8H/TOH/2atisa1/5Dd5/1zh/9mrZoAKydX/1cH/XeL/0IVrVk6v/AKuD/rvF/wChCgDWooooAKx9DJOn8/8APWX/ANDatisfQv8AkH/9tZf/AENqANiiiigDIlJ/t2Ef9MJP/QkrXrIl/wCQ7D/1wk/9CStegArI17/kC3X/AFzb+Va9ZGv/APIFuv8Arm38qANVfuj6U6mr90fSnUAFZGmnN3ff9dh/6Ata9ZGm/wDH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXlrHe2z2spIV+CR1qzRQAUUUUAFVre1jtmlZCT5rlzn1IA/pVmigAooooArTWsc88Nw5O6Ellx05BHP51ZoooAKZIgkRo26MCPzp9FAEFtAlrbR20ZJWNQoz1wOKnoooAKrJaxx3Ul2Cd0iqp9MLnH86s0UAFFFFAFa6tI7xFjkJAV1cY9UOR/KrNFFABRRRQBWtbWOzi8mIkjczc+rEk/zqzRRQAVWa1ja7S9JO5FZAO2GIJ/lVmigAooooAr3dsl5ayWkpIWRSpx1weKnAwMUtFABRRRQBWgtY4JZZkJzMwZs+oAHH5VZoooAKrXFrHcvE7kgwvvGO5wRz+dWaKACiiigAPPFV7S2jsrWO0iJKxKFBPXAqxRQAUUUUAVhaxrdtegncyBCO2ASf61ZoooAKrXdrHewG3lJCkq3HX5SCP5VZooAKKKKACq1rax2iusZJ3uznPqxyas0UAFFFFAFaS1jluYrpid0QYD0+bGf5VZoooAKinhW4ge3fIV1KnHXB4qWigCOKNYYliXooAGfapKKKACq0VrHDcS3Ck7piC2enyjHFWaKACiiigCtc2kd0YzISPKcSDHqKs0UUAFFFFAFa0tY7K3W2iJKrnGevJz7VZoooAKrfZY/tn27J37NmO2M5qzRQAUUUUAVru1jvLdraUkK/XHWrNFFABRRRQBVtbSO0MpjJPmuZDn1OOn5VaoooAKrS2sc08VwxO6EkjHT5hjmrNFABRRRQAyRBLG0bdGBB/GmW0CWtvHbR5KxqFGeuAMVNRQAUUUUAVo7WOO6lu1J3ShVI7fLnGPzqzRRQAVXubaO6VFkJGx1cY9VORViigAooooAKrWlrHZw+TESRuZueuWJJ/nVmigAooooArNaxtdreEnciMgHbDEH+lWaKKACq15ax3trJaSkhZFKkjrg1ZooABxxRRRQAVWgtY7eSWVCSZm3tn1wBx+VWaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==" + } + }, + "cell_type": "markdown", + "id": "f174b55a-ea04-4222-b477-44ac9d8ea5fc", + "metadata": {}, + "source": [ + "![Xnip2023-03-02_10-55-29.jpg](attachment:04c01833-6f41-4b2a-812f-56ce5790948d.jpg)" + ] + }, + { + "cell_type": "markdown", + "id": "c5c402a1-20dc-4888-867d-e3034545fd5e", + "metadata": {}, + "source": [ + "Currently, this information is stored in a text file with a filename ending in \".ori\", a format inherited from MEGALib. Each line contains the keyword \"OG\", followd by: time stamp (GPS seconds), x-axis galactic latitude (deg), x-axis galactic longitude (deg), z-axis galactic latitude (deg), z-axis galactic longitude (deg). " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "319be2f3-92f1-4dad-b040-99b865dabe18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#Type OrientationsGalactic \n", + "\n", + "OG 1835487300.0 68.44034002307066 44.61117227945379 -21.559659976929343 44.61117227945379\n", + "\n", + "OG 1835487301.0 68.38920658776064 44.642124027021296 -21.610793412239364 44.642124027021296\n", + "\n", + "OG 1835487302.0 68.3380787943012 44.67309722321497 -21.661921205698793 44.67309722321497\n", + "\n", + "OG 1835487303.0 68.28695666554313 44.70409195030112 -21.713043334456863 44.70409195030112\n", + "\n", + "OG 1835487304.0 68.2358402243372 44.73510829054615 -21.764159775662804 44.73510829054615\n", + "\n", + "OG 1835487305.0 68.18472949353415 44.76614632621641 -21.81527050646584 44.76614632621641\n", + "\n", + "OG 1835487306.0 68.13362449598479 44.79720613957824 -21.8663755040152 44.79720613957824\n", + "\n", + "OG 1835487307.0 68.08252525453989 44.82828781289802 -21.91747474546011 44.82828781289801\n", + "\n", + "OG 1835487308.0 68.0314317920502 44.859391428442066 -21.968568207949804 44.859391428442066\n", + "\n" + ] + } + ], + "source": [ + "with open(ori_path) as f:\n", + " for i in range(10):\n", + " print(f.readline())" + ] + }, + { + "cell_type": "markdown", + "id": "fc774be1-7a5e-45c4-a563-50f2936df15e", + "metadata": {}, + "source": [ + "
\n", + "Note: The orientation (.ori) file format will change in the future, from a text file to a FITS file. However, the file contents and the capabilities of the SpacecraftFile class will be the same.
" + ] + }, + { + "cell_type": "markdown", + "id": "975bc80f-5aef-4b71-b1a9-9ba79fdf76a8", + "metadata": {}, + "source": [ + "You don't have to remember the internal format though, just load it using the SpacecraftFile class:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "88196861", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n", + "\n", + "WARNING ErfaWarning: ERFA function \"taiutc\" yielded 1 of \"dubious year (Note 4)\"\n", + "\n" + ] + } + ], + "source": [ + "ori = SpacecraftFile.parse_from_file(ori_path)\n", + "\n", + "# Let's use only 1 hr in this example\n", + "ori = ori.source_interval(ori.get_time()[0], ori.get_time()[0] + 1*u.hr)" + ] + }, + { + "cell_type": "markdown", + "id": "d203e24e-ff40-4ca7-a104-9ebb70c4b77c", + "metadata": {}, + "source": [ + "You can plot the pointings to see how the zenith changes over the observation. In this example, we'll plot only 1 hr:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e039c144-9374-4d38-b114-08116c88f89e", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 3601 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkgAAAEXCAYAAADm98iSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADkmklEQVR4nOzdd3hT5dvA8e9J0pYWyiqlzLIpSwEp8CIiIHsWkA3KEhARB6IsFUEUULb8RHAUQdnIKHsvB0u20KKssmmB0t0mOe8faULSprSlIx3357pCk5Mn59wnCcmdc5/neRRVVVWEEEIIIYQQQgghhBBCCCHyEI2jAxBCCCGEEEIIIYQQQgghhMhqUiARQgghhBBCCCGEEEIIIUSeIwUSIYQQQgghhBBCCCGEEELkOVIgEUIIIYQQQgghhBBCCCFEniMFEiGEEEIIIYQQQgghhBBC5DlSIBFCCCGEEEIIIYQQQgghRJ4jBRIhhBBCCCGEEEIIIYQQQuQ5UiARQgghhBBCCCGEEEIIIUSeIwUSIYQQQgghhBBCCCGEEELkOVIgESIPGThwIIqicPXq1UzdzmeffYaiKOzfvz9TtyOEEEKInEVyESGEEEI4muQjQghrUiARIptRFMXmotVqKVasGK+88grLly93dHgALFmyBEVRWLJkiaNDEUIIIUQGk1xECCGEEI4m+YgQIqvoHB2AEMK+SZMmARAfH8/FixfZuHEj+/bt4/jx48yePfuZ1jlt2jTGjRtH6dKlMzLUJN5++2169+6Nt7d3pm5HCCGEEJlHchEhhBBCOJrkI0KIzKaoqqo6OgghxBOKogCQ+L/mnj17aNWqFQCXL1+mfPnyWR2axZIlSxg0aBD+/v4MHDjQYXEIIYQQIuNJLiKEEEIIR5N8RAiRVWSILSFyiBYtWlCtWjVUVeXYsWOW5SdOnODVV1+lePHiuLi4UK5cOd566y1u376dZB32xtm8evUqiqIwcOBArl69Su/evSlWrBj58uXD19eXzZs326yjWbNmDBo0CIBBgwbZdHk1rze5cTYVRaFZs2aEhIQwbNgwSpYsiYuLCzVr1sTf39/ufsfGxvLZZ59RsWJFXFxcqFChAh9//DGxsbGW9aVGly5dUBSF+fPnJ7nvk08+QVEUhgwZkqp1CSGEEHmR5CLPnotcvHgRRVFo3rx5sm2ee+45nJyc7D5vQgghhDCRfCR9x0bKly+fZPgy64sUekReJENsCZGDmM+cMJ9JsXnzZl599VVUVaV79+6UK1eOEydOsHDhQjZu3Mjhw4epUKFCqtZ97do1GjRoQMWKFXnttdd48OABq1atws/Pj927d1t+0A8cOJDChQuzceNG/Pz8qFOnjmUdhQsXTnE7jx49onHjxjg7O9O9e3diY2NZs2YNgwcPRqPRMGDAAJv9ffXVV9myZQtVqlTh7bffJj4+niVLlnD+/PlUPmsmP/30E3Xr1uWjjz6iSZMm1K1bFzCdffLll19So0YNvvnmmzStUwghhMhrJBd5tlykWrVqNG/enH379hEUFETVqlVt7v/jjz84d+4cr776KiVLlkz1eoUQQoi8SPKRZz828t577/Ho0aMkywMCAvj7779xc3NL0/qEyBVUIUS2Aqj2/mvu2rVLVRRFVRRFvXr1qhoeHq4WLVpU1Wg06sGDB23aTp8+XQXUVq1a2SwfMGCACqhXrlyxLLty5Yplm5999plN++3bt6uA2q5dO5vl/v7+KqD6+/vb3YdJkyapgLpv3z67+zZkyBBVr9dblp8/f17VarVq9erVbdovXbpUBdQmTZqosbGxluUPHz5UfXx8VEBt2rSp3Rjs+f3331WdTqdWqVJFDQ8PV+/cuaOWKFFCdXV1Vc+dO5fq9QghhBC5meQiT2RkLrJmzRoVUD/44IMk95mfl507d6ZqXUIIIURuJ/nIExl9bCSxnTt3qjqdTq1cubJ6//79Z16PEDmVDLElRDb12Wef8dlnnzFx4kS6d+9O27ZtUVWV9957j3LlyrFx40YePHhAr169aNKkic1jP/jgA8qXL8+uXbu4fv16qrZXrlw5Pv74Y5tlbdq0wdvbm6NHj2bYfrm5uTF79my0Wq1lWY0aNWjcuDEXLlwgIiLCsvznn38GYOrUqTg7O1uWFy5cmE8++STN237xxRf5/PPPuXTpEsOHD+e1117jzp07zJ8/n5o1a6Zjr4QQQojcR3KRjM1FunTpQsmSJVmyZAmxsbGW5Y8ePWL16tVUqlSJli1bPutuCSGEELmS5CMZf2zE2rlz5+jevTuFChVi69atFCtWLF3rEyInkiG2hMimJk+eDJi6jBYuXJgmTZowZMgQ+vfvD8Dff/8NwCuvvJLksTqdjpdffpmrV69y8uRJvL29U9xenTp1bL6YzcqWLcuff/6Znl2xUaVKFQoWLGh3OwAPHz6kQIECAJw8eRKNRsOLL76YpP1LL730TNsfO3Ys+/btY/ny5QD06dOHN95445nWJYQQQuRmkotkbC6i0+kYOnQoU6ZMYd26dfTt2xeAZcuWER0dzbBhwyxDhQghhBDCRPKRzDk2AnD79m06dOhAbGysZfguIfIiKZAIkU2pCWNqJicsLAwg2XGqzcvtjS1pT3JjZOp0OoxGY6rWkd7tABgMBsuysLAwihYtarnPmpeX1zNtX1EUunXrxs6dOwHT+JtCCCGESEpykYzPRYYNG8YXX3zBokWLLAWSxYsX4+zsbJnoVQghhBBPSD6SOcdGIiMj6dixI8HBwfz666/pKrQIkdPJEFtC5FCFChUC4M6dO3bvv337tk27nKhgwYI8ePAAvV6f5L67d+8+0zovXbrEmDFjKFKkCBqNhjfeeIOYmJj0hiqEEELkOZKLpD0XKV26NJ07d+bgwYNcvHjRMjl7165d8fT0zIiQhRBCiDxF8pG05yMGg4HevXvz999/M3XqVPr06ZMRYQqRY0mBRIgcqm7dugDs378/yX16vZ5Dhw4B8MILL2T4ts3dTa3PaMgMdevWxWg08scffyS57/Dhw2leX2xsLL169SIyMpJVq1Yxfvx4zp49K71IhBBCiGcguUjacxGAt956C4BFixaxePFiAIYPH/7sQQohhBB5mOQjac9H3nvvPTZv3szgwYOZMGFCRoQoRI4mBRIhcqguXbpQtGhRVqxYwV9//WVz39y5c7ly5QotW7ZM1RibaeXh4QGQ6knOntXrr78OwMcff0xcXJxleVhYGJ9//nma1zdmzBhOnjzJRx99RKtWrZg8eTKNGzdm0aJFrFmzJsPiFkIIIfICyUXSnosAtGjRgqpVq/Lzzz+zevVqfHx8aN68eYbEK4QQQuQ1ko+kLR+ZO3cuCxYsoGXLlnz33XcZGqcQOZXMQSJEDlWgQAF++uknevToQdOmTenRowfe3t6cOHGCnTt3UqJECRYtWpQp227UqBFubm7MnTuX0NBQSpQoAcCoUaMytNvq66+/zsqVK9m+fTu1atWic+fOxMfHs27dOurXr09gYCAaTerqvOvXr2fBggU0bNiQqVOnAqazPVasWEGdOnV44403qFevHhUrVsyw+IUQQojcTHKRtOUiZoqi8OabbzJ69GjANC+JEEIIIZ6N5COpz0fu3LnDBx98gKIo1KpViy+++CJJmzp16tClS5cMi12InEAKJELkYH5+fvz+++98+eWX7Nixg7CwMEqUKMGbb77JJ598QqlSpTJlu0WKFGHdunVMnjyZJUuWEBkZCUD//v0zNAlQFIX169fz5ZdfsmzZMr755htKlizJgAEDeOutt9iwYQMFCxZMcT3Xr19nyJAhFCpUiJUrV9pMbFa2bFl++uknunTpQu/evTl8+DDOzs4Ztg9CCCFEbia5SOpykcQGDhzImDFjcHZ2ZsCAARkWrxBCCJEXST6SunwkJibGMtH83Llz7bYZMGCAFEhEnqOoqqo6OgghElNVFb1ej5OTk6NDEdnUrl27aN26NePGjWPatGmODkcIIUQuI7mISEl6cpH9+/fTvHlz+vfvz7JlyzIpQiGEEDmZ5CIiNeTYiBDpJz1IRLp8+eWXbN++Pdn7161bh6enJ++88w6nTp1Kcn+DBg2YOXOmzbKdO3cyf/58oqOjadmyJWPGjJGEIA+7detWkrM9QkNDGTduHABdu3Z1RFhCCCGyCclFRGbLjFzkq6++AuDtt99Of4BCCCEcSnIRkRXk2IgQmUcKJCJdOnfujK+vr80yVVWZNWsWJUqUwNPT07Lc09OT4cOH27Q1T2hldvv2bWbNmsWgQYMoUaIE/v7+rFmzhr59+2beTohsbfTo0Zw+fZoXX3wRT09Pbty4wbZt23jw4AHDhw+nQYMGjg5RCCGEA0kuIjJbRuUiZ8+eZfPmzZw4cYJt27bRsWNHGjZsmMnRCyGEyGySi4isIMdGhMg8UiAR6VKrVi1q1apls+zMmTPExMTQqlUrm+UFChSgdevWT11fYGAgvr6+9O7dGzBNor1lyxZJBPKwbt26cffuXQICAnj06BH58uWjZs2aDBkyhCFDhjg6PCGEEA4muYjIbBmVi5w4cYIJEyZQsGBBevTowbfffpuJUQshhMgqkouIrCDHRoTIPFIgERlu9+7dKIpCy5Ytk9yn1+uJi4vDzc3N7mNLlizJ6dOnOXbsGF5eXgQEBODt7Z3ZIYtsrGfPnvTs2dPRYQghhMhBJBcRGSmjcpGBAwcycODA9AckhBAi25NcRGQ0OTYiROaRAonIUHq9nn379lGrVi1Klixpc19wcDBt2rQhPj6eokWL0rFjRwYOHIhO9+Rt6OPjQ6tWrfjggw8AqFSpEhMmTMjSfRBCCCFEziW5iBBCCCEcSXIRIYTIWaRAIjLU0aNHCQsLS9KNtFSpUtStW5eKFSsSExPD/v37Wbp0KcHBwUyePNmm7bvvvkuPHj0IDw+nUqVKNomCyHyqqhIXF0d0dDRRUVHExcVhNBotF1VVn/pXo9GgKEqyf7VareW2s7Mzbm5uuLq64uzsjKIojt59IYQQOZzkIjmfqqrEx8cTFRVlk4uoqorBYEgxFzHnGU/LScwXyUWEEEJkNMlFcgfr4yKxsbE2uUZKx0cURUly/CO54yNOTk64ubnh5uYmuYgQDqKoqqo6OgiRe0yZMoX9+/ezfv16ChUq9NS2X3/9NQEBASxcuJCaNWtmUYS5U1xcHBEREZYDCeYvcevryf21d91gMGT9TmhAcVHQOOvQuOhwcXWmkFshKhYrZzlw4erqarluTiDsXS9QoADOzs5Zvw9CCCEcTnIRx4iPjyc8PPyp+YX19ZTyEUfkIlqt1ibfSJxnWN9O7q/5eoECBXBxccnyfRBCCOF4kos4Rnx8PBEREcnmFk87VmJvuV6vz/J9sM5FUjruYe+69W3JRYRIPSlBiwwTFRXF4cOHadCgQYpJAECvXr0ICAjg+PHjkggkIzY2ltDQUJtLSEgIISEhNsseP3781PXky5fP7o/4QoUKUaJEiad+0To7O9uc9WB9RuZHZyabChsKKBoVDaCgomBEq6qm66ox4a/polFVMF/iVYyxRoxxRgzRKsZYlfgYlceRzuhjVULiHnH/3gPUWKPpEmf6a4w1QPzTa7uKqxZNQR0li5WgVtnqFCtWDA8PD8vFfFsKKUIIkXtILpLx4uLiePDggSX3sM5BrK+HhYU9dT358uWz+yPe3d0dLy+vpxYlEuciTzsjU1EUVFVN9oxO6zM+DQYDcXFxdg+OJD6Icvfu3SQFnujo6Kfus7u7u03OYX3depkcvBBCiNxDcpGMFx8fz4MHD2xyD3v5yKNHj566HhcXF7snPri7u1O8ePGnFh9cXFzs5h72eqyae4Ak18vE+rrBYLDpNfu0E1vv3btn94STpylQoECSHMRePpIvX76MermEyJGkQCIyzOHDh4mJiUnSjTQ5xYsXByA8PDwzw8qWnrXw4eTkZPMlVq5cOcsXnLu7u90v8nz58qHVajNlP+rH1Odk2BkURUWjqCiABhWNYkSbsEyD0fTX6rqCilYBRUkongAJKQRgqp2ERSk8oHiy2zYaVYxxRtRYNaGAYrAUUNQoA4ZwPcbHeu6FP2T3PwcxPo7HGK4Hg21hRXHVohR0wrNoMeqWq2U3aZBCihBC5AySi6SevcKH+fbTCh86nc7mO7J27dqW69a5SOITMzIrF3Ekg8FATEyM3cLK48ePbXK6W7ducebMGUJDQ4mLi7NZjxRShBAi95BcJPWetfCh1WptviOfe+45y3dloUKFku1ZkRuHKTMajcTExNjtLRMREWHzPN65c4dz584RGhpKbGyszXrMhRR7J5ZaL5NCisitct+ng3CYXbt24erqSuPGjVPV/tatWwAULlw4E6NynMjISIKDg7l+/brl740bN7h7926aCh/WP5Dd3d2z1XiUb1UZyLDjowFQVQUUFRUsF2tPiiAJPU4SiiMaTNc1prWY2ilQLL9KEeMd/osuYX/jGgVNPh0k8/1sVM1bfUJVVVPx5LEeY7jeUjRRH8fzIDycXQmFFNVOIQVXLZrCzjSr3ghvb2/Kli1r+evm5paap0sIIUQmk1zEVlRUFMHBwTZ5yPXr17l7926aCh/WP4wLFSqUrXIRR9JqteTPn5/8+fOn+jGqqhIREWFTiLI+GHTz5s2nFlK8vLwoW7asTR7i7e2dphiEEEJkHslFbMXExFhyEevjI3fu3El14cP6IH2xYsUoWLAgGo3GMTuUzWg0GkshKLXMuUjiQlRqCynFixe35B9lypTB29sbb29v3N3dM3r3hMgyUiARGeLRo0ccP36cli1bJqkoR0ZG4uTkZHMGvqqqLF26FID69etnaawZSa/Xc+fOHcsXvfXBh9DQUEu7okWL4u3tTbVq1WjevHm2L3yklrtTAb6pO51Rp8ZhVE3FDlUx9QAxgqXYYc3Uy+RJwcRUHFETCiRGNIppmC4U0GmgeoGbXI9QiKSUZR1PG1zr6bMqKShuOrRuOrQlkj7f5qKKqqqo0QbU8HiMjxMKKY/1qI/i2H/5COrRg6gRVuORujvhVsydls+9ZHOwokSJErnyjFkhhMiO8mouYjAYuHv3bpKTMoKDg7l//76lXZEiRShbtixVq1bl5ZdfTnJGoBQ+soaiKLi7u+Pu7k6FChWSbZdcIcWcd549e5aQkBBL+6JFiyYpmpQtW5aSJUvmyjNmhRAiO8qruYjRaOTevXtJ8pDr169z7949S7tChQrh7e1NxYoVady4sRQ+HMQ6Fylfvnyy7ZIrpJhzke3bt9vkmoULF06Sh3h7e1OqVCnJRUS2J+9QkSH27NmDwWCw2400KCiIyZMn07JlS0qXLk1sbCyHDh3i7NmzdOrUCR8fHwdEnDZhYWF2v+xv3rxpmbjLxcXFckbf888/b7letmxZChQo4OA9yDzF8hVlxf8t5mr4Naaen0OkGoERDTqe9BAxAhqbYy6mPiY2xZKEQomimIsnRkuBpZI7xMYHczGmbEJxxP4BHFW1Lp4k7j3yZMv27rNeriimQgpuOjTFzZHaRm+MMWAMiUUNicUYEkPs/VgCjuxE3RoL+oSNaRWUoi5ULVUV31rPWZKEsmXLpmo8WiGEEKmX23OR8PBwy8kY1vnIzZs3LT0NnJ2dLWfytW3b1uYHqpzVl7OkppBi7iFk/Z64ePEiu3btIiYmBjD1DCpVqpRNDmI+01OKYkIIkbFyey4SERGRZIQM819zTwMnJydKly5N2bJladWqlc2B8oIFCzp4D0RapKaQEh0dnaR30L///svevXst86NotVpKlixpt3hSpEgRyUVEtqCo6tPPtxYiNUaMGMGtW7f47bffkpwxf+vWLRYtWsSFCxd48OABGo2GcuXK0bFjRzp37pytPgzj4uL477//uHjxIoGBgVy7do3g4GDLkFiKotgMbWD9I9PT01POdkhkU1AAvz1ai5NiQKdR0SXMTaJVjGgVIxpL7xEVraKa5jLBaBl2y/TOePIRZVTh41rbkmwn1hDHvegQrkfdJjj6Nrei7nE3NoSH8eFExkcRo8ZjVA0YrQsdVsWUpxdNbO9T7bS3Lr6oRlAfx6GGxKKGxGBI+KuGxEKY1VAZrjo0xfLR7vmm+Pj4UK1aNSpVqoSTk1Mqn10hhBDWcksuotfrLblIUFAQ165d4/r16zbDUHh6etr8uDRf9/LyklxEYDQauX//vuXAlfXBrLt372L++efu7m55/1StWpXq1atTqVIlmetECCGeUW7KRa5evWo5LnL16lWCg4N58OCBpU2xYsWSHOz29vbGy8tLRlEQqKpKaGioTQ5iPbya0Wiaf7ZAgQKW90/VqlWpVq0aVatWlVxEZDkpkIg8y2AwcO3aNS5evGi5/Pfff8THx6PVaqlYsSIVKlSw+bIvU6aMfFA/o2HH++OkGNAqKk4aFY1iMBVKrCZ1V1DRoj6ZnyRhuC0lUZGkXZGPqF2qRYbFFq2P5p9HVzjx8B8Cw69yJzqUCEM0+oRJ4yH5YkpyPVMS90oBUOOMGENjLMUTNTQG9V403Isx7ZhWAS83ujRoRfXq1alevTply5aVBFMIIXIpo9FoOevffPn333+Ji4tDq9VSvnx5KlSoYHPwoUyZMri6ujo6dJFDxcbGcuPGDZuzPa9evcp///2HXq9Hp9NRsWJFqlWrRrVq1ahevTrlypWToTGEECKXMhqN3Lx5kwsXLlhykUuXLhEbG2sp4lSsWDHJ/FcyD6d4VnFxcdy6dcumaGLORcw5cIUKFSy5SLVq1ahYsaLkIiJTSYFE5AmqqnLr1i0uXrxo+eK/dOkS0dHRKIpimR/E/ENQzp7LPCP/7o2ToqJLKJDoEnqUaBJ6j2gTiiNaxXqYLdUyiTuoqKqCRinI+9XXZXn8RqORoPDr7LtznJNhgdyOeUic+mQ+kpQLJkmXG+ONcCca9VYk3Iw0/Q0xDY2hOmvQlXSnR6N2lvdoyZIls9UZRkIIIVKmqip37961OQARGBhIVFQUAGXLlrX5IVilSpUk45cLkVmse1GbL1evXkVVVfLly2c5q9N8KV26tOQiQgiRw6iqyv379y2f8xcuXCAwMJCIiAgASpcunSQXkUKIyCrx8fFcvnw5SS5iMBhwdnamSpUqlmN21apVo0yZMtJzWmQYKZCIXCkkJMTmQ/XixYuWYbJKlChh+UA1d9/Lnz+/gyPOW26F3uDr6+/jpBjRaYyWobc0JAy7pahoE4oj5sKJebgtRVEtw2OpwPvV9zpyV5J1JzKUjbcOc+jeGe7GP7CaAP5Jm+R6o4CCGmuAW5FwMwL1lqlooiQM0aW66ShQyoPujdta3sceHh5Zsl9CCCFS5+HDhzYnZly8eNEyTFbx4sVtTsyoWrWqzBEisp2oqCiCgoJsDqTdvn0bMA3P5ePjY5NTe3p6OjhiIYQQ1sLCwmw+wy9evGgZJqtYsWI2xZBq1arJHCEi24mJieHSpUs2+fSNGzcAyJ8/v2W4cnNOXbx4cTmBQzwTKZCIHC8+Pp7z589z9uxZywfm/fv3AShSpIjND7dq1apRuHBhxwYsLMad7gPEojPPUZJQIDEXSxSrQolpEncsw20pJPS+UOCdavscuBfP5nZUKMuu7OLwvXOEq9G2xRGrdjZFlMh41BsRpsLJrUi4FYESZeq9oro7U9bbm/aNX+G5556jRo0aMp+JEEJkEb1ez4ULFzhz5owlF7l79y4AhQoVsvnh5uPjI0VtkWM9evSIwMBAuwfbPDw8LO/15557jlq1auHs7OzgiIUQIm8wGAwEBgZy+vRpSy4iRW2RG4WHhyc5Idr6GKD5PV6rVi2ef/55GR1GpIoUSHIRVVXR6/W5/qCoqqpcvnyZ48ePc/z4cU6fPk1MTIxUj3OoqKgoPr/UD2eNIaEnyZMCyZNCiXkydwBjwtwkYOpKomJEoZfncjw8yjhyVzLM3ehHLL60hUP3zxNDfKJhu8Cy90bVNPH7rUiUWxGmgsntSJQ4A6qTBvdyXgxs+yq+vr5UqFBB/i8IITJdXspFrl27ZslFTp06RVRUFK6urja5iAyLKHK7xMO1mC8RERG4uLhQu3Zt6tWrh6+vL5UqVZKhMIQQmS4v5SI3btyw5CInT54kIiJChkUUeVJyo8g4Ozvz3HPPWXKRKlWqyByvwi4pkDhQYGAg/v7+nD17lri4OEqVKkWnTp3o3r27pc3Zs2f57rvvCAoKIn/+/DRv3pyhQ4cmGQdy586dzJ8/n+joaFq2bMmYMWNyVUJw9+5dTpw4wfHjxzlx4gQPHz7E2dmZ559/Hl9fX3x9falcubL86MrBPjnrhw5TkUSnUdEkXFfAMi+JxtKLxGiZk0RREub3UKGqa0+alXvHofuRmfQGPWuuHuKXawd4ZDCNWa+qVkN0gWmy97tRaC4/QrkShhL8GMWgouZ3onal6nTo0AFfX185Y0gIAUgukhYhISE2uUhISAhOTk7UqlXLkotUrVpVfnSJPM9oNCY5mSk2NpbChQtTr149y0GKEiVKODpUIUQ2ILlI6j18+NAmF7l79y5arZaaNWtacpFq1arJZNYiz1NVlatXr9qczBQdHU3BggV54YUXLLlI6dKlHR2qyCakQOIgR48eZfz48VSpUoVXXnkFV1dXbt68iaqqjBgxAoBLly4xYsQIypUrR+fOnbl37x6rVq2ibt26fP3115Z13b59m4EDBzJo0CBKlCiBv78/bdq0oW/fvo7avXSLiIjg5MmTli/+69evoygKPj4+lg+yWrVqSVe5XObvW/vZ8uArnBQVrWIqkGgUI1pUq0KJqTeJopgGo1IS7oOEOTzCnRjse8CBe5H1ouJimHcxgK13TqJXjaZCiQooCsQbIDgczZVHaK4+QrkTiQIYPVzp0aw99erVo27dujIPjxB5kOQiTxcVFcWpU6csuciVK1cAqFKliiUXef7552UidSFSEBcXx/nz5y0HKQIDAzEajZQpUwZfX1/q1avHCy+8IPPwCJEHSS7ydDExMZw+fdqSi/z7778AVKhQwVIQqV27tkykLkQK4uPjuXDhgiUXuXDhAgaDgZIlS9rkIjIkf94lBRIHiIyMpF+/ftSsWZPPP/882V4PH374If/++y+//PKL5eDl5s2b+eqrr5g5cyYNGjQAYP/+/ezatYsvvvgCgEOHDrFlyxamT5+eNTuUAczziJi/+C9cuIDRaKR06dKWgxAvvPCCTBqWR3xxrh1OigGdJmHIrYTeI9qEniMaRbX0IlEUI4BNkSQuDobW+stR4WcLqqqyNfgEsy5uJcIYDWrC3CZR8WivmYolmiuP0ITFoipgLOXOkFavUq9ePWrWrClnHQmRy0kukpR5HhFzLnL+/HkMBgNeXl6WgxD16tWTH05CpFN4eDh///235SzoGzduoNFo8PHxsfw/k/lLhMj9JBdJyjyPiDkXOXfuHPHx8RQrVsySi7zwwgsUK1bM0aEKkaNFRkZy8uRJSy5y7do1FEVJciKUnJSdd8gRMAfYvXs3Dx48YOjQoWg0GqKjo3FxcbFJCCIjIzl+/Dg9e/a0ObO7TZs2fPPNN+zbt8+SCJQsWZLTp09z7NgxvLy8CAgIwNvbO8v3Ky2Sm0ekUKFCvPDCC7RvbzqzvVSpUo4OVTjAxFrb+OqfNqjmg/oJc46YJmu3LY6Ye5CY5ydBAZ0L/HyxAQOqHXXYPjiaoih08Palg7evzfKNV48y020z0dU9Tc/tg2h018LQXnmE/8pfWLJkCaqzlnxlizG0XQ/q169P+fLlZcxaIXIZyUWSn0ekQIECvPDCC7z77rvUq1ePMmXKyGegEBnI3d2dpk2b0rRpUwDu3LljORi4adMmli1blmT+ksqVK8v/QyFyGclFTG7cuMGxY8ds5hFxc3Ojbt26vPXWW9SrV49y5crJZ6AQGSh//vy89NJLvPTSSwDcu3ePEydOcOLECXbs2MGKFSuSzF9StWpVGdY/F5MCiQMcP36c/PnzExISwsSJEwkODsbV1ZXWrVvz9ttv4+LiwuXLlzEYDPj4+Ng81snJiSpVqnDp0iXLMh8fH1q1asUHH3wAQKVKlZgwYUKW7lNqqKpKUFAQ+/fvZ9++fdy6dcsyj8jAgQOpV68eVapUkQ8cAcBHNXaw/sJ0rqq7UBVTRzfF+mKelwTQJMxVYh5yC0CrheVB9ehb9YSD9iB78ivfAL/yDSy34/RxjD+5in33L4JRRbkTie7aQwxXH/HNwv+hLFAxFHFlYMfuNGvWTA5QCJFL5OVc5PLly5Zc5Pr165Z5RPr160e9evXw8fGReUSEyEIlSpSgY8eOdOzYEaPRyH///WcpmPz0008sXLiQEiVK0Lx5c5o1a0a1atUkFxEiF8iruQjAtWvX2L9/P3v37uXKlSuWeUR69uxJvXr1qF69uvToFyILFS9enHbt2tGuXTtUVeXKlSuWXGTZsmUsXrwYT09PmjVrRrNmzahZs6Ycu8xlZIgtBxg0aBA3b94EoEOHDtSpU4dTp06xbt06WrRowaRJk9i/fz+ffvop33zzDbVr17Z5/KRJkzh9+jQbNmywWX7r1i3Cw8OpVKlStvkytVcUKVSoEE2aNKFZs2bUrl1buqyJp3r48AFL77yKTjHipBjRKqppqK2EAonWauL2J4WTBCoYVKivXUfFihUdtxM5zMarx5h8fhOGOAO64EfoAkNwuhSCJkYvxRIhcom8loskLooUKFCAl156iWbNmlG3bl1cXV0dHaYQwo7Y2FjOnDnDgQMHOHjwII8ePZJiiRC5RF7KRSBpUcTV1ZXGjRvTrFkzfH19ZR4RIbKp+Ph4zp07x4EDB9i/fz8PHjyQYkkulH2+LfKQ6OhoYmJi8PPz49133wWgadOmxMfHs2nTJgYPHkxsbCxgOjMiMWdnZ+Li4pIszy7DUT2tKDJ69GheeOGFbJWoiOytSJGivFtkH/MvNkOrgtbqN7CpMPKkOGLbk8Q0R7lOgVPGbvz9Wze6d/vUIfuQ0/iVr49f+fqW23/eCeLtI0tRrz3E6eJ9fl6zgmXLlkmxRIgcLC/kIskVRUaOHImvr6/d/RJCZC8uLi7Ur1+f+vXr895773H69Gn27dvH1q1bWbFihRRLhMjBcnsuAskXRd544w0aNGggJ4sKkQM4OTlRt25d6taty6hRozh79iz79+9nz549rFmzRooluYQcpXYA85dgixYtbJa3bNmSTZs2cf78efLlyweYKpWJxcXFZbtJC6UoIjLbO9X2823gyxhV1apIolqG3NIoRjTm+UhsJm5X0Sig1l7Dt6t281avgw6IPmdrVKIqJ/ymWm6vvnSE6VuX4hQYIsUSIXKo3JqLSFFEiNxLp9NRr1496tWrJ8USIXKB3JiLgBRFhMjNtFotderUoU6dOlIsyWXkiLUDeHh4cOXKFYoWLWqzvEiRIgCEh4dTunRpAEJDQ5M8PjQ0lGLFimV+oCmQoojIam/5HOSHoHYY1DA0CpgKJEYSF0qse5WYh91SgXL1Q1hxtBZ9Gpxz2D7kBj2rNKTnuw0B0w+TQb98zaXjZ/h5dUKxpLArAztJsUSI7Cw35SJSFBEi75FiiRA5X27JRUCKIkLkRVIsyV3k6LUD+Pj4cPz4ce7fv4+3t7dleUhICACFCxemQoUKaLVaAgMDeeWVVyxt4uPjuXTpEs2bN8/yuMF+UaRgwYK8/PLLUhQRWeKNqtvYFDSVB+pmtIppSnaNoj4ZVgtTcUSDqTBiGoZLNXcnoUgxAwGB1enkc8Fh+5CbODs78+vgiTAY9Ho9a/duY/b6XyzFEn1hVwZJsUSIbCen5yJPK4rUq1cvW55RKoTIHFIsESJnysm5CEhRRAjxhBRLcj45ku0AzZs359dff2XLli3Uq1fPsnzLli1otVrq1q1LgQIF8PX1ZefOnQwYMMAyYdeOHTuIjo7O8kTg8ePHbNu2jU2bNhEcHCxFEeFQnat+zNGgF7mojkcLqACKqSACWBVHbIsmSkI7nRNs/9eHtpUDHbQHuZNOp6N36070bt0JvV7PkSNHGL984ZNiSdH8vN9vMG3btsXd3d3R4QqRp+XEXCQiIoIdO3awadMmrly5IkURIUQSKRVLSpcuTadOnWjfvj2FCxd2dLhC5Gk5MReJiopi9+7dbNy4kUuXLklRRAiRRErFEi8vLzp27EjHjh3x8PBwdLgigaKqquroIPKi6dOns3XrVpo3b06dOnU4deoU+/bto3///gwbNgyAwMBARo4cSbly5ejcuTP37t1j1apV1K5dm1mzZmV6jKqqcuHCBTZs2MDevXsxGo00bdqUdu3aSVFEZBu/BNXHWaNHq6joFCMajGgVNaE4oqJJ6E0CKooC5jq9qoJBhZYVgxwXfB6h1+s5ceIEHy9ZQMyF66BRqPd8HYYPH0716tUdHZ4QeVZOyEUAgoKC2LhxI7t37yYuLo7GjRvTvn17fH19pSgihEgVvV7P6dOn2bZtG/v27QOgWbNmdOnShVq1akmvEiEcJKfkIleuXGHDhg3s3LmTqKgoGjVqRPv27WnYsKEURYQQqWIwGDh79izbt29nz5496PV6Xn75Zfz8/Khbt67kIg4mBRIH0ev1LFu2jG3bthESEoKXlxddu3alZ8+eNu3OnDnDd999R1BQEG5ubjRv3pzhw4dbzpzIDInPiihRogSdO3emQ4cOlvFAhchOlgfWw0VrQKsYTUUSxYjWPGE7RjSKmjDUlvXk7QAqRqNCBe0eypUr55jg85jQ0FC2bNnCkjUr0YdFoClemDEDh9GyZUvLJIxCiKyRnXOR2NhY9u7dy8aNG/nnn3/w9PSkU6dOdOjQAU9Pz0zbrhAi93v06JGlZ/zNmzepWLEiXbp0oXXr1pn6uSaESCo75yJxcXEcPHiQDRs2cObMGYoWLUqHDh3o1KkTJUqUyLTtCiFyv/DwcLZv387GjRu5fv063t7edO7cmXbt2sloGw4iBRJhYe+sCD8/Pxo0aIBWq3V0eEI81fILdXFztiqSWHqPqGgV60nbjTwZ7dH08aeqoP9nJM06jHFQ9HmPwWDgr7/+YuPGjfz111+ozjq6d/LDz8+P8uXLOzo8IYSDBAcHs3HjRrZt20Z4eDj169enS5cuNGrUSHquCiEylNFo5Pjx42zcuJHff/8dFxcXWrduTZcuXahUqZKjwxNCOMitW7fYtGkTW7du5dGjR9StWxc/Pz+aNGmCk5OTo8MTQuQiqqpy6tQpNmzYwMGDB9HpdLRo0QI/Pz8ZbSOLSYEkj5OzIkRusvRoHQp76NEppmG2tAm9R7SJiiOKpUdJQoEk4Z/Lx0vRt/sfjtuBPOrWrVsEBASwefNmwsLCKFyxLO+9PkR+hAiRR+j1eg4fPszGjRs5ceIEhQoVon379nTq1IkyZco4OjwhRB5w7949Nm/eTEBAAKGhodSqVYsuXbrQtGlTGT5HiDzAfPLWhg0bOHr0KPnz56dNmzZy8pYQIsuYR9sICAjg7t27+Pj44OfnJ6NtZBEpkORR5gOSW7ZskbMiRK7y7ZpGlKsXhi6hMGKaj8RomYtEkzA/CSRM3q4kTN6ughF4/ABa1r3uuB3Iw+Li4jh06BAbNmzg9OnTaPLno1+3HlKwFSKXkgOSQojsRq/X8/vvv7Nx40aOHz9OoUKFaNeuHX5+fpQuXdrR4QkhMljiA5LVqlXDz8+PFi1ayAFJIYRDGAwGjhw5woYNGzhy5IgUbLOIFEjyEDkrQuQVG9eOw/mFjegUo6VQYj0XiQbVUhgxXdQn85KoEKeHhpWCHRa/MA35t3HjRnbs2EFkVBRlqldj1ICBMuSfEDmc9ZA2f/zxB87OzjKkjRAiW5Ih/4TInZIb0qZLly5Uq1bN0eEJIYSFnNyedaRAkgfExMSwefNmVq1aJWdFiDzj/JUT3FD74qSopiG3LAUSUzFEqxhRsB1qy1wkUQGDAV6ocMNB0QuzqKgo9uzZw4YNG7h06RKaQgV4Z9AbdOjQQc4wFyIHiYuLY9u2baxcuZKbN29SqVIlunTpQqtWrWRSZCFEthYbG8vevXvZtGkT58+fx9PTk549e9K5c2dcXV0dHZ4QIpX0ej27du1i+fLlXLt2DW9vb7p06UKbNm1kUmQhRLaWeLSNokWL0r17d7p06UKBAgUcHV6uIAWSXCwqKor169ezatUqwsPDadmyJa+++qqcFSHylF3/VcVJY8RJMQ+3Zeo9orUqjpiG2lItPUoAUMGggqfzcUqWLOmw+IWJqqpcuHCBtWvXsmfvXhRXF94cMIjOnTvLwVUhsrGYmBgCAgJYsWIFoaGhNGvWjO7du1OrVi0URUl5BUIIkY0EBQXx22+/sWPHDgoUKECPHj3o1q2bHJwQIhuLjY1l+/bt/Prrr9y5c4eXXnqJHj16UKdOHclFhBA5zpUrV/jtt9/Ytm0bzs7OvPrqq3Tv3p1ChQo5OrQcTQokudDjx49Zt24da9euJSYmhnbt2tG3b19KlSrl6NCEcIg9/1XGWWNEp1FNhRHFiAbTdXNxxKZYYvVYVYUbF0bQqs0njgleJHHjxg2WL1/O9u3bUZ10DOzbj27dusmZX0JkI5GRkaxfv57Vq1cTHh5O69at6devH97e3o4OTQgh0u3OnTusWLGCLVu24OzsTLdu3ejevTuFCxd2dGhCiATR0dEEBASwcuVKHjx4QPPmzenfv78M6SmEyBVCQkJYuXIlmzZtQlEUunTpQs+ePfHw8HB0aDmSFEjSQVVV9Hp9thn37eHDh6xatYoNGzZgMBjo1KkTvXv3pnjx4o4OTQiH2xNUkXzOKk6KijahQKJBtcxL8mS4rScFEkVRMX9CXg10p3XLIMcEL+y6e/cuK1asYPPmzegV6NezFz169JCDEyJPyW65yOPHj1m7di1r164lNjaW9u3b06dPHzlJQwiRK4WEhLBq1So2btyIoij4+fnRq1cvOTgh8pTslouYT9JYtWoVERERtGnThn79+lG2bFlHhyaEEBnu0aNHrFmzht9++434+Hg6duxInz598PLycnRoOUqeLJAsXbqUH374gQoVKvDzzz9blr/zzjucOnUqSfsGDRowc+ZMm2U7d+5k/vz5REdH07JlS8aMGeOwhODRo0csX76c9evXo9Fo6Nq1Kz179qRo0aIOiUeI7GrbyQoUKaKi0xjRYR5uS7UabgubHiUk3FYx/RMbBzUq3XZQ9CI5ISEhrF69mo0bNxKjj6dPj5706dNHupiKbC235SLh4eGsXLmStWvXYjQa6dy5M71798bT09Mh8QghRFZKfHCic+fO9O/fX36PiWwtt+UiUVFRrFmzhlWrVhEbG0uHDh3o06ePDJcshMgTwsPD+e2331izZg1RUVG0b9+e119/XU6aT6U8VyC5d+8e/fv3R1EUSpQokSQRuHnzJsOHD7d5jIeHB/Xq1bPcvn37NgMHDmTQoEGUKFECf39/2rRpQ9++fbNsP8D05l+1ahVr1qxBURR69OhBjx49KFiwYJbGIURO8utv9alS766pJ4mlB4mKFhINt5WoNwmm4bYMRqhUTook2ZH54MSaNWuIMRoY2LcfPXv2lHHBRbaTm3KRqKgo1q5dy8qVK4mPj6dbt2707t2bIkWKZGkcQgiRHZgPTqxatQq9Xs+rr75Knz595PeZyHZyUy4SGxvLb7/9xvLly4mKiqJz587069ePYsWKZWkcQgiRHURFRbFhwwZWrFhBdHQ0fn5+9OvXT07aSIHO0QFktW+//ZYaNWpgNBoJCwtLcn+BAgVo3br1U9cRGBiIr68vvXv3BkCr1bJly5YsSwTsHYzo06ePDCsjRCr063aMvdumUajGt2gSqh9PhtQiSXFEk7BcSWioU+BacElUw2+UL98o63dAJKtw4cIMHTqUHj168Msvv/Drr7/iv2I5bw4cRLdu3XB1dXV0iEIAuSMXiY2NZf369fz666+WgxH9+/eXYWWEEHmau7s7AwYMoGvXrqxatYq1a9eyYcMGevbsSc+ePcmfP7+jQxQCyB25SFxcHJs3b2bZsmU8evTIcra0DCsjhMjL3Nzc6Nu3L35+fpZjxwEBAXLSRgo0KTfJPU6dOsWBAwcYNWrUU9vp9XqioqKSvb9kyZKcPn2aY8eOcf36dQICAihTpkxGh5tEbGwsq1atolevXvz888+0adOGFStWMGLECCmOCJEGr7QbT3HNHxiNYNuHTrVbHNEAGhQ0KGgVBWeNgrOuGzsDXnJA9CIlhQsX5u2332blypV0bdeexT98T8sunS1zIgjhSDk9F4mPj2f9+vX07t2bRYsW8fLLL7N8+XLeffddKY4IIUSCggULMnToUFauXEmHDh349ddf6dWrF8uXLyc6OtrR4Yk8LqfnInq9ni1bttC/f3/mzZuHr68vv/zyCx9++KEUR4QQIkH+/PkZMGAAq1atonv37qxbt45evXqxZMkSIiMjHR1etpNnhtgyGAy88cYb1KxZkzFjxvDOO+8QFhaWpCvpuXPnUBSF+Ph4ihYtSseOHRk4cCA6nW1nm3nz5rFu3ToAKlWqxJw5czKtSKGqKrt27eK7777j4cOHtGvXjgEDBsiXvxAZ4NTV0jhpVHQKaBTTUFsabIsjCopN4cTc40QFYmPAu9Ith8QuUuf27dv8/PPPbNm2FYNrPj7/cCyvvPIKiqKk/GAhMlBOz0UOHDjAt99+y927d2nVqhUDBw7MkgMhQgiR092/f59ly5YREBBAoUKFGDZsGG3btkWjyVPnK4psICfnIgB//vknCxYsIDg4mObNmzNo0CDKly+fadsTQojc4uHDh/z6669s2LABV1dXBg8eTOfOndFqtY4OLVvIMwWS3377jR9++IHly5dTuHBhu4nA9OnT8fLyomLFisTExLB//35+//13mjdvzuTJk5Os89atW4SHh1OpUqUkiUJG+e+//5gzZw5nzpyhWbNmDBs2TA5GCJHBTl0uRT4daBUVbUJRRGunOGIqmijYHFZXwahCsVLB8iM3m7t+/Tpfz5vH6WPHiCnhweqv5sgPKpGlcmoucv36debOncvx48dp1KgRI0aMkP87QgjxDG7dusUPP/zA7t27qVmzJu+//z5Vq1Z1dFgiD8mpucjt27f55ptvOHz4MC+88AJvvfWW/N8RQohncO/ePX766Se2bt1KlSpVeP/996lVq5ajw3K4PFEgCQsLo1+/fvTv398yPqa9RMCer7/+moCAABYuXEjNmjWzIlwAIiIi8Pf357fffqN06dK89957+Pr6Ztn2hchrfv+7FJ6epgKJlicFEk1CgcS6OKKgWMYnVFBQUVFVldMnX6N5x+mO2gWRSkeOHOG9KZ+hi4iiT69eDBw4EDc3N0eHJXK5nJiLREdHs2zZMlauXImnpyfvvPMOjRs3zrLtCyFEbnXq1CnmzJnDtWvX8PPz44033sDd3d3RYYlcLifmIrGxsaxcuZJly5ZRqFAh3n77bZo1ayY9wYUQIp3Onz/PnDlzCAoKon379rz55pt5evqGPHG68w8//IC7uzuvvvpqmh/bq1cvAI4fP57RYdmlqio7d+6kf//+bN68maFDh+Lv7y/FESEyWeMXbvHPX76oqmnoLFUFc18RhaTFESVhThIF0KJBp2h4oe6vXDvv7bidEKnSsGFDDqzfSMMO7Vi+ZjUtu3Zhz5495IHzBYQD5bRcZP/+/bz22musXr2a1157jaVLl0pxRAghMkidOnX48ccfeeutt9ixYwf9+vVj69atGI1GR4cmcrGclIuAaTitgQMHsmTJErp3786yZcto3ry5FEeEECID1KxZk0WLFvHBBx9w6NAh+vbty/r16zEYDI4OzSFyfYEkODiYgIAAunfvTkhICLdv3+b27dvExcWh1+u5ffs2jx8/TvbxxYsXByA8PDzTY/3vv/8YNWoUU6dOpXbt2ixdupS+ffvi5OSU6dsWQkCXHgGoylaMCcfJVUxXzCm4dXHEXCzRJkzcrlU06DQaihVReHzTO89+qeQUzs7OzPxoHGtXrCTOozCTJ0+mYY9uXL161dGhiVwoJ+UiwcHBjBkzhk8//ZTKlSuzdOlSBg0ahIuLS6ZvWwgh8hKdTkfPnj355Zdf8PX1Zfr06YwcOZKgoCBHhyZyoZyUi9y+fZsJEyYwduxYSpQogb+/P2+++ab0+BZCiAym1Wrx8/Pj119/pWnTpsyZM4dhw4Zx7tw5R4eW5XL9EFsnT57k3XfffWqb7t27884779i97/LlywwcOJBhw4bRv3//zAhRhtMSIhv671pJXLSYih+ARjH1GNGQqCeJoqBYSiamYoqpB4rKseMv0bTzL47bCZFq1T75iCInzqKLlGG3RMbLCbmIDKclhBCOJcNuicyUE3IRGU5LCCEcKy8Pu5XrCySPHj3i7NmzSZb/8MMPREVF8c4771CqVClKlCiBk5MTzs7OljaqqjJ58mT27t3L999/j4+PT4bGpqoqu3bt4ttvvyU6OpoBAwbQo0cP6TEiRDYR9G9JCuQDnaLYFEg0dooj5qKJ+a9ZXLxKfu/LjtoFkQY1F3yF9sK/FPznEkYnJz4fO5ZXXnlFfpSJdMvOuQjAwYMHmT9/Po8ePaJfv3707dtXeowIIYQD6PV61q1bh7+/P87OzowYMYK2bdtKLiLSLbvnIkeOHGHu3LncuXOHXr168frrr8vJSkII4QAGg4GAgAC+//57VFVl6NCh+Pn5odHk7kGocn2BJDmJJyM7efIkkydPpmXLlpQuXZrY2FgOHTrE2bNn6dSpEx9++GGGbj8kJISZM2fyxx9/0KxZM0aOHImXl1eGbkMIkX47A3x5ru5NdBoNWqsCidZOcUSDYvkBaymSqKahus5cmcgLLw5y3I6IVGm99Hv+u32bIqfO4XbzDlGlSrDz2+8oWrSoo0MTuZCjc5FHjx4xZ84c9u3bR6NGjXj33XcpVapUhm5DCCFE2oWEhPDtt9+ye/duGjRowEcffWQZ4kiIjOToXCQiIoJvvvmGbdu2Ua9ePd59913Kly+fodsQQgiRdo8ePWLRokVs2bKF559/nvHjx1O6dGlHh5VppECSkAjcunWLRYsWceHCBR48eIBGo6FcuXJ07NiRzp07Z9hZO6qqsnv3bubOnYuTkxNjxozhpZdeypB1CyEyx/UrR3Bx6opWo6BDk6RAorEqjlgPt2VNVVUePnSiWI1/HLAHIi3aLvmBi+FhuN68RdETp0GFqRMn0rx5c0eHJnIZR+UiAIcOHWLmzJkYDAbef/996S0lhBDZ0F9//cVXX31FTEwMo0aNkt4kIsM5Mhc5evQoM2bMIDIyklGjRtG+fXt5fwshRDZz8uRJpk2bRlhYGG+++Wau7U2SZwskjvDw4UNmzZrFwYMHadGiBe+99x6FChVydFhCiFS6G1waZ41puC2dokkolSRM1q5oki2OQMKE7yrcuFGAq2E/07Tl81kbvEiTGt/MIloFTWwsRf4+jdvN20SVLs3uhQvzzBicIncKDw9n/vz57NixgxdffJEPP/wQDw8PR4clhBAiGYk/t8eMGUOxYsUcHZYQzywqKopvv/2WTZs24evry9ixY2U0DSGEyMaioqJYuHAhGzdupF69eowbNy7XfW5LgSSL7N+/n1mzZgEwevRoORNZiBzqwvGylCxpnpdEk9B7RIPmKb1HrKkq9HytG+ERbuz869Msilo8iwrzTZ/ZqCpuN25S+O8zoNEw/dNPadKkiWODE+IZyJnIQgiRcx06dIhZs2ah1+t57733aNGihXyGixzH+kzkESNG4OfnJ+9jIYTIIY4dO8b06dOJjIzk7bffpkOHDrnmM1wKJJksKiqK2bNns3PnTpo0acIHH3wgY9kLkcP9tX8RNapMRatoTBc0KIqpUJIal/4tzNtjOgLQqGllpszom5nhinSoOGcWasLLqomJoeiJU7jeuUtk2bIc/uEHXF1dHRugEKkQGxvLN998w6ZNm2QseyGEyMEePXrE3Llz2bt3L82bN+fDDz+kQIECjg5LiBTFx8ezaNEiVq9eTe3atRk/frzMeyaEEDlQREQECxYsYOvWrbz44ouMGzcuV4yyIQWSTPTff//x6aefEhISwujRo2ndunWuqawJIeDxDW90Go1puK2EIbdSIypaR9d+CUURVQVFYcWmURQrJkPuZTd3Hz6k0RJ/UMxflSpuV4MpfPoMBlc3Vnz7P5lIUmRr169fZ9KkSQQHBzNq1KgMHz9cCCFE1tu7dy8zZ86kYMGCTJ48GR8fH0eHJESybt++zWeffcalS5cYPnw4PXr0yJXj1wshRF7yxx9/MG3aNJydnfnss8947rnnHB1Susi3UiZQVZWAgACGDx+Os7MzP/zwA23atJEDEkLkMgXLXOfaNWeMqoqqqqZ5RlIhLk5DwuQloFFAgT5+39DqpS8yNV6Rdl5FioARMCqgKqBqiCpXjnvNmoIC/QcNYtu2bY4OUwi7du/ezdChQ4mLi2PRokUyjIUQQuQSr7zyCj/88APu7u689dZb/Pbbb8h5jyI7OnToEEOGDOHhw4csWLCAXr16SXFECCFygRdffJEff/yRkiVL8s4777B8+XKMRqOjw3pm0oMkg0VFRTFz5kx2795N586dGTVqFC4uLo4OSwiRiW7fPk1RYxd0Gl2qDj5+5/8C6zfXAkUxlVRsHqLiUcyNVetHZ1K04llUnDn7SVErgaLXU/jMGfJfv05k6bIc/kmG3BLZQ2xsLPPnzycgIIBWrVrxwQcf4Obm5uiwhBBCZLC4uDgWLlzIunXraNasGR999JEMuSWyBeshtZo0acK4ceNwd3d3dFhCCCEymF6v56effuKXX36hYcOGTJw4MUcOuSUFkgxkPaTWhx9+SMuWLR0dkhAiC4X9V5kCbspTiyRGI7Tv+RoqGtREB9wBVEUxDbsFNHulKp981iMTIxapVWnGbNAm3LB+zVRwDb5O4TOnMbi6sfx/C6hQoYIjQhQCgODgYD799FOCg4N57733ctXEeUIIIew7cOAAM2bMkCG3RLZgPaTWiBEj6N69u+QiQgiRyx05coSpU6fi7OzMpEmTeP755x0dUppI38YMsn//ft58803LkFpSHBEi7ylU6V/OXPkEVcXuMAdGFYa91xFVTdpzRFUUU3HEPOyWRmH//ku0aPYl/j/uz6I9EMlRDJiG2lKTXqLLeBPyUjMAXhs8mMOHDzsqTJHH/fXXXwwbNswypFbHjh3lgIQQQuQBTZs2tQy5NXLkSHbt2uXokEQederUKYYOHWoZUqtHjx6SiwghRB7QsGFDy5Bb7777Lps2bXJ0SGkiPUjSSVVVli5dyo8//sgrr7zC+PHjZUgtIQQ/zOjKgP7n0WjAYFDYurMy3/k3wGDUmobWsuo9opp/NJh/OyT5EaECCv1f/z8GDWqeNTsgbFSZOgdVp0LCVCSW10pNuKqCEm+g8OkTuN27zfDhw+nTp4/8IBRZQlVV1qxZw7fffsv//d//8emnn8qQWkIIkQfFxcXx9ddfs2PHDl5//XUGDx4s8z2ILLN582ZmzZpF7dq1mTJlCgULFnR0SEIIIbKYXq/nm2++Yf369XTv3p233noLnU7n6LBSJAWSdIiNjWXGjBns3r2bwYMHM2DAADkYJoSwOH/6Cu8PXQaahCJIQg8RS08RhaTzkFh9hqjJfJw0ebkKkz/rnrnBCxtVpsxBdSLhNUv8talYepMoepWxJQuydOlS2rZty5gxY3B2ds76gEWeER8fz9y5cwkICKBPnz4MGzYMrVab8gOFEELkSqqqsmLFChYtWsTLL7/MhAkTZI40kakMBgMLFy5k9erVdO7cmffeey9HHAwTQgiReX777Te++eYbfH19mTRpUrafIy1XF0ji4uIy7cBUaGgoEydO5L///mPChAk0by5ndQsh7OvcbCrRMUZT8UOj2BRIbHqP2CuOmNuSqGCiQqEiLmxY834W7EHeZjQaqTZ1HqoWVA1J5o0BTMURFRQjBH38Prt27WLGjBn4+PjwxRdf5MhJykTGyMxcJCwsjE8//ZSzZ88yZswY2rdvnynbEUIIkfMcOnSIqVOnUrZsWb788kuKFy/u6JCEg2RmLhIZGcnkyZM5evQoo0aNolu3bnLSqBBCCACOHTvGpEmT8PDwYPr06ZQuXdrRISXL4QWSK1eu4O/vT2BgIA8ePCBfvnyUK1eOPn360LhxY5u2V69eZcGCBZw9exadTkejRo14++23kxx4Onr0KDNmzODBgwc0bNiQiRMn4u7unmEx//vvv4wbNw6j0ciXX35JtWrVMmzdQojcKTY2lo7NvnrSa0STqDcJPCmQJHRIwLqQQqI2gJow9BYKbFozQrqxZxKfT+eg6kjoCcST3j9m5hfHCE7APx+bilbnz59n4sSJODs7M336dCpWrJilcYvUy4m5yPXr1xk7diwRERFMnTqV2rVrZ9i6hRBC5A6XLl1i/PjxGAwGpk2bJr9bs7GcmIvcvn2bcePGce/ePSZPnkyDBg0ybN1CCCFyh2vXrjFu3Lhs/7vV4QWSP//8k3Xr1lGzZk2KFStGTEwMBw4c4MyZM4wZM4bOnTsDcO/ePYYMGUKBAgV49dVXiY6OZuXKlXh5ebFo0SKcnJwAiIqKomfPnnTp0gUfHx9Wr15NhQoVGD16dIbEe/r0acaNG0fp0qWZNm0anp6eGbJeIUTe8PP3e/nF/w/TgXatYrcHiWrdm0RjVSxJYNOTxGouDBRo/nIVJk3olpm7kKdU+2SOqdeI9klxRLVTIFEShtj6Z/womyEF7t69a/nh+NVXX1GzZs2s3QGRKjktFwkMDGTMmDEUKVKE6dOnU6pUqQxZrxBCiNzHPPLBlStX+PLLL6lXr56jQxJ25LRc5OrVq4wePdpyIlD58uUzZL1CCCFyn8ePH/PJJ59w/vx5Jk+enKTwnx04vEBij8FgYOjQocTFxfHLL78AMHv2bLZt28Yvv/yCl5cXAMePH2f06NE2CcPFixf5+uuv+fHHHwFTb4/PP/+cn3/+Od1xHTlyhI8//pgaNWowbdo0mQBVCPHMurSZTkSkPtGQW4kKJEqiobawvv1kXaqSuDuD6bFLvhtABW+vzN2RXKz6RFNxRNVgKlSZ5zi1fg3M36AqYISgSUmHPIuIiGDcuHFcunSJL774Al9f30yPXaRfds1FTp06xbhx4yhfvjxfffWV9BwTQgiRoujoaD7++GNOnz7NpEmTaNKkiaNDEqmQXXORixcv8uGHH1KsWDFmzpyJh4dHutcphBAid4uLi2PKlCn8/vvvTJgwgVatWjk6JBualJtkPa1WS/HixYmIiLAsO3DgAC+++KIlCQDw9fWlbNmy7Nu3z7LMy8uLGzdusG/fPm7evMnatWspU6ZMumPat28f48ePp169enz11VdSHBFCpMuGHePYffhj0w1VTZjkO5l6tXUvE+u/JJ7DJKFtwjwZA0f8TNMOX9G009dERkZn+D7kVndCHlJj3BzLbcvTbl0MSSiIWK6roCTzjVqgQAFmzpzJ888/z9ixYzl48GBmhS4yUHbMRf7880/GjBlDtWrVmD17thRHhBBCpIqrqyvTpk3jxRdf5NNPP2Xnzp2ODkmkQnbMRU6dOsV7771HmTJlmD9/vhRHhBBCpIqzszOfffYZrVu3ZurUqWzYsMHRIdnQpdwka0RHRxMbG0tkZCS///47R44csUx8fv/+fR4+fIiPj0+Sx1WvXp2//vrLcrtIkSIMHDiQyZMnYzQaKVGiBLNmzUpXbJs3b2bmzJm0aNGC8ePH2wyfIoQQ6bH74EQiI6Pp3H6OpfMHYCqWpDTBYXKFEyVxrxJo1/sb0x0aWP7tIMqULpYxO5DL1Bw7x9RLxzwZu/UQZuabiV+WhGJJ4GdJe4+Y5cuXjy+//JKpU6cyadIkxo4dS9u2bTM4epFe2TkX2bNnD1OnTqVRo0ZMmjQJFxeXdK1PCCFE3uLs7MykSZP4+uuvmTp1KhEREXTrJsOyZjfZORf5888/+eSTT3juuef44osv5KRRIYQQaaLT6Rg7diz58+dn9uzZRERE0L9/f0eHBWSjAsn//vc/Nm3aBIBGo+Hll1/m/fdNB5tCQ0MB7J6d4OHhwePHj4mLi8PZ2RmAPn360LJlS0JCQqhYsWK6DiKsXr2aBQsW0KVLF9577z00mmzZ6UYIkYPlz+/KngMTuBF8nwGvfW8auUlRnhRM7BVLFCVhbhLz7Sd/1cSFE2wLJn3e8rfc375ldca/3TGjdynHqfXhHNPzaS6MmFkVRuz270noPeKSQi0LwMnJiU8//ZRZs2bx5ZdfEhkZyauvvpq+wEWGyq65yObNm/n6669p1aoV48aNkxM1hBBCPBOtVsvYsWMpUKAAc+fOJTIyktdee83RYQkr2TUXMZ+oYe6FJCdqCCGEeBYajYZRo0bh7u7O4sWLiYiIYPjw4SgpnSCcybLNL+wePXrQrFkzQkJC2LdvHwaDgfj4eABiY2MBLBOOWTN/+cfGxlquA3h6eqZ7AvXffvuNBQsW0Ldv32zxYgkhcrcyZT3Zs38CV67cYchgf0BFURXbSdmfxnpyd5viCHaWmW5s2XORLXsuYJ63ZMzQV+jS7oX07UgO8b/NB/hu79+oSsL8ItY9RqyeRnNhxDzElqra3qEY4cyU5HuPWNNqtXz44Ye4ubkxb948nJ2d6dSpU0bsjsgA2TEX2bFjB1999ZWcqCGEECJDKIrCyJEjKVCgAN9//z1OTk707t3b0WGJBNkxFzl06BBTp06lRYsWcqKGEEKIdFMUhUGDBpE/f34WLFiAs7MzgwcPdmhM2eabrVy5cpQrVw6Atm3bMnr0aMaNG8eiRYssZyeYEwNrcXFxABl+BsP27duZO3cuPXv2lOKIECJLVahQgr37xnP37kP69F2E1SH6pMM7JZKkl0NK85YkXDH3Rvn6h718/cNey/0+lYrxv8/64ur65IdWTvbO4rXsuxBsuqFgfzgtSKa7iOVhNnOPXJjyXppiMB+YiI+PZ+bMmbi5udGiRYs0rUNkjuyWixw8eJDp06fToUMH3n//fclFhBBCZAhFURg4cCDx8fF8++23uLm5WSb3Fo6V3XKRY8eO8dlnn/Hyyy8zfvx4tFpthq5fCCFE3tWzZ0/0ej3fffcdrq6u9OnTx2GxZJsCSWLNmjVj5syZBAcHW7qQmruUWgsNDaVgwYI2Z0mk14EDB5g+fTodO3Zk5MiRckBCCOEQXl5F2LtnHAaDgZZtv7aaxD2h+0Jyn03Ww20luS9tPUwuXg6lxevzMRdnVAUKF3Dhi9GdeaGm97PuWpYwGAwMm7eK49fuWgpAqlUhRE1cFEnE3EnE0nPE+s6E4oh//w7P9B2hKArvvvsuUVFRTJ06lXz58tG4ceM0r0dkLkfmIkePHmXy5Mm8/PLLjBkzRnIRIYQQGe6NN94gMjKSWbNm4ebmRsuWLR0dkkjEkbnI2bNnmThxIvXq1ePjjz+W4ogQQogM17dvXyIjI1m4cCH58+d32Akb2bZAYu4+GhERgbe3N4ULFyYwMDBJuwsXLlC5cuUM2675gESzZs344IMP5ICEEMLhtFot+3aNA6BTt5mERxgS7kkY6ymljylLASTRvCU29z1ZZLeHiVUx4VFULCOnrnlSMLC6z6NwPoZ2a0ynZs9l2Y+o8PBoPvt1O3vOXQU1UcHHuiiSeAitFAokqAlFEuXJdctOq/DNq21pVK3qM8et0WgYO3Ys0dHRTJo0iRkzZlCvXr1nXp/IeI7KRc6cOcPEiRPx9fWVAxJCCCEyjaIovPPOO0RFRfHFF1+QL18+XnrpJUeHJaw4KhcJDAzko48+olq1anz++ed2h/USQgghMsIbb7xBVFQUs2bNwtXVlVatWmV5DA4vkDx8+JAiRYrYLNPr9ezYsQMXFxfKly8PQNOmTdm+fTt3797Fy8sLgBMnThAcHEzPnj0zJBbzAYkGDRrIAQkhRLYU8NsYADZtPsrsBftQLRNiJLB0e0jFytLSwyRRccGmOGJppxASFss0/71M89+btJ11zw2rZeaijWK1PqNVcdp+DxerWOz1CrFTDEn1XC6JO+okvt8Ihz8cQNGiRVO5wuTpdDo+/fRTxo8fz4QJE5gzZw41atRI93pF2mSnXCQoKIixY8dSo0YNpkyZIgckhBBCZCqNRsNHH31EdHQ0n332mZyw4SDZKRe5du0aY8aMwdvbm+nTp8uE7EIIITKVoiiMGjWKqKgovvzyS1xdXbP8hA1FVdWnjLSe+SZOnEhkZCS1a9fG09OT0NBQdu3axfXr1xk5ciS9evUC4O7du7zxxhsUKFCA7t27Ex0dzYoVK/D09GTx4sXp7kp669Ythg0bRsWKFfn6668lCRBC5BgtOn6F3oDpSL4moQeIvWGkEvcgsSpO2NyfuE1KxRE7j7MpRiSzLHEsNm0SCiRJiiNK0mXJDpul2CmkkMJ9iYo29vwz7X37d6RDTEwMH3zwATdu3GDRokWUKFEiw7chkpddcpH79+8zbNgwPD09mTt3Lm5ubhmxe0IIIUSK4uPjGT9+PP/88w/fffcd3t7ZeyjV3Ca75CJhYWEMHz4cFxcXvvnmGwoWLJgRuyeEEEKkSK/XM3nyZI4cOcKCBQuoWvXZR+xIK4cXSPbs2cOWLVu4fPkyYWFhuLm54ePjQ7du3ZJUi65cucKCBQs4e/YsOp2ORo0aMXLkyHSfxRsZGcmIESOIj49n0aJFkgQIIXKky9fuMuitn616UVgVGSwFBCXlAom9+9NaVLG+TTKFDnu3SRR3Ctu3W7xJpmCSbNHGXs+WRPGjQvtaFfj6tS5klkePHjFs2DAKFCjAggUL5OB4FsoOuUhsbCyjRo0iNDSUxYsXW8YZF0IIIbKK+XexXq9n0aJFuLu7OzqkPCM75CJ6vZ4PPviAy5cvs3jxYkqWLJmu9QkhhBBpZf5d/ODBAxYtWpRlv4sdXiBxNIPBwIQJEzh79iwLFy6kXLlyjg5JCCHSbc+h80z+aitgO+xU4vlFUtXDRIPtY0jFY+wtS1UBRUn2MbbtkrZJXCxJvOypvVrstbFqe35Gxvcasee///7jrbfewtfXl88//xyNRpPyg0SOp6oqU6ZM4fDhwyxYsAAfHx9HhySEECKPunnzJsOHD6dq1ap89dVX6HQOH5VbZAFVVZk1axZbt25lzpw51K5d29EhCSGEyKPMIyuUKFGCuXPnZskoT3n+yMvixYs5cuQIkyZNkuKIECLXaNGkJgcDPuRgwIf874uE8YhVUFQVVNV28hHLxOOq7e30sNcLI8W2Ty+OpGqdiWJXrJYpdvZZUROuJ1wUo9UFOP/V+1lWHAGoVKkSn3zyCYcPH+ann37Ksu0Kx1q2bBl79uxhwoQJUhwRQgjhUKVLl2bKlCmcPHmS//3vf44OR2SR3377jU2bNjF69GgpjgghhHAoT09PvvjiCy5dusTMmTPJir4debpAsm3bNlasWMFbb71Fw4YNHR2OEEJkiuefK8ehjR9yaOOH7Fv7PkULJVTf1UQFAhLVHtRk/qbR0+bzyEipiT1JkSRhEnZFfXIpX8SdczPf59xXWVcYsfbSSy8xbNgwli5dyu7dux0Sg8g6Bw8e5IcffmDQoEE0b97c0eEIIYQQvPDCC7z33nusW7eOjRs3OjockcmOHTvGggUL6NmzJx07dnR0OEIIIQQ1atRg3Lhx7NixgxUrVmT69vLsEFuXL19m2LBhtGzZkrFjx6IoWXD0Tgghspkr1+7y2uhlth1KzPOXWA87ZTXMVqrnLSG5xyR3O5keJFbXkx0SK4V5RJK0M19Xnyw7MnV4tpn3Q1VVvvjiC8vBc5koNXe6desWgwcPpkGDBnz22WcypJoQQohsZc6cOQQEBLBw4ULp4ZhLhYSEMGjQIHx8fJg+fboMqSaEECJb+f777/n111+ZN29epvZwzJMFktjYWIYNGwaYhtjKirHMhBAiJ4iIimbwmJ+5cT/yyUIl8TwmT5ZD0nlNUl8QSXQbUjXMVurnM0kUp/WOKpDPScPhL0bg7Oyc9InIBqKjoxk6dCguLi4sXLgw28Ypno1er2fUqFE8fPiQH3/8kfz58zs6JCGEEMJGfHw8b775JrGxsXz//fe4uro6OiSRgYxGI2PGjOHKlSv4+/tTuHBhR4ckhBBC2DAYDLz77rvcuXMHf39/3N3dM2U7ebJAMm/ePAICAli0aBGVKlVydDhCCJGt3Q99zNuTV3L9brhpgXXBxHLbzuTvabidpBdJMm3sLre3fhK1UcBFp/Db+Ncp41n0abubrQQGBjJixAi6d+/OW2+95ehwRAb68ccf+eWXX1iwYAE1a9Z0dDhCCCGEXdevX+eNN96gVatWfPjhh44OR2SglStX8u233zJr1izq16/v6HCEEEIIu+7evcugQYOoX78+n332WaaMApXn+k/++eefrFu3jnfeeUeKI0IIkQqeHgVZNX9YkuWPwiP54rvtHDp1FUVVE4oSiuVf6+q7QkIRI2FIK0W1vW2eC0S1TBai2G1js26r4bEsbRMalCtWiO9GdqWUZ5GMeAocxsfHh6FDh7Jw4UIaNGiAr6+vo0MSGeD06dMsW7aMQYMGSXFECCFEtubt7c2oUaP4+uuvadCgAU2bNnV0SCIDBAYGsnjxYnr16iXFESGEENmal5cXY8aM4bPPPuP//u//aNeuXYZvI0/1IHnw4AGDBg2iatWqfPXVVzLviBBCZLKwsGhW7jrO3qNBBIeEoTemPCSWav3RnPA5bd1jpbCbM41qlmN4x0Z4l/DI3B3IBmT4g9wlPDycwYMH4+Xlxbx589BqtY4OSQghhHgqVVX5+OOPOXXqFP7+/hQvXtzRIYl0kGFchRBC5ETTpk1j//79/PDDD5QtWzZD152nCiQTJ07k3Llz+Pv7U7RozhliRQghRN5mnkDzhRdeYPLkyY4OR6TDl19+yeHDh/npp58oUaKEo8MRQgghUiUsLIzBgwdToUIFvv76aznZMAebN28emzdv5ocffqBcuXKODkcIIYRIlaioKIYMGULhwoX53//+h0ajybB1Z9yasrk//viDQ4cO8e6770pxRAghRI5SrFgxRo0axb59+zh69KijwxHP6NSpU2zfvp0RI0ZIcUQIIUSOUqhQIUaPHs3Ro0c5cOCAo8MRzygoKIj169czePBgKY4IIYTIUdzc3Bg7diznz59n69atGbruPFEgiY2NZd68efj6+tK8eXNHhyOEEEKkWatWrahTpw5z584lLi7O0eGINNLr9cyZM4caNWrQoUMHR4cjhBBCpFnjxo1p3Lgx33zzDVFRUY4OR6SR0Whk9uzZlCtXjh49ejg6HCGEECLN6tSpQ5s2bVi0aBFhYWEZtt4cUSBJ74GgX375hZCQEN5//33pCiyEECJHUhSF0aNHc/v2bVasWOHocPKc9OYia9eu5dq1a4wePTpDuwILIYQQWemdd97h8ePHLFmyxNGh5DnpzUW2bt3KP//8w+jRo9HpdBkUlRBCCJG1RowYgcFgYPHixRm2zgz7VoyKimLlypX8888/XLhwgfDwcMaPH59kZvkvv/yS7du3J3m8t7c3v/zyi82yo0ePMmPGDB48eEDDhg2ZOHEi7u7uaYorODiY5cuX07dv3wyfwEUIIYTISuXLl6dnz54sW7aMVq1aUapUKUeHlK1k11zk3r17+Pv707VrV6pWrZr2HRNCCCGyiZIlS/L666/z008/0bZtWypWrOjokLKV7JqLPHr0iO+++462bdtSu3bttO+YEEIIkU0ULVqUoUOHMmfOHNq3b0/NmjXTvc4MK5CEhYWxZMkSvLy8qFy5MidPnky2rbOzMx999JHNsvz589vcjoqKYsqUKXTp0gUfHx9Wr17N999/z+jRo9MU1/z58ylWrBj9+/dP0+OEEEKI7GjAgAHs2bOH+fPnM336dEeHk61k11zk22+/xdXVlSFDhqTpcUIIIUR21KtXL3bs2MGcOXOYP3++jNJgJbvmIt9//z1Go5ERI0ak6XFCCCFEdtS5c2e2bt3K7Nmz+f7779M9SkOGFUg8PDxYv349Hh4eXLx4kWHDhiXbVqvV0rp166eu7/r163h5efHGG28ApjNVPv/88zTFdPr0aY4cOcKUKVNwcXFJ02OFEEKI7MjNzY0333yTKVOmcP78+Qw5WyK3yI65yKVLl9i7dy9jx46lQIECaXqsEEIIkR05OzszcuRIxo4dy7Fjx2jQoIGjQ8o2smMucuPGDbZu3cqIESMoUqRImh4rhBBCZEdarZZ33nmHkSNHcuDAgXTPOZ5hg2A7Ozvj4eGR6vYGg4HIyMhk7/fy8uLGjRvs27ePmzdvsnbtWsqUKZOmmH766ScqV67Myy+/nKbHCSGEENlZ8+bNKV++PP7+/o4OJVvJjrnIkiVLKF26NG3atEnT44QQQojs7P/+7/+oUaMG/v7+qKrq6HCyjeyYiyxdupTChQvj5+eXpscJIYQQ2dlzzz1H/fr1WbJkCUajMV3rcsjMXDExMbRr146YmBjc3d1p0aIFb775Jm5ubpY2RYoUYeDAgUyePBmj0UiJEiWYNWtWqrdx6tQpTp48yRdffCGToQohhMhVtFotAwYMYPLkyZw7d45atWo5OqQcJytykaCgIA4dOsT48eNlMlQhhBC5iqIoDBo0iA8//FB6kTyjrMhFgoOD2blzJ2+//baMqiGEECLXGTx4MCNGjGD//v288sorz7yeLP+17uHhQZ8+fahatSqqqnLkyBE2bNjAf//9x7x582wOIPTp04eWLVsSEhJCxYoV0/SF/tNPP1GlShVeeumlzNgNIYQQwqGaN2/O0qVL8ff3T9MPZZF1uYi/vz+lS5emVatWmbEbQgghhEM1aNCAmjVr8tNPP1G/fn2ZiyQNsioXWbp0KUWKFKFTp06ZsRtCCCGEQ9WsWZOGDRuyZMkSmjZtilarfab1ZHmBZPjw4Ta3W7RoQdmyZfn+++85cOAALVq0sLnf09MTT0/PNG3j5MmTnDp1ii+++EKSNCGEELmSRqNh4MCBTJo0ibNnz/Lcc885OqQcIytykcDAQH7//XcmTJggvUeEEELkSuZeJGPGjOHo0aM0bNjQ0SHlGFmRiwQHB7Nr1y5GjRolvUeEEELkWoMGDeLNN99k//79Sb4/UytbjD3Vs2dPNBoNx48fz5D1rVixQnqPCCGEyPWaNm1KhQoVWLlypaNDyfEyOhdZtWoVpUuXpmXLlhmyPiGEECI7ql+/PjVr1mT58uWODiXHy+hcZPXq1RQuXJiOHTtmyPqEEEKI7KhGjRo0aNCAFStWPPM6skWBxMXFhYIFC/L48eN0r+vOnTscOXKErl27Su8RIYQQuZpGo6FLly788ccfhISEODqcHC0jc5FHjx5x4MAB/Pz8pPeIEEKIXE1RFLp27crJkycJDg52dDg5WkbmIlFRUezatYtOnTpJ7xEhhBC5Xrdu3QgKCiIwMPCZHp8tCiRRUVGEhYVRuHDhdK9ry5YtuLq6pmtiFiGEECKnaNWqFTqdjq1btzo6lBwtI3OR7du3A9C2bdt0r0sIIYTI7po2bYq7uzubN292dCg5WkbmInv37iU6OpoOHTqkPzAhhBAim2vQoAGenp5s2rTpmR6fpQWS2NhYoqKikiz/+eefUVU13WOW6vV6tmzZQqtWrXBzc0vXuoQQQoicoECBArRo0YLNmzdjNBodHU62l9m5iKqqBAQE0LRp0ww5wCGEEEJkdy4uLrRt25atW7cSFxfn6HCyvczORQA2bdpEw4YNKVGiRLrXJYQQQmR3Op2ODh06sHv3brvfsSk+PiODWbduHREREYSGhgLw+++/c+/ePQBeffVVwsPDGTJkCC1btsTb2xuAo0eP8tdff9GwYcN0zxny559/EhISQqdOndK3I9lIXFwczs7Ojg4jifj4eJycnBwag9FoxGg0ZrvhS7JrXKqqotfrs/R1y67v3+Rkx3gd8bqlVnaOLTG9Xo9Go0GjyRYdJy0y6rO0U6dObN26lWPHjuX5CVIdnYucOnWK4OBgxowZk74dyUay42cjSC7yNNk1LslFUpYd483O3/fZObbE8kIusmbNGg4dOvTME6TmFo7ORYKCgrh48SJffPFF+nYkG8mOn40gucjTZNe4JBdJWXaMNzt/32fn2BLL7blIhw4dWLp0Kbt376Zz585peqyiqqqa7ggS9OzZkzt37ti9b9WqVRQoUIB58+Zx/vx5QkNDMRqNlC5dmlatWtG7d+90f3COGzeOBw8esHjx4nStByAkJIS1a9dy4cIFLl68SHR0NPPmzaNu3bpJ2r7zzjucOnUqyfIGDRowc+ZMm2VxcXH8+OOP7Ny5k/DwcCpVqsQbb7xB/fr1bdqFhYUxZcoUTpw4QfHixRk/fjx169ZNdVwxMTFs3bqVw4cPc/nyZaKjoylTpgydOnWiU6dOaLVam/ZGo5GVK1eyYcMGHjx4QJkyZejfv3+SyWVjY2OZMWMG+/bto2DBgrz77rspDmd27NgxlixZQlBQEE5OTtSrV4+33nqLkiVLJml7+PBh/P39uXbtGoULF6Z9+/a8/vrrSd4by5cv5+eff8ZoNNKtWzdGjBjx1BiSc/z4cZYtW0ZQUBBGo5GyZcvSp0+fJEl9VsV16tQpVq5cyaVLlwgLC6NAgQJUrlyZAQMG8NxzzyVpf/bsWb777juCgoLInz8/zZs3Z+jQoUl6UO3cuZP58+cTHR1Ny5YtGTNmzDN/+KTmPZzc+zcjXLlyBX9/fwIDA3nw4AH58uWjXLly9OnTh8aNG9u0vXr1KgsWLODs2bPodDoaNWrE22+/neSs7qNHjzJjxgwePHhAw4YNmThxIu7u7s8UX2BgIP7+/pw9e5a4uDhKlSpFp06d6N69u6VNVr9ugYGBfP/995w7dw5VValZsyYjRoygSpUqSdpmRmxRUVGsXLmSf/75hwsXLhAeHs748eNp166dpY3RaGTHjh0cOHCAS5cuER4eTsmSJXnllVfo3bu33bGTN2/ezMqVK7lz5w6enp50796dV1991aaNqqp88803bNq0CScnJ4YMGWJ5LVITF8CXX35pGTLJmre3N7/88ovNssz8LH0aVVUZPHgwZcqU4fPPP3/m9eQGjs5FPv/8cy5evMgvv/yS7rnQJBeRXMQRcUkukjLJRSQXMZNcxNbbb7+Ns7Mzs2fPTtd6cjpH5yKzZ8/m8OHDrF69Ot3rklxEchFHxCW5SMokF5FcxExyEVvPWhvI0FLu6tWrU2zz8ccfZ+QmLaKiojh27BjDhw/PkPUFBwezfPlyypQpQ8WKFTl//vxT23t6eibZtoeHR5J206ZNY//+/fTo0YMyZcqwbds2PvroI+bNm8fzzz9vabdo0SLi4uIsB1omTZrEqlWrUh3XrVu3mDdvHvXq1aNXr164ublx9OhRZs+ezfnz55k4caJN+++//55ff/2VTp06Ua1aNQ4fPsyUKVNQFMXmS3HVqlX8999/TJo0iTt37vDVV19Rs2ZNvLy87Mbxxx9/MGHCBKpWrcrw4cOJjIxk7dq1vP322/z44482H8h//fUXEydOpE6dOrz77rtcvnyZpUuX8vDhQz744ANLu7Nnz/LLL78wcuRI8uXLx+LFi/Hx8Unzf6KtW7cyY8YMfH19GTp0KFqtluvXr1vO7nFEXDdu3ECj0eDn50fRokUJDw9n165djBo1ihkzZticGX7p0iXef/99ypUrx9tvv829e/dYtWoVN27c4Ouvv7a0u337NrNmzWLQoEGUKFECf39/1qxZQ9++fdP0fJml5j2c3PvX1dX1mbZp7c6dO0RFRdG2bVuKFStGTEwMBw4cYPz48YwZM8ZSJb537x6jRo2iQIECDB06lOjoaFauXMnly5dZtGiR5UsrKiqKKVOm0KVLF3x8fFi9ejXff/89o0ePTnNsR48eZfz48VSpUoUBAwbg6urKzZs3uX//vqVNVr9ugYGBjBw5kuLFizNw4EBUVWX9+vW88847LFq0yHLWWmbGFhYWxpIlS/Dy8qJy5cqcPHkySZuYmBimTZtGzZo18fPzo0iRIpw/fx5/f3/+/vtv5s6da3OweePGjcyaNYumTZvSq1cvzpw5w7x584iJiaFfv36Wdrt27eLgwYN89NFHxMTEsGjRImrUqEGNGjVSFZeZs7MzH330kc2y/PnzJ2mXWZ+lKVEUhZYtW/Lzzz8TGxubpyfjdGQuotfr+fPPP+nevXu6iyMguYjkIk9ILmJLcpHkSS4iuYijchEwzYs2d+5cwsPDn/mgWm7gyFxEVVUOHz5M8+bNM+TMfclFJBdxRFySi6RMchHJRUByEXtatmzJlClTuHfvHsWLF0/9A9Vc4uDBg2qTJk3U4ODgDFlfZGSkGhYWpqqqqu7bt09t0qSJ+vfff9ttO2rUKPX1119PcZ3nz59XmzRpoi5fvtyyLCYmRu3du7f65ptv2rR9/fXX1UuXLlluDx48WL148WKq43r48KF6+fLlJMunTZuW5Hm6d++e2rx5c3X27NmWZUajUR05cqTarVs3Va/XW5Z/9NFH6sGDBy23J0yYoO7bty/ZfX7ttdfU3r17q3FxcZZlly5dUps2bap+8803SdoOGjRIjY+PtyxbvHix+vLLL6tXr161LFu+fLk6f/58y+3Vq1erc+bMSTYGe27duqW2bNlSnTt3boptszIue6Kjo1U/Pz/1gw8+sFk+ZswYtUuXLmpERIRlWUBAgNqkSRP1yJEjlmX79u1TJ0yYYLl98OBBdezYsc8US2rfw8m9fzOLXq9XBw0apPbr18+ybNasWWrLli3VO3fuWJYdO3ZMbdKkibpx40bLsgsXLqiDBw+23L506VKq/j8nFhERofr5+akTJkxQDQZDsu2y+nX78MMP1fbt26uPHj2yLLt//77aunVrdeLEiVkSW2xsrBoSEqKqqun5btKkibp161abNnFxceqZM2eSPNbf319t0qSJeuzYMcuymJgYtWPHjupHH31k03bKlClq69at1cePH1uWzZ49W129erXl9vz589UVK1akOi5VVdUvvvhCbd26dbL7Z5aZn6WpcfnyZbVJkybqn3/+ma71iGd34sQJtUmTJhn2eSe5iOQijojLHslFUia5SPIkF8k7ucidO3fUJk2aqLt3707XesSzu3jxotqkSRP1+PHjGbI+yUUkF3FEXPZILpIyyUWSJ7lI3slFHj9+rDZr1kzdsGFDmh6XvQYdS4c//vgDb29vypQpkyHrc3Nzo2DBgml6jF6vf+pEMAcOHECr1dqMg+bi4kKHDh04f/48d+/etSwvWbIka9eu5ebNm+zbt48bN27g5eWV6rgKFy5MhQoVkixv0qQJANeuXbMsO3z4MHq9nq5du1qWKYpCly5duH//vs3ZGKVKlSIgIIDr169z7NgxTp8+nexz/vjxY65evcrLL79s08WscuXKlCtXjr1791qWXb16latXr9KpUyebM126du2Kqqrs37/fJobff/+d8+fP8++//7Jr1640v+4bN27EaDQyZMgQwFQtV+2MNpfVcdmTL18+ChUqREREhGVZZGQkx48fp3Xr1jbV2jZt2uDq6sq+ffssy0qWLMnp06c5duwY169fJyAg4JnjSu17OLn3b2bRarUUL17c5jk6cOAAL774os12fX19KVu2rM3z4+XlxY0bN9i3bx83b95k7dq1z/T87N69mwcPHjB06FA0Gg3R0dFJJsx2xOt25swZfH19KVSokGVZsWLFqFOnDn/++aflMyszY3N2drZ75pg1Jycnu92l7X1m/f3334SFhdGlSxebtl27diU6Opo///zTsqxUqVLs2rWLf//9l/Pnz/P7779bYk1NXNYMBgORkZHJ3p9Zn6WpVb58eUqWLMkff/yRrvWIZ/fHH39QrFgxqlatmiHrk1xEchFHxGWP5CIpk1wkeZKL5J1cxMvLiypVqvD777+naz3i2f3555/kz5+f2rVrZ8j6JBeRXMQRcdkjuUjKJBdJnuQieScXcXd357nnnkvzcZHsNVvSMzIajfz555+0bt3aYTEEBwfTpk0b4uPjKVq0KB07dmTgwIE2Xx6XLl2iTJkySbofVa9eHYB///3X8qE1bNgwxowZw9atW9FqtYwaNSrJ+IDP4sGDBwA2HwqXLl3C1dWVcuXK2Y3r0qVLli6C/fr147333qN///6W25UrV7a7rbi4OAC7Q724uLhw5coVQkND8fDwICgoCAAfHx+bdsWKFcPT05NLly5ZljVp0oSdO3daxrGsW7cunTp1SuUzYHLixAm8vb3566+/WLhwIffv38fd3Z2uXbsyePBgy4RFWR2XWWRkJPHx8YSFhbFjxw6uXLnCa6+9Zrn/8uXLGAyGJHE5OTlRpUoVm7h8fHxo1aqVpdtrpUqVmDBhwjPFldr3cGa9f61FR0cTGxtLZGQkv//+O0eOHKF58+YA3L9/n4cPHyZ5fsyx/vXXX5bbRYoUYeDAgUyePBmj0UiJEiWYNWtWmuM5fvw4+fPnJyQkhIkTJxIcHIyrqyutW7fm7bffxsXFxSGvW3x8vN0J1vLly0d8fDxXrlyhZs2aDntPpSS5zyyAatWq2bT18fFBo9EQFBRk+T7w8/Nj//79DB48GDB1t0w8JmtqxMTE0K5dO2JiYnB3d6dFixa8+eabNmOQZtZnaWopisKLL77IoUOHeP/99zNkiCeRNn/88QeNGjVy2HMvuUhSkotILiK5iOQi6SW5SNo0atSI9evXo9frs93kzHnBH3/8QYMGDRz23EsukpTkIpKLSC4iuUh6SS6SNo0aNeLHH38kJiaGfPnypeoxuSJjMU9K9OKLLzpk+6VKlaJu3bpUrFiRmJgY9u/fz9KlSwkODmby5MmWduYvvcTMy0JCQizLKlasyPLly7l8+TJeXl5pquYlJz4+njVr1lCyZEmb/0ChoaEUKVIkyQEde3EVK1YMf39/Ll++TKFChShRokSy2ytatCgFChTg7NmzNsvDwsIsVc+QkBA8PDwIDQ212WbiOMz3A2g0Gr744guuXr2KwWCgYsWKaT4YZR7Tcvr06fTp04dKlSpx8OBBli5disFgsIybmtVxmU2aNImjR48Cpg/izp078/rrr1vuTymu06dP2yx799136dGjh2XysGdNmFP7Hs6M929i//vf/9i0aRNgeu5ffvll3n//fUuc1nEljvXx48fExcVZviD79OlDy5YtCQkJoWLFis80f8ONGzcwGAxMmDCBDh06MGzYME6dOsW6deuIiIhg0qRJDnndypYtyz///IPBYLBMQhgfH88///wDYBkH1FHvqZSsWLGC/Pnz24wzGxoailarpUiRIjZtnZycKFiwoM3/y3z58vG///2Py5cv4+zsbDO2aGp5eHjQp08fqlatiqqqHDlyhA0bNvDff/8xb948y75n1mdpWrz44ousW7eOy5cvU6lSpQxZp0id4OBgbty4wciRIx2yfclF7JNcRHIRyUUkF0kvyUXS5sUXX2Tp0qWcO3eOOnXqZMg6ReqEhIRw8eJFm0mQs5LkIvZJLiK5iOQikoukl+QiadO4cWMWLlzIiRMnUl0IyhUFkhMnTpA/f35q1arlkO2PGzfO5nabNm34+uuvCQgIoGfPntSsWROA2NhYmy6VZuYPo9jYWJvl+fLlo0aNGhkW59y5c7l69SozZsyw+U+b1ricnJzsVqAT02g0dO7cmeXLl7No0SLat29PVFQUCxcuJD4+3mbd5rMq7FV0nZ2d7XbRLV++fIoxJMfczW/48OGWiYuaNWtGeHg4a9eu5bXXXsPNzS3L4zIbPnw4vXr14t69e2zfvh29Xo/BYLDcb37eknvdzHFbK1WqVLrjSst7JaPfv4n16NGDZs2aERISwr59+zAYDEneVynFav26enp64unp+czxREdHExMTg5+fH++++y4ATZs2JT4+nk2bNjF48GCHvG5du3Zl1qxZzJgxg759+2I0Glm6dKnly9K8TUe9p55m2bJlHD9+nNGjR9tM9BkbG5ts4uHs7JzkM0uj0aTrLITEE022aNGCsmXL8v3333PgwAHLJGOZ9VmaFrVr1yZfvnwcO3ZMCiRZ7Pjx4+h0OurVq+eQ7UsuYp/kIs9OcpGUSS6SOpKL5K1cpFq1ahQqVIjjx49LgSSL/f333wA0aNDAIduXXMQ+yUWeneQiKZNcJHUkF8lbuUjZsmUpVaoUx48fT3WBJFfMQXLx4kWqVq36TJW6+Ph4QkNDbS7WH7jPqlevXoDpgImZi4uL5YPKmr0ulxkd14oVKwgICGDIkCE0atTI5r60xJWc5OIdMmQIHTp0YMWKFfTr14+hQ4ei1Wrp0KEDAK6ursCT/yj2Pmzi4uKeqXL9tLjM62vZsqVN+xYtWhAbG2vpQprVcZlVqVKF+vXr06FDB2bPns2FCxeYNm2a5X7zdpN73ewlLhkhI94rGaVcuXL4+vrStm1bZsyYQXR0NOPGjUNV1RSfn8yI1bw+85eCmfk9dv78eYe8bn5+frz22mvs3r2b119/nYEDB3Lr1i369OkDPPk/6Kj3VHL27NnDDz/8QIcOHZKMqeni4oJer7f7uPT8v0yLnj17otFonvkzPrM4OztTuXJly2eYyDqBgYFUrFgx1V14rUkuIrmINclFni47fNaaSS6SOpKLZI7smotoNBqqVasmuYgDBAYGUrp06WcawkdyEclFrEku8nTZ4bPWTHKR1JFcJHNk11xEURSqV6+eplwkV/QgCQoKolmzZs/02HPnzlmqmmarVq2iZMmS6YqpePHiAISHh1uWeXh4WLptWTNXLIsVK5YpcW3bto3vvvsOPz8/BgwYkOR+Dw8PTp48iaqqNl2g7MWVnKfFO3bsWIYOHUpwcDBFixalbNmyTJkyBY1GQ+nSpS0xmLeZeNKq0NBQy1h1aZVcXB4eHty4cSNJVzTzbfPrltVx2Xt9nZycaNy4Mb/++iuxsbG4uLjYxJVYaGhoql6zZ5GW93BWa9asGTNnziQ4ODjF56dgwYIZ/sXm4eHBlStXKFq0qM1y6/eU+f2e1a/b0KFD6d27N1euXCF//vxUqlSJxYsXA6bKujl+R8Rmz7Fjx/jyyy9p1KiRZTxPax4eHhgMBh4+fGjzfzg+Pp7Hjx9nStflxFxcXChYsCCPHz+2iSu9n6UZwcfHx9IVXWSdwMDAZz47THIRyUWsSS7ydJKLJE9ykYwjuUj6+Pj4sHnz5iRxiMwVGBhI1apVn+mxkotILmJNcpGnk1wkeZKLZBzJRdKnatWq/P777zbDqj1Nji+QhIWFcefOnWdOBCpXrszs2bNtliX+j/wsbt26BWBz9kblypU5efIkkZGRNpM5mce8s+7qlFFxHTp0iK+++spmHMLEKleuzObNm7l27ZpNN0h7cSUnpXiLFi1quW0wGDh58iTVq1e3TORTpUoVIOkBppCQEO7fv0/nzp1Tsbepj8vHx4cbN24QEhJi0x3OPBae+XXL6riSExsbi6qqREVF4eLiQoUKFdBqtQQGBvLKK69Y2sXHx3Pp0iXLpFwZLS3v4axm7qYXERGBt7c3hQsXJjAwMEm7CxcuZEqcPj4+HD9+nPv379uM52j9nnLU6wbg7u5umQgLTGdxeXp6WmJ1ZGzW/vnnHz7++GN8fHyYPHmy3Z6B5v+XFy9etDnz6+LFixiNRsv9mSkqKoqwsLAkn/Hp/SzNCFWrVmXdunVJ/p+KzBMbG8vVq1eTnNWTWpKLSC4iuUja4pZcxD7JRTKG5CLpV7VqVR48eEBISEi6hmoRqWc0Grl06VKSXhGpJbmI5CKSi6QtbslF7JNcJGNILpJ+VatWJSYmhuDg4FQN+Zfjh9gy/0d/1vHK3N3d8fX1tbmkpbtPZGRkkm6GqqqydOlSAOrXr29Z3qxZMwwGg2UCJTB1Mdq6dSs1atSwqcSnNy6AU6dOMXnyZJ5//nk++eQTNBr7L/dLL72ETqdj/fr1NvuwceNGPD09UzW3S1riXblyJaGhoZbutmD6EPL29iYgIMCmS+WGDRtQFIWmTZumdrdTFZf5g27Lli2WtkajkW3btlGwYEHL+ymr43r48GGStuHh4Rw4cIDixYtbqsIFChTA19eXnTt32oz3uWPHDqKjozPtQzst7+HMYu850uv17NixAxcXF8sHX9OmTfnjjz+4e/eupd2JEycIDg7OlOfHvE7r95T5tlarpW7dug573RLbs2cPFy9epEePHpbPhewQ29WrVxk7diwlSpRgxowZyX6GvPDCCxQsWJCNGzfaLN+4cSP58uV75h+G9sTGxtodU/fnn39GVVWbSdIy4rM0I5hPGLh06VKWbE/Af//9h8FgeOaTNSQXkVzETHKRlEkukjzJRdJPcpGMYf78sndQTmSO4OBgoqOj5biIHZKLSC6S0SQXSZ7kIuknuUjGMP82T20ukuN7kAQFBeHm5mbpopWRfv75Z8D05gTTf4gzZ84AWLpkBgUFMXnyZFq2bEnp0qWJjY3l0KFDnD17lk6dOtkkKDVq1KB58+YsXryYR48eUbp0abZv386dO3cYO3ZshsZ1584dJkyYgKIoNGvWjP3799uso1KlSpYJfIsXL06PHj1YsWIFer2e6tWrc+jQIc6cOcMnn3ySqq5Iydm5cycHDhygdu3auLq6cvz4cfbt20fHjh2TDIv21ltvMX78eD744ANatGjB5cuXWb9+PR07dsyQCb6svfTSS9SrV49ffvmFR48eUblyZcs+jxkzxqabYVbG9eGHH+Lp6UmNGjUoUqQId+/eZevWrYSGhvLZZ5/ZtH3jjTcYOXIko0aNonPnzty7d49Vq1ZRv359mw+njJRR7+H0mDlzJpGRkdSuXRtPT09CQ0PZtWsX169fZ+TIkZazb/r378/+/ft577336N69O9HR0axYsYKKFSvSrl27DI+ratWqtG/fnq1bt2IwGKhTpw6nTp1i37599O/f39KNMKtft1OnTvHzzz9Tv359ChYsyD///MO2bdto2LAh3bt3t2mbmbGtW7eOiIgIS7fK33//nXv37gHw6quvotFoGDNmDOHh4fTu3Zs///zT5vGlSpWyfJG6uLgwZMgQ5syZw6effkqDBg04ffo0O3fuZOjQoRQsWDDD4goPD2fIkCG0bNnSclbJ0aNH+euvv2jYsCEvvfSSZV2Z+VmaFuXKlcPFxYXAwECZHDWLBAUFodVqqVixYoavW3IRyUWyOi7JRVImuUjaSC6SvrhyYi5SvHhxChUqRFBQkE18IvOYx1l/1pM1nkZyEclFsjouyUVSJrlI2kgukr64cmIu4u7uTunSpQkMDKRNmzYptldUVVWzIK5UeZYJb77++muCgoL4/vvvMzyel19+Odn7Dh48CJi6jC5atIgLFy7w4MEDNBoN5cqVo2PHjnTu3DnJmKuxsbH8+OOP7Ny5k4iICCpWrMgbb7xBgwYNMjSukydPJhnL0drAgQMZPHiw5bbRaGT58uVs2rSJ0NBQypQpQ79+/WjdunWq47Lnn3/+YeHChVy+fJnY2Fi8vb3x8/Oz+9yAqevrkiVLuHbtGoUKFaJdu3YMHDjQbney9IqKiuKHH35g7969hIeHU7ZsWfr27Wt3n7Mqrt9++429e/dy7do1IiIicHd3p0aNGvTp04fatWsnaX/mzBm+++47S6GwefPmDB8+3PJlmBky4j2cHnv27GHLli1cvnyZsLAw3Nzc8PHxoVu3bkl+gF25coUFCxZw9uxZdDodjRo1YuTIkRnSXdwevV7PsmXL2LZtGyEhIXh5edG1a1d69uxp0y4rX7ebN28ye/ZsgoKCiI6OpkSJErRt25ZevXrh5OSUpH1mxdazZ0/u3Llj975Vq1YB2Jw9lVjbtm2ZMGGCzbKAgABWrVrF7du3KV68OF27dqVHjx5pGus6pbgKFCjAvHnzOH/+PKGhoRiNRkqXLk2rVq3o3bt3ks+AzPosTauBAwdSp04d3nvvvSzdbm7wLLnIt99+y6FDh1ixYkWGxyO5iOQiWR2X5CIpk1wkbSQXSV9cOTUXefvttylZsiQTJ07M0u3mBs+Si/z888+sW7fO5oz2jCK5iOQiWR2X5CIpk1wkbSQXSV9cOTUXGTt2LBqNhmnTpqXYNtMLJHFxcZYPjfDwcCpVqsQbb7xh08UyLCyMKVOmcOLECYoXL8748eOpW7duqtY/duxYFEVh+vTpmbULQgghRI7ywQcf4OrqytSpUx0dSraQ2bnIlClTuH//Pt98801m7YIQQgiRo0yaNInHjx8zZ84cR4eSLWR2LjJ79mzOnTvHTz/9lFm7IIQQQuQoX331Ff/++y+LFy9OsW2mz0Eybdo0Vq9eTatWrXjnnXfQaDR89NFHlq6PAIsWLSIuLo7PP/+cVq1aMWnSJKKjo1O1/tDQUDw8PDIrfCGEECLH8fDwsHSPFZKLCCGEEFmtaNGikotYkVxECCGEyFrFihVLdS6SqXOQ/PPPP+zZs4cRI0bQp08fANq0acPAgQNZuHAhCxcuBOD8+fN88sknVK5cmSZNmvDXX39x/fr1VE0wFhoaahnDTgghhBCmRODUqVOODiNbyKpcpEqVKpm6H0KIp4uN0/PuhBX8c+kOlu7xCqbr5iEGLLdTeX/CqWSqVXvTbcX2dqJ12nuM/fVY7UDCOpM8Lg3bsF1f4n1M5jb2l6tKCtuz0y7xYxK3TxJH4uWK+mQdVvcnvk9NuG1zn8ZqmebJX8VmmYqiSbgkXNcoKhqNikZjRKOoaDVGtBoVrWJMuG5EqxjRaYzotEacFIPpumLAyfLXgE4xJvw13XZSrC4aA06K3maZTjGiU/Q4YcDJfF0xoFNUdIoeHSo6xZDwVzW1B7SKihbQAjrF9FerKGgS/upQ0KBBg4JWMV9TQNEAOjRFAtC4VCIrFCtWjJCQkCzZVnaXVblIRs8DIYQQQuRkHh4ePHjwAIPBkOLcJ5nag+TAgQNotVo6d+5sWebi4kKHDh04f/48d+/eBaBkyZKsXbuWmzdvsm/fPm7cuIGXl1eK6zcYDDx8+FDOlBBCCCGsmHuQZKNpxhwms3MRkLM2hXC0r7/ZRqvuczgfdMfqYHtCIUNRkjngnsz9micXNdFjVOwURxKvE/uFC5t2Nm1MMVjaWD0u2W3YaZukeJHsPlutn0TrM7fRPGU9mqTt1MSP0di2VzVJ1299QauialXUhCP/asLFdPQ/0X0aFbSq5T50KqrOfB3QqSg6UHQqitbUVtGpaBIu2oSLTmdEp1Vx0hlx0hlx1hlxdkr4qzPg4mTARWcgn86Aq5MBV50eV62efDq96brO9rqrTo+bTk9+nZ78Wj1u2njcdAkXbTyuWvNfPa4aPa6aONw0Cbe18bhqDbhqDOTTxOOqGMmnMST8NZJPMeKiqLgoKs4KuCjgogEXRcFZ0SRctDijRafocFJ0OCtO6BQdWkWLRtEkvKX1qA/bYbxTO0vyAw8PDyIiIoiNjc30bWV3WZGLhISESC4ihBBCWPHw8MBgMBAWFpZi20ztQXLp0iXKlClD/vz5bZZXr14dgH///RcvLy+GDRvGmDFj2Lp1K1qtllGjRlG4cOEU1x8WFobRaKRIkSKZEb4QQgiRIxUtWpT4+HjLpIZ5WWbnIrGxsURGRkouIoSDrFh3hIBd51Lu5ZGa++0WMMx/bdvbb0Oq2jzp4aIkuS/N2zCvL1HRw95jk+thkuxjUlpmZ3mSIkwyxZ7EhRv7l0Q9SsCmQPOkEKMmLFdNHSUU1XJRNNj0GDH3GlEU0GqMT3qP2Ok1otUk9BzRGE29ODQqTpqEHh0ao6V3iHXvEZ1iQKfRW/UUMd3vnNALxLzMCfNto+kvBrSKESdMcTgpRrSolh4jOsW0i6ZeJAo6QKMoaFFMvUVQ0CgatFY9R+wxvQzRqPf+D8XriN02GcU8+e+DBw8oWbJkpm4ru8vsXATg4cOHmTbhshBCCJETWeciKX1HZmqBJLkzKs3LzF1uK1asyPLly7l8+TJeXl6pPvMhPj4eMJ19IYQQQggTZ2dnwDQhaF4nuYgQudvCpQftHIxPofBg7/6nHNRHUUhyvv3TCh9PafPkvicx2B3y6mnbsC6gpHKbqr31J3683TiTLlOTuW4pfFjfTrx+e0WQxPHYaWdabjusFjbLTEUP68eYOwiZ21g6DCmqzUWT6KJN9FeDaimgmNoY0SqgUUhoZ7S9YF4XaBUSHmdEg2q6D/NjErZDQsHG/FdRTfUfxdRRRsF0W5uwTAEUxVQYsS6OmG4nDKmVEvUhRv0jNLrCKbd9RuZcxPw9mZdldi6iqirx8fGSiwghhBBWzN+LqTkukqkFktjYWJycnJIsNydL1t1t8+XLR40aNdK0fr1eD5DiOGJCCCFEXmL+XjQYDA6OxPEkFxEi97px64HpyHmi48GJiwa2B+ntFDtSy14BIY1tbOY8edZtJNc2uUJK4nU9rXCTuE1yy5K7ntztlJ6zxEWq5NpY3bbfu0a1fYz5oQnFEMtdSqKLvWUJF41i7riimi6KioaEYglWRQurdZiGtDImXKzaJRRelIT1mTvEaDAm/FXNnWOeFEYU611UbDrRYLVcQUFRlNQVSAAej4Wii1LX9hlILvJEZuci5udYchEhhBDiibTkIpk6B4mLi4vdM0bMlZv0nuFgNBoBSQSEEEIIaxqN6evd/D2Zl2VVLmJ+zoUQWedeSETyd6ZUBHhKr4y8yl7hKNXPTUa1SY2nFWdS2KadkdJS+XDVppiSZL2JLvbWodhbiG3RhoSiiN1Y7MRuLoo8E8ONZ3tcKpl/o0sukvm5iPnAj+QiQgghxBPmHCk1uUimfoOaJ4lNzLysWLFi6Vq/nJUihBBCJCUnEDyRVbmIHAASIut5ly6S/J1qcn/VJMsTdzxIUWraPq1NaibITs8c2sntewqS7TSS3v01358R+2R1PVWxqbZXE7/8qdmsmrA1VcXmYq+dvd209zI8iUOxWT8oGBM9Nrm3rum6iqqqqM/y5Do9n/bHpIH0anhCchEhhBAi66XluEimFkgqV67MjRs3iIyMtFn+zz//WO5PDymQCCGEEEnJsE9PZHYuotOZRis1P+dCiKxTzMMdnVZJckQ6NSM+JZGagka6CyNP6bmQlmJGssWfJ02eus+pKaDYPaqfiuupuZ34PnuXp7W1e1158jfR/aaCxpMxuVSrZZYLT64bLZcnxRCjCsYng2yhojG1QcGomgfTSrhuXs6T5QbzOlQNBtVUFDENvkXCdSXR3yd9SYyq9a6qGAGjmrQkkuZiScHJqWv3jKRA8kRWHReRXEQIIYR4Ii25SKYWSJo1a4bBYGDTpk2WZXFxcWzdupUaNWrg5eWVrvXny5cPgOjo6HStRwghhMhNYmJiAJk4HDI/FzGPH25+zoUQWWv6J68+ufGUXiJpuz/RX+yMiGTnb4ptrFnFkKRokpptmONK7T4kU7RQ1KTLnlocUW23abN9e7exvW3TLqHHhN0RsxK3B6siiPX1JwUyNVGBxdLTI6HNk94f5kKIVfEj0cW0XMFgdTGqGgxGBYOqQW9UrO43PcZ83WC5rrH8tRRKIKGIonnymITCiukvlgKLQcXUPmG5AdO6zSUQIypGVAyoGFVjwnUjRtX41CKJCqCti0bjnGybjGD+jW7+nszLMjsXURSFfPnyyXERIYQQwor5ezE1x0UydZL2GjVq0Lx5cxYvXsyjR48oXbo027dv586dO4wdOzbd6y9YsCA6nc5ud1UhhBAirwoNDSVfvny4ubk5OhSHy+xcxMnJiUKFCkkuIoSDNHihApPHdmTSV5tthj1SLIeIFcu/1oeM7d6vYjl9LHF78/n8qpJwQF4xHeRXEzU0tcG2TaKYn7RRrZYkbpDC461u2MSR+LFWjS3bfbJLSbaRdL9TXpbkuVVtt2P9nCRZlwooCoqimtrYXBQUjZpoO4qpGqExLVGMKqomYZmioGpUMCooGtO6VVRURbGsMuFhGDWY/0lYagSNBtWQ8LJoTYtUntwNoFoeYqqKmNavmgov1icnGvWoGhUVjalXh6KConuyjxhR0aGix9yHhIQeJQCqajS918xPUqLX1/ysqIDO0ixhXxRT4BpFk2TCdhVQtM+j8VxFZjN/LxYtWjTTt5XdZXYuAqbnWXIRIYQQ4gnz96KHh0eKbTO1QAIwYcIEvLy82LFjBxEREVSsWJEZM2ZQp06ddK9bURRJBIQQQohEQkND8fDwePaJW3OZzMxFQA5KCOFozRtXp/nG6uw5dJHZC7fzONI0GbLV4eXU3zYXC5Sk95vbJL6dYhvFfht4Ukiwt56UHv/UOKyKH5aJ6El6214xJcn2zMusCx/WyxJitK73mHuSqNhZv9V2n8SiWIpWNvtiVEzbSSigWIokBvVJEUVNKI4oWOodqhEUTUJQippQO1AwKCqKRkVRVIwaFY0GDBrQYCrGaDUKGo0GrdGIVjGi1RiJ15j+6hQDThoFnUZBpyjoNBqcFA06jRYnxYDOqMFJ0eKkMeCk0eJkNOCk6NFpDDgp5ouCk5LwOMVoua1TjOhUDU6KER0GdBhwQoNWNZruQ0WbUFLRmXYFnWpepqBBQasoaFDRqQoaxYhG1aBFSSiUaNBom6Ep9v/t3XdYU+fbB/Bvwl6i4EAQFBAQN4LWaq3irFVx/KqtVVHrqtZWi/o6W+tsHdCqdZRiVbTD2gHauussTtyLYRFEVBQUAZlJzvsHJBKGggIn4/u5Li7CycnJHURy89zPcz/fVVtukJqaipo1a8LIyKhank/TVXUuYmtri0ePHlXKtYiIiHRBamoqjIyMUKNGjReeW+UFEhMTE0yaNAmTJk2qkuvXrl2bgxJERERFKAskVIC5CJF+6NapCbp1aiJ2GEQE5iLFMRchIiKqXhWZOFqle5BUB1tbWyYCRERERaSkpKB27dpih6E3bG1tkZKSInYYREREGiM1NZW5SDWysbFhLkJERFRERSZr6ESBhIkAERHRM5y1Wb04WYOIiEhdSkoKc5FqxHERIiIidQ8fPtSfAomjoyMSExMhk8nEDoWIiEh0ubm5SEpKgpOTk9ih6A0nJyckJycjKytL7FCIiIhEp1AokJCQAEdHR7FD0RtOTk7IzMxkkYSIiKhQfHx8ucdFtL5A4uHhgby8PMTHx4sdChERkej+++8/yOVyuLu7ix2K3nB3d4cgCIiJiRE7FCIiItHduXMHWVlZzEWqkYeHBwAgOjpa5EiIiIjEl5qaipSUlHLnIlpfIGncuDEkEgkTASIiIgAxMTEwMDCAi4uL2KHojYYNG8LY2JgFEiIiIjwbpGeBpPrUrVsX1tbWHBchIiICVH+b602BxNzcHI6OjkwEiIiIUDAo4ezsDBMTE7FD0RuGhoZo3LgxcxEiIiIU5CJ2dnawtrYWOxS9IZFI4O7uzskaREREKMhFrKysUL9+/XKdr/UFEqBgOWlsbKzYYRAREYkuJiaGMzZFwEEJIiKiArGxsaqWT1R9PDw8mIsQERGhYFzEw8MDEomkXOfrRIGkSZMmiI2NRU5OjtihEBERiSYrKwtxcXHw9PQUOxS94+npidu3byM9PV3sUIiIiESTn5+PqKgoFkhE0KRJE6SkpOD+/ftih0JERCQahUKB69evVygX0YkCyWuvvYa8vDycP39e7FCIiIhEc+bMGcjlcrRt21bsUPRO27ZtIQgCTp06JXYoREREorl06RKys7Px2muviR2K3mnTpg0MDAxw8uRJsUMhIiISTXR0NB49elShXEQnCiSOjo5wcHDAiRMnxA6FiIhINCdPnoSzszPs7e3FDkXv1K5dGx4eHhyUICIivXbixAnUqVMHjRs3FjsUvWNpaYlWrVpxXISIiPTayZMnYWlpiebNm5f7MTpRIJFIJOjQoQNOnjwJQRDEDoeIiKjayeVynDx5Eq+//rrYoeit119/HadPn4ZMJhM7FCIiomonCAJOnDiBDh06lLvnN1WuDh064MKFC8jOzhY7FCIiIlFERESgffv2MDQ0LPdjNL5AIggC8vPzX3hehw4d8PDhQ27WTkREeikqKgppaWno2LGj2KHonPLmIh07dkRmZiauXLlSDVERERFploSEBNy9excdOnQQOxSdU5Fxkby8PERGRlZDVERERJpFWRuo6MTR8pdSniMlJQW//fYbbty4gaioKGRnZ2PVqlXw8vIqce4nn3yCixcvljjerl07rFy5Uu3Y/v37sXr1amRnZ6N79+6YPn06jIyMSo2hZcuWsLCwQEREBNzd3SvjZREREWmNEydOwNraGk2bNhU7FFFoQi7i5uYGW1tbRERElPq8REREuuzEiRMwMTFBmzZtxA5FFJqQizRo0ABOTk6IiIhAp06dKuV1ERERaYsTJ07AwMAA7du3r9DjKqVAkpiYiJ9++gkNGjSAi4sLrl279tzz69SpgwkTJqgds7W1Vfv63r17CAwMxOjRo2FnZ4dNmzZhx44deP/990u9ppGREd544w3s378fI0eOhFSq8YtjiIiIKoVcLse+ffvQqVMnGBgYiB2OKDQhF5FKpejcuTMOHjyIDz/8sEJLeomIiLSZIAjYu3cvOnToABMTE7HDEYUm5CIA0LlzZ/zxxx+YMmUKzMzMXv4FERERaZm9e/eiTZs2sLKyqtDjKuUvdw8PD/z111+oUaMGjhw5gs8///y551taWqJnz57PPSc6Oho+Pj547733AAAGBgb4+++/n5sI9OvXD/v27cOFCxfg7e1d8RdCRESkhc6cOYMHDx6gX79+YociGk3KRf744w9ERESgc+fOFX8hREREWujq1auIj4/HJ598InYootGUXKRPnz7Ytm0bDh8+jLfffrviL4SIiEgL/ffff7h27RoWLlxY4cdWyjILc3Nz1KhRo0KPkclkyMrKKvP++vXr49KlSzh79ixu376NXbt2oUGDBs+9ZosWLdCwYUPs3LmzQrEQERFps127dsHNzQ1NmjQROxTRaEou4urqimbNmjEXISIivbJz507Y29vrbXstQHNyEXt7e7Rt25a5CBER6ZW//voLNjY2eOONNyr8WFH6UCUmJqJXr1546623MGDAAISEhEAmk6md4+HhgR49emDatGkYPnw4Hj58iOHDhz/3uhKJBH5+fjh27BgePXpUlS+BiIhIIzx8+BAnT55Ev379IJFIxA5Ha1RVLgIAfn5+OHv2LO7evVtV4RMREWmMjIwMHD58GH379mWr6wqo6lzk+vXruHnzZlWFT0REpDFycnKwb98+9O7d+6VaXVd7c2x7e3t4eXnBxcUFOTk5OHLkCEJDQ5GYmIgFCxaonTtlyhQMHjwYGRkZcHV1LdcL7NWrF7777jvs3bv3uctOiYiIdMHu3bthZGSEHj16iB2K1qjqXMTX1xdr1qzB33//jXHjxlXVyyAiItII+/btg1wuZzunCqjqXKRDhw6wsbHBrl278Omnn1bVyyAiItIIhw8fRmZm5ku3Ha/2AsmsWbPUvu7VqxdWrFiBXbt2YciQIWjWrJna/fb29hW6fo0aNeDr64s///wTgwcPhpGR0SvHTEREpIlyc3Oxc+dOdOvWDRYWFmKHozWqOhcxNTVFz549sWvXLgwfPpwbpBIRkc6SyWT4448/0KlTJ9jY2Igdjtao6lzE0NAQffr0we+//44xY8ZUuPUXERGRthAEAb///jt8fHwq/H6pVKH1r/n5+UhNTVX7kMvlL/XERb377rsAgMjIyFe+FgC8//77ePDgAfbs2VMp1yMiItJEf/31F1JTU/VqxaS25CLvvvsuMjIyEBYWVinXIyIi0kT//PMP7ty5g2HDhokdSrXRllzknXfegUKhwPbt2yvlekRERJooIiICMTExGDFixEtfo0IrSK5evYopU6aoHdu+fTvq16//0gEAQN26dQEU9C6tDM7OzvD19cXWrVvRu3dvriIhIiKdk5ubix9//BE9evSAo6Oj2OFUG23JRerXr4+3334bP/30EwYMGMBVJEREpHNkMhk2b96Mjh07wsPDQ+xwqo225CK1atXCwIED8fvvv2PIkCGwtraulOsSERFpCkEQsGnTJrRu3RpeXl4vfZ0KFUgaN26MoKAgtWOVsYxWuYlpzZo1X/laSqNGjcLIkSOxe/du9O/fv9KuS0REpAl27dqFx48fw9/fX+xQqpU25SIjRozAnj178Oeff+rVKh8iItIPBw4cQFJSUok9M3SdNuUi7733Hv7880/8+uuv3BeNiF6aXC5HdkYOTC1MYGhU7bs1EJXp33//RWxsLFavXv1K16nQT7WVlRV8fHxe+smePn0KIyMjGBsbq44JgoDQ0FAAQNu2bV/62sU1atQIXbt2Va0iKfqcRERE2iw3Nxfbtm3Tu9UjgHblInZ2dnj77bfx888/Y8CAATA3N6+0axMREYlJJpMhNDQUnTp1gru7u9jhVCttykWUq0h+++03DB48uFKLL0Sk++7F3cdE7//D0yfZascnfTMaAz95W6SoiAoIgoDNmzfDy8sLrVu3fqVrVVrZb8uWLQCA+Ph4AMC+fftw+fJlAMDIkSMBADExMViwYAG6d+8OBwcH5Obm4vjx47hy5Qr69etX6ctyR44ciZEjR+Kvv/7CoEGDKvXaREREYgkLC8OTJ0/0bvXIi2hiLjJixAjs3r0bv//++yv1RCUiItIke/fuRVJSEhYuXCh2KBpFE3ORoUOHIiwsDD///DMmTpxYqdcmIt1162oCxrecXviVRO2+dVM34d+wkwg8tKj6AyMqdPTo0UpZPQIAEkEQhEqICW+++WaZ9x07dgxAwZLR7777Djdu3MCjR48glUrRsGFD9O3bF35+fpBIJGVe42V99dVXOH78OH788UfOliAiIq2XkpKCESNGoFu3bpg+ffqLH6BHNDUX+fbbb7Fz505s3boV9erVq/TrExERVaeMjAwMGzYM3t7emD9/vtjhaBRNzUU2bdqErVu3YvPmzXBycqr06xOR7ukhHVx4SwJIJOo1EoUAQMD2lGDY2NQSITrSd9nZ2Rg5ciQaNmyIFStWvPL1Kq1AoqnS0tIwbNgwdOrUCbNmzRI7HCIioleycOFCnD17Fj/++CNq1KghdjhUDk+fPsXw4cPRrFkzLF68WOxwiIiIXklQUBD279+Pbdu2oXbt2mKHQ+WQm5uLUaNGwc7ODkFBQVVShCEi3XE76g7GNP0UgASQSgp/ZxT9vSFAEARAUOCAfIdIUZI+Cw4Oxq+//ootW7bAwcHhla8nrYSYNFrNmjUxYcIE7N69W7W0lYiISBudO3cOBw8exKRJk1gc0SIWFhaYPHkyjh07hpMnT4odDhER0Uu7ceMGwsPDMWbMGBZHtIiJiQmmTJmCc+fO4dChQ2KHQ0Qa7sfFO/CsOCIFJNKCVSTSwg+JtOA4WGyl6hcfH49ffvkFw4cPr5TiCKAHBRIA6Nu3Lzw9PREYGAiZTCZ2OERERBWWn5+Pr7/+Gi1atECvXr3EDocqqGvXrvDx8cGqVauQm5srdjhEREQVJpfL8fXXX8PV1RUDBw4UOxyqoPbt2+PNN9/EmjVrkJmZKXY4RKTB8vMVAFCwcqSwvZaksFgikUghURZKpAY4/CcngFH1EQQBX3/9NerVq4ehQ4dW2nX1okAilUoREBCAhIQE/Pbbb2KHQ0REVGHbt29HUlISAgICIJXqxdu3TpFIJJg6dSoePHiAbdu2iR0OERFRhe3atQtRUVH49NNPYWhoKHY49BI+/vhjZGdnY+PGjWKHQkQabNLasYWLQwqLI8VXkagKJVJ8OWSV2OGSHjl48CAuXLiAqVOnwsTEpNKuqzcjLB4eHhg4cCBCQkIQHx8vdjhERETl9t9//2HTpk1455134OrqKnY49JKcnJwwbNgwbNu2DTdu3BA7HCIionK7c+cO1q9fj759+6JFixZih0MvqV69ehg9ejT++OMPnD9/XuxwiEhD1a5tXXBDomyxVbhJu1TyrEhiIIXEQApIDUSNlfTHw4cPsWrVKvj6+uK1116r1GvrTYEEACZMmID69etj4cKFyMvLEzscIiKiF8rNzcWCBQvg5OSEsWPHih0OvSJ/f3+4ublh0aJFyMrKEjscIiKiF5LJZFi4cCFsbGwwefJkscOhVzR48GC0bt0aS5YsQXp6utjhEJGGkkilz7YYkaCwSFLKh4EUUZeixQyV9IBcLsfixYthYmKCgICASr++XhVITE1NMX/+fCQkJCA4OFjscIiIiF5o7dq1uHv3Lj7//PNKXUJK4jAyMsJnn32G1NRUrF69WuxwiIiIXuiHH35AbGwsPvvsM5ibm4sdDr0iAwMDzJ07Fzk5OVi+fDkEQRA7JCLSQF+f/BzKjdqLFkQkUqnqA1IpJBIJprRfLHa4pON++eUXXLx4EXPmzIG1tXWlX1+vCiQA0LhxY0yYMAG//vorTp8+LXY4REREZYqIiEBYWBg++ugjODs7ix0OVRJHR0dMmTIFu3fvxuHDh8UOh4iIqEwXLlzAjz/+iDFjxqBp06Zih0OVpG7dupgxYwaOHTuGv//+W+xwiEgDNfMp8jtfWRgptnpEIpEABgYFRRSiKhIVFYWQkBAMHToU3t7eVfIcelcgAYB33nkH7dq1w5dffonHjx+LHQ4REVEJKSkp+Oqrr9ChQwcMGDBA7HCokvXu3Ru+vr5YsWIFkpOTxQ6HiIiohPT0dCxevBitW7fG0KFDxQ6HKlmXLl3Qt29frF69Grdv3xY7HCLSQJKirbUAQKrcqF2q+pBIpYCBAcdXqUpkZWVh4cKFcHNzw5gxY6rsefSyQCKVSjF79mwoFAp88cUXkMlkYodERESkkpeXhy+++AIGBgaYNWtWwcwc0ikSiQTTp0+Hubk5PvvsM+Tm5oodEhERkYpcLseiRYuQk5ODuXPnwsCAm/Dqoo8//hh169bFZ599hqdPn4odDhFpmOlbxjxbKaIsjhT9KDwmkUoxtFHl7wtB+k0QBCxbtgypqan47LPPYGRkVGXPpZcFEgCwtbXFwoULcfnyZfYAJyIijSEIAoKCgnDjxg0sXrwYNWvWFDskqiJWVlZYsmQJbt26hWXLlrEHOBERaYz169cjMjISX3zxBerWrSt2OFRFzMzMsHjxYjx48ACLFi2CXC4XOyQi0iA93u367AtVUURSsGm7VKL+AU7qo8q1ZcsWHD58GHPnzoWjo2OVPpfOFkgEQUB+fv5zz2ndujWmTZuGsLAw/Pnnn9UUGRERUdl27NiB3bt3Y8aMGWjevLnY4dArKE8u4uHhgdmzZ+PgwYP48ccfqykyIiKisv3999/49ddfMXnyZLRt21bscOgVlCcXadSoEebPn49Tp07h+++/r6bIiEirSAuHj1Utt6SQFH5AIgWkBoCBFAqFQtQwSXccOXIEP/zwA8aOHYs333yzyp/PsMqf4TkuXryIX375BbGxsXjy5AksLS3RuHFjjBw5Ei1atChx/pUrV7BhwwbExMTAwsICvr6+GDduHMzNzdXO279/P1avXo3s7Gx0794d06dPL3MZTt++fREXF4fVq1fDycmpyjZ7ISIiepFTp05h3bp1GDp0KN566y2xw9ELmpCLdO3aFfHx8QgODkbDhg3RqVOnKnmtREREL3L58mUEBgbCz88PgwYNEjscvaAJuUj79u0xceJErF27Fs7OzujVq1eVvFYi0j69x72JPZtOQCJVFkYkzwolACSFi+AFGODtuh9ib0qweMGSToiJicGSJUvQrVs3jBgxolqeUyKI2M/hr7/+wokTJ9CkSRPY2NggIyMDBw4cQFxcHJYtW4bXXntNdW5sbCwmTpyIhg0bws/PDw8ePMD27dvh5eWFFStWqM67d+8eRo0ahdGjR8POzg6bNm1Cr1698P7775cZh0wmw8yZMxEVFYUNGzZU+bIdIiKi4uLj4zFx4kS0atUKS5YsYa/vaqIpuYhCocD8+fNx5swZrFu3Dq6urlX6uomIiIq7d+8eJkyYAGdnZwQGBsLQUNT5lHpDU3IRZa/3AwcOYPXq1WjWrFmVvm4i0h5v1RwDGEghkRqoFUdUnwUBEAQIcgX2prJAQi8vNTUV48ePh62tLdasWQMTE5NqeV5RCySlycnJwXvvvYfGjRtj5cqVquMzZszAzZs3sW3bNlhYWAAoSCSWL1+OlStXol27dgAKluAcOHAAS5YsAQAcP34cf//9N7766qvnPm9GRgY+/PBDKBQKfPvtt7C1ta2iV0hERKTu4cOHmDx5MkxNTbFu3TrV+xyJQ6xcJDs7G5MnT0ZaWhrWrl0LOzu7KnqFRERE6tLS0vDJJ58gLy8P3333HaytrcUOSa+JlYvk5eUhICAAt2/fxrfffgsnJ6cqeoVEpE3eqjUGMDAsXEUiKb1AAkBQKLD3wQaRoiRt9/TpU0ydOhWpqakIDg5G7dq1q+25NW4PElNTU1hbWyMzM1N17OnTp4iMjETPnj3VBo169eoFMzMzHD58WHWsfv36uHTpEs6ePYvbt29j165daNCgwQuf18rKCitWrEBubi6mTZuG9PT0yn1hREREpUhLS0NAQADkcjmWL1/O4ogGECsXMTMzw7Jly2BkZIRPP/0UqamplfvCiIiISpGZmYkZM2bgyZMnWLFiBYsjGkCsXMTY2BhLlixBrVq18Omnn+L+/fuV+8KISCs1aFK/4IakSIFEKn32ufBDIpWiv8tH4gZLWiknJwczZ85EUlISli9fXq3FEUBDCiRPnz5FWloaEhISEBwcjFu3bqntBRIXFwe5XA4PDw+1xxkZGcHNzQ2xsbGqYx4eHujRowemTZuG4cOH4+HDhxg+fHi54rC3t0dQUBBSU1MxY8YMZGVlVc4LJCIiKkVmZiamTZuGjIwMfP3116hXr57YIektTclFateujaCgIOTm5iIgIIATNoiIqErl5ORg1qxZSEpKQlBQENtNi0hTchFra2sEBgbC2NgYn376KVJSUirnBRKR1go5ubigtRagXiQp/iGVIu8pN2qnisnLy8O8efMQGxuLFStWoHHjxtUeg0Y0FVX23AYK3tz9/Pzg7++vul85g7K0tle2tra4dOmS2rEpU6Zg8ODByMjIgKura4V6pzZq1AgrV67E1KlTMXv2bCxfvrza+p0REZH+yM7OxsyZM3Hv3j2sWbOGAxIi06RcRDlh4+OPP8b06dPxzTfflNh4lYiI6FXl5eVh7ty5iI2NRVBQEPe/Epkm5SLKCRuTJ0/GtGnTsHr1aq4sIqKSBZGix5Q7OHAvTaoAmUyGRYsW4eLFi1i2bJlo+19pxAqSCRMmIDAwEDNnzkTTpk0hk8kgl8tV9+fm5gIoSBKKMzY2Rl5eXonj9vb28PDweKmN5Tw8PLB8+XLcuHEDn3/+OfLz8yt8DSIiorIoZ0jcvHkTK1eu5ICEBtC0XKRRo0YIDAzEnTt3MGvWLNXzExERVQaZTIaFCxfi0qVLWLp0KTfk1gCalovUr18fQUFBePToEWbMmIGnT59W+BpEpDukJoWFjxesIIFUioBBK59/MSIACoUCy5cvx7///osFCxaorZqsbtVSIMnPz0dqaqraR9E3ejc3N7Rt2xZ9+vRBUFAQbty4gS+//FJ1v3IFR2mFiry8PBgbG1d6zC1atMCSJUsQGRmJzz//nAMTRERUKXJycjBv3jxcunQJX375JZo2bSp2SHpBG3MRd3d3LFu2DFFRUZg1axZbfxIRUaXIz8/HokWLEBERIfqAhD7RxlykYcOGqgkb06dPR0ZGRqU/BxFph9131pXcnF0qKWi9JZU8+5BIcON0gmhxknZQ7sG6b98+zJ07Fx07dhQ1nmopkFy9ehUDBw5U+3jw4EGp5xoZGaFjx444duyYqiihXEJa2malqampVbZxS9u2bbFkyRKcPXsWM2fO5MAEERG9kqdPn2LGjBm4ePEili5dijZt2ogdkt7Q1lykRYsWqlWt06ZN454kRET0SnJycjBnzhzVbE2xByT0ibbmIu7u7ggMDERiYiI++eQTPHr0qEqeh4i0hFpxpLRN2wtvE5UhLy8PCxYswL59+zBnzhx0795d7JCqZw+Sxo0bIygoSO2YjY1Nmefn5uZCEARkZWXBxMQEzs7OMDAwQHR0NLp27ao6Lz8/H7GxsfD19a2y2Nu3b4+VK1di1qxZCAgIwPLly1GjRo0qez4iItJNaWlpmD59Ou7evYvAwEC0aNFC7JD0ijbnIq1bt8Y333yDGTNm4JNPPkFgYGCp/ceJiIieJzMzE7NmzUJsbCyWLVsGHx8fsUPSK9qci3h6emLNmjUICAjA5MmTERQUBDs7uyp7PiLSUMrCR9HiCIrsRwKhYEWJRIFf1u3Ge5PeFilQ0lTZ2dmYN28eLl68iIULF6JTp05ihwSgmlaQWFlZwcfHR+3DxMQEjx8/LnFuRkYGjh49irp166JWrVoAAEtLS/j4+GD//v1qqzj27duH7OzsKk0EgIKBiVWrViEpKQkff/wxUlJSqvT5iIhItzx48ACTJ0/Gw4cPsXr1ahZHRKDtuUiTJk2wZs0apKenY/Lkybh//36VPh8REemWx48fY8qUKYiLi0NQUBCLIyLQ9lzE2dkZa9euhVwux+TJk3H79u0qfT4i0jy/xy4rtjm7VL29lkHh1xIptiw/IG6wpHEyMjIwbdo0XL16FcuXL9eY4ggASARBEMR68rFjx6JOnTpo2rQpatWqheTkZOzevRupqan44osv0KVLF9W50dHR+Oijj9CwYUP4+fnhwYMH2L59O1q1aoXAwMBqiTc+Ph7Tpk2DsbExgoKCUL9+/Wp5XiIi0l537txBQEAABEFAUFAQHB0dxQ6JitC2XOTu3bsICAhAfn4+goKC0LBhw2p5XiIi0l7JycmYNm0aMjMzERgYCFdXV7FDoiK0LRdJSUlBQEAA0tLSsHLlSri7u1fL8xKRZujtOKWgEKIsjhTfl0Q5zCxXYM+t6vm9RJrv8ePHmD59Ou7du4eVK1dq3F6sohZI/vjjDxw6dAgJCQnIzMyElZUVmjZtiqFDh6JVq1Ylzr98+TI2bNiAmJgYmJubw9fXFxMmTIC5uXm1xXzv3j0EBAQgOzsbS5cu1bh/UCIi0hyXL1/GvHnzUKNGDQQGBqJevXpih0TFaGMukpKSgmnTpiE1NRULFy7kXjZERFSm6OhozJkzBwYGBggKCkKDBg3EDomK0cZc5MmTJ5gxYwZu376N+fPn4/XXX6+25yYicfV2mlq4UkRapM0WirTZQkGRRBCweMsH8O7oKUqcpDni4+MxbcYMPMrMwMa16+Di4iJ2SCWIWiDRVo8fP8bcuXMRExODWbNmacRmMkREpFn27NmjmhmxaNEi1KxZU+yQSIdkZGRg/vz5uHDhAgICAtCvXz+xQyIiIg1z5MgRLFmyBM7Ozli6dGmVbeJN+ikrKwuLFi3CiRMnMGnSJAwZMgSSogOkRKST4m4k4KO3VxeuIilWIJEAEKAqkEAQsOfmCjHDJZFt2xWODd+sgsLcDL8Hh2hsNyYWSF5SXl4eVqxYgX379sHf3x8ffPABpNJq2dKFiIg0mEKhQHBwMH766Sf06dMHAQEBMDIyEjss0kEymQyrV69GWFgYBg8ejIkTJ8LQ0FDssIiISGSCICA0NBQbN25E165dMXv2bJiYmIgdFukg5r1E+qm387Riq0igvoIEKCiQyBXYE7tclBhJXFvOncXKLZtQ8+JVwL4e9v2wpVpXOlYU/4p+ScbGxpgzZw4aNWqE4OBgJCQkYM6cOTAzMxM7NCIiEklWVhYWL16MiIgITJ48GYMHD+ZMOqoyhoaGCAgIQKNGjbBmzRpVmwtLS0uxQyMiIpHk5uZi2bJlOHjwID744AOMHDmSuQhVGalUig8//BANGzbEihUrcOfOHa6cJtIHaitHAKHo10VPM5DiZkwiGrtzH059MT7sdxxIiEOtC5dRKy4BQ4cOxfjx42FgYCB2aM/FFSSV4Pjx41i8eDEcHR2xZMkS9pgnItJD9+/fx5w5c3D37l32YqZqd/bsWcyfPx+2trb46quv4ODgIHZIRERUzVJSUjBv3jzcvHkTc+bMQdeuXcUOifTI5cuXMXfuXFhYWODLL7+Es7Oz2CERURU5GH4SgdP/BAykz4ojypUkSspWW3IF9kZ/JVaoVE281q1Gmiwf0tw82J46C5OUVMz6v/9Dnz59xA6tXNgTqhJ06tQJa9euRVpaGsaOHYtTp06JHRIREVWjiIgIjBkzBpmZmVi3bh2LI1Tt2rZti/Xr10Mmk2Hs2LE4cuSI2CEREVE1OnfuHMaOHYvk5GSsWbOGxRGqdi1btkRwcDBMTEwwYcIE7N27V+yQiKiKdO9f5O9diQSQSgpGmCVFPqQoPM5VjLoqMzMTLquC4PJNINLy82Gc8gj1Dh6G0ZN0rFm1SmuKIwBXkFSqtLQ0LF26FKdOncKwYcMwZswY9gInItJhMpkM3333HbZv346OHTti9uzZqFGjhthhkR7LzMzEihUrcPjwYQwaNAiTJk2CsbGx2GEREVEVkcvl2LJlC7Zs2QJvb2/MmzcPNjY2YodFeiw7OxvffPMN9uzZg7fffhtTp06Fqamp2GERUSXr7T4TgnIfEilKbbEFAFAo8OXGkfB6zaNa46Oqs+PyJcz855/CYpgAQIBlzE1YX72BPJta2LnhO63rrsQCSSVTKBT45Zdf8P3336Np06aYP38+6tatK3ZYRERUye7fv48FCxYgKioKEydO5H4jpDEEQUBYWBi+/fZbuLi44IsvvmDLLSIiHZSSkoJFixbh0qVLGD16NIYPH67xPb5Jf+zZswdBQUGwt7fHggUL0KhRI7FDIqJKtGPjAWxceahws3blfiQSCIWfAQCCAIkgAHIBe68tEStUqiRvrF+Pu9nZRVYKCZDm5qFW5HmY3U/W6sUCLJBUkStXruCLL75AXl4e5s6di/bt24sdEhERVZKIiAgsXboUFhYW+OKLL9C0aVOxQyIqITo6Gl988QXS0tIwc+ZMdOnSReyQiIiokpw7dw6LFi0CAMyfPx9eXl4iR0RU0q1btzB//nzcv38fAQEBeOutt8QOiYgq0VueswFDaUFhRG3j9mcFEgCAQoF9lxeLEyS9ktuPHsF30+bCwleRDwDGj1Jhc/osJHIFVi5apNWtxlkgqUJFW2699957GDNmDExMTMQOi4iIXlJubi6+++47/Pbbb2ypRVqhaMutAQMGYOLEiTAzMxM7LCIiekn5+fnYvHkztm3bxpZapBWKttzq1asXpkyZAktLS7HDIqJK8FbTOYCBBIJU+mwvEqDkZu0KAV38PDF74VAxwqSX8O7WHxGZnFzwhQQQihRGIChgFRuLGtejkGdTC7u+C9b67kkskLwChUIBhULx3KVDCoUC27dvR0hICBwcHDBnzhw0adKkGqMkIqLKcO3aNSxduhTJyckYP348W2qRRihPLiIIAsLDw7F27VrUrl0bs2fPRsuWLasxSiIiqgyxsbFYunQp4uPjMXr0aAwbNowttUh05clFgIKWW6tWrYKFhQVmzpyJdu3aVVOERFRV/tkZiRXzwgpWjxhInw2gF/87WRAAmQL7Li2q9hip/OJTUtBtU+izA4VFEUHy7GvDjAzYnDsPo8eP4T9iBEaPHq2VLbWK07sCyfLly/HXX3/h9ddfx7Jly9TuGzJkCO7fv1/iMX5+fpg+fbrasZ9++glbtmyBQqHAoEGDMHHixOc+b1xcHJYuXYr//vsPw4YNw8iRI2FkZPTqL4iIiKpUXl4efvjhB/zyyy9wd3fHnDlz2EOZXolYuUhiYiK+/PJLXLt2DYMHD8a4ceO4spWISAvIZDL8+OOP2Lx5Mxo1aoQ5c+bAzc1N7LBIi4mViyQnJ2PZsmWIjIyEn58fJk2aBHNz81d/QUQkmrdazIVgYAAYSEruQaIkCIAgYP+5BWKESC/QYfV6PCjcW0RtpYiyQAIAEGB58yasr9+AzNwcIStWoFmzZmKFXOm0v8RTAVFRUdizZw+MjY3LPMfNzQ3vvvuu2rEGDRqofX3lyhVs27YNH330EUxNTREcHAwPDw907dq1zOu6uLhgw4YN2LZtG7Zs2YITJ05gzpw5aNy48au9KCIiqjLR0dFYunQpEhMTMWbMGAwdOlQnZkeQeMTMRRwdHbFmzRrs2LEDISEhOHXqFObMmcM9dIiINNitW7ewdOlS3Lx5E++//z5GjRrFiXb0SsTMRerVq4fAwECEh4dj/fr1OHPmDGbPns09dIi0mUSiGlBXFUeKttpSbl6hENCz7QLsPztflDBJ3Yp/juK7s+cLvii+UkR5rJBhZiZqnT8P40eP8O6QITo50U5vRnkEQcCqVavQq1cvnD9/vszzateujZ49ez73WlevXkXv3r3h5+cHAHjy5AkuX7783EQAAAwNDTFq1Ch06NABS5cuxbhx4zBq1CgMGzaMA25ERBokPz8fW7duxdatW+Hi4oLvv/8erq6uYodFWk4TchEDAwO89957aN++PZYuXYpJkyZh6NChGD169HMHSoiIqHrJZDJs374dP/zwA+zt7bFu3Tp4enqKHRZpOU3IRSQSCQYMGIB27drhyy+/xJQpU/C///0P48eP5z5pRFpo26GpGNZz9bNN2qWSZ6sOlMUTQQAMJJDIFCJHq98uJd7BO9t2ACj895EW3iER1FeNKAkCLOLiUOP6dShMTPDtmjVo1apV9QVcjaQvPkU37Nu3D7du3cK4ceNeeG5+fj6ys7PLvN/e3h4RERG4du0abt68iQMHDpSYTfE87u7uCA4Oxvvvv4/NmzdjzJgxuHDhQrkfT0REVScyMhKjR4/G1q1bMWLECHz33XcsjlCl0KRcpFGjRli3bh3GjBmD7du3Y+TIkTh9+nS5H09ERFXn8uXLGDduHIKDg/HOO+8gJCSExRGqFJqUi9jb22PVqlWYPHkydu3aBX9/fxw7dgx61gWeSOvVrl1b2YMJkEogSFBQLFFu3F7ktmAoxeGD10SNV988ysiA+9Kv4bbka7yztbA4IkGR4kjpjzN6/Bh1jh1DzStX0NzDAwf/+ENniyOAnqwgycrKwoYNGzB8+HDY2to+99zz58+jZ8+ekMvlsLOzw+DBgzF48GC1czp16oT9+/er+mt6eXmhX79+FYrJ2NgY48aNQ5cuXRAUFIQpU6age/fumDRpUsEvFyIiqlYPHjzA2rVrcfjwYbRs2RILFixgYYQqjSbmIoaGhhgxYgQ6deqEr7/+GjNmzECnTp0wefJk1K9fv2IvkIiIXtmjR4+wYcMG7N27F02aNMGGDRtYGKFKo4m5iFQqxZAhQ9CxY0esWrUK8+bNQ7t27TBlyhQ4OjpW7AUSkXgMpM/2HVEWRYquIgEAoWChwtJ5v8O3u+7sXaGJsnNy4B24HjIB6vuKFN1fpAySvDzUuHEdFgnxkFnVwBodXjVSlF4USDZv3gwTExMMGTLkuee5uLigZcuWcHR0RHp6Ovbs2YM1a9YgJSVFbbMxqVSKJUuWID4+HnK5HC4uLpAU34ConNzc3LB27Vrs27cP69evx7Bhw/DBBx/gf//7H9tuERFVg/z8fOzYsQNbtmyBmZkZ5s2bhx49erz073Wi0mhyLtKoUSN88803OHToENauXQt/f3+MGDEC7733HttuERFVA5lMhvDwcGzcuBFSqRQzZsxAnz59IJXqTcMHqgaanIs4ODhg2bJliIiIwOrVqzFq1Ci89957GDFiBExNTV/qmkRUffZFfoGebRcUDsQXFkeU7bVUvxYkEAQJIBGQl5fHvzMqWXZuLnyWr0O+8kDxgsiLfj0LAsxvJ6DGjeuQCAp88vHHGDhwoN6MTUsEHV+/mJiYiJEjR+Lzzz9Hly5dAABDhgyBs7Mzli1b9tzHCoKAGTNm4Ny5c9i+fTvq1q1bpbFmZGRg48aNCAsLQ8OGDTF16lRuVkZEVIXOnTuHr7/+GklJSRg0aBBGjx4NS0tLscMiHaNNuUhWVha2bNmCX3/9FXZ2dpg6dSpee+21Kn1OIiJ9duXKFQQFBSEuLg79+vXDuHHjYG1tLXZYpGO0KRfJzc3Fjz/+iJ9++gm1atXCxx9/jE6dOnHyEpGG69n2CwiGBgWttKQSQFpsBYmSIEAiF3AwYp4YYeqUe0+eoMvqH1QtzoRSCiJC8QKJamXPs6+N0h7D+uolGKc9hpWzC0KDAl+40lDX6MyUlPz8fKSmpqp9yOVyrF69Gs2bN1clARUhkUgwZMgQyOVyXLx4sdJjLs7KygpTp05FcHAwzM3NMWXKFCxcuBApKSlV/txERPrkwYMHmD9/Pj799FPUrFkTISEh+Pjjj1kcoVeiC7mIubk5Jk6ciE2bNqFu3bqYMWMG5s6di3v37lX5cxMR6ZNHjx5h6dKl+Oijj2BkZIQNGzZg+vTpLI7QK9GFXMTExAQffPABtmzZAmdnZ8ybNw8zZsxAYmJilT83Eb28cf/3FoBng/Rqm7RLoNq8HVIJBAMJ0tPTRYtVmx24FgWPBV/DY8HX6PJNYXFEUqQQUtQLVo9I8vJgffkiav97BBK5HGvWrMHfWzbrXXEE0KEWW1evXsWUKVPUjs2cOROnT5/G4sWL1f6wl8vlyM3Nxb1791CjRg1YWFiUeV3l7Ijq/I/r7u7OtltERFWA7bSoKulSLsK2W0REVYPttKgq6VIuwrZbRNpl8OD2CA7cX7CCpLRWW0CRfUqAAf2+xaGjc8QKV6tMCP0dR/+7DaDYfiKAevGjlGMSAIJQ7DxBgHliAqyirullO63S6EyLrYyMDERHR6sdS0pKQmBg4HMfN3ny5Of24Dxx4gRmzZqFzz//HN27d6+UWCsiIyMDISEhCA8Ph5OTE8aPH4+OHTtyMI+IqAIEQcDx48cRHByMpKQkDBw4EB988AFXjFCl0tVcJCsrC5s3b8aOHTtgZ2eHcePGoUuXLhzMIyKqAEEQcPr0aQQHB+O///5D3759MX78eK4YoUqlq7lI8bZbY8aMQY8ePWBgYFDtsRBR2fy6LUZWLiAYSIvtQyJRb/8kAFAI8O3cCJ/PHypewBrqTuoj9Fy1BQrlgSJFkeLtsZTKOl78McapD2EVfQ3GTx7DqmEjhH7ztV6uGClOZwokpUlOTkZMTEyJ4ytWrICdnR1GjBgBFxcXODg4ID09HRYWFmpvsDKZDFOmTEFUVBR+/fVXUX9gYmJisHbtWly4cAGenp4YO3YsfHx8WCghInoO5WDExo0bER0dDW9vb0yePBmurq5ih0Z6Qpdykfj4eKxduxanT59G48aNMWbMGHTo0IG5CBHRC5w/fx4hISG4evUqWrRogcmTJ8PT01PssEhP6FIukpSUhHXr1uH48eNwcnLCmDFj0LlzZ07aINIg3d9YXFAgkRYURQTpsxUkgtrfDQV7kRz+Z7YocWoShUKB0cHbcebO/YIDkvLvJ6IkFPu6+J4jRo9TYRV7AyaPHiKvRk18t2QRWrVqVemvRVvpdIGkLKVtRrZnzx6Ehoaic+fOqF+/PjIyMnDgwAHcunUL48ePx/Dhw0WMuIAgCDh//jy+//57XL9+Ha1atcLYsWP5A01EVIoLFy4gJCQEV65cQYsWLTB27Fh4eXmJHRYRAO3NRQDg8uXLCAkJwcWLF9G0aVOMHTsW3t7eLJQQERVz9epVbNy4EefOnUOTJk0wduxYtG3blr8vSSNocy4SFRWFjRs34vTp03Bzc8OYMWPw+uuv8/8WkQbo/uaSwsJIYZFEWrzNlmpP8YIN2xXAkQOzRIpWPOv2/otvj50FULJtVmnFkRKrR4rdFoofK/xsmJ4Gy9jrME1JRr5lDSyfPRNvvPEGf18WwwJJoejoaGzatAmxsbFIS0uDoaEh3Nzc8L///Q++vr4iRluSIAg4deoUQkJCEBsbi3bt2mHMmDGchUREBODatWsICQnBuXPn4OHhgbFjx6Jdu3ZMAEij6EIucu7cOYSEhOD69eto3bo1xo4di5YtW4odGhGR6GJiYrBx40acPHkSzs7OGDt2LAcjSONoey4CAJcuXUJISAguXbqEZs2aYezYsWjTpg3/rxGJrNubSyAYSCEYSFQrSUps3K5UuEHG0T3/J0qs1WXjoZMIOnBKvZBRRkGk1HZZLyiQAOr3G2amw/LmDZg+uAuZuSUWzZgGX19frrgrg14WSHSFQqHAsWPHsHHjRiQkJOCNN97AyJEj4eHhIXZoRETV7vr169iyZQsHI4iqkSAIOHnyJEJCQnDz5k20a9cOI0eORIsWLcQOjYio2sXGxiI0NBRHjx6Fo6MjPvjgAw5GEFUx5aSN77//Hjdu3ICXlxdGjhwJLy8v/h1AJJI+Pb9Edr4AwVCqWj0iSJ9t0C4o3xYlEgBCwci+BDi2SzeKJAqFAlM3h+Gf6IRnByXFWmQ9p23WcwskRY8Vuy0AMMhMh+WtaJjevwO5qTk++3QKevToodcbsJcHCyQ6QC6X4+DBg9i8eTOSkpLw2muvwd/fn4MTRKQXLl68iNDQUERGRsLJyQmjRo2Cr68vN20kqkYKhQJHjx7Fpk2bEB8fDy8vL/j7+3MWJxHphevXryM0NBQnTpxA/fr14e/vj169enEwgqgaCYKAEydO4IcffkBsbCyaN28Of39/vPbaa8xFiETQtctSCEZSCKoVJJJnxRHlpu1AkY3bC6okx3fOECXeV3E+9jY+CP4dssJCj6rA8YJCSFmrQsq74XrR44YZabCIi4bJg7tQmJhh+qQP0bdvXxgZGVXGS9R5LJDoELlcjsOHD2Pr1q24desWByeISGcJgoCzZ88iNDQUly9fhqurK/z9/fHmm2+yMEIkIoVCgX///RehoaGIiYlBs2bN4O/vj/bt2zMXISKdIggCLl26pDZJw9/fH127dmVhhEhEypbkoaGhuHbtGtzd3eHv74833niDq7mIqtHxY9fw+cKdBa22pKUUR9RWVKiqJIAC+HH1SDRsWFecwF/g6q0kjNmwA1n5hcPpxQoipa0SqWjbrOe20iq2ksToySNY3IqCSUoyZGYWmPPxR+jVqxcLIxXEAokOUigUiIiIQGhoKKKjozk4QUQ6Q6FQ4MSJEwgNDUVUVBQ8PT3h7++PDh068PcbkQYRBAGnT59GaGgorl69Cjc3N/j7+6NTp04cnCAirVZ8kkbjxo1VkzT4+41IcwiCgAsXLiA0NBTnz5+Hs7Mzhg8fDl9fXxYxiaqJb/evIBgUbtguAQSDYsUR5aoSoORKCwHYtmIQXFxcRIk9KysX0zaHISLmbsGB4i2uXmX/kOe1zSpHKy1AgGFaCixuRcPk8UMYWdfCzI8/4iSNV8ACiQ4TBAFnzpxBaGgorly5gsaNG2PQoEHo3r07TE1NxQ6PiKjcsrKy8M8//+D3339HXFwcWrduDX9/f3h7e7MwQqTBBEFQtcE7d+4cGjZsiP/973/o2bMnzM3NxQ6PiKjccnNzcejQIfzxxx+Ijo5G06ZN4e/vj9dff525CJGGu3LlCrZu3YpTp07BwcEBgwYNwltvvQUrKyuxQyPSeV16fAXBsHCzdmW7LSme7U2iVmiQFLkNQCJAQMF5Af5vYkjvtpUaW25uLpbtOIQ/TkdBbXBcUkrho5RiRfG2WaW20VI+vrTjpd1X9Fjx4wo5TB7ehdmdOBinP4K9oxM+HDeWkzQqAQskekC5/Punn37C6dOnYWFhgV69eqF///5o1KiR2OEREZXp1q1bCAsLw/79+5GdnY327dtj6NChaNWqldihEVEFXbt2DT/99BMiIiJgYmKCnj17YsCAAXB1dRU7NCKiMiUmJiI8PBx79uxBRkYG2rVrh6FDh7KNMZEWio6Oxs8//4yjR4/C0NAQ3bp1Q//+/eHp6Sl2aEQ66/HjxxjwXjBgWFggkT4rhhRfTaIsnhQtGqi1r1LeRrFzC++XSAoKLyUeW8rXz4owz9kzpHjhQ6k8q0ee89yl3lf8/iLPK81+CrO7t2B2PwHS/Dx4eXnhvffeY6egSsQCiZ65e/cudu3ahb///htpaWnw8vKCn58f3nzzTfanIyKNkJeXh2PHjiEsLAyXL1+GjY0N+vTpAz8/P9SrV0/s8IjoFT148AB//fUXdu3ahdTUVDRr1gwDBgxAly5dYGJiInZ4RESQyWT4999/ER4ejnPnzsHa2hpvv/02/Pz84ODgIHZ4RPSKUlNTsXv3buzcuRPJycnw8PBA//792W2DqIqsWf83ftt5FYJh0VUkRQskRfcoKWVVSdGCSfFVHaUWNCSlFzvKKn48byVI0QIGUHbRQ/nYUo6Vp21WiSKMIMD40X2Y3rsF08cPYGFhgbfeegv9+/dHw4YNQZWLBRI9lZeXh+PHjyMsLAyXLl1SDUD269cPdnZ2YodHRHro7t272LlzJ3bv3q0q4Pbv3x+dOnViAZdIB8lkMkRERCA8PByRkZGwtrZG79694efnhwYNGogdHhHpoQcPHmDXrl3466+/kJqaiubNm2PAgAHo3LkzC7hEOkgul+P06dMICwtjtw2iKuY/YT3ikzJUq0iUBZLiq0fUVnYUa8NVtChS+sboklI3SX9eQaREQaOslScock7x46+4UgQSFNwpASR5OXDPfQzDe7eQnJyMJk2aoH///ujWrRsLuFWIBRIdolAooFAoKrwhz61btxAeHo59+/apWtj0798f7dq1g4GBQRVFS0RU8EfJqVOnEBYWhjNnznBWBJEOeJl8pHgLm7Zt26J///7o0KEDNxokoiqlUCgQGRmJsLAwnDhxAiYmJqoBUrYAJNJOL5OLsNsGUdX7MCAE12IfQTAo6IelarclLVkgEZSto4oWRZ5b9JCUOF68uFJmmy3guUWTUgskLzq3vCtFJICNqTG+6t4GB/btxbFjx1QtAAcMGIAmTZqAqh4LJCKJjIzE1q1bERMTA4VCAUdHRwwdOhTdunVTO+/ff//Fpk2bkJCQgJo1a+Ltt9+Gv79/iTf6n376CVu2bIFCocCgQYMwceLECsek3AQ5LCwMsbGxsLOzg5+fH/r06YNatWq90uslIioqNTUVf//9N3bt2sVZEUQi0rR8RLkJcnh4OK5fv446deqgb9++6Nu3L+rUqfPKr5eISCktLQ179uzBzp07kZSUBFdXVwwYMAA9evSAubm52OER6Q1Ny0XKavfLbhtElePAoctY+M0+CAaF+4UUWU1SokBSVkutUltuvXj1SKUUSMq6r6wiSCkFEUtjA+z81B/mhgbYu3cvwsPDcfv2bTg5OaF///546623YGVlVfKbR1WGBRIR7N69G8uWLYOPjw86duwIAwMD3L59G7Vr18bQoUNV5506dQozZ85E69at0b17d8TFxeHPP/9Ev379MG3aNNV5V65cwcyZM/Hhhx/C1NQUwcHBmDRpErp27fpS8QmCgBs3biAsLAyHDh2CQqFA586d0b9/f7Rq1YobABHRSxEEARcuXEB4eDhnRRBpAE3PR2JiYhAeHo4DBw4gPz8fHTt2RP/+/eHt7Q2pVPrKr5+I9I8gCLh69SrCwsJw5MgRAICvry/69++P5s2b8+8comqm6blIXFwcdu7ciX379iErKwvt27fHgAED2G2DqBK80X8FBAMUriQpLG4YlFEgKVbQKO/qkdKOlSiQoIzHoJTHFVWOgojyuRxqWuK3KcNQw6JgAsaNGzcQHh6Of/75BzKZDG+++SYGDBiA1q1bMxcRCQsk1ezevXvw9/dH3759MWXKlOeeq5wNERwcrJoV8f3332Pbtm0IDQ1VtZ/5+eefkZKSgo8//hgAsGPHDiQlJWHq1KmvHG96erqqmpmYmIhGjRqhd+/e6NKlC+rXr//K1yci3Xf37l0cPnwYe/bs4awIIg2hTflIZmYm9u/fj/DwcNy6dQsNGjRQ5SKOjo6vdG0i0g/Jyck4cuQI9uzZg7i4ODg4OMDPzw+9e/dGzZo1xQ6PSC9pUy5SWreN3r17w9fXl3uVEL2C8dM34dp/qQWFEmmRllsSQJBKSt9rpLRVJcDzV5AUvQZQZsHkeStDSrTGKnq/oH6tD319MLlPJ7XTUlJScPToUezduxfR0dGoV68e+vXrhz59+sDW1vaF3yuqWmzqXM3Cw8OhUCgwZswYAAVvtGZmZiUqhPHx8YiPj8enn36qtmR04MCB2Lp1K44cOYKRI0cCAOzt7REeHo6uXbvCxMQEBw4cQM+ePSsl3ho1amDIkCEYPHgwzp8/j/DwcGzcuBHr169HkyZN4Ovry2IJEZWgLIocOXIE0dHRMDExQceOHTFt2jTOiiDSANqUj1haWmLQoEEYOHAgLl++jPDwcGzduhXff/893Nzc0KVLFxZLiKgEZVHkyJEjuHbtGoyMjNC+fXtMmjQJPj4+XIlGJDJtykXMzc3Rr18/9O3bVzXze/v27di0aROcnZ3RpUsXFkuIXkLwytEAgDcGB0KhKChJSApXk0gEAQIkkJSyekMiPCtYKOsTxW+rNj0v5Vh5PktQ+BzK6wjPLqF6MgDtXR2wbtzAUvcqUhZFDh8+jCtXrkAqlaJdu3b48ssv0b59e65E0yAskFSzc+fOwcnJCadOncL69evx8OFDWFlZYeDAgfjggw9UiXpMTAwAwMPDQ+3xtWvXRp06dRAbG6s61qlTJ+zfv1/VW9PLywv9+vWr1LglEgm8vb3h7e2NrKwsnDhxAocPH2axhIhUSiuKtG/fHkOHDkX79u3Zz5tIg2hjPiKRSNCqVSu0atUKOTk5OHXqFA4fPsxiCRGplFYUadeuHebNm4eOHTvCwsJC7BCJqJC25iJNmzZF06ZNERAQgDNnzuDIkSMslhC9on93FLTKW731AH7eebngoBR4VrEoRnlIrTJSrCJS9JxihY7ihQ9BrYpS5GmKrQyZ3Ksdxr/V8bmvpbSiiI+PD2bOnIk33ngDNWrUeOH3g6ofW2xVs969e0MqlSI3NxdDhw6Fq6srjh07hoMHD2LYsGGYMGECgIKloevXr8eOHTtQr149tWuMHz8eBgYGWL9+vdrx+Ph4yOVyuLi4VNvs7KLFktOnTyMvL4/FEiI9UlZRxNfXl0URIg2mS/lI0WLJyZMnkZOTw2IJkR4pqyji6+vLogiRBtOlXCQ3N1dVLImIiEBWVhaLJUSvKPjXI/gh7FxBcULVektS6kbtJVptFTkOFDu3UKn7jEgAcyMpZvyvCwZ1bFXuWMsqivj6+rIooiW4gqSaZWdnQ6FQYMKECRg2bBgAoEuXLsjIyMBvv/2GESNGwNzcHHl5eQAAY2PjEtcwNjZGVlZWieNivOmam5uje/fu6N69O1eWEOkJrhQh0n66lI+YmpqqiiFlrSxR5iINGjSo1tiIqGpwpQiR9tOlXMTExASdOnVCp06d1IolRVeWKHMRFkuIymf8kC4YP6SL2rHlm/fjt8NXAaFgwYhEUmThiLJIIgjP2nIJElUBRFkrdbCxwMcDOqFnW89Xio8rRXQLCyRVJD8/H+np6WrHatasCRMTE2RnZ6N79+5q93Xr1g2nT59GTEwMWrdurXrzVyYDReXl5cHExKTqgn9JLJYQ6S4WRYi0k77lI2UVS0JDQxEcHMxiCZEWY1GESDvpWy5SVrHkl19+wQ8//MBiCdEr+L9RPfF/oypnz+WXwaKI7mKBpIpcvXoVU6ZMUTu2fft22Nra4s6dO6hVq5bafcqvMzIyAAC2trYAgNTU1BLLSFNTU+Hp+WqVzqpWnmJJly5d8Nprr1VrSzAiKh+FQoH//vsPp0+fxtGjR1kUIdJS+pyPlKdY0qVLF7Rr1w5ubm7csJlIwwiCgFu3buHMmTM4evQoiyJEWkqfc5HyFEuU4yIeHh7csJlIwwiCgNu3b6tyERZFdBcLJFWkcePGCAoKUjtmY2MDDw8P3LlzBykpKbC3t1fdl5KSAqBgJgUAuLm5AQCio6PRtGlTtfMePnwIPz+/Kn4FlaesYskPP/yADRs2oFatWvD29oaPjw+8vb1LJD1EVD3u37+PyMhInDt3DufOnUNaWhqLIkRajvlIgbKKJdu2bcP3338Pa2trtGnTRpWLFP2eEFH1efjwoSoXiYyMxKNHj2BsbIy2bduyKEKkpZiLFHhRGy5LS0u1XKRBgwacSEokgtTUVNWYSGRkJB4+fAhDQ0N4e3uzKKLDWCCpIlZWVvDx8SlxvGvXrvjnn3/w999/Y9y4cQAKZmrv2bMHNWrUgIeHBwDA2dkZTk5O2LVrF/z8/FQzCcLCwiCRSNC5c+fqezGVqGixJDc3F1evXlX9EfTPP/9AEAQ4OTmpCiatW7eGlZWV2GET6aSMjAycP39e9cZ/584dSKVSeHh4oF+/fvD29kbz5s1L7fdLRNqB+UhJRYsl+fn5uHbtmioXCQwMhEKhgIODgyoXadOmDf8IIqoiT58+xYULF1S5SEJCAiQSCdzc3NCrVy/4+PigZcuWGtdCh4jKj7lISUWLJTKZDDdu3FDlIqtWrYJcLoednZ3aRFJlwYiIKldWVhYuXbqkykXi4uIAAK6urvD19YWPjw9atWoFMzMzkSOlqiQRBEEQOwh9IggCAgICcP78efTt2xeNGzfG8ePHERkZienTp6vNfjhx4gRmz54NLy8vdOvWDXFxcfjzzz/Rp08fzJgxQ8RXUTXS09Nx/vx5VWKQlJQEqVQKT09PVWLQrFkzGBkZiR0qkVbKy8tTDQRGRkYiOjpaNRDYtm1beHt7o02bNixKEukB5iOly8jIwMWLF1W5yO3btyGRSODh4aHKRZo3b87BWqKXJJPJcP36dVUucuPGDdVAYNFchAOBRLqPuUjpsrKy1HKRW7duAShYSaPMRVq2bAlTU1ORIyXSTjKZDNHR0apc5Nq1a5DJZKhTp44qF/H29oaNjY3YoVI1YoFEBFlZWQgJCcGhQ4eQkZEBR0dHvP/+++jZs+RGQ8ePH8fmzZuRkJAAa2tr9O7dG6NGjYKhoe4v/rl7966qgnv+/Hk8efIEpqamaNWqFXx8fODj48P9S4ieQ6FQIC4uTvXGf+nSJeTm5sLa2lo1E8nb2xv169cXO1QiEgHzkRdLTk5W5SLnzp3D48ePYWxsjJYtW6pykcaNG3P/EqIyCIKA+Ph4VS5y8eJFZGdnw8rKSpWH+Pj4wN7enjk9kR5iLvJiKSkpqlwkMjISqampMDIyQvPmzVW5iLu7O/cvISqDIAhITExU/R+6cOECnj59CgsLC7Rp00aVizg6OjIX0WMskJBWUCgUiI2NVSUGly9fRl5eHmxsbNCmTRu0bdsWrVq1Qv369fkLjfSWIAi4d++eWqsK5T4irVq1Ur3xu7q6cjCPiKiCFAoFbt26pVZ0zsnJUe1f0rZtW7Ru3RoODg7MRUhvCYKA5ORkXLx4UZWLpKamwtjYGC1atFDlIm5ubhzMIyKqIEEQkJCQoDbQm52drdq/RJmLODo68u890luCIODhw4dqbbMePHgAQ0NDNG/eXJWLeHh46HyBlcqPBRLSSkX3L4mMjERMTAwEQYC1tTWaNGmi9mFrayt2uERVIiUlBVFRUaqP6OhoPHnyRNUORrk8tFmzZmwHQ0RUyfLy8tRaBUVFRUGhUMDKygoeHh7w9PRU5SJ16tQRO1yiKvH48WNERUXhxo0bqnwkLS0NQEE7GOXs5hYtWrAdDBFRJSu6f0lkZCSuX78OuVwOS0tLuLu7q/IQT09P1K1blxM4SCc9efJElYMo85FHjx4BAFxcXFS5SMuWLWFubi5ytKSpWCAhnfDkyRNcv3691D/O6tatq5YYeHh4wNLSUtyAiSooIyNDrRgSFRWFhw8fAgBq1aqlVhRs1qwZNxQmIqpmGRkZuH79eql/nNna2qryEOXvav6eJm2TmZmJ6OhotVwkOTkZAEpMUmrWrBn3ESEiqmZPnz5V5SIv+pvR09OTv6dJ62RlZSEmJkZt7O/evXsAAEtLS7V8u2nTppwwTeXGAgnpJOXy/qKDFNHR0cjKygIAODo6qiUH7u7unGFPGiMnJwexsbGqn90bN24gKSkJAGBhYQEPDw/OBiIi0nDK5f3Fi9uZmZkAAAcHhxK5iJmZmchRExXIzc3FzZs31WZk3r59GwBgZmamlos0adKEbW6JiDRU8a4DUVFRSE9PBwDY2dmpTd7w8PDgDHvSGHl5efjvv//UfnYTEhKgUChgYmJSIhdhm1t6FSyQkMZSKBRQKBSV1hNQoVDg9u3bar9cb968iby8PBgYGMDZ2Vntl6uLiwv7EVKVk8lkJd704+PjIZfLYWxsDDc3N7VZEA0aNGA/WSKialIVuUhSUpLarLfY2Fjk5uZCKpWiYcOGagMVrq6uMDIyqpTnJiqLTCZDfHy82sSiuLg4yOVyGBkZwdXVVfVz6enpCUdHR+4fQkRUTSo7F1HuW3njxg3V7/zY2FhkZ2dDIpHAyclJbTKeq6srJ5NSlZPL5UhISCgxXieTyWBgYABXV1e1n8uGDRtyvI4qFQsk9Eo++eQTXLx4sdT7DAwMcPjwYdXXQ4YMwf3790uc5+fnh+nTp6sd++mnn7BlyxYoFAoMGjQIEydOrNS4lfLz8xEXF1fm4HSDBg3g5OQER0dHtc9s0UUVlZGRgcTERNy+fVv1+fbt20hKSiq1SOfp6QlnZ2e+6RMRvYC25yIvGpxu0KCBWh6ivM0WXVRRT58+VctDEhMTVbfz8vJYpCMieknanou8aHBamYsocxBlTsIWXVRRWVlZavlH0c85OTks0pFoWCChV3L27Fk8fvxY7Vh2djYCAwPRvn17LF++XHV8yJAhsLKywrvvvqt2foMGDdC0aVPV11euXMHMmTPx4YcfwtTUFMHBwZg0aRK6du1atS+mkLK9UXR0NBISEnD79m3cuXNH1bsTAGxsbEoUT5ycnFC/fn0OaOsxmUyGu3fvljr4UPT/SZ06dVQ/Nw0bNoS7uzvc3Ny4eSkR0UvQxVykaHujou8pDx48UJ1jbW1d6iQOe3t7DmjrMZlMhnv37pU6+KDcEwco2Ben6M+Nh4cH3Nzc2FqFiOgl6GIuomxvVHRcJDExEcnJyVAOI9aoUaNEHuLo6AgHBwcYGxtXS5ykeeRyOZKTk1WTQovmIykpKarzbGxs1H5uPDw84O7uDgsLCxGjJ33FkVx6JW3bti1xbP/+/QCAHj16lLivdu3a6Nmz53OvefXqVfTu3Rt+fn4ACjZgv3z5crUlAqampmjRogVatGihdry0Snd0dDT++ecfZGdnAyiYHeLg4FDqTM+aNWuyH6IOEAQBjx8/VhXOir7p3717F3K5HEBBf27lv723t7fq56FBgwYcfCAiqkS6mIuYmJigWbNmaNasmdrx7Oxs1XuPMh/577//cPjwYbVcxM7OrsQkDkdHR9jY2DAX0RFpaWlqK1KVt+/evQuZTAagIKdV5qKtW7dW3XZ0dOTgAxFRJdLFXMTY2Bienp7w9PRUO56bm6v2d/CdO3cQHx+P48ePq/ZZk0qlsLOzK5GHODk5wdbWlrmIjkhPTy/RISMxMRFJSUnIz88HUPBzpMw9mjdvrjZOZmVlJfIrIHqGBRKqdAcOHICZmRneeOONUu/Pz8+HTCYrcyNSe3t7hIeHo2vXrjAxMcGBAwdemDxUB3Nzc3h4eMDDw0PtuHIT1uIrBo4cOYL79++rZldYWlrCyckJdnZ2qF27NmxtbWFra6u6Xbt2bZibmzNZEJEgCHj69ClSU1ORkpKC1NRUtdvKGZmlJX7t27eHk5OTamVR7dq1+W9JRCQSXc1FzMzM4ObmBjc3N7XjgiAgNTW1xIqBiIgI/Pbbb1AoFAAACwsLODo6on79+qrco2hOYmtrC0tLS75/iSwrK0uVexT/fP/+fSQmJqo22JVIJKhXrx4cHR3Rtm1btUk6derU4b5lREQi0dVcxMTEBK6urnB1dVU7XnQiYdF85OTJk/jjjz9KTCS0t7cvMR6i/MxcRHxZWVmq8RBlHqLMRZSrQ548eaI6v27dunBycoKXlxf69++vykfq1q3LXIS0AltsUaVKS0vDwIED0bVrV3z22Wdq9w0ZMgSPHz+GTCaDXC6HnZ0dBg8ejMGDB6udp1Ao8Nlnn+H48eMAAC8vLyxfvlwrew7m5uYiKSmpRHsM5ZvM06dP1c43MzODjY1NiSSBhZRX86LCR9FjOTk5ao+1sLBQ/RvUq1dPbfYLlw4TEWke5iLq8vLy1No/JiYm4v79+6r3PWXRX8nExKTM/KPoMQsLC+YiFfS8wkfR28rVQErm5uaq73vdunXViiANGjTQyp9LIiJdxlxEXX5+Pu7du6c2LpKcnKx638vIyFA739jY+LnjISykvLznFT6KHsvKylJ7nJmZmerfQlkMUa4EadCgQZmFPiJtwRUkVKn++ecfyOXyUpeRuri4oGXLlnB0dER6ejr27NmDNWvWICUlRW2zMalUiiVLlqg2S3dxcdHaNz0TExO4uLjAxcWl1PtLe3Mq+vnmzZtlvjkVL6RYWVnBzMwM5ubmqs/Kj6Jfm5iYaOX3UxAE5OTkIDs7G1lZWcjKyir1dnZ2NtLT0ytc+GjWrJnaDFrl95Zv9ERE2oW5iDpjY2M0atQIjRo1KvX+nJyc5w7Yx8XFlauQYmtrixo1apTIPYrmIMrbpqamWvn9FAQBubm5ZeYgRb/OyMioUOGjdu3a8PDwKLUgxdacRETahbmIOiMjI1WrrdLk5uY+d8A+Pj4eKSkpJXKR0gop1tbWpY6HFM9LzMzMtPL7KQgC8vLynjsmovzIzMysUOGjdu3acHNzK1GIUk7SJdJlXEFClWrixIlISkrCH3/88cLNygVBwIwZM3Du3Dls374ddevWraYotc+LCinKgYusrKwShYDipFJpqclBWYUV5SCGVCpVfS56u/hnhUIBQRBK/Vz8WE5OTpkDC0ULHsrPyhYhZTE1NYW5uTksLS2fO+uVhQ8iIt3FXKRqFC2klDbTUDlwoXwPfx6JRFKuwYuikzuK5x8vm4sUz0mUBY+y8pHieUl5chEzMzNYWlq+cCUOBxuIiHQTc5Gq8aJCSkpKCtLT0yuUi5Q1ubT4faampmXmH6UdK2sMpKxc5EUTL4rmI8p2ZWUxMTGBubm5alLo8/IRdichKsAVJFQu+fn5ql7HSjVr1oSBgYHq67t37+LatWsYNGjQC5MAoOANaciQIThz5gwuXryoEf00NZXyTdnR0fGF58rlclXh4XkzCkr7o185o6DoeXl5eao38MqiTBxMTExKnVmqLGCUdt/zZqMW/XkkIiLdwlxEXKampnBwcICDg8MLz1XmIi/KQYrnI8oJIcXPyc3NrbJcxNjYuNTcwsbG5oWTSYrfNjMzYy5CRKTDmIuIy8TEBPb29rC3t3/huQqFotQJmeW5rVz1WfR4Tk5OpeciymKKsbFxqXlGzZo1YW9vX2bOUdqkElNT03L93BGROv6voXK5evUqpkyZonZs+/btqF+/vurrAwcOAECpy0jLopwdUTzJoJdnYGAACwsLWFhYVOp1BUF44WxMQRDKnM1ZdHYFERFRRTEX0R5VlYsAKNdszBetMJFIJJwtSUREFcZcRHtIpVJV0aCyCYIAuVz+wlzkRatemYsQaQ4WSKhcGjdujKCgILVjNjY2al8fPHgQDg4OaNasWbmve/fuXQAFsy5IsynfwFngICIiMTAXIQCcbEFERKJhLkJAwdgIV2kQ6Rb+j6ZysbKygo+PT5n3x8TEICEhASNHjiz1/vT0dFhYWKgtPZXJZPjxxx9hZGQELy+vSo+ZiIiIdAdzESIiIhITcxEiIt3EAglVihctI42IiEBoaCg6d+6M+vXrIyMjAwcOHMCtW7cwfvx42NraVme4REREpGOYixAREZGYmIsQEWknFkjolSkUChw6dAju7u5wcnIq9RwXFxc0bNgQBw4cQFpaGgwNDeHm5oYFCxbA19e3miMmIiIiXcJchIiIiMTEXISISHtJBEEQxA6CiIiIiIiIiIiIiIioOnGHQyIiIiIiIiIiIiIi0jsskBARERERERERERERkd5hgYSIiIiIiIiIiIiIiPQOCyRERERERERERERERKR3WCAhIiIiIiIiIiIiIiK9wwIJERERERERERERERHpHRZIiIiIiIiIiIiIiIhI77BAQkREREREREREREREeocFEiIiIiIiIiIiIiIi0jsskBARERERERERERERkd5hgYSIiIiIiIiIiIiIiPQOCyRERERERERERERERKR3/h97i71gWHmE5gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib\n", + "\n", + "# Get a time range interval\n", + "ori = ori.source_interval(ori.get_time()[0], ori.get_time()[0] + 1*u.hr)\n", + "\n", + "# Plot\n", + "fig,ax = plt.subplots(ncols = 3, figsize = [20,5], subplot_kw = {'projection':'mollweide'})\n", + "\n", + "# Use color to represent time\n", + "cmap = get_cmap('viridis')\n", + "time_sec = (ori.get_time() - ori.get_time()[0]).to_value(u.s)\n", + "time_color = cmap(time_sec/np.max(time_sec))\n", + "\n", + "# Plot the galactic coordinate of each SC axis\n", + "for n,(label,pointing) in enumerate(zip(['x','y','z'], ori.get_attitude().as_axes())):\n", + "\n", + " ax[n].scatter(pointing.l.rad, pointing.b.rad, color = time_color)\n", + " ax[n].set_title(f\"Pointing {label}\")" + ] + }, + { + "cell_type": "markdown", + "id": "e0ea0cf0-74e8-49d8-a902-c23be544e282", + "metadata": {}, + "source": [ + "## Calculate the source movement in the SC frame" + ] + }, + { + "cell_type": "markdown", + "id": "852dfe3b-8df1-4581-bcc6-96e393f7c352", + "metadata": {}, + "source": [ + "This converts a fixed coordinate in the galactic frame to the coordinate in the SC frame as a function of time:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "15339d40-789f-4493-8542-73efcb229ca2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n" + ] + } + ], + "source": [ + "# define the target coordinates\n", + "target_coord = SkyCoord(71.334998265514, 03.0668346317, unit = \"deg\", frame = \"galactic\")\n", + "\n", + "# get the target path in the Spacecraft frame \n", + "target_in_sc_frame = ori.get_target_in_sc_frame(target_name = \"CygX1\", target_coord = target_coord)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7a62207b-62d3-4b64-b95a-426e541b0a4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAEdCAYAAAAip0w7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8bklEQVR4nO3dd1xTZxcH8F/CVlCUIRsFFVddoFatA0WtA1Drwr2tu4rbqq9aqziwrrrrrHW1VakLtLhbEayIylJQQFQEZIeR5L5/hFxyISBoFnC+fiLJc29uTiC5OXkmj2EYBoQQQgghGoiv7gAIIYQQQkpDiQohhBBCNBYlKoQQQgjRWJSoEEIIIURjUaJCCCGEEI1FiQohhBBCNBYlKoQQQgjRWJSoEEIIIURjUaJCCCGEEI1FiQqp9BiGQUFBgbrDIIQQogTa6g6AVB8//vgjrly5Uur233//HWZmZpgzZw4ePXpUYnv79u2xefNmTpm/vz+2b98OgUAANzc3LFiwADo6OooOnRBCiJpQokJUxsPDAy4uLpwyhmGwZcsWWFhYwMzMjC03MzPDtGnTOPuamJhwbr958wZbtmzBhAkTYGFhgUOHDuHMmTMYOXKk8p4EIYQQlaJEhahMixYt0KJFC07Z48ePkZubi169enHKDQ0N0bt37zKPFxkZCRcXF4wYMQIAoKWlhYsXL1KiQgghVQj1USFqde3aNfB4PLi5uZXYJhQKkZOTU+p9LS0tERoaigcPHiAuLg5+fn6wsbFRZriEEEJUjGpUiNoIhUIEBgaiRYsWsLS05GyLj49Hnz59UFBQgLp162LAgAEYP348tLWLXrJOTk7o1asXvL29AQCOjo5YtmyZSp8DIYQQ5aJEhahNUFAQ0tPTSzT7WFlZoU2bNnBwcEBubi5u3LiBo0ePIj4+HqtXr+bsO3fuXAwdOhSZmZlwdHTkJDKEEEIqPx7DMIy6gyDV05o1a3Djxg38+eefqF27dpn7btq0CX5+fti9ezeaN2+uogjJ55I23wkEAuTk5EAoFEIsFoNhGM5PeWUMw4BhGPB4PPD5fPYivS3vp5aWFgwMDFCjRg0YGBhAV1cXPB5P3b8GQshnoK+fRC1ycnJw584dtG/f/qNJCgAMHz4cfn5+CA4OpkRFifLz89mkQjbBkL1e/Gdp+woEAuTn56v1+cgmLtKL7G0DA4MSt+Vdl97W09OjxIcQFaNEhajFnTt35I72KY25uTkAIDMzU5lhVUkMwyA9PR0pKSlISUlBcnIykpOT2eupqansz49NnKejo1PqB7yJiUmZH/gGBgbQ0dHh1JDIuy77U0okEsmtcZH+lG4XiURsklRWEpWTk4P09PQS2/Ly8sp8/lpaWqhduzZMTExgamoKU1NTmJiYsBdpmbGxMTVDEqIg9E4iahEQEAADAwN07ty5XPsnJiYCAIyNjZUYVeVS3gQkJSUFQqGQc1/ZD1s7Ozu0bdsWderUQc2aNcusfajqk+lJE52yEpwPHz6wv9eoqCikpKQgNTUVYrGYPQ6Px0OdOnUooSFEAegdQlQuLS0NwcHBcHNzg76+PmdbdnY2dHR0oKury5YxDIOjR48CANq1a6fSWNVJLBYjKSkJcXFxiI+PR0JCApKSkiqcgMh+OJqYmKBu3bqc3y8poqWlBUNDQxgaGlbofiKRCGlpaezfRZosSn9WJKGxtraGra0t7OzsYGVlVeWTQ0I+hhIVonLXr1+HSCSS2+wTFRWF1atXw83NDdbW1sjLy8Pt27cRFhYGd3d3ODk5qSFi5crKymKTEeklLi4OCQkJbFOEjo4OrKysUK9ePUpANJCWlhb79yjLxxKaiIgIXLt2DQKBgD2uhYUF7Ozs2ORFer1u3brUX4ZUCzTqh6jc9OnTkZiYiD/++ANaWlqcbYmJidi7dy/Cw8ORmpoKPp8Pe3t7DBgwAB4eHpX2xCwUCvHmzRs2CZH9mZqayu5namrKfiDZ2tqy1y0sLEr8rkjVxDAMUlJS5L5W3rx5w9bI1KxZU+5rxcbGpkRNJSGVGSUqhChQWloa4uLiSnzAJCYmss00+vr6nA8W2Z81atRQ8zMgmiw/Px+JiYlyk5j09HR2v3r16pV4fdnZ2cHc3LzSJvuk+qJEhZBPlJWVhcjISISHhyMiIgIRERFISkoCIOl7IG2mKV5lb2ZmRh8WROHS09NLJC/x8fF4/fo1O5rLyMgITk5OaNq0KZo0aYImTZpwFgMlRBNRokJIOeTl5SEqKopNSCIiIhAfHw8AqFGjBpycnNCkSRM4OTnB3t4eNjY20NPTU3PUhEiaHd+9e4e4uDhERUWxibW0ydHExIRNWpo2bQonJ6dyzW1EiKpQokJIMUKhEDExMZykJDY2FiKRCLq6umjYsCF7Ym/SpAns7OzA59P6nqTyYBgG79+/57zGIyIikJWVBUCyjIXsa7xx48bULEnUhhIVUq2JxWLEx8dzTtbR0dHIz8+HlpYW6tevzzlhOzg40HBRUiUxDIOEhATOeyEqKgp5eXlsp3bZ94KjoyONMiMqQYkKqVZycnLw6NEjhIaGsifi7OxsAICNjQ2nCrxRo0Y0eoJUa0KhEK9eveL0w3rx4gVEIhF0dHTg6OiIJk2aoHnz5nB2doapqam6QyZVECUq1QDDMBAKhdWyJkAoFCI8PBzBwcEIDg7Gs2fPIBKJYGZmxiYk0r4lRkZG6g6XEI2Xl5eHFy9ecJKXV69eAQAaNGgAZ2dnuLi4oHXr1tRcRBSCEhUNFBkZiUOHDiEsLAz5+fmwsrKCu7s7hgwZwu4TFhaGPXv2ICoqCjVr1oSrqyumTJlS4sTg7++P7du3QyAQwM3NDQsWLKjSCQvDMHj16hWbmDx69Ag5OTkwNDRkT6DOzs6wtramkTeEKEhaWhpCQkLY9927d++gpaXF1rS4uLigadOmtFwA+SSUqGiYoKAgLF26FI0aNUKPHj1gYGCA169fg2EYTJ8+HQAQHR2N6dOnw97eHh4eHkhKSsKpU6fQpk0bbNq0iT3WmzdvMH78eEyYMAEWFhY4dOgQ+vTpg5EjR6rr6SlFcnIye5IMCQlBcnIydHR00KJFC7Rr1w7Ozs5o3LgxTZhGiApI+7pI35MPHz5EVlYWatSogdatW8PFxQUuLi6wt7enLwukXCi91SDZ2dn48ccf8eWXX2Lt2rWljiTZt28fjIyMsH37dtSsWRMAYGlpiY0bNyIoKAjt27cHIKmZcXFxwYgRIwBIpuO+ePFipU9UpP1MpIlJbGwsAKBRo0Zwc3ODi4sLWrZsSf1LCFEDHo/HTmg4cOBAiEQiREZGsonL7t27UVBQAFNTUzg7O6Ndu3Zo27Yt9W8hpaJERYNcu3YNqampmDJlCvh8PgQCAfT09DgJS3Z2NoKDgzFs2DA2SQGAPn36YMeOHQgMDGQTFUtLS4SGhuLBgweoV68e/Pz8YGdnp/Ln9blk+5mEhITg6dOnEIlEqFevHlxcXDB27Fg4OzvTysqEaCAtLS00a9YMzZo1w5gxYyAQCBAWFoYHDx4gJCQEV69eBSDp3yKtbWnVqhX1byEsSlQ0SHBwMGrWrInk5GQsX74c8fHxMDAwQO/evTFr1izo6ekhJiYGIpGoxOJ8Ojo6aNSoEaKjo9kyJycn9OrVC97e3gAAR0dHLFu2TKXP6VNlZ2fj7t27uHnzJkJCQth+Jm3atMHcuXPh7OwMGxsbqjompJIxMDBA+/bt2S9UHz58YGtbbt68iTNnzrD9W7p27Yru3bvD3NxczVETdaI+KhpkwoQJeP36NQCgf//+aN26NR49eoTff/8dPXv2xKpVq3Djxg2sXLkSO3bsQKtWrTj3X7VqFUJDQ3Hu3DlOeWJiIjIzM+Ho6KjRndmkyUlgYCAePHiA/Px8NG/eHB07doSLiwsaN26s0fETQj6PtH9LcHAw7t+/jwcPHqCgoAAtWrRA9+7dKWmppuisr0EEAgFyc3Ph6emJuXPnAgC6deuGgoICXLhwARMnTkReXh4AyB25o6uri/z8/BLlVlZWyg38M5SWnEyZMgXdu3dHvXr11B0iIURFZPu3DBo0CFlZWez5Ye/evdi5cyclLdUQJSoaRLo2TM+ePTnlbm5uuHDhAp4+fcp2EJUuMiYrPz+/UswUSckJIaQ8DA0N0adPH/Tp04eSlmqMEhUNYmJigtjYWNStW5dTXqdOHQBAZmYmrK2tAQApKSkl7p+SkqKxPeelycmNGzcQFBREyQkhpEIoaam+KFHRIE5OTggODsb79+85o3OSk5MBAMbGxmjQoAG0tLQQGRmJHj16sPsUFBQgOjoarq6uKo+7NJScEEKUgZKW6oUSFQ3i6uqKX3/9FRcvXoSzszNbfvHiRWhpaaFNmzYwNDSEi4sL/P39MW7cOHYI39WrVyEQCNSeqFByQghRJUpaqj4a9aNhNmzYgEuXLsHV1ZUd9RMYGIjRo0dj6tSpACQTuc2cObPEzLStWrXCli1bVB4zwzB49uwZzp07h8DAQDY5kZ4cKDkhhKiabNIiHT3k4uICT09PdO7cmUYQViKUqGgYoVCIY8eO4fLly0hOTka9evUwaNAgDBs2jLPf48eP2bV+atSoAVdXV0ybNk2lkyTl5OQgICAAFy5cQHR0NCwtLeHu7o5evXpRckII0RhZWVm4ffs2OyjB1NQUAwYMgLu7O8zMzNQdHvkISlRIhcXExODcuXPw9/dHbm4uOnbsiIEDB6Jdu3alTvtPCCGa4Pnz5zh37hwCAgKQn5+PTp06wdPTEy4uLnT+0lCUqJByyc/Px40bN3DhwgU8fvwYdevWZb+RUO0JIaSyyc7Ohr+/P86dO4fY2FhYW1vDw8MD/fr1Q+3atdUdHpFBiQopU2JiIs6fP49Lly4hPT0dbdq0wcCBA9GlSxdq4yWEVHoMw+DJkyc4d+4cbty4AR6PB1dXV3h6eqJ58+a0TIcGoESFlCASifDPP//g/PnzCAoKQs2aNdG3b194eHjA3t5e3eERQohSpKWl4dKlS7hw4QISExPRsGFDeHp6olevXrRIohpRokJYycnJuHjxIvz8/JCUlIQmTZpg4MCB6NGjBzsjLiGEVHVisRgPHjzA+fPnce/ePejr66N3797w9PSEo6OjusOrdihRqeYYhsF///2Hc+fO4fbt29DW1oabmxsGDhxYYoVmQgipbt69e4e//voLfn5+SE1NxRdffAFPT0+4urrKXXONKB4lKtUUwzC4e/cujh07hvDwcNjb22PgwIHo3bs3jIyM1B0eIYRoFKFQiDt37uDcuXN4+PAhzM3N4eXlhQEDBrDrtBHloESlmhGJRLh58yaOHTuGFy9eoGXLlhg7dizatWtHncYIIaQcYmNjcfz4cVy/fh3GxsYYPnw4PD09qR+LklCiUk0IhUJcu3YNx48fR1xcHFxcXDB27Fi0bt1a3aERQkillJCQgF9//RVXrlxBzZo1MXToUAwePJhqpRWMEhUFYhgGQqFQo9ot8/PzcfnyZZw4cQJv3rxBp06dMHbsWDRr1kzdoRFCSJXw7t07nDhxAhcvXoSOjg4GDx6MoUOHwtjYWN2hVQmUqAA4evQoDhw4gAYNGuDIkSNs+Zw5c/Do0aMS+7dv3x6bN2/mlPn7+2P79u0QCARwc3PDggUL1Jqw5Ofn49KlSzh27BiSk5PRvXt3jBkzBg0bNlRbTIQQUpUlJyfj9OnTOH/+PBiGweDBgzFixAhKWD5TtU9UkpKSMHr0aPB4PFhYWJRIVF6/fo1p06Zx7mNiYsJZ3fjNmzcYP348JkyYAAsLCxw6dAh9+vTByJEjVfY8pIRCIa5cuYIjR44gKSkJPXv2xNixY1G/fn2Vx0IIIdVRWloaTp8+jd9//x0AMHToUAwfPpyahD5RtZ9a9Oeff0azZs0gFouRnp5eYruhoSF69+5d5jEiIyPh4uKCESNGAAC0tLRw8eJFlSYqYrEYf//9Nw4cOIDExES4urpi06ZNlKAQQoiKGRsbY+rUqRg2bBh+++03Nmnx8vLCsGHDaF6qCqrWKzA9evQIN2/exOzZs8vcTygUIicnp9TtlpaWCA0NxYMHDxAXFwc/Pz/Y2NgoOtxSPXr0CN9++y3WrFmDBg0a4NChQ1i9ejUlKYQQokbGxsaYPn06Tp48iX79+uHw4cMYNWoULl++DJFIpO7wKo1q2/QjEokwefJkNG/eHAsWLMCcOXOQnp5eounnyZMn4PF4KCgoYBfiGz9+fIl1brZt28ZW8zk6OmLr1q1Kb5d89eoV9uzZg7t376JJkyaYMWMGjeIhhBAN9fr1a+zbtw+BgYFwdHTE9OnT0b59e3WHpfGqbaLyxx9/4MCBAzhx4gSMjY3lJiobNmxAvXr14ODggNzcXNy4cQN3796Fq6srVq9eXeKYiYmJyMzMhKOjo1IX7EtNTcWhQ4fw119/wczMDNOmTYOrqystUU4IIZXAs2fP8PPPP+Px48do3749pk+fTlPzl6FaJirp6ekYNWoURo8ezfYrkZeoyLNp0yb4+flh9+7daN68uSrCZeXm5uLUqVM4ceIEtLS0MHbsWAwePBi6uroqjYMQQsjnYRgGd+7cwe7du/H69Wv07dsXkyZNgpmZmbpD0zjV8iv4gQMHYGRkhG+++abC9x0+fDgAIDg4WNFhlenu3bsYO3Ysjhw5And3d5w8eRIjRoygJIUQQiohHo+HLl264OjRo5g7dy7u3r2L0aNH49SpUxAKheoOT6NUu1E/8fHx8PPzw+zZs5GcnMyW5+fnQygU4s2bN6hZsyZq1aol9/7m5uYAgMzMTJXE++bNG2zfvh13795F+/bt4evrq9KOuoQQQpRHW1sbgwcPRu/evXHw4EHs3r0bly9fhre3N7744gt1h6cRql3Tz3///Ye5c+eWuc+QIUMwZ84cudtiYmIwfvx4TJ06FaNHj1ZGiACAgoICnDp1CkeOHEGtWrUwe/ZsdOvWjdbjIYSQKiwyMhK+vr4IDw9Hv3798O2331b7CeOqXaKSlpaGsLCwEuUHDhxATk4O5syZAysrK1hYWEBHR4fTtMIwDFavXo2///4b+/fvh5OTk1JifPjwIXx9ffH69WsMGTIEEyZMoMWuCCGkmhCLxfDz88O+ffsAANOmTcOAAQOq7YCJapeolKZ4Z9r//vsPq1evhpubG6ytrZGXl4fbt28jLCwM7u7uWLhwocJjSEtLw44dOxAQEIAWLVrA29ubeoITQkg19eHDB+zZsweXL19Gs2bNsHDhwmr5mUCJSqHiiUpiYiL27t2L8PBwpKamgs/nw97eHgMGDICHh4fCm2Bu3bqFzZs3QywWY/r06ejbt2+1zZ4JIYQUCQ0Nha+vL+Lj4zF+/HiMHDlSqVNgaBpKVNQsIyMD27ZtQ0BAAL766it4e3vDxMRE3WERQgjRIPn5+Th8+DBOnDiBxo0bY9myZdVm9nFKVNTon3/+wcaNG5GXl4e5c+eid+/e1FmWEEJIqZ49e4Yff/wRb9++xaRJkzBs2DBoaWmpOyylokRFDbKysrBz505cunQJHTp0wKJFi2iSH0IIIeWSl5eH/fv348yZM2jRogWWLFkCW1tbdYelNJSoqNh///2HdevWISsrC7NmzUL//v2pFoUQQkiFhYaGYsOGDUhOTsaMGTMwcODAKvl5QomKiohEIhw/fhyHDh1Cq1atsHTpUlhYWKg7LEIIIZWYQCDA7t27ce7cOXTr1g2LFy+GoaGhusNSKEpUVCA1NRU//PADQkJCMGHCBIwZM6bKtykSQghRnZs3b8LHxwe1atXC6tWrlTbPlzpQoqJkDx8+xJo1awAAK1asgLOzs5ojIoQQUhUlJibif//7H168eIEZM2Zg8ODBVaIpiBIVJRGJRDh27BgOHz6M1q1bY8WKFTTsmBBCiFLl5+djz549OHv2bJVpCqJERQnS0tKwZs0ahISEYPz48Rg7diw19RBCCFEZaVOQkZER1q5di8aNG6s7pE9GiYqCxcbGYsmSJRAIBFi1ahU19RBCCFGLxMRErFq1Cq9evcLy5cvRrVs3dYf0SShRUaB//vkHq1evhoWFBTZs2ECjegj5BJkZAqz5/iwehbxiy4aOdMHUmV+rMSpCKqfc3FysX78egYGBmDJlCkaPHl3p+q1U+UQlPz+fswKyMjAMgzNnzuDnn3/Gl19+iZUrV9Jqx4R8gn/uRmPlolNFBTweGAAoPE2tWDcI3bo3V0tshFRWDMPg0KFDOHz4MHr16oVFixZBT09P3WGVm0YkKrGxsTh06BAiIyORmpoKfX192Nvbw8vLC507d+bs+/LlS+zcuRNhYWHQ1tZGx44dMWvWLBgbG3P2CwoKgo+PD1JTU9GhQwcsX74cRkZGCo+9oKAAP/30E/z8/ODl5YWpU6dSfxRCPoFAkA8Pt42SG9IERfrFT/qTYQAeD9duLVd9gIRUctevX8f69evRqFEjrFu3DnXr1lV3SOWiEYnKP//8g99//x3NmzeHqakpcnNzcfPmTTx+/BgLFiyAh4cHACApKQmTJk2CoaEhvvnmGwgEApw8eRL16tXD3r17oaOjAwDIycnBsGHDMHDgQDg5OeH06dNo0KAB5s+fr9C4MzIysGLFCoSFhWHhwoXo27evQo9PSHWyYfU5XPd/AgBgeDxJciJTQ81Iq6sLT1n93FvCe6G7iqMkpHILDw/HsmXLoK2tjQ0bNsDR0VHdIX2URiQq8ohEIkyZMgX5+fk4fvw4AMDX1xeXL1/G8ePHUa9ePQBAcHAw5s+fz0loIiIisGnTJhw8eBAA8Pz5c6xduxZHjhxRWHzJycmYP38+Pnz4gHXr1qFly5YKOzYh1VHfbusgFEpqTBjZJEVauwJwEhdp7cqVgIXslxRCyMclJSVh6dKlSExMhI+Pj8Z/fvHVHUBptLS0YG5ujqysLLbs5s2b6NSpE5ukAICLiwtsbW0RGBjIltWrVw8JCQkIDAzE69evcfbsWdjY2CgstsTERMycORM5OTnYtWuXxv+RCakMRCJJOsJt8pFpApIpA48H8PkAj4eve23CIM8tqg6XkErL3NwcO3bsQOPGjeHt7Y379++rO6QyaVSiIhAIkJaWhtevX+P06dO4f/8+2rZtCwB4//49Pnz4IHda4KZNmyI6Opq9XadOHYwfPx6rV6+Gl5cXHj58iG+//VYhMcbGxmLmzJnQ0tLCrl27YGdnp5DjElLdmZiVnJSqRHWv7GgFHsDwAIbPQ3pGHnr0WI87dyKUGiMhVUWNGjWwceNGODs7Y+nSpZwv+5pGW90ByNq1axcuXLgAAODz+ejatSvmzZsHAEhJSQEAubO7mpiYICMjgzPCx8vLC25ubkhOToaDg4NCejg/e/YMixYtgrm5OTZv3lxpOiIRUhn4bB2JSaP2ldwgW5NSiJFtApLWsABYuepPADwE+C+kTu2EfISenh5++OEHrF+/HqtXr0ZOTg769++v7rBK0KhEZejQoejevTuSk5MRGBgIkUiEgoICAEBeXh4AyG2LliYneXl5nKHIZmZmMDMzU0hsDx8+xNKlS+Hg4ICNGzcqZQQRIdWZXX1z1DWpiZSUbEkmUspUD0zxxKWwWYhhbwBufTbB3LwGTp2Yo9ygCanktLW1sXz5ctSsWRM+Pj7IysrC8OHD1R0Wh0Y1/djb28PFxQVff/01fHx8IBAIsGTJEjAMw9aISBMXWfn5+QCgtHHhISEhWLRoEZo3bw5fX19KUghRklMX5qGmoRY7sqcEOUkKw5NpImL7r/CQlJwD194+uHTloZKjJqRy4/P5mDdvHkaPHo1du3axA1g0hUYlKsV1794dERERiI+PZ5t8pE1AslJSUlCrVi2lTOwWFhaGpUuXok2bNtiwYQMMDAwU/hiEkCLnry7FrgPjATEkCUtp4xLldbAtLGd4kuHMDA/YuDUA3fv4IDs7V+mxE1JZ8Xg8TJ06FePHj8e+ffvw+++/qzsklkYnKtLmnqysLJiZmcHY2BiRkZEl9gsPD0fDhg0V/vjR0dFYvHgxGjdujLVr1yp9hltCiIRTExtcu7McRobapdeuQF5nW3CHMstc+n+zDd37blRGuIRUGRMmTMCwYcOwbds2XL58Wd3hANCQROXDhw8lyoRCIa5evQo9PT3Ur18fANCtWzfcu3cP7969Y/cLCQlBfHw8XF1dFRrTq1ev4O3tDRsbG/j4+EBfX1+hxyeEfNy5S4vhd8Vbkn0Ur12R1wxUfFvhdkZ6AdDtax+Mnyan0y4hBDweDzNnzsSAAQPg4+ODGzduqDskzZjwbfny5cjOzkarVq1gZmaGlJQUBAQEIC4uDjNnzmQ79rx79w6TJ0+GoaEhhgwZAoFAgN9++w1mZmbYt2+fwmo83rx5g1mzZsHQ0BDbt29H7dq1FXJcQsinW7f2D/x9PUIyQy2fxzbxlEhUPjZRnIzRQ9tjyoTuyguakEpKJBLhhx9+wM2bN7F+/Xp06NBBbbFoRKJy/fp1XLx4ETExMUhPT0eNGjXg5OSEwYMH46uvvuLsGxsbW2Ktn5kzZypsqHBKSgpmzpwJHo+HHTt2wNTUVCHHJYQoRs8e6yUJCJ/HSVSKRgNJfxZbL6i06wywdd03aNta86cSJ0SVhEIhvv/+e4SEhGDLli1qm9xUIxIVTZGXl4c5c+YgKSkJP//8MywtLdUdEiFEjpgXbzB5ymEwfLAdaeVOuy8vMeGBW9sCQFIXw8Mfh6fB1KSWcoMnpBLJy8vDokWLEBMTg71798LKykrlMVCiUohhGLaaa+fOnWjSpIm6QyKEfMR3844iNCxR0uzDl51XpZTVl4snKfKahHjAtTNzqfM8IYUyMjIwbdo06Orq4ueff0bNmjVV+viUqBQ6fvw49u3bh1WrVqFnz57qDocQUgGuvX0AMDKrLpeSqPBLSVJ4xUYQMQD4wI3f59MMt4RAMsBk+vTpaNmyJdatW6fS9wUlKgBu376N77//HmPHjsWkSZPUHQ4h5BO8f5+OoaP3SG4UzqPCrUlBqU1CpdawMAD4PNz+c4Gywiak0rh//z4WL16M4cOHY/r06Sp73GqfqLx48QIzZsxAu3btsGbNGvD5GjFimxDyiX45dANHT94v6mjLmU+lZE1LqUOaZQ/KMNDW5uHGWUpYSPV2+vRp7Ny5E8uWLcPXX3+tkses1olKZmYmJk+ejJo1a2LXrl006ywhVcjw0bvwNjmrKFkp7HgrN1EpLUmRU8PC5wO3fqeEhVRPDMNg48aN8Pf3x65du1TSn7PaJioMw2DNmjW4f/8+Dh48SCN8CKmiuvXbyPY5YfuoFCYgpQ5pli2Tuc1uK0xYblMNC6mGCgoKMGPGDGRnZ+PAgQOoUaOGUh+v2rZzXL16FdevX4e3tzclKYRUYTcvLcKVP+ZKbsj7XlbKyB/O9eJNRHzJUkSdv9mMzkM3QygUKjBiQjSbjo4OVq5cieTkZOzYsUPpj1cta1QSEhIwadIkdOvWDcuWLVN3OIQQFYl6/hqT5/7KNgOVOpttsZqWEs1Dhfuy2xgG4PHw97GZtNwGqTYuXrwIHx8frFmzBt27d1fa41S7REUoFGLmzJnIyMjAwYMHlV5lRQjRPBcuh2Dzz3/LTMNfuOFTO9vKzHILHvD7romwNKujnOAJ0RAMw2DVqlUIDg7GoUOHUK9ePaU8TrVLVPbv348TJ05g165daNasmbrDIYSo0eadl3He/8nHRwWVt7OttAamMGHZ+f1gOH/RQDnBE6IBMjMzMWHCBFhZWWHr1q1KmV+lWiUqkZGRmDp1KiZNmoSxY8eqOxxCiIaYv+oUHjyKkzv/SvGmIaC0pqDi+4KtYZk54iuM9lTfom6EKNOjR48wd+5czJ49G0OGDFH48atNoiISiTB9+nQUFBRg//790NbWVndIhBANM2XBEYQ/T2JrV8q1InPxfiylrNQMAB3b1Ifvom8UHTYhardlyxZcu3YNx44dU/hivtUmUTl//jy2bNmCXbt24YsvvlB3OIQQDTZu7i94EZda1IcF+PjMtsWTFNkEphizOjXgt0t1M3sSomyZmZkYNWoUXFxcsHLlSoUeu1IkKvn5+Z+1QNiHDx8wevRodOnSBUuWLFFgZISQqmzcd5KERbbDLadpCChKVIpP9iCvf0sxfD4Pd458RzNikyrh8uXLWL9+PbZu3QpnZ2eFHVdhiUpOTg5OnjyJZ8+eITw8HJmZmVi6dCn69u3L2e/HH3/ElStXStzfzs4Ox48f55QFBQXBx8cHqamp6NChA5YvXw4jI6MKx7Z+/XrcuXMHv/76K4yNjSt8f0JI9TZ10VE8fZEkucGX0+FWTm3KR4c0g7v/Od+JsDQzVmTYhKiUWCzGnDlzkJaWhkOHDkFHR0chx1VYR4309HQcPnwY9erVQ8OGDfHff/+Vuq+uri4WLVrEKSu+bHROTg7WrFmDgQMHwsnJCadPn8b+/fsxf/78CsX1+PFjXL58Gd7e3pSkEEI+yb6Nks733mtP4d/Q+MJSnvzaktJqUMoaLQRg4PxfAADLJ/eER7dWnxEtIerB5/Mxb948TJ48GadOncLo0aMVclyFJSomJib4888/YWJigoiICEydOrXUfbW0tNC7d+8yjxcXF4d69eph8uTJAABLS0usXbu2QjExDIPdu3fDyckJAwYMqNB9CSGkuC0rhgMA1v98EX6BEdyqkTKaeKQ1KXL3K9aX5YeD1/HDwevo3MoeW72p4y2pXBwdHTFo0CAcO3YM7u7uqF279mcfU2ENo7q6ujAxMSn3/iKRCNnZ2aVur1evHhISEhAYGIjXr1/j7NmzsLGxqVBMDx48wNOnTzF58mSljO0mhFRPS2f0x70z3pg1upOkgEFRplFKY7rcYh73rrIrPd8NfYX243zRZ+YuhcVNiCqMGTMGDMPg9OnTCjmeWsbo5ubmom/fvsjNzYWRkRF69uyJb7/9ljNLbJ06dTB+/HisXr0aYrEYFhYW2LJlS7kfg2EY/PLLL2jevDnat2+vjKdBCKnmRnp2xEjPjvj3v+eYt+G8pLDMmpVyXJfeLkxiUrPz0G6cL8AHbu76lmbTJhqvTp06GDRoEM6ePYuhQ4d+drcLlScqJiYm8PLyQuPGjcEwDO7fv49z587hxYsX2LZtG2d+Ey8vL7i5uSE5ORkODg7Q09Mr9+MEBQXh2bNn2Lx5M3i8ss4chBDyeb5s0xD/nPLG2/dpGDTnIDvR28eUVsvC2SbTUbfbjD0AD9i3ZAjaONl9btiEKI2XlxfOnTuH06dPl9kVpDxUnqhMmzaNc7tnz56wtbXF/v37cfPmTfTs2ZOz3czMDGZmZhV6DNnalHbt2n12zIQQUh4WZsb45zdv5Ofno9v4HTKLNUsWLZSbwJQ294p0ZltZhY31UzacBXjAmN6tMHdETxCiaYyNjTFo0CD8/vvvGDZs2GfVqmjE4P1hw4aBz+cjODhYIce7f/8+wsPDMXHiRKpNIYSonK6uLv454Y1/T3jD0EBHkqeUcyYIuYsdyjQFyU4ud8w/FC4TfTF81WHFBU+IgowYMQIAcPLkyc86jkYkKnp6eqhVqxYyMjIUcrwzZ86gWbNmcHFxUcjxCCHkU107OAf/nvBGC0dzyWqF5UlYyprhlrPas+TyIiEVLpN80XXmdkWFTchnMzY2xsCBA3HhwgXk5eV98nE0IlHJyclBenq6QuY5SUxMxIMHD+Dp6Um1KYQQjXFgzRjc/9UbUwe3l2Qd4sJ8oxx5i9z5V6S1LDKX7DwhnCf7wmXKVgiFQgU/A0IqzsPDA1lZWQgMDPzkY6g0UcnLy0NOTk6J8iNHjoBhGHTo8Pmri/71118wNDSEq6vrZx+LEEIUbdLgLrh/fD4Or5VUi3PHJ5ehzFoWHufCAOgwfQecp25F3NtURYVOSIVZW1vDxcUFfn5+n3wMhXam/f3335GVlYWUlBQAwN27d5GUJJl2+ptvvkFmZiYmTZoENzc32NlJeqwHBQXh33//RYcOHfDVV1991uMLhUJcunQJvXv3hr6+/uc9GUIIUaKmDaxw/+h85OXlocvUXUVZh7QTbXkrhIvXHBdLYgauPAIA2DCpN3p3aP55QRPyCdzd3bFq1SrExsaiQYMGFb6/QhclHDZsGN6+fSt326lTp2BoaIht27bh6dOnSElJgVgshrW1NXr16oURI0ZwhiZ/ihs3bmDlypU4dOgQHB0dP+tYhBCial/P3IXUrDzuIofF1w3ijAwqmaSUOk1/YfIzwrU1Fo2gGmeiOgUFBRgyZAh69OiBuXPnVvj+lWL15PLy9vZGTk4Odu/ere5QCCHkky3beQEBwc8lN4ovelhaolJ8aLMs2duFCUu7xlbYO3+4QuMmpDR79uzBhQsX8Oeff1ZoTjRAQzrTKkJ6ejpCQkJKrNZcleTn56s7hHIpKChQdwgssVhcKToVVoY4GYZR+9+2srwH5KlI7D/O8sCDw/Ox/lvJ+YxXjin62U1lJSmA5KzPA4KiEtHm263wWHlAcl8N+PuWR2WJUx6hUAixWKzuMD5KGb/fvn37Iisr65OmIVHLFPrKcP/+fYjFYnTq1Enhx05OTsbZs2cRHh6OiIgICAQCbNu2DW3atCmx75w5c/Do0aMS5e3bt8fmzZs5Zfn5+Th48CD8/f2RmZkJR0dHTJ48ucQkdenp6VizZg1CQkJgbm6OpUuXyn3s8saZm5uLS5cu4c6dO4iJiYFAIICNjQ3c3d3h7u5eYl0ksViMkydP4ty5c0hNTYWNjQ1Gjx4NNzc3zn55eXnw8fFBYGAgatWqhblz56JHjx5l/m6lHjx4gMOHDyMqKgo6OjpwdnbGjBkzYGlpWWLfO3fu4NChQ3j16hWMjY3Rr18/jB07tkTT4YkTJ3DkyBGIxWIMHjwY06dPL1csHxMcHIxjx44hKioKYrEYtra28PLyKjFZoTrifPToEU6ePIno6Gikp6fD0NAQDRs2xLhx4/DFF1+U2D8sLAx79uxBVFQUatasCVdXV0yZMqXENO3+/v7Yvn07BAIB3NzcsGDBAoUt4V6e90F53wOfKzY2FocOHUJkZCRSU1Ohr68Pe3t7eHl5oXPnzpx9X758iZ07dyIsLAza2tro2LEjZs2aVWL0YlBQEHx8fJCamooOHTpg+fLlMDIyKlc8bl82hduXTZGWlg23+Xs5fVf4uWnQSYmAliAFYMRgdGqgwLgBCkyKmr35ghTovXsCfm46GC1tCGtZI8+8OaClzX5NjX+fiXZe82DwLgw6PEZhf9/IyEjs378fT548AcMwaN68OaZPn45GjRqV2FcVr8OcnBycPHkSz549Q3h4ODIzM7F06VLOl1uxWIyrV6/i5s2biI6ORmZmJiwtLdGjRw+MGDFCbk3AX3/9hZMnT+Lt27cwMzPDkCFD8M033MUkGYbBjh07cOHCBejo6GDSpEkYMmTIJ8cJAD/++COuXLlS4v52dnY4fvw4p0wV5/CPsbe3h42NDe7du1fivfQxVSZRuXfvHpo0aQJTU1OFHzs+Ph4nTpyAjY0NHBwc8PTp0zL3NzMzKzEDr7wFG9evX48bN25g6NChsLGxweXLl7Fo0SJs27YNLVu2ZPfbu3cv8vPzsXbtWkRERGDVqlU4deoUDAwMPinOxMREbNu2Dc7Ozhg+fDhq1KiBoKAg+Pr64unTp1i+fDln//379+PXX3+Fu7s7mjRpgjt37mDNmjXg8XicD+dTp07hxYsXWLVqFd6+fYuNGzeiefPmqFevXpm/r3v37mHZsmVo3Lgxpk2bhuzsbJw9exazZs3CwYMHOSf+f//9F8uXL0fr1q0xd+5cxMTE4OjRo/jw4QO8vb3Z/cLCwnD8+HHMnDkT+vr62LdvH5ycnD77TXfp0iX4+PjAxcUFU6ZMgZaWFuLi4thO4+qOMyEhAXw+H56enqhbty4yMzMREBCA2bNnw8fHhzOyLjo6GvPmzYO9vT1mzZqFpKQknDp1CgkJCdi0aRO735s3b7BlyxZMmDABFhYWOHToEM6cOYORI0d+UozFled9UN73wOd6+/YtcnJy8PXXX8PU1BS5ubm4efMmli5digULFsDDwwMAkJSUhNmzZ8PQ0BBTpkyBQCDAyZMnERMTg71797Ifnjk5OVizZg0GDhwIJycnnD59Gvv378f8+fMrFJexcU0E/yK5T8cpvhBlJkHvzb8Q69VGvkkTgK8FXkE2eEIBex9+XhoMXt2BWM8IeRZfgF8ggE5KNPj52RDUL/pCxyvIhv6bUOSaN4FApwYu3bgLe3v7z/r7RkZGYubMmTA3N8f48ePBMAz+/PNPzJkzB3v37mUHUwCqex2mp6fj8OHDqFevHho2bIj//vuvxD65ublYv349mjdvDk9PT9SpUwdPnz7FoUOH8PDhQ/z000+caS/Onz+PLVu2oFu3bhg+fDgeP36Mbdu2ITc3F6NGjWL3CwgIwK1bt7Bo0SLk5uZi7969aNasGZo1a/ZJcUrp6upi0aJFnLKaNWuW2E/Z5/Dy6tSpE/7++28wDFOx6UOYKqCgoIDp27cv88svvyjl+NnZ2Ux6ejrDMAwTGBjIdOnShXn48KHcfWfPns2MHTv2o8d8+vQp06VLF+bEiRNsWW5uLjNixAjm22+/5ew7duxYJjo6mr09ceJEJiIi4pPj/PDhAxMTE1OifP369UyXLl2Y+Ph4tiwpKYlxdXVlfH192TKxWMzMnDmTGTx4MCMUCtnyRYsWMbdu3WJvL1u2jAkMDCzr18AwDMOMGTOGGTFiBJOfn8+WRUdHM926dWN27NhRYt8JEyYwBQUFbNm+ffuYrl27Mi9fvmTLTpw4wWzfvp29ffr0aWbr1q0fjaUsiYmJjJubG/PTTz99dF91xlmcQCBgPD09GW9vb075ggULmIEDBzJZWVlsmZ+fH9OlSxfm/v37bFlgYCCzbNky9vatW7eYxYsXKyS28r4PyvseUAahUMhMmDCBGTVqFFu2ZcsWxs3NjXn79i1b9uDBA6ZLly7M+fPn2bLw8HBm4sSJ7O3o6OhynR/KkpWVxXh6ejJug0YxbSduZtpO2sK0nezLtJ3iy7SZ4su0mSq5dOw7hOns2otpM9mHafOtL9P6W1+m3fA5TJcuXRjn0YuZ1tN9mdYzfBmXUd7Ml/2HMa1m+DKtZvgyzqMXMF/2G8p0nLftk2NcuHAh069fPyYtLY0te//+PdO7d29m+fLlnH1V9TrMy8tjkpOTGYaR/F26dOnCXLp0ibNPfn4+8/jx4xL3PXToENOlSxfmwYMHbFlubi4zYMAAZtGiRZx916xZw/Tu3ZvJyMhgy3x9fZnTp0+zt7dv38789ttvnxwnwzDMunXrmN69e3/saavkHF5eISEhTJcuXSr83q0SfVQeP36MrKwspTT7AECNGjVQq1atCt1HKBTKnTNG6ubNm9DS0mK/oQGSGXr79++Pp0+f4t27d2y5paUlzp49i9evXyMwMBAJCQlyM9zyxmlsbCx3iFiXLl0AAK9evWLL7ty5A6FQiEGDBrFlPB4PAwcOxPv37zm1NlZWVvDz80NcXBwePHiA0NBQ2NjYlBlLRkYGXr58ia5du3KqcBs2bAh7e3v8/fffbNnLly/x8uVLuLu7c5pPBg0aBIZhcOPGDU4sd+/exdOnT/H8+XMEBAR8NJaPOX/+PMRiMSZNmgRA8m2ZkdMXXd1xFqevr4/atWsjKyuLLcvOzkZwcDB69+7N+QbWp08fGBgYcCZnsrS0RGhoKB48eIC4uDj4+fkpLMbyvg/K+x5QBi0tLZibm3N+fzdv3kSnTp04Mbi4uMDW1pbzu6tXrx4SEhIQGBiI169f4+zZs5/9u7t27RpSU1Ox3/cHhBz0xlfNrQGxuGjGWwaAqABaWUkQ1rYFtIreVwXGdmD42tDOeM02IYl0a0IrOxlaWUng52VCJ/UlxHo1kZMvQutZW9F14c4Kx/j48WO4uLigdu3abJmpqSlat26Nf/75hz03qvJ1qKurK7dmW5aOjo7cJlJ558aHDx8iPT0dAwcO5Ow7aNAgCAQC/PPPP2yZlZUVAgIC8Pz5czx9+hR3794tNfbyxClLJBIhOzu71O3KPodXRMuWLWFoaIh79+5V6H5Vounn3r17MDU1RePGjdUdCgBJE0yfPn1QUFCAunXrYsCAARg/fjznQys6Oho2NjYlqumaNm0KAHj+/Dl7Epw6dSoWLFiAS5cuQUtLC7Nnz1bILL7FpaZKJoaSPblER0fDwMAA9vb2cuOMjo5mq+dHjRqF7777DqNHj2ZvN2zYsMzHlHYwlNf2q6enh9jYWKSkpMDExARRUVEAACcnJ85+pqamMDMzQ3R0NFvWpUsX+Pv7s/092rRpA3d394/8BsoWEhICOzs7/Pvvv9i9ezfev38PIyMjDBo0CBMnTgSfL8n71R0nIPkAKCgoQHp6Oq5evYrY2FiMGTOG3R4TEwORSFQiRh0dHTRq1IgTo5OTE3r16sU2WTk6OmLZsmWfHSNQ/veBqt4DUgKBAHl5ecjOzsbdu3dx//59dhLJ9+/f48OHDyV+d9K4//33X/Z2nTp1MH78eKxevRpisRgWFhbYsmXLZ8UWHByMmjVrIjk5GcuXL0d8fDxMDQxQv2krBGeag+FrgZ+XAR4YiPWNuXfm8yHSrw0tQTqAwrnmahijwNgWNWPvAgBE+rUgsHOWjDQCkJ5bgFazt8Kidg1c/YHbpF2agoIC6OrqlijX19dHQUEBYmNj0bx5c415HX5MaedGAGjSpAlnXycnJ/D5fERFRaF3794AAE9PT9y4cQMTJ04EALi5uVW4n4Y8ubm56Nu3L3Jzc2FkZISePXvi22+/5fTtUfY5vCK0tbXRvn173Lt3DxMmTCj//RQWgRqFhobC2dlZI6bMt7KyQps2beDg4IDc3FzcuHEDR48eRXx8PFavXs3uJ/3wLU5alpyczJY5ODjgxIkTiImJQb169SqUbZdXQUEBzpw5A0tLS84bLyUlBXXq1Cnxu5UXp6mpKQ4dOoSYmBjUrl0bFhYWH33cunXrwtDQEGFhYZzy9PR09ttLcnIyTExM2IkES/u9SbcDAJ/Px7p16/Dy5UuIRCI4ODh89utD2v9jw4YN8PLygqOjI27duoWjR49CJBKx/ZLUHScArFq1CkFBQQAkJ30PDw+MHTuW3f6xGENDQzllc+fOxdChQ9nOrp8755FsHOV5H6jiPSBr165duHDhAgDJ36hr166YN28eG7NsjMXjzsjIQH5+PvtB7eXlBTc3NyQnJ8PBwaHCQzOLS0hIgEgkwrJly9C/f39MnToVjx49wu+//w6Pnj0xdOwUjFvqCwAQa5ec+JLR1gc/J5lTlmfdCvmmDcETF0BkUAvg8UuMFnqbkYNWc7aiVYN6ODqv7H4htra2ePbsGUQiEds5v6CgAM+ePQMgSfYAzXkdfsxvv/2GmjVrcvp4paSkQEtLC3Xq1OHsq6Ojg1q1anHe5/r6+ti1axdiYmKgq6vL6aPzqUxMTODl5YXGjRuDYRjcv38f586dw4sXL7Bt2zb2d6Psc3hFtWvXDoGBgcjJySnRWbo0lT5RKSgoQExMDL7++mt1hwIAWLJkCed2nz59sGnTJvj5+WHYsGFo3lwyM2ReXp7c3urSk1vxBZz09fXldrxSlJ9++gkvX76Ej48P581f0Th1dHTkftMsDZ/Ph4eHB06cOIG9e/eiX79+7Fw40iFy0seQ1r7I+6amq6srt6mtfv365Y7lYwQCAcRiMaZNm8Z2lOvevTsyMzNx9uxZjBkzBjVq1FB7nAAwbdo0DB8+HElJSbhy5QqEQiFEIhG7Xfo7Le1vK28orZWVlUJjlMZR3teXst8DsoYOHYru3bsjOTkZgYGBEIlEJV6PH4tb9u9vZmYGMzMzhcQmEAiQm5sLT09PdvKsbt26oaCgABcuXMDEiRPxw4ReWLcuCODzS854y+eDJ2eILKNfs/TJ4mRuh8a+Q6u5WzGme2ssGCR/4rhBgwZhy5Yt8PHxwciRIyEWi3H06FH2w1v6+tKU12FZjh07huDgYMyfP58zWisvL6/URElXV7fEuZHP5yu0dqL4gI2ePXvC1tYW+/fvx82bN9lOsso+h1dUkyZNwDAMoqOj0apVq3Ldp9L3UYmJiUFBQYFCmn0KCgqQkpLCucie3D/V8OGSSZVkx4/r6enJHateVlOIsuL87bff4Ofnh0mTJqFjx46cbZ8TZ3njnjRpEvr374/ffvsNo0aNYkfT9O/fHwDYkR3SN5a8k1d+fv5nf1P9WJzS4xcf0tezZ0/k5eWxTT6qiPNjr4FGjRqhXbt26N+/P3x9fREeHo7169ez26UxlPa3lZdkKYMiX1+KZG9vDxcXF3z99dfw8fGBQCDAkiVLwDDMR393gHLjlh67+HB46evy6dOn7D4H5w9B8O65kiWApFmIWAyGL//UX2IeFp6c23zJBHRHbzxCy++2IjjyFYrz9PTEmDFjcO3aNYwdOxbjx49HYmIivLy8ABS9pzXldVia69ev48CBA+jfv3+Jvih6enqlzn2kyPNRRQwbNgx8Pl9hnzXKYG9vD11dXURGRpb7PpW+RiUqKgp8Pl/u2PyKevLkSYnpfU+dOiV3Lo+KMDc3BwBkZmayZSYmJmz1pyzpN46yhlkrMs7Lly9jz5498PT0xLhx40psNzExwX///VdiOFl54qxI3IsXL8aUKVMQHx+PunXrwtbWFmvWrAGfz4e1tTUbi/Sxi3ekTElJYdtcP1dpcZqYmCAhIaFEVa/0tvTvq4o4K/Ia0NHRQefOnfHrr78iLy8Penp6nBiLS0lJUcowf3k+532gSt27d8fmzZsRHx//0d9drVq1lPoBa2JigtjYWNStW5dTLvs6lL5nUlJSwOfzEbJb0mz11dxtEAtzwWhXcFh3iUUQi8om7v4D4AEPNsyEnl7R854yZQpGjBiB2NhY1KxZE46Ojti3bx8ASdOQ9LlI4yxOla9DeR48eIAff/wRHTt25EwpIGViYgKRSIQPHz5wzgkFBQXIyMhQevOkPHp6eqhVqxYyMjI4cSrqHK4I2tracHR0ZL/Yles+SoxHJaKiomBvb6+QRQgbNmwIX19fTlnxk8GnSExMBABO5z/p+Pjs7GxOR0JpG25ZVYSKivP27dvYuHEjp/1d3mP99ddfePXqFad5ojxxVjTuunXrsrdFIhH+++8/NG3alG3HlCajkZGRnCaA5ORkvH//njNy5HOUFqeTkxMSEhKQnJzMqX6WtvFK/76qiLOir4G8vDwwDIOcnBzo6emhQYMG0NLSQmRkJGfOloKCAkRHR6ts9fHPeR+okrR6PCsrC3Z2djA2Npb7jTA8PFzpMTs5OSE4OBjv37/n9HWQfR2W9vcN3DwDAwZcQn4tS+TIDliT1y2qWFmpzUJ8yUaXJbtQU4ePfzcWJdBGRkacOaGCg4NhZmbGxq0pr8Pinj17hu+//x5OTk5YvXq13CYe6fs8IiKCUxMdEREBsViskC/PFZWTk4P09PQSnzWKOocripOTk9yJUUtT6Zt+IiMjFTbax8jICC4uLpxLRarFsrOzS1T3MwyDo0ePAgBnps3u3btDJBKxHfYASVXcpUuX0KxZszKHXn5unIBkBtPVq1ejZcuWWLFiBTtipbivvvoK2tra+PPPPznP6fz58zAzM0OLFi3K/ZgVifvkyZNISUlhm80AyUnNzs4Ofn5+nGaOc+fOgcfjoVu3buWO5VPilJ5IL168yO4rFotx+fJl1KpVi23XVUWcpcX44cOHEvtmZmbi5s2bMDc3Z7/5GRoawsXFBf7+/pw+M1evXoVAIFDZB8TnvA+UQd7vTygU4urVq9DT02NP9N26dcO9e/c40wiEhIQgPj5e6b876fFlX4fS21paWmjTps1H/74bFk7Hfz/Pg42JoWSD7BT9xRVv+pG5zhQugihdiyhbKMYX87di/ZmAEoe5fv06IiIiMHToUPZ8oymvQ1kvX77E4sWLYWFhAR8fn1LPUW3btkWtWrVw/vx5Tvn58+ehr69fohldkfLy8uT2dTty5AgYhuF0+lXkOVxRGjdujLi4OAgEgo/vjCpQo/Lq1SuVvJiPHJEslf7y5UsAkjfS48ePAYBtMomKisLq1avh5uYGa2tr5OXl4fbt2wgLC4O7uzung1KzZs3g6uqKffv2IS0tDdbW1rhy5Qrevn2LxYsXKzXOt2/fYtmyZeDxeOjevTtnXg9AMuxPuvq0ubk5hg4dit9++w1CoRBNmzbF7du38fjxY6xYsaLEdPufwt/fHzdv3kSrVq1gYGCA4OBgBAYGYsCAAejevTtn3xkzZmDp0qXw9vZGz549ERMTgz///BMDBgxQeIfU4r766is4Ozvj+PHjSEtLQ8OGDdnfxYIFCzjV/eqKc+HChTAzM0OzZs1Qp04dvHv3DpcuXUJKSgr+97//cfadPHkyZs6cidmzZ8PDw4OdEbRdu3acE50yKet98Kk2b96M7OxstGrVCmZmZkhJSUFAQADi4uIwc+ZMtnZv9OjRuHHjBr777jsMGTIEAoEAv/32GxwcHJS+3ljjxo3Rr18/XLp0CSKRCK1bt8ajR48QGBiI0aNHs1X55fn7/rV2CgDA838H8Co5k9vxVoa8vitlrWZ72v8GLhzegylDPGBuZoJnz57h8uXL6NChQ4mp41X5Ovz999+RlZXFNnvcvXuXnVX6m2++AZ/Px4IFC5CZmYkRI0Zw5kIBJB15pR/senp6mDRpErZu3YqVK1eiffv2CA0Nhb+/P6ZMmVLhubcqEmdmZiYmTZoENzc3tnYqKCgI//77Lzp06ICvvvqKPZYqzuEV5eDgALFYjPj4+HJVNGjM6smf0nFKOtX1ihUr0KtXLyVFJtG1a9dSt926dQuApIln7969CA8PR2pqKvh8Puzt7TFgwAB4eHiUGB6Wl5fHrnGSlZUFBwcHTJ48Ge3bt1dqnP/991+ZS22PHz+eHe8PSGoNTpw4gQsXLiAlJQU2NjYYNWoUO0fA53r27Bl2796NmJgY5OXlwc7ODp6ennJ/Z4Ckyerw4cN49eoVateujb59+5aYp0ZZcnJycODAAfz999/IzMyEra0tRo4cKfd3oY44//jjD/z999949eoVsrKyYGRkhGbNmsHLy0tuD/vHjx+za6zUqFEDrq6umDZtWrmHDSqCMt4Hn+r69eu4ePEiYmJikJ6ejho1asDJyQmDBw/mnPwBybpAxdf6mTlzpkKaiz9GKBTi2LFjuHz5MpKTk1GvXj0MGjQIw4YN4+xX0b9vvxX78PpDdlEflMILJ1Ep3l8F3HIA4OdmocarUGjlpIEnEsLe1gZff/01hg8fLncEiqpeh8OGDcPbt2/lbjt16hQAcGpxi/v6669LzN3i5+eHU6dO4c2bNzA3N8egQYMwdOjQz5pm4GNxGhoaYtu2bXj69ClSUlIgFothbW2NXr16YcSIESXOMco+h1dUUlIShgwZAh8fn3LVPCk1UVH2YmPx8fEYNWpUqQsEEkIIqbguC3cgI1dYlKjIjv6RV5tSVm1L4UKKv80aii/qK3bWZVI5CYVC9OzZEwsXLsSAAQM+ur9S+6isX78ep0+fRq9evTBnzhzw+XwsWrSIbYoAuIuN9erVC6tWrSp3u1VZkwURQgj5NLc3zUbojnngSedeqUAflhIjg/iSn147z6Dtoq3KCplUItra2jA2NpY72ksepSUqz549w/Xr1zF16lTMmDEDHh4e+Omnn2BhYYHdu3ez+z19+hRz585Fly5dMGXKFJiZmSEuLq5cj6FpQxgJIaQqebRtHoK3zCpKWIAyExa5I4OktTJ8II8Bmi/ciueJ70ren1Qrpqam6k9UVLHYWHJyMgwMDFTank4IIdWJjo4OQn+aB78lY8quWZGSU8PC9nEprF3x/OkEev6wW969STVRt25dzvT9ZVFaolKexcYAyYJ7QUFB8PLywpo1azBt2rRyLzaWnp7OWSSKEEKIcthbmuLxT/MwrVd7ySy35UhY5Naw8CWXt5m5aL54q9wVyEnVZ2xsjPT09HLtq7ThB6pYbEwoFMrtQU4IIUQ5ZvbvjJn9O6Pb9zuRmlPAdpYtrkSSUsr6QS2W/oRNw3ujX5vmSomXaCYdHZ1SlyAoTmk1Kp+y2FhFO8XKrsxJCCFEdW7+MAsPfWZJbhSvYSmenMibKE7msuCUP3qs26P0mInm0NLSKvcadUpLVFSxEJJYLC51RlVCCCHKpaOjgzDfeVjk0VlSUN4Ot8XmaQEfeJslQLNlNCqouuDz+RDLWcVb7r7KCsLExKTUhaYAxYzU0dLSKvcTJYQQohxjurdH2JZ54MuODiqu+MRx0uuyw5gBNFtOyUp1IBaLy90iorREpWHDhkhISEB2djanXJELIWlpaZW7jYsQQohyPd48D8enf/PxuVcATsLCNgPxJXdpunwr3qdnlHpXUvkJhUL1JyqqWGxMW1u7xCKAhBBC1Ke1ox2ebC6sXZHByVlkZ7mV7cciM4S566aDuBceo+RoiboUFBSUezkRpY36UcViY3Xr1kVaWhoYhvmsdRUIIYQoVtjGebjy8Am8TxaupFyekUGQma6fASaeOI9V/brCq6OzcoMlKpeamlrudbGUuorbsmXLUK9ePVy9epVdbMzHxwetW7dWyPFNTEyQn5+PzMzMz1qpkhBCiOJ93bYFvm7bAs2XbAWPkak9AeSODCox/T4DrL50C5mCXEzt0VlFURNVSElJgb29fbn2VWqioqenhxkzZmDGjBlKOb50OHNKSgolKoQQoqGebpiHrzfsR1xalvzVl+V1tJXe5gG+N4JQU08Pozq7qCJcogKlzbUmT6Ue2yubqBBCCNFcV5ZMwZ4x7txOtrJJS2mjgQr7raz1v41/I2NVFi9Rnvz8fGRkZFSvRKW86wUQQghRn67NG+Lpj99JbpQ2KkiavBSfGI4PjPvtHDIyaDRQZSetXKgWiYqenh6MjIyQlJSk7lAIIYSUA4/Hw7Mf58nrW8tJUtjbxS7tth5UQZREmd6/fw+g/POpVepEBQAaNGiAFy9eqDsMQgghFfBs3Ty2w6wsRk4n2+JDl53W0KRwlVl0dDS0tbVhY2NTrv0rfaLi5OSEqKgodYdBCCGkgsLXzoOhNr9kE5CcNYLYOeQKO946raVkpbKKjo6Gg4MDu/bfx1SJROX169fIzMxUdyiEEEIq6MH/5qJeTf1SkxVOVxaZ2hWGAXYH3lFVmESBIiMj4eTkVO79K32i0rhxYwCgWhVCCKmkbi6ZDhMDvZLNQNIr0gRF9jof2HrngapCJAqSl5eHly9fsp/d5VHpExVbW1sYGBhQokIIIZXY3aUzoMtH2c1A0uv8otuNf6AmoMrkxYsXEIlE1atGRUtLC40aNUJ4eLi6QyGEEPIZHq+aV+aEcOxQZRQNWWZ4wNF/g1QfLPkk4eHh0NbWhoODQ7nvU+kTFQBo27YtgoODaSVlQgip5CJXzSu6Ie2PInNd3mXt9bsqj5N8mvv37+OLL74od0daoIokKp06dUJWVhbCwsLUHQohhJDPFLlyXskZbMuYCI7hA122/qymaEl5CQQCPHz4EJ06darQ/apEotK4cWOYmJjg3r176g6FEEKIApwc802JsrImgnuTm6e64MgnCQkJQX5+fvVMVPh8Pjp27EiJCiGEVBFtG9iBJ7OiMnciOAbgFb8AXbftVk+wpFzu3bsHW1tb2NraVuh+Gp+oMAyDgoKCj+7XqVMnxMfHIz4+XgVREUIIUbbI7+dxe9XywCYlxZuAwGeQKBCoKVLyMWKxGP/880+Fa1MAQFsRASQnJ+Ps2bMIDw9HREQEBAIBtm3bhjZt2pTYd86cOXj06FGJ8vbt22Pz5s2cMn9/f2zfvh0CgQBubm5YsGABdHR05Mbg7OwMXV1d3LlzB15eXop4WoQQQtTsj9FDMPjE2cJbDHelZZmfDAOADzyOj0fLCn5jJ8oXERGBlJQU9SUq8fHxOHHiBGxsbODg4ICnT5+Wub+ZmRmmTZvGKSu+iuKbN2+wZcsWTJgwARYWFjh06BDOnDmDkSNHyj2mgYEBunTpgosXL2LEiBHg8eQueUUIIaQS+aK+rfx1fyDzU8ag387gxaL5qgmOlNvFixdhZmaGL774osL3VUii4uTkhL/++gu1atXCjRs3sHLlyjL3NzQ0RO/evcvcJzIyEi4uLhgxYgQAyXwpFy9eLDVRAQB3d3d89913CA0NRevWrSv8PAghhGieZwtmoemWnXJrU6R9V+irqebKycnBtWvXMGLECGhrVzztUEgflRo1aqBWrVoVuo9QKEROTk6p2y0tLREaGooHDx4gLi4Ofn5+H11psU2bNrCxsYGfn1+FYiGEEKK5dHR02L4pADh9VNi5VmQmgDsbGqrGaElx165dQ15eHvr37/9J91dLZ9r4+Hj06dMHX3/9NQYOHIgDBw6UmKzNyckJvXr1gre3N0aPHo33799j9OjRZR6Xx+PB3d0dN2/eRHp6ujKfAiGEEBXa695PcqVYgsKSWQNo0bXrKo+PlO7ChQv48ssvYW5u/kn3V0jTT0VYWVmhTZs2cHBwQG5uLm7cuIGjR48iPj4eq1ev5uw7d+5cDB06FJmZmXB0dCxXlVHfvn1x4MABXL16FcOGDVPW0yCEEKJCPZs1AS5ekt+Ztrji6wURtYmMjERUVBQmTpz4ycdQeaKyZMkSzu0+ffpg06ZN8PPzw7Bhw9C8eXPOdisrqwod39jYGF27dsW5c+fwzTffQEtL67NjJoQQogE4HWmZ0hMVGkyhMf7880+YmZmhffv2n3yMCjX9FBQUICUlhXMRiUSf/OBSw4cPBwAEBwd/9rGkx0tISMD161T9RwghVcXuvn0kV0qZS4VtEuIzSMnKUmeoBEBiYiKuXr2K4cOHf1InWqkKJSpPnjzBoEGDOJekpKRPfnApabtVZmbmZx8LAJo0aYJOnTrhyJEjtFAhIYRUEb2bN+d2pAVKTKUv3eZ+9Ij6AiUAgKNHj6J27drw8PD4rONUKMVp2LAhfH19OWV169b9rAAASdYFSJptFGXChAmYMmUKrl+/jj59+ijsuIQQQtSpsANKqc0+kh9vC3JVEg2RLyEhAVevXsX06dOhr6//WceqUKJiZGQEFxeXT36w7Oxs6OjocJZ3ZhgGR48eBQC0a9fuk49dnJOTE1ur0rNnz8+qdiKEEKIZGJl+KpyOtYUFPMhsI2pz7Ngx1K5dG56enp99LIV9eh85Iqlme/nyJQDg6tWrePz4MQBg3LhxAICoqCisXr0abm5usLa2Rl5eHm7fvo2wsDC4u7vDyclJUeEAKKpVuXbtGr7++muFHpsQQogayDTxcDKTQgx4NPmbmiUkJMDf3x8zZsyAnp7eZx9PYYnKwYMHObcvXbrEXpcmKvXq1UOrVq1w69YtpKamgs/nw97eHt7e3p/dhiWPk5MTOnfujF9++QWurq4K+YURQghRI+mKyrzSmoAYMAwlK+q0f/9+GBsbK+xznccwTJWuIYuLi8P48eMxatQoTJo0Sd3hEEII+Qz1d2yRJCnSoSDF23oY6YWHl7O9VR5fdRccHIz58+dj2bJlCmvJUMvMtKpkZ2cHLy8vnDhxAvHx8eoOhxBCyGcpTFJ4H7kQlcvPz8fWrVvRsmVLhQ5iqfKJCgCMGTMGJiYm2LZtG6p4BRIhhFRtnISEkbnI2UZU6tSpU0hMTMT8+fPBU+Cke9UiUdHX18fcuXMRFBSEmzdvqjscQgghn4qPkskJipUBVKuiYm/evMHRo0cxbNgwODg4KPTY1SJRAYDOnTujc+fO2LFjR5mrNhNCCNFgsrPS8uUtUCjZzq82n26aYfv27ahVqxY7eEaRqtWfcs6cOcjMzMSuXbvUHQohhJAKys3NlUlOipp9ONPnF27b22OAeoOtRvz9/XH37l3MmTMHNWrUUPjxq1WiYmlpidmzZ8PPzw+3bt1SdziEEEIqwOnoDoDPSC5ymn1kJ4Pr5dRETVFWL4mJifD19UWfPn3QrVs3pTxGtUpUAGDAgAHo0qULNm7ciPfv36s7HEIIIeUmr9MsOAkLdaFVHaFQiLVr18LY2Bjfffed0h6n2iUqPB4PixYtgp6eHn744QeFrP5MCCFEBdhhyQx4fJkJ30rUrqglumrn6NGjiIiIwIoVK1CzZk2lPU61S1QAoHbt2li+fDkePXqEkydPqjscQgghH2H/y0aAL0lQeIWJCY/HgMcrnOFNJlmx0jdQY6TVQ2hoKI4ePYrx48ejefPmSn2sapmoAEDbtm0xcuRIHDhwAM+ePVN3OIQQQspUlKBwZqXlQVIu0+hzb9wslUdXnWRkZOCHH35AixYtMHr0aKU/XrVNVABg0qRJaNKkCb7//nskJyerOxxCCCFyuP22U/JpJW36AYo190iTFaJsQqEQq1atQm5uLr7//ntoaWkp/TGrdaKira2NH374ATweD8uWLUNeXp66QyKEEFLM87wsSROP3IvMjjwGdbR01BZndbBjxw48evQIa9euhYWFhUoes8onKgzDoKCgoNTtJiYm+PHHHxEbGwsfHx+aYp8QQjRIw6MbZGpP5Jyfi81Q+2jiPNUFV82cO3cOf/75J+bPn4/WrVur7HG1VfZIZZB2ao2OjkZ6ejoMDQ3RsGFDjBs3Dl988UWJ/cPCwrBnzx5ERUWhZs2acHV1xZQpU0pMNOPv74/t27dDIBDAzc0NCxYsgI5OyWzbyckJy5Ytw6pVq1C/fn2MHTtWac+VEEJI+QmlixBC0rzD+TLJUHuPqoSEhGDbtm345ptv4O7urtLH1ogalYSEBPD5fHh6euK7777D8OHDkZqaitmzZ+P+/fucfaOjozFv3jzk5uZi1qxZ6N+/P/z8/LBq1SrOfm/evMGWLVswevRorFixAhEREThz5kypMbi6umLChAk4cOAATQZHCCEaoP6x9ZKRPuxwZEmHWp7sUGQAgGT+lKfDZqon0CouISEBK1euRJs2bTBzpup/xxpRozJgwAAMGMCd7njQoEEYMWIEzpw5gw4dOrDl+/btg5GREbZv386O27a0tMTGjRsRFBSE9u3bAwAiIyPh4uKCESNGAAC0tLRw8eJFjBw5stQ4xo0bh9jYWPzwww/w9fVFixYtFP1UCSGElMOg8/sl86XIJCaM9H9GMieWbOUKD4ChoaHqA63iPnz4gMWLF8PY2BirV6+Gtrbq0waNqFGRR19fH7Vr10ZWVhZblp2djeDgYPTu3ZszuUyfPn1gYGCAwMBAtszS0hKhoaF48OAB4uLi4OfnBxsbmzIfk8/nY9myZWjcuDEWLVqE6OhoxT8xQgghZcrJycGjrPfg8wGezEgfNmnhtPhIspWggdNUHGXVl5mZCW9vb+Tk5GDjxo0wMjJSSxwalahkZ2cjLS0Nr169wr59+xAbGwtnZ2d2e0xMDEQiEZycnDj309HRQaNGjTiJhZOTE3r16gVvb2+MHj0a79+/L9d4b319fWzYsAHW1tbw9vZGXFyc4p4gIYSQj2px7ifJxG7SZp9iHWZ50tlpZYYnmxsbqyfYKionJweLFi1CUlISfH19YW1trbZYNKLpR2rVqlUICgoCIEk+PDw8OB1bU1JSAEhG6hRnYmKC0NBQTtncuXMxdOhQZGZmwtHRsdxVVoaGhti0aRPmzJmDefPmYefOnbC0tPzUp0UIIaScHE+uk/RLAYpqThgeeDwGDMOTlBUb/PNy7BLVBlnF5eXlYdmyZYiNjcVPP/2EBg0aqDUejapRmTZtGrZs2YLFixejWbNmEAqFnLV4pPOcyBu5o6uri/z8/BLlVlZWcHJyqnC7mrGxMXx9faGrq4v58+fThHCEEKJkDU//UNQvhV+s0yw7XX4RhgEMaOCPQkkndHv69Cl8fHzQpIn6V6FWaaJSUFCAlJQUzkU2EWnUqBHatWuH/v37w9fXF+Hh4Vi/fj27XU9Pjz1Ocfn5+dDV1VVovKampvD19UV+fj68vb3x4cMHhR6fEEKIxFe/bwHAgM+XXKRNPpxRPpBpBioUPmapGqKtmoRCIdatW4egoCD88MMPaNWqlbpDAqDiROXJkycYNGgQ55KUlCR3Xx0dHXTu3Bm3bt1ia1KkTT7SJiBZKSkpMDU1VXjMlpaW8PX1RXp6OmbPno13794p/DEIIaQ6G3H1AN6JcySdZ3ngJCfSWhROJ9rCdQhDPGk4sqLk5eVh1apVuHHjBlauXMkZbatuKu2j0rBhQ/j6+nLK6tatW+r+eXl5YBgGOTk50NPTQ4MGDaClpYXIyEj06NGD3a+goADR0dFwdXVVStz29vbYuXMn5s+fj1mzZsHX1xe2trZKeSxCCKlOxlw7gJDMRMnoHlkyQ5DZ/ilFm2CpbQCTWrVUGmtVlZOTg+XLlyMsLAw//vgjOnbsqO6QOFRao2JkZAQXFxfORU9PT26TSmZmJm7evAlzc3PUqVMHgKSTq4uLC/z9/ZGTk8Pue/XqVQgEAqUlKgBgY2ODnTt3Qk9PD7Nnz8aLFy+U9liEEFIdDLi4C/fTE0vUpLC1J7IjewoxhS0/90bQVPmKkJGRAW9vb4SHh2Pz5s0al6QAAI/RgMVtJk+eDDMzMzRr1gx16tTBu3fvcOnSJaSkpOB///sfunfvzu4bGRmJmTNnwt7eHh4eHkhKSsKpU6fQqlUrbNmyRemxpqWlYcGCBUhMTMTGjRtpUjhCCPkEbf9cixxGJFMiW2Miuc4wABhJrYrkwgMj5iHGa7lqg62iUlJS4O3tjZSUFGzevLnE1B+aQiMSlT/++AN///03Xr16haysLBgZGaFZs2bw8vKS25nn8ePH7Fo/NWrUgKurK6ZNm1ZirR9lycrKwpIlSxAVFYV169ahXbt2KnlcQoiEWJwFCJ8DfBPwtakZtrJp9uf/2BHGkvV7irZJm3gYyMw8y/AgFgOMmIfQAd/RDLQK8ObNG8yfPx95eXnw9fVF/fr11R1SqTQiUamMcnNzsXLlSgQHB2P+/PkllgAghCieuCAGSBkMoKjpV9Kvsia0Lf5TW1yk/JqdW8WdIwUyyQlTdFu2VoURSxKVvc7fwK1hM9UGXAU9e/YMy5Ytg4GBAbZs2QIrKyt1h1QmjZpHpTLR19fHjz/+iH79+mHjxo3YtWsXZ6g1IUSxxPkvgJSvIZukAJLPOz6yIXrbCMK3e9QSG/m41PR0ND+/ElqFw4/5PMmFh2IjewrxpHUuhT8GWTWjJEUBrl27hjlz5sDKygo///yzxicpANWofDaGYfDHH39gx44d6NChA1auXMlZh4gQohjit20AZJe5D8MwyAcDA8vnqgmKlMv0m4dxJ/2F3I6xAK+wBoVbs8IwPIgL+6e0MDDHn/2/VXXYVYpYLMahQ4dw5MgR9OnTBwsXLlT43GPKQomKgty/fx//+9//YG5ujg0bNtCU+4QokFiUCrz/slz7ihgRhBCDwSLUsJyu5MjIx7T+6/tiM97LdJqVbeqRSVYYBoVJCg92OrVxzWOuCiOuegQCAX788UfcunULU6dOxciRI8ErnjVqMEpUFOjly5dYsmQJsrOzsW7dOrRs2VLdIRFSJYhz7wBpE8u1LwMGIkYMESNCARjUsnql5OiIPE/evsTokP2FTTuSsqKOsiVrT4Ci5EQslpQ11DPBxQGz1BB91fH+/XssXboU8fHx+P7779GlSxd1h1RhlKgoWFpaGlauXIknT55g5syZGDx4cKXKXAnRROL8Z0DqwHLty4CBmBFDBDHEDAMhRBDjOxhbeSs3SMJqd3kZxIxMglJYXpSccGtPpGVihgexWFLWtW4D7Os+TuWxVyUPHz7EmjVroK2tjfXr16NRo0bqDumTUKKiBAUFBfj555/x+++/o1u3bli8eDENpyPkMzAMA+Zd+eZ4kCYqYjCFyYoYIjAQgoGJVYKSI63e7sQ9wbynv8qUcGeTla1JkdaeAEW1KiKxJFFZ0sQN45t9pbrAqxiRSIRjx47h8OHDaNWqFVauXMkuQVMZUaKiRDdv3oSPjw9q1aqF1atXa+xkOoRUBuL3wwDRIzBgwEPptZRiiMEwDMSQXqQ1K2IIGTHAGwwzq50qjLx6+PLqksLp7ovKSnSSBWRqUnjsXCnSph6RmI+A7nNhUzgbOam41NRUrF27Fg8fPsT48eMxduxYaGlpqTusz0KJipIlJibif//7H168eIEZM2ZQUxAhn0H41gk8iAFAbrLCFP6T1qgwAJuoSGpYGAgZMYQA6lnEV/oTuCYYEPA/pIhzChMUeX1QuMmKGNxERZKkACIxH88GrlbHU6gypE09ALBixQo4OzurOSLFoERFBfLz87Fnzx6cPXuWmoII+UzCt23AY7I4CT9T2AuCAcPWpjCQ+SlTwyICAxHDQMgwEPPMYWsdqq6nUqntDr2A40m3OZO3lZacyNaeMJDpNFvYcRbgIcxjjeqfRBUh29TTunVrrFixolI39RRHiYoKSZuCDA0NsWzZMrRu3VrdIRFSKQnTYyHO6Qk++DIfkkxh04L0X9F1EVOUuIgKExcRABHDIB+AcY1A1K3bRH1PqBIJev0UCyJ+AY8B287DNucU7lN8uDHAg5gp2keaqIjEPDTVM8ep3rPV8lyqgsTERPj4+ODRo0dVpqmnOEpUFEgsFkMsFkNbW7vUfRITE7F+/XqEhoZiyJAhmDp1KvT19VUYJSFVh+BNQ/AgmRGaBx6boAAyCQvDQAywtSuiwn1EjLR2BRAygIgHNLJ5o66novFikhMxKXQzgKJRPEWdZXls/xNuJ1lJrQlkysUAxGJJ+ZUu82BZu+p881clhmHg5+eHXbt2oXbt2liyZAnatm2r7rCUotonKhs3bsRff/2Fjh07wsfHh7Nt2LBhePv2bYn7eHh4YMGCBZyyEydO4MiRIxCLxRg8eDCmTy99oimxWIyzZ89i3759MDc3x7Jly2gVZkI+UfaH52AEPcEHr6h2RdoUVJikSBMYkUxti6hwm6TfCiBmgAIAPHSGk+1Z9TwZDfRPwlN8H71fpkcQT24NCgp7D3GHHst0mJU29RSuiPyw/zqVP5eqIikpCRs3bkRQUBDc3d0xY8aMKj0jeulf/auBiIgIXL58ucxphBs1aoThw4dzymxsbDi3w8LCcPz4ccycORP6+vrYt28fnJyc0KNHD7nH5PP5GDZsGL788kusX78es2bNwvDhwzFx4kTo6el9/hMjpBqpWachUOcVMhLtwWPEhTUr0hEm0r4rxa4z3DoBPgCGB2gxgIi5h8dxVjDXPQULi8o3OZaibAg9hMAPj8DjATp82eYdyfo8sjUoEoWjsXgMW6MCSIceF10WOvaDlxMNPf4UDMPgypUr2LFjBwwMDLBp0yZ06NBB3WEpXbVNVBiGwbZt29CnTx88fPiw1P1MTU3Ru3fvMo/15MkT9O3bFx4eHgCA9PR0PH78uNRERcrOzg47duzAyZMncejQIfzzzz9YtmwZmjShtnJCKqqW1SukpcVAnNMVfE7/CYaTuBTVsqBwuwQPAJ8nGZWiDSApfwQS4nhobByGWrWqz3BZ99uzC2s9AC0+IK1BkU1OGKYoIZF0pi26Lq+KXlrjEtLvR9U8iSooOTkZmzdvxr1799CnTx/MmTMHRkZG6g5LJart6slXr15FbGwspkyZ8tF9CwoKIBAISt1uZWWFu3fv4unTp3j+/DkCAgJK1LqURltbG6NHj8b+/fuhq6uL6dOnY+fOncjJyfn4nQkhHMbGDqhrlYACnlbhMGTJZG/snCqMbNIiTVyKbgNFNSx8HqADIPpDS9x7ZYesrCz1PCkVuBR/A553ZsLz9kzwIIYWTwwtPgMtHgM+JBfpKseyU+LLrnwsj7iwSW1ji5F40JeSlE8hEolw/vx5jBs3DhEREVi3bh2WL19ebZIUoJrWqOTk5GDPnj0YPXr0R4dwPXz4EL1794ZIJIKFhQWGDh2KoUOHcvbp0qUL/P392X4pbdq0gbu7e4VicnBwwJ49e3Dq1CkcOXIEf//9N2bPno3u3bvTvCuEVJCZ1StkZaUhM70ZpOMfmBIXpnBGlpK1K0DhhzAALR6gywBPklsgP5kHR52/YG3dXBVPQ6nSM9MxOWyJZDQOJM8TPNn+J4ykPYxX+FNar8KT1Ejz2OtFx5TcF+wkbjV42vi7D/VF+VSRkZHw9fVFeHg4+vXrh2+//RbGxsbqDkvlqmWicvjwYejp6WHYsGFl7ufg4ICWLVvC1tYWGRkZuHz5Mnbs2IHk5GROZ1k+n49169bh5cuXEIlEcHBw+KTkQltbG6NGjULPnj2xY8cOrFq1Cu3atcN3330HW1vbCh+PkOrM0NAYhoaJSHzdHgwTX/gZWzQySPqhKpusyNasyOIV1izoMDy8yHdHZCwffF5bdK9/WlVPRyE+ZH3AjCeL2LlLJIlYYYfXwn0kk+SBm6QU/pT28uHJ7F+ctJnnnz4blftkqrDMzEwcPHgQ586dQ/369bFr1y588cUX6g5LbardqJ/4+HiMGzcOK1euRPfu3QFIRvc0aNCgxKif4hiGwcKFCxESEoJTp07B3NxcqbHeu3cPP/30E1JSUjBq1CiMGjWKOtsS8gnEYjHiEq05bd2y/VSk18XSeT4AiMGDqHDUigiAkOFBDD5EDA8iaEHI8FHA8JAPPjoY+sPcXDO/TJx9/gfOp1wsWvyPJ10IkDt6h2H4hYla4YyxcuY9YWRG9siO4mHnRQEPv7kshK1xPTU928qNYRgEBATg559/hkAgwKRJkzB48OAyp7yoDqrssy8oKEBGRganzNjYGNu3b0eLFi3YJKUieDwehg0bhqCgIDx69OijnWw/V6dOndC2bVscO3YMx48fR0BAAObMmYOOHTsq9XEJqWr4fD7q27xBfMIW5DGbUdhHlJuoMDxOrQq3WYgHXmHFAo8HgBGDzwO0C1OfB1l9IMzkIx98tDP8GfXrqW9Uy53Xt3D4zcHCWhNJ4qHFk01Q+BBLnzun1kQMFCYrRSN4JLVOxTvJcq4zPIjBw2KHIejvQOemT/Xy5Uts3boV//33H1xdXTFr1iyYmZmpOyyNUGUTlSdPnmDu3LmcssWLF+P+/fv44Ycf8OZN0cROIpEIeXl5ePPmDWrVqlXmeHRpLUrxJEhZ9PX1MWXKFPTp0wdbt27F4sWL4eLighkzZqBhw4YqiYGQqsLWxhuANyLjLVHUB7Rks4dYZrr3omaiovoYaf8VSfIihhaPL7kXw8PDzFkIyuRByPAhAh/tjX+Ak1kfpTyfJ8n/YX/cRhQAbJLBMDxoAeDzpYkXvzCZYAprS8TgM3xJHx0e2GRFOqS4aABySZw+KAwgEgMepl9iXquym9FJ6VJSUnDo0CFcvHgRFhYW2Lx5M9q3b6/usDRKlW36yczMRGRkJKfs9evX2LJlS5n3mzVrVpl9V+7du4clS5Zg5cqVcHNzU0is5cUwDO7cuYO9e/ciPj4effr0weTJk5XeBEVIVZSdnYnYVCdoFfYRLWr2QGEH06KmDjF4EDN8yU8AosJmoKKmIMk2IcOHqDBBETGS+wgZPoTgQ8hoQQw+24QEaMOW3x3dzKfB2Ljkezg9PR2B70/jkSAQBYyg8DEBMcMH2Dj5MnOZFDbLgF8UP9uUJU1WpDVHMvtAtmmnqFzMFDUBsc084EEs5kHI8DDErBumtxikij9VlSQQCHDq1Cn89ttv0NbWxrhx4zBw4MAy5/WqrqpsoiLPu3fvEBUVVaJ806ZNsLCwwJgxY+Dg4ABra2tkZGSgZs2anDUThEIh5s6di4iICJw+fVptiz4JhUL89ddf+OWXX5CTk4Phw4dj5MiRVXpmQkKUJSbhMDLEywsbcYqaf8BJUqRJi+S6CNK+K/zCD3A+RIXJjCRJkXO7MKGRbhMx/MLt0iSIX9Qnhik6PsPwCxMUyeOwyUPhdWnTi7TfiDQxkV5n2PtJros4fVK4fU6kiYrs8WT7oYjAw+omk/BlvVbq+FNVCSKRCJcvX8bBgweRkZGBb775BmPGjKlWw40rqlolKqWR15n28uXLOHr0KLp16wZLS0tkZmYiICAAsbGxmDp1KkaPHq3GiCWys7Nx4sQJnDp1CjVq1MCECRPg7u5e7TteEfIpQuOGQsj8K7lRuCSw5EO8qJOpSPohXlibwq1dKUpMxLLJSGHiIU1qSm6XJih8NsGQ3qcoOZEkENL9ZJMZSVJRlMxIa0ZEACd5YdhjS/crSlSKVjPmF9bKSBYMFDNFSdr5Tlvp3PIZGIZBUFAQfv75Z8TGxsLNzQ2TJ0+GlZWVukPTeJSoQH6iEhkZiUOHDiE6OhppaWnQ1tZGo0aN8M0338DV1VWN0ZaUlJSEgwcP4sqVK7CxscHEiRPh6uoKPr/azudHyCd78KoLREw8pN03AMjUYkgThaJaC1HhbdmaEbamRJpgFNakcJMZ6SiiomRGzN5H5qc0CSlsvhExRY/HFN5X2gzEaa4B93ZRglOUqBTdl1f0WIXXRQwPZry6OPjVWjX9JaqOJ0+e4ODBgwgJCUGrVq0wY8YMNG3aVN1hVRqUqFQhz58/x969e3H//n00aNAAEyZMQNeuXSlhIeQT3HvlCRETxg6KYTumoljthEwNR1GiIU0+CrfJ1K4UJTNFTUElEx1pLQ1kkhXZGhHpY0qTJkniIW3WkTbjFL8tTUAYmWPINu9IYzzUfH21nFhM0cLDw/HLL7+w5+TJkyfjq6++okk8K4gSlSro6dOn+OWXX/DgwQM4Ojpi/Pjx6NKlCyUshHyCiLiDSBT5cNe6kem4WtR8wmdrUGSbgoqaiEomKkV9W3icbdImHhGKaj9EMjUi0tqQoscrmagU1chw+61wamlkak8mWo1A3/plr09Gyic8PBxHjhzBvXv3YGdnhwkTJlAt92egRKUKCw0NxS+//IL//vsP9evXx+jRo9GjRw9qZybkE12NbVo0ZTwP4HZslY6YkdamSK8XNQUxANsvhWFHC0mbh3iFtRwfT1Tk1ajINttIamj4RX1PZPq4SBMVEXgYbjYEAx2/Vtvvs6oJDQ3FsWPHEBQUBBsbG4wfPx49e/bkDMogFUeJSjUQFhaGY8eO4d9//4W1tTVGjRqFPn36QEdHR92hEVIpRSX8jvD8VYXDg6STpEkSC8gkKZKko6iGhWETFmlTUVEzEbdWRtp/RZoMlWz64QyZZmtkikbviGRG64jBh1DMA3g8bGrqA3MjmtJAURiGQXBwMI4ePYrQ0FA0aNAAY8eORffu3SlBURBKVKqRyMhIHDt2DLdu3YK5uTlGjhyJ/v3707T8hHyGmHcBCMlaVDRFvbSzLdv3pGgYsQhFfUWKpujnF2v2kTYt8WVqP2T6xTBFNTZFHWb5klE6hRPVCWUSoiFmI/G1fV81/oaqJoZhcO/ePRw9ehTh4eFo0qQJxowZg86dO1MTj4JRolINxcbG4tixY/j7779hbGyM4cOHw93dHYaGhuoOjZBK7/LzWUhiHgCFCQcgbRoqqgmRrVFhZGpEpJ1v2ZoYdlSRTP8SduhyUYddabkWDLC6iS+Maxir9XdQlQmFQty6dQvHjx/H8+fP0bJlS4wdOxbt2rWjTrJKQolKNZaQkIBff/0VV65cgY6ODtzc3ODp6QknJyd1h0ZIlXI7bgeeCU4X9k+Rzi4LFO9wy/ZbYSQ1IyIU9VkRydSe6KEWpjVYBZta9mp9XtVJUlIS/vrrL/j5+SElJQUuLi4YO3YsWrdure7QqjxKVAiSk5PZN+D79+/RtGlTDBw4ED169KBmIUJItSUWixEcHIzz58/j3r170NXVRa9evTBw4EBaa02FKFEhLKFQiH/++Qfnzp3DgwcPYGRkhL59+8LT0xO2tpq5hD0hhChaWloaLl++jAsXLuD169dwcHDAwIED0atXL1qqRA0oUSFyJSQkwM/PD5cuXUJ6ejqcnZ3h6emJr776ioY3E0KqHIZh8OTJE5w/fx43btwAwzDo3r07Bg4ciBYtWlD/EzWiRKWaEIvFEIvFFU4y8vLycPPmTZw7dw5PnjyBiYkJBgwYAHd3d1q1mRBS6eXk5CAgIADnzp3DixcvYGVlBQ8PD/Tr149m59UQlKhooODgYBw7dgxRUVEQi8WwtbWFl5cXevbsydnvzp07OHToEF69egVjY2P069cPY8eOLZGMnDhxAkeOHIFYLMbgwYMxffr0T4rr+fPnOH/+PPz9/ZGXl4dOnTph4MCBcHFxoeF4hJBK5cWLFzh//jyuXr3Kns88PT3Rrl07Op9pGEpUNMylS5fg4+MDFxcXdO7cGVpaWoiLi4OpqSm8vLzY/f79918sXrwYrVu3hpubG2JiYvDnn3/C3d0d3t7e7H5hYWFYvHgxvv32W+jr62Pfvn2YMWMGevT49Kmyc3Jy4O/vj3PnziEmJgbW1tbw8PBA37596RsIIURjFa8hrlu3Ltzd3TFgwADUq1dP3eGRUlCiokHevHmDsWPHYsCAAZg7d26Z+0prTvbt28fWoOzfvx/Hjx/H0aNHYW8vGbb422+/ITk5GbNnzwYAnDlzBq9fv8Z333332fHKtukGBgYCALp3745evXrB2dmZZr4lhKgdwzCIjIzE9evXceXKFaSnp6Nt27YYOHAg9bmrJOgvpEHOnz8PsViMSZMmAZDUXBgYGJToxPXy5Uu8fPkS8+bN47zJBg0ahGPHjuHGjRsYN24cAMDKygrnz59nhxoHBASgd+/eComXx+Phiy++wBdffIFZs2bh8uXL+OuvvxAQEABDQ0N07doV3bt3p6SFEKJS0uQkMDAQN27cwJs3b1C7dm307t0bnp6esLOzU3eIpAIoUdEgISEhsLOzw7///ovdu3fj/fv3MDIywqBBgzBx4kS23TQqKgoASkzMZmpqCjMzM0RHR7NlXbp0gb+/P9svpU2bNnB3d1d47MbGxvDy8sKIESPw4sULBAYGIjAwEJcuXaKkhRCidKUlJ127doWrqytat25NtSeVFP3VNEhCQgL4fD42bNgALy8vODo64tatWzh69ChEIhGmTZsGAEhJSQEAmJiYlDiGiYkJux0A+Hw+1q1bh5cvX0IkEsHBwUGpw+x4PB4aNmyIhg0bYvLkyZS0EEKUhpKT6oH+ghpEIBBALBZj2rRpGDVqFABJn4/MzEycPXsWY8aMQY0aNZCfnw8A0NXVLXEMXV1d5OTklCivX7++UmOXh5IWQoiiUXJS/dBfUw0KCgqQkZHBKTM2Noaenh4EAgHc3Nw423r27In79+8jKioKrVu3ZhMUacIiKz8/XyOnvaekhRDyqSg5qd7oL6sGT548KTGq59SpUzAxMUFCQgLq1KnD2Sa9nZmZCaCoySclJaXEkLqUlBQ0bdpUWaErBCUthJCPoeSESNFfWQ0aNmwIX19fTlndunXh5OSEhIQEJCcnw8rKit2WnJwMAOwcJY0aNQIAREZGolmzZpz93r9/Dw8PDyU/A8X5WNJiZGSEdu3awcXFBS4uLrCwsFB3yIQQJcnMzERISAhCQkJw//59vH37lpITQomKOhgZGcHFxaVEeY8ePXD9+nVcvHgRU6ZMASCZ+v7y5cuoVasWO8qnQYMGsLOzg5+fHzw8PKClpQUAOHfuHHg8Hrp166a6J6NA8pKWGzdu4MGDB9i8eTPEYjFsbGzg4uICZ2dntG3bFkZGRuoOmxDyifLz8/HkyRMEBwcjODiYnY3bxsYGX375Jbp27UrJCaEJ3zQJwzCYP38+Hj58iAEDBqBhw4a4ffs2goODsWDBAk5Nyb1797B06VK0adMGPXv2ZGem7d+/PxYuXKjGZ6EcmZmZePjwIUJCQhAcHMyOkHJycmJrW5o3by63gzEhRDOIxWK8ePGCTUweP36MvLw8GBsbw9nZmf0SQjWnRBYlKhomJycHBw4cwN9//43MzEzY2tpi5MiRcidpu337Ng4fPoxXr16hdu3a6Nu3L8aPH18tvn28ffsWwcHBbOKSnp4OPT09tGrVik1cHBwcaM0OQtRM9r0aEhKCtLQ09r3q7OyMdu3a0XuVlIkSFVLpFf+WFhoaivz8fBgbG7Pf0FxcXGgtD0JU4GO1n87OzmjRogXVfpJyo0SFVDl5eXl4+vQpm7hERkaCYRjY2tqySUubNm2ofwshCpCXl4dnz55x3m9isRjW1tZo164d9Scjn40SFVLlZWRkcL7hvX79GgBgbW2Npk2bokmTJmjSpAkaNWoEAwMDNUdLiOYSCoV4+fIlIiIiEB4ejoiICMTExEAkEqF27dqcfiaWlpbqDpdUEZSokGrnzZs3CAsLY0+00dHRyM/PB5/PR/369dGkSRM2gXFwcKB5XEi1JBaL8fr1a/Z9In2v5OXlgc/nw97enn2fNG/eHI6OjtTPhCgFJSqk2hMKhYiNjWVPxrLfEnV1deHo6MjWujRt2hS2trbskHBCqgKGYZCUlMR5D0RGRiIrKwuApPZR+h6Q1j7WqFFDzVGT6oISFVIliMViiMVihY14ysvLQ3R0NOfEHRcXBwAwMDCAk5MT58RtaWmp1MUeCVGktLQ0zms7IiICqampACSrsMu+tps0aYJatWqpOWJSnVGiQlRmzpw5ePTokdxtWlpaCAwMZG8PGzYMb9++LbGfh4cHFixYwCk7ceIEjhw5ArFYjMGDB2P69OkKjVsqKysLkZGRnJP7u3fvAAC1a9dGkyZN4OTkBHt7e9jZ2cHW1pa+dRK1KigowOvXrxEfH49Xr14hOjoa4eHh7HvLyMiIk5A0bdoUpqamao6aEK6qP+EG0RhjxozBgAEDOGUCgQBbtmxBu3btSuzfqFEjDB8+nFNmY2PDuR0WFobjx49j5syZ0NfXx759++Dk5IQePXooPH5DQ0M4OzvD2dmZLUtNTUVkZCTbjv/XX3+x30wBybdTW1tbNnGR/rSwsKDmI6IQDMMgJSUF8fHxiIuL4/x88+YNxGIxAKBGjRpo2LAhunbtyvYtsbKyoppAovEoUSEqIy8Z8ff3BwD06tWrxDZTU1O5E93JevLkCfr27cvO2pueno7Hjx8rJVGRp27duujYsSM6duzIlmVmZiI+Pp7zgfHkyRNcvnyZXfFaR0cH1tbWbPIim8hQNTuRJzc3l/Oakn2N5eTkAJDUTFpYWMDOzg6dO3fmvLbq1q1LSQmplChRIWoVEBAAAwMDfPXVV3K3FxQUQCgUljps2MrKCufPn0ePHj2gp6eHgICAjyY3ymZkZIRmzZpxFowEJP1okpKSSnzrDQgIQFJSErtf7dq12Q8X2VoYa2trGoFUxZX2GomLi5P7GnFwcED37t3Z1wq9RkhVRH1UiNqkpaVh0KBB6NGjB1asWMHZNmzYMHz48AFCoRAikQgWFhYYOnQohg4dytlPLBZjxYoVuH37NgCgTZs22LhxI/T09FT2PBRBIBAgISGhRE2M7LdlPp+PunXrwtTUlP1pYmICU1NTTpmxsTE1K2kYhmGQmZmJ5ORkpKSksD9lrycnJyM1NZVT62ZjYwMbGxuqdSPVGtWoELW5fv06RCKR3GYfBwcHtGzZEra2tsjIyMDly5exY8cOJCcnczrL8vl8rFu3Di9fvoRIJIKDg0OlrN42MDBAo0aN0KhRI065bP+D+Ph4zodaeHg4UlJS8OHDB8h+39DS0kKdOnVgYmLCJjKyP6XXKaH5fJ+SgEjVqlWL/XtYW1ujVatWMDU1hbW1Nezs7FCvXj36+xACqlEhajR9+nS8fv0af/zxx0eHFTMMg4ULFyIkJASnTp2Cubm5iqLUfEKhEGlpaUhOTuZ8UEo/JKVlH0toTExMUKNGDc7FwMCgxHXpT319/Uo/wRfDMMjPz0dOTg5ycnIgEAjY68VvS69/+PCh3AmIbI2XbJmJiUmlq/UjRF2oRoUoXEFBATIyMjhlxb+9JyYm4unTpxg8eHC55j7h8XgYNmwYgoKC8OjRI7X3Q9Ek2tra7IdhWT6W0ERFRZX4kC4Lj8eDvr5+iYRGXlIj/amjowMejwc+n8/5qaWlJbecx+OBYRiIRCIwDAOxWCz3p3S7SCSCQCAoV8Ih3U8kEpX5PPX09DjPwdjYmFMDQgkIIcpFiQpRuCdPnmDu3LmcslOnTnHW/ggICAAgf7RPaaS1KMWTIFI+5U1opMRiMXJzc0t8uJen9iE1NRWvX78usU0VFbjFkyfZBMPKyqrMWqLiCZe+vr7CJhEkhHwaegcShWvYsCF8fX05ZXXr1uXcvnbtGqytrdG8efNyHzcxMRGApHaGKB+fz2c/sBWhtBoR6aW07Xw+n3ORV/Mi+7OyN0cRQrgoUSEKZ2RkBBcXl1K3R0VF4dWrVxg3bpzc7RkZGahZsyanqUgoFOLXX3+Fjo4O2rRpo/CYifJJm3gIIaQiKFEhKvexZp+7d+/i6NGj6NatGywtLZGZmYmAgADExsZi6tSpMDExUWW4hBBC1IgSFaJSYrEYf//9Nxo3bgw7Ozu5+zg4OMDe3h4BAQFIS0uDtrY2GjVqhNWrV8PV1VXFERNCCFEnGp5MCCGEEI1Fvc4IIYQQorEoUSGEEEKIxqJEhRBCCCEaixIVQgghhGgsSlQIIYQQorEoUSGEEEKIxqJEhRBCCCEaixIVQgghhGgsSlQIIYQQorEoUSGEEEKIxqJEhRBCCCEaixIVQgghhGgsSlQIIYQQorH+D7oKVNfIUXZyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots(subplot_kw = {'projection':'mollweide'})\n", + "\n", + "ax.scatter(target_in_sc_frame.lon.rad, target_in_sc_frame.lat.rad, color = time_color)" + ] + }, + { + "cell_type": "markdown", + "id": "0fd1dfc5-e49d-4016-a0d9-7129086e7d3f", + "metadata": {}, + "source": [ + "## The dwell time map" + ] + }, + { + "cell_type": "markdown", + "id": "afc2ec2c-3154-4b6b-b5f3-992e9fe9d7d3", + "metadata": {}, + "source": [ + "Since the response of the instrument is a function of the local coordinates, we need to calculate the movement of the source in the spacecraft frame. This is achieved with the help of a \"dwell time map\", which contains the amount of time a given source spent in a particular location of the COSI field of view. This is then convolved with the instrument response to get the point source response. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ed960ef1-df68-4e93-a097-6178adb48bb4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7.68 ms, sys: 3.33 ms, total: 11 ms\n", + "Wall time: 10.3 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "dwell_time_map = ori.get_dwell_map(response = response_path, src_path = target_in_sc_frame)" + ] + }, + { + "cell_type": "markdown", + "id": "938321d2-6fd0-4792-8bd2-c23627bf737b", + "metadata": {}, + "source": [ + "Plot the dwell time map in detector coordinates. The top is the boresight of the instrument. Note that in this plot the longitude increases to the left." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "39823fa3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACBuElEQVR4nO3deZgcVb0+8PdUVW/Tsy/JbMlkTyALiwkBAgTZDYsIIipcRVRwQeEiCl5+XkURUMSr96qAKKDsCggSQBZZRJYkEMhGVrJNkplMZl96rzq/P6q7p3ume6a7ema6p+f9PE8/01PVdeqkZ3vzPXVOCSmlBBERERGNa0q2O0BEREREmWOoIyIiIsoDDHVEREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKAwx1RERERHmAoY6IiIgoD2jZ7gARTUxSSgQCAXg8Hvh8PgQCAQQCAfj9/ujzRNuCwSB0XY8+DMOI+zhwGwAIISCEgKIo0c8jzxVFie5XVRU2mw2apsFms0UfmqbBbrdHt0c+dzqdcDqdcLlccR81jb9aiWjs8TcPEVkSDAbR09OD7u7u6MfY5319ffB4PEM+dF3P9j9jVNhstrjA53K54Ha7UVhYGH0UFRXFfR77KCkpgdPpzPY/g4jGGSGllNnuBBFlXzAYREdHBzo6OtDe3o729vbo88j22PDm9XpH7Nx2ux2BviBgCMAQEAYAKeI/NyKfh/cBEDL8XMJ8IOZ55PMoGf9p7PNIYyLchCLNzxXEfZQCgBJ+nSIBVUIqEu5yF3w+34iGVIfDgdLS0rhHSUnJoG3l5eWoqKiAw+EYsXMT0fjEUEeU53RdR0dHBw4dOhR9tLS04NChQ2htbY2Gtp6enrTbFkJABgCEFIiQMD8GFSAkIHQF0AWELgBdhLcJYOB2XUAMSljjj4yERrU/7EGVgCIhVQlohrldM59HtkU+hypRWleMnp4ehEKhtM9fVFSEyspKVFRUoLKyMu557EebzTby/3giygkMdUTjnNfrRXNzM5qamnDgwAE0NzfHBbjW1tbUK0gGgGA4mAXMj4OexwQ4hPIjkOUSiXAYtJmBT9oM83mCj9JmwF6sIRAIpNS2EAKVlZWYPHkyqqurE350uVyj/C8kotHCUEeU40KhEFpaWtDU1BQNbpHnTU1N6OjoGLYNRVFgeAHhVyECCoRfNYOaX40LbQxp408kBEq7Adh1SIfR/9xuPp88pwJtbW0IBoPDtldSUoLJkyejpqYGdXV1qK+vR11dHerq6lBZWRmdYEJEuYehjigHSCnR0dGBxsbGuMfevXtx4MCB4YfjQgLCp5oPvwr4lcEBjmFtQpMIV/8cBqRDh3TqgEOPfu6udqK3t3fINux2+6CgV19fj/r6ekyaNAlC8HuMKJsY6ojGUCgUwv79+7Fr1y7s3r07LsD19fUlPc5utyPYqUP4VCAc3KIhzqea168RZUiq4cDnMMzQ5wpBOnXULpqEpqamIYfxXS4XGhoa0NDQgGnTpkWf19bWQlXVMfxXEE1cDHVEo8AwDDQ3N2Pnzp3YvXt39OOePXuSDoEJISC9CoRXheJVIbwaRPgj/Ky0UXZJSLOy5wo/nDqkK4T6I6uxf//+pIHPbrejvr4+GvRmzJiBmTNnora2lkO5RCOMoY4oQx6PBzt27MD27duxffv2aIDz+XyJD9AB4dHMR0xwE14VQjK40fgjhTRDXkHIfLjM57ZyJekkDpfLhRkzZmDWrFmYNWsWZs6ciRkzZqCgoGCMe0+UPxjqiNLQ2dmJbdu2RQPctm3bsH//fiT8MTJiwlv4ofSpgF9l1Y0mhEh1zyiICXzuocNeXV0dZs6cidmzZ2POnDmYN28eysrKxrjnROMTQx1REt3d3di8eTM2b96MLVu2YPv27Th06FDiF/sVKH0aRK8Noi9ShWN4I0pEQprVPHcQ0h2C4Q6hYk4xWltbE75+8uTJmDt3LubNm4d58+Zh7ty5KCoqGuNeE+U+hjoiAIFAADt27MDmzZvx4YcfYvPmzdi3b9+g1wkhgD7FDG69tv4gF+K1QUSZkpoB6Q7CcIcgC0OoXzwJjY2NCSvhdXV10YB3+OGHY+7cubyrBk14DHU0IR08eBDr16/Hhx9+iA8//BA7duxIOIFBeFWIHhtETzjA9WmcaUo0hqRqmNW8oiBkYRDVR1TgwIEDg16naRrmzJmDBQsWRB+VlZVZ6DFR9jDUUd4zDAO7d+/G+vXro4+WlpbBLwwKKJEA12NjBY4oR0nNgCwMwigMQRYFUTrbjfb29kGvq66ujga8hQsXYvr06dA0LQs9JhobDHWUdwKBALZu3Yr169djw4YN2LBhw6D7mqqqCqMzPsTBx2vgiMaj6ISM4iCM4iBmnFiHnTt3wjCMuNcVFBRg0aJFOOqoo3DkkUdi9uzZDHmUVxjqaNwLhULYtm0b1q5di/feew8bNmwYPLNOB0SPHUq3DUqXGeSEwSocUb6SariaFw56BfW2QQt8M+RRvmGoo3FHSoldu3ZFQ9y6desG394oKKB02SG6bVC67ea1cFwDjmjCkpDmtXklAciSIAoabIN+bxQUFGDhwoU4+uijsXjxYsycOZMLJNO4wlBH40JLSwtWr16NtWvXYu3atYOvnwmZIU7ptEN02SE8HEolouRSCXnl5eVYvHgxlixZgsWLF6OioiJLvSVKDUMd5aRgMIj169dj1apVWLVqFXbt2hX/Ah0Q3WaIU7rsEL0aQxwRWRYX8koDcNSp8Hq9ca+ZNWsWlixZgiVLlmDhwoVcQoVyDkMd5YyDBw/inXfewapVq/Dee+/F/UJVFAWyUzVDXKfdvCaOw6lENEqkkJDFQRilfsw6bQq2bt0at9/hcODII4/Ecccdh+OPPx7V1dVZ6ilRP4Y6yhpd17Fhwwa8+eabeOedd7Bnz574FwQUKB12KB0OM8hxeREiyhKpGTBKAzDK/CifXzjo7hczZszAsmXLcPzxx2PevHlQVTVLPaWJjKGOxpTP58OaNWvw73//G2+99Ra6urqi+xRFgexQo0FO9HFIlYhyj4SELNBhlPkx/5MzsHHjxrjlU0pLS6MVvCVLlqCgoCCLvaWJhKGORl1HRwfeeust/Pvf/8aaNWvilxsJCrMS1xauxvFuDUQ0zkjNgFHmh1HuR8H0+AkXNpsNRx99NJYvX44TTjgBpaWl2eso5T2GOhoVBw8exGuvvYY33ngDGzZsiL93o0+B2uaE0u6A6LKxGkdEeSN6LV65H9XHlGH//v3RfYqi4IgjjsDJJ5+ME088kbcxoxHHUEcj5tChQ3jttdfw6quvYuPGjXH7RK9mVuPaOaxKRBODhIR06TAq/Jh5Ri22bdsW3SeEwIIFC7B8+XIsX74ckydPzmJPKV8w1FFGWltb8frrr+PVV1+Nq8gJIYBODWpruCLn50XDRDSxSUcIeqUf885pwKZNm+L2zZs3D6eddhpOOeUUVvDIMoY6SltXVxdeffVVvPLKK1i3bl3c0KroskFpdUJtc0AEGOSIiBKRdh16hR8LLpiB9evXx/2H+Oijj8Zpp52G5cuXo7CwMMs9pfGEoY5SEggE8Pbbb+PFF1/E22+/jVAoFN0num1QWh1QW50MckREaZI2HUalH/M+2RB36Yrdbsexxx6L0047DccddxwXO6ZhMdRRUlJKbNy4ES+++CJeeeUV9PT0RPeJXg3KIacZ5Di0SkQ0IqRDh17lw5STK7F79+7odrfbjeXLl+Oss87CEUccYV7iQjQAQx0NcuDAAbzwwgt48cUX42Zuwa9APeSE0uKC4tGy10EiojwXvW1ZlQ/lR7lx6NCh6L66ujqcddZZOOusszjBguIw1BEAwO/341//+hdWrlyJ999/v3+HLsyh1RYnRJeds1aJiMaYhLlMij7JB+cMAY/HA8C8/m7JkiVYsWIFTjjhBNjt9iz3lLKNoW6C27VrF5555hm8+OKL6O7uBhCeudpug9rihNLmhDAY5IiIcoFUJIxKHxZ8ZgY++OCD6Pbi4mKcfvrpWLFiBWbPnp29DlJWMdRNQF6vF6+99hqeeeaZ+PXkfArUgy6oB12c8EBElOOkMwR9kg/lHyuIG56dN28ezj//fJxyyilwOp1Z7CGNNYa6CWTXrl3429/+hpdeegl9fX0AAFVVIQ9qUA66oHRweJWIaLyRkJClAZz47aPxxhtvIBgMAgAKCwuxYsUKfPKTn8SUKVOy3EsaCwx1eU7Xdbz55pt44okn4q+V86rhqpwTIsiqHBFRPpCaAX2yF5OOL0JTU1N0++LFi3H++efj+OOPh6Zxolu+YqjLU11dXXj22Wfx1FNPobm5GYB530G02KA2uTjpgcgqRYVaVQH9YEvGTWnVk7H5+9Mx++p3Mu9WQQHaP30ENJ9E4V8yb4/GNwkJoyyAY756ON5+++3o4sZVVVU477zzcN5556GsrCzLvaSRxlCXZ3bs2IEnnngCL730EgKBgLkxKKA2u6A2F3BNOaJMKSq0GnMZCRkKZRTutOrJ2PzzOkAC6LRnFO4Utxttn14EALB5Geyon3To0Ks9KFpoR2dnJwBzYeMzzjgDF110EaZPn57dDtKIYajLA1JKvPPOO3jkkUfiZkOJXg3qgQIorZzBSjRiYkJdhNVwp1VPxpbba802pMgo3MWGOgAQEqzaURwpzJmzs8+vw+bNm6Pbly5dis985jNYvHgxFzUe5xjqxrFgMIiXX34Zjz76KHbt2gUgPPGhWYPaVADRbeMQK9FISxDqItIJd1r1ZGz+WR2EEv8rWEoBdKQX7BS3G+0XLoJM8OPOqh0NJCEhi4I47lsL8cYbb0SHZqdPn46LL74Yp512Gte8G6cY6sahvr4+PPPMM/jrX//aP409FB5iPVDA5UiIRtMQoQ5IPdhpNdXY8vOaxG2kWbUbWKUbiMGOkpHOEPRaD+wzzeWuAKC8vBwXXHABPvWpT6GoqCjLPaR0MNSNI62trXj88cfx97//Hb29vebGgAJ1fwHUZheErmS3g0T5bphAF2u4cDdUqIu2IQXQacPsb69K3qUhqnSxhARUv0TRYwx3NJhUDejVXpQf44oWC9xuNz71qU/hoosu4qSKcYKhbhw4ePAgHnroITz77LPR9YeER4W63w2lxQkx3G9zIhoZaYQ6YOhgl0qoA4av2g1XpRt0Xh+DHSUXue5uylkV0ct67HY7zj33XHz2s5/lvWZzHENdDmtqasKDDz6I559/HqFQCAAgum1Q9xVAaXfwejmisZZmqIsYGO6SXU83ZBsJrrVLtUo3EIMdDUdCwij3Y9YFNdiyZQsA85rtM888E5deeinq6+uz3ENKhKEuB+3fvx8PPPAAXnjhBei6DgAQnTZojYVQunjxKlHWWAx1EZFwl2qVbtDxUgCGALo1zP72qrSrdLE4O5ZSISEhSwJY8IXp0QXsI+HuC1/4Ampra7PcQ4rFUJdDmpqacP/99+PFF1/sD3MddmiNbijdDHNEWZdhqAPMYCcUxVKoi7YRvtZu7vc3Wg51EazaUaqMogCOvmIOVq0yr/FUVRUrVqzAF77wBQ7L5giGuhzQ1taGBx98EE8//XR0mFVpt0NtdEPpYZgjypgQUAoLYfT0ZNSMVleLrddOxdxf7s2oHaOyBB993wY9g1v0GX02zP6zH52zCzLqi+aXKHpsFcA/BZQioyiAI748E++++y4AwGaz4ZxzzsGll16KqqqqLPduYmOoy6Kenh488sgjePzxx+Hz+QCEK3N7CqH02rLcO6I8IgTUkmIAgNQNy+FOq6vFhz+phdquYe7/WAt2RmUJPrrBDqFISAnLwc7os2HOvV5AETA0BV0zXZbaiYY6gMGO0mIUB7Dgi9Oiw7J2ux0XXnghLr30Ui6FkiUMdVng8/nw+OOP4+GHH44uTSK6bWaY4zVzRCMvJtQB1oNdJNQBAAxA7Uw/3BlVpdj5/f4bqlsNdtFQF2nHpqJzVnrBTvNLFP1lDSCN/o38k0BpMkoCOOySKVi/fj0AoKioCJdeeikuuOACOByOLPduYmGoG0OGYeCFF17AH/7wh+g6QKJPg7rHzdmsRKNpQKiLSCfcaXW1+PCmWmDAcpDpVu0GhrpoX9IId0afDbP/5IfQjbjt6Qa7uCpdog4RpUhCwigLYMo5ZdGlUCZNmoQvf/nLOOOMM6CqXBR/LDDUjZG1a9fit7/9LbZv325u8ClmZe6Qk2GOaLQlCXURqYS7uCrdQAagdmkpXWuXLNQBqQe7gVW6uDZSDHYJq3SJOkSUBgkJY5IPZcsc0eLFjBkz8I1vfAPHHHNMlnuX/xjqRtmePXtw55134q233jI3hATURrd5Oy8uGkw0NoYJdcDwwW7IUBemdgwd7GKvpxuyL8OEu6FCHQBAEZCqMmS4G7JKN7AzRGmSioRe44FrIaKXGR1//PH45je/iSlTpmS5d/mLoW6U9PT04N5778VTTz0FXdehqipkox3a3kKIEG/nRTSmUgh1EcnCXSqhDgCgC6jdasJwN1SVblA/kgS7ZEOvCdtIUrVLqUo3sDNEFkjNwCfvOBlPPvkkdF2Hpmm46KKL8IUvfAFutzvb3cs7TBcjzDAMPP/887j00kvxxBNPQNd1KG12KKtLYdtZzEBHlOOEqkDJZOaeKqGXhbD12qmZ9UMAqk1PvC+FQAcAIqijdEeSil6qgS7SGSILREjB36/+F5TVpVi6dClCoRAeeeQRfP7zn8fKlSuja7LSyGClbgRt3boVv/rVr7Bp0yYA5v1ZtZ1FUDo5+4coq9Ko1MWKrdqlXKmLNaBql06lLtqHARW7YYdeE7URU7FLu0o3sDNEGdDL/Kg5qwiNjY0AgHnz5uE73/kO5s6dm+We5QeWjUZAd3c37rjjDlxxxRVmoNMF1F2FsL1fwUBHNI7lQtVOCECz61BtenToNe02BlbsrAS6SGeIMqB2OHDwUT/UnYVwu93YsmULrrzySvzqV7+KXntH1rFSlwEpJV5++WX83//9Hzo7OwEASosT2u5CiACnbxPlDIuVujiTq7D5+lJrx0rzoRWEoKgWAxWAQK8dc+5OP9RFKQIiqEOu/dB6GwArdjQipE3HSTceiZdffhkAUF5ejm9961s45ZRTIPgfCEsY6ixqamrCL3/5y+g98ESfCu2jYt6jlSjXCAFtegP2fKYWU+/aZL2dqgps/fokGKUhS4crXRrm/qEDH/239ep9oNOBud9eD3nEHEvHi6AB+X74Pcjkjyb/bNAIMkr8mPyJQuzbtw8AsHjxYlx77bWor6/Pcs/GH4a6NIVCITz++OO49957zVt7GTCXKNnn5hIlRLlECCgF5n1RlclV2HZlDYQE7J0i/XBXWY7tX6mGVAGpSkvBTunSMPfHWwFNAyaVpx3uAp0OzP3m+5ChEITDYSnYxYU6wFqw458MGgVSSOj1fVBnBxEIBOBwOPCVr3wFn/70p7lwcRp4TV0aduzYga9//ev43e9+B5/PB9Flg+39CmiNhQx0RLkkJtDFkgLwl0ns/dr8tNuT4b8rQhdQ22xQOtOb8GB2wACCAeBAC2b+OP1hVBkyw6T0+yHWbUvr2EGBDmBAo5whpIDWWAi8VYSPfexj8Pv9+O1vf4tvfvOb2L17d7a7N24w1KUgFArhT3/6E7761a9i69atQEhA214E24YyKF4Lv9iJaHQIAcXtThjoYvnLJHbccDj2fD3NcBd7Kl1YC3aAGe4sBrtoE34/sGZj2uFucENpBDuGQBplwqdhw68boW0vgtvtxocffogvf/nLeOCBBxAKWbv0YSJhqBvG7t278Y1vfAN//OMfw2vOOWB/rwLqwQLe3osolySpziUjBRAolWMS7JQuDXNv+WhABzIPdpDSUtUuUTtEuUJAQD1YgOCrLhx33HEIBoO45557cOWVV+Kjjz4avoEJjKEuCV3X8eijj+IrX/kKtmzZYlbnthZD21wCkeJNt4lojKQZ6GKNRLAbdjhWwhx2HbQ9HOyuahoy3EWup0va/DDBTgQNyA+GmfE6XLBj8KMxJgIq3rv9I2hbi1FcXIzt27fjiiuuwGOPPQbDsD6LPJ8x1CXQ1NSEq6++Gr/73e8QCASgtNthX1sB9ZCL1TmiXJLicOtwAqUSO67P0nBsitfZyWGGnoat2KUSyhjcKMcICKiHXPC9ZMfxxx+PYDCI3/72t7j22mvR0tKS7e7lHIa6Af75z3/iy1/+MtavXw/o5rVz2oelXHeOKNdkUJ1LRCpjNxybuAMjc50dh2IpH4mgind/vgPa9iI4nU6sXbsWl112Gf75z39mu2s5haEuzOv14rbbbsNNN92E3t5eiG6bWZ3jtXNEuWeEA12sXAt2gU4H5l61LvUmBgS7lIZeBzUih/6cKAsi19rp/3bjsMMOQ29vL2666SbcfPPN8Hg82e5eTmCoA7Bt2zZ89atfxXPPPQchBNS9btjWl0H4WZ0jyikjNNw6nEyHY2ODndKlYe6taVzcnSDYyUTX4w3VxMCKnZVQxiBHOUrxafjoD2247LLLoCgKXnzxRXz1q1/lJApM8FAnpcQTTzyBr3/969i7dy/gV6CtL4W2t5DVOaJcM4rVuUQyHY6NTKCwdyiJJ0kMefIcGopluKMcJKTAI195Hur7JaiqqkJjYyOuvPJKPPPMM5jI91SYsKHO6/XiJz/5CX79618jGAyaS5W8XwGli7f5Iso1itsNeeyirJzbsAF6RaHl44UB6F3d6R8YDnaH3bjT8rml35/+0CvROKL02NH1DHDsscciEAjg9ttvx09+8pMJOxw7IW8TtnfvXvzgBz/Arl27AAmouwqhHuC1c0S5SHG7ETxmLhS/DnXdjrSPF/U12PydMgCA1pH+tW5an8D0vx5CqNyNnee70jrW3i0w9dbVkLoOtaQ47XPDkNC7LQRCoglGQkKv8wCzvNB1HVOmTMFPf/pTTJs2LdtdG1MTrlL32muv4YorrjADnV+BbUMZtANuBjqiHBQJdFIR0J0a9EWz0jpe1FWbgU6TgCYRKktvRXqtT2D6E23m8/Y+zHjKm9bxkOGlSKS0Vq0jopQICGj73VDWFscNx77xxhvZ7tqYmjChTtd13Hnnnfjv//5veDweiC4b7B+UQ+nmcCtRLpNK+D9cAoCS5n++hDADXfTzNA+XAGIXOTVSH9iwdwtMvW11/4Z0gx2rdERpiwzHHnXUUfB6vbjxxhtx7733TpjFiidEqPN4PLjxxhvxyCOPAADUfQWwbSjjnSGIclikShdLd6gpV+uiVbpYaurVOq1PoOFv7fHbOj2pV+siVbq4bazYEY02EVKw6Tf7ceGFFwIA7r//ftx4443o6+vLcs9GX95fU9fU1IQbbrjBHG41AG1bMdTW9K6LIaKxFTvsOogEVG8I6vrk19eJumpsvq48vkoXKySGvL5O6xOY9mQ7hK4nPnyY6+vsXQJTf/Zu8qVIhBj6GjtW6YhGhD7JC2WBD4FAAFOnTsXPfvYz1NXVZbtboyavK3Xr16/HlVdeaQa6gALb+nIGOqIcN2SgA4YdhhX1NUMHOmDY6+uERNJAB6R2fd2Qa8uxYkc0JtQWF+TqQlRVVWHv3r342te+ho0bN2a7W6Mmb0Pdiy++iGuuuQadnZ0QvZp5/VyvLdvdIqLhKEryQBc25DCsIoYOdBFJTpFo2DXh4Xria3QiVbphJQt2rNIRjSil14aulRJz585FV1cXrrnmGrz66qvZ7taoyLtQJ6XEQw89hJtvvhmhUAhKqwO29eW8dyvROKC43Qgunj38CwWguwbPhhX1Ndh8TWlqJ0twfd1ww65xh3d5k1brUr4DBCt2RGNCBFXsuq8Dy5YtQyAQwA9/+EM89NBDebdQcV6FOl3X8b//+7+4++67AZgTIrQtJRAGlyshynXDDrsONGAYVtTXYPO1ZYAtjV/SA4Zhhxt2HXR4ex+mP90f7FKu0iXDKh3RqBGGwJqfbcenP/1pAMDdd9+NO+64A3oaP/O5Lm8mSvj9fvz0pz/Fa6+9BgBQdxZCO+DObqeIKCVpB7qImEkTYmotNn+3JP2T6wJauwZbrznsmk6oiwiVu7Hv4wVDT44YSmTiBEMd0ZgI1XggZ/fBMAx8/OMfx4033gi7ffwvcZYXoa6vrw/f//738cEHH4RnuJZAbXVmu1tElAKlqAjBxbPTD3QREgiUaNh3lpFelS62D50a5tzbaSnQRRkS+tb073hBRNmhV/ggFnkQDAaxZMkS3HzzzXC5xvdkynE//NrT04Nrr73WDHQhAdumMgY6orGiqFDc1iviWl0t9n5rIVqOtv4za9gEPFWK5UAHAEpIADt2Wz4ewRD0bR9ZP56Ixpza5gTWuuFyubBmzRpce+216B7nlfJxHeo6OztxzTXXYPPmzUBQwLahDErX+C+fEo0Ligq1uBDCpmUU7AwbEHQDh450pH+sJuCt1KB5gdJ3rf3sq202zPrROhh+P+SuxvQbCIagf7QbGP+DHkQTjtLlQOhtF4qKirBp0yZ861vfQltbW7a7Zdm4DXVtbW349re/je3bt5tr0G0oh9LHJUuIxkQ40EVYCXZaXS12f3FauAFApjlBPRLoIAAhJew9Mu1gp7bZMPuH62B4zckOloMdAx3RuKX02uB73Y6Kigrs2rUL11xzzbgNduMy1LW0tODb3/42du/eDfgVs0LnSb46PBGNoAGBrn976r9OIoHOiPl/WMiZZrVOiLi15tINdgMDXURalxlHqnRENK4pHg09/wAmTZqEPXv24JprrkF7+/DrVeaacRfq2tvb8Z//+Z9obGwEfArs68ugeBnoiMZEskAHQKhKStW6RIHObCD1YVhDE/BWDC7tCSmh6KmFMiExKNABgAwEUqvWcdiVKK8Iv4bO53RUVVVhz549uPrqq8ddsBtXoa6rqys+0G0oh/Az0BGNiSECXf9rhv6VkjTQRaQwDBs77JrwHJ7hr6+LXEeX9BypDsMy0BHlFeHT0PW8EQ12461iN25CXW9vL6677jrzPq5+BfaNZRB+3iWCaEykEugwdLVu2EAXNtQw7HCBDhh+GDbZsOugcw0V7DjsSpS3YoPd7t27cd1116Gnpyfb3UrJuAh1Ho8H3/ve97B161ZzUsTGMggfK3REYyLFQBeRaNJEqoHObCDxMGwqgS7aRJJgp7bZMPtH64cNdNFzJgp2HHYlynvCp6HzeQPl5eXYsWMHvv/978Pv92e7W8PK+VAXCoXw3//939i4cWN4HbpSXkNHNFbSDHT9x/X/akkr0EUMGIZNJ9BFm0hwfZ0wAMPjSaMjSYIdAx1R3lN8Gnr+Cbjdbqxfvx4//OEPEQqFhj8wi3I61Ekp8Ytf/AKrV68GdAHbxjIuW0I0VhQVaqG19efihmEVJb1AFxY3DDtgpmuqYq+vU9tsmPXj9ek3gpgZsRx2JZpQlD4bAm/bYbfb8dZbb+HnP/85DMPIdreSyunbhN177724//77AQloH5ZC7Uh/cVIiSp9aWoLggumwbdyVWUOTKrHn05MthToA5r1d/UDhPsNSqAMAKQQ0n4Hi5zamXaWLJVQVUtdZpSOagPRyH+TCXui6jksuuQRXXnlltruUUM5W6lauXGkGOgDajiIGOqJUCWE+LFJLS+A9dg6kluGvh0mV2HtBBoEOgL0HaHhoD8rXHLLeRq+Bor+9B6Ovz3pHAMhQiIGOaIJS250Qm83Rh4ceegjPP/98lnuUWE6GujVr1uCOO+4AAKh73VAPFmS5R0TjRGyYsxrshAKpAqECFcGFM6y1MakSez81GYYKCN1aE/YuoP6veyD9AYiQtUZsfRLuZ94zAxnAUEZElqktLnzhC18AANx+++3mPedzTM4Nv+7fvx9XXHEFenp6oLQ4oW0rhrA67kI0kSQKcWn+eEerdJFJChKw9YRg27Az9UYigS52PlOatwGzdwH1j5uBDgCgCKCkCO3HVKXcxqBAFyvdwJtbvyaJKEskJJb9YD5effVVFBcX46677kJ9fX22uxWVU5U6j8eD//qv/0JPTw9Etw3adgY6opQkCylphJdBgQ4Ih7E0fgYTBToAkKlX7AYFOgAwJNDVg/LVqQ/DCikTB7p0MdARUZiAwJs/3YR58+ahu7sbN9xwA3p7e7PdraicCXVSStxyyy3RxYVtW0ogJAMd0bAyuH4uImGgC0t5GDZZoEtDwkAXkUaws/VJFKxcm/wFqQY1BjoiGkAYAjv/1Iqqqirs3bsXt956a3r3jB5FORPq/vznP+Nf//oXYMAMdAHeLYJoWKkEumFeM1SgM48HgkXa0MEulUCXSrVOInGgi0gh2Nn6JNwr3x++SjfcL+Ec+SVNRLlHBFV0vqTDZrPhjTfewKOPPprtLgHIkVC3du1a3HvvvQAA7aNiKD1D37eRiJBehS7Ja4cNdNHjhxiGTadCN0Sws3cB9U/sGb4NQyadOBENdMEhgmFcfxjciMgapdeGb33rWwCA3//+9zkxcSLrEyU6Ojpw+eWXo62tDUqzE7YdJdnsDtH4YGXIdcCPulpaAu/S2ZBaim0lmjRhdch1wMSJIYddE0kwcSLtQBfXnwHvAcMeEaVAQmL5TUfgpZdeQnl5Of74xz+ioqIia/3JaqXOMAzccsstaGtrg/Co0HYWZ7M7ROOD5aVK+o9LO9ABg4dhJ1dlfA0dYCHQAYOGYTMKdEB8iGOgI6IUCQi8ftM6TJ8+He3t7fjpT3+a1TtOZDXU/eUvf8GqVasAA9C2lEAYnBhBNKRMJ0UIYS3QRY8PD8NOrsLe8ydZD3ThYVhLgS4iJtgJKa0Hurh+MdARUXqEIbDv8W44HA68++67eOKJJ7LWl6yFum3btuHuu+8GAGg7i6B4eE9XomSEwwGtpjrjdrSp9Wj+3OHWAl2Y7lDgm1KScYXO0Q7U/nGDtUAXYUigrQMFz36QWWcABjoiskzxavjGN74BALj77rvNlTyy0Y9snDQYDOLWW2+FrutQWh1Qml3Z6AbRuCAcDqg1kwElsx9XbWo9Gj89BbrdeqATOmDrDkLrC2HSB0HL7Tg6gOp718Lo6YHR0WG5HRg69Lb2kanSERFl4LcXPoSlS5ciEAjg5ptvRiAw9r+XshLqHnjgAXz00UdAUED7iAsMEyUTF+jsNmjVky210x/oAN0FdM5IvzIudMDWFYCQEkJK2NsDloJdNND5fGkfGycc6IiIcoGAwPv/+xFKSkqwfft23HfffWPehzEPddu3b8cDDzwAwFy+RARzYlUVopwzqEInBOB0pB3sYgMdAEgBhNzpBbvYQBfdJiVEKL0hy0SBToZC6VfrGOiIKAeJoIq+t83njz76KLZv3z6m5x/TRBUKhXDbbbf1D7u2Osby9ETjRtIh1zSD3cBAFyHTuBdrokAXYesOplytc3QA1fd/kLBCl1awM3To7RkM2RIRjSK13YmTTz4Zuq7j9ttvh66neI/EETCmoe7JJ580U2tQQPuoiMOuRAkMew2dECldX5cs0EXozuGrdUMFOgApD8NGA53Hk/Q1KQW7SKDjpAYiymFv/Xwj3G43tmzZgqeeemrMzjtmoa61tbX/rhG7iyCCvA0Y0UApT4oY5vq64QIdMPww7HCBLvq6YYKds10OG+iifRoq2DHQEdE4IQIqrrzySgDm3SZaWlrG5LxjFuruvvtueDweiB4NykHnWJ2WaNxIa5brEMOwqQS6iGTBLtVAF319kmDn6AAm/2ldSoEu2qdEwY6BjojGmd9c8CDmz58Pr9eL3/3ud2NyzjEJdevXr8cLL7wASHC2K9EAwuGA1jAl/WVLBgzDag1T0HzNcSkHuoiE19eFZ7imI9HECWHItAJd9PTGgHMbkoGOiMYVAYFtDzZBCIFXXnkFGzduHPVzjnqoMwwDv/71r82THXRB6eUiw0QR0eqcqlpbhy48DKtNrUfjBfUIOZFWoIuIvb4ushadFbETJxwdwOQ/r7PUDgwdRmdX9Lne2WmtHSKiLFL6bFixYgUA4Le//S3kKP/ndNRD3auvvmpOjggJaLsLR/t0RKNPCAibheQ0gFZTDc9ZR2S2qLAQMKpK0XZiHfQMJpNHhmG7GmxpDbsO6k54GHbqiz0pX0eXtE/BAPTWVg67EtG49tJ/r4LL5cKmTZvwyiuvjOq5RjXUhUIh/OEPfwAAqPsLIEJck47GOSGgOByAktklBFpNNVpPmw7Dllk7RqET3fNKIXSg4GBmwcfRLlHzyGZoOw5k1I7qCQDvb84o0EVJDrsS0fgmgio+//nPAzDnF4zmnSZGNWU9++yz2L9/PxBQoO4vGM1TEY2+SKADIDKo1vUHOsBfpKD7CGt3iYgEOiN8PZwwLDUDAHC2SUz+y4cwevtgdHdD/ajJUjuKNwi5aTtkKGS9M0REeeaBLz+DyspKNDc347nnnhu184xaqPP7/fjTn/4EAFAb3RAGq3Q0jsUEuugmVUk72MUGOrMRwFeafrAzilxxgQ4AVL+0VK2LBro+b7hxCVgIZQx0RESJCUPgkksuAQA8+OCDCAat3zt7KKOWtFauXInW1lbAp0Btdo3WaYhGX4JAF92VRrAbFOiijaQX7IwiF7rnFMcFuug5vOkFu0GBLnIOjwfqjv0pt8NAR0Q0tDs/8wgqKirQ0tKC559/flTOMSqhLhQK4bHHHgMAaPvcEJJLmNA4NUSgi0rh+rqkgS56HsDQhu9ONNBpyc+ZarBLFujME0kYPb0pBTsGOiKi4QkpotfWPfjggwiNwu/MUQl1r7/+Opqbm4GggNLCKh2NU6kEOgx/fd2wgS4sUDh0tc4odA4b6KLnHCbYDRnooicMB7shrq9joCMiSt3dn3sM5eXlaG5uxksvvTTi7Y94qJNS4uGHHwYAqAcKIAxW6WgcSjHQRV+eZBg21UBnNpJ8GNYocqF7bklKgS7aXJKJEykFuuiJZdKJEwx0RETpEYbARRddBAB4/PHHR3zduhEPdWvXrjXXpdMF1CbOeKVxKM1AFzVgGFarq0XbqdNSC3TRcw8OdqkMuSaiBgZX65xtEpP/uiW1QBftwOCJEwx0RETW3PelJ+FwOLB9+3asW2dxgfYkRjzU/e1vfzMbPujkunQ0vggBxem0FugQPwyr1dWi7eNTodstVKpjgp3VQAfAvC2frz/YRQNdb1/aTRkeT7Rax0BHRGSdCCk444wzAJjVuhFtW45g7a+1tRUXXXQRdF2HbW0FFE8KV34T5QC1uBiomQS5Z1/GbSnVk9B2Qq21QBdD6IDNY1gLdAPYPAYK/7XdUqCLUgSEqkIGAgx0REQZMApCCB7dBkVR8Pjjj6OysnJE2h3RUtpzzz0HXdchum0MdDRuqMXFMOZMBbQEa4SkSUytw/7z6uGtyOxHy95joOpfB1C8tSvjPjm6dBT8Y13m90/VdRgeDwMdEVGGFI+GhQsXwjAM/OMf/xi5dkeqISklnn32WQDgunQ0bkQCndQU6G47REO95bbE1DocOGsydAdg2IFAkbUKm6PbQOnqA4DXB6WtG6WbOi33ydGpw/nP9ZB+f2a325IGwxwR0Qja/OQeAMDzzz8/YhMmRizUbdq0CU1NTYAuoLQ6R6pZolETG+gAAIqAXuKCmD4l7bZEQ3000PVvTL9Pjm4DJWsOAP7wvQF13Qx2H6ZfsXN06nC+Eg50YTJkYRVzBjoiohGntDrgcrnQ2NiIjRs3jkybI9IKgH/+859mg20OLmNCOW9QoItQBPQiZ1rBTjTU48CZk+IDHQDDll61blCgi9B1KK1dKVfsHJ06Sp9ePyjQAQCkTC/YMdAREY0KoStYvnw5gP4MlXGbIzFRIhQK4cILL0RHRwe0TaVQO6zNHiQaC0kDXSxDQu3yDjlxQkytQ9PpkyFVDAp0sZQAYO8Z+sfM3mOgdE0T4PMnf5GqwqgoRuf80qQvcXTqcL26AYbPN+T5IASENsxaKwx0RESjSi/zIzS/ExUVFXjiiSegKJnV2kakUrdhwwZ0dHSYd5DoTO8G50RjKaVAB5hrzg0xcSIy3BoqGDrQAcNfX5dSoAMAXYcI6kl3pxzogOErdgx0RESjTum0o7CwEG1tbSMyBDsioe6tt94yG2t38D6vlLPU0pLUAl1YsokTyYZbh5Is2Dm6Uwx0kXN39yUchk0r0EUkC3YMdEREY0JIgWXLlgEAXnvttYzbG5FQ9/bbb5uNtXPYlXKTWloCY9aUlAMdgP6JEzHBTjTU48AZ6QW6iIHBztFtoOTd1AMdgIQTJywFuoiBwY6BjohoTP3zV+8AAFatWpVxWxmHusbGRuzduxcwwKFXykmWAl1EzIzYaKDLZHJ3ONNZCnQRMRMnMgp0EZFgx0BHRDTmlE47VFVFY2MjDhw4kFlbmXbmvffeAwCIbhuEztuCUW7JKNBFKAKhcje6F1RkFuhgzoiFhPVAF6HrEE1tmQe6CCkZ6IiIskDoCubPnw8AWLNmTUZtZZzC3n//fbOhLlbpaARE7p+qZH53B23aVLR8+nB0zSnMqB1DUxAosY3I7bpcLRJVT2yC0dySUTsyFILe2joygY6IiLLqmGOOAZDlUCelxLp168yGGOooUzHLbAhVzSjYadMbcPD0OoRcAr5yBd0zCiy1Y2gKgsU2SEXA5jHgPmBY7pOrRaLiyY3Qu7th+P0wOq3dAkyGQtDb2jO7QwQREeWMP337CQDAxo0bM7q7REahrrGxEe3t7YABiJ5h1rwiGkqCddOsBjttegMOnlaLkNOsrEkBS8EuNtCZDZnXwlkJdpFAZ/T0hNuSloIdAx0RUf4RvTZomob29nbz7lwWZRTqtmzZEu0MlzIhy4ZYCDedYKdNb0D75cfFBboIKQDdlvr36KBAF20o/WA3KNBF20ov2DHQERHlJ2EIzJkzBwAyWq8uo1C3bds2s5FeLZNmaCJL4c4GqQS7SHUu6BaDAl1EsFCkVK1LGugi0gh2rhaJyr9tGhzoom2lFuwY6IiI8ltkssTmzZsttzEioU70cuiVLEjlVlWRlyYLWBg83JqMVABf2dDDsMMGumhjwwe7SKDTu7uHaUtC6snbYaAjIsp/f/vpCwCAnTt3Wm7DcqiTUmLHjh0AANHHSh2lKY1AZ75eSVitSzXQRQwV7FIOdNHGkge7lANdpKlQMGG1joGOiGhiiGSpnTt3Wp4sYTnUdXR0oLe3F5CA8DDUURrSDXSRwwYMw6Yb6CISBbu0A120scHBLt1AZ7YzeBiWgY6IaOIQXg2KoqCrqwttbW2W2rAc6hobG80nfoWTJCh1FgNd9PBwsLMa6CJig53lQBdtDFDC6/ZaCnTRdvqDHQMdEdHEIgyBmpoaAMC+ffsstWE51EVOKLys0lGKMgx0EcrCOdh7YZ3lQBchw9/9WrfPeqALs3kMTFrrtx7oop0ygx0DHRHRxBMJdVaXNbEc6iL3JxO+zFf+p/wnbHaoFeVQ3K7M2jl8JvacW4ZAmUSgJLM+OTsMlL3XCqXbg4J9vRm1Ze8IwPbvjZkFuggpGeiIiCag6upqAEBzc7Ol4y2Hush4r/Dzfq80NGGzQyktAVQVcDgsBztx+EzsOacMoQJprjvnsh7snB0Gyte0Qvj8gJQQQd1aQwDsnQFo726B9GdwL1ciIprwnv/NqwCyEOra29sBACLISh0lFw10scObFoJdNNC5+ytYVoNdXKCLtN/ntVStiwQ63oOViIgyFclUkYyVroxDHQKs1FFiCQNdRBrBThw2Y1Cgi0g32CUKdGZDEkpnb1rBjoGOiIhGVND8e9lt8VIey4ksckIRZKijwYYMdBEpBDvzGrryhIEuItVglzTQRRtKPdgx0BER0UiLZKqurvTuCx5hOZF5vV7zic7lTCheSoEuYohgl2jINRkp+mezJjJsoIs2NHywY6AjIqJRETL/kI15pS4S6oTBUEf90gp0EQmCXTqBLsJwJK7WpRzoIoYIdgx0REQ0WiKZKhAIWDreUqjTdb3/hKzUUZilQBcRE+ysBDog8TBs2oEu2tjgYMdAR0REoyp8c6JgMGjpVmGWVg7W9ZjlH7icFiEc6EqKrAW6CIcDcl4DGk8pTDvQRUSDHQSKd1sMdNHGwsEOQKjQzkBHRERjQkoJr9eLgoLB9ykfiqVQpyicHEH9lIICKOVlkMFgxm0ZDhXBwsz+pyAF4GgHKl7fl1nIBMxgd7Ad2pZOBjoiIhozgUBgbEJdHI6+TmhKQQGUyVWQqgKhKpBWq2IAQrNqse9kF6QiIQzrfXLvF6h9ejeMzi4IpwOi0G29MX8AoZZWwLC+ODEREVFKZH+o0rT0IxordWRZNNBp5mKJ0qZBAJaCXWhWLRpPL0CowKzSScBSsHPvF6h9ajeMjk6znXBfLAU7BjoiIsoSlyv9uy9ZSmeKosBut5ufqLyobiIaGOgAAEKYwc7pSKutgYHOPMHQS5QkMjDQAQCkhPT5IXv70muMgY6IiMaaalYzHA4HVDX9O3ZZLrm53WblQ6oZjJPRuJQw0EWkGexCs2rReNqAQBc9UXrBTgnK+EAXkW6wY6AjIqIskJr5tzDda+kiLIe66Ak1VuomEsXtTh7oIlIMdtFAN9RM1xSDnXu/QPVze5O/INVgx0BHRETZomYp1BUWFgLoT5WU/5SCAiiTKocOdBHDBLuUAl30xEMHO3NixB4Y7R1DtzNcsGOgIyKiLJKaOfpZVFRk6XjLoa6iosJ8YuMfwIlgyCHXZJIEu7QCXbQDiYNdyoEuIlmwY6AjIqJss5uhrrKy0tLhlkNdVVUVAEA6eE1dvrMU6CIGBDtLgS7akfhgl3agi0gQ7KSUDHRERJRVMhzqooWzNFkOdZEUKe38Q5j3VNVaoIsIBzv//CnWA11EONhZDnQRscHOH4B+qM16n4iIiEbAmV9bDsB6qLO8+PDkyZMBANLJUJfPlIICKBVlGd8NzjuzAvtPtkF3GFBCma1Y7d4vUPvkThhd3Zl1SkrIPg/0QJBVOiIiyroDBw4AAGpqaiwdbznUTZ06FQAgXfxjmK+UggIoVRWAogBSAsJ6GDPsCkJuA5ACBqTlYOfeJ1D3+E7ore2AIiAsrOMTIXUd0m/9DhhEREQjae9ecxWHKVOmWDre8vBr9IQOg2vV5aFooAuHJmFIM9hZ4J1Rjqbjw+FLSEgVMCzMmnbvE6j7azjQAYAhIXVr/6lgoCMiolwiVQPt7ebft0jhLF2WQ11RURHKy8vNjrBal1cGBroIK8HOO6Mc+5fbzCpdtKH0g517n0DdE7v7A12EhWDHQEdERLkmkqXKy8ujy8alK6ObuM6YMcPsiDuYSTOUQ5IFuoh0gl000BUmqOSmGexUv4Te0pp4ZxrBjoGOiIhykSw0s9SsWbMst5FRqJs3bx4AwChiqMsHwwW6iFSC3ZCBLtpQasHOvU+geuWeIV+TSrCTug4ZCAzdDhERURacefVJAIC5c+dabiOjUHfYYYcBAGRRKJNmKFeo6rCBLmKoYJdSoIs2NHSwczeGh12TVelihYPdkOHO4nWBREREo2nr1q0A+gtmVoxIpU4WhCAV/rEcz5SCAijlpWkdkyjYpRXoog0lDnbuRoG6J1MMdBGGTFi1Y5WOiIhylVQN7Nq1C0AWK3VVVVWorq4GBCCL+QdzvEp12DWRgcFOdyrpBbpoQ/HBzlKgixUT7KKBjlU6IiLKQUZxELquo7a2FpMmTbLcTkahDgCOPvpos0OlDHXjUSaBLkIYEkI34Jtejualmdx5wgx2ruYMA12EISGDIQY6IiLKaRfd/AkAwJFHHplROyMX6koY6sYjGQxB+jKfDdo3rwq7z1ERrMzw+kohoQQBo619+NcORxqQQQY6IiLKbe+//z6A/kxl1YiFOlkYgtS4CPG4oqgQNg3S44Xs81hupu+wKuz9hAKUBiEcOqTT+veBu1FF3cr9gKpCqBl8e0oDMsQJPERElNukTY9Oksh6qKusrMTs2bMBARjlXP9r3FBUKE6Heesvw8go2IVcClASXtZGwHKwc+9VMfWJAzAiw66ZBjsiIqIcZ5QHIKXE3LlzUVlZmVFbI/IX84QTTjA7VsFQNy7EBroIi8Gu77AqHFg+YKOFYGcGuv0wDh6K32El2LFKR0RE48SxX1oEAFi2bFnGbY1sqCv1c2mTcUAoIj7QRaQZ7PoOq8Les2KqdHEnSS/YaT70V+gGSifYMdAREdE4IRWJd999F0AOhbpZs2aZS5uoHILNeYoKYbcn328YgNcH2dE1ZLgbMtBFpBjs3HtV1D53YOh+q+b1f0OGOwY6IiIaR4xyH3w+H2pqajK6PVjEiIQ6IQROP/10AIAxyTsSTdJoSDTsmkB0XTevL2mwi7uObijDBDv3XhVTnzwweNg1YVsiedWOgY6IiMaZJV+aDwA4/fTTIYb525yKEbsKPRrqSgOcBZuLUgx0saSuJwx2ffOqcOCkNM6dJNilFehicQIFERGNc1IzsHr1agD9GSpTI/aXcdq0aeatLRTAqPKNVLM0QpJeRzeMgcEuOuxamkKVLq4Dg4Od5kP6gS4iNtixSkdEROOMXuWDruuYM2cOGhoaRqTNES13nHXWWQAAvdoDCU6YyBnDXUc3jEiw8zeUY++ZFgJdRCTYFepwtqRwHd1wVBVQBAMdERGNKxIS9aeUAwDOOeecEWt3REPdmWeeCafTCenWIYst/uGnkWfokMHMgo/UdUhFQDoyHFoXgNZiw+Q1AUgl8+sHiIiIxhtZHMSePXvgcrlGbOgVGOFQV1hYGO2cXmP9DgU08mQwABmwHrSNhTOx/yQHhF8BemyQXmv3eFUPOFD3egj2rgCMUjdEjfUbFyMyoYOIiGgcOfGaowAAp512Gtxu94i1O+JXm59//vkAzIWIpV0f6eYpA5kEu1CBDYFSA5ACCAmIgGIp2Kl+AUeHueyN1BTrwU7XYfj9vK8rERGNK9Kh4/XXXwfQn5lGyoiHutmzZ+Ooo44CFECvY7Uu18hgAIbHk1a4MxbOxP7ljgEb0w926gEHqt+JP6+lYMdAR0RE49S5ty2HrutYvHixeZvVETQq60JccsklAAC92svlTXKRlClX7Yz5M7DnE4VmlW7QztSDnXrAgbp/haJVurjupBnspJQMdERENO5IzcDKlSsBAJ///OdHvP1RCXVLliwxlzdRJfRaVutyVSrBLlRoTxzoIlIMdqpfwNGe/G4jKQc7XkdHRETj1OfvOht+vx9z587Fxz72sRFvf1RCnRCiv1pX64FUWa3LVUMFO2PhTBw4yZFwX/wLhw526gEHqlcNXxWMBDvMnJI43HHYlYiIximpGnjiiScAmCOaI3EHiYFGbVn+k046CVOnTgU0yWvrclyiYGcsnIm9ZxXCX5ZiIA8Hu0QzY4er0sX1RVNgFNgTVu047EpEROPVxb87Cz09PZg6dSpOPPHEUTnHqIU6RVHwla98BYA5YULaOBM2l8lgAIbXFw13Ibct9UAXYQyeGZtqlW5QfwYOx3LYlYiIxilp0/HXv/4VAHDFFVdAVa0tCzacUb2B5vLly3HYYYcBqkRoat9onopGgqGbVbs503DgxBSGXZO2YwY7x06nOTkixSrdQLHBjlU6IiIar1bcegJ8Ph/mz58/alU6YJRDnRACX//61wEARrUXhpO3cxoPFF8AWqYj5oaAbpfwVmoZNSM1BVBVVumIiGhcks4QnnnmGQDAlVdeOSrX0kWMaqgDgCOPPBLHHXccIAB9eu9on44ypNXVom9WGQqaJQoOWP/2UIKAEgJ66wQ651hfLVvt8UPu2ccqHRERjUtLrp4HXdexdOlSHHnkkaN6rlEPdQDwta99DaqqwqjwQy+zNhRHY8RhR6BQgRKUcDdJlH0o4N5v4dtECoiQgGEzg13z0kJr4S4YguHzpX8cERFRlullfrz55ptQVRXf/OY3R/18YxLqpk+fjosuuggAEJrRA6mw6pKLtLpa9M7vn3GqBCXs3TLtqp0SBDRv/+eGDQiUpF+1U3v8kPuaUn49ERFRrpCKRNVpLgDAZz7zGUybNm3UzzkmoQ4ALrvsMlRVVQEuHXo9J03kIulyIFA4+FsiUrVLOdiFq3QDRap2KQe7YAiGh8vhEBHR+PP5369AU1MTqqqq8MUvfnFMzjlmoa6goADf+ta3AAB6fR8nTeQYra4WfYdVJd2farAbWKUbKNVgxyodERGNV4YzhIcffhgAcNVVV6GgoGBMzjtmoQ4wlzg55phjAAUIze6GBIdhc0WyKl2sSLAr3SySh7skVbpYKQU7VumIiGgckpCY88VqBAIBLFmyBCeffPKYnVtIObbTCpuamnDZZZfB6/VC3VUIbb/1mZE0MrS6WvQeXT9sqItl2AT6agQ8tf0LFCtBQPMMH+piX2/rAxydEqXb+ofk1R4/5K5GhjoiIhp3QnV90Kf3wu124/7778fkyZPH7NxjWqkDgJqamv5h2IZeGC4Ow2ZbKlW6gRIOx6ZQpYtl2AB/aXzVjoGOiIjGK8MVgjrXXFf1qquuGtNAB2Qh1AHA2WefjaVLl5rDsHO6OAw7TsUGu+GupRtK3HAsh12JiGgckpCYdekkBAIBLF26FCtWrBjzPmQl1AkhcP3116OoqAiyKASdtxAbtyLBTutTEJhq/a4PkWDXe3jFCPaOiIhobFx895nYvHkzCgsL8b3vfW9U7xyRTFZCHQBUVlbi2muvBQDoU/pglHBR4myR+5pQsq3H8vGeyQKOIzrQUNcK/wzrX0dHp0Th9i6oZWVQ3LzWkoiIxgej1I8HH3wQAHDdddeZS7hlQdZCHQCceuqpOPfccwEBBOd2Q9r0bHZnwjJ8PohNH6H8td0o2ZJ+uAu5gIayDhTZ/RkFO9UHoLUDsNsgCgoY7IiIKOdJm47CEwWklPjkJz+JU045JWt9yWqoA4Bvf/vbmDFjBmA3EJzL6+uyxfD5EGpqhtj8UUZVO6vBznVIonJNR/8GRTDYERFRTpOQWPD1qejo6MDMmTNx1VVXZbU/WQ91DocDP/7xj+FyuSBLg7y+LssiVbtUg11vvQL70R1x2yLBzn50R8rhTvUB4lB7/EYGOyIiymGf/f1ZWLt2LVwuF370ox/B4XBktT9ZD3UAMHXqVHznO98BAOhT+6BX8Abu2RQdjv3X3mHDXWTodaAiux8NZaldZ+c6JFH53uA2ADDYERFRTtIrfPjzn/8MAPjOd76DhoaGLPcoR0IdAJxxxhm46KKLAAChOd0w3MEs92hiM3w+hPYfSKtql0gqw7GqDxAH25PujwQ7TqAgIqJcYLiD0I4y/65dfPHFOOOMM7LcI1POhDoA+PrXv47FixcDqkTwsE5ImzH8QTSqhhqO7a1XYDs6SYUtRiTY2dIYjh1EEZxAQUREWSc1AxWfsMPn82HJkiX42te+lu0uRY35bcKG09PTgyuvvBL79u2D6LLBtrEMQo79Wi8UT3E6oVRWQJ9ciq45RQCAztkKZp+6M612egIO7NlfCcdO87oDZytQ/e/2oSt1AxkS0uOB0cfrL4mIaOxIIXHYN2qwbt061NXV4fe//z2Kioqy3a2onKrUAUBRURFuvfVWFBYWQpYEEZrdzRmxOcDw+RDat3/Eh2M1r0wv0AG8zo6IiMachMSJ/70Q69atQ0FBAW699dacCnRADoY6AGhoaMCPfvQjqKoKY5IP+rTebHeJwgyfD2LzrhEJdtpRneieabERXmdHRERjSJ/Wi3/+859QVRU333wzpk2blu0uDZKToQ4AjjnmGNxwww0AAL3eg1Ath9pyheHxQG3tRvFuiU3vTbPURpHdj+riHhgzvGi+wGKyUwSgCEg/70aSt4SAUlAAxenMrBlNAxR1hDpFRBNNqLYPer15X/Lvf//75vX/OShnQx0AnHnmmbjyyisBAPqMXuiVXOokl9h7DFS+LywHu5ChwOkKoOt4H5o/ZTHY6TpkKGTtWMpt4UAnNA1QrQcyoWmAUCBUlcGOiNKmV/qgzzBHDL/2ta/lzEzXRHI61AHA5z//eVx44YUAgNCcLuhlrMrkEntvZsEOAAoK/ehalkGwo7wlwmFOqKr1ap1QYp5y0hURpU4v80PONwPdhRdeiM997nNZ7tHQcj7UCSFw1VVX4eMf/zigAKHDOmGUMNjlkkiw2/XMDMvhrqDQj87j/djxnzMZ7ihapYvbZLenHeyEpg3YoLBaR0QpMUr9EEf2Qdd1nHbaabjqqqsgRG7/xzDnljRJJhQK4Qc/+AHefPNNQBewbSqF0m3PdrcmJLWqCv5FUxEo1gbtCxQqaD1KYv7Hdg/ZhjdkQ1tfAYL64D+wnl4HSt50ovpvHw3dkVAIRlc3h1/zTWTYNcmQqwwEYPiGvxQjMuyasA1dBww9o24SUf4yigNQlnjg9/tx4okn4qabboI28D+JOSjnK3URmqbhpptuwtKlS83Fied3wigKZLtbE5IocCYMdEDqVbuQoSQMdEAaw7G8ni5vJQt0QGoVu6ECXbR9VuyIKAGjKABtqQ9+vx/HHnssfvSjH42LQAeMo1AHAHa7HTfffHP/XScY7HKSvddA6Ud6RtfaRYdjr+Fw7ISSYNg14cuGC3ZDBLr+l+T2MAoRjT2jKAD78QF4vV587GMfw09+8hPYbLZsdytl4yrUAYDD4cAtt9yCI488EtAkggs6YZQw2OWiTCdRuIt8cMzrSly1C4Vg9HKZm7wyzLDrIEl+0Q66ji7p+Xh9HRH1M0r8UJd60dfXhyOPPBK33HILHA5HtruVlnEX6gDA6XTiZz/7WUzFroOzYnNUdDh2ZeaTKOKCHYde81LKgQ7mJKqB1brhhl0Tno/BjmjC08v8EB/zwOfz4ZhjjsHPf/5zuFyubHcrbeMy1AGAy+XCrbfeihNOOMGcFXt4J/QKrmOXi+y9Bkp3ZDYc6y7ymcOxV3M4Ni+lOOw66LCYYdh0A120DQY7oglNr/BBLupBIBDAiSeeiFtuuQXODBc8z5ZxM/s1mVAohFtuuQUvv/wyIAFtRzHUg+MvXY8nWsMUdB9da+nYQKGC9oVA0bz2pBMlhtPX40TFaw6U3/u2peMpx6Q77JqADIUggxlUbqXByi/RBKRP9sCY2wfDMHDaaafhv/7rv8bNpIhExm2lLkLTNNx4440455xzAAGEZncjNKUXEuM6q+Y04+AhFO7stnSsvddA8Q6ga2cZeg9Zu2eru8iH1hMD6P78sZaOpxEkBBS3O6PbeKmVlej41ELrXXAXwHvyfOjHz7fchtS5vAnRRCIhEZrai9DsHhiGgbPPPhs33njjuA50QB5U6iKklLjnnnvw4IMPAgCUZie0j4ohJGe4jQbF6YRSUQ6jsgS9M4rTOtZXqqBnOmDYgGBFCIVV6U940HUF3tYCFOzRULzHQPHD76TdBo0ARYVaUmxWunz+lNaPi6VWVeHAZ2fDWy1Rtlmi/O8fpnW8cBeg55ip8JarsPcaKHrq/bSOB8AqHdEEI4VEaFY3jMnm76svfvGLuPzyy3N+YeFUjPtKXYQQAldccQWuvfZaKIoCo9qH4GGdkKqR7a7lJcPnQ2j/AWDrLstVOyUI2No0ePYUW6raqcUB+Bd60HySge7PsWo35oSA4gpX6ISSdDZqMmpVFZouno2+KRKGDeg4TKD93MPT64PdBm+5OWwbciqWqnWs0hFNHFIxcNS102FM9kFRFFx33XX48pe/nBeBDsijUBdx/vnn4+abb4bD4YAsDyC4sAPSzl/ao8Xw+YCtu1C8Zp+lcKcEAVu3gK1NSznYGYZAKNh//ZVaHEDzcoPDsWNNKBD2/ru6CFVJaxhWFDjRO7V/oMCwAR2Hpx7shLsAPUfW9B+vAd1TnWkFOxkKAvkxWEFEw5B2HdMuK8OqVavgcDjw05/+FOedd162uzWi8i7UAcAJJ5yAX//61ygtLYUsDCFwRDuMwmC2u5W3DJ8PoX37R6Rql0qwk1LAGDCsrhYHWLEbS7FVuug2BcLpSCnYqZUVOHDulEHbDRvQMzWFhYPdBehdPDVapYserwGeSSnePlAaDHREE4RRGEThWQa2bduGkpIS/PrXv8ayZcuy3a0Rl5ehDgAOP/xw3HnnnZg2bRrgMBBc1A69ypvtbuW1EanatWno22t9OLZ5uYH9NxzPcDfaBlTp4ranEOyEuyCuShcrVCiHr9bZbfBUJp4tm+owLIddiSYGvcoLcUwv2tvbMX36dNx99904/PA0L/UYJ/I21AFAXV0d7rzzThx//PHmWnZzuxFq6OHM2FGUadVOCQL2rvSGY2OpxQH4Fnk4HDuaElXp4vYPHezUqqqEVbqI4YZhhbsAvYtqEu4DUhuG5bArUf6TkAg19CA0txuBQADLli3DnXfeidpaa0tyjQd5HeoAwO1246c//SkuvfRSAIA+xYPQ4ZxAMdqiVbt392evasfh2NGRrEo38DVJgt3Aa+kSSRbsIsOuyap00eMjwe7YwcGOgY4o/0nVwMe+OxP6FA8A4NJLL8VPf/pTFFhY5Hw8yZslTVLx8ssv47bbbkMgEAC8KmxbSqD0jZ8b9Y5XitMJzJ0eXfoksqRJqgYufaLrCgKB1NYS0rvtcO/SULTXQPEjXPYkY5GFgocLdREDljpRq6rQ9JnZ6G1I7deOvUOg4bcb+09fVoKWU+pT7u6gZU64fAlR3jPcQVSucKCpqQl2ux3f+973cMYZZ2S7W2Mi7yt1sU477TT89re/RXV1NeDSETyiHfpkD4djR5nh8wHb90SrdvY+Ceeh1KePpzOJYiC1OADfEeHhWFbtMpdKlW7g62MqdqLAmXKgA8zr6zrOMat1ww27JjzeqcRV63gdHVH+kpDQJ3sglvaiqakJtbW1+N3vfjdhAh0wwSp1Ed3d3bjlllvw1ltvAQCUg+GFio38WKcml0Wqdq1Hl6ZVrQPMil2oQEI6DKjFgbTPrXfbUf26woqdVelW6WLIUAjC6UyrShehBIHyTRLlb+5Pq0oXPT4EFO/2Qfn3Bxx2JcpTUpEIzexfUPj444/HjTfeiKKioiz3bGxNqEpdRHFxMW655RZcccUV5kLFk30IHtEOw8VhmdEWqdpVvdmCynXpXdcYnUTRrkLvTD9YRNezy6Bip01vgOdTSy0fD0WFcDisH58BxemENiX9UBSh1dfh4BcWWTpWqApQXpJ2oAPMMN/doAAWFwc1NMBTbWegI8pThiuE+ksLowsKX3HFFbjlllsmXKADJmioAwBFUXDppZfif/7nf1BeXg7pDiF4ZDv0ag7HjjbD44G+7SMU/3sXpj7vST/chQAIYFH9ftRXdqZ1bKbBzihxo3mpYjnYCUVAcTisB7tMVj232aBPLrUc7GRRATqXBtD82XnpHywUSIeGULEO3W1tkpLs86J8c/q3lCOi/CQhoVd7II7rwc6dO1FWVoZf/vKXuPTSS6EoEzPeTMx/dYyjjjoKf/jDH7B48WJAlQjN6kHosC5IjbNjR5t+qA3quu0oeacx7WCn9ajY3laFBWVNaYc7q8FOm96AfWeUQi80zGB3QZrBLlKlUwREJjeNziDYSU0xg11D8iVFhmJzBa0Fu6py7Dm3HLAbkE4doUIL17YFA1A/akLlex0Md0QTnNQMLP3+XIRm9SAQCGDp0qW47777cPTRR2e7a1k14UMdAFRWVuIXv/gFvvnNb0LTNBgVfgSOaoNR4s921/KboUMGQzA6OlHyTiOm/iP1qp3qA3zbS/D6vpmYXXQo7XCnFgfQNSu9b3+jxI2+qWYY0QsNdE0felmNgYQiIGxmmBOqhWHY2DCXZrBTnE6I+moA4WBXVZJWxU6rr8POiysBWAt2ssAB78zwdZACgMOwVrELBiD2NkH9qInBjmiCMkoCKD5H4o033oDNZsNVV12Fn/3sZygvL89217KOoS5MURRcfPHFuOuuuzB16lTzLhQLOxGa1gOpcDh2tERmIxodnVA/2J5WuFN9QG+rOSPWrfnTDnfeuhB6PptatU6b3oB9p5fGH18lUx+GFSI+xGU6DBtuM2U2G/QSV/TTaMUuxWAni92Q83r7m7NasYsQgHRaH4qNVO0Y7IgmDqlIhKb3ILSoE62trZg6dSruvPNOfOYzn5mww60D8V0YYM6cOfjDH/4QvcmvXu9B8Mg2GEXpz7akFISrddFPY8PdC15Urh/6j77aqeG53f0L1KYT7tTiAJpONoYNdtr0Buz9dB36GuKHDKPDsMMFu8isUduAIdexDnYDpBvsBooGu4uzG+wq13Yy3BHlOaMogMkXO6DXeSClxLnnnot77rkHc+bMyXbXckoGF/bkL6fTieuuuw7HHXccbr/9drSjHcFFHVD3F0DdUwghufTJSJK6PijwGB2dUDs6UbK7FAVNk+CpdqD1iMH/B9G84WrdtPjtkXDX5+pGudP8g9/uc2Nfa2nc68xgZwdwLIoeTbzUiV5aOCjQRfeFg101lqLgb6sSvkao6uBAFxEOdgYA6R9iuH+o8CbEkDM7hcMRHXodKBrsAIQa9yV8jVZfh52fqQTQO2ifzRVE57GAv/wwONolqh/bkryfCTtnBruQKiF0AbUvzf9nBgMQew5AtdlRjhq0H5b+WoZElLukkNCn9kI2+NDY2IHKykp873vfw7HHct3RRFipG8KyZcvw5z//2Vy4UISrdke1wSgMZrtr+WVAtS5uV0cn1Pe3DVm5Uzs1PL/nsITHR8LdUNU7tTiAztmJfxS06Q3Yf2rJkN0fsmI3cNg1kVGu2Am7PW7odaDhKnay2A3jsMGBLsLmCiJ0RC86j01Stasqx95PlCY9HgLRCRSZVu3KtnisHU9EOccoDKL2kgLoUzwwDANnnnkm/vSnPzHQDWFCLj5sxRtvvIE77rgD7e3tgIRZtdtbyAWLR4qiQnEOH2qUslIEpw2u3IVcgGtWF1ZM+3DYNvpCDhzwFsdV7vRuO2peU+Kqddr0Buy9sA5901Kbqan2KqheZcRV7ISmQSlMsXpkSBh+/+CKXTpDrAl+nJWiIhjzh1/pWYQMKF0eCF8grmqnHj4HH/1w8D1cEwl6bSh9xx5XsZMNNdjy7RTvtygB4VMHVezsHQINd24a/nibHbKuCoZTi6va2XsNFP41cSWViHKLVAzoDX2QU3wwDAPl5eX4zne+gxNPPDHbXct5HH5N0YknnohFixbh17/+NV5++WXo9R7olT5oHxVD7cjOYrJ5JVytSzpMGXlZZFi2rBQFzZMAIBrwEg3DJjJwaLbd58Y+lA4ahtVLC1MOdIBZseucqSIaX1Kp0sVKdSh2KAOGYmNnvQ5Hagr0ikKIkDHkcOxQIsOxwLz0h2KBkRmO3b2fw7FE45Re5kfFKQ4cPOgBDPP2nldffTVKSoYeMSETK3UWvP322/if//kfNDc3AwCUQw5oO4sgguktcUGDCZt92GA3kFJWisD0Seie7oL3wk58omFzWsf3hRzY5ylFp9+FPTsnoeY1BWWrmtKq0kWovQpq3tHhemp1elW6WLEVO6sTIcI/1qlW6QYSQR1qSxcgJXZ+uQHG4cmHXxMJem1wbXXA0SEx+Z2u1Ct1scJVO0eLiikve6Bt2pXe8eGqne6yoa/eyUodUQ6TNh2hGT0wqsz/0FZXV+M73/kOli7N4A4+ExBDnUVerxf33nsvHn/8cei6DoQEtN2FUJpdEOCQrGUpDsMmPLSsFJ4FtThwgg3nn/N22sdHwt2B3mK0flRu+YpTtVdB9WoDhS9sTDugRhkSMhCAYbViB5jX6U2fMuT1dEMRIQOBUgf2f9X6NaRBrw2OXQ74GizOHpeA/YANM+8Yflg9KZsdqCyFvnm79TaIaFRISBjVXjiPlOjt7YWqqrjooovwpS99CS6Xtd9dExlDXYa2bduGX/ziF9iyxRxqEj0atJ1FUHrSvzcphSnq0DNGhyGm1KLlhCp0zQEuOCP9cAcAm7ursXFDg6VjpUtHQakX6pslqL83hevAEggeMQOt13rRs60MM7+XeFbucMTRh6PtpiBaD5Rgzr3WwqGnxoWDn/FBWFyrMdDlQO1LCoJuBYdOshYObS02zPjBe+bwtCu1a/sGkroBo6fH0rFENDqMogCmfboS27eb/+GaO3cuvvvd73KZkgzwmroMzZkzB3feeSeeeuop/OEPf0Af+hA8ogPKQSe03YUckrXC0CENPbowcboBTzYewKQn21Axdwpe3HM8AKC3QaYV8GpcXWic0oWuxvSv41DsOo6t24Odn6jAPjEf9X9MP9h5Jjvw/pL78M5CHZfiKkvBLlDhwqML78amuZNwNS5JO9gFSh04uFSBIQWU8KTUdMOd8KoofWsvZIETwGTLwU4GzUqfAVgOdkSUG6RNR2haL4zJPmzf3oHCwkJ8+ctfxvnnnw9V5d/MTHBJkxGgqiouvPBCPPTQQ1ixYgUAwJjsQ+BjbQjV9UEKFkMtMfTwBIoADJ8/6bInichQCOquZtQ+tw+1z+3D9Kc8ePEPx+PJF49L6fhSmxfH1OxByZSutLosXTqm1bQBAGYUtaHirP3Yd/n8tNoIHDkTNd/aAQA41qniwQt/g50/S28Kv7JoHrz/2QEAmG9vwa8//hC2fSm9Ye2QS4Ex1QsAMKSAIQWkxdnewuND5VstqHtWReUbNkttAOYEEqPPC8Prs9wGEWWHFBKh2j5oH/fAmGz+DJ999tl46KGHcOGFFzLQjQCGuhFUXl6OG264AXfddRfmzZsHaBL69F4Ej2qDXuaHBMOdZemGO12H9Hghw3/8bU0dqH12H2b8rS/lcGcl2Cl2HdMK26OfzyhqQ8Un0gt2nmo7Hp/5cvTzY50qHvj0b/DRz1MPdv7Jbjx4+J+in8+3t+DXp6Qf7AbKKNj1eVHyTiOq3mzJLNgFA2a4Y7AjGhckJPRyP6o/54Q+oxcejwfz5s3DXXfdheuvvx5lZWXZ7mLe4DV1o8QwDDz//PO4++670dnZCQAQnTZou4qg9Fn/g0ZhqV53p6oQBS6IAUN2oepStHysEADQO3XoodnOoAurmxqGHYqVLh0zGlriQl3Ezp4KtD1fN+w1doEjZ6L85j34y4x/Dtr3jk/HpU8MPxSrLJqHztsCcaEuYlNgEq5+5RLMuW/oodhAqQP7l2swGryJzyFkSkOxweYCHPbzvYO2ywInuhdVwV+soPXEoYdkbS02TL8h8ddH2OwpXWvHa+qIssNwB7Hg8ga8//77AICSkhJceeWVWLFiBe/XOgoY6kZZT08PHnzwQTzxxBMIBMzrgpQWJ7Q9hRB+lpozppjv4VABTzgcECVFSZsIVZeiZXEheqckD3fDBbuhAl3Ezp4KtD9Xh7r7kge7zrMOw1u/vCvp/nd8Ov7jr1dhxg3Jg13w9I/hnnt+lXT/hkA1bvrwHHQ2FyUNd55aF5o+PXTwU8KXFSQLd4EuB6Y+I1C4Nvl6d7LAiUMnTB4y2A0V6iKEwzFksGOoIxpb0qEj1NALY5JZUbfb7bjoootwySWXoLCwMMu9y18MdWOkubkZ99xzD1566SVzgwGoBwqgNrohdP5vZUQkq94lqdYNFAl3ABIGvKGCnSgJ4OTZwy+ZMVTFLnjEDJTc3Bg39JrIUMFOWTgXHbeF8ND8+4fty1BVu1RCXfScSap2yap0Aw1XtUsl1AFDV+0Y6ojGhlQN6PV9UGeGooWMM844A1/5yldQXZ3aQuhkHUPdGNuyZQvuvPPOaCkaQQF1vxvqgQLecmykJKrepRjsIkLVpTi4pBB99fHhbmv3ZKzfMC3utdKlY9rUQ5hR1JZS24kqdsEjZsD94wN4avYLKbXxjk/Hl967DKGdhXHhbrgq3UCbApNw9T8vxZz7+69PC5Q6sP8kDca0xEOviSSq2qUa6iISVe2Ubg0zHvdB+fcHKbeTKNwx1BGNLqlI6LUeuBYAvb3mYuVHHHEEvvnNb5rXmNOYYKjLAikl3n77bdx1113YvXu3uTGgQN3nhtrkgpAMdyMmtnqXZrAD+sMdAPTVS5zy8Q/wzoFp6NlXDCD9QBcxMNgNN+yaTGzVTlk0D223hPDIgvvSamNgxS6dKt1AsVW7dEMdEK7aHVEFf5FZtUu1SpdI7JAsQx3R6JBCQq/2onixho4Oc8b99OnT8ZWvfAUnnHAChNW74pAlDHVZpOs6Xn75Zdx33304cOCAudGnQGt0Q2lhuBtJQtOiH0VJcVrBLiJUXYqDxxTCWyXhXNiJ7ja3pUAXsbOnAu3P1mHS+164ftyEv8/+h6V23vHp+I+/XIX610L4w93/Y6mNTYFJ+H+bPome5iLUvygshzrADHbBHjumPCtQ9G76948FwlW7Eyejaw4shzqgv2on7HaGOqIRJCFhTPahfJkTLS0tAIC6ujp86UtfwqmnnsrlSbKEoS4HhEIhPPfcc/jTn/6EQ4cOmRu9qhnuDjkZ7kaYsNmhFBdCFFm7WDdUXYrWI9wIFAscc+H6jPqys6cC+9tKsO2kP2fUzjVNi/H+j47Gvb/5ZUbt/Pzg6dj1n3Ox85sZNQM0OTH7R5ugFCefoDIcWeCEd2YF7P9Yk2FnzDAvQ6mvc0hEiUkhYUzyYtLyomgxoqqqCl/84hexYsUKaBrvaZBNvEI/B2iahvPOOw8PP/wwrrrqKpSWlgIuHaE53Qh8rBV6tYcLGI8gGQxA7+iC0dYBo60Dsie9m9VrzZ2ofmE/al/vwb//uTCjvrT3FaD4JTem//2KjNpRYaBgVzdOf+Y7GbXj1W3Qtjai/MUM77loCBi9vTC6rVfHhMcH1/t7MutHGAMdUWbMYVYPyi4QCM3uwYEDB1BSUoKrrroKDz/8MM477zwGuhzASl0O8ng8ePrpp/HYY4+hvT28RIY/fM3dQRcnVIw0RYXiLoCw29Ku3oUmlWDX+YU48ZQNaZ927cF6lNxdBMfz70Kb3oA9F9Wib0YQu869J612/tJbgtt++XlU/3UrZM0kNJ5TDs8UHS+dc0fafbrpwAocXNYHtbwUfcfNhKdSRcfpqU+YiNrvwszvvg0IAcXlAlTVUtVOhkLQD7akf34iGhFSMcNc6RIH2trMS00qKirwuc99Dueeey5crgz/A0gjiqEuh/n9fjzzzDN45JFH+odlAwrU/QVQm11cCmWkhcMdgLQCntVg9+qWuZj9pbVx27TpDfjw+qq0gt13mo7G5jNK47bJmknY+vWStILd0z2L8NjPz0Tpg6uj29TyUhw6d05awU7vtGPmX0JQX4v5t1kMdwx1RNkhVQN6jReFR6jo6jLvqjNp0iRccsklWLFiBRyOzO5OQ6ODoW4cCAQCeP755/HQQw+hubnZ3BgSUJtd5lIoAV6QOuLSDHjpBru1B+tR8vsiOJ57d9A+deY0bP5uZUrB7i+9Jbjtfz6P6r9sHbRP1kzClm8U4+WzU7vOLlKlG9Sf8lL0LpsJb3mKVbtIlS4RIaAWFaUcmBnqiMaWtOvQaz1wzhXo6zN/H9TW1uLSSy/FmWeeCZuNd0TKZQx140goFMJLL72ERx55pH8pFANQWp1Q9xfw9mOjJcWAF5pUgoNLi+CpkUOGu6ECXUSqFbtEVbpYsmYS9p5bDm/90MOxT/cswqO3n4myB1YnfU3KVbuhQh2QetVO12F0dsHw8R6vRKPNcAeh13kgaoLQdR0AMHXqVPzHf/wHTj31VF4vN04w1I1DhmFg1apVePTRR/sXMQYgOuzQ9hdAdNohwOvuRkUKAS80qQS7PlWIEz8+ONitPViP4nuK4Xx2+Bmd2vQGfPj9Kuw6O3Gwe6K3GDf/6lLUPLZl2LaGq9olq9INpJaXoveEcNXutCThbrhQFzFM1Y5VOqLRJSEhSwMI1XsgSwPR7UceeSQ++9nP4thjj+X9WccZhrpxbuvWrXj00Ufx2muvRf93Jfo0qAcKzOVQOKli9AwR8JIFu1c2z8Wcy+OvoxuKNr0Buy+uhWdGcFC4G65KN1CyYPd0zyI8+oszUfbn5FW6gdTyUhw6b86gYKd32jHzryGor6b4bwxX7YSmDQp3DHVEo0MqEkaVD1POqMCuXbsAAKqq4uSTT8bFF1/MO0CMYwx1eaKpqQmPP/44Vq5cCa83/Ic2KKAedJl3qfCzdD6qEgS8gdfZpTLsmow2vQEf3lCFXeeYwe4vvSW49VeXpFSliyVrJmHveeXw1vUPx/5w/zk4dEL6S49Eq3Zl/dfaiX0uzPiehcWCEwzJMtQRjSzp0KHXeOA+XEN3dzcAwOVy4dxzz8WnP/1p3ps1DzDU5Zmenh6sXLkSTz31FJqamsyNElA67OakCg7Njr7YgDelBjv+owLuwztSHnZNJjIc+7Plf8Gtv74ENY+mF+hiyZpJ2PLNYry84peWQ12EWl6KnhNnwVemoHMerIW6CCGgFBRAqCrgcjLUEWVIQsIoC8Co8UBWBBH5k19dXY1PfepTOOecc1BUZH2RcMotDHV5Std1rF69Gk8++SRWrVoV3S68KpQml7neHZdEGX2KCnVmA/rmVmYU6CK06Q04eEoNqh5eZ+lWZ7EiVTv3AZnW0GsyalkJ/EdMh/bKexm3BSGgOBycJEFkkdQM6JO9qD6hBPv3749uX7JkCT71qU/huOOO46288hBD3QTQ2NiIp556Cs8//zx6e8N3T9DDs2YPuiC6bazejaVMbnAd+XGNXIuWYbBDMAQ9PAwDIQCRQdCXRn//iGjMSUjIoiD0ai9sUyX8fvMezoWFhfjEJz6B888/H1OmTMlyL2k0MdRNIF6vFy+99BKefPJJ7Ny5M7pdeFQoB11QW5wQQf7PbUxYCXYDf1QzDXa6DqPPCxnsn/WWUbBjqCPKCmnToU/yoW55Ofbu3RvdPmvWLHzqU5/Caaedxjs/TBAMdROQlBIffvghVq5ciVdeeaV/YoUBKO0OKAddUDp47d2oSzfYJfpRFQLCbodQ1fTCXaJAN7Bv6YQ7BjqiMRW9Vq7aCzEpFF39wOl04uMf/zjOOeccLFiwACKTkQEadxjqJjiPx4NXXnkFzz77LDZt2tS/w69APeiCcsgJxcuZs6Mm1V+4w/2Yplu1ix12HapvqQY7hjqiMWE4QzAme1F2VAFaW1uj2w8//HCcffbZOOWUU+B2u7PYQ8omhjqK2rlzJ5599lm88MIL0enuACB6NCgtLqitToggJ1eMiqHCXao/oqlW7Yar0iXq23DhjqGOaNRImwG90gdjkheyKBTdXlJSgjPPPBNnn302pk+fnsUeUq5gqKNBAoEA3njjDbzwwgtYs2ZNtKwfWRpFaXFCaefCxiMuUbCz8uM5XNUulSpdknYThjsGOqIRJxUJo8IHo8oHUaVHfw+rqorFixfj7LPPxrJly3gvVorDUEdD6ujowCuvvIIXX3wRmzdv7t+hCyitDqiHnFz7biTFBrtMfjSTVe3SrdIl62NsuGOoIxoRkdt26ZN8cDSI/uudAcybNw9nnHEGTjnlFJSXl2exl5TLGOooZY2NjXjxxRfx4osv9i9sDABBAaXNCbXVwYA3UoQYmaAUG+7stswD3YC2ATDQEWVAQkKWBKBX+lF8mAOdnZ3RfbW1tTjjjDNw+umncykSSglDHaVNSomNGzfixRdfxGuvvYaurq7+nbEBr8sOIRnwcoIQEJpt5AIdEVkmRX+QK5prj/sdWlJSglNOOQVnnHEGDj/8cM5epbQw1FFGQqEQPvjgA7z66qv417/+lSDgOcwJFgx4RDSBSSFhlAZgVPrgnmVDT0//rflKSkpw0kknYfny5Tj66KOhaVxxgKxhqKMREwqFsG7dumjAix1GQEiYa+C1O8w18HiLMiLKc1I1zLXkyv0omKH139EHQFlZGU466SScfPLJOOKIIxjkaEQw1NGoiAS81157Df/617/Q0dHRv9MARLcdapsZ8oSfd7EgovwgHTr0cj+MCj+Uiv5ZqwBQXl6Ok046CR//+MexaNEi3nuVRhxDHY06XdexefNm/Pvf/8abb76JPXv2xO0XfRqUSMDr1TjRgojGjcj9Vo1ysyIn3aG4/VOnTsWyZcuwbNkyzJ8/n0GORhVDHY25xsZGvPnmm3jzzTexYcMGGIbRvzMgoHSaQ7RKp4OLHRNRzpE2A0apH0ZZACVzXXEjEaqqYuHChVi2bBmOP/54zlqlMcVQR1nV1dWFd955B//+97+xevXquHWZgPDdLDocUDrtED02TrYgojEnRbgaV2YGOVkYX40rKCjA0qVLsWzZMhx77LEoLi7OUk9pomOoo5wRDAaxadMmrFq1CqtXr8b27dvjXxASUDrtZhWvyw74VA7VEtGIk5CAUzdnq5YF4KhXBv2Hc/bs2ViyZAmOOeYYLFy4kHd2oJzAUEc5q62tDWvWrMHq1auxZs2a+OVSAMCnQOmyRx+ccEFEVkmHDqMkEH3AacTtLykpiYa4JUuWoKKiIks9JUqOoY7GBV3XsW3bNqxevRrvvvsuNm3ahFAofggEXtUMeJ02M+QFGfKIKDFpjwlxpUHAqcftV1UV8+fPxzHHHIOlS5di9uzZUBRe40u5jaGOxiWfz4cNGzbg/fffx9q1a7F169a4pQMAQHhUiG47lG4blG4bh2uJJqjocGpxEEZRELIkAFkwOMTNnTsXRx11FI466igsXLgQLpcrSz0msoahjvJCX18f1q9fj7Vr12Lt2rXYsWMHBn1rBxQo3TaIbhuUbjtEn8aJF0R5SAoJ6Q7BKA5AFgdhFAcBe/xwqhACc+bMiYa4RYsWwe12Z6nHRCODoY7yUnd3N9atW4eNGzdiw4YN2LJly+DhWh0QPeGA12OD0mODCHF4hWi8kZphVuCKgzCKA7BPUuD3++Neo2ka5s6diwULFmDRokU48sgjUVRUlKUeE40OhjqaEPx+P7Zu3Yr169dHg17svRejfIoZ7nrDIa9XgzAY9IhyhVQMyMKQGeIKgzCKQoOuhwOA4uJiLFiwAAsWLMDChQsxb948OByOLPSYaOww1NGEZBgG9u7dGw15mzdvxt69ewcP2UpAeDRzvbxw2BMeDtsSjYXIMKoZ3swQJ4pk/ILlYVOmTIkGuAULFmDq1Kmc2EATDkMdUVhvby+2bt2KzZs3Y8uWLdi8eTMOHTo0+IUGILyaeU1erwalz2Y+59AtkWVSM8zr4NzBcJALQS3B4MsmAFRVVWHevHk47LDDcNhhh2HOnDkcSiUCQx3RkFpbW+NC3rZt29Dd3Z34xT6lP+BFHpxxSxQnOhPVHTLDmzsIwx0atC5cRFFREebNmxcNcfPmzUNlZeUY95pofGCoI0qDlBItLS3YsWMHduzYgW3btmHHjh1oampKfIAerup5Ig8Vikfj8iqU96LhrSAEWaBDFoTMhysEJFlCsqamBrNmzcLs2bMxc+ZMzJ49G5MnT4YQ/FkhSgVDHdEI6OnpwUcffYTt27dHA9+ePXsQCAQSHzAw7HlV8+HTIAz+AaPxQyoS0hmCdOmQrvgAhyRXJNjtdkyfPj0a3GbNmoWZM2eisLBwbDtPlGcY6ohGia7raGpqwq5du7B79+7oY8iwBwA+xQx3sUHPq5pDuZygQVkghYR0hkObS497DkfiYVPADG8NDQ2YNm1a3KOmpgaapo3hv4BoYmCoIxpjsWFvz5492L17N/bt24fGxsbEy6xESAD+cLjzKRCR5+GPCCgc0iVLJCRgN8yw5giHNodhPneFoBQg4YzTiMLCQtTX1w8KcNXV1VBV3q6PaKww1BHlkK6urmjAi/24b98+eL3eoQ82AOFXzev1/CqEPxz8AooZBgMKoAsGvwlGQgKqhLQbgD0mrDl0SKf5HA496VBphMvlQn19PaZMmYL6+vq4R0lJCa97I8oBDHVE44CUEm1tbdi/fz+am5vR3NyMpqYmNDU1obm5GS0tLYPufZuQLiD8ilnVC4SDXyBc5QsoQFCBCDL8jQeRsAabAWkzIO3mAw49/Fw3q28Ow3zdMFRVxaRJk1BdXY2amhpMnjwZ1dXVqK2tRX19PcrLyxnciHIcQx1RHgiFQmhra4sLegcPHsShQ4fQ2tqKQ4cOobe3N/UGDUQDXlzYi3wMKRBBYX4MhT/yer+MSCEBzYDUYj6GA1s0uNkMM6hp5sfhqmuxCgsLUVlZicrKSkyaNAk1NTWorq6OPioqKnidG9E4x1BHNEF4vV60trZGQ15s4Gtra0NnZyc6Ojrg8XisnUBHfMgLf4QuIHQB6OHnhgBCAjAi2/s/wgg/JHK+UijNTgJKeHgz/BGqhFT7n0OJ/XxAaIv5PNkyH8NxuVwoKSlBRUUFqqqqosGtsrIy7nOXyzWi/34iyj0MdUQUx+fzRQNe5GN7e3v0eUdHB3p7e9HT04Oenh709vYOeRG9ZQb6Q54BsxIYfh4JfghXB0Xkt5gMbwfi9kMC0YwYeXH08/ALIoeK8GsUmIEt/Fwm2DbSuVMIgcLCQhQVFaGwsBClpaUoKytDaWlp9Hns56WlpQxrRBTFUEdEGTEMA319fXEhL/K8u7sbXq8XXq8XHo9n2Ofj9deRqqpwuVzRh9PpjPs88igoKIgLbbEfi4qK4Ha7eb9SIrKMoY6IcoKUEsFgEIFAAIFAIO557OfBYBB+vx+hUAiGYcAwDEgpoes6pJTRbYZhxG1TFAVCiLiPkcfA7ZqmwW63w2azwWazDfk88uAkAiLKNoY6IiIiojzAOj8RERFRHmCoIyIiIsoDDHVEREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKAwx1RERERHmAoY6IiIgoDzDUEREREeUBhjoiIiKiPMBQR0RERJQHGOqIiIiI8gBDHREREVEeYKgjIiIiygMMdURERER5gKGOiIiIKA8w1BERERHlAYY6IiIiojzAUEdERESUBxjqiIiIiPIAQx0RERFRHtCy3QGiCCklfD5ftrtBRJQWp9MJIUS2u0HEUEe5w+fz4cwzz8x2N4iI0vLCCy/A5XJluxtEHH4lIiIiyges1FFOsq+eBCHD/+cQCoQiAKEAigCEgFAi+8LbhQAUARF5TXSfiB4TfQAx25T4/eaB0W1SiP7/+sS0Ed0u+s8Vu00Ks5noPsVs19wuovsix8jwtuh+oL8NJfz6yH7EnyPumHD3pZJgX9zrEdfH/m1i0L5BxyC2HwP2I8n2JO0l68egY4ZqN7pdDj4+5pjo/pi2ZHg7Yo4z98mY/pj7Rey+6Gsj+2S0TRH7eiGj+6LfYpHtkebCrzG/FWT088gxSvhzc5/5eeS46D4hIdB/nBLeFn1ARo9TBOK2m8cb/cch8noDauSY8Of9bRnR9tSY9lWY29VIe9HXGlAjbSLSD6P/9ehv22zTgALz/OY+sz01vE3AgBo5PuYYFTCPg3meyPsR+dw8lww/R3ifhBJ+X1QIKADU8BdbgQhvE1CFgAIFIvyVCwZUXPjVahDlEoY6yk26CP96hRnqEA5g4b+W/fsEoPQnGGEmpHAjkb/uCgb91e5PTPFJItLmoL/yGLAt9hxIsG3gcegPczGhbtC2mBAW+/nALsa/PsExyhD7kv0zBvUjyT97qH3J3iqr7cW0mSjwjWqoS7QfAz+X0bZj+xF7zkT7oiEQMa+Jff2gY2SCc8m4R2yo6w+K4UeyfYgEP7PJ2AAYCX9AJJwhGopi95mhzugPRSI2FJnPFSHMwBX+iOhzET3ObAfhNiPHInxceHuifTHHqOFAqkb7GQl1cthQF9ueGnk/EL9NQWwfY76GRDmCw69EREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR7gOnWUm1QJKc0FR81110TMRzFgQeDIx5jniN0mY56nsC9m0bL+JWKTbe//KOOeI+44CQAysr2/TQkBSESPjd0fbSNucbXYviT4XMZ1acD7keQx8LWprEU31L6Uz5XivthTDnmcHKZNmaSPyRcfjl9bLmZf9LXWFx/u70fMOnWwvk6dRP9xUsj4B8yP5j7EbTeEBITR3yYi5zJi1tMLvya8Xwoj2h7i2g9/jJwr/LkSfk3kI4BB24yYH+vIc0MABvrXqTPC2wSSrVMnogsGq+j/mkU+V8LHDFz7LvXFhwX6Fx9O9HNJlF0MdZSTAse0ZLsLoyPyN9OigZmEKCL2W8vIZkcsi03VHEQisoI/OZQzfD5ftrtAREQ0brFSRznD4XBEnz/99NNwOp1Z7E3+8/l8+OQnPwmA7/dY4Xs+tsbq/ebXkXIFQx3lDCH6BxSdTidcLlcWezOx8P0ee3zPxxbfb5oIOPxKRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKA0JKmcGqWURERESUC1ipIyIiIsoDDHVEREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKA1q2O0AEAB6PB48++ihef/11NDc3Q1EUTJkyBaeccgouvPBC2Gy2bHdx3Hj++edx6623Dvu6X/7yl1i8eHHCffv378fDDz+MNWvWoL29HS6XC3PmzMG5556Lk08+eYR7nNt8Ph8++OADbN26Fdu2bcO2bdtw8OBBAMBll12Gyy+/fNg22tvb8fDDD+Ptt9/GwYMH4XA4MH36dJx11lk4++yzIYQY8viJ9PXI5P2+9957cf/99w97jocffhj19fVJ92/duhV/+ctf8MEHH6CzsxNFRUWYP38+LrjgAnzsYx9L+99ENFYY6ijrmpub8e1vfxvNzc0AAKfTiWAwiC1btmDLli146aWX8Ktf/QpFRUVZ7un4oigKSktLk+5PFpTffvtt/PCHP4TP5wMAuN1u9PT0YM2aNVizZg1WrFiB66+/ftggki82b96M733ve5aP37p1K6677jp0dXUBAFwuFzweD9avX4/169fjtddew6233sqvR1im7zcAaJqG4uLipPtVVU26b+XKlbjjjjug6zoAoLCwEB0dHXjjjTfwxhtvpBzkibKBoY6yKhQK4YYbbkBzczMqKipw4403YvHixTAMA6+++ipuv/12bN++HT/5yU/w85//PNvdHVcmTZqEv/zlL2kdc+DAAfzoRz+Cz+fDwoULccMNN2DKlCnRSur999+P5557DlOnTsXnP//5Uep57ikqKsKcOXOij//7v/9De3v7sMf19vbi+uuvR1dXF6ZOnYr/9//+H+bNm4dgMIhnnnkGv/nNb7B69Wr83//9H6699tpBx0/Ur4fV9ztiwYIF+N///d+0z7tx48ZooDvxxBNx9dVXY9KkSejq6sI999yDv//977j//vsxbdo0nHLKKWm3TzTaGOooq/7xj39g586dAICf/OQnWLBgAQCzynTqqadCSokf//jHeOedd/Dee+9x6GOU3XvvvfB6vSgvL8dtt90WrY4WFBTg8ssvR1tbG5555hk88MADOPfccydE9XTRokV49tln47bdfffdKR376KOPor29HQ6HAz//+c9RW1sLwKySXnDBBfB4PPj973+PZ555BhdddBGmTJkSd/xE/Hpk8n5n6q677oKu65gxYwZuuukmaJr5J7KkpATXXXcdmpubsXr1atx1111Yvnz5kBU/omzgRAnKqn/84x8AgKOOOioa6GKdeuqpqKmpiXstjQ6v14vXX38dAHD++ecnDAiXXnopAKCvrw9vvPHGmPYvWzL5w/3CCy8AML+PI4Eu1gUXXACXywVd1/HSSy/F7ZuoX49sBaUDBw5g/fr1AIDPfvaz0UAXK/J+Nzc3Y926dWPaP6JUMNRR1vh8PmzcuBEAcOyxxyZ8jRACS5cuBQCsWbNmzPo2EW3YsAF+vx8Aou/5QDU1NWhoaADAr8dw9u7dG73AP9n7WVBQgEWLFgEY/H7y6zG2Yt+/ZO/3woULUVBQMOj1RLmCw6+UNXv27IFhGACA6dOnJ31dZF97ezu6u7uHvACa+nV2duIrX/kKGhsboes6KioqsGDBApxzzjk46qijBr0+MgwOADNmzEja7owZM7Bnzx7s2rVrVPqdL2Lfz6G+v2fMmIFVq1Zh9+7dSY/n1yM9u3btwhe/+EUcOHAAiqKgsrISRxxxBM4//3zMmTMn6TEAUFZWhrKysoSvUVUVU6dOxZYtW/h+U05ipY6yprW1Nfq8qqoq6esqKysTHkND8/l82LZtGzRNg5QSTU1NeOmll3D11VfjtttuQygUint95L0tKiqCw+FI2m7k69HW1jZ6nc8Dse9PKt/ffX198Hg80e38eljX1dWFPXv2wOFwIBAIoLGxEStXrsRXv/pV3HPPPQmPibzfsb9vEol8Lfl+Uy5ipY6yJvYP2FB/tJxOZ8JjKLGKigpcdtllWL58OaZMmQK73Q5d1/Hhhx/ivvvuw7vvvovnnnsOTqcT11xzTfQ4r9cLIP79TiSyn1+LoVn9/o4M7/Hrkb76+np8/etfxwknnICamhpomoZgMIj3338f99xzD7Zu3YoHHngARUVF+OxnPxt3bOT9G+79jnwt+X5TLmKljijPHHPMMbj88ssxc+ZM2O12AOaw0cKFC/GLX/wCJ5xwAgDgqaeeQmNjYza7SjSizjjjDHzuc5/DlClTohMdbDYbjjnmGPzmN7/BvHnzAAD33Xcfent7s9lVolHBUEdZE6lIAIheEJ5IZNHVgcdQ+hRFwTe+8Q0AgGEYeOutt6L7XC4XgPj3O5HIfn4thpbp9ze/HiPL4XDgiiuuAGBWQd977724/ZH3b7j3O/K15PtNuYihjrIm9tqVQ4cOJX1d7HV0w13vQsOrr69HSUkJAHMZh4jIe9vT0zNkCIl8PSoqKkaxl+Nf7PuTyve32+2OCwr8eoy8+fPnR5/Hfu8D/e/3cNftRr6WfL8pFzHUUdY0NDRAUcxvwaFmkkX2lZeXc+brKIqdYRk783KgyL6hZnRS/Ps51Pd35P2cNm1a0uP59Rh9kfevo6MDnZ2dCV+j6zr27t0b93qiXMJQR1njdDqjCw6vWrUq4WuklFi9ejUAYMmSJWPWt3y2f//+6H1IIws7A+YaXJGLwCPv+UDNzc3Ys2cPAH49hjNlyhRMnjwZQPLvb6/XG13wduD7ya/HyPvwww+jz2O/94H49y/Z12vDhg3RCRJ8vykXMdRRVp111lkAgPfffz/uF27Eq6++Gh0mibyWkpNSDrv/d7/7HQDz+rrjjz8+us/lcmH58uUAzEkUiS4kf/jhhwGY1xOdeOKJI9XtvCSEwJlnngkAeOWVV9DU1DToNX/729/g9XqhqipOP/30uH38eqRnuO/9QCAQXc7E5XINuuVgbW1tdCHoxx57bNCSPwDw0EMPAQCqq6txxBFHjES3iUYUQx1l1VlnnYUZM2ZASokf/OAH0YuXDcPAq6++ittvvx2AucI77/s6vObmZlxxxRV4+umnceDAgegfOsMwsGnTJnz3u9+N3k7qvPPOw9SpU+OOv/zyy+FyudDW1oYbbrghOjvW6/Xi/vvvx9NPPw0A+MIXvpAX9xlNVU9PDzo7O6OPyKLZfr8/bvvAZS4++9nPory8HD6fD9dffz22bt0KAAgGg3jqqafwxz/+EQBw7rnnDrrvKzBxvx5W3u9169bhP//zP/HCCy+gpaUluj0UCuG9997DVVddFf2P4xe/+MWE79eVV14JVVWxY8cO/OhHP4peP9fd3Y1f/vKX0Qre1772Nd73lXKSkMP994ZolDU1NeHqq69Gc3MzAHNY1jAMBAIBAMDs2bPxq1/9Kq/+aI2WpqYmXHzxxdHP7XY7XC4XvF5v9P0EgBUrVuC6665LeH/Lt99+Gz/84Q+jswALCwvh9Xqh63r02Ouvvx5CiFH+1+SOz3zmM9Hvz6GcddZZ+K//+q+4bVu3bsV1110XHfIuKChAIBCIVoKWLFmCW2+9Nbr8zEAT8eth5f1+//33cfXVV0f3ORwOOJ1O9PX1Rd9rRVFwySWX4Ktf/WrSNleuXIk77rgj+v4WFhair68v+h+kyy67DJdffrnlfxvRaGKoo5zg8Xjw6KOP4vXXX0dzczOEEJgyZQpOPfVUXHjhhbDZbNnu4rjg9/uxcuVKbNq0CTt27EBnZyd6enpgt9tRVVWFBQsW4Oyzz8bChQuHbGf//v14+OGHsWbNGrS3t8PlcmH27Nk477zzcPLJJ4/NPyaHZBLqAPMWdw8//DDeeusttLS0wG63Y8aMGTjrrLOwYsWK6IShZCba18PK+93V1YXnn38emzZtws6dO9HV1YW+vj44nU7U1NRg0aJFOPfcczFz5sxh2926dSsee+wxrFu3Dp2dnSgqKsL8+fNxwQUXcMSAchpDHREREVEe4DV1RERERHmAoY6IiIgoDzDUEREREeUBhjoiIiKiPMBQR0RERJQHGOqIiIiI8gBDHREREVEeYKgjIiIiygMMdURERER5gKGOiIiIKA8w1BERERHlAYY6IiIiojzAUEdERESUBxjqiIiIiPIAQx0RERFRHmCoIyIiIsoDDHVEREREeYChjoiIiCgP/H9fglxfIkcWrAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot, ax = dwell_time_map.plot(coord = SpacecraftFrame(attitude = Attitude.identity()));" + ] + }, + { + "cell_type": "markdown", + "id": "bceece48-9af5-4c37-93ec-64a0ae484173", + "metadata": {}, + "source": [ + "The dwell time map sums up to the total observed time:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "824a5710-55ad-4021-a026-ed2caf90bc05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$3600 \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(dwell_time_map)" + ] + }, + { + "cell_type": "markdown", + "id": "8d858030-77da-40a2-83ca-fb3ae5de5e23", + "metadata": {}, + "source": [ + "## The scatt map" + ] + }, + { + "cell_type": "markdown", + "id": "23df1782-9bf7-4e7b-b469-31d2e6595e11", + "metadata": {}, + "source": [ + "As the spacecraft rotates, a fixed source in the sky is seen by the detector from multiple direction. Convolving the dweel time map with the instrument response, without binning it simultenously in time, can wash out the signal. Since the spacecraft can have the same orientation multiple times, we avoid performing the same rotation multiple times by creating a histogram that keeps track of the attitude information. This is the \"spacecraft attitude map\" ---a.k.a scatt mapp--- which is a 4D matrix that contain the amount of time that the `x` and `y` SC axes were pointing at a given location in inertial coordinates -e.g. galactic." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f1fed35c-66ba-430a-add0-93ee6dbdf5dd", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 3601 of \"dubious year (Note 3)\"\n", + "\n" + ] + } + ], + "source": [ + "# It's recommended that the scatt map pixel size be finer than the response, in order to mitigate error\n", + "scatt_map = ori.get_scatt_map(nside = 16, coordsys = 'galactic')" + ] + }, + { + "cell_type": "markdown", + "id": "c7be70f9-f7f9-4a9f-972f-03f3ebfc7dda", + "metadata": {}, + "source": [ + "This is a how the 2D projections looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8be8ef44-400c-4541-b7b6-875724c07038", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAD6CAYAAAAm7DFNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzyklEQVR4nO3dd3xV9f348dfnnLuyB2RAEiCMsEGgiKgsBURxIW5trVWL1r31q/7UVr91oLa2to46vq1VWweOOopWRFQQBZEpIIQVyE7IvOucz++Pm1wSxRogycl4Px+P+7jrnHvfuRfO+77PZymttUYIIYQQQgghWpHhdABCCCGEEEKIrkcKDSGEEEIIIUSrk0JDCCGEEEII0eqk0BBCCCGEEEK0Oik0hBBCCCGEEK1OCg0hhBBCCCFEq5NCQwghhBBCCNHqpNAQQgghhBBCtDqX0wEIobUmGAxSXV1NbW0tNTU11NbWRu/X1tYSCASaXYLBYPS23+8nHA5j2/Z/vSilME3zexfDMKK3PR4PPp8vevF6vcTExOD1eqP34+PjSUhIICEhIXo7JiYGpZTTH6UQQohWorWmvr5+v7mppqaG+vr67+Ukv9/f7H44HEZrjWVZaK2xbTt6u/G6MTe5XK795iaXy/W93NSYj5reb5qTGm97vV6nP0bRzSlZGVy0hWAwSGlpKeXl5VRUVFBZWUlFRUWzS2VlJZWVldTU1BAKhfb7OoZhRH/of/fi8XhYsWIHYLKvcU7tuygwQhrlDzd5RQ0q8k9eKx25jwZTYcW6MMJhDhubQyAQiCYRv98fvViWtd84TdOMHuATExNJSUkhNTU1ev3d27GxsVKYCCFEO6urq6O4uHi/Oalprtq7dy+1tbXYtr3f13G5XD+Ym7xeL1+8vQpsFUkxALrp7UiWij6mAKUjTzfc3pfKGm6bMGra0Gb5qGl++qGfch6PJ1p4JCYm/te8lJKSIoWJaHVSaIgDZts2ZWVlFBYWUlxc3OxSUlJCcXEx5eXlzfZRSpGcnExycjIpKSnRS3JyMvHx8c0ucXFx0dvHz/0DsQU1UFCItmywbex6P+j9HPx/6J+yUqAihYgyIj/utd18W2Uo1LCB+HvFE0ow0Q01gBls2E6BEdB4Kup5+e2rqKmpobq6Onpper+qqiqatMrKyqioqCAcDjd7v5iYGNLT08nIyCAjIyN6OzMzk/T0dNLS0nC73Qf4zQghRPcVDocpLCykqKjoe7mpMT/V1NQ028flcn0vJ6WmppKYmEhCQgJxcXHR68b8lJCQwOyY81B0jJNFGg0GvFT4+H5zUtPcVF5e3uwE4Hd/AiYlJX0vN2VmZkZvp6amYhjS6160nBQaYr/C4TDFxcUUFBSwe/dudu3aRUFBQfR+IBCIbhsXFxf9cZyenh69pKWl0aNHD1JSUjijxyW4MzPRPZKxErz4e/pQWqOVIhyjUDa46vYVD+66MO7SOigoxNpb9cNFRGtTCjMhYd99Q0F6T7Qn8qM/nBJDKN6F0hC7bg+6rg5dW4fd+HnsJ06NBpfmL5seih7gGwuyxoRYVFREZWVlkzAU6enpZGdnf+/Su3dvKUKEEN1SIBBg9+7d0XzU9FJUVNSs1TklJWW/eakxNyUnJzMn6cIOUzC0N40Gt83j6x6gvLycsrIySktLKSoqanapr6+P7uN2u+nVq1c0H+Xk5ERvp6WlSREivkcKjW4uHA5TUFBAfn4+27ZtY9u2beTn57Nz587oWXjTNMnMzIz+yM3KyiI7O5tevXpxSd4NKKvJgaWxO1DTFgRlYMTHRX6090jBjvMBYNTUQ3llZPtQGKu6et/rdOR/loaJNXk0ls9EhW3MgI27vA5CYSgpB8vCqqlt3urSgr9HGxrttbjvo/+hqKiIgoICdu3aFS3y/H5/5O0Ng/T0dPr06UNubi79+/cnNzeXfv364fP52uqvFkKIdlNfX8/27dujOanxurCwMLqNz+cjKyuL3r17k52dTVZWFllZWWRmZnJBn6tRunsWEK1Jo8HUaJ/Fr9+7kcLCwmhe2rVrF4WFhdHizuPxkJWVRU5ODv3794/mpqysLFwuGRLcXUmh0Y1UVlayadMmNm3axLfffvu9giIpKYl+/fpFLzk5OWRlZf3wAfs7XZKU14syTVRKEtrrQXvchHrGog1FOM7EXR3G/cVG7Nra9vyz24SrVybBgb0IJbhAgeVtKLY0KFvjrrZw1QQxNmxD+wNoywJ7/+M7WkKjwWPz4NI7ogf4xiS8e/duINIK0rt37+jBPTc3l7y8PLKysuQskxCiQ9Jas3v37mhu2rp1K9u2baOwsDDarSczM5O+ffuSm5tL3759o0XF2emXdtvWiI5Cq8gJsnv+cxO7du1i586d7Nixg/z8fCoqKoBIAdL4/TWeHMvLy6NHjx4ORy/agxQaXZDWmtLS0uiBu/FSUlICRLo6DRgwIHoWPDc3l5sm3gMho+UHbaVQHg/KNDEy0ghmpRBKdKNNhTZBWZEf3MoCT2UAszqAzt+JXVfXhn95O1MKZZqgDMweKWCaWOkpaK9JMMmDtzyAsa1wX8tGOAy2jnSzsjU6HGqVlhtt2OhYi+tf+iVbt24lPz+f/Px8SktLgcj3nZeXR15eHkOGDJHiQwjhCMuy2LVrF5s2bWLjxo1s3ryZzZs3R8dNpKWlNTtR0rdvX64afUfzVnPRaWi3jY4N86u//KxZbqptONmYlpZGXl4egwcPjl5SU1Mdjlq0Nik0uoBAIMCmTZtYu3Yt69atY+3atdHB2ElJSQwaNIjBgweTl5fHvbMfBb95YGeBmhQVyusFlwvlMsEwwDDQiXGEUmNRtsZVUo0KBNF7qyKDtm2NDgXb6C/vuIzYWMLjBmOELFTIwqiqR4XC4A9EBrVrO1JkhMLYgQC6yZiX1qJdNjo+xIWPnsnGjRvZuHFjtNtBfHw8gwYNYtiwYYwcOZIRI0aQmJjY6jEIIbqvqqoq1q1bF81LGzZsiPb379WrV/QESF5eHrdNvh8VMh2OWLQ1jQavjR0f4ux7T+Kbb75h06ZNVFVVAZHiY8iQIdHcNHjwYJkJq5OTQqMTKisrY82aNdHCYtOmTYRCIbxeL0OHDmXEiBEMGTKEwYMHc16vyw+qaVm5XBixsRDji0zD6nJFukq5TLTLRMd60S4DbRqYWwqwyis69rgKBxijhxJIi42MTQGwNUZY46oJRoqPyhrs0vJIK087fXavVPyFjRs3smnTJjZs2MD69espKysDoG/fvowcOTJaeGRnZ8sUvEKIFtFas337dtauXRvNTdu3bwcgOTmZESNGMHz48Gir6mlJv3A4YtFRaDR/3fVotKXrm2++Yf369dTX1+N2u8nLy4vmppEjR5KcnOx0yOIASKHRCVRWVrJq1SpWrlzJypUr2bFjBxDpt9p48B4xYgQDBgzgeM85rfOmjbMvpfdAx/nQLgPb50YbCm1GfnwqrfFsLyO8bUfrvGcXo7xejNhYVEoSdqwPK8GL7TOx3ZFuAJ6KAEaNHxUIQV09dnUNOhBAf2cq3LbUeIBfu3Yta9asYc2aNeTn56O1JiUlhVGjRjFu3DjGjRsnhYcQIkprTUFBAStXruSrr77iq6++ory8HMMw6N+/fzQvjRgxgt69ezPTPNPpkEUnotH86Zv/jZ5UXbNmDcXFxQBkZ2czZswYxo0bx9ixY6Xw6OCk0OiAampqWLVqFV999RUrV65ky5YtwL7/XGPHjmXUqFGcm/Gr1ntTpTC8XlRCAio+FjshBu1xEY73RDcx/WFU2MaorEXVB7Ar97br2fiuwIiNRcXFQXoq2m3CdxaDUiErMnvV3hrsqqo26VL1Y7Rpc+8nN7F69WpWrVrF+vXrsSyL9PT0aNExduxYevbs2e6xCSGcU1RUFD3htXLlSkpKSjAMgyFDhjBmzBjGjBnD8OHDOTXh506HKrog7bW45a1fsXr16mYnXQcOHMjYsWMZN24co0ePJjY21uFIRVNSaHQAWmvy8/NZtmwZy5YtY82aNViWRUZGBmPHjmXs2LGMGTOG8zIvb703VQojNhYjMQGdnIB2m9g+NxgKrRTKsjH8IZQ/hKqqQfv9WFU1+8YWiENixMZC/z77FjTfD1VUjlVU3H5B/QBt2vzm4xtYsWIFK1asiBa+ffv2ZcKECUycOJFRo0bJ2h5CdDGhUIg1a9awbNkyPv/8c/Lz81FKMXDgwOgZ5VGjRklhIRyhPRY3vjEvmptKSkowTZPhw4czYcIEjjzySPr37y8t8Q6TQsMhdXV1rFixgs8//5xly5ZRXFyMz+dj7NixTJw4kfHjx/Oz7KvabOo+5faghg/EinGjtAZbo0I2KmShbBtCYfTuoi4xFW2HpBTmgH7o2P0MclMKbRiYhWVYpeUdbjC9dtvc+s6v+PLLL/n8888pLS0lNjaW8ePHc+SRRzJhwgSZOUSITqq0tDR60uvLL7+krq6O1NRUjjjiCCZMmMC4ceOYm3yR02EK0YxGo2Msrnj+Z3z55Zd8+eWX1NfXk56ezsSJE5k4cSJjx46VtaYcIIVGO6qsrOSTTz5h8eLFrFy5klAoRHZ2NkcccQRHHHEE/zPxgXZZYEi5XKiYGFSf3g2tFxaErWYtFaq2nvCewv/yKuKQGSZGXCwqNgYVG4OO8aINA0xFXZ8ELI/CVWfj2RvEvacSu6ikw00PrNHouDA/++Mcli1bxvr169FaM3ToUI488kgmT55Mbm6u02EKIf6LHTt2sHjxYj7++GM2btyIYRgMGzYsWlxcPvQ2Wa9CdCpaaXRSkFPums7SpUspKCjA4/EwduxYjjrqKCZNmiQnxNqJFBptrKSkhCVLlrB48WK+/vprAEaNGsWkSZM44ogj+EXf69o+iIbpac30NMK9Ugim+gjHGMQW1GGW16BsHRkrEAii6+vRobCMvXBAYwFoJCYQGJRJKMGF5VVoBUqDGdB4y4O4d5QS3lXQIb+fl8ufYtmyZSxdupTly5dTW1tLnz59mDp1KlOnTmXAgAHSjC2Ew7TWbNmyhcWLF7N48WK2bdtGTEwMRxxxBEcffTSHH344p6dc7HSYQrQKjeaZbQ/z2WefsXTpUlavXo3WmlGjRjFlyhSmTJkiYw7bkBQabaC0tJQPP/yQRYsWsW7dOkzTZNy4cUyePJlJkyZxZo9ftkscZkoKum8vgqkxhONMwjGNq1dr3DU2cRuK0JV7sev96FD4kFauFq2scQxNRhpWUhyBjFhCcQYoSFxfgbV+k9MR/iitNL/55Ho++ugjlixZQk1NDVlZWUydOpVjjjmGgQMHStEhRDvRWvPtt9/ywQcf8PHHH1NQUEB8fDxHHXUUkydP5vDDD+fEmPOdDlOINqddNtcu+AUfffQRK1asIBwOM3LkSKZMmcIxxxwjRUcrk0KjldTW1vLxxx/z/vvvs3LlSkzT5PDDD2fKlCkcddRR7TNneMNK1crjAdMkOD4Pf8/IAF0zaOMtC+Eur4PCEuyaWkdmNBIt9J0f4MrjwUxJxs7sgdpTil1e2eHGbvw3Wmn+d+lN0aJj79695ObmMmPGDGbMmEFGRobTIQrRJRUVFfH+++/z/vvvk5+fT1JSEpMnT2by5MmMHTuWE7znOh1i96FUh2yJ7s60aXPDW5fw0Ucf8cUXXxAOhxk3bhwzZsxgypQpMoNVK5BC4xCEw2GWL1/OwoUL+eSTTwgGg4wZMyb6D7TdiguPJ9Ltxu3a97jLhZ3bG2wbc3cZdlW1dIfqjL5TcJhDB7F3RCruWgtfsR9zV0mHHDD+3zS2dLz//vssWbKEQCDAYYcdxsyZM5kyZQoJCQlOhyhEp1ZTU8OiRYtYuHAhX3/9NV6vl0mTJjFjxgzGjx/feustiSjlchE85jAqBnro9fJmrJKSfU8aJtbk0ey4NEzif+Lo8Zdlkos7IG3aXLPgQt5//32++uorvF4vRx99NDNnzmT8+PG4XK4ffxHxPVJoHISCggLefvtt3n33XcrKysjNzWXmzJlMnz6d83td0W5xGLGxKE+TKUW9XkhKINwzHsvnwrd+F+HConaLR7QxpTDzBrB3dE90Qy84ZdO86CgpbdcF/w5V49mkhQsXsnLlSlwuF1OnTuWkk05i1KhR0rVKiBbSWrNmzRreeustPvroI0KhEOPGjWPmzJlMmjSJU+IvcDrETs/VK5OiE3PpsaYWlq+Ldjc2B/Vn+30xLPjJk/Q2TR4tH82LfzuWnKfWETxsALuvCPL6+CfIc8exKVTLcQuvYeiNm7D2VuHqm0PRsVnUzqohUBjLkNs2YFVVOfyXCu21uPAvc1m4cCH5+fmkpqZy/PHHc+KJJ5KVleV0eJ2KFBotFAgEWLJkCf/6179YuXIl8fHxzJgxg9mzZ3P5kNscicnw+TB69sBOTsBK8hFKcGO7FCgw6y08i9d0qjPdogUME1dGGlZ2Gv50H6E4M1p0eKosPJVBXBV1UFKOVV7ZqcbdaI/FhU/P5V//+hcFBQX06dOHE088kVmzZsnKr0L8gIqKCt577z3efvttduzYQe/evaP/b85Jv8zp8LoMPXE0pbf6+dOIF/gm2IsH1s4k6dV4lIZL73qFsxL2YDRZGOnO4jEsveVwXDcV8d6QNzDVvueKrVqO/tsNuKsV1/3sNY6IycenLILa4IRFVzL06s37ig3DxExNRgeC2NXV7f1nd3uNMyue9JupLFy4kJqaGsaOHctJJ53EpEmT8Hg8P/4i3ZwUGj9iz549vP7667z99ttUVVUxevRoTjzxRKZMmcJJsT9t93iU24OZ3pNwTk9CiR5sl0KbkbO+ytKYfhtPaS1qT1nzplvR5Si3B7NnKlZWT/xpMRihfauMKw3uqiBmaRV2aXmnSlAazf1f3Mq//vUvPv74Y7TWTJ48mblz5zJixAhp5RDdntaatWvX8tprr7F48WKUUkyZMoXZs2czZswYjnOd5XSInZJyubAmjiQcaxL7TRF2UQlaayrPGMOcm//DlLhvotsurh3Cy7+bTtrnFWycl8Qfjv8/psdU83nAzQXv/ZKhD5dgfZuPmZbGt4/2ZvFRj+FTBhdsPY3SP/Uj+aOtWH0zGPX4Wi7tsST6un5tcuJ7V5P7mk3pCA/Vw4JMGr6JNcW96XWLhbVhsxMfjQC0obnx7Ut46623WL16NUlJSRx//PHMmTOHXr16OR1ehyWFxn5orVm1ahWvvPIKn376KbGxsZxwwgmcfPLJXNTv+naPp/EHZbhvOvWZPkKxRmTKUxu8VRbuvSHcRVVQVIpdV9epus6I1mEmJkKvdOx4L1asB9sT+TcC4KoLY67ciO33OxvkQXi5/CkWLlzI66+/zq5duxg8eDBz587lmGOOkTNJotsJBoN8+OGHvPrqq2zcuJGsrCzmzJnDcccdJ9PRHiKzZw92XTCYY85dTpKrnjV7e7NmVxbZ/+ei6ooqrh70IQM8xZhort90BjH3J2MuWrlv/2F5bD+lJ+krg3j+/WXzFzdMKs8/HJdfk/jmqubH4sNHMuLP65iRtI5Hts9g1wd9yHlvLyWHJ3L8ZZ/Qy1MZ3fSRVccy6OJNHW49pe7oL/nzeeutt3jnnXeoq6vjqKOO4vTTT+ewww6Tk2HfIYVGE4FAgPfff59XXnmFrVu30q9fP+bOncvMmTM5Oe5njsTkys6ielwWobgmPxz9mpjSIK6yetSO3VjV1TKwrJszEhIwkpMid0wD7fVgJ/gIx3vwbi8jnL/d2QAPkUZzz2c38Morr7B8+XJSUlI45ZRTOPnkk2UqQtHllZWV8frrr/Pmm29SUVHBhAkTmDt3Locffri0XrQCV2YGG+7L5tzDlmOqSMvw15XZ7Ppbf3r+3wrQNmrYQHbNTMWKgdxnt0fWMmqt9+/XBzspDr1+y77uzkqx/a6JXH762xgNMdVYPp5+ezoDnq9AaY3tc1F8eCI9v65DffZ1q8UjWk4bmitf/Smvvvoq27ZtY8CAAcydO5cZM2bg9XqdDq9DkEKDyAwdb7zxBi+//DIVFRUcddRRzJ07l5vH/9a51VAbKmIzPY2KY/tjBjUxJUE8OyuwC4vljIZoRnm9GMlJKLe72UxVOj6GQK9EvDvKsbcXdIkxO3/Jn8+rr77Kv//9b8LhcKQv+jnnkJ2d7XRoQrSqXbt28dJLL/Hee+9hmibHH388p512miMt612CUgRnjqM2MzKJisuvSfl8N5vnZTHlmNX09lUCkSKj+u5sXB+ucDDYyFpYG+4dhC+tHuvbeHqs1sTvCpB/so8BY3eilMZnhtlZlUTP33hh+RpH4+3ONJrffn4zr776KkuXLiUlJYXTTz+dU089lfj4eKfDc1S3LjTKysp45ZVXeP311wkGg8yaNYuzzz67fVbr3p+mzW3KwIiLRWVnogKhSHFRXy8tF+K/Um4PRowPFRcLLhdWZgqVg+MA8FTbxOypx7WzJDIbWSf/t6RNm58/O4eXX36ZvXv3MnXqVM477zwGDRrkdGhCHJJNmzbxwgsv8NFHH5GUlMQZZ5zBKaec0j5TpndVSlF1zgSs88qI80ROuBRXxZP1kAvz62/Ref3wZ8ZSeISb7I/8zbpFOUm5PWCoZutemT17sOn3fRiRvTv62Ncb+jL0lo1YlXudCFM0YfvCzLr7SN577z08Hg+nnnoqZ5xxBqmpqU6H5ohuWWgUFxfz/PPP884772CaJqeeeiqvXvs+Kmg6F5RS+4qLzDQCOSn4e7qxXZDy701YZeXOxSY6n4b1VYy+2VSP6EkoRqGNSCFrWBpfuUXMziooKOz0iUkbmstfPo8XX3yRwsJCJkyYwAUXXMCIESOcDk2IA7Ju3TqeffZZli9fTq9evTjnnHP44+nPo2zp831I9lNklFTHk/moF/OjjlFQHCh7yhjsO8qIcwcpq48lZJl4/5JKwqJvwOslODTSwutesblTTQbSlWiPxWkPT+eNN97AsixOOOEEzj//fNLT050OrV11q0KjrKyM559/nrfeegufz8eZZ57JXy96A2UZP75zG1JuD2ZOb/z9euDv6Sbs3ZdUfBUWvndWdKppSkXHorxezF4Z1A9Mw9/TjeVWKK1RNpEueYUBPNtKsAqLOvVEAhrNTe/9kr///e/k5+czceJEfvGLXzB48GCnQxPiv9q4cSNPP/00y5Yto1+/fvz0pz/l/uOecK7rbidm+Hzo4QPQZiSvKw17B8VRNbcanycEQG29l+w/uemsRQZEZsgKHHsY4ViTxC8LIBQCpfj2ilyCGSHccZG/NeXdWJL/JgsEOkmbNj/9y8m88sor1NfXc9JJJ3H++efTo0cPp0NrF92i0KisrOSFF15gwYIFuN1uzjrrrEjfuYSfOxaTcnswM9II9U2jtreXsG9fsWNYGm+lRUxBDWr77k5/xll0HGaPVOw+vfD3jiWYYDZf+K/GJm5rJXrnnk59BkyjufX9y3jmmWfYuXMnkydP5he/+AX9+/d3OjQhmtmyZQvPPPMMS5YsIScnhwsvvJBp06Yxy32206F1SobPR9GFY6icEIxUGIA330f/53Y1/6EdCHbZxWytaWPZdrHGMCMnJ8MBF4MfrMNe+82P7CnaWmPB8Y9//INQKMRpp53GueeeS1JSktOhtakuXWj4/X7+8Y9/8MILLwBwxhlncNZZZznXz1UpzNQU7P5ZVPeLJRhv0HjCygw2dGcpqEHtKMSqrJQzEKLNGHFxqF7phDKTqM/0YrkjCz266jUJn2ztEmuwaDTXv30Rzz77LEVFRUyfPp1f/vKXZGRkOB2a6OaKiop46qmneP/998nMzOTnP/85M2bM4HjPOU6H1qnVnDGBPbPDYERyp6vAy6A/7SS8c5fDkbUf5faw/bafYA2piT7mXRFP74c+l54RHYQ2bc7+8/G8/PLLKKU4++yzOeuss4iJiXE6tDbRJQsN27b597//zV/+8hcqKio47bTTOP/88zkj9RJH4lFuD0ZyElZuJpVD4rFdDU9o8NRqEvJrMbYWYJVXSHEh2p5SGLGx0btGQjx2egp1fRKJ21yOtfFbB4NrfVpprnztpzz77LPU1NRw1llncd555xHb5DMQoj3U1dXx97//nX/84x/Ex8dz4YUXMnv2bCkwWoGeOJrNP/egYiI/pnWdi6EPlWJt3upwZO3PGD2UksOT990PQsKuIOGYfeNQPZVBjE9WtX9wIkq7bE59eBoLFiwgOTmZSy65hJkzZ2IYznbnb21drtBYuXIljz32GJs3b2batGnMmzePC7Kvbv9ADBMzKRGVlICO9aFdBtrjonJwPGYIYnf7I/3ii0q6xJSjonNRXi/KNJvNdGb0TKV2WCaxO6rQ+Tu73BTKjWeRXnrpJeLj47nooos44YQTME0HJ4EQ3UI4HObtt9/mmWeeoa6ujrPOOotzzz2XU+IvcDq0TsmIi8PomYqVnhy5v7eOmqE9qM5yRbfpua4eY/FXDkXY8dhHH8aWM3zR1h6z1mDQI1uwioodjkxob5ijbhrFokWLyMvL44orruCwww5zOqxW02UKjeLiYv74xz/y0UcfMWzYMC6//HKuG/1rR2Jx9cpEJ8ShfZG5uiMzSim0y8CoqsfO3ynFhXCeUijTRLlcYJpYowZSPixylt9Tq4ktDOLZsAu7rLxTDxL/Lu2xmHr7WBYuXMiAAQO49tprGTVqlNNhiS5qzZo1PPzww2zZsoXjjjuOSy65hPMyL3c6rE7LSEig9IwRBJIV2gXKgqz3y7FXyxiE/8bw+dh5zVjqshq6T9mKfm+HcS/88r/vKNqNnRBkwFkZfPPNN0ydOpUrrriiS8xQ1ekLjXA4zCuvvMKzzz5LTEwMv/rVr3hg1pOOztbhysnGTomPFhe2x4X2GGil8OaXEN6+07HYhNgvw0SNG0ZlXhxhn4qOHTLC4K2ySdhYCTv3YFVVORpma7LjQww8J4MNGzYwe/ZsLr300i4/KE+0n8rKSh5//HHeeecdhgwZwnXXXceVw+5wOqxOTblcVM39CdV993UtyfjCj/nRV9LtuAX0UYeRf0oMtkuj3RpviUm/R9Z06sk/uhqNxk7zkzjRRX19PRdddBGnnXYaLpfrx3fuoDp1obFmzRoeeughtm3bxpw5c7jooouYk3ihs0EphSszAys7DcvnQpv7Ch6lNZ5tpVJoiA7LTExE98+mekACgSQDbYA2QStw1UPypjpcW/dgFZd0icSu0Vy54Kc88cQTmKbJZZddxqxZs7pcH1nRfmzb5p133uHxxx/Htm3mzZvHiSeeKDNJtYYjRrH76Hho+O8ZU6Tp8fLXXa6bZ5tRCrNHKqQkUd8/FaXBUxEgHOfGs6sisk1ZJVZFhbNxCrRpc9L8ySxYsID+/ftz/fXXM3z4cKfDOiidstCoq6vj8ccf5/XXX2fIkCFcf/31XDH0dkdjMuLiUL0zqB6ZRn2KQVyxhbs60t3ECNmYNQFUQTF25d4u1Q1FdE2N0y/XDe9FbaabcAyRVg4daeWI3x0mdntVpJWjurrTFx3abTH1jkh3qlGjRnHLLbeQnZ3tdFiik9m1axf33Xcfq1ev5rjjjuOyyy7jrJ7znA6rS1AuF9bEkdEiA8CzpZjwrgLnguoCzOGD2TanR3Sqc18ZZP5VWjk6CjsuxIBz0tm4cSOnnHIKl156aaebyKTTFRpfffUV9913HxUVFcybN48/n/GiY92klNuDmd6TuhG9Iz/GYkE3DK6NK7KI31GHuaccu7QM2+93JEYhDpWRkIA1oj9V/WMIxatoQtKmwgxoXHWa2KIQMVvLsHbs6tSF9P1f3sqDDz5IaWkpl156KXPmzJHWDfGjbNtmwYIFPP7446SmpnLzzTdz809+63RYQvwo5XJR9rPx1OREfrsoG/q+WYH99QaHIxONNJrLXj6HJ598kuTkZG699dZONVi80xQa9fX1PPHEE7z22muMGjWKW2+9lZ/nXONILMrtgVGDKD48EW0oaPgElda46iBpmx/3+l1YpaWd/kyvEI2U24MxsC91/ZOpznZheZsX+EZQ0+tfO7DLK9ChMDoc6pT//rWhOXH+0bz22muMGTOGm2++md69ezsdluigdu/ezX333ceqVauYM2cO8+bNk9mkROdyxCh2zIyPjs2L36lJfW65rLvRwWhvmKEXZ/P1118zd+5c5s2bh8/nczqsH9UpCo1vvvmGu+++m9LSUubNm8fjZ77kTCuGUrj65lB8TBZVuYABrhpFTIkmfk+Y2I2l6F17pPVCdG1K4cpIJ5SbScWQWELxkcHj3kpNj3c2oQNNZlSzrE7bf9pOCtJjhpe9e/dy5ZVXMnv2bJRybpIJ0bForXn33Xf5/e9/T1JSErfccou0YohOSXm9GAP6UtcviUCSibIh5bPIjIOd9fjdVWk0Vu96XEOD9OzZk//3//4fQ4cOdTqs/6pDFxq2bfPyyy/zxBNPMHDgQLY8X4Lhd2DkfUOBUXZUb/YONLC8GiOk8JZDyqYQscu+lZW8RbdkJCRAbhZVQ5LRCpLfXU/TQ4oOBtGBgIMRHhpt2sy453Defvttpk+fzvXXX09cXJzTYQmH1dbW8tBDD/HBBx9wwgkn8MHtX6Bs6WInugilCE8bS+UgD7ElNu6qML5V27BKy5yOTDSwfWEG/jSdzZs3M2/ePM4888wOeyKswxYalZWV/O///i/Lli3j7LPP5pJLLuEE77ntHoeZkkLNlEGUjHZhezTuakXCDpvUpXuwdhd26h9RQrQW5fVSNWcM2oCE/HrcO0rQdfXY1dWdesxGo1vev5QHH3yQlJQU7rrrLgYPHux0SMIhjS3sFRUV3HDDDUyfPp0ZxhlOhyVEqzIH5lJwYq/omLy4PTaJL30uJ1Q7EK00p/3hGF566SUmTpzIrbfeSnJystNhfU+HLDRWr17NnXfeSTgc5n/+53/4f0c93GbvZcTGopqcoVQeN1ZmSuR22KYuJ4FAcuR/WtyeEN4V32JV7m2zeITojMyhg8g/Mw3Lq1E60qXQUw3eCpuUryshfyd2ba3TYR4S7QuTe15Ptm7dyq9+9StOO+20DnsGSbQ+rTWvvfYajz32GAMHDuTOO+90bJygEG3N8PkoOW8MwaTIMc4IQe8XN0qrRgdkpQSIO1Lj8Xi48847O9wCtB2u0HjjjTf4/e9/z7Bhw7jrrrs4J/2yVn19IzYWFRuDahhAUzuqN/5UM/Kkjsy40Dj8I25PEFfVvhYLs6CUcGFRq8YjRFdQd9oEiscYYETW3AAIx2l6DS7G1orCwmQSV3nJXFqNsWFbp506USvNyY9M5pVXXmHWrFlcf/31eL1ep8MSbSwQCPDQQw/x3nvvcfrpp3PZZZc50sIuRHuypo2lfLCXcGzkoN7rsxpYttrhqMT+aI/FkIt7s27dOq655hpOOeUUp0OK6jCFRigU4tFHH+WNN97g1FNP5aqrruJ4zzmt/j5mRjoqNgYAHeOlYnQqtqthWjetI4UGkYIjfkc9RmBftw+j2o+1aUurxyREZ6fcHox+2VSOTWdvf4NwvCaYHqZfv+Jm27kMm+0lKXhXxtPr0zpca7Z2ytXGb3zvEh544AEGDhzIPffcQ8+ePZ0OSbSR0tJSbrvtNrZs2cKNN97IcccdJ12lRPegFGZCAio1mXBmMto0cG0qQFdXy6Q3HZBWmtnzj2LBggWceuqpXHnllbjdbqfD6hiFRkVFBXfccQfr16/n2muv5dFT/tpm7+XK6g2eyAdvx8VQcVhydO0LZUe6fQAYIU1Cfi1ojQpZGFV12GUVnfZMrBDtoiExBccNZMcML3HDK0iOrY8+3cNXi8eITJlYE/byze4MEj+MJf3TMuwt2zvVmCc7PkTS9Ei3ynvuuYdhw4Y5HJFobevWreO2227DNE3uuecerhr+/5wOSQjHmImJVMyOHOe8lRax2/dib9raJcbhdSVWRh0MrWf48OH8+te/JiUlxdF4HC80CgoKuOGGG6irq+Oee+7hutG/brs3M0xcfbKgobAI9Uqmqn+kdcMIN3Sbavg43DU2sVvKoawCe2+V/EcS4gAprxejbzY1Q3tQPNaFGlbN0IxCfOa+/0suwyLDW80efxKfbhhI9tsmCUu2YpWUOBh5y2m3xaBfZLB582buvPNOJk2a5HRIopV88skn3HXXXeTl5fGb3/yGs9MudTokIRwXOH48NdmR2T+VBenv5hPeU+hwVOK77MQg8VMgJiaGBx98kJycHMdicbTQ+Oabb7jppptISEjgwQcf5ILsq1v/TQwTZSiM+DhUUiI6PhbtMrBiPRj+MIY/CJaN3lMMtr1vRgXbxg4EZIYFIVqJmZFOzRH92DPRJHF4GbnJ5aR46kn17BskbmvFJ0X9KV+ZTv9/VqK/2drhWzm00hx1+3AWL17Mtdde26H6xoqD8+abb/Lwww8zadIkbr/9dk6MOd/pkIToEIzDhlEyPil6v+eXVeiv1jkYkfgh2muROTeWvXv3cv/99zvW6u5YobF8+XLuuOMOcnNzue+++zgj9ZJDe0GlQBmYqckon49Q3zS0S1GX7kGbCsutMCyNr7xhpUutiV29SypxIRzgysygZnxfCqYY5I4pYFRyAS4jMkAqw11FT1cVm/y9WLBlFKl/jyf+32s79KxVGs1Jj0zi1Vdf5Wc/+xkXXXSRzEjVCWmtefbZZ3nuuec47bTTuPLKK5nlPtvpsIToMMyUFKqOySOQZKANiCuy8L213OmwxA/QLptBF6WzZcsW7r77biZOnNjuMThSaHz00UfcfffdTJgwgTvvvJOT43524C9imJGiIiGeUGYygR5egokGoRiFNonMHNU4i1QDd63GVxEpNJSt8S7dKGMuhHCSUrh696JqQg67TwsysX8+k1M24VP7VhevtmP4d8lwtrzXn35/2054V4GDAf8wjeYXz5/G448/zty5c7nqqquk2OhEtNb87ne/Y8GCBfzyl7/kvPPOY6Z5ptNhCdHxNPz+0plpaJ8LY0uBLFrcgWlD85MbBvL5559z5513MnXq1HZ9/3YvNP7zn/9wzz33MG3aND6+azWKliVi5fZgJMajczLxZ8ZR38MkkGSgtI4O5obmA7q/W2jElNu46iIPmAEL12frOny3DCG6C+X2oIYPZMuZSYyatJkT01ZjYGMqTT93ZMzG65XjeOeVifR9tRhrcz7Y1vdfx+VydEzVFQvO56GHHuLUU0/lmmuuwTBkxeiOzrZtHnnkEd58801uvPFGfn/y/zkdkhCdg2ESmDUWAF9xPcbOYqyi4h/ZSbQ3rTRH3zGCxYsXc/vtt3Pssce223u3a6Hx/vvvc++99zJjxgwW3fHVfy8yDBMjLhaVnUntwBTqU02CSQqt2FdIEBmMRJP7htXkzncKjbgiC1dt5IeJuyqA/nJt6/xhQohW5crqTfnkPuydW8OFQ5YyJe6b6HMhbfJNoDf3rzqOvo8bGEtW7ys4DBM9cSSuynp0/k7sujpH4r/6zQt48MEHmT17NjfccIMUGx2YbdvMnz+ft99+m5tvvplHTnzW6ZCE6FT0UYdRlRtZm0xZkPpZAeHtOx2OSnyXRjP114fxwQcf8D//8z/MnDmzXd633QqNjz76iLvuuovjjjuO/9y2Yr9FhvJ6MXtnEs5IYu+AWOrTIn0Ao5vqyD/i77VYNNxXWmP6I4/FlFkoW+Mr8WNUNvTtrqzGblzVW9syk5QQHZzh86GHDmDTxfFcNfXfjI3Zhk+FiFNhhnti2BSq5eTPLyXnMRfmp2swe2Wy9/AsUOCqt4ndWom1cet+Wz7ampVejzW4mjlz5nD11VdLN6oOSGvNI488whtvvMEtt9zCw7OfcTokITod47BhVIxIjN5PXV4ia451UBqNNaga3SvA3XffzZQpU9r8Pdul0FixYgU33XQTU6ZM4fbbb+c411kN7x6Zc5/MNOoGpFLV10UooWGMBey3sDAaagMVjrRexJTZuGptYgqqUSELvasQLMuxM5lCiDagFK6+Oew6NZvDz/maO3v9m2xXfPTpLaEaZn9+GfH/jsdTo1F25KChbHDV2RjW/sdkGQkJ2LV1rV6IKK8XHQpz5WvnMn/+fH7+85/zi1/8olXfQxy6p59+mv/7v//jpptu4sQTT5SF+IQ4CGZaGpXHDsCOzHpLYr4f9ekqR2MSP0yjOfr/jWDJkiU88MADjBs3rk3fr80LjQ0bNnDNNdcwcuRIfvvb33KC7zzMpETs3Gz2DkmgLsMgHEPzVoumLRZW5MeCssFdo/FV2MTtrMO1swRdX4+1t0oGIAnRjZhpaey4aBDTz1jO7emL6WnGAZFi4+nyI3lt82i8nyUQvzsyXXX5cJMTT17K21uHk/5sDN53V4Jtodwe9p4xFle9JnH5TsIFu/e9iWFiDuyHvXX7Abd8NrbMYtvo2jrOf/honnzySa688krOOEN+yHYUr7zyCo8++ijz5s3jvPPOkyJDiIOlFGZqCmSmEciIx7BsjMVfOR2V+C+00oy5LpfVq1fzu9/9jqFDh7bZe7VpobF7927mzZtHdnY2Dz/8MHNG30nF+Axqsg3CcQ0BhJqPuWjsDqU0uKs1sSU2MYUBPPnF2BWV0lIhhAAi3apqThiN7/Ld/HXQiyyuz2F3KAULRWkogTc2j8T9ZQJJxxQyq/d6AHYHknnvs8PIe74Wy2tSODEWFBgBSF9Zj2vVt9i1dYSnHkb5MC+xxTbJH+cTLixq/t6xsehQGB0KNn88Lo7qWSPwlYfwFNVAMASWxcnXD+Cll17innvuYfLkye32GYn9W7x4MXfccQdnnXUWv/rVr2R2KSFakZmSgj0gC7NkL3ZRCbbf73RIYj+0oRl0SRoFBQU8+eSTZGZmtsn7tFmhUVdXx2WXXUYwGGRn3Qj2Dogl8J1V0JVuXmi46sBbqUnK9+PZVhr5ByqL5gkh/gvl9VI/YzQ7zwhz9qgv6emuAcBC8ecVU+i5yIvvnEJm9toQ3edfu0Zg/zMNf4/mXTW95ZrkrQHKhvuwGx43A5q0VbUYq79Feb2UnDqEiuEad5VB/6e37WsJUYq9502geIIGW+ErNei5Okz85kp0MMiEs2NYtmwZf/zjH8nLy2vHT0g0tWnTJq644gomTpzIp79Z1+KZD4UQLaNcLvzHjSEcY2D6Nb7ievhyvSNj5cR/p102Pea48Pl8/PnPfyY2NrbV36NNCg3Lsrjtttv4+uuv+fOf/8yMF17b94bWvoO6EQZvGcQXWsRvrUZtK8CuqZVB2kKIA6bcHkKTR7L1fDjnsC+wMFhx3VjMRStx9e/H1vN7M3LmRoYn7OH5d6eQvsLGdimCCYpgogKDfS2qjZNMRCeaAF+5jT/FoOaI+ujZEV3so9+bIdxL1sDoPDb9PA5t6shxrmH/uJ0mmcvrce2poM+kSsrLy3niiSfo2bOnQ59U91VWVsa8efNISUnhD3/4AyfF/tTpkIToepQiPG0s/h6RQRsuvybmvVXfawEWHYMdE8Yz2c/o0aO59957MU3zx3c6AG1SaDz99NP87W9/47777uOn//mMpieMzIDCsxcSt4eJ31CGvX2XrGUhhGg1yusldPQIisZ7yZ6/fN+JC6UwB/WnYHYG8QV2s5bSsM8gmKCwPTSfjKKx2NDgrtOoMNTkKAID/BjuyNzZdtggaZmPUCLUDghF9rUBS6HsSMGhQoqMzwGrnt7hlfTu3Zvf/e53uFyudvpURDgc5uqrr2b37t08+eSTnJvxK6dDEqLLUuOGU90/MmGHsiHxk3xZX6MDs5MDWKOq+NnPftbqE5e0eqHx5Zdfcv3113PRRRdx//oyggkaw1J4KiFpW5j49WXoHQXSZ08I4RgjIYHw6AH4073RLlKxxUE8O8opn9iLuoyGqbUBNHiqNK56jTYUKAjGK2r7aMKZQQy3TfJHPlLX1rHt5FhCPcPR/bAVKqzw7THp+0Y5ak8xlVN6EFO2lHPOOYdf/vKXTvz53dITTzzBSy+9xKOPPsp1o3/tdDhCdGlmWhqhwVkEUzxYXkXSF7tlbY0OLpxTg92vjocffrhVZ6Jq1UKjrKyMiy66iP79+/O+zsblh7hCi/j1peidu6W4EEJ0HEphpqcRGtSbQE8PCcu2Ey4sQnm9MGIgZaMSCaQojBD0XliMqq2nfkgm9elubDPSTBuKh1C8IueJtVhVVbj65lBwSg57R4QiLbkhRdIGF73/tg6rYQ0f5fUSHO/FZjPz58/n8MMPd/BD6B6WL1/ODTfcwKWXXsqz5y9wOhwhug0jNhYjIw38AcJFJTJOowPTaOxRVST2i+Xpp5+mR48erfK6rVZoaK254YYb2LJlC8888wznjbsHq7BYukUJITq2hvV8rOrqZt2pDJ8PPXwAVqwHY8lX0W1dWb2jBQdAyhfFWJu3NtuvbsYowjEGid9UYq/d/L3kqtGMuT6XjRs38te//pXk5OQ2/zO7q/Lycn7+858zePBg7r///n3rOAkh2o0aM5xQqg9PSS2qoBirrNzpkMR+aLdF/PE2AwYMYP78+a2y0GyrFRr/+te/eOCBB5g/fz63HfFga7ykEEJ0TA0Fh90jEXv1Nwc1M552W8TMDDFu3Djuuuuu1o9RAHDnnXeycuVK/vrXv3JmD+mqJoQTXDnZVI/rDYAR0sR+uinayis6FislQHh4ZXQh00Nl/PgmP664uJjHHnuME044QYoMIUTXpzXhXQXYX2846Om3Vcik9nP48MMP+eijj1o3PgHARx99xKJFi7jmmmukyBDCSU2Ok7ZbQa90B4MR/41Z4cUsiuGxxx6jqKjox3f4EYdcaGiteeihh/D5fHxwxxeHHJAQQnQXRqmXSZMm8fDDD1NdXe10OF1KdXU1jzzyCJMmTeK3M/7sdDhCdG9ao5r0INUemXGvIzO3xhMTE8MjjzxyyK91yIXGsmXLWLp0Kddccw3KapUGEiGE6BYUis8f2kAgEOC5555zOpwu5ZlnnsHv93PttdfKonxCOCy8ew9xy7cRl1+Nq0YGhHd0yjKoXBLis88+Y9myZYf2WocyRiMUCnHBBReQnp7O2kd3ycFcCCEOQji7FgbU8+yzz9KvXz+nw+n0tm3bxoUXXsjFF1/Mcz993elwhBBNKLcHM6c31NUTLi6Vmag6KI3GGr2X3sPSee6553C73Qf1OofUBPHaa6+xe/durrzySikyhBDiIJkFsWRmZvLYY485HUqX8Nhjj5GZmckZZ5zhdChCiO9oXCG8dkwf9IQRuPr3Q7k9DkclvkuhMDbHUVBQwIIFBz8t+EEXGnV1dTz//PPMnj2bSwfdctABCCFEd6e0ouiDGj7//HPWrFnjdDid2tdff83nn3/OvHnzmO07z+lwhBA/REEwxUPtkLRIC4focIw6N2q3l+eff576+vqDe42DffPXX3+d2tpa/v3/lh7sSwghhGhglHlxBTw8++yzTofSqT333HMMHDiQe475o9OhCCFaSBvSK6ajMnfGsbdyL6+//vpB7X9QhUZ9fT0vvfQSxx9/PCpgHtQbCyGE2EehYGsMX375pbRqHKQ1a9awYsUKfvazn0l3XiE6sno/RtB2OgrRAipgYhT6eOGFF6irqzvg/Q+q0Hj33Xeprq6W1gwhhGhFja0aL730ktOhdEovvPACubm50pohRAcX3lOI95N1xG4qxbM3hLKk6OjIzJ1x7N27l/fff/+A9z3gQkNrzYIFCzj66KOlNUMIIVqRQsFOL59++mmrLJTUnRQWFrJ06VLmzp0rrRlCdAK234/1bT7qs68hbGGmpYEhvys7IhUwMct9vPbaaxzoZLUHXGisWrWK7du3M2fOnAPdVQghxI8win3ExMTw5ptvOh1Kp/LWW28RExPD9OnTnQ5FCHEgtEYnxFI/ti/2kSNx9c1xOiKxH0ZBDPn5+axaterA9jvQN3rzzTfp06cPN/3kfw90VyGEED9C2Qb1m23efvttLEvml2+JcDjM22+/zXHHHccp8Rc4HY4Q4iBoQxFKcOMfkC7T3XZAaq8bV9DDW2+9dUD7HVCh4ff7+fTTT5k1a5Y0TQshRBsxi2MoLy8/4DNH3dWqVasoLy9n1qxZTocihDhU8vOyQ1Io9B43n376KX6/v8X7HVChsWzZMvx+P8/98tUDDlAIIUTLqBoXvXr14sMPP3Q6lE5h0aJF9O7dmyuG3e50KEKIg6Dq/BjWgfX9F+3PKPFRX1/PsmXLWr7PgbzBokWLyMvLQ/ldBxycEEKIllEoipfvZfHixdJ96keEw2E+/vhjpk2bJi3tQnRS4e078X2xhdgt5Zh+OeZ1VIbfhcvvZdGiRS3fp6UbWpbFF198wVFHHXVQwQkhhGg5o9xLVVUVmzZtcjqUDm3jxo3s3btXcpMQnZnWWBUVWJu2YH61CTO7F4bP53RUYj90sYsVK1a0+CRYiwuNzZs3U1NTw/PXvn6wsQkhhGghVeMmJiaGFStWOB1Kh7Zy5UpiY2O5ZtRdTocihGgFRmIC9QN6Ep4wFHNQf5TX63RIogmj0kNVVRXffvtty7Zv6QuvWLECn8+HqnYfdHBCCCFaRmlFcLfmiy++cDqUDm3FihWMHj1auk0J0VW4It3zLbeBv28KZu9MhwMSTalqNwZmi3NTiwuNtWvXMnz4cJSWg7kQQrSLShfffPMNti2r5u6PZVmsX7+e0aNHOx2KEKINKA26rMLpMEQTSitUlYsNGza0aPsWFxpbtmxh0KBBBx2YEEKIA2PUuqivr2f37t1Oh9Ih7d69G7/fL7lJiC5E+/2YoX0nVw50JWrRDqpMNm/e3KJNW1RoVFdXU1hYyCt3v3NIcQkhhGg5VRvpqtrSvrDdTePncuvR9zkciRCitVilZZifrSNmYxFmXdjpcMR+qFoXhYWFVFdX/+i2LSo0tm3bFn1hIYQQ7UOFDFJSUsjPz3c6lA4pPz+f1NRUVOiAZmoXQnRwOhQkvHMXrm92oPr0xkhIcDok0YSqi9QD27dv/9FtW3R0Li4ujrxwwDyEsIQQQhyo6j110WOwaK64uJiMjAynwxBCtBVt4+8VT+gngzCHD5YZqDoI5Y/UAy3JTS0qNEpKSoiJiUFZctZICCHak13bsoN5d1RSUkJaWprTYQgh2oiKjwfANhX+XvGYKcnOBiQiLIWB2bqFhhzMhRCi/amAQWlpqdNhdEilpaWSm4TownRcTPS2skEHgg5GIxopFGbY1aLc1KJCo7a2lt0biw45MCGEEAcobFC198cH3HVHtbW1vP7Ie06HIYRoI6rOj2qYgMqwbOyaWmcDEvuEob6+/kc3a9Ho7mAwCDLwXwgh2p+tCAYCTkfRIQWDQbBlbSchuqrwzl1491ah+/XG9rnRluV0SKKBDoPf7//R7VrUohEMBrHluxVCiHZnpwaorpUWjf2JFBpORyGEaEtWVRX26m8w8wtx9cpAuWQG1I4gHB/g/fff/9HtWvRtaa1B1ksRQoh2p8JKDr8/QBbyEqIb6ZlMfVYirj5puHeUEN69B+QY0OG1qEXD5/NhuNs6FCGEEN+lqjwkxMkc8vvj8/nAkB8aQnQHdqwHgHCci1DfNFAyE6qTXNVeZsyY8aPbtbjQUC7pByuEEO3O0Lg9cqZnf3w+H5hSaAjR1SmvFyveE71vhGykT7/DXODxeH50sxYVGrGxsWQM7HnIMQkhhDgw2m3TM02Ov/sTGxvLyVcd53QYQoi2ZmtUcN+ALLNMxq05TXk0ycnJP7pdiwqNtLQ0SkpK0NJTWAgh2pfXpmdPKTT2Jy0tTRYzFKIb0KEgxpcbiNlcjKsuDPU/PtuRaDsaTdgMtSg3tajQyMzMJBAIgEsKDSGEaE9mLPTo0cPpMDqkjIwMKTSE6CZ0KEh4+06MLzZAjA8jLs7pkLovl0ajW5SbWlRoZGRkAKB90h9OCCHai0bj6eGiV69eTofSIWVkZLBnzx5pbReiGzHi4/Dn9iA8Ng9Xvz4y3a0DdExkcb2W5KYWFRp9+vRBKYWOlVX7hBCi3XhtamtrGTBggNORdEj9+vWjpqYGPLKYhhDdhUpKQCuwvAb+AWkYCTIrX3vTsWEMw6Bfv34/um2LCo2YmBj69OnDybdMP9TYhBBCtJAdFzm5079/f4cj6Zjy8vIAuPs/1zsciRCiXSiF1TMxetcI2tjVMjC8vem4MNnZ2Xi93h/dtsWTEOfl5bFx48ZDCkwIIUTL6fgQiYmJpKenOx1Kh5SWlkZycrLkJiG6C2U0W6TPVeVHh6W3TXtTyTaDBg1q0bYtLjSGDh3Kpk2b0LI4khBCtAuVGmb06NEoJesY7Y9SimHDhrFmzRqnQxFCtAfbQn/1DTEb9mAGbIziCqcj6na0YWPFBjnssMNatH2LC42f/OQnhEIhdGLwYGMTQgjRQtrQqBSbMWPGOB1KhzZu3DjWrFkjJ8GE6C5si3DBblwrN6HjYjB8Pqcj6lZ0YgiNbv1Co2/fvqSlpTHn1zMPNjYhhBAtpBODhEIhKTR+xPjx4wkGg/zvZzc5HYoQoh0pnxd//x6EjhiGOag/yv3jq1SLQ2cnB0lNTaVPnz4t2r7FhYZSivHjx7N06VKZSlAIIdqY1SNAZmamDAT/EX379iU9PZ3PPvvM6VCEEO0pvQfaUFg+k0CfFJTH7XREXZ5GozLDHHXUUS3u0tviQgNg2rRp7Ny5Ex0nA2+EEKKtaDSJQ71MmzZNxmf8CKUUU6dOZdGiRXISTIjuwjAJ9di3YJ+rOohdV+dgQN2DjgsTdgWZNm1ai/c5oEJj3LhxJCcnM/d+6T4lhBBtRSeFqKysZMqUKU6H0ilMnz6diooKfvv5zU6HIoRoB4bHDU1OwrhKqprNRiXaht3TT1JSUovHZ8ABFhoul4upU6fywQcfyJkjIYRoI3avenJychg6dKjToXQKgwcPJjs7m4ULFzodihCiHdh+P+by9fh2VWP6LeziUqdD6vK00pAV5JhjjsF1AKuxH1ChAXDiiSdSWlrK7R9ecaC7CiGE+BHabaEyw5xyyinSbaqFlFKceOKJfPjhh/yz7EmnwxFCtAMdCGCv/QbvtlKM9J6oA/jxKw6cnRrAMiK56UAccKGRl5fHqFGjePXVVw90VyGEED/CyvBjGAazZs1yOpROZfbs2SileOutt5wORQjRjqy0JGqHpmMdNRJXdpbT4XRZOtvPqFGjDniCkgMuNADmzp3L119/jR0XOpjdhRBC7IdWGnICTJ8+ncTERKfD6VSSkpKYOXMmb7zxRuRzFEJ0eYbPRzApMq1tKM6F3TPJ4Yi6Jjs+hJUQYM6cOQe870EVGpMmTaJ3795MvHrEwewuhBBiP+yMerTb4rzzznM6lE7pzDPPpLS0lCtf+6nToQgh2oHRKwPb0/BTVoNRVO5sQF2U3aeOnJwcpk6desD7HlSh4XK5uOCCC/j444+lVUMIIVqBVhqd6+eYY44hJyfH6XA6pX79+nHsscfy17/+VVo1hOgG7LgYlB257a4OES4qcTagLsiODWGl+jn//PMxTfOA9z+oQgNgxowZZGVlcfgVMiuKEEIcKjuzHtsV5mc/+5nToXRqF1xwAWVlZVz2z3OcDkUI0cbsdRuJWbENb6kfd0kN2JbTIXU5dm4dvXv3ZsaMGQe1/0EXGi6Xi1/84hd8+umn2EnBg30ZIYTo9rTLJnaMYvbs2fTr18/pcDq1vn37MnPmTJ577jm0aTsdjhCiLWmNVVKCsWEb4R5xuLJ6g3HgZ93F/tnJAawUP/PmzTugKW2bOuhCAyKLJA0fPpzsk5NlXQ0hhDhIVk4toVCIiy66yOlQuoRf/vKXBINBTpo/2elQhBDtwOiZij/NS83YbOwjR2LExf34TuK/0mj0oDpGjRp1UGMzGh1SoaGU4pprrmHbtm1c+s+zD+WlhBCiW7JjQ9AnwE9/+lN69OjhdDhdQs+ePbngggt4/fXXeXzzfU6HI4RoQ8rlItAvcuzUBmiXgQ4EHI6q87N61RP2BrniiisOaU2nQyo0ILIi60knncRf/vIXtFf6xgkhREtpNAPOTScnJ4czzzzT6XC6lDPOOIOsrCzmz58vLe5CdGFmdm9C8ZFuPcoGb34JOhx2OKrOTXstPCPCnHrqqQwZMuSQXuuQCw2AefPmERcXx6jL+skBXQghWsjKqmPjxo3ccssteDwep8PpUtxuNzfffDPr16/nor/PdTocIUQb0S4TIxgZj+WuDmMV7HE4os5No7EGV5OQkMCll156yK/XKoVGQkICN998M19++SVXLpD5y4UQ4sfYMWHMwUHOOOMMhg0b5nQ4XdLIkSM588wzefrpp3lq64NOhyOEaAPWt/n4lqwnfnMl3m2l0ppxiOyMeqzEADfeeCOxsbGH/HpKa91qTRAPPvggH3zwAeFPYjHqD250uhBCdHXa0NjjKsnK68VTTz2Fz+dzOqQuKxAIcNFFF+H1etn+3F6UPvi+xkKIjsvskYp/XH98BdXobbuw6+qg9X7idgt2bBhrbAWzT5rNjTfe2Cqv2SotGo0uv/xy0tLSyD49EW3IlyuEEPtj5VZjJMBdd90lRUYb83q93HnnnWzfvp3jH5jodDhCiLagFNagbIIJJlVDkvEfPRQjJsbpqDoVbWj08Gr65vblyiuvbLXXbdVCIzY2lt/85jfs3r2bY38zrjVfWgghugSrpx+rVz1XXnklAwYMcDqcbmHQoEFcddVVvPHGG9y8cJ7T4QghWpmZmkJ9xr6TNr6iukiLhmgRjcYaUI2ZqFr9BFirFhoAubm5XHfddbz77rtcseD81n55IYTotOy4EOZoP9OnT+fkk092Opxu5aSTTmLGjBk8+OCD/HnTb50ORwjRiqwBWdiuSLdIM6Bhy06HI+pc7F71WBn1XHfddeTm5rbqa7d6oQFw/PHHM3fuXH73u9/x2+U3t8VbCCFEp6LdFskzTXJzc7n55psPaV5yceCUUtxwww1kZ2dzyy238FLJ406HJIRoDUrh2l2OrzyEsiF2Vw12dbXTUXUadlIAnVfHmWeeyfHHH9/qr9+qg8GbCofD3Hrrraxbt47AYq8MDhdCdFva0Ay6JI3CwkKefPJJ0tLSnA6p2yopKWHevHmkpaWx5ekylC0FnxBdgmHi6pOF9rix83eiQ0GnI+rw7JgwvqlBhg4dyn333YfL1fq/1dus0ACoqanh8ssvx+/3U/ZGCBU02+qthBCiQ9JorOFVuHvB7373O5nKtgPYuHEjV1xxBYcffjif/3YjCik2hOj0DBP7yJHU5PjwVNuRlo2vN8jMUz9AeyyssXvJGZjFY489RkJCQpu8T5t0nWoUHx/P/fffTzgcJuusBLTLbsu3E0KIDkWjsQZVQ88Qv/nNb6TI6CAGDx7M3XffzWeffcax946ThWaF6AJcfbKoyfGBgmCige0xpcj4AdplY4+uokfvFObPn99mRQa0caEBkJmZycMPP0x5eTkDLuyJNqXYEEJ0fRqN1a8GK6OeW2+9lQkTJjgdkmjiyCOP5NZbb+W9997jlN9PkWJDiE7M8PmoHZpBY+Okp8pGfb3J2aA6KG3aWCOriEuP4aGHHiI9Pb1N36/NCw2Avn37Mn/+fHbs2MGwy7LQhhQbQoiuK1pkZNdx9dVXM3PmTKdDEvsxc+ZMrrnmGl5++WXOfHymFBtCdFJGSjLhuMhPWmVD3MZSdCDgcFQdjzZtrFFV+NJdPPDAA/Tt27fN37NdCg2INFU/8MADbNq0icHzMqVlQwjRJWk0c/4wDSu7jquuuoq5c+c6HZL4L+bMmcOvfvUrnn/+eeb8YZoUG0J0QuE9hSR+8A1JG6uJLQxibdnudEgdjjZt8i7JwJfu4qGHHmLo0KHt8r5tOhh8f9avX88NN9xATk4OW54pRVntVusIIUSb0mhO/t1kXnnlFa6++mopMjqRV199ld///vfMnTuXt65dIgPEheiEzMREqmYOxVVrE7t9L/bmbTL7FJExGYMuSmf79u3Mnz+/XccLtnuhAZEZP66//nrS0tLY+eJemY1KCNHpaaWxBldhpwW49tprOfXUU50OSRygN998k/nz5zNr1iw+vGMlSkuxIUSnYZiEpx5GVT8PWoEZgp7/2U64YLfTkTlKeyzs0ZExGQ888EC7tWQ0cqTQANi6dSs33ngjhmFQ/k5Y1tkQQnRa2rSxhldh9LC54447mDp1qtMhiYP0/vvv89vf/paxY8ey6vf50uouRCehxg2nbFQi2gCloeeKysj0tt2YHRvGHl1FWlYP5s+fT58+fdo9BseOoP379+fPf/4zsbGxeKcEmP/V7U6FIoQQB027LfpdkIKvl4sHH3xQioxObsaMGTz44IOsXbuWfhekyAriQnQCZloalUMS0A2/auMKw+j1W5wNymF2YhDv5AB9B+Xwpz/9yZEiAxxs0WhUXV3Nbbfdxrp167j++ut55MRnnQxHCCFazI4LkTzTxLZtHnzwQQYOHOh0SKKVfPvtt9x4442Ypsm9997LFUPlZJgQHZVyezD698HfN5lwrEH80m1YRcVOh+UYK6MeNaye4cOHc++997bpOhk/xvFCAyAYDPLII4/w9ttvRwbiXbdE+sYKITo0q2c9xig//fv359577yUtLc3pkEQrKyoq4vbbb2fbtm3cfPPN3D/zCadDEkL8F8rtIThlJIFUN/HbajE37cCq3Ot0WO1GK42VW43Vu56TTjqJa665Brfb7WhMHaLzqcfj4aabbuKaa67h9ddfZ/gVWbxc/pTTYQkhxPdoNHP/dCzhIVVMnTqVP/zhD1JkdFEZGRn88Y9/ZMqUKfz617/mtMeO4b3QS06HJYT4Afb4oVQM8VKbaVB8eAKhEblOh9RutMtmxJXZkBPkuuuu44YbbnC8yIAO0qLR1KpVq7jjjjuIiYmh7L0gRo3zH5IQQkBkPIY1tBqdHOLSSy/lrLPOQilpfe3qtNb84x//4PHHH2fs2LGsfmwbKiSzJQrRkZhDB1E0uSeWN3JMTtkUwvvBV+hw2OHI2p6dEMQeXkN8j1h+85vfcNhhhzkdUlSHaNFo6rDDDuOpp54iJSUFe9xefvH302QBJSGE4+ykAPHH2yT1i+Ohhx7i7LPPliKjm1BKcfbZZzN//ny2bNlC/PE2v11+s9NhCSEamImJFB+5r8jwVmhilm3q8kWGRhPOqsUeW8WQ0Xk89dRTHarIgA7YotEoHA7z1FNP8eKLLzJhwgS+enQrKtTh6iIhRBen0Vh9arH71jFu3Dhuv/12UlNTnQ5LOKSsrIx7772XFStWcP755/OPef+Wxf2EcJjyelFD+uPvFU8o3iDpk22Ei0vBtpwOrc1ol401tAorKcC5557LxRdfjMvV8ZaK6LCFRqPly5dzzz33YBgG1R/bGJVep0MSQnQT2hdm8IW9Wb9+PRdddBHnnnsuhiEnPLo727Z54YUXePrppxk6dCibntuD8ne8BC9Ed2P4fFTPHk1tpom7RpO01Y+5dE2Xa9mwUgIkTTaxLIvbbruNCRMmOB3SD+rwGfPwww/nmWeeYcCAAYRGVDLjvvFo03Y6LCFEF6bRWL3qUEfVUFZWxqOPPsr5558vRYYAwDAMzj//fB599FHKysowjq7l0pfPlm6+QjhIeb1UnTSa8iEmgWSozVJYXqNLFRnatAkPqiI8vJIBAwbwzDPPdOgiAzpBi0YjrTVvvfUWjz32GAkJCdx88838z4QHnA5LCNHFaK/F8F/m8NVXXzFnzhwuvfRSYmJinA5LdFB1dXU88cQTLFiwgMMOO4xbbrmFC7KvdjosIbodfdRhFEyJRavIyuBpq0L4FnadweB2UoCUYz1UV1dzxRVXcOKJJ3aKcYKdptBoVFhYyP3338+KFSs46aST+Pf/LENZcpZRCHFoNBq7Vz3uEWGSkpK4+eabGTdunNNhiU5ixYoV3H///ezdu5df/vKX/PmMF2XshhDtxBw+mIIZPQjFRe6nfR0m5r2VXaLI0KaNlVuDlVnP2LFjueWWW8jMzHQ6rBbrdIUGRFo33nzzTf70pz/h8/moXmZhlPjkoC6EOCh2fIj+Z6WxadMmTj75ZC699FLi4uKcDkt0MnV1dfz5z3/mjTfeYPDgwWz9R4lM0S5EOzB8PlRSInZ2GrV94nHVWXiL6yPP7SrGKilxOMIDp9HYaX7iJxgEg0HmzZvHKaec0um68HbKQqNRSUkJf/zjH1m0aBFjxoxh7V92YNTLgDwhRMto08bqV4vdu54BAwZw/fXXM3z4cKfDEp3c2rVrefjhh9myZQunnHIK79z8qbS8C9EOzEH9yT8nk1BSZCyvu9qg/193E966zdnADpAdE8bOq8FKCHDMMcdwxRVX0LNnT6fDOiidutBotHz5ch555BGKioo466yzePmKhXJQF0L8II3GTveTeISL+vp6LrroIk477bQOOTWg6JzC4TCvvfYaTz/9ND6fj0svvZSHZj8tLe9CtBEzbwD552QQStxXZOT+owRrw2aHI2s5bdpY2bWo3CAZGRlce+21HH744U6HdUi6RKEBEAgEeOGFF/j73/9OXFwcv/jFL/jDnL/JQV0I0YydFKTfaT3ZvHkz06ZN4/LLLyc9Pd3psEQXVVJSwmOPPcaHH35IXl4el19+OTeN+1+nwxKiS9lfS0ZnKjI0GjuznvifmNTX13POOedw3nnn4fV2/iUdukyh0aioqIinnnqKhQsXkpuby69+9Stunzjf6bCEEA6zfWGOuHYYS5YsYdiwYVx++eWMHDnS6bBEN7F69Woee+wxNmzYwNFHH81ll13GL/pe53RYQnQJrpxsKidmY7sgkKTQSpG4MzIQ3Aja+Bavxfb7HY5y/+zkANknpZCfn89xxx3HJZdc0qVOfnW5QqPRN998w2OPPcbXX3/N+PHjWfXUFhmUJ0Q3pD0W4exaVE6Qnj17cumll3LMMcd0imkBRddi2zYffvghTz75JCUlJZx88sm8fcsSVMh0OjQhugQzI538ywYSyPWDAh0w6fs6eN/5EjrYz107PoSdW4eV5Gf06NFcfvnlDBkyxOmwWl2XLTQgMjvVJ598whNPPMGOHTs4+uij+fzR9Rh1UnAI0dVpV6Svq9k/jNfr5dxzz+X000/vEk3RonMLBAK88sor/P3vfycYDDJnzhwWXPshKixjC4U4WHriaLadEku4dyByP2DSdwF43+1YRYYd21BgpPjp27cvF198MZMnT+6yJ7+6dKHRKBwO88EHH/Dcc8+xe/dupk2bxifzV8sMVUJ0QZHBdHV48myUUpx55pmceeaZxMfHOx2aEM1UV1fzz3/+k5dffhmtNXPnzuWfV/xbCg4hDpA+6jA2/9SDio10l9KWIvstF/H/XguWhdYaHQg4GqMdE8buV4vVw09WVhYXXnghxx57LKbZtVs0u0Wh0SgcDvPee+/xf//3f5SUlDBt2jQ+nv8VRq20cAjR2Wm3xem/n8kbb7yBZVmcdtppnHPOOSQlJTkdmhD/1d69e3nxxRd57bXXME2TOXPm8M8r35MuVUK0gHJ7CBw7mmBCpECvyTJhagW1tT60DdpWpL/vIen5ZY7EZ8eFOPq60SxevJi0tDQuuOACZs2a1W1mOexWhUajYDDIO++8wwsvvEBhYSETJkxg5VObUFVumaVKiE5Ge8Mcf8/RvPvuu7hcLk455RTOOussUlNTnQ5NiANSXl7OSy+9FC2WTzjhBN65bQkq0D1+kAhxqMy8AWy4NZm+WWUAhGyDqv9kkv2Hle06GFyj0Ykhxlw8iOXLl9OrVy/OPfdcjj/+eDweT7vF0RF0y0KjUTgcZtGiRfz9739n69atDB8+nHPPPZe7p/xeCg4hOjg7LsSUG8eyaNEiEhISOOOMMzj11FNJSEhwOjQhDkl1dTULFizglVdeoaqqimOOOYZzzz2Xy/JudTo0ITompQgdO5b884gWGdUBD6GPepL9zAZUSqRlu35gTzwfrkKHw20ShkZjpwYYfEY269atY8CAAZx33nlMnTq127RgfFe3LjQaaa1ZtmwZf//731m9ejVZWVkULtmLWRQjC/8J0YFoNHaPAMPP7sfXX39NRkYGZ599NrNnz8bn8zkdnhCtyu/388477/DSSy9RWFjImDFjWPPCVowyr5wME6IJV04228/tg9Uw14erDsITqgkGXHh9IY7Kyefbqp6o+3vi/mBFq7+/Nm2sjHoyjk5k9+7djBw5kvPPP58jjjiiyw7ybikpNL5j/fr1vPLKKyxatAiPx8OsWbP41+0fy8BxIRykXZGDeM8j4igqKmLUqFGcfvrpHH300d32LJHoPsLhMEuWLOHVV19l9erVZGRkMGfOHJ75+asycFyI7zAOG8Y3V8Zy3rjPMVVkAb8VFX2o/W0Wnn9/CUqhTBOUgbYssK2Dfi87JozVqw7vAAiFQkybNo25c+cybNiw1vpzOj0pNH5AaWkpb775Jm+88QYVFRWMHz+er/66CaPci9LduzoVoj1oNDohhJ3px9XHxrZtpk+fzmmnncbgwYOdDk8IR2zcuJHXXnuNDz74AKUU06dP5/3/XYaqcUkrh+jeDBNr8mg8dxbSP74MG8WyPX2p3JHM4Mf3onbsBkNBw8kpXVePXVd3wG+jVaR7lO4dwEryk5KSwimnnMLJJ59Mz549W/uv6vSk0PgRwWCQRYsWsWDBAtavX09KSgqzZs3ilRsWSiuHEG1Au2ysdD99ju1Jfn4+mZmZzJ49m5NPPpmUlBSnwxOiQ6ioqOCtt97irbfeoqioiNzcXE466SQeP/dFaeUQ3ZKZkU7prAFoE9KWloJlQ3klqO/8f9D2QRUZti+MnVlPwggPlZWVDB8+nJNPPpljjz222w3wPhBSaByALVu28Pbbb7Nw4UKqqqoYPXo0J554Ig/Ofgply5kkIQ6WRqOTgky9bjyLFy/GsiwmTZrEiSeeyE9+8hMMQ344CbE/lmWxYsUK/vWvf/HJJ59gGAaTJ09m9uzZ3Dz+t9LKIbotIy4OFdMwdk9rCIXRloUOBFo8GFwbNnaPACPO6s+qVatISEjguOOO46STTiI3N7cNo+86pNA4CIFAgCVLlvCvf/2LlStXEhMTw9FHH83MmTO5beKDcmAXogU0Gh0XZu79M/nggw8oLS0lOzubE088kVmzZsn0tEIcoIqKCt577z3efvttduzYQVpaGsceeywzZ87k0rxbJDeJ7sMwMTxudDhSXBzIyuAajU4OMvXa8SxZsgS/38+YMWM48cQTmTx5Ml6vtw0D73qk0DhEu3fv5oMPPmDhwoXs2LGDlJQUjjnmGGbOnMmVw++QA7sQ36G9Fhf+ZS4LFy4kPz+fpKSk6I+hoUOHdvsZOoQ4VFpr1q9fz8KFC/nwww/Zu3cvubm5zJgxgxkzZnB+ryucDlGIDkWj0fFhTrnnGP7zn/9QUVFBnz59OO6445g+fTq9evVyOsROSwqNVqK1ZtOmTbz//vt88MEHlJeX07t3b6ZMmcIrN/9bBuqJbk37wlg9AuSdkMOGDRvweDzRVsDDDz9cZo4Soo2Ew2G++OILFi5cyCeffEIgEGD48OFMmTKFv1z4T1RAVh8X3VN0wpGeAdLGJVJYWEhqamr0xFdeXp6c+GoFUmi0AcuyWLlyJR999BFLliyhsrKS9PR0Jk+ezBv/7z+yArnoFuyYMHZPP/2n92bz5s14PB4mTJjAlClTOOqoo4iLi3M6RCG6lbq6OpYsWcLixYtZvnw5wWCQvLw8pk6dyrO/fBXDLwW/6NoaV+y2evrpMTqekpISUlNTmTRpElOmTOGwww6TE1+tTAqNNhYOh1mzZg0fffQRH3/8MWVlZaSmpnLEEUew8KFPMSo9siig6BK0ipwdOv23s/jss8/Yvn07MTExTJw4kalTpzJhwgRiYmKcDlMIQaToWLp0KR9//DFLly7F7/fTr18/Jk6cyCu3voeqdstU7qJL0KaNnRxk5vVHsXTpUioqKkhLS2Py5MlMmTKFkSNHYprSstdWpNBoR7Zts27dOj755BOWLl3Ktm3bcLlcjBo1iokTJ/LkL15C1ZvS2iE6De22sVMCTJo3ji+++IKamhpSUlKYMGECkydPZvz48TJwTogOzu/3s3z5cj799FOWLVtGRUUF8fHxjB8/nokTJzL/5KdkylzRaWg0OsbCTg0w6rRBrF69Gsuy6Nu3LxMnTmTKlCkMHTpUZjNsJ1JoOGj37t0sW7aMpUuX8tVXXxEMBsnKymL8+PGMGzeO38x4VA7uokNpbLU47+FTWLZsGRs3bkRrzZAhQ5g4cSJHHHEEgwcPlgO4EJ2Ubdts3LiRpUuXsmzZMr755huUUgwdOpTx48czduxYbvzJvdLaIToUbdrYSUFOuu0Yli1bxp49e/B4PIwZMyaam3r37u10mN2SFBodhN/vZ+XKlSxdupQvv/ySgoIClFIMGjSIcePGMW7cOP7nyAdkvQ7Rrhpn4rjwT6ezcuVK1qxZQyAQICEhgZ/85CccccQRTJgwQaaiFaKLKisr4/PPP2fZsmWsXLmSqqoqvF4vI0eOZOzYsYwbN05mWBTtThs2OjHE6fcez8qVK9m0aRNaa3r16sWECROYOHEiY8aMwefzOR1qtyeFRgdVWFjIypUrWblyJStWrKCsrAyXy8WwYcMYPXo0L97yFkaVW8Z3iFallUbHh7ATQkw4fxRff/01tbW1xMTEMHr0aMaOHcvYsWMZOHCgtFoI0c3Yts23334bzU1ff/019fX1xMfHc9hhhzFy5Ej+culLqBoZ3yFalzbtyAxRiSGGze7P+vXrsSyLHj16MG7cOMaOHcuYMWNkGtoOSAqNTkBrzY4dO1ixYkX0rHJFRQUAubm5jBgxgncfWoxR5Qa/jPEQLafdFnZCCJ0YYtjxA9i4cSPBYBCv18uwYcOiB/AhQ4bITBxCiGbC4TAbNmyIFh4bNmzA7/fj8XgYPHgwI0aM4OU73sGo8kg3YNFiGo32WejESGHRd2Im27ZtQ2tNUlISY8aMiZ70ysnJkSloOzgpNDohrTUFBQWsXbuWNWvWsHbt2uh/wpSUFIYOHUpeXh7P3/Q6Ro0LFZTZFETDGaG4MHZ8iGPmTWT9+vUUFBQAkJaWxsiRIxkxYgQjRoxg4MCBUlgIIQ5IOBzm22+/bZabSkpKAMjOzmbIkCEMHjyYJ+e9gKp1SYu8AEB7LOy4MDo+xIRzRrNu3Tr27t2LUop+/fpF89KIESPIzs6WwqKTkUKji6iurmbdunWsXbuWb775ho0bN7J3714AUlNTGTx4MHl5efz95tcxat0QMKTlowvTpo2OjxQVUy+ewKZNm9i5cycAHo+HQYMGMWTIkOjBOyMjw+GIhRBdUVFREWvXro3mpm+//ZZAIABATk4OeXl55OXl8ZdfvRQpPqTlo8vSaPDY2PEhdHyY8WeOZNOmTZSXlwOQmJhIXl5eNC8NHTqUhIQEh6MWh0oKjS5Ka01xcTEbN25k48aNbNq0iY0bN1JZWQlAXFwc/fr1o3///uTm5vLnS/6KqnNBSAqQzkSbNjrGQseFOe22WeTn57Nt27boWUSfz8egQYOiyTwvL4++fftKa4UQwhHhcJgdO3Y0y0vffvstfr8fgB49epCbmxvNTQ+f81Rk2ndp/eg0NBrcNjo2jB1rccI1U6O5qaamBoDk5OToCdDG64yMDGmt6IKk0OhGGouPLVu2sHXrVrZt20Z+fj7bt28nGAwCkJSURG5uLjk5OWRlZZGdnc3dJzyC8psy45VDNBq8FjrG4vK//JyCggJ27NjBtm3bKCoqAkApRe/evenXrx+5ubn069ePvLw8cnJyZCEiIUSHZlkWO3bsYOvWrdHctHXrVnbv3k3jT5TMzEz69etHdnY2WVlZ5OTk8D9TfgsBGZfoFG00jKXwhbnkD+eya9cuduzYQX5+PlVVVUCkBb1Pnz7R3JSbm0teXh5paWlSVHQTUmgIwuEwe/bsYevWreTn55Ofn09BQQG7du2irq4uul1aWhrZ2dlkZ2fzzh8WoQIGKmCiAiYEDZll5CBFz/54bbTXQntt8IX5yZxRFBQUsGfPHizLAsDlctG7d2+ys7ObFRV9+/aVafyEEF2K3+9n+/bt0by0fft2du3axZ49ewiFQkDkmNirV6/oibEFD7wXzUsqYEgr/SHQKtLVKZKXIrlJ+8KMmjWEgoKCaMs5QExMDNnZ2eTk5EQLitzcXHr16iUt6N2cFBriB2mtqaysZNeuXdFLYwFSWFgYPWMBYBgGPXr0ID09PXp55b63UUEDFTIihUioex30NRpMjfbYkULC3XDtsZl+ydEUFxdHL41JEyJngHr37k1WVlY0eTZep6enSwuFEKJbsyyL4uLiZjmp8VJUVBQdAwLgdrub5aX09HRevOv1SC4KGvuuLdW9ctN3cpJ22+CxmfzTCdG8VFZWhm3b0f3i4+Ob5aSmt1NSUqSFQuyXFBrioNXV1TX7sVxUVBS9FBcXU15eTn19fbN9DMMgKSmJlJQUUlJSSEhIID4+nncf/xDCBiqsIKzAarxtRLps2QoswG6/ZKDRYACGBkOjDQ0uDS4bbTZcuyKPadPmmJ8dRXV1NRUVFVRUVFBZWdmsgIDI2bfU1FQyMjK+l/zS09PJyMggKSlJDthCCHEQtNZUVVU1y0VN81NJSQkVFRXfOza73W6Sk5NJTU0lOTmZ+Ph4EhISeOsPC5vkpoZrq6EwsRpyk63App1zU0N+MhtzU0M+Mu1ITmqSq6acewRVVVWUl5dTUVHB3r17+e5PP5/PR8+ePb+Xm5rej42NbZe/T3QtUmiINuX3+6MHt8brxtuVlZVUV1dTU1MTva6pqYl2E/ohHo8Hr9eL1+tlb2E1aJpdtK2a3NZgAypyUYbad1s1Pq4j10akz2lcSgx+v7/ZWbEfEh8f/71LSkpKNFmlpqZGi6rU1FTi4+OliBBCCAdprampqWmWl5rmp8rKymg+asxNtbW13/tx/l1erxefz4fX66Vi9959eclW6GiOiuQkrdmXm4zGfLSf/NRQUGhl40v0EggEvlckfZdpmt/LS4mJic1y0XfzU0xMzCF/rkLsjxQaokPRWlNfXx89yNfW1hIIBKI//P1+//duh0IhbNvGtm0sy4peN72tlMIwDAzDwDTN6O2m9z0eDz6fL1rINCaMppemB+7Y2FjpxiSEEN2AZVnU1dVFi4/6+vr95qRAIEAgEKC+vv57eahpnmq83zQX/VB+asw/P5SffD5fs9wUExMjJ7REhyGFhhBCCCGEEKLVycTUQgghhBBCiFYnhYYQQgghhBCi1UmhIYQQQgghhGh1UmgIIYQQQgghWp0UGkIIIYQQQohWJ4WGEEIIIYQQotVJoSGEEEIIIYRodVJoCCGEEEIIIVqdFBpCCCGEEEKIVieFhhBCCCGEEKLVSaEhhBBCCCGEaHVSaAghhBBCCCFanRQaQgghhBBCiFYnhYYQQgghhBCi1UmhIYQQQgghhGh1UmgIIYQQQgghWp3L6QBERFFREZWVlU6HIcRBSU5OJiMjw+kwhBCtTHKT6MwkNzlPCo0OoKioiDNOOwNMpyMR4uD4fD7+9re/yQFdiC4kkpvOBFM7HYoQB0Vyk/Ok0OgAKisrwQT35mRUvQdlKDAMUAplGqAMMCP3Gx+PXisFhopsYxigiGyLAlNF7isDrVSko5xSDbebXDdsjlJoI7KPVg2P03DdsI1WRLYhcq1Vw+PR51X0vm7YHkXkffjutg3PN97/7vNEnou+xnf2JRJGQ5w0+Tt09HX37av3xQpg6OjjNIkher/htmq40PARKzSqYV9DaRSR26axb1uj4RL5eG0MpSPPE7mYRuR5U9kYDfeV0riUHXm+YR8j+piNS2kMZeMyNAZ2dFuXsjCVRqnIYyYaFxZKadzKwmjYxlCRx03shte1oq9jNm6DxkXkvlIaNxpDgSt6rTAVuDBQKFwYGCh27fbwv39IobKyUg7mQnQhkdyk9+UmszEvmQ3HTTOSf/ablxrzkUnDAbNJruI7uakhb5iRg28kD/1AbmrIO425Jpo/GvMRTbZp3L8h/3wv9zTNTd/JWfveez+5qek2TfZt9tx3riMd1fX3c1jT3NQ0H6GbfE40yU0N+agxPzVs0zRXNeYmZTTcVjaqMU+hMZWGhhyz77HGbRrykrIxFNF81DQ3uZpug8ZlWA3bWpH80SQ3uVQkH0XyT5N81JBzmuYml7IjeY5912bjfXTD/jYGRHIi4FYKBbiUwmzISwqFgaJgt5d7/5AsuclhUmh0IKrehVHXUGiY5r4DuhEpNFTTgqPh+YYjQ/NiREeuNfsO+Fo1HIENI/J4w8/eyHXjQbtxe75/3bQgMVTzawWYTYqQpoXGd5NAs8doVhB8v2jZ9xzfez2aFxrNXk9/b9/mB3P2FRoN19poLCb2U2g0eU4pjdG00Gg8uDd7LnJgj7y+HUkMRqQwiGxj7ys0Gg/aDUWFoRoPtpHCwt3wWPTasDGwI0WE0riVangdhVuBiW7YFjwNX51bRRKLW9mY2A23Iwd2d0NicKtww3XkvqE0HiKv40ZjKnCjMJXC3VBguJWJgcJQMtRLiK4smpvMSGGhGvPP/u43y0sKbHNf4WEotGFEfrk3zU2qIRdptS93ETkZphsKjaa5qGn+0Wbz+81uN9Q43y08ormiaW76gRyjjf0UGvvbpmnO2V8+a8xD381hTXOT0fTEl47uoxqumxUaRtNCI5J7mhUaDY/phpyjFKiGAkFHt22SmxrzktFYPDTNS7pZbnIbVrTAMBuvlcaljOjJrMbc5FY05DDdkHNUQw6ioVjZl5vcyorsw3euG3MXjdtq3A2FhkephjxnYKJwKwOjIUe5lHQT6QjkF4IQQgghhBCi1UmhIYQQQgghhGh1UmgIIYQQQgghWp2M0ehAdEwYm2D7DAb/zhiNxk6oWiuwGwaD0/hYw/M2+/q/QvM+sVZjN9vG/rI0GesAqpsNBlcNg8FRjWM0NDoyGga7YRyHpezIYw376oYB3laTweBWw2Dw0AENBm8YzN3wlbuUahjMbWBCQ79bs6EPq2oYYKcaBoObBzEYXA4jQnRl0dzUVoPBGycR+W5uik521SQ30TDeQjfkGk3zcRk0uW0RzT+Rx2lyfN/3XHcZDG40TkrSOD6jSW7SysZWYBkNealhrJ9uMhi8MTdZBzUYvHHikYZ8omgY47cvN7kUGErhQjUMBjcOcTC45KaOQL6FDsC2bVwuF6FBlc4F0bSY+C+a/L4XB6iFH3Erapbh2pTP5yM5ObnN30cI0X4kN3UPGgg33A61yzsq2uvnp+Qm50mh0QEYhkE4HOb222+nb9++TocjDtL27du55557uuX3KIsiCdH1SG5qXd05R7SFlnyekpucJ4VGB9K3b18GDx7sdBjiEMn3KIToSuSY1rrk82xd8nl2bDIYXAghhBBCCNHqpNAQQgghhBBCtDopNDqAHj168POf/5wePXo4HYo4BPI9CiG6EjmmtS75PFuXfJ6dg9J63wRyQgghhBBCCNEapEVDCCGEEEII0eqk0BBCCCGEEEK0Oik0hBBCCCGEEK1OCg0hhBBCCCFEq5MF+xwUDAZ5+umnWbhwIdXV1QwYMICLL76Y8ePHOx2aAOrq6njppZdYv349GzZsoLq6mltvvZXjjz/+e9tu27aNP/7xj6xZswaXy8XEiRO54oorSE5Obradbdu89NJLvP7665SXl5Odnc3555/P9OnT2+mvEkKI/05y04+T/NC6NmzYwHvvvcdXX31FYWEhiYmJDB8+nIsvvpicnJxm28rn2blIi4aDfvvb3/LPf/6TGTNmcNVVV2EYBjfddBOrV692OjQB7N27l+eee47t27czcODAH9yuuLiYK6+8koKCAi655BLOPvtsli5dynXXXUcoFGq27VNPPcXjjz/O+PHjufrqq8nIyODXv/41//nPf9r6zxFCiBaR3PTjJD+0rhdeeIHFixczbtw4rrrqKk466SS+/vprLr74YrZu3RrdTj7PTkgLR6xbt05PmjRJv/DCC9HH/H6/Pvvss/Wll17qYGSiUSAQ0KWlpVprrTds2KAnTZqk33nnne9t99BDD+np06frwsLC6GNffPGFnjRpkn7jjTeijxUXF+tp06bphx9+OPqYbdv68ssv16eddpoOh8Nt+NcIIcSPk9zUMpIfWtfq1at1MBhs9tiOHTv0scceq3/9619HH5PPs/ORFg2HLF68GNM0Ofnkk6OPeb1eZs+ezbp16ygqKnIwOgHg8XhatBDQ4sWLOfLII8nIyIg+9pOf/IScnBwWLVoUfeyTTz4hHA4zZ86c6GNKKU499VRKSkpYt25d6/4BQghxgCQ3tYzkh9Y1cuRI3G53s8dycnLo168f27dvjz4mn2fnI4WGQzZv3kx2djZxcXHNHh86dCgA3377rRNhiQNUUlJCRUUFgwcP/t5zQ4cOZfPmzdH7mzdvJiYmhr59+35vu8bnhRDCSZKbWo/kh0OjtaaiooKkpCRAPs/OSgoNh5SVle33bEjjY6Wlpe0dkjgIZWVlAD/4XVZVVREMBqPbpqSkoJT63nYg37kQwnmSm1qP5IdD8/7771NSUsIxxxwDyOfZWUmh4ZBAIPC9ZkKINMc2Pi86vsbvqSXfpXznQoiOTo5TrUfyw8Hbvn07jzzyCMOHD2fWrFmAfJ6dlRQaDvF6vd+bIQGIVuNer7e9QxIHofF7asl3Kd+5EKKjk+NU65H8cHDKysq4+eabiYuL4ze/+Q2maQLyeXZWUmg4pEePHtFmwKYaH+vZs2d7hyQOQmMz7A99l4mJidEzKD169KC8vByt9fe2A/nOhRDOk9zUeiQ/HLiamhpuuukmampqmD9/frO/Wz7PzkkKDYcMHDiQXbt2UVtb2+zx9evXR58XHV9aWhrJycls3Ljxe89t2LCh2fc4cOBA/H5/sxk0QL5zIUTHIbmp9Uh+ODCBQIBbbrmFnTt3ct9999GvX79mz8vn2TlJoeGQqVOnYlkWb775ZvSxYDDIO++8w7Bhw5pN3SY6tilTpvDZZ581m/ZxxYoV7Ny5k2nTpkUfO/roo3G5XCxYsCD6mNaaN954g7S0NEaMGNGucQshxHdJbmpdkh9axrIs7rrrLtatW8fdd9/9g3+vfJ6dj8vpALqrYcOGMW3aNJ588kkqKyvJysrivffeo7CwkJtvvtnp8ESDV199lZqammhz66effkpxcTEAc+fOJT4+nvPPP5+PPvqIa665htNPP536+npefPFF+vfvz/HHHx99rfT0dM444wxefPFFwuEwQ4cOZcmSJaxevZo77rgj2g9VCCGcIrmp5SQ/tJ7HHnuMTz/9lCOPPJLq6moWLlzY7PmZM2cCyOfZCSn93Q5sot0EAgGefvppFi5cSE1NDf379+fiiy/m8MMPdzo00eDMM8+ksLBwv8/94x//oFevXgDk5+fzxz/+kTVr1uByuZg4cSKXX345qampzfaxbZsXXniBN998k7KyMrKzsznvvPOiB1EhhHCa5KaWkfzQeq666ipWrVr1g89//PHH0dvyeXYuUmgIIYQQQgghWp2M0RBCCCGEEEK0Oik0hBBCCCGEEK1OCg0hhBBCCCFEq5NCQwghhBBCCNHqpNAQQgghhBBCtDopNIQQQgghhBCtTgoNIYQQQgghRKuTQkMIIYQQQgjR6qTQEEIIIYQQQrQ6KTSEEEIIIYQQrU4KDSGEEEIIIUSrk0JDCCGEEEII0eqk0BBCCCGEEEK0uv8PFEmWEzw+k2cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "fig,axes = plt.subplots(ncols = 2, subplot_kw = {'projection':'mollview'}, figsize = [10,5])\n", + "\n", + "scatt_map.project('x').plot(axes[0])\n", + "scatt_map.project('y').plot(axes[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "896bf07e-f25e-4dea-add8-38bbf487cfdf", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cosi_nomegalib]", + "language": "python", + "name": "conda-env-cosi_nomegalib-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/source_injector/GRB_source_injector.ipynb.txt b/_sources/tutorials/source_injector/GRB_source_injector.ipynb.txt new file mode 100644 index 00000000..cc5e34a5 --- /dev/null +++ b/_sources/tutorials/source_injector/GRB_source_injector.ipynb.txt @@ -0,0 +1,27346 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a0226ddc", + "metadata": {}, + "source": [ + "# GRB Source injector" + ] + }, + { + "cell_type": "markdown", + "id": "c3cf1f63-9d4c-4922-9555-c6a33bdc6fc1", + "metadata": {}, + "source": [ + "The \"source injector\" is a cosipy module that will generate mocked binned data based on the detector response and a source hypothesis (provided by the users). This should result in the same output as simulating the source using MEGAlib, but be much quicker. MEGAlib is only needed when the event-by-event data is required, or to create the detector response itself. \n", + "\n", + "The goal of this notebook is to get an idea how the source injector will work in practice. We need to take it from here to something that is user friendly and compatible with the rest of the modules." + ] + }, + { + "cell_type": "markdown", + "id": "12989d27-f8eb-4764-947f-e5197b13b3b5", + "metadata": {}, + "source": [ + "First, let's load all dependecies:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1863fe19-1d2b-4d9d-aacc-6e1eba99b882", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/np/ufunc/dufunc.py:84: NumbaDeprecationWarning: \u001b[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.\u001b[0m\n", + " dispatcher = jit(_target='npyufunc',\n" + ] + }, + { + "data": { + "text/html": [ + "
08:54:59 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:54:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=486351;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=74509;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80089;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=809035;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n", + " warnings.warn(msg, NumbaDeprecationWarning)\n" + ] + }, + { + "data": { + "text/html": [ + "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=567084;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=39921;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/np/ufunc/dufunc.py:84: NumbaDeprecationWarning: \u001b[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.\u001b[0m\n", + " dispatcher = jit(_target='npyufunc',\n" + ] + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=29763;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=631989;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72611;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=998801;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=490276;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628467;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97968;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=835206;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=53607;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=338285;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=648905;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=685841;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:54:59 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:54:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=66813;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=488489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=98877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=480722;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226120;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62755;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=870227;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=152137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:55:00 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=787830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=39265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=420566;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=538421;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING NumbaDeprecationWarning: \u001b[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.\u001b[0m\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
08:55:00 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=836595;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=813631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=895880;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=789700;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=320555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:55:01 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=357588;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=719606;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:55:01 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=453037;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265094;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=724171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=941918;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=876844;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825186;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We'll use histpy's Histogram and mhealpy's HealpixMap as the basis\n", + "# develop cosipy. These object (or a derivative) will be passed around by \n", + "# the different modules.\n", + "from histpy import Histogram\n", + "from mhealpy import HealpixMap\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.coordinates.orientation import Orientation_file\n", + "from cosipy.spacecraftpositionattitude import SpacecraftPositionAttitude\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "e713e7ed-3956-403e-919d-5f0e1330d1ce", + "metadata": {}, + "source": [ + "## Load the response and orientation files" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "a5ff96a4", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = \"/Users/ckierans/Software/COSItools/COSItools/intro_cosipy/test_data/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5\"\n", + "response = FullDetectorResponse.open(response_path)\n", + "\n", + "ori = Orientation_file.parse_from_file(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/20280301_first_2hrs.ori\")\n", + "\n", + "Timemin = Time(1835481433.0,format = 'unix')\n", + "Timemax = Time(1835481435.0,format = 'unix')\n", + "grbori = ori.source_interval(Timemin, Timemax)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d1e043e0", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Latitude [deg]')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAG5CAYAAADVp6NgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRFUlEQVR4nO3deVxU9f4/8NewDbIPq5oiioROIosbJYgriRc128ByQVPJvIo38ZpdU8uKa5qlX7u5R3L1Imp1zQWCXMoVU8EgVEQgUUFAQWAAB2Z+f/BjruMADQPIiXk9H48eD87nfM75vM/ncvXlWUVKpVIJIiIiIhIUg/YugIiIiIg0MaQRERERCRBDGhEREZEAMaQRERERCRBDGhEREZEAMaQRERERCRBDGhEREZEAMaT9CVRVVeHq1auoqqpq71KIiIjoCWFI+xPIzc3F7NmzkZub296lEBER0RPCkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQEbtXQC1D4VCifwr91BZUo1ONmJ07mMLAwNRe5dFRERE/x9Dmh7KTs7H2Z0ZqLhXpWoztzWF77S+6Dm4cztWRkRERPV4uVPPZCfn48fPL6kFNACouFeFHz+/hOzk/HaqjIiIiB7FkKZHFAolzu7MaLLP2ZgMKBTKJ1QRERERNYYhTY/kX7mncQbtcRXFVci/cu8JVURERESNYUjTI5Ul1a3aj4iIiNoOQ5oe6WQjbtV+RERE1HYY0vRI5z62MLc1bbKPuZ0pOvexfUIVERERUWMY0vSIgYEIvtP6NtnHd2pfvi+NiIhIABjS9EzPwZ0xaqG3xhk1cztTjFrozfekERERCQRfZquHeg7ujB4DnfjFASIiIgFjSNNTBgYidJXatXcZRERE1Ahe7iQiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgEyau8CWkNKSgpiY2ORmZmJ0tJSWFhYoHfv3pg+fTo8PDw0+svlcsTGxiIhIQH5+fkwNzeHu7s7IiMj4ejo2Og4R44cQVRUVKPrly1bhsDAQNVyYWEhNm7ciPPnz0OhUMDb2xvz589H165dW3bARERE1OF1iJCWl5cHAwMDTJw4Eba2tigrK0NiYiLmz5+P1atXY8iQIaq+NTU1WLJkCdLS0hAcHAxXV1eUlZUhIyMDFRUVTY7j6emJZcuWabTHxcUhKysLAwYMULXJZDJERESgoqICU6ZMgZGREeLi4jB//nzs2LED1tbWrTcBRERE1OF0iJAWHByM4OBgtbZJkyYhNDQUe/fuVQtpcXFxSElJwcaNGyGVSps1TteuXTXOglVXV2PdunXw9vaGnZ2dqv27775DXl4eNm/ejL59+wIAhgwZgrCwMOzZswdz5sxp7mESERGRHumw96SZmprC2toa5eXlqjaFQoF9+/bB398fUqkUNTU1qKqqatE4p06dgkwmw5gxY9Tajx8/jj59+qgCGgD06NEDPj4+OHbsWIvGJCIioo6vQ4W0iooKlJSUIDc3F1u2bEF2drbaJcicnBwUFRXB1dUVa9aswfPPP4/AwECEhYXh4sWLOo2ZmJgIsViMgIAAVZtCocCNGzfQp08fjf59+/bFrVu3IJPJdBqPiIiI9EOHuNxZb8WKFUhOTgYAGBsbY8KECZg2bZpqfV5eHgBg7969sLS0RGRkJAAgJiYGixcvxpYtW+Dq6qr1eA8ePEBycjL8/PxgZmam1v7w4UO1y5/16tuKiorg7Ozc4H6LiopQXFysWs7NzdW6JiIiIuoYBBfSFAoF5HK5Vn1NTEwgEolUy+Hh4QgJCcHdu3cRHx+Pmpoa1NbWqtZXVlYCqLupf9u2bXBycgIA+Pj4YPLkydi9ezfee+89rWs9fvw45HK5xqXO6upqAHVBsaGaH+3TkAMHDiA6OlrrOoiIiKjjEVxIS01NRUREhFZ9Y2Ji0KNHD9Wym5ub6ufAwEDMmjULUVFRWLVqFQBALBYDAPr166cKaADg5OQEDw8PpKWlNavWxMREWFlZwdfXV629fpyGwubDhw/V+jRkwoQJGDp0qGo5NzcXH374YbNqIyIioj83wYU0Z2dnLF26VKu+DV1OrGdsbIyhQ4di165dqK6uhlgsVvW3tbXV6C+RSJCZmal1nQUFBbh8+TLGjx8PIyP1abSysoKJiYnaJct69W329vaN7tve3r7J9URERNTxCS6k2dnZISgoqFX2VV1dDaVSCZlMBrFYDFdXVxgZGaGwsFCjb1FREWxsbLTed1JSEpRKpcalTgAwMDBAr169cOXKFY11v/32G7p27ap2DxsRERHR4zrE053379/XaCsrK8OJEyfg6OgIiUQCADAzM4Ovry/S09PVbsbPyclBeno6Bg4cqGqrqqpCbm4uSkpKGhwzKSkJTk5O6N+/f4PrAwICcOXKFbWg9vvvv+PSpUsYPny4DkdJRERE+kRwZ9J0sXjxYjg4OEAqlUIikaCgoACHDx9GcXExVq5cqdZ3zpw5uHDhAhYuXIiXXnoJALB//35YWlpi6tSpqn4ZGRmIiIhAWFgYZs6cqbaPGzduICsrC6+//rragwuPmjRpEg4ePIglS5YgNDQUhoaGiIuLg0QiQWhoaOtOABEREXU4HSKkjRs3DkePHkVcXBzKy8thaWkJqVSK5cuXw9PTU62vi4sLNmzYgM2bNyMmJgYikQg+Pj6YO3cuHBwctBovMTERADB69OhG+5iZmWH9+vXYuHEjdu7cqfp251//+tdmXVYlIiIi/SRSKpXK9i6Cmnb16lXMnj0bW7duhbu7e3uXQ0RERE9Ah7gnjYiIiKijYUgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBMmrvAlpDSkoKYmNjkZmZidLSUlhYWKB3796YPn06PDw8NPrL5XLExsYiISEB+fn5MDc3h7u7OyIjI+Ho6NjoOEeOHEFUVFSj65ctW4bAwEAAwIkTJ3D06FFcuXIF9+7dg6OjI5599llMnz4dlpaWLT9oIiIi6tA6REjLy8uDgYEBJk6cCFtbW5SVlSExMRHz58/H6tWrMWTIEFXfmpoaLFmyBGlpaQgODoarqyvKysqQkZGBioqKJsfx9PTEsmXLNNrj4uKQlZWFAQMGqNrWrl0LOzs7BAYGwsnJCVlZWfj2229x9uxZbN++HWKxuPUmgIiIiDqcDhHSgoODERwcrNY2adIkhIaGYu/evWohLS4uDikpKdi4cSOkUmmzxunatSu6du2q1lZdXY1169bB29sbdnZ2qvYPPvgA3t7ean3d3d3x8ccfIzExUaNeIiIiokd12HvSTE1NYW1tjfLyclWbQqHAvn374O/vD6lUipqaGlRVVbVonFOnTkEmk2HMmDFq7Y8HNAAYNmwYACAnJ6dFYxIREVHH1yHOpNWrqKiAXC5HaWkpEhISkJ2djalTp6rW5+TkoKioCK6urlizZg3i4+Mhl8vRq1cvLFiwAD4+Ps0eMzExEWKxGAEBAX/Yt7i4GABgY2PTZL+ioiJVXwDIzc1tdl1ERET059ahQtqKFSuQnJwMADA2NsaECRMwbdo01fq8vDwAwN69e2FpaYnIyEgAQExMDBYvXowtW7bA1dVV6/EePHiA5ORk+Pn5wczM7A/77969G4aGhn8Y6A4cOIDo6Git6yAiIqKOR3AhTaFQQC6Xa9XXxMQEIpFItRweHo6QkBDcvXsX8fHxqKmpQW1trWp9ZWUlAEAmk2Hbtm1wcnICAPj4+GDy5MnYvXs33nvvPa1rPX78OORyucalzoYkJibi0KFDmDx5Mrp3795k3wkTJmDo0KGq5dzcXHz44Yda10VERER/foILaampqYiIiNCqb0xMDHr06KFadnNzU/0cGBiIWbNmISoqCqtWrQIA1ROV/fr1UwU0AHBycoKHhwfS0tKaVWtiYiKsrKzg6+vbZL/U1FSsXr0agwcPxuzZs/9wv/b29rC3t29WLURERNSxCC6kOTs7Y+nSpVr1ffRpyscZGxtj6NCh2LVrF6qrqyEWi1X9bW1tNfpLJBJkZmZqXWdBQQEuX76M8ePHw8io8Wm8fv06li5dil69euGDDz5osi8RERFRPcElBjs7OwQFBbXKvqqrq6FUKiGTySAWi+Hq6gojIyMUFhZq9C0qKvrDG/oflZSUBKVS2eSlzlu3biEyMhISiQSffPKJVvetEREREQEd5BUc9+/f12grKyvDiRMn4OjoCIlEAgAwMzODr68v0tPT1Z6YzMnJQXp6OgYOHKhqq6qqQm5uLkpKShocMykpCU5OTujfv3+D64uLi7Fo0SIYGBhg7dq1zQqARERERII7k6aLxYsXw8HBAVKpFBKJBAUFBTh8+DCKi4uxcuVKtb5z5szBhQsXsHDhQrz00ksAgP3798PS0lLtdR0ZGRmIiIhAWFgYZs6cqbaPGzduICsrC6+//rragwuP13T79m1MnjwZv/76K3799VfVOolEgkGDBrXS0RMREVFH1CFC2rhx43D06FHExcWhvLwclpaWkEqlWL58OTw9PdX6uri4YMOGDdi8eTNiYmIgEong4+ODuXPnwsHBQavxEhMTAQCjR49utM/169cBAP/5z3801nl5eTGkERERUZNESqVS2d5FUNOuXr2K2bNnY+vWrXB3d2/vcoiIiOgJ6BD3pBERERF1NAxpRERERAKk1T1prfGJIi8vL3h5ebV4P0RERET6QKuQ9tVXX0EkEkHX29dEIhHCwsIY0oiIiIi0pPXTnWPHjsXYsWObPYBSqcTChQubvR0RERGRPtM6pHXu3JlnwoiIiIieEK0eHHjttdfg4eGh8yAt3Z6IiIhI32h1Ji08PLxFg7R0eyIiIiJ9w1dwEBEREQkQQxoRERGRAOn07c6QkJA/7GNgYAAzMzM4OzvD398fI0eO1GUoIiIiIr2kU0hTKpWora1FUVERAMDQ0BDW1tYoLS1FbW0tAMDe3h7379/H9evXcezYMRw8eBCrV6+GsbFx61VPRERE1EHpFNK2b9+ORYsWwdnZGbNmzYJUKlW97Pa3337D9u3bUV5ejujoaJSWlmLjxo04e/Ys9uzZgylTprT2MRARERF1ODrdk7Zp0yY8fPgQn376KZ555hmIRCIAdV8WeOaZZ7BmzRo8fPgQmzdvRrdu3fD+++/DyckJP/74Y6sWT0RERNRR6RTSTp06BV9fXxgYNLy5oaEhfH19cfLkSQCAWCyGj48Pbt26pXulRERERHpEp5BWUVEBmUz2h30qKipUy9bW1roMRURERKSXdAppLi4uSEpKwu3btxtcf/v2bfz4449wcXFRtd29exc2Nja6DEdERESkd3R6cGDKlClYvnw5Zs6cieDgYPTr1w8SiQT3799HWloaDh06hMrKStVDAnK5HOfPn8egQYNatXgiIiKijkqkVCqVumx46NAh/N///R8qKytVDw4Ada/n6NSpE/76178iODgYAFBWVoaUlBT07NkT3bp1a53K9cjVq1cxe/ZsbN26Fe7u7u1dDhERET0BOp1JA4C//OUvCAgIwMmTJ3H9+nXIZDKYmZmhd+/e8PPzg4WFhaqvpaUl/P39W6VgIiIiIn2gc0gDAAsLC4wdO7a1aiEiIiKi/69FIQ0AZDIZbt68iaqqKnh6erZGTURERER6T+eQdufOHWzYsAFnz56FUqmESCTCsWPHAAC//vorPvnkE7z99tvw9vZutWKJiIiI9IVOr+AoKCjA3LlzcfbsWfj5+eGZZ57Bo88f9O3bF6WlpUhKSmq1QomIiIj0iU4hbceOHSgrK8OGDRuwatUqDBw4UG29kZER+vfvj7S0tFYpkoiIiEjf6BTSkpOT4e/vDw8Pj0b7dO7cGYWFhToXRkRERKTPdAppZWVl6Ny5c5N9lEol5HK5TkURERER6TudQppEIkFeXl6TfW7cuAEnJyediiIiIiLSdzqFtIEDB+LMmTPIyspqcH1qaiouXrwIX1/fFhVHREREpK90egXHtGnTcOLECcyfPx+hoaG4desWAODs2bNIS0tDXFwcrK2tERoa2qrFEhEREekLnUJaly5dsHbtWqxcuRLbt2+HSCSCUqnEO++8A6VSCScnJ3zwwQewt7dv7XqJiIiI9ILOL7OVSqXYvXs3Tp8+jd9++w1lZWUwMzODVCqFn58fjI2NW7NOIiIiIr3Sos9CGRkZYdiwYRg2bFhr1UNERERE0PHBASIiIiJqW1qdSYuOjtZp5yKRCNOnT9dpWyIiIiJ9plVI++qrrzTaRCKR6udHv9tZ317/0XWGNCIiIqLm0yqkrV+/XqMtNjYWv/zyCwIDA9G/f3/Y2tri3r17SE1NRWJiIgYNGoSQkJBWL5iIiIhIH2gV0ry8vNSWDx48iJSUFGzduhU9e/ZUWzd27Fi8/PLLeOutt+Dn56exLRERERH9MZ0eHNi7dy9GjRqlEdDqubq6YtSoUYiLi2tRcURERET6SqeQduvWLVhZWTXZx8rKCrdv39apKCIiIiJ9p1NIs7Gxwblz59QeGHiUQqHAuXPnYG1t3aLiiIiIiPSVTiFt9OjRyMrKwjvvvIPr16+rrcvMzMQ777yD7OxsjBkzplWKJCIiItI3On1xYMaMGbh27RrOnj2Lc+fOwdTUFDY2NigpKUFVVRWUSiUGDBiAsLCwVi6XiIiISD/oFNLEYjE+/fRTxMfHIz4+Hjdu3EBBQQEsLCzQp08fPP/88xg7dqzau9SIiIiISHs6f7tTJBIhKCgIQUFBrVkPEREREYHf7iQiIiISJK1Cmlwuh0Kh0HmQlm5PREREpG+0CmljxoxBTEyMzoO0dHsiIiIifaNVSFMqlY2+E+1JbE9ERESkb7R+cODIkSO4dOmSToPwKU8iIiKi5tE6pOXn5yM/P78tayEiIiKi/0+rkHbixIm2rqNFUlJSEBsbi8zMTJSWlsLCwgK9e/fG9OnT4eHhodFfLpcjNjYWCQkJyM/Ph7m5Odzd3REZGQlHR8dGxzly5AiioqIaXb9s2TIEBgY2uO7tt9/GL7/8gkmTJuFvf/tb8w+SiIiI9IrO70kTkry8PBgYGGDixImwtbVFWVkZEhMTMX/+fKxevRpDhgxR9a2pqcGSJUuQlpaG4OBguLq6oqysDBkZGaioqGhyHE9PTyxbtkyjPS4uDllZWRgwYECD2504cQLp6ektO0giIiLSKx0ipAUHByM4OFitbdKkSQgNDcXevXvVQlpcXBxSUlKwceNGSKXSZo3TtWtXdO3aVa2turoa69atg7e3N+zs7DS2qa6uxhdffIHXXnsN27dvb9Z4REREpL867MtsTU1NYW1tjfLyclWbQqHAvn374O/vD6lUipqaGlRVVbVonFOnTkEmkzX6Mfn//Oc/UCqVCA0NbdE4REREpF86xJm0ehUVFZDL5SgtLUVCQgKys7MxdepU1fqcnBwUFRXB1dUVa9asQXx8PORyOXr16oUFCxbAx8en2WMmJiZCLBYjICBAY11BQQF27dqFd955B2KxWOt9FhUVobi4WLWcm5vb7LqIiIjoz61DhbQVK1YgOTkZAGBsbIwJEyZg2rRpqvV5eXkAgL1798LS0hKRkZEAgJiYGCxevBhbtmyBq6ur1uM9ePAAycnJ8PPzg5mZmcb6L774Am5ubhg1alSzjuPAgQOIjo5u1jZERETUsQgupCkUCsjlcq36mpiYqL2DLTw8HCEhIbh79y7i4+NRU1OD2tpa1frKykoAgEwmw7Zt2+Dk5AQA8PHxweTJk7F792689957Wtd6/PhxyOXyBi91Xrx4ESdOnMCmTZu03l+9CRMmYOjQoarl3NxcfPjhh83eDxEREf15CS6kpaamIiIiQqu+MTEx6NGjh2rZzc1N9XNgYCBmzZqFqKgorFq1CgBUlxz79eunCmgA4OTkBA8PD6SlpTWr1sTERFhZWcHX11etvaamBuvXr0dgYCD69u3brH0CgL29Pezt7Zu9HREREXUcrRLSHjx4gMrKSrXgoytnZ2csXbpUq74NPU1Zz9jYGEOHDsWuXbtQXV0NsVis6m9ra6vRXyKRIDMzU+s6CwoKcPnyZYwfPx5GRurTmJCQgJs3byIyMhJ37txRWyeTyXDnzh1IJBKYmppqPR4RERHpF51DWnl5ObZv346jR4+itLQUIpEIx44dAwD89ttv+OqrrzBr1iy4u7s3a792dnYICgrStSw11dXVUCqVkMlkEIvFcHV1hZGREQoLCzX6FhUVwcbGRut9JyUlQalUNnips6CgADU1NZg3b57GuoSEBCQkJOCjjz6Cv79/s46HiIiI9IdOIe3Bgwd46623cPPmTTz99NOwsbFRewLR1dUVaWlpSExMbHZI08X9+/chkUjU2srKynDixAk4Ojqq1pmZmcHX1xdnzpxBbm6u6lJpTk4O0tPTMX78eNX2VVVVKCgogLW1dYPhLSkpCU5OTujfv7/GulGjRqldeq33j3/8A76+vhg/frxOl0GJiIhIf+gU0r766ivcvHkTK1aswMiRI/HVV1/h66+/Vq0Xi8Xw9PTExYsXW63QpixevBgODg6QSqWQSCQoKCjA4cOHUVxcjJUrV6r1nTNnDi5cuICFCxfipZdeAgDs378flpaWaq/ryMjIQEREBMLCwjBz5ky1fdy4cQNZWVl4/fXXG/x4fI8ePdTulXtUly5deAaNiIiI/pBOIe3UqVN49tlnMXLkyEb7dOnS5Yl9CmncuHE4evQo4uLiUF5eDktLS0ilUixfvhyenp5qfV1cXLBhwwZs3rwZMTExEIlE8PHxwdy5c+Hg4KDVeImJiQCA0aNHt/qxEJF+UCiUyL9yD5Ul1ehkI0bnPrYwMND8Rx8R6S+dQlpxcXGTAQ2ou3G//pUXbe3FF1/Eiy++qHV/d3d3rFu3rsk+3t7e+OmnnxpcFx4ejvDw8GbVCKDR/RGRfslOzsfZnRmouPe/L56Y25rCd1pf9BzcuR0rIyIh0emzUFZWVrh7926TfX7//fcmn74kItJH2cn5+PHzS2oBDQAq7lXhx88vITs5v50qIyKh0SmkeXp64tSpU40GtZycHJw7dw4DBw5sUXFERB2JQqHE2Z0ZTfY5G5MBhUL5hCoiIiHTKaRNnToVtbW1mDdvHn744QeUlpYCqAtnBw8exMKFC2FiYsKPihMRPSL/yj2NM2iPqyiuQv6Ve0+oIiISMp3uSXN1dcXKlSvx0Ucf4eOPPwYAKJVKhIWFQalUwszMDCtXrkT37t1btVgioj+zypLqVu1HRB2bzi+z9fPzw549exAfH4/ffvsNDx48gLm5OaRSKYKCgpr1YlgiIn3QyUbcqv2IqGNr0WehrKys8Oqrr7ZWLUREHVrnPrYwtzVt8pKnuZ0pOvfR/HQdEekfne5JIyKi5jMwEMF3WtNfG/Gd2pfvSyMiAFqeSYuPj9d5gLFjx+q8LRFRR9NzcGeMWuit+Z40O1P4TuV70ojof7QKaVFRUWqfP1IqlQ1+DulR9X0Y0oiI1PUc3Bk9BjrxiwNE1CStQto777yj0XbixAmcOXMGAwYMQP/+/SGRSHD//n2kpqbi4sWLePbZZxEQENDqBRMRdQQGBiJ0lfKF30TUOK1CWlBQkNryzz//jF9++QVr167FoEGDNPonJyfj3XffRXBwcOtUSURERKRndHpwICYmBiNGjGgwoAHA4MGDMXz4cOzcubNFxRERERHpK51CWk5ODhwdHZvs4+joiJycHF12T0RERKT3dAppZmZmSE1NbbJPamoqzMzMdCqKiIiISN/pFNL8/PyQlpaGTz/9FPfv31dbd//+faxduxbp6enw9/dvlSKJiIiI9I1OXxwIDw9HWloaDhw4gCNHjuCpp55SPd1569YtyOVy9OzZE3PmzGnteomIiIj0gk4hzdLSEps3b8auXbvwww8/ICcnR3X/WZcuXRAYGIjXXnsNpqamrVkrERERkd7Q+dudYrEYM2fOxMyZMyGTyVBRUQFzc3Peh0ZERETUClr0gfV6ZmZmDGdERERErYgfWCciIiISIJ3OpAUEBPzhtzsBQCQS4dixY7oMQURERKTXdAppnp6eDYa08vJy5OXloaqqCr1794aFhUWLCyQiIiLSRzqFtA0bNjS6rqqqCps3b8a5c+fw6aef6lwYERERkT5r9XvSTE1NERERAQsLC3z55ZetvXsiIiIivdBmDw70798fZ86caavdExEREXVobRbSSkpKUFlZ2Va7JyIiIurQWj2kKRQKJCQk4OjRo+jdu3dr756IiIhIL+j04EBISEiD7bW1tSgpKUFNTQ2MjIwQHh7eouKIiIiI9JVOIU2pVDa8MyMj9OzZE3369MGLL76Inj17tqg4IiIiIn2lU0iLi4tr7TqIiIiI6BH8LBQRERGRAOkU0oYPH46vv/66yT47d+7EiBEjdCqKiIiISN/pFNKUSmWj96U93o+IiIiImq9N35MmFovbavdEREREHZrWDw7Ex8erLWdmZmq0AXXvSbt79y4SEhL4dCcRERGRjrQOaVFRURCJRAAAkUiEU6dO4dSpUxr96i9xisVizJgxo5XKJCIiItIvWoe0d955R/XzP//5T/j5+cHPz0+jn6GhISwtLdGvXz9YWlq2TpVEREREekbrkBYUFKT6OSUlBf7+/g2GNCIiIiJqOZ1eZrt06dLWroOIiIiIHsGX2RIREREJkFZn0gICAmBgYICdO3eie/fuCAgIUD1E0BSRSIRjx461uEgiIiIifaNVSPP09IRIJFK996x+mYiIiIjahlYhbcOGDU0uExEREVHr4j1pRERERAKkU0gLCQnBvn37muzzzTffICQkRKeiiIiIiPSdTiEtPz8f5eXlTfYpLy9HQUGBTkURERER6bs2u9xZUVEBY2Pjtto9ERERUYem9ctsU1JS1Jbz8/M12oD/fWA9MTER3bt3b2l9RERERHpJ65AWERGh9oH1+Ph4xMfHN9hXqVRCJBIhPDy8daokIiIi0jNah7Tp06dDJBJBqVTi66+/hpeXF7y8vDT6GRgYwMrKCt7e3nBxcWnFUomIiIj0h9YhbebMmaqfU1NTERQUhLFjx7ZJUURERET6TqcPrK9fv76162iRlJQUxMbGIjMzE6WlpbCwsEDv3r0xffp0eHh4aPSXy+WIjY1FQkIC8vPzYW5uDnd3d0RGRsLR0bHRcY4cOYKoqKhG1y9btgyBgYFqbT/++CP27duHrKwsGBkZoUePHpg1axYGDBig+wETERFRh6dTSBOavLw8GBgYYOLEibC1tUVZWRkSExMxf/58rF69GkOGDFH1rampwZIlS5CWlobg4GC4urqirKwMGRkZqKioaHIcT09PLFu2TKM9Li4OWVlZGsFrx44d+PrrrzF8+HCMHTsWNTU1yM7ORlFRUescOBEREXVYOoe0goIC7Ny5ExcuXEBRURFqamo0+jypD6wHBwcjODhYrW3SpEkIDQ3F3r171UJaXFwcUlJSsHHjRkil0maN07VrV3Tt2lWtrbq6GuvWrYO3tzfs7OxU7enp6fj6668xb948vPrqqzocFREREekznULa7du3ER4ejvLycri4uEAul8PJyQkmJia4c+cOampq0Lt3b1hYWLR2vVozNTWFtbW12kt3FQoF9u3bB39/f0ilUtTU1KCmpgampqY6j3Pq1CnIZDKMGTNGrX3v3r2wtbXFyy+/DKVSicrKSpiZmek8DhEREekXnULaV199hYqKCnz22Wfw8vJCQEAAxo0bh7CwMBQVFWHdunXIycnBunXrWrveJlVUVEAul6O0tBQJCQnIzs7G1KlTVetzcnJQVFQEV1dXrFmzBvHx8ZDL5ejVqxcWLFgAHx+fZo+ZmJgIsViMgIAAtfYLFy6gX79+2LdvH2JiYlBaWgpbW1tMnToVL730UpP7LCoqQnFxsWo5Nze32XURERHRn5tOIe3ChQvw9fVVewWHUqkEANjb22PlypUICwvDli1bsHjx4lYpVBsrVqxAcnIyAMDY2BgTJkzAtGnTVOvz8vIA1J3lsrS0RGRkJAAgJiYGixcvxpYtW+Dq6qr1eA8ePEBycjL8/PzUzpKVlZWhtLQUaWlpuHjxIsLCwuDk5IQjR45g/fr1MDIywsSJExvd74EDBxAdHd2cQyciIqIORqeQVlpaCmdnZ9WyoaEhqqqqVMsmJiYYOHAgTp482ex9KxQKyOVyrfqamJioXrALAOHh4QgJCcHdu3cRHx+Pmpoa1NbWqtZXVlYCAGQyGbZt2wYnJycAgI+PDyZPnozdu3fjvffe07rW48ePQy6Xa1zqlMlkAOrmacWKFRg1ahQAYPjw4QgLC8POnTubDGkTJkzA0KFDVcu5ubn48MMPta6LiIiI/vx0CmnW1tZqocza2hr5+flqfQwNDf/wI+wNSU1NRUREhFZ9Y2Ji0KNHD9Wym5ub6ufAwEDMmjULUVFRWLVqFQBALBYDAPr166cKaADg5OQEDw8PpKWlNavWxMREWFlZwdfXV629fhwjIyMMHz5c1W5gYICRI0dix44dKCgoUKvhUfb29rC3t29WLURERNSx6BTSunXrhlu3bqmW+/bti/Pnz+P27dvo2rUrSkpKcOLECY0nIbXh7OyMpUuXatX30acpH2dsbIyhQ4di165dqK6uhlgsVvW3tbXV6C+RSJCZmal1nQUFBbh8+TLGjx8PIyP1abSysoKJiQksLCxgaGioMQ5Qd0m0sZBGREREpFNIGzJkCL766iuUlZXB0tISr7zyCk6fPo0ZM2agR48eyMvLg0wmw4wZM5q9bzs7OwQFBelSlobq6moolUrIZDKIxWK4urrCyMgIhYWFGn2LiopgY2Oj9b6TkpKgVCo1LnUCdWfM3NzccOXKFcjlchgbG6uNA6BZYxEREZH+MdBloxdeeAEbNmxQnSXy9vbGihUr4OTkhBs3bsDW1hYLFizA+PHjW7XYxty/f1+jraysDCdOnICjo6Pq7JWZmRl8fX2Rnp6u9sRkTk4O0tPTMXDgQFVbVVUVcnNzUVJS0uCYSUlJcHJyQv/+/RtcP2LECNTW1qp9hL66uhqJiYlwcXHh5UwiIiJqkk5n0szNzTVeBDtixAiMGDGiVYpqrsWLF8PBwQFSqRQSiQQFBQU4fPgwiouLsXLlSrW+c+bMwYULF7Bw4ULVqzD2798PS0tLtdd1ZGRkICIiAmFhYWrfLQWAGzduICsrC6+//rragwuPmjhxIg4dOoTPPvsMN2/ehJOTExISElBQUNDkp6WIiIiIgDb8LNSuXbuQnJz8RL7zOW7cOBw9ehRxcXEoLy+HpaUlpFIpli9fDk9PT7W+Li4u2LBhAzZv3oyYmBiIRCL4+Phg7ty5cHBw0Gq8xMREAMDo0aMb7SMWi/H555/jyy+/xOHDh1FVVYXevXtj9erVGDx4sO4HS0RERHpBpKx/wVkri4qKQkJCAo4fP94Wu9crV69exezZs7F161a4u7u3dzlERET0BOh0TxoRERERtS2GNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCtX8GxePHiZu34xo0bzS6GiIiIiOpoHdKSk5ObvfPGXvRKRERERE3TOqTt2bOnLesgIiIiokdoHdI6d+7clnUQERER0SP44AARERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRABm1dwGtISUlBbGxscjMzERpaSksLCzQu3dvTJ8+HR4eHhr95XI5YmNjkZCQgPz8fJibm8Pd3R2RkZFwdHRsdJwjR44gKiqq0fXLli1DYGCgavmXX35BTEwMbty4gdraWnTr1g0vvfQSnn/++ZYdMBEREXV4HSKk5eXlwcDAABMnToStrS3KysqQmJiI+fPnY/Xq1RgyZIiqb01NDZYsWYK0tDQEBwfD1dUVZWVlyMjIQEVFRZPjeHp6YtmyZRrtcXFxyMrKwoABA1RtJ0+exD/+8Q8888wzCAsLg0gkwrFjx/DRRx+htLQUr776autNABEREXU4HSKkBQcHIzg4WK1t0qRJCA0Nxd69e9VCWlxcHFJSUrBx40ZIpdJmjdO1a1d07dpVra26uhrr1q2Dt7c37OzsVO3ffPMN7Ozs8Pnnn8PExAQAMGHCBEydOhVHjhxhSCMiIqImdYiQ1hBTU1NYW1ujvLxc1aZQKLBv3z74+/tDKpWipqYGNTU1MDU11XmcU6dOQSaTYcyYMWrtMpkMlpaWqoAGAEZGRrC2ttZ5LCIiItIfHSqkVVRUQC6Xo7S0FAkJCcjOzsbUqVNV63NyclBUVARXV1esWbMG8fHxkMvl6NWrFxYsWAAfH59mj5mYmAixWIyAgAC1di8vL+zevRvbtm3D2LFjIRKJkJSUhKtXr2LlypVN7rOoqAjFxcWq5dzc3GbXRURERH9uHSqkrVixAsnJyQAAY2NjTJgwAdOmTVOtz8vLAwDs3bsXlpaWiIyMBADExMRg8eLF2LJlC1xdXbUe78GDB0hOToafnx/MzMzU1k2fPh137txBTEwMdu7cCaDu7N4HH3wAf3//Jvd74MABREdHa10HERERdTyCC2kKhQJyuVyrviYmJhCJRKrl8PBwhISE4O7du4iPj0dNTQ1qa2tV6ysrKwHUXYrctm0bnJycAAA+Pj6YPHkydu/ejffee0/rWo8fPw65XK5xqROoC4ndu3fH8OHDMWzYMNTW1uL777/Hhx9+iHXr1uGZZ55pdL8TJkzA0KFDVcu5ubn48MMPta6LiIiI/vwEF9JSU1MRERGhVd+YmBj06NFDtezm5qb6OTAwELNmzUJUVBRWrVoFABCLxQCAfv36qQIaADg5OcHDwwNpaWnNqjUxMRFWVlbw9fXVWPf555/jt99+w7Zt22BgUPc6upEjR2LatGnYsGEDNm/e3Oh+7e3tYW9v36xaiIiIqGMRXEhzdnbG0qVLter76NOUjzM2NsbQoUOxa9cuVFdXQywWq/rb2tpq9JdIJMjMzNS6zoKCAly+fBnjx4+HkZH6NMrlchw6dAivvfaaKqABdQ8ODBkyBN9++y3kcjmMjY21Ho+IiIj0i+BCmp2dHYKCglplX9XV1VAqlZDJZBCLxXB1dYWRkREKCws1+hYVFcHGxkbrfSclJUGpVDZ4qbO0tBS1tbVql1rr1dbWQqFQQKFQNOtYiIiISL90iM9C3b9/X6OtrKwMJ06cgKOjIyQSCQDAzMwMvr6+SE9PV3tiMicnB+np6Rg4cKCqraqqCrm5uSgpKWlwzKSkJDg5OaF///4a6yQSCSwsLPDzzz+r3V8nk8lw6tQpODs7qy69EhERETVEcGfSdLF48WI4ODhAKpVCIpGgoKAAhw8fRnFxscbrLubMmYMLFy5g4cKFeOmllwAA+/fvh6WlpdrrOjIyMhAREYGwsDDMnDlTbR83btxAVlYWXn/9dbUHF+oZGhoiNDQU27Ztw5tvvonnn38eCoUChw4dQmFhYYNfLSAiIiJ6VIcIaePGjcPRo0cRFxeH8vJyWFpaQiqVYvny5fD09FTr6+LiorpxPyYmBiKRCD4+Ppg7dy4cHBy0Gi8xMREAMHr06Eb7TJs2DV26dMG+ffsQHR0NuVwOV1dXfPDBBxg+fLjOx0pERET6QaRUKpXtXQQ17erVq5g9eza2bt0Kd3f39i6HiIiInoAOcU8aERERUUfDkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERAJk1N4FEBEREbUHhUKJ/Cv3UFlSjU42YnTuYwsDA1F7l6XCkEZERER6Jzs5H2d3ZqDiXpWqzdzWFL7T+qLn4M7tWNn/8HInERER6ZXs5Hz8+PkltYAGABX3qvDj55eQnZzfTpWpY0gjIiIivaFQKHF2Z0aTfc7GZEChUD6hihrHkEZERER6I//KPY0zaI+rKK5C/pV7T6iixjGkERERkd6oLKlu1X5tiSGNiIiI9EYnG3Gr9mtLDGlERESkNzr3sYW5rWmTfcztTNG5j+0TqqhxDGlERESkNwwMRPCd1rfJPr5T+wrifWkMaURERKRXeg7ujFELvTXOqJnbmWLUQm/BvCeNL7MlIiIivdNzcGf0GOjELw4QERERCY2BgQhdpXbtXUajeLmTiIiISIAY0oiIiIgEqENc7kxJSUFsbCwyMzNRWloKCwsL9O7dG9OnT4eHh4dGf7lcjtjYWCQkJCA/Px/m5uZwd3dHZGQkHB0dmxyrvLwcMTEx+Omnn1BYWAiJRIIBAwZgxowZcHJyUutbWFiIjRs34vz581AoFPD29sb8+fPRtWvXVj1+IiIi6ng6REjLy8uDgYEBJk6cCFtbW5SVlSExMRHz58/H6tWrMWTIEFXfmpoaLFmyBGlpaQgODoarqyvKysqQkZGBioqKJsdRKBR4++23kZubixdeeAHdu3dHXl4evvvuO5w/fx4xMTEwMzMDAMhkMkRERKCiogJTpkyBkZER4uLiMH/+fOzYsQPW1tZtOidERET059YhQlpwcDCCg4PV2iZNmoTQ0FDs3btXLaTFxcUhJSUFGzduhFQqbdY46enpuHLlChYuXIgXX3xR1e7s7Ix//vOf+OWXXzBs2DAAwHfffYe8vDxs3rwZffvWvY9lyJAhCAsLw549ezBnzhxdD5eIiIj0QIe9J83U1BTW1tYoLy9XtSkUCuzbtw/+/v6QSqWoqalBVVXTH1l9lEwmAwDY2qq/hdjOru7JELH4f5+QOH78OPr06aMKaADQo0cP+Pj44NixYzodExEREemPDnEmrV5FRQXkcjlKS0uRkJCA7OxsTJ06VbU+JycHRUVFcHV1xZo1axAfHw+5XI5evXphwYIF8PHxaXL/7u7u6NSpE7Zt2wZLS0s4Ozvj1q1b+PLLL9GnTx8MGDAAQF0YvHHjBsaNG6exj759++L8+fOQyWSqS6OPKyoqQnFxsWo5NzdXl+kgIiKiP7EOFdJWrFiB5ORkAICxsTEmTJiAadOmqdbn5eUBAPbu3QtLS0tERkYCAGJiYrB48WJs2bIFrq6uje7fxsYGK1euxCeffIK//e1vqvbBgwfjgw8+gJFR3XQ+ePAADx8+VJ1he1R9W1FREZydnRsc58CBA4iOjm7GkRMREVFHI7iQplAoIJfLteprYmICkeh/bwYODw9HSEgI7t69i/j4eNTU1KC2tla1vrKyEkDdZctt27apnsb08fHB5MmTsXv3brz33ntNjmltbQ03Nze8+OKLcHFxwfXr1/Gf//wH//znP/HBBx8AAKqrqwHUBcWGan60T0MmTJiAoUOHqpZzc3Px4YcfNlkXERERdSyCC2mpqamIiIjQqm9MTAx69OihWnZzc1P9HBgYiFmzZiEqKgqrVq0C8L97xvr166f2ugwnJyd4eHggLS2tyfFu376NhQsX4t1338Xw4cMBAP7+/ujcuTOioqJw9uxZ+Pr6qsZpKGw+fPhQrZaG2Nvbw97eXrVcH+h42ZOIiOjPp0ePHjA1Nf3jjo8RXEhzdnbG0qVLterb0OXEesbGxhg6dCh27dqF6upqiMViVf/Hb/wHAIlEgszMzCbHO3LkCB4+fIjnnntOrd3Pzw8A8Ouvv8LX1xdWVlYwMTFRu6+sXn3boyHsj+Tn5wMAz6YRERH9CW3duhXu7u7N3k5wIc3Ozg5BQUGtsq/q6moolUrIZDKIxWK4urrCyMgIhYWFGn2LiopgY2PT5P7u3bsHpVIJhUKh1l5TUwMAqkurBgYG6NWrF65cuaKxj99++w1du3Zt9KGBhgwePBjLli1Dly5dVJdLtVV/qXTZsmVqZx31EeeiDuehDuehDuehDuehDuehTmvPg677EFxI08X9+/chkUjU2srKynDixAk4Ojqq1pmZmcHX1xdnzpxBbm6uatJycnKQnp6O8ePHq7avqqpCQUEBrK2tVeGte/fuUCqVOHbsmFqQTEpKAqB+uTUgIACbN2/GlStX0KdPHwDA77//jkuXLiEkJKRZx2djY4PAwMBmbfO4Hj166JTiOyLORR3OQx3OQx3OQx3OQx3OQ532nocOEdIWL14MBwcHSKVSSCQSFBQU4PDhwyguLsbKlSvV+s6ZMwcXLlzAwoUL8dJLLwEA9u/fD0tLS7XXdWRkZCAiIgJhYWGYOXMmACAoKAixsbFYu3Ytrl27hp49e+LatWs4dOgQevbsqXqRLVD3Mt2DBw9iyZIlCA0NhaGhIeLi4iCRSBAaGtr2k0JERER/ah0ipI0bNw5Hjx5FXFwcysvLYWlpCalUiuXLl8PT01Otr4uLCzZs2IDNmzcjJiYGIpEIPj4+mDt3LhwcHJocx9raGlu3bsX27dtx+vRpHDhwAFZWVhg3bhxmz56t9jSnmZkZ1q9fj40bN2Lnzp2qb3f+9a9//cPLqkREREQipVKpbO8iqO0UFRXhwIEDmDBhQrMeVuiIOBd1OA91OA91OA91OA91OA91hDIPDGlEREREAtRhv91JRERE9GfGkEZEREQkQAxpRERERALEkEZEREQkQB3iFRwdxaVLlxr9bumXX36JZ555BgCQnJyMo0ePIiMjA7m5uXB0dERcXFyzxjp58iS++uor5ObmwsbGBuPGjcO0adNgZKT+K1FWVoZNmzbhp59+QnV1Nfr27Yu33nqrTV/uJ7R5KCoqwr59+5CRkYErV66gsrIS69evh7e3t+4HqQWhzcOFCxeQmJiIy5cvo7CwELa2tvDx8cEbb7zRpk8/CW0eUlJSEBsbi8zMTJSWlsLCwgK9e/fG9OnT4eHhofuB/gGhzcPjPvnkExw8eBDPPvssVq9e3azxmkNo83DkyBFERUU1uP23337b5OcLW0Jo81Dvl19+QUxMDK5duwaFQoHu3btj8uTJGDVqVPMPUgtCm4cFCxYgJSWlwe0NDQ1x7NixZo3JkCZAL730Evr27avW9tRTT6l+TkpKwtGjR/H000/r9AfA2bNn8Y9//ANeXl6IiIjAjRs3sHPnTty/fx+LFi1S9VMoFFiyZAmysrIQGhoKa2trfPfdd4iIiMDWrVvRvXt33Q9SC0KZh5s3b2L37t3o1q0bevXqhfT0dN0PSgdCmYdNmzbhwYMHGD58OLp3747bt2/jm2++wZkzZ7B9+/Y2+8uonlDmIS8vDwYGBpg4cSJsbW1RVlaGxMREzJ8/H6tXr8aQIUN0P0gtCGUeHnXlyhUcOXKk2Z+tawmhzcMbb7yBLl26qLVZWFg0e9zmEtI8HD58GKtXr8bAgQMxe/ZsGBoa4vfff8fdu3d1O7hmEMo8TJ06FcHBwWrbVlZW4tNPP8WgQYOaPS6UJBgXL15U+vv7K48dO9Zkv8LCQqVcLlcqlUrl3//+d+Urr7zSrHGmTp2qnDFjhmofSqVSuWXLFuWwYcOUOTk5qrYff/xRo5779+8rg4KClO+//36zxmwOoc1DRUWFsrS0VKlUKpXHjh1T+vv7Ky9evNissXQhtHm4dOmSsra2Vm3bS5cuKf39/ZVbtmxp1pjNIbR5aEhlZaVy4sSJykWLFjVrzOYQ6jwoFArlm2++qYyKilK+8soryr///e/NGq+5hDYPhw8fVvr7+yszMjKatf+WEto83L59Wzl69Gjl559/3qz9t5TQ5qEhCQkJSn9/f+UPP/zQrDGVSqWS96QJlEwmU324/XH29vZNXnZoSk5ODnJycjB+/Hi1fUyaNAlKpRLHjx9XtZ04cQK2trZqn7uysbHBiBEjcPLkSTx8+FCnGppDCPNgZmYGKysrncZpLUKYBy8vLxgYqP+R4eXlBSsrK+Tm5uo0fnMJYR4aYmpqCmtra5SXl+s0fnMJaR4SEhKQnZ2N2bNn6zRmSwhpHurrqa2t1WnMlhDCPPz3v/+FQqHAG2+8oapJ+YRfwyqEeWhIYmIiOnXqBD8/v2aPzcudAhQVFYXKykoYGhqif//+mDt3ruoj7S117do1ANC4p8ze3h4ODg7IzMxU6+vm5qbxF3Pfvn3x/fff4+bNm3B1dW2VuhoilHlob0KeB5lMhsrKSlhbW7dKPU0R2jxUVFRALpejtLRUFVQe/f5vWxHSPMhkMmzatAlTpkxp88vdjxPSPABAREQEKisrYWxsjEGDBmHevHltfksIIJx5uHDhApydnXH27Fl8+eWXKCwshKWlJSZNmoSZM2dq/D3S2oQyD48rKSnBL7/8gpEjR6JTp07NHpshTUCMjIwQEBAAX19fWFtbIycnB3v27MFf//pX/Otf/8LTTz/d4jGKi4sBoME/UO3s7FTrAeDevXsa3z59dNvi4uI2CWlCm4f28meYh71790Iul2PkyJEtrqUxQp2HFStWIDk5GQBgbGyMCRMmYNq0aS2upTFCnIfo6GiIxWK8+uqrLR5bW0KbB7FYjKCgIHh7e8Pc3BxXr15FXFwc3nrrLWzbtg1OTk4trqchQpuH+ns1//nPf2Ly5MlwdXXFTz/9hJ07d6K2thbh4eEtrqchQpuHx/3444+ora3FmDFjdBqbIU1APDw81J4O8/Pzw/DhwzFjxgxs2bIFa9eubfEY9ZcoG7rB18TEBDKZTLVcXV3daL/69W1BaPPQXoQ+DykpKYiOjsaIESMwYMCAFtfSGKHOQ3h4OEJCQnD37l3Ex8ejpqamTS91CW0ebt68iX379mH58uVP9IEBoc3DyJEj1f6R4u/vj8GDB2P+/PmIiYlBZGRki+tpiNDmobKyEgqFAuHh4Xj99dcBAMOHD0dZWRn27duHqVOnwszMrMU1PU5o8/C4pKQk2NjYYODAgTqNzXvSBK5bt27w8/PDpUuXWuUvgPpfsobuJ3v48CHEYrFqWSwWN9qvfv2T0p7zICRCmYfc3FwsW7YMvXr1wpIlS1pcR3MJYR7c3NwwaNAg/OUvf8G6deuQkZHR6KsY2kp7zsOGDRvQr18/DB8+vMXjtpQQfh8e1b9/f0ilUly4cKHFtTRHe/99AQCjR49W6zdq1ChUV1erLhk+CUL5fbh9+zbS09MxcuRIne+HY0j7E3B0dIRcLkdVVVWL9/XopcrHFRcXq53OtbW1bbTfo/t6UtprHoSmveehoKAAixYtgrm5OVavXt0m/zrWRnvPw6OMjY0xdOhQ1fsEn6T2mIcLFy7g3LlzePnll3Hnzh3Vf7W1taiursadO3dQUVHR4nqaQ0i/D/X1PHjwoMW1NFd7zUP9zxKJRK1f/XJZWVmL62kOIfw+JCYmAoDOlzoBhrQ/hdu3b8PExESnmw4f5+bmBgC4evWqWntRUREKCwtV6+v7ZmZmQqFQqPXNyMiAqanpE7kp9lHtNQ9C057zUFpaikWLFkEul2Pt2rVt+hLbPyK034fq6moolconfqm8Peah/r1Xy5YtQ0hIiOq/wsJCXLx4ESEhITh06FCL62kOof0+3L59GzY2Ni2upbnaax7qb6ovKirS6Avgic+FEH4fkpKS8NRTT6leqKsLhjQBKSkp0Wi7fv06Tp06hUGDBjX76Ziamhrk5uaq/Z+mZ8+ecHZ2xvfff692Gvi7776DSCRCQECAqi0gIAD37t3DTz/9pFbjsWPH8Nxzz7XZfShCm4f2IrR5qKysxN///ncUFRXhk08+eWIhXWjzcP/+fY19lpWV4cSJE3B0dNQ4k9BahDQPPj4++OijjzT+s7GxQZ8+ffDRRx9h6NChuh3oHxDSPDRWz5kzZ3D16lUMHjy4WbU0h9Dmof6+vEfDuUKhwJEjR2BlZdVmX6kR2jzUu3btGnJzczUu/zYXHxwQkBUrVkAsFqNfv36QSCTIycnB999/D1NTU7UnY7KysnDy5EkAwK1bt1BeXo6vv/4aANC7d2/VH46FhYWYOnUqxo4di3fffVe1/VtvvYWlS5di0aJFGDVqFG7cuIFvv/0WwcHBcHFxUfUbPnw49u3bh6ioKOTk5Ki+OKBQKDBz5ky9mQcAqv3m5OQAqHs31OXLlwEA06dP14t5WLVqFTIyMjBu3Djk5uaqvRutU6dO8Pf314t5WLx4MRwcHCCVSiGRSFBQUIDDhw+juLgYK1eubJM5ENo8ODk5NfjU4v/93/9BIpG02e8CIKx5AIC5c+fi6aefhru7O8zNzXHt2jUcPnwYjo6ObfpKFqHNg5+fHwYMGIB///vfKCkpQe/evfHzzz/j8uXLiIyMbLN/1AttHuq1xqVOgCFNUPz9/ZGYmIi4uDhUVFTAxsYGw4YNQ1hYGLp166bqd+3aNWzfvl1t2/rlsWPH/uG/YJ977jl8+OGHiI6Oxvr162FtbY0pU6YgLCxMrZ+hoSE++eQT/Otf/8L+/ftRXV2NPn36YOnSpXB2dm6dg26A0Obh0f3WO3z4sOrntgppQpuH69evA6g79kePHwA6d+7cZn8xC20exo0bh6NHjyIuLg7l5eWwtLSEVCrF8uXLG3xlTWsR2jy0F6HNw8iRI3H27FmcP38eVVVVsLOzw/jx4xEWFgZbW9vWOegGCG0eRCIRPvroI2zbtg1Hjx5FfHw8unfvjmXLliEwMLB1DroBQpsHoO4MYv0nqFr6d6VI+aRfCUxEREREf4j3pBEREREJEEMaERERkQAxpBEREREJEEMaERERkQAxpBEREREJEEMaERERkQAxpBEREREJEEMaERERkQAxpBEREREJEEMaEdEjhg0bhgULFrTb+B9//DGGDRuGO3futPq+L126hGHDhqn+e/PNN7XedseOHRg2bBguXbrU6nU15c0331Sr+UmPT9SeGNKIqFXduXMHw4YNQ2RkZHuX0mraMji1By8vL4SFhSE4OLi9S/lDwcHBCAsLg5eXV3uXQvTE8QPrRESPiImJgampaXuX0aa8vLwwc+bM9i5DK/VBcseOHUhJSWnfYoieMIY0IqJH9OjRo71LICICwJBGRO0sPz8f0dHRSE5ORklJCSQSCQYNGoQZM2bAyclJre+CBQuQkpKCo0ePYufOnYiPj0dxcTGcnJzwyiuvYNKkSRr7LykpwdatW/Hzzz+jsrISPXv2xJQpU1BRUYGoqCgsXboUQUFBqv7Dhg2Dl5cXNmzYAAB49dVXkZ+fDwAICQlR9avvc+fOHYSEhGDs2LF49913NcZ/fH/1srOzsWnTJqSkpMDAwAD9+vXD3Llzm5yrn3/+Gfv378e1a9fw8OFDPPXUUxg7dixeffVVGBoa/sFMa6egoACbNm1CcnIyampq8PTTT+ONN95ocpuUlBTExsYiPT0dMpkMjo6OGDlyJKZOnapxVrKmpgaxsbE4ePAgioqK4ODggL/85S8YOXIkQkNDG51HIn3EkEZE7ebmzZuYN28eSkpK8Nxzz6Fnz57Izs7G4cOHcfr0aXzxxRfo3r27xnbvv/8+MjIyMGTIEBgaGuLYsWP47LPPYGRkhPHjx6v6yWQyLFiwADk5OejXrx88PT1RWFiI999/H4MGDdKqxpdffhnx8fG4fv06Xn75ZVhYWAAAunTpovNx37hxA/PmzUNlZSWGDRuGbt26ISMjA/PmzYOrq2uD22zevBm7du2Cg4MDhg0bBgsLC1y+fBlffvklMjIy8MEHH+hcT72ioiK89dZbKCwsxODBg/H0008jNzcXixYtgre3d4PbfPfdd/jss89gYWGB5557DhKJBFevXkVMTAwuXbqE9evXw9jYWNV/9erVSEhIQNeuXfHCCy9ALpcjLi4OaWlpLa6fqKNhSCOidrN27VqUlJQgMjISEyZMULV/++23+Oyzz/Dpp5/i888/19iusLAQX3/9NczNzQHUBanp06djz549aiFt9+7dyMnJwfjx47F48WJVe1BQEP72t79pVeOrr76K69ev4/r163jllVdaFM7qff7556ioqMCyZcsQGBioat+yZQv+/e9/a/Q/f/48du3ahcGDB2PVqlXo1KkTAECpVGLdunX473//i+PHj2P48OEtqmvLli0oLCzErFmzMG3aNFX7gQMHsHbtWo3+OTk5WL9+PVxdXfHZZ5/B2tpate7f//43tmzZgv379yM0NBQAcOHCBSQkJMDNzQ1ffPGF6izb1KlTMWvWrBbVTtQR8elOImoXBQUFuHTpElxcXNSCFQBMnDgRzs7OuHjxIgoKCjS2nTNnjiqgAYCzszM8PDzw+++/QyaTqdp/+OEHGBsba1yuGzBggNZn0lpbQUEBUlJS4OrqqhbQAGDKlCmqM3WP+uabbwAAixcvVgU0ABCJRAgPD4dIJMKPP/7YorrkcjmOHj0KiUSidlkXqLt5v1u3bhrb/Pe//0VtbS0iIiLUAhoAvPbaa7CxsVGr64cffgAATJ8+Xe0yqL29PV5++eUW1U/UEfFMGhG1i8zMTAB193aJRCK1dQYGBvD09MTvv/+O69eva9yb5u7urrE/BwcHAEBZWRnMzMxQUVGB/Px8uLi4wNbWVqO/h4cHzp8/31qHo7Xr16+rxn+cmZkZ3NzcNN4F9ttvv6FTp044dOhQg/sUi8X4/fffW1TX77//jocPH8LHxwdisVhtnYGBATw8PJCXl6dRFwAkJyfjwoULGvs0MjJSq6v+2Pv376/Rt1+/fi2qn6gjYkgjonZRf8ZLIpE0uN7Ozg4AUFFRobHu0bNo9epvnFcoFGrbNbb/xtrbmi51PXjwALW1tYiOjm50v5WVle1SF1D32hJtyGQyGBgYaJx1A9BgkCbSdwxpRNQuzMzMAAD3799vcP29e/cANBzItFG/XWP7b6y9uQwM6u4aqa2t1VhXXl7eKnWZm5tDJBLh+++/b0mpTdK1LgCIj49X/e/ZFDMzMygUCpSWlsLGxkZtXf3/3kT0P7wnjYjahZubGwAgNTUVSqVSbZ1SqURqaioAoHfv3jrt39zcHJ07d8atW7caDBjNeZqwPojVn6V7VP09ZEVFRRrr6i/pPqr+eH799VeNdTKZrMFt+vbti9LSUty8eVPrmpure/fuMDExwdWrV1FdXa22TqFQNDhfUqkUAJCenq7VGE0dO5/uJNLEkEZE7cLJyQne3t7Izs7WuNfqwIEDyM3NhY+Pj8b9aM0xZswYyOVy7NixQ6390qVLSE5O1no/VlZWAIC7d+9qrDM3N4ezszMuX76sds+WTCbDli1bNPo7OTnB09MTWVlZqhvp6/373/9u8Oxb/U31q1evRmlpqcb64uJi5OTkaH08DTExMcGIESNw//597NmzR23dwYMHGwyIL7zwAgwNDbF+/foGH/AoKyvDtWvXVMtjxowBAERHR6sFweLiYuzbt69F9RN1RLzcSURt4saNG/j4448bXOfs7IwpU6Zg0aJFmDdvHtasWYPTp0/DxcUF2dnZOHXqFGxsbLBo0aIW1fD666/jxIkT+O9//4vs7Gz0798fhYWFOHbsGJ577jmcPn1a46GFhvj4+CA2NhZr1qxBQEAATE1N0blzZzz//PMA6l5yu2bNGsydOxcjRoyAQqHAuXPn0KdPnwb397e//Q3z5s3Dxx9/jJMnT6rek3blyhX0798fly9fVus/ZMgQTJ8+HV9//TUmT56MIUOGwMnJCQ8ePMCtW7dw+fJlvPHGG3BxcWnRfIWHh+PixYvYtm0bfv31V7i5uSE3Nxdnz57FoEGDNB606NWrF95++22sW7cOr7/+Onx9ffHUU09BJpPh9u3bSE1NxdixY1XfcR04cCBGjx6NpKQkhIWFwc/PD3K5HMeOHUPfvn1x+vRp1VlLImJII6I2UlRUhPj4+AbXeXl5YcqUKXB2dsbWrVsRHR2Nc+fO4cyZM7CxscG4ceMQFhaGzp07t6gGMzMzbNy4EZs3b8bJkydx5coV9OzZE8uXL8ft27dx+vRpre558/X1xdy5c/H9999jz549qKmpgZeXlyqkjR8/HjU1Ndi7dy8OHjwIOzs7BAUFYdq0aRg5cqTG/nr16oUvvvgCmzZtwrlz55CcnAwPDw988cUXiI2N1QhpAPDGG2/A09MT+/btw4ULF1BeXg4rKyt06dIFYWFhqrNULWFvb49//etf+PLLL5GcnIzU1FQ8/fTT+PTTT3Hx4sUGn4YdP348evfujbi4OKSmpqrmtP4rEGPHjlXr/+6776JHjx44fPgwvvnmGzg4OOCVV16Bj48PTp8+rdW9bUT6QqR8/GYQIiI9sGrVKiQmJmLnzp0tPgP1Z3Hp0iVEREQgLCxMcB9YP3jwID755BO8/fbbeOGFFzTW79ixA9HR0Vi/fn2jXz8g6mh4Jo2IOrSioiLY29urtdV//9PZ2VlvAtqjoqOjER0dDalUik2bNj3RsYuLi2Fra6t2mbmwsBA7d+6EoaEhnn32WbX+b775pup9bET6hiGNiDq0JUuWwMTEBG5ubjA1NUVOTg6Sk5NhYGCAiIiI9i7viercuTPCwsJUy46Ojk+8hl27duHMmTPw9PSEjY0N7t69i9OnT0Mmk2HGjBkaD4oEBwdj8ODBquWWXgIn+jPh5U4i6tDi4uKQlJSEW7duQSaTwcLCAh4eHpgyZYrqFRL05Jw7dw579uxBVlYWysrKYGJiAldXV7zwwgutcl8dUUfCkEZEREQkQHzWmYiIiEiAGNKIiIiIBIghjYiIiEiAGNKIiIiIBIghjYiIiEiAGNKIiIiIBIghjYiIiEiAGNKIiIiIBOj/ASUllaYrpLIiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# you can plot the pointings to see how the zenith changes over the observation - shown in Galactic Coordinates\n", + "plt.plot(grbori._z_direction[:,1], grbori._z_direction[:,0],\"o\")\n", + "plt.xlabel(\"Longitude [deg]\")\n", + "plt.ylabel(\"Latitude [deg]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6d614d36", + "metadata": {}, + "outputs": [], + "source": [ + "# Simulating a 2 second GRB at l = 51, b = -17 in Galacti coordinates.\n", + "coord = SkyCoord(l = 51*u.deg, b = -17*u.deg,\n", + " frame = 'galactic', attitude = Attitude.identity(frame = 'galactic')) " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9e603119", + "metadata": {}, + "outputs": [], + "source": [ + "# Initiate a SpacecraftPositionAttitude object with the coordinates of the source\n", + "SCPosition = SpacecraftPositionAttitude.SourceSpacecraft(\"GRB\", coord) " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c021bb6e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Latitude [deg]')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHACAYAAABJddlbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJCElEQVR4nO3deVxWZf7/8TeLIIuIgaKlIi6RuxVouWMuOBbTombl5BJkDZrpNGX9ZqbNqSm30TS3SjIrcaZpokXUjKy0JE2R1BBTcAuBOxc22bx/f/DlHm9vMLzZbjiv5+PhI891rnPuz7nmzPSec65zjpPZbDYLAACgkXOu7wIAAADqAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYgmt9F1CRlJQUrV69Wj/++KPMZrO6d++uRx99VF26dLHpm5ycrBUrVujQoUPy8vJSWFiYoqKi5OnpWQ+VAwAAR+XkaN/eSklJUXR0tFq1aqWIiAiZzWZ9+OGHysnJ0cqVK9W+fXtL39TUVD366KMKDAxURESEMjMzFRsbqxtvvFHz5s2rx6MAAACOxuGu9Lz55ptyd3fX8uXL1bx5c0nSiBEj9MADD2jVqlWaO3eupe+qVavUrFkzLVmyRF5eXpKkNm3a6NVXX1ViYqL69u1bL8cAAAAcj8PN6dm3b59CQkIsgUeS/P391adPH3377bfKz8+XJOXl5WnXrl0aOXKkJfBI0qhRo+Th4aGEhIQ6rx0AADguh7vSU1xcLDc3N5v2pk2bqri4WEePHlX37t115MgRlZaWKjg42KpfkyZN1KVLF6Wmpla4/+zsbJlMJstyYWGhCgoK1Lt3bzVt2rRmDwYAADgMhws97dq104EDB1RaWioXFxdJZUHowIEDkqSsrCxJsgQXPz8/m334+fkpKSmpwv3HxcUpJibGpn31Dz8oOC+vJg4BAADUhaucluxwoeeuu+7SggUL9Morr+j+++/XxYsXtXbtWkvIKSoqklR2hUYqu7JzOTc3N0u/y0VERGjAgAGW5fT09LJ5Qq1aSZVsAwAAGj6HCz2///3vlZmZqffff1/x8fGSpBtuuEH33Xef3nnnHXl4eEiS3N3dJZVdBbpcUVFRhbfIpLL5Qf7+/rYrNm6ULrtVBgAAGg+HCz2SFBUVpQkTJujo0aPy8vJSp06dtGrVKkllt7+k/93WunR+TjmTyVRxsAEAAIblcE9vlWvWrJl69eqlTp06SZJ27dqlli1bWt7TExQUJBcXF6WkpFhtV1xcrNTUVHXu3LnOawYAAI7LYUPPpbZu3aqffvpJ48aNk7NzWcne3t4KCQnR5s2bLY+xS9KmTZtUUFCgsLCw+ioXAAA4IIe7vbV37169/fbbCg0NlY+Pjw4cOKCNGzeqX79+Gjt2rFXfyMhIRUdHa8aMGVZvZA4NDVW/fv3q6QgAAIAjcrjQ07JlSzk7O+v9999XQUGBWrdurYceekj33nuvXF2tyw0ODtbChQu1YsUKvfbaa/L09NSYMWM0bdq0eqoeAAA4Kof79lZdS0lJUVRUlFavXm3zokMAQAPXoYM0dKhUwfvZKuzbo4f0ySe1WxPqTYOY0wMAQI04cEB67jkpLa2+K0E9cLjbWwAA1JiUFMn5kv9/f+CA9PzzZVd/OnSor6pQTwg9AIDG6/9eZAtI3N4CANSFtDTJyanyP+V27pTCw6XmzSVPT2nIEGn7dut9Pfdc2TaHD0uTJ0u+vmX9p0yRLnmFiaSyqzmTJ5f9PSZGGjeu7O9hYf/77S+/tN7mm2+kvn2lpk2ljh2ltWtrZgxQ77jSAwCofS1bSu+8Y91WXCzNmiWVfzboiy+k0aOlm2+Wnn227LbUmjXSsGHS11+XBZFLjR8vBQVJL78s/fCD9MYbZd9RfOWVimsYPFh67DFpyRLpmWekrl3L2sv/KZUFqbFjpYcekiZNkt56qyw03Xyz1L17jQwF6g+hBwBQ+7y8pIkTrduio6XcXGnLlrKvZT/ySNkVmI0b/3f1Z9q0srDxl79Imzdbb3/jjdKbb/5v2WQqW64s9HTsKA0aVBZ6Rowom9dzuZQU6auvyvpJZcGqXbuy8DV/vl2HDsfB7S0AQN1bu1Z6/XXp1VfLgs7evVJqqnT//WXhJTu77E9ennTbbWVB5OJF63088oj18qBBZdueP29/Xd26/S/wSGVXqIKDpSNH7N8nHAZXegAAdWvv3rLAct990uzZZW2pqWX/nDSp8u3OnZNatPjf8v99i9GifN2ZM5KPj321Xb7P8v2eOWPf/uBQCD0AgLpz5ox0zz3S9deXzcEpV34VZ948qU+firf19rZednGpuF913rlbG/uEwyD0AADqxsWL0gMPSGfPSp9/XvZ0VrlOncr+6eMjDR9eezVc+qQYDIc5PQCAuvH889KmTdL775c9dXWpm28uCz7z55dNbr5cVlbN1ODlVfbPs2drZn9oULjSAwCofcnJ0osvlj02npkprVtnvX7ixLLbXaNHlz2tNWWKdN110smTUkJC2RWgjz+ufh19+pTdwnrllbI5Qu7uZY/Et2pV/X3D4RF6AAC1z2QqmxezbVvZn8tNnFj2CPm335aFo6VLy674tG4t9etX9uh6TWjdWlqxouzdPg89JJWWloUqQo8h8JV1vrIOAIAhMKcHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYgmt9F1CR48eP680331RycrLOnz+vgIAADR8+XBMmTFDTpk0t/ZKTk7VixQodOnRIXl5eCgsLU1RUlDw9PeuxegAA4IgcLvScPn1a06ZNk7e3t+666y75+Pho//79euutt5SSkqKXX35ZkpSamqpZs2YpMDBQ06dPV2ZmpmJjY3XixAnNmzevno8CAAA4GocLPZs3b1Zubq6WLVumoKAgSVJERIQuXryoTZs2KScnR82aNdOqVavUrFkzLVmyRF5eXpKkNm3a6NVXX1ViYqL69u1bn4cBAAAcjMPN6cnLy5MktWjRwqrdz89Pzs7OcnV1VV5ennbt2qWRI0daAo8kjRo1Sh4eHkpISKjTmgEAgONzuNBz4403SpJeeeUVpaam6vTp09q6das++ugj3XPPPfLw8NCRI0dUWlqq4OBgq22bNGmiLl26KDU1tdL9Z2dnKyUlxfInPT29Vo8HAAA4Boe7vdWvXz899NBDWrdunbZv325p/8Mf/qCoqChJkslkklR29edyfn5+SkpKqnT/cXFxiomJqdmiAQCAw3O40COVzc3p3bu3hgwZIh8fH3377bdat26drrnmGt1zzz0qLCyUVHZl53Jubm4qKiqqdN8REREaMGCAZTk9PV1z586t+YMAAAAOxeFCz9atWzVv3jy9++67atWqlSRpyJAhMpvNWrlypYYPHy53d3dJUnFxsc32RUVFcnNzq3T//v7+8vf3r53iAQCAw3K4OT0ffvihunTpYgk85QYMGKALFy4oNTXVclur/DbXpUwmE6EGAADYcLjQc+bMGV28eNGmvaSkRJJUWlqqoKAgubi4KCUlxapPcXGxUlNT1blz5zqpFQAANBwOF3ratWun1NRUHT9+3Kp969atcnZ2VqdOneTt7a2QkBBt3rxZ+fn5lj6bNm1SQUGBwsLC6rpsAADg4BxuTs+ECRO0c+dOTZ8+XXfffbd8fHy0Y8cO7dy5U7fffrvl1lVkZKSio6M1Y8YMRUREWN7IHBoaqn79+tXzUQAAAEfjZDabzfVdxOUOHDigNWvWKDU1VefPn1ebNm0UHh6u++67T66u/8tp+/bts3x7y9PTU2FhYZo2bdpVfXsrJSVFUVFRWr16tc17fwAAQOPhkKGnLhF6AAAwBoeb0wMAAFAbCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD3/Z+e7B7Xv0yMqKblY36UAAIBa4FrfBVzupZdeUnx8fKXrP/jgA7Vs2VKSlJycrBUrVujQoUPy8vJSWFiYoqKi5OnpedW/+8uBMyo6nKLE91LUc0yQ+t1/g93HAAAAHI/DhZ6IiAiFhIRYtZnNZi1YsECtW7e2BJ7U1FTNmjVLgYGBmj59ujIzMxUbG6sTJ05o3rx59hdglpI/OSpJBB8AABoRhws9PXr0UI8ePaza9u3bpwsXLmjEiBGWtlWrVqlZs2ZasmSJvLy8JElt2rTRq6++qsTERPXt27dadfz46VHdPP56ubpyBxAAgMagQfwb/fPPP5eTk5OGDx8uScrLy9OuXbs0cuRIS+CRpFGjRsnDw0MJCQnV/k2zWTq4Ob3a+wEAAI7B4a70XK6kpEQJCQnq0aOH2rRpI0k6cuSISktLFRwcbNW3SZMm6tKli1JTUyvdX3Z2tkwmk2U5Pb3yYJOTmV/N6gEAgKNw+NCTmJioc+fOWd3aKg8tfn5+Nv39/PyUlJRU6f7i4uIUExNTpd9u1urqJ0QDAADH5PCh5/PPP5erq6vCwsIsbYWFhZLKruxczs3NTUVFRZXuLyIiQgMGDLAsp6ena+7cuTb9nJykriMDq1M6AABwIA4devLz8/XNN9+ob9++at68uaXd3d1dklRcXGyzTVFRkdzc3Crdp7+/v/z9/X/zt3uMCWISMwAAjYhDh55vvvnG5qkt6X+3tS6dm1POZDJVKdRUykm8pwcAgEbIoUPPli1b5OHhYXU7SpKCgoLk4uKilJQUDRs2zNJeXFys1NRUq1thVdWmWwv16ResbqM6cIUHAIBGyGH/7X727Fnt2rVLgwcPVtOmTa3WeXt7KyQkRJs3b1Z+/v+esNq0aZMKCgrsCj39HuiqXmM6EngAAGikHPZKz9atW1VaWmpza6tcZGSkoqOjNWPGDEVERFjeyBwaGqp+/frVcbUAAMDROexljc8//1wtWrTQzTffXOH64OBgLVy4UO7u7nrttdf08ccfa8yYMXrxxRfruFIAANAQOOyVnuXLl/9mn169eun111+vg2oAAEBD57BXegAAAGoSoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABiCa30XUJmUlBStWbNGycnJKioq0rXXXqs77rhDY8eOtfRJTk7WihUrdOjQIXl5eSksLExRUVHy9PSsx8oBAIAjqlLoiYmJqfYP9enTR3369KlS38TERD399NPq0qWLJk2aJA8PD508eVJZWVmWPqmpqZo1a5YCAwM1ffp0ZWZmKjY2VidOnNC8efOqXS8AAGhcqhR61qxZIycnJ5nNZrt+xMnJSZMnT65S6MnLy9NLL72kW265RS+++KKcnSu+A7dq1So1a9ZMS5YskZeXlySpTZs2evXVV5WYmKi+ffvaVSsAAGicqnx7Kzw8XOHh4Vf9A2azWY8//niV+3/++ef69ddfFRUVJWdnZxUUFMjd3d0q/OTl5WnXrl0aP368JfBI0qhRo/Taa68pISGB0AMAAKxUOfS0bt26yrenqmPXrl3y8vJSdna2/t//+386fvy4PDw8NHLkSE2fPl3u7u46cuSISktLFRwcbLVtkyZN1KVLF6Wmpla6/+zsbJlMJstyenp6rR0LAABwHFUKPffff7969uxp949czfYnTpxQaWmpnnnmGY0ZM0YPP/yw9u7dqw8++EC5ubl69tlnLaHFz8/PZns/Pz8lJSVVuv+4uLgamaMEAAAaliqFnmnTplXrR65m+4KCAl24cEG///3vNXPmTEnSkCFDVFxcrLi4OE2dOlWFhYWSyq7sXM7NzU1FRUWV7j8iIkIDBgywLKenp2vu3LlVrg8AADRMDvfIuru7uyTptttus2ofPny44uLitH//fjVt2lSSVFxcbLN9UVGR3NzcKt2/v7+//P39a7BiAADQEDjcywnLb1ldc801Vu0tWrSQJOXk5Fj6XDo3p5zJZCLUAAAAG3Zd6bn33nt/s4+zs7M8PT3Vvn17DRo0SMOGDavSvoODg7Vr1y5lZWWpffv2lvbs7GxJkq+vr4KCguTi4qKUlBSr/RYXFys1NVVhYWFXeUQAAKCxs+tKj9lsVklJiTIyMpSRkaGsrCwVFRUpKyvL0lZUVKSTJ0/qiy++0AsvvKDZs2dXeDvqcuWB5dNPP7Vq//TTT+Xi4qIbb7xR3t7eCgkJ0ebNm5Wfn2/ps2nTJhUUFBB6AACADbuu9Lz55pv605/+pPbt2ysyMlLdunWzvLzwwIEDevPNN5Wbm6uYmBidO3dOS5cu1XfffafY2FhNnDjxivu+/vrr9bvf/U6fffaZSktL1adPH+3du1cJCQmaOHGi5dZVZGSkoqOjNWPGDEVERFjeyBwaGqp+/frZc1gAAKARczLb8ZrlefPmaf/+/XrrrbcqfGNyaWmpHnroIfXo0UNPPPGECgsL9eCDD8rT01Nr1qz5zf2XlJTonXfe0caNG5Wdna2AgADdddddGj9+vFW/ffv2Wb695enpqbCwME2bNu2qvr2VkpKiqKgorV692ua9PwAAoPGw60rP9u3bFR4eXuknIlxcXHTLLbcoPj5eTzzxhNzd3XXTTTdp69atVSvK1VVTpkzRlClTrtivV69eev3116+6fgAAYDx2zenJy8uzmktTWZ+8vDzLcvPmze35KQAAgBphV+jp0KGDPv/8c506darC9adOndLWrVvVoUMHS1tmZqZ8fX3t+TkAAIBqs+v21sSJE/W3v/1NU6dO1e23364ePXqoRYsWOnPmjH788Ud9+umnKigosExaLi4u1vfff6/Q0NAaLR4AAKCq7JrILJU9Qv7aa6+poKBATk5Olnaz2SwPDw9Nnz5dt99+u6SyFwru3btXQUFBatu2bc1UXkOYyAwAgDHY/RmKMWPGaMiQIfrmm290+PBh5efny9PTU507d9bAgQPl7e1t6dusWTMNGjSoRgoGAACwR7W+veXt7a3w8PCaqgUAAKDWVPuDo/n5+Tp+/LguXLig3r1710RNAAAANc7u0PPLL79oyZIl+u6772Q2m+Xk5KSEhARJUnJysl599VXNnj1bN954Y40VCwAAYC+7Hlk/ffq0Hn30UX333XcaOHCgunfvrkvnQ3ft2lXnzp3T559/XmOFAgAAVIddoeett95STk6OlixZohdffFEhISFW611dXdWrVy/9+OOPNVIkAABAddkVehITEzVo0CD17Nmz0j6tW7dWVlaW3YUBAADUJLtCT05Ojlq3bn3FPmazWcXFxXYVBQAAUNPsCj0tWrTQiRMnrtjnyJEjCggIsKsoAACAmmZX6AkJCdG3336rn3/+ucL1SUlJ+uGHH3TLLbdUqzgAAICaYtcj6w8++KC2bdumGTNmaMKECTp58qQk6bvvvtOPP/6oDRs2qHnz5powYUKNFgsAAGAvu0JPmzZtNH/+fD333HN688035eTkJLPZrDlz5shsNisgIEAvvPCC/P39a7peAAAAu9j9csJu3brpvffe044dO3TgwAHl5OTI09NT3bp108CBA9WkSZOarBMAAKBaqvUZCldXVw0ePFiDBw+uqXoAAABqhV0TmQEAABqaKl3piYmJsWvnTk5OmjRpkl3bAgAA1KQqhZ41a9bYtDk5OVn+ful3t8rbyz9CSugBAACOoEqhZ/HixTZt69ev165duzRy5Ej16tVL11xzjX799VclJSVpy5YtCg0N1b333lvjBQMAANijSqGnT58+VsuffPKJ9u7dq9WrVysoKMhqXXh4uMaOHas//vGPGjhwoM22AAAA9cGuicz/+te/dNttt9kEnnKdOnXSbbfdpg0bNlSrOAAAgJpiV+g5efKkfHx8rtjHx8dHp06dsqsoAACAmmZX6PH19dXOnTutJjBf6uLFi9q5c6eaN29ereIAAABqil2hZ/jw4fr55581Z84cHT582Gpdamqq5syZo6NHj2rEiBE1UiQAAEB12fVG5ilTpujQoUP67rvvtHPnTjVt2lS+vr46e/asLly4ILPZrJtvvlmTJ0++6n3v2bNHM2fOrHDd8uXL1b17d8tycnKyVqxYoUOHDsnLy0thYWGKioqSp6enPYcFAAAaMbtCj7u7uxYsWKD4+HjFx8fryJEjOn36tLy9vXXDDTdo1KhRCg8Pt3qXz9W655571LVrV6u26667zvL31NRUzZo1S4GBgZo+fboyMzMVGxurEydOaN68eXb/LgAAaJzs/vaWk5OTRo8erdGjR9dkPRa9e/fW0KFDK12/atUqNWvWTEuWLJGXl5eksq+/v/rqq0pMTFTfvn1rpS4AANAwOfS3t/Lz81VSUmLTnpeXZ3kxYnngkaRRo0bJw8NDCQkJdVkmAABoAKp0pae4uFguLi5ydrYvI9mz/csvv6yCggK5uLioV69eevTRR3XDDTdIko4cOaLS0lIFBwdbbdOkSRN16dJFqample43OztbJpPJspyenn6VRwMAABqiKoWeESNGaMqUKXZ/R+tqtnd1ddWQIUN0yy23qHnz5kpLS1NsbKymT5+u119/Xddff70ltPj5+dls7+fnp6SkpEr3HxcXZ/cHVAEAQMNVpdBjNpsrfSdPTW/fs2dP9ezZ07I8cOBADR06VFOmTNGqVas0f/58FRYWSiq7snM5Nzc3FRUVVbr/iIgIDRgwwLKcnp6uuXPnVvVQAABAA1XlicwbN27Unj177PqR6jzFJUlt27bVwIED9dVXX6m0tFTu7u6Sym6bXa6oqEhubm6V7svf31/+/v7VqgcAADQ8VQ49GRkZysjIqM1arqhVq1YqLi7WhQsXLLe1Lp2bU85kMhFqAACAjSqFnm3bttV2Hb/p1KlTcnNzk4eHh4KCguTi4qKUlBQNGzbM0qe4uFipqakKCwurx0oBAIAjcrhH1s+ePWvTdvjwYW3fvl2hoaFydnaWt7e3QkJCtHnzZuXn51v6bdq0SQUFBYQeAABgw+6XE9aWZ599Vu7u7urRo4datGihtLQ0ffzxx2ratKmmTZtm6RcZGano6GjNmDFDERERljcyh4aGql+/fvV4BAAAwBE5XOgZNGiQtmzZog0bNigvL0++vr4aPHiwJk+erLZt21r6BQcHa+HChVqxYoVee+01eXp6asyYMVbBCAAAoJyTuTrPojcCKSkpioqK0urVq21edggAABoPh5vTAwAAUBsIPQAAwBAIPQAAwBBqJPScP39ep0+froldAQAA1Aq7n97Kzc3Vm2++qS+++ELnzp2Tk5OTEhISJEkHDhzQmjVrFBkZyeRgAADgEOy60nP+/Hk98sgj+s9//qNWrVopMDDQ6oOinTp10o8//qgtW7bUWKEAAADVYVfoWbNmjY4fP65nn31Wq1ev1tChQ63Wu7u7q3fv3vrhhx9qokYAAIBqsyv0bN++XbfeeqvVd68u16ZNG2VlZdldGAAAQE2yK/SYTCZ16NDhin2aNGmigoICe3YPAABQ4+wKPT4+PsrMzLxin2PHjsnPz8+uogAAAGqaXaGnd+/e2r59e6XBJy0tTTt37lRISEi1igMAAKgpdoWeP/zhDyotLVV0dLQ2b96sc+fOSSoLO5988okef/xxubm5acKECTVaLAAAgL3s/uDoN998o7///e+WeTtms1lOTk4ym83y9PTU3/72N9166601Wmxt4IOjAAAYg90vJxw4cKBiY2MVHx+vAwcO6Pz58/Ly8lK3bt00evRo+fr61mCZAAAA1WN36JHKJjSPHz++pmoBAACoNXxwFAAAGEKVrvTEx8fb/QPh4eF2bwsAAFBTqhR6Xn75ZTk5OVmWyyctX0l5H0IPAABwBFUKPXPmzLFp27Ztm7799lvdfPPN6tWrl1q0aKEzZ84oKSlJP/zwg2699VYNGTKkxgsGAACwR5VCz+jRo62Wv/76a+3atUvz589XaGioTf/ExEQ988wzuv3222umSgAAgGqyayLzO++8o7CwsAoDjyT17dtXQ4cO1dq1a6tVHAAAQE2xK/SkpaWpVatWV+zTqlUrpaWl2bN7AACAGmdX6PH09FRSUtIV+yQlJcnT09OuogAAAGqaXaFn4MCB+vHHH7VgwQKdOXPGat2ZM2c0f/587d+/X4MGDaqRIgEAAKrLrjcyT5s2TT/++KPi4uK0ceNGXXfddZant06ePKni4mIFBQXp4Ycfrul6AQAA7GJX6GnWrJlWrlypd999V5s3b1ZaWppl/k6bNm00cuRI3X///WratGlN1goAAGA3u7+95e7urqlTp2rq1KnKz89XXl6evLy8mMcDAAAcUo18e8vT01MtW7aslcCzdu1aDR48WJMmTbJZl5ycrOjoaI0YMUJ33nmnFi9erPz8/BqvAQAANHzV+sp6bcvMzNS6devk4eFhsy41NVWzZs1SYGCgpk+frszMTMXGxurEiROaN29ePVQLAAAcmV2hZ8iQIb/57S1JcnJyUkJCgj0/IUl6/fXX1a1bN128eFHnzp2zWrdq1So1a9ZMS5YskZeXl6Sy+USvvvqqEhMT1bdvX7t/FwAAND523d7q3bt3hX86deokd3d3mc1mderUSb169bK7sL1792rbtm2aMWOGzbq8vDzt2rVLI0eOtAQeSRo1apQ8PDyqFbQAAEDjZNeVniVLllS67sKFC1q5cqV27typBQsW2FVUaWmpFi9erDFjxqhTp042648cOaLS0lIFBwdbtTdp0kRdunRRampqpfvOzs6WyWSyLKenp9tVIwAAaFhqfE5P06ZNNXPmTD388MNavny5nn766avex0cffaTTp09r0aJFFa4vDy1+fn426/z8/K74tui4uDjFxMRcdU0AAKBhq7WJzL169dLmzZuvertz587prbfe0oMPPihfX98K+xQWFkoqu7JzOTc3NxUVFVW6/4iICA0YMMCynJ6errlz5151nQAAoGGptdBz9uxZFRQUXPV2b7zxhpo1a6Z77rmn0j7u7u6SpOLiYpt1RUVFcnNzq3Rbf39/+fv7X3VdAACgYavx0HPx4kVt2bJFX3zxhc2cm99y/Phxffzxx5oxY4ays7Mt7UVFRSopKdEvv/wiLy8vy22tS+fmlDOZTIQaAABgw67Qc++991bYXlpaqrNnz6qkpESurq6aNm3aVe03OztbFy9e1OLFi7V48eIKf3fs2LGaOnWqXFxclJKSomHDhlnWFxcXKzU1VWFhYVd3QAAAoNGzK/SYzeaKd+bqqqCgIN1www26++67FRQUdFX7DQoK0t///neb9jfeeEP5+fl67LHHdO2118rb21shISHavHmzJk2aZHkT9KZNm1RQUEDoAQAANuwKPRs2bKjpOiRJvr6+GjRokE37v/71L0myWhcZGano6GjNmDFDERERljcyh4aGql+/frVSHwAAaLhq5Ntb9SE4OFgLFy6Uu7u7XnvtNX388ccaM2aMXnzxxfouDQAAOCC7rvQMHTpUU6ZMqfAjoOXWrl2rNWvW1MjbkSt7GWKvXr30+uuvV3v/AACg8bPrSo/ZbK50Xs/l/QAAABxBrd3eOnv2rOV9OgAAAPWtyre34uPjrZZTU1Nt2qSy9/RkZmZq06ZNV/30FgAAQG2pcuh5+eWX5eTkJElycnLS9u3btX37dpt+5be03N3dNWXKlBoqEwAAoHqqHHrmzJlj+fs//vEPDRw4UAMHDrTp5+LiombNmqlHjx5q1qxZzVQJAABQTVUOPaNHj7b8fe/evRo0aFCFoQcAAMAR2fXI+tNPP13TdQAAANSqBvtyQgAAgKtRpSs9Q4YMkbOzs9auXat27dppyJAhlknNV+Lk5FQjLycEAACoriqFnt69e8vJycny3p3yZQAAgIaiSqHn8s9AVPZZCAAAAEfFnB4AAGAIdoWee++9V//+97+v2Oc///mP7r33XruKAgAAqGl2hZ6MjAzl5uZesU9ubq5Onz5tV1EAAAA1rdZub+Xl5alJkya1tXsAAICrUuWXE+7du9dqOSMjw6ZN+t8HR7ds2aJ27dpVtz4AAIAaUeXQM3PmTKsPjsbHx1f4lXWp7KOjTk5OmjZtWs1UCQAAUE1VDj2TJk2Sk5OTzGaz3n77bfXp00d9+vSx6efs7CwfHx/deOON6tChQw2WCgAAYL8qh56pU6da/p6UlKTRo0crPDy8VooCAACoaXZ9cHTx4sU1XQcAAECt4uWEAADAEOy60iNJp0+f1tq1a7V7925lZ2erpKTEpg8fHAUAAI7CrtBz6tQpTZs2Tbm5uerQoYOKi4sVEBAgNzc3/fLLLyopKVHnzp3l7e1d0/UCAADYxa7bW2vWrFFeXp4WLVqkNWvWSJJ+97vfad26dYqNjdWAAQNUUFCgF154oUaLBQAAsJddoWf37t265ZZbrB5ZN5vNkiR/f38999xzkqRVq1ZVu0AAAICaYFfoOXfunNq3b29ZdnFx0YULFyzLbm5uCgkJ0bffflv9CgEAAGqAXaGnefPmViGnefPmysjIsOrj4uLymx8lBQAAqCt2TWRu27atTp48aVnu2rWrvv/+e506dUrXXnutzp49q23btunaa6+96n0fPXpUa9asUUpKin799Vc1bdpUgYGBuu+++zRgwACrvmlpaVq6dKmSk5Pl6uqqW2+9VdOnT5evr689hwUAABoxu0JPv379tGbNGuXk5KhZs2YaN26cduzYoSlTpigwMFAnTpxQfn6+pkyZctX7zsjIUH5+vsLDw+Xv768LFy5o27Ztevrpp/XEE08oIiJCkpSZmakZM2bI29tbUVFRKigo0Pr163XkyBGtXLmSL7wDAAArTubyGchXIS8vT+np6erQoYM8PT0lSQkJCVqzZo1OnTql1q1b6+6779bdd99dI0WWlpYqKipKRUVFWrdunSRp4cKF2rhxo9atW6eAgABJ0q5duzR79myrcPRbUlJSFBUVpdWrVys4OLhG6gUAAI7Hris9Xl5e6tatm1VbWFiYwsLCaqSoy7m4uKhVq1b66aefLG3btm1T//79LYFHkkJCQtSuXTslJCRUOfQAAABjqLXPULz77ruaOXOm3dsXFBTo7NmzOnnypDZs2KCdO3fqpptukiRlZWXpzJkzFV6Z6dq1q1JTU+3+XQAA0DjZ/RmK33Ls2DElJSXZvf2yZcsUFxcnSXJ2dtbgwYM1a9YsSZLJZJIk+fn52Wzn5+en8+fPq6ioSG5ubjbrs7OzLdtLUnp6ut01AgCAhqPWQk91jRs3TkOHDlV2drYSEhJUWlqq4uJiSVJhYaEkVThZuTzoFBYWVhh64uLiFBMTU3uFAwAAh+SwoScwMFCBgYGSpPDwcM2ePVtz5szRypUr5e7uLkmWEHSpoqIiSbL0uVxERITVo+/p6emaO3duTZcPAAAcjMOGnssNHTpU8+fP1/Hjxy23tS69TVXOZDLJx8enwqs8UtlnMvz9/Wu1VgAA4HhqbSJzTSu/pZWbm6uWLVvK19dXKSkpNv0OHjyozp0713V5AADAwTlc6Dlz5oxNW0lJiTZt2iR3d3d16NBBkjRkyBDt2LFDp0+ftvTbvXu3jh8/XmuPzgMAgIaryre3/vznP1/Vjo8cOXLVxUjS/PnzlZeXp969e6tly5YymUzasmWLjh07pujoaMvLECdOnKgvv/xSjz/+uMaOHauCggK9//776tixo0aPHm3XbwMAgMaryqEnMTHxqnfu5OR01dsMGzZMn376qT766COdO3dOnp6eCg4O1iOPPKKBAwda+gUEBGjJkiVaunSpVq5cafn2VnR0dKXzeQAAgHFV+TMUl39Fvapat25t13Z1hc9QAABgDFW+0uPo4QUAAOBKHG4iMwAAQG0g9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAENwre8CLnfw4EHFx8drz549ysjIkI+Pj7p3767IyEi1a9fOqm9aWpqWLl2q5ORkubq66tZbb9X06dPl6+tbP8UDAACH5XCh57333lNycrLCwsLUqVMnmUwmffjhh4qMjNTy5cvVsWNHSVJmZqZmzJghb29vRUVFqaCgQOvXr9eRI0e0cuVKNWnSpJ6PBAAAOBKHCz3jx4/X3/72N6vQMmzYME2ZMkXvvvuu/vrXv0qS1q1bpwsXLuiNN95QQECAJKlr166aPXu2Nm7cqIiIiHqpHwAAOCaHm9PTs2dPm6s07dq1U4cOHZSenm5p27Ztm/r3728JPJIUEhKidu3aKSEhoc7qBQAADYPDhZ6KmM1mnTlzRs2bN5ckZWVl6cyZMwoODrbp27VrV6WmptZ1iQAAwME53O2timzZskVZWVmaOnWqJMlkMkmS/Pz8bPr6+fnp/PnzKioqkpubm8367Oxsy/aSrK4eAQCAxsvhQ096eroWLVqk7t27Kzw8XJJUWFgoSRVOVi4POoWFhRWGnri4OMXExNRewQAAwCE5dOgxmUx66qmn5OXlpRdffFEuLi6SJHd3d0lScXGxzTZFRUVWfS4XERGhAQMGWJbT09M1d+7cmi4dAAA4GIcNPbm5uXryySeVm5urpUuXyt/f37Ku/LbWpbepyplMJvn4+FR4lUeS/P39rfYFAACMwSFDT2FhoebMmaPjx49r4cKF6tChg9X6li1bytfXVykpKTbbHjx4UJ07d66jSgEAQEPhcE9vlZaW6rnnntP+/fv1/PPPq0ePHhX2GzJkiHbs2KHTp09b2nbv3q3jx48rLCysrsoFAAANhMNd6Vm2bJm2b9+u/v37KycnR5s3b7ZaP3LkSEnSxIkT9eWXX+rxxx/X2LFjVVBQoPfff18dO3bU6NGj66N0AADgwBwu9Bw+fFiStGPHDu3YscNmfXnoCQgI0JIlS7R06VKtXLnS8u2t6OjoSufzAAAA43K40LNkyZIq9w0KCtKCBQtqsRoAANBYONycHgAAgNpA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIbgWt8FXC4/P1/r16/XgQMHdPDgQeXk5Ojpp5/W6NGjbfqmpaVp6dKlSk5Olqurq2699VZNnz5dvr6+dV84AABwaA53pefcuXOKiYlRenq6OnfuXGm/zMxMzZgxQydPnlRUVJQmTJigb7/9VrNnz1ZxcXEdVgwAABoCh7vS4+fnpw8//FB+fn766aef9PDDD1fYb926dbpw4YLeeOMNBQQESJK6du2q2bNna+PGjYqIiKjLsgEAgINzuCs9bm5u8vPz+81+27ZtU//+/S2BR5JCQkLUrl07JSQk1GaJAACgAXK4Kz1VkZWVpTNnzig4ONhmXdeuXfXdd99Vum12drZMJpNlOT09vVZqBAAAjqVBhp7y0FLRFSE/Pz+dP39eRUVFcnNzs1kfFxenmJiY2i4RAAA4mAYZegoLCyVJTZo0sVlXHnQKCwsrDD0REREaMGCAZTk9PV1z586tpUoBAICjaJChx93dXZIqfEqrqKjIqs/l/P395e/vX3vFAQAAh+RwE5mrovy21qVzc8qZTCb5+PhUeJUHAAAYV4MMPS1btpSvr69SUlJs1h08ePCK7/cBAADG1CBDjyQNGTJEO3bs0OnTpy1tu3fv1vHjxxUWFlaPlQEAAEfkkHN6PvjgA+Xm5lpuX23fvl2ZmZmSpHvuuUfe3t6aOHGivvzySz3++OMaO3asCgoK9P7776tjx44VfrICAAAYm0OGntjYWGVkZFiWv/rqK3311VeSpJEjR8rb21sBAQFasmSJli5dqpUrV1q+vRUdHc18HgAAYMMhQ8+GDRuq1C8oKEgLFiyo5WoAAEBj0GDn9AAAAFwNQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAE1/ouoDqKior05ptvavPmzcrJyVGnTp0UGRmp0NDQ+i4NAAA4mAZ9pefll1/Whg0bNGLECD322GNydnbWk08+qX379tV3aQAAwME02NBz4MABbd26VQ8//LD++Mc/KiIiQv/85z/VunVrLV++vL7LAwAADqbBhp5t27bJxcVFERERljZ3d3eNGTNG+/fv1+nTp+uxOgAA4Gga7Jye1NRUtW3bVl5eXlbtXbt2lSQdPnxYAQEBNttlZ2fLZDJZlg8fPixJSk9Pr8VqAQBAbQgMDFTTpk2r1LfBhh6TySQ/Pz+b9vK27OzsCreLi4tTTEyMTfvcuXNrtD4AAFD7Vq9ereDg4Cr1bbChp7CwUE2aNLFpd3Nzs6yvSEREhAYMGGBZPnjwoBYuXKinnnpKnTt3rp1iG5j09HTNnTtXf/nLXxQYGFjf5TgExsQWY2KLMbHFmNhiTGxVZ0yupn+DDT3u7u4qLi62aS8qKrKsr4i/v7/8/f1t2jt37lzlpGgUgYGBjMllGBNbjIktxsQWY2KLMbFV22PSYCcy+/n5Wc3NKVfeVlGwAQAAxtVgQ0/nzp114sQJ5eXlWbUfOHDAsh4AAKBcgw09Q4cOVWlpqeLi4ixtRUVF+uyzz9StW7cKn9yqiJ+fnyZPnlzhpGijYkxsMSa2GBNbjIktxsQWY2KrrsbEyWw2m2v1F2rRs88+q6+++krjx4/Xddddp/j4eB08eFCLFi1Snz596rs8AADgQBp06CksLLR8eys3N1cdO3ZUZGSk+vbtW9+lAQAAB9OgQw8AAEBVNdg5PQAAAFeD0AMAAAyhwb6csLqKioos84FycnLUqVMnRUZGKjQ0tL5Lq3V79uzRzJkzK1y3fPlyde/e3bKcnJysFStW6NChQ/Ly8lJYWJiioqLk6elZV+XWuPz8fK1fv14HDhzQwYMHlZOTo6efflqjR4+26ZuWlqalS5cqOTlZrq6uuvXWWzV9+nT5+vpa9bt48aLWr1+v//73v/r111/Vtm1bTZw4UcOHD6+jo6qeqo7JSy+9pPj4eJvt27dvr3Xr1lm1NeQxOXjwoOLj47Vnzx5lZGTIx8dH3bt3V2RkpNq1a2fV1yjnSFXHxCjniCQdPXpUa9asUUpKin799Vc1bdpUgYGBuu+++6ze/C8Z5zyp6pjU13li2NDz8ssv68svv9S4cePUtm1bbdy4UU8++aQWL16sXr161Xd5deKee+6xfKC13HXXXWf5e2pqqmbNmqXAwEBNnz5dmZmZio2N1YkTJzRv3ry6LrfGnDt3TjExMQoICFDnzp21Z8+eCvtlZmZqxowZ8vb2VlRUlAoKCrR+/XodOXJEK1eutPoMyurVq/Xuu+/qjjvu0A033KBvvvlGL7zwgpycnHTbbbfV1aHZrapjIpV96uXJJ5+0arv8w79Swx6T9957T8nJyQoLC1OnTp1kMpn04YcfKjIyUsuXL1fHjh0lGescqeqYSMY4RyQpIyND+fn5Cg8Pl7+/vy5cuKBt27bp6aef1hNPPKGIiAhJxjpPqjomUj2dJ2YD2r9/v3nQoEHm9957z9J24cIF84QJE8yPPPJIPVZWN3744QfzoEGDzAkJCVfs98QTT5jvvPNOc25urqXt448/Ng8aNMi8c+fOWq6y9hQWFpqzs7PNZrPZfPDgQfOgQYPMn332mU2/BQsWmIcPH27OyMiwtH3//ffmQYMGmT/66CNLW2ZmpjksLMy8cOFCS9vFixfN0dHR5rvvvttcUlJSi0dTM6o6Jn//+9/NI0eO/M39NfQx2bdvn7moqMiq7dixY+bbbrvN/MILL1jajHSOVHVMjHKOVKakpMQ8ZcoU8wMPPGBpM9J5UpGKxqS+zhNDzunZtm2bXFxcrBKnu7u7xowZo/379+v06dP1WF3dys/PV0lJiU17Xl6edu3apZEjR1ol71GjRsnDw0MJCQl1WWaNcnNzq9ILsLZt26b+/ftbvegyJCRE7dq1szr+b775RiUlJbrrrrssbU5OTrrzzjuVlZWl/fv31+wB1IKqjkm50tJSm7ehX6qhj0nPnj1tPmjcrl07dejQQenp6ZY2I50jVR2Tco39HKmMi4uLWrVqpdzcXEubkc6TilQ0JuXq+jwxZOhJTU1V27ZtbS6jld/qOXz4cH2UVedefvllhYeHa8SIEZo5c6Z++ukny7ojR46otLTU5sNvTZo0UZcuXZSamlrX5daprKwsnTlzpsIP33Xt2tXq+FNTU+Xh4WHzpd/y86mxjdWFCxc0evRojR49WmPGjNHChQuVn59v1acxjonZbNaZM2fUvHlzSZwjku2YlDPaOVJQUKCzZ8/q5MmT2rBhg3bu3KmbbrpJknHPkyuNSbn6OE8MOafHZDJV+P9qy9uys7PruqQ65erqqiFDhuiWW25R8+bNlZaWptjYWE2fPl2vv/66rr/+esuHWysbp6SkpLouu0791vGfP39eRUVFcnNzk8lkUosWLeTk5GTTT2pc55Ofn5/uu+8+XX/99TKbzdq5c6f++9//6ueff9bixYvl6lr2PymNcUy2bNmirKwsTZ06VRLniGQ7JpIxz5Fly5ZZPonk7OyswYMHa9asWZKMe55caUyk+jtPDBl6CgsLbS7TSmWX+MvXN2Y9e/ZUz549LcsDBw7U0KFDNWXKFK1atUrz58+3jEFl41RUVFRn9daH3zr+8j5ubm6GOp+mTZtmtXzbbbepXbt2Wr16tbZt22aZVNjYxiQ9PV2LFi1S9+7dFR4eLolzpKIxkYx5jowbN05Dhw5Vdna2EhISVFpaquLiYknGPU+uNCZS/Z0nhry95e7ubjX45cr/Re7u7l7XJdW7tm3bauDAgdqzZ49KS0stY1DZOJWfcI3Vbx3/pX2Mfj6NHz9ezs7O2rVrl6WtMY2JyWTSU089JS8vL7344otycXGRZOxzpLIxqUxjP0cCAwMVEhKi8PBwvfLKKyooKNCcOXNkNpsNe55caUwqUxfniSFDj5+fn+WS46XK2/z9/eu6JIfQqlUrFRcX68KFC5ZLh5WNU2Mfo986fh8fH0vw8/Pz06+//mrzX2ajnE/u7u7y8fHR+fPnLW2NZUxyc3P15JNPKjc3V/Pnz7eq26jnyJXGpDKN+RypyNChQ/XTTz/p+PHjhj1PLnfpmFSmLs4TQ4aezp0768SJEzYzxg8cOGBZb0SnTp2Sm5ubPDw8FBQUJBcXF6WkpFj1KS4uVmpqaqMfo5YtW8rX19fm+KWyl7RdevydO3fWhQsXbJ5gMcr5lJ+fr3Pnzlm9ZK0xjElhYaHmzJmj48eP6x//+Ic6dOhgtd6I58hvjUllGus5UpnyWy65ubmGPE8qcumYVKYuzhNDhp6hQ4eqtLTUMslKKrtU9tlnn6lbt25WjxU2RmfPnrVpO3z4sLZv367Q0FA5OzvL29tbISEh2rx5s9Vs+k2bNqmgoEBhYWF1WHH9GDJkiHbs2GH1CoPdu3fr+PHjVsc/cOBAubq66sMPP7S0mc1mffTRR2rZsqV69OhRp3XXlsLCQpsnKyTp7bffltlsVr9+/SxtDX1MSktL9dxzz2n//v16/vnnK63XSOdIVcbESOeIJJ05c8amraSkRJs2bZK7u7slFBrpPKnKmNTneWLIiczdunVTWFiYVq1apbNnz+q6665TfHy8MjIy9NRTT9V3ebXu2Weflbu7u3r06KEWLVooLS1NH3/8sZo2bWo1uSwyMlLR0dGaMWOGIiIiLG9kDg0NtTopG6IPPvhAubm5lkuk27dvV2ZmpqSyN1V7e3tr4sSJ+vLLL/X4449r7NixKigo0Pvvv6+OHTtafZ6hVatWGjdunN5//32VlJSoa9eu+vrrr7Vv3z799a9//c35Do7it8YkJydHDz30kIYPH6727dtLkhITE/Xdd9+pX79+GjhwoGVfDX1Mli1bpu3bt6t///7KycnR5s2brdaPHDlSkgx1jlRlTH799VfDnCOSNH/+fOXl5al3795q2bKlTCaTtmzZomPHjik6OtryuR4jnSdVGZNffvml3s4TJ/OVZhU1YoWFhZZvb+Xm5qpjx46KjIxU375967u0Wvfvf/9bW7Zs0cmTJ5WXlydfX1/dfPPNmjx5stq2bWvVd9++fZZvb3l6eiosLEzTpk1r0N/eksomzGVkZFS4LjY2Vm3atJFU9h2Zy7+XEx0drWuuucZqm4sXL+q9995TXFycTCaT2rZtqwceeMDyL8eG4LfGxNvbW4sXL9b+/ftlMpl08eJFXXfddRoxYoQmTJhgecS0XEMek8cee0x79+6tdP1XX31l+btRzpGqjElOTo5hzhFJ2rp1qz799FMdOXJE586dk6enp4KDg3X33Xdb/YtbMs55UpUxqc/zxLChBwAAGIsh5/QAAADjIfQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAqFODBw/WY489Vm+//9JLL2nw4MH65Zdfanzfe/bs0eDBgy1/HnnkkSpv+9Zbb2nw4MHas2dPjdd1JY888ohVzXX9+0BdIvQADcwvv/yiwYMH64knnqjvUmpMbQaR+tCnTx9NnjxZt99+e32X8ptuv/12TZ48WX369KnvUoBaZ8ivrAOoP++8846aNm1a32XUqj59+mjq1Kn1XUaVlAezt95664ofFAUaA0IPgDoVGBhY3yUAMChCD9DIZWRkKCYmRomJiTp79qxatGih0NBQTZkyRQEBAVZ9H3vsMe3du1dffPGF1q5dq/j4eJlMJgUEBGjcuHG66667bPZ/9uxZrV69Wl9//bUKCgoUFBSkiRMnKi8vTy+//LKefvppjR492tJ/8ODB6tOnj5YsWSJJGj9+vDIyMiRJ9957r6VfeZ9ffvlF9957r8LDw/XMM8/Y/P7l+yt39OhRrVixQnv37pWzs7N69OihRx999Ipj9fXXX+uDDz7QoUOHVFRUpOuuu07h4eEaP368XFxcfmOkq+b06dNasWKFEhMTVVJSouuvv14PPfTQFbfZu3ev1q9fr/379ys/P1+tWrXSsGHD9Ic//MHmqllJSYnWr1+vTz75RNnZ2WrZsqXGjBmjYcOGacKECZWOI2AEhB6gETt+/Liio6N19uxZ9e/fX0FBQTp69Kg+++wz7dixQ8uWLVO7du1stnv++ed18OBB9evXTy4uLkpISNCiRYvk6uqqO+64w9IvPz9fjz32mNLS0tSjRw/17t1bWVlZev755xUaGlqlGseOHav4+HgdPnxYY8eOlbe3tySpTZs2dh/3kSNHFB0drYKCAg0ePFht27bVwYMHFR0drU6dOlW4zcqVK/Xuu++qZcuWGjx4sLy9vbVv3z4tX75cBw8e1AsvvGB3PeWys7P1xz/+UVlZWerbt6+uv/56paen609/+pNuvPHGCrf573//q0WLFsnb21v9+/dXixYtlJKSonfeeUd79uzR4sWL1aRJE0v/V155RZs2bdK1116rO++8U8XFxdqwYYN+/PHHatcPNHSEHqARmz9/vs6ePasnnnhCERERlvYPP/xQixYt0oIFC/TPf/7TZrusrCy9/fbb8vLyklQWTCZNmqTY2Fir0PPee+8pLS1Nd9xxh/785z9b2kePHq1Zs2ZVqcbx48fr8OHDOnz4sMaNG1etsFPun//8p/Ly8vSXv/xFI0eOtLSvWrVK69ats+n//fff691331Xfvn314osvysPDQ5JkNpu1cOFCffTRR/ryyy81dOjQatW1atUqZWVlKTIyUg8++KClPS4uTvPnz7fpn5aWpsWLF6tTp05atGiRmjdvblm3bt06rVq1Sh988IEmTJggSdq9e7c2bdqkLl26aNmyZZarQH/4wx8UGRlZrdqBxoCnt4BG6vTp09qzZ486dOhgFVQk6fe//73at2+vH374QadPn7bZ9uGHH7YEHklq3769evbsqWPHjik/P9/SvnnzZjVp0sTm9szNN99c5Ss9Ne306dPau3evOnXqZBV4JGnixImWK0mX+s9//iNJ+vOf/2wJPJLk5OSkadOmycnJSVu3bq1WXcXFxfriiy/UokULq9t4Utlk4rZt29ps89FHH6m0tFQzZ860CjySdP/998vX19eqrs2bN0uSJk2aZHXby9/fX2PHjq1W/UBjwJUeoJFKTU2VVDY3xsnJyWqds7OzevfurWPHjunw4cM2c3uCg4Nt9teyZUtJUk5Ojjw9PZWXl6eMjAx16NBB11xzjU3/nj176vvvv6+pw6myw4cPW37/cp6enurSpYvNu2gOHDggDw8PffrppxXu093dXceOHatWXceOHVNRUZFuuukmubu7W61zdnZWz549deLECZu6JCkxMVG7d++22aerq6tVXeXH3qtXL5u+PXr0qFb9QGNA6AEaqfIrMi1atKhwvZ+fnyQpLy/PZt2lV3nKlU/kvXjxotV2le2/svbaZk9d58+fV2lpqWJiYirdb0FBQb3UJZU95l8V+fn5cnZ2trkqJKnCYAoYDaEHaKQ8PT0lSWfOnKlw/a+//iqp4oBTFeXbVbb/ytqvlrNz2V340tJSm3W5ubk1UpeXl5ecnJz08ccfV6fUK7K3LkmKj4+3/Od5JZ6enrp48aLOnTsnX19fq3Xl/3kDRsacHqCR6tKliyQpKSlJZrPZap3ZbFZSUpIkqXPnznbt38vLS61bt9bJkycr/Bf21TwtVB5syq8iXap8Dk52drbNuvJbeJcqP57k5GSbdfn5+RVu07VrV507d07Hjx+vcs1Xq127dnJzc1NKSooKCwut1l28eLHC8erWrZskaf/+/VX6jSsdO09vAYQeoNEKCAjQjTfeqKNHj9rMVYmLi1N6erpuuukmm/k8V2PEiBEqLi7WW2+9ZdW+Z88eJSYmVnk/Pj4+kqTMzEybdV5eXmrfvr327dtnNeclPz9fq1atsukfEBCg3r176+eff7ZM7C23bt26Cq8OlU/yfeWVV3Tu3Dmb9SaTSWlpaVU+noq4ubkpLCxMZ86cUWxsrNW6Tz75pMLAdeedd8rFxUWLFy+ucMJ5Tk6ODh06ZFkeMWKEJCkmJsYqWJlMJv373/+uVv1AY8DtLaCBOnLkiF566aUK17Vv314TJ07Un/70J0VHR2vevHnasWOHOnTooKNHj2r79u3y9fXVn/70p2rV8MADD2jbtm366KOPdPToUfXq1UtZWVlKSEhQ//79tWPHDptJ1BW56aabtH79es2bN09DhgxR06ZN1bp1a40aNUpS2UsL582bp0cffVRhYWG6ePGidu7cqRtuuKHC/c2aNUvR0dF66aWX9M0331je0/PTTz+pV69e2rdvn1X/fv36adKkSXr77bd13333qV+/fgoICND58+d18uRJ7du3Tw899JA6dOhQrfGaNm2afvjhB73xxhtKTk5Wly5dlJ6eru+++06hoaE2E787duyo2bNna+HChXrggQd0yy236LrrrlN+fr5OnTqlpKQkhYeHW77DFhISouHDh+vzzz/X5MmTNXDgQBUXFyshIUFdu3bVjh07LFfVACMi9AANVHZ2tuLj4ytc16dPH02cOFHt27fX6tWrFRMTo507d+rbb7+Vr6+vfve732ny5Mlq3bp1tWrw9PTU0qVLtXLlSn3zzTf66aefFBQUpL/97W86deqUduzYUaU5Q7fccoseffRRffzxx4qNjVVJSYn69OljCT133HGHSkpK9K9//UuffPKJ/Pz8NHr0aD344IMaNmyYzf46duyoZcuWacWKFdq5c6cSExPVs2dPLVu2TOvXr7cJPZL00EMPqXfv3vr3v/+t3bt3Kzc3Vz4+PmrTpo0mT55suYpSHf7+/nr99de1fPlyJSYmKikpSddff70WLFigH374ocKn3e644w517txZGzZsUFJSkmVMy9+SHR4ebtX/mWeeUWBgoD777DP95z//UcuWLTVu3DjddNNN2rFjR5XmBgGNlZP58pv9AFADXnzxRW3ZskVr166t9hWShmLPnj2aOXOmJk+e7HAfHP3kk0/06quvavbs2brzzjtt1r/11luKiYnR4sWLK307NNDQcaUHQLVkZ2fL39/fqq38+13t27c3TOC5VExMjGJiYtStWzetWLGiTn/bZDLpmmuusbqtmJWVpbVr18rFxUW33nqrVf9HHnnE8j4goLEj9AColqeeekpubm7q0qWLmjZtqrS0NCUmJsrZ2VkzZ86s7/LqVOvWrTV58mTLcqtWreq8hnfffVfffvutevfuLV9fX2VmZmrHjh3Kz8+v8COzt99+u/r27WtZru4tT8CRcXsLQLVs2LBBn3/+uU6ePKn8/Hx5e3urZ8+emjhxouWRa9SdnTt3KjY2Vj///LNycnLk5uamTp066c4776yReUlAQ0boAQAAhsCziwAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBD+P/1gjtrwJcvKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# From the orientation, get the attitude and define the source movement in the spacecraft FOV\n", + "x,y,z = grbori.get_attitude().as_axes()\n", + "dts = grbori.get_time_delta()\n", + "\n", + "src_movement = SCPosition.sc_frame(x_pointings = x[:], y_pointings = y[:], z_pointings = z[:])\n", + "\n", + "# The source should be 20 degrees off axis for this simulation, based on the GRB ori file.\n", + "# Zenith is Latitude = 90, therefore, we expect this to be at Latitude = 90-20 = 70, and Longitude = 0.\n", + "\n", + "plt.plot(src_movement.lon.deg, src_movement.lat.deg,\"o\")\n", + "plt.ylim(0,90)\n", + "plt.xlim(0,360)\n", + "plt.axhline(y=90, color='r', linestyle='-')\n", + "plt.annotate(\"zenith\",[250,85], color='r')\n", + "plt.xlabel(\"Longitude [deg]\")\n", + "plt.ylabel(\"Latitude [deg]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0cb75a24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAABS5klEQVR4nO3deXxU1cH/8c+9d2aSyUIgYQn7IpsKisqi4lZEpKhVa7GttXaj2j5VW5cuttU+tXWrttXn1/apS61at6eurQuKFtwRVFBAWWWHBAgJ2Sczc+/5/TGZScImWSYzmXzfr9e85s5dzj25hOSbc+85xzLGGERERESkS7NTXQERERERaT+FOhEREZEMoFAnIiIikgEU6kREREQygEKdiIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBFOpEREREMoAv1RUQke7JGEM4HKauro5QKEQ4HCYcDtPQ0JBY3t+6SCSC67qJl+d5Ld73XgdgWRaWZWHbduJzfNm27cR2x3Hw+/34fD78fn/i5fP5CAQCifXxz9nZ2WRnZxMMBlu8+3z60SoinU8/eUSkTSKRCNXV1VRVVSXemy/X1tZSV1d30Jfruqn+MpLC7/e3CHzBYJDc3Fzy8vISr/z8/Bafm78KCgrIzs5O9ZchIl2MZYwxqa6EiKReJBKhoqKCiooKysvLKS8vTyzH1zcPb/X19R127kAgQLg2Ap4FnoXlAcZq+dmLf27cBlimcdkQe9FsOf45wbT82Hw5XpjVWIRtYp9tWrwbC7Ab97MNOAZjG3ILg4RCoQ4NqVlZWfTs2bPFq6CgYJ91hYWFFBUVkZWV1WHnFpGuSaFOJMO5rktFRQW7du1KvHbu3MmuXbsoKytLhLbq6upWl21ZFiYMRG2sqBV7j9gQtbBcG1wLy7XAtRrXWbD3etfC2idhdT0mHhqdprCHY8A2GMeAz4ut98WW4+vin3EMPQf2oLq6mmg02urz5+fn07t3b4qKiujdu3eL5ebvfr+/4794EUkLCnUiXVx9fT2lpaWUlJSwfft2SktLWwS4srKyQ29B8oBIYzALx973WW4W4IhmRiBLJ4bGMOiPBT7j92LL+3k3fo9ADx/hcPiQyrYsi969e9OvXz+Ki4v3+x4MBpP8FYpIsijUiaS5aDTKzp07KSkpSQS3+HJJSQkVFRWfWYZt23j1YDU4WGEbq8GJBbUGp0VoU0jreuIh0AQ8CLiYLK9pORBb7je6iN27dxOJRD6zvIKCAvr160f//v0ZOHAggwYNYuDAgQwcOJDevXsnOpiISPpRqBNJA8YYKioq2LJlS4vX5s2b2b59+2ffjotaWCEn9mpwoMHeN8AprHVrhsbWvywPk+Visl3IchOfc4uzqampOWgZgUBgn6A3aNAgBg0aRN++fbEsfY+JpJJCnUgnikajbNu2jQ0bNrBx48YWAa62tvaAxwUCASJ7XKyQA43BLRHiQk7s+TWRdjJOY+DL8mKhLxjFZLsMOKovJSUlB72NHwwGGTp0KEOHDmXYsGGJ5QEDBuA4Tid+FSLdl0KdSBJ4nkdpaSnr169n48aNifdNmzYd8BaYZVmYehur3sGud7DqfViN7zSopU1Sy2BiLXvBxle2iwlGGTShmG3bth0w8AUCAQYNGpQIeiNGjOCwww5jwIABupUr0sEU6kTaqa6ujnXr1rF27VrWrl2bCHChUGj/B7hg1flir2bBzap3sIyCm3Q9xjKxkJcTjb2CsWV/oX3AThzBYJARI0YwcuRIRo4cyWGHHcaIESPIycnp5NqLZA6FOpFW2LNnD2vWrEkEuDVr1rBt2zb2+9/IaxbeGl92rQMNjlrdpFuIt+55Oc0CX+7Bw97AgQM57LDDGDVqFKNHj2bs2LH06tWrk2su0jUp1IkcQFVVFStXrmTlypWsWrWKtWvXsmvXrv3v3GBj1/qwavxYtfFWOIW3dGBNHMdL/36Yv+4ZyDNH9El1dYRY2DNBF5MbweRG8XKjFI3uQVlZ2X7379evH2PGjGHs2LGMHTuWMWPGkJ+f38m1Fkl/CnUiQDgcZt26daxcuZJPPvmElStXsnXr1n32sywLau1YcKvxNwW5qJ4NShfWpPG89K9/7LPeNR4eTT/u/l41mKcO79uZVZPPYHweJjeClxvF5EUZNLEvW7Zs2W9L+MCBAxMB74gjjmDMmDGaVUO6PYU66ZZ27NjBsmXL+OSTT/jkk09Yt27dfjswWPUOVrUfq7oxwNX61NM0zRwoxO3NNd4+6xTy0p9xvFhrXn4Ekxeh+Ogitm/fvs9+Pp+P0aNHM27cuMSrd+/eKaixSOoo1EnG8zyPjRs3smzZssRr586d++4YsbDjAa7arxa4dDZ5PC8/+9lBrrn9hbq9xUPeQ1UD+efhxW2qmiSf8XmYvAheXhSTH6HnqFzKy8v32a+4uDgR8MaPH8/w4cPx+XwpqLFI51Cok4wTDodZvXo1y5YtY/ny5SxfvnyfeU0dx8Hb0zLEEdIzcOnMnHA085568NAP2BWFR6qwFtZDrYfJtTEnZuN9NR/6fPYv9njAe6S6P4+NHdDWaksnSHTI6BHB6xFhxMkDWb9+PZ7XMsjn5ORw1FFHccwxxzBhwgRGjRqlkCcZRaFOurxoNMqaNWtYsmQJH3zwAcuXL9+3Z50LVnUAu8qPXRkLcpanVrh01+ogB1DvYV1fBv+swtrPkIDGD96X8/FuLILsQ/seUMDreozT2JrXGPRyBvn3GeBbIU8yjUKddDnGGDZs2JAIcR999NG+0xtFLOzKAFaVH7sqEHsWTmPAdQnmxKOZ92Qrg1xcvYf1te1YCw8wRmAz3gnZuA8XQ7B14T4e8B6r7scjYwe1qZrS+Qwm9mxeQRhTECFnqH+fnxs5OTmMHz+eY489lokTJ3LYYYdpgGTpUhTqpEvYuXMnixcvZsmSJSxZsmTf52eisRBn7wlgVQaw6nQrtatpV5hrZF27E+uRKgwc9F8/vt29OB/vd20f5sTDKNx1UYcS8goLC5k4cSKTJk1i4sSJFBUVpai2IodGoU7SUiQSYdmyZSxatIhFixaxYcOGlju4YFXFQpxdGcCq8SnEdXHtDnU7o1gTN+73lusBz+mH6PtDDukZuwN5vKYPD40Z3ObjJT20CHk9w2QNdKivr2+xz8iRI5k0aRKTJk1i/PjxGkJF0o4eHpC0sWPHDt59910WLVrEBx980OIHqm3bmD1OLMTtCcSeidPtVGnu0f0/Q3cwVgTsx6rxrtSMBd2dhYVV68eu9cP2XNyVBn+PbLyeDYycPpjVq1ezbt061q1bx2OPPUZWVhYTJkzghBNO4MQTT6S4WL2lJfXUUicp47ouy5cv5+233+bdd99l06ZNLXcI29gVAeyKrFiQ0/AiGc9MncC8Jx5o9XHLwiGqPh/klE/WtvrYNw4fxXd+/XU+Oan151UrXfdhfB5ezzBerwYKj8zbZ/aLESNGMHXqVE488UTGjh2L4zgpqql0Z2qpk04VCoV47733eOutt3jnnXeorKxMbLNtG1PhJIKcVatbqt1OK/7GXBYOce4rVzQeB8+E/tymU+Y1NBDek8XI5y8DINCzoU0BTzKbFbVxyrJxyrKpWmvw5xTh9WrgyHNHsGLFCtavX8/69ev5xz/+Qc+ePRMteJMmTSInJyfV1ZduQqFOkq6iooJ33nmHt956i/fee6/lcCMRK9YSt7uxNU6zNchn2DvMxdVkt+35ppq9nouKBzyFOzkQCwurzodd52P1X3bg88UCnlfYQM5wP3v27GHu3LnMnTsXv9/Psccey6mnnspJJ51Ez549U119yWAKdZIUO3bs4LXXXuPNN99k+fLlLeduDNk4u7Oxy7OwKv1qjZPP9GFDA+e/ennTiv006C0aPaJNt1/fHTNiv+ubt975CxpYefIDrS5bugcrauPsCuLsChJeY/D38OMVNlA8uRfbtm1LdPi64447OProoznttNM4+eSTNY2ZdDg9UycdZteuXbz22mssWLCAFStWtNhm1fhirXHluq0qB9f8uboWYe4zflL1qazmnZ/eQsB1D/lcYcfhhNuuo6xH/iHt3zzcPV7Th4fGDmnVLWPpXgwGE3Txiho4bMYA1qxZk9hmWRbjxo3j1FNP5dRTT6Vfv34prKlkCoU6aZeysjJef/11FixY0KJFzrIs2OPDKWtskWvQQ8NyaMyJR/O7R+455DDX3C0PPcVFby4+5HHqHjl5Mj//+gWtrqO/oIFfHfOCOklIq5isKG7vBsaePZSPP/64xbaxY8cyffp0pk2bphY8aTOFOmm1yspKFixYwPz58/noo49a3Fq1Kv3YZdk4u7Owwgpy0nq+4UP55Od9WxXm4rLCER68635OWLP+M/ddOHoE3/jht2nw+9tQS/BV+Bjxs4VtOlbEBFzcogbGfXEEy5Yta/EH8bHHHsv06dM59dRTycvLS3FNpStRqJNDEg6HWbhwIfPmzWPhwoVEo9HENqvKj12WhVOWrSAn7eYbPpRPruvb5uOzwhF+/eDzfGnxIvz7SYYRLF7JO5If3faVNgc6AH+Fj+EKddIBjN/F693A2HOHtnh0JRAIcPzxxzN9+nROOOEEDXYsn0mhTg7IGMOKFSuYN28e8+fPp7q6OrHNqvFh74p179etVelovhHD+ORnrZ++y1/mY/jPY0GrpwnxeTZwNLsIEqUeHx/Rh7kMZ4+VHTvP4EF88sv+rT+PAp0kiclycfuEGHxabzZu3JhYn5uby6mnnsrMmTM5+uijY4+4iOxFoU72sX37dl5++WXmzZvHtm3bmjY02Di7srF3BrHr1HFakqe1rXX+Mh/Df/Fu2zotWBa+QQNbFe4U6iTZEtOW9QlReEwuu3btSmwbOHAgM2fOZObMmepgIS0o1AkADQ0NvPHGGzz//PMsXbq0aYNrxW6t7szGqgyo16p0ikMJdYFdPob98t3Yh474MdbY8uEbOIBPrh9w0F0V6qQzGQymRwS3b4jsERZ1dXVA7Pm7SZMmMWvWLE466SQCgUCKayqpplDXzW3YsIHnnnuOefPmUVVVBTT2XC334+zMxt6djeUpyEnnOlioS4S5ZP7osqyDhjuFOkkVYxu83iHGXTiCDz/8MLG+R48enHHGGcyaNYtRo0alroKSUgp13VB9fT2vvfYazz33XMvx5EI2zo4gzo6gOjxISu0v1HVKmNvbAcKdQp2kA5Mdxe0bovC4nBa3Z8eOHct5553HtGnTyM7OTmENpbMp1HUjGzZs4JlnnuGVV16htrYWAMdxMDt82DuC2BW6vSrpI95ZIiVhbm/Nwp2/wsfw61JcH5FmDAbTM8zJVx7Lm2++SSQSASAvL49Zs2Zx7rnnMniwxlTsDhTqMpzrurz99ts89dRTLZ+Vq3caW+WysSJqlZP04xs+lHVzBqQ+0DXjGzSQtZcPUSudpC3j83D71dP3xHxKSkoS6ydOnMh5553HiSeeiM+njm6ZSqEuQ1VWVvLCCy/w7LPPUlpaCoBt27DTj1MSVKcH6RosK20CXUI61klkLwaD1yvM5O8ewcKFCxODG/fp04cvfOELfOELX6BXr14prqV0NIW6DLNu3TqeeuopXnnlFcLhcGxlxMIpDeKU5mhMORGRbsZkubjFdeSPD7Bnzx4gNrDxjBkzmD17NsOHD09tBaXDKNRlAGMM7777Lo899liL3lBWjQ9new52mXqwioh0d8aK9Zwddd5AVq5cmVg/ZcoULrzwQiZOnKhBjbs4hbouLBKJ8Oqrr/L444+zYcMGoLHjQ6kPpyQHq8qvW6wiItKCwWDyI5xwxXjefPPNxK3Z4cOH8+Uvf5np06drzLsuSqGuC6qtreW5557jiSeeaOrGHm28xbo9R8ORiIjIITHZUdwBdQQOiw13BVBYWMgXv/hFzj//fPLz81NcQ2kNhboupKysjCeffJJ///vf1NTUxFaGbZxtOTilQSzXTm0FRUSkSzKOh1tcT+HkYKKxIDc3l/PPP5/Zs2erU0UXoVDXBezYsYNHHnmEF154ITH+kFXn4GzLxd6ZjWV0i1VERNov/tzd4JlFicd6AoEA55xzDl/5ylc012yaU6hLYyUlJTz88MPMnTuXaDQKgFXlx9mag12epeflREQkKQwGr7CBkV/sz6pVq4DYM9tnnnkmF198MYMGDUpxDWV/FOrS0LZt2/jHP/7Byy+/jOu6AFh7/Pi25GFX6uFVERHpHAaDKQgz7pLhiQHs4+HukksuYcCA/c+PLKmhUJdGSkpKeOCBB5g3b15TmKsI4NuSi12lMCciIqnj5Yc59tLRLFq0CIiFu1mzZnHJJZfotmyaUKhLA7t37+bhhx/mX//6V+I2q10ewNmSi12tMCciIunDyw9z9HcO4/333wfA7/dz9tlnc/HFF9OnT58U1657U6hLoerqah577DGefPJJQqEQ0NgytykPu8af4tqJiIgcmNcjzLhvDEvclg0EAlxwwQVcfPHFGgolRRTqUiAUCvHkk0/y6KOPJoYmsar8sTCnZ+ZERKQL8QrCHP61wSxbtgyA/Px8Lr74Yr74xS+SlZWV4tp1Lwp1ncjzPF5++WXuu+++xDhAVq0PZ1OuerOKiEiXZTB4vcIMPrtXYiiUvn378p3vfIcZM2bgOBoUvzMo1HWSJUuW8Oc//5m1a9fGVoTsWMvcrmyFORERyQgGg9c3RK+pWYnGixEjRvBf//VfTJ48OcW1y3wKdUm2adMm/vd//5d33nkntiJq4WzJjU3npUGDRUQkAxnb4PavIziexGNGJ554Ij/4wQ8YPHhwimuXuRTqkqS6upr777+fZ599Ftd1cRwHsyWAb3MeVlTTeYmISOYzPo9zf38aTz/9NK7r4vP5mD17Npdccgm5ubmprl7GUajrYPHn5v76179SUVEBgL07gLMxH7vel+LaiYiIdD4vGOXY/xqZGOOuV69efPe73+Xzn/+8nrfrQAp1HWj16tXceeedfPzxx0Bsflbf+nzsPer9IyIi4vZqoP/MfLZs2QLA2LFjueaaaxgzZkyKa5YZFOo6QFVVFffeey///ve/McaAa+Fs1nNzIiIiezNW7Hm77PGG2tpabNvmvPPOY86cOeTl5aW6el2aQl07GGN49dVX+X//7/+xZ88eAOyd2fg25mGF1ZwsIiJyIMbvcsovJvDqq68CUFhYyBVXXMG0adOwLDWItIVCXRuVlJTwhz/8IfF8gFXr4Pu0h+ZoFRERaQWvoIF+n89j69atAEycOJGrr76aQYMGpbhmXY9CXStFo1GefPJJ7r///tjUXh6xIUq25upWq4iISBsYy+AOqsUZFSEcDpOVlcWcOXP40pe+pI4UraBQ1wrr1q3jtttuY/Xq1QBYlX5863qoV6uIiEgHMNlRxl82jA8++ACAI444gp/97GcMGzYstRXrIhTqDkE0GuWRRx7hgQcewHVdiFr4NuRh7whqNggREZEOZDB4/erJmuBRW1uL3+/nm9/8Jl/96lfx+dSIcjAKdZ9h48aN3HzzzaxatQoAe3cWvnX5WBE1B4uIiCSLCbgc98NRLFy4EIBRo0bx85//nMMOOyzFNUtfCnUH4LouTzzxBPfddx/hcDjWOvdpvuZqFRER6SQGg9cnRM6k2PBhfr+fSy+9lNmzZ2Pbmp1pbwp1+1FSUsJNN93EsmXLALDLA/jW9dAwJSIiIilg/C4TrxqdmEf92GOP5ec//zl9+/ZNcc3Si0LdXv7zn//w+9//PjYBsWvhW69n50RERFIt/qydb3yEUChEXl4e11xzDaeffnqqq5Y2FOoa1dfXc9ddd/Hiiy8CYFX58a8uwGpQ65yIiEi68LKjjPx6X1auXAnAjBkzuPrqq8nJyUlxzVJPoQ5Ys2YNN954I5s3b8ayLOxNOTibc9U6JyIikoaMZbjo3lk89NBDeJ7H4MGDufHGG7t9J4puHeqMMTz99NP85S9/IRKJQIONf00BdqVmhRAREUl3Xn6YntN97Nq1i0AgwA9/+EPOPvvsbjvNWLcNdfX19dx+++2JOefs3Vn41vbAiqo3jYiISFdhfB7H/ugw3n33XQCmT5/Otdde2y1vx3bLULd582auv/56NmzYAAacDXk423N0u1VERKQLMhjcgXUwsh7XdRk8eDA33XRTt5uJotuFutdee41bb72Vurq62O3W1QXYVbrdKiIi0tU1vx0bDAb55S9/ycknn5zqanWabhPqXNflnnvu4bHHHgNi87b6VxVoZggREZEMYnweR35/EEuXLgXgm9/8Jt/85je7xWDF3SLU1dXVceONNyYGLXS25uBszNPtVhERkQxkLMM5fziZp556CoCpU6fyy1/+ktzc3BTXLLkyPtSVlJTws5/9LPb8nAe+NT1wyoKprpaIiIgkmdu3HntciHA4zJAhQ7jtttsYOHBgqquVNBndFrls2TIuu+yyWKAL2/iXFSrQiYiIdBPOziBmcR59+vRh8+bNfO9732PFihWprlbSZGyomzdvHj/60Y/Ys2cPVo2PwIeF2DX+VFdLREREOpFd46fyecOYMWOorKzkRz/6EQsWLEh1tZIi426/GmN49NFHufvuuwGwy7LwrSnA8vT8nIiISHdlbMOkH4/i7bffBuCyyy7joosuyqiBijMq1Lmuy5/+9KfEg5HqECEiIiJxBsMX7jyFJ598EoAvfOELXHXVVThOZoyEkTGhrqGhgZtuuonXXnsNAGd9Hr7tmd3LRURERFov2r8OM6oWz/P43Oc+xy9+8QsCga4/Zm1GhLra2lquu+46Pvzww8YergU4ZdmprpaIiIikKbcohHVUHZFIhEmTJvHb3/6WYLBrd6bs8qGuurqaa6+9lpUrV0LUwr+yJ3Zl10/bIiIiklxeQQO+yQ3U19dz5JFHctttt9GjR49UV6vNunSo27NnD9dccw1r166FiIV/RS/sWvVwFRERkUPj5UXIPjlCdXU1w4cP5w9/+ANFRUWprlabdNlQt3v3bq666io2btwYG4NuRS/sOl+qqyUiIiJdjJcTpccZsWwxdOhQ7rzzzi4Z7LrkOHU7d+7kyiuvjAW6Bhv/cgU6ERERaRu7zkf1S9C3b182bdrEj370I8rLy1NdrVbrci115eXlXHHFFWzZsgVCNoHlvbAaFOhERESkfUx2lILP2+zatYuhQ4dy1113UVhYmOpqHbIu1VJXWVnJVVdd1SzQFSrQiYiISIewQj4q53r06dOnS7bYdZlQV1NTw7XXXhubx7XBJrCiF1ZDZgwWKCIiIumhebDbuHEj1157LdXV1amu1iHpEqGurq6On/zkJ6xevTrRKcIKqYVOREREOp4V8rFnrkdhYSHr1q3juuuuo6GhIdXV+kxpH+qi0Sg33HADK1asiI1D93FP7HoFOhEREUkeO+Sj+j+Qm5vLsmXL+NWvfkU0Gk11tQ4qrUOdMYY77riDxYsXg6tx6ERERKTz2LV+wgsDBAIB3nnnHX73u9/heV6qq3VAaR3q/v73v/Piiy+CAd+qAuwaBToRERHpPHZVAO/DII7j8NJLL3HvvfemukoHlLah7vnnn+eBBx4AwLcuH6ciK7UVEhERkW7JKc/GWpkLwCOPPMLcuXNTXKP9S8tQ99577/H73/8eAGdzLs6OnBTXSERERLozZ2eQSy65BIDbb7+dDz/8MLUV2o+0G3x427ZtXHrppVRXV2PvzMa3pgcWVqqrJSIiIt2cwTD1+iNZsGABPXr04K9//SuDBg1KdbUS0irU1dXV8f3vf58NGzZgVfnxL++FZRToREREJD0Y2zDi24WsWrWKIUOG8Ne//pW8vLxUVwtIo9uvxhhuvvnmxODC/lUFCnQiIiKSVizPYv2DZfTp04fNmzdzyy23kC7tY2kT6h566CHeeOMN8IgFurBmixAREZH0Y0Uc9rzi4vf7efPNN3n88cdTXSUgTULdkiVLuP/++wHwfdoDuzqQ4hqJiIiIHJhd4+eKK64A4J577kmLjhMpf6auoqKCb3/72+zevRu7NBv/uoJUVkdERETkkBgMp/76aF555RUKCwv529/+RlFRUcrqk9KWOs/zuPnmm9m9ezdWnYNvfY9UVkdERETkkFlYvP7rjxg+fDjl5eXcdNNNKZ1xIqWh7p///CeLFi0CLzZjhOWpY4SIiIh0HZZnsfXJKrKysnj//fd56qmnUlaXlIW6NWvWcPfddwPgW5+PXacpwERERKTrset9/Nd//RcAd999d2wkj1TUIxUnjUQi3HLLLbiui12WhV0aTEU1RERERDrEny94hClTphAOh/ntb39LOBzu9DqkJNT94x//4NNPP4WIhe9TzRghIiIiXZuFxdL/+ZSCggLWrl3L3//+906vQ6eHurVr1/KPf/wDiA1fYkXSYlQVERERkXaxIg61C2PLjz/+OGvXru3U83dqoopGo9x6661Nt13Lsjrz9CIiIiJJ5ZRnc9ppp+G6Lrfffjuu63bauTs11D399NOx1Bqx8H2ar9uuIiIiknHe+d0KcnNzWbVqFc8++2ynnbfTQl1ZWVnTrBEb87EimgZMREREMo8VdrjsssuA2GwTO3fu7JTzdlqou/vuu6mrq8Oq9mHvyO6s04qIiIh0uj998WGOPPJI6uvr+ctf/tIp5+yUULds2TJefvllMKi3q4iIiGQ8C4s1D5dgWRbz589nxYoVST9n0kOd53ncddddsZPtCGLXaJBhERERyXx2rZ9Zs2YB8Oc//xljTHLPl9TSgQULFsQ6R0QtfBvzkn06ERERkbTxyg2LCAaDfPzxx8yfPz+p50pqqItGo9x3330AONtysKIak05ERES6DyvicNFFFwGx/gXJnGkiqSnrhRdeYNu2bRC2cbblJPNUIiIiImnpH995jt69e1NaWsqLL76YtPMkLdQ1NDTw4IMPAuBsycXy1EonIiIi3Y/lWXzta18D4OGHHyYSiSTlPElLWs8//zxlZWUQsnFKg8k6jYiIiEja+98LH6OoqIidO3cyd+7cpJwjKaEuGo3yf//3fwD4tuZiGQ1hIiIiIt2XZazEs3UPP/ww0Wi0w8+RlFD3+uuvU1paChELe6da6URERETu/ur/UVhYSGlpKa+88kqHl9/hoc4Yw6OPPgqAsz0Hy1MrnYiIiIjlWcyePRuAJ598ssPHrevwULdkyZLYuHSuhVOiHq8iIiIicX//1tNkZWWxdu1aPvroow4tu8ND3TPPPBMreEe2xqUTERERacaK2syYMQOItdZ1pA5NXWVlZbz99tsAOKVqpRMRERHZ20u/fgeAt956KzZSSAfp0FD34osv4rouVpUfu87XkUWLiIiIZAS7zsf48ePxPI+XXnqp48rtqIKMMbzwwgsAGpdORERE5CBWPr0JgLlz53ZYh4kOC3Uff/wxJSUl4FrYZdkdVayIiIhIxrHLsggGg2zZsoUVK1Z0TJkdUgrwn//8J1bg7iwNYyIiIiJyEJZrc+qppwJNGaq9OiTURaNR5s+fHytwl1rpRERERD7Lq79/F4hN2uB5XrvL65BQt3z5cioqKmIzSOwJdESRIiIiIhnN3hMgLy+P3bt3d8gt2A4Jde+8E+uaa5dnaZ5XERERkUNgGYupU6cC8Nprr7W7vA4JdQsXLowVVp7VEcWJiIiIdAv/uTN2C3bRokXtLqvdoW7Lli1s3rwZPHTrVURERKQV7D0BHMdhy5YtbN++vX1ltbcyH3zwAQBWlR/L1bRgIiIiIofKcm2OPPJIAN577712ldXuFLZ06dJYQZVqpRMRERFprcmTJwMpDnXGGD766KNYQQp1IiIiIq324JVPAbBixYp2zS7RrlC3ZcsWysvLwQOr2t+eokRERES6JavGj8/no7y8PDY7Vxu1K9StWrUqURkNZSIiIiLSepZnMXr0aIB2jVfXrlC3Zs2aWCE1vvYUIyIiItKtxTtLrFy5ss1ldEios2p061VERESkrZ656WUA1q9f3+Yy2hzqjDGsW7cOAKtWLXUiIiIibRXPUuvXr29zZ4k2h7qKigpqamrAgFWnUCciIiLSVla9D9u2qaysZPfu3W0qo82hbsuWLbGFBludJERERETawfIs+vfvD8DWrVvbVEabQ138hFa9WulERERE2ise6to6rEmbQ118fjIr5LS1CBERERFpVFxcDEBpaWmbjm9zqIvf77UaNN+riIiISHvN/dMCIAWhrry8HAAropY6ERERkfaKZ6p4xmqtdoc6wmqpExEREWm3SKzjaVVVVZsOb3Mii5/QiijUiYiIiLRXPFNVVla26fg2J7L6+vrYgqvhTERERETaLRqLZZ3eUhcPdZanUCciIiLSXvFMFQ6H23R8m0Kd67pNJ1RLnYiIiEj7ebG3SCTSpqnC2hzqEto2PZmIiIiI7Icxpukxt1ZoU6izbXWOEBEREUmWttyCbX86091XERERkfYzTaHK52v9NKxqqRMRERFJM8FgsNXHtDnUBQKB2AdHD9WJiIiItJsT6ymRlZWF47R+xq42N7nl5uYCYBorICIiIiJtZ3yxhrKcnJw2Hd/mUJc4oU8tdSIiIiLt5qQo1OXl5QFNqVJERERE2s74Ync/8/Pz23R8m0NdUVFRbMHvHnxHEREREflsgVio6927d5sOb3Oo69OnDwAmS8/UiYiIiLSXaQx1iYazVmpzqIunSBNQS52IiIhIe535vVOBFIS6fv36AWCyFepERERE2mv79u0A9O/fv03HtznUDRkyBAATVKgTERERaa/NmzcDMHjw4DYd3+ZQlzhhlqex6kRERETawTge5eXlQFPDWWu1OdTl5+dTWFgYq4ha60RERETaLJ6lCgsLE8PGtVa7JnEdMWJErCK5kfYUIyIiItKtmbxYlho5cmSby2hXqBs7diwAXr5CnYiIiEhbnfnDUwAYM2ZMm8toV6g7/PDDATD50fYUIyIiItKtrV69GmhqMGuLDmmpMzlRjK3pwkRERERayzgeGzZsAFLYUtenTx+Ki4vBAtMj3J6iRERERLolr0cE13UZMGAAffv2bXM57Qp1AMcee2ysQj0V6kRERERaa/ZvPw/AhAkT2lVOx4W6AoU6ERERkdZaunQp0JSp2qrDQp3Ji2J8GoRYRERE5FAZv5voJJHyUNe7d29GjRoFFniFDe0tTkRERKTb8ArDGGMYM2YMvXv3bldZ7Q51ACeddFKsYkUKdSIiIiKH6vhvHQXA1KlT211Wx4a6ng0a2kRERETkEBjb8P777wNpFOpGjhwZG9rE0S1YERERkUPhFYYIhUL079+/XdODxXVIqLMsizPOOAMAr299RxQpIiIiktEmfetIAM444wwsy2p3eR0S6oCmUNczrF6wIiIiIgdhfB6LFy8GmjJUe3VYqBs2bFhsagsbvD6hjipWREREJOO4fUK4rsvo0aMZOnRoh5TZYaEOYObMmQC4xXUY1GFCREREZG8Gw6BphQCcffbZHVZuh4a6M888k+zsbEyui+kR6ciiRURERDKC6RFh06ZNBIPBDrv1Ch0c6vLy8hKVc/vXdWTRIiIiIhnh5B8dA8D06dPJzc3tsHI7NNQBnHfeeUBsIGITcDu6eBEREZEuy2S5vP7660BTZuooHR7qRo0axTHHHAM2uAPVWiciIiISd86tp+K6LhMnToxNs9qBOjzUAXzta18DwC2u1/AmIiIiIsSGMXn++ecBuOiiizq8/KSEukmTJsWGN3EM7gC11omIiIhc9NezaGhoYMyYMRx33HEdXn5SQp1lWU2tdQPqMI5a60RERKT7Mo7HU089BcTuaHbEDBJ7S0qoAzjllFMYMmQI+IyerRMREZFu7ct/mUl1dTVDhgzh5JNPTso5khbqbNtmzpw5QKzDhPGrJ6yIiIh0P8bv8sQTTwBw6aWX4jhOUs6TtFAHcOqpp3L44YeDY4gOqU3mqURERETS0qxbTiIUCnHkkUcmrZUOkhzqLMvi+9//PgBecT1edjSZpxMRERFJKyY7ynPPPQfAZZddlpRn6eKSGuoAJkyYwAknnAAWuMNrkn06ERERkbQx6YdjcV2XKVOmMGHChKSeK+mhDuB73/sejuPgFTXg9mrojFOKiIiIpJTbq4G3334bx3H4wQ9+kPTzdUqoGz58OLNnzwYgOqIaY5vOOK2IiIhIShjb0Gd6EIALL7yQYcOGJf2cnRLqAL75zW/Sp08fCLq4g9RpQkRERDLXRffMoqSkhD59+vCNb3yjU87ZaaEuJyeHK664AgB3UK06TYiIiEhG8rKjPProowBcfvnl5OTkdMp5Oy3UQWyIk8mTJ4MN0VFVGHQbVkRERDKHwTD6G8WEw2EmTZrEaaed1mnntowxnZqsSkpK+OY3v0l9fT3Ohjx823I78/QiIiIiSRMdWIs7vIbc3FweeOAB+vXr12nn7tSWOoD+/fs33YYdWoMX1G1YERER6fq8YBRnTBiI3XbtzEAHKQh1AGeddRZTpkyJ3YYdXanbsCIiItKlGQwjL+5LOBxmypQpzJo1q9PrkJJQZ1kWP/3pT8nPz8fkR3E1hZiIiIh0YV+++0xWrlxJXl4eP/nJT5I6c8SBpCTUAfTu3Zurr74aAHdwLV6BBiUWERGRrsfr2cDDDz8MwLXXXhsbwi0FUhbqAE4//XTOOeccsCAypgrjd1NZHREREZFWMX6XvJMtjDGce+65TJs2LWV1SWmoA7jyyisZMWIEBDwiY/R8nYiIiHQNBsO47w+hoqKCww47jMsvvzyl9Ul5qMvKyuLGG28kGAxiekb0fJ2IiIh0CV+5ZyZLliwhGAzy3//932RlZaW0PikPdQBDhgzhmmuuAcAdUotbFEpxjUREREQOzC0K8dBDDwFwzTXXMHTo0BTXKE1CHcCMGTOYPXs2ANHRVXi5kRTXSERERGRfXm4E3zGxDp5f/vKXmTFjRoprFJM2oQ7g+9//PhMnTgTHEDl8D8bvpbpKIiIiIgnG51H0+QChUIhJkybxve99L9VVSuj0acI+S3V1NZdddhlbt27FqvTjX9ELy3T+WC8iIiIizRnLcPh/9eejjz5i4MCB3HPPPeTn56e6Wglp1VIHkJ+fzy233EJeXh6mIEJ0VJV6xIqIiEhKGQwn3zCejz76iJycHG655Za0CnSQhi11cYsXL+anP/0pruvibM3BtzG9LpyIiIh0H9Fh1biD6nAch9tvvz32uFiaSbuWurjJkyfzs5/9DAB3UB3RARrqRERERDpfdEAt7qA6AK677rq0DHSQxqEO4Mwzz+Syyy4DwB1Rg9tbQ52IiIhI53F7h3BH1ADwve99L216uu5PWoc6gIsuuogLLrgAgOjoStxemiNWREREks/t1YA5MhboLrjgAr761a+muEYHl/ahzrIsLr/8cj73uc+BDdHD9+AVKNiJiIhI8ng9G7Am1OK6LtOnT+fyyy/HstJ7NI60D3UAjuNw/fXXM3XqVLAhckQlXo9wqqslIiIiGcjrEcY+rp5IJMLJJ5/Mz3/+cxzHSXW1PlPa9n7dn3A4zC9+8QsWLVoEroV/RU/s6kCqqyUiIiIZwssP4zs+RH19Pccffzw33XQTfr8/1dU6JF0q1AE0NDRw3XXX8f7770PUwv+xgp2IiIi0n5cfJnBimNraWo477jhuvfVWsrKyUl2tQ9blQh1AKBTiJz/5CR9++GGsxe6TntiVCnYiIiLSNl5BA86kEKFQiAkTJnDbbbcRDAZTXa1W6RLP1O0tOzub2267rWme2CMr1CtWRERE2sTt1YB1XB2hUIjJkyfzu9/9rssFOuiioQ4gGAxyyy23cNJJJ8V6xR6xB7dI49iJiIjIoXOLQpijqgmHw5x88sncfPPNZGdnp7pabdIlb782F41Gufnmm3n11VfBgG9dD5wdXS9di4iISOdy+9XhjanF8zymT5/Oz3/+c3w+X6qr1WZdPtQBuK7L73//e55//nkAnE25OFtysUjv8WRERESk8xkM7pBa3CGxKUjPOussrr322i4xbMnBZESoAzDGcO+99/Lwww8DYJdm4/u0B5ZRsBMREZEYYxmiI6vw+sUe2frGN77Bt7/97bQfWPhQZEyoi3v22We588478TwPqzyAf3UBlttlHx0UERGRDmJsj2OuGsGiRYuwbZurr76aL3zhC6muVofJuFAH8NZbb/HrX/+ahoYGrBof/k96YoW7dpOqiIiItJ0JuAy7uJA1a9aQlZXFf//3f8dmqsogGRnqAD755BN+9rOfsWfPHmiw8a/siV3TNUaEFhERkY7j5UXInwbl5eUUFBRw2223ccQRR6S6Wh0uY0MdwLZt27juuuvYuHEjeOBb2wNnl3rGioiIdBdun3rs8SHC4TDDhw/nlltuYcCAAamuVlJkdKgDqK2t5Te/+Q3vvPMOAM6WHJxNeeoZKyIiksEMBndoDe7gOgCmTp3K9ddfT05OToprljwZH+ogNuTJ3/72t6aeseUBfOpAISIikpGM43Hc1SNZuHAhABdffDFz5szBtjP79363CHVxr776KrfeeivhcBjqHfyrCrBr9ZydiIhIpvByI/SelUVJSQmBQICf/OQnzJgxI9XV6hTdKtQBrF69muuvv57S0tLYc3af5mPvCOp2rIiISBdmMHj96rGPbCAcDjNgwABuvPFGRo8eneqqdZpuF+oAqqqquPnmmxPP2dk7Ggcq9hTsREREuhpjG6KHNQ0ofOKJJ/KLX/yC/Pz8FNesc3XLUAfgeR6PPvoo9913X2yg4lofvlUF2PVdd843ERGR7sYLRhk8u4D169dj2zZz5szhoosuyvjn5/an24a6uKVLl/LrX/+a8vJycC18G/KwS3U7VkREJJ0ZDF5xPfYRsdutvXr14le/+hXHHntsqquWMt0vxu7lmGOO4b777mPixIngGKIjq4keXonxeamumoiIiOyH8XlMuW4M0ZHVhMNhpkyZwt///vduHehALXUJnufxxBNPcPfddxONRmOzUKzpgV2ZleqqiYiISCOvIEzB5xzKysrw+/1cdtllfOlLX+qWt1v3plC3lzVr1nDjjTeyefNmAJytOTib89SJQkREJIWMHRtM2BtUjzGGIUOGcMMNN3Sr3q2fRaFuP0KhEH/605/497//DYBV5+Bb2wO7OpDimomIiHQ/Xn6Y4rPz2LJlCwDnnHMOl19+OcGgpv5sTqHuIN5++21uv/32WCcKA862xinGjFrtREREks1YBndIDWZoCM/z6N27Nz/5yU84/vjjU121tKRQ9xmqqqr4n//5H+bNmwc0ttqtKcCu0UwUIiIiyeLlRRh4Xg82btwIwJlnnsmVV17Z7caeaw2FukP05ptv8vvf/75lq52etRMREelQxvZwh9ZiBsda5woLC7nmmms4+eSTU121tKdQ1wqVlZXcddddvPrqq7EVIRvfpz1wKtRDVkREpL3cXg0UTctix44dAEyfPp0f/vCHFBQUpLhmXYNCXRssXLiQP/7xj7H5YwF7Vxa+9flYESfFNRMREel6jN8lOqIar08DAMXFxVxzzTVMmTIlxTXrWhTq2qi+vp7777+fJ598Etd1IWrh26jZKERERA5VfFaI7AmGmpoaHMdh9uzZfOtb31LP1jZQqGunNWvWcMcdd7Bq1SoArGofvvX5Gv5ERETkILz8MMO+1Ju1a9cCMGbMGH784x9r3Ll2UKjrAK7r8uyzz3LfffdRW1sLgL0jG9/GPN2SFRERacb4XaLDavD6hQDIy8vjO9/5Dueddx6Oo9+Z7aFQ14HKy8u55557ePHFF2MrohbOllyc7Tka205ERLo1Yxnc/nVkjfOoq6sD4KyzzuLSSy+lV69eKa5dZlCoS4JPPvmEO++8s+mWbJ2DsyEfuyKg5+1ERKRbMRi8wjADZvZITME5duxYfvSjH3HEEUekuHaZRaEuSTzPY+7cudx9993s2bMHAGuPH9+GfOxaDVwsIiKZz8uNMO7bQ1m6dCkABQUFXHbZZcyaNQvbtlNcu8yjUJdk1dXVPPzwwzz11FOEw2EA7J3Z+DblYTXo2QEREck8JsslOrQGr2/sublAIMDs2bP52te+Rl5eXoprl7kU6jpJaWkp9957L6+88kpshQfO9hycLblYrv5aERGRrs84Hu6gWpzDoomGjBkzZjBnzhyKi4tTXLvMp1DXyVatWsX//u//JpqiiVg42xo7U2jKMRER6YKMbXAH1BEcBzU1NQAcffTR/OAHP2Ds2LEprl33oVCXAsYYFi5cyF//+tfERMWEbZytuTglQfWUFRGRLsFYBre4nh4TfVRUVAAwfPhw5syZw0knnYRl6fdZZ1KoSyHXdXn11Vf5+9//zvbt22MrQza+LbnYOxXuREQkPRkMXr8QhVOz2blzJwADBw7kW9/6FqeffrrGm0sRhbo0EI1GefHFF3nwwQfZtWtXbGW9Ewt3u7IV7kREJC0Yy+D1rafvqfmJxog+ffrwjW98g1mzZuHz+VJcw+5NoS6NNDQ08K9//YuHH344MQwKIRvf1lzsHWq5ExGR1DCWwetXT9HUHHbs2AHEhif5+te/zrnnnktWVlaKayigUJeW6urq+Ne//sX//d//UV5eHlvZ0PjM3Y6gOlSIiEinMLbBLa6j56Qsdu/eDUBRURFf/epXOeeccwgGgymuoTSnUJfGGhoaeO6553jssceabsuGbZxtOTilQQ2FIiIiSWEcD7d/PXlHO1RWVgLQt29fvva1rzFr1iy1zKUphbouIBwOM3fuXB555BFKS0tjK6MWTmkwNhRKWA+kiohI+5mAizugjuwxFrW1tQAMGDCAiy++mDPPPBO/XzMipTOFui4kGo3yyiuv8NhjjzUNheKBXZaNsy1H04+JiEibeLkR3IF1WP0juK4LwJAhQ/j617/O6aefrg4QXYRCXRfkeR6LFi3i8ccfbxrEGLAqAvi25WDtCWCh5+5EROTADAbTM0x0UB2mZzixfsKECXzlK1/h+OOP1/ysXYxCXRe3evVqHn/8cV577bXEX1dWrQ9ne05sOBR1qhARkWaMbfD6hBg8o4gNGzYA4DgOp512Gl/+8pc1A0QXplCXIUpKSnjyySd5/vnnqa+vj62MWDg7grFZKhrUdC4i0p2ZLBe3fx25R/ioqqoCIBgMcs455/ClL31Jc7NmAIW6DFNdXc3zzz/Ps88+S0lJSWylAbsiEOtUoVuzIiLdhsHg9Qrj9a/DFEWI/8ovLi7m/PPP5+yzzyY/Pz/FtZSOolCXoVzXZfHixTz99NMsWrQosd6qd7BLgrHx7jQkiohIRjI+D7dfPcUnFbBt27bE+kmTJnH++edzwgknaCqvDKRQ1w1s2bKFZ599lrlz51JTUxNb6Tb2mt0RxKryq/VORKSLMxhMfgS3uB7/EENDQwMAeXl5fP7zn+e8885j8ODBKa6lJJNCXTdSX1/PK6+8wtNPP8369esT6606B3tHEGdnNlZEf7mJiHQlxu/i9g0x8NRCNm/enFg/cuRIzj//fKZPn66ZH7oJhbpuyBjDJ598wvPPP8/8+fObOlZ4YJdnYe8IYlfo2TsRkXSVeFauuB6rbzQx+kF2djaf+9znOPvssxk3bhyWpZ/j3YlCXTdXV1fH/PnzeeGFF/j444+bNjTYODuC2LuysevVc1ZEJB142VG8fvX0OiaHsrKyxPojjjiCs846i2nTppGbm5vCGkoqKdRJwvr163nhhRd4+eWXE93dAaxqH/bOIE5ZNlZEnStERDqT8Xu4vUN4fesx+dHE+oKCAs4880zOOusshg8fnsIaSrpQqJN9hMNh3nzzTV5++WXee++9RLN+fGgUe2c2drkGNhYRSRZjG7yiEF6fEFYfN/Fz2HEcJk6cyFlnncXUqVM1F6u0oFAnB1VRUcH8+fOZN28eK1eubNrgWthlWTi7sjX2nYhIB4hP2+X2DZE11Gp63hkYO3YsM2bMYNq0aRQWFqawlpLOFOrkkG3ZsoV58+Yxb968poGNASIW9u5snLIsBTwRkVYwGExBGLd3Az0Oz2LPnj2JbQMGDGDGjBmcccYZGopEDolCnbSaMYYVK1Ywb948XnvtNSorK5s2Ng94lQEso4AnItKcsZqCXP6YQIufoQUFBUybNo0ZM2ZwxBFHqPeqtIpCnbRLNBrlww8/ZMGCBbzxxhv7CXhZsQ4WCngi0o0Zy+D1DOP1DpE70k91dXViW0FBAaeccgqnnnoqxx57LD6fRhyQtlGokw4TjUb56KOPEgGv+W0EolZsDLzyrNgYeJqiTEQynHG82FhyhQ3kjPA1zegD9OrVi1NOOYXTTjuNo48+WkFOOoRCnSRFPOC99tprvPHGG1RUVDRt9MCqCuDsjoU8q0GzWIhIZjBZLm5hA15RA3ZRU69VgMLCQk455RQ+97nPcdRRR2nuVelwCnWSdK7rsnLlSt566y3efvttNm3a1GK7VevDjge8Gp86WohIlxGfb9UrjLXImdxoi+1Dhgxh6tSpTJ06lSOPPFJBTpJKoU463ZYtW3j77bd5++23Wb58OZ7nNW0MW9h7Yrdo7T1ZGuxYRNKO8Xt4PRvweoUpGBNscSfCcRzGjx/P1KlTOfHEE9VrVTqVQp2kVGVlJe+++y5vvfUWixcvbjEuEzTOZlGRhb0ngFXtV2cLEel0xmpsjesVC3Imr2VrXE5ODlOmTGHq1Kkcf/zx9OjRI0U1le5OoU7SRiQS4eOPP2bRokUsXryYtWvXttwhamHvCcRa8SoDEHJ0q1ZEOpzBQLYb663aK0zWIHufPzhHjRrFpEmTmDx5MuPHj9fMDpIWFOokbe3evZv33nuPxYsX895777UcLgUgZGNXBhIvdbgQkbYyWS5eQTjxIttrsb2goCAR4iZNmkRRUVGKaipyYAp10iW4rsuaNWtYvHgx77//Ph9//DHRaMtbINQ7sYC3xx8LeRGFPBHZPxNoFuJ6RiDbbbHdcRyOPPJIJk+ezJQpUxg1ahS2rWd8Jb0p1EmXFAqFWL58OUuXLmXJkiWsXr26xdABAFadg1UVwK7yY1f5dbtWpJtK3E7tEcHLj2AKwpicfUPcmDFjOOaYYzjmmGMYP348wWAwRTUWaRuFOskItbW1LFu2jCVLlrBkyRLWrVvHPt/aYRu7yo9V5ceuCmDV+tTxQiQDGctgcqN4PcKYHhG8HhEItLydalkWo0ePToS4o446itzc3BTVWKRjKNRJRqqqquKjjz5ixYoVLF++nFWrVu17u9YFq7ox4FX7sav9WFHdXhHpaozPi7XA9Yjg9QgT6GvT0NDQYh+fz8eYMWMYN24cRx11FBMmTCA/Pz9FNRZJDoU66RYaGhpYvXo1y5YtSwS95nMvJoTsWLiraQx5NT4sT0FPJF0Y28PkRWMhLi+Clx/d53k4gB49ejBu3DjGjRvH+PHjGTt2LFlZWSmosUjnUaiTbsnzPDZv3pwIeStXrmTz5s373rI1YNX5YuPlNYY9q063bUU6Q/w2aiy8xUKclW9aDljeaPDgwYkAN27cOIYMGaKODdLtKNSJNKqpqWH16tWsXLmSVatWsXLlSnbt2rXvjh5Y9b7YM3k1Puxaf2xZt25F2sz4vNhzcLmRxiAXxSlg38cmgD59+jB27FgOP/xwDj/8cEaPHq1bqSIo1IkcVFlZWYuQt2bNGqqqqva/c8huCnjxl3rcirSQ6ImaG42Ft9wIXm50n3Hh4vLz8xk7dmwixI0dO5bevXt3cq1FugaFOpFWMMawc+dO1q1bx7p161izZg3r1q2jpKRk/we4ja16dfGXg13n0/AqkvES4S0nislxMTnR2CsYhQMMIdm/f39GjhzJqFGjOOywwxg1ahT9+vXDsvR/ReRQKNSJdIDq6mo+/fRT1q5dmwh8mzZtIhwO7/+AvcNevRN7hXxYnn6BSddhbIPJjmKCLibYMsBxgCcSAoEAw4cPTwS3kSNHcthhh5GXl9e5lRfJMAp1Ikniui4lJSVs2LCBjRs3Jl4HDXsAITsW7poHvXonditXHTQkBYxlMNmNoS3otlgma/+3TSEW3oYOHcqwYcNavPr374/P5+vEr0Cke1CoE+lkzcPepk2b2LhxI1u3bmXLli37H2YlzgANjeEuZGPFlxvfCdu6pSttYjAQ8GJhLasxtGV5seVgFDuH/fY4jcvLy2PQoEH7BLji4mIcR9P1iXQWhTqRNFJZWZkIeM3ft27dSn19/cEP9sBqcGLP6zU4WA2NwS9sx8Jg2AbXUvDrZgwGHIMJeBBoFtayXEx2bJks94C3SuOCwSCDBg1i8ODBDBo0qMWroKBAz72JpAGFOpEuwBjD7t272bZtG6WlpZSWllJSUkJJSQmlpaXs3Llzn7lv98u1sBrsWKteuDH4hRtb+cI2RGysiMJfVxAPa/g9jN/DBGIvstzGZTfW+pblxfb7DI7j0LdvX4qLi+nfvz/9+vWjuLiYAQMGMGjQIAoLCxXcRNKcQp1IBohGo+zevbtF0NuxYwe7du2irKyMXbt2UVNTc+gFeiQCXouwF3+P2lgRK/YebXzX837tYiwDPg/ja/beGNgSwc3vxYKaL/b+Wa1rzeXl5dG7d2969+5N37596d+/P8XFxYlXUVGRnnMT6eIU6kS6ifr6esrKyhIhr3ng2717N3v27KGiooK6urq2ncClZchrfMe1sFwL3MZlz4KoBV58fdM7XuPLkPYthSZWSbAbb282vuMYjNO0jN38816hrdnnAw3z8VmCwSAFBQUUFRXRp0+fRHDr3bt3i8/BYLBDv34RST8KdSLSQigUSgS8+Ht5eXliuaKigpqaGqqrq6murqampuagD9G3mUdTyPOItQQ2LseDH42tg1b8p5hpXA8ttmMgkRHjOyc+N+4QP9Rq3McmFtgal81+1nV07rQsi7y8PPLz88nLy6Nnz5706tWLnj17Jpabf+7Zs6fCmogkKNSJSLt4nkdtbW2LkBdfrqqqor6+nvr6eurq6j5zuav+OHIch2AwmHhlZ2e3+Bx/5eTktAhtzd/z8/PJzc3VfKUi0mYKdSKSFowxRCIRwuEw4XC4xXLzz5FIhIaGBqLRKJ7n4Xkexhhc18UYk1jneV6LdbZtY1lWi/f4a+/1Pp+PQCCA3+/H7/cfdDn+UicCEUk1hToRERGRDKB2fhEREZEMoFAnIiIikgEU6kREREQygEKdiIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBFOpEREREMoBCnYiIiEgGUKgTERERyQAKdSIiIiIZQKFOREREJAMo1ImIiIhkAIU6ERERkQygUCciIiKSARTqRERERDKAQp2IiIhIBlCoExEREckACnUiIiIiGUChTkRERCQDKNSJiIiIZACFOhEREZEM4Et1BUTijDGEQqFUV0NEpFWys7OxLCvV1RBRqJP0EQqFOPPMM1NdDRGRVnn55ZcJBoOproaIbr+KiIiIZAK11ElaCizui2Ua/+awbCzbAssG2wLLwrLj2xrXWxbYFlZ8n8Q2K3FM4gXN1tktt8cOTKwzltX0p0+zMhLrraZzNV9nrFgxiW12rNzYeiuxLX6MaVyX2A5NZdiN+8e30/IcLY5prL6x97Otxf60qGPTOmufbfscQ/N67LWdA6w/QHkHqsc+xxys3MR6s+/xzY5JbG9WlmlcT7PjYttMs/rEtlvNtyX2jW8ziTKt5vtbJrEt8S0WXx8vrnGf2LeCSXyOH2M3fo5ti32OH5fYZhksmo6zG9clXpjEcbZFi/Wx472m44jv7+HEj2n83FSWlyjPaVa+Q2y9Ey8vsa+HEy+TeD28pv1pKjtWpodN7PyxbbF94+ez8HDixzc7xoHYccTOE78e8c+xc5nGZRq3GezG6+JgYQNO4z+2jdW4zsKxLGxsrMZ/uUjY4YLvFiOSThTqJD25VuOPV2KhjsYA1vjbsmmbBXZTgrFiCamxkPhvd5t9fms3JaaWSSJe5j6/5dlrXfNzsJ91ex9HU5hrFur2WdcshDX/vHcVW+6/n2Psg2w70JexTz0O8GUfbNuBLlVby2tW5v4CX1JD3f62s/dnkyi7eT2an3N/2xIhkGb7NN9/n2PMfs5lWryah7qmoNj4OtA24sEvVmTzABgPfxAPZyRCUfNtsVDnNYUiq3koii3blhULXI3vJJatxHGxcmgsM34sjceROG6fbc3WO42B1EnUMx7qzGeGuublOfHrQct1Ns3r2OzfUCRN6PariIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBNE6dpCfHYExssNHYuGtWs3drrwGB4+/Nlmm+zjRbPoRtzQYtaxoi9kDrm95Ni2VaHGcATHx9U5kGCwyJY5tvT5TRYnC15nXZz2fTokp7XY8DvPbe91DGojvYtkM+1yFua37Kgx5nPqNMc4A6Hnjw4ZZjyzXblti37YMPN9Wj2Th1tH2cOkPTccYyLV/E3mPbaLHeswxYXlOZxM/lNRtPr3Gfxu3G8hLl0aL8xvf4uRo/2437xN+BfdZ5zf5bx5c9Czxi/+29ZtssDjROnZUYMNih6d8s/jk+3l18GZrKOLTBhy2aBh/e3/9LkdRSqJO0FJ68M9VVSI7478w22juTiMQ1/9byDrZj2mqeqnUTSaQt9D9H0kYoFEp1FURERLostdRJ2sjKykos/+tf/yI7OzuFtekeQqEQ5557LqBr3hl0vTtfZ1xz/TtKulCok7RhWU03FLOzswkGgymsTfeja965dL07n665ZDrdfhURERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAyxjTjlGzRERERCQdqKVOREREJAMo1ImIiIhkAIU6ERERkQygUCciIiKSARTqRERERDKAQp2IiIhIBlCoExEREckACnUiIiIiGUChTkRERCQD+FJdAclMdXV1PP7447z++uuUlpZi2zaDBw9m2rRpXHDBBfj9/jaXXV5ezqOPPsrChQvZsWMHWVlZDB8+nJkzZ3LWWWdhWVYHfiVdQzKu965du3jrrbdYunQpa9euZdeuXQAUFhZy5JFHcvbZZ3Pcccd19JfSZSTze3xvd9xxB//+978BKC4u5p///GeHld1VJPt67969m2eeeYZ3332XkpISGhoa6NWrF0OHDmXChAl85StfwefTr0xJb5omTDpcaWkpV155JaWlpQBkZ2fjeR7hcBiAUaNGceedd5Kfn9/qslevXs21115LZWUlAMFgkHA4jOu6AEyePJlbbrmlQ3+hprtkXO8dO3Zw4YUX0vzHQ3Z2NsYYGhoaEutmzZrFj3/8YxzH6aCvpmtI5vf43pYsWcJVV12V+LfojqEu2df7P//5D3fccQe1tbUABAIB/H5/4jPACy+80CH/niLJpFAnHSoajTJnzhzWr19PUVERv/jFL5g4cSKe57FgwQJuv/126urqOP744/nd737XqrJramq4+OKLKS8vZ8iQIfzyl79k7NixRCIRnnvuOf70pz8RjUY577zzuPrqq5P0FaaXZF3vkpISvvzlL3Pcccdx5plnMnHiRHr37o3neWzevJl77rmHt956C4BLLrmEOXPmJOtLTDvJ/B7fWygU4lvf+hY7duxg5MiRrFq1qtuFumRf7wULFvDrX/8az/M455xzmD17NsOGDQNirYNr167lzTff5Dvf+Q7BYLCDvzqRjqVn6qRDvfTSS6xfvx6A3/zmN0ycOBEA27Y5/fTTufbaawF49913+eCDD1pV9uOPP055eTlZWVn87ne/Y+zYsQD4/X6++MUv8u1vfxuA5557ji1btnTUl5TWknW98/Pzuffee/njH//IzJkz6d27d6LcYcOGcdNNNzFlyhQAnnjiiRatd5kumd/je7v33nvZtm0bX/3qVxNBo7tJ5vUuKyvjjjvuwPM8fvCDH/DjH/+4xXXOycnh6KOP5vLLL1egky5BoU461EsvvQTAMcccw7hx4/bZfvrpp9O/f/8W+x6ql19+OVHGgAED9tn+xS9+kWAwiOu6vPLKK62tepeUrOudl5fHmDFjDrjdsixmzZoFQH19PZs2bWpNtbu0ZH6PN/fxxx/z1FNPMXjwYC655JI2l9PVJfN6P/XUU1RXVzNq1CguvPDC9ldWJMUU6qTDhEIhVqxYAcDxxx+/330sy0q08Lz33nuHXPbmzZvZsWMHQOL4veXk5HDUUUe1uuyuKpnX+1AEAoHEsud5HVp2uuqsax4Oh7n11lsxxvDjH/+YrKystlW4i0v29Y7/oThjxoxu2cFKMo+68kiH2bRpU+KX+/Dhww+4X3xbeXk5VVVV9OjR4zPLjt9++ayyR4wYwaJFi9i4ceMh1rrrSub1PhRLly4FYre/Bw8e3CFlprvOuuYPPvggmzZt4uyzz2bChAltrm9Xl8zrvX37dsrKygAYM2YMn376KY888ghLliyhurqanj17Mm7cOL70pS8xfvz4DvhqRJJPLXXSYeI/IAH69OlzwP3iz2ftfczB7N69u1Vl19bWUldXd0hld1XJvN6fZfv27YkhNqZNm0Zubm6HlJvuOuOar1mzhkcffZTCwkK+//3vt76SGSSZ13vr1q2J5eXLl3PppZfy6quvUltbSyAQYNeuXSxYsIDLL7+cBx98sA21F+l8CnXSYZqHqIPdLsrOzt7vMakqu6tK1TVpaGjgV7/6FaFQiIKCAi677LJ2l9lVJPuaR6NRbrvtNlzX5corr+z2Q2gk83pXV1cnlv/2t79RVFTEH/7wB15++WXmzp3LQw89xDHHHIMxhr/97W+8/vrrbfgKRDqXQp2IHLJoNMqNN97I6tWr8fl8XH/99S1aSaR9HnnkEdauXcuJJ57ItGnTUl2djNb8OVBjTKJnrW3Hfi0OGzaMW265hcLCQgAeeOCBVFRTpFUU6qTD5OTkJJYPNsRFKBTa7zGpKrur6uxr4rouv/nNb3jzzTdxHIcbbriByZMnt7m8riiZ13zjxo089NBDBINBrrrqqrZXMoN01s+U4447br+9vXNycjj//PMB+PTTTykvLz+kskVSRaFOOkzzFpv4lFL70/yZl0Nt5SkqKmpV2bm5uRkf6pJ5vffmui6//e1vWbBgAY7j8Mtf/pLTTjutTWV1Zcm85n/84x+JRCJ8/etfJz8/n7q6uhav+KwpxpjEumg02savpGtI5vVuvt/QoUMPuF/zceviM1qIpCv1fpUOM3ToUGzbxvM8NmzYcMAhCDZs2ADE5hA91F6BI0aMaHH8gQZijfeS7Q4DtSbzejcXb6GbP39+ItCdfvrp7ap7V5XMa15SUgLAPffcwz333HPA/Xbs2MHMmTMBuPzyyzN6fLVkXu9hw4bhOE4iLB9I80mXNOyJpDu11EmHyc7OTgwOumjRov3uY4xh8eLFAEyaNOmQyx48eDD9+vU7aNn19fUsW7as1WV3Vcm83nGu63LjjTcq0DXqjGsuTZJ5vbOyshLjWh5s8Oz4NsuyEoMci6QrhTrpUPEWhKVLl/LJJ5/ss33BggVs3769xb6HwrIszjzzTADmz5+faNVo7plnnqG+vh7HcTjjjDPaUv0uJ1nXG5pa6Jrfcu3OgS4uWdf8n//8J2+88cYBX/GyiouLE+syuZUuLpnf4/FZUT744ANWr169z/a6ujqeeeYZAI444gh69uzZqvJFOptCnXSomTNnMmLECIwxXH/99Ym5GJtPvg2xWSGOO+64Fsfef//9nHLKKZxyyin7DW1f+cpXKCwsJBQK8dOf/jTxQzgSifDss8/yt7/9DYBzzjmn2wyGm6zrHX+GLt5Cd8MNNyjQNUrm97jsK5nX+4wzzuDwww9vUXa8V+zGjRu57rrrKC8vx7Zt5syZk+SvVKT99EyddCifz8ctt9zCD3/4Q0pLS7nqqqvIzs7G8zzC4TAAo0aN4oYbbmh12Xl5edx2221ce+21bNy4ke9+97vk5OQQDocTD4xPmjSJyy+/vEO/pnSWrOu9fPly/vOf/wCxVtK77rqLu+6664D7X3HFFd0m9CXze1z2lczrbds2N998M1dddRUbN25MlO3z+aipqUmc/6qrrtonMIqkI4U66XD9+/fngQce4PHHH+f111+ntLQUn8/H8OHDOf3007ngggvw+/1tKnvMmDE8+OCDPProo7zzzjvs3LmT7OxsRowYwcyZM5k1a1ZinKnuIhnXu/nD4dFo9DOHcoj/cu0ukvk9LvtK5vUuKirivvvu4+mnn2b+/Pls3bqVhoYGiouLOfbYY7nwwgtbdNQSSWeWaf7TW0RERES6pO7VpCEiIiKSoRTqRERERDKAQp2IiIhIBlCoExEREckACnUiIiIiGUChTkRERCQDKNSJiIiIZACFOhEREZEMoFAnIiIikgEU6kREREQygEKdiIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBFOpEREREMsD/ByHfjE5fhkH6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dwell_time_map = SCPosition.get_dwell_map(response = response_path, dts = dts, src_path = src_movement[:-1])\n", + "#dwell time map has the correct distribution in detector coordinates with a hot spot 20 degrees from zenith\n", + "\n", + "_,ax = dwell_time_map.plot(ax_kw = {'coord':'C'}, coord = SpacecraftFrame(attitude = Attitude.identity(frame ='icrs')))\n", + "\n", + "#Need to use the same transformation to plot the coordinates of the source\n", + "c_sc = coord.transform_to(SpacecraftFrame(attitude = Attitude(grbori.get_attitude())))\n", + "ax.scatter(c_sc[0].lon.deg, c_sc[0].lat.deg, transform=ax.get_transform('world'), color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "d532c332-d566-4787-8830-d42271c22442", + "metadata": {}, + "source": [ + "The sum of all pixel in the dwell time map is simply the duration of the data that was integrated. In this case is just the duration of the GRB." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "6bbffb4e-853a-4925-8987-7cfd57d33029", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.00000000000351 s\n" + ] + } + ], + "source": [ + "print(sum(dwell_time_map))" + ] + }, + { + "cell_type": "markdown", + "id": "9c6baed9-14e7-48fc-84f5-af349de2b715", + "metadata": {}, + "source": [ + "The detector response is then convolved with the dwell time map to get the point source response:" + ] + }, + { + "cell_type": "markdown", + "id": "f817be35-5398-48b9-b088-d308195a302f", + "metadata": {}, + "source": [ + "The point source response is still quite generic. We obtained the response for a give location and duration, but we still convolved this with a given spectral assumption:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b2d58300-deae-4c26-9469-e1ac07fa8313", + "metadata": {}, + "outputs": [], + "source": [ + "psr = response.get_point_source_response(dwell_time_map)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3d93229f-7c8e-4c9a-a582-54cc73bf9eec", + "metadata": {}, + "outputs": [], + "source": [ + "# Set the spectra of the source\n", + "spectrum = Band()\n", + "alpha = -1\n", + "beta = -3 \n", + "xp = 1000 * u.keV\n", + "piv = 500 * u.keV\n", + "K = 0.00247 / u.cm / u.cm / u.s / u.keV\n", + "spectrum.alpha.value = alpha\n", + "spectrum.beta.value = beta\n", + "spectrum.xp.value = xp.value\n", + "spectrum.xp.unit = xp.unit\n", + "spectrum.K.value = K.value\n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.value = piv.value\n", + "spectrum.piv.unit = piv.unit\n", + " \n", + "# We project into the only event parameters that we can measure in COSI\n", + "signal = psr.get_expectation(spectrum).project(['Em', 'Phi', 'PsiChi'])" + ] + }, + { + "cell_type": "markdown", + "id": "7f6e60b5-65e4-4171-a8a7-e8e4f4d72008", + "metadata": {}, + "source": [ + "The result `signal` is histogram that contains the expected counts in measured energy (`Em`) and the \"Compton Data Space\": Compton scatter angle (`Phi`) and direction (in SC coordinates) of the scattered photon in he (`PsiChi`). For reference, see the following figure from [this](https://arxiv.org/abs/2102.13158) paper. The only different is that here we are using spacecraft coordinate instead of galactic coordinates. ![](cds.png)" + ] + }, + { + "cell_type": "markdown", + "id": "9ea7ffcb-d555-4da0-913a-87c7087b60c0", + "metadata": {}, + "source": [ + "The `signal` object is a 3D histogram. Note that the last axis, `PsiChi`, is actually a 2D axis encoding the coordinates in a sphere as pixels in a HEALPix grid. So, in a sense, it's really a 4D histogram." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8d821639-d2c7-42a8-9f3b-d6ef53268356", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Em', 'Phi', 'PsiChi'], dtype=', )" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG7CAYAAAAv0vpMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwe0lEQVR4nO3de1RU573/8c8IDl7QYAdFKwSDGESNyTnVGC9VDGo0Kic2apvWdWpS0UQhUVeXJlmaNoYmbWJzMURrSM6ha3kBY5bKaRU1ieItxuiyRwuGYqzUXFQc8ILAcHF+f/hjH8dBA8ZhgOf9WotF9rO/+zvPgBk/7v3MHpvb7XYLAADAQK38PQEAAAB/IQgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIHQTFRUVys/PV0VFhb+nAgAAfIAgdBOFhYVKTExUYWGhv6cCAAB8gCAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMFagvycA3IoT+7/VofUFqqqo9vdUcBOt2wRqwJReumtQN39PBQDqRBBCs3RofYEufHPZ39PAd3Lp4AcFBCEATRZBCM1S7Zkgm01q2ynIz7NBXcpLXHK7xVk7AE1ag4LQP//5T/33f/+38vPzVVxcrDZt2igyMlKPPfaYhg4d6lF78uRJpaam6ujRowoMDNTgwYOVlJSkkJAQj7orV64oIyNDGzduVHFxscLDwzVt2jSNGjXK6/F90RPNW9tOQfp56oP+ngbqsCbpE5UVu/w9DQC4qQYFodOnT6usrExjx45VaGioKioqlJOTo+eee06//vWvlZCQIEk6e/askpOTFRwcrMTERJWXlysjI0MnTpzQypUr1bp1a6tnWlqaVq9erYkTJ6p3797as2ePlixZIpvNpvj4eKvOFz0BAIDZGhSEBg8erMGDB3uM/eQnP1FiYqLWrVtnBaFVq1apoqJC7733nsLCwiRJsbGxmj9/vrZs2WLVFRUVKTMzU5MmTdK8efMkSRMmTFBycrKWL1+uuLg4BQQE+KwnAAAw2/d++3xAQIC6dOmi0tJSaywnJ0dDhgyxAoskDRgwQBEREdqxY4c1tmfPHlVXV2vSpEnWmM1m0yOPPKKioiLl5ub6tCcAADDbLS2WLi8vl8vl0uXLl7V371599tlnGjlypKSrZ2RKSkoUExPjdVxsbKz2799vbRcUFKht27aKjIz0qqvd379/f5/0rMu5c+fkdDqt7cLCwpv+HAAAQPN2S0HonXfeUVZWliSpVatWGj58uHUZqjZIOBwOr+McDocuXryoyspK2e12OZ1OderUSTabzatOuhpMfNWzLllZWUpPT//O5w8AAFqGWwpCU6ZMUVxcnM6dO6cdO3aopqZGVVVVkiSX6+q7RK5dvFzLbrdbNXa7XS6X6zvrfNWzLgkJCR7vfissLFRKSsoN6wEAQPN2S0EoMjLSuvQ0duxYzZ8/X88++6xWrlypoKCr93SpDUbXqqyslCSrJigoqN51t7tnXUJDQxUaGnrD/QAAoGW5LZ81FhcXpy+++EKnTp2yLkFdu9amltPpVMeOHa2zMw6HQ8XFxXK73V51kqxQ4oueAAAAtyUI1V5uKi0tVefOnRUSEqL8/HyvumPHjik6Otrajo6OVkVFhdei5Ly8PGu/JJ/0BAAAaFAQKikp8Rqrrq7W1q1bFRQUpB49ekiSRowYoX379unMmTNW3aFDh3Tq1Cnr3WWSNGzYMAUGBmrDhg3WmNvt1qZNm9S5c2f169fPGvdFTwAAYLYGrRFaunSpLl++rHvvvVedO3eW0+nU9u3b9a9//Utz5sxRu3btJEnTpk3Tzp07NXfuXE2ePFnl5eVau3atoqKiNG7cOKtfly5dNGXKFK1du1bV1dWKjY3V7t27deTIES1evNjjxoe+6AkAAMzWoCD04IMP6q9//as2bdqkCxcuqF27doqJidGTTz6pYcOGWXVhYWFatmyZUlNTtXLlSutzwebMmWOt5ak1a9YsdejQQVlZWcrOzlZ4eLgWLVqk0aNHe9T5oicAADCbzX39qmJY8vPzlZiYqLS0tDpv5gj/qf1Az3Y/4ENXmyp+RwCag9uyWBoAAKA5IggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxgpsSPGxY8eUnZ2tw4cP6/Tp0+rYsaP69u2rGTNmKCIiwqp7+eWXlZ2d7XX8nXfeqVWrVnmMXblyRRkZGdq4caOKi4sVHh6uadOmadSoUV7Hnzx5UqmpqTp69KgCAwM1ePBgJSUlKSQk5JZ7AgAAczUoCK1Zs0ZHjx7VyJEj1bNnTzmdTm3YsEEzZszQihUrFBUVZdXa7XYtWLDA4/j27dt79UxLS9Pq1as1ceJE9e7dW3v27NGSJUtks9kUHx9v1Z09e1bJyckKDg5WYmKiysvLlZGRoRMnTmjlypVq3bp1g3sCAACzNSgITZ06VS+88IJH6HjwwQf1+OOPa/Xq1Vq8eLE1HhAQoDFjxty0X1FRkTIzMzVp0iTNmzdPkjRhwgQlJydr+fLliouLU0BAgCRp1apVqqio0HvvvaewsDBJUmxsrObPn68tW7YoISGhwT0BAIDZGrRG6J577vEIQZIUERGhHj16qLCw0Ku+pqZGly9fvmG/PXv2qLq6WpMmTbLGbDabHnnkERUVFSk3N9caz8nJ0ZAhQ6wQJEkDBgxQRESEduzYcUs9AQCA2Rp0RqgubrdbJSUl6tGjh8d4RUWFxo0bp4qKCnXo0EHx8fF68skn1a5dO6umoKBAbdu2VWRkpMexsbGx1v7+/furqKhIJSUliomJ8Xr82NhY7d+/v8E963Lu3Dk5nU5ru65wBwAAWo7vHYS2b9+uoqIiPfHEE9aYw+HQY489prvvvltut1ufffaZNm7cqC+//FJvvfWWAgOvPqzT6VSnTp1ks9k8ejocDklXg0lt3bXj19devHhRlZWVstvt9e5Zl6ysLKWnpzfwJwAAAJqr7xWECgsL9cYbb6hv374aO3asNT5r1iyPuvj4eEVERCgtLU05OTnWgmWXy+V1qU26utC6dv+137+r1m6317tnXRISEjR06FCP55eSknLDegAA0Lzd8n2EnE6nFi5cqPbt2+ull176zgXIU6dOVatWrXTw4EFrLCgoSFVVVV61lZWV1v5rv9e3tj51dQkNDVVMTIz1df3lNQAA0LLcUhAqLS3VggULVFpaqqVLlyo0NPQ7jwkKClLHjh118eJFa8zhcKi4uFhut9ujtvZSWG3f2sta167fuba2Y8eO1hmf+vYEAABocBByuVx69tlnderUKf3+97/3WiR9I2VlZbpw4YLHzQ+jo6NVUVHhtSg5Ly/P2i9JnTt3VkhIiPLz8736Hjt2zKprSE8AAIAGBaGamhr99re/VW5url588UX169fPq8blcqmsrMxr/M9//rPcbrcGDRpkjQ0bNkyBgYHasGGDNeZ2u7Vp0yZ17tzZo/+IESO0b98+nTlzxho7dOiQTp06pZEjR95STwAAYLYGLZZ+5513tHfvXg0ZMkSXLl3Stm3bPPaPGTNGxcXF+tWvfqVRo0bpzjvvlCQdOHBA+/fv16BBgzRs2DCrvkuXLpoyZYrWrl2r6upqxcbGavfu3Tpy5IgWL17sse5o2rRp2rlzp+bOnavJkyervLxca9euVVRUlMaNG3dLPQEAgNkaFISOHz8uSdq3b5/27dvntX/MmDEKDg7WkCFD9Pnnnys7O1tXrlxR9+7dNXPmTP3sZz9Tq1aeJ6FmzZqlDh06KCsrS9nZ2QoPD9eiRYs0evRoj7qwsDAtW7ZMqampWrlypfVZY3PmzLHWBzW0JwAAMJvNff2qYljy8/OVmJiotLS0Om/mCP9Zk/SJyopdaveDIP089UF/Twd14HcEoDm45bfPAwAANHcEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxAhtSfOzYMWVnZ+vw4cM6ffq0OnbsqL59+2rGjBmKiIjwqD158qRSU1N19OhRBQYGavDgwUpKSlJISIhH3ZUrV5SRkaGNGzequLhY4eHhmjZtmkaNGuX1+L7oCQAAzNWgILRmzRodPXpUI0eOVM+ePeV0OrVhwwbNmDFDK1asUFRUlCTp7NmzSk5OVnBwsBITE1VeXq6MjAydOHFCK1euVOvWra2eaWlpWr16tSZOnKjevXtrz549WrJkiWw2m+Lj4606X/QEAABma1AQmjp1ql544QWP0PHggw/q8ccf1+rVq7V48WJJ0qpVq1RRUaH33ntPYWFhkqTY2FjNnz9fW7ZsUUJCgiSpqKhImZmZmjRpkubNmydJmjBhgpKTk7V8+XLFxcUpICDAZz0BAIDZGrRG6J577vEIQZIUERGhHj16qLCw0BrLycnRkCFDrMAiSQMGDFBERIR27Nhhje3Zs0fV1dWaNGmSNWaz2fTII4+oqKhIubm5Pu0JAADM9r0XS7vdbpWUlOiOO+6QdPWMTElJiWJiYrxqY2NjVVBQYG0XFBSobdu2ioyM9Kqr3e+rnnU5d+6c8vPzra9rwx0AAGh5GnRprC7bt29XUVGRnnjiCUmS0+mUJDkcDq9ah8OhixcvqrKyUna7XU6nU506dZLNZvOqk64GE1/1rEtWVpbS09Pr87QBAEAL8L2CUGFhod544w317dtXY8eOlSS5XC5J8rqEJkl2u92qsdvtcrlc31nnq551SUhI0NChQz2eX0pKyg3rAQBA83bLQcjpdGrhwoVq3769XnrpJWsBclBQkCSpqqrK65jKykqPmqCgoHrX3e6edQkNDVVoaOgN9wMAgJblltYIlZaWasGCBSotLdXSpUs9wkPtJajay1nXcjqd6tixo3V2xuFwqLi4WG6326tOktXXFz0BAAAaHIRcLpeeffZZnTp1Sr///e/Vo0cPj/2dO3dWSEiI8vPzvY49duyYoqOjre3o6GhVVFR4LUrOy8uz9vuqJwAAQIOCUE1NjX77298qNzdXL774ovr161dn3YgRI7Rv3z6dOXPGGjt06JBOnTqlkSNHWmPDhg1TYGCgNmzYYI253W5t2rRJnTt39ujvi54AAMBsDVoj9M4772jv3r0aMmSILl26pG3btnnsHzNmjCRp2rRp2rlzp+bOnavJkyervLxca9euVVRUlMaNG2fVd+nSRVOmTNHatWtVXV2t2NhY7d69W0eOHNHixYs9bnzoi54AAMBsDQpCx48flyTt27dP+/bt89pfG4TCwsK0bNkypaamauXKldbngs2ZM8day1Nr1qxZ6tChg7KyspSdna3w8HAtWrRIo0eP9qjzRU8AAGA2m/v6VcWw5OfnKzExUWlpaXXezBH+sybpE5UVu9TuB0H6eeqD/p4O6sDvCEBz8L3vLA0AANBcEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgN+tBVAGio8hKX1iR94u9pNEut2wRqwJReumtQN39PBWixCEIAfKJ1m0BJLrndUlmxy9/TaaZcOvhBAUEI8CGCEACfGDCllw5+UKCqimp/T6VZKi+5GiL5+QG+RRAC4BN3DerGmYzvYU3SJ5xJAxoBi6UBAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYgQ09oKysTBkZGcrLy9OxY8d06dIlPffccxo3bpxH3csvv6zs7Gyv4++8806tWrXKY+zKlSvKyMjQxo0bVVxcrPDwcE2bNk2jRo3yOv7kyZNKTU3V0aNHFRgYqMGDByspKUkhISG33BMAAJipwUHowoULSk9PV1hYmKKjo3X48OEb1trtdi1YsMBjrH379l51aWlpWr16tSZOnKjevXtrz549WrJkiWw2m+Lj4626s2fPKjk5WcHBwUpMTFR5ebkyMjJ04sQJrVy5Uq1bt25wTwAAYK4GByGHw6ENGzbI4XDoiy++0MyZM29YGxAQoDFjxty0X1FRkTIzMzVp0iTNmzdPkjRhwgQlJydr+fLliouLU0BAgCRp1apVqqio0HvvvaewsDBJUmxsrObPn68tW7YoISGhwT0BAIC5GrxGyG63y+Fw1Lu+pqZGly9fvuH+PXv2qLq6WpMmTbLGbDabHnnkERUVFSk3N9caz8nJ0ZAhQ6wQJEkDBgxQRESEduzYcUs9AQCAuRp8RqghKioqNG7cOFVUVKhDhw6Kj4/Xk08+qXbt2lk1BQUFatu2rSIjIz2OjY2Ntfb3799fRUVFKikpUUxMjNfjxMbGav/+/Q3ueb1z587J6XRa24WFhbfwrAEAQHPhsyDkcDj02GOP6e6775bb7dZnn32mjRs36ssvv9Rbb72lwMCrD+10OtWpUyfZbDav46Wr4aS27trx62svXryoyspK2e32eve8XlZWltLT02/9SQMAgGbFZ0Fo1qxZHtvx8fGKiIhQWlqacnJyrAXLLpfLY5FzLbvdbu2/9vt31drt9nr3vF5CQoKGDh1qbRcWFiolJeXmTxQAADRbjXofoalTp6pVq1Y6ePCgNRYUFKSqqiqv2srKSmv/td/rW1ufuuuFhoYqJibG+rr+0hoAAGhZGjUIBQUFqWPHjrp48aI15nA4VFxcLLfb7VFbeyksNDTUqrt2/Prajh07Wmd86tsTAACYrVGDUFlZmS5cuOBx88Po6GhVVFR4LUzOy8uz9ktS586dFRISovz8fK++x44ds+oa0hMAAJjNJ0HI5XKprKzMa/zPf/6z3G63Bg0aZI0NGzZMgYGB2rBhgzXmdru1adMmde7cWf369bPGR4wYoX379unMmTPW2KFDh3Tq1CmNHDnylnoCAABz3dJi6Q8//FClpaXWpaa9e/fq7NmzkqRHH31Uly5d0q9+9SuNGjVKd955pyTpwIED2r9/vwYNGqRhw4ZZvbp06aIpU6Zo7dq1qq6uVmxsrHbv3q0jR45o8eLFHjc+nDZtmnbu3Km5c+dq8uTJKi8v19q1axUVFeXxER8N6QkAAMx1S0EoMzNTp0+ftrZ37dqlXbt2SZLGjBmj4OBgDRkyRJ9//rmys7N15coVde/eXTNnztTPfvYztWrleSJq1qxZ6tChg7KyspSdna3w8HAtWrRIo0eP9qgLCwvTsmXLlJqaqpUrV1qfNTZnzhxrfVBDewIAAHPZ3NevKIYlPz9fiYmJSktLq/NGjvCfNUmfqKzYpXY/CNLPUx/093SA244/40DjaNTF0gAAAE0JQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwVmBDDygrK1NGRoby8vJ07NgxXbp0Sc8995zGjRvnVXvy5Emlpqbq6NGjCgwM1ODBg5WUlKSQkBCPuitXrigjI0MbN25UcXGxwsPDNW3aNI0aNapRegIAADM1OAhduHBB6enpCgsLU3R0tA4fPlxn3dmzZ5WcnKzg4GAlJiaqvLxcGRkZOnHihFauXKnWrVtbtWlpaVq9erUmTpyo3r17a8+ePVqyZIlsNpvi4+N92hMAAJirwUHI4XBow4YNcjgc+uKLLzRz5sw661atWqWKigq99957CgsLkyTFxsZq/vz52rJlixISEiRJRUVFyszM1KRJkzRv3jxJ0oQJE5ScnKzly5crLi5OAQEBPusJAADM1eA1Qna7XQ6H4zvrcnJyNGTIECuwSNKAAQMUERGhHTt2WGN79uxRdXW1Jk2aZI3ZbDY98sgjKioqUm5urk97AgAAc/lksXRRUZFKSkoUExPjtS82NlYFBQXWdkFBgdq2bavIyEivutr9vup5vXPnzik/P9/6KiwsrM/TBQAAzVSDL43Vh9PplKQ6zxw5HA5dvHhRlZWVstvtcjqd6tSpk2w2m1eddDWc+Krn9bKyspSent6AZwoAAJoznwQhl8slSR6Ll2vZ7Xarxm63y+VyfWedr3peLyEhQUOHDrW2CwsLlZKScoNnCQAAmjufBKGgoCBJUlVVlde+yspKj5qgoKB6193untcLDQ1VaGjojZ4WAABoYXyyRqj2ElTt5axrOZ1OdezY0To743A4VFxcLLfb7VUnyQomvugJAADM5pMg1LlzZ4WEhCg/P99r37FjxxQdHW1tR0dHq6Kiwmthcl5enrXfVz0BAIDZfPYRGyNGjNC+fft05swZa+zQoUM6deqURo4caY0NGzZMgYGB2rBhgzXmdru1adMmde7cWf369fNpTwAAYK5bWiP04YcfqrS01LrUtHfvXp09e1aS9Oijjyo4OFjTpk3Tzp07NXfuXE2ePFnl5eVau3atoqKiPD6Oo0uXLpoyZYrWrl2r6upqxcbGavfu3Tpy5IgWL17sceNDX/QEAADmuqUglJmZqdOnT1vbu3bt0q5duyRJY8aMUXBwsMLCwrRs2TKlpqZq5cqV1ueCzZkzx1rLU2vWrFnq0KGDsrKylJ2drfDwcC1atEijR4/2qPNFTwAAYC6b+/oVxbDk5+crMTFRaWlpdd7IEf6zJukTlRW71O4HQfp56oP+ng5w2/FnHGgcPlsjBAAA0NQRhAAAgLF8ckNFfLcT+7/VofUFqqqo9vdUmqXykrrvDg4AQEMQhPzk0PoCXfjmsr+n0ey1bsMfYQDAreNvET+pPRNks0ltO9X9kR+4udZtAjVgSi9/TwMA0IwRhPysbSfeEQIAgL+wWBoAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBY3VASAJqy8xKU1SZ/4exrNUu3d5+8a1M3fU0ETRhACgCbo6ufoueR2S2XFfMjwrXHp4AcFBCHcFEEIAJqgAVN66eAHBdbnEqJhykuuhkh+fvguBCEAaILuGtSNMxnfw5qkTziThnphsTQAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYgb5qfPjwYT3zzDN17luxYoX69u1rbR89elR/+tOf9I9//EPt27fXyJEjlZiYqHbt2nkcV1lZqffff1/btm3TpUuX1LNnT82YMUMDBw70eoz69gQAAObyWRCq9eijjyo2NtZjrHv37tZ/FxQUaN68eYqMjFRSUpLOnj2rzMxMffXVV3rttdc8jnvllVe0c+dOTZkyReHh4dqyZYsWLFigt956S/3797+lngAAwFw+D0L33nuv4uLibrj/3XffVYcOHbRs2TK1b99ektStWze9+uqrOnDggO6//35JUl5enj7++GM99dRTeuyxxyRJDz30kKZPn64VK1ZoxYoVDe4JAADM1ihrhMrKylRdXe01fvnyZR08eFBjxoyxAot0NeC0bdtWO3bssMZycnIUEBCghIQEaywoKEjjx49Xbm6uzpw50+CeAADAbD4/I/TKK6+ovLxcAQEB6t+/v5566in17t1bknTixAnV1NQoJibG45jWrVurV69eKigosMYKCgoUHh7uEW4kWZfdjh8/rrCwsAb1vN65c+fkdDqt7cLCwlt70gAAoFnwWRAKDAzUiBEj9MADD+iOO+7QyZMnlZmZqaSkJC1fvlx33323FTocDofX8Q6HQ//7v/9rbTudzhvWSVdDTG1dfXteLysrS+np6fV/kgAAoFnzWRC65557dM8991jbw4YNU1xcnB5//HG9++67Wrp0qVwul6SrZ2uuZ7fbVVlZaW27XK4b1tXuv/Z7fXpeLyEhQUOHDrW2CwsLlZKSctPnCQAAmi+fXxq7Vnh4uIYNG6Zdu3appqZGQUFBkqSqqiqv2srKSivkSFfXA92ornb/td/r0/N6oaGhCg0NbcAzAgAAzVmj31CxS5cuqqqqUkVFhXX56tp1ObWcTqdHKHE4HDesk2TVNqQnAAAwW6MHoW+++UZ2u11t27bVXXfdpYCAAOXn53vUVFVVqaCgQNHR0dZYdHS0vvrqK12+fNmjNi8vz9ovqUE9AQCA2XwWhM6fP+81dvz4ce3du1cDBw5Uq1atFBwcrAEDBmjbtm0qKyuz6rZu3ary8nKNHDnSGouLi1NNTY2ysrKsscrKSm3evFl9+vRRWFiYJDWoJwAAMJvP1gj95je/UVBQkPr166dOnTrp5MmT+p//+R+1adNGs2bNsupmzJihOXPmKDk5WQkJCdZdoAcOHKhBgwZZdX369NHIkSP17rvv6vz58+revbuys7N1+vRpLVy40OOx69sTAACYzWdB6Mc//rG2b9+udevW6fLlywoJCdHw4cM1ffp0hYeHW3UxMTF6/fXX9ac//Ulvv/222rVrp/Hjx3uEpVrPP/+8wsLCtHXrVpWWlioqKkp/+MMfdN9993nUNaQnAAAwl83tdrv9PYmmKj8/X4mJiUpLS/O6QeP3tSbpE5UVu9TuB0H6eeqDt7U3AJiO11jUV6MvlgYAAGgqCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEC/T0BAAB8pbzEpTVJn/h7GriJ1m0CNWBKL901qJtfHp8gBABocVq3CZTkktstlRW7/D0d3JRLBz8oIAgBAHC7DJjSSwc/KFBVRbW/p4KbKC+5Glb9+XsiCAEAWpy7BnXz2xkG1N+apE/8fsaOxdIAAMBYBCEAAGAsghAAADAWQQgAABirxS6Wrqys1Pvvv69t27bp0qVL6tmzp2bMmKGBAwf6e2oAAKCJaLFnhF555RWtW7dOo0eP1tNPP61WrVppwYIFOnLkiL+nBgAAmogWGYTy8vL08ccfa+bMmZo9e7YSEhL05ptvqmvXrlqxYoW/pwcAAJqIFhmEcnJyFBAQoISEBGssKChI48ePV25urs6cOePH2QEAgKaiRa4RKigoUHh4uNq3b+8xHhsbK0k6fvy4wsLCvI47d+6cnE6ntV1YWOjbiQIAAL9qkUHI6XTK4XB4jdeOnTt3rs7jsrKylJ6e7supAQCAJqRFBiGXy6XWrVt7jdvtdmt/XRISEjR06FBru7CwUCkpKT6ZY7s7gjy+AwBgmqbwd2GLDEJBQUGqqqryGq+srLT21yU0NFShoaE+nVutR3439LuLAABowZrC34UtcrG0w+HwWOtTq3asscIOAABo2lpkEIqOjtZXX32ly5cve4zn5eVZ+wEAAFpkEIqLi1NNTY2ysrKsscrKSm3evFl9+vSp8x1jAADAPC1yjVCfPn00cuRIvfvuuzp//ry6d++u7OxsnT59WgsXLvT39AAAQBPRIoOQJD3//PMKCwvT1q1bVVpaqqioKP3hD3/Qfffd5++pAQCAJqLFBqGgoCDNnj1bs2fP9vdUAABAE9Ui1wgBAADUB0EIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYLfY+QreDy+WSJBUWFvp5JgAAoKEiIyPVpk2bm9YQhG7i9OnTkqSUlBQ/zwQAADRUWlqaYmJiblpjc7vd7kaaT7Nz/vx5HThwQN26dZPdbv/O+rffflvJycn16l1YWKiUlBQtWrRIkZGR33eqRmrIz7upaQpzb4w5+OIxblfP79vnVo7nNaJxNYX/z25VU5h7Y83Bl68TnBH6nkJCQjRmzJh61wcHB39n8rxeZGRkg4/BVbfy824qmsLcG2MOvniM29Xz+/a5leN5jWhcTeH/s1vVFObeWHPw9+sEi6Vvo1GjRvl7CkZpzj/vpjD3xpiDLx7jdvX8vn1u5fim8Hs3SXP+eTeFuTfWHPz9OsGlMT/Jz89XYmJiva5fAjAPrxFA4+CMkJ84HA5Nnz5dDofD31MB0ATxGgE0Ds4IAQAAY3FGCAAAGIsgBAAAjMXb55uoyspKvf766zp48KBKS0vVo0cPJSUlqV+/fv6eGoAm4rXXXtPevXtVUVGhsLAwzZw5U0OHDvX3tIBmhTVCTVR5ebkyMzM1btw4de7cWTt27NCbb76pzMxMtWvXzt/TA9AEFBYWWjd8PXbsmObPn6+MjAzdcccd/p4a0GxwaayJatu2raZPn66wsDC1atVK8fHxCgwM1KlTp/w9NQBNRGRkpHXXe5vNpqqqKp07d87PswKaFy6N3SZlZWXKyMhQXl6ejh07pkuXLum5557TuHHjvGorKyv1/vvva9u2bbp06ZJ69uypGTNmaODAgTfsf+rUKV26dEndu3f35dMA4CO+eo14/fXXtXnzZlVWVuqBBx5QVFRUYzwdoMXgjNBtcuHCBaWnp6uwsFDR0dE3rX3llVe0bt06jR49Wk8//bRatWqlBQsW6MiRI3XWu1wupaSk6Be/+IWCg4N9MX0APuar14j58+dr69ateuONNzRw4EDZbDZfPQWgRSII3SYOh0MbNmzQBx98oKeeeuqGdXl5efr44481c+ZMzZ49WwkJCXrzzTfVtWtXrVixwqu+urpaL7zwgrp3767p06f78BkA8CVfvUZIUkBAgH70ox/p0KFD+vTTT331FIAWiSB0m9jt9nrdATYnJ0cBAQFKSEiwxoKCgjR+/Hjl5ubqzJkz1viVK1eUkpIim82m559/nn/pAc2YL14jrldTU6Ovv/76tswXMAVBqJEVFBQoPDxc7du39xiPjY2VJB0/ftwaW7p0qZxOp1588UUFBrKcCzBBfV8jSktLtX37dpWVlam6ulo7duzQ4cOHde+99zb6nIHmjL9dG5nT6azzX4W1Y7Xv+Dh9+rT+8pe/yG63e/zL8NVXX+WFDmjB6vsaYbPZ9Je//EVvvPGG3G63unfvrsWLF6tXr16NOl+guSMINTKXy6XWrVt7jde+BdblckmSunbtql27djXq3AD4X31fI9q3b6+33nqrUecGtERcGmtkQUFBqqqq8hqvrKy09gMwF68RQOMiCDUyh8Mhp9PpNV47Fhoa2thTAtCE8BoBNC6CUCOLjo7WV199pcuXL3uM5+XlWfsBmIvXCKBxEYQaWVxcnGpqapSVlWWNVVZWavPmzerTp4/CwsL8ODsA/sZrBNC4WCx9G3344YcqLS21TmHv3btXZ8+elSQ9+uijCg4OVp8+fTRy5Ei9++67On/+vLp3767s7GydPn1aCxcu9Of0AfgYrxFA08Onz99GU6dO1enTp+vcl5mZqW7dukm6+q6P2s8RKi0tVVRUlGbMmKH777+/MacLoJHxGgE0PQQhAABgLNYIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAjDB8+HCPL5fLZe3bsmWLhg8fri1btvhxhv9n06ZNHnN9+eWX/T0loMXi0+cB3FbffvutfvrTn960pmvXrlq3bl0jzcjzcceOHStJCggI8OljHThwQL/+9a81cOBA/fGPf7xp7ZIlS/TRRx9p8eLFGj16tGJiYjR9+nSVlpZq/fr1Pp0nYDqCEACf6N69u0aPHl3nvuDg4EaezVVdu3bVE0880SiPNWDAAIWFhenQoUM6c+aMwsLC6qwrLS3V7t27FRwcrOHDh0uSevfurd69e+vbb78lCAE+RhAC4BPdu3dvtNDRFLVq1Urjxo1Tenq6srOz9ctf/rLOuo8++kgul0sPP/ywgoKCGnmWAFgjBMDvhg8frqefflpFRUVasmSJJk6cqIceekgLFizQN998I0k6efKknn/+eY0fP14PPfSQFi9erOLiYp/O6+zZs/rlL3+pUaNGaefOndZ4SUmJ3n77bT322GOKj4/XxIkTtWjRIp04ccLj+Icfflg2m01btmyR2+2u8zE2b94sSRo/frzPngeAGyMIAWgSLl26pDlz5ujbb7/VQw89pH/7t3/T/v37NX/+fJ04cUKzZ89WeXm5Hn74YfXu3Vs5OTl68cUXfTafkydPavbs2Tp79qxee+01xcXFSZK+/vprzZgxQx988IF++MMf6ic/+YkeeOABHThwQE899ZTy8vKsHl27dtWPfvQjffPNNzp8+LDXY5w4cUJffPGFevXqpbvvvttnzwXAjXFpDIBPfP311/qv//qvOvf17dtXgwYN8hj78ssvNXXqVCUlJVljr7/+ujZu3KikpCQ9/vjjmjJliiTJ7XZr4cKF2r9/v/Lz8xUTE3Nb556bm6uFCxcqMDBQb7/9tqKjo619v/vd71RcXKylS5fq/vvvt8b/8z//U4mJiXr11VeVnp5ujY8fP14HDx7U5s2b9e///u8ej8PZIMD/OCMEwCe+/vprpaen1/n12WefedW3bdtWM2bM8BiLj4+XJN1xxx2aPHmyNW6z2ax9X3755W2d96effqp58+apQ4cOWr58uUcI+sc//qG///3veuihhzxCkCRFRERowoQJOnHihMclsh//+Me64447lJOTo8uXL1vj1dXV2rZtm+x2+w0XlQPwPc4IAfCJ+++/X0uXLq13fXh4uNq0aeMx5nA4JElRUVGy2Wx17jt37tz3nOn/2bFjhz7//HP17NlTr732mjp16uSxv/ayV0lJSZ1nu/71r39Z36OioiTJCjrr16/XRx99pP/4j/+QJO3du1fnz5/XqFGj1KFDh9v2HAA0DEEIQJPQvn17r7Hae/3cbF91dfVtm0Nubq5qamrUv39/rxAkSRcvXpR09azRp59+esM+5eXlHtvjx4/X+vXrtXnzZisIcVkMaBoIQgDw/82cOVN79uzR+vXrFRAQoDlz5njsrw1kzzzzjB599NF69+3Zs6d69+6tY8eO6Z///Kc6dOigAwcOqFu3bl7rhgA0LtYIAcD/Z7fb9bvf/U6DBw9WZmamUlNTPfbHxsZKunrmqKFqz/z89a9/1datW1VTU2O9vR6A/xCEAOAadrtdKSkpGjJkiNatW6e3337b2tenTx/16dNHH3/8sT7++GOvY69cuaK//e1vdfYdNWqU2rRpo23btmnz5s1q1aqV9XEfAPyHS2MAfOJmb5+XpF/84hdN9k7KrVu31ksvvaQXXnhBH3zwgdxut55++mlJ0gsvvKC5c+fqxRdf1Pr169WrVy8FBQXp7Nmz+vvf/64LFy7oo48+8urZvn17jRgxQlu3btX58+c1aNCgG37sBoDGQxAC4BO1b5+/kSlTpjTZICT9Xxj6zW9+o/Xr18vtduuZZ57RD3/4Q73//vvKzMzU7t27tWXLFrVq1UoOh0P33nuvdePFuowfP15bt26VdPWu0wD8z+a+0X3fAaAFGT58uO677z4tW7bM31Opt2+//VY//elPNXbsWD3//PP+ng7QInFGCIAx/va3v1mf8L59+/Yme0Zq06ZN+uMf/+jvaQBGIAgBMML06dM9tmvvQ9QUxcTEeMy3V69e/psM0MJxaQwAABiLt88DAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGP9P5uB7sjBC50YAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "signal.project('Em').plot()" + ] + }, + { + "cell_type": "markdown", + "id": "05960a53-f5ee-41f0-a3d3-1cb41d141f64", + "metadata": {}, + "source": [ + "This shape is a combination of the spectrum, the energy resolution, and the effective area of the detector as a function of energy.\n", + "\n", + "We can get the total number of events we expect from the GRB by summing over all bins:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "08eb4fae-d2e7-4336-82ca-cf8b301a1252", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "66479.07966849873" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(signal)" + ] + }, + { + "cell_type": "markdown", + "id": "aea9bc5f-3a6d-45ab-96ae-bd1d767f0df8", + "metadata": {}, + "source": [ + "Now let's explore the CDS. It's easier to visualize if we take slices in energy and scatter angle. For reference, these are the bin edges:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "7b7bc781-6100-4123-b805-d4c3742aff04", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[100,~200,~500,~1000,~2000,~5000] \\; \\mathrm{keV}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "signal.axes['Em'].edges" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "1339c2c6-48b4-4ce0-9c6f-c33263b6bc03", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[0,~10,~20,~30,~40,~50,~60,~70,~80,~90,~100,~110,~120,~130,~140,~150,~160,~170,~180] \\; \\mathrm{{}^{\\circ}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "signal.axes['Phi'].edges" + ] + }, + { + "cell_type": "markdown", + "id": "1d4b2946-6165-4d08-b045-d80f9292748a", + "metadata": {}, + "source": [ + "This is the plot of the distribution of events within the energy range 1-2 MeV (bin 3) and scattered angles between 40-50deg (bin 4):" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "db0b2090-2ad3-4807-87bc-9269b214d68d", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwYAAAHjCAYAAACZ0AjMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADI00lEQVR4nOy9d5wcxZn//6numdm8K63SKieEJCQhkgAbTDKybDDYOHBnG+cA2NhwmDNO3Pm4l22c7sf5vj6fA9i+c8A+4MhgsJHJGYRASLCSUJZWu5I2785Md9fvj56enZntmelQ1V01W+/XSy9JuzPV1dXVVc+nnqeeIpRSCoVCoVAoFAqFQjGh0eKugEKhUCgUCoVCoYgfJQwUCoVCoVAoFAqFEgYKhUKhUCgUCoVCCQOFQqFQKBQKhUIBJQwUCoVCoVAoFAoFlDBQKBQKhUKhUCgUUMJAoVAoFAqFQqFQQAkDhUKhUCgUCoVCASUMFAqFQqFQKBQKBZQwUCgUCoVCoVAoFFDCQKFQKBQKhUKhUEAJA4VCoVAoFAqFQgEgEXcFFAqFQhEcSilM04RpmjAMo+hP6c8qlVGJRCIBXdeh6zoSiUT+/6V/67oOQgjrW1QoFApFRChhoFAoFJyglCKTyWBwcBDDw8MYHBzE0NAQBgcHMTIygtHRUYyOjiKdTrv+PTo6ikwmU/S5dDo9TgCIRKF4qKurQyqVQn19Perq6or+1NfXI5VK5f9d+PPGxkY0NTW5/kmlUkp8KBQKBScIrbZUpFAoFBMYSilGRkbQ19eH/v5+9PX1Ff27v78fQ0ND+T+O8e/8ictwp4SAahqg2X9TrYwxTQhAAS1b8P+igigAClAKQq2xvxHP1KHrOpqbm13FQ2tra/5PW1vbuP83NjYqUaFQKBQVUMJAoVBMONLpNI4cOYLDhw/j8OHD4/7d29ubN/r7+/uRzWarF1oJCsAkIKYGmJr9t0Xsf1sEsEjuby3/b9LShtF5k0GJDpAEAB0gOsx6Hd0n02KDX9NASe5vjdjGvQ8DmIzqmLTFp8FcIBjgCAaM/Ts5bKHlzUEAFkBMUJgALBDLBPbuBzQKqlEg94dq1ti/dQvQc39rVv7/CGnTJxIJtLa2oqWlBZMmTUJ7ezsmT56MyZMn5/9d+HddXV24CyoUCoVkKGGgUChqhkwmg56eHnR3dxf9OXToEA4dOpQXAENDQ77LTqVS+VXoN1/aA2LogJEz8p2/HaM/JwKcn8EiIJWsWk3Dvs8eB6qP/SjbDIzODilIPBJIGASFAs37zaIfNe4bAXmls8rXciJCt4qFQ+7/VLeAhAWacP5tYuHxc/KenUwm47uqjY2NeZEwdepUTJs2Lf+38++pU6cilUr5LluhUChERAkDhUIhBYZhoKenBwcOHMD+/ftx8OBBdHd3FwmB3t5ez+Ulk8mi1eH29nY88PNHbYM/q4MYmv1vU7P/bYVL4kbaWkESY9u6tl06H9nmseHXarQAEs9wHKkwcLu+CWgFEVeT3hhBcsvu/P/pyChgmi7f9A7VCsWDCZqwgKQJmjTxjk+fjiNHjuSF45EjR3x5idra2jB9+vS8UJg+fTo6Ojryf6ZOnQpd16sXpFAoFDGjhIFCoRACwzBw8OBBHDhwAF1dXdi/fz8OHDiQ/9Pd3Q3Ti3FoEZCMDpLV7b8zCZBsztjP6iCG/TfMKqv4DDCPXwqrzjYId72jDtkpYm0UdohbGFRj8usZpA7aXh7tUC+sI71cr0dBbY9EwhYOjoCgKRM0aeT+NkFThqek37quY9q0aUViYcaMGejo6MDMmTMxffp0JBIqF4hCoYgfJQwUCkVkZDIZ7N+/H3v37sWePXuwZ88e7N27F3v37kVXV1dVwz+ZTMIYoLax7xj9GR0k6/w/t8LP2eAvS8mq8MgZx2BgbgKHTxRTEDiILgwA26PQ/uowkgd6YR3sGftFSE9CGGwBYdlCoVA0pOy/O5a14+DBg1U3oOu6jo6ODsyZMwezZs3C7NmzMWfOHMyePRszZ85UoUoKhSIylDBQKBRMMU0T+/fvx65du7Br16684b9nzx50dXVVzJmfSqXyK6kv3vuabfinEyCZBLRMwl71j8vor0QyCQCuGW9IYwOs6ZOx46J2jM6KZs+AX4QWBhSY+soIknsPwzp0pPznLCtWkVAOCgokTVh1hi0c6gy86/Iz0NXVlfeGVdr/QAjB9OnTMXv2bMyePRvz5s3DvHnzMH/+fMyYMUOFKCkUCqYoYaBQKAIxMjKC3bt3Y+fOnXkRsGPHDuzZs6difHZDQwPmzJmTXxG95V/vgzZqC4BSw1/I1JKaHTtC/IZ+JBN484plQooDUYUBMYH210aQ3Li96iFs4wibSYoTpfeRFw71tmj4u2++q0hMj4yMlC0rlUphzpw5mD9/fl4wOH8aGhp434pCoahBlDBQKBQVSafT2LFjB7Zv345t27Zhx44d2LVrFw4cOFD2O6lUCtleCjKSBEkncoZ/EmQ0YWfw8bDqL5Qo0DQ7/aemhaoXmdyGg+fMQd8SCLXfQERh0LLbRN3hNPRXtocryLLTp8Ky2FSMEV6mXgpqb5auN0DrsrZ4qDdA67NITiIVPQ3Tp0/HwoULsXDhQixatAgLFy7EggULVApWhUJRESUMFAoFADsEaN++fdi+fXvRn71798IqY1S1tbWhf88otJEEyGjS/jOStOP9A4b8CCUIKoQIhYEunI03PtEGq1GM0BfRhEHrLgONz+4AHR1lW7DTjwUKOQo6BVNQ0DoTtD6b/7Pi3MXYtWtX2excmqZhzpw5RWJh8eLFmDVrlgpJUigUAJQwUCgmJKOjo9i2bRveeOMNdHZ2YuvWrXjzzTeRTqddP9/W1oZFixZh0aJFuPOH620PwGjSTufJAKHEgK6DRGEkdUzD5i+387+OB0QSBo3dFlr/+gZoFCdGCxRuxHIqproJ2mDAasjgwqvPzov8/v5+18+nUiksWrQIS5YswZIlS3D00Udj0aJFqK+vZ1YnhUIhB0oYKBQ1zsDAADo7O9HZ2ZkXArt27XL3AlgEZCQJbTi38j+ShDac8hz+4xchBEFuzwB0Pdr6NNRjx2eOwsi8+I1TUYQBsYD2TSNIvLwt2gs74UbOv2OE15Rs72WwYDVkQBuyoA1ZWI1ZpNqJ64KApmmYN29eXiw4gqGlpYVL/RQKhRgoYaBQ1BBDQ0PYsmULNm/ejNdffx1vvPEG9u/f7/rZ9vZ29G4fBhlOQRtOgQzb+wF4Zv1xDG9KabyiwBEDhETjHSiDdfQ8bP37ZpgtMYa2EODc1a/hb+uPRcvO+KoBAFoWmP6nTdyMY0+YZuziABh7R3i3hR2SZIA2ZmE1ZUAbM2hb0IAjR9wzQHV0dGDp0qVYvnw5li9fjqVLl6KxsZFrHRUKRXQoYaBQSIphGNi2bRs2b96c/7Nz505XQ6KjowNHH300nvz9y2NCIMvfICa5Dbt54jC4tJITqEoESWTCQNcBzb726ImLMDQjCSsBZFoJBhZZoPURiIOE3Te0OhO3nfZf+R+3aVl88vVL0D9qb0w90t2Ctg127nxCAWJGN02kBuxrtT9zEDjca//QNEHNiPpOoffA7XdRU9J/aQT7I/KZkhqzoI0ZvPXDq9HZ2em6yEAIwfz58/NCYfny5Vi0aBGSuf05CoVCLpQwUCgkgFKKAwcOYNOmTdi8eTNee+01dHZ2umYl6ejowPLly7Fs2TL88srb7LAgk4/xO27Vv9QILyQKo6rS9St4KLiKg7o6oL0Nh9dMRbq1oH4F1RmaQ5GdbNpWOGP0lixam0cwvXkQ9y69e+znZKwuu4xBXLbt4qLvWdSuYPdQE4afmwoAqD8EEIvflEELnhEpmJqmvDaK5L4+0APd3K4NINim5KjEgpMZq5SSjEs8p3SqW7AaM/j0je/Leya7urrGfS6VSuGoo47C8uXLsWLFCqxatQozZszgVi+FQsEOJQwUCgExDANbt27FK6+8gldffRWvvPIKenp6XD5IoA3VgQyloA3WQRtKMdsQ7IYvIeDAy3Dycm0/4UohU5GWQhfMgjG5AZmWJPrnVznzgAC9Kw1mwmD2/ENY0W6v7p4/+WVc2DRc8fNuwsCNza/PATHsNmreriMxwnDDbJW21wyK9s12lqJU5z5YQ5XvyRdOH2U1HfLu85XayiU1K1exkDBhNaXtMKTmDKymDJAYf//Tpk3DqlWrsHLlSqxatQqLFy9Gwu9ZIAqFgjtKGCgUAjA4OIhNmzbhlVdewSuvvILNmzdjtCRVo67rWLJkCTof2WOLgcFUNHsCvBjgbrAwjoJeO6iBH1YcaAQDZy8D1YF0qwajwXtZo1OA0dnhNiL/85l3okUbxZr6fZiXaPb8Pa/CoJCdhycjm9Vh7WlE67bwfbCaMCik4bAFzaBo2jMC/bUd9veDTmWVQodYwlIslPMeuFF6b5bFVyg4exaaMrCa01hy5hx0dnbCLPHG1NfXY/ny5XmxsGLFCrWxWaEQACUMFIoY6O/vx8svv4yXXnoJGzZswLZt28ZN1s3NzVixYgVeuG0LiOMNsAIayh4JJQQcghpAYa8LBBcEJfXwIw5ISzOsaZNw8OQ2AICVIAii1cx6YGCxAejehmTSYCKRNDF7ai9uX/YHAMBkPdgm0CDCwMG0NKTNBAbSKWQes0OOEkP+Qo78iIJCNJOCWICeBqY+vAt0dBQ0Xf7Qr3FEJQq81CMIfgRCOUyT/wZnzcp5FNI48f3LsGnTJgwODhZ9hhCCo446CscffzxWr16N1atXo7W1lWu9FArFeJQwUCgiwIsQIKMJkMFcSNBgnZ0ulHeKUBbGeCF+DByW12ac4ajqnoNUEtaCmQCAntUtMOvZXH90KjA6q7LX4KijDiCpmbhszt+qhghVpdsAfteP9JOD2HGoHcONSWw8bg7+fN4K9LYHzzSz5dW50Ic1pPoI6o5UnmKCigI3WncZaNg/BG3UAN21r/oXBDrobBx+3yVW7VjQJjxTp9L6LKzmDKyWNGhzGrS++NwKQggWL16M1atX58VCW1sbl/ooFIoxlDBQKDgwMDCADRs2VBQC8+fPx57nDkHrr4M2WM8tS1CgfQF+KWfE8LiWA+d0p+XEgbFqEUanpTAwm318tFkPDM21YDUUG6zJ1gw+u+pxAMCXJm9BHQmZ8WXEArmuB/hTP4iLDskmNDz0rmPw0yvOQLYu+H3u7WtD/5FGIK1j8svu7clSGDjoaYrm/QaaNh+E1XPY/UOieAu8Uk0osBQHDiXtwzMjEk2asFpGYbWkMfukduzatWvcZxYtWoTjjjsOJ554Io4//ng0N3sPl1MoFN5QwkChYEA2m8WmTZvw/PPP4/nnn8eWLVvGHSA2f/58HH/88bj3h49BG6jnv0mYp1HuUGqsRHFNgLsoyF9G1+00o6kkDq1bDEps491K8Lv+4HwKo80AUhbOX/kqLp/2NzQSEwuTjIygEQvkI/tAnhqt+tGNq2fjm99/DzIhxAFghxv1DNseiNEnpyI5aG8mBvgIA4fECIVmAk0Hsqh/YTuQNWyBLpsoqITbO8irTQvajHfaVJqwhcL517wNGzZswI4dO4p+r2kali9fjpNOOgknnXQSjjnmGJUiVaFggBIGCkUAKKXYuXMnnnvuOTz//PPYsGEDRkZGij4zb948nHDCCTjuuOPw3ff8gosQ4BoWVA3Liv6aER+KRhobMfC2RRjs0APtGwjCyAyKKSd34Yljb+dSPrnmIMjv+kFR+Zac3993wUr8+MvnMK3D7t5JwJOTkBykXIWBg5P6dPqz/SBbdtSOKHDDeS+jfFdyIoF39qNv3H0pXnzxRbzwwgvYvXt30e8bGhry3oQ1a9ZgwYIFYpysrlBIhhIGCoVH+vv78dxzz+HZZ5/F888/j+7ukpzqWQ1afz20/nro/fUgGf6p+CLzDMRNTBO8NrUdh0+bjdHJ0bbx7//xh1ie4nCa7EED5KQdruFD5cgmNHz0T58KtefAjS2vzUXbpmhPnZ78Rhp1T22pbWFQSpTvDqWRHMAGADRlwGwdhdU6ipZFSfT19RX9fsqUKVizZg1OPfVUrFmzRmU8Uig8opIIKxRloJRi27ZtePrpp/HUU09h06ZNReFBqVQKRveYGCDDfDYLu5FfCat1URDzip/Vcxjtj1roPncesk3R1cXi1Y9+776noBJJw8K6+zbhj5es4VOniJj8Rhr1z2/lnoFHOCiN7j0iBETXIxEHJJNAoqcZ6GnG6HaKVGMDrNZRHHfRUdi4cSMOHTqEBx54AA888AB0XceKFStw6qmn4i1veQsWLVqkvAkKRRmUx0ChKGB4eBgvvPACnn76aTz99NPjvAILFy7EKaecgtv+5a/QBupAaPSG+YQQBYJN2gPvXImhGdGFE41OAzZ/7j+Zl0v+bi/IoyPVP1jCCyfNxTd+eBGzerzZMwX1j7QAER0arGcppj3bC3TujOaCIhLxO0UNo/qHeF2bUFgtabzvn87G008/jZ07i5/7tGnTcOqpp+KUU07BSSedhMZGDt45hUJSlDBQTHj279+PJ554Ak8++SRefvllZLNjS6p1dXXIdhFovQ3Q+xoiCQ+qxIQIHRJMFAD2JuSBc5djcGY0oS+ZVmDTFzkIg3fvBnkh7ft7m4/pwD/8Z7BzDtzY3j0FDX+LJrRDMyimvTQIsmlbJNcTnhoNLaqElTJgtY3AmjSC5AyKdHrsHUgkEli9ejVOP/10nH766ZgxY0aMNVUo4kcJA8WEwwkReuyxx/D444+js7Oz6PdkNAGtrx5ab4OdPYiKYajWvCgQUBAUQmZOx/51MyO5lpUEFl60DXcs+TPTckXwGGQtHbufmIOGA9E87+QwxZQ/vRzJtaRhAooDB9ubMApr0gg6TmjD3r17i36/ZMkSvO1tb8Ppp5+OxYsXq5AjxYRD7TFQTAgMw8Arr7yCxx9/HI899hgOHDiQ/52maTj22GPx6l07oPU12AeNRRUz4pGaFgWyTLwHD6F9SzsOL6vjfiktC7y8dS6whG259C0NgYTBxuPmMKuDYWmRiQJCKaat3xNVxJI8OOuBUbx7Ee478AKhBHp/A/T+BhzaBaTqZuIz/3URHn/8cbzyyivo7OxEZ2cnbr75ZnR0dOQ9CcceeywSCWUyKWof5TFQ1CzpdBrPPvssHnvsMTz55JPo7+/P/66urg5r1qzB2972Nvzbxf/N9UyBsChRIBBL5qP7pDaYdfzr3XtCBm++65dsCxUgK9GIkUTv/81mUlY16nstTL7/ddC0//CpCUNU76BgngM3aMLEP/zxo3jsscfw3HPPIZPJ5H/X2tqKt771rTjrrLNw0kknIZVKxVhThYIfShgoaopMJoNnn30Wf/vb3/D4449jeHh47JeGZu8VONJgZxGyxDe2a1YUyCYIChh4V24jMmeGOyi+9sHb8InWg0zLjfscg82vz8GkjdGsvM78Ww/ojj2RXEt6ongnJRAHDlSzYLXaIUfNRyWK0qE2NzfjtNNOw1lnnYU1a9YokaCoKZQwUEhPJpPB888/j/Xr1+Pxxx/H0NBQ/nfTpk3D4VdHoB1ptLMICRYiVAklCsREm9qOA+vmwEryv4/5F7PfZ+D35ONvfP89yIY8+biQXQ8sQHKAWXFlad1loOmpraAj1e9TkUOJA1coKGhLGubkYUw6pg6HDh3K/66pqalIJNTV8Q81VCh4ooSBQkqy2Syef/55PPzww3jiiScwODiY/93UqVNx1lln4a5/fQxkMCWVGABqPB2p5KLA4ch7VyE9if/z4SIMAFsc/FMP8Ef3cw2yCQ0PvesY/PSKM5iKAiAaYaCZFFNeGYa+obP6hxXFKHFQEQoK2pzGBd98Gx555BH09PTkf9fY2IjTTjsNb3/723HyySerPQkKKVHCQCENlmXh1VdfxUMPPYT169cX7RlARod+pAH64SbmYqAwKwXP16WmBQHA3+CIYkNl7tlok9qw78J5/K5DgeQQRc/JFh5694+wONnM5TIv7M5g9Hcp0IcIWgYyGGhL4o2TZ+Av717O/KRjAHhj3wy0PVIPLQsYDfyeU/0RC5Pv3wxqWoBlTayTjsNiWcVjEK/3iVL7WuA7rgJjYyvr69giIQOzfQjm5BEgNSZ22tracPbZZ2Pt2rVYuXKlym6kkAYlDBTCs2PHDjz00EN46KGHirIJtbe3o++1DPQjjSCD7MOE3AZy1q9L0TV4CoKCE5sppfGFKfGYHHMGhvNsCCGAzn4PANF1QCMA0YBEAsMnLUDfoiTz66QGKPQ0RXLYfmaf/sHt+FhrT5Vv+WPYyuBjb56H7UemoLe3CXRUR8sW+15GOiiMKVksX7SP6TUBYMdfFmDaRgNWgsCsI8i0EJiMQ7KIRTHjySMgu7vsH5im3Td4rFBbJfmOaknUu90b6/e3QByM/YiPScJ7gYeCgraZMCcPoW2pjsOHD+d/19HRgbVr12Lt2rVYsGAB82srFCxRwkAhJD09PfjrX/+KBx98sOicgcbGRozuBPSeJmj9OTGg8fEOuBHmdXEtO0IxUFSPuAwYToZF6XMhjF34JJmwBUEB1qJZOLimFVQPf0/EotCyQMNhC8SkIAW2EithcMQcxu8HluKnW84ApcDI0FgsdKEwAACqA2YKgAa0n3YADcksklp4w9oRBg5WgsBKACNTNIAAlEH/0NMU0+94HbCK+wQ1DPbeg1LjGahtceDAUiQ4z8PlWlwXYjhchxACJJOgoLCaR3D251fh0UcfxcjIWIrgJUuW4Nxzz8W5556LadOmMbmuQsESJQwUwpBOp/Hoo4/i/vvvx4svvggrN1Houo5TTjkFa9euxQ3v/mVxNqGQosCrezfoazKu/AiMhkqxu0JsaGZhUFSJUWbiNdC0quUMv/Uo9C0I7jUgJoWeAer6LOgZ9z4WVhi8kR3CK+mZuPb598Ey3J99qTAoZaSDQl8wiPlTjkDXgp8KUCoMCkm3ajDrCIz6cP1j5oP7gUO9ZX/PTCCUM5od4n7PWOH1PsO81xXEwdhHGBrvPMtPJIqePSUWrr3to3jooYfwzDPPwMyNW4QQnHTSSTjvvPNw+umnq03LCmFQwkARK5RSvP7667jvvvvwl7/8pWgTMRlIQe9pgn64wf2cgRCiwE+8Z5BXJK4Qoar1EcVYCWtEuHgJiosnwVc1PQgChzDCINVPoWcpkkOVDa9d5wNvXPBTJIk/oZOlJr68/1S82DMX+w5OqvjZasLAYXCRCW1yBkfP6vJVFwDY3j0FzX9uRtPB8oKOakCmWYNRTwKfFVFNGNgXsgArJy6DTIHVjGUHUd63sHi537D7EjyIg+KPM1qsYXyN/Njh8uypbsKcNIjl583Exo0b8z9vbm7Gueeei/POOw9Lly5V+xEUsaKEgSIWent78eCDD+K+++7D9u3b8z/v6OhA9/PDdqhQuko4iE9hEHSw9fKKRBom5FEMOAjhJXDD7/PIrbR5HbICiQNNA9G1cWFDZa/R2oyD58yB0ejxGhRIjFDUDVjQssUhQ+Uw6wj++u//D3XEmwAxqYXrDh6H9QeWoKu7zVu1PAoDALBSQLaZovW4Q5jSOASNeHsem1+fg3n3evoorAQB1YHhqf5CjCZvzaD+pZ2A4e6VGIdp2h4EP3gVBYWI+P4Fwe+9+33/XPYcVP9KyIUbDtcgul51YcFKZWG296N9VRIHD46dVbJw4UKcd955eMc73oHJkyf7uq5CwQIlDBSRYZomnn32Wdx333144oknYOQm5FQqhTPOOAOP/MfLY/sGquFBFLBYdfG0Cg/EHiJUDmFFgYOXZ+TBQ1C2eF33dg2fgqCQ/nOOtg88q3AZYlJoJtDYbQIUngSBg1dhsC07iE2Z6bj6uYtBLQJq+VgZ9SEM8t/RgUwrRdPqw5jcOII6vbKB7UcY5K+hAUaDhkyLvRehkkDQsxRTX+yHtj3ApmnT9O49CCIMALHfQz+Evf9q76NPz0HxV72PETwXioDxIUVlywPFt//yedx///149NFH86ct67qOt7zlLbjgggtw8sknQ+eQUEGhcEMJAwV3enp6cO+99+Luu+8uWhkhgyno3U3QDzWCmD4nzTLCgLUL1u31iFQQBDSIAQlEgUOlZ8Yg33m1jcheVvcqkkhg/weXuAuDXNrR5AhFYiSYQVVNGOw3BvHb/tX4/bY16OsLlmI0iDAoZHCBCdKewdLZ5UOMggiDQtJtGswkKZvmtGWfgeZHwp1bQA2jcvaioEZxITK8k5UI2wZeQo5CiIPiYjwu7HC4RpBxxQk1Mtr7QRvT+Z/PmDEDF1xwAc477zxMnTo1VH0VimooYaDggmVZePHFF3HnnXfi8ccfz2+4amtrw+AWE3p3E7SRgMfIxyAKIttEzCivtzSiAKhoHLA4BKncfoGi9KNhKCMMkoMUidGxtKNBoTqw7+IMtp7163G/+/zeU/HakQ7sOtAe7hohhQEA0AQwMt1Ccv4QFk49VPS7wyONyN45Dc37wj1PK0FgpgjSbQRWorjBWQiDqnsPWAgDQJ53sxys2gEoH24UIKyoElUXeXiUnwo4xwGw6tO48Jun4oEHHsDAgH0ioK7rOP300/Ge97wHJ5xwAjTZ+5FCSJQwUDClr68P999/P+666y7s2bMn//Njjz0Wm2/fA+1wIwgNORgXCANem7Tyuf6LrivGnoFqSCUKHArbOkTokHvRJcIgRNhQOawFs9D1Vjuen5gUiRGgvtf0FTJUiUPHJPDqlf8JAOgxh3D74BLcuOkcpEeTvkKGysFCGDhYSXsfQvtpB1CXMFCnG9jf34rWX7YyKR+wBcLwdA2UAFQj0NMUM+7dDprOsLkAzQn0rFEsEFgaxIB872kprNujVMAzFgd2kSWpjXkvKCVDCm5iwZw0iKXnTcerr76a//ns2bNx4YUX4l3vehcmTZoU6hoKRSFKGCiY8Nprr+H222/H3/72t3yMZGNjI9atW4d7/+XJ4N6BUjQSbcYGzhmFuOTpltzYYOElKKVwgmZ9xgEAYOY0dJ0+BZoBNBxiJwgcDh2TwO2f/wE2pGfhmy+8F0aWbbwxS2FQyPAsC9qcYdTXZzH5phbm5RsNGjJN9ngw7Y4tzMsHtezTk02TvRHsIPn7Gkm7cLhG0YGIPCmToSgI//niN3DXXXfhz3/+M4aHhwEAyWQS55xzDt7//vdj2bJlTK6jmNgoYaAIjGEYeOSRR3Drrbdi06ZN+Z+ToST0rmZ774DFaNLLeQkiEQWChwmVQ3pRwEEoORBdB0klmXoJ8mgE2ZXzMTw9hcQon/r3z0ug5cL92NPFJ0sJL2EAACDAyHSKWY9zOHk4h9Ggoe2VQ8ABtidE5zFN0Awjb0Q5JH93FRXQNKansVPNgjlpAIvXTsGWLWOCeOXKlfjABz6AM844AwkeCyCKCYESBgrf9Pb24u6778Ydd9yB7u5uAGOrFut/9BLIUMpbZiGPED2iCVMy70AhShSUR6urY7OXwLVwguzyechMZuQRK8PIFB09Z6crZj4KA1dhAEDLAm07fKYF9QkxKRq3HQF6Do879ZgJ1LJDizh4tPJI/g4rqsBYIACA1TCKM684Bg8//HA+09+0adNw0UUX4d3vfrcKM1L4RgkDhWe2b9+OW2+9FQ8++GA+XKi9vR39Gw3oXc3uh5AFIUrvQNF1+XkKlCgoA6e2cdqEJBLMJ2IAgEZA53ZgeE4zN2O9EKoBh5clMLxilE/5nIVB25smNCOCqYYChFI0vbwPdGiYzyUyGS6x73lkfZcBJQ784IxLjJ43TRj4+x+chTvvvBNHjhwBYKcCX7t2LT7wgQ9g8eLFTK6jqH2UMFBUhFKKZ599FrfccgteeOGF/M/JUBKJAy3QDjHYTOwQlyAAuE7GPGLmHZQocIekUnz2EgDA1MmwmhswMqeJT/llOLw8gaGVcgqDSdsNEI4L7aVoGQv1+wehdfeCjqarf8Ev1ALNZJU4cEOJA384WZlYCQRCYU4awKK1k/H666/nf37SSSfh7//+77FmzRp1srKiIkoYKFwxDAMPP/ww/vCHP2Dbtm0AYKdG665D4kALyCDDcKGoNxSPu76cIURKFIyHJBLhzyUoV3ZTIzILpiHbkgRNRN9flTDwT3LQgD5iQH99N/vCndSmvPYeyPpuA0ocBIG1QACF1TgKc1ofMGUknzL8qKOOwoc+9CGcffbZah+CwhUlDBRFjIyM4N5778Uf//hHdHXZhxU1NDTgggsuwJ1fewwkw3AgiVsQAEoURA3HDdjcNhgnEiAJHUPHzY1FEDgoYRCcup40km8eAM1m2e8/oBYfr4SDjO85oMRBGBhmMgIAK5nFBf+0Bvfccw9GR+0xpKOjAx/84Adx/vnno7Ex2MGIitpECQMFAHtD8e23347bb78d/f399g+zGhIHWuz9A35PJi6HCGKgEAn3FcgsCngJAhAS6jChsmXXpZBZOguZVn5Gs1eUMAhP45v9IHvLn84cGN4bk2V83wElDsLC2ougmzCm9KF5uYXe3l4AQEtLCy666CK8733vQ3t7uIMSFbWBEgYTnK6uLvzhD3/Avffei3TaXvWaPXs2uh4fht7dxHT/gFCCAFCiIEo4igJeaUitRbNgNqaQmRS/KACAkXYdPWssoDXLvGyewiDVR9HYw/5sh0BQoKFrBNqRQeBQL/vyeaY1lfG9B5Q4YAHzfQgWzMkDmH5qCnv37gVgb1S+4IIL8OEPfxjTpk1jch2FnChhMEE5cOAAfvvb3+K+++7LpzhbtmwZtt3dDe1wQ+3sHyiHhJuNlSgYw+lTpL6OvSjQCKxFszHS0cC2XAbsO12HOZN92ApPYdC8z0JySCzjkBgUTVsOgvYPsA8t4n3mgaRjgIIRIU9SLoSCwmobwuJ3TcbmzZtzxSdx/vnn48Mf/jA6OjqYXUshD0oYTDD27duH3/72t7j//vvzm5GOP/54vPr7PdD669gIAlHFQCE8Jlee8fOSigJepxiTVIpPGtKOqRhaPDmSFKRBUMKALVrGQuOr+0CHR5iXTTMZFVpUiBIHbGHoRaCgsJpHsOyiqdi4cSMAQNd1vOtd78Ill1yCWbNmhb6GQh6UMJgg7N69G7/97W/x4IMP5gWB1leHxN5WaAP1bC4SZ7pRPyhREAnSiYKZ0zC0eBL7chmihAF7EkMm6t84wOXcAyUOSlDigD2Mw4zMphEYMw7DarHFsq7rWLt2LT760Y9i7ty5TK6hEBslDGqcvXv34te//jUeeughWLlBWeuttwXBYB2bi8jgISiEkzBQoqAATuFDPEQBaWtBZu4UZFsSoLrY/VgJAz4khk3ooyYSr+1kXjY1DCDLfl8IAGnHBgUHGJ+qbDaO4PhL5uCZZ57JFa9h7dq1+OQnP6k8CDWOEgY1Snd3N37zm9/g3nvvzXsITj31VLz4y+3QhhgJAgBEl2xikkgUAHIKAy6eglTK7mss9xNQC0imMHzyAlCNoSCgADEp89SmxKQ4eGISo0eNMg910g6m0LJDg8k4sZOWBVr28Dn1WMtSWEm2DVF3OIPEpjfZ71vheSCaZOODEgacYexBsBpGceIn5uHJJ58EACQSCbz73e/Gxz72MUydOpXJNRRioYRBjdHX14ff/e53uP3225HJbYDTeuuR2NPKVBBw8xJoGt+Jg/UkyiGEKN+uvCZ8Z1WJR4iDLNmHcoYaSSQwdOYyNmUCSPVmkRhIgwyNYmgZu0mTGBSN2w6D7j+ILT9YDtJoMClX66pDw0GCef+zDXRyKwaWt6N/rg7KaOFxyqYM6p98HebKRUhPZTj+UKDp6W0wj5qNTFsKVopNv0j1ZpF4bjOQTLI9Ods0YeWyvjEfN3mME45hySsMqmCckMHbXDimyVBfAGPjPEOBkJ15KB9ilEql8L73vQ8f/vCHMWnSJCbXUIiBEgY1wvDwMP70pz/hlltuwfCwHSurDdUjsXcytCNsDyUDOE5ujEVB0eQjsLdgXHuyrGthmyaT9sq7Re16s5r4S54b02EllzVGa2pgIwxyooCaJrS6OmbCwFlttkZGobU0I7NyPrIt4d+9xt2DIIMjoF09AMBEGNCshll/TqB5xxD0nV224TowaP9y5VEY7WjE4aXhQ4scYUASCaBjKjIzWti0ya4B4PU3AQDatKkYWjWTSRhYXhgATMUBTaftcw4A9osqrMe13Fjp1JEaBqhpsl+wcBk7RTa6udW1sD15eZRYhhg1jWDpRe145ZVXAACNjY24+OKL8Xd/93doampidh1FfChhIDmZTAZ33HEH/ud//gd9fX0A7CPPdz04BG2gEcSitgs7LCWhFlwGRYDZwOg6iHPwFggtCkrb0hEF+d9TO/6Z9XVyMBlaClJJEl0DaQiZQjR3Sm2hYCTz52Do6OAH+xCLIjloIPnStvyqMADQ1UdjdEbw+hKLomHvEMiOvaDmWBuHEgYWATUIFv/WQmrznrGfFwoDwBZMZyxD7+JEKO+BIwwcSF0Ko8ctgFmvhwqHan5uJ6zevrH6TmnH0HGzQQkJXC4xKRqf2Va8CZmFOHC8BSVpUZmEYXLyFpASQ9IRB0UfY2BsuoUdyiQOAAb1dXuGggsECgqrZRjz1zWjs7MTANDW1oaPfvSjeO9734sUh8MmFdGhhIGkUEqxfv16/OxnP8P+/fsBAHPmzEHXE1novc35tKN0NORGxTKx16IOhmUHbg4TaNhY+rJtGKau5dqwVBTkoKYVzmtQ4ZmFGlrccstrBFpdXbDJLXcyrZsQ0mfOwOCqYPm69RET9S9sBx0ZGXe/YYRB6kgGyY3b7XJKyg0qDGhWw7RHk5j25+3jn02JMABy/VPXcegDx2J0SrD3vVQYOOWS1hYMr5gZOASoVBjky144F8OLJgXaM0JMioaHX3H/XYhN7zSTKb84E9Z7wMFbUM7gdxMH9lfCja/VxlGRhEK5MY3LfAjwEQgMQ4yccxA6zkhh165dAIBZs2bhsssuw5lnninUs1N4RwkDCXn11Vfxk5/8BJs2bQIATJkyBf0bNOiHW8edQxBIGHiYVAO/8JUGo4CDYKUuzC1eP6C3oGq7Ba1npbYrIwocAouDKs8r8NBS4cCpoF4DmsmU9Y4ECfshJkXDngFoB4/APNLr+hl95gwMHTPDV4hLctBA8sgoyM79ZesbRBg0vVKPpn0W2v+y3f0DLsLAQWttxejqeehfkEKm1d977yYM8uVOmQxrUjOG5zT7WuVPHckguWkn6Ij72QNk/hxYrQ2+D6hr3D0IbCnTPggoDqgFa6jKGQlBxQHnECI3yokD++sBx1qPY6koRia3unKYG6tej+E5CGZ7P1pWmzh8+DAAYMWKFfjCF76AlStXhi5fES1KGEjEvn378LOf/Qzr168HANTX18PY0YhE9yQQy/3l9i0MeIgCrwOPz8HP8wAdsyjw3F4BJlQvZZJU9Vhx3+FmHp9VoOGFoTCghmGfRFttVXL5YgzPbfZcbvOGfTAPdlf9XObMVTDrvD1XPW2hYeNuWFXy6fsRBvqBOsz7cwb1bx6qnKe/gjDIl9UxHWZ7K/ad3ebp2kBlYeBAZs3wFcrVtK0XdPuuyh9KJkGXLfAlDpqe2gY6OFT5Q7oOkkx43+viRRgA/sVBRCFEpVBKPZ3q7Hvc9TGmxi0QuNWT0zzp6bqsQow0C3//ozNwyy23YHR0FABw9tln49JLL1UpTiVCsjxnE5OBgQH853/+Jz760Y9i/fr1IITg/PPPB17oQLKrvawo8IVGPIkCf2VqXAY7Sml8osAHhPiY7P20k/PHSx08xkf7iqPmlTXKohVFAeDdMAFyq5uZjKeQL5I1gWpditrGu1dR4BViUDRv2If657ZVFQUAkOirPonT4QS0gykc/ZM9qHt1N5PDu8wDB0E2b8Psvx5BcpCCVOkGxAISox48UfsPounxTjTsH67+DLySzYJs2ob6rhFomer9VctSwIvBZ5r2Ygv19g5YI6OePpdPBhAXHkSB/THiaayglIJ6EOR5qngqxpXtcQ7ggd96ModHZr1s1vYahxzbiaXhj//wOPBCB8477zwQQrB+/Xpccskl+H//7/9hYGCAUaUVPFEeA4ExTRP33Xcffv7zn+c3FmsDDUjumwpttHrqP5rJVDW0gogBTwMjh9Vvv101Dm8BlxCrgmv7KY8kEr6er6eQogATh6fnVq2fFkCSiaqpSx1R4AfjrSuQbS5v9DS+2Q/a+aavMit6DChQ3zOKRFcfrJ7DnsvUpk3B5m9VWGE/ksLi29NIbtnrvaIePAalZN62Ej3Hlh+HGrop2u941VeZ9Oh5MBtTyEwq7+Xy5DEogKRSyB6/GJnWCmVu6QHdvc97RR1PXCXPQZlNx5XL9bCYwGGxw+8Ga2qavhMXeBmPg+7bitqLENRsYv5sBd+DYNWnseojM/D8888DACZNmoRLL70U73rXu6DJdv7GBEIJA0F57bXXcOONN2LLli0AgPnz52P/+oydachjQG5FYRDQO8Bl0uIQqx71hmMuGwiDDvoBRIF9PXuVr+LKKYd9IM61/aA11Jd1fwcRBUBlYdC0vQ/W1h2+y9TmzsLQ8mnuZW7rBd2933+ZFYTBjPtTaN7nUxQAgYQBIQR01RIMzm9E/7zxzyKIMAAAUl+P7NLZyEwen9kkMWSi7pVdoD5XHklTI7Ir55cVB76FAVBVHNCRkaJsUt7LrSIOWI9ruh5o/AosDhzKJKAIY5JEKRC41JNH4omgMAoxcjIYdZyVzG9QXr58Oa666iosX748dPkK9ijJJhi9vb34/ve/j8svvxxbtmxBU1MTknunouuuBPSBJs+ioCw8QoYAf2FDHonTXeyKy8DrK1zIjXLZmUIM8oFEAZDrGxVECo/VKQ/hQ65fS7uEc5imbYwFEAUAkNq4Y1woCzEpmrb3gb65O1CZztkDRWVaFE3beoE9BwKVOf4iAE3rmH1HEu3r3/QvCoJellJg4xto/esbaN5nQWNz5hro6CiSm3chOWCAlPQNfdTwLQoAgA4NI/nydiSGzHFl1vWkQQ8ECA2zcqlv0+P3cdmbdAO+L5XCigRaZSW67t/TUBAG5LrI4iOkqFL5URC2nq6EGWN5hhiFgIBAH2jCwXuSuPzyy9HQ0IDNmzfjsssuw/e//3309vayqa+CGcpjIAimaeLOO+/EL3/5SwwO2it369atwyP/9jqIESCPtmmOHajjEFIQuA6EYQcjl4EwbJeMKoRIxJStJJUK/Zxp1ij2GvA4WyKAGChCI7bXwFmtLThZNihE1zF8zsp8hpy6njS0F7eEKzOVwvBZY6ti9d2j0F/bEaqPF3kMKND2XD1m/u/WUPUM4jEohBAC0tyEg+85Gpk2uwGDegwKy0RDPUZXzYXZYK9c1h1KQ3+x8mbmquW22VmWnBCvhgMjIK90hiqz1HtQMUWp5zJdDpNkOa55yELkhUqZijxXpXRlmuEJ6jy9CFzqyOIZ8/AesMpglDBwxj8cjQcffBAA0NzcjM985jO48MILkWB52rgiMEoYCMCmTZvwb//2b/mDQshICsk906APhzjMyREGDL0DXCaoggGM6WFhvE4OZommsS07aAhRKYUHnzGsH1NhAICkkrYQMk3bEGMgKOmKxRiZ1YT67lFoG7eGN3gKhEF91wj0LTtD19MRBvWd9WjeTTH1/m2hygMQWhg46NOnYXTJDBxeXodUfzhh4KC1tWJ0aQeMRp2JMADsA9FGVsyCpRM0be6CdeBg6DLzGYtgZ4ML7DEopDCsKMIzC/xAKQWyWXbjd+4+w757rmVzgKUJxXRRS/AUp2bTCOa/qzFv9yxZsgTXXHONCi8SACUMYmRoaAg///nPcccdd4BSiubmZqS31EM/1BY+ZMhPRgiPiJD6sxq86ig8rEQBMBbKwCBLRSmUBgsdciV34BkLUeCgT54EY8EMaJveDBySVAghBNrUKYCugfYPMjlpWps2Bds+MROLftcN9PaHLg8AM2HgoM2fg8MnT8PkOzexKa+5CUglbYO7j809k7ZWpFfMRepJNnUEkH8PPWcj8lQmGwN+HAH3FrjhJ1uYF5x6sTZPeIgDLnUUfQ5juP/AnNKP+uWjGBgYgKZpuOiii/DZz34WjY2NDCqqCIISBjHx2GOP4cYbb0R3tx3bum7dOjzyozdATAYTgGUxMUAKkUEUAC4uaRYILgwopWPxviyFQTZkKEQhhauADIUB0XWmAtjp58zLTFY/S8JzeboG0tTE7h03TdDBIXuFm5GHkRACkkoxf79pJsPWuNN1UMNgW6amjQ/jDFXexBMGhbAWCfm25OUNZYA085iuswkv0k2ccfWSfHjRtGnTcPXVV+O0004LXbbCP0oYRExPTw/+/d//HY888ggA+/jwnvUG9NHW8IXzEgRApBl+gsJUvDj3zaKOTp0IsWP3GQzQbq8tSaUqnnDsuezCtKUsJpPC+zdNdiEWucmTdT9iDUthkH8fdR3wcHBdRUwTMC3QdNrOMJM1xgwSFvuRGIohh0Ljk4VRW/geMRMHug44m2tZhMwlE2NjB2sYiQOWXrtCCCFjK9O595zJHrTcMwLAbTwOS35jN6uyOQgDSulYezKYe41UH6a9PYl9++wMYWeeeSauvPJKTJ06NXTZCu8oYRARlmXh7rvvxs9+9jMMDg5C13VgdyMSe1uhkUT4SZRRjKfDuMliongLCu87rBFfaBCzKA+VJyBnlTaMUTfuLIOwk4lLG4Q2mBxRUCC0RB7GWBjJ497HsMLAoqDDw0XGlrPKTTRib6IN0Y+iEAb564Qpj0dCgcK+HtJzQPSSkA0BxUGQtKV+KBIHwNgYEqZMZ/woKJPn2BwE1zqGhUdoaA6i66HDi+hoGlSzYMzuB+YOwzRNNDU14bLLLsMFF1ygzj6ICCUMImDv3r244YYb8PLLLwMAli1bhu3/ewTasJ2nm+ha8EmU8V4CLvmVXRDOW+B232Hq6DZAhijP62tKCAGpr3743TgK9xWM+13w8xRylSr6MTWMYMKgMKSisEzTFFoYAOEmTdd3MqgwsCiQTueeQfHG/0IjljiiIEydWQuDMosfrNNGhhIHZd77oF6yccIA4CIO/KYddeAZQlTIOCPZvnjwA9HcysuVye2sFp+ME0RjFwpeKEdh4GCHtAabi+noWGY5qzGDxRe3Y/PmzQCA448/Hl/96lcxc+bMYJVVeEbJL45QSnHnnXfiU5/6FF5++WU0NDTgiiuuwJu/GcyLAmgBJ1AnEwsjA7tiPn4ZVHrQOhLCVhSU25QVYDAvzPnt6zsBjJCyoiAozsqpS9sGMrwKvQS8vVkCwTT23TBsUZDJVD9U0KKgFuM+EZJy70FQg4x1eWX7oa4HD/FzK5PHBlrDCHbfEfUP14MXCQFJJOz9VT7bpOxBjiHCYiI7XC3iU579kj9gMoAIIQWLHdpwCtt/PYAvfelLqK+vx0svvYRPfOITuOuuu4RfCJId5THgRFdXF773ve/ljwIn/XVIbm+Hli5ZmdFy4R9esSwmrtRCuJxmXAkRMhFVume/q0ZlVsaL8PG8mMTQJpO+jJGqOddZtoffcKJCUVAGnqEMLPDrMaj6Tvr1GGSyoCMjZX9d6jEYVx+tzOpluc9z8BhUW5n2bRx6eM98lVkYRuSGX8+BRiqv5LOeun2mL2VxfoFfqraHz7nFU/v6GPu4hxONv6D/QiPadJ2fl/14HS3LdS6y6rJY9rHp2LhxIwBgzZo1+MpXvoIZM2b4rrOiOkoYMIZSigceeAA//vGPMTQ0hFQqBeuNRuhdze4pSP0IA8abiz1PegILA9+iwMs9+5nsqhkDPstj1i65lbSqceIWLb96Nu6zHicUj23iyUjyIAoAMBfLrPEjDDy9l16FgUUBw6goCoDqwgDwJw7iEAb563opy4/x6HWc9NI2HPo9U3ysvoc9UDAIrMeCsuE6LmV6Hf+YLnp5uV/7ot4LjTgbk6+xoIwwAHKpTTsGoS0ZRiaTQVNTE770pS/hne98Z3TemgmCEgYMOXToEH74wx/iiSeeAACsWLECnb8/BG20wkvhRRjwzDZUDYFFAeBDGHi9X68TgNdVEA8TFK9XsGqWIj+iAPDWLl5EAeDNa+DVOCosT2C8xN76MkKrCYNcGlIveBEGgPe9B8yFgY/kCl7a0O8758mr6vXZeREH1bwFhcQgDuLwFjj4MparzDeehUFJmZU/wthrwLofxJSmNf/cKo2BFYRB/iP1WSz58BRs2mSfP/LWt74VX/nKV9De3u65LorKKGHAiKeeegrf+c530NfXZx/rvb0J+v6W6geVVRMGvLMNVUN0YVBtUPd7v5UmOy8hQ4VUmUR4v3oVzzbwKwry36swqfgxjoDKBpIfUQDIkZ2oijDw9W5WEwaGAToy6muV008GnWregziFQf76FQjSTyqWybLvozjW2hMRigOWJx0HwbcxXyXNaSBxAEQ2tvsaB+2LV/9MjGc4VBwHPQgDIOc9mDkAsngY2WwW7e3t+NrXvoZTTjnFV10U7ihhEJJMJoP/+q//wq233goAIENJJLe1QxvxGB5UThjkTp1lGnITBNGzEZUb0IPcbzlD3q8gqFJelK8c0XVXI4NmDbbxqUHaqJzXwK8oKC1PUCpNiIHez1RyvEFjUdDRUd+nVvsVBgAqpjUNk5nElYCGaEXjNgBln1OQ7E1lxIFrJiIvRCAO4hYFDoGyKJUZH3wLg5Iyoxjjg2aNKtsnYj7crezZBx6FQf7jDRnMeW8Ttm/fDgC4+OKL8bnPfQ4pP/s2FeOo3XQeEbBz505cdtlleVGg729GatMM76KgHLkUpLUmClhT9r6C3q/bYFkuE041XCYMvxmGmGBZ4w1viwY3Itz6RFDh5Pb5oKJAYgK/n6XP0KKgQ0P2idURnNZNLQpQl/4FCDN2MD95mWV55bIVhcmwxpIyfShuUQAETDZQkMWoqCwaYjx0QmNKnpkwMe+i1KMESum4lMlB0EZS2HtLBu9///sBAH/6059w+eWXY+fOnSyqOWERY/SWDEop7rnnHnz2s5/F1q1b0dbWhu9973tI7poMQv29iEXeAsuKLgVpDDBfzS2dQIMY8A6lE4PfbAqllOaIj2kyzQ/ADhbjVfUKaUm9YO8RYdRHBevv4yjpA8zeT2eD8fBwJIKgEGr5zDAVA9zFQZhxQivxuIR9F1j2f5dxK4ozCzwTdBxzBELB+xcorLKgvKqx82EJM2YLPCZSwyheyNA0+6RvHxBKcO9XnsUNN9yAtrY2dHZ24jOf+QzuvvtuIUSsjKhQIp8MDAzghz/8IdavXw8A0PrqkNw2BSQb8CAg5zCquDIOVULgMKKiTcdh79VZ3WdcniivVv5EZIScAAtx2otBP8sfeMbCWyD4YWfOc2DyfiYTgKbboUNZ7+53N4KEEpVSGFrkKwVzNRgd4pg3All7YsOeuF7Q9oHDiFzKZEYujSnvE46DwMS7WDBeBw7ZKVMeK0KFOxUSIAWrt2LZpNgGYL/vAccimjSx6nOz8mnizzrrLFx77bVoamoKVb+JhhIGPti6dSuuu+467N27F7qug7zZ7G2DcQVIKsnUmGG2YirwpuO8KGB1r5QyXVURbfIExsQB87qxaLdc7C/rSV5ESCrF7h1NJux43JCiAGAjDIAxcRDo9O1yMDzdnRAS78bQcrB8B3LlMYUQMcc1lmGHTpsxLI/pYhjre415n0Ep+XFR00KNRXZa0wFg8RAMw8CcOXPwr//6r1i8eHHoOk4UlDDwyP33348f/ehHyGQy6OjowOG/WNCGGEx+rMIoILAoANgLAxarJ6wR3Shl3WaMwxaYlSeo16DQc8MCFjG6+bIotduNQUgQcTwGrPobh3TNrBB6PwzLd0D0cU3QZ8A0CoD1fTIUB8z7BoNxyGpKY/LbCbq6ulBXV4drrrkG69atY1C52kcJgypkMhn8+Mc/xl133QUA0HrrkdzaDmKGnPQmiiDIwTyMSDRhIKgxCpSEXbEtmH2ZLBDwWeRPo2bUZixFQb5MJQ58I7JRytxrAA77xBgi4rNgHh7Met7jEFrEbOxlMA7RhIns4sOwJo0CAC688EJ88YtfRF0dQ49mDaKEQQW6urpw3XXXYcuWLSCEQN/dAn1va6jQISEFAcB34xSPswtEmQBE9xLw3hQnynMoRLC0pcxFQS5lJA+oabEL29F1tiFFgokDIRcoHHiNRwKPdYCAz0TkcKJCRBYIQCiRQEFhzu6HOXcAlFIsXboU119/PWbOnMmufjWGykpUhueeew6f+cxnsGXLFrS2tiKxeQoSe9uCiwKNXfYVptmGXFKtiQwJk3mINblBX9SJkrsoEJXcZklhYCgKAHATBYC9+ZWwWrygFtu6ahqbzaGsEKmPRYWmCZ35a1wWtrgRuK2K4JBZie3CZXD7iYAgsbcNP/jBD9Da2orXX38dn/nMZ/IblBXjUR6DEiiluPXWW/GTn/wElmVh6dKlePOWfmiZgBMSQw8BIEfY0DhqbX9B7l5EWpUuJFJBIOrEJ4jXIH/6NAOcUJ8oUpJaPg4ZqoaWSrI7BVkgr4FQIqWUKKZ1gb0HzBNUhEDofQblYOhBEGn/wf/s+rd8FIiu6/jiF7+Iiy66SGixGwdKGBRgGAb+v//v/8Pdd98NANC7G5F4s9332QQAxA0ZAiJfRa6p/QWCGJzliNxLIOqAKkCIF9F119NjgxClKADYhhQBtScOhApnLCXKPi+wOAAEmC/APktdpIKU8VwnQngRJRTZhYdhTRsGYO87uOqqq5AQWehHzASMM3Cnr68PX/7yl3H33XeDEILEzjYktteYKJAsbEg0qGEoUSALMbcFS1GQJ8LDy4iuMQ3HYmocaRrbcxKCIKooiBoJQovA6uyWiYiuMw8vYhf1ECy8iFCC5PZ2XHbZZSCE4K677sLVV1+N3t5eNvWqAZQVAWDHjh249NJL8dJLL6GxsRE33HADEgcCbDIWcR+BIwZqxWCMafUn7hXKaihR4E4cRgspOFmVBTw3G1eD1X4DalHmp+bGJQ6E2r8iAhpbEcka6nh5YxIHIreNJxyvC0M7Im6BQEDw60/ei+9+97toaGjAhg0bcOmll+LNN99kUyfJmfChRM888wy+9a1vYWhoCGRUR/KNadBGfLq8RfUQAPEbi6wzEkXt7st5CER+TWKfeAReMYw6dSnLPQVAvKIAsEOKQC0mKUwBgCQTbA36GMKKhA4jAuJdHRc9tMgZK6N8frJkJvKKgIej5QkwTlkNWUx9p4Z9+/ahsbER119/PU4++WR2dZKQCS0M7rnnHvzoRz+CaZog/XVIdU4BMXwYWUoQVIV16E3U8ZWivx6xiwJAeCMpqvAv1uFDcYuCfD0Y7zeQWRyIELNeERHGK8HFARCxcc1aGIjSB0XefwD4Egk0YWL5p6djw4YN0HUd//iP/4jzzjuPbX0kQgzrMWIopfjVr36F73//+zBNE+vWrUNqyzTvooBhyBCg9hEIRy7lnRSTmwiI3E4sXdZRXyvCPQUV0Qi7FKYAc4Mi0jh3NbZWR/B9B4C9YCV6eKjwiLz/APBlpxFDx+af92Dt2rUwTRM33HADfv3rXwtvA/BiwnkMDMPAv/3bv+Gee+4BAOh7W5HY42M/gciCQECk8xgInnUIEEgQFCKyIRDBM2UeQmSa7A3oELA8FRnItVcqyXbcyma5TuTCrNRWQrTpXAbvgWRzinD9UPTD0QDP3gMKCmNOH8zZAwCA888/H1/+8pcnXMaiCSUMRkZG8K1vfQtPPfUUNE2Dtq0NiYPN3r4sqiAAhBUFgETCQID0ll4QdpOx4MKA57OtdVHgMNHFQeyx3V4QcfwSfFzNz8e8jO1aFwYONSQQjOmDsBb3wbIsnHrqqbj++utRX1/Pti4CM2GEwcDAAK699lq8+uqrSKVSoK+2Qj/SUPlLoh5O5iCigViCFMJAAi8BILAocBDZaOL0jCeKKHCghsFMGAB21iPSUGUc9gsncSD0gWaAmKLAQXBxAHA0uCeKMHBgvDnZLjJ6gWBOGoF27ADS6TSOPfZY3HDDDWhu9riQLDkCWxnsOHLkCK666iq8+uqr9oN9aZL8okAGRImRroQEooAQYq9WiiwKWELp2B+GsH4HWU/Q+ZzrIqPrTPcbUIuCjqaZlQeA3UFqBXAJ3xPcUGaK4ClNAUneP+TqKXLf4SBc2C+qVt9/oPc2gL7YhubmZmzcuBFXXnnlhDnroOYtjYMHD+KLX/wiOjs7gayGzJNN0AbrKn+JpSiwaKgjvN2glDJO8cU26wgA0KxhpzpkCPPBwTTZ3jeHZy2FoLQs+w/jPskMTqFElPXKmGWxFX+axm1lkZU4ILoOkmS8Ep/Nsn9vWPdv5xRrVmU6fVHkxRjLEn48o7nEE0Ib3rDnV6YixhFFDMukJuNU5YRwmWMroQ3WIfNUEyZPnozOzk5cccUV6Orqiuz6cVHTwmDPnj244oorsGvXLkyfPh2p16ZDG4nwUBzRBQFy2RkYlklN0x60GMI8W0FuAIw7f3I1RJ9EAbA3RAqNbVaGE88wBkb9iMsBTIxjp3msqBI9NwWxKregP7J6f/LlsOqPhWWwFhxOmQLDXrRxWHxzjGSBBQI1c2l6Gb07efuC8WIZU7uF2ueqMHveHhY4tOEUhv5Wh+nTp2PXrl244oorsHfvXjbXF5SaFQa7d+/Gl770JRw4cACzZ89G3591aKMeXMwsVsI4eQkKCeuWpaxXy3NlCr9injPkuIqCkG3AXAjxgvWqPusVeGezLMfJnYsoYOE1KC0j7HjhYjCE8RoQjdiegsJ6shiPSsdJ0T0HrMosfW8E9x4wG+MKx1oeC3GCiwNY1PbMs1zpZ+Q1yYv+nD3EdBymuXuOyHugjSbR92cdc+fORVdXF770pS9hz549kVw7DmpSGOzevRtXXnklenp6QIYT6LmbgmQi2DhWThCEmEClCBtyvARRiIKgbcHDSIwydEikSb6c0RG0jpWyWYQpM6oNjyE2u5Y1PMKIA01z3wgepswy/TywOCBlYs7DjE1OeA5DXN/HMIZ8OfEbtsxyiDJulKmHNN6DMONIBM8g7z1g7P0PtderdLzJiZhQYzIpKTNCgUAyCRy8w8T8+fPR3d2NK6+8smbFQc0Jg0JRsHDhQqQ2TwfJct70VGUwCjr4sRYEzA0lR2REGUYTZJDNrfyo0CEGVGv/oG1cqVy/ZUacejaU+511HcuJAsD+eQBxQM2c+74MfsUBqbbxL2hbRmV8OtcK8uwq9XMeZXr5fczweT6cQouCfDcqj4NFmYdA5SMLWIcXBd1/WG7coGy9JuUgho4Dt2exYMGCvDjYvXs39+tGTU0Jgz179uCqq65CT08PFixYgH23pr2fZhwUDgYiFy8BF88Dw1i/HMzDaFhnHfK6IuWzXWpCFHj9TCFewof8GExxnUcRwBNX9eTVICv81fqRT3FQTRQEgSQS1UMh/fajKm0f5P2q+h0Rwoq8flYCceD7GVUbYxl7D/IhNiLjrMqzjgrgcO92PRn3yyALlX4XNgwd+2/L1LQ4qBlhsH//flx55ZXo7u7GggULsP+2DF9RIEO2IbDfXAzwyzjEXBAYBntRwAHP9x3n5O7n2l76G689BTHlS/eTQpCyFqsOjDMQ+WlHr14Dz94Fv33Dw2f9jC++3kmv7eT1mfspk3EbxY0U3gOGG365YVHQTJa9Mc/h3llnL4oivMgRBwsXLkRPTw+uvvrqmspWVBPC4NChQ7j66qvR3d0NMpLgKwo4pctif4AH+1UDWBbzjEMA48kgZ6Cxv/eYRUGc+DUovBo2fo2aSmXGKAryVTBNbxOxH8PP6+q+H1HgwWtgp2KlvrwF1Yx+ohH7kDCv9+RVHGSz3spDjGFFfvsljzKdcgVHCnHghA+KvDEZsO+bdRpSHvfOOnsRMJa9iNfcbejYd2sa8+bNQ1dXF66++mocPnyYy7WiRnphMDAwgGuuuQZ79+5FR0cHUpun8REFHAWB8hIwhIsg4rOfoCZFgRdqyFMwripV+l6gjYzVDOkgnoJq4sCnKMgXW0Yc+BYFDtX6SoB+VO29C/RexhFWFPQdilocBHxGFZ9DkDGZV9Yiwb0H+ZAd1pmLOOw94JK9iGV60xKIoaPrzixmzJiB3bt348tf/jIGBga4XCtKpBYGIyMj+MpXvoJt27ahvb0dhx8ASJZD9iFJBAHXjEOMCWUUl2k3ahgc2jRMNooymVzC3HtUkzqPdIdhw4fcDCWBRIEDzWRc6xMqu0k5gzpM+FCZfmiHRQV/9mU9B0GzIlXK5BNwvOPmOXCDdZ9ngeDpTB24ZC1iTMXkAwKJBi6ZixilNi0izObkcnDcnEwyCRz5M0F7ezu2bduGr3zlKxgeHuZyraiQVhgYhoFvfvOb2LRpE2BoGPxbElrawzkFlXCb0CQJGxI245DL97mcTcB6UxgnD9GE8RKUGjSVUpIGRUBRAIw3FITOh15irOdDiEJSKA6IroOkQh4s6WZch5zo3d7F0O8nj+dcThCzKpsnIooPXgt9LgYyl7Ep5GIVzRrh0pC6EDq1qWuZgmxO9oCWTmLwb0m0tLRg06ZN+Od//mcYom9Ur4CUwoBSih/84Ad47rnnUF9fj9TrU9mfaCzJ5mKZMg4B/A4sY4oKHWJblmPUsRIcBWWKJgrylNaNRT0ZH1oGwPYa5MoJsq/A0yV0RtNMYRsy6qeF7ySz97PUkGfV7wuNLx7vqaCMGztZjM+8QoNFXQAowQ4NZlvXfGpT5qHRHDYnlz5/BgfbaiMppJ9qQF1dHZ555hn86Ec/End+qoKUwuDXv/417r//fmiaBnNDM7TBOnaFy7K5GOz3EjhhQ8xVOjgYxrn4RllEAVN4TeQy7CcoKFPkQZdSOnbwGUsXtiMOGGcggqYxFwVEI3ZaUhYnOTs4ApNhm3LdkMwhAYQ08DpsjoERl4eXOJBBIOTOPWCdvS+fhIGpeOW094CxB0EbqoO1sQWapuHee+/Fb37zG2ZlR4l0wuD+++/Hr371KwCAtrUNel8Du8I5bVDhcdoulw22vGLwGE68lNquUD7eF8EH8hw8hBvAy+3Noa4cDA4eHh1HHDCHpaHtwMM41nWQJOM9XzyMbUS850DEcjnVlfWYwi1jEY/oAA5785jj3DsXgcS4T/HKMMR4c7Le2wBtWxsA4Oabb8Z9993HrOyokEoYPP/88/j+978PAND3tiDR3Ry+0JxytF1ggq/GOCt6LDuy87JxvHdWkwOvUAcA7Aecaqe7BsQZbHmkouUCayNW0/J/WBgJvMO7KA+PiV0w2/I0zTbiCaPnRTQ7CxFrsZXzEorsLQJQ1E9FJ9+ejPupE47K5VnxGF95GJ2sy+Q5V/MwvB17hSWsxqgCxsKg2NQ1cbAZl1xyCQDgBz/4AV544QUm5UYFocKPsDa7d+/GpZdeisHBQWg9DUhumwKCkAMDtUALXgSiES6djskA5mYIhg0ncO698GXgdP9hDbBxooBlKAUPUVACCwO0aAXGCdMIS84YKBwGmBnLjlHEyuAoNbIYhBO53Su3VU7WRiJLo7vgWdFMNvQESRKJ4neUQZu6iWFh9+1o2tjz4SUOGeH67jPoq0Ur5gzmAKDMuxnB+B2I0nqxKLdwDuQxVzuEraubgOFRX0aGPA87kFITb/vmMfjLX/6ClpYW/OxnP8OcOXNClxsF4i9nABgaGsLXvvY1DA4OYsWKFUhumxxaFFDTLOoMwsIjxKfQSyC4lyS/mlWq5lm0CY8VEg5eAsDFLWsxMDZ4bFx3KDQsWBjEbmWEKLdS6BCXkCIesNrQXPKsSCpEdjfHU1AqWsO2aZm+LsW6locD5eKitP1YeQ/GiThengOAj+dABu8Bz/mbl/eANURjLjioE6oddnEEBI99+zUsX74cAwMD+NrXvoahoSFGteSLmKNVAaZp4l//9V+xa9cuIK1h638fAqFhcuBzOACLFzzchm5eAt4EnBTyXgIez4vHwM8jdIiWz+kcaqKtsNoeegLnET5UhiBGvJfvcBEHMoQUOQT1RmmE/cboKp4h4cRBobfAQWBx4Eao/mqVCXXN5acP+rwqfk+m0KKJLBB41ZVHeBED+4tQgu2/PYKpU6di586duP7662FKYH8KP1LddNNNePLJJwGLIPXGFJBswEknJwgqeQlYdAQmOMYwD1EggZcA8LifIOiAJct+gmo55YN6DXhm9IlQFDi/FzacpAThPAfl2lYrs+pfDaJVDm/j+JyEEQduosBhgoiDqs9CNu8Bj+8FPbm50nzIc16XQcxwEgdhvQckq6N/PUEqlcJTTz2FX/7ylwxryAehR6lHHnkEv/3tbwEAyW2ToA0FPKugZC9B5Pi5th9x4rXcCDYYsyK/Qs7LWxJT6JDfidDrQVO+Mz94FAWBJu5KRk8Qg4ixEeU385BUmWr8Pi8vgsuPOCDO5uUqbUaIP4HgQ8QKIw4qIZA48DwO+Omz5bwF4z7nTxzE+mx52Q68MuzwQob6cggtAgoEQkC0oRS++tWvAgB+97vf4bHHHmNVNS6IMUK5sHfvXtxwww0AgIsvvhj6oUb/hXjwEgiDKF6CGMVDkZeAVwgVS3jtJ/B7+qzXiTtuT4Efg8jnZ6sZ8UGNfGlCiuzCvX3Oa9t6FQdeRUHRdzx8NkB/jdWArOQtKMQ5VE4QgVANP33WV/tP9IxFvMrlHVrktQ5e4eU94Jm9KADfP+8mfPCDHwQAfPe738W+fftYVo0pQmYlSqfT+PznP4/Ozk6QgRRSr00dv6+g2kMP6CWIPDNRmJh/ovErlwOVTkDNr3z7rW+lNnAQSBRUMjTzr6Lf+lbLUBRCEFQ1jIMYN5WMjBDGUrkBm0lGLMYQXivHnJ4XTafL/17XbQHhlyrtGmaFLvLwMq+ioJSYMhaFGg8q9KFAuftzY6mnsdEvcXiIg16zWtlB3oe4MhcFfXdjylzk11Ykzr1Xqq/LdSmhyBzTA9qSwdFHH42f/OQnqKtjeEAvI4RcsvjJT36Czs5OIKsh1dnue7OxNF4CgO/quAShQ0BOFPBqB4FEAVB+gst7CYLGnpYzLuL2EkRYHpP0rW7lSrKHAQC3zchlDf9q+woqFlqhXQVO78mUGEKLwowHlbwHgYWcc2gnj2QIUWcsCjPfyBCqU4gs9eUVWhQg3JlQglTnZLS1teGNN97Af/zHfzCvGwuEEwYPP/ww7rjjDhBCkNw6GSTjfdIJ4+aJHOfY9DCUHnTGKg0pp8GkNB4+v58gbF3LZMDgQhybjL2WUYqoooCjIVRoxLM8zbgmQoqCtrumuXsFSC61aZi2cfsug34bqSM8qLfAQaB9B14o23fDjrk8Q4tYE3VoURhbIeqsRWHbRqbQogCbk0kmgeuuuw6EENx1111Yv34983qFRahQoq6uLnzyk5/E4OAg9D0tSO5pLf/hwofMcHMxt1AiwB6gWK/mO6E0PMrlgBNOlD+bgEmhJeFEEogCx9BkIQryZeoFOekZioJxRjELI6bUsGBpGHEyuKUKKbILH/s3q2tks6CGEWxfQSUK2pbl4g53b4/TriyuE0FYEcs+XNh3qWmyG3cLDkNj/s7x9iCzLL+wXJZzJS+c+rJMHBJRaBEz+7HoUMfKbZCd0w9zzgBaWlrwq1/9CtOnT2dSBxYIs0xhWRa+853vYHBwEMcccwwSe1oqf8FRlYwzDnENQeK9sVaC0KGiA8uYFVpw37wGfsarTmMHCTHsu/k9Cmw9BUVlsTIwnXJKD9hiWTZjuBmZvMNmWLZHznNA9JCr5KU4ZTFui0jWvVi1g6yeA6+ZiLyS8xxI5z1gPffwKJd3aJEsaU0LBAdT+9HxHnioc2JvC5YtW4aBgQF85zvfgSVQ+KQwo9D//u//4qWXXkJ9fT22/v5Q1ZONnRgv1oY84ZRphps7r0AgSQGPwYNoQu4nqAiP+ubcmqwn1LxBLIkBLxPcDVcebczRw8GjPQRyildHQnHApX15jedAbYQWhYG3vcDTzmFJThywtvm82qWEEmy/5TDq6+vx4osv4o9//CPTeoRBiBFo27Zt+PnPfw4AMF6rhzZaOcMFr1V9LmFEMhntDrzcjTxETFxZF8IgiVcD4CgKeKJCifhBKWjWsNuCR3sEyW7kAW7iwLLYtwPHPsHN6yXTWAlwGy+5EVO2nkBwiucHwM17QDQSi0DQRpO44oorAAC/+MUvsG3bNqZ1CErsM5JhGPjOd76DbDYL7Ug99IPlzyvg4SEAbEFAdJ2PKJAJmV5ogO9eEJkmOk51VaJgDOlEAY+yTXMsHWXIA38qwSu7lBIHTtFKHOSRTRzItHDJe4GRJZy8B0D1hez/+MDvcdppp8EwDNxwww0wjAApfxkT+4z/xz/+EZ2dnWhpaUFy+6SyIUTcBAGvzcYyigIe8Bp4eIoCXkgiCoqy+ShRoESBZRWLgvzPqb0RmTWkyrkcIVDiwCmaXcauIpQ44I9M9opMi42cxUE5G5aA4Pkfb0NzczNef/11/OlPf2J+fb/EOuvv3r0bv/rVrwAAoy/pINnxkwFPL4F0CpwHMr24AN/6yrSfAOAfOqREgRIFOcoeXOWIAw5GsQorgnR7DgDIN44CShwAynsAcA0tAsovcJOsjtGX7fHu5ptvxu7du5lf2w+xjTiWZeEHP/gBMpkMtN46aD3FIUS8BAEAfmFDMgkCgG98vmxeAtlWutR+gjFkEwW84GFE5rwFlT/DMayIU3spceAULVlYEaD2HTjwWiST1XvASSCwppxdq3c3QuutQyaTwfe+971YsxTFZgHcd9992LBhA2ASJN4sDiHiubmYi4taNkEAKFHgINsEpjYZFyORKMjDo415GY+mOe5gQld4hRXpuhIHgLziQLYFF0AucQDIJQ4AuWyPCDcmE9i2cENDAzZu3Ij777+f6TX9EIsV0N/fj5/97GcAgMTuFmhp24UinZcAUKKgFElOLAQgpyjggBIFxfAyGLmFEPHyFGSz3kRB/jtKHORR4mAMJQ74o0KLxuCYuYg1pTavlk7gk5/8JADgZz/7GQYGBphf0wuxWAI333wz+vr6sHDhQuhdzQAk9RIoUTAGx0wBXJAtDlaJgmIkEgX5jZ4yiQKvnoJx32V8eKGDEgc2ShwUo8TBGDKGFvGCkz1CdJ17eNFNH78D8+fPR29vL26++Wbm1/JC5NbAtm3bcMcddwAA9tw7AEKJXOcSAPIKAtk2GfNARve2EgXFSCQK8sjUxkFFQQ5eZxwocZBDiYNilDgoRiabh6ddAnCrN0/vAaEE++4fBAD83//9H7Zu3cr8WtWIdLailOLGG2+EZVnQDtVD602pNKRRIJOXAFChQ4UoUVCMZKJAugxElhVKFNhl0PJZjMKixIGN8+w59C0lDkpQ4sBG7TuwKUhryksg6P310A41wLIs3HjjjZGf3h6pVfDYY4/h5ZdfRl1dHRI7WrlcQ6UhLUBGL4ESBWOoMwqKkUgUcA0fsi/ARxQw3CNAM1nlOXDgJQ449TElDkpQ4sBG5n0HHLIW8dx7kNzZilQqhY0bN+LJJ59kfo1KRGYZGIaBn//85/a/tyZB0uxzVKsNxgXIpMABtZ+gFHVGQTESiYI8MooCxv2ZmqYSBw48xAHAVRxIl85UiYNiZFoYBOQMLeIkDjCq44Mf/CAAeyOyySkltBuRWQcPPPAAdu3aBWQJ9H3NzMvn8mAALvm5eWZf4oajuHkNCLKVa1HpBCOllI/RY1nc8tjDsriJAung1Ra8DFYgJ57le37SiQPLijzcQFh4LtgAfOcqmeYUzvXlZiNJJA7+90t/RWtrK3bs2IEHHniAefnliEQYpNPp/AnH+t4WEJPDyZwcVrocY4dXB+VRbl50sOz81IpGzLB+YZ3yWButUYgCHm2dmzCpabIx1nKGKjUtPnHlHA1KbiKpoHym9S8si9Xzc8rNtQPRdearokTPjfWs30HT5G4ISyEOKB3bLG7R8PtDSovPlctlPOJtCLOuc+G4z2Guknbu5tQW9j8Z23W5trA9mezbmTXE1PDRj34UgJ3NM51OM7+GG5EIg//7v/9Dd3c3pk+fDn1/E78LsXjQHAcr3i8ol7JL2oLbi8q67qXPkFX5pQO3LBNbYVkMyy01RJh5DjiLgihgJg7cymAhDlwMVJbiIC8KHFi0u2MIR/kMecBQHIx/B9m8O+PuneV4VDhOyDKGlsLRTuBRtlTioKhojguzLOw9zouEv7jkdsyYMQPd3d248847uV7LgbswSKfTuOWWWwAAh59Mg1CB4/QqqOuwnbPc91l1+tJymAwuue9H5TFhNiC6lUGt8JNEufqJ7v51689hjdZy2WtYhI7UgChgdr1KbRGm7AqGKQtxME4UVLmmH6R7huVg0B7lhHhYcWCPDy51YzEXuJUhujjgOfaXW21mMH+7zrG84NgWLBYPK5Ybsu4825VQgkNPjAIA/vCHP0TiNeAuDO655x4cPnwYSOvQuhu5XivUA+bkCrKL5usl4OUp4CWSWJXhUmjt7SlgIWbK/DyQwVMYPlSGUEZJDYmCPEHvqdr3OO6/CLXptJKoyB2eFgjW4Vm+Li2YOKC06mbxcO9hhTqFGZMqjaMii4NKdQsz71QzhDl5DrjG74eoc7V6cfceCIrW3QikdRw6dAj33Xcf/+vxLDybzeIPf/gDACCxt1lMbwG1N0566XB+O6XXFzBoZ/f0EgXp7B5EUpgXtNJ3w9TZ02f81tuyQxeqli/ioFLtXgOu7nsxOALtN6hFUeBc2++9ef18kJAiL8aoprmv+ldD85jJxu/zyLVh7M+RB0HEgeVtLAsiDjzdp0wbQx2C7pXwKmQD1F3WOdzL9Xl9R7TQoigSyRBKkNhrJ+353e9+h2w2y/V6XIXBgw8+iIMHDwIZDVoXX29BEV4frKReAt/l+2gPnm1iX4L/PghmnxVlFSFIm3n8ji+j1e/hV34M1hoVBUV14HWPfsSBHyPUrzjwKgr81kMAUTBWFQHEgc+N837e2bIhRG4EWWTxuoAjivfA7z1ymIt4rmZzFwc+6u2nLkEWaX19zo/NFBFaVyOmTJmCgwcP4s9//jPfa/Eq2LKsvLdA3xedt8BzB/DoJQhSPq9yuX42QPYCri8nzxfTywpQkMFYhMnM76qYE1LkIWzF7+qjndHEw3ckTGcZBM/iIEh7eBEHQVamvYoDP6LAT30EEgUOsYoD6mQV8zn2evHy+REFDn7GGxnHU47ea99zrVdDO0jZPPEqBn0X69PY91GuiKFFhBL83d/9HQDgf//3f7mOidyEwfPPP49du3ahsbERepTeAnhwz3HKuR5F1qHAoqNKjKRo9fb0YoZ5cavF0IaIGY2NoM+wYltU31NQiariQOKUpEGoKg7CtEclcRBmo2s1cRBEFPiol2jPEIhPHAQRBWPfjdHQDjo2xSkOwtgJPPcGcJjLpUtpmi+WX73jtpvc+OXHb0dDQwPefPNNvPDCC9yuw00Y3HbbbQCA9FbC5dyCqpTJIMBCFMSxIZfnZiFe+wW8/D7Qd3mmGGOxUsBzA3SQ33nA1YDP/Z9JhhM3ajx8qBxlxQGL9nATByyyAWma+6biMKLAoVz9Ytxs7IXIxUGQFf3SIkx370sgb0Ep5b4fdkyNQxywmG8rbLIOPS+WKZtX9kQmcGoPuwj37zMpV6BMhMTUkN5u29O33nort+twsdj37NmDp59+2r7AAY7nFlRgXJqugKFDQa7FuixmoqM0/74M+wlKX0CWL2ShSHRc4oK5D8fh1qaMnmGROMiFbzBZZbToeEEusMEXBePEAcv2KDT8GObLJ7o+znMQWhQ4lNZTwBAiNyITB5ThAYJWsSeNiSgoKHvc/3mloGZFaTgUy3nApRwu83mZawkHp/ZgWY5ruS6LkVF7Cxycs8Ceeuop7N69m8s1uAiD//u//wOlFNqROmijCR6X8IaTh59D6JDjwhJqk7H3QpnWnZeYKSis+G8esN7wFtUqF+P+4Ris+RNPWVEoDiZY+FA58vVk3R5OSlCWJ+w6FIYVMT4lOV9fSUSBA3dxwFIU5MsueE9YzzEcvdtciaLeDO+hyGBluMgXZVgRa9ussO6sF2wL2zsuUQAA2mgC2pE6UEq5HXjGXBhkMpn8jmmN5ynHHqBuK5USwEt0OO0hk5jxnSXAL6YZLpY0LvxuMvZRLrdYZM7voyyGZCHc2oOHKHDIiQNm3oJCnD0tkj1LnuKAuSjIl833XfeU5tkvvMUBjzoDcMKYuczpHFfKeYYw83yWUraJD5xInAcffJBL6lLmwuDJJ59Ef38/kNag9daxLl4hIIT1ymEJIryIgeCddk82WMSjl0E2Q9KBV3tA47evi2YNUMPgupmVW7twhFcfDHSehGLC4My/vOdhHshYZxHQjtRhypQp6O3txVNPPcW+fNYFPvDAAwAAvbsRBOqhK9ggrTgAlDgAlChwQUrjN2tEE9oHSduHm5dGsrbg1TcIR5Ek4Qp2KTwMbd6r5Eoc+IeAYN26dQDA5SRkpm/ZoUOH8Mwzz9gFdzewLFohIEQjri91uZ8rJihKFIyDq9HLyVtQJAqcn/FMgQklDhwIIfJ4DmRcCJFUFEQ5/ypxIBb/e81fAADPPPMMenp6mJbNdKT561//CtM0QQaS0EaSLItWCEYcL7LyGkiIEgXjqBVRYP8i+BkXXlHiYAzhxQHPcY6Xt6CGRIGf3weB9/0ogeAdbTSBFStWwDRN/O1vf2NbNsvC1q9fD8AOI1LULl5fXtkGJu5MNHGgRME4akoU5D+gxIEbE1Yc8ECJgiJqeQ5W4sA7W+6x05UKKwx6enqwadMmu9DD9ayKVQiGCC+t1OJgIqARfllroESBK3GJgvwHlThwg6s4EGAsLkLGfQUS4ncOVuKgdtEP2SH7r7zyCtNwImZv3KOPPgoAWLFiBUhGZ1WsQiCCvKy8XnBpxUGtew04egkAJQpc4ZWByO/5CkocuMJNHIi070BGUSCptyAIalNybUIyOlasWAFKKR555BFm5TJ765xKbbmXz0lsingJ85KqF7yEWhUHShS4IqsooGaAdLtKHLjCte/GPb4qURAZIs7Dat9BvDjhRM7iPAuYvHkDAwPYuHEjAEA/pMKIaglWL6Z6uUuQdGIqixIFrkgpCoBgoiD/ZSUO3ODpOYhdHLBGYlHAy1BmNQ+r0KLaQs+F7m/cuBFDQ0NMymTy9r300kt2NqLhBEg6waJIhQCI/jKK5q6dsChR4Iq0osDrvoKKhShx4EbNhRXV2gJHSGSZk5Q4qB1IOgEyosM0Tbz44otMymQykjz33HN2YX3qpONagcdLKGOcI1dqYVJVosAVKUWBZbERBQ5KHLhSM2FFKoSopGi54u1lnI+VOHCH9Npeg2effZZJeUyFAelVwqAW4PnyqRe7BJnFgRIFrkgpChAyfKhsofzFgYxIH1akREFkyDgfq30H0aLlbO9nn32WydgS+i3cu3cv9u3bB1iA1pcKXaHIoBwmwYjg+WLwfOF4rSZwHySIBuiSZtri2cc5Dv6yigJYVN6683qPeI4pkra1jJ6OPDKKggjK52lk8zK0ZfW2c623hLah1pdCIpHA/v37sX///vDlhS3A2XRMBlPQIInxVPjQJesAhYMP64GItyjgQSSiwLkGD3HA8+Aep2/zdJ9zWA2W1diDRe225ikO/KYQ9QHRdfZ9XNf5nmdhUa4ClQfcvWy8jSYeOONgFOM51+I51D83lstmxEspZiS1DTXoWLp0KQDg1VdfZVBeSPKHmg1K4i1we9iSdAC3QYfVQKREgesFxk9ULCeWKE/z5CkOGBrB0osCIBpxwEkgMBUHUYgCB0mMJiUKXCgVBUocjFFiqLKcS6MQGlKJGUltQ6e/bXloJwDRhMGALQyEjv2S4CG7wTumTokC1wu4T1AaYTOxRCkKvPwuDIyM4JoQBQ68xQFHmIiDKEWBg0xGCGOkFQUOpWOtEgdlDVUWc2qUBrtsYsblotFfMwDO4vwrr7wSvqwwXx4eHsabb75ZVClhqfZwBX34XgYYEQ89AWpQFDiEFQdxiAI/nwmCRUOFFcloQANwFwUOEzWsKA5R4CCwOIitTUJfgKOnoNJYO5HFQZUFnjBzaxzGNYt9EpGFEAX5fUwU9jFncX779u2hzzMI9WZs2bIFlmVh+vTpINmxSUSoXeN+NpII9vD9tGGQ9laiwPUC3iakIOLAmQh54KfvChZWVJOiwGGiiYM4RYGDgOJA2s3Gce8p0DhnWRJRHHhc4Akyx8Yd2hP0+rGKAr+fi4jSvkWyOmbMmAFKKTo7O0OVHeqt2L59OwCgZ0t/qEpwI8iDFOTh8zb0lShwvYC/SciPOJgoafh8GsE1LQocJsqeAxFEgYNA4kDqfQU88TvW8kJEceAFn+IgblHgIEo9AiFIxqJyfap7Sx+AMds8KKHeCCeMiIy4n3Ycq9cgzMOL+cHzDg1SosD1AvwmHxFFAec0pl6M4AkhChxk3nPgxbAVSRQ4CGCASC0KeHoLgoy1tS4OghidHsWBaMa4MIJGxPkzBGTYtsWFEAbacLLsZ2IRByweWkwPnkV7VSpDiQIXdD34pFPNayCiKGD1/UpUMYJlNJABBBMFDrKGFWkaSMJ98QcAQDTxRIFDjAaREgUuhF2A4S0OOI7XFeexkAuZohn+Xohd0Ig8f1agUj9ybPHYhAGlFDt27AAAkArCAIhYHLB8WBE/eN7tpESBCyxSM5YTByKLAtbluFHGCJ6QosAhJw64EYc44PmOsmirGIwmJQpcYOWVlXhTMrf9lxXEgciioVLdhBYFrMvxSLW+QwqEQZh5NvAbcPjwYQwODgIUIKMVVpNyRCIOBHXveIH3YWWyiYJINrCzPMypVBzIIAp4lVdIiTiY0KKgAK7tEKE4IIkEX28BKyI0jpQocIF1qKbE4sAuvqD+DI3U0rlYZFHgEHkdZZo/C/AUJp6zxYeHh9HX1xf4WoF7f1dXl/2PjA5CJc244IUIHjovA9gpV8aj2rnD4xRjp51lEgW8ywXyhowSBTmoBZim3OKAVAkvCgkXAziCsUqJgjLwmIMkFwcAuBip1DSlm5sjEzQyzp8+IJQAGbvf7t+/P3A5gXv+gQMH7IqkvRlYMnXScQjy0IPAUxTwgqungGh8RAFgr46zNiJLkVF0QImCsmXLiijpqP0ic5vzRNYxi2c/5By7T1gdlumGhDaLI2akthU54SvjZNpesHFs9CCE9hiQTHUji1oUsEz7j6wDEE+jSbIXQWpRwKt8i4KaZn7FRlGCZH0cAF9RwLMvAoDGbyykhgGaNUANg9s1COGYv55jX+QlgLl6C3jPyaLvQXGBmmYk47kSBxEiqe3p1yZyFuvjFQZVPAZ5UZD/AWcDQYkDrihR4I4ziRT9nxeS9nGpxEEEooBb2AlPUZDJ5McAalH+4oAXEokDaUUBIK9nqQQlDiRngogCYMwmz4f7ByDwHR05csSuRLa8MBgnChzcfsaSKGIDJyBKFLhgUdCsMX7g4e05UOKAH5xFAdH5pffkJgosq0gUOFCLgpo8T1/m++7ygpU4kFoU8ArZdODoLXBrGxVWpBiHYKIAGLPJY9l83N9vn3ZMDPciqGlWFgCydtYJ6jVQosCFgvAhV5Q4cEfgfq7Ch1ywLDt8qFw6RNPkKw4maFiREgUViFgU2L9Uew6kZILdu2OTxyoM4CIM7JerygtE1SZN96LFM5qUKHCn4iSS/5ASB64I2M9V+JA7lURB/jOmqcKKXAgqDpQoqEAcoiD/IbXnQCoktTFD2UU5mzxvowcg8J0NDAwAGO8xoIbhfR+BEgdlihbHaFKiwIVy4UPlUOLAHYH6uQofcqFM+FA5uO85mCBhRUoUlMHi1y6eREHp5zmhxAEjJLUtw9pFsXoMBgcH7X8Y9k1QJ6zCL0oclCk6fqNJiQIXqoUPlUOJA3cE6OdRiAJu8BQFpv/QCe57Dmo8rEiJgugJNJ5D7TkQGkltSiZ2Uc4mHxoaClxE4DvMZDIAAGLlboRawTMOKXFQpuj4jCYlClwIKgoclDhwJ05xoPYUuEINI3BfjSSsqAbFgRIFFRDEU1D8ZRVWJCSS2pLM7KLcgcNGiDE48F3mL0qJv/ChcihxUKbo6I0mJQrcCTWJ5AtR4sCVOMSB2lPgip/wobJlqFSmrpQTB0oUVEBEUVBaDieUOPCJpDYkS7vIWazPZrOBywh0p5ZlwbLsB0ANhg9CiYMyRUdnNClR4ILfPQXVUOLAnSjFgdpTMB6fewqqoVKZulMqDpQoqIDgoiBfngorih9JbUfmdlGuK5qmGVgcBLrbIhcF6xdCiYMyRfM/KlyJAhfChg+VQ4kDd6IQByp8aDxVUpIGRaUydYdSmv+jREEZJBEFdqEqlWmsSGozcrGLCooMus8g0B3zOvZdoRASXoOOzAOyzOKAZ915hg/Jisz9nDcibL4PAu9DRHm2ixrPawtJRQE3GLw6ge46kUiM/Yf1HEg4KmPecK4311V3znD1dlCL30SiERAeK2NEA0kk2ZfrwHuS4tnXefdzXedXf9Pku3BicXqumgboOvMxhmiE68oy1xV3zv2QEMI3YxVvryHPMZ1j2/Mad7nMEzkoby+nzMjqHY+AlpaWQN8L1KK6ro+JgwTDhxKFKJD05YpCFPC+hrTiQNfZDvpE4zqJSCsKNI5hIW7X4nUfFpVSHBBdZyoOHFHAy4MiuyjI/1uJA3d4igPW4y/HdlaiwAOSigMuNlHutSGEQA/YzwO3ZiqVsv+hA9AYvGRKFFQoPjpPgRIHZWAoDpQocCEObxiva+b6ocziIHQ5ShSUxa1NlDgoA69nwdBjSzh42hyUKPCBxOKApV1ENbusZDJ4/w4vDDRqvxRhxYESBWWKj95gUuKgDAzEgQofEgxeIo1a0oYVEV0HSSYCjwNKFJSnUpsocVAGgcOKVPiQYEgqDpii2+9ic3Nz4CICt2JjY2OuEnZjBRYHhIGoqIakL1ecewqUOChDUHGg9hS4E2X4UDnUnoNxBA0rUqKgPF7aRImDMogoDlT4kJhIKg6YpYlO2HWMRRhMmjTJrkRyrKF8iwMVPlSh+Pg3GitxUAa/4kDtKXBHgD6eR+05GIffsCIlCsrjp02UOCiDQOJAhQ8JzkQWB7nF+qAbj4EQwqCtrQ3AmDpx8CUOlCgoU7w4BpMSB2XwIQ6UKJAEtedgHF7DipQoKE+QNlHioAwCiAMVPiQJEouDMHaREB4DJMc3UF4cVBoQVfhQmeLFEQUOShyUoZo4UOFD5RGwnwPgF1Yk+Z6DSmFFShSUJ0ybKHFQhhjFgRIFkiGpOAhFzibP2+gBYBBK5H56K3Hyv7sNjLwPABL1gVVBRFHgoMRBGcqJA6LxbTNZRYEIewqqocKKxlFOHChRUB4WbaLEQRniSGWq9hTIiaTiIKhNRFO2TT59+vTA1w7cYs5FaZ27MHAYJw547ytQp+BxQ4mDMriIA8JzQ6vMokAWVFjROEr3HChRUB6WbaLEQRk4pjItbRe1p0BRFsHEQazCYNasWXYlqggDoEAcKFFQoXg5jCYlDspQKA5kHoxlrjtrVCrTcRTtOVCiwBUebSKtOOANp2dZuNCjwodqAFn3s8K/TeTY5DELAwMU1SvOdQUVkDZ8COBnbLM+OMNBiYMy5MSB1JuNeSGJ8B0HzzGLo+fANqw5iQMisSjgDK82ASDnO8Tba8CxbJJIyhs+pBjPBBEHNGUAiEkYdHR02P9IUCBRvUG4vgTUAniuvnGGhyGcb29qMS8/X54gL4Lfcqlp8plQeLcLh2cZGTzrzet5AvxX8ziIA6c8XuKAGgZo1gA1DPZlRyEKeJVvUVCTT3+hpu1l4lM4X+OU63ibm+N4QHm1NzgvfvHEaW8ZBQ3POlOa+8PhGj7sOJowgSQFIQSzZ88OfMnAwqCurg7Tpk2zK1NfeYIoEgVcGo4W/80D3oMn64GisL48DEqezzN/CQ6CxnnJWE9WubLzXhrG7UJNM98e3D0qvOBRb2fy5rEyyaudS1euGIqD0nJYiwOayRT1Q5biIBJR4PRvjn2FtTigpsVvvI1oXpNxvM3/m9fCGiBXFEVpeTKJA96igFvZlvu/y328wR6PZ86cifr6+sCXDdUrFy1aBACwGstPDq4vLcuHZJWoeiUO3MthJA64P0+X6zEbmEvFkpFlM1nlvBCF9WQ6WbmUwytMrNz1mMGyzqUreizFQdRuftHDiiyrSBTky2a0Ss5dFNAS45p1Xym9HCNxUCQK8j/kN66wZFxfYSUOCkRB0bU4j7dsinYpRwZxIJMIKCVKUcDSa+DWD6t4sazGLABgwYIFoS4dqkcuXrwYAEBzlSml4svKovHKlj1xxUG1Ng91cAbv51nt2mG+X+aFoqYZLhSlQpswmaziCh8SXRyUGyBZGHxxbQgMKQ4qfTeUOLAsO3yoXLtSK3y94/CCseor5S4bUhy4ioL8L8OPKzwp11dCiwMXUVB0zTD3VSVkg8ncLCOV2lR0wRBH/ViIgwrfryQOHI/B/PnzQ12eiTCwmtyFQdXGCf0SV3jRJqA48DQwBjQ0vZbNk1DtUv6X9mp/0AmrSnuGmqw8PKsJGVZULfY3jMEXd5aQgOLAy3dCGe9V+jjNBgspEmKjcZi+UoWg4qCiKMh/KPi4wpOqY1bQsbaCKPB67Qpf5OqFrVquqF4DL98VVRxEsaeg4u/5vZ/l+pMQHoOjjjoKAFA/XR+XmcjzCxZkI4vXzcYTSBz4MkB9igO/ZfOEW7sE2XfgcSIJKg683uuEEgdeNwQGEQdxi4KCevgx4n191u+GSsuClSmz8FP6UY+fy9clyvChap8J0le8VsOnOPAkCvIfDjB3csTXvO8HD6IgcNk+5sPAi2peEE0c+PmOaOJAhD0FQezPEDYcJRSpaXbmsuXLl/u/dgGheuLcuXNRX1+PkZGRvAsDCGgI+RkI/TR4NWUXBlEGWfvDfgvnN4gL0i6++6EfcZDbV+C9aOpLBPs14CbEngO/Rq0fg08UUeDgURwE8i54bUcfoiBftmF4r7dIgtZvX/FbHY/iwJcoyH9JvkUbalFv77NF/YkC+Bz3A3jQfd+nH0QRB7yFBE9EEAX5z3Ns89J9Ng1ZpNNpNDU1Yd68ef7KKiFUL0wkEnllYrVkxn7By4UiSscrJIjHw1fxHlekgxXOL1Qlbnd1UEPPizjwKQoK6+SlXjzT5AUmbnEQtE28GHyiiQKHan08TGhQtfbM7SvwXa4fg080vPaVoMVXEQeBRIHni4sjCoq+4yEssDSxg+eyOYXV5stn8BlX4hYHItpZXuBsiwXzAHiPWAhEwfesZnsRZ/ny5dC0cH0odA889thj7Uq1pAEwMGqqvsxBDVXOExFncVBxQ1TIGEKeZfOE5wp5WXEQUBQUF1++XZmUzYu4xEHYe6pk8IkqCnKUM/5ZZDAq29dynoIwRlMlTwOvXP8FFQj3/Up9hROhRUGl7wo8DlcUBwEEwbiyy917CFFQVH6A38UOz74Sl6jgfd0w422174asez4lcLO9OB82jAhgIAxWrVoFAKAt41PZBcatofyGELmWyzGsCIh8AGaWos1lVYZl2Tzhkp3CLsRdHDC6H7c6svIU1FRYEct+WFq+4KIAgGtIEcu0puP6XIDwoXJYmez4uvMUBSxWDMuVweh9crt/Zp6CcvMmR5ilwC7sh7n/Myt7/A+ZjY9l55+wxHFKL6u+ErU4EFkUOJSm1c+Xzea9tywL045tBQCsXLkydJGhe9+KFSugaRpovQmaZDOhABg/QLM06GtIHDAufKx8lvcRYZuwzmddJA4YTVZjxRfUlUMbSS8OWBvupeJAdFHgUCAOeJx1kBcHAcOHKmKaY3XnLQpYUtoPGVLYDszDh4rmTHnmIursJbD/w3bsKmkT1uPiuPmHFbzFQSEyhw9xLZ9fP2Ra9zoTBw4cQCKRwOrVq0MXF7rnNTU1YdmyZQAAa3I6dIXGwTtujAcRDMjUNPlch8PA6ZTLs128xu8HKDh/1gGPdnHqHFuavOAF8ykXKNpwyBxq2auTIu7jqITHzchBoaYZKnyobLmWncqUe/gQaxwRyeu9NHMijFcfjym0NWTBXMbZ/BjLaQx3rsGlbN77DXj1lShsNt77CViPt85+Aw71ttpGAdgL9Y2NjaHLY9LrTjnlFACANYmDMHAghG15UYQVySZoHGRZSS0l5k3gIpZNNMbvTSGy9m9Z4WioAgDRdT7l8u6DsvXDCOos45gS6zkCIhOl50AGRNxk7AXWNmwB1iR7f8FJJ53EpDzGwiADSji+gDwaVtZNybINFrKKAtnauQCuBpkDz0Fa1rbnbajyMnI0wrzPEI3we44821nGOucvwd8IjmRsUYwh21go6/sjoSigoLDa7EX5E044gUmZTJ7esmXL0NbWBiQoaAvDfQZuKHEwBtHkGzAUkRD5xK3EQTGyigNdZ+Y5UKIgerjFu7ugxIFiHDxtEiUKXKFtGSBJ0dbWhmOOOYZJmUyeoKZpY16D9lEWRVZGiYNiRJ/IooiT5IHo7VqGmpuwJX0O0ooDjYQWB0oUlBBT+JASBzWE6ONg3OcvBC6bY1g5Z1EAAGa77S047bTToDNa1GH2JM8880wAgDl1FBQRxPPxEgeyZiwSddAQtV7VkLXecTIR+3c1ZBYHAY0+JQpKiDl8SOr4ekUxoo6DsgpqnvZeBKKAgsKaYi/Gn3HGGczKZfY0Tz75ZHs3dJ3FP5zIgRD5vAdqhZsdqh3HEfsKnurf45FVHARYfVKioARB9hTIuBlZIQmyvjs8vQQRiAIAoM0GUGehoaEBJ554IrNymT3Ruro6nH766QAAa2oE4USFyCYOgIlhPIlUF6/IWOccQk3QE6F/+0FSceAnpEiJgmjxm8VHiYMaQZT+qvYTjCciQeBgTR0BALzlLW9BXV0ds3KZPtWzzz4bAGBOiSicqBAVWjSGCJuSZc1CJClCTsxKHBQjozjwuN9AiYISIjhLIMrveUHIMahWiXsMVPsJxhOxKKCgaF1pi4F3vOMdTMtm+nTXrFmDlpYWO5wol1c1UmQNLeJF3IMHL5TBWYTQE7J6VsXUoDhQoqAEwc8oUHsOFKGQVEzXQuhQIdbkNI4cOYJJkybh5JNPZlo20yecSqXyysWcMcyyaH/IKA5qyYCScTVBUkNTaFHgoJ5ZMTUkDpQoiBbRjXopxqNaoZbmdhU65Ju3feF4AMDatWuRSCSYls38Kb/73e8GAFjtadBEjOEesokDoDYMKBknXBnrDMkm4Vro2yyRMRSOQRpTz8goCgQNH+JdVilSjUuyUwtzuwod8g1NWHjiiScAAOvWrWNePvMnvXjxYixbtgzQAHP6COvi/cHDxaP2HVS+Bk9kNKYUYyhxUAzP/hzBGQfcvAUyvueChw9FVaaDEgc1hqyigAcxhQ4VYk4fQSaTwZIlS7BkyRLm5XN52ueffz4AwOoYjn4TshsxP0TfRHAYDhd415nH4KTETLSo9ogOwcNOyiKb0JO4T4semuSKxO0tJTKKAl4IYEtSUJgz7VD9iy66CIRDnbg88bVr16KpqQm0wYQ1OV35w84KPO8wHQEeqG9ke3EolVfU8MBpB07twWtS95sGMcAFxC5vXPGc2iMKA5h1vS0KapoAtew2kcQLVPQMJRyfZFuB5zZ+cBxTSYhD/WIjir7M4xpR1Ju1zcfThvRhB1uT00C9iZaWFpx77rlcqsNlZmpsbMzvNTBn+diEHIU4YPFwoxQZLF+gKNx2+Q4uQUhUlJukJREHheVJJQ44wa09olwVZ1XvAlEAQEoPIVNxEPEiCC+jlecYwrjgyv8PSKkgkEIcyLwAJ1u9eYcO+bR7HW/B+eefj/r6eh414iMMAOD9738/NE0DnZSB1ejjJGTRvQdxeB5YDAJRv4w8xQEQ3miQLVyhAqwmYrdyhBcHkmz2LCKOvhf2XkpFQQ63nzGFQVuVPkcm4iAm40Z0cRCZKGBEufYUWhzE0fckFNIAwttrvO09N1u3gv1rNWZBJ2dACMF73/tebtXiNkN1dHTgzDPPBFDBa1BJAPAWBzIiqtKu+BzFNhq4UO6eOQ6MPA14YcVBDKKAe5gVT4LWu4wocOAaUhSSSs8x948IayM2wp6PUOkZhXh+Qhv/IiLoWM2NOERBld+d9ZUTAABnnnkmZs2axaNWADgKAwC4+OKLAQDW9BHQOtN/AbxTTfl98CLsUwjygsX1UvIOKwKCiYO4z1ngKA54nYgqnDiIeaIJ3B5xi1m/9a4iCgDY+w14eg4CthmXPi1ACIdoBi1XscxpPPXShqK1swh9LxBx1zmI3RbFfgK/X6sz8PDDDwMAPvKRj7CuVRFcZ6kVK1bgxBNPBAhgzB4s/qWfhuHpPRDB2PeLnwFChINDRBIHcRtmEeB3kvb6eeHEASe4tYcofc9rvb2IggJEEge+nqEoY6kPRAkpknFMEM7g94Iofc9vPUSptx9E2U9Q8llj9hBM08TJJ5+MpUuXMq5YMdxnqk984hMAAGvGCGgq5zUIYujzFgeyCgRZEEEciJSaVJDDkKQ0BARoN9+fF0UUOFSrt09R4CBCpqLAnoAwv4+BuMUBVy8BJwPUb5sJISIE7HtVEc274cW+E2yTcdFXUyasGfa5YJdccgmrGpWF+2y1evVqHH/88YAGGHOGwhUW56ZkUYUDp/hLb9f2+TyiEAdxGWBB70sgIzfucnOFh/t9qEvzCcMSThR4IejEHnNYUZBnmA+FEcmQiZnYQgs5PoOgRn6s4kDEPimhiK6KgKFDhRhzBgENWLVqFVavXs2oYuWJZMb6+Mc/DgDQ52WD7TUoJI6UpqKKAodYshQEfA6UAlYMmUzi3lfA8/sViy7/nMJM7rGIAwFFAavvx0K5OjveAsng8gxFW/ksIQ6jVVhRUOH7Ydsp8nYWvN+VReQ6u9lxAnsJnO/TegNkTgYA8NnPfpbLgWalRCIMjj/+eJxwwgnIZrMw5g2EL1D0lKZxEFHefLtsBm0vQmiRSAhs9EZdbq7wyv9neimeYYqC98PSezdNUMNHeukyRO01YPYMC+ssspFTQJQhRcKKggoIEQ7kBxn6nVsdZah3IYJ7CRyMeYMwTROnnHIKjjvuOCZlViOSWYsQgssvvxwAYE0fhdUUfuIBEI/3QGRkezGjEgciewt4lTWu6DK53BmXyxSnPSQRBeOys4guChycOjPOLhOVOGD9DKUbRxGNOJBCFJSstLNsl0gEhkx9r3B8lqXejk0nspegAKsxCzo9DQD4zGc+w6zcakQ2cy1dujR/fLOxcBAUrFZ4IvAeyIRMLykwJg4EyWYSO5yNYB6pBYXYkByoaI6eFNn6XcDNxtXgfQAaj2coqzjgRezpSAOiPAURIGOdecLQFqWgWP25RaCU4uyzz+aeiaiQSGevz3zmM0gmk/ZpyJMzbAtX4iA6WKvtKM474AUPA1A2cQc5Y+y5Gg6SPT8g1x6M+zPRdW7vCK8+J51BKSu80pHqOpdnKOsCiCIiGNugVnsazz//PJLJJD73uc8xLbsakQqDWbNm4X3vex8AwFw0AEoYv2jKexAdPFxxShwUI2NbSAbXEAzZnh/RbEOeVXFKFESGdMJcMg+xEgWKsnCwOymhMBbaZ39dfPHFmD17NtPyqxG5v/vjH/842tvbQRtMmLOH+RmYCv7wiNXjHVrECyUO5DNOcihxUAKDvqxEQTRwDfPhhfIUOAXLOT4obHgtRBNi28YNJqZMmYKPfvSj7K9RhciFQXNzMz7/+c8DABJLs/ahZ0ocyI0KLbJR4oDbPgbeKHEwRlijXomCaJDtHQPAVRSwRta9FYoI4GVfEgKaMpFabqeLvvzyy9HY2MjnWhWIZYfc2rVrsXr1aqTTaRgL++0fKnEgNzy9BzLB65A12dpBQpQ4GCOwcc9RHCtRMIYSBTkYh785qNAhRVk4eQlACCgojEX9GBkZwcqVK7F27Vr21/JALMKAEIJ/+Id/gK7rsKamYbaPOr/gt/qskBMZxQGgxAHkNF6UOBgjiDjgsYFZiYJiZHyvuIkCFTqkiAoetmSJzWtNScOakkYikcA//uM/RnKYmRux5dRbtGgRLr74YgCAsbgfVC94YbhtbJVwQJUN5TkYQ2UsktKIUeJgDD/igCSSShRwRrr3idd4JaMoUMgLLy9B4SV0C8YiO4LmIx/5CBYuXMj+mh6JNdn2pz71KcydOxdIWTAWlpyIzOsQCiUOooGHOLBMtmVGgdp3IJ8xAyUOCqkaqsEpnAPg13eUKIgAjpmHlChQREYEogAAjAUDQMrCvHnzcMkll7C/pg9iFQZ1dXX46le/CkIIrBkjsCalx39IhRfJCxdhJ9eKOQAlDiChUQMlDooo14cdI02i0DklCiKAk5eAhyjgtslYxrlKMUYEoUMO1qQ0rI4RAMA111yDuro6ttf1SezHc65atQrvf//7AQDZo/qKQ4oKUeFFcsJa2KmMRcVI1A7SGTfgLA4kolxIEU9RwKONlCiIAI6hQ9I8P4nGZUUJHNOQul4uYaH1DHsMfd/73ofjjjuO/bV9ErswAIDPfvaz9gEOdRaMxf3lP8hrI4YSB/xR+w6UOICcede5iQPTlOrZFYkDJ3xIiQKuyPauyLafgJunQCEnHDMOuV4OFMbifhw6dAjz5s3DZZddxv76ARBCGDQ0NOCb3/ymnaVo2ijMaSPlP6z2HsiLOgxNiQNJUWFFNo4YUJ4C/ihRALWfQBENEYYNFWJNHYU1dRS6ruMb3/gG6uvr2dYhIEIIAwBYsWIFPvGJTwAAUsdlQeuMyl9Q4kBOZAst4hUrywOJJiUZPQcKG25GNscMRLIhXTsoUSDV+KsoIMKwoaLL1hmoP9FOqPKxj30My5cvZ1+PgAgjDAA7RdOqVaswPDyM7NF9oKjywNTGZHnhtTGZBxw30jEvkxec2pbHJC2l6JDIqKCmyb59OYsCXv2MB2ojbA7G9aUW5Re+J1vb8kBG2ykuUUAoskv7MDg4iGOOOQYf/ehH2dcjBEIJg0QigW9+85toamoCbc3CnD/o7YtKILAnvxLPsQ1YPbfCMlgO0IVlcUy9JzzOvUskDliXG4nQEN24oBaokR37t8kofbCEngKnvqzrLVs75OE0jrFqD24hezIKLh7IZivFFDrkYM4fAG3Jorm5Gd/61reQSCTY1iUkwlklM2fOxLXXXgsAMOcMjZ2K7AVeAmGiw7sNmD8zToP1RBQHpfcsuDgoLYdFuTyNtXGhEqIaGW5CgIU4iFAU8OpjrIgkxEXU/sURrqJAMd4+EN1milEQAIDZPgpz9jAA4Otf/zo6OjrY1ocBQlokZ511Fj74wQ8CAIwlfaD1VfYblKK8B+wRVRxU+l6Ygbvcd0UVB1GKC0HFQbnvhyk3UlEwdlFu1wxKWQEQRhzE4Cng0ceEFZ/lFkhEHcPcCNlHyoqCsG0g4DsaObLZRby8BH6qUGfAWNIHALj44otx+umns60PI4QUBgBw+eWXY+XKlUCCIru0F1Tz+UDVuQfskSW0qBCZ3Mc89h3wQlBxEHW5Qam6qVIkw0OkusRIpT4kqvicqHDbT6BCh2xksoNiDhvKV0OzkF3WCyQoli9fjksvvZRtnRhCKBX3CXd3d+PTn/40ent7oR2sR6KzDQQBDMeYNphITbU243n/fp6X13r4Nbi9Dv4iZBiKuw6cru8nI4lX44pHmX7xlWklbqHo1SPgnGvgp9wYDWK/2W549C8/5fos1Nvn4h43/OAjQ5Gv0CE/baAEgY2X+VkU+yhmD0G+GqAwju6DNW0UkydPxs9//nPMmDGDbd0YIvTy5LRp0/DP//zP9vkG00dhzh4KVpBKbeoPL/cmgufAz3OVKWMR4H3CEmFyj9l74Me4int11nf6xTiNET9hQn4/G/NziLvPqMO1+KD2E3DEz8q7CPaRIKIAAMzZQ7Cm2ecVXH/99UKLAkBwYQAAJ554Ir74xS8CAMz5g/42IxeiMhexJ4rQIpZ4dQP7nQTiFgciIFFokZcy4zZci4jDKAmyd8DLdwQQBQ48+kGsfUsU45XTXoPKv6bBREG1z6vQIRuZ7BwB9hIUYk5Kw1poL2pfddVVWL16NatacUMKy+Oiiy7Ce97zHoDAdsc0ZoMXpjIXsUcE74EfKg30QScBnvsOoiZMG3CAR2w3r3jxSoQ6rCli4yTMhuJKG/dFEQVekKlvBeofkhm8FZML8Bh/JWsfLsi2+CnAXoJCrMYsjKW9oJTiggsuwIUXXsiwcvyQQhgQQnDllVfi+OOPB3SK7PJe0GTINHnKe+BO0HuI2nsQ9vnJlNK03KZkET0KEYoDUTPMcCMiQyVsClLXTZ+CigIemaz8XotBwfF8txIRjU1MQoeizNwkEzLZM6ztDwYLkjRlInvMESBBsXr1alx55ZUgouy9qIKAloU7iUQC119/PWbPng3Um8guPwKqhXx5VeYi9sgUWgTIIw4AMYWAGzUWVsSCUN6CCGGVyaVUXIgoChx4nH1R7RoMC+ZTroiUiEu1n4ATrGyYKOwgwcKGHKhmYf6HJwF1FubNm4dvf/vbSKVS4esWEUJnJXJj9+7d+PznP4++vj5oh1NIbJkMQhlMuipzkQ1r1S0LRJMnFMipZwyxvL7gmK2ItaHFo8zCshkXyLa8HKzTOxJdz79XIgsDYOwZsawnjzKLEP1d5Tmesi6bV7myIaCR7YrA9hoFhbG8F1Z7GpMmTcJ//dd/YdasWUzKjgpJliDHmDt3Lm644QbU1dXBas/AWNwPCgadRHkPJjYyZS2S5bwD5Tng4ymQ5GwOapr2H8FFAVCweVXwMgsK51MuS3iJDUn6v3TIIgp4wFIULO6H1Z5GKpXCd7/7XelEASChMACAFStW4Fvf+hY0TYM1YwTmvEE2BcvUkXnBcrOvI4wmsjiiHNzdMu2PkAUObUo0wtw4Cpx9xUO5zKEUsELuBSuBaIS92JLNKJTh3ec2RnHqp7IgQ115JAwpROA2MOcPwuoYASEE3/zmN7FixYq4qxQIKYUBAJx22mm4+uqrAQDm3CEYMwOecaBwh/XLPZEFgmMgiZw1Q5YwKh4U3rvo4Rk5mImDwhSjLOtb+K4zatNCQcBMHPB69jyQTcCwhqcoEH1u4jV/svQ+OzaDLB5tgKmdY8wagjnHtkOvueYanHXWWUzKjQNJnp47F154IT796U8DAMxFAzCnK3HAHJXaNTil98rLe6BgC4M2LTJcGU2SrptkQ2akGecpYFFXDv0+spAsUd+nKOrF6hq8PQWsNsbKMheJLgiACS0IQCnM6cMwFw4AAC699FJccMEFbMqOCUmeYnk+9rGP4UMf+hAAwDx6EOaU4ZhrVIOo1K7sEFEcKG+B9597wDWEKGR7RJlWk09sePB6lhMFMp0LEYqJXlfWc4Usc0+5eTJs/ZkLAvYhk1xhHAlhThmFtdQOZ//Qhz6Ej3zkI+zKjwmJnqY7hBBcdtlleO973wtKKYyl/TAnj8jz8suCOhiOHWFCiyoZsjIZEDIQtD3LTZI8swn5/hKnTEGV3ukA7RnL5m2R3qOo6yLSAY+VFpCCzB3VFqREmo+Ul4APjPdPmlNGQVcOwrIsnH/++bjsssvYlB8zEj3R8hBCcNVVV2HdunX26cjL+mBOTk/slWleKHHADhG9ByyQZaLw0lY+27OqIeuzbbxmtvGVatSLKAjyDKu9yz77uxdR4Fs4iPB+eEWWuiovATt47iVgWp5EXoK8V4NRWvvc8zHbbVFgmibWrVuHa665RpoDzKohyZOtjqZpuPbaa3H22WcDGmAs74XZPmr/UgkEtqiNyezwYyyx/pzfz05UPLaR5yxEvDwHHj0Anj0Ffurp9f31+Dk/Br/nz8r0XsR9fa8oUcAOXvWcyKFDrO2UHGZ72l6ANk2ce+65+OpXvwpd19ldK2YkebreSCQSuO666/LigK4ahDlldOwDXl68GlF8kaC8B+Xxcy8c0jpKY1jEhd/24XWgUsVLBgmXYBwm48UA8PveVqlDkPChqt9hGbbHm7jfXR4LEJ6vHbMoiGsOUqFDbOGRdj2HOTkNHDsIaMDb3/52fP3rX68pUQDUmDAAxsTBueeeC9M0bVVXKg5qyQCNG+U9YAcPcRC1kSHDpBGUam3p9945tFXFTEVB9xWwriePELqK15NIJMtQ16j3E4QpU3R43DePFKSaLsfYzlEQAIA5dRT02AEYhoGzzz4b3/jGN5BIJNhcTyAkeNL+SSQS+PrXv461a9eO7TmYNlL8oSgNUBkGqLDwEAgTEdbiAKi8YXkiEjLFpxuE8YpRmI3B5cRB5JuNA3wvzGZjaU6ZFuFaQZHBS8CrTNaIvpdARA9BuTaLwP4wp4/AWDoWPnTdddfVpCgAAEKpDG9QMEzTxPe+9z088MADAIDEthbo+xvdP1zYqbi8sBMkREm1HZs2KI3jZDEhlw7wMYTHxA6rey6419AnHJfUiZUBX1QvFlmIig4DY/Sea2OCioVhP+4eebw3PBBNFLjds4iioHRuYDX28oRXHcOOQYX1csoPWiav/uzWdhEsSJozh2Ests8puOCCC3D11VfXXPhQITUtDADAsiz8x3/8B2677TYAgL6zCfruJhCU6UxOJ2Pu3pPMuA3LRG4/VvdOig07NmUyLs+tbJFh3I6hRUEhuboxFwYsU5M67cdYGLBc7c/fqySnWAsnChxYL0wUwnKM5Fkma3jUkcmhhAXCgMXm4iiEQQSCgILCnDMMc4F9TsHFF1+ML3zhCzWTfagcNS8MAIBSit/85je4+eabAQD6vgbo21vKiwMe1HhHKgvL7iVLG4p+zzljkXmZosPhnlkLA9bhPkQj7EOIWIe7aTp7YSBL/xZVFAD8FhFYj48yLELxqiPjRQnm5bGG0shClikozEUDMGfZYeif+MQn8MlPfrLmRQEwQYSBw2233YZ///d/BwBoB+uR6GwFoRE95AnQmVyRYdBmzUQMp5qIwgC5vQUM7z3QYWVRUhpywAIZhAHAYRO2wKKAF6KbG7zGWdZiSOTxVoZ+XeV5UEJhHN0Ha1oaAHDFFVfg4osvjqJmQjChhAEAPPjgg/jud78L0zRBepNIbp4EYkb4kolu4LFmIgoDYGKJA5EnqUI4TVgTShxMRG+BA49+LoMRxQIZzAwZQogAsYWByP3Z4zOguoXsMb2gbVkkEgl84xvfwNvf/nbOlROLCScMAODZZ5/Fddddh5GREZAhHcnXJoOkI95IIqqRx5qJKgwcJsL9izpJFcJ5wpoQ4oC1t0AmUeCgvAb+Ed3EiGJMrXVhIHI/9tH2NGUiu6IXtMlAY2Mjvv3tb+PEE0/kWDkxmZDCAAA6Oztx7bXXoqenB0hrSL42CdpQMvqKiGjosWQiGMbVqPU2EG2SKiWiSaumxYESBTbKa+AfkU2MqMbSWhYGIvdfH+1uNWeRXd4L1Flob2/HD37wAyxZsoRf3QRGoN4VLUuWLMFPf/pTLFy4EKizkD32CMz2dPQVEXnQVLCBxwnRqt8IB4+Nw0LAYV8B83uLyjgR2QgSDZHHKdZ57ycicRyg6RWffc+cMgrtlCGgzsKCBQvw05/+dMKKAmACCwMAmDFjBn7yk5/YriKdwljeC2POECgiHsxEHkAVbOAxEak+U52oD6hinCJTCHHAYbMxS4TyrChsRB6blCAIRw0JAgoKY+4gjOV9SKfTOOWUU/DTn/4UM2fO5FhJ8ZmwoUSFGIaBH//4x7jjjjsA5DIWbW0FsWIaQGpt4BI9fWeU1NqmZJFc2m7EMIGxDinikcbU63WFz0AUhyhQ4USVEdmkiGusZByGFwsi99EA7UsJhbGkH9b0UQDABz/4QVx++eU1e5qxH5QwKODOO+/EjTfeaGcsGkjYGYsyMb2EshvAhShhMJ5aEQhKGLhSE+JA9H0FcXoKlDgYj+imRJxzh8zCQPR+GUQUJE1kl/eBtmah6zquuuoqvOc97+FQOTlRwqCEDRs24LrrrkNfXx+Q0ZDc3AZtIBVfhWrBEK71zbdBqQVxILIwiHlCYyoOohYGrEUBIXZ7MCL28CElDIoR2YyIe74QPBSvIqL2yRBtarVkkF3WB9RZaGlpwfXXXz8hMw9VQgkDF/bt24evf/3r2L59O2ABiW0t0Loaoj0p2Y24B7igKGFQGVnbR2RRAAgxqUkrDlieV1BrosBBpS61EdmEEGGukDEjkch9MWB7UlBYM0dgLBoACDB//nx85zvfwdy5cxlXUH6UMCjD8PAwvv3tb+Oxxx4DAGhd9Uhsi3HfgYMIA10QVDhRZWQUB0oYeIIkGKZBjkIcsPQWsBYFUaUl9YISBuKKApHmCJmEgch9MEQ7Uo3COGpsP8HZZ5+Na6+9Fo2NjaxqV1MoYVABy7Lwhz/8Ab/4xS9gWRbIUAKJLW3QRmLenCLSoOcVJQyqI1tokcjCQKQJjmhMjWOu4kBgUQAI5C0AJrYwENlsEG1+kEUYiNr/QrafVW/AWN4H2mRA13Vcfvnl+OAHPwgiWj8RCCUMPLBhwwZ861vfwuHDhwGTINHZCr2nPu5q2cjSuZUw8I4M3gORRQEg3iTHUhxMUGEglChwmIjiQFSTQcR5gcdYPlH6HIO2M9tHYRzdDyQo2tvb8a1vfQvHHXdc+LrVOEoYeKSnpwfXX389NmzYAADQ9zVAf7MFhAoyGIk4KBaihIE/RBcHIgsDUSc60cWBEgX+mShGmoOo5oKoc4LI3gJR+xqDNqOEwlw4AHPWCABg1apV+Jd/+RdMnTo1dNkTASUMfGAYBm666Sb87ne/AwA7penrbSCjIUKLCJkYRrPohq6I8MhmwfgALmZQi+kmXWERVRwwzkJEGOYCF1YUABPDUHMQ1VQQeS4QVRiw7muUsn0OYbIONRgwlvaBNhsAgIsvvhiXXXaZOp/AB0oYBODJJ5/Et7/9bQwMDNihRdtaoB2sD5a1yEk9xiE9oHCILA5YDmyF9xm2TFZtlsshz9TIYjVJORlwWEx8ohtXADtxkLtXJuJAUGEg1GbjcrB4D5z2F3Hczp3ATU1TPHHAeswWxLgdBytRwLqfsZzrAPseA45FFBTWjFEkVmUwOjqKSZMm4etf/zpOPfXU8PWaYChhEJCuri58+9vfzocWad119mnJps+XtzAnsYjigOWAyaursa4bj3sNU2bYdisI62BuaLGYrApTY4adAEU3Ih1YiIOCew0tDgQUBlKIAoCNmOVhmLIgJwocqGHEWBkXZBj7WcBqXOQ1n7MSBUCgsYjqlp11aFoaAHDiiSfiG9/4hgodCogSBiEwTRN/+MMfcNNNN8E0TWBUQ/KNNmj9Pg5EK33hS19gFrAySkUdNB1Yr87zWO0PWmaYdis5cVYoceA2CYQ5wEcGQ9LBMbqCtp/LvQYWCAIJg/w9yPIswwqD0jMjRBEHJaIAgFheAxnGe1YEFQbl7AnWC1Vh267w3nyeoWK1ZJBd2g/Um9B1HZ/+9KfxoQ99CDrjjGgTCSUMGLB582Zcf/312Lt3L0ABfXcT9N1N3jcmuxlCInkPRFr9rgaPuokwiAZttzKbQIURB279PMzqmCzGZAGBD0Erc6+BxIEgwkAaL0EprPu/CLgJA4uyPfwuKKwXWESe04BgiyXl3mkei1NByyx9b3yMQ5RQmPMGQeePwrIsdHR04J/+6Z+wcuXKYHVR5FHCgBHDw8P493//d9x///0AADKYQOKNNmjDHibIci+9KN4DloNpVN1NlMGv2v36KdNv21XJDBO7OKg0CYRdIZOMQOKgyr36EggcFiL8hkpJKwqAYH21koEdtzhwEQUOQoiDuOexSuWxxu9YWM1uiHseA8rfj8dxyGrKwji6H7TJDm1bt24dvvSlL6GlpcVfPRSuKGHAmIcffhg/+tGP7I3JFqDvaoK+p6nyxuRKqwE8xAHA1iD1OyhE2eXiHgS93quXMv22W0kIkWuRcYqDapNA0AlRUvKGtNd79nC/nsUBa2EA714D6UKHysG678dFBVHgEGtIEev5RuQFLsD7OOjVVoi7/SrdS5X3goLCnDsEc94QQIBJkybhmmuuwRlnnOGvDoqKKGHAgZ6eHvzoRz/CE088AQAgAwkkOit4D7y4CeP0Hni5Js+VbxbEZcz7Kc9LmX7q5mWC52GUeTWQvKw6+hEHshuWOTx7DzzerydxEJMwqBlRAPjrp6zHVFZ4GDOAggUFUcdylmNu0HJZ4EcUxDVveS0v5H1YDQaMo/tAW2wvwdve9jZcc801mDx5srfrKzyjhAEnKKV46KGHcOONN2JwcDDnPWiGvqdxvPfAT/xgHAKB9SArw0qTCPdcrlwvZXnwFhQVyTpXfLVJwE8ogpfJsRYMywI8iQMf91xVHMQgDGpKFADeDB+//T5KPIoCh1i8BnGJgjjnrBAr7K7lVSNAyGr1zwQXzRQU5uxh6EszyGQyaG5uxlVXXYW1a9eCxB1yV6MoYcCZnp4e/PCHP8STTz4JoIz3gOXGoqCwFAc8ymMNj/pVKjPM/ZaW68G1K0R8d8g40uKyPEyQNUbV0CKf91xRHEQsDKTeT1AOlmIYEF4YADGIA9ZjLK8xmxVu416YxUEe91upzJD7zqymLIwl/fnDytasWYNrr70W06dPD1JThUeUMIgASin+/Oc/48c//rHtPaCAvqcR+u5mEIuE32gZhUBgPWiI0u2iHCgjEgdCZYRx69dBNy5Wek9qzch0qJTSNOA9uwqEiIRBzXkJSmEphoHoxEEAUQAg2o3IUc1NYcpkSbnxLsy7GsXclP958A35VLMzDpmzhwECtLS04IorrsA73/lO5SWIACUMIqS7uxs33ngjHnvsMfsHIzqS21qg9daFz93Oe3My64FDpG7HS7ywbEO3Mt3K8xlCVEok4iCsIVHu7I9apdxhaCHvu0ggRCkMavl5sVzdBaIRBgFFgUMkXgPWY6noC1aA+zgn2pzk1o5hzvWwTFhtaWSPGgAa7HninHPOwZe+9CW0t7cHL1fhCyUMYuCxxx7DjTfeiO7ubgCAdrAeiZ1tIFkGBzvxFAiiDUo8iMOYZ0VIUeDAVRywMkALJ81aNjQLKRUIDO67aAWfozCoeU9BITz6Oi9CigIHruJA5jE5KM74xnJe53HPhWWGPOiPJiwY83thzRgFAEybNg1f/vKX8da3vjVUuQr/KGEQE8PDw/jFL36B22+/HZRSwCBI7GiFdtBlc7IfeAoE1oOJyF2PRx153rfHLERe4SYOWBqgpZPnRIDhMy6ES0iIxlbESAOPfs4D1uMFr5Ai1uOm6KIAkGf+ccoMIQooKKzpwzDm9wNJCkIILrroInzuc59DY2Mjo4oq/KCEQcxs3rwZP/zhD9HZ2QkAIP0pJLa3QRtOhis4rlRytQZLQcSTABuOK8Et5CPO8zhqCJbPGuBo2E3Q5yNDP2fehwyDaXnckGFMl6WOIb0EVnMGxsI+0JYsAGDhwoW45pprsGrVKhY1VARECQMBMAwDt912G2666SaMjo4CFNC6GpHY1QpiBHzxlDAQH9aDP6NQIgDs05cC/DwlrKGUbbnOfbMsk4PngIthN9GEAc8xl3VbsvQYsA4lksEwnqiw8BIkLBjz+kFnjoBSiqamJnzqU5/CRRddhETA5BkKdihhIBAHDx7ET3/6U/z1r3+1f5AlSOxqhdYVILxICQPx4eHSZiAOJrS3oLCOrMrnUWbBpMzMuFPCIBxRb8BlUmZ4ccBUFMgQZjqRCbmngILCmjEMY54dNgQA69atw2WXXYYpU6awqqUiJEoYCMiGDRtw4403Yvv27QAAMpSww4sG6rwXooSBHLDO2BQypEgaUQDwFwasrsGjTJdJObSBp4RBcKIYawXca8AsBE2GxBQTGQbZh6yWNIyF/aDNdtjQokWL8A//8A9YvXo1ixoqGKKEgaAYhoG77roLN910EwYGBgAAWncDEjtbQDIeXW1R5ZdWhINDfu6g4oCLMIgqWwkLytU1zLV4lFlmUg6VdlIJg2CIcsBX4DJjOsNAhpShEx0GZxTQOgPG/H5YU+1sQypsSHyUMBCc3t5e/PKXv8Tdd99tZy+yAH1fM/S9zSAm45M2FfHB4URPIU4/BuT1FrC4Jo8ygaoTcyBDTwkD/8QxfQqwETmUKBD9YDFF9T7mQRhQ3YI5ZwDaggyy2Sw0TcP555+PT3/60+pMAsFRwkASXn/9dfznf/4nXnrpJfsHWQ2J3c3QuppAaLmVFxVOJA1eJnu/z9KnOFDeAg919XtdHmUCniZmv+JACQOfxDW2xuw1CCwKqtVbzVXx47VvVRh/KMntI5g7ACTt+eSkk07CF77wBSxevJhFLRWcUcJAIiilePLJJ/HTn/4Uu3btAgCQER36zlZoh+vdNygrr4E8+Jnwvb62HsUBlyxEgDzeAsBfXb3Wwcdz8n5tf7G9ng0+JQy8E/e0GZM4CCQKeCx6KNjitz+5jEEUFNbkNGata87bJ/Pnz8cXvvAFnHLKKSC1OhbUIEoYSIhhGLj33ntx880348iRIwAA0p9EYkcbtMFU8YeVMJAL1ivScQoDmbwFQCCPTCxlBsgG4kUcKGHgAVGmS9GFAY9FDgV7GIUyWq1pO/1oq72xuK2tDZ/+9Kfx7ne/W+0jkBAlDCRmeHgYv//97/HHP/4R6XQaAKAdroO+q3XsgDQlDOQj6GBdaZNrmUmf276CSvUJS1xhRG7wCo+oVG6I/OGVDD8lDKog2lQZsTioKgpYj1sKfoTtO7kxyGrK2oJgsm1/pFIpvP/978cll1yClpaWsLVUxIQSBjVAd3c3brrpJjzwwAOwLNvI03rqbYEwoqmBVzY4pcgs9RwoUVBAyBSxkZYb8rRRuwgXkaiEQXlEHEMjTF9aURTwyNil4AOjVMlWvQFz3limIV3X8e53vxsf//jHMXXq1PDXUMSKEgY1xM6dO3HzzTdj/fr19g8ooB1sQGJXE0g6eG57RQxwOnm3UBwoYZCD9eFMrMsuLZeBMLCLKTH+lDAYj+jTI6f2HTdOFIoCHgf/KfjC6JnRlAlj7hDI7DTMXPjpueeei0996lOYM2cOk2so4kcJgxpk69at+OUvf4knn3zS/oEFaAcakNjTBJJRAkEaOImDvGGpRIENy/ryOM26tFxGwmCsOLtsJQxKkGVq5CgOikQBj/FIwReWgmDOEKwZw0Bu+HnLW96Cz372szjqqKOYXEMhDkoY1DCbNm3CTTfdhOeff97+gQXoBxqgK4EgDzIaVhNZGDgQwr5c5/4ZC4M8vPYjqT7MF57tSyn78mVqW1lhKggGYc0YyQuCY489Fp/73Odw7LHHMrmGQjyUMJgAvPTSS/jFL36BV1991f6BBWhdOQ+CCjESH9kMK55DikzigAeFHh+W8D7zRJY+LEs/cJClXQuRrY1lgpUgqLMFgTYnCyPnSTzuuOPwyU9+EscffzyTayjERQmDCQKlFC+88AJ+85vf4OWXX879ENAO1kPf3QRtVKUUExY1+RczkcWBEgZ8kOHZlyJ6m7ohYzvLADNBYORChkbgHIt0/PHH45Of/CSOO+44JtdQiI8SBhOQDRs24L//+7/HQowooHXnBMKIEghCooyAYiaqOFDCgD2iP3M3RG7PcsjYzjLAoC9YjVmYs4dgTRvNC4KTTjoJH//4x7F69erQ5SvkQgmDCcymTZvwP//zP2OblGnuHIQ9jdAGUpW/rIgeZQyMZ6IJBCUM2CLqc66EqG1ZCRnbWVRYeQdAQVtzgqA9nf/5mjVr8IlPfAKrVq1ich2FfChhoMAbb7yB//7v/8ajjz6a/xnpT9oC4XAdCCSciGoVGY0CQE6jU8ShUQkDdoj4fKshYjtWQ8Z2FhUGz5+CwmpPw5w9lD+pWNM0nHnmmfjwhz+MpUuXhr6GQm6UMFDk2bFjB2655RY89NBDyGbtAYMM69D3NkI72ABCJZyUahEZjQNAXsNTlCGSlygAJpYwEOV5+kWkNvSKrG0tGiwEAaGwpo3YgqDRzkCWSqXwzne+E3//93+vziFQ5FHCQDGOnp4e3HbbbbjzzjsxODho/zCjQd/fAH1/I4jByThReEdGIwGQN7QIiN/IUcIgHHE/vzCI0H5+kbm9RYGFIEhYMDuGYc4cBlL22TVNTU1473vfiw984AOYMmVK6GsoagslDBRlGR4exj333IM//elPOHjwoP1Dk9iZjPY1qo3KcSOjseAgqxEa53CphEFwZJ3m4m63oMja3iLA6JlbjVmYs4ZhTRs7g2DKlCm4+OKLceGFF6KpqYnJdRS1hxIGiqoYhoGHH34Yt9xyC7Zu3Zr/OTmSgr6/EdrhlNqHEBeyGg6AvIZoXEOmEgb+kXl6k/XdlrnN44TV/oHJaZizhkEnZfI/X7ZsGT7wgQ/g7LPPRjKZDH0dRW2jhIHCM5RSbNiwAbfeeiueeOIJWJbtlsSIbocZdTWAmCrMKHJkNSAAFVrkByUMvCP7tCbrOy17u0cNqwxDumXvH5g1DNpg7x9wNhR/4AMfwMqVK0Fk7VOKyFHCQBGI/fv344477sA999yDgYEB+4cmgdZVb3sRVJhRtMg+6MtslEYxhDr3IKswAKLrozJPaTK/xzK3e5QwfMZWYxZmxzCs6aOAbrd/c3MzLrjgAlx00UXo6Ohgdi3FxEEJA0UoRkdH8dBDD+HWW2/Fm2++mf856UtC398A7VC9ymYUFTIbFYDchmkUdeclCoDaEQYyT2cyv78yt3tUsPIOEApr6ijMjuF8ulEAmDdvHt7//vdj3bp1aGxsZHItxcRECQMFEyileOmll3DbbbcVhxllCfSuBmgHGqCNKi8CCJF7dZwnUa6884LXPSiPQXVknsrUe1u7sBIE9QbMGSMwZwwDSbvNdV3HGWecgfe85z04/vjjVbiQgglKGCiYc/DgQdx7772455570N3dnf856U1BP9AA7VDdxPYilA7erF9BWSeHqIYiGVeuS+vMWiAoYRA/Mr63vIWw7M8UCPVcKcltJu4YBp08tpl4+vTpuOCCC3D++edj6tSpLGqpUORRwkDBDcMw8Mwzz+Cuu+7C008/jXxXyxDoBxugdTVM3L0I5SYLVq+jTEZGnFl+eMLyvsrVlZVAqAVhAMhvSE7U95b3eBgXAZ+n1ZCFNWMEzcck0dfXlyuK4OSTT8Z73vMenHrqqUgkJujcqeCOEgaKSOjq6sI999yDe+65B4cOHcr/nPQnoXfVQ+upn1gZjapNGCxeS1mMjLiHIBkEQrU6hhUIUQgDQI62jhsZ3tsoFjAm2LOkumXvHZgxAtoytndgypQpWLduHS644ALMnj2bRy0ViiKUMFBEimEYeOqpp3DPPffg2WefhWnaqdVgAtqheuhd9SB9E+RcBD8GQNDXVHQjQ5ThR/TVbD/1CyISlDAQC5Hf27Bt7OXeauE5erhPCgramoU5YxjWlFFAt3+u6zre+ta34vzzz8fJJ5+svAOKSFHCQBEbPT09eOihh3Dfffdh586dY78Y1aAfbIB+sB6k1jcsBzEA/L6ytWxk8EBE49VvnfyKAyUMxELUdzaKBYoJ8AytegPW9BGYU0eB3LkDADB//nycf/75eMc73oH29vYoaqlQjEMJA0XsUEqxefNm3H///fjrX/+KwcHB/O9IXxJ6dy7UyKjRUKMwRoDX11dEQ0PkoUc0D0LQ+ngVCLUiDACx+5UfRHtno+ivNfzsaNK0Q4WmjRaFCjU0NODtb387zj//fBxzzDEqs5AidpQwUAhFOp3G448/jvvvvx/PPffc2IZlC9B6U9C66+2sRlaNiQQWk4GXV1mUSUeGYUeUA7lY1KOaQIhKGADKa+AHEd7XqBYfauW5FbQD1Sis9lFY00ZhTU7DiZDVdR1r1qzBO97xDpx22mloaGiIqbIKxXiUMFAIS3d3Nx5++GH85S9/weuvvz72C5NAO1Rni4TeVO2kPmVtBJR7teM2NmQccuIUCSyvXU4g1JIwAOTsY+WI832NQrR6uY5EUA2w2jKwpo3AmpLOn0gMAMuWLcM73vEOnHPOOSpUSCEsShgopGDnzp3461//ioceegh79+4d+0WWQOuph95TD9KXlH/TMi8joPQ1j8vYkHm4iUsc8LpuoUhQwkBs4nhfeYvUSteRDEooaFsG5rQ0rPbR/AFkADBz5ky84x3vwNq1azFv3rwYa6lQeEMJA4VUOPsRHnroITz88MM4cuTI2C8zxM5s1FMnd2ajqEItRDE2ZCNqgcD7ekSrPWEA1EZfc4j6XS1sO57XlvgZURSIgSnFYqC9vR1nnHEG1q5di5UrV6p9AwqpUMJAIS2GYeDFF1/E+vXr8dhjj6G/v3/sl9kSkSBjuFEtTia1MtyoZxMcJQyCEWW7Ka+OK7YYyMKcOmqLgdTYPUyaNAlnnnkmzjnnHBx77LHQdT3GmioUwVHCQFETGIaBl156CX/729/w6KOP5k+LBGCLhMN10Hok3JOgDFAxUc8lOFG2XS30NaD2+ptEz4VqFNakNKwpaVjt6SLPQFtbG8444wycc845WL16tTpvQFETKGGgqDkMw8DLL7+cFwlF4UYmgXYkZQuFw3VypECtNaMAkMowGEctPg9ACQMRqcW+JsEzoQkLVntODExK5w8eA2wxcPrpp+Occ87B8ccfr8SAouZQwkBR05imiY0bN2L9+vV44okn0N3dPfZLCpD+JLRDddAP14l9mFotGgiAFEbCONSzCI8SB9WpxX4m8LOgdSas9jTMKWnQtgwKt6h1dHTgbW97G972trdh5cqVSgwoaholDBQTBkop3njjDTz++ON4/PHHsW3btqLfkyF9zJMwIGCGo1o0FAChjQVX1HMIjxIG5VH9KxIoKGhrFtbkNKz2DGiTUfT7xYsX58XAUUcdpTYQKyYMShgoJiz79u3DE088gccffxwbN26EaY4dTY8sgXakzg47OiJQyFEtT04yDEWq/dkQZ5YdUVF9izs0YeWEQBrWpEzRfgFN07By5cq8GJg1a1aMNVUo4kMJA4UCwMDAAJ566ik88cQTeO655zA4ODj2SwqQwYTtTThSBzKYiNebUMsGBCCMEeFKLbd91O2uvAZjqH7F59KgoE3GmFegJVsUItTa2opTTjkFb3nLW3DyySejtbU1troqFKKghIFCUYJhGHj11VfxzDPP4JlnnsHWrVuLP5Ah0Hpz3oTeFEg2hrR0tWxIAGIacqrN2aK8Bja12q9iam+aMmFNyuT+pItSigLAUUcdhbe85S049dRTccwxx6i0ogpFCUoYKBRV6O7uzouE559/HkNDQ0W/J0MJWyD0pqD1JUGsiMKOatWgKESU4Um1NR8msteglvtUhG1NNQqrLQOaEwK0ySz6fUNDA0444YS8GJg+fXpkdVMoZEQJA4XCB4434emnn8Zzzz2Hzs7O4g9YABlIQuvNeRN4b2KuZeOikDiHKdXG/JhoXoOJ0Jc4tzElFLQ5C6stawuB1ixQsBajaRqWLl2KNWvWYM2aNTjmmGOQTCa51kmhqCWUMFAoQtDb24sXX3wRL7zwAp577jkcOHCg+AMGgdaXAulL2n8PcdifMBGMDYeJYLzGxURp27imvFo7udjtujyKBQVtNmC1ZWzPQGsWSBRfq6OjIy8ETjjhBLVXQKEIgRIGCgVD9u3bh+effx4vvPACXnjhBfT39xd/wCDQ+pMgfSlbKLDeyBz3CmyUxk+UTARxUOvCoFa9Tm73FUW78hQCTQasSRnQtgwsFyHQ2tqK1atX48QTT8SaNWswZ84clU5UoWCEEgYKBScsy0JnZydefPFFbNiwARs3bhy3PwEGsUOP+nL7EwaTIFQyj0KlISRqgygKatUAqcX2rEUxUO2eJGtPquVCg1qzoK3uQqC5uRmrV6/G8ccfjxNOOAGLFi2CpgmSQlqhqDGUMFAoIsI0TWzduhUbNmzIC4WBgYGSDwFkMGl7FQaS0PpT7M9QqDWDpRYN2jiotXaU/X781p9HO/IQAgkLVqsdEmS1ZkGbi/cIAEBTU1NeCBx33HE46qijVPYghSIilDBQKGLCsixs3749LxRefvll9PX1jfscGdFB+h2xkAIZ1sUNPwoznLCoR62Hw/CkFlbXZb2HsPWO89qVigYFbTBBW7J5MUAbzXGfa29vx7HHHouVK1fi2GOPxVFHHYVEIsGtXgqFojxKGCgUgkApxe7du/Hqq6/m/+zYsWP8Bw1iC4XBnFdhMAmS5eRWV8aOf2QVCrK2WdxTWJC6s6pznNd2KzppwmrJgrYY9t/N48OCAGDBggVYtWoVVq1ahWOPPRYzZ85UewQUCkFQwkChEJiBgQFs2rQpLxQ2b96MkZGR8R8c1YqFwmACxOQgFvxO3iyHF8GMoKrIZujEPRX4aS/R68q7fgK0VX5vQE4AWC1ZoN4a97n6+nocffTReSGwcuVKlTVIoRAYJQwUCokwDAPbt2/Hq6++ii1btmDz5s3YtWsXxr3GNBeCVCgUhhLsD1/zaqDwGmYEMJA8IYNIiHsq8NJGcdcRGF/PKOtUro14nx2gW3amoOYsaLMB2pQLCSqpDiEECxYswDHHHINjjjkGy5cvx4IFC1RYkEIhEUoYKBSSMzQ0hNdffx1btmzJi4Wurq7xH3TEwlACZCgJbdD+m2kYUtwrqW7EaciVIrJAEGEqEOlZFeLUS4S+w1sEJCzQpiysZgPUEQIN4/cFAMDUqVOxfPnyvBBYunQpGhsbudZPoVDwRQkDhaIGOXLkSF4kbNmyBVu3bkVPT4/7h9MatJxYIIMJkOGELSB4nNhMiBjGnkj1EAVR2kOEekwAKMltDG7KgjYatkeg0XANBwKAGTNm4Oijj87/WbJkCaZOnRpxrRUKBW+UMFAoJghHjhxBZ2cnOjs7sXXrVnR2dmL37t3jw5AAwIItEIZzIUjDCWjDCSCt8REMExUlDBScoaBAyoLVZOQFAG0yQBuMcWlCHWbPnj1OBEyaNCnSeisUinhQwkChmMCMjIxg27ZtRWJh586d7hucATsjkiMYhhPQhnWQESUYAqOEgYIRFBSoN2E1mLYAaLRDgGij4ZoZCAAaGxuxePFiLFq0CIsWLcr/u7m5OeLaKxQKUVDCQKFQFGFZFg4cOIA333wTb775JrZv347t27dj165dMAzD/UsmQEZyIUgjCfusBef/rDc81woiiQJACQNJoBoFrTdAG03QhpwAaDRB6w2gzBlguq5j7ty5Rcb/4sWLMWPGDJUmVKFQFKGEgUKh8IRhGNizZw+2b9+eFwy7d+/Gnj17ygsGABjVbJEwqtt/RnJ/jyZArAlqlIhojKmpQBjyxn+DCVpv5v7ObQKuc98DAACpVApz587F/PnzMW/ePMyfPx8LFizAnDlzUFdXF+EdKBQKWVHCQKFQhMIwDBw4cAC7du3Czp07sXv37vy/3U5yLiKtjQmGvGiwRQQMUnvhSSIKAgc1FUQGBQWSlm3015ugdc6/qxv/ANDc3Iz58+eP+9PR0QFdL+M2UCgUCg8oYaBQKLjR19eHXbt2YdeuXdi3bx/27t2Lffv2Yc+ePfj/27vfEKmqx4/jn3Pv7O6s7q7r+nfTtTREghBKyh4FJeGSRJBk+iyC34NCMkMwghCSEEpKCg2kIEVsJegfPWhNEh9kaJgSEaxB/yCdXXV1V92dGXfm/B7cuXfunX8763d3ZzffLxjm3HPPuffMdnPPZ+fOnBs3blTunJFMypVSudCQcmVSjvecdKX0NPtcw1QOBRLBYBz5H/i1DaFJf4MXAuQ/j3KHXXNzsxYvXqxFixZp8eLFwWPRokWaNWvW5LwQAHccggGAmhgcHAyCwr///hs8Lly4UP6rVcOy8sJBKhca0o63nfbKJpULD7bGE/KpHgh8/CqoStGkv977C7+tj26Pllkdx9H8+fO1cOFCtbe3a8GCBUz+AdQcwQDAlJNOp9XX16fe3l4lEomi576+PmUypRddKnLLeGEh5Uh+aLjlSLdyz/72RN26RDCY8qys5FrZ+qw36a/LeuW6jGxuW6Hnai4Tx3E0Z84ctbe3q729PQgACxcu1MKFCzV//nxWBAYw5RAMAEw7mUxGV65cUW9vr/r6+nTp0iVdvny56JFOp6s/aFb5sJB7NmlHGnFkRoxXN5ILECNeG2V1+2FiqgWG/9CvAmty9/DXZaWYzT3ntuuysoV19dlRb+0Ji8Vimjt3rubPn6958+ZFHn7d7NmzmfgDmHYIBgD+k6y1GhwcDEKCHx6uXr2qq1evqr+/X9euXVN/f//on3coxw8TIyYfIDKOlDFB2WSMlDFeoMjt88q5tn64qHVQmAK/Cvy/3MuxkiPZWNb7S37uWTEr6+Ym+zErudncs/Um+bk2cm/vtTQ1Namtra3sY/bs2Zo3b55aW1vlOHwNL4D/HoIBgDverVu3gsBQGByuX7+uwcHBokfFr2gdCysvLGSNFxKyftl75LeV3/bbW0nWezahcvGzvM9a5MrevTA2ektM4a+CEjnFGnmTdiPvhE7u2eT+Sl9mv3Vy9a6VdWxQlmO9yXywPT4/Usn77v6WlhbNmjWr5KOlpUWtra2aNWtWMOnnKz0B3OkIBgAwRtZaDQ8PR4LCwMCAhoaGdPPmzcizXy6sv3nzpvjnt7yGhgbNnDkzeDQ1NampqankdmF9S0uLmpqaWLwLAMaIYAAANeCHi6GhISWTSaVSKaVSKaXT6aBc6ZFOpzUyMqJMJqNMJhMpj1bnM8ZEJs9+Ofwc3u+6rmKxmOrq6uS6rurq6hSLxUo+/DaxWEwNDQ2Kx+PBo6GhQY2NjUF9qW0m9QAw+QgGAAAAAMbzjk4AAAAA0xXBAAAAAADBAAAAAADBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAAiGAAAAAAQAQDAAAAACIYAAAAABDBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAAiGAAAAAAQAQDAAAAACIYAAAAABDBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAASIrVegDAVGWtVTKZrPUwAADjKB6PyxhT62EAUxLBACgjmUxq7dq1tR4GAGAcdXd3q7GxsdbDAKYkbiUCAAAAwDsGQDXqT8+XMkbGMZLx8nS4LMdIubemjeMEZZlc2cntM05Qlsn3CfcvWV/iPN5zcX9rTD7y+8eqtK9EvQ0dWsbIBn9CyO0L+quov83Vh9vlywq9foX6KzQWFffPnz4/lgrnsEXHLlU2JetL9leFdn45NMaifSa6r6pzlusfVlV/W9X5I+1U2M4W9Ve4vkQ7Ezp/pI/CbQrKkUvb5sq25CUvY0OXqI20c2SDY0fqTb7ea+PV+e1KlkPHckL1ftlReFvF7SL9s5F6R1aOyUqS3MixCtrl2jjGyo3UW7kK78uW6JOVGzputJw/T7jsKHysbHBOr002KLvGysgffzY/llB/N3eMoE/o5+FvB+OXX5//WbqywT9NjpFcmWDbNUZO7irw6k2oPvfvtIxc4yiZMlr/fwsFoDKCAVCNjJHJOjLKT9LD5fBMyCgUDBxH4ZmdkVNmlugoOnsqnL05BdvRcxbP2FRQX2lfpfqCfaHJ9KjlkvtUFAAK64uHXNDfUbRdyXMUHrvKPmPqX1BWQf1Y+4/xPNUHi0kIBqZSu/LBINreljm2LXmsIFQE9YXtyvX3+9kS5ykum6KQES37sbXUPr9/PkyoYMJfECZU3C48SY4Gg2wwUfb7uLn/hxyFysbIlcqUTWgCbkLHllz/nKGyK4Xae/X5Sbryx470yb8uNzf5D7+2sQQD/xzh7aBcVB9+LaFrBUBF3EoEAAAAgGAAAAAAgGAAAAAAQAQDAAAAACIYAAAAABDBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAsfIxUB3XyirrLfvpr6JaVA4tFRpZxdcUb6uw3papz5WDFVkL9pVYHtdWWIa39L7i+ug6oaFtG96X72NlggVtbXDMMseLLK8bPU/ZeluiyWirGI+6inCJPuX6lzznKG2qWcV4zGOOnqa6/oUrCpcrWxW9jvC+cn1Uup0pd36F2xSUI5d2eBXhcH3ouAqVI+Mfv5WPbehY1ljZgrJVeFvF7WSVDY6bjZ5f1quT/7Mo3c7m2tiCcdlQn9L7vBWF/TGWKjuRcXpndKSS5azyKx9nc/X+j7b8ysdGTq6VK2/lZRPal1+JOd+/cIVlJ9LGhFY4jh47KIfqjYxcY5RMlfv3BUAYwQCoQvrhvloPYeqwBc/joNR8FJgKQtN1ZWs5kEkRTnDcUADcifg/HwAAAICMtXYc/+4H/HdYa5VMJms9DEwRyWRSTz/9tCTpq6++Ujwer/GIMFVwbUwv8XhcxvDeJFAKtxIBZRhj1NjYWOthYAqKx+NcGyiJawPAdMatRAAAAAAIBgAAAAAIBgAAAABEMAAAAAAgvpUIAAAAgHjHAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAAiGAAAAAAQAQDAAAAACIYAAAAAJAUq/UAAKBWksmkzp07p56eHp0/f17nz59Xb2+vJOn555/XCy+8MOox+vv7dfjwYf3444/q7e1VQ0ODli5dqs7OTq1bt07GmIl+GZgAAwMD+uGHH3TmzJngushkMmptbdWKFSvU2dmpRx99tOIxhoaG1NXVpRMnTiiRSMhxHHV0dOjxxx/X+vXrVVdXN0mvBgCqw8rHAO5YZ8+e1ZYtW0ruqyYY9PT0aNu2bRoYGJAkNTY2Kp1OK5PJSJIefvhh7dq1iwngNPTYY48F/x0lqb6+Xq7ranh4OKhbvXq1du7cqXg8XtQ/kUjo5ZdfViKRkCTF43Fls1ml02lJ0vLly7Vnzx41NzdP8CsBgOpxKxGAO1pzc7NWrVqlTZs2aceOHWpra6uq340bN7R9+3YNDAxoyZIl2r9/v7q7u3X06FG98sorisViOn36tD744IMJfgWYCJlMRvfdd59effVVdXV16dixY+ru7taRI0e0bt06SdKpU6e0e/fuor4jIyN67bXXlEgkNGfOHL377rs6evSojh49qh07dmjGjBn6/ffftXPnzsl+WQBQEe8YALhjZTIZua4bqduwYYMSicSo7xh89NFHOnjwoBoaGnTgwAHdddddkf2HDh3S/v375bquDh48qI6Ojgl5DZgYP//8sx588MGy+3fv3q2vv/5akvTZZ59pwYIFwb5vvvlGb7/9tiRp3759uv/++yN9jx07pjfffFOS9N5772nVqlXjPXwAuC28YwDgjlUYCsaiu7tbkrRmzZqiUCBJzzzzjBobG5XJZPTdd9/d9nlQG5VCgaTgXQPJu6Us7Ntvv5UkPfDAA0WhQPKumfb29khbAJgKCAYAMEb//PNP8CHl1atXl2wzY8YMrVy5UpL0008/TdrYMDnq6+uDcjabDcrJZFK//vqrJOmRRx4p2dcYE1w3XBsAphKCAQCM0R9//BGUly5dWrbdsmXLJEl//fXXRA8Jk+zcuXNB2f/vLEl///13EBQqXRv+vv7+fg0ODk7MIAFgjAgGADBGV65cCcrz5s0r227u3LmSpJs3b2poaGjCx4XJcf36dR06dEiStHLlSi1ZsiTYd/ny5aBczbVR2AcAaolgAABjFJ7kNzQ0lG0X/hpLgsF/Qzab1VtvvaUrV66ovr5eW7dujezn2gAwnREMAACo0vvvv6+TJ09KkrZu3ap77723xiMCgPFDMACAMZoxY0ZQTqVSZdslk8mSfTA97d27V59//rkkafPmzZFvJvJxbQCYzggGADBGc+bMCcqXLl0q286/d3zmzJlM/qa5Dz/8UEeOHJEkvfTSS9qwYUPJduHPDlRzbRT2AYBaIhgAwBiFv4Xmzz//LNvO//aie+65Z6KHhAm0b98+ffrpp5KkF198URs3bizb9u6775bjeL9aK10b/r62tja1tLSM42gB4PYRDABgjDo6OoKVbk+dOlWyzfDwsH755RdJ0kMPPTRpY8P42rt3r7q6uiR5oWDTpk0V28fj8WBRs3LXhrVWp0+flsS1AWBqIRgAwBgZY7R27VpJ0vfff6+LFy8Wtfniiy80PDws13X1xBNPTPYQMQ727t0buX1otFDg6+zslCSdPXtWv/32W9H+48eP68KFC5G2ADAVEAwA3NGuX7+ua9euBQ9/capUKhWpL/xKyY0bN6qtrU3JZFLbt29XT0+PJOnWrVv68ssv9fHHH0uSnnrqKXV0dEzui8L/LPyZgs2bN1e8fahQZ2enli1bJmut3njjDZ05c0aS91Wnx48f1zvvvCPJWzV71apV4z94ALhNxlpraz0IAKiVDRs2KJFIjNqus7NTr7/+eqSup6dH27Zt08DAgCTv22XS6bRGRkYkebeJ7Nq1S/X19eM/cEyY3t5ePfvss5Ikx3HU2tpasf1zzz1X9G7CxYsXtWXLluDaisfjymazSqfTkqTly5drz549am5uHv8XAAC3KVbrAQDAdLVixQodOHBAhw8f1smTJ9XX16d4PK5ly5aps7NTTz75ZPBBVEwf/rtGfrm/v79i++Hh4aK69vZ2ffLJJ+rq6tKJEyeUSCQUi8W0dOlSrVmzRuvXr1ddXd24jx0A/he8YwAAAACAzxgAAAAAIBgAAAAAEMEAAAAAgAgGAAAAAEQwAAAAACCCAQAAAAARDAAAAACIYAAAAABABAMAAAAAIhgAAAAAEMEAAAAAgAgGAAAAAEQwAAAAACCCAQAAAAARDAAAAACIYAAAAABABAMAAAAAIhgAAAAAEMEAAAAAgKT/B7PnpUka79n5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Since `PsiChi` is encoded as pixel in a HEALPix grid, we need mhealpy to render it back to a sphere\n", + "m_signal = HealpixMap(signal.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents,\n", + " coordsys = SpacecraftFrame(attitude = grbori.get_attitude()))\n", + "\n", + "fig = plt.figure(dpi = 150)\n", + "\n", + "# Try also other projections, e.g. projection = 'orthview'\n", + "ax = fig.add_subplot(projection = 'mollview')\n", + "\n", + "m_signal.plot(ax, coord = SpacecraftFrame(attitude = Attitude.identity(frame ='icrs')))\n", + "\n", + "# Location of the source\n", + "c_sc = coord.transform_to(SpacecraftFrame(attitude = Attitude(grbori.get_attitude())))\n", + "ax.scatter(c_sc[0].lon.deg, c_sc[0].lat.deg, transform=ax.get_transform('world'), color = 'red')\n" + ] + }, + { + "cell_type": "markdown", + "id": "290a9873-c011-4bbd-a2e5-3605f0a56931", + "metadata": {}, + "source": [ + "This is a horizontal slice of the Compton cone shown in the figure above, spread by detector effects and the finite size of the `Em` and `Phi` bins. Try selecting different `Phi` bins to see how these circle grows or shrinks, and relate that to the CDS figure.\n", + "\n", + "You can also try selecting different energy bins. The opening of the cone in the CDS is geometrically constrained and does not depend on the energy. This circle becomes more blurry at different energies though, which is related to the energy resolution and the bin width." + ] + }, + { + "cell_type": "markdown", + "id": "79b32eb9-b8d4-49c1-9c38-52def6410278", + "metadata": {}, + "source": [ + "## Getting a fake background" + ] + }, + { + "cell_type": "markdown", + "id": "b90c008e-40b3-46b0-a20d-fd3d85c7c58c", + "metadata": {}, + "source": [ + "The background from Compton telescopes can be complex, and in general we need to either simulate all the different components with MEGAlib and/or use real data to constrain it. For the purpose of having a toy background that we can use to develop our algorithms, let's use the detector response to simulate an (unrealistic) isotropic gamma-ray background. The final source injector should use a background model as input instead.\n", + "\n", + "We'll repurpose the point source convolution by generating an effective dwell time map with the same value for all pixels. Since all pixels have the same area, this is simulating an isotropic distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4700ced8-79da-4d5f-87e3-8771f050caa4", + "metadata": {}, + "outputs": [], + "source": [ + "iso_map = HealpixMap(base = response, \n", + " unit = u.s, \n", + " coordsys = SpacecraftFrame(attitude = grbori.get_attitude()))\n", + "\n", + "# Filling all pixels with a constant. The actual value doesn't\n", + "# since we will renormalize it\n", + "iso_map[:] = 1*u.s" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "b0dcee61-d3e5-478c-a2a5-206b80812f49", + "metadata": {}, + "outputs": [], + "source": [ + "# Non-realistic spectrum\n", + "bkg_spectrum = Powerlaw()\n", + "bkg_index = -2\n", + "bkg_piv = 1 * u.keV\n", + "bkg_K = 1 / u.cm / u.cm / u.s / u.keV\n", + "bkg_spectrum.index.value = bkg_index\n", + "bkg_spectrum.K.value = bkg_K.value\n", + "bkg_spectrum.piv.value = bkg_piv.value\n", + "bkg_spectrum.K.unit = bkg_K.unit\n", + "bkg_spectrum.piv.unit = bkg_piv.unit\n", + " \n", + "iso_response = response.get_point_source_response(iso_map)\n", + " \n", + "bkg = iso_response.get_expectation(bkg_spectrum).project(['Em', 'Phi', 'PsiChi'])" + ] + }, + { + "cell_type": "markdown", + "id": "c0de926a-f12e-4c79-b7df-3cd94edd0c88", + "metadata": {}, + "source": [ + "Now, let's renormalize the background to a total rate of 1k Hz. This is again not realistic, but was chosen such that the signal will show up clearly enough above the background and we can work on the algorihtms." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "02ae055f-9549-4f38-a8e6-d0e57af60cbe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "90238.31928090738" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(bkg)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5c0cc346-7bd6-4d67-b98b-e94bcf5569aa", + "metadata": {}, + "outputs": [], + "source": [ + "bkg = bkg * 1e3 / np.sum(bkg)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "3bf9becd-f9af-4259-b3af-22d0aa3e100a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000.0000000000001" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(bkg)" + ] + }, + { + "cell_type": "markdown", + "id": "71024a7d-1742-4a57-9b23-cd47bc1ae603", + "metadata": {}, + "source": [ + "These are the same plots as we did for the signal, so you can compare:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "aa8589a2-cff1-4c68-bae8-c78c1691a0fb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAG7CAYAAAAPPqWxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmiUlEQVR4nO3df1DU953H8dfyY1cFE5zFoBGHiHgIyZncVWPV1EDUqCFysZF0cmUam0HTKNjodLRxNG0sadpE80Ot1sT0uJskgtox0tZfiTHEH7GejjktGEtKpTYRgQWNKOwC7v3h8G22iz8AYfcDz8dMprOf72eX95JmffrdL4vN6/V6BQAAEORCAj0AAADAjSBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGCEbhMtDQ0NOnnypBoaGgI9CgAA6ATdJlrKy8s1a9YslZeXB3oUAADQCbpNtAAAgO6NaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBHCAj0Aur+yg2d0ZHOpGhuaAj0KriG8V5hGZgzTkNEDAz0KALSKaEGnO7K5VOe/vBjoMXBdbh3eVEq0AAhaRAs6XcsZFptN6t3PEeBp0Jr6Wre8XnE2DEBQI1rQZXr3c+g/Vz8Q6DHQinezP9SlGnegxwCAa+JCXAAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGCOvoA/zP//yP1q9fryFDhui///u/fY4dP35cv/71r/XnP/9ZERERSk1N1axZs9SnTx+ffR6PR2+99ZZ27dqlCxcuaOjQocrKytKoUaM6Oh4AAOgmOnSmpbKyUm+//bZ69+7td6y0tFTz589XQ0ODsrOzlZaWpt/97nf6yU9+4rf3xRdf1MaNGzVp0iTNmzdPISEhWrhwoY4dO9aR8QAAQDfSoTMta9asUXJysi5fvqzz58/7HHvjjTfUt29frVy5UhEREZKkgQMH6qWXXtKhQ4d07733SpJKSkq0e/duPf3003r88cclSZMnT9bMmTO1du1arV27tiMjAgCAbqLdZ1o+/fRTFRUVKScnx+/YxYsXdfjwYT344INWsEhXYqR3797as2ePtVZUVKTQ0FClp6dbaw6HQ2lpaSouLtbZs2fbOyIAAOhG2nWmpbm5Wa+//rrS0tI0dOhQv+NlZWVqbm5WYmKiz3p4eLiGDRum0tJSa620tFSxsbE+cSNJSUlJkqTPP/9cMTExfl+jurpaLpfLul1eXt6epwIAAAzRrmjZunWrzp49q1dffbXV4y0x4XQ6/Y45nU793//9n8/eq+2TrsRJawoLC5WXl9fW0QEAgKHaHC3nz5/Xb37zG33ve99TVFRUq3vcbrekK2dW/pndbpfH4/HZe7V9X3+sf5aenq5x48ZZt8vLy5Wbm3vDzwMAAJilzdGyfv169e3bV48++uhV9zgcDklSY2Oj3zGPx2MFScveq+37+mP9s+joaEVHR7dpdgAAYK42Rcvp06f1u9/9Tjk5OT5v23g8HjU1NenMmTOKiIiw3tr5+jUnLVwul09sOJ1OVVVVtbpPEmECAAAktTFaqqurdfnyZb3++ut6/fXX/Y5/5zvf0YwZM/Tkk08qNDRUJ0+e1AMPPGAdb2xsVGlpqVJTU621hIQEHT16VBcvXvS5GLekpMQ6DgAA0KZoGTJkiF544QW/9fXr1+vSpUuaN2+ebr/9dkVGRmrkyJHatWuXnnjiCesTcHfu3Kn6+nqfaElJSVF+fr4KCwutz2nxeDzatm2bkpOTW/3JIQAA0PO0KVqioqL0rW99y29906ZNkuRzLCsrS3PnzlVOTo7S09NVWVmpgoICjRo1SqNHj7b2JScnKzU1VW+88YbOnTunQYMGaceOHaqoqNCiRYva+7wAAEA30+HfPXQ1iYmJeuWVV/TrX/9aq1atUp8+fZSWlqannnrKb+/ixYsVExOjnTt3qq6uTvHx8frlL3+pe+65p7PGAwAAhrkp0bJy5cpW10eMGKE1a9Zc9/4Oh0Nz5szRnDlzbsY4AACgG+rQL0wEAADoKkQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhhbdn817/+Vf/1X/+lkydPqqamRr169VJcXJwef/xxjRs3zmfvqVOntHr1ah0/flxhYWEaM2aMsrOzFRUV5bPv8uXLys/P13vvvaeamhrFxsYqMzNTEydO7PCTAwAA3UeboqWiokKXLl3SlClTFB0drYaGBhUVFenZZ5/Vj370I6Wnp0uSKisrlZOTo8jISM2aNUv19fXKz89XWVmZ1q1bp/DwcOsx33zzTb3zzjuaNm2ahg8frn379mnZsmWy2WyaMGHCzX22AADAWG2KljFjxmjMmDE+a9/+9rc1a9Ysbdy40YqWt99+Ww0NDVq/fr1iYmIkSUlJSVqwYIG2b99u7auqqlJBQYGmT5+u+fPnS5Iefvhh5eTkaM2aNUpJSVFoaGiHnyQAADBfh69pCQ0N1W233aa6ujprraioSGPHjrWCRZJGjhypwYMHa8+ePdbavn371NTUpOnTp1trNptNjzzyiKqqqlRcXNzR8QAAQDfRpjMtLerr6+V2u3Xx4kXt379ff/zjH5WamirpytmT2tpaJSYm+t0vKSlJBw8etG6Xlpaqd+/eiouL89vXcnzEiBGtzlBdXS2Xy2XdLi8vb89TAQAAhmhXtPzqV79SYWGhJCkkJETjx4+33t5pCQmn0+l3P6fTqa+++koej0d2u10ul0v9+vWTzWbz2yddCZOrKSwsVF5eXnvGBwAABmpXtGRkZCglJUXV1dXas2ePmpub1djYKElyu92S5HOxbQu73W7tsdvtcrvd1913Nenp6T4/sVReXq7c3Nz2PB0AAGCAdkVLXFyc9ZbOlClTtGDBAv34xz/WunXr5HA4JMmKmK/zeDySZO1xOBw3tK810dHRio6Obs/4AADAQDflw+VSUlL02Wef6fTp09ZbO1+/3qSFy+XSLbfcYp1JcTqdqqmpkdfr9dsniSgBAACWmxItLW/j1NXVqX///oqKitLJkyf99p04cUIJCQnW7YSEBDU0NPhdRFtSUmIdBwAAkNoYLbW1tX5rTU1N2rlzpxwOh+644w5J0v33368DBw7o7Nmz1r4jR47o9OnT1k8ZSdJ9992nsLAwbdmyxVrzer3aunWr+vfvr7vuuqutzwcAAHRTbbqmZfny5bp48aLuvvtu9e/fXy6XS++//77+9re/ae7cuerTp48kKTMzUx999JGeeeYZzZgxQ/X19dqwYYPi4+M1depU6/Fuu+02ZWRkaMOGDWpqalJSUpL27t2rY8eOaenSpXywHAAAsLQpWh544AH94Q9/0NatW3X+/Hn16dNHiYmJ+sEPfqD77rvP2hcTE6OVK1dq9erVWrdunfW7h+bOnWtdz9LiqaeeUt++fVVYWKgdO3YoNjZWS5Ys0aRJk27OMwQAAN1Cm6JlwoQJN/z7gIYMGaIVK1Zcd19ISIgyMzOVmZnZllEAAEAPc1MuxAUAAOhsRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMEJYoAcwQdnBMzqyuVSNDU2BHsVI9bXuQI8AAOgGiJYbcGRzqc5/eTHQYxgvvBf/dwMAtB9/ityAljMsNpvUu58jwNOYKbxXmEZmDAv0GAAAgxEtbdC7n0P/ufqBQI8BAECPxIW4AADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAI4S1ZfOJEye0Y8cOHT16VBUVFbrlllt05513KisrS4MHD/bZe+rUKa1evVrHjx9XWFiYxowZo+zsbEVFRfnsu3z5svLz8/Xee++ppqZGsbGxyszM1MSJEzv85AAAQPfRpmh59913dfz4caWmpmro0KFyuVzasmWLsrKytHbtWsXHx0uSKisrlZOTo8jISM2aNUv19fXKz89XWVmZ1q1bp/DwcOsx33zzTb3zzjuaNm2ahg8frn379mnZsmWy2WyaMGHCzX22AADAWG2Klscee0zPPfecT3Q88MAD+v73v6933nlHS5culSS9/fbbamho0Pr16xUTEyNJSkpK0oIFC7R9+3alp6dLkqqqqlRQUKDp06dr/vz5kqSHH35YOTk5WrNmjVJSUhQaGnpTnigAADBbm65p+dd//VefYJGkwYMH64477lB5ebm1VlRUpLFjx1rBIkkjR47U4MGDtWfPHmtt3759ampq0vTp0601m82mRx55RFVVVSouLm7zEwIAAN1Tm860tMbr9aq2tlZ33HGHpCtnT2pra5WYmOi3NykpSQcPHrRul5aWqnfv3oqLi/Pb13J8xIgRrX7d6upquVwu6/bXowkAAHQ/HY6W999/X1VVVXryySclyQoJp9Ppt9fpdOqrr76Sx+OR3W6Xy+VSv379ZLPZ/PZJV8LkagoLC5WXl9fR8QEAgCE6FC3l5eV69dVXdeedd2rKlCmSJLfbLUl+byNJkt1ut/bY7Xa53e7r7rua9PR0jRs3zmeW3Nzc9j8ZAAAQ1NodLS6XS4sWLVJERIR+9rOfWRfMOhwOSVJjY6PffTwej88eh8NxQ/taEx0drejo6PaODwAADNOuD5erq6vTwoULVVdXp+XLl/vEQ8tbO1+/3qSFy+XSLbfcYp1JcTqdqqmpkdfr9dsniSgBAACWNkeL2+3Wj3/8Y50+fVq/+MUvrAtwW/Tv319RUVE6efKk331PnDihhIQE63ZCQoIaGhr8LqItKSmxjgMAAEhtjJbm5mb99Kc/VXFxsZ5//nndddddre67//77deDAAZ09e9ZaO3LkiE6fPq3U1FRr7b777lNYWJi2bNlirXm9Xm3dulX9+/e/6uMDAICep03XtPzqV7/S/v37NXbsWF24cEG7du3yOf7ggw9KkjIzM/XRRx/pmWee0YwZM1RfX68NGzYoPj5eU6dOtfbfdtttysjI0IYNG9TU1KSkpCTt3btXx44d09KlS/lgOQAAYGlTtHz++eeSpAMHDujAgQN+x1uiJSYmRitXrtTq1au1bt0663cPzZ0717qepcVTTz2lvn37qrCwUDt27FBsbKyWLFmiSZMmtfc5AQCAbqhN0bJy5cob3jtkyBCtWLHiuvtCQkKUmZmpzMzMtowCAAB6mHb99BAAAEBX6/An4gLoPupr3Xo3+8NAj2Gk8F5hGpkxTENGDwz0KEC3RbQAUHivMElueb3SpZqrfxI1rsWtw5tKiRagExEtADQyY5gObypVY0NToEcxUn3tleDj+wd0LqIFgIaMHsgZgg54N/tDzlABXYALcQEAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARghr6x0uXbqk/Px8lZSU6MSJE7pw4YKeffZZTZ061W/vqVOntHr1ah0/flxhYWEaM2aMsrOzFRUV5bPv8uXLys/P13vvvaeamhrFxsYqMzNTEydObPcTAwAA3Uubo+X8+fPKy8tTTEyMEhISdPTo0Vb3VVZWKicnR5GRkZo1a5bq6+uVn5+vsrIyrVu3TuHh4dbeN998U++8846mTZum4cOHa9++fVq2bJlsNpsmTJjQ/mcHAAC6jTZHi9Pp1JYtW+R0OvXZZ59p9uzZre57++231dDQoPXr1ysmJkaSlJSUpAULFmj79u1KT0+XJFVVVamgoEDTp0/X/PnzJUkPP/ywcnJytGbNGqWkpCg0NLS9zw8AAHQTbb6mxW63y+l0XndfUVGRxo4dawWLJI0cOVKDBw/Wnj17rLV9+/apqalJ06dPt9ZsNpseeeQRVVVVqbi4uK0jAgCAbqjNZ1puRFVVlWpra5WYmOh3LCkpSQcPHrRul5aWqnfv3oqLi/Pb13J8xIgRfo9TXV0tl8tl3S4vL79Z4wMAgCDUKdHSEhOtnZFxOp366quv5PF4ZLfb5XK51K9fP9lsNr990pU4aU1hYaHy8vJu7uAAACBodUq0uN1uSfK52LaF3W639tjtdrnd7uvua016errGjRtn3S4vL1dubm6HZwcAAMGpU6LF4XBIkhobG/2OeTwenz0Oh+OG9v2z6OhoRUdH35R5AQBA8OuUD5dreWvn69ectHC5XLrlllusMylOp1M1NTXyer1++yQRJgAAQFInRUv//v0VFRWlkydP+h07ceKEEhISrNsJCQlqaGjwu5C2pKTEOg4AANBpH+N///3368CBAzp79qy1duTIEZ0+fVqpqanW2n333aewsDBt2bLFWvN6vdq6dav69++vu+66q7NGBAAABmnXNS2//e1vVVdXZ72Fs3//flVWVkqSHn30UUVGRiozM1MfffSRnnnmGc2YMUP19fXasGGD4uPjfT7y/7bbblNGRoY2bNigpqYmJSUlae/evTp27JiWLl3KB8sBAABJ7YyWgoICVVRUWLc//vhjffzxx5KkBx98UJGRkYqJidHKlSu1evVqrVu3zvrdQ3PnzrWuZ2nx1FNPqW/fviosLNSOHTsUGxurJUuWaNKkSR14agAAoDtpV7Rs3LjxhvYNGTJEK1asuO6+kJAQZWZmKjMzsz3jAACAHqDTrmkBAAC4mYgWAABgBKIFAAAYgWgBAABG6JSP8QeAnqi+1q13sz8M9BhGCu8VppEZwzRk9MBAj4IgRrQAQAeF9wqT5JbXK12qaf2XvOJ63Dq8qZRowTURLQDQQSMzhunwplI1NjQFehQj1ddeCT6+f7geogUAOmjI6IGcIeiAd7M/5AwVbggX4gIAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMEJYoAcAAECS6mvdejf7w0CPgWsI7xWmkRnDNGT0wIB8faIFABBQ4b3CJLnl9UqXatyBHgfX5NbhTaVECwCgZxqZMUyHN5WqsaEp0KPgGuprr4RlIP89ES0AgIAaMnpgwP7mjhv3bvaHAT8TxoW4AADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADBCUPzIs8fj0VtvvaVdu3bpwoULGjp0qLKysjRq1KhAjwYAAIJEUJxpefHFF7Vx40ZNmjRJ8+bNU0hIiBYuXKhjx44FejQAABAkAh4tJSUl2r17t2bPnq05c+YoPT1dr732mgYMGKC1a9cGejwAABAkAh4tRUVFCg0NVXp6urXmcDiUlpam4uJinT17NoDTAQCAYBHwa1pKS0sVGxuriIgIn/WkpCRJ0ueff66YmBi/+1VXV8vlclm3y8vLO3dQAAAQUAGPFpfLJafT6bfeslZdXd3q/QoLC5WXl9eZowEAgCAS8Ghxu90KDw/3W7fb7dbx1qSnp2vcuHHW7fLycuXm5nbKjH1udfj8LwAAPU0w/FkY8GhxOBxqbGz0W/d4PNbx1kRHRys6OrpTZ2vxyAvjrr8JAIBuLBj+LAz4hbhOp9Pn2pQWLWtdFSYAACC4BTxaEhIS9Pe//10XL170WS8pKbGOAwAABDxaUlJS1NzcrMLCQmvN4/Fo27ZtSk5ObvUnhwAAQM8T8GtakpOTlZqaqjfeeEPnzp3ToEGDtGPHDlVUVGjRokWBHg8AAASJgEeLJC1evFgxMTHauXOn6urqFB8fr1/+8pe65557Aj0aAAAIEkERLQ6HQ3PmzNGcOXMCPQoAAAhSAb+mBQAA4EYQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwQlB8TsvN4Ha7JUnl5eUBngQAALRVXFycevXqdc093SZaKioqJEm5ubkBngQAALTVm2++qcTExGvusXm9Xm8XzdOpzp07p0OHDmngwIGy2+3X3b9q1Srl5OTc0GOXl5crNzdXS5YsUVxcXEdH7ZHa8v0ONsEwe1fM0Blf42Y9Zkcfpz335zWiawXDf2ftFQyzd9UMnfk60aPOtERFRenBBx+84f2RkZHXLbp/FhcX1+b74Ir2fL+DRTDM3hUzdMbXuFmP2dHHac/9eY3oWsHw31l7BcPsXTVDoF8neuyFuBMnTgz0CD2Kyd/vYJi9K2bojK9xsx6zo4/TnvsHw7/3nsTk73cwzN5VMwT6daLbvD3UmU6ePKlZs2bd0PttAHoeXiOArtFjz7S0hdPp1MyZM+V0OgM9CoAgxGsE0DU40wIAAIzAmRYAAGAEogUAABih2/zIcyB5PB698sorOnz4sOrq6nTHHXcoOztbd911V6BHAxAkXn75Ze3fv18NDQ2KiYnR7NmzNW7cuECPBRiFa1pugvr6ehUUFGjq1Knq37+/9uzZo9dee00FBQXq06dPoMcDEATKy8utD788ceKEFixYoPz8fN16662BHg0wBm8P3QS9e/fWzJkzFRMTo5CQEE2YMEFhYWE6ffp0oEcDECTi4uKsT+u22WxqbGxUdXV1gKcCzNIj3x66dOmS8vPzVVJSohMnTujChQt69tlnNXXqVL+9Ho9Hb731lnbt2qULFy5o6NChysrK0qhRo676+KdPn9aFCxc0aNCgznwaADpJZ71GvPLKK9q2bZs8Ho+++c1vKj4+viueDtBt9MgzLefPn1deXp7Ky8uVkJBwzb0vvviiNm7cqEmTJmnevHkKCQnRwoULdezYsVb3u91u5ebm6rvf/a4iIyM7Y3wAnayzXiMWLFignTt36tVXX9WoUaNks9k66ykA3VKPjBan06ktW7Zo06ZNevrpp6+6r6SkRLt379bs2bM1Z84cpaen67XXXtOAAQO0du1av/1NTU167rnnNGjQIM2cObMTnwGAztRZrxGSFBoaqm984xs6cuSIPvnkk856CkC31COjxW6339AnVxYVFSk0NFTp6enWmsPhUFpamoqLi3X27Flr/fLly8rNzZXNZtPixYv5GxRgsM54jfhnzc3N+uKLL27KvEBP0SOj5UaVlpYqNjZWERERPutJSUmSpM8//9xaW758uVwul55//nmFhfXIS4WAHudGXyPq6ur0/vvv69KlS2pqatKePXt09OhR3X333V0+M2Ay/nS9BpfL1erftlrWWq78r6io0O9//3vZ7Xafv3G99NJLvCgB3diNvkbYbDb9/ve/16uvviqv16tBgwZp6dKlGjZsWJfOC5iOaLkGt9ut8PBwv/WWH1t0u92SpAEDBujjjz/u0tkABN6NvkZERETo9ddf79LZgO6It4euweFwqLGx0W/d4/FYxwH0XLxGAF2LaLkGp9Mpl8vlt96yFh0d3dUjAQgivEYAXYtouYaEhAT9/e9/18WLF33WS0pKrOMAei5eI4CuRbRcQ0pKipqbm1VYWGiteTwebdu2TcnJyYqJiQngdAACjdcIoGv12Atxf/vb36qurs46jbt//35VVlZKkh599FFFRkYqOTlZqampeuONN3Tu3DkNGjRIO3bsUEVFhRYtWhTI8QF0Ml4jgODTY3/L82OPPaaKiopWjxUUFGjgwIGSrlz93/J7Rerq6hQfH6+srCzde++9XTkugC7GawQQfHpstAAAALNwTQsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQACDrjx4/3+cftdlvHtm/frvHjx2v79u0BnPAftm7d6jPrz3/+80CPBHRbPfa3PAOQzpw5o+985zvX3DNgwABt3Lixiyby/bpTpkyRJIWGhnbq1zp06JB+9KMfadSoUVqxYsU19y5btkwffPCBli5dqkmTJikxMVEzZ85UXV2dNm/e3KlzAj0d0QJAgwYN0qRJk1o9FhkZ2cXTXDFgwAA9+eSTXfK1Ro4cqZiYGB05ckRnz55VTExMq/vq6uq0d+9eRUZGavz48ZKk4cOHa/jw4Tpz5gzRAnQyogWABg0a1GWBEIxCQkI0depU5eXlaceOHXriiSda3ffBBx/I7XbroYceksPh6OIpAXBNC4A2GT9+vObNm6eqqiotW7ZM06ZN0+TJk7Vw4UJ9+eWXkqRTp05p8eLFSktL0+TJk7V06VLV1NR06lyVlZV64oknNHHiRH300UfWem1trVatWqXHH39cEyZM0LRp07RkyRKVlZX53P+hhx6SzWbT9u3b5fV6W/0a27ZtkySlpaV12vMAcHVEC4A2u3DhgubOnaszZ85o8uTJ+rd/+zcdPHhQCxYsUFlZmebMmaP6+no99NBDGj58uIqKivT888932jynTp3SnDlzVFlZqZdfflkpKSmSpC+++EJZWVnatGmTbr/9dn3729/WN7/5TR06dEhPP/20SkpKrMcYMGCAvvGNb+jLL7/U0aNH/b5GWVmZPvvsMw0bNkz/8i//0mnPBcDV8fYQAH3xxRf6zW9+0+qxO++8U6NHj/ZZ+8tf/qLHHntM2dnZ1torr7yi9957T9nZ2fr+97+vjIwMSZLX69WiRYt08OBBnTx5UomJiTd19uLiYi1atEhhYWFatWqVEhISrGMvvPCCampqtHz5ct17773W+ve+9z3NmjVLL730kvLy8qz1tLQ0HT58WNu2bdO///u/+3wdzrIAgceZFgD64osvlJeX1+o/f/zjH/329+7dW1lZWT5rEyZMkCTdeuutmjFjhrVus9msY3/5y19u6tyffPKJ5s+fr759+2rNmjU+wfLnP/9Zf/rTnzR58mSfYJGkwYMH6+GHH1ZZWZnP20Tf+ta3dOutt6qoqEgXL1601puamrRr1y7Z7farXrAMoPNxpgWA7r33Xi1fvvyG98fGxqpXr14+a06nU5IUHx8vm83W6rHq6uoOTvoPe/bs0f/+7/9q6NChevnll9WvXz+f4y1v/dTW1rZ6Fulvf/ub9b/x8fGSZEXJ5s2b9cEHH+g//uM/JEn79+/XuXPnNHHiRPXt2/emPQcAbUO0AGiziIgIv7WWz1K51rGmpqabNkNxcbGam5s1YsQIv2CRpK+++krSlbMxn3zyyVUfp76+3ud2WlqaNm/erG3btlnRwltDQHAgWgAYafbs2dq3b582b96s0NBQzZ071+d4Szz98Ic/1KOPPnrDjzt06FANHz5cJ06c0F//+lf17dtXhw4d0sCBA/2ucwHQtbimBYCR7Ha7XnjhBY0ZM0YFBQVavXq1z/GkpCRJV87ItFXLGZU//OEP2rlzp5qbm60fiQYQOEQLAGPZ7Xbl5uZq7Nix2rhxo1atWmUdS05OVnJysnbv3q3du3f73ffy5cv69NNPW33ciRMnqlevXtq1a5e2bdumkJAQ61cKAAgc3h4CcM0feZak7373u0H7CbDh4eH62c9+pueee06bNm2S1+vVvHnzJEnPPfecnnnmGT3//PPavHmzhg0bJofDocrKSv3pT3/S+fPn9cEHH/g9ZkREhO6//37t3LlT586d0+jRo6/60f4Aug7RAsD6keerycjICNpokf4RLj/5yU+0efNmeb1e/fCHP9Ttt9+ut956SwUFBdq7d6+2b9+ukJAQOZ1O3X333daH0LUmLS1NO3fulHTl03IBBJ7Ne7XPqwaAABk/frzuuecerVy5MtCj3LCW35g9ZcoULV68ONDjAN0SZ1oABKVPP/3U+k3K77//ftCe6dm6datWrFgR6DGAHoFoARB0Zs6c6XO75XNeglFiYqLPvMOGDQvcMEA3x9tDAADACPzIMwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADDC/wOHohl/eKaawwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bkg.project('Em').plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "eee3d467-d795-43b3-857e-b6cc1c09c1f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAJGCAYAAABC/hxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOy9Z5gkV32+fZ8KnSeHndmcg1ZZWq0CQQRLxgIRhMkYYxMMQhiMMdjgFxskTE7CIEQQAkkg/SVEMCjnrFUOq815Z8Ps5J5OFc77obp7Z3pSh+qqnlXf1yUkZqarTndXnaeec35BSCklderUqVOnTp1Zj+L3AOrUqVOnTp067lAX9Tp16tSpU+cYoS7qderUqVOnzjFCXdTr1KlTp06dY4S6qNepU6dOnTrHCHVRr1OnTp06dY4R6qJep06dOnXqHCPURb1OnTp16tQ5RqiLep06derUqXOMUBf1OnXq1KlT5xihLup16tSpU6fOMUJd1OvUqVOnTp1jBM3vAdSpU6c4pJRkMhmSySSJRGLCvw3DwLIsTNMc92/LsrBtG1VVURQFVVXRNC3/36qqEgwGiUQihEIhwuEw4XCYUCiU/5mi1J//69SZDdRFvU4dH7Esi/7+fg4fPszhw4fp7+9naGiIwcHB/L9z/z00NIRlWZ6PUVEUGhoaaGpqorm5mcbGRpqamvL/dHR05P9pb28nEAh4PsY6deo4iHrr1Tp1qodt2xw5coR9+/axb98+9u/fz6FDh/Ii3tfXV5ZQh0IhUqoJATX7jwKaAoo4+o969L+NnRFCR1IgJJC75SUy//8tpLBA2CAswjGNVCqFbdslj62lpSUv8t3d3cybN4/58+czb948urq60LS6l6hTp1rURb1OHRdIp9Ps3r2b7du3s2vXrryI9/T0kE6np32tqqq0tbXR2dlJe3s798Y3QliHqAYRDSJ69t8aBFXQVUesS2D0N910PN5f0mskErBBmEhhIhUDKZx/UAze/P51DA4O0tvby5EjR+jt7SWTycz4XufMmcO8efNYsGABS5YsYenSpSxZsoRYLFbS+OrUqTORuqjXqVMCUkoOHTrE1q1b2bFjBzt27GD79u3s379/SsetqipdXV3Mnz+f+fPn093dTUdHB52dnXxs85UQ00sW6VIpR9RLRSJBmPzwpg/R29tLb28vPT09+RWK/fv3T/uA09nZmRf5pUuXsmrVKhYsWICqqlUdd506xxJ1Ua9TZxoGBwfZtGkTL730Uv7fg4ODk/5tY2Nj3nVe+8R2rFAUOxQjviiMsiRJd8uwt4MfgxeiPhVSVzFaQvSvCmCradT0KEoqzofOWp1/MOrt7Z30teFwmFWrVrFq1SpWr17NmjVr6O7uRojqPgTVqTNbqYt6nTpZbNtm165dPPvsszz33HNs3LiRAwcOTPg7VVVZsmQJy5Yty7vKD//6LqQeggKxSXRLuk8+iCL8vc38FPUcZmOIvhMjmJGJgizMDNf84xvYuXNnfvVjy5YtpFKpCX/b2NjI2rVrOfHEEznxxBNZvXo1uq578Rbq1Kl56qJe52WLaZps27aNZ599Ni/kw8MT3fTChQtZvXo1v3/pIGa0BSvSBMrRJWFbA7I6lWmWWCHnlpIKRBYP0xZNVPV96KqFwtHbOKiZLIwMjPub+397Gp1PHhVIYUm04QLBtCSiytPB4bNbGVwtkdnPKzigoOZW5G1Qxu5gSImSHOF/3rSOTZs2sWnTJrZv345hGOOOGQgEOO644/Iif/zxxxOJRKr6PurUqVXqol7nZcW+ffvYsGEDjz/+OE8//TSJxHjBDYVCHH/88Zx00kmsXbuWf/jVXUhtfIqWVCHTdPS2ybTaSHXibaQ0GCzoHJjw80qI6BkaA+PFeEF4AF1MH0H/x+tfQedTMwSxpS2U9PjjKPGMq0IvdZXNH2xEBrNR9WMOrSQVtFFH7RVLEBia5AC2xQ0fuYDnn38+/yA2NDT+DzVN4/jjj2fdunWsW7eOFStW1Pfl67xsqIt6nWOaeDzOU089xYYNG9iwYQM9PT3jfh+LxTjxxBM56aST+Po9G7EizZArtCLAzq7qGlEwGu2jPw/OnOqlN6eZ2zaZMk2NEJLAGLvaEEgxN3z0GLqwCCpmSceE4kR9MhTDHie8+mAKxkwZwiwt5U1qCtve3YzZPEManw1KJvs9SAj1KgjLychTxhp1KVFScS59wyk899xzPPvssxw8eHDcoZqamjj11FNZt24dZ5xxBp2dnSWNuU6d2URd1Osccxw8eJAHH3yQBx54gOeee25cVLqmaZxwwgl5F/f2K/48YR/caAArIEGBTIuVX1ovCQELlvQWtZfeGEwR05w16LBqMCfofkBduaI+LbZEGz36gKGOphHWzO93ZFUz+84rb9oRGYE+7Ii9HhdHl+6zSCS3fvodPPHEE2zYsIGnnnqK0dHRcX+zYsUKXvGKV3DOOeewYsWKetBdnWOKuqjXmfVIKdm6dSsPPvggDz74INu2bRv3+wULFrBu3Tp+9XwPRkMHqNniJxKsoPOfVtBZRgeQukQqFd4WBaIuhCSoHhXARbF+wqpjOXVhzbh8XilVEfUChHl0T15JWajJrKWWcpyjr0TUx53PEGALhA2hwwpCgrBAMcnv2SNttPgAn1y/lA0bNrBx40bGTnmdnZ2cc845nHPOOZxyyin1gLs6s566qNeZlUgp2bRpE3fddRf33Xcfhw4dyv9OURROOOEEHum3MJq7sUPji5oYEbDCEgQYzXblAj4ZAlau6KEjHHfGJGzmhwbdP0+ReCHqUyFMiZo8+kCTmBti/19VZ9pRUkf35QNDAmExbvtAGGn0wYO8YX6UDRs2jIuuj8VivOIVr+B1r3sdp512Wr3yXZ1ZSV3U68wqtm/fzt13381dd901bn88GAxyxhlncOu+UYymLqQenPBaW4NEt40MyEkD29xk0bLDrGvfXXUHXix+inohUsDBswKkukqPDSgFYQi0uEKwz3HzE7Atfvq35/Dggw/y0EMP0d9/NOWvqamJV73qVbz2ta/l5JNPrgfa1Zk11EW9Ts3T09PDHXfcwd13383OnTvzPw+FQgxH2sm0zsNomjMuzayQnKDb4dJrmZfDmtX7OLl5nyfnKoZaEnWAg2cESM6vrqjn0AdUQr0z7JtLiRbv4wOr27n33nsZGDiatdDa2sq5557LG97wBlauXFnfg69T09RFvU5NkkqluO+++/jLX/7C008/nf+5ruusX7+eW3vSGM1dR/fHZ8CIQXKuNyICdVGfCS9FXRiCyD51fNT8dEibq99zLnfffTf33XffuNoFS5Ys4Q1veAPnnXcera2t1RlwnToVUBf1OjWDlJIXX3yRW265hbvuuiufQy6EINPQTqZtAUZz94S88ZkwIpDqtqq+5D6WuqhPj5eiDk4OfOSAgij1lLaNPnyYty6Mcv/99+cb1qiqyvr163nDG97A2WefXQ+wq1Mz1CNB6vjOyMgIt9xyC3/84x/Zs2dP/udz587lDW94A9/esA8ZLK9CmBRgNFR/D71ObWOHbcywgj5S4gsVBaO5ixuG4ZGbb+buu+/m1ltv5cUXX+Thhx/m4Ycfprm5mQsuuIALL7yQ7u7uqoy/Tp1iqTv1Or6xZcsWbr75Zu688858965QKMRQtINM+yLMhvYJOeSlYgVgdLF3jjBH3alPj9dOHZzI+OheZVw0fNnHSo7w8RM6ue222+jr6wOcFaUzzzyTt7zlLZxxxhn14Lo6vlB36nU8JZPJcO+993LzzTfz4osv5n++dOlS3vrWt/LFezaD6t5SZqrTm8C4OrWPHbTJNAkCg5UHutnhBn64LQlLX8GP/+UMbr75Zp544gkeeeQRHnnkEbq6unjzm9/MBRdcQHNzc+WDr1OnSOpOvY4nDA4OcvPNN3PzzTfnW5dqmsarX/1qbt6fwYq1VezKC5ECRhfY2CHvhb3u1KfHD6cOEDiiEhwQrrj1QpRUnI+sbuGWW25hZMRZ5w8EApx//vm8853vZOHChe6ftE6dAuqiXqeq7N27lxtuuIFbbrklH2TU0dHBhRdeyLef7HHalXK0ApibHUpTbZJMa5llXstFgppQWHRyD+vbdnl44qkxpMpt155F55Mp7IDi93AA6D05QGKuDw9cEiJ7NdSJHV3LP6SSvW6z1+4Tl36Mu+++m5tvvpnNmzfn/+7ss8/mXe96FyeddFI9La5O1aiLeh3XkVLywgsv8Nvf/pYHH3wwX5Zz9erVPGE0YLTMBeGIi1ScHHJhO+U9KzqvAASYIeffRqPEbKhu8RdhH3V9+oCCsAVqChpfdYjXdG2t6rmnI21rGNLZ0zWlyqM/P4U5jwwi9ezPYgGkKpzPTPFeYAaX6qTaBXZAYgXBimVL9Cqy6g9hgSMqatqpNqdkxgtyOUgFZHYjM582J3Fy30f6eEObzcMPP5y/D1atWsU73/lOzj333HrVujquUxf1Oq4hpeSxxx7j6quvHrdfnnMo7//V3fkldlt1WphKxemhXXQO8SRYAUCAFRozFuF0VauWE1TSCkpGoCbFpK7Pa1FP2444GFLFlBMDtB79+SnMeXBMG9isYbeiQaQqQAissHeBXYNLddItE9XbaJLYKtiRydvZuoE2rI77zoQlHHG3y78OpXK0o5+wnRr0Y6vY/eWTF3HDDTdw66235lesuru7ed/73sdf//Vf11Pi6rhGXdTrVIyUkocffpirr76aTZs2AU6RmPPPP59rdyWxw43O3wnH0UjhTIJQvqBLxXkosAJHXdJYbFWSaXfPpeccuZpQUJMCxWTanGcvRN1CIWk5YjCZkI9lgqgXoji9zqWqYDY4dQCq6eKnEvUcdsD5jjPNNqjZlESXhiIygsDgJNsQ0vle1WT270p8HswLuwCkswKQE/jcSoAw0nzmlC5+97vf5WNLOjs7ec973sMFF1xAMDixvHGdOqVQF/U6ZWPbNg8++CBXX301W7c6AhYKhXjLW97CFZuGju6XK0eX2QvRStjblCI72QuwZ5j73BJ1kVFQU46T0xLFq0o1RN2QKrYUpG0du0SFm1HUJ0GGdeyAih1QsHV39+JnEvVCjCaJVMCMWflVhnKZUtTHIo+uwKgZil6el+pRx+78wPmXYo0X9ycu/Rh//OMf+c1vfpNPiWtra+Pd7343F154IaFQiDp1yqEu6nVKRkrJ/fffz1VXXcWOHTsACIfDvO1tb+PyTQMIxVHcvDNXxrTCHINiOJPdtOfK7pPnHPkMhjSPrWeD5EpE2AJsJ6dZH3X2XUuuQoY7om5l1Stta9hSYEulZDHPUY6o59EUpCqwsiIPILXKbHOpop7Dzm61pFsdcS/HwQtDoA8qRQdlCssReGFn3ft0rxOOqOeu23HIieJu6RZfPWMZ1157LYcPHwagubmZ973vfbz5zW+uO/c6JVMX9Tol8eSTT/KTn/wkv8wejUa56KKL+M6WI6jZ5uTTOfMcxSy7W4HsBFlGLFG6xUYGil8/FYZATSgoJvnWnZVQrqhbKJi2goVCZroPsEQqEvVCFLBiQRACM6yWtURfrqgXkmlyRN1sLC3LQR1R0ZKln09JC1Rjhgc9cTTOY1IKxV3A01/9BLfeeivXXHMNBw4cAJxl+Q9+8IOcf/759YC6OkVTF/U6RbF582Z+8pOf8MQTTwCOM3/HO97B1w70EhoIOq48G/iGmNyZj0VNT56+lnsgsELFu/LJKEbUhSVQUgJ9RHFcmItp06WIuoWSXVbXKnLj0+GqqI9B6iqoArMhgBSiaAfvlqjnsHVAcRy81OSMS/TlijpwdO89hbN3XniZZe+FGZ/JckvzhnMvSBXiizL8cP5x/PKXv6S3txeAhQsX8qEPfYhXv/rV9VS4OjNSF/U607J3715+9rOfcc899wBOwZg3v/nNXNF2GHNvG6EjAju7LD6TkOeYzKXb2b3ImfbKi2U6UVeSCmo2cl2pUj2WYkQ9bWuuO/KpqJaoj0MVWJEAKAIzOv17clvUx2JGJVIDM2Y7Aj8JFYn6GITtXENqmnHL8uOC5oo6ztGI+ZEVJls+8Eluvvlmrr32WoaGhgAnJfSjH/0op512WuUDr3PMUhf1OpMyPDzMVVddxe9//3ssy0IIwXnnncdv5g8zqjWh7gsR7BcliXkONZs+lNtrt4LZJXYX5/hCUReGQEsoqAkxId2oGkwm6jlHnrSc6PJqOPKp8ETUcyiAoiA1ZUoHX01RzyFVnP33FhsZHN/Uxy1RzyFsgZLOxohk995t/ejKVXEDzh0LRheZ6C1pQiLJv8SXcf3115NMOgM+++yzufjii1mwYIF7b6DOMUNd1OuMwzRN/vCHP3DVVVfl+0ifddZZ/GW5hdURY/RwlNg2zQkIKsNgCtsRdTN0dMm0GuREXRtRERZocVF1IR/LWFH30pFPhaeiXkjWwUtVYEWcz8ALUR+LHQQrKLHCEjtkuy7qY1EM4QSBGjPsrU+FPPpQkFmTJBxJIxIZPny4K/+QraoqF110ER/4wAdoaGioxtuoM0upi3qdPI8//jiXX345u3fvBmDJkiU8c1oTxsJWAEYPR4ns1pz9vwrm42qKOQASzIhEj4txkcZe0vDKw5zesRfw1pFPha+iniPn4HWV3lNipNp8+FyyK0N2QKJkhLt1iQtPlS1qU9bXnx2W1MBYkyAUdvaJbjnlH/nRj37Eww8/DEBTUxMf/OAHufDCC+vBdHWAuqjXwdk3v/zyy3n00UcBZ6LYf3oXqRO6QVFIpXTkoRCh3vLbVkr16HJo1ZDZfcnqVoYtiuBZfZzZvdvvYeSpCVEfw5F1LSS6/H/YkZqT/lhNhC0QZvlbPmZYYjTbRObFEdmHEH1XPyc9NczOnTsBWLRoEZ/61Kfq++116q1XX86k02muueYarrvuOgzDyC/p/bj9ADKkk4gHUQ4HCAwqZQulVEBWswJmrmqX9w2/6hwDCBNUUxzNL1dw3b1LRSIDOFHzRuniriUFWlLFOtJEaq6B3piBxa38/OLv8uc//5mf/exn7N69m09/+tO8/vWv5+KLL6atrc3V91Bn9lB36i9THn/8cb773e+yf/9+ANavX8+ta8BqjSIlJAbChHcGynYXXjjzvPupwSu47tSnp1aceiG58sNTRc27gbAqC9Y0IxK5LEEgaCKERKQMPnSgk5tvvhkpJdFolA996EO85S1vQVW9q+dfpzaoi/rLjCNHjnD55ZfnU9Ta29vZcWYXmRUdWLZKaiRIcJ+Omiqv53TVnXmum1uNX7V1UZ+eWhX1sTjinu0cV5UTlOfcwRlbusVGtmeINjj1bH+3+j18+9vfzheGWrlyJZ/5zGdYs2aNm6OuU+PURf1lgm3b3Hzzzfz0pz8lkUigKAqjJ88jcdYSZFDDtgXpvTFCh8uLYKu6M5+k81UtUxf16ZkNop4jX8+9SkF1ley5SxWSizNEmpMoigRbcpk4lSuvvJJ4PI4Qgre+9a185CMfIRKJuD/4OjVHNWOQ69QIe/fu5ZJLLuH73/8+iUSCNWvWcOWVVzJ67gpSMszo4Sg83ViWoEvFSRdyO88cANv5R8lQtqOpU6dShOVUj1MyAmEVUS6xRKQisQMy35mu1LGFdwQwX2ok3h/BRuEL4mmuueYazj//fKSU/O53v+Pv//7v89Ug6xzb1J36MYxlWdxwww38/Oc/J5PJEA6H6T1rAakT5yGFwMhoiG2RkrqP5aiqM5dUFC1cC9Sd+vTMJqc+gVwZ2CpFzVfi3JNzbELz4qiq82J9dz8rHzzEwYMHAbjgggv4+Mc/Xs9tP4apO/VjlF27dvHxj3+cH//4x2QyGU4//XT2v/dkUifPJxEPk97VgP58tHRBz3Veq5IzF6bjzGezoNc5xsk+dKpJgTCr59zLqdYYPqTAM43ED8VIp3SMRa388pe/5G1vexsAf/7zn/nABz6Qz3Ovc+xRd+rHGKZp8tvf/parrroKwzCIRqMcPHsB6eO7nUC44SDhXYGyUsCqVjTmGHDmhdSd+vTMaqdeyNgGLm7vu0snUl4p4341oxK5bBRdt1AUyXWL38bXv/519u3bB8B5553HP//zP9dd+zFGXdSPIXp6erj00kt54YUXADjzzDP5ywkKdkOITFpDbI+U1VY0FwXsOvbRRhbHGonlGc474UXUKlYsK4VaEnU7FuDwaTEyjX6PxH1sPbct5f73rmTKK3Wc6rQJLxxxCtcYFp/oncf111+Pbdt0dnbyhS98gVNOOcX18dbxh7qoHwNIKbn11lvzgXDRaJSDr1hI+rgubKmQ6okSGFCdVpGlkKvv7rY7PwadeSG2Dmf/zXME1dqoilNLop6a38DhU6qZ9+gz1XLuUiAkCKP0wxoNEqMrQ6zZKXiv9Qxx3P2H2L9/P0II3vWud/GP//iPBAIB98Zbxxfqe+qznOHhYf7rv/6L//mf/yGRSHDiiSey910nkl7bTWIkTHpPjPCB0gXd1sEO4O4VUt8zr/NyILfnnsLdPXchnf32oCy5mZI+IghvDxI/GCOT0TDnNvHzn/+cN77xjUgp+c1vfsM//dM/5cvO1pm91EV9FvPkk0/ywQ9+kHvuuQdVVfnwhz/M3a9tIxONMjoYJrQ96NRrLwGpVkHMcdyFYhybS+116kyFYji91hXD5WA6rfQUOGFDZK+G3B4lndI57bZvcPWqUS677DKamprYtm0bH/7wh7nxxhupL+DOXuqiPgsxTZOf/vSn/Mu//Au9vb0sWLCAH//4x/xPw3YypobcGiOytbRgOD1OPrLdzah2r515LWxhW2GnxWctoCB5XdNGbF0gjNrYCpCq8xnZL5eVXpm7DwTCdu/mykXJa8nSHpb1uEB/PkqyJwbAP/XfyS9/+UvWr19PJpPhBz/4AV/84hcZGRlxbax1vKO+pz7LOHLkCF/+8pd55plnAHjTm97EVYuHkZpK4nCUQL+KFi9u4hDSWSKM7bcwogojC4U7j3nZJiuK4fx3qQU1ykXYznuSiutZRjOSK49rhqXjojR4zfoXfNlTDygm7Xqc9zY9QVQRdKpRTvz2x1lwwx5QBFLXIKAjFX+e6UeXNdLzSsXJx7azve5fRis4uWvFrfKzSkbQttEi1aSQbhVYwSLHIcBskFjzUkRiaZCSL1sn8aMf/QjDMOjq6uK//uu/OO6441wZZx1vqHdpm0U8+eSTfPnLX2ZgYIBwOMyh1y7lqhWjgEriUJTQAc0R0iIJH5Y07sogpMSIBl0RdGE6rkHJTtJeiGtOzP3CCkusYHWbgBRDs5bgVQ2baVXjnBHUgdj4P5ASLImwMpDKQCgAQiCD/lhmqUikAplmiZoWKGlR0vXrBrnrxquHQJFtD4wFtiZcqS1vByRqyqZpwMA6oNK/SseMMOOKm5CgjQjErhCJxRCJpfn/tOdQ33kSx93dQ09PD5/4xCf42Mc+xtvf/naEOEZSEI9x6qI+C7Asi6uvvpqrr74aKSXLli1jw6s6sFsiJEcDqPtCBDPFux0tAS3bDNSUjZASM6QSn1fhDZsLDvJwUvZNzLPRzUZUggJS9VfM5wYHOSu6ldODcZqUMFBcZLlIZZx/ZwxkKAiaivRp4raC0qmDILP70Clv3bvX4g5O7rm0wA6Iilu+DqzU6XjWQk1btL0kSTepDC9RZwyoE9LZ79d2hUiGg2gLR2FOAz/72c/4xje+wb333svll1/OM888w+c///l6TvssoC7qNc7g4CBf/vKX83WbUyfM5bFz52MpOukDEfRBBWEW1+1J2BDbbxPqs9BSY2ZMUVlnNSWTbbbikbb56cztQFaAgv4KuYLkNU0v0ayOclYwSUQJAOHyDmbZiNEkaKrzj64hfWjZmXOsVjZYU8ngVDz08KP2w7mr6WwPBU2Uvdpjj7l/FcMmfMRGsSDZppBsF9O6dqewjUCxBMbuGOkmk/V3fRNOha+c/Cn+93//lwceeIBt27bx1a9+lWXLlpU1xjreUA+Uq2G2bNnCRz7yEZ544glCoRBf/OIXif/VagwCGLujBI6oCFMcXdKbBj0OTTssoj3GeEEHjGh5l4EwQE06k4IXIitsZ1nfD0G3dcg0SYwG21dBb9BSnBjdy2Xd9/KW6CCvC1tZQXcB00KkMoh4EiWeQFj+bXRLRWKFJJlm6fQP9/gZQ0hvr7NcDIqaLC+YztbADI3/kIIDBk07MkQOyhlTWoUNSNBHBcEDOvGDMSQK/6k+y49+9CPmzp3LgQMH+NjHPsZdd91V8vjqeEc9UK5GufPOO/n6179OOp1m/vz5PP+6eVhtUUaPRFCHtHzNdiEdRzOdmwn3Spp2ZhD25H90+NQQRimratkJSClizpei8kC5Up25m4Fytg5WqHRn7magnJL9cl/VtInTgvtZpsdmeMVETvz2x1lwfRllawM6Mqi76txzgXKlIGxRFede7HXlYqp5UedyUktLe6ON26FxT3rS35lhlYGVOmaYKV27VMZXjky32Ii2NJFoGiWV4bzHM2zYsAGAd7/73XzkIx9B9WFFp8701JffawzTNLnyyiv57W9/C8D69ev5y2kB7KBO4lCUYG9Bl4fsE/ZkaEkIDEka90wt6CWRi2rPeOfMfVtm18GKSGxNVq9H/AwoSJZHDnF+dCMLNIWwCKCK0gW9IjIGImMghEAGdd+i5h3nnl2WT4OaPnb33IUELFDS2UA6F2I2tKRF6yYYXKpjNDDpyoewnVjK3PUeHFCwh0MklkAkCre/UuPiFe/huuuu4ze/+Q1bt27lS1/6Ek1NTRWPr4571Jffa4jh4WH+7d/+LS/ooXM7+PNZEUfQj0QIHtbGzSpCTt7oQUhH0Fu2GjTtSk8r6Kk2HTM089hy+eZquvpCK6RPy+wCzJh0Smo22U5rTR8EXUGyKNTH37U/yCXNO1gTiBBTQqjCx9tVSmdpfiSBkkghfFrgk4pTA8BokJgxR+i9pNJl+WIfCnL3gJJxxL2YJflkp8DWp75GnCC6FE07rPxy+4TzFsTlKJZA2x0iMRrEQuV/5/Zwwj+GCYVCPPHEE3zkIx9h+/btxb2pOp5QF/UaYc+ePXz0ox/N75/H3r2AfaeeQDIVxNzUSPDgxEg2YTHhxlRMaNpu0fZCGi0xs5UxIsr0QXJ2du88U9xyeyElVbzKibnHJWSlBmZEkm61y1pqd5M1kQN8rONe/qV1E2cEdX+FfDKkdNz78CginUHY/tT7larECjr77ZmWbCEbDx/APAsKzYl7GoQ1fclZo0FiqzN/COEjBp1PpAkflhPmj0nnFEOg7wiR2tFAOqNxf8t6fvzjH+f32T/+8Y/zyCOPlPHu6lSDGpsxXp48/fTTfOxjH2P//v10d3cT+PB8dnWvIJkIoO4JOfWjC5gsOE6xoHG3TfiIgWLNPOtIIaYXXdsR82qnqYnssr4f9eCl5kyGVsS/ZXZNWMwPDvCR9vv4ePNO1gbC6KLG9yqlRCTTiNGkr849Vw/daLAxGrz9DnOu3ZOtqGyUvJKZ4Q+LnNEVS9K0K0P4iJxw3022rSFsgR5XMPdEMUyVt7x4NSs+PcKpp55KMpnk3//937npppuKO3mdqlLfU/eZW2+9lW984xuYpsnatWux3jXI072LSQ8ECRzQnafzyShYPssFw5USRGQHslXkJkFJl+fMSyUn6K4yZl9wKuxAtlSpj3vmc4ODdOuDrAvvYq0eQBVFlgKrJSzbSYnLGBAOghBOSpwP+e62Lkm3OFUS/dhz96rQkpoUTovXSdLf+lfpdD5d3BsXtqRpe4bYPoWB1dkgOiburY9FjytkdsVItRvczGl87qO30v3Hi/jzn//M97//ffbt28cnPvGJegCdj9RF3SeklPziF7/g6quvBmDdmSOs/4dH+cbON2DujRKMT/3IPXYvXbEgOJCtDFdOMFzBaQorwlWLagbBiYmrinmkBmbUPzFXkAQVgze3PMVx+ijtahTweGO4SohkNvJaUyGg+yPuQmKFswF1JmijU0fLu339eRFMlzuHYoC0RHbbYcwbKfHcQkq0lEXLZhhYlY2vEVlhn0KX9biCHA0yklH4fy1n8MV3/ogFC/6HK664gptuuomenh6+9KUvEYlEynmLdSqkvvzuA+l0mq985St5QX//+9/P2R+Gr2x5E/2b2tCmEXQ4uu+lJaHtBYOm7ZmiltunpcK982LxKwjODoLRKMn4GAA3JzDM65tf5BtdT/CqEFlBPwYxLUQihYgnHAfvA7k993SLE1jnZZ67F0vyufso3961QrSkRfuzaZq3284D9yR764XnD/XoPPvSIi7d+yYWnP2ffPnLXyYYDPLII49w8cUX09vbW/G46pROXdQ9Jh6P89nPfpY777wTVVX53Oc+x5nn/zc39Z3O6PammQU9W0ZTS0LLFgMtaZW9n2lrWRfj1d651/vm2a5zRpPEiNlO3q/HYq4gadBSvKP1cS5u3cBbovHaC36rFpaNSKScQjYZw599d+EE0+Wi5Y+1YDohsw/iaSeITioglfLepJCScG+Gxl120W2Sg4c0nt20kGdSi2hb+j5+8IMf0Nrayvbt2/n4xz/O7t1l1EaoUxEvk9mlNujr6+OTn/wkzzzzDNFolE/9225WnvghPrvzIp64c82Mgg6ADU07bNqfS6MlK7PUg8s1p6BHqrpi60clODvgBMBlmv1x5sKGgUyY1ze/yFc7n+LcsH3sOvOZGOvcDZPRLh9K0BY6d686B3oUTCdsx7WbYRjtrqDmMxA5lKHzyTTh3pkHLSSEDuh87//eyF/ix2NG/4orrriCBQsWcOjQIT7xiU+wcePGisZTpzTqou4R+/fv5+KLL2bbtm20trbyr/+xkaVrM3x619vZ/vCi4jbihKRxlyR0pDLXI4VgYEUQI1bdpXYt7qwqeLrUbjsNa2xNllyRyy2siM2CtQf5644XfXfme8w4Xzx8Ap1PpcA0sxFQPmHZCMOk+W/3I+am/Pl+ss5dNZz4ES/ryoNzbVajE13uwUExYHClINNUWbiUkE4QXWCwuL/XEoKf3PpX3DG6ht7M6Vz87w+wevVqhoaG+NSnPsVjjz1W0XjqFE9d1D1g69atXHzxxfT09DB37lw++8WnWLg4wxd2v4XN9y8pak/MCkoyTRJhy4oEPdWq03tykP4zjHElId1EyYA+LAmMTEyXqRoStFEI9UkCQ7Ks+tmVYkVtWlb18/FX3sVb5j3DYt2/PUVL2rxn52s49/ef4Q/XvRK9P4l1pA97eASZnikvqnpIRbC0oY/3rN3A2advJrhkxJf4BmE6GSPBwZnrort2zuw+eLBfoo1SlQcKIcGISfafq3Dk+FDZS/HgpL1ZQacboV1Eoxk9rnD5bX/NbfG1NDTafO9732PdunWkUik+//nPc/vtt5c9ljrFU49+rzLPPPMM//7v/87o6CjLly/nY5+6nVAzfHb3W9n48FKUIsTHCknMJovQAY1wb/kTcqZJ48ArBXZDlSZ1G4JD0ikj6+HeuZoEPS4nra7nBVIFO2rxhpOfZ03kgD+DyLLTiPOrwTP41T2vInxAIVrwPchkEplKI3QNpbEBVNVJQ/OBZdFeFi/r487wKg7tbkUd9d5jOOlvTtvXdLPwJKBO2BAYlmgJMCMCswq7MnaDydBJkGkM0rUhg2KUd0O2bTTZe57ADoM+oKBMlWKbJTCs8L93nIdyng2s5H0XQ9M1H+HOO+/k0ksvZWhoiL/9278tayx1iqMu6lXk0Ucf5Ytf/CKZTIaTTjqJD138Ox5iBddsWs/hp+egZIpz6GaTs0auZEDNlH5zSkVw5Pgg8cU2dkNW+dIKwsVlQDUJWlKiTt5PoioI0zmnHvfunIXIOWlWzD3MBXNe8G8QWd6z8zU88uwKYjs1pk0mkjYyk8E60ocSiUAwiAi61OmtRFRhc/68l0h169yxdxWDe5tRkh4/ZGSbIgX7ZdVEdjIU0xF3YQknDa+yrfA8WkKQaRCgSJJLMxzQAzTskjTuLv3m1BIW2DoyaGM02+hDCsoMK4v6iOAHd53PLWuP5/9b8ke++MUv0tzczI033sjll19OOp3mfe97X7lvr84M1EW9Sjz44IN86UtfwjAMzj77bN7/4V/xgLmCb9z5RrRRZcbIUqlKjGY7X2BCWIL2F0q3olZA4dDpAZJLMuOWOZWU4kq0u8im1QRGpkkOdxlhgj7qPEB4WWAkh1QdJ/TK47awMnqYJjXp/SCybDfiXD90Gr+47bWE+gSxEj8PO5GAZMp35x5SDN606AV6uxvYcGghR/Y1oxYTOOoiOZHVEmDEBHaw8g6DxaCPSrSUs1Jg61S8HaGNCjJj7sXUggypLgVbD9K8rTRhF7ak9QVB32kgdYnRYiPSAn1EmTJWRtjO73c+voAP9v49P5bHce6b4zQ0fIWrrrqKK6+8kkwmwwc/+EGET6tExzJ1Ua8C9957L//93/+NZVmce+65vPuDP+We9Cq+fu8F6FlBn7JSHBMF3fkhqCVGuw8tDhJfJEgtqM5yu2I4hW+8FFY1BcFB7x4gCpGdaZbP7eWNXc/7M4AxvG/XuTz03Epi2zXClRyo0LmHQwjdJdtYIh2BEf5mwYvEu4Pcf2A5fTtbnHQtD1FM5xqzdUi3eLQkbznxIFbIEXfX4wx0m751knRziJatJoGh4g3C2JgDqUpkRGLgLLVPhWIIbF0id0b5J/v9/PrMn3P66/6TQODr/OQnP+GXv/wl6XSaf/qnf6oLu8vURd1l7rjjDr761a9iWRYnn5XgPf/wU+5Nr+Qbd74RPeHcBNOJoFSdp+HCdotafOon48kYXBak73QL9Cpsbvuwdy6ylfMUHyKWAaywzTknb2F17KDvzvzG4VP4+Z9fjz4kiLkcR5B37gEdEYsiNM0X5x7T0vzNghfpmxPjkYOLGNza6nlvAMWA0BGJGRYYDXgS0KemnAA+I1qFbQBVEl+dITFXY969GoHh4i4eNSMRaQUZPPoF2GGbDEzr2LEBBcTuMH+nfJAfnv4bTnzl57gk8F0uv/xyfvOb35DJZPjkJz9ZF3YXqUe/u8gtt9zCpZdeimVZnPHKES7++H7uTq3if+59I9pYQZ8ifS3v0Cfpn9z8EkWVgZVCMLQ4SN86syqCribJRwx7Nclq8aygG3gu6FJAdNkQ5576Euubdvom6Ja0+bvdr+L1t36aa371VwT7RPUCA6WNTKex+/qRI3Gk4U9VOIC2QJw3LnyRBccfxGrzfhzCdpbHA0PexYsIy9kGCAxJJ+3OZexGk55XKmQai/N0kcMZwocK60mDHbExGqaeBBRrTInenVE+seE9jNgBVq//NMe/x1kJuummm/jWt76F7VO3v2ORulN3iVtuuYWvfe1rSCmJrm/iwx/Zyj2p8Q4dpijpKJylPrNxckEvlkyTRs8rFayYCUWkoJSKNurt3rmaIpue5s35xmKHJGpLmneseYp2PY7ux+Y9TjT7DcOn8PP/ez36sPvOfCYmOHefluVfPWcrifbdbB3p5Nkd81H7dU8f8LQkaCmJrXm3JK8lnMj8VKtwPf3UajHZ+9cKkb0h5jxRfnR8zrFrSYFiTJzbFHNMAODuCH8nHMf+sb/ZzL5FP+XrX/86f/rTn1BVlU9/+tN1x+4CdVF3gTvvvDMv6Nr6dr5zyaPclVjF1++7YLygT6ELRoPEDk99U+mDKuH+6UUl05gV9Gb3Z31hOiljmlcm1XYeHipZDQj2gxkr/XVSON2vzj5lM+ubdpZ3chewpM1H9r6Ku59bQ2yrjq/927LOXabTiHAYEQn7Iu4RNcNJzfs46dR9/G7HSSR2NpZ1fSgZgT5axhOBPBpHYoUERhnXV6nktp2soMBodPngAZvEsgyHZICux9LT1r9o2G2TnCcmmo6sY8+EQB9WUVPjRVnYAmFnK/hJHMcu38Ov1v+CpjUX03vahbQ/8TS///3v0TSNSy65pC7sFVJffq+Q+++/n8suu8wR9HVt/OATj3Ff0oly14fGP85PEHUhMRrtaQUdnGhWPT65WNu6wvDCIPtfXQVBz5aeDPV7JOjSKVoTOexEIFfi0MtZUbCaTTpWH+Efzr2P05t2lX/yCrk1EeSCzW/i0T+cSGyrP854KmQyiT04hEylwPJn9QLgzUue5w2vfBq609jB0r5oxaSigjOKAfqIJHzImyV5JZvtERiUM/dTL4PEsgwHzwwy2jV1WmPkkOHskU85SDCaLKzQJN9F4et2R/i7x/6BYTvETy/5I//2b/8GwI033shPfvITpJ9VD48B6k69Ah555BH+67/+C8uySHYt4OpP3sP9qRX8z73jl9xh8r30mRz6uNdOglQEh08NMLqiOtHtgWHv3LmSBj3hXXWvsUgVlp6wn1Nb9zI/MOD9AHCc+bCd4twn/5HE5mZCR0TtPnFbFvbgECIQQIRDiFDI82A6Vdi0BeK89/jHeXG4m42Husjsjnm6JC9sCAw6VdcyTVWIWC8gtwWQbnLy2l1DOMKeWKjQ8Whw6nx2WzB96zYwGi1gvGNXLIFVkMnDrgifwHHsQyv/Gzt2Bkr8Oa677joCgQD/8A//4MY7e1lSs/NGrfPkk0/yn//5n5imSaZ5Hv/85a3cn1rB1+540wSHDoy/F4p06ADY0PHMxAAhW1c4uD7I6PIyBF2COk2akJJ2lvzcEPTA0PSzrLCc4LvQgD+CTneKdeu2cEHX874J+u0JnTdvvYBzfvKv2A+3EDoyO5YfZSaDPRzHOtLnOHefHNbaxgO8bfmzNK4YwGrydvVA2I7Yhvpnvn6F5WxjVYR0Mk+0UaYNohPpMqZ23ab3bJOhJRM3exRL0vpcEdflFI590lW3rGNvVhPEPqdyySWXAPDLX/6Sa665pvTx1wHqTr0snn/+ef793/+dTCbDK17xCv58hiAueiZ16DnG5qUX69CPvvboDSKFYHhRgOHlkOkq06HbgsDg5DeomnQmDbccz7RpeFmno/pQitxqNjllxW7Oat1BqBohxkWQsDPcn2rgkt/9A6Fegfe9y1xA2mDhOPdw2Clg48OeqCps3rToBQ52NfLSQBf7N87xtH6CkoFgRmI0CIwoU7t2N+4r6ayi2RqkWycG7QkJ+qBCJlLGB6BKjqyziC8MMWeD4VSUy1J086dJHLuwJinkk3XsnxTv5FdnXMU/3r6Y//ynf+KKK67gyiuvJBKJ8La3va309/Aypy7qJbJjxw4+97nPkUqlOOOMM7h2UQP/vOpux6FPJeg5oy0kRqPEDpW/WTy8KMCRs0yoIEp+MoQ5pjKcB+gjEr1KTS2mww5Igl0J3rXiGebow96efAxfPbKKXzx/NsEXwoR8qlnvNjKZxEqlUWJRp+ys5v300hUcpqtrmA2BNFt65sABb0MM9RHHRadbBHaVK+8qplOwJtMgsEK4t/wfsEktyLCvQWPuA6KkQjVHB+c49pywC1sgLDl51sCuKH8n/4EPv/c2/uen5/Ppv/97fvnLX/L973+f5uZmXvva11b6jl5W1EW9BA4dOsRnP/tZ4vE4a9eu5eHd7bz2HZv5/v3nTSnoYzFipQu6MBSEtPMO/cgZlvuCPrawS5VRMs4SpJc14sEJZwgvHmH93N2c3LDXk3PaKFjSHtd69dGUxbvv+wjh7UHCHn8GniBt7JERRFJz9twbYuOcu4yGUDzIUVzXupsTmnt4aX4Xz29agDri3TqIsMdUpKtGdbix57Kcc5mR7L6+i1jNJj2v0Jh/j4qWsBC2s+JYdNrtFHvsE8g69p+Kc+CsOFf92uBtb30rN998M5deeimNjY2cfvrpbryllwX1PfUiGRoa4jOf+Qy9vb0sWrSIpwYWMvS+JPc8vnbyPfQctpPWYTTZ2JHSJ7PW5wWKYR916AEXJ0Tp5MKG+jwQ9Gyf81C/94Kei2r/0KqHPBN0gK3pLvZbCQCG7CT/uOcVvP//fYLYxqDnn4HXSNPETiQmtHrd/OFGuoLerJCEFINTmvfyhlOfR180WrVWw5OR64kQ6pd4Ua9IS2S3sly+rqwWk32vUck0aTTsTRM8VOLD0Zg99pkawbAzim0r7D1P5ZOf/CSvec1rME2TL3zhC2zatKn8N/Eyoy7qRZBMJvnc5z7Hnj176OjoYHf/cqxIkNGehnyluOkwGu2yl9xtHYaWBF136EKOqVpV7b1H21kJCLi4V1/UaXVH0N9+ypO8d9EGVB/qy+4yY3yyZx2n/OFTPP67E2dNEJxb5FLg7P4BME2k4v130BEY4R0rn2LpCfuxw3Kqgo5VQck4MSp6nKpf+1oyK+zJGWJZSsRqyVaga9LKK7qTdexmaOb7X9nthPWf+7bvcM+GEKeddhrJZJLPfvaz7N3r3QP5bEbIelLgtJimyX/8x3/w6KOP0tDQwIg8lXRLMwNrZt4zkziVySrZQ0eV4PZEaApan9LQEu4edjKkCraK58FwZhgWvW8br2rb6ouYAzwXn899d59IcEB4HjtQyPzbB5AvbvV3EMDAu9fxik89Rkzzb6ni10+fSfs93reaNcN4liI6OleQKCczZjokYFbgAyVow2pR9ScCg4LWTSa3X3sx//zP/8zmzZvp6uriRz/6Ee3t7eWP4WVA3alPg5SS73znOzz66KMEg0FG7BOLFnQAK1yhoIO7j9w5pPBschGWx4IuINUqsC8Y8FXQtyY7ue+uEwn2+y/oAL3rmlGam/weBi03PMW9P1lPb6bBtzFceMKzHDnViVT3Es8qMgJaNdJDBZXNRwLMBgu7iG2QTLNkYJXG+e/+XzbvW8j8+fM5ePAg//Ef/0Ey6V9DpdlAXdSn4be//S3/93//h6IopNUTSbe2Fy3oUgFZaUMVRXrSGepY4sgpkg98+Fb+Yfkjvgn6C6NzufWO0x2HXiOkWwSH37wStb3N34FYFh2/2MCTl59CwvLeLQM0aUnef+4DrHjXZpJzauc7mhVU2lNCcTJQiiHdIuk7TkMGQnzzm9+kqamJTZs2cemll9YbwExDXdSn4P777+eKK64A4JJLLiHTOrdoQQen41r90/UQAb3rbP7utff71nwFHId+z50nOw69xki3Cg69cSlKS4vfQ6Hl+qe458dncjDtdkHz4lnTcJAT3vwSqfba+66OZWTALtqsZJol/Ws03vmJ67jsssvQdZ0HHnggPzfXmUhddiZh8+bNfOUrX3FqEAcW8Y3f7aJ/jVK8oFP80+i01OeaojlysuRjr72TVm3UtzG8lOjm1jtry6EXkm4RHL5wOUpbq78DsSzar9rA0z86GcP2r+zOithhVr5lC8nO2v3Oag4XtgTtEhx/ukXSv1rj4v+8jc9//vOAs4r6xz/+seJxHIvURb2AQ4cO8fnPf550Os369etJd55I/3GitKYRCkjdBVGvVqSwkJhu1o72kVSroHe9zd+97n7fKsMBbE50cecdpxDsq31xSLcKDl+4rCYce+tvnuL2/z2HnlSzb2NY23iAE97yEvEF2SIuxwBmNd9HpaohcObTEm6VnGP/7x89k68L/93vfpfHH3+8wsEce9Sj38eQSCT4xCc+wbZt20BpIN39SgaOC5bcBcqM2u6IeqV78tMQOKjTPMtTP5OdghMv2uhri1RwBP22u04lNAsEfSyhPknHn7dj9/X7PRT6/m4df3XJQ+hF1yKtDjdtP5nwn8pr6VozCOg906re/GELsCq/1tURteT6GMEBQeuLBn99psFtt91GNBrliiuuYNGiRRWP51ih7tSzSCn52te+xrZt22hpaSE950z6jw+ULOhSUF8294Bkh+Csdz5dE4J++x2zT9ABUm2C3guWgfB/Gmi79ilu/6G/jh3gLUufI/HG4WPGsdcyRVemG0O6RdK/VueWJ1ROPPFERkdH+cIXvkA8Hq/CCGcn/t/NNcJ1113Hvffei6ZpHNKPZ3BtDFlGK2upSWSlEaJ1piXZKTjx7Rs5Ptrj2xgMqfLDF17NbXedWtN76DORaRSINUv9Hoazx371BjZ+63h+9djZvg1DFTZvX/4MqfOGJzYgqeMqdqj4gLmxpFskA6uCPLuri46ODvbs2VOPiB9D/bIFHn/8ca688koAkg1r6TulbULrwGKQgFVGKdhJcbm++7GAFYKhFfju0IesMJc//loCT8ZmpUMfi61Dz+ta4YRVfg8FgIabn2TNv23h1w++wtdxvHWZ49jjC2f391sV3Ir1UShrnoWsYz8+yqWXXkogEODhhx/ml7/8pTvjmuW87PfUe3p6+PCHP8zIyAjoC+g77TTSZRYskoDZ7NKeYDUqyY1BP6TT8lLVDu86UoHkW4b4yMqHfB2HIVV++MRriL7obfevaqNkYO69A8iN2512qn6Pp6WFly5dzHvXP4rq4wZ33Azyx7vW07KRmigiVAxSgSPrq7inDmC44wdFWkFLlP/g1LwJIvt3QupZAC677DJe+cpXujK22crL2qknk0m+8IUvMDIywnHHHcfwypNJV1CbwwrPkrseMDoNp4PULMAKQfqtg3xwxaO+jmPICnP5Y68luvHYEnQAOwD7X9cCx6/weygA2AMDrPnsZq57yL+leICYluZtf/UIfSfNnnt7ZAnVFXQXkQG7vHryWYaXQaZ9MRdddBHgiPquXbvcGdws5WUr6lJKvvnNb7J9+3ZaW1t53FhAfLFaWZBbNUq6VgvBrNgzlCqk3jDMh1Y87GtRmZTU+MVT5xDbFJg1jq1UpAoHXtWEWLuiJoLn7ESC1V/eya8eOQfLx4s1pBi86VVP0H88syIIthKR9BxBRQ12bB0GVin85tEMJ598MolEgi9+8YskEh40tqhR/L9zfeKPf/wjd955J6qqsqdlLcMrwxXdsFLwMv40q8PgSjDeOsCHVvm75D5ihfjRo685Jh16IXYA9r++hhx7Xz+rP/Oi7469SUvyjtc/RO8ZFsmOWaDss4hKA4utkKR/rcrjh7pob29nz549fOc73+HlurP8spShrVu3cvnllwMw2r6a4dVtFT+BS3X2Rb3X7BO9gL6TJO+68H5fa7hbCI6YMX729DnENh+7Dr0QqWQd+/Era8Kxy3SaNV/Zxa8ePsfXsrK6YvF35zzEigu3km6tUWGfJStwY7GDlW8V2DoMrA3zpS99CVVVuf322/nzn//swuhmHy+7QLlEIsGHPvQh9u3bx9lnn82NLR0gKr9BbU1ixVzcx6pyoBwAGYXOR9SaE6u+kyUfPf8OXyvEAdy0/xR675mLYlFzn5EXCBvm3TWIfGGL30MBQGga8vjlJC4b5TVd/o7pxeFuNv9xJeHDtXVhpJsFwydkqr9N4FKgHAA26EPuOAzFgP9vcSdXXnklgUCAn/zkJyxbtsyVY88WZtkzXWVIKfnWt77Fvn37kEqImwPNrgh6rm/6rKPGzIYZdgT9Xa97yFdBtxD8v32ncvj+uU7Fq1n41bqB49ibnXS3WnDspgnPbCLyHxGeHFjo61jWNh5g1YVbSLUL7DLqWVSVGruvZ0SAVWKRr6mwdfj6E4dZv349mUyGL33pSy+7/XX/71QP+b//+7/8PvrgCWdgxdxr/VhOdSTfUWTNRMAnOwVr/v4lPn7+7czRh30dy+/3n0z/Pd2oaV+HURNYQeh5bRNi7XK/h3KUZzdj/msb9x3yd99/beMBLnz/AyTfMFxUj3AvyPhfzr90XI5HSnbDF77whXxhmm9961svq/31l42o79ixg+9///sADC9YTXKBi12qZmtpWFWSavf/Yk+1Ck5++wusb9rpa4T7WIfu4zBqjlpz7AA8s4nQv0d9d+y5CnTDr08U3cWxaghIzfF3y6pc3C6vve7Hv2B3bDWqqnLnnXdy2223uXfwGqdG7tDqkslk+PKXv0wmk2H9+vUMuew6yq2KVMdx6Ce8cyPrGnf7PRT+0HNS3aFPQc069s+2++7YAd593BMk/3q4doNPaxwZtF0N8JMKDB7Xlu/o9r3vfY+eHv/KSnvJy0LUf/azn7Fjxw6am5v5Q2PLpPvokjK3TiWuuzp9UEUb8GA9TwJS+BYtawWg+2/2+N6U5ZDRyO96TubQ/fNqxqHbGsRXGjXVIlcqkFgQQ2g1stYM8PRLaF9t5aWRLlI+b26/ddlzHDnD8u1+snUQpjdLhuH9GiLj7rmqEUZz6bZeTjjhBBKJBJdddhmWVSM3eBU55kX96aef5vrrrwdgx5JV2MGJ7ZcklPVJaHFBpEcQGHTvY9QGVRq3VecCL0Q/ohM54FO6WNDJid764jxfzp9jT7qVax8/k31PzcXWS+vxXDUEJFelWbSoF+2UQcyo3wNyaNhjE314GyIQqBlhV+d1c/jUEM/es5KbNp7i61jStkbjZg0zLHzZY5cCYjtVRKL6ywVaAhq3qYi0e3NfdJ8gfFiUPvdNk8ZnRZz99UgkwvPPP891111X8ThrnWNa1EdGRrjsssuQUvLGN76R1LzuCX8jyRY/KHE+1+KChj2S4KB0xMAF9EGVpu3uO/9CRFKl4cUA0T0CIfF8L9AKkp/0GnaoXLX9TCwf1HRfpoUbH1+XXxWxgmBGPB/GOGwN4qszzO92epy3RROk2yzfHzYUAxq3jIBlgSJqQthFIMDety8g3eLcf+rOENe9uI6E5f3m9pAZ5sZH16FknP9vB/BU2KUCtiZQ09CwXSW8K+BKz/Pp0OOSxm2Ka47d1iFy0KZhd4mmRuII+xTPMq/69W/59Kc/DcAvfvELNm3aVPFYa5ljWtS/973vcfjwYaxQlJ9OcpHkBZ3SKrzmBF1YEiMKmY7KVdgrhy6SKg1bVfRRiWI5b7qSMo2lYgWdmzcnUmpaYt3TRtrjpdM96VZu2LAOrSA/1gpK/yKZBSRWplk0/wjKmAuye0UvyTk+1vKWMOexUZSd+47+rAaE3Tp5BUbDmB9IULaHuXnTSZ6P5bHDi2h+Qcvv4UkhsIIeOvYxgWaKAcF+CO/Wwa6ysI9K1xx7fLGdP2apwi5skIqcUtgvfuoFXvOa12BZFl/5yldIJpMVj7dWOWZF/e677+aOO+5AURQGTj4NWTD55AVdUJKqjRV0NxCGoGmjRtO28Q69YTfg8v6YSKo0blHRUgVjF1Q919bWHBc82SSnpOGKJ15V3QGMYU+6dZxDH4tUwGj0XthtDeJr0iyY2z/hd7pi03FcL4m53gu7YkD3Iwm0l3ZN8kufhF0oWGedwN7XR7EnSSVVd4Q9deyGrTL00JxJf2cFhRMXUeUH58neanAwK+wuzyNan05g+OjnrsclzS8JIns0cOkSzQm7YpTwIimmFnZF8JnPfIaOjg727t2bb7V9LHJMivrg4CDf/e53ARhavIJM+/j0tXGCTvHL3VpcENvroqCbgsatKvqInDAGVx27hOC+AA3bVNT05GOvplu3NcehS4VJJzchJeEdQZ6Lz6/eIHBS1n696wxufOL0CQ59LFLxuONezqHP6xvn0McSVC261hwm2eWhsEuY8/go2ovTBDL6IOxCVeh5ZXjqba+sY7/puVN5+MjSqo/nlj3HEZimtIJUBGaI6gr7FMcODkBkt47a795Tu7AnzplqBiIHJeH9R1crKkUflcT2FDkXSmdcMLVjP/VHP2NL90oAbrrpJp599ll3BlpjHJOi/r3vfY+hoSGWLVvGyOpV435XKOjFXoBaXNCwW6KYLgl6RtC42RH0qmIKIjsCRA5ItOTU55JadWpG5wR9pgktdETy0N4lVdtbT9gBfrrpHPo3theVWWAFnJav1SbZZRN45ZFJHXohXjp2xYDuh0fRNu4q4o+zwh4OVz2PXYlEGHj7yUWlkep7A+x+fD73H65eGt6AEWFkS8uMwlNNYbcDzvGnIjAEsT0Crbf6W1yRg9I/xz7mkphU2AWk5nVwwQUXAPD1r3+ddPrYy1895kT9gQce4O6770ZVVR6dswCUgrdY4BaFLWa8z/IO3XbRoW9T0eNVFnTpPKWH+qQvXWGLFfQc6qONVdlbtxBcs20dmW2N+af5GRFgRKUz/iqR6pC0rzlCQzAzpUMvJKhadK7ura5jlzBnQ6I4Qc+hCISqIELB6gm7UOi/8DgGVomiV5aECfuenFs1x/5M33wadhY3GE8c+xQIG6L7BVpfdYVdSAgfrpJjn2FFVWRTdHNIZWL0s1TgFwlJe3s7+/bt4+c//7k7g6whjilRHxkZ4Tvf+Q4A73znOzFamsf9XopJyrnOcOH55dCFBGW0gtQUUxDZHiDYX/y4XYuCF04d91IEHZyb9yd3v45DhnuduBJ2gCtfegWprU2lv1g4hYWqsYKR7LLpPPEQIa30fZagajFn7WES89wXdsWA7odmWHKfhmoKuzqvi+FFpR9XMWD3Y+479ueH5tJ/z8SMmumQijh6b7iAVMAKFHeTCRuieyt07BK00enPJ2SVHPuumR174bOxrTJhDrJDAf71X/8VgBtuuIGNGze6M8ga4ZgS9f/93/+lr68PMxzj20dGxn2ZUkzSt1dOH/VejENPzC1+fKEezdlDL8ahS4j0lPf1aEd0ojt0Qv2lOXSpuNCOVYAZyh6nDEfSvEnwRH/lpT8tBAk7wDXb1mFsbyjbNdg6GDF389eTnY5D15XyZzxdselclXXsLo1N2FmHPllQXCnHqYKwq/O62fu2+WVXbxSW49gf7F2GYVeex21Jhac3LqGcNgVSCGxNuPIQXerCVs6xh3cFEKkyPgdLFFXbIufYYzs0tMHiOkHKgCTROfU1U4xjn7ASJ+QEYZcK/P3dj3Leeedh2zZf+9rXyGQyMw9wlnDMiPqGDRv4y1/+ghCCoeNPQQaOXrCTCvoMFOvQjcbijhvZrRHbJ6u+5K736jTsguBgeeepyJWOFfQK2HfbIh4bWlLRMe49soor73xdeQ69ADsAmQZ3HHtyjs2cE8pz6IUEVYuutYdJdFduhxQDuh4u36EX4qawq/PnsuedR/PRy0UxYN9j8/jtQ2exL1lZ55P/t/kUml6sLDjQ0kXFjr2ce03YTspbbLtanrAXex4JoX5J03amDUzNIVU5Y6GlYh174UAmCLsKl1xyCa2trezatYtrrrmmhAPWNseEqKfTab797W8DEJ+/hEx7W/530wm6mKI4g9t76OF9GpGDsuotPLUjulNQpoI53tYoy/lZAXcEHSAwLHlo43KMMg5mIbinbyXPP70EJSNc+8ydYKQKDiAch966pq8ih16Ipth0rDpSkWN3y6FPOK4bwi4Uhk/tJtPg1hcJ+oDCPU+spS8TK+sQKVtHeybmSpEoWxNYZd43tua4/nJR0xDboYKLVeEmQ1jQsIuiHftMTOvYpRMnNXEQ44VdKnD6D3/Ozi5nS+baa69l7969lQ+uBjgmRP3aa6+lp6eHjo4O4ivW5CffscVlJmWSX7m9hx7ZrRHtKe9Yapqibzi9V6dhJ/mCMmUjsvtQJZArKONmM4vmpwM8MbSo5Nfd37eC5x5fhpJ2PxrJaCo/fz3ZadN1wiEieikWozhCmlm2Y1dM6H4o7ppDL6RSYTdfcTy9J7nvJvUBhb88dnJZjv3/PXvatClspWKrAjNUYqEa4WSsVLr1oqagYZuGSBb3Gasj5X0XaoaiHXsxTOvYp5oCc8Ke//+QnDuX9evXYxgG3/nOd46JFq2zXtT37t3LtddeC8CW7sXYAd254CldZKri0A+V79D1uEQbnv5NiJRKdOvRkq9uUMo+nRUYXyHOLYQteezxVQxZxXU0yTn0Z55eNuUKTKVIUUZhGuEsubeu6UNz0aEXoik2oYUjJV/zelyibqpuh7yyhF1Vsc45gf2vDDlRzFVAH1C4Z0Npjv3ZwfmENwersupWSmlZKRyX7wZq2qkZH9obmLECXfiwUvZKoLCgcadHjn3KQch8gLxUAAU+9alPEQgEePLJJ7nrrrsqH5jPzGpRl1Lyve99D8MwOOOMM0jPmesEe5EV9GkmA2GNT2WrikPfX90ld5FUadiiEhyQlTv0cQcuTthzTVmqRdMWwS+fP2vGv9uTbuXGvafy3OPLUFPVzReSSvGO3YzA6CKLruMPV8WhF9IWS5Bcmyxa2IODkjl3etOOMifsxRapMc9ey97XhVzrqzAV+qDj2G/vWY1VxP7K5ruWERiqzlhKKS3rdg0FNQWh3mwFuirWjFeM6jt2YTNtNS2pyXz/dingNb+4gfe///0A/PCHPyQej7syNr+Y1aJ+3333sWHDBgKBAH8ONDoFGJSZBb0QVx26HOPQXSC6X0z69CxSTg33CSVfXWK6vXWpOilrXpRSDT0f5pHBqXOMDxmN3Pjk6Rx6dk7VHHohOcc+nQZYQVBPGmLhikNVdehjUYRkXucgidXpGYVdH3EEXQ4MejI2GCPsgemfBOXpxzkO3aN8bn1Aof/JTm7ccvKU7VstqfDbTadVTdDHYucKH03x/m1t+mIzlRAcgPDeyWvGK0MagaHK55tacOw5YXeydCSX7epl4cKF9Pf387Of/azyQfnIrBX1RCLB5ZdfDkD//CVYkRgyd42UsA7tukPf665D15ITj5Vz6NUSdOckk/9YqpWlrJVKYEjy/B/W8MDAxBzjPelWrt1wJlq/901FpDL1KoUZAeXUIdpjo94OCkfY53f3T+vYA0OS7tu8FfSxiICOCE4e9i3CYfqPi1bdoU9Agtwc43cvnTypY79h0ylE7o+VFnVd7lCEyO6zM/k9VuVZe6pmMIohXHv/Xjj2mQdB3q2jqPlObjfffDObN292ZVx+MGtF/eqrr6a3t5d58+YRX+LU8yUX6V6k2Ljh0GO7nY9QG1JpejEb5e4mkqMNGSyBSFTXoY+lsEmEreFLRSx9RLJh62JS8qh4HzIanRruPgh6DiMqJyyD5hy6H4KeY6xjL1xN0UckXXf4J+g5hK5NcOxKJEL/W49nuLJsxopQdoT5f5tPGefYB4wI2ouxqmevFDJpBTrhpMJVm+AAhPfokDkqEYrLHSRzjr1hi4YwBCKtlB1UDONrxRfj6/KlZAUgJO/+y/28/vWvR0rJD37wg1kbNDcrRX3//v3ceOONALzQuQBUFaniPN0Xc71L0IedbmuVOnQ1KR1B3+oEHbl94wsbYruckouRXTrNLyqeCDpki9HkMgnU0ivEuUnL4wF+vvFsLAT/b9+pjkMvooZ7VRFOYZqcsJthEKf4K+g5FCFZOLeP1HHJ/HcYGJJ0337Ad0HPMdaxi2CQ3revZXCFz4OSwJYoN754Chv6FzFkhrnlrtMJ9vk0nAJhLzfltByC/dD8ouaUlrUEsSrEUyqGE9vhNJsSUzacKpZ8rfgiS7pLRY5bcbsurREMBnn++ee55557KhqLX8xKUf/xj3+MYRik2zpJtzstD0u52JWMe+1T1Qw0bi8xArNEpIDQXqfkq6c13LPlXs2IPw59wnBeaOCnm86h57kuXx16IUZUOkvuJw3R0eC/oI9lXucgiTVpbB3HofcP+D2kcQhdQ2lpoe/tJ/rq0AvRdobY+vgi7ti1itgefy/8XGlZI+oE0nl7cojuE6gjalXnnsCIpGGnO2mx+qgkVkLK+djmL3YozHve8x4ArrjiilnZ8GXWifozzzzD/fffj6IojKw8HoRAHxYlFQZR08IVQTcjgmSne/tMkyIg1S5RjJJCBVxBKmA0CMyw8F3QARr2SEK3N6JU8QGqLBTINNuYZvWqc1VCS9sI8tRhhk/u8nsoE9EDHHrbcgZXzfynXhMYEkT/1Ihi+L8MKxWBGXMesr1GWICEZHt1JwFhQXy+4kqqnpqeurjYZCiGcOqCAO9+97vp6Ojg4MGD3HDDDRWPxWtmlajbts0Pf/hDAOJzF2I2NDrNBRSKjnZXMgLFhTK/ZkQw2l3aw0SpSA0GV4HdmXb6kXsorFIBI+ak19iByipXVT4Y0JKgZiSBEUl0bw08YUA+hiO37ZMZCpK2akfYbSkYzegYloqmWRx6Z5Khv1rt97DG09nKyCKcrBUPl5ZnQrEE0f0SxZDoCfcCactFquTvRTOMp5+TVMEOSBLLM86cV8Vzm2GIzxcVC7uQpQm7GZYEB5yV0BO/+WO2znEKX11zzTUcOXKkorF4zawS9dtuu40tW7Zgaxojy9eAFIT6ZNEV0JSMQE0LAiOVjcOMCBJdoqqfXnKOYHC1xOpOg4D0goxnN/JYQQenwlwVOqIWhWJkBT2djVeQ2aI8Cf9nf6nKcVkASkLlYE8Lpu3/bTVW0HOEQgb970gQP7dGbPG8LnZf2Hb0PnKpSpob6MMcFXIJekKipSTCp+CpsQGZdrYks1dkGoBGE6FKkssyDC9z5sBqYYVgdJ6oaCleWBI9LooWdqlKFJN8ymKqaz5r164lmUzOuhQ3/2efIkkmk1x55ZUAxJesAjWUjVyHdOvMN1pO0IGKmqoY0axDz15w+VxHF0l0C0ZXpbE7xiwpCOksg1cRKZybNdM4sQCGFfLerSuGM5mqmfHfl5qRNO70UdizDn2y710Z0djf0+qrY59M0HPousmhd6cYOm+NDyMbw9w57HpbG0bTxHvRT2EXEkJ9gsjhgtoC0nmw1EdxreJksdiBiaWb7QBkGr152B7bGU8oEnNuhsHjTdeF3R4T1W+GYWRB+UvxwgY1CcjihX1kMcT2WQT7ASH4xCc+AcAtt9zCtm3byhqHH8waUb/xxhvp6+tj7ty5JBYtRUtCuN/Olvqb/iYbK+iVYEYEyTnjHbrUHaF3i+QcQWJFGlHQ912oksTc6hUxkQKssBNpO9mWwnR52dXAcehTZxMohiTsUoGfUsk79ClQhjXfHPt0gp4jGDQ4cpGPjn1eF7vf3I4Znfr780vYhS0IH7GnvO6EJdETeOfYRfa+m+yzyAayVlPYpQKZ7olBQyJkMXicu8KeKWioaIWcpfiKTVORwm6r2WyjAzZCwlt/dzuvfe1rkVLy05/+tMJBeMesEPXh4WF+85vfALCxrRs1o9Gwx0YKGJ662BjgrqCPdejVIOfQCwU9hx2Q455m3WKsoE+HFaIq5y8k59BnqjEdGJGED7vXiW1GpnHohfjh2IsR9BzBoMHh9/iwxz6NQy/Ea2FXTEGkZ+a0VGF559jNyAyVG6ss7NY0+/ciYlXFsY87fyjr2Cudd4oQdqlJhherKIYkulciLLg+paKqKo888gjPPfdcZWPwiFkh6tdddx3xeBwj1kiqaz6hvqNLstMGqtnuCXq199ATXZM79HE0G87+losUK+j5v62w//N0CBu0xPQOvfDvowdsQn3Vn/mlAnaRgp5DGdY4eMAbx16KoOcIBEx6L0p659jnzpnRoRciVfe3tyZDSIgckOijxY0t59grzaueDqkVWYq5WsIunO6C081J1XDshVghiFe4xw6AnDlTKXeOcL+NlgIrGuNv/uZvAPjJT34yKwrS1LyoHzlyhJtuugmA+PI1BPsVZ3kMMKLK1O/AFqipys9fjEOfcnmsSBLdguQ0Dn3c3y4xXIs+tXVBprk4Qc/hROG6fwPnBF3NzOzQxw/IKV7hdrWrcadQQOqyrLtFGdbYv7+6jr0cQc8RChn0vtcDxz6vi10XtRfl0MchOBoZX0XUpEBPlDY2YTnBc1Xrv1BK98OssBuxGYxOCWQawGqbOV8359gr2Ya09enH7ZZjF5ZAyUx9DKeNtPP7ht02agp+PpQhEAjw/PPP8+ijj1Z0fi+oeVH/1a9+RTqdJtPcSrq9m+ghO5+vnegSyMmEUDpdh5QKG3wU69DNaHk3klSzDn15pvgGNKp0pZmDrQuMaOlpck4wHUjVPWHPCXq5aUN6PFsesgpza17QK0AZqZ5jr0TQc+i6Se/bUoy8ZnXZfc+nZe4cdl/YVpJDn4ConrBrCUH0QPnVINW0+8JuhcpYFcsG7ZoRXNm2kAoUGxsrQhZDWcdezlxohsWMKw1uOXanhv3kbyzTZJPJPpyoGUmoX2IHI1x00UUAXHnlldi2Nw2ayqWmRb2np4c//elPAMSXHkfDHiZEQk/AFqhJ4YqgV3MP3YwK+k63HIeuFX+RCN0mvrCyCcTWRUVP9FJxb6mvUkHPkatI5aZjd0PQc1TDsbsh6DlC4Qx97x1l6PUrXRjZGMp16JNRhZQ3LSGIZfPRK8FVYa/w/pKqC45dQHJhaVW1RNhi8NQMQyur18HRLcfu1CuZ+RiRXptQH7z3ve8lFouxffv2mu+5XtOifvXVV2NZFuvWrcOOdBAaPCp+RkSQbpl4E3np0MdSyg1khgWDx5uIiFlSi9j861vLX+oq16EX4hTDqeAg2dUUfdSlwh4SAsPSKUZUKcJdQc+hjGiMpt1JIXBT0HNomuU49te65NiFQv/JLZU59AnHdG+PXWS3btyoLgm5lLfKr2dbq/w9SqUyx57sAAKlO1KhSKzODMNLi58Tc73Ni6Xajn107pifSYgctln3vZ/z7ne/GziqS7VKzYp6T08Pt99+OwC3GxEad42/wCxdYAcK0r5M/xx6qq3IykVRweCJWUEvExGySLfKkoTZaeVYmUMfixTZbYdyhF2ClgItLV2vmR/bW6GwC6cxkNuCniO+v5GhZGWVQ6oh6DlC4Qz9740z/LrKHfvoOSvoX1uFACrhpJJWOqkH+wSBYZcf3MzKKtBJzb1SsFIFI1p6KqqtQ6bVKnrpfTKsLsexF/UdKRPT2WY8vlt77CYTHI4ZG98YTE1LYrsll205QENDA3v27OHee++t6LzVpGZF/dprr8WyLFJtnahWy4Rl98L9NWEK1JT3Dr2k44916BWS6TKK3teWiiPAZsTdUrO2VsY+Z7Z8o5pxv6MdOJNqw+4yhV2U0OmvTIQhGNzfyHCqvDSClKkRTweqIug5VNXm8EUptn7+OOjuLP0AQiFx1koOnqlWd4ZRyhP2XIGZcF+V9kazFehKFnbhfidEqToPCVYJDZnMCNBQ+RxldWYYWjbzd1TunOSGYxe5gOqxgxATi/2EBm0US+dv//ZvASfWq1b31mtS1A8dOsQtt9wCgNG2iuihiR/e2Pz0nKBXEihV6R66Ux95muO74NDHIgI2owuKyPUtKPnqNk4ebZF35RiHXs3c8nzFuVKE3QNBz6FkFAb3Npfs2FOmRiKje5IiFwpnCK8e5KV/bkEunlfSaxNnL6fnVVrVI9aBsoQ92CcI905dYMYVyhB2pw5EdYZjBYsvLZtY5F6HKqsrw9CK6b8jK1R+PXk3HLuws81csoOwNcnwookDbtxpc9FFFxGNRtm5cycPPPBA2eesJjUp6r/97W8xTZNTTjmFQKp18j8a8x0qZmWRz0a0cocuNaZsi+imQx+L0TZ9fmi1BR2c+6CY5T3FBH20eg594vkkwQGKO5eHgp4/ZYmOPSfoXtPQNcKmj0WLc+xCIXH2Sg6cqXlbDa4EYVcsQXDQo1zjrLDro0XUjBdgVbliox2Y2bEnOylrL306ZnLsRrTC47vh2C0x41agmpG88nM/zUfCX3311TWZt15zot7X15ePeH9gJDpjRKmSnjo9oRhyS+7VjHJ306GPRQQtUu2Tfz5eCHoOK+A8bU+FI+hZ1+LhPRDus52Kc9MgVem5oOco1rH7Jeg5GubEHce+aO60f5c4azk9r9SQfgw1J+zTfI+Kme285mXHNZndZx+dprSs4kSre3ENTufY3dhLn/K8OcdeJcXJO/YKamg4Lbmnf330kM23dh4hHA6zbds2HnroobLPVy1qTtSvv/56MpkMmcZWAonJXfrIPBVbzZaALSItYUoEZBrd20PPNI6/aKvl0Meds8Mct/QkhXNeo8EbQc9hhiZfqVBM0BLeinkeCZFD9pSlZKUmfe8KJgzB0L6mKR2734Keo6FrhE0fj8HcORN/KRQS56zkwFkeO/RCphF2xRJEe6RzLfpAvrTsJMJuRL2pmpfDDoDRMDHtzIjiyl76VFidGYaWjz+vGRGu9ZSwQtl4gApQ0852brpdTplhFD0Y4K1vfSvg7K3XmluvKVEfGRnhD3/4AwB2dCXqFNeXFcz1y61sBkm2Kxgull0dKxBmVDB4QnUFHZxI+NG5Ry8qKyyckpE+NAmz9fHR8DlBL6lCnMsIG6I9Ex17sTXcvUAYgoF9TRMce9pSa0LQczTMifPSJc3Ihd3jfp44azk9r/DJoRcySS57zqH7Jeg5JhP2mSqpVYtcyttYgU0uqO5cBY5jH15+9D3bqrvvPzFHVNZgSwrUjLOvbk8RiBwatHnnO99JIBBg06ZNNVcTvqZE/U9/+hPJZJKlS5ei2R1T/p2QoKTLP49UHEHPNJd/jKlIt4ijDj1a/ZsEwJhjYEac83rZZ7kQW3Oi7IXt7J/7LehjiRyyCR9yHHstCXoOJaPkHbtpK6RM93La3aShe4RNn2jAWrkQEYvVhkOfhJxjV0x/HXohTp9vnG3FCnPJKx/MUWFPzpEQ9Cb3OufYrQAYje4eW6pOnrkRq0zYlcz0gdd/87FfcP755wNODFgtUTOibppmvsb7S/EmxBThkJbuLCtXko+eahNkWsp++bQYMTxx6GMRuo0Zdi+/tSJEtkKcUTuCDtnKdUlZdhqUFwhDMHCwkdF0oKYceiENnXEO/IfJ6IlzOXB2jTj0QrKOXVigZPwezHiELVHTEiXjTyzH+ME4wm6Fii8J6wZWV4bhZdWpPCdVGO0WmBUE4CmGIN00TZyQIfn17iQADz30EHv27Cn/ZC5TM6J+991309vbS2trK5qcOiAnExNOO8AKqOTLngqpSNIdFukFGc8cOgC2QDkc8GfPugDFglCvx4FIRZJqURheLicULKolpC4JNqew3CwmUAVsW0G9vYXwvS+y8NZUzYnmWMyYZGSR8KRlcKnoCUlgEP/vXQH6iEAmvH3atTsypOdlMKPuP/3n8vMrIdMEVmDq6yZ2KMLZZ58NwA033FDZyVykJkRdSsn1118PwGGrE8TkF1e6USExt/ZuTikg02ZDg1FSHfeKzzuqoR0MEOzz/2sUtiPo1epYVTYC0s2CkaV2zTp0cAQ90JEgEPDwgbAM4nsaab42RucVj2EnEigPPM2CO1L+C9M0WBHJyEJRle6CFSEhOGQTGPZ7IM6KRviAhtIbQFZYlbOk82oSq83AjNTeBWTrMLxk6hx4YcO73vUuAG699VYGBwc9HN3U+K8GwNNPP83WrVsJBoMIffGkfyMVZ3KutYlZKpJMuwUx9wo2FHXeUY3wPg19yN+JSmQLyoQP16CgA6lmx6F7UgilTGaNoO9tZPVlO4ne9BjYR/dflQefYdFfatuxW5HadezBQZvAIDP2+q42woLggCBwQEeaHgq7AKu9Oo69Usywszo8FRd/5Q5Wr15NJpPh5ptv9nBkU1MTop5bukgq3aBMHhwU71arEthWCWMdupd7Y3JUI7xfq4k9a33YCUKrNUG3dcHwEoWRJbUXFDeWWSPoexpZ8+0DWIcOT/yllI5jvysFNXBNTkXOsSc7amLaG0dwyCZySDqVzXxGSwgCB3VvHbugZh17fL4g3TTVNSN4esRJobr55pvJZPx/svX96u7p6eGRRx4BQIaXTvo3iQ6FdJuXo5oZPx16ZK/meiOUUsl1uAoNVrncZhlYQcHgSkh12lVrzFIpUpHYYWt2CHrWoZu7pg8GUu5/hkV/SRLdV3tuOIcVkSTnSEa7Ff+D1AoQliR8uIaEve7YAWd/fmSRmLJiqG7Mob29ncHBQe6//36PRzcR30X9D3/4A1JK7FAHaLEJv7d0Qbqltu4+vx16LYioPgzBIZ+KykyDrQuGlmc7LdUoUoBoydAwJz4rBH1Kh16IlCgPPkPXL56haTM1d23kEZBulyQ6fZ/+JiBsSbi3hoT9oI60PRb2VrPmHLtUHHM52XwvpMKFF14IUBNL8L5e1ZlMhr/85S8AyODiSf9mZJHi1CuuEZwod9MRdC/PWyMOXU1DcKC2HXpNC7oiEW1pIrEamLVnIL6nkdWXzuzQC7ETCdp+vYHmTVUamEukOmrbsWsJfN9i0xKCQI/Hjl2RNenY021ZYZ+EN77xjaiqyvPPP8+2bds8Htl4fBX1e++9l6GhITo6OiAwsfxkqllxWhHWCFJAptVGxLx1V7Xi0NU0hHtl7Tl0AfF5CkMralzQsw49GkshKulA5AGOQ+8pzqFPgjRN2m58rvYde5tkZKFSWbGSKuA4dptQr//3Wt2xO0gBqVYxaZrbmz/6S171qlcB8Pvf/97jkY3HV1HPvflDiVYQ44di6YL4gtqJds879EbvHLo0FBjUa8ahRw7btZeDLmBkoUJivo0ZrbGxjUEKZo9D393kOPTdeys6jj06WvuOXYDRKIkvpOaEHZzKc+HD/hdyyjl24t6lkQhFYnfUlmO3Qs7q8WTc+bRzb99xxx3E43EvhzUO30R9+/btvPDCC0gEMrRo3O+kgMSc2lkW88OhS8u5icIHVN+f1HMO3e8Hi0Kk4jj05Jzaueknw45YaJ3J2ePQv7O/bIdeSM6xL/vtEPpwjdzQkyBViM+vXWGvFcceOqAi+r0tIVhrjt0MOcWsJqC1sXjxYpLJJLfddpv3A8vim6jnXLoMdoM6ftM81aqQnqKNuh8YDbbnDj2wL4CW8H+CqWWHHl+gkJhn18zD32TYEYtYxyihsP+pLjMR393Emst2VezQC7FHR7Gf2cjiX+8hMFC7X5bUqTv2GRASQkcUlCPeCXvOsUu1NuYgqUJ84SQ1D4TgzW9+M+D0MfGre5svop5Op7nzzjsBkOHxLt0KCJLttXNT2brEbvTeofst6MJ23HnNOXQB6SZB/xoxKxx6pC1R8+4cIL6vkTXf3It58FDVzmHu3cei6/agjdTO/V1IzrGPLFSQU3Tp8gstJQkfkk4FOp8vqcCAgujX8VK3jGababuseIgUEO9WJnSY+861mwkEAuzYsYMtW7b4MjZfRP2BBx5gdHSUrq4u0NvH/W5kvoJdI8FxVkCSmWMgAt6IhzRrw6ErliPo+mjt1XFPNwqGV0jMhhpohjENOYeuqrX94JFKBlDuamHNZbsx9+2v+vnMvftYcs3emnfsRlO2Al2NlZZVM5LggP+lZXOOXe3zcCk+ZjqpxDUi7OnWSZbhRYBXvOIVAPnMLq/xRdRvueUWAHqGG8e1Bko3KhU3a3ELW5cYnR4KuiUI7K8Nhx46Ip2OZjVGukkwvKx2u6wBSFViR2eHQ08mgsy/SmfO5Q9jHjjo2XnN3XtZdN0egv0C4XNp1Okwo5L4QlFzjh3G1Ix/uTn2qEmmtXaEPdk5MZj7jicTANx5552k094Hxnou6r29vTz55JMAyNCC/M+lcHqR18KE/XJ16Lkl95oV9OWyZivEgVPyVe9M0tARr32HntJZdKWCfvsTvpzf3LuPud94mIV31nZpWTNam44diePYR/wdRt6xexk8V0OO3Q5AqrCErN5BR0cHIyMjPPzww56PyXNRv+2227BtG6m3gXa0B2p8rkqmyevRTMRzh24qvjt0IZ1mErUo6LYuSDdnHXotN2XRnBruwWANW88siUSQ+b8IoN77lN9DQbn/GRbclZkVjt0Kiprb8gkOOo7d77iXQL+C0ue9Y5eKv/OVFDA6T5BuHCOlQvDXf/3XgD9L8J6KupSSW2+91fnvMS7dDAmMiRViPccXh14DS+76CMR67JoU9MEVMLSqxh26JtE7kjVf8hUgndZZ/FP/HPoEpES760kW3JX2fSl5OsyoZGgltVdaNuvYowekr13yhIRgn/eO3Wj1f5lHqpBuHf/AlxP1DRs20Nvb6+l4PL1CN27cyJ49ewiFQsjg3PzP043C9+A4W5cYLzNBFxICQ87Tfq1NqFbAEXSzocYGVoDUJIHOWeLQR0PM+6mOeo//Dr0Q9b6nWXBHpqbbt4JTWraWamjkEJYkcthfYQefHHub5btjzzSCOabhy7s+dT0nnHACtm1z1113eToWT0U99+YSsg0UZy012aqQnOPvHWLrWYeuv7yC4vQRCA3avue+FmJr2aYsNS7odpMxaxy6YWgs+rmCfueTfg9lcqREu/tJFv1llIYdfg9mGgSkOmVNtm+tBWF/uTp2qcDwYgUzdHROf3an8++7777b07F4dmXats29994LgAzNc36mQrq5tH0qKZx/3EJYoCaFNw5dAsM6wb3+B8VJjZpz5wgww4LRuaLmBV0K0ILWrHDolqVgZDSC+wb9HsqMiCc2Eu63azp4DiDVLkm1KZPWAfcV6SwHF+ZPe01gQEE7EEBmvBmIDFroIy43wBGypGA8K+QE9B4d01wURWHTpk3s31/9dNEcnn31zz33HEeOHEEKDQIdABgRBTNS2nGkWtoHPRNqEvRRkF7UNI7raCOK7xH+UnVWJ1LtM/+tZwgn53N0nsAKgpKpsclyDLmHSqs/SCoZ8HcwM2BZCqapomoWmz7Zjrpymd9Dmpb060/hyAkqikltC7sN6RacB9Bw7VyrZhiMBokVlP4Ke/Yj0QY0T4RdO6KjJUG4uGhWzsNRskscfY0S5NRTTwW8deuefe25NyWD3SBUpKDkZXdbdbfgiJoCLQlKGtREFT+KrEPXRpxzSMVJhfAc4Th0O+A8FEkV4nP9f8hAZEsDt2T/rwQtLlDStTNZ5hi3SmQJzCOhmhV2y1KwrKPXtd6R5KXPtKKuWOrjqKZAUUm96QwOrs8u20pRm8IuQRigWM6FIDVIdNeGsFsBQaIrOw6BI+yquyubRY8l5Mwxwgatv/rCHhgSICEwgnPduIRUKGm/3lYlI/OPTqive93rADzdV/dE1E3T5L777gNABp2l93STgl2CmNiqdHW0StrZU84tQQf7FKRVpas/rqPFlXHL3XbA44poAqyg49CP/kxiNPoc+JN16OkWxo1BSKeBRK049im3fWyB2Vd7wp5z6LJg0IHmNJv+uaO2hF0IMuedyqHTtfHOKCvswqRmtoqECYopxo1HKpCY46+w27pgdL7IP7ADeWH32kDY2niHK2SVHXtcQ0tmz2U6wb+uCbvIOfbiL0Cjkfy18NWfPYumaezYsYNdu3a5NKjp8UTUn332WQYGBmhsbIRAO7YKmcZsoZkiRiAFrjv0wmpMzv93+aYc69ALrgmp4F3noaygT7VtYUTxZW/QDAmSbVM37xF2bTj2GS+LrGNPjIYwTb+XPY4K+lToHUle+te2mliK15YsInnhuqMOvRApEJbwX9gLHPqEX2cduxHzpwKdERNYwck/IKlKrKA3jl0qYIUnjqOajl1JiXHBgdUQ9mKVUtjO95Bqzr5ACXDGGWcA3rl1T0Q9t/Q+mGkGoWCGi99LlyK3jz7mZ0r5F2ihQz96UNAPuxixKZnUoY/7E8WDgiozCDo4aVnxedniGh5hhp2lwkzz9H/nt2Mv+jqzBfaRIMkjEWzbn81MKQWmqY5bcp+KQHOaTZ9s5/DFZyN0f1YZ1FXL2fO38zh8qjbj3qWw/RX2yRx6IVKBRJdzXUvFu+s13aSQ7Jz+g5GqN4593EpBAdVw7NIWhI5MPF7Fwi7kuHtfKpTUJS7VeXS14sHnUwD51epqU/XZx7ZtHnroIYB8bnp+36cYxCTL1GXeL2rK+aKnujGD/QKZdslpjUzu0MchCpbD3aYIQc9hByWjc72ZiMywYLRbFP1A45djL+fBUaQVRg9HPXfsUgoMwxH0wiX3qdA7koy+Ms7efz0dpaGhyiMcj7pyGbve3okRnflvc/gl7NM59Mkww45r98KxW0FBoru4oLhqO3apOEvv0+G2Yxdx1TFpk/2uAmGfbHVYKhQdpG1rkvg8Zw6QgTmoqsquXbvYt29f6YMpkaqL+qZNm+jv789GvbeTbCl+L10q0tUgLi0xw+/joIxUeELpRNJP59DHYutOKoTrlCDo+bEESk8xLBUzLEjMESVfeV479komPpFWPHXsOUEvVszHIgSYJ8fZ97ETEEFvKkCpq5az9y1zynKOOWH3qiyqMGZ26JNhhqm+YxeQai8xJbhKjl2K7LJ7EWNx07GHDqvTfjfCBNWtnioi+9BS5JyaacrurSs6J598MgAPPvigS4OZmqrPOnmXHujE1hSMxuIuQilc7MYlQR8uLt1Bj5d+A49jREcfnv5CK0RqLqeflCHo4DxEJbrE0f0gF7E1QbqpNIdeiFeO3Q0n45Vjr0TQx5I5Lc7efzmt6o5dXbW8ZIdeiCPswtX0pUnPU6JDLyTn2DMN7l+vUhHE5ylkGkufrKrh2GVBcNxMuOHYZVpBLaLQjjbqrNK6Qgm6ZAVlvjVrrh3rMSHq+TcR7HL20otsrTpTtGHR0YgS9HjxX2r4sEAaZXwsEmfJvUiHPu6lCkiXtvNtvTxBzyMkqc7xRRQqJRcdnOoo3aEXUm3H7mphoyo7drcEPUfOsSuhaiwdZR36mztdc4r5ALoqkBf0Cpf6zbDTnjNd2He7QhJdAqOCAk1SldhBOeNyebFMt5c+FZU6dnVYQ4sX8YfZVLdShH064ZaieP1JtTvH+s6vXwTghRdeYHBwsPiBlEFVRb2np4edO3eiqioy0Fn0XrpUikhfK+ZQ0gmKU5NFndbBhtCeMmadER1tuHRBz2EFJXaFwm4HHNdfaXEeqUiMRnfa4NqaYLRbwSryYa4YhO10lXObauw1VsOxSymcKnEuCnqOzGlx9vzLqVivOdXV46orl7H7osoc+mRURdilsxrg2t69gFSbU4vBDcyQKLlo12Q49TIqm3ekADNc/kpjuY5d2oLY3hKufdvJcCpa2Kc7tCg+wNnWJfFuFdQIK1aswLZtHnnkkSIHUR5VFfXc0ruhNpNsCxW1l+48BblzfmGVt+wSGAJGirzSxzr0Cinnaffoa0uLzpwJIyYZ7aqsMI1UHYfupqDnUNICbdSdidft0sOF5Bx7MVHpM5ET9Mly0N3CPCnOjg9C6k1nOJvuFaKuWs6et85xVpCqgLCE07rVjUI10qlmWI1+COkWKnbsVjCbj+5igK2tV+DYSxC4KQ9RhmPXD+qlx1VIJ67KrYKkxc636RbnQWzTQef9VXsJ3hNRl6Gu4vfSS6gaN92clot8LAfFAGEUOYgKHfpYpDp5judMuC3oOYxGyehcpayHLKniukMfi5CgpkTFNfS9qrYl0gqJ3soceykpa5WiB00OvDdF6oJ1FR1HXbWc3Rd1uuIsp0PYLlSgq6KgAxU7djMkiC9wV9BzlOPY3ay1UapjV1PlPdArRja+atrUxOIOXGxRGjsgne9cnQPAE088gWFUr2dE1WaHRCLBc889B4DR1F3UXrpUSqiyJpjymxGWI+iVRMhG9itgzzAYW7heXtbWS1upqJag5zBikkRXKREwToW4+HylOlH9BVTi2L0un1mJY885dHuma9JFhIC97zBJvrk8x+449M6qOfQJVFJattqCPoZ0C4wsHN/Rayak6r5DL8TWSxN2W8fVTBkhQSSLeOiNawQHyz+PmnK2ZacU9hJuz2JXMlNtYIeaaGlpIZlM8uKLLxZ/khKpmqg/++yzmKZJd3c3o/NiRb3GlahjEwKDlae8aEkQg1Nf4dISKH1lLAEVgRUpbo+q2oKewwxT9ASUalZIt1FxfECxlOvY/aiHDUcd++hIaU88Xjn0QvSgycF3pUn/zelFv0ZpaCBz/unsfltn0YGxrlGOsHso6ICTGhXI1owv8r7KNFZX0HMUuxRv65VtF06FlhAwQ3Ot4BG14jgKNTmzYy+KIoPm7IAk0aVx+unOfbRhw4YKTzw1VZslcoPeNxSAInI1y6ntPlllOTXjUg6rDcHeyevBS0ug9uvVi8AuIhreK0F3ziUZnT/DBCSyTVmmKPlabUpx7H4Jeg6RVpADAeKDkRn3xS1LIZPRPHXohQhFsuedFtu/fSba4oXT/q3S0EDvu47nwNkBT1ZqJiVXM95g5uvBa0Efe2q1OGFPtc5cMc5NZlqKl1UumqXFlSmFXaYVgv3unEdNT9QKqciS54eil+E1+PPTfcAsFfUnnngCgExr54xPfmXXdi8U9BTFpTgUSXAAROHFZVdX0HNMFw3vpaDnz6lLRudNPQGlmrOC7pcDLtKx+y3oeaSAIZ3R4amVr9oBcaWgB03U+Qle+pdu1OVLJv0bJRrl8LuPJz7f//EixcwV6HwU9PwQVCc9bar7Kt2skJzjfRvV6Ry7FXK3KNgEJE41zkmEPXRAdy/bQU5Rca7Uy1dQlJKm2iVGcycAmzdvrlpqW1Uuld7eXnbt2oUQgtH5nTO/YLJSsEWSe0JSMkxZLrASoruPFpLJLbl7VdVswvKW8EfQx45ndL4YP8H47NALmc6x14A2TmRIn9SxF7ZNrRX0OUle+kwH2pJF436uNjZy+L0nMjqvtj7kKYW9BgQ9PxRtcsduxASJLv+62OQc+7ga6Grl0e7FosUVGBlzsrhGsM/dc+S3a3NzfJkPK3KaGK+xxBeGWbp0KVJKnnzyyfJONgNVmTVyLt0MNiMD0+d8V1wKNnvBqSncyysdg5YC0R/wzKGPRapHo0ulmntC9rNVlbOElG5yWrWaIUGiw1+HXshUjr0mBR0mdey15NAnI9Ca4qVPdaMtXQyAEolw6F1ra07Qc0wQ9hoS9Bw5x55sz7ZBFpBuKa0EbDWwdenMO0p2PiojO6dsJGijRx17sFetSgyTsJ1GX5UdpLgSssKCdeucjJJqLcFX5ZkrN9hUxwwu3aWcdK2EinElY0NgQMGwvRX0HFJzhF34uKc6DiFJdQqkqmA0lP9kW22UtED1sr1tpQzpjCoSPVjl2qcuoXcl2PjFdtoe7kYxqVlBzyFsgTAccRJWbQl6DqlBphnsgJNGasRq5NoV5IXd84cM6Th2U2oEBqt3jsAwpFUqq3ZYhJ5ZIcm6deu4/vrr8+bXbVx36lJKnn76aQAyrR0z/DGVu+tqX2SK849frT+FnX34c6tiggtI4aTl1KqgA1S9A57bqCBUiZSiZh36WKSEpqcDtL6YoGl7qpYuz6nJ9Wav8bGaEaqe118Ovn1uOWGv5mci3TGYMx5DwHvvvBdVVTl8+DAHDx6s/KQFuC7qBw4coK+vD03TMBqn32gVNq440GqlT0nVqd1rBf25moXtXTeqopECYdXUM8YEpApGg+1ZWl3FaBK1JY2q1qB9nARpC5puizL31y+iPrcN7aktzL8zgVJEc41aIB+YW8PPTkI6Kwo1hcTXFQ6jUZJpoirfm1RxRQ2LmRelprFq1SrASf12G9dFPTfIVatWgeqNlTOj5QfaTYmAdFtd0MdR44KeKzFsxGaJoAsJmkRpSaPMFkGXELsvQvuNLyCNo1sF2tNbmXd/sqze1X6QXwypMd3MI3NzQI0NsAaE3ahCI0Er5O1cf9JJJwHkC7S5ieuinhvkY6OZqgSuTYXbPYKtYF3Q8+TSg2pc0M2IJNMySwRdkdBkoLUlZ51D77ruRbAnjll7aguLf7yZ5i2z5P0Iyk+n9Yi8Y6+l+85nYTfDLkfg54LcPEKY8MNtO4BZ4tSff/55AIymNu8EQOBq9ycrBOnWuqDnyI2plgXdikiscOmFI3xBSGgw0UOmG/1SPEHagth9ETpuehFpTX2BymSK1tu20rRN1uz1UkhNC3tWQJVaC+7zUdjtgHQybtxSLwGmx0GJ6dY2hBDs2bOH/n6XqulkcVXUBwYG2LNnDwBGc1tRr3HrwpCqO4FbVsgpEuBHEFjNCXousKiWJpMCcg7d01SbShCOQ9fD1Wvo4DZSQtPtEbqum17Q83+fTNH2hxdp2lrDF04BNS3sQK4dbE3diz4KuxWUTq9yFxy2FXAp5bWEKUgGAixZ4hRxcnsJ3lVRzzdwiTUi9eLWw6et+FQCdkBW3Dgi79B9uLlrTtDJBTL6PYqpkcpRhz4rUCQ0Og59tmDvjLLwJxodN28sStBzSMui9batNG+16wF0blEX9nFYQRccuwAzinvfeQlTUbX21V0V9RdeeAGATIs/5cUyTeULct2hj2EWOHQr4OyfzxaHLkMWemdyVjl0e2eUld/fif745nFBccUikyla/vAiS37TU1FXLS+p+X32urCPo1LHboU8LqgzhrVr1wLw0ksvuXpcV0V98+bNAGSaW9w8bPGUWczGDtQd+lhq3aFbAYkZmyX754AMW+hNlZas8hZ7V5SVP+nBHq6w9rJtYx/qZf4fetBd7MtQberCXiK14NjL+L58KaiT5ZKHHwVg69atmKZ7q3euibpt23lRN0oUddcuBgGZxtJfZob9KaRSa4LuRLjX2GRRgBWQmA3eN7goFxmyCDSlZ01AHGQd+g92Yx8+4t4xD/Wy8KbZ49hhFgl7rSxW+Sns5Wy/Csg0u/fhlRoYakajxGIxMpkMO3fudG0crk2Ne/bsIZlMEgqFMKPF9U+HbMqG6d6dY4Vk8eltAjJNTu6j19SioFPDDl0qs8yhK3LWOXQjpSF3RFl5xX7swSHXj28f6mX+7/cTHJikM1aNUtP77Nl0N6WWUt78EnYB6TaJFS7+JZlGl3tClPodCJEvQrNp0ybXhuGaqOdc+ooVK0Dx0UYpxS/BZxrrgg45h17DKWuKUyHOaJwlDl2TKG3pWeXQMwmdZT+TLLv0Oexel1thjcE+fIS5P32Wefcma/YBspCaf4iU1IUdZ55ItUmsqbsZj/97Fd8f1lavXg3UqKjnBvXISKLk1wo3asCPoZiKQ0ZDXdDhqEOvVXKCPisKygCoToW42VJQBrKCfrVEe2qLZ+fUntrC3AfSKLMkbrCmHTvUhT1H1rHPNF/YQdzNminzUD/YvBWoUVHP76c3NZf8WmG5ewHY+vTLMFKlpGUat6hFQZ8NDn3WCLomUVpnl6AbKY3lv7DRN2z2/NyBxzYx74FkzV5/hdQde4n46Ninbf4iwIi408Alf8gyP3OjpRmAHTt2kE67s1XnytuyLIutW50njkwZou46wgl+m+ypWqr+1HSvRUGvO3SXEBIZsGefQx8NsPSXeOrQC9Ge2sbc+9MEB3wbQknUHXuJ+CTs0zV/kapT36IWsEJhmpqasCzLtWA5V0S9p6eHdDqNrahYJQTJjcXNYDlwllYKA+bqgu5Q6w7dDMvZI+gAjSaB1tSsEvTgYzGWX2WhP+69Qx+HbTuO/eqXaNhVoxdkAbMhl70u7FlhnyQbKtPgrkuvqIW4ECxduhRw3LobuPLWcoMxGxooNzKoGqKXaRr//9OtdUGvZYcuhdNxz4zOvCdWE8zGkq+2IHZXlPlXveSrQy9EZjJ0/HEzTdtqRYlmpi7sJeCjsI+NsbIDtePSc9SkqOeWDcxYGUniVcTWju6tWyGnlKyX1JSg56rE1ahDl8JZXZktFeIAp+TrLBJ0gOhDUTp/8wIyU3u1W2UqTdtfNs8axw6zQ9hrJsvAJ2E3I0frkBhRl126CyxbtgyoUVE3GspvdCskKBmX747s3roZyZaA9fDLrD1Br+Ec9GyXNbPGnqCnQgbsWevQu699adK2qbWCTKXp+P0mWjbZ6BUWs/OKWhf2XFGpmsAHYbcDTilZK+RyxHuWSt/Pvz7iVJarSVE3G4469VqJFM00SVKdHpeAFdTMErcVdAry1KI7h+z+pOpf/eVSEW1pwh2JWSXoLQ0JTl6wj64/7axJh16IzGRo/uPzhI9IbI+3y8pFKtLXkqPTIh3TZDTZteFSc1+ph5+VHZSMLrDd7cNeCWPeu5k1w/39/QwODlZ86Iq/4kwmw969ewGnOxtk+93OLW3Syz/tupk6KMAO2ZiN3llmW5eEVg8SOmEQq9jKdlXCCoJckEQsTGBEa29ylIrzeUlVoiZFzT545FDa05yzbDvHdx0gFkmhKDU+YBxB/6el9/POzg3s+mEbYu4cv4c0I2LhXAYvPIHUWwbRlo94HgdTMsJpBCU1ia3600NiWgSk5pgEuxIY3Rnfhc1ospl3eg/WvJRnn5Wtgt1oYuvuXkvCBsUo/U1EVg7m/1tqOt3d3QCuRMBXLOp79+7FsixisRh2yCnlIxWcNpOlkBN0Fz9zM+qU6kSVnkwMUoHI8iEWNg+yoHkQs9m/9XcrCHJ+Ck2zUFQbuTBZU8IuFSfmIXdTKyYoqVqbDbMoEtGW5ozFu9CFTYOW5uSOHua2DCFq+EmkpSHB3y9+hAYlBcCXT/gTu78WRsSiPo9sapQ5Hbz0zy1Y7+sjpJvEwmm0ZXHHsdfiZy0KtvUUakvYBaQ7LELtSYSQhBvSGHMy/jl2AdH5IzQE0qyafwizK+PJZ2VFLRBgNVquxlYphiirAVZAs5BjNDLXW33Xrl2Vj6nSA+Rcer+m5yPfI0uGSzqGVI4GMrh135phiYya+YPaIbuqWwK2LomsGmRh82D+Z8tXHCDT7P06fM6ha/rRAtuaZiEW1YZjzzn0wptZMUGrMccuQxarj9/Lq5ZvI6yOX31aHOtnUdtATTr21sZR/mnp/XRo4zemv3zCn9jz446adOxi0Tw2fq6DjgXjk9YbIilix/WTWZQeNxH6TtahTxClWhH2nEPvTIx7+Aw3pDHn+uDYBViLUyxqcb5fTbE5bnH1HbutATmHrkqsJtMdLZBH/ynVrXdE44i5qfz/v+3gIQD2799f8bAqFvV9+/YBYEacp3+j2aIpnHIaWhTxPmVBu1Q3AjqkAnakQEwDdtU6seUc+oIxgg4QVE0Wrj6E0eDdRDTWoReSc+x+BqTlHfoUiBpy7DJos2blfrrDwyhTLCHNjw7WlGNXVZvzl73EBxY9mnfohfz38X9i+HLY/9GTEHptbDIqne289MlmOuYPTvp7TbVpa4uTmWfUhrAXOvRCakDY0+1HHXohoZj3jt2Yl2H1vIMoY8ajCFldxy7ADtugynE/s6KVm61xwdASlCJrrUjFed/Lunrzqwa5+i45Pa2Eir/Snp4eAKysqBOyCWomi+b1YcaKuPkmixyt4J6VKhgtFmgTvzSrwf3lcFtjgkMfSyyQhg5vOnVN5tAL0TQLo8nyJZBxKodeSC04dhmyWLNqH93hmVedco7db2EPBEzetvxZXt24eYJDL+TTS+/kcx+9nl0Xr/VodFMjFs1j4+c7Jzj0CX8nJO2dwxgLfXbsUzn0QnwUdjsgodGY9prMO3YP2k7bAWhpGxkn6Dmq6dilgrMFOxYBMmJhNlQm7BOW3Ittg7skQUcoTndkOH8dm9ktsZoQ9dxygRmNIVVo7XAmQVWZ+QObKhWkErduBeSkgu4Myt29dalAZMXgBIdeyKp5h5ylwyre3NM59EICbSnSHd4JuxSOmE/n0AvxzbErcpxDL5b50UHmtfrn2FXV5k2LX+CUyO6iXxMSBp963+/Z93H/HLuzh940pUMvRAiZd+zOA6LHn/dMDr2Q7MqU9FDcbU1izE8Tisyc6RCKpTG6quvYbQ0aVvczr3Hq+ynv2LvdnSfNmDX55y4csa/kfRcuuTt760UMfsw127DQ+UzMqCPqBw4cwLIqM5+uLr9LBRpDJbjSgqX3/I/LDJizghJ7Ojfu4t76TA59LIqQHLfoAEZTdfbXi3HoYxFCEpiTID2n+sIuhRMVXE66j+eOXUhaFg9w7skvlSToOXKOPRaZfNm7Wui6xduWP8tp0V0lv7ZNjfOfH76W3R/z1rELXWPoTSew8d86ixb0/Guzjj12fD+ZJg9FvViHPuF1zgqiF6sLti4xFqYJRYtPXay2YxeLR5nfNDTj32mKzXGLDmDNdWdlc9xe+qQDA7PZLEvYp6pBohQ3BedpjTpdTa1wBF3XMQyDw4cPlz6gsWOo5MXpdJre3l5nUJEoYl6y6NcW7qWP/yUli7qtO5GNMypAwMaqcNkFnGjKmRx6Ic2LB10vf5oX9CIceiF6e5J0Z2VPq9MxTtDLJOfYqy7siqRp0RAnd/RMuX9eDPOjg6xpO0xjtPrCLoRkbfcBPrDy0ZIceiEqkkve/wcGb+zCWLfKxRFOjggF2f/BtaTf2z/jkvuUxxASTbVpWDREpsWDLJNSHfokSJWqOnZbkxgLShP0HHnH7rKwGy0289pmFvQcipDMnzNQ8TikAlazOX4vfTJ0idlcohLn9s8nO3QJe+sAcyIjmB0ZECKf1lZpsFxFl+mBAwcAsDUNOxAgFM5Mumcy5Zmnee+lfDAAVtguOo1O6rbzFFcmZoPN4hWHSn7d3MZhYmv7Xctfr0TQIevYOxOOsLu9l+WCoOdQTFCrKexZh37qnMr3swCCisnx7QeqLuzHdR3kvV2PsTTQW/GxOrQR/nXZHRz/7efInLnahdFNjlBV9nx4NYHXHUF1wbkGdZOWJQPVzTIR7hWWqZZjL8ehFxJuSGN2uyfsRrPNstU9NARKc97NoSSxVQMVzdFWSM4s6Dk0WVKam7AdszHl783iU9zCqoEadObv+fPnAzUi6lYkilTFREFfMjrp6/JdjmaiyM/ZiMmJwRDToTjL8OXcpGbMZtGqg0T18m6euY3DRFYPlvXasVQq6GNx27G7Keg5quXYZdCmadEQJ3YccPW4CpI1bQerIuxCSE6Y28M75jzh+rFf2bCFE77xbFUcuwiH2Peh4wmec8TV2ANVkXnH7nZxETcFPYfbjr0Sh16IW47djEiWrD5AWCuv8uKC5kGiKwbLEnYpnEDXohFgNZVQmKaY+O8pTKkVlhw/d/xco+uOqZozx0kz9XX5PXdyKxTGbDPz+wM5ouEpLrIib5Jinnak6kzMpSLDlvM0VwJmg82i1eULeo7OhjiZlvKdhZuCDuMde6VUQ9Bz5By7a7RkOOfELZw6Z19FS+5ToQub49sPuL7HflzXQd4953H0KjUXeGXDFo771vPuOnZFYc8/riL0ul5XHHohQd2kfVk/yvK4e6VlqyDoOdxy7G449ELyjr2SbbM56YrnyUUtAzSsLG0pXgqcol+lPtwpYBdZqrqYnHQxRY17qUJTYPx8sG7+buyApLOzE/BZ1PP76aEQImAVtfRetEsnGwU/wyGN5snT14qhlKC5Sh36WIKqyZI1B8oSdrcFfSx6e5LUnPIcuxROYIqtV7dxjjBxpaSsaE1z5rKdBEuNbCkRBcna9oOs6TpU8XfWFEvy0bUPVsWhF/Lqxs2c/q0n2XLFSpT21oqOlXz1cWz6zmoC5/S5NLqpaYymUJfFK68aVm5QXAlItbL7xU2HXkgolnZKypbo2KUC5uIUK+eWvj05GQuaB4msLN6xS02CXp4eyJCFOUP+umIUmXAhS8vikkGbjo4OwGdRP3LkCABmOMzC7v4Jvw8FDNItBZ+Ai0++VrCEfZPJ0GzsIt16y+IBVwQ9R1gzHGEvYS+wlLS1csg79o4yjq9UNwho3Kmyjl0pt6dKS4azlu2cUCGuWujCpi04yprOQ+h6ed9dUyzJB5Y8yqLAkao59ELOiO7gG+tvYvs3m8suLZs+Zw29/5igY+4gmupNdcWGSAqlAmHPN2fxAuHcN6Wez9bcd+iFlOPY7UUp1i44gFZESnOxLGoZwO4sbl/eipW3rQo430VwhqY3svge9ZN1xlS7EhP+ThWSBUt6+eR99wBHzXK5uLL8bodDk/4+ohtOBGKWUlx6jqkC5qyQxGqqvDm4HbGmfwoUYM1P0RGdPD6gEsKagdaZLOqmKTVtrRL0jiSpruIce96hl5CD7gbCBDUtSm7X65VDn4wmPcXqjtIde1MsyYeWPkSXVnwUsZtcdvIf2PrduSgdbSW9Lvnq4zjw4TTRkPed4RqjKdTlJQq7yOaTe91trURhr8aS+1SU4tjtAMxtH6zKOJbMOzJ9sRiB47LLdOl5stHwk6Za26WnrBXurS/pmGh+c5iRMODoqpTlz6euOPXMnEDxgS+l3iySSduYWg2VCzoAisSKTT3Jmt1p1iw46OqT51hWdvViLpp+z7XaDr0QISSBjkRxgSM5h+4HEtQ0RTl2GbBpWjzI+qW7PHPok9Gkp1jTWZywK4rk7EU7+cCSR2lT4x6Mbmq+dvrv2P2dBg69/8Si/j59zhoOfTBFg8c5+2PJOfZ0V3Hft6+tU4sVduFElXsh6DnCDTMXqLF1aFzTR3Oo+LTmUojqGRauPDSlsEsBMjpFoZlS0eWkZWTFVGls01CsRLWGEhgdTr5zJpNheLj0Ohk5XBF1vYsp99OVkJl/yis3onJslR4pwGgsPn2tKHTbqYc+9oLIOvSVC9zZG5qOVfMPYS5LTXrTeOnQC8nMy0wr7H449MmYybHLoM2qVfs5dc4+XwU9R07YI6HMlM1gdN3ijcte4I2tz/rm0Av57+P/xEc++Uf2XXwSKJNPHaK7k/h5x3Poo0lfBT1HYzRF+7wh0gsyUwemCW8rvk1JEcJuRCV6R3WEczrCDekp27ZaQWg8rm/ainFu0BhMsWT1gQnCLhUwm1wS9NwxQ+MDqcfVeS/pQEdXm62QRFcnP0hLMIHWaNPc3AxUtq9etqgnk0niccc92LHglH+3sKsfK1RhAZIxNXWlNkktXxeQUXPcQ5itwop5h6vm0MeiCMnqeQexC/LXvXbohQSjGTILM5NuT+TTcmqBaRy7DNisWrmfeZHaEMYcTXqKU+fso6t5eMIql6JILljyImfGtvs0uqnp0Eb4zD/cyIG/P2GCsCsdbWz6dCfpD/X7suQ+FUJIOuYMkZk7eZSTrw69kKmEXTipu8r8BKpHsQmFTNW21e5MV13Qc0T1DA3zh8d9X3ZQQsDlz0QBe8wK7mT740WT06+5KTpCU6+4OSWQnS2ugYHyijJBBaI+ODgIQCAQoL2tiCCGKeq8F032XjQbqydwZpOVbzrSsHLAE0EfS/NxfVjZ5yM/HfpYApEM6YVpp6Z+llpx6IUUOvacQ681QR/L0oY+5rUO5R17zqGfEd3h88impkFJccnHf8e+jx0VdjGvi42f66J98dR7hn7TPmd4vGOvFYdeyCTCbkQl6sJRtDIDLd2i0LFnWi1WzK8sWrtU5jUNYS9wmr/YusSOVWmOVKSzTy+LrOk+BcXWhD9j0e68U8/pazmUXbNnaMiZKJVIZsbmLca8DMrOqd18MSiWwChsoec2uo0VUmhaPMi8ImoVu82c2Aj2cTC0pRW60r459EKC0QyZBSB2B10pl1k1JKgZQIHQkhHmNw/WtKDnWBzrx5aCsGawrnU3J4b3+j2kGWlWE3zqg7/j0jUXsPQa2HGRSsfC8t2FFwgh6egcpk+PwZEgWlzUnqDnGCPsdhBfHXoh4YY0SYCkytKVBwlq3hoPTbFZPe8gG81uZEJzoYPJFGSj4Uko01aQKwapShZ1Tv/AG1RMUtpDQCivr+VQtqjnNvIDMcF0u5SKkMSaExhUJurI3DJZdR2ijJlEg/4tHTaHU4wucD/SvmIUia3L8pegPEIKCC4eYd3cPVUpKFMtzu3cyprwftRZNGZV2ASjGaxACGpw5WYq2lrimI0JBnc3ow/X6hMq+dVNW5eoPrf1LSTckEZvsQiq/q0kRhrSjJpV/v50WbGgg7NtvDA280NvJOZMsJWIesXL70pk5ug3kf+fytASAipoy1oUEg4Pxqp7jilIWxqHhht8Ofd0GGkN9UCw9gVdAbFslDPn7Z41gq4IyfzwwKwT9FE7wNeufztLP7qPyCNbWP3DEXoPNPk9rKLRVJuGBcNO0G2NoyUE5qEIdgVLwNXAMFUOxWPYXvVwHoNpK4wOhaq+0iISalEV5Gai2NXNSIOPop5z6ocPz5nxb1ujCVLdlUcdK4ZApKv/ZG2MBtjVX1kVrVJJmjo9g42Y1X7yLJFMSkfdHyq/0ItHSAX0VcOcvWin30MpifmhAU4M7511gv6Nq97B0h9sAulMQmLPAdZ8c5Defc3+Dq4EgrpJ86LBWSHselxg9ERrbn5IpgP0DDdi2t6NK21q7DjUXnrRk1KxQY0r5UW9F9B5YnFZVL469XwenTJzyzFFSNeW5/QRpfpfpoTRgTB7B5ure54sOYduWbV1wxppDbUn6MryUzWxNcehnzFv9iy5R7U0pzbuZk24so5MXjNih/jq9e9g4c82gVUw2x3qZfXlIyi/aSNlVNBiy0PGOvaajRXJoo3WpmNPZXTPHLstBTsPt2EkXe5hPRmmgj7qgktXITBFKlshbjj1su+83PK7VIv7cBctOELPoW7UdGUfkpIRKKNq9SIec0gYHQ2RbtCqum+UNHUODtWeoGdSOtosEPRMu8VZJ2ytifzzYmnQU6yL7SQkZs+YAb657TwSd3Wy9Bcv5R16IWLfAVr3HSAwsoq+vxutqdS2qQjqJoElA4wkgli7YjW9KpVz7Fp37QTOQdaxy0a6GkaqmjU0mApjpLx5YAz0qSUXm5mM1OI0ixuKywqJxJwT+uLUcznqoJMyZ/6QhXAvdUSLC/DgadVKquw6VFppzFJIW1pNCvpsceiZdovT1u6YVYIe1dKcGt016wT9yxsvoPVfFeb//MUpBX0ssfs20/KbGMmMB47KBYSQTmnZxXFsl/qJVwttVGAcfPk59uF0iJ7DzdVfqSW7l16hAc0fq8jDBFWTQLbgTTJZfoGhstUklXKqRcW2JTiwvaOo1xgt7qRoKYZAJL2588yUxkAqXJVjH6zBJff8HvosEPSzTthKk+5/1bJi0BSLheF+To/tJKrUvnsdy6Uv/Q3zLxmBntKqKzbeuYnWX8QYeqa9SiNzn8ZoCnVpHLvGn0Vyjr3W5o9kOkBfMlKVY/eNRpBexBTYoMUVVwKDpQZNLcVlM50W20U07Dzs+yrqiq0UtUShCEm0071UreCA4o2w23DgYIvrwj6QCmOatWUJ6g69OmiKxZroAY4P75t1gv7fGy+g+99M5MhIWa+PPrCZ5T/aTfzhDqwac5ZTMdsce60JezwV/P/Ze+8wSa7ybvs+VdW5J+9O2Jy0u8o5CwUkkTOYaCxb5Gz82gTb2Bg+G8vGgMFgjHkB4xeDCQYMNskEGRDKeXOOMzt5pnNXON8f1T2hp2emQ6VZ9X1dukCa6aozXVXnV7/nPOd5yBnOvRVZUnB0oov0hDsvC5Vo4yE7GuwAVkhySV/teTPhiI9OfeakdWSXxMI6etKhRCYJasaDpDlAGoLBM52OHW8sF2dsOkETjXgcp+XQ3UERkgsSp1kfCm6ltWrcm97K+77zGta/Kw1nmmsFKTMZNn12L7n7VqBjD3i+XygtMAaDJeymqTA03eaYsE8XoqTGG2v9WzdFBTXnnKYU++ozHuXwe6FQwKxMRK2Rpp26qKNLS3s0j9mjO7e2nvNg33oJaSgcm+hqer1oLBdnMu3NG2et6AUt8ElxVhhWXXGGKy84tKIc+vnJU6wJBbvSWiWP59Zz/59dyTl/tRs55VBNb9Nk8xePkvn1ynLskXOmKfbrgc6MD6Jjd0rYC4bG4JhH9Q8kKFnFsURJKyzZuGG0rs+EI7Mx/7LG1kvzTr3O/Ykb143W1tKzRkKTHsXIJKTH4hyf6Gr4EBP5GBOpeOAcunIqGnhBX3vJIDs7h2nTaugzEAD6ItNclDy54hz6Q5lN/OJPrifxq32OH1tmMmz8p73wvZ4VU6gmHimyun8KvU7H5TVlxx6k5Llmhb28H93wKNsdSxCZcO7FqLBWZ3P7WF2f0UKgqM2F4Jt26kiFzd820M3axFUIiRlxTtXUvEBJexcjy6YiNf+tcxnLxRlPeRRCqgHLVCjm7G1rQQ65lwV9a3t9b7x+Ua4Qd0niWGBaptbKQ5lN/PoD17gi6DOYJn1f3825H08xMtzu3nkcpnv1NMUB3YvVvobRMoLiYIJiIYQMyEBNU2Fwqr0hYZ8uRrwTdFOgjTl3LqmAGqt9Yl0VTrM1PIwQs+vq2Wy2oXM7En4PjedrDksrQhLetHj7ubqREJ5UPNniBiB1hUNDq+sS9qA5dMsSmEMxQieCH3JfSYIOJYe+wirEAfzRD1/lvqDP5dQQOz6ZZ2RoZTh2VbHbt64Ex64ejZKfjPo9lBksS9Tt2Mdycc44mMe0HCKnEEoLR/alg50gd93m2jsthoRJqDQZq6VCbbre2L3WsKjPLuLXL6aaZjoagkeCNumdWzdzKoeGVlMwlz+nYSmk8k02s3EQy1Qwh+JoDlRKchMzsvIEfV1sgovix/0eRl1MmnH+9Cu/zc6/POKdoJdQjpzk3I+tMMfeG3zHDhAa0ciNxwLl2NPFcE3mbywXZ3CoC+nVUoIF4Qlnl3GNROP6ppSG4nminGWVFvTlvP+pidXJDMUeZ9uKKgVA9y5RxMypnEkt3fjFkoIzqTaKxWCk0EopMM/EHNuu4QoCjE151l28cgQ9oRU4P3ma82MnV5RDNxHc9e0Xs/nvd0HBp1yFkmM3vrcKI0CJXotRduzm+rxzO3lcQEgIjWrkp4JjKKYyMSZr2Bp8ZqzDO0GXIDKas0uQAnp2jNXVWU+Z87uqYv//RkW9YbWZ69SVVJb0DweIPu9kzZ/v3zTG+GgviuHMxVMMQWREpTAgXW/PWiY1nmAsUqQntnDtw7AUzqTayBWCUcXCMpXAC7pUQNmW5sYNR1dUDfeVWFDmi6ev5/BPN7Ptswf8HgrKkZP0H1WYGt/BxMvTJGPBT4bs6U6jt+eYOtpph20DiJAQGg6RswTRrrxd1dNnJjIxJCw6Zx6f6MIseFcgQORVImO11Vqpldwag8u6at8GqiC5Njn7HPri1KWUM05dIBCWRMvV961EVNPxtnnCFIishxUjLDhzprNqBaUgCfpKcehsznL9hiMrStAvSx5bcYL+twefgfW2djZ9ahfoARm7tOj48R46v5FcEY4dIKSZJDdOtRx7HUgpmEjHGa+YMy0pODHZSWbSneqd1QcD2rQzleNmEIAmCSn1CfLcstFKk069oadnJvQODb/hCCGxtjReNWcxtKw3deHLSEMwNNg1b339TDo4gm6ZCsZgPNCCLhUQ56S5vo7EEr8pO/Q2ZWUUwSlz14Fn0vM2HU4N+T2UqnT+eB+xf+0kk1+++2MQiIYMOjdPBF/Yh0Pkxj0UzGWYyMRIFWdfNAZTbZ5VjJvB4UIzYHeMvHxnc+2ffXHq80S9ZLe7d+c5Nlx7D3JFSLo6Muhtznb0UfOC0LjHa9gWDE7ZyT45I0Q2IILecujOowi5Yh36XQeeSc97VeTEpN9DWRxp0fGTvXR8o41cMThbs5ZCU60V49hzk9FAfKdSCqZyUSwpKBgaUynvBT0yrDnr0oHipjxxrb55YWt8hNCcpu3Dp2z9ePjhhxsag2OiHj41gZmqT8zaIgWsqPMPglPddeohMxHj9HR7oLqu6aMBF3TsMooryaFvjI1xQ/v+FefQT+tdrHqXgTg56PdQaqLzR/vY8PZJRkfa/B5KTURDBh2bJqmjwKbnlB170au938uQL4YYziQ5MtKN6fGYhClcabHb0ZmtK0EOYFUohcrCtwvP96nPYv8BMqTVfTSzxmYwdeNDQogaNemK52iLFWputec2or2IDMbzuyjqpMaRaffa2zrNcLGNPbm1fg+jbrq1NEdeMwBawG+IEnJ9HwfetpFEx8p4eZJSMDmeoMrcHCiMhEQNObvzqFEURdIRzdPTkfFlznY6pwvsZL960Rd5E7zwwgsbGkNDoq7NmxjsizF842o2bqyv8cPQZBuRUWdfbS1NUljt8U0rYGPfGDFNZ1U8QywSjLBsKGJgrs0Huo2kmheceniAA1O1te/1m4wR4WS+i0eyGzHdmBVcIip0/vzVX+XAH24HNcB2ErC2rmPfHyTovHiUeECepaWQUjA61E5oMOyLNtWKnpRE1mTQtGC8eaxKZohpOqvjGTq7nevgWQsyalLosRwX9uKTHTXVL5nLo6kN5OXsJL16jR1C6OzsbGgMDYm6osz5WOlLkQqoSu03i2kp6CedL5tqRoGQhzetgHhnjog6u9GxK56byWD0m1DEwFqTD7RjVww4/UTfihF2SwoG8x3syq1bUcIeEiYfeNE3OPKOnRAKZiKaXDfAvrfFWLXaoUYyLiOlYHS4ndBwKPCCrvVlA7GtDSAa1omHZl/YViUzqFEPy1sKsNoMx5dLFF3wwLGNdX2msiCPLMnXPJ2tZwyNfEgIMePWZRPxJsermgkwO72te5royrG5Z3xe8YCYpjPQOY2qBuONeKU49sFH+jk0vXLac57MdfF4dsOKEvaEUuQvXv0V9v3JVjI37PB7OPOwtq5j7/9JsLpvZdTMLzv08GDwBT08EByHHg3rrGmfRptjAmOazta+Uc+FveBwETRhgVFnblkl5aY8noo6zAnBC4mVjDJ1U33b046d6kFxsm2qgGKH5enaTLSjwIau6m01Y5pOf0eq5djrQDHg5GMD7JvsJWcG+A1kDmXHPjd8FnRUJH/znH/jqg89QOZp/gu7iEaxNq9j39ujrO5dGQ69oGszDj3IlB16UOahaFinvy01zwSViWgGm/vGUDxc85dRCyMpHQ3Dh0c0Dk3Vbk4sBA/nNs2OqfSuoza4TNa8qCORqkp/d+0PY6oQQR0LOZokZ0QlVpuHb3mqpLstU/XmLNNy7PWjFmDkoT5+8/g5pIxgFMxYjpO5Ln4xuZMTeu1bOoPANclD3P6X/0v6Jh+FPRLh0Fu2MvIhfcUI+lQ6RnZvZ+AdupEIvkOvJKbpxJMeVhRUJfoqZ2v5q3nBidP1zQUT+uxStFEyu56L+swJG7ir07kIoZSD274EGB0eJsepkv7+Sbqiy0cnYppONByczk4rwbEjITym8sCTW8mYwVz7rcSSgj2ZgRUn7OdGT3PDB+9l+tadiO4uT88tYjGOvn4bbZePztS7DjpT6RjW0QR1FgzzHD0p0QaC49CFkLRHC0uaoDLrOydJdjW2nashBBQ7nX3xCZ8MYzb4pqCXtmTHYo0VC2pYWUMh2+7JOkXdkoLcmLOVjYyoBM2jm1eVrBmYqFq7eDH6kmlikWAJu7k2j94VjDf4xQiPqtz3+LYV49gNS2VXei2ndW/FsVkuTxzl3R/5KsOfDMNqj7YXahqH37SF5HUjgUneWo6pdAzrSMLZ5h8OY2lQ7DEJD2QCEyEE6ErkaI/Utj1RUyw2d497J+wCrLiFFXbuPlRMwZ6x/oY+Wxb1aLSx9rkNi/rMW4QwOfLSdkJqba+uUgrCo87ZRDMiMboNz9bStYhZk0OfiyIkA+3TgRP20KocxVUmMhi1cqpSduwrRdgtKXgys4YTeveKWmcHeN/2HzL4UZeFXSjITWs5+qYdxC9fGV34AKYz0cA7dEsFa22e2KpgOfSuZJbOOudMgN62NMKrF5OwRaHXuX4kwoDRM7W3FB4ptnFUX41pgGn6JOrxuF3WTwoTvdOqKawCMDjRjnDwwTASEjy6gdW4waa+sYY+G0RhF0IS6c6h9wTYemA79geeWDmheMNSeSK1jgfSm8lYK2PMZf703P/mzMc010LxqZu3c/qDkuR1Iysq5G4eSQbeoVvr8kSiwZlfwHboPbFszfowl0SoyJq+SYRX94lmNdUHvRJ1QmMkv3R77jKGVMhbIfTi7FuFb6JeT/HcgqGhj8QQDmW9W5pExrx5dRaaZGvf6Lz96PUSRGEHCHcWKK42Au/YH7x3O786tgVrhWwhS+lRHlyBwv7HO37I4Cci5K86x9H97FPPOJfx304TCQVYHedQ0DVGD3cHP+SuggyYoDfj0OfSHcvS2+vRFkcFjKTl2DwYnlQ4MlZfjk2xOLudrbzEXS9Nh99lHfGoyWyMyIhzu/31du9cerw9X/MSw1IEUdiFkES68oF37GpOwMEE957Y5PdQaiZjRHg4s2nFCfuf7PwBb/6Hb3DsDec4crz0zTuYftU0iWjwK8QBGKZC6ng7oWkl+CH3dXnCAZpPADqbcOiVdETyaB7tX5dxE9PBfiTG3tpD8DB/PV00WG/cAade2x1vSUE+59zEZiQkMu7B0yagbVVm0f3ojVAW9qBsNSmzEhw7EswDSX55dOU59jEzuaIK1ahI/uC1/8HhPziv8Zrxa/uZeM65jP9OhliAdoEsRUHXmDza6ewOHRcIasi9PZ6vO+9oKSKawdb+Ec+EXe82nUuas+BMrvamRMUmk+TAAaee748S6astS1E53vhAKzE6vEmOE6pkQ+ekI2+cc1GEpCPufD/5Zphx7N0BtibYKz7iUIL7TtZXjtFPMkaE+6a2sCu3zu+h1EWnmuWDr/gax96wA0Sd08WaPva8sx3zNWMrooY7zHHoQRf0UlJc0ARdVS3aIrVtXauHsGrSV0ctlOZOZtlRYAfev9WCYO+xgZp+91C+l3Tafnlua2u8O2HTTl1PWKzp8rasY7HDAtUDQdckA/3OOfRKuqI5etozgenqVibclafYG3zHbuxvW1GOHeB0vpPHc+tXlGMPCZM/uuObHPyjnRQv3VrTZ+S6Afb8n3ZWr5t0d3AO0nLozaGqFv3tKWKaO+PqjOZo96jxi5U0MCPeJnKeKbSTSdvL0x0dHQ0fp+G7t73dXisQZm1v4KdGOx3pX2tpEivuTdg6kig6GkaqRlc0R2fSw0ILNSCEJNJZcuwB1p6yY//F7h0cTq2M9q2WFJzMda24ZjBtSp6PvOwrbP+b3WSv3b74L6oqrO1n7zvbWN2/gmq4j7aROtYRfEEPsEN3U9DBjm6u75z0ZpubAnq7M+dRz4RrDsHn0vb954tT7+qyt7wIo7aSfno67EjWuxkFPFiL1uIGG3vGXT8PQE8sG1zHvtoItLAjIXw6xMmH16wYYQfbsf908rwVV6jm1o7d3PLXv64q7CIW4+ibd3LsQxqr1056P7gGKHdZ005FCKWDfKM/dR36XBQh7W1uHmiAjDlTkCaUEqSLtdXZyJXuQV+cevmkSnL5cMh0Poo25kDBGQFmm/vrvWrMZFPf2JI1ip2m7NiDJOxlx17sCbZjB1B0OPH4wIoRdksKDEvlycyaFSfsF8ROct6HniB3zRxh1zSO3WFXiFspGe5SCsZG2wgNBbuGOwTXoSuK9EzQy3THsqzpnXQ/p0qV6G3OrK2fOFJbW+lsyamXI+GN0LColxu4t+nLi3rBUNFyzX8zepvlvksXkEjkm9qP3ig9sSzdbcFz7JHuXPAdO/aWt5Xm2A1L5fH0uhUn7Ld27Obmu37N0CvPQ25cw9E37yBy/cqpEDfj0E+Hgy/oAXboAx3Tngp6mc5ojpAH2fBWu4HphFufrG0rdy4TAFEvpJb+gy0pME1n1qm8SNwSeZVVNUQf3CIZKpIfjyKdbBvkAKG2oqNd9dxC0eHY7gFOZjrRA53pN4slBb+e3Mq96a0rqrTsubFTvOJt/8Pk+R0ol02tmApxuqEyOrIyHDoSzKgkHAlWDQlDV8mmI76YH7DD8OGIAUX3n3HpRGkVCQVz+Wh1Ofzuq6ibBZD60u5Z39/etCBIBbSsACd7sFdiCpSswpG9AzWvgThJzghxYO9awsMa+plYYITdMFTk8TiKLlB0EWhxl5odlTvw5Dp+tX/biigtO1GM8cTQAN87eAGfOHDrinHtf/zgi7n76Zvo/N4uej8bYyrtbKMmN5jORMns7iJ8MmxXiQvwvSxMUAxBeFIhPxKc77ZY1JDH44SORNlzorGmJc1yYrKTwoF2REFx9RqKjIowmzeUakHw4PENy/5eesp+gyjnrDVCw0NNJpMzPdXHR5ZxF7L55Q9Z2sKmZJyrSFeJOq2hGKClFI7v78PyWFQP7+8nNG5fktCUgj7iv7BbpoI4GUPLlMRc2hNNHdWBPUNqzGxDERLERJj7D22iYAW3z+yUHmX/aK/94iQF05koXz5yNWNmbTWj/cBE8N4HX8KOPx5HZjJgmkR+tZs1X4yQLQT3JWo6E8U8nETRZ+ejIN7HYAu6sOxnX0iIjGjkRuO+zweGriJOxFDzAqRAOxpl72Cvp2MYSreROtCJsGyjJ7IuaYIp0LKKvezYjKgLsFS57LV7YGg9xdQaAFatWtXw6RoeqhBi5m3Cml48BDOaTsy6u0aFfc53oRYFGC6EXPT55SDVtMKpqcYzEOtlMNVGaHr+zRmaUHx17GbJoWuZivNL7J0MAXI5UrPDlJXr/mI8zD0HtgTOsetS4Ximiz3Dfej6/Os+nYny+cPXB9ax/+lDL2L7O45jDc9fQ4/+7y56PxMl9UBtSUFeMp2JYh1KolbJ4RMmgbqX5wr6zH+TEDmj+erYyw5dzc+OTVgCYzhGRvfm+bJK2w8VfXYMSl5xJYIr8gqiJG1SaTxhTqrYdeWnw2SMxb+nbDrM+Li942r16safoabUsbe39IY2WVzU1aZHEzP70xt163O/UGGWkg4sBy+ioaBNqfMebCEhc6CTE5Odzp1nEQZTbUzv7kFUyTcpO3bLyb+3VuY69EoC5NjnOvRqlB37RDEWiEI1ulTYM9bP8dEuDKO6y5hKx/jykas5rXehO7Ko1zxP5tbxnvtfyjnvn0DmqvfGjtyzh82f2kv+Z6sxHMqlaQbdUO0+6CWHvhhBuI+huqDP/Kzs2Me8F/Z5Dr2C8ITKkT0D5Ax380EMS2HPiX60wflLo4oBasX83SwipxKanr1/pQINeSth11YBuynVVKH6tdMtFZEuYpomiqLMLG83giOirpywanOTjXzpYmGigjCx11IcQskrVV84FAOy+zpddeyDqTamd/WgLLELKDShYHgcii9kwqjV5+1ZAuDYF3PolYjxMI89vJWHh/wt06pLhV2j/Uxnli+ZPJ2J8g9P3sS/DV3te6Ga/x6/iF++6xq2v2n/AodeiczlWfvZxzB+4e8uBN1QmT7SidiXWPL5KuO3Y19K0Gd+R9rLhIYb0cpF0Ks49ErC4yqHdq9xzbFbUrD3eD/qyWjVa6QYAnSHvhMLlOzCtXqpNXhz1PDoHp3uRjthv1l2d3fPLG03QlPfQjlEoOaqV10zLQWMhaHberAWKQerpRRErnkHI7Kq3f1rsZ9bkNrfxWg20fS5KrGkYHy4vaZKe1469kImTPhkGFF57arhl2MX9lafeks5po638+DQel8ce9mhp7P19UDYf2Y1Xxu6yjfHfk9qG8f/6BxC9+8FWeP3LSXrvryP/E/9cey6oTJ1rIPQdH3XWVj4Iuy1CHqZUEZgnUh4IuyGrsIiDr2S8LjKaNr5eRJg3+m+BQ59HhK0SRX0Jp9rC9RJDbVKTTVZxWAue7jQ/JtpeokEbDVvu6hm1tPBIaeu5XKcmVpY1m4qFyV2av4bh1OTv5DY4ZFmRM4SKDU4fsWA4ZHGtxgsxr5TfYRP1xiykrOO3U2K2TCRE+F5a1bL4rFjl4rtzq0aHHolwhKkj3bw6Jm17gxuEepx6JVIKdg1OMDXhq5yYWRL8+PJ83nsDy9Be2hf3Z+V2Rxr/+kxjLu9deyGqTB9pJPwZGPTm7AAD19S6xH0Ml4Iey0OvZLc3k5OOhzZTBUjmOORZecXIe0tyc3MQyKvLv73Cuqab6SyMGv+zP7qa+VDYx381fU3AAERdTWXIz9Zx2RV68u+wrJfojqtNrjYAUJX7G0tNaANRth9fADDav4hsqRgz8l+tGP1T/ChKYXicNwVx17IhAkfr9GhV1Jy7Eojn63nNCVBb9a0Th3r8MyxH01388jQurodeiV7z/TyV/uexf2ZLQ6NbHGGjA7+/Au/zfE7NxK6b2/jB5KSdV/aS88fa4yccD/xTzdUuylLnQ69EiFxX9glCEPULehl3BT2ehz6XJSCIL2r2zFhTxUjHNvbj1ZjTX41Jxo3erpY9jyWWqORKLv6ysTdKtpnSoEcjnDmzBmguSQ5cFDUlbRKqlDb3u5a3XotGYdqQTS2vl5Uar5R7MGAdirC/hN99Z+rgnQxgnYk2tikUXbso8469rpC7otRmgjdEnapgBWRTd61NmXHfs+xzZzKupczcTzTxanxDorF5rfVSSlIZ6N8//D5PJJ1r+2sieCzX3w+6z/5KBw+3vTxZC4PB45x7sfGGDnunrCPjrU15dArcVXYS9GtZrf6uiHsjTj0uShFwdSh5q9zqhjh2L5+tHTtf5uQdvi8kWx4dVqz8yqWPEHtIfha1+D3T/QiTDh9+jQAa9asqe0Ei9DUndDXZwucUsijpSW54vxQcupg5+IfruXvrXF0Wkqpb5ubFPY2iAYeKG0wwu5jjTv2jB7m5P7m93WGJp1z7IVMAyH3pXBB2J1y6JUYg3H27V3LYM755ZWj6W5Ojnc6nuBoGCrfPnSRK459yOjgw//8Gtb/8y7Hjy1PDnLeXUOOO3YpBSNnOggdjzTt0CtxRdgdEvQyM8KuN/9w6EWtIYdeiZYWPHl0TcPzZL0OfS6KQX1r6xJEWq263bHqr9dQObFyLb2MmhXcf2p+EZrRiTaEKYIh6t3d3cRiMQSgZjNIKeZtbVtKJJZz67KOfunCsveV14wpUAuNbjoE7XSE/Sfrd+wFU+PY3n5CTjgJhxy7Iw69Gg4Ku5MOvRpKUWHPvnWOOvayQ3crsdEwVL5/+Hweymxy7Ji6VPnHf3k+6z79KLLoTj1va3iUcz8+7piwl5uyhE+FXEvWdFTYHRb0MqGMwDoZb6okt6GrcLJ5QQc7EhY+FmHfqfqLeGX0cN0OvRItVcfausRuuVvrsrBYusJctbX0MkKyoC5FmVOnTgGwdm1z+T5NTZNCCNats7cIaZk0uaP19YBd6iGstyyfWqixspAp0KYdyJofDdddSvbggQFnBH0OoUmF4pnGHLvjDr0SB4TdLYdeiZJXHHHsKSPC4VQPJ8acd+iVGIbKdw5dxEcP3c6I0Xj/ZYA/fuRFfPkFt7Lhn5x36JXIE6c576+HmNi1qqnSsuWmLKGT7jdlcUTYyztFXBprKCMwjzfm2GdC7g403ppBCrQjUQ4O15f4NZxKNuTQ5yIsUFLa8tfMFKgTofqitousl5d/ZoVrT+A9nu6CwQiiWCSdTgM+O3VgVtSzGRRD1DeRLVJlrpYEuWqEatjmJvLq8usmNaAWBMf39dW8L/P0dLtd4MZppC3s9Tp21xx6JU0Iu9sOvZKyY//18c0NNYOZ0qPsGenj9HiHZzUFTFNhfDrBl45ey6QZb+gYf/bE89n23knkidOuOfRKrOFRtn3wMQa+HKGg159vkMpGGT3e6apDr6QpYS/vEHGZRhx7o0lxtSAsQXEoXnNhmmMTXeQOOhMxU3PL9AqRi29fW47FIsmLiv0imJaCMAVa1m4i1t3dTTTaXEKtY6KuZtIIA46frm/7StW31iZeZdXcEtvcTOFIC9gyWlrh2J5+pgtLX4RTUx2kd3XXVACjUepx7IVMmMjxiHsOvRLLXoqpZ1LzyqFXouQV9NMJfn1wa12lZaf0KHuG+xxJiGuEiVScfz5yQ92O/U8efSGb3ja6bEEZt4j9Yjdd/5ysy7GnslHMQ0kio6rnXdbqFvZShrubDr2Sehx7s0lxtRCeUDm0a82y8+TRiS6y+zpr3pFUC+r0Es+jrtS8jl6NBe/tYvG6Kotx/IC9jKtlbFFvNvQODjt1IUEa9rr6ybHO2m6UKm69mY44ig7qlFZ1m5uSc7aUIICWUTi5v3dRx25JwdTJjpkawq4xx7Ev5RKlFKijYUeiFXUhS/txaxF24a1Dr8pYhAcOb6zJsaeMCPtKTVn8ZCIV50tHr2XMTC5bgW7SjPOBx1/A1velsKZTHo2wClIS+/mumh17KhvFOJx09QV5OeoRdjfWz2shlBHo6aVfSt106JWEJ1ROjy++tHVsootsqUmLkygmUG13VFEhNNGcHlRmt0uFmuYsYzjGVDGKbqkzxdnUkqg3G3qntiEszdw1dYDQSIjJbIxiJlyzkM276evc4F8NtQhKumKCNQVKo8lxy6ClFY7tXejYLSnYe2yA0IR36hSaUNCHq1eek1KgD8cIpf0rOSqspYXdL4delbHIso59So+y60y/bw69kolUnE/sejpfG7pqUWH/6dR5fOVdz2PTmwexhoY9HmF1yo59qeI8ZYfeSLjUaZYV9vIedB/LzoaHNPKZ6vduteYsbiMOJar20jg60UV2r7MOfQYJSk6Zf60khCacWYadecTE4hnvlYRSCnkzxAMnNsx8/6G0/WK9cWPzW1WbVpv169cDoOZzYBoICyYH60w2muPW6w1fLIZaEPO2uYm86uram5a2HfvctaP9p/sInQx7XnaymmOXUqCPxoiMOh+tqAu5hLCXHHogBL3MWIT79m/m8dGFb9ApI8LekT7fHXolpqmwe6if/xi5fIGwP55bz973n0/kV7uR2erlnX2h5Nj7vhwjX+HYTUswcrzLd4deyVLC7pdDn4tiCkInIwuEfanmLG4iDEF6Txenpm19sKSYdegufldqYc7aurRLgzsh6DNZ7kslzi3CVCGKPjy75HRRzH6Z3bx5c9PjalrUOzo66OiwExu0UvZeXdvLSswIrkP3mTDttzEMpdQX1/0bWEsrHNkzwHQhynQhihxZvrShW8xt21p26JFhnwW9TBVhD5RDr0CZCjF2qJtHhu31Ll0qnMp2sOtM/6LbU/xGSsGjp9bOc+w/njyfX/3BNUTu2ePz6BYn/vNddP9TksnH7Ixp3VCZONJFZEQNhEOvZIGwB8Chz0XRBaHjs8Luh0Ofi1oQjI+0Y0nB8clO9xx65XlT9nMq0hqhKecip2Vhr9Wll8nrGmq2NA4pOX7cLvLkhKg3HTMUQrB161YefvhhQqkpjI5OOylquIE2fA6E3ucdrtxtx8P7V0srnNzbh7DsAgx+EppS0JUYCPx36JWUhV0KLFUGz6FXICRMHuvkUSFRBA3VcPcaKYXt2NXLubzjGAf++DwivwmuoAO2Y797F9seiHH0zTvI95mOVYhzCyFBloRdWMER9DJlx54bUNBGQr4JepnIyRC7cxtQsgo11HFxBMUQWDnVcXMnVdlQDtjE8S7K052WyVAsFolGo/T39zc9JkcWAsuirqWmgZKYNlg/3GnC03ajeyPh3ZOmZYX3iWiLEJqo3lY2EJSWXRQpMC3AoaUXtxCmYOJwNzJpoEZNVC0gF3kJyo79oWMb2GgG+/udi7ltLfFBiRUOtqCXCaKYz0XRBZGToYb7ZDiKFIQmlaYSoutFmBA9rdbUprluGvg71NSs2Szr5saNG1GU5r8UR77WLVvscpWh0uAaxWq0X+1iSFBzEBnHLh/p4UPX6F57N5ipgBSQ8SxA2tm6wqstdk0gpF3UwpoIYwZsLX0xpBQoqsWh31bQr97p93CWRgj0q3dy4vYkaffK2zuLDLagQ0nLgyDoQjbsbhs+pQWRcUFk0qW+FE1e+/dcfCEAmzZtan4sOCTqW7duBWbfOBrG4e9bWBCelggpiUxK7/ZlQ0PJE24iFWm/NAXV+FgrR9jBXje1xleOsAOEk0WO3CnRrwqusBev3snJm6N1r1H6RsAFXYpgaHkZqdbeEMUptLRAtVuVE25Sotzg6NGjgDPr6eDQFL9p0yaEEKjFAkoh39hBXLjxKps7hKec6+deK0FzyJa6QoQ9wBNlGWGuPGHXwiaHfkeheO25KF2dfg9nFiEoXnMug9dHmio+5SkrQNADgw8OHezEvFBm9t8VHWdL4TrA/v37gVlz3CyOfMXRaHR2v3qDbt0KObvWoRTFgmxZLSeJjnq83h0wxw4rQNhTwk4y9PgFrBGEKbAmwhTTYWSAJ/i5hBNFTr5RZ/87N6L01leX2w3E2n4yt5/PqZsiK8OhSxH4NfRACTr+OHS1IIiMM3++l6Dlcd40NHg8oeucOHECgB07djgyFMem9m3btgEQmpp06pCNI0HNg2Is/KbVvCQy7n0iW8ux14eiC7TMChF2Q6CkNPTJ6IoRdgBlU4b9b12L0tPt3xj6eznxon6GL1NXhkMPuDuHgAm6jw59gaCXf5Z3aW29AUJTU4Ddxryzs9ORYzr2Ve/caa/ThaYm6v+ww+s+woLQEpUvtZy0BcNLWo69blaSsEOpbvxKE/aNGfa/fb0vwi7W9HHixWvQ21bIF9YS9Lrxw6FDaal1CeO2lD54Sbikl065dHBwSj/33HMBCDfg1GutmVsroWmBWGZmDadovKd6E7Qce32sSGGfiiBd6qPuBsqmDPvfsR5ldX3NmJo6Z99qTrxkgGJHwFWyTEvQ68Mnh460539lmWaDajEYa+tlpx5IUd++fTuKoqDmcyj5BpPlHEKpIbQuTEl0FO8LMQRwe9lKEXbF56IZtaLkVPSpCHo+GPXga0HZmGH/W9cx+aKLQLj4Pasqmdsv4MSL16InA66SZVqCXjd+OfRQStgZ7stdLxmM1Z7tpesWSFGPx+Mz++zqDsE7eEOqWYFSYznJGWH32rEHWdgDNKa5KLrdNlfNrYzMeCWvwGSYYraByoo+oWzKMPq8PGdeexEiEnH8+CIeY/xFFzB8mUaxcwVcRGgJer0IidT8c+jhOsLqoZTDu6HqvE+ErnPy5EnANsVO4ehX3+i6umNFZySEsiwbep+LsCThKWdOXxcBFXapulBxySmkHVnxY9mkEYQEMR1Cz60gYVctMrdkGH7JTmcdu6oy9uztTJ1DMCxSLQRc0IO2Bx3mNDnxGLsmCXUJq7D8DcGHJ22d7O/vdyxJDhwW9Zl19ckGkuWcQFKzS5+LUoDwlA8OMIDJc1IQfGEvO/YVgJDAVGhFOXaAqVtznPmdixDh5sddduhT21bGNQNWhKAHirJD9yHkLky7YlwjqD52/fvDnbY7v+iiixw9riuiHpqawI8UYC27fIJcNYSUhKckoZQ/od2gOfYVIex5e519JVSgKzv24mQE0wxw8sIcFNUifVOGkZec17iwC4F56XaGX7SCHHrJ/gZ5qIETdPx16JHxhTVJakXR7ZomfvD4448DcOGFFzp6XEcvw9atW0kkEiiGgZaqLabt1I0gTNCyzR0jPAVhj2vEAy3H3ggSlIJYMaVlhbQT6KzxlSPsQsDU7Vn2fOwcjMvqX/PTr9zBidvipDe4MDg3KIl5S9DrIAAOvZmWvMLE/rzX19yy2LPH7pgYaFFXVXVmgOGJ0Zo+45SYKQWBWmzuyrQc+3wCL+wAVilCswKEHco141eQsCuScKLIwTtCtQu7EBiXbef006L2/bMSCLg7hwAKOgFw6A5stJpbRrZparyHQtNT5HI5ksmkY41cyjh+OS6++GIAwpO1ibojSFCX2ZdYD5FJ2XLsJWaEPWAvHHMR5kpsBhNZUTXjw+0FDr1RqUnY9St3cPK2+Moo+QotQW8QXx36WHMOvRLV4xB8eHwMsF26E+1W5+KaqPcVsnipipqTb1uUtjv49KAH0bFb5UISARrXPEqOXcusjC1vwijVjJ+OrJgKdKGIsaRjV1b3MPrKizl9QxSprJA/qiXoDeFLYZkSasFZQS+36PYKKeCFpUJPTofewQVR37FjB9FolKmpKdSsN7X41ILzE7mwSs1fDGePW9vJg+fYwW7fGmRhF6a9DLNimsEYAiWjrqjSsos5dqW/lxMvW09qE1jhlfHHBL0pCwRU0H1y6GDP9eFJ54+rGHZzJm+QPPbYY8AKEfVQKMT5558P1BiCd+Cp0urcm14ral4SHReet2stE0QBDbqww5zSsgGfsMvMlJZdIeOdcexX7kAkEiirezjx4jUrp+QrtqAHncAJul+lX0vMNGlxYT5WdJYtLesUWmqayclJYrEY5513nuPHd+XyXHLJJQCElkmWcyTJwuV5RM3bzV98uZED7NidSFBxE0UX3pcAbgIlp2LkV85e9nB7gWNvMTn9qnMYeta6FSPoUiGAajkfodv/BA2/Sr+C3Zo7PLF0k5amceAWruWF44MX2lu/L774YkIh5595V6TqsssuAyAyPrzkfnUhceSLNOIgVXceVCkERkJidBm+zAXlqkdBaRUIEE4JEoOS6JgdtgoiUpOYERn0+XsGK2oRSRTRNBNlBaxHG0WVvn+Psfbbx+n7+fCKeIGyQmBptkAE8r6QtpjHhySJQRmoZ0uY9ouyH9EvKywxuw2ssHvnMCMOvLDIUgRoie9IKQgefPBBAK644oomT7jIOdw46LnnnksymUSYOtr00tXlFLP59U9Lg2Jbc8dYDKmBvraIiJgY3d4KuzCxG5mU9lKqReF72FBYgsRpC8WQRCcs2o5baB4mmdSC1CR6cnbdL5AT+BysqEVsVRZVtRACVNUKtLCbpsKGr2jEv30fxomTmPsPsfGbZ9Cywf2irdDsfSCVYAp7dAzaj1poeYlakERH/b8HhGW/uCsGKEXv+2RYYYnVoyM0i8wGl2y6AD1J0xHR5QTdxpxZT19Roq5pGpdffjkA8cEzy/5+bV/GYp+1/9cKgxFz/oZLr5+tRuG1sCvG/PV8RQc1719WvrAEsZH5ISZh2c6i2cI/TlEp6DP/PWATeBkrahHtyS0Q8aAKu17QWPvVMOEfPTjvv5v7D7HhP84EsnzvXEEvEyhhlxAZg8jkfHcTykAo7dOYsJ9tYcwPeQvDnTXtatgOXYfScyCTBoUuh08iQE8wI+gNJ8vJ2r6XxLFxCoUC3d3dbN68ubFzLYNrK8VXXXUVAKGJ4WXXQRoOw0tmnlapgN4OZtS5p1RPCMz2+TEwr4S9LOCViFLtcz+EPTYM0fGFd65iShJD/jv2xQR95udBmMDnUBZ0Va0+GwRN2C1TYcNXVaLfu7/qspq5/xAbvxUsYa8m6GWCIuzRsdJzVfGVClOSGLScLY5SIzOCXjmmUolmt4W9LOhiTvEioUoKqyxH85v0JJjR5o+j1PAyoKWFvSQNXH755QiXWhy7L+r6JGph+ar5Dbn1it+XAoyYvQ7eLFIIil0SEV34RuK6sMul6xF7LezCEsTPCKITiz/Jfjt2qUn0tuW32gShs5VU5bKCXkZVLTTNRPi490pKCD+QZPufTBD54YNL/m5Z2KOjwsMtQguRqh29W+5a+yrsizj0yt+JD0lPHftigj7zc9PdhLVqgl5GduqYMWfOI1UwK9bphUXdOlTrZ0JpuLDPlly3Qu/goqj39fWxYcMGLMsiOji87O+LGsMXlZ+pxIxAsaO+41RDqvZa+qLndlHYtZxYNknGS2FX89UdeiV+OfYZh17H3eyXsEtFovYUSPRmlhX0MuV1dr+EPfRYkrWfegjjyLGaGjWZ+w/R98l76HvAnxRuqYKl1j43l4XdayLj1R16JcKUxIa9Gd9ygl5GKbhTw2MpQbdPLMmsbT5MINVSHlaVeaDex6yWl1dhCCJjWfbu3YsQgquvvrq+k9SBqxu1ygOPjJ+pKZNTWHUkzS3xxZtRKHaIphx7esPynR1ExHS80Eb5oarpdz0QdkUXxIdqP4GwIDFokTgl3d1+UqJWh171sx4Lu1Ql6qoCkWj9YueXsIcfSLLhk48hC/WX8Ir++BEG7jE8dexlQa/7cwqYYW8cu5aFtqNyychXJYopiQ27u55dq6BDqUGR09nwAsy4tbigl5DtelNr61KFYrudBN0std7bWhYiE4OAnUje3d3d/MkXwVVRv/baa+2TZIcILxVimkNdc9YST6ARs9fYG0XW+OZudemOCbuw7Gz3er4DN4Vd0QXJkxKtUN/BhQWhnL0tx01hb8ShLziGR3pTduiNCHoZr4VdezTJun94GCvT2KKuNAzCP3yAvgd1T77oRgV95vMeOHY1Z4fTFV3WJ4jSDtNHXWqpUY+gl1EMZ7PhjaSFSCzvaITaeEW7skNf6vM17zCqtaOfhMRpiSjYSePXXXddbcdvEFdF/ZJLLrG3tski8cHRmt26U0JgRsDS6r/pCl0Cq6O2yVco9pYLJ4Rd0RtLQHFD2NWiIHlCouUbP6iWd2+/bTMOfcGxXF5nb8ahV+KFsBfHokR/k2TD3z+KlW++ylD0R48w8BvdNccuhb1+3oygzxzLRceu5kqTu9n4tYtMWY479kYEfeazTmTDCzDaLWir/fnIry829OxbIWccOpSS42r4zqJjglCmSAR7e/f111/vzAAWG5ebB9c0bdat54aITNR410hnwjpSgWJnfcIuFUGuz0LUk3Us7HWgZoRdKTbXRtBpYQ9PUrdDr4aWl8SHHHbsolQswuG7142J3AmHXokQoGlWzWvy9VAcj3Lu34/T/4l7sLLOZD2WHXvvQ4bjX7JUQIacjQLblS6dfWlSc9iRK6vJ45Ycu7J87nFNNCPo4Ew2vJEsCXodt4YIWeRX1TdoM1LavuYAtSbHCUMQHZWIwijFYpG+vj62bNnizCAWwfXip0972tMAEIUhwlNWTfV1hVx+raLWm8jS6hN2I2Gv2dRLU45dOlN3WEi7U1mzIbHw9NKZ7vVSduyOJNAJMKMSK+KOU3VSc5x06NVQFOmosOsjMc7722HMfQcdO+Zcov/9EAP3FB0roCSF/Xy7cSfIkDPCLgzQ0s079ErsEH4T4yrNOc0I+syxGs2Gb8Chz/1sscfCqrHKqhmto8DMcvpTgz6VCWUgnLEQxdnQu1tb2cq4LupXXXUVoVAIYWbQsilCKWp7w5EsnTRXx+xbFvZaSslm++t06XMRErPLqFvYhelsudVm1rrsErCW4wk5Wl6SPGURWbrA4NIIMCMSM+ZuQpMTx3bDoVfDKWEvTkTZ+clRjMNHmx/UYlgm4R8/RO+DRtPCLoUtvG4hKW2Ja0LYhVku+Wo179ArUIuSxOnGhb0cNncqsrfUFtzFMJIWJOtz6PNo022hXoYZh+7QnFHLnnRgZjsiUrIqZncsdTv0Dh6Iejwen6kuJwpDJIbNmgXDiRKyZSzNvrhLYYYFssm1caFadTl2YeJKec1GhF0tChKnnBf0uUTHLaJjjX3WjEqMhDcZys2cw22HXkmzwq6PxDjvb4Yx9x9ycFSLICXR/36I/t805tilKNVwdzjkXvVcNC7swoD4oETLuTdKtSDr2pkCcxy6w8+4sOwwfK0XZcahN/ksG0m59DFKS3WOCLq0q3zW+jdGxgXhtAX6OOPj4ySTSS699FIHBrI0nvQemw3BD4KE6FjtN2LVZIQGnxO9belSsnobjYWCKqnDsStF97ak1SPsQtr7Zt1OrBYSohN1OvZSyN2MebudqxFh98qhV9KIsJumQnEsys6/H3HXoVfShGOXmrdbERsR9rJDd1PQy6iF+krJulnmtdaXBaOtSYc+B71XXzJBUk/ibCOYGi+pMCE+bH8ZonAKsHXQja5slXgi6jfccAOqqiKMSYSeIZyuL2wkKoW9wWdFCnubmxFfeDdJRZDb5FD2CbU5dmGC6twpq1KLsAtLEB/E0XX05YiN2dtz1Bq2P3vp0Cup55xW3PTUoVeiKJJQqLYub6ahsu4rIXa8+zHMA4c9GF0FUhL9rwdY88sCsaHlv+SyQ/flHqB2YdfS7jv0uQirVEo2tczvueTQK1lurnHKoZcRmkVmfZU/Sth70ZeLzi563MpEuLJLr5FQShDK2qF3UbD3p99yyy2NDaZOPBH1rq6umXasonAKLV8qeyipfX3dIaSo7tilgvPfxlKOvZQ16gXLCbuiQ2TK+4pa0UnLTqBbLOvfJ4deybKlRgVY7Qbxnqxvgj6X5WrGm4ZK/3+EifzXAw0VlXEMKdF++hAD/76X+Oklfk1479AXjIFlhF1CeIJSRUWP71cJkQm55DzpWSMWa5GkX+GsQ5+LVJl/TOG8Q681oiRVu/7ATAVAfQxhFWhra5tZhnYbT0Qd4NZbbwVA5O1QROKMaWdM1nj/17OWsRxS2KVk5wp7eoNEuLBFaDHHrhaWLwXrJGVhr0zyUAt2gRm/UAxJ4rRVVdjNiH8OvZKl9rLLdp1EZw6Xk1rrYjFhN02FtV8NkfjWfT6Mqjrm2Dh9//p4VWGXqn8OfcFYWFzYI+MQG12+5KtbaHlJ7MxCYReWNw595nyLbHEz2px16HOR3UWK5UJjwi4u06hDr4awav/+pIDIpCCSKofe7Zvaq9A7eCjq5T9KmCkwputeWwdnhR1sx25GBVIR9huWW1TsYxcWju0zrQfFAKUwG0ZSTEHilEQt+uuEZ5rBlIW97NDj/o6rGnPFZcahtzdfoMUNKoXdNFT6vxUh+l8P+Diq6liZDP0Vjr3ZCnFusEDYS7koXi5dLUZ4WhIdmf13YXor6HOZyYZ30aHPUNraCHaWu7MOvfbta/bvC+JDpS9cWvREpwB4+tOf7tyglsEzUW9ra5upBS/ypxCSutfWwdltGFIBI1qqA9zjrsrO3ceu6P60ToXSm3TBFnQt7UyBGScoO/bwlH2Ng+LQq1EeVxAdeiVlYbfmOvQamrL4gTkxMePYgyjoZSR29EDNQ3QUomP+OfRKtKy0n2/D2W2y9SLM0nPcZkG7i4JeIr+hOLMrwimEJepO5AxPM1uFUx9jYmKC9vb2meVnL/BM1KEiBC/l/LX1Gmnki14KMwp6m/Qmvldy7Plew/FqaPWiFPxZR18KYUF8xLILa/g4IdWCFKBFTCwH70W3KGfFJx856fNIlkeEwyTOWIEV9DJaVhAflEu3TfUBVbeLPHnRTGkpzJikuNqwHboXSIG+TE33eqm3DauwIDYyuwQicicAO0FO0xyqTVsDnkrLddddRzQaRVhZMOw9TclBk/C0l6NYiKILlFFvFu6EIhEJg+x6w9eJS0i7xr0RDZ4ohTKS9gPCkSp7bmKORMmNxVaEsEeiOnveswFt43q/h7Io2uaNHHvLuQxd7fMb7zJoWUHbMYliBOulGCDfpWA41G+8UYy4pLimiIiarjt0AFlQCQ9r/holCfHT0t6XDmAZiKKd9f6sZz3L06F4+jXEYjFuuukmYPYtRlilzM063yydDl9rGQVlzLuMHBE3yK3z17FLBfI9An2Jvft+EZmWtB8MvrCLvEpufGUIe3x9ij1/uAZtoN/voSxA27ieI69ZS7E9eEI5l1DGFnQnS746goBCl2LX2vARIyEprlmiH7rDyKJC+IzWUEU7J1F0iE7NRm1E4TRCmqxfv57zzjvP27F4ejbg2c9+NlDakC/tGGtk2kJroLuj48KeVmzH7hEibjt2X4VdhUKPoNAhsGooo+slZWGPDgfbuYmcLewBXaqeR3xtmj3v24S2fp3fQ5lB27yRo69ej54M7hdoh1YFyePBc+hGTJDrUWYzwP0aR1xSHNARmjdLErKgEj4Tsvu6+0z8jJyXkHjZVvt/n/WsZ7le670Sz2fLSy65hIGBAYQ0ZjblAyQGLRQft8yW0TIKymgY6ZHzKgu7n6F4qUCxQ5BfFVBhP2aROKX4llxYCyKnkh2LrxzH/p61aGvX+D2UWYfeEdyLq5jQdgziQ1YwBX21wHCo+1jD44iXHLpXgh4Qh460O1pGpuf83WaGRx99FCEEz3jGMzwfkueirigKz3nOc4DZEDzYWdixkQZqLLvwjGlpBXXMW8fudyge7L2dQRR2YUHypEVscAU49rEYuayTdSndIb42zd4/2oC2bq0v5xeaRu5FV60Ih548DqF08MZYFnQv1q2XHIcvgh4Mhy4kJE/P72ci8nZC6mWXXUZfX5/nY/JlliyHJIQ+CuZs3D06aaE10MLZFWHPKCgjTy3HDsEVdrCFPfCOPa8ix8Nk0w5Wv3CJ2IYUe963DnHp+SjxuGfnVdraGPudKxm8Rl0RDr0l6EuMIyEpri16K+hDIf8deonYsESZmw8mJSJvm1WvE+TK+CLqfX19XHHFFcB8ty4siIzJhvZ8uiXsvjh2n+/XoAq7kCXHPhRsYUcKmAyRy6wAx74mzckPwNCdl+DFhnuhaYy8/AImt7t+qqZoOfQaxpGQFPu9TooLhkMHu95HeLriby+OIMwsyWRyJinca3yLZ86E4PPHQc6+5UUnLWJnGrtJ3BJ2MeHd5CziBtkNwXDs2X5BvlPx/SWjkuQJi55HBaFUwAY2FymQEyvDsQMUbp5m6J3XokSjrp2j7NCnznHtFI4QGxZ07gueoFuaINuvBEfQ1xQRIY/26UtsQQ+IQ0dC2zFrQfGumy+yTeAzn/lMoi4+S0vhm6jfcMMNdHR0IKw8FM/M/Hch7eSoRpPm3BB2NSuQundfVVAcu1TtUrrF9oA8SCWEBLUo6ThI4IW97NiDnhmvKBLzpimGXncZKM6/UYpQmNHfCr5Dj44K4sPBS4iTiu3OHesN3gReO3QkkA4h6uiS5ioSwlMsLK9t5rjnnnsAeOELX+jDwGx8E/VIJMLznvc8exDZI/N+puXtjOdGSy86LeyKLgifCXku7NkNhv9JRMIW9SA6drUo6dwffGGXE2FyQ0mKxYCXSQMKt0wz9M6rHXXsxtMv5+ifXhF4QY8NCxJDwSn5WsbSBNk+4Wxf8EbGEQK93WOHDpAKERlRfalhXw0tD20nzYXNc3LHME2Tiy++mE2bNvkyNvBR1MF+m1EUxU6YM+Y3BFaLkvAkgXnAhCEIDXsv7Pr6AoVu/4U9iI4d7JrxZccelId+AVKAIdDHo+h6sIVdUSTmjbZjF82WthQC64ZLOHlrGDMSkAe5CkJCdMx26EGZb8qUHbrfgi5VyA8YGGsK3jr0VIjwmBqY6yIsiI5WaXMrLXrj4wC86EUv8nxcc/FV1Pv7+7n22msBELmj834mLPttSA1QGH7GsXvsuMy+AvnVPivWHMduRIIl7mpR0rVX0rFfBGfNrQpCV9BHYyvGsQ++4ypEpPGcAPPmSzn23Jjv+SFLoeUEnXvtOhlBEQ7A7m4WD4hD1yC31kDEPW7IEDCHDhAdkUSr1fsvnmF0dJTOzk6e9rSneT+wOfi+8ffFL34xgL0NwJp/04hys/kGL6obwi4MQWhE89SxA1irisFw7O12ZnzQasYLy25Q037Y/2YWS7KCHLtxwxRnXnc5IlSnqgiB9bRLOXFrJHBLNnPRsnMqxAVM0AsdSnAc+hqPBT2ADh3sbPfoZPUBXbXNFqlnP/vZhMP+XjTfRf2KK65g3bp1pQpzC7tIRaYsoqONH7/l2J1HqsEUdrCFvSPgzWDKjj2XCQe6Ap0QULx1itPvuKJmYdc2rqfw7Cs49tzoTI/rIFJuyrIg2SkAFDoVih1+j6Ll0CtpO25Vv1/0KR566CFUVZ0xqX7iu6grijKzBiGyhxf0ehYSohPNlZA9qxx7j06+x/9e4+VmMEEV9rbDCoruzrV3BEMgxyPkJoJdM14IMK+f4swbrlg2FK+tXcPRV6/n1I1akAzWPIQsCXoAa7gjSoLucw13aDn0eUiIjFfJdi9hGYcBuOmmm+jv979Zku+iDvDc5z6XRCKBMNNQHF7wc60g6ThioeZ9GNwSKHopec5Lxy4kVm+BQo//r7Flx15sC16hmuikxapHIDYUiFt8UUQ2+DXjZxz72y5fNHlO27ieo7+zKfAV4pLHoOOwhaIHa5xGVJDvajn0IDr06Di0nTKrj8vME8vZPUxe/vKXezuwRQjEjJdIJHj+858PgMgdrPo7djZ842tfbjk2Rfdrjd127H4nIUnF7sue7xG+166vZKVUoBM5ldxEsNu3CgHGddOceeNVaP3z61mXHXqQBV1ISJyEcCpg6+eUBH218L1tqhT2tjVfHPp0AB06dn5OdGzxt4zfe24/hmFwwQUXeN5idTECMw2/7GUvQ1VVlOIY6BNVfyc+YhEZb/wcrgq7T449t7WIEfPutIthRiG3SgmcYxcWtB+zVoRjD3r7VkWR6LdNceATfVg3XQqsDIcuLNuhLyjpGQCMqCDXG4wX4mK3RWFL3nuHng4RGQ2eQxcmJE/IBVXjZpAG3/3ud4HguHQIkKj39vZy22232f+SP1T1d4SE6LjVVHazkKC4cM8quiA8rNlNYEwP97KrFoV1Rd8dO9jCnu8Rvq/3V2PGsQds4piLyKlkJ2OIIIcVgHDY5PDrQV5/SfAdeqmGezgVvDGaYduh+10hDqDYIbF6dE/HInMq2qkI4VEXHLpsfheMWoRIavEJQ1dPMTU1xcDAgO/b2OYSGFEHeOUrXwlAqDA0r3vbXEI5SShV9Uc1Ex+UrqzPC0MQGVOIHwjjpbIJzUItgvD4BbsaVhj0RPCEXVgQHZOouQAXqQHCySKJSJGQGtx9eYah0P6bGGqmSGSRLT5BQEi7KJGW83skC5GqwIgHw6Gr+ZIAKt5dS5nR6NgVcu15DE9BZLLxz0tVEh9a4vuQFltVe1tWOcocFAJwS82ydetWrrrqKizLQuqHF/09qdJUhSrFgOQp54VdSIhMSGLDktj+iGeOXRmOoOVAy/ks7NKeICzNTp4LUmZ8MSlIbwAUUAoBFHZFovXmWN2RJqyaJCJFwloA3tIqyOdDrP5anIH/9yQcOsHAtw/TfmT5z3mNKDk1Iy7JrBFYWkDuxVJRGSMGwnLHXNSDmgctJ4kPCWTeG2GSWY3OJzRCaUl42umDQ2QCYqNNPODCvm+WeuEqxIY4deoUHR0dM+XOg0KgRB3gVa96FQBq+hjSWvyOlwrIJt4sFUOSOO38Q6WY9oQSH5KeOHZpKETHhF2gR/or7Io+e26p2KIeBGEvC7osJW4Lgifs2uoc/d3TKKXQuyIkyYAJu2kqrP1qmORPdiNLi/9WJkvffxyk7ZjPg5uDkKX7sDQ9lIVd+p3vIey2qZbGjGBoOf8S98qCDqDoktCo+4UFZEaj80lt5u92ulBUeMoW9GZWsMzw0oJuanCeYrv0l7/85cRiAUhqmkPgRP2yyy7j/PPPR1gWJtXdevKkva5uRpoTdlWXhFPOJdCFpplX/S42LIntiyAN975mkVHt85YpCbuWxVPREiZVS/r6LezFpCC9cVbQy8wIu+nzXnZFovVl6e1MV/1xPKwHQtjzuTCr/i1O4u69C34m83n6/+OQ745dMOvQKzHikvRaHx37HEGvJJTBU2EXpi1+ZUEvEx0VyKJ7c1XZoWuZ2fNqWYlSdOb4wmw+GdKMSMyoJDqiEF5kPT3XMcTRo0dJJpOBKDZTSeBEXQjBHXfcAUB76gSmuvCKK4ZdUF8qzQt7ZMKyG8c4QKVACAnxM5L4Qfcce+JklZBZyamoeTyZLIRpv0gsdi6/hH3GoS8SVRSAWvS3Xry2Okd/V2rGoVcSBMdumgprvh4i+T+zDr0Smc3R951Dvjl2gX3Pz3Xolfjm2JcQdCi5ZI+EXZgQStuh/0q0nCQ0GnLlvDI7x6HPHY/lzEu1sOzo6KKZ6jVQFnSYjbhWUmgTXGlOAvCSl7yEZDLZ8PncInCiDnD11Vezc+dOCoUCFKrvWy8jFZoqRymkHa6JjDd3cwnLvhGq4ZZjV4YjaNXzCe0xGaVwvJuOXdph9+Xq8xtRQaHdO6ckBRQ7xAKHXg1hgVoQ3jr2ZRx6JX459nwuzOqvxEj+fKFDr0Rmc/R/86Dnjr0s6LWIohGXnm4BNSMCPbG4oJdRdOl6ZE2YEEpVF/QyiZMCWXB2bV1mNTofn+/Q59JsSWdh2oIeyjYzgS+M5lUiFTDVYfbv3080GuVlL3tZ4+dzkUCKuhCC3/u93wMgNHmEfGLhVY+OzIqD1MAKNX5BhWULezOOXSnaoaSqx3fBsUtTIToqlp3I3Hbsil77QykVgZ7AE2HP9SoUemr/o4WFp45dW5Vf0qFX4rVjl9LOcl/zjRCJn+5Z1KEv+Fw+T/93D3vm2OsR9DLZflto3cYMC8wwNWe4h9LuNSOacejLXEdhSsLDzq2ty6xGx66FDn0u4anm5u74kCS0yAtDrRgxiaXZxxCmIDqy8HjpAYVrSmudL3zhC+ns7GzqnG4RSFEHuOaaa9ixYwfCMlHyh+btwxZy/o1QroTUlLBLiI0079iXwknHLlJazVv7Zhx7nZPfsse1SoJexzGlcFfYpYDMgEKut/4/1BPHrkhC/Vl6uxrbl5mMFOmI51AUd22duL+Drf9nguTPlnfolViZLP3f2O+6Y29E0AEsTZJZ666wmxGBGaGufd/CklRZbWyOUiRtOYc+l8iYM5nwZYceSrvzQDnl0I24nKcdwoTo1Pzny4gIMM+wa9cuwuEwr3jFKxo/p8sEVtTnrq13T54gs3phW9a5k29Z2Js6p2zcsYdqiKI66djjp+u7dMKwk+fqFeFFkXP2t9b7UReFPderkF8tGy6iUXbsbhQoAtuh93XW7tCroQpJW7TgirBLCdZDHWz40kGsyamaHfqC4xSK9H/3MMkT7ginsJp7SZWKJDtg7xV3FDHr0Bu5B9W8rJpw2hDSTsILpeWyDn0uWk6ijWtNzROLraFXQ1j23FQPTjl0S5MLzGDlZbM0wfQmwZU5O+P9pS99KatWrWrqvG4SWFEHuP7669m+fTu5XI7w+L55yVbhlGWHnyswo811MCs79uhYfZ9T60jQaNaxKyPhml4iqqHmccQNCLO5UKEUgmLS/sepAhxmSDjS4UpYIHTnhV2GLdqSzlRCcUvYxf0dbPrsXmS2+XFamSzdewqL5po0ilK+95p8ObU0SbHduYpuUrXdf70OvRKlSPMv3iVBb7RxTfKEaLifhcwsvYa+8APUlQEvDAccOnaBGTO28BjtFWlchXaBNn2KAwcOEI/HefWrX93Ued0m0KIuhOCNb3wjALHTR0j35zFD9tMiJAtufCnAUsFqojBN+djRMYvIhDuh+LJjT+4Jowwv3c6yEmkqxIaVph56pdDkxCFLLwYOfDeWJtDjzVegs1RBeoOo+pA2gsBZYZchi8410yTCzjV6d1LYpQT5YAcb/+UQsujcGMMP7GfgHsOx50gxWTYpsx4KnZLcKqVpYZeqXVBGKjR9LMWQzSWPNSnoYIfqw0N1hj4tQeRglM5l1tCbQVj23NmsQ5eqtAvMVLlWcxMW8x0KmTWSiyfOAPCKV7yCjo6Ops7tNoEWdYArr7ySyy67DGFZxE/uptg2exVC6eoZo1JxzrGHJ5b/XbXQWIZ5dFzSuQ/UoTqE3WLJjPdaadixlwTdyYQeS7MdTqOO3QwJUpsERsLZicQpYZdhi651U7RFnYqrzuKUsIv7O9j4j3uwMnXGQWsg/st9rPu53nR2t9OCXibfI8n2Ni7sUhXo8doT4mpByzbYo8IBQS8TStf+hUhDIbYvQvKkrN2hz0HRl59DhWmX+HbCoRuJ6gVm1LyY6Zte7kAZGT7O8ePH6ejoCFTjlsUIvKgLIXjTm94EQPT0CfIdKfKd9rDjI1Z1UXfQscdGl3fszRR6ERa0HwL1TG3CHh4KOZbsphRKY69DoIV0KDxYQTOOXW9zXtDLzBX2htymJulaO0Uy4nQG1CzNCLuUIB8oOXTDnUQCKSXRe/ez5tdGw8+JW4Jeptgp6+8wKGYdutONUISUKHW+A6oFO7fHqV7xWgaYXN6tS1MQPxi2a6U3eGotJ5eshDnj0JsVdIVFHTpAeFrMnCO1VqXQYbBj5DQAr3nNa0gkEk2d3wsCL+oA5557LjfddBMCSB7eRaGrNlfXbClZqM+xN4piQEcNjl3mVcKTzs4e5QS6WoVdKeDa9jhLExQ6lLoK1RTbBJk17m4wF9hd+JR8faVlZdiic/2kq4JeplFhFw90sPEfd7ni0OcipbQd+y/0ul6OZroquryHWwrIrBVYoRrvvVJBGacd+lzUoqzZrauFUnU2w7lnQTEkkVEVrMW/E2kKEvsiSzc/aZIZh95kyB3AWqYEbBkjave3Txw/wpkzZ1i1alUgq8dVY0WIOsAb3vAGVFUlOjKEtEZJrbXb9cVPL3HDieYrzkFJ2F1cYy+fYznHrqbUurNEa0LWJuzCWLzAjpMYUWFvIVkGPS5Ir8ezu1hgZ8bXIuwyZLnu0CupR9gtS5Qc+mGk6U094RnH/qvaHPtMyVePigIZMbvi3LKue26FOJe3u6tLVGqc+Z3C4jUymiU6agt3NaQpiB+IEDvTuENfDqccOpQqxi0RvRWmIHFKYqkwtVnBEgXWnDoKwJ133kkkUl/+k1+sGFHfsGEDz3nOcwBo2/8kekJiRMWyN7O9vu6AsFvVHbsw68vcXIoZx15N2KUgNO3i5VpO2GWpFKxH9eSN2PKlZQtdtVWMcxIhl28GI8MWnWunPRX0MrUKu3io3XboaQcSNOpASknsf/cu69grm7J4hRmVS+9fX6bkq9Mohlyydaybgg6lZYCphX/sjEMfdO7cWkVzLScduhmdLQG7GEJCKGtR6FAwo5K2Q3tJp9Ns3bqVZz/72U2PwStWjKgD/N7v/R6xWIzw1ATh8eNMb1JQiywbkq507FaDdRWqOXbFAC3v3I0tpL2lQh2KIIuzA5WWIDru2GmqUxL2au7A8aIYNVB27JXhMqnYBWbqqRjnJEs59rJDdyMprlaWEnYpgfs72PQl7xx6NaL37mfNL42qkZ/FmrJ4gRSQHRDoyYVzilSEp4JeRqmSmCosu6CMm4JeJjo65wGUIHPqrEN3kLlFapp16OW8KljeoZdJnBTkuxUy6wRqOkX7Kbss4tve9rZA9UtfjhUl6qtWreK1r30tAG0HdiNVnWx/bdnJc5u/5Hobj5kJC+LD7q+xd+6DjsdDyKw9gyiTzRWDqBlpZ6LObdDSbKGPZjBidm/2uYVq9LiwC8z4SDXH7qdDr2RRYX+wgw2f9d6hVyKlJPbLvaz5X31eBNsvhz4XS5Vk++eH4c2wQE8212eiUYScX2muXMPdyfXzpVDzzM5DwxF67tccdeiVOOHQLU1Q7KzNoZdRipL0OoGlStr378I0Ta677jquuOKKhsfhBytK1AF+67d+i4GBAdRCnsTR/RiJUgnUGt7sZ4W9+XHExuySsm5OPqGMpHOXhsxpRMaa25teL+XSsuWex345J5hTgU4VmCFBdsD/Hu3ATPvWcs14ETd8deiVzBV2KYH7Otj0xUO+OvRKYo8eR0sL+7v0+T6bi6VJcqsVpCLsCnE+L6eWE1SFtXiXNbfQchI1o6AORujc3/hOn1oQpkNr6KJ2hw4QnlbQ2wRSkYTHRoiODKGqKm9961ubG4cPrDhRj0QiM1904uhBRCFDro6yoFJpfqsblBz7iEVk0t2HS8tKEkc0X3p+l4VdzS//u24jhS3mo5dbjhWYcYKyGGkZwapVjdVzdxNVSExToXC4nQ3/d5/rWe71IrM5Nn1rhMi4sPM1gnNpyXdLRi+VmFFcT4hbDiEl4VR9NdwdPb8p6DjAktvOmsah0q9QWnKt0aEDGFFJsV2CZXHVxBAAL3rRi9iwYUPTY/GaFSfqADfeeCOXXnopwrJo279rZg2uVuEzI5DpVxxx7MKEzEDzFdGWPIeE3BoTy2O3IKRdSCKUkagO7X1thsx6k1ffeA96r44Z9n88ZZQihKcE47tXkTd8iM8uwVQuivV4B7EzgtSN2xCRsN9Dmo9lYR08xoavn6yr2InbGEkJ2zNcefX+quvrniLLe9DlTGEUL8mvEhjt7oZQrBBk1gtHstwtTZBZV/s1m9k2CcRPHOHQoUO0tbXN9B5ZaaxIURdC8I53vANFUYidOUV4fMQO21k1CruAXF8pvNZseUgFcmsNcn3udR3Ld0tkxCK1xSTX791DLSxQS5We1AK+Cntqi8UdN/6SvtA0f3D1T7j0yoMNJzw6iVK0K28JC2LDgoldq9CtYDxWk7kohce67G2QAia3qkzfvA0hAiKelmWXpJUW5snTbPzGacIp/8emd1vceO0uXrr9UbbER+l/1gn/hL1UwVExaKgrYjOYUUF6A+Q2FiFkkVvt0hynwvQWKHY0H9e3VEFqo6j5WELaNSiQoBTyrDlxGIA3vvGNgW2tuhzBmH0aYNu2bbzgBS8AoH3PYwjTmqkHv5ywS8GMsGf7Gxd2KSC1uXSstSbjF0rnH34FjE77LVlGLQr9BukNEumBoFVu1VOK/gi7FYauneN0z6mPe1P3AS66+mDNa2ZuUBb0uZNsdFQw8mQvOb3JloFNMpmLoj/StaDxz9Qmlenbz/Xfsc8R9DLm8ZNs+PpJX4Vd77K4/crHGYhMzfy3K7uPkV3jQx6CrFKSeY6rdBMzKpg+x0Dv022VEHbVPUcRkFkjGL9QYnSYWBGL1PrGJcnS7HLRerK25Vg7witmvt/2fU+SyWTYuXMnz3ve8xoeh9+sWFEHuyBNV1cXWiZN4uiBuhM4pIDcakmut3FhL7ftk4rEilqktljuvtULMHoMMmvdF7PKlyMhfXDsAvQbpvmdzfct+NEtPfu59Ar/HLuWFQtdkyw59j09mG6uySzBZC5KsezQKxEwtUVl+iYfHXsVQS9jnjzN6kf92T2gd1nccPkeekILdwbcdv1jpDZ5OJi5Dn3OPVatkZXTmBFBapsJ0YrrUzJDjiAg2yfIrTWQYWvmvzW6u6Ds0PVkHV+ONZvHER4fJTZ4EiEEf/AHf7CitrBVsqJFva2tjbe97W0AJA/vQ01nanbrMwjINunY52JFLKa3mY4Je2ojUKVwjtHtrmNXi9Wb5UDJoWalJwk7k1cUeP3Oexb9edmx66t173KsJHbG9hLLjLERwZkn+jgz2ebVqIDFHXolU5t9cuymuaigl4n8eg+dB7wbkhWBYr/B7Vc9zrroZNXf6QlleObTH6bQ6f6LUHlL6WL3VzkU7wZmVDC93UDGFp7c6NYpdDnw9ws7Dym3znTkJaHc0KkeQRdW6R8JmBbtex4D4AUveAE7d+5sflA+sqJFHeD222/n8ssvR1gWHbsfQ5T3btYp7M069rnIkHTMscvFSlGWHHt2be2Z/7UirKVrTovS1hot724mrt4O124/TGiZfU639OznHVf/DG1r2hNh17ICdbmdayXHHno4ycnBbg9GBal8ZHGHXknJsadu3Ob6uMrIYhFZLC4p6ACyUKDnO7toP+zBmFRYd+lpXnXFfVUd+lzatRzFC7NIFyMcilHqWLbE/DWzl99hFnXoM4NzYDvwXIfeZJVPsMeT3lAh6IIl53Fh2WF3sL/HD21bSyidoqOjgze84Q1Nj8lvVryol8MloVCIyNgw0cHTsw/DEvfMgoseQMduhmfD+4uhdxtMXmhQ6Gr4NAtQzNqcgLBKjsIlYd/y7MNc21nbzB4SJm8499fEdk66J+wlh17PFj9hQXxPhBMnetwa1QyTY8llHXolqbUqyir3XzpksQhm7RnUVjbLqn9/zFXHbkVg7ZWnuWrVsZo/86KdjzF5kTuL2opeqh5Xww1c6zNaC1IRpDbB9Pl6VYc+FyNB4yai5NCz6w3HHPr0ZmWBQ19S0OUcQTdBzWb44he/CMCb3/xm2tvbmx+Yz6x4UQdYv349r3nNawBo3/sEoqjP/Kyu/d0Bc+x6UmAut5VEAKokt96g2NnQaRag6Mv/zszppTuOPbXV4tLOE3V9JiRMfnfbfYS2pVwR9pocehWEBYmDYU6c7sZyYZ3dkoKTQ13ED9QfSjejMHT7GpQeB98KK6hX0Od+ruc/d9N+xIUxlRz6tauOoNbR0CAkTM7dcRIj5uB1lPMdei04VeVRCkF6vcRYrYO6/MHya/TG5sY5Dt0JQa/q0Gthbsc5KenY9Qj5fJ5LL710prfISuesEHWwe92uW7cOtZCnY9eTsz9YKgy/SFg7aI69JlRJdqPetGNfai19McqO3aka+FYIunaMs0qr03ZiT7qv33kP0R1Tjgq7MOt72an2+cTeCKdOOu+KTw12Ed8dbTgrutghGHz2Wlcce6OCXsZKZ+jak0UxnHt+rHD9Dn0ul3SeJLPeGZtcXsaq1aHPpTKJrl6kIkhvKgm6m3jk0Mvnkou8nAhztqyzkBA/fozI+CiRSIQ/+qM/Cs5WzyY5a0Q9Eonw3ve+FyEE8VPHiJ4Znv1hPevrUJdjr60N56xjd6v3MgAKs47d4ytbLuDghLDrT6ue7V4rIWHyO+fcx/nXHkbvdKBohrV8YlwtOO3YZxz6/kjToVg9KRh6xhqU7s6mx1WmWUEvozywi7V351EWaQFaMwKMzXl2XH20bodeiRPZ8OX6DzMJW/V+volMeKmWHPoq3dVqeVKtz6Evdx9bqmjIoc8VdAA1k2PdsYMAvO51r2PdunV1HS/InDWiDnDxxRfzkpe8BICOxx+ZF4ZvRNiXc+x2D/TanggrYjG9w2R6m+1El0MK0BtJnFYl2U06UztMu7xlHQhLNt2NrVlhL/TA0zYcam4QQFQY3LpqL6+6+l70rsbXQO3mGbU1Dar1eMk9EU6dat4Vnx5qzqFXUmwXDD57Hcrq5tf/nRL0Mtqvn2T9T5pz7HJrlpec9ygXdZxqejw9oQzR7VPzGg3Vw1xBb4ZGokf5bsHkJUWM3gY+LEBvr+1v1pP2HvRaHbqSV2g7vvgXUkuWe7W5ulLQhSXpfOJx0uk0O3fu5GUve9nyg1tBnFWiDnYloIGBAbR8jo49u+b/sELYy0VoFqUGx17PQykVid5hktrE8lvRBBR6G5ythV2oJr3ZxKpjmbWZ8PK84xh2E4h6u0iZMbj6uU9wQeK0MwMBBsJTvOzKBxt27ErROUGfQULiQJgTp3oacuyWFJwc7Ca2r3mHXoneJhi6faApx+60oNsHtVDu3113IiAACphbczxn+65ld1LUw3M27SZzbZ219Mu1HhwQdChVmavj/sx3C3Ib9cZnflWS61v+udaTgtRWy96DXsctvpjxqtmhV2TUVwo6QPT0aSKjg6iqynvf+140LVilnZvlrBP1WCzGe9/7XgASx48SGRmZ/wsuOPZ60TtNpre638ZRRi1SW2t37NV6WzeKYtprhfUUqklvMbm4rb7kuFrYEBlvyLErBWF3qnMBYUJyb7ghx356qIvE7ohrlcWaceyuCPrMwS3Wf/04kYn6HkS5JctLz32UeGWJxCZRsbh4/Uny3bV2k5qtEOfUy1g9Ifh8tyC3pQiauxs/9aRg+hy7QpwTzKsUtxQVl6HatkA1l2fz4f0AvPa1r2Xr1q2OjDFInHWiDnDZZZfxohe9CIDOxx5GGBUWtAFhz5cdu0PfmN5hktpcg2NvkrJjN6MsebUVQ7pSqarW0rJWGC664CiqSxvSBsJTvPyqB9C7DawaJjWlCKEM7lbvkhA/GGbooX4msrFlf32uQ3d7Q77eJhh8Rh2O3TSR+YJ7gl4+zeAQ679xHLW4vJBakVmH3sz6+VJsTw6T26Qvv3d9rqA7fO2UZbLgLU3MOnSXc8H0pGB6m4VcZiturdRTKU7O2Z8+s3Vt7sekpPOxR5iammLbtm389m//tiNjDBpnpaiDveewv78fLZej88knFv5CSdhrdd9SQLZfku117ivz1LHv1MmsW7xQTaPJOstRLi27XCh+eqe9Bu4m68ITvOv6n3DRVYeWFXalUKUErAsoBkQmBMYjnYyl40v+7ukzna469Er0NsHQs2pw7KZZU1EZpzCHR2g/svS59C6LG2580hWHXslLLnto6Q6KLgp6+fiLHdeMCqZ3mOS2euTQt1mzZV+bpGaHXqb0JVQVdCBx9BjRkTOEQiH+9E//lHA4YB0LHeKsFfV4PM4f//Ef29nwJ44TPV0lOab8MNTx9prvlWT7nHXsUzsk2b757Vsza0RN+0ZrRtiFajLr5IKrLuTSFeScQC3Y6+zV9rNbEXjGZVVevNwYB5Jbevaz84pj1Qv7lAvMeFx+XMuB9VhHVcc+49D3Rj3vN15sX8axlwXdS0yT7v/cTdfe6l+G3mFx0xW7GYhMuebQ56IpFrmrqlejsxNHXRR0SjtPquTDmGG7QpyMOxs90bsMinOS5aQG09twVtDrreUu7L3riwm6mk4zcGgfYPcM2bJliyPjDCJnragDXHLJJbz61a8GYNP+vSi5KgukdT5olY5dKYI23VwM3YxbZNcb5HpnHxQr4nz5VwToq0rCPhfp3BrfoqeWs+vslcI+vd1gR/yMuwOo4Jmrd3PRlQsdu1JsrMCME2g5qjp2rx16JYs6dj8EvYSVzdL1nScWhOH1Loubrto9r8ua26hYXLTuFPme+WNRjNL+c5eiYPOoOL4ZEaTOMZetENcQIWmXr6bUNnUrFLvNpgU9MmbPqXU7dOx5eTFBx7K4dXiQXC7HpZdeystf/vKmxhl0zmpRB7jzzjvZsWMHqVSK7kcfBlndndUroPleSabf/vpCTrSKFJBbZ5LtF44l5C2G3m0wda45U4HOS1daWTM+tcXiddf/r6NZybVSduxmuHRPlIro+ImWA/norGMvmiraaffX0Jej2C7Ib+qZLdDho6CXkUWdtT/Pzgi73mFxyxW7PBX0MtuTw1zwrH1YIXssM4Lu0XUrZ8FLxe6BPr3TcNyhVyI1W9D1DmfOEx2TGNEGuq0BCFld0IE/H+hl165dJBIJ3v/+96MoZ7fsnd1/HRAKhfjABz5ANBolMjpC8vDB6r/YgGPP9Ummt4GRcObJlYoku26+Y3eF0pa37AaDYgeeC8ZcYV99/ggdqn9K+szVu7n0yoNY6/OEUs0XmHECNQ/Go52MphKM7l5FZDwYla5GLo1gnL85EIIOgLRQ732StT/PInakueHKPfRFpn0bzsb4OKktFkrRW0GH2Sz4zHpp90B3KAy+GFIpCboTxZ1K5FYLJnfQgKCDsKoLemRkfKa2++///u/T39/vwEiDzVkv6gAbNmzg7W9/OwCrDuwnNDXp2LEtDcyYs2vfuXUmxW4P1EWVmLH6y8I6Qbm07PCe1YwaSe8HMIebug9w54X3kDs373p2cK1oWeCRdmLDwXlEpQC9IxwMQS+hrurh4KvDvPCcJxZtm+oV+1J9JI8oqHXUcHcSxXBWZJcis9F0zKGX0dsbnIgW2dYnikUuOLof0zR5+tOfzjOe8YymxrdSCM6M4TLPf/7zueGGG9B1ne4HH1y4za0JnGisMBepyKo91N3CjwmofN5Vjwq+8pOnkZf+FoBoU/O8/bJfkN4ZIMEq4nvYfS6dh0wiP3/c72HMIGIxdn9wI6+69l5PEuKW4vGptRz9zy1EJ3y8YB6eWjqcSW8XiXGySY6k58FHGBoaYu3atWdVbffleMqIuhCC9773vfT29qJl03Q98mj19fVGjm0KhNsL4W5ggZrzf9zdTwj+6Ue3c0b3t+1hSJi8+cq7yVwYHMceFLr3GCR/9ITr+9BrRV3Vw967zuXlV9/v91B4cnoNJ769mdiI/29gSnaFTumLrIc3SvueI0TGBtE0jQ9+8IMkEgnnDh5wVugd0BgdHR188IMfRFVVYkOnSB4+6veQ/MUUJE77PxEJCT2PCb7+3zfwxUPX+DqWuFLkLZfdTXpHsSXsJToPmsT/5/HAhN1FJMLuP/ffoetS5av3XuO/Qy8hJCSPPaWm9KrET07RfXwPAG9961vZsWOHzyPylqfcHXDBBRfw5je/GYD2PU8Qmpx05LhKvqUAzdK1F5TvdvPZvTf4Oo6oMHjzVXeTuaDl2Ht26yR/8BjS8Gk/XQXqqh72fvR8Xnb1A76OY0xP8J3/uYbV96mBcOgrGglqwZkHTSnqdDx5P7quc8MNN/DSl77UkeOuJJ5yog7w8pe/nBtuuAEhLXoeuB+hO+BAVuBzHRsMXiMDVYfYD9r5wsFrMX1U1LhS5E2X/pLkLWcodK/Ai9ss0nbosZ/vCoagqyoTr76SPXet5VXX3OvLFsgyBUvjp3dfQveT7td3qJdQVqJMBu+5XhYnHjFL8opcCkXP0Nvby/ve976nzDr6XISUDi0srzBSqRSve93rGBoaotA9wOh1V0ETN4BUwIpbdpKbEygLK785TfuToUCEDathaTB1e5brNx/msrbjvo7laL6H7/3kaiJjT50JonuPYYfcgyDowMidV3LtGx6m3edCAj8b3M7YE6vp2hM8QS8zuQOKA84lAlelqDhmZIQhUJvMBRASeu7fT2R4N5qm8alPfYrzzz/fmQGuMJ6STh2gra2ND33oQ4RCISLjg3Q+caCp4wkLaKLXc4v5KAZ0/SDOg9+6kMfT63wdy6boGLfd+shTw7FL6DpgEP/Zk8EQdFVl/DVXctnrHvdV0E0UvnPoIoxvr6Z7V3AFfSWi1NCcZ0kkdOwaJjZq9474/d///aesoMNTWNQBdu7cye///u8DkDi2m+ShIX8H1GIB8TOS+/79Yu6b2uzrOM6ND/KcZzxAvufsFvbuvQbxHzwWmKS4kd+9jOve+QCrwylfx/Gd/ReR+K8230oIt1gECR17M/SPPoFlWTzvec/jBS94gd+j8pWntKiDvX+93Ka1Y8+DxAbTDR9LKXrT2csJtAmNUHplDDY2KnnsP87z3bFvjY7wzFsfPjsdu4Su/Qbxn+8KxrY1VWXstVdyye894XqXtaUwUfj2wYtJ/jSBEoCvpRbip8WKiRoKQ9jlXRskecwkefg+UqkUO3fu5F3vepeDo1uZPOVFHeAd73gHF110EUiDzsfvRRQbW49aSSE5u8+536Oonfiw7dg/u/cGUmbUt3HsiA+dlY69e69B/L8fRRaCYUVH7riMG99+n69lXx+fWsvXH72c5H8n0fK+DaNuQhm5YszFYtXgakHNS5IHHwFrms7OTj784Q8TiSzVA/epQUvUsevDf+hDH2L16tUoxTSr73mwaovQWlAKDn2lcuW4fq+IjUoS/9nO5+++2VdhLzv2fI/EWoGJxvOY69A96oe+FOrqVYzecSWX3PkEEb/a0gEHM6s5/r3N9P48vGIcumc4dZvIxtfTFR1W3bcfNXcSVVX50Ic+RF9fn0MDW9m0RL1Ed3c3f/VXf0U4HCaUOkPPvbsbEtVmw0kztAS9KkLCqgcVvvCTW8haYd/GsSM+xNue/wN6n35qRQt7KCOD49AvPZfMv0S55W33+u7Q9357B9HR1kNYFYcMR6NzpVqAVfefQpu2C8y8853v5JJLLml+QGcJLVGfw44dO3jPe94DQGTsAN0PH627LrqwsEsetnANIaH7ccE//fzpTJkx38ahInnJmkfpvGkIK+TbMBpG0aHvN1OBcOjivG3k/zLFdasP+7oHfX+6l+P/aZd89asnwlMFRa9/nlR06Hl0nGTG7kHw0pe+lBe/+MVOD21F0xL1Cp7xjGdwxx13ABA7/Ridjw/X/VYqTILttC0IT67sFw8hYfWDCl/60S382/ErfB3LK9c/RO8tK8uxKwas+Z9x5JP7/R4KXLKTzN8WuG71Yd+GULA0vvb4Fez/znaiY0F+eGtAQmg82DejsATU2cBFLUDPo1lCI/dRKBS4+uqredvb3ubSCFcuLVGvwp133sltt90GSOLH76dj73RdSXCK7nDHIaexBLGzJLTY8wQUv9PL5w9c52sFurJjN/1bEagZpQhrfj6J3HvQ76EgzttG4SMpbug95NsYpo0Y3/nfq1j188hZ4dCFhNiwi8+CE9+PIeqcU6H7SZ3z246ALLB582Y++MEPomnBfnnxg5aoV0EIwfve9z47Ix6DbendtB+oL/1VcaKWcZBfDAKEloPwf3bylSNX+TqOV65/iN6bTiNVX4exJMKENT8PiEO/eAepvyly7aojvg1Blyo/vPtSeh6tT2SeskiaX16ss9a7UoTuJ01u3jTBgQMH6Ozs5K//+q+fUp3X6qEl6osQDof5y7/8S9atW8fQ0BDJQ7+h7ZBR+4PfxFaNFvWjGGD9Zw+fP3Cdr+N40dpH6bg5mI5dKcLan00i9/gX5i4jztuGfleKG/v8ixZMGnH+4+6r6X5SrHh3vpKop021UoSeJy0iZx7jnnvumZmXBwYGXBzhyqYl6kvQ0dHBXXfdRXt7O5hTtO+/n7Yjtam6MAWi2QIQrReDutDyEPpeJx/71TN4MrPGlzGoSF65/iFW3TgYKMc+z6H7nRh34Q4m79K5uueob0P4r2Pn8z8/vZRVj7Qcel04ED0Uhdqy55UidO+WhEf2gH4cRVH4sz/7My688MKmx3A20xL1ZVi/fj0f+chHCIfDYAzTduBh2g/JmiYCNa84I+xOI8DySHCkh+cCu6BO76817vnmpRwvdHt34gpesu4ROgPk2Pt/kwmGQz//HPS/TXFLf3O9FprhhyfOJfRfnXTt9va8lmY/D24jBe4lbTYZelcKCkoNSHLyKAAAQoRJREFUc6JShJ5dksjIYSja98q73/1ubrzxxqbO/1SgJeo1cOGFF/IXf/EXqKoK+knaDj5B8mgNamuBllYQDWzdKBM/FiJ+JOS4uBe6hSfZ2lbIPpf0+E6LjEm++fDlfOXYlb4k0KlIXrH+Ia5/wWPkLs16/vcvGE+26K9DFwpKRzv7Xt/um0M/U2jn2wcvJv1kt6c13KUAMwKFLvfvQynAiIHe5vCEYQraHw+jTTX+hq5mFdTc8i5dMUoOfewUSnEXAL/7u7/LC1/4wobP/VSiJeo1cv3118/sYad4mOjQAdrOHUdqS9yhApAQnlAbFvb4kKTvwSLJg84Ku6VBvkdgRnBdcMww5LtL5/JQX9VJjZG9q/j8vut9qxv/vv4fcc/TPs1db/gC6XN0fCyE5wtC01CSCdS+1YhkAql6v56UtcI8Ob2Gnz16HvqxBF4WqrNUMKP2/e/2c2ZpYMSh2Cmcfc6KCj33avTsLqJlGjuwmlEITSvLjstoN2FbhsjYMGHzcSzL4vnPfz6/93u/19B5n4q0RL0Onv3sZ/PWt74VgPDYbtR/T7H6vBGWNIKKvcUkPNmYY09vEGBJVj9ccNyxWxrkVgkKHQ5PAlUwI/a59KT755qLkJA/0sZP77uAu8fPQfdwobsvNEmHIuhQwtwWS7H3uZ/h+uc9ZkdIngIbG4SmofR0IzraQbWnmoG7FSaNuGdj0KXKjw6fy+4HNqGmvZvupLBflgtdwjNBz3cLCk4LuinoeUCl/ViRfJeG3lF/tEfNKoRSCpYml7zvzYRF20CKVf9eICEep1gscv311/Pud78bIZ4CD4xDtES9Tl75ylfy6le/GoDEsUeIHzzD1TfsWdSx2w+3RBiiIcde6DGRqp3M0/dAwXHHDvbbfaHTdtJuo7dBrs+bc81F0QWPPLSNT933dH45sY28dH/toV3J06bMX1T/+Nqf8p9v/hvEdRPkV52dWZAiEkHp6kJZvQq0+S9RnY+MkDPdL793ptDO/57Zxrd+dRX6cW+3PkkBepsg68F9LhUwonbUzfGqhiWH3n7C7vykJwRmvD5RLzt0JEuqjdFh8qabfkbxYUFP/lEymQwXX3xxay96A7REvQHe9KY38dznPtf+l28eJb0rw0VXHlr0bby8di3Mxh072CVoZxy7w6Vojbj9pm+4XHW1nDhX6BLku7xdaxemHZJ/+L5z+LdDV3oi7JWEhMo6LcIDV36Zv3vJv7D22ccClSXfFKpqi3l3FyIeBcV7d2WiMKYn+NkT5zL0ZK+n7ZDnrp0X29xf1pICCh3CFnQnb2UJGLMOnQabW5UdelnQF7vPzYTFe2/8Lz7/oys495FHmZ6e5rzzzuOuu+5qdV1rgJaoN4AQgj/8wz/ktttuwzRNJv71NC8c+wXX3bCr6pqhnHNDN+rYZ85dcuzrf2ALVGMHkVhVnpVyuLCYdD+JzlLnvEj4sM48faiTf/zZbXx/6EJOFru8HwDwzPgU39z+La598WOkt62gPriVCAURi6Gu6vFNzAF2Tw/w3QMX8j/3XIzaREJXI1iqnaDmxYsx2O680ClYbCWjmdyN+MEwG7/DjENvBDWjEJpSZl6oLE1WXRYwOkze8/TvMzmiMvD9e5mYmOCcc87hb//2b4nHvVumOZtoiXqDqKrKH//xH3PzzTcjLIsvfKKXl4z9gouuquLYBfPC8/U4dqlKJrfND+EKC0Ipk4F7rMYmLwX0tuphNCmg2GFPTk4Iu55Y+m80I3Z2fDHpsWuXdkj+0KPr+PojV3BGb/d0vb1MSKj8w7pf8D/P+jjPefU9FLpWUDvXspj3dKF0dy4ItXtFwdJ4eGI9jz++CeN4AuFhItzctfPCMpEnWRL+Zs+nx+3zLZWaYHY28CVIiB0Os/pRHaVozXPoUlOY3lLbYWYc+hyq3dNm3Hbo3ekx/usvQihGnk2bNvF3f/d3tLW11T/+FkBL1JtC0zT+7M/+jBtuuAFhWnzq79byu+kf2Y694puVCvOSRGp27AIKndV/FJ4yWHu3RexoCJrYNlcNK2Sv0+nx5jLWa+mOWn6RyPYJX/Z1qxMaX/359XzxwDU8nNrg/QCAdVqED/U+wD2v/ShXvfCJYDt3oaDE46irum0xj/izGd9E4Z6RLfzHI5dx4NH1zpRmrgMpQE8Ksv21rZ1LAVJrfIxmyH5JLnY6/wKsTGok94bpe6CIoi984ZeCmpLkKh06VA+7Gx0m77n1+1yaP8Rn/rIftZhl7dq1fOxjH6Ozs7OJv6RFS9SbRNM0PvjBD3Lttddi6vDJj67hFdM/56KrD84Lxdsh+Pmh+Zodu7L4+pyWMRn4TYGeh1TH19ktrRSO7/DGRUvFdu35LoGlNvcyUa/pFhbkDrdz90Pn8anHb/atpWubEuaz63/Gfz/z78mcX/A8oXBZVBWlPYno6oCwf/1mH59ayzceu5yTT/SjTmp1VYUru+tGkUppm2aPQG9zf5tmuZiM/Sw6fz5lWmPg15LVjxQQ5iIJvzW8jFRz6PZn52e9lx36hdkjvO/Pd8BYgf7+fj7xiU+watWqhv+OFjYtUXeAcDjMhz70Ia688kqMouBjd63jjtSPuO763fMmj2qutezY1YyyaGe33IBBZs3SbqjjSJHV96qOO3YAPQHZfm/WCstr7bk+sWzofikya0VD28aUvMA6HeMLj1zHD4bPb/j8zbIlFOLx2z7N+3776xhXpXwvXoOq2vvNe+395n4xpif42eB29jy6EWW0sZ0gZkyS727s3iqH2nOrvam7IIW9dp7rdSG7Hduhr7lbEp5aOlw/eqG26A4foQu0lLrAoYP9cj039F526BdlD/OnHzwHOVFkzZo1fPKTn6Svr6/ZP6cFLVF3jEgkwl/91V9x1VVXYRbhUx9dw/PP/K/t2EsPgwSs0MIHQ5gQmlbQphcRdlHb5NF2vMjA3Qrxw85veytPLkbM/aze8vn0dntvuxlu4JxNduhQRsPse3QDH3/wVu6b2kzKh6oxIaHyirZB7r32c7z9ju+S3ln05MVqHqqK0tFuJ8F1tPuWBDdpxPnhiXP58SMXMLp7lafr5mC/bBaTgtwqbxI7y7tEih322rnjLw+GoPPBMGt+JQmllv8yFzt/2ZRo6eq/YIVnn8NylvsF6cPc9aF1yMki69at45Of/CT9/f0N/RktFtISdQcpC/sNN9yAoQs++/F+Xjn8Y665dq/tGgXIJQqPqDmBNr3wbRds51qL84yN6PTfX9r25jBSsRPocqu8KTFb3iKUW718EpIbCMsW93t/s5PPP3o9o0bS2wGUiAqN3+s4yq5nfoZ3v+o7WNdMuV+8RlVR2tpmnblPSXBgZ7X/8DcXM72/CzXl/TjMMORX26FvN9xy1XNGy9EqFw5uCHru0+jaXyA0vbyg620aRpWys0IXhMdVhFn9c3LOElo5y/386SP8zYfXMTWusWHDBj75yU/S29vbzF/TooKWqDtMORR/yy23YJqCf/rUem4/+r9cfO0BpCarrq3PRc0JQlPqAseeWWvV/rYuoffhIvHDIUTe+UtcTqLzohJdGSNaqkiX8LbUbBllJMyX77uOr524nMFih/cDAFQhuKP9GL+66p953+v+nfSO4pIZ0I2dpCTmq3oQ7UnfnLkuVQYLHfz7k5fz+BOb7P3mHiMVyHcJu0+CR+8Sllqq8uh0ZTgACSKj0v2gZu8/r5FCu4LeMV+5ZxJ9FxF0mF1LNxMW77/p+2wfO8rH/+pSpic0Nm3axCc/+cnWGroLrJTNMyuKclZ8JBLhhz/8IV/6x17ueP3PCF9j8sCvdmKGQZUs+kCoOQGUHqQGH2xFl/TfV6DYoTF4vYrZscTT1wCWBlYSpCLQchIt7+jhq58zZC8BSBXUnET1OEFcTamc2dXL1w6tpm/LKM9du4sONeftIIC4EuJlySFe/KzP8H+nzuGze29AubfJFw1VRYnHEYn4TElXv9if7mX3mX6KR5PlAJfn6HEwY97VUJDCzmw34u5FA6LHwgzcWwSrubULoQs7wXeJKcUK21szjXaTP7zpB6w/eYKP/d15pNPjbNmyhY9//ON0dflTH+JsR0gpz85alQHAsiw+8YlP8J3vfAeAF71ijF9fcgMP7t5KeFRbttqV1CRGQmLG7NTe9v0aqx6vv72U3q4yeK1qN0sore8rGZXocPVQf70ICyKTEqUISsWDnu1zJ1SvmKAUIJSuLu5T28BIuHtrm0mTtRvHuL7vMOvCEwt+fk5kiFtiaVfHAJCyityTX827fv4aoqdDaJmFv7PuxxPIXQvbnQpNQ8RiiHjMkxC7jITp+/IwA5Gpef/dROFUrpPfHN6MnAi7vj0tflohNjr//pBKKcu8UyBdapMaTkF4es6uGGGHqfWEQHdodUdqkNug284BEDmV6GmV3kdK+8/rOZYqOHlLCKPDRFgCLaWgFMSSgo6w62CYXQbvvfYHrD5wks99cjOFQoELLriAu+66q7UP3UVa4XcXURSFd7/73bzqVa8C4Dv/3sPFd9/DV279LHJrZlkLIgxBaFpBzSkgGi9cEZo22fCjIj0PqlB6pq2EiRl1RvTKa+1ehymNuL3WqftUeEpNqwzt6uXr917Fvx69imwtm/JdoE0J88z4FHuf+xne8LIfYlyVWv5DpVaoSjnM7uOa+cHMar536ALuvWcnYijiy37zmSzz1XaWuVd9z8s5I04JOkCh25oRdGVaY+AX0H9foW5BL2PGJEjQphXU7DKCjp0MfMnVB/nRbX9P4tHTfOZj6ykUClx99dV87GMfawm6y7RE3WWEELzlLW/hbW97GwD/88MuvvNPHXzh0i9i7lhe2JF2ZryaUcj3WuR6G4/NdRwp0vOgZpeXdcHElhOKCh0CD3p2AKXCNZ2CbG+DWfIOoGYVxvf28PknrmdPdsCX/u1l3ta1j7uv+Sx/96Z/Jr1Nx6hItBKaZq+Zl1qh+hlqnzZiPDm9hgcf3UbxqD9JiOV2pbleb7ZsQknMw5Bf5WICqC5Qx0IM/FISmWg83D52vv2iGppSS8uCS2NFJOffeJA/W/99fvrDDv7vZ/oxTZPbb7+dj3zkI0SjT7Hewz7QCr97yE9+8hM+8pGPYBgG556f5WXvnOSND99J+EBts4kVkvTsksSGm1tMlppg6OowVkjW9KA2grAgOi4pdHqTKV9Gy4GWk2TWuh9+r4YUkNgyxY1rD/O8rkc9Cb8vxSfGz+OLe65h81+ZiBNDiGjUV1cuI2FW/csIR6d7OHmmC2XYn+hGfFBBLdgJmF5ltIMdfgcoumhWC6ss2g8IOg/Wngy3GGMXRCh2ULMJOOfWw/zNhm/x3W9084P/7AbgpS99Ke94xztQlJaH9IKWqHvM/fffzwc+8AFyuRwbNuV57R+M8+ZdtQu7WoBVT+qoucZCaWWskGDsgrCrZVmFRc177B09rwQ9YTetWWqngZtYEckFFx7jo5u+xTo1hOpjP+gpq8gz7/oj1nzvhG9jAEAIZEjj8G/3o7dby4Zx3UIxBFpGeL7XHdx/JqQC8TOS9uN6w93VymT7Q0xvVGqqzig1ybYbj/IXa77D1/65hwd+Y7+1vO51r+N3fud3Wv3QPaT16uQxV111FX//939PZ2cnx49G+fxfXspfb/hXtEsnqxamqcSMwMT2EKkNzamxoksSgxZWuLR33gXKYUUhm64FU995BYQygtCUPXl71XpzHqZgIDbFZ0Zv4tuZAc6YBUyf3p87lLD/5WZVFRkJQzhE34OGL4IuTEEorRCa8kfQoVQu2i1B1+yXhvio2ZSgmzGVqS1hUhtqE3S9TbLzpsP8xar/4Esffz4P/KYNVVV5//vfzx133NESdI9piboP7Ny5k8985jOsW7eOM2fO8PkP9/Cc/K+R27LzKjAthp6AzIBgclu4qQYRkQl7y5yllUKQLj97Xgo72BnyWlYQGVNQ8wLhcG38WrCk4L7UFj41+jS+mtrAYT3AjVqcRghbzONRZCziW9hfMWwxD08KlPo3jwQfYZegtjRQi6ClG39jMmMq4zs0cqtFzYLede4Yr1R/wV1/vo4nnniCZDLJRz/6UZ797Gc3PI4WjdMSdZ9Yt24dn/3sZ7n00ksp5BXu/0yBG4d/hbUlt2iN5RlKm3fzPYKJbWHyq5pfFJSqHQVwO9HMa9dePmco5a9zL1gaj2XW8/mxG/hqai0jPjp3Tyg5cxmLgE9rqcKadeZnpZhju3NHnltFML0xzMR2zY7q1LBEoLdJEudM8jvix3z1I5sZPhOmv7+fz3zmM1x++eVNDqhFo7RE3Ufa29v56Ec/ynOe8xykFBz8RpbzHvsNxuas3eZwkYdKznngih0wtUUht9qZbB8rXFu71GbxQ9yD4Nx1qfJweiMfH7mRr6fX8WRRMmKeJYqjKMFy5hNnsZgrYEWq9ymv+1iawuSWELm+OcV2lng0rLCk2GUR3pziuWM/57sfjTI1NcXOnTv5x3/8RzZt2tT8oFo0TKuinM+EQiHe+973smHDBv7pn/6JqV9Ps2bwfqaecz7TiW6ig9W3n0mVmXaTUsD0JoVCZ5i24wZqobYkOkW3iA5DrqI5klRsYRcWrq89CulPIl0oZe+ptyJgxKXrSw+VlMX94fRG+sPTnBc7xS2xEaJiBT6SQiDDIVvEfVw/FZYdiVGaT/oONFYIux1zxVctJCQG60igVQT5bo3saoVi+9wDLf5MShWMjXlisTxrH3iCe35t/+LTnvY0PvCBD7S2rAWAllMPAEIIXv3qV/PhD3+YSCSCcniSzq88SKc6SH6Nvrhjn2OEygVgJnaGMGO1XVZhQTi9SP9kxdu1dq9dO8w691BaQXGhZW2tDBXb+dnUufx/w9fxm3xk5Th3RbFD7PEohDT/BF0KlKIgNH12C3r5ZXtuo5RKwtO1i3quR2NqS4Wgw6LPuxWW6FtyxJUM/d97gMKvxwD43d/9XT784Q+3BD0gtEQ9QNx44418+tOfpr+/HzFRoP3fHqZn4jCFrXn0Kl2SqhXGNqJ2dvz0xnBtYryMoEq1NJE0eKfU48L9Enc1D6EpQWhKsUPyi/S1d5uCpfEfE5fz5cnL+UG2i6wV0KQ6IZDRiB1i90vMpUBYAkUXdr5EavlKZysZqdXwHFogasjTsCIKEzsipDYqC5/Pai5dQKHPxNycJ5kdZ/XX7sU4lCEWi/HhD3+YO++8s7UHPUC0rkTA2L59O5/73Oe44oorELpF8vu7Wf3Ik0Q2TS4QdrlImMyIQrZfMLk1TKFr6XBu8lQRbZn6KFLMrrV7UbHND2EX0s4cjowLIuMCNefPmjvMde438Kt8lPGgOPeyM0/EfA21K4ZAywrCEyV3HtB3HyeQau1r58kTEmWJpTepCrJ9IcZ3hih0Ur2kc5VLmh8wiA+kaT9xkjXffAJrQmfNmjV85jOf4aabbqr5b2nhDS1RDyCdnZ38zd/8zUzN+NgDJ+j8zmOE+8bR2635W02WuIL5HsHUVpV8jzPrtDPhPw+Wff1y7eVzh9J2trya9c+561LluxOX8cXJy/nHyXPYp5vkpccbrEvr5fOcuR+UnHkopRCaFqgedAX0GytMXXXol464CVIbQkxvUhbvPFdhEqQmyfcbxLtTJH5xgPbvP0kul+OKK67gc5/7HFu3bq35b2nhHSswK+epgaZpvOUtb2HHjh3cddddcGyCnq/eR/r55zHd34d2NIpSLPVc1hZPaLNUmNqqYkQVYmMGan7hm3xkQqK31S5clmafUynOJuu5xdyJyuuEOsUEJSPQsmAk7K1DKN6/aQyVFj0P51azKTrGFfHDXB1x2Z4KgdRUCId8TX4D25krhaeGkEMp1F7nzKwUIZSp/jAWujRyPQr5niWuY8VSnpGUaJvTtGWztH3jSUKD0wC84hWv4E1vehOa1pKOoNK6MgHn6U9/Ops2beJP/uRPOHXqFO1fe5TQ0zYztvMctOMxFF0grdK8u4jeSAHpdYJ8T4iuAzpKwZonxslBg/SG+rfEyRBIiWfJSX5kypfPG0oL1ByYUXwtP3s038PxQjf3RSZ4TvJJuhWTDiXsTBna0jFkSLPD636uk0qBsOxERkXHn6qAHiMVW9AbWeJSiyxo3GKFFIodKtOblOW7J4rZNrBmTKJszBA9PsKGnx1lamqaZDLJ+9//fp72tKfVP7gWntIKv68AtmzZwuc//3me/vSnIyxJ/O7D9P3kAaKbh8n32w+ypbFsYpwRg5GLSkl0DiCFPQGZ0VJI3gPBLYfl/cqWD2XstVw/w/KWFJzId/NPozfykeFb+H52NceM5t6sZEibXS8Ph3wV9Jk188lSNvtZLujlZFQnc1bMqMrEzhCTW+sQdE1S3JwnsmWSjvv30/Htx5iammLHjh18/vOfbwn6CqHl1FcIiUSCP//zP+eyyy7jk5/8JBweR/vygyjPPZ/0zl44GSM0XVsGcK5XoCcjtJ0yiYzb+9oTpyWZNY2LlKWBUEHo7ofky/jq3DPlcLBAb5N2noMPoXmAX01v51F1I5uiozwnsZ+wEHQoNby4CVHKZA/P/H+/EJYt4Greduhnu5CXkaozXeLaj1ml4wlS60IUukTN9f6lCoVeE7WrQFJP0fbN3YROTgLwohe9iLe//e2Ew/5002tRPy1RX0EIIXjBC17A+eefz5//+Z9z/Phxur/5OKFr1pO+fAv60Xa7WUUNomrEYXKrSjyhEB82HAmhSwGyXLTGxJMtRn6vuQNEJu1e7nZo3h81SpsRnsys5cnMWtq1PFclDvH02DghUcWmKcrsernfSPvlSMv51HjHJ6RaCrU7dM9qOau2tfNKFMj3GST6M4T3nWHN3cdIp9PEYjHe8573cOuttzozwBae0Wq9ukLJZrN8/OMf50c/+hEA+pp2pp55AVmtg8ihaF3bfNQihKcluVUC08H6EaK83u5huFwK/7Lmy8sReptEhiS3Pu0xIopP7cCAnlCGkDB5WcfD/NYn/oi13xuc3VfuoyvPbO7g9A0qioG9ddCjyE4QcFrMAaKjpbXw6CLb1BbBSErkxhxhmaft7n1Edw8BcO655/KBD3yAdevWOTfIFp7REvUVjJSSH/3oR3ziE58gm80Si8UYuXED4xs2I8YjRIfrW6CTaukfh5dThQmK7p/Y+oGlwfXPf4yYGowSZ7/6/BX0/3Lc72EAkFvXxvBlT7FwbqnWg9PRJGFS93KFVCHfbxDqzhMfHefcu08zODiIoii89rWv5Y477mhlt69gWlduBSOE4FnPehYXX3wxf/mXf8njjz9O8kf7CG8bJXXbuWRC3YTHFdRcbTNJOWQulVJmu0MTkFTBUuxtd8J8aol7i6c4pdbG1Wq1N3XY0hJXXUsWAoyExBgokkhkid93lNh9xxiUkv7+fv70T/+Uiy66yLlBtvCFVvb7WcDAwAB///d/z1ve8hY0TSN8cIyuL99HV+EwckcGI1mfigrLTnhzMnIshZ0Q5FRnqRYtAo2Y0xZ1iVrtdR9Wll6MDeoW9HyvSWj7NG35ETr/7UHi9x5FSMltt93GF77whZagnyW0ptezBFVVedWrXsWVV17Jhz/8YY4cOULbt58kfO4wqZu2k9HbiR6J1LzWLizAAtUsVbVy6PVPilIUQDu7nbveLlGeSovFdaAWLNQCNWdnryhccubQWKgdbHfO5ixRRSfxmyO0PXAC0zTp6OjgXe96F7fddpuzA23hKy2nfpaxbds2Pve5z/HKV74SRVGI7Bmm+1/uo+fMUQpbc+R76xQaaa+HO11fe55zD0ASttO0nzvma5JckAmPZIiOn31vcm44c7CFXDEaCLcrkFtvwOYssakJrv3v48TvPYppmtx44438y7/8S0vQz0JaTv0sJBKJ8Na3vpWbb76Zu+66iyNHjpD8/m7C286QvnUH6dAqQhMKWrbGmacU8lPN2YpXjjp3rdQf/ix27i3OUtx05tZsxKxe9DaJ0auTSKaJ33eM2APHOGRJOjo6ePe7380tt9yC8Ln8bwt3aDn1s5jzzjuPz3/+8/zu7/7u7Fr7l+6ne2Ifclua7KbFe7UvhjBKmewOR5bPdufe4uzDCi3f37xRZtbN63zOzLgkt7lIaFuKzqlTdH35fuL3HUVYkptvvpkvf/nLdmXKlqCftbSc+llOKBTizjvv5KabbuKuu+5i7969JH+0j8iTg2Rv287kOb1ow2HCk3U85KX9583Uql700GK2oYVSLCUGtZamWwQEqVCqHuiCkEtmomL1rptLDfQ2C2VdlqSeI/HDA0T3ngGgp6eHd73rXdx8883ODrhFIGmJ+lOErVu38pnPfIZvfvObfOELX4BT07R/+SEil60lc80W0qvbiJwM1bz9DUrhQZfEHWwXBKV97kZL3Fv4h9PLTnMRErAaS4JDQKHHQnYXiSfzRJ84Tf+9p0in0wghePGLX8zrX/96ksmk8wNvEUhaov4UQtM0XvnKV3LLLbfwD//wD9x9991EHzpJeO8wkVu2kdq+hsKpBOEJpa4Sr/PEvVTAxkmkCqZaOo8xW561RQu3caMCXJlmnDnYoXa93SK2Jo02nCL5/X2EBqdJA9u3b+cP//AP2blzp8OjbhF0WqL+FKSvr48Pf/jD3HfffXziE5/g1KlTJL+/m8jGQTJP30aqtwdGIkRH6rMl5cQeaTpbvKaMVOza8rIk6k+1KnUtvGEmxC4C6MzBzmpfp6O16STMDImfHCK2awgpJbFYjNe//vW8+MUvblWFe4rSuupPYa6++mq+9KUv8bWvfY1//dd/hWMTdHzpQaIXD5C7bhOpcJ1Z8iWEBaLgrnMH272Xt/q0QvMtmsWtZaQyTYs5UOyUmN06ifYMsUdOEr/3CKJoIoHbbruNN7/5zfT29jo46hYrjZaoP8WJRCLccccd3H777Xz605/ml7/8JdFHTxPZM0zkmo1MnreJbDpG9HSo7k5ubjt3mG35Wg5jtrbEtagXK4RrrhyaD7OjgBmR6OsLRGJF2o6PkPz2AdTJHAA7duzgne98JxdeeKGTw26xQmk1dGkxj4cffphPf/rTHDhwAACzM0r2xq0Ut60md6iT6JhoWJylgr2v1+Uta4pun0PLuXuepYg/bYRr+o76N4AKgtTQRWoKI1d2klvtz7aqcm8DYbpbslhIu9wygoadubAgu0Un0ZNFPTNN4peHCB+fAKC7u5s3vvGNPOtZz0JRWruTW9i0RL3FAkzT5Ec/+hGf+9znGB+3hUBf10H62m1k8+uJjom6WjzORVj2ZGdEcWVbUBm9w47HhycVhD57Xq/ouHmIW/rtF6N0qR6q5XXD9zn4KepSCFAFMqRiJMNIRTCxPUyhy8Pvo+TEjYTEiEvUvEDNu3N+Yc1WYbQaDOeXo1yZTQZt4RES9xwmsm8YsLep/tZv/Ravfe1rSSQSDo++xUqnJeotFiWbzfLVr36Vr371qxSLduy9uLmbsa0XourdKEZjE5Za6rFerilvhZ0PfRY7LWS4tNAuQUupaFmBWnD2PIvRcfMQzxjYO++/Za0wlhQUfOho44eoS1VgJiKgCIzE/L95ckvIM1EvC7kVnU280FKq46Ku6LNthpVSFMBsoMOsWoRih8RIpll1YA/RJ04jLIkQgttvv50777yTNWvWODr2FmcPLVFvsSzDw8P8y7/8C//93/+Nadqp59mt/eS7LkBqbXVv+VHK1bJKSGVOdS6HxH2eqJcQpgBToGUEWla4uv5eTdTLWAhMqXjq4L0SdRlSkarAaI8ghUBq1f82N0W9nLle7LDsezMkkRUX2ilRLye/abn5+RxSlOrA13g/l4ssKToUOgq0Tewh8cgxhGHfw1dffTVvetOb2LZtW9NjbnF20xL1FjVz8uRJvvCFL/DTn/4UKSWKopDpXU+hbwdmPFFXcY6qjlmUnI1ovoNXNVFfMIasgpoVhDLOi8tSoj4XC0HeCrnu4N0UdSkEZlt1R74Ybom63i4xEhZSW3paa1bUhVWqeGiVIk8V1OPSFaP0T7GIOn2Q/qGTZDIZwC71/OY3v5lLLrmk4bG2eGrREvUWdXPo0CE+//nP8+tf/xqwJ/XCqvXk+7djxdtmt7ItMWeWXcliSAXMaOk4Dbj3WkTdHocAE5SCQnhagOVMcZtaRX0uFgLdUsmWSuk56eCdFvWyI9c7ova/L+LIF8MpUS9vQSt2WaW2vrXtbWxU1MvhdbW49DZKI1bb/S8kKMUC4dFDRAcPoRh2CGvz5s3ceeed3Hjjja067S3qorWlrUXdbN26lY985CM8+eSTfOELX+DBBx8kOnKc2OgJ8l1rya/ZjhnvQKqLZxeXM+EXywoWFmjZUh14dbYefK2oeYFR2qq0FFKR9pahkEkuCaKooOYEapG69+c3i4IkohhEFGPGwQMULM3XJLsyVjyMFVJA1O7I3UJvl3aIu81aEFpfDmEK6u2Kq+ZL/1tYfsnGWmI5qtxGVTFA6AUiZw7SPXmCXM7eqrF161buuOMObrzxxlZGe4uGaDn1Fk2ze/duvvzlL3PPPffM/Ldi1wC5gR2YbV0zbrvaRFdz4poolYuNlJq+LJN9L1VJsdusuwvdzOks27WrOQUtI+ouT9uIU18Mq/RHZE070U5voJpPI05dagpSUTATIayIal8/xZmXi3qdenkvebHLsl/EVOoW8zJKUSE0tbRgivK+cgu0fO3FjSy1+tLRjDO3QM1niAwdJDJ6DGHZN9U555zDHXfcwQ033NAS8xZN0XLqLZrmvPPO46//+q85ePAg//qv/8ovfvELwhODhCcG0dtWke/fht7Vj1TFArctVWqrMy/t5DrNmE2sc2LtfdHTlRy80WZitNnheaVgb4Pyev+7UgpnJEtvQOW1dxOFnOnspn+pKZjJUgJfWLGduY/o7dJeikmUxNxlhCy5cll9rXw5KmswzHXmamaC6OABolODWJb9lrB9+/YZMW+F2Vs4QUvUWzjGtm3b+Iu/+AuOHTvG//t//4//+Z//gdQoodQoZjRJvn8bhZ71oGkz+3ctDRRqFPYSwpp1+ErRXntHVITnpR1mXS5hqlasiIUVATMpKEpQMwpaTiB07xvMRObEjqOKjilnxd1EqStUb4VLF0BR0NvDjrrxRrBCgFLOXJelWgbOinnlvSas2WqEtYTXqyHF7O4NYc3Z4SElockzRIcOEEqNAnaL9CuvvJJXvepVXH755S0xb+EorfB7C9cYHh7mW9/6Ft/73vdIp9MAWGqIQt8W8r1bsKJRUOyQZbmGezNY4dLkWgrRmzGJ0eau4ioFBaVoT8rhCft/hXQ2/F4PulRnMunnhukrw+9mWwRLU+ywuuq9qMwNv1sRMOL2NGTGLKTq3pQkpCA0rqCYpeWVwqybboby9jXFsMVcGDqR0eNEhg+j5u17X1VVbr31Vl75yle2tqa1cI2WqLdwnWw2yw9+8AO+8Y1vcPr0acDOmC92raHQuxmjbRVSFTM1sptG2KJeWCXRO7yz0cISICE8rjBw7Wlu7j3g2bkXw0KQNcP85IvX0vtQBiNeCmf46MYBxneGya6RGEk7DO1FaB1sUY8OqmjZ8r83f0xLm30hVbPTRIYPExk9gbDsN4VYLMbzn/98fuu3fou+vr7mT9iixRK0RL2FZ5imya9+9Su+/vWv88QTT8z+92iSfO9miqs2ILUGSnAtghWG7EBtW9uc5sLzjnN553HPz7sYX//azfQ91MAisUsMXRkmt7ZJe9wA2rRKbEQ429VPWoQmh4icOUwoNTLznzds2MCLX/xinvWsZ7XKubbwjNaaegvPUFWVm266iZtuuomDBw/y3e9+lx//+MfkcmkSx58gfmIXxZ51FFZvwkh2Q5NrjUrRdlCtt9YWZZbbX14PSi5FZPQY4bHjKLqd5KEoCtdffz0veclLuOyyy1rr5S08p+XUW/hKNpvlJz/5Cd/5znc49P+3d++xTZ33/8Dfzzm2sZ045EaAcCtpKS2UFoqAsWGGVjoySkl/qar2j6lrO321SZMKrBOwSluR6Ki6qZRqf61VKVu/sDJNG3QTg/ArlG3QcVlHCKMEWm7NrZA4jmPHTmyf8/3D9vHxNQm5meP3S4pyfJ7ryeP443N7zhdfaOvD1kL0lk9Hb/l0qBbbbdcfLAQCk0K3fWvb7eKeenZjsacu9Umwt0hZJz3qVzgIi6sZ49qvw+SNX6NQXFyMNWvWoKamhofYaUxxT53GlN1uR01NDdauXYvz58/jww8/xLFjxxAIeGFvugBb0wWEiirQWz4dfSWTAXlwb1mTP3Ixm/5hHpSfTD5xewFdVWHqvgVLx5ewuJq1e8tlWcaSJUvw2GOPYenSpTCZ+HFKY4/vQsoJQgjMmzcP8+bNw4YNG/Dxxx/j4MGDOHv2LMyemzB7bkKVTOgrrURf6RQEiyqAAUzSIcKA2SOhd5wy6nvrlDuEImDpGsQbQFUh+zph6WiCpbNJO7wOANOmTcPq1auxatUqlJeXj0BviW4fgzrlHLvdjtWrV2P16tVoaWnBoUOHcPDgQbS2tkZuE2q/AUU2awE+5JiQNcBbugDFLCNYMso3lFNOEGEBa5vc/166qkLyd8PiiuyRy70+LcnhcGDFihWorq7GAw88wHPllLN4Tp3uCIqioKGhAUePHsXHH38Mlyt+PlMxWdBXUolgSSWCReWAlDqNqmIGeqaFR/QeaD2eU89uNM+pyz0SCpozfOlTVcg+FyydrTC7W7V7yoHIrWjf+MY3sHLlSixatAhm8/DO3kc0EhjU6Y4TDodx7tw5LcC73W4tTZVMCI6vQF/JZATHT4Rqjs8jG7IDgUmjE9gZ1LMbraAu+yXY2qTEyWWUMEyeW7C4I4Fcf2jdbDZj8eLFWLlyJb7+9a/DZrv9izSJxgKDOt3RQqEQ6uvrceTIEZw4cQIdHR1amgogVFiGYMkkBMdPQtjmgDJOoK9IRagg8rZXzSNzrl3YQ1h8zzXMsMePKNilsQuqYxrUFVW7jUyoKvrGm9C8QoIyAvMHiLCACEcGdFyHBDkQnXu91wdT102Yu76C2XNLmxgGAAoKCrB06VIsW7YMS5Ys4T3ldEdjUCfDUBQFjY2NOHHiBI4fP47PP/88Md1sRbBoAoLjKxAqqoBqtqK3RNUeEBMqGsZz7gKYUXUTshQJXJJQMbXArSVPHteVMIf7SBvtoC73hiH6otseUiD54nvD3bNL0PTo8H3sCEXA7JYiD2EJCJh9AJQQTN3tMHfdhNnzVcJhdQAoKyvDsmXL4HQ6sWDBAh5aJ8NgUCfDamtr0wJ8fX09+voSg1rIVoRQ0QQEiyoQKipF2BaZza6vWEV4nBp5SIzlNvfkk4J6snFyCFJ0jtIJVi/KLZGgIwl1RPboRyqoS8H49pk8vRCh6OuwCqGk3/ahBHWhCIhgdK59d2RPXKiA5A/B5OuEqbsdJm87TF4XhBpvX5ZlzJkzB4sXL8bixYsxe/ZsPuKUDIlBnfJCb28vzp8/j9OnT+PMmTO4fPky9G99IQSCVgdChWUIOcoQKiyDYrOjb7waeTiMFQgX6Pbk+wv0Aiic6EWFw9tPxkRmKYwKW7f2utDUh4kWz6DqSGe4grqpOwgR+7spKmRvb/YCSVRJQvOqUnTfPfCjFEKN7ImLMCAFBczdAMJBmLyuyN64tx3WgAehUGKdEydO1IL4ww8/DIfDMai+Et2JGNQpL7ndbnz66ac4c+YMzp49i6amppQ8YYsN4cIyhApKECosRrBoPCCboZiAQHl8L1Cxpt+blxxB3DWpIzVhECShwqx7tmuxxY/J1q6EPIWmXu2Z65kMJKiLsAoRTqzH3OkH9F9+QkM7D66aJFx6vhjKuNR6REhAiu6Fi5CAtSP6R1UUmD0eyN5OmHwumHydkALdKX/y8vJyzJ8/Hw899BDmz5+P6dOn89YzyjsM6kQAXC4XGhoacO7cOTQ0NODy5csIhxPPsasAFKsDoYJihAtKELIXI2wvQl+pGbFHmAcdSnz2OouCiZVuFFhG9lx2mdUHiy7w2+Qgplo7E/KkBHVFhdmT2C+pLwzRN7Ln+bvmlqDVCSB616HJE390rRwATN4Q5EA3ZH8X5B4PTL5O2IPelFMnADBp0iQtgM+fPx+VlZUM4pT3GNSJ0ujp6cGFCxfw3//+F42NjWhsbMStW7fS5lUsNoRtRQjbHAgVFCFkjyxDNsE7uw93zbilnT8fLfq9ewBo3z0dE04mBvpM57xHimqW0f5wMQJlAlCUyBXpPd0w+TyQ/R7I/i5IAW/aMxuFhYW4//77tZ/77rsPZWVlo9p/ojsBgzrRAHV0dODSpUtobGzExYsXcfny5YyBXgWgWmwIWwvQO9mGwimAVGYBSscBJVYIa+oEOSOp+3+noPzU0E4FDJaKMFSpF6rUC8UUgL9CgSr5IPV6IfX6Ml6WUFxcjHvuuQdVVVWYNWsW5syZgylTpvDCNqIBYFAnGoLu7m5cu3YNV65cSfjd2dmZvaDNBBSZAYcFIvobRRYIhxkosgB2E2AzQZiHJ5ANZ1BXoUAVQUAKQhVBqFIQqtQXD+BSL1QpeoN4FjabDVOnTkVVVRXuvvtu7ae0tHRY+kmUjxjUiUaA2+1GU1MTmpub0dzcjJaWFm1ZPwNev8xS5AtALMjbZWCcCbBIkTSzFF2WAYsEYZIASUQu3NP97vn/EzD+Mw+ixxAAoUKNXCUQuScMKlShACIMVYQivxGOvo7+jgbx/oK1ns1mQ0VFBaZNm6b9TJ06FVOnTkVZWRnPgRMNMwZ1olHm8/nQ1taG9vZ23Lp1K+F3bLm7uzvlQr1cIkkSxo8fj+LiYhQXF6OsrAwTJ05ERUVFwu/CwkIGbqJRxKBOlIMURYHP54PH40FXVxe6u7vR1dUFj8cDn8+HQCCAQCAAv9+vLQcCAfT29kJRFO0nHA4nvJYkCSaTCWazGSaTCbIsa6/NZjMKCgpgs9lgt9tRUFAAu92u/cSCeElJCRwOB89xE+UgBnUiIiKD4FdtIiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCNNYd2AsqaqKQCAw1t0gIqJhZLVaIYQY626MibwO6oFAAKtWrRrrbhAR0TA6dOgQbDbbWHdjTPDwOxERkUHk9Z66nuVUBRAWEJIAhBT5DQBCArRlASFJ2jKEbjmaR8TyC5GSFimTab2UPh8S86mx9RIS68qSlm69KiJVa3kkaCsiabHySCivJqzXldfXJwld3WnypVsfbz7Sl9iyri/6NtItJ9adrp9ZyiB7PgAJfdTKpsnXX5sJy+nK6/VbXh1w+xBqwvYm5lMTyuvLxKi69hB7i+pex/sfr0uI1GWhq1tEyye/5WP1ili56G8hAAn61/Hyki5fPE/Sel0ZSagQSEyLrU9Yhn490qZFyiupZRBfL0fXp80nFK1eOalNGfH8slCSykTr1reTsKyk1BErH6kr3rd4HkVbloUKAQWyvj5deTk6ZBJ0ZRD/G8tQov1RtTRZ6z/iy4h/zMkQ2t6mLAQkCMjRN5EEAVnEliWI6HpZSOjrlfH//qcC+Y5BPSYsIJTom0TE3yyRwK0L6tAH8thbL/7pKCKRL14GIhqlossZP3ml9J/EIqlMwid/8vpsaenWJ63TBcKBLSNeLul1+qAiMgSOpPISkvKlazPL5t92mX6WkWb9YMoPtH0M5kvBKAT1hDaTgng/QT2xXjVN3fry+i8M8S8T8fVqUr5M5VVEv4Klz697LdJ+QUhaTsqTLi0W8LXlLOv1r/UBLjGoK9p6LaCJWJBDNJ+AFH2fy0CGZZFQR6TuWHkkLGsBWrccyyNH+ywjuUz8y4usC9zJQXwgQT1TGxJ0fdPlk6DflvjfPN/x8DsREZFBMKgTEREZBIM6ERGRQTCoExERGQSDOhERkUEwqBMRERkEgzoREZFBMKgTEREZBIM6ERGRQXBGuRhZhQolPsWpNjWrflk3BVPC7Ggidda1hClc1TT50uRJl5Y07ZiaZXqzTGnp1ifOvRSdF0vVp8XLaOVVJNQVr0Mk1pcwbVliOxnXq0nJQ54dbpBlUtpMs5wuT39lBtXn1Gb6L59mRreMyypStiXtzG9J6xPyj+40sQl90OoavhnlVF1dqjY7X9Iy9OuRNk0RKhCdSjWhfcTXi9j6NPlUoWj1IqlN6JeT0mIztanIvhzvZ/wjLHk52itIumUl+jGXeUa5SIJ+KlcZ8bGUIaIz3MXLp5u57vamiRWITxMr0Neb6fMlvzCoR/UtvjnWXcgd+s+kYZAuJhLlAl3o1QKZsem/ffFArRFxVImIiAxCqKqat7Pgq6qKQCAw1t3IK4FAADU1NQCA/fv3w2q1jnGP8hPHIXdwLIaf1WqFEPl5XDCvD78LIWCz2ca6G3nLarXy758DOA65g2NBQ8XD70RERAbBoE5ERGQQDOpEREQGwaBORERkEHl99TsREZGRcE+diIjIIBjUiYiIDIJBnYiIyCAY1ImIiAyCQZ2IiMggGNSJiIgMgkGdiIjIIBjUiYiIDCKvn9KW73p6evDBBx/g2LFjaGtrgyRJmDZtGr71rW/hySefhNlsvu26XS4X9uzZg08++QRfffUVxo0bh5kzZ6K6uhqPPfZYv49FbG5uxp49e3D69Gm4XC7YbDbce++9ePzxx7FixYqsZXt7e7F//378/e9/x7Vr1+Dz+WC1WjFlyhQsWbIEtbW1KCsru+1tG265OA4dHR2or6/HpUuXtB+PxwMAeOutt7BgwYIBtd/Y2Ig//OEPOHv2LNxuNxwOB+bOnYva2losXLjwtrdrJBhxHL744gscP34c9fX1uHr1KtxuN8xmMyZNmoSHH34YtbW1mDZt2m1vF+UeziiXp9ra2vDiiy+ira0NQOSRj4qioK+vDwAwa9Ys7NixAw6HY9B1NzY24ic/+Qm6uroAADabDX19fQiHwwCAxYsX47XXXsv4IfnJJ5/glVde0Z51X1BQAL/fD0VRAACrV6/Gpk2b0n4QtrW14cc//jGampq0dYWFhejp6dHKFxYWYtu2bZg/f/6gt2245eo47Ny5E7t27Upb70CD+l//+le88cYbWnuFhYXw+XyIfeQ899xzeOGFFwa9XSPBiONQV1eHV199NWFdYWEh/H6/1rbZbMaLL76oPc+d7nw8/J6HQqEQNm/ejLa2NpSVlWH79u2oq6tDXV0dXnnlFdjtdly+fBlbt24ddN1erxebNm1CV1cXpk+fjrfffhuHDh1CXV0d1q9fD5PJhFOnTuHXv/512vItLS3YsmULAoEA5s2bh927d+Nvf/sbDhw4gOeeew4AcODAAfz+979PW/4Xv/gFmpqaYDabsX79ehw8eBAHDhzA4cOHsW3bNkyYMAFerxdbtmxBb2/voLdvOOXyOAghUFFRgWXLluH73/8+Nm7cOKj2z58/rwV0p9OJP/7xjzhw4AA+/PBDrF27FgCwa9cuHDlyZNDbNtyMOg7hcBgWiwXf/va38frrr2v/R3V1dXjzzTcxc+ZMBINBbN++HWfOnBn0tlGOUinv/OUvf1GdTqfqdDrVhoaGlPTDhw9r6WfOnBlU3e+8847qdDrVlStXqs3NzSnp77//vup0OtUVK1aoN27cSEnfunWr6nQ61ZqaGtXj8aSk//KXv1SdTqdaXV2dkt7a2qr1+913303bvzNnzmh5Tp48OahtG265PA6hUCjhdUtLi9aXTz/9tN/2f/SjH6lOp1P93ve+pwaDwZT0l156SXU6nepTTz2V0tZoM+o4XL9+Xb1161bGdI/Ho9bU1KhOp1Ndv379ALeIch331PPQwYMHAQALFizAAw88kJL+yCOPYPLkyQl5B+rQoUNaHZWVlSnptbW1sNlsCIfDOHz4cEKa3+/HsWPHAABPPPFE2kOd3/3udwEAPp8P//jHPxLSOjo6tOX77rsvbf/uv/9+bbmnp2cgmzRicnUcAECW5UG1p9fS0oJz584BAJ555hmYTKmX7sTGsa2tDfX19bfd1nAw6jhMnz4d5eXlGdMdDgeWL18OALh48eJtt0O5hUE9zwQCAZw/fx4A8LWvfS1tHiEElixZAgA4ffr0gOu+ceMGvvrqKwDQyiez2+148MEH09bd0NCgHRLPVH7y5MmYMWNG2vL6D81MH1KfffYZAECSJNx7771Zt2ck5fI4DJW+vkztz5s3D3a7fUTaHwwjj8NAWCwWANCuN6E7H4N6nrl+/br2Dzxz5syM+WJpLpdLu9q2P1euXEkpn05VVRUA4Nq1axnLx/JkK3/16tWE9SUlJdqex+7du/GnP/1J2xsPhUL45z//iW3btgEAnn766bR7TqMll8dhqGLjUlJSgpKSkrR5ZFnG9OnTE/KPBSOPw0CcPXs2oQ905+MtbXmmvb1dW54wYULGfPrDdu3t7SgqKuq3bv3h74HU7fP50NPTo+2xxfrmcDgwbty4fsvr24vZtGkTAoEATp06hR07dmDHjh0JV79XVVXh+eefx5o1a/rdnpGUy+MwVLFty3boN9a3ixcvph3H0WLkcejPRx99hEuXLgHAmP8/0PDhnnqe0Z9HzhY4rVZr2jIjWbff709Jz1Y+Xb8cDgdeffVVPP3009otb16vV9sb8/v9cLvd2i09YyWXx2GoYnX1N46xvo3ltQ1GHodsvvzyS7zxxhsAgAcffBDf+c53RqVdGnncUydDuXTpEl5++WW0t7fjiSeeQE1NDSorK+FyuXD8+HG89957ePvtt1FfX4/XX38dksTvtZRfOjo6sHHjRni9XpSXl+PnP/85/w8MhCOZZ/SH9rLdpx2b+CW5zEjWbbPZUtKzlU/uV09PDzZu3IibN2/i2WefxYYNG1BVVQWr1YrKyko89dRT2Lp1K4QQOHnyJA4cODCg7RoJuTwOQxWrq79xjPVttA43p2PkcUins7MTGzZsQHNzM0pLS/Hmm2+ioqJiRNuk0cWgnmf05wZv3bqVMZ/+XGN/50Zj9FOvDqTugoKChA+xWDvd3d1ZPwRj5ZOneq2rq4PL5QIQuRAunYULF2LWrFkAoN0+NxZyeRyGKtZPfd/TifVtLKfsNfI4JOvs7MT69etx7do1lJSUYMeOHdqdJGQcDOp5ZsaMGdqhtmxXHcfSSktLB3RREJB4BW22umNXBd91110Zy+uvHM5UPvmK4tjVw8XFxSgoKMhYfurUqQCA1tbWjHlGWi6Pw1DFxqWzsxNutzttnnA4jBs3biTkHwtGHge9zs5OrFu3DlevXtUC+ki2R2OHQT3PWK1WbYKNkydPps2jqipOnToFAFi0aNGA6542bRomTpyYtW6/369NTJJc97x587QLimLtJ2tra8P169fTlo9dGNfV1ZX10G9nZyeAsT3sm8vjMFT6+jK139DQoF0UNtztD4aRxyHG5XJh3bp1CXvoY/lFikYWg3oeqq6uBgD85z//wYULF1LSjx49ipaWloS8AyGEwKpVqwAAR44cSbsn/Oc//xl+vx+yLOPRRx9NSLPZbPjmN78JANi3bx+8Xm9K+T179gCIBGSn05mQFptMRlVV7N+/P20fr1y5on2Izp07d8DbNhJydRyGqrKyUptQZe/evQiFQil5du/eDQCYNGkSHnrooWFtf7CMOg5A4iH30tJSvPXWWwzoBsegnoeqq6tRVVUFVVXxs5/9DP/+978BRGaVOnr0KH71q18BiMyClfx4zJ07d2L58uVYvnx52g+pZ555BqWlpQgEAti0aRMaGxsBAMFgEPv27cO7774LAHj88cfTPvLxhRdegM1mQ0dHBzZv3owvv/wSQGSPZteuXVqwfvbZZ1OmkV2xYoV2HvOdd97B7373O+3JWH6/Hx999BFeeuklhMNhmM1m1NbW3t4fcJjk8jgoigK32639dHd3a2lerzchLfYkM70f/OAHkGUZn3/+ObZs2aKdU/Z4PNi+fbu25/rDH/5wSFOhDgejjoPb7U4I6Dzknh/46NU81drainXr1g36UZP6R0Hu3btXmxNbL/lRk3a7HX19fdoe26JFi/Daa69pU1QmS370avLjIrM9evXChQvYvHlzwrlcu90Ov9+vPfLTarXi5Zdf7ve57KMhV8ehtbU148WGyX7605+mvc/5Tnr0qhHHYdeuXdi5cyeAyFGw2N0lmfzmN7/RThfQnYv3qeepyZMnY9euXfjggw9w7NgxtLW1wWQyYebMmXjkkUfw5JNPZnzeeX9mz56N3/72t9izZw9OnDiBmzdvwmq1oqqqCtXV1Vi9enXW+2KXLl2K9957D3v27MHp06fhcrlQWFiIWbNmYe3atVmD8Zw5c/D+++9j3759+Ne//oUbN26gp6dHu61t4cKFqK2tHdMpYvVyeRyGas2aNZg1axb27t2L+vp6uN1ulJSUYO7cuaitrU3Z6x1LRhwH/Xzufr9fm9xpIPnpzsU9dSIiIoPgOXUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKD+D84r+pQRw9J6wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m_bkg = HealpixMap(bkg.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents)\n", + "\n", + "fig = plt.figure(dpi = 150)\n", + "\n", + "ax = fig.add_subplot(projection = 'orthview')\n", + "\n", + "m_bkg.plot(ax)" + ] + }, + { + "cell_type": "markdown", + "id": "3bcca3df-33c4-4843-aac1-27facf67cafe", + "metadata": {}, + "source": [ + "Note: I actually don't understand what causes the strip in the middle. Maybe it's a beating pattern caused by converting from FISBEL to HEALPix during the creation of the detector response. I plan to generate a detector response using HEALPix directly, and will revisit this then." + ] + }, + { + "cell_type": "markdown", + "id": "61f927b2-1132-4afe-971a-cc649a832ebb", + "metadata": {}, + "source": [ + "## Adding Bkg + Source to get Data" + ] + }, + { + "cell_type": "markdown", + "id": "2b0ce845-5b17-48e9-8282-97e6d703bcbc", + "metadata": {}, + "source": [ + "Once we obtain the expected signal, it's easy to add it do the background to simulate how the observed data would look like" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "5c9e5f28-0c5c-475c-923b-47b0ba28c38b", + "metadata": {}, + "outputs": [], + "source": [ + "data = signal + bkg" + ] + }, + { + "cell_type": "markdown", + "id": "70e53ffc-0e27-422d-88c6-f3a6f3969dae", + "metadata": {}, + "source": [ + "If the user wants to simulate multiple sources, just add those to this sum.\n", + "\n", + "This is how it looks:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "8962acdf-949a-4f02-b932-8a974c068b1e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAG5CAYAAACX/m9DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAB0NklEQVR4nO2deZhcRb2w3zqnl+mZSSaZTPaNhDWBhC2sEgREQRa9gqCg3o+LKFcQI6AiKAgKoiBuXOQKggvI6kWURRJkk1VIWAMkIWSfJJNMttmnu8+p749e0jPp6T59+mzdXe/z5JnJdHdV9Tl13v71r+pUCSmlRKFQKBQVh+Z3AxQKhUJhDyVwhUKhqFCUwBUKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUJTAFQqFokJRAlcoFIoKRQlcoVAoKhQlcIVCoahQlMAVCoWiQlECVygUigol5HcDFAo7JJNJuru7icfj9Pf3E4/HB/wupUQIgaalYhQhBEIIQqEQdXV11NXVEYvFiEajxGIxQiF1KSgqD9VrFYGhv7+f9vZ2Nm/ezKZNm9i8eTPt7e1s27aNjo4OOjs76ejooKOjg+7ubkfrDofDDB8+nBEjRjBixAiampqyv7e0tDBmzBjGjRvHmDFjqKurc7RuhcIuQi0nq/CSvr4+WltbWbt27YB/ra2tbN++veTypBBIXUPqeupnSEdqGggBJuj9QE4XF9IEM4kwjdRPG++hqamJsWPHMn78eKZMmcLUqVOZMmUKU6ZMob6+3kaJCoU9lMAVriClpK2tjeXLlw/4t379+oKvi0ajjB49esC/m5e+gRmNYEbCGOmfZjSMGQmDNvQwjujXaFqiI4bq4lKCNME0EGYSYcQRyX60ZBxh9POV4w9k+/btbNq0iU2bNrFx40Z6e3sLtn/06NFMnTqVPffck7322ou99tqLiRMnZlM5CoWTKIErHKGzs5N3332XxYsX8+6777J06VK6urryPnf48OFMnjyZSZMmMXnyZG544y36xsYwGutSUhZ24uJdKSrwUpESzARafy/R7T1cfNYhrF69mjVr1rBmzRq2bduW92X19fVZoc+cOZPZs2czevRoZ9qkqGmUwBW2aGtr4/XXX+edd95h8eLFrFq1apfn6LrObrvtxh577MEee+zB7y55GF00wbCRAGw7uIWNR5sgnOuCWkOSpuE9APT2R+DdYWCmHotuAy3pYF1JaHmjE60jFZXLrZsx9B7m3XY2H3zwAcuWLWP58uXE4/FdXjtu3Dj2339/Zs2axezZs5kyZYqK0hUlowSusERnZydvvPEGCxcuZNGiRaxdu3aX50ycOJH99tuP/fbbj1u+9iAiGUOMHYsUgp7dhpNo1EhGBYkGgQxBxx4GMmpab0QmMNckYydsJ6SlXvvZya8zM9oKwOTQDmZEUnnodckuLlj5WZJmSozrdjSRTOoA9G6qJ7Il9bseF0S35FRj85KI7pAIA+o3xQlv7kHEE8iNm/jNou+xbNkyli5dyuLFi1m+fDmmOfB9jxw5kjlz5nDooYcyZ84cRo0aZasNitpCCVyRFyklK1as4IUXXuCll15i6dKlA6SjaRozZsxg6TPr0Xrq0Psa0OqGY4wdQXxkHT1jw0hNEB8myDdSmGyArunJoaNvDRCSkWM6Gd3QjRCScye9wJTQVsLC4IBICF0UjlgHC3wo+o0Qm7saAOjcVk+oLQJAdJsg3A1IEGbhy0TmSftohiTSmXrdsFW96D0JxLo2pBnHiPZgNvQy65O78d5779Hf3z/gtbvvvjuHHnoohx56KPvvv7+a5qjIixK4IksymeStt97ihRde4MUXX2Tjxo0DHp86dSrrXtuG3l2PHh+OpteRnDIGoz5Mx9QoUodkzFr+unespH9sMvWfkARNUtcYZ9b49UQ0g2+Mf5IGkWRSCJq0mK33Y1XgQ9HRX0d/MkRHdx3GunqQUL9eQ0uCMAZKPZ/AByOkJNQDekIybGUvem9G6AZGuIPP/fB4Xn31VZYuXTrgdcOHD+fII49k7ty5HHrooUSjUVvvR1F9KIHXOMlkktdff52nnnqK559/fsDAYzQaZc6cObx6z1L0zno0vQFj94kY9WE6p0QxwmBE80fYxejYw+Qjh79HVDM4fdRCZka2UC8ELXqDY++tXIHnY0d/HaYUbGofjtweQevTaFgn0BKllyVMid4P4R5Jw/p+Qtt6Ees2YJp9GMN6+djXDubll19mx44d2dfU1dVx6KGHcvTRR3PUUUepaYs1jhJ4DSKlZPHixfzzn//k2WefHTB7YsSIERx55JH88+ZFaJ0xhEzJT2tppv3oSSQaQWrlzRIx6uB/LvwNR7t8P4wbAh+MKQUfrB/D8JfsfUvIRTMk9ZtMhj2/HNmTHhhFYjb28akrjuL555+nra0t+/y6ujrmzp3LJz7xCQ4++GCVZqlBlMBriA0bNvCPf/yDJ554YkB6pKmpiWOOOYZ/3PgqWncdYlBILXSdjk/MoHus7kg7kjF44Os/yw42uoUXAgdY3tZCw78aHSlLSMmoxX2EXl824AYkSMlcxuKc+eOP8fTTT9Pa2pp9bOTIkRx33HGccMIJ7L333giHpmIqgo0SeJUTj8d58cUXefTRR1m4cCGZ0x2LxTj66KN55jdvoXXEdpF2LsmD9qJ9VsxWqiRveUrgBdETkjH/2oxcO/RNTxLJL1/9LgsWLOCpp54akGbZc889+dSnPsXHP/5xlWKpcpTAq5R169bx8MMPM3/+/AEX98EHH8zJJ5/MDaf9KZseKYRobKD9k7uTaHAuolMCL07jBoPGBYt3icLzIZFc8+TXWLBgAc8//3x23nksFuP444/nU5/6FHvvvbej7VMEAyXwKkJKyeuvv86DDz7Iyy+/nI22W1pa+OQnP8kD330WLR4uqUyno29QAreClpSMfXYTct2Gkl4ndYPzbv8Uf//731mzZk327/vssw9nnnkmxxxzjMqVVxFK4FVAf38/Tz75JA8++CArV67M/v2www7jjXtWoXXUF0yRDIUIh+j42D50j3Mm953BqIP7L3Jf4B8murhoxZmu1gEpgTc+12BpKmEptLzTS2jR0uJPzENm8PPoC/bjueeeI5FITZMZPXo0n/3sZznllFMYNmyYk81V+IASeAXT2dnJQw89xF/+8pdsmiQWixFfEya0eThaX060XapcNA2tsYGNp07DDJcpJpkanBMGhPpACvjdNb9gdsTZaSgJabDD7OP+zn3YEB/BX5YdgPygkfiEOOFYgomjdhDVk2gO3roPsGTtOMY/GiFZJ0jGUu8PYW1ueCHqtpmMfOy91Dcp07SUTsmHDBl84Vcf56GHHsrOOIrFYpx88smcccYZjB8/vqx2KvxDCbwC2b59Ow888AB//etfs+tijxs3jtNOO407//sxRFJLXfCQWq3Pqkg0LTV7QRMgNOSUcbQdMQKp2xCR3DnPOdQvCfXKrMTjjRq3/vhXHODADSk7zF5WJjQe2H4IK3paeGv9ROJ9IaQUyD6dxmVhhAlSByMCvROTEDUZN2EbjZE4Yc0ouw1L1oxj8l9SaQmpp6ZZJmKCZJ3ADNufdhnqlYx5eh2yoyu9aqJMydyw2Obc2/U1DSlM5t33eR544IHsNzVd1znhhBP44he/yKRJk2y1U+EfSuAVxObNm7n33nt55JFHsrdeT5s2jXXPdKNva0jdlW6a2dy30HVL8ha6npV2Lv0HTmfrjNIkKwyJHodQX1rapkQMWu6kXIGvSXbxdM90Xu2czsJNk9m2owEjuWueO1fgAxsJZgj6myVGo0n9+C6aG3pojPTvUoYVcgU+oH4NpJ4SeaJeIHUwS/wwHP/cFli/aeAfDcN6VD5ozRU0LZVeGdbL7LMms3DhwvSfNT7+8Y/zpS99iSlTppTURoV/qNGMCmD79u3cfffdPPzww9kZBvvssw8rHt/GhjcgJBsGiBtSW4gVlLemIXRtF2nvfFxgRK0N/mlJiUim7igM9eWXdjn0mHGWJ03e6x/PQ5sP4u31E0jEQ0jTZopCgpaAWJuANh25qon2uibWtZg0TOmgLpxkVH132akWYaa+hUQSknA3mCGBEU3J3AxZi8zNutCuG9fq+s4RDcNAZiLyfDLXtIESN00EoHfW8+5tW7j137fyxz/+kVdeeYX58+fz5JNPctxxx3HOOecokVcAKgIPMD09Pdx///3cf//99PSklkidPXs2Sx7ahNaRvuFmkLghLe8hUidDRdu7PC8aoe3k6Rh1+SUjDImWgEi3RI9LhGFd2lYi8IQ0eCNu8uC2Q3mtfSprN40ECVJal/aQEXih12iABn0tEnN8HyNGdDO2Mf+65hmGisAL1WGGBUakuMwbNhkMf2qZhUJNpGEOHZUPjsQzpJew/dXCy/njH//Iiy++CKRSKyeffDLnnHMOLS0tlt6XwntUBB5A4vE4Dz/8MHfddVd2cHKvvfbiq1/9Kt8/7n/QzShSmhT85M2VdybahqLiHljGoP/L1E0mej9Euky0hPOf/S/2mSzonMUzG/eidfMI+1G2TYQJmBDbKKAtRn84xvIRozAn9zGyqZvRDYVlbrUOvV+i90sinan1ZOKNGmY4ldqBnQOglj+vhIYIaTtz5YZhbdAzLfZ5B10HmsYdb9zBHXfcwUsvvcTf//53FixYwBlnnMFZZ51FY6OzUyUV5aMi8AAhpeT555/nN7/5TXbrscmTJ3Peeedx/am/R2QGsQowIPouliYpVE40Qtsp0zEiIruKXqQ7Je1y0yO5EbghTV7ph+e6ZvBI635s3jYMM08+2w52IvBCGFFIDJOYU/toHtFFc6wHTciSI/ChMEOpaDzeqGGkJ+jE2k2a/mkhAs/b4EG58qGi8MFoGje+dCn/+7//y+LFi4HUcgtf+tKX+MxnPkM4XNq9BAr3UAIPCB9++CE333wzr7/+OpC6+WbHItC3NA6ZKsmH0HVEKGQpTVKwnLoo7R+fhpaQhPqlo9F2vFHj/135CDuMev6y+kB2dMZIJpydaw7OCzwXoy4lc2NSH2Z3mCmPOVe21FIyT9YJwr2SYc99AEXWIy9cYDq9kihhycT0YOeV//gKv/3tb7M3BU2ZMoV58+ZxyCGH2G+PwjGUwH1m+/bt3Hnnnfz973/HNE0ikQjm6npCbU2I9HLZlsQtBITDtiNuICV9TYfRI+mbMIxkg+6O/KKC1pOTCN3druemwHPREtC0Kula+ZGOBOHW7bCjC5Jl1CNNZCJpfRoiZEV+0b1n8Lvf/S47j3zu3Ll8/etfV3PIfUYJ3CdM0+Txxx/n1ltvpbOzE4Bjjz2Wl27+AK0vFY16KW5RX09yYjP9I6Oped8upp6NiKD1BBNRV/4c7EJ4JfBQj2RYq7vvRZgSkZTUtfWgbdyC7N91n03L2BW5bnDqtYfx0EMPYRgGkUiEs88+m7PPPpu6OpfXBlbkRQncB1atWsXPfvYz3n77bQD22GMP1jzehd4Vs54qcULcoRC0jCA5op54c6Tsdb6togReHlpCEtnaR6i9E7mjw356xabIzbo4+35xbDbdN2HCBL797W9z8MEH22uHwjZK4B7S39/P3XffzZ///GeSySSxWIwvf/nL/O7cRy0NUIKz4u4fP5xkve5qtJ0PJXCHkBDZkSDSus1bkafTKlc8ei4333wzmzdvBuCkk07iwgsvVGuseIgSuEe89dZb3HDDDdnd3I888kgW3bbGcrrECXGLhnqSE5pJNkZINjg/aGgVJXCHkRDpTBDa3ofWttV+esWGyB9q+w233XYbDz/8MFJKmpubmTdvHsccc4zaVMIDlMBdpr+/n9tvv50HH3wQKSWjRo1i3rx5/PiUO0uaFigi4bLF3d9SZ29dE4dRAncPvd8k2tZdnsgNA5lMljTt8Gcvf4sbbriB1atXA3DUUUfxrW99i+bmZnttUFhCCdxFlixZwnXXXZft1CeddBJP//hdRNLiAGVmSqBuL1rOintUHTLkv7gzGBFB6ydMREwJ3C20uEndxm7Exi0Qt7HjcuaGIKsi1zSkkHz+V8dw9913k0wmGTFiBN/5znc46qijSq9fYQklcBdIJpP86U9/4q677sIwDJqbm+l6LYy+o97SIGU2XWJz4X3RUI8xvpm+lmCJO4PUYPP+Ifr36HO3Ho8E3rDRJNLpciU2cULkpaZVzLo4k06t48MPPwTg5JNP5qKLLlLbu7mAu1uV1CCtra1ccMEF/OEPf8AwDI499lh6nmlE31aHzNwZNwRCCEQohKiL2pK3aKjH2HMS3bMm0DsuFkh5Q+pWcs2GS4KKCFbwPQAzotEzZRi9B0xBThkHkRLvohQaIhJB1EWz66YUrtBE64vQ+heDs846CyEEjz32GOeeey7vvPOOvTehGBIVgTvI008/zY033kh3dzfDhg2j7+06QtsarUXdZaZL5OSx9E4a5kiOW5gytXCUS/lyLSFpnx2mez8XI3AJYmuE4R9qGBH3qgEYvtog1GO69oEpktKxufla3KT+g3bkth3FnzwYG2mVn75wMddddx1tbW1omsZ//dd/8aUvfQnNyoeBoihK4A7Q39/PzTffzN///ncAZs2axbJ7tqMlQjuX+iyCFo2WLu/0LdIiGqHnsOllz+MWpiSyPUF4TTtyeAPd05vKKm8wWtykbkMXYsMW2k/eg/bj7K2/XQjZp9O4PMyI5QbDX98Aff0kpo2jY/cYvS0aFvZxLpmJC7aibdmOMWm0K2mrxjdakXUR4pNHkmgIlS3yULdB5LVlqVSdjYBBJpPI9LLGRWeaaBpSM/noZfswf/58AObMmcOVV17JyJEjS65bMRAl8DJZtWoVV199NStWrEAIwRe/+EUevPh56+uXmBKha6mvqCXMMpHJJCQSSCnRhjXSffjuti/srLhXb8Zs35Iqc/oUuvdw4AKTEOo1iGzuRmzYAv39SCnZctp+tH/MOYGLrRFGvwbDV/UR/nBDduca2dWNlDKVmtptEr2ThrFjephkzDnJTnqiHbl2QyoF1lCPMWk08aYIRsyZqZqNC9dgbtueWgd8/Bj6pzSXNQ001GMQefn9VBSt64hwqLQZTtLE7O1LzTvXhCWJA3zzwc/z85//nP7+flpaWrjqqqs44IADbL8PhVpOtiyeffZZrr/+enp7e2lubub73/8+3zvm5lQKAgs35mRuvAiXMEUwPagky1kTI1sWRLbHiaxKidtw8rM8c5PJ2i3IrduRUhZe/tZOFUmN8MYwoxZLRr7aBp3dmarzPDeJXL6Kug8F9Yub6Zk1ke5xIfqanRO5lBLZ1Y22tIc6XYcxo+if1JS6WcoJDAO5bgORtnaiY1vKFnm2TMMo7R4Dkdp6TyJTKZXMSsVDidw0QdP45Rn3cds7t3HVVVexevVqLr74Yr785S9z9tlnq5SKTVQEbgPDMLjjjju4++67ATjooIN47w+bEclQNjdY8LDm3jGnidQgUbFBywLiLjkCHyTufG21HYHnEXc+yonAZVKjfnmECf/qIbJ8w9DHOicCz4eIRGD3yWyd3URvi32RZyLwvHWEQimRT2yyLdtsBD6YcBgxtiWVWmm0HosNiMBz0bRURG5hAF3296dmpwx4fYFoPEfQg1Mqc+fO5Xvf+56apWIDJfAS6ezs5Ic//CH//ve/AQi1NRFqHZmOuncy5GEdfLuzJtBidYUjH8NAxuNDlmlZ4BKi2+KpVMnWbQXz8yULPCPudVuR27anli8tQMkCl8COMA1rdca90psSd7GBtCICz6BFo5i7T6Zr90a6x+klD3oWEngGEQlDS3NK5CUuXzCkwDOEw4hxo4lPGmEpRz6kwDNYuXHMMFJplF1ea1HiSL5x35n84he/IJFIMG3aNH784x8zceLEwo1XDEClUEpgxYoVfO9736O1tZVoNIq5ZHh2lkkuluVNkUGg9B1xRQdCLXzt1ftNYu9twNy6DaOUxYuKoCUk0S196O0dyG3bMYuIu2TS4m5ZpNHyymbY3pH9s1OY/f3w3nKGvS9oahlF9/4T2DEt7OjsFRlPwPo2ou1bibY0k2xucG4BsUQCuXY9kbZ2IuPH0LP7yIIziKSg8H6ppons6y+cVtFE6t/gPm3KVGqlSG5cILj58w9y86s3873vfY+VK1dy/vnnc80116hFsUpAReAWefnll7n66qvp7e1l3LhxbHtGQ+uN5o1idjmkBRYZEpFw6qv8gAJ2LsBv6Y7NGbvTMzn/dld6v0ldayes3ZASlUWKReDCkMTWdyNaNyP7Sp8OWDQCzxX3y5tgR2fJdViNwAcjhEArQeRWIvB8dYhhjSQnt9DXUlcwai4agQ8ue9gwzKlj6RsTyy9yCY2LN2Ju3LTrY4PRtCGnt8re3sLftPJJPE+uW4aTTDuzkffffx9d17nwwgs5/fTT1VoqFlARuAUefvhhfvnLX2KaJgceeCDv/2ELmqGXLW80kdpkOBerUXdunaFdLwphSqJb+tHfW1WSuHe2I/+FKUxJuCOZSpVs2VayHIsh4xqiO0TL64KWl9qgo/w9KEtug5QYm9uJPbONhrdG0r3/BDomhzBiwvoelRbqkB2d6O910TB+TGqwM7ZrakWYsniqaHDZnZ2I97qpX91AfN/Jqfx4brnFIvBcTDM1ZTDfbBVdH7KfpF5rYYATEIkQK+/p4YTvnsD8+fP59a9/zZo1a5g3bx66zfsiagUl8AKYpsmtt97K/fffD6TXMrnuPYQhgCIXldWlPXO+QudODbSLMCWRTJ57y1ZMu2Vt3Iw2vRkzLLLlZsXtQqpEJjRiqyKMf7Gfug/WZecZ+4k0jJTIn9pCfSSCuedkts4aTv9IZ0XO+jaim7YQzTNrJdyRTC0VWyqmiezsJPzaUqJjR9M/pXlXkZdC+i7i3Ghc6DqSIrfUpq8DqaUlnp6RMhghNZ77yTIu/N2F/OY3v+Hhhx9m8+bN/OAHP1CbRRRAzd0Zgr6+Pq666qqsvM877zyevvY9hDG0ELPiLXVdZmmmRvULDFRaQe81aHh/M/rrSzGGmF1iuUmZ10qIbE/Q8N4mwm99iNm+tegAZUn1JDXqPqhj97tNpv1uBdF31wZC3rlIKVPfYhYvZ9T/LWb8v3ZQt9Xhbx7JJHJ9G9HXV9CwbCuhHiNTeXkFGwbm+o2EX1tK/drO8vY2TUfjMh5P3ZVZ0mstrLwp4c7z/sEPf/hDIpEIL774IvPmzctu46bYFZUDz0NHRweXXXYZ7777LuFwmMsvv5wbP3N30QV9UjuAWz+cqa+kYufu4TYRM3ZH9Cegtc1euiRfmaEQ5qzdCW3cXnA6oF16jpnB5tkhJrzYR3RJq+PlA7Zz4FbQolHMPSezfZ9hNP+7DdnW7mj5memHZn0U8f6HzpXb2IC523j0LZ2YG9rsF5Secijj8dIClkxevNC8b13nZy9czOWXX05HRwcTJkzgxhtvZPLkyfbbW6UogQ+ivb2dSy+9lJUrVzJs2DDibzShdUYcl3emIztx+LVYXf4pXWWyy+Cqk2ULAdHogBSSY5gy/a0mnppN4eJWcZmVI13DNJHJpLMDerqeEmgpu9QXoORvZPnGfgaj69z+ztV8+9vfZsOGDTQ1NXHjjTeyzz772G9oFaIEnsP69eu59NJLaW1tZdSoUXS/1IDoCRWWdzqS2OWmhgIIXUu9zuL+l37hhsAHiMhpgafFTTyRHQiWiSRCE6nBNxdE7pXAB9TnALn9rqwydR2kTA26l/rt00rZYYOpp0VZsmQJ9fX13HDDDcyePdt+e6sMlQNPs3LlSi688EJaW1uZMGEC3S8Osyxv6zuXiJ3yrjGEsLBmhl3M1Lon9Pcje3rTX+t3nhNppgVTomSCiBsf+GWVKSVklkHWS+zXxfqDYUC/YNWDcQ488EB6enq49NJLee211+y3t8qoPZPkYcmSJVx00UVs2bKFadOmse2fUUSPGHoASRsoYUsXQOZrY6mvq3A8E3dX9y7iHky1iFxKaxtge16mrluWeHaabLG+ISUiIXn/jzs47LDD6O/v57vf/S7PP/98eW2tEmpe4EuWLOGSSy6ho6ODfffdl42PCsikk/PJwEb0LHSteM6vyvBc3CWgRF64zLLIzBcvJV1loZ+IpOSt29v56Ec/SiKR4KqrruLJJ58so6HVQU0LfOnSpVxyySV0dXUxe/ZsVtzfB/2ZqYAW5W2aQ0ugRlMmQRX3YKpJ5E6XV1aZ6ZRKQYmbcuA3XEsSN/n3r9dx4oknYhgG1113HU899ZT9dlYBtWWWHJYuXcrFF19MV1cXs2bN4oN7uiFe6LbgEg9VnpRJxVHiHYCuRt0Oinsw1SDyIEbjRfPig/tXkfVZME2EYfLsTz/glFNOwTRNrr32Wp599tmy2lnJVLBd7JMbec+aNYvl9/YMlHe+ZTaHIG8ntzJNqhKweAG7ni6JJ1wR92AGiDwolNgWp0VednmZvHieaDxvuULkF3nOhAFhmPzzuvezkfg111zDiy++aL+NFUzNCXzlypVceumldHZ2st9+++0q78HYjbxrAE/E3dOD7O11p44hkKYsbSf2ABKoaFzX099G8y2sNUS5RaLxTCR+/PHHYxgGV111Fa+88or9NlYoNSXwDRs2cOmll9LR0cHMmTP58L4y5Z2b/07nu2tJ3q5gSkgmd4rbR4lWusjdiMZ3wWqaTYhdJV4sXVVoJcO0xF+4aSXHHnssiUSC73//+7zxxhvW2lMl1IzAt23bxqWXXkp7ezvTpk1jxQO9EC/QIUuJvKsh320R16Lu3AHK7p5ASVNm2lbB+XEny7Jdnp354hYi8Zd/voqjjjqKeDzOFVdcwfLly+21rwKpfuMA3d3dfOtb32LdunWMGzeODX9PIgqlU+3IuwZwXNyZBZFMCYm4J3luuww50FkhH9qeRONWyZ0vbiWCL9LvhISFv1rD/vvvn73W169fb799FURl9L4y6O/v5/LLL+eDDz5g5MiRbF0gEIkCt/GWcEFKKWtC3q5F3Ub6tvfu7tSaJRXALiKvsE0HAilxK2SO8+DrM/0BIITOkt9vYffdd2fr1q1ceumlNbGKYVUL3DRNrr/+et58800aGhrofiGKHndufY+ql7eLg5RSytQSur29JU9XLAXh0kJWGZHn22Q66ARJ4vl2+hmSQrvemyaaqbPu/1I7ZrW2tnLZZZfR09Njv30VQFUL/I477uDpp58mFAoRX9SA3hutmK+8fpPKVbrzASVlJqfsnrghnfLRddckDqlFzFxN+4TDwQ8UvF4SosA1rCXD3HTTTTQ1NbFkyRKuvvpqR/eADRpVa7N//OMf3HXXXan/LBtOqCum5G0REYlUvLwzVIXEM9PwFJZSVuftfQU//elPiUQivPLKK9x6660eNMwfqtJob7zxBjfeeCMA+vrhhLcOU/K2iIhEXE2beCnvDEritcfFc67niiuuAOCBBx7gkUce8blF7lB164GvXbuW//7v/6azsxNtSz2RlS0ILZgdv5SNi91GpPOR1SbvfG2QLk4HFOGQqxthYJpl7+DkJJkPR8+R0lJfOvvW47njjjvQdZ2bbrqJgw46yIPGeUdVhaU9PT1cfvnldHZ2su+++xJZNSqw8g4SQtdTOe8qljekZSPc7fKuR+KalsqLV9jsF7/489eezN6teeWVV7J27Vq/m+QoVROBSym58sor+de//sXo0aPpfDKKMF3cKcUBghCBZ+TtFoFbW4TUFmBuH3uhCUTU5UHzRML3SNzXCBwsBQVSSHb/z2G8++67TJ06ld/+9rfU19e73EBvqJoI/M9//jP/+te/CIfDdPxLD7y8g4AIhWpO3uDN+uzSTE2TdPVbRyXMUHGLEr6BCCn48M87aGlpYfXq1dxwww2+f/A5RVUI/NVXX+X2228H4Jvf/CZab8znFlnDz6/Bbk4ThODKO0PVSNzvwc0KmRwgkjrXXHMNuq7z9NNP85e//MXvJjlCxadQNmzYwFe+8hU6Ojo45ZRTeOqH7/rdJOv4sKlxdkZGDcs7l6pJpxiGLyk5oev+3Y1aQholw1f+9Gl+/etfo+s6v/71r5k1a5ZLjfOGihZ4Mpnkwgsv5P3332fGjBmsvKcXIStrcMfLi86TmSbpWRKVhGcSj0Tczxd7nBd3MwVnCYuzUbJPR/KRy/bkqaeeoqWlhd/97nc0Nze72EB3qYzvP0Nw++238/7779PY2MiKB7oqTt5e4tk0wQqTN3iXTjH7+t1frMvDGSqVOBNGIHjxxmXstttutLe3c+2112L6PDuqHCpW4K+++ir33nsvAPE3Y2iFFqgKMF5cBJnBymqfJlgOXq3l7vo0Q6jtwU0LCFPjRz/6EdFolIULF/LAAw/43STbVKTAt2zZwnXXXQeAvqkRvaPR5xYFF9cHK6tA3hmqSuJeDG4GZQDTRju+OuP7fOMb3wDgtttuY+nSpU63yhMCcgasY5om1113Hdu2bWP69OmEW0f53aTAouRtA024est9BplIQiLhbiV+z1AphTI2ibDMINHf/Ln7mTt3Lslkkh/+8If0erx1nxNUnMD/7//+j4ULFxKNRml9tB8hbbyF9PKTtnFQWK4OOLlYtqfy1rTU4J8XEV/6Nnu3JZ4t34MxA/e2v3Pw3Jum/f5aSjty+pBA8NqvVzJ69GjWrl3LzTffbK9+H6koga9du5bbbrsNgAsvvBCtz8aaE5mpe3Zl4FSnNd2f+eBWHVl5g/tS1bSdUZbL4wVSyp27BOGyxHM/kNzqBzkfsE5LPFueYTgXKJQj8VLIlbih873vfQ8hBI8++ijPP/+8+/U7SMVMIzQMg69//eu8++67zJkzh8W3tSMosVPmzLsu+avlYHGXIy4P538LIRxdXGmAvHNxIxLPlXcubn8oDX7M4cWvRHiI1JbT6Y48KRqn+t0uHwhDnSsr5JsKWMqxKGUq4aCNkTP8x01Hcu+999Lc3Myf/vQnhg8fbr1+H6mYCPyBBx7g3XffpaGhgXd+31aWvEvG4a+KXn9mOhWFF7xBx+lIvJAQHBZdIXmDs5G40ArscuRkSmqI9+NqOsXJfu3FdNScPvvXb73IlClT2Lp1a0WlUipC4KtWreKOO+4AIL64rvQpg7Us7yJyslyOk1+Vi2Hl7j6HJG71+DghcaGldmUv+GFX4o0pQ1KgjHIlPuTrnb6Jy4s+lz4XQgra5sfRNI358+fz0ksvuVuvQwRe4IZhcP311xOPxzn88MPRtw0rrYAalncGKWVZUbhleTsRhZci5jIlXuqHW9kStzoQW67ErXwguTme4KTEnY7s8x3X9DnRuqOceeaZAPzsZz+js7PTuXpdIvAC/9vf/sb7779PQ0MDb/52bWmpkyGkaanzFruArF5g6Rkvvg812NgEICv+Ul5XjsTtCNmmxO1+M7Er8SHz3kNhV+IlzLASLm5aXVL0bOVa8ygSf/jbLzJ58mTa29u55ZZb3K3TAQIt8Pb29uysk/h7UYRRwmBcECLvdBt8lzelCyv7fDtttyPxcqLpEl9bblqpVIkLu/Ox7bTTzodSKUuzliJ8J8VbqCynPoQ0DSE1vvvd7yKE4PHHH+fNN990pmyXCLTAb775Znp6epg5cyb65hLutgyQvIOEtLhinVN5c8s4kc+2WIZT782qxIUmEHqZl5nV9pbRd30b3CzlGnHqA6HIcfrWYTdw6qmnAvCLX/yCZDJZfp0uEViBv/zyyzzzzDPous6HD26zvjWakndhiqRSHJO31SjcyRklRepMrZbo3HkRRe7atDRoaZVi58SBAcRiErctea8icSdIn6uvfvWrNDU1sXLlSh588EH36iuTQAq8r6+PX/ziFwCI1ga0XoupEyXvohSc7+z0aoKFxJW5u9JJhChcpznwRh3Hqs0jcUflnaHQNEO35nc7xVDitZvnd1niZ4y7kK997WsA/OEPf6Ctrc29+sogkAK/77772LhxI2PGjCG0vsnaReCHvAe/LuDyzpAvleLaNMF8566cmz6KMYTEpWG6Iu9stTkSF5pw79b/fIObDi9pkE/ijojdrUjcpWvul5+9h1mzZtHb28v//M//uFJHuQRO4Js2beKee+4BYNvLJsJ0Xt7Z55a7JkpO/ZUi7yzpVIqtmSalkisyN+WdIUfiqffnrryz1WZSKm4vIpUrcaf68CBcjcQz/a3cPldO2qjYMdM0BIJl97Wj6zrPPfccixYtsleXiwRO4Lfffjt9fX3MmjULfVt98SjGhjiFEIGfaeL2OuEDNmDwav0JL+SdITcS90DeWbxaAdCDDTQy0wxd6YtOL4TlElpvhP/4j/8A4JZbbsEI2IYlgRL4e++9x/z58wFYdv/m0m+Xt4CjndGlhZy82ulEVttSsIMR6Ty08Kib67p3W4ylFyqrqG99QcNC35dS8tiV/6axsZHly5dn/RQUAiNwKWV2DYITTzwRrSdavHOWGH27Im9Nc7Tc3LK8ELnMl1N1t0Lv6kojImH3JS5yNoPweKuxoNxrYIvMNzMfKNr3M7fZJ3W+9KUvAakMQZDWDQ+MwJ955hneffddYrEYz/70HaRhFhZYEOTtIK7eFVcEJfFyC9cQ4dBAcbt5Lofo+xUl8cHXUEAlLoRAGia/P+8xxo8fz5YtW7jvvvs8bGFhAiHwZDKZXazq85//PMR10ApMCatCedt5rKKpFonnk3f2MXdyx0Xn8VcqAZU4ACacf/75ANx77720t7d70LLiBELgCxYsYO3atTQ1NXHP158sfLNFEOVdRhrFyuuqMpWSqtTb+nBY4oXknX2Os+fOSt8PvMSL3R/gA0P2/0x7TMlPTrmTfffdl76+Pu6++25vGzgEvgs8Ho/z+9//HoDuxRoimerweaUVRHmXQdCiayXxUgqxIO/sc4UzIi/h3ARe4oUInMQzuw9JzjvvPAAeeeSRQNzc47vAMweipaUFva1h6Cf6JW+rgywldrpS2+fZzBQlcQsvLkHeA15Xxjm0MV1WSbx08vX/3Gvv8qN+wYEHHkgikeCuu+7yunm74KvAe3t7swdh+0IDYaQP1OD8t5/yLgGr9bqZbqlYKkjiQi9jPrud15Vxk1jgZqiUck35KfGh2mFKzj33XAAee+wxNmzY4GHLdsVXgT/yyCNs3bqV8ePHo28qEH2XgF/ytvIaP2ealIIvUXiqYs+rFJFwSWuyiFCo/DVcSlyS1QkBB0ripeCTxAv1/28ffiNz5szBMAz++Mc/etioXfFN4PF4nPvvvx+AzS/1I+QQ859L6MC+yrtIG5xqW1WnUlIVe16lCIUs3YDjiLyzhVnbVMRJ8foucbvXlQ8S36X/5y5YZkq+/OUvAzB//nzWr1/vcet24pvAFyxYwObNm1O57831+Z9UYfIe6vVOS1dJ3AWK3EXpqLyzhXr/bcx3idslCBLP4eKDfsxhhx2GYRi+zgv3ReCGYfDnP/8ZgO2vJwdE30DqZPmxOJRDncTruyndREncJXlnCx9ihoqL/d8XiTtxbfko8XzX8dlnnw3A448/zvbt2z1uWQpfBP7ss8/S2trK8OHDd515ogl/Bi2d7BzpeeFuytvLD4Zalrir8s7FZtrQLioSt85Qx+o7h9/IPvvsQzwe5//+7/88blUKz4+GlDIbffe8R97lYita3tVMNS98lYuuIyIR7+SdQZQevJSDZzNUnL6+AiJxgeDDv28G4KGHHqKnp8frZnkv8DfeeIPly5cTi8XQN5awz2Ueypa3jwvpVCQ1dKxSm154sBv6YHTd87Sb6xJ344PfgWu35OOcZ+clbVuMSZMm0dnZyWOPPVZWe+zg+RWZ+apxwgknIIxB0U0Ju307Im83cGmB/cF4+RVYFNuqzL2Kva9TSmQ8kd1+TSaSSuJO4NZ14bXEB78ekVq/CXjwwQc9Xy/c06ty/fr1vPjiiwA8fs0rg1pSJfJ2GS9vzMjm8WtJ3olkagOIzCYQfkrcy/QNHgUFlS7xPJ66+cx7GT58OBs3buTll18uqy2l4umV+fDDD2OaJocccghaX9hWGbUub6/IHmev5e3UuiGlkivvXR5LS9zr3ViEUBK3io8SF1Lj5JNPBuCvf/1rWe0oFSE9skJvby+nn346XV1dhJe2oG+P7XzQYvSt5O0NvsrbDwrJOxehpW6j91iqZPYt9RBPUjhu9K8yr8WSrrOcVVPNaJLEgRuzkzQmT55cVjus4tkVumDBArq6upg4cSLa9rqcFnh00Sp5W0LJu9BzzdTApk+RuNdTRyt2cLMM7B5jrT/EEUccAXgbhXt2lT766KMAtL3UbWuvy7I6r5K3JbL5biXvAq/JkbiXeXEhqndw02m86r+Dgs/X7lwGwBNPPOHZtmuevNPly5ezdOlSQqEQenvObfNepU7coFrl7TWVJO/sa01kMqlmqDhFwCRuNx+u7ahj4sSJdHV18dRTT9muvxQ8uWIz8yPNtjAimc4fVnLeu4rkXXMzTaA8eQ8oR81QcYyA3SRmxzsCkR3MfOKJJ5xuUl5cv2r7+/tZsGABAPrm0paMrUV5ez1NEKgpee+MnB06j35JvBpnqDh9bXmVD88JRv/434+gaRpvv/02ra2tZdVvqWq3K3jhhRfo7OxkzJgxaDvSg5cWou9albdX1Nw0QVLyztyg42zBapqhY1SqxDPPT4Q4+OCDgdRSs27j+tX7+OOPA7Dl9T5bg5e2UPIuSM3NNMFFeWcrqK0ZKq4SMIlbq2Pn8f/kJz8JpNIopsvecPWdbd26lUWLFgGgt6fTJ25H30reBam5mSak5W0Y7sk7W5F/Evd6cLOWJF5qKuWnp9xBQ0MDGzdu5M0337Rdr6Uq3Sz82WefxTRNRFcErT+k5J0HNdPEZQzDW6GmJS6T1T9DRUl8iOdKjeOOOw4gO/7nFq5ezU8//TQA+pYhdtzJQzmbtzp6wj1YlKpi12S2SuYY+vU+M/Xa3X2+XAI2s8INKm0RLK8mCRx//PEAPP/88ySTSdfqca1nb9q0ibfffhsAfWusyLPTmHLA7aklYTp4YqpomuAudXolldx6/JB4pj4tffu7VxIXGmg5m3l4ecOPYfjWryomGk87ptT2pq4d66/5zuE30tzcTGdnZzaN7Aau9epnnnkGANERRcSLbxhbDtJIn1zTAUFVqbwH1O3mexwqYvJS4oPr8Urig+WdwYv37pO8cwm6xAesJ2M34LMocYHg6KOPBna60A1c69GZO5H0LSVE3zbIyjvz/3I6UZXLe0Ab3Hivxco0PRjgG+r4ajkLUbkh8vRCV0PmSt2UeADknSHoEh9YlgsS10R2sPyx61NLZ7/wwguupVFcEfjmzZtZsmQJQgj0bRby3w7Ju5yyakXeGVwZM7CKWxIvdnw1LTVv2ukF1DKrFBbDDYkHSN4ZAilx08zvBru+sIDWEWXkyJF0dHTw+uuvu1OHG4W+9NJLAMycORORKHKjgV15F+okpZ7gGpN3BsckbqcMpyVeyj6quu7ckrBW5Z3BSYkHUN4ZgibxQu1xJZUizQFplOeee670OizgqsCXPrHO1uuLHdBiAwqlrelbPbfG26FsiZfzWqckbuP4OiLxUuWdwQmJB7xfQcAkXki4VlIpNqP3x3+aSqO88sorrhwPxwXe19eXHXXVttUVfrKN6NvSaLDVwUw1TRAoQ+JOHL9yJC5lWSIUup7aed5OTtyuvDNkJG6n/V7OJiqTIEjc0mYYbuTDpYnWESUajbJ582ZWrFhRevlFcFzgCxcuJB6PM27cOERvgW3Tinwi2nosh+KfqEreuZQscSePnx2JO3V87cxQKVfeGezMk0+fp0rqX75L3GqgOITEy2m/kFp2bRQ39st0XOCZ9MnmN7scX/sk76DlULg4OFGMSrq4crEscTc+/EqRuNPH16rEheacvHOxKvEKlHcG39pc8niYjUi8SBT+6p/fB1JpFKdxtCdKKXnttddSBW8vkD6xINfBB7EkeWdfM4QUXIy+K/HiyqWgxN2+O9XKTS9uHd9iEs/M8XZa3hmKSbyC5Z3B1bYP0S/teMPp4E9Pu3Dx4sV0dnY6WrajvbG1tZW2tjZCoRBaZ9Sxcm2f+LwDD0rexcgrcS/v4BzqOLp9fDUNEQ7tOrg51A06TjPUe68CeWfwVOJl9NkB7bQi9ALPEf0a06ZNwzTNbIDrFI4KPDN4ue+++yLMIYouIR8Fpd/COpiBd18peVtlgMS9HjDLJzIvF/3KnaHilbwzDH7vVSTvDK7OzMrpq7ai72w5svR2FvDUIYccAsAbb7xhv015cFTgmcnq7z62Mv8TShRxufLO1unyV/9qurhy8XTtlMHkztLw4fhmJe6lvDNk7litQnnn4qrEHbm/wblZKX/90T+BAAvcNM2swLM775RdqAMn2Om77nII+hxvRRlk7tzzcTC8UqYKloNb149zC9s5U47WEUUIwZo1a9iyZYsjZYKDAl+xYgU7duwgFoshuiNOFVseLkZPtSBuzyPPXPxYtzyDmVnP28yu7+0nvp4HD3DjWkqtfR+c4yYMjT322APA0U0eHLtK3nrrLQD6N5gIGYwDp+Rtn5qXdy4y9Tc/z7uSeOkETeIr/rUBcDaN4tiV8u6776YKdHD2SVm4dOKUvF3Gb3kXirZ9XntESbx0giRxrSOVmQhkBJ4RuOgKgMBdSp0oebuMj/KWhpGSd7F9M5XEXaXiJV6g/2idKYGvWbPGsfngjlwxW7duZcOGDQgh0PzOfyt520IIH2ZbZPBjk+UcZGbfTKubHmdk7xO+nisPqHiJD9WGpM7EiRMBWLJkiSNlOnLVZKJvunWE4eNXYCVvW9Rq1A058i75hWpw001ck7jPzJgxA4D333/fkfIcuXree++9VGGdPkbfSt62UPIuZzVEJXE3ceXa8zkK32effYCAClx0+SRwJW9b1Ky8TROZSDqzHrmaoeIqTh9Xv1MpuRG4E++t7KtISsmHH36YKqy7wPKxLqLkXTo1LW8rg5WlogY3XaNiJG6hT11y6I/RdZ2tW7eyadOmsqss+0pqb2+no6MDXdcLr//tFi6cCCVvF6lGeWdQEneNipF4sXpNjalTpwKwfPnysssr+2rKNMLsFN7fwONC6kTJ2yUCMNMke3elm6gZKq5RLRKfPn06ACtXDrFmVAmUfUVl0ieix+PoW8m7JHyfJugjZQ9WllyhGtx0C1ck7jGBEnhmnzfNS4EreZdEzaZM8EHe2Yr9l3i14vi16kQUXsI3u99f+hAQEIHbisDd/hqrSJFeTa+aP5wUtYfTAYlnqZT0bk+ZscLVq1eTHLzuTomUJXDDMFi3bl26UaGyGlISDi/xWZWCM2V2NT0/JJ5datftbdiKMGBzBi/Rdfe2X7OANAKwHG6FUPa+AyUGpKJfJxaLkUgkaG1ttV8vZQp88+bNJBIJMFONsrSztzSRGbmUgVNCqmp5Z/BY4rn1ZH8PgsRL2Xm+HHTd17TVLqmbKpJ4NeT2BSI7E2XVqlVllVVWj85G3/0hazvQO5k6caBT1oS8M3gk8XzlB0XilnaeL5egyTtDFUjctfs9vDg26a35MkyaNAmA9evXl1VsWb05E/6LPuvpE5nZ69JnAVedvDNflwt9SLos8ULlBkHiRXeeLxe/5V3svFZwSiWwkXepQWla4uPHjwdgw4YNZVVfVk9eu3YtAKLPwtfToaLCcrApo6qUdybfXQwXJG51a7mqlngQ5F3ihuG1jmfRdx7uveZRwOcIPJtCsRiBOxF1l0vVyrsUHJR4qWUMGNz0C01DhEOODW6KUMj/tEmp11YArkWrVHTqZAgyzvRV4G1tbanG9BcReGbgcpc/lz+YWYqIlLxzcEDiZb/W5017nZihIkIezr7KQ1lzzStA4oFNnYD9a08TaGlntrW1YZRxn0JZAm9vbwdAxP3txFY6opJ3HsqQuGPRewAkLkKh0lMqQqtseWcIsMRd3dPW7/cd1wmFQiQSiaxH7WBb4P39/ezYsQMAkSgQxQwRfTuNpQG0asEJeWewIXGn8+d+S7zkvLjQ/J3jLaWzd3n6LbM8BDryhrKvP4Fg1KhRAGzZssV2ObZ7YbZSE0ja78yOpFGgdu44dFLeGaRpeSU9N45xRUk8APJ2RbgBlLgb+BJ9D5pCmKG5uRnwSeA70yf60HPAA3DLfFVJ3Q1551JA4lZnmtglCHdtFh3c9PvuSrflExCJBz514sQ1qImswLdu3Wq/GLsvzOZt4oUHgaykT9yKwpW8bZBH4l7ewRmEaDzv4GYlTRMsB58l7qq8A0YgUigF899+kJZ4EE+YbbySd4YciftxHAMlcaHVjrwz+CRx149xQL5hZHjs1mcBnyLwzs5OAESB/HfJg5dOSSpgJ8o2pkwthepTKqqqPgTtEoA0oC9U8F2beXHqvdjpD0OsdJgJfn0VeKEBTFHCEo1BuMknUHgddefix+p9OaSW9/R/HXGZSKb6ZRC2SvNrI14Pr0s/lnjwE5FMXWeZ2Xx2KD8CN5y70BzLhUNlRw9+yTudLvCL7K5BAZF39v8Zifu8VZqSuM3y/Iy+C81qSruzu7vbZoNcjsA9W75zKCpR4n7K2y9BkJP/9HvT40RygLwzSFOmxO73fpd+zYKpQIkH4oadAggj1ed9FbhIFr7oS0mjgMNReKWh5O1bGzBNZDKZ2oKtAH5LHFAS9wM3rks/I/Curq7UL/GA3zEV4E/gAdSyvH3esT4rb4t9JbvDvY8oiVt4bRCu/QLXlkikHuvp6bH9Xm33gr6+vtQvpgsrhTktsyCcyELUurx9JCPjUgfRpSmDIXE/zl/AJe64vO1em8VSyOkUimma9Pb22qrC9tUTj8dTvxQTuNBKTqO4QlAl7pe8dd03eQdpsBLDsD0DKiPxmpyhElCJBybyhuLnxRSQbmpPT4+9Kmy9ClJ7YYJrB6smcuF+ytsnApHvpnx5Z8sxZWrgsxZnqARU4s5W7FL0TWpBK2TqvNndnb7sCFxYfH8qCh+Ekrc/5Mw0cfLeA78HN2tB4sUITOqkpDpSPzwXeDYCl6L4G7U5ndCVKDwIHc4PeQdgjjfgv7wNs+hME7soibtL0SWjg3BtZ7B6HkwfIvBkMomZWavCFK7eRVl1EvdL3kEYrPRR3tnBSpfkPbgev/BtrriPEndF3uVco1YC1kx70z/s7spj60wPqMzqcQvKYGYGPyRey/L2Eafy3ZbrC8oMFa/xS+JBiryhtOstkvJB9sbIUquy86JdVg1zWUpVMaBZY/KulpkmtusNwgyVGpC4K8fX7eg7D8uWLbP1Olu1abkXZYCC6pIJ2ie3whV8XShN9TF3qZLjG7K5v2r5AgfX1zwRmnCnDi+jU7feQyHS+136QZA2ZxBh7zcfFpoIxg4+VcrOQfGARZClRu/9qYkFM2bMsFWdAxG4xU7i0ebGlvHjxNeYxCE4mzOIcMizMZisvGtpE4gMHhzj3OPqysybcq9RG8d9l6DY6utsvWpQhW5eGK5E335+aiuJ+4LQdUTIfYkrebtLvuMaSIkXI9NeLXWePE2hAOiZOcUC/5eNrTSUxP1B01yVePZDwid5SylT89CrVN6F8PMDcxdKudbSAq+rq7NVlW2LRKNRAKRmoaE20ydVF33n4pfEXZ4HXbD6IEnc4ZuaRBDy3X6J26vUVBFJO378Xb4+JTIr8IxPS8V2C2OxWOoXl8aHqlreGfyQOARD4n6KXNNSOXEHJC40Udvy9gjLEXZQrnErg5mC7Cw+/wSuB2hgshBBObGD8UvifqdTwPdovFyJB2amiZL3wOc62bZyrs1i5yUne+F5CqW+vh6wkEKxkT5xbdpgUPEzneLjNEMgEBLXIuGS8+JqsNIb7BzfQOXDC5F2p6Zp3g9iVlQEHtToOxe/PrR8nisO+C7xUgc3lby9oZzj6+i3IrvXZZE0itRSj0ejUdvv1YEceOFO5Hv0XQnyzlCjEg/U4GaR/uL3TBNQ8rZMEFIphc5TJPVYU1OTvbIpQ+CNjY2pXwoJ3O/1SypJ3hlqUOIQoBkqkUjevHhQBiuVvEssJ8AOkKFUf/dF4CNGjEg1IuzcRedo9B3gE1eUWpd4APLiuRIP1GClknfp5TnVfjvXZKEgNpSaDTZ8+HCbDSpD4CNHjgRAhoeekhaoW+crjVqWOARG4jWd74aKlnfQ8TUCzwic0BAXWonpk0CtFV4IL6Mgv45JACQehJRKJuKuWXl7STW/xyHeW0BSKP7dFFIQNzpEZk1vrwTn1w03mcjf54squ/2ZDyKXhoEZT/i6OYM0fLxz1st+nr6uXNuOzjD8H4/Lw0nnfxTwKYVSLAduO30SwAOdJbdtbnduv+WdwS+JZ+o1vY/GpWEgEzul7cfmDNIwd/Y3r68JL/t57kYn0nT8GA/4UCj3ONp4faHNaNrb2wFoaWmx3STbAm9ubk79EjZS9/SXgWvpEyc7Xj6hutW5/ZLmUDl3rwfPBtflocQzO9bv8ndTph5zedPi7IJUgy96rySerx43+/ng+jLn2gHyHkfbhTm/L++mTZsAGDNmjO1ibAu8paUltSKhBjg4EwVw9mA50fEKleF05/Zr+7hSNmJ1k6Hq8EDiKUEX/ubj5s7z2Xz3UOff7X5RqHyv+nn6DuFyJT6kvD28tgZkIfIcO18FHgqFsqG/jMQHPljCQRoy+g6KxK0I1anOHWR5Z3D763SRx12RuGlakncGNyReVN7ZJzoYVQ4u18pzvOrnZdQjZZHySz1+ZR7vfOlkKZLZjYx9ETjAuHHjUo2JBnQgMxe3c/Lldu5KkHcGpyVeSoomLXGrsi1enpkarCyxPGkYjg1uWpb3gBc52FdKrdeLfm5zUFNK6ez4kc3jXHAM0JTISKqNDQ0NNDQ02KoDHBK4GRnYkR2b/+1C3qkkSu0Idjt3Jck7g1Pn2O7xMh2QeFrednFihkp2pomd8+9En7Fbrxf9vMRBzZLk7efAMCDDqX5TTvQNPkfglgYv/ZK4XTmU2rkrUd4ZypW4A6+3O80wM02wXMqRuCODbOW8vtzXetHPS8mHOz1zy43oO/OculRbMw61i3MCd1NCXguuXLFY7dyVLO8Mdo+VgxF8qXnxoWaa2EWaMpWGKSVa9HuGhFPRuxf93MLMFFtjEk7myUus9zPf/QQAkydPLquosq7kTOUylrS36qBfFMlPedK5q0HeGUqdZuhCDt2qxEsZrCwVmSg+V3zIaYJlV+5j/tztfp6uY6hjW9bxdHimSlEPmhJpStasWQPAlClTbNcFZQp86tSpqV/qjOzatq5JyatUiledu1rknYvVaMylugtK3DSR8bhr8s5QSOK2BitLqtynGSxD4eR7HeJacuXD0AXkoCBn7dq1gM8Cb2pq2nlHZizp7zxVOwzuEG5c3Pk6nh93WXq1MFaxaMzlurO33w/4u5m9Ld4L8kncdXlnK/JhDnm+Pu7Gex00M8UxeQ++89R2MRb6lzSRQrJx40bA5xQKwG677ZZql400ii3ckribbc90cNPhKU5W8XpVw3zH0uM7ObMSL3OmiV1y79osa6aJrcrNwv93q87ca8nFOgORhtrlpRblbUpkXRLTNKmvr995R7tNyr6yM2kUWZ9Mt7FCJe5FZFQBX/UcI/OB5fVt+Dn1OzlX2w7Z+v0475k6vaw7I3G3o303Pgw9OE4ZN2ZcOWXKlLJXunRO4DHrF4ojA5hOH/Ba2kS5VjAlCM23AXPfl0j284OjgpDpgUWvOOvaUwDYY489yi6rbGtNnz4dALPBu6+prh3sapV4BV5UjuKDxH2Xt6JkvJL4smXLANhzzz3LLqtsY+21116pX+oMZMj9/G72a4hbX9WqWeK1LHKh5d3r0p2qlLwrBaekXco5/+CDD4CACLyxsZFJkyYBIBu9HSxSErdBLUscXJW40ISSdwWRd5Epl6NwGTbYunUrQgh23333sstzxFR77703YC2NUk4HH/KAK4mXhpK482UqcVcUfu3XK9OOnDx5MrFYrOzyHBW41xH4AJTES0NJ3LmylLwrCj83W/9/Pz8NcCZ9Ak5H4C4KvNBBzz6mJF4aSuLll6HkXVFYWmjKpuCt9IXFixcDMGPGDFt1DMYRO+21115omgZRw7dNjl39VFUSr1rKkbiSt6IUJDIr8FmzZjlSpiNmamhoyCbkzeHxIs92D9fy4VD9Eq9hkQtdL0nGarCyMiklyHMjIJSxJF1dXdTV1QUrhQIwe/ZsAMzh/U4VmaXkA68kbo8alrjVaYZK3JWJn3nvbBvSwe2MGTMIhUKOlOmYkfbff39gZyPz4VXnVxIvg1qWOIX7qJJ3ZRIEeQOYw1Ju3G+//Rwr0/EInEYDGfJfAkriZVDLEh/irk0l78qkHHk7Lf7xB6YWrnIq/w0OCry5uZkpU6Ygpcx+0jhB2QdRSdweSuI5/1XyrkSCEnkDyGiS1tZWdF0PZgQOOWmUJufz4HZwdXphLVDLxy0tcV/lXe1BQgXg1IeAmXbijBkzaGxsdKRMcFjgc+bMAcAckV/gQfpErDS8XjENqG2ByNTGEG7v4DMkmWPv8TnwpZ/VABknHnLIIY6W67jANU1D1ieRkfI7vqMdqQLXD95Zlcz7u6soee/8r9cSH3zsPToX1SZur789DXX8JJLG6RFgZ5DrFI72jGHDhjFz5kwAzBF9eZ/jZSfZ5QT6uQu47aq8X3BHyXtXYXsicaENfexdPieD+1S1ydxPZGOCjo4OGhoaHLsDM4PjveLQQw8FwBw5dB7c185RQXldS8sHOE0Ny7tYykQahr/H3aVzM2TkWAUSdyIKL/f2+0z++6CDDnJs/ncG1wRePzWExL8pPAVPXDkS9+gDwM01G4akxuVt6dym9zV0lFKOu8PnqNh7qQaJu02xY7TPSamd5zNudBLHr9i9996bpqYmurq6Ct7U43vHsCPiAMnbznMLouRdwgsclLid4+7QubL6Hny/VsvEz5lEMpTgvffeA+AjH/mI4+U7ftXqus4RRxwBgNnc63TxlrB8wioonVKIsi+wWpW3NJHJhO0Pc1+Pe5nnrNS2V7rE3aLYcTGb+5FSMmPGDFpaWhyv35Ur96Mf/SgAow5oLJhGCUSnsHrxBjD6Hvy6QBzPSmGIwcqSy7B7zH360KzVflJuFG5rMoE0mfPF1KSOuXPnllX/ULjSi+bMmUMsFmPTpk3IhsJ3ZQaiMwUkEnfiWJRcRi1G307IO7esUo55oZkmpVJiOeX2r0BcqxWE1E0WLVoEwFFHHeVKHa5cvdFolMMPPxwAc1T+6YS5ONkxbH/SFpK4B4J38hhYLkvJ27kyrRxzN463xTKd6l9K4imsRN/miDiJRIJJkyYxdepUV9rh2hWcSaOYo/qQsrQLxrdOkk/UAYnOS6XoMaxBebt6Z2Uxibt5vIuU7fT1VKkSd2ow0+r7/8j5qaVF5s6dixDuDKS61qsOP/xwIpEIMmYgG5JFn+9Ep3DkBPkgbLcuiCHLrVF5u35uh4ruvTjeQ9RRqbKtaKSJ1E1efvllAI4//njXqnKtZ9XX1+9Mo4zutXTxBKazZdpaYakTS+UreXtTXwYvj/egutzsW4G5Vj3G6vs2R/URj8fZbbfd2GOPPVxrj6u964QTTgDAGN1n+aaewHSMKpB3bj2BOa5e49N2cdKUVT/TpBL7VDnf0i2933RfO+CsvYBU9O1W+gRcFvjhhx/O8OHDIWIiR8Rdv5AqrUP5sthOheb0bePkrI8S6nRix/uSceMu0QJU4jrpnnywhQ1ef/11wN30Cbgs8HA4zHHHHQeAMTp9U4+S+ACUxN1H6Lp3ElfyDiyuH5/0dfXVP30O0zTZd999mTBhgqtVut6rM2mUyBSQWrBvhvELJXH38UTiSt6BxbN0JZLHH38cgE984hOu1+e6wGfOnMmkSZPo6+vDbEnPCa+i/LJTKIm7j5sSF7qu5B1QPDk+6WtJNiZYsWIF0WjU9fQJeCBwIQQnnXQSAMY4b9dGURIvTK1K3GnRepqiyUXJuyheyhvg45enZt4dc8wxDBs2zPWqPel1J510EqFQCDksgdmQSP2xxsRhFa/3YaxFiTuZ6vBF3pnt3jySt+97g9rE6wBO6iZPP/00AJ/61Kc8qdOTntfc3MzRRx8NgDGuZ+cDKpUyJF5L3Ou50r5TrsQzr/dD3irqLopnxyjnmjFH99HX18fUqVMd3Xm+EJ71vk9/+tMARKelPqm8REncGjUXjduVuJJ3oPFD3hLJtBPHAnDqqae6Ovc7F8964AEHHMCUKVPo7e3FHJ2zwFXAl2n1GyVxlylV4mqmSaDx6zqXwxJ88MEHRCKR7Mw7L/BM4EKIbBRujO8ZeGemknhBlMRdxqqUlbwDjafX96Drw5jQDaSmDjY1NXnWDE+/A37yk5+kvr4eWZ/EHFF4nXC3UBK3hpL4oIf9mCaYXgZAybs4fspbRpMwJjU544wzzvCuHXgs8MbGRk455RQAZn9p2sAHvVxsSEncEtnBzVphCIn7me9WM02K4/f1/OmfHotpmhxyyCFMmzat+AscxPPJq2eccQa6rvP666/vnFKYQUm8KH5caDUn8VA4K2w1WBlsPL+OB0ffusljjz0GwJlnnultW/BB4GPHjuXYY48FduaN/KJSJQ4+XHQ+rernF0ITNSHvSsZveQMYY3vp6elh6tSpHHrood62Bx8EDvC5z30OADE+gYwMiu5KlUSZUnHra6rbX389v0khU18tSDxzo4zXc+OrUN5uXl9+I4VkxJwIkHKaV1MHc/FF4HvvvTcHHngghmFgTHQgCi/3InP4wsktq1o674CIv5olPmhXHc8k7qO8Pd8RKgjlOnBOzbG9bNmyhdGjR3s6dTAX37Zn+c///E8gdWfmLlG4HQIm8YFF+x8tlEPedE01SnyILdFclbgPM03yN8PdfTMDtamyA+dSCsmoI2MAnH322YTD4bLLtINvAj/ooIOYPXs2aDgThUMgJD7U6wPVgUugYK69miReZLd6VyTu8UwTrwh0IGT3HA56nTm6l7a2Npqbm7Mz6/zAN4ELIfiv//ovAPTdkgOj8HIulHJz6AGOxAMl7wzVIPEi8s4+zUmJByDqHowT7SlURjnlByXyhtRt82OPSa00+PnPf55oNOpIuXbwdYfbgw46iFmzZhGPx52LwsG3SNzKa+xGXIGUd4YKnqGSHaws4flB+KbnFnbb5eY3iSDJG+DSR8+ltbWVpqam7N3lfuGrwAtG4eUS8IssqBdwWVSYxO3KuKxzF2B526WU91Pqew+avKWQ3HnnnQCcddZZxGIxx8q2g68CBzj44IOZPXs28Xic5BSH54U7JHG/I4tAR9+DqRCJlxVJW0y55H1dBcjbTSGXUm7Q5A3w1XvOoK2tjdGjR3P66ac7WrYdfBe4EILzzz8/9Z/xfZixZOp3B3ONth7LfY6FC6+cr55BwpEbhAIuccfSIKVIvELkncFqOtCvui0W5Gg5Uje56667APiv//ovX3PfGXwXOMCsWbOYO3cupmli7NbpfAVOnEifBjcr9pbqgErc8YHIYhIPyDRBp3FrQDJw8s7BmNjNjh07mDJlCieeeKLj5dshEAIHOP/889F1HbO5H7MpUfwFpeKixN0eva9YAiZx16YCDiXxCp8m6PaUWNfKdaHfybBBZK9Uueeddx6hUMjxOuwQGIFPmTKFU089FYDk1A6kEK5cbE6U4VXer2Kj71wCInG3b8bZReJVGnW7dT9DYOWdLi85tYve3l5mzJjBRz/6UWfrKIPACBzgnHPOIRaLpTY/brG4g32piw0FXOKp4ito0NIKPkvck9vhcyVeRfLOvI+K6O8unWOzMYEcl9pF7Otf/7ova54MRaAE3tzczBe/+EUAmo7QkW59S3FQ4oH/OlkEz1Y19GmuuKcLUmUWwaoSeWeoZXlLJHudPQ4pJZ/4xCeYNWuWK/XYRUgpA9Xb4vE4/+///T9aW1vRWxsIrbawPZGdkyc0Z066W8uNZtrm4nKmXi5Jm7lQhSa8WaI1EwV7uppg+lLSvNm5R2jC/Q8LD/ph2dg9x8XekzQxRveS3GsHsViMP//5z7S0tNiryyUCd1YikQjz5s0DUuuFm7GEexeh0MrrmG7Le/DvTlPu+7fILnl9L9IZmTq9Ek9uHGS6uwFG7qYern4IB2T8oiBujmvoJk1HpNIAX/rSlwInbwigwAEOP/xwPvKRj4CA5LQdAzdAdoMgRxfgSvphwIXv4vsfctaOmxfe4DrdPr/5vsS6JPF8wnZc4vn6WxBl7uYKkcDpv/oYW7ZsYeLEib7stmOFwJrroosuIhKJIEfEMVvi7negoEscHDsGedMYLrz/ovN9nf5gKjR46Nq3pQLBhZsfum4RRFHno9x2FukPZkOCBx54AIBvfOMbRCKR8upzicBaa8KECXzhC18A0lF4qMDF7tTFGQSJF+uYZXbcgjloB1MqJS3s5dQqccXqdPr8Fhs+ks69t2Ly9uQO2qDI3c12SBOJZNqZozAMg+OOO44jjjjCvfrKJADGGpovfOELTJ06FSImyWnpOzSDEon7KfugHAOHcELilm9rd+q9WR37d0DiVuVcC2vYuC1vgK/c81mWLVtGY2MjF110kXv1OUCgBR6JRLjssssQQmCO6cUc0Z96oMoElqWU92XjGJQ0A6SMY2B7uVyb57XkhaXKPb+lTtwqY6JX4NImforeA3nLaJI77rgDgAsuuIBRo0a5V6cDBFrgAPvtt1921a/m4yJIPX0Sq1XipVDqMSj1Pdk4BmWvkVHie7K1KiDYP792ZWxjUNOOvEt+TSVE3k6PlQw+9xl5Iznggun09fVxwAEHcPLJJztXp0sEbh54Pnp6ejjnnHPYuHEj2vp6wiuH73ww92SUcpKtXsBu592L1WOVIu0pa/61xbY5NSfZaltty3tAIaVEn2W+P2H9HJQbeRc9F+X0Ny+DGzc+YIZwhjG2h+QeHUQiEX7/+98zefJk5+t2mAoIM6G+vp5vf/vbAMiJvZhN/d5VXgmROBTs6GXfPGNFpg7eUGIlEndE3mDtuEhZvryz5RQXUuCXNvDwzlavkHVJQvvFAfjqV79aEfKGChE4wCGHHMKpp56KlJIRx4a8S6VAVUi8bDy66SdDIYk7Ju8Mhd6X019QC5SXe4NOuQxZTiWkTMDdm/cG1SGR7PX/xtHX18eBBx7IZz/7WXfqdoGKSKFk6O3t5ctf/jLr1q1Da68jtLQJQbqjlnprfDnphKClTwaT0z5Xbl0f1F43b+ce3H7H5Z3LLjevuHhpDLrd3o2oe5fz4mYe2UncDkQG1ZGc2IWxWxf19fX84Q9/YNy4ce7V7zAVElqmiMVifP/730+tG97Shzm6b+eDpYrVrfUTgkDue3OjvblCdXktjgGRuJcD127HNTnvxa2UyYByg7g0s5flDlGH2ZBA7JHyyLx58ypK3lBhAgeYOXMm55xzDgDRA5PIaHLng5Xy9dALpOluLtWHdIonq/wJzX15QzYfHrhpgn7isbylZjL+Uw0kk0nmzp0bmF12SqHiBA6pG3z2228/uru7Sey1AykqJgu0Ky52WteXUhWaZysaerZEq1eyEwKhu7tqoeerMZaDx+2USI75wQGsWbOG0aNH8+1vfztQ63xbpSIFHgqF+P73v09jYyNyeAJjqgv7aFYJ1SRx15GmN9F3tci7Uj4c8nDx389hwYIF6LrOVVddxYgRI/xuki0qUuCQWivl8ssvB8CY2IPR3FfkFbWLNAx3B/+qQeLVJG8vN7GoQMxYgl/+8pcAnHvuuey///7+NqgMKlbgAHPnzuVzn/scANE5CWRdssgrBlFLnVxa2EG9HCpZ4tUmb8WQSM1k4mnD6O/v55BDDskumFepVNQ0wnwkk0nmzZvHO++8g+gKEX57FEKWIJJqXpQqHxnRurkGeCVJxCt5a7qrH3C+5bsdWxzM/bZLJMm9dmCO7mPUqFHceeedjBw50vV63aSiI3BI5cN/8IMf0NTUhGxMkty9w/0NICqZTCTu4gXjdpTpGEreNYUxsRtzdB+6rnP11VdXvLyhCgQOMGbMGH7wgx+gaRrm2F6MCT1+Nynw1LzElbydaoB/dZeAOaIfc1o3kJrvXcl571yqQuAAc+bM4YILLgBA7t69c+nZYlRIB3QDtwc3AytxJe+awqxLEj0sgZSSU089lU9/+tN+N8kxqkbgAGeccQYnnXQSpmkSPSyBGStxULMWcXlwU+juSqxkvJC3EO7LW800sYTUTSac1kBXVxf77rsv8+bNq8j53kNRVQIXQnDJJZcwa9Ysurq6SM7YtnPRK8XQ1MoMFY/k7faHVkUNEvuIFJIDvrEbq1evpqWlhR/96EeB3dvSLlUlcEjt4nPttdcyduxYZMwgsc+24ndqqkgmJfFkwtVV4HyVuIfydgtpSiVvi0gkn/jxIbz66qvU1dVx3XXX0dLS4nezHKfqBA4wcuRIrr/+emKxGHJEguQeO4I3MyWgHxqufjX3S+JVIu+g9pkg8p+/P5VHH30UTdO46qqrmDFjht9NcoWKnwdeiNdee43vfOc7GIaBvq6e0OrhhV9Q6TuNOIjQdfeOh1cLU6XrUvJ2mbL3GHX2vRktPST37gDgm9/8Jqeddpqj5QeJqozAMxxyyCF897vfBcCY1ENyXLfPLaocXJ2h4mUkruRdU5jD+2Hf1DTiz33uc1Utb6hygQOccMIJfPWrXwXA3KMLY1SBNVNKvVCq/cJy86YfLyRe4bs11YS8HXx/ZkOc0KF9JJNJjjnmGL72ta85VnZQqXqBQ2r52f/4j/9ASomYVWSOeKmb3NrYbbyiyKQ7XBKJk9uIVQvSlLUhbwevHbM+QezoJL29vRx00EF873vfQ9OqX2/V/w5JTS+cN28exx57LIlEAnFgN2ZTYugXWL1wMvNJa0HimZSKEvlAHDweA8St5G0ZWWcy7GOSjo4OZs6cyY9//GOi0ahj5QeZmhA4gK7rfP/73+fII48kHo8TOqQHc1iBG31KvYDMGrixIjelokTuKDUjbmk6K++opPlkja1btzJ9+nRuuOEG6uvrHSs/6NSMwAHC4TDXXHMNc+bMobe3l8TMLZiNDkpclvC1txL21hwCt6NxcG+fyKBRM+kScHxGkIxIxp0WZePGjUycOJGbbrqJ4cOLzDSrMqp6GuFQ9Pb28u1vf5u3334bEhrhd0ehdReYSVBItvmiCWFxudZquGjLWZ7W4vu3PeUwwFMIs++pSvpAUfKdizJuaZdRydjPRFi7di2jR4/mlltuqbgNiZ2gJgUO0N3dzcUXX8ySJUsgKVIS7woVflG+jlpIElqRC7saLt4MdkRe4vsvWeQBFXjVRdzFzvlQKRObApdRyehPh2htbWXs2LH86le/YsKECbbKqnQq93t8mTQ0NHDTTTex7777QkiS2HdL4Zw4qLx4IdRAZ1FqKl0Cjue7AWTUpOVTOq2trYwbN45f//rXNStvqGGBAwwbNoybbroptTZwSBI6rMjsFHA3L14NeLFhRIWJvKZml2Rw4duPrDMZdarO+vXrmTBhAjfffDPjx493tI5Ko2ZTKLn09fVxxRVXsHDhQqLRKObrDWjbi6xalvu10UqUkS8vXu0Xc7G0ikPvf8jUis8plKrKcxciX7+2ctxLSKGYDQZNx0va29uZOHEiv/rVrxgzZkyJDa0+lMDT9Pf3c9VVV/Hyyy8TCoXg3WHoW2KFL75Mxy1FFLkir/YLO8NQInf4/e8icp8EXjPizmD3OrBYtjmsn+gR/XR1dTFt2jRuuummqlxZ0A5K4DkkEgmuvfZannnmGQBCq5rQW2OFXyS00kWRkXitXOAZBovcpfc/QKAeC7ymctxgT95gTeBCw2zuQ8zuIh6PM2vWLH7yk58wbNgwe22tQpTAB2GaJv/zP//DX/7yFwD09Y3oKxsQFOlwpR7GKtoVpGQ8WsxKmh4sdZAWeM1F3RnsBDBQvP8LDXNML+beHRiGwRFHHME111xDXV2d/bZWIUrgeZBSct9993HrrbcCoG2OEfpgOEIW6HR2D6MSuatVyKQH2+rV8jm00++LHC8pBObkLpKTO4HUgnSXXXZZKrWpGIASeAHmz5/PT37yEwzDQOyIEF4yApEsMHHHhc5sidx6nZRJply3BJWTE3dL5ErgLlGONgocLykkyT07MEf3AnDWWWdx/vnn18TCVHZQAi/Cq6++ylVXXUVPTw/06YTfG4nWO0QkEASBO1Wmm+Vmy9v1onRa5ErgLlCuMoY4XjJkkpixDTk8ga7rXHLJJZx66qnl1VXlqI+1Ihx66KHceuutqfmmdQbho3owRg6xHK2dC9mNz08pK6vc3Coyc6YVwcOJ8z/ENWLGkoz6Dx05PEFjYyM/+9nPlLwtoCJwi2zfvp0rr7ySt956C03TEB82oK+v33Vw048ovFiddst3q9zs64vHD+VG5CoCdwinNJHnWBnNfUTnJOju7mbChAn89Kc/ZerUqc7UV+WoCNwiI0aM4Oc//zmnnHIKpmliTOskuecOpDZo1oEfF3OxOt2MyF1GReQ+42TfGdRPJZIz//fjJGdsp7u7m9mzZ/O///u/St4loCLwEpFS8uCDD3LrrbemBje7Q4SWjhiYF/djSqHTN1CUUqadssHWCoalRuQqAreJG1rIOU4yZDL7wiksXLgQgM9+9rNccMEFaqZJiSiB2+TNN9/k6quvZuvWrcRiMRJvRNG35MxR9VribtTn9tTIMtZEtypyJXAbuCxvsyHBqBPDbNy4kbq6Or7zne9w/PHHO19nDaAEXgbt7e1cc801vPXWWwDo6+vRVw1LzRcPusCt1OvSgNXOx53J4BWSuRJ4CbilgvTxkUjM8T2IvftIJBJMnDiRa6+9lt13392demsAJfAySSaT3H777dx7770AiM4woWVNaH0h528tLoQbsnVx4Cr1d2eHYPKJXAncAh4sNyBDJsk9d2A2p2ZwfeQjH+GKK65Qt8WXiRK4Qzz//PP85Cc/obOzk7q6OpLvRNA2xRBWj67fAs/XDqe7xuD36NK2crkiVwIvggfyNpv6Gf5RjS1bthCJRPja177Gaaedhqjk4xYQlMAdZNOmTVx33XW88cYbAGjtUUIfNiESVnPCZXToSjuNVredKxe310KByhO4R31FanDGLcdzzz33IKVkypQpXH311eyxxx6e1F8LKIE7jGEY3H///fzud78jmUzS0tLCjucMtG1F1hfPxa1520HCC4F7sRphhkqRuEfHw2xMMuX0EXz44YcAnHrqqVx00UVqMSqHUQJ3iaVLl/KjH/2INWvWAKC1xQitHIZIlnChV7PIlcC9xauoW0iMyd0wrQ/DMGhqauLSSy/lmGOO8aT+WkMJ3EV6e3v57W9/y0MPPQRAS0sL2/+VRN8atV5ItaZVlMC9wcM+YDYkmXrGSJYvXw7ARz/6US655BJGjhzpWRtqDSVwD3jrrbf46U9/yrp16wDQNtcRWjHcem4cqk/kSuDu4uE5l1o66t5tZ9T9zW9+k+OOO04NVLqMErhH9Pf3c+edd3L//fdjmiYkBKFVw9Da6opvFpFLtYhcCdwdPD7H5sg4oz8eY/369QDMnTuXSy+9lObmZk/bUasogXvM+++/z09+8hNWrlwJgOgIE1oxHK2rxFuIgzLt0C5K4M7hw7mUUZPktA7MltS87tGjR/ONb3yDo48+WkXdHqIE7gPJZJIHH3yQP/zhD/T29oIEfUM9+prG0gY5oXJFrgRePn6IWwNjfA+RmUl6e3vRdZ3TTz+dc889l/r6es/bU+sogfvIpk2buOWWW7KbKI8cOZLOV43S0ypQeSJXArePH+JGYo6KM+7jjdmxnH333ZdLL71Uzev2ESXwALBw4UJ++ctfZqcciu4Q+qphaNvC3oscvBGEEnhp+HiZmo1JZp07lddffx1IBRpf+cpXOOmkk9RWZz6jBB4QEokEDz30EH/605/o7Ext5iq2R1IDnaXmxyH4Is+0z02JV4vAfbpEZdTk41cfyuOPP46UkkgkwplnnskXvvAFGhoafGmTYiBK4AGjs7OTP/3pTzz00EMkEgmEEIi2KKHVDYh+n0QO7q+LAs7LXAncXnVhE2NSN/q0JPF4HIDjjjuO888/P7W1oCIwKIEHlPXr13P77bfz1FNPAaDrOrI1TGhtI6JfL73AoInci6VmlcBLq0Y3MSb1ENnLTA2uA7NmzeK///u/mTVrlidtUJSGEnjAee+997jzzjt59dVXgYzII4TWNvgrcihPLKW0w67MlcCtFa+bGBN6iO0r6OrqAmCfffbhvPPO45BDDlHTAgOMEniFsHjxYu68887sFlSYoG2KobfWD9zOrRT8lLndukuReTUI3MX2y4iBMaGH6F7Q09MDwPTp0/nyl7/MUUcdpcRdASiBVxjvvPMOd955J4sWLcr+TdsSRV9Xj9ZZwoqHuTh9oVrpUk7VWUjoSuB5MeuSGJN60CcnSSQSAEybNo3//M//5Nhjj1UzSyoIJfAK5Z133uGee+7hxRdfzP5t3333Zelf1qFtiZY+/TCDVzJ3Q3iDZa4EvrMYJHJ4giMvms2//vUvMpf97Nmz+cIXvsDhhx+uIu4KRAm8wlm9ejX3338/8+fPz0ZT9GmpOzvbYohkGdGUGxd0prt5JYsaF7jUJOboXqacMJoVK1Zk/37kkUdy9tlnM3v27HJbqPARJfAqYcuWLTz00EM8/PDD2Xnk4XAYo1VH3xBDdNq4KQiCs0iTXWpU4LIuiTGul9g+WnZgsq6ujk984hOcdtppTJ8+3clWKnxCCbzK6Ovr4+mnn+bhhx9myZIl2b+LrhBaWwx9c13pUXklS7ySBV5i26VmYrb0Y4ztRTYlsn+fMGECn/nMZzjppJPUJsJVhhJ4FfP+++/zt7/9jX/+85/ZGzJ0XUduCqFtqkPbGkVIC+JRAi+OTwLP5LaNsb1EdxPZ+dtCCA499FBOO+00DjvsMDUwWaUogdcAHR0dPPnkkzzxxBMsXbp05wMJgba5Dr29DtFRJMVSqRKvVIEXaLdEIhuSmC19GKP7oW7nxs0TJ07kpJNO4oQTTmDMmDHOtkkROJTAa4yVK1fyxBNP8OSTT9Le3r7zgbiG1h5F31KH2JFH5krghXFZ4BKJrE9iju7HbOlDxnZKOxaLceyxx3LSSScxa9YsNZukhlACr1EMw2DRokU8+eSTvPjii9mBLoCmpiY6l8bRtkbQtkcQZvrrdyWKoRIFnm6zFBI5PI7ZHGfcoSNpbW3NPiUajXLEEUdw7LHHcvjhhxOLxZyrX1ExKIErSCQSLFq0iOeee44XXniBHTt2ZB8Lh8MkNwm0bRG0bVFEX8j+HHM/qCSBS4kMG5gj45jN/dRN0bN3SAJEIhEOO+wwjjvuOI444gi1gYJCCVwxkGQyyVtvvcVzzz3Hv//9bzZs2DDwCX0a2vYI2o4IWkcEEbd5G79XBFngUiJDJmZTHLMpzuQjxrB69eoBT2lububwww/nyCOPZM6cOUraigEogSuGRErJ2rVreeWVV3jllVd46623dt4slKFP2ynzjnDwInSvNqewgJQmRA3MYQnk8ATm8ASyMTmoKMFee+3FEUccwZFHHslee+2lZpAohkQJXGGZ3t5e3nzzzey/ZcuWYRjGwCclBaIrjNYVQnSG0brC0K8h3N59Zyj8Eng6HSIbkilhD0tgNiYgsmt7pk2bxkEHHcSBBx7IAQccwPDhw91vs6IqUAJX2Kanp4fFixfz5ptv8tZbb7F06dLsfPMBJASiJ4ToCaGlf4oeHZK6+9G6B91b6iYylpK1rE9iNiSR9fllHQqF2HPPPZk5cyb77bcfBx10ECNHjnS9jYrqRAlc4RjJZJKVK1eydOlS3n//fZYsWcKKFSt2jdIzJASiT0f0h9I/dUSfDv06ol/bOfulHBzo3lIzkRETIiayzhj4L5aEcP46hBBMmDCBffbZh5kzZzJz5kz22GMPotFo2W1SKEAJXOEy/f39rFq1itWrV7Ny5UpWrlzJ6tWrWb9+PUW7niEgoSHiGiKhpX5PaGAIhJH6mfpdgKGBJP1PgASR+T+pRZ0QEgSg7fwpQxJCJlJP/8z8P5wWdsSEUPFLZOTIkUyfPn3Av912201N71O4ihK4whf6+vpYt24dGzZs2OXfxo0bs7eEB4VYLMaoUaMYM2YMEydOZMKECUycODH7u9rkV+EHSuCKQNLT08O2bdvYunUrW7duzf7e0dFBT0/PLv96e3sxDCP7zzTN7O+aphEKhQiHw9mf4XCYSCRCY2MjDQ0NNDY2Dvg3cuRIWlpaGDVqFC0tLWr6niKQKIErFApFhaImmCoUCkWFogSuUCgUFYoSuEKhUFQoSuAKhUJRoSiBKxQKRYWiBK5QKBQVihK4QqFQVChK4AqFQlGhKIErFApFhaIErlAoFBWKErhCoVBUKErgCoVCUaEogSsUCkWFogSuUCgUFYoSuEKhUFQoSuAKhUJRoSiBKxQKRYWiBK5QKBQVihK4QqFQVChK4AqFQlGhKIErFApFhaIErlAoFBWKErhCoVBUKErgCoVCUaGE/G6AIoWUkr6+Pr+boVBYoq6uDiGE382oeZTAA0JfXx8nnHCC381QKCwxf/58YrGY382oeVQKRaFQKCoUFYEHkOhrYxEiBEIDXUPo+s7f0z8RIs9PPfVTaKAJpKalPqK11ONSF6mf6b9LTYAg9XfEgP9LIZAa6ecDmsi+Rgp2Ppb+Pfe5Ox9PP5YtK+fv6X9oOb8Pet3gn7nPJ/PtXct9TA58jgYImVO2TL1uwN8lIv3/VDgjEennCU2mD6eZPawIiSYkQkj09E9NS/1NFya6ln5MM9GERBOpn6H0/0PCRBOk/o9E14zU3zHRhElYpH6G0j/D6eeFRep5qZ/mgJ865sDHMYkIg7BIogtJSCSzz9GBMEl0JCFhoCMJCzP9U6IBYSHSPzV0BGGhoaGRjIc4/Svj3O38ipJQAg8ipkiJOv1PCC0lYakh0HKspjPQcun/i/T/s1+wMv8Xef5O+jWZf+T5naysd/4//bvGzn+Z/wsG/Rzq70M0zcrP3A8AuwLPFXeOwMk+L/PTzP5fCJl6rsg8L+enEDl/E6kPByEQQiK09M/s/0GwU/6aYMA/PfNTAw0TXYj03wW6EISEQEv/1En/FJJw+lCHReqfnvlJ5mdK1EP91IBItgyZfp1EQ5IU0kZnVriJSqEoFApFhaIi8CCiSaQwd0aLmhgYpQ6KjLPRX+b/SFLxXSZiyvxfDPi7xEz/TIWzUqbyElKmnislqedL0nmO9M9MkQjSRaTIzErIpDdEgb/LQT/FEH8f6mf67e6M/smJmMn5KXOie5nn76WnUHb5l43AzZwI3ExH/yZSSKSW/inMdIrJRCIx088zMUGYmCL10xAmUpho6edpQiLFzp8iJ5UjSf000+8z86UHAWb6m4pO5mfq3OqAKQb/TL3WTKdQjHR0bwiBhiAZz5xARVBQAg8g/Ye0+VNxRsbG0E/JuFBhDTP9L+lJbQJ1SdcWKoWiUCgUFYqQUqqRiQBQazfy9PX18elPfxqAv/3tb9TV1fncIveppvesbuQJBur7VkAQQtTsjRF1dXU1995r8T0rnEelUBQKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUNQsFIVCoahQVASuUCgUFYoSuEKhUFQoSuAKhUJRoSiBKxQKRYWiBK5QKBQVihK4QqFQVChK4AqFQlGhKIErFApFhaJWI1Q4Ql9fH2+++SZLly5l2bJlLFu2jLa21MYU55xzDueee27RMrZu3co999zDyy+/TFtbG9FolGnTpnHiiSdy8sknB3L50h07dvDiiy+yaNGi7Hs2DIMRI0aw9957c+KJJ3L00UcXLKOnp4f77ruP5557jo0bN6JpGpMnT+a4447j9NNPJxwOe/RuFJWGuhNT4QhvvPEG8+bNy/uYFYEvXbqUb33rW+zYsQOAWCxGPB7HMFLbAx166KFcf/31gZPZsccem20jQCQSQdd1ent7s3877LDD+NGPfpR3/e+NGzfyjW98g40bNwKpZWZN0yQejwOw55578stf/pJhw4a5/E4UlYhKoSgcY9iwYRx88MGcddZZ/OAHP6C5udnS67q6urjsssvYsWMHU6ZM4bbbbmP+/PksWLCAb37zm4RCIV599VVuvvlml99B6RiGwYwZM7jkkku47777+Oc//8n8+fO5//77OfnkkwH497//zc9+9rNdXptMJvnud7/Lxo0bGTVqFD//+c9ZsGABCxYs4Ac/+AH19fV88MEH/OhHP/L6bSkqBalQOEAymdzlb2eccYacO3euvOOOOwq+9vbbb5dz586Vxx9/vGxtbd3l8bvuukvOnTtXHnPMMXLNmjWOtdkJFi1aVPDxG2+8Uc6dO1fOnTtXbty4ccBjjzzySPaxd955Z5fXPvnkk9nHFy5c6Gi7FdWBisAVjqDruu3Xzp8/H4CPfexjTJgwYZfHTzvtNGKxGIZh8OSTT9quxw0OOuiggo9nonBIpYlyeeKJJwA48MAD2W+//XZ57cc+9jHGjx8/4LkKRS5K4ApfWbNmTXaw87DDDsv7nPr6embPng3Aa6+95lnbnCASiWR/N00z+3tfXx+LFy8G4PDDD8/7WiFE9phU2vtWeIMSuMJXVqxYkf192rRpQz5v+vTpAKxatcrtJjnKm2++mf098x4AVq9enRV6ofedeWzr1q10dHS400hFxaIErvCVLVu2ZH8fPXr0kM9raWkBoLu7m56eHtfb5QSdnZ3cfffdAMyePZspU6ZkH2tvb8/+buV9D36NQgFK4AqfyZVxNBod8nm5U/AqQeCmaXLdddexZcsWIpEIF1988YDHq/V9K7xFCVyhcIFf//rXvPTSSwBcfPHF7L777j63SFGNKIErfKW+vj77e39//5DP6+vry/uaIHLLLbfw0EMPAfD1r399wEyUDNX4vhXeowSu8JVRo0Zlf9+8efOQz8vkfxsaGgItsltvvZX7778fgAsuuIAzzzwz7/Nyc9tW3vfg1ygUoASu8JncmRkrV64c8nmZ2Sq77bab202yzW9+8xvuvfdeAL72ta/x+c9/fsjnTp06FU1LXX6F3nfmsebmZoYPH+5gaxXVgBK4wlcmT57M2LFjgdQt5/no7e3l7bffBuCQQw7xrG2lcMstt3DfffcBKXmfddZZBZ9fV1eXvXlnqPctpeTVV18Fgvu+Ff6iBK7wFSEEJ5xwAgBPP/00GzZs2OU5f/3rX+nt7UXXdT7+8Y973cSi3HLLLQPSJsXkneHEE08EUguBvffee7s8/swzz7B+/foBz1UoclECVzhGZ2cn27dvz/7L3KjS398/4O+Dp8N9/vOfp7m5mb6+Pi677LLsLeeJRIKHH36YO+64A4BTTz2VyZMne/umipCb8/76179eMG0ymBNPPJHp06cjpeTKK69k0aJFQGoK4jPPPMONN94IpO5QPfjgg51vvKLiUcvJKhzjzDPPzC6LWogTTzyRK664YsDfBi8nW19fTzweJ5lMAqkUwvXXXz/g1nS/aWtr44wzzgBA0zRGjBhR8Pmf+9zndonON2zYwLx589RysgpbqA0dFIFg77335o9//CP33HMPL730Eps2baKuro7p06dz4oknctJJJ2UH/YJC7tompmmydevWgs/PXSM8w/jx4/nDH/4wYEOHUCjEtGnT+NjHPqY2dFAUREXgCoVCUaEEK6RRKBQKhWWUwBUKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUJTAFQqFokJRAlcoFIoKRQlcoVAoKhQlcIVCoahQlMAVCoWiQlECVygUigpFCVyhUCgqFCVwhUKhqFCUwBUKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUJTAFQqFokJRAlcoFIoK5f8D55k/T7+RYk8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m_data = HealpixMap(data.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents)\n", + "\n", + "fig = plt.figure(dpi = 150)\n", + "\n", + "ax = fig.add_subplot(1,2,1, projection = 'orthview')\n", + "\n", + "m_data.plot(ax)" + ] + }, + { + "cell_type": "markdown", + "id": "cb3069c1-22ee-4b5a-bd0e-928d620f4f7d", + "metadata": {}, + "source": [ + "The final source injector should save the result to disk in the same format as the \"Data classes\" module, including all the appropiate header information. However, for now you can use directly histpy's `write` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "42d5f436-683e-421a-9996-88ab169844fd", + "metadata": {}, + "outputs": [], + "source": [ + "data.write(\"GRBdata.h5\")\n", + "bkg.write(\"GRBbkg.h5\")\n", + "signal.write(\"GRBsignal.h5\")" + ] + }, + { + "cell_type": "markdown", + "id": "79f22343-ad7e-4cf5-920c-0f0d7cd82ea5", + "metadata": {}, + "source": [ + "To load them back, use:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "d9bcda82-15c0-433a-ae2a-f59ee707d171", + "metadata": {}, + "outputs": [], + "source": [ + "data = Histogram.open(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBdata.h5\")\n", + "bkg = Histogram.open(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBbkg.h5\")\n", + "signal = Histogram.open(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBsignal.h5\")" + ] + }, + { + "cell_type": "markdown", + "id": "dd49e99a", + "metadata": {}, + "source": [ + "## Now reading in the data to make TS Map" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "0ddff0c7", + "metadata": {}, + "outputs": [], + "source": [ + "tsmap = TSMap()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "66332aff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "306.3669458839138\n" + ] + } + ], + "source": [ + "print(coord.icrs.ra.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "7fa9b755", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7.507101864237928\n" + ] + } + ], + "source": [ + "print(coord.icrs.dec.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "572b29a3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
09:00:03 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m09:00:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=523930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=983643;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "piv = 1\n", + "index = -2\n", + "\n", + "tsmap.link_model_all_plugins(dr=response_path,\n", + " data=bkg + 3*signal,\n", + " bkg=bkg,\n", + " sc_orientation=grbori,\n", + " piv=piv,\n", + " index=index,\n", + " ra = coord.icrs.ra.deg,\n", + " dec = coord.icrs.dec.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a4076ad2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:12:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:12:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=315866;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=16056;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=261733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259386;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=851395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75847;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=12627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567205;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=894236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=830159;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=469658;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=548447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587807;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=926105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=950824;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458278;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=757914;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394874;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725194;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=670724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=324427;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=841410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=394536;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23541;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=491437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=745723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=649801;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=603892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=360026;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=157175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=679215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=746181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=361658;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809303;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=373162;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=788137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=856987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=506170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=479688;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=166193;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=74764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381751;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=462963;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=198842;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=477730;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=404289;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489598;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=595005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891528;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88436;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=755869;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=891751;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=949405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754634;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=583059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=138428;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=871525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=461790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=424195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660066;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=139127;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=577973;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=922063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=872272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=638258;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673702;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=748152;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923028;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=204093;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=107414;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=582235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=90513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=971099;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=693897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679620;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=670732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=610418;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899274;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=533905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=436345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=18282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=735814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964342;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=30715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=432847;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=742059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=9125;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=131064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=383176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=749975;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=563032;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107777;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=349804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223859;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356367;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=979519;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=867046;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=217539;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=736563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=3978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679701;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=104921;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=496896;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=168270;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=143930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=698663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887614;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882218;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=650281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687792;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955264;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=43279;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=5599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=11343;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=63765;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=823555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567122;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=52831;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=554117;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=706725;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=620141;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=105544;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=104672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=35938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=758440;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=912277;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=977321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870678;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366794;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=253654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=554347;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=136602;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=930645;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=337498;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=481872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=753059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366304;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=754171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=571983;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=466239;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=561718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=887627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=698350;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=945488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=827923;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=47516;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=612903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=92946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522142;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=324911;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=377443;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892542;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142838;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=523894;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=813080;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=824893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=368978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=484735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=81640;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248162;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=540263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=557155;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=841772;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=681532;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=522590;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=555001;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=764857;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=72706;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7620;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=358;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=766889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=302947;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=956799;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=290058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=117432;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938952;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=231021;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=95724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=833534;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=846405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=746779;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=247110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=408215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=457593;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=387222;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=550587;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=158399;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=706627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=57798;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=705691;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=794675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=410867;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=3990;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=959506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429346;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=521820;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=256077;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458920;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=261334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234101;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=101229;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=695679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282178;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=318910;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=662272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=293365;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=179805;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=610234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=391377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=296814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=118210;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=681945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=640713;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=580790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=287661;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=221465;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=401563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=666628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86594;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=514596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892966;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=128755;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357925;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=796389;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=310518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=772071;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=520957;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=45474;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=131321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=581863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=516377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=17009;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=362442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441590;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=881766;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=314000;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=641761;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=594431;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=778284;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=895981;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=715919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923102;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=642175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=132184;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=199762;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=920169;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=881243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=663889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=671657;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=596422;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=632956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=889849;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=948740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=624442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567604;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=110672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=930783;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=1357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=538843;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=761115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=722785;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=185920;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=169752;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=538025;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=293694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=18525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=350743;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=513332;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489355;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=84247;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=464744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=137708;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=983862;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=284075;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=196717;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=926853;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=241074;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=950166;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=577831;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=994222;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=230944;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=755465;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=801249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=776430;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=315872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845564;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=589628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=515728;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854138;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=372219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=637073;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=149481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847197;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=585935;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754605;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581857;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887024;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=388032;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7784;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=505219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754270;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=351620;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=307965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=380892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=383953;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865789;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=833712;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=768518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=288941;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=558016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=833280;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752671;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=529192;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=426877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=415930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=984960;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=264833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=6747;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=832081;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=767657;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=351407;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970911;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=695460;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=498322;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=826486;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=631789;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=390538;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259651;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=625833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=875285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=583421;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=327455;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=111469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=304120;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=430749;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=86846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=176001;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=727541;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=863405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=163170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=250440;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=911636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=897714;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905152;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=890795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=733070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=952231;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=657108;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=798095;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=298301;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381841;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522739;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479292;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=630867;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=895427;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=752444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=796156;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668683;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=454147;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=608144;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=683839;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=207143;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=608014;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856646;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=956446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968323;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=73716;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605898;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=760665;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=33321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=272734;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894391;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=762199;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=648347;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=320520;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=235614;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=977817;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=932463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=565625;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=688438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=596505;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=191414;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=938856;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=201244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=578109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=621196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=611189;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617783;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=149312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=939638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=745808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517406;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=528433;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=456309;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441765;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=103058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=173125;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=891059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=777252;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=67483;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=827965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382254;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97852;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908459;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=487177;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110358;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883121;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=501736;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=438158;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=278336;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636347;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856350;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=497770;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=829771;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551540;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=269013;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59967;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=626456;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=749217;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=785715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=777412;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=613870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809417;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=72550;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=578738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=599462;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=385271;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=108034;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=799692;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244484;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=318608;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=330195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27474;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=935877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=476104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856580;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=926121;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=144866;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=359742;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=330212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=280732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=438635;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662479;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=771989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=94206;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58083;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=194430;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882184;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=632019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=283444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=736692;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416705;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=610367;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=671513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=376836;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=776263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88584;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=862213;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=455994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=241283;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=711477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564470;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=966201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223275;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=773803;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=953652;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=705198;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=549310;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=582493;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=780698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=436171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=201014;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=391248;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=392437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429088;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922220;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=583007;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=837899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=555007;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=48119;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=593680;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=69840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=769935;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=370480;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=962768;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=548383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336836;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878280;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=269725;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=115320;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=772790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=214586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=699722;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451382;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=356228;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=810694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=228290;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=396344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289053;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=814115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=700338;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=183602;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394495;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=259095;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=874986;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=142130;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=488330;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=274190;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=867438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=632048;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=622768;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=382842;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=415464;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816520;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=104763;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=159880;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=674619;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=560987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=585967;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=76734;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=615143;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=981369;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721177;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=697000;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=423205;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=310286;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550351;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=454803;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=514032;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504958;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828164;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=323311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=803890;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=743366;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=133889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=66709;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547736;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=729655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711909;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=809688;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416065;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=247697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=452415;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=444315;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=392448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969382;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=983740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=12469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=819495;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=800008;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=310680;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=748021;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=27419;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=769198;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=272163;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=353387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=979438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=156811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=610017;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=234962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=856663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=586834;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=644191;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=246660;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=199725;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381152;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=837360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=170276;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=703685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=47795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=857238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=47742;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=895446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=571437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=408234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=265135;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=500013;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=438940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=604193;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=238824;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40608;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=939446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=833762;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360598;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=384888;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=536987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=646123;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=299128;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=380098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=361727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=751506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=418545;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=93914;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=148596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=999252;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=863903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=792379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=590422;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=29840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564043;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=362265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=797890;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=555411;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=942897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988260;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=719340;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=157771;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=520938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=306612;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=463444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=35863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=316631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=230040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=863055;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27881;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=111562;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=426312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=625644;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=643925;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=899718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=802329;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=653353;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=725491;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=962842;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=155756;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=514649;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=527587;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881426;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=445302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=384334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=499185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=642908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=399309;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564567;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870084;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=548154;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=492444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=670116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=5865;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=244020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306050;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=904245;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=297996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=821619;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=443677;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27902;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=16201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=178172;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=54244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=159485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=904258;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=278332;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=103549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59737;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650857;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=553462;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=956069;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110097;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=42869;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=998103;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899534;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=262960;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=699822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=945840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=86972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=373718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819736;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=602225;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=602560;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=561055;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=397576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=945548;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=681537;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=785953;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=732425;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282204;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=203533;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=953186;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=960631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=958066;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=544962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=495300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=939285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=432461;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=361110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=771306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726817;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=903005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483337;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741618;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=564116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=331740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=879827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636511;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=440586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205748;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=974178;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=495044;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=585212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854154;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=880607;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=916968;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=983351;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=88126;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=93196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902197;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448047;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=974458;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=65565;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=96636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=338365;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=24929;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=264282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=200349;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=953673;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=229956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=846020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=328063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292676;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=301659;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=889146;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=910097;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117553;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=342704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=716496;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686786;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=122142;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=432118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97999;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=743082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=459615;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=349990;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=507158;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=89735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=288253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=350318;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=115395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=798528;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=983039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773529;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=158008;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=553887;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=190243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=107375;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=320634;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=301551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=772707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=131785;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85645;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=125726;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=229033;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64921;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=859332;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=723701;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=583631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639813;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=60663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=288616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=672237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=30583;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=33148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=936449;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=714998;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=834551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=952118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=182259;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=783116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=877040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340690;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=145837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=815626;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=133437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=363573;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=951148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106859;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327291;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=993894;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=287400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=975513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=90723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=120385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=240639;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712303;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=305822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=289020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=931567;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=484312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=128383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=759937;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878451;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=835212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=210057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914845;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=714390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890354;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773898;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=315343;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=911908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=466015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=476091;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=765043;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=732965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=817525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=317951;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=421197;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=337821;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20451;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=320982;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=350819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=455978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=452808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88582;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=525631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=750153;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=36522;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=994285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=888383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121050;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=541213;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=596858;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=931291;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=686236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107373;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=645589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=863367;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=134040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=153295;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=379170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=123054;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=254500;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=431331;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=327600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=668014;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=756487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=198715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=827429;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770486;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=216693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=489862;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482331;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938632;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=218148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=143265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=508187;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=549604;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40355;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=964860;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=885038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=153401;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=389980;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517992;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80653;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=956687;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1835;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=939045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=784616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=19545;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=652856;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667552;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=879036;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530297;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306884;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825720;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=157310;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394926;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=257977;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887382;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759605;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=986964;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=255113;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=996753;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=71105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=669912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=560237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=729118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=148507;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=781546;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243356;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=115379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=815994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=473619;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=582451;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=338416;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=307978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606090;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=867033;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=390232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=855830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988370;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=985952;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991501;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=57207;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=222299;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=54989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903815;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=894573;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107686;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726369;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=212415;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249090;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=24363;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62183;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=83532;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=526345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964618;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=440655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=832870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=540702;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=358719;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=934818;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650553;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=556019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=131974;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53634;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=266886;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=914201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=570216;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=950554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=260615;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=507693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=543872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664278;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=2454;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=182917;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205928;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=104378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23922;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=15092;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=778171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=476919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=850414;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=408119;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=393961;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=573588;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=47396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=246221;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899466;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=333698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356568;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=727230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=245732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=127446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=271697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=775311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=153965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=678806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=704447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882982;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868917;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=289826;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=148547;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=190546;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=899267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=704321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265139;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=626018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=193560;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=718819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=733542;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992366;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=319354;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438139;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73471;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=950360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=298219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=836245;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=79275;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=940839;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=91928;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=704815;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58876;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=2269;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=946835;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739397;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=60911;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=985672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=851458;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=231989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=197946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=945810;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=623899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278703;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964307;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=155018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=730305;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=125067;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=683733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=240478;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=389104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=893463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=428551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=974609;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=549744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=754344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=795073;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=649562;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=346799;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=387160;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=250436;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=818872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=631821;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=903636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=312296;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=526272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=311576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=390829;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=268964;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=488479;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=194870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=969918;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=382237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991803;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=733664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662517;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=784811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=531822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=190600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=271223;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=334425;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=369559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914120;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6179;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=239827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=647438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980652;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=332212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=124897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=571518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=633469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=171987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=516798;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=953837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=939559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=757049;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942603;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=571235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=877417;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=126565;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40117;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737417;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=825516;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=758112;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=756767;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=429677;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=910362;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=29261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=135193;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=990940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=52381;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=853823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=137586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=309629;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=616240;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=885944;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=190924;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=674244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=83387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=27825;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=702328;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=401048;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=956551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=237599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=39425;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=387723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=293704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987821;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=497614;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=572455;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=716622;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=699391;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308053;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=206087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=592926;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=370238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=909831;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=39533;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=741746;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=145808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489642;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=945091;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=486522;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=700243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923037;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482843;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577943;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=872814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=304486;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=343161;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=242310;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=551082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=643623;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=350975;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=207548;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551457;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=248238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=747068;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=577845;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=38718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=196597;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825335;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=247595;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374498;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370642;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=697199;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=700854;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=877452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=674552;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=21490;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=530851;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=776975;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=254430;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=120125;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=774098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420886;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687163;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605770;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=544150;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306231;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=852685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=69334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=578649;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=908960;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=439599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=899873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=878804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161632;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200562;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=454694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=245253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=279319;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290788;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=342216;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=837131;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=131968;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=848105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=44812;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=153972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=162946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=704110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919734;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=198306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=334731;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=638695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=708873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=44167;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=714776;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=774051;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=499113;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=345300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=375931;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=989420;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=36966;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777976;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=891714;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=736123;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=300740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62042;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327496;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117078;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=524064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442490;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=654137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=875844;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=106843;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=768730;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340496;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243124;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155644;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=962218;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=597281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=146961;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=206239;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=966395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=203485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=34291;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=682442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=997882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=936859;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=935121;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=807040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=758564;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=632481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=231696;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=315400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=841302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=176401;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=116442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=857527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=691790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=840580;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=220563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=630726;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=591381;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=793626;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=502948;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=716377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=775027;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=765666;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=731285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=940335;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=288682;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=603989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=205685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=740199;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=437374;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=808936;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605130;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=651100;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=387877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=843714;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61617;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=561081;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=216959;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=569626;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=601465;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=127693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=965707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=760694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=682731;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=367102;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=553033;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161869;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=770437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=534378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208915;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=661085;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=619837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=761539;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=449745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=837744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=126993;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=724268;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=907227;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=318226;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=912724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=976578;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617509;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=304929;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=197078;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=228137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=494527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=227040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=456768;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242329;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=399224;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=65274;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=713710;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=111105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=432879;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=134966;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=962633;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770073;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=778379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=537087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=644526;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=315623;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=697616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=943057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=621137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=32574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=231265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902915;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=398616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504182;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739995;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=161699;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664288;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=788364;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=301664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=375223;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61861;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=75973;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=949555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=816709;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479898;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=52003;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=446823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=339428;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868361;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226021;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180954;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780494;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62968;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=30070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=217931;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883294;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=423;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890257;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987750;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=768038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=774253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=823933;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=171654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777174;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=313396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=619832;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=608042;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=459045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=215590;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=344942;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=271049;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=180370;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=784622;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=794235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451106;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=253136;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567191;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=660055;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=690218;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=424421;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=600113;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282071;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=432362;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=485715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=687516;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=318293;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=706811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=789214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=816390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=753207;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=175586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=690649;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906007;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483099;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=669182;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=691305;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=766840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=593591;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=798945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=50826;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535099;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=115912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=790994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=10116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=532557;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=111707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=375555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59826;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=53570;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425166;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=130635;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=51140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840428;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=694444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=702690;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=572989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551028;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=182794;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=703501;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=221707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=165172;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=855531;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=529563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=699384;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=56507;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=542517;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95472;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=444268;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=615286;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=14908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=435943;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=291855;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=98515;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117722;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=954954;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=781252;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=553362;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=822541;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=884622;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=721074;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=306741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=382602;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289501;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430188;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=126464;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=926311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6094;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=702074;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=966748;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=124357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=459576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=81219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=669206;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=779930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=867410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=898344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=843200;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=595245;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=352919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=520328;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=169535;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564986;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=343838;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740079;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403084;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=700806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214150;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=839509;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=381742;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=960419;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=665489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=742677;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=692906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=251934;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=915543;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=787263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=975239;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=166004;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902479;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636617;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=536234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=25002;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=584721;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249388;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=229686;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=15228;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=421776;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=489151;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416998;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=473215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80145;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=246044;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=168156;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522591;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=652636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606402;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=496387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=864471;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1004;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=821969;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=119282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=864396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=260862;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=355600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=16525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=146237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=202418;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=102992;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=392002;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=488445;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=362512;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906598;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=860544;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=453721;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=846924;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=14056;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=59461;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=478208;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=626424;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=512726;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891647;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=270284;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=729460;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=1930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=531102;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=167908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=245473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=228892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=458909;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=616870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208392;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=528940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=794016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=305313;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=787173;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=414624;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=801410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=910292;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=509656;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=900644;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=584034;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=918115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=371575;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=51782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=70500;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=339724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144229;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=270023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=359244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894615;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711303;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496401;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=808537;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=755395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=319633;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=716473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=4673;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=39570;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978558;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=992697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=761738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=810822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=411497;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=568230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=517202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=515603;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=352583;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=144487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=552237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530633;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=633132;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=187956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=51873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=136327;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=867632;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=917447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=669996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=278901;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=147181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=387692;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=55659;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=76592;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=33533;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=555390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=351405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=94931;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906468;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=881583;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=176846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=994298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=945333;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=135275;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=207679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=685540;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=230489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389883;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=713793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142069;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=94575;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=766393;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=6473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=630175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=705745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660103;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919712;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=104568;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=402873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=692243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=802327;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=941733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=325261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26900;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=667813;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=623609;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=747374;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=521723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=972716;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=612680;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=590133;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=712400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712114;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=542023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=997848;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=494030;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=500585;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=340452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=593176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811342;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=246231;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=33228;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525046;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=725474;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416051;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=47729;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=665326;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=695241;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=335233;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=902806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=724780;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=893769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=79274;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=647832;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=368769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=297282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=203944;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441630;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=834148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=783018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462411;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=558064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=167961;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=147463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=384802;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=129324;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=927298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=744270;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=67655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=49070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=67532;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=553153;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=218027;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=895098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559111;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=676377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=978434;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=18938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=680814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=24695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=569853;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=544906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=613737;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=544232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773860;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=147434;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=510775;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=298114;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=743126;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378112;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=755103;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963350;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308144;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=456945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827992;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=541807;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=661537;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=36298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=789689;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=143477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673971;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=405058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=628515;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=977498;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677432;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764753;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=173601;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=390163;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902792;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=66394;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711540;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=33277;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=422328;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=44963;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=8133;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=500723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=344114;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=480185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=513410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=924087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=143238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=989363;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=698233;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=698689;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438748;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=661681;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=861396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=149447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=699940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=372048;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=446495;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=167018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=707701;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=743996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720111;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=192220;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=611361;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=744117;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=691865;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=467892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=258786;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639852;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=957836;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=150755;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=619655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261997;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=595156;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142927;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=262070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845187;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=102444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261210;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=742119;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464708;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152928;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=350888;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=636797;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=336764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=520257;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=658621;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=179559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=475874;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=363941;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511161;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=419611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=451019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=411302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=819168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=873159;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=508308;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=460894;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587710;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=909989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=10019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=600282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=751915;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=23878;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=12261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=804699;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=811063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=986139;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=78070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=122049;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=574341;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=572772;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=122556;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=294745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=132941;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=681502;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782264;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=318206;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=574469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=514202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=423281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=997380;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=188050;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86924;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=23105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=227069;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=239176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1034;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=704395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=819016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=453513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=460965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=713394;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=279557;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=594319;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=759095;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=162505;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=802172;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=26506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=451789;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=604672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243149;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=407559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=335874;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740124;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278341;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=347795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=875524;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=369795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=465357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=871242;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=69827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=699118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=541625;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=551194;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=865322;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=907435;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=50735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416796;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75528;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=922884;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395173;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=406707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=89752;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=645606;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=520903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=123574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276705;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=815321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=538127;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=119729;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=665166;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=970146;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=529796;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=185769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=745051;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=220472;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=235010;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249419;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=68262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474511;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=32638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181656;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=532344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=51973;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=481467;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=972559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=276435;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=360888;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=380554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=124819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=409589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=312306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=946171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462450;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740029;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=532661;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=271546;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=267267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=455787;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=637596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=344667;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=376514;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=6168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=560554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=511899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=369920;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881548;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=221036;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=984611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=796685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=952128;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=399949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=498664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=921343;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=846130;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=580104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=483072;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=296607;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=86899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=965750;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=122938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=505490;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759194;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95932;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=683556;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=774709;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=40827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=575811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=620545;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=858550;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878717;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=333910;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=405352;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=748706;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=961136;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550597;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=322008;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=937284;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=286307;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=38082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340668;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=125912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=833683;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=852426;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276080;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903772;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817955;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=155267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883936;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=857235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=505557;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=351418;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=898030;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121346;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=467905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=351531;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=377085;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73999;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=594360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=32255;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259993;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=418107;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=378190;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=735720;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=114150;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=349834;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=269484;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=87138;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955146;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844776;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=932871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489174;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=640782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=878503;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=749232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=802744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=399446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=907251;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242204;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45783;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=465780;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=252122;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=71400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=855311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=565939;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=280715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=112140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=63489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780092;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=45377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=545366;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=717737;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=979271;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=808212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=829285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=570684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=966654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68522;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=697801;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=927331;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=222510;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=413844;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=117769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=171267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=301083;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=870671;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438147;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=803974;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438297;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=450400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=898811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=38241;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780503;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=32595;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=477262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=100298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=689450;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689301;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=886830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=107300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=954871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=924241;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903713;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=570230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64591;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=655448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991475;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=256823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=447383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=705791;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=84385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=391290;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=455782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249974;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105370;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=824005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=52232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=810116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=468751;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=966639;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=647880;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566648;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=372639;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856666;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=470475;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914868;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=144779;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=690262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265756;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=99175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=546076;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=989238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=403381;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=847408;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=682512;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=865316;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=604273;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=297832;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=654949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=383408;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=879900;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286502;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=473259;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=593785;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=418452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=429871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=727661;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=284135;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=212313;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=100630;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=510306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=48879;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=169262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=521933;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=201469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=729287;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=199746;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=876933;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=341038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=5234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=706703;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=251564;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=313209;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=596271;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890336;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=497058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856420;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=204956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=372047;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635420;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=651022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=380394;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=748624;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364529;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208640;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=814039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504353;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930688;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=630819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=387026;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=252871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=600839;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=408601;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=289092;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=761711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=267805;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577538;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564848;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=140827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=576741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=41257;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=635406;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=443823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479467;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667286;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258901;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=635191;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=895887;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=576804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=204906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=435202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378535;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=436352;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=3840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=629631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381247;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=752837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=556127;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=866472;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=592294;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=291067;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=103834;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=947377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739353;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811024;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=888279;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=866057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=614246;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=100793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=2587;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978624;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=375767;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887164;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279999;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=999376;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942947;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=41938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=157175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=638323;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=884067;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=454940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=872972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223441;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=984872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=153675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=84739;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121926;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=49029;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=436684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=97459;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=301460;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=814165;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=631579;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551761;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=678487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=328314;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=668149;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=46174;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=228009;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=901377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=301601;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=111580;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=692780;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=169913;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=59327;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=343647;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=79290;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=848912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=257470;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=175313;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=756899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933514;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=940972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=644086;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=885485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=596096;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:41:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=335906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tsmap.ts_fitting()" + ] + }, + { + "cell_type": "code", + "execution_count": 337, + "id": "b36eb543", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'TSMap' object has no attribute 'ts'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[337], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtsmap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprint_best_fit\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Software/COSItools/COSItools/cosipy/cosipy/ts_map/TSMap.py:161\u001b[0m, in \u001b[0;36mTSMap.print_best_fit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mprint_best_fit\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 158\u001b[0m \n\u001b[1;32m 159\u001b[0m \u001b[38;5;66;03m# report the best fit position\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;66;03m# converting rad to deg due to ra and dec in 3ML PointSource\u001b[39;00m\n\u001b[0;32m--> 161\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mts\u001b[49m\u001b[38;5;241m.\u001b[39maxes[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mra\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mcenters[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margmax[\u001b[38;5;241m0\u001b[39m]] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 162\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbest_ra \u001b[38;5;241m=\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mts\u001b[38;5;241m.\u001b[39maxes[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mra\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mcenters[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margmax[\u001b[38;5;241m0\u001b[39m]] \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m2\u001b[39m\u001b[38;5;241m*\u001b[39mnp\u001b[38;5;241m.\u001b[39mpi) \u001b[38;5;241m*\u001b[39m (\u001b[38;5;241m180\u001b[39m\u001b[38;5;241m/\u001b[39mnp\u001b[38;5;241m.\u001b[39mpi) \u001b[38;5;66;03m# deg\u001b[39;00m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", + "\u001b[0;31mAttributeError\u001b[0m: 'TSMap' object has no attribute 'ts'" + ] + } + ], + "source": [ + "tsmap.print_best_fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e8b51c21", + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "TSMap.plot_ts_map() got an unexpected keyword argument 'vmin'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[19], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtsmap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot_ts_map\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvmin\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtsmap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mts\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m2.7\u001b[39;49m\u001b[43m)\u001b[49m\n", + "\u001b[0;31mTypeError\u001b[0m: TSMap.plot_ts_map() got an unexpected keyword argument 'vmin'" + ] + } + ], + "source": [ + "tsmap.plot_ts_map()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "5efad8e6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "63272.68466587507" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.max(tsmap.ts)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "2d5913f0", + "metadata": {}, + "outputs": [], + "source": [ + "tsmap.save_ts(\"Source_Injected_GRB_TSMap.ts\")" + ] + }, + { + "cell_type": "markdown", + "id": "a27f52a4", + "metadata": {}, + "source": [ + "## Load in a saved TS Map" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "173efd18", + "metadata": {}, + "outputs": [], + "source": [ + "tsmap2 = TSMap()\n", + "tsmap2.load_ts(input_file_name = \"Source_Injected_GRB_TSMap.ts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "562d5ecb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAMGCAYAAADoQEYXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOzdd5hTZfrG8e/JSTK90KRJEURUmnVVBAVsoCio2BVRlMX9WVERe1nb2nFRFN1VsYGKgiAI0hTpRboDLDDUAYYyvSY5vz/GCQwzwJRk0u7PdeUa5uScN2/CTCa585znNSzLshARERERERERERERkRqxBXoCIiIiIiIiIiIiIiLhQIG7iIiIiIiIiIiIiIgPKHAXEREREREREREREfEBBe4iIiIiIiIiIiIiIj6gwF1ERERERERERERExAcUuIuIiIiIiIiIiIiI+IACdxERERERERERERERH1DgLiIiIiIiIiIiIiLiAwrcRURERERERERERER8wB7oCYiIiIiIiIiIiIj407Bhw9i5c2egp1FOkyZNePXVVwM9DfEhBe4iIiIiIiIiIiIS1nbu3MmO7Ztp2sgV6Kl47dilaDYc6X9VREREREREREREwl7TRi4+fWtfoKfhNWBIvUBPQfxAPdxFRERERERERERERHxAFe4iIiIiIiIiIiIS9izAgyfQ0/CyACPQkxCfU4W7iIiIiIiIiIiIiIgPKHAXEREREREREREREfEBtZQRERERERERERGRiOC2gqeljIQnVbiLiIiIiIiIiIiIiPiAAncRERERERERERERER9QSxkREREREREREREJexbgwQr0NLwswAj0JMTnVOEuIiIiIiIiIiIiIuIDCtxFRERERERERERERHxALWVEREREREREREQkAlh48AR6EocInvY24juqcBcRERERERERERER8QEF7iIiIiIiIiIiIiIiPqCWMiIiIiIiIiIiIhIR3JbauIh/qcJdRERERERERERERMQHFLiLiIiIiIiIiIiIiPiAWsqIiIiIiIiIiIhI2LMAD8HTUiZ4ZiK+pAp3EREREREREREREREfUOAuIiIiIiIiIiIiIuIDaikjIiIiIiIiIiIiEcGtRi7iZ6pwFxERERERERERERHxAVW4i4iIiIiIiIiISNjToqlSG1ThLiIiIiIiIiIiIiLiAwrcRURERERERERERER8QC1lREREREREREREJPxZFm4riBq5BNNcxGdU4S4iIiIiIiIiIiIi4gMK3EVEREREREREREREfEAtZURERERERERERCQieAI9AQl7qnAXEREREREREREREfEBBe4iIiIiIiIiIiIiIj6gljIiIiIiIiIiIiIS9izAjRXoaXgFz0zElxS4i4iIiIiIiIiIiISgpUuX8v3337NmzRqys7NJTEykVatW9OvXj/POO6/MvqtWrWL06NGsXbuWwsJCjj/+eC6//HKuvfZaTNOscPx58+YxZswYNmzYgMfjoWXLlvTt25devXodcU5Tpkzhhx9+YMuWLdhsNtq0acONN95I586dK9zf7XYzbtw4Jk+ezPbt24mKiuLUU0+lf//+dOjQofoPToCopYyIiIiIiIiIiIhIiBk5ciQPPfQQKSkpnH/++dxwww2cd955ZGRksHz58jL7zpkzh/vvv5+VK1fStWtXrrnmGlwuFyNGjOD555+vcPxx48YxbNgwNm/ezCWXXELv3r3Zu3cvr7zyCu+9916Fx7z33nu88sor7Nu3j969e3PJJZewadMmhg0bxrhx48rtb1kWzz//PCNGjMDlcnHNNdfQtWtXVq5cyf3338+cOXNq/DjVNlW4i4iIiIiIiIiISERwh0kfl4kTJ/L111/Ts2dPHn30URwOR5nrXS6X99+5ubm8/vrr2Gw2hg8fzsknnwzAwIEDefDBB5k9ezYzZszgoosu8h6TlpbGyJEjSUxMZNSoUTRu3BiAAQMGMGjQIMaOHcuFF15I+/btvcesWrWKsWPH0rRpU0aNGkVCQgIAN910E3fffTcjR46kc+fO3rEAZsyYwezZs2nfvj1vv/02UVFRAPTp04d7772X119/nTPPPJPY2FgfP4L+owp3ERERERERERERkRBRVFTERx99RMOGDSsM2wHs9oN11rNnzyYjI4MePXp4w3aAqKgo7rrrLgDGjx9f5vjJkydTVFTENddcUyYgT0hI4NZbbwVgwoQJZY758ccfAbjtttu8YTtA48aNufrqqykqKmLKlClljim93bvuussbtgOccsop9OjRg4yMDGbPnn2shySoKHAXERERERERERERCRFLliwhIyODCy64AMMwmD9/Pl9++SXffvstq1evLrf/smXLADjnnHPKXdepUyeio6NZvXo1RUVF5Y7529/+Vu6Y0nFK96nuMYWFhaxZs4bo6Gg6duxY6dsJdmopIyIiIiIiIiIiImHPAjyBnsQhLGDHjh3079+/3HWjR48+4nEpKSkAOJ1OBg4cyObNm8tc36lTJ/75z3+SnJwMwLZt2wBo1qxZubHsdjuNGzdm8+bN7Ny5k5YtWwKwdevWIx5Tv359YmJiSE9Pp6CggOjoaPLz80lPTycmJob69euXO+b4448vMxeAnTt34na7ad68eZmK/KMdEwpU4S4iIiIiIiIiIiISIg4cOADAmDFjMAyDESNG8PPPP/PJJ59w9tlns2LFCp555hnv/jk5OQDExcVVOF7p9tL9oKTve1WOKd0/Pj6+wv1Ltx96G6X/PtIxFc0rFKjCXURERERERERERCQAmjZtetRq9op4PCV1+qZp8sorr3h7rLdu3ZqXXnqJW265heXLl7N69eoyi5pK7VCFu4iIiIiIiIiIiEQEN0bQXKqrtCK8TZs2ZRY0BYiOjvb2UP/zzz/L7F9ahX64iqrTS6vLK3vMsarRK6pmr6jq/VjzCgUK3EVERERERERERERCRPPmzYEjB9EJCQlAyaKkcLAPe0W90F0uF2lpaZimSZMmTcrdRkXH7N27l/z8fBo0aEB0dDQAMTExNGjQgPz8fPbu3VvumO3bt5eZC0CTJk0wTZO0tDRcLleljgkFCtxFREREREREREREQsSZZ56JYRikpqZ628scqnQR1dLq9zPOOAOAhQsXltt3xYoVFBQU0L59e5xOp3d76TGLFi0qd0zpOKX7VPeYqKgo2rVrR0FBAStXrqz07QQ7Be4iIiIiIiIiIiIS9izAYwXPxarm/WjUqBGdO3dm9+7dfPfdd2WuW7RoEYsWLSI+Pp5zzjkHgG7dupGUlMTMmTNJSUnx7ltYWMjHH38MQN++fcuM06tXL5xOJ99//z1paWne7dnZ2XzxxRcA9OnTp8wxV111FQCff/452dnZ3u1paWn88MMPOJ1OevXqVeaY0tv9+OOPvRX5UNIOZ+bMmSQnJ3PhhRdW+rEJBlo0VURERERERERERCSEPPTQQ2zYsIERI0Ywf/582rRpQ1paGr///js2m42hQ4eW6a8+dOhQnnnmGR544AF69OhBYmIic+fOZevWrXTr1o0ePXqUGb9Jkybcc889DB8+nEGDBtG9e3ccDgezZ88mPT2dG264odyCrB06dOD666/nm2++YcCAAXTr1o3i4mJmzZpFVlYWDzzwQLme8xdddBG//fYbs2fPZuDAgZx//vlkZmYya9YsPB4Pjz76qLc/fKgwLMuq7ocpIiIiIiIiIiIiIkGvf//+FBav44XXyvckD5RnhjYjytGW0aNHV+v4jIwMPv30U+bOncu+ffuIi4ujY8eO3HLLLZx66qnl9l+1ahWjR49mzZo1FBUV0bRpU6644gquvfZaTNOs8Dbmzp3LmDFjWL9+PZZl0bJlS66++upyleqHmjJlCj/88AOpqakYhsFJJ53ETTfdROfOnSvc3+Vy8f333/PTTz+xY8cOnE4n7dq1o3///nTo0KFaj00gKXAXERERERERERGRsFYSuK/n2SAK3J8f2owox0nVDtwlOKmHu4iIiIiIiIiIiIiID6iHu4iIiIiIiIiIiIQ9C3BjBHoaXmo7Ep5U4S4iIiIiIiIiIiIi4gMK3EVEREREREREREREfEAtZURERERERERERCQieKzgaSkj4UkV7iIiIiIiIiIiIiIiPqDAXURERERERERERETEB9RSRkRERERERERERCKCG7WUEf9ShbuIiIiIiIiIiIiIiA8ocBcRERERERERERER8QG1lBEREREREREREZGwZwHuIKo/tgI9AfGL4PkJExEREREREREREREJYQrcRURERERERERERER8QC1lREREREREREREJAIYeCwj0JM4RDDNRXxFFe4iIiIiIiIiIiIiIj6gwF1ERERERERERERExAfUUkZERERERERERETCngW4g6iNixXoCYhfKHAXEYkwU6ZM4ZVXXjnqPjabjdmzZwOQlpbGDTfccMR9e/TowXPPPVdu+9KlS/nggw/YunUrJ5xwAvfccw+dOnWqydRFRERERERERIKaAncRkQhz4oknMmDAgAqvW7lyJcuWLeOcc86p8LguXbqU296qVaty2zZu3MjQoUM56aST6Nu3LytXruThhx/mP//5Dy1atKjxfRARERERERERCUYK3EVEIkybNm1o06ZNhdfdc889AFx55ZXlrjvxxBO58847K3UbM2bMoHXr1rz33nvYbDY8Hg+DBw9m2rRp3H333dWfvIiIiIiIiEgNuC0taSn+pZ8wEREBSqrS16xZQ4MGDTjvvPNqNJbb7cZms2EYJb3xDMPwBu8iIiIiIiIiIuFKFe4iIgLAxIkTAbjiiiswTbPc9Xv37mXChAlkZWWRmJhI+/btad26dYVj9ejRg2+++Yb77ruPdu3asWbNGjZs2MCjjz7q1/sgIiIiIiIiIhJICtxFRITCwkKmTZuGaZpcccUVFe6zZMkSlixZUmbb6aefzhNPPEHDhg3LbG/bti0vv/wyH330EePHj6d58+a89tprRwzoRURERERERPzNAjxB1PDDCvQExC8UuIuICDNnziQnJ4fzzjuvXHgeHR3N7bffTpcuXWjSpAlQ0n7mk08+4Y8//uDBBx/kv//9LzExMWWOO++882rcmkZE/MvtduNyuSgqKsLlclFcXOy9HG17Rfu4XC4syyp3AY76fek2wzDKXA7fVtE+hmFgt9ux2+04HA7v5fDvS7c5nc4K9y3dXtHZPSIiIiIiIlWhwF1ERLztZK666qpy19WpU4eBAweW2Xbaaafx5ptvcu+997J27VomTZrEddddVytzFYkElmVRWFhIfn4+eXl55OXllfn34d/n5+d7v8/Pz6eoqKhSYbnb7Q70XQ0qNputUqG90+kkJiaG2NhYYmJivP8u/f5o/46KivJ+gCAiIiIitc3ATTC9FgumuYivKHAXEYlwmzdvZvXq1TRo0IBzzz230sfZ7XZ69+7N2rVrWbFihQJ3EcDj8ZCTk0NmZiZZWVlkZWUdMSA/WnCen59frTDcMAxiYmKIjo4uExjHxcWV+f7Qqu5Dq74nvjftr/NsjTJfDY8BlgEeynw1vN8bZc+H9f7bOOz7stcf/vbi8MMo930FBxqAzQLDwrIBhgWHfT243Tpkf7jy/y49ajX/oR9S5Ofne78v/TCkOgtB22y2ckF9ZQL72NhYEhMTSUxMJCkpifj4eGy24DkdWkRERERESihwFxGJcD/++CNw5MVSjyYpKQmAgoICn89LJNCKi4vLBOel/87MzCzz70Ovz87OrlIIa5pmmVC1fv365cLWI32tKJQtrZ6+xFb6AZjrr0t+peZjJ6HKj5Mv1XZ9z5RH5lfxCANw8ItnvPcshMp+oHLoWQiHbt+/f7/331X5kMVms5GQkEBSUlKZIP7wr4df73A4qnifRURERESkKhS4i4hEsMoslno0a9euBfD2dhcJVkVFRRw4cICMjIwKg/PDA/XSyvRjMU3TG2i2aNGiTMCZlJREQkIC8fHxFVYtx8TE4HQ6j9he5GBoLsGmJv83v3i+rXC7ZVkUFRWVCegP/Zqbm1vhz2lWVhY7d+7kzz//rFRgHxMTU+7ntKLAvvRSt25dnE5nte+viIiISDCxLHBbwXOWoKVVU8OSAncRkQg2e/ZssrOz6dy5c7nFUkutW7eONm3alGtdsHTpUr79tiQ4uuSSS/w+V5GKFBUVsX//fvbu3cu+ffu8Xw//d2Zm5jHHiomJ8YaNxx9//BEDyUO3x8bGHrUft0JzOZw/wnooCezz8vIqfVZGZmYmW7duJT//2Gc/lAbv9evXp169et6vh/9bwbyIiIiIiAJ3EZGIVrpY6pVXXnnEfd577z22b99O+/btadCgAQAbN25k2bJlAAwcOJAOHTr4f7ISUQ4N0g8NzqsSpEdHR1OvXj1atmzpDQSTk5MrDM4TExOPGhYqOJdgUN2fw6MF9UVFRUesnM/IyCjzO7dq1aqjthBLTEwsE8IrmBcRERGRSKTAXUQkQqWmprJy5cpjLpZ66aWXMmfOHFJSUli4cCEul4s6derQvXt3rrnmGjp16lSLs5ZQZ1kWGRkZpKWlsWfPnnIh+t69e9m/f3+VgvSKQr3SXuiHVp8rNJdI5auq+tIq+sN/Zw//PV69evVRK+dLg/mKwvnjjjuOxo0bk5ycfNSzR0RERESqy1PrKwdJpFHgLiISoVq2bMlvv/12zP169+5N7969a2FGEg4syyIzM5O0tDR27drFrl27yvx7165dR6yQjY6Opn79+rRs2bJMiF4axtWvX587Wz+Ex22wFxd72QXsqt07KBJhqhfWJ+I04/nvxrcrDOZLv1+zZs0Rg/moqCgaNWpEo0aNaNy4MY0bNy7zfVJSkgJ5EREREQlKCtxFRESk0izLIisryxukHx6m79q1q8IAzel00rBhQzp06ECjRo2Y/O9ZGIU2jCITimwYRTY8boN0ikk/SpBuEDwLHInIkRluGwNbPnyMvUqCecvpAacHy+nGivJwxf09vM8nf/zxBwsXLix3ZHR0tDd8PzSIL/23AnkRCUYej4fdu3dTWFiIx+MJ9HQkyNlsNqKiomjYsGG59bREJLgpcBcREREvy7LIzs4uF6QfGq5XWJHqAaPQhAITW2EMRoFZEqgXmBgFJhTb2EMRe9jKSrZiJ67275yIBB3DbcPIt8EhTytThx4asCfjdHiwot1YUW6saA9WlJvCaDdbDmwjdVMqFX0OFxMTUy6EP7RaPiEhQYG8iNQqj8fjXazaNE1M09TzkByRZVkUFRWRn59PYWEhzZs3V+juQ24V8YifKXAXERGJQBkZGWzbto2tW7eydetWtm3dxtat29izZzcFhRW0fPEAhSZGoYmtIAajwIZRaP4VrP9Vpa5eiCLiYwYGFJsYxSZkl7/ewiqpjo9ylwnlC6LcpO7fyuaNmysM5KOc0TQ87jiatWhG8+bNadas5Gvz5s1VHS8ifrF7927y8/OpW7cuxx13nJ5n5Jgsy2LPnj3s37+f3bt307hx40BPSUQqSYG7iIhImCoqKmLHjh0lgfpf4Xrq5lS2bd1Gbn5u2Z0toKA0UI8uE6YbBVUP1A3TrNacj3qc/cgvW6pze5bbfeQr3Uc+zftoxx1pHkZ01JGPiXIeeR5Huc/4+o26y3XEq6zi4iMfV1TxddbRTpU/ym15ioqOfJzIYQwMKDJL2lMdLZD3hvElX4uiPWzN3MHWbVuZa8wtc0xsTCzNmjXjhFYnlAnjmzZtitN5lN9XEZGjKCwsxDRNhe1SaYZhcNxxx5GZmUlhYWGgpyMiVaDAXUREJIRZlsW+ffvKhOpbt5ZUdabvS8eyrLIHFBkY+XZs+dEY+XaMfLPka4GJYVX/zV8oBOxQuyE7hEjQDj4P20WCRZlAvgKWYZWE8DEurJiSr/kxxazLXM+69evKjmUY1K9Xn1atW3lD+NKv9evXV4AmIkfl8XjURkaqzDAMTNNUz38fsjBwW8HTUsbSWcJhSYG7iIhICMjPz2fbtm3eUL3065bULRQWHVbx4uGvIN2JrTRQL/3qqvmLy+qG3cc89mghcw1u1x8h+7Hm45egHYIrbBcJA4ZV8iEk+eV/9yzTUxLCxx4M4/fmHCB9z8JyC7lGOaNo0bJFmRD++OOPp1mzZsTGxtbW3RGRIKewXapDPzcioUeBu4iISBDJzs5m06ZNbNy4kdTUVG+wnp6eXn7nQttf1eoxJV/zTIx8s6TXug8rJUItYIfqh+zHOra6ITsEYdAONQvbj1LdftR2MiIhwnDbMHJskOMos93CgigPVowLT6wbK9pFUayb9dn/Y/369eXGadCggTeEb9GiBa1bt6Z169YkJCTU1l0RERERkVqkwF1ERCQAXC4X27dvZ+PGjWUue/bsKbuj28DIN7HlR5VUqOcdUrHu8f2pkDUJuY95vB8DdvBfyA5hGLTDUcN2ETkyA+PgItIZZa+zbH9VxcccbFOzN+cA6bv2smzZsjL7HnfccbRu3ZpWrVp5Q/hmzZphP9bzgoiIiNSIp6IV1UV8SK/mRERE/Gz//v1lQvVNmzaxZcsWig5dHNIDRp4dW140Rq4dW64dI89e5cVKq8qvATsErood/BqyQw2DdgjqsL0m1e0ikczw2DBybZBbQVW804MV68IT58KKdZGes589u/Ywf/58734Oh4OWLVvSqlWrMkF83bp11VJAREREJEQocBcREfGRwsJCUlNTvS1hSr8eOHDgsB1t2HLtmLmxGHl2jFxHScV6DRYtrYyahuuVGiOQVexwzJC9MmPUpJodgjxoB7+H7WonI1LeoYu32jIOPo9YhvVXn/hirDgX7jgXG7I3smHDhjLHJycne8P30qr4li1bEhV17OckERF/+/TTT7njjjsAmDNnDl26dClzvWVZNG/enO3bt3PFFVcwadKkWp/X0bRo0YLU1FQAfv/9d1566SVWrlzJvn37OO644+jUqRM33XQTN998s59nLCLhQoG7iIhIFVmWxZ49e8q1g9m+fTvuQ8Nct4GRZ2LLjSmpWP+rat0XC5dWRjgE7BD4kB3CJGiHmoftIuJThmWUnM2UZ4e9B7dbpgcrzoUVV1IRn5mVy9J9y1i6dKl3H5vNxvHHH18miG/dujUNGzZUNbyIBER0dDRfffVVucD9119/Zfv27bX+IeEFF1zA559/XmbbXXfdxd/+9jcGDRrk3RYfHw/At99+yw033MBpp53GAw88QJ06ddi8eTO//fYbH330kQL3MGEBbj8XOlWFFegJiF8ocBcRETkKt9vN1q1bSUlJISUlxVu5npOTU3bHfLOkav2QljAU+Hbx0qPxRbBdqXEq0Vs4VEJ2qIW2MVCpxywYwvZK8UUrGfWOFzkmw23DyHJClpPSZykLC6Ld3pY0VpyLbbk72LplK7NmzfIeGxcX521Hc/LJJ3PyySfTokULTB/9nRCR4OJxedi1/gCFOcVExTtodFIdbPbA9Ke+/PLL+fbbb3n33XfLrEfx1VdfceaZZ7J3796jHO17pe25DjV48GBatWrFrbfeWm7/5557jlNPPZUFCxbgdJZ9jVdunSURkaNQ4C4iIvIXy7JIS0vjzz//9Abs69evJz8//+BOLuOvQL20at1RspCpHxYwPZpwC9gheEJ2CLOgHSoVcgdLdbvN6cRz6PoGIgL81ZamwI5ZYId9B7dbNg9WrBsrrqQtTV5cEasyV7Nq1SrvPjExMbRp04aTTz6ZU045hZNPPpkmTZqoEl4khHlcHlb8uIm1v2whP/Pg382YJCenXtKCTle1qvXg/aabbuKHH37gl19+oVevXgAUFRXx3Xff8dRTT/Huu++WO+aNN97g+++/Z926deTl5XHqqafy+OOP069fP+8+n3zyCXfeeSf/+c9/uPPOO73bX375ZZ588kl++uknLr/88hrPf+PGjdx0003lwnYoWehaRKSyFLiLiEjE2rt3rzdYT0lJYd26dWRmZh7cwW1gZNsxc2Ixsh3YchxQ6N9FTCviq0C7UmPVYsAOvgnZKzUOtdQ2BoIraAffhe2VqG5X/3aR2md4bBg5Nsg5uFCrhQVRHjzxxVgJxRTEF7MyexUrV6707pOYmEjbtm29VfCnnHIK9evXD8RdEJEq8rg8/PLWMrYtTy93XX5mEUu/28CejRlc8tAZtRq6t2zZkvPOO4+vv/7aG7hPmTKFzMxMbrzxxgoD9+HDh3PVVVdxyy23UFRUxJgxY7juuuuYNGkSV1xxBQB33HEH33//PUOGDOGSSy6hWbNmrFq1iueff56BAwf6JGyHkl7uM2bMYPv27Rx//PE+GVOCkYGbwJwFUjF9+B2OFLiLiEhEyM7OLhOup6SkkJ5+yJsUj4GRY8eWE4Mtx4GR/ddCpgF4AVSrATsEVxU71GrIDj4M2iGiw3YRCR4GBhSamIUm7IsGSkJ4K8aN9VcIn52Vz+KMJSxevNh7XP369b0BfOklMTExUHdDRI5gxY+bKgzbD7Xtj3RWTNzE6VefWEuzKnHzzTfz+OOPk5+fT0xMDF9++SUXXnghTZo0qXD/9evXExMT4/3+3nvv5YwzzuCtt97yBu4AH330Ee3atWPgwIFMmjSJ22+/nUaNGvHWW2/5bO6PPfYYAwcOpHXr1px//vl06dKFSy+9lM6dO2OzBVNAKyLBToG7iIiEnfz8fDZs2OAN1v/880927NhxcAcLjDw7tuzog+F6nh0jAIvn+DJcr/R4wVbFDj4N2UFBO6Be6SJShoGBkW+HfDukl4RblmGV9IOPL8aT4GJfTga/p//O77//7j2uadOmZQL4k046qUw4JiK1y+PysPaXLZXad+20LXS6snZby1x//fU8+OCDTJo0iZ49ezJp0qQKK9tLHfp8cuDAAdxuN127duXrr78us1+jRo147733uOmmm+jatSvLly/nl19+8emHgnfeeSdNmzblrbfeYtasWcyaNYt//vOftGrVis8//5zOnTv77LZEJLwpcBcRkZBWXFzMpk2bvMF6SkoKqampeA5pbWHkm9iyo0sq2LMdJX3XPYE5dS8SAnbwbche2fF8FbJDiAftUOmw3ZfV7WonIxJ6DMvAyHVArgNzd8k2y2ZhxZUE8FZ8MTvzdrFjxw5mzJgBgM1mo0WLFt5e8CeffDKtW7fG4XAc5ZZExFd2rT9Qpmf70eRnFrFr/QGanFrPz7M6qEGDBlx88cV89dVX5OXl4Xa7y/RjP9ykSZN48cUXWb58OYWFhd7tFa0xceONN/LFF1/w008/MWjQIC666CKfz/+yyy7jsssuIy8vj6VLlzJ27Fg++OADevfuTUpKinq5hwEL8FjBc8aCFegJiF8ocBcRkZCSm5vLmjVrWLlyJStXrmTNmjUUHxIaGoU2jGwHZo4DW7YdI8eB4Q7MCypfh9iVHrMyIXBlx6qCQITsEMRBO4R+2C4iEcfwGBjZTmzZB58PLdPjrYK34otJzd/C5s2bmTx5MgAOh4NTTz2Vjh070rFjR9q3b09cXFyg7oJIWCvMqdrf76ru7ws333wzd999N7t27aJXr14kJydXuN+cOXO46qqruOCCC3j//fdp3LgxDoeDTz75hK+++qrc/vv27WPJkiUArF27Fo/H47dWL7GxsXTt2pWuXbtSv359nn/+eaZMmcLtt9/ul9sTkfCiwF1ERILa3r17WbWqZKG3FStWsHHjRizrrzoAt4GR5cDMjsMoDdiLfR9yV1akBewQ3CE7RFjQDr4P29W7XUQAw23DyIzClnnwOdVyuPHEu7ASinElFLOioOTvNJRUprZq1YrTTjuNDh060LFjRy3IKuIjUfFVO5ukqvv7wtVXX83f//53FixYwNixY4+437hx44iOjmbq1KlERR18fvnkk08q3P///u//yM7O5pVXXuHxxx/nnXfeYciQIT6f/+HOOussANLS0vx+W1I7gmvRVAlHCtxFRCRoWJbF9u3bWbFiBatWrWL5H8tJ23Xwha1RbMPIdGLLcmDLcmLk2AOyqKl3PoEK2CH4Q3YIr6Adgj9sFxGpRUaxiXnAhAMlz7cWFlacC09SMVZiEZsKN7Nx40bGjRsHlPRf7tSpE506daJDhw40b968wpYRInJ0jU6qQ0ySs1JtZWKSnDQ6qU4tzKqs+Ph4Ro4cSWpqKldeeeUR9zNNE8MwcB/yOjA1NZXx48eX2/e7775j7NixvPvuu9x3332sWLGCp556it69e3PSSSf5ZN4zZsyosE1N6dk8bdu29cntiEj4U+AuIiIB43K5+N///udtD7Ni+QoyszK91xv5Jras6JJwPdOBUWAGNGA/3LFCYpuzkmFuZUNxzyEd/o4SZluug1XJx+oJaERVLpiuSnhuq5tc6X1xVPKliKeS3Q2tSu5XlX7jpf/Px6oe90f/4qqEUZZVuQ8FiosxKrGflZdf+ZsuruQCraatUnO02e2Vr9av7AdAVeCPMUXCnUFJP3hbrgN2xpYE8NFurMRiPElF7M5PZ+quqUydOhWAxMREOnXq5G1D06ZNG+yV/WBTJILZ7DZOvaQFS7/bcMx9T720Ra0umHqoyrReueKKK3jrrbfo2bMnN998M3v27OG9997jxBNPZOXKld799uzZwz333EP37t259957ARgxYgSzZs1iwIAB/P777z5pLdOnTx9OOOEErrzySlq3bk1ubi7Tp09n4sSJnH322Uf98EBE5FB6RSMiIrUmPz+ftWvXegP21atXH1wcyQIj146ZFeOtYg9ke5jq8mvIfgyHBu3HErFBO1QvbD+WYAjbRUSCiIGBUWCHAjvmnhjgrzY0icVYicVkZ+cxJ3MOc+bMAcDpjKJDh/Z06NCBTp06ccoppxAbGxvIuyAStDpd1Yo9GzPY9kf6EfdpdnoDOl3ZqhZnVXU9evTgP//5D6+++ioPPvggJ5xwAv/6179ITU0tE7jfc889FBYW8sknn3jPjKlXrx6jRo2iT58+vPHGGwwdOrTG8/n444+ZMGEC33zzDTt37sSyLFq1asWTTz7JY489pg8Fw4QFuK0gKuIK9ATELwzL0js0ERHxj4yMDFatWuVtEbNu3Xo8nr8CTI+BkWXHlvVXuJ4duMVNa8rnITtUOmiuSsgOYRi0g3+q2iE8w/ZK9m6vSnU7VLHCvbICWOHuz3FF5CDL9GAlFONJLMaTWISV6AJbyXOazWbjpJNO8lbAd+jQgTp1ar81hoivbNq0CYBWrXwTgntcHlZM3MTaaVvKtJeJSXJy6qUt6HRlq4BVt4tv+fpnJ5L179+fjKJNXPfPSr52rQXfPm0n2dmK0aNHB3oq4kP6eE5ERHwmJyeHP/74gyVLlrB06VK2bt3qvc5w2TAyHZhZMSUBe44DI4gqC6qq0iE7hE41OwQ+aIfQqWqHwIftIiIhzHDbMDKisGX81QfeKO0DX4SVWMy6ovWkpKTwzTffANC8eXPOOOMMzjrrLE4//XQSEhICOX2RgLLZbZx+9Yl0urIVu9YfoDCnmKh4B41OqqOgXUQkwBS4i4hItRUXF7NmzRqWLl3KkiVLWLt2LaUnThmFNmyZ0SXheqYTIz+4+q9Xh19Cdgh8NTuEVtAO4Ru2V5UfqturPIXKVrf7iWGafqlG99e4InJkhmVg5Diw5Thgx18Lsca4sRKL8CQVs61wB1u3bmX8+PEYhsEpp5zCmWeeyVlnnUW7du1wVuXvtEiYsNltNDm1XqCnIRJCDDwE04dSof0eWSqmwF1ERCrNsiw2bdrE0qVLWbx4MStWrKCgoKDkSreBLcOJmeHEOOAMugVOqyvQITsoaC/DX0E7BEfYHgR926vaTkZExF8MDIx8O+TbMXdzcCHW5CI8yUX86fqTtWvX8vnnnxMdHU2nTp0488wzOfvssznhhBN8soiiiIiISFUpcBcRkaPas2ePt4J96dKl7N+/v+QKC4wsB2ZGHLYMZ0kP9jAI2EEh++H8FrRDcITtVa1iDoawvar8VN0e7lTlLhJcvAux7rJj7ootCeDjXXiSCylMLmJh/kIWLlwIQJ06dbzV72eeeSYNGzYM8OxFREQkUihwFxGRMkr7sJeG7GX6sOfaMTNiMTKc2DKdGJ7wCNihiiE7KGg/XCgG7RC6YbvWvBcRKQngS1vQbAfLZpW0n0kuIiMnm+kHpjN9+nQAmjVr5q1+P+2009T/XUQkgrktnQEl/qXAXUQkwh3ehz0lJQX3XyGkUWjDlhGNLcNZUsVeXIWQOQSEasgOERK0g8L2ilQ1bK9CdXtV28kEun97KX9WoqvKXSR0GB6j7CKsDg+epEI8yUVsL9zJtm3bGD9+PDabjZNPPpmzzjqLs846i1NPPVX930VERMRnFLiLiESYQ/uwL1myhBUrVpCf/1fI9lcfdvtfVezhsNBpRfzWMgYiJ2iH4Klqh9AN20VExG+MYhvm3hjMvTHl+78Xl/R/Hz16tLf/e2kA36pVKwx/tvkSERGRsKbAXUQkAhQUFLB06VLmzZvH/Pnz2bt3b8kVYdyH/XDBErKDn9vGgIL2owm2oD2Iqtv9zqziqbt2O7jCv4JeRGpHVfq/161bl86dO3Peeedx1llnERMTE+DZi4iIr1iAJ4je86pRZHhS4C4iEqb27NnD/PnzmTdvHkuXLqWoqAgAI8/EPFDah92B4Qnf/nXB0jIGaqGaHUI7aAeF7cfi577tVW0nIyISyo7Y/71OEQfyMpk0aRKTJk3C6XRyxhlneAN4Lb4qIiIix6LAXUQkTHg8HtatW8e8efOYN28eGzZsKLnCAiPTgbk/Htv+KGwF4f3U79eQHRS0V0awBe0QmWG7n6vbg6V/eyl/V6Gryl0kvJXp/745ASvahbtuIcV1i1gwfwELFiwA4MQTT6Rz58507tyZk08+GZstfAsXREREpHrCO3URkTKWLl3K999/z5o1a8jOziYxMZFWrVrRr18/zjvvvDL7rlq1itGjR7N27VoKCws5/vjjufzyy7n22msxKwgo169fz7///W/Wr19P48aNGThwIF27dq2tuxax8vPzWbJkSUnIPnceBzIOAGC4bNj2R5cE7AecGO7wfjOokL1y/B60Q/CF7dUJSIMtbBcRkVpnFNix77TDzjgs04MnuQhPvUI2ujbxv//9j9GjR5OclEzn80vC97POOovY2NhAT1tERI7FMnBbQfR63M9nsUpgKHAXiRAjR47k66+/pkGDBpx//vkkJSWRkZHBunXrWL58eZnAfc6cOTzzzDM4nU66d+9OYmIi8+bNY8SIEaxevZoXXnihzNj79u1jyJAh1KtXjz59+rBx40aeeuop3n77bc4444zavqthb/fu3d4q9qVLl+L6q8exkWdi7o/Ftj8KIyt8e7GX8nvIDgraq8LfQTuER9heHbVQ3a52MpWjKneRyGS4bZj7ojH3RZf0fk8oxlO3kMzcHCZPnszkyZOxm3bOOPMMb/V7o0aNAj1tkZBgGAbPPvsszz33XKCnUiWffvopd9xxB5s3b6Zly5aBno6IBBkF7iIRYOLEiXz99df07NmTRx99FMdhgZLrkEXpcnNzef3117HZbAwfPpyTTz4ZgIEDB/Lggw8ye/ZsZsyYwUUXXeQ9Zu7cuURFRTFq1Cii/goPn3zySX766ScF7j7g8XhISUlh7ty5zJ07l02bNpVcYYGR4cQ8kIC531myEFiYq3LIDkFZzQ4RHLRDcLaQgdoJ24Osb7uIiFSNgYGR7cSW7YQtYEW58NQtwl23kEULF7Fo0SLeeecdTmh5Al26duG8887jlFNOqfAMUZFwURo+L168mLPOOivQ0/HKy8vjtddeo1u3bnTr1i3Q0xGRCBL+6YxIhCsqKuKjjz6iYcOGFYbtAHb7waeC2bNnk5GRwWWXXeYN2wGioqK46667eOihhxg/fnyZwN3j8WAYBsYhQZLdbsdTnZBMgJIXh4sXL2b+/PnM/X0umVmZABjFh7SKyQj/VjEQnCE71FI1OwRv0A7hU9UOwRm2V5efe7dD8PVvL1UbFeiqcheRQxmFdsw0O2Za7MHWM3ULSS3ewubUzXz++eckJiZ6K9//9re/qfWMyCHy8/PLvB/1pby8PJ5//nkABe7iZQFugud9tIVeV4YjBe4iYW7JkiVkZGRw3XXXYRgG8+fPZ9OmTTidTk455RTat29fZv9ly5YBcM4555Qbq1OnTkRHR7N69WqKiopw/hWEnnfeeXz44YcMHjyYs88+m9TUVObPn89rr73m/zsYRvbv389vv/3GnDlz+GPZH7jcf7WKybUfbBWTHf6tYqCWQnYI3mp2CK+gHYK3qh2CN2yvpep2tZMREfGNilvPFJFdN4+ff/6Zn3/+GdM0Of300+nSpQsXXngh9erVC/S0JUR9lz6fS+t0ItFe/gOcLFce0w6soF+D8yo4MrhER0cHegoiIj4XPB/piIhfpKSkAOB0Ohk4cCCPPfYYH374If/+97/5xz/+wX333UdGRoZ3/23btgHQrFmzcmPZ7XYaN26M2+1m586d3u0NGzbkjTfeIDo6mvHjx5OWlsazzz7Lueee6987Fwb279/P+PHjuf/++7n66qt56623WLxwCe69NuwbE3Auro/zj3rYtyRgy3aGddhuczq9l0ozzYOXyvJYBy+VZLmKq13RXq3WMVUM2211k6sWtjvs1W8fU52qdoXtVT+mumF7LVS3S0mVu4jI0RgY2LKd2LfE4/yjHs7F9bFvTMCTbrJk0VLeeecdrrn6Gu677z6+//579u3bF+gpSwgZufNn/rn1W/6+4QOyXHllrsty5fH3DR/wz63fMnLnzwGZ34ABA4iPj2fHjh307duX+Ph4GjRowCOPPIL7sNdshmGU69++Y8cO7rzzTho2bEhUVBTt2rXjv//9b7nbKSgo4LnnnuOkk04iOjqaxo0bc80117Bx40ZSU1Np0KABAM8//7z3jOxDbyslJYV+/fpRt25doqOjOeuss/jxxx/L3c6aNWvo0aMHMTExHH/88bz44os6m1tEjkoV7iJh7sCBAwCMGTOGFi1aMGLECE488UTS0tJ4//33Wbx4Mc888wzvvvsuADk5OQDExcVVOF7p9tL9SrVr147333/fX3cjrJRWss+cOZMVK1ZgWRZ4DGz7nZh7o7AdiIqIVjGlgrWaHcKwoh2Cu6odwi9sFxERAYxCEzMttqT1jM2Dp24RnvoFrPhjJStWrGD4O8Pp2Kkj3bt3V+W7HNV36fP5IG0aAGvztvP3DR/wYZvBJNpjvWH72rztAHyQNo0GjqSAVLq73W4uu+wyzjnnHN544w2mT5/Om2++SevWrbnnnnuOeNzu3bs599xzMQyDe++9lwYNGjBlyhQGDhxIVlYWDz74oHf83r17M2PGDG688UYeeOABsrOz+eWXX1i9ejUXX3wxI0eO5J577uHqq6/mmmuuAaBjx45ASYh+/vnn07RpU4YNG0ZcXBzffPMNffv2Zdy4cVx99dUA7Nq1i+7du+Nyubz7jRo1ipiYGP8+gOJXHit8C9kkOChwFwlzpZ+8m6bJK6+8QuPGjQFo3bo1L730ErfccgvLly9n9erV5drLiO94Q/YZM1mxUiH7odWhVemFbFQjnPfeVjUyeqOK4bRVVFTyD1fl+1vbGjes0m0A1fvAobqhdEzVT/P1RFUzyK7Gr4DhrmYleDUej2rdlqsaj3t1q9stC6Kq+DvisTCq2kvY5ar6uTY1qAKrassbA3AfcuaWiEiwMTw2zL3RmHujFb5LlV1apxPj9s73huqlofvrrW7n0U2febcDnBp7PJfW6RSQeRYUFHDDDTfw9NNPAzB48GDOOOMM/vOf/xw1cH/yySdxu92sWrXK+7M/ePBgbrrpJp577jn+/ve/ExMTw+jRo5kxYwZvvfUWDz30kPf4YcOGYVkWhmHQr18/7rnnHjp27Mitt95a5nYeeOABmjdvzuLFi4n6q1jmH//4B126dOGxxx7zBu7/+te/SE9PZ+HChfztb38D4Pbbb6dNmza+e7BEJOxETrojEqHi4+MBaNOmjTdsLxUdHe190fDnn3+W2T83N7fC8Uq3l+4nR1ZRu5jlf6zASHdiT0nEubA+jpRkzL0xERO2G6ZZrVYMhtNZ5bC9urdVHVZR0cGwvZJsjRsqbD+UwnYREYlApeG7IyUZ54L62FOSMPY6WfHHSrWdkQol2mP5sM1gTo093rttbd52rlj9UrmwvbTyPVAGDx5c5vuuXbuyadOmI+5vWRbjxo3jyiuvxLIs9u7d671cdtllZGZmetccGzduHPXr1+e+++4rN45xjHZ++/fvZ+bMmVx//fVkZ2d7b2Pfvn1cdtllbNiwgR07dgAwefJkzj33XO/7ZoAGDRpwyy23VPpxEJHIowp3kTDXvHlz4MgBeUJCAgCFhYVASe/2lJQUtm3bRtu2bcvs63K5SEtLwzRNmjRp4sdZhy61i6lYdYPvGlW014Kqhuylgj5oB4Xtvrit6qhJdbuIiIS0SlW+d+xI9x6qfI90paH7oe1jDhUMYXt0dLS3h3qpOnXqeFueViQ9PZ2MjAxGjRrFqFGjKtxnz549AGzcuJG2bdtit1c91vrf//6HZVk8/fTT3gr8im6nadOmbNmyhXPOOafc9Ye/V5bQYWHgDqL6YyuM12mLZArcRcLcmWeeiWEYpKam4vF4sNnK/mHZvHkzgLf6/YwzzuCXX35h4cKFXHzxxWX2XbFiBQUFBXTq1AlndfpuhymF7EcWrkE7VC9sr1bQDkFf1Q7hG7ZXWyhUt1enL7+IiNSKI4bvy1eyYuXB8L3HRT244IILFL5HoER7LK+3up0rVr9U7rrXW90e0LAdSlqaVlVpO9Rbb72V22+/vcJ9Snuw10Tp7TzyyCNcdtllFe5z4okn1vh2RCRyKXAXCXONGjWic+fOzJ07l++++47rr7/ee92iRYtYtGgR8fHx3k/tu3XrxgcffMDMmTO59tprOfnkk4GSCviPP/4YgL59+9b6/Qg2CtmPTkF7ebVW1Q4K2ytSzcckJKrbRUQkrB0rfH/n7Xfo0LEjFyl8jyhZrjwe3fRZhdc9uumzgFe4V0eDBg1ISEjA7XaXK/46XOvWrVm4cCHFxcU4HBW/Fj1Sa5lWrVoB4HA4jnk7LVq0YMOGDeW2r1u37qjHSXDzWJH7Xl1qhwJ3kQjw0EMPsWHDBkaMGMH8+fNp06YNaWlp/P7779hsNoYOHeptORMXF8fQoUN55plneOCBB+jRoweJiYnMnTuXrVu30q1bN3r06BHgexQYWVlZzJo1i5kzZ7J8+fK/Qnaw7Y9SyP4XBe3lhURVO4R32F5N1b692q5ur82gvgoLAouIiO8dKXxfuXwlK/8K3zud1onu3bvTo0cPkpKSAj1l8YMsV94R28nAwYVUQy10N02Ta6+9lq+++orVq1fTvn37Mtenp6d729Rce+21/PTTT4wYMaLMoqmAd9HU2L8Whs84bDH14447jm7duvHhhx9y3333lVvr7NDbufzyy3nnnXdYtGiRt497eno6X375pc/ut4iEHwXuIhHguOOO4+OPP+bTTz9l7ty5rFixgri4ODp37swtt9zCqaeeWmb/rl278u677zJ69Gh+/fVXioqKaNq0Kffeey/XXnvtMRehCScul4uFCxfy888/8/vvc3G7XQrZKxDOQTuEeVU7hH/YXputZKpL1e0+ZSYn4z7szbWISLg5Uvi+fNkKli9fzrvD36Xz+Z3p2bMn55577hGrgCW0VBS2nxp7PK+3up1HN33m3R6qofurr77KrFmzOOecc7j77rs59dRT2b9/P8uWLWP69Ons378fgP79+zN69GiGDBnCokWL6Nq1K7m5uUyfPp1//OMf9OnTh5iYGE499VTGjh3LSSedRN26dWnfvj3t27fnvffeo0uXLnTo0IG7776bVq1asXv3bubPn8/27dtZsWIFAEOHDuXzzz+nZ8+ePPDAA8TFxTFq1ChatGjBypUrA/lQiUgQU+AuEiGSk5N58MEHefDBByu1f4cOHXj99df9O6kgZVkWGzZs4Oeff2b69OklFREWGJlO7HsSse1TyA41C76rE7TX9DarIySq2iF0WshAyITtYV/drv7tIiJhpVz4Xq8Q93EFzPltDnPmzCEpKYmLL76Ynj17ctJJJ0VUAU24mXZgRbmwvTRUP3wh1bV525l2YAX9GpwXqOlWWcOGDVm0aBEvvPAC33//Pe+//z716tWjXbt2/Otf//LuZ5omkydP5qWXXuKrr75i3Lhx1KtXzxuil/r444+57777eOihhygqKuLZZ5+lffv2nHrqqSxZsoTnn3+eTz/9lH379nHcccdx+umn88wzz3iPb9y4MbNmzeK+++7j1VdfpV69egwePJgmTZowcODAWn1sxHfcWqhU/MywLJVUiYgA7N27l19++YWpU6eyadMmAIw8E9ueGMz0aIzC2q+sDkYK2o+s2kE7hH8LGVDYfiQ1eSlW24F7dVvK/LU4WXVYefnVOk4V7iIiYDnduI8rwHNcPlZsyd+pE044gZ49e3LJJZdQv379AM8wcpS+vyjtH14TI3f+zAdp08qE7aUOrYAf3PhS7mnSs8a35y9utxu73c4///lPnnrqqUBPJ2j58mcn0vXv3599hVvo/lz13gv5w6znCqgX1YLRo0cHeiriQ6pwF5GIVlhYyO+//87PP//MokWLSvqyuwxs6TGYu2MwcuwY+vQbiIygHSKgqh0UtouIiEQIo8jEvj0Oa3ssVrwL93H5bC5OZeTmkXzwwQecffbZ9OzZk65duxIVFRXo6Uol3dOkJw0cSVxap1O5djGlle6hUNmelpYGoA9+RCTsKHAXkYhjWRarV6/m559/ZtasWeTk5IAFtgNOzN0x2PZHYVgK2UspaD+6Wq9qB4Xtx1KDxyciqttFRCTiGBgYOQ5sOQ6szQl46hbiOa6ARQsXsWjRIuLi4ujevTuXXXYZHTt2VMuZEHC0MD3RHhv0Yft3333H6NGjMQyD7t27B3o6EkEswGMFT4tYvaIPTwrcRSRipKWlMXXqVKZOncqOHTsAMHLsmHviMdNjMIqD549uMFDQfmyRUNUOtR+2B0qNQv5QUtvtZEREJKgYloG5LxpzXzSWw4O7fgF5DfOZNGkSkyZNokmTJlx22WVcdtllNGnSJNDTlTA1dOhQDMPgP//5D23btg30dEREfEqBu4iEtdzcXGbPns3UqVNZvnx5ycYiG+aeWGx7orHl1SBIDFMK2o8tUqraITBhe0j1bQdVtwcpMzlZfdxFRI7BKLZhT4uFtFg8sS48x+Wzs2gXn3zyCZ988gkdO3akZ8+edOvWjfj4+EBPV8JIaV9yEZFwpMBdRMKO2+1m6dKlTJ06ld9++43CwkLwgG1fFLY9MdgOONWXvQKRErRDiFW1g8L2ylLfdhERkWqz5dmxpSZgpsZjJRfhbpjPyuUrWblyJe+88w4XXHABPXv25Mwzz8QM0Gs4EZGaM3AHVR4QTHMRX1HgLiJhY/fu3fz444/8/PPPpKenA2BkObDvTsC2NxrDHUK9LWqRgvbKCbmqdlDYXhu3G4jqdhERET8yMDAyorBlRGGZHjz1Cyg+roDp06czffp06tWrR69evbjyyitp3LhxoKcrIiISdBS4i0hIc7vdLF68mPHjx7NgwQI8Hg8U2DD3xJW0jCnQ01xFahp4Vzdo98VtV0fAgnaIrBYyoLC9NtQkrK9u/3YREYlIhtuGuTsWc3csVrQL93EF7Cs4wBdffMGXX37JueeeS9++ffnb3/6mqncREZG/KIkSkZB04MABfvrpJ3788Ud27doFFtgOOLGnxaplzFFEWtAOIVjVDgrbqyIU28ioul1EREKQUWDHvjUec2tcScuZxvnMnzef+fPn06hRI6666iouv/xy6tatG+ipiogckQV4rOA5+13vDMKTAncRCRmWZbFy5UomTJjA7NmzcblcJQug7o7D3BWDUaiqmiNR0F41IVnVDpEXttdQxFW314TLFZjbFRGRoFOm5UyUG3fDfHYV7WHUqFH897//5YILLqBv37506tQJw1ARjIiIRB4F7iIS9HJycpg2bRoTJkxg8+bNABgZDuy7krDti8Kw9EL+SBS0V11IVrVDZIbtgWolUxOqbq9VZnIy7oyMQE9DRCRsGYVmSdX7tjg8dQtxN85j5syZzJw5k5YtW9KnTx8uu+wy4uPjAz1VERGRWqPAXUSC1vr165kwYQI/T5lKsasIXAbmnhhsabHY8vX0dTSRGLRDiFa1Q8BayEBkhu01Fqjq9ppS/3YREfETwzIw90Vj7ovGE+PC0yifVNcWhg8fzvvvvc9lPS+jT58+tG3bNtBTFRHBHUQtZSQ8KbESkaBSWFjIzJkzmTBhAmvXrgXAyLZj35WILT0aw6Nq9qNR0F49kVjVDpEbtodsdbuq40VEJATY8u3YNidgbonHU78AV+M8Jk2axKRJkzj55JPp27cvPXr0IDq6Zq9jREREgpUCdxEJCtu2bWPChAlMnDCR/MJ8cINtbzRmWiy2nBqGghFAQXv1hGxVOyhsr6Ya336oVreLiIjUMsNTcnaquScGT1wx7sZ5pLhTeDXlVd55ezhXXtWbPn360Lx580BPVURExKd0DoWIBIzL5WL27Nk89NBD3HLLLXzzzTcUHCjC3JSAc1EDHBuSFLYfg2GaNQq8DadTYXt1KWwXERERqRRbrgPH/5JwLmqAuTGBwgNFfPvtt9x66608+OCDzJ49G5cW6A5pS5cupWfPniQmJpKQkMCll17K8uXLK9x33rx5dOnShdjYWBo1asT9999PTk5OmX127NjBFVdcQWJiIqeeeioTJ04sN87333/PcccdR2Zmpj/uks+8//77fPrpp4GehhzCgxE0FwlPqnAXkVq3b98+JkyYwPff/UBWTiZ4wLYvCnNXLEamA0N/dCrNqmZwa4uNrdHtGo4aBrYeT/Vvu05SydfqDmCv4Z8+o/o/n+56PlgwrAa3D2AU1yzsd8VX/wMaT1QNz8SoYQ9yyxa45xZ7bs1CBMNd/d8ZAKOg+rdvyy0Aew3+7w7U7E2wYZpgVv9THvtxDbBqEOK49x+o9rEiIlKW4bZhT4vFSovBSiypel+2ZBnLli0jIS6Bq6+9mr59+1K/fv1AT1WqYNmyZXTp0oVmzZrx7LPP4vF4eP/997nwwgtZtGhRmd79y5cv56KLLuKUU07hrbfeYvv27bzxxhts2LCBKVOmePe7/fbb2bFjB//617+YO3cu1113HSkpKbRs2RKAgoICHnnkEV588UWSkpJq+y5Xyfvvv0/9+vUZMGBAoKciIrVEgbuI1JrU1FTGjh3LlCk/4/G4ocCGuTsOc1cMRnHgKqUjSU2DdgiOsL3aFLbX6HiF7SIiIuILBgZGlhNblhPL4cbdsIDsRrmMHj2aL774kp49L+OGG27ghBNOCPRUpRKefvppYmJimD9/PvXq1QPg1ltv5aSTTuKJJ55g3Lhx3n2feOIJ6tSpw+zZs0lMTASgZcuW3H333UybNo1LL72U/Px8Zs6cyezZs7ngggsYPHgw8+bNY+rUqfz9738H4I033iApKYm77rqr9u+wiMgx6KRwEfEry7L4448/eOyxx+jfvz8//fQTVoYN+59JOJfUx74tXmF7LfFFVXuNwnaPR2F7gG4fQjtsD3U1rW4XEREJZ0axiX17XMl7g7VJWAdsTJ48mdtvv51HH32UpUuXYmnh8KA2Z84cLr74Ym/YDtC4cWMuvPBCJk2a5G0Xk5WVxS+//MKtt97qDdsB+vfvT3x8PN988w1QUr1uWRZ16tQBwDAMkpOTycvLA0razbz66qsMHz4cm61qsVZKSgrXX389DRo0ICYmhrZt2/Lkk0+W2eePP/6gV69eJCYmEh8fz0UXXcSCBQvK7PPpp59iGAZz585lyJAhNGjQgLi4OK6++mrS09O9+7Vs2ZI1a9bw66+/YhgGhmHQrVu3Ks1ZfMuyDNyWLWgulqXCoHCkCncR8QuXy8Wvv/7KmDFjWLduHVh/tY3ZEYstu/rBnVRdxFe1g8L2AIbtvhDp1e01bScjIiISCgwMzP3RmPuj8SQU4W6ax8IFC1m4cCFt2rThhhtuoEePHthr+rpOfK6wsJCYmJhy22NjYykqKmL16tWce+65rFq1CpfLxVlnnVVmP6fTyWmnncYff/wBQJ06dWjdujUvv/wyL7/8MvPmzWP58uX8+9//BmDo0KH06tWLCy64oErzXLlyJV27dsXhcDBo0CBatmzJxo0bmThxIi+99BIAa9asoWvXriQmJjJ06FAcDgcffvgh3bp149dff+Wcc84pM+Z9991HnTp1ePbZZ0lNTeWdd97h3nvvZezYsQC888473HfffcTHx3uD/YYNa7iWlIgEPf2lEhGfysvLY9KkSXz77bfs3r0b3GDbHYN9ZyxGgZ5yalvAe7WDwvaaCnDYXlOBbiUjNevfLiIiEgi2bCe2FCdWlAt30zw2uDfw4osv8uGHH3Lddddx5ZVXEhcXF+hpyl/atm3LggULcLvdmGbJa7+ioiIWLlwIlFSkA6SlpQEl1e+Ha9y4MXPmzPF+P2rUKPr168eYMWMAePDBBzn//POZN28eP/zwA3/++WeV53nfffdhWRbLli2jefPm3u2vvvqq999PPfUUxcXF/P7777Rq1QooqcBv27YtQ4cO5ddffy0zZr169Zg2bRrGX6/ZPR4P7777LpmZmSQlJdG3b1+eeuop6tevz6233lrlOYtIaFJLGRHxifT0dEaOHEm/fv0YMWIEu7elY26Jw7m4AY5NiQrba5ktNjbwYXswtJBR2F7jKYR6K5lAV7ernUzoM+vWCfQUREQillFox74pEefiBpip8aTv2Mf7779Pv379eP/990sKfCTg/vGPf7B+/XoGDhzI2rVrWb16Nf379/cG7Pn5+WW+RkVFlRsjOjraez1Ajx492Lp1KwsWLGDr1q28/fbbeDwe7r//fh5++GFatGjByJEjOfnkk2nbti0ffPDBUeeYnp7Ob7/9xp133lkmbAe8Ybnb7WbatGn07dvXG7ZDyYcBN998M7///jtZWVlljh00aJD3eICuXbvidrvZsmXLMR83CRyPZQTNRcKTEjARqZGNGzcyZswYpk+fjtvtxsgzse9IwLYnBkN/PAIi4EE71ChohyDo1w4K2wn9VjIiIiISHgyXDfv2OMwdsXiOKyCvaS5jxozh22+/5aKLLuKGG26gTZs2gZ5mxBo8eDDbtm3j9ddf57PPPgPgrLPOYujQobz00kvEx5e8Ni5tO1NYWFhujIKCgnJtaeLj48u0cPnkk0/YtWsXw4YNY/r06Tz66KN88cUXGIbBzTffTNu2benevXuFc9y0aRMA7du3P+L9SE9PJy8vj7Zt25a77pRTTsHj8bBt2zbatWvn3X54eF/ad/7AgQNHvB0RCX8K3EWkyizLYsmSJYwZM4bFixcDYGQ6sG9PwHbAiYGC9kAI9V7tECQtZEBhOzUP24OhlUygq9t9Qf3bRUREDjIsA3N3DLbd0XjqFOFumsu0adOYNm0aZ511FjfeeCNnn312mYpjqR0vvfQSjzzyCGvWrCEpKYkOHTrwxBNPAHDSSScBB1vJlFa+HyotLY0mTZoccfysrCyefPJJ3njjDeLi4vj666/p168fffv2BaBfv358+eWXRwzc/aW0hc7htNBv8LIAdxA1/KjJT8r111/Prl27Kryubt26jB8/vtz2VatWMXr0aNauXUthYSHHH388l19+Oddee+0Rf57nzZvHmDFj2LBhAx6Ph5YtW9K3b1969ep1xLlNmTKFH374gS1btmCz2WjTpg033ngjnTt3rnB/t9vNuHHjmDx5Mtu3bycqKopTTz2V/v3706FDh2M/GEFGgbuIVFpxcTEzZ85kzJgxbNy4sWQh1L1RmDvisOX4oCpaqiUognYIj7C9hm/OgiFs94VAh+2+EAxhezC0k6lp/3ZbboGPZiIiIuI7BgbmgSjMA1F44opxN81jyeIlLFmyhBNOOIEbb7yRiy66CKczsGfrRZo6derQpUsX7/fTp0/n+OOP5+STTwZKqsvtdjtLlizh+uuv9+5XVFTE8uXLy2w73AsvvMAJJ5zALbfcAsDOnTs5/fTTvdc3adKE5cuXH/H40hYxq1evPuI+DRo0IDY2lnXr1pW7LiUlBZvNRrNmzY54/JHoAyDxp/j4ePr161due0ULGc+ZM4dnnnkGp9NJ9+7dSUxMZN68eYwYMYLVq1fzwgsvlDtm3LhxDB8+nKSkJC655BIcDgezZ8/mlVdeYdOmTfzf//1fuWPee+89xo4dS4MGDejdu7c3Sxo2bBgPPPAA1157bZn9Lcvi+eefZ/bs2TRv3pxrrrmGrKwsZs2axf33388LL7xA165da/Ao1T4F7iJyTDk5OUycOJHvvvuO9PR0cBuYu2Ixd8ZiFAY+WItkCtsPobC9ZIgAL5LqC2olI75m2O1Yrup/+GDWrYN7v04NFxEJRrZcB7b1SVhb4nE3yWOzK5VXXnmFUaNGce2119KnTx8SEhICPc2IM3bsWBYvXswbb7yBzVZSTZyUlMTFF1/MF198wdNPP+39f/n888/Jycnhuuuuq3Cs9evXM2LECH777TdveN2wYUNSUlK8+/z55580atToiPNp0KABF1xwAf/9738ZMmRImVYwlmVhGAamaXLppZcyYcIEUlNTadmyJQC7d+/mq6++okuXLiQmJlb5sYiLiyMjI6Pc9uLiYjZu3EhSUlKFC8mKVEZ8fDx33nnnMffLzc3l9ddfx2azMXz4cO8HYQMHDuTBBx9k9uzZzJgxg4suush7TFpaGiNHjiQxMZFRo0Z5f04HDBjAoEGDGDt2LBdeeGGZVk2rVq1i7NixNG3alFGjRnl/z2+66SbuvvtuRo4cSefOncv8zM+YMYPZs2fTvn173n77be86D3369OHee+/l9ddf58wzzyTWB/lHbQmecyhEJOjs3buXESNG0K9fP0aOHEn69n2Ym+NxLqqPfXOCwvYA8tWiqMGwMGqoL44K4RW2B7q6Xa1kDlI7GRERkcozCk3smxNwLq6PuTmefTsPMGrUKPr168e7777Lnj17Aj3FsPXbb79x8cUX89prr/Gf//yHu+++m1tuuYWePXvywAMPlNn3pZdeYv/+/Vx44YV88MEHPPXUU9x7771ceuml9OzZs8LxH3roIW644Qb+9re/ebf169ePCRMm8MQTT/DEE08wceLEo1bIA7z77rtYlsUZZ5zBE088wUcffcSTTz5ZplL+xRdfxG6306VLF15++WVee+01OnfuTGFhIa+99lq1Hp8zzzyTlStX8uKLLzJmzBhmzpwJwI4dOzjllFN4/PHHqzWuVF+gF0oNxKKps2fPJiMjgx49enjDdihZxPiuu+4CKNeCZvLkyRQVFXHNNdeUCcgTEhK49dZbAZgwYUKZY3788UcAbrvttjIfdjZu3Jirr76aoqIipkyZUuaY0tu96667yiyqfMopp9CjRw8yMjKYPXt29e54gKjCXUTKKf0E/6effqKoqAgj1459RyK29GgthBoEVNV+iAD3aweF7YcKhlYywSIY2smIiIhEIsNtw74jDnNnLJ76BRQcn8d3333HhAkTuOKKK7jlllto2LBhoKcZVpo2bYppmrz++utkZ2dzwgkn8OKLLzJkyBDsh71eP+OMM5g+fTqPPfYYDz30EAkJCQwcOJBXXnmlwrEnT57Mb7/9xvr168ts7927Ny+99BL//ve/sSyLV1555aj9pAE6derEggULePrppxk5ciQFBQW0aNGiTFDfrl075syZw+OPP84rr7yCx+PhnHPO4YsvviizgGtVPPPMM2zZsoXXXnuN7OxsLrzwQnr06FGtsSQ87dixg/79+5fbPnr06GMeW1RUxLRp09i9ezfR0dG0bt2aTp06levHvmzZMoAKf447depEdHQ0q1evpqioyNuOq/SYQz/sKlU6Tuk+h9/OkY757LPPWLZsmbcqv7CwkDVr1hAdHU3Hjh0rPGbq1KksW7aMyy+//OgPRhBR4C4iXmlpaXz55ZdMnjwZl8uFkW3HvjVZC6EGiXAJ2kFhuy/nAMERtvuCqtt9q6b920VEREKZYRmY6THY0ksWWHU1y2X8+PFMmjSJXr16ccsttxx1kU6pvNatWzN16tRK79+lSxfmzp1bqX0vv/xysrOzK7xu2LBhDBs2rNK3CyWB+vfff3/UfU4//XR+/vnno+4zYMAABgwYUG57t27dyi2Y2rBhQyZNmlRu35YtW2pxVamx/fv38+KLL5bZ1rhxYx5//HFOO+0077Zt27YBVLgOgd1up3HjxmzevJmdO3d62ylt3br1iMfUr1+fmJgY0tPTKSgoIDo6mvz8fNLT04mJiaF+/frljjn++OPLzAVK1mNwu900b9683Ad0RzomFChwFxF27NjBF198wc8//4zb7cbIcuDYmoyRoaA9WChsP4zC9oNDBEnYrur2g1TdHp7Ux11EJDSVLrBqO+DESi4J3idOnMjkyZO59NJLufXWW6u1EKaIhCoDT1B12DZo2rRpparZD9erVy86duzICSecQGxsLDt37uT7779n4sSJPProo4wcOZITTzwRKFmbD0rWFKhI6fbS/aCk7/uxjsnPzycnJ4fo6Gjv/vHxFb9XLt1+6G2U/vtIx1Q0r1CgwF0kgm3bto3Ro0czffr0kqA904FjawJGpoL2YBE0QTsERwsZUNh+6BBBskCqL8J2VbeXpf7tIiIivmVgYGRE4chwYiUV42qWw5QpU5g6dSoXX3wxt912Gy1atAj0NEVEKu2OO+4o832rVq145JFHiImJYezYsXzyySe89NJLAZpdZFPgLhKBUlNTGT16NDNnzsTj8WBkOHBsS8SWGfiWEnJQ0ITt4VTVDgrbDxMurWREREREKsPAwMh04sysiyexpOJ92rRp/PLLL/To0YP+/ftzwgknBHqaIiLV1qdPH8aOHcuKFSu820oryEur0A9XUXV6XFwcmZmZ5ObmkpRU/j394cccqxq9omr2iqrejzWvUKDAXSSCbNu2jU8//ZTp06djWRbGASeObXHYsgIfuMlBQRO0Q3iF7T4IuYMlbPeVcGolEyzV7cHSTsYX/dttuQU+mImIiEjwsmU5ca5x4kkoCd5nzJjBzJkzueiii7j99ttV8S4ShizAbQXHewcomY+vJScnA1BQcPD1fLNmzUhJSWHbtm20bdu2zP4ul4u0tDRM0yyztkXz5s1ZtWoV27ZtKxe47927l/z8fBo0aEB0dDQAMTExNGjQgPT0dPbu3Vuuj/v27du9cynVpEkTTNMkLS0Nl8tVro97RceEgmBqWiQifrJz505eeeUVbrvtNn755RfY78Cxog7ONXUUtgcRW2xs8ITtHo9PWsgobPf9PCC8+rarlUx5aifjH4YPnkvMunV8MBMREQk2tmwnzrV1cCyvC/scTJ8+ndtvv52XXnrJG/b4ghbIlOrQz41U1dq1a4GSxVNLnXHGGQAsXLiw3P4rVqygoKCA9u3b43Q6yx2zaNGicseUjlO6T3WPiYqKol27dhQUFLBy5cpK306wU+AuEsZ27drFa6+9xi233MKUKVOw9ttxrPwraM9W0B5MfBW0h1ULGVDYXtEwQRK2+4JayYiIiEgwseU4SoL3FXWw9tmZOnUqt912G6+++io7d+6s0diGYeDxwetsiTwejwcjiM6SleCQmppKfn5+ue1paWm8/fbbAFx66aXe7d26dSMpKYmZM2eSkpLi3V5YWMjHH38MQN++fcuM1atXL5xOJ99//z1paWne7dnZ2XzxxRdASfuaQ1111VUAfP7552RnZ5eZ1w8//IDT6aRXr15ljim93Y8//pjCwkLv9j///JOZM2eSnJzMhRdeePQHJMiopYxIGNqzZw+ff/45P/30Ey6X66/FUNWjPRj5ImiHMGwhAwrbKxomSBZJBbWSqUiwtJMRERGRmrFl/9VqJrEIV4scJk+ezNSpU7n88svp378/DRs2rPKYDoeDgoKCClsmiByJy+XC5XIRExMT6KmEFU8QtZSprpkzZzJ27Fg6depEo0aNiImJYefOncyfP5+ioiLOPfdcbrzxRu/+cXFxDB06lGeeeYYHHniAHj16kJiYyNy5c9m6dSvdunWjR48eZW6jSZMm3HPPPQwfPpxBgwbRvXt3HA4Hs2fPJj09nRtuuIH27duXOaZDhw5cf/31fPPNNwwYMIBu3bpRXFzMrFmzyMrK4oEHHihTeQ9w0UUX8dtvvzF79mwGDhzI+eefT2ZmJrNmzcLj8fDoo496+8OHCsPSuSkiYWPv3r18+eWX/PjjjxQXF2NkObBvicPIdGIQ+n9Qwk3QtI8BnwTtEET92kFh+xGEUysZCM/AvaYtZXzRvx182MP9QGbNxzB9c1Km5ar5Y+Pef8AHMxERkVBhYWElFeNqnoOVVIzdbqd3797cdtttNGjQoNLjZGVlsWPHDpKSkmjcuLEqluWYLMsiLS2NzMxMmjZtSmJiYqCnFPL69+/ProLtnPJ41T8085c/X9lNo+jjGT16dJWOW758ORMmTGDDhg3s37+f/Px84uPjadOmDZdeeimXXXZZhc8zq1atYvTo0axZs4aioiKaNm3KFVdcwbXXXotpVvw+b+7cuYwZM4b169djWRYtW7bk6quvLlepfqgpU6bwww8/kJqaimEYnHTSSdx000107ty5wv1dLhfff/89P/30Ezt27MDpdNKuXTv69+9Phw4dqvTYBAMF7iJhIDc3l6+++opvvvmGwsJCjGw79i3xGBkK2oORqtqPQmF7xcMEUdgONQ/cwzFsB98E7r7o367A/ch8EbiDQncRkUhkYWElF+FqnouVWIzT6eS6667jlltuIT7+2K8bLcti69at5OXlYZompmkqdJcjsiwLt9uN2+0mNjaW5s2b6+fFB8IpcJfgpvOYREKYy+Vi4sSJfPLJJ2RkZGDkmti3JGHbH6WgPUipqv0oFLZXPEyYhe3hSu1kREREwpuBgZERhSPDiadOEcUtc/jyyy+ZNGkSAwYMoE+fPkdtFWMYBk2bNuXAgQPk5ORoIUw5KsMwcDgc1KlThzp16ihs9yEL8FjBs6SlngnCkwJ3kRBkWRa///47H374IVu3boVCG/atCdh2xyhoD1LhWNUOCtv9OQ8Iz7A9XKvbRUREJDIYGJgHorAdcOI5roDMFtkMHz6ccePGMXjwYLp27XrEcNRut9OgQYMqtaIREZHQo8BdJMT8+eefvP/++6xYsQLcBub2OMwdcRgehU/BSmH7MYRb2C4iIiIiYc/AwNwTg21vNO6muWx37eCpp56iQ4cO/OMf/6Bdu3aBnqKIiASIAncJqGnTpvHiiy8CMHToUHr37u297o8//uCBBx444rE333wzgwcPLrd9xowZfPbZZ+zZs4dTTjmF++67j1atWvl+8rVs586dfPTRR8yYMQMssO2Kwb41DqNY7R2ClZnkm0DaKi4u87W6vIG9rWanzxkN6tXo+LKD+eaDIlf94KlKd8f45neyON43f6Lz6/nmdEm3s+aPj1nkm+p2wzeF/z6bj73Aoji+5v/vjhwf3DELSKj5GQ22Yg8kR9d4HOf2A5DsowW+cnJrPIThcNT4uRTArFsHin2wAGt2do3HEBGRwDI8BvZt8Zi7YnA1z2WVtYp77rmH7t27M2jQIJo2bRroKYpIGQbuoOoMEExzEV9R4C4Bs3v3bt555x1iYmLIz88/4n6nnXYap512WrntHTt2LLdt0aJFPP/885x99tmce+65LFy4kAcffJDRo0eTnJzsw9nXnuzsbEaPHs33339PcXExtv1OzNQEbHn69Q1mvg7ba8pX1fEK249OYbuIiIhIZDKKTRwbE/HsjMXdModZs2YxZ84crr76avr370+Sj94fiIhI8FNiJwFhWRavvvoqiYmJXHDBBYwZM+aI+5522mnceeedlRr3559/5oILLvBWzd95553ccsst/P7772Wq50NBUVER48eP57PPPiM7Oxsjx45jcx1smb7pxSz+o7C9MoMpbD8SX4XtwSZcq9tFREREDmXLt2P7MxlPYhGuE7L59ttvmTJlCrfddhvXXHMNUVFRgZ6iiIj4WXi+q5eg991337Fs2TKGDx/OsmXLfDau2+3GNA+GXoZhYBgGbrePEppaYFkWs2bN4sMPPyQtLQ0KbNi3JGJLj9aCqCFAYXtlBlPYXhtU3V477AW+Ce590k5GREREgoYty4ljRV089QvIaZnDyJEj+eGHHxg0aBA9evTAVsM2jyJSTRZ4rCB6j6M6oLCkwF1qXWpqKh9++CH9+vXjtNNOO2bgvmPHDsaNG0deXh5169alY8eONGvWrMJ9L7nkEp544gny8/M54YQTWLx4MQUFBZx//vn+uCs+t3LlSt5//33Wrl0LLgNzWzxmWqwWRA0BvgraQWF7ZQRT2O5LwdZKxleCrbpdJFiYCQnq4y4iEsYMDMy9Mdj2ReNukscu125eeOEFvvnmG/7xj39U2DpVRERCnwJ3qVUul4uXXnqJhg0bMmjQoEod88svv/DLL7+U2XbhhRcydOhQEhISymzv0qULjz/+OF988QUrVqzgpJNO4s0336R+/fo+uw/+sG3bNj744APmzJkDHjB3xWBujcdwBVdoJhULtqp2UNh+TD4M28O5lUy4VrernYyIiIjUJsMysO+Iw9wdg7tZLimeFO6//37OP/98Bg8eTIsWLQI9RRER8aHge3cvYe2zzz5jw4YNjBgx4pi965KTk/n73//OeeedR6NGjSgqKmLdunWMGjWKX3/9lf379/Pvf/+73Kl4vXr1olevXv68Gz6TkZHBJ598wo8//ojb7ca2NwozNR5bgX41Q4XC9soOFkRhuw8FY9gebK1kwjnc9lU7GZ8JsumIiIhIWYbLhn1zAmZaDK4WOcydO5cFCxbQu3dv7rjjDurWrRvoKYqEPQvwWMFT3KiX8OFJqZ7UmrVr1/LFF19www030L59+2Puf8IJJ3DCCSd4v4+NjeWcc86hffv23HnnnaxatYq5c+fStWtXf07bL9xuNxMnTmTUqFHk5ORgZDlwbE7Elq0FUUOJwvbKDhZkYbv6toekcF4sVf3bQ5TDDsWuQM9CRERCkFFgx7EuGc/OIlwtc5gwYQLTp0/nrrvuom/fvmXWJRMRkdATvu/MJaiUtpI5/vjjGThwYI3GiouL4+KLLwZgxYoVvpherVq3bh333HMPb731Fjn78rCnJOFYWUdhewgxk5KCLmw3HA6F7ZURxn3bfUnV7SK1xzysPZ6IiEQOW7YTx6o62P9MIndfPsOHD+fvf/97yZpeIuI3HoyguUh4Cr53+RKW8vPz2bZtG4A3LD/ca6+9xmuvvUa/fv24//77jzpecnIyAAUFBT6dpz9lZ2fz8ccfM378eGw2G+b2WMytcRgefe4VSsJ5cVRQ2F5Z4dxKJhgF42KpQddORkREREKSgYG5LxrbgSjczXPYaG7knnvu4aqrrmLQoEHl1i0TEZHgp8BdaoXT6eSKK66o8Lr169ezYcMGOnbsSLNmzWjXrt0xxyv9xL9JkyY+nac/WJbFL7/8wnvvvceBAwcwMh3YNiZgy/NdSCq1I9iq2kFhe6UpbK+0cK5uD8Y5iYiIiAAYHgN7agKePTF4WmcxYcIEfv31V+655x569uyJEYRnaoqISMUUuEutiIqK4rHHHqvwuv/+979s2LCBnj170rt3b+/2lJQUTj755HL7T5s2jZkzZ+JwOOjevbvf5uwLqampvP322/zxxx9QbGDfnIhtTzSGThsKOQrbqzKYwnbxnWCsbvcl9W8XERGRQ9ny7DhW1cHToICMEzJ55ZVX+OmnnxgyZAitWrUK9PREQp4FuK3gyWRUEhSeFLhL0HrmmWcwTZO2bdvSoEEDioqKSElJ4c8//8Q0TR555BEaN24c6GlWKD8/n9GjRzNmzBg8Hg+2tBjsW+IxXOHb8iGcKWyvymDB88IlmKm6XUQOZSYk4M7ODvQ0REQkSBgYmOkx2PZH4WqRwypjFQMHDuT666/n9ttvJzY2NtBTFBGRo1DgLkGrT58+LF26lFWrVpGZmQlA/fr16dWrF9dddx0nnnhigGdYsTlz5vDuu++ye/dujBw79v/VwZaj9jGhKBj7tYPvwnafBu3g07A9nKvbwz1sD1a+/BAgKPu3+3BKtmKP7wYLQobD4bvnZIcdil2+GUtEROQwhtuGY1Minj0xuFpn8fXXXzN9+nTuv/9+LrjgArWZEREJUoZlWUH4rlEk9KSlpTF8+HDmzZsHLgP7lnhsaTFqHxOiFLZXdUCF7ZUV7oG7L4NtX7aTCcbA3aftZII0cHduP+CzscjJ9dlQvnxe9lXgrgp3ERE5GgsLT6N8XC1zwG5x7rnn8uCDD4bEumYiwaJ///7syN/J8Y+2CPRUvLa/voWmMU0YPXp0oKciPqT+FiI1VFxczOeff07//v2ZN28etj3ROJfWw0yLVdgeonzZQkZhe9UobK+8YAzbg5Va3EgoMBMSAj0FEREJYgYG5q5YnEvrYdsTzYIFC+jfvz+fffYZRUVFgZ6eiIgcQoG7SA0sXbqUO+64g48++oiiAy4cq+rgWJ+EUayFFUNVMPZrB4XtVaKwPWCCtbrdl4KynYyIiIhEDKPYxLE+CceqOhRnuPnPf/7DgAEDWLx4caCnJiIif1EPd5Fq2LdvH++99x7Tp08HN5jb4jF3xGIE0UrXUjXh3kIGFLYHki/Ddl8L9+p2ERERkXBky3Ti+KMe7iZ5bHfv4OGHH6ZHjx7ce++91K9fP9DTEwlqHmU34mfBmwCIBCHLspg0aRLvv/8+ubm52PY7sW9MxChURXsoU9henQHDP2z3ZXW7L6m6vWqCtZ2MT/u3i4iISEQyLAP7jjjMvdG4WmUzc+ZMFixYwODBg+nTp48WVRURCRAF7iKVtGfPHl577TUWLVoEhTbsG5Mw90cHelpSQwrbqzNgEIbtPhYprWRU3V41QdtOJkinJVVnJiRo8VQREakyo9DE8Wcy7jqF5LXO4q233uK3337jscceo2HDhoGenohIxAnOMjmRIGJZFlOmTGHAgAEsWrQI2+5onMvqKWwPA+G+OCpEUNgeAX3bfc2XYXuwVpEH67wkzDiC9/dcREQii3kgCucf9bDtimHJkiUMGDCAn376CcvSayKRUhbgwQiai347w5PeIYgcxb59+3j99deZN28eFNmwb0jGPBAV6GlJDQVrVTsobK+WID1V1tdhe7C2kvG1YF0sVURERCQUGG4bjv8l4t4XRe6JWfzrX//i119/ZejQoertLiJSSyLj3btIFVmWxYwZM7j99tuZN28etj1/VbUrbA95CturO2BkhO2R0rc9Eqrbfc2X7WTUv11ERET8zTwQhXNZPWy7o1mwYAG3334706ZNU7W7iEgtUIW7yGEyMjJ46623mD17NhQZJb3a96l9TDhQ2F7dARW2V1Uwt5IJZpGwWKrIsaiPu4iI+IrhtuHYkIR7XxTZJ2bz4osv8uuvv/Lwww9Tt27dQE9PJGA8VnCeJS3hQxXuIof47bffuPnGm5k9eza2vVE4l9VX2B4mFLZXd0CF7VUV7K1kVN0uIiIiElnM/SVnbNvSo5gzZw633Hwrs2bNCvS0RETClkrwRICsrCyGDx/OL7/8AsUlVe22vVEY6FPPcKCwvboD6udfRERERCQcGC4bjnXJuPcWkHtiFs8++yy//vorDz30EEk+fL8kIiIK3EWYP38+L7/4MpnZmdj2O7FvSMQoDs4+zlJ19ga+WxjIcrsxTN/18TfsvnsKturV8enq5la0b/88uBJ897i5o337+5nfwHcfeuQd59sPKQyPT4fDXgCGj35Q8usDvvxQ0odDObJ9O6BZCIU+eh8am+6hKNF3v1/OLJdv/xtcFpbNNwOahW5cDX34Br5hEvat6T4ZynA4sPLyfDIWAA47FPnuA1kzPh53To7PxhMRESll7ovGluXAdWI2M2fOZMmiJQx7YhhdunQJ9NREaodl4LGCqOGH2tuEJQXuErFycnIYMWIEkydPBpeBfVMitj3RqmoPI74O233J12G7Lylsr55gD9tFRERERACMYhP7n0l4GhSQ1TqbJ554gssuu4z777+fhISEQE9PRCTkBdFHOiK1Z/HixQwYMIDJkydjHHDiXFYPc0+MwvYworC9muMFcdguNWMv8N1Y+b779Sqhp14RERGRWmVgYKbHlPR23+9k6tSpDBgwgIULFwZ6aiIiIU8V7hJR8vLyGDlyJBMmTAC3gX1zArZdCtrDjcL2ao7n47Dd11TdLpVR0k7Gd8xC344nIiIiEkyMIhP72mQ8DQtId+/l0Ucf5corr+T//u//iI2NDfT0RHzOAjxB1MbFl61hJXiowl0ixvr16xk4cCATJkzAyHCUVLXvilXYHmYUtgePSGklEwqCurpdRERERALKwMDcXVLtbmQ4mThxInfccQcpKSmBnpqISEhS4C5hz7IsfvjhB+655x52bNuBuSkex+o6GIVaGDXcRErY7g9qJVN9qm6voQj6zDM2PdL+c0VERCSUGIUmjtXJ2DcmkLYjjX/84x+MGzcOy1INrohIVQR3AiRSQ7m5ubz22mvMmjULCkwcKXWx5URWZWukiKSwPdhbyfg6bFd1e834sro92Pm6nUywc2a5Aj0F8SMzPh53Tk6gpyEiIhHGwMBMi8XIclB8cibDhw/njz/+4LHHHtOCqhI2PJFU9SMBoQp3CVvr16/nrrvuYtasWdj2RuH8Q2F7uFLYXoPx1Le9RiKtuj3S2smof7tUiVOvMUREJHzYch04l9fFlh7Fb7/9xl133aUWMyIilaTAXcLO4S1k7BsTsKckYbj14x6Ogjls97VI69suNRf01e0qLBEREREJWobbhn1dEvb/qcWMhBePZQTNRcJTcJc2ilSRWshElmAP24N9kVS1kqkZVbdLuDFckfXm2YiNxcrLC/Q0REREgpqBgbkrFiNbLWZERCpLJb8SNtRCJrJEUtjuD5EWtvuar8N2f4i06vZg79+uBVNFREQklKnFjIhI5Slwl5BXpoXMdrWQiQSRFrZHWt92fwj2hVKDvbo9Eql/uwQDMz4+0FMQERHxUosZCQcWwdVSRr894UmJpIS03NxcnnvuOd5++21c2R4cK+qWrKiuxsBhS2F7DcfzQ9ge7NXtwd5Kxh98Xd2udjIiVZPX24knvuLnCk+8QV5vZy3PSERExDdKW8w4VtTFnW0xfPhwnn76abKzg/x0QxGRWqTAXULW4S1kHGohE/Z8Gbb7Q7CH7f4Q7GF7KIjI6vYIayfjD84sV6CnIEeQfXs0mQ/Hsf+N+HKhuyfeYP8b8WQ+HEf27dEBmqGIiEjN2XIdONRiRkSkQgrcJeSohUxk8nXY7uvq9lAI24O9b7s/qLq95lTdLlJ5eX1iyBkQA0BxW3uZ0L00bC9uW/JcnDMgRpXuIiIS0tRiRkJVoNvIHHqR8KSEUkKKWshEJoXtPhgzBPq2B3srGX+IyOr2EKD+7VJd0XNcONYdPPugNHR3NbaVCdsBHOtcRM8uDsQ0RUREfEYtZkREylPgLiFjy5YtaiETgSItbPeHSOzb7g+RWN3uFxHYTiY2XZ+sRApbDtR9JKdc6J7+VVK5sL3uIznYclQBKCIi4eHwFjN33303mzdvDvS0REQCQoG7hIRFixZ5W8iYaiETMYI9bPeHSOzb7g+qbvcNtZMRqTpbjlUudD9UVcN2Mz7el9MTERHxm0NbzOzcsZN77rmHBQsWBHpaIocJfBuZsi1lgr+wS6pOiaUENcuyGDduHEMfHUpuRh6O1cnY1UImIoRC2B6JrWT8Ebarut03IrG6XXzHcEVmpbURG+uXcW05FsnP51Z4XfLzuapsFxGRsOVtMbO6DvlZBTz22GN888036usuIhFFgbsELZfLxdtvv83w4cOx8gzsK+pgywz+ylqpOYXtPhozAvu2Q2gslKrq9uCl/u3iC554g4xn4yq8LuPZOO9CqiIiIuHKlunEsbwO5NoYMWIEb7zxBsXFWrtERCKDAncJStnZ2Tz66KOMHz8eI8OJY0VdbPnBHx5KzSls99GYIdC33R9CoZWMP4REdbsfhEL/dn9wZlXcqkSCgyfeKLdA6qFKF1JV6C4iIuHOKLDjWFEX44CTiRMn8sgjj5CZmRnoaUmEswAPRtBcdO5HeFLgLkFn27ZtDLp7EEuXLsWWFoNjTTKGSz+qkSASw3Z/CJWwPVJbyYRCdbtfRGi2qAVTI4snHva/mVBugdQGN2eWW0hVobuIiEQCw23DsSYZ284Y/vjjDwbdPYjU1NRAT0tExK+UYkpQWbp0KXffPYgdO3Zg35iAfWMChqU3o5EgUsP2SF0kNRRayYQKf1S3R2o7GZGaKuhqp/ikg89vpQuk2tM85RZSLW5rp6Bb5Z63tHCqiIiEMgMDx6ZE7P9LIC0tjb///e8sWrQo0NMSEfEbBe4SNCZMmMDDQx4mPzsPx5pkTC2OGjEUtvtwzBDo2+4P/gjbVd0e3PzRTkb926WmYqe4iP+8CDgYtpcukGrLscqE7vGf5hM7qShgcxUREaltJYupJlOQU8ijjz7KuHHjtJiq1D4LPJYRNBf1lAlPkZnMSFBxuVyMGDGC77//HqPAxL6mjvq1RxCF7T4cU61kIk7IVLfrs1OJIAlfFGHuKSZ6drE3bC9VGroXdHMobBcRkYhky4zC/kcdXO0yGD58OKmpqTzwwAPYQ6B1p4hIZanCXQIqOzubxx57rCRsz3TgWK7FUSOJwnYfjhnBYbuq20Uk2MROKioXtpey5VgK20VEJKLZCuw4ltfFyHAyYcIEHnnkEbKysgI9LRERn1HgLgGzfft2Bv99MIsXL8a2KwbH6jpaHDWC+DpsFxERERERkdDgXUw1LYZly5bx90F/Z9u2bYGelkSIQLeRKdNSRsKSSoklIJYtW8ZTTz5FTk4O5uZ4zJ3q1x5J7PXqgce3jcr8Ut1eN9nnY3oSYn0+pivJ95XorgTfV40XJvr+A7WsFr4f0/BDD73Cur4f1OOHNWLtzXJ9P6gfFO2KJb+hb8eMTbPhivPtmI4cyGnq25/RhG1uiuN9e6aII8eNZffDWR3Zvn9edjeqi1Hs43HrJWHbuce3Y8aYuA9k+nRIw+6fhaEtV7FfxhURETkWwzKwb0zAk2dnh7WDQXcP4p8v/pOzzjor0FMTEakRlRNLrZs0aRJDhjxMblYe9rXJ2HfGKWyPIPZ69Xw+psJ2H48ZImG7iIiIiIiENgMDMy0Wx5pk8rLzeeSRR5gwYUKgpyUiUiOqcJdaY1kWX375JaNGjSpZHHVtHWx5+hGMJJEctovvqbpdRERERCQ82DKisC8vWUz1zTff5MCBA9x+++0YhorzxLcsCKpWLn54CypBQCWHUissy+KDDz4oCdtz7ThWKGyPNP4I20OJqtsl2IVKOxkRERERCU+2/L8WU81x8N///pf33nsPy1IcKSKhRymI+J3b7eaNN97g66+/xshy4FhZB6PYt/1nJTKFSnW7P8L2SBcq1e3ie0W79PskIiIiEq4Mlw3HqmSMTAfffPMN//rXv3C5XIGelohIlajEWPyquLiYl156iZkzZ2IccOL4MxnDEzyn7kjtUCsZ31N1e2hQO5nQEJsW2T+nIiIiIsHEcNtwrKmD6+QMJk+eTG5uLk8//TROpzPQU5MwEUwtZSQ86R2m+E1BQQFPPvkkM2fOxLY3Csdahe2RKFTCdn8JlVYyocQf1e2RTu1kRCKXYdeneCIiEnwMj4H9z2Rs6VH8+uuvPP744+Tn5wd6WiIilaLUQvwiNzeXRx99lAULFmDbHY09JQlDnyBGnFDq2x5K1e3+EOnV7aGyWKqEDkdOoGcgIiIiEtoMy8C+LgnbrhgWL17Mww8/THZ2dqCnJSHPwLKC5wLKysJR6KQhEjIyMjJ44IEHWLFiBeaOWOwbEjH0BCI+EkqtZFTd7nuRXt2udjIiIiIiEkkMDOz/S8DcHsvq1at58MEH2b9/f6CnJSJyVOrhXktGjhzJunXr2LZtG5mZmURFRdGoUSO6dOnCNddcQ1JSUrljVq1axejRo1m7di2FhYUcf/zxXH755Vx77bWYZvlFR9evX8+///1v1q9fT+PGjRk4cCBdu3atjbvntWfPHoYMGcLWrVsxt8RhbotT2B6h1EomdBZ2VHV7oGcQWKHUTibSF0xN2BY6z4EiIiIivmJgYKbGg8vGBjZw77338vbbb9OwYcNAT01EpEKhk4iEuG+//ZaCggLOPvts+vXrxyWXXIJpmnzyySfccccd7N69u8z+c+bM4f7772flypV07dqVa665BpfLxYgRI3j++efLjb9v3z6GDBlCVlYWffr0oV69ejz11FMsW7astu4i27dv59577y0J2zclYN8Wr7A9QqmVjH+EykKp/hJK1e1qJyMiZp3yxRQiIiJSPQYG9u1x2DcmsH37dv7v//6PrVu3BnpaEqI8GEFzkfCkCvdaMmXKFKKiyodlH330EZ9//jlffvklQ4YMAUr6n7/++uvYbDaGDx/OySefDMDAgQN58MEHmT17NjNmzOCiiy7yjjN37lyioqIYNWqU93aefPJJfvrpJ8444wy/37+NGzfy8MMPs3/ffuwbEjH3xPj9NiU4+StsVyuZ0GklE0rV7aFE7WT8IzZNP68iIiIiocJMiwWXwR5rD/feey9vvvkmbdq0CfS0RETK0LvMWlJR2A7QvXt3oKQ6vNTs2bPJyMigR48e3rC9dIy77roLgPHjx5cZx+PxYBgGhnHw0zG73Y7H4/HVXTiiNWvWcP/997N/3wHsKUkK28Xn1ErGP1TdrnYyodRORkT8x7CHzt8DERERMz0G+59JZB7I5IEHHmDVqlWBnpKISBkK3ANs7ty5ALRq1cq7rbQNzDnnnFNu/06dOhEdHc3q1aspKirybj/vvPPIzc1l8ODBjBw5kscee4xZs2Zx2WWX+XX+S5YsYciQIeRk5eJYk4S5L9qvtyfBLZT6tkd6Kxl/UXW72smIiIiIiPibuT8a++okcrPyGDJkCIsWLQr0lCREWIDHMoLmoneP4UktZWrZ119/TX5+Prm5uaxbt46VK1fSunVrbr31Vu8+27ZtA6BZs2bljrfb7TRu3JjNmzezc+dOWrZsCUDDhg154403eO+99xg/fjwNGzbk2Wef5dxzz/XbfZk7dy7PPPMMrgI39tVJ2LKdfrstCX7q267qdn9RdbvayUBoLZjqyAn0DERERETCny0zCvvKZIo7ZDJs2DCeffZZLrzwwkBPS0REgXttGzt2LPv37/d+f8455/D444+TnJzs3ZaTU/JOPS4ursIxSreX7leqXbt2vP/++z6eccUWL17MM888g7vAg31lMrZcpUGRTH3b/UfV7aFF1e0iIiIiIrXHluOAFUm4O2by/PPP8/LLL/u18FBEpDKUjtSy8ePH89tvvzF+/HhefPFFdu7cycCBA1m3bl2gp1Zpq1at4sknn8Rd6MZckaSwXfwilPq2g6rb/UXV7f6j/u0iIiIiEg5seQ7Mlcl4iiyeeuopli9fHugpSTCzwLKMoLmop0x4UuAeIHXr1uWCCy7gzTffJCsri5dfftl7XXx8PAC5uRWHIaXbS/erTevWrWPo0KEU5hdhrkrClhc6wZ34h/q2+y9sV3W7gNrJ+FNsmn5uRURERMKBLc+OuTIJV6GLYcOG8eeffwZ6SiISwfROM8AaNWpEy5Yt2bx5MxkZGcDB3u2lvdwP5XK5SEtLwzRNmjRpUptTJTU1lUceeYS8nDz1bBdAfdv9yV9hu6rb/UftZEQklBn20Pn7ICIiUhFbjgNzVRL5ufk8+uijbNq0KdBTEpEIFVppRpjau3cvAKZpAnDGGWcAsHDhwnL7rlixgoKCAtq3b4/TWXuB986dOxkyZAhZmVmYfyZhy1TYHulCqW+7P6mVTOhVt6udTOi1kwmlBVP9JWFbaD03ioiIiASCLcuJfU0S2VnZDBkyhO3btwd6ShKEPJYRNBcJT6GVkoSobdu2lVvgFMDj8fDRRx9x4MAB2rdvT0JCAgDdunUjKSmJmTNnkpKS4t2/sLCQjz/+GIC+ffvWytwB0tPTeeihh9i7dy9mSiLm/tBpcyGhRa1kSoRSKxl/CbXqdn9ROxmR0GbWSQr0FERERCKOLSMK889E9u/fz5AhQ9i9e3egpyQiEcYe6AlEgvnz5zNq1Cg6duxI48aNSUxM5MCBAyxfvpydO3dSt25dhg4d6t0/Li6OoUOH8swzz/DAAw/Qo0cPEhMTmTt3Llu3bqVbt2706NGjVuaekZHBkCFDSEtLw74hAXNvdK3crgQ3tZIJPapuL+Gv6na1k5FSjvKfr4uIiIhILTP3RcN6i13sYsiQIYwYMYI6deoEeloiEiEUuNeCs846ix07drBq1So2bNhATk4O0dHRNGvWjEsvvZR+/fqRmJhY5piuXbvy7rvvMnr0aH799VeKiopo2rQp9957L9deey2G4f/TTnJycnjkkUfYsmUL5qZ4zN06pV/USqaUqtv9R9Xt/hVq7WRERERERKrD3BMDpsU2tvHwww8zfPhwb2cBiVwWYAVRKxeVboUnBe61oFWrVjz00ENVPq5Dhw68/vrrfpjRseXn5/PYY4+xfv16zC1x2HfGBWQeElxCLWwPter2UFsoNdSq2/3FX9XtaifjX7Fp+vkVERERCXdmWiyWafE//sfQoUN58803iY1VMaGI+JfebUo5RUVFPPXUU6xatQpzRyzmNoXt4j+hGLaH0kKpocaf1e1aLDU0acFUkdpj2PVJn4iIhB9zeyzmtljWrFnDE088QWFhYaCnJCJhToG7lOFyuXj++edZvHgxtl0xmJvjMQieU20kcEKpb7s/hVorGVW3y6HUTkZEREREIo2BgbklHltaDMuWLePZZ5/F5XIFeloSMAYeK3guKHMLS0pMxMvj8fCvf/2LOXPmYEuPwv6/BIXtAqiVjNSOUKxuVzsZEREREZHgZ2Bg35iAbU808+bN4+WXX8YdYuuIiUjoUOAuAFiWxfDhw5k6dSq2/VHY1ycpbBdAYfuhVN1eQtXtIiIiIiISagwM7OsTse2LYvr06bz11ltYlvpOiojvKTURAL799lt++OEHbJlO7H8mYQTRis0iIiIiIiIiIjVlYGBPScKWGcXEiRP5+uuvAz0lCQDLCp6LhCd7oCcggbdgwQLef/99zEIH5lqF7XKQmZzsl0p0y0+L1NgaN/TLuAA4HdgKi30+bNFx8T4fE6A40T/V7QdO9M+fjeJEvwwLQEFD/5xN0bj1Xr+MmxhV4JdxPX58bt+wubFfxrVl2P1SGRCz2z+PRewe/7xitgwoSPZPjUTsXjfuaN+PHbW3EMvhnzmb2fm+H7RuMrj881xhJibg2bnLL2N78v3wWIiIiIQ5wzKwr03EfXomH374IS1atOD8888P9LREJIyowj3Cpaam8vzzz4PLwLYqEcOtHwkpYSYn+2XcUA3bRUREREREJDwYbhvmqgRsbpMXXniBTZs2BXpKIhJGlK5GsMzMTB5//HFyc/Mw1yRiK9AJDyK1SdXtJUKxul1EREREREKbUWjHtjqBgvwChg0bRkZGRqCnJLXEgxE0FwlPCtwjlMvl4tlnn2XHjh3Y/xePLdMZ6ClJEFF1+yFU3S4VCLV2MiIiIiIiUp4ty4m5IZ5du3bx9NNPU1zs+zaiIhJ5FLhHqHfffZdly5Zh2xmDuSs20NMRiTihVt0uoS0U+7eLiIiIiNQGc3cs5o5YVqxYwdtvv42llSzDmgVYlhE8l0A/IOIXCtwj0A8//MD48eMxs6Kwb04I9HQkyKi6/RCqbvdSOxmpbbYMtTkTERERkdphbo7HzIxi0qRJjBs3LtDTEZEQp8A9wixdupR3330Xs8iBuTYRw49VjxJ6/BW2S1n+qm6X2uGvdjIiIiIiIhIYBgbm2kTMIgcjRoxg0aJFgZ6SiIQwBe4RZPv27TzzzDNYLrCtSsRw6b9faoeq22tHqC2WKmWpf3vtiNmtD5pFREREpDzDbcO2MhHcBs899xxbt24N9JTEH6ySlpvBclFPmfCkxDVCZGdnM2zYMLKzs7GtTcCWrwBNylJ1e+1QdftBaicjIiIiIiLBxFZgx1yTQG5OrjdDERGpKgXuEcDlcvH888+zdetWzE3xmAeiAj0liSCqbq8dWiy1doRiOxktmFo7YveoNEVEREQkHNgyojA3xrN9+3aeffZZXC5XoKckIiFGgXsE+OCDD1i0aBHm7hjMnbGBno4EoVBbKFVqj9rJ1A61kxGR6rDFxAR6CiIiImHJlhaDuSuGJUuW8N577wV6OuJjlhU8FwlPCtzD3KRJk/jmm28wc6Iw/5eAgXrXSlmh2EomVKvb1U7mILWTkaOxZeiDHhEREREJHAMDc2MCZnYU48aNY8KECYGekoiEEAXuYSwlJYW33noL0+XAXJOI4ce2AiKHU3V77VE7mdoRiu1kRERERESkegzLwFyTiFns4J133mHNmjWBnpKIhAgF7mEqLy+PF154AbfLg21VAkax/qulPFW3H0bV7WWonYyIiIiIiEQyw2XDtioBj9vin//8J7m5uYGekviAZRlBc5HwpBQ2TL377rts374d26ZYbLmqfpXaper22hOK1e1qJ1OWP/u3a8HUsmJ2h94LWn++Bo/dG3q/LyIiIiK1zZbnwNwYx86dO3nnnXcCPR0RCQEK3MPQrFmzmDx5MmZmtBZJlSNSdfthVN1ehqrbRSTi2E2/DW1r0shvY4uIiIj/2dJisGdEM3XqVKZPnx7o6YhIkFOiEmZ2797N66+/jumxY6bEa5FUqXWqbq89oVjdHqrUv11EREREJHIZGNjWJWCe7ebNN9+kXbt2NG4cemd8SolwbeUybdo0XnzxRQCGDh1K7969y+0zb948xowZw4YNG/B4PLRs2ZK+ffvSq1evI447ZcoUfvjhB7Zs2YLNZqNNmzbceOONdO7cucL93W4348aNY/LkyWzfvp2oqChOPfVU+vfvT4cOHSo8prCwkC+//JIZM2awe/duYmNjOf3007njjjto2bJl1R+MAFOFexhxu93885//JCcnB+PPeIxi/1VqSWhTdfthVN1ea9RORo7FlqFaABEREREJPkaxDdvaOHJzc/nnP/+Jy+UK9JREvHbv3s0777xDTEzMEfcZN24cw4YNY/PmzVxyySX07t2bvXv38sorr/Dee+9VeMx7773HK6+8wr59++jduzeXXHIJmzZtYtiwYYwbN67c/pZl8fzzzzNixAhcLhfXXHMNXbt2ZeXKldx///3MmTOn3DFFRUUMGTKETz/9lLi4OK699lrOOussfvvtNwYNGsTatWur/8AEiN7VhpEvv/ySlStXYu6MxTwQFejpSJDyZ9iu6vbwoHYytcef/dtFRERERMS3bBlRmDtiWc1qPv/8c+64445AT0kEy7J49dVXSUxM5IILLmDMmDHl9klLS2PkyJEkJiYyatQo7xkaAwYMYNCgQYwdO5YLL7yQ9u3be49ZtWoVY8eOpWnTpowaNYqEhAQAbrrpJu6++25GjhxJ586dy5ztMWPGDGbPnk379u15++23iYoqySf79OnDvffey+uvv86ZZ55JbOzBFtjffPMNq1atolu3bjz33HPYbCX14d27d+fJJ5/k1Vdf5dNPP/VuDwWhM1M5qrVr1/LJJ59gL3RipqqiVmqfP8P2UK1u9ye1k6k9odpORgum1p7YPVagpyAiIiIitcRMjcdeGMVnn33GqlWrAj0dqSILA48VPBfLB62gv/vuO5YtW8awYcOIjo6ucJ/JkydTVFTENddcUyYgT0hI4NZbbwVgwoQJZY758ccfAbjtttu8YTtA48aNufrqqykqKmLKlClljhk/fjwAd911lzdsBzjllFPo0aMHGRkZzJ4927vdsizv7Q4ePLhMqN61a1c6duxIamoqy5cvr+SjERwUuIeB3NxcXnjhBTxuC2NNAoYnPHtRSc2FYiuZUKZ2MmWpnYyIiO/ZjnLasIiIiPieYRkYq+PBg7etr0igpKam8uH/s3ff4VHUWx/Av7N900kI6SEJTSAJvYMgCIqiSAdFFBArCmIv4LVc4LXARcGCCIp4r6CoWGhSoiBSpEMA6SQkQHrdbLI78/6xJrBkgRB2Mlu+n+fZ59HZmd+e7JLN7pkz53zyCYYOHYrWrVtfcb9du3YBADp27Fjtvk6dOtntU9tjzGYzDh48CIPBgOTk5Bodc/bsWZw/fx4xMTGIjIysdkznzp0dxubq2DfAA/znP/9BRkYGNMf9oSrlS0p1j9XtdUvO6na2k6k7bCdTt4zneTKaiIiIiJxDZdJAOuaLcziHWbNmYerUqRAEft6k2jl79izGjBlTbfvixYuvepzFYsG///1vhIWF4eGHH77qvmfOnAEAxMTEVLuvfv36MBqNyMrKQllZGQwGA0wmE7KysmA0GlG/fv1qx0RHRwMA0tLSqrZlZGTAarUiNjYWGk313IKjYyr/21FcVzrGHbDC3c2tW7cOa9asgabAAFUmK5zoyljdXrdY3e4Z3LWdDBERERERyUt1zghNvhHr1q3D2rVrlQ6HroMkuc7tRnzxxRc4evQoXnrpJbv2LY6UlJQAAHx9fR3eX7m98oqNyv39/BznNiq3X3qFR+V/X+mYyx/j0v+uaVzugqWMbiwzMxPvvvse1KIWqsP+EJzQ94k8k7sOSmV1e92Ss7qd7WSoJlT5/FhCRERERO5BgADVYT9oOlowa9YsJCYmIioqSumwyA1FRUVds5r9cqmpqViyZAlGjBhhN+iUXAMr3N2UxWLBW2+9hdLSEqhSfSFU8KUkchVyVrdzWCrVBAemEhERERHJT7CoIBz0hclkwptvvgmLxaJ0SOQFKlvJREdHY/z48TU6prJSvLJy/XKXV7Rfq7LcUTW7o6r3qz3Gpf9d07jcBUvJ3NSXX36J/fv3Q53hA1X+1S8bIe/G6nYHWN1ONSBnOxn2byciIiIi8gyqAj3UZ32QilQsWrQIEyZMUDokuhoJkGQsULputWgrYzKZqnqa33rrrQ73efvtt/H2229j6NCheOqppxAbG4v9+/cjLS0NgYGBdvtmZ2fDZDIhNDQUBoMBAGA0GhEaGoqsrCxkZ2dX6+Oenp4OwL73emRkJNRqNTIzM2GxWKr1cXd0TOV/X6lHu6Nj3AHLot3QiRMn8MUXX0Bj1kN90r3O8BB5Onetbmc7GSIiIiIiotpRn/KDxqzHV199haNHjyodDnk4nU6HO++80+GtSZMmAIDk5GTceeedaNmyJQCgbdu2AIDt27dXW2/btm12+1S63mP0ej1atmyJsrIy7Nu3r0bHREVFISwsDGlpacjIyKh2zNatWx3G5uqYcHczkiRh1qxZEEURwiFfCK50Vo5cDqvbHWB1OxERERERETmRIAkQUn0hiRdzNkRy0ev1eOGFFxzeunXrBgC4/fbb8cILL6BPnz4AgP79+0On0+G7775DZmZm1VpFRUVYsmQJAGDgwIF2j3P33XcDsHXZKCoqqtqemZmJ77//HjqdDv3797c75p577gEALFiwAOZL8kaHDh3Chg0bEBQUhJ49e1ZtFwSh6nE//vhju9+dTZs2Yd++fYiLi0Pr1q1r9VwphS1l3MyaNWuwb98+qM/5QFXMxCERERERERERkdJUJVqoMo04iINYuXIlBgwYoHRIdAUu1VKmjkRGRuKxxx7DnDlz8PDDD+OWW26BVqtFSkoKsrKyHA5fTUpKwvDhw7Fs2TI8+OCD6NWrFyoqKrBx40YUFhZi0qRJiIiwn/HVp08f/P7770hJScH48ePRrVs3FBQUYOPGjRBFEc8991xVf/hKw4cPx5YtW5CSkoJHH30Ubdu2xYULF7Bx40YYDAa8+OKLUKncq2acCXc3UlRUhA8//BAaSQvVSd9rH0BeTR0YCEi1aAZWE4IAQS/P7AAhNESWdQHYng+LfC1IyiMDr71TLZnC5JvVUBgr3x8uqwEQZHrKVe0LINc74VM3bZRpZaBMkvdkabimQLa1f8hug/rNj8my9o4zsYBvuSxrW3INKImTZWnos9QojJfnA7vfGVmWBQBoS0WU+8n3u682yffv3OIbBMPpPHkWV6mACnmGnanCGkDKzpFlbbWfH6xXGE5FREREdUd9yhdCeAU++eQT9OjRo1qvbCIlDRkyBOHh4fj666+xZs0aSJKEuLg4PPTQQ9Uq1StNnDgRjRo1wvfff4+ffvoJgiCgadOmGDVqFLp27Vptf0EQMG3aNCQmJuKXX37B8uXLodPpkJycjDFjxiApKanaMTqdDrNmzcJXX32FdevW4ZtvvoGPjw969OiBcePGIS4uztlPhewESZIrI0fONmvWLPzwww/Q/B0A9QWj0uGQi1PL+YddkO9ssOwJdxkx4V6d1SDb0lC1ly+xzIS7Yz9kt5Ft7R1nYmVb25Ir3z9EfZZatrXlTrjLyZglT9K6kmwJd0C2hDsA2RLuAJhwJyIichHWUBMszQpx11134bnnnlM6HLrEmDFjcKwwCzljuigdSpWQxX+icUAoFi9erHQo5ETuVY/vxQ4fPowVK1ZAU2KA6oKMGSzyCO6abCciIiIiIiJyZ6osA7QlRvz00084ePCg0uEQkQKYcHcDVqsVs2bNAiRAOOILAUx4kmdidbtj7lrdTkRERERE5G0ECMBhHwgQMGvWLFgs8l75R0Suh5kWN/Dzzz/j8OHDUJ01QlXKtvtE5B7ctZ0MERERERHRjVCZNFCl++Do0aNYsWKF0uHQJSTYhqa6zE3pJ4RkwYS7i8vLy8Mnn3wCjaiF+gwHpdK1sZ0M0Y2Rs387ERERERF5B/UZX2hFHRYsWIDs7GylwyGiOsSEu4v76KOPUFxcDBzxgWDly0Wei+1kHJOznQzVPQ5MJSIiIiLyDoIoQDpsRElJCT788EOlwyGiOsQMrgvbu3cvVq9eDU2RAaocJt3o2mStbiePw/7t5Cp2nIlVOgQiIiIiIqdT5eqhLTRi3bp12LVrl9LhUCXJhW7kkZhtcVEWiwWzZs2CABUHpZJrYDsZug7s305ERERERN5OgADhiA9UggqzZs1CRUWF0iERUR1gwt1Fffvttzh58iRUZ4xQlXFQKnk2tpMhIiIiIiIiTySYNRBOGXHmzBksXbpU6XCIqA4w4e6CsrKysGjRImisOqjTOSiVaobDUj0P+7fXPQ5M9TyWXBkvtyAiIiIiqgF1ui+0Vj0WL16Mc+fOKR2O15MkwWVu5JmYcHdBn3/+OUwmE3DYB4LIXz4icj72byciIiIiIqobgiQAh4woKyvDokWLlA6HiGTGjIuLycjIwMqVK6E1GaDK0ykdDrkJdx6WynYynof92x0rk7Syrh+uke+5+SG7jWxrExERERF5A1W+HrpSI9auXYv09HSlwyEiGTHh7mKWLFkCq9UKHDNwUCq5BraTUQTbyRAREREREXkW6ZgBVqsVixcvVjoUryZJrnMjz8SEuwvJyMjAqlWroC01QihgdTsRERERERERkadQFeqqqtzT0tKUDoeIZMKEuwtZvHixrbr9OKvbqebYTuYK2E7miti/3TEOTFXGjjOxSodQa/ostdIhEFVR+/kpHQIRERHVgHTMAFEUWeVO5ME0SgfgbCkpKdizZw+OHTuGY8eOobS0FH379sXUqVOr7ZuZmYkRI0Zcca3evXvjX//6V7XtO3fuxMcff4wzZ84gPj4ejz32GFq1anVDcWdkZGD16tX/VLfL2+eXqMbYTkYRbCdDRERERETkmVSFOuhKfPDrr79izJgxiImJUTok7yIBkuRCuQ62lfFIHpdwX7x4MY4dOwaj0YjQ0FCcOXPmmsc0btwY3bt3r7Y9ISGh2rbjx4/j+eefR9OmTXHPPfdg3759eOaZZ/DZZ5+hYcOGNxS3KIpQs7qdroM7V7eTZ+LAVCIiIiIioquTjushJpfiiy++wKuvvqp0OETkZB6XcJ84cSJCQ0MRHR2NPXv2YNKkSdc8pnHjxhg3blyN1l+/fj0aNWqEefPmQaVSQRRFPProo1i7di0mTJhQq5jT09OrqttV7N1OXoLtZJTBdjLKKJPkvXIpXCPfyYgfstvItjYRERERkTeyVbkbsW7dOowZMwaxse7bZpGIqvO4zEvbtm0RExMDQaZWGFarFSqVqmp9QRCqEu+19eWXX9qOPyZjaSjR9WI7GSIiIiIiIiJZVPZy/+KLL5QOxcsIgORCN3a58EgeV+FeG9nZ2VixYgUKCwsREBCAxMRENGrUyOG+vXv3xrJly/Dkk0+iZcuWOHjwII4ePYrnnnuuVo+dnp6ONWvWQFtihKqQ1e1Uc2wn45nYv10ZHJjqmSy5PJFNRERERK5JVaSDrtiI9evXY8yYMTfUppiIXAsT7gD++usv/PXXX3bb2rRpg5dffhlhYWF225s1a4bp06fj008/xQ8//IDY2Fi8/fbbV0zQX8sXX3xR1budyGXIXN3OdjKeif3biYiIiIiIak46boDYyoQvvvgC06ZNUzocInISr064GwwGPPDAA+jevTsiIyMB2IaiLlq0CLt378bkyZOxcOFCGI1Gu+O6dOmCLl263PDjp6Wl4ddff2V1O103VrdTbbB/O7maHWfYq5KIiIiIvJetyt2nqso9Li5O6ZC8gsx1ekSe18P9etSrVw/jx49Hs2bN4O/vD39/f7Ru3RrvvfceWrRogbNnz+Lnn3+W7fEXL15s693O6nYiAtvJEBEREREReRvpmAGSJLGXO5EH8eqE+5VoNBoMGDAAALB3715ZHqOqur2Y1e3kYthO5orYToZqo0zSyrp+uEa+djs/ZLeRbW0iIiIiIgJUxVroin2wYcMGnDp1SulwvIPkQjfySEy4X0HgPy07ysrKZFl/6dKltur2E6xup+vDdjLkity5fzsHphIRERERkZIqq9y//vprpUMhIidgwv0KUlNTAaCqt7szlZaW4tdff4WunNXtRGQjdzsZ9m8nIiIiIiJyTapiLfTltir34uJipcMhohvk1RmYI0eO2KrML7Nz50588803AIC+ffs6/XHXr18Pk8kE8bRXz6ylWpC9up3tZK6I7WSIiIiIiIhILtZTGpSVleHXX39VOhSPJ0mCy9zIM3lcxnfTpk3YtGkTACA3NxcAcPDgQUyfPh2ArVXME088AQCYN28e0tPTkZiYiNDQUADA8ePHsWvXLgDA+PHjkZSU5PQYf/rpJ6gFNVTZbCdDREREREREROTtVNkGqJuV4scff8Q999wDQeaCOCKSj8cl3I8ePYrVq1fbbcvIyEBGRgYAIDw8vCrh3q9fP2zatAmHDx/Gtm3bYLFYUK9ePdxyyy0YPHgwWrVq5fT4jhw5gsOHD0NzwQeC1asvMCAiIiIiIiIiIgCCKEA4p8Nx6TgOHTqEFi1aKB0SEdWSxyXcx40bh3HjxtVo3wEDBmDAgAEyR2Tvp59+AgAIZ1ndTtdH7e8POGiB5LwHUMu3NuRtJyP6yNv/3BqghyBjxxpzsA7qcvkeIDtJ3te2rIF8/y57dTog29oA0DvokKzrj/LPlnX9UrFctrX3luvwePgG2dafdfY2JEVlyrb+7qOxgMEq2/q+h+SdwaIxARajfOsb8uRtwyWp5a3Ikgxa+RY3aCEUmWRZWqgfAjHzvCxrA4BKb4BoLpNtfSIiIpKXkGEAwmxV7ky4y0jej8JE3t3Dva7ZDUstkfGLIhERERERERERuRVVCYenEnkCJtzrUNWw1DMed2EBERERERERERHdIOtpDk8lcndMuNehqmGpWWwnQ0RERERERERE9lRZBqgFDX788UdIEnufOJskAZIkuNBN6WeE5MCEex2pHJYqnNdzWCpdN7W/v8wP4L7924mIiIiIiIg8RdXw1OO24alE5H6Y+a0jHJZKJA+5B6YSERERERER1SUhw5Y7+vHHHxWOhIhqgwn3OsBhqUTuyxogb0LfHKyTdf3sJHmvXihrIMq6PhERERERkbfh8FSZSS50I4/EhHsd4LBUIqLr16vTAVnX7x3EyzOJiIiIiMg1cXgqkftiwr0OcFgq3Qj2byciIiIiIiLyLhyeSuS+mHCX2fHjxzkslYiIiIiIiIiIauzS4al///230uF4GMGFbuSJmAGW2ebNmwEAwnkOdiRyNg5MJVc2yj9b1vVLxXJZ1yciIiIiImUJ52zfeStzS0TkHphwl9kff/wBtaCBUMhhqUREREREREREVDNCkRYaQYstW7YoHQoRXQcm3GWUk5ODw4cPQ5WjgyDxMhG6fuzfrixrgLwV9OZgnazrZyfJ+/qWNRBlXZ+IiIiIiMibCRAgZGtx9OhRXLhwQelwPIfkQjfySEy4y2jr1q0AAClLo3AkRERERERERETkbqQsW8eEP//8U+FIiKimmHCXke2SHwGqPPaZJiIiIiIiIiKi66PK00GAwLYyRG6ECXeZmM1m/PXXX9CVGSFY+DQTORsHpnq2Xp0OyLp+76BDsq7v7vaWy9vuaNbZ22Rdf/fRWFnX9z0k7/NDdCNUeoPSIRAREZETCVYVdCYjdu7cibKyMqXD8QxKt5FhSxmPx0ywTPbs2QOTyQRrJp9iIiIiIiIiIiKqHUumCuXl5di5c6fSoRBRDTAbLJPKS31UuazCpdrhwFQiIiIiIiIiUv+TW2JbGSL3wGmeMpAkCVu2bIFOMgAmeZOaRCQPa4C8J8vMwfK2pMhOkve9p6yBKOv6REREREREZCOUaaCXjPjzzz8hSRIEQVA6JPcm8fkjebHCXQYnTpzA+fPnYc1UQQB/iYmIiIiIiIiIqPYsGQKys7Px999/Kx0KEV0DE+4y+PPPPwEAqhwOVSOSAwemkqsb5Z8t6/qlYrms6xMRERERkWtR5di+B1fmnKj2JMl1buSZmHCXwR9//AG1oIFQyIQ71Q77txMRERERERFRJaFQC42gZR93IjfAhLuT5efnIzU1FUKuFgJ7QhERXbdenQ7Iun7voEOyrk9ERERERORsAgQIuVocPnwY2dnyXlFLRDeGCXcnqxxggSyt0qEQEREREREREZGHkM5rAABbt25VOBI3JrngjTwOE+5OtmfPHgCAKo/tZIjclTVA3h7x5mB53x+yk+RtGVTWQJR1fSIiIiIiIqpOlW/7rrp7926FIyGiq2HC3cn+/vtv6KCHUCFvwos8F/u3Xx0HphIREREREZE3Eiwq6GHA33//rXQoRHQVGqUD8CRmsxmnTp2CqkAPdm8nIiIiIiIiIiJnEvNVOCOcQWlpKXx8fJQOxz1x5iLJjBXuTnT8+HFYrVaI+fzFJSIiIiIiIiIi5xLzVJAkCceOHVM6FCK6AibcnejIkSMAAKGYA1OJiIiIiIiIiMi5VMW2ZhWVOSgicj1sKeNElW92lW9+REREREREREREziKU2Io82ce99gRJ6QjI0zEz7ER///03tByYSjdA7ecHSPK980uiCFitsq2vqh8MmM2yrS+GBMi2dtVj6LUQKkTZ1i9oIm+PvdIwAeoy+dYviREBGT+cNE1OQ0ZpoGzrdwk5iePmMNnWB4BH6+1Atny/Zmig9oOfyiDb+l8X15NtbQDYVxqDZv7nZX2M3eVxsq4v6mRdHr6Z8n8D0BXK+I8UgCT3NZSCzO37SkpkW1oV4AexWL71AUBlNEI0mWR9DCIiIlIGB6cSuT62lHESs9mMkydPAgV8SomIiIiIiIiISB5igQqnT5+GiSfYiVwSs8NOcnFgKp9SIiIiIiIiIiKSh5ingiiKHJxaW5IL3cgjMTvsJJWX8nBgKhERERERERERyaVydiDbyhC5JibcnaTyTY4DU4mIiIiIiIiISC6VxZ5HjhxROBIicoTZYSc5cuQItNBxYCoREREREREREclGsKigg4EJ91oRAElQOohLuFIs5CyscHeC8vJy28DUQp6/ICIiIiIiIiIimRXaBqeWlZUpHQkRXYYJdyc4ceIELBYLxHyelSIiIiIiIiIiInlZcwWIoojjx48rHQoRXYYJdyc4evQoAA5MJSIiIiIiIiIi+an+yUFxcGotSC50I4/EhLsTnDt3DgAgmNi/nYiIiIiIiIiI5CWU2XJQlTkpInIdijUdnzRpEgBAEAT85z//USoMp8jJyQEACOU8f1EbzTo0RrdBHdGoVRwat4lHcHgQstJzcG/so1c85ssT8xAe18Dhfbnn8jEicoLD+1p0aYr7XhmCmzo3hd6ow9mjmVi9aANWfLAaoihW279R6zg8PnssGreNx7mTF/DFa0uxZcWO2v2gbqBZuwR0vasdGiXHolGrWASHBSHrbC5GN3va4f7+wb7odld7dLy9FeJbRCMkqh4s5VacOpKJtd9sx6/fbIckOT5l27xtHEY92Rc3tWkInUGLjJPZWPvNNvz4+SaIYvVjGrWMwsNvDEXjmyJwLiMPiz/eiD9TDjv153cn7W6Kweg72iOxUTiMei3O5xZjw46/MW/bdpSaKxwek9AgGI/37YIOjaLhp9chI78Qq/f8jQUbt8NssVbbPzo4EC8N7IW2cVHIKS7FF7/vxOcZe+X+0dxSsC4c3eoPQYJfKwRpAyGJpbBYT6LM9DNKiz+ptr9KFQG/gOegN/SCSlUPovUCyspWo7hwFiSpwMH+IfAPfB16Qy8IUimk0mVAyXwA1d+3KolWFc6fTIC51Ad6n1KExZ+ASn3l/d1d+3q90TygPcIMMXjlpmCoBQEZxUXYcS4dn+7bgRMFeQ6PC/f1w5T23dEzOh5BBgOySkuw9tRR/GfnFhSWm6vtH2Lwwb+G9kaPJnEoMZfjm50H8OnvOyBe4b2ObELr+2Ps/d3RsX08AvyNyM0rweYtR/H5V5tRXGz/PAcF+uCJR3qjY/sEmEzl+HnVXvx32VaHfxvIsfFvDkeTVg0R1TQCgfUDYDaV48LpLPyxYjtWzF2NotziasfwM5K82vROxN1P9EeLLk3hV88XRTlFOLn/DL5/fyW2r9ptty9fC/n0f6gP+o/vg7iWMYAApB06i1Wfrccv89c5/Mza6c62GPbM3WjcJh4qtQqnDqbhp4/W4NfFvzlcv03vRDw0czSim0Xi9ME0zH/+SxzY7L2fV3sM6Yzkni3QqFUcElo1hG+AD9Yt+R3/N+aDavtGNQ5H98Gd0K5fa0Q1CUe9sCAU5xXj0Naj+G7OL9ibcvCKj9N3TE/c/fjtaNgiGqJVxLHdJ/HNez9i2y+7HO7fc3hXjJ46FKExITiy/Rg+evpznDqY5rSf2xVdz2sR1jAUS05+eMW1Nn79B6bf+x+H9/G1qGPltoR7bm6uwoEQ0eUUS7jv2bMHguAZPc9zcnKgghqwesbPU9d639sdgyfdiYpyC86kpiM4PKhGxxXnl+C7Ob9U224qdjwwpMvd7fHat8+ivKwCKcu2oCi3GJ0HtMPjs8cisetNeHPELLv964UF4e1fpyEnMw8/f/IrEpJi8dryZ/H8rW9c9QOfO7tleGcMeuI222tx+CyCw4Kuuv/NgzriqTkPIiczD3t/P4SsNaWoV98fXW9PxtNvj0SHXs3x78c/r3Zc576JePWjB1FutuD3n3ejKL8UnW5tiUemDUKLdvGY/sQXdvvXC/XH9CWPITenGL8s/wvxTcIw7Z0RePGxL7D3r1POewLcxOBbkvH8mD6wiiI2/nUUF/KKcVNcGB4Y0BFd2sVjzEfLUFxWbndMUkw4PntkKLQqFdbuP4pz+UXo1DgGj/XtjE6NYzB+/nJUWC8m3Q1aDT55aBA0KhWWb9+PyHqBmDqoD4rWW7D8sGf++6+t5gGdMST6GVglK/4u2gGteg8EIQAaTSMYDHdUS7ir1Q0RHPoj1OpQlJlWw2I5Bq2uNXz9JkCvvwU52QMhifbJ4aDgz6DRNIKpdDl81PUh+E0EBC2k4upfkkSrCvvW34rUzT1QVhxQtd3oX4jm3TYhuc86j0y8t6nXA/6aekgrPYa/0gwQJQlN69XHsGZJGNy0JR5Z+wNS0k7aHRPrH4TlA+9FqI8v1p46iuP5uWgVGo5xSe3RMyYeQ1b8F/lm+78pH/cbiEb+wfhxzyEEGA14vFdnaFQqzNu4tS5/XLcSGRGEubNGI7ieLzZv+Rtn0nJxU7MIDB3UHh3bx2PilCUoLLr4PL85bRBiooLx6/qD8PPT44H7ukGjUeHzJX8o+FO4l0ETb8exXSewa90+5F8ohMFXj+admuCBf43AnRP64qkuLyMrPadqf35GktdD/zcaI54biAtp2fjzp79QmF2IwNAANGmbgOReLe0S7nwt5PPil0+hz309kHc+Hxu/3gxzaTna3pqMSR89jBZdmuHtB+fa7T/widsx8YPxKMguxPqvfkdFuQU9hnTG859PRHxSLOY/96Xd/nGJsXjrl5dxbNdJ/PTxWiR1b46Za6bisbbPIe1IRl3+qC7jvleGoFHrOJQWmZCdngPfAJ8r7vvAGyNxy8huOHUwDdtX7UZRbjFimkaiy93t0XVgB8ybtBA/fLCq2nEPv3M/hj1zNy6kZWPlgnXQ6jToNaIb3vrpJcx98jOsmLfabv92fZPx6tdP4681e7B91W50uL013l7/GiYkTkFBdqHTnwNXcT2vRaXje07hjxXbq20/dcBxQpyvRd0TRAFqQYPs7GylQ3EvrtbKxZViIadRLOEeFham1EM7XXZ2NjSSFgKYcK+NtZ+nYO0XKTh9MB2WCgt+Fb+p0XHF+SX48vWa7evjb8TT8x+F1Sri2Vtew987TwAAPp/6Nd5Z/xpuHtYFvb7ripSlW6qO6XJ3e5SVmjGx40so/yd5+dq3z+L2cb099gvM2iWb8etXm3H60FlYKqxYU/zFVfdPP3YO04bNxvbVeyFJElT1gwEAn7/zC/7zw9PofkcrdLs9GX+s3ld1jI+fHpNmDIdolfDCyHk4ut/2gW3xrFWY+d/H0ePO1ui5eh9+++nil8/OtybCbCrHk2Pmo9xsAQBMfWcEbhvY1usS7iGBvph8by+IoogJ/16K1BMXLx98YEAHPDGsB57s1xUzfkyp2q4SBLw1vB98dFpM/HwFUlJt//4FAXjvvgHol9wEY3q0xWcpF6vh2sZFIizQH32nL0BeiQkA8NyAmzGiZRIT7pdooI/FkOhnkGVOw1en30CxJR+P1ru0qrD6n9mAoBlQq0NRmP8qSksWVm33D3wNvn6PwD/gBRTmv1i1Xa1JgE7fEdnne8NiOQyj2g+oOADBdwJwWcJdtKqwbuFDSD/UEpd/cjMV+WPX6juRdSYOfcYu8Lik+6KT02GRbFd3fL21U9X27lENseTO4Xilc69qCfe3ut+KUB9fvPbHOnxx8OJ7zqudb8FDye3xXIceeGXzr1Xb4wProUN4NO6euxhHz9uSlQczzmN89/ZMuF/F5In9EFzPF3M+/BXf/3ixwu3xh3tj+OAOeOjBmzHrg7UAgOioekhqGY2xj36Gk6dsXx7/PnYeo4Z2YsL9OgwKfwTm/OrJirFvjcK9Lw/GyJcG4YMnFgDgZyS59X+oD0Y8NxBrP0/B7Ec+gaXCYne/WnOxJSVfC/l0u6cj+tzXA5knzmNip5dQmFMEANBoNZj27TPoO6YntqzYjs3f25KLYQ1D8fA796MwpwhPdHgR509nAQCWvPEt5m6fiWHP3I1Ny7fh0NaLfZN7j+qGk/tOY3L3VyFJEgRBwAdbp6PP6Jvx+dSv6/6HdgEfTfkc2ek5OHvsHJJ7tsB7G1+/4r5/rdmDpW//gON7TtltT765BWaunYoJb9+P37/5E7nn8qvua9GlKYY9czfOHjuHiR1fRHF+CQBg2Ts/4sO//g8Pv3M/tv68s+r1A4B+D9yCTcu34o1h7wEAFr+2FIuOvI+uA9tj1WcbnPfDu5jreS0qHd9zqsbft/laKEcjaqu6LhCR61CsB8qyZcuqbu4uJyeH7WRuwPG9p3B8z6lqX0CcqcfQzqjXIBApX/9R9eUFACrMFVUfgO969Da7Y1RqFSAB0iWX7lotVqjVnvtan9h/Bsf3nYGlonp7EUf2/nYI21btqXYJbl5WEVZ+ZfsymNy5sd193fu3QlB9f/z28+6qZDsAVJgtWPzuSgDAnaO72h2jUguQJEC6pJ2AaBWhUnnua3ElXZPjYNBp8Nuu43bJdgD48pe/kF9iwqAOLWHQXkz0tk+IRqOwEOw4kV6VbAcASQJmrdwEABjeOclurcrn9tI2GVZRgtpDrkxylj5h90MtaLA8fRaKLfkO9rgssaJuCL2hFyyWMygtWWR3X3HhuxDFEhiMQyEIxkvusb0WEi75vZSscPQnfN/6W/9JtgOodhLY9v9pqS2xb8Ot1/zZ3E1lsv1ym8+eRoG5DA0D6tltj/UPws0x8UgrzMfig/btHGbv3IySinIMatICRs3Fgeiqf/79X9raxCqKUHvhe1FNRUYEoWO7eGSey8cPP9lfTr7oy80wmcrRt09LGPS257nqvefS59gqQqXme8/1qLhCa7Hfltn+Nkc1jqjaxs9I8tHqNBj71iicP53lMNkO2J63Snwt5NPtno4AgG9n/VSVbAcAS4UFX0xbCgC4+4n+VdtvH9cbOoMOK+attksQFueX4H8zvgMADHikr91jqNQqiFax6nOxJEm2z6te/FrsTTmIs8dq1lt67Rcp1ZLtALDv91TsSzkInV6LFl2b2d034JF+AID/TV9eleAFgPOns/Djh2ugM+hw29hb7I6pfJ0qiaIESZQ8/nW6nteiNvhaKKhcxYQ7kQtSrMLdU1RUVCA/Px+aEiM4MrVuafVa9LmvBxrE1kdZiRkn9p3G/t8POext2fqWRAC2yonL7fs9FaaSMrTo2hRanQYV5bYvQ9t+3omHZtyHD7bOwF9r96Bhixh0HtAOL9/xb1l/Lk9h+ecLpNVq/3q06toEAPDXb4eqHbN/+wmUlZrRvG08tDo1Kspta2xbn4qxzw/AnC8mYOefx9GwUSg69WiGV578stoani4k0BcAcDarep9vUZKQkV+IFlFhSIoNx47j6QCATo1jAAB/HDlV7Zj03AKczMpFfGgwYoIDkZZrW3fnybPILS7F10+OwroDxxAe6I9+yU0w7bf1Mv1k7kevMqKJfzucKzuFbHM6ooxNEOvTHD4+7WG1HIW57DcA9kkvnb4bAKDc/Bsur0CXpBJUlO+A3tALWl07lJs3AwCsluOoKN+L4PrfoMz0AwRVMGC8CyixvwJFtKqQurnHP+teLTkp4dDmHkju7ZmtZS7XPiwKgXoD9mfZf8nsEmn7vdh09nS1qzhLKiqw89xZ3BwTjzYNIrAl4wwA4ER+LvZlncOisUOxcv8R+Ol1GJB8Exb/uRvkWJtWsQCAHbtO4fL2yCZTOfannkXHdvFo0TwSu/acRlp6Do78nYnZM0difcoh+PrqcestLfDt938pEL3n6XxXOwDAyf2nq7bxM5J82vZNRr0GgVj+n58hiiI63tEW8YkxKC+rwOHtx+yqowG+FnKqbFmZeeJ8tfsqtyX1uAkarQaWCkvVa7Fj9Z5q++/4pwVQ696Jdtt/W/Ynhjw9ALN+ewOpfx5B885N0ahNPGY/Un2WC12fymIg62UzhypfA0ev0/ZVuzF66lC0viURi/91schvw3834Y0VL8Dga8Cpg2fQvl9rGHz12PrTTvl+ADcVElkPdz58KwJC/FGYU4TUP//Gyf1nHO7L10I51mIRRfoSmM1m6PV6pcNxH2zjQjJjwv0GVQ6nkBy3DScZhUTUw4tfPmW3LfPEebw77kPs+z3VbntMs0gAQPrfmdXWEa0izp28gPjEWEQkhOHM4bMAgKz0HLx0+1t45N0xuPvx23H+dBbeGjnb4YcIZ1D7+cmybiXJwYkIZ6psJwPYqhX6DG4PoHpiPTrBNuz27IksXE60ijiXlou4ZhEIjwlB2vELAIDszHy8/OQSPPz0bbhreAdcyCzA9BeX4a8tx5z6M4h67bV3ugEFTa7dK/Fa8ott7V0iQwOq3WcKFxAZZNseHxpclXCPC7VV9p7Kcjw08kx2PuJDg9EwtF5Vwt1UXoFHFnyHF+/uhWGdkpBXYsLbP/2G/57Z53ANbxRhbAyVoEZ+xQUMi3kOLQO7291vtaQjL3cCLBUXB81qNI0AABbLCThisZyEHr2g1iQA/yTcAQl5OWMREPQ6jD7DAckElHwKqdh+mNX5kwl2PduvTICpKADnTyYgorFzf4dcQWJgZ0xu1wUGtQbxgcHoFRuPvDITXvvD/mRRQpDtPetEvuMhUycL83Az4pEQGFyVcJcATFjzPV5v3Qf3tGmB0vIKfLb5L3yUsk3Wn8mdxUTbnuf0dMfP89mzuUC7eERH1cOuPachScArr3+HiY/2we19k2AqK8f/vtmGxf/d4vB4urqhz9wFo58BvoE+aNquEZJ6NMfxvafw9cwfqvZxh89I7qpZB9tVfuVlFfh41zuIT4q1u3/fb6l4Y9h7Vb2K+VrIpyDbVtUeHt+g2n0RCbZWpxqtBhEJDZB2JAPRVa9F9d7ruefyYSouQ4OY+tAbdTCbbK18ju46gdcGvYNxb43C3Y/fjrTDZ/HqndOvmKCkmmkQWx9t+iTCVFKG/b9f/F5h8NEjNDoEpUUmuzYzlc4etf0eRTeNsNv+509/4Z2x8zDyxUFI7tkCR3eewLvjP0ROpuPPyd6sXb9WaNevld22PRsP4O0H5yEr7WLPcL4WypJMtkKbnJwcREZGKhwNEVViwv0GVV26Y2Z9e11a8/lGHNh0GKcOpsFUZEJEQhgGTrwdd0y4Ff9e+TImdX0FJ/ZdrN7yDbQlOksKSh2uV/rPdt8gX7vth7YdxeQeU2X6KTzXuBcGIP6mSGzfkIpdvx+xu8/H3wAAKClyfJaqcrtvoNFu++ED6Zgy/jMZonUvW/efgsViRc+2jdE8LgyHTl2s1Hrw5vYI8rU9bwHGi9UN/gbbf18+SLVSUZnZtp/RviLiZFYeHvnse/udY274R/AYvupAAEAz/w4os5bg27R3caxoF8YFH4WP71j4+T+O4JAlyLrQE5JoSzYKKn8AgCQWOVxTkmxJF5VgnzgXxXPIz30EANBA7fjknLn0+k7oXO/+7iIpsAtaNexW9f8n8nMxacPP2J9tX9Xor7P9ey8qNztcp3J7wGWVQudLi/H00uoDu8kxXx/b81dS6vh5Li6xbffzM1Rty84pxr/+vUL+4LzAsGfuthtGv33Vbrwzdp7dMDp+RpJPUAPb34nhz96N06npmNxjKo7vOYXw+AZ45J370f621pi6bAqe7f0vAHwt5LRt5U70vrc7hjx9F1K+3oKivGIAth76Y/41vGo/v3q2v7HXei1KCkqrTmZVJtwBYPvKXdi+cpfDY+j6aXUavLRkEnQGHeY//6Vdq5KavEZA9d8XwNa+Zu0XKc4P2EOYS81Y8ua3+OOH7VVXgCQkN8T9rw1Hm96JeGfdNDza5jmU/fO3na+Fwv5pb8yE+3WS2K6Q5OXUhPv27dvx+uuvo1OnTpg2bdpV933llVewZ88evPnmm2jbtq0zw6hTlQl3oYJ9xq7k/teGVdu29vMUu36I12vJG9/a/f+pg2mY89inMBWXYdgzd+P+14bj9SHv1Hp9TzX65Xuqbft1yWacP+O8qeZ3P9gDQx6+BWeOncc7T3/ltHW9yYR7ulTb9vPmg8jMLsS5nCIsWLEVjw7phk9fHYGNfx3Dhbxi3NSwAdo1j8GRjCw0iwy1671Otderwchq2/bkbUB+xQUI//TzVglqrMycjwMFtn74ovUsigvfgkbTEAbjnfDxuRclxXNlj1Xv4/hLjrP2V9qtYcOrbduZuxF5FfZ/S/53ZjYGLtsCP60OTYPrY3Lbrvh24L14ZdNafPs3BwiSdxkROQGALfHbsmszjJ9xHz7e9TZevWsmju0+eY2j6UYJKtvfCavFimkD/6/qs++pA2fwr8HvYOHhOWjVqyWad25arb0MOVfK11tw6+ie6HB7ayw4OBtbftyBirIKtOmThOCIejh/OgthDUNlvyKUak6lUuGFxU8isftN2Pj1H/jm3R+VDslr5GcV4ovXltpt27/pEF687U38Z9ObaN65Kfo/1Affv79SoQjpUsIlCXcich1OTbhv2LABJSUl6NOnzzX37d27NzZv3oz169d7RsLdzIT7lYx5rXqSZG/KwRtKuF/Jzx//imHP3I3km5vbba86qx7ouKLTp/Ks/CVVE57o/pcHVdu2b9NhpyXc7xrTHY/9azBO/30OL933IYodVDmUVlaw+xuq3Xfp9pICk1NickcTBlVPuO88nIbMfyoSF/64DSczcjGyXxt0b50AtUrA0bQsPPH5D+jRLB7NIkORW3zxua+sYPcz6Bw+XmUFfJHJcQWqN+vVYFS1badKDiC/4gLKrLb3C0kScbiwekuRMtMqGIx3QqtrU7WtsrK9stL9csI/le2iVOjw/qsJiz8Bg18hyor9ca0e7kb/IoTFO25r46ocJdxPFB+slnCvVFxRjl3nMzB+zXf4cdAYvNW9LzafPY1zJbaqxsoK9spK98tVbi808/fiRlRWtldWul/Oz/efK3CK2ZtPTvkXCvDHD9txdNcJLDryPp7/YiIeTn4GAD8jyanyOTu2+1S1z71mUzl2rt2L/uP74KaOjXFo6998LWQkiiKm3j0TQ6cMQJ/7bka/MT1RXlaBvSkH8cbQdzH1G9vvQ/4F29/fkoJSBIUGwDfQB0W5xdXWu1ZFL90YlUqFF798Ej2Hd0XK0i2Yef/71fa51u+LL39fnE60ilj12Xo079wUST2aVyXc+VooSyi3dVvIznZeER0R3TinJtxTU1MhCALatGlzzX27dOkCQRBw8KB7V5tVnUWsYEuZK+mrql7hLpf8LNuHZIOv/Rf7tCMZaNahMaKbRuDoLvskk0qtQnh8A1gqLA4HKXmS2/wekG3te8bdjEemDcLJwxl46b6PUJBT/csJAKSfuICmrWIRlRCKYwfS7e5TqVUIjwmGpcKKc2nee4a+4wOzrrnPxr+OYuNfR+22lYYJGN+rAwDgQNrFf8uVvdsre7lfLrZ+EADg9BV6vHuzfx0YeMX7csy2/rkWqQIWqXq7Hkm09cMXhIsnlyyW4wAAjSbB4ZoaTTwAwHqFHu9Xo1KLaNF9E3atvvMaewpo3n2T2w1MfXHf0FodVyGK2JJxGs1DQtGmQSRWnbRVkVb2bq/s5X65+ADb78uJAse9x6lm0v7p3R4d7fh5jor6p8f7Wb7/1IULZ7JxJjUdjdvEVw3B42ck+aQdsfX/Lr5Ckqkoz7ZdZ9RV7c/XQj5WixVL316BpW/bt6zS6rWIahKB/KxCnDtlmx+UfiQDQaEBiG4aWe3qg+DwIBj9DLiQlm3XToacQ61R46UlT6Hn8K5Y/9UmvP3AXIgOrjwoKzUjKz0HodEhCA4PqtY7PKqJrV+4o5kIVHsXv29f/HzL10JhrHC/bgIAwYUuCGdzm7qVmZmJ//3vfzh48CAsFguio6MxcOBAdOzY0amP49Sy7KysLPj5+cHH59p9YX18fODn5+f2Z+Eq42eFu2to0bkJACDzxAW77Xs2HgAAtL+tdbVjkm9uAaOvAalb/kZFuUX2GD3R8KfvwCPTBuH4wXS8OOrDKybbAWDvFluSuH3P5tXuS+qYAIOPHod2nURFuVW2eD1VTHAg2sRF4u/MLBw7f/ED17ZjaQCAbs3iqh0THRyI+NBgnM0tqBqYSjWTV3EeueWZ0Kr0qKcLr3a/RnsTAMBquTgsrdz8BwBAp++Jyz9aCYIvtLoOEMVSVJTvrFVMyX3WIaZF5Ynsyz9F2v4/psVBJPdeV6v13VWYj60nr/WSL+x/Zth+L3pENaz2IddXq0W78CiUVpRj9wV+ObwRu/fa/v13aBsH4bIn2mjUIalFFExl5Ug9VH0wIckjJNJ2Mkm02n4f+BlJPrvX74coimjYIrqqDdml4lraBqOcO2n73MrXQhm3jOwGnV6LjV9vrtpW+Vp0uL11tf079LcVl+3ZcKBO4vMmGq0GU5dNQc/hXbH2ixT835gPHCbbK1W+Bo5ep46Vr9NGvk7O1LxzUwBA5kn7E398LZRT2d6YCXciYM+ePbj33nuv2Ob8yJEjGD9+PH788UccO3YMp06dwubNm/H888/jq6+c2xLZqVliq9WKioqKGu9vsVhgdvNLtXNycqCCCrDynFRdib0pCgYHl6aHNQzFxA/GAwDWf/W73X2bvt2K/KxC9BrZDU3bXaws1eq1ePBNW4/mnz5eI2PUnuveF+7G+DdH4O99aXjx3o9QmHf1SwU3r9qLgpxi9BzQBk2SLk7g1Oo1GPPsHQCAX5ZskTVmd+froDVMoK8BM0f1h1qlwqyVm+3u++tEOo6fz0GHhGj0anHx378gAE/f0R0AsGzrfnmD9lDbc2yX0vYNe8D2t+AfKlUEfPxsvZNNpouVdFbraZjLUqDRxMLHd6zdWn4Bz0Kl8kWZ6VtIUu1aKqnUIvqMXYC2/X+B0d9+MKvRvwht+/+CPmMXuF11+7X4qP0QrGvg8L7esQm4Lb4JisvLsTUzrWr7maJ8/J52EjEBQRjT0v7KvKfbdYevVofvj6bCZKn55xqqLiMzH9t3nkREeBDuucu+heDY+7vDaNTh1/UHUWbm8+wsUY3D4RNgrLZdEASMfWsU6oUF4eAfh6uqrvkZST4XzmRj6087EdYwFIMm3WF3X7u+yWh/WysU5RVjx+o9APhayM3Hv/rvRaNWcZjw9v0ozC3G0pk/VG1fs2gjysvKMfCJ2xHWMLRqu1+QL0a9NBgA8PMnv8oeszfR6jT413fPods9HbHqs/V4d9yHkK4xk+jnT9YCAEa9PAR+lwzkDGsYirsfvw3lZeVYs2ijrHF7osZt4h2eJGzTOxFDJtuupFy/xP77Nl8L5QhWFdSC2u2LWYmcYdeuXcjIyEC7du2q3SeKIv7973+jpMT2Gfjmm2/Gvffei8TEREiShAULFuDECee1XXVqS5mQkBBkZmYiPT0d0dHRV903PT0dJpMJYWFhzgyhzuXk5EAjaSHwIpBai2kWiZEv2PcW96vni+cWPlH1/588txiFObbkUc8RXTF0yl3Y//shnD+TBVORCREJ4eh0Z1vojTps+2UXvnn3J7v1SotMmP3wx5j2zTN4d+PrSFn6Bwpzi9HlrvaIvSkKv3/zJ1KWMskb0zQCw6fYt6PwD/LFMx8/VPX/n77yNQr/qWC/9d5ueGDqEFgtVhzccQIDx/aotub59Fys+3ZH1f+XFpsx56WleOXDB/F/Xz+B337ajaL8UnTu2xIxjcKw6Zc9+O2n3TL9hJ5h/D2d0SUpDvuPZSKvsBSh9fzQo00j+Pvo8fZPv2HzkVN2+4uShFeXrcVnjwzF7NEDsHb/UWTmF6Fz4xgkxoRj18mzWLxplzI/jJvbnvMzGvu1RYvArnhU/x+cKN6HAOMoGIy3QaWqh5Kij1FRvtXumML8lxAc+iMCgt6CTt8dFstRaHVtoNd3h6XiOIoK/++GYlKpRbTuuxbJvdfh/MkEmEt9oPcpRVj8CY9LtFcK1NbHk03+D+mmE8g2ZyDWqkeA3oAWIQ3QNiwS5VYrXvx9NQrL7U/yv7p5HZYPvBevd7sV3aIa4lheDlo3iEDXqIY4np+Ld3ZsUugn8iz/mbsWc2eNxqTH+6Jd64Y4nZaD5s0i0bZ1Q5xJz8GCz3+/9iJUYx1va4Wxrw/Dgc2Hce7UBRTmFKFeWCCSb26ByEbhyMnMw6yHP6nan5+R5PXBxAVo3CYej816EJ3uaItje04hPK4But3TAaJVxKwJH6O00Nb/mK+FvGaunYpyUzlOHUxDaZEJsTdFodOdbWE2lWPa3f+HnMyLra3OnbqA+c9/iYnvj8e8HTPx27ItqCi3oMeQzmgQUx/fvPcjB93WQNeBHdBtoO0S/XrhQQCAFl2aVn3PK8gpxPznvgQATProYXS6sy3yswqRfTYXo6dVbyW3N+Ug9v2WWvX/qX/+jW9n/YShU+7CJ3vfxablW6HVadBzeFcEhPhj7pOfyTI3zB1dz2vx6HsPIKpJBFK3HEHWWVvVdEJSQ7TpkwQAWDT1f0j90/7fP18LZWlEHSvcr5cLtZQh59m3bx8AoFu3btXu++uvv3D69GkIgoCXXnoJt912W9V906dPx5o1a/DLL7/gySefdEosgnSt08bXYcaMGVizZg3uvPNOPPfcc1fd9+2338bKlSvRt29fvPLKK84KAQBw4cIFLFy4ENu2bUNhYSFCQkLQvXt3jB07Fv7+9oPq8vLy8MEHH2D79u3w8fHBgAEDcN9990GtrllP9sGDB6MooxTY7ngAHl1bcs8WeG/j61fdZ3T841V/oJNvboEBj/RFozbxCA4PgsFXj+L8UhzfcwrrlvyGdV9e+Yt7y67NcO/Lg9G8S1PoDDpkHDuH1Ys24If3V131csW6oPbzk3V9qQY/X3KPm/DOqpeuus+YFs9UDVkd/fI9DgexXmrf1mN4YeS8attbtIvHyIm34qa2cdDpNcg4lY2132zHj4t+hyhWf1sSQwKuGf+NEvVaWdcvaHLtdls10a1VPO67vR0SouvD30ePwuIy7Pn7LD7bvhP7zpy74nEJDYLxRL8u6NgoBr56LTLyirBqzxEs2LgdZkvNWviUxMj7e9I0Oe3aO92ALiEnnb6mWtCgU8hdaBXUC8G6CKhRAUtFKkpLPkeZ6QeHx6jUkfDzfw56Qy+oVPUgWi+grGwVigtnQZKu3tqngVre94qvix33+neWfaUx197pOhnVvuhR/y7E+7VEiC4cBlUALKIVGcVF2JaZhoUHduJ4vuNe7BG+/pjSvht6xsQjSG/EhdJirD11FP/ZuaVagr7q8dKcWq9QjW+m/N8A/M/IW1EuXXYNZWh9f4wb0wMd28cjwN+InNxibN5yFJ9/tRnFxdd/taPhnLyD14RMeZMCYrF88TdsEYUB43ujZecmqB8dDL8gX5SVmJH+dwa2rdyFH95fhaK86q3fXPkzkrsLrB+A0dOGostd7REcUQ+lhaXYv+kwvp75PY7sOFZtf74W8hj27N3oNaIbIhuFQWfUIedsLnas3o3/zfge2Wcd/43oPKAdhj1zNxq3jYegEnAmNR0r5q3Gr4t/q+Po3dP9rw3DmNeqDz2vdO7UBdyfYEv4vrvhX2jVq+VV11v8+jJ8+fo31bb3e6AX7n78NsS2iIYkSji26ySWvbsC235hQUml63ktbh/XG93u6Yi4xBgE1g+AWqtG/vkCpP75N1bMW4UDmw9fcR2+FgrpUAxjmBY//vij0pG4vDFjxuBobg7O3dZb6VCqhK/ZgCbBIVi8eLHSobi9UaNGoaKiAt9++221++bMmYPvvvsOjRo1wsKFC+3uy8zMxL333ouEhAR89tlnTonFqQn31NRUPPbYYxAEAffeey/Gjh0LrdY+gVVRUYGFCxfiv//9LwRBwNy5c5GYmOisEHD27Fk8/vjjyMvLQ/fu3REbG4tDhw5h9+7diI2Nxbx58xAYGAgAkCQJEydOxJkzZ9C3b18UFRVh/fr1GD16NMaNG1ejx7vrrrtgOlcBYScT7nRjXCHhfiNU9R0PxHMWJtyvrTRM/ittmHC/tkfr7bj2TjeACfdr+3prJ1nXZ8L92i5PuDsbE+41eAxT7VpTERERkZtpVwxtqICVK1cqHYnLY8Lds/Xv3x8NGzbExx9/XO2+Rx99FIcPH8Z9992HCRMmVLt/2LBhKCkpcdrvkVO/MbZo0QKDBw/Gd999h//+97/4+eef0b59e4SH24bJnTt3Dn/99RcKC22TrQcNGuTUZDsAzJo1C3l5eZg0aRKGDBlStX3u3LlYtmwZPv30Uzz77LMAbG1t9u/fj0WLFqFRo0YAgGbNmuF///tfjRPuVqsVYKEJERERERERERHVMUmUYLUyMUVUXl4Ok4OiE6vViuPHjwOw5a4dCQ4OdmprJqeXaD355JPQ6XRYtmwZCgoKsGHDBrv7JUmCSqXCvffei4ceeugKq9TO2bNnsWPHDoSHh2PQIPs2F+PGjcNPP/2EtWvX4oknnoDRaLQlywG79jFqtbpqe01YrVZIEtjBnYiIiIiIiIiI6paI68pjEXmqwMBAnD9/HhaLBRrNxZT30aNHUV5eDkEQ0KxZM4fHms3mal1aboTTE+4qlQqPPfYYBgwYgNWrV+PAgQPIzc2FIAgIDg5GYmIi+vfvj6ioKGc/NHbvtg1a7NChA1Qq+2uZfXx8kJiYiB07diA1NRXt2rVDbGwsmjVrhsmTJ6NPnz4oKSnBunXrMHRo9QEtV2KrcK9Zv3ciIiIiIiIiIiJnkURAZMKdCE2bNsXWrVvx66+/on///lXb161bBwCIiopC/fr1qx0niiIyMzMd3ldbsjUhjYmJcdgTR05nzpypemxHoqOjsWPHDqSlpaFdu3ZQqVSYPn06PvjgA6xatQpGoxGjRo3CAw88UOPHtFqtEKxMuBMRERERERERUR0TK7svSBAE9l+oCUH+kUmkgL59++LPP//EnDlzUFhYiPj4eOzfvx/fffcdBEFAv379HB53+PBhlJWVoXHjxk6LRd6pX3WspMQ2gMrvCsMnK7cXFxdXbQsNDcUbb7xRq8eTJAlWqxVqkb+pRERERERERERUt6R/clJWq9WujQaRt+nTpw9WrlyJv/76Cx999FHVdkmSEBoaajfr81K//vorBEFAu3btnBaL6tq71I4oijh06BBSUlKwevVquR5GUZU9siTOpiAiIiIiIiIiojomWW0Jd4vFonAkRMqbPn06Bg8eDKPRCEmy/W60bt0as2fPdligXVhYiJUrVwKwtSh3FllOfS1fvhyLFy9GQUFB1bbbb7+96r+LioowceJEWK1WvP/++wgODnbK4/r6+gKwr2C/VOX2K1XAEylJqpD5j6NatvNrNnKfSa+DE1sqU4Ws68t92ZrW8Vufcx+jUN5/R+Uyt+jalNVI1vUBwCrJ+xwl+5yRdf3zFYGyrp9ZJu/6AKDJl/f9SCXvW4Xs6wOAIMn7hqQ2yfymLXefUp1O1uUFjVnW9YmIiMj7sJ1MDUkAJBd6rtg0w6n0ej0mTZqEiRMnIj8/Hz4+PjAajVfc38/PDz/88AMEQYDBYHBaHE7PCsyaNQsffPBB1Q/l6Bfe398fTZs2RXp6OjZu3Oi0x46NjQUApKWlObw/PT0dwJV7vF8vtdqWGBJkzmMSERERERERERFdTlDb8m6VOSoib7V69Wps374dgO33ISQk5KrJdgBQqVQwGo1OTbYDTk64b9u2DStWrIDRaMRbb72FlStXIjDQcSXbrbfeCkmSsHPnTqc9fps2bQAAO3bsgCjaV1aVlpbiwIEDMBgMaNGihVMeTxAEqNXqqjc3IiIiIiIiIiKiOvNPZo8Jd/J2M2bMwJdffql0GACcnHBfsWIFBEHAuHHj0KNHj6vu27JlSwDAiRMnnPb4UVFR6NChA86dO4fvv//e7r6FCxfCZDKhX79+1zy7cT3UajUr3ImIiIiIiIiIqM4Jqn+KQdlSpuYkF7qRU0kyt86sKac2OU1NTQUA3Hnnndfc18/PD76+vsjNzXVmCJgyZQoef/xxzJkzBzt37kTDhg2RmpqK3bt3IyYmBhMmTHDq46nValiYcCciIiIiIiIiorqmYnU7katxasK9qKgIvr6+8PHxqdH+giBUa/1yo6KiojB//nwsXLgQ27Ztw9atWxESEoKhQ4di7Nix8Pf3d+rjqdVqWIU6mOZIRERERERERER0CYEJdyKX49SEu4+PD4qLi2GxWKDRXH3pwsJClJSUICQkxJkhAADCwsLw0ksvOX1dRzQaDcpV5XXyWERERERERERERJVsLWXYeuG6uEbXEfJgTk24JyQkYO/evUhNTUVycvJV9123bh0kScJNN93kzBDqnE6nQ6nGrHQYRERERERERETkbdQSdDq90lEQuYT8/HysXr261sfffvvtTonDqQn3Xr16Yc+ePVi0aBHee+89qFSOz7AdO3YMCxYsgCAI6NOnjzNDqHMhISHIO58PjqYgIiIiIiIiIqK6JGmtsnSPIHJH6enpmDlzZq2OFQTBNRPud911F3744Qfs3r0bU6ZMwfDhw6t6tKelpeHcuXPYsmULfvnlF5jNZrRs2RK33HKLM0OocyEhITgsHIYWEgSm3YmIiIiIiIiIqA5IkGARKphwv04CW8p4LEmq/Yt7I8dezqkJd41Gg//7v//Ds88+i927d2PPnj1V991///1V/y1JEhISEvDmm29CENw7SR0SEgIJEqCVgAr3/lmIiIiIiIiIiMhNqCWIEFG/fn2lIyFyCUlJSZg7d67SYcDpUxXCw8OxYMECjBs3Dg0aNIAkSXa3kJAQjB07Fh9++KFHnIGrfFOTdFaFIyEiIiIiIiIiIm8h6W1dJTwhv1anJBe6kUdyaoV7JYPBgAceeAAPPPAAsrOzkZ2dDVEUERwcjPDwcDkeUjGVb2qSTgRKFA6GiIiIiIiIiIi8g9ZW/MmEO5FrkSXhfqn69et79KUtVW9qOlHZQIiIiIiIiIiIyGuwwt27ffTRRzhy5AjS0tJQUFAAvV6P8PBwdO/eHYMHD0ZgYGC1Y/bv34/FixcjNTUVZrMZ0dHRuOOOOzBkyBCo1WqHj7NlyxZ8/fXXOHr0KERRRFxcHO655x7079//irGtWrUK33//PU6fPg2VSoUmTZpg5MiR6Nq1q8P9rVYrli9fjpUrVyI9PR16vR4tWrTAmDFjkJSUVLsnSEFOTbgXFRVh8+bN2LNnD86ePYuioiIAQEBAAKKiotC6dWv06NEDvr6+znxYRV2scGdLGSIiIiIiIiIiqhuSlgn3WvGQVi7ffPMNmjZtig4dOiAoKAhlZWVITU3FokWL8NNPP+Gjjz5CWFhY1f6bNm3CtGnToNPpcMsttyAgIABbtmzB3LlzceDAAbzxxhvVHmP58uWYM2cOAgMD0bdvX2i1WqSkpGDGjBk4ceIEnnjiiWrHzJs3D0uXLkVoaCgGDBiAiooKbNiwAS+++CImTZqEIUOG2O0vSRJef/11pKSkIDY2FoMHD0ZhYSE2btyIp556Cm+88QZ69Ojh/CdQRk5LuH/11Vf46quvUFpaWrWtcrqrIAjYv38/Vq9ejQ8++ACjR4/GqFGjnPXQirJrKUN0A0RzGVR6g3wPYBUBtdPHNlQRz12AKryBbOurikoh+vvItn5dCNpfgPyk6meYnUVXLKHcj8ObiYiIiIiIvILeVvzpyZ0l6MpWrVoFvV5fbfunn36KL7/8El999RWmTJkCACgpKcE777wDlUqFOXPm4KabbgIAjB8/HpMnT0ZKSgrWr1+PPn36VK2TmZmJjz76CAEBAZg/fz4iIiIAAA8++CAefvhhLF26FD179kRiYmLVMfv378fSpUsRFRWF+fPnw9/fHwAwatQoTJgwAR999BG6du1atRYArF+/HikpKUhMTMTs2bOrfqaBAwdi4sSJeOedd9CuXTv4+LhPTsgp2be33noLn376KUpKSiBJEgRBQFRUFFq0aIEWLVogKioKgiBAkiQUFxfjk08+wYwZM5zx0IoLCgqCWq2GYPCQ02NEREREREREROTyBIOtyDU4OFjpUEgBjpLtAHDLLbcAANLT06u2paSkID8/H717965Ktleu8dBDDwEAfvjhB7t1Vq5cifLycgwePNguQe7v74/Ro0cDAFasWGF3zI8//ggAuP/++6uS7QAQERGBQYMGoby8HKtWrbI7pvJxH3roIbufqXnz5ujduzfy8/ORkpJyxeeh0m+//Ya5c+dec7+6cMMV7itWrMCvv/4KAGjSpAlGjx6NTp06wWg02u1nMpmwbds2LFmyBEePHsWaNWuQlJSEAQMG3GgIilKr1ahXrx4KSzkxlYiIiIiIiIiI6obaV4B/UBA0GtlHNHoOCRBcqWZWhlj++OMPAEBCQkLVtl27dgEAOnXqVG3/Vq1awWAw4MCBAygvL4dOp7M7pmPHjtWOqVyncp/LH+dKx3zxxRfYtWsXxo0bBwAwm804ePAgDAYDkpOTHR6zZs0a7Nq1C3fcccc1fnLXcUO/kRaLBQsWLIAgCOjduzdefvnlK/6SG41G9OrVC927d8f06dOxfv16fPrpp7j99tvd/o0hJCQEBVlFYCMHIiIiIiIiIiKqC5JOZP92D3D27FmMGTOm2vbFixfX6Pj//e9/MJlMKCkpwZEjR7Bv3z40atSoqgodANLS0gAAMTEx1Y7XaDSIiIjAyZMnkZGRgbi4OADAmTNnrnhM/fr1YTQakZWVhbKyMhgMBphMJmRlZcFoNDpscxQdHW0XCwBkZGTAarUiNjbWYX7Y0THu4IYy3Zs3b0ZhYSEiIyPxwgsv1ChxrtFo8MILLyA1NRXnzp3Dli1bcPPNN99IGIoLCQnB38Lf0EKCwLQ7ERERERERERHJSIIEi1DBhDth6dKlyM3Nrfr/Tp064aWXXkJQUFDVtuLiYgCAr6+vwzUqt1fuB9j6vl/rGJPJhOLiYhgMhqr9/fz8HO5fuf3Sx6j87ysd4ygud3BDCffdu3dDEAQMGjToin2DHNHr9Rg0aBA+/PBD7Ny50yMS7hIkQCMBFibciYiIiIiIiIhIRmoJIqxMuNeG5Fq5u6ioqBpXsztS2QM9NzcXBw4cwCeffILx48dj5syZaNasmZOipOtxQ0NTjx49CgDo0KHDdR9b2cuncg13VvnmJv0zHZqIiIiIiIiIiEgukk4EACbcqUpwcDBuvvlmvPfeeygsLMT06dOr7qusIK+sQr+co+r0yurymh5zrWp0R9XsjqrerxWXO7ihhPv58+chCEJVb5/rERcXB5VKhfPnz99ICC6hsp+QZGTCnYiIiIiIiIiI5CX5WADYqqOJLhUeHo64uDicPHkS+fn5AC72YXfUC91isSAzMxNqtRqRkZFV22NjY694THZ2NkwmE0JDQ2EwGADY5neGhobCZDIhOzu72jHp6el2sQBAZGQk1Go1MjMzYbFYanSMO7ihhHtpaSmMRiME4fovxRAEAT4+PigtLb2REFxC06ZNAQCSX4XCkRARERERERERkaeT/GzJSbYMqQXJhW4yqUx4q9VqAEDbtm0BANu2bau27969e1FWVobExETodLqq7ZXHbN++vdoxletU7lPbY/R6PVq2bImysjLs27evxo/j6m4o4W4yma6rd/vltFotysrKbiQElxATE2M78RAkKh0KERERERERERF5OFWQCJ1Oh4YNGyodCikgLS3NYRsWURTx6aefIi8vD4mJifD39wcA9OrVC4GBgdiwYQMOHz5ctb/ZbMaCBQsAAPfcc4/dWv3794dOp8N3332HzMzMqu1FRUVYsmQJAGDgwIF2x9x9990AgC+//BJFRUVV2zMzM/H9999Dp9Ohf//+dsdUPu6CBQtgNpurth86dAgbNmxAUFAQevbsWaPnxVXc0NBUSbrxUzHOWENparUajRs3RqrpECRIEOBawxeIiIiIiIiIiMgzSJAg+VvQpHETaDQ3lNojN/Xnn39i/vz5SE5ORkREBAICApCXl4c9e/YgIyMDwcHBeP7556v29/X1xfPPP49p06Zh0qRJ6N27NwICAvDHH3/gzJkz6NWrF3r37m33GJGRkXjssccwZ84cPPzww7jlllug1WqRkpKCrKwsjBgxAomJiXbHJCUlYfjw4Vi2bBkefPBB9OrVCxUVFdi4cSMKCwsxadIkRERE2B3Tp08f/P7770hJScH48ePRrVs3FBQUYOPGjRBFEc8991xVf3h3wd9KJ2natCn2798PtcEKlPFpJSIiIiIiIiIiGehFWFBR1eKYro/g/rW/aN++Pc6ePYv9+/fj6NGjKC4uhsFgQExMDPr164ehQ4ciICDA7pgePXrg/fffx+LFi/Hbb7+hvLwcUVFRmDhxIoYMGeKwZfiQIUMQHh6Or7/+GmvWrIEkSYiLi8NDDz1UrVK90sSJE9GoUSN8//33+OmnnyAIApo2bYpRo0aha9eu1fYXBAHTpk1DYmIifvnlFyxfvhw6nQ7JyckYM2YMkpKSnPOk1aEbzgzn5eWhV69etTpWkqRa9X93RZU9s0RfC9RMuBMRERERERERkQxEX9sMQSbcvVdCQgKefvrp6z4uKSkJ77zzznUd061bN3Tr1u26junfv/8VE/KOaDQaDB8+HMOHD7+ux3FVN5wZ9oSWMM5gNzg1x6BwNERERERERERE5Ik4MJXItd1Qwv3BBx90UhjuLzY2Fnq9HtYgETitdDREREREREREROSJVPVEqHU6xMfHKx2Ke2LtMMnshhLuY8eOdVYcbk+j0aBx48Y4bD7CwalUa6K5DBBUsj6G2tdHtrWlC9kQgoNkW1+VVwgpoA4GZcjY6qre3jwUNguSbX1jmQRTffn+DfmeBUojrr1fbWX8EQ1VYqF8DwCgNEe+3wEAOHY8AmqfCtnW/wodEBuWK9v6AJCeEyTr+tYLRlnX98mRdXloTPKubw4U4J9ulfdBRJmX18j7t0wwW2RdHxb51pdKSmVbu5K1uFj2xyAiIiJlVA5MbZTQiANTiVyUvN+GvEyzZs1ghQXQy/wtloiIiIiIiIiIvI/ONjCV7WSIXBdPhTlR1eBUvwqozWqFoyEiIiIiIiIiIk8i+nFg6o0S2FKGZMYKdyeyG5xKRERERERERETkRJUDU5lwJ3JdTLg7UcOGDaHX6yEEsaUMERERERERERE5lypIhFarRUJCgtKhENEVMOHuRJWDU+FvgcSRx1RbkrwnbKwyD2uTcvNlXZ+IiIiIiIjIawVYkZCQAK1Wq3Qk7klywRt5HCbcnaxp06awwAIYrEqHQuSRhMISpUMgIiIiIiIiqnOS3ooKlLOdDJGLY8Ldydq3bw8AsNYrVzgSIqo1Sd5TzAFH8mVd35gt71USPpmyLk9EREREREQOiPXMAC7mnqiWlK5oZ3W7x2PC3cnatWsHnU4HIZSDU4mIakM8ECDr+j4h8rZVIiIiIiIikkWoBWq1Gh07dlQ6EiK6CibcnczHxwdt2rSBNcAMSc3hqVRL7ONORERERERERP+QVBLEQDNat24NX19fpcMhoqtgwl0GXbt2hQQJYhDbyhARERERERER0Y0Rg8wQIaJr165Kh+LWBACC5EI3pZ8QkgUT7jLo0qULAEAKZsKdSA4cnEquzlqqlXX9M+eDZV2fiIiIiIhcS2WOiQl3ItfHhLsMwsPD0ahRIwgNLJA4AYGIiIiIiIiIiGpJggQhzIqGDRsiKipK6XCI6BqYcJdJ165dYREqIPlzeCqRW5LkPVkWcCRf1vWN2fLOAfDJlHV5IiIiIiIi+ofka4FFKGd1O5GbYMJdJpVtZUS2laHa4uBUIiIiIiIiIq8nhpgBXMw1EZFrY8JdJs2bN0dQUBBUYRalQyEiIiIiL2EtLlY6BCIiInIyVZgV/v7+SExMVDoUIqoBJtxlolar0blzZ1TozJD0VqXDIfI4HJzq2cQDAbKu7xMi7xUe7i46JF/W9dUNTLKuXxoj7xVCFqOsyxMRERERVZF0VlToy9CpUydoNBqlw/EMkgvdyCMx4S6jyt5aYj2zwpEQEREREREREZG7qcwpdevWTeFIiKimmHCXUYcOHWxnH0M5OJVqiX3ciYiIiIiIiLxXAwvUajU6duyodCREVENMuMvI19cXrVu3hjWwHJJK3sQpEclAkvf6roAj+bKub8yW933HJ1PW5YmIiIiIiLyapJIgBpqRnJwMf39/pcPxGILkOjfyTEy4y6xr166QIEKsV650KERERERERERE5CbEwHKIENGlSxelQyGi68CEu8x69OgBQRAghbGPO5GzcXAquTJrqVbW9c+cD5Z1fSIiIiIiUli4LZfUo0cPhQMhouvBhLvMwsLC0LFjR4jBZkg6q9LhEBERERERERGRi5O0IqwhZWjXrh2ioqKUDsezSC50I4/EhHsduOuuuyBBgrWBSelQyB1xcCoRERERERGRV7E2MEGChLvuukvpUIjoOjHhXge6du2KkJAQCNHlkHj6ioioRsQDAbKu7xMi78kmIiIiIiKi2pAgQYgpR1BQENvJELkhJtzrgEajwR133AGLpgJSEIenErkVSd6TZAFH8mVd35gt7xUSPpmyLk9EREREROR1pMByWDTl6N+/P7RaeWdDeR2lW8iwrYxXYMK9jgwYMACCIECMLFM6FCKPwsGpRERERERE5EmkSNuwVLaTIXJPTLjXkYiICA5PpdpjH3ciIiIiIiIij3fpsNTo6GilwyGiWmDCvQ5xeCoREREREREREV0Jh6XKT5Bc50aeSaN0AM6WmpqKTZs24dixYzh69Chyc3MRGhqK5cuXX/GY4cOH49y5cw7vCw4Oxg8//FBte0ZGBubMmYN9+/ahXr16GDFiBAYOHHjV2CqHpxZYCiGlSxAgXNfPRkREREREREREnonDUok8g8cl3NetW4dvv/0WGo0GcXFxyM3NrdFxfn5+GDp0aLXtRqOx2raysjI888wzsFqtGDBgAM6dO4dZs2ZBp9Ohf//+V3yMyuGpX375JbRB5RDy9TX/wYiIiIiIiIiIyGNdHJY6hMNSidyYxyXc+/fvj9tvvx3x8fHQarW4+eaba3Scn58fxo0bV6N99+3bh6ysLHz77bcICgoCAMydOxc///zzVRPugG146pIlSyBGlkHFhDtdD0kEBPm6QFlLSuXtFV9cDPU/vy9OV1gMoX6wPGv/Q9LL93YZcCgX5sgA2dbXFwAl4fJ9WAs8BpSFyHTFzqYAlEbId52dFoCqXM6rjTSw+MkX/5msSIh6+X5vtXlq2dbWAFCXy7Y8rD6AT4Z86wOA1iTfa1vhp4K+QL6ZL4Ik7/Wr6uIKWdeHKN+/eym/QLa1xYJC2dYGAMnKOUFERETujMNS6whbuZDMPK6He5MmTdC0aVNZzwSK/3zJE4SLSRq1Wl21/Wrshqdq+aWIiIiIiIiIiMjbcVgqkefwuAr32iovL8fatWtx/vx5GAwGNGrUCK1atYJaXb26Lzk5GfXq1cMjjzyCm2++GRcuXEBKSgqefvrpGj3WXXfdhW3btsEaZoIm3c/ZPwoREREREREREbkRDkutOxxWSnJjwv0fubm5eOutt+y2RURE4KWXXkLr1q3ttvv4+ODdd9/F+++/jx9//BFBQUGYOHHiNYemVqoanmrl8FS6TjK3lYGgkrWtjDU/X7a2MlJ2rqxtZQSzRda2MkREREREROSdOCyVyLMwewRb3/fk5GTEx8fDx8cHGRkZ+O677/DTTz/hueeew0cffYTGjRvbHdOwYUO89957tXo8jUaDO++8E4sXL4YmxAx1jsEZPwYRuTF9RqGsfdx9z1XI2sediIiIiIiIakcMNsOiKccddwzlsFQiD+B2CfeFCxdW29a/f39ERETUes2xY8fa/X9CQgKeffZZGI1GLF26FIsWLcK///3vWq/vyNChQ7Fs2TJUxJsg5ehZ5U41J3eVO1EtGHIk2Qan+mQKsg5OFXWSzINTiYiIiIiIHJMgAQll0Ov1GDZsmNLheAe2lCGZuV3C/fPPP6+2rU2bNjeUcL+SgQMHYunSpdi7d6/T1w4KCsLgwYPx3//+F0J9M9TZrHInF8G2MlfEtjJUG5piARY/+T7RqcwqiHp5fmcr6lmhzas+y4SIiIiIiJxDDDHDYjBj8MDhCAkJUTocInICt8sc/f7773X2WEH/JAXLyspkWX/kyJH47rvvbFXu2axyJ/J2creVISIiIiIiItchQQLibdXt9957r9LhEJGTsC/FVaSmpgKALNXzgC2hP2TIEFj15RDrm2V5DPJQMlagk+fyPVehdAhEdqw6pSMgIiIiIlJOZXX7Pffcg+Bg+a7WpstILnQjj+T1CfdTp07BZDJV256ZmYnZs2cDAPr16yfb448cORJGoxFSvMl2ZpPIFcjcI96any/b2lJ2rmxrA7a2MuSYIUe+9zCfTF4BREREREREnsPWu90Evd7A6nYiD+N2LWWu5fTp0/jqq6/sthUVFWH69OlV///4449XtYvZsGEDli5dilatWiE8PBxGoxEZGRn4888/UV5ejs6dO2PkyJGyxRsYGIihQ4fiyy+/hFC/DOpso2yPRR6Gw1M9EtvKKIODUz1TaSTgk6F0FERERERE1YkhZlj05Rg2eBTq1aundDhE5EQel3DPzc3F6tWr7baVlZXZbRs7dmxVwr1t27ZIS0vD0aNHceDAAZhMJvj5+SE5ORn9+vXDbbfdBkGQNwkzfPhwLF++HOaEMkjZBvZyJ9cg8/BUIiIiIiIiIm9UWd1u0BtkLfIkByRAcKUGE64UCzmNxyXc27Rpc12DVVu3bo3WrVvLF1ANBAYGYsiQIbYq99AyqLNY5U6ez5qfD/U/J76cTcrOhVBfvv53gtkCSe+eb5++5ypQEq5VOgyvoykWYPGT75OUyqyCqJfnBFlFPSu0eWpZ1iYiIiIi8kasbifybOxH4SJGjBgBHx8fSPFl7OVONccKdHIx7ONORERERER0ZVXV7QYDRo0apXQ4RCQDJtxdREBAAIYOHQqrrhxiaJnS4RDZsEe8IvQZhUqHQERERERERDIQ69uq2wcPHlzV7pjqmORCN/JIzKa5kBEjRsDX15dV7nR93LjK3ZqfL9vaUnaubGsDtrYy7sr3XIXSIbgkUcf3XSVYdUpHUHsVRl51Qa5DslqVDoGIiIiuobK63Wg0snc7kQdjwt2F+Pv7Y9iwYaxyJyIiIiIiIiLyMGJ9Myy6cgwZMoTV7UQejAl3FzNs2DD4+flBSjCxyp1cA9vKKIJtZYiIiIiIiDzHpdXtI0aMUDoc76Z0Gxm2lPF4zKS5GH9/f1svd20FxAiT0uGQu2BbGYfYVkYZHJzqmKZY3thVZvn+pFfUY6sKIiIiIqIbIYaZYNGVY+jQoQgMDFQ6HCKSERPuLmjkyJEIDQ2FmFAKScskBxE5H/u4ExERERER1Q1JI0JqXIqQkBDce++9SodDRDJjwt0F+fj44Mknn4QoWGGJL1Y6HHIXcla5s62MIthWpu5xcKrnKY1UOgIiIiIi8nbW+GJYBSsmTpwIX19fpcPxeoLkOjfyTMyiuaiePXuiU6dOEBuUQQwoVzocIlmxrQwRERERERF5ItG/HNYwE9q1a4fevXsrHQ4R1QEm3F2UIAiYNGkStFotxKbFkHjai5TGKne6DuzjTkRERERE3k6CBLFZCTQaDZ5++mkIAr/LEHkDZtBcWHR0NO677z5YDRWwRpYqHQ65Azcenkp1j33cyVVYdUpHQERERETkfNZIE6yGcowaNQqxsbFKh0OVJBe6kUdiwt3F3XfffYiMjIQUVwpJxwGq5LnYVsYx9nH3LJpieStaVGb5/qxX1OPfICIiIiKimpJ0VkjxpQgLC8P999+vdDhEVIeYcHdxer0ekydPhiiIsCQUKR0OuQMOTyW6IRycSkREREREN8qaUAxRsGLSpEkwGAxKh0NEdYjZMzfQuXNn3HzzzRDrmyEGmZUOh4ioRtjHnYiIiIiIvJEYaIa1fhm6du2K7t27Kx0OXUIAIEgudFP6CSFZMOHuJp588kkYDAaITUs4QJU8FtvKOCZnWxn2cSciIiIiInIeSZAgNiuFXqfHU089pXQ4RKQAJtzdRFhYGB588EFYdRWwRpcoHQ65OraVISIiIiIiIqpz1qhSWHXluH/M/YiMjFQ6HLqc0kNSOTjVKzBz5kaGDRuGuLg4iA1NkAzyVdMSEREREREREdH1kfRWSHGliImJwciRI5UOh4gUolE6AKo5rVaLKVOm4KmnnoK1UTHUBwMhsNsTXYmcVe4ysubnQxMlUxWAqQzQqOVZG4BQUQHodLKsbTiVB2uwryxrBxWWozTSKMvaumJAVMvzPuWXDpTVk++8sTlYnnW1xQKMWXKWMahQEiHf3wZVuWxLwyhj33/BKs+6ohrQF8jzfiuqBeiK5DnBLqkFCBb5nm91rnyD3qUL2fIVAum0cq0Ma26ebGsTERGRa7A2LoYIEU8//TR0Mn03JCLXxwp3N9O6dWv069cP1npmiCEcoEpEREREREREpDRrPTOs9crQu3dvtG/fXulw6GqUbiHDdjIejwl3N/TYY4/B19fXNkBV655VzERXYzmbIePiMpW5EhERERERkVeSNCKkm4rhY/TBE088oXQ4RKQwJtzdUEhICKZMmQJRbYGlSSEknhIjch3l8vXbUOfKNzDZJ8Mk29oqq3zvUYY8nnQkIiIiIiLlSJBgaVoIq9qCyU9PRmhoqNIhEZHCmHB3U3379sVtt90GMdgMMUK+RBmRUljlTkrT58q3timU8zeIiIiIiDyBGG6CGGxGnz59cNtttykdDtWA4EI38kxMuLuxyZMnIzIyEtaEYog+8gxVI6JacNMqd/IcvpnyXVUgcvYTEREREREAQDRaYG1UgrCwMEyZMgWCwBQqETHh7tZ8fX0xdepUCGoB1uaFkAS2liHPwir3usW2MqQ0Uwi/oBARERGRe5AECWKLQkAFTJ06Ff7+/kqHREQuggl3N9eyZUuMHTsWorEC1vgipcMhokoyVrlT3ZGzrQwREREREbkva1wxrMYKPPDAGCQnJysdDl0PyYVu5JGYcPcAo0ePRnJyMqyRJljrmZUOh8ipWOVenbsOTyV77ONetyS10hEQERERkacQg8ywRpWiZcuWGDNmjNLhEJGLYcLdA6jVakydOhV+fn4QbyqGpHXPJCKRx2GVux22lSEiIiIiIncnaUSIzYur2vxqNBqlQyIiF8OEu4cICwvDs88+C1FtgaVZESRel0IehFXu1XF4at1x17YyHJxad8yB/DhFRERE5A0kSLA0K4RVbcGUKVMQGRmpdEhUC4LkOjfyTPyG6EF69+6N/v372y5timRbCCKqHbaVqTtsK0NERERE5D7ECBPEemb069cPffv2VTocInJRTLh7mEmTJiEqKgpiQjFE3wqlwyFyGretcmdbGTtsK0PXYgrhSQgiIiIicj2ijwXWRiWIiIjA008/rXQ4ROTCmHD3MD4+Ppg2bRpUahXE5kWQVLw+hchTsa1M3XHXtjJERERERHTjJEGC2KIIKrWAqVOnwtfXV+mQ6EZILnQjj8SEuwdq3rw5xo8fD6uhApb4IqXDIXIaVrnXHbaVISKvo9PKtrQ1N0+2tYmIiEh+1vgiWA3lePDBB5GYmKh0OETk4phw91CjRo1CmzZtIEaYYA0pUzocIpKJO1a5s62MPTn7uHNwqj1JrXQE16/cXyPb2pKG7XuIiIiIrsVazzYnLzk5GaNHj1Y6HCJyA0y4eyi1Wo1XXnkFgYGBsN5UBNGH/dzJM7DKve6wyp2IiIiIiLyZaLRAbFGIgIAAvPrqq1Cr3bCCg6pTuo0MW8p4PCbcPViDBg3w5ptvQq1VwZpUCEnjfpWfRHRt7ljl7o7Yx52IiIiIyHtIGhHWpAIIGgFvvPEGwsPDlQ6JiNwEE+4ernXr1pgyZQpErQWWFgWQBJ4+I/fHKnf3x7YydDWmELY6ISIiIiLlSIIES4sCiDoLJk+ejLZt2yodEhG5ESbcvcCAAQMwbNgwiAHlsDQqhMRrVoiohthWpm7I2cediIiIiIhqToIES0IRxIByDBo0CAMHDlQ6JHImCRBc6MYUnWdiwt1LPPbYY+jYsSPE8DJYI0uVDofohrltlbtM2FambrhjWxkOTq0b5kB+pCIiIiLyBGKECWKECe3atcOTTz6pdDhE5Ib47dBLaDQavPbaa4iNjYU1oRhikFnpkIi8E9vKVGFbGSIiIiIiciVioBmWRsWIiorC66+/Do1Go3RIROSGmHD3Iv7+/pgxYwb8/f1hbVEI0WhROiSiG8Iqd3tyVbmzrUzdYFuZuiGplY6AiIiIiFyRaLDA2rIIfn6+mDlzJgICApQOieQiudCNPBIT7l4mJiYGr7/+OgStAGtiASQNq0CJ6hyr3N2aO7aVISIiIiKiK5PUIsSkQkAj4bXXXkPDhg2VDomI3BgT7l6offv2ePLJJyHqLbA0L4Ak8JQauS9WudcNuarc2VaGrsQUwop/IiIiIpKfBAmW5oWw6ivw+OOPo1OnTkqHRDJTelCq3dBU8khMuHupyknbYmA5LPFFSodD5H1kqnLn8FRyhINTiYiIiIgcs8bb5tzdeeedGDZsmNLhEJEHYMLdSwmCgEmTJqFNmzYQI02whpcqHRJRrbHKneqaXG1l2MediIiIiKjuWMNKYY0qRXJyMqZMmQJB4OdxIrpxTLh7MY1GgzfeeAORkZGwNC6GGMi+0kR1ys2q3NlWhoiIiIiIPIUYUA5rk2KEh4fjrbfeglarVTokqitKD0rl0FSPx4S7lwsMDMTMmTPh42OEtWUhJINF6ZCIaoVV7kRERERERFQTkt4Ka8tCGIwGzJgxA0FBQUqHREQeRKN0AKS8uLg4vPbaa3jppZdgSSqAZm8QhHK10mERXTfL2QyofHxkW19lNMqwaing5/yY1efKIQb5O31d3xNFqKgvx/MASCp5Lt/UFwDmIOf/uTPkO33JKuX+zn8ufDMlSDJeIqsxy1OeoSmV5yoFbYk866rN8pygE2S8EkST7fyrYiS9DoJZnqt4BB8Z3oOs8l0NY8nJkW1tIiIiun6S1gpLcj4kjYipU6eiUaNGSodERB6GFe4EAOjSpQueeeYZiHoLLEkFkDRsw0BEREREREREnkPSiLAkF0DUWzB58mR0795d6ZBIAYLkOjfyTEy4U5W77roLTzzxBERjBSxJ+ZDUTLqT+xFL5RsALJrk6WGOYnliVuUXybKuNlum54GIiIiIiEgmklqEJbEAorECjzzyCAYNGqR0SETkoZhwJzsjRozAgw8+CNG3ApaWBZBUPN1G7kfOpDvJRxDle7/R57vXfApdEd97iYiIiIicRVJJsLQogOhXjvvvvx/33Xef0iERkQdjD/c68ssvv+CPP/7AyZMnkZeXB1EU0aBBAyQnJ2PkyJGIjY11eNyFCxewcOFCbNu2DYWFhQgJCUH37t0xduxY+PtX78+cl5eHDz74ANu3b4ePjw8GDBiA++67D2p1zXuyjx07FqWlpVi2bBkszfOhSQ2CIMnX95fInYgmkzy93Ivl6eWuyi+SpZe7NtskWy93ko8gydvHnYiIiIjI1UiCBMtNBRADyzF48GA89NBDSodESmN9E8mMCfc6snbtWuTk5KB58+YIDg6GSqXCyZMnsWrVKqxZswb//ve/0blzZ7tjzp49i8cffxx5eXno3r07YmNjcejQIXz77bfYvn075s2bh8DAwKr9JUnCq6++ijNnzqBfv34oKirC559/DovFgnHjxtU4VkEQ8MQTT6C0tBQ///wzLM0KoDkcCAFM0pD7EEtLZRugKlvSnSCIknzDU/MtsgxPJRuLXpBlcKrFRyXb4FQiIiIi8mwSJFiaFkAMNuP222/HU089BYEFKEQkM2Ye6sjbb78NvV5fbfuOHTvwzDPPYN68edUS7rNmzUJeXh4mTZqEIUOGVG2fO3culi1bhk8//RTPPvts1fb09HTs378fixYtqpqy3axZM/zvf/+7roQ7YEu6P/PMMygtLcWGDRtgaVIIzdEAJt3JrciZdJcFq9zpEroiCeX+fM+VS4WvCtoSJvKJiIiIPJUECZbGhRBDzejZsyeef/55qFTsrExE8uM7TR1xlGwHgA4dOsDPzw9nz56123727Fns2LED4eHh1QZ5jBs3DkajEWvXroXpkiGOVqsVAOzax6jV6qrt10utVuPVV19Fly5dIIaVwZJQBInX3RABcL8Bqu5Ezl7uZGsrQ0RERETkySRIsMYXQwwvQ8eOHTF16lRoNKw5JdjaybjajTwOE+4K27dvH4qLi5GQkGC3fffu3QBsCfnLz8D6+PggMTERZWVlSE1NrdoeGxuLZs2aYfLkyfjggw8wc+ZMzJs3D7fffnut49NoNHjjjTfQpk0biJEmWBuW1HotIiVwgKqNKr9IlnW12TKdeJCJuw1PJfdj1dd8ZgoRERERycMaWwJrVCmSk5Px1ltvQafTKR0SEXkRnt6rYykpKThx4gTMZjPS09OxdetWBAQEYPLkyXb7nTlzBgAQExPjcJ3o6Gjs2LEDaWlpaNeuHQBApVJh+vTp+OCDD7Bq1SoYjUaMGjUKDzzwwA3FrNfrMWPGDDz99NM4hEOAVYAm3feG1iSqS3K1lnG3AaruRM5e7u7E3drKyNXHnchdWXJylA6BiIjI61iiSmCNLUGzZs0wc+ZMGAwGpUMiIi/DhHsdS0lJwYYNG6r+Pzo6GtOmTcNNN91kt19Jia2S3M/Pz+E6lduLi4vttoeGhuKNN95wZsgAbFX177zzDp566imcwAkIFgHqc96dECQC3GuAKnu523B4qq2tjORGw6I4OBWQ1AIEK09mEBEREV2NNawU1vhixMXF4Z133rliToW8lwBAcKGP1bX9VlZQUIBNmzbhzz//xIkTJ5CVlQWtVouEhAT0798fd9xxh8OZBfv378fixYuRmpoKs9mM6Oho3HHHHRgyZIhdi+pLbdmyBV9//TWOHj0KURQRFxeHe+65B/37979ifKtWrcL333+P06dPQ6VSoUmTJhg5ciS6du3qcH+r1Yrly5dj5cqVSE9Ph16vR4sWLTBmzBgkJSXV7klSEFvKOMnChQur3TIzM6vt969//Qu///47Vq1ahXnz5iEiIgJPPPEEVq1apUDU1ycgIADvvfceoqOjYWlcBGsD92olQd7N7VrLyNTLXa7WMnJgL3ciIiIiIqopa6gJliZFiIyMxKxZsxAUFKR0SESySUlJwdtvv43U1FQ0b94cw4YNQ8+ePXHy5Em8/fbbeO211yBdNr9r06ZNeOqpp7Bv3z706NEDgwcPhsViwdy5c/H66687fJzly5fjxRdfxMmTJ9G3b18MGDAA2dnZmDFjBubNm+fwmHnz5mHGjBnIycnBgAED0LdvX5w4cQIvvvgili9fXm1/SZLw+uuvY+7cubBYLBg8eDB69OiBffv24amnnsKmTZtu/AmrY95d4udEn3/+ebVtbdq0QUREhMP9fX19kZSUhJkzZ2LChAl477330K5dOzRo0KDqfqB6BXulyu11fbY2JCQEs2fPxhNPPIELuABYBahzeHkWuQe2lpGPu1W5uxN3ayvjTip8VdCWeHflPBEREZEnsAaXwdKsCKGhoZg1axbq16+vdEhEsoqOjsaMGTPQpUsXu0r2CRMm4JFHHsFvv/2G3377Db169QJg66TxzjvvQKVSYc6cOVWdNsaPH4/JkycjJSUF69evR58+farWyszMxEcffYSAgADMnz+/Ksf54IMP4uGHH8bSpUvRs2dPJCYmVh2zf/9+LF26FFFRUZg/fz78/W1X2Y8aNQoTJkzARx99hK5du9rlS9evX4+UlBQkJiZi9uzZ0Ov1AICBAwdi4sSJeOedd9CuXTv4yJDPkQsr3J3k999/r3Zr06bNNY/TarVo164dysvLqw1ABYC0tDSHx6WnpwO4co93OYWFhWH27NkIDg6G9aZCWEPK6jwGIlcjmtznig9WuXN4KmBrKyMHi54nB4iIiIio7lhDymBtXojAwADMmjULkZGRSodErk5yoVsttWvXDt26davWNiYkJAQDBw4EAOzZs6dqe0pKCvLz89G7d2+7ttZ6vR4PPfQQAOCHH36wW2vlypUoLy/H4MGD7RLk/v7+GD16NABgxYoVdsf8+OOPAID777+/KtkOABERERg0aBDKy8urdfmofNyHHnqoKtkOAM2bN0fv3r2Rn5+PlJSUaz0lLoUJdxeQnZ0NAHa9kiqT9Tt27IAo2lfflZaW4sCBAzAYDGjRokXdBXqJmJgYW9K9fjAszQtgDXOfZCN5N7aWkY82m+8DRERERERUd6wNTLA0L0BQcBD+85//oGHDhkqHRKQ4jcbW0OTSPOOuXbsAAJ06daq2f6tWrWAwGHDgwAGUl5dXO6Zjx47Vjqlcp3Kf2h5jNptx8OBBGAwGJCcn1/hxXB0T7nWgoKAAGRkZDu/bsmULfv/9dxiNRrRu3bpqe1RUFDp06IBz587h+++/tztm4cKFMJlM6NevH4wKDmuMj4/H3LlzERERAUuTQlgiSxSLheh6yJV0Z5W7PFjlbmsr4+0sPu7zkcWqdzxsiIiIiIicxxJZCkvTQoSFhWHu3Llo1KiR0iER1crZs2cxZsyYarfasFgsWL16NQD75HplBw1HnTI0Gg0iIiJgtVrt8pdnzpy54jH169eH0WhEVlYWyspsnS9MJhOysrJgNBodtnWKjo62iwUAMjIyYLVaERERUXWi4FrHuAP2cK8DFy5cwIQJE9CsWTPExsaifv36KC4uxrFjx3Dw4EFoNBo8//zzdpdaAMCUKVPw+OOPY86cOdi5cycaNmyI1NRU7N69GzExMZgwYYJCP9FFUVFRmDdvHqZMmYJTOAVoJKjP+EKo9ZxlorohVz93WbCXOxEREREREQBAggRrTAmsDUsQGxuL9957D2FhYUqHRW5ErvaaruCTTz7ByZMn0blzZ7sq88pZkJUzIy/naJZkSUnJNY8xmUwoLi6GwWCo2v9K8yYrt1/6GNeaUXmtGZeuign3OhAeHo777rsPe/fuxY4dO1BYWAiNRoMGDRrg7rvvxtChQxEXF1ftuMoBAwsXLsS2bduwdetWhISEYOjQoRg7dmy1BL1S6tevjw8++ADPPfccDuMwoBGhPuHPpDt5JdkGqMpAlV8EMcg13keuRRAlSCrnv6fo8y0wB3nvn0JBkiAJzn9eLXoBGrPnfoglIiIiImVIkGCNL4Y1qhRNmjTBe++9h6CgIKXDIrohUVFRWLx48Q2v8+2332Lp0qWIjY3Fq6++6oTIqLa8N8tQh/z9/WtdjR4WFoaXXnrJyRE5X2BgIGbPno2XX34Zu7EbkkaC5u8AJt3JpclV5S5L0p1V7l5PVySh3J/vqc5W4auCtkS89o5EREREpCgJEixNCiGGlSE5ORkzZ868YlUskbdZvnw53n//fcTFxWH27NkICAiwu7/yd6WyCv1yjqrTfX19UVBQgJKSEgQGBl7zmGtVozuqZndU9X6tuNyB+zREJZfn6+uLt99+G127doXYoAyW5gWQBFY4kmtzqyGqMgxQZS93IiJ5WHJylA6BiIjIY0iCBMtNBRDDytCpUye8++67bpeAIxciudDNCZYtW4Y5c+YgPj4ec+bMQUhISLV9KvuwO+qFbrFYkJmZCbVajcjIyKrtsbGxVzwmOzsbJpMJoaGhMBgMAACj0YjQ0FCYTCZkZ2dXOyY9Pd0uFgCIjIyEWq1GZmYmLJbqc9YcHeMOmHAnp9Lr9Xjrrbdw6623Qgwxw9IyH5KKlYPkfbx9gKo2231+fncanioHd+pf6E6DU+UgqXmFAxEREXkfSSXB0iIfYn0zbrnlFkyfPr0qwUfk7b766ivMnTsXTZo0wZw5c1CvXj2H+7Vt2xYAsG3btmr37d27F2VlZUhMTIROp6t2B4GiVAAAWCFJREFUzPbt26sdU7lO5T61PUav16Nly5YoKyvDvn37avw4rs67v7mSLDQaDV599VUMHDgQYlA5LMn5kDRMupPrkqvKXZakuwxV7u7E26vcdUXu8/Nb9EwOExEREdGNkdQiLEl5EOuVY8CAAZg2bRq0Wq3SYZGbEyTXud2IL774Ap988gmaNWuG2bNnX3WeQa9evRAYGIgNGzbg8OHDVdvNZjMWLFgAALjnnnvsjunfvz90Oh2+++47ZGZmVm0vKirCkiVLAAADBw60O+buu+8GAHz55ZcoKrpY3JeZmYnvv/8eOp0O/fv3tzum8nEXLFgAs9lctf3QoUPYsGEDgoKC0LNnz2s8G66FPdxJFiqVClOmTIG/vz+WLFkCS3I+NPsDIVSolQ6NyCG5+rm7CzkGqLpTL3dvH55KzmfVq6E2W5UOg4iIiMhtSVoRlqR8iD4VGDlyJB577DEIAos6iABg1apV+Oyzz6BWq5GcnIxvv/222j4RERFVyW1fX188//zzmDZtGiZNmoTevXsjICAAf/zxB86cOYNevXqhd+/edsdHRkbisccew5w5c/Dwww/jlltugVarRUpKCrKysjBixAgkJibaHZOUlIThw4dj2bJlePDBB9GrVy9UVFRg48aNKCwsxKRJkxAREWF3TJ8+ffD7778jJSUF48ePR7du3VBQUICNGzdCFEU899xzVf3h3YUgSW50LTm5pa+++gqffPIJVGYNNPuCIJiZdCfXJFfC3ekDVAFZBqg6O+EOQLaEu6Ry/gdtd0m4yzU4VZLhy4vG7PyPGJpS518xJdfQVDkS7oJVhuc02/HgpBslmMtlWRfFMsRrdf6/AfZwJyIiqj1Jb4UlOR+i3oIJEyZg9OjRTLbTDRszZgxOZOTAHNtH6VCq6M+sR0JkCBYvXnxdxy1cuBCff/75Vfdp3bo13n//fbtt+/fvx+LFi3Hw4EGUl5cjKioKd955J4YMGQK12nG+7o8//sDXX3+Nv//+G5IkIS4uDoMGDapWqX6pVatW4fvvv8epU6cgCAKaNm2KUaNGoWvXrg73t1gs+O677/DLL7/g7Nmz0Ol0aNmyJcaMGYOkpKSrPxkuiAl3qhMrVqzArFmzIJSroN4XBJXJPRJb5H3kSLrLknAHvDrp7s0Jd0CepLs3J9wBeZLuTLgz4U5ERETXTzRaYE0ugKi1YPLkyRg8eLDSIZGHGDNmDE6cdcGEe9T1J9zJtbGHO9WJgQMHYurUqRD0gLV1PkS/CqVDInJIjn7u7jRA1V3I0cvd24enykGOPu7ePjiViIiIyJOJvhWwts4H9CJeeeUVJtuJyC3xWyvVmVtvvRXTZ0yH2qCGpVU+rCFlSodEVGfcZYCqKr/o2jtdJ202Tzi4A4EXvBERERGRgqzBZbC0zodKL+DNN9/EbbfdpnRIRES1woQ71akuXbpgzpz/IDAoAJbmBbBEl0ACkzzkWuSocifn8+Yqd10R3zeJiIiIyDNIkGCJKoGlRQH8A/0we/Zs9OjRQ+mwyIMJkuvcyDMx4U51LjExEfM/nY+EhARY44phaVoIie8y5GLcprUMq9yJiIiIiMhNSYIES5NCWOOLERcXh/nz56NVq1ZKh0VEdEPcZ0IceZTw8HB8+OGHePPNN/HHH3/AYrRCkxoIocLxRGQiJciSdC8thUpvcO6ixSVQhdRz6pKqrDzAyUM09dn5EBsEOXVNADA38HXqerpCqyzDLkWtc89x6/MBweL8k5UV/s5/H5bUzu/lrqpw7s8uagWozc4dnClqVdCUOP+qCXWhk09gqQUIxTK0eZPjJKNKBaid+2/UknnOqesRERFRzUgaEZYWBRADytG5c2e89tpr8PV17md7IiIlsMKdFOPj44O33noLo0aNguhfAUubPIi+HKZKRERERERE5MlEHwssbfMgBpRj+PDhmDFjBpPtVHckF7qRR2LCnRSlVqvx2GOP4aWXXoJghG2YajCHqZJnE83O/zcu5uQ5fU3IMERTdSHf6WvqL5Q4fU2r3vlV3qoK51ZPExERERG5I2s9Myyt8yAYJTz//POYOHEi1E6+go2ISElMuJNL6N+/P+bMmQP/ID9YWhTAEsVhquTZmHQnZ5A0zm/Voi1yfjsdwcr3cyIiIiJvJ0GCJbIElpb58Av0xezZszFgwAClwyIicjom3MllJCcnY/78+YiLi4M1vhiWJhymSp7NbZLuboBV7t5H1Dr/ZINVz49FRERERHKQBAmWxoWwJhQjNjYW8+fPR+vWrZUOi7yUILnOjTwTv1mSS4mMjMRHH32ELl26QAwrgyUpD5KWCSryXHIk3Z3OTarc5Ui6uwN3qXInIiIiIu8kaURYkvIhhpehY8eO+PjjjxEVFaV0WEREsmHCnVyOr68vpk+fjhEjRkAM+GeYqg+HqRLVFFvLOA+r3J3HW9vKWHw1SodAREREpBjReHE46tChQzFz5kz4+fkpHRYRkayYcCeXpFar8cQTT+D555+HYJRgaZ0Paz2z0mERycJtWsvIkHR3Nla5exc52sq4A2uAUekQiIiIiK5JDDLD0sY2HPWZZ57BU089BY2GxQjkAiQXupFHYsKdXNqAAQMwe/Zs+Af6wdIyn8NUyWO5TdLdydyhtYy3Vrl7a1sZ9nEnIiIiujG24ailqEjMh2+AD959910MHDhQ6bCIiOoMv1WSy2vdujU+mf8JGjZsaBum2rQQkopJd/I8bpF0Z2sZl+UOVe7e2lbGHUh+BqVDUIQl85zSIRAREXkUSVU5HLUIMTEx+OSTT9CuXTulwyIiqlNMuJNbiIqKujhMtUEZLG1yIfpYlA6LyOm8dYiqs7lDaxlWuRMRERGRJxGNFtsMtkuGo8bExCgdFlE1guQ6N/JMTLiT2/Dz88OMGTPw2GOPAb4iLG1yYW1gUjosIpfnDv3cWeXuHN5Y5e4Ofdw5OJWIiIg8nTXUBEvbPEg+Fjz88MN4++234e/vr3RYRESKYMKd3IpKpcKoUaPwwQcfoH6D+rA0LURFkwK2mCGP4hatZWTg7KQ7q9ypttjHnYiIiKhmJJWEisYFsDQrREhoMObMmYPRo0dDpeLnKSLyXnwHJLeUlJSEhQsXonPnzhDD2GKGPI9bJN29sLWMN1a5s60MERERETlyeQuZhQsXonXr1kqHRXR1EmzfZV3mpvQTQnJgwp3cVmBgIGbOnMkWM+SxvLGfuzu0lnE2b6xy98a2Ms5mDTAqHQIRERF5MUctZIKCgpQOi4jIJTDhTm6NLWbI0zk76e6N/dxZ5X7jWOVORERERABbyJD7E6D8oFS7m9JPCMmC74jkEdhihjyZWyTdXZyr93P3xip3V8c+7kRERET22EKGiKhm+G2SPEb1FjN5bDFDdAWu3s/d1VvLeGOVu7N5W1sZi69G6RCIiIiIao0tZIiIao4Jd/Io9i1mQthihjyGNw5R9bbWMq5e5c62Mp5P8jMoHUKdsmSeUzoEIiIil3d5C5n333+fLWTI/UkudCOPxHdI8kiVLWa6dOnCFjPkMbxxiCrdGG+rciciIiIi53HUQqZVq1ZKh0VE5PKYcCePFRgYiBkzZrDFDHkUb+vnzip31+JtVe7s405ERETeqrKFDHytbCFDRHSd+E2SPNqlLWZCw+rbWsw0LYCkdu2kFtHVuHzS3ctay7g6V69ydyZX7+PubNYAo9IhEBERkYeR1CIqmthayNRvEII5c+awhQx5HEF0nRt5Jr5jkldISkrCZ599hq5du0JsUAZL+1yIQWalwyJyGa6edHdl3lbl7mze1FaGg1OJiIjIlYlBZlja50EMK0OnTp3w2WefsYUMEVEtMOFOXqOyxcwLL7wAfYAOFYn5qGhcyGp3ckve1s+dVe43xplV7t7WVoaIiIjI00kqERWNClGRmA+9vxbPPfccW8gQEd0AJtzJqwiCgDvvvBOLFy9G+/btIYabYGmXBzGwXOnQiK6by7eWcTJXTrqzyt11OLutDPu4ExERkScTA8ptVe0RJrRp0waff/E57rrrLgiCd7XqIy8judCNPBK/RZJXCgsLw3vvvYcpU6ZA569BRVIeKhIKIan4bkfuxeWT7l7UWsbVuXKVuze1lSEiIiJyBZJKgiW+CBXJedD4qTBp0iTMnj0bERERSodGROT2mHAnryUIAu655x58/sXnaNWqFcRIEyztciEGsNqd3Is3Jd1Z5U5EREREdGNE/3JY2uXBGlWKxMRELFq0CEOGDOFgVCIiJ+H0LvJ6kZGRmDNnDr799lvM/2Q+ypPzoD7rA/VpPwgiL6MjeQkarVPWkaxWSFbnVR2LmeehqR/stPVsizon8a46cx7w93PKWgBgzCuB5G902nqWQIPT1lJbRKcn3oUyi1PW0eYCghP/zQGAaNA5bS3ByVdXCOYK561V5ry1AACFRc5dT+2kk0cqlfPWAiBm5ThvLXeYg0FERORkkiDB2rAY1uhSaLVaPDrhcQwbNgxqJ/69JnJ5EiC40gW2rhQLOQ1PXxIBUKlUGD58OBYuWoiWLVvCGlUKS9s8iH5OTooQXUayODGJ5+QPypbsXKeuR0REREREyhD9KmxV7dGluOmmm/DZZ59h5MiRTLYTEcmACXeiS8TGxmLu3Ll45JFHoPKTUNE6F5aGRZBc6vQneRqvSbqrnHjFSFGx89YCIBSZnLaWpsDJLX60zv1TLRmcd3GbxC9oRERERC5NEiRYYotR0ToPKl8JEyZMwIcffoi4uDilQyMi8lhMuBNdRq1W47777sP/t3fn4VHVadrH71N7hSxACCEJBEiQXXa0QVZFCGtEWtyQRmhHW52xdXrm7blmunva6em3Z5xXx3Zpt0EbnVZsG3BjUVsQWhQQVLABRVD2sAXInlrOef8IKQlJWJKTVKXy/VxXXVU5dc7JU1Eqlbueen7PPfecevbsqXCXM93ubeh2R9MhdG+AVhS6txaOCvvW0LAMRoIBAIDWzWwTVGjISYWzS3XZZT307HPP6rbbbpPLxXRhtHKWFTsXxCUCd6AeOTk5euqppzR//nwZiaZCg08q1KWEbnc0GUL3Bojh0N1OdLlHn+W1Z70FSbJ89p0LAADgXJYshbqUKDT4pNQmrHnz5umpp55Sbm5utEsDgFaBwB04D5fLpXnz5unpp59W95zuCnctVWjwSZkJ9iw6CJyL0L0BbA7d7RLro2VilZ1d7gAAAK2N6Q8pPPiUwl1L1a17Nz399NOaP3++3G7e8AeA5tI6/noHGqlnz5569tmqj98ZSaZCQwoVyi6R5aDbHfYjdG8AG0P31jJapjV0uTNWBgAAtBaWcaarfWihrKSQbrnlFj377LPq1atXtEsDYo5hxc4F8YnAHbhIbrdbd9xxh5544gnl5OYonF2q8LBChdtVRrs0xCFC9+iK1dA9lkfLtAZ2jpWxVXJStCsAAABRZLatVHj4yUhX++OPP6677rpLHo8n2qUBQKtE4A5cor59++rZZ5/VvffeK0+KW6F+pxTsc0qWNxzt0hBnCN0vEfPco8rOLvfWsHgqc9wBAEBjWZ6wgr1PKdj/lDwpLv3oRz/S//zP/6h///7RLg0AWrXY/KsdiHEul0uzZ8/WSy+9pPHjx8tMrVRwWKFCWaUsqgpbWaGgbcE7oXv0tJbRMgAAAGh6lmEplFmq0PBCmR0qNWbMGC1atEg333yzXC5e2wEXZMXQBXGJZ2JEzf79+7VgwQJVVFTo2muv1c9+9rNa+4wZM6be4/v27aunnnqq1vavvvpKjz32mL766itlZGRowYIFGj16tK21V0tLS9Mvf/lLTZ06VY888ogOGgeljEo5vkqUo4iP78E+Vigow9X4jljD6ZQVtu/TGKHjhXJ1aG/PyRyGZNrwiqO4REpKbPx5VNXlbiX5bTmX63SFQik+W85luh1yBE1bzmUny+mUYdP/X46KgExf7D2PWl63jEr7Pn0CAABwKcykgMxepQr7AsrMzNR9992nESNGRLssAMBZCNwRFaFQSL/61a9kXMRH/Tt16qS8vLxa2zt27Fhr24kTJ/TAAw8oNTVV+fn52r17t/7lX/5FjzzyiIYMGWJL7XW54oor9MILL+jll1/WSy+9pMCAk3Ic8cn1bZKMIB8kgT0I3S8BofslsXwuGRUhW84ViyzDkGHRPgIAAFouy2Uq3L1E4fRyud1u3XbrPN16663yer3RLg0AcA4Cd0TFSy+9pK+//lo/+tGP9Nvf/va8+3bq1Enz58+/qPN++OGH8nq9euaZZyIvPP75n/9Zb7/9dpMG7pLk9Xo1b948TZgwQf/93/+tjRs3KpQWlGNPghwFfhmKzTnCaFkI3S9BjIbu8a41dLnbxfK5ZVTQLQ8AAOpnyZKZXi4zt0ymI6xhw4bp/vvvV5cuXaJdGtBiMQkYTY3AHc1u586d+v3vf6958+YpNzfX1nObpinDMGp0zrtcLplm841e6Ny5sx566CF98MEHeuyxx3TMcUzO6jEzpSySh8azM3SXZFvwTuh+cehyjw47u9xjcqxMcpJUVGzPucJhyeY1H2KJWRm7ayoAAHA2s01QZs8ShdsElJqaqr/927/V+PHjL+qT4gCA6CFwR7OqrKzUr371K1122WW69dZbtW3btgseU1JSorfffluFhYVq06aNevXqpX79+tW574gRI/T000/rrrvu0vDhw/Xtt9/qo48+0n/+53/a/VDOyzAMjRs3TldccYWef/55vfbaawoOLpTjkF+uvYkywoyZQePYFbpL9na72xq6x7F4D93t7HIHAABobSynqXDXEoUzy+VwOHTDrBs0f/58tWnTJtqlAXHAkmJq3GQs1QK7ELijWT311FMqKCjQc889d9Grp3/99df6j//4jxrbevTooX/+53+u1SGfnp6u//qv/9ITTzyhZcuWKT09Xb/4xS/0ve99z7bHcCkSEhJ0zz33KC8vTw8//LC2aZvC6UEZXyfIcczHmBk0StyH7nHc5Y6Lx1gZAADQWliyZHaokHVZmcLOkPr166cHHnhAl112WbRLAwBcAgJ3NJvNmzdryZIluvPOO9WtW7eLOmb27NkaO3asunTpIo/Ho3379ukPf/iD1qxZox//+MdauHCh0tLSahzTr18/Pfnkk03wCBouNzdXjz32mFatWqUnn3xSp3udljPzzJiZcv4ZouEI3S9SDIbudLk3PxZPBQAAscr0h2ReVqJwcqWSk5N11113acqUKXI4+HQ0ALQ0JH2wzcKFC2ttmzx5sjIyMlRcXKxf//rX6tu3r2688caLPue9995b4+vevXvrwQcf1M9+9jN98MEHeuWVV/S3f/u3ja69OTgcDk2ePFlXXXWVnn76ab311lsyhxbKccAv5/42jJlBgxG6XyRC9xYrFrvcY3KOOwAAaHEsp6lw51KZXcplydLUqVN15513qm3bttEuDYhLhqXYmuISS7XANgTusM0LL7xQa9vgwYOVkZGhJ554QkVFRXrkkUfktGEhtvz8fH3wwQf6/PPPG32u5pacnKx/+Id/0JQpU/Twww9rl3ZJmQEZ3/jlKPDLsBgzg0tnhaqCP7sWUyV0bz52hu52iecudwAAgFhgGZbMTuWyupcr7AgpNzdXDzzwgC6//PJolwYAaCQCd9hm7dq19d731VdfqbKyUnPmzKnz/nfffVfvvvuuevToUWen/Lmq3+2vqKhoUK2xoF+/fnrmmWf0zjvv6LnnntMxxzG5siulr/1ynPAy3x0NYle3O6H7hcXiPHe63C8sFsfKMMcdAIDWw5Ils32ldFm5Qu6AUlNTtWDBAk2ePNmW5jQAQPQRuKNZjBkzRr169aq1/cSJE/r444+VlZWlQYMGKT09/aLO99e//lWSlJGRYWudzc3pdGry5MkaP368/vjHP+qll15SeZ/TcpZ65fg6QY7i2BqhgJaB0L35xPNoGbrcLyzmxsokJ0lFxdGuAgAA1MNMDMq6rFShNpXy+/36wS0LNHv2bPn9sdXEAcS92PmTEnGKwB3NYt68eXVu//TTT/Xxxx+rb9+++j//5//UuG/37t3q2rWrXC5Xre3PPfecJGnixIlNUm9z8/l8uu222zRt2jQ9//zzevPNNxUceFLOEz45v2kjo4J/qrg0hO4XEOfz3O1iV+gea2Kxyx0AAMQvyxtSOKdU4dQKORwOzZg2Q7fffrtSU1OjXRoAoAmQ4iFmLV68WOvXr9eAAQPUsWNHud1u7du3Txs3blQ4HNb06dM1YcKEaJdpq3bt2umBBx7QrFmz9PTTT+svf/mLzNRKOQ6eWVg1xMKquHiE7hcQx/PcY220jF1d7rG4eCoAAEB9LJepcJdSmVlVC6KOHDlSd911l7p16xbt0gAATYjAHTFr9OjRKi0t1Z49e7RlyxYFAgElJyfryiuv1LRp0zRq1Khol9hkunbtql//+tf67LPP9OSTT2qndkpZldI3fjkPJbCwKi4aofsFMM/9guK1y90udo2VYY47AADxwzIshTPLpO4VCiukXr166e6779bgwYOjXRoASUYMfdg1hkqBjQzL4jPVQCwzTVOrV6/W008/rYKCArnCHulrnxzHfCysiotmR+guybbQXZI9obtkz0x3mzrd7Qrd7RotY1eXu12Bu12z3O3qcrdrrIxdc9xtCdztmuFu16JtNi7+Zh47Yc95KlvugusAgNhmyZLZ4cyCqM6A0tPTdccdd2jChAlyOPi0MhBtc+fO1bf7jstIGh/tUiKs4tXqlt1BixYtinYpsBEd7kCMczgcuuaaazR69GgtWbJEixYtUkmvIrm6VsrYlSDHacYr4MLodL+AGOt0j7XRMnS5AwAAnJ+ZHJB6linkq1RiYqJuu22Brr/+enm93miXBgBoZgTuQAvh8Xh00003acqUKVq0aJGWLFmi4OUn5Trtk/F1GznK+eeM87NCsTeuInTsuAybOmAdKcmNO0FRkRS0IVQ+IRkJjQ/d3Uclue35ZIISE2w5jeVu5H8rw5BRHmh0Hc6KoOS0qUvMjv/mkj2ftJAks5FvaPm8UmXjf8YyTVll5Y0/jySzvPEd5bH4/AUAgCSZ/pCs3DKF2pbL6XTq+zO/r7lz56pt27bRLg1Afex67Q7Ug4QOaGGSk5N177336vrrr9czzzyj999/X8bQSjkK/HLuTZARtO/j+0BzsMJhW0J383RR40N3t8u+ABYAAABxy3KbCnctldmpakHUcePG6W/+5m/UuXPnaJcGAIgyAneghcrMzNS//uu/avbs2XryySe1VVulTpXSPp+cBxNkhJkRiJYj3kJ3q6zcli53BYP2dLmXlNnS5W4Ew43ucrf8Hlu63BU27etyBwAAuEiW06xaELVrpcIKqV+/frr77rt1+eWXR7s0AECMIHAHWri+ffvqscce01/+8hc9/fTT2qd9UnaltNcr5yGCd7QchO71iMPQPabY9akGO9YSAAAAMctymgpnlMvoVqmwgsrKytKdd96psWPHyjCMaJcH4FLwsh1NjMAdiAOGYWj06NEaMWKE3nvvPb3wwgs6pEMyugZkfeuV85BfhknwjthH6F6PGAvdG4su9/NwOBs/xx0AANjGclgKZ5TJ6F4VtHfq1Enz5s3TxIkT5XIRqQAAauO3AxBHXC6X8vLyNGHCBK1cuVKLFi1SgQpkdKuU9Y1XzsMJMky6LxDbrHBV2NjY4J3QvR42hO4xNVrGDvE2u9/rsWfhVAAAWjHLYSncqUyOnIDCCqhjx476wQ9+oLy8PLntWtgeABCXCNyBOORyuTRt2jRNmjRJy5cv16JFi3RMx+ToHlB4j0fOAoJ3xD47ut0J3ZtOzIyWiaUud8bKAADQ4lmGJbNTuYzcSoUVULsOHXTbbbdp6tSp8ng80S4PQGNZkhFDL9mtGKoF9iFwB+KY2+1Wfn6+Jk+erLfeeksvvviiTuiEHDkBmbu9chT4ZVgE74hdhO51sCN0j7fRMnaIty53AABwSSzDkpleLqNHQCFVqn379pozZ46mT58ur9cb7fIAAC0IgTvQCng8Hl1//fWaOnWqXn/9df3v//6vTuaelDu3UuE9XjkL/HS8I2YRutchRkL3mBktE0td7nZgjjsAAM3GclQF7Y7cqqC9bdu2uvXWHyo/P18+ny/a5QEAWiACd6AV8Xq9mj17tmbMmKE33nhDf/jDH1SoQjlyKhX+xsOMd8Qsu0J3SY0L3mMpdLdDjITutrAjdLejyz1WxsrYMMfdSPDLKiu3qSAAAGJLZEZ7bkAhK6B27drphzcvUH5+vvz+GHmtBqBpMMcFTYzAHWiFfD6fZs+erfz8fL311lv6wx/+UDXjPadS4W+8ch72ywjHUbco4kLMLKYaK6F7DC2i2lgxNVoGAADENcthKpxRXrUYqhVQ2/apuuWWWzR9+nQ62gEAtiBwB1oxr9erWbNmafr06VqxYoVeeuklHbGOyOheKX3rleMQwTtiT0yMmIm30L2R4mq0TKzMcmesDAAAtrKcpsyMchndKxW2gmrfIU233nqrpk6dyox2AICtCNwByOPxKD8/X1OmTNGqVav04osv6rB1WK5uFbL2euU8lCAjRPCO2EHofpY4muceN2JlrAwAAKgK2rPKpa6VCllBdUrvpDlz5igvL08ejyfa5QGIAoOX6mhiBO4AItxut6ZNm6a8vDy9++67WrRokQ5aB6WuFXIU+GTs88mo5GkDsYHQ/SwxEro3Fl3uNrNhjjsAAC2V5Q3L6lIuM6NSYSukzIxM3XbbbZo0aZJcLv6mAQA0HX7LAKjF5XJp8uTJuvbaa7V69Wq98sor2mXtkpFeJvfpBFnfeOUoif4YC4DQ/SwxELrT5X4WutwBAIgKMzEoo3ulgillsmSpR24P3XTTTbr66qsJ2gFU4WU6mhi/bQDUy+Vy6dprr9WECRO0ZcsWLV68WB9//LE0qFTeygSFd7vlKPTKkBHtUtGK2bGYKqH7WaIcutPlfhbmuAMAcFEsWTLbB+TMCSjoK5MkXXHFFbrppps0dOhQGQZ/rwAAmg+BO4ALMgxDQ4cO1dChQ/XNN99o8eLFevfddxXqWyaP6VN4j1uOo34ZJi9kET2N7XYndI8dtoTuAAAg7lmGJbNjuRy5QYUcFZLLpcnXTtbs2bOVm5sb7fIAAK0UgTuAS9K9e3f99Kc/1Q9/+EMtXbpUy5YtU3GPYrkvq1B4r4cFVhFVdoTukhoevMdK6N5Y8TBaJha63GNhrEwj57gbCX5ZZeU2FgQAQONZLlNmZrmMrgGFrIASExN1Q/6tmjVrljp06BDt8gDEOMNipgyaFoE7gAbp0KGD7rjjDt16661asWKFXn31VR22DsvqWiHHkaoFVh0VPMWg+UV9rnsshO6MlqliR+gebYyVAQAgwvSFZGVXyEqvUNgKq1N6J91www2aOnWqEhKiu/g7AADVSMMANEpCQoJmzZql/Px8rVu3Ti+//LJ2WjuljqXyFCXI+tYro8jNnHc0K0J3xUTo3lgxMVomFma5AwDQyplJARndAwoml0qSevfqrRtvvFFjx45lIVQAQMzhNxMAW7hcLo0fP17jxo3T1q1b9corr+jDDz+UBpTJE/ArvNsjxwkWWEXzifpiqoTu8TNapjFiYawMAAAtkCVLZmqlnDlBBb1VC6GOHDlSN910kwYOHMhCqAAaxpJkRruIs/CnQlwicAdgK8MwNHDgQA0cOFD79u3Tq6++qhUrVijUp1wey6vwHo8cR1hgFc0nqoupxkvo3ggxMVqmsVp6l3sj57gDANCcLIclM71cjpygQkaFDLdb0/Om64YbblC3bt2iXR4AABdE4A6gyWRnZ+snP/mJFixYoKVLl2rp0qU6nXtarh4VsvZ55DzslxGIcvcrWgVC90aG7i19tEy0u9wbiznuAIBWwPKEFc4ol5EdUMgKKjk5WTfPvFEzZ85U+/bto10eAAAXjcAdQJNr166d5s+fr1tuuUWrVq3SK6+8ooPWQZldyuQq8kv7PDJOeRg3gyZF6B690D0mRss0VmP+GzJWBgCAOlmyZLUNyOgSUDClXJYsZWVmafbs2crLy5Pf34jXPgBQD8PitTmaFoE7gGbj8/mUn5+vadOm6eOPP9ayZcu0ceNGWf3L5DF9Cu11yXnELyPUgjtREdMI3Vtu6N7qu9wBAIgjlstUOL1czq4hBR0VMgxDV1xxhWbMmKGRI0fK2YjXawAARBuBO4Bm53Q6ddVVV+mqq67SoUOH9MYbb2j58uU65TglK6dMzuM+6YBXRrGbrnfYrnox1YYKF56U1LjFWB2N6NaySssa/RjUmOOPSobH0/DjXQ1/6WFJVd3ijREINu74xgQAjfzvZgUaN4fdakSXvRVq5M8NANDqWbJkJQWlzpUKd6iQaZlKTEnRrCkzlZ+fr8zMzGiXCACALQjcAURVZmam7rrrLs2fP19r167VsmXLtHXrVim1TJ6QT+Fv3XIc88kI05mK2NKYbnmzvLxRobvhdDYudHc6GxX+WoFA40J3AADQalgOU2bHCjm6hRR0lUuSLu9/ufLz8zVu3Dh5eE0BoLkxUQZNjMAdQEzweDyaMGGCJkyYoD179uj111/XqlWrVNajWM7LymQUeGUc9MlR1ohxGIDNqkPvhgTvrTZ0D4Ua1eUu02pcl7vH3bgu93C44V3ujfyZAwDQkpgJIVmZ5bIyAgpbISUkJGjKxOuUn5+v3NzcaJcHAECTIXAHEHNycnJ0//33684779R7772n119/XbusXVJ6mTwVfpl73XIc98mwGDeD2NDQbnezvKrLq6HBO6F7AzU2dI8Sw+Np9FgZAACakmVYMjtUyNE1qKCv6nVOj9weys/P17XXXquEhIatBQMAQEtC4A4gZiUkJGjGjBmaPn26duzYoWXLlun9999XqFe5XL3KZR10y3nYL6OCpzJEX7S63au/X4OD99YaujdGC+1yNxxGo+a4AwBQH8sbUjijQkbngEIKyu12a9LVk5Sfn69+/frJMGiUARBDLF4To2mRUgGIeYZhqG/fvurbt6/uvfderVixQq+//roO6IDCWWVyl/hl7fPIUehlkVVEXYvsdm+NoTtd7gAANIolS2b7ShnZAQUTq17HZGVlacaMGZoyZYpSUlKiXCEAANFB4A6gRUlOTtaNN96oG264QVu2bNGyZcv04YcfKty3XG7Lo/A+t5xH/DICDew+BWwQzW73RoXuUoOD91YXurfQLveGMlxuWaGW9wYFAMB+ljuscKdyObKDChkBOZ1OjR45Wvn5+Ro2bJgcDke0SwQAIKoI3AG0SA6HQ8OGDdOwYcN07Ngxvf3223rzzTd1zDimcNcyuYt9sg6e6Xo36XpHdDSm270ljpghdAcAID5ZhiUztVJGZkCh5ApZstSuQwdNmzZN06ZNU8eOHaNdIgBcFEOSEUMTZUgr4hOBO4AWLy0tTfPmzdOcOXP00Ucf6e2339aGDRsUTiqXUy7piFuOAp+MYjcjZ9DsGtrt3lJHzEQtdG9pGvEzbsxYGea4AwAuliVLVlJQZqdKKT2gsEJyOp363hXf05QpU3TVVVfJ1Zp+dwMAcJH47QggbrhcLo0ePVqjR49WYWGh3nvvPa1atUq7tEvh9HK5w16FD7jkPOqXUUlXKppXtLrdW03oTpc7AAC2sLxhhTuWy9E5pKCzUpKUm5urvLw8TZgwQampqVGuEACA2EbgDiAutW/fXrNnz9bs2bO1e/durVy5Uu+++64KnYUKdy2Vu9Qn65BHjuNeGWHmTKJ5RKPbvVEjZgjdm1aUutwBADiX5TSrRsZkBRVsU/W6I7ldO117bb7y8vLUo0ePKFcIAHaxJCuWPvEZS7XALgTuAOJebm6u7rnnHt15553atGmTVq5cqQ8//FDBNkVyXOaQcdwrR4FXxikPI2fQLFpUt3sjFlNtNaF7C+tyb+hYGRZOBYD4YsmSlRKQ1alSZlpApsJyu90aP2q88vLyNHz4cEbGAADQAPz2BNBquFwujRgxQiNGjFBxcbFWr16tlStX6osvvlC4Q7lcpkfWQZccR/1ylPP0iKbVmG73ljRipsWF7g3V0NC9EV3uAAA0hOkPyexYLiMrpJCj6tNS/fr1U15enq6++molJSVFuUIAAFo2EiUArVJSUpJmzJihGTNm6MCBA1q1apVWrVqlAkeBwl3K5K7wyjrokeOYT0aIkTNoOg3pdm9pI2ZaVOgejdEyDcRYGQDAxbJcpswOFTI6BxX0VUiS0tPTNXHiROXl5alLly5RrhAAmoklGbE0xYUP2cclAncArV7nzp21YMEC3X777dq6datWrlyp1atXq9xXLCO3RI6TXhmHvVXXFr8NYb8W1e1O6F4/utwBADHEMiyZ7c6MjGlfKUum/H6/rhmbp7y8PA0aNEgOB40lAADYjcAdaCUOHDigP/zhD/rkk09UWFgov9+vrKwsjRs3TjfddFOt/Y8ePaqFCxdqw4YNKioqUmpqqkaNGqXbb7+9zo+Znjx5Uo899pg2btyohIQETZs2TbfeequcLWiuscPh0KBBgzRo0CDdd999WrdunVauXKnNmzfLalchp+WSDrurut6L3cx7h+2i0e0e96F7nGtol3tD57gDAGKbJUtWYkhmWoWMzKBCRlCGYWjIkCHKy8vT6NGjlZCQEO0yASC6YmnRVGKFuMRfr0Ar8MEHH+jf/u3f5HQ6NXLkSGVkZKikpET79+/X2rVrawXuBw8e1N13362TJ09q1KhRys7O1o4dO/Taa69p48aNeuKJJ5SSkhLZ37Is/cu//Iv27duniRMnqri4WC+88IJCoZDmz5/f3A/XFn6/XxMnTtTEiRN19OhRvfPOO1q5cqX2GfsUziyXK+yRVeCqCt9LXITvsE1zd7s3eMRMSwnd6XIHAMS5SMjeoUJGRkghZ9UbsV26dFFeXp4mTpyo9PT0KFcJAEDrQeAOxLk9e/bo3/7t39S1a1f953/+p1JTU2vcHwqFah3z8MMP6+TJk7rvvvs0a9asyPbHH39cr776qp599ln95Cc/iWw/cOCAtm3bpueff165ubmSpF69eunll19usYH72Tp27Kg5c+bo1ltv1ZdffqnVq1dr9erVKnAWKJxVJlfYLavATfgOWzW0271ZR8xU13eJxxG6t1yGyy0r1DJm3ANAPKsvZE9PT9e4ceM0fvx49enTR4bB61IAAJobgTsQ55555hkFg0H97Gc/qxW2S5LrnPDq4MGD2rRpkzp16qSZM2fWuG/+/Pl688039c477+iee+6R/0ywFz4Ttp09PsbpdEa2xwvDMNS7d2/17t1bd911l3bu3Kk1a9YQvqPJNKTbvaWMmIn70L0hGtjlzuKpANA61AzZgwo5q34/EbIDwCWKoYkyiE8E7kAcKy0t1ccff6wePXqoW7du2r59u7Zt2ybTNNW1a1cNHz5cbre7xjGffvqpJGn48OG1FlFKSEhQ//79tWnTJm3fvl1Dhw6VJGVnZ6tXr1768Y9/rGuuuUalpaV677339P3vf795HmgUGIahPn36qE+fPvWG786QWzpC+I7Ga85u9+YcMdNiQveGaAFd7sxxB4DYVyNk7xRUyEXIDgBArCNwB+LYl19+KdM01alTJ/3iF7/Q6tWra9yfnp6uBx98UH369Ils27dvn6SqmY916dy5szZt2qT9+/dHAneHw6Ff//rXeuyxx7RixQr5/X7dfPPN+sEPftBEjyy21BW+r169WmvWrFGBi/Ad9mgR3e7xGrrT5Q4AaEZnh+zqFFSYkB0AcI41a9bos88+09dff62vv/5aZWVluvbaa/Wzn/2s3mO2bdumRYsWafv27aqsrFTnzp01ZcoUzZo1q8bEgrOtX79er7zyinbt2iXTNNWtWzddd911mjx5cr3fZ8WKFVq6dKn27t0rh8Ohyy67TDfddJNGjhxZ5/7hcFh/+tOftHz5ch04cEBer1d9+/bV3Llzdfnll1/aDyZGELgDcezkyZOSqp4g27Rpo5///Oe68sorVVpaqqVLl+rll1/WP/7jP+rFF19U27ZtJVV1xUtSYmJinees3l5SUlJje1pamh588MEmeiQtx9nh+49+9CPCd9iuubvdCd3PaEjo3gK63AEAsYGQHQCaj2G1/E95Llq0SF9//bX8fr/S0tIizZP1WbdunX7+85/L4/Fo/PjxSk5O1vr16/X444/riy++qDPP+dOf/qRHH31UKSkpuvbaa+V2u7VmzRr93//7f7Vnzx7dc889tY554okntHjxYqWlpWnatGkKBoN6//339dOf/rTWOoGSZFmWfvnLX2rNmjXKzs7W9ddfr6KiIq1evVp/93d/pwcffFCjR49u3A8rCgjcgRZu4cKFtbZNnjxZGRkZss78EgmHw7r//vt1zTXXSJKSkpL0ox/9SAcPHtTatWv11ltvac6cOc1ad2tA+I6m0pA56+Fz3iRrDobLfeGdzrAqKhv4XSobNndekiyzgd8TAIDGI2QHADTUvffeq7S0NHXu3FmfffaZ7rvvvnr3LS0t1UMPPSSHw6FHH31UvXv3liQtWLBAP/7xj7VmzRr9+c9/jmRGknT48GH97ne/U3Jysp555hllZGRIkubNm6e/+Zu/0eLFizV27Fj1798/csy2bdu0ePFiZWVl6ZlnnlFSUpIk6eabb9Ydd9yh3/3udxo5cmTkXJL05z//WWvWrFH//v31yCOPyOv1SpLy8/N177336qGHHtLQoUOVkJBg3w+vGRC4Ay3cCy+8UGvb4MGDlZGREelGNwxDo0aNqrXfmDFjtHbtWu3YsSOyrU2bNpJqd7BXq95eXwc86nZu+L5jxw6tWbOm7vD9uFdGsZvwHS2eFQpeUujeUA1e7NVwELoDAJqVJUtWUlBmamWtkH3s2LG6+uqrCdkBABc0ZMiQi953zZo1OnXqlCZNmhQJ2yXJ6/Xqhz/8oe6//34tW7asRuC+fPlyBQIB3XLLLTUC8qSkJM2ZM0f/8R//oddff71G4P7GG29Ikm677bZI2C5JGRkZmjlzpn7/+99rxYoVmj9/fuS+ZcuWSZJ++MMfRsJ2SerTp4+uvvpqrVq1SmvWrNGUKVMu+vHGAgJ3oIVbu3ZtvfdlZ2dLkjweT40nrmrVT4CVlZW1jtm/f3+d5zxw4ICk+me848IMw1Dfvn3Vt2/fesN3h+mUjrnlKPTKccojI+y48ImBGEToDgBo7SynKbNtQGb7SiktJNMRkkTIDgBRYUmKpZEyzVDKli1bJElXXnllrfsGDhwon8+nL774QoFAQJ4zoz6rj7niiitqHVN9nup9zv0+9R3z+9//Xlu2bIkE7pWVlfrrX/8qn8+nAQMG1HnMqlWrtGXLFgJ3ALEjMzNTmZmZOnTokA4ePKisrKwa9+/Zs0eSarxbOXjwYEnSpk2bZJqmHI7vgt6ysjJ98cUX8vl86tu3bzM8gvhXV/j+4Ycfav369drt2C0zvUKGDBmn3DJOeOUs9Mio5KkbLYsVqurea+rgndAdABArLG9YZvtKmamVstoGZZ1JVHJycjRy5EiNGjWKkB0AIEk6ePCg5s6dW2v7okWLbDl/dUNlXY2TLpdLGRkZ+uabb3To0CF169ZNkiIz4es6pkOHDvL7/Tp27JgqKirk8/lUXl6uY8eOye/3q0OHDrWO6dy5c41aJOnQoUMKh8PKzs6Wq461ueo6pqUgtQHi3PXXX6/HH39cTz31lH7xi19EnsSOHj2qP/7xj5JU42NDWVlZGj58uDZt2qSlS5fWWNBi4cKFKi8v14wZM+RvwAKMOL+zw/c77rhDR44c0fr167V+/Xpt2bJFwbbFCudKjgq3jONV3e9GEaNn0HI0R7c7oTsAIBoio2LaV8pKC8r0Vb3Z7Ha7NXjwcI0cOVIjRoyo0egCAEBzqB4NXD1C+Fx1jRYuLS294DHl5eUqKSmRz+eL7F/f+OHq7Wd/jwuNLL7QyONYRuAOxLnrr79eGzZs0AcffKAFCxZoyJAhKi8v17p161RcXKzZs2dr0KBBNY554IEHdPfdd+vRRx/V5s2b1bVrV23fvl2ffvqpunTpojvuuCM6D6aVSU9P18yZMzVz5kyVlZVp8+bNWr9+vT766CMV+goV7nxm9MyZ8N1xktEziH3N0e1uOJ1V3+tSg3dCdwDAJagxKqZDUKaz6vdOu3btNGLECI0cOVLDhg1rcQu9AUDci7GX/FlZWbZ1syM2ELgDcc7lcuk3v/mNXnvtNa1cuVJvvvmmnE6nevTooZkzZ2rChAm1jqleUXrhwoXasGGDPv74Y6Wmpur73/++br/99hqLX6B5JCQkaPTo0Ro9erRM09SXX34Z6X7f5dgls2OFZBlynHbLKPTIWeiVUcFTPGJXzHa7E7oDAM7D8oYUTg3Ial8pKyUoy6gaFdOjRw+NHDlSI0eOVO/evWuMZQQAIJqqO8iru9DPVVd3eps2bXT69GmVlpYqJSXlgsdcqBu9rm72urreL1RXS0EaA7QCbrdbN998s26++eaLPiY9PV3/9E//1IRVoaEcDof69OmjPn36aMGCBTp69Kg++ugjrV+/Xps3b1agbYnCOSVyVLhkHPcwegYxq7m63QndAQANZcmSlXxmVExqQKa/asFTj8ejIUOujIyKSU9Pj3KlAADUrUuXLtq5c6f279+vXr161bgvFArp8OHDcjqdyszMjGzPzs7Wtm3btH///lqB+/Hjx1VeXq60tDT5fD5Jkt/vV1pamo4dO6bjx4/XmuN+4MCBSC3VMjMz5XQ6dfjwYYVCoVpz3Os6pqUgcAeAFq5jx47Kz89Xfn6+KioqIqNn1q9frxO+Ewp3LpMRdsg44WH0DGJSU3e7E7oDAC6F5TRltjszKib1u1Ex7du3j3SxDx06lDWNAKCFMiwr2iU0qyFDhujdd9/Vhg0bak05+Pzzz1VRUaGBAwfK4/HUOGbbtm3auHGj+vfvX+OYDRs2RPY59/usWrVKGzdu1JQpUy54jNfrVb9+/bR161Zt3bq11vnq+z4tAYE7AMQRn8+nq666SldddZUsy9JXX30VCd+//PLLM6NnJKPILccpjxynPDKK6X5H9DV1t3uD5roTugNAqxBZ8LRtQGbbgKzkkHRmVEzPnj0jIXvPnj0ZFQMAaHHGjRunp556Su+//75mzZql3r17S5IqKyv13HPPSZKuu+66GsdMnjxZL7/8spYsWaLJkydHFv0uLi7WSy+9JEnKz8+vccyMGTO0atUqvfjiixo9enRkHPHhw4e1dOlSeTweTZ48ucYx1113nbZu3arnnntOjzzyiLxeryRpx44dev/999W2bVuNHTvW3h9IMzAsq5W9rQMArdTx48f10Ucf6cMPP9Snn36q8vJySZJhOmScrArgjVMeGeVOAnhEVVPPdr/kbndCdwCIK5YsWf6wrOqAvV1QlqPqud7v92vw4MGRUTFpaWlRrhYAYJe5c+dq755j8lV+L9qlRFR4P1bXnLRLXjR13bp1WrdunSSpsLBQGzduVGZmpgYMGCBJSklJ0T333FNj/5///OfyeDy6+uqrlZycrA8//FD79u3TuHHj9Mtf/lKGUTMH+NOf/qRHH31UKSkpGj9+vNxut9asWaNjx47pxhtvrHH+ao8//rheffVVpaWlady4cQoGg1q9erVOnz6t++67T7Nmzaqxv2VZ+sUvfqE1a9YoOztbV111lU6fPq3Vq1crEAjowQcf1OjRoy/pZxMLCNwBoBUKhULavn27PvnkE33yySfasWOHwmdCSCPgjATwjlMeGUFnlKtFa9WUwTuhOwC0LpY7/F0He7ugLE/V7wGn06nevXtr2LBhGjZsmPr27Su3u2nf+AUAREckcK+4MtqlRFT4NjQocF+4cKFeeOGFeu/v1KmTXn311Rrbtm3bpkWLFumvf/2rAoGAsrKyNHXqVM2aNUtOZ91/93/44Yd65ZVX9NVXX8myLHXr1k0zZ86s1al+thUrVmjp0qX69ttvZRiGevbsqZtvvlkjR46sc/9QKKQlS5bo7bff1sGDB+XxeNSvXz/NnTtXl19++YV/GDGIwB0AoNLSUn322WeRAH7v3r2R+4xSV6T73XHaLcPko9RoPoTuAICGsByWrORA1Sz2tgFZbUKR+7KzszVs2DANHTpUgwcPVmJiYhQrBQA0l3gK3BHbmOEOAFCbNm0is98l6dixY/rkk0+0efNmffLJJypsUyhllUmWIaPIxfx3NJumnO1+yXPdmekOADHLkiUrMSSzXWWtOezt27fX0KFDNWzYMA0ZMkTp6elRrhYAAMQzAncAQC1paWmaPHmyJk+eLMuy9M0330QC+M8++0zlKaUKdy2VEXbIOMX8dzQ9KxRs0gVVCd0BoGWxZMnynZnD3i4gq21QlrPq+dnn82ngwCEaPny4hg4dqpycnFpzaQEArZUlxdSwj1iqBXYhcAcAnJdhGMrJyVFOTo5mz56tYDCo7du3a/Pmzdq0aZN27typUGpl1b7Mf0cTaupud0J3AIhtltuUmVL53Rx2b9XztsPhUN8+fSJd7P369WMOOwAAiBoCdwDAJXG73Ro4cKAGDhyo+fPnq6SkRJ999lkkgN+3b5/M9ApJklHmlFHkkaPILcdpt1RJBzwar6m63QndASB2WLIkrykzOSAzJSgrOSAr4bvn6Ozs7EjAPmjQICUlJUWxWgAAgO8QuAMAGiUxMVGjRo3SqFGjJElHjx7V5s2btXnzZm3dulUFBQUyO5VLkoyAQ8ZptxxFHhlFbhmlLgJ4NEhTdbtf0lx3QncAsI0lS1abkKzkoMzkgKyUoCzPd8+x6enpuvzyyyOLnTKHHQDQIJakWHoJz0SZuETgDgCwVceOHSPz3yXpyJEj2rZtm7Zu3arPP/tc3377rUJpVSNoFDYiAbyjyF21CKtFAI+LF/Vud0J3AGgQy7BkJQVlJld1r5vJQcn1XerQrVs3DRw4UAMGDNCAAQMI2AEAQItB4A4AaFLp6elKT0/XhAkTJEnFxcX64osvqgL4zz/Xzh07FWpforAkmZJRUjV+pnoUjRF2RLV+xL6m7HYndAcAe1hOs0a4biUFpTO/4p1Op/r17hsJ2Pv376/k5OToFgwAiFtGTC2ainhE4A4AaFZJSUkaMWKERowYIUmqrKzUzp07tW3bNn3++efa+vlWlSeXSSqTpKqxM0XuM3PgPTICLMSKujVFtzuhOwA0jOUJV81fTw5WjYdJCKl6ipzf59flAwZr4MCBuvzyy9WnTx95vd7oFgwAAGATAncAQFR5vd7IIqxz5sxROBzWN998o61bt2rr1q369NPPdPJkocyMqjnwqnB8N4KmyFO1MCtz4HFGdbc7AKD5WLJk+cOyUqoCdjM5IPm+exOyXdt2GjR4UGQ8TE5OjpxO3kAHAADxicAdABBTnE6nevTooR49euj666+XZVk6fPhwZA78p59+pgMH9svsWFF1QMioCt9LqmbAO0pcMoL8EQ8AQFOx3KbMxKqxMFZiUGZSUHJ/9/H8rMwsDR4yWJdffrkGDhyojIwMGQZvjgMAYgQjZdDECNwBADHNMAxlZmYqMzNTkyZNkiSdOnUqEsBv27ZNX375lcLtS787qMIhR0lVCO8odlWF8cyCBwDgkllOU1ZiKBKwm4nBGt3rTodTvXv2inSvDxgwQG3bto1ewQAAAFFG4A4AaHHatm2r0aNHa/To0ZKkQCCgPXv2aOfOndq5c6d27NihvXv3KtyhUtXTt40yZ1XwXh3Cl7plmHTbAQBQzXJYstoEZSaGIt3rVsJ361gYhqHu3bqpd+/ekUtubq48Hk8UqwYAAIgtBO4AgBbP4/FE/vCvVlZWpl27dkVC+J07d+rgwYNSx4qqEN46syDr2V3wZS4ZFiE8ACD+WYYlKyF0ZiRM6Ey4HpLO+kBYZmZmjXC9Z8+eSkhIiF7RAADYgZEyaGIE7gCAuJSQkBBZjLVaUVFRjQB+586dOn78uMxOZ3YIS0bpmTnwxWfmwpezKCsAoGWLLGoaGQsTktUmKJ215ElqamokWO/Tp4969eqllJSU6BUNAADQQhG4AwBajeTkZF1xxRW64oorItuOHz+uHTt21Ajhi4uLJZVX7RAyZJS4qmbCF7vlKHVJFYTwAIDYZMmSvOGqUP2s7nW5vuvmS0pKUq9eA9WnT59IyJ6WlhbFqgEAAOIHgTsAoFXr0KFDjXnwlmXp0KFDkVnwO3fu1K5du1ReXvbdQWGjahxNqUuOMlfkNguzAgCak+U0ZbUJyWoTkplQdW0lhGqE6z6fTz17Xl5jNExWVpYMgzeOAQCtFCNl0MQI3AEAOIthGMrKylJWVpauueYaSVI4HNbevXu1c+dO7d69O3I5ffq0zLMPrnCcFcC7q64ZSQMAaKTISJgz4brVJigzIST5avwWUkpKinJycpSbm6vc3Fz17t1bXbt2lcvFn30AAADNhVdeAABcgNPpVE5OjnJyciLbLMtSYWFhJHzfs2ePdu/erW+//Vah0Hfd8G63W8GTVlX4XuaSo7obPuis61sBAFo5y23KSgjKjITrIbnbOxQMBCL7uFwude/aPRKs5+bmKicnR6mpqXSuAwAARBmBOwAADWAYhlJTU5WamlpjJnwoFNL+/ftrdMLv3r1bx44dkySFq3cMOGoG8GcCecMiKAGA1sAyLFkJoVojYeSp2bWelpZWo2s9NzdXXbp0kdvtjlLlAAC0YJZU82PKUcZ0m7hE4A4AgI1cLpe6d++u7t27a8KECZHtRUVFkS74s68rKr7rhnc6nTKLVTOAL3fJqHASxANAC2UZlixfWJY/JCshLKtNUFZCSI7kqpFl1Xw+n7p371WjYz0nJ0cpKSlRrB4AAACXisAdAIBmkJycrEGDBmnQoEGRbaZp6tChQzU64ffs2aODBw9KaZWR/ZxOp8wSVc2DL3fJKDtzXe6Ugg5mxANAlFmyJLdZNWfdH6q6Tqi6diTWDNYlKSsrK9K1Xn2dmZkpp5NxYwAAAC0dgTsAAFHicDjUuXNnde7cWWPHjo1sLysr0zfffKO9e/dq37592r9/v/bt26eDBw/WmA8vSQoZ3wXx516bBPEAYCfLYcny1QzUqwN2uWp+JtzlcikzM0vZ2dnq0qWLsrOz1bVrV+Xk5CghISFKjwAAABgWc1zQtAjcAQCIMQkJCerXr5/69etXY3soFFJBQUEkgK8O4/fv368TJ07UPlGFIxLAO84K4lVJVzwA1MeSJXnN7zrV/SGZZ67lNXXu02f79u1rhOrVtzt16iSXiz+3AAAAWhteAQIA0EK4XK5IR/yIESNq3FdaWhoJ4s++3r9/vyory2uuCxSWjIqao2kiI2rCBmE8gFbBcp4zAuasa50z2cXr9apz5+41gvUuXbqoS5cuSkxMjM4DAAAAQEwicAcAIA60adNGvXv3Vu/evWtsN01Tx44di3TEHzhwIBLGHzlyRKZVWfNEIUNGpbNqodZKh1RRffvMddjRjI8KABrOcppVi5V6w7J84aqu9bO/dtX+OHl6enqNQL26Yz0tLU0OB89/AAC0fJYUUyNlYqkW2IXAHQCAOOZwOJSenq709HQNHz68xn2VlZWRAH7fvn06fPiwCgoKdPjwYR09erTWIn+SlJiYqIyMDO3+eJ+MCqdU6ZRR4fgulCeQB9BMLKcZCc8tryn5qm7nfi9bhw8fVklJSa1jnE6n0jt2VKdOnZSRkaGMjIxIsN65c2f5fL4oPBIAAADEEwJ3AABaKa/Xq9zcXOXm5ta6LxQK6cSJEzVC+IKCgshto2NI4XBlreOSkpLUqVOnGmFW9dd39v5HAnkAF81ymnrmy4fqfB4qKChQUVFRrWMcDoeKi4t12WWXRZ57qp+POnXqpA4dOjBXHQAAAE2KV5sA0IocPnxYN9544wX3e+yxxzRw4MDI17Nnz1ZBQUGd+7Zv317Lli2rtf3QoUN69NFHtXXrVrVr10433nij8vPzG1w7mpfL5Yp0xtclFArp+PHj9QZhu3fvlmmaNQ8aISUnJ0eCr/T0dKWmpkYuHTp0UIcOHZSQkCDD+G6O/LWOG5ryoQJoBu+af4zctixLZWVlOn78uE6cOBG5PnHihI4cORJ5Hjl9+rTmzZtX4zwOh0NpaWnq3r17nW/spaWlEagDAIDzMxnjgqbFq1EAaEUSExNrhRfVjh49quXLlyslJUV9+vSp89jvf//7tbb7/f5a2yoqKvT3f//3CofDmjZtmgoKCvTwww/L4/Fo8uTJjX4ciD6XyxUJuOoSCoV09OjRGiH84cOHI8H8V199Jaue2Yk+n69GCD/j0THq0KFDjW2pqalq06ZNjWD+bIT0QNM5Ozw/2/mC9H/913+NbCssLFR5eXmd5zAMQ2lpaeratWuNIL36dseOHQnUAQAAENN4tQoArUhSUpLmz59f531PP/20JGnSpEnyeDy17k9MTKz32HNt3bpVx44d02uvvaa2bdtKkh5//HG99dZbBO6thMvlUmZmpjIzM+u8PxgMRoK448ePR0K4s4O6vXv3auvWrfV+j3OD+bOvf7Ppp5GvzxfMn4ugHq1JfcH5uc4O0o8fP6533nmnxr/fs68rKirqPU9KSopSU1PVv3//Gm+inf0Jl9TUVLndbrseIgAAANDsCNwBAAqFQlqxYoUkafr06Y0+X/UokbNDTqfTWXvECFott9t93g75aoFAQIWFhbW6Zc8O6i8lmE9JSVFKSoqSk5Nr3U5OTtYfC59VYmLiJXXQEtIjFlxseC5J4XBYxcXF2rt3r4qKinT69Oka19W3T506Ffn3djFB+oABAyLhefv27Wu8Eda+ffs638wFAABoVpakej5pGxUxVArsQ+AOANBf/vIXFRYWauDAgeratWud+wQCAb3zzjs6cuSIfD6fcnNzNXDgQDmdzlr7DhgwQO3atdOdd96pMWPG6OjRo1qzZo3uv//+pn4oiDMej+eigvlgMBjpkK8rmD9x4oT27t2r4uLii3rjJzExsc5g/uxwvvr6pcOPKyUlRT6f76IfFyE9zudSwvPKykqdPn1aX3/9tU6fPl1veH72dUlJSb0jnaoZhqHk5OR6g/TqMJ0gHQAAAKiJwB0AoDfffFOSNGPGjHr3KSws1K9+9asa2zIyMvRP//RPGjRoUI3tCQkJ+q//+i/99re/1RtvvKG2bdvq3nvvZdFUNBm3233eRV6rmaapkpKSGmHkqVOn6g0mjx8/rt27dysQCFywBq/XW2cgn5CQoISEBPn9/sjtBz98IHL77Pu8Xu95x98Q1Lcs5wvOLctSZWWlysvLVVZWFrmUl5fr/fffj9w++766/h+trKy8YB0ejyfy/2THjh1r/T967v+3KSkpSkxMlMPhsPPHAQAAEBtiqcMdccmwLtTeAgCIa4cPH9ZNN92k5ORk/elPf6qzU/H555/XgAED1L17dyUkJOjQoUNasmSJ3nzzTXk8Hv3ud79Tjx49olA90DwqKiouqnv47O0lJSWX/H0cDkckfD/3+tzbdd13dnDvdrvlcrk0s93tkikZurg59qjJkiU5pKUnn1coFFIwGFRlZWUkEK8OxesKzuu7XX0Jh8OXXE9iYmKtkDw5OVlt27at91MYPp/votcxAAAAiFdz587V3l1HlHB8YLRLiSjr8Lm6XpauRYsWRbsU2IgOdwCIMwsXLqy1bfLkycrIyKhz/7feekuWZdW7WKok3X777TW+zsnJ0U9+8hP5/X4tXrxYzz//vP793/+98cUDMcrn88nn812wg/5soVBIxcXFdYau9YWw595XWFgY+boh4awkaWTVlcPhkNvtjgTx1bfP3ubxeCL3bVr+mWRKsozItWFJMo2qS/VtSzKqv44492vV8/W5IbBVe1O9X1vffSvHmePOua7aXhWYV18PnzJIwWBQoVBIgUAgEqJXX879unoE0dSpU8/3U66X0+ms8cZIhw4dar1pUtebK3V9nZSUdEnrCwAAAABofrxiB4A488ILL9TaNnjw4DoD91AopOXLl0s6/ziZ+uTn52vx4sX6/PPPL/lYIN65XC61a9dO7dq1a/S5LMtSIBCos5v63CC/rKysVoB8oWC5vLy81r5Gx1DDQ/4Y5XQ69fnnn9d6c8HtdqtNmzY1vj57n3P3dbvd5/2kwdm3PR4P3eUAAACxhGEfaGIE7gAQZ9auXXvR+65fv14nTpzQoEGDlJ2dfcnfq23btpKqxm0AaDqGYcjr9crr9Ub+3TWHcDisUChUK6yvqxM8FApJqnpzoPpy7td1bav+2jCMGpfqx32+bZIiQXh9wXj1fS6Xq85FngEAAADATgTuANCKVS+WOn369AYdv337dkmqd1wNgJbN6XTK6XTK6/VGuxQAAAAAaBEI3AGglSooKNCmTZuUkpKisWPH1rvft99+q/T0dPn9/hrbDx8+rEceeUSSNHHixCatFQAAAAAAW5iMlEHTInAHgFbqrbfekmma510sVZLef/99LV68WAMHDlSnTp3k9/t16NAhffTRRwoEAvre976nm266qRkrBwAAAAAAiE0E7gDQCoXD4YteLHXIkCHav3+/du3apS+++ELl5eVKTEzUgAEDNHHiRE2aNIkFAQEAAAAAAETgDgCtktPp1JIlSy5q30GDBmnQoEFNWxAAAAAAAE3Okiwz2kWchfE28cgR7QIAAAAAAAAAAIgHBO4AAAAAAAAAANiAkTIAAAC4KAsXLtQLL7xQa7vb7VZycrJycnI0fvx45eXlyeVq/MvM3/3ud3r55ZclSRMmTNDPf/7zRp8TAAAArZglyYqhMS4xVArsQ+AOAACAS9a+ffvI7bKyMp04cUInTpzQpk2b9MYbb+j//b//p6SkpAafPxQKadWqVZGv165dq+Li4kadEwAAAACaGiNlAAAAcMmWLVsWubzzzjv64x//qOnTp0uSdu7cqUcffbRR5//oo49UWFio7t27a8iQIQoEAnrvvffsKB0AAAAAmgyBOwAAABotPT1d//AP/6AhQ4ZIklavXq2ysrIGn+/tt9+WJE2cOFGTJk2qsQ0AAABoMNOKnQviEoE7AAAAbHPllVdKkoLBoA4cONCgcxw/flwbNmyQw+HQxIkTNXbsWPn9fn311Vf6+uuv7SwXAAAAAGxF4A4AAADbWGctQmWaZoPOsXLlSoXDYQ0ZMkRpaWlKSEjQmDFjJNHlDgAAACC2EbgDAADANhs3bpQkGYahjIyMBp1j+fLlkqS8vLzIturb7777rgKBQCOrBAAAQKtlWbFzQVwicAcAAECjHTlyRA899JC2bNkiSRo5cqRSUlIu+TyfffaZDhw4UKOrXZKGDBmijh07qqioSOvWrbOtbgAAAACwkyvaBQAAAKDlue666yK3y8rKVFFREfk6OztbDzzwQIPOWz0yZuzYsfL5fJHthmFo0qRJevHFF/X222/rmmuuaVjhAAAAANCE6HAHAADAJSssLIxczg7bJ02apP/5n/9RWlraJZ+ztLRUH3zwQeQ856oeK7NlyxYdOXKkgZUDAACgVYv2GBlGysQ9AncAAABcsrVr12rt2rX64IMPtGTJEv393/+9EhMTtWrVKi1ZsqRB5/zzn/+siooKpaena/DgwbXu79Kli/r16yfTNCNz3gEAAAAgljBSBgAAAA1mGIY6dOig/Px8ZWdn68c//rGeeuop9ezZU0OHDr2kc1WPkzly5IjGjh173n1XrFihefPmyTCMBtcOAAAAAHajwx0AAAC2GDx4sCZOnCjLsvToo48qHA5f9LF79uzRjh07Lnr/goICffLJJw0pEwAAAK1WDIyRqTFShrEy8YgOdwAAANhm3rx5eu+99/Ttt99q5cqVmjp16kUdV93d3rNnT/32t789777//u//rnXr1mn58uUaPnx4o2sGAAAAALvQ4Q4AAADbZGVlafz48ZKk3//+9wqFQhc8JhgM6p133pEkjR8/XgkJCee9XH311ZKkdevWqaioqOkeDAAAAOKLJck0Y+dCg3tcInAHAACArebMmSPDMFRQUBDpXJek2bNna8yYMfq7v/u7Gvv/5S9/0enTpyUpEtafz8iRI+X1ehUIBPTuu+9Gtn/66acaM2aMxowZoxUrVtj0aAAAAADg4hG4AwAAwFY5OTm66qqrJEmLFi1SIBA47/7VoXyvXr2UmZl5wfP7/X5deeWVkqTly5c3sloAAAAAsA+BOwAAAGx32223SZKOHTumN954o979jhw5Eln89GK626tV77tr1y59+eWXjagUAAAArUq0F0qtsWgq4pFhWfzXBQAAAAAAABC/5s6dq71fHlbC3suiXUpEWddd6torQ4sWLYp2KbARHe4AAAAAAAAAANjAFe0CAAAAAAAAAKBZMOwDTYwOdwAAAAAAAAAAbEDgDgAAAAAAAACADRgpAwAAAAAAAKB1MBkpg6ZFhzsAAAAAAAAAADYgcAcAAAAAAAAAwAaMlAEAAAAAAAAQ/yxLlmVGu4rvWIy3iUd0uAMAAAAAAAAAYAMCdwAAAAAAAAAAbMBIGQAAAAAAAACtg8kYFzQtOtwBAAAAAAAAALABgTsAAAAAAAAAADZgpAwAAAAAAACA1sFipAyaFh3uAAAAAAAAAADYgMAdAAAAAAAAAAAbMFIGAAAAAAAAQOtgmtGuAHGODncAAAAAAAAAAGxA4A4AAAAAAAAAgA0YKQMAAAAAAAAg/llW1SVWxFItsA0d7gAAAAAAAAAA2IAOdwAAAAAAAACtgsWiqWhidLgDAAAAAAAAAGADAncAAAAAAAAAAGzASBkAAAAAAAAArQMLlaKJ0eEOAAAAAAAAAIANCNwBAAAAAAAAALABI2UAAAAAAAAAtA4mI2XQtOhwBwAAAAAAAADABgTuAAAAAAAAAADYgJEyAAAAAAAAAOKfZUmWGe0qvmMx3iYe0eEOAAAAAAAAAIANCNwBAAAAAAAAALABI2UAAAAAAAAAtAqWyRgXNC063AEAAAAAAAAAsAGBOwAAAAAAAAAANmCkDAAAAAAAAIDWwTKjXQHiHB3uAAAAAAAAAADYgMAdAAAAAAAAAAAbMFIGAAAAAAAAQKtgmVa0S7DN0aNHtXDhQm3YsEFFRUVKTU3VqFGjdPvttyspKSna5bVaBO4AAAAAAAAA0IIcPHhQd999t06ePKlRo0YpOztbO3bs0GuvvaaNGzfqiSeeUEpKSrTLbJUI3AEAAAAAAACgBXn44Yd18uRJ3XfffZo1a1Zk++OPP65XX31Vzz77rH7yk59EscLWixnuAAAAAAAAAOKfZUmWGUOXho23OXjwoDZt2qROnTpp5syZNe6bP3++/H6/3nnnHZWXl9vxU8MlInAHAAAAAAAAgBbi008/lSQNHz5cDkfNeDchIUH9+/dXRUWFtm/fHo3yWj1GygAAAAAAAACIe5Y/rMDg49EuI8Lyh3Xw4EHNnTu31n2LFi2q97h9+/ZJkrp06VLn/Z07d9amTZu0f/9+DR061J5icdEI3AEAAAAAAADEtczMzGiXUKcjR45c8jGlpaWSpMTExDrvr95eUlLS8MLQYATuAAAAAAAAAOLab37zm2iXgFaCGe4AAAAAAAAA0EK0adNGUv0d7NXb6+uAR9MicAcAAAAAAACAFiI7O1uStH///jrvP3DggKT6Z7yjaRG4AwAAAAAAAEALMXjwYEnSpk2bZJpmjfvKysr0xRdfyOfzqW/fvtEor9UjcAcAAAAAAACAFiIrK0vDhw9XQUGBli5dWuO+hQsXqry8XBMnTpTf749Sha2bYVmWFe0iAAAAAAAAAAAX5+DBg7r77rt18uRJjRo1Sl27dtX27dv16aefqkuXLnryySeVkpIS7TJbJQJ3AAAAAAAAAGhhjhw5ooULF2rDhg0qKipSamqqRo8erdtvv11JSUnRLq/VInAHAAAAAAAAAMAGzHAHAAAAAAAAAMAGBO4AAAAAAAAAANiAwB0AAAAAAAAAABsQuAMAAAAAAAAAYAMCdwAAAAAAAAAAbEDgDgAAAAAAAACADQjcAQAAAAAAAACwAYE7AAAAAAAAAAA2IHAHAAAAAAAAAMAGBO4AAAAAAAAAANiAwB0AAAAAAAAAABsQuAMAAAAAAAAAYAMCdwAAAAAAAAAAbEDgDgAAAAAAAACADf4/46X6pwhel/sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tsmap2.plot_ts_map()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "415a9a65", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "python-env", + "language": "python", + "name": "python-env" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb.txt b/_sources/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb.txt new file mode 100644 index 00000000..f4a2f72a --- /dev/null +++ b/_sources/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb.txt @@ -0,0 +1,1761 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "74a86fb5-4e54-4e3f-b349-3e60fbdd0279", + "metadata": { + "tags": [] + }, + "source": [ + "# Spectral fitting example (Crab)" + ] + }, + { + "cell_type": "markdown", + "id": "e7df3443-3ce1-43f3-90b5-1bceb7bc9af0", + "metadata": {}, + "source": [ + "**To run this, you need the following files, which can be downloaded using the first few cells of this notebook:**\n", + "- orientation file (20280301_3_month.ori) \n", + "- binned data (crab_bkg_binned_data.hdf5, crab_binned_data.hdf5, & bkg_binned_data.hdf5) \n", + "- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip) \n", + "\n", + "**The binned data are simulations of the Crab Nebula and albedo photon background produced using the COSI SMEX mass model. The detector response needs to be unzipped before running the notebook.**" + ] + }, + { + "cell_type": "markdown", + "id": "ba543558-7de9-494c-8b72-8cdd368676e9", + "metadata": {}, + "source": [ + "This notebook fits the spectrum of a Crab simulated using MEGAlib and combined with background.\n", + "\n", + "[3ML](https://threeml.readthedocs.io/) is a high-level interface that allows multiple datasets from different instruments to be used coherently to fit the parameters of source model. A source model typically consists of a list of sources with parametrized spectral shapes, sky locations and, for extended sources, shape. Polarization is also possible. A \"coherent\" analysis, in this context, means that the source model parameters are fitted using all available datasets simultanously, rather than performing individual fits and finding a well-suited common model a posteriori. \n", + "\n", + "In order for a dataset to be included in 3ML, each instrument needs to provide a \"plugin\". Each plugin is responsible for reading the data, convolving the source model (provided by 3ML) with the instrument response, and returning a likelihood. In our case, we'll compute a binned Poisson likelihood:\n", + "\n", + "$$\n", + "\\log \\mathcal{L}(\\mathbf{x}) = \\sum_i \\log \\frac{\\lambda_i(\\mathbf{x})^{d_i} \\exp (-\\lambda_i)}{d_i!}\n", + "$$\n", + "\n", + "where $d_i$ are the counts on each bin and $\\lambda_i$ are the expected counts given a source model with parameters $\\mathbf{x}$. \n", + "\n", + "In this example, we will fit a single point source with a known location. We'll assume the background is known and fixed up to a scaling factor. Finally, we will fit a Band function:\n", + "\n", + "$$\n", + "f(x) = K \\begin{cases} \\left(\\frac{x}{E_{piv}}\\right)^{\\alpha} \\exp \\left(-\\frac{(2+\\alpha)\n", + " * x}{x_{p}}\\right) & x \\leq (\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\\\ \\left(\\frac{x}{E_{piv}}\\right)^{\\beta}\n", + " * \\exp (\\beta-\\alpha)\\left[\\frac{(\\alpha-\\beta) x_{p}}{E_{piv}(2+\\alpha)}\\right]^{\\alpha-\\beta}\n", + " * &x>(\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\end{cases}\n", + "$$\n", + "\n", + "where $K$ (normalization), $\\alpha$ & $\\beta$ (spectral indeces), and $x_p$ (peak energy) are the free parameters, while $E_{piv}$ is the pivot energy which is fixed (and arbitrary).\n", + "\n", + "Considering these assumptions:\n", + "\n", + "$$\n", + "\\lambda_i(\\mathbf{x}) = B*b_i + s_i(\\mathbf{x})\n", + "$$\n", + "\n", + "where $B*b_i$ are the estimated counts due to background in each bin with $B$ the amplitude and $b_i$ the shape of the background, and $s_i$ are the corresponding expected counts from the source, the goal is then to find the values of $\\mathbf{x} = [K, \\alpha, \\beta, x_p]$ and $B$ that maximize $\\mathcal{L}$. These are the best estimations of the parameters.\n", + "\n", + "The final module needs to also fit the time-dependent background, handle multiple point-like and extended sources, as well as all the spectral models supported by 3ML. Eventually, it will also fit the polarization angle. However, this simple example already contains all the necessary pieces to do a fit." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ce42ab82-3bbd-4729-8f84-a4e32eb3bb24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:03:40 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=916286;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=215945;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868229;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764392;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919383;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402464;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200604;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=500344;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=943578;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=139722;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882185;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=365193;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=588991;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483700;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:03:40 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=534169;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474409;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=765631;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=407033;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770994;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=670603;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=174077;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=60557;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=407332;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=541693;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894858;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=707179;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=853968;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45582;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=982551;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=171931;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:03:41 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=138869;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412603;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:03:41 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828564;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=463928;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=215262;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=583062;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752545;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955651;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy import COSILike, test_data, BinnedData\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.response.FullDetectorResponse import FullDetectorResponse\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "from scoords import SpacecraftFrame\n", + "\n", + "from astropy.time import Time\n", + "import astropy.units as u\n", + "from astropy.coordinates import SkyCoord, Galactic\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from threeML import Band, PointSource, Model, JointLikelihood, DataList\n", + "from astromodels import Parameter\n", + "\n", + "from pathlib import Path\n", + "\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "id": "8d1c0168-9823-4eb7-930e-5dc61d6448ca", + "metadata": {}, + "source": [ + "## Download and read in binned data" + ] + }, + { + "cell_type": "markdown", + "id": "a57e30ec-9301-441c-a627-6ad0355aca22", + "metadata": {}, + "source": [ + "Define the path to the directory containing the data, detector response, orientation file, and yaml files if they have already been downloaded, or the directory to download the files into" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5c765257-5a23-41bd-af67-4e461e3e6e4e", + "metadata": {}, + "outputs": [], + "source": [ + "data_path = Path(\"/path/to/files\")" + ] + }, + { + "cell_type": "markdown", + "id": "99500a01-882d-4053-a595-374202b87298", + "metadata": {}, + "source": [ + "Download the orientation file (684.38 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "36f96db4-640d-4233-8b18-a81bafcfd009", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori', output=str(data_path / '20280301_3_month.ori'))" + ] + }, + { + "cell_type": "markdown", + "id": "e1bee10b-4de7-417e-88a4-24f350789937", + "metadata": {}, + "source": [ + "Download the binned Crab+background data (99.16 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "51628f7e-cbab-4755-8cad-bf9af9a2a5f9", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/crab_bkg_binned_data.hdf5', output=str(data_path / 'crab_bkg_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "f1264463-2db3-4da8-a5d5-743607e7b2eb", + "metadata": {}, + "source": [ + "Download the binned Crab data (13.16 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2f6ecc28-d928-4dc2-ad36-504e41175574", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/crab_binned_data.hdf5', output=str(data_path / 'crab_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "095adbe9-d0d0-4794-8912-3b3f7390d7b4", + "metadata": {}, + "source": [ + "Download the binned background data (89.10 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3d13cc84-2027-408f-8c7a-f2b4d654e7fd", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/bkg_binned_data.hdf5', output=str(data_path / 'bkg_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "22cf85cc-6e8f-4db8-92a4-c8779e2fbe58", + "metadata": {}, + "source": [ + "Download the response file (839.62 MB). This needs to be unzipped before running the rest of the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5f3df678-009a-4b4c-96bb-01c3107a3805", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip', output=str(data_path / 'SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip'))" + ] + }, + { + "cell_type": "markdown", + "id": "d898bbd7-9ed0-4a27-bd5a-67414178733d", + "metadata": {}, + "source": [ + "Read in the spacecraft orientation file" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ed2c03a0-63e3-4044-9e16-50f0f17996af", + "metadata": {}, + "outputs": [], + "source": [ + "sc_orientation = SpacecraftFile.parse_from_file(data_path / \"20280301_3_month.ori\")" + ] + }, + { + "cell_type": "markdown", + "id": "f579870f-c854-450d-84e8-f1d5ef0753d1", + "metadata": {}, + "source": [ + "Create BinnedData objects for the Crab only, Crab+background, and background only. The Crab only simulation is not used for the spectral fit, but can be used to compare the fitted spectrum to the source simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3b5faaa1-1874-4d43-a6ae-7e1b0aaabb26", + "metadata": {}, + "outputs": [], + "source": [ + "crab = BinnedData(data_path / \"crab.yaml\")\n", + "crab_bkg = BinnedData(data_path / \"crab.yaml\")\n", + "bkg = BinnedData(data_path / \"background.yaml\")" + ] + }, + { + "cell_type": "markdown", + "id": "cf8b5ab1-7452-493e-b516-73fa72e455e5", + "metadata": {}, + "source": [ + "Load binned .hdf5 files" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "620159d2-f01a-453e-9e4c-075c99740086", + "metadata": {}, + "outputs": [], + "source": [ + "crab.load_binned_data_from_hdf5(binned_data=data_path / \"crab_binned_data.hdf5\")\n", + "crab_bkg.load_binned_data_from_hdf5(binned_data=data_path / \"crab_bkg_binned_data.hdf5\")\n", + "bkg.load_binned_data_from_hdf5(binned_data=data_path / \"bkg_binned_data.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a6bdaee8-45d7-41df-9835-413c1e397c12", + "metadata": {}, + "source": [ + "Define the path to the detector response" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "acccab93-7f9c-4167-a8f9-eedcf74b8a05", + "metadata": {}, + "outputs": [], + "source": [ + "dr = str(data_path / \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\") # path to detector response" + ] + }, + { + "cell_type": "markdown", + "id": "c4d25ed1-7139-4e1d-91ab-889bd2c01300", + "metadata": { + "tags": [] + }, + "source": [ + "## Perform spectral fit" + ] + }, + { + "cell_type": "markdown", + "id": "3d27b1c3-3e9f-4ca7-9a4f-1176a03d10df", + "metadata": {}, + "source": [ + "Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8784a70b-c322-4e0b-a08e-c6f36bac024b", + "metadata": {}, + "outputs": [], + "source": [ + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = dr, # detector response\n", + " data = crab_bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = sc_orientation, # spacecraft orientation\n", + " nuisance_param = bkg_par) # background parameter" + ] + }, + { + "cell_type": "markdown", + "id": "a58bb558-e03d-4a07-b433-312302f622a7", + "metadata": {}, + "source": [ + "Define a point source at the known location with a Band function spectrum and add it to the model. The initial values of the Band function parameters are set to the true values used to simulate the source" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e836fc74-15d8-4680-a947-2495670d7a25", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:04:35 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=444891;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=999475;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... Calculating point source responses ...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> done (source name : source)\n", + "--> all done\n" + ] + } + ], + "source": [ + "l = 184.56\n", + "b = -5.78\n", + "\n", + "alpha = -1.99\n", + "beta = -2.32\n", + "E0 = 531. * (alpha - beta) * u.keV\n", + "xp = E0 * (alpha + 2) / (alpha - beta)\n", + "piv = 500. * u.keV\n", + "K = 3.07e-5 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum = Band()\n", + "\n", + "spectrum.alpha.min_value = -2.14\n", + "spectrum.alpha.max_value = 3.0\n", + "spectrum.beta.min_value = -5.0\n", + "spectrum.beta.max_value = -2.15\n", + "spectrum.xp.min_value = 1.0\n", + "\n", + "spectrum.alpha.value = alpha\n", + "spectrum.beta.value = beta\n", + "spectrum.xp.value = xp.value\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value\n", + "\n", + "spectrum.xp.unit = xp.unit\n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + "\n", + "spectrum.alpha.delta = 0.01\n", + "spectrum.beta.delta = 0.01\n", + "\n", + "source = PointSource(\"source\", # Name of source (arbitrary, but needs to be unique)\n", + " l = l, # Longitude (deg)\n", + " b = b, # Latitude (deg)\n", + " spectral_shape = spectrum) # Spectral model\n", + "\n", + "# Optional: free the position parameters\n", + "#source.position.l.free = True\n", + "#source.position.b.free = True\n", + "\n", + "model = Model(source) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)\n", + "\n", + "# Optional: if you want to call get_log_like manually, then you also need to set the model manually\n", + "# 3ML does this internally during the fit though\n", + "cosi.set_model(model)" + ] + }, + { + "cell_type": "markdown", + "id": "e955d7a4-a40f-4fa2-af9a-c277fce3dc26", + "metadata": {}, + "source": [ + "Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f83dea31-2284-4f87-910a-be1003d970c8", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
12:05:05 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=102912;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987128;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", + "\n", + "WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents \n", + " the requested tolerance from being achieved. The error may be \n", + " underestimated.\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=737530;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278840;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:05:26 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562228;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53136;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(2.857 +/- 0.023) x 10^-51 / (cm2 keV s)
source.spectrum.main.Band.alpha-1.9886 +/- 0.0004
source.spectrum.main.Band.xp4.47 -0.17 +0.18keV
source.spectrum.main.Band.beta-2.1964 +/- 0.0016
background_cosi(9.9193 +/- 0.0020) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (2.857 +/- 0.023) x 10^-5 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha -1.9886 +/- 0.0004 \n", + "source.spectrum.main.Band.xp 4.47 -0.17 +0.18 keV\n", + "source.spectrum.main.Band.beta -2.1964 +/- 0.0016 \n", + "background_cosi (9.9193 +/- 0.0020) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
-0.120.080.011.00-0.52
0.05-0.03-0.02-0.521.00
" + ], + "text/plain": [ + " 1.00 0.42 -0.61 -0.12 0.05\n", + " 0.42 1.00 0.45 0.08 -0.03\n", + "-0.61 0.45 1.00 0.01 -0.02\n", + "-0.12 0.08 0.01 1.00 -0.52\n", + " 0.05 -0.03 -0.02 -0.52 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-2.612135e+08
total-2.612135e+08
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -2.612135e+08\n", + "total -2.612135e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-5.224270e+08
BIC-5.224270e+08
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -5.224270e+08\n", + "BIC -5.224270e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "( value negative_error positive_error \\\n", + " source.spectrum.main.Band.K 0.000029 -2.272835e-07 2.278935e-07 \n", + " source.spectrum.main.Band.alpha -1.988617 -3.560944e-04 3.585775e-04 \n", + " source.spectrum.main.Band.xp 4.473464 -1.691279e-01 1.784522e-01 \n", + " source.spectrum.main.Band.beta -2.196416 -1.564268e-03 1.565798e-03 \n", + " background_cosi 0.991932 -1.915462e-04 1.937451e-04 \n", + " \n", + " error unit \n", + " source.spectrum.main.Band.K 2.275885e-07 1 / (cm2 keV s) \n", + " source.spectrum.main.Band.alpha 3.573359e-04 \n", + " source.spectrum.main.Band.xp 1.737900e-01 keV \n", + " source.spectrum.main.Band.beta 1.565033e-03 \n", + " background_cosi 1.926456e-04 ,\n", + " -log(likelihood)\n", + " cosi -2.612135e+08\n", + " total -2.612135e+08)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = False)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "e7c645bf-3e24-4caf-a47f-1b4b442fae46", + "metadata": {}, + "source": [ + "## Error propagation and plotting (Band function)" + ] + }, + { + "cell_type": "markdown", + "id": "1d4083b0-10f2-40a6-838a-99352580e1d0", + "metadata": {}, + "source": [ + "Define Band function spectrum injected into MEGAlib" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "1758942e-55e6-47ea-ab06-779e8a0fc622", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:06:33 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26512;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=246007;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "alpha_inj = -1.99\n", + "beta_inj = -2.32\n", + "E0_inj = 531. * (alpha_inj - beta_inj) * u.keV\n", + "xp_inj = E0_inj * (alpha_inj + 2) / (alpha_inj - beta_inj)\n", + "piv_inj = 100. * u.keV\n", + "K_inj = 7.56e-4 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum_inj = Band()\n", + "\n", + "spectrum_inj.alpha.min_value = -2.14\n", + "spectrum_inj.alpha.max_value = 3.0\n", + "spectrum_inj.beta.min_value = -5.0\n", + "spectrum_inj.beta.max_value = -2.15\n", + "spectrum_inj.xp.min_value = 1.0\n", + "\n", + "spectrum_inj.alpha.value = alpha_inj\n", + "spectrum_inj.beta.value = beta_inj\n", + "spectrum_inj.xp.value = xp_inj.value\n", + "spectrum_inj.K.value = K_inj.value\n", + "spectrum_inj.piv.value = piv_inj.value\n", + "\n", + "spectrum_inj.xp.unit = xp_inj.unit\n", + "spectrum_inj.K.unit = K_inj.unit\n", + "spectrum_inj.piv.unit = piv_inj.unit" + ] + }, + { + "cell_type": "markdown", + "id": "9e7688b1-430a-4bce-8e9c-448202589e7f", + "metadata": {}, + "source": [ + "The summary of the results above tell you the optimal values of the parameters, as well as the errors. Propogate the errors to the \"evaluate_at\" method of the spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c3851355-28fa-4ff4-9c5b-522733bb110e", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(2.857 +/- 0.023) x 10^-51 / (cm2 keV s)
source.spectrum.main.Band.alpha-1.9886 +/- 0.0004
source.spectrum.main.Band.xp4.47 -0.17 +0.18keV
source.spectrum.main.Band.beta-2.1964 +/- 0.0016
background_cosi(9.9193 +/- 0.0020) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (2.857 +/- 0.023) x 10^-5 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha -1.9886 +/- 0.0004 \n", + "source.spectrum.main.Band.xp 4.47 -0.17 +0.18 keV\n", + "source.spectrum.main.Band.beta -2.1964 +/- 0.0016 \n", + "background_cosi (9.9193 +/- 0.0020) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
-0.120.080.011.00-0.52
0.05-0.03-0.02-0.521.00
" + ], + "text/plain": [ + " 1.00 0.42 -0.61 -0.12 0.05\n", + " 0.42 1.00 0.45 0.08 -0.03\n", + "-0.61 0.45 1.00 0.01 -0.02\n", + "-0.12 0.08 0.01 1.00 -0.52\n", + " 0.05 -0.03 -0.02 -0.52 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-2.612135e+08
total-2.612135e+08
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -2.612135e+08\n", + "total -2.612135e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-5.224270e+08
BIC-5.224270e+08
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -5.224270e+08\n", + "BIC -5.224270e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:34 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840959;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587231;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=521892;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431406;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402878;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=82481;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * source (point source):\n", + " * position:\n", + " * l:\n", + " * value: 184.56\n", + " * desc: Galactic longitude\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * b:\n", + " * value: -5.78\n", + " * desc: Galactic latitude\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * equinox: J2000\n", + " * spectrum:\n", + " * main:\n", + " * Band:\n", + " * K:\n", + " * value: 2.8565585663971596e-05\n", + " * desc: Differential flux at the pivot energy\n", + " * min_value: 1.0e-99\n", + " * max_value: null\n", + " * unit: keV-1 s-1 cm-2\n", + " * is_normalization: true\n", + " * alpha:\n", + " * value: -1.9886166208617622\n", + " * desc: low-energy photon index\n", + " * min_value: -2.14\n", + " * max_value: 3.0\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * xp:\n", + " * value: 4.473463779563324\n", + " * desc: peak in the x * x * N (nuFnu if x is a energy)\n", + " * min_value: 1.0\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * beta:\n", + " * value: -2.196416422107725\n", + " * desc: high-energy photon index\n", + " * min_value: -5.0\n", + " * max_value: -2.15\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * piv:\n", + " * value: 500.0\n", + " * desc: pivot energy\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}\n", + "\n" + ] + } + ], + "source": [ + "results = like.results\n", + "\n", + "print(results.display())\n", + "\n", + "parameters = {par.name:results.get_variates(par.path)\n", + " for par in results.optimized_model[\"source\"].parameters.values()\n", + " if par.free}\n", + "\n", + "results_err = results.propagate(results.optimized_model[\"source\"].spectrum.main.shape.evaluate_at, **parameters)\n", + "\n", + "print(results.optimized_model[\"source\"])" + ] + }, + { + "cell_type": "markdown", + "id": "d13bc552-c841-41d4-abc6-1d431eaca348", + "metadata": {}, + "source": [ + "Evaluate the flux and errors at a range of energies for the fitted and injected spectra, and the simulated source flux" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "804e78ca-2ccb-421b-aff2-ad41b70ed24f", + "metadata": {}, + "outputs": [], + "source": [ + "energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)\n", + "\n", + "flux_lo = np.zeros_like(energy)\n", + "flux_median = np.zeros_like(energy)\n", + "flux_hi = np.zeros_like(energy)\n", + "flux_inj = np.zeros_like(energy)\n", + "\n", + "for i, e in enumerate(energy):\n", + " flux = results_err(e)\n", + " flux_median[i] = flux.median\n", + " flux_lo[i], flux_hi[i] = flux.equal_tail_interval(cl=0.68)\n", + " flux_inj[i] = spectrum_inj.evaluate_at(e)\n", + " \n", + "binned_energy_edges = crab.binned_data.axes['Em'].edges.value\n", + "binned_energy = np.array([])\n", + "bin_sizes = np.array([])\n", + "\n", + "for i in range(len(binned_energy_edges)-1):\n", + " binned_energy = np.append(binned_energy, (binned_energy_edges[i+1] + binned_energy_edges[i]) / 2)\n", + " bin_sizes = np.append(bin_sizes, binned_energy_edges[i+1] - binned_energy_edges[i])\n", + "\n", + "expectation = cosi._expected_counts['source']" + ] + }, + { + "cell_type": "markdown", + "id": "b3cf7385-133f-4d4e-a78d-b90f9896c82e", + "metadata": {}, + "source": [ + "Plot the fitted and injected spectra" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3402ff8a-d50e-4bad-a27d-f3b7bc4f4f54", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFlElEQVR4nOzdd1yVZf/A8c9hyQYRFzJkKLhYLtx779yjUsvKHDkqrWz5VI85M8vqsVLbjsqBgoqKew/EhWxBRURlb875/cHPYwQq4MEDh+/79Xper8f7uu/7+h7ihi/XfV3fS6FSqVQIIYQQQohKT0/bAQghhBBCiNKRxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE2HZGdnExYWRnZ2trZDEUIIIUQFkMRNh8TGxjJlyhRiY2O1HYoQQgghKoAkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYSBtgMQQgghqruCggLy8vK0HYaoYPr6+hgYGKBQKMp9D0nchBBCCC1KT08nPj4elUql7VDEM2Bqakr9+vUxMjIq1/WSuAkhhBBaUlBQQHx8PKamptSuXfupRmJE5aZSqcjNzeXOnTtER0fTqFEj9PTKPmNNEjchhBBCS/Ly8lCpVNSuXRsTExNthyMqmImJCYaGhsTGxpKbm4uxsXGZ7yGLE4QQQggtk5G26qM8o2xFrtdQHEIIIYQQooJJ4iaEEEKIIho2bIiHhwfe3t40adKEcePGkZGRUe77rVu3jmvXrj2y/fjx47Ro0QIfHx927dpF//79iYyMLNW11Y0kbkIIIYQoZvPmzZw/f57Lly+TmprKunXryn2vJyVf69ev54UXXuDcuXP06dOHnTt34urqWqprqxtZnCCEEEJUElveO0JmSk6F9mFqVYOhn3Yo9fk5OTlkZGRQs2ZN9bGlS5eyceNG8vPzqVevHt999x0ODg5s376d9957Dz09PfLz8/n000+5c+cOp0+fZubMmSxYsIDPPvuM/v37q++1aNEiNmzYgKmpKb/++ivBwcF4e3vj7+/P8ePHH3ttdSSJmxBCCFFJZKbkkHmvYhO30hoxYgTGxsZER0fTsmVLRo0aBcBvv/3GtWvXOHbsGPr6+vz8889Mnz6drVu3smDBAr799lvat2+PUqkkNTUVa2trfvnlF958800GDhxYrJ/58+dz9epVWrVqxfTp04u0vfzyy4+9tjqSxE2U2p07d6hdu7a2wxBCCJ1lalWj0vSxefNmmjdvTn5+Pq+++irz5s1j2bJlbNmyhdOnT9OyZUugsBadvr4+AD169GDWrFmMGDGC3r174+3tXVEfo9qSxE2Uyu3bt2nYsCE9evRg3rx5dOrUSdshCSGEzinLK8xnxcDAgOHDh/PWW2+xbNkyVCoVCxYsYPLkycXOXb58OZcuXWL//v28+OKLjB8/nrffflsLUesuWZwgSmX16tVkZ2ezY8cOtm3bpu1whBBCPEP79u3D3d0dgMGDB7N69Wru3bsHFBYRPnfuHABXr16lWbNmTJ8+nalTp3L8+HEALC0tSUlJKVffT3OtLpLETZSKvb09Dg4OGBgYMHPmzCJt+fn58lAJIYSOGTFiBN7e3jRr1owrV66wcuVKAJ5//nkmTJhA165d8fLywtvbm/379wPwzjvv0KxZM3x8fPj555/56KOPAHjllVdYuHAh3t7e7Ny5s0xxPM21ukihkl1tdUZYWBhTpkxhzZo16r+MNCkvL4+TJ0/SoUPRofyNGzfy8ssvM2XKFGbNmoWDg4PG+xZCCF2UnZ1NdHQ0zs7O5dr+SFQ9T/vfXEbcRKkZGhoWS9pUKhXLli0jLS2N5cuXExISoqXohBBCCN0niVsllZyczNtvv03v3r0ZN24cp06d0nZIJcrJycHb25saNWrQsmVLBgwYUKRdBnSFEEIIzZHErZJasWIFNjY2bNu2jddff50PP/ywUs4jMzY25rvvvuP69ev89NNPxTZKnj17NpMmTSIiIkJLEQohhBC6QxK3SigzM5NDhw4xadIkjI2N6dixI25ubhw+fFjboT1SnTp1aNq0aZFj8fHxfPPNN6xbt47WrVuTmZmppeiEEEII3aBzddwuXLjAzz//zKVLl8jNzaV27dr07duXF198scL6zMzMZP369YSHhxMeHk5KSgoTJ04sscZNZmYm33//Pfv37yctLQ1HR0fGjx9Pjx491OfEx8djYmJC3bp11cdcXFyIjo6usM9QES5evIipqSm5ubm89tprmJqaajskIYQQokrTqRG3PXv2MHPmTMzNzXnvvfdYvHgx48ePr/B5VikpKWzfvp28vLwnFqZdsGABgYGBTJw4kcWLF+Ph4cHHH3/Mnj171OdkZWVhZmZW5DozMzOysrIqJP6K0rdvX2JiYvjkk0+YO3dukTalUsnSpUvVdYCEEEII8WQ6M+J2584dli5dyuDBg5kzZ476uK+v72Ovy8jIIDQ0FD8/vxLbjx49io+PDyYmJo+8R7169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49e6rjS0hI4JtvvqF79+7o6+tjYmJCRkZGsTgfF0NlZWVlxXvvvVfs+IYNG3jrrbf49NNPWbVqFRMmTNBCdEIIUfmc2RxeYfduOaJRhd1bPBs6M+Lm7+9PVlYW48aNK/N18+fPJyAgoFjb1q1beeedd9i1a9dj76FQKIpNyi/JoUOHMDExoWvXrkWO9+/fn6SkJC5fvgwUFrvNysoiMTFRfc6Dmi8lCQoKYv78+axateqJMVQGKpWKTz75BChcPVunTh0tRySEEOKfGjZsiIeHB97e3jRp0oRx48YVG1Aoi3Xr1nHt2rVHth8/fpwWLVrg4+PDrl276N+/P5GRkaW6FmDOnDn88ccf5Y5P0+bOncvvv/9eIffWmcQtJCQES0tLrl+/zuTJk+nWrRuDBw9m6dKlj/1mGz16NCNGjGDRokVs3bpVfXzTpk0sW7aMCRMmMHToUI3EGB0djZOTEwYGRQc6XV1d1e0ApqamdOzYkbVr15KTk8PRo0cJDw8vVkPtgZ49e7Jo0SJmzJihkTgrmkKhYNeuXUycOJE+ffrQu3fvIu15eXlaikwIIcQDmzdv5vz581y+fJnU1FTWrVtX7ns9Kflav349L7zwAufOnaNPnz7s3LlT/bvxSdfeuHGDgIAARo8eXaaY8vPzS3WsLNc/MG/ePD766COUSmWZYioNnUnckpKSyM7O5oMPPqB79+4sX76csWPHsmvXLt5+++3HznObPn06EyZMYNmyZWzatIlff/2VVatW8dJLLzFlyhSNxZiSkoKlpWWx4xYWFgCkpqaqj82ZM4ekpCQGDhzIqlWr+Oijj7C2ttZYLNpmb2/P2rVrS3ytPH36dPr168eVK1e0EJkQQoh/ysnJISMjg5o1a6qPLV26lDZt2uDr60v//v2Ji4sDYPv27Xh6euLt7U3z5s3ZunUr33//PadPn2bmzJklblu1aNEiNmzYwMqVK/H29iY5OZmGDRty8eLFJ14L8OOPPzJixAj1m6+8vDzmz59PmzZt8Pb2ZsyYMSQnJwMwceJEZs6cSd++ffHy8iI4OBhvb29mzpxJu3bt+Pvvvzl9+jTt2rXD09OTNm3acOTIEQBiYmKwtbVl4cKFdOrUiVWrVpX4eaGw0oKzszN79+7V+H8PnZnjplQqyc3NZeLEier5Uj4+PhgYGLBq1SrOnDlDq1atHnn9lClTMDIyUr9unDp1KmPHjtV4nKV5pQpgbW3NkiVLNN5/ZfPv0ccrV67w/fffo1QqOXbsGHFxcerEVgghxLMzYsQIjI2NiY6OpmXLlowaNQqA3377jWvXrnHs2DH09fX5+eefmT59Olu3bmXBggV8++23tG/fHqVSSWpqKtbW1vzyyy+8+eabDBw4sFg/8+fP5+rVq7Rq1Yrp06cXaXv55Zcfey1AcHAwb775pvrfS5YswdzcnJMnTwLwn//8hw8//FC91+rhw4c5ePAg5ubmBAcHc+HCBb766iu+/PJLcnNzcXNzY82aNfTp04fDhw8zYsQIdS3Su3fv4ubmxgcffACAl5dXsc/7QPv27dm7dy+9evUq73+CEunMiJuVlRUAbdq0KXL8waKDJ70fB0hPT1cnVunp6RqOsDDGkoropqWlAZQ4Glfd3L59W73X6bx58yRpE0IILXnwqvTu3bs4Ozszb948ALZs2UJQUBAtW7bE29ubxYsXExsbC0CPHj2YNWsWixcv5sKFC8/kTVF8fDz16tVT/3vLli388ssveHt74+3tze+//05UVJS6fdSoUZibm6v/3bhxYzp27AgU7vltZGREnz59AOjYsSN16tThwoULQGHR+X8O6jzu89arV4/4+HiNf16dSdxcXFxKPP7gFenjRrpUKhUrVqxg06ZNzJs3j7lz5/LLL7/w9ddfazzG2NjYYu/FH3xDPWrxQXXStWtXrly5wvLly0ssIVLVatkJIURVZ2BgwPDhwwkMDAQKf2cuWLCA8+fPc/78eUJDQzl//jwAy5cvZ+3atZiamvLiiy+yePHiCo/P1NS0SLkslUrF6tWr1fFdvnyZ7du3q9v/mbT9+98qlarEfOHBMTMzsyLtj/u82dnZFVINQmcSty5dugBw4sSJIsePHz8OQLNmzUq8TqlUsnjxYrZt28b7779P//79GTJkCPPnz2fz5s0sX75cY3XgOnXqRFZWFgcOHChyPDAwEFtb22I7D1RXJiYmzJ49GyMjoyLH161bh4eHBwsWLJBdGIQQ4hnat28f7u7uAAwePJjVq1er63Dm5eVx7tw5AK5evUqzZs2YPn06U6dOVf8OtrS0LPe2jU+61tPTk6tXr6r/PXjwYJYvX67+PZGZmcmlS5dK1ZeHhwc5OTns27cPKCwJlpiYSIsWLUo8/1GfFwqn/nh5eZWq37LQmTlubdq0oX379qxfvx6lUkmzZs24evUq69ato3379nh6epZ43YYNG9i9e7d6suED/fr1w8jIiE8++QQnJyeGDx/+2P6PHz9Odna2+hslNjaW4OBgoPB1rbGxMX5+frRq1Ur9DdWgQQP27t3LiRMnWLBgAfr6+pr5Yuige/fuMW/ePHJzc/n000/p0aMH3bp103ZYQgihcZWl1tqDOW55eXk0bNiQb7/9FoDnn3+eu3fv0rVrVxQKBfn5+bz00kv4+PjwzjvvcO3aNYyMjDA1NeWbb74B4JVXXmHu3LksWbKEzz77jP79+5c6jiddO2LECH766Sf1bkXz58/n448/pm3bturRsXnz5j1yAOefjIyM+PPPP5k5cyYZGRkYGxuzadMmzMzMuHPnTrHzH/V5VSoVe/fu5d133y315ywthaqitxV4hnJycli7di1BQUHcvXsXW1tbevXqxcSJE4uN3vzzmvDwcJo3b15ie2hoKB4eHhgaGj6271GjRpGQkFBi24YNG6hfvz5QmPmvWbOmyJZXEyZMKLLlVXmFhYUxZcoU1qxZo/7LSFdkZmbyySefsHTpUp577rlKVa9HCCHKKzs7W12n09jYWNvhVElKpZLWrVuzdetW7O3ttR0OUPgm7ddff+Xnn38u1va0/811KnGr7nQ5cXvg6tWrWFpaYmdnV+R4SEgInp6epV61K4QQlYEkbppx+vRpsrOz1YsMtG3Dhg106tSp2O8qePr/5jrzqlRUDx4eHsWOnT59Gj8/PwYMGMC3336rHt0UQghRPTyu3Jc2lLUYcFnozOIEUT3l5+czadIkCgoK2LZt21NV9hZCCCEqO0ncRJVmYGDAwoULqVOnDj4+PkWKMAohhBC6Rl6Viipv2LBhdO7cmfv37xdbRHL9+nUcHBxk7psQQgidICNuQifUqlULNze3Isdu376Nr68vw4YN4+7du1qKTAghhNAcSdyEzpo2bRp3795l69atzJ49W9vhCCFElfFgk/fH+eCDD9iwYUO5+wgODmb37t3lvrayLUh4VuRVqdBZ48eP58CBA+jr67NkyRJthyOEEDpl4cKFT3V9cHAw6enp9O7dW0MRVQ8y4iZ01rBhwwgJCWHLli3UrVtX2+EIIUSpLF++HHt7e+zt7dU78DwQHR2tbpsxY0axawcPHqxu/7d169axfPnyMsXStWtX5s2bR6dOnXB1deW1115Tt02cOJGvvvoKKNz2av78+bRp0wZvb2/GjBlDcnIyACkpKbz88su0aNECLy8vJk+ezPnz5/n222/56aef8Pb2VieBu3btomPHjrRs2ZK2bdty8OBBdX8LFizAzc2NLl264O/vX6bPoUtkxE3oNDs7u2IFEPPy8hg+fDivvPIKAwcO1FJkQghRstTUVG7cuAEU7u7zTwUFBeq2+/fvF7v2zp076vZ/y8jIIDU1tczxREZGEhwcTG5uLk2bNuXYsWO0a9euyDlLlizB3NyckydPAvCf//yHDz/8kJUrVzJr1izMzc0JCQlBT0+PO3fuULt2bV577TXS09NZunQpAFFRUXz88ccEBgZiaWlJREQEXbp0ISYmhsDAQLZt28b58+cxMTFh2LBhZf4cukISN1HtfPjhh2zfvp3t27fz3//+l/nz52s7JCGEULO0tKRBgwYA1KhRo0ibvr6+uq1mzZrFrq1du7a6/d/MzMyKJYKlMWbMGPT19TExMcHb25vIyMhiiduWLVtITU1l8+bNAOTm5uLq6gqAv78/Z86cQU9PTx1jSQIDA4mIiKBz585FjsfFxbF//35Gjx6Nubk5AJMnT+aTTz4p82fRBZK4iSfKTMnh6t7rNO3lhLFFyXu+VhVKpZKwsDCgsAZc9+7dtRyREEIUNWfOHObMmVNim7OzM/Hx8Y+8dtu2bY9smzhxYrni+ee2TPr6+uTn5xc7R6VSsXr16qf6mapSqejbty8//fRTiW2ikMxxE090KSCGs5sj+GNmMMd/vkLG3Sxth1Ruenp6bN68ma+++oqlS5fSpk0bbYckhBBV3uDBg1m+fDmZmZkAZGZmcunSJXXbkiVLUCqVQOHrXCgcWUxJSVHfo3fv3gQGBhZZzfrg1WuPHj3YuHEjGRkZFBQUVOtdciRxE49VkFfA1X1xAOTnFHAxIIYNsw5w8H+hpNzK0HJ05aNQKJg2bRpvvPFGsbYtW7aQm5urhaiEEKLqeVDcfP78+Xh7e9O2bVs8PT3x8/Pj/PnzAKxYsYLMzEyaN2+Ot7c37777LlC4gOz06dPqxQmNGjXil19+4eWXX8bLy4smTZqwcuVKAAYOHMjAgQPx8vKie/fueHp6auXzVgYKlYw/6oywsDCmTJnCmjVrcHd319h90xIzCd0RTVhwPAV5yocNCnBuXQ+vwS7YulhprD9t2bx5MyNHjsTPz4+NGzfi4OCg7ZCEEDouOzub6OhonJ2di7ySrAr69+/PCy+8wJgxY7QdSpXytP/NZcRNPJFFHVPaT2rG6C+74jXEFSPT/58aqYLokwlsWXCUgP+e5Oalu1V2HkJGRgZTp04F4Pjx4wQEBGg5IiGEqLx69uxJWloaAwYM0HYo1Y4sThClZmpVg9ajG+M1yJkre+O4uDOarJTC14o3Qu9yI/Qutd2s8BrkilPLOij0qs7+oGZmZgQEBDBixAg6dOjAlClTtB2SEEJUWkFBQdoOodqSxE2UmZGpIV6DXGjWx4nwgze44B9FWmLhgoU7ESkErTiLdQNzvAa54Nq+PnoGVWNgt1WrVpw9exYjI6Nim9IrlUr1UnYhhBBCW+Q3kSg3AyN9mvR0ZOSyznSb7oWNo4W6LflGOge+vcDGOQe4tCuG/JwCLUZaejY2Nuo6QQ9cunSJ5s2bc+LECS1FJYTQdVV1mokouwera8tLRtzEU9PT18O1vR0u7eoTf/4O57dFcTussKJ3elI2x9Zf4dzfkTTr60TTnk7UMDfUcsSll5aWxvDhwwkLC6NTp04EBATQo0cPbYclhNARhoaGKBQK9W4C/x7tF7pDpVKRm5vLnTt30NPTw8iofHVRJXETGqNQKHDwqYODTx0Srt4jZHsUcecK6/Vkp+ZyZmM4F7ZH4dHDkRb9GmJas/KvoMrMzKR27dqEhYXRtGlT2rdvr+2QhBA6RF9fH3t7e+Lj44mJidF2OOIZMDU1xdHRsdzTbyRxExWinocN9TxsuHs9lQvboog6dguVCvKyCgj1j+ZSYAyNO9vjOcgZy7pm2g73kerWrcu+ffv48MMPmTx5MiYmJtoOSQihY8zNzWnUqBF5eXnaDkVUMH19fQwMDJ5qZFXquOmQiqrjpgmptzO44B/NtQPxKPMffsspFODsVx+vwS7UcrLUYoRll5KSwt69e3nuuee0HYoQQohqQhYniGfCsq4ZHV9qzpiVXfEc5IyhiT4AKhVEHbvF3+8cYdfi0yRcvafdQEtJpVIxefJkhg8fzrRp08q1cbMQQghRVpK4iWfKtKYxbcZ6MObLbrQa1Rhjy4eTM+PO38F/4Qm2f3Sc6+cSK/Uqq127dvHXX38B8Ntvv5GQkKDliIQQQlQHkrgJrahhZoj3UFfGrOxKuxebYm77cKHC7Wv32b3kDH/NP0LEkZsoC55u6XRF6Nu3Lz/88AMmJib8/PPPODk5aTskIYQQ1YDMcdMhlXmO25Mo85VEHrtFyLYokm+kF2mzqGOC50AXGnVugIGRvpYiLNnt27epW7dukWNKpRKVSoW+fuWKVQghRNUnI26iUtAz0KNRpwYM/7wjveb4Utvt4ab1aYlZHPnxEhveCCZkWyS5mZVn5dW/kzaAJUuW0KdPHxITE7UQkRBCCF0m5UBEpaLQU+DUqi6OLetw68o9QrZGcSM0CYCslFxO/XGNkG1RNOnlRPO+TphY1dByxEUFBwfz7rvvolQqadmyJZcvX8bCwuLJFwohhBClIImbqJQUCgV2TWth17QWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqm2QwbAwMCAOnXqkJCQwOTJkyVpE0IIoVGSuIlKz9bFih6zfEi5lUHI9igiDt1AWaCiIE/J5T3XubI3Dtf29fEc5IKNg3YTpY4dO3Lu3Dm+/PJLPvjgA63GIoQQQvfI4gQdUpUXJ5RFxr1sQndGc3VvXLHN6x196+A12IW6jWtqKbpHO3DgADVr1sTT01PboQghhKiiZHGCqHLMbIzxm9CEMV92xXeEW5FN66+fTWT7R8fx/88J4kLuVJpacHFxcQwfPhw/Pz/Wr1+v7XCEEEJUUZK4iSrL2MII3+caMebLrvg974GZzcNacAlX7rHr89NsefcIkcduoVRqN4H7z3/+w927d8nKymLTpk2VJqEUQghRtcirUh0QFBREUFAQ6enpXLhwQedflT5KQb6SyMM3CdkeRcqtjCJtlnVN8RzkQqNOdugbPvv6atnZ2bzxxhvs3r2bM2fOYGNj88xjEEIIUfVJ4qZDqssctydRKlXEnr5NyLYokqJSirSZWtegef+GePRwxMjk2a/NuXfvXrGkLScnhxo1KldZEyGEEJWTvCoVOkdPT4Fzm3oM+U87+r3TGrtmtdRtmck5nPwtjD9m7Of0xmtkpT7bzeFLSto6d+7M/Pnzyc/Pf6axCCGEqHqkHIjQWQqFggYtbGnQwpY7kcmEbIsi5vRtdS2481siCd0ZjXs3BzwHOGNua/LMY5w9ezYnT57k5MmT3L59m7Vr1z7zGIQQQlQdkriJaqG2qzU9Z/ty/0Y6of5RhB++iapARUGuksu7YrkSdB23DnZ4DnSmpv2zqQWnUqlo3LgxBgYGGBgY8MYbbzyTfoUQQlRdMsdNh8gct9JLv5tF6I5owvbHF6sF59SqLl6DXajjZv1MYjl69CjXr19nzJgxz6Q/IYQQVZckbjpEEreyy07N5dLuWC7viiUno+jm9XbNauE52IUGzWuhUCieeWzffvstY8aMwdra+pn3LYQQonKSxQmiWjO2NKLliEaM/rIrbcd7YFrz4erOm5fuEvjfU2xdcJToE8+2FtzatWuZOnUqLVu25Ny5c8+sXyGEEJWbJG5CAEYmBrQY4MzoL7rQaUpzLOs93LQ+KTqVvSvP8+dbhwjbH0dBvrJCY8nOzlbvcxoVFcXFixcrtD8hhBBVhyxOEOIf9A31ce/mQKMu9sScTCBkWxR3Y1IBSLmVwaE1FznzZzgt+jvj0d0BQ2PNP0LGxsYcPnyYkSNH4uvry/PPP6/xPoQQQlRNkrgJUQI9PQUufvVxbluPG6FJhGyL4tblewBk3svhxC9XOb8lkqa9nWjWxwljCyON9u/k5MShQ4dKbMvMzMTU1LTENiGEELpNXpUK8RgKhQJ7z9oMWNCWwR/74dSyjrotJz2Pc39F8MfMYI7/fIWMu1ka7btGjRrFdlQ4c+YMzs7O/PXXXxrtSwghRNUgiZsQpVSnUU16zW3J8MUdcetoh0KvcKVpfk4BFwNi2DDrAAf/F1psn1RNuX//PiNGjCAxMZHhw4fz999/V0g/QgghKi9J3IQoo5r2FnR93YtRK7rQtLcT+oaFj5GyQMW14Hg2vXmQvV+cK7ZP6tMyNDTEz88PgLZt2zJgwACN3l8IIUTlJ3PchCgni9omtJ/YFJ9hrlwMjOXKnlhyM/NBBdEnE4g+mUCDFrXwGuxK/aY2T10LztzcnN9++40uXbrQv39/jIw0O69OCCFE5SeJmxBPycSqBq1HN8ZrkDNX9sZxMSCGrOTCzetvhN7lRuhdarta4TXYFaeWddSvWMtDoVDw2muvFTuelJTEL7/8wsyZM9HTk4F0IYTQVfITXggNMTI1xGuQC6O/6EKHl5phUefhpvV3IlMIWnGWP+cd4trBeJQarAWnVCqZMGECs2fPZvDgwdy7d09j9xZCCFG5yIibEBpmYKRPkx6OuHe1J/pEYS24e9fTAEi+kcHBb0M5symcFgOc8ejmgEEN/afq7/Dhw+zevRuAU6dOkZ2d/dSfQQghROUkI25CVBA9fT1c29sx7L8d6PNWS+p51FS3ZdzN5vhPV/hj5n7O/R1BTnreY+70eJ07d2bXrl3UrVuX33//HTs7O02EL4QQohKSETchKphCocDBpw4OPnVICLtPyLZI4s7dASA7LY8zm8K5sD0Kjx6ONO/fELOaxmXuo1evXkRFRRUrzFtQUEB2djZmZmYa+SxCCCG0S2OJ25kzZzh79iwXL14kMTGRlJQUjI2Nsba2xsXFBW9vb9q1a0etWrU01aUQVU4995rUe6sVd6+ncmF7NFHHbqFSqsjLLiB0RzSXdsXQqJM9noOcsapXtmSrpN0UPvzwQ7Zs2cLmzZvx8PDQ1McQQgihJQqVSqUq78WZmZn8+eefbN++ncTERB7cysjICEtLS3JycsjIyECpLJyIra+vT4cOHRg1ahQtWrTQzCcQamFhYUyZMoU1a9bg7u6u7XBEKaTeziR0RzTXDsRTkPdwwYJCAQ3b1sNrsAu2Da3Kde+dO3eqa71ZW1sTHR2NtbW1JsIWQgihJeUecdu6dStr167l/v37uLm5MXjwYJo1a4a7u3uRv/xVKhXx8fFcvnyZU6dOcfjwYQ4dOkSHDh2YNm2azMcR1ZplXVM6TG6Gz3A3LgXEcHnPdfKy8lGpIPp4AtHHE7D3tMVriAv1PMpWC87V1ZVmzZpx6dIl3nvvPUnahBBCB5R7xK1bt2706tWLsWPH4uzsXOrrcnJyCAoK4pdffqFPnz5MnDixPN2LEsiIW9WXm5nHlaDrhO6MITs1t0hbnUbWeA12wdGn9LXgMjIy+PHHH5k+ffpTFwAWQgihfeVO3G7cuEGDBg3K3XFBQQF37tyhXr165b6HKEoSN92Rn1vAtQPxXPCPJv1O0c3ra9qb4znIBdd29dEzKN/C8B07dmBgYECfPn00Ea4QQohnpNzlQJ4maYPC+W6StAlRMgMjfZr2cmLU8s50fd2Tmg7m6rb78ekc+OYCG+cc5NKuWPJzCsp078jISMaPH0+/fv346KOP1HNQhRBCVH5SDkSISkxPXw+3jg1wbW9H3Pk7nN8WSeK1ZADSk7I4tv4y5/6OoFlfJ5r2cqKGmeET7/ntt9+SkpICwOXLl+UVqhBCVCGSuAlRBSj0FDj61sHBpzYJV+8Tsi2K+JD/rwWXmsuZjQ9rwbXo1xDTx9SC+/zzz7GxseGXX37h+++/l8RNCCGqkKcqB/JvaWlpHDlyhL59+2rqlqIMZI5b9XI3JpWQ7VFEH7/FP59ifUM9GnVugOdAZyzrProWXE5ODjVq1Chy7N69e9SsWVOSOSGEqKQ0uuXV7du3WbRokSZvKYR4hFoNLek+w5sRyzrj0cMBPYPCZKsgT8nVvXFsmnOQfavOczc2tcTr/520ZWRk0LlzZ8aOHUtaWlqFxy+EEKLsyvSq9Pbt249tT0pKeqpghBBlZ1XPjI4vNcf3OTcuBsZwJeg6eVkFqFQQdewWUcduYe9VG+//rwX3KFOnTuXSpUtcunSJvLw8/vzzz2f4KYQQQpRGmRK3UaNGPfYVikqlklcsQmiJaU1j2oz1wGuwK1f2XOdi4MNacPEhd4gPuUPdxjXxGuyCg0/tYs/qsGHD2Lp1K0qlks8++0wbH0EIIcQTlClxs7CwYMqUKfj4+JTYHhsby/vvv6+RwIQQ5VPDzBDvoa4079eQsOB4QndEk55UWAvu9rX77F56hpoOFngNcsalXX309AtnTAwbNowWLVoQHh4ucySFEKKSKlPi1rhxY5KTk3F0dCyxPTc3Fw2udRBCPAWDGvo06+NEkx4ORB67Rci2KJJvpANwPy6N4NUXOL0pHM+BzjTuYo+BkT5ubm64ubkVuY9KpeLjjz9m4sSJNGzYUAufRAghxANlWpwwdOhQ6tev/8j2unXrMn/+/KcOSgihOXoGejTq1IDhn3ek11xf6rhZq9vS72RxdO1lNrwRTMi2SHIz84pd//XXX/Pxxx/j6+tLQEDAM4xcCCHEv5VpxK1z586PbbewsKBfv35PFZAQomIo9BQ4tayLo28dEq7eI2RrFPEXChcUZaXkcuqPa5zfGkXTXo4069cQU6sa5OXlsXr1agDu379Pdna2Nj+CEEJUe1KAV4hqRqFQUL9JLeo3qUVSTAoh26KIPpEAKsjLyidkWxQXA2Jo3MUez4HOHDt2jEmTJuHi4sKwYcO0Hb4QQlRrT524de3alQ0bNlC3bl1NxCOEeIZsG1rRY6YPKbcyuOAfTfiheJT5KgrylFwJus7VfXG4tKvPmhXrsGpgWuz627dvy7MvhBDP0FMX4JXFCEJUfVb1zeg0pTmjV3alxQBnDI31AVApVUQeucnf7xxh74rzJITdV19z5MgRnJ2dWb58ufwcEEKIZ0RelQoh1MxqGtN2vAdeQ1y4suc6lwJjyE4rXLAQd+4OcefuUM+jJg6drBk1YRRZWVnMnTuXOnXqMGHCBC1HL4QQuk+jW14JIXSDsbkRPsPcGL2yK34vNMGs1sNN6xOu3uf4dxH4OXUHoFvXbowZM0ZLkQohRPUiI25CiEcyNDaged+GNO3pSMTRm1zYHkXyjQz09fTp13Ac9kaNaNaoOeEHbtKoUwMMjPS1HbIQQug0GXETQjyRnoEejTvbM/zzTvSc7UNtFysAWti1Ri/dhCM/XGLjrANc2B5FbFQcc+fOJSsrS8tRCyGE7pERNyFEqSn0FDRsXQ+nVnW5dfke57dGcvPiXQAyk3M4+uslVgS/y7XbF9kbtI+t27bg5OSk5aiFEEJ3SOImhCgzhUKBXbNa2DWrxZ3IZEK2RxFz6jbx96OISQoH4HpEPJe2x1NrTB3MbU20HLEQQuiGp07cnn/+eczNzTURixCiCqrtak3PWb4k30jngn8DDA1XsObw5zzf5g1uHk1lw4kDuLW3w3OQMzXtLbQdrhBCVGkKlRRgqpSSk5P57LPPOH/+PLa2tsyePZvWrVs/9pqwsDCmTJnCmjVrcHd3f0aRClFU+t0sQrZHEn7gJvk5Berj+QV52DQ1oev41kX2SxVCCFF6Fb44QaVSERcXR2JiYkV3pVNWrFiBjY0N27Zt4/XXX+fDDz8kJSVF22EJ8UTmtUzoMLE5Y1Z2xec5N2qYGQKw+fyPTFk0miWv/Y+dn54kPjRJCvcKIUQZaSxxO3ToEIsWLSItLU197NatW0ycOJHnn3+eUaNGsXDhQpRKpaa61FmZmZkcOnSISZMmYWxsTMeOHXFzc+Pw4cPaDk2IUjO2NKLliEaM/rIr6c6x7L22ldTs+3wZ/AFhZ6II/O8pti44SvTJBJRKSeCEEKI0NLY4Ydu2bSQmJmJh8XAOy6pVq4iJicHX15fU1FT27duHr68vAwcO1FS3j+Tv78/ixYsxMTFh165dFdpXZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSmyB6SLiwvR0dEV+jmEqAhGJgaMnzUc/xOb2bt3Ly90eR0L48JyIknRqez94hxW9c3wHOSMW8cG6BtIlSIhhHgUjf2EjI6OpkmTJup/p6enc/z4cbp3786KFSv47rvvcHJyYseOHZrq8pHu3LnD6tWrsbW1rfC+AFJSUti+fTt5eXl06tTpsecuWLCAwMBAJk6cyOLFi/Hw8ODjjz9mz5496nOysrIwMzMrcp2ZmZnUxRJVVu3atdm1axebNm3i291L6T7Tm1oNLdXtKbcyOPS/i2yYFUzozmjysvO1GK0QQlReGhtxS05OplatWup/h4aGUlBQoB5JMjAwoFWrVkUSlIqybNkyPD09sbS05MCBA489NyMjg9DQUPz8/EpsP3r0KD4+PpiYPLqcQb169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49ewLg6+tLQkIC33zzDd27d0dfXx8TExMyMjKKxfm4GISo7PT19RkxYgQALn71cW5bjxuhSXz5yXckxNyhk2sfMu/lcOKXq5zfEknT3k406+OEsYWRliMXQojKQ2MjbmZmZqSmpqr/fe7cOfT09PDy8lIfMzAwIDs7W1Ndlmj37t2cP3+eOXPmlOp8f39/5s+fT0BAQLG2rVu38s477zzxVatCoUChUDyxr0OHDmFiYkLXrl2LHO/fvz9JSUlcvnwZAHt7e7Kysoos6IiOjsbZ2bnE+wYFBTF//nxWrVr1xBiEqCwUCgWpBnf4esd/+fnUl2yK+IYCZeEq1Jz0PM79FcEfM4M5/vMVMu7KaLMQQoAGEzdHR0eOHj1Kamoq6enp7N27l0aNGhWZ85aQkEDNmjU11WUx9+/fZ9WqVbz66qvUqVOnVNeMHj2aESNGsGjRIrZu3ao+vmnTJpYtW8aECRMYOnSoRuKLjo7GyckJA4OiA52urq7qdgBTU1M6duzI2rVrycnJ4ejRo4SHh9OhQ4cS79uzZ08WLVrEjBkzNBKnEM/K9u3byczMBMC+RW1GLe2CW0c7FHqFfwjl5xRwMSCGDbMOcPB/oSTfTNdmuEIIoXUae1U6fPhwPvzwQ5577jn1yNo/J+cXFBQQGhpaZB6cpi1fvhwHB4cyJ1rTp0+nRo0aLFu2jNzcXHJzc/nuu+946aWXePHFFzUWX0pKCnZ2dsWOP0hu/zliOWfOHD799FMGDhyIra0tH330EdbW1hqLRYjKYN68eTg6OvL111/z1VdfYWpqStfXvWg5sjGhO6IJ2x9HQZ4SZYGKa8HxXDsQT8PWdfEe7Irt/++XKoQQ1YnGEreuXbsye/Zs9eKDbt26MWDAAHX7mTNnyM7Opk2bNprqsojg4GCOHj3KDz/8UKrXlv82ZcoUjIyM1K8bp06dytixYzUdZqljs7a2ZsmSJRrvX4jKZuzYsYwZM6bIs2FR2wT77uY0H9iBa/tucnl3LLmZ+aCCmJO3iTl5mwYtauE12JX6TW3K9cwLIURVpNG9SocOHfrI0a42bdqwc+dOTXanlpmZyRdffMFzzz1HrVq11LXk8vMLV6alpaVhYGDwxMn96enpKBQKVCoV6emafyVjZWVVYhHdB/FaWloWaxOiOvh34pWSkkKPHj2oU6cOGzduxHNgV67sjeNiQAxZyTkA3Ai9y43Qu9R2tcJrsCtOLeuoX7EKIYSu0olN5lNSUrh37x4bNmxgw4YNxdoHDBhAx44d+eyzz0q8XqVS8cUXX7B161bmzZtHXl4ey5cvJzc3l2nTpmksThcXF4KCgsjPzy8yzy0qKgrgkYsPhKhuXn31VSIiIoiIiGDKlCns3LkTr0EuNOvjRPihG1zYHkVaYuGChTuRKQStOIt1AzM8B7ng1t4OPakFJ4TQUTqRuNnY2LBy5cpix3/99VfOnz/PkiVLsLIqeT6MUqlkyZIlBAYG8v7776vLlxgZGbF48WJycnKYPXu2Rl7FdOrUie3bt3PgwIEiBXcDAwOxtbWladOmT92HELpgzpw5HDt2jLS0NFavXq0+bmCkT5Mejrh3tSf6RAIh26K4d71wxDr5RgYHvw3lzKZwWgxwxr2rPYbGOvEjTggh1HTip1qNGjXw8fEpdjwgIAB9ff0S2x7YsGEDu3fvZuHChUWK5/br1w8jIyM++eQTnJycGD58+GNjOH78ONnZ2eoVcrGxsQQHBwPg5+eHsbExfn5+tGrViuXLl5OZmUmDBg3Yu3cvJ06cYMGCBejr65fj0wuhe9q0acPZs2cJCwujYcOGxdr19PVwbW+HS7v6xJ+/Q8j2KBKu3gcg4242x3+6wvm/I2jWpyFNeztRw9zwGX8CIYSoGAqVDu/y/Nlnn3HgwIHH1mHLyckhPDyc5s2bl9geGhqKh4cHhoaP/8E/atQoEhISSmzbsGED9evXBwrn461Zs6bIllcTJkwoMgJXXmFhYUyZMoU1a9bg7u7+1PcTorJRKpVMnz6dSZMm0bp16yJtCWH3CdkWSdy5O0WOGxrr49HDkeb9GmJmY/wswxVCCI3T6cStupHETei6RYsW8c4772BkZMR3333HxIkTi51z73oaIdujiDp2C9U/Nq/XM1DQqFMDPAe6YFXfrNh1QghRFejEq1IhhO4rKChQr0zPy8tTj2L/m42jBd2medFqZCMu7IjmWnB8YS24fBVh++MJC47HuU09vIa4YNtQasEJIaoWSdyEEFWCvr4+e/fu5e2338ba2po+ffo89nyLOqZ0mNQMn+fcuBQQw+U918nLKqwFF30igegTCdh72uI52IX6TaQWnBCiapBXpTpEXpWK6kKlUhVLtC5fvvzYldm5mXlcCbpO6M4YslNzi7TVcbPGa4gLjj5SC04IUbmVudiRUqkkKiqKpKSkYm35+fmcP39eE3EJIcQj/Ttp2717N82bN2fGjBnk5OSUeI2RqSFeg10Z82VX2k9qinnthwW5EyOS2bPsLH/NP0z4oRso85UVGr8QQpRXmUbcEhISePvtt4mNjUWhUODn58c777yjrpF27949nnvuOXUZDPFsyYibqI7u3r2Lh4eH+o/J77//npdeeumJ1ykLlEQdu0XI9ijuxxXdKcXc1gTPgc407mqPgZGU6RFCVB5lGnH75ptvqF27Nps2beLHH38kLy+PadOmFRl9kzevQohnycbGhs8++4waNWowYMAAJk2aVKrr9PT1cOvYgOf+25Fec32p08ha3ZaelMXRdZf5Y2Yw57dEkpORV0HRCyFE2ZQpcQsJCWHq1KnUqVMHFxcXli5diqenJ9OnT+f27dtA6TdRF0IITVAoFEyZMoVjx47x008/oadXthkgCj0FTi3rMugjPwa83xZ7r9rqtuzUXE5vvMYfM/Zz8verZCaX/BpWCCGelTL9hMvOzi5SiFahUPD222/TunVrZsyYwY0bNzQeoBBClIaPjw82NjZFjsXExDB69Gju3LnziKseUigU1G9iQ995rRj2WQdc/Orz4O/QvOwCLmyP5o+ZwRz+4SKptzMr4iMIIcQTlSlxc3R0JCwsrNjxuXPn4ufnx/z58zUWmBBCPI2cnBxGjhzJxo0b8fX15eLFi6W+tlZDS7rP9GbEss54dHdAz6Awg1PmK7m6N45Ncw6w/6vz3L2eWlHhCyFEicqUuHXu3Jk9e/aU2DZnzhy6d+8uc9yEEJVCZGQkcXFxQOF+xvb29mW+h1U9Mzq+3JwxK7vSYqAzBsaFCxVUKog8eou/5x9h15LTJFy9p8nQhRDikaSOmw6RVaVCFHXr1i0mTZrEokWL8Pb2fur75aTncTkolksBMWSnFV2wULdxTbyGuODgXVvm+gohKowkbjpEEjchSicrK4vY2Fg8PDzKdX1+TgFhwXFc8I8m4252kTYbRws8B7ng4lcPPf0yl8oUQojHeuqfKl27dlWvKBVCiKpgxowZtGzZkl9//bVc1xvU0KdZn4aMXtGFzq+1wNru4ab1966nEfx1CJvmHuRK0HXycws0FbYQQjx94iYDdkKIquTPP//khx9+IDMzk1deeYWbN2+W+156Bno07mzP8MWd6Dnbl9quDzetT0vM4siPl9jwRjAh2yLJzZRacEKIpyfj+EKIaqV///5MnjwZgG+//RY7O7unvqdCT0HD1nUZvLAd/d9rQ4MWtdRtWSm5nPrjGn/MDObUhmtkpUgtOCFE+RloOwAhhHiWTExM+OGHH5g8eTIdOnTQ6L0VCgV2zWph16wWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqlG+xdC6D5J3IQQ1VJJSduaNWuIjo5m4cKFGBg83Y9HWxcreszyIflmOhf8o4k4dANlgYqCPCWX91znyt44XNvXx2uwCzXtLZ6qLyFE9SGJmxBCAGfOnGH69Onk5uZy/PhxAgMDMTIyeur7WtuZ0/mVFrQc7kZoQAxX98aRn1OASqki4vBNIg7fxLFlHbwGuVC3cU0NfBIhhC6TxE0IISjci7mgoHAFaPPmzTWStP2TWS0T/CY0wXuIK5d3x3IpMFa9ef31M4lcP5NIvSY2eA12wd7TVmrBCSFKJImbEEIAkydPpnHjxixfvpylS5dWWD/GFkb4Dm9EiwHOhO2PI3RHDBn3CmvBJVy5R8KVe9RqaInXYBcatqmHnp4kcEKIh546cXv++ecxNzfXRCxCCKFVHTt2pGPHjsWOX758mQYNGmBlZVXCVeVjaGxA837ONOnlROThm4RsjyLlVgYAd2NS2ffleSzrmuI5yIVGnezQN9TXWN9CiKpLdk7QIbJzghCal5SUhK+vLzVq1GDz5s14eXlVSD9KpYrY07cJ2RpJUnTRzetNa9ageX9nPLo7YGQiL0qEqM7kJ4AQQjzG9OnT1ZvVv/XWW+zevbtC+tHTU+Dcph4NW9fl5sW7hGyL4ualuwBk3s/h5K9XOb8lgma9nWjWpyHGlpqdgyeEqBo0nrgplUru3LnDnTt3yM/PL/EcTWz2LIQQz8J///tfwsPDiY+PZ926dRXen0KhoEELWxq0sCUxIpmQ7VHEnircVjA3I59zf0dyYUc0Ht0daDHAGfNaJhUekxCi8tBY4qZSqfj111/ZuHEjqampjz03ODhYU90KIUSFcnZ25siRI0RGRmpkl4WyqONmTa/Zvty/kc6F7VFEHL6JSqmiIFfJpcBYLu++jltHO7wGuWDdQOYaC1EdaCxx++677/j999+pWbMm/fr1o1atWujry2RaIUTVZ2xsTLNmzYocKygoYOTIkbzwwgsMHTq0Qvuv2cCcLq950nJEI0J3RHN1XxwFeUpUShXhB28QfugGDVvVxWuwC7VdrSs0FiGEdmkscQsMDMTBwYH//e9/mJrKNi5CCN32wQcf8Pfff/P333/z3//+l/nz51d4n+a2JrR7sSnew1y5vCuWS7tiyc3MBxXEnLpNzKnb2DWrhddgF+ya15JacELoII0lbllZWfTq1UuSNiGEzlMqlURFRQGgr6+v8T1Pn8TEsgYtRzamxUAXru69TujOGLKSCzevv3npLjcv3cXW2RKvIa40bFUXhdSCE0JnaCxxc3Nz4+7du5q6nRBCVFp6enr89ttvtG/fnoKCAjp16qSVOIxMDPAc6EKzPk6EHyqsBZd2OxOApOhU9n5xDqv6ZngNcsG1ox36BnpaiVMIoTkae4pfeOEFDh8+TFhYmKZuKYQQlZZCoWDGjBnMmjWrWNv+/ftRKpXPLBZ9Q308ujswcllnus3wxsbx4ab1KbcyOPi/UDbMCuZiQAx52SWv9hdCVA0aLcAbHBzMihUr6NChA66urpiZmZV4Xt++fTXVpfgHKcArhPZt2bKFYcOGMWjQINavX0/Nms9+43iVSkX8hSRCtkaScPV+kbYa5oY06+tE095OGJtLLTghqhqNvSrNzc3l8OHDpKSksGPHDoBiE2NVKhUKhUISNyGETkpJSWHy5MkAbN++nT///JOXX375mcehUChw8KqNg1dtbl+7T8i2SK6fvQNATnoeZzdHcGF7NE16OtK8f0PMaho/8xiFEOWjscTtq6++Ys+ePbi6utKlSxcpByKEqHasrKz47bffmDBhAj169OCll17SdkjUbVyT3m+24t71NEK2RxF17CYqJeTnFBC6I5pLu2Jo1KkBngNdsKpf8lsSIUTlobFXpYMHD6ZevXqsXr0aAwPZSUsb5FWpEJXD9evXqVmzJhYWFkWOP3jroE1piZlc2BFN2P54lPn/mIenAOe29fAa7IJtQyvtBSiEeCyNLU7Izc3Fx8dHkjYhRLXn6OhYLGkLCwujY8eOXLt2TUtRFbKoY0qHSc0Ys6orXoNdMDT+/zcjKog+nsCWd48S8N9T3LpyFw1OgRZCaIjGsix3d3fi4+M1dTshhNAZGRkZjBgxgosXL9KqVSt27dpFu3bttBqTqVUNWo9xx2uwC1eCrhO6I4bstFwAboQmcSM0iTpu1ngNccHRp47UghOiktDYiNuUKVM4efIkR48e1dQthRBCJyQlJanLgzg4OODp6anliB4yMjXEa7ArY1Z1pf2kppjbPlyokBiRzJ5lZ/lz3iHCD90o+mpVCKEVGpvjtm7dOi5dusSpU6fw8fHBzc2txHIgCoWCF198URNdin+ROW5CVF7p6enMmjWLN998Ew8PD22H80jKAiVRx25xflsUyfHpRdrMahnjOdAF9272GBjJ4jMhtEFjiVuXLl1K16FCQXBwsCa6FP8iiZsQVU9aWhpnz54t9c/QZ0WlVBF3/g7nt0aSGJ5cpK2GhSEt+jnTpJcjNcwMtROgENWUxua4rVy5UlO3EkKIakGlUvHyyy+zadMmPv74Y9577z309CrHtlQKPQWOvnVw8KnN7bD7nN8aSXxIEgA5aXmc3niN89siadrLkeb9nDG1rqHliIWoHjS6c4LQLhlxE6JqebDLAoClpSUXL17EwcFBy1E92t2YVEK2RxJ1PAH+8ZtDz0BB4y72eA50xrKu1IIToiJVjj/thBCiGho8eDD/+c9/0NPTY/369ZU6aQOo1dCS7jN8GLmsMx7dHdDTL1xpqsxXcXVvHBvnHGTfqvPcvZ6q5UiF0F0aG3ELDQ3lwIEDjB07llq1ahVrv3v3Lr///jvdunWjWbNmmuhS/IuMuAlRNUVERODm5lbk2IMfzdou2Ps4mfezCQ2I4cqe6+TnFBRps/eyxXuIK/U8bLQUnRC6SWMjbhs2bODIkSMlJm0AtWrV4ujRo2zcuFFTXQohhE74d9IGsGLFCiZMmEB6enoJV1QOpjWNaTvOg7GrutFyVCNqmD9cqBAfkoT/whNs+/AY188lSjFfITREY4sTrl69SsuWLR97jpeXF6dPn9ZUl0IIoZMOHz7M22+/TUFBASEhIZw6dQoTExNth/VINcwN8RnqRot+zoQFx3NhexQZ97IBSAxPZveSM9S0N8driCsufvXQ05dZOkKUl8aenuTkZGxtbR97jo2NDffv39dUl0IIoZPu37+PqakpUDgPrjInbf9kUEOfZn2cGP1FF7pM9cTK7uFChfvx6QR/HcLG2Qe4vCeW/NyCx9xJCPEoGhtxMzc3JzEx8bHn3L59u8r8ABJCCG0ZNGgQp0+f5osvvmDhwoXaDqfM9Az0aNSpAW4d7Lh+NpFzWyJJikoBID0pm6NrL3N2cwQtBjSkSU9HjEylFpwQpaWxEbdmzZpx8OBBbt++XWL77du3OXToEM2bN9dUl0IIobMaN27M6tWrMTAo+vf18ePHiY2N1VJUZaPQU+DUqi5D/tOO/gvaYNf84Rzo7LRcTv1xjd+n7+fUH2FkpeRoMVIhqg6NJW6jRo0iJyeHadOmERgYSFJSYaHGpKQkAgICeP3118nNzWX06NGa6lIIIaqVmzdvMmTIEHx9fQkMDNR2OKWmUCiwa1qL/u+2Yein7WnYph78/2LZvOwCQrZF8fuMYI6svUTanUztBitEJafRArx//fUXq1atKrKM/Z//f8aMGTz33HOa6k78i5QDEUK3Pf/88/zyyy8A9O3bl507d1bqciGPk3Irg5DtUYQfuoGq4OGvIYUeuLSzw2uwCzYOFlqMUIjKSeM7J0RFRbFlyxauXr1Keno65ubmNGnShCFDhuDi4qLJrsS/SOImhG67f/8+EydO5OzZs5w9e5batWtrO6SnlnEvm9Cd0VwJuk5BrrJIm4N3bbyHulK3cU0tRSdE5SNbXukQSdyE0H1KpZIbN24U22VBqVRWmn1OyyM7LZfLe2K5GBBDbkZ+kba67jXxHuqKvadtlR1hFEJTqu5TruOSk5N5++236d27N+PGjePUqVPaDkkIUQno6ekVS9pyc3Pp1q0bX3zxRZUtdGtsYYTvc40Yu6obfs83KbJp/e2w++z6/DR/v3OEqOO3UCqr5mcUQhM0Vg5EaNaKFSuwsbFh27ZtnD59mg8//JDff/8dKysrbYcmhKhk3nrrLQ4ePMjBgweJjY1lxYoV2g6p3AyNDWjeryFNejkSefgm57dGknq7cMHCvetp7PvyPOa1TfAe4kqjTnboG+prOWIhni0ZcauEMjMzOXToEJMmTcLY2JiOHTvi5ubG4cOHtR2aEKKSUalUGBsbA2BkZMT48eO1HJFm6Bvo0birPSOWdabHLB9qNbRUt6XfyeLw9xf5fUYwF/yjyM3Kf8ydhNAtOjPiFh4ezpo1a4iKiiI5OZkaNWrg6OjIsGHD6N27d4X2nZmZyfr16wkPDyc8PJyUlBQmTpzI5MmTSzz3+++/Z//+/aSlpeHo6Mj48ePp0aOH+pz4+HhMTEyoW7eu+piLiwvR0dEV+jmEEFWPQqHg888/p3379ty7d49WrVppOySN0tNT4NymHg1b1+Xmpbuc/zuSW1fuAZCdmsvJ38I493ckzfo40ayvEyaWNZ5wRyGqNp1J3NLT06lTpw49e/bE1taW7Oxs9uzZwyeffMKtW7d48cUXK6zvlJQUtm/fjqurK506dcLf3/+R5y5YsICrV6/y6quv4uDgQFBQEB9//DFKpZJevXoBkJWVhZmZWZHrzMzMSE5OrrDPIISo2oYMGVLi8T/++IOhQ4eqR+WqKoVCQYPmtjRobsudyGTOb40k9nThbj15Wfmc3xJJ6I5o3LvZ4znQBXNb2aVH6KanStzy8/OLVfXWFh8fH3x8fIoca9++Pbdu3WL79u2PTNwyMjIIDQ3Fz8+vxPajR4/i4+Pz2K266tWrx44dO1AoFCQnJz8ycTt27BinT5/mgw8+oGfPngD4+vqSkJDAN998Q/fu3dHX18fExISMjIxiccp2YUKIsvj111+ZMGECvr6+bN68GWdnZ22HpBG1Xa3pNaclyTfSCdkeRcThm6iUKgrylFzefZ0rQXG4tq+P12AXatpLLTihW55qjttzzz3H119/TUxMjIbC0TwrKyv09R89edXf35/58+cTEBBQrG3r1q2888477Nq167F9KBSKUi1RP3ToECYmJnTt2rXI8f79+5OUlMTly5cBsLe3Jysrq8jer9HR0Y/8oRsUFMT8+fNZtWrVE2MQQlQPGRkZzJo1C4CzZ89y4MAB7QZUAawbmNPlNU9Gr+xCsz5O6BsW/kpTKVVEHL7Jn28fZvfSMyRGJGs3UCE06KkSt4yMDDZu3MjEiROZOnUq/v7+ZGZqd7sSpVJJfn4+ycnJ/P3335w8eZJx48Y98vzRo0czYsQIFi1axNatW9XHN23axLJly5gwYQJDhw7VSGzR0dE4OTkVG6V0dXVVtwOYmprSsWNH1q5dS05ODkePHiU8PJwOHTqUeN+ePXuyaNEiZsyYoZE4hRBVn5mZGUFBQbi5uTF58mQmTpyo7ZAqjHktE9q92JSxq7rhM8wVQ5OHP2Ovn01k2wfH8F94nPjQpCpbLkWIB57qPefff//Nrl27CAgI4PLly1y5coVVq1bRrVs3+vfvj6enp6biLLXly5ezbds2AAwNDXnjjTceOffjgenTp1OjRg2WLVtGbm4uubm5fPfdd7z00ksanRuXkpKCnZ1dseMWFoVD+ampqepjc+bM4dNPP2XgwIHY2try0UcfYW1trbFYhBC6z8vLi9OnT2NkZFSsrTJNddEUY0sjWo5sTIuBLoTti+OCfxRZKbkAJFy9T+B/T2HjaIHPMFecWtdDT0+K+Yqq56meWktLS0aOHMnIkSMJCwtj586d7N27l4CAAAIDA7G3t2fAgAH06dMHGxsbTcX8WM8//zwDBw7k/v37HD16lC+++IKsrCzGjh372OumTJmCkZGR+nXj1KlTn3hNeZS26re1tTVLlizReP9CiOqlpNqPISEhPPfcc6xbt45OnTppIaqKZWRiQIsBzjTt7Uj44ZuEbIkk7U4WUFgLbu/K81jUMcF7qCtuHRugbyCVsUTVobE/t9zd3XF3d2f69OkcPHiQHTt2cO7cOb777jvWrFlDu3btGDBgAH5+fhW6LUvdunXVZTTatWsHwP/+9z/69ev3xBGr9PR0FAoFKpWK9PR0jcdmZWVFSkpKseNpaWlAYSIshBAVKSUlhREjRhAVFUW3bt0ICAhQr2jXNfqG+nh0c6BxF3tiTiZw7u8I7scV/mxPS8zi0P8ucnrDNTwHueDR3QFDY90agRS6SePfpYaGhvTo0YMePXqQmJhIQEAAAQEBHD58mCNHjmBjY8Nff/2l6W4fqUmTJmzdupWbN28+MnFTqVR88cUXbN26lXnz5pGXl8fy5cvJzc1l2rRpGovFxcWFoKCgYq8ooqKiAHRmxZcQovLKy8vD0dGRiIgIvL29dXLE7d/09BS4+NXHuW09boQmce6vCG5fSwYgKyWXE79c5exfETTv40Szvg0xtij+almIyqJC/7yoU6cOL774It26dWPx4sWEhoZy7969iuyymHPnzqGnp1fi3DIoXMywZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bIxsbd+rUie3bt3PgwIEiBXcDAwOxtbWladOmT92HEEI8jq2tLbt37+azzz7j+eefr/L13cpCoVBg71kbe8/aJIbf59zfkcSdvwNAXmY+5/6O5IJ/NB7dHfAc6IxZLSnBJCqfCkvcsrKy2L9/Pzt37uTixYvqbVm6dOlSIf0tWbIEU1NTmjRpgo2NDcnJyQQHB7Nv3z7Gjh37yNG2DRs2sHv3bhYuXFjkL89+/fphZGTEJ598gpOTE8OHD39s/8ePHyc7O1u9qjY2Npbg4GAA/Pz8MDY2xs/Pj1atWrF8+XIyMzNp0KABe/fu5cSJEyxYsOCxZUuEEEJT9PX1ef/994sdv3//PgEBAY9dia8r6jSqSZ+3W3E/Po3zWyKJOnYLlQoK8pRc2hXL5T3Xcetgh9cQF6ztzLUdrhBqCpWG10aHhISwc+dOgoODycnJQaVS4eHhwYABA+jZsyempqaa7E5t586d7Ny5k9jYWNLT0zExMcHNzY2BAwc+dsurnJwcwsPDad68eYntoaGheHh4YGho+Nj+R40aRUJCQoltGzZsoH79+kDhlldr1qwpsuXVhAkTiozAlVdYWBhTpkxhzZo1uLu7P/X9hBDVh1KpZMiQIfj7+zNp0iS+/vrralX0O+1OFhf8owjbH48yX1mkzbFlHXyGuVHbpfhCDyGeNY0kbnfu3CEwMJCAgABu3ryJSqXC0tKS3r17M2DAAFxcXDQRq3gCSdyEEOW1a9cu+vbtC0CtWrU4d+4cDg4OWo7q2ctKyeFiQAyXd8eSl11QpK2ehw0+z7li16yWRqbPCFEeT/WqdN++fQQEBHD69GmUSiV6enq0bt2a/v3706lTJ52rESSEELqqT58+/PLLL7z22mv8+uuv1TJpAzCxqkHrMe54DXbhSlAcF3ZEkZOWB0DC1XsEfHaPWk4W+DznhlPLuiikFpx4xp5qxO3BfLV69erRv39/+vXrR506dTQWnCgbGXETQjytu3fvUqtWrSLHCgoKUCqVT5wyoovycwsIP3SD81siybibXaTNoo4JPsPccO1gJ7XgxDPzVENiPXr0YMCAAbRs2VJT8QghhNCifydtAJ988gl79+7ljz/+eOQKfV1lYKRPkx6OuHe1J/pEYS245BsZQGEtuIPfhXLqj2t4DnKWWnDimdD44gShPTLiJoTQtN27d9O3b19UKhV2dnaEhYVhbl59V1mqVCriQ5I4+2c4dyKLFlQ3MjWgeb+GNO3jhLG51IITFUOjfxrk5+fz119/ERQUxPXr18nJyWH//v0AhIeHs337dkaOHFlt504IIURVY2lpSYMGDYiPj2fatGnVOmmDwlpwDt61cfCuTULYfc79FcGN0CQAcjPzOftnBCHbovDo4YDnQBfMbKpPnTzxbGgsccvJyWHu3LlcvHgRKysrzMzMyM5+OB+gfv367Ny5EwsLC6ZMmaKpboUQQlQgPz8/zp07x+rVq5k/f762w6lU6rnXpN87rbl3PY1zf0cQczLhYS24wMJacK7t7fAZ6opVfTNthyt0hMZmU/7888+EhobyyiuvsGXLFgYMGFCk3dzcHG9vb06dOqWpLoUQQjwDtra2fPDBB8X2mQ4KCuLMmTNaiqrysHG0oMcbPoxc3gX3bvbo6ReuNFUVqIg4dINNcw+ye9kZkmKK71UtRFlpLHHbt28f3t7ejBs3DoVCUWKNGzs7O27fvq2pLoUQQmhJTEwMo0aNon379nz33XfIdGmwrGtKpyktGPNVN1oMcMagxsPdcK6fSWTLu0fx/88Jbl6+K18vUW4aS9wSExPx8PB47DmmpqZkZGRoqkshhBBasmjRIu7fv09ubi6BgYHaDqdSMbWqQdvxHoz7uhstRzbCyOxhGZWEK/fY+clJtrx7hNjTt1EpJYETZaOxOW4mJiakpDx+GPjmzZtYWcmWIUIIUdV9+eWX1KhRgx07drB27VrZSaAERqaG+Axzo8UAZ8L2xxOyLZLM+zkA3I1NY8/ys1jWNcV7mCtu7e3Qk1pwohQ09l3SrFkzjhw5Qnp6eontiYmJHD9+HC8vL011KYQQQkuMjIxYuXIlZ8+exdraukhbVlaWdoKqpAyM9GnWx4kxX3aly+ueWNZ7uGd36u1MDn4byu8zg7kYGE1+TsFj7iSEBhO3MWPGkJaWxpw5cwgNDaWgoPCbLzs7mzNnzjB37lzy8/MZPXq0proUQgihZZaWlkX+nZWVRfv27Zk1axa5ublaiqpy0tPXo1HHBoxc2pneb7akVsOHX7us5ByO/3SV36bt4+yf4eRk5GkxUlGZabQA79atW1m5ciVKpbJYm56eHnPmzGHgwIGa6k78ixTgFUJo28svv8wPP/wAwAsvvMD69eu1HFHlpVKpuB12nzObw7l1+V6RNn0jPTy6O+A1yAXTmlILTjyk0QK8Q4YMwcvLi61bt3LlyhVSU1MxMzOjSZMmDBs2DGdnZ012J4QQohJRqVS0atWKn3/+GQMDA9566y1th1SpKRQK6nnYMGBBW+7GpnL2z3BizySCCgpyC2vBXdlzHdcOdvgMc8WyrtSCE7LllU6RETchRGVw6tQp4uLieO6557QdSpWTejuDc39HEnHkJqqCf/x6VoBTyzr4Dm9ELSfLR99A6LxnvoSlpNeoQgghdEfr1q2LJW0qlYoVK1aQlJSkpaiqBsu6ZnR5zZOxX3alWd+G6Bv9/69pFcSeTuTvd46w45MTJFy99/gbCZ2lscTN39//iecUFBSwcOFCTXUphBCiivjf//7HnDlz8PX15cSJE9oOp9IzrWlMuxeaMO7r7vgOd8PI9OHMpluX7+G/8AR/v3uE2LO3pZhvNaOxxG3ZsmUcOnToke0qlYr//Oc/BAcHa6pLIYQQVUB2djaffvopAHFxccTGxmo5oqqjhpkhvsMbMe7r7rR93gMTKyN1292YVPYsPcumuQcJP3wDZYG80aoONFrHbeHChYSEhBRre5C07d+/n8GDB2uqSyGEEFWAsbExx44do0OHDsycOZNRo0ZpO6Qqx6CGPi36OTN2VTc6v9oCizom6rbUhEwOrL7AHzOCubQrhvxcqQWnyzS2OCE9PZ1p06Zx584dVq1ahaurK1CYtH3yyScEBQUxePBg5s6dq4nuRAlkcYIQojLLy8tDpVJhZGRU5HhaWhoWFhZaiqpqUilVxJ65zZnNEdyPSyvSZmRmSPN+TjTv2xAjU8NH3EFUVRobcTM3N2fZsmWYm5vz1ltvcevWLfVIW1BQEIMGDZKkTQghqjFDQ8NiSdvx48dxcnLi999/11JUVZNCT0HD1vV4blEH+r/XmrqNrdVtuRl5nN0cwW/T9nP85ytkpuRoL1ChcRovBxIXF8frr7+OhYUFjRs3Zv/+/QwcOFDq+TwDMuImhKhKkpKS8PX1JS4uDoC//vqLYcOGaTmqqispOoUzm8KJO3+nyHE9fQWuHezwHe6GRW3TR1wtqgqNlwNxcHBgyZIl3Lt3j+DgYAYMGCBJmxBCiGJMTU3p0aMHAB07dpSddZ6SrbMVfd5uxchlnXFtXx+FngIAZYGK8IM32DDrAHuWneHev16tiqql3DsnrFu37rHtTZo0ISIiAltb2yLnKhQKXnzxxfJ2K4QQQkeYmpry448/0qVLF3r37o2hoczH0gSr+mZ0m+5Nm3HZnN8SybUD8RTkKQtrwZ1JJPZMIvWb2NByVCPqudtoO1xRRuV+VdqlS5fydahQSEmQCiKvSoUQuiIxMZEff/yRt956C319fW2HU6Vlp+cSuiOay7tjycsquuK0VkNLfEc2wtG7NgqFQksRirIo94jbypUrNRmHEEIIARQWax87diz79u1j7969/Pbbb9SuXVvbYVVZxuZGtB7tjvcQVy7vuU6ofxTZaXnA/9eCW3IGy3qm+Dznhmt7O/T0JIGrzMqduHl7e2swDCGEEKLQ0aNHOXDgAACXLl2ioEDqkmmCobEBXoNcaN6vIdcOxBOyNZL0pGzgYS24U7+H4TXYFfdu9hgYyUhnZfTM9yoVQgghHqdTp07s3bsXe3t7NmzYQL169bQdkk7RN9CjSQ9HRn/Rle4zvbFuYKZuy7yfw7H1l/l92n7O/hVObla+FiMVJSl34jZv3jzCwsLKdW1OTg6///47W7ZsKW/3QgghdFiXLl2IiIigU6dORY7n5eWRliarIjVBoafAxa8+wxd3ou/81tR2s1K35TyoBff6Po7/fIWsVKkFV1mU+1VpYmIir776Kt7e3vTp04fOnTtjZmb22GuuXr3K7t27CQoKIisri3fffbe83QshhNBxNWrUKHbs3XffZdu2bWzevJkWLVpoISrdo1AosPe0xd7TlsSIZE5vvMbNi3cByM8p4GJADJf3xOLa3o6WIxphbmvyhDuKilTuVaUqlYqdO3eyfv16bt++jZ6eHo6OjjRu3JiaNWtiYWFBTk4OqampxMfHExYWRkZGBgqFgm7dujFlyhTq16+v6c9TrcmqUiGELtuyZYu6QK+VlRUxMTFYW1trNygdlXwjndObrhF7+jaqf+xdr1CAo28dWo5qjI2DbFOmDeUecVMoFAwYMIB+/fpx7NgxAgICCAkJYffu3cXO1dPTw8XFhU6dOjFw4EBsbW2fKmghhBDVj6enJz4+Ppw7d46FCxdK0laBrBuY03OWL+l3szj7ZwQRh2+izFei+mctuKY2tBrVmLqNa2o73GpF41texcTEcOfOHVJTUzEyMsLa2hpnZ2fMzc012Y0ogYy4CSF0XXZ2Nj///DMvv/yy1B17hrJTczm/LZKre+PIzym6ytfW2ZKWIxth7yW14J4FjSduQnskcRNCVFd///03BgYGDBo0SNuh6LS87HxCA2K4FBBDTnpekTar+oW14FzaSS24iiTlQIQQQlRpYWFhvPDCCwwePJh33nkHpVL55ItEuRgaG+A7zI1xX3ej3cSmmNZ8uIAk5VYmwV9f4I+Z+7m0O4aCfPnvUBHKPcdNCCGEqAx+/PFH0tPTAYiPj5fXdc+AvqE+zXo70aSnI1FHb3L2rwhSEzIByLyXw7F1Vzi7OYJmfZ1o0d8ZQ2NJNzRFvpJCCCGqtEWLFlGvXj1++uknvv32W0ncniE9PQVuHRvg2sGOuPN3OLMpnLsxqQDkpBfWgruwPRqP7vZ4D3XD2MJIyxFXfTLHTYfIHDchRHWWl5eHoaFhkWOJiYnUri2T5p+lhLB7nN4YTsKVe0WO6xkocG1vR6uRjTCrJbXgykvmuAkhhNAJ/07a0tLS6Ny5M8OGDSM5OVk7QVVD9dxtGPh+W55b1AFH3zrw/zmzMl9F+MEb/PFGMHuWn+V+vOyAUR7yqlQIIYROevXVVwkLCyMsLIzJkyfz119/aTukasXG0ZLeb7YkNTGTs5vDiTp2C2WBCpUSYk/fJvb0beo3taH1qMbUkVpwpSYjbkIIIXTS888/j42NDZaWlixevFjb4VRblnVM6fq6F2O/6kbT3o7oGz1MPW5dvse2j46z5b0jxJ1PRGZvPVmFJ25du3at6C6EEEKIYvr168fZs2f566+/cHNz03Y41Z6JVQ3aT2zG+NXd8R7qipHpw5d+SdGp7Fp8hs1vHiLi8A1USkngHqXCEzfJnoUQQmiLk5MTPXr0KHJMpVIxf/58wsPDtRRV9WZkakirUY0Zt7o7bca5Y2L1cKVpyq0Mglf/fy24QKkFV5IyJW7z5s3j+++/5+DBg9y6datU1/xzJc+vv/5KXl7eY84WQgghKtaKFSv4/PPPadWqFdu2bdN2ONWWgZE+ngNdGPtVNzpOaY5F7YcrTTPu5XDspyv89vo+zv4ZTl52vhYjrVzKtDjB1taWU6dOsWHDBvLy8jA3N6dRo0Y0atSIxo0b06hRIxwdHYska/8ccVuzZg39+/enZs3CSYh//PEHQ4YMwcRElgULIYSoeHl5eaxbtw6A1NRU9PRkqre26enr4dHNAfeu9sScus3ZP8O5H1dYUDknPY+zf0ZwYUc07t3s8RnmhrF59a4FV6bE7a233gKgoKCA2NhYwsLCiIiI4OrVq/j7+5OZmYmxsTGBgYElXv/v16br1q2jc+fO6sTt/v37vP766/z+++/l+SxCCCHEYxkaGnL06FGmTJmCs7MzAwcO1HZI4v8pFAqc29TDuU09blxK4szGcBLDkwHIzy7gUkAsV4LicPWrT8vRjTC3qZ6DPuUqB6Kvr4+LiwsuLi4AREZGcvDgQbZs2UJKSkqp7/PvRE6lUpX6FawQQghRHubm5vz2228lzsGOj4/H3t5eC1GJf2rQzJYGH9uSFJXCqY3XuBGaBCpQ5ikJP3SDiCM3cfSpTasxjanZwELb4T5T5a7jdvnyZQ4cOMChQ4dITEzE29ubyZMn06FDB03GJ4QQQmicQqEotpvC/v376du3Lx999BHz5s2T16iVgK2LFf3mtyY5IYMzG64Rc+o2KqUKlVJF7JlEYs8mFtaCG92YOm7VoxZcmRK3M2fOcPDgQQ4dOkRGRgZt27Zl0qRJtGvXDnNz81Ld4+jRo/j4+GBnZ1eugIUQQghNS0xMZMyYMeTm5vLuu+/i6OjI+PHjtR2W+H/W9czo8YYPmcnZnNkUTsThmxTkKUEFty7dY9sHx7F1tqTlqEbYe+r2FmdlStzmzJmDra0tEyZMYNCgQcW2FynJP794jRo1YsWKFeTn52Nqakpubi6//vorLVq0oFGjRqVO/oQQQghNqlWrFq+//joff/wxvXr1YsyYMdoOSZTA1NqYTlNa0Ha8B+f+juDqvnjysgpXnCZFp7Lr8zNY1TfDe5grbu3tUOjpXgJXpk3mX375ZWJiYsjPz8fCwqLIitLGjRvj4OBQ7JquXbsSHBys/nd+fj4xMTFcu3aNa9euER4eTkREBDk5OSgUClQqVZHzRenJJvNCCPF0goKC8Pb2xtbWVtuhiFLIzy0gdGc0lwJiyU7LLdJmZmOM5yBnmvRwRM9Ad157lylxg8cnXiYmJri5ubFq1Sr1+f9O3EqiUqmIi4tTr1KdOnVquT5MdSeJmxBCaF5cXByLFi1i8eLFmJmZaTscUQJlgZIr++K4sC2KjLvZRdqMLQxp2tsJz0EuGBjpaylCzSlz4laSxyVeDxK3JUuW4OrqipubG66urvLNXwEkcRNCCM3Kzc2lS5cuHD9+nGbNmrFt2zZ1RQVR+aiUKiKP3+LcXxGk3Mwo0mZorE/jrvb4PFe1a8GVeo7b4xIvhUKBo6Mjjo6O9OrVq8Tr8/Ly2LlzJ7GxseTl5VG3bl31vdzc3HBzc5MFC0IIISqVixcvcvHiRQAyMjKwtrbWbkDisRR6Ctza2+Harj7xIXc4szmcpKhUAPKyC7gUGMvVvXG4tKtPy1GNMbcx1nLEZVfqxC0/P/+pEq93330XAKVSydmzZ/n4449JSkri/v37bN68WV2818XFhdWrVz/9JxNCCCGekq+vL6dPn2b8+PF8++232NjYaDskUQoKhQIH7zo4eNfhdvh9Tm+4xq0r90AFBXlKwg/eIOLwTRx9a9N6dGOsq1AtuFInbu+88w7w9ImXnp4e69ev57XXXmPAgAHAw9G47777jkaNGj3lRxJCCCE0x93dnVOnThUrMZGTk0NSUhINGjTQUmSiNOo2qsmABW25fyONU39cI+7cnYe14E4nEnsmkfpNbGg1ujF1G1X+WnBlLsCricTrypUr6hE4KNyCZMiQIZiamhIUFFTWkIQQQogKVVJdsNmzZ7Np0yZ+++23R04TEpVHzQYW9J7bkvS7WZzecI2o4wko8/+/Ftzle2z/8Di2Lpa0HN4YB5/a2g73kcq1PvbKlSv4+vqq//0g8Zo9ezYJCQlPvN7NzY3du3cXO96sWTOuXLlSnpCEEEKIZ2bTpk188803JCUlMXToUO7cuaPtkEQpmdcyoevrXoz7uhtNezthUOPhStOkqFR2LTnNpjcPEn7oRonbomlbuRK3p0285s6dy2+//cbKlSu5efMmUPgKduvWraUq6iuEEEJoU48ePdRvnVatWkXt2pV3hEaUzNjCiPYTmzL+m+54D3WhhvnD/CPlZgYHvrnAHzODuRgYg7JAqcVIiyrXXqVz585l+vTpJCcnM3LkSOzs7MqUeDVq1IjVq1ezYsUKxo4di6mpKQUFBeTn5/Pmm2+WJyQhhBDimbGxsWHbtm3s3LmTgQMHajsc8RQMjQ1oNcod3+cacTEwhosBMWTezwEg4242x3+6wvm/I2jSywnPQc4Y1ij3Nu8aUe46bpGRkaxYsYLQ0NBiiVf//v3V5z2pAO/NmzcJDw9HoVDg7u5O3bp1yxOOQOq4CSFEZbB+/XpSU1OZPn26Tu+ZqatUShXXDsYTsjWK1NuZRdqMzAzwGuRCk56OGJlq5w1hudNGV1dXvvrqqycmXk/KC+3s7KR+mxBCCJ1w/vx5XnvtNbKzszl69Cg///wzBgbaHaERZaPQU+De1YHGXeyJPX2bs39FcC82DYDcjHxO/XGNuu421HPXzgrUp/5uelLideDAgaftQgghhKgSgoKCyM4u3HLJ2tpakrYqTKFQ0LB1PRq2rsfNy3c5s/Eat68lU8+jptaSNihH4qZUKomJicHS0rLYJrz5+flcvHgRb29vTcUnhBBCVBlvvvkmLi4ufP3116xYsULb4QgNsWtaC7uP2pF8I52CPO0uVCjTqtKEhAQmTpzIpEmTGDFiBPPnzyclJUXdnpqayqxZszQdoxBCCFFlPPfccwQFBWFsXHQ7paioKHJycrQUldAE6wbm1GpoqdUYypS4ffPNN9SuXZtNmzbx448/kpeXx7Rp00hKSlKfUxlrngghhBDP0r8XJdy7d48ePXrQqVMnYmNjtRSV0AVlStxCQkKYOnUqderUwcXFhaVLl+Lp6cn06dO5ffs2UHJ1aSGEEKI6e/XVV4mJieHUqVO8/vrr2g5HVGFlStyys7OL1GlTKBS8/fbbtG7dmhkzZnDjxg2NByiEEEJUde+99x4uLi7UqlWLb7/9VtvhiCqsTImbo6MjYWFhxY7PnTsXPz8/5s+fr7HAhBBCCF3h7e3NmTNnCAwMxMHBQdvhiCqsTIlb586d2bNnT4ltc+bMoXv37jLHTQghhCiBtbU1rVq1KnKsoKCASZMmceTIES1FJaqacu+cICof2TlBCCGqloULF/Lhhx9iYGDA6tWrmTJlirZDEpVcuTaZf+DBBvFCCCGEKJuCggJ1kXqlUombm5uWIxJVwVOVdB43bhwvvfQSzz//vKbiEUIIIaoFfX19du3axfvvv4+lpSXdunXTdkiiCniqxE2lUlFQUFDk2I4dO7h48SLz5s17qsCEEEIIXWdgYMB///vfEtvOnz8vOxGJYp7qVWlJEhMTCQgIKLHtt99+Y9q0aZruUgghhNAp/v7++Pj48Morr6j3PhUCKiBxe5ycnBwuXbr0LLsUQgghqpS7d++qpyCtWbOGP/74Q8sRicrkmSZuQgghhHi8WrVqsXLlSkxMTBg2bBgvvviitkMSlchTzXETQgghhOa98MIL+Pr64uDgIFtJiiJkxE0IIYSohJo3b46VlVWRYxEREQwZMoSEhAQtRSW07alH3LZs2UJ0dDQeHh64u7uTkZGhibiqveTkZD777DPOnz+Pra0ts2fPpnXr1toOSwghhJZkZWUxYsQIQkJCOHnyJLt27cLT01PbYYln7KkSN2dnZ65fv05wcDDBwcFFhnMXLlyIi4sLrq6uuLi4ULdu3acOtjpZsWIFNjY2bNu2jdOnT/Phhx/y+++/F/vrSwghRPUQGxtLUlISAFZWVjg7O2s5IqENT5W4rVu3jtzcXCIiIggPDycsLIxr164RHR3N3r172bt3rzqZMzMzo0aNGhoJWtdlZmZy6NAhfv/9d4yNjenYsSNubm4cPnyYAQMGaDs8IYQQWuDh4cHZs2eZMmUKn332GRYWFtoOSWjBU78qNTIyomnTpjRt2lR9LD8/n8jISK5du6ZO5qKiokhPT6+wSZZnzpxhz549XLx4kcTERMzNzXF3d2fixIkVvm9nZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSkySuni4kJ0dHSFfg4hhBCVW506ddi6dWux4xkZGURGRsqr02qgQlaVGhgY4O7ujru7O4MGDQIKk7mYmBjCwsIqoku2bt1KSkoKI0aMoGHDhiQnJ7NhwwZee+01li5dSsuWLSukX4CUlBS2b9+Oq6srnTp1wt/f/5HnLliwgKtXr/Lqq6/i4OBAUFAQH3/8MUqlkl69egGF8xjMzMyKXGdmZkZycnKFfQYhhBBVk0qlYurUqWzcuJGvv/6al156SdshiQr0zMqBGBgY4ObmVmGb6M6ePZuaNWsWOdamTRvGjRvHL7/88sjELSMjg9DQUPz8/EpsP3r0KD4+PpiYmDyy73r16rFjxw4UCgXJycmPTNyOHTvG6dOn+eCDD+jZsycAvr6+JCQk8M0339C9e3f09fUxMTEptsgjIyPjsTEIIYSonjZv3szPP/8MwKxZs+jfvz/169fXclSiouhMOZB/J20ApqamODk5kZiY+Mjr/P39mT9/fonbdG3dupV33nmHXbt2PbZvhUJRqlfAhw4dwsTEhK5duxY53r9/f5KSkrh8+TIA9vb2ZGVlFYk7Ojr6kRNRg4KCmD9/PqtWrXpiDEIIIXTL4MGD1dtJ/vDDD5K06TidSdxKkp6eTnh4OA0bNnzkOaNHj2bEiBEsWrSoyLyBTZs2sWzZMiZMmMDQoUM1Ek90dDROTk4YGBQd6HR1dVW3Q2HC2bFjR9auXUtOTg5Hjx4lPDycDh06lHjfnj17smjRImbMmKGROIUQQlQdNWrU4KuvvuL06dOMGjVK2+GICqbTOyesWLGCrKwsXnjhhceeN336dGrUqMGyZcvIzc0lNzeX7777jpdeekmjW42kpKRgZ2dX7PiDlUGpqanqY3PmzOHTTz9l4MCB2Nra8tFHH2Ftba2xWIQQQuiWkqYEffXVV0RHR7No0SIMDQ21EJXQNJ1N3L7//nv27NnDG2+8UapVpVOmTMHIyEj9unHq1KmMHTtW43GVdlWttbU1S5Ys0Xj/Qgghqofjx48zZ84c8vLyOHnyJHv37sXIyEjbYYmnpJOvSteuXctPP/3ElClTGD58eKmv+2e5kvT0dI3HZWVlRUpKSrHjaWlpAFhaWmq8TyGEENXTtWvX1P/fz89PkjYdoXMjbmvXrmXt2rVMmjSJ559/vlTXqFQqvvjiC7Zu3cq8efPIy8tj+fLl5Obmqid8aoKLiwtBQUHk5+cXmecWFRUFIFWwhRBCaMwLL7yAu7s7K1eu5LPPPtN2OEJDdCpxW79+PWvXruWFF15g0qRJpbpGqVSyZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bI4WDO3XqxPbt2zlw4ECRgruBgYHY2toWKWIshBBCPK22bdvy22+/FTseEhKCg4MDNjY2WohKPA2dSdz++OMPfvjhB9q2bUu7du24dOlSkfZmzZqVeN2GDRvYvXs3CxcupFOnTurj/fr1w8jIiE8++QQnJ6cnvnI9fvw42dnZZGZmAoV7ygUHBwOFQ9TGxsb4+fnRqlUrli9fTmZmJg0aNGDv3r2cOHGCBQsWoK+v/xRfASGEEOLJbt++rf4dt3nzZlq1aqXtkEQZKFQqlUrbQWjCzJkzOX/+/CPbDx48WOLxnJwcwsPDad68eYntoaGheHh4PHE1zqhRo0hISCixbcOGDeq6OpmZmaxZs6bIllcTJkwoMgJXXmFhYUyZMoU1a9ZU+DZfQgghqqZRo0axadMmAPr27VtiHVNReelM4iYkcRNCCPFkcXFxjBo1itjYWM6dO1dkX2xR+enMq1IhhBBCPJmDgwMHDhwgJiamWNKmUqk0MqdbVBydLAcihBBCiEczMjKicePGRY7l5eUxcOBANmzYoKWoRGlI4iaEEEII3n33XXbu3MmYMWP4z3/+o+1wxCNI4iaEEEJUc0qlkjt37gBgaGhIr169tByReBSZ4yaEEEJUc3p6eqxdu5YOHTqQn5+Pn5+ftkMSjyCJmxBCCCFQKBRMmTKlxLbAwEB69eol9UYrAXlVKoQQQohH2rhxI/369aN///4kJSVpO5xqTxI3IYQQQpQoJSWFV199FYDdu3ezfft2LUckJHETQgghRImsrKz466+/qFOnDhMmTGDixInaDqnakzluQgghhHikbt26ce7cOaysrIoV55WCvc+ejLgJIYQQ4rHs7OwwMzMrcuzSpUu0bt2aS5cuaSmq6kkSNyGEEEKUSVpaGsOHD+fMmTO0adOGo0ePajukakMSNyGEEEKUSXJyMsbGxgA0atQIHx8fLUdUfUjiJoQQQogycXBw4NixY0ybNo3NmzdjYmKi7ZCqDUnchBBCCFFmJiYmfPXVV7i5uRU5npKSwu7du7UUle6TxE0IIYQQGqFSqZg4cSJ9+vRhwYIFFBQUaDsknSOJmxBCCCE0YsuWLWzZsgWA1atXc+vWLe0GpIMkcRNCCCGERgwdOpSlS5diaGjIzz//jL29vbZD0jmSuAkhhBBCIxQKBXPnziUiIoIBAwYUaVMqlahUKi1FpjskcRNCCCGERjk6OhY7tnjxYkaMGEFKSooWItIdsuWVEEIIISrU/v37ee+991AqlVy8eJHz589LCZFykhE3IYQQQlSonJwcLC0tARg3bpwkbU9BRtyEEEIIUaH69u3L2bNnWbVqFQsWLNB2OFWajLgJIYQQosI5OzuzfPly9PX1ixw/dOgQkZGRWoqq6pHETQghhBBacf36dYYNG0bLli3ZunWrtsOpEiRxE0IIIYRWvPvuu9y9e5eUlBR++OEHKRdSCjLHTQghhBBasXr1anJzczl16hTr169HoVBoO6RKTxI3IYQQQmiFpaUlGzZsIDExkZo1axZpy8/Px8BA0pR/k1elQgghhNAahUJB3bp1ixzLycmhY8eOfP755yiVSi1FVjlJKiuEEEKISmXWrFmcOHGCEydOcOPGDb788ktth1RpSOImhBBCiEpDpVJRp04dFAoFNWrU4KWXXtJ2SJWKJG5CCCGEqDQUCgUff/wx7dq14969e3h5eWk7pEpFEjchhBBCVDp9+/Yt8fi6desYNWoUpqamzziiykEWJwghhBCiSli7di2TJk3Cz8+Pa9euaTscrZDETQghhBCVXkZGBm+//TYAoaGhnDp1SssRaYckbkIIIYSo9MzMzDhw4ABNmjThtddeY/z48doOSStkjpsQQgghqoSmTZty8uTJEgvz5ubmYmRkpIWoni0ZcRNCCCFElWFubo6xsXGRY6dPn8bV1ZWgoCAtRfXsSOImhBBCiCrr3r17jBgxgvj4eHr37s3u3bu1HVKFksRNCCGEEFVa06ZNAfDz86Nr167aDaaCyRw3IYQQQlRZNjY2+Pv7s3TpUsaOHavz89xkxE0IIYQQVZqenh5vv/02Dg4ORY4nJSXx448/olKptBSZ5kniJoQQQgidU1BQwPjx43nppZeYMGEC6enp2g5JIyRxE0IIIYTOCQoKUi9UCAoKIjU1VcsRaYYkbkIIIYTQOX369GHTpk1YW1vzxx9/YGdnp+2QNEIWJwghhBBCJ40YMYJevXphZWVV5Hh+fj5KpbJKLmSQETchhBBC6Kx/J20AH374IZ06deL69etaiOjpyIibEEIIIaoNf39/PvvsMwDatGlDREQE5ubmWo6q9GTETQghhBDVhp2dHc7OzgC8+eabVSppAxlxE0IIIUQ14uvry5kzZ1izZg1z587VdjhlJiNuQgghhKhWatasydtvv41CoShyfOfOnRw7dkxLUZWOJG5CCCGEqPYiIyMZO3YsnTt3ZuXKlZV2twVJ3IQQQghR7S1dupTU1FTy8/M5evSotsN5JJnjJoQQQohqb9WqVVhYWLB9+3a+//77Yq9RKwsZcRNCCCFEtWdgYMDixYs5ffo0FhYWRdrS0tK0FFVxkrgJIYQQQvw/MzOzIv/OyMigXbt2TJ06lezsbC1F9ZC8KhVCCCGEKIFKpeK1117j0qVLXLp0ifT0dH7++WetxiQjbkIIIYQQJVAoFHTr1g1jY2PMzc1ZsGCBtkOSETchhBBCiEeZPHkyLVu2JC4uDnd3d22HI4mbEEIIIcTjeHl54eXlpe0wAHlVKoQQQghRZUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRRhoOwChOTk5OQDExsZqORIhhBBClJWTkxPGxsaPPUcSNx2SkJAAwCeffKLlSIQQQghRVmvWrMHd3f2x5yhUKpXqGcUjKlhycjInT55ky5YtvPHGG6W6ZtWqVcyYMeOJ58XGxvLJJ5+wYMECnJycnjZUnVDar502POvYKqo/Td33ae5TnmvLek1pzpdnsLjK/AyCPIeavE9FP4eV5XehjLhVM9bW1vTu3Zt9+/Y9MWN/wNzcvNTnQuE3VVnO12Vl/do9S886torqT1P3fZr7lOfasl5TlvPlGXyoMj+DIM+hJu9T0c9hVfpdKIsTdFDPnj0r5FxRVGX+2j3r2CqqP03d92nuU55ry3pNZf5eqswq+9dNnkPN3aein8PK/r30T/KqVJRKWFgYU6ZMKdX7dyGE5skzKIT2VYbnUEbcRKnUqlWLiRMnUqtWLW2HIkS1JM+gENpXGZ5DGXETQgghhKgiZMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNaERubi7//e9/GT58OH379uW1114jNDRU22EJUa189NFHDBkyhL59+zJx4kSOHj2q7ZCEqLYuXrxIly5dWL9+vUbvK+VAhEZkZWWxYcMG+vXrR+3atdm1axerV69m06ZNT9x3TQihGdHR0djb22NoaMjly5eZO3cuf/zxB1ZWVtoOTYhqRalUMnXqVBQKBe3atePFF1/U2L1lxE1ohImJCRMnTqRu3bro6enRr18/lEol8fHx2g5NiGrD2dkZQ0NDAPT19cnLyyMpKUnLUQlR/Wzbto0WLVrg6Oio8XvLJvPVVGZmJuvXryc8PJzw8HBSUlKYOHEikydPLvHc77//nv3795OWloajoyPjx4+nR48ej7x/bGwsOTk52NnZVeTHEKLKqqhncOHChRw8eJDc3Fz8/PxwcXF5Fh9HiCqpIp7DlJQUNm/ezLfffsuXX36p8ZglcaumUlJS2L59O66urnTq1Al/f/9HnrtgwQKuXr3Kq6++ioODA0FBQXz88ccolUp69epV7Pzs7Gw+/fRTXnjhBUxNTSvyYwhRZVXUM/jBBx+Qn5/P2bNniY2NRaFQVPRHEaLKqojn8H//+x+jRo3C3Ny8QmKWxK2aqlevHjt27EChUJCcnPzIb9Zjx45x+vRpPvjgA3r27AmAr68vCQkJfPPNN3Tv3h19fX31+fn5+Xz44Yc4OTnx/PPPP5PPIkRVVFHPIICBgQFt2rThzz//xN7ennbt2lX45xGiKtL0cxgWFsa1a9eYO3duhcUsc9yqKYVCUaq/xA8dOoSJiQldu3Ytcrx///4kJSVx+fJl9TGlUsmnn36Knp4e8+bNk7/0hXiMingG/02pVHLjxo2nDVUInaXp5zAkJISYmBiGDBnCoEGD2LdvH7/++iuffvqpxmKWETfxWNHR0Tg5OWFgUPRbxdXVVd3eokULAJYuXcrdu3dZsmRJsfOFEOVT2mfw7t27hIaG0rZtWwwNDTl48CDnzp3j1Vdf1UbYQuiU0j6HAwcOLJLcff3119SrV49x48ZpLBb57SoeKyUlpcQFBhYWFgCkpqYCkJCQgL+/P0ZGRgwePFh93uLFi/Hy8no2wQqhg0r7DAJs3ryZzz//HIVCgb29PR999BFubm7PLFYhdFVpn0NTU9Mic7tr1KiBqampRkvySOImnqg0w8j16tXj4MGDzyAaIaqf0jyDtWrV4quvvnoG0QhRPZVn+s+7776r8Thkjpt4LCsrK1JSUoodT0tLA8DS0vJZhyREtSLPoBDaV5meQ0ncxGO5uLgQGxtLfn5+keNRUVFAYcFPIUTFkWdQCO2rTM+hJG7isTp16kRWVhYHDhwocjwwMBBbW1uaNm2qpciEqB7kGRRC+yrTcyhz3Kqx48ePk52dTWZmJlC420FwcDAAfn5+GBsb4+fnR6tWrVi+fDmZmZk0aNCAvXv3cuLECRYsWFCsfpQQovTkGRRC+6racyibzFdjo0aNIiEhocS2DRs2UL9+faBwm481a9YU2eZjwoQJj93ySgjxZPIMCqF9Ve05lMRNCCGEEKKKkDluQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQghRTaxYsYJBgwapt/YB+PHHH+ncuTPnzp3TYmQPffrpp4wcOZKcnBxthyJEpSR7lQohqqRbt24xevTox57j5ubGjz/++Iwiqtzi4uLYtm0br7zyCqamphXa19atW1m2bBmDBw/mzTfffOy5L7/8MteuXWPNmjW4u7vz4osvEhQUxKZNm5gwYUKFxilEVSSJmxCiSmvQoAG9evUqsa1WrVrPOJrKa+3atRgZGTFkyJAK76tnz558/fXX7Nu3jxkzZlCjRo0Sz4uMjOTatWs0atQId3d3AOzt7enYsSO//fYbw4cPx8TEpMLjFaIqkcRNCFGlNWjQgMmTJ2s7jEotOTmZgwcP0rVr1wofbQMwMzOjS5cu7Nq1iwMHDtC7d+8Sz/P39wegf//+RY737t2bAwcOsHfvXgYOHFjh8QpRlcgcNyFEtdG5c2dmzpxJcnIyixYtYvDgwfTs2ZPXXnvtkXO8MjMz+fHHH3nhhRfo2bMn/fv358033+TChQvFzp05cyadO3cmNzeXH374gbFjx9KtW7cir2sPHDjAlClT6NmzJ0OGDGHx4sWkpaUxatQoRo0apT7v008/pXPnzly5cqXEuL755hs6d+7MwYMHn/i59+7dS25uLl27dn3iuQ9ERkYybNgwBg0axOXLl9XHb968yeeff86IESPo0aMHQ4cO5bPPPiMhIaHI9QMGDAAgICCgxPvn5eURFBSEkZFRscTOz88PExMTdu7cWep4haguJHETQlQr6enpvP7660RGRtKrVy86d+5MWFgYb775JlFRUUXOTU1NZerUqaxbtw5LS0uGDh2qPv+NN97g0KFDJfaxYMECdu7ciZeXFyNHjsTOzg6AHTt28P7773Pjxg369OlD3759uXTpEnPmzCE/P7/IPQYPHgw8HJX6p/z8fHbt2oWNjQ3t27d/4mc+c+YMAM2aNXvyFwgICQlhxowZ6Ovr89VXX9G0aVMALl++zMsvv0xgYCDu7u6MGDECLy8v9uzZw6uvvsrNmzfV9/D29sbe3p6zZ89y69atYn0cOXKElJQUOnfujIWFRZE2Q0NDGjduzJUrV8jKyipVzEJUF/KqVAhRpd24ceORCxCaNWtG27ZtixyLiIhg6NChzJo1Cz29wr9dfX19Wbx4MX/99VeRyfRffPEF0dHRzJ8/v8jrvHv37vHKK6+wZMkS2rRpU2wO1927d1m7di2WlpbqY2lpaXz55ZeYmpry/fffq5O5KVOm8PbbbxMWFka9evXU57do0QJnZ2f27t3L9OnTi8z1Onr0KPfu3WPcuHEYGDz5x/jFixepXbs2NWvWfOK5hw4d4uOPP8bOzo6lS5dSp04doDBZ/Oijj1AqlaxZswY3Nzf1NRcuXOCNN97gyy+/ZNGiRerj/fv353//+x+BgYFMmjSpSD87duwAHo7M/Zu7uzshISFcuXIFX1/fJ8YtRHUhI25CiCrtxo0brFu3rsT/nThxotj5JiYmvPbaa+qkDaBv377o6+tz9epV9bHk5GT2799Py5Yti83BsrGxYezYsSQnJ6tHs/5p0qRJRZI2gMOHD5OVlcXAgQPVSRuAgYEBL730UomfbfDgwWRmZrJv374ix/39/VEoFKWa/5WXl0dycnKpkjZ/f38++OADGjVqxFdffaVO2qAwWUxISGDs2LFFkjYAT09POnTowPHjx8nIyFAff/B1DQgIQKVSqY8nJSVx+vRp6tWr98ik7EG8d+7ceWLcQlQnMuImhKjS2rRpw9KlS0t9vr29fbEJ+gYGBtjY2JCenq4+dvXqVQoKCsjNzS1xRC8+Ph6A2NjYYq8rmzRpUuz8yMhIAJo3b16srUmTJujr6xc73rt3b7799lv8/f3VI1N37tzh1KlT6leRT5KSkgJQ7HXkv23cuJEjR47g5+fHwoULMTY2LtJ+6dIlAK5fv17i1+PevXsolUri4uLw8PAAwNbWlrZt23L06FHOnj1Ly5YtgcJ5bwUFBfTv3x+FQlFiPA8S3wfxCyEKSeImhKhWzMzMSjyur6+PUqlU/zs1NRWA0NBQQkNDH3m/7OzsYsdsbGyKHXswEmVtbV2sTU9PDysrq2LHLSws6NatG4GBgcTExNCwYUN27txJQUFBqVdbPniN+6SCtg8WW7Rt27ZY0gaFr3oB9uzZ89j7/PvrMWDAAI4ePUpAQECRxE1PT49+/fo98j4P4n1UKREhqitJ3IQQogQPErzRo0czbdq0Ml1b0ijSg/slJycXa1MqlaSkpFC7du1ibYMHDyYwMBB/f3+mTZtGQEAAlpaWdO7cuVSxWFhYYGBgoE5EH2XevHn89NNPfPnll+jp6TFs2LAi7Q9GKRctWlSqBREPtGvXDhsbGw4cOMDs2bOJiIggPj6eNm3aULdu3Ude9yDekhJdIaozmeMmhBAl8PDwQKFQqF8RPi1XV1egcKHAv125coWCgoISr2vevDkuLi7s2rWL48ePc/PmTXr16lWmkShnZ2cSEhKKrVz9JwsLC1asWEHjxo1ZsWIFf/31V5H2BytLy/r1MDAwoE+fPuTk5LB37151iY9HLUp4IC4uDgAXF5cy9SeErpPETQghSlCrVi26devGxYsX+f3334tMrn/g8uXLJb4qLUnHjh0xMTHB39+/SNmM/Px8fvjhh8deO2jQIFJSUliyZAlAmYvSent7k5ubq55n9ygWFhYsX74cDw8PvvjiC/78888i8detW5cNGzZw/vz5Ytfm5+eXWNsOHiZpW7ZsITg4GCsrKzp27PjYWC5fvkytWrVwcHB4wqcTonqRV6VCiCrtceVAgKfaVWHOnDnExcXxzTffsGvXLpo1a4a5uTmJiYmEhYURHx/P33//XeKcsH+zsLBg+vTpLFmyhJdffpnu3btjZmbG8ePHMTIywtbW9pET9fv06cN3331HUlISTZs2VY/elVanTp3YtGkTZ86cUW8t9bg4ly1bxty5c1m5ciUqlYoRI0ZgZGTEwoULefvtt5k5cyYtW7bE2dkZgNu3b3PhwgWsrKz45Zdfit3T0dGRFi1aqOcKDhw4EENDw0fGcOPGDW7dusXQoUPL9DmFqA4kcRNCVGkPyoE8ytMkbpaWlqxevZq//vqLffv2ERQUhFKpxMbGBjc3N1588cUSFxU8yqBBg7CwsODnn38mMDAQMzMzOnTowGuvvcbIkSNp0KBBideZm5vTsWNHgoKCyrUFlLe3N46OjuzevZtx48Y98fwHI29z587lyy+/RKVSMXLkSJo0acKPP/74f+3dvYriUBjG8UdEvAERQcR7ECwtjIVFevEDrMXewtJSsBEsbMTSUtEuN6A2IugFCFpErUQQFGG3WHCYWZdlApMxu/9fGU6SUz6c9+U9GgwGms1mWq1WCgQCCoVCSqVSymQyf/ymaZqP4PZxvMpHlmVJehtCDOCN78ez838AgGt2u52KxaLS6bQajcbTNeVyWfv9XsPh0NF9o+PxWK1WS91u99Gv9oru97tKpZIikYja7fZ3bwd4OfS4AYBLzuezbrfbu2fX61WdTkfSr5LmM9PpVJvNRtls1vEl8aZpKh6Pq9/vO3rfLZZlybZtVavV794K8JIolQKAS5bLpZrNppLJpMLhsE6nkxaLhWzbViKRkGEY79aPRiMdDgdNJhMFg0EVCgXH//b7/arX65rP57pcLo4D4Ffz+Xyq1Wp/7cUD/leUSgHAJdvtVr1eT+v1+jHPLRqNyjAM5fP530Z85HI5HY9HxWIxVSqVT81PA/BvIrgBAAB4BD1uAAAAHkFwAwAA8AiCGwAAgEcQ3AAAADyC4AYAAOARBDcAAACPILgBAAB4BMENAADAI34C4fcZMfdez38AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.plot(energy, energy*energy*flux_median, label = \"Best fit\")\n", + "ax.fill_between(energy, energy*energy*flux_lo, energy*energy*flux_hi, alpha = .5, label = \"Best fit (errors)\")\n", + "ax.plot(energy, energy*energy*flux_inj, color = 'black', ls = \":\", label = \"Injected\")\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(r\"$E^2 \\frac{dN}{dE}$ (keV cm$^{-2}$ s$^{-1}$)\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "53f3bfb1-efc4-4b80-98ab-d86be8fe5133", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response, as well as the simulated source counts" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e20787dd-42ce-4255-9994-2280912165c8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvLUlEQVR4nO3dd3hVVf7+/XcqKaSQAmmkQEIaCZEggkpRohQVxsagWFAB+YrKjBX9oaLiDDbGXsCuzNgbqDhGARsWEoGQhBRILxBKeiHlPH/wcMYQShJy2Cn367q8Ls4+a+99nyM7fLL22mtZmUwmEyIiIiJ9mLXRAURERESMpoJIRERE+jwVRCIiItLnqSASERGRPk8FkYiIiPR5KohERESkz1NBJCIiIn2eCqJ2qK+vJyMjg/r6eqOjiIiIiAWoIGqHvLw85s2bR15entFRRERExAJUEImIiEifp4JIRERE+jwVRCIiItLnqSASERGRPs/W6AAiIr2VyWSiqamJ5uZmo6OI9Hp2dnbY2Nh0en8VRCIiFnDw4EFKSkqora01OopIn2BlZUVAQAD9+/fv1P4qiEREulhLSws5OTnY2Njg5+eHvb09VlZWRscS6bVMJhNlZWUUFhYSFhbWqZ4iFUQiIl3s4MGDtLS0MHjwYJycnIyOI9IneHt7k5ubS2NjY6cKIg2qFhGxEGtr/YgVOVVOthdWV6uIiIj0eSqIRET6iODgYCIiIoiLiyMyMpIrr7ySmpqaTh/vjTfeIDMz85jv//LLL8TExHDaaafx9ddfM23aNHbu3NmufbuDpUuXcscdd3TpMYODg9m+fXun9t28eTOzZ88GoLy8nMcee6zV+xMnTmTt2rUnnbGvUkEkItKHfPjhh2zZsoW0tDQqKyt54403On2sExU1b775Jtdccw1//PEHkydP5ssvv2To0KHt2lfaGjVqFKtXrwaOXhB1VlNTU5ccp6dTQSQicgo01jZSklxisf8aaxs7lKehoYGamhoGDBhg3vbEE08wevRoRo4cybRp0ygoKABgzZo1xMbGEhcXx/Dhw/nss8945ZVX2Lx5M7feeitxcXF8+eWXrY6/fPly3nvvPZ5++mni4uIoLy83946caF+A9PR0Jk+eTGxsLLGxsbz00ksAZGdnk5CQYM7z6aefmvexsrLi0Ucf5YwzziAkJITXX38dgHfeeYeLLrrI3M5kMhESEsK2bdsAeOyxx4iOjiYmJobZs2dTUVHRJs+wYcNISkoyv3799de55JJLACgtLWXmzJmMHj2a2NhY7r//fnO7H374gZiYGEaPHs3NN9+MyWQ66v+PsWPHsmnTJgBuu+02AgICzO8FBgZSUFDAhg0bGDVqFAALFiygvLycuLg487bD5xs3bhxDhw5lwYIFRz1Xbm4uXl5ePPTQQ4wbN45nn332mJ+hpaWFm2++mYiICEaMGEF8fDz19fXmY9xxxx2cccYZREdH891335nP8fbbbxMTE0NsbCwXXHABRUVFwKFCePLkyVxxxRXExMQwatQodu3aBUBWVhZnnXUWI0aMICYmhiVLlgDQ2NjI4sWLGT16NHFxccyaNYvy8vKjfraTYpIT2rFjh2ncuHGmHTt2GB1FRHqAuro6U1pamqmurs68rTip2LSUpRb7rzip+IS5goKCTOHh4aYRI0aYXF1dTeecc46psbHRZDKZTKtXrzbNmzfP1NTUZDKZTKa33nrLNH36dJPJZDLFxsaafvrpJ5PJZDI1NzebDhw4YDKZTKYJEyaY1qxZc8zzXXvttaZnn3221flTUlJOuG9jY6MpLCzM9N5775m3lZWVmUwmk2n06NGml19+2WQymUyZmZkmDw8PU35+vslkMpkA01NPPWUymUymtLQ0U//+/U2NjY2m2tpak6enp6mkpMRkMplM3333nWnkyJEmk8lk+vLLL00RERHmzzRv3jzTTTfdZDKZTKYHHnjAdPvtt5tMJpPpkUceMS1cuNCcZ/z48abPP//cZDKZTOeff75p48aN5uyTJ082ffzxx6b6+nqTn5+faf369SaTyWR67733TID5O/izJUuWmB588EGTyWQynXbaaabRo0eb0tPTTTt27DANGzbMZDKZTOvXrzfFx8ebTCaTKScnx+Tp6dnqGBMmTDBdeumlpqamJlNtba0pODjY9PPPP7c5V05OjgkwrV692rztWJ8hOTnZFBERYWpubjaZTCZTeXm5qbm52XyMN954w2QymUybNm0yDRo0yFRdXW1KSUkxDRo0yFRYWGgymUymZcuWmaZNm2YymUym119/3eTm5mbKzc01mUwm0913322aP3++yWQymW699VbTI488Ys60b98+83f/8MMPm7c/9NBDpltvvbXN5zraddcReuxeROQU8IrwYn7SfIsevz0+/PBDhg8fTlNTEzfeeCN33303Tz75JJ9++imbN28mPj4egObmZvOjy5MmTeJvf/sbl112Geeffz5xcXGW+hgAZGRk0NTUxMyZM83bvLy8qKqqYsuWLdxwww0AhIWFcfbZZ/Pjjz9yxRVXAJjH2ERGRmJra0tpaSkBAQFceumlvPPOO9xxxx28/vrrXHfddQAkJiYye/Zs3N3dAfi///s/Zs2a1SbTtddey2mnncaKFSsoKCggMzOTqVOnUlNTw3fffcfu3bvNbaurq9mxYwdDhw7FycmJiRMnAjBz5kzmzz/634GEhATuu+8+FixYgJ2dHTNnziQxMRErKysSEhLa/d3NmjULGxsbHB0diYuLY+fOnYwdO7ZNOwcHB/N3drzPcO6559LY2Mj111/POeecwwUXXGB+etLe3p6rr74agDFjxuDj48PWrVtJSkriwgsvxN/fH4CbbrqJZcuWmXvHzj77bIKCgoBDPWPPPvssAOPHj+fOO++kpqaGCRMmmD/3p59+SmVlJR9++CFwaFqLw7deu5IKIumUivwKavf2rBl4nbyccAt0MzqG9FF2Tnb4jvQ1OoaZra0tl156KXfeeSdPPvkkJpOJJUuWcP3117dpu2LFClJTU1m/fj3XXnsts2fP5q677jrlmQ//g3rk49V/fu3g4GD+s42NjXl8zHXXXcfcuXOZP38+a9eu5amnnjIf83jHO8zf35+RI0fy+eefs3XrVq6++mpsbW2pq6vDysqK33//HTs7u1b7bN26td2fbezYsWzfvp3PP/+cSZMmkZCQwNKlSwG45ppr2n2cY33+Izk7O5s/Z0tLyzE/A0BqaiobN25k/fr13HPPPXz//ffY2h69fLCysmrznR75fR4r46WXXsqZZ57JN998w3PPPcdTTz3Fl19+iclk4oUXXuDcc89t57fQOSqIpMMq8it4PvJ5Gmsb2ctebLBhAANoppnd7GYAA3DEkRpqqKACP/wA2Mc+rLDCAw9aaKGUUtxxxwknaqmlnHJ88MEaa/azHxMmPPEEoJhi3HDDGWfqqOMABxjEIGyw4QAHaKYZLw79hlxCCS640J/+1FPPfvYzkIE4OjmyMH2hiiKR/993331HeHg4ANOnT+fpp5/mL3/5Cx4eHjQ2NrJ9+3ZOO+00duzYQXR0NNHR0dja2vLf//4XAFdX16OOt2mP4+0bHh6Ovb09H3zwAZdffjkAe/fuxcvLi7i4ON58802uu+46du7cyU8//cRzzz13wvONGTOGlpYW7rrrLs477zw8PDwAOO+887jrrru49dZbcXFxYeXKlcfskbn++ut57bXXSE1N5auvvgLAxcWFcePGsXz5cu677z4AiouLaWlpISIigrq6Or7//nvGjx/Phx9+eMzPbG9vzxlnnMGyZct47bXXiI2NJS0tjb1795rHQh35/dXW1tLU1HTM4qS9jvcZ+vXrh42NDeeffz7nnXceGzduJC0tjdjYWA4ePMjq1au5+uqr+e233ygtLSU2NhZXV1ceffRRSktL8fHx4aWXXmLSpEknnCcoKyuLIUOGcM011zB69GjOPPNM4NDfzRUrVjBmzBicnJyora0lJyeH6Ojok/rcR9Kgaumw2r21NNY2cvE7F5MUn0TB1ALmJ81n1nezWMlKwh4PY37SfAYuGchKVjI/aT7zk+aTdlYaWedkMT9pPtdtuo6VrGTww4OZnzSfoEeCWMlKrvnxGuYnzWfXpF1sG7PNvO+rNq/ide+hWw4RKyJYyUpmJs5kftJ8Si4s4dcRv5rbrnZejfPfnZmfNJ+4F+JYyUrO/NeZNNY29rheLZGudtlllxEXF0d0dDTp6ek8/fTTAFx99dVcddVVTJw4kREjRhAXF8f69esBuOeee4iOjua0007j7bffNvdczJ8/n4ceeuiYA6OP53j72tra8tlnn7Fy5UrzwNyPPvoIgNWrV/POO+8wYsQILr30Ul555RUGDx7crnNed911vPzyy+bbZQBTp07l6quvZuzYscTExFBZWckjjzxy1P1nzJjBr7/+iq+vL1FRUebtq1evJj09nZiYGGJiYrj00kvZt28f/fr14z//+Q8LFy5k9OjR/PbbbwQGBh4z33nnnceePXs466yzsLKyIj4+ntDQUPPtvD/z8PBg9uzZ5oHJJ+tYn6GgoIDzzjuP2NhYYmJiGD58OFOnTgXA09OT7OxszjjjDK677jr+/e9/4+zsTHR0NP/85z85//zziY2N5YcffuDll18+YYYPPviA2NhYTjvtNGbNmmUeSL948WLi4uI444wziI2NZcyYMWzZsuWkP/ORrEymYwx5F7OMjAzmzZvHqlWrzL9N9WXf/OcbLrjyAr749xcExQdhZ2dHSEgITU1NbNu2jZCQEAYMGMDevXvJz89n5MiRwKGnQ6ytrRkyZAgtLS1s2bKF4OBgPDw82L9/P7m5uYwYMQIbGxt27dpFc3MzYWFhACQnJzN48GC8vb0pLy9n165dxMTEYGdnR25uLg0NDeb/N1u2bMHX15dBgwZRWVlJdnY29QX1/O0vf+P5tc9z+gWnG/bdSd9QX19PTk4OISEhrW4PiPQWubm5jBo1ir179xodxexkrzvdMjuOxMREEhMTqa6uNjpKt+Lj7cMkJuHj7cOwYcPM221tbc3FDxwaBOnl9b+BnqGhoeY/W1tbt2rr4eFh7sIGGDJkSKtz/rmtu7t7q9fBwcGt2v55wKerqysjR47k+5zvKaCAuvq6DnxSERHpK1QQHUdCQgIJCQnmHiI5xMvDizGMwcujfU+1dAdhIWEsYAFhIWFGRxER6fGCg4O7Ve9QV9AYIumwquoqssmmqrrK6CgiIiJdQgWRdFhOQQ7v8A45BTlGR2m3tKw0nuAJ0rLSjI4iIiLdkAoi6bCI0Aj+zt+JCI0wOkq7ebp7cjqn4+nuaXQUERHphlQQSYfZ29njhhv2dvZGR2m3Qd6DmMAEBnkPMjqKiIh0QyqIpMMKSwpZwxoKSwqNjtJuNbU1FFBATW2N0VFERKQbUkEkHVZXX0cJJT3qEfadeTt5lVfZmbfT6Cgihvn444+Jj48nLi6OyMhIJk2aREtLi9GxDLV06VIOHjxodAzpBvTYvXRYWEgY85nfox5hDwsJ4yZu6lGZRbpSaWkpCxYs4PfffzcvrJmcnHzC5RQ6oiuWkTjVHnzwQe644w7s7XvOEACxDPUQSZ/g6OB4aD0zB0ejo0gfVlJSQkpKivl1WloaBQUFwKFZdpOTk6mqOjSdxe7du1stDpqRkUFeXh4AjY2NJCcnd2gdsZKSEmxtbfH0/N+DBSNHjjQXRJs3b2bs2LHExsYyevRofvrpJ+DQjMR/nmC1urq6zcKdTz75JBMnTuSee+6hoqKCuXPnEhMTw4gRI8yLxTY2NrJ48WJGjx5NXFwcs2bNory8/KhZv/jiC04//XTzEiK//vorAOvWrWPkyJHExsYyYcIE0tIOPTW6YcOGVstXbN++3Txh6+H8999/v3kpjMNLhSxYsACAM888k7i4OPbs2cMrr7xCVFQUcXFxxMTEmM8tvV/PKuWlW0jLSuMxHuPsrLO71erdx1O8u5j/8l/O/PFMo6N0iJOXkxaj7UVefvllXnnlFQoLD42/mzVrFhMnTuSZZ56hsLCQ+Ph41q9fz8SJE3nrrbf45z//yf79+wGYM2cO0dHRvPLKK+zdu5f4+HjWrl3LBRdc0K5zjxgxgrFjxxIYGMiECRM488wzufLKK/H39+fgwYNccsklrFq1ismTJ/Pjjz9y2WWXkZ2d3a5jNzQ0sGHDBuDQemH9+/dn69atWFtbU1ZWBsDjjz9O//79+e233wB4+OGHeeCBB8xrqR2WmZnJDTfcwPfff8+wYcNobGyktraWPXv2cNVVV7F+/XpiYmJYvXo1M2fOZPv27SfMt2/fPuLj43nooYdYt24dixYtYtq0abz00ku8/PLL/Pzzz/Tv3x+A22+/nfT0dPz8/GhsbKShoaFd34H0fCqIpMO8BngxlrF4Deg5M1U32jWSaZXJp4s+5Wd+NjpOu9k52bEwfaGKol7ixhtv5NJLLzW/fvfdd3FxcQEgICCApKQk8/p911xzDeeff7657RtvvGFen8nLy4ukpCSGDh3a7nNbW1vz0UcfsWPHDjZu3MhXX33FI488wubNm6mrq8Pe3p7JkycDcPbZZzNw4EC2bduGr++Jf+k53AsEsHbtWpKSkrC2PnQDwtvbG4BPP/2UyspKPvzwQwAOHjx41PzffPMN06ZNMy8LZGdnh5ubG2vWrDH32gDMnj2bhQsXUlJScsJ8zs7OzJgxA4CxY8eyc+exxxKee+65XHPNNVx00UVMnTq11fJE0rupIJIOG+g1kHGMY6DXQKOjtNuYhDFk52bzx69/4Oriiu9AX+rq68jKySI0OBQnRyd2l+1mf/l+IsMiAcjclYmzkzP+Pv7UN9STuSuTIYFD6O/cn7J9ZezZt4foYdEAZOdmU11TTeKPicyaPov95fsJDgjG1cWVfQf2Uby7mJiIQz/Id+XvwtbGlkD/QJqbm0nNTCXQPxB3V3f2l++nsKSQmIgY9u7Yy3+u+g+1e2tVEPUSvr6+rQqMP6+Y7uDg0GqNvkGDBjFo0P+mifjzwtJ2dnat2nZEREQEERER3HjjjUyZMoXPP/+chISEo44lsrKywtbWlubmZvO2+vr6Nu0O964cj8lk4oUXXuDcc8/tVG6TydTpjH9e6NPGxqZV2yN9/PHHJCUlsWHDBqZNm8ayZcuYNWtWpzJLz6IxRNJhNbU15JHX4x5hdwt0Y+49c/lg4wf4jvSlun81U66awn77/fiO9OXTTZ9yze3X4DvSF9+Rvtzy0C28te4tfEf60uzdzJSrplDUXITvSF++3vI1M2+aaW571+N38fZXb+Pi64Kdvx1TrppCdnU2viN92bhjIxddd5G57QPPPcBT/34K35G+uIa7MuWqKWwv247vSF9+z/+dKVdNYeCIgVj7WPMxH/eo6Q2k+yoqKjKPCwI4cOAAOTk5DB06lIiICBoaGvjuu+8A+Pnnn9mzZw8xMTH4+PjQ1NRERkYGAG+99dZxzzN9+nQef/xx89Nrh2+ZTZ8+nRUrVlBbWwtAbW0tqampbfafPHkyX331FZmZmcChsUcVFRWMHTuWLVu2kJ6eDhzqXQsICMDHx4eQkBBycnLYt28fAG+//Xa7vxcXFxfzWKympiZ27tzJqFGjuOOOO7jsssvMt/ik91MPkXTYzrydvM7r/DXvr4SeHXriHbqRzz77DHd3dwDCwsJISkoy/+bdFbczgoKCaGxsbHU7Y+bMmZx55v/GLr344ovmJ3GcnZ1JSkoiJCQEgIsuuoikpCRsbGyoqq6ihRaampos9G1IX9LU1MRDDz1ETk4OTk5ONDU1ce2115pvJX300Ufceuut1NTU4ODgwAcffICzszMAzzzzDFOnTiUgIICpU6ce9zz/+te/+Pvf/87w4cOxt7fn9NNPZ9WqVSxevJgHH3yQM844w9zTc/fddxMdHd1q/9DQUF599VWuuOIKGhsbsbGx4eWXX2b06NG8/fbbzJ49m+bmZtzd3Xn//fcB8Pf354477mDUqFEEBwczfvz4dn8vt99+O+eeey6Ojo58/fXXXHfddRw4cABbW1u8vb15/fXX230s6dmsTCaTyegQ3d3h1e5XrVrVqtu6r8rZlMOKM1dw28+3ETI2xOg4vVZJcgkr41cyP2l+jxm8LofU19eTk5NDSEhIq9s1ImI5J3vd6ZaZdJhDPwe88MKhn37QW5LJZKKZZvQ7i4iI5akgkg4r3l3MOtZRvLvY6Ci9WsqOFB7mYVJ2pJy4sYiInBQVRNJh1TXV7GQn1TXVRkfp1QJ8A5jBDAJ8A4yOIp3U15fFEDmVTrY3XYOqpcOGDRnGQhYybIjm57AkD3cPTuM0PNw9jI4iHWRvb4+1tTXFxcV4e3tjb2/fpUtkiEhrJpOJsrIyrKyssLOz69QxVBCJdFPlleWkkkp5ZTm+aFB1T2JtbU1ISAglJSUUF+vWssipYGVlRUBAADY2Np3aXwWRdNiO7B38i38xPnu8nn6yoPyifD7gA24ouoFIIo2OIx1kb29PYGAgTU1Nx50IUES6hp2dXaeLIVBBJJ3g7uZOLLG4u7kbHaVXix4WzWIWm2fDlp7ncPd9Z7vwReTU0aBq6TAfbx8mMQkfbx+jo/RqNjY2OOBwUr/xiIhI+6ggkg6rraulmGJq62qNjtKr5Rfl8yEfkl+Ub3QUEZFeTwWRdFh2bjYrWUl2brbRUXq1puYmaqihqVlLd4iIWJoKIumw0OBQ5jOf0OCetY5ZTzMkcAjXci1DAocYHUVEpNdTQSQd5uTohB9+ODk6GR1FRESkS+gps26gIr+C2r09ZzxO6s+pfMu3TC+brvlxLOjw0h1jd4zV9AYiIhamgshgFfkVPB/5PA21DZRSijvuOOFELbWUU44PPlhjzX72Y8KEJ54AFFOMG24440wddRzgAIMYhA02HOAAzTTjhRcAJZTgggv96U899exnPwMZiC22lFNOI4144w1AKaU444wLLjTQwD724Y03dthRQQUNNGDCRIpVCvXW9YZ9b32B3yA/JjMZv0F+RkcREen1VBAZrHZvLY21jUx9ZSpj547l+Uee5+IpF/PRlx/x2H2PkbMph372/bjhjhs4ePAgbz/zNgB+8X48vuRxZl88my+/+5K5d84l9btUBrgN4OYlN1Oyp4SPVn4EwNCzhnLPzfcw94q5bPh5A1feciWbv9yM3yA/7nrkLlJ2pPDV218BMHzScG6cfSPzr5/Pr3/8ysVzL+b7j74nNDiUpSuWsmHTBjZ8sIF/ev0Tt0A3w763vsBzgCejGY3nAE+jo4iI9HpWppNdDa0H+eKLL3jnnXfYv38/3t7ePProo/j7+59wv4yMDObNm8eqVasIDw/v0ky/fP4LN8y4gVWfrsJhsAPBwcF4eHiwf/9+cnNziYuLw9raml27dtHS0kJo6KGBzMnJyQQGBuLl5cWBAwfIyckhNjYWW1tbcnJyaGxsZNiwQ2uNbdmyBT8/PwYOHEhlZSXZ2dkMHz4ce3t78vPzqa2tJSIiAoBt27YxcOBAfHx8qK6uJjMzk6ioKBwcHCgsLKSyspKoqKgu/Q7k6DI2ZvDQxIe4f8P9hE/o2r93IiLSWp/pIfrpp5/48MMP+ec//0lQUBBFRUW4uroaHYvmluZDt6FMJkaOHGne7uHhgYfH/xb1HDKk9ZNGf247YMAABgwYYH4dEhLSqm1cXJz5z66urq32DQwMbNU2NjbW/Of+/fu3ahsQoFXXT6Xcwlz+zb+5pvAawlFBJCJiSX2mIHrzzTe5+eabCQ4OBrrPP+5DAodwNVfr0WppIzI0ktu5nchQrWMmImJp3bIgqq2t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNMrdpbm4mKyuLnTt38o9//AMbGxumTp3KnDlzsLKyOpUfTaTd7OzscMFF62CJiJwC3XIeooqKCtasWUNjYyPjxo07btslS5awbt065syZw2OPPUZERAQPPvgg33zzjbnNgQMHaG5u5vfff+eNN97g6aef5ptvvmHdunWW/igntC19Gw/yINvStxkdRbqZwpJCPuMzCksKjY4iItLrdcseIh8fH7744gusrKwoLy9n7dq1R223adMmNm/ezP33309CQgJwaGxNaWkpL774Iueeey42Njb069cPgNmzZ+Pi4oKLiwvTp0/nt99+Y+rUqafscx2Nv48/F3AB/j4nHtwtfUt9Qz1llFHfoOkNREQsrVv2EFlZWbXrVtYPP/yAo6MjEydObLV92rRp7N27l7S0NABcXFzw8vJq9/n37t1LRkaG+b+8vLwO5e8IzwGejGKUHq2WNkKDQ5nLXC2RIiJyCnTLHqL2ysnJISgoCFvb1h9j6NCh5vdjYmIAmDp1Kv/5z38YNmwY1dXVrF27lmuuueaox/3888954403LJr9sIqqCnawg4qqCs36LCIiYpAeXRBVVFTg59d2Fl8XFxcAKisrzdvmzJnDv/71Ly699FKcnJy46KKLOP/884963OnTp3PWWWeZX+fl5bFs2bIuTv//H7swj3d5lzmFc4ggwiLnkJ4pNTOV5SznrMyztHSHiIiF9eiCCGj3U2J2dnbcdddd3HXXXSds6+Xl1aFbbCcjMjSSO7lTj1ZLGwM9BzKOcQz0HGh0FBGRXq9bjiFqLzc3NyoqKtpsr6qqAugWEy+eiJ2dHc4469FqacPb05uzOAtvT2+jo4iI9Ho9uodoyJAhJCYm0tTU1Goc0a5du4C2MzZ3RwXFBXzCJ0wtnqrbItJKdU01OeSQm5xrdJQOcfJy0jp3ItLj9OiCaNy4caxZs4aNGze2mohx3bp1eHl5nfSaW4mJiSQmJlJdXX2yUY+p4WAD+9lPw8EGi51DeqbiymLe5E36zeuHHz1nxXs7JzsWpi9UUSQiPUq3LYh++eUX6uvrqa2tBQ4NbN6wYQMAY8aMwcHBgTFjxjBq1ChWrFhBbW0t/v7+fPvtt/z6668sWbIEGxubk8qQkJBAQkKCeXFXSwgNDuUGbtCj1dLGGZPOIHljMu527jj0c7DIOWrLakn7OI2oS6Jw8nY66eOVpZfxyVWfULu3VgWRiPQo3bYgWrFiBaWlpebX69evZ/369QC89957+Poeur20bNkyVq1axauvvmpeuuOBBx5o1WMk0hM5ODhw2vjTLH6eoZOHWvwcIiLdXbctiN5///12tXNycmLRokUsWrTIwoksY3vGdv7BPzgz40yNIZJWCgoKePzxx7nzzjsZPHiw0XFERHq1Hv2UWW8wyGsQE5nIIK9BRkeRbqaqqooNGzaYn5oUERHLUUFkMG9Pb87kTD1aLW1ERUWxbds2mpubKSkpAaCmpobk5GTq6uoAKCoqIjU11bxPamoqhYWHFoOtq6sjOTnZ/FBASUkJ27b9bxHh9PR08vPzAWhoaCA5Odk8menu3bvZsmWLuW1GRga5ubkANDY2kpycTHl5OQBlZWUkJyeb29ZR14XfgojIqaGC6DgSExNZvHgxzz77rMXOUVVdxU52UlWtXgA5uqlTp/Lyyy8DkJaWRnx8PFlZWQA899xzzJgxw9z2kksu4emnnwYOTT8RHx9PSkoKAK+++iqTJ082t509ezaPPvoocKhYio+P57fffgNg9erVjB8/3tz2hhtuYOnSpQCUl5cTHx/P999/D8DHH3/M6NGjAdh3YB8f8iGFJYVd/j2IiFiSlclkMhkdors7/JTZqlWrCA8P79Jjf736a6ZcNYV176xj8uzJJ95B+pyUlBS8vLzw9fWlpqaGjIwMIiMjcXR0pKioiPLycqKjo4FDPURubm4EBARQV1dHeno6w4YNo3///pSUlFBWVkZsbCxwqIfI2dmZwMBAGhoaSE1NJTQ0FFdXV3bv3k1JSQlxcXHAoWugX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkv3z+C9fOuJY3P3uTMdPHGPWViYh0mAqidrBkQZT7Sy5PjX2Kv236G8Fjgrv02CKnWklyCSvjVzI/ab4eEhCRHkW3zAzWz74fAxhAP/t+RkcROWnNzc0c5CDNzc1GRxER6RAVRAYrLCnkC77QmAvpFVIzU/kH/yA1M/XEjUVEuhEVRAarq6+jgALq6vVkjvR8g/0GcymXMthP8yaJSM+igshgYSFhLGABYSFhRkcROWkD3AYQQwwD3AYYHUVEpENUEIlIlzlQcYCtbOVAxQGjo4iIdEi3XbqjOzgVq92nZaXxBE9wdtbZeipHeryC4gI+4RNuLL6RKKKMjiMi0m4qiI7jVKx27+nuyemcjqe7p0WOL3IqDQ8fzhKWMDx8uNFRREQ6RLfMDDbIexATmMAgb61lJj2ftbU1tthiba0fLSLSs+inlsFqamsooICa2hqjo4ictLzCPN7lXfIK84yOIiLSISqIDLYzbyev8io783YaHUXkpLWYWmimmRZTi9FRREQ6RAWRwcJCwriJm/TYvfQKIYNDmM1sQgaHGB1FRKRDVBAZzNHBkYEMxNHB0egoIiIifZYKIoMV7y7mv/yX4t3FRkcROWnb0rexlKVsS99mdBQRkQ7RY/fHcSrmIaqqriKDDKqqqyx2DpFTxd/Hn4u4CH8ff6OjiIh0iAqi4zgV8xCFDw3nFm4hfGi4RY4vcip5DvAknng8B2heLRHpWXTLTES6THllOWmkUV5ZbnQUEZEOUUFksIydGTzN02TszDA6ishJyy/K533eJ78o3+goIiIdooLIYK4urkQTjauLq9FRRE5aVFgUd3EXUWFax0xEehYVRAbzHehLAgn4DtTCrtLz2dra4oQTtrYanigiPYsKIoPV1ddRSil19XVGRxE5aflF+XzER7plJiI9jgoig2XlZPESL5GVk2V0FJGT1tjUSCWVNDY1Gh1FRKRDVBAZLDQ4lHnMIzQ41OgoIidtaNBQruM6hgYNNTqKiEiHqCAymJOjE/744+ToZHQUERGRPksjH4/jVMxUvbtsN+tZz4yyGfiigdXSs23P2M4jPMKZGWfiO1J/n0Wk51BBdBynYqbq/eX7SSaZ/eX7LXJ8kVPJx9uHSUzCx9vH6CgiIh2iW2YGiwyL5HZuJzIs0ugoIifNy8OLMYzBy8PL6CgiIh2iHiIR6TJV1VVkk01OUo7RUTrEycsJt0A3o2OIiIFUEBksc1cmL/ACE3dN1JgL6fFKqkp4h3dwmu+EH35Gx2k3Oyc7FqYvVFEk0oepIDKYs5MzwQTj7ORsdBSRkzb2vLGk/pKKM87Y29kbHaddytLL+OSqT6jdW6uCSKQPU0FkMH8ff6YxDX8ff6OjiJw0e3t7os7QOmYi0vNoULXB6hvq2cc+6hvqjY4ictLy8/O58cYbyc/X0h0i0rOoIDJY5q5MnuVZMndlGh1F5KTV1taSnJxMbW2t0VFERDpEt8wMNiRwCNdyLUMChxgdReSkRURE8PvvvxsdQ0Skw9RDZLD+zv0JIYT+zv2NjiIiItJnqSA6jsTERBYvXsyzzz5rsXOU7SvjJ36ibF+Zxc4hcqps27YNb29vtm3bZnQUEZEO0S2z4zgVS3fs2beHH/iBPfv2WOT4IqfSwIEDue222xg4cKDRUUREOkQ9RAaLHhbNYhYTPSza6CgiJ83Hx4dbbrmF4uJi6usPPTlZWFhIWlqauc327dspLi4G2g7CLi4uZvv27ea2aWlpFBYWAlBfX09ycrJ5seXS0tJWPVE7duwwP9128OBBkpOTqaysBGDPnj1s2bLF3DYzM5OcnEOzaTc1NVFOeVd+DSLSA6kgEpEutWXLFuLj48nLywNgxYoVXH755eb3L7zwQl544QXgUBETHx/Pjh07AHjhhRe48MILzW0vv/xyVqxYAUBeXh7x8fEkJiaydOlSnn76aSZNmmRue/XVV/PII48Ahwqg+Ph4Nm3aBMC7777LWWedZW47f/587rvvPgByC3N5iqcoLCns8u9CRHoO3TIzWHZuNq/wCufmnqulO6RXiIuLIykpiaCgIABuu+025s6da35/7dq1eHh4AIeeSktKSiIiIgKAm266iVmzZpnbfvDBB7i6ugIQFBREUlISrq6ubNmyhVmzZnHFFVeY27799ts4OTkBh27dJSUlERoaCsCsWbMYP368ue3KlSuxs7MDYIDbAC7kQj3YINLHqSAymEM/B7zxxqGfg9FRRLpE//79GTlypPl1QEBAq/eHDx9u/rOTk1Ortn5+fvj5/W8NtKio/8167eDgYG67dOnSNuc9XFTBoRmz/3zcgQMHthrXNGzYMPOfPQd4MopRuLu6t+fjiUgvpVtmBgvwDWAGMwjwDThxYxHpcvsO7COJJPYd2Gd0FBExkAoigzU2NlJFFY2NjUZHEemTikqLWMMaikqLjI4iIgZSQWSw9Ox0nuRJ0rPTjY4i0ifFRsaylKXERsYaHUVEDKSCyGDBAcFcyZUEBwQbHUVERKTPUkFkMFcXV4YxDFcXV6OjiPRJOQU5rGY1OQU5RkcREQOpIDLYvgP7+I3fNKBTxCDWVtbYYIO1lX4civRl+glgsOLdxXzN1xTvLjY6ikifFBQQxCxmERQQZHQUETGQCiKDxUTEcB/3ERMRY3QUkT6ppaWFJppoaWkxOoqIGEgFkYj0adsztrOMZWzP2H7ixiLSa6kgMtiu/F28yZvsyt9ldBSRPmmw32Au5mIG+w02OoqIGEhLdxxHYmIiiYmJ5tW1LcHWxhZnnLG10f8KESMMcBvACEYwwG2A0VFExED6V/g4EhISSEhIICMjg3nz5lnkHIH+gVzGZQT6B1rk+CJyfAcqDpBCCgcqDuCLFlgW6at0y8xgzc3N1FNPc3Oz0VFE+qSC4gI+4iMKiguMjiIiBlJBZLDUzFSWs5zUzFSjo4j0SdHDormXe4keFm10FBExkAoigwX6B3I5l+uWmYhBbGxssMceGxsbo6OIiIFUEBnM3dWdaKJxd3U3OopIn5RXmMf7vE9eYZ7RUUTEQCqIDLa/fD9/8Af7y/cbHUWkT2puaaaBBppbNI5PpC9TQWSwwpJCPuMzCksKjY4i0icNCRzC1VzNkMAhRkcREQOpIDKYlu4QERExngoig1lZWWGDDVZWVkZHEemTtqVv40EeZFv6NqOjiIiBVBAZLLcgl3/zb3ILco2OItIn+fv4cwEX4O/jb3QUETGQCiIR6dM8B3gyilF4DvA0OoqIGEgFkcGCBwdzJVcSPDjY6CgifVJFVQU72EFFVYXRUUTEQCqIDGYymWimGZPJZHQUkT4przCPd3lX8xCJ9HFa3NVgKTtSeJiHOWvHWfjF+xkdR6TPiQyN5E7uxKvJi5LkEouco7aslrSP04i6JAonb6cuOaaTlxNugW5dciwRUUFkuADfAGYwgwDfAKOjiPRJbr5uuDu5s3bOWoufK3llcpcdy87JjoXpC1UUiXQRFUQG83D34DROw8Pdw+goIn3SgZYDbJ+2nb9d+zcG+w02Ok67lKWX8clVn1C7t1YFkUgXUUFksPLKclJJpbyyHF98jY4j0uc0NDSQX5KPW5gbvuG6BkX6Kg2qNlh+UT4f8AH5RflGRxHpk8LDw/nxxx8JDw83OoqIGEgFkcGih0WzmMVED4s2OoqIiEifpYLIYDY2NjjggI2NjdFRRPqkLVu24OrqypYtW4yOIiIG0hii40hMTCQxMZHq6mqLnSO/KJ8P+ZApRVPwHanxCyKnmq+vL0uXLsXXV9efSF+mgug4EhISSEhIICMjg3nz5lnkHE3NTdRQQ1Nzk0WOLyLHN2jQIG677TajY4iIwXTLzGBDAodwLdcyJHCI0VFE+qTKykoSExOprKw0OoqIGEgFkYj0adnZ2Zx33nlkZ2cbHUVEDKSCyGCHl+5I2ZFidBSRPik6OpqcnByio/Wkp0hfpjFEBvMb5MdkJuM3SOuYiRihX79+BAcHGx1DRAymHiKDeQ7wZDSj8RzgaXQUkT4pPz+fhQsXkp+vyVFF+jIVRAarrKokk0wqqzSgU8QINTU1bNq0iZqaGrZt20ZJyaEV76urq0lOTqaurg6AwsJCUlNTzfulpqZSVFQEQF1dHcnJydTU1ABQUlJCSsr/boOnpaVRUFAAQH19PcnJyVRVVQGwe/dutm7dam6bkZFBXl4eAI2NjSQnJ1NRUQFAWVkZf/zxh0W+B5G+TgWRwXILc/k3/ya3MNfoKCJ9UmRkJMnJyURGRjJ58mReffVVAFJSUoiPj2fXrl0APP3001xyySXm/WbMmMFzzz0HQFZWFvHx8aSlpQHw8ssvM3XqVHPbWbNm8fjjjwOHCqv4+HiSkpIAeOuttzjnnHPMbefMmcPDDz8MwN69e4mPj+fHH38E4P3332fMmDEW+R5E+jork8lkMjpEd3d4HqJVq1Z1+XpH+b/m88yYZ7j1l1sJPCOwS48tIh2zbds2vL298fX1pbq6mszMTCIjI3F0dKSwsJCKigrz4OvU1FTc3d3x9/enrq6O9PR0wsPDcXZ2pqSkhL179xITEwMc6iFycXFh8ODB1NfXk5aWRlhYGC4uLuzevZvS0lJGjBgBHPp54+DgQFBQEI2NjaSkpDB06FDc3NwoKyujsLCQ2rxarr74at7+5G3O+stZhn1fIr2JBlUbzM7ODhdcsLOzMzqKSJ8XGxtr/nP//v0ZOXKk+XVAQAABAQHm139+Ks3R0bFVW19f31YzX0dFRZn/7ODg0KrtoEGDGDRokPn1n3/psrOza9XW29sbb29vfi38FWecsbXRj3CRrqJbZgYrLCnkMz6jsKTQ6Cgi0kME+gdyGZcR6K9eZZGuooLIYPUN9ZRRRn1DvdFRRKSHaG5upp56mpubjY4i0mt0uiDKyclh3bp15qcqABoaGnjyySe55JJLuOKKK1izZk2XhOzNQoNDmctcQoNDjY4iIj1EamYqy1lOambqiRuLSLt0uiB6++23efnll3FycjJvW7lyJZ9//jm1tbXs2bOHJ5980vwkhYiIdI1A/0Au53LdMhPpQp0uiNLT0znttNOwsrICoKmpiS+//JLIyEg+++wz3nvvPdzd3Xn//fe7LGxvpN/0RKSj3F3diSYad1d3o6OI9BqdLoj279/f6smItLQ0amtrmTFjBv369cPLy4uzzjpLCyaewEDPgYxjHAM9BxodRUR6iP3l+/mDP9hfvt/oKCK9RqcLIhsbGxobG82vt23bhpWVFaeddpp5m5ubm3mGVTk6b09vzuIsvD29jY4iIj2Enk4V6XqdLoh8fHxaTSG/YcMGfH198fHxMW8rKyvDzc3t5BL2ctU11eSQQ3VNtdFRRKSHiImI4T7uIyYixugoIr1Gpwui888/n+zsbBYsWMDNN99MdnY2kyZNatUmMzOz1URm0tau/F28yZvsyt9ldBQR6SGsrKywwcY8hlNETl6nC6JLLrmEiRMnsmPHDlJSUjj99NO5+uqrze+np6eTm5vbapZVaWvYkGHcwi0MGzLM6Cgi0kPkFvz/ayAW5BodRaTX6PS87/b29jz44IPU1NRgZWXV6vF7ODR1/auvvtrqFpq05dDPAU88cejnYHQUERGRPqvTPURbtmxh9+7dODs7tymGANzd3XF1ddVTZidQVFrEl3xJUWmR0VFEpIcIHhzMlVxJ8OBgo6OI9BqdLoj+9re/8dVXXx23zTfffMPf/va3zp6iT6iprSGXXGpqa07cWEQEMJlMNNOMyWQyOopIr9Hpgqg9F6LJZNKgvxMYNmQYN3GTxhCJSLul7EjhYR4mZUeK0VFEeg2LLu5aWFiIs7OzJU8hItLnBPgGMIMZBPjqKV6RrtKhQdXLly9v9fqHH36gtLS0Tbvm5mbKysrYunUrZ5xxxskl7OXSs9J5kicZlzUO35G+RscRkR7Aw92D0zgND3cPo6OI9BodKoj+PGbIysqK7OzsYw6atrKyIiIigptvvvnkEvZyHu4ejGSkfrCJSLuVV5aTSirlleX4ol+kRLpChwqi9957Dzg0NmjWrFlcfvnlXHbZZW3aWVtb4+LigqOjY9ek7MUGeQ/iHM5hkPegEzcWEQHyi/L5gA+4oegGIok0Oo5Ir9ChgujPcwotXryYYcOGaZ6hk1RbV0sRRdTW1RodRUR6iOhh0SxmMdHDoo2OItJrdHpQ9dSpUxk6dGhXZumTsnOzWcUqsnM1X5OItI+NjQ0OOGBjY2N0FJFeo9MzVR+WlpbGjh07qK6upqWlpc37VlZWXHvttSd7mpN26623kpaWZv4BEhERwdNPP21wKggLCWMBCwgLCTM6ioj0EPlF+XzIh5y+8XSjo3SYk5cTboFa9Fu6n04XRJWVldx7771s3779uHMSdZeCCOCuu+7i/PPPNzpGK44Ojvjgg6ODxluJSPvYudpRZ13HutvW8Tu/Gx2nQ+yc7FiYvlBFkXQ7nS6InnvuOVJSUoiLi2PKlCkMHDhQ3bedULKnhEQSuWjPRXpaRETaZeSEkSTlJFG7t2eNPSxLL+OTqz6hdm+tCiLpdjpdEG3atInIyEieeuqpLp+Nura2ljfffJOsrCyysrKoqKhgzpw5XH/99Udt+8orr7B+/XqqqqoIDAxk9uzZTJo0qU3bZ599lmeffZahQ4eycOFCwsKMv01VWVVJKqlUVlUaHUVEehC3QDcVFSJdqNODqg8ePMiIESMssjRHRUUFa9asobGxkXHjxh237ZIlS1i3bh1z5szhscceIyIiggcffJBvvvmmVbsFCxbw3nvv8eGHHzJ27FjuvPNOqquruzx7R4UPDWcRiwgfGm50FBHpIf744w/69evHH3/8YXQUkV6j0z1EYWFhR52luiv4+PjwxRdfYGVlRXl5OWvXrj1qu02bNrF582buv/9+EhISABg5ciSlpaW8+OKLnHvuuebbeFFRUeb9/vrXv/Lll1+yfft2xowZ0+a4e/fuZd++febXeXl5XfnxREROSkBAACtWrCAgQEt3iHSVThdE1113HXfffTepqalER3ftXBjt7XX64YcfcHR0ZOLEia22T5s2jYceeoi0tDRiYmKOeY5jDQb//PPPeeONNzoSudMydmbwLM8yYecELd0hIu3i7e3NwoULjY4h0qt0uiAqKytj7Nix3HrrrZx33nmEhYUdcyHXKVOmdDrg8eTk5BAUFIStbeuPcXh+pJycHGJiYqiqqmLHjh3mW3yfffYZ+/fvZ/jw4Uc97vTp0znrrLPMr/Py8li2bJlFPoNLfxfCCcelv4tFji8ivU9FRQU//vgjZ599Nm5uGkck0hU6XRD985//NPeyfPXVV3z11VdtenZMJhNWVlYWK4gqKirw8/Nrs93F5VBxUVl5aKByc3MzK1euJD8/H1tbW0JDQ3nsscfM7Y7k5eWFl5eXRTIfyW+QH+dzPn6D2n4OEZGj2blzJxdeeCFJSUmMHDnS6DgivUKnC6LFixd3ZY5Oa8/tNXd3d1atWnUK0nRcXX0de9hDXX2d0VFEpIeIiYmhuLj4lP3iJtIXdLogmjp1alfm6BQ3NzcqKirabK+qqgLA1dX1VEfqsKycLF7gBabnTGfImUOMjiMiPYCdnR2+vhpzKNKVOv3YfXcwZMgQ8vLyaGpqarV9165dAISEhBgRq0OGBg3lBm5gaJDWhROR9snLy2Pu3Ll6AlakC3W6h2j37t3tbjto0KDOnua4xo0bx5o1a9i4cWOriRjXrVuHl5dXq0ftOyMxMZHExESLzlfk7OTMYAbj7HT0AekiIkeqr68nNTWV+vp6o6OI9BqdLohmzpzZrvE7VlZWrF+/vsPH/+WXX6ivr6e29tDU9Hl5eWzYsAGAMWPG4ODgwJgxYxg1ahQrVqygtrYWf39/vv32W3799VeWLFly0kuJJCQkkJCQQEZGBvPmzTupYx3L7rLdbGQjM8pmaOkOEWmX8PBwNm3aZHQMkV6l0wXR5MmTj1oQVVdXs3PnTkpKSoiLi8PHx6dTx1+xYkWriR/Xr19vLqzee+898/3zZcuWsWrVKl599VXz0h0PPPDAUZfu6I72le/jd35nX/m+EzcWERERi+h0QXTvvfce8z2TycS7777Lf/7zH+6+++5OHf/9999vVzsnJycWLVrEokWLOnUeo0WFRXEHdxAVdnK390Sk79i6dSvnnHMO69evZ8SIEUbHEekVLDKo2srKiiuuuIKQkBBeeOEFS5xCRKTP8vHx4Z577ul0D7yItGXRp8zCw8NJTk625Cl6vKycLF7iJbJysoyOIiI9xKBBg7jzzjst9sCKSF/U6Vtm7VFUVERzc7MlT2FRp+IpM0cHRwYzGEcHR4udQ0R6l6qqKpKSkoiPjz/mjPsi0jFd3kPU0tLC7t27efPNN/npp5+6fOHXUykhIYHly5dzyy23WOwcAb4BXMAFBPhq1WoRaZ+srCzOOeccsrKyKCgoIC0tzfxeSkoKJSUlANTU1JCcnExd3aGZ8IuKikhNTTW3TU1NpbCwEIC6ujqSk5PNvwCWlJTw7bffsnTpUkpKSkhPTyc/Px+AhoYGkpOTzcsj7d69my1btpiPm5GRQW5uLgCNjY0kJydTXl5uke9CpKt0uiCaMGECEydObPPfueeey1//+ldee+01nJ2duemmm7oyb6/TcLCBAxyg4WCD0VFEpIeIiooiKyuLqKgoHn/8cWbNmmV+b+rUqbz88ssApKWlER8fT1bWoVvyzz33HDNmzDC3veSSS3j66aeBQxPaxsfHk5KSAsCrr77KFVdcYW47e/ZsHn30UeBQsRQfH89vv/0GwOrVqxk/fry57Q033MDSpUsBKC8vJz4+nu+//559B/axmc3sO6CnaqX7sTKZTKbO7Hjrrbce9bF7KysrXFxcCA8PZ9q0aXh4eJx0SKMdnodo1apVhIeHd+mxv179NVOumsK6d9YxefbkLj22iPR+BQUFVFVVmSeiTUlJwcvLC19fX2pqasjIyCAyMhJHR0eKioooLy8399ynpqbi5uZGQEAAdXV1pKenM2zYMPr3709JSQllZWXExsYCkJ6ejrOzM4GBgTQ0NJCamkpoaCiurq7s3r3bPNUKHPqZ2a9fP4KDg2lsbCQlJYUhQ4bw6xe/MvWqqXz1zlf6eSfdTqcLor7EkgVR5veZLJuwjCUblzBs/LAuPbaISHdSklzCyviVzE+aj+9ITUQr3UuPXsusN3Dp78JQhuLSXwMjRUREjNIlT5mlpKSQnZ1NTU0NTk5OhIWFERMT0xWH7vXK9pXxMz9z8b6LtXSHiPRqu/J38TZvk5CfoB4i6XZOqiBKS0vjH//4h/kpBZPJZB5XFBAQwOLFixk+fPjJp+zFdu/dzQY2sHtv+xfLFRHpiWysbehHP2ysT26dSRFL6HRBlJuby9///nfq6+sZPXo0cXFxeHh4cODAAf744w9+++037rjjDl566SWCg4O7MPKpcyrmIRoePpx7uZfh4SocRaR3CwoIYiYzCQoIMjqKSBudLojeeOMNmpqaeOKJJzj99NNbvXfllVeyefNm7r77bt544w3z45c9zalY7V5EpK9obm7mIAd79IS90nt1elD1H3/8wYQJE9oUQ4eNGjWKCRMm8Mcff3Q6XF+QnZvNq7xKdm620VFERCwqNTOVf/APUjNTT9xY5BTrdEFUU1ODr+/xB8UdngdDjq2ffT888KCffT+jo4iIWNRgv8FcyqUM9htsdBSRNjpdEHl6eraaAv5o0tLS8PT07Owp+oTBfoO5mIv1A0JEer0BbgOIIYYBbgOMjiLSRqcLorPPPpstW7bwyiuv0NDQetmJhoYGXnvtNf744w/OPvvskw7ZmzU2NlJDDY2NjUZHERGxqAMVB9jKVg5UHDA6ikgbnR5Ufe211/Lzzz/zzjvv8PnnnxMZGcmAAQM4cOAAO3bsoLy8HD8/P6699tquzNvrpGen8ziPMyl7EoFnBBodR0TEYgqKC/iET7ix+EaiiDI6jkgrnS6IXF1defnll3nhhRf47rvv+OWXX8zv2dvbM3XqVBYsWICrq2uXBO2tggKCmMUsPYYqIr3e8PDhLGGJphmRbumkJmZ0dXVl8eLF3HHHHeTl5VFbW4uTkxNBQUHY2nbJJNiGOhXzELm5uBFBBG4ubhY7h4hId2BtbY0ttlhba9Uo6X46/LfyrbfeYuXKlTQ1NZm32draMnToUGJiYhg6dCgmk4lVq1bxzjvvdGnYUy0hIYHly5dzyy23WOwc+w7sYzOb2Xdgn8XOISLSHeQV5vEu75JXmGd0FJE2OlQQbd68mddeew1XV9fj9gDZ2dnh6urKK6+8QlJS0kmH7M2KSov4gi8oKi0yOoqIiEW1mFpoppkWU4vRUUTa6FBB9PXXX+Pi4sIll1xywrYXX3wxLi4ufPXVV50O1xfERsbyAA8QGxlrdBQREYsKGRzCbGYTMjjE6CgibXSoINq+fTvx8fHY29ufsK29vT2jRo1i+/btnQ4nIiIicip0qCDau3cvfn5+7W7v6+vLvn0aG3M8u/J38TZvsyt/l9FRREQsalv6NpaylG3p24yOItJGhwoia2vrVoOpT6SpqUlPE5yAjbUN/eiHjbWN0VFERCzK38efi7gIfx9/o6OItNGhasXT05OcnJx2t8/JycHLy6vDofqSoIAgZjJT8xCJSK/nOcCTeOLxHKAlnaT76VBBFBsbS3JyMiUlJSdsW1JSQnJyMiNGjOh0uL6gubmZgxykubnZ6CgiIhZVXllOGmmUV5YbHUWkjQ4VRBdffDFNTU3cf//9lJeXH7NdRUUFDzzwAM3NzcyYMeNkM/ZqqZmp/IN/kJp5/IVyRUR6uvyifN7nffKL8o2OItJGh6aTDg8P5/LLL+eDDz7gmmuuYcaMGZx22ml4e3sDhwZdJyUlsWbNGsrLy5k5cybh4eEWCX4qnIqZqgf7DeZSLtVq9yLS60WFRXEXd+Hd7E1J8onvNHRGbVktaR+nEXVJFE7eTl1yTCcvJ9wCtZpAb2dlMplMHdnh8CzU//nPfzjariaTCWtra6688krmzp2LlZVVl4U1SkZGBvPmzWPVqlVdXuCVJJewMn4l85Pm4zvSt0uPLSLSnVTkV/B85PM01jYaHaVD7JzsWJi+UEVRL9fhBcesrKyYP38+F1xwAV9++SXbt29n//79AHh4eBATE8PUqVPx99dTBO1xoOIAW9nKgYoD+KKCSER6r/3N+9l6/lZuu/42Av0DjY7TLmXpZXxy1SfU7q1VQdTLdXoFVn9/f+bNm9eVWfqkguICPuETbiy+kSiijI4jImIxjY2N7D6wmwHhA/Adpl8ApXvp+UvS93DDw4ezhCUMDx9udBQREYsaNmwYGzZsMDqGyFFp1kSDWVtbY4utJrAUERExkP4VNlheYR7v8i55hXlGRxERsagtW7bg7OzMli1bjI4i0oYKIoO1mFpoppkWU4vRUURELMrPz49//vOfHVoTU+RU0Rgig4UMDmE2swkZHGJ0FBERixo4cCC33nqr0TFEjko9RCIickpUVlby9ddfU1lZaXQUkTZUEBlsW/o2lrKUbenbjI4iImJR2dnZTJkyhezsbKOjiLShW2bHcSqW7vD38eciLsLfRxNZikjvNnz4cAoKChg4cKDRUUTaUEF0HAkJCSQkJJiX7rAEzwGexBOP5wBPixxfRKS7sLe3JyAgwOgYIkelW2YGK68sJ400yivLjY4iImJR+fn53HjjjeTna7V76X5UEBksvyif93mf/CL9gBCR3q22tpbk5GRqa2uNjiLShm6ZGSwqLIq7uIuoMK1jJiK9W0REBL///rvRMUSOSj1EBrO1tcUJJ2xtVZuKiIgYRQWRwfKL8vmIj3TLTER6vW3btuHt7c22bZpmRLofFUQGa2xqpJJKGpsajY4iImJRAwcO5LbbbtNj99It6T6NwYYGDeU6rmNo0FCjo4iIWJSPjw/33HOP0TFEjko9RCIickpUV1fz448/WnSyW5HOUkFksO0Z23mER9iesd3oKCIiFpWZmcm4cePIzMw0OopIGyqIDObj7cMkJuHj7WN0FBERi4qKimLHjh24urqSlpZm3r59+3aKi4uBtnMVFRcXs337/35hTEtLo7CwEID6+nqSk5PNPU6lpaV8++23LF26lJKSEnbs2GGeBPLgwYMkJyebF5bds2cPW7ZsMR83MzOTnJwcAJqamkhOTubAgQMW+iakO1JBZDAvDy/GMAYvDy+jo4iIWJSDgwPh4eG88MILXH755ebtF154IS+88AIAO3bsID4+nh07dgDwwgsvcOGFF5rbXn755axYsQKAvLw84uPjzYXN66+/zsyZM81tr776ah555BHgUAEUHx/Ppk2bAHj33Xc566yzzG3nz5/PfffdB0BlZSXx8fGsX7+efQf2kUQS+w7s6+qvQ7oZDao2WFV1FdlkU1VdhS++RscREbG42267jblz55pfr127Fg8PD+DQ5I1JSUlEREQAcNNNNzFr1ixz2w8++ABXV1cAgoKCSEpKYtiwYQBcd911XHDBBcTGxgLw9ttv4+TkBBx6wi0pKYnQ0FAAZs2axfjx483HXblyJXZ2dgC4urqSlJRESEgIv335G2tYw8LShQxnuEW+D+kerEwmk8noEN3d4cVdV61aRXh4eJce++vVXzPlqimse2cdk2dP7tJji4jIySlJLmFl/ErmJ83Hd6R+ae3NdMvMYBGhEfydvxMRGmF0FBERkT5Lt8yOIzExkcTERIs+ImpvZ48bbtjb2VvsHCIi0jk5BTmsZjXnFZynHqJeTj1Ex5GQkMDy5cu55ZZbLHaOwpJC1rCGwpJCi51DREQ6x9rKGhtssLbSP5e9nf4PG6yuvo4SSqirrzM6ioiIHCEoIIhZzCIoIMjoKGJhKogMFhYSxnzmExYSZnQUERE5QktLC0000dLSYnQUsTAVRCIiIsewPWM7y1im1QT6ABVEBkvLSuMxHiMtK+3EjUVE5JQa7DeYi7mYwX6DjY4iFqaCyGBeA7wYy1i8BmimahGR7maA2wBGMIIBbgOMjiIWpoLIYAO9BjKOcQz0Gmh0FBEROcKBigOkkMKBCq1r1tupIDJYTW0NeeRRU1tjdBQRETlCQXEBH/ERBcUFRkcRC1NBZLCdeTt5ndfZmbfT6CgiInKE6GHR3Mu9RA+LNjqKWJgKIoMNGzKMm7mZYUOGGR1FRESOYGNjgz322NjYGB1FLEwFkcEc+jnghRcO/RyMjiIiIkfIK8zjfd4nrzDP6ChiYSqIDFa8u5h1rKN4d7HRUURE5AjNLc000EBzS7PRUcTCVBAZrLqmmp3spLrGcgvIiohI5wwJHMLVXM2QwCFGRxELU0FksGFDhrGQhRpDJCIiYiBbowOIiIh0V9vSt/EgDxLxZQTjGW90nHZz8nLCLdDN6Bg9igoig+3I3sG/+Bfjs8fjO9LX6DgiIvInoVGhTLebTtJ9Sey4b4fRcdrNzsmOhekLVRR1gAoig7m7uRNLLO5u7kZHERGRIww9bShvZr9J7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEHWACiKD+Xj7MIlJ+Hj7GB1FRESOUF5ezvdbvmf8+PG4u7tb7DxDJw+12LGlfTSo2mC1dbUUU0xtneV++xARkc7ZtWsXM2bMYNeuXUZHEQtTQWSw7NxsVrKS7Nxso6OIiMgRYmJi2LNnDzExMUZHEQvTLbPjSExMJDExkepqy80RFBocynzmExocarFziIhI59jZ2eHt7W10DDkF1EN0HAkJCSxfvpxbbrnFYudwcnTCDz+cHE9+IJ2IiHSt3Nxc5syZQ25urtFRxMJUEBmstKyUb/mW0rJSo6OIiMgRGhoayM7OpqGhwegoYmG6ZWaw8opytrGN8opyo6OIiMgRwsPD+fHHH42OIaeAeogMFhEawd/5OxGhEUZHERER6bNUEImIiBzDli1bcHV1ZcuWLUZHEQtTQWSwzF2ZPM/zZO7KNDqKiIgcwdfXl6VLl+Lrq6WVejuNITJYf+f+DGUo/Z37Gx1FRESOMGjQIG677TajY8gpoB4ig/kN8mMKU/Ab5Gd0FBEROUJlZSWJiYlUVlYaHUUsTAWRweob6tnLXuob6o2OIiIiR8jOzua8884jO1urCfR2KogMlrkrk+d4TmOIRES6oejoaHJycoiOjjY6iliYxhAZbGjQUK7jOoYGaaVjEZHupl+/fgQHBxsdQ04B9RAZzNnJmSCCcHZyNjqKiIgcIT8/n4ULF5Kfn290FLEwFUQG27N3Dz/wA3v27jE6ioiIHKGmpoZNmzZRU1NjdBSxMN0yM9jeA3vZxCb2HthrdBQRETlCZGQkycnJRseQU0A9RAaLCoviLu4iKizK6CgiIiJ9lgoiERGRY9i2bRu+vr5s27bN6ChiYSqIDJaVk8VKVpKVk2V0FBEROYK3tzcLFy7E29vb6ChiYRpDZDBHB0d88cXRwdHoKCIicgRfX1+WLFlidAw5BdRDZLAA3wAu4iICfAOMjiIiIkeorq5m06ZNVFdXGx1FLEwFkcEONh6kggoONh40OoqIiBwhMzOTM888k8zMTAoLC0lNTTW/l5qaSlFREQB1dXUkJyebH88vKSkhJSXF3DYtLY2CggIA6uvrSU5OpqqqCoDdu3ezdetWc9uMjAzy8vIAaGxsJDk5mYqKCgDKysr4448/zG2zsrLIyckBoLm5meTkZMory7v6a+gTVBAZbEf2Dv7Fv9iRvcPoKCIicoTIyEi2b99OZGQkTz/9NJdccon5vRkzZvDcc88BhwqT+Ph40tLSAHj55ZeZOnWque2sWbN4/PHHASgsLCQ+Pp6kpCQA3nrrLc455xxz2zlz5vDwww8DsHfvXuLj4/nxxx8BeP/99xkzZoy57f/93/9x7733AofmTIqPj+eHX3/o8u+hL9AYIoOFDA7hKq4iZHCI0VFEROQIjo6O5nXMFi1axJw5c8zvffbZZ7i7uwMQFhZGUlIS4eHhANx4441ceuml5rbvvvsuLi4uAAQEBJCUlERYWBgA11xzDeeff7657RtvvIGDgwMAXl5eJCUlMXTooeWdZs6cyZlnnmlu++KLL2Jre+ifcmdnZ5KSkqgvqOdLvmR/+X588e3Kr6NXszKZTCajQ3R3GRkZzJs3j1WrVpn/sneVkuQSVsavZH7SfHxH6i+uiIicnK9Xf82Uq6aw7p11TJ492eg4PYZumRls7/69/MIv7N2vmapFROTkxUTEcB/3ERMRY3SUHkUFkcFKy0r5lm8pLSs1OoqIiPQCVlZW2GCDlZWV0VF6FBVEBhsePpz/x/9jePhwo6OIiEgvkFuQy7/5N7kFuUZH6VFUEImIiEifp4LIYDvzdvI6r7Mzb6fRUUREpBcIHhzMlVxJ8OBgo6P0KCqIDGZna4crrtjZ2hkdRUREegGTyUQzzegh8o5RQWSwQP9ALuVSAv0DjY4iIiK9QMqOFB7mYVJ2pJy4sZj1uYJo+/btTJgwgTfffNPoKAA0NTVRSy1NTU1GRxERkV4gwDeAGczQGpkd1KcKopaWFp599lkiIyONjmKWlpXGYzxGWlaa0VFERKQX8HD34DROw8Pdw+goPUqfKog+//xzYmJiCAzsPrenAv0DmclM3TITEZEuUV5ZTiqpWuS1g7plQVRbW8uLL77IbbfdxkUXXcT48eN57bXXjtn2mWee4eKLLyYhIYHrr7+eb7/9tk27iooKPvzww1br0HQH7q7uRBGFu6u70VFERKQXyC/K5wM+IL8o3+goPUq3LIgqKipYs2YNjY2NjBs37rhtlyxZwrp165gzZw6PPfYYERERPPjgg3zzzTet2q1cuZKZM2fSv39/S0bvsH0H9pFEEvsO7DM6ioiI9ALRw6JZzGKih0UbHaVH6Zar3fv4+PDFF19gZWVFeXk5a9euPWq7TZs2sXnzZu6//34SEhIAGDlyJKWlpbz44ouce+652NjYkJGRQWZmJrfffnu7zr9371727ftfgZKXl3fyH+oYikqLWMMaFpYuZDiarVpERE6OjY0NDjhgY2NjdJQepVsWRO1df+WHH37A0dGRiRMntto+bdo0HnroIdLS0oiJiWHr1q3k5uYyY8YMAOrq6rC2tqawsJD/9//+X5vjfv7557zxxhsn+zHaJTYylqUsJTYy9pScT0REerf8onw+5EOmFE3Bd6Sv0XF6jG5ZELVXTk4OQUFB2Nq2/hhDhw41vx8TE8OFF17Yqmh6/vnn8fHx4corrzzqcadPn85ZZ51lfp2Xl8eyZcu6/gOIiIh0sabmJmqooalZ07l0RI8uiCoqKvDz82uz3cXFBYDKykoAnJyccHJyMr/fr18/nJyccHNzO+pxvby88PLyskDitnIKcljNas4rOE+VvIiInLQhgUO4lmsZEjjE6Cg9So8uiKD9t9f+7N5777VAks6xtrLGBhusrbrl+HYREZE+oUf/K+zm5kZFRUWb7VVVVQC4urqe6kgdFhQQxCxmERQQZHQUERHpBbR0R+f06IJoyJAh5OXltVn2YteuXQCEhIQYEatDWlpaaKKJlpYWo6OIiEgv4DfIj8lMxm9Q2yElcmw9uiAaN24cdXV1bNy4sdX2devW4eXlRVRU1EkdPzExkcWLF/Pss8+e1HGOZ3vGdpaxjO0Z2y12DhER6Ts8B3gymtF4DvA0OkqP0m3HEP3yyy/U19dTW1sLHHrSa8OGDQCMGTMGBwcHxowZw6hRo1ixYgW1tbX4+/vz7bff8uuvv7JkyZKTnoMhISGBhIQEMjIymDdv3sl+pKMa7DeYi7mYwX6DLXJ8ERHpWyqrKskkk8qqSnzRwzrt1W0LohUrVlBaWmp+vX79etavXw/Ae++9h6/vof/Jy5YtY9WqVbz66qtUVVURGBjIAw88wKRJkwzJ3VED3AYwghEMcBtgdBQREekFcgtz+Tf/5prCawgn3Og4PUa3LYjef//9drVzcnJi0aJFLFq0yMKJLONAxQFSSOFAxQFV8iIictIiQyO5nduJDI00OkqP0qPHEPUGBcUFfMRHFBQXGB1FRER6ATs7O1xwwc7OzugoPYoKIoNFD4vmXu7VInwiItIlCksK+YzPKCwpNDpKj9Jtb5l1B4mJiSQmJlJdXW2xc9jY2GCPvRbhExGRLlHfUE8ZZdQ31BsdpUdRD9FxJCQksHz5cm655RaLnSOvMI/3eZ+8wjyLnUNERPqO0OBQ5jKX0OBQo6P0KCqIDNbc0kwDDTS3NBsdRUREpM9SQWSwIYFDuJqrtQifiIh0idTMVJaznNTMVKOj9CgqiERERHqRgZ4DGcc4BnoONDpKj6KCyGDb0rfxIA+yLX2b0VFERKQX8Pb05izOwtvT2+goPYoKIoP5+/hzARfg7+NvdBQREekFqmuqySGH6hrLPSHdG+mxe4N5DvBkFKO0CJ+IiHSJXfm7eJM3mbpxKv2d+xsdp92cvJxwC3Qz7PwqiI7jVMxDVFFVwQ52UFFVoaU7RETkpMWdHsdtDreRcl8KO+7bYXScdrNzsmNh+kLDiiIVRMdxKla7zyvM413eZU7hHCKIsMg5RESk7xg0bBD3Z9xP7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEPVVkaGR3MmdWoRPRES6REFBAY8/8Th33nkngwcPtth5hk4earFjG0GDqg1mZ2eHM85ahE9ERLpEVVUVGzZsoKqqyugoPYoKIoMVFBfwCZ9otXsREekSUVFRbNu2jaioKKOj9CgqiAzWcLCB/eyn4WCD0VFERET6LBVEBgsNDuUGbtAifCIi0iVSUlIICAggJSXF6Cg9igoiERGRXsTLy4u5c+fi5eVldJQeRU+ZHcepmIdoe8Z2/sE/ODPjTHxHah4iERE5Ob6+vixdutToGD2OeoiOIyEhgeXLl3PLLbdY7ByDvAYxkYkM8hpksXOIiEjfUVNTw++//05NTY3RUXoUFUQG8/b05kzO1CJ8IiLSJTIyMhg9ejQZGRlGR+lRVBAZrKq6ip3spKpa80WIiMjJi4yMZOvWrURGasLfjlBBZLCcghze5m1yCnKMjiIiIr2Ao6MjsbGxODo6Gh2lR1FBZLDwoeEsYhHhQ8ONjiIiIr1AUVER99xzD0VFRUZH6VFUEBmsn30/BjCAfvb9jI4iIiK9QHl5OR988AHl5eVGR+lRVBAZrLCkkC/4gsKSQqOjiIhILxAdHU12djbR0dFGR+lRVBAZrK6+jgIKqKuvMzqKiIhIn6WJGY/jVEzMGBYSxgIWEBYSZrFziIhI35Gamsoll1zCxx9/rF6iDlBBdBwJCQkkJCSQkZHBvHnzjI4jIiJyQm5ubkyfPh03Nzejo/QoumVmsLSsNJ7gCdKy0oyOIiIivUBAQACPP/44AQEBRkfpUVQQGczT3ZPTOR1Pd0+jo4iISC9QV1dHamoqdXUam9oRKogMNsh7EBOYwCBvrWUmIiInLz09neHDh5Oenm50lB5FBZHBamprKKCAmlotwiciIidv2LBh/PzzzwwbNszoKD2KCiKD7czbyau8ys68nUZHERGRXqB///6MHTuW/v37Gx2lR1FBZLCwkDBu4iY9di8iIl2ipKSEZcuWUVJSYnSUHkUFkcEcHRwZyEAcHbQIn4iInLyysjKef/55ysrKjI7So6ggMljx7mL+y38p3l1sdBQREekFYmNjKSkpITY21ugoPYoKIoNVVVeRQQZV1VVGRxEREemzVBAZLHxoOLdwC+FDw42OIiIivUB6ejojR44kPT2dhoYGkpOTqaysBGD37t1s2bLF3DYjI4Pc3FwAGhsbSU5Opry8HDh06y05OdncNisri127dgFQWFjIjTfeSFraoUmF9+/fT3JyMi0tLQDs2rWL7Oxs877Jycns3bsXgAMHDpCcnExTUxMAOTk53eLBIhVEx5GYmMjixYt59tlnjY4iIiLSLs7OzowdOxYvLy9KSkqIj4/nt99+A2D16tWMHz/e3PaGG25g6dKlAJSXlxMfH8/3338PwMcff8zo0aPNbW+++WbuvvtuAPLy8li5ciWffvopAF9++SXx8fE0NjYCcMcdd7Bo0SLzvvHx8ea269evJz4+3lyk3Xfffdz1yF1d/0V0kJXJZDIZHaK7O7yW2apVqwgP79qenA0fbOCSmZfw8fsfM/HyiV16bBER6Zvq6upwdHSkoaGB1NRUQkNDcXV1Zffu3ZSUlBAXFwcc+vetX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkcKiHyMbGhiFDhlBYWMjDDz/MokWLiIqKYv/+/eTm5hIXF4e1tTW7du2ipaWF0NBQ4FAPUWBgIF5eXhw4cICcnBxiY2OxtbUlJyeHoi1FfHvJt8xPmo/vSF9DvjMt7mowVxdXoonG1cXV6CgiItJLODoeenK5X79+5oIGYNCgQQwa9L+VEf78S76dnV2rtt7e3nh7e5tfh4X9b3qYgIAAXn75ZfNrDw8PPDw8zK+HDBnSKs+fjztgwAAGDBhgfh0SEkL2L9k8wiOcmXGmYQWRbpkZzHegLwkk4DvQmL8AIiIiRvPx9mESk/Dx9jEsgwoig9XV11FKKXX1WoRPRET6Ji8PL8YwBi8PL8MyqCAyWFZOFi/xElk5WUZHERERMURVdRXZZBs6BY0KIoOFBocyj3mEBocaHUVERMQQOQU5vMM75BTkGJZBBZHBnByd8McfJ0cno6OIiIgYIiI0gr/zdyJCIwzLoILIYLvLdrOe9ewu2210FBEREUPY29njhhv2dvaGZVBBZLD95ftJJpn95fuNjiIiImKIwpJC1rCGwpJCwzKoIDJYZFgkt3M7kWGRRkcRERExRF19HSWUGPrEtQoiERERMVRYSBjzmU9YSNiJG1uICiKDZe7K5AVeIHNXptFRRERE+iwVRAZzdnImmGCcnZyNjiIiImKItKw0HuMx0rLSDMuggshg/j7+TGMa/j7+RkcRERExhNcAL8YyFq8Bmqm6z6pvqGcf+6hvqDc6ioiIiCEGeg1kHOMY6DXQsAxa7f44EhMTSUxMpLq62mLnyNyVybM8ywW7LiBkbIjFziMiItJd1dTWkEceNbU1hmVQQXQcCQkJJCQksG3bNm6++Wby8vK6/Bw2NjbMcp6FjY0NGRkZXX58ERGR7m7T5k287/w+4zePp9m7ucuPHxQUhIODw3HbWJlMJlOXn7mX+e9//8uyZcuMjiEiIiKdsGrVKsLDw4/bRgVRO5SXl/Pbb7/x6aefsmjRonbv9+yzz3LLLbcct01eXh7Lli1jyZIlBAUFnWzUXqE935tRjMhmqXN2xXFP5hid3bcj++ka7JzufA3Cqc/Xna/Bkz1OZ/bt6D7d4TpsTw+Rbpm1g7u7O+effz7ffffdCSvMP+vfv3+72wcFBXXo2L1ZR763U82IbJY6Z1cc92SO0dl9O7KfrsHO6c7XIJz6fN35GjzZ43Rm347u01OuQz1l1gEJCQkWbS+HdOfvzYhsljpnVxz3ZI7R2X07sl93/rvUnXX37+1U5+vO1+DJHqcz+/bWfwt1y8xgGRkZzJs3r133N0Wk6+kaFDFed7gO1UNkME9PT+bMmYOnp6fRUUT6JF2DIsbrDteheohERESkz1MPkYiIiPR5KohERESkz1NBJCIiIn2eCiIRERHp81QQiYiISJ+ngqibO3jwIP/85z+59NJLmTJlCgsWLCAlJcXoWCJ9ytKlS5kxYwZTpkxhzpw5/Pzzz0ZHEumztm/fzoQJE3jzzTe79Lh67L6bq6ur47333mPq1Kl4e3vz9ddf88ILL/DBBx+ccF0WEekaOTk5BAQEYGdnR1paGrfffjvvvvsubm5uRkcT6VNaWlr4v//7P6ysrBg7dizXXnttlx1bPUTdnKOjI3PmzGHQoEFYW1szdepUWlpaKCwsNDqaSJ8REhKCnZ0dADY2NjQ2NrJ3716DU4n0PZ9//jkxMTEEBgZ2+bG1uGsXq62t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNOubx8/LyaGhowM/Pz5IfQ6THstQ1+NBDD/H9999z8OBBxowZw5AhQ07FxxHpkSxxHVZUVPDhhx/y0ksv8cwzz3R5ZhVEXayiooI1a9YwdOhQxo0bx9q1a4/ZdsmSJezYsYMbb7yRwYMHk5iYyIMPPkhLSwvnnXdem/b19fU88sgjXHPNNTg5OVnyY4j0WJa6Bu+//36amppITk4mLy8PKysrS38UkR7LEtfhypUrmTlzJv3797dIZhVEXczHx4cvvvgCKysrysvLj/mXYNOmTWzevJn777/fvBLwyJEjKS0t5cUXX+Tcc8/FxsbG3L6pqYkHHniAoKAgrr766lPyWUR6IktdgwC2traMHj2ajz76iICAAMaOHWvxzyPSE3X1dZiRkUFmZia33367xTJrDFEXs7Kyatdvjj/88AOOjo5MnDix1fZp06axd+9e0tLSzNtaWlp45JFHsLa25u6779ZvpiLHYYlr8EgtLS0UFRWdbFSRXqurr8OtW7eSm5vLjBkzuOiii/juu+9YvXo1jzzySJdlVg+RQXJycggKCsLWtvX/gqFDh5rfj4mJAeCJJ55g3759PP74423ai0jntPca3LdvHykpKZxxxhnY2dnx/fff88cff3DjjTcaEVukV2nvdXjhhRe2Kpqef/55fHx8uPLKK7ssi/51NUhFRcVRB0a7uLgAUFlZCUBpaSlr167F3t6e6dOnm9s99thjjBgx4tSEFemF2nsNAnz44Yc8+uijWFlZERAQwNKlSwkNDT1lWUV6q/Zeh05OTq3Gzvbr1w8nJ6cunfpCBZGB2tOd6OPjw/fff38K0oj0Pe25Bj09PXnuuedOQRqRvqkzw0DuvffeLs+hMUQGcXNzo6Kios32qqoqAFxdXU91JJE+RdegiPG603WogsggQ4YMIS8vj6amplbbd+3aBRyaCE5ELEfXoIjxutN1qILIIOPGjaOuro6NGze22r5u3Tq8vLyIiooyKJlI36BrUMR43ek61BgiC/jll1+or6+ntrYWODS79IYNGwAYM2YMDg4OjBkzhlGjRrFixQpqa2vx9/fn22+/5ddff2XJkiVt5j8RkfbTNShivJ52HWpxVwuYOXMmpaWlR33vvffew9fXFzg0XfmqVataTVd+1VVXHXfpDhE5MV2DIsbradehCiIRERHp8zSGSERERPo8FUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIROQk/etf/+Kiiy4yL1EA8NprrzF+/Hj++OMPA5P9zyOPPMLll19OQ0OD0VFEuiWtZSYirZSUlPDXv/71uG1CQ0N57bXXTlGi7q2goIDPP/+c+fPn4+TkZNFzffbZZzz55JNMnz6dO+6447ht586dS2ZmJqtWrSI8PJxrr72WxMREPvjgA6666iqL5hTpiVQQichR+fv7c9555x31PU9Pz1Ocpvt6/fXXsbe3Z8aMGRY/V0JCAs8//zzfffcdt9xyC/369Ttqu507d5KZmUlYWBjh4eEABAQEcPbZZ/Pvf/+bSy+9FEdHR4vnFelJVBCJyFH5+/tz/fXXGx2jWysvL+f7779n4sSJFu8dAnB2dmbChAl8/fXXbNy4kfPPP/+o7dauXQvAtGnTWm0///zz2bhxI99++y0XXnihxfOK9CQaQyQiJ238+PHceuutlJeXs3z5cqZPn05CQgILFiw45hia2tpaXnvtNa655hoSEhKYNm0ad9xxB9u2bWvT9tZbb2X8+PEcPHiQV199lSuuuIJzzjmn1W27jRs3Mm/ePBISEpgxYwaPPfYYVVVVzJw5k5kzZ5rbPfLII4wfP5709PSj5nrxxRcZP34833///Qk/97fffsvBgweZOHHiCdsetnPnTi6++GIuuugi0tLSzNuLi4t59NFHueyyy5g0aRJ/+ctf+Mc//tFmtfALLrgAgK+++uqox29sbCQxMRF7e/s2BdOYMWNwdHTkyy+/bHdekb5CBZGIdInq6mpuuukmdu7cyXnnncf48ePJyMjgjjvuYNeuXa3aVlZW8n//93+88cYbuLq68pe//MXcftGiRfzwww9HPceSJUv48ssvGTFiBJdffjl+fn4AfPHFF9x3330UFRUxefJkpkyZQmpqKrfddhtNTU2tjjF9+nTgf70of9bU1MTXX3+Nh4cHZ5555gk/c1JSEgDR0dEn/oKArVu3csstt2BjY8Nzzz1HVFQUAGlpacydO5d169YRHh7OZZddxogRI/jmm2+48cYbKS4uNh8jLi6OgIAAkpOTKSkpaXOOn376iYqKCsaPH4+Li0ur9+zs7Bg2bBjp6enU1dW1K7NIX6FbZiJyVEVFRcccOB0dHc0ZZ5zRalt2djZ/+ctf+Nvf/oa19aHftUaOHMljjz3Gxx9/3GoQ8FNPPUVOTg6LFy9udVtn//79zJ8/n8cff5zRo0e3GSOzb98+Xn/9dVxdXc3bqqqqeOaZZ3BycuKVV14xF0nz5s3jrrvuIiMjAx8fH3P7mJgYQkJC+Pbbb7n55ptbjaX5+eef2b9/P1deeSW2tif+8bh9+3a8vb0ZMGDACdv+8MMPPPjgg/j5+fHEE08wcOBA4FARtnTpUlpaWli1ahWhoaHmfbZt28aiRYt45plnWL58uXn7tGnTWLlyJevWreO6665rdZ4vvvgC+F9P0pHCw8PZunUr6enpjBw58oS5RfoK9RCJyFEVFRXxxhtvHPW/X3/9tU17R0dHFixYYC6GAKZMmYKNjQ07duwwbysvL2f9+vXEx8e3GePi4eHBFVdcQXl5ubn35c+uu+66VsUQwI8//khdXR0XXnihuRgCsLW15YYbbjjqZ5s+fTq1tbV89913rbavXbsWKyurdo2vaWxspLy8vF3F0Nq1a7n//vsJCwvjueeeMxdDcKgIKy0t5YorrmhVDAHExsZy1lln8csvv1BTU2Pefvh7/eqrrzCZTObte/fuZfPmzfj4+Byz2Dmct6ys7IS5RfoS9RCJyFGNHj2aJ554ot3tAwIC2gwstrW1xcPDg+rqavO2HTt20NzczMGDB4/aA1VYWAhAXl5em9tWkZGRbdrv3LkTgOHDh7d5LzIyEhsbmzbbzz//fF566SXWrl1r7kkpKyvj999/N9+SOpGKigqANreljvT+++/z008/MWbMGB566CEcHBxavZ+amgpAfn7+Ub+P/fv309LSQkFBAREREQB4eXlxxhln8PPPP5OcnEx8fDxwaFxRc3Mz06ZNw8rK6qh5DheUh/OLyCEqiESkSzg7Ox91u42NDS0tLebXlZWVAKSkpJCSknLM49XX17fZ5uHh0Wbb4Z4Td3f3Nu9ZW1vj5ubWZruLiwvnnHMO69atIzc3l+DgYL788kuam5vb/fTV4dt5J5ro8PAg8TPOOKNNMQSHbvkBfPPNN8c9zpHfxwUXXMDPP//MV1991aogsra2ZurUqcc8zuG8x3pkX6SvUkEkIqfU4cLpr3/9KwsXLuzQvkfr9Th8vPLy8jbvtbS0UFFRgbe3d5v3pk+fzrp161i7di0LFy7kq6++wtXVlfHjx7cri4uLC7a2tuYC71juvvtu3nrrLZ555hmsra25+OKLW71/uFdt+fLl7RrIfdjYsWPx8PBg48aN/P3vfyc7O5vCwkJGjx7NoEGDjrnf4bxHKyBF+jKNIRKRUyoiIgIrKyvzraKTNXToUODQAOcjpaen09zcfNT9hg8fzpAhQ/j666/55ZdfKC4u5rzzzutQz0lISAilpaVtnmT7MxcXF/71r38xbNgw/vWvf/Hxxx+3ev/wk2Yd/T5sbW2ZPHkyDQ0NfPvtt+ZH6Y81mPqwgoICAIYMGdKh84n0diqIROSU8vT05JxzzmH79u385z//aTUo+LC0tLSj3jI7mrPPPhtHR0fWrl3b6vH0pqYmXn311ePue9FFF1FRUcHjjz8O0OHJCuPi4jh48KB5HNOxuLi4sGLFCiIiInjqqaf46KOPWuUfNGgQ7733Hlu2bGmzb1NT01HnZoL/FT+ffvopGzZswM3NjbPPPvu4WdLS0vD09GTw4MEn+HQifYtumYnIUR3vsXvgpGaxvu222ygoKODFF1/k66+/Jjo6mv79+7Nnzx4yMjIoLCzkk08+OeqYmyO5uLhw88038/jjjzN37lzOPfdcnJ2d+eWXX7C3t8fLy+uYA4wnT57Myy+/zN69e4mKijL3NrXXuHHj+OCDD0hKSjIvkXG8nE8++SS33347Tz/9NCaTicsuuwx7e3seeugh7rrrLm699Vbi4+MJCQkBYPfu3Wzbtg03NzfeeeedNscMDAwkJibGPBbrwgsvxM7O7pgZioqKKCkp4S9/+UuHPqdIX6CCSESO6vBj98dyMgWRq6srL7zwAh9//DHfffcdiYmJtLS04OHhQWhoKNdee+1RB0Mfy0UXXYSLiwtvv/0269atw9nZmbPOOosFCxZw+eWX4+/vf9T9+vfvz9lnn01iYmKnlrKIi4sjMDCQ//73v1x55ZUnbH+4p+j222/nmWeewWQycfnllxMZGclrr73Gf/7zH3755RdSUlKws7PDy8uLcePGMWnSpGMe84ILLjAXREdOY3Ck//73v8D/JqcUkf+xMh2tv1pEpBcoLCzkyiuv5JxzzuHBBx88aptrrrmG3bt388knn3RqPbLPP/+cJ554gpdeesk8Hqg7ampqYvbs2fj4+PD0008bHUek29EYIhHp8aqqqjh48GCrbQ0NDTz33HPAoVtbR7Np0yZyc3OZPHlypxdnveCCCwgKCuL111/v1P6nyn//+19KS0u56aabjI4i0i3plpmI9Hhbtmzh0Ucf5fTTT2fgwIFUVFSQnJxMaWkpI0eO5Nxzz23V/tNPP2XPnj2sWbOGfv36ccUVV3T63DY2Ntxzzz38+uuv1NbWnpJV7zvDysqKO++884RjnUT6Kt0yE5Eer6CggFdffZXt27eb5yPy9/fn3HPPZdasWW0epZ85cyZlZWUMHjyYBQsWdGj+HxHpnVQQiYiISJ+nMUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIRERE+rz/D+lLeKBtdJtKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = \"Best fit convolved with response\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=np.sqrt(expectation.project('Em').todense().contents), color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(crab.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Source counts\")\n", + "ax.errorbar(binned_energy, crab.binned_data.project('Em').todense().contents, yerr=np.sqrt(crab.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "28b9380a-6e72-4cb9-9cd5-1fdb44bd2dcf", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response plus the fitted background, as well as the simulated source+background counts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "29823cda-ca7b-4c5c-ac11-681bfaf12ba8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHDCAYAAABsyc0zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB82UlEQVR4nO3deVyVZf7/8deRHQWURUEQRDY33HBcyq1ETUutLMvUtEWzspy+NuaUrWPLWGll06KW2m7aNKmVFaXmZFpKrigiIgKCgrLvy/n94c8zoaiA4M2B93Me83h07nPd9/0+x3Pgw3Vf93WZzGazGRERERG5opoZHUBERESkKVIRJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAW6MDNGYjRoyo9LioqIj777+f22+/3aBEIiIi0lCYtHbklZGRkcGtt97Kxx9/TNu2bY2OIyIiIgbT5cgr5IcffqBLly4qwERERATQ5UiLgoICVq5cSVxcHHFxcWRnZzN16lTuvvvuKtsuW7aMjRs3kpubi7+/PxMnTmTo0KEXPP7333/PzTffXJ8vQURERKyIesL+v+zsbNatW0dpaSkDBw68aNt58+axYcMGpk6dyoIFC+jYsSPPPvssP/zwQ5Xt4+PjSUpKYsiQIfWQXERERKyResL+P29vb77++mtMJhNZWVmsX7++yna//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY1NpX2+++47rr76alxcXKqdp6ioiMTERAICAnB0dKz9CxMREZEGST1h/5/JZMJkMl2y3ZYtW3BycjqvV2vUqFFkZGQQExNTaXtFRQVRUVEMHz78osfNyMggNjbW8v+ff/6ZadOmkZiYWOPXIiIiIg2fesJqKCEhgYCAAGxtK791QUFBlufDw8Mt23fu3ElZWRl9+/a96HHXrl3LihUr6jyviIiINEwqwmooOzu7yjscz15qzMnJqbT9+++/Z+jQoecVbecaM2YMV199teVxYmIi8+fPr4PEIiIi0hCpCKuF6ly2POuJJ56oVjtPT088PT1rG0lERESsjMaE1ZCbmxvZ2dnnbc/NzQXA1dX1SkcSERERK6QirIY6dOhAYmIiZWVllbYfOXIEgMDAQCNiiYiIiJVREVZDAwcOpLCwkM2bN1favmHDBjw9PencubNByURERMSaaEzYn2zbto2ioiIKCgqAM4PjN23aBEC/fv1wdHSkX79+9O7dm4ULF1JQUICvry8//vgj27dvZ968eefNESYiIiJSFS3g/Sfjx48nLS2tyudWrVqFj48PcGbZoqVLl1ZatmjSpEkXXbaopmJjY5k2bRpLly4lLCyszo4rIiIiDYOKsAZKRZiIiEjjpjFhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiAE3WKiKVZB/LpiCjwOgYNeLs6Yybv5vRMUREakRFmIhYZB/LZkHHBZwqPIUPZyYnPsUpmtGMVrSiggrSSKMVrXDCiQIKyCILH3wwYeI0pwFwxx0zZlJJpSUtccaZQgrJJBNvvGlGMzLJpIIKPPAAIJVUXHGlOc0poojTnKYNbbDBhiyyKKMMTzwBSCONFv//f8UUU+ZYxhOxT6gQExGroiJMRCwKMgrYVbiLH2x/IHF7IgDj7x+PRysPHnvhMXLzcgkbHMa7L73L6GGjWbV2FQueXcCx7cewtbVlyiNTAFi5aCVlZWX49/Vn0dOLuG3Mbaz7YR33zb2P2M2xuLRw4f7H7+dU5ik+f/tzANr3a8/T//c0d42/i6gtUdz51zv5Y8MftPFqw+znZnPoyCHWrVgHQOdrOjPzrplMv3M6H6/4mL8t/hu37r2Vv/j/xZg3TkSkFlSEiUglXejCrJWz8Ol1pifs/Y/ex9bWFp9AH1qXt2bnzp0EBgbSqlUrJgdMZtCYQfj19MNkMvH2+28D4BPkg9lsZufOnQQEBODh4cGtgbfSe1hvgroHYWNjw6K3F1FWVoZPyJnzbNu+DT8/P7y8vBgTNIadA3fSJbwLdnZ2vPj6ixQVFeETdqbtpp834e3tTZs2bbgu8zoOLj6Ip7unMW+YiEgtqQgTEYuc3BxSSCHAN8CyLSQkxPLfNjY29OrVy/LYw8MDDw8Py+OgoCDLf5tMpkptW7VqRatWrSyPAwMDK527Z8+elv92c3OrtG9AQECltt27d/9fhlYetKMdjg6O1XuRIiINhIqwBiYqKoqoqCjy8vKMjiJN0NHko3zCJ9yZfCdhWMeapSlpKXzDN1yfdr1lHJuIiDVQEdbAREZGEhkZaVnAW+RK6hTcidnMplNwJ6OjVFt+QT5HOUp+Qb7RUUREakTzhImIhZ2dHS64YGdnZ3SUagvtEMoDPEBoh1Cjo4iI1IiKMBGxSE5N5iu+Ijk12egoIiKNnoowEbEoKi4inXSKiouMjlJtB+IO8CqvciDugNFRRERqREWYiFgEtw/mXu4luH2w0VGqzb2lO73ohXtLd6OjiIjUiIowEbFqbbzacA3X0MarjdFRRERqREWYiFjsP7Sfl3iJ/Yf2Gx2l2goKC0ghhYJC61rvUkRERZiIWLT2aM1ABtLao7XRUart8NHDLGUph48eNjqKiEiNqAgTEQsvDy+u5mq8PLyMjlJtIYEhzGAGIYEhl24sItKAqAgTEYu8/DwSSCAv33pWbHBydMIbb5wcnYyOIiJSIyrCRMTiyLEjrGQlR44dMTpKtaWeTCWKKFJPphodRUSkRrRskUg9yj6WTUFGAdm52SQmJ9IpuBN2dnYkHU+iuKTYMhXEvth9tPFsg5eHF7l5uSQkJRAWFIaDvQPJqckUFhVaLrfFxMXg0dKDNl5tyC/IJz4xnpDAEJwcnTh+4ji5ebmEBZ1Z9zE2PhZXF1d8WvtQWFRIXEIcwe2DcXZy5kT6CU5nnaZTyJklig4dOURpWikP8ZBVzT6fk5vDfvaTk5tjdBQRkRpRESZST+L/iGd239mEloaSRBKf8Rl/4280pzlf8iWnOc093APAC7zAEIZwFVcRTzwf8iGzmEUrWvE1X5NEEjOYAcArvMJf+AuDGUwSSbzHezzAA7SmNd/zPbHE8hAPAfA6r9OFLkQSSRppvMM7TGMavviykY1EE81sZgPwFm/RnvaMdR6Lu6/1zLkVFhTGLGZZCk8REWuhIkyknhyOOcza0rV8+o9PuXvg3UxNnmrpCRt5fGSlnrCrYq+q1BM2MWmipSdsVOqoSj1hA+IGVOoJuzXxVktP2A0nbqjUEzY4fnClnrAbE2609ISNTR9bqSdsyJEhNHduTkjXENz83Yx500REmhAVYSL1pFunbjzN0wwaNQifXj50pKPlOZ9ePpXa/vmxDz6EElrp8YXaAgQPCK522w5Xdah2W2sRGx/LYhYzOH6w1b4GEWmaVISJiFVzaeFCGGGUppaSGm09g/OdPZ3V4yjSxKkIE6knR44d4UM+JPJYpHpo6lFwl2CGOw1nzaw1bGQjDjiQSy755OONNwDppGOHHS1pSRllnOQk7rjjiCN55JFLrqVnMIMMbLChFa0op5wTnKAVrXDCiXzyySabtrQF4BSnMGHCHXcqqCCNNFrSEmecKaCALLLwxptmNOM0pzFjxgMPAPId83ki9gkVYiJNmIowkXpi08wGBxywaWZjdJRGzc3fjRFrR9B/WH/WLl9L7269eW3Za/z783+z6/tdAAy/YzgR3SKYM3cOSceT6Du6L5+99RmD+g7i3Y/e5Z0l73Do50MAjL17LIHtAnns2cc4lXmK8Mhwli9czojBI/jwiw9Z+M+FJP2WBMCEByfg0tyFuQvmUlBYQPCAYP71/L+46bqb+OKbL1jw5AISfk3Awd6Bex69h5KSEj5840Nit8dyzQPXcOveW/mL/1+MeutExGAms9lsNjqEnC82NpZp06axdOlSwsJ015c1So1OZUnEEqbvnK6esHpWWFjIgQMHCA0NpUWLFqSmppKenk63bt0AOHDgAM2bN8ff35/i4mL2799PcHAwrq6unDhxgtTUVHr06AGc+e45ODjQvn17SktL2bt3Lx06dKBly5akp6eTlJREr169AIiLi8PGxoYOHTpQXl7O7t27ad++Pe7u7pw+fZqjR4/So0cPmjVrxpEjR6ioqCA4OJh9P+7jr5F/5bWo1+g6tKtRb5uIGEw9YSL1pLy8nBJKKC8vNzpKo+fk5GQpjAB8fHzw8flf4dupUyfLfzs4OFRq26ZNG9q0aWN5/Oc/euzs7Cq19fLywsvrf0s6hYT8b6kkGxubSm3d3d1xd//fVB8dOvzvpgiPVh4MZCAerTxq9kJFpFHRjPki9WT/of28wAvsP7Tf6CjSwGTlZBFDDFk5WUZHEREDqQgTqSft2rZjHONo17ad0VGkgTmWcozP+ZxjKceMjiIiBtLlyAYmKiqKqKgo8vKsZwFlqVort1aEE04rt1ZGR5EGpnNIZ+Ywh84hnY2OIiIGUhHWwERGRhIZGWkZmC/WKzM7k93sJjM787yJUaVps7W1xRlnbG31I1ikKdPlSJF6knQ8iS/5kqTjSUZHkQbmWMoxvuALXY4UaeJUhInUk65hXZnHPLqGaQoCqay0rJQccigtKzU6iogYSEWYSD1p1qwZttjSrJm+ZlJZUEAQd3EXQQFBRkcREQPpt4NIPUlMTuQzPiMxOdHoKCIi0gCpCBOpJxXmCsopp8JcYXQUaWD2xe7jeZ5nX+w+o6OIiIFUhInUk8B2gUxkIoHtAo2OIg2Mt5c3QxmKt5e30VFExEAqwkRErjBPd0/60Q9Pd0+jo4iIgVSEidSTPQf28AzPsOfAHqOjSAOTm5fLYQ6Tm5drdBQRMZCKMJF64uvty2hG4+vta3QUaWASkhL4iI9ISEowOoqIGEhFmEg98WjlQQQReLTyMDqKNDAdgzvyCI/QMbij0VFExEAqwkTqSVZOFjHEkJWTZXQUaWDs7exxww17O3ujo4iIgVSEidSTYynH+JzPtTSNnCc5NZl1rCM5NdnoKCJiIBVhIvWkc0hn5jCHziGdjY4iDUxhUSGppFJYVGh0FBExkIowkXpia2uLM87Y2toaHUUamJDAEKYznZDAEKOjiIiBVISJ1JNjKcf4gi90OVJERKqkIkyknpSWlZJDDqVlpUZHkQYmJi6GBSwgJi7G6CgiYiAVYSL1JCggiLu4i6CAIKOjSAPj2cqT/vTHs5VmzBdpylSEiYhcYa09WzOQgbT2bG10FBExkIowkXqyL3Yfz/M8+2L3GR1FGpj8gnwSSSS/IN/oKCJiIBVhIvXE28uboQzF28vb6CjSwMQnxrOc5cQnxhsdRUQMpCJMpJ54unvSj354umvcj1QW2iGUmcwktEOo0VFExEAqwkTqSW5eLoc5TG5ertFRpIFxdHDEE08cHRyNjiIiBtIskiL1JCEpgY/4iElJkwhFPR7yP8dPHGcta7nqv1cBcPDwQVq6tcTby5uCwgIOHz1McPtgnJ2cSUtPIys7y7LY96Ejh2jRvAVt27SlqLiIQ0cOERQQRHPn5pzMOElGZoZllYa4hDicHJ3w8/GjpLSEg4cPEtguEJcWLmScziAtPY2uYV2BM5dI7Wzt8Pf1p6ysjJi4GPx9/Wnp2pJTmadISUuh38B+uPm7GfOmiTRCKsIamKioKKKiosjLyzM6ilymjsEdeYRHLL88Rc5yaOlAsimZH2b9wFa2sohFdKMbQxnKcY6zhCVMZzptacuP/Mge9vAIjwDwL/5FEEFcx3VkkMGbvMld3EUAAWxhC7/yK3OYA8ASluCDD6MZTTbZLGIRk5hEMMFsYxs/8iNP8AQAy1mOK66MYxwFFLCABYxnPJ3pzE52so51PO/8PA8eeFCFmEgdMZnNZrPRIeR8sbGxTJs2jaVLlxIWFmZ0HKmF1OhUlkQsYfrO6fj08jE6jjQwh6MP05zmgHX0hO3/dT8Hnzyoz7NIHVJPmEg9SU5NZh3rGJU6Ch/0S0sqC+4VbPnvc4uaoKv/N8HvuZ+dc9sG9g+sdtuAvgGV2oYTfsG27fq0q9Q2Jy+HJ3mSYUnDVISJ1BENzBepJ4VFhaSSSmFRodFRRC5bM1MzbLChmUm/NkTqir5NIvUkJDCE6UwnJDDE6Cgily3AL4DbuZ0Av4BLNxaRalERJiIil1RRUUEZZVRUVBgdRaTRUBEmUk9i4mJYwAJi4mKMjiJy2fbF7mM+87UMl0gdUhEmUk88W3nSn/54ttKM+WL92rVtx03cRLu27S7dWESqRUWYSD1p7dmagQyktWdro6OIXLZWbq3oTndaubUyOopIo6EiTKSe5Bfkk0gi+QX5RkcRuWyZ2ZnsZS+Z2ZlGRxFpNFSEidST+MR4lrOc+MR4o6OIXLak40l8wRckHU8yOopIo6EiTKSehHYIZSYzCe2gdSPF+nUJ7cLjPE6X0C5GRxFpNFSEidQTRwdHPPHE0cHR6Cgil83GxgZ77LGxsTE6ikijoSJMpJ4cP3GcDWzg+InjRkcRuWyJyYl8zuckJicaHUWk0VARJlJP8vLziCeevPw8o6OIXLbyinKKKaa8otzoKCKNhoowkXoS2iGUB3lQY8KkUejg34HJTKaDfwejo4g0GirCRERERAygIkyknhw8fJBFLOLg4YNGRxG5bHsO7OFZnmXPgT1GRxFpNFSEidSTlm4t6UY3Wrq1NDqKyGXz9fbleq7H19vX6CgijYaKMJF64u3lzVCG4u3lbXQUkcvm0cqD3vTGo5WH0VFEGg0VYSL1pKCwgOMcp6CwwOgoIpctOzebgxwkOzfb6CgijYaKMJF6cvjoYZawhMNHDxsdReSyJSYn8hmfaZ4wkTqkIkykngS3D2Y60wluH2x0FJHL1im4E3/jb3QK7mR0FJFGw9boAE3F119/zUcffcTp06fx8vLin//8J76+GuBaE/t+3Uezoma0cmtFZnYmSceT6BrWlWbNmpGYnEiFuYLAdoHAmTu5fL198WjlQVZOFsdSjtE5pDO2trYcSzlGaVkpQQFBZ44buw9vL2883T3JzcslISmBjsEdsbezJzk1mcKiQkICQwCIiYvBs5UnrT1bk1+QT3xiPKEdQnF0cOT4iePk5edZ5gXbtWUXbrjh7ORszBsmUofs7OxoTnPs7OyMjiLSaKgIuwJ++eUX1qxZw4svvkhAQAApKSm4uroaHcuq7Pt1H+FXhXMd19GPfuxmN1/yJfOYhy22fMZnlFPORCYC8AzPMJrRRBBBDDF8zufMYQ7OOPMFX5BDDndxFwDP8zxDGUo/+nGYw3zERzzCI7jhxjrWkUoq05kOwAIW0J/+DGQgiSSynOXMZCaeeLKBDcQTz4M8CMDrvE532+7YuuprJtYv6XgSX/IlI4+PxKeXj9FxRBoF/Xa4AlauXMnMmTNp3749AH5+fsYGskItbVsyi1nc9PZNhPYJJTM7k/uO32fpCRuRPKJST1i/A/0q9YTdnXK3pSfsupTrKvWEXRV7VaWesElJkyw9YaNSR1XqCRsQN6BST9htibdZesJuOHFDpZ6wQYcH4dXOC69gL2PeNJE6VFxSzGlOU1xSbHQUkUajQRdhe/bs4cMPP2T//v2UlJTg5eXFddddx5QpU+rtnAUFBaxcuZK4uDji4uLIzs5m6tSp3H333VW2XbZsGRs3biQ3Nxd/f38mTpzI0KFDLW3Ky8uJi4sjPj6eF154ARsbG0aOHMnUqVMxmUz19joaGxsbG1rRitA+ofj08sEHHzrT2fL8uX+Z//mxDz50olO124YSWunxhdoCBA8IrnZbEWsW3D6Ye7hHYxxF6lCDLcJ++OEHnn/+ea655hqeeOIJnJycOH78OBkZGfV63uzsbNatW0dQUBADBw5k/fr1F2w7b948Dh48yH333Ue7du2Iiori2WefpaKigmHDhgGQmZlJeXk5v//+OytWrCAvL4/Zs2fj7e3NyJEj6/W1NCaJyYl8zueMSB6h4kZERBqFBlmEpaen88orrzBmzBj+7//+z7K9V69eF90vPz+fvXv30q9fvyqf37p1Kz179sTJyemCx/D29ubrr7/GZDKRlZV1wSLs119/ZceOHTz11FNERkZa8qWlpfH2229z7bXXYmNjg4ODAwATJ07ExcUFFxcXxowZw2+//aYirAbKK8opppjyinKjo4g0Sfti9/ECL3BV7FX6Q0ikjjTIKSrWr19PYWEhd9xxR433mzt3Lt9+++15z3311Vf8/e9/57vvvrvoMUwmU7UuE27ZsgUnJyeGDBlSafuoUaPIyMggJiYGABcXFzw9Pav/IqRKHfw7MJnJdPDvYHQUkSapjWcbhjCENp5tjI4i0mg0yJ6w3bt34+rqyrFjx3j88cdJSEjAxcWFQYMGcf/999O8efMq97vttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJk7nxxhvrJGNCQgIBAQHY2lZ+C4OCgizPh4eHAzBy5Eg+/fRTQkNDycvLY/369dx5551VHjcqKoqoqCjy8vLqJKeISF3w8vDiKq7Cy0M3mojUlQZZhGVkZFBUVMRTTz3FpEmT6NKlCwcPHuT9998nISGBN99884K9VTNnzsTBwYFXX32VkpISSkpKePfdd7nnnnvqdEB/dnY2bdu2PW+7i4sLADk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+32HNjDszxLvwP9dClExAC5ebnEE09uXu55N6GISO00yCKsoqKCkpISpk6dyqRJkwDo2bMntra2LF68mJ07d9K7d+8L7j9t2jTs7e1ZvHgxAPfffz8TJkyo85zVvbvRzs6OOXPmMGfOnDrP0FT4evtyPdfj660JbkWMkJCUwId8yMSkiZXuIBaR2muQY8Lc3NwA6NOnT6XtZwfcHzp06JLHyMvLsxRJ9XFpz83Njezs8xeyzc3NBdBkrHXMo5UHvemNRysPo6OINElhQWHMYhZhQWFGRxFpNBpkEdahQ9WDr81mM3DxHiiz2cyiRYtYvXo1jz32GLNnz+ajjz7iX//6V51nTExMpKysrNL2I0eOABAYGFin52vqsnOzOchBsnPPL3xFpP452DvQilY42DsYHUWk0WiQRdjgwYMB2L59e6Xt27ZtA6BLly5V7ldRUcGCBQtYu3YtTz75JKNGjWLs2LHMnTuXNWvWsHDhQkshd7kGDhxIYWEhmzdvrrR9w4YNeHp60rlz5wvsKbWRmJzIZ3xGYnKi0VFEmqTk1GS+5muSU5ONjiLSaDTIMWF9+vThqquuYuXKlVRUVFgG5q9YsYKrrrqKbt26VbnfqlWr+P7773nuuecYOHCgZfvIkSOxt7dn/vz5BAQEMG7cuIuef9u2bRQVFVFQUABAYmIimzZtAs5cEnV0dKRfv3707t2bhQsXUlBQgK+vLz/++CPbt29n3rx52NjY1M2bIQB0Cu7E3/gbnYI7XbqxiNS5wqJCkkiisKjQ6CgijYbJXFddQ3WsuLiY5cuXExUVxalTp/D09GTYsGFMnToVe3v7C+4TFxdH165dq3x+7969dOzYETs7u4uee/z48aSlpVX53KpVq/DxOXNnUEFBAUuXLq20bNGkSZMqLVtUW2fvjly6dClhYRqDkRqdypKIJUzfOV13R4oYQN9BkbrXIHvCABwcHJgxYwYzZsyo0T4XKsAAy7xdl/L5559Xq52zszOzZs1i1qxZ1WovtZd0PIkv+ZKRx0fqF4CIiDQKDXJMmMi5ikuKOc1pikuKjY4i0iTFxMXwCq8QExdjdBSRRkNFmFiF4PbB3MM9BLcPNjqKSJPk0dKDv/AXPFpqmhiRuqIiTERELqmNVxsGM5g2Xlo7UqSuqAgTq7Avdh8v8AL7YvcZHUWkScovyOcgBzmVeQqA5ORk9u/fb3l+//79pKSkAFBYWEh0dDT5+fkApKamsnfvXkvbmJgYkpKSACgqKiI6Otoy0fWJEyfYvXu3pW1sbCyJiWempiktLSU6OtoyUXZ6ejp//PGHpW1cXBwJCQkAlJeXEx0dTWZmZt2+ESJ1SEWYWIU2nm0YwhDaeOqvcBEjZGZn8hmfsf2n7aRGp/L8488z5voxpEankhqdyg3X3cBL814iNTqVrWu3EhERwc///pnU6FReeeYVRkSOsLS9ZewtPPO3Z0iNTiX6u2giIiL4/tPv2fXdLm4deyuDBgyytJ1460T+PuvvpEansv+n/URERLB2xVpSo1NZ+upS+vXtZ2l796S7eeT+R0iNTiX+l/gzbT9ba/RbJ3JBDXaKiqZOU1RUptvjRYyVfSyb58Oex77IHjvsyCabYoppTWsATnISRxxxxZVSSkknHU88sceeXHIpoIA2tLG0dcABN9wsbT3woIQStrKVYIIJIgiADDKwxZaWtKScck5wAnfcccSRfPLJIceyoPgpTtGMZrSiFRVUkEYarZ1a8+jBR3HzdzPmjRO5iAY7RYXIn+Xm5RJPPLl5uZYfuCJy5bj5u/FE7BMUZBTU63lmM7vOjhX3WxwL719I8uFkFWHSIKkIE6uQkJTAh3zIxKSJhBJqdByRJsnN382qipk9B/bwFV9xf+r9dKHq5e5EjKQxYWIVwoLCmMUswoJ0aVZEqie8YzhP8iThHas3UbfIlaYiTKyCg70DrWiFg72D0VFExEqYTCZssMFkMhkdRaRKKsLEKiSnJvM1X5Ocmmx0FBGxEkeTjvIJn3A06ajRUUSqpCJMrEJhUSFJJFFYVGh0FBERkTqhIkysQkhgCDOYQUhgiNFRRMRKtG/Xnju4g/bt2hsdRaRKKsJERKRRMpvNlFOOpsOUhkpFmFiFmLgYXuEVYuJijI4iIlZi78G9/IN/sPfg3ks3FjGAijCxCh4tPfgLf8GjpYfRUUTESvj5+DGWsfj5+BkdRaRKKsLEKrTxasNgBtPGS2tHikj1uLd0pyc9cW/pbnQUkSqpCBOrkF+QTxJJ5BfkGx1FRKxEVk4W+9lPVk6W0VFEqqQiTKxCfGI87/Ee8YnxRkcREStxLOUYq1nNsZRjRkcRqZKKMLEKIYEhPMADmqJCRKqtS2gX5jKXLqFaN1IaJhVhYhWcHJ1oTWucHJ2MjiIiVsLGxgZHHLGxsTE6ikiVVISJVTh+4jjf8z3HTxw3OoqIWIljKcdYwxpdjpQGS0WYWIXcvFxiiSU3L9foKCJiJcrKy8gnn7LyMqOjiFRJRZhYhbCgMB7iIcKCwoyOIiJWooN/B6YwhQ7+HYyOIlIlFWEiIiIiBrA1OoBUFhUVRVRUFHl5eUZHaVBi42N5ndcZHD8Yn14+RscREStwdtmi/gf76+eGNEgqwhqYyMhIIiMjiY2NZdq0aUbHaTBcXVzpQhdcXVyNjiIiVqJtm7aMYARt27Q1OopIlXQ5UqyCT2sfIonEp7X+mhWR6vFo5UEf+uDRSmvOSsOkIkysQmFRIWmkUVhUaHQUEbESObk5HOIQObk5RkcRqZKKMLEKcQlxvMM7xCXEGR1FRKzE0eSjfMInHE0+anQUkSqpCBOrENw+mGlMI7h9sNFRRMRKdAruxGxm0ym4k9FRRKqkIkysgrOTM7744uzkbHQUEbESdnZ2uOCCnZ2d0VFEqqQiTKzCifQTbGQjJ9JPGB1FRKxEcmoyX/EVyanJRkcRqZKKMLEKp7NOE000p7NOGx1FRKxEUXER6aRTVFxkdBSRKqkIE6vQKeT/j+0I0dgOEame4PbB3Mu9GksqDZaKMBEREREDqAgTq3DoyCHe4i0OHTlkdBQRsRL7D+3nJV5i/6H9RkcRqZKKMLEKzZ2b0572NHdubnQUEbESrT1aM5CBtPZobXQUkSqpCBOr4OvtyyhG4evta3QUEbESXh5eXM3VeHl4GR1FpEoqwsQqFBUXcYpTustJRKotLz+PBBLIy88zOopIlVSEiVU4dOQQi1msMWEiUm1Hjh1hJSs5cuyI0VFEqqQiTKxCB/8OTGEKHfw7GB1FRKxEaIdQHuIhQjuEGh1FpEoqwsQqtGjegkACadG8hdFRRMRKODo44oEHjg6ORkcRqZKKMLEK6afS+YVfSD+VbnQUEbESKWkpfMM3pKSlGB1FpEoqwsQqnDx1ki1s4eSpk0ZHERErkV+Qz1GOkl+Qb3QUkSqpCBOr0CW0C3OZS5fQLkZHERErEdohlAd4QGPCpMFSESYiIiJigFoXYQkJCWzYsIH8/P918xYXF/Pqq69y8803M2HCBNatW1cnIUUOHz3MMpZx+Ohho6OIiJU4EHeAV3mVA3EHjI4iUqVaF2Effvgh7777Ls7OzpZtS5YsYe3atRQUFHDy5EleffVVdu7cWSdBpWlzdHDECy/d5SQi1ebe0p1e9MK9pbvRUUSqVOsi7MCBA/Ts2ROTyQRAWVkZ33zzDZ06deKrr75i1apVtGzZks8//7zOwkrT5efjx1jG4ufjZ3QUEbESbbzacA3X0MarjdFRRKpU6yLs9OnTtGnzvw92TEwMBQUFjB07FgcHBzw9Pbn66qs5fFiXj+TylZaWkksupaWlRkcREStRUFhACikUFBYYHUWkSrUuwmxsbCr9QtyzZw8mk4mePXtatrm5uZGdnX15CUWAA4f//9iOwxrbISLVc/joYZayVGNJpcGqdRHm7e3NH3/8YXm8adMmfHx88Pb2tmxLT0/Hzc3t8hKKAO392nMHd9Der73RUUTESoQEhjCDGYQEhhgdRaRKtrXdcfjw4bz99tvMmDEDW1tbDh8+zKRJkyq1OXToEH5+GsMjl8/VxZVQQnF1cTU6iohYCSdHJ7zxxsnRyegoIlWqdU/YzTffzJAhQzh48CB79+7lL3/5C5MnT7Y8f+DAAY4ePUqvXr3qJKg0bacyT/Ebv3Eq85TRUUTESqSeTCWKKFJPphodRaRKte4Js7e359lnnyU/Px+TyVRpqgoAHx8f3nvvvUqXJ0Vq6/iJ43zHd8w6MYuudDU6johYgZzcHPazn5zcHKOjiFSp1j1hu3bt4sSJEzRv3vy8AgygZcuWuLq66u5IqRPhHcN5kicJ7xhudBQRsRJhQWHMYhZhQWFGRxGpUq2LsL/+9a98++23F23zww8/8Ne//rW2pxARERFptGpdhJnN5mq1OTuZq8jlOHLsCCtZyZFjR4yOIiJWIjY+lsUsJjY+1ugoIlWq1wW8k5OTad68eX2eQpoIWxtbmtMcW5taD2MUkSbGpYULYYTh0sLF6CgiVarRb7SXXnqp0uMtW7aQlpZ2Xrvy8nLS09PZvXs3ffv2vbyEIoC/rz+3cAv+vv5GRxERK9G2TVuGM5y2bdoaHUWkSjUqwv48BsxkMnH48OELDrw3mUx07NiRmTNnXl7CRuLrr7/mo48+4vTp03h5efHPf/4TX19fo2NZjfLycoooory83OgoImIlCosKOclJCosKjY4iUqUaFWGrVq0Czoz1uv3227n11lu55ZZbzmvXrFkzXFxccHLSBHkAv/zyC2vWrOHFF18kICCAlJQUXF016WhN7D+0n5d4iSGHhuD3F00ALCKXFpcQx1u8xZiEMXS4qoPRcUTOU6Mi7M9zfs2dO5fQ0FDNA1YNK1euZObMmbRv3x5AqwjUgr+vP7dyqy5Hiki1BQUEcQ/3EBQQZHQUkSrVepTzyJEj6zLHRa1fv54FCxbg5OTEd999V6/nKigoYOXKlcTFxREXF0d2djZTp07l7rvvrrLtsmXL2LhxI7m5ufj7+zNx4kSGDh1qaVNeXk5cXBzx8fG88MIL2NjYMHLkSKZOnao7R2ugpWtLutCFlq4tjY4iIlaiuXNz2tGO5s66QUwapsu+1SwmJoaDBw+Sl5dHRUXFec+bTCamTJlS6+Onp6fz1ltv4enpSX5+/uVErZbs7GzWrVtHUFAQAwcOZP369RdsO2/ePA4ePMh9991Hu3btiIqK4tlnn6WiooJhw4YBkJmZSXl5Ob///jsrVqwgLy+P2bNn4+3tfUULWWt3Ous0f/AHp7NO44OP0XFExAqcSD/BZjYzNn2sfm5Ig1TrIiwnJ4fHH3+cffv2XXTOsMstwl599VW6deuGq6srmzdvvmjb/Px89u7dS79+/ap8fuvWrfTs2fOiY9W8vb35+uuvMZlMZGVlXbAI+/XXX9mxYwdPPfUUkZGRAPTq1Yu0tDTefvttrr32WmxsbHBwcABg4sSJuLi44OLiwpgxY/jtt99UhNVAcmoyX/EV96feTxe6GB1HRKzAqaxT/M7vnMrSmrPSMNW6CHvzzTfZu3cvPXr04LrrrqN169bY2NjUZTa+//57du3axQcffMCyZcsu2X79+vW8/fbbPPbYY+cVOF999RULFy7kkUce4cYbb7zgMap7iXDLli04OTkxZMiQSttHjRrFc889R0xMDOHh4bi4uODp6VmtY8qFadkiEampziGdeZRH6RzS2egoIlWqdRH266+/0qlTJ1577bV6GduUmZnJ4sWLue+++2jdunW19rnttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJky9agNVEQkICAQEB2NpWfguDgoIsz4eHnykYRo4cyaeffkpoaCh5eXmsX7+eO++8s8rjRkVFERUVRV5eXp3kbCxMJhM22GgcnYiINBq1LsJKSkro3r17vf1SXLhwIe3atatx0TRz5kwcHBx49dVXKSkpoaSkhHfffZd77rnnsi6Lnis7O5u2bc+fANDF5czMzDk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+2OJh3lEz5heNJwfHppbIeIXFpcQhzv8A7XJFyjnxvSINW6CAsJCalytvy6sGnTJrZu3cp7771XqyJv2rRp2Nvbs3jxYgDuv/9+JkyYUNcxq53Nzs6OOXPmMGfOnDrPICIiVXNydKId7XBy1JyV0jDVeu3Iu+66i19++YX9+/fXZR4KCgp47bXXuPnmm/Hw8CA3N5fc3FzKysoAyM3NpbDw0rMf5+XlWYqk+ri05+bmRnZ29nnbc3NzATQZax1r3649d3AH7du1NzqKiFgJPx8/rud6/Hw0N6M0TLXuCUtPT6d///48/PDDDBs2jJCQkAsu1n3ddddV+7jZ2dmcPn2aVatWWWbo/7Prr7+eAQMG8MILL1S5v9ls5rXXXuOrr77iscceo7S0lIULF1JSUsKDDz5Y7RyX0qFDB6KioigrK6s0LuzIkSMABAYG1tm55My/aznlF70TV0Tkz4pLikkhhUO/HQIg/VQ6JzJO0DWsKwCHjx7Gwd6Bdm3bUVpayoHDBwjwC8DNxY1TmadISUuhW6duABw5dgSbZjYE+AVQXl7O/kP7ade2Ha3cWpGZnUnS8SS6hnWlWbNmJCYnUmGuILDdmd8Dew7swdfbF49WHmTlZHEs5RidQzpja2vLsZRjlJaVWiaU3Re7j8CwQIJ7BRvwjsmVVusi7MUXX8RkMmE2m/n222/59ttvz7s8ZzabMZlMNSrC3N3def3118/b/vHHH7Nr1y5efvll3Nzcqty3oqKCl19+mQ0bNvDkk09aJk21t7dnwYIFFBcX88gjj9TJOLaBAweybt06Nm/eXGly1g0bNuDp6Unnzrobpy7tPbiXf/APrj54NW0jtBiviFxanjmPpSzl9P2nCSecrWxlE5t4nMcBeI/3cMedm7iJfPJ5mZe5ndvpSEd2sIOv+ZqneRqAD/kQBxwYz3hKKOEFXmAc4wgnnP3sJ510BjAAW2z5jM8op5yJTATgGZ5hNKOJIIIYYvicz5nDHJxx5gu+IIcc7uIuAJ7neYbbDefjwx/j5l/17zppPGpdhM2dO7cuc1g4ODjQs2fP87Z/++232NjYVPncWatWreL777/nueeeY+DAgZbtI0eOxN7envnz5xMQEMC4ceMummHbtm0UFRVRUFAAQGJiIps2bQKgX79+ODo60q9fP3r37s3ChQspKCjA19eXH3/8ke3btzNv3rw6n66jqfPz8WMsY3VZQUSqrWv/ruzduhf7UntcWrhw06mbKvWEXXv02ko9YUMPD7X0hI3LHMfMtJmWnrDIY5GVesIGHRpk6Qk7fuQ4f3zyB4OnD6ZF6xaMSB5RqSes34F+lXrC7k6529ITdl3KdZV6wjpt6MTvT/xOQUaBirAmwGS2kus7L7zwAps3b77oskXFxcXExcXRtWvXKp/fu3cvHTt2xM7O7qLnGj9+/AVvOli1ahU+PmfusikoKGDp0qWVli2aNGlSpZ6x2jp7d+TSpUsJCwu77ONZu9ToVJZELGH6zum6y0lEGq1DPx/iH4P/wZObnyR0UKjRcaSeWU0R1tSoCKvswKYDPH3N0zy78Vk6DelkdBwRkXrx3cffcd2k69jw0QZGTBxhdBypZ7W+HHnixIlqt23Tpk1tTyMCwLGUY6xmNfek3EMnVISJSOPUMbgjj/AIHYM7Gh1FroBaF2Hjx4+v1gB3k8nExo0ba3saEQC6hHZhLnPpEqp1I0Wk8bK3s8cNN+zt7I2OIldArYuwESNGVFmE5eXlER8fT2pqKj169MDb2/uyAooA2NjY4IijbngQkUYtOTWZdaxjVOoofND418au1kXY448/fsHnzGYzn332GZ9++imPPfZYbU8hYnEs5RhrWMN1KddpYL6INFqFRYWkkkph0aUnJRfrV+sZ8y/GZDIxYcIEAgMDeeutt+rjFNLElJWXkU8+ZeVlRkcREak3IYEhTGc6IYEhRkeRK6BeirCzwsLCiI6Ors9TSBPRwb8DU5hCB/8ORkcRERGpE/VahKWkpFBeXl6fpxAREWk0YuJiWMACYuJijI4iV0CdF2EVFRWcOHGClStX8ssvv9Cli+5mk8t3dtmivQf3Gh1FRKTeeLbypD/98WzlaXQUuQJqPTB/8ODBF52iwmw206JFCx544IHankLEom2btoxgBG3baN1IEWm8Wnu2ZiADae3Z2ugocgXUugjr3r17lUWYyWTCxcWFsLAwRo0ahbu7+2UFFAHwaOVBH/rg0crD6CgiIvUmvyCfRBLJL8g3OopcAbUuwt544426zCFyUTm5ORziEDm5OZo7R0QarfjEeJaznNsSbyN4QLDRcaSe1evAfJG6cjT5KJ/wCUeTjxodRUSk3oR2CGUmMwntoMW7m4Ja94T92d69ezl8+DD5+fk4OzsTEhJCeHh4XRxaBIBOwZ2YzWw6BWvdSBFpvBwdHPHEE0cHR6OjyBVwWUVYTEwML7zwAsnJycCZwfhnx4n5+fkxd+5cunbtevkppcmzs7PDBRfs7OyMjiIiUm+OnzjOBjZww4kbNPSiCah1EXb06FEeeeQRioqK6NOnDz169MDd3Z3MzEz++OMPfvvtNx599FHeeecd2rdvX4eRpSlKTk3mK77Semoi0qjl5ecRTzx5+XlGR5EroNZF2IoVKygrK+OVV17hL3/5S6Xn7rjjDnbs2MFjjz3GihUreOaZZy43pzRxRcVFpJNOUXGR0VFEROpNaIdQHuRBjQlrImo9MP+PP/5g8ODB5xVgZ/Xu3ZvBgwfzxx9/1DqcyFnB7YO5l3sJbq+7hUREpHGodRGWn5+Pj8/FLwv5+PiQn6+5TkRERKrj4OGDLGIRBw8fNDqKXAG1LsI8PDzYv3//RdvExMTg4aHJNeXy7T+0n5d4if2HLv6ZExGxZi3dWtKNbrR0a2l0FLkCal2EDRgwgF27drFs2TKKi4srPVdcXMz777/PH3/8wYABAy47pEhrj/+/lIeHlvIQkcbL28uboQzF28vb6ChyBdR6YP6UKVPYunUrH330EWvXrqVTp060atWKzMxMDh48SFZWFm3btmXKlCl1mVeaKC8PL67marw8vIyOIiJSbwoKCzjOcQoKC4yOIldArXvCXF1deffdd7nuuusoKipi27ZtfPvtt2zbto2CggJGjhzJ22+/jaura13mlSYqLz+PBBJ027aINGqHjx5mCUs4fPSw0VHkCrisyVpdXV2ZO3cujz76KImJiRQUFODs7ExAQAC2tnUyGb8IAEeOHWElK5lwbAIhhBgdR0SkXgS3D2Y603UneBNR40rpgw8+oKioiLvvvttSaNna2hIUFGRpU1paytKlS3FycmLSpEl1l1aarNAOoTzEQ5o7R0QaNWcnZ9rSFmcnZ6OjyBVQo8uRO3bs4P3338fV1fWiPV12dna4urqybNkydu7cedkhRRwdHPHAQ+upiUijlpaexo/8SFp6mtFR5AqoURH23Xff4eLiws0333zJtjfddBMuLi58++23tQ4nclZKWgrf8A0paSlGRxERqTdZ2VnsYQ9Z2VlGR5EroEZF2L59+4iIiMDe3v6Sbe3t7enduzf79u2rdTiRs/IL8jnKUfILNPmviDReHYM78giP0DG4o9FR5AqoURGWkZFB27Ztq93ex8eHU6dO1TiUyLlCO4TyAA9oTJiIiDQaNSrCmjVrRllZWbXbl5WV0axZrWfBEBERaVIOHTnEv/gXh44cMjqKXAE1qpA8PDxISEiodvuEhAQ8PT1rHErkXAfiDvAqr3Ig7oDRUURE6k2L5i0IIogWzVsYHUWugBoVYd26dSM6OprU1NRLtk1NTSU6Opru3bvXOpzIWe4t3elFL9xbuhsdRUSk3rRt05bruI62bao/9EesV42KsJtuuomysjKeeuopsrKyLtguOzubp59+mvLycsaOHXu5GUVo49WGa7iGNl5tjI4iIlJvioqLyCCDouIio6PIFVCjyVrDwsK49dZbWb16NXfeeSdjx46lZ8+eeHmdWc8vIyODnTt3sm7dOrKyshg/fjxhYWH1ElyaloLCAlJI0XpqItKoHTpyiDd5kxuO3EBg/0Cj40g9q/GM+Q8++CD29vZ8+umnfPjhh3z44YeVnjebzTRr1oxJkyZx77331llQadoOHz3MUpYy7ug4gq4OuvQOIiJWKCggiLu4i6AA/ZxrCmpchJlMJqZPn87111/PN998w759+zh9+jQA7u7uhIeHM3LkSHx9fes8rDRdIYEhzGAGIYFaN1JEGq/mzs0JIIDmzs2NjiJXQK1X2fb19WXatGl1mUXkgpwcnfDGGydHJ6OjiIjUm5MZJ9nCFm7MuBEffIyOI/VMk3iJVUg9mUoUUaSevPSduSIi1iojM4Nf+ZWMzAyjo8gVoCJMrEJObg772U9Obo7RUURE6k3nkM7MYQ6dQzobHUWuABVhYhXCgsKYxSzCgnS3rYiINA4qwq6Qr7/+mgkTJjBixAgmTZpESkqK0ZFERKSBiUuIYwlLiEuIMzqKXAG1Hpgv1ffLL7+wZs0aXnzxRQICAkhJScHV1dXoWFYlNj6WxSxmcPxgfHppsKqINE5Ojk744KObkJoIFWFXwMqVK5k5cybt27cHwM/Pz9hAVsilhQthhOHSwsXoKCIi9cbPx4/RjMbPR78nmoIGWYTFxcWxdOlSjhw5QlZWFg4ODvj7+3PTTTcxfPjwej13QUEBK1euJC4ujri4OLKzs5k6dSp33313lW2XLVvGxo0byc3Nxd/fn4kTJzJ06FBLm/LycuLi4oiPj+eFF17AxsaGkSNHMnXqVEwmU72+lsakbZu2DGe41lMTkUatpLSEbLIpKS0xOopcAQ2yCMvLy6N169ZERkbi6elJUVERP/zwA/Pnzyc1NZUpU6bU27mzs7NZt24dQUFBDBw4kPXr11+w7bx58zh48CD33Xcf7dq1IyoqimeffZaKigqGDRsGQGZmJuXl5fz++++sWLGCvLw8Zs+ejbe3NyNHjqy319HYFBYVcpKTFBYVGh1FRKTeHDx8kEUsYsThEQT0DTA6jtSzBlmE9ezZk549e1badtVVV5Gamsq6desuWITl5+ezd+9e+vXrV+XzW7dupWfPnjg5Xfhau7e3N19//TUmk4msrKwLFmG//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY0NDg4OAEycOBEXFxdcXFwYM2YMv/32m4qwGohLiOMt3mJMwhg6XNXB6DgiIvUisF0gk5hEYDutG9kUWNXdkW5ubtjY2Fzw+fXr1zN37ly+/fbb85776quv+Pvf/85333130XOYTKZqXSbcsmULTk5ODBkypNL2UaNGkZGRQUxMDAAuLi54enpe8nhycUEBQdzDPVpPTUQaNZcWLgQTrPGvTUSD7Ak7q6KigoqKCvLy8ti4cSO//fYbf/3rXy/Y/rbbbiM9PZ2XXnqJkpISxo4dC8Dq1atZvHgxkydP5sYbb6yTbAkJCQQEBGBrW/ktDAoKsjwfHh4OwMiRI/n0008JDQ0lLy+P9evXc+edd1Z53KioKKKiosjLy6uTnI1Fc+fmtKOd1lMTkUYt43QG29jGzadv1rJFTUCDLsIWLlzI2rVrAbCzs2PWrFmWwupCZs6ciYODA6+++iolJSWUlJTw7rvvcs8999TpWLLs7Gzatj1/kLiLy5m/XnJy/jez+9SpU1m0aBHjxo3D2dmZ0aNHX/AGg8jISCIjI4mNjdXanH9yIv0Em9nM2PSx+sEkIo1WWnoaP/IjaelphBNudBypZw26CJs8eTI33HADmZmZbN26lddee43CwkImTJhw0f2mTZuGvb09ixcvBuD++++/5D61Ud27G+3s7JgzZw5z5syp8wxNxamsU/zO75zKOmV0FBGRetM1rCtP8ARdw7oaHUWugAZdhLVp04Y2bdoA0L9/fwCWLFnCyJEjadmy5UX3zcvLw2QyYTab6+XSnpubG9nZ2edtz83NBdBkrHWsc0hnHuVRracmIiKNhlUNzO/UqRPl5eUcP378gm3MZjOLFi1i9erVPPbYY8yePZuPPvqIf/3rX3WapUOHDiQmJlJWVlZp+5EjRwAIDNSdLSIiUjPxifEsZznxifFGR5ErwKqKsD/++INmzZpVORYLzgzkX7BgAWvXruXJJ59k1KhRjB07lrlz57JmzRoWLlyI2WyukywDBw6ksLCQzZs3V9q+YcMGPD096dxZPTZ1KS4hjnd4R+upiUijZmdrhyuu2NnaGR1FroAGeTny5ZdfxtnZmU6dOuHu7k5WVhabNm3ip59+YsKECRe8FLlq1Sq+//57nnvuOQYOHGjZPnLkSOzt7Zk/fz4BAQGMGzfuoufftm0bRUVFFBQUAJCYmMimTZsA6NevH46OjvTr14/evXuzcOFCCgoK8PX15ccff2T79u3MmzfvolNpSM05OTrRjnZaT01EGjV/X3/GMQ5/X3+jo8gV0CCLsC5duvDNN9+wYcMG8vLycHJyIjg4mHnz5l102aKbb76Z8PBwunY9f0Dj0KFDad26NR07drzk+RcuXEhaWprl8caNG9m4cSNwptDz8Tlzd978+fNZunQp7733nmXZoqeffrrSskVSN/x8/Lie67Wemog0amVlZRRQcN5QF2mcGmQRNmrUKEaNGlXj/RwcHKoswM46O2/XpXz++efVaufs7MysWbOYNWtWtdpL7RWXFJNJJsUlxUZHERGpNzFxMSxgAdfGXUu7Pu2MjiP1zKrGhEnTFRsfy+u8Tmx8rNFRRETqjb+vP+MZr8uRTYSKMLEKge0CmcxkracmIo1aS9eWdKYzLV1bGh1FrgAVYWIVXFq4EESQ1lMTkUbtVOYpdrKTU5mamLopUBEmViH9VDpb2Ur6qXSjo4iI1JuUtBTWsY6UtBSjo8gVoCJMrMKJjBNsYhMnMk4YHUVEpN5069SNZ3gGlxYulsm/KyoqiI6O5vTp0wCcPn2a6OhoysvLgTOThMfF/W8OxejoaNLTz/zBmpWVRXR0NKWlpQAcPXqU2Nj/ja3dtWsXJ06c+bmak5NDdHQ0xcVnboA6duwYBw4csLTds2cPqampwJlVaaKjoyksLAQgOTmZY8eO1f0b0sipCBOr0DWsK4/zuNZTE5EmYe7Tc5l570xSo1M59tsxIiIi+OStT0iNTuWzdz4jIiKCo9uOkhqdyqzps5h25zRSo1NJjU6lT58+LH9tOanRqfxn+X+IiIgg9udYUqNTeeyhx5h822RL24EDBvL2P98mNTqVbz/+loiICHb/sJvU6FSeevQpxt803tJ22LXDeO0fr5EancrGNRuJiIhg+/rtpEan8vhfH2foNUMtBZ1Uj8lcV1PIS52KjY1l2rRpLF26lLCwMKPjGC41OpUlEUuYvnM6Pr18jI4jIlIvso9l869O/yKtIA0TJtxxp4IK0kijJS1xxpkCCsgiC2+8aUYzTnMaM2Y88ADgOMdxw43mNKeQQjLJpA1tsMGGTDIppxxPPAFIJRUXXGhBC4oo4jSnaU1rbLEliyxKKcULLwDSSKM5zXHBhWKKOcUpvPDCDjuyycbJyYk5B+fg5u9m2PtnbRrkPGEi5zp89DDv8R7XHr1WRZiINFpu/m48eOBBCjIKjI5SI+kH0vly0pcUZBSoCKsBFWFiFRzsHXDHHQd7B6OjiIjUKzd/N6srZM7O5Tg4frD+UK4BjQkTq9CubTtu4ibatdUM0iIiDY2riytd6IKri6vRUayKijCxCqWlpeSTb7nDR0REGg6f1j5EEolPa/WC1YSKMLEKBw4f4GVe5sDhA5duLCIiV1RhUSFppFFYVGh0FKuiIkysQoBfALdzOwF+AUZHERGRc8QlxPEO7xCXEHfpxmKhIkysgpuLGx3piJuLdQ1WFRFpCoLbBzONaQS3DzY6ilVRESZW4VTmKXawQ+upiYg0QM5Ozvjii7OTs9FRrIqKMLEKKWkpfM3XWk9NRKQBOpF+go1s5ES6ZsyvCRVhYhW6derG0zxNt07djI4iIiLnOJ11mmiiOZ112ugoVkVFmIiIiFyWTiGdmM1sOoV0MjqKVVERJlbhyLEjfMiHHDl2xOgoIiIidUJFmFgFm2Y2OOCATTMbo6OIiMg5Dh05xFu8xaEjh4yOYlVUhIlVCPALYDzjNU+YiEgD1Ny5Oe1pT3Pn5kZHsSoqwsQqlJeXU0IJ5eXlRkcREZFz+Hr7MopR+Hr7Gh3FqqgIE6uw/9B+XuAF9h/ab3QUERE5R1FxEac4RVFxkdFRrIqKMLEK7dq2YxzjaNe2ndFRRETkHIeOHGIxizUmrIZUhIlVaOXWinDCaeXWyugoIiJyjg7+HZjCFDr4dzA6ilVRESZWITM7k93sJjM70+goIiJyjhbNWxBIIC2atzA6ilVRESZWIel4El/yJUnHk4yOIiIi50g/lc4v/EL6qXSjo1gVFWFiFbqGdWUe8+ga1tXoKCIico6Tp06yhS2cPHXS6ChWRUWYWIVmzZphiy3NmukjKyLS0HQJ7cJc5tIltIvRUayKfqOJVUhMTuQzPiMxOdHoKCIiInVCRZhYhQpzBeWUU2GuMDqKiIic4/DRwyxjGYePHjY6ilVRESZWIbBdIBOZSGC7QKOjiIjIORwdHPHCC0cHR6OjWBUVYSIiInJZ/Hz8GMtY/Hz8jI5iVVSEiVXYc2APz/AMew7sMTqKiIico7S0lFxyKS0tNTqKVVERJlbB19uX0YzW4rAiIg3QgcMHeJVXOXD4gNFRrIqKMLEKHq08iCACj1YeRkcREZFztPdrzx3cQXu/9kZHsSq2RgcQY2Qfy6Ygo8DoGNUWvyOeGGLIysnCBx+j44iIyJ+4urgSSiiuLq5GR7EqKsKaoOxj2fyr07/IK8jjFKfwwgs77Mgmm2KKaU1rAE5wAieccMWVEkrIIANPPLHHnhxyKKSQNrQB4CQnccABN9wopZR00vHAAwccyCWXfPLxxhuAdNKxw46WtKSMMk5yEnfcccSRPPLIJddSaGWQgQ02FFLI53zOA/kP0IlOxrxxIiJSpVOZp/iN3xiXOU5/KNeALkc2QQUZBZQWlBL6ZChLWMKIL0Ywfed08ifmE9Uhiuk7pzN953TW+ayj/J5ypu+czqCPBrGEJQz6aBDTd06n/J5y1vmss7SN6hBF/sR8pu+czogvRrCEJfRZ1ofpO6dj/6A9n7f83NL2v53/S8bNGUzfOZ0bv7mRJSyh2+JuTN85HddHXfnA8QNL250RO0kamcS87fNI2J3A1SOuNvrtExGRcxw/cZzv+I7jJ44bHcWqmMxms9noEHK+2NhYpk2bxtKlSwkLC6vTY+/+fjezR8zmuf88h2M7Rzp37oyjoyPJycnk5OTQuXNnAPbt24e7uztt27aloKCAgwcP0rFjR5ydnTl+/DinT5+ma9czaznGxMTg6uqKn58fRUVFxMTEEBoaSosWLUhLS+PkyZN069YNgIMHD+Ls7Iy/vz8lJSXs27eP4OBgXF1dOXnyJMePH6dHjx4AHDp0CDs7OwIDNT+YiEhDlRqdypKIJUzfOR2fXuoJqy5djmyCMjIz+JVfKSwq5KpeV1m2+/lVnt/lbIEF4OzsTK9evSyP27ZtS9u2bS2PzxZuAI6OjpXaent74+3tbXncsWNHy3/b29tXatu6dWtat25teRwaGlrj1yciImINdDmyCeoc0pk5zKFzSOdLNxYREbmEI8eOsJKVHDl2xOgoVkVFmIiIiFwWWxtbmtMcWxtdYKsJFWFNUFxCHEtYQlxCnNFRRESkEfD39ecWbsHf19/oKFZFRVgT5OTohA8+ODk6GR1FREQagfLycoooory83OgoVkVFWBPk5+PHaEZroVUREakT+w/t5yVeYv+h/UZHsSoqwpqgktISssmmpLTE6CgiItII+Pv6cyu36nJkDakIa4IOHj7IIhZx8PBBo6OIiEgj0NK1JV3oQkvXlkZHsSoqwpqgwHaBTGISge00AaqIiFy+01mn+YM/OJ112ugoVkVFWBPk0sKFYIJxaeFidBQREWkEklOT+YqvSE5NNjqKVVER1gRlnM5gG9vIOJ1hdBQREWkEwjuG8yRPEt4x3OgoVkVFWBOUlp7Gj/xIWnqa0VFERKQRMJlM2GCDyWQyOopVURHWBHUN68oTPEHXsK6XbiwiInIJR5OO8gmfcDTpqNFRrIqKMBEREREDqAhrguIT41nOcuIT442OIiIijUD7du25gzto36690VGsioqwJsjO1g5XXLGztTM6ioiINAJms5lyyjGbzUZHsSoqwpogf19/xjFOMxuLiEid2HtwL//gH+w9uNfoKFZFRVgTVFZWRgEFlJWVGR1FREQaAT8fP8YyVmsS15CKsCYoJi6GBSwgJi7G6CgiItIIuLd0pyc9cW/pbnQUq6IirAny9/VnPON1OVJEROpEVk4W+9lPVk6W0VGsioqwJqila0s601kLrYqISJ04lnKM1azmWMoxo6NYFRVhV8jXX3/NhAkTGDFiBJMmTSIlJcWwLKcyT7GTnZzKPGVYBhERaTy6hHZhLnPpEtrF6ChWxdboAE3BL7/8wpo1a3jxxRcJCAggJSUFV1dXw/KkpKWwjnU8mPYgXdGs+SIicnlsbGxwxBEbGxujo1gV9YRdAStXrmTmzJm0b98ek8mEn58fLi4uhuXp1qkbz/AM3Tp1MyyDiIg0HsdSjrGGNbocWUMNsids586d/PDDD+zbt4+TJ0/SokULwsLCmDp1KmFhYfV67oKCAlauXElcXBxxcXFkZ2czdepU7r777irbLlu2jI0bN5Kbm4u/vz8TJ05k6NChljbl5eXExcURHx/PCy+8gI2NDSNHjmTq1Kla6FRERBqFsvIy8smnrFxTH9VEg+wJ++qrr0hNTeWWW25hwYIFPPzww2RlZTFjxgx27txZr+fOzs5m3bp1lJaWMnDgwIu2nTdvHhs2bGDq1KksWLCAjh078uyzz/LDDz9Y2mRmZlJeXs7vv//OihUreP311/nhhx/YsGFDvb6Oi0lISuBjPiYhKcGwDCIi0nh08O/AFKbQwb+D0VGsSoPsCXvkkUdo1apVpW19+vThjjvu4KOPPiIiIqLK/fLz89m7dy/9+vWr8vmtW7fSs2dPnJycLnhub29vvv76a0wmE1lZWaxfv77Kdr/++is7duzgqaeeIjIyEoBevXqRlpbG22+/zbXXXouNjQ0ODg4ATJw4ERcXF1xcXBgzZgy//fYbI0eOvOR7UR+amZphgw3NTA2yBhcREWkSGuRv4XMLMABnZ2cCAgI4efLkBfdbv349c+fO5dtvvz3vua+++oq///3vfPfddxc9t8lkqtZlwi1btuDk5MSQIUMqbR81ahQZGRnExJyZCNXFxQVPT89LHu9KCvAL4HZuJ8AvwOgoIiLSCGjZotppkD1hVcnLyyMuLo6ePXtesM1tt91Geno6L730EiUlJYwdOxaA1atXs3jxYiZPnsyNN95YJ3kSEhIICAjA1rbyWxgUFGR5Pjw8HICRI0fy6aefEhoaSl5eHuvXr+fOO++s8rhRUVFERUWRl5dXJzmrUlFRQRllVFRU1Ns5RESk6Wjbpi0jGEHbNm2NjmJVrKYIW7RoEYWFhRcsXs6aOXMmDg4OvPrqq5SUlFBSUsK7777LPffcw5QpU+osT3Z2Nm3bnv9hO3vXY05OjmXb1KlTWbRoEePGjcPZ2ZnRo0czfPjwKo8bGRlJZGQksbGxTJs2rc7y/tm+2H3MZz4DYgfg29u3Xs4hIiJNh0crD/rQB49WHkZHsSpWUYQtW7aMH374gVmzZlXr7shp06Zhb2/P4sWLAbj//vuZMGFCneeq7t2NdnZ2zJkzhzlz5tR5htpo17YdN3ET7dq2MzqKiIg0Ajm5ORziEDm5OfjgY3Qcq9Egx4T92fLly/nggw+YNm0a48aNq/Z+eXl5liKpPi7tubm5kZ2dfd723NxcAEMnY72UVm6t6E53WrmdP/ZORESkpo4mH+UTPuFo8lGjo1iVBt0Ttnz5cpYvX85dd93F5MmTq7WP2Wzmtdde46uvvuKxxx6jtLSUhQsXUlJSwoMPPlhn2Tp06EBUVBRlZWWVxoUdOXIEgMDAwDo7V13LzM5kL3vJzM7UXywiInLZOgV3Yjaz6RTcyegoVqXB9oStXLmS5cuXc+edd3LXXXdVa5+KigoWLFjA2rVrefLJJxk1ahRjx45l7ty5rFmzhoULF2I2m+sk38CBAyksLGTz5s2Vtm/YsAFPT086d+5cJ+epD0nHk/iCL0g6nmR0FBERaQTs7OxwwQU7Ozujo1iVBtkT9tlnn/Hee+/Rt29f+vfvz/79+ys936VL1QuErlq1iu+//57nnnuu0kSrI0eOxN7envnz5xMQEHDJy5rbtm2jqKiIgoICABITE9m0aRMA/fr1w9HRkX79+tG7d28WLlxIQUEBvr6+/Pjjj2zfvp158+Y16PWzuoR24XEe10KrIiJSJ5JTk/mKrxiVOkpXWGqgQRZhW7duBWD79u1s3779vOd//vnnKve7+eabCQ8Pp2vX8xelHjp0KK1bt6Zjx46XPP/ChQtJS0uzPN64cSMbN24EzhR6Pj5nPmDz589n6dKlvPfee5Zli55++ulKyxY1RDY2Nthj36ALRRERsR5FxUWkk05RcZHRUayKyVxX1+ekTp2domLp0qV1vl7mtrXbuGfsPbz31Xv0G1P16gIiIiLVlRqdypKIJUzfOR2fXuoJq64GOyZM6k95RTnFFFNeUW50FBERkSZLRVgT1MG/A5OZrIVWRUSkTuw/tJ+XeIn9h/ZfurFYqAgTERGRy9LaozUDGUhrj9ZGR7EqKsKaoD0H9vAsz7LnwB6jo4iISCPg5eHF1VyNl4eX0VGsioqwJsjX25fruR5fb60bKSIily8vP48EEsjLr/sVahozFWFNkEcrD3rTWwutiohInThy7AgrWcmRY0eMjmJVVIQ1Qdm52RzkINm55699KSIiUlOhHUJ5iIcI7RBqdBSroiKsCUpMTuQzPiMxOdHoKCIi0gg4OjjigQeODo5GR7EqKsKaoE7Bnfgbf9NCqyIiUidS0lL4hm9ISUsxOopVURHWBNnZ2dGc5lpoVURE6kR+QT5HOUp+Qb7RUayKirAmKOl4El/yJUnHk4yOIiIijUBoh1Ae4AGNCashFWFNUHFJMac5TXFJsdFRREREmixbowNI7ZSXl1NaWlqrfQMCAng44GECAgIoKtKK9yLScNnZ2WFjY2N0DLmEA3EHeJVXGRg3UAt414CKMCuUl5dHcnIyZrO5VvuX25Zz9TtXk2ObQ36Crt+LSMNlMpnw8/OjRYsWRkeRi3Bv6U4veuHe0t3oKFZFRZiVKS8vJzk5GWdnZ7y8vDCZTDU+Rl5mHsWlxXi39qZFK/1gE5GGyWw2k56eTnJyMiEhIeoRa8DaeLXhGq6hjVcbo6NYFRVhVqa0tBSz2YyXlxdOTk61OkZF8wpccMG5uTOOjprTRUQaLi8vL44ePUppaamKsAasoLCAFFIoKCwwOopV0cB8K1WbHrCzbG1saUELbG1Ug4tIw3Y5P+vkyjl89DBLWcrho4eNjmJVVIQ1QRUVFRRTTEVFhdFRRESkEQgJDGEGMwgJDDE6ilVREdYEFZcUc4pTdTZFRfv27enYsSM9evSgU6dO3HHHHeTn137A/4oVKzh06NAFn9+2bRvh4eH07NmT7777jlGjRhEfH1+tfRuCZ555hkcffbROj9m+fXv27dtXq3137NjBxIkTAcjKymLBggWVnh8yZAjr16+/7IyN0dGjR/H09Kyz402dOpU333yzzo5nTf92l/MZFuM5OTrhjTdOjrUbJtNUqQhrghwdHGlN6zpd42vNmjXs2rWLmJgYcnJyWLFiRa2PdalCauXKldx555388ccfjBgxgm+++YagoKBq7Svn6927Nx9//DFQdRFWW2VlZXVyHDGW/h2lOlJPphJFFKknU42OYlVUhFm50oJSUqNTa/T/E7tPkHUwixO7T1yybWlBzeYiKy4uJj8/n1atWlm2vfLKK/Tp04devXoxatQokpLOzNS/bt06unXrRo8ePejatStfffUVy5YtY8eOHTz88MP06NGDb775ptLxX3rpJVatWsXrr79Ojx49yMrKsvwFfal9AQ4cOMCIESPo1q0b3bp145133gHg8OHDREZGWvL85z//sexjMpn45z//Sd++fQkMDGT58uUAfPTRR4wePdrSzmw2ExgYyJ49ewBYsGABXbp0ITw8nIkTJ5KdnX1entDQUHbu3Gl5vHz5cm6++WYA0tLSGD9+PH369KFbt2489dRTlnZbtmwhPDycPn36MHPmzAtOV9K/f39+/fVXAP7v//4PPz8/y3P+/v4kJSWxadMmevfuDcCMGTPIysqiR48elm1nzzdw4ECCgoKYMWNGlec62yv03HPPMXDgQBYvXnzB11BRUcHMmTPp2LEj3bt3JyIigqKiIssxHn30Ufr27UuXLl346aefLOf48MMPCQ8Pp1u3blx//fWkpJxZp27FihWMGDGCCRMmEB4eTu/evTly5AgAcXFxXH311XTv3p3w8HDmzZsHnLnJZe7cufTp04cePXpw++23k5WVdcHXdaFMf2YymcjLy7M89vT05OjRoxd8vVXZvXs3Q4cOpWPHjkydOpXi4jM91p988gl9+/alZ8+e532+L/S5/rM1a9bQo0cPS6/xE088QXBwMH379uVvf/ub5d9706ZN9OjRg4cffpj+/fvz5ZdfsmPHDvr370+3bt3o06cPv/zyS6X35qy8vLxKY7gu9N2B6n+GxTrk5Oawn/3k5OYYHcW6mKVBOnjwoHngwIHmgwcPVtpeWFhojomJMRcWFprNZrP5+M7j5md4pt7+f3zn8UtmDQgIMIeFhZm7d+9udnV1NV9zzTXm0tJSs9lsNn/88cfmadOmmcvKysxms9n8wQcfmMeMGWM2m83mbt26mX/55Rez2Ww2l5eXmzMzM81ms9k8ePBg87p16y54vilTppgXL15c6fx79+695L6lpaXmkJAQ86pVqyzb0tPTzWaz2dynTx/zu+++azabzeZDhw6Z3d3dzceOHTObzWYzYH7ttdfMZrPZHBMTY27RooW5tLTUXFBQYPbw8DCnpqaazWaz+aeffjL36tXLbDabzd988425Y8eOltc0bdo08wMPPGA2m83mp59+2jx79myz2Ww2P//88+YHH3zQkmfQoEHmtWvXms1ms3n48OHmzZs3W7KPGDHC/O9//9tcVFRkbtu2rXnjxo1ms9lsXrVqlRmwvAd/Nm/ePPOzzz5rNpvN5p49e5r79OljPnDggPngwYPm0NBQs9lsNm/cuNEcERFhNpvN5oSEBLOHh0elYwwePNg8btw4c1lZmbmgoMDcvn1789atW887V0JCghkwf/zxx5ZtF3oN0dHR5o4dO5rLy8vNZrPZnJWVZS4vL7ccY8WKFWaz2Wz+9ddfzW3atDHn5eWZ9+7da27Tpo05OTnZbDabzfPnzzePGjXKbDabzcuXLze7ubmZjx49ajabzebHHnvMPH36dLPZbDY//PDD5ueff96S6dSpU5b3/h//+Idl+3PPPWd++OGHL/i6qsp07vsFmHNzcy2PPTw8zAkJCRd8veeaMmWKOTw83Jybm2suKyszjx492vzPf/7TbDabzRkZGeaKigpLJh8fH3NJSclFP9dnvw+vvPKKedCgQZbXvnbtWnO3bt3MeXl55vLycvNNN91k+Qxs3LjRbDKZzFu2bDGbzWZzcXGxuV27duYNGzaYzWazecuWLWZvb+8qX39ubq75z79WLvTdqcln+NyfedIwnf1dVJ3fGfI/uj3Oynl29GT6zuk12ic/J5+U5BR8/Xxp7tr8ksevjjVr1tC1a1fKysq47777eOyxx3j11Vf5z3/+w44dO4iIiADOzHN29jbzoUOH8te//pVbbrmF4cOH06NHjxq9jpqKjY2lrKyM8ePHW7Z5enqSm5vLrl27uOeeewAICQlhwIAB/Pe//2XChAkAljFTnTp1wtbWlrS0NPz8/Bg3bhwfffQRjz76KMuXL+euu+4CICoqiokTJ9KyZUsA7r//fm6//fbzMk2ZMoWePXuycOFCkpKSOHToECNHjiQ/P5+ffvqJEydOWNrm5eVx8OBBgoKCcHZ2ZsiQIQCMHz+e6dOr/gxERkby5JNPMmPGDOzs7Bg/fjxRUVGYTCYiIyOr/d7dfvvt2NjY4OTkZOlN6d+//3ntHB0dLe/ZxV7DtddeS2lpKXfffTfXXHMN119/Pc2anemYt7e3Z/LkyQD069cPb29vdu/ezc6dO7nhhhvw9fUF4IEHHmD+/PmWHpQBAwYQEBAAnOkBXLx4MQCDBg3ib3/7G/n5+QwePNjyuv/zn/+Qk5PDmjVrACgpKbFc1j7XhTK1bdu2Wu9fhw4dLvh6z3XbbbdZJia9++67eeutt5gzZw4JCQlMnDiR5ORkbG1tycjIIDExkeLi4io/12c988wztG3blu+//x4HBwcANm7cyPjx42ne/Mz3f8qUKfzjH/+w7BMaGsqAAQOAM98be3t7RowYYXmfW7duzZ49e/DxufTM6FV9d06fPl3tz7BIY6YizMrZOdvVeImIkvwSnFs449nJE/vm9nWax9bWlnHjxvG3v/2NV199FbPZzLx587j77rvPa7tw4UL279/Pxo0bmTJlChMnTmTOnDl1mqc6zv4SP/dW+D8//vN8ajY2NpZxMnfddRf33nsv06dPZ/369bz22muWY17seGf5+vrSq1cv1q5dy+7du5k8eTK2trYUFhZiMpn4/fffsbOzq7TP7t27q/3a+vfvz759+1i7di1Dhw4lMjKSZ555BoA777yz2se50Os/V/PmzS2vs6Ki4oKvAWD//v1s3ryZjRs38ve//52ff/4ZW9uqfySZTKbz3tNz388LZRw3bhxXXXUVP/zwA2+++SavvfYa33zzDWazmbfeeotrr722mu/C+ZnOZWNjQ3l5ueXx2UuObm5uVb7e4ODgap/n9ttv55VXXuHGG28EwN3dnaKioktO4dC/f3++++47EhIS6NixI1D15/PP/jw7/YXamkwmbG1tq3y9f1bVv4tZlx4bndj4WBazmMHxg7VsUQ1oTJjUuZ9++omwsDAAxowZw1tvvcXp06eBM+Nw/vjjDwAOHjxIly5dmDlzJvfffz/btm0DwNXVtcrxU9VxsX3DwsKwt7dn9erVlm0ZGRm4urrSo0cPVq5cCUB8fDy//PILV1999SXP169fPyoqKpgzZw7Dhg3D3f3Mkh3Dhg3js88+Izc3F4AlS5ZcsOfp7rvv5v333+eDDz5g6tSpALi4uDBw4EBeeuklS7vjx4+TnJxMx44dKSws5OeffwbO9EJe6DXb29vTt29f5s+fbxnzFhMTw88//8w111xzXntXV1cKCgrqZDD2xV5Deno6+fn5DB8+nBdeeIH27dsTExMDnOmROnujwG+//UZaWhrdunVj6NChfPPNN6SlpQHwzjvvMHTo0EsWIXFxcbRu3Zo777yTBQsWWD5nY8aMYeHChRQUnJlcsqCggP3791d5jAtlOldQUBDbt28H4N///rflLuGLvd5zrV69mvz8fMrLy1m+fLnlc5OZmUn79u2BM+MRMzMzgQt/rs8aMWIEy5Yt44YbbmDXrl0AXHPNNaxevZqCggIqKir48MMPL/j+dezYkeLiYss4uK1bt3Ly5EnCw8Px9vamrKyM2NhYAD744IMLHufcY1b3MyzWwaWFC2GE4dLCxegoVkVFWBNUVFxEGmkUFdfd4t233HILPXr0oEuXLhw4cIDXX38dgMmTJzNp0iSGDBlC9+7d6dGjBxs3bgTg73//O126dKFnz558+OGHlh6a6dOn89xzz11wcP3FXGxfW1tbvvrqK5YsWWIZ3P3FF18A8PHHH/PRRx/RvXt3xo0bx7Jly2jXrl21znnXXXfx7rvvWi5FAowcOZLJkyfTv39/wsPDycnJ4fnnn69y/7Fjx7J9+3Z8fHzo3LmzZfvHH3/MgQMHCA8PJzw8nHHjxnHq1CkcHBz49NNPefDBB+nTpw+//fYb/v7+F8w3bNgwTp48ydVXX43JZCIiIoLg4GDLpdI/c3d3Z+LEiZbB7ZfrQq8hKSmJYcOG0a1bN8LDw+natSsjR44EwMPDg8OHD9O3b1/uuusuPvnkE5o3b06XLl148cUXGT58ON26dWPLli28++67l8ywevVqunXrRs+ePbn99tstg9bnzp1Ljx496Nu3L926daNfv36WIuVcF8p0rtdee40HH3yQq6++mujoaDw8PAAu+nrPNWjQIG688Ua6dOlCq1ateOihhwB4/fXXuemmmxgwYAC7d++2/Jtf7HP952N++umnjBs3jl9//ZUxY8YwYsQIunfvzjXXXENQUBBubm5V5rG3t+eLL77giSeeoFu3bvz1r39l9erVNG/eHFtbW9544w1GjhzJoEGDLDcRXEpNP8PS8LVt05bhDKdtm+pdopczTGb1CzdIsbGxTJs2jaVLl1p6leBMd39CQgKBgYG1XnKoILuApLgk2oW0w9nNua4ii1y2o0eP0rt370o9OUZriJnqQm5uLi4uLlRUVHDvvffStm1b5s+fb3Ss89TFzzypf0e2HuHVq19l9i+z6XBVB6PjWA31hDVBtra2uOBywfE3ItL43XnnnfTs2ZPOnTtTVFRkyHhMaTziEuJ4i7eIS4gzOopV0W/hJqiiooISSrRskTQ47du3b3A9Tg0xU1348ssvjY4gjUhQQBD3cA9BAVXfYSxVU09YE1RcUkwGGXW2bJGIiDRtzZ2b0452NHe++LRHUpmKsCbI0cERL7zqdNkiERFpuk6kn2AzmzmRfuLSjcVCRVgTZDKZsMPukrf2i4iIVMeprFP8zu+cyjpldBSroiKsCSotKyWHHErLarYupIiISFU6h3TmUR6lc0jnSzcWCxVhTVBFeQVFFFFRfvkD83v06EGPHj3o3Lkztra2lse33XZble137drF559/Xq1j/3lhaSNt2rSJ77//3ugYIiLSyKgIa4IcHBxoTWvLOnKXY9euXezatYtvvvmGli1bWh6vWrXqgu2rW4Q1FCrCREQuLi4hjnd4h7iEOIqLi4mOjiYnJweAEydOVJoIOTY2lqNHjwJnVlGJjo4mKysLOLO6RHR09P+OGxfHkSNHgDNrD0dHR1tWYDl9+jTR0dGWO/2PHDnC4cOHLftGR0db7mzOzMwkOjrashpIQkIChw4dqvs3ooZUhEm9+PDDDy2zd19//fWkpKRw8uRJnnrqKaKioujRowczZswAYNKkSfTu3Ztu3bpxww03cPLkyUsePzs7m3vvvZfw8HC6d+9uWZsyLy+Pu+++m65du9K1a1eeffZZyz5Dhgxh/fr1lse33HILK1asAGDq1Kk88MADREZGEhoays0330xJSQm7du3inXfe4YMPPqBHjx4899xzpKenM3z4cMvr+/NM+SIiTZGToxPtaEfFyQp2/7CbiIgIvv34W1KjU3n7n28zcMBAUqNTSY1OZfJtk3nsocdIjU4l9udYIiIi+M/y/5Aancry15bTp08fS9tpd05j1vRZpEancnTbUSIiIvjsnc9IjU7lk7c+ISIigmO/HSM1OpWZ985kxtQZln0jIiJY8foKUqNT+fd7/yYiIoJDWw6RGp3Kow8+ytQ7ppJ9zNjlsjRjfgNVkxnzU1NTycjIIDw8HICYmBhcXFxo164dRUVFxMTEEBISgouLCydOnCA+Nh4nZyeCOwRzPP04jo6OBAQEUFpayt69ey+6hMmF/HlW8X379hEZGcnOnTvx9fXl+eefZ+vWrXz99desWLGC9evXs2bNGsu+GRkZeHp6AvDSSy+RnJzMm2++yaZNm3j00UfZsWPHeee76667aNGiBa+//jrNmjUjPT0dLy8vHnvsMVJSUvjggw8oLCxkwIABPP7449x6660MGTKERx99lBtuuAE4U4TdcMMNTJ06lalTp3Lo0CF+/PFH7O3tGTRoEDNnzmTChAk888wz5OXl8corrwCwaNEiDhw4wJIlS4Azf42dXTNSROqWZsy3DtnHsnmt42tQCGWUcZKTuOOOI47kkUcuufhwZmHvDDKwwYZWtKKcck5wgla0wgkn8sknm2zacmb5o1OcwoQJd9ypoII00mhJS5xxpoACssjCG2+a0YzTnMaMGQ/OLBd2nOO44UZzmlNIIZlk0oY22GBDJpmUU46Psw8PHngQN/+a/c6rK5qstRF49913WbZsGcnJyQDcfvvtDBkyhDfeeIPk5GQiIiLYuHEjQ4YM4YMPPuDFF15k6w9baWbTjKlTp9KlSxeWLVtGRkYGERERrF+/nuuvv77WeTZu3MgNN9yAr68vAA888ADz58/nQvX+xx9/zIcffkhxcTGFhYV4e3tf8hzr169n586dNGt2pjPXy8sLgKioKEth1rx5c+68806ioqK49dZbL3nMm2++GScnJwD69OlDfHx8le369evHokWLmD17NoMHD2bEiBGXPLaISGPm5u/GXw/+lYKMAqOjVNuWDVuY9MQk/vLLXxjmP8yQDCrCGoH77ruPcePGWR5/9tlnuLicWcnez8+PnTt3EhISApxZquSagdfgiit2tnasWLHC8telp6cnO3fuJCjo8mY8NpvNlaa/uNhUGP/9739588032bp1K15eXqxdu5bnnnuuzs795/Pb2tpSXl5u2V5UVHkB8z//lW1jY2MZO3Cu/v37s2vXLqKiovjiiy+YN28ef/zxBzY2NrXOLSJi7dz83QzrUaqNTqc7MZSheHtd+g//+qIxYY2Aj4+P5VIkQOfOnWnXrh1wprDo1auXpShr06YN4V3DKaUUs9lMWFgYAQEBANjZ2dGrV68aX4o819ChQ/nmm29IS0sD4J133mHo0KGYTCZcXV3Jzv7fNfjMzExcXV1xd3enpKSEd999t1rnGDNmDC+//LJlQGZ6ejoAw4YNY+nSpZjNZvLz8/noo4+IjIwEICgoiO3btwNnBmX+97//rda5zs2ckJBAixYtGD9+PIsXL+bQoUPk5eVV61giItIweLp70o9+eLp7GpZBRVgTVFRcRDrpFBUXXbpxLXTp0oUXX3yR4cOH061bN7Zs2WIproYOHUp+fj7du3dnxowZjBw5kuDgYDp27MiIESPo0aNHtc6xaNEiCgoK6Nq1Kz169ODxxx8H4Mknn8RkMhEeHk7fvn0ZM2YMt9xyCwCPPfYYP/zwAxERETzxxBP07du3Wue66aab2LFjh2Vg/qZNm4iIiKBHjx5cffXVvPzyy5dduIqIyJWVm5fLYQ6Tm5drWAYNzG+gajIwv6aK8opIO5iGd0dvHFtooKuINFwamC/15buPv+O6Sdex4aMNjJhozNhe9YQ1Qc1MzbDHnmYm/fOLiEjT1DG4I4/wCB2DOxqWQb+Fm6CysjJyyb3gwHMREZHGzt7OHjfcsLezNyyDirAmqKy8jHzyKStXESYiIk1Tcmoy61hHcmqyYRlUhFmpyxnK5+jgiDfeODpofIWINGwatiz1pbCokFRSKSwqNCyD5gmzMnZ2dphMJssM8Rebg+tCSopLKKOMouIiKmwufxFvEZH6YDabSU9Px2QyYWdnZ3QcaWRCAkOYznRCAkMMy6AizMrY2Njg5+dHcnKyZQHUmioqKCI9Ix0vkxeOzuoNE5GGy2Qy4efnp8mQpVFSEWaFWrRoQUhICKWlpbXaf9/mfbw5402eevcpAgcH1nE6EZG6Y2dnpwJM6kVMXAwLWMCAuAH49PIxJIOKMCtlY2NT6x9Mvl6+RCRG4Ovlq3l3RESkSfJs5Ul/+uPZSjPmyxVUVFzEKU7V24z5IiIiDV1rz9YMZCCtPVsblkFFWBN06MghFrOYQ0cOGR1FRETEEPkF+SSSSH5BvmEZdDmygSouLgYgMTGxzo9tY2PD7c1vx8bGhtjY2Do/voiISEP3645f+bz55wzaMYhyr/I6P35AQMAlh/xo7cgG6vvvv2f+/PlGxxAREZFaOHft56qoCGugsrKy+O233/jPf/7DrFmzqrXP4sWLeeihhy7ZLjExkfnz5zNv3jwCAgIuN2qjUN33zghXOlt9na+ujns5x6nNvjXdpzrt9R08X0P+DoK+h3V5nPr+HjaU34XV6QnT5cgGqmXLlgwfPpyffvrpkpX0WS1atKh2WzjzAalJ+8aspu/dlXSls9XX+erquJdznNrsW9N9atJe38H/acjfQdD3sC6PU9/fQ2v6XaiB+Q1cZGRkvbSVyhrye3els9XX+erquJdznNrsW9N9GvJnqSFr6O+bvod1d5z6/h429M/Sn+lyZBMUGxvLtGnTqnW9WkTqnr6DIsZrCN9D9YQ1QR4eHkydOhUPDw+jo4g0SfoOihivIXwP1RMmIiIiYgD1hImIiIgYQEWYiIiIiAFUhImIiIgYQEWYiIiIiAFUhMl5SkpKePHFFxk3bhzXXXcdM2bMYO/evUbHEmlSnnnmGcaOHct1113H1KlT2bp1q9GRRJqsffv2MXjwYFauXFmnx9XdkXKewsJCVq1axciRI/Hy8uK7777jrbfeYvXq1ZdcgkFE6kZCQgJ+fn7Y2dkRExPD7Nmz+eyzz3BzczM6mkiTUlFRwf3334/JZKJ///5MmTKlzo6tnjA5j5OTE1OnTqVNmzY0a9aMkSNHUlFRQXJystHRRJqMwMBA7OzsALCxsaG0tJSMjAyDU4k0PWvXriU8PBx/f/86P7bWjmwECgoKWLlyJXFxccTFxZGdnc3UqVO5++67q2y7bNkyNm7cSG5uLv7+/kycOJGhQ4de8PiJiYkUFxfTtm3b+nwZIlarvr6Dzz33HD///DMlJSX069ePDh06XImXI2KV6uN7mJ2dzZo1a3jnnXd444036jyzirBGIDs7m3Xr1hEUFMTAgQNZv379BdvOmzePgwcPct9999GuXTuioqJ49tlnqaioYNiwYee1Lyoq4vnnn+fOO+/E2dm5Pl+GiNWqr+/gU089RVlZGdHR0SQmJmIymer7pYhYrfr4Hi5ZsoTx48fTokWLesmsIqwR8Pb25uuvv8ZkMpGVlXXBD96vv/7Kjh07eOqppywLnPbq1Yu0tDTefvttrr32WmxsbCzty8rKePrppwkICGDy5MlX5LWIWKP6+g4C2Nra0qdPH7744gv8/Pzo379/vb8eEWtU19/D2NhYDh06xOzZs+sts8aENQImk6lafyFv2bIFJycnhgwZUmn7qFGjyMjIICYmxrKtoqKC559/nmbNmvHYY4/pL3CRi6iP7+C5KioqSElJudyoIo1WXX8Pd+/ezdGjRxk7diyjR4/mp59+4uOPP+b555+vs8zqCWtCEhISCAgIwNa28j97UFCQ5fnw8HAAXnnlFU6dOsXLL798XnsRqZ3qfgdPnTrF3r176du3L3Z2dvz888/88ccf3HfffUbEFmlUqvs9vOGGGyoVav/617/w9vbmjjvuqLMs+u3ahGRnZ1c5uN7FxQWAnJwcANLS0li/fj329vaMGTPG0m7BggV07979yoQVaYSq+x0EWLNmDf/85z8xmUz4+fnxzDPPEBwcfMWyijRW1f0eOjs7VxoL7eDggLOzc51OE6MirImpTlett7c3P//88xVII9L0VOc76OHhwZtvvnkF0og0TbUZYvP444/XeQ6NCWtC3NzcyM7OPm97bm4uAK6urlc6kkiTou+giPEa0vdQRVgT0qFDBxITEykrK6u0/ciRI8CZySFFpP7oOyhivIb0PVQR1oQMHDiQwsJCNm/eXGn7hg0b8PT0pHPnzgYlE2ka9B0UMV5D+h5qTFgjsW3bNoqKiigoKADOzHK/adMmAPr164ejoyP9+vWjd+/eLFy4kIKCAnx9ffnxxx/Zvn078+bNO29+IhGpPn0HRYxnbd9DLeDdSIwfP560tLQqn1u1ahU+Pj7AmaUali5dWmmphkmTJl102SIRuTR9B0WMZ23fQxVhIiIiIgbQmDARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARESu0aNEiRo8ebVmeBeD9999n0KBB/PHHHwYm+5/nn3+eW2+9leLiYqOjiDRIWjtSRAyXmprKbbfddtE2wcHBvP/++1coUcOWlJTE2rVrmT59Os7OzvV6rq+++opXX32VMWPG8Oijj1607b333suhQ4dYunQpYWFhTJkyhaioKFavXs2kSZPqNaeINVIRJiINhq+vL8OGDavyOQ8PjyucpuFavnw59vb2jB07tt7PFRkZyb/+9S9++uknHnroIRwcHKpsFx8fz6FDhwgJCSEsLAwAPz8/BgwYwCeffMK4ceNwcnKq97wi1kRFmIg0GL6+vtx9991Gx2jQsrKy+PnnnxkyZEi994IBNG/enMGDB/Pdd9+xefNmhg8fXmW79evXAzBq1KhK24cPH87mzZv58ccfueGGG+o9r4g10ZgwEbFKgwYN4uGHHyYrK4uXXnqJMWPGEBkZyYwZMy44JqqgoID333+fO++8k8jISEaNGsWjjz7Knj17zmv78MMPM2jQIEpKSnjvvfeYMGEC11xzTaVLops3b2batGlERkYyduxYFixYQG5uLuPHj2f8+PGWds8//zyDBg3iwIEDVeZ6++23GTRoED///PMlX/ePP/5ISUkJQ4YMuWTbs+Lj47npppsYPXo0MTExlu3Hjx/nn//8J7fccgtDhw7lxhtv5IUXXiAtLa3S/tdffz0A3377bZXHLy0tJSoqCnt7+/OKtH79+uHk5MQ333xT7bwiTYWKMBGxWnl5eTzwwAPEx8czbNgwBg0aRGxsLI8++ihHjhyp1DYnJ4f777+fFStW4Orqyo033mhpP2vWLLZs2VLlOebNm8c333xD9+7dufXWW2nbti0AX3/9NU8++SQpKSmMGDGC6667jv379/N///d/lJWVVTrGmDFjgP/1Fv1ZWVkZ3333He7u7lx11VWXfM07d+4EoEuXLpd+g4Ddu3fz0EMPYWNjw5tvvknnzp0BiImJ4d5772XDhg2EhYVxyy230L17d3744Qfuu+8+jh8/bjlGjx498PPzIzo6mtTU1PPO8csvv5Cdnc2gQYNwcXGp9JydnR2hoaEcOHCAwsLCamUWaSp0OVJEGoyUlJQLDr7v0qULffv2rbTt8OHD3Hjjjfz1r3+lWbMzf1P26tWLBQsW8O9//7vSQPLXXnuNhIQE5s6dW+mS2enTp5k+fTovv/wyffr0OW/M06lTp1i+fDmurq6Wbbm5ubzxxhs4OzuzbNkyS2E2bdo05syZQ2xsLN7e3pb24eHhBAYG8uOPPzJz5sxKY6O2bt3K6dOnueOOO7C1vfSP5H379uHl5UWrVq0u2XbLli08++yztG3blldeeYXWrVsDZwq/Z555hoqKCpYuXUpwcLBlnz179jBr1izeeOMNXnrpJcv2UaNGsWTJEjZs2MBdd91V6Txff/018L8es3OFhYWxe/duDhw4QK9evS6ZW6SpUE+YiDQYKSkprFixosr/b9++/bz2Tk5OzJgxw1KAAVx33XXY2Nhw8OBBy7asrCw2btxIRETEeWOW3N3dmTBhAllZWZZepj+76667KhVgAP/9738pLCzkhhtusBRgALa2ttxzzz1VvrYxY8ZQUFDATz/9VGn7+vXrMZlM1RovVVpaSlZWVrUKsPXr1/PUU08REhLCm2++aSnA4Ezhl5aWxoQJEyoVYADdunXj6quvZtu2beTn51u2n31fv/32W8xms2V7RkYGO3bswNvb+4IF1tm86enpl8wt0pSoJ0xEGow+ffrwyiuvVLu9n5/feYPTbW1tcXd3Jy8vz7Lt4MGDlJeXU1JSUmVPW3JyMgCJiYnnXRLs1KnTee3j4+MB6Nq163nPderUCRsbm/O2Dx8+nHfeeYf169dbeozS09P5/fffLZf7LiU7OxvgvEt+5/r888/55Zdf6NevH8899xyOjo6Vnt+/fz8Ax44dq/L9OH36NBUVFSQlJdGxY0cAPD096du3L1u3biU6OpqIiAjgzDix8vJyRo0ahclkqjLP2SL2bH4ROUNFmIhYrebNm1e53cbGhoqKCsvjnJwcAPbu3cvevXsveLyioqLztrm7u5+37WwPUcuWLc97rlmzZri5uZ233cXFhWuuuYYNGzZw9OhR2rdvzzfffEN5eXm17xo8e6n0UpOfnr3RoG/fvucVYHDmcirADz/8cNHjnPt+XH/99WzdupVvv/22UhHWrFkzRo4cecHjnM17oektRJoqFWEi0uidLdZuu+02HnzwwRrtW1XvztnjZWVlnfdcRUUF2dnZeHl5nffcmDFj2LBhA+vXr+fBBx/k22+/xdXVlUGDBlUri4uLC7a2tpai8kIee+wxPvjgA9544w2aNWvGTTfdVOn5s72HL730UrVuBjirf//+uLu7s3nzZh555BEOHz5McnIyffr0oU2bNhfc72zeqopWkaZMY8JEpNHr2LEjJpPJchnucgUFBQFnBsmf68CBA5SXl1e5X9euXenQoQPfffcd27Zt4/jx4wwbNqxGPUSBgYGkpaWddwfmn7m4uLBo0SJCQ0NZtGgR//73vys9f/YOyZq+H7a2towYMYLi4mJ+/PFHy7QTFxqQf1ZSUhIAHTp0qNH5RBo7FWEi0uh5eHhwzTXXsG/fPj799NNKA8vPiomJqfJyZFUGDBiAk5MT69evrzSVQ1lZGe+9995F9x09ejTZ2dm8/PLLADWewLRHjx6UlJRYxqVdiIuLCwsXLqRjx4689tprfPHFF5Xyt2nThlWrVrFr167z9i0rK6ty7jT4X8H1n//8h02bNuHm5saAAQMumiUmJgYPDw/atWt3iVcn0rTocqSINBgXm6ICuKzZ9P/v//6PpKQk3n77bb777ju6dOlCixYtOHnyJLGxsSQnJ/Pll19WOYbqXC4uLsycOZOXX36Ze++9l2uvvZbmzZuzbds27O3t8fT0vOAg9REjRvDuu++SkZFB586dLb1q1TVw4EBWr17Nzp07LcsDXSznq6++yuzZs3n99dcxm83ccsst2Nvb89xzzzFnzhwefvhhIiIiCAwMBODEiRPs2bMHNzc3Pvroo/OO6e/vT3h4uGVs3Q033ICdnd0FM6SkpJCamsqNN95Yo9cp0hSoCBORBuPsFBUXcjlFmKurK2+99Rb//ve/+emnn4iKiqKiogJ3d3eCg4OZMmVKlQPqL2T06NG4uLjw4YcfsmHDBpo3b87VV1/NjBkzuPXWW/H19a1yvxYtWjBgwACioqJqtYxPjx498Pf35/vvv+eOO+64ZPuzPWKzZ8/mjTfewGw2c+utt9KpUyfef/99Pv30U7Zt28bevXuxs7PD09OTgQMHMnTo0Ase8/rrr7cUYedO+XGu77//HvjfhLUi8j8mc1X98iIiUivJycnccccdXHPNNTz77LNVtrnzzjs5ceIEX375Za3Wf1y7di2vvPIK77zzjmV8V0NUVlbGxIkT8fb25vXXXzc6jkiDozFhIiK1kJubS0lJSaVtxcXFvPnmm8CZy4ZV+fXXXzl69CgjRoyo9QLc119/PQEBASxfvrxW+18p33//PWlpaTzwwANGRxFpkHQ5UkSkFnbt2sU///lP/vKXv9C6dWuys7OJjo4mLS2NXr16ce2111Zq/5///IeTJ0+ybt06HBwcmDBhQq3PbWNjw9///ne2b99OQUFBrYu5+mYymfjb3/52ybFrIk2VLkeKiNRCUlIS7733Hvv27bPMF+br68u1117L7bffft60E+PHjyc9PZ127doxY8aMGs3PJSKNk4owEREREQNoTJiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAf4f4azNui3rSmMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents), binned_energy_edges, color='purple', label = \"Best fit convolved with response plus background\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents), yerr=np.sqrt(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents)), color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(crab_bkg.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Total counts\")\n", + "ax.errorbar(binned_energy, crab_bkg.binned_data.project('Em').todense().contents, yerr=np.sqrt(crab_bkg.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb.txt b/_sources/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb.txt new file mode 100644 index 00000000..8f0a2579 --- /dev/null +++ b/_sources/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb.txt @@ -0,0 +1,1728 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "74a86fb5-4e54-4e3f-b349-3e60fbdd0279", + "metadata": { + "tags": [] + }, + "source": [ + "# Spectral fitting example (GRB)" + ] + }, + { + "cell_type": "markdown", + "id": "e7df3443-3ce1-43f3-90b5-1bceb7bc9af0", + "metadata": {}, + "source": [ + "**To run this, you need the following files, which can be downloaded using the first few cells of this notebook:**\n", + "- orientation file (20280301_3_month.ori) \n", + "- binned data (grb_bkg_binned_data.hdf5, grb_binned_data.hdf5, & bkg_binned_data_1s_local.hdf5) \n", + "- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip) \n", + "\n", + "**The binned data are simulations of GRB090206620 and albedo photon background produced using the COSI SMEX mass model. The detector response needs to be unzipped before running the notebook.**" + ] + }, + { + "cell_type": "markdown", + "id": "ba543558-7de9-494c-8b72-8cdd368676e9", + "metadata": {}, + "source": [ + "This notebook fits the spectrum of a GRB simulated using MEGAlib and combined with background.\n", + "\n", + "[3ML](https://threeml.readthedocs.io/) is a high-level interface that allows multiple datasets from different instruments to be used coherently to fit the parameters of source model. A source model typically consists of a list of sources with parametrized spectral shapes, sky locations and, for extended sources, shape. Polarization is also possible. A \"coherent\" analysis, in this context, means that the source model parameters are fitted using all available datasets simultanously, rather than performing individual fits and finding a well-suited common model a posteriori. \n", + "\n", + "In order for a dataset to be included in 3ML, each instrument needs to provide a \"plugin\". Each plugin is responsible for reading the data, convolving the source model (provided by 3ML) with the instrument response, and returning a likelihood. In our case, we'll compute a binned Poisson likelihood:\n", + "\n", + "$$\n", + "\\log \\mathcal{L}(\\mathbf{x}) = \\sum_i \\log \\frac{\\lambda_i(\\mathbf{x})^{d_i} \\exp (-\\lambda_i)}{d_i!}\n", + "$$\n", + "\n", + "where $d_i$ are the counts on each bin and $\\lambda_i$ are the expected counts given a source model with parameters $\\mathbf{x}$. \n", + "\n", + "In this example, we will fit a single point source with a known location. We'll assume the background is known and fixed up to a scaling factor. Finally, we will fit a Band function:\n", + "\n", + "$$\n", + "f(x) = K \\begin{cases} \\left(\\frac{x}{E_{piv}}\\right)^{\\alpha} \\exp \\left(-\\frac{(2+\\alpha)\n", + " * x}{x_{p}}\\right) & x \\leq (\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\\\ \\left(\\frac{x}{E_{piv}}\\right)^{\\beta}\n", + " * \\exp (\\beta-\\alpha)\\left[\\frac{(\\alpha-\\beta) x_{p}}{E_{piv}(2+\\alpha)}\\right]^{\\alpha-\\beta}\n", + " * &x>(\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\end{cases}\n", + "$$\n", + "\n", + "\n", + "where $K$ (normalization), $\\alpha$ & $\\beta$ (spectral indeces), and $x_p$ (peak energy) are the free parameters, while $E_{piv}$ is the pivot energy which is fixed (and arbitrary).\n", + "\n", + "Considering these assumptions:\n", + "\n", + "$$\n", + "\\lambda_i(\\mathbf{x}) = B*b_i + s_i(\\mathbf{x})\n", + "$$\n", + "\n", + "where $B*b_i$ are the estimated counts due to background in each bin of the Compton data space with $B$ the amplitude and $b_i$ the shape of the background, and $s_i$ are the corresponding expected counts from the source, the goal is then to find the values of $\\mathbf{x} = [K, \\alpha, \\beta, x_p]$ and $B$ that maximize $\\mathcal{L}$. These are the best estimations of the parameters.\n", + "\n", + "The final module needs to also fit the time-dependent background, handle multiple point-like and extended sources, as well as all the spectral models supported by 3ML. Eventually, it will also fit the polarization angle. However, this simple example already contains all the necessary pieces to do a fit." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ce42ab82-3bbd-4729-8f84-a4e32eb3bb24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:04:24 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258198;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=478015;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=322055;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=156430;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:04:25 WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=427696;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920737;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187003;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664651;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970697;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263503;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=507764;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=140382;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=410897;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483212;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964303;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=470707;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:04:25 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=334693;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=235575;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=995830;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=95677;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=324296;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559824;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=851427;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=915470;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=32249;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809874;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490059;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=443308;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844985;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=163953;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=871918;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23540;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=354714;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=194521;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717765;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=22466;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967970;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=971686;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=989174;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=980480;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=239627;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy import COSILike, BinnedData\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.response.FullDetectorResponse import FullDetectorResponse\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "from scoords import SpacecraftFrame\n", + "\n", + "from astropy.time import Time\n", + "import astropy.units as u\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.stats import poisson_conf_interval\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from threeML import Band, PointSource, Model, JointLikelihood, DataList\n", + "from cosipy import Band_Eflux\n", + "from astromodels import Parameter\n", + "\n", + "from pathlib import Path\n", + "\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "id": "8d1c0168-9823-4eb7-930e-5dc61d6448ca", + "metadata": {}, + "source": [ + "## Download and read in binned data" + ] + }, + { + "cell_type": "markdown", + "id": "dc364649-56e4-4bb1-8403-74e90cf3ed05", + "metadata": {}, + "source": [ + "Define the path to the directory containing the data, detector response, orientation file, and yaml files if they have already been downloaded, or the directory to download the files into" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "cdd53b2a-5176-42cf-bb2c-feb3387fc0a4", + "metadata": {}, + "outputs": [], + "source": [ + "data_path = Path(\"/path/to/files\")" + ] + }, + { + "cell_type": "markdown", + "id": "463043e4-a0c8-49d7-8bcb-19e8d4d6e978", + "metadata": {}, + "source": [ + "Download the orientation file (684.38 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "027c7744-e631-405f-be40-6c552d9392d1", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori', output=str(data_path / '20280301_3_month.ori'))" + ] + }, + { + "cell_type": "markdown", + "id": "134234d9-8fba-42cb-ab71-dba774221201", + "metadata": {}, + "source": [ + "Download the binned GRB+background data (75.73 KB)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5a05bea9-980e-429e-9375-ceb97532047e", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_bkg_binned_data.hdf5', output=str(data_path / 'grb_bkg_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "667a50b3-02c3-4b3c-8d56-607b8fddcb55", + "metadata": {}, + "source": [ + "Download the binned GRB data (76.90 KB)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ff857371-5c1e-4065-93f6-2ae010c7501d", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5', output=str(data_path / 'grb_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "cc399d10-f94c-4008-8f09-ce4aaf664514", + "metadata": {}, + "source": [ + "Download the binned background data (255.97 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "a8a453a3-7e01-4c0d-9264-fc22bc29cef0", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/bkg_binned_data_1s_local.hdf5', output=str(data_path / 'bkg_binned_data_1s_local.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "32b1b135-2060-4d14-91fb-133b0786c596", + "metadata": {}, + "source": [ + "Download the response file (839.62 MB). This needs to be unzipped before running the rest of the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6cb6c65e-2883-4a2d-b0ba-b28834a55bfa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip', output=str(data_path / 'SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip'))" + ] + }, + { + "cell_type": "markdown", + "id": "d898bbd7-9ed0-4a27-bd5a-67414178733d", + "metadata": {}, + "source": [ + "Read in the spacecraft orientation file & select the beginning and end times of the GRB" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ed2c03a0-63e3-4044-9e16-50f0f17996af", + "metadata": {}, + "outputs": [], + "source": [ + "ori = SpacecraftFile.parse_from_file(data_path / \"20280301_3_month.ori\")\n", + "tmin = Time(1842597410.0,format = 'unix')\n", + "tmax = Time(1842597450.0,format = 'unix')\n", + "sc_orientation = ori.source_interval(tmin, tmax)" + ] + }, + { + "cell_type": "markdown", + "id": "f579870f-c854-450d-84e8-f1d5ef0753d1", + "metadata": {}, + "source": [ + "Create BinnedData objects for the GRB only, GRB+background, and background only. The GRB only simulation is not used for the spectral fit, but can be used to compare the fitted spectrum to the source simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3b5faaa1-1874-4d43-a6ae-7e1b0aaabb26", + "metadata": {}, + "outputs": [], + "source": [ + "grb = BinnedData(data_path / \"grb.yaml\")\n", + "grb_bkg = BinnedData(data_path / \"grb.yaml\")\n", + "bkg = BinnedData(data_path / \"background.yaml\")" + ] + }, + { + "cell_type": "markdown", + "id": "cf8b5ab1-7452-493e-b516-73fa72e455e5", + "metadata": {}, + "source": [ + "Load binned .hdf5 files" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "620159d2-f01a-453e-9e4c-075c99740086", + "metadata": {}, + "outputs": [], + "source": [ + "grb.load_binned_data_from_hdf5(binned_data=data_path / \"grb_binned_data.hdf5\")\n", + "grb_bkg.load_binned_data_from_hdf5(binned_data=data_path / \"grb_bkg_binned_data.hdf5\")\n", + "bkg.load_binned_data_from_hdf5(binned_data=data_path / \"bkg_binned_data_1s_local.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a6bdaee8-45d7-41df-9835-413c1e397c12", + "metadata": {}, + "source": [ + "Define the path to the detector response" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "acccab93-7f9c-4167-a8f9-eedcf74b8a05", + "metadata": {}, + "outputs": [], + "source": [ + "dr = str(data_path / \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\") # path to detector response" + ] + }, + { + "cell_type": "markdown", + "id": "31b5dbd7-8a50-43db-af66-7b8601f7e2fd", + "metadata": { + "tags": [] + }, + "source": [ + "## Perform spectral fit" + ] + }, + { + "cell_type": "markdown", + "id": "2210f6ff-c988-455a-be15-882d0b795072", + "metadata": {}, + "source": [ + "Define time window of binned background simulation to use for background model" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a29ec8c4-edea-40bf-8a3e-8038ba47bf8e", + "metadata": {}, + "outputs": [], + "source": [ + "bkg_tmin = 1842597310.0\n", + "bkg_tmax = 1842597550.0\n", + "bkg_min = np.where(bkg.binned_data.axes['Time'].edges.value == bkg_tmin)[0][0]\n", + "bkg_max = np.where(bkg.binned_data.axes['Time'].edges.value == bkg_tmax)[0][0]" + ] + }, + { + "cell_type": "markdown", + "id": "7441f3f1-ebe6-467f-b8ab-1baa70f20b15", + "metadata": {}, + "source": [ + "Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a9f21e74-5f62-4030-9815-6c77ebaab16f", + "metadata": {}, + "outputs": [], + "source": [ + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 0.1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=1e-3, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = dr, # detector response\n", + " data = grb_bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = sc_orientation, # spacecraft orientation\n", + " nuisance_param = bkg_par) # background parameter" + ] + }, + { + "cell_type": "markdown", + "id": "e6d55283-abb0-4295-9e5c-80a5c717f0ba", + "metadata": {}, + "source": [ + "Define a point source at the known location with a Band function spectrum and add it to the model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "98b2d026-c24d-4cfe-8b7b-41415fce5d16", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... Calculating point source responses ...\n", + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n", + "--> done (source name : source)\n", + "--> all done\n" + ] + } + ], + "source": [ + "l = 93.\n", + "b = -53.\n", + "\n", + "alpha = -1 # Setting parameters to something reasonable helps the fitting to converge\\n\",\n", + "beta = -3\n", + "xp = 450. * u.keV\n", + "piv = 500. * u.keV\n", + "K = 1 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum = Band()\n", + "\n", + "spectrum.beta.min_value = -15.0\n", + "\n", + "spectrum.alpha.value = alpha\n", + "spectrum.beta.value = beta\n", + "spectrum.xp.value = xp.value\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value\n", + "\n", + "spectrum.xp.unit = xp.unit\n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + "\n", + "source = PointSource(\"source\", # Name of source (arbitrary, but needs to be unique)\n", + " l = l, # Longitude (deg)\n", + " b = b, # Latitude (deg)\n", + " spectral_shape = spectrum) # Spectral model\n", + "\n", + "# Optional: free the position parameters\n", + "#source.position.l.free = True\n", + "#source.position.b.free = True\n", + "\n", + "model = Model(source) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)\n", + "\n", + "# Optional: if you want to call get_log_like manually, then you also need to set the model manually\n", + "# 3ML does this internally during the fit though\n", + "cosi.set_model(model)" + ] + }, + { + "cell_type": "markdown", + "id": "27ded6d5-4551-4623-8483-b3f4e8b02040", + "metadata": {}, + "source": [ + "Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d56d3ad6-7226-437a-a037-57fbcd80d196", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
12:04:56 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963889;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=362192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395184;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=957324;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(3.10 -0.20 +0.21) x 10^-21 / (cm2 keV s)
source.spectrum.main.Band.alpha(-2.8 +/- 0.5) x 10^-1
source.spectrum.main.Band.xp(4.75 +/- 0.05) x 10^2keV
source.spectrum.main.Band.beta-6.8 +/- 1.2
background_cosi(1.65 +/- 0.13) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (3.10 -0.20 +0.21) x 10^-2 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha (-2.8 +/- 0.5) x 10^-1 \n", + "source.spectrum.main.Band.xp (4.75 +/- 0.05) x 10^2 keV\n", + "source.spectrum.main.Band.beta -6.8 +/- 1.2 \n", + "background_cosi (1.65 +/- 0.13) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.97-0.370.20-0.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
" + ], + "text/plain": [ + " 1.00 0.97 -0.37 0.20 -0.00\n", + " 0.97 1.00 -0.16 0.18 -0.00\n", + "-0.37 -0.16 1.00 -0.18 -0.02\n", + " 0.20 0.18 -0.18 1.00 0.00\n", + "-0.00 -0.00 -0.02 0.00 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi42920.049336
total42920.049336
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi 42920.049336\n", + "total 42920.049336" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC85838.098672
BIC85840.098672
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC 85838.098672\n", + "BIC 85840.098672" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "( value negative_error positive_error \\\n", + " source.spectrum.main.Band.K 0.030995 -0.001939 0.002116 \n", + " source.spectrum.main.Band.alpha -0.276632 -0.050195 0.049825 \n", + " source.spectrum.main.Band.xp 474.650732 -4.896060 4.873162 \n", + " source.spectrum.main.Band.beta -6.756966 -1.215124 1.201150 \n", + " background_cosi 0.164969 -0.012573 0.012434 \n", + " \n", + " error unit \n", + " source.spectrum.main.Band.K 0.002027 1 / (cm2 keV s) \n", + " source.spectrum.main.Band.alpha 0.050010 \n", + " source.spectrum.main.Band.xp 4.884611 keV \n", + " source.spectrum.main.Band.beta 1.208137 \n", + " background_cosi 0.012504 ,\n", + " -log(likelihood)\n", + " cosi 42920.049336\n", + " total 42920.049336)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = False)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "44542198-aba8-4a37-b9d0-31930718c2bb", + "metadata": {}, + "source": [ + "## Error propagation and plotting" + ] + }, + { + "cell_type": "markdown", + "id": "4ad20f51-3d3f-43e1-a6a3-037bf3ee9f8f", + "metadata": {}, + "source": [ + "Define Band function spectrum injected into MEGAlib" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "02e57ec8-4459-4f99-b62f-73a63aba83f3", + "metadata": {}, + "outputs": [], + "source": [ + "alpha_inj = -0.360\n", + "beta_inj = -11.921\n", + "E0_inj = 288.016 * u.keV\n", + "xp_inj = E0_inj * (alpha_inj + 2)\n", + "piv_inj = 1. * u.keV\n", + "K_inj = 0.283 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum_inj = Band()\n", + "\n", + "spectrum_inj.beta.min_value = -15.0\n", + "\n", + "spectrum_inj.alpha.value = alpha_inj\n", + "spectrum_inj.beta.value = beta_inj\n", + "spectrum_inj.xp.value = xp_inj.value\n", + "spectrum_inj.K.value = K_inj.value\n", + "spectrum_inj.piv.value = piv_inj.value\n", + "\n", + "spectrum_inj.xp.unit = xp_inj.unit\n", + "spectrum_inj.K.unit = K_inj.unit\n", + "spectrum_inj.piv.unit = piv_inj.unit" + ] + }, + { + "cell_type": "markdown", + "id": "d626f871-fbdf-40b8-b865-140e3ea4b5c3", + "metadata": {}, + "source": [ + "The summary of the results above tell you the optimal values of the parameters, as well as the errors. Propogate the errors to the \"evaluate_at\" method of the spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "4e25c609-e754-43b8-8ea6-0a0a90811cda", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(3.10 -0.20 +0.21) x 10^-21 / (cm2 keV s)
source.spectrum.main.Band.alpha(-2.8 +/- 0.5) x 10^-1
source.spectrum.main.Band.xp(4.75 +/- 0.05) x 10^2keV
source.spectrum.main.Band.beta-6.8 +/- 1.2
background_cosi(1.65 +/- 0.13) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (3.10 -0.20 +0.21) x 10^-2 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha (-2.8 +/- 0.5) x 10^-1 \n", + "source.spectrum.main.Band.xp (4.75 +/- 0.05) x 10^2 keV\n", + "source.spectrum.main.Band.beta -6.8 +/- 1.2 \n", + "background_cosi (1.65 +/- 0.13) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.97-0.370.20-0.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
" + ], + "text/plain": [ + " 1.00 0.97 -0.37 0.20 -0.00\n", + " 0.97 1.00 -0.16 0.18 -0.00\n", + "-0.37 -0.16 1.00 -0.18 -0.02\n", + " 0.20 0.18 -0.18 1.00 0.00\n", + "-0.00 -0.00 -0.02 0.00 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi42920.049336
total42920.049336
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi 42920.049336\n", + "total 42920.049336" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC85838.098672
BIC85840.098672
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC 85838.098672\n", + "BIC 85840.098672" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n", + " * source (point source):\n", + " * position:\n", + " * l:\n", + " * value: 93.0\n", + " * desc: Galactic longitude\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * b:\n", + " * value: -53.0\n", + " * desc: Galactic latitude\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * equinox: J2000\n", + " * spectrum:\n", + " * main:\n", + " * Band:\n", + " * K:\n", + " * value: 0.030994516909178687\n", + " * desc: Differential flux at the pivot energy\n", + " * min_value: 1.0e-99\n", + " * max_value: null\n", + " * unit: keV-1 s-1 cm-2\n", + " * is_normalization: true\n", + " * alpha:\n", + " * value: -0.27663221293105034\n", + " * desc: low-energy photon index\n", + " * min_value: -1.5\n", + " * max_value: 3.0\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * xp:\n", + " * value: 474.6507320770641\n", + " * desc: peak in the x * x * N (nuFnu if x is a energy)\n", + " * min_value: 10.0\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * beta:\n", + " * value: -6.756965748051311\n", + " * desc: high-energy photon index\n", + " * min_value: -15.0\n", + " * max_value: -1.6\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * piv:\n", + " * value: 500.0\n", + " * desc: pivot energy\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}\n", + "\n" + ] + } + ], + "source": [ + "results = like.results\n", + "\n", + "print(results.display())\n", + "\n", + "parameters = {par.name:results.get_variates(par.path)\n", + " for par in results.optimized_model[\"source\"].parameters.values()\n", + " if par.free}\n", + "\n", + "results_err = results.propagate(results.optimized_model[\"source\"].spectrum.main.shape.evaluate_at, **parameters)\n", + "\n", + "print(results.optimized_model[\"source\"])" + ] + }, + { + "cell_type": "markdown", + "id": "5eaec533-b5b3-45c4-94df-75453e2df3bf", + "metadata": {}, + "source": [ + "Evaluate the flux and errors at a range of energies for the fitted and injected spectra, and the simulated source flux" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "cc7d6f50-06cd-450a-83d9-115b67d83b30", + "metadata": {}, + "outputs": [], + "source": [ + "energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)\n", + "\n", + "flux_lo = np.zeros_like(energy)\n", + "flux_median = np.zeros_like(energy)\n", + "flux_hi = np.zeros_like(energy)\n", + "flux_inj = np.zeros_like(energy)\n", + "\n", + "for i, e in enumerate(energy):\n", + " flux = results_err(e)\n", + " flux_median[i] = flux.median\n", + " flux_lo[i], flux_hi[i] = flux.equal_tail_interval(cl=0.68)\n", + " flux_inj[i] = spectrum_inj.evaluate_at(e)\n", + " \n", + "binned_energy_edges = grb.binned_data.axes['Em'].edges.value\n", + "binned_energy = np.array([])\n", + "bin_sizes = np.array([])\n", + "\n", + "for i in range(len(binned_energy_edges)-1):\n", + " binned_energy = np.append(binned_energy, (binned_energy_edges[i+1] + binned_energy_edges[i]) / 2)\n", + " bin_sizes = np.append(bin_sizes, binned_energy_edges[i+1] - binned_energy_edges[i])\n", + "\n", + "expectation = cosi._expected_counts['source']" + ] + }, + { + "cell_type": "markdown", + "id": "8cb8c4aa-ef51-4f19-93dc-2ac7d7d2f189", + "metadata": {}, + "source": [ + "Plot the fitted and injected spectra" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f8dbd36f-4b16-4bec-8835-8f6f876ab169", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAG7CAYAAAD0aVBuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLqklEQVR4nOzdd3hUVfrA8e+UtEnvlYQUeu+hBBECAiJYELsi9oKyoIJsREHZRUTsosJPQVd3sewqoKKE3jWAFIEQSAgkIaSRSZm0Kb8/RgZjAqTMZFLez/PwPOTeO+e8N2SYN+ec+x6FyWQyIYQQQgghbEJp7wCEEEIIIVozSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCFJtoQQQgghbEiSLSGEEEIIG5Jky87Ky8tJTk6mvLzc3qEIIYQQwgYk2bKz9PR0HnroIdLT0+0dihBCCCFsQJItIYQQQggbUts7gLYqMTGRxMRESkpK7B2KEEIIIWxIki07iY+PJz4+nuTkZB566CF7hyOEEEIIG5FpRCGEEEIIG5KRLSGEEKIBDAYDVVVV9g5D2JhKpUKtVqNQKBrchiRbQgghRD2VlJSQkZGByWSydyiiCWg0GoKDg3F0dGzQ6yXZEkIIIerBYDCQkZGBRqPB39+/USMeonkzmUxUVlaSm5tLWloaHTp0QKms/wosSbaEEEKIeqiqqsJkMuHv74+Li4u9wxE25uLigoODA+np6VRWVuLs7FzvNiTZshMp/SCEEC2bjGi1HQ0ZzfozSbbsREo/CCGEEG2DlH4QQgghWoH27dvTuXNnevfuTZcuXbjzzjspLS1tcHsrV67kxIkTlz2/Z88eevToQZ8+ffjpp58YP348p06dqtNr2xpJtoQQQohW4uuvv+a3337j6NGjFBUVsXLlyga3dbWEadWqVdx7770cOHCA6667jh9++IHo6Og6vbatkWlEIYQQohG+/ftOdNoKm/ah8XTixoVD63x9RUUFpaWleHt7W44tWbKEL7/8Er1eT1BQEB9++CHt2rVj7dq1/P3vf0epVKLX61m4cCG5ubkkJSXx1FNPkZCQwD/+8Q/Gjx9vaWvRokWsXr0ajUbD559/zpYtW+jduzfr1q1jz549V3xtWyTJlhBCCNEIOm0FugLbJlt1NXnyZJydnUlLS6Nfv35MmTIFgC+++IITJ06we/duVCoVn332GU8++STfffcdCQkJfPDBBwwZMgSj0UhRURFeXl7861//4plnnmHChAk1+pkzZw7Hjx+nf//+PPnkk9XOPfjgg1d8bVskyZYQbdyFCxcoKiqioqKCqKgo1OpL/y1kZWWxe/duKioq6N69Oz179qz22tWrV1NRUYGHhwc33nhjtXMnT54kOzsbZ2dnOnfujJubW1PcjhBNTuPp1Gz6+Prrr+nevTt6vZ5HHnmE2bNn8/rrr/Ptt9+SlJREv379AHOtMJVKBcCoUaOYMWMGkydPZsyYMfTu3dtWt9FmSbJlBS+99BIHDhygoqKCoKAgHn74YYYMGWLvsEQbUlhYSGpqKnl5eXTt2pWwsDDLOZ1Ox2233UZRURHdu3fnvffeq/bae++9l3Xr1gFw/NAJgvxC0FcZMFQa+Wn9JqZNvweAvz38LNMfmGl+0R9Vsx956FG0xYVEhkfRM2gQCgWoHFSoHJS89vpSPlq1DICfvktkyNAhqByUqB1VnDp9koEDB+Ll5cW9997LK6+8Ui2mjz/+GIPBQGhoKGPHjm30Y9dC2FJ9pveailqt5pZbbuHZZ5/l9ddfx2QykZCQwLRp02pcu3TpUn7//Xc2b97Mfffdx1133cVzzz1nh6hbL0m2rOC+++7j73//Ow4ODhw9epRZs2bxn//8B09PT3uHJlqRFStWsH//frKzs/nmm2+q1fhZvXo1jz76KABLXn6TW667jfKiSsqKKykrrrAkU7mnL7DGdzcVuiqqdHoqy/TkHbn0tNI3c7cT4B5s+frIudOWv6fuPsfG4gPVYqqq0AOgu1DBprd/q3buxK9nLH/f/v5Rzvyn8lJbBccpLi6muLiYgxtOsN79V5xcHXBydcDR1YGXX1zI6YxUnJ1dyE7LxdXHGbWj+bfwr776itWrVxMaGsr9998vv4ULcRmbNm2iU6dOAEycOJG33nqLG2+8ER8fH6qqqjhy5Ah9+vTh+PHjdOvWjW7duqFWq/n5558B8PDwQKvVNqjvxry2NZJkywoiIyMtf1epVFRVVZGXlyfJlrissrIygGrVp/Py8rjllls4c+YMAwcOZPXq1ZiMJsqKKtEVlPP5J/9my65NAKxZsg1HvQtlRZWUays59HuGpZ1dX/+G59GO1fpzUjtToS+nuKiUnJOF1c5F+3VFb9SjVjrgqKq+71ewRxiTe09DrXQg2q9Ljfu4tfeD6I1VuDhoapzrEtQHR7UzVYZKPJy9qp0zGU0EebRDV1mCutyFjIN51c7n5xYA4K724quZ2wBwdndA4+PMV7vX8c3WbwDoFT6QELf2eAa74uTqQE5ODvfeey8dO3Zk9OjR3HDDDTXiEqI1u7hmq6qqivbt2/PBBx8AcM8995Cfn8+IESNQKBTo9XoeeOAB+vTpw/PPP8+JEydwdHREo9GwbJl5RPrhhx9m1qxZvPbaa/Ve5N6Y17ZGClMb20VTp9OxatUqUlJSSElJQavVMnXq1FqHVnU6HStWrGDz5s0UFxcTHh7OXXfdxahRo2pcu2DBArZt20ZlZSWxsbG8+uqrdaoufLGo6fLlyy2/gYiWz2Qycf78eYKCgqod/9e//sXMmTPJzc1l5cqV3H3n3ZTklVOcqyM/S0uf8R0xmUx0DO3G/JvfofRCBSaD+S26cu+b7Ew1/8b54tj3CPO+lORnac+w6cQa3Jw86BrUh44BPar1W1yhxVntgsMfyZSDiwpHFwccNWocNGocnFSW6T/zHxUqR/Pf1X98rVT98fN88cf6j59vy0+5wpxEGfRGDJVGDFUX/xj+9Hcj+goDFaVVVJRWUVlaRaVOX+P7dzjrVwp0uSgVKuKir6t27v92v8ae05sB+McN/4e/m3kkztnDkYzKFJ7/5DEA7pvyAG+8/gYeQa6o1OZpyPfffx8PDw/69OlD165dpQK4aJDy8nLS0tKIjIxs0NYtouVp7L95mxvZ0mq1rF27lujoaOLi4izTK7VJSEjg+PHjPPLII7Rr147ExETmz5+P0Whk9OjR1a6dN28eer2e/fv3k56eLv+JtwEmkwmdToerq2u14w8++CD//ve/0el0FBQU4OLgSlG2Du25Us4fKiI3NxeAte9tpuqngGqv9XT2ocpQiaPRmZK88mrnrutyC9fEjMfTxQcvZ/Pj3EqVAmdPR3pEdGPAsD44ezjh4uGI8x9/XNwdcXQ1J1WOGjWOLg44aNQolc3n59NoNFGpMydeFSXmJOzakl6UXqhAV1BO6YVySgvK0RVUoLtQzr0DZzCpx71cKMvDV3Pp+1deVEly6qW6PhWnHPjmuR0oVQq827nj296d52c/T1FJESEhIWRmZlaLo6SkBFdXV3nvCiGsrs0lW0FBQXz//fcoFAoKCwsvm2zt3r2bpKQk5s2bR3x8PAB9+/YlOzubZcuWMXLkSMuTHBep1WoGDhzIN998Q1hYGIMHD67Rbl5eHvn5+Zav09PTrXh3oilUVlZyzTXXkJycTLdu3di+fTv6CgOF50rQntNRkF6MTqcD4O1pXxDqEmV5bYlWibfGD19NABo8arS9cMIKHNXmp46cPRxx9XZC4+OMq48z/bw7oPFxwvWPrzVezji6qlt8cqBUKnB2c8TZzRECr3ytyWiirNg8rVpaUG5JYrXZpWjPlTIkMp7uwf04X5yFn5t5VNFoMJF/uojjR05QVFIEgB9h/HfODnzbe+AX6Yl/lAcJi2fzv2//R1xcHG+//Xa1hwyEEKIx2lyyVdcPpu3bt+Pi4sKIESOqHR8/fjwLFizg6NGj9OjRo9bXGo3GGr81X7RmzZpGVfQVTePw4cMsXLiQ33//nYceeoinnnoKgEpdFYVZOk6lpHLhwgUOH/id1U9voTivDP6YkHfI9yTIPQx/92D0ZUa4tCyLUM8IFk/6FDAnU+4BLrj7aXAPcMHN3wV3fxfc/TW4+l5aEC4uUSgVaDyd0Hg64RdZc01kZZmeoj8SL212KdqsUvLTi9FmleDh7MXT1yzgzIVT+LsFUXCmmIIzxaRsM79X1/2wnjxtHmvXrGXJvLcxBhlR/jH9mJqayrlz5xg0aFC10hhCCFEX8r/GZaSlpREREVHjP9aLWxGkpaXRo0cP8vPzOXz4MIMGDcLBwYFt27Zx4MABHnnkkVrbnThxIkOHXnpMOD09vcZj76Jp7N+/nw0bNnD48GEWLFhAVNSlEShdaRmrV68G4OevN9OhNJYLmSWWwoU+qiAMGhNB7mEUZBfhoHKwvHZ055sY3fkmAFx9nPEI0uAZ7IpHkCueQRo8AjW4+2tQO0kyZW2OLmr8Ij1rJGJV5XoKzhSTl9aHvLQi8tKKKMwswWQ0Z8h6o54AtxC0ugsEeYSxafFh1E5HCerkTXBXHz79+QOWvrcELy8vVq9ezZgxY+xxe0KIFkqSrcvQarWEhITUOO7u7g5AUVGR5djXX39tWRAfFhbGSy+9RExMTK3t+vn54efnR2JiIomJiZSUlNjmBgRg3rLi6NGjpKamcsstt1Q7991337FgwQIAhvW8lkEdjBScNY925J7NR4ECpVJFTvoFMg/nV3vt365diEppTpYcnFV4hbrhFeqGZ7DrH4mVBs9AV0momgkHZzWBHb0J7Hhp6xJ9peGPBEzL+eQLPOfzD0oulFFSYX5v6ysMZBzKI+NQHus2/gSY65k5ab0oL67E2d38sEFBQQFZWVl069atxU/pCiFsQ5KtK6jLf5y+vr68++679W47Pj6e+Ph4y9OIovH+XBH5ori4OH799VeUSiXaQi1VWhN5aUXkny5Cf+LS/N4Pn21G3eNScu2ocublCR/h6xqIWml+mzi5OeAV6oZ3qBteoa6WBMvVx1k+ZFsgtaOKgBgvAmK86Do6ApPJRFG2jnPHCjh3NJ9zRwvQFZpHMuOirsPT2RttWQEp/8vn5HebCOzkTUS/ADb+vpa/Pfc0ERERvP/++23+EXchRE2SbF2Gp6dnrQXZiouLAXPBNmF/Op2OBx54gAMHDhATE2N54MGgN3LhTDFhPu35lV8xGo0svv1jwj07WF7rWxHBA7HPEOrVniCPdpbjSrUC7zB3OoSH4t3OHZ9wd3zauePi6ShJVSumUCgsI5OdR7arlnxFHw1mxOHrKC+uAswL9bOPFZB9rIBPtn4OmJcEOFRqMBlNKP542vNiZR35uWn99n2dYrO2+03ucPWLRLMmydZlREVFkZiYiF6vr7ZuKzU1FaheyLQhZBqx7srKykhKSuLXX3+ld+/ejBw50nLOxcWFDRs2kJ+fT15OPjv+7wj5aUXknynCqDfhW9SeQRHX0s47EjcH72rtejh7MbLfOHwjPPCN8LAkVp5BGpQq2R6mrftr8mU0msg5cYH0fTmk7ztPUbb5idNeoYPQG6s4X5xJ2upSVm/eSoe4UDrEhbDn4E5mzZrFXXfdxb333lvr0gQhrKV9+/Y4Ozvj7OxMRUUFffr0Yfny5TXK09TVypUrGTJkCB07dqz1/J49e3jooYdQq9UsWrSIt956i3feeYfo6OirvhZg5syZDBw4kNtvv71B8VnbrFmz6N+/P3fccYfV25Zk6zLi4uJYu3YtW7durVbEdP369fj5+dG1a9dGtS/TiLWrqKhAqVTi4HBpwfm+ffsYPnw4YK5h1b/bIHJOaslL1ZJ7SkuQUwRaZRHuCh9+W5+M85+qmQ9qfy2D2l8LgEeQxvyof3tzcuXb3gOXJthAVrQOSqWCoM4+BHX2YeCdnSjMKuXMvvME7PNi+Mlx6A16lAolJbllHPjvSQ789yRf/P42R44c4fnnn6dTp07cdNNN9r4N0cpd3IjaZDJxww03sHLlSp544okGtbVy5Ur8/PwumzCtWrWKe++9l2effRaA6667rs6vzczM5Mcff+T111+vV0x/HQC53LH6vP6i2bNnExcXx2233Wb1/VjbZLK1Z88eysvLLbWQ0tPT2bJlCwCxsbE4OzsTGxtL//79Wbp0KTqdjtDQUDZu3MjevXtJSEiosTaovmRkq7r//e9/vPrqqxw4cIBvv/2WcePGAeZSCwEO7VAqlRiNRjb8bzNflm6r9tppA2ehcXK3rK1CAZ7BrvhHef7xZJoHPuHuOGoc/tqtEA2iUCjw/mP9Xq+J0egKKzhzIIe0PdlkHcnDZDJPIebkmAvYahzdcEkL5ezBXEJ7+KFUKjh//jznz5+nZ8+edr4b0RpVVFRQWlqKt/elEf0lS5bw5ZdfotfrCQoK4sMPP6Rdu3asXbuWv//97yiVSvR6PQsXLiQ3N5ekpCSeeuopEhISamy5s2jRIlavXo1Go+Hzzz9ny5Yt9O7dm3Xr1rFnz54rvhbMm81PnjzZMsVeVVXFCy+8wKZNm6isrKRz58588MEHeHl5MXXqVDw8PDhx4gRnz57lvffeY8aMGQwfPpxff/2VmTNnEhkZyfTp0yktLcXZ2Zk33niDoUOHcvr0afr3789TTz3Fhg0buPnmm4mJialxv5MmTSIgIIDIyEg2btxYo3B5Y7W57XoApkyZQnZ2dq3nVq9eTXCwefsPnU7H8uXLq23Xc/fdd9e6XU9DtaXteoqKivjll1/45ZdfeO6556r9dvGf//zHMnT7xD0zmDL0fnJOainMKgETfHf4X3i7+BHl26naNjUA7v4u+EV5mpOraE/82ntIYiXsprSgnJM7s0jZlklhZgm5JefI0p6hV+ggAFy8nOg4PJSvk1ay+PVFDB8+nHffffeydftE81Pb1i3NYc3Wn6cR09LS6NevHz///DNqtZovvviCLVu2sGzZMlQqFZ999hlff/013333Hb169WLZsmUMGTIEo9FIUVERXl5ejBgxgmeeeYYJEybU2t/UqVPp378/Tz75pKX/devW0b1796u+dtSoUTzzzDOWX6z/8Y9/YDQaSUhIAODll18mLy+Pt956i6lTp3Lo0CG2bduGm5sbW7ZsYeTIkWzbto1hw4ZRWVlJTEwMy5cv57rrrmPHjh3ceuutnDx5ktzcXCIjI/n888+58847AS57v2Deek+n07Fo0aJq8cp2PQ3w5Zdf1uk6jUbD008/zdNPP23jiNqGBx98kK+++gqA66+/ni4du5F7qpDzJy5Qvt/8wxvoHkrO4RJO6KsXhZ3U427A/ESgf7QXAR088Y/2wj/SE2eP6psnC2FPrj7O9Lohip4TIslLKyJlWyandoVTUWJeXF9WWEHS/5JZtsa8QfCuXbvw9fW1Z8iiFbk4jajX63nkkUeYPXs2r7/+Ot9++y1JSUn069cPqP709qhRo5gxYwaTJ09mzJgx9O7d2+ZxZmRkVNs79ttvv6WoqIivv/4aMO/UcbGuJZgHSdzc3Cxfd+zYkWHDhgHmQQtHR0fLNOawYcMICAjg0KFDBAcH4+zsXG0d1pXuNygoiG3bqs+eWEObTLaag9Y6jfjmm2+yefNmzp8/z549e6qd69OjvyXZWjb7XwzwHcnFcVWTyZE3b16Nq5O75XqFSoFvhAcB0Z74d/AiINoLjyCNPNklWgSFQoH/HyOug+7uzNkDuaRsz+TM/hwwmLih+51sPrGWUK/2JH2YTo/xCiL6B6JUKdmxYwdOTk4MGDDA3rchWii1Ws0tt9zCs88+y+uvv47JZCIhIYFp06bVuHbp0qX8/vvvbN68mfvuu4+77rqL5557zqbxaTQaysrKLF+bTCbef//9ag9A/dmfE62/fm0ymWr9XLh47K97nl7pfsvLy3FxcanRVmNJsmUnLX2BfG5uLnl5eXTp0qXa8W+++YYdO3YAcHz/KYz5as4nXyA7+QIVp9wY0eF6onw7E+3ckz9PYCsUCvwCfAns6E1AR28CYrzwi/SQLWtEq6BSK2k/IJD2AwLRXSjnWOIZ3Da4MiLmesr1ZeSkFLLxrd9w9XWm29j2/O3Fv5G0L4kxY8bwxRdfyMiXaJBNmzZZlqdMnDiRt956ixtvvBEfHx+qqqo4cuQIffr04fjx43Tr1o1u3bqhVqv5+eefAXOJo9pKINXF1V7bs2dPjh8/zpAhQyzxLV26lNjYWDQaDTqdjrS0NLp163bVvjp37kxFRQWbNm1i5MiR7Nq1i5ycHHr06EFubm6N6y93vwDHjh2jV69eDbjjK5NkS9RLaWkp/fv35/jx4wwbNozt27cD5rpWealaYgK6soMduDq5s3L2t8T4X3pqM8wrkrv6m5+KUSjAO9ydwA7eBHT0IqijN27+LjJqJVo9jbcz/W7tSK9J0ZzamcXhH05TmGke4S7NL2f129+RtC8JgIyzmdUWOIvmq7nUwpo8eTLOzs5UVVXRvn17PvjAPF19zz33kJ+fz4gRI1AoFOj1eh544AH69OnD888/z4kTJ3B0dESj0bBs2TIAHn74YWbNmsVrr71W6yL3K7naaydPnsynn35qGWmbM2cO8+fPZ9CgQZbPgdmzZ9cp2XJ0dOSbb77hqaeesiyQ/+qrr3B1da012brc/ZpMJjZu3MjcuXPrfJ911SYXyDcnzXGBvNFo5MiRI2zbto3o6GjLAsaLOnTowMmTJ3F0cGTrp/spOFXK+ZQLGCqN5Jeep9JQSaB7KErFpUdn1U7mat2BnbwJ7ORNQLSnLGIXAvN/8FlH8jn842kyfsulUl/BntOb+fHol0zuN42pD99DzxsicfEwlylJT08nIiLCzlG3bY1dLC3MnzMDBgzgu+++IywszN7hAObSTp9//jmfffZZjXOyQL6Fas5rtg4ePEjfvn0BuOWWWxg3bhz6CgPnUy6QffwC0V7dMfmpifbryt6vf8fV8dI6K1/XQACc3R0I7ORDYCdvgjp549feA6VaCoUK8VcKhYLQHn6E9vCjMLOE339Kx2WrC0Oi4lEqlBz+Po1jiWfoPq49Af01dOnehdjYWObPn09cXJy9wxeiQZRKJR9++CGnT59uNsmWVqvl1VdftUnbMrJlZ/Ya2UpNTeWLL75g69atPP7449WKLRoMBnx8fCgqKsLH05dPnl5LXqoWo8H8o1LbYkRXX2eCu/gQ1MmbwM4+eIW4ypSgEA1Upq3g4NpUjv6cjlF/6b/obw5/zPoj5qe1nn76ad588007Rdi2ychW2yMjW+KqKioqUKlU1epanThxghdeeAEwP0I78YZJ5J4sJOtoPlm/FzAq6iYclU509O/B+RMXqiVOCoUCd38Xgrr4EPzHH1lvJYT1uHg6EXt3F3qMj+S3705xfNNZTAYT4R7RBLiHcEGXy4S+t6OvNMhDJEK0AJJstWJr1qzhzTffZPfu3fz000+WLW8ABscORqVSYTAY2PVTEp8+uAFDpdFyfnyX26q15RGkMY9cXUyufK3/aKwQojpXH2eG3t+NnhMiOfDfkyi2X0PfdsM4c+EUp9dfYPXuLQy8ozMxcSFs376dXbt2MWPGDBltEaKZkWTLTppizdaFCxfYvHkzAJs3b6ZHVB8yj+ST9Xs+544W8MiQ5wnzisTPNahaogXmquzB3XwJ7upDSFdfXH3kP28h7MXdX8PwR3rSa2I0+75JQbVbBSYo01ay9YNDHP45jXnfPMHvx4+wfPlyNm3aJIvohWhGJNmyk6aos9Wvu3l7kCCfEI6vz+Sb5B3VzvcJG2L5u6uPsyWxCu7mg7u/BiFE8+IZ7MrIJ3vTe1I0SatPmAukAnv27OZo8lEAvDy9aNeunT3DFEL8hSRbrdTal/Zw/sQFXp24Ch9X/xrnndwcCOnmS0h3X0K6+kpldiFaEJ927ox5ph8ZB3PZ+cnvdKQ78657h9UHPmJ86D2c3JZFh+GhKJTm9/TlKmyL1uXPexNezrx58+jWrRu33XbbZa+5ki1btlBZWcmYMWMa9NpnnnmGpKSkBvXdkkmy1Uq5+pqn/S4mWmonFUGdfQjp7ktoN198wt0t/xELIVqmsF7+TH4tjiM/nkb1jZJZI/8JwLaPDvP7hnTiHuyOQVNOfHw8CxcuZOLEiXaOWNjbggULGvX6LVu2UFJS0qBkqy2TwketVLte/gR19qbvLTFMmDeIe5bHM3Z2f3peH4lvew9JtIRoJVQOKnpNjObWpcNpPyDQcjw/rYj/zd3JlHF3ceTIESZNmsR7771nx0hbt6VLlxIWFkZYWBhbtmypdi4tLc1ybvr06TVeO3HiRMv5v1q5ciVLly6tVywjRoxg9uzZxMXFER0dzaOPPmo5N3XqVN59910AqqqqmDNnDgMHDqR3797cfvvtFBYWAuaaUw8++CA9evSgV69eTJs2jd9++40PPviATz/9lN69e1sSt59++olhw4bRr18/Bg0aVG0j54SEBGJiYrjmmmtYt25dve6jNZGRLTux9QL5DsND6TA81CZtCyGaHzdfF+L/1pfMw3ns+L8jFOeUUWWo5ML5IgB8vH259dZb7Rxl61VUVERmZiZgLrfzZwaDwXLuwoULNV6bm5trOf9XpaWlFBUV1TueU6dOWab8unbtyu7duxk8eHC1a1577TXc3Nz45ZdfAHj55Zd58cUXeeutt5gxYwZubm4cPHgQpVJJbm4u/v7+PProo5SUlLBkyRLAXLNx/vz5rF+/Hg8PD06ePMk111zD6dOnWb9+PWvWrOG3337DxcWlWj3HtkaSLTtp6RtRCyGap9AefkxeMpwjP6Sx/5uTTB/+ErtPb8JZ7cKx/2bjdZ8Pji7yX7+1eXh4EBpq/gXXycmp2jmVSmU5V9tel/7+/pbzf+Xq6lojeauL22+/HZVKhYuLC7179+bUqVM1kq1vv/2WoqIivv7aXCi3srKS6OhoANatW8e+fftQKpWWGGuzfv16Tp48Wa20EMDZs2fZvHkzt912G25ubgBMmzaNV155pd730hrIO04IIVoZlVpJr4nRRA8NYeuyQwxRjAIgZVsmmYfyGPFET/w7ejJx4kQefvjhNj3iYC0zZ85k5syZtZ6LjIwkIyPjsq9ds2bNZc9NnTq1QfH8udaaSqVCr9fXuMZkMvH+++8zcuTIBvVxsY2xY8fy6aef1npOmMmaLSGEaKXcfF0Y//eBDL2/KyoH83/3usIKflj4K49OnsH69eu5+eabLbtJiLZl4sSJLF26FJ1OB4BOp+P333+3nHvttdcwGs01GHNzcwHzCJ5Wq7W0MWbMGNavX8+RI0csxy5OS44aNYovv/yS0tJSDAYDK1eubIrbapYk2RJCiFZMoVDQZXQEtyyOwz/GEzCPOPx24CBgHvW48cYb7RihaGoXy4DMmTOH3r17M2jQIHr27ElsbCy//fYbAG+88QY6nY7u3bvTu3dv5s6dC8BNN91EUlKSZYF8hw4d+Ne//sWDDz5Ir1696NKlC2+99RYAEyZMYMKECfTq1YuRI0fSs2dPu9xvcyAbUduZvTaiFkK0PSajicM/pJH05QkMVUb2nt7MhfJ8Zs14hkF3dkLlIPss1kVL3oh6/Pjx3Hvvvdx+++32DqVFaey/uYxsCSFEG6FQKug5IYqb/zkMn3APYiNHMq7LrRz9KZ1vZu+g6HwpYC43cLEEgGg94uPjKS4u5vrrr7d3KG2OJFtCCNHGeIW6cdM/htDn5hhLzb2ibB3fzN7BOws/5P7776dfv34cOHDAzpEKa0pMTGT79u24u7vbO5Q2R55GtJOm2IhaCCEuR6lS0m9yByL6B7Dh9f2U5pdTUV7J/H++CJjrJ+3du5c+ffrYOVIhWj4Z2bKT+Ph4Fi1aVGs1YSGEaCp+7T255dVhhPX2Q61U88zIRbT36ciwLvHcPflee4fXrMmS57bj4lOZDSUjW0II0cY5ahy47tn+HFqbStJqeC7+NYwmA9/M3smIx3sS0c+8DVBZWRkuLi52jtb+HBwcUCgUlqrqssl362UymaisrCQ3NxelUomjo2OD2pFkSwghBAqFgl4Towns6M2GpfupKKmiqkzPhqX76XZdBO59jIweM5qVK1dy3XXX2Ttcu1KpVISFhZGRkcHp06ftHY5oAhqNhvDwcEtF/fqS0g92JqUfhBDNTVlRBT+/to/cU+bileVVZby6eRYZ+adRqVSsXbuWcePG2TlK+zMYDFRVVdk7DGFjKpUKtVrdqBFMGdkSQghRjYuHEzfMH8zefx3j9/XpKBQK/FyCyeA0nWI6M3ToUHuH2CyoVCpUKqlNJq5OFsgLIYSoQalUMPjeroz6Wx9cXV15bOhcbuh+J9O6zyHz10J7hydEiyIjW41UWVnJ66+/TlJSEqWlpbRv354nnniCHj162Ds0IYRotMgBQfgu9uDHhb8wUXk3ADs//p0LZ4qJva8rlZUVlJWV4e3tbedIhWi+ZGSrkQwGA8HBwbz//vv88MMPTJo0iblz51JeXm7v0IQQwio8/DXcvGgYgZ3+SKhMcHTDGX74x17uuvNuBg8eTGpqqn2DFKIZk2SrkVxcXJg6dSqBgYEolUrGjRuH0WgkIyPD3qEJIYTVODiruf6FQcQMD7EcW/Hle/z3f9+QnJxMfHy8LBYX4jLa3DSiTqdj1apVpKSkkJKSglarZerUqUybNq3Wa1esWMHmzZspLi4mPDycu+66i1GjRl22/fT0dCoqKggJCbnsNUII0RIplQpGPNoLr2BX9n2ZQmz7UexN38r54kzmPv4SalWb+0gRok7a3MiWVqtl7dq1VFVVERcXd8VrExISWL9+PVOnTmXx4sV07tyZ+fPns2HDhlqvLy8vZ+HChdx7771oNBpbhC+EEHbXe1IM1z7Zi0DvYOaMXsLjw/6O+vcg9v83hapyvb3DE6LZaXO/hgQFBfH999+jUCgoLCxk3bp1tV63e/dukpKSmDdvHvHx8QD07duX7Oxsli1bxsiRI6s98qvX63nxxReJiIjgnnvuuWz/eXl55OfnW75OT0+30p0JIUTTiRocgpufhp+WJNHbcTD6CgO/fZdKcU4ZfW/pQLH+AqGhofYOU4hmoc2NbCkUijoVJtu+fTsuLi6MGDGi2vHx48eTl5fH0aNHLceMRiMLFy5EqVQye/bsK7a/Zs0aHnroIcufV155pcH3IoQQ9hTQwYubFg7FI9A8km8ymDi5I4t35q4gJjqGD5Z9YOcIhWge2tzIVl2lpaURERGBWl39WxQdHW05f7G8w5IlS8jPz+e1116rcf1fTZw4sVpBwPT0dEm4hBAtlpufCzf9YyjrFydxPvkC2UUZzF/9DHpjFY89/hihwWHccOMEe4cphF1JsnUZWq221kXu7u7uABQVFQGQnZ3NunXrcHR0ZOLEiZbrFi9eTK9evWq83s/PDz8/PxITE0lMTKSkpMRGdyCEEE3DwUXN9QkD2fzeQUy7TYzqNImfjn3N4M4jCDLGoD1Ximewq73DFMJuJNm6grpMNwYFBbFt27Z6tx0fH098fLxlb0QhhGjJlColo57qg5OrA7dwP2FekfQPj+PMnlyUBiWBnbwJ6e6HUtnw/eWEaKkk2boMT09PtFptjePFxcUAeHh4NHVIQgjR7A17oDuOLmoU3yvABBcySjBUGTEaTBRkF9FpaDhOrg72DlOIJiXJ1mVERUWRmJiIXq+vtg7rYpXkyMjIRrUv04hCiNZq4J2dUTurOPDfU5iMJorO6zi06QRvbEogfuh1vLjwBbzD3O0dphBNps09jVhXcXFxlJWVsXXr1mrH169fj5+fH127dm1U+/Hx8SxatIjp06c3qh0hhGiO+t7cgYF3dkKpVqI3VPHP/83m91OHeOvT13g54Z+c/vU8hiqDvcMUokm0yZGtPXv2UF5ejk6nA8xPBG7ZsgWA2NhYnJ2diY2NpX///ixduhSdTkdoaCgbN25k7969JCQkVKux1RAysiWEaO16jI/EwVnFns+O0yt0EKfyjuHu7EnfDoPITy+iJK+M9gMDcfN1sXeoQtiUwmQymewdRFObMmUK2dnZtZ5bvXo1wcHBgHm7nuXLl1fbrufuu+++4nY99XVxgfzy5cvp1KmT1doVQojmImVHJrs+Ocr6g/+lo393IoM6EDMsBBdPJxRKCOrkQ3AXHxSyeF60Um0y2WpOJNkSQrQFab+cY+f/HaW8uBIAlaOSmKEhaLydAXD1dab9gECc3RztGaYQNtEmpxGbA5lGFEK0JZEDg1E7qti+/Ai6CxUYKo2c3JFFijKJLp270JUeHE88S1gvP/wiPe0drhBWJSNbdiYjW0KItiTzcC7bPjpCSV4ZPx79kv8dWoW3uw+f/ONLwoLCAfAKcSWiXyBqp8atjRWiuZCnEYUQQjSZ0B7+DH+kBy6+Dhw5lwTAheIC1v78reWawqxSjm5IR3uu1E5RCmFdkmwJIYRoUqHd/bjmod7MmbyIUM8Ibu51P7Hu49BmXUquqsoNnNyZxZkDORj1RjtGK0TjyZotO5E1W0KItqxdL39GPTAAZ8fl6HL0YILUvedoPyCwWsHT3FNainN0tB8QhKuPsx0jFqLhZM2WncmaLSFEW2UymUj75TwH/pvChbOXfvH06uJE+85h1fanVSghuIsPQZ2kRIRoeWQaUQghhF0oFAoiBwTSe1I0vhHm/WazizJ49NU7ee39f1S71mSErN8LSN6aQXlJpT3CFaLBJNkSQghhNwqlgsjYYLqNj0ATqmZx4nPkl57nyy2rWPn5xzWuL80v53jiWXJTtXaIVoiGkTVbdiJrtoQQwkypVBAzOASj3shdRx/kgx+WEOYVSYihA9nHCwjq7FPteoPeyJn9OWjPlRLRLwAHZ/koE82brNmyM1mzJYQQZvpKAye2ZbDyw0+JUHTHSW1eEB/YyZvgrj7V1nBd5OCkIrxvAF6hbk0drhB1JtOIQgghmgW1o4oOw0K578F7iewdajl+PvkCmYfzqG1soKrCwKnd50hPOo+hytCU4QpRZ5JsCSGEaDYcnNV0iAshvI8/Yb38APNTi4lbf+bMgZxaEy6AvNNFHEs8S0leWVOGK0SdyES3EEKIZsVR40DMsFAMehPlVWW8/OHz7M/YxQVdHjcZbyeib0Ct5R8qSqs4sTWDwI7eBHfzRSklIkQzIcmWncgCeSGEuDxnd0dihgSzcddP7M/YBcDq/R/RK3QQJoOJiAGBtSZTJhNkJ1+gKEdH+wGBuHg4NXXoQtRgtQXy+/btY//+/Rw5coScnBy0Wi3Ozs54eXkRFRVF7969GTx4ML6+vtbortWQBfJCCHF5hVklPPnoU3y74SseGPQMPUIGAuARpCFyUBBK1eVXwyhVCkK7++If41Xr4nohmkqjki2dTsc333zD2rVrycm5NJfu6OiIh4cHFRUVlJaWYjSa97VSqVQMHTqUKVOm0KNHD+vcQQsnyZYQQlxZ9ol8fk08hJvRm9Q92ZiM5s8a9wAXImODUamvvPzYI0BDRP8AHDUOTRGuEDU0eBrxu+++45NPPuHChQvExMQwceJEunXrRqdOndBoNJbrTCYTGRkZHD16lF9//ZUdO3awfft2hg4dyhNPPEFISIhVbkQIIUTrFNTRl35VPTl3rIDoocGk7jqH0WCiOKeMUzuziB4SjMpBddnXF+XoOJZ4hnZ9AvBp537Z64SwlQYnW2+++SajR4/mjjvuIDIy8rLXKRQK2rVrR7t27bjuuuuoqKggMTGRf/3rX/z8889MnTq1oSEIIYRoI0K6+VJVpgcgZlgIa77+nsKSAmIZScr2LGKGhqB2unzCpa80krY3G+25Utr19kftePlrhbC2Bidb//rXvwgNDb36hX/h5OTE9ddfz9ixY8nNzW1o90IIIdqY8L4BVJZV8dma/+Odja+hVKjwdw8hms6kbMsgelgoji5X/lgrOFNMSW4Z7QcE4h6gueK1QlhLg+tsNSTR+jOVSkVQUFCj2hBCCNF2KJQKogaHUFCSg9FkRG+sYtPJ7wAoL64iZWsGFaVVV22nskxPyvZMzh7MxWgw2jpsIaT0gxBCiJZDpVbywar3OJF2gr6dB3LHmPtJ25VNZameSp2eE1sziBkWctWSDyYT5KQUUpyjo/2AIDReUiJC2I7sjWgnf66zdejQIXkaUQgh6kFXVM7JrVlUVRioKtNzckcW5cWVAKgclUQPCcHVx7lObSmVCoK7+hDYyVtKRAibsOp2PcXFxaxfv96aTbZa8fHxLFq0iOnTp9s7FCGEaHE0Hs5EDw1BqVbg4KKmw/BQy+iUodLIyR2ZFOfWbeseo9FE5pF8UrZm1mkaUoj6smqydf78eRYtWmTNJoUQQohaufo4EzkgCIUCCkpy+T79M1x8zLW0jHoTp3Zmoc0urXN7xXllHEs8Q95pra1CFm1UvdZsnT9//orn8/LyGhWMEEIIUR9eoW4kF/7GY888jLakENfJbsSHTabovA6T0UTq7nO0HxCId1jd6msZqoykJ+WgPacjom/AFctJCFFX9Uq2pkyZcsX5bJPJJPPdQgghmlRkt3aUlBUDsG7r/7jn9QdRHlJSmFkCJjj9y3kMVUb8Ij3r3GZhZgml+WVE9AvEM9jVVqGLNqJeyZa7uzsPPfQQffr0qfV8eno6L7zwglUCE0IIIeoiNjaWF154gT1bk3j2nnloXDS0H+jC2f1K8tOLADh7IBej3khAB+86t1tVbuDkziz8ozwJ7el31W2BhLiceiVbHTt2pLCwkPDw8FrPV1ZWIg83CiGEaGovvPACprkmUnZkUZpfbt69pK8/SgcFuSfNa7AyD+djqDIS1MWnXrMwualainN1tO8fiKuvi61uQbRi9UrTb7zxRoKDgy97PjAwkDlz5jQ6qJbm22+/5YEHHuDaa6/l448/tnc4QgjR5iiVSlQOKqIHB+PkZl4kr1AoCO3hR1AXH8t12ccvkHkor94DA+XFVSRvzSDr93zLRthC1FW9kq3hw4czZsyYy553d3dn3LhxjQ6qpfH19WXatGnExcXZOxQhhGjTHJzVxAwNwaio4r0vXien4DzBXXwI7elnuSb3lJYz+3LqnTSZjHDuWAHJm89SXlRp7dBFKyYT0FYQFxfH0KFDcXWVRZRCCGFvWbkZTHvxdj7534e89O5zGI1GAmK8CO8bYLmm4Ewxp3/Jxmio/yhV6YUKjm06Q87JQitGLVqzRidbI0aMuGpJiOZEp9OxbNkyZs6cyQ033MDw4cMvO/Wn0+l4++23uemmm4iPj2fatGls3LixiSMWQghRH97e3hRqLwDw2/F9JKcdBcC3vQftB5nrcgEUZpWSuvscRn3990c06k2c/S2XlB2ZVJbprRa7aJ0anWy1tAXxWq2WtWvXUlVVddVpv4SEBNavX8/UqVNZvHgxnTt3Zv78+WzYsKGJohVCCFFf3t7efPbZZ/Ts2ZP1X2+kS3T3S+dC3YgaHIxCZc64inN0nNyZhaHK0KC+irJ1HNuQzoWMYqvELlqnNrcRdVBQEN9//z0KhYLCwkLWrVtX63W7d+8mKSmJefPmER8fD0Dfvn3Jzs5m2bJljBw5EpWq/sXu8vLyyM/Pt3ydnp7esBsRQghxWSNGjGD//v2oVCrS950nL63Ics4jyJWYoSGc2mUe1SrNLydlWxbRw0JwaEARU32lkdQ92fiEl9Kutz9qRymEKqprc8lWXR/33b59Oy4uLowYMaLa8fHjx7NgwQKOHj1Kjx496t3/mjVrWLlyZb1fJ4QQon4u/kIc3ieAyjI9Rdk6yzk3Pxc6xIVwamcW+kojZdoKUrZmEDMsBEeNQ4P6KzhTTEleGe37B+IeoLHKPYjWQRbIX0ZaWhoRERGo1dXz0ejoaMv5i/R6PRUVFRiNRgwGAxUVFRgMtQ9JT5w4keXLl1v+JCQk2O4mhBBCoFAqiBoUxK4jm8ktuLTGWOPtTIdrwnBwNidlFSVVnNiaSXlxw580rNTpSdmeydmDuRgN9V8LJlonSbYuQ6vV4uHhUeO4u7t5f62ioktD0p9++imjR4/mxx9/5LPPPmP06NH8/PPPtbbr5+dHp06dOHv2LJ988glr1qyxzQ0IIYQAzPv6Tp4ymafmP8LST/9R7ZyzuyMdR4RZanNVlelJ2ZqB7kJ5g/szmSAnpZDjG89S2oh2ROvR5qYR66OuU47Tpk1j2rRp9Wo7Pj6e+Ph4kpOTeeihhxoSnhBCiDpQq9Xs3LkTgA07f+TOCffTI6a35byjxoEOw0M5tTOLMm0l+kojKdsziRocgrt/wyvGlxVVcmJzBkFdvAnq5INCKXsHt1UysnUZnp6eaLXaGseLi81PnNQ26iWEEKL58fX15Y033iAgIID//Oc/3HjvOBR/+fRzcFYTExeKq68zYC7tcGpnFtpzpY3q22g0kfV7AclbMho1PSlatkaPbN1zzz24ublZI5ZmJSoqisTERPR6fbV1W6mpqQBERkY2qv3ExEQSExMpKSlpVDtCCCGu7s477+SGG26w/KLcrpc/Zw7kVrtG7agiZmgIaXuzKTqvw2Q0kbrnHBH9AvEJd29U/6UF5RzbeIbQ7n74R3vWa29G0fI1emTrwQcfbJWV0+Pi4igrK2Pr1q3Vjq9fvx4/Pz+6du3aqPbj4+NZtGgR06dPb1Q7Qgghrk6hUFSbkfCP9iKwg1eN65RqJZGDg/EO+2MQwQTpSefJPVXY6BguFkI9uSOLSl1Vo9sTLYfN12yZTCYyMjJwcnIiICDg6i9oAnv27KG8vBydzvwYcHp6Olu2bAEgNjYWZ2dnYmNj6d+/P0uXLkWn0xEaGsrGjRvZu3cvCQkJDaqx9WcysiWEEPZV4pSPa6CG0vMV1Y4rlQoiBgSiclSRl2peTpJxMA99pZGgzt6NHpUqOq/jWOIZ2vUJwKdd40bMRMugMFmpBPz27dvZuXMnTzzxhOWJvXPnzjFnzhxL4c6RI0eSkJCAUmnfpWJTpkwhOzu71nOrV68mODgYMG/Xs3z5cjZv3kxxcTHh4eHcfffdjBo1ymqxXFwgv3z5cjp16mS1doUQQtSuvLycf/7zn/zzn//k5QUvM2ngnZQW1Hxq0GQyce5oAeeTL1iO+Ud7EtrTz2rTgD7h7lIItQ2wWrL17LPPkpOTw6pVqyzH5s6dy86dO+nbty9FRUWcOnWKZ555hgkTJlijy1ZBki0hhGha+/fvZ8CAARiNRpydnflt/0GqTjtQUVr7Hoc5KYVkHs6zfO0T7k543wCrPV3o6KImon8gHoFSCLW1stoQU1paGl26dLF8XVJSwp49exg5ciRvvPEGH374IREREXz//ffW6rJFS0xMZM6cObzzzjv2DkUIIdqUvn37Mn36dNRqNTNnziS8fTuih4agdqz9IzGggxfhfS8tgyk4U0zaL9kYDdbZG7iyTM/JHZmc/S23QZtii+bPaslWYWEhvr6+lq8PHz6MwWCwTLmp1Wr69+9PZmamtbps0WSBvBBC2M/LL7/M/v37WbhwIS4uLrh4OBE5KLhGSYiLfNt7EDkoyHJem1VK6u4sDFZKjkwmyDlZyDEphNoqWS3ZcnV1rVZV/cCBAyiVSnr16mU5plarKS+XHyIhhBD25e7uXmN/W49ADeF9Lv8gl1eoG1GDQ1CqzNOHxTllnNyRib6y9u3ZGqK82FwI9dyxfExG64ycCfuzWrIVHh7Orl27KCoqoqSkhI0bN9KhQwfLYnmA7OxsvL29rdVliybTiEII0bwYjUb8Ij0J7HT5zymPQA0xw0JQOZg/PnUFFaRsy6SqrPb1Xg2L449CqFulEGprYbVk65ZbbiEvL4+bb76ZyZMnk5+fz6RJkyznDQYDhw8fJiYmxlpdtmgyjSiEEM2DyWTiq6++onPnzhw9epTQ7r6X6mzVwtXXhQ7DQ1E7mZ8gLC+q5MS2TCpKrVs7qzTfXAg152QhVnqWTdiJ1ZKtESNG8Le//Y3IyEjatWvHww8/zPXXX285v2/fPsrLyxk4cKC1uhRCCCEa7ZNPPmHKlCmkpKTw7LPPolAoaN8/EFcf58u+xsXTiQ7XhOKoMZerrCytImVrBmVF1h2JkkKorYPVSj+IhpHSD0IIYV9lZWV06tSJs2fPEh8fz7fffourqytV5XqSN5+9bEkIgEqdnpM7M6koNidCKkcl0UNCrpioNZTaUUm73gGN3jpIND3ZiFoIIUSb5uLiwvvvv8+6dev4+eefLVvQOTiriR5yaX1WbRw1ajoMD8PFywkAQ6WRkzsyKc7VWT1OfaWRtF+ySdt7zqqL8oXtyciWnfx5u55Dhw7JyJYQQjRTRedLObkzC9MVqjwYqoyk7s6iJM/8xL1CqaD9wEC8Qi6/9qsxHFzURPQLwDOo9e1N3BpJsmVnMo0ohBDNX26qljP7c654jdFgJG1vNkXZf4xqKSC8bwC+ER5XfF1j+Ed7EtbDD6VaJqqaM/nXEUIIIf7i2LFjfPrpp5av/aM8CezodcXXKFVKomKD8W73x2iWCc7syyHnZKHN4sw9peXYxjO17u0omg9JtoQQQog/efbZZ+nRowcPPfQQqampluOhPfyuWBICzNOHEf0D8YvytBzLPJTHuaP5NivfUF5cRfKWs2T9LoVQmytJtoQQQog/UavVGAwGKisrWbx4seW4pSSE75WfNFQoFIT18iOo86XiqNnHL5B5KM9mCZfJCOeOFZC8RQqhNkeyZstOZIG8EEI0T0VFRfTp04epU6cya9YsNBpNtfPmkhAZdSpimnOykMxDeZavvcPdiegbgEKpsHrcFynVCkK7+xEQ42WzPkT9SLJlZ7JAXgghmp+qqiocHBwue768qJLkLWfRV159I+r89CLO7Lu0uN4z2JX2AwNRqmw7ueQRpCGiXyCOLmqb9iOurt7/0kajkdTUVPLy8mqc0+v1/Pbbb9aISwghhLCbKyVaAM4ejkQNDkZZhxEq3wgPImODUPzxias9V8qpnecwVF09UWuMomwdxxLPcCGj2Kb9iKurV7KVnZ3N1KlTuf/++5k8eTJz5sxBq9VazhcVFTFjxgxrxyiEEELYVUlJCWVlZdWOuftrCO8XUKfXe4W4ET0kBKXanJyV5JWRsj2TqgrbFifVVxhI3ZNN2i/ZUgjVjuqVbC1btgx/f3+++uorPv74Y6qqqnjiiSeqjXLJrKQQQojWwmg08sknn9CxY0dee+21Gud9IzwI7uJTp7bcAzTEDAtF5Wj+6C0rrCBla0aT7HlYcKaYY4lnKM6xfmV7cXX1SrYOHjzIY489RkBAAFFRUSxZsoSePXvy5JNPcv78ecD8FIYQQgjRGqSmpvLwww9z7tw5Xn31VbKysmpcE9LNt877Fbr6ONNheBgOzioAKkqqOLE1s0meIKzU6UnZnsnZg7kYDbadwhTV1SvZKi8vrzaPrVAoeO655xgwYADTp08nMzPT6gEKIYQQ9hITE8Njjz0GwMiRI2tMJV4U0T8Qd3+XOrXp4uFIxxFhOLmZP0+ryvSkbM1Ad8H2hUlNJshJKeT4xrNN0p8wq1eyFR4eTnJyco3js2bNIjY2ljlz5lgtMCGEEKI5ePHFF9m9ezdr164lOjq61muUSgVRg4NxdnesU5uOGgc6DA/FxdN8vb7SSMp222xgXZuyokqSN2dw7liBFEJtAvVKtoYPH86GDRtqPTdz5kxGjhwpa7bqKDExkTlz5vDOO+/YOxQhhBBX4OvrS2xs7FWvUzuqiBkagoOTqk7tOjir6TA81FIk1ag3cWrnObRZpY2Kt66MRhNZv+dzYmsG5SVSCNWWpM6WnUmdLSGEaF1K88s4sT0To75uH69GvZG0X5p2A+u/UqmVhPb0w/9P2wwJ65HteoQQQoh6+O233/jnP/952fOuvi60HxBEXZ8XU6qbfgPrvzLojZzZn8PJHZlUlumbrN+2otHJ1ogRIyxPIgohhBCt2YwZM+jTpw9z587ll19+uex13qFuhPbwq3O79tjAujZaKYRqE41OtmQWUgghRFvx5+Ueb7/99hWvDezojX903afl7LGBdW2kEKr1yTSiEEIIUUcPPPAAsbGxvPnmm6xYseKq17fr5Y9nsGud21coFAR39SW056VRsdxTWs7sy2nypwYLzhRzbMMZis5LIdTGkt0phRBCiDpydHRk165ddS7grVAqiBwUxImtGeguVNS5n4AYL1QOSssG1gVnijHojbQfEIRS1XTFwyvL9JzckYl/tBeh3X1RqmWMpiHku9ZIhYWFPPfcc4wZM4Y777yTX3/91d4hCSGEsKH67pSiUiuJHhKCo6Z+4xu+ER5EDrq00F6bVUrq7iwM+qat/m4yQc7JQo5tPEupFEJtEEm2GumNN97Ax8eHNWvW8Pjjj/Piiy9W25xbCCFE61ZSUoLReOUEyNFFTczQEFQO9fvY9Qp1I2pIiGU0qzinjJM7Mu2ylqq8uJITmzM4dyxfCqHWkyRbjaDT6di+fTv3338/zs7ODBs2jJiYGHbs2GHv0IQQQthYeXk5b7zxBpGRkXzzzTdXvd7F04mo2CAU9fzk9QjUED3sUqKmK6ggZXsmVeVNX6LBXAi1gOStGU2yn2Nr0aaSLZ1Ox7Jly5g5cyY33HADw4cP5+OPP77stW+//TY33XQT8fHxTJs2jY0bN1a7JiMjAxcXFwIDAy3HoqKiSEtLs+l9CCGEsL+tW7cyc+ZM8vLymDdvHgbD1UebPAJdCe8bUO++3HxdiIkLRf1HdfpybSUpWzOp1FXVuy1rKM0v59jGM+SeKrRL/y1No5Ote+65Bzc3N2vEYnNarZa1a9dSVVVFXFzcFa9NSEhg/fr1TJ06lcWLF9O5c2fmz59fbbuisrIyXF2rP2Xi6up62Y1KhRBCtB5jxoxh6NChAPTp04fi4rrVpvJr71mtvENdabyc6HBNKA4u5rVfFaVVnNiSQXmRfUaYjHoTZw7kkiKFUK+q0U8jPvjgg9aIo0kEBQXx/fffo1AoKCwsZN26dbVet3v3bpKSkpg3bx7x8fEA9O3bl+zsbJYtW8bIkSNRqVS4uLhQWlp9D6vS0lJcXC6/83teXh75+fmWr9PT061wZ0IIIZqaQqHg3XffRalU0rNnz3q9NqSbL5WlVRScLanX65zdHOl4TSgnd2RRUVJFVbmBE9syiB4SgquPc73aspaibB3HNqQT3jcA7zB3u8TQ3LWp0g91fYJk+/btuLi4MGLEiGrHx48fz4IFCzh69Cg9evQgLCyMsrIycnJyCAgwDwunpaUxZsyYy7a9Zs0aVq5c2dBbEEII0Yz07t27Qa9TKMwV4yt1ekry6/eEn6PGgQ7DQzm16xxlhRUYKo2c3J5J5OBgPAI0DYqnsfSVRlL3ZOMTXkq73v6oHeu2GXdbYfVky2g0kpubS25uLnp97cOKDf3hbCppaWlERESgVlf/9kRHR1vO9+jRA41Gw7Bhw/jkk0+YMWMG+/btIyUlhfnz51+27YkTJ1qGncE8svXKK6/Y5kaEEEI0W0qVuSTE8c1nqSip39orB2c1HeJCSd2dRUleOUaDidRdWUQMCMI71H5LewrOFFOSW0ZE/0A8Au2T+DVHVku2TCYTn3/+OV9++SVFRUVXvHbLli3W6tYmtFotISEhNY67u5uHR/98fzNnzmThwoVMmDABPz8/XnrpJby8vC7btp+fH35+fiQmJpKYmEhJSf2GkIUQQjRfu3btIisri8mTJ9fperWTipihISRvPou+sn71s1QOSqKHhnD6l/Noz5ViMsLpvdkY+vjjF1n3bYKsTQqh1mS1ZOvDDz/k3//+N97e3owbNw5fX19UqpY7jFjXKUcvLy9ee+21ercfHx9PfHw8ycnJPPTQQ/V+vRBCiOZDr9dz0003sW7dOnx9fbnuuussv6BfjbO7I1GDQzi5PRNjPetXKVVKIgcFceZADgXp5gX6Zw/koq80EtjRq94FWK3lYiHUovM62g8MxNXbPuvJmgurJVvr16+nXbt2fPTRR2g0LXvo0NPTs9bCpBefNPHw8Gh0HzKyJYQQrYdarbZ8NuTn5/N///d/zJgxo86vd/d3Ibx/AKd/OV/vvhVKBeF9A1A7qshJKQTg3O/5GCoNhHT3tVvCBeZCqMmbzxLcxYegTj4olPaLxZ6sNrZXVlbG4MGDW3yiBeZaWenp6TXWnKWmpgIQGRnZ6D7i4+NZtGgR06dPb3RbQggh7G/+/PlERUWxYsUKnnzyyXq/3jfcg+CuPg3qW6FQENrDj5DuvpZjOSmFdtnA+q9MRsyFULe03UKoVku2YmJiqpU0aMni4uIoKytj69at1Y6vX78ePz8/unbtaqfIhBBCNFcxMTGkpKTwwAMP1HjAqq5CuvriG9Hw8gmBHb1p18ff8nXBmWLS9mZjNDTtfoq1KS0wF0LNOVlo71CanNWmEe+9915eeOEFkpOT6dSpk7Watbo9e/ZQXl6OTqcDzE8DXlywHxsbi7OzM7GxsfTv35+lS5ei0+kIDQ1l48aN7N27l4SEBKusRZNpRCGEaH2UysaPYYT3M5eEKM5tWIFsv0hP1I4qTv+ajckI2nOlnNp5jqjBwfXem9HajHoTZ3/LRXuulIj+gTi6tI0KVAqTyWS18cUtW7bwxhtvMHToUKKjo2tUV79o7Nix1uqy3qZMmUJ2dnat51avXk1wcDBg3q5n+fLlbN68meLiYsLDw7n77rsZNWqUVeO5uEB++fLlzTpJFUIIUX+VlZU4OjrW+3X6SgPJmxs37VacoyN1zzmMevPHvMbLieihIZYtf+xN7aikXZ8AfNq1/kKoVku2KisrWbx4MYmJiVxs8q+L8kwmEwqFotmXfmhKkmwJIUTrU1RUxFtvvcV7771HUlISYWFh9W6joqSK5M1nqaq4+p6Ll1NaUM6pXVkY/igr4eTuQMzQUBw1zWdEySfcvdUXQrXad/vdd99lw4YNREdHc80117T40g+2JtOIQgjRer322muWgtWvvPIKH3zwQb3bcHJzIHpIMCe2ZWI0NGxcxNXHmQ7Dwzi1I5OqcgMVxVWkbMsgelgIzm71H3GzhbZQCNVqI1sTJ04kKCiI999/v8ELA9siGdkSQojWJz8/n8jISHQ6HQ8//DDvvfdeg0swXMgwL3JvzKd1RWkVJ3dkUVlqrlSvdlIRPTQEjZdTwxu1MoWCVlsI1Wp3U1lZSZ8+fSTREkII0eb5+vqycuVKjh07xvvvv9+oWlfeYe6EdPdrVDxOrg50vCYUZw/zaJa+wsDJ7ZmU5DdsEb4tXCyEemzjWUov1G+/yObOaplRp06dyMjIsFZzrZ5MIwohROt28803W62toE7eVJRUkpd25e3wrsTBWU2H4aGk7jpHaUE5hiojJ3dkETUoCI+g2h9os4fWWAjVaiNbDz30EL/88gu7du2yVpOtmhQ1FUIIUR/hfQLwCGrcmia1o4roYSG4B7gAYDKYSN19jgsZxdYI0WqqFUItavmFUK02spWUlETv3r2ZO3cuffr0ISYmptbSDwqFgvvuu89a3QohhBDNnslkIjExkZCQELp169agNhRKBVGDgkjekkGZtuEJiEqtJGpwCOlJ2RRmlmIywelfzmOoMtp1A+valBaUc2zTGUK7++Ef7WnXrYcaw2oL5K+55pq6dSilH6qRBfJCCNG6ZWRkcNddd7Ft2zYmTJjA2rVrG9Vepa6K45szqCrTX/3iKzCZTJzdn0t++qWpyeBuvnbdwPpKPAI1RPQLwFHjYO9Q6s1qI1tvvfWWtZoSQgghWg0/Pz/L3rrr1q1j37599OvXr8HtOWociBkSzImtmRj0Dd+GR6FQ0K6vPypHZbPbwLo2Red1HEs8Q7veAfiEt6xCqFZLtnr37m2tptoEWSAvhBBtg7OzM/PmzWPJkiUsWLCAPn36NLpNjbczkYOCOLU7C1Mjtj1UKBSEdPdF5aji3O/m/Y1zUgrRVxoI7xPQ7Ban6yuNpP2STWFWCeF9A1pMIVSrbtcj6k+mEYUQovXT681TftYuj5RzspCzv+Vapa28NC1nD1xqyzPElfYDAlGqmmfNKwcXNRH9AvBsRk9SXo7VvoOHDx/m3XffJT8/v9bz+fn5vPvuu/z+++/W6lIIIYRoEdRqtU3qUAbEeBEQ42WVtvwiPWk/MIiLs4farFJO7TqHoaoRQ2c2VFWm5+SOLM7sz2nUdGpTsFqytXr1anbu3Imvr2+t5319fdm1axdffvmltboUQgghWiyj0ToJQlgvP7xCrDO64x3mRtSQEJQqc8ZVklvGyR2Z6BuxP6Ot5aZqOZZ4htJmVKD1r6yWbB0/fpyePXte8ZpevXpx9OhRa3UphBBCtDj5+fnMnj2bESNGYI2VPAqFgvYDg9B4W2frHY9ADTFxoagczCmC7kIFKdsyqNQ17ulHW6ooqSJ5awZZv+djNDa/1VFWG9MsLCzEz+/K2wn4+Phw4cIFa3XZoskCeSGEaJsmT55sKYH0v//9zyqV5lVqJdFDQkjedJbKRpaEgIsbWIdycmcW+nID5cVVnNiaQcywEJzdm8cG1n9lMsK5YwVos0tpPyAQF4/ms++j1Ua23NzcyMnJueI158+fx8XFxVpdtmhSQV4IIdqmZ599FgAnJydOnz5ttXYdXdREDw1BZaVNnF08neh4TRiOrua6VlVlelK2ZaJr5vsW6i5UcHzjWXJSLlhl5NAarJZsdevWjW3btnH+/Plaz58/f57t27fTvXt3a3UphBBCtDjjxo1j0aJFnDx5kpkzZ1q1bY2XE5GDglBY6dP94gbWLp6XNrBO2Z5FSV7zXR8FYDSYOHswj5TtmVTqquwdjvWSrSlTplBRUcETTzzB+vXrycvLAyAvL48ff/yRxx9/nMrKSm677TZrdSmEEEK0OAqFgtmzZxMWFmaT9j2DXWnXy99q7Tk4q4mJC8XV1xkAo968gbX2XKnV+rCV4pwysn6vvUpCU7Lamq1evXrx1FNP8c4777Bo0SLA/AN1cQhPoVAwffp0KX4qhBBC2Jh/tBflJVWWyvCNpXZUETM0hLS92RSd12Eymkjdc46IfoHNvpp7c5hJtGrRj5tvvpnevXvz7bffcvz4cUpKSnBzc6NLly5MmjSJqKgoa3YnhBBCtHgmk4l169YxevRonJ2drdZuWE8/KkurKMyyzgiUUq0kcnAw6UnnKcwoAROkJ53HUGXAP9rLKn20VlavsBYVFWX1OWghhBCiNfr111957LHH2LdvH2+99RZPPfWU1dpWKBREDgzixNYMSi9UWKVNpVJB+wGBZDgoyUszb2CdcTAPfaWRoM7ezW4/xeaiedbgF0IIIdoABwcH9u3bB8DChQvR6XRWbV+pVhI9NARHjfXGVhQKBWG9/Qns5G05ln2sgMxDec3m6b/mxvp7B4g6kTpbQgghevfuza233kpKSgqvvPKKTcojOTiriRkaQvKWDKttvaNQKAjp5ovaUUXmYfMDcbmntOirjET0bX4bWNubbERtZ7IRtRBCtG1arRZ3d3eUSttONhWdL+XkzixMVt5GMD+9iDP7LtXZ9AjSEDkoqNlsYO0T7k7kwCC7xtA8vhNCCCFEG+Xp6WnzRAvAI9CV8N4BVm/XN8KDyNhLtb2KsnWc2pnVbDewtgdJtoQQQog2wi/Ks9paK2vxCnEjekgISvUfG1jnlZOyPZOqZryBdVNqVLKl1zffTSmFEEKIliYrK4snnniCF154wWZ9hHb3xTvMzertugdoiBkWisrRnFqUFVaQsjWjWVRwt7dGJVs333wz7733nlX3dhJCCCHaotLSUrp3787777/P66+/zrlz52zSj0JhLt9wsSK8Nbn6ONNxeBgOzioAKkqqOLE1k/LiSqv31ZI0KtkqLS3lyy+/ZOrUqTz22GOsW7fO6o+tCiGEEG2Bq6sr9913HwAqlYr9+/fbrC+lSkn04GCc/thk2pqcPRzpOCIMJ7c/bWC9NaPZb2BtS41Ktv73v//x5JNPEhUVxdGjR1myZAk33XQTixYt4tChQ9aKsdn79ttveeCBB7j22mv5+OOP7R2OEEKIFur555/n2WefJTU1leuvv96mfV0sCaF2tP7ybUeNAx2G/2kD60ojKdszKc5tmwMyViv9kJyczA8//MDGjRspLi42Fz0LC+P666/nuuuuw8fHxxrdNEvbt29HqVTy008/0b59e6ZNm1bn10rpByGEEPZUnKvj5PYsjEbrV4IyVBk4tescpfnmUS2FUkH7gYF4hVh/zdjltKrSD506deJvf/sb//vf/5g3bx59+/YlMzOTDz/8kMmTJ/P3v/+dXbt2YTS2vkdB4+LiGDp0KK6urvYORQghhKgXd38N4f2sXxICQOWgImZYCB5BGgBMRhNpe7PJTy+ySX/NldUryDs4ODBq1ChGjRpFTk4OP/74Iz/++CM7duxg586d+Pj48N///tfa3aLT6Vi1ahUpKSmkpKSg1WqZOnVqraNMOp2OFStWsHnzZoqLiwkPD+euu+5i1KhRVo9LCCGEaCiDwcCuXbuIi4uzaT++ER5UlFRx7liB1dtWqpRExQaTvu88F86aN7A+sy8HQ5WRgBgvq/fXHNm0zlZAQAD33XcfixcvpkePHphMJgoKrP8PCeYKvGvXrqWqquqqP5QJCQmsX7+eqVOnsnjxYjp37sz8+fPZsGGDTWITQggh6mvdunX06NGDa665hiNHjti8v+CuPvi0s830nkKpIKJ/IP7RnpZjmYfyOHc0v03sp2izvRHLysrYvHkzP/zwA0eOHMFkMuHs7Mw111xjk/6CgoL4/vvvUSgUFBYWsm7dulqv2717N0lJScybN4/4+HgA+vbtS3Z2NsuWLWPkyJGoVOZHVmfMmHHZH/Dbb7+dBx98sN5x5uXlkZ+fb/k6PT293m0IIYRo/Y4fP86xY8cAmDdvnk1mhf5MoTAnRJU6PSX51n9yUKFQENrTD5WDkuzjFwDIPn4BQ5WR0J5+KBStdz9FqydbBw8e5IcffmDLli1UVFRgMpno3Lkz119/PfHx8Wg0Gmt3CVDnf6Tt27fj4uLCiBEjqh0fP348CxYs4OjRo/To0QOAN99808pRwpo1a1i5cqXV2xVCCNG6PP744yxdupTIyEimT5/eJH0qVUqiBgeTvDmDilLrFyNVKBQEd/VF5agi81Db2cDaKslWbm4u69ev58cffyQrKwuTyYSHhwcTJkzg+uuvJyoqyhrdWEVaWhoRERGo1dVvPTo62nL+YrJVV3q9HoPBgNFoxGAwUFFRgVqttoyQ/dnEiRMZOnSo5ev09HReeeWVBtyJEEKI1kyj0fDLL78QGhrapKM+F0tCJG85i77SNg+1BcR4oXJQcmZ/DpjgwplijFVG2g8MbDYbWFtTo5KtTZs28eOPP5KUlITRaESpVDJgwADGjx9PXFxcjYSmOdBqtYSEhNQ47u7uDkBRUf2fkPj000+rjVZ99tlnPP/884wbN67GtX5+fvj5+ZGYmEhiYiIlJSX17k8IIUTbEBYWZpd+nT0ciYoN5uQO25SEAPOifJWDktO/ZGMygvZcKad2niNqcDAqh9aVcDUqG5o/fz5gXi81fvx4xo0bR0CAbR4ftSZr/4Ywbdq0etXWAoiPjyc+Pt5SZ0sIIYRoTtwDNLTr6096Uo7N+ri4gXXq7nMYDSZK8so4uT2T6KEhqJ1qzg61VI1KtkaNGsX1119Pv379rBWPzXl6eqLVamscLy4uBsDDw6NJ4pCRLSGEEPWRmprKggULuPvuuy0PeNmaX3tPKoqryE6+YLM+3AM0xMSFcmpXFoZKI7rCClK2ZRA9NBRHTfObIWuIRt3FvHnzrBVHk4mKiiIxMRG9Xl9tmjM1NRWAyMjIJolDRraEEELUVVJSEoMHD0av13Ps2DFGjRrVZOu4Qrr7UlFaxYUM2w0OuPo402F4KKd2ZFFVbqC8uMqccA0LwdnN0Wb9NhWrTorq9Xq+/PJLHn74YcaOHcu1115rOZeSksLSpUs5e/asNbust7i4OMrKyti6dWu14+vXr8fPz4+uXbvaKTIhhBCidn379qVLly6A+fM0LS2tyfpWKBS0HxCIq6+zTftx8XCiwzVhOP6xOXalTk/K1kx0hRU27bcpWG18rqKiglmzZnHkyBE8PT1xdXWlvPxSnY7g4GB++OEH3N3dbTaSs2fPHsrLy9HpzBtdpqens2XLFgBiY2NxdnYmNjaW/v37s3TpUnQ6HaGhoWzcuJG9e/eSkJBQ6xOEtiDTiEIIIepKqVSyaNEi9u7dy8yZM/H09Lz6i6zZv0pJtA1LQlzk5OpAx+GhnNyZRXlRJfoKAynbMokeEoybn4vN+rU1q21EvWLFCj777DMeeeQR7rjjDj755BM+/fRTS7ID8Mwzz1BUVMRHH31kjS5rmDJlCtnZ2bWeW716NcHBwYB5u57ly5dX267n7rvvtst2PbIRtRBCiJaivKjSpiUhLtJXGkjddY7SgksbWEcOCsIzuP57EDeHjaitNrK1adMmevfuzZ133gnU/sRfSEgIKSkp1uqyhi+//LJO12k0Gp5++mmefvppm8UihBBCtDbOHo5EDQ7m5HbblYQAUDuqiB4WQtqebIpzdJiMJlL3nCOifyA+7dxt1q+tWC3ZysnJueqehBqNhtLSUmt12aLJNKIQQojGqKysJC0trclnRdz9NYT3C+D0r+dt2o9KrSRqSDDpSecpzDBvYJ3+63kMlQb8o71s2re1WW2BvIuLS60lFf4sKyuryeeZm6v4+HgWLVrUZFswCCGEaB1MJhMrV66kU6dOjB07lsrKyiaPwTfCg+CuPjbvR6k0L873jbxUlinjYB7Zxwpa1AbWVku2unXrxs6dOy87UpOTk8OePXvo1auXtboUQggh2hyFQsG///1vTp8+zenTp/n444/tEkdIV198I2w/padQKGjX25/ATt6WY+eOFZB5KK/FJFxWS7Zuv/12iouLmTlzJocPH8ZgMABQXl7Ovn37mDVrFnq9nttuu81aXbZoiYmJzJkzh3feecfeoQghhGhhLu6pO2bMGAYMGGC3OML7BeLub/unBBUKBSHdfAnt4Ws5lntKy5l9OZhsuHbMWqz2NCLAd999x1tvvYXRWPMpBaVSycyZM5kwYYK1umsV5GlEIYQQDXHkyBG6d+9u7zDQVxpI3pxBeXHTTGfmny4yb2D9B89g1ytuYN2qnkYEmDRpEr169eK7777j2LFjFBUV4erqSpcuXbjpppuarDq7EEII0do1h0QLzE8OxgwNIXnzWaoqDDbvz7f9HxtY//qnDax3nSMqtvluYG31TYfat28vJRWEEEKINsTJzYHoIcGc2J6JUW/7aT2vUDeiHf60gXVuGSd3ZBI9pHluYN3kKWBtU4xCCCGEaLijR49y7733cuGC7TaMvhpXXxfaDwiiibZstGxgrXI0pzK6CxWkbMukskzfNAHUg9WSrXXr1l31GoPBwIIFC6zVZYsmC+SFEEJYw4oVK+jevTufffYZr7/+ul1j8Q51I7SHX5P15+rjTIe4UNTO5tGs8uJKUrZmUFFiuy2FGsJqydbrr7/O9u3bL3veZDLx8ssvV9u+py2TOltCCCGsIT4+HrXavCpo9erV6PX2HdkJ7OiNf3TT1dR08XSi4zVhOGrM34NKnZ4TWzMo0zafDaytWmdrwYIFHDx4sMa5i4nW5s2bmThxorW6FEIIIdq89u3b89xzz7F48WIOHjxoSbzsqV0vfzyDNE3Wn5OrAx2vCcPZwxHAsoH1xb0V7c1qydaiRYsICQnh+eef59SpU5bjJpOJV155hY0bNzJx4kRmzpxprS6FEEIIgbnu1rPPPotG03QJzpVc3Dha4+XUZH06uKjpEBeKxtvcp6HKyMntmRScKW6yGC7HasmWm5sbr7/+Om5ubjz77LOcO3fOMqKVmJjIDTfcwKxZs6zVnRBCCCGaMZWDiughwTi6NN1Im9pJRcywUNz+KLRqNJj47btTnP41u8liqI1Vi5oCnD17lscffxx3d3c6duzI5s2bmTBhAs8++6w1u2nx/rwR9aFDh6SoqRBCCKvR6XTodDr8/JpusfplYyms4MSWDAz6pqtGYDQYOf3LebTnSgFQKGD0rH6E9w1oshj+zOqlH9q1a8drr71GQUEBW7Zs4frrr5dEqxayQF4IIYS1VVRU8O677xIdHd1sPns1Xk5EDgpC0YTFppQqJZGDgvAJN+/d6B3uXm1vxabW4JGtlStXXvH8wYMHOXnyJDfddBNK5aXvsEKh4L777mtIl62SbNcjhBDCWgoLC4mKiuLChQsolUqOHj3abD5bck8VcuZAbpP2aTKZKDqvI/aeLmg8m2792F81eCL1k08+qdN1q1atqva1JFtCCCGEbXh5efHss88yd+5cbrzxxmbxZOJF/tFeVJRUcT6lsMn6VCgURA4MsmuiBY1Itt566y1rxiGEEEIIK3jqqacYM2YM/fr1s3coNYT29KNCp6cws8TeoTSpBidbvXv3tmIYQgghhLAGV1fXZplowR8jTQMCOVGmbzY1sJpC89weWwghhBCtklKtNJeE0DSfKU5ba3CyNXv2bJKTkxv02oqKCv7973/z7bffNrR7IYQQQtRBUlISCQkJ9g6jGgdnNdFDQ1A5tI0xnwanlTk5OTzyyCP07t2b6667juHDh+Pq6nrF1xw/fpyff/6ZxMREysrKmDt3bkO7b/H+XGdLCCGEsIUZM2ZY1ljHx8czYsQI+wb0JxpPc0mIU7uyMDVdCS67aHDpB5PJxA8//MCqVas4f/48SqWS8PBwOnbsiLe3N+7u7lRUVFBUVERGRgbJycmUlpaiUCi49tpreeihhwgODrb2/bQ4UvpBCCGErXz66aeWCgBTpkxh9erVdo6oJluXhPAJdydyYJDN2q+LBo9sKRQKrr/+esaNG8fu3bv58ccfOXjwID///HONa5VKJVFRUcTFxTFhwoRmUdFWCCGEaO3uuusuPv30U2655RYeeOABe4dTK/9oL8pLqshpwpIQTa3Rq9OUSiVDhw5l6NChAJw+fZrc3FyKiopwdHTEy8uLyMhI3NzcGh2sEEIIIepOpVKRmJho7zCuKqynHxUlVZbtdVobqz8K0L59e9q3b2/tZoUQQgjRSikUCiIHBXFiSwa6wgp7h2N1beMxACGEEEIAUFRUhMFgsHcYNaj+KAnh4NL6SkJIsiWEEEK0AaWlpbz66qtERkY2y4XyAI4aB2KGBKNSt670pHXdjR1UVlbyz3/+k1tuuYWxY8fy6KOPcvjwYXuHJYQQQlSzd+9e5syZQ0FBAS+++CJ6vd7eIdVK4+1M+wGBKBT2jsR6JNlqJIPBQHBwMO+//z4//PADkyZNYu7cuZSXt51tCIQQQjR/I0eO5Nprr0WhUDB48OBmXefRK9SN0B6tp3KBJFuN5OLiwtSpUwkMDESpVDJu3DiMRiMZGRn2Dk0IIYSo5p133uHIkSN8+umneHl52TucKwrs6I1/tKe9w7CKVrMKTafTsWrVKlJSUkhJSUGr1TJ16lSmTZtW67UrVqxg8+bNFBcXEx4ezl133cWoUaMaHUd6ejoVFRWEhIQ0ui0hhBDCmrp162bvEOqlXS9/Kkur0Gbr7B1Ko7SakS2tVsvatWupqqoiLi7uitcmJCSwfv16pk6dyuLFi+ncuTPz589nw4YNjYqhvLychQsXcu+996LRaBrVlhBCCNHWKZQKImOD0Xg52TuURrH5yNaIESPYsmWLrbshKCiI77//HoVCQWFhIevWrav1ut27d5OUlMS8efOIj48HoG/fvmRnZ7Ns2TJGjhyJSqUCzHtKHTlypNZ2br/9dh588EHL13q9nhdffJGIiAjuueeey8aZl5dHfn6+5ev09PR636sQQghhDdu2bePcuXPcdttt9g7lsi6WhEjenEFlWfNc1H81Nk+2Grj1Yr0p6vjYwvbt23FxcamxGef48eNZsGABR48epUePHgC8+eabdWrTaDSycOFClEols2fPvmIsa9asYeXKlXVqVwghhLAFvV7PhAkT+Omnn/Dx8WHcuHF4eHjYO6zLctQ4ED00hBNbMjDoW96u1fWaRpw9ezYrVqywZMJ18efE4/PPP6eqqqp+EVpZWloaERERqNXV88zo6GjL+fpasmQJ+fn5vPTSSzXa/auJEyeyfPlyy5+EhIR69yeEEEI0hlqtxt/fH4CCggI+/vhjO0d0dRovJyIHBaFogQug6jWy5efnx6+//srq1aupqqrCzc2NDh060KFDBzp27EiHDh0IDw+vlmD9eWRr+fLljB8/Hm9vbwD+85//MGnSJFxcXKx0O1en1WprXbzu7u4OmCvr1kd2djbr1q3D0dGRiRMnWo4vXryYXr161bjez88PPz8/EhMTSUxMbNaP3gohhGi9XnrpJX755Rf+/ve/c9ddd9k7nDrxDHYlrKc/Z3/LtXco9VKvZOvZZ58FzLWl0tPTSU5O5uTJkxw/fpx169ah0+lwdnZm/fr1tb7+r1OKK1euZPjw4ZZk68KFCzz++OP8+9//bsi91FldpxzrIigoiG3bttX7dfHx8cTHx5OcnMxDDz1ktXiEEEKIuoiOjub48eNW/UxsCgExXlSUVpGTUmjvUOqsQWu2VCoVUVFRREVFAXDq1Cm2bdvGt99+i1arrXM7f02+TCZTnacnG8rT07PWGIuLiwGabM5aRraEEELYW0tLtC4K6+lHZWkVhVml9g6lThq8QP7o0aNs3bqV7du3k5OTQ+/evZk2bRpDhw61ZnxWFxUVRWJiInq9vtr6qtTUVAAiIyObJA4Z2RJCCNHclJeX4+zsbO8wrkqhUBA5MIgTWzMovVBh73Cuql7J1r59+9i2bRvbt2+ntLSUQYMGcf/99zN48GDc3Nzq1MauXbvo06eP3Yp+xsXFsXbtWrZu3VqtiOn69evx8/Oja9eudolLCCGEsJfCwkJef/11li1bxoEDB2jXrp29Q7oqpVpJ9NAQkjefpaK0eZeEqFeyNXPmTPz8/Lj77ru54YYbcHBwuOpr/jxE2aFDB9544w30ej0ajYbKyko+//xzevToQYcOHeqcsF3Onj17KC8vR6czV5pNT0+31PiKjY3F2dmZ2NhY+vfvz9KlS9HpdISGhrJx40b27t1LQkKCpcaWrck0ohBCiOZi6dKlvPLKKwC8/PLLfPTRR3aOqG4cnNWWkhD6yuZbEkJhqkchrAcffJDTp0+j1+txd3ev9iRix44da82E/1rUVK/Xc/r0aU6cOMGJEydISUnh5MmTVFRUoFAoMJlMDS6COmXKFLKzs2s9t3r1aoKDgwHzdj3Lly+vtl3P3XffbZXteurr4jTi8uXL6dSpU5P3L4QQQhQUFBAZGUlZWRmPPvoob731Votaz1Wco+PkjiyMxpopjU+4O5EDg+wQ1SX1SrbgysmSi4sLMTExvPPOO5br61JB3mQycfbsWcvTjY899liDbqYlkmRLCCFEc7B27Vq6d+/eZGuXrS0/vYjTv56vcbw5JFv1XiCvVquJiYkhJiaG8ePHAzWTpdq89tprREdHExMTQ3R0NK6urpZzCoWC8PBwwsPDGT16dANvpWWRaUQhhBDNyQ033GDvEBrFN8KDitIqzh0tsHcoNdQ52WpsslRVVcUPP/xAeno6VVVVBAYGWtq6mLzZa9G8PcjTiEIIIYR1hXT1pbJUT356/QqU21qdky29Xt+oZGnu3LmAeR/B/fv3M3/+fPLy8rhw4QJff/21pSBqVFQU77//fuPvTAghhBANYjKZ+PHHHwkPD6d79+72DqdewvsFUFlWRXFOmb1DsahzsvX8888DjU+WlEolq1at4tFHH+X6668HLo16ffjhh3To0KGRt9QyyDSiEEKI5ujMmTPcfvvt7N69m/Hjx/P999/bO6R6USoVRMUGc2JrBmXaSnuHAzRgzZY1kqVjx45ZRroAHBwcmDRpEhqNhsTExPqG1CLJNKIQQojmKDAwkMzMTAB++OEH9u3bR79+/ewcVf2oHVVEDzHX4GoOGrR39rFjx+jbt6/l64vJ0t/+9rfLll74s5iYGH7++ecax7t168axY8caEpIQQgghrMDJyYl58+bRtWtXvvnmm2qf9y2Jk6sD0UNDUKkblOpYVYMiaGyyNGvWLL744gveeustsrKyAPP05HfffVenQqlCCCGEsJ2pU6dy6NAhbr755hZVb+uvXL2dCenma+8wGrY34qxZs3jyyScpLCzk1ltvJSQkpF7JUocOHXj//fd54403uOOOO9BoNBgMBvR6Pc8880xDQmpxZM2WEEKI5qqpdlNpCmon+99LvYuaXnTq1CneeOMNDh8+XCNZulh/C65e1DQrK4uUlBQUCgWdOnUiMDCwIeG0WFLUVAghREtgNBpRKu0/JdcSNWhkCyA6Opp33333qsnS1XK5kJCQNlVfSwghhGhJcnJyWLRoEbt372bnzp2ScDVAg5Oti66WLG3durWxXQghhBDCTqZMmWL5LP/mm2+49dZb7RxRy1Pv9NRoNJKamkpeXl6Nc3q9nt9++80acQkhhBCiGZgzZw4ALi4unDt3zs7RtEz1GtnKzs7mueeeIz09HYVCQWxsLM8//zyenp4AFBUVMWPGjKtuPC2EEEKIluG6667j9ddf54477iA4ONje4bRI9Uq2li1bhr+/P0uWLKGkpIT33nuPJ554gjfffBM/Pz/g6mu0hJk8jSiEEKIlUCgUzJw5095htGj1mkY8ePAgjz32GAEBAURFRbFkyRJ69uzJk08+yfnz5wFadD2OphQfH8+iRYuYPn26vUMRQgghhA3VK9kqLy+vVkdLoVDw3HPPMWDAAKZPn24p7y+EEEKI1sloNPL1119TXl5u71BajHolW+Hh4SQnJ9c4PmvWLGJjYy2L6IQQQgjR+uzZs4c+ffpw66238sEHH9g7nBajXsnW8OHD2bBhQ63nZs6cyciRI2XNlhBCCNFKaTQaDh06BMA//vEPdDqdnSNqGRpcQV5Yh1SQF0II0ZLcfvvtnDp1ioULFzJ69GhZq10HjSpqmpWVJdXfhRBCiDZk+fLluLm5SZJVD42quX/nnXfy2WefWSsWIYQQQjRz7u7ukmjVU6NGtkwmEwaDodqx77//niNHjjB79uxGBdbaSZ0tIYQQrYXJZJIE7AqsvptkTk4OP/74Y63nvvjiC5544glrd9kiSZ0tIYQQLd3Zs2d5+OGHmTt3rr1DadYavRF1fVRUVPD77783ZZdCCCGEsIHS0lJ69OiBVqvF2dmZ6dOnyzruy7D6yJYQQgghWj9XV1ceeOABABwdHTl48KCdI2q+mnRkSwghhBCtx5w5c3BxcWHmzJn4+PjYO5xmS5ItIYQQQjSIv78/r7zyir3DaPYanWx9++23pKWl0blzZzp16kRpaak14hJCCCGEaBUalWxFRkZy5swZtmzZwpYtW6o99rlgwQKioqKIjo4mKiqKwMDARgfbXL300kscOHCAiooKgoKCePjhhxkyZIi9wxJCCCGalF6vZ9u2bYwcOdLeoTQrjd6up7KykpMnT5KSkkJycjInTpwgLS0NvV5v7uCPBMzV1RUnJycKCgrYsmVLowNvTtLS0ggLC8PBwYGjR48ya9Ys/vOf/+Dp6XnV18p2PUIIIVqD7777jmeffZaTJ09y8OBBevToYe+Qmo1GTyM6OjrStWtXunbtajmm1+s5deoUJ06csCRgqamplJSUtMqiZ5GRkZa/q1QqqqqqyMvLq1OyJYQQQrQGqamppKSkAPDCCy/w7bff2jegZsQmC+TVajWdOnWiU6dO3HDDDYA5ATt9+jTJycm26BKdTseqVatISUkhJSUFrVbL1KlTmTZtWq3Xrlixgs2bN1NcXEx4eDh33XUXo0aNanD/CxYsYNu2bVRWVhIbG0tUVFRjbkcIIYRoUR599FGWLFlChw4deOaZZ+wdTrPSZE8jqtVqYmJiiImJsUn7Wq2WtWvXEh0dTVxcHOvWrbvstQkJCRw/fpxHHnmEdu3akZiYyPz58zEajYwePbpB/c+bNw+9Xs/+/ftJT09vlSN4QgghxOW4uLiQlJREUFCQfAb+Rasp/RAUFMT333+PQqGgsLDwssnW7t27SUpKYt68ecTHxwPQt29fsrOzWbZsGSNHjkSlUgEwY8YMjhw5Ums7t99+Ow8++GC1Y2q1moEDB/LNN98QFhbG4MGDa7wuLy+P/Px8y9fp6ekNul8hhBCiuQkODrZ3CM1Sq0m26ppFb9++HRcXF0aMGFHt+Pjx41mwYAFHjx61LOp78803GxSL0WgkMzOz1nNr1qxh5cqVDWpXCCGEEC1Pm9uuJy0tjYiICNTq6nlmdHS05Xx95Ofns2XLFsrKytDr9WzatIkDBw7Qu3fvWq+fOHEiy5cvt/xJSEho0H0IIYQQzVlKSgp33XUXP//8s71DsbtWM7JVV1qtttaNMt3d3QEoKiqqd5tff/01r776KgqFgrCwMF566aXLrk3z8/PDz8+PxMREEhMTKSkpqXd/QgghRHP266+/MnjwYAwGAydOnGD06NFteh1Xm0u2oO5TjnXh6+vLu+++W+/XxcfHEx8fb6mzJYQQQrQW/fr1o3v37hw8eJDTp0+TlpbWpp/Sb3PJlqenJ1qttsbx4uJiADw8PJokDhnZEkII0VoplUoWLVrEvn37eOqppyyzR21Vm0u2oqKiSExMRK/XV1u3lZqaClQvUGpLMrIlhBCiNRs7dixjx461dxjNQptbIB8XF0dZWRlbt26tdnz9+vX4+flVq4QvhBBCCNFYrWpka8+ePZSXl6PT6QBzDauL+zDGxsbi7OxMbGws/fv3Z+nSpeh0OkJDQ9m4cSN79+4lISHBUmPL1mQaUQghRFtSXl5OampqmxzUaPRG1M3JlClTyM7OrvXc6tWrLcXWdDody5cvr7Zdz913392o7XoaSjaiFkII0ZqZTCZWrFjBggULUCqVnDhxAicnJ3uH1aRa1cjWl19+WafrNBoNTz/9NE8//bSNIxJCCCHaNoVCwX//+18yMjIAWLFiBU888YSdo2parSrZaklkGlEIIURb8fLLL7N+/XomTJjAsGHD7B1Ok2tV04gtkUwjCiGEaAuSk5Pb7Odcm3saUQghhBBNr60mWiDTiHYj04hCCCFE2yAjW3YSHx/PokWLmD59ur1DEUIIIZrUwYMHueOOOygoKLB3KE1Cki0hhBBCNJmPPvqI3r1785///IclS5bYO5wmIcmWEEIIIZrM2LFjcXR0BOC///0vBoPBzhHZnqzZshNZsyWEEKItCg8PZ+7cuXh6evLoo4822c4t9iSlH+xMSj8IIYQQrZtMIwohhBBC2JAkW0IIIYSwq5KSEnJzc+0dhs1IsiWEEEIIuygvL+eNN94gKiqKZ555xt7h2IwkW0IIIYSwi4qKCl5++WVyc3P517/+xbFjx+wdkk3I04h2Ik8jCiGEaOs8PT2ZPXs2c+bM4dZbb8XZ2dneIdmEPI1oZ/I0ohBCiLastLSUkydP0qtXL3uHYjMyjSiEEEIIu3F1dW3ViRZIsiWEEEIIYVOSbAkhhBCi2dizZw9z5syxdxhWJcmWEEIIIZqFJ598ksGDB/Pqq6+yefNme4djNZJsCSGEEKJZiI2Ntfz9o48+smMk1iXJlhBCCCGahTvuuIOxY8eyfPlyPv30U3uHYzVSZ8tOpM6WEEIIUZ1KpeLHH3+0dxhWJ8mWncTHxxMfH2+psyWEEEKI1kmmEYUQQgjRbF24cAGDwWDvMBpFki0hhBBCNDvFxcW88sorREZG8sUXX9g7nEaRZEsIIYQQzc6+fft44YUX0Gq1vPTSS1RVVdk7pAaTZEsIIYQQzc6IESMYNWoUKpWKa6+9ltLSUnuH1GCyQF4IIYQQzdI777yDWq2mQ4cO9g6lUWRky4qOHDnCNddcw6pVq+wdihBCCNHidenSpcUnWiDJltUYjUbeeecdunTpYu9QhBBCCNGMSLJlJWvWrKFHjx6Eh4fbOxQhhBCi1TGZTCQmJrbIJxNbzZotnU7HqlWrSElJISUlBa1Wy9SpU5k2bVqt165YsYLNmzdTXFxMeHg4d911F6NGjWpQ31qtlq+//poPPviAt99+u7G3IoQQQog/0ev1jB07lo0bN+Lt7c3111+Pp6envcOqs1YzsqXValm7di1VVVXExcVd8dqEhATWr1/P1KlTWbx4MZ07d2b+/Pls2LChQX1/9NFHTJkyBTc3twa9XgghhBCXp1arCQsLA8xFTleuXGnfgOqp1YxsBQUF8f3336NQKCgsLGTdunW1Xrd7926SkpKYN28e8fHxAPTt25fs7GyWLVvGyJEjUalUAMyYMYMjR47U2s7tt9/Ogw8+SHJyMidOnGDWrFl1ijMvL4/8/HzL1+np6fW5TSGEEKJNmjdvHklJSSQkJDBlyhR7h1MvrSbZUigUdbpu+/btuLi4MGLEiGrHx48fz4IFCzh69Cg9evQA4M0337xqewcPHuT06dNMmjQJgLKyMpRKJRkZGfz973+vcf2aNWtaXEYuhBBC2FtUVBSHDx+u8+d9c9Jqkq26SktLIyIiArW6+q1HR0dbzl9MtupiwoQJ1RK39957j6CgIO68885ar584cSJDhw61fJ2ens4rr7xSjzsQQggh2qaWmGhBG0y2tFotISEhNY67u7sDUFRUVK/2NBoNGo3G8rWTkxMajeayC/f8/Pzw8/MjMTGRxMRESkpK6tWfEEIIIcx0Ol21z+DmqtUskK8PW2bGc+fO5b777rvqdfHx8SxatIjp06fbLBYhhBCiNSooKGDOnDmEhYVx5swZe4dzVW1uZMvT0xOtVlvjeHFxMQAeHh5NEoeMbAkhhBAN8+abb/Lqq68CsGDBAlasWGHniK6szY1sRUVFkZ6ejl6vr3Y8NTUVgMjIyCaJQ0a2hBBCiIb529/+hqenJ05OTnh7e2Mymewd0hW1uWQrLi6OsrIytm7dWu34+vXr8fPzo2vXrnaKTAghhBB14e3tzRdffEFKSgqvvfZas18436qmEffs2UN5eTk6nQ4wP+m3ZcsWAGJjY3F2diY2Npb+/fuzdOlSdDodoaGhbNy4kb1795KQkGCpsWVrMo0ohBBCNNz48ePtHUKdKUzNfeytHqZMmUJ2dnat51avXk1wcDBgfnph+fLl1bbrufvuuxu8XU9jJCcn89BDD7F8+XI6derU5P0LIYQQwrZaVbLVkvx5ZOvQoUOSbAkhhBANZDKZ+O6774iMjKRXr172DqeGNrdmq7mQBfJCCCFE46WnpzNgwABuuukm5syZY+9waiXJlhBCCCFarODgYPLy8gDzw25JSUl2jqgmSbaEEEII0WI5Ojry4osv0qtXL9asWUO/fv3sHVINreppxJZEnkYUQgghrOPee+/lvvvuQ6lsnmNIkmzZSXx8PPHx8ZanEYUQQgjRME1VtqmhmmcKKIQQQgjRCAaDwd4hWEiyJYQQQohW49y5czz55JMMHjwYo9Fo73AAmUa0G1mzJYQQQljfHXfcYdmS76uvvuK2226zc0QysmU3UmdLCCGEsL65c+cC4OrqaikJYW8ysiWEEEKIVmP06NG8/fbb3HbbbQQEBNg7HECSLSGEEEK0IgqFotnNGsk0ohBCCCGEDUmyJYQQQghhQzKNaCfyNKIQQgjRNkiyZSdSQV4IIYRoG2QaUQghhBDChiTZEkIIIYSwIUm2hBBCCCFsSJItIYQQQggbkmRLCCGEEMKG5GlEO5HSD0IIIUTbIMmWnUjpByGEEKJtkGlEIYQQQggbkmRLCCGEEMKGJNkSQgghhLAhSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCGps2VnFRUVAKSnp9s5EiGEEELUV0REBM7Ozle8RpItO8vOzgbglVdesXMkQgghhKiv5cuX06lTpyteozCZTKYmikfUorCwkF9++YVvv/2Wp59+uk6veeedd5g+ffpVr0tPT+eVV14hISGBiIiIxobaKtT1e2cPTR2brfqzVruNaachr63va+pyvbwHa2rO70GQ96E127H1+7C5fBbKyFYL4OXlxZgxY9i0adNVM+OL3Nzc6nwtmH8Q6nN9a1bf711TaurYbNWftdptTDsNeW19X1Of6+U9eElzfg+CvA+t2Y6t34ct6bNQFsg3E/Hx8Ta5VlTXnL93TR2brfqzVruNaachr63va5rzz1Jz1ty/b/I+tF47tn4fNvefpT+TacRW7OIm13WZTxZCWJ+8B4Wwv+bwPpSRrVbM19eXqVOn4uvra+9QhGiT5D0ohP01h/ehjGwJIYQQQtiQjGwJIYQQQtiQJFtCCCGEEDYkyZYQQgghhA1JsiWEEEIIYUOSbAkhhBBC2JAkW21YZWUl//znP7nlllsYO3Ysjz76KIcPH7Z3WEK0KS+99BKTJk1i7NixTJ06lV27dtk7JCHarCNHjnDNNdewatUqq7YrpR/asLKyMlavXs24cePw9/fnp59+4v333+err7666j5PQgjrSEtLIywsDAcHB44ePcqsWbP4z3/+g6enp71DE6JNMRqNPPbYYygUCgYPHsx9991ntbZlZKsNc3FxYerUqQQGBqJUKhk3bhxGo5GMjAx7hyZEmxEZGYmDgwMAKpWKqqoq8vLy7ByVEG3PmjVr6NGjB+Hh4VZvWzaibkF0Oh2rVq0iJSWFlJQUtFotU6dOZdq0abVeu2LFCjZv3kxxcTHh4eHcddddjBo16rLtp6enU1FRQUhIiC1vQ4gWy1bvwQULFrBt2zYqKyuJjY0lKiqqKW5HiBbJFu9DrVbL119/zQcffMDbb79t9Zgl2WpBtFota9euJTo6mri4ONatW3fZaxMSEjh+/DiPPPII7dq1IzExkfnz52M0Ghk9enSN68vLy1m4cCH33nsvGo3GlrchRItlq/fgvHnz0Ov17N+/n/T0dBQKha1vRYgWyxbvw48++ogpU6bg5uZmk5gl2WpBgoKC+P7771EoFBQWFl72B2z37t0kJSUxb948y67offv2JTs7m2XLljFy5EhUKpXler1ez4svvkhERAT33HNPk9yLEC2Rrd6DAGq1moEDB/LNN98QFhbG4MGDbX4/QrRE1n4fJicnc+LECWbNmmWzmGXNVguiUCjq9Bvv9u3bcXFxYcSIEdWOjx8/nry8PI4ePWo5ZjQaWbhwIUqlktmzZ8tv1EJcgS3eg39lNBrJzMxsbKhCtFrWfh8ePHiQ06dPM2nSJG644QY2bdrE559/zsKFC60Ws4xstUJpaWlERESgVlf/542Ojrac79GjBwBLliwhPz+f1157rcb1QoiGqet7MD8/n8OHDzNo0CAcHBzYtm0bBw4c4JFHHrFH2EK0KnV9H06YMKFaQvbee+8RFBTEnXfeabVY5NO1FdJqtbUucnd3dwegqKgIgOzsbNatW4ejoyMTJ060XLd48WJ69erVNMEK0QrV9T0I8PXXX/Pqq6+iUCgICwvjpZdeIiYmpsliFaK1quv7UKPRVFur7OTkhEajsWr5FUm2Wqm6DLEGBQWxbdu2JohGiLanLu9BX19f3n333SaIRoi2qSFLY+bOnWv1OGTNVivk6emJVqutcby4uBgADw+Ppg5JiDZF3oNC2F9zeh9KstUKRUVFkZ6ejl6vr3Y8NTUVMBdRFELYjrwHhbC/5vQ+lGSrFYqLi6OsrIytW7dWO75+/Xr8/Pzo2rWrnSITom2Q96AQ9tec3oeyZquF2bNnD+Xl5eh0OsBc9X3Lli0AxMbG4uzsTGxsLP3792fp0qXodDpCQ0PZuHEje/fuJSEhoUZ9HyFE3cl7UAj7a2nvQ9mIuoWZMmUK2dnZtZ5bvXo1wcHBgHmLguXLl1fbouDuu+++4nY9Qoirk/egEPbX0t6HkmwJIYQQQtiQrNkSQgghhLAhSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCFJtoQQQgghbEiSLSGEEEIIG5JkSwghhBDChiTZEkKIZuyNN97ghhtusGxLAvDxxx8zfPhwDhw4YMfILlm4cCG33norFRUV9g5FiGZJ9kYUQjSZc+fOcdttt13xmpiYGD7++OMmiqh5O3v2LGvWrOHhhx9Go9HYtK/vvvuO119/nYkTJ/LMM89c8doHH3yQEydOsHz5cjp16sR9991HYmIiX331FXfffbdN4xSiJZJkSwjR5EJDQxk9enSt53x9fZs4mubrk08+wdHRkUmTJtm8r/j4eN577z02bdrE9OnTcXJyqvW6U6dOceLECTp06ECnTp0ACAsLY9iwYXzxxRfccsstuLi42DxeIVoSSbaEEE0uNDSUadOm2TuMZq2wsJBt27YxYsQIm49qAbi6unLNNdfw008/sXXrVsaMGVPrdevWrQNg/Pjx1Y6PGTOGrVu3snHjRiZMmGDzeIVoSWTNlhCiWRs+fDhPPfUUhYWFLFq0iIkTJxIfH8+jjz562TVLOp2Ojz/+mHvvvZf4+HjGjx/PM888w6FDh2pc+9RTTzF8+HAqKyv5v//7P+644w6uvfbaalOZW7du5aGHHiI+Pp5JkyaxePFiiouLmTJlClOmTLFct3DhQoYPH86xY8dqjWvZsmUMHz6cbdu2XfW+N27cSGVlJSNGjLjqtRedOnWKm266iRtuuIGjR49ajmdlZfHqq68yefJkRo0axY033sg//vEPsrOzq73++uuvB+DHH3+stf2qqioSExNxdHSskYzFxsbi4uLCDz/8UOd4hWgrJNkSQjR7JSUlPP7445w6dYrRo0czfPhwkpOTeeaZZ0hNTa12bVFREY899hgrV67Ew8ODG2+80XL9008/zfbt22vtIyEhgR9++IFevXpx6623EhISAsD333/PCy+8QGZmJtdddx1jx47l999/Z+bMmej1+mptTJw4Ebg0+vNner2en376CR8fH4YMGXLVe963bx8A3bp1u/o3CDh48CDTp09HpVLx7rvv0rVrVwCOHj3Kgw8+yPr16+nUqROTJ0+mV69ebNiwgUceeYSsrCxLG7179yYsLIz9+/dz7ty5Gn3s3LkTrVbL8OHDcXd3r3bOwcGBjh07cuzYMcrKyuoUsxBthUwjCiGaXGZm5mUXwXfr1o1BgwZVO3by5EluvPFGZsyYgVJp/h2xb9++LF68mP/+97/VFnS/+eabpKWlMWfOnGpTXQUFBTz88MO89tprDBw4sMaapPz8fD755BM8PDwsx4qLi3n77bfRaDSsWLHCkoA99NBDPPfccyQnJxMUFGS5vkePHkRGRrJx40aefPLJamuXdu3aRUFBAXfeeSdq9dX/6z1y5Aj+/v54e3tf9drt27czf/58QkJCWLJkCQEBAYA5wXvppZcwGo0sX76cmJgYy2sOHTrE008/zdtvv82iRYssx8ePH89HH33E+vXruf/++6v18/333wOXRsD+qlOnThw8eJBjx47Rt2/fq8YtRFshI1tCiCaXmZnJypUra/2zd+/eGte7uLjw6KOPWhItgLFjx6JSqTh+/LjlWGFhIZs3b6Zfv3411hT5+Phwxx13UFhYaBk1+rP777+/WqIFsGPHDsrKypgwYYIl0QJQq9U88MADtd7bxIkT0el0bNq0qdrxdevWoVAo6rSeqaqqisLCwjolWuvWrWPevHl06NCBd99915JogTnBy87O5o477qiWaAH07NmToUOHsmfPHkpLSy3HL35ff/zxR0wmk+V4Xl4eSUlJBAUFXTaRuhhvbm7uVeMWoi2RkS0hRJMbOHAgS5YsqfP1YWFhNRaJq9VqfHx8KCkpsRw7fvw4BoOBysrKWkfOMjIyAEhPT68xldelS5ca1586dQqA7t271zjXpUsXVCpVjeNjxozhgw8+YN26dZYRoNzcXH799VfLNN3VaLVagBpTdX/15ZdfsnPnTmJjY1mwYAHOzs7Vzv/+++8AnDlzptbvR0FBAUajkbNnz9K5c2cA/Pz8GDRoELv+v727C2n6feM4/t58iJhzoZaBaGkR9gSSVEQz2CKkllGQPRjUSQeSEZRUdFhHhZUp0cOBBRVIRColqcuiTmwdJNLECDoQtmpaB1kQKdv8H8jWX/dQGusX+nmd7Xt/73vXdnRx39f3+nZ10d3dTXFxMTBWxxUIBNiyZQsGgyFqPKFkNRS/iIxRsiUi/zyTyRT1elJSEsFgMPz569evALjdbtxud8z1fvz4EXEtIyMj4lpox2fOnDkRY0ajEYvFEnHdbDZjs9lob2+nv7+fhQsX8ujRIwKBwG8/pRc64vxVk9BQwf/atWsjEi0YOwYFePz4cdx1Jv4fDoeDrq4u2traxiVbRqORzZs3x1wnFG+sthEiM5WSLRGZNkJJ2e7du6mqqprU3Gi7NaH1vnz5EjEWDAYZGhpi7ty5EWPbtm2jvb2d1tZWqqqqaGtrIz09nQ0bNvxWLGazmeTk5HDyGMvJkye5desW9fX1GI1GduzYMW48tBt49uzZ3yrKD1m3bh0ZGRk8f/6co0eP8u7dO7xeL2vWrCE7OzvmvFC80ZJTkZlMNVsiMm0UFhZiMBjCx2d/atGiRcBYsfpEb968IRAIRJ23YsUKCgoK6OjowOVy8eHDBzZt2jSpHZ/8/Hx8Pl/EE4//z2w2U1tby5IlS6itraWpqWnceOiJxMn+H8nJyZSWljI8PMyTJ0/C7RxiFcaHeDweAAoKCib1fSLTnZItEZk2MjMzsdls9Pb20tjYOK7AO6Svry/qMWI0VquV2bNn09raOq5Fgt/vp6GhIe7csrIyhoaGqKmpAZh0o8+ioiJGRkbCdWOxmM1mLl68SGFhIZcuXeL+/fvj4s/Ozubu3bv09PREzPX7/VF7j8HPxKqlpYVnz55hsViwWq1xY+nr6yMzM5Pc3Nxf/DqRmUXHiCLy18Vr/QD8UXf5Y8eO4fF4uHr1Kh0dHSxfvpy0tDQGBwd5+/YtXq+X5ubmqDVOE5nNZg4fPkxNTQ0HDx7EbrdjMplwuVykpqaSlZUVs1i8tLSU69ev8/nzZ5YtWxbeJftdJSUl3Lt3j1evXoVfixMvzgsXLlBdXU1dXR2jo6Ps3LmT1NRUzpw5w4kTJzhy5AjFxcXk5+cDMDAwwOvXr7FYLNy5cydizby8PFauXBmufdu6dSspKSkxY3j//j0fP35k+/btk/qdIjOBki0R+etCrR9i+ZNkKz09nStXrtDU1MTTp0/p7OwkGAySkZHB4sWLOXDgQNTC9ljKysowm83cvn2b9vZ2TCYT69evp7KykvLycnJycqLOS0tLw2q10tnZOaXX1xQVFZGXl4fT6aSiouKX94d2uKqrq6mvr2d0dJTy8nKWLl3KjRs3aGxsxOVy4Xa7SUlJISsri5KSEjZu3BhzTYfDEU62JrbSmMjpdAI/G7uKyE+G0Wj77CIiEpfX66WiogKbzcbp06ej3rN//34GBgZobm6e0vsNHzx4wPnz57l27Vq4/upf5Pf72bdvH/Pnz6euru6/Dkfkn6OaLRGROL59+8bIyMi4a8PDw1y+fBkYO+6L5sWLF/T391NaWjrlF0k7HA4WLFjAzZs3pzT/b3E6nfh8Pg4dOvRfhyLyT9IxoohIHD09PZw7d47Vq1czb948hoaG6O7uxufzsWrVKux2+7j7W1paGBwc5OHDh8yaNYu9e/dO+buTkpI4deoUL1++5Pv371NO2hLNYDBw/PjxX9aWicxUOkYUEYnD4/HQ0NBAb29vuN9WTk4OdrudPXv2RLRz2LVrF58+fSI3N5fKyspJ9bcSkelJyZaIiIhIAqlmS0RERCSBlGyJiIiIJJCSLREREZEEUrIlIiIikkBKtkREREQSSMmWiIiISAIp2RIRERFJICVbIiIiIgn0Pz9HG9UI7W5kAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.plot(energy, energy*energy*flux_median, label = \"Best fit\")\n", + "ax.fill_between(energy, energy*energy*flux_lo, energy*energy*flux_hi, alpha = .5, label = \"Best fit (errors)\")\n", + "ax.plot(energy, energy*energy*flux_inj, color = 'black', ls = \":\", label = \"Injected\")\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(r\"$E^2 \\frac{dN}{dE}$ (keV cm$^{-2}$ s$^{-1}$)\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "20a08b36-44d2-4fef-a82e-def1dfd7b9d9", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response, as well as the simulated source counts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "7d1dd8d1-f86d-4e63-8286-db1d5bc14b04", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG+CAYAAACOFDByAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3VUlEQVR4nO3deVyVZf7/8ReyyCKiAgqyiYC4oSZmmrtSppZWlmPZYpblZOY0LVpjbqON02KLTTWplVN925dxKSsMl0qbUSoXBAGRQEEBBdlluX9/+PNMiCbCOd4ceD8fDx927nOf636fk0c/XNd1X5eDYRgGIiIiIvK7WpgdQERERMQeqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNImIiIjUgYomERERkTpQ0SQiIiJSByqaREREROpARZOIiIhIHahoEhEREakDFU3nsHfvXoYNG8aaNWsu6nVlZWUkJSVRVlZmo2QiIiJiFhVNZ6murmbFihV069btol+bnp7O9OnTSU9Pt0EyERERMZOT2QEam7Vr1xIVFcXJkyfNjiIiIiKNiN0WTSUlJaxZs4bk5GSSk5MpKChg6tSpTJs27Zznrlq1iri4OAoLCwkODmbKlCmMGjWqxnkFBQV8/PHHvPbaa7z00kuX6q2IiIiIHbDb4bmCggLWrVtHRUUFQ4YM+d1z582bx8aNG5k6dSpPP/00Xbt2ZdGiRXzzzTc1znv99deZNGkSrVq1smV0ERERsUN229Pk5+fHhg0bcHBwID8/n/Xr15/zvO3bt7Nz507mz59PTEwMAH379iU7O5tXX32VkSNH4ujoSFJSEgcOHODhhx++lG9DRERE7ITdFk0ODg51Om/btm24ubkxfPjwGsfHjh3L4sWLSUhIICoqil9++YVDhw4xYcIEAEpLS2nRogWZmZn85S9/OWfbubm55OXlWR5rAriI1EdVVRUVFRVmxxBp8pydnXF0dKz36+22aKqrtLQ0QkJCcHKq+VbDwsIsz0dFRXHttdfWKKz+8Y9/4Ofnx6233nretteuXctbb71li9gi0kwUFRWRmZmJYRhmRxFp8hwcHAgMDKz3NJwmXzQVFBTQsWPHWsc9PT0BLHfJubu74+7ubnm+ZcuWuLu74+Xldd62x48fz6BBgyyP09PTWbJkibWii0gTV1VVRWZmJu7u7vj6+ta5B11ELp5hGOTk5JCZmUlERES9epyafNEEdR/K+60nnnjiguf4+Pjg4+NTn0giIlRUVGAYBr6+vri5uZkdR6TJ8/X15dChQ1RUVKhoOhcvLy8KCgpqHS8sLASgdevWDb5GbGwssbGxFBUVNbgtEWl+1MMkcmk09Ltmt0sO1FXnzp1JT0+nsrKyxvGDBw8CEBoa2uBrxMTEsGzZMmbNmtXgtkRERKRxavJF05AhQygtLWXLli01jm/cuBEfHx+6d+/e4GvExsYyd+5cVqxY0eC2RETM1KlTJ7p27UqfPn3o1q0bt956K8XFxfVu76233uLAgQPnfX7Hjh1ERUVx2WWX8dVXXzF27FhSU1Pr9NrGYOHChTzyyCNWbbNTp07s3bu3Xq/duXMnU6ZMASA/P5+nn366xvPDhw8/7xI9cmF2PTy3Y8cOysrKKCkpAU5PxN68eTMAAwYMwNXVlQEDBtCvXz+WL19OSUkJAQEBbNq0iR9//JF58+Y16NbDM2JiYoiJiSEpKYnp06c3uD0RETN9/PHH9OzZE8MwuO6663jrrbeYOXNmvdp666238PHxoUuXLud8fs2aNdxxxx08+uijAIwePbrOr5Xa+vXrx7vvvgv8r2h67LHHGtxuZWVlrbvQmyO77mlavnw58+fPZ9myZQDExcUxf/585s+fz4kTJyznLVmyhKuvvprVq1fz6KOPkpCQwIIFC7j66qvNii4iUktFSQVZ8Vk2/VVRUvf1oMrLyykuLqZt27aWY88++yz9+/enb9++jB07loyMDADWrVtHr1696NOnDz179uTf//43q1atYufOnTz44IP06dOHL774okb7y5Yt44MPPuDFF1+kT58+5OfnW3pZLvRagP379zN69Gh69epFr169eO211wBISUkhJibGkufzzz+3vMbBwYG///3vXHHFFYSGhvLmm28C8M4773DddddZzjMMg9DQUHbv3g3A008/TY8ePYiKimLKlCnnnCvbpUsXdu3aZXn85ptvcuONNwKQnZ3NpEmT6N+/P7169WL+/PmW87Zt20ZUVBT9+/fngQceOO/yEwMHDmT79u0A/PnPfyYwMNDyXHBwMBkZGWzevJl+/foBMGPGDPLz8+nTp4/l2JnrDRkyhLCwMGbMmHHOax06dAgfHx8WL17MkCFDWLFixXnfQ3V1NQ888ABdu3ald+/eREdHU1ZWZmnjkUce4YorrqBHjx58++23lmu8/fbbREVF0atXL8aNG8fhw4eB08Xy6NGjueWWW4iKiqJfv36WKTXJyckMGjSI3r17ExUVxbx584DTN1XMnTuX/v3706dPHyZPnkx+fv4531uDGNJg33zzjTFnzhxj5syZxpAhQ4zExESzI4mIHSgtLTUSEhKM0tJSwzAM48iuI8ZCFtr015FdR343U0hIiBEZGWn07t3baN26tTFixAijoqLCMAzDePfdd43p06cblZWVhmEYxr/+9S9j/PjxhmEYRq9evYzvv//eMAzDqKqqMk6cOGEYhmEMGzbMWLdu3Xmvd+eddxorVqyocf09e/Zc8LUVFRVGRESE8cEHH1iO5eTkGIZhGP379zf++c9/GoZhGAcOHDDatWtn/Prrr4ZhGAZgvPDCC4ZhGEZCQoLRqlUro6KiwigpKTG8vb2NrKwswzAM49tvvzX69u1rGIZhfPHFF0bXrl0t72n69OnG/fffbxiGYSxYsMB4+OGHDcMwjKVLlxozZ8605Bk6dKixdu1awzAM4+qrrza2bNliyT569Gjj008/NcrKyoyOHTsacXFxhmEYxgcffGAAls/gt+bNm2csWrTIMAzDuOyyy4z+/fsb+/fvNxITE40uXboYhmEYcXFxRnR0tGEYhpGWlmZ4e3vXaGPYsGHGxIkTjcrKSqOkpMTo1KmT8cMPP9S6VlpamgEY7777ruXY+d5DfHy80bVrV6OqqsowDMPIz883qqqqLG289dZbhmEYxvbt240OHToYRUVFxp49e4wOHToYmZmZhmEYxpIlS4yxY8cahmEYb775puHl5WUcOnTIMAzDmDNnjnHvvfcahmEYDz74oLF06VJLpry8PMtn/9e//tVyfPHixcaDDz5Y632d/Z27WOprswINz4mINfh09eHeXffa/BoXcmZ4rrKykvvuu485c+bw3HPP8fnnn7Nz506io6OB0+tMnZniMGrUKP70pz9x0003cfXVV9OnTx9bvg2SkpKorKxk0qRJlmM+Pj4UFhby888/c/fddwMQERHB4MGD+e6777jlllsALHN+unXrhpOTE9nZ2QQGBjJx4kTeeecdHnnkEd58803uuusu4PS81SlTptCmTRsA/vjHPzJ58uRame68804uu+wyli9fTkZGBgcOHGDMmDEUFxfz7bffcvToUcu5RUVFJCYmEhYWhru7u2Vx5UmTJnHvvef+MxATE8OTTz7JjBkzcHZ2ZtKkScTGxuLg4GDZJqwuJk+ejKOjI25ubvTp04fU1FQGDhxY6zxXV1fLZ/Z772HkyJFUVFQwbdo0RowYwbhx42jR4vRAlouLC7fffjtwetqMn58fv/zyC7t27eLaa68lICAAgPvvv58lS5ZYetkGDx5MSEgIcLqH7cyc4aFDh/Loo49SXFzMsGHDLO/7888/5+TJk3z88ccAnDp1yrKItTWpaBI5S+pPqbgbpxc6TUhOwLuNNx18O1BcUkxqeioRoRG4ubpx5OgRCosKiQyLBCApNYnWnq3xb+9PaVkpyWnJhHcKx93NnaM5Rzmef5xuEd0AOHDwAB7uHgT4BVBWXsaBgwfoHNyZVh6tyMnL4VjeMXp06QFAyqEUXFu6EugfSEVFBftT9tMpsBOtPVuTdyKPI0ePcMXgK/AKPv9CrGIfnN2d8e/rb3YMCycnJyZOnMijjz7Kc889h2EYzJs3j2nTptU6d/ny5ezbt4+4uDjuvPNOpkyZYpW5NBfrzD+6Z99a/tvHrq6ulv92dHS03F191113cc8993Dvvfeyfv16XnjhBUubv9feGQEBAfTt25e1a9fyyy+/cPvtt+Pk5ERpaSkODg7897//xdnZucZrfvnllzq/t4EDB7J3717Wrl3LqFGjiImJYeHChQDccccddW7nfO//bB4eHpb3WV1dfd73ALBv3z62bNlCXFwcjz/+OFu3bj3vHCgHB4dan+nZn+f5Mk6cOJErr7ySb775hpdffpkXXniBL774AsMweOWVVxg5cmQdP4X6UdEkNlPwawEluSWkpqfi7ORMcEAwlZWVJCQnEBwQTJvWbcg7kcfh7MP06tYLgLSMNFo4tCAkMITq6mr2Ju0lqGMQbb3acqLgBBlHMujRpQeOjo6kZ6ZTVV1F5+DOAOzev5sAvwC823pTUFhAemY63cK74ezsTMaRDMpPlRPeKRyAvUl76eDTAV9vXwqLCknLSCMyLJJfk39l8p2Tuc24DQ88eJZnuZzLGcYwMshgNau5n/tpT3u+5muSSGIWp5eaeJEX6UEPYoghm2xe4zWmM50AAogjjnjieZiHKaSQtaylHe0YwxjyyGMFK7iTOwkllO/5nm1sYy5zAVjFKnzxZQITKKSQ53iOW7mVLnThP/yHr/iKxe6Lmbl/pgonsbpvv/2WyMjTPxiMHz+eF198keuvv5527dpRUVHB3r17ueyyy0hMTKRHjx706NEDJycnvv76a+D0Wnjnmv9TF7/32sjISFxcXPjoo4+4+eabgdP7gfr4+NCnTx/WrFnDXXfdRWpqKt9//z0vv/zyBa83YMAAqqureeyxx7jqqqto164dAFdddRWPPfYYDz74IJ6enrz++uvn7dmZNm0ab7zxBvv27ePLL78ETu9AMWTIEJYtW8aTTz4JwJEjR6iurqZr166UlpaydetWhg4dyscff3ze9+zi4sIVV1zBkiVLeOONN+jVqxcJCQnk5uZa5mad/fmVlJRYZRL3772Hli1b4ujoyNVXX81VV13Fli1bSEhIoFevXpw6dYp3332X22+/nf/85z9kZ2fTq1cvWrduzd///neys7Px8/PjtddeY9SoURdcRyk5OZnOnTtzxx130L9/f6688krg9J/N5cuXM2DAANzd3SkpKSEtLY0ePXo06H2fTUWTFWhxy9oKfi3gH93+QUVJBW/yJq1pzUQmUkIJT/M0k5hEd7qzi12sYx0LWQjAu7yLI45MZjKVVLKEJdzADfSmN3vYwyd8whM8gQsufMiHVFGFH370ox/LWc44xtGPfiSSyPu8z6M8igcefMZnHOc4d3O6y/4pnmI4w7mSK0kllbd5m9nMxgUX/Bz9uPbNa4noEcHg5ME1eppuTr/Z0tN07dFra/Q0DUsdVqOn6fq06y09TRNyJlh6mg4lHiJlaQpT/ziVK668grLyMsYdHGfpaboh74YaPU0jD42s0dN0VcpVlp6miScmcseOO0icl0hJbomKJrGKm266CVdXVyoqKujUqZNlgvXtt99OXl4ew4cPx8HBgcrKSu6++24uu+wyHn/8cQ4cOICLiwvu7u68+uqrANx77708/PDDPPPMMzz11FOMHTu2zjl+77VOTk78+9//5oEHHmDx4sU4ODgwc+ZM7rvvPt59913uu+8+XnjhBRwcHFi1ahVBQUF1uuZdd93FY489Zil4AMaMGcOePXsYOHAgDg4O9OrVi1deeeWcr58wYQJ//OMfiYiIqLGkzbvvvsuf//xnoqKiAGjVqhWvvfYagYGBvPfee9x///2WzeWDg4PPm+9MUTJo0CAcHByIjo4mNTXVMnT4W+3atWPKlClERUXh4eHBzp076/QZnM/53kNVVRXTp0+noqKC6upqrrzySsaMGcPhw4fx9vYmJSWFK664gqKiIv7v//4PDw8PevTowd/+9jfLDVlBQUG8/vrrF8zw0Ucf8e677+Li4oJhGJY/m3PnzmXRokVcccUVlsJrzpw5Vi+aHAxDu0Ray5k5TStXrrT8ZNZcffPeN4y7dRzvLH2Hjt062qynKSMlg0/f/ZQHH36Qk8bJBvc0tXRpiUMrB/y6+Jn58V2U7z//nttvuJ23P3ubQdcPuvALpNEoKysjLS2N0NDQGsMRIk3BoUOH6NevH7m5uWZHsWjod049TWITfr5+jGIU3fp3IyomqsZzQf3/9xOfP/70pOf/Hp81nyOgX0CNc7vTvca5AxjAzX++udb1/fGnK13P2+5vH/vjTxfsdx0YJ0cnPPDAyVFfZxERW7LrdZqk8fJp58MABuDTThsa21pwQDA3cRPBAefv0hcRudQ6derUqHqZrEE/mlqB5jTVVlhUSAopFBYV4k/juRuoKaqqqqKMMqqqqsyOIiLSpKmnyQq0YW9taRlpvMM7pGWkmR2lydt3YB/LWMa+A/vMjiIi0qSpaBKb6BrelYd4iK7hXS98sjRIcEAwN3OzhudERGxMRZPYhIuzC1544eLsYnaUJq9N6zb0oAdtWrcxO4qISJOmoklsIjMrk3WsIzMr0+woTd7x/OP8xE8czz9udhRpAj799FOio6Pp06cP3bp1Y9SoUVRXV5sdy1QLFy7k1KlTZseQRkATwa1AE8FrKy0rJYssSstKzY7S5GVmZfJv/s0fs/5ID6y7kJs0L9nZ2cyYMYP//ve/ln2/4uPjL7hK88WwxurUl9qiRYt45JFHcHFRz3lzp54mK9BE8NoiQiO4l3uJCI0wO0qTF9U1iid5kqiuURc+WeR3ZGVl4eTkhLe3t+VY3759LUXTzp07GThwIL169aJ///58//33wOlFDH18/re8SFFRUa19xZ577jmGDx/O448/TkFBAffccw9RUVH07t3bspddRUUFc+fOpX///vTp04fJkyeTn59/zqwbNmzg8ssvp3fv3vTp04cff/wRgI0bN9K3b1969erFsGHDSEhIAGDz5s3069fP8vq9e/fSqVOnGvnnz59PdHQ04eHhfPHFFwDMmDEDgCuvvJI+ffpw7NgxVq1aRffu3enTpw9RUVGWa0vTZ1/lvojU4uDgQBll/LTlJ8tGmHsS9xDoH0i7Nu3IP5nPr4d/tayk/uvhX6msqrTs2bcncQ8dO3TEu603JwtPcijzkGUl9cysTMrKyywrqe87sI/23u3x9falqLiIg78epEvnLri2dOVw9mGKS4rp0vn0QqH7k/fTrk07Ovh2oKS0hJRDKZYtaLKOZeHi5ULPgT3P+76aq6ysLHJzcy1bVSQkJODp6UlQUBBlZWUkJCQQERGBp6cnR48eJTs7m969ewOndyVwdXUlJCSEiooK9uzZQ1hYGF5eXuTk5FBZWYm///mXAOnduzcDBw4kODiYYcOGceWVV3LrrbcSEBDAqVOnuPHGG1m5ciWjR4/mu+++46abbiIlJaVO76u8vJzNmzcDp7cqadWqFb/88gstWrQgJycHgGeeeYZWrVrxn//8B4C//vWvLFiwgBdffLFGWwcOHODuu+9m69atdOnShYqKCkpKSjh27Bi33XYbcXFxREVF8e677zJp0iT27t17wXx5eXlER0ezePFiNm7cyOzZsxk7diyvvfYa//znP/nhhx9o1aoVAA8//DD79++nY8eOVFRUUF5eXqfPQOyfiiaxiYTkBJ7maQYnD25Uu7Y3RRUuFaxzXMdnD3/GbdxGFVX8lb8ygQlcxmXsYx8f8RFzmYsrrnzMxxRTzJ3cCcBf+SujGU1/+nOAA/wf/8fDPIwnnvybf5NDDn/gD+xkJ7vZTT/6MYhBpJHGGtYwi1l4480XfMEhDnE/9wPwHM/Rl76MYASHOcxKVjKDGfjhxwY2kOqQyo7/7iAiWr2Rv/XPf/6TVatWkZl5ej7g5MmTGT58OC+99BKZmZlER0cTFxfH8OHD+de//sXf/vY3jh8/PZ9t6tSp9OjRg1WrVpGbm0t0dDTr169n3LhxfPjhh+Tk5LBw4cLzXrtFixZ88sknJCYmsmXLFr788kuWLl3Kzp07KS0txcXFhdGjRwMwePBg2rdvz+7du3+3EDvjTG8SwPr169m1axctWpwe7PD19QXg888/5+TJk3z88ccAnDp1irCwsFptffPNN4wdO5YuXU4X6M7Oznh5ebFu3TpL7w/AlClTmDlzJllZWRfM5+HhwYQJEwAYOHAgqamp5z135MiR3HHHHVx33XWMGTPGkkOaPhVNYhM+bX0YyEB82mpFcFsL7hnMR9s+ovBYIZ2COmEYBoMSB9Xoabr78N2WnqZrDl9To6dpYOLAGj1Nd2TeYelpGps1lrLyMpzKnDj83GHuufkeekX3svQ03fLrLZaepnHZ42r0NA1JHlKjp2nioYmWnqYrv7+Sbx78hlYOrcz86Bql++67j4kTJ1oev//++3h6egIQGBjIrl27iIg4XWjecccdlg1PAd566y3Lflo+Pj7s2rXLUnRMmjSJysrKOmXo2rUrXbt25b777uOaa65h7dq1xMTEnHNuk4ODA05OTjUWVy0rK6t13plemt9jGAavvPIKI0eOrFPOc72+vhl/uw+Zo6Pj7y4W++mnn7Jr1y42b97M2LFjWbJkCZMnT65XZrEzhlhNYmKiMWTIECMxMdHsKKY7suuIsZCFxpFdR8yOIo2Q/nycVlpaaiQkJBilpaVmRzEMwzAyMzON7777zvL4+PHjRpcuXYzPP//cKC8vN4KCgoxNmzYZhmEY33//veHn52cUFRUZFRUVRqtWrSx/9z333HPGb/95AYzCwkLL42nTphkPPPCAUVVVZRiGYRw7dswwDMNYvHixMW7cOKO4uNgwDMMoLi429u7dWytncnKy4efnZyQlJRmGYRinTp0y8vPzjWPHjhk+Pj5GQkKCYRiG8d577xk9evSwvDcvLy8jNzfXMAzDePDBB42QkBDDMAwjLS3N8Pb2trRfWFhYI7+np6eRmZlpGIZhVFRUGMnJyZbn5syZYzz00EN1/ITFbA39zqmnSWyiuKSYdNIpLik2O4o0QkmpSaxgBcNSh2n4thGprKxk8eLFpKWl4e7uTmVlJXfeeadl2OqTTz7hwQcfpLi4GFdXVz766CM8PDwAeOmllxgzZgyBgYGMGTPmd6/z/PPP89BDD9GzZ09cXFy4/PLLWblyJXPnzmXRokVcccUVlh6jOXPm0KNHzbtCw8PDWb16NbfccgsVFRU4Ojryz3/+k/79+/P2228zZcoUqqqqaNOmDR9++CEAAQEBPPLII/Tr149OnToxdOjQOn8uDz/8MCNHjsTNzY2vvvqKu+66ixMnTuDk5ISvry9vvvlmndsS++ZgGIZhdgh799slB3bv3s3KlSuJjIw0O5apvnr3K6657Ro2vrOR0VNGmx1HGpldX+7iwbEP8tIXLxE9JtrsOKYpKysjLS2N0NDQGsNDImIbDf3OqafJCmJiYoiJiSEpKYnp06ebHadR6NK5Cw/wgGV+i8hvdezQkau5mo4dOpodRUSkzrROk9iEa0tXfPDBtaV+epbaSstKOcYxLX4qInZFRZPYxJGjR9jIRo4cPWJ2FGmEktOSeYVXSE5LNjuKiEidqWgSmygqLiKVVIqKtbWM1BYWEsbd3E1YSO01eJojTS0VuTQa+l3TnCaxiS6duzCTmZrTJOfk4e5BEEF4uHuYHcVUzs7OODg4kJOTg6+vr1X3eBORmgzDICcnBwcHB5ydnevVhoomEbnkjuYcZQtbmJAzAX+a75IDjo6OBAYGkpmZyaFDh8yOI9LkOTg4EBgYiKOjY71er6LJThT8WsD+n/dTbVQTGhQKwO79uwnwC8C7rbdlf7HuEd1xcnLi18O/UlFZYRn+2Ju0Fz9fP3za+VBYVEhaRhpdw7vi4uxCZlYmpWWlls11E5IT8GnrQ3uf9hSXFJOanmpZ9fnI0SMUFRdZepASUxJp49UGP18/y/5i4Z3C+Xnbz7zIiwxNGap1eKSWvPw8/st/ycvPMzuK6Vq1akVERAQVFRVmRxFp8pydnetdMIGKJrtQ8GsB/+j2D94ueZsqqpjCFAAWspDruI5ookkggQ/5kMd4DHfc+YRPOMlJ7uIuAJaylFGMYgADSCGFd3iHh3gIL7xYxzpyyaUTnehHP17lVQYykCEMIZ103uRNHuABfPBhIxtJJZWZzATgeZ6nF70YxSiOcITXeZ17uRcvvOjt1BvfIF/TPjdpvLpHdOcRHqF7RHezozQKjo6ODfqLXEQuDRVNdqDoWBGlJaU88+wztAtvZ+lpGrB/QI2epmmHp1l6mq45fE2NnqYrk66s0dN0W8Ztlp6msVljSd2fyr/f+zcTH57IGMcxNXqa/pD+B0tP07VHr63R0zQ0ZWiNnqYbD91IeKdw3N3ccWrthG+4iiYREWkatCK4Fdh6RXCtri1NzdZPtvKHm/7ABx9/wNCJdd/OQkTETOppsgJbrwge1DGIG7iBoI5BVm9bxAxurm4EEYSbq5vZUURE6kzrNNmBtl5t6U1v2nq1NTuKiFUE+gcyjnEE+geaHUVEpM5UNNmBEwUn2MMeThScMDuKiFWUnyrnBCcoP1VudhQRkTpT0WQHMo5k8AmfkHEkw+woIlaRlJrEi7xIUmqS2VFEROpMRZMd6NGlB0/wBD269DA7iohVhAaFcju3W+4EFRGxByqa7ICjoyMuuGgdF2kyPFt5EkYYnq08zY4iIlJnKprsQHpmOh/yIemZ6WZHEbGKnLwcfuAHcvJyzI4iIlJnWnLADlRVV1FOOVXVVWZHEbGKo7lH2cxmEv+bSEFhAS1dWhLUMYiKigr2p+wnJDAEL08v8k7kcTj7ML269QLg4K8HcWzhSEhgCFVVVew7sI+gjkG09WrLiYITZBzJoGdkT1q0aEF6ZrrVtx1q498Gr2Av0z43ETGXiqbfWLhwIT/99BPl5eX4+flx7733cuWVV5odi87Bnbmd2+kc3NnsKCJW0X9Qfxa4L2D/X/bzCI/QjnbcwA0UU8wzPMNkJtOVruxkJxvYwAIWAPA2b9OSlkxiEqc4xVM8xUQmEkUUv/ALn/EZ85iHE058xEdUUcU4xuGJp1W2HfJx92Hm/pkqnESaKRVNv3HnnXfyl7/8BWdnZxISEnj44Yd5//338fLSX5Ai1uQV7MXM/TMpyS1h5KGRNXqaRqWMsvQ0TTwxkQeyH7D0NMX8GlOjp2nogaE1epruO3KfpacpamsUb696m4lPTKRT104N3naoIruChY8s5Ko9V3F58OVmfnwiYhIVTb8RGvq/O3kcHR2pqKggNzfX9KJp9/7dLGIRA/YPwL+vv6lZRKzFK9gLr2CvWn+mg68Itvy3P/70pOf/Hp91buDlgTXO7c7/NgC+se+N3PinG8/5Wn/86Ua387Z79rld6MLWT7aSRRalZaV1fo8i0rTYbdFUUlLCmjVrSE5OJjk5mYKCAqZOncq0adPOee6qVauIi4ujsLCQ4OBgpkyZwqhRo2qdu3jxYrZu3cqpU6cYMGAAnTubPyQW4BfAOMYR4BdgdhSRZisiNIJ7uZeI0Aizo4iISey2aCooKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqq2qcO3/+fCorK4mPjyc9PR0HBwdbv5UL8m7rTT/64d3W2+woIiIizZbdFk1+fn5s2LABBwcH8vPzz1s0bd++nZ07dzJ//nxiYmIA6Nu3L9nZ2bz66quMHDmy1vpHTk5O9O/fn08++YTAwEAGDhxo8/fzewoKC0jk9F1G/mh4TsQMCckJPM3TDE4erGFykWbKbtdpcnBwqFMv0LZt23Bzc2P48OE1jo8dO5bc3FwSEhLO+9rq6moOHz583udzc3NJSkqy/EpPt806SumZ6bzP+1qnScREPm19GMhAfNr6mB1FRExitz1NdZWWlkZISAhOTjXfalhYmOX5qKgo8vLy2LNnD1dccQXOzs5s3bqVn376ifvuu++8ba9du5a33nrLlvEB6BbejUd5lG7h3S58sojYRHuf9gxhCO192psdRURM0uSLpoKCAjp27FjruKfn6e0bTp48aTn28ccf8/e//x0HBwcCAwNZuHAh4eHh5217/PjxDBo0yPI4PT2dJUuWWDH9ac7OznjggbOzs9XbFpG6KS4pJp10ikuKzY4iIiZp8kUTUKdhPG9vb15++eWLatfHxwcfHx9iY2OJjY2lqKiovhF/V8aRDD7jM8YcGaO5FCImSU1P5U3e5A/pfyB88Pl/mBKRpqvJF01eXl4UFBTUOl5YWAhA69atG3yNmJgYYmJiSEpKYvr06Q1u72zlp8o5znHKT5VbvW0RqZsunbvwAA/QpXMXs6OIiEnsdiJ4XXXu3Jn09HQqKytrHD948CBQc0HLxiq8Uzh3czfhnfTTrYhZXFu64oMPri1dzY4iIiZp8kXTkCFDKC0tZcuWLTWOb9y4ER8fH7p3736eV9ZdbGwsc+fOZcWKFQ1uS0QapyNHj7CRjRw5esTsKCJiErsentuxYwdlZWWUlJQApydib968GYABAwbg6urKgAED6NevH8uXL6ekpISAgAA2bdrEjz/+yLx582qt0VQfth6e25u0l6d4iiuTrtScJhGTFBUXkUoqRcW2mbsoIo2fXRdNy5cvJzs72/I4Li6OuLg4AD744AP8/U8XGEuWLGHlypWsXr3aso3KggULzrmNSmPUwacDwxlOB58OZkcRaba6dO7CTGZqTpNIM2bXRdOHH35Yp/Pc3d2ZPXs2s2fPtkkOW9895+vty5Vcia+3r03aFxERkQtr8nOaLoWYmBiWLVvGrFmzbNJ+YVEhqaRSWFRok/ZF5MISUxJ5nudJTEk0O4qImERFkx1Iy0jjbd4mLSPN7CgizVYbrzb0ohdtvNqYHUVETKKiyQ5EhkUym9lEhkWaHUWk2fLz9WMUo/Dz9TM7ioiYxK7nNDUWtp7T1NKlJW1pS0uXljZpX0QurKS0hCMcoaS0xOwoImIS9TRZga3nNGVmZbKBDWRmZdqkfRG5sJRDKbzO66QcSjE7ioiYREWTHSgtKyWDDErLSs2OItJshXcK517u1cr8Is2YiiY7EBEawQxmEBEaYXYUkWbL3c2djnTE3c3d7CgiYhLNabICW89pEhHzZedks4lNjM8Zjz9amV+kOVJPkxXYek5TQnICz/IsCckJNmlfRC4svyCf3ewmvyDf7CgiYhIVTXbAu403l3M53m28zY4i0mx1De/KQzxE1/CuZkcREZOoaLIDHXw7MIxhdPDV3nMiIiJmUdFkB4pLiskgg+KSYrOjiDRbBw4e4B/8gwMHD5gdRURMoongVmDrieCp6amsZjU3p99M+GDd7ixihlYerQgjjFYercyOIiImUdFkBTExMcTExJCUlMT06dOt3n5EaAT3c7+WHBAxUccOHbmGa+jYoaPZUUTEJBqeswNurm60pz1urm5mRxFptsrKy8gll7LyMrOjiIhJVDTZgSNHj/A1X3Pk6BGzo4g0WwcOHuBlXtacJpFmTEWTHSgsKiSJJAqLCs2OItJshYWEcRd3ERYSZnYUETGJiiY7EBkWySxmERkWaXYUkWbLw92DEELwcPcwO4qImERFk4hIHRzLPcbXfM2x3GMAJCYm8uuvvwJw6tQp4uPjOXny5Olzjx3j559/trz2wIEDpKWlAVBZWUl8fDwnTpwAIDc3l/j4eACysrJ48MEH2bFjBwDV1dXEx8dz/PhxAI4fP058fDxVVVUAHDx4kOTkZMt14uPjycnJASA/P5/4+HgqKips8nmINEcqmqwgNjaWuXPnsmLFCpu0n5SaxIu8SFJqkk3aF5ELO1Vxip/5GUdHRwBuv/12li5dCpwukqKjo9m+fTsA77//PoMGDbK89t577+XJJ58E4OTJk0RHRxMXFwfA559/TnR0NAApu1NYsWIFTz58+tyKigqio6P54osvAPjqq6+Ijo6mrOz0ZPQ5c+bwwAMPWK7Tv39/Pv30UwC2bt1KdHQ0+fn5Nvk8RJojB8MwDLNDNBVnlhxYuXIlkZHWG0qL3xjP7DGzefHLF+l7TV+rtSsidZcVn8Wz0c9y5zt34tvNl+S0ZNxc3Qj0D+RUxSkSUxIJDQrFs5Unucdzyc7JpmdkT+D0WmvOTs4EBwRTWVlJQnICwQHBtGndhrwTeRzOPkyvbr3Y+sVWJj85mZf//DI3TrmR6upq9ibtJahjEG292nKi4AQZRzLo0aUHjo6OpGemU1VdRefgzgDs3r+bAL8AvNt6U1BYQHpmOtEDovEJ8zHzoxNpMrROkx3wb+9PDDH4t9fO6iJmcfdxx9vdm89u++y85+xgR43HP/BDnc/dwQ4KKWQYw0hbnsbry1//3XPr4gQneNzxcd7a8ha9BvWq02tE5PxUNNmB0rJSssmmtKzU7CgizZZXsBcz98+kJLfEZtcoySkh4dMEut/YHXdf9wa3999N/+XTxz6l4GiBFdKJiIomO5CclsxrvMb1adfT+crOZscRaba8gr3wCvay6TXCRltvSYPLuZy7uZvwTtp+ScQaNBHcDoR3Cmc60/UXn4iIiIlUNNkBdzd3AgjA3a3h3fUi0nzsTdrLUzzF3qS9ZkcRaRJUNNmBozlHiSOOozlHzY4iInakg08HhjOcDj4dzI4i0iSoaLIDx/OPE088x/OPmx1FROyIr7cvV3Ilvt6+ZkcRaRI0EdwKYmNjiY2NpaioyCbtd4voxsM8TLeIbjZpX0SapsKiQlJJpbCoEH+0ZIlIQ6mnyQpiYmJYtmwZs2bNMjuKiIhFWkYab/M2aRlpZkcRaRJUNNmBAwcP8AqvcODgAbOjiIgdiQyLZDaztdm3iJWoaLIDHu4edKKTdlcXkYvS0qUlbWlLS5eWZkcRaRJUNNmBAL8AxjKWAL8As6OIiB3JzMpkAxvIzMo0O4pIk6CiyQ6UlZeRRx5l5WVmRxERO1JaVkoGGdqCScRKVDTZgQMHD7CCFZrTJCIXJSI0ghnMICI0wuwoIk2CiiY70Dm4M3dyJ52Dte+ciIiIWVQ02YFWHq0IJZRWHq3MjiIidiQhOYFneZaE5ASzo4g0CSqa7EBOXg7f8z05eTlmRxERO+LdxpvLuRzvNt5mRxFpErQi+P936tQpnnvuOXbu3ElxcTGdOnVi5syZREVFmR2NY3nH2MY2juUdMzuKiNiRDr4dGMYwOvhq7zkRa1BP0/9XVVWFv78/r7zyCl988QUTJkzgiSeeoKzM/DvWenTpwVzm0qNLD7OjiIgdKS4pJoMMikuKzY4i0iSoaPr/3NzcmDp1Kh06dKBFixaMGTOG6upqMjO1vomI2KfU9FRWs5rU9FSzo4g0CXY7PFdSUsKaNWtITk4mOTmZgoICpk6dyrRp08557qpVq4iLi6OwsJDg4GCmTJnCqFGjztt+eno65eXldOzY0ZZvo05SDqWwilWMPDQS/77adFNE6iYiNIL7uV9LDohYid32NBUUFLBu3ToqKioYMmTI7547b948Nm7cyNSpU3n66afp2rUrixYt4ptvvjnn+WVlZSxdupQ77rgDd3d3W8S/KK4tXfHFF9eWrmZHERE74ubqRnva4+bqZnYUkSbBbnua/Pz82LBhAw4ODuTn57N+/fpznrd9+3Z27tzJ/PnziYmJAaBv375kZ2fz6quvMnLkSBwdHS3nV1ZWsmDBAkJCQrj99tsvyXu5kED/QCYwgUD/QLOjiIgdOXL0CF/zNdcevRZ/1Est0lB229Pk4OCAg4PDBc/btm0bbm5uDB8+vMbxsWPHkpubS0LC/9Yvqa6uZunSpbRo0YI5c+ZcsP3c3FySkpIsv9LT0+v1Xi6koqKCQgqpqKiwSfsi0jQVFhWSRBKFRYVmRxFpEuy2p6mu0tLSCAkJwcmp5lsNCwuzPH9mWYFnn32WvLw8nnnmmVrnn8vatWt56623rJ75bPtT9vMcz3FVylUEXxFs8+uJSNMQGRbJLGYRGRZpdhSRJqHJF00FBQXnnMzt6ekJwMmTJwHIzs5m/fr1uLi4MH78eMt5Tz/9NL179z5n2+PHj2fQoEGWx+np6SxZssSa8QHoFNiJW7mVToGdrN62iIiI1E2TL5qAOg3j+fn5sXXr1otq18fHBx8fH2JjY4mNjaWoqKi+EX9Xa8/WdKELrT1b26R9EWmaklKTeJEXGZY6THfeiliB3c5pqisvLy8KCgpqHS8sPD3G37p1wwuRmJgYli1bxqxZsxrc1rnkncjjP/yHvBN5NmlfRJqm1p6t6UEP/cAlYiVNvmjq3Lkz6enpVFZW1jh+8OBBAEJDQ82IdVGOHD3CV3zFkaNHzI4iInbEv70/McTg3169TCLW0OSH54YMGcK6devYsmVLjcUsN27ciI+PD927d2/wNWw9PBfVNYoneZKorubvgyci9qO0rJRssiktKzU7ikiTYNdF044dOygrK6OkpAQ4PRF78+bNAAwYMABXV1cGDBhAv379WL58OSUlJQQEBLBp0yZ+/PFH5s2bV2ONpvqKiYkhJiaGpKQkpk+f3uD2RESsITktmdd4jevTrqfzlZ3NjiNi9+y6aFq+fDnZ2dmWx3FxccTFxQHwwQcf4O9/ukt6yZIlrFy5ktWrV1u2UVmwYMHvbqPSmBz89SBrWEPMrzGazCkidRbeKZzpTCe8U7jZUUSaBLsumj788MM6nefu7s7s2bOZPXu2TXLYenjOydEJDzxwcrTr/10icom5u7kTQADubuZvByXSFDT5ieCXgq3vngsOCOYmbiI4QAtbikjdHc05ShxxHM05anYUkSZBRZMdqKqqoowyqqqqzI4iInbkeP5x4onneP5xs6OINAka77ECWw/P7Tuwj2UsY/iB4QRerk17RaRuukV042EepltEN7OjiDQJKpqswNZ3zwUHBHMzN2t4TkRExEQanrMDbVq3oQc9aNO6jdlRRMSOHDh4gFd4hQMHD5gdRaRJUNFkB47nH+cnftK8BBG5KB7uHnSiEx7uHmZHEWkSVDTZgcysTP7Nv8nMyjQ7iojYkQC/AMYylgC/ALOjiDQJmtNkBdpGRUQao7LyMvLIo6y8zOwoIk2CepqswNbrNDk4OOCIIw4ODjZpX0SapgMHD7CCFZrTJGIlKprswKGMQ/wf/8ehjENmRxERO9I5uDN3ciedg7XvnIg1qGgSEWmiWnm0IpRQWnm0MjuKSJOgoskOdArqxK3cSqegTmZHERE7kpOXw/d8T05ejtlRRJoETQS3AltPBDcMgyqqMAzDJu2LSNN0LO8Y29jGsbxjZkcRaRLU02QFtp4IvidxD3/lr+xJ3GOT9kWkaerRpQdzmUuPLj3MjiLSJKhosgOB/oFMYAKB/tp3TkRExCwqmuxAuzbtuIzLaNemndlRRMSOpBxKYRWrSDmUYnYUkSZBRZMdyD+Zzz72kX8y3+woImJHXFu64osvri1dzY4i0iSoaLIDvx7+lY/4iF8P/2p2FBGxIxraF7EuFU12QJM5RaQ+KioqKKSQiooKm12jMKuQzQs3U5hVaLNriDQWWnLACmy95ICjoyOuuOLo6GiT9kWkadqfsp/neI6rUq4i+Ipgm1yjKKuILYu2EDk+Ek9/T5tcQ6SxUE+TFdh6yYFfD//Kx3ys4TkRuSidAv//wriBncyOItIkqKfJDlRWVVJMMZVVlWZHERE70tqzNV3oQnlmOVnxWTa5Ru7+3Bq/W4O7jztewV5Wa0/EWlQ02QFtuiki9VHiUMIu510U31aMBx42uUYhhexkJ4W3FeKJdYbnnN2dmbl/pgonaXRUNImINFEnOclXDl/xwLsPENU1yibX2PrFVp578jn++Nc/MnTs0Aa3l7M/h89u+4yS3BIVTdLoqGiyA2e2URmYOBD/vv5mxxERO3HZZZdRXl5u02u02d/m9O+hbfT3kzR5mghuBzp26MhoRtOxQ0ezo4iIiDRbKprsgHdbb/rTH++23mZHERE7kpyczIgRI0hOTqaqqor4+HhOnDgBQF5eHvHx8RiGAUBqaiqpqakAGIZBfHw8eXl5AJw4cYL4+HiqqqoASEtLIzk5uca1CgtPr9NUUFBAfHy8ZW2o9PR0kpKSLOf98ssvHD161PKa+Ph4ysrKAMjIyODAwQM2+SxErEFFkx04WXiSAxzgZOFJs6OIiB1p2bIlfn5+tGnThuLiYqKjo4mNjQVg3bp1REdHWwqhhx56iIceegiAqqoqoqOjWbduHXB6Lbro6GiKi4sBeOKJJ/jjH/8InL7TDeA/e/4DwHfffUd0dDS5uafvpvvrX//K1KlTLZlGjBjBv/71LwB27dpFdHQ0mZmZADzzzDP88fE/2uzzEGkozWmyAlsvbnko8xD/x/9xR+YdRBJpk2uISNMTHBzM66+/jqenJ1VVVezatYvQ0FAArrvuOnbt2mVZNPf555+3vM7R0ZFdu3YREhICnF6LbteuXXh4nL4D76mnnqKy8vQSKB6+p4+NvnE0AIMHD2bXrl34+PgA8OSTT1p6kgDi4uLw8/MDIDo6ml27dhEYeHqbl0cffZSJQyey+ebNNvk8RBrKwTjTNysNlpSUxPTp01m5ciWRkdYrbn798VdeGvASD+540Gar+oqI1Ed8fLyl+Onbt2+D2/v2g2+5fvL1fP7+54z8w0grJBSxHg3P2QFnZ2c88cTZ2dnsKCIiNtWuTTv60pd2bdqZHUWkFhVNdiAzK5N/828yszLNjiIiYlMdfDswghF08O1gdhSRWupdNKWlpbFx40bLxECA8vJynnvuOW688UZuueUWyyRCaZiy8jJyyKGsvOzCJ4uI2LGS0hIOc5iS0hKzo4jUUu+i6e233+af//wn7u7ulmOvv/46a9eupaSkhGPHjvHcc8+xa9cuqwRtzsI7hXMP9xDeKdzsKCIiNfj7+7NgwQL8/a2zsGXKoRRWspKUQylWaU/EmupdNO3fv5/LLrsMBwcHACorK/niiy/o1q0b//73v/nggw9o06YNH374odXCiohI4+Lv78/ChQutVjRFhEYwgxlEhEZYpT0Ra6p30XT8+HE6dPjfmHNCQgIlJSVMmDCBli1b4uPjw6BBg0hJ0U8LDbXvwD6WsYx9B/aZHUVExKbcXN3www83Vzezo4jUUu+iydHR0bLiK8Du3btxcHDgsssusxzz8vKioKCgYQmF9t7tGcIQ2nu3NzuKiIhNZR3LIpZYso5lmR1FpJZ6F01+fn789NNPlsebN2/G39/fsmgZQE5ODl5e2qW6oXy9fRnEIHy9fc2OIiJiUycLT7KPfdoBQRqlehdNV199NSkpKcyYMYMHHniAlJQURo0aVeOcAwcOWFZ6tQeff/45d999NyNGjOCNN94wO45FUXERaaRRVGybFcdFRBqLyLBIZjObyDDtfiCNT72LphtvvJHhw4eTmJjInj17uPzyy7n99tstz+/fv59Dhw5ZZYXYS8Xb25tp06YxZMgQs6PUcPDXg6xhDQd/PWh2FBERkWar3nvPubi4sGjRIoqLi3FwcKix9ACcvqNi9erVNYbrGrszxdJ3331ncpKaunTuwixm0aVzF7OjiIjYVFJqEitYwbDUYfj3tc4deSLWUu+i6eeff8bf37/GHXS/1aZNG06dOkVKSgp9+vSp72XOq6SkhDVr1pCcnExycjIFBQVMnTqVadOmnfPcVatWERcXR2FhIcHBwUyZMqXWcGJj5drSFW+8cW3panYUERGb8mzlSSSReLbyNDuKSC31Hp7705/+xJdffvm753zzzTf86U9/qu8lfldBQQHr1q2joqLigsNp8+bNY+PGjUydOpWnn36arl27smjRIr755hubZLO2w9mH+YIvOJx92OwoIiI21bFDR67majp26Gh2FJFa6t3TZBhGnc45s/iltfn5+bFhwwYcHBzIz89n/fr15zxv+/bt7Ny5k/nz5xMTEwNA3759yc7O5tVXX2XkyJE4OjrWK0Nubi55eXmWx+np6fVq50KKS4o5xCGKS4ovfLKIiB0rLSvlGMcoLSs1O4pILfUumuoiMzMTDw8Pm7Rd12Js27ZtuLm5MXz48BrHx44dy+LFi0lISCAqKqpeGdauXctbb71Vr9dejC6du3A/92tOk4g0eclpybzCK4xPG0/nKzubHUekhosqmpYtW1bj8bZt28jOzq51XlVVFTk5Ofzyyy9cccUVDUvYQGlpaYSEhODkVPOthoWFWZ4/UzRVVlZSVVVFdXU1VVVVlJeX4+TkdN6eqPHjxzNo0CDL4/T0dJYsWWKjdyIi0vSFhYRxN3cTFhJmdhSRWi6qaPrtHCYHBwdSUlLOu02Kg4MDXbt25YEHHmhYwgYqKCigY8faY+OenqcnGZ48+b8F1P71r3/V6Dl6++23efzxxxkzZsw52/bx8cHHx8e6gc9hf/J+nuM5hiQP0d0kItKkebh7EEQQHu62GaUQaYiLKpo++OAD4PRcpcmTJ3PzzTdz00031TqvRYsWeHp64ubWOPYOqutQ3rRp0855992FxMbGEhsbS1GRbRafbNemHX3pS7s27WzSvohIY3E05yhb2MKEnAn4ox8SpXG5qKLpt2suzZ07ly5dujT6dZjOt/9dYWEhAK1bt27wNWJiYoiJiSEpKYnp06c3uL2zdfDtwAhG0MH33Ms7iIg0FXn5efyX/5KXn3fhk0UusXpPBD/fkFVj07lzZ2JjY6msrKwxr+ngwdOra4eGhjb4GrbuaSopLeEwhykpLbFJ+yIijUX3iO48wiN0j+hudhSRWhp891xCQgKJiYkUFRVRXV1d63kHBwfuvPPOhl6m3oYMGcK6devYsmVLjcUsN27ciI+PD927N/yLaeueppRDKaxkJRMPTSRskCZHioiImKHeRdPJkyd54okn2Lt37++u2WTLomnHjh2UlZVRUnK6ByY9PZ3NmzcDMGDAAFxdXRkwYAD9+vVj+fLllJSUEBAQwKZNm/jxxx+ZN29evddoupQiQiOYwQwiQiPMjiIiYlPJacm8xmuMSBuhG1+k0al30fTyyy+zZ88e+vTpwzXXXEP79u0veQGyfPnyGksexMXFERcXB5yetO7vf/oLt2TJElauXMnq1ast26gsWLDAbrZRcXN1ww8/3Fwbx8R6ERFbcXN1I4gg/X0njVK9i6bt27fTrVs3XnjhBZut+n0hH374YZ3Oc3d3Z/bs2cyePdsmOWw9pynrWBaxxHLdset0N4mINGmB/oGMYxyB/oFmRxGppd57z506dYrevXubVjA1JjExMSxbtoxZs2bZpP2ThSfZxz5OFp688MkiInas/FQ5JzhB+alym10jKyuLhQsXkpWVZbNrSNNU76IpIiLinKuBi/VFhkUym9lEhkWaHUVExKaSUpN4kRdJSk2y2TWysrJYtGiRiia5aPUenrvrrruYM2cO+/bto0ePHtbMZHdsPTwnItJchAaFcju3ExrU8OVgRKyt3kVTTk4OAwcO5MEHH+Sqq64iIiLivJvzXnPNNfUOaA9sveRAUmoSK1jBsNRhuptERJo0z1aehBGGZytPs6OI1FLvoulvf/sbDg4OGIbBl19+yZdffllrfpNhGDg4ODT5osnWPFt5Ekmk/hIRkSYvJy+HH/iBG/Ju0I0v0ujUu2iaO3euNXPI7+jYoSNXczUdO9TeeFhEpCk5mnuUzWzmaO5Rs6OI1NLkt1G5FGw9p6m0rJRjHKO0rNQm7YuINBY9I3vyBE/QM7Knza5RnFNc43eRuqr33XPyP7ZeciA5LZlXeIXktGSbtC8i0pyU5JbU+F2krurd03T0aN27Tjt06FDfywgQFhLG3dxNWIj2nRORpi3lUAqrWc3IQyN144s0OvUumiZNmlSnhS0dHBwsW5tI/Xi4exBEEB7u5747UUSkqWjp0pJ2tKOlS0uzo4jUUu+iafTo0ecsmoqKikhNTSUrK4s+ffrg5+fXoIACR3OOsoUtTMiZoLtJRKRJC+oYxA3cQFDHILOjiNRS76LpiSeeOO9zhmHw/vvv89577zFnzpz6XkL+v7z8PP7Lf8nLzzM7ioiITVVUVFBMMRUVFWZHEanFJhPBHRwcuOWWWwgNDeWVV16xxSUaldjYWObOncuKFSts0n73iO48wiN0j+huk/ZFRBqL/Sn7eYZn2J+y3+woIrXY9O65yMhI4uPjbXmJRsHWd8+JiDQXIYEhTGYyIYEhZkcRqcWmRdPhw4epqqqy5SWaheS0ZF7jNS05ICJNnpenF13pipenl9lRRGqxetFUXV3N0aNHWbNmDd9//32z38zXGtxc3QgiCDdXN7OjiIjYVN6JPHayk7wTmsMpjU+9J4IPGzbsd5ccMAyDVq1acf/999f3EvL/BfoHMo5xBPoHmh1FRMSmDmcfZgMbeCD7AXpiu1XBReqj3kVT7969z1k0OTg44OnpSWRkJGPHjqVdu3YNCihQfqqcE5yg/FS52VFERGyqV7deLGABvbr1MjuKSC31Lppeeukla+awa7beey4pNYkXeZExqWPoNKCTTa4hIiIiv097z1mBre+eCw0K5XZuJzQo1Cbti4g0Fgd/PcjbvM3BXw+aHUWklnr3NP3Wnj17SElJobi4GHd3dyIiIoiKirJG0wJ4tvIkjDA8W3maHUVExKYcWzjSkpY4tnA0O4pILQ0qmhISEnjqqafIzMwETk/+PjPPKTAwkLlz59KzpybyNVROXg4/8AM35N2gbVREpEkLCQxhEpO0TpM0SvUumg4dOsRDDz1EWVkZ/fv3p0+fPrRr144TJ07w008/8Z///IdHHnmE1157jU6dOlkxcvNzNPcom9nM0dyjZkcREbGpqqoqTnFKa/xJo1Tvoumtt96isrKSZ599lssvv7zGc7feeis7d+5kzpw5vPXWWyxcuLChOZu1npE9eYIn6BmpXjsRadr2HdjHUzzF0ANDCbxcy6xI41LvieA//fQTw4YNq1UwndGvXz+GDRvGTz/9VO9wIiLSvAR1DGIiEwnqGGR2FJFa6l00FRcX4+//+/Nr/P39KS4uru8l5P9LOZTCalaTcijF7CgiIjbV1qstUUTR1qut2VFEaql30eTt7c2+fft+95yEhAS8vb3rewn5/1q6tKQd7Wjp0tLsKCIiNnWi4AS/8AsnCk6YHUWklnoXTYMHD+bnn39m1apVlJfXXKm6vLycN954g59++onBgwc3OGRzF9QxiBu4Qd3VItLkZRzJ4DM+I+NIBgcPHiQl5X897PHx8eTm5gJw4sQJ4uPjqaysBCAtLY0DBw5Yzv355585duwYACdPniQ+Pp5Tp04BWNo4Y/fu3WRnZwNQVFREfHw8ZWVlAGRmZpKQkGA5d+/evRw5cgSAkpIS4uPjKSkpsepncC6FWYVsXriZwqxCm19Lzq/eRdOdd96Jv78/77zzDjfffDNz5sxh2bJlzJkzh0mTJrFmzRr8/f258847rZm3UYqNjWXu3LmsWLHCJu1XVFRQTDEVFRU2aV9EpLHoGdmTecyjZ2RPHnnkEWbPnm15Ljo6ms8//xyAuLg4oqOjOXnyJABPPvkk9957r+XcQYMG8f777wOwfft2oqOjLUXU2n+vrXHNUaNG8eabbwKni63o6GjS09MBWL58OTfffLPl3GuvvZZXXnkFgMTERKKjo0lMTLTmR3BORVlFbFm0haIs2+w8IXVT77vnWrduzT//+U9eeeUVvv32W3bs2GF5zsXFhTFjxjBjxgxat25tlaCNWUxMDDExMSQlJTF9+nSrt78/ZT/P8AyjUkYRfEWw1dsXEWksWrRogRNOtGjRgmeffZbq6mrLc7t27SI4+PTfgSNGjGDXrl2Wf2P++te/1vjB8vvvv6djx44ADBw4kF27dtG+fXsAxk8Yz4dxH1rO3bRpk+W5Pn36sGvXLkJCTq8T9ec//5l77rnHcu769este6p27drVkmHevHncf//9lmtK09SgxS1bt27N3LlzeeSRR0hPT6ekpAR3d3dCQkJwcrLKYuPC6cXeJjNZi72JSLPSuXPnGo/79u1r+e+2bdvStu3/JouHhtbcZqpPnz6W/27dunWN1/r4+NQ4t1ev/20O3KpVqxrnBgbWXPbgtws2u7u707dvX/bu3cs777zD5MmTbVY0Hc05ShxxTMiZYDeLHCf/nMzSPy3lLy/8hYg+EWbHsYqLrmz+9a9/UVZWxrRp0yyFkZOTE2FhYZZzKioqWLlyJW5ubtx2223WS9tMeXl60ZWueHl6mR1FRETO0rNnTw4dOmTTaxzNPcoWttjVIscH9x1kzZY13LLvliZTNF3UnKadO3fyxhtv0Lp169/tSXJ2dqZ169asWrWKXbt2NThkc5d3Io+d7CTvRJ7ZUURERJqtiyqavvrqKzw9PbnxxhsveO4NN9yAp6cnX375Zb3DyWmHsw+zgQ0czj5sdhQRETlLQkICPXr0qHGXnTRNF1U07d27l+joaFxcXC54rouLC/369WPv3r31Dien9erWiwUsoFe3Xhc+WURELqnWrVszevToZnHjU3N3UUVTbm7uRU1y8/f3Jy9PQ0oiItJ0BQYGsnz58lqTxqXpuaiJ4C1atLAsJFYXlZWVtGhR76Wg5P87+OtB3uZtYn6Nwb+vfdw1ISLSEDn7c2zWdn5avuX3rPisBrdXVl5GXlkePQf2xNXVtcHtSeN1UUWTt7c3aWlpdT4/LS2t1q2djVl+fj5PPfUUP//8Mz4+Pjz00EPn3ZD4UnJs4UhLWuLYwtHsKCIiNuXu446zuzOf3faZza5xhNMren/75LckPtnwhSmPcITXeZ3N6zczbNywBrcnjddFFU29evXim2++ISsr64Kb9WZlZREfH8/o0aMbFPBSev7552nXrh1r165l586dLFiwgPfeew8vL3Nv9Q8JDGESk7ROk4g0eV7BXszcP5OSXNttTbL/h/0kzUriDyv+QLcruzW4vfSf0qm4p4IArwArpJPG7KKKphtuuIEvv/yS+fPn88wzz9CmTZtznldQUMCCBQuoqqpiwoQJ1shpcyUlJWzbto333nsPV1dXBg8eTHh4ON999x3jxo0zNVtVVRWnOEVVVZWpOURELgWvYC+8gm37w+oIRtDtym5Wm/IQQgge7h5WaUsar4sqmiIjI7n55pv56KOPuOOOO5gwYQKXXXYZvr6+wOmJ4rt27WLdunXk5+czadIkIiMjbRK8pKSENWvWkJycTHJyMgUFBUydOpVp06ad89xVq1YRFxdHYWEhwcHBTJkyhVGjRlnOyczMxM3NjQ4dOliOde7c+aKGI21l34F9PMVTDD0wlMDLNdFQRKQxOZZ7jG1s4/rc6+1mtW6pn4teEXzmzJm4uLjw3nvv8fbbb/P222/XeN4wDFq0aMFtt91WY78eaysoKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqqwAoLS3Fw6PmTwkeHh7k5+fb7D3UVVDHICYykaCOQWZHERGRs+SeyGU728k9kWt2FLGxiy6aHBwcuPfeexk3bhxffPEFe/fu5fjx4wC0a9eOqKgoxowZQ0CAbcd2/fz82LBhAw4ODuTn55+3aNq+fTs7d+5k/vz5xMTEAKf3L8rOzubVV19l5MiRODo64ubmRnFxcY3XFhcX4+bmZtP3URdtvdoSRRRtvdpe+GQREbmkukd05zEeo3tEd7OjiI3Ve1fdgIAApk+fbs0sF8XBwaFO523btg03NzeGDx9e4/jYsWNZvHgxCQkJREVFERgYSGlpKceOHbPsdp2WlsbVV1993rZzc3NrrEOVnp5+8W+kDk4UnOAXfuFEwQl1/YqIiJikyS+ilJaWRkhISK298s5sMHxmzpK7uzuDBw/mzTffpLy8nB9++IHk5GQGDRp03rbXrl3L9OnTLb+WLFlik/eQcSSDz/iMjCMZNmlfRKQ5aeXfimELhtHKv5VV2ktOS+Z1Xic5Ldkq7UnjVe+eJntRUFBwzlXMPT09ATh58qTl2J///GeWLl3Ktddei4+PDwsXLjzvHYIA48ePr1FUpaen26Rw6hnZk3nMo2dkT6u3LSLS3Hj6ezJ84XCrtefm6oY//ri5mj+dQ2yryRdNUPehvDZt2vDMM8/UuV0fHx98fHyIjY0lNjaWoqKi+kb8XS1atMAJJ62uLiLSCAX6B3Id1xHor7ubm7om/6+wl5cXBQUFtY4XFhYCWGWDxZiYGJYtW8asWbMa3Na5pGem8z7vk55pmzlTIiJSf6cqTlFAAacqTpkdRWysyRdNnTt3Jj09vdaeeQcPHgQgNDTUjFgXpdqopooqqo1qs6OIiMhZElMSeZ7nSUxp+JYs0rg1+eG5IUOGsG7dOrZs2VJjMcuNGzfi4+ND9+4Nv0XU1sNzoUGhTGEKoUGNv8ATEWluQoNCuY3b9Hd0M2DXRdOOHTsoKyujpOT0HkXp6els3rwZgAEDBuDq6sqAAQPo168fy5cvp6SkhICAADZt2sSPP/7IvHnzcHRs+Ca4MTExxMTEkJSUZOoyDCIicul5tvIknHA8W3maHUVszK6LpuXLl5OdnW15HBcXR1xcHAAffPCBZVPhJUuWsHLlSlavXm3ZRmXBggU1ep4as937d7OQhQzYP8Bq+ySJiIh15B7PZQc7uPH4jVpLr4mz66Lpww8/rNN57u7uzJ49m9mzZ9skh62H5wL8AriO6wjw0w7aIiKNTXZONpvYRHZONlFEmR1HbMiui6bGwtbDc95tvYkmGu+23lZvW0REGqZnZE/+wl+0ll4z0OTvnmsK8k/mk0AC+SfzzY4iIiLSbKlosgO/Hv6VD/mQXw//anYUERE5S2p6Km/yJqnpqWZHERvT8JwV2HpOk3bQFhFpvJydnGlNa5ydnM2OIjamoskKbD2nycnJCXfca206LCIi5gsOCGYiEwkOCDY7itiYhufswK+Hf+UTPtHwnIhII1RZWUkJJbV2npCmR0WTHaiorOAkJ6morDA7ioiInCUhOYGneZqE5ASzo4iNabzHCmw9pyksJIy7uIuwkDCbtC8iIvUXHBDMJCZpeK4ZUNFkBdpGRUSk+WrTug3d6U6b1m3MjiI2puE5O7A3aS9LWcrepL1mRxERkbPknchjF7vIO5FndhSxMRVNdsDP149RjMLP18/sKCIicpbD2YdZxzoOZx82O4rYmIomO+DTzocBDMCnnY/ZUURE5Cy9uvViIQvp1a2X2VHExjSnyQpsPRG8sKiQFFIoLCrUDtoiIiImUU+TFcTExLBs2TJmzZplk/bTMtJ4h3dIy0izSfsiIlJ/aRlpvMu7+ju6GVDRZAe6hnflIR6ia3hXs6OIiMhZWji0wBFHWjjon9SmTv+H7YCLswteeOHi7GJ2FBEROUtIYAiTmUxIYIjZUcTGVDTZgcysTNaxjsysTLOjiIjIWaqrq6mkkurqarOjiI2paLIDpWWlZJFFaVmp2VFEROQse5P2soQlWkuvGVDRZAciQiO4l3uJCI0wO4qIiJwlqGMQN3ADQR2DzI4iNqYlB6zA1ksOiIhI49XWqy296U1br7ZmRxEbU0+TFdh6yQHtoC0i0nidKDjBHvZwouCE2VHExlQ02QGftj4MZCA+bbUiuIhIY5NxJINP+ISMIxlmRxEbU9FkB9r7tGcIQ2jv097sKCIicpYeXXrwBE/Qo0sPs6OIjalosgPFJcWkk05xSbHZUURE5CyOjo644IKjo6PZUcTGVDTZgdT0VN7kTVLTU82OIiIiZ0nPTOdDPiQ9M93sKGJjKprsQJfOXXiAB+jSuYvZUURE5CxV1VWUU05VdZXZUcTGVDTZAdeWrvjgg2tLV7OjiIjIWToHd+Z2bqdzcGezo4iNqWiyA0eOHmEjGzly9IjZUURERJotLW5pBbZe3LKouIhUUikq1uKZIiKNze79u1nEIgbsH4B/X3+z44gNqWiygpiYGGJiYkhKSmL69OlWb79L5y7MZKbmNImINEIBfgGMYxwBfgFmRxEb0/CciIhIA3i39aYf/fBu6212FLExFU12IDElked5nsSURLOjiIjIWQoKC0gkkYLCArOjiI2paLIDbbza0ItetPFqY3YUERE5S3pmOu/zvtZpagZUNNkBP18/RjEKP18/s6OIiMhZuoV341EepVt4N7OjiI2paLIDJaUlHOEIJaUlZkcREZGzODs744EHzs7OZkcRG1PRZAdSDqXwOq+TcijF7CgiInKWjCMZfMZnZBzJMDuK2JiKJjsQ3imce7mX8E7hZkcREZGzlJ8q5zjHKT9VbnYUsTEVTXbA3c2djnTE3c3d7CgiInKW8E7h3M3d+sG2GVDRdJbPP/+cu+++mxEjRvDGG2+YHQeA7JxsNrGJ7Jxss6OIiIg0WyqazuLt7c20adMYMmSI2VEs8gvy2c1u8gvyzY4iIiJn2Zu0l6d4ir1Je82OIjambVTOcqZY+u6770xO8j9dw7vyEA/RNbyr2VFEROQsHXw6MJzhdPDpYHYUsbFGWTSVlJSwZs0akpOTSU5OpqCggKlTpzJt2rRznrtq1Sri4uIoLCwkODiYKVOmMGrUKBOSi4hIc+Pr7cuVXImvt6/ZUcTGGuXwXEFBAevWraOiouKCw2Tz5s1j48aNTJ06laeffpquXbuyaNEivvnmm0uU1vYOHDzAP/gHBw4eMDuKiIicpbCokFRSKSwqNDuK2Fij7Gny8/Njw4YNODg4kJ+fz/r168953vbt29m5cyfz588nJiYGgL59+5Kdnc2rr77KyJEjcXR0BOBPf/oTe/eee7x58uTJ3HPPPbZ5M1bQyqMVYYTRyqOV2VFEROQsaRlpvM3bTMmYQhe6mB1HbKhRFk0ODg51Om/btm24ubkxfPjwGsfHjh3L4sWLSUhIICoqCoAXXnjByikhNzeXvLw8y+P0dNvsO9SxQ0eu4Ro6duhok/ZFRKT+IsMimc1sIsMizY4iNtYoi6a6SktLIyQkBCenmm8jLCzM8vyZoqmuKisrqaqqorq6mqqqKsrLy3FycrL0WP3W2rVreeutt+qdv67KysvIJZey8jKbX0tERC5OS5eWtKUtLV1amh1FbMyui6aCggI6dqzd++Lp6QnAyZMnL7rNf/3rXzUKobfffpvHH3+cMWPG1Dp3/PjxDBo0yPI4PT2dJUuWXPQ1L+TAwQO8zMtce/BaQgeGWr19ERGpv8ysTDawgbFZY/HH3+w4YkN2XTRB3Yfy6mratGnnvEvvXHx8fPDx8SE2NpbY2FiKioqsmuWMsJAw7uIuwkLCbNK+iIjUX2lZKRlkUFpWanYUsTG7Lpq8vLwoKCiodbyw8PQdDK1bt74kOWJiYoiJiSEpKYnp06dbvX0Pdw9CCMHD3cPqbYuISMNEhEYwgxlEhEaYHUVsrFEuOVBXnTt3Jj09ncrKyhrHDx48CEBoaNMYyjqWe4xtbONY7jGzo4iIiDRbdl00DRkyhNLSUrZs2VLj+MaNG/Hx8aF79+6XJEdsbCxz585lxYoVNmk/90Qu29lO7olcm7QvIiL1l5CcwLM8S0JygtlRxMYa7fDcjh07KCsro6SkBDg9yXrz5s0ADBgwAFdXVwYMGEC/fv1Yvnw5JSUlBAQEsGnTJn788UfmzZt3zjvebMHWw3PdI7rzGI/RPeLSFIEiIlJ33m28uZzLIQey4rNsco38tHzL79a6hruPO17BXlZpq7lotEXT8uXLyc7OtjyOi4sjLi4OgA8++AB//9N3KCxZsoSVK1eyevVqyzYqCxYs0DYqIiJySYR2CyXGPYbvZn3Hd9hm39IjHAHg2ye/JfHJRKu06ezuzMz9M1U4XYRGWzR9+OGHdTrP3d2d2bNnM3v2bBsnOj9b3z2XnJbM67zOiLQR+PfV7awiIo2JYztHLn/nckJ9Q212w87u/bt5/bbXufGdG+nVrVeD28vZn8Nnt31GSW6JiqaL0GiLJnti6+E5N1c3/PHHzdXN6m2LiEjDHDhwgKtvvJpdu3YR3jfcJtfI4vSQnG83X/3wbCIVTXYg0D+Q67iOQP9As6OIiMhZunXrxt69e+ncubPZUcTGVDTZgVMVpyiggFMVp8yOIiIiZ3Fzc6NHjx5mx5BLwK6XHGgsbL3kQGJKIs/zPIkp1pn8JyIi1pOZmcmjjz5KZmam2VHExlQ0WUFMTAzLli1j1qxZNmk/NCiU27iN0KCmsViniEhTUlBQwNq1a8+5Q4U0LRqeswOerTwJJxzPVp5mRxERkbP06NGDpKQks2PIJaCeJjuQezyXHewg97hWBBcRETGLiiYrsPWcpuycbDaxieyc7AufLCIil9S+ffsIDw9n3759ZkcRG9PwnBXYep2mnpE9+Qt/oWdkT6u3LSIiDdOmTRtuvvlm2rRpY3YUsTEVTSIiIg0QEBDA3/72N7NjyCWg4Tk7kJqeypu8SWp6qtlRRETkLKWlpezevZvS0lKzo4iNqWiyA85OzrSmNc5OzmZHERGRs+zfv5/evXuzf/9+s6OIjWl4zgpsvWFvcEAwE5lIcECwTdoXEZH6i4yM5D//+Q+RkZFmRxEbU9FkBbaeCF5ZWUkJJVRWVlq9bRERaRgPDw8uv/xys2PIJaDhOTuQkJzA0zxNQnKC2VFEROQsWVlZLFy4kKysLLOjiI2paLIDwQHBTGKShudERBqh3NxcVq1aRW6uFiBu6jQ8ZwfatG5Dd7rTpnUbs6OIiMhZoqKitFlvM6GeJjuQdyKPXewi70Se2VFERESaLRVNduBw9mHWsY7D2YfNjiIiImdJSEigV69eJCRo3mlTp+E5K7D1kgO9uvViIQvp1a2XTdoXEZH68/T0ZPjw4Xh6epodRWxMRZMV2HrJARERabyCgoJ46aWXzI4hl4CG5+xAWkYa7/IuaRlpZkcREZGzlJWVkZKSQllZmdlRxMZUNNmBFg4tcMSRFg763yUi0tgkJCQQERGhOU3NgP4VtgMhgSFMZjIhgSFmRxERkbNEREQQFxdHRESE2VHExjSnyQ5UV1dTSSXV1dVmRxERkbOcmQguTZ96muzA3qS9LGEJe5P2mh1FRETOcvToUZ555hmOHj1qdhSxMRVNdiCoYxA3cANBHYPMjiIiImfJzs7mb3/7G9nZ2WZHERvT8JwdaOvVlt70pq1XW7OjiIjIWXr37s3x48fNjiGXgIomK7D14pYnCk6whz2cKDiBP/42uYaIiIj8Pg3PWUFMTAzLli1j1qxZNmk/40gGn/AJGUcybNK+iIjUX1JSEgMHDiQpKcnsKGJjKprsQI8uPXiCJ+jRpYfZUURE5Cyurq706NEDV1dXs6OIjWl4zg44OjrigguOjo5mRxERkbOEhISwatUqs2PIJaCeJjuQnpnOh3xIema62VFEROQsFRUVZGVlUVFRYXYUsTEVTXagqrqKcsqpqq4yO4qIiJxlz549dOzYkT179pgdRWxMRZMd6Bzcmdu5nc7Bnc2OIiIiZwkLC2P9+vWEhYWZHUVsTHOaREREGsDLy4tx48aZHUMuAfU02YHd+3eziEXs3r/b7CgiInKWnJwc/vGPf5CTk2N2FLExFU12IMAvgHGMI8AvwOwoIiJylszMTP785z+TmZlpdhSxMQ3P/capU6d47rnn2LlzJ8XFxXTq1ImZM2cSFRVlai7vtt70ox/ebb1NzSEiIrVddtlllJeXmx1DLgH1NP1GVVUV/v7+vPLKK3zxxRdMmDCBJ554grKyMlNzFRQWkEgiBYUFpuYQERFpzlQ0/YabmxtTp06lQ4cOtGjRgjFjxlBdXW16l2t6Zjrv877WaRIRaYSSk5OJiYkhOTnZ7ChiY41yeK6kpIQ1a9aQnJxMcnIyBQUFTJ06lWnTpp3z3FWrVhEXF0dhYSHBwcFMmTKFUaNGNThHeno65eXldOzYscFtNUS38G48yqN0C+9mag4REanNyckJX19fnJwa5T+pYkWN8v9wQUEB69atIywsjCFDhrB+/frznjtv3jwSExO57777CAoKIjY2lkWLFlFdXc1VV11V7wxlZWUsXbqUO+64A3d393q3Yw3Ozs544IGzs7OpOUREpLbQ0FDee+89s2PIJdAoiyY/Pz82bNiAg4MD+fn55y2atm/fzs6dO5k/fz4xMTEA9O3bl+zsbF599VVGjhxp2a/tT3/6E3v37j1nO5MnT+aee+6xPK6srGTBggWEhIRw++23nzdnbm4ueXl5lsfp6bYZPss4ksFnfMaYI2Pw7+tvk2uIiEj9VFVVUVxcjIeHh/YIbeIaZdHk4OBQp/O2bduGm5sbw4cPr3F87NixLF68mISEBMudby+88EKd2qyurmbp0qW0aNGCOXPm/G6WtWvX8tZbb9Wp3YYoP1XOcY5Tfkp3Z4iINDa//PIL0dHR7Nq1i759+5odR2yoURZNdZWWlkZISEitceQzS9mnpaVd9HIBzz77LHl5eTzzzDMXHJ8eP348gwYNsjxOT09nyZIlF3W9ugjvFM7d3E14p3Crty0iIg0TGhrKhx9+SGhoqNlRxMbsumgqKCg45yRtT09PAE6ePHlR7WVnZ7N+/XpcXFwYP3685fjTTz9N7969a53v4+ODj4/PRaYWEZGmpG3bttx8881mx5BLwK6LJqj7UF5d+Pn5sXXr1ot+XWxsLLGxsRQVFVkty2/tTdrLUzzFlUlXak6TiEgjk5eXx7p167juuuvw9tYixE2ZXa/T5OXlRUFB7QUfCwsLAWjduvUlyRETE8OyZcuYNWuWTdrv4NOB4Qyng08Hm7QvIiL1l56ezl133WWzm4Gk8bDrnqbOnTsTGxtLZWVljflHBw8eBGgy48u+3r5cyZX4evuaHUVERM5y2WWXUVFRoTvnmgG77mkaMmQIpaWlbNmypcbxjRs34uPjQ/fu3S9JjtjYWObOncuKFSts0n5hUSGppFJYVGiT9kVEpP4cHBxwcnKy6nQRaZwabU/Tjh07KCsro6SkBDjd/bl582YABgwYgKurKwMGDKBfv34sX76ckpISAgIC2LRpEz/++CPz5s27ZFV/TEwMMTExJCUlMX36dKu3n5aRxtu8zZSMKXShi9XbFxGR+ktNTeWhhx7i+eeft9y9LU1Toy2ali9fTnZ2tuVxXFwccXFxAHzwwQf4+5+eEL1kyRJWrlzJ6tWrLduoLFiwwCrbqDQWkWGRzGY2kWGRZkcRERFpthpt0fThhx/W6Tx3d3dmz57N7NmzbZzo/Gx991xLl5a0pS0tXVrapH0REam/sLAw1q5da3YMuQTsek5TY2Hru+cyszLZwAYyszJt0r6IiNSfYRhUVlZiGIbZUcTGVDTZgdKyUjLIoLSs1OwoIiJylp9++glnZ2d++ukns6OIjTXa4Tl7YuvhuYjQCGYwg4jQCJu0LyIi9RcSEsKbb75JSEiI2VHExlQ0WYGt754TEZHGy9vbm6lTp5odQy4BDc/ZgYTkBJ7lWRKSE8yOIiIiZzlx4gQfffQRJ06cMDuK2JiKJjvg3caby7kc7zba00hEpLFJS0tj0qRJpKWlmR1FbEzDc3agg28HhjGMDr7ae05EpLHp3bs3BQUFeHh4mB1FbExFkxXYeiJ4cUkxGWRQXFJsk/ZFRKT+HB0dL9kG8WIuDc9Zga3XaUpNT2U1q0lNT7VJ+yIiUn9paWnccsstGp5rBlQ02YGI0Aju534tOSAi0ghVVlaSk5NDZWWl2VHExjQ8ZwfcXN1oT3vcXN3MjiIiImeJiIggNjbW7BhyCainyQ4cOXqEr/maI0ePmB1FRESk2VJPkxXYeiJ4YVEhSSRRWFRok/ZFRKT+fvrpJwYMGMCOHTu47LLLzI4jNqSiyQpsvSJ4ZFgks5hFZFik1dsWEZGGCQwMZPny5QQGBpodRWxMRZOIiEgD+Pr6MnPmTLNj1EvO/hybtZ2flm/5PSs+yyptuvu44xXsZZW26kNFkx1ISk3iRV5kWOow/Pv6mx1HRER+o6CggO+++47Bgwfj5WXeP+gXw93HHWd3Zz677TObXeMIp+fhfvvktyQ+mWiVNp3dnZm5f6ZphZOKJjvQ2rM1PehBa08tniYi0tikpqZy7bXXsmvXLvr27Wt2nDrxCvZi5v6ZlOSW2Owau/fv5vXbXufGd26kV7deDW4vZ38On932GSW5JSqa5Pz82/sTQwz+7dXLJCLS2ERFRXHkyBF8fHzMjnJRvIK9bFp8ZHF6SM63m2+TGSVR0WQFtr57rrSslGyyKS0rtUn7IiJSf87Ozvj7N42iQH6f1mmyAltvo5KclsxrvEZyWrJN2hcRkfpLT0/nnnvuIT093ewoYmMqmuxAeKdwpjOd8E7hZkcREZGzlJWVsW/fPsrKysyOIjam4Tk74O7mTgABuLu5mx1FRETOEhkZyfbt282OIZeAeprswNGco8QRx9Gco2ZHERERabZUNNmB4/nHiSee4/nHzY4iIiJn+eWXX2jXrh2//PKL2VHExlQ02YFuEd14mIfpFtHN7CgiInIWPz8/Hn/8cfz8/MyOIjamOU0iIiIN0KFDBx599FGzY8gloJ4mO3Dg4AFe4RUOHDxgdhQRETlLYWEhmzdvprCw0OwoYmMqmuyAh7sHneiEh7uH2VFEROQsycnJjBgxguRkraXX1Gl4zgpsvSJ4gF8AYxlLgF+ATdoXEZH66969O8nJyQQGBpodRWxMRZMVxMTEEBMTQ1JSEtOnT7d6+2XlZeSRR1m5Fk4TEWlsXF1dCQ/X4sPNgYbn7MCBgwdYwQrNaRIRaYQyMjJ48MEHycjIMDuK2Jh6mqyovLwcwOr7Dzk6OjLZYzKOjo4kJSVZtW0REWmYtLQ0tm3bxtixYykpKbHJNTIyMvDw8LD8bg+snTk3I5eTHic5mHGQkx4nrZCwtpCQEFxdXc/7vINhGIZNrtwMff311yxZssTsGCIiIlIPK1euJDIy8rzPq6fJivr37094eDgPPfQQLi4udXrNihUrmDVr1u+ek56ezpIlS5g3bx4hISHWiGr36vK5melS57PV9azVbkPaqc9rL+Y1dT1X38PaGvP30Ixstrhmc/gO1vX8S/EdvFC7KpqsqE2bNrRv356oqKg6v6ZVq1a/W9X+VkhISJ3Pbeou5nMzw6XOZ6vrWavdhrRTn9dezGsutn19D/+nMX8Pzchmi2s2h+/gxZ5v5ndQE8GtLCYmxqbny2mN/XO71PlsdT1rtduQdurz2ot5TWP/s9SYNebPzoxstrhmc/gO1vcaZtCcJjtwZimDC421iojt6HsoYq7G8B1UT5Md8Pb2ZurUqXh7e5sdRaTZ0vdQxFyN4TuoniYRERGROlBPk4iIiEgdqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNDURp06d4m9/+xsTJ07kmmuuYcaMGezZs8fsWCLNysKFC5kwYQLXXHMNU6dO5YcffjA7kkiztHfvXoYNG8aaNWus2q7unmsiSktL+eCDDxgzZgy+vr589dVXvPLKK3z00Ue/u/mgiFhPWloagYGBODs7k5CQwMMPP8z777+Pl5eX2dFEmo3q6mr++Mc/4uDgwMCBA7nzzjut1rZ6mpoINzc3pk6dSocOHWjRogVjxoyhurqazMxMs6OJNBuhoaE4OzsD4OjoSEVFBbm5uSanEmle1q5dS1RUFMHBwVZvW3vPmaSkpIQ1a9aQnJxMcnIyBQUFTJ06lWnTpp3z3FWrVhEXF0dhYSHBwcFMmTKFUaNGnbf99PR0ysvL6dixoy3fhojdstV3cPHixWzdupVTp04xYMAAOnfufCnejojdscV3sKCggI8//pjXXnuNl156yeqZVTSZpKCggHXr1hEWFsaQIUNYv379ec+dN28eiYmJ3HfffQQFBREbG8uiRYuorq7mqquuqnV+WVkZS5cu5Y477sDd3d2Wb0PEbtnqOzh//nwqKyuJj48nPT0dBwcHW78VEbtki+/g66+/zqRJk2jVqpVNMqtoMomfnx8bNmzAwcGB/Pz88/5h2b59Ozt37mT+/PmWDQ379u1LdnY2r776KiNHjsTR0dFyfmVlJQsWLCAkJITbb7/9krwXEXtkq+8ggJOTE/379+eTTz4hMDCQgQMH2vz9iNgba38Hk5KSOHDgAA8//LDNMmtOk0kcHBzq9BPotm3bcHNzY/jw4TWOjx07ltzcXBISEizHqqurWbp0KS1atGDOnDn6CVfkd9jiO3i26upqDh8+3NCoIk2Stb+Dv/zyC4cOHWLChAlcd911fPvtt7z77rssXbrUapnV09TIpaWlERISgpNTzf9VYWFhluejoqIAePbZZ8nLy+OZZ56pdb6I1E9dv4N5eXns2bOHK664AmdnZ7Zu3cpPP/3EfffdZ0ZskSajrt/Ba6+9tkZh9Y9//AM/Pz9uvfVWq2XRv6yNXEFBwTknc3t6egJw8uRJALKzs1m/fj0uLi6MHz/ect7TTz9N7969L01YkSaort9BgI8//pi///3vODg4EBgYyMKFCwkPD79kWUWaorp+B93d3WvM423ZsiXu7u5WXfJDRZMdqEv3pZ+fH1u3br0EaUSan7p8B729vXn55ZcvQRqR5qc+002eeOIJq+fQnKZGzsvLi4KCglrHCwsLAWjduvWljiTSrOg7KGKuxvQdVNHUyHXu3Jn09HQqKytrHD948CBwejE9EbEdfQdFzNWYvoMqmhq5IUOGUFpaypYtW2oc37hxIz4+PnTv3t2kZCLNg76DIuZqTN9BzWky0Y4dOygrK6OkpAQ4vYr35s2bARgwYACurq4MGDCAfv36sXz5ckpKSggICGDTpk38+OOPzJs3r9b6MCJSd/oOipjL3r6D2rDXRJMmTSI7O/ucz33wwQf4+/sDp5ePX7lyZY3l42+77bbf3UZFRC5M30ERc9nbd1BFk4iIiEgdaE6TiIiISB2oaBIRERGpAxVNIiIiInWgoklERESkDlQ0iYiIiNSBiiYRERGROlDRJCIiIlIHKppERERE6kBFk4jIJfD8889z3XXXWbaLAHjjjTcYOnQoP/30k4nJ/mfp0qXcfPPNlJeXmx1FpFHS3nMictGysrL4wx/+8LvnhIeH88Ybb1yiRI1bRkYGa9eu5d5778Xd3d2m1/r3v//Nc889x/jx43nkkUd+99x77rmHAwcOsHLlSiIjI7nzzjuJjY3lo48+4rbbbrNpThF7pKJJROotICCAq6666pzPeXt7X+I0jdebb76Ji4sLEyZMsPm1YmJi+Mc//sG3337LrFmzaNmy5TnPS01N5cCBA0RERBAZGQlAYGAggwcP5v/+7/+YOHEibm5uNs8rYk9UNIlIvQUEBDBt2jSzYzRq+fn5bN26leHDh9u8lwnAw8ODYcOG8dVXX7Flyxauvvrqc563fv16AMaOHVvj+NVXX82WLVvYtGkT1157rc3zitgTzWkSkUti6NChPPjgg+Tn57Ns2TLGjx9PTEwMM2bMOO+cnpKSEt544w3uuOMOYmJiGDt2LI888gi7d++ude6DDz7I0KFDOXXqFKtXr+aWW25hxIgRNYYIt2zZwvTp04mJiWHChAk8/fTTFBYWMmnSJCZNmmQ5b+nSpQwdOpT9+/efM9err77K0KFD2bp16wXf96ZNmzh16hTDhw+/4LlnpKamcsMNN3DdddeRkJBgOX7kyBH+/ve/c9NNNzFq1Ciuv/56nnrqqVq7xI8bNw6AL7/88pztV1RUEBsbi4uLS62iasCAAbi5ufHFF1/UOa9Ic6GiSUQumaKiIu6//35SU1O56qqrGDp0KElJSTzyyCMcPHiwxrknT57kj3/8I2+99RatW7fm+uuvt5w/e/Zstm3bds5rzJs3jy+++ILevXtz880307FjRwA2bNjAk08+yeHDhxk9ejTXXHMN+/bt489//jOVlZU12hg/fjzwv96Y36qsrOSrr76iXbt2XHnllRd8z7t27QKgR48eF/6AgF9++YVZs2bh6OjIyy+/TPfu3QFISEjgnnvuYePGjURGRnLTTTfRu3dvvvnmG+677z6OHDliaaNPnz4EBgYSHx9PVlZWrWt8//33FBQUMHToUDw9PWs85+zsTJcuXdi/fz+lpaV1yizSXGh4TkTq7fDhw+ed7N2jRw+uuOKKGsdSUlK4/vrr+dOf/kSLFqd/Zuvbty9PP/00n376aY2Jyy+88AJpaWnMnTu3xhDS8ePHuffee3nmmWfo379/rTk7eXl5vPnmm7Ru3dpyrLCwkJdeegl3d3dWrVplKaSmT5/OY489RlJSEn5+fpbzo6KiCA0NZdOmTTzwwAM15vb88MMPHD9+nFtvvRUnpwv/Fbp37158fX1p27btBc/dtm0bixYtomPHjjz77LO0b98eOF2oLVy4kOrqalauXEl4eLjlNbt372b27Nm89NJLLFu2zHJ87NixvP7662zcuJG77rqrxnU2bNgA/K9H6myRkZH88ssv7N+/n759+14wt0hzoZ4mEam3w4cP89Zbb53z148//ljrfDc3N2bMmGEpmACuueYaHB0dSUxMtBzLz88nLi6O6OjoWnNu2rVrxy233EJ+fr6lF+e37rrrrhoFE8B3331HaWkp1157raVgAnBycuLuu+8+53sbP348JSUlfPvttzWOr1+/HgcHhzrN96moqCA/P79OBdP69euZP38+ERERvPzyy5aCCU4XatnZ2dxyyy01CiaAXr16MWjQIHbs2EFxcbHl+JnP9csvv8QwDMvx3Nxcdu7ciZ+f33kLojN5c3JyLphbpDlRT5OI1Fv//v159tln63x+YGBgrcnQTk5OtGvXjqKiIsuxxMREqqqqOHXq1Dl7sjIzMwFIT0+vNUTWrVu3WuenpqYC0LNnz1rPdevWDUdHx1rHr776al577TXWr19v6ZHJycnhv//9r2X460IKCgoAag2Bne3DDz/k+++/Z8CAASxevBhXV9caz+/btw+AX3/99Zyfx/Hjx6muriYjI4OuXbsC4OPjwxVXXMEPP/xAfHw80dHRwOl5TlVVVYwdOxYHB4dz5jlTdJ7JLyKnqWgSkUvGw8PjnMcdHR2prq62PD558iQAe/bsYc+ePedtr6ysrNaxdu3a1Tp2pgemTZs2tZ5r0aIFXl5etY57enoyYsQINm7cyKFDh+jUqRNffPEFVVVVdb6r7MzQ4YUWizwzsf2KK66oVTDB6eFFgG+++eZ32zn78xg3bhw//PADX375ZY2iqUWLFowZM+a87ZzJe77lCkSaKxVNItLonCmu/vCHPzBz5syLeu25ek/OtJefn1/ruerqagoKCvD19a313Pjx49m4cSPr169n5syZfPnll7Ru3ZqhQ4fWKYunpydOTk6WIvB85syZw7/+9S9eeuklWrRowQ033FDj+TO9c8uWLavT5PMzBg4cSLt27diyZQsPPfQQKSkpZGZm0r9/fzp06HDe153Je64iU6Q505wmEWl0unbtioODg2VYqqHCwsKA05Oyz7Z//36qqqrO+bqePXvSuXNnvvrqK3bs2MGRI0e46qqrLqoHJjQ0lOzs7Fp36P2Wp6cnzz//PF26dOH555/n008/rfH8mTvoLvbzcHJyYvTo0ZSXl7Np0ybLMgLnmwB+RkZGBgCdO3e+qOuJNHUqmkSk0fH29mbEiBHs3buX9957r8ZE5jMSEhLOOTx3LoMHD8bNzY3169fXuDW/srKS1atX/+5rr7vuOgoKCnjmmWcALnrBxz59+nDq1CnLvKrz8fT0ZPny5XTt2pUXXniBTz75pEb+Dh068MEHH/Dzzz/Xem1lZeU5166C/xVIn3/+OZs3b8bLy4vBgwf/bpaEhAS8vb0JCgq6wLsTaV40PCci9fZ7Sw4ADVot/M9//jMZGRm8+uqrfPXVV/To0YNWrVpx7NgxkpKSyMzM5LPPPjvnHKCzeXp68sADD/DMM89wzz33MHLkSDw8PNixYwcuLi74+Picd1L06NGj+ec//0lubi7du3e39FrV1ZAhQ/joo4/YtWuXZbuS38v53HPP8fDDD/Piiy9iGAY33XQTLi4uLF68mMcee4wHH3yQ6OhoQkNDATh69Ci7d+/Gy8uLd955p1abwcHBREVFWeaGXXvttTg7O583w+HDh8nKyuL666+/qPcp0hyoaBKRejuz5MD5NKRoat26Na+88gqffvop3377LbGxsVRXV9OuXTvCw8O58847zzmB+3yuu+46PD09efvtt9m4cSMeHh4MGjSIGTNmcPPNNxMQEHDO17Vq1YrBgwcTGxtbr21F+vTpQ3BwMF9//TW33nrrBc8/0+P08MMP89JLL2EYBjfffDPdunXjjTfe4L333mPHjh3s2bMHZ2dnfHx8GDJkCKNGjTpvm+PGjbMUTWcv4XC2r7/+GvjfAp8i8j8Oxrn6vUVEmonMzExuvfVWRowYwaJFi855zh133MHRo0f57LPP6rV/3Nq1a3n22Wd57bXXLPOTGqPKykqmTJmCn58fL774otlxRBodzWkSkWahsLCQU6dO1ThWXl7Oyy+/DJweRjuX7du3c+jQIUaPHl3vDXfHjRtHSEgIb775Zr1ef6l8/fXXZGdnc//995sdRaRR0vCciDQLP//8M3//+9+5/PLLad++PQUFBcTHx5OdnU3fvn0ZOXJkjfM///xzjh07xrp162jZsiW33HJLva/t6OjI448/zo8//khJSUm9iy9bc3Bw4NFHH73g3CuR5krDcyLSLGRkZLB69Wr27t1rWa8pICCAkSNHMnny5FrLCEyaNImcnByCgoKYMWPGRa2PJCJNk4omERERkTrQnCYRERGROlDRJCIiIlIHKppERERE6kBFk4iIiEgdqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNImIiIjUgYomERERkTr4f+28zj5Jrf3oAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_poisson_error = np.zeros((2,len(expectation.project('Em').todense().contents)))\n", + "fit_gaussian_error = np.zeros(len(expectation.project('Em').todense().contents))\n", + "inj_poisson_error = np.zeros((2,len(grb.binned_data.project('Em').todense().contents)))\n", + "inj_gaussian_error = np.zeros(len(grb.binned_data.project('Em').todense().contents))\n", + "\n", + "for i, counts in enumerate(expectation.project('Em').todense().contents):\n", + " if counts > 5:\n", + " fit_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " fit_poisson_error[0][i] = poisson_error[0]\n", + " fit_poisson_error[1][i] = poisson_error[1]\n", + "\n", + "for i, counts in enumerate(grb.binned_data.project('Em').todense().contents):\n", + " if counts > 5:\n", + " inj_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " inj_poisson_error[0][i] = poisson_error[0]\n", + " inj_poisson_error[1][i] = poisson_error[1]\n", + " \n", + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = \"Best fit convolved with response\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=fit_poisson_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=fit_gaussian_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(grb.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Source counts\")\n", + "ax.errorbar(binned_energy, grb.binned_data.project('Em').todense().contents, yerr=inj_poisson_error, color='black', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, grb.binned_data.project('Em').todense().contents, yerr=inj_gaussian_error, color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "00234bec-2a9f-4557-8a41-0d1a9b71e9c9", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response plus the fitted background, as well as the simulated source+background counts" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "06df3b27-d2ed-4214-bda7-d4fda667e145", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxHUlEQVR4nO3deVyVZf7/8RcCyiKgArKDbOKGkjQuuSdpatpiOZWltmi2mDPT+m2srGzGNtucdkdbp2xPM2soTVusEcwNZVFEQFBA2RdZ7t8f/DxJIgKCN3Dez8fDh55zrnPd73PkwIfrvu7rsjEMw0BERETEinUyO4CIiIiI2VQQiYiIiNVTQSQiIiJWTwWRiIiIWD0VRCIiImL1VBCJiIiI1VNBJCIiIlZPBVEjlJeXk5iYSHl5udlRREREpBWoIGqEtLQ05s6dS1pamtlRREREpBWoIBIRERGrp4JIRERErJ4KIhEREbF6KohERETE6qkgEhEREatnZ3aAtiw2NpbY2FiKi4vNjiIiIiKtSAVRA2JiYoiJiSExMZG5c+eaHUdERERaiU6ZiYiIiNVTQSQiIiJWTwWRiIiIWD0VRCIiImL1NKm6AbrKTERExDqoIGqArjITERGxDjplJiIiIlZPBZGIiIhYPRVEIiIiYvU0h0isRsHBApJ2JlFWXkZ4cDgACckJuHdzx8vTi5LSEval7SM8OBxHB0cOHT5EUXEREaERACTuS8TVxRWfnj6UlZeRnJpMWK8wnBydOJxzmITfElizeg133nUnxzsfx9nJGT9vP8oryknan0RIYAhdnbuSk5fDkbwj9O/dH4CUAyk4dHHA38efyspK9qTsoZd/L1xdXHHycMIt0M2090xExFqoIBKrUHCwgH/1/ReflX5GOunMZz4AT/M0f+JPjGEM6aSzghXcxm30pCff8A2JJLKABQA8z/P0pz8xxJBNNq/wCnOZix9+bGADCSTQj358PPNj3uZtetGLyUwmjzxe5EVmM5tggvmRH9nMZu7nfgDe4A088eRSLqWIIp7hGa7lWvzwY6/9Xp795VlCzws17b0TEbEGNoZhGGaHaKtOvux+x44dvP7660RERJgdq01IiU8hNTGVAREDANiXtg97O3sC/QKpqqoiITmBQL9Aurl2I+9YHpnZmQzsOxCA1PRUOtl0Isg/iJqaGnYl7iLAN4Dubt05VnCM9EPpOOPMv5b9i6uuvwqvXl6EBIYAsGPPDvy8/XDv7k5BUQFpGWn0DeuLvb096YfSqTheQVivMAB2Je7Cy8MLT3dPkn5N4t1b32Xa09Nw7eXaKiNER/OP0je8LwBJ+5POeoTotx9+Y+aimax7dx0Trp1w7v5zRUSskAqiRjhx2b0KoloFBwuYGTaTbyq/4e/8HYCVrMQVV6YznVJKeZInmcEM+tGPOOJYwxoWsxiAd3kXW2y5mqupooolLOFyLmcQg9jJTj7mY+7kTraznaMcpZRSrud6AB7hEaYwhfM5n73s5X3e5x7uwRlnPuVTjnKUm7gJgH/wD8Yylgu4wNLvzp92MmD4AFPet6bKis/itejXmBc3D5/BPmbHERHp0HTKTJqsNLeUvpV9mfX4LEZdPAqA8Wnj64wQXZh8YZ0Rotuzb7eMEF2UflGdEaKRiSPrjBDNPTSX/r37Y2trS1pGGtU11ZYRomF7htUZIZqTMccyQjTp0KQ6I0QXJF5gGSEqKi5isf3idlMMiYjIuaWCSJqsqLiIbLKJGhllGbn44whGwJAAy7998GEAvxcif2zrd75fnbb96Hfatiff9sGHPvRpdNv2Zv/B/bzJm8QcjNEIkYhIK9Nl99JkqempvMM7pKanmh2lQ7OztcMZZ+xs9XuLiEhrU0EkTdYnrA9/5a/0Cetz5sbSbIF+gVzJlQT6BZodRUSkw1NBJE3W2b4zbrjR2b6z2VE6tOrqasopp7q62uwoIiIdngoiabKMrAzWsIaMrAyzo3Rou5N2s5Sl7E7abXYUEZEOTwWRNFlZeRlZZFFWXmZ2lA4t0C+Qq7hKp8xERM4BzdZswMkLM8rvwoPDmcc8y+KG0jq6uXajP/3p5trN7CgiIh2eCqIGxMTEEBMTY1mYUeRcOpp/lG1s42j+0Xa5bICISHuiU2bSZAnJCTzJkyQkJ5gdpUPLyMrgcz7XXC0RkXNABZE0mUd3D4YzHI/uHmZH6dAi+0TyIA8S2SfS7CgiIh2eCiJpsp4ePRnFKHp69DQ7SodmY2ODLbbY2NiYHUVEpMNTQSRNVlJaQhpplJSWmB2lQzuQfoD3eI8D6QfMjiIi0uGpIJIm25e2j5WsZF/aPrOjiIiItAgVRNJkvUN6cwd30Dukt9lROrReAb24lmvpFdDL7CgiIh2eCiJpMocuDnjggUMXB7OjdGiGYVBNNYZhmB1FRKTDU0EkTXbo8CHWs55Dhw+ZHaVD27l3J4/xGDv37jQ7iohIh6eFGRuglarrV1xSzD72UVyi96U1+fv4cymX4u/jb3YUEZEOTwVRA7RSdf16h/Tmdm7XHKJW1qNbD87jPHp062F2FBGRDk+nzETaqPzCfHazm/zCfLOjiIh0eCqIpMn2puzlWZ5lb8pes6N0aAczD/IhH3Iw86DZUUREOjwVRNJk3dy6MZCBdHPrZnaUDq1/7/7cz/30793f7CgiIh2e5hBJk3l7ejOe8Xh7epsdpUOztbWlmmq2bdqGra0tUHvlma+XL+7d3SksKuRAxgH6hvXF3t6ejKwMyivKCesVBsDupN30dO+Jp7snxSXF7D+4n94hvXHo4kBmdiYlpSV0Pt6ZF555gakzptIvqh9enl6UlpWSciCF8OBwHB0cyTqSRWFRIRGhEQAk7kvEpasLvl6+lJWXkZyaTGhQKM5OzhzOOYydqx0Dhg8w7X0TEWkOFUTSZKVlpRziEKVlpWZH6dCqHar52vZrPrz7Q+YwB4DHeIyJTGQIQ0giifd4j7u4Cxdc+JzPySGHm7kZgKUsZRSjGMEIUknlTd5kAQtwx511rOMAB7iMy3if9/kh/gdCCWUc48gkk9d5nfnMxxtvYollN7tZyEIAXuRFIohgAhM4whFe4iVu4iYCCOBrvmYnO9n661Yi/hRh1lsnItJkKoikyVIOpPAar3HFgSsIHRFqdpwOy7+fP+9ufpeCwwWEBIYAMHzv8DojRLMyZllGiCZnTa4zQjQiaUSdEaJrDl5jGSGakj3FMkJU+EzhKSNE0w9Mt4wQTT0ytc4I0Zh9Y+qMEE1LnWYZIRr500i+XvA1rraupr1vIiLNoYJImiysVxjzmGf5wSut54+nnnwG+/z+b3yIIKLO7dO1BQgnvN62w68dfspxTy50z9RvyAUhdW7/wA+n9Cci0tZpUrU0mZOjE7744uToZHYUaWOSU5N5hVdITk02O4qISJOoIJImy87J5lu+JTsn2+wo0sY4OjgSQACODo5mRxERaRIVRNJk+QX57GAH+QX5ZkeRNsbfx58pTNF2IyLS7qggkibrE9aHv/JX+oT1MTuKtDEVxys4xjEqjleYHUVEpElUEIlIi0ncl8jzPE/ivkSzo4iINImuMmuAdruvX9L+JP7Fvxi7f+wpVxyJdQsOCOZ6ric4INjsKCIiTaKCqAHa7b5+XZ27EkooXZ27mh1F2hiXri6EEopLVxezo4iINIlOmUmT+Xr5cjEX4+vla3YUaWNy8nL4iZ/IycsxO4qISJOoIJImK68oJ5dcyivKzY4ibczh3MNsZCOHcw+bHUVEpElUEEmTJe1PYjnLSdqfZHYUaWMGRAzgAR5gQIQ2dxWR9kUFkTRZaFAoN3ADoUHax0xERDoGFUTSZM5OzgQRhLOTs9lRpI1JOZDCClaQciDF7CgiIk2igkia7EjuETazmSO5R8yOIm1Ml85d6EEPunTuYnYUEZEmUUEkTZZ7LJef+ZncY7lmR5E2JsA3gMu5nADfALOjiIg0iQoiabJ+4f24l3vpF97P7CjSxlRWVlJCCZWVlWZHERFpEhVEItJi9qTs4SmeYk/KHrOjiIg0iQoiabLk1GRe4zWSU5PNjiJtTJB/EFdzNUH+QWZHERFpEhVE0mSODo744IOjg6PZUaSNcXNxow99cHNxMzuKiEiTqCCSJvP38WcqU/H38Tc7irQxecfy2MpW8o7lmR1FRKRJVBBJkx2vPE4BBRyvPG52FGljMrMz+ZIvyczONDuKiEiTaLf7NqDgYAFpiWkczj1s2fIg5UAKXTp3IcA3gMrKSvak7CHIPwg3FzfyjuWRmZ3JwL4DAdh/cD+2nWwJ8g+iurqa3Um7CfANoLtbd44VHON/P/2P9Z+s58677sSmqw01Rg3BAcEA7NizAz9vP9y7u5NfmM/BzIP0C++HnZ0dBzMPUllVaVmRelfiLrw9vUnYksCzPMvElIkEDdVcEfndwL4DeZiHLV+bIiLthQoikxUcLOBfff/F96Xfs5GNPMADAKxgBT3oweVcTgklPMVTXM3V9KEPW9nKl3zJwzwMwNu8TRe6MIMZHOc4/+AfTGc6kUSyne1sZjO55OI605VNbKKaamYyE4DFLGYqU4kmmgQSWM1q7uVenHDiYz6mkEJu4AYAHudxxjOeKKKY02UO/aJ02b2IiHQMKohMdvjAYfaW7mXB0wu42/duywjRhQcurDNCND5lvGWEaPqx6dyRfYflt/CYgzF1RohGJ42ud4Rozl1zuKHrDXVGiIbtGVZnhOjGzBstI0QXZ15cZ4TogsQL8Pb0xqOHB04eTrgFauKs1LX/4H7e5m1iDsbgM9jH7DgiIo2mgshkqempvM3bzPSeyUXXXGS5/48/TAKHBv7+GD4MYMBp2/r/yb9O237j+jH777PrPf7Jz/XBh770PW2/+gEnZ2LbyZYudMG2k63ZUUREmkQFUQNiY2OJjY2luLi41Y4RERrBQhYSERrRascQOVeC/IOYwQytQyQi7Y4KogbExMQQExNDYmIic+fObZVjdOnche5012aY0iFUV1dznONUV1ebHUVEpEl02b3JMrIy+JIvycjKMDuKyFnbnbSbf/APdiftNjuKiEiTqCAyWVl5GemkU1ZeZnYUkbMW4BvAdKZrt3sRaXdUEJksPDic+cwnPDjc7CgiZ627W3ciiaS7W3ezo4iINIkKIhFpMccKjrGd7RwrOGZ2FBGRJlFBZLKE5ASe5mkSkhPMjiJy1tIPpfMpn5J+KN3sKCIiTaKCyGTu3dz5E3/CvZu72VFEztqAiAEsYpFlgVERkfZCBZHJvDy9GMMYvDy9zI4ictY6deqEHXZ06qRvLSLSvui7lslKSktIJ52S0hKzo4ictbSMNN7nfdIy0syOIiLSJCqITLYvbR8rWMG+tH1mRxE5azVGDdVUU2PUmB1FRKRJVBCZLDw4nNu4TZfdS4cQHBDMTGZaNg8WEWkvVBCZzNHBkZ70xNHB0ewoIiIiVksFkckOHT7EN3zDocOHzI4ictZ27NnBYhazY88Os6OIiDSJCiKTFRUXkUgiRcVFZkcROWt+3n5MZSp+3n5mRxERaRIVRCaLCI1gAQuICI0wO4rIWXPv7k400bh317paItK+qCASkRaTX5hPAgnkF+abHUVEpEnszA5g7RL3JfI8zzNm3xh8BvuYHUfkrBzMPMhqVnPFD1dQWFRIZVUloUGhAOxK3IW3pzcePTwoKi4iNT2VPmF96GzfmYysDMrKyyxXWyYkJ+DR3YOeHj0pKS1hX9o+eof0xqGLA7/+9CsrX17JfX+/j159erE3ZS/d3Lrh7elNaVkpKQdSCOsVhpOjE9k52eQX5NMnrA8ASfuT6OrcFV8vX8oryknan0RoUCiegZ64BbqZ9r6JiPlUEJnM1cWV/vTH1cXV7CgiZ+384efzd8e/s/vB3TzO4xRSyA3cAMDjPM54xjOMYaSQwju8w1/5K264sYY1ZJHFPOYB8CRPMpzhjGIUaaSxkpXcwR144MF61rOFLXjN9MIXX57lWQYykPGM5xCHeI3XmMc8fPHlW75lBzv4K38F4F/8i1BCuZiLySWX5SznBm4gzCmM2/fcrqJIxIqpIDKZT08fYojBp6dGh6T9cw9x556991CaW8qUzCl1RoguSLygzgjRdenXWUaIJmdNrjNCNDJ5ZJ0Roj+n/dkyQuT1vhdbntrChY9dyOjJoxmdMrrOCNEVB66wjBBNy5lWZ4Ro7P6xdUaILtl/CZXZlTx393NM2TuFQYGDTHvvRMRcKohMVlZeRjbZlJWXmR1FpEW4BbrhFuh2yingk2/74ENvete5fbq2AGEjwyz/Ht9pPLN/nc3gSwbjE+VzStvQEaGN7jd4eDDffvAtP/MzucdyG/PyRKSD0qRqkyWnJvMKr5Ccmmx2FJF2ITwqnFUbVxEe1TKru/cL78e93Eu/8H4t0p+ItE8qiEwW1iuMucwlrFfYmRuLiIhIq1BBZDInRyf88MPJ0cnsKCJWKTk1mdd4TaO0IlZOBZHJDuccZgMbOJxz2OwoIlbJ0cERH3y0n6CIlVNBZLKj+UeJJ56j+UfNjiJilfx9/JnKVPx9/M2OIiImspqrzBYvXsy2bduoqKjA29ubefPmccEFF5gdi77hfbmLu+gb3tfsKCJW6XjlcQoo4HjlcbOjiIiJrGaEaPbs2Xz00UesX7+ee++9l8cee4yCggKzY4mIyfam7OVZnmVvyl6zo4iIiaymIAoODsbe3h4AW1tbKisryc01f92RpP1JvMRLJO1PMjuKiFUKDgjmOq4jOCDY7CgiYqI2ecqstLSUN998k+TkZJKTkykoKGDOnDnceOON9bZ944032LBhA0VFRQQGBjJz5kzGjx9/SttHH32UTZs2cfz4cYYNG0ZISMi5eDkNcnZyphe9cHZyNjuKiFVy6epCGGG4dHUxO4qImKhNFkQFBQWsWbOG0NBQRo0axdq1a0/bdtGiRezdu5dbbrmFgIAAYmNjeeSRR6ipqeGiiy6q0/ahhx6iqqqK+Ph40tLSsLGxae2XckZ+3n5MZjJ+3n5mRxGxSrlHc9nCFq44esUpK1uLiPVokwWRt7c3X375JTY2NuTn55+2IPr555/ZunUrDz30EDExMQAMHjyY7OxsXn75ZS688EJsbW3rPMfOzo4hQ4bw8ccf4+/vz/Dhw1v99TSkvKKcPPIoryg3NYeItcrOyeZbviU7J5tIIs2OIyImaZNziGxsbBo1erN582YcHR0ZO3ZsnfsnT55Mbm4uCQkJp31uTU0NmZmZ9T6Wm5tLYmKi5U9aWlqT8jdF0v4kXuRFzSESMcmAiAH8nb8zIGKA2VFExERtcoSosVJTUwkKCsLOru7LCA0NtTweGRlJXl4eO3fuZOjQodjb27Np0ya2bdvGLbfcUm+/X3zxBatWrWrt+ACEBIYwm9mEBJo/n0lERMRateuCqKCgAF9f31Pud3GpnRxZWFhoue+jjz7iiSeewMbGBn9/fxYvXkxYWP37h02bNo0RI0ZYbqelpbFkyZIWTl+rq3NXggmmq3PXVulfRBq2L20fK1nJ+LTx+AzWHCIRa9WuCyKgUafW3N3dWb58eaP79PDwwMPD42xiNVpOXg4/8iOX512uCZ0iJrC3s8cVV+zt7M2OIiImapNziBrLzc2t3sUVi4qKAHB1dT3XkZrsSN4RNrOZI3lHzI4iYpUC/QKZznQC/QLNjiIiJmrXI0QhISHExsZSVVVVZx7R/v37gdrFGM9GbGwssbGxFBcXn1U/Denfuz/3cz/9e/dvtWOIyOlVVVVRSilVVVVmRxERE7XrEaJRo0ZRVlbG999/X+f+9evX4+HhQb9+/c6q/5iYGJYuXcqCBQvOqh8RabsSkhN4kidJSD79Vaki0vG12RGiLVu2UF5eTmlpKVA7sXnjxo0ADBs2DAcHB4YNG8b555/PsmXLKC0txc/Pj2+//ZZffvmFRYsWnbIGUVuUciCFN3iDCw9cqAmdIiYI9AtkBjN0ykzEyrXZgmjZsmVkZ2dbbm/YsIENGzYA8MEHH+DjU1s8LFmyhNdff50VK1ZYtu54+OGH6926oy1y6OKAJ544dHEwO4qIVerm2o1+9KObazezo4iIidpsQbR69epGtXNycmLhwoUsXLiwlRO1Dn8ffy7lUvx9/M2OImKV8o7lEUccecfydKWniBVr13OIOoLKykqKKKKystLsKCJWKTM7kzWsITO7/pXrRcQ6tNkRorbgXFxltidlD8/wDBelXETgUM1hEDnXBvYdyGIWM7DvQLOjiIiJVBA1ICYmhpiYGBITE5k7d26rHKOXfy+u5Vp6+fdqlf5FRETkzHTKzGSuLq70pjeuLm1/EUmRjig1PZV3eZfU9FSzo4iIiVQQmSzvWB6/8it5x/LMjiJilTrZdMIWWzrZ6NuhiDXTdwCTHTp8iK/5mkOHD5kdRcQqBfkHcTVXE+QfZHYUETGRCiKTRfaJ5EEeJLJPpNlRRKxSTU0NVVRRU1NjdhQRMZEmVTfgXFxlJiLm2pW4iyUsYWTiSPzO9zM7joiYRCNEDTgXe5ntP7ifN3mT/Qf3t9oxROT0AnwDuJzLCfANMDuKiJhIBZHJ7GztcMYZO1sN1omYobtbdwYxiO5u3c2OIiImUkFkskC/QK7kSm0sKWKSYwXH2MlOjhUcMzuKiJhIBZHJqqurKaec6upqs6OIWKX0Q+l8zMekH0o3O4qImEgFkcl2J+1mKUvZnbTb7CgiVql/7/48wAP0793f7CgiYiIVRCYL9AvkKq7SKTMRk9ja2tKZztja2podRURMpILIZN1cu9Gf/nRz7WZ2FBGrlJaRxmpWk5aRZnYUETGRLm1qwLlYh+ho/lG2sY2j+UfxwafVjiMi9auuqaaCCqprNI9PxJpphKgB52IdooysDD7nczKyMlrtGCJyeiGBIVzP9YQEhpgdRURMpILIZNq6Q0RExHwqiExmY2ODLbbY2NiYHUXEKu3Ys4NHeIQde3aYHUVETKSCyGQH0g/wHu9xIP2A2VFErJKftx9TmIKft/YxE7FmKohExKq5d3fnfM7Hvbu72VFExEQqiEzWK6AX13ItvQJ6mR1FxCoVFBWwl70UFBWYHUVETKSCyGSGYVBNNYZhmB1FxCqlZaTxPu9rHSIRK6d1iBpwLtYh2rl3J4/xGCP2jsA32rfVjiMi9esb1pd7uIe+YX3NjiIiJlJB1ICYmBhiYmJITExk7ty5rXIMfx9/LuVS/H38W6V/EWmYvb09zjhjb29vdhQRMZFOmZmsR7cenMd59OjWw+woIlYp/VA6n/KpdrsXsXIqiEyWX5jPbnaTX5hvdhQRq1RxvIKjHKXieIXZUUTERCqITHYw8yAf8iEHMw+aHUXEKoX1CuMmbiKsV5jZUUTERCqITNa/d3/u53769+5vdhQRERGrpYLIZLa2tjjggK2trdlRRKzSrsRd/IN/sCtxl9lRRMREKohMdjDzIB/xkU6ZiZjEy8OLsYzFy8PL7CgiYiIVRCarqq6ihBKqqqvMjiJilTzdPbmAC/B09zQ7ioiYSAWRyUICQ5jNbEICQ8yOImKVioqL2Mc+ioqLzI4iIiZSQSQiVi01PZW3eZvU9FSzo4iIibRSdQPO5dYdw/cOx2ewT6sdR0TqFxEawUIWEhEaYXYUETGRCqIGnIutO3y9fJnIRHy9tI+ZiBm6dO5Cd7rTpXMXs6OIiIl0ysxk7t3dGcIQ3Lu7mx1FxCplZGXwJV+SkZVhdhQRMZEKIpMVFhWSRBKFRYVmRxGxSmXlZaSTTll5mdlRRMREKohMdiDjAO/xHgcyDpgdRcQqhQeHM5/5hAeHmx1FREykgshkfcP6chd30Tesr9lRRKSVZGVlsXjxYrKyssyOIiKnoYLIZPb29rjggr29vdlRRKxSQnICT/M0CckJrXaMrKwsHnnkERVEIm2YCiKTZWRl8Dmfa0KniEncu7nzJ/6Eo4Mj8fHxlJXVziXKyMhg9+7dlna7d+8mMzMTgLKyMuLj4ykpKQFqC56dO3da2iYkJJCeng5AeXk5e/bssTx2+PBhtm/fbrmdmJhIWloaAJWVlcTHx1NQUABATk4O27Zts7RNTk4mNVXrJYm0BhVEJiuvKCeHHMorys2OImKVvDy9GMMY8o7lER0dzf79+wF4/vnnueKKKyztLr30UpYvXw7UFibR0dEkJNSOKr366qtMmjTJ0vbqq6/mqaeeAmoLq7nX1S7bUZJTwltvvcW4ceMsbefMmcNjjz0GQG5uLtHR0fzwww8ArF69mmHDhlna3nrrrTzwwANUV1dTWFhIdXV1i78fItaq2esQpaamkpiYyKhRo3B2dgagoqKC5cuX8+OPP9KlSxeuvfZapk6d2mJhO6KwXmHczM2E9QozO4qIVesb1pe4uDhCQmq30Vm4cCFz5syxPP7555/TrVs3AMLDw4mLiyMionYxx1tuuYXp06db2r7//vu4uLgA4O/vz7LHlnHrg7dSmlvKrFmzmDBhgqXtqlWrcHBwAMDDw4O4uDhCQ0MBmDFjBhdccIGl7csvv4ydnR3bt28nOjqauLg4Bg8e3PJvhogVanZB9Pbbb7Nt2zYmTpxoue+1117jiy++wNHRkYKCAp555hl8fX2Jjo5ukbAiIq2lNK0Un74+5O/JJ598bLGlBz3Iiq+d99ODHnAYsg7X3vbBh8LEQgqpXTLDAw9L2+50h3LIyqm93btbb8YwBvtj9tRk1tCTnpa2rrhCCWTl/d5v6b5SSikFwBtvS9uudAXAsdCRVS+tIjg4+Fy8NSJWodkF0Z49ezjvvPOwsbEBoKqqinXr1tG3b1+ef/55ioqKuPnmm1m9erUKogbsTtrNUpYyImmEtu4QMYGThxP2TvZ8et2nrXqccYxj84LNbGZzi/Rn72RPpymdoHuLdCdi9ZpdEB09ehQvLy/L7YSEBEpLS7n00kvp0qULXbp0YcSIEWzZsqVFgnZUPd17MopR9HTvaXYUEavkFujG7XtupzS3tNWOkbsnl0+u+4Qr3rkCj74eZ91f8q/JLLt1GZemXIpboFsLJBSRZhdEtra2VFZWWm7v2LEDGxsbzjvvPMt9bm5ulqsl2qNzsbmrp7snIxiBp7tnqx1DRBrmFuh2TgoLj74eLTISvGPPDj7nc27NupX+9G+BZCLS7ILI29u7zuWgGzduxMfHB29vb8t9OTk5uLm1399ezsXmrsUlxaSSSnFJ6xVdImKurj5dGfPwGLr6dG2R/iL7RPIgDxLZJ7JF+hORs7jsfsKECaSkpDB//nzuuOMOUlJSGD9+fJ02SUlJ+Pv7n3XIjmz/wf28yZvsP7jf7Cgi0kpcfFwYu3gsLj4uLdKfjY0Nttha5nCKyNlrdkF0xRVXMHbsWPbu3cvOnTv505/+xPXXX295fM+ePRw4cECXhJ5B75DeLGABvUN6mx1FRNqJA+n/fw/E9ANmRxHpMJp9yqxz58488sgjlJSUYGNjg5OTU53HfXx8WLFiRZ1TaHIqhy4OuOOOQxcHs6OIiIhYrWaPEP32228cPnwYZ2fnU4ohgG7duuHq6kpKSspZBezoMrMzWcc6MrMzzY4iIu1Er4BeXMu19AroZXYUkQ6j2QXRX/7yF7766qsG2/z3v//lL3/5S3MPYRVKSks4wAFKSkvMjiIi7YRhGFRTjWEYZkcR6TCaXRA15oNoGIYm/Z1B75De3MZtmkMkIo22c+9OHuMxdu7deebGItIorbq5a0ZGhmWfMxERaRn+Pv5cyqX4++gqXpGW0qRJ1UuXLq1ze/PmzWRnZ5/Srrq6mpycHLZv387QoUPPLmEHtyd5D8/wDKOSR2nrDhFplB7denAe59GjWw+zo4h0GE0qiE6eM2RjY0NKSsppJ03b2NjQp08f7rjjjrNL2MH16NaDwQzWNzYRabT8wnx2s5v8wnx80C9SIi2hSQXRBx98ANTODbr66qu56qqruPLKK09p16lTJ1xcXHB0dGyZlB2Yl6cX4xiHl6fXmRuLiAAHMw/yIR9yU+ZN9KWv2XFEOoQmFUQnryl0//3307t3b60zdJZKy0rJJJPSstbbWFJEOpb+vftzP/fTv7f2MRNpKc2eVD1p0iRCQ0NbMotVSjmQwuu8TsoBrdckIo1ja2uLAw7Y2tqaHUWkw2j2StUnJCQksHfvXoqLi6mpqTnlcRsbG2bPnn22h+mwwoPDmc98woPDzY4iIu3EwcyDfMRHXJx5sS7GEGkhzS6ICgsLeeCBB9i1a1eDaxKpIGqYo4Mj3njj6KD5ViLSOFXVVZRQQlV1ldlRRDqMZhdEy5cvZ+fOnURFRXHxxRfTs2dPDd82Q9aRLGKJZeqRqbpaREQaJSQwhNnMJiQwxOwoIh1Gswuin3/+mb59+/Lcc89pNeqzUFhUyG52U1hUaHYUERERq9XsSdXHjx9n0KBBKobOUkRoBAtZSERohNlRRKSd0NYdIi2v2SNE4eHh9a5S3ZHExsYSGxtLcXGx2VFERCx8vXyZyER8vXzNjiLSYTR7hOiGG27gxx9/ZPfu3S2Zp02JiYlh6dKlLFiwoNWOkbgvkRd5kcR9ia12DBHpWNy7uzOEIbh3dzc7ikiH0ewRopycHIYPH86dd97JRRddRHh4+Gk3cr344oubHbCjc+nqQgQRuHR1MTuKiLQThUWFJJFEYVGhLsYQaSHNLoj++c9/YmNjg2EYfPXVV3z11VenzCcyDAMbGxsVRA3w9fJlAhM09C0ijXYg4wDv8R6zMmYRgeYfirSEZhdE999/f0vmsFpl5WUc4Qhl5WVmRxGRdqJvWF/u4i76hmkfM5GW0uyCaNKkSS2Zw2olpybzEi8xLXUaIRdoTREROTN7e3tccMHe3t7sKCIdRrMnVUvLCA0K5SZuIjRI+8KJSONkZGXwOZ+TkZVhdhSRDqPZI0SHDx9udFsvL6/mHqbDc3ZyJoAAnJ3qn5AuIvJH5RXl5JBDeUW52VFEOoxmF0QzZsxo1KKMNjY2bNiwobmH6fAO5xzme77n0pxLdbWIiDRKWK8wbuZmwnqFmR1FpMNodkE0ceLEegui4uJi9u3bR1ZWFlFRUXh7e59VwI4uLz+P//E/8vLzzI4iIiJitZpdED3wwAOnfcwwDN5//33+85//cN999zX3EFahX3g/7uZu+oX3MzuKiLQTu5N2s5SljEgagc9gjSyLtIRWmVRtY2PDNddcQ3BwMC+99FJrHEJExGr1dO/JKEbR072n2VFEOoxWvcosIiKC+Pj41jxEu5ecmswrvEJyarLZUUSknfB092QEI/B09zQ7ikiH0aoFUWZmJtXV1a15iHbP0cGRAAJwdHA0O4qItBPFJcWkkkpxiTaeFmkpLV4Q1dTUcPjwYd58801+/PFH+vfv39KH6FD8ffyZwhT8ffzNjiIi7cT+g/t5kzfZf3C/2VFEOoxmT6oeM2ZMg5fdG4ZB165due2225p7CKtQcbyCYxyj4niF2VFEpJ3oHdKbBSygd0hvs6OIdBjNLogGDRpUb0FkY2ODi4sLERERTJ48mR49epxVwI4ucV8iz/M8k/ZNotewXmbHEZF2wKGLA+6449DFwewoIh1GswuiF154oSVzWK3ggGCu53qCA4LNjiIi7URmdibrWMeU7Cla0FWkhWgvM5O5dHUhlFBcurqYHUVE2omS0hIOcICS0hKzo4h0GM0eITrZzp07SUlJoaSkBCcnJ8LDw4mMjGyJrju8nLwcfuInLs+7XL/piUij9A7pzW3cpjlEIi3orAqihIQE/vGPf5CRUbvjsmEYlnlF/v7+3H///QwYMODsU3Zgh3MPs5GNHM5t/Ga5IiIi0rKaXRAdOHCAv/71r5SXlzNkyBCioqLo0aMHx44dY9u2bfz666/cfffdvPLKK/Tq1asFI3csAyIG8AAPMCBChaOINM6e5D08wzOMSh6lrTtEWkizC6JVq1ZRVVXF008/zZ/+9Kc6j1177bVs3bqV++67j1WrVrF48eKzzSkiIv9fj249GMxgenTTVbwiLaXZk6q3bdvGmDFjTimGTjj//PMZM2YM27Zta3Y4a5ByIIUVrCDlQIrZUUSknfDy9GIc4/Dy9DI7ikiH0eyCqKSkBB+fhodqfXx8KCnRVRAN6dK5Cz3oQZfOXcyOIiLtRGlZKZlkUlpWanYUkQ6j2QWRu7s7u3fvbrBNQkIC7u7uzT2EVQjwDeByLifAN8DsKCLSTqQcSOF1XtfIskgLanZBNHLkSH777TfeeOMNKirqbjtRUVHBv//9b7Zt28bIkSPPOmRHVllZSQklVFZWmh1FRNqJ8OBw5jOf8OBws6OIdBjNnlQ9e/ZsfvrpJ9555x2++OIL+vbtS/fu3Tl27Bh79+4lPz8fX19fZs+e3ZJ5m+X48eM888wzbN26lZKSEnr16sXtt9/eJtZK2pOyh6d4ivEp4wkcGmh2HBFpBxwdHPHGG0cHR7OjiHQYzR4hcnV15dVXX+Xiiy+mvLycLVu28NVXX7FlyxZKS0uZNGkSL7/8Mq6uri2Zt1mqq6vx8fHhpZdeYt26dVx66aU88MADlJeXmx2NIP8gruZqgvyDzI4iIu1E1pEsYokl60iW2VFEOoyzWpjR1dWV+++/n7vvvpu0tDRKS0txcnIiKCgIO7sWWQS7RTg6OjJnzhzL7UmTJrF8+XIyMjIICwszLxjg5uJGH/rg5uJmag4RaT8KiwrZzW4KiwrNjiLSYTS5annrrbcoLy/nxhtvtBQ9dnZ2hIaGWtpUVlby+uuv4+joyHXXXdfkUKWlpbz55pskJyeTnJxMQUEBc+bM4cYbb6y37RtvvMGGDRsoKioiMDCQmTNnMn78+NP2n5aWRkVFBb6+vk3O1tLyjuWxla1MPzZdW3eISKNEhEawkIVEhEaYHUWkw2jSKbOtW7fy73//G1dX1wZHgOzt7XF1deWNN94gLi6uyaEKCgpYs2YNlZWVjBo1qsG2ixYtYv369cyZM4cnn3ySPn368Mgjj/Df//633vbl5eU8/vjjzJo1CycnpyZna2mZ2Zl8yZdkZmeaHUVERMRqNWmE6Ouvv8bFxYUrrrjijG0vv/xy3nnnHb766iuio6ObFMrb25svv/wSGxsb8vPzWbt2bb3tfv75Z7Zu3cpDDz1ETEwMAIMHDyY7O5uXX36ZCy+8EFtbW0v7qqoqHn74YYKCgrj++utPe/zc3Fzy8vIst9PS0pqUvykG9h3IwzzMwL4DW+0YItKxJO5L5EVeZMy+Mdq6Q6SFNKkg2rVrF9HR0XTu3PmMbTt37sz555/Prl27mhzqxAaxZ7J582YcHR0ZO3ZsnfsnT57Mo48+SkJCguVKspqaGh5//HE6derEfffd1+AxvvjiC1atWtXk3CIi54JLVxciiMClq4vZUUQ6jCYVRLm5uYwbN67R7X18fPjhhx+aHKqxUlNT653AfWI+U2pqqqUgevrpp8nLy+Opp54644TvadOmMWLECMvttLQ0lixZ0sLpa+0/uJ+3eZuYgzH6TU9EGsXXy5cJTMDXy/x5kCIdRZMKok6dOlFVVdXo9lVVVXTq1Owr+8+ooKCg3onRLi61vzUVFtZegZGdnc3atWvp3Lkz06ZNs7R78sknGTRo0CnP9/DwwMPDo5VS12XbyZYudMG2k+2ZG4uIAGXlZRzhCGXlZWZHEekwmlQQubu7k5qa2uj2qamprV5YNOb0mre3N5s2bWrVHM0V5B/EDGZoHSIRabTk1GRe4iWmpU4j5IIQs+OIdAhNGr4ZOHAg8fHxZGWdeTGwrKws4uPj6x2BaSlubm4UFBSccn9RURFAm1gU8kyqq6s5znGqq6vNjiIi7URoUCg3cROhQaFnbiwijdKkgujyyy+nqqqKhx56iPz8/NO2Kygo4OGHH6a6uppLL730bDOeVkhICGlpaaecxtu/fz8AwcHBZ9V/bGws999/Py+++OJZ9dOQ3Um7+Qf/YHdSwxvlioic4OzkTAABODs5mx1FpMNoUkEUERHBVVddRVJSErNmzWLFihXEx8eTnp5Oeno627Zt44033mDWrFkkJiZy1VVXERHReguHjRo1irKyMr7//vs6969fvx4PDw/69et3Vv3HxMSwdOlSFixYcFb9NCTAN4DpTNdu9yLSaIdzDvM933M457DZUUQ6jCavVH377bfTuXNn/vOf//D222/z9ttv13ncMAw6derEddddx80339zsYFu2bKG8vJzS0lKg9kqvjRs3AjBs2DAcHBwYNmwY559/PsuWLaO0tBQ/Pz++/fZbfvnlFxYtWlRnDaK2qrtbdyKJpLtbd7OjiEg7kZefx//4H3n5eWduLCKN0uSCyMbGhnnz5jFlyhTWrVvHrl27OHr0KAA9evQgMjKSSZMm4efnd1bBli1bRnZ2tuX2hg0b2LBhAwAffPABPj61l6gvWbKE119/nRUrVli27nj44Ycb3LqjLTlWcIztbOdYwTFt3SEijdIvvB93czf9ws9uFFxEftfsHVj9/PyYO3duS2apY/Xq1Y1q5+TkxMKFC1m4cGGrZWlN6YfS+ZRPueXQLfRD39xERETM0Ha2pG+DYmNjiY2Npbi4uNWOMSBiAItYxICIAa12DBHpWJJTk3mFVxiXOk4Luoq0EBVEDYiJiSEmJobExMRWGw3r1KkTdti16gKWItKxODo4EkAAjg6OZkcR6TD0U9hkaRlpvM/7pGW03gayItKx+Pv4M4Up+Pv4mx1FpMNQQWSyGqOGaqqpMWrMjiIi7UTF8QqOcYyK4xVmRxHpMFQQmSw4IJiZzCQ44OwWkRQR65G4L5HneZ7EfYlmRxHpMFQQiYi0M8EBwVzP9fpFSqQFqSAy2Y49O1jMYnbs2WF2FBFpJ1y6uhBKKC5dXcyOItJh6CqzBpyLy+79vP2YylT8vM9uIUsRsR45eTn8xE9cnne5FnQVaSEqiBpwLi67d+/uTjTRuHd3b5X+RaTjOZx7mI1s5HCu9jITaSk6ZWay/MJ8EkggvzDf7Cgi0k4MiBjAAzygBV1FWpAKIpMdzDzIalZzMPOg2VFERESslgoik/UL78e93KtNGkWk0VIOpLCCFaQcSDE7ikiHoYLIZHZ2djjhhJ2dpnOJSON06dyFHvSgS+cuZkcR6TBUEJnsYOZBPuZjnTITkUYL8A3gci4nwDeg1Y5RlFXExsUbKcoqarVjiLQlGpZowLm47L6yqpJCCqmsqmy1Y4hIx1JZWUkJJVRWtt73jeKsYr5/5HsipkXg4qP1jqTj0whRA2JiYli6dCkLFixotWOEBoVyAzcQGhTaascQkY5lT8oenuIp9qTsMTuKSIehgkhEpJ0J8g/iaq4myD/I7CgiHYYKIpPtStzF4zzOrsRdZkcRkXbCzcWNPvTBzcXN7CgiHYbmEJnM29Ob8YzH29Pb7Cgi0k7kHctjK1sZ88uYVjtG7p7cOn+3BCcPJ9wCVcRJ26SCyGQePTwYxjA8eniYHUVE2om88jzWsQ7f23zxxbdVjlFEEVvZStF1RbjQMpOq7Z3suX3P7SqKpE1SQWSyouIiUkihqLhImzSKSKOMmTKGo2lHKc0tbbVjbFq3iWcefIZbH7uV0ZNHn3V/OXty+PS6TynNLVVBJG2SCiKTpaan8g7vcF36dfSmt9lxRKSdcAt0a9XCotuebrV/B3fDZ7B+WZOOTwVRA87FOkR9wvrwV/5Kn7A+rXYMEelYkpOTueOOO1i+fDnh4eFmxxHpEFQQNSAmJoaYmBgSExOZO3duqxyjs31n3HCjs33nVulfRDoeW1tbXF1dsbW1NTuKSIehy+5NlpGVwRrWkJGVYXYUEWknQkJCeP/998nPz+fo0aMAHD16lPj4eGpqagDYv38/KSm/b/4aHx9Pbm7tFWPHjh0jPj6eqqoqAFJTU0lKSrK0/e233ygsLASgrKyM+Ph4jh8/DsDBgwfZu3evpe2OHTvIzs4GoLi4mPj4eMrLywHIyMggISHB0rYIbQMibZcKIpOVlZeRRRZl5WVmRxGRdqS8vJzo6Gi+/vprANatW0d0dLRlO4+7776bhQsXWtpHR0fz2WefAbBhwwaio6MtRc+DDz7IvHnzLG1HjBjBzz//DEBKcgrR0dEcOXIEgMcff5zrr7/e0nb8+PGsXLkSqC2koqOjSUtLA2DZsmVcddVVQO1SAW/whn75kzZLp8xMFh4czjzmER6seQAi0ngODg7ExcXRq1cvACZPnkxcXBz29vYAPP3005bRIoC4uDgCAwMBGDduHHFxcbi6ugLw2GOP1dkX7ccffyQ9MZ1n336WyGGRxMXF0bNnTwD+/ve/U1r6+9Vt3377reWxqKgo4uLiCAqqXUH7b3/7GzfffDNQu29jBBHY2enHjrRN+soUEWmHbG1tGTx4sOV2jx496NGjh+V2SEhInfYnt+3evTvdu3e33A4ODq7TNioqylJMeQZ51nnuiaLqhIEDB1r+3bVr1zpt/f39Lf/29vRmMpO1CK20WTplZrKE5ASe5EkSkhPO3FhEpJ0qLSvlEIcoLWu9tZNEzoYKIpN5dPdgOMPx6K6VqkWk40o5kMJrvEbKgZQzNxYxgQoik/X06MkoRtHTo6fZUUREWk1YrzDmMY+wXmFmRxGplwoik5WUlpBGGiWlJWZHERFpNU6OTvjii5Ojk9lRROqlgshk+9L2sZKV7EvbZ3YUEZFWk52Tzbd8S3ZOttlRROqlq8wacC627ugd0ps7uIPeIdrHTETaDh8fHx5++GF8fFpmH7P8gnx2sIP8gvwW6U+kpakgasC52LrDoYsDHnjg0MWhVfoXEWkOHx8fFi9e3GL9ad9Gaet0ysxkhw4fYj3rOXT4kNlRRERErJYKIpMVlxSzj30Ul7TeaTkREbMl7U/iX/yLpP1JZ24sYgIVRCbrHdKb27ldc4hEpEPr6tyVUELp6tzV7Cgi9VJBJCIirc7Xy5eLuRhfL1+zo4jUSwWRyfam7OVZnmVvyl6zo4iItJryinJyyaW8otzsKCL1UkFksm5u3RjIQLq5dTM7iohIq0nan8RylmsOkbRZKohM5u3pzXjGawdoEenQQoNCuYEbCA0KNTuKSL1UEJlMO0CLiDVwdnImiCCcnZzNjiJSLxVEJtMO0CJiDY7kHmEzmzmSe8TsKCL1UkFkMu0ALSLWIPdYLj/zM7nHcs2OIlIvFUQm0w7QImIN+oX3417upV94P7OjiNRLe5k14Fxs7npiB+hpOdPwoWU2URQREZGm0QhRA2JiYli6dCkLFixotWNoB2gRsQbJqcm8xmskpyabHUWkXiqITKYdoEXEGjg6OOKDD44OjmZHEamXCiIREWl1/j7+TGUq/j7+ZkcRqZcKIpNpB2gRsQbHK49TQAHHK4+bHUWkXiqITKYdoEXEGmjfRmnrVBCZTDtAi4g1CA4I5jquIzgg2OwoIvVSQWQy7QAtItbApasLYYTh0tXF7Cgi9VJBZDLtAC0i1iD3aC5b2ELu0dZbqTorK4vFixeTlZXVaseQjksFkcm0A7SIWIMTi9Bm52S32jGysrJ45JFHVBBJs6ggMpl2gBYRazAgYgB/5+8MiBhgdhSReqkgMpl2gBYRETGfCiKTaQdoEbEG+9L2sZKV7EvbZ3YUkXqpIDKZdoAWEWtgb2ePK67Y29mbHUWkXiqIRESk1QX6BTKd6QT6BbbaMUpySur8LdIUKohMph2gRcQaVFVVUUopVVVVrXaM0tzSOn+LNIUKIpNpB2gRsQYJyQk8yZMkJCeQm5tLfHy85bGUlBT2798PQE1NDfHx8Rw9ehSAo0ePEh8fT3V1NQD79+8nOfn3XyDj4+PJyckBoLS0thA60fbAgQMkJiZa2v72228cPnwYgMLCQuLj46moqADg4MGD7Nmzx9J2x44dunzfyqggMpl2gBYRaxDoF8gMZhDoF8hnn31GdHS05bGFCxdy9913A1BZWUl0dDTr1q0D4OuvvyY6Opry8trV/O+77z7uuOMOy3OHDBnCJ598AsDevbX7pJ0ojBYvXsxNN91kaTt69GjeffddAH799Veio6MtRc8TTzzBzJkzLW0nTpzIihUrWvZNkDbNzuwA1k47QIuINejm2o1+9KObazcuu+wyBg8ebHns+eefp1On2t/P7e3tiYuLo1evXkBtYRIXF4eDgwNQW7icGAGC2sImICAAgD59+gDg5OQE1BZEJ0aAADZt2oSPjw9QW0jFxcVZbt93332UlPw+9+jrr7/GycmJn3/+mcjISLp21QbcHZ0KIpOd2AF6YspEgoYGmR1HRKTVeXh44OHhYbkdFhZm+XenTp3qFEs9evSgR48eltshISF1+jq57YlCyNbWFsBSVJ0QFRVl+berq2ud5wYG1p3sPXDgQOLj47nggguIi4ur01Y6JhVEDYiNjSU2Npbi4uJWO4Z2gBYRaZv69u3Lrl27TinCpGNSQdSAmJgYYmJiSExMZO7cua1yDO0ALSLSNjk6OtK/f3+zY8g5oknVJjsXO0CLiEjTZWRkcM8995CRkWF2FDkHNEJkspN3gI4k0uw4IiKtKmdPTqv1nZ+ab/k7K/7sL5lP2ZfCZ598xpw5c/D315XAHZ0KIpNpB2gRsQZOHk7YO9nz6XWfttoxDnEIgO8e/I69D+5tkT5vcLoBfxcVQ9ZABZGIiLQ6t0A3bt9ze6uuIr1p3SZee/A1LnzsQkZPHn3W/eXsyeHT6z6lNLcUt0C3FkgobZkKIpOd2AF6fNp4fAb7mB1HRKTVuAW6tWph0W1Pt9q/g7u1yPfTxH2JPM/zjNk3Rt+frYAmVZtMO0CLiLRNri6u9Kc/ri6uZkeRc0AFkcnOxQ7QIiLSdD49fYghBp+eGh2yBiqITHYudoAWEbEGXh5ejGEMXh5eLdJfWXkZ2WRTVl7WIv2dTlFWERsXb6Qoq6hVjyMNU0FkspN3gBYRkebz8vRiHOPw8myZgig5NZlXeIXk1OQW6e90irOK+f6R7ynOar1dEeTMVBCZ7OQdoEVEpO0I6xXGXOYS1ivszI2l3VNBZLKTd4AWEZG2w8nRCT/8cHJ0atXjHM45zAY2cDjncKseRxqmgshkecfyiCOOvGN5ZkcREZGTnKtC5XDuYb7new7nqiAykwoik2VmZ7KGNWRmZ5odRURETnI0/yjxxHM0/6jZUeQcUEFksoF9B7KYxQzsO9DsKCIicpK+4X25i7voG97X7ChyDqggEhGRDqGrT1fGPDyGrj5dzY4i7ZAKIpOlpqfyLu+Smp5qdhQRkXbNxceFsYvH4uLj0iL9Je1P4iVeIml/Uov0J22bCiKTdbLphC22dLLRf4WISFvi7ORML3rh7ORsdhQ5B/RT2GRB/kFczdUE+QeZHUVERE7i5+3HZCbj5+1ndhQ5B7Tbvclqamqoooqamhqzo4iIyEnKK8rJI4+M7Rmtepz81HzL31nxWWfdn5OHE26Bbmfdj7VRQWSyXYm7WMISRiaOxO98/RYiItJWHDx6kBd5kYobK/DFt9WOc4hDAHz34HfsfXDvWfdn72TP7XtuV1HURCqITBbgG8DlXE6Ab4DZUURE5CSDRw9mzftriPCNoKtz6125tmndJl578DUufOxCRk8efVZ95ezJ4dPrPqU0t1QFURNpDpHJurt1ZxCD6O7W3ewoIiJyEhcXF/409k+UupbiM9gHn8E+FDoXctz9OD6DffCI9CCLLJxCnfAZ7INdgB3ZNtmWtsUuxZR3L8dnsA89B/Ukiywcgh3wGexD56DOZJGF93nedAvuBkCFUwU+g33wPs+bLLLoHNQZn8E+OAQ7kEUWPQf1xGewD+Xdyyl2KbYcJ9smG7sAO3wG+9DFvwv55Jv6vrVXKohMdqzgGDvZybGCY2ZHERGRP3jrrbcYN26c5facOXN47LHHAMjNzSU6OpoffvgBgNWrVzNs2DBL21tvvZUHHngAgJKSEqKjo4mNjQVgzZo1REdHU11dbWn/zjvvAFBdXU10dDRr1qwBIDY2lujoaEpKSgB44IEHuPXWWy3PGzZsGKtXrwbgqw1f8RzPkZHVuvOesrKyWLx4MVlZZz/nqa3QKTOTpR9K52M+Zu6hufSjn9lxRETkJLNmzWLChAmW26tWrcLBwQEADw8P4uLiCA0NBWDGjBlccMEFlrYvv/wydna1P2adnZ2Ji4sjODgYgKlTpxIXF4etra2l/XXXXQeAra0tcXFxBAXVXn0cExNDXFwczs61l///4x//oKqqyvK8LVu24O/vX9t2VAzzmY+Xh1fLvhF/kJWVxSOPPMK0adPw8fFp1WOdK1ZTEH322WesWbOG/fv3c/3113PjjTeaHQmA/r378wAP0L93f7OjiIjIH3h5eeHl9XtxERERYfm3vb09gwcPttz29PTE09PTcjs8PNzyb1tb2zpt3d3dcXd3P+VYADY2NnXadu/ene7df59WcaKoOuG88877vd/u7njjjb29feNfpABWdMrM3d2dG2+8kVGjRpkdpQ5bW1s607nObwkiIiLNkZGVwed83uqnzDoiqymIRo0axYgRIyxDjm1FWkYaq1lNWkaa2VFERKSdK68oJ4ccyivKzY7S7rTJU2alpaW8+eabJCcnk5ycTEFBAXPmzKn3NFdpaSlvvPEGGzZsoKioiMDAQGbOnMn48eNNSN501TXVVFBBdU31mRuLiIg0IKxXGDdzM2G9wsyO0u60yRGigoIC1qxZQ2Vl5RlPcS1atIj169czZ84cnnzySfr06cMjjzzCf//733OU9uyEBIZwPdcTEhhidhQREZFGKckpqfN3R9AmR4i8vb358ssvsbGxIT8/n7Vr19bb7ueff2br1q089NBDxMTEADB48GCys7N5+eWXufDCC5s1Nyc3N5e8vDzL7bQ0nc4SEZG2b3fSbpaylBFJI/AZ3HpXf5Xmltb5uyNokwWRjY1No9pt3rwZR0dHxo4dW+f+yZMn8+ijj5KQkEBkZGSTj//FF1+watWqJj+vOXbs2cEjPMKwPcNa9YtXREQ6vp7uPRnFKHq69zQ7SrvTJguixkpNTSUoKMiyzsMJJ9aESE1NtRREVVVVVFdXU1NTQ3V1NRUVFdjZ2dU7gjRt2jRGjBhhuZ2WlsaSJUta5TX4efsxhSnaTVlERM6ap7snIxiBp7vnmRtLHe26ICooKMDX99QN91xcXAAoLCy03PfWW2/VGfV5++23+b//+z8mTZp0yvM9PDzw8PBo+cD1cO/uzvmcj3t39zM3FhERaUBxSTGppFJcUmx2lHanXRdE0PjTazfeeGObWYzxZAVFBexlLwVFBfigU2YiItJ8+w/u503e5JqD1xBO+JmfIBZt8iqzxnJzc6OgoOCU+4uKigBwdXU915GaLC0jjfd5X+sQiYhYKScPpzp/n43eIb1ZwAJcurqQkJBguX/nzp2WfcdKSkqIj4+nrKwMgMzMTHbv3m1pu3v3bjIyahd2LCsrIz4+nuLi2hGnrKwsduzYYWl76NAhDh48CEBFRQXx8fGWszOHDx/mt99+s7RNTEzkwIEDAFRWVhIfH09+fj4AOTk5ln7M0q4LopCQENLS0urs6QKwf/9+4NTlzZsqNjaW+++/nxdffPGs+mlI37C+3MM99A3r22rHEBGRtsvZ07nO32fDoYsD7riz4j8ruPrqqy33T5o0iVdffRWAhIQEoqOjSU5OBmD58uVceumllrZXXHEFzz//PFD78zQ6OpqdO3cCsGLFCiZOnGhp+69//YsnnngCqC2WoqOj+fXXXwF49913GT16tKXtTTfdxOLFiwHIz88nOjqaTZs2AfDaa68REhJialHUrk+ZjRo1ijVr1vD999/XWYhx/fr1eHh40K/f2W2WGhMTQ0xMDImJicydO/ds49bL3t4eZ5y174yIiLSYW2fdyl297rLc/uqrryxzY/v160dcXJxlr7U77rjDsrEswCeffIKbmxtQO/AQFxdH7969gdqiZtq0aWTtrB1tuv322xn/59qfvz4+PsTFxREWVrso5MyZM7nwwgst/a5YsYIuXboA0K1bN+Li4ggJqV2Db968ecybN6/OXnDnWpstiLZs2UJ5eTmlpbVrHKSlpbFx40YAhg0bhoODA8OGDeP8889n2bJllJaW4ufnx7fffssvv/zCokWL2sX+YOmH0vmUT5l0aJIuuxcRkRbh5+2HT7/ff6acvASNs7Nznc1j/fz88PP7/Urn/v1/32zc0dGxTlsfHx98fHwsBZGvry+BgYEAdOnSpU7bpm6Ma7Y2WxAtW7aM7Oxsy+0NGzawYcMGAD744AN8fGr/o5csWcLrr7/OihUrLFt3PPzww+1m646K4xUc5SgVxyvMjiIiIibw8fHh4Ycftvxcs0bJycnccccdLF++3DJyda612YJo9erVjWrn5OTEwoULWbhwYSsnOr3q6moqKyub9dygoCDuDLqToKAgysu1GZ+ItF329vbtYuS9vfHx8bHMrbFWtra2uLq6mvr11WYLovaiuLiYjIwMDMNo1vOr7aoZ8coICu0KKUntOHvCiEjHY2Njg7+/P127djU7inQwISEhfPjhh6ZmUEHUgNjYWGJjYy2XG/5RdXU1GRkZODk54enp2eg1kU5WfKyYisoKvHt607W7vsmISNtkGAY5OTlkZGQQHh6ukaI2LmdPTqv2n5+ab/k7Kz7rrPurrq6mk0snvMK9TPvaUkHUgDNdZVZZWYlhGHh6euLo6NisY9Q41+CCC07OTjg4OJxtZBGRVuPp6cmBAweorKxUQdRGOXk4Ye9kz6fXfdqqxznEIQC+e/A79j64t0X6e43X2Lh2I2OmjDnr/ppDBVELaM7I0Al2tnZ0pSt2tvqvEJG27Wy+18m54Rboxu17bm/1Xeg3rdvEaw++xoWPXcjoyaPP/IQzSPlfCnnz8/B00mX3VqumpoYKKqipqTE7ioiIdABugW64Bbq16jG67elW+3dwtxZbMiaSSLq7dW+RvpqjXa9U3RFUHK8gj7wWu+y+V69e9OnTh6ioKPr27cu1115LSUnzJ2uvWrWKpKSk0z6+ZcsWIiMjOe+88/j666+ZPHky+/bta9Rz24LFixdz9913t2ifvXr1YteuXc167tatW5k5cyZQu5Lrk08+WefxsWPHsnbt2rPO2BEdOHCgRTdlnjNnDsuXL2+x/trT/93ZfA2LNMexgmNsZzvHCo6ZlkEFkckcujjQk544dGm5+UMfffQRv/32GwkJCRQWFrJq1apm93WmoubNN99k1qxZbNu2jYkTJ7Ju3TpCQ0Mb9Vw51fnnn8+7774L1F8QNdcft7eR9kn/j9JRnVikOP1QumkZVBA1oKl7mVWWVpIVn9WkP4e3HyZ/bz6Htx8+Y9vK0qatdVRRUUFJSQndu/8+BPn0008zZMgQBg8ezOTJk0lPr/3iW7NmDQMHDiQqKooBAwbw+eef88Ybb7B161buvPNOoqKiWLduXZ3+ly5dygcffMDzzz9PVFQU+fn5lt8sz/RcgD179jBx4kQGDhzIwIEDeeWVVwBISUkhJibGkuezzz6zPMfGxoYnnniCoUOHEhwczMqVKwF45513mDp1qqWdYRgEBwdbNiF88skn6d+/P5GRkcycObPeTYF79+5NXFyc5fbKlSu54oorAMjOzmbGjBkMGTKEgQMH8tBDD1nabd68mcjISIYMGcIdd9xx2iUYhg8fzs8//wzA3/72N/z9/S2PBQYGkp6ezsaNGzn//PMBmD9/Pvn5+URFRVnuO3G8UaNGERoayvz58+s91onRkkcffZRRo0bx4osvnvY11NTUcMcdd9CnTx8GDRpEdHQ05eXllj7uvvtuhg4dSv/+/fnuu+8sx3j77beJjIxk4MCBTJkyhczMTKC2EJ44cSLXXHMNkZGRnH/++Zb9BZOTkxkxYgSDBg0iMjKSRYsWAbUXKNx///0MGTKEqKgorr76asumj/W9rtNlOpmNjU2dK0Q9PDw4cODAaV9vfbZv38748ePp06cPc+bMoaKidiT3vffeY+jQoZx33nmnfH2f7uv6ZB999BFRUVGW0dS///3vhIWFMXToUO655x7L//fGjRuJiorizjvvZPjw4Xz66ads3bqV4cOHM3DgQIYMGcKPP/5Y5705obi4uM6cn9N9dqDxX8MirWVAxAAWsYgBEQPMC2HIGe3du9cYNWqUsXfv3jr3l5WVGQkJCUZZWZlhGIZxKO6QsZjFrfbnUNyhM2YNCgoyIiIijEGDBhmurq7GuHHjjMrKSsMwDOPdd9815s6da1RVVRmGYRhvvfWWMW3aNMMwDGPgwIHGjz/+aBiGYVRXVxvHjh0zDMMwxowZY6xZs+a0x5s9e7bx4osv1jn+zp07z/jcyspKIzw83Pjggw8s9+Xk5BiGYRhDhgwxXn31VcMwDCMpKcno0aOHcfDgQcMwDAMwnnvuOcMwDCMhIcHo2rWrUVlZaZSWlhru7u5GVlaWYRiG8d133xmDBw82DMMw1q1bZ/Tp08fymubOnWvcdttthmEYxsMPP2zcddddhmEYxuOPP27cfvvtljyjR482vvjiC8MwDGPChAnG999/b8k+ceJE45NPPjHKy8sNX19fY8OGDYZhGMYHH3xgAJb34GSLFi0yHnnkEcMwDOO8884zhgwZYuzZs8fYu3ev0bt3b8MwDGPDhg1GdHS0YRiGkZqaari7u9fpY8yYMcb06dONqqoqo7S01OjVq5fx008/nXKs1NRUAzDeffddy32new3x8fFGnz59jOrqasMwDCM/P9+orq629LFq1SrDMAzj559/Nry8vIzi4mJj586dhpeXl5GRkWEYhmEsWbLEmDx5smEYhrFy5UrDzc3NOHDggGEYhnHfffcZ8+bNMwzDMO68807j8ccft2TKy8uzvPePPfaY5f5HH33UuPPOO0/7uurL9Mf3CzCKioost93d3Y3U1NTTvt4/mj17thEZGWkUFRUZVVVVxtSpU40nnnjCMAzDyM3NNWpqaiyZfHx8jOPHjzf4dX3i8/D0008bo0ePtrz2L774whg4cKBRXFxsVFdXG5dffrnla2DDhg2GjY2NsXnzZsMwDKOiosIICAgw1q9fbxiGYWzevNnw9vau9/UXFRUZJ3+LP91npylfw3/8nifWa/076w3AWP/O+hbp78TPz8b8nGstmlTdgjz6eDAvbl6TnlNSWEJmRiZ+/n44uza807FHn8bNj/joo48YMGAAVVVV3HLLLdx3330888wzfPbZZ2zdupXo6Gigdt2HE5fOjh8/nr/85S9ceeWVTJgwgaioqCa9jqZKTEykqqqKGTNmWO7z8PCgqKiI3377jZtuugmA8PBwRo4cyQ8//MA111wDYJlj07dvX+zs7MjOzsbf35/p06fzzjvvcPfdd7Ny5UpuuOEGoHakb+bMmXTr1g2AW2+9tc4u0CfMnj2b8847j2XLlpGenk5SUhKTJk2ipKSE7777jsOHD1vaFhcXs3fvXkJDQ3FycmLs2LEAzJgxg3nz6v8aiImJ4cEHH2T+/PnY29szY8YMYmNjsbGxISYmptHv3dVXX42trS2Ojo6WUYbhw4ef0s7BwcHynjX0Gi688EIqKyu58cYbGTduHFOmTKFTp9rB486dO3P99dcDtXsIent7s337duLi4rjkkkss+x/ddtttLFmyxDKyMHLkSIKCgoDakbETo6yjR4/mnnvuoaSkhDFjxlhe92effUZhYSEfffQRAMePH7ecev2j02Xy9fVt1PsXEhJy2tf7R3/+858tixDeeOONvPTSS9x7772kpqYyc+ZMMjIysLOzIzc3l7S0NCoqKur9uj5h8eLF+Pr68s0331g2udywYQMzZszA2bn28z979mwee+wxy3N69+7NyJEjgdrPTefOnS27jY8cOZKePXuyY8eORm37UN9n5+jRo43+GhZpLWkZabzP+0zMmGjavp4qiFqQvZN9k/8jj5ccx6mrEx59Pejs3LlF89jZ2TF9+nTuuecennnmGQzDYNGiRdx4442ntF22bBm7d+9mw4YNzJ49m5kzZ3Lvvfe2aJ7GOPED9Y+X9558++T1mmxtbS3zKm644QZuvvlm5s2bx9q1a3nuuecsfTbU3wl+fn4MHjyYL774gu3bt3P99ddjZ2dHWVkZNjY2/O9//8Pe3r7Oc7Zv397o1zZ8+HB27drFF198wfjx44mJibEs1z9r1qxG93O61/9Hzs7OltdZU1Nz2tcAsHv3br7//ns2bNjA//3f/7Fp0ybs7Or/9mBjY3PKe/rH9/N0GadPn84FF1zAf//7X5YvX85zzz3HunXrMAyDl156qc7O2E1R3/+nra0t1dXVltsnTou5ubnV+3pP7NDdmONcffXVPP3001x22WUA9OjRg/Ly8jNelj58+HC+/vprUlNT6dOnD1D/1+fJTl4V+nRtbWxssLOzq/f1nqy+/xdDp8ekDagxaqimmhrDvCuuNYeog/vuu+8sOwxPmzaNl156iaNHjwK18za2bdsGwN69e+nfvz933HEHt956K1u2bAHA1dW13vk2jdHQcyMiIujcuXOdpdpzc3NxdXUlKiqKN998E4B9+/bx448/MmLEiDMeb9iwYdTU1HDvvfdy0UUX0aNHDwAuuugi3n//fYqKigB47bXXTjsic+ONN/Lvf/+bt956izlz5gDg4uLCqFGjWLp0qaXdoUOHyMjIoE+fPpSVlbFp0yagdnTudK+5c+fODB06lCVLlljmSCUkJLBp0ybGjRt3SntXV1dKS0tbZCJtQ68hJyeHkpISJkyYwD/+8Q969epFQkICUDtSc2KS96+//kp2djYDBw5k/PjxrFu3zrIB8yuvvML48ePPWBAkJyfTs2dPZs2axZNPPmn5Ops2bRrLli2jtLR27ZTS0lJ2795dbx+ny/RHoaGh/PLLLwB88sknlqstG3q9f/Thhx9SUlJCdXU1K1eutHzdHDt2jF69egG189eOHau9MuZ0X9cnTJw4kTfeeINLLrmE3377DYBx48bx4YcfUlpaSk1NDW+//fZp378+ffpQUVFhmTf1008/ceTIESIjI/H29qaqqorExEQA3nrrrdP288c+G/s1LNJaggOCmclMggOCTcuggshk5RXlZJNNeUXLbex65ZVXEhUVRf/+/dmzZw/PP/88ANdffz3XXXcdY8eOZdCgQURFRbFhwwYA/u///o/+/ftz3nnn8fbbb1tGLubNm8ejjz562onRDWnouXZ2dnz++ee89tprlom5H3/8MQDvvvsu77zzDoMGDWL69Om88cYbBAQENOqYN9xwA6+++qrldBnApEmTuP766xk+fDiRkZEUFhby+OOP1/v8Sy+9lF9++QUfHx/69etnuf/dd99lz549REZGEhkZyfTp08nLy6NLly785z//4fbbb2fIkCH8+uuvBAYGnjbfRRddxJEjRxgxYgQ2NjZER0cTFhZmOZ13sh49ejBz5kzLxOSzdbrXkJ6ezkUXXcTAgQOJjIxkwIABTJo0CQB3d3dSUlIYOnQoN9xwA++99x7Ozs7079+ff/7zn0yYMIGBAweyefNmXn311TNm+PDDDxk4cCDnnXceV199tWXC8f33309UVBRDhw5l4MCBDBs2zFIw/NHpMv3Rc889x+23386IESOIj4/H3d0doMHX+0ejR4/msssuo3///nTv3p0FCxYA8Pzzz3P55ZczcuRItm/fbvk/b+jr+uQ+//Of/zB9+nR+/vlnpk2bxsSJExk0aBDjxo0jNDQUN7f615Dp3LkzH3/8MX//+98ZOHAgf/nLX/jwww9xdnbGzs6OF154gUmTJjF69GjLBPAzaerXsEhHZWNovPSMTmzd8frrr1tGW6B2SDo1NZXg4OBmb7tRWlBKenI6AeEBOLk5tVRkkbN24MABzj///DojHGZri5laQlFRES4uLtTU1HDzzTfj6+vLkiVLzI51ipb4nicdw9fvfs3F113M+nfWM3HmxDbXX3NoDlEDzrS5a0uws7PDBZfTztcQkY5v1qxZHDhwgLKyMgYPHmzK/D2RpvDy8GIMY/Dy8GqR/vy8/ZjKVPy8/Vqkv+bQT+EGnGlz15ZQU1PDcY5r6w5pc3r16tXmRmLaYqaW8OmnrbsRp0hL8/L0Yhzj8PJsmYLIvbs70UTj3t29RfprDs0hMlnF8QpyyW2xrTtERETam/zCfBJIIL8w37QMKohM5tDFAU88W3TrDhERkfbkYOZBVrOag5kHTcuggshkNjY22GN/xsuVRUREOqp+4f24l3vpF97vzI1biQoik1VWVVJIIZVVTdunTEREpKOws7PDCSdTLzBSQWSymuoayimnplqTqkVExDodzDzIx3ysU2bWrEuXLvSkp2Vfo7MRFRVFVFQU/fr1w87OznL7z3/+c73tf/vtN1avXt2ovk/ehd1MGzdu5JtvvjE7hoiItKC2cLZEl913ICdW9j2xeN3pVvo9uf3atWvrbETZ1m3cuJHi4mImTJhgdhQREWkhoUGh3MANhAbVv6nzuaARogbExsZy//33W3bqboysrCx27txpuZ2QkEB6ejpQu8prfHy8ZU+tw4cPszVuK4c5TEVFBYmJiaSlpQG1+4zFx8e3yJ5Cb7/9tmUbgSlTppCZmcmRI0d46KGHiI2NJSoqivnz5wNw3XXXcf755zNw4EAuueQSjhw5csb+CwoKuPnmm4mMjGTQoEGWzWOLi4u58cYbGTBgAAMGDOCRRx6xPGfs2LGsXbvWcvvKK69k1apVAMyZM4fbbruNmJgYevfuzRVXXMHx48f57bffeOWVV3jrrbeIiori0UcfJScnhwkTJlhe38lbdoiISOvo6tOVMQ+PoatP1zM3bi8MOaO9e/cao0aNMvbu3Vvn/rKyMiMhIcEoKyuz3Pfwww8bfn5+ltuRkZHGggULDMMwjOTkZAMwNmzYYBiGYTz55JNG927djT3/22MU5xcbw4YNM2666SbDMAzj0KFDBmCsXbu2yXlTU1MNd3d3wzAMY+fOnYaXl5eRkZFhGIZhLFmyxJg8ebJhGIaxcuVKY/r06XWem5OTY/n3P//5T+P22283DMMwNmzYYERHR9d7vDlz5hh33HGHUV1dbRiGYRw5csQwDMO49957jZkzZxrV1dVGcXGxERUVZaxevdowDMMYM2aMsWbNGksf06dPN1auXGkYhmHMnj3bGD58uFFaWmpUVVUZF1xwgfHee+8ZhlH7/t51112W5y1btsyYO3eu5XZeXl5T3ioRaYL6vueJtIRv3vvGsMfe+Oa9b0zLoFNmLeyWW25h+vTpltvvv/8+Li4uAPj7+xMXF0d4eDhQu1z/uFHjcMUVezt7Vq1aZdkfyMPDg7i4OEJDz274cMOGDVxyySX4+dUuh37bbbexZMkSjNNsYffuu+/y9ttvU1FRQVlZGd7e3mc8xtq1a4mLi6NTp9oBR09PT6B2hO3555+nU6dOODs7M2vWLGJjY7nqqqvO2OcVV1yBo6MjAEOGDGHfvn31ths2bBjPPvssd911F2PGjGHiRHP2wBERkebz9vRmPOPx9jzzz5zWolNmLczHx4fIyEjL7X79+ll2andwcGDw4MGWAsnLy4vIAZFUUolhGERERBAUFASAvb09gwcPPu2u141lGEadNY4aWu/ohx9+YPny5Xz11Vfs3LmTZcuWUV5e3mLHPvn4dnZ2VFdXW+7/43FO3jjS1taWqqqqeo8xfPhwfvvtN4YOHcrHH3/Mn/70pzr9iohI2+fRw4NhDMOjh4dpGVQQmay8opwcciivaH7h0ZDx48ezbt06srOzAXjllVcYP348NjY2uLq61pmjdOzYMVxdXenRowfHjx/n1VdfbdQxpk2bxlNPPWXZjy0nJweAiy66iNdffx3DMCgpKeGdd94hJiYGgNDQUH755RcAUlNT+eGHHxp1rD9mTk1NpWvXrsyYMYMXX3yRpKSkVt2MV0REWl5RcREppFBUXGRaBhVEJuvSpQseeLTIZff16d+/P//85z+ZMGECAwcOZPPmzZZCZ/z48ZSUlDBo0CDmz5/PpEmTCAsLo0+fPkycOJGoqKhGHePZZ5+ltLSUAQMGEBUVxQMPPADAgw8+iI2NDZGRkQwdOpRp06Zx5ZVXAnDffffx3//+l+joaP7+978zdOjQRh3r8ssvZ+vWrZZJ1Rs3biQ6OpqoqChGjBjBU089ddajaiIicm6lpqfyDu+Qmp5qWgYb43STScTixG73r7/+OhEREZb7y8vLSU1NJTg4uM4pnqY4XnKc3D25ePT1oLNz55aKLCLS4lrie55IfdJ+SeP5Yc+zcMtCgoYGmZJBI0Qmq6qqooii086RERER6eg623fGDTc625s3MKCCyGRV1VWUUEJVtQoiERGxThlZGaxhDRlZGaZlUEHUAs7mrKNDFwe88cahi4afRaRt0wwLaS1l5WVkkUVZeZlpGbQOUQNiY2OJjY097VVL9vb22NjYkJOTg6enZ4OXtJ/O8YrjVFFFeUU5Nbba4FVE2ibDMMjJycHGxgZ7e3uz40gHEx4czjzmER4cbloGFUQNiImJISYmxjKp+o9sbW3x9/cnIyODAwcONOsY5aXl5OTm4GnjiYOTRolEpO2ysbHB398fW1tbs6OItDgVRGepa9euhIeHU1nZvB16d32/i+Xzl/PQqw8RPCa4hdOJiLQce3t7FUPSKhKSE3iSJxmZPBKfwT6mZFBB1AJsbW2b/U3Cz9OP6LRo/Dz9dBmriIhYJY/uHgxnOB7dtVK11SqvKCePvFZbqVpERKSt6+nRk1GMoqdHT9MyqCAyWdL+JF7kRZL2J5kdRURExBQlpSWkkUZJaYlpGXTKrBEqKioASEtLa/G+bW1tudr5amxtbUlMTGzx/kVERNq6n7f+zGrn1YzeOppqz5bfoDsoKOiM01K0dUcjfPPNNyxZssTsGCIiItIMf9x6qz4qiBohPz+fX3/9lc8++4yFCxc26jkvvvgiCxYsOGO7tLQ0lixZwqJFiwgKMmf/lramse+dGc51ttY6Xkv1ezb9NOe5TX1OY9rrM3iqtvwZBH0OW7Kf1v4ctpWfhY0ZIdIps0bo1q0bEyZM4LvvvjtjhXlC165dG90Wav+zmtK+I2vqe3cunetsrXW8lur3bPppznOb+pymtNdn8Hdt+TMI+hy2ZD+t/TlsTz8LNam6CWJiYlqlrdTVlt+7c52ttY7XUv2eTT/NeW5Tn9OWv5basrb+vulz2HL9tPbnsK1/LZ1Mp8xMdmIV7Mac3xSRlqfPoIj52sLnUCNEJnN3d2fOnDm4u7ubHUXEKukzKGK+tvA51AiRiIiIWD2NEImIiIjVU0EkIiIiVk8FkYiIiFg9FUQiIiJi9VQQiYiIiNVTQdTGHT9+nH/+859Mnz6diy++mPnz57Nz506zY4lYlcWLF3PppZdy8cUXM2fOHH766SezI4lYrV27djFmzBjefPPNFu1Xl923cWVlZXzwwQdMmjQJT09Pvv76a1566SU+/PDDM+7LIiItIzU1FX9/f+zt7UlISOCuu+7i/fffx83NzexoIlalpqaGW2+9FRsbG4YPH87s2bNbrG+NELVxjo6OzJkzBy8vLzp16sSkSZOoqakhIyPD7GgiViM4OBh7e3sAbG1tqaysJDc31+RUItbniy++IDIyksDAwBbvW5u7trDS0lLefPNNkpOTSU5OpqCggDlz5nDjjTfW2/aNN95gw4YNFBUVERgYyMyZMxk/fvxp+09LS6OiogJfX9/WfBki7VZrfQYfffRRNm3axPHjxxk2bBghISHn4uWItEut8TksKCjgo48+4pVXXuGFF15o8cwqiFpYQUEBa9asITQ0lFGjRrF27drTtl20aBF79+7llltuISAggNjYWB555BFqamq46KKLTmlfXl7O448/zqxZs3BycmrNlyHSbrXWZ/Chhx6iqqqK+Ph40tLSsLGxae2XItJutcbn8LXXXmPGjBl07dq1VTKrIGph3t7efPnll9jY2JCfn3/aL4Kff/6ZrVu38tBDD1l2Ax48eDDZ2dm8/PLLXHjhhdja2lraV1VV8fDDDxMUFMT1119/Tl6LSHvUWp9BADs7O4YMGcLHH3+Mv78/w4cPb/XXI9IetfTnMDExkaSkJO66665Wy6w5RC3MxsamUb85bt68GUdHR8aOHVvn/smTJ5Obm0tCQoLlvpqaGh5//HE6derEfffdp99MRRrQGp/BP6qpqSEzM/Nso4p0WC39Ody+fTsHDhzg0ksvZerUqXz33Xe8++67PP744y2WWSNEJklNTSUoKAg7u7r/BaGhoZbHIyMjAXj66afJy8vjqaeeOqW9iDRPYz+DeXl57Ny5k6FDh2Jvb8+mTZvYtm0bt9xyixmxRTqUxn4OL7nkkjpF07/+9S+8vb259tprWyyLfrqapKCgoN6J0S4uLgAUFhYCkJ2dzdq1a+ncuTPTpk2ztHvyyScZNGjQuQkr0gE19jMI8NFHH/HEE09gY2ODv78/ixcvJiws7JxlFemoGvs5dHJyqjN3tkuXLjg5ObXo0hcqiEzUmOFEb29vNm3adA7SiFifxnwG3d3dWb58+TlII2KdmjMN5IEHHmjxHJpDZBI3NzcKCgpOub+oqAgAV1fXcx1JxKroMyhivrb0OVRBZJKQkBDS0tKoqqqqc//+/fuB2oXgRKT16DMoYr629DlUQWSSUaNGUVZWxvfff1/n/vXr1+Ph4UG/fv1MSiZiHfQZFDFfW/ocag5RK9iyZQvl5eWUlpYCtatLb9y4EYBhw4bh4ODAsGHDOP/881m2bBmlpaX4+fnx7bff8ssvv7Bo0aJT1j8RkcbTZ1DEfO3tc6jNXVvBjBkzyM7OrvexDz74AB8fH6B2ufLXX3+9znLl1113XYNbd4jImekzKGK+9vY5VEEkIiIiVk9ziERERMTqqSASERERq6eCSERERKyeCiIRERGxeiqIRERExOqpIBIRERGrp4JIRERErJ4KIhEREbF6KohERM7Ss88+y9SpUy1bFAD8+9//ZvTo0Wzbts3EZL97/PHHueqqq6ioqDA7ikibpL3MRKSOrKws/vznPzfYJiwsjH//+9/nKFHblp6ezhdffMG8efNwcnJq1WN9/vnnPPPMM0ybNo277767wbY333wzSUlJvP7660RERDB79mxiY2P58MMPue6661o1p0h7pIJIROrl5+fHRRddVO9j7u7u5zhN27Vy5Uo6d+7MpZde2urHiomJ4V//+hffffcdCxYsoEuXLvW227dvH0lJSYSHhxMREQGAv78/I0eO5L333mP69Ok4Ojq2el6R9kQFkYjUy8/PjxtvvNHsGG1afn4+mzZtYuzYsa0+OgTg7OzMmDFj+Prrr/n++++ZMGFCve3Wrl0LwOTJk+vcP2HCBL7//nu+/fZbLrnkklbPK9KeaA6RiJy10aNHc+edd5Kfn8/SpUuZNm0aMTExzJ8//7RzaEpLS/n3v//NrFmziImJYfLkydx9993s2LHjlLZ33nkno0eP5vjx46xYsYJrrrmGcePG1Tlt9/333zN37lxiYmK49NJLefLJJykqKmLGjBnMmDHD0u7xxx9n9OjR7Nmzp95cL7/8MqNHj2bTpk1nfN3ffvstx48fZ+zYsWdse8K+ffu4/PLLmTp1KgkJCZb7Dx06xBNPPMGVV17J+PHjueyyy/jHP/5xym7hU6ZMAeCrr76qt//KykpiY2Pp3LnzKQXTsGHDcHR0ZN26dY3OK2ItVBCJSIsoLi7mtttuY9++fVx00UWMHj2axMRE7r77bvbv31+nbWFhIbfeeiurVq3C1dWVyy67zNJ+4cKFbN68ud5jLFq0iHXr1jFo0CCuuuoqfH19Afjyyy958MEHyczMZOLEiVx88cXs3r2bv/3tb1RVVdXpY9q0acDvoygnq6qq4uuvv6ZHjx5ccMEFZ3zNcXFxAPTv3//MbxCwfft2FixYgK2tLcuXL6dfv34AJCQkcPPNN7N+/XoiIiK48sorGTRoEP/973+55ZZbOHTokKWPqKgo/P39iY+PJysr65Rj/PjjjxQUFDB69GhcXFzqPGZvb0/v3r3Zs2cPZWVljcosYi10ykxE6pWZmXnaidP9+/dn6NChde5LSUnhsssu4y9/+QudOtX+rjV48GCefPJJPvnkkzqTgJ977jlSU1O5//7765zWOXr0KPPmzeOpp55iyJAhp8yRycvLY+XKlbi6ulruKyoq4oUXXsDJyYk33njDUiTNnTuXe++9l8TERLy9vS3tIyMjCQ4O5ttvv+WOO+6oM5fmp59+4ujRo1x77bXY2Z352+OuXbvw9PSke/fuZ2y7efNmHnnkEXx9fXn66afp2bMnUFuELV68mJqaGl5//XXCwsIsz9mxYwcLFy7khRdeYOnSpZb7J0+ezGuvvcb69eu54YYb6hznyy+/BH4fSfqjiIgItm/fzp49exg8ePAZc4tYC40QiUi9MjMzWbVqVb1/fvnll1PaOzo6Mn/+fEsxBHDxxRdja2vL3r17Lffl5+ezYcMGoqOjT5nj0qNHD6655hry8/Mtoy8nu+GGG+oUQwA//PADZWVlXHLJJZZiCMDOzo6bbrqp3tc2bdo0SktL+e677+rcv3btWmxsbBo1v6ayspL8/PxGFUNr167loYceIjw8nOXLl1uKIagtwrKzs7nmmmvqFEMAAwcOZMSIEWzZsoWSkhLL/Sfe16+++grDMCz35+bmsnXrVry9vU9b7JzIm5OTc8bcItZEI0QiUq8hQ4bw9NNPN7q9v7//KROL7ezs6NGjB8XFxZb79u7dS3V1NcePH693BCojIwOAtLS0U05b9e3b95T2+/btA2DAgAGnPNa3b19sbW1PuX/ChAm88sorrF271jKSkpOTw//+9z/LKakzKSgoADjltNQfrV69mh9//JFhw4bx6KOP4uDgUOfx3bt3A3Dw4MF634+jR49SU1NDeno6ffr0AcDDw4OhQ4fy008/ER8fT3R0NFA7r6i6uprJkydjY2NTb54TBeWJ/CJSSwWRiLQIZ2fneu+3tbWlpqbGcruwsBCAnTt3snPnztP2V15efsp9PXr0OOW+EyMn3bp1O+WxTp064ebmdsr9Li4ujBs3jvXr13PgwAF69erFunXrqK6ubvTVVydO551pocMTk8SHDh16SjEEtaf8AP773/822M8f348pU6bw008/8dVXX9UpiDp16sSkSZNO28+JvKe7ZF/EWqkgEpFz6kTh9Oc//5nbb7+9Sc+tb9TjRH/5+fmnPFZTU0NBQQGenp6nPDZt2jTWr1/P2rVruf322/nqq69wdXVl9OjRjcri4uKCnZ2dpcA7nfvuu4+33nqLF154gU6dOnH55ZfXefzEqNrSpUsbNZH7hOHDh9OjRw++//57/vrXv5KSkkJGRgZDhgzBy8vrtM87kbe+AlLEmmkOkYicU3369MHGxsZyquhshYaGArUTnP9oz549VFdX1/u8AQMGEBISwtdff82WLVs4dOgQF110UZNGToKDg8nOzj7lSraTubi48Oyzz9K7d2+effZZPvnkkzqPn7jSrKnvh52dHRMnTqSiooJvv/3Wcin96SZTn5Ceng5ASEhIk44n0tGpIBKRc8rd3Z1x48axa9cu/vOf/9SZFHxCQkJCvafM6jNy5EgcHR1Zu3ZtncvTq6qqWLFiRYPPnTp1KgUFBTz11FMATV6sMCoqiuPHj1vmMZ2Oi4sLy5Yto0+fPjz33HN8/PHHdfJ7eXnxwQcf8Ntvv53y3KqqqnrXZoLfi5/PPvuMjRs34ubmxsiRIxvMkpCQgLu7OwEBAWd4dSLWRafMRKReDV12D5zVKtZ/+9vfSE9P5+WXX+brr7+mf//+dO3alSNHjpCYmEhGRgaffvppvXNu/sjFxYU77riDp556iptvvpkLL7wQZ2dntmzZQufOnfHw8DjtBOOJEyfy6quvkpubS79+/SyjTY01atQoPvzwQ+Li4ixbZDSU85lnnuGuu+7i+eefxzAMrrzySjp37syjjz7Kvffey5133kl0dDTBwcEAHD58mB07duDm5sY777xzSp+BgYFERkZa5mJdcskl2NvbnzZDZmYmWVlZXHbZZU16nSLWQAWRiNTrxGX3p3M2BZGrqysvvfQSn3zyCd999x2xsbHU1NTQo0cPwsLCmD17dr2ToU9n6tSpuLi48Pbbb7N+/XqcnZ0ZMWIE8+fP56qrrsLPz6/e53Xt2pWRI0cSGxvbrK0soqKiCAwM5JtvvuHaa689Y/sTI0V33XUXL7zwAoZhcNVVV9G3b1/+/e9/85///IctW7awc+dO7O3t8fDwYNSoUYwfP/60fU6ZMsVSEP1xGYM/+uabb4DfF6cUkd/ZGPWNV4uIdAAZGRlce+21jBs3jkceeaTeNrNmzeLw4cN8+umnzdqP7IsvvuDpp5/mlVdescwHaouqqqqYOXMm3t7ePP/882bHEWlzNIdIRNq9oqIijh8/Xue+iooKli9fDtSe2qrPzz//zIEDB5g4cWKzN2edMmUKQUFBrFy5slnPP1e++eYbsrOzue2228yOItIm6ZSZiLR7v/32G0888QR/+tOf6NmzJwUFBcTHx5Odnc3gwYO58MIL67T/7LPPOHLkCGvWrKFLly5cc801zT62ra0t//d//8cvv/xCaWnpOdn1vjlsbGy45557zjjXScRa6ZSZiLR76enprFixgl27dlnWI/Lz8+PCCy/k6quvPuVS+hkzZpCTk0NAQADz589v0vo/ItIxqSASERERq6c5RCIiImL1VBCJiIiI1VNBJCIiIlZPBZGIiIhYPRVEIiIiYvVUEImIiIjVU0EkIiIiVk8FkYiIiFi9/weAkWn56FcVcAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_bkg_poisson_error = np.zeros((2,len(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents))))\n", + "fit_bkg_gaussian_error = np.zeros(len(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents)))\n", + "inj_bkg_poisson_error = np.zeros((2,len(grb_bkg.binned_data.project('Em').todense().contents)))\n", + "inj_bkg_gaussian_error = np.zeros(len(grb_bkg.binned_data.project('Em').todense().contents))\n", + "\n", + "for i, counts in enumerate(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents)):\n", + " if counts > 5:\n", + " fit_bkg_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " fit_bkg_poisson_error[0][i] = poisson_error[0]\n", + " fit_bkg_poisson_error[1][i] = poisson_error[1]\n", + "\n", + "for i, counts in enumerate(grb_bkg.binned_data.project('Em').todense().contents):\n", + " if counts > 5:\n", + " inj_bkg_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " inj_bkg_poisson_error[0][i] = poisson_error[0]\n", + " inj_bkg_poisson_error[1][i] = poisson_error[1]\n", + " \n", + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), binned_energy_edges, color='purple', label = \"Best fit convolved with response plus background\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), yerr=fit_bkg_poisson_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), yerr=fit_bkg_gaussian_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(grb_bkg.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Total counts\")\n", + "ax.errorbar(binned_energy, grb_bkg.binned_data.project('Em').todense().contents, yerr=inj_bkg_poisson_error, color='black', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, grb_bkg.binned_data.project('Em').todense().contents, yerr=inj_bkg_gaussian_error, color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb.txt b/_sources/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb.txt new file mode 100644 index 00000000..fca5e2f4 --- /dev/null +++ b/_sources/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb.txt @@ -0,0 +1,4321 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "07c6d97a-7350-4920-9ab8-26c2454bf5a7", + "metadata": {}, + "source": [ + "# Diffuse 511 Spectral Fit in Galactic Coordinates\n", + "\n", + "This notebook fits the spectrum for the 511 keV emission in the Galaxy. It can be used as a general template for fitting diffuse/extended sources in Galactic coordinates. For a general introduction into spectral fitting with cosipy, see the continuum_fit tutorial.
\n", + "\n", + "This notebook uses two 511 keV emission models, first a test model and then a realistic multi-component model. \n", + "\n", + "All input models are available here:
\n", + "https://github.com/cositools/cosi-data-challenges/tree/main/cosi_dc/Source_Library/DC2/sources/511
\n", + "\n", + "The toy 511 model consists of two components: an extended Gaussian source (5 degree extension) and a point source. In the first part of this tutorial, we fit the data with just the single extended Gaussian component, i.e. we ignore the point source component. This is done as a simplification, and as will be seen, it already provides a good fit. In the second part of this tutorial we use a model consisting of both components. \n", + "\n", + "The realistic input models consist of a bulge component (with an extended Gaussian source and a point source) as well as a disk component with different spectral characteristics. In the third part of this tutorial we use this model. \n", + "\n", + "For the background we use just the cosmic photons. \n", + "\n", + "This tutotrial also walks through all the steps needed when performing a spectral fit, starting with the unbinned data, i.e. creating the combined data set, and binning the data. \n", + "\n", + "For the first two examples, you will need the following files (available on wasabi):
\n", + "**20280301_3_month.ori
\n", + "cosmic_photons_3months_unbinned_data.fits.gz
\n", + "511_Testing_3months.fits.gz
\n", + "SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5
\n", + "psr_gal_511_DC2.h5**
\n", + "\n", + "The binned data products are available on wasabi, so you can also start by loading the binned data directly.
\n", + "\n", + "For the third example, we start with the binned data, and you will need: \n", + "
**combined_binned_data_thin_disk.hdf5**
\n", + "\n", + "**WARNING:** If you run into memory issues creating the combined dataset or binning the data on your own, start by just loading the binned data directly. See the dataIO example for how to deal with memory issues.
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "19640dd6-f894-4b9c-9405-aa76f8c8864c", + "metadata": {}, + "outputs": [], + "source": [ + "# imports:\n", + "from cosipy import COSILike, test_data, BinnedData\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.response.FullDetectorResponse import FullDetectorResponse\n", + "from cosipy.response import PointSourceResponse\n", + "from cosipy.threeml.custom_functions import Wide_Asymm_Gaussian_on_sphere, SpecFromDat\n", + "from cosipy.util import fetch_wasabi_file\n", + "from scoords import SpacecraftFrame\n", + "from astropy.time import Time\n", + "import astropy.units as u\n", + "from astropy.coordinates import SkyCoord\n", + "from astromodels import *\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "from threeML import PointSource, Model, JointLikelihood, DataList, update_logging_level\n", + "from astromodels import Parameter\n", + "from astromodels import *\n", + "from mhealpy import HealpixMap, HealpixBase\n", + "import healpy as hp\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt \n", + "from pathlib import Path\n", + "import os\n", + "import time\n", + "import h5py as h5\n", + "from histpy import Axis, Axes\n", + "import sys\n", + "from histpy import Histogram" + ] + }, + { + "cell_type": "markdown", + "id": "754b1f19-2b05-47ff-93ce-2b98c477f0a9", + "metadata": {}, + "source": [ + "## Get the data\n", + "The data can be downloaded by running the cells below. Each respective cell also gives the wasabi file path and file size. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e2c3fd76-534d-4567-9b66-477260a169d8", + "metadata": {}, + "outputs": [], + "source": [ + "# ori file:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "# File size: 684 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8abd531b-b531-4bdc-8ded-4e971767326c", + "metadata": {}, + "outputs": [], + "source": [ + "# cosmic photons:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/cosmic_photons_3months_unbinned_data.fits.gz\n", + "# File size: 8.5 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/cosmic_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6370eca6-8791-460c-82a4-7b5f5346382a", + "metadata": {}, + "outputs": [], + "source": [ + "# 511 test model:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/511_Testing_3months_unbinned_data.fits.gz\n", + "# File size: 850.6 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_Testing_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7aac0743-04cb-4cee-a858-6d1bb2d3b192", + "metadata": {}, + "outputs": [], + "source": [ + "# detector response:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "# File size: 350.4 MB \n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a9fc7d5f-66a1-4113-b71f-4f34fa295a5d", + "metadata": {}, + "outputs": [], + "source": [ + "# point source response:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz\n", + "# File size: 3.82 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz')\n", + "os.system(\"gzip -d psr_gal_511_DC2.h5.gz\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "30addfdb-433f-4360-aff7-9425a3716f0a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Binned data products:\n", + "# Note: This is not needed if you plan to bin the data on your own. \n", + "# wasabi path: COSI-SMEX/cosipy_tutorials/extended_source_spectral_fit_galactic_frame \n", + "# File sizes: 689.2 MB, 182.0 MB, 739.8 MB, 697.0 MB, respectively. \n", + "file_list = ['cosmic_photons_binned_data.hdf5','gal_511_binned_data.hdf5','combined_binned_data.hdf5','combined_binned_data_thin_disk.hdf5']\n", + "\n", + "for each in file_list:\n", + " fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/extended_source_spectral_fit_galactic_frame/%s' %each)" + ] + }, + { + "cell_type": "markdown", + "id": "0323edb3-d26e-4a13-a2b8-a2637021f80b", + "metadata": {}, + "source": [ + "## Create the combined data\n", + "We will combine the 511 source and the cosmic photon background, which will be used as our dataset.
\n", + "This only needs to be done once.
\n", + "You can skip this cell if you already have the combined data file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "902e9af4-316b-4961-bd69-6985e675aff2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "adding cosmic_photons_3months_unbinned_data.fits.gz...\n", + "\n", + "\n", + "adding 511_Testing_3months_unbinned_data.fits.gz...\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: VerifyWarning: Keyword name 'data file' is greater than 8 characters or contains characters not allowed by the FITS standard; a HIERARCH card will be created. [astropy.io.fits.card]\n" + ] + } + ], + "source": [ + "# Define instance of binned data class:\n", + "instance = BinnedData(\"Gal_511.yaml\")\n", + "\n", + "# Combine files:\n", + "input_files = [\"cosmic_photons_3months_unbinned_data.fits.gz\",\"511_Testing_3months_unbinned_data.fits.gz\"]\n", + "instance.combine_unbinned_data(input_files, output_name=\"combined_data\")" + ] + }, + { + "cell_type": "markdown", + "id": "f1d1c255-bb2d-4362-8bc1-671d95898e1e", + "metadata": { + "tags": [] + }, + "source": [ + "## Bin the data \n", + "You only have to do this once, and after you can start by loading the binned data directly.
\n", + "You can skip this cell if you already have the binned data files." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0419e986-5b9f-49eb-a325-0256a8ec50b5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Bin 511:\n", + "gal_511 = BinnedData(\"Gal_511.yaml\")\n", + "gal_511.get_binned_data(unbinned_data=\"511_Testing_3months_unbinned_data.fits.gz\", output_name=\"gal_511_binned_data\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2bab6997-38ea-405c-aea0-6f39e88198be", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Bin background:\n", + "bg_tot = BinnedData(\"Gal_511.yaml\")\n", + "bg_tot.get_binned_data(unbinned_data=\"cosmic_photons_3months_unbinned_data.fits.gz\", output_name=\"cosmic_photons_binned_data\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "236ec730-0327-480f-af51-aa8bc066292e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Bin combined data:\n", + "data_combined = BinnedData(\"Gal_511.yaml\")\n", + "data_combined.get_binned_data(unbinned_data=\"combined_data.fits.gz\", output_name=\"combined_binned_data\")" + ] + }, + { + "cell_type": "markdown", + "id": "1bf53b28-fa03-4ff3-9025-e15c821cabb1", + "metadata": {}, + "source": [ + "## Read in the binned data\n", + "Once you have the binned data files, you can start by loading them directly (instead of binning them each time)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7006c9c0-d8ea-49d2-9ab7-66ecbcf3edea", + "metadata": {}, + "outputs": [], + "source": [ + "# Load 511:\n", + "gal_511 = BinnedData(\"Gal_511.yaml\")\n", + "gal_511.load_binned_data_from_hdf5(binned_data=\"gal_511_binned_data.hdf5\")\n", + "\n", + "# Load background:\n", + "bg_tot = BinnedData(\"Gal_511.yaml\")\n", + "bg_tot.load_binned_data_from_hdf5(binned_data=\"cosmic_photons_binned_data.hdf5\")\n", + "\n", + "# Load combined data:\n", + "data_combined = BinnedData(\"Gal_511.yaml\")\n", + "data_combined.load_binned_data_from_hdf5(binned_data=\"combined_binned_data.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "5d833e94-1fa4-4c15-9648-9bff16c77ab8", + "metadata": { + "tags": [] + }, + "source": [ + "## Define source\n", + "The injected source has both an extended componenent and a point source component,
\n", + "but to start with we will ignore the point source component,
\n", + "and see how well we can describe the data with just the extended component.
\n", + "Define the extended source:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f459d4ec-8949-4e30-98e8-09d68cf3e4b9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "
  • gaussian (extended source): \n", + "
      \n", + "\n", + "
    • shape: \n", + "
        \n", + "\n", + "
      • lon0: \n", + "
          \n", + "\n", + "
        • value: 359.75
        • \n", + "\n", + "
        • desc: Longitude of the center of the source
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 360.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • lat0: \n", + "
          \n", + "\n", + "
        • value: -1.25
        • \n", + "\n", + "
        • desc: Latitude of the center of the source
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • sigma: \n", + "
          \n", + "\n", + "
        • value: 5.0
        • \n", + "\n", + "
        • desc: Standard deviation of the Gaussian distribution
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 20.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    • spectrum: \n", + "
        \n", + "\n", + "
      • main: \n", + "
          \n", + "\n", + "
        • Gaussian: \n", + "
            \n", + "\n", + "
          • F: \n", + "
              \n", + "\n", + "
            • value: 0.04
            • \n", + "\n", + "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • mu: \n", + "
              \n", + "\n", + "
            • value: 511.0
            • \n", + "\n", + "
            • desc: Central value
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • sigma: \n", + "
              \n", + "\n", + "
            • value: 0.85
            • \n", + "\n", + "
            • desc: standard deviation
            • \n", + "\n", + "
            • min_value: 1e-12
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          \n", + "\n", + "
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    \n", + "\n", + "
  • \n", + "\n", + "
\n" + ], + "text/plain": [ + " * gaussian (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 359.75\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: -1.25\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 5.0\n", + " * desc: Standard deviation of the Gaussian distribution\n", + " * min_value: 0.0\n", + " * max_value: 20.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * Gaussian:\n", + " * F:\n", + " * value: 0.04\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define spectrum:\n", + "# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]\n", + "F = 4e-2 / u.cm / u.cm / u.s \n", + "mu = 511*u.keV\n", + "sigma = 0.85*u.keV\n", + "spectrum = Gaussian()\n", + "spectrum.F.value = F.value\n", + "spectrum.F.unit = F.unit\n", + "spectrum.mu.value = mu.value\n", + "spectrum.mu.unit = mu.unit\n", + "spectrum.sigma.value = sigma.value\n", + "spectrum.sigma.unit = sigma.unit\n", + "\n", + "# Set spectral parameters for fitting:\n", + "spectrum.F.free = True\n", + "spectrum.mu.free = False\n", + "spectrum.sigma.free = False\n", + "\n", + "# Define morphology:\n", + "morphology = Gaussian_on_sphere(lon0 = 359.75, lat0 = -1.25, sigma = 5)\n", + "\n", + "# Set morphological parameters for fitting:\n", + "morphology.lon0.free = False\n", + "morphology.lat0.free = False\n", + "morphology.sigma.free = False\n", + "\n", + "# Define source:\n", + "src1 = ExtendedSource('gaussian', spectral_shape=spectrum, spatial_shape=morphology)\n", + "\n", + "# Print a summary of the source info:\n", + "src1.display()\n", + "\n", + "# We can also print the source info as follows.\n", + "# This will show you which parameters are free. \n", + "#print(src1.spectrum.main.shape)\n", + "#print(src1.spatial_shape)" + ] + }, + { + "cell_type": "markdown", + "id": "eee646f3-d591-4819-ab7e-d7759e4de4a0", + "metadata": {}, + "source": [ + "Let's make some plots to look at the extended source:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a531d3e2-1101-4c34-8613-3831f8ebbf13", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Energy [keV]')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG2CAYAAADLM3qLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4KElEQVR4nO3deVyU5R43/s+wDJswgIOiCChq7qloLhG4k5rZ4vlVHitTUUxPaR618hhmx2NmHXnsKTiGiNmj1qmTqeFeFJZkmkvnqLiBkCLKOizDNjP37w+c2xlnQJYbZuHzfr18xVz3dd3Xdc80+PVaZYIgCCAiIiIiq+Fg6QYQERERkTEGaERERERWhgEaERERkZVhgEZERERkZRigEREREVkZBmhEREREVoYBGhEREZGVYYBmgyorK3Hx4kVUVlZauilERETUAhig2aCsrCzMnTsXWVlZlm4KERERtQAGaERERERWhgEaERERkZVhgEZERERkZRigEREREVkZBmhEREREVoYBGhEREZGVYYBGREREZGUYoBERERFZGQZoRERERFaGARoRERGRlWGARkRERGRlGKARERERWRkGaERERERWhgEaERERkZVhgEZE1AbcvlKM7FO3IegESzeFiBrAydINICKilvW//Zn45bN0AEDPiABEzBsAmYPMwq0iovqwB42IyI6dP5wlBmcAcDn1Bn5OOgdBYE8akTVjgEZEZKf+OJuHY0nnTdLTv/sDv+/NsECLiKihGKAREdmp8wezxJ8HTg3BmL8MhOzOyOa5g1mcj0ZkxRigERHZoaryGtz4bz4AwMPXFUOfeQDdH+6MLoP8AADqoircvlJswRYSUX0YoBER2aHsU7eh09b2kHUb7i8uCggZ3knMk3k81yJtI6L7Y4BGRGSHDIOvrsP8xZ+DQjvAwbE2WMv8NZfDnERWigEaEZGdqVbX4PrveQAAd28XdOzpLV5zaeeMzv2VAIDygkrkZags0UQiug8GaEREdib7dB50mtqesa7D/E32POs2vKP4M4c5iawTAzQiIjtz7de7QZdhMKYXPKSjGLRl/prLPdGIrBADNCIiOyIIAnIvFgEAXDyc0bGXr0keV085/Hv7AADK8iqgLqpq1TYS0f0xQCMisiPlBZWoLKkGAPh1V8ChjiOdOvTwFn/O5zw0IqvDAI2IyI4YTvpXhijqzGd4jQsFiKwPAzQiIjti2Bum7FZPgGZwLT+TARqRtWGARkRkRwyDLb8QrzrztVO6wtXTubZMhooLBYisDAM0IiI7IQgC8jNKAACuXnK4+7rWmVcmk4m9aJWlNSjLr2yVNhJRwzBAIyKyE2V5FagqrwEA+IUoIJOZXyCgZzgPjcOcRNaFARoRkZ1o6AIBMY/hPDQuFCCyKgzQiIjshGEvmLJb3fPP9AznqLEHjci6OFm6AY2lVquxefNmpKSkoLS0FEFBQZgxYwbGjRt337JFRUWIj49HWloaKisr0aNHD0RFRWHIkCFG+Y4dO4aUlBRcunQJ2dnZ0Gq1SE1NNbnfli1bsHXr1jrrW7VqldiuuvLK5XIcOXLkvm0nIrof/fwzoGE9aO6+rnBTyFGhqkZ+RgkEQbjvsCgRtQ6bC9BWrlyJ9PR0REdHIzAwEEeOHMHq1auh0+kwYcKEOstVV1dj8eLFKCsrwyuvvAIfHx/s2rULS5cuRWxsLAYNGiTmTU1Nxblz59CzZ0/I5XJcvHjR7D2nTJmC4cOHm6SvX78eOTk5GDZsmMm1Dz74AB4eHuJr/jIkIikIOkHsBXP3cYGHT90LBPRkMhmUIQr8cToPVeU1KL2thldHj/uWI6KWZ1MBWlpaGk6ePImYmBiMHz8eABAaGorc3FzEx8dj7NixcHR0NFs2OTkZmZmZiIuLQ//+/QEAgwcPxuzZsxEfH49NmzaJeZcvXw4Hh9rR39jY2DoDtA4dOqBDhw5GaTdv3sS1a9cwYcIEeHp6mpR54IEH4O3t3ehnJyKqT3lhJarVGgBA+673H97UU3b1wh+n8wAARX+UMUAjshI2NQft6NGjcHNzw+jRo43SJ0+ejPz8fJw/f77eskFBQWJwBgBOTk6IjIzEhQsXkJeXJ6brg7Om2LdvHwRBwJQpU5p8DyKixiq+WS7+7N25XYPLKQzyGt6DiCzLpnrQMjMzERwcDCcn42Z3795dvD5gwACzZTMyMjBw4ECTdMOyfn5+zWqfTqfD/v37ERAQYDRkauill15CcXExFAoFhg0bhqioKHTs2LHe++bn56OgoEB8nZWV1ax2EpH9UeXcDa4UnRreC2aYV8UAjchq2FSAplKp0LlzZ5N0/VBiSUmJyTW9kpISs0OODSnbUCdOnMDt27cxb948k2sBAQGYO3euOK/twoUL2LlzJ06cOIGEhIR6g8M9e/bUuxiBiEiV28QAzd/97j0YoBFZDZsK0IDmTaqvr6wUk/WTk5Ph6OiISZMmmVx79NFHjV6HhoZi8ODBWLBgAXbs2IFFixbVed+pU6ciLCxMfJ2VlYU1a9Y0u71EZD+MetA6NzxAk7s7w93bBeriKgZoRFbEpgI0hUIBlcp0r57S0lIAgJdX3RNjvby8zPaS6cua611rjOLiYvz8888YOXIk2rdv36Ayffv2RZcuXeqdOwcASqUSSqWyWe0jIvumD66c3Zzg5iVvVFlFZw+oi6tQWVKNqrIauLRzbokmElEj2NQigZCQEGRlZUGj0RilZ2RkAAC6detWb9mrV6+apOvTQkJCmtW2Q4cOoaampkmLA5qzKIGISFOtRVlBBQDAu5NHo0cEFP4G89By2YtGZA1sKjIIDw9HRUUFfvzxR6P0AwcOQKlUom/fvnWWjYiIQHZ2tlFvlUajweHDh9G3b99m91AlJydDqVSa3RetLufOncP169frbTcR0f2U5KoBofbnxgxv6hktFMhhgEZkDWxqiHPEiBEYOnQoNmzYALVajYCAAHz33Xc4fvw4Vq5cKe6Btm7dOhw8eBA7d+6Ev78/gNqtOHbt2oWYmBhER0eLG9VmZ2cjNjbWqJ7c3Fykp6cDAHJycgAAP/zwAwDA398fvXv3Nsp//vx5ZGZm4oUXXqhzH7ZZs2YhMjISwcHBRosEfH19MX36dMneIyJqe4wWCPg3IUDrzB40ImtjUwEaAKxZswYJCQlITEwUj3oyPFIJqN3uQqvVQhAEMU0ulyM2Nhbx8fHYuHEjKisr0bNnT7z//vsmW2KcPn0a7777rlFaTEwMAGDixIlYsWKF0bXk5GTIZDI89thjdba7a9eu2LNnDwoLC1FTUwOlUolx48Zh5syZnF9GRM3S1AUCYhl/9qARWRuZYBjFkE24ePEi5s6di4SEBPTq1cvSzSEiC/sx/ndcPnoDAPDUu2FoH9zwkwQAQKfVYetLh6DTCvAJ9MS09x5piWYSUSPY1Bw0IiIyZbg9hldH93pymufg6ADPO+VKcssh6PjvdiJLY4BGRGTDBEEQAzSP9q5wdm3azBXvOwsFtDU6lBVUStY+ImoaBmhERDassrQaVeU1ABp3gsC9vIyOfCprdruIqHkYoBER2TDVTbX4c3MCNG+eyUlkVRigERHZsNJbBgGaf+Pnn+l5GazkLL1d0aw2EVHzMUAjIrJhpfl3AzRPv6YHaJ4d3O7eM48BGpGlMUAjIrJhZQbBVDulWz056+fu4wqZo+zOPdX3yU1ELY0BGhGRDSvLv7visp1f0wM0BwcZ2vm6mtyTiCyDARoRkQ0rvdPbJXd3gouHc7PupQ/wqsprUK2uaXbbiKjpmrRhTkhISLMrXrx4MV599dVm34eIqK3S6QRxz7Lm9J7pefq54eadn0vzK9A+qHkBHxE1XZN60K5du4aioiIIgtCkP1lZWSguLpb4UYiI2hZ1USUEbe2u/82Zf6ZneI8yLhQgsqgmH5b+2muviQeIN5aDA0dWiYiayzCI8pQiQDPohSvLZ4BGZEmMlIiIbFSpQRAl1RCneG/2oBFZVJN60C5fvgxfX98mV9rc8kREdE8PmgQBWjvl3X3UOMRJZFlNCtC6d+/erEqbW56IiIx7uaSYg+bh6wKZgwyCTmAPGpGFcYiTiMhGGW1SK0EPmoOjAzzEvdAYoBFZEgM0IiIbpQ+inN0cm70Hmp64F1pZDaorNJLck4gaT9IAraioCNu2bZPylkREZIagE8QArZ3SHTKZTJL7enIlJ5FVkDRAy87OxqxZs6S8JRERmaEuroJO3APNVbL7ci80IuvQqEUC2dnZ9V7PyclpVmOIiKhhSo1WcLrXk7NxDPdT40IBIstpVIDWtWvXervRBUGQrJudiIjqVibxHmjm7sUhTiLLaVSA5uPjg7Vr12L06NFmr1+4cAHTpk2Tol1ERFQPqfdAM3cvDnESWU6jArQhQ4YgLy8PvXr1Mnu9srISgiBI0jAiIqqbUQ9ae+nmoHn4ugIyAAJ70IgsqVEB2ssvv4zy8vI6rwcFBSEpKanZjSIiovqVF1WKP3u0l64HzcHJAe4KF6iLq4zqIKLW1agA7amnnqr3uo+PD2bOnNmsBhER0f2VF9YGTzJHGdy85JLe28PXFeriqtqVohodHJy4ZSZRa+O3jojIBpUX1AZoHj6ukDlIuzjLXT9kKgBqVZWk9yaihml2gObo6Hjf7TeIiEg6mmotqspqAEA8mklKhvfUB4JE1LqaHaBxUQARUevSD28CrRCgFTJAI7IEDnESEdkYowBNwhWc4j19XMzWRUSthwEaEZGNURv1oLnUk7NpDIM+BmhElsEAjYjIxhgGTe4+HOIkskeN2mbDGqjVamzevBkpKSkoLS1FUFAQZsyYgXHjxt23bFFREeLj45GWlobKykr06NEDUVFRGDJkiFG+Y8eOISUlBZcuXUJ2dja0Wi1SU1NN7nfz5k08++yzZutatWqVSZtycnLw8ccf4/Tp09BqtejXrx+io6Pr3PiXiMic8sK7KytbYg6aYdCnLuQqTiJLsLkAbeXKlUhPT0d0dDQCAwNx5MgRrF69GjqdDhMmTKizXHV1NRYvXoyysjK88sor8PHxwa5du7B06VLExsZi0KBBYt7U1FScO3cOPXv2hFwux8WLF+tt07Rp0zB+/HijtC5duhi9Li4uxl/+8hd4enri9ddfh1wux/bt27Fo0SJ88sknCAoKavybQURtUkvPQXOSO8LV0xmVpTXsQSOyEJsK0NLS0nDy5EnExMSIAVFoaChyc3MRHx+PsWPHwtHR0WzZ5ORkZGZmIi4uDv379wcADB48GLNnz0Z8fDw2bdok5l2+fDkcHGpHf2NjY+8boHXo0AH9+vWrN8/OnTtRXFyMuLg4+Pv7AwAefPBBPPfcc0hMTMTq1asb9iYQUZsnblIrA9wV0s9BA2p75ipLa1BeVAlBJ0i+1xoR1a/Zc9D+9re/wdvbW4Km3N/Ro0fh5uZmclj75MmTkZ+fj/Pnz9dbNigoSAzOAMDJyQmRkZG4cOEC8vLyxHR9cCal1NRUhIaGisEZAHh4eCAiIgLHjh2DRqORvE4isk/6AM3N26XFdvl3vzN0KmgFVJRUt0gdRFS3Jn+z9QHF3//+d3h5eUnWoPpkZmYiODgYTk7GHX/du3cXr9clIyNDzNfYsvezY8cOjB07FhMmTMDChQvx008/GV2vqqpCTk5OnfVXVVXh5s2bdd4/Pz8fFy9eFP9kZWU1ua1EZNt0Gh0q7uzu3xLzz/S4UIDIspo8xNm5c2e8+OKLmDNnDvr06SNlm+qkUqnQuXNnk3RPT08AQElJSZ1lS0pKxHyNLVsXZ2dnPP744xg6dCjat2+PW7du4euvv8aKFSuwfPlyTJkyBQBQWloKQRDM1q8PblUqFQIDA83Ws2fPHmzdurXR7SMi+6MurgLu7A/eagFaQSX8QhQtVhcRmWpygKZSqbBhwwbExsZi+PDhmDNnDp599lm0a9dOyvaZkMmaPg+ivrJNua9SqcSyZcuM0saMGYPo6Ghs2rQJEydONOrta2r9U6dORVhYmPg6KysLa9asaXR7icj2tfQpAubuzR40otbX5CHOmzdvIjY2FgMGDMAvv/yCefPmoVOnTpgzZ47JEJ9UFAoFVCqVSXppaSkA1DvU6uXlZbaXTF/WXO9WUzg5OWHs2LFQqVS4fv26eG+ZTGa2fn1afW1XKpXo1auX+Cc4OFiSthKR7THaA40BGpHdanKA5uvri0WLFuHMmTM4efIkXn75ZcjlciQlJWHUqFHo06cP3n//fdy6dUuyxoaEhCArK8tkQn1GRgYAoFu3bvWWvXr1qkm6Pi0kJESydurPJ9UvNnBxcUFAQIDYTkMZGRlwcXFBp06dJKufiOyX4eHlrdWDpi5igEbU2iRZ/hMaGoqPPvoIN2/exI4dOzBu3DhcvnwZb7zxBgIDA/HUU0/h22+/hU6na1Y94eHhqKiowI8//miUfuDAASiVSvTt27fOshEREcjOzjZa6anRaHD48GH07dsXSqWyWW0zvGdKSgoUCgUCAgKM2n7q1CmjgFWtViM1NRVhYWEmCx+IiMwpL2qdAM2dPWhEFiVpVCCXy/Hcc8/hueeew/Xr15GUlIStW7di9+7d2LNnD/z9/XHjxo0m33/EiBEYOnQoNmzYALVajYCAAHz33Xc4fvw4Vq5cKe6Btm7dOhw8eBA7d+4Ut7WYPHkydu3ahZiYGERHR4sb1WZnZyM2NtaontzcXKSnpwOo3f0fAH744QcAgL+/P3r37g0A+Oijj6DRaDBgwAD4+vri9u3b+M9//oPLly/jzTffNNqTbfr06Th06BBef/11zJkzB87Ozti+fTuqq6sxa9asJr8nRNS2tNYcNLmbE5zdnFBToTHqtSOi1tFi3TZdunTBW2+9hWeeeQZRUVH4+eefkZub2+z7rlmzBgkJCUhMTBSPerr3WCWdTgetVisONQK1wWNsbCzi4+OxceNGVFZWomfPnnj//feNThEAgNOnT+Pdd981SouJiQEATJw4EStWrABQO6S6Z88eHDlyBOXl5XB3d0efPn3wwQcfYNiwYUblvb298dFHHyEuLg5r164Vj3rauHEj55QRUYMZn8PZMpvU6nn4uqL4RhnKCyshCEKzFmkRUePIBMMoRiLl5eX497//jS1btuDYsWMQBAHu7u7405/+xO0iJHDx4kXMnTsXCQkJPMeTqI35/NUfUJZfAZd2znjhk/H3L9AM+9/9FTf+WwAAeP6TcXBtJ2/R+ojoLkl70I4ePYotW7bgq6++glqthiAIeOihhzBnzhxMnz5dspWSRERtkSAIUBfX9qC15PCmnrv33ToqiqsYoBG1omYHaDdu3MCnn36KrVu34urVqxAEAe3bt0dUVBTmzJljdLQSERE1XVVZDXSa2kEPd++WHd4Eao+S0lMXVcGnC/+RTdRamhyg/fvf/0ZSUhKOHDkCrVYLBwcHREZGYvbs2XjyySfh7OwsZTuJiNo8dVGV+HNLzz8DjINAdXFVPTmJSGpNDtCee+45AEDXrl0xa9YszJo1C126dJGsYUREZEw/vAkAbt6tMMTpwwCNyFKaFaDNmTPHaPUkERG1HMMeNI9W7kGrYIBG1KqaHKDt2LFDynYQEdF9tPYQ571z0Iio9UhykgBQu4N+bGwshg0bBi8vL6Od8c+cOYMFCxbg0qVLUlVHRNTmGA4ztsYiAeM5aNyslqg1SbLNRkVFBSIjI3Hs2DEolUp4eXmhvLxcvN6tWzckJSXB19cXa9askaJKIqI2x/BMTHeflp+D5uzqBGc3R9RUaDkHjaiVSdKDtnbtWvz888949913kZubi6ioKKPrCoUCo0aNwsGDB6WojoioTTIMktxaoQcNuLsXGuegEbUuSQK0L774AqNHj8by5cshk8nMHgcSEhKC7OxsKaojImqT9PPAXD2d4egk2QyVeukDwZpKLWoqNa1SJxFJFKBlZ2fjoYceqjePl5cXVCqVFNUREbU5hqcItMbwpp47FwoQWYQkAZqnpyfy8vLqzXP16lX4+flJUR0RUZvT2qcI6HGzWiLLkCRAGzFiBPbu3VtnD9n169exb98+RERESFEdEVGb09pbbIh1MUAjsghJArRly5ahsLAQ48ePx7Fjx6DR1M5TUKvV+O677xAZGYmamhosWbJEiuqIiNqc1l7BqefmY7hZLbfaIGotkmyzERERgY8//hivvvoqwsPDxXRPz9qDdR0dHREXF4chQ4ZIUR0RUZvT2nugmauLPWhErUeSAA0A5s+fj1GjRuFf//oXjh8/jsLCQnh5eWH48OFYsGAB+vXrJ1VVRERtjlUMcXKRAFGrkSxAA4A+ffpg48aNUt6SiIhwzxBnq/ag3R1OZQ8aUetpnY107tDpdK1ZHRGR3TAa4mzFOWhyDyc4Otf+VcHNaolajyQB2ubNm++bR6vV4s9//rMU1RERtTmGw4utdYoAAMhkMrE+9qARtR5JArSXX34Zu3fvrvO6IAiYMWMGvvzySymqIyJqc/Sb1LbmKQJ6+iHVqrIaaGu0rVo3UVsl2T5o06dPx9GjR02u6YOzf//735g/f74U1RERtSmCIIg9aK05vKlnvJKzutXrJ2qLJAnQvv32W3Tv3h1Tp07Ff//7XzFdEAS88MIL+PzzzxEdHY2PP/5YiuqIiNqUqtIa6LStf4qAnmGd3AuNqHVIEqApFAocPHgQCoUCEydOxLVr1yAIAp5//nns2LED8+bNQ3x8vBRVERG1OWqVZeafiXX6cC80otYm2USGzp0749ChQ6iurkZkZCSmT5+OnTt3IioqCv/617+kqoaIqM2psNAmtXoe3GqDqNVJOtP0gQcewP79+5Gbm4svv/wSc+bMwSeffCJlFUREbY5V9aBxs1qiVtGkjWrfeeedeq8PGzYMZ86cQUBAgFFemUyGt956qylVEhG1WRVFlu1B43FPRK2vSQHa22+/3aB89wZyDNCIiBrPqAdNYelFAgzQiFpDkwK0lJQUqdtBRER1sPQcNFdPOWSOMghagT1oRK2kSQHaqFGjpG4HERHVwTAossQcNJmDDG4KOdSFVQzQiFpJ625HTUREjVZxZ4jTycURzq6OFmmD/tD0SlUVdDrBIm0gaksYoBERWbmKO7v3uynkkMlkFmmDfmhVEGqDNCJqWQzQiIismLZGi6ryGgB3e7EsgSs5iVpXk+agWZJarcbmzZuRkpKC0tJSBAUFYcaMGRg3btx9yxYVFSE+Ph5paWmorKxEjx49EBUVhSFDhhjlO3bsGFJSUnDp0iVkZ2dDq9UiNTXV5H4XL15EcnIyzp49i9zcXLi6uiIkJATPP/+8yT23bNmCrVu3mtxDLpfjyJEjjXsTiKjNMDz70s1bbrF2uDFAI2pVNhegrVy5Eunp6YiOjkZgYCCOHDmC1atXQ6fTYcKECXWWq66uxuLFi1FWVoZXXnkFPj4+2LVrF5YuXYrY2FgMGjRIzJuamopz586hZ8+ekMvluHjxotl7HjlyBOnp6XjsscfQvXt3VFZWYvfu3XjttdewYsUKTJw40aTMBx98AA8PD/G1pYYriMg2VBgMJ7pbYIsNsW4e90TUqmwqQEtLS8PJkycRExOD8ePHAwBCQ0ORm5uL+Ph4jB07Fo6O5ifQJicnIzMzE3Fxcejfvz8AYPDgwZg9ezbi4+OxadMmMe/y5cvh4FA7+hsbG1tngPbnP/8ZCxcuNEobMWIEoqKi8Omnn5oN0B544AF4e3s3+tmJqG2qsPAKTj2jvdB4mgBRi7OpOWhHjx6Fm5sbRo8ebZQ+efJk5Ofn4/z58/WWDQoKEoMzAHByckJkZCQuXLiAvLw8MV0fnN2Pj4+PSZqjoyN69eqF27dvN+geRET1Mdyk1hJ7oJmrmz1oRC1P0h60oqIi7N27Fy+++KKUtxVlZmYiODgYTk7Gze7evbt4fcCAAWbLZmRkYODAgSbphmX9/Pya3UaNRoOzZ8+ia9euZq+/9NJLKC4uhkKhwLBhwxAVFYWOHTvWe8/8/HwUFBSIr7OysprdTiKyDYZnX1pLDxoDNKKWJ2mAlp2djVmzZrVYgKZSqdC5c2eTdE9PTwBASUlJnWVLSkrEfI0t2xhJSUm4ceMG/vGPfxilBwQEYO7cueK8tgsXLmDnzp04ceIEEhIS6g0O9+zZY3aBARHZP2uZg+amcAFkAARAXVxpsXYQtRWNCtCys7PrvZ6Tk9OsxjREcybV11dWisn63377LT777DM8++yzCA8PN7r26KOPGr0ODQ3F4MGDsWDBAuzYsQOLFi2q875Tp05FWFiY+DorKwtr1qxpdnuJyPpZyxw0BycHuHrKUVlSzfM4iVpBowK0rl271hvICILQoqsSFQoFVCqVSXppaSkAwMvLq86yXl5eZnvJ9GXN9a41xr59+/DBBx/g8ccfx4IFCxpUpm/fvujSpUu9c+cAQKlUQqlUNqt9RGSbxDloMsDNy3LbbAC1w5yVJdVQF1e1+O97orauUQGaj48P1q5dazJJX+/ChQuYNm2aFO0yKyQkBEeOHIFGozGah5aRkQEA6NatW71lr169apKuTwsJCWlyu/bt24f169dj4sSJWLp0aaN/aTV0UQIRtT363ipXTzkcnCz7u8Ld2wWF2aXQaQRUldXA1dOyASORPWvUt33IkCHIy8tDr169zP7p1q0bBKHlzmgLDw9HRUUFfvzxR6P0AwcOQKlUom/fvnWWjYiIQHZ2tlFvlUajweHDh9G3b98m91Dt378f69evx4QJE7B8+fJGBWfnzp3D9evX6203EbVdgiCIE/LdLDj/TI+b1RK1nkb1oL388ssoLy+v83pQUBCSkpKa3ai6jBgxAkOHDsWGDRugVqsREBCA7777DsePH8fKlSvFPdDWrVuHgwcPYufOnfD39wdQuxXHrl27EBMTg+joaHGj2uzsbMTGxhrVk5ubi/T0dAB359X98MMPAAB/f3/07t0bAJCSkoL33nsPPXr0wNSpU3HhwgWj++gXBADArFmzEBkZieDgYKNFAr6+vpg+fXrLvGFEZNOqyzXQaWr/0WvJLTb07l3J6RvYvKkhRFS3RgVoTz31VL3XfXx8MHPmzGY16H7WrFmDhIQEJCYmikc9rVq1yuioJ51OB61Wa9SbJ5fLERsbi/j4eGzcuBGVlZXo2bMn3n//faNTBADg9OnTePfdd43SYmJiAAATJ07EihUrANRunKvT6XDp0iWTDWsB4IsvvkCnTp0A1M7f27NnDwoLC1FTUwOlUolx48Zh5syZnF9GRGYZrpa0igDNh5vVErUWmdCSY5LUIi5evIi5c+ciISEBvXr1snRziKiF5JwrwL5//AoAePDxbhg2vbdF25N5/Ca+23gGAPDQcw9g4NTuFm0PkT3j7HQiIitlOM/LOuaguYo/cw4aUctqdoDm6Oh43/3RiIio8Qz3G7OKIU7D8ziLqy3YEiL71+wAjSOkREQtQ20lm9SKbVDc3VbD8IxQIpIehziJiKyUtRzzpOfs6gRnt9rV8jxNgKhlMUAjIrJS1taDBgDud+ahVbAHjahFMUAjIrJS+iDI0dkBcvdG7YrUYvTDnNVqDTTVWgu3hsh+MUAjIrJS6jt7jbl5u1jNuZduRgsF2ItG1FIYoBERWSGtRoeqshoA1jH/TM+wLdxqg6jlMEAjIrJClSrrm38G3HOaAOehEbWYZgdof/vb3+Dt7S1BU4iISE+turvPmDXsgabnxh40olbR7Fmnf//736VoBxERGVAX3T2H081bXk/O1sU5aESto0WHOAVBwOXLl3H9+vWWrIaIyO5UGPagWe0cNJ4mQNRSJAnQdu/ejdmzZ6OoqEhMu3btGgYMGIDevXsjODgYM2bMgE6nk6I6IiK7V2GFe6ABgJuPYYBWWU9OImoOSQK0f/3rXzhx4gR8fHzEtMWLF+P8+fMYM2YMHnzwQXz++edISkqSojoiIruntrJzOPVcPeXQ7/hh2MtHRNKSJEA7d+4chg0bJr5WqVTYt28fnn32WRw5cgS//vor+vTpg8TERCmqIyKye2orXcXp4CCD651hTs5BI2o5kgRoeXl56NSpk/j6p59+gkajwfTp0wEAzs7OmDBhAq5cuSJFdUREds9oiNOK5qABgPud0wQqVFUQdIKFW0NknyQJ0Ly8vFBQUCC+/uGHH+Dg4IDw8HAxzdnZGeXl5VJUR0Rk9/QBmks7Zzg6WdeWlW53zuPUaQVxM10ikpYk3/revXtj7969KCwshEqlwueff47Q0FCjOWlZWVno2LGjFNUREdk1QRDEOWjWNP9Mz91g2w81N6slahGSBGivvvoqcnJyEBAQgMDAQOTk5GD+/Pnida1Wi59++gkDBw6UojoiIrtWU6GBtqZ21bu1DW8Cxm3iPDSiltHsjWoBYNq0afj444/FRQDPPPMMZs+eLV7/7rvvoFarMXHiRCmqIyKya2or3WJDz7BNPE2AqGVIEqABwMsvv4yXX37Z7LXIyEijPdKIiKhuhmdcWucQJ3vQiFqadc08JSIiqIusuwfNMEDjHDSilsEAjYjIyhj1oCms5xxOPc5BI2p5DNCIiKyM4RmX7j6uFmyJeZyDRtTyGKAREVkZ401qra8HTe7mBCcXRwDGvX1EJB0GaEREVsbwEHJ3b+vrQQPuzkOrKOZ5nEQtgQEaEZGV0Q8bOjo7QO4h2WJ7SennoVWV10Bbo7Vwa4jsDwM0IiIro1/F6aZwgUwms3BrzHMzPE2AvWhEkmt0gKbT6fC///0POTk5JtdqamqQmpoqScOIiNoirUYnnm9pjXug6RkOvXIeGpH0GhWgZWVlYcCAAXjwwQcRGBiIqVOnGh2SXlhYiDFjxkjeSCKitsJogYCP9QZohj1o3GqDSHqNCtCWL1+OLl26IDs7G2fPnkVVVRXCwsKMetMEQZC8kUREbYXhthVW3YOm4FYbRC2pUQHajz/+iPXr16NLly7o378/Dhw4gPDwcISHhyM7OxsArHa+BBGRLaiwkQCNe6ERtaxGLQ9Sq9Vwcbn7pZTJZEhISMDLL7+MiIgI7NixQ/IGmmvD5s2bkZKSgtLSUgQFBWHGjBkYN27cfcsWFRUhPj4eaWlpqKysRI8ePRAVFYUhQ4YY5Tt27BhSUlJw6dIlZGdnQ6vV1jm3TqPR4LPPPsP+/ftRUFCATp064amnnsK0adNM8ubk5ODjjz/G6dOnodVq0a9fP0RHR6NXr15NezOIyO7YTA+a4XmcnINGJLlG9aD16tULJ0+eNEmPj4/H5MmTMWXKFMkaVpeVK1fiwIEDeOmll7B+/Xr07t0bq1evxuHDh+stV11djcWLF+O3337DK6+8grVr18LHxwdLly7FmTNnjPKmpqbi3Llz6Nq1K3r06FHvfTds2IDt27fjqaeewgcffIDw8HB8+OGH+Oyzz4zyFRcX4y9/+QuuX7+O119/HW+//Taqq6uxaNEisfeRiMhWAjQ3HphO1KIa1YP29NNPY8eOHXj++edNrsXFxUEQBGzatEmyxt0rLS0NJ0+eRExMDMaPHw8ACA0NRW5uLuLj4zF27Fg4OjqaLZucnIzMzEzExcWhf//+AIDBgwdj9uzZiI+PN2r38uXL4eBQG7vGxsbi4sWLZu+ZmZmJ5ORkzJ07F9OnTxfvWVJSgm3btuGJJ56Al5cXAGDnzp0oLi5GXFwc/P39AQAPPvggnnvuOSQmJmL16tUSvENEZOuMDkq35kUCnnJABkDgECdRS2hUD9qbb76Jffv21Xk9Pj4eOp2u2Y2qy9GjR+Hm5obRo0cbpU+ePBn5+fk4f/58vWWDgoLE4AwAnJycEBkZiQsXLiAvL09M1wdnDWmPIAiYNGmSUfqkSZNQVVWF48ePi2mpqakIDQ0VgzMA8PDwQEREBI4dOwaNRtOgOonIvtnCKQIA4ODkAFfP2pWcHOIkkp5NbVSbmZmJ4OBgODkZd/x1795dvF6XjIwMMV9jy9bXHm9vb7Rv377ee1ZVVSEnJ6fO+quqqnDz5s0668nPz8fFixfFP1lZWY1uKxHZBv1woUwGuHpZ3zmchvRDsOriKq7gJ5KYdZ4hUgeVSoXOnTubpHt6egIASkpK6ixbUlIi5mts2fraox/CNOTm5gZnZ2eoVCoAQGlpKQRBMFu/vrxKpUJgYKDZevbs2YOtW7c2un1EZHv0w4WuChc4OFj3qvja455KodMIqC7XwKWds6WbRGQ3mh2gOTo6IjMzE0FBQVK0576as41HfWVbYnuQe+/Z1PqnTp2KsLAw8XVWVhbWrFnT/AYSkVXR6QRUqGqPTbLmBQJ67kZbbVQyQCOSULMDtNbs1lYoFGKvlKHS0lIAMNubpefl5WW2l0xf1lzvVkPac+XKFZP0iooK1NTUiO3x9PSETCYzW78+rb62K5VKKJXKRrePiGxLVWk1BF3t71RbCNCMThNQVcOniwUbQ2RnbGoOWkhICLKyskwm1GdkZAAAunXrVm/Zq1evmqTr00JCQprUnuLiYqPjrsy1x8XFBQEBAWL6vXldXFzQqVOnRtdPRPbFcDWkmw0EaO7crJaoxdhUgBYeHo6Kigr8+OOPRukHDhyAUqlE37596ywbERGB7Oxso5WeGo0Ghw8fRt++fZvUQ/XII49AJpPhwIEDRun79++Hi4sLhg8fbtT2U6dO4datW2KaWq1GamoqwsLCTBY+EFHbYyt7oOm58bgnohZjU1HBiBEjMHToUGzYsAFqtRoBAQH47rvvcPz4caxcuVLcA23dunU4ePAgdu7cKW5rMXnyZOzatQsxMTGIjo6Gj48Pdu3ahezsbMTGxhrVk5ubi/T0dAAQzxn94YcfAAD+/v7o3bs3gNoessceewxJSUlwcHBAnz59cOLECezduxdRUVFGw5bTp0/HoUOH8Prrr2POnDlwdnbG9u3bUV1djVmzZrXo+0ZEtqHCYA80dyveA02Pm9UStRybCtAAYM2aNUhISEBiYqJ41NOqVauMjnrS6XTQarVG8+PkcjliY2MRHx+PjRs3orKyEj179sT777+PQYMGGdVx+vRpvPvuu0ZpMTExAICJEydixYoVYvqSJUugVCrx9ddfo7CwEP7+/nj11VdNjnry9vbGRx99hLi4OKxdu1Y86mnjxo0IDg6W6u0hIhtmaz1ohgemcy80ImnJhGbO8ndwcMC1a9dabRUnARcvXsTcuXORkJDAczyJ7Mixredx/lDtPodTV49Ah54+Fm5R/arVNdgWdQQA0Ll/e0xeMczCLSKyHzY1B42IyJ4ZniLgZsWnCOg5uznB0bn2rxEOcRJJq9kB2t/+9jd4e3tL0BQiorbNaBWnwrpPEQBq9290MzhNgIik0+wA7e9//3u9e3gREVHD6HuhXDyc4SR3tHBrGkY/D62qrAZaTcudxUzU1nCIk4jICgiCIPZC2cIeaHpuPlzJSdQSJF3FqdPpcP36ddy4cQM1NTVm80REREhZJRGRXaip0EBbXdsDZQsrOPXu3ay2ndLNgq0hsh+SBGiCIGDdunWIjY012VX/XlqtVooqiYjsitrG9kDTM2yr4TMQUfNIEqC9+eabWL9+PTp06IBZs2ahU6dO3BmfiKgRbO2YJ717D0wnImlIEkVt3boVvXr1wokTJ9CuXTspbklE1KbY2ia1eu4+d7cDYQ8akXQkWSRQVlaGxx57jMEZEVET2WyAxgPTiVqEJAHaoEGDxDMriYio8QxXQNrUHDRvzkEjagmSBGgrV67E7t27cerUKSluR0TU5qiLDE4RUNhOgObqKYfMUQYAqOAcNCLJSDIHbeLEifj0008xadIkTJ06FQMHDqxz89oXX3xRiiqJiOxKhapa/NmWhjhlDjK4K1xQXliJcvagEUlGkgCtqqoKu3fvRn5+PhITEwHUHgFiSBAEyGQyBmhERGboV0A6uTjC2c22VsG7e9cGaJWl1dBpdXBw5B7oRM0lyW+BJUuWYPv27XjwwQfxpz/9idtsEBE1kn7+lru3i8k/cK2dOGdOqO0J9PC1/oPeiaydJFHUl19+iSFDhiAtLY2BGRFRI2mqtahWawDY1h5oem5GCwUqGaARSUCSfujKykqMGTOGwRkRURNU2OgWG3pGpwlwqw0iSUgSoA0ZMgRXrlyR4lZERG2Ore6Bpme0WS0DNCJJSBKgrV27FgcOHMC3334rxe2IiNoUtY3ugabHvdCIpCfJmOThw4cxevRoPPHEExgzZgwGDRpkdpsNmUyGt956S4oqiYjshmFQY4tz0HhgOpH0JAnQ3n77bfHn77//Ht9//73ZfAzQiIhM2fwQp7fhECc3qyWSgiQBWkpKihS3ISJqkypUtt2D5uolh0wGCAJ70IikIkmANmrUKCluQ0TUJhkGNbbYg+bgIIObtwvURVVGK1KJqOm43TMRkYXpz7CUOcrg2k5u4dY0jT6wrFBVQacTLNwaItsnSYD2888/Y8mSJcjNzTV7PTc3F0uWLMEvv/wiRXVERHZFPwfNXeECmYNtnSKgpx+aFQSgUsVeNKLmkiRA27BhA/bu3Qt/f3+z1/39/fHtt98iNjZWiuqIiOyGTqtDRUntQem2OLyp58G90IgkJUmAduLECTzyyCP15omIiGAPGhHRPSpKqoE7I4JuNrgHmp7h4obyQq7kJGouSQK027dvIyAgoN48/v7+uH37thTVERHZDbVBMGPYC2VrDM/fZA8aUfNJEqB5e3sjOzu73jxZWVlo166dFNUREdmN8kKDFZy+ttuD5mG4WS170IiaTZIAbeTIkdi1axf++OMPs9ezs7PxzTff4OGHH5aiOiIiu6EuMuhB87bdHjR3gx60cu6FRtRskgRoS5YsgVqtRlhYGLZt24abN28CAG7evIlPP/0UYWFhqKiowF//+lcpqiMishuG87VsuwfNYIiTPWhEzSbJRrXh4eH48MMPsXjxYsyaNQtA7bFOglA789XBwQEbN25ERESEFNUREdkNw01qDedx2RoXT2c4OjtAW6NDeREDNKLmkiRAA4CFCxdi1KhRiI+Px4kTJ1BcXAxvb28MGzYM8+fPR//+/aWqiojIbhj1oNnwIgGZTAZ3bxeU5lVAXcghTqLmkixAA4D+/fvj448/lvKWJtRqNTZv3oyUlBSUlpYiKCgIM2bMwLhx4+5btqioCPHx8UhLS0NlZSV69OiBqKgoDBkyxCTvyZMnkZiYiCtXrsDV1RUjR47Eyy+/DB8fHzHPli1bsHXr1jrrW7VqldiuuvLK5XIcOXLk/g9ORHZJ39vk5OIIubukv5JbnbuvK0rzKlBVXgNNtRZOckdLN4nIZtncb4OVK1ciPT0d0dHRCAwMxJEjR7B69WrodDpMmDChznLV1dVYvHgxysrK8Morr8DHxwe7du3C0qVLERsbi0GDBol5z5w5g2XLlmHkyJFYu3YtioqKsGnTJixevBgJCQmQy2uPYpkyZQqGDx9uUtf69euRk5ODYcOGmVz74IMP4OHhIb6WyWxz13AikoZ+kYC7j4vN/z4wnIdWXlgJhb9HPbmJqD42FaClpaXh5MmTiImJwfjx4wEAoaGhyM3NRXx8PMaOHQtHR/P/YktOTkZmZibi4uLE4dbBgwdj9uzZiI+Px6ZNm8S8cXFxCAwMxDvvvAMnp9q3qFOnTli4cCH27duHJ598EgDQoUMHdOjQwaiemzdv4tq1a5gwYQI8PT1N2vHAAw/A29u7uW8FEdmB6goNaiq0AGx7/pme4SIHdREDNKLmsKnD0o8ePQo3NzeMHj3aKH3y5MnIz8/H+fPn6y0bFBRkNBfOyckJkZGRuHDhAvLy8gAAeXl5SE9PR2RkpBicAcCAAQMQGBiI1NTUetu4b98+CIKAKVOmNOEJiagtUdvJ/DM94x40zkMjag6b6kHLzMxEcHCwUeAEAN27dxevDxgwwGzZjIwMDBw40CTdsKyfnx8yMzON0u/N+9///rfO9ul0Ouzfvx8BAQFGQ6aGXnrpJRQXF0OhUGDYsGGIiopCx44d67wnAOTn56OgoEB8nZWVVW9+IrINhqsdPWx4iw09w73QuNUGUfPYVICmUqnQuXNnk3T9UGJJSUmdZUtKSswOOd5bVqVSAQC8vLzM5q2vjhMnTuD27duYN2+eybWAgADMnTsXPXv2hFwux4ULF7Bz506cOHECCQkJ8PPzq/O+e/bsqXcxAhHZJsPVjvbRg2ZwHie32iBqFpsK0IDmTaqvr+y91+rKW989kpOT4ejoiEmTJplce/TRR41eh4aGYvDgwViwYAF27NiBRYsW1XnfqVOnIiwsTHydlZWFNWvW1JmfiGyDcQ+aHQRoRj1oHOIkag6bCtAUCoXYw2WotLQUgPleLz0vLy+zvV/6svqeNIVCAQB11mOuFw4AiouL8fPPP2PkyJFo3779fZ6kVt++fdGlS5d6584BgFKphFKpbNA9ich2GB+UbgdDnOxBI5KMZAFadXU1vvnmG3GTWq1Wa5JHJpMhMTGxyXWEhITgyJEj0Gg0RvPQMjIyAADdunWrt+zVq1dN0vVpISEhRvfIyMjAyJEjjfJmZGTUWcehQ4dQU1PTpMUBDg42tVaDiCRieGalux30oDk6O8LV0xmVpTVGZ4wSUeNJEqBlZWVhwoQJuHr1qni8kznNDdDCw8Oxd+9e/Pjjj0Yb0x44cABKpRJ9+/ats2xERAQ2bNiA8+fPi/k0Gg0OHz6Mvn37ij1Ufn5+6NOnDw4dOoTnnntO3Lbj3LlzyM7Oxv/3//1/Zu+fnJwMpVJpdl+0upw7dw7Xr1/HtGnTGlyGiOyH2IMmA9wVtt+DBtTOpassrUF5URUEnQCZg23v7UZkKZIEaK+99hquXLmCF154AbNnz0aXLl1MVlpKYcSIERg6dCg2bNgAtVqNgIAAfPfddzh+/DhWrlwpBlPr1q3DwYMHsXPnTvj7+wOo3Ypj165diImJQXR0tLhRbXZ2NmJjY43qmT9/PpYsWYKYmBg89dRT4ka13bp1Mzu/7Pz588jMzMQLL7xQ5z5ss2bNQmRkJIKDg40WCfj6+mL69OkSv1NEZAv0w4BuChc4ONlHT7q7jysKs0shaAVUlFbbTeBJ1NokiaK+//57jBs3Dp9++qkUt6vXmjVrkJCQgMTERPGoJ8MjlYDa7S60Wq1Rb55cLkdsbCzi4+OxceNGVFZWomfPnnj//fdNtsQYPHgw1q9fjy1btuCNN94Qj3pasGCBeIqAoeTkZMhkMjz22GN1trtr167Ys2cPCgsLUVNTA6VSiXHjxmHmzJmcX0bUBum0OlQU1w5x2sP8Mz3D7ULUhZUM0IiaSCbUNybZQF5eXpg/fz7Wr18vRZvoPi5evIi5c+ciISEBvXr1snRziKgJygsrsfMvKQCAoCEdEPlX0zOBbdFvX13G6a+vAAAm/DUUwUPq3+eRiMyTpE995MiRuHDhghS3IiJqE8qNVnDa/gIBPaOtNoq41QZRU0kSoK1btw4pKSn46quvpLgdEZHdM1zl6G4HpwjoGW1Wy9MEiJqsSXPQ3nnnHZO0MWPG4Nlnn8WoUaMwePBgcT8xQzKZDG+99VZTqiQisit224PW3k38mQEaUdM1KUB7++2367z2ww8/4IcffjB7jQEaEVGtsvy7wUs7pVs9OW2LR3uDA9MLGKARNVWTArSUlBSp20FE1KYYBi/2cMyTntzdCc6ujqip1KKsoMLSzSGyWU0K0EaNGiV1O4iI2pSywrvBi2Gvk62TyWTwaO+K4hvlKC+ohCAIzTpDmaitso+dEYmIbIy+B83VSw4nufkNrm1Vuzvz0LQ1OlSV1li4NUS2SfLt/jUaDS5dugSVSgWFQoEHHnigRU4VICKyVTqtTjzmyZ6GN/UMewTLCirg6mW6wTcR1U+yHrS8vDzMnTsX3t7eGDBgAB555BEMGDAA3t7emDdvHvLy8qSqiojIpqmLq6DfItyeFgjocaEAUfNJ0rV148YNhIWFITs7G35+foiIiEDHjh1x69Yt/Pbbb9i8eTMOHz6Mn376CQEBAVJUSURks4wWCNjR/DO9dr53g84yBmhETSJJD9ry5cuRnZ2N1atXIysrC/v27UNSUhL27duHrKwsvP3228jKysLrr78uRXVERDatLP/uAoF29jjEqTToQSvkSk6ippCkB+3AgQOYOHGi2T3OXF1dERMTg2PHjmH//v1SVEdEZNPsvgfNYLNaw/3eiKjhJOlBq66uRmhoaL15hgwZgurqaimqIyKyaWWF9rlJrZ7hwgfOQSNqGkkCtCFDhiA9Pb3ePOnp6RgyZIgU1RER2bTyfPvcA03PycURLu2cAXCIk6ipJAnQ/v73v+Pbb7/F1q1bzV7fsmUL9u3bhzVr1khRHRGRTdNPnJfJAHdv+zko3ZC+Z7C8sAo6nWDh1hDZHknmoKWkpGDMmDGYM2cO1q9fj7CwMHTo0AG3b9/Gzz//jIsXLyIyMhLff/89vv/+e7Ecz+YkorZIf4i4u68rHBztc79wj/auKLhWAkEnoKKo0ugQdSK6P0kCNMPD09PT080Odx48eBAHDx40SmOARkRtjaZai8qS2vm49ji8qWe4OrWsgAEaUWNJ1oNGRET3Zzhp3nC/MHvjYbD4obyQCwWIGkuSAI2HpxMRNYxhsGK4X5i9adfeuAeNiBrHPic/EBFZqbICg01q7XiI02irjXyu5CRqrCYFaH/+85/x9ddfN7nS5pYnIrJV5QYbt3rY8xCn4Wa1HOIkarQmBWiff/45/ve//zW50uaWJyKyVYbDfXbdg+bjApms9mf2oBE1XpPnoJ05cwbbtm2Tsi1ERHavNE8t/tzOz3570BycHODu64rygkqU5jFAI2qsJgdo33zzDXbv3t3ocoLADQuJqO0quxOsOLvd3W3fXnn6uaG8oBJVZTWortBA7ibJujSiNqFJ35akpKRmVzxo0KBm34OIyJbodALK7gz3tVO6Q6YfA7RTnn7uyE0vAlAbmPoGeVq4RUS2o0kB2syZM6VuBxGR3asoqoROWzuK4NnBfoc39QyHcEvz1AzQiBqB22wQEbUSw7lYnkr7D9A8jQI0zkMjagwGaERErcQoQGsDPWiGz1jGAI2oURigERG1EqMVnEp3C7akdRg+I3vQiBqHARoRUSspa2M9aB6+LpA51i6EKDMITono/higERG1EqMhTjveA03PwdEB7e4c+cQeNKLGsblNadRqNTZv3oyUlBSUlpYiKCgIM2bMwLhx4+5btqioCPHx8UhLS0NlZSV69OiBqKgoDBkyxCTvyZMnkZiYiCtXrsDV1RUjR47Eyy+/DB8fHzHPzZs38eyzz5qta9WqVSZtysnJwccff4zTp09Dq9WiX79+iI6ORq9evRr5LhCRLdIHKS4ezpC72/ceaHqeHdxRmleBarUGVeU1cPFoG89N1Fw2F6CtXLkS6enpiI6ORmBgII4cOYLVq1dDp9NhwoQJdZarrq7G4sWLUVZWhldeeQU+Pj7YtWsXli5ditjYWKN92c6cOYNly5Zh5MiRWLt2LYqKirBp0yYsXrwYCQkJkMvlRveeNm0axo8fb5TWpUsXo9fFxcX4y1/+Ak9PT7z++uuQy+XYvn07Fi1ahE8++QRBQUHNf3OIyGrptDqU3znmyZ5PELiX4bOW5VUwQCNqIJsK0NLS0nDy5EnExMSIAVFoaChyc3MRHx+PsWPHwtHR0WzZ5ORkZGZmIi4uDv379wcADB48GLNnz0Z8fDw2bdok5o2Li0NgYCDeeecdODnVvkWdOnXCwoULsW/fPjz55JNG9+7QoQP69etXb9t37tyJ4uJixMXFwd/fHwDw4IMP4rnnnkNiYiJWr17dpPeEiGxDeWElBN2dPdDaUIDmec9eaO27elmwNUS2o8lz0EJDQ/HJJ58YpR08eBBLliwxm3/16tVisNNUR48ehZubG0aPHm2UPnnyZOTn5+P8+fP1lg0KChKDMwBwcnJCZGQkLly4gLy8PABAXl4e0tPTERkZadTeAQMGIDAwEKmpqU1qe2pqKkJDQ8XgDAA8PDwQERGBY8eOQaPRNOm+RGQbDOdgtdUeNM5DI2q4JgdoZ86cQW5urlHaL7/8go0bN9ZZprnncGZmZiI4ONgk0Ovevbt4vS4ZGRlivvrK6v9bV15zdezYsQNjx47FhAkTsHDhQvz0009G16uqqpCTk1PnPauqqnDz5s06256fn4+LFy+Kf7KysurMS0TWqex221ogoGe4IS8DNKKGs6khTpVKhc6dO5uke3rWHh9SUlJSZ9mSkhIxX31lVSoVAMDLy7Qb3tPT06gOZ2dnPP744xg6dCjat2+PW7du4euvv8aKFSuwfPlyTJkyBQBQWloKQRDM1q+vR6VSITAw0Gzb9+zZg61bt9b5bERk/UrzDQM0+98DTc+zw91n5Wa1RA1nUwEagGYdLlxf2Xuv1ZXXMF2pVGLZsmVG18eMGYPo6Ghs2rQJEydONOrta0z9hqZOnYqwsDDxdVZWFtasWVNnfiKyPqW3DTapbUM9aO7eLnBwkkGnEYw26iWi+tnUPmgKhULs4TJUWloKwHyvl56Xl5fZHjZ9WX3vlkKhAIA66zHXC2bIyckJY8eOhUqlwvXr18V7y2Qys/Xr0+pru1KpRK9evcQ/wcHB9baBiKxPWX7bHOKUOcjQ7s4wZ1leRbOnuhC1FTYVoIWEhCArK8tkQn1GRgYAoFu3bvWWvXr1qkm6Pi0kJMToHvp73ltPfXXo6X8BOTjUvr0uLi4ICAio854uLi7o1KnTfe9LRLar5E4PmqunM5xdbW7woln0Q7o1lVpUllRbuDVEtsGmArTw8HBUVFTgxx9/NEo/cOAAlEol+vbtW2fZiIgIZGdnG6301Gg0OHz4MPr27QulUgkA8PPzQ58+fXDo0CFotVox77lz55CdnY1Ro0bV20aNRoOUlBQoFAoEBAQYtf3UqVO4deuWmKZWq5GamoqwsLBmr3AlIuulqdJCXVgFAPDy97Bwa1qfl//deWgltzjMSdQQzYoK/t//+3/45ZdfxNdXrlwBULvtxb3015pjxIgRGDp0KDZs2AC1Wo2AgAB89913OH78OFauXCnugbZu3TocPHgQO3fuFLe1mDx5Mnbt2oWYmBhER0eLG9VmZ2cjNjbWqJ758+djyZIliImJwVNPPSVuVNutWzdMmjRJzPfRRx9Bo9FgwIAB8PX1xe3bt/Gf//wHly9fxptvvmm0J9v06dNx6NAhvP7665gzZw6cnZ2xfft2VFdXY9asWc1+b4jIeqlulYs/e3VsOwsE9AyfWZVbjo4P+NSTm4iAZgZoV65cMRt4HThwwGz+5kzw11uzZg0SEhKQmJgoHvV077FKOp0OWq3WaK6DXC5HbGws4uPjsXHjRlRWVqJnz554//33jU4RAGo3sF2/fj22bNmCN954QzzqacGCBUanCHTr1g179uzBkSNHUF5eDnd3d/Tp0wcffPABhg0bZnRPb29vfPTRR4iLi8PatWvFo542btzIOWVEdq4k926vkaIN9qAZPrPhe0FEdZMJTZyx2dS9uBiMNN/Fixcxd+5cJCQk8BxPIhtwds9VnPj8EgBgzF8GovvDptsF2bPinDJ8tfQoACBkRCeMfXWQZRtEZAOa3IPGQIuIqGFUBr1GbXEOmmcHd8hkgCDUDnES0f3Z1CIBIiJbZDgxXuHf9uagOTo5iFttlNxSc6sNogZoUg/a7Nmzm1SZTCZDYmJik8oSEdmqkju9Rq5ecsjdnS3cGsvw8vdAaV4Faio0qCyphpvCxdJNIrJqTQrQ6jp2SCaTmf2XkT6dARoRtTU1lRqoi+5ssdEGV3Dqefm748Z/a39W5aoZoBHdR5MCtHsPDNfpdFi0aBF++eUXLFq0COHh4ejYsSNu3bqF1NRUfPjhhxg5cqTJdhZERPau5HbbXsGppzDaC60c/r241QZRfZoUoN27QGDdunU4fvw4zp49a7Qjfq9evRAREYFZs2Zh8ODB+Oqrr7B8+fLmtZiIyIaUGC0QaMs9aNxqg6gxJFkkkJiYiGeeeabO44oCAgLwzDPPICEhQYrqiIhsRklu296kVu/ezWqJqH6SBGjXr1+Hq6trvXlcXV3Fw8OJiNoKVRvfpFZPv9UGwB40ooaQJEDr0qULdu3ahcrKSrPX1Wo1du3ahS5dukhRHRGRzTDqQWvDQ5yOTg5o56ffaqOcW20Q3YckAVpUVBQyMjIQFhaG3bt3o6CgAABQUFCAb775Bo888giuXbuGuXPnSlEdEZHN0PcWteUtNvS8Otb2INZUaFFRUm3h1hBZt2adxam3bNkyXLp0CUlJSXj66acBAA4ODtDpdAAAQRAwa9YsLFu2TIrqiIhsQk2lBuriO1tstOHeMz2FwVYbJTfL4c6tNojqJEmA5uDggMTERLz44ov49NNP8fvvv0OlUkGhUGDgwIF48cUXMWrUKCmqIiKyGaqbd4c32/L8Mz2vTnffA9XNcvj39rVga4ismyQBmt6oUaMYiBER3VF0o0z82SegnQVbYh0M3wPD94aITDV5DlpSUhLy8vKkbAsRkV0pvn43CPHuwgDN8D0oZoBGVK8mB2hz5sxB586dER4ejn/+85+4fPmylO0iIrJ5xexBM+Lu7QK5e+3ATdF1BmhE9WlygHbs2DEsXboUhYWFWLZsGXr37o0+ffpgxYoV+OWXX6RsIxGRTdIHIU4ujmindLNwayxPJpOJvWjlBZWoVtdYuEVE1qvJAdqIESPw7rvv4ty5c7h8+TLee+89+Pn5Yf369QgLC0OnTp0QHR2Nffv2oaqqSso2ExFZPU21FqV3zuH07uwBmYPMwi2yDoY9icU5PFGAqC6S7IPWvXt3LF26FKmpqbh16xY2b96M4cOHY/v27Xj88cehVCoxbdo0fPbZZygsLJSiSiIiq6a6WQ79XqzeHN4UGb4XnIdGVDdJAjRD7du3x6xZs/DNN98gPz8fu3btwjPPPIOff/4ZM2fORMeOHTF69GipqyUisipG88+4QEBk+F5wHhpR3STdZuNerq6umDp1KqZOnQpBEHDs2DHs3r0be/bsaclqiYgszjD4YA/aXT7sQSNqEMl70Ooik8kQFhaG9evXIz09vbWqJSKyCMPggwHaXe6+rnB2cwTAvdCI6tPkHrQFCxY0uoxMJsPHH3/c1CqJiGyGPvhwdHaAZwce86Qnk8ngHdAOeVdUKMurQE2lBs6uLTqYQ2STmvyt+Ne//tXgvDLZ3dVLDNCIyN5pa7TiIenenT3gwBWcRny6eCLvigpA7UpOvxCFhVtEZH2aHKClpKQ0KF92djbeeecdXL161ShQIyKyV6pcNQRd7RJODm+aMlrJeb2MARqRGU0O0O535mZRURHWrl2Ljz/+GJWVlRg5ciTee++9plZHRGQzinjEU72Mz+QstWBLiKyX5AP/lZWV+D//5/9g/fr1KC4uRu/evbF27Vo8+eSTUldFRGSVCrNKxJ99Az0t2BLr5Bt09z0puMYAjcgcyVZxCoKAzZs3o2fPnlixYgXc3d3xySef4H//+x+DMyJqU/Iz7wZoyq5eFmyJdXL3cYGrlxwAUHBNBUG/oy8RiSQJ0L755hv069cP0dHRKCsrw9q1a3HlyhVERUXBwaHVdvIgIrI4QRBQcKcHzdVLDndfVwu3yPrIZDK0D64NXCtLa6AurLRwi4isT7Oip59++glhYWGYNm0aMjMz8dprryEjIwNvvPEGXF35S4mI2h51YSUqS6oBAO2Dvbg4qg7Kbnd7FvOvldSTk6htavIctKlTpyI5ORkODg6YOXMm3nnnHXTp0kXKthER2RzDYMMwCCFj7Q2GfguulSB4SEcLtobI+jQ5QPv2228hk8kQFBSE3NxczJs3775lZDIZkpOTm1olEZHVKzAI0Npz/lmdDN8b9qARmWrWKk5BEJCZmYnMzMwG5WdXPxHZu3wGaA3i1cEdzm6OqKnQGgW1RFSryQFaQ4MyqanVamzevBkpKSkoLS1FUFAQZsyYgXHjxt23bFFREeLj45GWlobKykr06NEDUVFRGDJkiEnekydPIjExEVeuXIGrqytGjhyJl19+GT4+PmKeixcvIjk5GWfPnkVubi5cXV0REhKC559/3uSeW7ZswdatW03qkcvlOHLkSOPfCCKySvpgw9nNEV484qlOMofahQK56UUoL6idt6df2UlEzQjQgoODpWxHg61cuRLp6emIjo5GYGAgjhw5gtWrV0On02HChAl1lquursbixYtRVlaGV155BT4+Pti1axeWLl2K2NhYDBo0SMx75swZLFu2DCNHjsTatWtRVFSETZs2YfHixUhISIBcXvtL5MiRI0hPT8djjz2G7t27o7KyErt378Zrr72GFStWYOLEiSbt+OCDD+Dh4SG+Zq8ikf2oLKlGeUHtisT2wV6Q8YinerXvWhugAUB+Vgm6DFBauEVE1sOmTqhNS0vDyZMnERMTg/HjxwMAQkNDkZubi/j4eIwdOxaOjo5myyYnJyMzMxNxcXHo378/AGDw4MGYPXs24uPjsWnTJjFvXFwcAgMD8c4778DJqfYt6tSpExYuXIh9+/aJ+7r9+c9/xsKFC43qGTFiBKKiovDpp5+aDdAeeOABeHt7N/etICIrlJ/F4c3GUHa9e8RTQaaKARqRgSYFaLNnz25SZTKZDImJiU0qCwBHjx6Fm5sbRo8ebZQ+efJkvPPOOzh//jwGDBhQZ9mgoCAxOAMAJycnREZG4pNPPkFeXh78/PyQl5eH9PR0zJs3TwzOAGDAgAEIDAxEamqqGKAZDnfqOTo6olevXjh8+HCTn5OIbFNBpkr82TD4IPOMV3LyRAEiQ00K0MzNpQJqAzBzO0Lr05sboGVmZiI4ONgocAKA7t27i9frCtAyMjIwcOBAk3TDsn5+fuLcOn36vXn/+9//1ttGjUaDs2fPomvXrmavv/TSSyguLoZCocCwYcMQFRWFjh3rX16en5+PgoIC8XVWVla9+YnIMvIy7gZo7EG7P+8ADzg6O0Bbo0NeRrGlm0NkVZoUoN27QECn02HRokX45ZdfsGjRIoSHh6Njx464desWUlNT8eGHH2LkyJGIjY1tVmNVKhU6d+5sku7pWXuuW0lJ3SuBSkpKxHz1lVWpan/BenmZ/nL19PSstw4ASEpKwo0bN/CPf/zDKD0gIABz585Fz549IZfLceHCBezcuRMnTpxAQkIC/Pz86rznnj176gyKicg6CIKAW5eKAQDObk48JL0BHBwdoAxR4NbFIpTeroC6uAru3i6WbhaRVWhSgHbvAoF169bh+PHjOHv2LDp16iSm9+rVCxEREZg1axYGDx6Mr776CsuXL29Wg5szqb6+svdeqytvfff49ttv8dlnn+HZZ59FeHi40bVHH33U6HVoaCgGDx6MBQsWYMeOHVi0aFGd9506dSrCwsLE11lZWVizZk2d+Ymo9ZXerkBFcRUAoEMPbzhwgUCDdHzAB7cu1i4UuHWpCN2G+Vu4RUTWQZKDMhMTE/HMM88YBWeGAgIC8MwzzyAhIaFZ9SgUCrGHy1Bpae3cBXO9XnpeXl5me7/0ZfU9aQpF7byRuuox1wsHAPv27cMHH3yAxx9/HAsWLLjPk9Tq27cvunTpgvPnz9ebT6lUolevXuIfS62gJaK63bpUJP7csZe35RpiYzo+4C3+rA/UiEiiAO369ev3PXvT1dUV169fb1Y9ISEhyMrKgkajMUrPyMgAAHTr1q3eslevXjVJ16eFhIQY3UN/z3vrMVfHvn37sH79ekycOBFLly5tdC8fD5Qnsn1GAdoDpguIyDzD98rwPSRq6ySJDLp06YJdu3ahsrLS7HW1Wo1du3Y1+6zO8PBwVFRU4McffzRKP3DgAJRKJfr27Vtn2YiICGRnZxv1Vmk0Ghw+fBh9+/aFUlm7vNvPzw99+vTBoUOHoNVqxbznzp1DdnY2Ro0aZXTf/fv3Y/369ZgwYQKWL1/eqODs3LlzuH79er3tJiLboA8uZA4ydOjhbdnG2BBXTzkUnWv3hsy/VgJNlfY+JYjaBkkCtKioKGRkZCAsLAy7d+8WVxwWFBTgm2++wSOPPIJr165h7ty5zapnxIgRGDp0KDZs2IC9e/fi1KlTeP/993H8+HHMnz9f3ANt3bp1GDNmDHJzc8WykydPRrdu3RATE4PDhw/j5MmTWLVqFbKzszF//nyjeubPn4/s7GzExMTg5MmTOHz4MFatWoVu3bph0qRJYr6UlBS899576NGjB6ZOnYoLFy7g3Llz4p/q6mox76xZs7Bz504cO3YMJ0+exGeffYZly5bB19cX06dPb9b7QkSWVVVeg6LrZQAA3yBPOLva1BaTFqfvRRO0AldzEt0hyW+RZcuW4dKlS0hKSsLTTz8NoHbYTqfTAahd3TRr1iwsW7as2XWtWbMGCQkJSExMFI96WrVqldFRTzqdDlqt1mjLD7lcjtjYWMTHx2Pjxo2orKxEz5498f777xudIgDUbmC7fv16bNmyBW+88YZ41NOCBQvEUwSA2o1zdTodLl26ZLJhLQB88cUX4ry8rl27Ys+ePSgsLERNTQ2USiXGjRuHmTNnir13RGSbbl8pBu78uunYi8ObjeX/gA8u/VA7BebWxWJ06tPewi0isjyZYG7jsib68ccf8emnn+L333+HSqWCQqHAwIED8eKLL5oMDVLTXbx4EXPnzkVCQgJ69epl6eYQtXkn/30JZ76pnc865pVB6D7S/IIpMk91sxxf/jUVABA4yA+PLh9q4RYRWZ6k/fCjRo1iIEZEbY7h5HZ/g1WJ1DBe/u5w9ZKjsqQaty4VQdAJPMeU2jwuHyQiagZNlRa3LxcDANop3eDR3s2yDbJBMplMnIdWrdag4Fr9G4ITtQUM0IiImuFmeiG0NbXzbQN42HeTBQy4O+/s+u/5FmwJkXVggEZE1AzXz+aJP3cZyACtqbo8ePe4u+u/59WTk6htYIBGRNQM18/W9vbIHGTo3I+rD5vKq6M7vPzdAQC3LhejWl1j4RYRWRYDNCKiJirNU0N1sxxA7fmbLh7OFm6RbesysLYXTdAKyDlXYOHWEFkWAzQioiYynCvF4c3m6/Lg3feQ89CorWOARkTURPrhTcA4uKCm6dTHFw5OtdtrXD+bDwm36SSyOQzQiIiaQKfRIedcbYDm6ukMZTeFhVtk+5xdneDf2xcAUJZfAVVOuYVbRGQ5DNCIiJrgxrkC1FTUHuwdMEDJjVUlop+HBgDXTt6yYEuILIsBGhFRE2Qcuyn+3G24vwVbYl+6Deso/nzV4D0mamsYoBERNZKmWotrJ3MBAM5uTka9PtQ8nn7u6NDTGwBQ9Ecpiq6XWrZBRBbCAI2IqJGun80Thze7PtQRTnJHC7fIvoQYHDafkcZeNGqbGKARETXSVYOgwTCYIGmEDPeH7M6UvqtpN7mak9okBmhERI1QU6lB9qnbAGpXbwbw9ADJufu4olPf2ve1JFeNgkwenk5tDwM0IqJGyPw1F9rq2sPRuw7zh4MTf422BMOeyctHb1iwJUSWwd8sREQNJAgCzh3IEl/3DA+wYGvsW9dhHeHoXPtX1KXUG6iu0Fi4RUStiwEaEVED3bpYhIJrtcNtym5e4mpDkp5rOzl6PNIZAFBTocHl1OsWbhFR62KARkTUQOcO3u096/doV8hk3Jy2JfV7tKv487mDWRB0XCxAbQcDNCKiBigrqMC1E7U727sp5AgZyc1pW5pvkCc697u7WOD62TwLt4io9TBAIyJqgP/tvyb24PQeFwRHZ+591hr6TQwWf/49OZNbblCbwQCNiOg+SvPUOH+odnjT0dkBfcYHWbhFbUfg4A7w6ugOALh5vhDXz+ZbuEVErYMBGhHRfZz84hJ0mtqem34Tu8Ld28XCLWo7HBxkGPLMA+LrX3emQ8e5aNQGMEAjIqpHXoZKPLTbpZ0zBj0RYuEWtT0hI/zh110BACj6owyXf+SKTrJ/DNCIiOqg0wn4ZdsF8fXgp3tA7u5swRa1TTKZDMNn9BZfn/zyMirLqi3YIqKWxwCNiKgOv+/JwK1LRQAAr47unHtmQf69fRE8tCMAoKK4Cj9t/h8XDJBdY4BGRGTG7SvF+O0/lwEAMhkQET0AjjzWyaIefqkvXNrV9mBe+/UWLnGok+wYf9sQEd2jQlWFlI/OQNDW9tAMfKI7/Hv7WrhV5OHrivC5/cXXaZ9eEE92ILI3DNCIiAxUldfgwLoTKL1dAQDw66FA6NM9LNwq0uv6kD96jQkEAGiqtNi/7gSKc8os3Coi6TFAIyK6o6q8BgffP4mCrFIAgEd7V4x7dTAcOLRpVUa+2AcdHvAGAFSWVGP/2hNQ5ZZbtlFEEuNvHSIiAEXXS7H7rWO4fakYAODqJcekNx9CO6WbZRtGJpxcHPHosqFoH+wJACgvrMTulcfwB4+CIjvCAI2I2jSdVofzh7Ow+600lOSqAdTudzbxjaHw7tzOwq2jurh4OGPiGw/BO6D2M6pWa3Bw/Un8ujMdNZUaC7eOqPmcLN2AxlKr1di8eTNSUlJQWlqKoKAgzJgxA+PGjbtv2aKiIsTHxyMtLQ2VlZXo0aMHoqKiMGTIEJO8J0+eRGJiIq5cuQJXV1eMHDkSL7/8Mnx8fIzyaTQafPbZZ9i/fz8KCgrQqVMnPPXUU5g2bZrJPXNycvDxxx/j9OnT0Gq16NevH6Kjo9GrV6+mvyFE1CQ6nYA/Tt/Gb19eRmF2qZjePtgT418LhWcHdwu2jhrCTeGCqatH4Mf435H1221AAH7fm4krP+Ug9E890SOsM5zkPDOVbJNMsLGNZJYsWYL09HRER0cjMDAQR44cwbfffou33noLEyZMqLNcdXU15s6di7KyMkRHR8PHxwe7du1CWloaYmNjMWjQIDHvmTNn8Nprr2HkyJF46qmnUFRUhE2bNqFdu3ZISEiAXC4X865fvx6HDh3CnDlz0Lt3b/z666/YsWMHoqKi8MILL4j5iouLMXv2bHh6emL27NmQy+XYvn07rly5gk8++QRBQQ3fX+nixYuYO3cuEhISGNwRNYIgCCi6Xoas327h0g/XxYUAeg+M7oKHZ/aFkwv/Urclgk7A2T0ZOPX1ZfFILqC2J/SBUV0QPLQjOvT0hoODzIKtJGocm+pBS0tLw8mTJxETE4Px48cDAEJDQ5Gbm4v4+HiMHTsWjo7mf7EmJycjMzMTcXFx6N+/dpn24MGDMXv2bMTHx2PTpk1i3ri4OAQGBuKdd96Bk1PtW9SpUycsXLgQ+/btw5NPPgkAyMzMRHJyMubOnYvp06eL9ywpKcG2bdvwxBNPwMvLCwCwc+dOFBcXIy4uDv7+/gCABx98EM899xwSExOxevVq6d8wojZKEATUVGigLqqCKrccqpxy5GWocPtKMcoLKk3yt+/qhZEz+8K/l4+Zu5G1kznIMOjJ7ug2wh/H/186sk/dBgBUldXgv8mZ+G9yJlzaOaNDD2/4dVdA0ckD7ZRu8PRzg5vCBTIGbmSFbCpAO3r0KNzc3DB69Gij9MmTJ+Odd97B+fPnMWDAgDrLBgUFicEZADg5OSEyMhKffPIJ8vLy4Ofnh7y8PKSnp2PevHlicAYAAwYMQGBgIFJTU8UA7ejRoxAEAZMmTTKqa9KkSdi7dy+OHz8u9uqlpqYiNDRUDM4AwMPDAxERETh06BA0Go1Rfa1NlVuOa7/m3jdfg/pbG9gnKzQkY0P7dxt0K+nqk7TfuQE3k7K+Bt9LwkobdquG1SfoAG21FpoaHbQ1OmhrtLX/rdahqrwGlSXVqCipMupJqUvAACX6RgYhcHAH9q7YAYW/ByKXDsHty0U4dzALmcdzobuzl11VWQ3+OJOHP84YLyRwdHaAm8IFzm5OkLs7Qe7mBGc3Jzg6OUDmKIODowyOTg5wcHKAg6MMMgcZZPr/VWTG/8/cTdf/R2b0uq50Gf/Xs0pdHvRD+65eFqvfpgK0zMxMBAcHmwQy3bt3F6/XFaBlZGRg4MCBJumGZf38/JCZmWmUfm/e//73v0bt8fb2Rvv27eu8JwBUVVUhJycHERERZu9ZVVWFmzdvIjAw0Gzb8/PzUVBQIL7Oysoym685VDfLceLzS5Lfl8iaOLk4okNPbwSFdkDwkA7w9OM8M3vUoacPOvT0wcgXq/HHmTxk/XYLNy8UoqqsxiSvtkaHsvwKM3ehts6lnZwBWkOpVCp07tzZJN3Ts3apdUlJ3TtKl5SUiPnqK6tSqQBAHJq8N69hHSqVymw+Nzc3ODs7i/cqLS2FIAhm69eXV6lUdQZoe/bswdatW+t8NiKqJXOQwdVLDjcvOVw95XBTyOHV0R1e/h7wDfaETxdP9pS1Ia5ecvSMCEDPiAAIgoDS22oUZJWiNK8CZXkVKM1ToyyvApWl1ahWa6Ct0Vm6yUQimwrQAEDWjL7g+sree62uvI2pv6H3vN+1qVOnIiwsTHydlZWFNWvWNLgdDaHspsCEJaENyyzh328Nej8bWF+DsjX085OqWQ19rxrQrga/7Q1pu5RjKg19SyV6w2QywEnuCEe5AxydHeDo7Hjnvw5wkjtyPhGZJZPJ4NXRA14dPerMo9XoUKPWoKZSA61GB51GgE6rg04rQKe581/dnaFzQRBH5cXBdP0Pd8b07003WpMnGGUlK9S+q2mnSmuyqQBNoVCIvVKGSktrl8ib683S8/LyMtvDpi+r791SKBQAUGc9hr1gCoUCV65cMclXUVGBmpoasT2enp6QyWRm69en1dd2pVIJpVJZ53UpuHu7IHhoxxatg4jImjk6OcDRSw5XL/n9MxO1MJvaqDYkJARZWVnQaIw3IczIyAAAdOvWrd6yV69eNUnXp4WEhBjdQ3/Pe+sxrCMkJATFxcVG88PMtcfFxQUBAQF13tPFxQWdOnWqs+1ERETUtthUgBYeHo6Kigr8+OOPRukHDhyAUqlE37596ywbERGB7OxsnD9/XkzTaDQ4fPgw+vbtK/ZQ+fn5oU+fPjh06BC0Wq2Y99y5c8jOzsaoUaPEtEceeQQymQwHDhwwqmv//v1wcXHB8OHDjdp+6tQp3Lp1S0xTq9VITU1FWFiYRVdwEhERkXWxqahgxIgRGDp0KDZs2AC1Wo2AgAB89913OH78OFauXCnugbZu3TocPHgQO3fuFLe1mDx5Mnbt2oWYmBijjWqzs7MRGxtrVM/8+fOxZMkSxMTEGG1U261bN6MtNbp164bHHnsMSUlJcHBwQJ8+fXDixAns3bsXUVFRRsOW06dPx6FDh/D6669jzpw5cHZ2xvbt21FdXY1Zs2a1wrtHREREtsLmThJQq9VISEgwOurp+eefNzrqae3atThw4AC++OILo6HDwsJCo6OeevbsiTlz5mDo0KEm9Zw4cQJbtmzB5cuXxaOeFixYYPaop23btmH//v0oLCyEv78/nn76abNHPd24cQNxcXE4deqUeNTT/PnzG30aAE8SICIism82F6ARAzQiIiJ7Z1Nz0IiIiIjaAgZoRERERFaGARoRERGRlWGARkRERGRlGKARERERWRkGaERERERWhgEaERERkZVhgEZERERkZWzqqCeqVVVVBQDIysqycEuIiIiosYKDg+Hq6lpvHgZoNig3NxcAsGbNGgu3hIiIiBqrIScB8agnG1RcXIxff/0VnTp1glwul+y+WVlZWLNmDVauXIng4GDJ7mst7P35APt/Rnt/PsD+n5HPZ/vs/Rlb4/nYg2anvL29ERkZ2WL3Dw4OtuszPu39+QD7f0Z7fz7A/p+Rz2f77P0ZLf18XCRAREREZGUYoBERERFZGQZoJGrfvj1eeukltG/f3tJNaRH2/nyA/T+jvT8fYP/PyOezffb+jNbyfFwkQERERGRl2INGREREZGUYoBERERFZGQZoRERERFaG+6DZoNOnT2PRokVmr8XHx6Nfv37i64sXL+Jf//oXzp8/D0dHRwwePBgLFy5E586dTcr+5z//wa5du3Dz5k20b98ekyZNwgsvvAAnp/v/b6LRaPDZZ59h//79KCgoQKdOnfDUU09h2rRpVvGMf/zxB/bs2YPTp08jJycHMpkMwcHBeOaZZzB69Oj7tufmzZt49tlnzV5btWoVxo0bZ9HnA4CIiAiz95s3bx6ef/75+7bJ2j/D/fv34913362zvvs9p6U+w99//x379+/H5cuXkZmZiZqaGnzxxRfo1KmT2bLW8j2U+vms7TsItMxnaE3fQ6mfzxa/g1qtFl999RVOnDiBzMxMlJSUoGPHjnjkkUcwY8YMeHp6mpS1lu8gAzQbNm/ePAwePNgorVu3buLPWVlZWLRoEXr06IG3334b1dXV2LJlC/7yl79gy5Yt8Pb2FvNu27YNiYmJmDFjBh566CGkp6dj8+bNyM/Px7Jly+7blg0bNuDQoUOYM2cOevfujV9//RUffvgh1Go1XnjhBYs/46+//oq0tDQ8+uij6N27N7RaLb7//nvExMRg9uzZeOmllxrUnmnTpmH8+PFGaV26dLH48+mNHj3a5Bdgx44dG9QWa/8MR44cifj4eJP7JyYm4uTJk3X+xXiv1v4Mf/vtN/z222/o2bMnPDw8cPr06TrvZY3fQ6mez1q/g4C0nyFgfd9DqZ7PFr+DVVVVSEpKwrhx4zBlyhQoFApcunQJ27Ztw7Fjx5CQkAAXFxexnFV9BwWyOadOnRLCw8OFlJSUevPFxMQIU6ZMEcrKysS0mzdvCmPGjBHi4uLEtOLiYmHcuHHC+vXrjcpv27ZNiIiIEDIzM+utJyMjQ4iIiBA+++wzo/T169cL48ePF1QqVcMezIDUz1hUVCTodDqT8suXLxcmTJggVFVV1VtPTk6OEB4eLuzYsaNxD1IHqZ9PEAQhPDxc2LBhQ5PaYwufoTlqtVqIjIwUFi5ceN/2WOoz1Gq14s87duwQwsPDhZycHJN81vY9lPr5rO07KAjSP6MgWNf3sCWe717W/h3UaDRCcXGxSXpKSooQHh4uHDx4UEyztu8g56DZKY1Gg2PHjmHUqFHw8PAQ0/39/TF48GAcPXpUTDt+/Diqq6sxefJko3tMmjQJgiAY5TXn6NGjEAQBkyZNMilfVVWF48ePS/BEphrzjN7e3pDJZCb36NOnDyorK1FSUtIibWyOxjxfc9nCZ2jO999/j4qKCjz22GMt0j4pODg07NesrX4PG/p8tvgd1GvoMzaXtX+G5lj7d9DR0REKhcIkvU+fPgCA27dvi2nW9h1kgGbDYmNjMWbMGEycOBF//etf8fvvv4vXcnJyUFVVhe7du5uU6969O27cuIGqqioAQGZmJgAgJCTEKJ9SqYRCoRCv1yUzMxPe3t4mm/rp675f+fpI9Yx1OX36NLy9veHj49Og9uzYsQNjx47FhAkTsHDhQvz000+Ne6B7SP18R44cwfjx4zFu3DhERUVh3759DWqHrX6GycnJ8PDwwJgxYxrcntb8DBvDWr+HUj1fXSz9HQSkf0Zr+x625Gdoq9/BU6dOAQC6du0qplnbd5Bz0GyQh4cH/vSnP2Hw4MHw8vLCjRs3sHPnTixatAjvvfcehg0bBpVKBQDw8vIyKe/l5QVBEFBaWgoXFxeUlJRALpfDzc3NbF79veqiUqnM1uPm5gZnZ+f7lm+NZzTn22+/xenTp/Hqq6/C0dGx3vY4Ozvj8ccfx9ChQ9G+fXvcunULX3/9NVasWIHly5djypQpFn++8ePHY+TIkejQoQOKioqQnJyMdevWIScnB1FRUfW2xxY/w6ysLPzvf//D1KlT4erqet/2WOIzbAxr+x5K/XzmWPI7CLTMM1rT97ClP0Nb/Q7m5eVh06ZN6N27Nx5++GEx3dq+gwzQbNADDzyABx54QHw9cOBAhIeH46WXXkJ8fHyDv3Tmhhuak0/K8i39jL/88gtiY2MxevToBq2uUSqVJhNEx4wZg+joaGzatAkTJ05s0AofvZZ4vpiYGKNro0ePxhtvvIHt27fjT3/6k8mCgsawxs8wOTkZABr8S91aP8OGau3vYUs/n6W/g0DLPKM1fQ9b+jO0xe9gSUkJli9fDkEQ8PbbbzdqeLe1v4Mc4rQTnp6eePjhh3H16lVUVVWJY+7m5nWUlJRAJpOhXbt2AGr/ZVBdXY3Kykqzec39i8CQQqEwW09FRQVqamruW76hmvOMhn799VesXLkSQ4cOxVtvvdXkL52TkxPGjh0LlUqF69evN+kehqR6PkMTJkyAVqtFenp6vfls7TPUaDQ4ePAgevTogd69eze5PS39GTaGLXwPm/N8hqz1OwhI94yGrOl7KNXz2eJ3sLS0FEuWLEF+fj42bNhgslWRtX0HGaDZEcHgWNXOnTvDxcUFGRkZJvkyMjIQEBAgDhvpx9vvzVtQUACVSmW0HNuckJAQFBcXo6CgwKQeAPct3xhNfUa9X3/9FStWrMCgQYPw97//Hc7OzpK0R6pJxM19vrrcr3229BkCwLFjx1BUVCTJxOSW/Awbw1a+h019Pj1r/w4a3lNq1vI9lOL5bO07WFpaitdeew03b97EP//5T7PzXq3tO8gAzU6UlpYiLS0NPXv2hIuLC5ycnPDwww8jNTUVarVazHfr1i2cPn3aaL+a4cOHQy6XY//+/Ub33L9/P2QyGcLDw+ut+5FHHoFMJsOBAwdMyru4uGD48OESPGHznhG4+xfDgw8+iH/84x+Qy+XNao9Go0FKSgoUCgUCAgKadS+g+c9nzsGDB+Hk5GQ0DGCOrXyGesnJyZDL5YiMjGxWe1r6M2wMW/geNuf5AOv/DgLNf0ZzrOl7KNXz2dJ3UB+c5eTk4J///Gedn4O1fQc5B80GvfPOO+jQoQN69+4NhUKB69ev44svvkBhYSHefPNNMd/s2bMxb948vP7665gxYwaqq6uRmJgIhUKB5557Tszn5eWFF198EYmJifDy8sJDDz2ECxcuYOvWrZgyZYrRKpcDBw7gvffew+uvv46JEycCqP1XwWOPPYakpCQ4ODigT58+OHHiBPbu3YuoqKgmdctL/Yy///47/va3v8HX1xfPP/88rly5YlRf165dxW0ezD3jRx99BI1GgwEDBsDX1xe3b9/Gf/7zH1y+fBlvvvnmfSc4t/Tz7dy5E9euXcOQIUPg5+cnTk4+ceIEZs2aZTTvxVY/Q738/Hz8+uuvGDNmjNldwOt6Rkt9hsXFxThz5gyAu/+SPn78OLy9veHt7Y1BgwYBsL7vodTPZ23fwZZ4Rmv7Hkr9fHq29B2sqqrCX//6V1y+fBmvvPIKtFotzp07J97D29tbDAyt7TvIAM0GhYSEICUlBXv27EFFRQU8PT0xYMAA/O1vfxP3dgGA4OBgfPjhh/jXv/6FmJgYODo6IjQ0FAsWLDCZqPriiy/C3d0du3btwueffw5fX1/8+c9/xosvvmiUTxAEaLVaky7kJUuWQKlU4uuvv0ZhYSH8/f3x6quvNvmYIKmf8eTJk6iqqkJubi4WL15sUt/GjRvFnajNPWO3bt2wZ88eHDlyBOXl5XB3d0efPn3wwQcfNGmirdTPFxQUhJ9//hlpaWniqscePXqYPT7FVj9Dvf3790Or1dY7MdmaPsPMzEyTieMbNmwAAAwaNAgffvihmG5N30Opn8/avoMt8YzW9j1sif9HAdv6DhYWFopz/+59DgCYOHEiVqxYIb62pu+gTGipwXYiIiIiahLOQSMiIiKyMgzQiIiIiKwMAzQiIiIiK8MAjYiIiMjKMEAjIiIisjIM0IiIiIisDAM0IiIiIivDAI2IiIjIyjBAIyKycdeuXYNMJhP/+Pv7G11/++23IZPJ8MMPP1imgfd4/vnnjdq7detWSzeJyOowQCMiq3Vv4GHuz73nBLZlAwcOxKpVq7B06dIWr2vTpk2QyWSYP3/+ffMOGTIEMpkMp06dAgA8/fTTWLVqFZ544omWbiaRzeJZnERk9bp3747nn3/e7LV7e4vaskGDBuHtt99ulbqmT5+OJUuW4PPPP0dsbCzc3NzM5vv9999x6tQpDBo0CKGhoQBqA7Snn34aW7duxe7du1ulvUS2hgEaEVm9Hj16tFrgQQ3j5eWFP/3pT9i2bRu+/vprzJgxw2y+xMREAMCcOXNas3lENo9DnERkV2QyGUaPHo28vDzMnj0bHTp0gJubG0aMGFHnHKzS0lKsWrUK/fr1g5ubG7y9vTFx4kT89NNPJnlHjx4NmUyGqqoqxMTEoEePHnB2djYKIL/++msMHToUbm5u6NixI+bOnYuioiJ07doVXbt2FfPNnDkTMpkMJ06cMNuu5cuXQyaTYdeuXc15S+r0+++/o3PnzlAqlTh+/LiYnpmZiaioKAQFBcHFxQWdOnXCSy+9hKysLKPy+qArKSnJ7P2rq6uxfft2uLi41BnAEZF57EEjIrtTXFyMsLAweHl5YcaMGbh9+za++OILPProo/jtt9/Qv39/MW9hYSEiIiJw7tw5hIeH49FHH4VKpcLu3bsxZswYfPnll3jyySdN6nj66adx9uxZPProo/D19UVISAgAYMuWLZgzZw68vb3x4osvQqFQYN++fZgwYQJqamrg7Ows3iM6Ohrbtm1DQkICHnroIaP719TUYNu2bfD398fjjz8u+Xt09OhRPP744/Dy8sL333+P3r17AwCOHz+ORx99FOXl5Xj88cfRo0cPXLt2Ddu3b8f+/fuRlpYmPmtERAR69uyJ77//HteuXTMKPgFgz549KCgowPTp0+Hj4yP5MxDZNYGIyEplZmYKAITu3bsLq1atMvtn//79RmUACACEBQsWCFqtVkzfvHmzAECIjo42yv/nP/9ZACBs2bLFKD03N1cIDAwU/Pz8hIqKCjF91KhRAgBh0KBBQkFBgVGZoqIioV27doKnp6dw9epVMb2mpkYYP368AEAIDg42KtO/f3/B09NTKCsrM0r/+uuvBQDC66+/3uD3aebMmWavr1q1SgAgpKSkCIIgCN98843g6uoq9O3bV/jjjz/EfNXV1ULXrl0FT09P4cyZM0b3OHr0qODo6ChMmTLFKP3dd98VAAhvv/22Sb2TJk0SAAhHjhwx266kpCQBgJCUlHTfZyRqaxigEZHV0gce9f1ZtGiRURkAgoeHh1BaWmqUXlNTIzg5OQmhoaFiWl5enuDo6CiMGzfObP0ffvihAEDYu3evmKYP0Hbv3m2Sf+vWrQIA4bXXXjO5lpaWZjZA09eRmJholD558mRBJpMJly9fNts2Q40J0DZv3iw4OjoKI0eONAkw9UHh3//+d7P3efrppwUHBwdBpVKJaTk5OYKjo6PQtWtXQafTiek3btwwm26IARpR3TjESURW79FHH8WBAwcanL9nz55o166dUZqTkxM6duyI4uJiMe3EiRPQarWorKw0uwjh8uXLAID09HRMmTLF6NqwYcNM8p89exYA8PDDD5tcGzZsGJycTH/lvvDCC3j99dexefNmzJ49GwBw48YNHDx4EKNGjUKPHj3qf9hGiI2NxZ49ezB58mR8+eWXcHd3N7r+yy+/AKh9XnPvR25uLnQ6HS5duoShQ4cCADp16oRJkybh22+/RUpKCsaOHQsA2Lp1K7RaLWbNmgWZTCbZMxC1FQzQiMjuKBQKs+lOTk7QarXi68LCQgDAzz//jJ9//rnO+5WXl5ukdezY0SStpKQEAODn52dyzcHBAUql0iTd29sbzzzzDD799FOcP38effv2RVJSErRaLebOnVtnm5ri6NGjAICJEyeaBGfA3fdj+/bt9d7n3vdjzpw5+Pbbb5GUlGQUoDk4OOCll16SoOVEbQ9XcRJRm+Xl5QUA+Otf/wqhdsqH2T+rVq0yKWuuV0h/v7y8PJNrOp0O+fn5ZtsRHR0NANi8eTMEQUBSUhJ8fX3x9NNPN/nZzElMTERoaCgWLVqEuLg4k+v69u/du7fe92PUqFFG5aZMmYKOHTviP//5D0pKSnD06FFcvnwZEyZMQFBQkKTPQNRWMEAjojbroYcegkwmQ1pamiT3GzhwIADg2LFjJtd+/fVXaDQas+VGjhyJAQMG4LPPPsP+/fuRkZGB559/Hq6urpK0S8/HxwdHjhxBaGgoFi5ciI8//tjo+vDhwwGg0e+Hk5MTXnzxRVRUVODzzz/Hli1bAHDvM6LmYIBGRG2Wv78/nnnmGRw7dgzvv/8+BEEwyXP8+HGo1eoG3e+JJ55Au3btsHnzZmRmZorpGo0Gb731Vr1l582bh/z8fHFYMyoqqhFP0nD6IG3o0KH4y1/+gv/7f/+vUfuDgoKwYcMGpKammpStqakxuzcccDcYi4uLw5dffon27dvzKCeiZuAcNCKyeleuXKn3JIHmnDIQFxeHixcvYvny5fjss88wcuRIKBQK/PHHH/jtt99w+fJl3Lx50+ycrXt5e3tjw4YNmDdvHkJDQ/Hss8+K+6C5uLigc+fOcHAw/+9i/WKBnJwcDB8+HAMGDGjyMzWknYcPH0ZkZCReffVVCIKAV199FS4uLvjqq68wadIkjBo1CuPGjRP3jMvOzsbRo0fRvn17pKenm9yzV69eCAsLE+fyzZ07F3K5vMWegcjeMUAjIqt39epVrF69us7rzQnQfH19cezYMXz00Uf44osvsH37duh0Ovj7+2PgwIF46623zE7ur8vcuXPh4+ODtWvXYuvWrVAoFJg6dSree+89BAcHo3v37mbLKRQKPPHEE9i5c6fkiwPMMQzSFi1aBEEQsGjRIjz00EM4e/Ys3n//fezbtw8//fQTXFxcEBAQgCeffBLTp0+v855z5swRAzT9ilQiahqZYK5Pn4iIJHXlyhX07NkTzzzzDL744guzefr164fs7GzcvHnTZJuQ+ly7dg3dunXDzJkzsXXrVola3PK2bt2KWbNmISkpias9ie7BOWhERBIqKipCVVWVUVpFRQVee+01ADB7bBQA7Nu3D+fPn8cLL7zQqODM0KeffgqZTAZ/f/8mlW8tzz//PGQyGWbNmmXpphBZLQ5xEhFJ6Mcff8ScOXMQGRmJoKAg5Ofni2dVjh07Fs8++6xR/vj4ePzxxx9ISEiAm5sbli9f3ug6vb29jbYCaWqA11qefvppow14Bw0aZLnGEFkpDnESEUno8uXLeOutt3Ds2DFxP7QePXrg2WefxdKlS022zujatSuuX7+OXr164b333jM5sYCI2iYGaERERERWhnPQiIiIiKwMAzQiIiIiK8MAjYiIiMjKMEAjIiIisjIM0IiIiIisDAM0IiIiIivDAI2IiIjIyjBAIyIiIrIy/z8Dqmh5avWMKgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot spectrum:\n", + "energy = np.linspace(500.,520.,201)*u.keV\n", + "dnde = src1.spectrum.main.Gaussian(energy)\n", + "plt.plot(energy, dnde)\n", + "plt.ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "plt.xlabel(\"Energy [keV]\", fontsize=14)" + ] + }, + { + "cell_type": "markdown", + "id": "a3eab551-1228-456d-b44c-a5f85f885238", + "metadata": {}, + "source": [ + "An extended source in astromodels corresponds to a skymap, which is normalized so that the sum over the entire sky, multiplied by the pixel area, equals 1. The pixel values in the skymap serve as weights, which we can use to scale the input spectrum, in order to get the model counts for any location on the sky. This is all handled internally within cosipy, but for demonstration purposes, let's take a look at the skymap:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b13d7c3b-298c-4e22-88b7-18038d39084d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "summed map: 0.9974653836229359\n" + ] + } + ], + "source": [ + "# Define healpix map matching the detector response:\n", + "skymap = HealpixMap(nside = 16, scheme = \"ring\", dtype = float, coordsys='G')\n", + "coords1 = skymap.pix2skycoord(range(skymap.npix))\n", + "pix_area = skymap.pixarea().value\n", + "\n", + "# Fill skymap with values from extended source: \n", + "skymap[:] = src1.Gaussian_on_sphere(coords1.l.deg, coords1.b.deg) \n", + "\n", + "# Check normalization:\n", + "print(\"summed map: \" + str(np.sum(skymap)*pix_area))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "34046df6-759d-442e-891e-d70fc282ffdf", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAGaCAYAAABe77jvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAACaVUlEQVR4nOzdd1gU99rG8e/MdjoIgoqKvfdYYo1Ro1ET03uPacb0fpKcmN5Oct70nPRumumWmNiS2HtHUVFRQJBet828f6ysomChDbDP57q4hN3ZmQeE3Xt/VdF1XUcIIYQQQohqUI0uQAghhBBCNHwSKoUQQgghRLVJqBRCCCGEENUmoVIIIYQQQlSbhEohhBBCCFFtEiqFEEIIIUS1SagUQgghhBDVJqFSCCGEEEJUm4RKIYQQQghRbRIqhRBCCCFEtUmoFEIIIYQQ1SahUgghhBBCVJvZ6AKEEKKu6bqOy+WipKSEkpISXC5XuQ+n01nhbW63G6/X6//QNK3cv0ffBqAoCoqioKqq/+uyz1VVRVEUAEwmE1arFbPZjMViwWw2l/u67KPsdrvdjt1ux+FwlPvcbJandSGEMeTZRwjR4Hg8HgoKCsjPzyc/P/+YzwsLCykpKaG4uJiioiKKi4spLi4ud5vX6zX626gVZrO5XNh0OBwEBwcTEhJCaGgoISEhFX6U3RcWFobD4TD62xBCNECKruu60UUIIQKb2+0mJyeHnJwcsrOzy/1b9nFkeCwuLq6xa5vNZt+HyYzJZDr0r+82i9mMxXqoldBmwWq1go7vAwVd00EDXePw7Yc+FBR0HYrzigmOCiJ7fx6KAoqqoJoUVJOKYlYwW0yYLCZMFt/XiglQwOV04SxxUlriwlXqwuV04Sp143a5cbvdaLoXXdUJjnJQWlpaoyHZZrMRERFBeHg4ERERx3yU3R4VFUWTJk2w2+01dm0hRMMloVIIUWs0TSMnJ4fMzEwyMzPJyMjwf37w4EF/cMzPzz/lcyuKgs1qw2a1YTVbsahWTIoZE2YUrwoeBc2to5XqaE4NT7GOt9SLt1QjKDiIqLhIYhNiiGsXQ3TrKKJahKNpOtn7cslJzSN7fx75GQUUHCyk4GARBQeLKMwuwuvRTqlO1aTy74V38tQZr6N5T+6xqkklJCqI0OhgQqNDCG0STFjTECKbRxAVH05U8wjMVhM5afkc3JNN+o5M0ndlkrEnk5wDeWiKBqoOJh3dpINJA7OObtbBrPluM2v+rzHpRLQIo6CgAI/Hc8r/FyEhIURHRxMdHU2TJk3KfX7k1xaL5ZTPLYRoOCRUCiGqrLS0lPT0dNLS0khNTSU9Pd0fGsuC48mGFEVRCLIHYbfasZhsWLCges0obhWtBLzFGq4CL65cN848N5rT1xp4IhFxYcR3iyO+azNadIkltl00HreXjF1ZHNh1kAM7D5K5O4vslFyKckuq+yM5RlVC5clwhNlpEh9BTEIUTdtFE9s2mth20VgdFjKSs9i/JZ19W9PZtzmd7H25J3VOHV8QxayhW3R0iwYWrcJ/dYuOLdyM0+k8qXMrikJUVBRxcXHExsYSGxtLXFyc/+u4uDiCgoKq8RMRQhhNQqUQolJer5eMjAxSU1NJS0s75iM7O/uE5ygLiw5bEDbVjslrQXGpaEXgyvPizHZTmu066ZB4PKpJoVnHpiT0aUnL7s2I7xaH2WJm39Z09m9JY9+WdNKTMik4WFSt65xaTbUTKisTHBlEXIcYWnSJJb5bM+K7xAH4AuamNJLXprB/y4EaqaUshOpWDaxedKvm+9x2+PO4TtFkZWXhcrlOeL7Q0FB/0IyPjyc+Pp4WLVrQokULYmJi/BOchBD1k4RKIQKcruvk5uaSkpJCSkoKe/fuZd++faSkpLB//37cbvdxH2+1WglxhGI3OTB7rVCq4snTKM1yU5zhQivWUfTqhcXjiW0XTZu+LWnTN57WveMpzith99p97N2Qyr7NaWSl5GDks1xdh8qKRLUIJ75bM1r2aE6bPvGExYSwZ0MqyWtSSF6dQnpSRq3+jHR0X/e73Ytu831g96LbNHSbl5BmDgoKCo57DqvVSvPmzf0hsyxwtmzZkqZNm0rgFKIekFApRIDwer2kpqaSnJxMcnKyP0SmpKRQWFhY6eNMJhMhQaE4zEGYvRb0IhV3rpfSA25KD3rAo1S7hfFUmK0m2vRrSafBbek4uA2KSSV59V6SV6eQvGYfuemnPj6zNtWHUHm00OjgQ0G8JW1Pa4nJbGL70mS2L0lm16q9uEqO/0aiNugmzR8ysXt9AdThoUWvWNLS0o47jMLhcNCqVStat25NQkKC/99mzZrJEktC1CEJlUI0MpqmceDAAX94LPvYs2dPpV2QiqIQ7Agh2BKM2WuDIhXXQY3iVCfuPK1OQ2NFHKE2Og9vT+dh7WjTtyWZu7PYvsQXgmq7la266mOoPFrTtk3oOLgtnQa3Ia5jU/as38+2v3eyZdEOinJqbqZ9VenoYNPQHZ5DYdOLbvcQ3yeO1NTUSgOnxWIhPj7eHzTbtm1Lu3btaNGihbRsClELJFQK0YCVlJSwY8cOkpKSSEpKYteuXezevZuSkoonnJjNZsKDI3AoQSglZtzZGkX7SnFmaSiascHxaLYgK52GtaX7qE606RPP7rX72Pr3TpKWJFOQVXdjIqurIYTKIwVFOOgwMIEuI9rT9rRWpGxKZfP87WxdtIOSgpOblFOXdOVQt3qQxxc2gzzoQR6sTUyVTiKy2+3+gNm+fXvat29P27ZtCQ4OruPqhWhcJFQK0UDk5eX5w+P27dtJSkoiJSWFiv6EVVUlPDgCuxKEUmTClalRlOLEW1D9yTC1STWpdBzchp5ndab9wAT2bUlj07xDgSa/1OjyqqShhcoj2YKtdB7Wju5ndiShTzzJa1LYMHcbiX/vwOOq34vHl7VuaodCZtmHpYlaaYt9s2bN/CGzU6dOdOrUiSZNmtRx5UI0XBIqhaiHCgoKSExMZMuWLWzbto3t27eTkZFR4bFBjmBCbeFYnTbcB3UK9zpxZXtrdXJMTYtuFUmfid3oNbYLBQeLWDtrM1sWJFGYbXzXa3U15FB5pKBwO12Gt6fX2V2JbhXJxj8SWfPbZg7sPGh0aadER/e1aAZ70IPd6MEemnQKJzMzs8LjY2Ji6Ny5M506dfL/Gx4eXsdVC9EwSKgUwmBut5udO3eyZcsWtm7dytatW9m7d2+Fx4YFhxFsCoVCM6X73BTvc4HLVMcV1wyz1UT3UZ3oe053YhKi2Dg3kTUzN5OeVPGLe0PVWELlkWISougzvhu9xnUh70ABa37bxIa5iYZM8KkpullDD/agHQqarQbGsWfPngp7Apo1a0bnzp3p3LkzXbp0oXPnzrKrkBBIqBSizmVkZLBx40Y2b97M1q1bSUpKqrA7Liw4jBBzOEqBmeIUN0V7nb6dYhq4sJgQTjuvJ/3O7c7BPTms+mkDW/+q/92pVdUYQ2UZk9k3XOG0ST1p3iWWtTM3s/KH9eSk1a8Z+FWlqxp6iActxI0e4qFZnybs37//mONMJhMdOnSge/fudO/enR49ehATE2NAxUIYS0KlELVI13X27NnDhg0b/B/p6enHHGez2gi3RaIWWSnd76F4jxvF0/AD5JHiuzVj0MW96XB6G7YsSGL5jHWNrlWyIo05VB4punUkAy/sTc+zOpO8Zh/Lv19L8pp9RpdV43SThh7iRgv1oIe4iewUQlZW1jHHxcbG+kNm9+7dadeunSxvJBo9CZVC1CC328327dv9AXLTpk3k5eWVO0ZRFCJDonBoIXgydPJ3lNb7CTTV0W5Aa4Zd3Z8m8RGs+GE9q3/dRHEtbIdYXwVKqCxjD7HRZ0JXBl7Yh6KcYv7+YiXb/tlZr5d9qg7/hKBQF1qYm/ZntGTHjh1oWvn/a4fDQY8ePejduzd9+vShU6dOEjJFoyOhUohq8Hq9JCUlsWbNGlavXs3GjRspLS0/S9lsMhPhiMRcbKdkr4eSFE+j6MY+HkWBzsPbM+zq/jhC7fzz5SrWz9nSaLu4jyfQQmUZ1aTSfXRHhl3VH12Hf75YyaZ529C8jf8lR1c19FAPWpgLPdRNUCvrMRsMSMgUjZGESiFOQVl39urVq1mzZg3r1q07Zns5m9VOhD0SJddCwQ4n7sza3aawPlEU6DqyI2dcPwhd0/j7i5Vsnr89IIJEZQI1VJZRFOg8rB3Drh6AI8zOX58uZ/3vWwPqd0JH9y1pFO5GC3cR2s5+TA/GkSGzf//+dOjQQRZoFw2OhEohTuDgwYOsWLHCHySPHj9ltViJsEeh5lgp2O7Ena032q7s4+kwKIEzbxqMyWJiwQdLSPy78XZ5nopAD5VHaj+gNWfeNBirw8L8D5aydVFSQP6OHB0yQ9rayM8vP7kpPDyc/v37+z+io6MNqlaIkyehUoijeDweNm3axLJly1i+fDk7d+4sd7/JZCbSEYWaZ6VwuxNPVt3ufV3ftOrZnFE3DyEsJoQFHy1l4x/b0DV5WikjofJYXUa058zJg3E73cx/bwk7VuwxuiRDlYVMLdyNHuHCFq8esytWmzZt6N+/PwMGDKBXr17YbDaDqhWichIqhcC3zM+KFStYtmwZq1evpqjo8DaAZRNrbKXBFO1wUbpPC5ju7OOJbB7OWbcPI75bM/76ZDlrftuE1yOh6WgSKiummhR6ntWFM24YRFZKDr+/8RcZycfOog5EuqKjh7rRIlx0HNuKxMTEcutlWq1WevbsyeDBgxk8eDDNmzc3sFohDpNQKQKS1+tly5Yt/PPPPyxbtozk5ORy99utdsJMUXj2QWFS41vepzpsQVaGXTOA0yb1YMUP6/nni5UNetHr2iah8vjMVhOnX9qXIZefxoa5W1nw0bIGuyVnbdHNGlqECy3CSZMeocfs/pOQkMDgwYMZMmQIXbt2xWRqmBsiiIZPQqUIGE6nk1WrVvHPP/+wZMkScnJy/PcpikJkcBTmfAcFiU682YHdpV0RRYHe47sx6qbB7Nmwnz/e+YfcRrLIdW2SUHlyQpsEM+qWIXQ8vQ2LPlnOyp82yM+rAmXbTGqRTnpe2IENGzbg9R5eVSE8PJxBgwYxePBg+vfvT0hIiIHVikAjoVI0anl5eSxZsoR//vmHlStXllvux2qxEmmJxr1foXCbS1ojjyO2XTTnPDAKs9XM7NcXsmfdsbuKiIpJqDw1zTvHcvadI7A4LPz68jz2bzl2swBxmG7S0CJdaFFOgttZyq1GYTKZ6NOnDyNGjGDYsGFERUUZWKkIBBIqRaNz8OBBFi5cyF9//cWGDRvKLUIcZA8mxB1O0XYP7nRkbOQJWGxmRlw3kNMm9WTRp8tY/v26gFoKpiZIqDx1igJ9JnZn9C1D2PTnNua9twRn8bFbmYrydHT0MDdalJMWg6PZu3ev/z5FUejZsycjRoxg+PDhNG3a1MBKRWMloVI0CllZWSxatIj58+ezcePGcoPaw4MisBUFk7/ZiZarSrf2SWrXvxUT7x9F5u4sZr66gLwDBSd+kDiGhMqqC4kKYuwdI2jdqwWz/28BW//aeeIHCT/N7kFr4qTD2fEkJiaWu69bt24MHz6cESNGyEQfUWMkVIoGKycnh0WLFrFgwQLWrVtXLkhGBTfBlO0gf3MpFMug9VNhC7Iy7s4RtB+UwOz/W8iWhUlGl9SgSaisvvYDE5hw70hStx1g5qsLAmqbz5qi27x4m5TSdVIbNm3aVO75smPHjowaNYpRo0ZJC6aoFgmVokEpKChg4cKFzJ8/n7Vr15br2o4IikLNsFG4xY3ikiBZFW36xjPpkbNI2ZjKrP8uoKTAaXRJDZ6EypphdVg4a8owOg9rx68vz2Pb4l1Gl9Rg6RYvWhMnPS5uz/r16/3Po4qi0KtXL8aMGcOIESMICwszuFLR0EioFPWe2+1m+fLl/P777yxZsgS3+/DyNRFBUZiy7BRsdqGUSpCsKovNzOhbh9B9dCdmvrJAWidrkITKmtV+QGvOfXgMO1fuYc7ri3AWyVjL6tDNGlp0KV0vaMOGDRv8t5vNZgYOHMiYMWMYPHgwdrvdwCpFQyGhUtRLuq6zdetW5s6dy7x588rtkxseFIE1N5i8jU6UEgmS1RXXPoaLpp1NVkoOv748j8LsYqNLalQkVNY8e4iN8fecQeteLfj+ydmkbEwzuqRGQbd58UaXkjA6ttxOYg6Hg+HDhzN27Fj69u0re5KLSkmoFPVKeno6c+fOZe7cueVmLtqtDkKcERRscEOBBMma0v+8noy6eQh//u8fVv280ehyGiUJlbWnx+hOjL93JIu/Ws3iL1cG5D7itUUL8qDFlBDTP4z09MPLOsXFxTFu3DjOPvtsmjVrZmCFoj6SUCkM53a7+eeff/j1119ZtWqV/3azyUykKZqirV48abIYeU2yh9g496HRNG3ThO+emMWBnQeNLqnRklBZu6LiI7j4yfEU5Zbw4zO/U5QjLe01Sce3ZaS3aSlBHUwUFhb67+vXrx/jx49n+PDhshe5ACRUCgPt3buX3377jTlz5pCbm+u/PSooGm2vmeIkL4pXullqWosusVw0bTx71u9n1n8XyBaLtUxCZe0zWUycNWUoXUd25IenZpO8Zp/RJTVKuqqjNSml1xUdWL16tf/2kJAQRo8ezfjx4+nUqROKIg0AgUpCpahTTqeThQsX8ttvv7F+/Xr/7Q6rg6DCcAo2eGTCTS3qM6EbZ90+jN/f+It1s7cYXU5AkFBZdzoPa8e5D43m789XsvSbNUaX06jpNi/epiXEDAwt1z3eoUMHzjvvPEaPHo3D4TCwQmEECZWiTuzZs4effvqJ33//3d99oigKkdZonIk67v2yKHltMplVxt4xgo6D2/DNo7+Stj3T6JIChoTKutWkZSSXP38Oqdsy+PWlP3E7PUaX1Kjp6Ojhbs649zQWLVqEy+WbjR8cHMy4ceOYNGkSCQkJxhYp6oyESlFrvF4vy5cvZ8aMGaxcudJ/e5AtGHteKIUbPLKeZB0IjgzikqfGo2k63z0xSxaOrmMSKuueLdjKBY+NJaxpKF//61fZDaqO6GYNb9MS4oaFs3//fv/tffr04bzzzmPYsGGYzWYDKxS1TUKlqHEFBQXMmjWLH3/8kdTUVOBQq6QlmtKtyKSbOhTXPobLXziXrYt2MPftvyXUGEBCpTEUBUZcN4jTzuvBt4/NZO/GVKNLChg6OnqEi0G39WDx4sX+xdWbNGnCxIkTmTRpEtHR0QZXKWqDhEpRY5KTk5kxYwZz586ltLQUAKvZSkhJJEUbNVSnvEOtS+0GtOaCx8byxzt/s272VqPLCViqSeWxeVN5ZtSbEioN0Hl4O855YBQzX13AlgWyqH9d06xevLHFhPW0kp2dDfgWVh89ejSXXHIJ7du3N7hCUZMkVIpq0XWdlStX8vXXX5dbDijUFgYpdgae3p9Rk4caWKEQQgijzf9wCQt++4uul7Qut3NPv379uOSSSxg4cKAsqt4ISKgUVeLxeFiwYAHTp09nx44dwKEubnM0xZt0tEzfxBtFVWR5iTqkKHDm5MF0H92R6Y/8QsaubKNLCnjSUlk/RDYP4/IXzmXPuv3Mfm0hmlde+uqSruvomu9nroW4GXZvbxYtWoTX6wWgVatWXHLJJYwdO1bWvGzAJFSKU1JcXMzMmTP57rvv/MtImE1mQp1RFK3VUJwy8cYoqknlvH+NISahCV89+DMFWUVGlySQMZX1iSPMzmXPTsRZ7OLbx2ficXmNLimg6TYv3mbF2DspFBX5nq/Cw8M5//zzueiiiwgLCzO4QnGqJFSKk5KTk8OMGTP48ccfKSjwzaS0WezYs8Mo2ayjeKTbwkhmq4mLnxyPNcjK9Id/kQXN6xEJlfWL2WriomnjsYfamP7QLziLXUaXFPB0k4Y3toSYwSH+xgqHw8GkSZO45JJLZFJPAyKhUhzXwYMH+eqrr/jll18Orz9mDUFNceDcqaBo0rVtNKvDwuXPn4ur1M13/5bWl/pGQmX9U9aqH90qii/u/5HivFKjSxL4Zo1r0U7anNOUpCTfpCqr1crZZ5/N5ZdfTvPmzQ2uUJyIhEpRoQMHDvDVV18xc+ZMf5gMs4bj2WbBIwuV1xuOMDtXvXwe2ftz+fHZuRJa6iEJlfWTosDZd48koU88n9/7AwUHZbhIfaGjo0W66HxpPJs2bQLAZDIxevRorrrqKlq3bm1whaIyEipFOenp6XzxxRfMmjULj8e3E0WYJRLXJhUt0yRhsh4JCrdzzf9dyL5Nacz87wL/IHhRv0iorN9G3TyYbiM78smd35OfWWh0OeIIOjp6mJveN7b3b6Chqipjxozh2muvJT4+3uAKxdEkVAoAMjIy+PTTT5k1a5Z/Nl64JRLnBhUtS8JkfeMItfkC5eY0Zr66wOhyxHFIqKz/Rt54Ot1HdeSTO76XCW71lBbiZsDtXVi8eDHga7kcO3Ys11xzjXSL1yMSKgNcbm4uX3zxBT/99JO/mzvcEkXpegWyZbHy+sgeYuPa1y5k/9YDzHxlHvIXXL9JqGwYRt08mC4j2vPJnd9TmFVsdDmiElqIm363dmTZsmWAL1yOHz+ea665htjYWIOrExIqA1RRURHffPMN33zzDSUlvr2gw8wRONebIEfCZH1lD7FxzX8vIH1HJr++9KcEygZAQmXDMea2oXQc3JZP7/qewmwJlvWZFuqi9+TD3eIWi4XzzjuPq6++moiICGOLC2ASKgOM0+nkxx9/5MsvvyQvLw+AUEsYro1m9INm6eaux6wOC9f89wIy92Tzywt/SKBsICRUNixn3T6M9gNa8/HU7ygpcBpdjjgBLcxF92sTWLt2LQDBwcFcccUVXHzxxdjtdoOrCzwSKgOEruvMmzeP9957z78OWLA1BC3RhjdVxkzWdyazyuUvnIuz2MX302bLpJwGREJlwzPx/lHEtm3CZ/f+gLvUY3Q54gR0dPQIFwnnx/iXIoqOjuaGG25g3LhxmM3S+1ZXJFQGgA0bNvDWW2+xdetWAOwWB6bkINy7JUw2BIoC5z82jpAmQXz5wM943bIOZUMiobLhUVSFi58cj8VmZvojv8r/WwOho6PFlBI9IsjfeNK6dWtuu+02Tj/9dNkyuA5IqGzE9u3bx7vvvstff/0F+LZTtGeE49pmkkXLG5Bxd4ygVa/mfHLH97JTTgMkobJhMltNXPnyeeRnFvLTs7/LcJMGRFd0vM2KCe6tkp+fD8CAAQOYOnUqCQkJxhbXyMneeo1QcXExb7/9Ntdccw1//fUXiqIQ5myCuiQC91azBMoGZOiVp9Hh9AS+vP8nCZRC1CGPy8vXj/xK0zZNGHPbMKPLEadA0RXMqcGU/m7j8ssvx2KxsGLFCq6//npef/11/1bDouZJqGxEdF3njz/+4Morr+Trr7/G4/EQpkRiWROFc6UZxW0yukRxCrqN7MCgS/rw+X0/UpRbYnQ5QgQcZ7GLLx/4ia5ndOC0ST2MLkecIsWr8sPt81GWhjF06FC8Xi/ff/89V1xxBT///LN/gw9RcyRUNhI7d+7kzjvv5OmnnyYrKwuHOQjbtiicf1tRimSQckPTokssEx8YxTeP/kZuWr7R5QgRsAqzi/nqoZ8ZdfMQ2vZraXQ5ogqUUjMrX0jCsimChIQE8vLyeOWVV7j55pvZvHmz0eU1KhIqG7jCwkJee+01brzxRtavX49JNRF0MArvohDItBhdnqiC8KahXPb8ucx6dQEpm9KMLkeIgJeRnMUPT8/homnjiW4VaXQ5oorUXBupXxRj3hlKaGgoO3bsYMqUKbz88sv+sZeieiRUNlC6rrNw4UKuuuoqZsyYgaZphHojMS2PxJtoQdFl3GRDZHVYuPzFc1n9y0Y2/rnN6HKEEIckLdvNok+Wc8WLkwgKl/UPGyoFBVNaEM4/7Jx99tnous6vv/7KVVddxZw5c5C5y9Ujs78boAMHDvB///d//j1Qg8zBeDfaIEtaJhu6S56egK7pfD9tlsw2bSRk9nfjMuHekUS3iuLz+35A88ofaUOnhblocW44u3fvBqB3797ce++9Mku8iqSlsgHxer3MmDGDa665hsWLF6MqKkFZkXgWBUugbAQGX96PJi0j+en5uRIohain5ry+CJPVxJk3DTG6FFED1HwrqV8WY0oOwWazsW7dOm688Ua++OILmchTBRIqG4jk5GSmTp3Ka6+9RklJCcFKKKbVkXi3WqWruxFo0zeeYVf159vHf5MdPISox7weje8en0mvcV3oMryd0eWIGqDoCub9wej/hDJo0CDcbjfvvfcet956Kzt27DC6vAZFQmU95/V6mT59OpMnT2bz5s2YTRYc+6Nw/+1ALZZZ3Y1BWEwIFz5xNj89P5eslFyjyxFCnEBBVhHfT5vFuQ+NoUlLmbjTWChOE2v+swvztjBCQ0PZvn07N910Ex999BFut6wTfDIkVNZjKSkp3HHHHbzzzju43W5CtHDUpeFoyRbZXrGRUE0qFz85nrUzN7Ptn11GlyOEOEl71u3nr89WcOmzE7HY5Q1+Y6GgYMp04PzTxrBhw/B6vXzyySdMnjyZbdtk8uSJSKishzRNY8aMGdxwww1s2rQJs2rGvjsS1xIbiksWMG9MRk4+Ha9XY/4HS40uRQhxipZ+s4aslBzG3THC6FJEDVPcJpY/vw3z1nAiIiJITk7m1ltv5YsvvsDr9RpdXr0lobKeyczM5L777uO1117D6XQSpIWiLo9A32eV1slGpk3fePpN7M4PT89B12RmjhAN0S8v/kmHQQl0PaO90aWIGqagYMqyUzzHwogRI/B6vbz33nvcddddpKamGl1evSShsh75+++/uf7661m9ejUm1Yx9XySeJQ4Up7RONjZB4XbOf2wcv778J/kZhUaXI4SoopL8Un545ncm3jeK8KahRpcjaoHiUVn67FbM28MICgpiw4YN3HDDDcyePVvWtTyKhMp6wOl08uqrr/Loo4+Sn59PkBKCuiIcfbe0TjZW5z40hu1Lktn6106jSxFCVNPutftY9ctGLnh8LIoqz9mNkYKCKcOBZ1EQPXr0oLi4mOeff55p06ZRWCgNA2UkVBps165d3Hzzzfz0008AOLLC8fwThFoqA78bq74Tu9GkZSS/v7HI6FKEEDVk4UfLMFlMDLm8n9GliFqkOE1se+cAN998MyaTiQULFjB58mQSExONLq1ekFBpEF3X+e2337j55ptJTk7GarJh2RyJttUu6042YuFNQxlz2zB+eu533E5Zj1KIxkLzavz03FyGXtmfmIQoo8sRtUhB4dNrfkZdHU6zZs1ITU1lypQpzJgxI+C7wyVUGsDpdPLiiy/y0ksv4XK5CPKEwpIw1Byr0aWJWnbOg6NY/ctG9m89YHQpQogadnBvDn99voJJj5yFapLGgcZOLbSQ9YOHYcOG4fF4eO2113j88ccpKCgwujTDSKisY2XvaGbNmoWCgj0tAs8yB4pb/isauz7juxIeG8bCj5cZXYoQopYs/WYN6DqDLulrdCmiDiheleXPb8O0MxSz2cxff/3F5MmTSUpKMro0Q0iSqUNLlizx/7JZVCvmjeHoO20yGScAhMWEcNbtw/n5+bl4XLLGmRCNla7p/PT8XIZfPYDoVrLbTiBQUDCnBaGsCiMuLo60tDSmTJnCvHnzjC6tzkmorAOapvHRRx/x8MMPU1hYiN0bjLIsDDXPZnRpoo6Mv2cka2ZuYt+WdKNLEULUsoN7cvjny5Wc+9BoFGkzCBhqoYXsn7z0798fp9PJk08+yTvvvBNQi6VLqKxlpaWlTJs2jU8++QQAR2442rJg2RkngHQa0pa4DjEs/Ei6vYUIFEu+XoM9xEavcV2NLkXUIcWjsv6/e7j88ssBmD59Og8++CD5+fkGV1Y3JFTWooyMDKZOncrChQtRFBXrrgi0TTK7O5BYbGbOvusM5ry+CHepzPYWIlBoXo3fXpnPmNuG4giVXqlAoqDww+3zMSeGY7PZWLlyJTfffDO7d+82urRaJ6GylmzZsoVbbrmF7du3Y1EsmNeHo6TKE0ugGXbNADKSD5L4tyxyLkSg2bshlaRluxl18xCjSxEGMB20oy0LJi4uzj9Jd+3atUaXVaskVNaChQsXcuedd5KVlYVNd6CsCEfNl+WCAk10q0gGXNCL2f+30OhShBAG+eOdf+g6sgMtusYZXYowgFrkG2fZrVs3CgsLue+++5gzZ47RZdUaCZU1bMaMGTzxxBO4XC7spSHoy0Jk7+4ANe6uM1j6zRpy0gJjLI0Q4lhFOcUs+GApE+4ZKZN2ApTiUUl6P5ORI0fi8Xh47rnn+OijjxrlQukSKmuIruu8++67vPbaa+i6ji07FG1VEIpXfsSBqN2A1sS0jmLxV6uMLkUIYbDVv27EbDXRfXQno0sRBlE0hcVPb+aKK64A4JNPPuG5557D42lcY+0l8dSAsnceX331FQDWfWHoWxyy/mSAUlSFs6YMY977i2VNSiEEmldn7tv/MOrmIZit0nMVqBQUZkyZhzkpFJPJxO+//85jjz2G0+k0urQa0+BC5a5du5gyZQp33HEHDz74IMXFxcybN4/bbruNu+66iwMHfNvfLV26lClTpjBz5sxaraekpISHH36Y33//HQUFy44wlN0SKANZn/Fd8Xq8bJybaHQpQoh6Ysfy3WSl5DDwoj5GlyIMZjoQhLIhFKvVypIlS7j//vspLCw0uqwa0eBCZatWrXj77bd544036NKlC3///Tfffvstr7/+OpMnT+azzz4DfKHyzTffJDGx9l7Yi4qKeOCBB1ixYgUmxYRpczhquqPWrifqP6vDwsjJg5n71t80wuEyQohqmPvW3wy96jSCIuR1ItCZcmzoq4IJDg5m/fr13HXXXeTk5BhdVrU1uFBpNpv9n5eWlhIbG0ubNm2wWCz06NGDXbt2ATBgwABuv/12OnWqnTEsBQUF3HvvvWzYsAGTYkZdF4YpR5YMCnSnX9qX1K3p7F67z+hShBD1zIGdB0n8ayfDrxlgdCmiHlDzrbj+sREREUFSUhJTp07197Y2VA0uVAKsXLmSG2+8kbVr12IymQgKCvLfV7Yd0tChQ3nnnXeYOHFijV8/NzeXu+++m61bt2LGjLomDLVAlgwKdPYQG4Mu6cP8D5YaXYoQop5a+NEy+ozvSlhMiNGliHpALbJQ9KeJ2NhYUlJSuPvuu8nIyDC6rCprkKGyf//+fPjhh5xxxhmsX7+e4uJi/30mU+0Ogs7Ozuauu+4iKSkJMxaUNWGoRZZavaZoGE6/tA+7Vu7lwM6DRpcihKin8jIK2DA3kaFX9Te6FFFPqKVmcn710rx5c/bv389dd93VYINlgwuVLpfL/3lwcDAOh4Pdu3fjdrvZuHEjbdu2rbVr5+Xlcc8995CcnIwFK8rqMNRiCZQCHKE2BlzYm4Ufy/7eQojj+/vzlfQa25nwpqFGlyLqCcVl4uDPLpo1a+YPlpmZmUaXdcrMJz6kflm1ahXTp09HVVUiIiJ45JFHiIiI4M4778RqtfKvf/2rVq5bUFDAfffddzhQrgpFKW1wPz5RS06/rB87lu8hc3e20aUIIeq5/MxC1s3ZyrCr+/PbK/ONLkfUE4rTRNYvbpqd6wuWd955J6+//joxMTFGl3bSFL0xLulew4qLi7nvvvvYvHmzr8t7dRhqiQRK4eMIs3PXN9fzwa1fc3BPw5+9J2qWalL598I7eeqM19G8mtHliHoitEkwU7+8hrev/YK8AwVGlyPqEd3mJeocM+np6bRu3Zo333yT8PBwo8s6KQ2u+7uuOZ1OHnnkETZv3owJM8raUAmUopz+5/dk54o9EiiFECetIKuIDXMTOf2SvkaXIuoZxWki+1cPMTEx7Nmzx78md0MgofI4vF4vTz75pG+WuWJCXSeTckR5ZquJgRf2ZvH01UaXIoRoYJZ+s4be47viCJXl6ER5itNE7hyN8PBwtm7dymOPPVZuTkl9JaGyErqu89prr/HPP/+gKirq+jDUQgmUorxe47qSkZxFamLDXltMCFH3svfnsXPlHk47r6fRpYh6SC0xU7zIhMPhYNWqVTz77LP+ZRPrK+nHrcT06dP56aefADAnhmEqsoNs2SqOoKgKgy/ry+9v/oVqkvdnomJlvxvyOyIqsvTbNVz27Dks/34dHlf9Dgyi7qklNryrwdzTzYIFC4iKiuKuu+4yuqxKyUSdCvzxxx88/fTTAEyYMIGhQ4caXJEQQgghAtWGDRuYPn06APfccw/nn3++wRVVTELlUdavX88999yDx+PBkh6MOTnM6JJEPXX1q+ez8c9trJu1xehSRD2mmlQemzeVZ0a9KbO/RYU6DmnDyBtO5383fmV0KaIeu+qjibz//vuYTCZefPFFBgyof9t9Svf3EQ4cOMDjjz/uC5R5QSg7gtGQFwFxrJiEKOLax/DVgz9LUBAnRfNq8rsiKrTtn12Mu2ME8V3j2Lsx1ehyRD316bU/M/bpsfz+++888cQTvPPOOyQkJBhdVjkyyOcQp9PJo48+Sm5uLmaXDWVzCAqK0WWJeuq0ST1YN2cLbqfH6FKEEA2crums/mUj/c+XCTuicgoKC/69lp49e1JUVMRDDz1Ebm6u0WWVI6ES30zvl19+me3bt2PSzajrQ1E0CZSiYlaHhV5ju7Lqp41GlyKEaCTWztxMpyFtCY4MMroUUY8pukLie2k0b96ctLQ0nnnmmXo1I1xCJfDtt98yd+5cFBTUTaEoTpnmLSrXY3Qn9iemk5Uii50LIWpGYXYx25Yk02dCN6NLEfWc4lHJ/K0Um83GihUr+Oyzz4wuyS/gQ+WmTZt45513ADDtDEHNsxpckajv+p3bg1U/SyulEKJmrfp5A/3O6Y4iHWXiBNRiC/fddx8An3zyCStWrDC4Ip+ADpUFBQU89dRTaJqGOduBmuYwuiRRz8UkRBHRLIztS5KNLkUI0cjsXb8fgFY9WxhciWgIXhn/Ieeccw66rvP0009z4IDxm3AEbKjUdZ2XXnqJ9PR0TB4L6jaZmCNOrNe4rmyatx2vu/6MYRFCNA66Dut/30qvcV2MLkU0EL8/vJyOHTuSl5fHU089Zfj4yoANlb/88guLFi06PI7SG7A/CnGSFFWh51mdWT9H1qUUQtSO9XO20vWMDlhssuKfODFFV9j9ZTZBQUFs3LiRr74ydq3TgExSu3fv5vXXXwdA3RUse3qLk9Kmb0tcxS72bzW+i0EI0TjlpOaRsesgnYa2M7oU0UAoTpN/68aPPvqIbdu2GVZLwIVKj8fD888/j9vtxpxvx5QqyzeIk9NrbGfW/77V6DKEEI3cujnSBS5OzSsTPmTEiBF4vV6efvppSktLDakj4ELld999x9atW1F1E2qijKMUJ8dkMdFpaDs2/WncO0AhRGDYumgHCb1bYA+xGV2KaCAUFJa+uIUmTZqwd+9e/ve//xlSR0CFyj179vDBBx8AoCYFo7hkPUpxctqe1pKc1Dxy0vKNLkUI0ciV5Jeyd0MqnYa2NboU0YAoHpX8Rb6JOj/88AObN2+u8xoCJlR6vV5eeOEF3G43pjwbaobd6JJEA9J1RAe2LEwyugwhRIDYsjCJriPaG12GaGDUXBtjx4717xTo8dTtVsIBEyp/++03Nm/ejKqrmLaFSre3OGmqSaXzsHZsWbjD6FKEEAEi8e+dtD2tFbYg2ZBDnJoFT64hPDycXbt28c0339TptQMiVObl5fH+++8DoOySbm9xatr0jSc/s1C2ZRRC1Jmi3BL2bUmn4+A2RpciGhjFozJlyhQAPv74Y/bv319n166RUFlQUGDoFPYTef/998nPz8dUYsEku+aIU9RxSFsS/95pdBlCiACT+PdOOg6RcZXi1L0y4UP69u2Ly+XijTfeqLPrVjtULlq0iJtvvpnHH38cgB07dvDAAw9Uu7CakpiYyK+//gqAmiSzvcWp6zAwgR3LdxtdhhAiwOxYvpt2/VuhqPK6JU6NgsLG9/dgMplYsmQJq1evrpPrVjtUfvbZZ7z33nuEhoYC0L59ezIyMqpdWE3QdZ3XX38dXddRM+2o+TI2RZyaqPgIHGF29m1JN7oUIUSAyUrJpbTQSYsucUaXIhogtcTMeeedB8Bbb71VJ1s4VjtUWiwWf6Asoyj1413V4sWL2bRpE4quYk4OMboc0QB1GJTAzpV70DXd6FKEEAFox7LddBjU2ugyRAP16wN/ERISwo4dO5gzZ06tX6/aobJZs2asXLkSgKKiIj766CPatzd+GQSv1+ufnKPus8vkHFElHQYlkLR0t9FlCCECVNKy3bQfmGB0GaKBUjwq11xzDeCbX1JSUlKr16t2qLz33nuZO3cumZmZXHbZZaSlpfn3oDTSvHnzSE5ORtFUTPuCjS5HNEBmq4nWvVqwY8Ueo0sRQgSo3Wv30bRtNEHhsrayqJoPrvyeZs2akZ2dzc8//1yr1zJX9wShoaE8+uijNVFLjXG73Xz44YcAqHuDULwBsXKSqGEtusSRm55PUU6x0aUIIQKU2+khdWs6rXq2kFUoRJUousI111zDiy++yNdff815552H3V47b1KqHCo///zz495/9dVXV/XU1fbHH3+QlpaG6jFhSg0yrA7RsLXu3YLd6+pufS8hhKjI7nX7SegdL6FSVNl/z/2YuAvjSE9P55dffuGSSy6pletUuQnP4/Hg8XjYs2cPs2bNIi8vj7y8PGbNmkVaWlpN1nhKNE1j+vTpACgpDhStfkwaEg1PQu949qzbZ3QZoqE5mYmK9WQyo2gY9qzbR+veLYwuQzRgiq74G/u++uornE5nrVynyqHy+uuv5/rrryczM5MPPviAqVOnMnXqVN5//30yMzNrssZTsnTpUvbs2eMbS5kuC52LqjGZVeK7NWOPtFSKU3EqYVGCpThJKZvTiEmIwh5iM7oU0YC9dt6nxMbGkp2dzezZs2vlGtUebJiVlYXDcTi82e120tONW9OvrJVS3W+XsZSiypp1iqXgYCEFWUVGlyIaiiND4vEC48keJ8Qh7lIPadszadWzudGliAZM0RUuu+wyAL7//ns0Tavxa1R7os7AgQO5++67GTVqFOCbdT1w4MBqF1YVmzdvZsOGDSi6gilNxlKKqovvFkfKJuOGcYhGQFFA14+9TYgqSNmUSnzXOLYvSTa6FNGAvXPZVwSPDmbv3r2sXLmyxvNatZvy7rjjDi6++GJSUlLYu3cvF198MVOnTq2J2k7ZTz/9BICSYZN1KUW1tOgcS2riAaPLEA1FZWHxZFolJWiKk5CaeIDmsrOOqCbFqzJ+/HjA11pZ06rdUgkwbNgwhg0bVhOnqrL8/HwWLFgAIK2Uotqad45l2ffrjC5DNAQnCoUnO3Hn6FZNIY6wf+sBxt8z0ugyRCPw84PzUQYoLF++nNTUVJo3r7lhFdUOlZUtdP7aa69V99SnZM6cObhcLpQiM0phjWRlEaDsITbCY0M5sMO4CWeiYVDMvucavbI9dRUV1XGC9eAUFcVkAl1D93hquELRWOSk5qEoCpHNwshJyze6HNGAKU4z/fr1Y9WqVcyePZsbb7yxxs5d7fQ1efJk/+cul4u//vqr3MSduqDrOjNnzgTAlOZAQbqTRNU179SUjOQsPK5KgoIQHA6UAIrJdGywVFRU++HZuqrNhlZccswxisl0+HOzWYKlqFRZF7iESlFd675Igs4we/ZsrrvuOkymmhkyWO1Q2aNHj3Jf9+vXr863ady1axfJycmgK6iZspWVqJ5mnZqSti3D6DJEPXZkoPTfdmSwPCpQAqAqvmBZtj7ckYHSfxIJlqJyqdsO0LxTUzbP3250KaKBU7NshISEkJGRwerVqxkwYEDNnLdGznKEHTt2kJFRty/If/zxBwBqllWWERLVFpPQhIxdWUaXIeqpigKl/z6TqeJAWUZVUW22igOl/yTqca8hAldGchYxCVFGlyEaAUVXGD16NADz58+vsfNW+5lr5MiRKIcGoquqSmxsLFOmTKl2YSdL0zT/D0RaKUVNiEmIYv3vW40uQ9Q3ilJ5ECw7xGxGDQ9DLyis/CCLBXNEON6snOOcSFosxbEyk7OJSWhidBmikZj59CLoAX///Tf3338/5hp4M1vtM5TNuDZKYmIi6enpKF4FNUd2GxDVoyi+lsrM3dJSKY6gKChWq+/zSiblKGYzapMo0DROOI/bYsHUJPK4wVIxm8FkQq+l7dREw3NwbzbhTUOx2M24S+UNh6geJc9CZGQkOTk5rFmzpka6wKvdV3zvvfcec9sDDzxQ3dOetKVLlwKg5Fhln29RbeGxYXjdXgqzio0uRdQXRwZKgApaK/2BUlHAZEINC634XCYTaniY7/NDwbLCS5rUQ5dWUGzyZln4eFxectLyiGktXeCi+hQUhg8fDsCiRYtq5JzVDpV5eXnlvnY6nXU6pnLJkiUAqNnyxCuqLyYhSlopxWFHB8oyRwTLcoGyjNl8bLAsC5RHHldBsCwLlIdLkGApDsvcLV3goubMetYXJpctW4ZeA2vlVrn7+9NPP+WTTz5B0zTOPPNMwLe0j8Ph4KKLLqp2YScjMzOTpKQk0CVUipoR3TqSg3uPM9ZNBI7KAmUZkwlFUY4NlGXKgmWRb3ylGh5GhVvtHtEVfnSgPFyKAjabdIULDu7JJrp1xS3cQpwqJd+K1WolMzOTPXv2kJCQUK3zVTlUXnvttVx77bW8+eabhm3LuGrVKgCUQjOKR2Z9i+qLiAsjJzXvxAeKxk1RUMyWEx+nqsffMcdsRo2M8J+TykZbmkyVBsrDJSlgsaK7XSeuSzRaOWn5JPRuYXQZopFQNIVevXuzYsUKli9fXu1QWe0kZlSgBFi/fj0Aau5xWhOEOAURcWHkysLCge3IQKlV3h2kWK0oLZujB1e+2YNut1LU8wQBwKSiRYahtDr+cbqug6qgWOT5LpDlpucTERdmdBmiESmboFPWUFcdVW6pvPnmm3nvvff8Swrpul7u35pc96gy69atA0DNkydZUTMimoWTmy6hMmCdZAulYrWiNI+FQ62LerADpaj8bjm63Upxp2iw+loySzvEYk1ML38ik4oWFgSKgu6worRqgb53//EvfihYSotlYMpNyyeimYRKUXP+d+NX0Ac2b96MpmmoatXbG6scKt977z3AuCWFMjIySE1NBR2UgpPophLiJEQ0k5bKgFVZoNR8LYT+w44KlACY1HLBsixQahbF3x3kDjGhdYzFvv2A/zFlgbJMZcHymAH0EiwDVt6BfIIjgzBbTbKVrKgRSpEZu91OYWEhe/bsoU2bNlU+V7W7v5977rljbnvhhReqe9oTSkxMBHw/DNlFR9QER5gdk1mlMLvI6FJEXTtRC+WhbvAKA2WZQ8HyyEBZ/hq+YFnaMbbCQFmmLFj6v65sRqZ0hQckj8tLUU4x4bGVLFslxClSUOjSpQsAmzZtqta5qp3Gdu7cecxt27fX/r6kZddQCmU7M1EzwmJCKDhYRA2sqiAaGuXET4WK2Vx5oDzEG+4g7axmxwZK/0mgNMpM6oT4407w8bdYnuiXUVVAPf4uP6LxycsoJKyphEpRc7p37w7A1q3V202uyolsxowZfP/992RmZnLFFVf4by8uLmbQoEHVKupklIVKtVC6vkXNCI4MojBbFj0POIfCne71VroNo2K1oMbGHHenHG+YnbTBIXhtkGcxE77n2B1PvFaV3PYqmhnShkfS7K/Kl6/SrRbUls3RUlKPc9FD3Z+qCTTpCg0URTnFBEdUPkFMiFM1/dFfoDPs2rWrWuepcqgcO3YsgwcP5s033+SOO+7w3x4cHExoaO2/g0pKSgJ83d9C1ITgSAdFORIqA84RrZQVBUt/oDSbQNfBqx3TWnlkoATQK3la0hXQDr0PdkYeJ1h6D8VXm7XyYOn1oh9ndrpovHyhMsjoMkQjUpalkpOTqzVZp8rd3yEhITRr1oxnn32WuLg4/0ddBMqioiKysny7nijFEipFzQiODKIoV0JlQKloTOMRe3uXC5T+Aw4Fy0OODpQAXivktS7/3OS1quS1O+IpVzkcLMsfeDgo6oriD5blj6kgUEo3eMAoyi0hOFJaKkXNUUpMWK1WSkpKSEtLq/J5qp3IkpKSePXVV0lOTsblOjwTsTaXFNq3b5/vE5cqk3REjQmODKIop+TEB4rGQVEqHUupe72oDvuxgdJ/gC9YeiODjgmUZTxBvmAZmeILqXntVDTzUUHwULBMHxZJ3N855QKl/1KKgnJki+XxWiilGzwgFOUUy/7fokYpKLSIj2fXrl3s27ePFi2qtsB+tRPZq6++yj333EOLFi347bffuPnmm5k8eXJ1T3tcZaFSKZF35qLmBEdI93fAOE6gBFBMJpSgoIoD5SFaiI30gRUHyjKeIMht73vvrlU2/FuB0ihIG1H51nu6ooDFjBoacuIub2mxbPSKcooJjpTub1GzmjVrBlCtlspqh0qPx0PHjh3xeDwEBQVx2WWXsWTJkuqe9rhSU33ji5RSefIUNccRZqe0QPZWDnSKqqCGhYCuoRRUvLyUFmonfUg4mg2UivbzPsQdqtP13MQTXlM3HeoKH1lx65OiaSj5RShmM6aoiBOc7DgFiUahJN+JI/Q472aEqIJ6ESrNZt+78Li4OObPn8/GjRv94x1ri388pUtCpag5VrsFV4ksJh0QdL3C8KWoCmpo6OEZ4dqxx2ihdtIHh+O1H3qMXnGwdIfqDDhjK/GOXACaDd1XcSnq4X+dUZUHy7KZ3scNlrqGrInV+LlL3VgcsvKJqFk/vjQHgPT09BMcWblqh8rrrruOwsJCpkyZws8//8wbb7zB3XffXd3THld2djYAikvGU4qaY3VYcJW4jS5D1JWjgqU/UB45s9vrLdda6Q+UR82RODpYlgXKZvY8/23dI9JoPqx8sNSPegqrKFgqmoaSV1j+ehUFSwmUAcNV4sIqoVLUsLKGupycypc6O5FqT9QZOHAg4JsN/tprrwEwa9as6p72uMpCJRIqRQ2yBkmoDDi6DmgoJtOxgbLsELcbpaAIPTQYVPWYQFlG8Z0KV/ixgRLAonjpEZkKwyD17/hjAqX/eir+a/gDpffYyTdlwdKbnSuBMsC4StxYHbKbkqhZitvXQ5OXl3eCIytXK6nso48+qo3T+pV9w4pHQqWoORa7hMqAZTIdd6cc3e37vUgfdPwl09yhOmeNWXNMoCxjUbyc1mQvg8/ecNzzeByQPiKq0kB5ZN2KySSBMsD4QqW0VIoadihT1btQecKtxaqppOTQsi/eyrc5E+JUSfd3AFIUXyjTdPTiypeTUux2nC0jCD5Q+SQYV5jOmLFraOvIJNJc8SoCNtVDz6AUxkRuZsjYyoOl4gFHlkZJl2aVHqPrOnpBoewBHoAkVIraoLh9kbCgoKDK56iVUKkcsaDwW2+9xdSpU3nqqadwu918+umn3HHHHSQmnnhGZGVKS0t9n0ioFDXIZDHh9cgafwGjLFAeWlpId3sqDJaK3U5pxzg0i4qlwEvY7mOD5ZGBEsCuuo8JljbVQxdHKnbFjUXxVhosVReE79JQ3TruMDMl3eOPOaYsUPoXapdgGVC8bi+qSUU1yWugqEGa7/fJ7XajVTBJ8WRUeUzlvffeW+l9ZU2n27dvJzs7mzfffJPPPvuMhQsXkpmZyUsvvcRHH31E586dq3TtslCpaPIHJWqOoijoFSw+LRqhowJlGd3tgeISlCDfoEZ/oLT6jlN0DgVLyE/w3XZ0oCxTFixz3SEAdD4UKMuUBUvGwuLfewKHA6XJ5fs91BVwh5mhezyOTb5JPscEyjKHgqXulhUMGrvDnYEKHHdHeiFOwRG/Sm63G5vt1JetqnKovOaaa054zObNm+nfvz/gm9Aza9YsoqKieOCBB5gyZUpVL43H4/F9IsuxiRqkqEqtD90Q9UAlgbJMWbBUoyLLBUr/w48Ilgd7KhUGyjJ21U0zax4UUy5QljkyWC79tWe5QOmv54hgad+YUnGgLCPBMiCULYCvqApI54qoKUc01OXm5hIbG3vKp6hyqOzdu/cJjyksLCQ6OhqA4OBgCgoKuOeee7jhhhuqelngcPe6alJRtLqbrHP6uf3p0DeBrcuSWDlnXZ1dd9A5/ejYry2Jy3ewYvZauW4tiY6J5vJHLmDjoq0B8f0G7HVX7GDlH5uPe6yigGq3gN1U6RghDfBGa7SzZx27NtAhVtXBFW3/D4cWTUZqCB698JhjLOh0D07n75geWLYDasU9MHqQGZPNgrdARznOpCJMoGsqAyf0pVP/dmxfvYtlv64+7vdbk4y67oCz+9B5YPuAuK6iKkRGRnLttEtIXLmj0X+/gXzdpDW7WfrLyjq5pn5EU6V/7sopUvRabJr56aefsNvtjBs3jsTERGbPns0999xT7fOeeeaZeDweHn74YcLDw2ug0pOTkJBAZGQkWVlZ7N27t86vm52dzZ49e+S6ct1Gcd2cnBx2797dqK+rqiq9evUCYP369VUep1QVgfRzNvK6rVu3JioqSq4r123w1/V6vTz22GMAfPfdd3XbUnkyunbtyjfffMO4ceNYsWIFPXr0qJHzqqrvXfp/L/4ItQ531Znyf9fR+8we/PPDcj6b9l2dX3fxjyv49Ilv6uy6t716HX1G92DJTyv55N9f1/l1l/6yko8fq7vrfrjzFbJSclj8U91e95b/XEO/s3rV+fdbdt1lv67io0en19l1b37pak4b15vlv63mw399VefXXTFrDR88/KWvG9xcfgatYlJRwkNRDj3HoKroIUGUJBzel9sdrJLZT8VrPzzuUY0p5dYef5c7V5ipmEtCD2K3/EKpuxmt4yezuLT8fs1p7kje2jgCd/GhOnQwZ1touvJw+DS5dIK3Z6E4j+jSdrl961MeRXcdPmby81cyYHwfVs5ey/sPfXHSP6fqmvzClQwY35dVc9bx3oOf19l1b3zuCgZO7Ffn173h2csZdM5pdX7dD5NfIWtvDit/X8f/7v+szq57/TOXcfq5/Vnzxwbeve/TOr/u2j838s69n9TZda976jIGn1f31732yUsZcv4A1s3fyNt31811dVUH39LjhIYef/m0ytRqqOzYsSNRUVFMnTqVpk2bcvnll9fIeW02Gy6XCw1vnc4ALwuzXreG5q27Foey7n6vx1un1y2bWVjX1y3j9dTtz9nXaK+geev2umXq+rpl47IM+3413YD/36O+X6/mD5aKSYWQENCPmLDl9UJeEbadOiVtInEHq2T0VfDatMOD2nXwZtp4a+NQpvT8C4BwUzGXhu4mRG1C2TNUU7ONYUH7+bvEt0xQqjuSNzYOx11sxn8yBbxRLtJOsxC7wje+0rEtC93pKj8dw2RGCQ/Hm31454sjA+WR36+u1+3PuexadX5d7fBPyIjvty6vq5p847913TdUw4jvV1GUOr2ux3V4pYM6va7bN4dDNdXtdctWIlFVtc6uq6uHB+ja7fYqnaPaofKJJ57g/vvv96fa/Px8Xn31VaZNmwbA7bffXt1LHKNsfCamup1UsWfLPhyhDlK27a/z6waFBZGyLbXOrxscbsR1UwiJDGZfHf+cdV1HVRS0Op4BvmfLPsKahJKyLa1Or7s3cT/hMWHsTazj/9+t+4hoGkZKYt3+/+7dso+IpuHlf591Hd3jRrXZUMLDDrdQHknTUAqLsR20s394qL+F8kiKBlqmnbc3DOeRPnO4KDSZEPXYrXeamoIZ5kjjm/yuvLHhjMMtlOVOBp4mbjL7Wmj3aUb5FsojWS2YoiLxZuccEygB9m7dR1RcBClb6/bnnLItlegWu9hbx/+/KYn7iW4RVefX3ZuYSszquv1+zVYzuqajo6BUMuGstqQk7idp9S72bEmp2+tuS2XHml2kbN134oNr+Lq+7zcArnsoUzkcDn8j2qmq9pjKG2+8kQ8//PCEt9WkG264gR07dmDZFIGae+pT3oWoyAdJ/8GkWVkw/R8+m/at0eWIuqIoqDYbamRE5cdYLbhbRFHY0sGBQZUfptk1Bvbcwddt5h+6JRilyQxK3M2w5g1FVQpI8xRy/Y5L2ZZc+cLmSomJFvPBccCJZV9W5Rf0angPZKJ7jrNov6xo0OgERTh4bdVTKE4z6xds4o2ptfd6KwKHFuzG3SebJk2a8OOPP1bpHNV+i+P1eikuPrzIb1FR0eElf2pJcHAwALpZnixFzdF1HUWt264kYbBDywvpHg9afiW7SFgteGIjQFGwFla+fotu1QlrVkBKQQS37Du9wmMyvEU8sG8iXl0lJu44W6FpYMn34HGYcMc3qfgYr4Z2qPtbMVUytlwCZaNksZr93aNHbjYiRLWYfa99VR1PCTXQ/T1x4kTuuusuzj77bABmz57NueeeW93THleTJr4nWd0qC3SJmlNcWIK3qITs9FyjSxF1oWy9ykN0pxMtH9SwI55QDwVK3eI7zpLvIXaZ6ZjWSt2qE9oiH4fVjVdT2ZTdjFs4nf/FL8V7cAJrd31I29aZ3LdvApklIajohNtLIQ4y08uvYKGUmGi+6PDXHocJ4puUb7E8FCj1Q+O9UFQUE+XXr5RA2WiZbSaKi0spPVAgz1eixuhWX6gsWwqyKqodKi+66CJat27NypUr0XWdW2+9lX79+lX3tMfl/4at0qIkas7GlVuY995iklfX7VghYYCjAmWZioJlWaAEUDSd4FQnscts/mB5ZKAsc2SwfKfFCgAeSDmbzNJg/zEVBUulxETzBWDNK9/bo1mO6FQ6OlD6izsiWEqgbNTMVjO7t+/m9cs+MboU0YiUhcqyhruqqJHZ3/379/fvnFMXYmJiANBt0lIpao6zyIk9WPZPDgSVdhdzRLCMjvJ1ex/92COCZfrwYwNlmbJgeUnpKO5TILM0hKO31DsyWB5MjqowUAJoZgV3fBMsezIrDpT+4g4Fy1oegiSMZQ+x4SySXZNEzTrv/rHMmDHDmFD56quvcu+991a6B/irr75a5aJOpGxBTt0mLZWi5pTkl+IIP3bGrmh8dK/3+MHS5UYvdZZrpTySoukEZbgI32rH1qbySTKFpTbW7Y6BbpXXoqLj8ao0Wa1izas8KOhmBb2ouPJAWXZcZVs4ikbDEWanOK9qO54IUZn9+30rGDRrVvkkwhOpcqicMGECcHJ7gNe0li1bAqAHeTi0qEKd1yAan+K8UhyhVVubSzQwul55sFRUFKsFSkqx7MnE3Trm2IebFVxhZoIOeCn4sylBozOOOabEZSE/NRSz29d1nbQnjnatj102KrMoGH1OE8ylGq4IM9bcY0Oj6tGxbk9D1zUUuw291Fnxt+VxS9d3AHCE2SnJLzW6DNHIpKT4hn61atWqyueo8uzvTp06AbBz50569+5d7iM5ObnKBZ2M+Ph434w3sw4Waa0UNaMkv5SgcAmVAeNQsCynLFCqqm9x6fwCLHsyyz/MrOCMsKCbFFQvhKZ4Kf6zabljygKl4j78FKsUmti+J67ccWWB0p6r+RY+tyi4Isq/11c9OrZtqeiH9uJVTCqK/dil1CRQBo6gcAmVombpik5amu9Nb1nDXVVUe0mhWbNmHXPb7Nmzq3va47LZbP7mWT1IunpEzSjJL8URJqEyoBwZwo4IlIfvLh8sjwyUZSoKljqUC5S+GxVwHb7tYHHQ4UDpr6F8sDw6UPoPqyhYSqAMGI4wB8V5EipFzdEdXjRNIygoyJgxlYsXL2bx4sVkZGTw8ssv+28vLi7GdJyxSjWlTZs2pKamogW7UfNkcoWovuL8EoJkTGXA0b1eFLPlmEDpv1/XIb8Ay34TBb3iygXKMmXBsuDPpijDcyhIC61wUI7iUti+N5ao6AK02dHlA6X/IF+w9ASbCF2x95hA6T/MpMKhrvDjLn4uGp2gcDsZu46zKL4Qp0gP8T2HtG/fvlprn1a5pTI2NpYePXpgt9vp3r27/2PkyJHlQmZt6dy5MwB6iMxyFDWj8GARoU2CT3ygaFzKusFPsC2ZXlRCyPacSu9XvRC214vltwgUVyXn0hXMGVZM3zepOFAeYnLphG7MQPccvydGURTp9g5AoU2CKcgqMroM0YhMemQMcHhoY1VVuaWyffv2tG/fnhEjRhAUFFStIqqiS5cuAOih8g5dnBpVVXnw06lEt4jiwO5MXr35XYZeMJBLHjyXJi0j+enpP8jcl8WA8X254pHzmf3RfH7/eIHRZYvaoiiga+glJSiOY1uqFUUBixl0DbLzCN0KBV2ijj2PDpZCDUuhxr3nn0nHXnGkFhTw8J+/Ex8fz1cJrXl+3iIO/JOGpVBDsyq4g48NnyanTtj6DCguQTGp6FjBXcGscE1HK9vNTFEkWDYiHfq25bb/Xoeu6eQcyOXFa97g+TmPAWB1WGnWIYa/PltBqy7x3PO/W1BNKp/8+2vWzttIXJum3PverexN3M+bd8j2jeLkbNu2Dah+qKz2mMoHHniAgoLD25vl5+czderU6p72hPwtlQ4vulkm64iTN/SCAaQlH+D+M6exZ2sKQy8YyIX3TOT+M55gX2oKV/37IgAGTujLPcP/Taf+7Y0tWNSeI7p5dK/32LGLZYGy7Div91CwzC5/Hh3MJRqKptOhTQxNbQ5u/9e3JGVnMa59R2w2Gzd/9yOXRHbEUuh7vlJdOpai8s9dZYFSKTy89a1iUsFy1BCfQ4Gy3EQj2a6v0Ti4P5tHxj3DfSOfIHVnOqefexr3nzmN+8+cxs9vziYrK5u8jAJuePZy/nPDWzwy7hmuffJSAIZdOIj/3vI/CnIKCWtS9e32RODQFZ3t27cDh7NVVVU7VJaUlJTbJzIsLKzcXuC1JSwsjNatWwOghcsisOLkNWsby851uwFIWpPMhJvHsGdLCiWFTjL2Z9K+dxsAVs1Zx3//fpqk1TsNrFbUmgpCWEXB8pjjyoJl4qGu8CMCJUC3Li1YtTqZoAwP63/fTd9mzXG5XHw69nwWzd9a7lRHBsuKAuXhA4+ooaJAeZzvSTQ8OQdycZb4Xtc8bi9ez+E3H2dcOpjcvBwKs4qIahbJ/h3pFBeUkJ9VQFiTUBb/uIJ73ruVsCah5GdVsp+9EEfQQ924XC6ioqKqNfMbaiBUKopCdvbhd+1ZWVm+ge11oG/fvoCESnFq9m7dT58zuwPQd3RPwDdJByA/oxCz3TcqZOmvq7h76GPM/nC+MYWK2nOc8FUWLP2tlBXxeiErl9DNWeUCJUBIsI3iYheKpqOlFBNXYCMlJYW7H5zO1u3px5xKdenYszyVB0rKWkytxw+UJ/G9iYYlpmU0fUf1YNlvqwFwhNiJTWhKRkommlcvN6GiKK+Y0KgQUnem8+DoJ3nj9g+MKls0MFe+OgmAPn36VGuSDtTANo1XXnklt912GyNGjADgr7/+4pZbbqnuaU9K3759+fHHH9EjJFSKk7fst9X0GtmNl+c9we7NKRTmFBIU5htLl3cgH1WVF+VGT9dPGCw1pxPVaqn8HF4vSmExihZR7uaCwlKCgnzd1WFWC869eQSfYC1h1a1DXiGYjv8+/4SBEmRsZSMRFOrg4c/u4OUb3sZ7aMLW6eeexuZliRR6CwHQtcMtmCERwRRkFxpSq2jY1q5dC/hCZXVVu6XyzDPP5MUXXyQuLo7Y2FhefPFFRo4cWe3CTkZZqtaDvOhWWa9SnBxd13n33k95YNST5GcV8MNrM2ndJR6zxYzdGkR2RuUzfEUjcoLwpbs96IXHmWGr6+hOJ/ajlnbZkphK/35tUN0agzq3YOvKXQA4Uit+wTe5NOxJB3yThbwVjw/XvRpabh66poNynKdtCZSNgqqqPPzFnXzx9HfsTzq8C9Pwi05n56ZdZO/zPUdlp+fSon0cQaEOQqNCpLtbnDLdpLFp0ybgcO9vdVS7pRIgISGBhISEmjjVKQkLC6Nbt25s2rQJrYkTU1rdz0IXDU9kbASPTr8br8fLmnkb2fRPIj+8NpNXFj6JLcTKkj+XG12iOIrNYeXG569k0MR+FBeUgA6r/ljPR498haZVPlHv6icuxuvx8tWzP1R8wHFaLNv1bEnTVk1ZPncDSkgwHXq1YtxVQ3njga8Ohzddh9x87LugtK1vweAdOzPIOVjIh29fT3hUENePfJ4hF7ZGKS7FkapT0jzEfw2TS8O+/cDhcZy6hu49NDmnrMSyQFluUo7qm40OvLX8eW4f+AjoOlc9fhFfPP39iX6cp/5zEnVqxCWn021wJ4JCHVz52EX8+u5cVsxaQ9NW0XhVL3l78wH46NHp3P/R7agmlU+f+MbgqkVDpEW68Hq9tG7dmvj4+Gqfr9qhMikpiVdffZXk5GRcrsPd0PPn1804tGHDhrFp0ya8URIqxcnJOZDL/WdOK3fbwm+WsPCbJST0jmfsHcMNqUtU7p73bkXXdW7qcS/OEhcWm4VLHjgXi83sn9BQZZUEy3a9E+g+pDNLf1uNWlhE0vq9JK3/6tjWwKOCperW+OjJn1nVuyWXTxmNx+0Lg4qmoxSV4kiFkuYhxwZK//kOB8sKA2WZQ8GyLFACVQ6Von5Z8PViFny9+Jjbp5z2EFe/ej571u0DYO/Wfdwz/PG6Lk80ImdM7c+ff/7JkCFDauR81Q6Vr776Kvfccw8vvvgib7zxBr/88stxWw5q2tChQ3nnnXfQw13oJg3FW+0efRHADqZk06RlpCz7V4/EtWnK6eeexuXxt/gDpNvp5stnZviPuf31G+gysANWu5Wd63fz6uR3cLvKb4zQf1xvrv73xZitZjxuL69PeZ8da5MBGH7RIK545AJQoLTIySNnP8u10y7FHmyjY792zPlkIclb9nPloxfwyEX/B8Ckm0Yy7qph6JrG/uQMnr3xfey7wBUfieKseP1cRdOJjgzizmkXERNix13q4u1/fUPi6mR6Du7Itf+axIG9B2nfsxXpew/y5AWv4PV6iUuI4eHPphIUFsTmxYn0H9ebu4c/wcF9B5njnM4462Xc+uq1mMwm3l3zMnkH83norKeZ4/qacdbLAOg2pDPXP32Z/w3Vra9ey4Cz+5KdlkPmvixStu0HIDQyhDvemkyztrFYbGa+fGYGf89YVlP/naKaoltFcnCPDNER1acrOsuW+f62602o9Hg8dOzYEY/HQ1BQEJdddhlTp07liiuuqIn6Tqhly5a0adOG5ORkXxd4hmyzJ6quMKsYXdMIjQkhP0MGvdcHCd1akrbzgK/buxKfTfvWP0lhymvXc9Z1ZzDzvT/LHbN1WRJ3DXkMXddp36cNd7w5mbuGPEqrzi2Y/MJV3DP0MbLScwmNCqGksJRPp31D9yGdefXm/wHQ84zu/hbDPiO6MOaywdw38SWKC0oJjQz2vQvJycNWWAxBlT8P3fbQBFb/vJqf35tHx96tefSDm7lhkK+1qV23eF6+/WPSd2cy7dNbGTqpH/OnL2bKf6/l908XMfvD+Qyc0JeJt/h2vzjync+7937KeVPP5ta+D5zwZzp4Un869G3LTT3uxRZk453VL/pD5W3/vY65nyxg1dz1hEQE8+aKF1g3fxMFOfL3YDSL3UxokxCy9+caXYpoBLRIJ4WFhTRp0oSuXbvWyDmrHSrNZt8p4uLimD9/PjExMWRl1e2epKNHj+b999/H27RUQqWotoN7cohpHSWhsh45cpmyEZcM5vKHzyc0KoSnLn6FbSt3MHhSf8659SysdivB4UGoFWy5GBUXwcOf30nT1tFoHo3m7eMA6DOqB4t/XE5Wmq/1p9IZtLoGuo5WWES/kV2ZO30JxQWlvsfkFIHmm7ijl5SiOCvpktc0eg5oy0vXvIHu9LB93R4K84tp0TYWgB0b95K+OxMtv5BtK3cQ16YpAN2HdubZK14HYPnMNeRnF4JW9cmJPUd0ZeE3i/F6vBTnF7P011X++/qf3Ye2PVsz+YWrADBbTDRr25SC1fL3YLToVpHkZRTgccnEVFF9w27vy4IFCxg1ahQmk6lGzlntUHnddddRWFjIlClTePXVVykpKeGuu+6qidpOWlmo1MNd6FYviqtmfjgiMKXvzCS2fQw7V+41uhQB7N6cQvP2cThC7JQUlrLo2yUs+nYJ/5k/DbPVTGzrGK554hKmnPYQeQfzmTR1HO16JRxznjvemsys9/9kwdeLcYTY+TH7E98dRw+nPN5yQ7qO7vaAp3zXelmg5NDQH93phIKjZo5rGnp2ru/8mgZeL/qh8FkWmt1OD1p+oW9JI6+GyVzxc9nJLiWnHbF+ptV2+On+eGvRqarCfSOfoCiv9jexEKcmrn0M6UmZRpchGgHdpLF4sW/c7pgxY2rsvNUegDhw4EBCQkJo3bo1r732Gu+99x6DBg2qidpOWrNmzejVqxco4G1aWqfXFo1P2vZMmnVsanQZ4pD05AyW/LySqW/ciNXuW/9RURSsdt8ako5QB84SFwU5hdgcVkZdWfFEq6CwIDL3+XpRJtw82n/72j83MuT8gUTFRQAQGhUCuk5xfgmO0Ap6PnSNFbPWMOaSQQSF2kHTCQk2+wMl4AuQbne58Kln56K7XKz/eyvjrh0BmkbHXq0IDnWQmpzhC6xeb4WTcjYt3saZVwwFYODZvQiNDDnmGIDSYic2x+EtHTP2ZNKudwIAQy8Y6L99/cLNnHHpEExmE0FhQZx+zmn++1bMXstF957j/7qigC6M0axjU9KSMowuQzQCWnQpLpeLVq1a0bFjxxo7b5VbKj///PPj3n/11VdX9dRVMm7cONavX483rgTTviCUY5ofhDg56dszGHRRb6PLEEd47db3uOG5K/hg838pziumtNjJugWb2LV+NyWFpaxftJkPN/+XjL0H2bZyR7lgVebTf3/N/R/dTk56LstmrvbfvjdxPx8+8iXPz/GNtywpKOWe4Y+zdv4mLrn/XN5a/jxzP11I8uYU/2PW/rmBPz5bxKu/PYDX42V/UjrPXv1m+QtqGt0GtuPTBQ8T2iSYzzZ04bNnfuCd+z/nnrcnM/baEbhdHl64/m08BcVoxSWVzg57597PePiz25l482g2/LWF7PRc/y5QR/rx9Vm8sfx5Du7L5l/jn+X9h77g39/dR2ZKFokrd/iPW/LzSnqO6Mp7G17hwO5M1i/a4r/v7bs+Zspr1/Pe+ldQVIXMlCwenfBcne2UJioX17Epf3++wugyRCPQbmJztm3bxsSJE6u9i86RFL2KzxQff/zxce+//vrrq1RQVZWWlnLBBRdQWFiIeXMEphxbnV5fNB4Wm5mH59zGi+PfxVVS8SxeESBO5slWUU+4886/59/OM+PeQ6tkcXPN5faN2axkYXObw4qrxImuaXQb0pl737uFG7vdczLfgWgkFFXhkdm38cYVn1KQdZxF+YU4AS3Ejbt3Nlarle+//56IiIgaO3eVWyrrOjSeiN1u5+yzz+a7775Da1YsoVJUmdvpISsll7j2MezdmGp0OcJIJ9jO0deyqKG53BUGS83lpmzOkO7xVBga/YESKg2WbbrHc++htTo9Lg8vX/9WVb4b0YA1iY/AVeqWQCmqbcy/BjFr1izOOOOMGg2UUENLCs2ePZtdu3aVW/z8gQdOvKxFTZs0aZIvVEa60O0elNIa2TBIBKDUxAO06BoroVJUHiyP3FWHY1sgD4dFX0jUNR1d96CYj3pe0rVjvz4yWOoaicuTuLnXfVX/HkSD16JLHKmJB4wuQzRwusXLn3/6llubNGlSjZ+/2hN1XnzxRXbt2sXixYtp27YtO3fuxGo9djxTXWjVqpVvkpACnniZuSiqbu/GVFp2b250GaK+qGgXnaNoLnf5zysIi7qm+1osK3jM0cf6/5WxjAJo1bM5ezemnfhAIY7j4tfH4nK56N69O927d6/x81c7VO7YsYO77rqLoKAgLrzwQv7v//6PPXv21ERtVXLVVb611bSmJehWWctLVM3eDftp1VNCpThCuZbJCu7Tfd3g+qHPKz6HL1hCJcHzqGMlUIoyLXs0Z++G/UaXIRow3aTx008/AXDFFVfU6ASdMtUOlWWtklarlfz8fCwWCwcOGNdE37NnT3r27AkqeFtIa6Womqy9OagmlagW4UaXIuqT44W8Q2FSd51gL3JdQ3M6TxAodQmUws8RaiOqebh0f4tquf6TCygqKiIhIYHBgwfXyjWqHSq7du1KQUEBkyZN4sYbb+Taa6+lT58+NVFblZW1VnrjStDNdbcPuWg8dB1SNqXRsoe0VopTUBYGTxg+j3OMhElxlJY9mpOWlCk76Ygq01Wd7777DvC1Ula061hNqPZMlrLdcyZMmEC/fv0oLi6mbdu21S6sOgYOHEiHDh1ISkrCG1+EeXeoofWIhmnvhlRa92rB+jlbjS5FNEQVTfCpaGzmkcdIoBQVaNWzBXs3Ste3qLprP57E+++/T7NmzRg9evSJH1BFVY6quq7jdDr9XycmJpKZmUlRURElJccuyluXFEVh8uTJAHibF6Pb5N2dOHW7Vu2l7WmtjC5DNGRHhsQTtUxKoBSVaNe/FbtWpZz4QCEqoJs1vvrqKwBuvPFGzEevQFGDqhwq//e///HNN9/4v3788cf54IMPePvtt/niiy9qpLjqGDRokK8bXgVPq0KjyxENUHpSBla7hSYtI4wuRTRkJxMWJVCKSgRFOIhuHcXe9dJSKarmgv8bRVFREe3bt6/VVkqoRqhcuXIll19+uf/rsLAwXnvtNd566y3WrVtXE7VVi6Io3HLLLQBoTUvRgmRnFHFqdB12rd5Lu/6tjS5FCBGg2vZrRcrGVNxOz4kPFuIoutXLDz/8AMDNN99ca2Mpy1Tr7BbL4R0krrzySt8JVZXS0tLqVVVDunbtysiRI33rVrYpREdaA8Sp2blSusCFEMZp178VO1cat0yfaNiGPdILl8tFr169GDhwYK1fr8qhsqioqNwOOmeeeSYATqeTwsL609180003YbFY0CNdaE2cJ36AEEfYtXIvbfrGo5pq992dEEJUpF3/VuxcsdfoMkQDpIW7mDdvHqqqcscdd9TKupRHq/Ir5emnn87LL79cblJOSUkJr776KkOGDKmR4mpCfHy8vxXV07YA3SRLDImTl5dRQN6BAlr3bmF0KUKIABPXPgZFVTiwM9PoUkQDoys6zSb4Vr4577zz6NixY51ct8qh8tZbb8Xr9XLBBRdw4403MnnyZC644AI0TfOPZawvrrzySpo3bw42DW/LIqPLEQ1M4t876TKsndFlCCECTOfh7Uj8Z5fM4xKn7IbPL2Dv3r1ERERw44031tl1qzyv3Gaz8e9//5vU1FR2794NQEJCgi+81TM2m4277rqLhx56CG+LYtQMO2qx5cQPFAJfqLzsuXOY9X8LjS5FCBFAOg9rxx/v/GN0GaKB0W1ePv30UwBuu+02QkPrbq3uag8Ua968OYMHD2bw4MH1MlCWOf300xk2bJhv0k6HfHRF3vqJk5O6LQNdh+admhpdihAiQEQ2CyMiLozda2R9SnHydHS639KKkpISevbsydixY+v0+gE1++Cee+4hNDQUPdSDN166wcXJS/xnJ52lC1wIUUc6DWtH0tJkvB6ZByBOnhZXwpo1a7Db7Tz88MO1voTQ0QIqVEZHR3P33XcD4G1VhBYsa1eKk5P41w66ntHB6DKEEAGi64j2JP690+gyRAOi2zyYu/tyzS233EJ8fHyd1xBQoRJg9OjRjBgxwtcN3lG6wcXJ2b1uP7YQG806xhhdihCikYuICyO2XTTblyQbXYpoIHR0ukyOp7S0lD59+nD++ecbUkfAhUpFUbjvvvuIiIhAD/bgbV1/1tQU9Zeu6Wyat40eYzobXYoQopHrMaYTiX/vlF10xEm75pNzWb9+PQ6Hg4ceeqjOu73LBFyoBIiIiODBBx8EwBtfjDdKFkUXJ7ZxbiI9RndCUWt/AVkhRODqMaYzG/7YZnQZooHQwlx89NFHANx9992GTpoOyFAJMHToUC6++GIAPB3y0G1egysS9V3qtgycxS4S+tT9OBUhRGCIbRdNULid5NWyi444Md2sETHKjKZpjB07lrPPPtvQegI2VIJvAffOnTuDRcfdKU/GV4oT2vjHNnqeJV3gQoja0XNsZzbP347mldcjcXw6Ov3uaU9mZiYtW7bknnvuMbqkwA6VFouFadOmERISgh7mlvGV4oTWz9lK1xHtsQVZjS5FCNHImMwqvcd1Ze3MLUaXIhqA6z47j6VLl2K1WnnyyScJCgoyuqTADpXgW7z9kUceAQ6Nr4wpOcEjRCDLTc9n78Y0eozpZHQpQohGptPQduSm5ZO+Q/b6FsfnjXLy/vvvA3DnnXfSvn17gyvyCfhQCTBs2DCuvvpqwLfbjhYi61eKyq3+ZSP9zu1hdBlCiEam37ndWf3rRqPLEPWc5vBgPc2FrutMmjSJc8891+iS/CRUHnLjjTcydOhQUMHdJRfdKhN3RMW2L0kmpEmwbNsohKgxkc3DadEljk3zthtdiqjHdJNG7CQHxcXF9OrVizvvvNPoksqRUHmIqqo89thjtGnTBmyaL1iqMlBaHEvzaqyduZl+k6S1UghRM/qe051Nf27DVSI9ZaJiuqLT684E9u3bR2xsLE8//TQWi8XossqRUHmEoKAgnn/+ecLDw9FDPXg65qEjwVIca/UvG+l+ZkccoTajSxFCNHBmq4m+E7ux6mfp+hYV09EZ/exprFy5ErvdznPPPUdERITRZR1DQuVRmjdv7k//WrQTT9sCCZbiGHkHCtixYg/9JvU0uhQhRAPXa2wXMnZmyQQdUSlvqyJmzZqFqqpMmzaNDh06GF1ShcxGF1Af9e7dm8cee4xp06ahNS9B85iw7A81uixRzyz7bh2XPDWe5d+txevRjC5H1FOqSS33rxBHUhQYdElf/vzfP/I7IirkaVqEt1URAPfddx+DBw82uKLKKbquSzNcJWbMmMFrr70GwIUXXshpp51mcEVCCCGECBRbtmzhiy++QNd1rrvuOm644QajSzouCZUn8O677/LVV1+BDtbtkZiy7UaXJOqRriM7MOTyfrx/89dGlyLqKdWk8ti8qTwz6k00r7Roi/Ku/M8ktv29S8ZTimN4w53ovQpwu92MHz+ehx56CEVRjC7ruKT7+wRuueUWsrOzmTNnDq4OOZi3RmDKkckZwmfLgu2MvnkICX3i2bVK9uoVldO8moRKUU6zjjE0a9+Urx/5VX43RDlamAu1TzEup5uhQ4dy//331/tACQ1sos6uXbuYMmUKd9xxBw8++CDFxcUAzJs3j9tuu4277rqLAwcOALB06VKmTJnCzJkzq3VNRVF48MEHOfPMM0EFT5dctAhntb8X0ThoXp1/vlzJiGsHGF2KEKKBGX7tQJZ+uwZ3qcfoUkQ9ooW6MA8sxel0MnDgQKZNm4bZ3DDaABtUqGzVqhVvv/02b7zxBl26dOHvv//G4/Hw7bff8vrrrzN58mQ+++wzwBcq33zzTRITE6t9XbPZzGOPPcawYcN8i6N3zUULd1X7vKJxWDtrC5HNw2ndu4XRpQghGojYdtEk9I5nxQ/rjS5F1CNasBvbEDclJSX07duXZ555BqvVanRZJ61Bhcojk3ppaSmtWrVi3759tGnTBovFQo8ePdi1axcAAwYM4Pbbb6dTp5rZo9lsNjNt2jTfrCsJluIIXreXf75axYhrBxpdihCigRh29QCWf78OZ5G8jggfLcSNfbibwsJCevbsyfPPP4/N1rCG2zWoUAmwcuVKbrzxRtauXUuLFi0oKCggKCjIf7/X69tecejQobzzzjtMnDixxq5tsVh48sknGTBgAJh03N1y8EZKV7iANb9uIqZNE1p2b2Z0KUKIei66dSTtB7Rm2XdrjS5F1BNamAvL4FIKCgro1q0bL774Ig6Hw+iyTlmDCJXffPMNd955J9988w39+/fnww8/5IwzzuCXX34hNDTUP7YSwGQy1WotNpuNZ5991t9i6emSi7dJaa1eU9R/HpeXJdNXccYNg4wuRQhRz51x/SBW/Lie0kJplBCghTsxDSihuLiYPn368MorrxAcHGx0WVXSIELlpZdeyuuvv87555/vvy04OBiHw0F8fDy7d+/G7XazceNG2rZtW+v12Gw2nnnmmcOTdzrn4W1aUuvXFfXbyh83EN0qirantTK6FCFEPdWsY1PantaKJdNXG12KqAe8kU6UfsWUlpYycOBAXnrppXK9rw1Nw5hOdMiqVauYPn06qqoSERHBI488gtls5uKLL+bOO+/EarXyr3/9q05qMZvNPP7449jtdmbNmoWnYz6WIBPa7oYzoFbULI/Ly4KPljL61iG8f9NeZAVYIcTRRt86hH++WCmtlAJvTAl61yJcLi/Dhg3jiSeeaFCTcirSoELl4MGDK9yeaNSoUYwaNarO6zGZTDz44IM4HA5mzJhBSXwOJj0I054QFOr/elKi5q2fs5XBl/al25kd2TRvu9HlCCHqkbantSK6VRTTH/7F6FKEgXR0vPHFeBMKwQtjxozxN5I1dA2i+7s+U1WVO++8kxtvvBEAb8tiPB3z0RVppgpEuqbz5/8Wc+ZNgzGZ5c9LCOGjKDDmtqEs+GgpHpfX6HKEQXR0PG0LfIESuPzyy3n00UcbRaAECZU1QlEUrr32Wh555BFMJhNa01Lc3XLQTbJDQiDaviSZgoNFnHZeT6NLEULUEz3GdMZkMbF+zlajSxEG0VWdgY90QmtegqIo3HHHHdx2222oauOJYo3nO6kHzj77bP8yAHqEG3fPbHSbvCMNRL+/sYgR1w0kOKLhLQkhhKhZVoeFMbcN5fc3FqFr0osViHSLlw43xfD3339jsViYNm0aF198sdFl1TgJlTVswIABvPnmmzRp0gQ92IurVzZaqCxuG2hSt2WwddEORt0yxOhShBAGG37tQPZtTmfnyr1GlyIMoAW7iThHZfPmzYSEhPDKK68wcuRIo8uqFRIqa0GHDh149913ad++PVg13D1y8MbKkkOBZt77S+g8rB0tusQaXYoQwiBNWkZy2qQe/P7mX0aXIgzgbVKK6fRiMjIyaNmyJf/73//o3bu30WXVGgmVtSQ2Npa33nqLESNG+Nay7JCPp00BOtL1ESiKc0tY8OFSxt89EkUWAxAiIJ191wiWfrOG3PR8o0sRdUhHx9OyEE+XPEpLSxkwYADvvvsuLVu2NLq0WiWhshY5HA6efPJJbrjhBgC8LYpxd8tFN8sEnkCx+peNmCwm+kzsbnQpQog61nlYO5q0jGTxV6uMLkXUId2kcfqjXfC2LgLg4osv5oUXXiA0NNTgymqfhMpapqoq1113HU8//TR2ux090oWrdxZaiNvo0kQd0Lw6v70yn9G3DCGkScPdJUEIcWrsITbG3zOSWf9dIEsIBRAtyE3Ti20sWrQIs9nMgw8+yB133NFolgw6EQmVdWTEiBG88847tGjRAuwa7p7ZeJsVS3d4ANi3OY0NcxMZf3fjHJgthDjWmNuGsnvtPpKW7Ta6FFFHvDElqKcXsW/fPpo2bcqbb77JxIkTjS6rTkmorEPt2rXj/fffPzzOsl0BerdCWc8yAMx/fwnNO8XSZXg7o0sRQtSyhN7xdB7WjjlvLDK6FFEHdEXH3S4fT6d8nE4n/fv354MPPqBr165Gl1bnJFTWsZCQEJ566immTp2KyWTCHVmMu1c2WpB0hzdmrhI3v/5nHuPvPRN7iM3ocoQQtcRsNXHOg6OY88YiinNl1Y/GTrN7aHNDJFoz34Lm1113HS+99BIRERFGl2YICZUGUBSFSy65hNdff52YmBj0IC/u3tl4pDu8Udu5Yg87V+xh7NThRpcihKglIyefTta+XDb+sc3oUkQt0tHxNi3BPKyYbdu2ERYWxksvvcQNN9yAyWQyujzDSKg0UI8ePfjwww85/fTTQQVvuwI8XXPRLTKou7Ga8/oi2vVvRedh0g0uRGOT0DuePmd347eX5xldiqhFukljyOPd8HTMp6SkhD59+vDxxx8zcOBAo0sznIRKg0VERPDCCy9w9913Y7Va0aJcuPpk4410Gl2aqAWlhU5+fG4u5zwwSmaDC9GI2ENsnP/YWcx8dT75mYVGlyNqiRbqIvI8lQULFmAymbj55pt59dVXiYmJMbq0ekFCZT2gKAoXXHAB77//Pm3btgWrhqdbLu62+eiqdIc3NsmrU9gwN5FJD59ldClCiBoy/p4z2L12H5sXJBldiqgFuqLjaV2At08eBw4coEWLFrz11ltcddVVAd3dfTQJlfVImzZt+N///sdFF10EgNa8BFefLLQw2Tu8sZn33mLCYkLof35Po0sRQlRT91EdadWjBbP+b6HRpYhaoAW7aXFVMN6WxWiaxtixY/nwww8Dcnb3iUiorGdsNht33nkn//nPf2jatCk4vLh75Pi2eJRWy0bD4/Lyw9NzOPOmwcS1l24TIRqqyObhjL9nJD8++zvOImkAaEx0RcfTqhDttDySk5OJjIzk2Wef5dFHHyUoSIYvVURCZT01YMAAPvnkEyZMmADKoS0epdWyUTmw8yB/vruYi58ajy3YanQ5QohTZLaauOTpCSz9Zg171u83uhxRg7RgN62uDcPbqgiv18uZZ57Jp59+yrBhw4wurV6TUFmPhYSE8NBDD/HSSy/5lh4qa7Vsmy8LpjcSq3/ZyP6t6Zz70GijSxFCnKKxd4ygMLuYf75YaXQpooboqm/spHZaHjt27CA8PJwnn3ySadOmBezak6dCQmUDMGjQID755BPGjx/va7VsXoKrbxbeJqVGlyZqwG//mU/TNtEMuLCX0aUIIU5Sj9Gd6Hh6G358Zg66jExqFLQIJ9EXmfG2LMbr9TJixAg+/fRTRo6ULXZPloTKBiI0NJSHH36YV155xbd/uE3D0yUPb498dKusa9mQuUrcfPv4b4y88XTiu8YZXY4Q4gRiEqIYf+9Ivp82i+I8eXPf0OlmDXfHPNzdc0lNTSUmJobnnnuOp59+mqioKKPLa1AkVDYw/fv355NPPuHqq6/GZDLhCS/B1S8LT3PZjachy9ydzcxXFnDpsxMJjQ42uhwhRCUcoTYuf/5cFny4lJRNaUaXI6pBR8cbW4L9LCda01IUReHCCy/k888/Z+jQoUaX1yBJqGyAbDYbN910Ex999BHdu3cHk463bQHu3tkykacB2zRvG+tmb+Gy587BbJV1z4Sob1STwsVPTSB5TQorZqw3uhxRDVqIm3Y3NcHTIZ/8/Hzat2/PO++8w1133SUzu6tBQmUD1qZNG958803uu+8+QkND0UM8uHvm4O6YJ13iDdT895dQmFXEpIfHGF2KEOIoY6cOx2QxMeu/C4wuRVSRbtZwt8/H0yeHrVu3EhQUxJQpU3jvvfdk3ckaIKGygVNVlUmTJvHll19y7rnnoigKWtNSX5d4fBG6Il3iDYmuww9P/05su2iGXtXf6HKEEIf0ndiNTkPa8e1jv+H1yOobDY2OjrdZMdbRJWhxJei6ztixY/niiy+47LLLMJvNRpfYKEiobCQiIiK4//77ef/99+nRo4evSzyh0DdLPKpUxls2IM5iF9Mf+ZXTL+lDt5EdjC5HiIDXrn8rxtw2jOmP/EJRbonR5YhTpEU4aXF1MJ52BRQWFtKhQwfeeustHn30UaKjo40ur1GRUNnIdOzYkTfffJPHHnuMJk2agMOLp2se7h45aCFuo8sTJyknNY/pD//CxAdG0bp3C6PLESJgxXWI4aJp45nx5GwO7DxodDniFGhBbnre0wp391ySk5MJDQ3l3nvv5b333vM1vogap+i6rLDVWBUXF/Pll1/y7bff4nQ6AVAzbZh3h6A4pam/Ieg0pC2THh7Dx3d8R+bubKPLEVWgmlT+vfBOnjrjdTSvdJs2JBFxYdz4ziXMe28J62ZvMboccZJ0qxdPq0L0Zk50XcdsNnPBBRdwzTXXEBYWZnR5jZq0VDZiQUFB3HTTTXz55ZecffbZvvGWMU7feMs2BehmeYGr77Yt3sX8D5Zw1X/Ok6WGhKhDjlAbV758Hit/3CCBsoHQTRqeVoWowwvR4krRdZ2RI0fy+eefM3XqVAmUdUBaKgPIjh07eOedd1i58tCWYh4F0/4gTKlBKF55f1GfnXnTYDoNacsnd35PSb4sttyQSEtlw2N1WLj6lfM5sCuL3/4zz+hyxAnoqm8STkhvE3l5eQB069aN22+/3bfsnqgzEioD0IoVK3jnnXfYuXMnAIpHxXYgDNvBUEoLZJ3L+mrCfWfSonMsn949A2eR/D81FBIqGxaz1cSVL51HUW4JPzw9G80rL5H1la7oaLElRAyycfCgb7xrq1atmDx5MiNGjEBRFIMrDDwSKgOUpmksWLCAjz76iJSUFAAiwiMoXO1FPeBA0eWPsb5RFJj0yFlExUfwxX0/4iqRiVcNgYTKhsNkMXHZsxPxejS+fXym/H/VUzo6WkwpMWcEk5bm29UoLi6O6667jrPOOkuWBzKQhMoA5/F4mDt3Lp988gnp6em+G0tVzCnBqBkSLusb1aRw4b/PxhFu56sHf8bjkkXu6zsJlQ2DalK4aNp4rEFWvn7kF/nbqod0xRcmm40K9zeGREVFcfXVV3POOedgtVoNrlBIqBQAuFwufvvtNz777DOysw/NMnaqmPcF+1ouNQmX9YXJrHLJMxNRVIVvH/tNXvzqOQmV9Z9qUjjvX2MJaxrCl/f/hNvpMbokcQRd0dGalhAzPMTfMhkWFsbll1/OBRdcgMPhMLhCUUZCpSintLSUX375henTp5OVleW70aX6JvSkOVA0mdBTH5itJi59ZiKqSeXrf/0qL4L1mITK+k01qVz473GENAnmqwd/xlks45XrC131jZmMHGQnMzMTgMjISC699FLOO+882aO7HpJQKSrkdDqZPXs2X375JQcOHPDd6D40WzxNZovXByaLiYueOBtHmJ2vHvpZxljWUxIq6y+z1cTFT47H4rAw/eFfcJfKm7P6QFc1vM1KCO9n9fecRUdHc/nll3POOedgt9sNrlBURkKlOC63283cuXP54osv2L9/v+9Gr4Ip3eFbishpMrbAAKeaVM5/bCwRcWF8+cBPlBY6jS5JHEVCZf1ksZm59Llz0LyaDCOpJ3SLF2/zYoK6migoKAB8E3CuvPJKxo0bh81mM7hCcSISKsVJ8Xg8zJ8/n+nTp/uXIkIH9aAN0/5g1EKLsQUGMEVVOPeh0cS2i+bLB36mKKfY6JLEESRU1j+2YCuXP38uJQWlfD9tNl63BEojaUEevC2KUFt48Hh8rcUtWrTgqquuYuzYsTKbuwGRUClOia7rrFy5kq+//ppVq1b5b1dyLb5wmWNFQSb11DVFgbOmDqfT4LZ8cf+PZO/PM7okcYiEyvolNDqYq/5zHmnbM/nlxT/l/8QgOjp6uAtPfDF65OFxrD169ODSSy9lyJAhmEzSE9bQSPwXp0RRFAYMGMCAAQPYsWMH33zzDX/++SfeCDeeiFyUIhOmtCDUDLtM6qlDug6/v/EXBZmF3PDWJXz10M+kbsswuiwh6pXo1pFc9Z/z2TA3kfnvLzG6nICkKzpadCkJE5qyY8cOAFRVZfjw4Vx66aV069bN4ApFdUhLpai2jIwMZsyYwS+//EJRUREAilfBmhWC9WAormzpWqpLPcZ0YvzdI5nx5Gx2rNhjdDkBT1oq64eW3Ztx2fPnsOjj5az4Yb3R5QQc3ebFG1dMaA8rubm5ANjtdiZMmMDFF19M8+bNjS1Q1AgJlaLGFBYWMmvWLH766Sf27dvnv13NtWFOC0LNtUnXeB1p068lFz1xNvPeX8KaXzcZXU5AU00qj82byjOj3pRQaZCuIzsw4d6R/PafeWxdtNPocgKGjo4W7sITVwTRbjTN9/sfExPDeeedx6RJkwgLCzO4SlGTJFSKGqdpGqtWreKHH35g6dKllP2KRUZGMmjQIPr160dwcLDBVQohhKgNpaWlrF69mmXLlvn35Abo27cv559/PkOGDJHJN42UhEpRq1JTU/npp5+YOXOmf4kINDBl2TFlBKHmy8Se2hQU4eDiJ8fjcXuYMW2OLDlkAGmpNIbFbmbSI2OIbBbOt4/9Rl5GodElNWo6OnqIG0/TYiytdUpLSwEICgpi3LhxnHfeeSQkJBhbpKh1EipFnSgtLWXevHn88MMPJCUlHb6jxITpgANThh3FJTP9aoPJrDLhvjNp3asF0x/+hYN7c4wuKaDImMq6F940lMtfOJfs/bn8+Ozvsqh5LdLNGt6mJbQaFUNycrL/9jZt2nD++edz1llnyc43AURCpahTuq6zbds2fvvtN/7880+Kiw+tqaiDmm1FPeBAzZaxl7Vh4EW9OeP6Qfz68jy2LEw68QNEjZBQWbfaD2jN+Y+NZeWPG1j0yTLkFa7m6ejoES68cSWocV7/2pI2m40zzjiDCRMm0KtXLxRFnscDjYRKYZiSkhIWLlzIzJkz2bBhw+E7XCqmA3bUTAdqsYy7qUmtejbn4ifHs3lBEn+8/Tdej4Sc2iahsm4oqsIZ1w/ktPN68uMzc9mxfLfRJTU6us2DN7aUJqcFk5FxeMmyTp06MXHiREaNGkVISIiBFQqjSagU9cKePXuYOXMmc+bM8S83AaAUmlEz7Jgy7Shu6R6vCcGRQVz4xDisdgvf/XsWeRkFRpfUqEmorH3BEQ4ufOJsrEFWvvv3TPIOyO90TdHNGlp0Kd6mpehhbv/toaGhnHXWWUyYMIH27dsbWKGoTyRUinrF7XazePFifv/9d5YtW4bXe2iNSx2UXCumDDtqlk0WVq8mX6vOIE47rwc/P/8H25ckn/hBokokVNauhN7xXPDvcWxdlMTct6T1vSboqo4W5URrWoIS4/U/D6uqSt++fZkwYQJDhw6VvbjFMSRUinorNzeXhQsX8vvvv7N58+bDd3gVLHkOrDkhmAvsMqO5GtoNaM15/zqLxL93MvfNv3A7ZUJDTZNQWTtMZpWRkwfTd0I3fntlvowTrqaybRO9TUuxt1EPj3cHOnbsyJgxYxg1ahTR0dEGVinqOwmVokHYv38/f/zxB3Pnzi23sHpwUDAlyV5f93ieFUWXgeGnKijCwbkPjia6VSQznppD2nbZ3rEmSaisedGtI7nw32dTkl/KT8/NJT9TlguqCl+QdONtUkpEdwfZ2dn+++Li4hgzZgxjxoyRpYDESZNQKRoUXdfZunUrc+fOZcGCBeTkHLE8jltBzbahHrSj5krAPFV9J3ZjzJRhLJm+msVfrULzylNDTZBQWXMUBfqf34szJw9m0afLWfbtGpndfYr8LZLRTsK72ss9h4aGhnLmmWcyZswYunfvjqrKMCNxaiRUigbL6/WyYcMGFixYwF9//VXuXTYeBTVLAuapioqP4Px/nYXJYuLnF/7gwM6DJ36QOC4JlTWjScsIzn1wNLZgGz8++7v8bp4CXTkcJEM7WcnLy/PfFxoayrBhwzjjjDPo168fFovFwEpFQyehUjQKXq+XjRs3Mn/+/IoDZo7V14qZY0PxyLvv41FUhQHn9+KMGwexYsZ6/vpsBV631+iyGiwJldWjmhROv7Qvw64awOLpq1j81Wr5OZ4E3aShRbjQmjgJaW8lPz/ff194eLg/SPbt21e2TBQ1RkKlqNTatWv59NNP8Xq9XHLJJQwbNox58+bx/fffY7Va+de//kVsbCxLly7l888/Z8KECUyYMMHosv0Bc8GCBSxatKh8wNRBybOgZtswZdlQnPJkWpmIZmGc88AowmJC+OXFP0nZlGZ0SQ2ShMqqi20XzaSHx+D1aPzy4h9k7s4+8YMCmG7zokU58UY5MTfVcbsPLwEUERHB8OHDOeOMM+jdu3e9CpIN9bVGHKv+/FaJesXpdPLNN9/w8ssv+7tDPB4P3377LW+++SaJiYl89tlnPPDAAyxdupQ333yT//73v/XiD91kMtG7d2969+7NXXfdRWJiIosXL+aff/4hOTkZPcKNN8KNt20hSpHJ14KZbUMpsMhOPkfITcvn83t/pM/4rlz+/LlsW7yLP9/9h6LcEqNLE42cPcTGyBsH0XNsFxZ9vJzlM9aha9L+cTTfftse3/I/UU70kMOrN7jd0KJFC4YOHcqQIUPo3r17vQqSZRrya404Vv37DRP1wqZNm7DZbDz88MPY7XbuvfdeCgoKaNOmDRaLhR49evD2228DMGDAAG6//fZ6+Ueuqipdu3ala9eu3HTTTaSmpvoD5vr169GCvXiDi/G2LPZN9Mm1oubYUHOsstj6IWtnbSHxn12MunkIt39xDQs/WsaqnzfIRB5R4xQFep3dldG3DGHXqhTevvpzCrKKjC6rXtHNGlqEEy3SRWTXYLKyDrfeqqpK9+7dGTJkCIMHD6ZVq1b1fqvExvJaI3wkVIoK5eTkkJaWxltvvcXq1av5+OOPGTt2LEFBQf5jyhbEHTp0KEOHDjWq1FPSvHlzLr74Yi6++GIKCgpYtmwZixcvZvny5RQVFaHFONFifOteKoVm31jMXBtKviWgJ/uU5Jfy23/msebXjYy/90z6TuzOrP9bwN4NqUaXJhqJZh2bMv6ekVgdFr57YhZ71u03uqR6QUdHD3P7xkdGOiHMS9motaysUhwOBwMGDGDw4MGcfvrpREREGFvwKWqsrzWBSkKlKOebb75h8eLFnHbaafTo0QOLxULfvn354osvCA0NLbcgrsnUsFvyQkND/euweTwetmzZwvLly1m5ciWJiYnoIR68IR5fK6ZXwVxox5LvwJOhoJSYArKrPHVbBh/e+jV9JnTjkqcmkLI5jXn/W8zBvTknfrAQFYiIC+PMmwbTfmBr/vp0BSt+WB/wY091m9ffGulobaao6IjWWh3atm3LgAEDGDBgAD169GiQO9sE0mtNIJFQKcq59NJLufTSS8nLy+Opp54CICkpiebNmxMfH8/u3btxu90kJibStm1bg6utOWazmZ49e9KzZ09uuukmcnJyWLlyJStWrGDFihXk5ubiCS/BE14CLQGnippn9X3kWlGcgfOkp+uw5rfNbJq3ncGX9WPyu5excd42Fn28jMLs4hOfQAjAEWpj2DUD6DuxO6t/3cgbl39CSUFg7o6lW71o4S5fa2S4C+yHQ3VRkZOwsDBOO+00BgwYQP/+/YmJiTGw2poRqK81jZ3M/haV+uGHH5g/fz6qqvLwww/TvHnzCmfkNXaappGUlMSKFStYtWoVmzdvxuVylT+oVPWNxzwUNBVX4ITMkCZBnHHdILqP6sTyGetY9u2agA0HFZHZ3+VZHRYGXNibwZf1JWnZbhZ8sJTc9PwTP7AR0S1lIdKNHu5Cd5RfsstkMtGlSxd/a2SnTp0adWudvNY0HhIqhThFTqeTTZs2sWbNGtauXcvWrVv9Y37KKMUmlHwLar7VNx6ztPF3l0e3iuSMGwbRbkBrVsxYL+HyEAmVPv4weWlfUjalsuCjZaQnZRpdVq3T0cGmoYW50MIOhcig8s8XqqrSsWNH+vTpQ58+fejZs2e5MYVCNBQSKoWopuLiYjZu3OgPmdu3b0fTjgoPLhU134JSYPG1ZBaZG+3En5iEKIZfO5AOAxNY8cM6ln67lpL8UqPLMkygh0pbkJUBF/bi9Ev6sndjKos+Wd6o95f3L/MT5kYP9QVJbOX/3xVFoX379v4Q2atXL0JCQgyqWIiaI6FSiBpWUFDAxo0b/R+JiYnHdpd7QSk83JKpFpob3RJG/nA5KIH1c7aw7Nu15KQFVjcnBG6oDI0OZuBFfeh3bnf2rNvPok+Wkba98bVM6mYNPcSNFuZGC3NhizNRWlr+TZTJZKJjx4706NGDnj170rt3b8LCwgyqWIjaI6FSiFrmcrnYtm0bmzZtYsOGDWzatKnc3rt+pSpq4aHWzEILSqEZxdvwt5SMbB7OoEv60HtcF3as2MPSr9ewb0u60WXVmUALlbHtohl8WV86D2/P5vnbWfrNmkazE46u6r4AGeJGD3WjhXjAcewWpiEhIXTv3p0ePXrQo0cPOnfujN1uN6BiIeqWhEoh6piu6+zdu5eNGzeyadMmtm7dyu7duznmT1E/NDaz0IJaYMHuDcZUavV3m5cUNqwuZUeojf9v7+5jozgPPI7/npn1y9oYDLbBS8A275AAuYQGouqUqqEpvqAop6DSRPdPVen+aBU1aRUpVaUqUqsqUhu1UVVSKWqlJopSoqpNGrVSTHLlkl5TAUcgkMO8hhgwXoOxMcb2eu2d5/6Y3dldvwEZYNf29yONZvZ55pl9Fj+sf97ZeeYL/75eG7f9i3rO92rvHz9W6wcnp/19xWdCqHRco5VfXKqNj92t+uV12vfWIe178+MpORtAdJYf/qyxSpUnlXD70yFyRKbKG/vVFvl3rlm7dm0QJJuamuQ4U/8PQuBGESqBIjAwMKBjx46ptbVVR48eVWtrqzo7O8fs5ziOYvUL1bioUXve+Ng/bd5fIjMydX6BuSWu1m5eqS88ul7zFs3Rgb8e0f63D6vn/Dif3k4D0zlUzplfpXsfuUv3bF2rgcuD2vfWIR1qadXw0Mi1GxcR63qylSPyZo3oi/9xj86ca1N7R7tGRsa+jpqaGq1Zs0arV68O1lVVVQXoNVB8CJVAkbp06VIQMFtbW3X8+PHxT5tL/ryZ/RGZqyX+RUD9kSlxxXn98jpteHSd1n1lldqPxPXRX/9Px/7nlEaS0+fTy+kWKt0SVyvub9I9D9+ppnsX68juE/rftw+rfQp8pSG4ErtyWHbWiB8kK4fz5oXMNWvWLK1evTovQE6HOSKBW4VQCUwR1lp1dXXp5MmTOnHihE6cOKGTJ0+qvX2C29l5khlMB8wBV2Yg4i9FGDZLoyVa95VVuvvf7tT8JTVq/eCkDrW06rOD7bLe1H6Lmi6hsmHdQq3/6mrd9eBK9Zzv1cfvtOrjllYlrhbftFF+eEzJq0zJRkdkKzJLSnLHH0/19fVavnx53hKLxYr+3tlAMSFUAlNcf3+/Tp06lRc029raNDQ0wS97T9mAOeD6wTORXnuF/wU6NzZb6766WndvWaOSsogO/9cxHfnvkzrfGtdUfLeayqGyfkWd7vzScq17aLWMMTq0q1WH3j2qrrbiuC2nNVY2mpIt9wNjEB6jI9IEkymUlJSoqakpCI4rVqzQsmXLOIUN3ASESmAaSqVS6uzs1OnTp3X69Gm1tbUF6wnDpiQNOf59zYOgmbNdgHk1F65eoPUPrdbqB5bJcR0d/fspHf3gpD472D5lAtpUCpXGMVq8NqY1X1qu1f+6TJGyiI7+/ZQOv3tUZw+fL0iot8bKlqey4TGa3TZRO/YCt7TS0lI1NDSoqalJjY2NWrJkiZqamrRw4UJFItyhGLgVCJXADDJe2Dx37pzOnTs38fc1JcnKD5wJV2bI9dc520o6t/yUemzlfK15YJlWP7BcVTWVOrnnM53c26ZP951R36X+W/rcYRR7qKysjmrpFxq0bGOjlm9q1FB/Ukf/fkqtH5xS+5GOWx4kraxU6smWpfzwWOal1354dCrsuFdcB/2vrNSiRYvU2NgYBMhMeJzOtzYEihGhEoAk6cqVK0HAPHv2bN56YOAaU8N4koZcRUZK5CQjcpKuzHBEI1dSUtKVGXKklLlpwbNmcbWWb2zSsk2Narr7DvV0XNGpfW06tbdNZz/pUHJw+KY8z81QbKEyUupq0V0xLdvYqGX3NaiucZ7OHDqvU/vadHJPmy6cvnRTn8+6nmypJ5WmVDLblVc6Iq80Ja90RKnIsGxZSrrG5AXRaFSLFi0ad6muruZ7j0CRIFQCmJS1Vt3d3Wpvb1c8HldHR4fi8XjeMvre5+NKSSbp+p94Jl2ZpCMN+Wsz7Pifdg7fePh0S1wtXhvT8o2NWraxUXVN89R5qktnD3fozOF2nTl8XlcvFW6+xEKHyorqqBrWLdTidTE1rLtDsRV1unTush/C953RmY/bb3gKICvrX/AS8QOjHxo92dL0J43pEGlLPSly7V8xruuqrq5O9fX1wRKLxRSLxbRo0SLV1NQQHIEpgFAJIJRUKqWurq4xgbOrq0sXL15UV1eX+vr6rv+AnqTh/KBphp1s2YgjM2Ky62En7/ueZZWlWnRXTA3pEHXHnfXq7xlQx/EL6eWiOo5fUH/P7QmatzNUVswpV/2K+YqtnK/YyjrFVs7X7PlVOt8a15lPOnTmULvOfdKhwb7879Vakw6IkZx1iSdb4o1ZZ7YnuhBmPJWVlaqtrVVdXZ3q6uoUi8W0YMECxWIx1dfXq7a2lu85AtMAoRLALZdIJNTV1RUEzcySKbt8+bJ6enqufZp9IimNDZsj/qeejnU0a84sVdfN1rz6uaq9Y57mN9RKKaOrFwfVf2FAV+L9utx+Rd1nrujKhT7pJl6UdCtC5azaCtU2ztXcO+Zo9sJZml1foVnzK+SWObpwpksXz15SV3u3ei5c1pXuPnnyJDcnNLr5IfJGAmKusrIyzZ07VzU1NaqtrQ2Wurq6YF1TU6OKioqb8roBFDdCJYCiMTQ0FATMnp4eXb58Wd3d3cF2T0+P+vr61NfXp6tXr6qvr2/Sizg+L9dx5TiuHGNkrCN5kh2RbMrKjkjeiJWXsv6tNDPvoNb4FzRJ/jodTI2M1n11lQ6/e9Q/bewX5qytlG7quEZOiZGJGDkRf23c9BXQxspaTykvpZGRlLJPdnMYY1RZWamqqipVVVVpzpw5mjt3rqqrqydcR6PRm9oHAFMboRLAlOV5ngYGBoKgOXoZHBzUwMCABgcHr7k9Vd8KHcdRNBq9rqWqqkqzZs0KgmPudmVlJferBhAKoRLAjGet1fDwsJLJZLDOLOOVDw8Py/M8eZ4na61SqZSstUHZ6MUYI8dx5DhO3nbu48w6EomopKREJSUlKi0tHXed2c4sXMQCoBgQKgEAABAa5zoAAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQWqTQHQCKgbVWiUSi0N0AgBtSXl4uY0yhuwFIIlQCkqREIqEtW7YUuhsAcENaWloUjUYL3Q1AEqe/AQAAcBPwSSUwSune+TI2/feWcWQcIxlHcoxkjIyTqUuXGyM5RiazT1BngjbBIuWUZY8ZtFG2jTUm+2dfzjGC8px2uWU2fZigzpGkTLkJ6jJtbLosqJeyx3DS+wdt8p8jr43SZc44dXn7K6+P2TIzpm5MG+W3yatXts1Ez5X3eIJ+jGkz2XGDcpvXfvTxgvqcY9l0uUa1k7E57f16k1sX7Jups8ExTe7+6XJjbHb4pcuzw8MG9Y5s8Nivk5z0Y7/Of5xpF9QZK6NsOyddFiyyQTvHKK8828bL7isrx3hyM3Xpx9ljecHx3Jzju/LLXeONaufJzRxT2ecL9lf2eI789o785/fr/OO56TIjT26mvTL98ORKfjv5z5N5bZnH/nPZ9LbSdVZO+t/FlZEjyU3/sB2ZdJmRa4yc9JuBkdFw0tW2/6wXUGwIlcBoKZN+e5cfKpUOgOnf1tk6IznZBGX8hJY+SCZ5ONntMWnDGZt4jBm7f+7xNGr/vLrR2zn7ZMJkTqgcU5YTAnMfj+5i/v7jtHEmqZvoZYx33InaTVZ+3c91Y8ccN8TmtbvJoXK8eo1+bINj5/Yj9znz24wKoUFdbr0d53h2nOeyeUtuqMwG1fQyUd14YVOZMKq8oJd57Cq/zg+VXjaUmdxQ5m87xviBL71WsG2CdtkAK7kmu3alnAA4Tl36eP5jmw6lNgiRfjt7zVCZezw3XecovywTYJ306waKEae/AQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBrzVAKjuVbW+hMe+/Mumpy1GTUheWads63cMpuzPUldpjxn0sLsFNWaoDy7tnnbymtnJclmyrPHtDKSVdA2tz44Rt7kirl9GeexzevSqH+PCZbR+15r7khNUH6tusnmopysLvcVTtpuvPkmcxc7QR8nnvw8f27JnLpg388/+Xm2HznzVOrzz1NplW1njc1f5K/9OuWVe8HxvOzzyErGy5lP0+bVW+MFx1Pe8dPrzHOlHzvpfTJrSWPKvJy5IT2TXXvKzlPppcuMJpqn0gQTlrvK/swyj510m9FzX17/5Ocm/WMxGk6O9/8SKDxCJTBKcuOFQnfh1sj8zg5hdJwFpPyh5RWyI59b7sjmBB7wefG/B5CUSCQK3QUAAKY0PqkEJJWVlQXbf/7zn1VeXl7A3mCqSyQSevTRRyUxnhDOtcYSYwvFhFAJSDIme0K3vLxc0Wi0gL3BdMJ4ws3CWEKx4/Q3AAAAQiNUAgAAIDRCJQAAAEIjVAIAACA0Y60NOXMdAAAAZjo+qQQAAEBohEoAAACERqgEAABAaIRKAAAAhEaoBAAAQGiESgAAAIRGqAQAAEBohEoAAACERqgEAABAaJFCdwAotIGBAe3cuVPvv/++4vG4HMfR4sWL9eCDD2rbtm0qKSkpdBdRYIlEQgcPHtSxY8d0/PhxHT9+XJ2dnZKkb3zjG/rmN795zWN0d3fr9ddf1z//+U91dnaqrKxMS5YsUXNzs7Zu3SpjzK1+GSgSvb29+sc//qH9+/cHYymVSqm6ulqrVq1Sc3OzHnjggUmPwXhCMeI2jZjR4vG4vvOd7ygej0uSysvL5XmeksmkJGnFihV68cUXVVVVVchuosAOHDigp556aty66wmVx44d0zPPPKPe3l5JUjQaVTKZVCqVkiTdd999ev7551VaWnpzO46i9OUvfzn42UtSaWmpXNfV4OBgULZp0yb9+Mc/Vnl5+Zj2jCcUK05/Y8ZKpVL6/ve/r3g8rpqaGv385z/Xrl27tGvXLj333HOqqKjQiRMn9KMf/ajQXUURqKqq0oYNG/TEE0/oueee07x5866r3dWrV/Xss8+qt7dXDQ0Nevnll9XS0qJdu3bp6aefViQS0b59+/SrX/3qFr8CFItUKqU1a9boe9/7nnbu3Kn33ntPLS0teuONN7R161ZJ0p49e/TCCy+Mact4QjHjk0rMWH/5y1/005/+VJL00ksvae3atXn17733XhAof/GLX2jDhg23vY8oDqlUSq7r5pVt375d8Xj8mp9U/uY3v9Grr76qsrIyvfLKK1q4cGFe/WuvvaaXX35Zruvq1Vdf1eLFi2/Ja0Dx+Oijj3TvvfdOWP/CCy/o7bffliT94Q9/0IIFC4I6xhOKGZ9UYsZ65513JEn33HPPmEApSZs3b1YsFsvbFzPT6EB5I1paWiT542l0AJCkxx57TNFoVKlUSu++++7nfh5MHZMFSknBp5WSf6o7F+MJxYxQiRkpkUjok08+kSTdf//94+5jjNGmTZskSfv27bttfcP0cebMmeCCnsxYGq2iokLr16+XxDiDL/e7kJ7nBduMJxQ7QiVmpLa2tuDNesmSJRPul6nr7u7WlStXbkvfMH18+umnwfZk42zp0qWSpM8+++xWdwlTwMGDB4PtzNiQGE8ofoRKzEhdXV3Bdl1d3YT71dbWjtsGuB6XLl0Ktq9nnPX392tgYOCW9wvFq6+vT6+99pokaf369WpoaAjqGE8odoRKzEi5b7RlZWUT7pc7nQdvzrhRjDPcCM/z9JOf/ESXLl1SaWmpnn766bx6xhOKHaESAIAi8Mtf/lIffvihJOm73/2uli9fXuAeATeGUIkZqaKiItgeGhqacL9EIjFuG+B6MM5wvXbs2KE//elPkqQnn3wy7wrwDMYTih2hEjNS7nclL168OOF+ud+jzG0DXI+amppg+3rGWWVlJSFgBvr1r3+tN954Q5L0rW99S9u3bx93P8YTih2hEjNSY2OjHMcf/qdPn55wv0zdvHnzNHv27NvSN0wfuVfuTjbOMlf1NjU13eouoci89NJL+v3vfy/JD5RPPPHEhPsynlDsCJWYkcrLy4MJz/fs2TPuPtZa7d27V5J/L13gRjU0NAR3Q5lonA0ODurQoUOSGGczzY4dO7Rz505J1w6UEuMJxY9QiRmrublZknTgwAEdOXJkTP3u3bt1/vz5vH2BG7VlyxZJ0t/+9jd1dHSMqX/zzTc1ODgo13X10EMP3e7uoUB27NgRnPL+9re/fc1AmcF4QjEjVGLGam5u1tKlS2Wt1Q9/+EPt379fkj+tx+7du/Wzn/1Mkn/nCu77jb6+Pl2+fDlYMpPnDw0N5ZWPnsLl8ccf17x585RIJPTss88Gt90bHh7WW2+9pd/+9reSpEceeYT7NM8Qud+hfPLJJ/X4449fd1vGE4qZsdbaQncCKJSOjg499dRTisfjkvzT4p7nKZlMSpJWrFihF198UVVVVYXsJorA9u3bg3EymebmZv3gBz/IKzt27JieeeYZ9fb2SvKvyE0mkxoZGZHkn6Z8/vnn827Ph+mps7NTX/va1yRJjuOourp60v2//vWvj/kUk/GEYhUpdAeAQorFYvrd736nnTt36v3331c8HlckEtGSJUu0efNmbdu2TSUlJYXuJqa4VatW6ZVXXtHrr7+uDz/8UBcuXFB5ebmWLl2q5uZmPfzww8GFY5jecu/l7Xmeuru7J91/cHBwTBnjCcWKTyoBAAAQGn/KAAAAIDRCJQAAAEIjVAIAACA0QiUAAABCI1QCAAAgNEIlAAAAQiNUAgAAIDRCJQAAAEIjVAIAACA0QiUAAABCI1QCAAAgNEIlAAAAQiNUAgAAIDRCJQAAAEIjVAIAACA0QiUAAABCI1QCAAAgNEIlAAAAQvt/fJZd8m4UyQ8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot healpix map:\n", + "plot, ax = skymap.plot(ax_kw = {'coord':'G'})\n", + "ax.grid()\n", + "lon = ax.coords['glon']\n", + "lat = ax.coords['glat']\n", + "lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)\n", + "lat.set_axislabel('Galactic Latitude',fontsize=5)\n", + "lon.display_minor_ticks(True)\n", + "lat.display_minor_ticks(True)\n", + "lon.set_ticks_visible(True)\n", + "lon.set_ticklabel_visible(True)\n", + "lon.set_ticks(color='white',alpha=0.6)\n", + "lat.set_ticks(color='white',alpha=0.6)\n", + "lon.set_ticklabel(color='white',fontsize=4)\n", + "lat.set_ticklabel(fontsize=4)\n", + "lat.set_ticks_visible(True)\n", + "lat.set_ticklabel_visible(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ee9bde37-f954-414d-aa8f-2dc187f8eb19", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1e-50, 1)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGyCAYAAADERJFvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADu4klEQVR4nOy9f5ydVXUu/pxJCEkgBGVaElACCf5CKZUCN4pRJGCFi3j9WJXKBSOl2tbehuot9tI0IdygFTVw6w/8ClhorRaUqiHYWMAAQQENoBIpIZAw/BxCQjL5MZlMZuZ8/5jMOe+793r2fs4+k8yv/fiRzNnv2muv85733fvZa629d6VarVaRkZGRkZGRkZHREFqG2oCMjIyMjIyMjJGITKIyMjIyMjIyMhKQSVRGRkZGRkZGRgIyicrIyMjIyMjISEAmURkZGRkZGRkZCcgkKiMjIyMjIyMjAZlEZWRkZGRkZGQkIJOofYiuri6sXbsWXV1dQ21KRkZGRkZGxiAjk6h9iLa2Nvzpn/4p2trahtqUjIyMjIyMjEFGJlEZGRkZGRkZGQnIJCojIyMjIyMjIwGZRGVkZGRkZGRkJCCTqIyMjIyMjIyMBGQSlZGRkZGRkZGRgEyiMjIyMgYB3bt6sPnpbahWq0NtSkZGxn5CJlEZGRljFp1buvDbn7Rh+8ZOKtPb04dH/v1JPHr7BkqQ+vqquP2KB/CDy36GR37wZNN29ezuRW9PX9N6MjIy9i0yicrIyBizuOcbv8H9Nz2G//zyQ1TmtyuexkPfX4cH//VxPPPwRlNmyzPbsbltOwDg4e9zEvXSE1tw8yV3495vPkpldmzahe/+r5X4zl/8FDtfyRv1ZmQMZ2QSRdDd3Y3Pf/7z+OAHP4j3vve9+LM/+zM8+ijv+DIyMoYXXnlmO559ZCP6+nh47flHNwMAtjy7g3qZfnPb+trf6+9/0ZTp3dMr2XTb5Q9g+8ZdeOLu57D9Zdv79asfPoXdO/Zg9449uO+GNZLejIyMoUEmUQS9vb2YPn06vv71r+PHP/4x3v/+9+Oyyy7LR7hkZIwAdHbsxo/+/uf4yRcfwlM/f0Gqs6fLJkI93fWw2rgJ40yZ3p7G86BYe13bu2t/b96wjdbv6+nDK89uzzlYGRlDiEyiCCZNmoR58+bh8MMPR0tLC8466yz09fXhueeeG2rTMjLGNLa9tBN3XP0wHr19A5VZu/JZ9O7pJz/3fP03pkzV8VD17LZJTaUStyklf2nAPhcHTBxft6mbe7hWfGE1/v2z92H1zU8E2ujFk/c9j01PdzRsX0ZGRhzj4yJDi87OTtx0001Yt24d1q1bh46ODsybNw8XXXSRKXv99ddj5cqV2L59O4466iicf/75mDt3btN2tLW1Yffu3TjiiCOa1pWRkZGOu7/2G2x8civafvkSXvvW38GhRxzsCwmcxiU+fb12pUpLnUVVe0lieQqJIgRp3IT63JaRqL6+Kl74bX8o8tfL1uPk895gyv32P5/BL/71cQDA//z/5mLilAkN25mRkcEx7D1RHR0duO2227Bnzx7MmTMnKLtgwQKsWLEC8+bNw1VXXYU3vvGNWLx4Me64446mbOjq6sKVV16JCy+8EJMnT25KV0ZGRnPY+OTW2t9bn99hyighLpf4MIJUEVxRKSQq5GWKta22N0CgAOCZR+yk+IyMjHQMe0/UtGnTcPvtt6NSqWDr1q1Yvny5KXf//fdj9erVWLhwIc444wwAwIknnoj29nZce+21OP300zFuXH8+wyWXXII1a+yEzfPOOw8XX3xx7XNPTw8WLVqEGTNm4IILLgjaumnTJmzevLn2ua2traHvmpEx1tHXV0XnK104uHWSJJ+Si1Sv63qibF0lQkb4FAvNhcBIG4rFpD03FKmAhSszMjLSMexJlDILBIBVq1Zh0qRJOO2000rlZ599Nq644go89thjOP744wEA11xzjaSzr68PV155JVpaWvDZz342asuyZctw4403SrozMjJ8rPiHX+KFNZtxyvlvxO/992Oi8i3El655j8pEhIXzFLi6pDqECBVJG/dEObb3VdHSEv7Ovd38+1WrVfT1VjFu/LAPTmRkDCsMexKlYsOGDZgxYwbGjy9/pVmzZtWuD5AoFV/60pewefNmfPGLX/T0Wjj33HNx6qmn1j63tbVhyZIlDbWZkTFW0b2rBy+s6ffk/uJfH5dIFMv6rqLxcB73REWbQ28CAWPeJKU9l/D1dveiZWK4jwrlVy1f/AC2Pr8D7/3sSfjd170qqCcjI6OOUUOiOjo6zKTvKVOmAAC2beNLhS20t7dj+fLlmDBhAs4999xa+VVXXYUTTjjBrNPa2orW1taG2snIGCuo9lWBSvN5PqU6SkiMwA3B0fAa4qymz9XVVy0lpJt1qO1Ce07d3j19OGBisLnSVg1FPPPQS9i4bisA4Mef+yXm/dN7wooyMjJqGDUkCtBDfwqmTZuGe++9d9D0ZWSMZex8pQvLr3gA4w4Yh3MXz8aEyQd4MinbBLAQnLJ1kus9ouE8RZfr1eqrYlyERFFPVEEV90SV66bkSA1g9849tb9DeVObn96GNSuexqxTj8Brjs+TxYwMYASszlMxdepUdHT4e6Fs395/FMMhhxyyv03KyMjYiwf/9XFs37gLW5/fgYe+t86Ucb05Crj3KA4/J6qJ8JpLogRCyHKiioSMebNcwhfalb2mi9jeIuZBLbv8fqy793ms+PwvJfmMjLGAUUOiZs6ciba2NvT09JTK16/vP7LhmGOE/IqMjIx9guJWBJuf2W7K9CSQKCkkRuCG86iuEsREb0GXsueU7IlS2iMiajJ5MTE975KekdGPUUOi5syZg127duGee+4pla9YsQKtra047rjjhsiyjIyM4gaS7Jy5FE9UM+E8P7Gc6SoqE7ZBgE1qXG8RC8EVCRL7Hq6tSjiPfb+UFXkpWzpkZIxGjIicqAceeABdXV3o7Ow/sLOtrQ133303AGD27NmYOHEiZs+ejZNOOglLly5FZ2cnjjzySNx111148MEHsWDBgtoeURkZGUOA0lZLxJuTkNfDPD7KdgXqZptF23keU3y7hKoYglO8PK6tzXi+2F5UIfR092I8OUcwI2MsYUSQqKVLl6K9vb32eeXKlVi5ciUA4Oabb8b06dMBAEuWLMF1112HG264oXbsy6JFiwbl2JeMjAwbzzy8EQ/fug5vOuMovOHdrzVlSnlFLM8nIbGch8QEUuERnzipUfKmAJsgqSG4ol2Kt4q1F6sTKw8htOdURsZYwoggUbfccoskN3nyZMyfPx/z58/fxxZlZGQM4D+/9BAAYNV1aziJKgzyFRI9krwp1bjHB9BIhUJ8+gULf6qeKIPEWRtk2rqKNmpn9Sk5UfReDeKRNb17erH6lnVoGd+CP/jQ66IbgGZkjHSMCBKVkZExMlCtVs2tRkq7cIsrzkz9ogdGIQY+8SE5UUJ7Xk6U5Ynq04hPUVeVfI2ULQ72hyfqtz9pw6O3bwAAHNw6EW+ae1TDujMyRhJGTWJ5RkbG0IMSkdLeR9oGkha8/ZhI2C7Jq6V4omgIzm3fyIlyZQSvFg3nuQRQ8bw1kT/mgnminvzZC7W/19//YsN6MzJGGjKJysjIoKhWqw2Fe9iu2BAO8XUHeSuUJe/tlLDkv0oIWZHzqZ4oS07xVrl2sXBe1QvnCYn0LJynhAIdWxmJKobvUjxcGRkjDZlEZWRkmOjr7cNtix7Av/7FT/Hyen8jWwu9ZHCVDtV1l+0bY7AXEutjxCAhnMdWxRXMVXOiYDXvbnEg7HFFtzjwPFG2XEmmiSR8l0izcF5lXP1mhYjsi//1yt4NWDujbWdkDGdkEpWRkWGibfVL2PjkVuzesQcr/kHbpVpJllYTyy3vipcM3kw4zyM+zBMVJwaeV8v0RDnNKaE69jW89tJ3SFfquvtCcU9U/ccNhStv/78P4tHbN9QWJWRkjFRkEpWRkWFi98767v+7d+wJSNahJEurBxCbSdViLlDK6jy6PZMQzvO8TIYyNZxnerEiuqSQHAnLpnmibBJV9EQxb2Axr23LcztMmYyMkYJMojIyMkyMn9B496AkZ7OcKC9EZSZnayvqmFcppIvlH5U8USJps1T5yedCfhXLiXIJYIrnLWJHSIYd0VPMiWI25d3OM0YTMonKyMgYNCgbSDIoG0iqR7YpcqpnqJRYLuxqznTJieXF1XlV4tUSj5Apgoc+B287iJZx8cRyd4VlRsZIRiZRGRkZJlKICF+9Vvhb3NupKSIiHZ7n1GFju5ATpZyLpxIfz3TLqyXmV5Vk2NmAiu0q4RTCeSmbe2ZkDFdkEpWRMUaxc0tX2Cug8BBx00fl6BTlWBQ/BGfbRQlRsT2XGFDiVfAMsZvi6YqKaOE8ZldCThS7J1JSvHhEDst3KyKH8zJGEzKJysgYg9jwi3Z89y9X4t8/ex/3UAjeHPX4kRQSZYbzPO+RRmrsBtXwWrGO1pxCfGi+0yB5tSQyZtRt5r6nLCDIyBjJyCQqI2MM4q5rHgGqQMeLO/HcrzeZMspgp54HV4GwTYC7T5TliRLDSoO5Oq90DEtTxEdsT5CTSI3gYbL0NxPOU6DmRG15bjuWLbwfD3z7v5LbysjY18gkKiNjjGNPV49Z3qssfXeIj7bSK340DMA8Ilo4TwlFekSAshpBRFmdp3qGBMKibHHgt2c2p+nySKKtS1qFKYbzfvLFh7Dxya1Y8+OnsUnc7DUjY38jk6iMjDGOZg7xTcmJUpPBbU9UrIDokvZtMlU5q+XEZHCB+ND0qkEK1ckr+FyzhPuueLVYOE/1RO14eVft7+2bdgUkMzKGDplEZWSMcdD9fCQSFV9RB5QHV9kjIuUCEV2el8mSidSp2RXWY9plyXlhOpHUCOlVVq6WlKcFIydKIGR8P7C4C9D1cEqhQXVvi4yM/YxMojIyxjia8kR5BwLHl9FLCdxoLidKIRDqZptSTlRCCE4PDRqCyg7pKuGUPIAJxEcM50n7VGUOlTFMkUlURsYow6YNHXjkB09i55YuSZ4tSk/JiWomJOZvE2CRB7eKGs5rQqboRWtidZ4eEnPKJS+TISPmfEk7qaurIgW4z4zynGUSlTFcMX6oDcjIyBg8VPuq+OHf/RwA8OyvX8a5l78tXol5DBJyoqhXQSAi7jm4JodSE8uFQT/l0GB9dV5chocGy5/N8JrAotQNORUvk3ckjxSCI8WuXXv6gEkxXdz2n33rt9j6/A6885O/h0MOnxy3KyNjEJE9URkZowjFPKaNT2yV6lQIixrMxPI+IZynuVfUcJ6SEyXokomPEF5LJGRmkrq0DUKi7eZ2CY3fd/X79TYRznvuN5vw+F3Pov3xLVj5tV9F9WRkDDYyicrIGEVI2siQeKKkxHLhqJb+Cwl5RUJCtbpaTlqdp4T81BVuChGhtyolFNlEHpPL2QxS43kJlbw2kbRJzyy5WVuf31H7++Un8zYIGfsfmURlZIwiKPs0uWBERPNEaftEaSvc3M9NJEsr+zYleI8YlPa8EJhKACXPUKIeBHLUGmzP1SV7ooR9o3JKVMZwRSZRGRmjCCmeKL7FQXzoUo5qAcoDp5ybI3hgAu6cqFwaaVPDh5bx4fZpm4YuP39MsF29VSYhU+9D4+25KzwtsOdaOKovI2OfIpOojIxRBIX4uGhmiwOZZPQpo6v7OU58OCEL17OFBBHRi6bttq55akzbFa9WanuJhNMrF8O2KVtp1JFZVMbQIpOojIxRBGXPHb+O6BkSVq9RXaXEctsObTCPEx+rruTNkfKYRE+U4s0ZzHyuJsJ5/uae8fuueBPVfbCU3DsqkzlUxhAjk6iMjFEEL9FbyHehBwIrezIJK8n66xb1quTBklG9K+F6VgN23pSgB2n5VSrJkLZekGwi7SkEUD1CplBXJYnSAgbxvL2MjP2NvE9URsYIQc/uXvzsW79FZVwFp170Zowb78+B3LBHta+KyrjwdF0+yy4x3JV68G5TR7WkHAisnHenbrapbJcwmLlhyg7p8r0SSJt0RqIpkrQ6j22DkHOiMoYamURlZIwQ/HrZU1i36nkAwNTpB+GE9830ZNxZfV9vFS3jwnqVZHDrM6ARJNkjktKeeJSJRMiUsJndnEjaoibZF0wPoCvSTB5TvLmkxHLhCCBAW53HcqIa2Tl99449OPDgA2T5jAwFOZyXkTFC8MzDG2t/P/vIRlPGWy2nJIer4Txh00cpOVsezBVCNnh5PoO5TUAz+zYpu4NL3qrE/DE7oV/MiSquwmTbbbhONGFbDka01IUUv/rRU/iXT9yJ+65fI8lnZKjIJCqAdevW4S/+4i/w3ve+Fx/5yEewfPnyoTYpYwyjZVz9dWUDj0ualOM59rsnqpkwVmI4Twp3SYns8VwgZpdCOPt1CTlKCkl0V8Hth/terKySRM0TZcuouVKrb34CAPD4T5+V5DMyVGQSFcCSJUtwyimn4Mc//jGuuOIKfOUrX8HTTz891GZljFFUxtcTQGQSJczymyM1gjdHDOf5S/3SPDBWeTIxEG33zvTb16vzFKLlkTaxvSbCqMUVj+rvrCx+YCRKSUrPyNiXyCQqgPb2dsydOxctLS14wxvegBkzZuCZZ54ZarMyxihaWuokiuWbuINKNeH8u1rdQToPzitSB3NBaDDDa82EIiVioGxLIOwvZdqlhA9Fz5dGlpvxRLkFxK4CWNiukZyojIx9gWGfWN7Z2YmbbroJ69atw7p169DR0YF58+bhoosuMmWvv/56rFy5Etu3b8dRRx2F888/H3Pnzk1q+4Mf/CDuuOMOXHjhhXjiiSewceNGvPnNb272K2VkpEFYiuTlRBkEKSVJmMoleKuaCR96A7C40k/zkA2e58vMK0ogPrTNhBV8+tYSgu3SPlHMbScSsohNwTZCuvqqqLTkZX0Zg4Nh74nq6OjAbbfdhj179mDOnDlB2QULFmDFihWYN28errrqKrzxjW/E4sWLcccddyS1fcopp2DFihU488wz8alPfQp/8id/gsMOOyxJV0ZG0ygOGIRQKeE8j9SwDTpTkpeVbQJkIhIX8khV7ULEBmjhPJ98aQTQsktJ9JbuMbRz+OT8MWklo0gmhXCeGtYMtW+1pyJ7rzIGE8PeEzVt2jTcfvvtqFQq2Lp1K03uvv/++7F69WosXLgQZ5xxBgDgxBNPRHt7O6699lqcfvrpGDeuf633JZdcgjVr7FUa5513Hi6++GJ0dHTgs5/9LC699FKcdtppeOmll/C3f/u3ePWrX41TTz3VrLtp0yZs3ry59rmtra2Zr54xxtDT3YvxEyL7EUTgLgW3CJJLrHh+i0KQ3M9WXpEj00RITE301kJ1grcqdUuFxGNflNBdf2FcJoX4cBsS7ru6ClPxRKkLCAT09VWHv/cgY8Rg2JOoirib2qpVqzBp0iScdtpppfKzzz4bV1xxBR577DEcf/zxAIBrrrkmqu+FF17ApEmTaqHAI444Am9/+9vxi1/8gpKoZcuW4cYbb5Tszcgo4rc/acOD3/4vvPGMo/D2jx2XrMclTZYnyvdWMRZV/igNrpYaNayk7Fek7iCukDspj0lsT9pzKvy5X49IrJSQmHjfPTlLJGFrCd0TZcuF2o/aEYCy2CIjQ8WwJ1EqNmzYgBkzZmD8+PJXmjVrVu36AIlScNRRR6G7uxt333033vWud+Gll17Cfffdhw996EO0zrnnnlsiWG1tbViyZEmD3yRjLOL+mx4DADz2kza87YI3mTkbynhhbbYZ09PMrt8+0bJkVI9IfNCXPUNSsnS4jlmm2i54vuwQnEZUFSJihhSrVW9iqnjR/PCoLwLYZMtrTyVkpTqNlYfAJg27d+zBXf/vEYyb0IK589/atFc4Y2xg1JCojo4OHHHEEV75lClTAADbtm1rSN9BBx2ExYsX4xvf+Ab+4R/+oeaVOuecc2id1tZWtLa2NmZ4RoaD7l09OPCg8M7KzEFrHfviIvVMNfMQX2kVnK07OphbNsmrxOJGKLuR68nZAtkSCKfsnUrwtA0Uuc9Oyo7l+sad8A4Jllc8CjLWMxp7rtjmsg9+53G88Nv+dIxHf7wBb/0fx0btysgYNSQK0EN/Kk4++WScfPLJg6ozIyOG7k5Coop9v5hY3lR+i0JYUvN8+vwz/ZTBVSIPRrm0nYDUntlc4pYDYnjUJGRxUmPudN5XBVoiJEP4DRsJa1YQ8UQJuWguWWe6+nqrGDc+3B5bHfrCmno+66anOkyZjAwXoya/burUqejo8B/87du3AwAOOeSQ/W1SRkYSaI5SAWy6MFiHBpty0rEocZu4XY2HxJrxonkDvqBHJZzSnlMq4TTtiutSVtlZZRJ5HdQNWuO2q3l01qac3kIKYV+0vAVChopRQ6JmzpyJtrY29PT0lMrXr18PADjmmGOGwqyMjIZBN7/kR9bWZVJ24R7UDSt1T1SsrKkjZKQz/RJCcM2QNmnFoGVDoi6BnJhtqroMaN7Exu+V+oxqCykEEjUuk6gMDaOGRM2ZMwe7du3CPffcUypfsWIFWltbcdxx6SueMjL2JxRPFHNFaQNU+HOtXPFQJKyoY7q8wVs6ysSXsfQnh9fUFYnSfRC8aKonKiUpHuphxgqpMYyy2hSeB83zpbWnbelhPzTFe9OSPVEZIkZETtQDDzyArq4udHZ2Auhf9Xb33XcDAGbPno2JEydi9uzZOOmkk7B06VJ0dnbiyCOPxF133YUHH3wQCxYsqO0RlZEx3FFlJ9MLzoCUFW48RBUXUzwG6eE8YTBnm19KYSW3IK5nQJebkqYc9KyEqBTPoWWXmFdO9Cv1wu2zyqkrC3WPo+CJ8nbxtxlZDudlpGBEkKilS5eivb299nnlypVYuXIlAODmm2/G9OnTAfQfGHzdddfhhhtuqB37smjRouRjXzIyhgJ0QC4WU09U+DNgDVBEl5JMnLCijtWT9lryksFJm4MWVjKUG8nZHnlIJK9qXnkKWWHKJCIsb/UQqWeUNRW2dR8HYwLi7Z3GPFEFspVJVIaKEUGibrnlFklu8uTJmD9/PubPn7+PLcrI2HdgJ9YXvS7uiqeajLLizEuoFr05ZngoXKe/zLIz3p6UnO2L7DVMICxS6Cnds+britfRVzcqMlZoMNF2gbTZcpaM87mZVZhCOM8jZEJOVEvOicoQMWpyojIyhiuq1Sp6unuD14uQdlRmnqiUcJ66kaGykaa6Ok9ZkcW8QDE9Rt3UEFVqmCzdA+PrtqAlllsVLbkU2zW7NC+TqShqk6lfuA9SYnn2RGWIyCQqI2Mfoq+3Dz/8u5/jX//sLrQ//oop486M+YHA8fakLQDUWX5SfovoETHk3DCLHKISZOz7oNwrNb4Wh+ZpE0NwKTukU/2D4z3qL3cKhEUFmqfNbE7aA0rJm3Lr5sTyDBWZRGVk7EO0rX4Jm5/ehj1dvbj9yl+YMn7iazOeKPfzIHoVhLCLsk0AE5Pyirxk8DTC1F+URmqSk6UV8irbIMgkbnGQSl4tOWl/LuE7qx5H5XeuWufhOG1kT1SGikyiMjL2Ibp31fctY7kYXuKrsjqPiQzS0v5+XW49QyZxdZ6Sq5XqgZH2VTLqquE1LRQpeHzk0J1V5jUo1jPKhGR9+by7OC/VbE9dnScQfTZJGTe+Phz27uE/ztqVz+I/Pv9LbHxyK5XJGDvIJCojYx+i2DEz+IcGk5lyYTRobsdo97M2QKUvjzcGNqu9lBVnqudGzA+SdCnkRLnvieE2ANomoKKuJO+Ruk+UsDJTIT5qYrlEAAmJmlA4amn3zj2mTO+eXqy6bg2ef3QTli2835TJGFvIJCojYx+iRSBR8maABTmeHOt+TiMiVt3knKhEb1FqSCw1P0gKVxJdKe2pO5anewBFXSlbS4ikRmkvddsFS5fyvLMtDsYfUPBEkRWyIQ9VxthEJlEZGfsQLeMEEuWE71g4r0ic5GTwxP2R+i84H5XQVhOeKM+LoIR51PYEr5MJwfvWr79xD5m8f5ZEJn2ZdE9UYnumXBp5de87SWPyGpR2kycTkGIelLKreUYGkElURsY+hbuztQUvJ4qE84rl8gaZSgiO6PJWyyWGXeRcIyFnSEsk9uspcrLnxmRIbj0hJOZrsSF5tTSiarbp3dO4DU39zinPlUhqmvFEFRdr0HeC5StmjFlkEpWRsS8hkahq8HMNVfqhXirkyihbCViVU/f8sQekNELm22SpTiNW+vYMlqq4J0phbarHTEqwV0Jppi6/okc8RMJpexPj9dTEcmVvMXWLA8kTpZxrmTGmkElURsY+REVwRbk7lCuzbuqJUsIbYk6UT7YEVSoRUTxR6kDtwPQ0JG7PoK4s1FalOZ+b2Jg0OUldIa/K95PvsUK8hZAf+eFTvKWMCBXfVfoOklypjLGLTKIyMvYhlCRkL7Fc8Aypq5WaOVJDOjBX8q6Ig7mUvCx4KJQwoGGCHnaMqiJbOCgEVyoymIElYxQNUj6XbVIqWRZIIvVEJXhLBU8UDanncF6Gg0yiMjL2IZS9gFRPVEkXG1MSEq8phxJCOFI4RS2T9qUybPBkRI+I4D6SPTzuPTXtCn+mFROJiJYAlaarmZWMiudLyY8DLE+UZUO4zgAqhdGQkaXeHM7LcJBJVEZGIl55Zjt+8H/uw33Xr6EySZ4oIVQnnxknhbFEr1ZqaEbeOXsfDuaCpyY1p8dQJRIDgdixMoVwCvUASAsNtP3H1N9C0CX8zqYuxQMo5BzSvdqyJyrDQSZRGRmJ+OlXHsHmtu14/KfP4sX/2mzK0DBEQEYZMJoL56mkzS0Q2pMHV4FYKYO5L6J7opITvVWvT0TG9GgZ9VJDYuJ4Ly008IpUspxIJtXE8pR9ooQDiOn5etkTleEgk6iMjERsfX5n7e8tz+0wZZJIFCNIVfvvYF2J+GgDojRQq3k+iXZJy/HVvXwUT5RVTUjq1nZD16qZWyp4NqV5+yxDNM9QXIbKpRB9Xw0AbfGD772MnwjAyFKv6Ina8tx23L7kQTz0vSck+YyRi/FDbUBGxmjAnq5es1xJRFW2CfDkRE9U6pEaqTuBq3kxkodCIiJpIaT+QsUmoU3xOydtg0D1x2X07+MUCB6lZG8fDBKqLA4QFlswXeoWB0W7+Ia3midqxRdWY+fmLrz42CuY+fYj8KojD5bqZYw8ZE9URsZggHTy7PiIUFVltZwegrMGKKdMPWTXak86GsaoJ3k70oiI3F7ks1pR5ULSakDRdsl7ZFSzc7ziXh/lsZJXCArsWCXUrlMpNW/PLafhPNETtXNzV/3vV7oCkhkjHZlEZWTsQyhnbenhvGpcRjguQ/NExXX3Fzqf1ZQRmXnERXz705iVspKyX867gVp7nkgTDFCQST5PT2KczXii4vddTSyXPFHunEHJiSKTH9cTpUw2WlqEHXczRiwyicrI2IfQPFHaYF5OLI/LAEg/6Ff1RAlhHnPAVVaciXk+SWf8mWapRCTRG5ZAHriuiE0MtntKsCvtmZE8jmqSugFtQ1gxnCfkRPmnC8Tf75ZxmUSNZmQSlZGxD9GX4okSti+QT7VXPAGqF0PKrzJsEkM/2lEmirdDG8yN0dwXMarF29d0qcRH2eNK2cKB6kpIlE/dzsAUTEw+l+1KyYkSvFUhuSJaxudhdjQj/7oZGfsQkicqIWdDT7S19IQ/h9QHbQIL6Rj1Ejd9FBwpUj6SVSSTIWlTUKVBq55fpm1yqhJHo8yrJ+iSv7NAvKVzFH3VgPbu+M87WZ2XsIWIQqIqOZw3qpFJVEbGPoS0xYE6YJRyomwZZc8fyXOjeqIUAmgmtwtiasgoWiB6V1TypTJMv6JgUxoZUomcRF6FA6ObOSInbZNTjdQ0s0+UdDalunFnxKaM0YNMojIyBgFyjpIgo4Tq5PBGYkK16gVKzHmWVo6lrhC0VQtkMtFjlkr29BxygQypN1kJ+yneI/FhkHZlFwigfuB23C6+Y3mRRJF30ClmR8iU6mQSNaqRSVRGxiCAd7oJJIqFElI8Uamr88Sds6UVbk2sHPOFBBFVt0Q4jXqDldRtPjPibyF5LzUi7MkoBElenWfokvL24jKmnHFP3egdIz7KJMUjbUJieSZRoxuZRGVkDAL4MRFOKEHK2SADVLVUYBuiDHbeEn1LjRgKEjZFlIcQ16zUs9gs3You9T5IK9XiupryRClEWPWQJdiV+p0B0RMlPKOWnOR5FVbnqWf1SZ6ozKFGNTKJysgw0Nfbh44Xd8peBravzGBtOaAeUSIt+VbCh8ou0rBs17w56YO54opSvVyJtnvkSyOcEkkTyYkfV4qLMCjfx6+jeaLSk+Ib984ChMiJxEfaQsS97QknEmSMLmQSlZFh4D+/+BC+95l78ci/PynJK8umARa6iJOa5ANZJa+C5j1KTUpOTcSWtwBIzYnyvGhGvcT2VFKT/FsI9dQwqkRqFM+QTJaFeoKMpV/xyNGNNBMmFzknKiOTqIwMB9VqFc/9ZhMA4OFbVRKleaJSPUPyzFzYTTvF88XkUg/jlQiFutJPEUlzYCXXsw8NVr60US01ZKSO3WISd1lGJXvx72zKKHuGGeVNTUAEXR7RyqvzxjwyicrIcJDiOFE355M2rJSSwW07JIKk5DHJZCiNkGkxS63aYOU2qQ1qXiBJlfKVk1cyqrfduwvKdxZsYoLKbVe26gCs98tqz/EeCVsc0DZdrxbZcypkY8bowpgnUT/84Q/xJ3/yJ3j3u9+Nb33rW6bMmjVr8K53vQs33XTTfrYuY0iQ0OnRU99TPFFKOEVMfLVGKGn5uDgCS54veQfxxmX65RoP6ZjtWQOwUU1hFHI+klsget+8EjVLXWJRvogfE9PusX3fGycrNJynkEnXdOY9SiBkiidqz+5es7xareKBf/kv/OSLq/MhxSMYY55EHXbYYbjoooswZ84c83pfXx++8pWv4E1vetN+tixjqKDkOXh1xHCeFF5LPF7FlJOOV2lmQEyrJ3k7Uj1kKgF077u46Wi0fdKeUiarcsOoiSbIR/4MEsG1xPTnw7I1LuOHBm3dHtlq4giZIrq2d5vlz/3qZaz5j6fx7CMv497/79GonozhifFDbcBQY4A83Xfffeb1ZcuW4fjjj8e2bdv2p1kZQ4kU7zsjNcrsVtlygORJVSqVqJxfL/x5QLdWFpfR04NEphipl+r5Un933xGVTkKlBGrbHZZUL/XwZKar+PzJJFT4zuxeOY+79H08MpToMQP891chUT3EE7Xp6fqY8vyjm6J6MoYnhgWJ6uzsxE033YR169Zh3bp16OjowLx583DRRReZstdffz1WrlyJ7du346ijjsL555+PuXPnDrpdHR0d+P73v49vfOMb+Md//MdB158xPJHkiRLDa6mzaUpOIoOKlKSuDHSszEsSsUTSPEqpx4jIhCJFt1GoklDJrtR7ZYoI9SyTxJCs9/zJ5Etoj4Y13Qc+rkuSEZLIrbpNHTMjELCM4Y9hEc7r6OjAbbfdhj179tCw2gAWLFiAFStWYN68ebjqqqvwxje+EYsXL8Ydd9wx6HZ985vfxIc//GEcfPDBg647YxhDTWgR6gzWFgfKHk1We4pNKqSwUmI+kt2e5jKQ8sPNBhJ0i+2ZzSkhxUQiYlZUnhmV7CXuEaatzjNE5Jwrxcvkvl++jDkJUvacMsL4XlhQ3UMuY0RiWHiipk2bhttvvx2VSgVbt27F8uXLTbn7778fq1evxsKFC3HGGWcAAE488US0t7fj2muvxemnn45x48YBAC655BKsWbPG1HPeeefh4osvDtq0du1aPPHEE/jMZz4jf49NmzZh8+bNtc9tbW1y3YzhA4mIuLNN2RMV1yXv/CwMPqmeKHlATPTKqB4QXyZeaBOmRAKT6MJKJ6qiF0i575Lt6TZI5DWRAKrESvEyKYstzDCgYJflTVLzpjKJGh0YFiTKzetgWLVqFSZNmoTTTjutVH722WfjiiuuwGOPPYbjjz8eAHDNNdc0ZdOvf/1rPP3003j/+98PANi1axdaWlrw3HPP4e/+7u/MOsuWLcONN97YVLsZQw8rBBfNPSKDptcRpx77klhmDr/JOSJxOXlgGMzkZfdzanhSJEN+DpaFRK+WpUkKa2rf2f/KIgEUyKuay5dKvC2k3D/VEyVNQAQS1cs8UZlDjQoMCxKlYsOGDZgxYwbGjy+bPWvWrNr1ARKloqenB729vejr60Nvby92796N8ePH45xzzimRta997WuYNm0aPvrRj1Jd5557Lk499dTa57a2NixZsqQhezKGHpanpjKuTKK8M/FoOK/x0EUzITFPTiIr2uiurYxLG8xVXaZ3RUmmN8sGyRMlEGPagEBETAiE0/w+0iaWquewcRnAuDfqsy1s/6CdWagRJvt3dd57ZSKTPVGjGiOKRHV0dOCII47wyqdMmQIASSvo/vmf/7nkPfqXf/kX/J//839w1llnYfLkybXyAw88EJMnT8bUqVOprtbWVrS2tjZsQ8bwguWObxkXllH3bZLyYpoIr6Ucxisfy6LM+lWvQuJu5GaeimZEvOLgVTNLJQ4lDvBKLpBNQuNQyJdpV6Krrald7r3Pwn0Xn1FrH01ldZ7Xf+ScqFGNEUWiAD30p+Kiiy4yVwG6uOyyywa13Yzhi6S8B5VESfs2WTLxev11Gydktm6jLDGvSM1d9sY6kzDFvT6yDZJHzi/SwlhWvXiZHOJJJLQeGWqCfEk56okE0M7nUryCcRtkoqoQfSEc2itsxDvIw1rGfsSwWJ2nYurUqejo6PDKt2/fDgA45JBD9rdJGaMQSt6Df1gp0SXM1t0Zr5z/lOjMkbwfao6Nx3zEekqScHIcUBRRCKCgS3fkiffZlZH2/tKM8H8u7blKZVGKLttTqTSn3c9kop/6rjr1lI14Ky2ZRY1UjCgSNXPmTLS1taGnp6dUvn79egDAMcccMxRmZYwg7N6xBz9a8HP8aOHP0d25x5TxvUzGMmYllAHLSxLvwdUOXdKVuLmnzl8Uj9wghnTMykGT9oooA7w2uirEcTD3ibKQumlmaghJ22hVrZfmiZLqWXxFOSsy0ROl3GMlnJdJ1MjFiCJRc+bMwa5du3DPPfeUylesWIHW1lYcd9xxQ2RZxkjBIz94Ei+v78DLT3bgF99Za8p4xMcK5zlFLJyneKz8uuIAnLhqK32zzTSPjxQuVLmXFB5S2VfEJqJKI71WvXhZqi51cYAn0sRGq5L3K9n21HqJnqjEfamU0KCyxUEmUSMXwyYn6oEHHkBXVxc6OzsB9K9su/vuuwEAs2fPxsSJEzF79mycdNJJWLp0KTo7O3HkkUfirrvuwoMPPogFCxbU9ojKyGDY8tyO2t8v/tcrpkzKChw2SCv5GN7gkJj/tLcw9NHUr3sQos2ZIENIVMYOf8VtSA5HWZDyg8TBXAjnJf8WzRC5lPYAj8Sn2q6nog2O903d1sH2TjkFyoacgieqZVwmUSMVw4ZELV26FO3t7bXPK1euxMqVKwEAN998M6ZPnw4AWLJkCa677jrccMMNtWNfFi1atE+OfckYfZgwuf7I79nVY8q4OQx9RmJocmK5NAvWCJNEahRvhBpKk2b5qncgLiN7pxTvmxDOS12lqOfYCGWJiVkKUe1Xn+hFU+6pSE60GyhUs0SU7yMTpniZ8l5yT1T979CCqT1dPXjht5sx/U2vxoTJB1C5jKHBsCFRt9xyiyQ3efJkzJ8/H/Pnz9/HFmWMRhRnfGzQ7N1T7mWlGSnNiVIGGqdjbmK1nC+j2GTImMqEMtkjkmZD8gpBZbWcTHyU0byJslh7ll3id1bqqWRI8wAK5NWsJtQTt8lI2WZELVPeL77ZZkEu4Ii674bf4qmfvYDpx70a/33Bf+OCGUOCEZUTlZHRLIq5ByzJ1iVR5vlY+3SLA61D1/buMc2K6tfDh5LyaJGpRszXkYiBaZbiRWtcT3+1NFdUeo6S/KWdWmI9S07xoAqq1O0gkicNEuEUiaOwUMTPg7TtVvoiAHjqZy8AAF58zE4/yBhaZBKVMaZQ7LiYm90jUYpbv4nNNhkBi9XTUnq0elIkyxzfBSJi2hU3QA3X+HlgaV/Q5lACqbFUK5uCiqoUkpZ83qKYTK/wSzUHy7crkbArDA3qJMXQlLoPm9g3jDugPvy6fU7GyEEmURljCqXZHwvnOe53e3WeU8bOzpO2OHA+mkdQGNUSk3bNQiXsKAySMn8RwiJ6TDEukhyWSzw7T97jSmJR8bLUfb2S7QSkjTtTF1JY0FbGKfVM5YYuhSDFVTH+Pm58JlGjAZlEZYwpFBM4WeftrqYZzB3LrUFZ8UTZ3jCrQbEH96olDjRKqGQQ6ym5P9o39gX1zRtjBZBJb3puWFwouT05P0hpTykSyZCwGtCE8HvJnihhUiR7qeUHNWM4I5OojDGFSuGJl0Nwg5hYnrpBpt3xp3mi0uspdqWxAD0MKBCd1BCm7A0TdJuC8aLkcwZTbZcLLRMUQmaUSbv9K+63RO+RSjgtC4QXJTXUnzEykUlUxphCSzEnqpltCZxC67BSWZfnSdFIgJbUbRQps+5EIiLnxRhiUj2rorRx5z70yKleDOG3T/VEqY+HtjIz7fkjb5NZGoP0nqhkz9MteswSJzzSZrZMvwPFS50xtMgkKmNMoTIuviLGI0TKjFf1RCmr3vbxPjaJ45o2aomDcupGjVJyu2WWSHRSPE9NrXDzbNd+56hRpLlUQiF5QuU8OoFkKM9D6m8qPmsakbN+r7iefjmBROVcqWGPTKIyxhRKxyuInZt0tIM425TCG+JqpeRjNyyxxBVM3oCo5rdIGelGexa8XaRT3XaGVOo9lsmJIGO2KTxXSq5WOocSj+4RnyNPJm6Y6jFL3spC0mXIDGJOVM+e3mD7GUOPTKIyxhSUM6pSVuCwwc8jV0Yn6MnIm21aZY0TQAt2Xy0MWurEWfJEWWWGDZHPjehyCZgWwlQHc0WXISM9f2leO7PeIHnoWJm0GlX5vcTcQWk1oOjV0vIlRRIlvIfexr+ZQw07ZBKVMabQopCo3sHsKJ3PgnfAJgGqdyquy4KUH64s55aUW4O5WVFRpRmhehoGqT2VhPojfJqhqZ4o/VYJz19irpFswz70RCnkHNDe5+SVuwZ6u50Gc47UsEMmURkZDvoSvDnN7FjutScmJUujz2DuPG4iPpBKHphUwmTpkpPIhULl+6h2JpJQmSAJkMirVSZ4b1RVvlCq284SUZix1pz07ihbWZCbIHmElRzHjCFFJlEZGQ6SlkSrieVq+ESQkVYPmUZZRY173yxdqSGd9BGYNeCKaIZJY5TiSZFtj3xWlVlfTyE+sldG8URZ7cXryc63VKedQrJVT5Q0wXI/k75Bee2FvihjaJFJVMaoQfvjr+A/Pv9LPHnf81RGOmLFy1GKd5TNbZfgfhYJjOLZUL1aiRtWppCO/qI0r0L6obpSkUYKPZu0BrUDbRM9eSKjUHP5BFWGbtWbqNRTnhmVBDf+DgKQ3ns7h61c2Ew4zyPsOZw37DB+qA3IyBgsLL/iQQDA849uwqxTjyjtTj6ANBe6L6Mkg/fXFQiZ11FaegTdKqQcJY3IqXviGA0G9fBq8YFTXsko3VOVfTkiaoJ9skdO8b7FC20SoDWXHNYcJCKneIqaaU/Kr5IOAWeeKF+Xu/Ale6KGP7InKmNUwj26pVYu7LuSEoKjHq6kEIQ6MxdkxINwk3ccSPZQOPfYrCe2lxAeYqTN9+QJNjSRg6Wokpb7J9uQ7kWTnm3ThjTPkDIhIQ2G9UCbIFhyzXmiyp/7ev2HTSVkGUOHTKIyRiX27O41y3sEEuUdGixufmlB85LE2zN1S7NU0QMjyEiDlhoqSfRi6CvhItVYnYT8KmUg5YLxG5FYTfMcikTV/inSbNeYY7yeKSKEr2UPruCls9rzvEeil9o+ozOsu4g9XT30Wsa+QyZRGaMSPYREKaelV50ZodXp+h2l7rI3pCKfSZEwGCnHUtgmGLr8WlJOT6rtFqTcH8VrQvUL7e1D50DquYmyDcqjlqhL9hwK7Q1mWM6DHC436iY87+o+UcpB5yxtYOVXf4V//tM7sXbls7ZAxj5DJlEZoxKMLBXDeUbKFABttil5UkQ5vz1DRsouVgwgRUp4LXETRtOqQQznScdsCEnJpn7FA6OGh6RNVNO9JIpMakK6Ht+N65dCVIJnTV6AoXiwxDw6ZUGEPMFyn1uBRFmeqO7OPXjq5y+i2lvFquvWmG1l7DtkEpUxKmF1SED5GIWW8fbjn5JYznNsFLn4aJRqg5qkrs6efV3xezWo55lJVgnNMQ6VFBvURMykeGXlmBDe1Y8FipMAOUfJtV3deTxBtwnZ9jQ7Fc/uYO5YruRE9Xb7HvY9XbbXPWP/IJOojFEJyzUOlD1ULeNsV5RyVIuWj6Q5QNR9ZfyKcd1SRbWywv8Sw3JNHYSrDFoyi3LF4kROT4AXykRCoW0RYZQpW1moj4dC7iQWJdqgvHNSGFD1OlnqG/eGqRMsy8vklvUYJMoqy9h/yCQqY1Siz80O34syiRI9UdJeS+KgnLjPS3I9dXCIFqQTitRdpAcxqiTnEKUkXjezpYK0yi5x00zReKOa9mOkksl9uTeWlsdkycTbAzQi59nJEstdT1RP/Jmxcj2VPM+MfYdMojJGJcwOCc4WBzQnSugoE1fgJIcbBN36yrh4Z526caKFxDx24sWwSEbaIGlB4sZKLprqUVLCa8qqN/X7JY63UsJ74jOjP6OJ913y9mk2ePehmXCe8LD5nij/h7DCgBn7D5lEZYxKsI6rtMWB7I1Id9lLq96UsSFxZq4ObJoHJj5qyR4Y7/fR6knjpnKPxX29ZGLgySR6okxd8cJErqznzClEzqyWxrJlx5onkzZBsDfBtVQ53qMmNqBVJmKSVzxzqCFFJlEZoxIsJ6q4CSfbc8Wrm3jIqL56SJiaC2WpA0+/oCBieuQEPUIYMDmHyCgjQ5ZZ6klJ5CSNOEoeMlWX1F6cLKjePonAJO7RpD6jqQnifvK+8DwSOa8vMCcIjkgT258oq/PcLVky9i8yicoYlWAu7mKnJM8QUz1RybNpsV7iAKyFPNIGKAu2Y0O4x6llypmCzGzBQRatw6oJtqeGXweXfFk2xO1KdUwln7ln6lfuVVw3K9MImfCbIrGfMSaHJP0zYz8hk6iMUQm2xUGJRJHeTVvG7BYYelQS4O1zJHoH4iKyDa42VZeSOK95KKz2/DLNE5XIVJHmZdKPERHMSCXeamFyXpHwfQaRnCuEU/JwGvWaek8Sn1vlAHElnGdvg5BZ1FAik6iMUQkWzit2jLonKqyHySiu/n4xwZNiqEqdYWv5VVo9LZRm6UqrKA2AqjfHbCDy2VKlfmmpecVbpXqdBPKqJLsT/ZJMatg78Rk1jyYSiH7quyOHFJXjYQQyrhwNk7F/kUlUxqgEzYkqhfPsuoMVzpNnt8l79zg2CAPw3sK4/kRvWFO5TUJ7hC3ERbzBT2vS5l7ufRcUqWUKUSX3LonYKwcsE2jvgPtZJWhp90pW79VLfHdEwm7mXwrk2D/H05DJOVFDivFDbcBQoru7G1/+8pexevVq7Ny5E0cffTQ+9alP4fjjjwcAbN26FZ/73Ofwq1/9Cq2trfjrv/5rnHzyyUNsdYYC2rEUF+exxPKEVTOpHp/+qm57aofufG5mQJRCHkaZsjGpRAwEggbyWwjeFT3kF2dkWig3rtmS03ZMZywK5W07JOJN9ETq0fYjhanc0irTJw3OR9V7JHnDxOfdgBeFE7aRyJ6o4Ycx7Ynq7e3F9OnT8fWvfx0//vGP8f73vx+XXXYZurq6AABXX301Xv3qV2PZsmX4i7/4CyxatAgdHR1DbHWGApkgpXqZBnHFXnLycqInSvJQJNppEwXBrlRvlahLDh+meKLEUVMa7JTBPMChwhUNIZO8as+MRmr8eppyQ045jFd5T0TCpLBedcKjrMpVdiw3E8uzJ2pIMaZJ1KRJkzBv3jwcfvjhaGlpwVlnnYW+vj4899xz6OzsxKpVq/Dxj38cEydOxDve8Q4ce+yxuO+++4ba7DGJnt29ePyuZ/DSE1skeZoTJe27InhXlNyLxITj5IN+5dl03OujkiEpvGHqEmxSQywR3bZQel2J1IguHu34IMF7ZFRWfkM7ryhqgl0o3Ac94V55RgdvgiA/f+7nJry/KcdLWScxZE/U0GJYhPM6Oztx0003Yd26dVi3bh06Ojowb948XHTRRabs9ddfj5UrV2L79u046qijcP7552Pu3LlN29HW1obdu3fjiCOOwHPPPYdJkybh8MMPr12fOXMmNmzY0HQ7GY3jVz96Cr/64VMAgI9+/XRMPvTAoLyyxUHt87iYTFwP0N/pVgrxlNTZrQVzwPBW9Ym6FTnRdjYAViqVmJDRQLw9MSYmiDThikokgMkJ6AIJsORUwhJrjpVq6UGil857ZgwZIYSuECQ13Kblp4mkUJp0xetZnqi8Om9oMSw8UR0dHbjtttuwZ88ezJkzJyi7YMECrFixAvPmzcNVV12FN77xjVi8eDHuuOOOpmzo6urClVdeiQsvvBCTJ0/Grl27cNBBB5VkDjroIOzataupdjLSMECgAOD532yKytMtDoQOVQr5KZ1nYj198BPIg1DNtEEM85hQBocEGWqX4gxTcoFUu0jdGKT7kLgdRLJd4o2XPC6JRMHUJaCZsJy00aVEyBL7BqNNZSsVM+RH+rqM/YNh4YmaNm0abr/9dlQqFWzduhXLly835e6//36sXr0aCxcuxBlnnAEAOPHEE9He3o5rr70Wp59+OsaN63crXHLJJVizZo2p57zzzsPFF19c+9zT04NFixZhxowZuOCCCwD0h/p27txZqrdz505MmjSJfo9NmzZh8+bNtc9tbW3Ct89oFL17/EM4izuRA6Fwnvs57kKXj1pQci+UM8gsKAOwVU3ZUsGqrJIa697AOZZQ0SWzPUtOqCa1Z5QL3g49nKK61iIyjEQleGpk8irYKQ3l5Fl3nxltb7YmCEwVqJCzM2l7gEYKVSI3aFscZBI1lBgWJKoSe5r3YtWqVZg0aRJOO+20UvnZZ5+NK664Ao899lhtZd0111wj6ezr68OVV16JlpYWfPazn63Z8prXvAa7du3Cxo0b8bu/+7sAgA0bNuA973kP1bVs2TLceOONUrsZ6egxTi3f45xuzo50SSFIqR4RNbHcd2CpU2wH5ncWB5WE/BaKanlIVL6PnMzMmit9Vkii9mW0sJw+cMfKNBnV9rT2bGWWrvgzI4fS+qpAS+GZsUxQdMlk3H1GtXqeXKIHyyqTzs4zdyyP/4gbn9yK3yxfj9fNORIz/uDwqHyGjmFBolRs2LABM2bMwPjxZbNnzZpVuz5AolR86UtfwubNm/HFL36xpHfy5Ml4xzvegX/6p3/CJZdcgoceegjr1q3D4sWLqa5zzz0Xp556au1zW1sblixZ0pA9GXH0dvueqF6XWJHeOmX7gvTdjMVZY6IXSAlRyYmviu3iLD8prtTEjD4lp0wmD2Zzii6VAXrKtXpKk5KHM+3ZtqomH7liFSvfeRBtV0OYqUQu9aQCt78yz84TSNSyhfcDAJ7+xUu4+DtnReUzdIwoEtXR0YEjjjjCK58yZQoAYNu2bQ3pa29vx/LlyzFhwgSce+65tfKrrroKJ5xwAj796U/jyiuvxDnnnIPW1lZcfvnlOPTQQ6m+1tZWtLa2NmRDRuPQ8gtI5ZTVeYlLqfXk7HjHnOr5khmZYLq84kzKNwnXaaTMk1F+LxZWUj0nUSPiuu32BdWMiOxv2xO+DwsLpqyIVb+fto2JWTNalLynm2WDsiGnFc7LOVFDihFFogA99Kdg2rRpuPfee+n1Qw89FF/84hcHrb2MwYE5Y+uNd0jVatXrLPsUXamJokLozipMDdfI+1mZuuIsKnmWbyKNcIqJN0nNmReE315eCCA8MwopbSYGlxI+pE1698GSESYkcdWmKuUdZHKKkJLr1sw7oS1ycT4bq46VcF7GvsOwWJ2nYurUqeZml9u3bwcAHHLIIfvbpIyhQHIILl7PqquE0izYhEkZJEVlSj2rWuIeV6mESRqUVdtTiYGanB3RHaqbAtFBpulSuJb3bKd/QWWK4P/MmidK8cooBJeYlXQ+plkvdZJi6DLzqxISy9VJWMbgYESRqJkzZ6KtrQ09PT2l8vXr1wMAjjnmmKEwK2M/I9U9b5+kLhAKdYNA7xgHsZ7iUUoMBakrdzwpdVBJzYNReKOaH5RAQun9VDxyQn7VYJ7F5nu+fBlVl19HLVOIt6BrX4/vKhlPeEZtPeLMInHripTNgb38UK/dTLIGEyOKRM2ZMwe7du3CPffcUypfsWIFWltbcdxxxw2RZRn7E7bbW/BEmccqWPqVQdIocwdXX0Qc4MX2UmegqR4KdZYveTvC7XPdiphAXpvwfCUng6eSO/d+Mm+ORMbNqlEZyRsrPQukzYSzKJvKoxOe0dTjiuTHIYEgKakM0X2jMocaVAybnKgHHngAXV1d6OzsBNC/su3uu+8GAMyePRsTJ07E7NmzcdJJJ2Hp0qXo7OzEkUceibvuugsPPvggFixYUNsjKmN0w+xslJyo1C0A5Nmm+9ka3oWOWT0gVZFJ9IZZSF5anzi42iQ01SMiDuaDZLuk21Kf6j1S63peNJV0KEWJhNNA8m+okppUUp1K5KTJmkCiErdBcNupYPByi8c6hg2JWrp0Kdrb22ufV65ciZUrVwIAbr75ZkyfPh0AsGTJElx33XW44YYbase+LFq0aFCOfckYGdA2yFTrWQ04M7vE877MrkzZwM+qp41ioogwMzc7fass0XOS6M1RBs5Ub5VtlyIjEpHE31Cto4UZBV3y7+x8FJ4Zyv+E5f7SpEGcIfjvqto3uDKq2ymuP9Xb7G+DEAvnBS9nNIhhQ6JuueUWSW7y5MmYP38+5s+fv48tyhiuUMJ5lpC9ikXoPG2XSLRE3i08rrqJDl2dFStGxG2wkB5CEr0WCSyK5RX5Idk4gRYfD414CyE4+gwlENNm8mOkSYNbyjbBTXgvmlr8kLihrtuA4mGi+oVwnseHLD2eFz7cTmZRg4sRlROVkQGQTkrZ98X0ThllXkcpzlKVzkroTPurxgcoJQfL7i/jnWhTISrB26HlSRlFyZuVql/Irdd4HVIkkVDJgUXdOYIuwab0BQSJhBPw302pPUNEDkUKhgmTGdUTpe1YHn+ZJC+8sw1C6v5aGRoyicoYebA8UUJOlLUnlNnpCqEFxSw190giP0oOlpwcm9aevBIpySNiiSQSH6UKTYqKfO6v3HiDYF6tuC51t3WFGEjeI5VQqOROkNFy5NImDdq2GOK7k+Cp3Cso2ODL+AtmDBk3sTyyy3k+a29wkUSiZs6ciV//+tfmtTVr1mDmzJlNGZWREULqKhZ51qjklgjbJeikQ5iBpg6uclnabNVWLwx2kfb1ihZ5SPNiqLqUATg19JlMSi27FBeZ7DUxW4ypkr0g/vMgCInha1NXwmpAU05kcql7s6UcQRULE2ZP1OAiiUQ9/fTT2L17t3mtq6sLbW1tTRmVkeGhsJhkUBPLFQ+PuteSNEAllqUSg9RBMnVQAXxPnjSAaLq1Mwvj9VK9i7JQIrESuAq3ySMZTLBYR5xYSM+McLfU+678zlY9UZdvuvbAJ7/jhl1JoTrLwx7Z4iDnRO1bJIfz2PEr69evr51ll5ExWCg+b5rbW5sNagOuIZN4HpwJdRCOVJPCRaI2qdNnHhGFegijUTI3SfUCWXLCb2/ed0u14tVStsVg38UL1QleC3nAJ21GdElkWdWvhCvVA7eTPVGKZyhezyxScjaV5zEazjPsy0iGvDrvpptuwk033VT7/Od//ufeMSu7du3Cr3/9a7zrXe8aPAszxgx279yDAw86wLxWqdT7D7PjStwnShrYhJmsXTEuottgtCcclJzs+VK8b+qAKAzUcshUUJZ6NIypS/KuaGXqbx/VRclr43bJoUizQeV5Fx4GQ5dGyNLdQMrzoJTJhEnZwkFo0NxupUFPVN6xfHAhk6jOzk68/PLLAPq9Alu3bvVCegceeCA+8pGPYPHixYNrZcaox69+9BRW3/wE3jj3tXjHn7zFu15pqQB7OwctJ8pvQ56lCm52rWNO7+SlfAnvcypjMtqzTFIdIkJz0UqNyEmGacYrREQmZClQngW1bjI/SpxsKOSVbi0RqWjKGHrU12swY++SDQLhVDzlhvJY4rg3wcwkalAhk6g///M/x5//+Z8D6D+j7tZbb8UJJ5ywzwzLGFtYffMTAIDH73rWJFGxF9876qAZT5Qn47c3qOfbmXIKq4krShwHNEOZIukGptmQSsiUAd8StNvTWFS1Wi2nPQg/hnTbxbPzUs81TPZeil4ZE5KHx5UR32fpfExDJHWiZN0I1xNl1RL6GcVjG/dEGY1nJCNps80NGzYMth0ZGTV4gw+Avp7wm6+ddxfv3AC/Q9V3JQ7rYRW1GaihKYVoMV2KJy81N0cZHBLz1SwzpFVpzCMiuDtUjxyqKC+ISB2UxZCYxHFT3xNJlzKJ0MhrssdR5WzS7ywoM98lqz1hkqd4iBOSz70NO/MWB4OKpnYs37hxI9ra2rBr1y7v2jvf+c5mVGeMYfTu6cP4CfwcRGWFir37b3wA7i+Md9bSUmOTMFkNxm1QkrVT97rpL4sV+GUihwpINiIREJTIq1slzUNiljFeAAzKCWVyWlFSwnAaYZJVKR4mo6ryjOoEUHhXxVB/qldH4n+DdBh61BNltL2rYze2v7wLvzNrKl00lmEjiUS9+OKLuOCCC2pn2xUx4EXo7e1t2riMsYme7t4gibJOKU/dJyp5lZ3SV4uDmrIjur1lQ6R9UiZ5FYTBlW7alzJApYb8kOgBGUwvWtC7UlhVmpjzEq1TvxIV1LxVUpFGkNTvpxBFhZyrj5Hk+FKIo9anKDcr9fmI7gvlLUApf+7p7sWtl65C1/Y9mPOJt+ANp73WayODI4lE/eVf/iUeeeQRfOELX8Dv/d7v4cADDxxsuzLGMHr3ND6l9pMnDRnhsOH+orhXK/Xg3eTz4IhUkkyid0X13khWKe0l5p1JuVQa/yOGabpSboT2eGhEJJXUKKSDN+CKiM+MMHFJDdlLHrrEiVKyJ0q0XZqQOIjtWO5OQp/+5Uvo2r4HALDqm2syiWoQSSTqnnvuwZe+9CV8/OMfH2x7MjI8QuRdT9yUTs27UQYjqUxeDWiUSUe6OJ+bOcdLkEklD9JBrpaEeN818iB6j9xqSmhQda4o30eyXbND86Ip7dkN+nwz/szoXjQm11h7rDA5h1L4waS+J7FPkXY1j4TzepxJau+eHDVqBkmbbVYqFbz2tZmtZuwbxM52sjob5Xyo5M02xeMlpEODE/OW5LCcp1usJ3TyGjnSZueaZyjNO6BAJSK2jMomvZrRBqU9yVQiomeahUxqgCxbIiJ5VR6/QQ1fxytKpMY8wDyO5FWECZMp97NLmmKLdjLCSCJRH/rQh7B8+fLBtiUjA4Cd81SCMhuz+qPUs7ZSPSKJ+0tZZcleBQOJY0oDyd8CCfWqiA0qXq1miJbihREGUrPR1HuaSl4lIhxXJBMf6cEiqhJItRzOU0OWLlJXsQl9j3Lf+4san0zFEst7ux1PVE/ewrwZyOG8hx9+uPb3hz/8Yfzpn/4p+vr68L73vQ+HHXaYJ3/iiScOjoUZYw7WKrrYdY94qZ2pQk7UXCAlR0QtTWE1ag5Roi6VHEmERSEYqbwq9fuJUIdkKX9GIstSc0leC8kDQ4mP8M5FC+wLyWf1yRMe91mWVGlpA6n3XdmrSmivr7fP+eyQKCecF0ufyAhDJlEnnXSSc35ZFV/96lfxta99rSSXV+dlNIvoSy0cLmxuZ6Ds3wJtENE28DNkmrAr0pwcykj1aum8o3FdzZ0zGNbdLyLM6C3Vqd4cU1cquXNJvabftqvx+yDyHhvikSMpXjTbJJF5C/UUDypRFi1MzcEy+7XI7+5vxpk9T4MJmUT90z/90760IyOjhnhOlOGJEs6RMz1cgzpICjKaKsmroLsoYvXSIOcVpY5F8plfQoNCPo1Zrnj3mjArKfdNDK9JBLoJr51iu+yJkkh13AuU/Aqo25EIoU5phaA4MUsilxGPcfY8DS5kEvWxj31sX9qRkVFDLJyn5DvJ+0RJg6Q4S1XCXeIMNCUXQt1s0VQlkoyoIqO8qZV+gowSNvN3W9eM1zxRzLsifCllcFWJgSYWrSPn2iX8zs0M3xJ3FcmJb5dAfCwbRI+ZRr4Gp17MyxvrXzMaQ1JieUbGvkTVcTdLHYmwT1RygrhlpFVN8UTJiT5xmeRjNpTRR8mJkqf9cbukAUTVL/72pqqU+y7rNp5bL1SneGBoA46c8MBL3irSXLTA+A1pHp1wT5XfxtRuySn3IY3879sUgXh7fo5U5DfIG5Q3haR9oi666CJ6raWlBYceeihOPvlkfOADH8CECROSjcsYm3DPekrZA0reIFPJMVDzmJTwU6InSkFz7YU/m6rY+XPeMRODRPbYABzV7gvpS+0F21l5CrlTvB9N+HO0XDThOfbFmoNgl3c7xcQ9yUOWPFPSPErKBETps7T3JKw3Odcrw0QSiVq5ciU6OjqwdetWjB8/Hocddhg2b96Mnp4eHHrooahWq1i6dCne8IY34O6778bhhx8+2HZnjGJU+8KrS8yUl2QCo5X5qhRi0ER73gx0kIgPLRSExMFcJVuNWsA9UQLpDVfRjWhEmeBJ879jmvcD8Im9tru7WGbWjb9zfi6Q+MwIRCTVs9wvF395pHdOPgUhKiLmw1n1wr+Da6N3IHHmVE0hKZx36623YsqUKfjud7+LXbt24cUXX8SuXbvwne98B1OmTMFPfvIT3HfffdiyZQsuu+yywbY5Y5QjeoCm0OHJK96UMquTETxRetKGZULCANgEcfSJiFBPdMEo46Fke4J3jtalvCdxoFag5MgpuqljSPiO0qDsfFY9gMLzzvOrBLmUeyXqSv1N7aOdDEFpx3KFfAmTm8ikwk2XyGgOSZ6oT3/60/jf//t/4yMf+UitbNy4cTjvvPPw0ksv4dOf/jTuu+8+fPazn8WXvvSlQTM2Y2wgfqCmX0fZJyrVE6XkslhQk0ftWXCCDaJuS1AbROLkyK4Wv8laUq1kln7fFV3mvYo/j1abNsdQCKcrQ1lUsP2GdAlICV/rZMV63l1dzbii4tVSw/OSM1HWFe4LLV0xEqwuQMnQkOSJ+uUvf4njjjvOvPaWt7wFjzzyCADg93//97Fp06Z06zLGJPyzn5zrQkep7KdCdaUkuRq6ZMKU6n1QjsHQTEia8XJvTrw9CWp70QLfCNm7opydpxqm/D7NeKs011DcJmV3bVWXzx7sqt7AHxdKfbbNuoMYgpNWBgv3XbbBvVexA4i9eF5GM0giUYcccghWrlxpXvvpT3+KQw45BACwa9cuTJkyJd26jDGJ6Dl4SkfSzCQ1tfNMODSYQVq9Jk2nLeVmg1EZiWhZdZUBKvVoGEOZ8pVpa4IuOTSoeCu9JPw4+G0XnhnNdKeO9juLtFTSNZh1lImSNOGRPV+Wrng9bSPN+NOdPVH7F0nhvI9+9KP4whe+gGq1ig996EM4/PDD8dJLL+Hmm2/Gl7/8ZcyfPx8A8NBDD+FNb3rToBqcMTLRs7sXq7/3BA6cfAB+/wOzSrvfu/B22BU6Em0Vi+aJ0tz4yqAfFWmKiGiDWANtRmVE8iARkagJNV2hZ8WE5M0ZPAIoOXxSB1tbmVZXIQaKx1bjrtLkhu6p5REBxSuTPmnwq6b9zkoYsF9OIW1CmZmLGWkrlh5hNJuhI4lEff7zn8eLL76Iz3/+8/iHf/iHWnm1WsUf//Ef43Of+xwA4G1vexv+8A//cHAszRjR+PWyp7Dmx08DAA6ZfhBmvW06lfUSy2P7nAD++K7s/kvKYrqprgSX/WCOh6E9eEpERPk+kky68fIxLFXU9rERHVFamKcJ7urrrgtVKoU6xbqh70d0sbLgvYroilSxC6kawVPj1hBtl2TMZ1QkVl69eHupkylLTA/1x/u++Go8Z1Kq9KcZMpJI1IQJE/Cd73wHf//3f4977rkHmzdvxmGHHYZ3vvOdpVypM844Y9AM3Rfo7u7Gl7/8ZaxevRo7d+7E0UcfjU996lM4/vjjazK33347vv3tb+OVV17B7/zO7+ALX/gCjjzyyCG0emTi8ZXP1f5u++VLJRIVC98pxENJ9k3tuCwk72MjGeWXSxsn0jYQ3VAvxXvEx8OEWTf1UBRMb4ZxhmyqsDoEoQGxpQIMDFLVogwjuFx3paXS/7urP3NSrC5eRLeyEIhB6hE59jYV7m8oEhizUJjwKCF1c6KktKdN8lKIsfesN9i/ZjSGJBI1gDe96U0jOlzX29uL6dOn4+tf/zp+53d+Bz/5yU9w2WWX4Xvf+x4mTpyIn/3sZ/j+97+Pz3/+85gxYwaef/75Wr5XRmMYN74+ivc6S2x7u8uHVUdJlRLaksN5hrGSLqOetIxZaF9EI96VIoeSjqNROlbVq9BMKLKv2k9MiJr+uo0/H0VllUqlXkewPTSQVSp1FSW7RG9OUfWALq+qSMiUOUNTK+oSBng1nKe011x4LW5Xyoa3/WYp7Rn1Er2QsZynmCc/k6jmMKaPfZk0aRLmzZuHww8/HC0tLTjrrLPQ19eH557r95rcdNNN+Mu//EscffTRqFQqeM1rXpMT5RPRMq7+qPXtcUmUc8yL89JHE82hdoq+XckrYiSClM6iBjXvZpC8TFqSq6HLHKc1FlUVZFLCNcWPpZSrFO+DQ8isRqjpPkOq62qpuEXUJlF52nMkEkDJBJmQJcqkZvgo7QknJQCQdp23GWC8XkqumJdjKh/s3Y9HfvAkbl/yIF55dntQbqxC9kSNGzcO999/P0455RS0tLQEkz0rlQp6enpkIzo7O3HTTTdh3bp1WLduHTo6OjBv3jzzeJnOzk5cf/31WLlyJbZv346jjjoK559/PubOnSu3x9DW1obdu3fjiCOOQG9vL9atW4ennnoKn/vc5zBu3DicddZZmDdvXuOJrhkYd0CdRPW6JGpPY54ou5NKkCHwc5tSWZQg0sSgkqpLyVGSklwpZ5MajNSpXShU0UiblCtT+FgphOAC/IgWVl1dlhkiwS2zO1NT4He25WphQfj30A49RWxkdZV7ZWqy2rREhMFfsMEqUsLzKuxd5+P3XSKOwu8V64YaWa3X0b4TD31vHQDgJ19YjT/+6ru58BiFTKIWLlyI17zmNbW/B5NIdHR04LbbbsOsWbMwZ84cLF++nMouWLAAjz/+OD75yU/ita99Le68804sXrwYfX19OPPMM5Nt6OrqwpVXXokLL7wQkydPxqZNm9Db24tf/vKXuPHGG7Fjxw585jOfwbRp03DWWWcltzNW0TKu/rz0OeE8b6PMQQjnmSeVW0XS0vq0sqb2WpIGDJEUCiVpoRmt3BwwBJM8XUU9hTymlMG1JFPhco0OpRWiS75XRbMqJIwpey+rNZtqlxK+n8zNlUdU3J8r9fgb+TWRYp+K7jhBA7R+xnxThZmSP4GM9J8NJJZvf3lX7e+dr3RRubEMmUQtWrSo9vfll18+qEZMmzYNt99+OyqVCrZu3UpJ1P3334/Vq1dj4cKFtaT1E088Ee3t7bj22mtx+umnY9y4cQCASy65BGvWrDH1nHfeebj44otrn3t6erBo0SLMmDEDF1xwAQDgwAMPBACcf/75mDJlCqZMmYJzzz0Xv/jFLyiJ2rRpEzZv3lz73NbW1uCdGMUIkG7fvdzY9f6yhM6G6Uo8viVlb6dmDnf1yYo2UktH4kgDRupc3aiqfF8n1FU1ErgBkVsaZKW/rnIfAp9L4TzpS9GCSguT0VD0RFnJ7kUZv25hRaf6XCnkNWbsAFJDYqbuuC6NaGkTM4n/Ja4eTsoHjfWnARJV7cmbSsXQVGL5YEH1aq1atQqTJk3CaaedVio/++yzccUVV+Cxxx6rray75pprJJ19fX248sor0dLSgs9+9rM1W6ZMmYLW1lb5OwDAsmXLcOONNzZUZ6wgNLbEPE2DdrxEaodnEabUMIg6IEreB02Z36cOzv3Tw0rx0UEK1ZWIT/2jxFWCIbhQvYhNjhDbSULdId30RInhPMmrqrKaKupbSxSK6RYOTbYnPaNuHTFkr+15ZtTz9FjtaTZ4pwsYFikNKN85xv1iOVJF9PY0MVEaI0hOLH/88cfxx3/8x5g+fTomTJiAhx9+GACwePFiupt5s9iwYQNmzJiB8ePL3G/WrFm1643iS1/6EjZv3ozLL7/c03vWWWfhu9/9Ljo7O7Fx40YsX74cb3vb26iuc889F9ddd13t/wsWLGjYntGK0Gw/urok8tnUKXuirA4vPiu2oC2J1maBSbtPpxI0s0goEQdEqb2AR8QSCU68GiavoT20rPvAlRVzoiSOG8rVqhgsRlZcFwvbRJ6/ol1FEZbz1V/JVyTs4m8bYBQpm0Sq6lMmXSphUuRUr7hXLV4v1hc2sjrPTb3I8JHkifrVr36FOXPmYMqUKTjttNNwyy231K7t2LED3/jGN/Dudw9+AlpHRweOOOIIr3xgxdy2bdsa0tfe3o7ly5djwoQJOPfcc2vlV111FU444QTMmzcPV199NT74wQ9i8uTJeN/73of3vOc9VF9ra2vD3qsxg+KYFyNJMaKhdCRqTpSiS8lVsOopHTOD0IFr3qo0XdrkXfsyyZs+unYUCUYLJ1GaWXWhsJc0WNWrw1b6ca9dwMSKLSMfeDyQE1WYKnuPAhsjixzK+X5V64LRfr+auIx5IYWAUrF4X5B+CoLWXuqO5dJKyVgo1L3cSDgvb38QRRKJ+tu//Vv83u/9Hu644w5MmDABN998c+3aKaecgltvvXXQDHQxmAnt06ZNw7333kuvH3DAAbj00ktx6aWXDlqbYxUlT1QsLyhCiKTwkLj6JSXngOlSWFTKIMbsUney1jbSVFiUW4cUKzllbpmQd6Nu4WCL8HtVJmTp37tfWWOr8xRV+jBmS4Z2q5e4XTFc2dLgzqQi8U7zuFh6tPc3CakTIKss0faU7V28z5ED3jMaQxKJ+tnPfoZvf/vbmDx5Mnp7y8vTDz/8cLS3tw+KcS6mTp2Kjo4Or3z79v79K/JGmMMYxcCx54kKv/T+MQW+eo0MCR1sKmEybTDqeSGJxgdXKqTOzBP3xnIbbHRMKebTSMQu0HxpKwFhoAk1EPREmURYeGhUhAY8MmGUdz9XhARiWjZp8O57CKmTFPX9VU448Amn8SwMYoK4ZGfCZCpKsrK3qSkk5URVq1VMmDDBvLZly5bayrbBxsyZM9HW1ubtQbV+/XoAwDHHHLNP2s1oHhXwXIrYsS6KJ0o6t07ppHwRiTCZZYInSotjNeUY0uoKYQPl+9lye/8NhODk/Kq9aNQhHbwFwfwqQTfzalVtGRU1s9RQFxk86d5VAV3lJl1P1IBM/Ev577rSXjpkNcKN0FbbWrrjuqSwnCGXtKClQU9/RmNIIlG/93u/hx/84AfmtRUrVuAP/uAPmjKKYc6cOdi1axfuuecer83W1tbSuX0ZwwulvIzoZpqR68I7b604kciXPLOMswwl70E/U034PjQ0KHofYnYljlADuloCCc7SVg/FsFLIIyLc97Iuu2mKgCOKerXEe2d5fVQOZWjzbFLDedymgC7rkfHeJ5EtK55ehVCYNsR5hy0ktqe89yZpi+saHE9U+XNodd5gkdvRjKRw3vz58/HRj34UBx10UG1fpWeeeQY//elP8a1vfQvf//73G9b5wAMPoKurC52dnQD691i6++67AQCzZ8/GxIkTMXv2bJx00klYunQpOjs7ceSRR+Kuu+7Cgw8+iAULFtT2iMoYhgjETPoaTCyXjl8QOzxPJDUMaIkp5CthcGV1pfPHRF1mPZccqV6Fgc8NbqHktlmqEjiqRSOJBVWBZ1MZgEsoEbKC7SkhOEbu9Ju3V09oHyxiFxlYQ/lVjd73xuWc30ZmMEIDirdZmcioZYkEUOoHIgtxGgrnZRYVRRKJ+shHPoKnnnoKl19+Of7xH/8RAPDBD34Q48ePx+LFi/G+972vYZ1Lly4t5VKtXLmytlXCzTffjOnTpwMAlixZguuuuw433HBD7diXRYsWDcqxLxn7DsG+t+FwntKi2Ll5BE7RRAqF/AXZE5AUXtNUKbqaIm1ErhJwY0gJ9kXiEwoNKkYVUfSSKr9PQBUlGaxOYKCub3GgPf/MI9H0SsaiTOnrSbMS+rmcIxe3S3qOTROE91AhberkwyRDQjWFhAoe9qgnKsGzn8GRvNnmZZddhgsvvBArVqzAxo0b0draij/8wz/EjBkzkvQVt0kIYfLkyZg/fz7mz5+f1E7G0CC4QiiWWC7lRIU/99ezygSyom7qFy0wbGD7RHkdYVyZuvu5NFNW2KQ4mA/MukubWio3yylmYaWUAZh6ohSzAvedhRn5AgI+gg3cL5Uss3LiHAvrojaF3uO4SaXvUtxJXTFMeif8IolsSaSNvatVBHe9N8qSt2CRJoJiv7AXOZzXHJJI1Mknn4wzzzwTZ5xxBi644IJ9lkieMToR7VAaXL1n6lRd/UrHLE95G9cl91GJA0F/seIxcD420R7ztjWcx4SA7SGvluxO9FX5VRu7dxXGWIpqArsElNpn5I4N5sy+EOFk5K5EXosksUFdkfteo1Ap5E58eczblXIKQsiOmGNUeYySPWaRtiJkN+8T1RySEsunT5+Or3/96zjjjDPwqle9CmeeeSauuuoqPPTQQ4NtX8YoQTmxvHwtRoBiJGtvpaiM4omSOZRE5Ix6kY3wmB3SUS22KrEjFpQpRDVgRyicpxEybTC3b1XoJgRyoqpGe8RUgG+9UOZGodi2YZX6O7uq9hrQsKetv7JtU4O6gvtzhbzTqe+qIWd6b+yqQdAcQK/9uE1qrp1Ur8ED2xvJOc0kKo4kErVs2TJs3rwZ9913H/72b/8W3d3d+Pu//3uccsopaG1txYc//OHBtjNjhKORfBj3s5t4rqy8EziAXSYniloNOJ/NDkiYAVsNKESOblgZ0W01V/Q+tNirxBpeDTioHh+NiCjqg6vzBuo1epyLK1eyXbSrdt/5s8B2SC/Klc8GTGRkAyiFZBXi7X72nysLkjdRDV8rMtJqXtJewokKkh6jSY1cRm5AJlGDiuSz88aNG4e3v/3tWLhwIe655x6sWrUKZ555Jl555ZV9umN5xvDGzi1d6N7V418ojkExd3I0M1KYxUmMyS9Tq0mhQaWa2EcppI07c4QZfMgjwqJKpD3W8QfzaYTxsOTFCB0abLpzeHvBjTv3FrQE9keyCKffni3j/TaS7QUZidw1vrWE4kVTvKUh8lD2JjZO7kQOpU1AFKTPUbR+xqymsKiwSPRz4EDiUL5URj+SE8vb29tx55134o477sBdd92FF198Ea997Wvx8Y9/HGecccZg2pgxQtD++Cu4fckvMGHyeHzkmndhwuQDClcDs87Y6jxlwBVW8Cll8rEvhgnRMKRRsbl9ogSjQuUBO4rfpTKQACwmMrHmGj0z2FdWGs4LdfkAXKlU+q+rYwHTpXirHLkqYSLBA4Ed2y2TijItLRX07k3OVu67+BNSocbz2gLvZaOn7ajEp1qtKVfrJPcNhqDkubZkEk8S8D3EkX7I+Rg6Sy8fCRNHEok6/vjj8dhjj+FVr3oVTjvtNCxYsABz587F6173usG2L2ME4Y6lD6PaV8XuHXvw6I+fxh/8UfF54J1Z7EBMKS9AmQ5KPaUlYnV4vlzSQEDruKRGkBFJjRYqKfxtr7QXiU9RT+P7FbFyNb1qIHnZ9044JNFWVedQAQZYbo9tcaASgIKuFqPQVRXc/LK6V48aPyxcJmJK+BABEUbI/HrCBEQJX4vPaPLmuVa5OcPSdPn1nI8JWxxE5QORgaqbS5HhIYlE/fa3v8WkSZPwR3/0R3jve9+L008/PZ9bl4HdO/bU/u7u3FO61tdTfzFbxpU7z+g+UNJsLN6RDKYnyir0zBb6n2Y65mRPlMKhXG8HUW23Z/9gUu5RoJiSBxeF54l50UqfQhzDsj3EQ4RtoiqBfakcbaQ9QkQEL1qM1Aw8/6VNTkvErkF3YuPckdZL4R30lVDfHUVG6EOSPd4pqwgjk8745/rfmUPFkUSiVq9ejTvvvBN33nknPvrRj6KnpwcnnXQSzjzzTJx55pl429velncPH4OojKvUTgh3Twrv662/jXESFek4GvWkBMqSdxCXPFGJnalRtZmZshJuCLqZKvZgzjwBdJxu7oi6spdG9QyxpHimi92GQBiLhfOoTCi0XSJIRMb4aUJNqqvgilsOpOQkNcpDymHNFLIgGEZzeuLtqe+qdi5e5HNAf8P1VLY5IJ6YWF6tVrFx3VYcesTBOPDgA6jcaEdSYvmJJ56ISy+9FP/5n/+JLVu24D/+4z/wzne+E8uXL8e73vUuvPrVrx5sOzNGAIrkyA3RFT+3jCs/dtEddBUOJeUlGBWVHcuFVXZWZZtoJXZ4Eu/RSI00QBb+rm+c3WDv7CCUT1P2iBBDirpCB+E2OJqXPEOkMt3/qd+AgpxNDFzPnnnBUG2JlA0LVvVkQrpprhaTCcVRa/q5TPB3Nl+5wDtObqk4r0gmPpYum/8lEqSUY18ifWFsi5m+4nMbIFG/XfE0brv8Afzgsp+N6QT05NV5A2hvb8fTTz+NtrY2PPvss6hWq9i5c+dg2JYxwlAiUY4nquiZqrieqIiHI2W3X6WzMXVb5MtSFTfBLhH7mkbzHEhzZrn5fQL7V/EVZ6Idez8HQ09FhEiG0F55JVy8usIygisLi5qoqviAXxKrBMyipM3WFdxNm+aGVc2/gxt3NvpbFe0KiNGyEiFrbGPSqG74xIdqUliUsMGldgpCvJ7fn0bkEz1RD/zL4wCAHZt2YdP6Dio32pEUzrv11ltr4bz169ejWq3i9a9/PT784Q9j7ty5OP300wfbzowRgFJn3eu+yUVB51JkFqN01sqeLtqqGcuAtDIl5CclxwIia1OnypYqTibJEW50gKKDaYirFO4VW3HGyFHQUcPOn4OtSw4ZlZUVG4zWDeaGDcgU/hvcsDLokRsggPH2gmBkJeHd8VZ9Ul3SLKVgmC2nhrjNsJ83sRAJmfJ+ifX85zZeL7q3U+QZz/tENYYkEvWhD30I06dPx9y5c7FgwQKcccYZOPLIIwfbtowRBjlPxRlNY4mOWjjP+SzuWK7kYqSW2TNLbXYrjSlK+NDU1egAVRGEOOo7ZxfL3OZtbwcNK6m7fgvbBAR11WQKIoHbQENUhGi5MMUSx7GBauq2BIrtIdLm5VdFSFVopV+jIfsS8RbieVoaU9wmwHjvlPdLPjsvLhP7Ms3sYK6SqMYPBB89SCJRa9aswXHHHTfYtmSMYpReTLdziu4TJcwaJY+BRXwEPWqZIqPObiXPWkAitFy9we/DBnM1Kb6upzHi098GqRJgNaWPQqJ32SyBRQW9diQkxtpjbLlSCa9AtMxyUTVkAs9VaKsHsz1PqFCwd1VkMMQX4q6Nvl80mmcrkrw3ynsDbWIkkbYGJmthYhy+ebGupXgv3LQMBsW7OlqR5OjNBCqjYQRmh94+UbGZleSVEQiTUaZ4j5icQjLU2a0UVgrltwhhpZBdiudEz+/aqyawUzf1UJAGw+G84n0QDFTyigK7mpdAQ4P2b0MJYIFDBXNelEP9gvsxFcVsXcqKQbcO9aIJ7blt1soCy+0bfd7Fl8Kpok0apA0qhb4IgHROaMNbGEQ9UfwaQ/BMxVGOphPLMzJqEFcBNbLZmyVv6lD6RIGImB2gfJhx3AZ9dqvJsfbZeWkpOzjznKjC38FwV9WTCQ6awvK80GI5kwAG2gsuEjNCkanEwGwwJEJsL5PJxnKwgj8/81gR0qYcf+PfKkb0BVdNyANIzvSTc3oERxQPDQovtRDqNz3lUnthNVHzApNaecfyMcwkxvBXz9ifKHVm0bPz3OuGvsDAYuo0K2kdoNCfm4VSYrk6u5VCkczbEahD2qOeE4LQAdN1GS5SvFfSxpahAdgQCw7SgcTyuiLaBJVj4TxJl7J1gafKJst6GJWIlch5wHvEyKTQnifW8CSlMU+IFAJz+xRxxqP1V4IMWD/m1osQtJjnyRUvhPByYnkcmURl7BeUZjcRwiPN7GJ5VIYNUjhP2dsJGqmRwoCU1MQ7ryB5YB4KMUekPHDa7Vkr+MK6AuG8ApjtZU9bQojKMsmVIffHXQwhtVe677ZMmAgbelyw3c8JSQzuVyTdK7vcLvDLSroaXZ0X0M1+Qj5piL+HXl1x4Ub4BxvQHSdHtK772bUrsvddLBE+aXXeGN7ZPJOojP2C0osZnUm5dQ190dlXvA6T8+tZhUKZMCNlg5o0poS8OSScJ3fU1sgZ8jwIpCbl6BRmu57gXLbB1sUTquv5XMUyrkzaKDSUpF6UYdszFG0XPDCVgFuLEWHJIxf6DVsUBli0I/zZKpQImeY8SkmRqiNwbEq9TOifLDpm5XbGtoQJhD33FoQ+Bvtq2uYY9lhlEpWxX1B6yWKhNyXEFp19aYQpur2CaQ8jP24nL3QsbAan9PIBQiatcIvpH9Al1Akd4VFSRBOOGUMqiJSYD2+uUZIRJgYWAwy0R1a4Kbtru5UoDWG5QLaaBkKRcXdOOCneJ2RhD6fIyOzmKKkuh1E1FtXwUUhclQRTVaI3p+mzRwPkVGVRecfyjIx9jPKKD35Nud4vEyEsoidKOy7G1yV5mSS7bSiJ88p39srVcF6RkNXOnxPb83TX/CsNcyjKx2S3FpGhoUhbV3CXgAYhe3wkZ06jxMepTomIrVZdpVgh3kuH4VJdkmeDPjSw/0agXJhz0e8rTMSUHCzVExV97xpdjRf4oordtpKxg0yiMvYJghu4RTpMaXWe27kIhEUKwVlQ+7EEXU2tHpJn+YE6rLmiHBnMSyIsN6coU0HARVGUEwZEeak9W51XkAltFFjnfxKop8ayyWpO+I4lEUZEiJ5gLlqDm44GUbvtfNLQ8LJ49Tcs3XbmPYr3MSqL0l4pQUr0RMVzSl35sCkheXXi1JdzojIy9i1C4Tx/nyi3sqFPmSFJsz/XTqstbYbo64rPSCm8vkv4fiw3J1BHab+267cgE20zzqE4YSHthT0iRKZBUhNMPhe8K6UaQe5QrbVHQ5EKWS42F1oVKYQGmccntmN5zDC2LYFlp9WeEs6TPVFFkGeGPmfCxEjxtJlzPMEzHu0LY972IItyLtFjqrInKiNjn6KR1XnRlx6IzqbMeoInSspjYpC8SlrP7BUrqwbJyFm8D+oOzkXUBrvQAKyQmkqAH1GCVLBdIYmuXdQjZxMf6oFpcjUgC6+pM316lIkQ+izJBSco8d8wvNmmwWoSnxlzf64QyG8oEx/zcYhM7mrljpzQniliJpGbDQY/R9MjGuFQkQlvrHwsIJOojP2CxsJ5gj6JRcVFvMJ97YmKdHBMm5kv4X5mHooAqREMAZ2ai7pqA2KgBebNKcsU21PZQxxhJ9OAK0prLuhdqQkVZdz2CjYxYlAik3HSVmwyeKfIqkhKEoP3geRE0fbKqLUZyMHix+1YinhdV47aTllU5LPZflxGrRvKaTLtaSBHSvGghcrHAjKJytgvKIfznGuxl1rYRVxwMpk9l9+/xMkYhdQzqrNbwQaV0xT/LvwOYe9KUY40ZzgebGUFodpozo0fzAOB6/xPbI80qKfvKN4cccWgxlcKQmSiEtouwRGLNqiSyYia/vZC96q/oEVZ9Qn+zIiOqLKu2kKKgFBRV6Q/M8sUGRByEvAUWWXR/jREsgIESykfC8gkKmO/ILSBm++dCXcCgO+ZUfZmsT1Rkc+knjLzanSX8bAuTX8NgkdEJSI0OdsK30RA86tKQoU2Sg0aNhkwPSeh3zm4+WXMKMcutuWAfKsK5FVIsKJ5TAUUvVohck63xRBtL+lusQrd9lhlEYoumsPjfCzd0wESFe+HzHKhn5H6IoJYzlc0nOdN5Pjn7ImKI5OojIbx3K9fxt1f/zU2Pd0h12lsx3KnskR+UkmNQNiaIDq+EK8THFQU5SS8wdtTiUi86dDSd9PyhPtQ4j2ho1oML5rXPCMizHsU2PVbyvOhpI09+04CGdEltYdA5MwKY7kK6HMVIki2N0d9/gZ0BZ8rg/i4VtG3RiF36isYmlyQMnUrFZOcRA4Ijnq9Ip6o0HNEyVImURkZOlZ8YTWevO8F/PCyn8t1GgnnSZ2S+1npgBrjIcF6ipzmPSp8FgcMBjZA8cGc2OErKxQTj0iQABZkaHpVnACywVwJ1alE2L0P9QRnMRdI8K4Ew2aFe8V3eiA3nranhVElhPLHlN+w9LwHdBWfGaOqVyAQTlJz72dh1pD2CLEGDZl4P9dfVpyQxtU07OmvBmRzYrmHTKIy9guCm21GSJPZ7wt7SXk2mD2OJxTVw+SkzS9VD4xkA7/EBp/iPWhRN05sMEndH+vqI2KFTPOpV8F2iESy1BU5RsgEPaHnl245UGyPquJQCFlJvOrI2WHU0mchvNvoVhYh0HBlucGC+jhZdnWp3iOLQ8nhPGVfu2iB1s95dQUW5XtOw7YEw3mMlI7hfaLGD7UBQ43LL78cjzzyCHbv3o1p06bhE5/4BN7+9reju7sbX/7yl7F69Wrs3LkTRx99ND71qU/h+OOPH2qTRwRCG2hGPU/RY2DETknIiZJ2Blf3e0qZjHnkoWrqb3S/mHJ4w/YeqaO5yx8sp0bIUzPwMeT4avTehZfHlyRtmxh5ZZ4h1S5mR8J9p7lahKxItzBIHkhyNiNHIQ8gkSkTzoBZNQ+gbWvIrioV8vVbkPLoAsWal9p6n4V+zilTPFF++C7c51UDDdCcqGY9nCMYY94T9bGPfQzf//73sWLFClx66aX4v//3/6KjowO9vb2YPn06vv71r+PHP/4x3v/+9+Oyyy5DV1fXUJs8IlDyPEXCavFwntVARIdpVGNEhDTF21M6ysCsNbyho2GEyjxKHMr2iHhVyGDHRnPJi8YXiXlyRhMBGX6vlJWFIPk0pc8hj4iSM8RIm9teIXyoRJVk4kPuu7TZphSmg3PfyQo3kXg3IhOSS4riNhrNkzoR4X22fhtLLpAaUatXUhubKHL7vVCgkFj+8lNbccfVD2PDL9pN2dGGMU+ijjnmGBxwwAEAgHHjxmHPnj3YtGkTJk2ahHnz5uHwww9HS0sLzjrrLPT19eG5554bYotHBoKr8RrMgZJyi5R+S+lQZRZlFQk2BZpTN3RUlCmn2pfDZgEiIg3U2uo1epZdSRXzopHv5zVnDPqBgUPJ54qWDUA4/ia8MdWATKBNRsiIB6E/v4pkS5cNK1QvvL+kvVBOFAe770Ss9FgFyCu978SmgO0snMeSp1MmYlpCuNmc8zMrE7VwOyH72SKKUK7Uj/7+frT98iXcdc0jlvmjDsMinNfZ2YmbbroJ69atw7p169DR0YF58+bhoosuMmWvv/56rFy5Etu3b8dRRx2F888/H3Pnzk1u/4orrsC9996L7u5uzJ49GzNnzvRk2trasHv3bhxxxBHJ7YwGqG7bvoJc7FiX+D4m8V4puVNKIWykrMExxGswnCNs2RBohww+fDbtfiyOnIF2BkRCg11JD1u1ZQ+IjLSJUSVJqCLExGpJ8VVfpmzX4OVEScnzUs6Q6M0RVimG3WhGk6F7xULOsGWCuggjozk8QaJPQsC2qqT33qyS0J50QHGDW8qU6hNPVNIEdZRiWJCojo4O3HbbbZg1axbmzJmD5cuXU9kFCxbg8ccfxyc/+Um89rWvxZ133onFixejr68PZ555ZlL7CxcuRE9PDx5++GG0tbV5Luuuri5ceeWVuPDCCzF58uSkNkYNxJclvC9UuLfQPFHhz4peW49IjiSbFKPqf4bCeXbiJr9PyiG+0sG7ji4+tjJvVYE8oBCiCgxiUggnlOxe0kVEigWB3JwSyYXJocoQVok1fdCvY1NMV1GfHF6jMoH2Bj4XPF8pHs5ivYT0scB9L35/YldwgYTdtr9nXdqETvd8RTrhaFN6/0v344v16QVdDR80PcIwLEjUtGnTcPvtt6NSqWDr1q2URN1///1YvXo1Fi5ciDPOOAMAcOKJJ6K9vR3XXnstTj/9dIwbNw4AcMkll2DNmjWmnvPOOw8XX3xxqWz8+PE45ZRTcOutt+I1r3kN3va2twEAenp6sGjRIsyYMQMXXHBB8Hts2rQJmzdvrn1ua2vTbsAIgrxnUuCYl6hOidjEWZS0ys+rRIqdziBVlzcLLPxdCQ3mjYZKmFeBeL5CoOEu6hoif6dkZ6eINEwMQqHBmpA7ChNdcZvKIT/3GSX3lKhiCRleCI6EUamnxi7Wf8NGQQiZmhPFkvDdcxSrvcSTMiBTVCVNimCfa+kiYbJGv27x+1mbDLufo54oLu/xugFPlNsGuTfVvioq4zKJ2udQmeqqVaswadIknHbaaaXys88+G1dccQUee+yx2uq5a665JsmWvr4+PP/887W/r7zySrS0tOCzn/1s1M5ly5bhxhtvTGp3xEDjUM6+UOFZS9SDk8ahIu4HW4Z2lFXEY0heQqelJvDdgjPzusjA36F7wLxH5ea0nCg+QNm6KEIeirJYwQy7Q6d5U+5nNiAW2xNyosoeH94eyzMrc0nBA+jczyr5ERWPYyiMCmJ7UZBvJmo/70EnWtGs0AamA3+Edt6n5NV+tiotFaA38vKUNujSWE1sB3CrObNPcz8LOVjSBNO7rHSezKiqaZti62jFsCBRKjZs2IAZM2Zg/Piy2bNmzapdb2QLgs2bN+PRRx/Ff/tv/w0HHHAA7r33XjzyyCP45Cc/CQD40pe+hM2bN+OLX/yi16aFc889F6eeemrtc1tbG5YsWSLbMxIQ9ESRTjx6VpPXhtJm4x2Xku8kcyhLRugoQ8QuuB9TtS5TrQ0EXDf3HhXKAzkw6iq+upBd17sFyiyfEoPCByV/x7GLy4iur0ZDYswuNa1ISfxSctFE9xGVUslyiYiUizwZVxf7esGtLBi5KwoVlZlmlD9XCo+oOsGS+rd4fyUzDvY+EzWx/jck79pZy2+NtVErH/0sakSRqI6ODjOxe8qUKQCAbdu2Nazz+9//Pr7whS+gUqngNa95DS6//HIce+yxaG9vx/LlyzFhwgSce+65NfmrrroKJ5xwgqmrtbUVra2tDdswkmB1LJZ3ofyehzuQ6L5QSn+jsBrlfaYsyqFRqboCJoWSs2s5IsXZdAhC6LHoEQk4KGi5loNVGOhE9qBs7hlMBq/acqWQLAlr0nGsUs+J8sAG6pIMIaWUPDjKSqriRMR9fniIqvBBWlnIZUpEhIQPqYfTbafGxwLe0iLYYoRSc8pzBTCizz1RzufE/ioUVmNyKakOcU9UoR8nHqfUjUhHI0YUiQL00J+Cww47DF/96lfNa9OmTcO99947aG2NGhjvn5W0WnqpIjF4r4nY6hFiR0TE9lYphxRD6LiMuiavCxQEO/nCABWzo18XuVDyfAUMKw2I8YGMmk4IRggCxwiGgkr3ylVmDJCMtHnflbkoiiLEe1Ql7YW9WqYq2h6773ruGyFtpD1mVKXw3yCHEs4/VPcyk44KCuYcDgihYLrWNzCSUmmpNLQ5pZ7DaT9X/lUiE+k7g8GGPlJnDIfzRtQ+UVOnTkVHR4dXvn37dgDAIYccsr9NGnMIriAhbubQ/i6ARWTinYl0plPC2XncAxPuuMIXuIyytL+I8KHBzENRsL2sjeuKSpT1stHcHYDZHjylT/HxMJw/VlTDdFFVtvH9KwsZyYjfBw4ywhVCYp4YZTVMJpCLpoTX2O8cAF8NKMxSCs2HQ9y27ZzoK260glxoxmNXLYmFCKdponivSpNMaYIZ6SsD7dLNNj2dpqljwhM1okjUzJkz0dbWhp6enlL5+vXrAfRvnJmxb+FxKLKSI+X8JatufyPCdMvSE9Nr2iZ0lHLuQkSPh2J4w+74VC8GDc2w8TDk6lA8IqEEYFefa6tnF2uwONCZVe22LDmBAJZ1BUSI7VRVkAgXm7OfB8ppQhMXFqKyZNz6KocqGq+kmQV2irc9ryFdRl2490og3pUKJYCNTp7kd5XIJMzJpLZifV75o90PyTuZjwFX1IgiUXPmzMGuXbtwzz33lMpXrFiB1tZWHHfccUNk2RiC4gHy6rgqIjoC2wDIOmC86Ipt7PuQjrlsU9jGGEK5MlVLJqiL5dMUZIKDmE1YaIiKGcJIaUiOEEBme9BDIYzCnIgUhWwZ96OytUTQpAJ50HKnlO8XJ239cnZ75e/HiUGRiCho+NiXEANk5LVkfECT9WOLrIa+96FnRmE/tJ+JdUYuKQqzqtDXZGQp50TVMWxyoh544AF0dXWhs7MTQP/KtrvvvhsAMHv2bEycOBGzZ8/GSSedhKVLl6KzsxNHHnkk7rrrLjz44INYsGBBbY+ojH2H4AtXcgNXzfL+glgbCUTN1lT+aBEtLebCO65StnGCnTKp2SsTGDSl1UqCHaU6wZiYPQIz7oAK32yzLCaEqJgdcGyXxmDiAXRvHAtRMTDC2eBqwL2G2R+UXDTwMKopZNQ3ERyb7fAhdQBSFydvjxNAhSzHn5kUz1DRzpaWCnprdeN9YIpX3ORi0X2gog1TG+ixL+LEcjRi2JCopUuXor29fmDhypUrsXLlSgDAzTffjOnTpwMAlixZguuuuw433HBD7diXRYsWNXXsS4aOIMFhL3dkT5HYS2/b4XxWPFHxSRuN7TM9pQ38lKXOoc4nOOAbs9sQ6IBRIFqhs/MKahpNcOZehaIg/5GlATFEOAdkwHlB+TcEESrqKuZE8QFRsis0mLO8GxrOi+eilW5EgPhIuWGBo1qKRIT+zAKZlCcDii49FlnTw6S8d7Vq21X7KOYv2g2AP0ABkmNWjHiNgn0pUyX0v6Hy0YRhQ6JuueUWSW7y5MmYP38+5s+fv48tyjAhvjy0Qzc/R156a1deaSYU7jxMY9ggRjqWSkXq6wJl9oDByFbKyi4mE94VsUDalDAPS+x1bKyNraGHQtmeIUTarHCKCzIAUwKv3KuIWKFB3l7N9AolSI3+zuFbRZ6/shBpJADqTCzoUshrKeEkQDjjaXR6jhJ7SJ17Vbt3hPwEJx8Kh5Jmk4qecJ3QIg/mQfN1ElvHAIkaUTlRGUMPNdRWDu05F2M5UAqxEWSkjiuSH2BB3cGZ0yu7veASbKNjDobEyIBBQyAE/d+PhbsKgkJPUikmqQc6cj6Wq/edQAkZFcWLIuJ9Z2f6yfd9QM4hr/QbspCY06DgAGyYLLOHtOjNCe9MT55R0p7siVIIJyEa/StIK6Uyq30lwT44KTLrBT/WywObYZp6Ip4oryHJG1+u1EdzpeK6RjoyicpoCKGOhXsgwi9WdDNO60V0dVgvfmxGZsiwt56OT+Ip87S9AsKrh/yOOXSEDE/IJZ6HECGLq6IbabK9lkK5aFJOVGAQq/GQ4p4KcAdqch9Kiso28mX7vky/HHtoiOFOWyUx8j7p+VWNhlHtv6W9xYrKQveKeZkYoRZ1lXfMb3DCo3ocQ16tmpCmi9rEJqjF7yd46WP9ku+JKup3rg18JhNhJc1itCGTqIzGEHpJCKGKvuiRF8/MdxJCdcoZUYKIr6vUmdryDEGbQp38wEdhg8J+XXZxCeIsX9v9UpBBgWyJfavioQgOrkq4i+QoefekJpdAAJlMaLwjngwvN8eozEwPP37xfK5SXTI5kjxtjqDyjIYgeaKEnfBROvelfKVkegt/4KuGjNLPqH1R9MeJkaTYPlElT5ct6lUh5CpvcZCR4SD0QrJcBPOtJ5N067MJIYlb0iuHguwq4UN847pZOI8RA9171GhYyR4Q3dm0Nsu32yuFqFQPBbmHoXwTZrsyuIYHcxbmsckrG+yCq9KKxisEkNnumkTvO3kgSqStOGmIh/PCJ/IUnxnbXsmz5+hSNialifOw3+mQR0fJdwqHD83OyBUyZMp1U7aY8fW54gE2TvaJGlDijw9x80Y6MonKCKJzS1fYa0Q628Y8UeGZke2JCugjek1vVbiKLSjObpXZZhHEIVJSrc7yqYdMHQj2CvZvPqjM8kkjTmiGRnkIMQ0I2TIoiqi7jEdVlWyPtVlrgz3iLVwRJ6+kPSblEjspjEovkfYCchJZtlkGnQy4YJMZyl7tusXPKV40TpYFz3KxSF2lXPqZjT4tkg4RO6uUpmgUmyZ1cjgvI6OA1bc8ge98aiVWXbemVpa0xYGBEIeSoHRKgQ6climzP5KzoX2NEIsSMl8Du5o7ygpVBZeIi9KAQawigwr/PYujeWh0jdsU8qKxe6wcB8K9qVpzfDVZ4Zkhaks2uXJsHqOQyb3/8ysbjQ60we5DYAuHep0iW+YDNCXxxQ+BQ5EZp2H3St47jTyi1ItWlFG9dkJnMWjhvMj5oMF+klxj40DsCK/RiEyiMih+9cOnAABP3P1crWxgT6Ta51pCIX8zzdkIISXmZ8sTJXh9FBe6+pIz8qDlWYQ6XVsXDysxo9wO3JZTVsGVmgskOEuhGU/hgB3lYh4iJWrFhGMKQhJDz6UGMaxplbtqmGuSkXh2r4ptivedyxQvuIJ1GeaIKtuktBeK2xb+Zu8hIzVem9Vae/UmufXKlh6hQ7LNvijiIbLq2l5+s5oswCaMxc/skHjfExWxZRQgk6iMhtDbU34r6scAlOXK/ViEBEUGQZsgCZ2S6BuKtuXYRFd2KZ08n75rjihAGqEaPsMtEgKIQR2ApXCQ4IIJeRUGPju7M1BSoyaDs1wZKcooE4PC8wDyG1JdtkzJMRS0y7ajCOWYmYE27QYJlEmDV4eQSVtEjJcXBEP9kuD5CrmplfeLyZQ5W3z2GHpeY2RO8uajQJaEfnm0IZOojIbQ10Neksgu5C5CL2rKEQnmy60ckhkgNdSmEjkKqfI7+eC4I7hzirwgaUCUPSLVuozs7jAusIEnACXsElodVWxPIwZRkZo+uzni7VCIiKupWpBRvHuEcPrkQXQ7WvXVQHWJTVKhQnONEf3gu1P04pI8HFmXEnFmXi011C94oiQConiiAv1ro16ruifK7e8HymGWA8DunXvQu6cXow2ZRGVIGFjC2ud4omqbrLkVIi5nJmspi3my6BlTQucv8DXvQml8EpOiFE9NKP+jPrpCyjehmz4KNpV1lQdz6uxghwZ7LhHL2PJnvmrLHqQpAXQFGUiD1IsRaE4hZOxe+YK2HPsNGfEJHcKs5fkU2pOOtVGeKzfkbH/BoHdWaZOFuD2xar09YTECfe1LtjfmiQo+xqRyymab3FW3tyiwxUHjOVH9/7781FZ85y9+ipsvuQd7unp8m0cwMonKkDBAntxwXm2TtUDyokVmgp4oT9gwSPGIeLMiS0hkUbSTJ7kRTpV6LlCIPMQ73aKHIkQeeCdf+CRtqcCja+qAUbRJ2Q2aD2JaeyUCyMA8BpEBJqIqkOfDmBZRWnHIT4kJ22SSouC+DHpXGl2ex3Q5tisJ/eWvVyQ+RdLG31XF44iSTUyknhMV2k+JhTXLEwvVxWlURmByyGYypF7IO2Q3QZ61gm72/jJy9Z9ffhi9e/rQuWU3fvuTNqvREYtMojIkMBJVeyFDHUDE5RzfYTfcAXFPlPs5POsyK1nFzGviG1aQs/Ms2PgrOihYc473gegJLcFmDVZJB8tCMxoP4e0RXcpSdHdbAsH0CAEcqMu/FCdkpD0XBvGO2WXKOPK0yaIc85CxEJz8zMRlOKcJkWXy/LHfObT/GLvvRITvS2UTXK8vMhfLBCZhpDzlPFA6qarZxi/XPpPfwpPf+z13bd1dK9uzK3uiMsYgBsiTuzqPnZlUDiFFOowIaTL7CT5ZqpdHzuizGqchQGEgCIbzlH2blJmrmFcEMmBQ8kDQfw6aEsIhF9zBieYV2bqU7RmaH8xFd46UnS2oKtW0Z/rlVWJhz4lhhf87kzBqKUQlLBsM7opRCokV22B2EW9Og0QyZpfZngOryfBmm8p9j+dpUSNcZaRc4VCeTAOeKG6C7XGSiKD0vo0cZBKVIYFtZUBX50U8UUEPhdCZBDfrpGotPZpdjeek2B2q2jHTUAnA84qYXVyI1ld24eYz80In7LTezH1odHsG17AqGRwYwVUjcBIxKFokbovhtBK1KxTnYWHUshBpWbWx9MjEXYAa8SlWDTwzyoHbJRlbVyknKvBDB08XMNpzwUN18ZsdFYl69vk1AGXvvEqWBuoIR3a1jMskKmMMIhYLD724sf2Zgsc5GKp9/abJ/gWFzNEOymYPwVVi8gApmFXyUFRs9WyAIp1m0NMx8Nn1KlBdjYUPXZQJkuD5Cp5LVrxXtMm6Lpa/4+htePuCslG2HvY+VcqC9L6zBQRlpm/b5OpSHKEKAfQS6eK6WPiwX9BuTyKT5L7736/qCYW7BkYSCxIBoqWF6myZWOenkN56f27UN+Q8qPtEGfUbPW90uGOUfZ2MfQW6+oItbY25nEP9gPAihuSZXmmWp4TzWN6Dx6GKM1eWE8Vmt0pP6HwUZt3yHlcFsARnaed2V20tr4g2J63aKoEReHcgZ78h25iUhelCP41AOMsDta3MzeeKhcdDKIfzytdKZrFjWESi1fCYL93TCjPdEYuzNmnhRlFV6Bml4crCO2HoZ+2bgqlEywupWR1woH5o0Q9Zjc09VBaJyp6ojDGIKluFV3upAj1qLHAf642t6qUX3e5tQuE1WrdB7qKf7UXUl2RCnpoBIWhEhHpEikK8PstvofeH5HOVxEvEoDEi4KjVZ7OC7dKqtJLxAcIZHDkVNPYA0i0HHDUNh1FLMoRFkXfeS+gnDbLz7rzmKuyBJ7oYyQg9M6X3i7RH7nvQI0eEaGhaIcuxOaXSf1Jh5xlhJsiTab9uSyZRGWMSA28De4EDL0+MvEQ5VMzlzJI2FRYV0EurssE89EVonoUhY6gaECxuExB2K5ByMmjSWyMmONNuserKEI8cuQ8K8VG5SnCgrpXbA0gxQhXycNKE48LfWu5bwkCTRNoKUH7nICmtGkIhZUSX+xzHOZTTpN1eaNuF2rNR/J3d5qgHmjxX6tl5IhGOtdcQSPgt1FZJnpQrnqicWJ4xJsFW4fHYeuRFD3iSQvuzhJWGRSQ1VC0bgAO5OWY4j3TeiCSrNji4SsQnpEq4D5JXy2Er3Klgz8yZF0P1okmbodLYjCsX0QMEznArqAnucl83STqfjfyIHrET7nu53C4Wt96iEwL27ijhvHB7pLzB96sSYlHF5qTwIbOp/Pu0sFW5dEZXUhS+DkJkCOnplw/oYuSLTbKtcJ5vzYhGJlEZGmovnVYeWuHhFTU4G3Lrsx3R2QqS4FYCUmjQIEflYg+NhvNCuTKsPbqhY5EAMiISIpwNDojcqwWpB1WSpSVvTjDBOU7avHvVTLQrhawIYR5p9/NAGLXEQ0iYpdHfuZRX5Ckr6ioWk2d0QKHZYPw9pB5OhtAzSogw+52DxzgJBJD1AY3um2dOHgMXS78FmdC65X0sZzbO8UY8MonKkMBfEptFNZZYHiYyZp8Rqm/IFAtCAw99wZlXgYWCPDkSxkJRhhtiDdThnChyQSVtAzPzSsguMmAEJ9MkN4eByLEB2G7TL2/cI8LbU+2qyTS6k7VrlmK7pzYeTuZhzQaJgfvsMbKleO0KHjnPdHYfSNvyu0rCfg1PGor9TODoKyl/kZTH+laqh0YQUErN8O85MYptgdNsiHkEIJOoDA3UjYtgef+1GIvil6zrsfoMtidKaCvQtLyBn7DZJg0FFVGaKXOySTt5MgOmLjIl2R1uiMr+bUoeCoEkhhtU8qac8ZwN1NIZboVNR8OjuVmf3XYX9XfF2Z5BySsqirtihHizfC6mKzwBGXhm1DAj0SU/owWxEEGqyfBnpnbXAx5AysiKnpuCSCiBWpo8SXPDyAyTyNRzm6zaAZZW6+/L5X1kfIiemzoKkElUhoTay6AmFEZITiPJkal7mfi5AP2fQx4YbRO8Yk9ZlAkYKcSCgt6VwuBa9+ZwXcrgGiKTtdwcBHJzGMo/TtQm37CKWQxbJDxmNJgcFhzDGs2VYcpCh/gWuSslIr5J/VXtwc8jBgwiYaEytWem3Jiy63xZjSPPPK8lIszCeYX7EMhFQ/H9Yj8hmzRQAhh4bwQ5+hPEdhwPTFA8UatvDh77UvVkijZlT1RGBgHbJ4olFAbDdXA7HufFU+LqffHOxutzFU9UAXTpseOhoIaS0Y7OlFnvXfhcCq+FbBdCRkoOVig3h0+niYgzQJXlioN+Y/ktvu3Fm2XbUoTkCSjc9yB3JR45tn9Q0ONI2ihBXmofD6PSTU6F31lG6d0pltuTruLmshqzC0nFJw39jyhNUrI0OW3bkyJfUJBjEzr6gVQLEa0G86uoJyo2PoxiZBKVIYHuSOtcL1TwhayKhk6j8fB1tsUBKZe9GMLSYzmcxwhZsYKYJEzbI3ZRwqp6hmgxGQgCtteGw1BOSuk+MMLJ2yt50YhcWW/c01bxW01G8PiRQntKkrp034tyoeddIjW8jXpMrKyLO6KEvKLA9yt7mQTiI2xmW4m0WRcU2guu3C3aZcvRexLpDmMnQBRlYhNUb+saZsPAZ2GfqNGGTKIyJNCwnbDJmr2MlvcWIT5WL4xch/Ge722zvEEhb1vJSQmujmIdqiDDUAyvyQfvFptjHMrr5OtMhN2HsgeG3FPXRLpMMQ6P98QcFKEwFhtcWYNBj2NRTPEMkXIEyB1RpmxYGWqTe1WLf1ZNGbYKzF+MULXrsDMLnc/KQgq+krEgEjgqqMi8eX6VTdpYOE/dQ07KfSuJkPtp6DY/l5UFi7yrkYOGpX2iRhkyicqQUHsZxO0EaFjEkDde47But4x1PCmeKBZWYm2HklWFmTLfuThwDxRi0KgngOiqeCxKAPtpQvxCIZPOF6Ecis7g40QkqIYM5iyEk0SWC0xECSdH9cCLanIotgd3/a4ZD9oim1gwIlKyKzThYZMUkQBWCzLELjrBKpke7z+89sXnvdBIVITJu/XM6sX+yU2toO1WzXJ7j6rRRawyicqQwM5Gqr9VTjHxWNi63QLns0HcFA7lTcj6aj0lHYGpd4V18qWBJ/BFhRBBeKZsNuiIkA6c3Sxlc08x5MdtL9hUXHEmEhF6r4rxLha+cPJb6K9Dw2ZlGXorinLKfkWsrvuxwWeGeY/C4Upy3ylCxKAuoqza5zlR7gtW8Yo9q4TfUJ0L8Byloky8b2BkzGuvwXAeDc/XimziYymxVs+FbK1Ppu0HV8lnHW0YP9QGDDUuv/xyPPLII9i9ezemTZuGT3ziE3j7298OAFi3bh2uvvpqrF+/HlOnTsUFF1yAc845Z4gtHhrUSZRTXoutB14eM5xX+sTrIkJObPWWWqd/q6BaNTSzTpcO5gH3ijRTJrq4Kg5CahiUA4hdk5irXxl4ECA+jIjwTrjOahgv8BLZSwMU81DQ1grEm9teDpHao6uyQaZ331mojv2EHg8hYVT2/AXIpNleAFRO8QAWCZlne/GeEk9vUV5cUMKMKeuy7SjdqlBuX4P9TKlqMN5mvQ8hpda1wvch3nw+DtjlJTS7OGGYYcyTqI997GP4u7/7OxxwwAF47LHH8JnPfAb/9m//hqlTp2LJkiV497vfja9+9atYt24d/uqv/gpvectbcPTRRw+12YOO5379Ml5atxVvfs8MTDxkgnedxryr5X+9C9Y1R4+fTxWang/UYb18XE9xyTfbBqEuOFBKOuZAB1j2atkXpAGxoLsYbQgvm7Z1iZHIgMeg+DdpkCDgACzLEUvc5ioRPcEEZ+qhYDcrEoar6Yp7vtSdrJX8Kmk8Cv3O7CcsEQObcFLi7emy/5ZCznaxLyeFUQPtDXx2fmdt01HSnrCFiKsruFt4uDmpLbfM9EQFjn2peZzYpNltLO8TNfpxzDHH4IADDgAAjBs3Dnv27MGmTZsAAO3t7Zg7dy5aWlrwhje8ATNmzMAzzzwzlObuE3Rt68aKL6zGI//+JFZdv8aUqe8PQt7QgCcqnvwYIU2xvoRd98rrTIQ6TpQZIvNiBAzn3o74bLr0ucSi3NYaG+yCIzDJb6EbaSokcUCdU9f9yMOoTiXJMxT3drDfpswvuLdKOUqnTFYEVhNKZGKDecBDoewSIHlLlZwoh0Xx/avYzbLtCnq7FcIZmPHUz1sMvROkOdY3kLpuQfBMP0tZxBMluQir3h+2mHfPB/p7W5+0T9Qoi/ENC09UZ2cnbrrpJqxbtw7r1q1DR0cH5s2bh4suusiUvf7667Fy5Ups374dRx11FM4//3zMnTs3uf0rrrgC9957L7q7uzF79mzMnDkTAPDBD34Qd9xxBy688EI88cQT2LhxI9785jcntzNcseX5HbW/21a/BKC+78cAauRJ41Bxl3Nxn6fIbCXWT0i5A4XPcmhG8TxIhwaDDoiUtBFVquefRmYUkliUc/NblP45RJDVsF8ElZrHgFNX/36SZ1LZTT4EYjvfOTuuKmS6ZhJhUdQFA/pwKYSz+LkSSoov6qIbVjo20XBe0a5iddI5KFuIDLRpyDGiT0yinmyvfbYq0umLzJCZlSrhFVgye3WZnig+CWIRiXrdaNOjDsOCRHV0dOC2227DrFmzMGfOHCxfvpzKLliwAI8//jg++clP4rWvfS3uvPNOLF68GH19fTjzzDOT2l+4cCF6enrw8MMPo62trdZRnHLKKfjc5z6Hf/mXfwEAfPrTn8Zhhx2W1MZwhtUh9PWU34boyxMgI7Edx+O6YrMZpo3YJAzAA3LWBe6K51AIGQLejqIIzxEpNWiXMy9aQmhGGlQcm9xzySrG4K6tlhO9aAIBpJsrus3F7nuFe76Y3mBYySh262iLHyrcdPYsNx1fs21RntEyJ+UNKivhGAH05OikocHZGpsMBDoHvjil8P1a6gQl5ohSwnk6KbeVsUnzWNziYFiQqGnTpuH2229HpVLB1q1bKYm6//77sXr1aixcuBBnnHEGAODEE09Ee3s7rr32Wpx++ukYN24cAOCSSy7BmjV2aOq8887DxRdfXCobP348TjnlFNx66614zWteg+OOOw6f/exncemll+K0007DSy+9hL/927/Fq1/9apx66qmm3k2bNmHz5s21z21tbQ3fi6FAyziDRPXaL4M30yBbH0RX55WuB2ZppH6SJ6oWzisV0krS3keKNweh0GBBpuQR4aRUSciVvEehAbFq3Cu494ERMrvtYi5a7VpsUCYjhvr9lLAL81BUnd85tj9XiHCW5FoUIYSMr4up3LxBbw6VIeUpUBcjSDmAzCNMnxn7RlS8H9GGtKXCwH+qrhDouxOerFX9C7Tvq0ZI40B/7isIRQlqTZM+OxiRcHTu3NKFp372Ao566+/i0CMPprYOdwwLEqXN0oFVq1Zh0qRJOO2000rlZ599Nq644go89thjOP744wEA11xzTZItfX19eP7553HooYdi0qRJtTDhEUccgbe//e34xS9+QUnUsmXLcOONNya1O5RQPFG1TdbYao3QoG+9SGx2an02G4x3JH6d/n+Kq7aC0Q3qgbGJVkgZn+ULRKSI0CjGPBTkBinH35SP3eByKR6KIocqjZvSuWSgvyEPIVSNv0L9T3FADHlEHLsMOxihTgkrlWXi5NXVRZtjKzpLhDPwXA18DBBvviqSTLqKZDJwr2heG5sU0Ve1Iv0+LIzvPgsCh3LeVVsv9/QyFgVOnAtl5qXQM0nIUq3ASwMxVOyVufPLD+Pl9R1YfcsTuOif3xtodHhjRCWWb9iwATNmzMD48WXuN2vWrNr1RrB582bcfffd2LVrF3p6evDTn/4UjzzyCH7/938fRx11FLq7u3H33XejWq2ivb0d9913Xy1fysK5556L6667rvb/BQsWNP4lhwDWaeOeJ6r28rgvycDLA1Pe/dtCLHzXaDiQNlzo5Nl5XHRwpbNbHs4rNc92Z1ZIW2l2WwjNBGe3TFfcDu+zFNYMKCupYiyjqIt52sp6Y2eqVTzDSsoKeuxynZwPsHPv6F1bvsHfmTW3t0nzgs83hVBdqRHzz0geXXWvTALxpreqTmrkCQ97HoRwnuktdWQ8XQHbufElwbiu4sSiwVV7wf4z4ub3932qknJbXWij5JfXdwAA+nrUF214Ylh4olR0dHTgiCOO8MqnTJkCANi2bVvDOr///e/jC1/4AiqVCl7zmtfg8ssvx7HHHgsAWLx4Mb7xjW/gH/7hH2peqdA+Ua2trWhtbW3YhqGG6YnqdXKi2D5RA/8GRuF4OM/WyQtQIm08T8tWEwwFsTAPsSesqygneAyoJ6DwdyA0IxFA4vkKMQYpcsaIj+t5EAgE9a4wsN/Q9Yhw4207SjJ1ffRRd0Jw1BNF86bs9nxlRdMF75F1340QmRA91MgRUGqPvjt0LzNHMZ3wCM9Mqb1CMSMiTjiPh/EVmX6xqmuTaxe58dRrR/SU9Rd+ZPO615xlAg2hsu+j5LNK7/QIwogiUYAe+lNw2GGH4atf/Sq9fvLJJ+Pkk08etPaGK6xly+7soL60VXupaP6Jed29GJCtiZCOK4TCaDfwnYMTRNa5SWE6V5llB5/l02NxioN5iEWVCKBNWIOvEiEGNIwqDMBqyE/KzalwD0XdqxA6OsUmD5aeAZm6nP07u7eKQvH/V9xni8tZ8ENihWusmkKqQ+NylYgxMsneHZeIGHVdOenREscOLYxPZOiEh/Snji4+WbNZqeJZDk1i40dqkWvu99kr6HmoIqv/RgNGVDhv6tSp6Ojo8Mq3b98OADjkkEP2t0mjAiZJIVsc0I0xAy9jw+E8r8xkUaGrZrslj8He3i2U1K55j0jjjm7FY6CGCCp1FkVRYa4ARmpIZ+l6j8r9K/t+hADC4WOW4S5CpC1CalTwsdWzvrHmyESC5gKJai2TnCY8ERZGLT3vNORsK6YnCYSId+mZMYt9os+itvRZjk8aeNiJe0s1j1zh+6Ee1gz9tvzg54IM3f1cYFGGTJVfapikFetEN06GTaKkEPMwxYgiUTNnzkRbWxt6enpK5evXrwfQv3FmRuOIk5j6SyO7d0vXLP2+nFWXXZcOICblpT4+NLsVPSIhOxvSpST2Ajycp8xui2qk41UCs3wyANPB3FXEQlR0D57iAFX/r+pN5N6OeAjOEXMMqxaNKlls2xTRA5QWP/h2xcmr32hcLLShqCXj6xkg3uX2qFVUxn7evb2Witep145NUux+zP1tlFW5g7tyN8QmfV1S19dU3+zc89o2C+74ULXLTcLE7RmJGFEkas6cOdi1axfuueeeUvmKFSvQ2tqK4447bogsG+EwSYrzmRxAHFwqW2NeVptVX46YlPrS+bMlNtgV1RaJCAvnwZRRd1Sm3nISzvPCG4pDRPFqJQ3AgvFFBJiINF4EBoMoEXYGc2ZWo7u7k/F3r9dOIGSKh7MSsEu6V0WhwONQlFM2HZU8Q2pSvMC0KnHPa+Bn9sNrMVT45IKfCGC3VySTtC+qCXqq+MSiQcIRCufFJqj+s763gB0aH+oDDf21shEc4hs2OVEPPPAAurq60NnZCaB/j6W7774bADB79mxMnDgRs2fPxkknnYSlS5eis7MTRx55JO666y48+OCDWLBgQW2PqIzGoGzNz8J5+84TVQXvrQWSZVyocajC6qGU8+fKoRlStxG5iIw//jJmwHQRwhoMb9RlpAN6FT7m5iiVWyyINUZqPE3FUKTdhKaKDIhROau9kpcpqkZN3xEHc/c+2DdCCfkNOMiq4I+773E0mwskVHuG2XqKDSqPTMDzWntm4Pw+AZJrFbufYitIXbsaDudRVxRtrnQ55MUNHdelRiTGQjhv2JCopUuXor29vfZ55cqVWLlyJQDg5ptvxvTp0wEAS5YswXXXXYcbbrihduzLokWLmjr2ZczDelfUTdYCSoKeqGLNwMtqNOnrTOlHpHAeCSuRGaIcViJfTtnAjxri2qXMboPEp+rLeBJMGTXRasJHnCOWyJ3aAdPBThiAi4Lqbt5UVXBvMVsfFRPJluQBVEKyA7pi91wJUYmrX5nntUz04+0FPV81Xa7bjhBONuFhTJhNUlwx0q+x95l3DWL/GiI5VrWByANT5xIk60gvU68hN0IwbEjULbfcIslNnjwZ8+fPx/z58/exRWMH5jvG9gdxZZmHqiAb80RFOFTwZe6/LLKoQqfLwFbgaC95gNRIh4wKeQ+FWbdvk20792oFb8SAVMAjVzarLmM3WPG8Wswwu9jjPfFJfsAjV5BhngDnBjOnAhsQaQhYij1xObYdBIVLMkrKJMOYIbw9xAd9ebsE/sAXrmr3od4cpdT0+ZNCwIwAypO1BAJoIObpr/fNVuVAMwOFbOGR9274WtxzWYv1RyJGVE5Uxj6CSXLIS+K+PES+eDHqSbIux16q4mV2gDF5ocvL412h+p9KWEnbBbmBHIpYexVpuEBRKuUctFKkRAi7aDkboRBcQYoNGKrHqUiWBZJBvYSuTCQU6eZEMW8pHX+DhIYP1PX69m+jQuJ2ARIvrXBzVPl1y39XAu2VHxq7mL9frq66DA3nlWwnnl5f0JQqPWfKhIeE8+jvHH0A+PXwiuuw+tgRXqzpkeyJyiQqw/YEkU7G6zgF12+zhCm2epANfNRDBdAYQXgg84XU3GywgZoQEWVi7v8YRV2kLgsfJhAtBd5vQHlp/J663gJKhIVQJLOJholDutiAwj5ISf/lRqnTTiCcodyw8mBOJgQOEYlwSX91HnuY6ftVlAmQu6KMNAERiL77BVlokO4TVb7vtWeUJWLD8drR+54+sWg0nGe247RHN9VkZ6tG7Rm5LCqTqAx7xtGIx4mUh8N5MWZF/o5cD5EaK4dC5D22HoRDYtLmfAJ58HhILRdItCuFGDQINTlbCq8pnqFgjKouVTKFkgzbXrflOndlg7TuTVSgJeuruuJhVG47J8LMJmVXdn0CYtlU1FNmbYxjBM+TLD4Pgi4I91P+bcjB4/zcP4E4FclMgLOE+EyAQ/nlxLbYAcf1MlvvSEAmURnE5Uq8HPakP6wjQoJSVmvQPj4YVip4KFiyAhlc+Wy6KEPuWQiMPITCG5Kyol22SaFVdyw0w4mIOqgII0ujniHyTPbbZZdLpM19FhTvJfl+dJf7EGtjYN+PQX1kJF38peDvrEIMTJP2NmlPGiRCRkJ+3m9YFGkwFElM2is3YHugbwi8h3UZ0h4lNYV7TiQohHCed//o/lFa0yN5dV4mURliOK+/gCWcu4mGRR2xfaDi9oXfRNIfGbPNmhSPiDFlpYGgIELP/yobppzULr+NioeshbGHgkzIa1Kty5QHDPs+8LyOsl5lJRJf6UdIoidXVCN4tRrcg4c+zRX1+9nlfi4QI6Zx8uq9MsqEgIUPHfnYLtxpRCRAXgmKPF9pr0XJXwyEIun7xUjbgD7DpkY90A2H89iz51QLRvPMbrdKrlVL/9TFA0QsIjdSkElUhj3joKd0k3JTL/hF4mkx27deupK72h5UmMeg5P0PvLs0aZwOYk57xY6yfMGWkVbn2Xrcz9q5a6pXKK5LSbQNHUBMzQr9PrHf0Auvkb8VDhUK2xbIubaXlEba1Nww+0J5kKZhVOK9LIESbyJXqVAyST2AoWeU3vqqp6e/lJBJxbXshSLj5I6/E3a5q1bbSsUup49PjGhV+TWNWNmTLsatyjqqRtiPtznckUlUhjQzoFscDLw8gZBcbB+o2Ozfvmx3lFJydoFEeUud1QHDlLE7Fk+Q5nYQEafzVvZHUsIbKodq/D6E5G3PEAtZ0iT8EkMKsShyqSglhPxKcuQd8O5nwKy6CBvwA6qE590PMcbjT5xoOah4IrZc7EqDISp10qA8o+V7VZzsaERf8VIXyaTXnxbFhHPx+DYItnnxcF4AVedf4yIN/7vl1qKhajWQPjDykElUBvEEEWEWzgsQsdAeUu7fZlnsegHhxPLaVBn0KAnm1SJtS+E8N0RgyfQ3SC4UIbACT8zuUJUdnEOQ+j2HGDT8FQV+JNteZTIiwWB5dATlgaw4UMchJ6mXGzT/dnWZ75YX+rTbLpJ4D0UyybxM1GvMJxZs0iB5aNmkgfUvoXvl2GXKuPJsBYtAANmELtY3KjJsX6d+8YFrgXHBe+eshomOKvz0j7xPVMaIRoAAuTLUExX0NoVZUNRTZdRnHXOwByx18ty0GpST0+PN+X6ARjtKF8wToIQZG53lJ+TmMC+GSP9oaNAbNBv0DPE9oOxGvHwu0lxZF3N3kAbpF+Rypd8gYfdz6wuoHsfILEUSM20q6SHlRNCPEtvPH3uOyzLcGBaKLDuGXMJptOErs20p2RVvr6x/oBn7Ovn2ESMCQlWz1J5A9xnhvJHLoTKJygjMFgwZeSfzQpn5ItEPA0V252UVUiLiVSl0unFHlDhDDDZYECTlBUierxKn4T0Pt73QyZeO3XB+15IucqEImjjvGm/romFUYlXRcUIHEtdrwtqT9ufiocHSWX1q1CXKyMqNNcpDQpKcZJAGVeJd08OtYu9OOc/HYcsxB6DLANl8Rxjt3K0zym2S9znoLrWNL33D0qIMMkkRFoqUGyCsxrlu962+KfVqgXpWe2RsyeG8jBEPugx9AGJiea1ugEWZrwebWdfat2WDZUB4pdXA56IrirnWwPtl1jHT/KpKIXzo6bJJDdjvU2YPdnsAP5esqCpIAAdkzGKvvRTPA9tOQCFa/WLsPlTragYpzKMlVHOPiGO4yaE4WQ7Zxbx2ZWXRHLlQcrZrPvOEDlxHAApZDt2HolhNrnzj6bsqegCVHDkaxidzhkA3I0+eTHPJI1YNXw7Wr/32oQiB+9vXwoOcLNYLq/5kPCeWZ4wkPHHPc/j2J+/CIz98EoBNYryEQPJeCRyKbH8QJnEsn8SqwjubwOyPhsQKMkKoRNsFGRoxEGfmNDWnwXyT8P5B9cFVys0h992PUMXvl3LfyyOULdJPXqPN0TCPR14Vt4/iESnKhX4b4b4r3qOK8vwpz4Kni7MouvVCsQ7dJqDwd8jjU+B/TIzuzxVoL5bz1YguusUBIfH8cW8wnFc7ScK+HnT8BK6xA4gb0VXts/pdWeOwQyZRYxD3/n+PYveOPXjolnUAIgSoXtL/X49cVYl84VrEnpBLmSogbu/gkrPipJtNEYWZKz0AlpAazyNCoHXeqi67vjQzL+pxlbFpvmCUex9CnDPWXDjfJGpKuT162x0PRdGbKJCa8uDqsCirTZdwknvKQ2JFssJhDbwVaM+DzCYF9lrmiKFJE/uhqbK4DPG0ue8XO5KKL5bzfkS7vAh6AHZRxhSh96QauV6fFPMJanBc8HKaBhS68oZ+M55H7BwByCQqA309vi+V7uNhcyjzjQtdC7nTvWYkktePcDivzqLoLsglZXF7yuOOc88MPW6bZc+X3UaDXMUzjI7liu0OqC7hrD4vrYgOGApp26vQq+xIsYT3BslksTlXrpRrR6rS+0kHYDe8Rj4peT6ud8UyJuCtcnXVROjEolyHvjuhla219rjn1duaINYenVjwH70sVmhP2Dy3UgmtArbt4jvmk+c4Yjh/jwMCVTR+rUbKiLxT5obvogfOD2NkEpUhnWVU50P2DMTeJ6r8r3WNXS/P7iLXWYdEJjvhyAXruCL2BC6UOlNPmd1e2L1dMWV4jhJjZIHiws1qxqvlkRU6ChfkbAv954SGNQfaKysLhl3MBgsiCkMSvKD9zREfk/v7xR8Z/iz7CWRRuXJzNuGs2ebYVG4qEAIm9z34iEbue3ATV/KM0v4nFL5mz4wSAvYIoG2XQl7pBMvSz/qREMmqRRB4x+29crUC3ifVy6r+pC2H8zJGKqp9VfT1WgTIfuvVXKlSnQBLkg40Zi5h1wi4IbEAi2IDQWmmXGrQtLMi6pKSc9SwkmR7PBRUajNkU4OhkhTvHs9dYQMUPeK2MRnXJpFo0XFMvVcVQ4YNwCEIOVh+0rj/t09wmS5ih2c7ef7YuxokK5Eb4ZHlAgEsee3iL2ElYHtZLj7BKqoyerC4LvI+l3TRl62qXLb7VrMhR5zMXFgaiKfD80QBm9Z3YPkVD+A3t60nRg9PjB9qAzKGFn19VTOcx9w41F0beuFC6mMvudVm4Do7HqGEQngjvOu31nFVKpW9syvHxAJpazR5lA3mIY8IO4+L34d+klEtN+GFSWiohNjOpXg4jwux9gIXmauGDK7Mdp9vuje1bERoAHbDXf1tBjNleH23zaJJA3+7ciVl5G8q4j/vrk2USAYUCymANG/KBaXL5FGgDbqXhGeU9g2lxD0yoQP4Ct8mwnmx1W6p4Tw+6bXrUE+UEdFYtuh+9PVW0f74FrzunUdi0tQDqf3DCdkTNcbR19OHPiMU1+fOFIhXKXS0S30lB++l6JWIezfkobDKWf5EUK80666TGj+kWd0r4ioqdIJsUAkMUHUnRqBjTkkaZ0I0rBQnbeVQiavL/g3lMKrlzSnIVVxdllBRTwCeQ0QhIipDqqlxyAolBoX7rh403ejvXDasoIuQ+FBeUYDEmzLOS8E8r8VcNPqMFptj5885ZIUmjSukxnmuyCPqhRBjtjecbBciSZHLwX57oJ7d1Ulhuf7NNv02ixGR3Tv2RPUMF2QSNcZhhfPM1RMD8MhVoY6n3PnXabekgFQNyVgojxWsN0Wd+JDOoF+XNphLM1w2YFCPCLGpqCtge3mmTFiNQGg8XQp5LdnkDFBCAjCYN9EhbdH75YbgCPGR9g9yBleTtoXCh6XbHg+bBTfuJMRb8Zq4gnTOoOhitns5UXYVyXmpkDvnXvGQbHxiUW90QCxATBUwFkW8xsHnwVAV8wxFj0AK3Qer3yb16PFfZFzw7HI9Z+r9HQbIJGqMo6+niqqbE1WFsTP5wL/2lIq5bdm1Yluxclu33w4Q6GyKlUvhNXM43KvLbsOf5duGDnx0003odxPIQ6j35vkmRG/Rixa6V0KP1vCg4oCfLRcgdwPFKnlg7aleNKarWhBR7gMh8fwZDemKk9e6cUY7RW+pSqqjNpUbpESkxZYJmF4C/3lsg9VnVCKA7NzJavk5ZquAq/Q+2G3TlbsMEZna5cDk11JBvVSNcKhqlZ/Buhd0gjQMkUnUGEdfb5/pieLuWqc4NKMJvMhs4lK0QQbpkJhXoX+mLHhz6K7E5el7raNkhoX6AzLbVDwB4mQ6KGia5oY+mwhvBBtTPAZERB8R42bpDLBojKEs4PnywjyRJW4B55FmXkmXQ4OZt4N4CV2CW0/zqZryoUmD6000ZUq2F6vaA7erjHsvizKEtAVCg9QTlUC8ua7iPSW2C96x+PEs/IEK9ulGu6WPgbSO2mdzs02n0sjhUJlEjXX0R+58D0ojuU+1Sm5R4FrBtUX0kb8Nne4M3iwnHaVPFuOdvDtAMTvrqrQeocyhyPcryoUIoNJe0TQaplM9IoXqbFAJyFnXqYwry4hdkSx7hrEmA6RGTfyPCbHmgr8fGzjj3y8YEqvpEe3yGJLR9kCbBsqq4hOeMmuzdQY9vYJN9J2HS1hsxsIPtq6Yz6ghaDZBXW3s/bImkLFwn32V1yUV6+kZRrnXLxqJ5Y5nagQ5ojKJGuuw8p+qff7ZRrX3yjvzqFq87Cov/kPaj5dHD0gWPCL+pHXAze58n5Kc2LlRQlZvj8+CC7YLx2CUBnM2M/ecR8X2yrZbXjT/XhWuKeTBNGrvfRAygFUvhtkmG3hCYkJoJkQma/c31B7jBbQ93iA9RJq9ZwG3luI5oTIhslxSQP4mq9Kq5LkyeoEBId6g9IwW4RJv808aXvO4pLGS0f0s5UIKG9DKKV+kDbfMvFS7FqRf4bIq/H0IPaGRw6IyiRrjqPb5DzR8XoXgkthQOROPyjegsNTZEBVezJ00Qztdm/gooZkBOdsuyyhXxmmPtFbgUJKutNmeTUylAdhld4ZW/3KcGShHsMhqiyKhAdj4Db3QJwNZ4Ra6nw2H89znnSX0FwmgEQ5yIUTgvAeLemrE2DRfnVewSUi8VnLfQiv9ypMZ0YsmgO1Hp4Tz6DMqhvOCE9QQI/I6n2r532KxQSBZbu0AsicqYwTB3rPDOzTYfkeCYb5gxC4yKgRDQu71Qjk/1b4kFBj0G5vlh8N5+mxtwKy6jE1WKkEWVZiZx8Jme7WZjfjTafuSO/hYumw1vE3HAxN7DlyEJrSSpyY4mDfGAKV7xbwmvjrbptAxRzVdoee9KKWNXLE5g+clJKSGngdXUgY+ohbuu7TSjx1sXX7BOIciBCkUzhvoQ0KcQdsfjhlVkLFyOMm9CL9LvONmuVZBsmbJOmXWNjsjBZlEjXFU++A/5OY+HrW/SLmlnAsRdYYAEWL5LRUig7JMbRwIfQHBzV7swHk4L3CUBGuOdJSh0bWmNuAQ8Zo2bHcJJx1aSSiSboMA7g0o2iNEBn2PgWUTKgHCYs/yVVjPjR+BYz9iv3WOGf5l8sxIzg73mYmYFfbAuOzOYFHkuTKv1URYuNKW9zwaRS8aa46SV0PPgDJhkYS0+rVoXIB1SN0MI1pFb1WRlPYNXCUTuVrfzK9ZNflvw697RaYnSmxnGCKTqDEOO8nPGCTYmxV6GUPT+tpLx17yQAftC9f/Vnqkohz7Pq4qNoiVBh86WlC7qsR2Nob1E6TwoF+p/cdS4OiKrRILDOaDiVjn7IGNcx55IF6toljJ42j/zmp+FROkzj36QyPwLBfkCHkNhagUj1yjpNrbsLJ4DfYHJfRe1OUPxgNmi5MU8iy477zAoRo4GSEiAzi/oW0XG6mpR6vWwZI2Q+G+QJ/Ow3Z2e9UqjDxag1OSjYpHAjKJGuuoWpOkKk384+E8W3fsWsgut23LHlcVSxKme0kF9NKE40a9CoE2yh24GJop6WKCrGMmM2DWeXuCtphy38PxvL0iAQl6hiALfYpeLSHWVV5pBXZP3d+GtK3cT1GX6kQL0BoCRkTiNvUL2jfLJWSSMsaiqC6iVoqPgn9J1h4xinpLjSbt9uw+i3vhjXsQ/am5QKjfZT8X2z+qrMMfdLyfNnJszXBCJlF7sWbNGrzrXe/CTTfd1NC1kY7+0J0/q5A8REDh6bfeFn4tto9JvJtnHYmmhDtgCMkoSrgzc6KreCyF5LKnBx47imNhl1A4z1FkzZRDK4dCM3hTyJWJkTv3XgU9kg2G4dh3FHvBqGfSs93+W11ZKH07IcwzoM9C/Rlt4LBmK5pnzyuiqmr1SzaR9hRFcL85IyK0Ag2d0fkAI4kF461tZGpS7LDwkk12XToXGCA7kXCeTZQCDIz116RKP2HyyzySlHOiRjb6+vrwla98BW9605saujYa0J9E7pT1wZ8pRGY2diw8QJRq+uIKY1sccC8TmwEX5AKdGx+gSqo4aoNroJcnM0k6HrqhGbO5kNek2B4aHuxKZilhVFcXGTnLtscHO2mPIRF6tDL8HUNXmdrgykKBxEuDufL8BQguI0g0XO82xx5m5dkLyBRfL+k+sC0V5NAR6WeCZNkv9z4r76qw8a+Zl0i/mvCdAwTLeyZYe1XjGTfSReLhveGL8UNtwHDAsmXLcPzxx2Pbtm0NXRstsPKf6EviFpNN1kplAYKlGSiWAeVpARlci+QhGEWg07/yQED3gilrK5TbuijBcDtmr9eteHWkTRgD1pYgRl0a1NowSvetMEDRAd9b6ccGfeIJIANdEty2FW8Oq85+ZwKHH2mhQfruFFbxBd4vapVChH1/aaGZqjEBCjFOoT1XRnntVfcDNcsmZEVjpFMbGNGKcKj6pJhPUBuZ/NY5lNsHWvrjWxyMHAo1TDxRnZ2duPbaa/HpT38a73vf+/DOd74T3/rWt6jsP/7jP+IDH/gAzjjjDFx00UW46667ktvu6OjA97//fcybN6+ha6MFZpJf7T+FstqLxR52kykFGi7rteySIXXMRYTiXcWZndB2aamfbZc/UyYmshVuYjivNKYoqNSFORHRnEx8Zk5Iogv2HLD2av8J2aSH1+rltlAw4bgQiqSkjbVXQqG9QLK0SyZtVYJMEBqppgKCZ0hK6Pd0GWpDvw3I88fewQr4BKQkx7x25R+6YpU7jUpbqSi5ntaWEZRFBdoLhB2ixM7oA02+FNtsM8GjPFQYFiSqo6MDt912G/bs2YM5c+YEZRcsWIAVK1Zg3rx5uOqqq/DGN74Rixcvxh133JHU9je/+U18+MMfxsEHH9zQtdGC/vi0/4Ibr4+tYGDH8gCHMsNxEbXlUFz4ZWbhDb4pnT+7teXE8AZFkUX5xe7fDedgwb191b0igdm0O8u3CGCI+DBiQD2Aru2R+x4Izbi6mnEPlcM8gidKGMy9rSwYKsVcNPb9av+JqSL2EiGnoWLenhTOE7yl/foIqaYeGFuv+zNbX1G8VeXvR1hUUE2V2B4iy7Uf2tVVlFM8ZLYdRZg2NUFGwn26U07GgapZSPYmjLQ9XDEswnnTpk3D7bffjkqlgq1bt2L58uWm3P3334/Vq1dj4cKFOOOMMwAAJ554Itrb23Httdfi9NNPx7hx4wAAl1xyCdasWWPqOe+883DxxRdj7dq1eOKJJ/CZz3zGkwldY9i0aRM2b95c+9zW1ibXHSrYhw370wf2TgbJEIuTF8poWI8NxGZZcTYW75D8FTiwe0/FAwPYAyIKg6tTh+eSxL1oQVJD5VgnL408YDeCEs6QfzLihakEyBH1WkrhSn5Jp2JkEBYa9O+D36o3GaBepqKc/cx49yqWwxPKm3LUmLxAmAx4bYs3nqa80wciLkL1qOG8OP8ryfn9ZtwwLzQdkbGIK2sltLAn4IiKdPgh+bJ+f8yx7RsJGBYkSt3sbtWqVZg0aRJOO+20UvnZZ5+NK664Ao899hiOP/54AMA111wT1ffrX/8aTz/9NN7//vcDAHbt2oWWlhY899xzeN3rXkev/d3f/Z2pb9myZbjxxhul7zJUsJL8zHg0e8gJiwpxKGIIr+iUx14nyXvksihn7KkUPxi6WEiizKJcwwrN0cGuOLs1m+M9s4uSnCBTsIse8xF0+KhT+IIuZguR494V24vm7VckhOrUJPxoNxW6Lgz4IdDngXlXHLOUR0YJM9Y1uka5DTJdhh6nieCChaox4/H4H5s0wCx3Xxs6AQm0WbavKEdZlGkYC+NLiezW6t5Y/xpyN5n1bPJVT2T3LtiyEU+U+l4MBwwLEqViw4YNmDFjBsaPL5s9a9as2vUBEqXgnHPOKRGyr33ta5g2bRo++tGP4oADDqDXGM4991yceuqptc9tbW1YsmSJbM/+gPVAW7OCmLvVKw8wpmbDedby14bPS/Mmm+7I6ZMJnvcqyKDwHSzPl2U6TeDhsGbK5rjj2jRgkklEtPaKoONOSBf7oNwrr1ECNZk40p6HANmqFQteQmP6YsqVSDzs54/+hgJ5DTmiWFgzOElh9cmgT5+rwLtTDqMSQuYp3FsYfI4JYSnKCRtkhtIlyxMsu36V3KuiED1fL0SSLHtK1waIUgP9NudQnqyZh8tI2QjAiCJRHR0dOOKII7zyKVOmAEDDK+gmT56MyZMn1z4feOCBmDx5MqZOnVq7zq5ZaG1tRWtra0M27He4u8eahMmox7hS1fnXUhTSx17nPk/UbtcxSlqVppIa4VwygO8TVedQze3gHPSu2A1KCdUUzr2ig3lRjoZRi18wriucfF7WFYVKDGi0iIyIjrLiXktiUhTxohVFNHeO0lz4nhI58u64t8GS6ZeLuxPppMHTRS8VhIgtzoTH5FCB9iTiXSI1jiLSNxQ4lFkeao+TUv+XofcrEM4L9+lBdUZ51evj7TxccoNGAEYUiQLch3dwcdlllyVdG+7Y09WDl9ZtxfQ3vsq/WK2a0yQ6ESAzhoY5VMTdbHYmlfrfdJwms1u+27U4uNLBLhAS8wZFH0ooMjDJJ3aJ7wizKcA42WNRvp/2oFIJLvWrE0Bmi0syauMTI3YINMdm8KoHUJEjz0w5iZuTFaKKP1f0QXafLePhcglgo4NYwPaSmECE5aYL/YLwM9e/oxtOEsl5WuidKqspUkLO0qTIsinWjwfCeaF+m21RECRlhc9xT5ShZ5hiRJGoqVOnoqOjwyvfvn07AOCQQw7Z3yaNCNx59cN4/tHNeN2cI3Hqn7y5dK1ahXm2ke+CHSBL7qzC/cNA4MWKzZSKqFQqUfKlrfhxBwy7Q6WDq9uZRmabPvGh01uz3OuX2YBYGA85QSoqqouFluNz3mPfK6WT5+ChGV/UUEgGupAuzfMQ+I41oUBzLrmzTZHs4hyKUtyAt822h972knel+Iw6RCTuiAo8M6HfsEiYq74exxav6drzbjftEn0ektVsZ3tc1cTcd5VN1uiu5oF75eoo1fNN93Q20KfXPloTSWMsiUY/RhCLGhZbHKiYOXMm2tra0NPTUypfv349AOCYY44ZCrOGPZ5/tH/F4LpVzxuEyTrixXDBen/EESJYsZlSjSuxDpV5Hxg3QllGSV6m4bWyVL1j9t10dbvjnC0wuw13lDFQglRUqBIfZnsxR4QZ4pIMNmAIHsCSqlCD0jNDBjFDnQX2G5ZNtI0PjhWNhpWU++nqYjJFceLVCtnOkrO1591RxDy0rMEAWTa/pnOvpDwzdiBwqUHw37AgQuvTe8UmPA24osIsioNdI7yrP9DhEqaqrydGqoYxRhSJmjNnDnbt2oV77rmnVL5ixQq0trbiuOOOGyLLRg7Mh9wa+31eVf534GNgn6iai9e2xDaIiAGBgbqgo6WF9MxsAHausfBa0ENRZ1EE2rlkUg6WMxLwWX7hAyFkZHGUoYzoEuAPwEywfr3cHPuCcZM8T4DRXtgmTl6tKYbq+eoX9mVCZxZG9bjNqbaz+xDwTJrw3hvBfo0Jq2lmdU3seScIEU5+T8Pe4H5Vzr5olq4QaSuaJZFlyxXlF5UqBkiUGemrXfMvVsnAYczRqV5eMHwxbMJ5DzzwALq6utDZ2Qmgf2Xb3XffDQCYPXs2Jk6ciNmzZ+Okk07C0qVL0dnZiSOPPBJ33XUXHnzwQSxYsKC2R1RGANYTbWy2yWYK/EDLwEMfehlZlVr4sABphqi5C5ROsDQDpr0bzAGx1KQ3I7WNl8dN+hUHBnOuyL3fdmoO/y2l89KoSJCJGEa5jZcHsWhytmhX2STOSumYX/s74OJ0SYblvQwO5ozp2+aWwRcjlFaQqrl0pp7ANUJq2NQi+DNZt4F5mDwUBInrK7RTfEkT7Yuc36Yo11et9U81071ZA+kbWL9WtMnIB42H8wwy5P1hXCXkyyRM1vDieZ7cz/1lvXv6MH7C8B7Xhw2JWrp0Kdrb22ufV65ciZUrVwIAbr75ZkyfPh0AsGTJElx33XW44YYbsH37dhx11FFYtGgR5s6dOyR2jzT0GflP5ozDc8HWLjj1+UsVmrUE3clmw6HZn01EQuE82hxsXSGSYUXE3Ob4Ds6GIpS/X3BSZn1Jd3ZL7SKCzoAv55mFbNprV/HmW7vSe22Fvnts5q06RJR8Lrc94/eh4SJDl+W99Jsj3ocGZXxbfEGXPJRfL+edsCYNzn2nntAi2BYH5flOYFJQrcmoodZ+Xc4b7D0zhNyRCRaFy6lJm4q3tOxpY32fddOjLMq4Vt17iffbhEP540MV8Dowg1h5x8D0VbH8igfxSts2nPmZP8ARbz7MaHF4YNiQqFtuuUWSmzx5MubPn4/58+fvY4tGKbwzi8gW/N7LEHh7aHlw9B9QbF81XnJ2lh0dVMio4k66aQdOw4duewMDotWDIDCy+p28LeTKNOYxCB8t4l8IEs7Q4GrU9wcxW1epPTqYG/LOhfB+RT5pK4kafb0nw675zTkcw3kAIz9hMCLWIHkNLTSgNgWIvrkateRh4tDC5e7LWrxkfUdPyNYreLJTFiOEwnnMLu6ltptWwnnWo0A9UYH+PJROFbpmNda/xYFX6pW5Jc/+ehNeWrsFAPDjK3+Bi79zltHg8MCIyonKaB7mqgj/iY66gUv1Yc9alJeR0iwjn0o+hd1t3/3gDeaBwSfSXrETpBxKzGOis2mnwZjHwBs0CfERoht+lIcNKtKeWuAjLB83qZDlEPG8GI3m5tDnSqSuyr0CkRFD4tFDZ90PAY7BHRVkNFfgJYML7xcxKfT7FT2ALPnc65cam3/wZ0vKX+R2DVTy+wZCTJXmLCE68Rj4R3vm/Ip2f29u82L1i66cM7nfvb2b2zXMkEnUGIP37FvLTc2KREGIDYVmQ7GX3NWPEEGq/6msqKsEXAFsB2Dm7RAjRg2HxELhjeig77TF+3jGRIpCWlI8R6OdNJzvZwtJucuhWT4ZW8vjXIDZmaQmNCAWGyscQGxb7t33xs/qK8vHHr+Qo8pr2ZCtOtelcJ7GouITEJHgKocie2aRe5rkeSVNKm8YI22l72GM5vykCV+XezE0MbbHiGpQX/2zr8Bty007Gc7IJGqMwU7g84T8rRAGXizGoYLPvPEyOvWZneU8BFtnOVSidczMmwPSKfFZPnPnFOS8AbhgO8tpYDfGcQ3R89KEzrvkRQsxjFL1qinGwhuhPBI7J4obXzYr7pX07bKVSeEup0kzryjg+fJvqe++9GQ09wO5UBRxXVGWYYH9uejvTHQ6KIsRIhJ43pnXWNm4038efLrsPaOCl1pKdgrYUvaihWXc5liM28wZpeZU6eWq94dx0bhm/YRWOM/fQMfoOjOJyhi2MLbbVx7YaGw9cM32RIWmQnYd9bwqyzaPjDWRtFs2qi7nE8wBYqD5cljOV4gYSFGXwM8bTXAO3KtwMonVlnAvXKIVGqhNj0joWWYDNfM4FpsqH95jalJddkXyGjJJ8WIoni/HOJMIBz2c5QbrbZLBHIHHoaSKEU7hhw5cp89MzIOLMBGmtgcmDfGd4kViWok8e55NYdmwJyrSEEi/X+Xl3md3zDH2LxwpyCRqjMH0JHmzgIAzgnlblJfHrKdflzpmmqtQ7OTdvCJ78FGcWjJIRxny1NTbc1kUMaY0u1U6edjjkzvBV7ikeHYea8drMwI62LkDnUhgTVITulcBUm3KuCTDqqs5MRxO07jn1YL/9WxjKoX/Bol3yRY2S7FFyqoChheedzn0HiGvpAlfF/NSF+C+OyW91ZKU2SJrj3qrLJtiX5TkNjnNSLAXJBlN+GLGqvFMojKGKayVeH5OlPHk1+LkrsLSZesSeVGrtB6zV+ooGwxjedeIdyW867ehp6jKG8T4DN4yQ5m9lwS9fBq7bWaSS3zoLSWEk/6mXqiE2EgJJ39YzGtuFIsNPr6orzPgGap5HI02TVDeU35I6e/DdJXuJ/mdg7ri3tmiWJD4UF3kXQ0QreizJbwStQYNL5rXx0geK2HSAMf2Pv87hpLiWXumR8trTCNPthTv1Bs687Smw+iB3L7SSSzv680kKmOYwCNI3n4cBuu3CFHVvhbeZFMhSuQ1tioJ+8ow4hOKPNEDcyX2UO/grONz6npIR1lsj3pzikJuC/531GbAKIVmeHNegzbIiO9+V0ruCoOKlhtmD3begE/MDd1TBebzFwhF0ghVyAsqGC/vPxabNMhEhMgGn1EmRzyvoftgkGrPW8ruO3sxAt+v1IcQ04NpA8LDpTyjPPRp2xSa3JbKreuRuuyaGdUwymBN3LMnKmPYwmP8zsNatbflJ3ygoWheMDwRe1GN67QjAZGhvXdoJhmXCZIM0qS0WqkkQjrvgF31wZzb4dsUdStwF1mJS4qDRcxVKC4TcwfXqiUDcNtLhhVIBpFxc6JAfx/hhy7kykj5O65g8TuWenDykAZQ41AO0aIeQIWcQ3jeGyKu1HVXa2wQ1gUU5CLt7W0z3mBgp/gBAhhIZFfCedRbZckG7CiXheQDiq3YnVVkVc0kKmO4wuNCRmK5R7TgTx/qL5vOooIvcmgmVGyPhvOshkBzFbzcI+qNtzsuJVeGdxa8w2U5DVyI227Z1F890CFZtrsDIozOGeVOHkLORpAYFEXEAdbOiXLvle2p8bcA2EtqSrocwyLEIOQ9EniIr4/d92pZymwvIBLOd1JssjyvzheUiLctEhr52eTClTJRfBzIDQ17AMu6rOZCv7PtvQR9RrmHXbCppsIWlqID1N3EL3njjTGWFJuo1y0X5C0OMoYPIg9n/+QhPnsoXivXD01buEx03xs2SFntNkq0nMkfD1ERz4MXzgsr8hK9SdvyakBSv5wHE/H41NX5EiHyQFQpm5x63iNGtogtSui4BPdeleRLYlGVbo56iHSGTKo1qAx4mlPLlnE5jfhs1WUaJSJFEddr54v5XkLStOvNoY9A/PmT4Mf6TV38WQiRSdIkMYWnINh9UWObbVbp9WiUgMHiS1V4KSQwoh/ZE5UxbOE9rE7CHiNRPlka+NeQNdrhhW49MlMyVLBDOMmELdw+6wUVYlBUU3JFsbbKH8t5Fmxqbpu31zD7YrVgkxJ28dik37iaE0UT58tScVJTCehyBxXjfsldr0sUrXJZ18CND4SVGib6GgNsejAvshrFIzIgG0LokSncKyUkFiJbYKqChMzyojltxrsGJ7UgMHkqeRPjLIpHnOO/TTnkp70QqWkYduTBz3XiJM0fh0qfM4nKGDZwnk4rnCc89zU9fsiKT3kC75swUzKuK54Act5daAUOHXuEPAR/0LfaDMymGWkLhVyYU6E0zVfaKxlry3veIzqqmKpU1L6vO/BQPkYIi8tJ6YBoPw9qWKl4jd32EOzz54oCTmtF4k2edzqYh/ySe5VVKiGZsl0x72U4Gbyup1RfjImZckp+EpznITRJcVq0/mR71rmhVk7uBu576D0sPKPCSG3lRMXDefzLh/pt85rrcQIhVkZ9P1eXmjXskEnUKIf7MJr7cZjEijzU5OEOEyV71hJQVydt7mBnNMgOwpWJDxk42WzTC3dZ5YUqoQhBaOA0FQccFLXxKRQ2c+qwjULr17n/KLiM3mg7mCtTEwkMPKSN0jUaarXbq4kaA7HvtYuQO4+8kmdGQP+tYuy8aBYZzAO6Gx+fir9zsT32goET78Jl6nB07ntsQUmIQrF31VSEgXeHESRO7swKkgfQuxOmKuYeozZF+ms2KS7pDPTbpkpU/faqhg1Wm8IK8eGKTKJGOwTG73uX/HoNeYxqegJvQoBgldSVZn9cXU2mYnfyHnlgg4HboZpmOuRBCG+wwZwSETYxl3I2+EqycljJNlce8MnMnLn2+nmIGDKKtOdfswkZ/XE4ezdLnbE1QNAVL1rdrCDxURwsAjHwjLcMCxFvpovJIEAA3TYte4mIJ1dkUeS9p2HUkpryF5Ruu7RSmLdT+rqDFs4z7gHRZ/WvtnHkGqlnjSXeUGIMOjzCMfyRSdQoh7fqwcuJYu5WR27AcxR5+G0btDK7cv3PRjsS1qAUbgDKoZLATHlAmbWRKQauCnkw5aX21pcYkCs14v8Z4A5UFyGJfntESuIqAaOqcRH/NzS8R25B1G0XU9AAAl7CEvF2SXVNhDD4gF2ceFfLQgJhVvbnovnp7Dl2r9VCcJyI+I2SNgvXteTzAv8LTZxUj1WtnL8Usfy3UDiPphbYJtne1LI5xgV+s8LhPGvMMPRZs3RD90jKgXKRSdQYg+U29TfgNKYPfXV5TwHIzCE4a6kW/6F16eHCoZmyIVOCmxNFRgNlwCh1gt6Uy1DkiLmdXJRDVRwvmi1Sbi9A2qzcHD+MRXQ5YnWZ+ADsonSrmFchoMwMN7s8xBjrBkTipIYMUkViF2BRfNLA7jvofacrsghc34r1vKt8RpEN5YzXf2f3neD3gRHFukgDZMzwooWeGU5qhAmd+xuWFZtC5Z+G/M6h9tzyiI5gOM+42cFV1VUjv9bU75f5k3vezHBDJlGjHC5p6ustMybLtQpYfIA81QGiVPcoB2YiTK3hji7vAWX3JDRHxGmHbpwozcw9ZSZcLsKqm2pC+TSKLskzROCSRElObJDe0jqtUXKiiCPKH4CZx6AmwwkGzUmB/XwGvVqeS8AYzG0JS0Edpb3MuLL4bxggy0yvONBJYVvSHvU4OjY1Gpoum+S+z4QgCV/YXW1LnVrVmojWN7BJCiFJtceTzkGN59exIeyJIpcErxNgkS2BfQ1TZBI1xuBtcWAcNlytwmJRe681MmMIvKg1ifDLUh7H4p6ocmdqj8ChcB4lBoHBNTZA+e0RZlATdvU4HWVssAu5otwBqmHEbzz3fAmek9Dl0KNS9YXcnCg2yy+3azdScW2zxCruQEZ0FcgdfX8YS4R72xsnr1ajvveIkHhifDiHxdBVcf6l1Yk7MUBeWcJ7yENWlxFzouhB5wFYZgX6IppaQFSC7V4/0FRRRx+TMl8l/yJhUV5xtWqPJe44klfnZQxXuA+jtxOsxZgM71TwxYLdiYa8TTFPlOXhUhJ76dJjp9cV0j/Ks3zLNscmOpuqBBaZu0QkNrgi7kWrKKPFXk2x9lxdjP/xsTzEoO2BmnsVnFm+QMioV8sdzGNDpztQ+yobg9Vc4EcXo5q2fOBeNTpYFcd8/k7wZ6Ykg+hd90iGed9dwsmICIutBQhnMFRXk2GTtYorWBCzJzzcw67YZNzz4qSptP1L1btu6Wzgkj0GwP1O5JmziNYIQSZRoxzRgx4hvkd769mviXmhIBFgUZSUuX84nYTQ2Vhm2jL2jFp21Fh5FoWPjUR5omNryItGECRkhgcmGCoRBhXGtLT8nTJCISpTLjAgau3ZfwPkO5aeF96Y/z2sEFWxrdDeYvY9YaGn0HcsC4WJT03OYFHKc2xImqXUSVgUDNz34ITHSmD0CKdpYuMeQEIAix8qgeRzJbWAbu9i6jDsNH+Oqqc7pLdUzSJDge5/AN7WOyOIRWUSNdrhPqxOOM96yE3nFNEX5EIRotR/iV00SJt0PhuZsnmdW3zAKLvsi7PIkMVGQYj4FDs5FORSQhKF9qiI16kaBNC9VwoUz5c7qFgjZ8CrUFalhLrci6S9oiwZzVluTnDQpPe0+Ow1N1iwZ7QspJA7bUPYvaKCYaVGAroMV6h33w1dIeITmjRETPLnV+RGkHM1vTMZS7qMv9W+QZmAxJ6F0iTUb86rGrpIiJGZ7uGNGVXPvpG8T9T4oTYgY/DRu6cXj97+NCYcNB7H/LdppWt+7NmeUvDt+0l5YLbR8ItKrpunlLsyaucWC/N4QpZxDqkJvfjE/a9s4EdDEt61AZsqUsdcHHxC45xjTaFtexZMyQOC4/ne65pXwci8thssXfGvycvsBeagRlGlZyboLS3qipNJW59vE4O0GjDgtrP4Ue1y9PmzQ+HeayrfeEOBx7wVgh6frDnOPXMi5r+q5IFQDkM3EPdEWR03V13v0+1xw6rgyVZ9yUyiMoYV1vzH01h9yxMAgPEHjitds07HVpLFB2ToxDk0ozYvBd5Uope6vQviips9OHA2SgyULOFKONRTFxtw7XP/nByKZIOrx2osIdcTIIR52J5aRS+aYY2lVyK4ribrWiUQKvFEYyzDbi/4+AbjqIK4ct+FZ9T9as16yNyNat175xIDp/UBJbV/vJZCtlO9RSEySSm0G9pSQbun7P0q6ioTwPKEoEajqOc1eriwY5+ZD1rUoXgtUbg3DfbpdJGScRyMx6vcbXaa9NDuT+Rw3ijEb5ZvqP395H0vlK5JjL9qlFedfwc+DpArS01gthMdhAy95gGbzt/Kfipuoi1dRUWJgSNn1A3uHxSwKyoDaIMrsaXREAHc3JyS4oIYbbysCxBsl7JoXbJFSL56T2tqyOAKtz0iRL0YVVMqtFy98Vw0sA/cc1IwSE1St+6p5MF1G2QQ2nO/g3IbKsJkxnNq0b6BiCi2F+u4pA22fLlbsxuMe3n9WiQQYRjjVDBvS9VQ6E8I+8N5RpllwwhAJlGjEMXBv6/H2RdKOPalv9yXA6xXYkDAKuMEK/wWFwlYobDhcF7VEjHc7Ea7CHRczFtFbPImm6S9YocadGIoHbOCwo2QZ370XhV/G/u+hwZqFGynIiUORcIu3qAZ0eWElViYp+I8NPUd/AvylcCqT/e5ksOIPugGtEUZkdSUdtUvN2LCjXZVvT8GBG1bKOcUvXa1fsj9fpRFEZDf2e8cimK0czB1uaoId+V5U0U5+fSEcjl9DoJEKXrJHAfsccS4UPXrWwueRgoyiRrl8FY9eE+nz6Kqff5maOzNqr+sgcc+QNJiY7cU5ilW0JbWcPMIMeBvdcUcgF3y4BhDNBXDTwUiErDd0usNdGymXFQXGuh49YKiuFDoNtRPtQ/8NkFlcTSaE1WWDnjkarq4XfQZDRFqVl8h+qQ5apgY4u43LeLNIV7CYnsD12s75pdMarw9nk9YteWEyYBrV9mmokxg0hBLdPS8VfZ7ryTO297Ggg7jbD2TDIXaiZAvwxFlcSh/HDG33qljT1cPdm7eZTQ69MgkahSi9LL0RBi/RXAspezlCcXWQwRLJk/FjsTvBFwbVI8P6+TdHYctez1OY/WTXjgv5oIJwGmP34dCi3Qw5zNl3l7xms3IpDCqCtGrEI1QucYzJqKY5N4npXpjP63XnhJW4h4RV65BVTzWWv5IB+N0TxudyBQvhog+CV8XPYWhn0YiLPTA7YKMdw+KBGmgrVDelG0U9Yobo3l0/mWSoWr5X+uSUS18wZGJkCi36Vv++h7821/djecf3SQ0sH+RSdQoRPFd8Y55sc7Os4iRF84b6CwJQi9jCEzGeFvZIZxFSIeo9guSdovtsY6rrMxNtLVkSk2wwU7xtBn6XL3+uBMYVGoihEgGk2Vsm1gn7yacKHtABcmycb9YIrFrLvPI0QHY0cVn5MIzU2hPMsoFGxhDppOYUZUJqZMG8z5UwEgb8zhSAij8zi4RYWrrCh2jiIirgHoKje9Xk1EmBMJv2OheUlY6hKnDsClMlPjFatVfiWceK2bJucnnTp1dHd2oVoH/+PwvTauGEplEjUYUflXvYEdvdV7VfyHs5975o/wx6GwiL5xbzxozqKuddSTsifbyHpic0J432Pn13Ukk9UM5378S6eMljwh1MRkDgXnTtfYaDbVWQh6yak2ID4gKm/QILrHLJZyR++CH1waeX2cwF37oUk5UKXxTrMBJRsmbqHgoAs8D3PvgN+ffU+u1IM8xa8/NRauy7+fYJjnIQu+O1Z7wO7uCfOPfsq5ojpxDtOgiEHZ6QrG5iOfSSoYPnygQKGMdvjKWGLq9HFxu1bDDmN/i4K/+6q/w2GOPYdy4/q0A3vjGN+L//b//BwDYunUrPve5z+FXv/oVWltb8dd//dc4+eSTh9JcCcUXPEaiqlX/RTIfYEaWgkyJ1GGNtFSAXpdc2SM19+bYMsG8B0aQYh3ggC7TTR4iWsz4ohzr5Z1mSLky8DCCwYVcMcN2+nz4uqyROpTfUm7L+Q0HSI0nxxRU7esBsqzlyDFdJUW2WQHySkmN0LZ3r6rGhxABLMF2q9IwuNego812yRUFXGVRs6TXi9jXT4TjN6JCNv4t3wZue9EjpxwJJYXLS57zcjt7lfgVzb7ZnyC4JtEuPUKOBgS9biLvEzWycemll+I973mPV3711Vfj1a9+NZYtW4bVq1dj0aJF+O53v4upU6cOgZU6iu+KvzrPESazB/UhNlcpFfWU//Auue94vYqvt0IO2GQz89B3oHkPgbHAlDcGuwrc2W15SspnwYRBODI0n6vszmkIoUG6qdyckkygzcaEfCeaIRcMa5L2OCkV7qkYvlEiPP1tFgWtL+h8TnneiaoQmdTYlj+gy3ArGO15OY4CERFZIrWFhs4CdtGJHxw5q72iSPSdJ78x+frBCELwBwuTL3NjzeDYYKvzIybDFzmcR9DZ2YlVq1bh4x//OCZOnIh3vOMdOPbYY3HfffcNtWkCGvBE1f5TLPR3LK+yty7wrFeDL1y9rZrVVsdEOi5KfEpu72JnU5B3whtm7oo3IBLSBqcDt9zoofE30sk5Ir6goSs4eXfCmpYjQE0SZs62cnNlISm/XvQqKB5AlrTr2W7qMsqcayGHY1BXxAET1CboUoegkpzwAHoeMmOw9uRKRKRq6uFeO9YeIQ+OBvraszBqiAiz+8BmIJXQfbDbo8+74WVyYfWP1cj1IAIEi+YzWsODwtScccnaFHq4Ylh4ojo7O3HTTTdh3bp1WLduHTo6OjBv3jxcdNFFpuz111+PlStXYvv27TjqqKNw/vnnY+7cucntf+UrX8FXvvIVzJo1C5/61Kfwute9Ds899xwmTZqEww8/vCY3c+ZMbNiwIbmd/YWSJ8pNLFeS/AyddOZidGruNXsmYpANtuJl4LoaXrN0hHJXCIeSw4eRGWBdoaHLFTOZiHE9pCtAEqmHjA6agdm7a1el0q+HfEHPW2AMZBXPq1CUKQ9QzJaSUZEBMUw4i7qIqsBgXg3ZbjkcRa9J6Rnd+2/VMTdMMmxlCi/wiIEhIx07tFeJmQPo3qqo667cHn9X689zlXxB33R78gR2rmbgES2jTiaZL1TZ4qDsqTfe+aKOFkNJw/22UVawxbvMuJY/DJU/ZxLVGDo6OnDbbbdh1qxZmDNnDpYvX05lFyxYgMcffxyf/OQn8drXvhZ33nknFi9ejL6+Ppx55pkNt/1nf/ZnOProozFu3Dj88Ic/xN/8zd/g29/+Nnbt2oWDDjqoJHvQQQdh69atDbexv1HebNMhSGI4zydL9kM92OE8V6A0sFidQMEGpsME7eTroyt1mgQGlfr3CpE21lEqIQlhlg/tPhTHcnXQDLr6IwOinyUcMSrQnr+fD3kOS7oaY6/+dhAxw8jDYIkVSW5179EpzrvAJw0OA4yQV9cu8z4EPDDBo3uqpX9MIbqPUkmWMQPfVE+EETtEiLehK/gbkskFf3fK+VVsOxIl5Kds7xKdzBnPk+0ksiq7QqTMYFHhNuzPsit1GGBYkKhp06bh9ttvR6VSwdatWymJuv/++7F69WosXLgQZ5xxBgDgxBNPRHt7O6699lqcfvrptQTxSy65BGvWrDH1nHfeebj44osBAMcdd1yt/CMf+Qh+/OMfY82aNXj1q1+NnTt3lurt3LkTkyZNot9j06ZN2Lx5c+3zk08+CQBoa2uL3YJBxcbOF7CzuwsAML7Sgp7uOnN6pn0CNne31z+/dCBe2rYZW7p31Mo2PPMUXnhlEzZ3F/bk2LYTa9euxaZdL6K7u6dW3LdtB9auXYsXXnkWm7s3lux4+oWDUF27E+0dz2Fzd0fp2vObgLVrx2PTM9tq9hRtffqFg9G3dgd2vLyrdv3Ard3Y3P0KAKBl6y6sXTsVAPDsS8/WZNraD6rLb+nG2rWTAQCb2urtPLepBT27e7G5+yUAwJNPr8Om3QcDAF7a8Ty2du9EpaWCDc8+Vavz7MbxmLK2uvfventPP7se7duew+bu7QCAJ9auRcv4FvR099ZkWrbtAto763WePwQ9a/vl++tu66/75BPYvLsd3d096NoxEWvXru236dktdds3TkDn1t112zesw9Rd/WR/8+529PVW0bNzO55cf0itzsRX9tTuw3Mbn6mVb3j2Kby04/nabz/Q3tbnd9RkXtgE9DxXv3fPtk/ApLU9Bdv7f9d1T67DK7vb0ddXRc+O7TVdz7zYXv9tXpiCHZu7ap/XP7seOyf2/56bdr+I3u4+7NkxGeufPrje/uY+rF07of/vV57F5u6X+7/3+if3Pldb+ttftw4HHnwAtr1Uv88vvNKH7hc6ap+feXEyxq3tfy827nwBO7p3YcK48Xuf6xfQ1b0HnTsn1Gxve+Gluu0vHoRtm+u6n3r6KbzSczB6unrqz++2Ljy5fmLt84St3Vi7tv+3eX7zM7XfbP3T/ff9ldoz8wRQAV5+Zmvhdx6PnRMONu978Rldu3YtNne3o9pXRc/2+n1/9qXn6rY/vx5bXq7/phvansKOA/r7qYGy6vadeKrtwMI7UsXatf3Dw4tbnq29d0+ufxIvbX++9ruvfWItxk8Y5z0zO8ZPLrR/MKpr+/vSlztfQGf3bhzYdUD/fe9qR093L3bvmFS/74Vn5pkXDsamLdtqfcuT69fh4G2TsMe5709tGG8+M+59H+gbJ+waX2tv0zP1Z+T5TeOwpa/+Gz79wkHA2s7++769/pute2pdTeaALbuxdm1///FM+4uF5/0QbNyytWb7U+ufxMHb+8ePTV0voqe7D3s6J6HthZbCMzoJB6zdvdeWuu1PP7e+/n237sbatVP6v+uWZ2v99PObxnn3/KVn689Ud+ckbO/etbediZiwtrvUHwzggJZxWLt2LV58brN3baBfenFr/d0bwJMb1uHFLc+Uyjt3TsD6Zw7y9LQ9P6lUNn5LFzZ3b6193rXjQHR274aFgd9tf2HGjBmYOHEivV6pDrOT/rZu3Ypzzz3XDOddddVVuOuuu3D77bdj/Pg6/7vzzjtxxRVX4Gtf+xqOP/74ptqfN28ePvnJT+KEE07AOeecg3/7t3/D7/7u7wIA5s+fj/e85z347//9v5t1v/Wtb+HGG29sqv2MjIyMjIyM4YHrrrsOb3jDG+j1YeGJUrFhwwbMmDGjRKAAYNasWbXrjZCo7du34/HHH8cJJ5yASqWCH/3oR3jllVfwlre8BZMnT8Y73vEO/NM//RMuueQSPPTQQ1i3bh0WL15M9Z177rk49dRTS/rb2trw+te/HhMmTGjw23K0tbVhyZIlWLBgAWbMmDFoekcb8n2KI9+jOPI90pDvUxz5HmkYTvcp1v6IIlEdHR044ogjvPIpU/pdm9u2bWtIX29vL775zW/imWeewfjx43Hsscfiqquuqun79Kc/jSuvvBLnnHMOWltbcfnll+PQQw+l+lpbW9Ha2loqO+mkkxqyqRHMmDEjyJAz+pHvUxz5HsWR75GGfJ/iyPdIw0i4TyOKRAGR1UIN4tBDD8V1110XvP7FL35x0NrLyMjIyMjIGD0YUftETZ06FR0dHV759u39yX6HHHLI/jYpIyMjIyMjY4xiRJGomTNnoq2tDT09PaXy9evXAwCOOeaYoTBrv+Owww7DvHnzcNhhhw21KcMa+T7Fke9RHPkeacj3KY58jzSMpPs0olbnPfDAA7j00kuxaNGi0uaaf/M3f4OnnnoK3/ve92pbHGRkZGRkZGRk7EsMm5yoBx54AF1dXejs7N+To62tDXfffTcAYPbs2Zg4cSJmz56Nk046CUuXLkVnZyeOPPJI3HXXXXjwwQexYMGCTKAyMjIyMjIy9huGjSfqwx/+MNrb281rN998M6ZPnw6g/9iX6667rnTsy//8n/+zqWNfMjIyMjIyMjIaxbAhURkZGRkZGRkZIwnDJpyXEce+OHx5JOCRRx7B/PnzzWvXXnst3vzmN9c+r127Ft/4xjfw2GOPYdy4cXjrW9+KT33qU+b+Yrfeeit+8IMf4MUXX8Rhhx2Gs846CxdccIG3metwRCOHdu+Le7JlyxZce+21uP/++9HV1YVjjz0WF198Mf7gD/5gn33nRqHeo8997nNYsWKFV/+oo47Ct7/9ba98NN2jhx56CHfccQfWrFmDjRs34uCDD8Yb3vAGzJs3z9ufZ6w+R+o9GsvPEdB/9NJ1112H9evXY+vWrTjwwANx1FFH4QMf+ADe8573lGRH07M0/EeLjBoG+/DlkYZPfOITeOtb31oqK67IbGtrw/z583Hsscfi8ssvR3d3N771rW/hL//yL/Gtb32rtFHqP//zP+OGG27A+eefj5NPPhmPP/44rr/+emzatAl/8zd/s7++UjLUQ7v3xT3p7u7GJZdcgh07duB//a//hVe96lX4wQ9+gP/9v/83rr76avz+7//+Pv72Gho52PzAAw/ENddc45W5GG336Ec/+hE6OjrwR3/0Rzj66KOxdetW3HzzzfizP/szfOlLX6oNQGP5OVLvETB2nyMA2LFjB373d38XZ5xxBlpbW9HV1YU77rgDS5YswYsvvoiPfexjAEbhs1TNGBH4+c9/Xp0zZ071jjvuKJX/9V//dfUDH/hAtaenZ4gs2/d4+OGHq3PmzKmuXLkyKLdw4cLqOeecU92xY0et7MUXX6y++93vrn7961+vlW3durU6d+7c6lVXXVWq/8///M/Vd77zndUNGzYMpvn7BH19fdW+vr5qtVqtbtmypTpnzpzqDTfc4Mnti3vy7//+79U5c+ZUH3300VrZnj17qhdccEH1E5/4xGB9xaah3qMrr7yy+p73vCeqbzTeo1deecUr27lzZ/X9739/9ZJLLqmVjeXnSL1HY/k5CuGTn/xk9YMf/GDt82h7lkbUPlFjGatWrcKkSZNw2mmnlcrPPvtsbNq0CY899tjQGDZM0NPTg5///Od417vehYMOOqhWPm3aNLz1rW/FqlWramUPPvgguru7cfbZZ5d0nHXWWahWqyXZ4YpKpRLdvX9f3ZNVq1bhqKOOwlve8pZa2fjx4/Ge97wH//Vf/4WXX3652a83KFDuUSMYjffoVa96lVc2efJkzJgxAxs3bgSQnyPlHjWC0XiPQpg6dWpt5fxofJYyiRohUA5fHu24+uqr8e53vxvvfe978ZnPfAa/+c1vatdeeOEF7N69u3Y/ipg1axaef/557N69G0D9Xs2cObMk19raiqlTp46ae7mv7sn69eupzqKukYTdu3fjf/yP/4HTTjsNH/zgB3H11Vd7Z3GOlXu0Y8cOrFu3DkcffTSA/BxZcO/RAPJzBPT19aGnpwdbt27FD37wA/ziF7/ARz/6UQCj81nKOVEjBIN9+PJIwkEHHYQ/+qM/wlvf+lYccsgheP755/Hd734X8+fPxxe+8AWccsopteOArKN/DjnkEFSrVWzfvh0HHnggtm3bhgkTJmDSpEmmrHW00EjEvron27Ztqz13RYzUZ/HYY4/FscceW8uv+9WvfoXvfe97eOihh/DNb34TkydPBoAxc4+uvvpq7Nq1CxdeeCGA/BxZcO8RkJ+jASxduhTLli0DABxwwAGYP38+3v/+9wMYnc9SJlEjCIMZmhhJeP3rX4/Xv/71tc8nnHAC5syZg3nz5uHaa6/FKaecIulR799Yus+p9yRUb6Tdvw9/+MOlzyeffDJe97rXYeHChVi+fLl3nWE03KPrr78ed9xxB+bPn++tzgthLD1H7B7l56gfF1xwAc455xxs2bIFP//5z3HNNddg165d+OM//mOp/kh7lnI4b4QgH75cxpQpU/D2t78dTz31FHbv3o2pU6cCsGcc27ZtQ6VSwcEHHwyg/151d3ejq6vLlB0t93Jf3ZNDDjnE1Pn/t3e/IU21bxzAv2eNiWZbbOLCQZAoqCGJFv7DJaw0Zb7IxBLnzKSkkAyCpKhpviipFxVCSSBTsUgRFQKNrDShIgJNxAqiSIlUhsvQMmrq78VD52n5pzi/Z7Nt3w8I7pz7Pp774nJcO+feuX/k4lKfCD2NXq+Hv78/hoeHxW3eHiOr1YrGxkYcPHgQe/bsEbczj/61XIyW44t5pNVqERERgcTERBw/fhxZWVm4fv06pqamvDKXWER5CC6+vNjCT8+JDQkJgZ+fnxiPn719+xY6nU78qvGPe+y/tp2cnMSnT5+8JpauikloaCjevHmz6Jg/tv06h8FTLSwsQCb79y3Sm2NktVphtVpRVFSEgoICp33Mo3+sFKOV+FIeLSUyMhJzc3P48OGDV+YSiygPkZKSgtnZWTx8+NBp+507dxAUFISoqKhVOrPVMT09jSdPniA8PBx+fn6Qy+VISkpCX1+fuP4iAExMTGBgYAB6vV7cFh8fD4VCga6uLqdjdnV1QRAEpKSkuG0cruSqmOj1eoyOjjp9I9ThcKC7uxtRUVEICgpy4ajco7e3F1+/fnX6v/LWGDU0NMBqtcJsNqOoqGjRfubR72O0HF/Ko+UMDAxAJpMhJCTEK3OJc6I8hC8vvlxVVYXg4GBERERApVLh/fv3aG5uht1ux8mTJ8V2Bw4cwKFDh1BeXo78/Hx8+/YNdXV1UKlU2Ldvn9hOqVTCbDajrq4OSqUS27Ztw8uXL1FfXw+j0bjoGzd/qz9ZtNsVMcnMzER7ezssFgtKSkrEB9uNjo7i0qVL7gzBb/0uRlNTU6iqqoLBYIBOp4MgCOKE4E2bNsFoNIrH8sYY3bp1C3V1dYiPj0diYqLTbScA4moAvpxHfxKj8fFxn84jALh48SICAgIQGRkJtVqNqakp9Pb24sGDB8jLyxMfoultucS18zyIry6+3NTUhJ6eHoyNjWF2dhbr1q1DdHQ0TCYTIiMjndr+WE5geHgYa9asQWxsLI4cOQKdTrfouK2trWhvb8f4+DjUajUyMjJgNps9YtkX4M8X7XZFTOx2u9MSC+Hh4SguLsbWrVv/+4H+H34Xo8DAQFRXV+P169f4+PEj5ufnodVqkZKSgoKCAnF+xs+8KUZHjx7F8+fPl93f19cn/u6refQnMZqenvbpPAKAzs5OdHZ2YmRkBDMzM/D390dYWBiMRuOyy754Qy6xiCIiIiKSgHOiiIiIiCRgEUVEREQkAYsoIiIiIglYRBERERFJwCKKiIiISAIWUUREREQSsIgiIiIikoBFFBEREZEELKKIiJaQmpqK1NRUlx2/vr4egiDg3bt3LvsbRORanrG+BRGRm129enW1T4GI/nIsooiIlhAVFbXap0BEfzneziMin1JZWQlBEDAwMIDs7GwolUqoVCqYTCbYbDax3a+386qrqyGTyXD79m2n4+3fvx8BAQEYGhoSt927dw8GgwFKpRIBAQFITk7G/fv3XT42InIvFlFE5JN2796NsLAwtLa2orKyEh0dHUhPT8f379+XbF9eXo6MjAwUFhZiZGQEAGC1WtHQ0ICamhpER0cDAJqampCWlgalUomGhga0tLRArVYjPT2dhRSRl+HtPCLySdnZ2bhw4QIAIC0tDVqtFvn5+WhpaUF+fv6i9oIgoLGxETExMcjNzUVtbS1KS0thMplQXFwMAPjy5QvKyspgNBrR3t4u9s3MzERsbCxOnTqFp0+fumeARORyvBJFRD7p10IpNzcXcrkcPT09y/bRaDRobm5Gf38/kpKSsHHjRtTW1or7Hz9+DLvdjsLCQjgcDvFnfn4eu3btwrNnz/D582eXjYmI3ItXoojIJ23YsMHptVwuh0ajweTk5Ir94uPjsXnzZgwODuLw4cNYu3atuG9iYgIAkJOTs2x/u93u1IeIPBeLKCLySePj49DpdOJrh8OByclJaDSaFftVVFRgaGgIcXFxsFgsMBqNCA0NBQAEBQUBAGpqapCQkLBkf61W+x+NgIhWG4soIvJJN27cQFxcnPi6paUFDodjxQdsdnd34/z58zh9+jSOHTuGmJgY7N27F48ePYJCoUBycjLWr1+PFy9eoLS01A2jIKLVxCKKiHxSW1sb5HI5du7cieHhYZw5cwZbtmxBbm7uku3HxsZgMpmwfft2VFRUQCaTobm5GXq9HidOnMDly5cRGBiImpoaFBYWwm63IycnB8HBwbDZbBgcHITNZsO1a9fcPFIichVOLCcin9TW1oZXr14hOzsbFosFWVlZuHv3LhQKxaK2c3NzyMvLgyAIuHnzJmSyf946ExIScO7cOVy5cgUdHR0AAJPJhJ6eHszMzKCkpAQ7duxAWVkZ+vv7YTAY3DlEInIxYWFhYWG1T4KIyF0qKytx9uxZ2Gw2cQ4TEZEUvBJFREREJAGLKCIiIiIJeDuPiIiISAJeiSIiIiKSgEUUERERkQQsooiIiIgkYBFFREREJAGLKCIiIiIJWEQRERERScAiioiIiEgCFlFEREREEvwPZ+CCLbmhvy8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot weights directly\n", + "# Note: for extended sources the weights also need to include the pixel area.\n", + "plt.semilogy(skymap[:]*pix_area)\n", + "plt.ylabel(\"weight\")\n", + "plt.xlabel(\"pixel\")\n", + "plt.ylim(1e-50,1)" + ] + }, + { + "cell_type": "markdown", + "id": "d523478a-c6fe-4905-90d4-957554ab619c", + "metadata": {}, + "source": [ + "## Setup the COSI 3ML plugin and perform the likelihood fit\n", + "Load the detector response, ori file, and precomputed point source response in Galactic coordinates:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a3508cb-12a5-4174-8171-422960718cde", + "metadata": {}, + "outputs": [], + "source": [ + "response_file = \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "response = FullDetectorResponse.open(response_file)\n", + "ori = SpacecraftFile.parse_from_file(\"20280301_3_month.ori\")\n", + "psr_file = \"psr_gal_511_DC2.h5\"" + ] + }, + { + "cell_type": "markdown", + "id": "8bc970eb-4482-4196-9340-1a113a962a39", + "metadata": {}, + "source": [ + "Setup the COSI 3ML plugin:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1b2ac4e3-fe0f-4ca0-b65a-1cfcf9a143e0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... loading the pre-computed image response ...\n", + "--> done\n", + "CPU times: user 1min 55s, sys: 37.4 s, total: 2min 32s\n", + "Wall time: 2min 49s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# Set background parameter, which is used to fit the amplitude of the background:\n", + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "# Instantiate the COSI 3ML plugin\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = response_file, # detector response\n", + " data = data_combined.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = ori, # spacecraft orientation\n", + " nuisance_param = bkg_par, # background parameter\n", + " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", + " \n", + "# Add sources to model:\n", + "model = Model(src1) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)" + ] + }, + { + "cell_type": "markdown", + "id": "49c2c0fb-6a6f-42b3-b940-8d7a5e75c45a", + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "source": [ + "Perform likelihood fit: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "371f159b-dfa8-4475-9aec-679dc6aa91cb", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
11:55:08 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641391;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11475;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", + "\n", + "WARNING RuntimeWarning: invalid value encountered in log\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=619529;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819028;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 1 / (cm2 s)\n", + "background_cosi (9.32 +/- 0.05) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "
1.00-0.40
-0.401.00
" + ], + "text/plain": [ + " 1.00 -0.40\n", + "-0.40 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -1.527559e+07\n", + "total -1.527559e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -3.055119e+07\n", + "BIC -3.055119e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 6min, sys: 3min 20s, total: 9min 21s\n", + "Wall time: 1min 36s\n" + ] + }, + { + "data": { + "text/plain": [ + "( value negative_error positive_error \\\n", + " gaussian.spectrum.main.Gaussian.F 0.046951 -0.000025 0.000025 \n", + " background_cosi 0.932137 -0.004667 0.004841 \n", + " \n", + " error unit \n", + " gaussian.spectrum.main.Gaussian.F 0.000025 1 / (cm2 s) \n", + " background_cosi 0.004754 ,\n", + " -log(likelihood)\n", + " cosi -1.527559e+07\n", + " total -1.527559e+07)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time \n", + "\n", + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = False)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "d7ec9390-e6b4-47ec-be71-c143bc76d7c8", + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "source": [ + "## Results\n", + "First, let's just print the results.
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4d1df8b6-a464-41b2-a1cb-2b7d770a7313", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 1 / (cm2 s)\n", + "background_cosi (9.32 +/- 0.05) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "
1.00-0.40
-0.401.00
" + ], + "text/plain": [ + " 1.00 -0.40\n", + "-0.40 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -1.527559e+07\n", + "total -1.527559e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -3.055119e+07\n", + "BIC -3.055119e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * gaussian (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 359.75\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: -1.25\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 5.0\n", + " * desc: Standard deviation of the Gaussian distribution\n", + " * min_value: 0.0\n", + " * max_value: 20.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * Gaussian:\n", + " * F:\n", + " * value: 0.046951164320587706\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}\n", + "\n" + ] + } + ], + "source": [ + "results = like.results\n", + "results.display()\n", + "\n", + "# Print a summary of the optimized model:\n", + "print(results.optimized_model[\"gaussian\"])" + ] + }, + { + "cell_type": "markdown", + "id": "2990c92c-d12d-40a5-ab93-6402345444b3", + "metadata": {}, + "source": [ + "Now let's make some plots.
\n", + "Let's first look at the best-fit spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cf7f47cf-6696-4dfa-949a-307160ccd990", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG2CAYAAACu3oj0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoIElEQVR4nO3deVyU5f4//tcsDAzbgICCCu65Jy6lprhramaLPeyYaamorWYetVMZmnnM6iTf+pXkQcTsk9WpNC23MrEs99IsFVeEXFDWYRkGmJn79wfO7YwMCMM9K6/n4+HjDPd93fd1XcO57e11Xff7kgmCIICIiIiIHE7u6gYQERERNRYMvIiIiIichIEXERERkZMw8CIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy83odfrcfr0aej1elc3hYiIiByEgZebyMzMxMyZM5GZmenqphAREZGDMPAiIiIichIGXkREREROwsCLiIiIyEkYeBERERE5idLVDSAiIiLnMhqNqKysdHUzPIqPjw8UCkWD78PAi4iIqBEpKSnBpUuXIAiCq5viUWQyGVq2bInAwMAG3YeBFxERUSNhNBpx6dIl+Pv7IyIiAjKZzNVN8giCICAnJweXLl1Chw4dGjTyxcCLiIiokaisrIQgCIiIiIBarXZ1czxKREQELl68iMrKygYFXlxcT0RE1MhwpKv+pPrOGHgREREROQkDLyIiInKZ1q1bo1OnToiNjUXnzp3x2GOPobS01O77rVu3DmfOnKnx/IEDB9C9e3f07NkTO3fuxNixY3H+/Pk6XSsFBl5ERETkUl999RWOHTuGkydPoqioCOvWrbP7XrcLnj7++GNMnToVR48exb333ott27ahXbt2dbpWClxcT0RE1Eh98+qv0GnLHXZ/f40vHvz3gDqXLy8vR2lpKUJDQ8Vj//nPf/C///0PBoMBkZGRWL16NaKjo/Htt9/i1VdfhVwuh8FgwL///W/k5OTgyJEjmDNnDhYtWoTly5dj7Nix4r1WrFiBL774Av7+/vj000+xZ88exMbG4rvvvsOBAwdqvVYqDLyIiIgaKZ22HLp8xwVedfXII4/Az88PGRkZ6N27NyZOnAgA2LBhA86cOYP9+/dDoVDgk08+wXPPPYfNmzdj0aJF+Oijj3DPPffAZDKhqKgIISEh+L//+z/Mnz8f48aNq1bPv/71L6Snp6NPnz547rnnrM7Fx8fXeq1UGHgREXmoMm05Lh3PRXTPCPgFqlzdHPJA/hpft7j/V199hW7dusFgMGD27Nl46aWX8O677+Kbb77BkSNH0Lt3bwBVecjMqRyGDx+OuXPn4pFHHsGoUaMQGxvrqG5IioEXEZEHKrxSgq1vHESZtgKB4X6477V+CIpgXiaqn/pMAzqDUqnEhAkTsGDBArz77rsQBAGLFi3C9OnTq5VduXIlTpw4gbS0NDzxxBOYPHkyFi5c6IJW1w8X1xMReRhtdim2/fsQyrQVAICSXD22LTuI0rwyF7eMqOF2796Njh07AgDGjx+PVatWIT8/H0BVAtijR48CANLT09G1a1c899xzePrpp3HgwAEAQHBwMLRarV11N+TaumLgRUTkQQwVRux48zB0BdbrcopzyrDjrSMwGUwuahmR/R555BHExsaia9euOHXqFN577z0AwJQpU/D4449jyJAh6NGjB2JjY5GWlgYAePnll9G1a1f07NkTn3zyCZYsWQIAmDVrFpYuXYrY2Fhs27atXu1oyLV1JRO4S6ZbOH36NGbOnInk5GQx0iciutWFA1ex+/1jAIDQ6EAMebYHfkw8iqJrOgDA6H/1Qcs7I1zYQnJner0eGRkZaNOmDfz8/FzdHI8i1XfHES8iIg+ScShb/Nzv8c4IiwnGXZNu/mMt4+A1VzSLiOqIgRcRkYcwlBvx99EcAIBvoA+iujQBAET3iIDSt+pNr8wj2TAZOd1I5K4YeBEReYi//8iBodwIAGh9VzPIFVV/hSt9FYiOrZpe1BdX4uqpfJe1kTwDVxnVn1TfGQMvIiIPcdFimrHN3ZFW59r0vflzxsFsENlizoFVUVHh4pZ4HvN3Zv4O7cU8XkREHsBQYUTW79cBAL4BPmjeNczqfHRsBBQ+chgrTbh4+BrumdYVcrnMFU0lN6ZUKuHv74+cnBz4+PhALuf4S12YTCbk5OTA398fSmXDQicGXkREHuDyn7mo1FdNM8b0bgq50vo/mD5+SrSMjUDm4WvQF1Xg2ul8RHUOs3UrasRkMhmioqKQkZGBzMxMVzfHo8jlcsTExEAma9g/aBh4ERF5gOzTBeLnVr2b2SzTqndTZB6+JpZn4EW2qFQqdOjQgdON9aRSqSQZIWTgRUTkAXIv3Mym3bS9xmaZpu1DLMoXObpJ5MHkcjnzeLkIJ3eJiNycYBKQm1EVSPk38YV/qO3/YGoiA+Cjrlr4axmoEZH7YOBFROTmiq7pUFlmAABEtLE92gUAMrkM4TfOl+broSssr7EsEbkGAy8iIjeXYzF6Fd625sALgBh4AUBuBke9iNwNAy8iIjdnOW0YXsuIV9X5YJvXEZF7YOBFROTmLEeuLAMrWyxHxMzrwojIfTDwIiJyYyaTgLyLVQFUYLgf1BrfWssHN/OHyr/qhXWOeBG5HwZeRERuTHu1VEycertpRqAqQaa5nK6wHKUFeoe2j4jqh4EXEZEby63Hwnpb5TjqReReGHgREbkxewKviLY314HlnGfgReROGHgREbmx/L+Lxc/hrWpfWG8W1vpmgFZwqUTyNhGR/Rh4ERG5Me3VUgCAX5AP/IJVdbomMEINhY/8xvUMvIjcCQMvIiI3VVFmgK6gKvt8cFRAna+Ty2UIbuYPACjK1sFkNDmkfURUfwy8iIjcVFF2qfg5pB6BFwBobpQ3GQWU5JZJ2i4ish8DLyIiN2WeZgRuBlJ1ZVlee6W0lpJE5EwMvIiI3FThlQYEXs1vli+8ysCLyF0oXd2A+tLpdFizZg3S0tJQXFyMmJgYTJ48GcOHD7/ttQUFBUhKSsL+/fuh1+vRvn17xMfHo3fv3mKZ0tJSfP311zhy5AiysrJQVlaGyMhIjBo1Co888gh8fa2zRhsMBnzyySfYvn078vLyEBUVhYceeggTJkyQvO9E1LhYTjXWO/CKtBjxYuBF5DY8LvBatGgR0tPTMXv2bERHR2PXrl14/fXXYTKZMHLkyBqvq6iowNy5c1FSUoLnn38eoaGh2LRpE+bPn4/ExETExsYCAK5du4Yvv/wS9957LyZOnAi1Wo3jx48jNTUVR44cwcqVKyGTycT7rly5Et9//z1mzJiBTp064dChQ3j//feh0+kwZcoUR38dROTFzCNeMhnExfJ1ZTnixcCLyH14VOC1f/9+HDlyBAkJCRgxYgQAoFevXsjOzkZSUhKGDRsGhUJh89qtW7ciIyMDq1atQrdu3QAAPXv2xPTp05GUlITVq1cDAKKiovC///0ParVavLZ3797w8/NDUlIS/vzzT9x5550AgIyMDGzduhUzZ87EpEmTxHsWFRVh/fr1eOCBBxAcXLe8O0RElgRBEEe8qtJD2P67rSZ+gSr4BflAX1wJbTYDLyJ34VFrvPbu3Qu1Wo0hQ4ZYHR87dixyc3Nx8uTJWq+NiYkRgy4AUCqVGDVqFE6dOoWcnBwAgFqttgq6zDp37gwAuH79utU9BUHAmDFjrMqOGTMG5eXlOHjwYL37SEQEVO2zaN6jURMVaNc9zCkodPnlqNQbJGsbEdnPowKvjIwMtGrVCkql9UBdu3btxPM1uXDhgliuvtcCwO+//w4AaNOmjVV7QkJCEBYWVu975ubm4vTp0+KfzMzMWusnosbF8k3EkOb1W98lXhfF6UYid+NRU41arRbNmzevdjwoKAgAUFRUVOO1RUVFYrn6Xnv+/Hl89tlniIuLswretFqtzalEtVoNHx8faLU175G2ZcsWrFu3rsbzRNS4WU4PBkfWb32XmeaWwCu8Td32eiQix/GowAuA1cJ2Ka+t6dzVq1fx0ksvoWnTpnjppZckq2/8+PEYMGCA+HNmZiaWLVtWr/sTkfeyHvGyb6rRcoqSI15E7sGjAi+NRmNzFKm4uGoT2doWsgcHB9sc1TJfa2s0LDs7Gy+88AIUCgUSExOr3V+j0eDcuXPVrisrK0NlZWWt7QkPD0d4eHiN54mocWtI8tSb190cKWPgReQePGqNV9u2bZGZmQmDwXqR6IULFwBYr7+yde358+erHTcfa9u2rdXx7OxszJkzBwDw3nvvoWnTpjbvWVhYiLy8vHq3h4ioNuZASemrgH+o721K2xbczB/mgfdCZq8ncgseFXjFxcWhrKwMP/30k9XxHTt2IDw8HF26dKnx2kGDBiErK8vqzUeDwYAffvgBXbp0sRp9unbtGubMmQOTyYT/9//+HyIjI23ec+DAgZDJZNixY4fV8e3bt8PX1xd9+/a1p5tE1MiZjCYU39hfMTjS3+4lFgofBQLDq97SLr6uk6x9RGQ/j5pq7NevH/r06YOVK1dCp9OhRYsW+PHHH3Hw4EEsWrRIzOG1YsUK7Ny5E5999pkYNI0dOxabNm1CQkICZs+eLSZQzcrKQmJiolhHQUEBXnjhBeTn52PhwoUoKChAQUGBeD4iIkIc/WrTpg3uu+8+pKamQi6Xo3Pnzjh8+DC+/fZbxMfHM4cXEdlFV1AOwSgAAIIi7FtYbxbU1B/FOWWo0BlQXloJ3wAfKZpIRHbyqMALAJYtW4bk5GSkpKSIWwYtXrzYassgk8kEo9EIQRDEYyqVComJiUhKSsJ7770HvV6PDh064J133hGz1gPAxYsXceXKFbGuWz355JOYPn26+PO8efMQHh6OjRs3Ij8/H5GRkZgzZw63DCIiuxXnlImfA8P9GnQvy+tLcssYeBG5mEywjE7IZU6fPo2ZM2ciOTkZHTt2dHVziMiFzu69jJ+SjgMA+k3phG5j7F8v+vvGs/j9q6qXgEb+sxda9W4mSRuJyD4etcaLiKgxKLEa8WrgVKPF9ZYjaUTkGnZNNd76BqA95s6dK741SEREN5kX1gNAUET1LczqI9Di+hIGXkQuZ1fgdfHiRWg0GoSEhNhVaVZWFgoLC+26lojI21mPeDUw8LK43jKgIyLXsHtx/YsvvoiEhAS7rpXLOcNJRFSTkhsBko9aCVVAw96BCmjiC5lcBsEkcMSLyA0wAiIiciMmkyAGXkER6gZtkwYAcoUcAWFVbzaWcMSLyOXs+qfU2bNn0aRJE7srbej1RETeqqxAD9ONHF6BDVzfZRYUoUZJThnKSypRoauEyp8pJYhcxa7Aq127dg2qtKHXExF5q2IJ13fZuk9Jrh5NYhh4EbkKpxqJiNyI1RuNDgi8inO4dRCRKzHwIiJyI5brsKScarx5f70k9yQi+0gaeBUUFGD9+vVS3pKIqFGxfPOwoTm8zKxyeXGBPZFLSRp4ZWVlYdq0aVLekoioUXHEGq8gTjUSuY16La7Pysqq9bx5c2kiIrKPecTLx08B30BpFsEHNPGDTAYIArPXE7lavQKv1q1b15pTRhCEBuecISJqrASTgJK8qsAoUIIcXmZyZVUur5JcPacaiVysXoFXaGgoli9fjiFDhtg8f+rUKUyYMEGKdhERNTo6bTlMhhs5vCSaZjQLDFejJFcPfXElKvUG+Pg1LCM+EdmnXk9e7969kZOTg44dO9o8r9frIQiCJA0jImpspNyj8VZV9yuoqie3DKEtgyS9PxHVTb0Cr6effhqlpaU1no+JiUFqamqDG0VE1BjpCm6megi8sc2PVAKa3LxfaUE5Ay8iF6lX4PXQQw/Vej40NBRPPPFEgxpERNRYlebfDLz8m0gceFkEcro85vIichUmUCUichOl+eXi5wCpAy/LEa98Bl5ErtLgwEuhUNw2zQQREd1eqcVIFAMvIu/U4MCLi+mJiKRhGRAx8CLyTpxqJCJyE+aAyDfQB0qVQtJ7+wWpIFfIrOohIudj4EVE5AYEkyC+1Rgg8RuNACCTy8QF+wy8iFyHgRcRkRsoK66AyVi1dCMgVPrAC7g53VheUglDhdEhdRBR7Rh4ERG5AZ0DF9bbui9HvYhcg4EXEZEbcOTCelv3ZeBF5BoMvIiI3AADL6LGocGB16uvvoqQkBAJmkJE1HhZZa13wOJ6AAho4it+1jHwInIJu7enNxgMUCqVeOONN6RsDxFRo+T0ES9uG0TkEnaPeDVv3hzz58/HqVOnpGwPEVGjxKlGosbB7sBLq9Vi5cqV6NatG+655x6kpKSgpKREyrYRETUa5kDIR62ESm33ZESt1CG+kMms6yMi57I78Lp69SoSExPRvXt3HDhwALNmzUJUVBRmzJiBX375Rco2EhF5NUEQxEDIch2W1OQKOdShVfdn4EXkGnYHXk2aNMELL7yAY8eO4ciRI3j66aehUqmQmpqKwYMHo3PnznjnnXdw7do1KdtLROR1yksrYawwAXDcNKOZ+f5lRRUwGkwOrYuIqpMknUSvXr3wwQcf4OrVq9iwYQOGDx+Os2fP4l//+heio6Px0EMP4bvvvoPJxIeciOhWuvxy8bPDAy9zVnwB0BWU116YiCQnaR4vlUqFf/zjH/j+++9x8eJFLFmyBNHR0di8eTMeeOABREdHS1kdEZFXcMbCelv353QjkfM5LIFqy5Yt8dprr2Hbtm0YMGAABEFAdna2o6ojIvJYLgu88socWhcRVeeQV2dKS0vxv//9D2vXrsW+ffsgCAL8/f3xyCOPOKI6IiKPZpU81UEbZIv3twi8ONVI5HySBl579+7F2rVr8dVXX0Gn00EQBNx1112YMWMGJk2ahKCgICmrIyLyCmWFNwMgfwe+1QgA/iEW2esLGXgROVuDA6/Lly/j448/xrp163D+/HkIgoCwsDDEx8djxowZ6NatmxTtJCLyWqUFFiNeIQ4e8WLgReRSdgde//vf/5Camopdu3bBaDRCLpdj1KhRmD59Oh588EH4+PhI2U4iIq9lnvKTyWXwC1Y5tC7/0JuBVxkDLyKnszvw+sc//gEAaN26NaZNm4Zp06ahZcuWkjWMiKixMAdAao0KcrnMoXX5qJVQqOQwVpigK+RbjUTO1qDAa8aMGRg+fLiU7SEialRMRhPKtFWBl6MX1gOATCaDf4gviq+XcXE9kQvYHXht2LBBynYQETVKZUUVEISqz5bTgI7kH+KH4utlqNAZYKgwQqlSOKVeIpIwj5fBYEBiYiLuvvtuBAcHQ6m8GdMdO3YMzzzzDM6cOSNVdUREXqHMYtTJcuG7I1nWw3VeRM4lSeBVVlaGoUOHYv78+cjMzERwcDAE8z/hALRp0wapqalYv369FNUREXkNqzcanTTipQ7lm41EriJJ4LV8+XL8+uuvePPNN5GdnY34+Hir8xqNBoMHD8bOnTulqI6IyGtY5fBycCqJm/Uw8CJyFUkCry+++AJDhgzBwoULIZPJIJNVfyunbdu2yMrKkqI6IiKvUWo51ei0NV4WgRcX2BM5lSSBV1ZWFu66665aywQHB0Or1UpRHRGR19C5OvDiiBeRU0kSeAUFBSEnJ6fWMufPn0dERIQU1REReQ3LXFrOmmpUWyVRZS4vImeSJPDq168fvv322xpHtC5duoRt27Zh0KBBUlRHROQ1nJm13owjXkSuI0ngtWDBAuTn52PEiBHYt28fDAYDAECn0+HHH3/EqFGjUFlZiXnz5klRHRGR1zAHPuoQx2etN/MLVEGmkFnVT0TO0eBNsgFg0KBB+PDDDzFnzhzExcWJx4OCggAACoUCq1atQu/evaWojojIK5iMJujNWeudNM0IVI2u+Wt8UZqv5+J6IieTJPACgKeeegqDBw/GRx99hIMHDyI/Px/BwcHo27cvnnnmGXTt2lWqqoiIvIIrstab+YdUBV764gqYjCbIFZLl0yaiWkgWeAFA586d8d5770l5SyIir6VzQdZ6M3GBvQCUaSsQ0MR5I25EjZlT/4ljMpmcWR0RkVvTuSBrvVgfF9gTuYQkgdeaNWtuW8ZoNOKxxx6TojoiIq9gGfD4hzp3xMk6iSpTShA5iySB19NPP43NmzfXeF4QBEyePBlffvmlFNUREXkFV041cqNsIteQLI/XpEmTsHfv3mrnzEHX//73Pzz11FNSVEdE5BVckbXeTM2pRiKXkCTw+u6779CuXTuMHz8ef/75p3hcEARMmTIFn3/+OWbPno0PP/xQiuqIiLyCK7LWi/VZTG0y8CJyHkkCL41Gg507d0Kj0WD06NG4ePEiBEHA448/jg0bNmDWrFlISkqSoioiIq9hnuKTyeC0rPVmXFxP5BqSvdXYvHlzfP/996ioqMCoUaMwadIkfPbZZ4iPj8dHH30kVTVERF5DdyN5qp/G12lZ683UGhVwo8oyJlElchpJ00nccccd2L59O7Kzs/Hll19ixowZ+O9//ytlFUREXkEwCSjTVgBw/sJ6AJAr5FDfGGXjiBeR89iVQHXp0qW1nr/77rtx7NgxtGjRwqqsTCbDa6+9Zk+VREReRV9SAcFYlbZerXF+4AVUBXxl2grotOUQTAJkTh51I2qM7Aq8lixZUqdytwZoDLyIiKqUFVaIn/1DnLu+y0wd4gdkFkMwCtCXVEAd7JoAkKgxsSvwSktLk7oddabT6bBmzRqkpaWhuLgYMTExmDx5MoYPH37bawsKCpCUlIT9+/dDr9ejffv2iI+Pr7Z59759+5CWloYzZ84gKysLRqMRP//8c7X7Xb16FY8++qjNuhYvXlynNhFR42Re3wW4cMQr1HqBPQMvIsezK/AaPHiw1O2os0WLFiE9PR2zZ89GdHQ0du3ahddffx0mkwkjR46s8bqKigrMnTsXJSUleP755xEaGopNmzZh/vz5SExMRGxsrFj2559/xokTJ9ChQweoVCqcPn261jZNmDABI0aMsDrWsmXLBvWTiLxbmQtzeIn1WiZRLSgHYlzSDKJGRdJNsh1t//79OHLkCBISEsRAp1evXsjOzkZSUhKGDRsGhUJh89qtW7ciIyMDq1atQrdu3QAAPXv2xPTp05GUlITVq1eLZRcuXAi5vOq9g8TExNsGXk2bNkXXrl2l6CIRNRJuMeLFlBJETufUTbIbau/evVCr1RgyZIjV8bFjxyI3NxcnT56s9dqYmBgx6AIApVKJUaNG4dSpU8jJyRGPm4MuIiJHsdymxxVvNQLMXk/kCh414pWRkYFWrVpBqbRudrt27cTz3bt3t3nthQsX0KNHj2rHLa+NiIiwq10bNmxAcnIyFAoF7rjjDkyaNAkDBw6s9Zrc3Fzk5eWJP2dmZtpVNxF5pjLLES8XBV4c8SJyPo8KvLRaLZo3b17teFBQEACgqKioxmuLiorEcvW9tiY+Pj64//770adPH4SFheHatWvYuHEjXnnlFSxcuBDjxo2r8dotW7Zg3bp19a6TiLyDzg1GvCzXljGJKpFzeFTgBVSlpHDEtfbcNzw8HAsWLLA6NnToUMyePRurV6/G6NGjq43OmY0fPx4DBgwQf87MzMSyZcvq3QYi8kzmwEvpq4CPn2v+KrZcW8YRLyLn8KjAS6PRQKvVVjteXFwMAAgODq7x2uDgYJujWuZrbY2G2UOpVGLYsGFYvXo1Ll26hNatW9ssFx4ejvDwcEnqJCLPY17j5arRLgBQqhTwDfBBeWml1YbdROQ4HrWKvG3btsjMzITBYLA6fuHCBQBAmzZtar32/Pnz1Y6bj7Vt21aydgpCVTZqLtInIlsMFUZU6Kr+HnPV+i4zc/26wnLx7y4ichxJI4OCggKsX79eyltaiYuLQ1lZGX766Ser4zt27EB4eDi6dOlS47WDBg1CVlaW1ZuPBoMBP/zwA7p06SLZ6JPBYEBaWho0Gg1atGghyT2JyLtYLqz3d1EqCbH+G4GXscKEyjLDbUoTUUNJOtWYlZWFadOmYerUqVLeVtSvXz/06dMHK1euhE6nQ4sWLfDjjz/i4MGDWLRokZjDa8WKFdi5cyc+++wzREZGAqhKObFp0yYkJCRg9uzZYgLVrKwsJCYmWtWTnZ2N9PR0AMCVK1cAAHv27AEAREZGolOnTgCADz74AAaDAd27d0eTJk1w/fp1fP311zh79ixefvnlGnOKEVHjZplKwtUjXlbZ6wvKofL3cWFriLxfvQKvrKysWs+bgxRHWrZsGZKTk5GSkiJuGXTr9jwmkwlGo9Fq2FylUiExMRFJSUl47733oNfr0aFDB7zzzjtWWesB4OjRo3jzzTetjiUkJAAARo8ejVdeeQVA1dTmli1bsGvXLpSWlsLf3x+dO3fGf/7zH9x9990O+gaIyNPpLPZpVLton8ab9VsvsA9pEejC1hB5P5lQj0l9uVxe69t/giBAJpPBaDRK0rjG5PTp05g5cyaSk5PRsWNHVzeHiBzo1K4s/Lr2BAAgblY3dBwS7bK2/LktAwf/r2qEf8izPdB+QPWUPUQknXqNeIWGhmL58uXVMsebnTp1ChMmTJCiXUREXssqh5ebrPECmFKCyBnqFXj17t0bOTk5NY7I6PV6vhVDRHQb7rrGq4yBF5HD1Svwevrpp1FaWlrj+ZiYGKSmpja4UURE3sxyg2xX5vGqqt9P/KwrYC4vIkerV+D10EMP1Xo+NDQUTzzxRIMaRETk7cTteWSAX7B7La4nIsdihk8iIiczj3j5BakgV7j2r2GVWgmlb1XqGwZeRI7HwIuIyIkEQXCL7YIsmdvBNV5EjtfgwEuhUNw2vxcREVUpL62EyVj1EpLbBF43FthX6AwwVDAdEJEjNTjw4luMRER1505vNJqpLVJaWG5nRETS41QjEZETWa6jUrs4h5eZZQDI6UYix2LgRUTkRJaBjb+Ltwsys06iWlFLSSJqKAZeREROpNNa7tPoV0tJ57HMnq8rZC4vIkdi4EVE5ETuOOJlNdWo5YgXkSMx8CIiciL3XON1MwDkGi8ix2LgRUTkRNYjXu4ReFltG8S3GokcqsGB16uvvoqQkBAJmkJE5P3M6RoUKjl81PXatc1h/IJVkMmqPovbGRGRQzT4qX/jjTekaAcRUaNgnmr01/hCZo52XEwul8EvWIUybQVHvIgczKFTjYIg4OzZs7h06ZIjqyEi8gjGSiPKSyoBuE/yVDO1xbZBTIxN5DiSBF6bN2/G9OnTUVBQIB67ePEiunfvjk6dOqFVq1aYPHkyTCaTFNUREXmksqKbbwy6y/ouM3N7TEZBDA6JSHqSBF4fffQRDh8+jNDQUPHY3LlzcfLkSQwdOhR33nknPv/8c6SmpkpRHRGRR9IVuN92QWbcNojIOSQJvE6cOIG7775b/Fmr1WLbtm149NFHsWvXLhw6dAidO3dGSkqKFNUREXkky4DG301SSZhZZ69n4EXkKJIEXjk5OYiKihJ//uWXX2AwGDBp0iQAgI+PD0aOHIlz585JUR0RkUdyxw2yzaxGvBh4ETmMJIFXcHAw8vLyxJ/37NkDuVyOuLg48ZiPjw9KS0ulqI6IyCNZvjHodmu8QjniReQMkgRenTp1wrfffov8/HxotVp8/vnn6NWrl9War8zMTDRr1kyK6oiIPJLnrPHitkFEjiJJ4DVnzhxcuXIFLVq0QHR0NK5cuYKnnnpKPG80GvHLL7+gR48eUlRHROSRLAMaf4177NNoxjVeRM4hSdrkCRMm4MMPPxQXz0+cOBHTp08Xz//444/Q6XQYPXq0FNUREXkky7VTfm62uF6t4X6NRM4g2X4VTz/9NJ5++mmb50aNGmWV44uIqDEyr/HyC/KBQuleW+X6qJVQ+ipgKDdyxIvIgdzrySci8lKCIIgjSe62vgsAZDKZOOrFPF5EjsPAi4jICSp0Bhgrq3bvULvZNKOZOSAsL6mEsdLo4tYQeScGXkRETmC5bsrdUkmY+fPNRiKHY+BFROQEOjdOnmrGNxuJHI+BFxGRE+g8YMTLMiDkOi8ix2DgRUTkBB4XeHHEi8ghGHgRETmBO+/TaGa5xotTjUSOUe/Ay2Qy4a+//sKVK1eqnausrMTPP/8sScOIiLyJrkAvfnbXES+u8SJyvHoFXpmZmejevTvuvPNOREdHY/z48VabY+fn52Po0KGSN5KIyNN53FQj32okcoh6BV4LFy5Ey5YtkZWVhT/++APl5eUYMGCA1eiXIAiSN5KIyNOZF6srfRXwUUu2aYik1ME3tw3SFeprKUlE9qpX4PXTTz/h7bffRsuWLdGtWzfs2LEDcXFxiIuLQ1ZWFoCq7MdERGRNV1AVePmH+Lrt35NypRx+QT4AgLJCjngROUK9Ai+dTgdf35tD0TKZDMnJyRg1ahQGDRqE8+fPS95AIiJPZ6gwokJnAOC+C+vN1CF+AKpG6DiDQSS9egVeHTt2xJEjR6odT0pKwtixYzFu3DjJGkZE5C08IWu9mX9I1XSjsdIkBotEJJ16BV4PP/wwNmzYYPPcqlWr8Oijj/JfSEREt/CEhfVmaqaUIHKoegVeL7/8MrZt21bj+aSkJJhMpgY3iojIm1gFXqFuHngxiSqRQzGBKhGRg5kX1gPWI0ruyJ/bBhE5FAMvIiIH86SpRiZRJXKsBgdeCoVCTCVBRETVlVnkxFK7+1Qj13gROVSDAy8upiciqp3OIieWu494cY0XkWNxqpGIyMHMI14yhQx+garblHYtrvEiciwGXkREDmaesvPX+EImd8+s9WYqfyUUPlX/aeBUI5H0GHgRETmQyWhCWVHVVKO7TzMCVTuSmNd5caqRSHoMvIiIHKisqAK4sRTW3RfWm6lvZK/XF1fCZGBuRiIpMfAiInKgsgLPSSVh5n9jv0YA4mgdEUmDgRcRkQN5Ug4vM7Xm5gsAXOdFJK0GB16vvvoqQkJCJGgKEZH3sQxc1B4SePkzpQSRwygbeoM33nhDinYQEXmlMk8c8WL2eiKH4VQjEZEDeeJUo/W2QfpaShJRfTV4xMuSyWTCpUuXcPnyZVRWVtosM2jQICmrJCJyax4feBVwxItISpIEXoIgYMWKFUhMTEReXl6tZY1GoxRVEhF5BHHESGa9D6I78w+1eKuRU41EkpIk8Hr55Zfx9ttvo2nTppg2bRqioqKgVEo6mEZE5JHMgYtfkApypWes7lBrVIAMgMARLyKpSRIdrVu3Dh07dsThw4cRGBgoxS2JiDyeIAg3twvykGlGAJAr5FAHq1CmreDieiKJSfLPr5KSEtx3330MuoiILJSXVMJkqEpb70mBF3CzvTptOQST4OLWEHkPSQKv2NhYXLlyRYpbERF5DU/M4WWmvpG9XjAK0Bczez2RVCQJvBYtWoTNmzfj999/l+J2RERewRPfaDTzD2UuLyJHkGSN1+jRo/Hxxx9jzJgxGD9+PHr06IHg4GCbZadOnSpFlUREbq/Mg0e8bk0pEdbKhY0h8iKSBF7l5eXYvHkzcnNzkZKSAgCQyWRWZQRBgEwmY+BFRI2G94x4MYkqkVQkCbzmzZuHTz/9FHfeeSceeeQRh6aT0Ol0WLNmDdLS0lBcXIyYmBhMnjwZw4cPv+21BQUFSEpKwv79+6HX69G+fXvEx8ejd+/eVuX27duHtLQ0nDlzBllZWTAajfj5559t3tNgMOCTTz7B9u3bkZeXh6ioKDz00EOYMGGCJP0lIs/lidsFmfmH3MzlxalGIulIEh19+eWX6N27N/bv3+/w/F2LFi1Ceno6Zs+ejejoaOzatQuvv/46TCYTRo4cWeN1FRUVmDt3LkpKSvD8888jNDQUmzZtwvz585GYmIjY2Fix7M8//4wTJ06gQ4cOUKlUOH36dI33XblyJb7//nvMmDEDnTp1wqFDh/D+++9Dp9NhypQpUnadiDyMZQ4syxEkT2A14sVcXkSSkSRK0uv1GDp0qMODrv379+PIkSNISEjAiBEjAAC9evVCdnY2kpKSMGzYMCgUCpvXbt26FRkZGVi1ahW6desGAOjZsyemT5+OpKQkrF69Wiy7cOFCyOVV7x0kJibWGHhlZGRg69atmDlzJiZNmiTes6ioCOvXr8cDDzxQ41o3IvJ+llN0liNInsCfG2UTOYQkbzX27t0b586dk+JWtdq7dy/UajWGDBlidXzs2LHIzc3FyZMna702JiZGDLoAQKlUYtSoUTh16hRycnLE4+agqy7tEQQBY8aMsTo+ZswYlJeX4+DBg3W6DxF5J3PA4qNWQulr+x+F7sryZYAyjngRSUaSwGv58uXYsWMHvvvuOyluV6OMjAy0atWq2shau3btxPM1uXDhgliuvtfW1p6QkBCEhYXV+565ubk4ffq0+CczM7Pe9ROReyvzwKz1ZgqlHH5BPgC4uJ5ISpLMDf7www8YMmQIHnjgAQwdOhSxsbE2p9hkMhlee+01u+vRarVo3rx5teNBQUEAgKKiohqvLSoqEsvV99ra2mOrn2q1Gj4+PtBqtTVeu2XLFqxbt67edRKRZ6jUG1CpNwLwvPVdZv6hftAXV0JXUC6+mU5EDSNJ4LVkyRLx8+7du7F7926b5RoaeJnv4YhrHfEXSm33HD9+PAYMGCD+nJmZiWXLlkneBiJyDauF9R444gVUtTs/qxgmo4Dy4kr4Batc3SQijydJ4JWWlibFbW5Lo9HYHEUqLi4GgFoXsgcHB9sc1TJfa2s0rC7tsbW2raysDJWVlbW2Jzw8HOHh4fWuk4g8Q5nWInmqxjMDL/UtC+wZeBE1nCSB1+DBg6W4zW21bdsWu3btgsFgsFrndeHCBQBAmzZtar32/Pnz1Y6bj7Vt29au9vz444/Iy8uzWudVl/YQkXfz5OSpZv6hlrm89GgSU/9/oBKRNUkW1ztLXFwcysrK8NNPP1kd37FjB8LDw9GlS5carx00aBCysrKs3nw0GAz44Ycf0KVLF7tGnwYOHAiZTIYdO3ZYHd++fTt8fX3Rt2/fet+TiLyD5VSj2lPXeIUwlxeR1CQZ8fr111/x9ddfY+HChYiMjKx2Pjs7G2+//TYmTpyIfv362V1Pv3790KdPH6xcuRI6nQ4tWrTAjz/+iIMHD2LRokViDq8VK1Zg586d+Oyzz8T2jB07Fps2bUJCQgJmz54tJlDNyspCYmJitfamp6cDAK5cuQIA2LNnDwAgMjISnTp1AlA1onXfffchNTUVcrkcnTt3xuHDh/Htt98iPj6eObyIGjHvGPFiLi8iqUkSeK1cuRLHjx/HypUrbZ6PjIzEd999h8uXL+OLL75oUF3Lli1DcnIyUlJSxC2DFi9ebLVlkMlkgtFohCAI4jGVSoXExEQkJSXhvffeg16vR4cOHfDOO+9YZa0HgKNHj+LNN9+0OpaQkACgakPwV155RTw+b948hIeHY+PGjcjPz0dkZCTmzJnDLYOIGjlP3i7IjElUiaQnEyyjEzvFxMRg+PDhSE1NrbFMfHw8fvjhB+arqsHp06cxc+ZMJCcno2PHjq5uDhE10PY3D+Hyn3kAgCn/HQHfQB8Xt6j+inN0+OKFqqUdre9qhhEv9nJxi4g8nyRrvK5fv44WLVrUWiYyMhLXr1+XojoiIrdXml81QqRQyaEKcOx2ao5itbiea7yIJCFJ4BUSEoKsrKxay2RmZiIwMFCK6oiI3J6uoCrbe0Con8cmHlUo5WIKidICZq8nkoIkgVf//v2xadMm/P333zbPZ2Vl4ZtvvsE999wjRXVERG6tUm9Ahc4AwHOz1psF3Gi/rrAcgqnBK1OIGj1JAq958+ZBp9NhwIABWL9+Pa5evQoAuHr1Kj7++GMMGDAAZWVl+Oc//ylFdUREbs1yWi6giV8tJd2f/432C0YBZUUVLm4NkeeTZOFBXFwc3n//fcydOxfTpk0DULVdjnndvlwux3vvvYdBgwZJUR0RkVsrzb85LWe5TsoTBViu88rXe+wbmkTuQrIVn88++ywGDx6MpKQkHD58GIWFhQgJCcHdd9+Np556Ct26dZOqKiIit2a5HiqgiWcHKv4W7S8t0CMcGhe2hsjzSfqqTbdu3fDhhx9KeUsiIo+j89IRL8uRPCKyj0dtGURE5AlKvXCNF8CUEkRSYOBFRCQxjngRUU0YeBERScxyjZenp5OwXOOlYy4vogZj4EVEJDHdjaz1fsEqKJSe/desb4APFD5VfTBn4yci+3n23whERG7GZBLEDaU9fX0XUJUayNwPjngRNRwDLyIiCem1NzO8e/o0o5m5HxU6Ayr1Bhe3hsizMfAiIpKQN73RaBbANxuJJCNZHq+Kigp88803YvJUo9FYrYxMJkNKSopUVRIRuR3LNxoDPPyNRjP/W95s1EQFuLA1RJ5NksArMzMTI0eOxPnz58Vtgmxh4EVE3s7qjUYPz1pvZjllWsp1XkQNIkng9eKLL+LcuXOYMmUKpk+fjpYtW0KplDQpPhGRR7B8889bRrysphqZy4uoQSSJjnbv3o3hw4fj448/luJ2REQeS2c14uUdgZfVVCPXeBE1iCSL600mE3r27CnFrYiIPFqpF67xstzomyNeRA0jSeDVv39/nDp1SopbERF5NPOIl0IlhyrAO5ZcWI94MfAiaghJAq8VK1YgLS0NX331lRS3IyLyWOY1XgGhfpDJZC5ujTQUSjn8glUAbmblJyL72PXPsaVLl1Y7NnToUDz66KMYPHgwevbsCY1GU62MTCbDa6+9Zk+VRERur0JXicqyqgSj3rK+yyygiR/0RRXQFZbDZDRBrmAaSCJ72BV4LVmypMZze/bswZ49e2yeY+BFRN7Mcn1XYJh3BV6BYX7Iu1gE4caWSIFhalc3icgj2RV4paWlSd0OIiKPV5JnsbDeywITy/6U5ukZeBHZya7Aa/DgwVK3g4jI45VaBF6B4d414hVgMYJXkqdHMxe2hciTcZKeiEgipXll4udAL1vjZTl1atlPIqofyd91NhgMOHPmDLRaLTQaDe644w5msSeiRqGxTDVa9pOI6keyEa+cnBzMnDkTISEh6N69OwYOHIju3bsjJCQEs2bNQk5OjlRVERG5JW+earQe8WLgRWQvSYaiLl++jAEDBiArKwsREREYNGgQmjVrhmvXruG3337DmjVr8MMPP+CXX35BixYtpKiSiMjtlNyYgvNRK6Dy93Fxa6TlH+oLmQwQBE41EjWEJCNeCxcuRFZWFl5//XVkZmZi27ZtSE1NxbZt25CZmYklS5YgMzMTL730khTVERG5HUEQxJGggCbeNc0IAHKFXMxgz6lGIvtJMuK1Y8cOjB492maOLj8/PyQkJGDfvn3Yvn27FNUREbkdfXEFjJUmAN6Xw8ssIMwPpfl66IsqYKgwQqlSuLpJRB5HkhGviooK9OrVq9YyvXv3RkVFhRTVERG5nVIvXlhvZplSopSbZRPZRZLAq3fv3khPT6+1THp6Onr37i1FdUREbqck13uz1psF3pJElYjqT5LA64033sB3332HdevW2Ty/du1abNu2DcuWLZOiOiIit1Oaf3PBeYCXBl4BfLORqMEkWeOVlpaGoUOHYsaMGXj77bcxYMAANG3aFNevX8evv/6K06dPY9SoUdi9ezd2794tXse9G4nIW5RYpZLwzqnGQKvs9XyzkcgekgRelptmp6en25x23LlzJ3bu3Gl1jIEXEXmLUoupxgAvy1pvdut+jURUf5KNeBERNWYljWCqMfCW/RqJqP4kCby4aTYRNXbmESC/YJXXplnwC1ZB4SOHsdJktaaNiOqOm2QTETWQyWiCrqAcgPdOMwJVy0PM/bN8i5OI6s6uwOuxxx7Dxo0b7a60odcTEbkTXWE5BJMAwHtTSZiZp1Erywyo0FW6uDVEnseuwOvzzz/HX3/9ZXelDb2eiMidNIbkqWaWuby4zouo/uxe43Xs2DGsX79eyrYQEXmk4us68XNghJcHXuEWC+xzytAkOsiFrSHyPHYHXt988w02b95c7+sEQbC3SiIit1Sce3OheZCXB15BEf7i5+IcLrAnqi+7Aq/U1NQGVxwbG9vgexARuYPi640n8LIc0SvO0dVSkohssSvweuKJJ6RuBxGRxyrJsQy8/Gsp6fmCmlqs8eKIF1G9MZ0EEVEDmUd+fNRKqAIkSY/otgKa+EEmlwHgVCORPRh4ERE1gMkkiG/3BTVVQyaTubhFjiVXyMWUEhzxIqo/Bl5ERA2gy9dDMFa9NBTkpZtj38q8jq28tJK5vIjqiYEXEVEDWE63BTX17vVdZkFWC+w56kVUHwy8iIgawPLNvsBGMuJl9WbjdQZeRPXBwIuIqAGs3mhs2jgCL8s3N0tymVKCqD4YeBERNYDlVJu3Z60341Qjkf0YeBERNYDVGq9GMtXIwIvIfnYHXr169cJ///tfq2M7d+7EvHnzbJZ//fXXoVR6d34bImp8zFONvoE+UPn7uLg1zqEO9YNcUZU2gykliOrH7sDr2LFjyM7Otjp24MABvPfeezVew30aicibmAwmlOZVBR6NZWE9AMjlMrG/xTk6/t1OVA+caiQislNpvh7mmKOxLKw3M69nqywzoryUubyI6oqBFxGRnYob0R6Nt7Jc51XClBJEdcbAi4jITpY5vIIayRuNZpaBZnEuAy+iumLgRURkJ8vkoY0llYSZ5dRq0TXm8iKqKwZeRER20maXip81kQEubInzBTe7OeJVlM3Ai6iuGpTf4f/+7/9w4MAB8edz584BAMaOHVutrPkcEZG3MAccMlnjG/EKbnYz0Cy6VlpLSSKy1KDA69y5czYDqh07dtgsL5PJGlIdEZHbEARBDDgCI9RQKBvXBIJvoA98A31QXlLJES+ierA78MrIyJCyHUREHqWsqAKVZUYAjW+a0UwTGYDr5wpRmq+HodwIpa/C1U0icnt2B16tWrWSsh1ERB6l6OrN6TXL9U6NSXCkP66fKwRQtcC+SUyQaxtE5AE8bg8fnU6HNWvWIC0tDcXFxYiJicHkyZMxfPjw215bUFCApKQk7N+/H3q9Hu3bt0d8fDx69+5dreyRI0eQkpKCc+fOwc/PD/3798fTTz+N0NBQsczVq1fx6KOP2qxr8eLFdWoTEXkmyzf5ghvpiFdwpMUC+2ulDLyI6sCuwGv69Ol2VSaTyZCSkmLXtWaLFi1Ceno6Zs+ejejoaOzatQuvv/46TCYTRo4cWeN1FRUVmDt3LkpKSvD8888jNDQUmzZtwvz585GYmIjY2Fix7LFjx7BgwQL0798fy5cvR0FBAVavXo25c+ciOTkZKpXK6t4TJkzAiBEjrI61bNmyQf0kIvemtVjXpIlsnCNellOsWq7zIqoTuwKvdevW2Twuk8ls7tllPt7QwGv//v04cuQIEhISxECnV69eyM7ORlJSEoYNGwaFwvYag61btyIjIwOrVq1Ct27dAAA9e/bE9OnTkZSUhNWrV4tlV61ahejoaCxdulTc2DsqKgrPPvsstm3bhgcffNDq3k2bNkXXrl3t7hcReZ4ii1QSjXbEyyqlBN9sJKoLu17DycjIsPpz/vx5jBs3DmFhYXjjjTewZ88enDp1Cnv27MHSpUsRFhaG+++/H2fPnm1QY/fu3Qu1Wo0hQ4ZYHR87dixyc3Nx8uTJWq+NiYkRgy4AUCqVGDVqFE6dOoWcnBwAQE5ODtLT0zFq1Cgx6AKA7t27Izo6Gj///HOD+kBE3sE81SiTyxpd1nozy4CTSVSJ6sauEa9bF9avWLECBw8exB9//IGoqCjxeMeOHTFo0CBMmzYNPXv2xFdffYWFCxfa3diMjAy0atXKKiACgHbt2onnu3fvbvPaCxcuoEePHtWOW14bEREhvq1pPn5r2T///LPa8Q0bNiA5ORkKhQJ33HEHJk2ahIEDB9bal9zcXOTl5Yk/Z2Zm1lqeiNyHIAjiCE9QhBryRpZKwsw3wAd+QT7QF1daJZMloppJsrg+JSUFEydOtAq6LLVo0QITJ05EcnJygwIvrVaL5s2bVzseFFS1oLOoqKjGa4uKisRytV2r1WoBAMHBwTbLWtbh4+OD+++/H3369EFYWBiuXbuGjRs34pVXXsHChQsxbty4GtuzZcuWGqdsici9lWkrUKmvSiXRWN9oNAtuFgB9cSF0+eVMKUFUB5IEXpcuXYKfn1+tZfz8/HDp0qUG19WQJKy1XXvruZrKWh4PDw/HggULrM4PHToUs2fPxurVqzF69Ohqo3Nm48ePx4ABA8SfMzMzsWzZstv2gYhcj+u7bmJKCaL6kWR8vGXLlti0aRP0er3N8zqdDps2bWrwm34ajUYckbJUXFwMwPYolVlwcLDNETHzteaRL41GAwA11mNr1MySUqnEsGHDoNVqaw00w8PD0bFjR/EP86IReQ7LTO3BjfSNRjPrNxs53Uh0O5IEXvHx8bhw4QIGDBiAzZs3i2uX8vLy8M0332DgwIG4ePEiZs6c2aB62rZti8zMTBgMBqvjFy5cAAC0adOm1mvPnz9f7bj5WNu2ba3uYb7nrfXUVoeZ+c1Oubxxrvsg8nZWm2M39qnGSL7ZSFQfkkQGCxYswLRp03D06FE8/PDDaNq0KXx8fNC0aVNMmDABx44dw5NPPlltWq6+4uLiUFZWhp9++snq+I4dOxAeHo4uXbrUeO2gQYOQlZVl9eajwWDADz/8gC5duiA8PBwAEBERgc6dO+P777+H0WgUy544cQJZWVkYPHhwrW00GAxIS0uDRqNBixYt7OkmEbk5Jk+9KZi5vIjqRZI1XnK5HCkpKZg6dSo+/vhjHD9+HFqtFhqNBj169MDUqVNvG7DURb9+/dCnTx+sXLkSOp0OLVq0wI8//oiDBw9i0aJFYg6vFStWYOfOnfjss88QGRkJoCrlxKZNm5CQkIDZs2eLCVSzsrKQmJhoVc9TTz2FefPmISEhAQ899JCYQLVNmzYYM2aMWO6DDz6AwWBA9+7d0aRJE1y/fh1ff/01zp49i5dffrnGnGJE5NkKr1SN7MgUjTeVhJll8ljtVY54Ed2OpFsGDR48WJIAqzbLli1DcnIyUlJSxC2Dbt2ex2QywWg0WiVzValUSExMRFJSEt577z3o9Xp06NAB77zzjlXWeqAqserbb7+NtWvX4l//+pe4ZdAzzzxjlbW+TZs22LJlC3bt2oXS0lL4+/ujc+fO+M9//oO7777bod8DEbmGyWiC9moJgKr1TY01lYSZyt8H/k18ocsvR+GlEjFZNhHZJhNspZqvg9TUVIwbNw4RERFSt6lROn36NGbOnInk5GR07NjR1c0hohpor5biy39WJVJuc3ckhs/t6eIWud72Nw/h8p9Va3sfSxoGf42vi1tE5L7s/qfajBkz0Lx5c8TFxeHdd99tcFZ6IiJPUHCpRPwc0jLQhS1xH6Etb77tXWjx/RBRdXYHXvv27cP8+fORn5+PBQsWoFOnTujcuTNeeeUVHDhwQMo2EhG5jYLLxeLnUAZeAICQFje/hwIGXkS1sjvw6tevH958802cOHECZ8+exVtvvYWIiAi8/fbbGDBgAKKiojB79mxs27YN5eXlUraZiMhlLEd0LAOOxszyeyi8zMCLqDaSrApt164d5s+fj59//hnXrl3DmjVr0LdvX3z66ae4//77ER4ejgkTJuCTTz5Bfn6+FFUSEbmEObCQyWVWb/Q1ZqGWI14MvIhqJfnrOGFhYZg2bRq++eYb5ObmYtOmTZg4cSJ+/fVXPPHEE2jWrBmGDBkidbVERA5nMgliKongZv5Q+DBlDAD4BvrAP6RqQX3hpeLblCZq3CRNJ3ErPz8/jB8/HuPHj4cgCNi3bx82b96MLVu2OLJaIiKHKMnRwVhpAsCF9bcKaREIXWE59MWVKCsqhzqYbzYS2eK0BDQymQwDBgzA22+/jfT0dGdVS0QkGcuF46Fc32XFMhDlOi+imtk94vXMM8/U+xqZTIYPP/zQ3iqJiFzKMqDgG43WQm95szGqc5gLW0PkvuwOvD766KM6l7XMYszAi4g8VQHfaKyRZSDKXF5ENbM78EpLS6tTuaysLCxduhTnz5/nNhJE5NHENxplgCaqcW+OfasQvtlIVCd2B16325OxoKAAy5cvx4cffgi9Xo/+/fvjrbfesrc6IiKXEizeaAxq6g+lim80WvILUsEvWAV9UQWTqBLVQvLF9Xq9HitWrEC7du3w7rvvonXr1ti4cSN+/fVXDBw4UOrqiIicQptdCkO5EQAQGhN0m9KNU5Mb34u+qAK6Ar2LW0PkniQLvARBwJo1a9ChQwe88sor8Pf3x3//+1/89ddfePDBB6WqhojIJfIuFomfw1sHu7Al7ivM4nvJtfi+iOgmSQKvb775Bl27dsXs2bNRUlKC5cuX49y5c4iPj4dc7rSMFUREDpPLwOu2LL+XPAZeRDY1KIHqL7/8gpdeegkHDhyASqXCiy++iFdffRWhoaFStY+IyC3kZdwMJMIYeNnEES+i27M78Bo/fjy2bt0KuVyOJ554AkuXLkXLli2lbBsRkVsQBEEcwVGH+MI/1M/FLXJPmsgAKH0VMJQbOeJFVAO7A6/vvvsOMpkMMTExyM7OxqxZs257jUwmw9atW+2tkojIJUpy9SgvrQQAhLXiaFdNZHIZwloF49qZApTklEFfUgG/QJWrm0XkVho01SgIAjIyMpCRkVGn8szjRUSeKO+iVvwc3oaBV23CWlcFXgCQn1mM5l2ZwZ7Ikt2BV12DLSIiT2c5bcb1XbWzXGCfm6Fl4EV0C7sDr1atWknZDiIit8U3GusujG82EtWKuR6IiG7DHECo/JUIjFC7uDXuLaRlIOTKqmUlfLORqDq7RrymT59uV2UymQwpKSl2XUtE5Aq6wnLoCsoBVI3mcK1q7RRKOUJbBiHvYhG0V0tRqTfAx69By4mJvIpdT8O6detsHpfJZBAEocbjDLyIyNPkXri5sJ7ru+omvE1w1SihUDVaGNmpiaubROQ27JpqNL/JaP5z/vx5jBs3DmFhYXjjjTewZ88enDp1Cnv27MHSpUsRFhaG+++/H2fPnpW6/UREDmV+Qw8AmnUIcV1DPEjT9iHiZ8vvj4jsHPG6dWH9ihUrcPDgQfzxxx+IiooSj3fs2BGDBg3CtGnT0LNnT3z11VdYuHBhw1pMROREVoHXHdyVoy4sv6fs0wXo4cK2ELkbSRbXp6SkYOLEiVZBl6UWLVpg4sSJSE5OlqI6IiKnMBpMyDlfNdUYFKFmxvo60jQPgG+gDwDg+tlCCKbqS1CIGitJAq9Lly7Bz6/2v5D8/Pxw6dIlKaojInKKvAwtjJUmAECzjhztqiuZTCaOepWXVKLwaqmLW0TkPiQJvFq2bIlNmzZBr9fbPK/T6bBp0ybu5UhEHiX7TKH4mdOM9dPsjhDxM9d5Ed0kSeAVHx+PCxcuYMCAAdi8eTPy8vIAAHl5efjmm28wcOBAXLx4ETNnzpSiOiIip7jO9V12s/y+rp1m4EVkJklylQULFuDMmTNITU3Fww8/DACQy+UwmaqG6AVBwLRp07BgwQIpqiMicjhBEMSRGpW/EqEtA13cIs8S3lYDuVIGk0HgiBeRBUkCL7lcjpSUFEydOhUff/wxjh8/Dq1WC41Ggx49emDq1KkYPHiwFFURETlF8XUdyrQVAICmHUIgkzNxan0oVQqEt9Hg+tlCFGXrUKYth1rj6+pmEbmcpOmEBw8ezACLiLzCtdOF4mdOM9qn2R2huH62EABw7UwhWt/VzLUNInID3KuRiMiGKyfyxM98o9E+kRbfm+X3SdSYMfAiIrqFYBJw6XgOAEDpq2DGejtFdWkCmaJqitb8fRI1dgy8iIhukZ9VLK7viurSBAofhYtb5JlU/j5i0FqUrUPRNZ1rG0TkBhh4ERHdwnJ0JrpHhAtb4vla3nnz++OoFxEDLyKiai4dzxU/t7gz3IUt8Xwte9z8/iy/V6LGioEXEZGFijIDsm8k/Axu5g9NZICLW+TZwloFwy9YBQC4eiIPRoPJxS0ici0GXkREFq6eyINgrNrUmaNdDSeTy9DyxvdYqTcymSo1egy8iIgsWE6HtWTgJQnL7/HSH5xupMaNgRcR0Q0mk4DMI9cAAHKlDM27hrm4Rd6hxZ3hwI3E/5lHrkEQBNc2iMiFGHgREd2QfSofusJyAEDLHhHw8ZN0c49GSx3si6jOTQAA2qulyLtY5OIWEbkOAy8iohsu7L8qfm7XP8qFLfE+lt/neYvvmaixYeBFRATAZDAh41A2gKps9TG9mrq4Rd6l9V2RYhb7jANXIZg43UiNEwMvIiIAl//KQ3lJJQAgpmdTTjNKzC9YhRbdqhbZl+Tqcf1coWsbROQiDLyIiACc33dF/NzuHk4zOoLl93p+H6cbqXFi4EVEjV5FmUF8m1Hlr7TKtk7SadW7KRQ+Vf/ZuXDgKoyVRhe3iMj5GHgRUaN39udLqNRXBQFt+kZxU2wHUfn7oFXvZgAAfVEFLuzPdnGLiJyPgRcRNWqCScCJnZniz13vbeXC1ni/Lhbf7187LjKnFzU6DLyIqFG79EcOirJ1AICoLk3QJCbIxS3ybs3uCEF4m2AAQN7FIlw7U+jaBhE5GQMvImrU/tpxc7Sr2+jWrmtIIyGTydDV4ns+seOiy9pC5AoMvIio0crLKsLlP6v2DgyKUCOaubucom2/SKg1KgDAxcPXUHSt1MUtInIeBl5E1Ggd3nBa/Nx1dGvI5TIXtqbxUPgo0HlkDICqNXaHvzjj4hYROQ8DLyJqlC79mYtLx6tGuwLD/dBpeLSLW9S4dBvdGn7BVaNeGQeymVCVGg0GXkTU6JhMAg5tSBd/7jPxDihVTCHhTCp/H/Sa0F78+eCn6XzDkRoFBl5E1OicTvsb+ZnFAICw1sFod09zF7eoceo0NBqaqAAAwLXTBVablBN5KwZeRNSoaK+W4uD/3Rzt6ju5E2Rc2+UScqUcd0/qKP7869oTKMkrc2GLiByPgRcRNRpGgwlpHxyDobwqS32nYdFo3jXMxa1q3GJ6N0XbflV7OFboDNiz6jhMJk45kvdi4EVEjYIgCDj4aTpyM4oAAJqoAPR9vJOLW0UymQwDZnRFYLgfACD7VD5+/+qsi1tF5DgMvIioUTi66RxO3tgaSK6QYehzPeDjp3RxqwgAfAN8MOSZHpDdmPE99s15/LU9w7WNInIQBl5E5NUEQcDx7y7g96/OiccGzuiG8DYaF7aKbhXZqQn6Pt5Z/PnAJ+k4tSvLhS0icgwGXkTktQwVRuxN/guHLBKl9pvSCXcMaenCVlFNuo1pbZVi4te1J7Dv45MwGUwubBWRtDjOTkReKeeCFr+s+Qt5F4vEY70f6YBuY9q4sFV0Oz0fbo9KvRF/bq2aajy5MxO5GVoMnN6NG5iTV/C4wEun02HNmjVIS0tDcXExYmJiMHnyZAwfPvy21xYUFCApKQn79++HXq9H+/btER8fj969e1cre+TIEaSkpODcuXPw8/ND//798fTTTyM0NNSqnMFgwCeffILt27cjLy8PUVFReOihhzBhwgTJ+kxEdae9Woo/vr2AMz9dAm68HKdQyRE3szvaD2C+Lncnk8nQd3InaKICsG/dCZgMAq6fKcSml39BpxExuHNcGwRF+Lu6mUR287jAa9GiRUhPT8fs2bMRHR2NXbt24fXXX4fJZMLIkSNrvK6iogJz585FSUkJnn/+eYSGhmLTpk2YP38+EhMTERsbK5Y9duwYFixYgP79+2P58uUoKCjA6tWrMXfuXCQnJ0OlUollV65cie+//x4zZsxAp06dcOjQIbz//vvQ6XSYMmWKI78KIrpBX1yBv4/l4Py+K7j0R67VOU3zAAx7PhZhrYJd1DqyR6dh0WgSHYi0D/9A8fUyCAJw6ocsnNqVhZheTdGufxRa9oiAb4CPq5tKVC8eFXjt378fR44cQUJCAkaMGAEA6NWrF7Kzs5GUlIRhw4ZBobC97cfWrVuRkZGBVatWoVu3bgCAnj17Yvr06UhKSsLq1avFsqtWrUJ0dDSWLl0KpbLqK4qKisKzzz6Lbdu24cEHHwQAZGRkYOvWrZg5cyYmTZok3rOoqAjr16/HAw88gOBg/mVPJBVjpRFlRRUovq6D9qoOeReLkHO+EHkXi3DrbjM+aiV6TWiPrqNaQa7kclZP1LRDKCa8HYe/tl3Esc3nq/KvCUDWb9eR9dt1yBQyhLcKRkT7EDSJCUJghBpB4WoEhvtB4cMtoMg9eVTgtXfvXqjVagwZMsTq+NixY7F06VKcPHkS3bt3r/HamJgYMegCAKVSiVGjRuG///0vcnJyEBERgZycHKSnp2PWrFli0AUA3bt3R3R0NH7++Wcx8Nq7dy8EQcCYMWOs6hozZgy+/fZbHDx4sNZROGf4a8dFGCuMtZap8/ZodSgn1K2Qc+ur672kzNlYx5tJWWed7iVhhXW/1e0LCgJgqjTBeOOPodJY9bnCiEq9EfqiCpQVVaCyzHDbewWGq9FlZAzuGNISfkGq25Yn96ZUKRD7YDt0HNoS6bv/xqldWdAVlAMABKOAnAta5FzQVrtOrVFBFeADlVoJlb8SPmollCoF5AoZ5Ao55Ep51Wdl1c/mVBY3P9zyo8z8PzKrn2s6LuNmCG7Jv4kfOgxs4dI2eFTglZGRgVatWlkFRADQrl078XxNgdeFCxfQo0ePasctr42IiEBGRobV8VvL/vnnn1btCQkJQVhYWLVy5vM1yc3NRV5envhzZmZmjWUb4timc9AXVzrk3kRuQQaEtghEyx4RaNW7KZreEQo5twDyOmqNL3o+1B49xrdFdnoBsn6/jr//yIH2SqnN8mXaCpRpK5zcSnJ3Te8IYeBVH1qtFs2bV18cGxRU9aZLUVFRtXNmRUVFYrnartVqq/7lZGuKMCgoyKoOrVZrs5xarYaPj494L1u2bNmCdevW1XieiG5S+SvhF6yCOtgXfsEqBIb7QRMVgJDmgQhvEwyVP9f5NBZyhRzNu4ahedcw9JvSGeWllci9oEXRdR1KcspQnFOGkpwylObrUVFmqNMoKZEzeVTgBVS98eKIa289V1PZ+tRfW9nx48djwIAB4s+ZmZlYtmxZne9dV4Of7lG3HDgSDhDU6TuqY311KlbX34l0zapbwTq2q259rNOtGvR82FNn3au7fUGFjxwKlRxKH0XV5xt/lCoF12hRjXwDfNCiezhqGsMQTAIq9QZU6AwwVppgMppgMghV/2sUxJ8F4Ob8ufX/VH24cc7qGKoS9FpXKPGyBZKUb6Dr/5HmUYGXRqOxOYpUXFwMwPYolVlwcLDNETHzteaRL42mKpt1TfVYjpppNBqcO3euWrmysjJUVlbW2p7w8HCEh4fXeF4q0bERDq+DiMhdyeQyqPx9OCpKbsOj/hnZtm1bZGZmwmCwHjq+cOECAKBNm5oTI7Zt2xbnz5+vdtx8rG3btlb3MN/z1nos62jbti0KCwut1mrVtT1ERETU+HhU4BUXF4eysjL89NNPVsd37NiB8PBwdOnSpcZrBw0ahKysLJw8eVI8ZjAY8MMPP6BLly7i6FNERAQ6d+6M77//HkbjzbcBT5w4gaysLAwePFg8NnDgQMhkMuzYscOqru3bt8PX1xd9+/ZtUH+JiIjIu3jUVGO/fv3Qp08frFy5EjqdDi1atMCPP/6IgwcPYtGiRWIOrxUrVmDnzp347LPPEBkZCaAq5cSmTZuQkJCA2bNniwlUs7KykJiYaFXPU089hXnz5iEhIQEPPfSQmEC1TZs2Vqkj2rRpg/vuuw+pqamQy+Xo3LkzDh8+jG+//Rbx8fHM4UVERERWZEK1lYHuTafTITk52WrLoMcff9xqy6Dly5djx44d+OKLLxAVFSUez8/Pt9oyqEOHDpgxYwb69OlTrZ7Dhw9j7dq1OHv2rLhl0DPPPGNzy6D169dj+/btyM/PR2RkJB5++OF6bxl0+vRpzJw5E8nJyejYsWM9vxUiIiLyBB4XeHkrBl5ERETez6PWeBERERF5MgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxEREZGTeNSWQd6svLwcAJCZmenilhAREVF9tWrVCn5+frctx8DLTWRnZwMAli1b5uKWEBERUX3VdecZbhnkJgoLC3Ho0CFERUVBpVJJdt/MzEwsW7YMixYtQqtWrSS7rzvx9j56e/8A7+8j++f5vL2P7F/DccTLw4SEhGDUqFEOu3+rVq28fg9Ib++jt/cP8P4+sn+ez9v7yP45HhfXExERETkJAy8iIiIiJ2Hg5eXCwsLw5JNPIiwszNVNcRhv76O39w/w/j6yf57P2/vI/jkPF9cTEREROQlHvIiIiIichIEXERERkZMw8CIiIiJyEubxciNHjx7FCy+8YPNcUlISunbtKv58+vRpfPTRRzh58iQUCgV69uyJZ599Fs2bN6927ddff41Nmzbh6tWrCAsLw5gxYzBlyhQolbf/9RsMBnzyySfYvn078vLyEBUVhYceeggTJkxwef/+/vtvbNmyBUePHsWVK1cgk8nQqlUrTJw4EUOGDLlte65evYpHH33U5rnFixdj+PDh9esgHPM7HDRokM37zZo1C48//vht2+TOv8Pt27fjzTffrLG+2/VR6t9hXft3/PhxbN++HWfPnkVGRgYqKyvxxRdfICoqyua17vIMOqKP7vYcOuJ36InPYF37527PIFC3PhqNRnz11Vc4fPgwMjIyUFRUhGbNmmHgwIGYPHkygoKCql3rLs8hAy83NGvWLPTs2dPqWJs2bcTPmZmZeOGFF9C+fXssWbIEFRUVWLt2LZ577jmsXbsWISEhYtn169cjJSUFkydPxl133YX09HSsWbMGubm5WLBgwW3bsnLlSnz//feYMWMGOnXqhEOHDuH999+HTqfDlClTXNq/Q4cOYf/+/bj33nvRqVMnGI1G7N69GwkJCZg+fTqefPLJOrVnwoQJGDFihNWxli1b2tU3qftoNmTIkGp/uTVr1qxObXHn32H//v2RlJRU7f4pKSk4cuRIjf/Bu5XUv8Pb9e+3337Db7/9hg4dOiAgIABHjx6t8V7u+AxK2Ud3fQ6l/B0CnvcM1rV/7voMArX3sby8HKmpqRg+fDjGjRsHjUaDM2fOYP369di3bx+Sk5Ph6+srXudWz6FAbuP3338X4uLihLS0tFrLJSQkCOPGjRNKSkrEY1evXhWGDh0qrFq1SjxWWFgoDB8+XHj77betrl+/fr0waNAgISMjo9Z6Lly4IAwaNEj45JNPrI6//fbbwogRIwStVlu3jt0gdf8KCgoEk8lU7fqFCxcKI0eOFMrLy2ut58qVK0JcXJywYcOGevWjNlL3URAEIS4uTli5cqVd7XH336EtOp1OGDVqlPDss8/etj1S/w7r2j+j0Sh+3rBhgxAXFydcuXKlWjl3ewYFQfo+uttzKHX/BMEzn8H69O9WrnwGBaFufTQYDEJhYWG142lpaUJcXJywc+dO8Zi7PYdc4+VhDAYD9u3bh8GDByMgIEA8HhkZiZ49e2Lv3r3isYMHD6KiogJjx461useYMWMgCIJVWVv27t0LQRAwZsyYateXl5fj4MGDEvTIWn36FxISAplMVu0enTt3hl6vR1FRkeTtk0J9+thQ7v47tGX37t0oKyvDfffdJ3nbpCKX1+2vTk98Bs3q2kdPfQ7r2r+GctXvsCH984RnUKFQQKPRVDveuXNnAMD169fFY+72HDLwckOJiYkYOnQoRo8ejX/+8584fvy4eO7KlSsoLy9Hu3btql3Xrl07XL58GeXl5QCAjIwMAEDbtm2tyoWHh0Oj0Yjna5KRkYGQkJBqCefMdd/u+ppI1b+aHD16FCEhIQgNDa1TezZs2IBhw4Zh5MiRePbZZ/HLL7/Ur0M2SN3HXbt2YcSIERg+fDji4+Oxbdu2OrXDE3+HW7duRUBAAIYOHVrn9kj9O6ytf/Xhrs8gIF0fa+Lq51Dq/nnSM9hQ7vAMAvb18ffffwcAtG7dWjzmbs8h13i5kYCAADzyyCPo2bMngoODcfnyZXz22Wd44YUX8NZbb+Huu++GVqsFAAQHB1e7Pjg4GIIgoLi4GL6+vigqKoJKpYJarbZZ1nyvmmi1Wpv1qNVq+Pj43PZ6R/fPlu+++w5Hjx7FnDlzoFAoam2Pj48P7r//fvTp0wdhYWG4du0aNm7ciFdeeQULFy7EuHHj6tU/R/VxxIgR6N+/P5o2bYqCggJs3boVK1aswJUrVxAfH19rezztd5iZmYm//voL48ePh5+f323bI/XvsC79qw93ewYB6ftoiyufQ0f0z9OewYZw9TMI2N/HnJwcrF69Gp06dcI999wjHne355CBlxu54447cMcdd4g/9+jRA3FxcXjyySeRlJRU5wfK1rB/Q8pJdb2j+3fgwAEkJiZiyJAhdXrTJDw8vNqiyqFDh2L27NlYvXo1Ro8eXae3XSw5oo8JCQlW54YMGYJ//etf+PTTT/HII49UW4hfH+72O9y6dSsA1Pkva6l/h1L1r66c/QwCju+jq59DR/TPG5/Bmrj6GQTs62NRUREWLlwIQRCwZMmSek21Ovs55FSjmwsKCsI999yD8+fPo7y8XJzTtrVuoqioCDKZDIGBgQCqIvmKigro9XqbZW1F8JY0Go3NesrKylBZWXnb6+uiIf2zdOjQISxatAh9+vTBa6+9ZveDpFQqMWzYMGi1Wly6dMmue9xKqj5aGjlyJIxGI9LT02st50m/Q4PBgJ07d6J9+/bo1KmT3e2R+nd4a//qwxOeQaBhfbTkrs+hVP2z5M7PoL3c9RkEau9jcXEx5s2bh9zcXKxcubJaSh53ew4ZeHkAwWI7zebNm8PX1xcXLlyoVu7ChQto0aKFOIVjns++tWxeXh60Wq3Vq8e2tG3bFoWFhcjLy6tWD4DbXl9X9vbP7NChQ3jllVcQGxuLN954Az4+PpK0R8rFtw3tY01u10ZP+R0CwL59+1BQUCDJgl6pf4eCnVvaesozCNjfRzN3fw4b2r+auOMzaC93fgYt72mpuLgYL774Iq5evYp3333X5tpSd3sOGXi5ueLiYuzfvx8dOnSAr68vlEol7rnnHvz888/Q6XRiuWvXruHo0aNWOVf69u0LlUqF7du3W91z+/btkMlkiIuLq7XugQMHQiaTYceOHdWu9/X1Rd++fV3aP+DmX/Z33nkn/v3vf0OlUjWoPQaDAWlpadBoNGjRokWD7mXW0D7asnPnTiiVSqvheFs84XdotnXrVqhUKowaNapB7ZH6d3hr/+rDE55BoGF9BNz/OWxo/2xx52fQXu76DAK2+2gOuq5cuYJ33323xt+Fuz2HXOPlRpYuXYqmTZuiU6dO0Gg0uHTpEr744gvk5+fj5ZdfFstNnz4ds2bNwksvvYTJkyejoqICKSkp0Gg0+Mc//iGWCw4OxtSpU5GSkoLg4GDcddddOHXqFNatW4dx48ZZvfWxY8cOvPXWW3jppZcwevRoAFVR/H333YfU1FTI5XJ07twZhw8fxrfffov4+Ph6D69K3b/jx4/j1VdfRZMmTfD444/j3LlzVvW1bt1aTGdgq38ffPABDAYDunfvjiZNmuD69ev4+uuvcfbsWbz88su3XRTsjD5+9tlnuHjxInr37o2IiAhxYe/hw4cxbdo0q7Ulnvg7NMvNzcWhQ4cwdOhQmxmna+qf1L/DuvavsLAQx44dA3DzX70HDx5ESEgIQkJCEBsbC8D9nkFH9NHdnkOp++epz2Bd+2fmLs9gXftYXl6Of/7znzh79iyef/55GI1GnDhxQrxHSEiIGPS523PIwMuNtG3bFmlpadiyZQvKysoQFBSE7t2749VXXxVzkwBAq1at8P777+Ojjz5CQkICFAoFevXqhWeeeabaIs+pU6fC398fmzZtwueff44mTZrgsccew9SpU63KCYIAo9FYbSh33rx5CA8Px8aNG5Gfn4/IyEjMmTPHrm0SpO7fkSNHUF5ejuzsbMydO7dafe+9956Y9dhW/9q0aYMtW7Zg165dKC0thb+/Pzp37oz//Oc/di9QlbqPMTEx+PXXX7F//37xTcD27dvb3IrDE3+HZtu3b4fRaKx1Qa8zfod17V9GRka1BdcrV64EAMTGxuL9998Xj7vTM+iIPrrbcyh1/zz1GazP/0cB93kG69rH/Px8cX3drX0BgNGjR+OVV14Rf3an51AmOGrim4iIiIiscI0XERERkZMw8CIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxGRG7p48SJkMpn4JzIy0ur8kiVLIJPJsGfPHtc08BaPP/64VXvXrVvn6iYRuSUGXkTkVLcGFLb+3LqPXGPWo0cPLF68GPPnz3d4XatXr4ZMJsNTTz1127K9e/eGTCbD77//DgB4+OGHsXjxYjzwwAOObiaRR+NejUTkEu3atcPjjz9u89ytozuNWWxsLJYsWeKUuiZNmoR58+bh888/R2JiItRqtc1yx48fx++//47Y2Fj06tULQFXg9fDDD2PdunXYvHmzU9pL5IkYeBGRS7Rv395pAQXVTXBwMB555BGsX78eGzduxOTJk22WS0lJAQDMmDHDmc0j8gqcaiQityeTyTBkyBDk5ORg+vTpaNq0KdRqNfr161fjGqfi4mIsXrwYXbt2hVqtRkhICEaPHo1ffvmlWtkhQ4ZAJpOhvLwcCQkJaN++PXx8fKwCw40bN6JPnz5Qq9Vo1qwZZs6ciYKCArRu3RqtW7cWyz3xxBOQyWQ4fPiwzXYtXLgQMpkMmzZtashXUqPjx4+jefPmCA8Px8GDB8XjGRkZiI+PR0xMDHx9fREVFYUnn3wSmZmZVtebg6nU1FSb96+oqMCnn34KX1/fGgMzIqoZR7yIyCMUFhZiwIABCA4OxuTJk3H9+nV88cUXuPfee/Hbb7+hW7duYtn8/HwMGjQIJ06cQFxcHO69915otVps3rwZQ4cOxZdffokHH3ywWh0PP/ww/vjjD9x7771o0qQJ2rZtCwBYu3YtZsyYgZCQEEydOhUajQbbtm3DyJEjUVlZCR8fH/Ees2fPxvr165GcnIy77rrL6v6VlZVYv349IiMjcf/990v+He3duxf3338/goODsXv3bnTq1AkAcPDgQdx7770oLS3F/fffj/bt2+PixYv49NNPsX37duzfv1/s66BBg9ChQwfs3r0bFy9etAoqAWDLli3Iy8vDpEmTEBoaKnkfiLyeQETkRBkZGQIAoV27dsLixYtt/tm+fbvVNQAEAMIzzzwjGI1G8fiaNWsEAMLs2bOtyj/22GMCAGHt2rVWx7Ozs4Xo6GghIiJCKCsrE48PHjxYACDExsYKeXl5VtcUFBQIgYGBQlBQkHD+/HnxeGVlpTBixAgBgNCqVSura7p16yYEBQUJJSUlVsc3btwoABBeeumlOn9PTzzxhM3zixcvFgAIaWlpgiAIwjfffCP4+fkJXbp0Ef7++2+xXEVFhdC6dWshKChIOHbsmNU99u7dKygUCmHcuHFWx998800BgLBkyZJq9Y4ZM0YAIOzatctmu1JTUwUAQmpq6m37SNQYMfAiIqcyBxS1/XnhhResrgEgBAQECMXFxVbHKysrBaVSKfTq1Us8lpOTIygUCmH48OE263///fcFAMK3334rHjMHXps3b65Wft26dQIA4cUXX6x2bv/+/TYDL3MdKSkpVsfHjh0ryGQy4ezZszbbZqk+gdeaNWsEhUIh9O/fv1rgaA723njjDZv3efjhhwW5XC5otVrx2JUrVwSFQiG0bt1aMJlM4vHLly/bPG6JgRdR7TjVSEQuce+992LHjh11Lt+hQwcEBgZaHVMqlWjWrBkKCwvFY4cPH4bRaIRer7e5eP/s2bMAgPT0dIwbN87q3N13312t/B9//AEAuOeee6qdu/vuu6FUVv9rdMqUKXjppZewZs0aTJ8+HQBw+fJl7Ny5E4MHD0b79u1r72w9JCYmYsuWLRg7diy+/PJL+Pv7W50/cOAAgKr+2vo+srOzYTKZcObMGfTp0wcAEBUVhTFjxuC7775DWloahg0bBgBYt24djEYjpk2bBplMJlkfiBoTBl5E5BE0Go3N40qlEkajUfw5Pz8fAPDrr7/i119/rfF+paWl1Y41a9as2rGioiIAQERERLVzcrkc4eHh1Y6HhIRg4sSJ+Pjjj3Hy5El06dIFqampMBqNmDlzZo1tssfevXsBAKNHj64WdAE3v49PP/201vvc+n3MmDED3333HVJTU60CL7lcjieffFKClhM1TnyrkYi8SnBwMADgn//8J4Sq5RQ2/yxevLjatbZGccz3y8nJqXbOZDIhNzfXZjtmz54NAFizZg0EQUBqaiqaNGmChx9+2O6+2ZKSkoJevXrhhRdewKpVq6qdN7f/22+/rfX7GDx4sNV148aNQ7NmzfD111+jqKgIe/fuxdmzZzFy5EjExMRI2geixoSBFxF5lbvuugsymQz79++X5H49evQAAOzbt6/auUOHDsFgMNi8rn///ujevTs++eQTbN++HRcuXMDjjz8OPz8/SdplFhoail27dqFXr1549tln8eGHH1qd79u3LwDU+/tQKpWYOnUqysrK8Pnnn2Pt2rUAmLuLqKEYeBGRV4mMjMTEiROxb98+vPPOOxAEoVqZgwcPQqfT1el+DzzwAAIDA7FmzRpkZGSIxw0GA1577bVar501axZyc3PF6cX4+Ph69KTuzMFXnz598Nxzz+H/+//+P6v2x8TEYOXKlfj555+rXVtZWWkztxlwM8hatWoVvvzyS4SFhXFLIKIG4hovInKJc+fO1Zq5viFZ7VetWoXTp09j4cKF+OSTT9C/f39oNBr8/fff+O2333D27FlcvXrV5pqoW4WEhGDlypWYNWsWevXqhUcffVTM4+Xr64vmzZtDLrf9b1jzIvsrV66gb9++6N69u919qks7f/jhB4waNQpz5syBIAiYM2cOfH198dVXX2HMmDEYPHgwhg8fLuY8y8rKwt69exEWFob09PRq9+zYsSMGDBggrpWbOXMmVCqVw/pA1Bgw8CIilzh//jxef/31Gs83JPBq0qQJ9u3bhw8++ABffPEFPv30U5hMJkRGRqJHjx547bXXbC6Kr8nMmTMRGhqK5cuXY926ddBoNBg/fjzeeusttGrVCu3atbN5nUajwQMPPIDPPvtM8kX1tlgGXy+88AIEQcALL7yAu+66C3/88QfeeecdbNu2Db/88gt8fX3RokULPPjgg5g0aVKN95wxY4YYeJnf0CQi+8kEW+PwRER0W+fOnUOHDh0wceJEfPHFFzbLdO3aFVlZWbh69Wq1dBi1uXjxItq0aYMnnngC69atk6jFjrdu3TpMmzYNqampfPuRyAau8SIiuo2CggKUl5dbHSsrK8OLL74IADa3HwKAbdu24eTJk5gyZUq9gi5LH3/8MWQyGSIjI+263lkef/xxyGQyTJs2zdVNIXJrnGokIrqNn376CTNmzMCoUaMQExOD3NxccS/DYcOG4dFHH7Uqn5SUhL///hvJyclQq9VYuHBhvesMCQmxSnlhb+DmLA8//LBVYtjY2FjXNYbIjXGqkYjoNs6ePYvXXnsN+/btE/N5tW/fHo8++ijmz59fLUVE69atcenSJXTs2BFvvfVWtQz5RNR4MfAiIiIichKu8SIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxEREZGT/P8dS6oUwHgCGQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Best-fit model:\n", + "energy = np.linspace(500.,520.,201)*u.keV\n", + "flux = results.optimized_model[\"gaussian\"].spectrum.main.shape(energy)\n", + "\n", + "fig,ax = plt.subplots()\n", + "\n", + "ax.plot(energy, flux, label = \"Best fit\")\n", + "\n", + "\n", + "plt.ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "plt.xlabel(\"Energy [keV]\", fontsize=14)\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "5b3cafef-b0c4-4cfb-8aaa-533c3be57f7b", + "metadata": {}, + "source": [ + "Now let's compare the predicted counts to the injected counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a2a754b4-5aef-48cb-bf0f-43cad8029e5d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error: [2129.064008]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHDCAYAAAADeJEeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlb0lEQVR4nO3dd3hUVf4G8HcyCWmk90J6IYSEUKQIoXcpKiyiSBdEQPkpdllRBBdxBVkUaUoTFrADIrsiQVkR0JEa0nsy6cmk95zfHyyzxgQmhMCZJO/Hh+cxd87c+557k8k39557rkIIIUBERETUBhjIDkBERETUXCxciIiIqM1g4UJERERtBgsXIiIiajNYuBAREVGbwcKFiIiI2gwWLkRERNRmsHAhIiKiNoOFCxEREbUZhrID3A3l5eXYvXs34uLiEBcXh6KiIsyZMwfz5s27o/WePn0ahw4dQlxcHOrr6+Hs7IypU6di0qRJrZSciIiIbqVdFi5FRUU4cuQIfH19ER4ejqNHj97xOj/99FPs2LEDkyZNwuOPPw5DQ0OkpKSgpqamFRITERFRc7TLwsXZ2RnffvstFAoFNBrNHRcuMTEx2LFjBxYuXIjHHntMu7x37953GpWIiIhuQ7ssXBQKRbPb/vDDD/j888+RkJAAhUKB7t2748knn0RAQIC2zZdffgkjIyNMmTLlbsQlIiKiZurQg3P37t2LVatWwdPTE2+++SZee+01lJeX4+mnn0ZycrK23aVLl+Dp6Ykff/wRM2bMwNChQzFlyhRs2bKFl4qIiIjuoXZ5xqU5srOz8cknn+Dhhx/GsmXLtMv79OmDxx57DDt37sSbb74JAMjLy4NGo8HGjRsxf/58eHl5QaVSYf/+/cjJycHrr78uqxtEREQdSoctXH799VfU1dVhzJgxqK2t1S7v1KkTwsLCcOHCBe2y+vp6lJeXY+XKlRgxYgQAoFevXqisrMRnn32GefPmwd3d/Z73gYiIqKPpsIVLQUEBAGDhwoVNvm5g8L+raJaWligoKEDfvn0btOnXrx8+++wzxMbGsnAhIiK6Bzps4WJlZQUAWLVqFZydnW/Z1tfXV1voNOWPRQ4RERHdPR22cOnbty+USiXUajWGDh16y7ZDhgzBr7/+irNnz2LUqFHa5b/88gsMDAzQtWvXu5yWiIiIgHZcuJw9exaVlZUoLy8HAKSkpODUqVMAgP79+8PFxQXz58/H9u3boVar0a9fP1hYWKCgoABRUVEwNTXVzrQ7fvx4HD58GBs2bEBRURG8vLzw22+/4euvv8aDDz6o84wNERERtQ6FEELIDnE3TJs2DVlZWU2+dvDgQbi4uAC4Po3/559/jtjYWNTU1MDW1hZdu3bF5MmTG0wwV1xcjG3btuE///kPiouL4eLiggkTJuCRRx7hpSIiIqJ7pN0WLkRERNT+8FQBERERtRksXIiIiKjNaDeFS2VlJWJiYlBZWSk7ChEREd0l7aZwSUlJwYIFC5CSkiI7ChEREd0l7aZwISIiovaPhQsRERG1GSxciIiIqM1g4UJERERtBgsXIiIiajNYuBAREVGbwcKFiIiI2gwWLkRERNRmsHAhIiKiNoOFCxEREbUZLFyIiIiozWDhQkRERG0GCxciIiJqM1i4EBERUZvBwoWIiIjaDBYuRERE1GYYyg7QFhSlFqE8r1x2DCIiImnM7M1g5WElOwYLF12KUovwftf3gQqgBjXIRS7sYAdjGKMEJShDGZzhDADIRS6MYARrWKMWtchBDmxhCxOYoBSlKEEJXOACAMhDHpRQwgY2qEMdspENG9jAFKYoQxmKUARXuAIA8pEPBRSwhS3qUY8sZMEa1jCDGcpRDg00cIYzDGCAAhRAQMAOdgAANdSwghXMYY4KVKAQhXCCE5RQohCFqEMd7GEPAMhEJixggc7ojEpUogAFcIQjDGEIDTSoQQ0c4AAAyEIWzGEOC1igClXIRz4c4AAjGKEIRahCFRzhCADIRjZMYQpLWKIa1chDHuxhj07ohGIUowIVcIITACAHOTCGMaxgxf3dwv2dgxyYwASWsNTuwxv7uwQlKEd5s/Z36X//u7G/85AHQxjCGtbafXhjf5ehDMUo1u7vfOTDAAawgY12H97Y3zf2oQtcoIACBSgAANjCFgICmcjU7u8b+/DG/i5EIepRr93fmciEJSxhDnPtPryxvzXQoBa12v2dhSx0/u9/zfmeNYMZLGCh/Z690bYYxahEZYP9ze9Zfka0pf3d0s8IIzMjLIlaIr94Ee1EdHS0CA8PF9HR0a263vNHz4v7cb+I2BwhIg5FCADi8M7DQq1SixefelE42jkKtUot1Cq16B7YXcz+y2yhVqnFuSPnBABxYPMBoVapxcpnV4rO5p21be/rcZ+YNmGaUKvU4sqJKwKA2Ll+p1Cr1OKdV98RSqVS23ZI/yFiwogJQq1Si/j/xAsA4sM1Hwq1Si02vbVJABBJvyQJtUotxg0bJ0YMHKF9LwDx7op3hVqlFjve3SEAiMiTkUKtUouHxz0sBvQeoG1ramIqVj2/SqhVarF/034BQPx27DehVqnF4w8/Lnp066Fta2ttK15Z8opQq9Tiqx1fCQDipy9+EmqVWiycsVAE+ARo27q7uItl85cJtUotjn96XAAQxz89LtQqtVg2f5lwd3HXtg3wCRALZywUapVa/PTFTwKA+GrHV0KtUotXlrwibK1ttW17dOshHn/4caFWqcVvx34TAMT+TfuFWqUWq55fJUxNTLVtB/QeIB4e97BQq9Qi8mSkACB2vLtDqFVq8e6KdwUAbdsRA0eIccPGCbVKLZJ+SRIAxKa3Ngm1Si0+XPOhACDi/xMv1Cq1mDBighjSf4j2vUqlUrzz6jtCrVKLnet3CgDiyokrQq1Si2kTpon7etynbdvZvLNY+exKoVapxYHNBwQAce7IOaFWqcXsv8wW3QO7a9s62jmKF596UahVanF452EBQEQcihBqlVosmrlI+Hj6aNt6uXuJpXOWCrVKLU4cOCEAiGN7jgm1Si2eW/iccHF00bYN8gsS8x6ZJ9Qqtfj5658FAPH51s+FWqUWK5atENaW1tq2vUN6i0cnPyrUKrW4cPyCACD2vL9HqFVqsealNaKTUSdt20F9B4nJYyYLtUotYn6MEQDE1rVbhVqlFhtWbhAAROq5VKFWqcWowaPEqMGjhFqlFqnnUgUAsWHlBqFWqcXWtVsFABHzY4xQq9Ri8pjJYlDfQdrtdDLqJNa8tEaoVWqx5/09AoC4cPyCUKvU4tHJj4reIb21ba0trcWKZSuEWqUWn2/9XAAQP3/9s1Cr1GLeI/NEkF+Qtq2Lo4t4buFzQq1Si2N7jgkA4sSBE0KtUoulc5YKL3cvbVsfTx+xaOYioVap+RnBz4h2+xlx/pPz4mk8LRLPJLbq79iWYOGiQ8ShCGEPexFxKEKUl5cLlUolSkpKhBBCqNVqcenSJW3ba9euiZSUFCGEEJWVlUKlUomioiIhhBBZWVniwoULDfImJSUJIYSorq4WKpVKFBYWCiGEyMnJESqVSts2NjZWJCQkCCGEqK2tFSqVSuTn5wshhMjPzxcqlUrU1dUJIYRISEgQcXFx2veqVCqRm5srhBCioKBAqFQqUVNTI4QQIjExUcTExGjbXrhwQWRnZwshhCgqKhIqlUpUVVUJIYRISUkRUVFR2raXLl0SmZmZQgghSkpKhEqlEhUVFUIIIdLS0kRkZKS27ZUrV0RGRoYQQoiysjKhUqlEWVmZEEKIjIwMceXKFW3byMhIkZaWJoQQoqKiosH+zszMbLC/o6KitPu7qqqqwf7Ozs5usL9jYmJEYuL1H7iamhqhUqlEQUGBEEKI3NzcBvs7Li5Ou7/r6uqa3N+1tbXa/R0bG9tgf+fk5AghhCgsLBQqlUpUV1cLIYRISkpq8P154cIFkZWV1WB/V1ZWavf3tWvXGuxvtVrdYH+Xl5dr9/fVq1e1ba9evSrS09OFEEL7PVtaWiqEuP49e/ny5Qb7OzU1tcH+Li4uFkJc/569ePGitm10dLRITk4WQvzve1aj0Qghrn/P/v7779q2sbGx2v1943v2xv7Oy8sTKpVK1NfXCyGEiI+PF/Hx8UIIIerr64VKpRJ5eXlCiP99z97Y34mJiQ329++//67d3xqNpsH+Tk5ObrC/L168qN3fxcXFDb5nU1NTG3zPXr58Wbu/S0tLG+zv9PT0Rvv7xvcsPyP4GdFePyP+WFDKphBCiNY+iyNDTEwMFixYgO3btyMwMLDV1pv5eya29d6GhaqFcOnl0mrrJSIiaiviTsdhzeA1eO2n1+Af7i81C+8qIiIiolvqbN4Z3vBGZ/POsqOwcNElJiEGG7ERMQkxsqMQERFJkZufi5/xM3Lzc2VHYeGii6WFJYIRDEsLS9lRiIiIpMjJz8FpnEZOfo7sKCxcdHFxdMFIjISLI8e3EBFRxxQcEIyX8TKCA4JlR2HhoktFZQWykIWKygrZUYiIiDo8Fi46xCXFYQu2IC4pTnYUIiIiKeKT47EDOxCfHC87CgsXXfy8/LAAC+Dn5Sc7ChERkRQmxiZwgANMjE1kR2HhoouZqRnc4AYzUzPZUYiIiKRwd3HHZEyGu4u77CgsXHTJzs1GBCKQnZstOwoREZEUNTU1KEEJampqZEdh4aJLgaYAv+N3FGgKZEchIiKSIio+Cu/hPUTFR8mOwsJFlyD/ICzHcgT5B8mOQkREJIWXuxcew2PwcveSHYWFCxEREd2apYUlAhCgF5OxsnDRITYxFpuxGbGJsbKjEBERSZFfmI/zOI/8wnzZUVi46GJuZg4veMHczFx2FCIiIinU2Wr8C/+COlstOwoLF13cnN0wHuPh5uwmOwoREZEUIV1D8Ff8FSFdQ2RHYeGiS2VVJfKRj8qqStlRiIiIOjwWLjrEJsZiEzZxjAsREXVYiamJ2I3dSExNlB2FhYsuPh4+mI3Z8PHwkR2FiIhICkOlIcxhDkOloewoLFx06WzeGd7wRmfzzrKjEBERSeHh5oGpmAoPNw/ZUVi46JKbn4uf8TNy83NlRyEiIpKirq4OlahEXV2d7CgsXHTJyc/BaZxGTn6O7ChERERSRMZGYi3WIjI2UnYUFi66BAcE42W8jOCAYNlRiIiIpPBw88Bf8BdeKiIiIiL9Z21pjWAEw9rSWnYUFi66xCfHYwd2ID45XnYUIiIiKQo0BbiACyjQFMiOwsJFFxNjEzjAASbGJrKjEBERSZGemY5v8A3SM9NlR2Hhoou7izsmYzLcXdxlRyEiIpKCU/63ITU1NShBCWpqamRHISIikkKhUEAJJRQKhewoLFx0iYqPwnt4D1HxUbKjEBERSZGcloz92I/ktGTZUVi46OLl7oXH8Bi83L1kRyEiIurwWLjoYGlhiQAEwNLCUnYUIiIiKby6/PeP+C5esqOwcNElvzAf53Ee+YX5sqMQERFJIYRAHeoghJAdRf8Kl6NHj2Lw4MEYM2aM7CgAAHW2Gv/Cv6DOVsuOQkREJMWV6Ct4C2/hSvQV2VH0q3DJzc3F5s2bYW9vLzuKlj7dAkZERCSDPk0NoleFy3vvvYfQ0FD06dNHdhQiIiL6L1trW/RET9ha28qOoj+Fy7///W9cvHgRzz33nOwoDSSmJmI3diMxNVF2FCIiIik0xRpEIhKaYo3sKPpRuBQWFmLTpk148skn4ejoKDtOA4ZKQ5jDHIZKQ9lRiIiIpEjNSMVn+AypGamyo0AvfhuvX78eXbp0wYMPPtjs9+Tl5SE//393+qSkpNyFZNcf5T0VU/XiUd5EREQyBAcE42W8jOCAYNlR5Bcup06dwpkzZ/Dxxx/f1lTChw8fxq5du+5esP+qq6tDJSpRV1d317dFRESkj5RKJUxgAqVSKTuK3MKlvLwc77//Ph5++GHY2dmhpKQEAFBbWwsAKCkpgaGhIUxNTRu9d9KkSRg4cKD265SUFKxevbrVM0bGRmIt1mJo7FC43yd/NDUREdG9lpqRis/xOcZmjIVLLxepWaQWLkVFRSgoKMDBgwdx8ODBRq8/8MADGDRoEN5+++1Gr9nb29+T26Y93DzwF/yFl4qIiKjDqq2rRRnKUFtXKzuK3MLF1tYWGzdubLR83759uHjxIt59911YWVlJSPY/1pbWCEYwrC2tpeYgIiKSxcfDB7MxGz4ePrKjyC1cjI2N0bNnz0bLv/vuOyiVyiZfu9cKNAW4gAso0BTABXJPjxEREXV0enE7tD5Lz0zHN/gG6ZnpsqMQERFJwSn/dXj11Vfxr3/9S3YMAJzyn4iIyNXJFWMwBq5OrrKj6Gfhok8UCgWUUN7WrdpERETtiZ2NHfqiL+xs7GRHYeGiS3JaMvZjP5LTkmVHISIikqK4pBixiEVxSbHsKCxciIiI6NaS0//7R3x6suwoLFx08erihcfwGLy6eMmOQkREJEWQXxCWYzmC/IJkR2HhoosQAnWogxBCdhQiIiIpjIyMYAELGBkZyY7CwkUXfboFjIiISAZ9mhqEhYsO7i7umIzJcHfhc4qIiKhjqqyqRC5yUVlVKTsKCxddbK1t0RM9YWttKzsKERGRFH5efngCT8DPy092FBYuumiKNYhEJDTFGtlRiIiIOjwWLjqkZqTiM3yG1IxU2VGIiIikiIyNxFqsRWRspOwoLFx0CQ4Ixst4GcEBwbKjEBERSeFo54hwhMPRzlF2FBYuuiiVSpjABEqlUnYUIiIiKRzsHDAQA+Fg5yA7CgsXXVIzUvE5PuelIiIi6rBKy0qRhCSUlpXKjsLCRZfaulqUoQy1dbWyoxAREUmRmJqI3diNxNRE2VFYuOji4+GD2ZgNHw8f2VGIiIikCPAJwNN4GgE+AbKjsHAhIiKiWzMxNoEd7GBibCI7CgsXXTjlPxERdXQZWRk4hmPIyMqQHYWFiy6uTq4YgzFwdXKVHYWIiEiKsvIyJCMZZeVlsqOwcNHFzsYOfdEXdjZ2sqMQERFJEeATgMVYzDEubUFxSTFiEYvikmLZUYiIiDo8Fi46JKcnYz/2Izk9WXYUIiIiKaLiovAe3kNUXJTsKCxcdAnyC8JyLEeQX5DsKERERFLYWtuiF3rB1tpWdhQWLroYGRnBAhYwMjKSHYWIiEgKJwcnDMMwODk4yY7CwkWX9Mx0fINvkJ6ZLjsKERGRFOUV5chABsorymVHYeGiS2VVJXKRi8qqStlRiIiIpIhPjsd2bEd8crzsKCxcdPHz8sMTeAJ+Xn6yoxAREUnh7+2PRVgEf29/2VFYuBAREdGtmZqYwhnOMDUxlR2FhYsukbGRWIu1iIyNlB2FiIhIisycTJzACWTmZMqOwsJFF0c7R4QjHI52jrKjEBERSVFcUoxIROrFZKwsXHRwsHPAQAyEg52D7ChERERSBPoGYhmWIdA3UHYUFi66lJaVIglJKC0rlR2FiIiow2PhokNiaiJ2YzcSUxNlRyEiIpIiJiEGm7AJMQkxsqOwcNElwCcAT+NpvXgiJhERkQwWnS0QiEBYdLaQHYWFiy4mxiawgx1MjE1kRyEiIpLC1ckVozEark6usqOwcNElIysDx3AMGVkZsqMQERFJUVFZgRzkoKKyQnYUFi66lJWXIRnJKCsvkx2FiIhIirikOGzGZsQlxcmOwsJFlwCfACzGYo5xISKiDsvX0xfzMR++nr6yo7BwISIiolszNzNHF3SBuZm57CgsXHSJiovCe3gPUXFRsqMQERFJkZ2bjR/xI7Jzs2VHYeGii621LXqhF2ytbWVHISIikiJfk49f8SvyNfmyo7Bw0cXJwQnDMAxODk6yoxAREUnRzb8bnsfz6ObfTXYUFi66lFeUIwMZKK8olx2FiIiow2PhokN8cjy2Yzvik+NlRyEiIpIiLikOW7CFt0O3Bf7e/liERfD39pcdhYiISApTE1N0QReYmpjKjsLCRRdTE1M4w1kvDhYREZEM7i7ueAAPwN3FXXYUFi66ZOZk4gROIDMnU3YUIiIiKaqqq1CIQlRVV8mOwsJFl+KSYkQiEsUlxbKjEBERSRGTEION2IiYhBjZUVi46BLoG4hlWIZA30DZUYiIiKTw7uKNmZgJ7y7esqOwcCEiIqJbs+hsAV/4wqKzhewoLFx0iUmIwSZs0ovTY0RERDLk5ufiDM4gNz9XdhQWLrpYdLZAIAL1osokIiKSITsvG6dwCtl5fFaR3nN1csVojIark6vsKERERFJ0D+yOV/Equgd2lx2FhYsuFZUVyEEOKiorZEchIiLq8Fi46BCXFIfN2KwX0xwTERHJEJ8cj4/xsV48/oaFiw6+nr6Yj/nw9fSVHYWIiEgK407GsIUtjDsZy47CwkUXczNzdEEXmJuZy45CREQkRRfXLngID6GLaxfZUVi46JKdm40f8SOyc+WPpCYiIpKhpqYGZShDTU2N7CgsXHTJ1+TjV/yKfE2+7ChERERSRMVH4V28i6j4KNlRWLjo0s2/G57H8+jm3012FCIiIik83T0xHdPh6e4pOwoLFyIiIro1KwsrdEVXWFlYyY7CwkWXuKQ4bMEW3g5NREQdVn5hPn7Db8gvlD9sgoWLDqYmpuiCLjA1MZUdhYiISIqMrAx8i2+RkZUhOwoLF13cXdzxAB6Au4u77ChERERShAaFYiVWIjQoVHYUFi66VFVXoRCFqKqukh2FiIiow2PhokNMQgw2YiNiEmJkRyEiIpIiMTURe7EXiamJsqPAUHaAuLg4bN++HYmJidBoNDA2NoaHhwceeughjB49WnY8eHfxxkzMhHcXb9lRiIiIpFAaKGEMYygNlLKjyC9cSktL4ejoiJEjR8Le3h6VlZX4/vvvsXr1amRmZmL27NlS81l0toAvfGHR2UJqDiIiIlk83T0xDdP0Yh4X6YVLz5490bNnzwbL7r//fmRmZuLIkSPSC5fc/FycwRk8lP8QXOAiNQsREZEMdXV1qEY16urqZEfR3zEuVlZWUCrln5LKzsvGKZxCdh6fVURERB1TZGwk3sbbiIyNlB1FfwqX+vp61NbWQqPR4KuvvsL58+fx2GOPyY6F7oHd8SpeRffA7rKjEBERSdHFtQumYIpePB1a+qWiG9avX4/Dhw8DAIyMjLBs2TJMnjz5pu3z8vKQn/+/GfxSUlLuekYiIqKOyMbKBiEIgY2Vjewo+lO4zJw5ExMmTEBhYSHOnDmD999/HxUVFXj00UebbH/48GHs2rXrrueKT47Hx/gYw5OHw6UXx7gQEVHHU1hUiEu4hMKiQunjPfWmcHFycoKTkxMAYMCAAQCAbdu2Ydy4cbC2tm7UftKkSRg4cKD265SUFKxevbrVcxl3MoYtbGHcybjV101ERNQWpKnT8BW+wpPqJ9EN3aRm0ZvC5c+CgoLwzTffQK1WN1m42Nvbw97e/q7n6OLaBQ/hIb24rkdERCRD98DuWIEVejHeU28G5/7ZhQsXYGBgAFdXV6k5ampqUIYy1NTUSM1BREQki4GBAQxhCAMD+WWD9DMu7777LszMzBAUFARbW1toNBqcOnUKJ0+exKOPPtrk2ZZ7KSo+Cu/iXYyIHwGPfh5SsxAREcmQkp6CAziAMeljpI/3lF64BAcH49ixYzh+/DhKS0thamoKPz8/rFixQi+m/Pd098R0TNeL2QKJiIhkqBf1qEMd6kW97CjyC5fx48dj/PjxsmPclJWFFbqiK6wsrGRHISIiksK7izdmYIZePLdP/sUqPZdfmI/f8BvyC/N1NyYiIqK7ioWLDhlZGfgW3yIjK0N2FCIiIikuR13GG3gDl6Muy47CwkWX0KBQrMRKhAaFyo5CREQkhZuzGyZiItyc3WRHYeFCREREt2ZnY4fe6A07GzvZUVi46JKYmoi92IvE1ETZUYiIiKTQFGtwDdegKdbIjsLCRRelgRLGMIbSQCk7ChERkRSpGak4hENIzUiVHYWFiy6e7p6Yhmmcx4WIiDqsbv7d8CJeRDd/uc8pAli46FRXV4dqVKOurk52FCIiIikMDQ1hBjMYGkqf/o2Fiy6RsZF4G28jMjZSdhQiIiIpUjNS8QW+4KWitqCLaxdMwRQ+HZqIiDqsmtoaFKMYNbXyHzjMwkUHGysbhCAENlY2sqMQERFJ4evpi7mYC19PX9lRWLjoUlhUiEu4hMKiQtlRiIiIOjwWLjqkqdPwFb5CmjpNdhQiIiIprsZcxRqswdWYq7KjsHDRpXtgd6zACnQP7C47ChERkRTODs4YgRFwdnCWHaX1Cpe0tDQcP34c+fnt6ynKBgYGMIQhDAxY4xERUcdkb2uP/ugPe1t72VFaVrisWLECzz77rPbrEydOICAgAA888AACAgIQGdl+bh1OSU/BARxASnqK7ChERERSlJSWIB7xKCktkR2lZYXLF198gW7d/jd73ooVKxAaGoqvvvoKnp6eWL16dasFlK1e1KMOdagX9bKjEBERSZGUloRP8SmS0pJkR0GLpsDLyMiAn58fACA/Px+//vorjh07hjFjxqCyshLLly9v1ZAyeXfxxgzMgHcXb9lRiIiIpOjq1xXP4ll09esqO0rLzrgIIVBff/0MxM8//wylUonBgwcDAFxcXJCXl9d6CYmIiEiqTkadYAUrdDLqJDtKywoXX19fHD16FABw4MAB9O3bF6ampgCAzMxM2Ni0n8naLkddxht4A5ejLsuOQkREJEV6ZjqO4AjSM9NlR2nZpaInn3wSS5YswZ49e6DRaPDJJ59oX/v5558bjH9p69yc3TARE+Hm7CY7ChERkRQVlRXIRCYqKitkR2lZ4fLUU0/BxsYGZ86cQd++ffH4449rX6uoqMDs2bNbLaBsdjZ26I3esLOxkx2FiIhICn9vfyzEQvh7+8uO0rLCBQCmT5+O6dOnN1q+bdu2OwqkbzTFGlzDNWiKNXCBi+w4REREHVqLxrgolUqcP3++yddUKhWUSuUdhdInqRmpOIRDevEobyIiIhmuxV3DOqzDtbhrsqO0/K6im7lxt1F70c2/G17Ei+jm337G7RAREd0Oext7DMAA2Nu00ZlzAUChUDS5XKVSwdrauqWr1TuGhoYwgxkMDVt8VY2IiKhNc7R3RDjC4WjvKDtK88e4bNy4ERs3bgRwvWh58MEHYWxs3KBNRUUFcnJyMHXq1NZNKVFqRiq+wBcYmzEWLr04xoWIiDqesvIypCAFZeVlsqM0v3BxdHREcHAwACA5ORk+Pj6NzqwYGxsjJCQEy5Yta9WQMtXU1qAYxaiprZEdhYiISIqElATsxE48kvII/Ab5Sc3S7MLl0UcfxaOPPgoAGDZsGD766CN07Sp/6t+7zdfTF3MxF76evrKjEBERSRHgE4ClWIoAnwDZUVp2O3RERERr5yAiIiI9ZWJsAnvYw8TYRHaUls/jIoTAr7/+ipSUFFRUNJ5Jb9asWXcUTF9cjbmKNViD+2Pu5xgXIiLqkNTZahzHcUzIniB9TrMWFS6xsbGYNGkS4uLimrw1WqFQtJvCxdnBGSMwAs4OzrKjEBERSVFaVooEJKC0rFR2lJYVLkuWLEFlZSUOHjyI0NDQRncXtSf2tvboj/6wt5V/7zoREZEMAT4BWIIlbXeMy/nz57F9+/Z2ddvzzZSUliAe8SgpLZF+eoyIiKija9EEdJ07d4alpWVrZ9FLSWlJ+BSfIiktSXYUIiIiKaLjo7EBGxAdHy07SssKl7lz52L//v2tnUUvdfXrimfxLLr6tf9bv4mIiJpibWWNUITC2spadpSWXSrq3r07/vnPf2LSpEmYOHEi7OzsGrV5+OGH7zicPuhk1AlWsEIno06yoxAREUmhTzeqtKhweeyxxwAASUlJOHr0aKPXFQoF6urq7iyZnkjPTMcRHMH4zPEc40JERB1SeUU51FCjvKJcdhROQKdLRWUFMpGJisrGc9UQERF1BPHJ8diGbXg4+WH4DpQ7k3yLCpchQ4a0dg695e/tj4VYCH9vf9lRiIiIpPDz8sNCLISfl9znFAEtHJxLREREHYeZqRlc4QozUzPZUVp2xmX48OG3fF2hUOCHH35oUSB9cy3uGtZhHQbFDeKU/0RE1CFl5WbhB/yASbmTpI/3bFHhUl9fD4VC0WBZXl4eYmJi4OjoiIAA+TPrtRZ7G3sMwADY23DmXCIi6pg0RRpcxmVoijSyo7SscDl16lSTy2NjYzF58mSsXLnyTjLpFUd7R4QjHI72jrKjEBERSaFPc5q16hiXgIAAvPDCC3jxxRdbc7VSlZWXIQUpKCsvkx2FiIiow2v1wbleXl64evVqa69WmoSUBOzETiSkJMiOQkREJEVsYiw+xIeITYyVHaX1C5cvvvgCrq6urb1aaQJ8ArAUS/XiiZhEREQydDbvDF/4orN5Z9lRWjbGZd68eY2WVVVV4fLly7h27RrWrVt3x8H0hYmxCexhDxNjE9lRiIiIpHB1csVYjIWrk/wTEy0qXE6ePNnoriITExN4eXnhlVde0T4SoD1QZ6txHMcxIXuC9FvAiIiIZKisqkQe8lBZVSk7SssKl+Tk5FaOob9Ky0qRgASUlpXKjkJERCRFbGIsPsAHmJA4Ad4DvKVm4cy5OgT4BGAJlnCMCxERdVi+nr6Yi7nw9ZT7nCKghWdcAKCgoAAbNmzADz/8gPz8fNjb22PkyJH4v//7P9jY2LRmRiIiIpLI3MwcnvCEuZm57CgtO+OSkZGBXr16Yc2aNSgqKoKHhwc0Gg3eeust9OrVC2q1urVzShMdH40N2IDo+GjZUYiIiKTIycvBaZxGTl6O7CgtK1xeffVVVFRU4Ny5c4iMjMT333+PyMhInDt3DhUVFXj11VdbO6c01lbWCEUorK2sZUchIiKSIq8wD7/gF+QV5smO0rLC5fjx41i9ejXuu+++Bsvvu+8+rFq1Ct99912rhNMHzg7OGIERcHZwlh2FiIhIim7+3fAiXkQ3/26yo7SscCkqKoKXl1eTr3l7e6OoqOhOMumV8opyqKFGeUW57ChEREQdXosKF29vb3z77bdNvvbdd9/B21vurVKtKT45HtuwDfHJ8bKjEBERSRGXFIdt2Ia4pDjZUVp2V9HcuXPx8ssvo76+HrNnz4aLiwsyMzPx6aefYtOmTVi7dm1r55TGz8sPC7EQfl5+sqMQERFJYWpiChe4wNTEVHaUlhUuL7zwAhISEvDBBx/gww8/1C4XQmDhwoV4/vnnWy2gbGamZnCFK8xMzWRHISIiksLdxR0TMRHuLu6yo7SscFEoFNi6dSuee+45REREID8/H3Z2dhg+fDgCAtrXRG1ZuVn4AT9gUu4kTvlPREQdUnVNNYpQhOqaatlRmj/GpbCwEFOmTMHRo0e1ywIDA7Fo0SK89tprWLRoEWJjYzFlyhTk5+fflbAyaIo0uIzL0BRpZEchIiKSQp/mNGt24bJjxw5cunQJY8eOvWmbsWPH4sqVKw0uH7V1Xf264lk8i65+XWVHISIiksK7izcex+Pw7iL/5ptmFy4HDhzAggULYGh486tLhoaGWLBgAQ4fPtwq4YiIiEg+i84W8IMfLDpbyI7S/MIlNjYWffr00dmuV69eiI2NvaNQ+iQ2MRYf4kPEJrafPhEREd2OvII8nMVZ5BW0oZlza2trYWRkpLOdkZERampq7iiUPuls3hm+8EVn886yoxAREUlx40aVrNws2VGaf1eRi4sLrl27hsGDB9+yXWRkJJydmz89vkqlwvfff4+rV68iJycHnTt3RmBgIObMmYPAwMBmr+ducXVyxViMhauTq+woREREUnQP7I7X8Bq6B3aXHaX5Z1yGDBmCzZs33/JsSk1NDT766CMMGzas2QG++eYbZGZmYurUqVi3bh2eeeYZaDQaLFq0CCqVqtnruVsqqyqRhzxUVlXKjkJERNThNbtwefbZZxEdHY2HHnoIarW60etqtRoPPvggYmJi8OyzzzY7wLPPPouNGzfiwQcfRFhYGIYOHYr33nsPVlZW+PTTT5u9nrslNjEWH+ADjnEhIqIOKyElATuxEwkpCbKjNP9SUWhoKD788EMsXrwY3t7e6N27t/aZRElJSVCpVKivr8dHH32EkJCQZgewsbFptMzMzAyenp7Iyclp9nruFl9PX8zFXPh6+sqOQkREJIWRoREsYQkjQ91jXe+225o5d8GCBejevTvefvttRERE4OzZswCuFxpjx47FK6+8gv79+99xqNLSUsTFxaFnz543bZOXl9dgoruUlJQ73m5TzM3M4QlPmJuZ35X1ExER6TsPNw9MwRR4uHnIjnL7U/4PGDAAR44cQX19PfLyrt8WZW9vDwODFj1oukkbNmxARUUFZs2addM2hw8fxq5du1ptmzeTk5eD0ziNB/Me5JT/RETUIdXW1qIc5aitrZUdpWXPKgIAAwMDODo6tmYWANdn6P3++++xbNmyW95VNGnSJAwcOFD7dUpKClavXt3qefIK8/ALfkFeofx714mIiGS4FncN67AOw+OGo0vfLlKztLhwuRt27tyJPXv2YMGCBZgyZcot29rb28Pe3v6uZ+rm3w0v4kV08+9217dFRESkjzzcPDAN0/TiUlHrXd+5Qzt37sTOnTsxd+5czJw5U3YcIiIi+i9rS2t0QzdYW1rLjqIfhcvu3buxc+dOzJo1C3PnzpUdp4G4pDhswzbEJcXJjkJERCRFfmE+VFAhvzBfd+O7TPqlogMHDuDjjz9Gv379MGDAAERGRjZ4PTg4WFKy60xNTOECF5iamErNQUREJEtGVgaO4AiWZC1Bd8idPVd64XLmzBkAwLlz53Du3LlGr//000/3OlID7i7umIiJcHdxl5qDiIhIltCgULyBNxAaFCo7ivzC5R//+IfsCLdUXVONIhShuqZadhQiIqIOTy/GuOiz6PhobMAGRMdHy45CREQkRVJaEvZhH5LSkmRHYeGii3cXbzyOx+HdxVt2FCIiIikMFAZQQgkDhfyyQX4CPWfR2QJ+8INFZwvZUYiIiKTwdPfEdEyHp7un7CgsXHTJK8jDWZxFXgFnziUioo6pvr4etahFfX297CgsXHTJys3CD/gBWblZsqMQERFJcTXmKlZjNa7GXJUdhYWLLt0Du+M1vIbugXLvWyciIpKli2sXPISH0MVV7nOKABYuREREpIONlQ16oAdsrGxkR2HhoktCSgJ2YicSUhJkRyEiIpKisKgQV3AFhUWFsqOwcNHFyNAIlrCEkaGR7ChERERSpKnT8AW+QJo6TXYUFi66eLh5YAqm6MWjvImIiGQIDgjGq3gVwQFynx8IsHDRqba2FuUoR21trewoREREUiiVSnRCJyiVStlRWLjoci3uGtZhHa7FXZMdhYiISIqU9BQcwiGkpKfIjsLCRRcPNw9MwzReKiIiog6rrr4OVahCXX2d7CgsXHSxtrRGN3SDtaW17ChERERS+Hj4YCZmwsfDR3YUFi665BfmQwUV8gvzZUchIiLq8Fi46JCRlYEjOIKMrAzZUYiIiKS4HHUZb+JNXI66LDsKCxddQoNC8QbeQGhQqOwoREREUrg5u+EBPAA3ZzfZUVi4EBER0a3Z2dihD/rAzsZOdhQWLrokpSVhH/YhKS1JdhQiIiIpikqKEI1oFJUUyY7CwkUXA4UBlFDCQMFdRUREHVNKegoO4ADncWkLPN09MR3T4enuKTsKERGRFEF+QXgBLyDIL0h2FBYuutTX16MWtaivr5cdhYiISAojIyOYwxxGRvIfOMzCRYerMVexGqtxNeaq7ChERERSpKnT8BW+4tOh24Iurl3wEB5CF9cusqMQERFJUVVdhQIUoKq6SnYUFi662FjZoAd6wMbKRnYUIiIiKfy8/DAf8+Hn5Sc7CgsXXQqLCnEFV1BYVCg7ChERUYfHwkWHNHUavsAXenFdj4iISIarMVfxNt7Wi/GeLFx0CA4Ixqt4FcEBwbKjEBERSeFk74ShGAoneyfZUVi46KJUKtEJnaBUKmVHISIiksLBzgH343442DnIjsLCRZeU9BQcwiG9mC2QiIhIhpLSEiQgASWlJbKjsHDRpa6+DlWoQl19newoREREUiSlJWEv9urFc/tYuOjg4+GDmZgJHw8f2VGIiIikCPQNxDIsQ6BvoOwoLFyIiIjo1ow7GcMGNjDuZCw7CgsXXS5HXcabeBOXoy7LjkJERCRFemY6vsW3SM9Mlx2FhYsubs5ueAAPwM3ZTXYUIiIiKSoqK5CGNFRUVsiOwsJFFzsbO/RBH9jZ2MmOQkREJIW/tz8WYRH8vf1lR2HhoktRSRGiEY2ikiLZUYiIiDo8Fi46pKSn4AAOcB4XIiLqsK7FXcPf8Xdci7smOwoLF12C/ILwAl5AkF+Q7ChERERS2Fnb4T7cBztr+cMmWLjoYGRkBHOYw8jISHYUIiIiKZwcnDAEQ+DkwGcV6b00dRq+wld8OjQREXVYZeVlSEMaysrLZEdh4aJLVXUVClCAquoq2VGIiIikSEhJwMf4GAkpCbKjsHDRxc/LD/MxH35efrKjEBERSeHv7Y/FWMzboYmIiEj/mZqYwhGOMDUxlR2FhYsuV2Ou4m28jasxV2VHISIikkKdrca/8W+os9Wyo7Bw0cXJ3glDMRRO9vJHUhMREclQUlqCGMSgpLREdhQWLro42DngftwPBzsH2VGIiIikCPQNxNN4GoG+gbKjsHDRpaS0BAlI0Isqk4iIqKNj4aJDUloS9mIvktKSZEchIiKSIiYhBhuxETEJMbKjsHDRJdA3EMuwTC9OjxEREclgaWGJYATD0sJSdhQWLroYdzKGDWxg3MlYdhQiIiIpXBxdMBIj4eLoIjsKCxdd0jPT8S2+RXpmuuwoREREUlRUViALWaiorJAdhYWLLhWVFUhDml4cLCIiIhnikuKwBVsQlxQnOwoLF138vf2xCIv0YppjIiIiGfy8/LAAC/Ti8TcsXIiIiOiWzEzN4AY3mJmayY7CwkWXa3HX8Hf8HdfirsmOQkREJEV2bjYiEIHs3GzZUVi46GJnbYf7cB/srO1kRyEiIpKiQFOA3/E7CjQFsqOwcNHFycEJQzAETg58VhEREXVMQf5BWI7lCPIPkh2FhYsuZeVlSEMaysrLZEchIiLq8Fi46JCQkoCP8TESUhJkRyEiIpIiNjEWm7EZsYmxsqOwcNHF39sfi7GYt0MTEVGHZW5mDi94wdzMXHYUFi66mJqYwhGOMDUxlR2FiIhICjdnN4zHeLg5u8mOwsJFF3W2Gv/Gv6HOVsuOQkREJEVlVSXykY/KqkrZUVi46FJSWoIYxKCktER2FCIiIiliE2OxCZv0YoyLoewA5eXl2L17N+Li4hAXF4eioiLMmTMH8+bNkx0NABDoG4in8TQCfQNlRyEiIpLCx8MHszEbPh4+sqPIP+NSVFSEI0eOoKamBuHh4bLjEBER0Z90Nu8Mb3ijs3ln2VHkn3FxdnbGt99+C4VCAY1Gg6NHj8qO1EBMQgw2YiOGJAyBSy8X2XGIiIjuudz8XPyMn/FQ/kNwgdzfhdILF4VCITvCLVlaWCIYwbC0sJQdhYiISIqc/Bycxmnk5OfIjiL/UpG+c3F0wUiMhIsjz7YQEVHHFBwQjJfxMoIDgmVHkX/GpaXy8vKQn5+v/TolJeWubKeisgJZyEJFZcVdWT8RERE1X5stXA4fPoxdu3bd9e3EJcVhC7bgwaQH4XO//NHURERE91p8cjx2YAeGJw+XPt6zzRYukyZNwsCBA7Vfp6SkYPXq1a2+HT8vPyzAAvh5+bX6uomIiNoCE2MTOMABJsYmsqO03cLF3t4e9vb2d307ZqZmcIMbzEzN7vq2iIiI9JG7izsmYzLcXdxlR+HgXF2yc7MRgQhk52bLjkJERCRFTU0NSlCCmpoa2VH044zL2bNnUVlZifLycgDXL/ucOnUKANC/f3+YmMg7NVWgKcDv+B0FmgJpGYiIiGSKio/Ce3gPo+JHwaOfh9QselG4rF+/HllZWdqvIyIiEBERAQA4ePAgXFzkDQQK8g/CcixHkH+QtAxEREQyebl74TE8Bi93L9lR9KNwOXTokOwIREREdBOWFpYIQIBeTMbKMS46xCbGYjM268UTMYmIiGTIL8zHeZxHfmG+7sZ3GQsXHczNzOEFL5ibmcuOQkREJIU6W41/4V9QZ6tlR2HhooubsxvGYzzcnN1kRyEiIpIipGsI/oq/IqRriOwoLFx0qayqRD7yUVlVKTsKERFRh8fCRYfYxFhswiaOcSEiog4rMTURu7EbiamJsqOwcNHFx8MHszEbPh58ThEREXVMhkpDmMMchkr5NyOzcNGhs3lneMMbnc07y45CREQkhYebB6ZiKjzc5E4+B7Bw0Sk3Pxc/42fk5ufKjkJERCRFXV0dKlGJuro62VFYuOiSk5+D0ziNnPwc2VGIiIikiIyNxFqsRWRspOwoLFx0CQ4Ixst4GcEBwbKjEBERSeHh5oG/4C+8VERERET6z9rSGsEIhrWltewoLFx0iU+Oxw7sQHxyvOwoREREUhRoCnABF1CgKZAdhYWLLibGJnCAA0yMTWRHISIikiI9Mx3f4BukZ6bLjsLCRRd3F3dMxmS4u7jLjkJERCQFp/xvQ2pqalCCEtTU1MiOQkREJIVCoYASSigUCtlRWLjoEhUfhffwHqLio2RHISIikiI5LRn7sR/Jacmyo7Bw0cXL3QuP4TF4uXvJjkJERNThsXDRwdLCEgEIgKWFpewoREREUnh1+e8f8V28ZEdh4aJLfmE+zuM88gvzZUchIiKSQgiBOtRBCCE7CgsXXdTZavwL/4I6Wy07ChERkRRXoq/gLbyFK9FXZEdh4aKLPt0CRkREJIM+TQ3CwoWIiIhuydbaFj3RE7bWtrKjsHDRJTE1EbuxG4mpibKjEBERSaEp1iASkdAUa2RHYeGii6HSEOYwh6HSUHYUIiIiKVIzUvEZPkNqRqrsKCxcdPFw88BUTNWLR3kTERHJEBwQjJfxMoIDgmVHYeGiS11dHSpRibq6OtlRiIiIpFAqlTCBCZRKpewoLFx0iYyNxFqsRWRspOwoREREUqRmpOJzfM5LRW2Bh5sH/oK/8FIRERF1WLV1tShDGWrramVHYeGii7WlNYIRDGtLa9lRiIiIpPDx8MFszIaPh4/sKCxcdCnQFOACLqBAUyA7ChERUYfHe3x1SM9Mxzf4Bk9lPoVgyB9NTXeurq4ONTU1smMQtXtKpRKGhoZQKBSyo9AdujHl/4DoAXDp5SI1CwsXHTjlf/tSWlqK9PR0vXhQGFFHYGZmBhcXF3Tq1El2FLoDrk6uGIMxcHVylR2FhYsuCoUCSij5F0M7UFdXh/T0dJiZmcHBwYHHlOguEkKguroaubm5SEpKgr+/PwwMODqhrbKzsUNf9IWdjZ3sKCxcdElOS8Z+7MfotNHST4/RnampqYEQAg4ODjA1NZUdh6jdMzU1hZGREVJSUlBdXQ0TExPZkaiFikuKEYtYFJcUwwVyfxey/KUOh2daiO4dnmVpH5LTr/8Rn5yeLDsKCxddvLp44TE8Bq8uXrKjUDvl5eWFrl27IiwsDEFBQXjsscdQVlbW4vXt2rULsbGxN3397NmzCAkJQc+ePfGvf/0L48ePR0JCQrPeqw/eeOMNPP/88626Ti8vL1y9erVF7/3tt98wY8YMAIBGo8G6desavD506FAcPXr0jjMSyRTkF4TlWI4gvyDZUVi46CKEQB3qOJiT7qrPP/8cFy9exLVr11BcXIxdu3a1eF26io/du3dj1qxZuHDhAsaMGYNjx47B19e3We+lxvr06YN9+/YBaLpwaanaWvkTfRHdYGRkBAtYwMjISHYUFi663LgF7Er0FdlRqAOoqqpCWVkZbGxstMv+/ve/o2/fvujVqxfGjx+PtLQ0AMCRI0cQGhqKsLAwdO/eHd988w127NiB3377Dc888wzCwsJw7NixButfu3YtDh48iI0bNyIsLAwajUZ7tkHXewEgKioKY8aMQWhoKEJDQ7FlyxYAQHx8PEaOHKnN8/XXX2vfo1Ao8M4776Bfv37w9vbGzp07AQCffvopJk6cqG0nhIC3tzcuX74MAFi3bh2Cg4MREhKCGTNmoKioqFGegIAAqFQq7dc7d+7Eww8/DADIysrCtGnT0LdvX4SGhuL111/Xtjt9+jRCQkLQt29fLF269KZ/mAwYMAC//PILAOC5556Du7u79jUPDw+kpaXh1KlT6NOnDwBg0aJF0Gg0CAsL0y67sb3w8HD4+vpi0aJFTW4rOTkZ9vb2WLVqFcLDw7Fp06ab9qG+vh5Lly5F165d0aNHD/Tu3RuVlZXadTz//PPo168fgoODcfLkSe029u7di5CQEISGhuKBBx5ARkYGgOsF65gxY/Doo48iJCQEffr0QWJiIgAgLi4OAwcORI8ePRASEoIVK1YAuD5m7OWXX0bfvn0RFhaG6dOnQ6PRNNk3avtuTA2SnpkuOwog2ono6GgRHh4uoqOjW3W9V3+4KiZjsrj6w9VWXS/dexUVFeLatWuioqJCu6y6rFqoVeq79q+6rFpnLk9PTxEYGCh69OghLC0txbBhw0RNTY0QQoh9+/aJBQsWiNraWiGEEHv27BGTJk0SQggRGhoqfv75ZyGEEHV1daKwsFAIIcSQIUPEkSNHbrq92bNni02bNjXY/pUrV3S+t6amRvj7+4uDBw9ql+Xm5gohhOjbt6/YunWrEEKI2NhYYWtrK1JTU4UQQgAQ77//vhBCiGvXronOnTuLmpoaUV5eLuzs7ERmZqYQQoiTJ0+KXr16CSGEOHbsmOjatau2TwsWLBCLFy8WQgixcuVKsXz5ciGEEGvWrBFLlizR5hk8eLA4fPiwEEKI0aNHix9//FGbfcyYMeLLL78UlZWVwtXVVURERAghhDh48KAAoN0Hf7RixQrx5ptvCiGE6Nmzp+jbt6+IiooS0dHRIiAgQAghREREhOjdu7cQQoikpCRhZ2fXYB1DhgwRU6ZMEbW1taK8vFx4eXmJM2fONNpWUlKSACD27dunXXazPvz++++ia9euoq6uTgghhEajEXV1ddp17Nq1SwghxC+//CKcnJxEaWmpuHLlinBychLp6elCCCFWr14txo8fL4QQYufOncLKykokJycLIYR46aWXxMKFC4UQQjzzzDNizZo12kz5+fnaff/WW29pl69atUo888wzjfrV1M8dtT0/ffGTcIe7+OmLn2RHEbyrSAdba1v0RE/YWtvKjkJ3QV50Hrb13nbX1r9QtbBZd6N9/vnn6N69O2pra/Hkk0/ipZdewnvvvYevv/4av/32G3r37g3g+i3dN57OOmLECPzf//0fpk6ditGjRyMsLOyu9QMAYmJiUFtbi2nTpmmX2dvbo6SkBBcvXsT8+fMBAP7+/hg0aBD+85//4NFHHwUA7RiQoKAgGBoaIisrC+7u7pgyZQo+/fRTPP/889i5cyfmzp0LADhx4gRmzJgBa2trAMBTTz2F6dOnN8o0e/Zs9OzZE+vXr0daWhpiY2Mxbtw4lJWV4eTJk8jOzta2LS0tRXR0NHx9fWFmZoahQ4cCAKZNm4aFCxc22eeRI0fir3/9KxYtWgQjIyNMmzYNJ06cgEKhwMiRI5u976ZPnw6lUglTU1OEhYUhISEBAwYMaNTOxMREu89u1Yfhw4ejpqYG8+bNw7Bhw/DAAw9oB8F26tQJM2fOBAD0798fzs7OuHTpElQqFSZMmAA3NzcAwOLFi7F69Wrt2aZBgwbB09MTwPUzTZs2bQIADB48GC+88ALKysowZMgQbb+//vprFBcX4/PPPwcAVFdXay85Uvvj5+WHJ/AE/Lz8ZEfh7dC6aIo1iEQkNMUa6beAUeuz72qPhaqmf2m11vpvh6GhIaZMmYIXXngB7733HoQQWLFiBebNm9eo7fr16xEZGYmIiAjMnj0bM2bMwIsvvtha0Zvtxi++P9+t9cev/3gbrFKp1I7fmDt3Lp544gksXLgQR48exfvvv69d563Wd4Obmxt69eqFw4cP49KlS5g5cyYMDQ1RUVEBhUKBX3/9tdE1+UuXLjW7bwMGDMDVq1dx+PBhjBgxAiNHjsQbb7wBAJg1a1az13Oz/v+Zubm5tp/19fU37QMAREZG4scff0RERAReeeUV/PTTTzA0bPojXaFQNNqnf96fN8s4ZcoU3H///fj+++/xwQcf4P3338exY8cghMDmzZsxfPjwZu4FotbBMS46pGak4jN8pheP8qbWZ2RmBJdeLnftn5HZ7Q9kO3nyJAIDAwEAkyZNwubNm1FQcP1ZWTU1Nbhw4QIAIDo6GsHBwVi6dCmeeuopnD17FgBgaWnZ5HiQ5rjVewMDA9GpUyd89tln2mV5eXmwtLREWFgYdu/eDQBISEjAzz//jIEDB+rcXv/+/VFfX48XX3wRo0aNgq3t9TObo0aNwoEDB1BSUgIA2LZt203PcMybNw+ffPIJ9uzZgzlz5gAALCwsEB4ejrVr12rbqdVqpKeno2vXrqioqMBPP/0E4PrZrpv1uVOnTujXrx9Wr16tHcNz7do1/PTTTxg2bFij9paWligvL2+VgbW36kNubi7KysowevRovP322/Dy8sK1a9cAXD/zcWOw8Pnz55GVlYXQ0FCMGDECx44dQ1ZWFgBgy5YtGDFihM7pAeLi4uDo6IhZs2Zh3bp12u+zSZMmYf369SgvLwcAlJeXIzIy8o77TfopMjYSa7EWkbHyjzELFx2CA4LxMl5GcACfU0R3z9SpUxEWFobg4GBERUVh48aNAICZM2fi8ccfx9ChQ9GjRw+EhYUhIiICAPDKK68gODgYPXv2xN69e7VnAhYuXIhVq1bddIDtrdzqvYaGhvjmm2+wbds27QDPL774AgCwb98+fPrpp+jRowemTJmCHTt2oEuXLs3a5ty5c7F161btZSIAGDduHGbOnIkBAwYgJCQExcXFWLNmTZPvnzx5Ms6dOwcXFxd069ZNu3zfvn2IiopCSEgIQkJCMGXKFOTn58PY2Bj//Oc/sWTJEvTt2xfnz5+Hh4fHTfONGjUKOTk5GDhwIBQKBXr37g0/Pz/tZaw/srW1xYwZM7QDXO/UzfqQlpaGUaNGITQ0FCEhIejevTvGjRsHALCzs0N8fDz69euHuXPnYv/+/TA3N0dwcDD+9re/YfTo0QgNDcXp06exdetWnRk+++wzhIaGomfPnpg+fbp2QPbLL7+MsLAw9OvXD6Ghoejfvz8uXrx4x30m/eRo54hwhMPRzlF2FCiEaB/3+cbExGDBggXYvn279q/V1pD5eya29d7W7LEKpL8qKyuRlJQEb29vzuBJ7VJycjL69OmDvLw82VG0+HPXPujT70KecdEhNSMVn+NzXioiIqIOq7SsFElIQmlZqewoLFx0qa2rRRnKUFvHyaCISL95eXnp1dkWaj8SUxOxG7uRmJooOwoLF118PHwwG7Ph4+EjOwoREZEUAT4BeBpPI8AnQHYUFi5ERER0aybGJrCDHUyM5Y9TYuGiA6f8JyKiji4jKwPHcAwZWRmyo7Bw0cXVyRVjMAauTq6yoxAREUlRVl6GZCSjrLzlT65vLSxcdLCzsUNf9IWdjZ3sKERERFIE+ARgMRZzjEtbUFxSjFjEorikWHYUaqduPJ1Zl9dffx0HDx5s8XZOnTqFf//73y1+b2tMqNbeaTQarFu3TnYMonaNhYsOyenJ2I/9SE5Plh2FOrhVq1bhkUceafH776RwkaU1ps6/l1i4UHsVFReF9/AeouKiZEdh4aJLkF8QlmM5gvyCZEehDmDo0KF46aWXEB4eDl9fXyxatEj72pw5c/DBBx8AuP7Mopdffhl9+/ZFWFgYpk+fDo1GAwAoKirCE088gZCQEPTo0QPz5s3DxYsXsWXLFuzZswdhYWFYtWoVAOBf//oXBg0ahN69e6Nfv37a5/cAwIoVK+Dn54chQ4bg6NGjN828evVqBAUFISwsDGFhYUhJSQEAHD9+HL169UJoaCiGDBmifZbOn8/eXL16FV5eXgCuz/xqb2+PVatWITw8HJs2bUJGRgamTp2K0NBQhIaG4q9//SsAoKSkBAsWLEDfvn0RGhqKRYsWoaampsmMO3fuRFhYGHr06IE+ffogOTkZALB3717t4wseeOABZGRcH3i4a9cuTJ06Vfv+o0ePap8mferUKYSFhWHx4sXo0aMHgoOD8dtvvwEAFi1aBI1Gg7CwMG0fb7Z/iNoSW2tb9EIv2Frbyo4CiHYiOjpahIeHi+jo6FZdr1qlFm/gDaFWqVt1vXTvVVRUiGvXromKiooGy9Vqtbh8+bL268jISJGamqp9j0qlEsXFxUIIIbKyssTFixe1baOjo0VycrIQQojq6mqhUqmERqO5rVyenp7iypUrQgghhgwZIqZMmSJqa2tFeXm58PLyEmfOnBFCCDF79myxadMmIYQQa9asEW+99ZZ2HatWrRLPPPOMEEKIOXPmiKVLl4q6ujohhBA5OTlCCCFWrlwpli9frn1PQkKCGDBggCgqKhJCCBEXFydcXV1FdXW1OHz4sAgJCRElJSWitrZWTJw4UfTu3btR9oKCAmFlZSXKy8uFEEKUlZWJiooKkZ2dLezs7LT79dNPPxXBwcFCCCEiIiIarOvKlSvC09NTCCFEUlKSACD27dunfX3o0KFi3bp12q9v9GfBggViz549Qggh6uvrxfz588X69esbZYyIiBC+vr5CrVZrM5aVlYkrV64IJycnkZ6eLoQQYvXq1WL8+PFCCCF27twppkyZol3HkSNHxJAhQ7TrMzQ0FL/++qsQQoiPPvpIjB49Wpvfzs5O5/7pSG72c0dtiz79LuQZFx3SM9PxDb5Bema67Ch0l2zdulX7gDoAmD59Ot59910AQHp6Onr37g2VSgUA2LNnT4OnAs+ZMwdvvfUWgOtPSu7duzf+85//3FGe6dOnQ6lUwtTUFGFhYUhISGjU5uuvv8ann36q/Sv+n//8JxITr89oefToUbzwwgswMLj+4+3g4NDkdo4fP474+HgMHjwYYWFh2jMMaWlpiIiIwCOPPILOnTtDqVRi3rx5Ta7D0tIS/v7+ePzxx7F161YUFBTAxMQE586dQ1hYGEJCQgAAM2bMQHp6OjIzM3X238TEBI8++igAoLS0FGfOnMGzzz6rff1Gf77++mu8++67CAsLQ8+ePXH69GnExcU1Wt+3336LWbNmwcXl+vNVzMzMYGZmhoiICEyYMAFubm4AgMWLF+PkyZMQzXh8W2BgoPaMyoABA5o8RrfaP0RtTXlFOTKQgfKKctlRYCg7gL6rrKpELnJRWVUpOwrdJU8++SSmTJmi/frAgQOwsLAAALi7u0OlUsHf3x8AMGvWLIwePVrbdteuXdpfRPb29lCpVPD19b2jPH/8xaZUKpsc5yGEwObNmzF8+PAWb0cIgbFjx2LPnj1NvtYcSqUSZ8+exZkzZ3Dq1Cn0798f//znPyGEgEKhaNReoVDA0NAQdXV12mWVlQ1/tszNzZt8b1MZv/76a/j4tGxW6z9n/OP/68rYnGN047Wm9k94eHiLMhPJEp8cj+3YjinJU+A78M4+4+4Uz7jo4OflhyfwBPy8/GRHobvExcVFe2YAALp164YuXboAuP4LqlevXtpCxsnJCT169NC2DQwMhKenJwDAyMgIvXr1gpWV1V3PPGnSJKxfvx7l5df/+ikvL0dkZKT2tXfffRf19fUAgNzcXADX//ovKirSrmP06NE4fvx4gzuazp8/DwAYMWIEDh06hLKyMtTV1WHXrl1N5igpKUF2djbCw8Px17/+FYMGDcKFCxcwYMAAXLx4EVFR1wfyHThwAO7u7nB2doa3tzeSkpKQn58P4Po4k5vp3LkzBg0ahA0bNmiX3ejPpEmTsHbtWm3RUFhYiPj4+EbrmDhxIvbs2YOsrCztviovL8eIESNw7Ngx7fItW7ZgxIgRUCgU8PX1xaVLl1BZWYna2lrs37//phn/yNLSEuXl5dpMN9s/RG2Nv7c/FmER/L39ZUdh4ULUltw4K/Dyyy8jLCwM/fr1Q2hoKPr374+LFy8CADZs2IDy8nJ0794dYWFhePXVVwEADz30EH777Tft4Fx/f398+umneOKJJ9CjRw8EBQVh48aNAIAJEyZgwoQJ6NGjB4YPH47Q0NAm8xQVFeHhhx/WDnCtqanB7Nmz4eDggL1792LGjBno0aMHPvroIxw6dAgA4Obmhueffx59+vTBsGHDYG1tfcs+7927F2fPnkVwcDB69OihHaD8/vvvw9DQEGFhYQgNDcXIkSO1g27/aPDgwVixYgVGjx6NHj16YMiQIcjNzUVwcDD+9re/YfTo0QgNDcXp06exdetWANcv/4wZMwbdu3fH2LFjm30WzdbWFjNmzEBISAj69Olz0/1D1NaYmpjCGc4wNTGVHQUK0dxzwnouJiYGCxYswPbt2xEYGNhq6z1x4AQmPjoRR/55BCOnj2y19dK9V1lZiaSkJHh7e7fJcQbjx4/HrFmzMH36dNlRiJqtrf/c0XW/H/8dy8Ytw8bvNqLX2F5Ss3CMiw6Odo4IRzgc7RxlR6EObOTIkaiqqsIDDzwgOwoRdUDFJcWIRKReTMbKwkUHBzsHDMRAONg1fWcG0b1w4sQJ2RGIqAML9A3EMixDoG/rXdFoKY5x0aG0rBRJSEJpWansKERERB0eCxcdElMTsRu7kZiaKDsKtZJ2MqyLqE24cXcbtW0xCTHYhE2ISYiRHYWXinQJ8AnA03haL56ISXfGyMgICoUCubm5cHBwaNZcIUTUMkIIVFdXIzc3FwYGBujUqZPsSHQHLDpbIBCBsOhsITuKfhQu5eXl2LFjByIiIlBSUgIPDw/MmDEDI0aMkB0NJsYmsIMdTIw5Gr6tUyqVcHd3R3p6epO3zRJR6zMzM4OHh4d2Jmdqm1ydXDEao+Hq5Co7in4ULitWrEB0dDSefPJJdOnSBSdOnMCbb76J+vp6jBo1Smq2jKwMHMMxPJD1AFzgIjUL3bnOnTvD39//pg/jI6LWo1QqYWhoyLOb7UBFZQVykIOKygrZUeQXLr/88gt+++03vP766xg58vo8Kb169UJWVhY++ugjDB8+HEqlUlq+svIyJCMZZeVl0jJQ61IqlVK/p4iI2pq4pDhsxmZMSpoEn/tb9piN1iL93N3p06dhamqqfWT8DePHj0deXh6uXbsmJ9h/BfgEYDEWc4wLERF1WL6evpiP+fD1lPucIkAPCpekpCR4enrC0LDhyZ8bU2wnJSXJiEVERET/ZW5mji7oAnMzc9lR5F8qKioqgqtr48E+Nx5qV1zc9Cx9eXl52oe0AdA+XC0lJaVV8/165ldsNt8M3zO+uM/8vlZdNxERUVsQezkWp8xPodflXggwvztXIDw9PZv1WAjphQuAFg3cOnz4cJNPrF29enUrJGoosFcgth3ahm2HtrX6uomIiNqEXsC7n7wLfHJ3Vt/cZw1KL1ysrKxQVFTUaHlJSQmA64+Jb8qkSZMwcODABu1TUlIQEBDQqvMFpKSkYPXq1VixYgU8PT1bbb36pL33sb33D2j/fWT/2r723kf27841d73SCxcfHx+cOHECtbW1Dca5JCZen6nW29u7yffZ29vD3t6+wbI+ffrctZyenp6t+tRpfdTe+9je+we0/z6yf21fe+8j+3f3SR+cGx4ejoqKCvz4448Nlh8/fhz29vbo1q2bpGRERESkb6Sfcenfvz/69OmD9evXo7y8HG5ubvjhhx9w7tw5rFixgvNtEBERkZb0wgW4PqB2+/bt+Pjjj7VT/q9cuVIvpvy3s7PDnDlzYGdnJzvKXdPe+9je+we0/z6yf21fe+8j+3fvKAQflUtERERthPQxLkRERETNxcKFiIiI2gy9GOPSWi5cuIBly5Y1+dpHH32E4OBg7dcxMTHYsmULrl27BqVSiZ49e2LJkiWNZvHNy8vDtm3bcPbsWZSXl8Pd3R1Tp07FhAkTmpWptrYWe/fuxXfffYf8/Hy4uLjgoYcewpQpU9p8/zIzM/HII480+VpLxyg1t4+XL1/Gd999h7i4OCQlJaGmpgYHDx6Ei0vTT/D+4osv8NVXXyEzMxN2dnYYN24cZs6c2ehRE02RcQzvVf9a+xjejf4dOnQIly5dQlxcHLKyshAWFoZ//OMfzc7UmsdPH/uo78cwLS0Nhw8fxoULF6BWq6FQKODp6Ylp06Y1ekbdzejzz+Cd9q8tfI5WVFTgnXfeQVxcHPLy8iCEgLOzM0aMGIFp06bB1NRUZ6bWPIbtqnC5YeHChejZs2eDZX+cDyYlJQXLli2Dn58f3njjDVRXV+OTTz7B0qVL8cknn8Da2hoAUFpaiqVLl6KmpgZPPfUU7OzscOLECaxbtw5lZWU3/Wb7o/Xr1+Pf//435s+fj65du+L8+fP4xz/+gfLycsycObPN9w8ApkyZon2y9w3u7u4t6ltz+6hSqaBSqeDv7w9zc3NcuHDhpuvas2cPPv74Y8yYMQP33XcfoqOjsWPHDuTl5eGFF17QmUXGMbyX/QNa/xi2Zv8OHz4MExMT9OrVC2fOnLntLHfj+AH61UdAf4/h+fPn8csvv2DMmDHo2rUr6urqcPLkSbz++uuYN28e5syZozOLPv8Mtkb/AP3+HK2trYUQAtOmTYOLiwsMDAxw6dIl7N69GxcvXsSGDRt0ZmnVYyjakd9//12Eh4eLiIiIW7Z7/fXXxYQJE0Rpaal2WWZmphg2bJjYvHmzdtnevXtFeHi4iI6ObvD+5557TowePVoUFxffcjuJiYli8ODBYu/evQ2Wr1u3TowcOVIUFRU1s2fX6Vv/1Gq1CA8PF/v377+tftxKc/tYV1en/f/9+/eL8PBwoVarG7XTaDRixIgRYt26dQ2W79mzRwwePFgkJSXdcjuyjuG96l9rH8PW7t+f286aNUs8/fTTzc7T2sdPCP3ro74fw8LCQlFfX99o+YsvvihGjRolqqqqbrkdff8ZvNP+tYXP0ZvZvHmzCA8PFxkZGbds19rHsMONcamtrcWZM2cwZMgQmJv/7ymXzs7O6NmzJ06fPq1ddvXqVdja2jaaJfD+++9HRUUFzp8/f8ttnT59GkIIjBs3rsHycePGoaqqCufOnWuFHjV0L/snk4FB8751z507h+rqaowfP77B8nHjxkEI0WB/NEXGMQTuXf9kaW7/brftn8k6fsC966Mszc1sbW3d5PPogoKCUFlZedMH6d6g7z+Dd9o/me70++7G2Xtd86219jFsez8tzbBhwwYMGzYMY8eOxfLly3H58mXta2q1GlVVVfD19W30Pl9fX2RkZKCqqgoAUFNTAyMjo0btbixLSEi4ZY6kpCRYW1s3uu/9xraTkpJur2P/pS/9u2H//v0YPnw4Ro0ahSVLluA///lPS7rVwK36eDtu7GMfH58Gy+3t7WFlZaXzGMg4hrfjTvt3Q2sfw9bq3526W8cP0J8+3tDWjuGFCxdgbW0NGxubW7bT95/Bm2lu/27Q58/RG4QQqK2tRVlZGc6dO4eDBw9i5MiRcHJyuuX7WvsYtqsxLubm5pg6dSp69uwJS0tLZGRk4J///CeWLVuGd955B3379tU+0LGphzdaWlpCCIGSkhIYGxvDy8sLKpUK2dnZDQ7MlStXAKDJh0P+UVFRUZPbMTU1hZGRkc7363v/jIyMMHHiRPTp0wd2dnbIzs7Gl19+iVdffRUvvvhiswcw324fb0dxcTE6derU5OAxS0tLvTyGt+NO+9fax7C1+3enWvv4AfrXx7Z4DI8ePYoLFy7gmWee0fnXur7/DDbldvrXFj5Hbzh58iTefPNN7dfjx4/H888/r/N9rX0M21XhEhAQgICAAO3XPXr0QHh4OObMmYOPPvqo2Qfrxmm/iRMn4ptvvsFbb72F5cuXw9bWFj/88ANOnjwJ4M5PszV1evFW9K1/9vb2jQZ/Dhs2DE8++SS2bt2KsWPHNuuunT9qrT421+0egzt9v771r7WP4b3u351qyfHXtz62tWN49uxZbNiwAUOHDm3xnV1/pG8/g7fbv7b0Odq3b19s27YN5eXliIyMxP79+1FUVIQ1a9bc0e/D2z2G7fJS0R9ZWFjg/vvvR0JCAqqqqmBlZQUATV53LC4uhkKhQOfOnQEAXl5eWL16NbKysjB79mxMnDgR+/fvx+LFiwGg0dOp/8zKyqrJ7VRUVKCmpqbJCvR2yexfUwwNDTF8+HAUFRUhPT39Dnr2P3/u4+2wtLREdXU1KisrG71WXFys8xjIOIa3407715TWPoZ30r87dS+OHyC3j03R12N4/vx5rFixAn369MFf//rXZv3C0vefwT9qSf+aom+fo39cR9euXdGrVy/MnDkTzz//PH7++Wedl7Va+xi2+8IFuH5d7gZXV1cYGxsjMTGxUbvExES4ubnB2NhYu6x///747LPPsG/fPuzZswcHDx7UFgc9evS45XZ9fHyg0WiQn5/faDtAw9vS7oSs/unK05oDDkULn0xxY+zHn/dHfn4+ioqKdB4DGcfwdtxp/3Tlaa1j2NL+3al7dfwAeX28GX07hufPn8err76KsLAwvPXWW02Or2uKvv8M3tDS/unKow+fozcTFBQE4PpcNrfS2sew3RcuJSUl+OWXX+Dv7w9jY2MYGhri/vvvx08//YTy8nJtu+zsbFy4cAGDBw9utA6FQoEuXbrAy8sL9fX1+Pzzz+Hv74+wsLBbbnvQoEFQKBQ4fvx4g+XfffcdjI2N0a9fvzbdv6bU1tYiIiICVlZWcHNzu5Ouaf25j7ejX79+6NSpE7777rsGy7/77jsoFAqEh4ff8v0yjuHtuNP+NaW1j+Gd9O9O3YvjB8jtY1P07Rje+KUeGhqKNWvWoFOnTs1+r77/DAJ31r+m6Nvn6M3cmPdFV8bWPobtaozLqlWr4OjoiK5du8LKygrp6ek4ePAgCgoK8Morr2jbzZs3DwsXLsRLL72EGTNmoLq6Gh9//DGsrKwwffr0But8//33ERYWBisrK6jVanzxxRfIzc1tNKvl8ePH8c477+Cll17C2LFjAVyvIh944AHs3LkTBgYGCAoKwq+//oojR47giSeeuO3TY/rWvw8++AC1tbUICQmBra0tcnJy8MUXXyAuLg6vvPKKzkFpd9JHjUaDixcvAvhf1X7u3DlYW1vD2tpaW3RZWlpi1qxZ+Pjjj2FpaYn77rsPUVFR2LVrFyZMmAAvL69b9lHWMbxX/WvtY9ja/QOA6OhoZGVlAQDKysoghMCpU6cAAF27doWzs/NN+9fax08f+6jvx/Dy5ct47bXXYGtri8cffxzx8fENtufl5aWduqEt/gzeaf/awufoN998g8uXL+O+++6Do6MjKisrcenSJXz55Zfo3r07Bg0apF3nvTiG7apw8fHxQUREBA4fPoyKigpYWFggJCQEr732mvaUFgB4enriH//4B7Zs2YLXX38dSqUSvXr1wuLFi7X3pd+Qk5ODjRs3akdF9+vXD2+//bb2g+QGIQTq6uoanYp77rnnYG9vjy+//BIFBQVwdnbGM88806JBafrWP29vbxw+fBgnTpxAWVkZzMzMEBQUhL///e8tHvzV3D4mJSXh9ddfb/De9evXA0Cj6dJnzZoFMzMzfPXVVzhw4ABsbW3x2GOPYdasWTr7CMg5hveqf619DO9G/7788stGf6ndeO8rr7yinRviXhw/feyjvh/D3377DVVVVcjKysL//d//Ndrexo0btbO7tsWfwTvtX1v4HPXx8cEvv/yCbdu2oaioCEqlEu7u7nj88cfxyCOPNBg8fC+OoULo24VZIiIiopto92NciIiIqP1g4UJERERtBgsXIiIiajNYuBAREVGbwcKFiIiI2gwWLkRERNRmsHAhIiKiNoOFCxEREbUZLFyI2qFdu3ZBoVDc9N+N6eTbM41GA3t7exw4cEC7bM6cOdqno9+JjRs3NvnslT/avn07FAoFvvzySwDA4MGDm5xZlYhuT7ua8p+IGtq5cye6du3aaHm3bt0kpLm33nzzTbi6uuKRRx5p9XU//vjjeOmll/DJJ59on8fyZzt37oSDgwMmTpwIAHjrrbcwatQoPPXUUwgMDGz1TEQdBQsXonase/fu6NOnj+wYqKmpgUKhaPBMk7upoKAAW7duxYYNG6BQKFp9/XZ2dpg8eTK+/vpr5Ofnw87OrsHr0dHR+OWXX7B8+XIYGRkBAIYMGYLAwEC899572LZtW6tnIuooeKmIqINTKBRYunQp9u7di6CgIJiZmaFHjx44evRoo7ZxcXF47LHH4OjoCGNjYwQFBeHDDz9s0ObUqVNQKBTYu3cvli9fDjc3NxgbG2ufmrt9+3YEBATA2NgY3bp1w/79+zFnzhztk6yFEPD398eYMWMabb+0tBRWVlZYsmTJLfu0a9cu1NbWNutsy88//wx7e3tMmDABZWVlze7n/PnzUV1djf379zda586dOwFcf1L7H82cORP79+9HSUmJzlxEdBOCiNqdnTt3CgDi7NmzoqampsG/2traBm0BCC8vL9G3b19x6NAhcezYMTF06FBhaGgoEhIStO0iIyOFlZWVCAkJEXv27BH//ve/xfLly4WBgYF44403tO0iIiIEAOHm5iamTp0qDh8+LI4ePSry8/PF1q1bBQAxZcoUcfToUbFv3z4REBAgPD09haenp3YdGzduFAqFQsTGxjbI+uGHHwoAIjIy8pb9Hz58uOjbt2+j5bNnzxbm5ubarw8ePCiMjY3FU089pd0vze1nXV2d8PT0FGFhYQ22UVtbK1xcXET//v0bbf/cuXMCgDh8+PAt8xPRzbFwIWqHbhQuTf1TKpUN2gIQTk5Oori4WLssKytLGBgYiL/97W/aZWPGjBHu7u6iqKiowfuXLl0qTExMREFBgRDif4XL4MGDG7Srq6sTzs7Ool+/fg2Wp6SkCCMjowaFS3FxsbCwsBDLli1r0LZbt25i2LBhOvtvZmYmFi1a1Gj5HwuXtWvXCqVSKd55550GbZrbTyGEWLlypQAgfv/9d+2yI0eOCABi+/btjbZfXV0tFAqFeOmll3T2gYiaxktFRO3Ynj178Ouvvzb4d+7cuUbthg0bBgsLC+3XTk5OcHR0REpKCgCgsrISP/zwAx566CGYmZmhtrZW+2/8+PGorKzE2bNnG6xzypQpDb6OiYlBVlYWpk2b1mC5h4cHBg4c2GCZhYUF5s6di127dmkv35w8eRLXrl3D0qVLb9lnjUaD8vJyODo6Nvm6EAJPPvkkVq5cif379+PFF1/Uvna7/Zw7dy4MDAzwySefaJft3LkT5ubmTV6mMjIygrW1NTIyMm7ZByK6ORYuRO1YUFAQ+vTp0+Bf7969G7X78+BSADA2NkZFRQUAID8/H7W1tdi0aROMjIwa/Bs/fjwAIC8vr8H7XVxcGnydn58P4HpR9GdNLXv66adRUlKCffv2AQA++OADuLu7Y/Lkybfs843MJiYmTb5eXV2NgwcPIjg4GOPGjWuU8Xb66enpiREjRmD//v2oqqpCXl4ejh49ir/85S8NCsE/MjEx0WYkotvHu4qISCcbGxsolUrMnDnzpgNjvb29G3z957t5bhRH2dnZjd6blZXVaJmfnx/GjRuHDz/8EOPGjcPhw4fx5ptvQqlU3jLrje0UFBQ0+bqxsTEiIiIwZswYjBw5EsePH4eNjU2L+zl//nx8//33+Oabb6BWq1FdXY358+ffNF9hYSHs7e1v2QciujkWLkSkk5mZGYYNG4YLFy4gNDQUnTp1uu11BAYGwtnZGYcOHcJzzz2nXZ6amoozZ87A1dW10XuWLVuG0aNHY/bs2VAqlViwYIHO7XTq1Ak+Pj5ISEi4aZuePXvixx9/xMiRIzF06FB8//33cHR0bFE/H3zwQdjZ2eGTTz5BZmYmAgICMGjQoCbbqtVqVFZWdoh5dIjuFhYuRO3Y1atXUVtb22i5r68vHBwcbmtdGzduxKBBgxAeHo6nnnoKXl5eKCkpQXx8PI4cOYKTJ0/e8v0GBgZ488038eSTT2Lq1KmYN28eNBoN3nzzTbi4uMDAoPGV61GjRqFbt26IiIjA448/ftNxK382dOhQfPfdd7dsExQUhNOnT2PkyJEYPHgwTpw4AXd399vup7GxMWbMmIFNmzZBCIG1a9fedJs3xscMGzasWf0goibIHh1MRK3vVncV4U93vAAQS5YsabQOT09PMXv27AbLkpKSxLx584Sbm5swMjISDg4O4v777xerV6/WtrlxV9Fnn33WZLZt27YJPz8/0alTJxEQECA++eQTMXnyZNGzZ88m27/xxhvaW7ub64cffhAAxPnz5xss//Pt0EIIkZ6eLrp27Sq8vLy0t383p59/dOnSJe0dW2q1+qa5Zs6cKUJCQprdDyJqTCGEEHJKJiKi63cBBQQE4MEHH2xyRtk+ffpAoVDg119/va31hoaGYuDAgfjoo49aK+odKS4uhqurKzZs2NCsS15E1DReKiKieyYrKwtr1qzBsGHDYGdnh5SUFGzYsAElJSVYtmyZtl1xcTGuXr2Ko0ePQqVS4auvvrrtba1btw4PPfQQXnvtNbi7u7dmN1pkw4YN8PDwwNy5c2VHIWrTWLgQ0T1jbGyM5ORkLF68GAUFBTAzM0P//v2xZcsWBAcHa9v9/vvv2uJm5cqVePDBB297W2PHjsW7776LpKQkvShcLC0tsWvXrnv2vCai9oqXioiIiKjN4AR0RERE1GawcCEiIqI2g4ULERERtRksXIiIiKjNYOFCREREbQYLFyIiImozWLgQERFRm8HChYiIiNoMFi5ERETUZvw/l6/37toZbdAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get expected counts from likelihood scan (i.e. best-fit convolved with response):\n", + "total_expectation = cosi._expected_counts['gaussian']\n", + "\n", + "# Plot: \n", + "fig,ax = plt.subplots()\n", + "\n", + "binned_energy_edges = gal_511.binned_data.axes['Em'].edges.value\n", + "binned_energy = gal_511.binned_data.axes['Em'].centers.value\n", + "\n", + "ax.stairs(total_expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = \"Best fit convolved with response\")\n", + "ax.errorbar(binned_energy, total_expectation.project('Em').todense().contents, yerr=np.sqrt(total_expectation.project('Em').todense().contents), color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(gal_511.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Injected source counts\")\n", + "ax.errorbar(binned_energy, gal_511.binned_data.project('Em').todense().contents, yerr=np.sqrt(gal_511.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()\n", + "\n", + "# Note: We are plotting the error, but it's very small:\n", + "print(\"Error: \" +str(np.sqrt(total_expectation.project('Em').todense().contents)))" + ] + }, + { + "cell_type": "markdown", + "id": "55c9c56a-7742-4e3a-8ffa-95fee0323df7", + "metadata": {}, + "source": [ + "Let's also compare the projection onto Psichi:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "18997c67-c643-428a-beb6-57872daeb3ac", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'injected counts')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG+CAYAAAD1MPK+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAADch0lEQVR4nOy9ebglRX3//67q7rPcbfZ9mI1hZtgXZ0BZHFRARBRckEj4IlEEgqgEiXGJUVFxi/klxiUEoybikghqIrggAoogi4DAwDDDMDPMvt59OUt31e+PPtW3T3f1cs7ps956Pc88c+/tOtXVffp0v86n6lNFOOccCoVCoVAoFIq2hja7AQqFQqFQKBSK2lFSp1AoFAqFQtEBKKlTKBQKhUKh6ACU1CkUCoVCoVB0AErqFAqFQqFQKDoAJXUKhUKhUCgUHYCSOoVCoVAoFIoOQEmdQqFQKBQKRQegpE6hUCgUCoWiA1BSp1AoFAqFQtEBKKlTKBQKhUKh6ACU1CkUCoVCoVB0AErqFAqFQqFQKDoAJXUKhUKhUCgUHYCSOoVCkQiEEBBCcPbZZ9d1P9u3b3f2deWVV9Z1XwqFQtFO6M1ugEKhUChak5/97Gf485//DAC44YYbMH369Ka2R6FQhKOkTqFQKBRSfvazn+E///M/AQBXXnmlkjqFosVR3a8KhUKhUCgUHYCSOoVCoVAoFIoOQEmdQqFQKBQKRQegpE6hqCMPPPCAk6n5qU99CgCwadMmvO9978NRRx2Frq4uLFy4EG9605vw8MMP+15/991348ILL8QRRxyBTCaDZcuW4frrr8f+/ftj7f/gwYP49Kc/jdNOOw2zZ89GOp3GwoULcf755+Pf//3fUSwWY9Wzb98+3HTTTVizZg26urowZ84cnHHGGfjGN74B0zRjnw/BI488gr/+67/GMcccg+nTpyOTyWDJkiW49NJLcffdd1dcX60MDAzgS1/6Es455xwsXLgQ6XQa3d3dWL16NS677DJ8//vfRy6XC3z96Ogo/vEf/xHr16/HvHnzkEqlMG/ePJx99tn4p3/6J4yNjYXuf9myZSCEYNmyZZFtjSp75ZVXOtfc9u3bAQC//vWvcdFFF2HRokVIp9NYtGgRLr30Ujz++OOhdYjxdACwfPlyp96w7OMnn3wS1157LY4//nj09fUhlUph/vz5OP7443HxxRfj61//OrZt2xZ5nAqFogq4QqGoG/fffz8HwAHwT37yk/zHP/4x7+rqcv7m/kcI4d/5znc455wXCgX+7ne/W1oOAF+wYAHfsmVL6L7vvPNO3tfXF1gHAL5q1Sq+adOm0HoeeOABPmPGjMA6zjjjDN7f3+/8vn79+sC6xsbG+Dvf+c7QNgHgb3zjG/nw8LC0jm3btjnl3vWud4W2PQ7f/e53I88TAP6pT31K+vo//OEPfP78+aGvXbBgAX/44YcD27B06VIOgC9dujSyvVFl3/Wudzn7femll/i1114b2C5KqXPNBdUR9s97/j/5yU9yQkjk6y666KLI41QoFJWjsl8VigbxxBNP4Atf+ALS6TRuuOEGrF27Fowx/OpXv8IPf/hDcM7x3ve+F2eeeSa++tWv4tvf/jZOOOEEXH755Vi6dCn27duH2267DRs2bMDevXvxV3/1V/j9738v3dfPf/5zXHLJJWCMAQBe+9rX4m1vextmzZqFrVu34rvf/S42b96MzZs348wzz8STTz6JxYsX++p54YUXcOGFF2J0dBQAcPLJJ+Pyyy/HokWLsHPnTvznf/4nHnroIbznPe+JPP5CoYBzzz3XiUguWbIE73znO3HssccinU5jy5Yt+K//+i9s2rQJd999Ny6++GL85je/AaX161D4yle+gptuusn5/YwzzsCb3vQmLF26FJZlYfv27fjd736H+++/H5xz3+ufeOIJnHvuuZiYmAAArF27FpdddhkWLlyIPXv24Pvf/z6eeOIJ7N27F+eccw4eeughnHTSSXU7Hi8f//jH8aMf/QirVq3CFVdcgZUrV2JkZAR33nknfvWrX4ExhmuvvRann346Vq1a5bzuAx/4AC6++GJ89atfxf333w8AuPXWWzF37tyy+pcsWeL8/L//+7/49Kc/DQDIZDK4+OKLccYZZ2DOnDkwTRO7du3Cn/70J/zmN79pwJErFFOUZlulQtHJuCN1APjKlSv5jh07fOU+97nPOWXWrl3LCSH8uuuu45ZllZUbGxvjxx9/vFP2scce89U1ODjI58yZ45T5l3/5F1+ZXC7H3/GOdzhlzj//fGn7169f75R573vfy03TLNteKBT4X/7lX5YdY1Ck7sYbb3TKXHvttTyfz/vKFAoFfsUVVzjlvv71r/vKJBWpe/jhh7mmaRwAz2Qy/Ec/+lFg2V27dvFHHnmk7G+WZfE1a9Y4bbnppps4Y8xX5m/+5m+cMscee6zvPeW8fpE6APyKK67gxWLRV+5973ufU+a6666LrGvbtm2h7XrjG9/IAXBN0/hDDz0UWG5iYoI/+uijoXUpFIrqUFKnUNQRr9QFPcxyuRzv7e11yp1wwgk+gRJ8//vfd8rdfPPNvu3/3//3/znb3/nOdwa2bXx8nC9btswp+/TTT5dtf/LJJ51ta9as4YVCQVrPxMREWT0yqdu7dy9Pp9McAH/d614X2CbObbFbsWKFI8FekpK6c88916nn1ltvrfj1P/3pT53Xn3766T6hEzDG+Ctf+Uqn7P/+7//6ytRL6tasWSOVZ845Hxoa4tlslgPgRx55ZGRdUVK3evVqDoAff/zxkcegUCjqg0qUUCgaxNq1a3HqqadKt6XTaaxdu9b5/eqrr4amadKyZ555pvPz888/79v+05/+1Pn5wx/+cGB7stks3v/+90tf5/39+uuvh2EY0noymQyuu+66wP0AwH//938jn88DAD70oQ+FljUMA5deeikAYMuWLXUZVH/w4EGnG3DFihW46qqrKq7DfX7+9m//FoQQaTlCCP72b/9W+rp6c9111yGVSkm39fX1Odfc1q1bQxNB4tDV1QUA2LNnD4aGhmqqS6FQVIcaU6dQNIggoRPMmzcvVll3uYGBgbJtnHP86U9/AgDMnj07cvzWueee6/z86KOPlm1zZ0a+9rWvDa0navuDDz7o/HzgwAH87Gc/Cy3vPq4XXngBy5cvDy1fKX/4wx+cny+88MKqxu099thjAGxpe93rXhda9pxzzgEhBJxz33muJ6eddlro9kWLFgGwr5vBwUHMnz+/6n2de+65eOqpp3D48GGsX78eH/3oR3HBBRegt7e36joVCkVlKKlTKBrErFmzQren0+lYZd3lvNGVoaEhjI+PAwCOOuqoyDa5B8fv27evbNuePXucn4888sjQelauXBm6XUytAUA6DUYY/f39FZWPw65du5yfjz766Krq2Lt3LwBg/vz5keLS19eHefPmYd++fb7zXE9mz54duj3sWqqUj3zkI7jrrrvw/PPP4+mnn8Zf/MVfQNM0nHTSSTjjjDPwmte8Bq9//euRzWZr2o9CoQhGdb8qFA2ikmhQtRmfIksVALq7uyPLp9Npp5t3ZGSkbJuYW03X9cAuvLj7qqU7Lu5cepUwPDzs/NzT01NVHeJcxznP7nLe81xP6pk57GXGjBl45JFH8PGPf9yJJluWhSeeeAJf/epX8Za3vAXz5s3DP/zDP6BQKDSsXQrFVEJJnULRQbgFRUTswsjn87AsCwB80SYhIaZpRj6EoybXFe3SdR3FYhHcTtKK9a/SyF4c+vr6nJ/dIlwJ4pjinGdg8hzV2h0ppqlpRXp7e/HZz34We/bswZNPPol//dd/xaWXXupEDEdGRvCZz3wGb37zm6VTxCgUitpQUqdQdBDTpk1zBqy/+OKLkeXdZRYsWFC2beHChc7PL730Umg9W7ZsCd0uxm6ZpolNmzZFtqveuOfkkyWbxEGcr3379kWK4cjIiLMKiPc8A5PdoFHyzDmvS3d00lBKcfLJJ+P666/Hj370I+zfvx8//elPMXPmTAD2ChfNWDlEoeh0lNQpFB0EIcTJaDx48CCeeeaZ0PL33nuv87M3OWPdunXOz2IC2iCitr/61a92fv7JT34SWrYRnHnmmU626l133VVV9EucL8YY7rvvvtCyv/3tb53IlCwJZsaMGQDs9yxM7DZs2BAZFU0Sd/dtLZE1Sikuvvhi3Hzzzc7f3MkqCoUiGZTUKRQdxlvf+lbn53/8x38MLJfL5fCv//qvzu9vectbyrZffPHFzs9f+9rXAtd4zefz+MY3vhHapr/4i79wpkT553/+57IkjGYwZ84cnHfeeQCAbdu24Vvf+lbFdbjP81e+8pXAcpzzsvfB/TrBMcccA8COZIbJjvv9agTu7vwkZNK9Xm01awYrFIpwlNQpFB3GX/3VX2HOnDkAgO9973v45je/6StTKBTwV3/1V9i6dSsA4A1veANOOOGEsjKnnHKKE2HbuHEj3v/+9/siWqZp4r3vfW/kXHJLlizB+973PgB2NuvrX//60O5hxhjuvfdefPazn4042ur51Kc+5SSJfPCDH8T//M//BJbdu3evM4WJ4E1vepOTOfv73/8eH/3oR33RLM45PvzhD+Ohhx4CABx77LF44xvf6Kv/DW94g/PzJz7xCWdOPzf/8R//UZV81oJ7Kpknn3wytOzVV1+NDRs2BG43TRO33Xab8/uJJ55YewMVCkUZakoThaLD6Ovrw3/8x3/g4osvBmMM1113HX7yk5/grW99K2bNmoVt27bhu9/9Ll544QUAdtTK/bB1c+utt2Lt2rUYGxvDv/3bv+Gxxx7D//t//w8LFy501n599tlncfHFF0fOPfelL30Jf/7zn/HAAw9gw4YNOOaYY3DRRRdh/fr1mD9/PorFIvbv34+nn34a99xzD/bu3YvXve51+Pu///ukTxEA4JWvfCW++MUv4qabbkIul8Oll16Kr371q3jzm9+MJUuWgDGGl19+GQ8++CDuvfdefOxjHyvrOqWU4nvf+x7OPPNM5HI5fOELX8B9992Hyy67DAsWLHDWfhXzBmazWdx+++3SjNSLLroIq1atwubNm/Hwww9j3bp1eM973oOFCxdi3759+NnPfob77rsPZ511Fl566aWGRTrd8+99+MMfxsGDB7F69Wrouv3oWLRoEY4//ngAwG233YbbbrsNxx57LF7zmtfg2GOPxaxZszA2NoZt27bhhz/8oSPyq1atwtvf/vaGHINCMaVo6PoVCsUUw71M2Cc/+cnQspUsyYSQJbkEd9xxB+/r6ytbpsz7b9WqVfyFF16IPIYZM2YE1nHGGWfw/v7+WG3K5/P8uuuu45TS0HaJf1dccYWvjqSWCRPcdtttvKenJ7Itn/70p6Wv//3vf8/nzZsX+tr58+eHrofKub0s28yZMwPrOO200/iBAwcqWiYs6jqKU/ad73xnYJvc558QEus9PeGEEyLbpVAoqkNF6hSKDuVtb3sbXv3qV+PrX/86fvGLX+Cll17CyMgIZs6ciRNPPBFvfetb8e53vztw+S/B2Wefjeeffx5f/vKX8fOf/xw7d+5Ed3c3Vq1ahcsvvxzvfe97I+sQpFIpfP3rX8cNN9yAb3/727j//vuxdetWDAwMIJVKYd68eTj66KNx5pln4sILL3SiQPXkqquuwkUXXYRbb70Vv/rVr7B582YMDAwgnU7jiCOOwNq1a/HmN78ZF110kfT1Z511FrZs2YJvfvOb+PnPf46NGzdicHAQ06dPx9FHH42LLroI11xzTeR8eCeffDKeffZZfPGLX8QvfvEL7Nq1C9lsFmvWrKn4PCfJ9773Pbz61a/Gf//3f2PDhg0YHByUjofbt28f7rvvPtx333144oknsG3bNgwPDzvv68knn4y3v/3tuPTSSwOXwFMoFLVBOFeTBSkUCoVCoVC0OypRQqFQKBQKhaIDUFKnUCgUCoVC0QEoqVMoFAqFQqHoAJTUKRQKhUKhUHQASuoUCoVCoVAoOgAldQqFQqFQKBQdgJI6hUKhUCgUig5ASZ1CoVAoFApFB6CkTqFQKBQKhaIDUFKnUCgUCoVC0QGotV8VCkVT4JyjUChgfHwcuVwOhUIBhUIB+Xze+Vn2t2KxCMuynH+MsbL/vX8DAEIICCGglDq/i58ppc52TdNgGAZ0XYdhGM4/XdeRSqWcv4vfM5kMMpkMstls2f+6rm6tCoWi8ag7j0KhqIpisYiRkREMDw87/7t/Hhsbw/j4eOg/y7KafRh1wTCMMuHLZrPo7u5GT0+P86+3t7fsd/e/adOmIZPJNPswFApFm0E457zZjVAoFM2nWCxiYGAAAwMD6O/vR39/v/Oz+Ltb3iYmJhLbdyqVQmGsCDACMALCAHBS/jsTv5e2ASC89DOH/Q+un8XvDrz8V/fPojJSqoJy+3eKsv85AUBL5SgHNA5OObpnZpHL5RKV1HQ6jenTp5f9mzZtmu9vM2fOxKxZs5BOpxPbt0KhaE+U1CkUHY5lWRgYGMDBgwedfwcOHMDBgwdx6NAhR9pGRkYqrpsQAl4AYFIQk9j/FylgEhCLAhYBsQhgkdLfCOD9u0VAfIbV4hB/e7mQRo0DlNliqHGAcnCNAzqzJVC3fxZ/E79D45i+qA8jIyMwTbPiJvX29mL27NmYNWsWZs+eXfaz+3/DMBI4AQqFohVRUqdQtDkTExPYt28f9u7diz179mDfvn1lAnfo0KH4ESQGoFgSs4L9v+9nl8DBbEMhqxWJ0MUi5q2WoySDhi183GD2z5L/ucGQ6tNRKBRiNp1g9uzZmDdvHubPny/9P5vNVnd8CoWi6SipUyhaHNM0ceDAAezdu9cRN/Hz3r17MTAwEFkHpRRsAiB5DaRAQfKaLWp5bVLaTG1S0qq5LYTJTivcZtztS/r4kqDKcyQkkKcYkLLA02zy55T987xVs3D48GEUi8XI+qZNm4Z58+ZhwYIFWLRoERYvXoxFixZh0aJFmD17tpNgolAoWg8ldQpFC8A5x8DAAHbu3Fn2b8eOHdizZ090d5xJQHKa/S+vAXlaLnBFLTqiFnYrSEJomn2riXMMQW2st9DFpYZzyFGK/qUZeNoCz1hA2nJ+756fwejoaGgdqVTKJ3qLFy/G4sWLMXfuXJBWOU8KxRRFSZ1C0UBM08Tu3buxbds2bN++vUzgxsbGAl+XSqVQHLRAchqQ1x15IxPU/tmi1YmH+Pg38mHcrFtOteennUSlxnPLtZLwpZktfVkTPGNh4QlzsXfv3tBu/Gw2i6VLl2Lp0qVYtmyZ8/PChQuhaVpN7VIoFPFQUqdQ1AHGGPbt24etW7di+/btzv8vv/xyYBcYIQR8goJMaKATOsiEBjKhg0zodvdoJ41da9Rtp52ErJ4kcL45uB3Zy5b+ZSzwrInFJ83H7t27A4UvlUph8eLFjuitWLECRx55JBYuXKi6chWKhFFSp1DUyPj4OLZs2YIXX3wRL774oiNwuVxO/gKLgIxrIOO6I21kQgPJ6SB8CklIPW49SuIqJwnhI9yWvC7T/pe1fzZm0sAkjmw2ixUrVmDlypVYuXIljjzySKxYsQJdXV01t0ehmKooqVMoKmBwcBCbN292BG7z5s3YvXs3pB8jBlvcXP/ouA7kY4xvmwokcetREldfau3OLUX3WJdL+LrDZW/RokU48sgjcdRRR2HVqlVYs2YNZsyYUVM7FIqpgpI6hSKA4eFhbNy4ERs3bsQLL7yAF198EQcPHpQXzlPQMQNkTAcZM0pROCVvkVR6+2kXiSMU4Kzy1wCVv66RJPS44OB2NK+7CN5tgnWbmLWqD4cOHZKWnzdvHlavXo01a9ZgzZo1WL16NXp7exNpi0LRSSipUygAFAoFbNmyBRs3bsTzzz+PjRs3YteuXb5yhBBgnIKM2gJHxwz7Z1ONDaqaqFtQu4icgEiuhShRk70mzuuaRZ0eG1xn4N1FsG4TvMfE4rVzsXPnTmkkfNGiRY7gHXPMMVi9erVaVUMx5VFSp5iS7N+/H8888wyef/55PP/889iyZYs0gYFMaCAjtrjR0VIEzlIClyjeW1C7SZyXIEETeEUtqrzsNa1CAx4fXGPgPRZYTxG8p4j5J87Enj17fOV0XceqVatw3HHHOf9mz55d9/YpFK2EkjpFx8MYw/bt2/HMM884/w4cOOAvWCSgIylb4EZUBE5RBXEEzQ1n1b2m1WjEY8Ql+05Er9cWvelHdaO/v9/3kvnz5zuCd/zxx2P58uXQdb3+bVUomoSSOkXHUSgUsGnTJjzzzDN49tln8eyzz/rWNdU0DWyQ2vI2YkfhkFNj4BQJUamoVcNUlTuBW/JEQkZfEay3gBVnLcLWrVvBWPk56urqwgknnICTTz4ZJ510Eo466igleYqOQkmdou0xTRObN2/Gk08+iSeeeALPPvusP7POIra8DRugwym7S5WpKJyiAdRb8Ka63Llxi57GwHuKjuh1LTZ8E3wryVN0GkrqFG0H5xzbtm1zJO7pp5/2L29UJLa8Dafs/8em2BxwitZkKgleKzxaPNE83m2C9RXApxXQtdTw3Te6urpw/PHH45RTTsHatWtx5JFHqgmSFW2FkjpFW3DgwAE89thjePLJJ/Hkk0/6x8+YBHQoBTqYAhlK2RP6qq5URaui5K45VCh5M2fOxNq1a7Fu3TqsXbsWs2bNanSLFYqKUFKnaEmKxSKeeeYZPProo3j00Uexbdu28gIW7CjcUAp0KA0yWqPEuT8GSWZfdlpmZ7Nxy1C188DFfW0l5Wupu54k3e4kaPYjJ+Az6EjeNFvy0osoJiYmysqsXLkS69atw7p163D88cerKVQULYeSOkXLsH//fjzyyCN49NFH8cQTT5TdUCml4IMa6GBJ4kaM2rpTgy77WqWrXvVOdZKYx62SOirdXxJ115MkjrFeNOMRFOPzyAkH7y2ATS9g5TmLsWnTprLt6XQaJ510El71qlfh9NNPx/z58+vVWoUiNkrqFE3Dsiw8++yzeOihh/DII4/g5ZdfLi9QoKADKdDBNOhgurbpReoxwW3cj44SuupIev62SuaPq2TflbazGVJXTRua2YXb4ClS4sB1BjY9Dza9gJnHdvtWv1ixYgXOOOMMnH766VizZg00TUuytQpFLJTUKRpKLpfD448/jj/84Q94+OGHMTQ05GxzonEDadCBtJ3cUG2XaiWXddybe6cuadVqVCI9SUqdwk+rjM2r12Oqys8oBwfvMsFmFHDsm5djw4YNZdOnTJ8+3YngrVu3Dl1dXUm1WKEIRUmdou4MDAzg4Ycfxh/+8Ac8/vjj5dONFIktcf0ZO8mhltUaqrmUo27q1X48Olno6rlGadIT8SqRS4ZWkLt6P6pq+MxynYHNyIPNyKNruV6WcGEYBk455RSsX78eZ555JqZPn55AYxUKOUrqFHVh//79eOCBB/Dggw/i2WefLV+7MadB60+DHk6DDKcaE42TIbuJJ/Fx6FShq2ZN0yT2EUalY9wUtdFsuWvS5MaVwAkH7yuAzchj/qkzsHv3bmcbpRQnnngizj77bJx11llqGTNF4iipUyTGwYMH8cADD+D+++/Hhg0byraRUd2Oxh1O2+unNkvknAaRZOvz1ttJhAlSs6N1rTBWbaoxlcROUEs3bdYCm5XDkecuxObNm11VEhx33HFYv3491q9fj3nz5iXVWsUURkmdoiYOHTqE3/3ud7j//vvLInKEEGBQh3Y4A3o4A1KoYdBwO1yiU03m3DQzWlfN2qmKZOj0RIogaummTZuwZuWx5sIleO6558q2rVmzBueccw5e+9rXqgieomqU1CkqZmhoCPfffz/uu+8+PP3002Vdq2TYAD2UgeYVuUrmgWuXS7LSBItmix+hyc+hFvfBHmccXgfLGaH2e89Z9LVNKIlVriVodtQOaKvInRuesmDNyuG4t6zAM888U/aF+JRTTsE555yD9evXo6enp+Z9KaYOSuoUsSgUCvjjH/+Ie+65B3/84x9hmqazjQwboIcz0A6FiJxTOOBm2C6XYZybeSXH3Qi8spTEOLRKZS7sdR0scwIhdYIgaYtbruVoBbkTNOpekuBnmht2F+2ai5aWDV1JpVJ45StfiXPOOQevetWr1GTHikiU1CkC4Zxjw4YNuOeee3DfffdhZGTE2UZGddCDWTsil48QOTfuG2E7XHpJTHfSLKGrZCxc0l2tcSa2nQIyJ/DKmsArbXHLtSStJHaCet5j6vS55mkT1pwcjlg/G9u3b3f+3t3djfXr1+P888/HiSeeaA9xUSg8KKlT+NizZw9+/etf45577inL3EKeQjuYBT2YAR03Jv9eySS87XC5VRuNq7auehB3ot1GydwUJkjU3HDGY5draVpR7AT1uPfU8fPtzIU3J4eZJ3fh4MGDzrZFixbh/PPPx/nnn68SLBRlKKlTAADy+Tx+//vf46677sJTTz01ucEioIfT0A5kQYYk0490yuWTpMjFra9exF0tIEmhUzIXSBxZAzpI7IDWljsg2ftWAz7rHBy8rwhrzgQyKwjGx8dLuyZYt24dLrjgApx55plIpVJ1b4uitVFSN8XZtm0bfv7zn+Oee+7B8PAwgFLmar9hR+UOp0GYd1xUh10yYTflJCc09tZVz4dBnK7XpKRuigpd3ISGSqQuTvm2kDovrSx5bTY3JacMbFYex71jOf785z87f+/r68O5556LCy64AEcddVTD2qNoLZTUTUEmJibwwAMP4Oc//3n5fHJ5Cm1/F7T9Wf8UJJ16mXhvxklPaBxUX70fAnEnCq5F7KaozAnc8hUmWtVG32Sva0uh89KJgtekyDzPmLDmTmDmKeXds2vWrMHFF1+M1772tchkMk1pm6I5KKmbQmzbtg0//elP8Zvf/AZjY2MAAE3TwA/ooPu67GW6OrV7VUbSExDHra9RDwC3dNU6lcgUTXAIotbEh6jXBdXREVLnppMEr4lDLjg4+PQCznr/yXjwwQdRLBYBAD09Pbjgggtw0UUX4Ygjjmha+xSNQ0ldh2NZFh566CHceeed5WPlJjRo+7P2WLniFInKNZtG3/STnpdOTfTrELeLNAmpE/V0nNB56QTBa4GMVK4zWPPGMfdVvdi7d6/z97Vr1+Liiy/G6aefDl3Xm9hCRT1RUtehDA0N4e6778bPfvYz7Nu3D4C97iAOGND2dXV20kMr0gI3eylK0nzEEai4shaXjhc2QdIJOo0mzj2yRT7rHBxsRgGnXnU0/vjHPzqTG8+ZMwdvfvOb8eY3vxkzZsxocisVSaOkrsPYsmUL7rzzTvzmN79BoVCw/1gk9li5vV1TZ6xcK9GMCB2gEhyqJE53Z9JSF7U/9z7bXgCr6cpvJcFrI7ET8LQJa/4Eeo8zMDg4CMCe2Pi8887DJZdcguXLlze3gYrEUFLXAXDO8cgjj+CHP/xhWTYUGdWh7ekCPZwFYSoq1xSaJXQCleBQEXGTE+oldUH7bNuVJoJIOmmnkbRRV6wXTjjY7ByOumghNm7c6Pz9tNNOwzve8Q6sXbtWTWrc5iipa2OKxSLuvfde/OhHP8K2bdsAlBIf9ul2VG7YAPE95NXb3TCaLXQCleQQmzBZc4tUvaUu7v7aWu6SWAe4WYLXhtE6NxwcvLeIV11/HB588EGna3b58uW49NJLcc4556g579oUJXVtyNjYGH7+85/jxz/+8WQau0mg7ctC2yPpYlU0nkbe0JNePWIKk+TqD42iY8VOUGl2dqNoc7ET8IwJa8E4UkdyTExMAABmzpyJt771rXjLW96C3t7eJrdQUQlK6tqIQ4cO4Y477sD//d//YXR01P5jgULb3QVtXxbEUg/tlqEZ05YEoaQOQIIJEHHHLDaYtpY7IJnIXVQ99aBT5E5jsOZPYOa6jBMs6O7uxlve8hZccsklKqmiTVBS1wbs378f3//+93H33Xc78w+RcQ3a7m7QAxkQ3vo3jClHI27ian65ikgsASLu/H9Nou3lDkhuLGgj359OkbvSuLsjXj/TGdaTSqXwpje9CX/xF3+h1pptcZTUtTB79+7F7bffjl/+8pcwTRMAQIYNW+b60yDqnWttmrUMmMD7QFNS5/tbVZMFx12to4l0hNgByV7DSvAqgoODzcxj5Vvm44UXXgBgj9l+/etfj8svvxyLFy9ucgsVMpTUtSC7d+/G9773Pfz617+GZVkAADKYgr6zG3Q4bRdSb1t7kPSNu9bxRVNY7OIkQVQtdZMVVdqsutIxcgckN4xAyV1FcHDwaQUc9/+WORPYC7m74oorsHDhwia3UOFGSV0LsXfvXnz3u9/FPffcMylzAynou3pAhz2ZSOptax+SumknMWBcSV0gsRMg4iamtAgdJXZJowSvIlhvAae89yg8+uijAGy5u+CCC3DFFVeobtkWQUldC3D48GHcfvvt+N///V+nm5X2p6Dt6gEdUTLX9iipazqEknjLpsUtE4ck9pUQSUxqnNRSZUnWAyQgra2WWNHiYgfYcnfiu1fgT3/6EwDAMAxceOGFuPzyyzFnzpwmt25qo6SuiYyMjOCHP/wh7rjjDuRyOQClbtaXe0BHlcx1FI0Suxboem2llQ/KIm9xsla10nRAjAeXSyITM06yRcJZtnGSQ2opE4ek6km8vlaaEqUNpE7A+go47oqlTrdsKpXC2972Nlx++eVqKpQmoaSuCeRyOdxxxx34wQ9+4ExNQkYMW+aG0uWF1dvTOSRxs27xjNekH9q14OtKjSNSmmuOxyCxSyILs9KVPxKUjqhJjeOsoFHNext3X02rt5UmMm4jsQMANi2Poy87As888wwAoLe3F5dffjne+ta3Ip1OR7xakSRK6hoIYwy//vWv8a1vfcuZB4iM6dB29NjZrHB9kNXb0nk0OlrXQKGr1wO7GgLHxcVZcUOTTNztlruksi+rXf0j4ahdLckjlb6/9VwVI7G6mz0eUtz320zqgFK27Iw8jnjjDGcqlLlz5+I973kPzjvvPGiyz5YicZTUNYgnn3wSX//61/Hiiy/af8hp0Hf0gB7MKJmbSjQqWtdAWmUJq8gkhzgyHPTgEWKXxLmPqifO9gYRlTwS9z2Ok6RSK4nso9lSJ+C8LcUOKMnd3AnMOD3tBC9WrFiB6667DqeeemqTW9f5KKmrMy+//DK++c1v4uGHH7b/YBJou3rs5by4krkpRSMTJhpEEg/8erejVACgxJazMOJkv9Z6XHHbEVWmRRIx4rzPcZdfq5XE5LFV5K6N4ZTDWjCG7HFwhhmdfvrpeN/73ocjjjiiya3rXJTU1YmRkRF8+9vfxs9+9jNYlgVN08B3paHv6AEx3WNl1OmfMkwhqWuU0FU0BYkoG5YJqtllg26LhBB7W9jxRe0nRjti11Ga+sjf0ITG40Ula7i217RKB0Q1ySVqJHJt1lPu2rirtRK4znDRP67HT37yE1iWBV3Xcckll+CKK65Ad3d3s5vXcSipSxgxbu7f/u3fMDAwAACg/Wlo23tBJ/TywurUTx06UOgEzUqOqLi71Vveu5qEVl5edmskrvdRKncR+4hVppo63HKX1Fi8KpI5qlqhw0MldVQbJWyZsXbea6yDBY9lTZzy10c6c9zNmDED733ve/GGN7xBjbdLECV1CbJp0yb88z//M5577jkAABnXoG/tUxmtU50OFjqg8VOYVD1BsOx17kxQTX5+3bdI4nkvfWIX1LaoMpVsDyojxC5OEkYcouQwYHtUdm0U1YhhNXLXEhmyHTCtSaVYM/JY8Poe7Ny5EwCwZs0afOhDH8Lq1aub3LLOQEldAgwPD+O2227D//3f/9k3eYtA29EDba8aNzfl6XChA5KbTDbuviIKBG8Ley3jgVIHTIqdV+qcbeL4I/YRWiZuHWHbLSuZJIs4dYTIY+zVOQJ3UcGybZLXRZHINZuU4IU9FzpU7jjhsBaMI3Mcw9jYGCiluPjii3HVVVehp6en2c1ra5TU1QDnHPfeey/+9V//FYODgwAAejADfXsvSEFzF2xOAxXNZQoIXaNIZPmuiDpkwlYpLXE7TSLLs8apW2qVuiRo2FCAWuWuA5YPqxZuWHj1x07EvffeCwCYOXMm3v/+9+O1r31tIp/HqYiSuirZu3cv/umf/skZH0DGdegv9fnXaAWU1E01krwZdYDQ1RoViS0HIeeKaBSgFDwosQAAcVaTCHlIUxq+HeFiRzQtug2MhdchkjXCtlthx1BBkkUttEAGaUOn1VFyVzVsWh7zzu/Grl27AABr167FjTfeiMWLFze5Ze2HkroKMU0Td9xxB7797W/bS3sxQNvZA213d3lXK6BkbipSj5tum4pdEgkUFUV7QsbREUIm56DjXCpWpGw1CckDmtLw7R6kiRaufYS2IUDsorYDkxHHQLFzn1NvG5K+1qaa2Nk7rPH1U1PuOOGwFo9BW1lAoVBAOp3GVVddhbe//e0qkaIClNRVwJYtW/DFL34RmzZtAgCQIQP6S9NUVqtiEiV1AGoflF5V111ItmuZ1AFSsSPeB4dX3KjkfagwaufdR2gbJOIWuV025s8td2EJFkB9rrWpKHb2Tmt8fUSbO1DsAIBnTBx/9VI88cQTAIBjjjkGH/nIR7Bs2bLmNqxNUFIXA9M08f3vfx/f/e53YVkWYBLo23tB92fLV4MAlNBNZep5k20jsat1Comqx2J556Nzb/JKndOwSbnzSZ1AiJtM6tzbAyjLnpXswy12MrGMer27TNA4JEfsgs5tVIJFrUxVsbN3XOPrp57ccXCweRNIn2hhbGwMhmHgyiuvxDvf+U7ouh5dwRRGSV0E27dvxy233IIXXngBAEAPp6G/1AdS9Nxc1Wmc2tT7xtomUlePOcUq2HmgtARKHeCIXaDUAba4BUmd2B4C5zy0/jj7D61DbA+5DrnF4mXn1osmi13TpG6yATW+fgrKXcrCKz6wEn/84x8BAEcddRQ+9rGP4cgjj2xyy1oXJXUBWJaFH//4x/jWt76FQqFgR+e29vnXagWU0CmU1CFayMIeqrGmKgl7KIYIHRAhdUD8cUxR008EJR9Qau8/JEkicnsUNSRwTNbR3mIXJ+u21qSdpk+FMsXkjoODzcmhay3H8PAwDMPA1VdfjUsuuQQ07IvWFEVJnYS9e/fic5/7HJ555hkAAO1PQX9pWvk0JYCSuamCuEnK3u9G3EDbQOiA6qUu9txzASsahC3tVSZz4gEQJD8iszXoc13KTI3cLhMzSkF0vTSPZYC4iXZWK3ZJSB1QP7FrUKQu7hx3tSbvKLlrLNywsPaGo5x11E855RR87GMfw9y5c5vcstZCSZ2H3/72t/jKV75iL0BsEejb1Ni5KY33xuh+35XQlVHNQ7SiyYS9D0GX0AGSpARvdC4qe9UtfbLPt3vKk6jtXjErSZ3TTpm4udtajdglJXVAdWIXNilxg7teK1nVotYknqbK3VQTu9JYO/24AnK5HHp6evChD30Ir3vd65rdtJZBSV2JiYkJ/Mu//At+8YtfAADIsAFj8zSQvMpsndI0U+raSOiAyh+eFa8O4VmiKmit1sCu1qjsVa/0eT/r3ilPora7xcwldU5bveLmbXMlYpek0Dl11rA+apx1Y+tINV8gak3mqUnuVNSuIljGxMrL52Djxo0AgPPOOw833ngjurq6mtyy5qOkDsDmzZtx8803Y8eOHSCEgO7ograjR0XnpjpBN0LOldAFEPfBGVoubO1Sicw5m0WiQNDYuajs1SDpE5/7gMzTwO1C7DxC526vI25BbY4rdvWQOiC+2EmiqIHbGkS13f2VLDVW7WtDdl7j66eO3HHCcdm/vwH/9V//BcYYjjjiCNx8881TPoliSksd5xw/+clP8I1vfAPFYhHIUxibp4EOp2WFG99ARfNo9s2vQ6UuRgXhm0PWZwUQngwRlb0aJn2ch9cd9PrS3wOnGhFiF1Z3HLGrl9QB1S87FjYWskHUkpwTJWi1ZnpH7LzG10+d9WRZbwHTX6fh4MGDSKVS+OAHP4gLL7xwyi4zNmWlbmJiAl/+8pedNefo4TT0LdNATG+3wZQ8PYpm3hDaVOiABKYkCYISZwmtQKJmna8hU45oNHTpLaLr4KYZuj1MziJvw1FiV0+pA8LFrgXmoAujWWIX5/WRqPF2seA6wykfXIFHHnkEAHDOOefgpptumpLdsVNS6nbs2IFPfOIT2LZtG8ABbVsvtL1d5d2tU++0KNw0q+t1qgqdpgWLgxA6IFheDCN0OzFKSQoBYkZ0HeCs+u0pA2BcKnZiW5SYBd6KxTFF3ZMisnrDlhVLZLqTFuyCndx947tiK60jpIIaXz815I6Dw1o0Bhw5AcuycMQRR+Bzn/vclFuJon2fIFXywAMP4Oqrr7aFrkBhPDsT+t7uSaHjXAmdQk4jrosWj3oEUXO3KyCfZ04IHSH2P1m0TQgdIN0uhA6Qd986490CxutFbk8Zvr/5oBHz5CF4NQhXgYh9hEU6g7uAY+0bCJ+4GAj/QkJoU7+wJHJ9hhAVDaw5gl3LuROfnSA65HlHQKDv7gF9ahrmzJmDnTt34pprrsGDDz7Y7KY1lCkTqbMsC//+7/+OH/7whwAAMmTA2DR9cmWIqXEaFHEhIVFblSRRRs0PTF+Cget8U1KeZMC5P2M1Ys1Wt9QB/midN4nBG20L2+4TOk+0Tra9ooidLPpWScTOK3reZcc813KiEbuwhJcm0sjpTmqtT1JBja+fIlE7neHYaxfhqaeeAgBceeWVuPLKK6fEZMVTQurGx8dx8803O5MWaru7oG3vtaNznX/4impo5oTDbSR1iQsdMCkN7iidG7fYGQFRstJ2r9A5VZTETpaV6u5mjdwui9K5xC5oe2yxC+pSjSt2AckbYWvFJiZ2Yddxi4hdvScoTrpeVwU1vr7z5Y4Tjjd95UzceeedAIAzzjgDf//3f4/u7u4mt6y+dLzU7d27Fx/5yEfs7lYG6C9Og3Yoq2ROEU7YklCNuuG1uNzVRejc9cuEzk3Et+7ITNlaz28txx9H7KKSI2rKaI2WgshHQ7PFpEYasaRYveouVVDj6ztf7ADAmjMBetwECoUClixZgi9+8YtYtGhRs5tVN1r7qVEjzzzzDK655pqy8XNK6BSxaPY1MtWFTtdDHyqBC9vDjj6RdCp8/4QCYWPhaEQdlIBkMuH7oGHTq8QYYxcQZXSIyvaNEuIoKY4cw1ff6WvqTSLruIbAGa//WLtaiHp/44wvb/Z9MgbawSz4472YM2cOduzYgWuvvRYbNmxodrPqRms/OWrgnnvuwQ033IDBwUGQUR2pp2eBjkbc6BWKMKIGHCe2n9b+WNZb6GK3I+y9IBSQdZ2KbVFCl4oQumw2vHFC6KoVu9I5DhI7omnhEy07BWtIrkBni50QrnqKXZz6myp2cYiSuzZILqSjBobuBlavXo2hoSHccMMNuP/++5vdrLrQcd2vnHP84Ac/wK233goAoIfS0F+cBsLc6fUddciKRqC6XAEklEUYJ0oXtt3zet/A/7Rr8nDOAHfig0zoCsXJn71Cxzl4vlC+3S10nIPncv5GumWORc0xJ+mK9a4vWvQkb7jOgXTJsbDl7aRtqHGeuyTEqMlLiSW+pquEunXJVnvuKn0Wyu6DjU4kqwFOGdbddBQeeughAMA111yDyy67rKMmKu4oqbMsC1/72tecgZFlCRGCzjlcRaNQQgegNYUOQPmg/7RsNZiS2IVF6ITYyaJ0brGTRem8YieLzoWJnVfqAs6zELvAc+CuI87D19eOqSV2UevD1iuCV9exdtWcv2qeiWGzA3i3txgcHG/+/87CHXfcAQB485vfjL/5m7+BllAPQrPpGKnL5/P43Oc+hwceeAAAoG3thb5XkuXSGYeraBSquxVA6wqdwFn3tRapowTEMAKFiBeLwd2uQuzCulvjil3YRLZFM/A8OGJXy5xkSaxM0ewEgNi7CR/vVs9u2Tifp4bJXS3PxLCEMrG9RTEXjIGvHANjDK95zWvw8Y9/HKmwYRdtQkdI3djYGD760Y/iz3/+c3mGq4z2P1xFI1HTlwBIYNxPyOsjx4ZRak8NUgxehguUAEbEDTniGEjYmElKgXSqvKvWC+fgYduBaLGLehjHeNDXnDU7RcSu3mPp4tASUbt6PxNbWOysWTmQ48dQLBaxbt06fPazn0U2arxsi9MeT5QQRkZGcOONN9pCZxIYz89QQqeonUYkRUQJHWfRN+YaH35xMvAihS5qJYEooTOMmtZlhaaFJy5QAtKdBclIonhOMymQjchmjYKQ0NUliEbtSGAQlAQndwhidBGFRTTtArUnT3RyAkUjqatYipUoos5lrfe5Nl6xQjucAZ7qQTabxeOPP44bb7wRw8PDzW5WTbT1J2dwcBA33HADNm7cCBQJjA0zQYeCb9wKRSxaocs1jqyJMlWKXZzoW2yhkx1PhNA5xYQkyGSCUntqEUIAWSaoptmyRimILpEZSkCyGYglxmRiJ4SOaxSQiR+l4Nk0OCXhWbNRlB5+gWJHSHTWLtASYmdX0QCxq6Pc1XvpsLhETX2SCFHnMokvsY2aHSBh6FAa5iNZ9Pb24rnnnsP73/9+HD58uNnNqpq2lbrDhw/jAx/4AF588UV7DroNM0HHarjhKhRAawqdTNoSiNCF/R70N0+B4N9jCJ0TpQtCCN3kC8rFziV0TnmZ2LnfU+I97pLQldrqE7uS0AkixS4gWlc2EbJM7ITQ2Y1qi4idXUWdxQ6ou9i1ktzVnXpE7doo+zUIOppC7vcpzJo1C9u2bcMNN9zQtmLXllJ34MABfOADH8D27duBfEnoxpXQKWqkFYUubpkKJC/RCF3QtphC55aCsmidV+iC8IqHW+xElK58x060zit0calU7IhG/deWV+xkguwWO9n5VmKXGFNO7FTUzgcdNzDya4K5c+fi5Zdfxg033ID+/v5mN6ti2k7q+vv78Td/8zfYuXMnkKNIPTsTdCLiWy3Q0v36ihag1YWuxq7WySaEjG8TE97WKnRRbZAInXsb0bRgoRPROhGlC8Ld7erbNtkNKxM6J1rnidKVlalE7KKuraDtKmLn2cnUEbuWidolIXdtBMnrGPwlw5w5c/Dyyy/jgx/8YNuJXVtlvw4NDeEDH/iAvexXjiK1YRZIPsbcMu1ziIpG0ypz0NWa7RdHphr1YI1IjAhdrUEQJkyaBtLdBbgnBS7bPwXv6wYZl0wKXIJrFLwnCzI6EdRQ8GwKZDwfWAdhPDwbFrAFNBdcBzgHt2K892ZI5i8QuY4skNBasiGZsZ2SFWvvpj2eGZFTr3CWUO/A1FgnVsAzJqadT3Dw4EEsW7YM//zP/4yZM2c2u1mxaJtI3ejoKG666SZb6PIUqedmxhM6hSKIRt6Imrx4edsIHS3NNRe0L00DeiXzT3rgGgHvkmezco2CTe8GjxGh4l0B0UBCwNMGeHdI1m2qNOddWERR10MzZkFJ62TFAqFRu1iz8ovjaWHaRegEkZ/tOFn0kTtpv+7UWiA5HUO/4pgzZw62b9+Om266CSMjI81uVizaQurGx8fx4Q9/GJs2bQKKFMZzM0FyMbpcFYogWu0GVUvXUsRr20ro3HPNefcphI4Qu/tT1kVLKdi0HgBysRNCZ9dHwHq7ZI0F78449fnEjhDANW4vSB7LysvETkhWxFQoYj8dI3ZAy4tduxEr4SOJL5atdt+sIySnY/BXHDNnzsSWLVvw0Y9+FPl8SNS9RWh5qTNNE//wD/+ADRs22PPQbZgRbwydQhFEs25M9YjWdarQeXEJXalSv9gJoavkruYVO7fQueoNjNgBgEb9ETuvpEVF7GRi5z2nU13smhztbjWqylhXUbuKoDkdI/cRdHd345lnnsEnP/lJmFFDIZpMS0sd5xz/+I//iMceewywCIznZqgsV0X1tPrNqJJoXYw5vFpB6GIRJnRl06T4M0gdsQsQOne0rixK50aIHSGh3a3O/wHz4TliF2cuO5lYucUu6JxOdbFTRBLrc59E4pX7M9HB0DEDhUfSSKVSePjhh/GlL30JLGLVlWbS0lL3ne98B7/4xS8ADuibpoGOtv+6bIom0So3nkS6QNojKQKIEaWLsbwX0fXgcXSEgOtaaISOawSsNysXOoFGwPqyIZmopQieTOgEbrELqAOZdLh0qa7YptJu4+mCUN2xyUKHU2BPd0HTNPzqV7/Cbbfd1uwmBdKyUnfXXXfhu9/9LgBAf6kP2kANS/hMkQtPEUA7vf8JTNuQiNBpWvTDtlah0zSQ7m75hMGiDl0DmzsDPKzrUqMwZwXLFDc0jC3vQ25eSBmdohBWh0Zg9mVgzpCMwXMaS8C60mC94WLHMxFfTsNWnRBEiR0ljRG7JCIWcUWqk5YOS0CoYk190knnrMlo/RmQjfZ43e9///v45S9/2eQWyWnJd/zxxx/HV77yFQCAtrMb2n7JjZTzyX8KRRCtKHQ1dXk0oMs1DkkIXVdJfgJWgiApA2zOdPs9DDpsXUN+QR+YTmHO8MsUNzSMH9ENTgmsFJWKHdcp8jPTYAZBfm6ItFGAGxTmTEnEjxCwtC1inNJAseMatcfoRYkdEE/sorY3KmInoS6zZdVRUhoWpXN3fdZyLyi9PqzdhJJYQzVCKlBi6EI7mMUVV1wBAPjyl79srznfYrTcPHW7d+/G1VdfjZGREdADGegvTgOB56ZSzbIkrXWYikbQikInqGbuqEYJnfch731o1Cp0pX04Uufsh4Gb9lxqJGWAzeorfw8tDuKem64kdO7bAzUZ9AF77jlH6DzXgVZgyOwvlSkJXVkdRY70gXHnd64RWF2pMrEkJofePyYO2BE6ZzvnoMPjZX/j3pUlGAPJBcy1535dMWQuPMb9c9h53x/G6zOPXUSUrq7z1tUhaaLhUuemUnHy1kFo5OefM175efO2SyWrgIPjjL8/Bvfffz/6+vrwb//2b1i8eHGzm+XQUgo+Pj6Oj33sYxgZGQEZMaBv8Qidiswp4tDqCRFA7TdX3+Y6CR1QLgn1Ejp3HbrmFzoA0Ai4yHaVCB2A8ogdIdK56MTfZEIHoCxiJxM6+7UktCuWE1IWrfMJnWhfrRE7bzes7P1pQsSu7rGCTose1SpLpYhdrKhdLXTaea8CAoKHbnkea9aswfDwMD7ykY9gdHS02c1yaJl3iHOOW265xZ5cuEBhvDAdhBOxUcmcIh6tLnNxEd0ejcpyBcIf/DEmja1Z6ErLdzldrtLXE7CerFToBJwQO0q3SC5dzCCT3bABdTCDIDe/Wyp0zn5KXbHeKJ2z3d0NKzue0pePxMUuqExSYkdIY8fSBbYlucdXU6N07m2t3h1rVzLl5Y4wgq3/dRhz5szBjh078PnPf77+X2Ri0jLvzH/913/h97//PcAAY+N0kEKCq0W0yMlW1Jl2E7o4N/hGdXfUeJOOLXTdIWPWAECjYF3B9bC0jqE1vZiYEyw5ZreG/adNk67rKih2URw8KTgblukEowt1DC8LTtDihKDQFz7ujesU1oyQrNu4YheVPBG1Fq0ok4TYAZH1xF5dokVo2FjUOJ+zOJ/5sHo4C+1KdzJja21LzC+dnQopahi8l8EwDDz44IP40Y9+1OwmAWgRqXvyySfx7W9/G4Cd6aqmLqkz7dA9WSntejyym2aFIldzlEHclKusp2KhC3qvDB3FBTPAKQHL+gWFpXUMH9kNriEwwmZlKAaOMmBlgNFFcvFgBsHoQg1WlmB4SXCEi1PASgPDS/xixwlBsUcH1wny8wJElcJOitAoWG/0qhO1iB0hxBapRkXsACV21e+oujG1snrCqrCs6HGSDWpLp0JHDbz//e8HAPz7v/97SyRONP2dGBgYwGc+8xlwzkH3Z6EdiPgmr6gN9422XUXIS6ccB1C15FUtds2K0Hnfs5LQBckaAHseuJJHMA2YmF0uOELohPRZKb/YMYNgdAF17nxWxi92TCcYnz35Oh50ishknT6xE0InRpAEiZ27FyFI7Dyf2bCIXSuKXaTcVStTdYhiN0zs7J2Fb48TqY/x+ZWJne9+0aC2dCJfe9v3ce6558KyLHzqU5/C4cOHm9qepr4LjDHccsstOHz4MMi4Bn1rXzOb0/l0kvwAnRNxjDO7e6OWGKtADhPrcpUInTdax9I6hpe7l/MCmD4pdmVC5yrjFjuv0AncYucInTtJ1SiP1okonRuZ2HHPpekTO9mwEK/YBYzFc4udV5paTeycNkW1p0WINXFvcjuLLhNHpmJE7VqlLZ0GAcHvbn4ay5cvR39/Pz73uc81dcWJpp79//mf/8Gjjz4KMAJ903QQVu03tqgJGFvnhtEUOkV+3HTa8SQ0GWlsWmEMHSGhETohdmXdrmWvnxQ7Toh/e6mMlQKGl2pSoSvbl0ToBKIb1hE6SRlH7EpROul+KumKDbvGS2IXJEttK3ZxZaoBY03bSuxi1KO6Y+sHYRS77hxBOp3Gn/70J9x5551Na0vTzvzmzZtx6623AgD0rb3Ba7rGSXKIulmoRAlFu5PU0mAJfJMmJIYMxInQpQwUFs8M7XI1uwwcPqFHLmwAQIBCL8Hus0OOiZS6UEOKmF3AvlfKhc4pkwUOnZAJLcMMgokF3b4onRuuUXtJsjBijrELEzcS58tcbIlS99C60kCZivXlL6m2TCG5oxM6rrvuOgDArbfeas/k0Yx2NGOnxWIRn//852FZFujhNOj+iBtcGGE3LTUVSjDq3LQPcYUu6iaa0FquQugCv/ULoQuTipSBwqIZ4DoFN+TtsjI6Bo9KwUoRFLvl9ZhZgv4TGVhI4qeVAkbWFDGyMiRKQQCzi2NopXwzp0BhOoGVAQZXBIsUMwhYiiA3N/yexikBmxYgveK8xZzuJDIil1RUO+x+EWdy46QmI+7kCXBr/fyKchHZsQ2Ntk0hsfv623+A0047DYVCAZ/97GdRKERPLp40TTnb3/ve9/DSSy8BRQL9pT7/ihFxiPoWqoRlEu+56IRz0wnHEIdKhC7sNQkLncAndm6hm3xheRkhdFrw/oTQsZAyZpag/wQGrnNwg2Fskf9BZaWA8RVFQOfgGQsjR/rlgxnA+AL7tVY2QOyIPUaOE4Clw8UOQPViV+kExaK8ROy4e6WJoHtl0ZT/PaieZn/uGih0DZu7zkujZCpu8kO195NayrcpBARP/etWTJs2DS+++CK+853vNLwNDT/TL774Ir73ve8BAPStfSDFKmYxV9G56lHnpn2oRuhkr62T0PmQCZ0XidDZkwVPtlEmdEwrj9a5hc5uIMAy5WLnCJ02WYZny8VOCJ07w9UrdpwChWnu9srFjhnlx11zxE5Qhdhx79Jh7nKCSoXO+aPnHtLIKN1UwfuZrWXt1igaFbWbIt2xpKhh7BH7s/ajH/0IL774YkP339AzbJomvvCFL9jdrofSoIciBgx7UdG56ulE2e2043FTi9BVWE+tQsctK1roCAmN0AmxC4vQCbHzCZ2zj0mx8wmdq4wQO5nQCYTYCaHzZbJ6xM4rdE6bKxG7iMSIuGIXKlCVLPUlEzpnY2kfHdrt2rQonZukJCjp8XpqqbFItP4Mzj77bFiWhS9/+cuw4mQfJ0RDz+5PfvIT21qLxI7Sxe12jTPgt5Mf8Ao5nZYBK2ghobPLRCxTpmkgmXT4+2HoKC6YHtrlWuzWcfDkdGiXa6GPYOScMb/QOY0B2DQT09fv8wudqwz6ikiddSh4DjoAVg9D/zozsAwngJUB+lfH6IqdF0PsuqOzYqGHREtL559EvF8AYkXpIunQe25LCJ2bVuuOjYOa0w4Pf/k5dHd344UXXsDPfvazhu23YWf20KFDk6tGbO+N7nYFJqNLYVGmToxAKaJJUugaeQ0lkcyA0oMn6sYZtT2G0DnTWQScH+LOcg2am0kIHQGIJa/H7NJw+DgDVgowe+TVmD0ATh9EdzaPrrlj8kIphqNX7MGc7BiWLj4kLUINC8sXHsLsrnHMXhkwUajGQWcUoHUXMXZU8GBnZthiN3hkSCSTAFaE2BHG7XVtw8SOsXCx49yJnIUuKQYARkRyBQASlYABRAo/gGRWlkgoShe16H3Hk1R3bBySqKeNn+2koOGaa64BYK82ceDAgYbst2FSd+utt2J8fBxkxAA9ECPbNc6b2cZvuKIGkhY62c/1IIlkBhehYhc1oXElQufUyX3by6YtYcwvdi6hE3V4xU4IHXOtFuEVO7MH4K8cQko3QQhH2jD9YlcSuhS1xaYvnfOJHTUsLFtwGAa1QAjHjMyEX+xKQkcIBwGgdZlSsXNn3FppYHCFX7bc3bZBYkfckhEkdoxNlpOJnUvonHplYud+D2sVO/E5rLfYJSh0sp+DynQs9RY792uj7k+h9fDy/9uQr73t+zj22GMxMTGBb3zjGw3ZZ0Ok7plnnsGvf/1rgCO62zVO1ERF56YmSU6i3GrRuaS6I+J0oTRw9n5O/ePRfBA4Que8TjKGLW0UJ19COCj1j5cTQgcAFByG5h/LYrjKECIpQ+y/u34FkYzf8xI4l16FZWR3ZeJb1ineexgrYhchd0TX/XIn9u8Wu6hu+rhLhjXo+pzSUbu44+wSibYlUE+bPu8JCDbfvg+EENx3333YsGFD3fdZd6ljjOFf/uVf7J3tz4KOhtxklMwpgqhXdK6SbdVQZ5kri9bF+VYc84EZuIpA6fz4onQCd7TO0GHOmyatQ0TrzC4Nh4/x3xM4Bcxu+2ezB8BpQ74yhmYhO2fc/iXFcPTyPb4yWb3oROtElM5Lj1GYjNZpHHS6PypHU1ZZtI5JPIgZ5dE6mcwyrTxa55M1ACCeaF1Qt7bu6hoPGYjtiF3YtV1L1M79ZSvpqF0donRB26ak4CUdtYuz1GElUTrv39rw+U/HDVxwwQUAgK9//evxEodq2V9dawdw//3328kRJoH+cq+8UJu+WYo2pA2vs1grRcS5UdYqdE49NHy1CMYAjZZ3u3rhHFZGw+FjDakgAaUlwObZ3a7uKJ3TTsKRSRUxc/FgWbdrWVPB0ZfOYfWyvU63q6yeGZkJLFh9wOl29ZVBqRt2VSF8ouOMLXZh0UnRDSsVOoHohnV3u/obbotdnMy6OEt9xVqRJCRa3saJS1NS6ARqnF3d+c0nH0M2m8Vzzz2H++67r677qqvUmaaJb33rWwAAbXc3iCnZXRu+QYoG04gZ8ZPeV0IIoQsSu9hLg8UVOkKCI0N2AZBMJvxcpgxYs/tArOB6zB4DB062EyOCy3AsOmMXFk3zR+kEPekC/nL5n3DmrJcCy/QZOfy/RY/g4gVPB5ZJ6ybWz9uC16zcHFiGEo6+WWMoHjMe3GgALAUMLwuWKMIBcCA/KzzblXAO3pUOLQPOgVREFyvn0WvBCjEMuU5iLQqfNAkNS2jYOq7tShKZ9KJcnN6JyP111vRlpKjhsssuA2DnF9RzpYm6St3dd9+N3bt3AwUKbY/km32bvTGKJtDuQlfDN9OoB1FdhE4gEztCQLq6AErsLgTZOU0ZsOZMA6cEYBzU9NdT7LWFjmuAsy6rB7OHY/Fpu9FtFGBoFmZ3+UWqO1XEWxc/hR4th5n6KE6dsd1XpsfI4w2znkWGFDHPGMQb5/nHtKQ0CydM2400NbEwM4izj/RPFkoIRzZbACUcPd25QLEjpcO10nKxIxygBW4Lm04CxY6I80YIWE+A/LHJMpFiB0SLnaBaAeI8/AuBU6zCeeuU2DWGJMf2xqknVpnOWWjge1fdhdmzZ2Pfvn34xS9+Ubf91E3q8vk8/vM//xMAoO3qBmGuXbXZm6FoEu0udM7+Kxc72QPI/be6Cp28gCN0At/D2S10Ao/YFXsNHDzJKE8Y8IidW+gAO0LmFTshdF10soxX7NxCBwAauE/shNAZxI5CUXCf2LmFzqlbInbE8zZ7xc4tdIIwsSvtPFzs3OVkYufNWJaJnSwC57luIqN09RI6gRK7xlGv1SyqzfjvkDlqCSP4y7/8SwDA7bffjmLRP6QkCeomdXfddRcOHToE5Ci0fa4oXZu8AYomknSWa5z91ZsKxC7swUMoaZzQuSJBXqFzEOdXJnQepELnNML+zyt0ArfYeYXOXUaIXZdeKBM6gVvsvELn1OMSO5nQCcIidgK/2Pnr8Yod8UY3ZWIXEEktE7uguQXdYhcma6X3sulCJ1Bi1zgaHbGbIt2x37z0R5g1axYOHDiAX/7yl3XZR12kzjRN/Pd//zcAQN/dAxI5p4FCUSKOYMWdw7BVhK4CGv3AqSZC54ZzDmhauNAxDpbWgoWuRHGaXOgElHBMS09Ihc5dZmFqANcuuN8ndAINHAuNAbxrwcM+oXPqKYndOSs3SYVOIMTOG6VzY6WB4aUaaCEkA7Mkdj6hEwix68pEjnlEyoi89kmSX5ySqidOsoISu8aR5DJlSZVr8+5Ywokztu7222+HGbYUX5XURep+97vfYd++fUCRxJtoWKEAkhG6Sj/YjZyrLrJIzAhc3EHNMR6SodETSkFSqdAoI9F18N4ukELwzcnqNnD4mDRoSG9DsYdj6bpd6DXygWWmp8bxwYW/wSnZ7YFlMqSA49O70E3CByJrhGGWNoqTu4LrouBYnj2Ic47YFFpXJltA7piJ4AIcAAGGl4aMZ+MALXKY08ITIwjn4NmI5AnGI8fOcZHEEmOMXWQ2NOe1T2USN/u0AVOcTAnE3HENXE+3ovVlO5hbL/sfzJw5E/v27cNvfvObxOtP/AxyzvGDH/wAAKDt7QZhng9yi0VGFC1CpUIXNI9RK5Kk0EXVmdRNkVKQdNqO0AXMg0Z0Hbyv247mWRw057c2q9vAoeMy4DpALUDL+XdV7OFYtm4XuvXS+Dj438fpqXFcM+8BdJMi+kgea9L+OekypIBj03tgEAaDMBxhyJcA0wjDdGp3m/bRXKDYdWl5aOCYmxoOFDuzNFa4qzsvFzsOaCW/tNLA0DLZuDdAy9sPPKZRudhxbkfxOAcIiRa7qKQI9wM2qJxLfKLmLQRQvdg1WOgUHup9XuOsMOEm7B4WdY8nJNmEjzpAGMEll1wCALjjjjsSn7cu8SN/8skn7XnpLAJtb8hcVgqFoNoIXVJLfNVTBushdEF/k5WpJlrnFrqg5riErlSJT+zcQudU7RE7r9A55Vxi5xY6QZDYGa5+0AyxsEgfKNvuFjpBStIFK4QOQKDYWZ5hJT6xcwkdAIBIxE4InestCBO7yboCxM49jUyA2HHZVDPecpLrJmrZOADJTT5cR1SUTvL+t2LErlYxa2G5+867f4p0Oo0XX3wRTz8dPNVSNSR+xD/96U/tig9k5fPSASpap5ik1i7XpMZR1EPs6il03m1hZSoRuyChcy8W7xU6VxkhdjKhEwixCxI6pxy4VOgEbrETUTovXbToiJ1M6OzXFsuidW6hE3jFzuIEXDJW2BE7r9AJ3GInETpBmdiJKJ2vLo/YyWTNI3bcCulyE+VCrhdH7CK67aNwxE51u7YO9RC7sFVuKo3axY3ShdXRIhCT4rzzzgNgR+sSrZsnGPs7dOgQLrnkEliWBeOpWaDjNSwJpuh8kkqKSIokv2w0QugEnMUrFzXvHSEg2Wx4hM4wwGf0hZ4rc1oWB9Z2S4VOUOwBZpyxD3OyY4Fl5mRGccO8e1GUTWTnogAKDbwsSufbH6cYYeHTggyzDDblF/iEzo0FggOFPvzq5aMDy3BOMDaQRe/zITMrc1tsZ74QPIYQAGiRwegfD/8cWAxkXNKvXd4o8Hwh+kFqsVgrVPA4A7zjZMSGTFA9WSg52ZjyUtfIcW1x37c4+2MxJr4OkrpK29MgWLaI4imHQSnFHXfcgdmzZydSb6IK+4tf/AKWZYEMG+FCp5jaxM2862ChA2I+YKJuRAndqAghgGFETHGhAekUSD4444F1pzG0sgt6LvjYij1AzysPIqOHiwElDNOohWkhGRaUcPSSIrpIcF1FTrHP6sMYD5GsEkcY/aHbDWKhSxqC85TrKmLkmOByhANakWN0UXCbCOcgjMPqjV5VgqcjvkBbFogW83YfIf+8NK4vtIxlRY4V4pxXP9FxFUx5oQPif0lste5YGmOZu6i6WixiRycMHH/88WCM4Ve/+lVy9SZVEeccd999NwCUz0unULiJK08dLnSCmsSu0gHIAftyhA6lB21RIkhUA+nK2OeKMZCcX1hYdxoDa3rAdICYgDHq358Quu5UAYwTjJlyqZmTGcUNc38LADAIpGJHCYeByeN2/+zsryR0FqewOA0Uu+FSFC9Di1hoDEjL0FIkcJo2gfOXbpSW4ZygUNAAwgPFjrDSueGAlYJU7AjnIEV7f1yjsPoCooymNZk8ESZ2gJ3QErpUmJiXMHiOQ+6eky7gc+Oe1y5I7Mr+HiV2CYyNUkLnIu75rEXsKn1tXLELkzsxFCfO/bJF2PiTlwEAv/zlLxNLmEhM6p577jns3bsXsAjo4YjZzwE1rm4qEjc6N0WETlCV2CU02NktdE41XrFzC53AI3ZuoXPq9oidW+gEJqM+sZuVHsON836DXjp5PJrnbfIKncD9N7fQCWRiN+zqlqVgoWJn75thQWrIJ3acExSLroeOELujJ4/XLXT2H/xiJ4TOPT2eVOyE0DkvlIidN3M5SOy83aASsSsTOld9ZWUkkd5YD6ukhiJIUEIXQL3FrlLiRgijonYysWtBoQMAejiDbDaLnTt3YsMG/xKGVdWZSC0Afvtb+1s1PZz2T2OiULRadyvQEkJXEeLGFHaDirp5uaepkAidD5nQOXXZYicTOmcfJbGTCZ3ALXaz0mO4af49ZUIH2DcqEa0LEjqBASYVOoFb7IYl4+xkYkc94/W8YieEzncJEw6j2xY7n9A5ZSbFTiZ0Ap/YyT4vbrELmIoGhIAYxqTcBY1rc4mdVOhc9UXhFrtAyauj2CkCqIfY1SpQ9RK7FoRYFOvXrwcw6VC1ksgnxDRN3HfffXaFhyqYbFhF66YGcdbua1ehSyhtPnY0IYkbldhXiNDZD3EeLHSinKEjNzcjFTqBmSUwjxmTCp1ThlGkNFMqdAKDADO1YqjQAcA41/Hw+FFSoRPkWAqPTywP3C7EbnHqsE/onDIlsTtvyQtyoRMQDq3LxPgCidA5ZQBmAPnphlToBI7YmSFjH4XYRSU8xPwMhAqdu66IMpzz6KgdJSoxotEkKXZJvXdJil2Ly929//QoAHvRBhYjuSiKRKTu2WefxcDAgL2CxGD0YGQHlQE7NYiakqTRJCl0rUbMLFiiaaEPYUIIoFEgHyxiPJ1Cbun00PVeAYATgFCOgyM9gWVmZcbwd4t+iUxIBisDMMbCj2+c67hv7GjkwlJvYWexjloZbMwtCi2XYwZ6aXhmaZqaOH3ptsDtjFFYgykwPfpaZzqQmxOWNctB8hZ4JjzCSopm9KoSYkHxOBGyqGlK4q7rGiVZQkQTeBAroYtJo4UtLkmJXYtDB1Po6enB4cOHE+mCTeSp9PDDD9uV9afjrfPaBmu0KRKmVVaAaGGhq/khVInQAQhaiJ2I9UMJtaecyPmn3RBCxzQCYnJkB+RRoWIPwehae0LeYlGTit2szBg+uvgXmE4LYACKsnnbEF/oikxHkenYWpgrLZfjBjZO2DI3zlJSsWOgGGN21qlBTKnYMU7Rb3YDAOamR3DGMr/YCaEjjIAbHENHydtOGGCM2QduGUQudpyDTpggpWW5eFYuf6RQnJSnGMuAgRC52HFWPuVIkNi5rqPAiYXd13YtUemYYtGyQtdqkaNqulYbmYiQZAJFi0I4wRlnnAEAeOCBB2quL5En0x//+Ee7soEYCRItfHIVdSapFSCqpYWFTlD1w6hSoXN2WC52bqFzinjEzi10TtV5v9gVewhGTp2Anpr8O/OMt3ULnVMG5WIXV+h+N7YGRVc/8LiV9oldjhvYnFsAhsl2eMVOCJ17xQiv2AmhY6UyGlig2DljjAlgdTGf2AmhI6733id2bqETSMSuTOgEslUlip5sYq/YeYXOtc/yivxfDHxiJ7umZX+TdRdXmuGNFhc62c/tSCMTEZJMoGhRfvvPdhfso48+WnNdNT+ddu7ciR07dgAM0V2vLXxSFQ1ECV0oFT+UqhU6Z4f2g1kmdE6RktjJhM7ZhUvsZEIHAJZFnWidTOgEQuwqEboc83dJusVOCF2R+8+DEDuZ0AmE2HmFTuAVOxGlK8MjdjKhEzhiJxM6gUvspEIncK8q4RU6p23EGdMWOimwELuQsXaxlgJztzVs/F8F0a22ELqwvzWSpBIaGnUcHSx2dCgFTdOwc+dO7NnjXxmnorpqbcwTTzwBACDDKRCrBccYKVqLdha6VqRWoXMTIHST+yJgPWmp0Dm7ynNQExhel/MJnaBY1JAzdXx48S+lQidgAOJMYW6BSIVOMG6lsTG3KFDonHZxLVDoBAYx0UXzPqETCLFbe8ROp9vVR0nshlcGC52AaQQsrcmFTiDELkpoNC1Y6Mp2GmeKnejkCUJIdF0sIEN3qtAssUtqZQk1zi4RiEVx7LHHAgAef/zxmuqq2cKeeuopu6KhGAkSnfxwVbQmbXjNxVo+zC4Yv9KwBzAhIIYeerMjugY2azqIyZA+HJw4UOyhGFwNYDBYsnq6cvjgivuQ4+HK1kUAjZDAbFgAGGJp3Dm4DoeL3cFlrCz+b/fxuP/AquB2Mw3bxmfj0ZEVoW0qch0GsbAoHTyPHeMEJqc44siDwRUxAm2CYGRJ8HtIOGCMWmAaQXFGyNAWzkHyJngm4h5smkCY3LvX94363DR4CTDOeGQUrmWjdK1I3HtHAj0TRNPifalMCs7a8r5/6qmnAmiy1HHO8fTTT9sVDVeQ9apQtCsJfDMllASKW+JCFzXPmBA6QkvZif6oiRA6MQMwzZtSsSv2UBw6kYIZgJajKB7wT2/U05XDjat+i+naOHLMwG5LnhErhA4Agh4HQyyNnw69AhOWgSLXpGI3ZGXxh/0rUDB1DOcy+MPBI/3tZhr25/vs9WHNDP40GjzViSBDilKxK3INOydmgHGC2dlRLD7qgP/FFkG6n4IwwEoDw8v8R0g4YIxYIJYtKkwjKE6XiB3nILkinFUlgsSuWJycTkT2gBVC553HUEactWHrtKZrkLi1vNC1aqZ8ULvcf6+h7W6ZS0TuotrivqbaTOz+8wM/AQBs2LChptUlarrSdu7cif7+foABZCTmWq9tdqIVbUy9rrUaxM4tbV6Bq5fQCXxi5xY6gUfsvELn/N3zEHULnb0zQJsoFzshdLO0UXtXoFKxcwsdII/WuYXOaYNH7NxCJ/CKnVvoAMDiJFDsip5pUrxiJ4TOLI0BpIT7xc4ldADsrliZ2HE4Qidgukfs3EInkImdW+gEsoerRIx8YmdZ0fPRJSx0XmGL+r1lkX1uW0H2vG2oczurFrtq2iBbZ7xFHYSMGdB1Hf39/fbqXFVS0zv1wgsv2I0ZNeJNZSJo0ZOq6CDqfY1VsySXRNrE3+otdAJH7GRCJyiJXZDQAQApWk60zid0zs4mxc4rdM6uPGLnFTpByiV2MqETCLGTCZ1AiJ1X6AQysfMKnUCInVfoBGVi5xU6gUfsRLerDEfsZELn1OcSO5nQCdxT24RE3xyxS0roKiAqMtc2QidIKAKWOKItoWNqK2tvmLxVLHa1ju8T13ALuwdhBKtW2UNEapmvrqaravPmzXYlozGjdG5a+OQq2hTxrawFr60waYstdHGJO5lsRFIE0imp0DlV5E1oBYZDJ0iETsABUGDtvJ0+oRMwUGhgWKynpUInSBECBhIodIL9+T7cufEkqdAJ+se68JMXT/QJncAtdkFCJzCIhRn6uE/oBJRw9KVzwIyCX+gEJbEbWaKVdbvK4BoBpzR6wHecFRw0zdftKqVYTE7oYnwh6ugxdK0kc27itCvJtjdwXJ9dT+s9F7yIZImNGzdGlAwmEakjYzEmuFQo6kmjP7BJ35jj1hcnQhjysLNXioj4lkwJSMaOBtGRicBiVlcKw0tSyBwOPvdWD8MpJ7wExil+P7JaWqaXTuDUNEeaGJhBgxMCDlsEdwy9IlCeAKC/0I2HX1wBa8zA4X75eL2CqWFooBv50TQeeXlZcNs5wWAxi6dGlwaWAYA8M9Cl5XF8n3wqggLTse3wTBhpE7kj/RM5CwgDUkMcE3OC76eEA8ZwAdAIeFc6tF0AJtd3DWx8cHsEvBCcoVwxMYWubYkz/UqjpwJJkkq6zeNkNSeZYZvEPTmhZR+r5ae3/BoAsHXr1qrrqLr1nHNs2bIFgN39WhVtYM6KNqANhC70QRWn66O8sugyQeOjNG1ynjHZTZcSkGzWPqel6SZkYmd1pTC4qgtcB/Rxjq69/vfA6mY46fitmGbkwDjBOAtOpjKI5vwvE7vDFsH/DK3FqJUGJRwG8bddCB0v2HVxK2TNWosAHCiOp/DojmXSMoxTME4xbKYDxW68tOqEBo4MlU8XwjiBZVEQwmFki1KxIxaQPcjt5AmDYHye/57qCF0p+sZ1Khc7zkFyJREjJFjs3EIX1F0fU+iSGkfX9kIn+zmoTFi5VqSaxJYAsSt7n1tF7Fqga5yM2Z/7rVu3Vp0sUXXLBwYGMDo6ag/onaghUqfETlELbSB0AukDK84gZXll0WW8mYxuoUNpfJ33puvtvpaInRA64WiE+8XO6mY46YStmJGafN2YmfZF60SUzo1X7NxCJ/CKnVfoAAAm9UXrCqaGkcGuyT9woDDmFzvm6pYNEjshdII0LfqidSJKJ5CJnSN04nAIYKXKxc4rdE7zvd3jQug8yRM+sZNF6LyJNUro4hNncuFGLq+VNDW00St2se6DtbShqoSK1khiIRM6KKUYGhrC4cOHq6qj6lbv3LnT/iGvVZYkIUOJnaIa2kjoBLG+oSYsdjKhc6pwi53odpXUIcTOK3ROk11iJxM6uxqCg4VeR+x66QTWpi0nSudGiJ1M6ARC7KRCJ44vrzliJ4TOF8HziB2TjLPzip1X6AA7WjdNH3fErsB0vHRoFizPpOxC7CZW5P1C5xSaFLsgoStVNhmtkwmdq5wjdmFdrmIKnAYLXVsTdnxxj72Vz1ECbRNiF6vHIqotSU2cHKdsg7tjCSNYsGABAGDXrl1V1VF1a8UOyUQDJxVUKARtKHSx60vyBk+Dhc7ZHecAZ5PdrjIYB6cEZq/hEzoBKd2v6cy8T+gmq7HF7k/jy7E2bSFNgodu5HkRzxYWSIVOMFjswh9fWi4VOgHPazh0sFcudE4hoDBu4LGdwePnGKcYs1LYUZgVWEaI3aqeA1KhExDCoactmF0SoXMK2dmuXCOhSRGiGzZQ6NyYZvj2Ckh6cuG2JM7xVbDMWdsS4/4Y6z1O8gttqyakRCCkrtppTao+arE+GckpqVM0mE6I7CZ1kw+rh7qiM1ErABAKng+OzvC0geL8aQgLyhe7CIaPLoIVKR7ZHSxH041xvGPaE8jxYMEYZwX8ITcNGjjWZOU3t/5CNx7YchRYQZs0ShkWQWpXCvq+kAnSS73OhQkDf9p1hLSIQS3MNMaQYwb2F/sCq7KjelkcPXd/cJNMDWxfBswARpaGX89MIyhMD0mK4BxkLAfo4atFcBGhC0uUYRy8UIgcz6OEDsmKWpICkrRERrWt0jHBte5P0Kilzhos5PPnzwcA7Nu3r6rXV/0uiP5eEvINuSI64UGtqD/NuE4S/sbnPMSSWuRb9hoqGUcVtPi6I34WeM7fNecInU6h5Rl69vhlrNhFMHxMESTNAE4wMZqWit3M1BjeO+sPmE6BPGcYYv6I3jgr4Pe5XoyVujhlCQiO0OVL9x8CudhZBKmDGqhJoOUIjIOSyCABCBXvCUFhwsATu+ViRwkH4wRFrknFrsg1bJ2YgyKnmJUew3EL/EIqhI6axO5mzXCp2BELyB62w3jMoHKx4xx0eMKWNo0ChmR8sxA6t6gFTD7sFrogsVNClzBJC53s51qJO1Sk1iEllZavt9g1IcL6y68/AKAJUtff3w8AIIUk561RYqcIoQOETiAVu1puIO7XyoRO4BG7snKlSYfdYucWOoE+ZpWJXZnQOS/0i51b6AResfMKHWBP8OuO1vmEzjkYlIudS+jsNsEvdm6hc7U9P14udiJKN3mq/GLnFjqBV+zKhM7VBq/YCaFzz1fnEzuX0Dl/8oqdTOgEbrELiND5fldCZ5PUw75eQhf2t2qpl8DF3V8Q9RK7JnWZC6cSjlUpNUsdikmPNVJip5DQQUInKHuoJXED4Sxc6AQlsZOWc4kdTxsw55ULnUAft8VOKnROeybFTiZ0AiF2MqETTNfGHbFjIH6hEwix8wqd0yaX2MmEztX2YrE0zUpJ6KgnEugWuyLXsD03SzqZsRA7qdC52i3ETiZ0zj6F2EmEzmm6ELswoRNoWmSXqxO5S3C1CCV0CZNEskYc4na1JjU9SLPFrhmYdjuHh4erennVZ1vskCQtdYASO0XzaeQg26RS9QkNXoTdDaXh4iceuCkDzAjYJ7f/md2QC51TjsA0Ncw2RqVCJ8hzhv1WQSp0gunaOGYbo/j9lpXBFQGASZHZq8vlqdR2mifQD4XPr8mKFE/uWSwVOqdMSeyGrCzyLPicdukFaLoV3CbATowwOJiB0BUlQAlI3gpPntAokDKiEycAcNNMZgwdEOtabrjQxU1mSKquuLTiPSYOlawEkdSEwHFIcpxyE+VOONXQ0FBVr6/6jE9MlLpMArK7aqLKSfcUisRohW9sbqK+IRMKopW2xfn8hM32rusgvd2AacHoH5cWMbMaBo80QAtA6uVgEdMzRZy9/EUMmVn8ZGRVYLkC59AIsCYVnFxw2OrBfQdWo683eJULFG2hIyZCs0pBOGge0A6EJ08YuoUnDi8JLEKJPekwBccsV/esmwLT8dyh+TAMC1gc3HZiAd17CLgGjM+TCyJhHKmDpTrSwW0njAMTOYCGj3kWXe2hXwbiSlgrC10SYpf0PaFdBbEZJCV2saJ1vLkO0qxInZA6whKOqimhU8hoxnVRZ7GLveZr1FgWt9ABdvdq0PlyT20iE7uS0HGNQiwaLxU7ArCU3dNpjMjFTs8U8ZoVL2K6MQELFCNMvgRYodRWCqCXWlKxO2z14Cd7T8aEaaA7XcD02ZJ1ZEtCR4uloXVcInYE4JQ7WbyBYkc5evomoFGG4Vwajx/yJ324hQ4A0tSUip3FCYqWBkI4MtmCVOyIBXTvJiCm3TZZ0I8wjvSBCZBiac4vsT6vpBzGJ+zoGyWBYsdzrq5ZGhDl7QShC/pd9vdGD5hvpNi12hfVSmmE2Lnvm01yEeFUhSqX56tK6izLmtxhyFI8FaOEThFGB4ld1ULn/btX6AQysfOuJgGUi51b6CYL+sROROmcpkjEzi10goFity9aV/C0USZ2QujGi7bAUML9YucSOne7ysTOI3TOPr1iVxI6nU6+916x8wqdwCt2IkrntEkidm6hE3ijdV6hc8p5xK5M6CYb6xO7MqFzynnErpOELujvtawEkRRK7OJTT7GTPV+a8cwpNb1YLFa1VFjVUueQ1DEroVPEoQPErmahc22XCp3ALXZBq0kAttjJhG6yoCN2ZlbD4Er/BMRusZMJHQBYoNiRn+WInVfoBG6x8wqdU8YtdhKhc7dLiJ1M6Jz6hNhJhE4gxC5I6ARC7ApMxzMHF6BolQuVW+yIBXTtKRc6AOAEsNK22AUJ3WRZW+ykQjd5whyxkwqdU64kdp0odN7tcZILGiVBSuziUw+xC3uuNMlNOOeTw9wqoCqpoyGz0ysUHUmjb4Rxblxx5DBi0mHRRUc0Khe6yYIAA6wsDV1RghbsPCev0AksUAxZXchF3CgpAIMwjLOUT+icMoSDUgaSp1Khc7cLQOjEyQBATIDnNanQCcaLBgaL2UChExjUcrpdpfsiHLphAQSgxYCs01I3rFZggUJXhmVFf7O3whMsAISuPlJeLsb1F/MBHPuLTlIkmTyRFErsADT4WmjxsYjVdMHWfkRJnX+V8aqIQzOvkwRuhLFvWHHn+orzgOY8eOJhQgBdB+ccZDwXvJ90CrlFPaAFju498rqsNDCxtIhiTscvXz5aWmaaNoE39D4Lizu9DFLGOcGf8wvRS3N4zfzN0jITRQP9u6cDlCM/M/x8EQvQ8iHnngJmLwNMgoFDvdIiusawcvohmEzD/kLIihIgOFzoQZpaWDP7gLSMaWrI7+kG04CxRQFNMoHeXSY4ITBnZIOPjXOQsdIYZyMgo5dxZ4mwyClvABDZJMZljSudy7DVKUoPTBJWBpOficQe5i3+oA6lUWLXjHMUI6s01rWQ1GwB7nJhz5VGP3Nc3z71GJ9VL60VqVNipyAk+DpoheujhptuxQ+tiCXAnGJxkiIkYkcIsae9INSeq8w0pWInhI7rBIRzpEaYT+ysNDC+rAiSsleUGB3K+sRumjaBC/ueRi+x5SJI7ITQjbM0NMKwJHXYJ3YTRQOHdk0HKa3KwNIhYlc6PYFiR4FiHwPXuF02T31iJ4Quq9khwbylS8VOCF2RU1DCMM3I+cTONDXkdveAFuy2WBm/2AmhowX7mJhBpWLnCJ24BjTqFzshdOJ6ijOXIULEznsdy6TN80ANEru6RWWU2NnIzkOzhE72swvvtSC9NpIWOnd52fOlyc+cbDb4y1wQVUtdKlXqEtES7m9uhQe3ojm433vvddBK10UVN92qH14BS4D5ioUkRbgKTU487BY6gUTs3EInIJxDc3UZlgmd80K/2GmEOULnvNYjdm6hc7/OLXZlQuc0KkDsPKfFJ3ZuoXO/xiV2XqETeMXOLXRO9YQh43qdV+ic8yATu0L5sXjFzid0ArfYeYVusmHViV3QdeyWtoAHqlfsZJ+JRCVPiZ1NUhMBV0uMZJSg973s7/USOvfrwp5BjUKzjzOdTkOLiHLLqPod7u7uBgBwrQ598630AFc0hrBvSa14PVRw0635QeVZAiywWEhShKuQ/b9X6ARusUsZPqETaDm7G1YqdM6+bLH71ctHO92uMoTYyYTO2V9J7E6ZvdMvdAKv2AV833TETiZ0TtsB5CkGB7qlQicQYicTOoHohg0SOuc8lMROROlkCLELFDqBEDuZ0AkqFbuo61jTIh+oQuzCPhNK7EokLXatInSebVHvN6Gk/kLnfn1Yb1EDEPejrq6uql5f9Rlwdph0pE7Qig9yRbKID08rjWeIS6MHgCd5g2fMGV8l325H9LihSYUOKEXrChzEglzoBJwgX9AxTR/3RencWBwocioVOsE4S2PX+HTMXDQYvD8CMAMwu6LvS1aay4VOoHHMmjWKg7me0HqKTLP/SYQOsKN1KWrBLGqBQifgOmCMc1+UrqyMRsLnIgSCI3T+xoGkwlfWABCvDCHh2diiXIzoQ9zPTaxySuyaQ0LJKG29pFw1NEvqenrsGx3X63jRteoDXVE76r2tHM5Cp5pw5hgLy3glxI7kMQ4U5ZlVRNfA+3pAihYyB+TJE1aKYnwOhT4BZF4KFjEjW8Qbj3wOo1YGD04sC24XgAyxcEx6t3TbiJXFgwMrkbMMdKdCUl2ZHYVjOmB2B2SVUqDYx+3M03zYYHIgrZuYKBrYMTZDWoQSjpkpe166Pl1+riYsA0/vXwhCOdi8fODuqAlMe9EeJ52bFbyihHHInjOQB60o4UqKQDr4vbErtCM4odJWumbConqxlqcDSlOrkFiiFSuCE6NcqVCs5rUk7Sh2FbSZh6xu4whdo5YKa4FzzQ27Db298oStKKq+0mfNmmX/EPYtPQnUw7/zaPf3tJnTNASIne+hKhM78XB25M8vdkLoUFpRgo4XfGJnpSjG5lE7cYIBqSG52BnZIi5cuQGzjDFYnGJvcUao2FEAs2jeJ3ZC6MZNW2J6UnnMWDrgr4ABWo46g/RkYscpUJzGwamdFEFYgNjpHLMXDDm/ysROCJ1BLFDCYRDLJ3YTloGn9i1GsWivKGGkTanYCaHT8nZ7rRTxiZ0QOiIeghr1i50TobPrIYQEi51nrJVU7MSXACBQ7LzXXmC0zv15qFHsYg2q978oukyr0gKyEZsq2ioTO1+Ert5i1yrnuORUs2fPrurlVV/lc+bMAQDwdIz5k2ql3SVAMUm7v5etMO+WR+wCoyRusfMKnVNmUuzKhM7ZV7nYuYXOqVoidm6hE1QrdhaII3SALVPzekbLxc4jdM6fXWJXJnTO8UnETueYuWAIab28u9hk7gSISaFz/80tdm6hc86VROyoCfRtmRQ657hdYkcYh9HvEjqBW+w8Qje5T4nYBWRFlomdW+icxpaLXdC15xM72eehSrGr6bOlxK6+1NBGt9gFdrnW6/1roXPLU/Z5cAJnFVL1GRIWyesdqRO0uwwo2p9WEDpBSewiu70YCxY6pwwHOPMLnbMvl9gRSMfZucVOJnSCSsVuxMri4YEj/WXcYhcgdM7h6XZ3q0/onONziV1J6LKGf/xf0dKwY2yGVOjc7TKIBYMwn9AJ3GInhE7PBXQVa2RS6IImIBZiJxG6yX26xC5i/jKSMuRC5xxkeFesU5W4lsI+DxWKXSIJFu0sdq1MAmLELSt6DF2c96+StrSQ0AHA669ZD6AJUjdv3jwADYrUCZTYtTft/P4l9CDgjDdh2aQI+aME0DSQXPB4L3AOUrQCVz8AbDHScoBlUanQCQxiYbo2jj1W8EBgCqCbmEjTYlmUrrzZHNOzOWB6MXQmY64BxRkWzN6QexW3s8565oxJhU5gMoqsVpAKnSDPdLw4PAfd6eDZ4AnhoBpHaogECp1T1uLRK0pwDmTCx88RQkAymfB6APtaj5qLtFKxC62LhE9i7DQr+v6RqNi1ovy1mIBURJLnsxXfm4TYs2cPAGDBggVVvb7qM7NkyRIAAM+GZNHVgyanGyumIBXeQIKkzf33msUuat1XQenhHDgYmdoRHEIIkC84KxN44YaG4owMtDxD9155XWYGGFtiwRo18IMta6VlMrSIFekDSBELIywbKHY5TrHdnIFZ2iheO3uTtEzR0rB/uBepTBHWfLlAcQ2wei07o0znsLrlD0VmAJmFY9Apw0RRLiuGZmFl3yEAdteqjDzT8dzQAhSYhoxuYnqP/HyaRR3Gi/accxNzA+Z1Y0D2YNFe7WJGSCacaS/9xTUKZEOkrXTvJEEJFoATVYsjbKA0nowlcb+uYEqORCLlYl+tKA+tKnZxVrBIKMpG4kR4GzUNSsLs2LEDAHDEEUdU9fqqj8bZYZrVZ666KJTYtRft+n5V+YH3SptM4qoWuwqFzt4Z94udW+gElv+zzA0NxZlZMI0AjCM1YvnEzswAY0stcIMDjGDsUJdP7ITQZchk9qpM7HKcYqs5E0WuQyMMS1OHfGJXtDTsHpoGy6IgBEh1FXxiVyZ0AonYMQPILBpFuhShY4z6xE4IXVaz91Hkmk/s8kzHs4MLkbdK4+AIl4qdEDqatzNdrbRf7AgDug4UQSwOTgi4QYPFztXlGih2nklVpWInZKhZYhdUTxWT59aUOOH9e4s99AG0rtjJqOZ8hqw6UVHWc5uJHdcY+vv7AUwGziql6iPp7e3FzJkz7YY0OlonaFdRmGq06/tU4wddSFuYvFUsdtUInbMzl9jJhA4ATLMsWlcmdAKP2FlpO0LHDdexSMSOElYmdIIin5QHt9AJvGLnFjpBkNhJ59F0javzCp3zd5fYeYVust3lYsc4cYRusl0cOp18sLiFTuCI3Rz7eESEjlguWQsSO1OSNegVu4CJvcvEzvuAbBWxq2GZq6rELq7otQKtKHZJns84q04kOb6uBd5j4VIzZ850po2rlJqOYsWKFXZDupskdUD7CsNUYYq/P3GkLbbY1SJ0zs4mxS7wIVvqhpUKnaAkdpl+htGlFnhKcgwuscvQIpalDkl3l+MG9lhdUqETCLF75cxtPqETuMXOidLJoIDVzQKFzmk+ozAZlQqdQIid6HaVoVOG6T0TUqETcGKvKJGbRZE9WAQ1JZFdr9iVul2lxFmNRYhdkPxUKnYxqEjsEliQviKxa4GHesW0stglcT4jVp2I1Q3rqieSJl8DvMe+F61cubLqOmo6gjVr1gAAWG/IZKCNYIqLQ0sTNuu9InG4a33XkELRN69SN6xU6EowncDMEHTtDonSMILx4QweG1omjdIJxlgaQywtFTqnSSAwiIV1C3cEliEESHcXYCwbDV/tJs3Qs3QoUOgAe83XJX0DYDz8/pJnBnZOzPBF6SbbVIrYHkxLhc4pZwHZgwxmd/D55ISAaxTc0EI/W5wSIGzsnCjHOUBD3j8hdrV0n3qIVVeCD9fE5rBrRelrdJs4ixakhEWz4+cgdPH6D5wFAFi9enXVddR0Jo4+2l6sm/c0WeoAJXatTLuKXYO+BVdy0+JhD/LStiixI7puT2FSDPjcahp4dxbEZEgNyFdJYCmK8bk6OAXSAxzd2wJkzGCYMWsEe0an4QcHT5MWoWDoLtnOdDouLVPgGl4uzIbFKZZlD+OVR2yXHxvh6Mnm0duVQ/cseV3QGWbOGUZ3ugBDl0fzdI1h+fTDyGhFMBCMmfLMUsYp+gtdYJxgWkp+rnKmjv3bZwIMKEyTv3/UBHp2M2hFDqYTFKYFCKLFoY0XAErBQ7JdicXs6FnIShFcXCOUBItdabobUBIuY6KuKhYglxL1mWjFCFWjaYbQVVImofco9vCVDkic2LTJHmIiAmbVkEikjneZ4LQFPmRK7FoXJXZSKv4Wynio2AmCxM7pSmMcsCy/2GkaeE/X5IoSOVMudsSe/w2wx4BJxc5gmDl3GBnDhMUJtg/P8omdEDoN9jFlSNEndkLoiqUdGsSSih0hHN2ZAjTKQAlHV7rgFzudYebsEaRKMqdR5hM7t9ABgMWJVOyE0JmlNV9TmukTu5ypY9+2WfYceARgKe4TO0foCmJJJHt+Oi9C6Jyxdrpc7Ig72SVA7Lj32pBdh0LoXGWkYuetK6nxdUGfjSo+k4nNHdkqEaFmC53sPajX3HCcJZdo1sJixzWGbdu2AWhipG7OnDmYP3++fRPqa4FoHaDErpVRYldG1d0KErGTiZ5X7Hxjo7xi5xa6yUpssRuc7DdkKYrxOd4lrDxi5xI6gVfsvEIn8Iod49QROoFX7NxCJ/CJnc4wY9aoI3QCt9h5hc7ddobJ98srdAK32JUJnXOiysXOJ3QlOEFZtM4ndAKP2BFJ9rJX7HxC55RzyZhX6JwyHrELqqteYlfDZ7FjxK7ZQif7e5wyUWUj2hBrSqg2Hl/HeouwLAsLFy7E3Llzq66n5lafcsopdoOmBU+02XDUXHatixI7AAk8YFxiF9kly1jwYHchdhbzC91kJaATRaQG8063K5NUJ8Quu1P3CZ3ALXYyoRMIsStwDTuLM6VlhNidfsQ2n9AJhNj1zRnFjFnBSREaZehKF6RC52bMTAcKnSClmdAp8wudoCR2Zg+XCp1TptQNGyh0gpLYSYVOUBK7QKEDJrthg4TOXQ6IHruZtNgl8Blse7FrFaFzb487xi5O2Yh6Yk3e3mzprpJLPns+AOCkk06qqZ4EpS5kBHCzUGLXmrSr2CVIIqtKxOiKJaXlngInHy7VA9OMXlGiYIIWmFTonGKlO8rAVrmIAXDk6/7RY8Kajgwpoo/mfFE6NwaxMDs9KhU6p4xm4eg5+7FixuHQ/WmEo1cPPgciWjdhGYFCBwA5y8DLB2cA6ZBxjRZB5gBBMRuWnVpKeOA8WOgAe3sxYgYCzgGLgUSuFJHgPZPz2FmxjaTtxa6ViHsOGjkGsk3HWz711FMAJp2qWhKTOt5jgusteDKV2LUm7Sh2Cd8skhK7IITQ2TuTTD4s0DR7aotCMXhFCUrBulLQchZ69gRMAaID+RkEIEC6n2LvJn8XQkqzsKh7CAZh2JmbgXtHjw1svwWCLprHMdndgWUAoFfL4ZQ5u+SHRhmW9g4gqxXRa+SxqGdIWs6gDEt6B+yfifx91ggHFWP/AqJ5OcvApn1zYRU10JQF1uc/V8Qk6N5FoBU4mAHkpgWvKJEeLI3rywYkPJRkGwC4HhAZ43xy+hNKw8XONKPXYxXXXMTUOXGIMz7U2V+jM2LjVZRMPXFptLAktUpEvdsiiHN+WlDGuWE5SRJNl7rZs2fjqKOOsrsLZsqzv5qOErvWRIldtNjF2Z+kjjKhc+qSiJ0QOvEZkYgdpxSsJwWuURAOGMNFn9gJoeNiijGrJHab5/jalqb2a02mBYqdVRq/poFhpjYaKnYUHAvTgzhxdnkZIXRpbbKtMrETQifaBfjFzi10YrtX7ITQmYVJuSKeaVXcQmf/wZ4AOd/nX1EiPVAEKdrt4Brxi50QOpdk+cTOLXSCILEzXe9pkNh5o8MBk1yXESB/FQmdoAUfyFNS7Bq56kbcJeKSFLpau4orhM3Ig3OO1atXY/bs2TXVlcg7ceaZZ9oNm9mCXbACJXatiRK7uomdvC6X2HmFTuASO7fQCbxi5xU6p5wFpA9rjtgZlGFRd7lQycTOQnl74ordEZkBR+xkQidwi51M6ARC7LxC594uxE4mdABANOZE63xC5xQCrNSk2HmFTlAmdl6hc06ES+xkQucqV4Ypib56xS6ou9+zHJ0Uz/6qEjpBQgKRWLTOriy5ulqZMMGqxzmIK3NJC12DeeVfnQAAOOOMM2quK1mpm54Hpy38kFZi15oosUtU7KRRurK6SuVkQicoFEFyBZ/QCcrEjsAndE45C9DHKQzKsLhnUCpPQux+PXK8T+gElYodAaRCJ0hRK1ToBAZhUqFzbwcgFTqnXaVuWMIhT4oAnCligoROIMROKnTODktiF7biBDAZrZMJnVOXSIqIGL9JafTnmEbPteiQxNCEGCQqdo2kGdG6RotrktG5FhY6Thn+9Kc/AWghqVu5cqU9tYkGsBkt2gUrUGKnaEESe7jEeRgSAlACHvowpwBj0IaDP8+EA/q4BWM0fHe0AOzYNzNUnhinGDC78PD4UaFlxlgaM/XgHQqxe9XcbaFtympFHD1jX2ibKOFIayZ0GpxkMmEZ2HRobvT3EgKkBsPfY8IBLc8Chc4pM1GMlHZSNKPvdZRGXy9i/eI4ItbIe6saX5ecgCQpMg1cmYNQAhJnsuu4x5fEeaji2NjMPHK5HBYsWFDT8mCCRM4uIQTnnnsuAIDNbXGpA5TYtRrt+H604rdWwJY1MT+dbMoJQkAM3a7PCllVQhQfz0EfkK/MwHWCYq8OY5yhe7f8oc91wOzmwJCB322V37Ao4c7aqvvy06RiV+Q6dpszUOQaMrQYKnZdtIAFqSEsyfbL9weO6cY4+vQceg35/YoSDqMkcxrhUrGbsAw8d3A+CkUdmsahGXL5YyZFZkcK4ECxO2ANSwvIHmIAB8zugNUkOKCNFQCTgQd9ZjgHKRRLSRHBEVtumpNSH/b5E2tvxpp6JOIaZZXU1YJLicWrKJl64lKriLinG0mKpM5BSJvqEmGttd1VJo6su9KeBeDcc8+N99mIILEr0JG66fnWzIL10o4i0Ym04/uQ8I078gZVgdAJOOf+VSXcQicIEjvXgHuZ2HGdoNBngOnE7jIc9osd14Fib2kKFEbADqd9YieEjpbWR7VAsS8/DY+O+wWw6OrjDRK7DC2CEgZKGKZpEz6xE0In9mcQyyd2bqETaKT82NxC55SRiB0zKTIvT675ygy/2BEL6DrIoBUYxGoSXrFzC52DJCnCEbrJg/GPZzNLXbfurFLZ59CdVBO1TJjT0IAyUXPayWjXNT9bsU0y4qwSkSTubtAaukO998tEo3XVUEPXNNcZHnvsMQCTDlUriV19y5Yts5e2oACbI58WoeVoR6FQdBT1EDo3frGT1OcVu5Th+2y4xc4tdM52j9iVCZ3AI3ZeoXOaA4rd+emO2IkonRev2AmhE3jFzit0ArfYyYROIKJ1MqETuMXOK3TOaXCJXZnQCTxiJxU6wI7WuZIifEI3eSImX2MGjMXzip1s+ps4Ykclgihbri7Je28rJk40kkqFpRGZnXXIjiWU1PYe1WO6kxqTRqw5E7AsC6tWrcLSpUsr23cAiX6lOP98e0Zka94EeMjg4pZCrT7RPKb4eW/UQ0SMhyJGyKzBFgM3LanQCchEHtpIzid0zvaS2HXt436hE0jETtocUAxZ2bJuVxlC7LxCJxBityx7WCp0AiF2QUIHTHbDMhCp0Dn7pBzMpEjv8AudgBmAlSF+oROUxM7q0qVCJ+CEABoNFrrJRgULnbPP0uMgbKLqSsUuJEKXWDdsgnR8N2zc1R+SpNZsWc4i35dY0bqkqfE95uBY/Bp7kvYLL7wwiRYBSFjqXv/61yOTyYB3m62zFmxcprhgKGLSil0rUTc88cUlToZtPmK5Pwak+4PL2GLH0b0rbPJaAtafxsO7loXuatRM4/7RowOFDgAsTlHkIbJawiAWekJWi2CcYMxMI2+F11VgOjYenBdaxjI1GPtT0EKGF1ML6NofIHQCDhjDheDxc4I4SRGmGU+iYiTaxEqa8EaIq6VBWbB1odXuFc2YmDeqviTHRSbVDdug9433FfHyyy8jm80m1vUKJCx1PT09TuOsBfLB1S2NErtkiBv9bLepTJoxcWWNc9QRQuw1OCm1H8aBq0qUppswTUC2XBgh4F0ZgALaaB7ZA3JB4tSecy01yNG7PegbOgfXOcYHsrj35dWBbR+10tiX78PGiYXS7RanGGEZR/qYZOkuxilyzAADgUEsdGl+IWWcYNjMwuQUDCRQ7CYsA0/uW4x8QQ+8dC2TAruyoAWApeRlqAV0l9Z8tdIB54gB6YE8iMkAjYAb8gcWyRfsNV/DprFxRfGIbG1fZ5+layPkOudh68sKLCuW0EXKYQsKnegCjB3Ra6TYhd0rGikz7vtfxH5J1Oolosqw6HE9qOVcxLz/n/XBkwAA55xzDrq7u6vfn4fEr7iLL74YAMBm5cBTDX4jkkCJXW1Uev7aTeyicH+YIz7YsZcJq2VViZLQOVXJxM7zoJeKHSHgmlhYnUvFjlPAzBIwzU6eSA1y9LzsHVvDwVMcoBxgBGP9crGbsAwwTsE4xWAx6xM7i1OMs7RU5ARuoRMEiZ17LVeZ2LmFzjlezym3TAq+s8uJ0HGN+8SOWkD3HlvoOClJsFfs3ELnvNB/fI7QOX+QiJ2kW1Yqdswqv4YkD7WWFLo6jA8LEra2GHMnOxeNFroYuMU47nmNI3YN7Yat9lwD4GkTv/vd7wBMOlNSJC51Rx11FE4++WSAANaisaSrbwxqnF0yxD2H7SB21d70mix2suhNaMROlHGLHSHg2bS3kjKxcwudwJ5I1yV2bqFz2uwXOyF0k4dVLnZC6GTdsuJ1MqETuMVOROl89bjETiZ0rtNgt8kjdM52l9g5QpefPH6f2MmEDrDfA1e0zid0rnIOUePsnIO15NeO65pvWaGrE74MS4l4tGS0zk3SKy3E2V+Mv0vPW6tENN1U2qYKrsc3fX49LMvC2rVr7WVWE6QuZ/Iv//IvAZQSJtphepMglNhVhux8dYLY1TobeRPEzonSBVUlxC6kO46bJlA0wbsyk1G68kqgjeaROVTwCZ3AEbsd1C90TpttsfvN9tU+oZs8rEmxCxI6d1kAUqETUPCybldpPSAYLGQDhU5gFjWp0Am4xsE1v9A520tixwyC1GDBL3QCjQA6DRY65+BopNA50bogoXO3b4oJnSBOJKklxa7B65Y6+4xBrVHQlozWVXi+uc5w1113AQAuu+yyxJtUlytt3bp19vQmGoe1sE2jdQIVtauddj+HDbhBJip2gqjJYIHwJaJK01yQifA1nYnFkDkcfLMlHDBGOLpeDsu+JRg/3IXfvxw8ozrjFAfyvXhwIHzW9SLXsGVibmSZl0bnBAodAIyZKTy1J0LoTM0eQxdyiohF0LWPQ5KcO1mGAanBkPcCsKctyRdjJEVY8d57zmKvKBFeJmCiawGlk2M6a6XBwtIWXa7VIOZWa5RsxshgbShJXUNVnL/LvnkB8vk8Vq9ejVe84hXJtMNFXd5RQshktG7BOLjWxtE6QbuLSSOIummHnb9WP7e1dGPE/OBzxqPlLqou95QTId9qnTKMy8WOUJBUafH4ogk6KglDEQKry14/1hgpoutAsJQQDmT6Obq2GcFtZwS5/gz+sGOFdHOeadg1Nh0HJ3rwyOByaZki17B5bB4GC1nszPnntgOAHDOwYWghxswUDuflA5THzBSe2bMQhZxui5sE09SA3XZSRBDEIujew6Hl7WicDGoB6f4iaJEBlIDJkiI4B50oTi7b5Z14WFA0JwUrLFJrmnBWnQiiksHpQfsSckliLukURhPW5Qwj1ufVTaMEKkrWkmxHApJd6XmMlTSR1DHGOY8V7ItrDHfeeScAu0cz0fkaS9TtKnv1q1+NJUuWAHoHROvctLp8NBvOw+WuneW4GrGr4uYSeIOrROgA++EuuQH6biSBYjeZGCEVu9IasoCIxknEjsCZr46wALHjsPsgYf8vE7s807B3fBrypg6LUanYCaGbsOz6R4oZn9i5hQ4AJkzDJ3ZC6Ip5u+HcIj6xE0KniQgdmTwE59CF0InECULAjPJCZULnOmfl56ckdKIbNOjz4xY6gUSkHKFzGhG+mkTog8e9P+++XEIn/o8UuyDJbEGha0nc9wjZ/SJpoauouGToAeMNTXbx7Lzayqs+j5d+/fUYGRnBkiVLcNZZZ1W3/wjqJnWUUlx11VUAAGvROHjAuohtSbtKSSOpJGrXTuezErGr4Qaa2EMjQOz85Vxi547SOQ3yiB0hsLLlZXxiJ4TO/VZ7xc4tdM6+ysXOLXQCr9h5hU7gFjuv0AncYucVOqdJLrHzCZ1zcJOH4hU6AdMmxU4qdABAXNE6r9C52+SO1smEToJP6GTE+SIAyPcnpM0rdJMVVS52nSR09YzWRUWVmih0stc4QlfN7psVravlnm5Y+PGPfwwAuPrqq6HVaexfXePB69evx9FHHw1oHOYRwQtwtyXtHHFqFHHErh3PYYMyysoeHpVG6dy4xC486sIBi9lCJytXEjsyUbC7XWUZgULsDpo+oXPKuMXOK3TOvghyAxn8btuRPqETCLH7Q/+RUqETjBQzeGl8jlToBHlTx66x6Xh2r1/onCZZBIUJQy50zsEFC52Aafb0MOkBidAJKAHXaaDQifeHazRa6EoPj1ChE+9l3C7XqDF0rjbWRCcJnaAeE/yGDf1Ien81vCeiq7UWoYtL4tG6Gru0L7jlDORyORx77LF1i9IBdZY6Qgj++q//GgDA5k+AZSIGAisU7UKLPWwiiTu7PyX2wz8MzqGNhSdP6OMWug6GjOljQPYQR/e2kOQJk4Dt6sKWl+YHFsmZOp7fNx9/2ndEYJlxM4XH9yzBlsOzA8uMFVPYsmMucoOZwDLMpND3pKGPh2TVFgm6d3PoE8EPf2pxZPpNEDNEEDgHHY9Y3QMAKca7p3KLRX/JipoolpDopIjJwrHapQggroglIWyVLDEWVrYZk7PXSpw2c1bzeeYZEz//+c8BANdcc01dxtIJ6j5y86STTsKrXvUqgADWspF6767xqJtXMJ1+bhr5TTNsX6VyodmFmgYwFl0GAEwTvChZ5o8QwNBLGbEFaCP+UBQnsKfeAJAaNtF1IEDsmP0v0x8gdgzQRzVQk0Af0LHzZb+QFRnF4aFumEUdY+NpPHfQL3/jZgovHpqNfM5APmdg33Cvr8xE0cDuvTOAnAZYBCznbw8zKYx9KWg5e2JlYvmv7TKh4wCRnGtqcWQPmdDyFkABLosmlKaKcaY2kU07w7m93quI4oVku/JCsfRgikiKiJzaJEYUTxxz0HUWZ/mwVh2vliRJJTLUeg9KMFIVuTpEAsNS3NTcBRtX6Nz/V7mvdR9YDcuycNppp+Gkk06KrqsGGpKOc+2110LTNLBZeVgzwr/htyXt2o2oqJ1GfuuMsS/Oebi4hYmdWzACbpjcJRikGFDGSbAAtFzUAxzQJSsKEk6cKUAIB+i4ZMA/J2CWGHtGpFOPMBAU8pPdsgXZBMKALXTiF4mwgRNoOdfEyrJTyBEaoRNoedd5k92BOYLnqnMTY/44R+gC67AihY5bVvQDVCRIBUXyxLyIYdcf4/52tNj6qXWdlsPbVVrPY/feS2pMGgid06+RU6f4dl1lexK8r1szcnjooYegaRre9773JVJnGA0508uXL8cll1wCADCXD4PLJiDtBJTYTTLVzkUjs7fc+wooV/bg9A7IlT1YvWU4L4/WiSidG4uVRevcUTqn2gLzR+s8p0rPcXRv18u2a2PltyaaJ2XRuiKj6B/uKitjmho2Hprn/D5upvDSoVnlu7ZoWbRuomhgz17/1CfuaB0zKYz9/oxdd7SOmvY4Ol8Z13kWUTovZdG6oK5td7ROROm8eKJ19hg6fxKGg5C5CKGLJEjm3FG70jUXKnRTjaQErtJ7Ty33Kk+bpevgxjmuZkXrKonOJQCnHHNeZ69Y8453vAPLli1LrO4gGqbPV155JebMmQNkLViLOixpws1UkxnFJI0eJxInahCUYeUWO02T1yW6YUtCx73dgJw73bBC6Lj3+ueebljZKWJA5nCpG7bU7eqdqJdwON2wotvVidI5+yIYGctg46F5TrerO0onyE2ksG+4t7zb1dNm0Q3r7nb1IrphaZGge1fAOLqS2JV1u3oR3bDeblcvGvV3u/rqst8jbprBSQ+EJNvdKovMib+5hK5qOj1a16g55YDwe1SFXbGRq0O0yPvmdAvXGp2rogv2slvfgL1792LOnDl417veFaO1tdOws97V1YX3v//9AABr8VhnJ02I7tipKnhT9bgbSZzVAIDwwfHiwRs1AS3nfqFzQXJF6KMFv9A5bbDFrntfiCSUxK5vkx648gLhgNGv4+CGuX6hc/ZFMDTUhaefXyoVOsH4aBp7N871C52rzSRHkX0pLRU6AS0APTvDEyOIBWQOBwidC20sZIkwUVfRjO52FV2qgdtjdNvGkbA44+MISW5psAbR0DnoWkR8HGKKS5jYcsYbd1wx9pPY+1nhMbGMiR/84AcAgOuvvx5dXV0Rr0iGhl5R69evx6mnngpQwFw5BI7W+jDXhUYIzlQWyFYioRtZRZGAsBuW6I4Leajy0jQloVgWSC48E5Pki9CH5ONlCecgjMMYMdEdkDhBmN0Nmz3M0L0rIAJgAcYQQeYQAd0hz1JlRQptbxqpwxrYAXkZy6TQdmWQGqIwhuRSR0yCrt0ajBH5mD+7DNCzm8MYD14CjDAge9iElmfB0ssAfaQUoQv5HJOJfLREmWa4RMUVutjZ0kHLZNBSBJiC6CEZzrG+mDQuAi4EIEwEGj7xcIO7DGuhoStslF5f9/eqijGBHByrrpiHQqGAdevW4eyzz669HTFpqNQRQvChD30I2WwWfFoR1sKAu2Wn0SjpagWxa4U2NINGC517f5Ibly9lXvagF111QWJHiP1A5vbExIFiRwjAOGiuECh2YACx5GJHGKAVbTEiDEgP+sWOWIA+SkBNlNZJ9YsdK1Jo+1P2sl3cLu8VO8uk0HeXom8c0HLEJ3ZC6LSJ0mkq+MVOCJ2es88r4fB3GZeEjhZCHrhC6AKSTpy63EIXdI2U5qEjhMi73d1CR6i0nthCV7YihefaF0Ln+l0qdi0qdGHbW3YliRagYecmhmRV9V4luAKHtXAczz33HLq7u/HhD3+4rlOYeGl47HfBggWT3bBLR8CyHdwN62WqiJ2ivshuNK4bGCFEHkEJeRD7xE4Infu1MrErW5bML3beaT3CxM79s0zsqFlexi12ZULntLlc7KzSPHNl3akesfMKnXTfJtC9Z1LoJo+1vH2Zfr/QlUXrgoTO8xkmuYJftLxC5plY2Cd20gmMy8WuKqHz4hU699/dtJDQBQmA+29Nl7mkonUJ1eM9Nw0VugiaFZ0TsC4L2mr7Hnj99ddj3rx5Ea9IlqZ06L/xjW/EaaedZnfDHjU4NbphBUlLl6y+ZnXHTlWhbGSULmxf4mYWMmdZrK5Yr9C5X+sWO9l15hI7R+i8ESyX2IkonRe32IkonayMEDvOUS50Tpvt1/LdWVvoJmTTldivDRI6cQz6+KTQGQFj6ES0MdNvd7nK4IRER+hK55XkCsHj48T1ErX0V5JdroHT4dBgoSvhXFMtJnRJlJmq1HxuKplkuR7RuVraJGsDOFZeNhuFQgGnnXYaLrjggtrbUyFNkTpCCP7u7/4Ovb294L0mrCUdnA0rI450qXFyU4q6zn/lJUrswlaUEGJXKAZfnyWx04YL8mxXuMRunxk6Hi3Tz9C3pTxS5i2TPkzQuyEd0mZAn4Bc6ErQPMG0jQFCV0KfAPq2s0ChAwBqcmcMXRCEc2ijhfAuV86BQjF62a4ooYubdRoldGIeujCi7ldhXzbK9lW70CUlay0ldPVYy7QGIs9NC3WdxyZOhmwIl37zHGzcuBE9PT0N73YVNC31Zvbs2bjxxhsBlLJhp3XgpMRRBL3hlSx2H3ajjXtBxSkXR0IV9SfGyhKhD2ixLUIWIpcKMy2QfEjyhBC70eAytMhgjBSROSzfF2GAMc6Q7bfQtS8gMmbZWbPpgTDRIujaC2QOBTeXMCAzwJAektdDTaBrv4XUKINWCGqLvfyXNmFJV5MAXEIXdv5LQkeiHlSFYuDnn4vJfsNwZ1BXGd11iPP5l61SIq2rxiWZWjHZoRG0UiZtiyRuJErEMbFpOdx+++0AgJtuusmewq0JNPUqeN3rXoc3velNAAGKq4bAjZiLSXcScaN2YdQyB1TcfcQtM9VI4EZacZQuxqoSoXOHhYgdEVOXWEwudu7xekUzXOyAcLErZcXqY6ZP7OxsWAZi2uKWHvaLHbGA9ACHVuSgRaBrn2TpLpOgax+HPg4YY1wqdvZrOQgHtDz3iR01ga4DFvRcKZnD4j6xE0LnjKGTDWETQlfKcuWarCvYI3RBshVH6MR26VJkzD8OU16Z/O9uYgodD2tPQrRd9K1SggbzN3I+u6jXJbFSRSsRZyUfw0LPmfbk2hdddBFe+9rXNqhxfpqu9h/4wAewYsUKIMVQXD0UnPbf6dTaHSu7+VYqe0H7qCRyqGgM3puM50EZOUYqKmLHmV/sZAkYQWLnao9M7NxRqECxc+/aAowJVva7EDrAFqbUMC8TOyF0mlj0gvvFjhaBrr2TY+SkYsdRlhQhxG6yLRzpAX9ShDtaVyZ0zh89YieL0MnOeSVC5xyoez8Bcxx691ON0HmvuWKxXOjiUoWkxEl2aGuhk1GtzNUjqlfLUmOtSpykEXAcd80iDAwM4Mgjj8T111/fgIYF0/SzmU6ncfPNN5emOSnAOmKktd/kelJrtCzOuJc49VUqmFNV9JoRpXMjbjhhS4V5o3NuPGJHfCtGSMROhlfsJO1xix1h/uvULXYiSuero8idaB3h/gQLt9j5hM45pkmx8wrdZD32voBSlO6Q/MauFbgjdNIxdMxuk1TonJ2VxC6sy9X9+apG6MoKBU9aXZY1nUSEriRzUqGrNSnIQ5zpSDqOVnpO1jsi1+iIXwVrv/7Fv52LJ598EtlsFp/61KeQToeM720AhNe0fkty3HPPPfjsZz8LANBfmAGtP9sZodt6Uu9uV1H/VJW2MJox0XBQOyLqiBysW8pa9Emdex8aBYm6WRk6eDa8DE/psLpTwdsNivwMoyxKV7ZdA4rdFGaaSLNm7UK2mFlGyES+HIFj4wCAE4DpBHqeQ5+Q34d46XSl+0PGinEObawIEhY1LS23RsKyVDkHcvnwJJeopAkgcqLpWGPxgOh7gmUls5JEhdNrKCog7NxWcn+Leo8aOR1LElTQFmvWBMzVAwCAv//7v8d5551Xz5bFomVU/7zzzsMll1wCwJ7mhHXFHFQ7lUkieSHuckBh26qJELY7CXzhiBK62N1FUVGK2BmQ4e9zZMTOYuErTzAOkitCGwsaYwdo4ybSh0KSK0yOrn1FdO8PbgthQHrAQnpE/h7ZSREWUsPB8kItoOugidRQ8H6oyZEeDElo4Bx6jCzXWEIXJWMxpi2JJWtRWbCM2f9Cp1BpnNApqiAqClUSloZm5LchrKsI/UQ7Xf7SSy9tCaEDWkjqAOCv//qvsXbtWkDjKB7dPzUTJyolKoM2rthF3YTjjNmbimLXgAdPXcWOUucasbtrIx7WQWJHSl2IZsCSYqJeHiF2JoOWM5Ea8n+pI5xDH7fsrNkxE5l+SaKHBaRGmN2FGpSlyrndvcohjcIRBqSGLdACAy1y6YoQhHEYwyZIIUBwSkIH0eUaUCa20IUIGbdiXIeWFX2NiH0ETlXD5D979hNL6MI+OxV+rpR8VEDMqFqi5zRsnw26hya9H65bmHW+hlwuh3Xr1uHaa69NrO5aaSmp03Udn/70p7F48WIgbaG4ehCcTDFRqIaoJIq43afum3GQxFUjf51OFTeLOFG6sN9LlZT/XqnYCaFzDZD3iZ27e7fUNRcasZOJnUvoxP++6BUHqPibxaFNFMvETggdMUt1MPjETggdLZUhFvdF6wgD0kOsVKctfm6xcwudc5o8YucInSNs8EXrCMek0JXa6/18VSV0ns+yT+hkn/VKhC4ImcR5r6dKhC6wISo6VzeionONjtA16r1OeD+ccBz93vnYt28fFi1ahE996lPQQibdbjQtJXUA0Nvbi89//vPo6ekBn1aEedTQ1FpxohaixK4R3bFi+1STu0ZH7ILGl1QjdkFlZOP1ZGInW2dWiJ1X6AQWm4zWCaFzZZT6xI5jUugELrHzCh1QGjc3wRyxIwzIDFpOEoQoI8ROJnTOaRKi6BU6py18Uuw4l0cihdjVGqFzn2/ZdefeXq3QlS1nFtBO99+rFbqEpr9Q0boQKuhubch5bNPoHABwcJz1iePw9NNPo6urC5///OfR29ub6D5qpWUSJbw89thj+Lu/+ztYlgVtdxf07X3NblLn0Mi3fKolWcQYzFtplE76+qj9xEme0LTAedAmt4d072saiGGE7QTQNXBDsuRYaTtP6+ApvVzo3GgELK2Dpahf6kpwjaDYo5cJXdl2ArAUAWEoEzpvGVBbAoPgFNCKzO5yDUGbKJZH6VwQkeVaY5crOA/vdhUJD7VE6KKmxQHs64excKFzZDegLkITefiqhAkJCXS3JrJyhLhf1fI+x02UqDUBJOT15rJhWIvGoWkavvzlL9vDxVqMlovUCU499VR85CMfAQBYi8ZhLhxrcos6CLUEWf2oc7ZesmNdQjIpeVQ3WUkaorpii6UlxQK2k1wRdCxkNRmLQxvKQR8MLmNPKxKSXGFxpA8XkBoMTr6iFochGcfn7INxpIYK0MZCynAObSwfLnT5AogZIVJRQoeIcXSNEjqgdqGL2gbEShhSQlcdYdG5ROf1a2R0Logas2fNhWOwFo0DAD760Y+2pNABLSx1APD6178e11xzDQDAWj4Ca3bIwoyKymmXpb/arTu3BrGLdRONc3OKlVzBAuWBEGLXEfTgF8kVFgsXOyB8QXnGgKIJGpA1SwsmCGPBGaScg+ZN0LwJfVSSXFGa/46aDLRoQR/zt9UpU7Cg5YNFh5S6iKmkLYRz0HF7LrqgJcIATEbogsasFkvTkoQs28VNqzWEDpLufDcJCEHHrxBRJUl9uavpPiTa0Urz5clIYMUNa/YErOUjAIBrr722ZTJdZbT4uwFcdtlleNvb3gYAMI8agjV9Cq4RW0/iZM9WK3dJSGFU8karUoeIXcU38rBJZp0ywWLn1OHd7hnTFSl2nMujdYyBiLFoErEjLpknjPmXG+MctGDZosQ5tFyA2Lmk0tvtKYROSCMp+sXOLlOcbJOnq9gtdM7xeidXLkXpAnELnUA23rFdhS6BFSKiVoyYCrgja4mIneRaqkjokmpHvUhAOK0ZOfBjRgEAb3vb2/DOd76z5jrrSctLHSEE119/PV7zmtcAFDCPHgCbruawS5Qk1p9tFB0sdolF6dxUEbHzTVYcFrED4omdafnEzrtUmFfsvNE5WjAnxc4tdE47ysVOCJt3n+JvXqFz71eInRA6X1uEBHqFztUWpz7R7eqNWLqygX1CJ6Ftha4K4nS3TkWhqydxz2nDEipqodronOfzxablQU4cg2VZOOecc3D99ddHT+beZFpe6gBA0zR84hOfwBlnnAFQoHh0P9i0YuuHfdsNJXbJk1DErqabaJyF2+NG7AIXfq9Q7CTy4BY7WpBIDueg+eLkcmOybl0he0LYJGXc3bBB3brEYoFCJ6J1tGDKhc5VLlDoXO0NFbpStE4JXfztnUgjhK4V2lEzCXS1Cti0IugrxlEsFnHWWWfhYx/7WEtNXRJEy2a/yigUCvj4xz+ORx99FLAIjOdngY6kGjMAU+En6tJJuvu1HvU3giTXiK2lLkrCv2WW5q0jYTcuTQOClhMrtY9oFNADMl4B+/Uh++CUAKmQrFoAnFLwdPgNlhsh20vdvjzgISXmmQsbHwcApBAjUSRsTGFUhI4x8CjhtiK2I0LoRFtDpI5zDkJIbUKnlvyqmFoz5RNZwiuiHTxq7sGkaEQQhzOAULCeAvTTxjAxMYFXvvKV+NznPgcjLNO/hWirUFcqlcJnP/tZ16oTh8F6Cipi1yxqzaKN832iXcStUdQ4C3+c73ChZTgLT3yIsw/TCpUQYlr2wvXyym1RyuVBJwLKMICOF0K2c9BcESQnFzLCATJRBM0HT00CzkHyxeBzUdoemukqjicIIXShq3yU3vewh26NE4aL19db6IA2iAS1G2HPxqjnZumeEpkd20lBFULBevNIvWoCExMTeMUrXoHPfOYzbSN0QJtJHQCk02nccsstOOmkkwCdo3jsYbA+lTyROJUEcGXiVckqFtVE/Kay7NU4I3+4tPHgaSqclSVCxE6UCeqGFfUGiV1pXVFSNMPFTtQha0IpekYKpl/shNBZdtcozUvayTkIExMWy7t4ScG0988k50IIX1R3Zth6rl6hkz2AYywPxqO6VWMKXSgJCZ0iOULHvUV1Ucb4gujIXK3vbSNmNqignWxaHtq6MYyNjeGkk07CLbfcgnQ6Xd/2JUzbSR0AZDIZfPGLX5yM2B1zGNbMkMwyRXVU8oGrVbIa0ZXbDJLsenUTNhO/7AbmqSN0ZYkwsXPvwyszrmPlnPvFzlufTOzcCQZesSutVOHAmE/aaM4skxjveDfC7Xnt3NvdYkc4/BE8dx1uoZMdl0zoZOcxrNu1kgidG9l7XInQebJtldC1J6HRzjjRudDNCUXnKpW5apMeKminNSMHcvIIcrkcTj31VHzpS19CNputfL9Npi2lDgCy2Sw+//nP48wzz7SzYtf0w5qVa3azOpNKxK6e3bFq0uRyGhmxCxJLIXaSJcWkYufFLYay5AkhdkLovG0uFB2x8wqdqNMRP1YSLu8+SmInul290TnCmC12MqGzDzTyOMraXa3QiQdbh0foVBdsdbRVdK7eVNhGa9YE+HFDKBQKOOuss3DLLbcgk8nUqXH1pa0SJWSYpolbbrkF9957L8ABfUsftANdzW5W+yO7LJIWqk5IgoiiXpG6SvYf8npCSOhEtyhtJ2HJEZoWmhjhLDkWBKV28kTQ9UAIeDYd3l0ZtBRZCZE0QYKWIwPACZF3t7rqIOMhQz0IscfQhcmUTEzd+zDNYFkSEh318LVY9UIXFaEF4mW41vjgVwkTNnETJcLGvUUSN5minjIXOfNCjUuEhbzemjsGtmoEjDGcc845+NjHPgY9LNGrxWl7qQMAy7Lwla98BXfddRcAQNvRA21nNwg6RAyaRchDNvZrA6fA6NDuVi81Sl3NUQux/zCxCxOuOFJHaHhGK+P266OmA9DD28EDthNW6sohBDwtGdDsno5FllUrphUBguXQ2/Ura0eYdAL2PhgLlOhQoQPsB1ZE5LNWobOL1DhliRK6xKjl8x/7PDZk+a4a7/e1dBsHvJaDwzpiBNYR9sTCb3zjG3HTTTe1xbQlYXSE1AH2jei2227D7bffDgCg+7ugv9QLwj0XS1LfOqYS3kukEqkLKq+idDGrqDFK50ZSlzPFSVC0TkgdIcFiKPYjEzf3HHlBYifG1WmaX+yEsJXq5x7pIow7yRVORM8LK61oEbSdc5DSpMdco36xc4+TC5BLUjTtKBoNGCIg1nMNiIxyU2wPuWZYaS66gHsXr6QL2Fd3AkIX857KGa8tsjSFiJpKJJHzGBXdqnd3a5z7fTVSF/IaTjjMFYNg8+ylR9/1rnfh3e9+d8tPLByHth1T54UQgquvvho33ngjKKVg88ZRPHoQPEi6E5yksOPpgAu9HUl8bFHYjV4mAa733R6jFTLOyy4Uunsum0/N/btlyaNhYlC1xeTRMHdyhXfMnHs1DM79GbXuKJ3sGLyJD5JjdIRO7M9bRgideL3sXDvbAx6gQugC4BHTzLSS0Ln/l21ThBO28kNiK2200rOx0rZEPNs5ZTj5hiVg8yZAKcVNN92E97znPR0hdEAHRerc/OEPf8CnP/1p5PN5kFEDxsaZIEVt8sYje8NV5C4epYhIrHIyxGtVpC7GyxOM0rkRazbKzrM7iiSJKvkidt79uKNxQWvPurtAZdOaiIidECRv1LcUsSuL0nnazNOGI3TeyX+5rtndsAGTAzvRuqCpSSi1y8AjdN7zIMh5xuF5zqsTpXO2u0W5dHzec+m6XwUKXYiIess0Y1JhcX0rmQvGew/wnquaz6H3vfN+npN4Ljaq6zXG/ZanLCy7bBo2b96MdDqNT33qU/ZKVR1ER0odADz//PP4yEc+gsHBQSBPYWyaCTpaWn0iKgtIUTtK6lpX6oDw1SVKK0s4P3urFmIXtA8hdkFSJ7YHTUBMiJ14ETTtgRgb5xU613aeTkmFTsB1DTB0p9vVt12jgK6BTAQkRlAKTok0m9beXuqGLZry4xTy6RU6Z3vp3AZF6Er3qdAIXdD5cW9Hc4QOsK9vJXThRElbzefQ/f7VK9hR670+qWW/egroPZuhv78f06ZNwxe/+EUcc8wxidTdSnSs1AHA7t278dGPfhTbt28HGKBvmQ7tUIzMWCV2yVCt2HWC1DV7PF1UG+IsGRYyYDg6o5UANHx76P7DsnJL0brI10Z1B+ta+BJeQPQEwlFSFbJyBuc8dLs0QufeHDldTMRqFlGZrjUKnRK22qi70NmV1zfIUe8oXUys2eOgx42jUChg+fLl+PznP4+FCxcmUner0dFSBwBjY2P4zGc+g4cffhgAoO3qgbajNzwzVkldckRNjdKIqVOaQSdIXYhYRUbrSvsIFLvSw0SWVSvG74VmzIos0qCMWbOUlCDLZhWZrGHbxTg7Wf3uTFjZ+SnNzyfWS5XBo6YmiZJNy4oQsgSidED49CohNEToooSkjYkjdGHba63foc2ljoPDWjICa7Gd4XrGGWfgE5/4BLq6Onfas46XOsCe8uQ//uM/JjNj+9PQX5wBYtU2u7aiAirJhlVS56qmTmIXNq4OmJSVALGbzJoNEDvx2dE0v9h5uny8YudEsMQ2r9i5I1CyjFn3XHGaVi5u3kmMKfVvF12mQmzd9YvXi/q981m5hA6Qn1972hEr+DpvkNDZzQ2QBkKCk2NaReiAjpO6uGPogrZXUn/dhQ6oreu1VqHTGF5xw3L88Y9/BABcfvnluOqqq0DD5uXsAKaE1AnuvfdefOELX0ChUAAmNHuc3XiMhXqV3CVD3LnrlNR5qkpY7Dz1+cTDe9PziJ2/vEfsvJ8Xr9hJBmcLsXNEwvXQJt655cqSCiRzz7kzXCkt3+7NdvW+nvPyxAaZ9HnrF+fGI3STu3A9SIXQufdfdmyNEzqnTQHtlUpdKwkd0FFSJ/ucu89nkkIX6/VtHKVj3QXMPt/A3r17kUql8OEPfxjnnXde1fW1E1NK6gBg06ZN+MQnPoF9+/bZ4+y2TgM90BVvomIld8kQlkEbN7u21Un4YZOo2IXNVwfIuxRdYifPmnWJnexzIsQu4DNEdN0vdKV2l0XrZNLijtbJVnQQ0TpvlM59vGK7N7HBHa3zRuncZUpj+HhRsgyZkCSv0NkbJ39ugtAB5VJXJqDi7+Lh32yhq3AusnYhaq65Wueiq/r17bCChHeX4GBzx0GPmUChUMDChQtx8803Y9WqVVXV145MOakDgOHhYdxyyy3OODt6IAt96zQQVuNSJAqFoA4Pm3qvLhFnIuLQ1SeiFhLX9eDPjljOLCATNDJj1i19YduDbncisUJWvxi7F7YEmKZJo3TOIRAiFb7SxqYJHTApb9KuYploe8s0Ojrnps2lrtrJhcX2WuoOpQ2jdJwymCuGwObaEwqffvrp+PjHP47e3t6K62pnpqTUAQBjDD/4wQ/wrW99C4wxkDEd+uYZoBMxumMFSu4UQdTpYVPPdWABkQARY3WJMIL2oWnhN3NCIx/eYcuVcYuBhC01FnRcrhUpqobz6ExSb5TOvS2wXgawqLqrFzoA4QkdURm6hIKHbE8sQzNk/+1KrV/SqpW6RNaDDX1tjUIHVPy+smwRR7ytF1u3bgWlFFdddRUuu+yyjh8/J2PKSp3gqaeewqc//Wn09/cDFoG+vQ90/2R3bMOyhBSdRZ0fNlU9EOKsAxsmdXaB2sTOvaSYmziJMpwDVAvOmBXJFUFiJzsuxsBL0kOC1mRltlhJ6+V8cq447zGHiZy7TFAWZwOELoyy7teg+1tpPkKZ2CU2uXDcBefbiLYVurAhFnFVIsEoHQcHmzcOerTd3Tpjxgx88pOfxCmnnBK7jk6j/T4NCXPyySfjW9/6FtauXQtoHOaRQzBXD4Dr5TepyA9hG95YFHWkzpJf04My6rVRIhA1v1nYPsR5kXU3MtHVx4MfEMwCN83gSXc5A5ctNSatiznCJq8qZDvn4KY1OTWJ9/0WQieOSbp/lyx5X98qQgeER17Dtovoaj2n5gHUF+oYxF4+LCxSnoTQJQjXGU77u5UwjxxCoVDAaaedhu985ztTWugAFalzYIzhxz/+MW699VaYpgkUKIwXZ0AbyZSVq3voWtE5NED0Yz8wZW2pJgvWsz2xiJ0s01KsyiDwJTho5Vmz3qW2KCmPvomfXdE5Z5+esjKZcyJ1Ijony/IVdcpWgnCfC1n0y/3QbBWhc+rztNc7ttITrSOexBkVrZuk3lE69z5in/dKxiy6y1ajDwlE6lhfHtPOJjh06BAMw8A111yDt7/97VOyu9WLkjoPmzdvxs0334wdO3YAALQ9PdB39oHwBqeDKzqDVhG7iPnqgKCsVtfrArYnInZBc6K5xU52qyqJXeDYL02blDVKg6NzLqkLis6RUgZs4MTBYmm0oKW9xHkI6s4UYwpbTegE4vwGJMvw0lQxZUIHOMeqxM6mUV2viXW1Br2mWnWoQeo45bCWDIMtGgfnHEuWLME//MM/TKns1iiU1EnI5XL42te+hv/7v/8DAJAJHcZLM+y1Y12oqJ0iFq0gdlErPyBA6oDyiYgDttcsdpQEd1MKsat2WTnvWMKw/YRsJxoNXwmC0GChE/VHZJK2rNABttSFZT9HjQ+EErtGROkqqCx4W9h5jBonGkWVUsd6Cpj/xix27twJAHjTm96E66+/Htlstrb2dBhK6kJ46KGH8OUvf9lOouCAttcftas5vK2YGjQ7caKWJcOAyfnawrb//+2de5QcZZn/v1U1t55LJncmIRkIJGQISQB/hrCEieGWhEQkuIugoivgrrrrbVd35Xg46x/sHs5Z9XhFvAuKAT2KyQpiggdRLjHJQhDEMIGF3GcmycxkMpee6emq9/dHdVVXdde9q6cv8/2c06e733u/3VP1nfd9n+eBhzDM9OM5Nq+wT4Yg8vqcmvCJCetzo/KKVWvku/0dq5q3MDU+m1v9TL2SWrn6zW8QUec5gKm9DVvw2UJ4328CWxpHFXOFrtABkSxfhSSgLhyCaB+FpmmYPXs2/v3f/x2XX3559HFUMRR1Ppw5cwZf//rXsXPnTgCANJpZtRvRV+1CX6Qo7qYm1SDqAM/VOrOrKMIOyIoKr20fL7csxt+im7Bza9dYXcsN+ZWb79aun4+5zJaq27hdjT7M/gPcTAMIOjOerksehOYu2lRV95vmFCsXyIsC4j6QIgq7MhV0cYg5A6e5Cxr6S5IlT/czmUJuHWeei7Tl6jIGrTmFs9/VjIMHDwIANmzYgE9+8pNTzvdcGCjqAvLMM8/gy1/+sn3V7mgLJE2OdpGiuJs6lFrQ+Y0hjKgDXM/W2bqLIuwsRguO41XVbF0ncZdxaWKSK2By2zS2kYx+c0Vdbr6TqLNux3q4JTHJDdUURNAVuN1qDfflGGc3V5A5zKstuoGDkURuFBD3wcQg6jLt5FFmoi5OMQfkCza/sGJO5UKLujyr7JDfXVjfj5n+haxBbR+CWJCEpmmYOXMmPvOZz6CzszNce1MQiroQDA4O4mtf+xp+97vf6QnjCmrfmg65vz5agxR2U4NSi7pCztOZ5fwtYfO6DSPs3CxFrWO3he+S8gVIrvUrYBdi1raczr5ZRZ1TvrUtQ4x5iZlcQWeM28gusqDLC/OV6T8vtqubFS9gE3QGttU6L6MP14EVYbWujARd3GLOwCsObG6+Uznhd57TK36zmR7ie4vizFuSoc4Yw6x1tejt7QUAXHvttfjUpz6F1tbW8O1NQSjqIrBr1y585Stf0ePHApBPNaDmrVZIEx7nTbyguKteSi3o/MYQdpXO1q7kXwYBxZ2nkYTsLpCswi53FSJ31c4wZHDrzxB1XtarRkgvLyFj5Lm14WcMAcQj6LwMPrzCf1lCtrkKBcPSN8pWaNyrdWUi6Iol5gDYV0p9yriVC7RK53Uvisu5sFvztSrS5w1Bmz0GAGhra8NnPvMZrF69OlJ7UxWKuogkk0n88Ic/xC9+8QuoqgqkJdQcskejCA3FXfVRalEXoH+v0FsAAkWY8O2jkBBcfpaxvp0HsLC1tlWouyKP+oEut0UUdACCWeHC53yW4mE0kqnrGSc4LmFXBhRTzIXBK1as7ypdoA58vq+oYg4CWlsSDRdrGB4ehqIouPnmm3H77bfTsjUCFHUFcuDAAXzpS1/Ca6+9BgCQhmtR82ZrnvuTwFDYVRflLuqibr/a+pD8y/j04RVUPki+iZ+FresAPCxvAft5PicCCJRAq3N6wWDlvPooUJiGcXDrVn8qiLpyEXR++K7SBWokflGntaRw7t/Owuuvvw4AWLp0Kf7t3/6NfucKgKIuBlRVxbZt2/D9738fIyMjAAD5RAI1h6bFuyXrFaaFlC9FEnahbihRnQ/nlffZinWJr+rn8sR6GXIqI1Q1UBtmXu7cuH1+683Ow/LTxGnOLdup3i5DMn+3bnMUdBXPBdulvISizrYN6DSnVSLogCki6oqw7SpqVaTPHYI2V99qbW5uxp133oktW7ZA8fpngPhCURcj/f39+O53v4vf/OY3eoIqQTnSAqW7SfdtF+UMiN9BbFIZFEHYhb6hRAkV5kRYYecgZnL7yb0M5eUbN6WAbUiSZP9sLta0NjGWezNxuhE6GHh4CdLsypnlb9VpfgpYnbP1YxmXL0UQdnlGFblzWkWCDqgMURd567UIlq5CElDnjaL+IhWjo6MAgM2bN+Mf//EfMWPGjPBjJHlQ1BWBv/71r/jqV7+a3ZIdrYFyaBrk/lr7ebso4o7CrnKJUdhFvplYx+DRRqzGE7mCJGfFzesSZJbJFVgOq3auwjDXRUqmLUcRaJRzW9nIOXfnJUZtq3MOY491u9Wx3uSu1rmVN4UdBV1JiLRKF3NMVwEBbcY45m+cZobg7OjowKc//WksW7YsfF/EFYq6IqFpGp544gl85zvfwenTpwEA0uk61BxsgTxSmy0Y142e4q4yiOn7LuiGkhs2y61YXOfsvIRNACTJxWlqwDZsq3CW1TnHcn4EtV4F3MWYMSdxbrc61p2c1bogBI52UCFUiqADQoq6IjgX1pomsPz2duzbtw8A0Nraio985CPYtGkT5BDXARIMiroiMzQ0hIceegi//OUvkUqlAADyiQbUHGqBlLJsTcS5PUeBV75Uk6gDggm7IPhd3IPENA3gVsXvcudnzCFJkn8oryD4teEmhnPG40kZibpqoaLEnPHdBbkfFCH0l6hTkT4ne26urq4ON998M97//vejubk5en/EE4q6SaKnpwff+9738OSTT+oJGqAcb4JytAmS6uP5PpegZ/Mo7sqLchB0xjgCtlHQal22kUB9ubYXNkh9Af/9uxo6OJzpsxFmjDGIwlgEHVB8UVdmvuSiUrViDoh9dU4oGtQFI1DOmzAXMtavX48Pf/jDaGtri9YXCQxF3STz2muv4f777zeXojEhQTnWBKW7EZIWUNwFDcnjVJ6UjgoUdYCHsAsrnoKKO2u7YQWdWzteWAw5HA0dvIwcrPX9iGOFDzEKOrPBIgm7Mo76EIQwf2dBnAMXm9BiDoj17JyQNajzRpFYDgwPDwMALr74YvzzP/8zOjo6wvdDIkFRVwKEENi1axe+/e1vm4GKkZKhHG2C0tOoW8paCWIcQXFX3pSToANCiTqzaoDQYAEaCV42wBZkoDbccDDgsBk6uBpLuBiAeDEZq3NAeEEHFEfUVUBsVjeiiLkodeMikpgzKxce9ktIAmrbKKb9vxoMDAwAABYtWoQPf/jDuPLKKwtzPE5CQ1FXQlRVxe9+9zv86Ec/wvHjx/XEcRk1R5ohn0h4i7ugMfycoLibXMrB6jXbQCRBZ1YPGBosQEPR60bBzc1KThnzzJyX0AojNgt0VZJtpkiCzuwgRmFXyLWpRIT9u/KLszoZFCTmzEYCfK9uYg4C2twkZq5pwIkTJwAAZ599Nm6//XZcc8019DdXIijqyoB0Oo3f/OY3ePDBB3Hy5Ek9Mamg5mgT5JMO4i4IQS+eQS4IfjEBiTflskqnN1KQqDObCRgezKcR/abiJ/DiKuMnxuIeSwyCruhizuwoJlEX9HpSJhSyKhe1nUKwjaFEYb+EpIu5uWubzcWIOXPm4O///u+xadMm1BgxlElJoKgrI8bHx7F9+3Y89NBDphsUjGXEndPKnR9RnRx7tUNxF41yEXYFbL/amgkSGswSSSJAg87pxqqZLBdWxg/jMuhVP0wZP+ISdEDhoi7g33Qswq6MBB0Q7O/J1f/eJK7MxSrmzHZcvk8vMXdWErOuSKC3txeA7p7kAx/4AG688UbU19fHMy5SEBR1Zcjo6Ci2b9+On/3sZ+jv79cTx2XdoKK3EZIW8GIS5QIa9CwMxV14Sr0NGyCiROCmgpyv8wqL5d6w/b1TeK0oZdywRnxwE4W5l8ggZbyIc8sViC7qIvwNFyTsKlDQAaU9N+c438USdV4GEG1JTH97Hfr6+gAAs2bNwnvf+17ccMMNSCQS8YyHxAJFXRkzPj6OX//613j44Yez27IpGcrxRt2gItcVihNRL6RBLdco7sJTqlW7APFfAzfldAPws1qNIu6czrflCrcgZXJxC99lLR9kJaMIYi7bdJi247V49a4a0v9dmYk5ILygK9l5ufyMmDqwtO/lmqRtFM0XKxgcHAQAzJ07F+9///uxadMmrsyVKRR1FUAqlcITTzyBn/70p+jp6dET0xKU3gSU4012J8a5TOYFlQIvOKUQdn59xum7zs/QIFhHzoLNqR2/MlYB6FbeEHVBzxrFuNXqRlFW6wr8Ow21Wlfhgq7kq3L5hWLqzP1sqKhToc4bRcNSYGRkBAAwf/583HbbbdiwYQNqa2sd65HygKKugkin03jyySfx8MMPZ12hCEA+2QDleJM9/JiVyb6wUtz5M9miLkh/cYm6IBjCL65IEn7lgrohiStsUcCoEH7EvloX099mpUaaKEcnwrEaoRSA1jQBdf4IpHkTUDPufNrb2/GBD3wA11xzDQ0gKgSKugpE0zTs3r0bjzzySNaJMaDHlj3WBOl0HSS4XLz8tlHjFoBuFyKjn6koAEtxtq7cRJ2t3xC+5IpN0LHEMGYj7JhbXmj8xEHMf2uVIuwqWshlKxRnHBAQ01NInz0CMT1lpl9yySW49dZbcfnllzM+a4VBUVfhdHV14ZFHHsHTTz9t/ncljdRAOd4I+VTC3ajCz6FxAcLDehH19KUUxKlyuVKIKK3gVTqzyWL4mSsgWoNxGYs6LrO+k2+toOcDI0aFcIxiEQUvoVCEv61yEHWSLJWFz7iglI2YkwW02UksXD8Lb731FgBAURSsW7cOt9xyCyNAVDAUdVVCd3c3fvGLX+Cxxx5DMpnUEyckKCcSegiycZel8yDiJIIIyb2oOprke7VbCQIviiid7FW6oP3FZSwRBxHChOVexoKOzbFemLN6Icbo1J/Zp0teaIppLelAKYSd4z+NoJAL1HR9GmpbEk3LFJw5cwYAkEgkcMMNN+Dv/u7vGJu1CqCoqzKGhobw2GOPYdu2beju7tYTBSAP1Ovizmtr1o8QgsTrAltOF7lYCOrypVy3XYH4okzEScAzaV6XsCjbm5KiBDt7V0xr1qgUw5+ZD5Mh7Jx+75NtyBCG2EKrxYCAgDY9BW3eKMSslPk7bGtrw0033YR3vvOdaGlpKUrfZPKhqKtSVFXFnj178Oijj2L37t1mupRUIPc0QulNBHOJ4kZAseB30Y1d4MV5Vi9oW0HCslWpoHPsNkaR53XuzFrGjzCrYUH6C/IZjXKTeokNEjqqCOdZiyHsylWw+RFbSLVCx1GjQZ2bRNuV03Ds2DEzfdWqVbjpppvwN3/zNwzlVYVQ1E0Bjhw5gm3btuGJJ57A8PCwnqhKkPvqdWfGZ2qjrd7FtHJnpeALYhhHyX43tyhtTQLVIOrCCCO/NoWqxfcZNAFJcZ+3QOMpxiVVE8E/Y+ZsbR5FPsNaqLCrVBFnpdSWrAIComUC6llJ1LZrGB8fBwA0Nzfj+uuvx5YtW7Bw4cKi9E3KA4q6KUQymcSTTz6JRx99FG+++aaZLiUVyL2NUE40QJqI+J/bJAo8o75r6JwwZ/UKMRiJ0bgkKOUu6GxDCLj1GWaL1KmsUK1WqRE/j/VsloOoM8dilJOl+AwcQowt0OfTRLDfZhkYT8TuBLgEVvXlsNUqalWoc8dw9toZOHz4sJm+ePFi3HTTTbj22msZ+WGKQFE3BRFC4K9//Ssee+wxPPXUU1nDCk0/eyf3NkIeiHj2LqSwiSLw3M7XhCaowUaQz1QslzAWYnU0DBRV0FkJKn7CiCRrWZuoMwj62ZwsJy2iLk/MWdqP1cAh4NhCfa4gv90SrNbFHp6rBFb0Ba1KxuUrEALajHFoZyUhzU2b3g8aGhpw1VVX4Z3vfCeWL19evDOvpCyhqJvijI6O4qmnnsLjjz+OV199NZsxLkM5kYB8MgE5GdHpZJEEnh/W/+rLwe1CXFTSKp0TQUVQ2PNvjqLOwO0zevwuJEV2F3OWdot2Xs7vN1uAYM2jSKt1uX97ca3OZ954NRConyjEci2JYXxaQxra3CRmXJrAqVOnzPRly5Zh8+bNuPrqq9HU1FRwP6QyoagjJm+++SYef/xx7NixwzR3BwBpqFaPWnGqgO1ZIDbjCoOw1m9+F+ViiMA42ox9hc6gCs4wAQgmXozPGrRsmDbjJOhvxa/vMjms79+1h7iOW8hJcujPGvs/hRHnWtSqUGePQZszBtEyYaa3trZiw4YN2Lx5MxYtWhTXKEkFQ1FH8kilUnjmmWewY8cO7N2711zW112j1Omrd/0N7o6N/YhR3AVaDXA4ZxPEYWkcF/RCt4qLJuiAqSXqghB2Cz3o+bag5YJgjNHNajHqXEyysAvlMLiQ84ARt2ZjFXNRhZysQZs1Dm12EtIc1bwOK4qCt7/97di8eTPWrFnDWKzEBkUd8WRgYABPPfUUdu7cif3792czDOvZEwlIg8X3fRfW711eeY+Le9BtoqgX+qhtFlXQWal0cVfoDbgQg5eg27sRtoFtOI0xt82456FIBN6WtX4PYcbmFwrRh1Jusxphu9Q5SdSfI2XPOwPo6OjA+vXrcfXVV2PmzJmFj5FUJRR1JDBHjhzBzp07sXPnzqxjYwCYkCD3ZbZnSyTwAomjAi/2QfvzHEOIdidN1AGVLeziXp0qRNR5nMELVC4Xr9+msVoX90plORBmqzSMIZNvsck3gBAQEK0pqLPHMK2jHqdPnzbz5s+fj/Xr1+O6666jKxISCIo6EhohBP7yl79g586dePrppzE4OJjNNAReX0bgickReKGs7oJaBIY8gxPkzF5RiNPitlzEXdzbllbiDOdWjLN6QLxjDEM5CTs/YhRzetGQ5xAjnNEzq0sZITdrDC1L62zX0NbWVlx99dVYv349li1bRutVEgqKOlIQ6XQaL730En7/+9/jj3/8Y77A67es4EUReEW4cQU+gG0Q9AZrdSEhNG9LvqhbS079BsX6ub1uYOUg7IL4ZgvqtsMgji28ySLOVapi9u9EXL/toH3kUuyV9wKEnNaagjZ7DE2LazA0NGTmtba2Yu3atXjHO96Bt73tbaipiehxgEx5KOpIbKTTafz5z382BZ51GwFpSfeB118PeaBeD1EW9D/diI6NI51XK3SL1qO+zYGqUc5p9SZMX4UKtaBnvyaTMFuYQZ1OA77z6vj9+LVTalEV5jOHHWsMv/miEJNfuslwGiwUTfclN3McjYtqshF9AMyYMQNr167FunXrcPHFF1PIkVigqCNFwRB4Tz/9NP74xz9iYGAgm6kB0pk6KP31kAcSkMYtF7MYzjkFPXMXaDs0yqpDgBut6Y4lyIF3t36dLCCjOqwNE4aq2ITZyiwwxJvr7yKoxWUxV/QK+b3FcV4wahvF3MItYMsTiMEIIkDfoj4NdaYu5ORZWatVAJg5cybWrl2Lq666CitXrmTsVRI7FHWk6Kiqiv379+PZZ5/Fc889h0OHDtnypZEayP0NkAcaIA1b4tAWsMrgJ9jC+rgLTZhze1F9jnnVCxtaqpyIcyvMJWyU7ypu0HBT5SDqrOMo1Vk8K2V0Lm8yXJMICIjmCWgZISea0rb89vZ2rFmzBmvWrMFFF11EIUeKCkUdmXSOHDmC5557Ds899xxeeeUVaJrlYjkhQz6tb9HKg/V2Z8cFuJ6IXcAV46afuxVb6JgtcUpLSpjPZF19K+FB+Em1PHYjrECr5HN4BXVrtxiPTch5fB5Rq0KbnoI2fRytSxO2nQhFUbBixQqsWbMGV1xxBa1WyaRCUUdKyuDgIP70pz/h2WefxZ49e2x+mQBAGq7VBd7pekhDNe7GFl7nehzyvBwNh96WdeozbB2nNnLLhxEaUbZhw4qvKGW96hjlwmxzVrOoA8L/liZb2BXz3JzbylhcbkdCbFsLSUC0TECbPg5txjhEs301rrGxEatXr8aaNWtw+eWXY9q0adHHSEgBUNSRsmFiYgKvvvoqdu/ejT179uD111+3F0hLkE/X6St5g3XAmOLuE89rBcND5BXs6d6JuM4mOZX3EkdOhHWCG6Z82LHk1vM6I2dQgGVl0USdXiFc+aBEWZ2eLGEXl6DzEVd531scxjE+K+0CAmjIrsbVL5Dz/uFcsmQJVq1ahcsuuwwrVqxgZAdSFlDUkbKlr68Pe/fuxZ49e7B37167uxQAGJchD2ZFnpSKeFal0PN6cVkVRrHqi3pjDmo1G6V82LatlFFA9rJZrYtCMYVdod+Rzyq3p4jza68QI4p6FVrruO52pDUF1Nvbam1tNUXcqlWrMGvWrMh9EVIsKOpIRaCqKg4cOIA9e/bgf//3f/Hqq68inbZvgSCp6CIv87CdxwtDHEYZcbuPCCP4yk1gBKWAlbcghjFhKZvVuijE5ZOvmAIup33htf1eBESdago4rTUFNKi2fEVRcNFFF+Gyyy7D6tWrsWTJEshyGX3HhDhAUUcqkrGxMbzyyivYt28fXnzxRXR1ddlcBwCANKpAOlMH+Uwd5KFa7+1aPwo1yih0RcTq1w5wXgErJIZpORDTdmrYMHJuBBF1gX3bTTZRVnnjEFMht0Nt30sxV2mN7dSWCWjTUhCtKYhEvohbunQpLr30Ulx66aVYsWIFEolE0cZESDGgqCNVwcjICF5++WW8+OKLePHFF/HGG28g76edkiGfqdWF3lAdpBEPwws/4rC8LUQEBD2/FibiQikpUhSAMGHk3OoG7bdihF2Bvt5s7YTs3/V7iFnQCUlANE1AmzYB0ZKCNm0CqLP3IUkSLrjgAlPErVy5Ek1NTbGOg5DJhqKOVCVnzpzBn//8Z/zlL3/BK6+8gtdeey1/u1aVIA3VQh6qhTSkr+ZJ6QJuyqUSekH91ZUzRTR6KITQsYWjbLuXm984J9EXYYvWc84KjJ2a11yNBq3FEHAp1M2VMT4+bitTU1ODpUuXYvny5Vi5ciUuueQStLS0xNI/IeUCRR2ZEoyPj6Orqwsvv/yyKfSssRdNxhTIw7W62BuuhTRcA0krsdAL2Q6A4FEkwrZTDDEVZZVOVctrVSxDIGE32dvkYc5feolML79tfgIut89CDBpkDaI5Da15Qncz0jyRdx4OAKZNm4bly5dj+fLlWLFiBTo6OlBfXx+5X0IqAYo6MiXRNA2HDx82Rd7+/ftx+PDh/C1bAUijNbq/vKFaPeLFaAHbtkB80THiWtUrNGJFgQjLWcigxgki5/xkOQk8ySliQCkiUxQ57qujkCvKNmpaj9jQPAHRPAGpRbM7LM+wcOFCU8AtX74c7e3tNGwgUw6KOkIyDA8Po6urC/v378drr72G/fv34+TJk/kFNUBK1uhn8kZqIWeeJ2vrVi8e46oeYDfACGv1WaAzWN+QXU7VckVdfsXoYyoQc7UuyrZnKYi69R23gKvR9HNwTWmIpgmIpjSUVuQfmwAwZ84cdHR04MILL8SFF16ICy64gFuphICijhBPTp06ZRN5Bw4cwJkzZ5wLj8mQR2pNsSeN1kAqxOIWKI3YmyRR5yvMcjDPt4Wsl6kcvGwhK1xmteIb4IQmoggz5ztMfFnrbUXKid5iWKI26itwoikNrWkizy+cQUtLCzo6OkwR19HRgdmzZ0f5KIRUPRR1hIRACIETJ07gjTfewBtvvIEDBw7gjTfeQHd3t3MFNbOqN5p5JGsgj9ZMmnsVe7UQgi+oKMldtQkxNpGecO/fs0+LqJNCzGHU0FqTIOxsrlEK6DPIuTdHly9RhDJgF2+5WYZ4a1IhEmmIxswjkQZcXEjOmzcPixcvxpIlS3D++edjyZIlOOussyCF+Z4JmcJQ1BESA0NDQ/i///s/vP7666bgO3ToEFKplHOFPLGn6I+xGkhi8rZxs9U8bppOZ8QA/7BeHmMRqhqtrtA8hYSnyAuz0hRkLL7VojtE9jS4iMtgwZbnUM86l17iTRYQDWmIhCHeVFPAweUj1NXVYdGiRaZwW7x4Mc4//3w0Nze7j5EQ4gtFHSFFQlVVdHd346233sLBgwfNh6fYA4AxWRd3VqGXVCCNx2igEcICM/JWolP/xhm6KBEP/ASdY90Yxx65ajRfeWH95GUyPfKiX+qFJCAaMqItodpeu22bArp4O+ecc3DuuefaHvPmzUNNTU3k8RBCnKGoI2SSsYq9Q4cO4eDBgzh69CiOHDni7GbFQAAYV/RzemMyJON15hkTBZ7f8yKAqAm8MhX1gH2hl6pCBV6hwePjwG/uIs6RgADqNF2s1WdEW72mv06kITfC0eLUoLm5GQsWLMgTcG1tbVDcVnoJIbFDUUdIGTE4OGgKPOvz0aNHkUwmvStrgDSu6Of1xhVI4xnhl5KBVI3+rErFEX4OwsUq8kKvzuUSx2UqjlW7QoLHRxWFnnX850VAAIqAqNOAOotYq1chGvTXqFddt0oNEokEFixYgIULF2LBggW2R2trK8+9EVIGUNQRUgEIIdDX14djx46hp6cHPT096O7uRnd3N3p6enDixIm82LeOqBKkcRlIyZBSGeGXUvT3EwowIUOayBF/xiUi7E27EAFkJa5LVFTR4WHJOWk4zIEh1lCrQdRqEHX6A/Vq5rWqr77Va3o5HxRFwdy5c9HW1oZ58+bhrLPOQltbG+bPn48FCxZg5syZFG6ElDkUdYRUAel0Gn19fTah19vbi5MnT+LUqVM4efIkhoeHgzeowRR4UkrOij3jOS1DmpD053TmOfe8XxwCIM7Lk994gvZVpM8lJAHUaBA1lueMYDOFW62mC7Ua/dlvdc1Kc3MzZs+ejdmzZ2Pu3LmYN28e2trazMesWbN4zo2QCoeijpApQjKZxKlTp0yRZxV8fX19OH36NAYGBjA6OhqtAxV2kZd5hipBUiVAzbzWJCAtAZqRnn2GlnkIFO98YBxIkr5SBgHIme3NzDMUAaFkX0O2vs8RbZb3bm4+/EgkEmhtbcWsWbMwZ84cU7jNnj3b9j6RSMQ6BYSQ8oOijhBiY2xszBR4xnN/f7/5emBgAMPDwxgaGsLQ0BCGh4c9D9FHRkNW5GnQVwIzrw3hh8zqoGRcxUQmHbDlQwCmRjQKm+8zBYyqUqaMDF2wZV4Lh7S4dackSWhubkZLSwuam5sxffp0zJgxA9OnTzdfW99Pnz6dYo0QYkJRRwgpCE3TMDIyYhN5xuszZ84gmUwimUxidHTU93WlXo4URUEikTAfDQ0NtvfGo7Gx0SbarM8tLS1oampivFJCSGQo6gghZYEQAhMTE0ilUkilUrbX1vcTExMYHx9HOp2GpunB3YUQUFUVQggzTdM0W5osy5AkyfZsPHLTa2pqUFdXh9raWtTW1nq+Nh40IiCElBqKOkIIIYSQKoDr/IQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVUBNqQdAiIEQAmNjY6UeBiGEhKKhoQGSJJV6GIRQ1JHyYWxsDBs2bCj1MAghJBQ7duxAIpEo9TAI4fYrIYQQQkg1wJU6UpbU7ZkLSWT+55BkSLIESDIgS4AkQZKNvEy6JAGyBMkoY+ZJZh3zAVjSZHu+XtFME5KU/dfH0oaZLmX7sqYJSW/GzJP1dvV0ycwz6ohMmpkPZNuQM+WNfNj7sNXJDF/IDnm28rCNMZsm5eXl1YF1HDn5cEl3ac9tHHl1vNo100V+fUsdM9/Slsikw1JPzxOW8ej5kjXPLGvkCbNNyVpeEmae+RMz0o3mMmX0n4Iw3xt15Mx7PU9/b9Qz8yQBCdl6cibNfECY9WQJtnS9vpatB6O8BsWok3mfbUsz21Ms7SvQ0xWjPbOsBsVoE8Y4tGx5ZNvW29QgQ+9fz9PbUzJpEjQoRn1LHQXQ60Hvx5gP473el8i8RiZPQM7MiwIJMgAl82XLkDJpEhRJggwZUuabm0gp+Nt/aAMh5QRFHSlPVClzeYUu6pARYJm7ZTZPAuSsgpF0hZRpxLi7y8i7a2cVk11JGG3m3eWRk2btAw5pufWQFXMWUZeXZhFh1ve5Q7SXd6gje+S5fYy8cbh8bK88t6mK2p6lTSfBV1RR55SP3PfCbNs6DmufTnmmCISljLV8Xh3h0JewPayiLisUMw+3PBjCT2/SKgAN8QcY4gymKLLm6aJOy4oiySqK9NeyJOmCK/MM87Vk1tPbQaZNoy4y9TLpTnmWOkpGkCrmOA1RJ3xFnbU9xZgP2NNkWMdo+Q4JKRO4/UoIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAP3UkfJEERBCdziq+12TLM9SjkNg49nyGtY0YXkdIM/itCzrItYtPfssbK9hqycAQBjp2TYFJEDArGvNN9uwOVezjsXhvbANKWc+XB65ZYP4ovPKC9xXwDxrl571hE+bwmWM7s6H7b7lLHlm2ejOh7PjsPipQ3Q/dQLZekIS9gf0Zz0PtnRNEoCkZduE0Zdm8aeXKZPJF5Jmtgdb+5lno6/MezlTxngGkJemWf6sjdeaBGjI+qnTMmkS3PzUSabDYAXZ78x4L2fq5Pq+C+58WELW+bDT3yUhpYWijpQlqctOlHoIxcG4Z0YkV5MQYmD9aWmlHEhkrKqam0iERIF/OYQQQgghVYAkhGCsE1IWCCEwNjZW6mFUHGNjY7jxxhsBANu3b0dDQ0OJR1QZcN6iw7mz09DQAEni2jkpPdx+JWWDJElIJBKlHkZF09DQwDmMAOctOpw7QsoHbr8SQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgXQ+pUQQgghpArgSh0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVQE2pB0DIVGRsbAwvvfQSurq6cODAARw4cAC9vb0AgA996EO44447fNvo7+/H1q1bsWvXLvT29qK+vh6LFi3Cxo0bsXnzZkiS5Fn/2LFj2Lp1K/bu3Yv+/n40NjZiyZIluOGGG7Bu3bo4PmbsDA4O4rnnnsMLL7xgzpmqqpg+fTqWLl2KjRs3Yu3atZ5tTMV5A4Curi48//zz6OrqwtGjR3H69GmMjIygqakJ7e3tuPzyy7FlyxZMmzbNtY2pOneEVAqMKEFICdi3bx8+9alPOeYFEXVdXV347Gc/i8HBQQBAIpFAKpWCqqoAgFWrVuHee+9FXV2dY/1du3bhC1/4AsbGxgAATU1NSCaT0DQNALBp0yZ87nOf871JTzZXXXWV+RkBoK6uDoqiIJlMmmmrV6/GPffcg4aGhrz6U3XeAOArX/kKfvWrX5nv6+rqUFNTg9HRUTOttbUV9957L5YvX55XfyrPHSGVAkUdISVg3759uPvuu3HBBReYj2984xvo7+/3FXXDw8O47bbb0N/fj/b2dtx9993o6OjAxMQEfv3rX+Ob3/wm0uk0tmzZgn/913/Nq3/8+HHcfvvtSCaTWLFiBe666y4sXLgQo6OjeOSRR/DAAw8AAD760Y/ife97X7GmIBJr167FhRdeiOuvvx6XXXYZ5s+fDwDo7u7Gj3/8Yzz++OMAgPXr1+Puu++21Z3K8wYAv/3tbzEwMICVK1eivb0dLS0tAIDR0VH84Q9/wP3334/Tp09jxowZ+OlPf4rm5maz7lSfO0IqBkEImXTS6XRe2s033yw6OzvFD37wA8+63/ve90RnZ6e49tprxbFjx/Lyf/KTn4jOzk6xbt06cfjw4bz8e+65R3R2doobb7xRnDlzJi//v//7v0VnZ6fYuHGjY34peeGFFzzzv/jFL4rOzk7R2dkpenp6bHlTed6CsHv3bnPuduzYYcvj3BFSGdBQgpASoChK5Lo7duwAAFxzzTXmSpWVd7/73UgkElBVFU8++aQtL5lM4g9/+AMAYMuWLeZqjZXbbrsNADAyMoJnnnkm8jiLwdve9jbP/M2bN5uvu7q6bHlTed6CcNFFF5mvT548acvj3BFSGVDUEVJBHD582DSoWL16tWOZxsZGrFy5EgCwd+9eW94rr7yC8fFxz/rz5s3DOeec41i/3LGe5zLOagGctyC8/PLL5uuzzz7bfM25I6RyoKgjpIJ48803zdeLFi1yLXfeeecBAA4ePFhQ/bfeeivKMEvGSy+9ZL42PgPAeXMjlUqhu7sbv/zlL/Gf//mfAHRBd8UVV5hlOHeEVA50aUJIBdHX12e+njNnjmu52bNnA9C3s0ZHR9HY2AgAOHXqFACgpaXF0To0t761v3JnaGgIDz30EACYxgAGnDc71157LVKpVF76ihUr8B//8R+2FU/OHSGVA1fqCKkgrO4n6uvrXctZb57WOobrD6+bqzXfWrec0TQN//Vf/4W+vj7U1dXh05/+tC2f82Zn5syZmDlzJhKJhJl26aWX4hOf+ATOOussW1nOHSGVA1fqCCEVz9e//nU8//zzAIB/+Zd/weLFi0s8ovLm5z//ufl6YGAAO3bswE9+8hN85CMfwQc/+EHceeedJRwdISQqXKkjpIIwtrQAmIfPnTAcvObWMVZmrPle9a11y5X77rsPjz76KADg4x//uM0C1oDz5s6MGTNw66234otf/CIkScKDDz5oCmSAc0dIJUFRR0gFMWvWLPN1rtsJK8Y5pqamJttN0ji3NDQ05HmTNepb+ytH7r//fvzsZz8DAHzsYx/De97zHsdynDd/li1bhhUrVgAA/ud//sdM59wRUjlQ1BFSQVgtOr2sBA2Lw3PPPbeg+l7WiqXmW9/6Fh5++GEAuqB773vf61qW8xYMwxDi2LFjZhrnjpDKgaKOkAqivb3dPMi+e/duxzLJZNL0ObZq1Spb3ooVK8zD7nv27HGs39PTg0OHDjnWLxfuu+8+PPLIIwD8BR3AeQvK8ePHAdi3QDl3hFQOFHWEVBgbNmwAADz11FPo7u7Oy//Vr36FZDIJRVFw3XXX2fISiQTe8Y53AAC2bduG4eHhvPpbt24FoN/YOzs74x5+wdx3333mlus//dM/+Qo6g6k8b6qqQviE+X7hhRewf/9+AMAll1xiy5vKc0dIJUFRR0iJGBoawunTp82HEQFhfHzclp7r4uHWW2/FzJkzMTY2hs997nNmOKyJiQls27YNP/jBDwAAN9xwAxYuXJjX7x133IFEIoG+vj7cddddOHLkCAB9teWBBx7A9u3bAQAf/OAHHUM6lRLrGbqPf/zjuPXWWwPXncrzduLECdx5553Yvn07jh8/bhN4vb29eOihh/D5z38eQghMmzYt72ziVJ47QioJSfj9+0YIKQrvec970NPT41tu48aN+PznP29L6+rqwmc/+1kMDg4C0Fc4UqkU0uk0AH0L695777U5kbWya9cufOELXzAPrjc3NyOZTEJVVQDA9ddfj7vuuguSJEX+fHHT29uLm2++GQAgyzKmT5/uWf6WW27JW8WbivMGAN3d3bjlllvM97W1teZnN/zIAXq4rnvuuQcXXHBBXhtTde4IqSQo6ggpEYWIOgDo7+/H1q1b8fzzz+PEiROoq6vDeeedh40bN2LTpk2QZe+F+GPHjmHr1q3Yu3cv+vr60NjYiCVLluBd73oX1q1bF/VjFY1cYeLHhz70Idxxxx156VNt3gB9Re3ZZ5/Fvn37sH//fvT19WFwcNAUx+effz6uvPJKXHfddZ4Ohqfi3BFSSVDUEUIIIYRUATxTRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVXA/wdNWSyK1mwWVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG+CAYAAAD1MPK+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOz9d7wkVZ3/j79OVaeb5s7cmYGBIcwAA0gQRMKSBBQUMe4qgmJas64Bw+7XsLu6u8qui/pzP2vCj7ooYlb8KOiCShAliBKHPDAzDJPzzR2qzu+P6lO3uuqEd1Wd7ntnqNfjMY/p23X6nFOhq579Pu/AOOcchQoVKlSoUKFChfZoObM9gUKFChUqVKhQoUL5VUBdoUKFChUqVKjQXqAC6goVKlSoUKFChfYCFVBXqFChQoUKFSq0F6iAukKFChUqVKhQob1ABdQVKlSoUKFChQrtBSqgrlChQoUKFSpUaC9QAXWFChUqVKhQoUJ7gQqoK1SoUKFChQoV2gtUQF2hQoUKFSpUqNBeoALqChUqVKhQoUKF9gIVUFeoUKFChQoVKrQXqIC6QoUKFSpUqFChvUAF1BUqVKhQoUKFCu0FKqCuUCGC1qxZA8YYGGN485vf3PXxzj777HC8Qvn1qU99KjyeN99882xPp1ChQoW6otJsT6BQoUJ7tm6++eYQlN785jdj2bJlszqfQrOrT33qUwCAZcuW9eQHUKFChWZUQF2hQoVy6eabb8a//Mu/AAgsjAXUPbMlroWzzjqrgLpChXqsAuoKFSJo2bJl4Jz3bLxiibBQoUKFCqVV4VNXqFChQoUKFSq0F6iAukKFChUqVKhQob1ABdQVKkQQJfp12bJlYIyFPmWtVgtf//rXccYZZ2DRokXo6+vDihUr8P73vx8bNmzQjpcm+vWpp57CJz7xCZx88slYvHgxKpUKlixZgvPOOw9f/epX0Wg0SPvIOcfPf/5zvOENb8CKFSswb948VCoV7Lfffjj33HNx2WWXYc2aNWF7EVEqfKgA4JxzzgnnLf6dffbZyjHvuOMOvPvd78ZRRx2F+fPno1ar4aCDDsJFF12E6667jjRvAPjZz36G888/H/vssw/6+vpwyCGH4G1vexseeOABch9p9ec//xnvf//7cdxxx2HhwoUol8sYGRnBKaecgg9/+MO48847tZ9fuXIl3vve9+Koo47C8PAw+vr6sHz5clxyySX49a9/rf3szTffHB5fEZiQp238XE1MTOBzn/scTjzxRMyfPx8DAwM45phj8IlPfAK7du3S9iF0yy23JK4FWfSx53m46qqr8LKXvQwHHnggarUa+vv7sWzZMpx00kl497vfjWuuuQaTk5Pa/SxUqBAAXqhQIaNWr17NAXAA/E1vepO0zcEHH8wB8IMPPphv2bKFn3baaeFn4v9GRkb43XffrRzvrLPOCtvq9NnPfpZXq1XlOAD4ihUr+KOPPqrtZ9WqVfyEE07Q9gOAL1u2LPzMJz/5SWN7APyss85KjDcxMcFf+9rXGj/7kpe8hI+Ojirn3Wg0+Gte8xrl56vVKv/Od77TMdebbrpJeyxMGh8f56973etI+75mzZrE533f5x//+Me54zjaz770pS/lY2Nj0jncdNNNYbtPfvKT2vlS2kbP1apVq/iznvUs7TUg2y/K8Ygf/61bt/KTTjqJ9LlrrrlGu5+FChXivAiUKFTIslqtFl71qlfhtttuwznnnINXvvKV2G+//fD000/jG9/4Bh566CHs2LEDF198MR544AFUKpVM43zkIx/B5z//eQDA0NAQLr74Ypx88skYHh7Gpk2b8POf/xw33ngjHn/8cTzvec/DvffeiyVLliT6eeyxx3Dqqadix44dAID99tsPF110EY477jgMDAxgy5Yt+POf/4xrr722I1jk4osvxvHHH48f/OAH+OEPfwgA+Ld/+zccc8wxHf0vWrSo4+9Go4HzzjsPt912GwDgoIMOwmtf+1ocffTRqFarWLVqFb7zne/g0UcfxXXXXYdXvvKV+M1vfgPHSS4svPvd78aPfvQjAECtVsPf/u3f4tRTTwXnHLfeeiu+/e1v461vfSvOO++8TMc4runpaZxzzjm46667wjFf85rX4PTTT8eCBQswOjqKlStX4le/+hUee+wxaXDN//f//X+4/PLLAQClUgmve93rcPbZZ6NareKee+7BN7/5TezcuRPXXnstLrjgAtx0001wXdfK/E0aHR3FS17yEjz66KN4+ctfjhe/+MUYGRnBk08+ia985StYt24d1qxZgze/+c246aabOj57zTXXAAD++q//GgBw9NFH49Of/nRijOj18fa3vz08lgcffDAuvvhiHHbYYZg/fz7Gxsbw6KOP4ve//73R6lmoUKG2ZhkqCxXaI5TGUif+fe1rX0u0mZyc7LBM/OhHP5L2ZbLU/eIXvwi3n3baaXzjxo3SdldccUXY7sILL0xsb7Va/Nhjjw3bXHLJJXxiYkLaV6PR4L/4xS8S76e1gn3oQx8K27/rXe/i9XpdOtYb3/jGsN2Xv/zlRJuoBWrBggX83nvvTbS54447+NDQkNJSlFbvfve7w36OO+44vnbtWmXb3/3ud3znzp0d7/3hD3/gjDEOgA8NDfE//vGPic9t2LCBH3nkkeE4//Ef/5Fo0y1LHQBeqVT4L3/5y0SbrVu38mXLloXt/vSnP2n7klloo9q8eXNorXzuc5/Lx8fHlW3XrFkjtQ4WKlSoUwXUFSpEUFqoe8tb3qLs64YbbgjbvfWtb5W2MUHd8ccfzwHwRYsW8e3bt2vn/oY3vIED4I7jJCDk6quvDsc544wzuOd52r5kSgN1GzduDJeLX/CCF2jbNhoNfsghh3AA/LDDDktsf9nLXhaOe9VVVyn7+epXv2oF6tauXctLpRIHwBcuXMg3bNiQuo9XvOIV4TyuuOIKZbsHHnggHGvJkiUJ8O0m1P3rv/6rsq+vf/3rYbt/+7d/0/Zlgrrbb789bPv5z39e27ZQoUI0FYEShQp1QZdeeqly21lnnYVSKfB8ePDBB1P3fd999+Hee+8FALzlLW/ByMiItv3rX/96AIDv+/jd737Xse3qq68OX3/605+WLnHa1A9/+EPU63UAwIc//GFt23K5jIsuuggAsGrVKqxevTrcNj09jf/93/8FAOy777547Wtfq+znLW95CxYsWJB36vjhD3+IVqsFAHjf+96H/fbbL9Xn6/V6GACxaNEi/O3f/q2y7THHHIMXv/jFAIBNmzbh9ttvzzjrdHJdF+9973uV21/wgheEr7Ncu1H19/eHrx966KFcfRUqVChQ4VNXqJBl9ff3J/zKoqpUKli0aBE2bdqEnTt3pu7/1ltvDV/7vo+f//zn2vbr168PXz/yyCMd2/7whz8AAIaHh/G85z0v9VzSKjr3LVu2GOcePT6PPPIIli9fDiAA22azCSCAZJ3PWaVSwemnn45rr702x8xnjhUAvPzlL0/9+XvvvTeMRD777LNRLpe17c877zz88pe/BADceeedOOuss1KPmVaHH364FoCXLl0avs5y7UZ19NFHY//998eGDRvwzW9+E0DgY3fSSSd1/cdFoUJ7qwqoK1TIshYuXGhMRVKtVgEEFqe0iqYV+dznPofPfe5z5M+KYAgAGBsbw+joKADgyCOPJKVPyavo3NOWkIrOPZoS5rDDDjN+ltLGpKeffjp8/axnPSv15zdu3Bi+XrFihbH94YcfHr7etGlT6vGyKB7UEpe4boFs125UruviiiuuwKte9So0Gg1885vfxDe/+U3Mnz8fp556Ks444wy86EUvwnOf+9xc4xQq9ExS8XOoUCHL6raVYffu3Zk/K6xbAEKgA4DBwcFcc6LK1twnJibC19FlPJUGBgYyjyskjpfruqjVaqk/Pz4+nmo+0TZjY2Opx8uiXlvIXvrSl+JPf/oTXvnKV4aWy127duHXv/41PvGJT+DEE0/EscceGy61FypUSK/CUleo0B6mKIDdfPPNmZfl5s2bF76OAkc3JeZeKpUwNTUV+hamVRR4KElpoxCYVeJ4eZ6H6enp1GAXPW9p5zw0NJRqrKh838/82V7ouOOOwzXXXIOxsTH88Y9/xG233Ybf//73uO2229BsNrFy5UpccMEFuOqqq3DJJZfM9nQLFZrTKix1hQrtYYr6Na1cuTJzP0NDQxgeHgYQ+KtxSU412xJzb7VaePTRRzP3s//++4evV61aZWxPaWPSAQccEL7O4tgfDax4/PHHje2jbeJBGdFlUFPFkG3btlGnOKsaGhrC+eefj3/913/FzTffjI0bN+KDH/wgAIBzjg996EPwPG+WZ1mo0NxWAXWFCu1higY0/OxnP8vV1xlnnAEgWBa95ZZbMvURXbIzgaGtuR933HHhct3vf/977cO+0Wjgj3/8Y+axhM4888zw9S9+8YvUnz/++OPDRNM333xzGEmr0m9/+9vw9cknn9yxLRrMEA2EkanXiXuFb2beHwkLFy7EF77wBZx44okAgsAaCgwXKvRMVgF1hQrtYTrxxBNDR/0bb7wR119/fea+RLoTAPinf/qnTEt10WVF0zLnxRdfHMLYF7/4RWMNXJVqtRrOP/98AEEQgahoIdOVV16ZO1ITAC666KJw7v/93//dEfhAUbVaxQUXXAAA2Lp1K77zne8o2z700ENh7dslS5bg1FNP7dh+6KGHhta6W265RQlQu3btwlVXXZVqnnklrgcbS94AwlrKAIwgXKjQM10F1BUqtIfJcRz8+7//e/j3xRdfbCwA/+CDD+Ld73534v0LL7wQz372swEEKTve+MY3Kv29Wq1WCBpRiTQjAHD33Xdr53HQQQfh7/7u7wAE0awvetGLtNYX3/fx29/+VlpuSizNAcD73/9+PPDAA4k2d911F/7+7/9eOyeqDjzwQLz97W8HEMz9ggsuwFNPPaVsf8stt2DXrl0d733kIx8JLVkf/OAHpVa0TZs24cILLwwB5oMf/GCilFy5XA5zxq1duxZf+tKXEv1MTEzgta99LbZu3UrfSQsS18MjjzyCqakpZbvrr78e//Vf/6UNnlm1ahV+85vfAAhg8dBDD7U72UKF9jIVgRKFCu2BesUrXoGPf/zjuOyyy7Br1y5ccMEFOOOMM3DBBRfg4IMPRqlUwo4dO/Dggw/i5ptvxsqVK+G6Lr761a929OO6Ln784x+HtV+vvvpq3Hjjjbj44otx3HHHob+/H9u2bcPdd9+NX/7yl6jVanjJS17S0ceZZ56JcrmMZrOJyy+/HIwxPPvZzw4tSSMjIx3Lh//5n/+Je++9N5zXUUcdhVe84hU466yzsGTJEjSbTWzevBn33XcfbrjhBmzcuBEveMEL8I//+I8d455zzjl461vfim9+85vYvn07Tj75ZLzlLW8Ja7/+4Q9/wJVXXgnOOS644AL86le/yn3cP//5z+Ouu+7CXXfdhXvvvRdHHHEELrroIpx22mkYGRnB2NgYHnzwQfzqV7/Cww8/jNWrV2P+/Pnh508//XR8+MMfxuc+9zmMjo7ijDPOwOtf/3qcffbZqFQquPfee/GNb3wjTN9yxhlnKJM0f+QjHwn36QMf+ADuuOMOvOhFL0KlUsGDDz6IK6+8Ek8//TQuvvhi/OAHP8i971S94AUvwP3334+JiQm87GUvw5ve9CYsWrQohNmTTz4ZIyMj2LhxIy699FL8wz/8A8455xyccsopOOSQQ8Jr7q677sKPfvSj0OJ36aWXoq+vr2f7UajQHqlZrGZRqNAeozRlwg4++GBjf6a2pjJhQl/72tcStU1V/3TzeuyxxzpqwKr+LV++XPr5j33sY8rPyMpF1et1/p73vCes/Wn698Y3vlE6bqPR4BdeeKHyc9VqlX/nO99JXZ9Wp7GxMf7qV7+aNG9ZbVjf9/nHPvYx476/5CUv4WNjY9q5/Mu//Ivy84wx/slPfjJVmTBTaS9K26effpovXrxYOS9x/L/97W+TjiFjjH/gAx/IVMKuUKFnmorl10KF9mC9853vxNq1a3H55ZfjhS98Ifbff39Uq1VUq1UsWbIEz3ve8/D3f//3+N3vfocnn3xS2c+KFStw77334gc/+AFe/epX46CDDkJfXx8qlQr2339/nHfeefjsZz/bUVUhqssuuwzf//73cf7552PJkiWJ5cK4KpUKvvzlL+ORRx7BRz/6UZxyyilYvHgxSqUS+vv7sXz5clxwwQW47LLLcP/99+Pb3/62tJ9yuYwf/ehH+MlPfoIXvvCFWLhwIarVKpYvX463vOUtuOuuu/CGN7yBfkAJGhwcxI9//GP88Y9/xDve8Q4cccQRGBoaQqlUwsKFC3HqqafiH/7hH3DPPffgoIMOSnyeMYbLLrsM9957L97znvfgyCOPxODgIGq1Gg4++GBcfPHFuO6663Dttdca8wf+8z//M2644Qa89KUvxeLFi1GpVHDAAQfgoosuwu9//3t86lOfsrrvFC1duhR33303PvCBD+CYY47B4OCgNLH1G97wBtx33334whe+gFe84hU47LDDMDAwANd1MTw8jOOPPx7vfe978Ze//AVf/OIXiyoThQoRxDjvQR6DQoUKpdLpp5+O2267DdVqNXfm/kKFChUq9MxQ8dOnUKE5qO3btwMI0joUKlSoUKFCFBVQV6jQHNOGDRvCiNBjjjlmlmdTqFChQoX2FBXRr4UKzQFNTk7if//3f/HUU0/hS1/6Upgv7lWvetUsz6xQoUKFCu0pKnzqChWaA1qzZk1HvjcAOOWUU3DrrbeGCW8LFSpUqFAhnQpLXaFCc0h9fX049NBD8apXvQp///d/XwBdoUKFChUiq7DUFSpUqFChQoUK7QUqAiUKFSpUqFChQoX2AhVQV6hQoUKFChUqtBeogLpChQoVKlSoUKG9QAXUFSpUqFChQoUK7QUqol8LFSo0K+Kco9FoYHJyEtPT02g0Gmg0GqjX6+Fr2XvNZhOe54X/fN/v+D/+HhDUW2WMhfVDo68dxwm3u66LcrmMUqmEcrkc/iuVSqhUKuH74u9arYZarYa+vr6O/0ul4tZaqFCh3qu48xQqVCiTms0mxsbGMDo6Gv4ffT0xMYHJyUntP8/zZns3uqJyudwBfH19fRgYGMDg4GD4b2hoqOPv6L/h4WHUarXZ3o1ChQrtYSpSmhQqVAhAAGk7d+7Ezp07sWPHDuzYsSN8Ld6PwtvU1JS1sSuVChoTTYAzwGNgPoLXfvCP+QhfQ2wDwHj7NUfwD5HX4u9QvPPP6GvRGWt34fDgbwcd/3MGwGm3czjgcnCHY2CkD9PT01YhtVqtYv78+R3/hoeHE++NjIxg4cKFqFar1sYuVKjQnqkC6goV2svleR527tyJrVu3hv+2bNmCrVu3Ytu2bSG0jY2Npe6bMQbeANBywFoO0GLt/x2wVhvQvOB/tMRrp/N9j4ElCKsLclz1Nu4DaW6FLDlfLqDR8UPYg8sBh4O7HCi13y8Fr8V74m+4HPOXzsPY2BharVbq3RsaGsKiRYuwcOFCLFq0qON19P8ioXWhQnuvCqgrVGgP19TUFDZt2oSNGzdiw4YN2LRpUwfAbdu2jW5B8gE0HbCmG/zfYLHXEWATENcLILMhHdSpJIM9CdCZ+6HfZjnaMFgOgI+X/eC15H9e9lGZV0Kj0SD1zRjDokWLsO+++2LJkiXS//v6+tLvX6FCheaECqgrVGiOq9VqYcuWLdi4cWMIbuL1xo0bsXPnTmMfjuPAnwJYwwWru2ANFxCvm04IbSGkZbktRGFnrtxWVHOyAXhZ4C4i5s7Mgfsc8LMt3QoI5BUfqHjgVX/mdSV4ve/hC7F9+3Y0m01jf8PDw9h3332x3377YenSpTjggAOwdOlSLF26FIsWLQoDTAoVKjT3VEBdoUJzQJxz7Ny5E+vWrev499RTT2HDhg3m5bgWA5suBZBWd4E2uIUAV4fZoqa7FZgAZrZvIxTAosxRBXuU5VmLkCefQnbwA9rwV/YD6Kt64DUPqHrh3wNLahgfH9f2UalUEqB3wAEH4IADDsA+++wDlvMYFCpUKJ8KqCtUqIdqtVpYv349Vq9ejTVr1nQA3MTEhPJzlUoFzV0e2LQLTLdhbbr9r1EB85wAPNJKfP3TPoxn+7bR5SXQUI6b3t9OqMuQF1de6AMA7raBr+oH0NfXAq952P/Z+2Djxo3aZfy+vj4cfPDBOPjgg7Fs2bLw9f777w835b4UKlQomwqoK1SoC/J9H5s2bcKTTz6JNWvWhP+vXbtWuQTGGAOfcsCmXDhTLthUCaz9P+pOYGnLAwqsvWyWBf6A2Qc5IN/+55l/1qXlqOUv7XFXLPWmgT2eIeBC2Rd4YNnra/+reeB9LRxw/BKsX79eCXyVSgUHHHBACHqHHHIIDj30UOy///7FUm6hQpZVQF2hQjk1OTmJVatW4fHHH8fjjz8eAtz09LT8Ax4Dm3TBJksd4MamXLB2qo7M8MIUD8k9GeTiynpssu6Lbjxdnya/Pd05ybgUrgM+m4CX6JvxAPL6W8G/vuB1ecRRBnH09fXhkEMOwWGHHYbDDjsMhx56KA455BD09/d3bZ6FCu3tKqCuUKEU2rVrFx577LEQ4B577DGsX78e0q+RjwDcIv+ciba/G3LAmwrcZMqzJDtXNZegTjdGmmAMcZ7SzjHF3ATwdRPu4hLWPb8/AnwDethbunQpDj30UKxYsQKHH344jjzySCxYsKBncy5UaE9WAXWFCik0OjqKhx9+GA8//DAeeeQRPP7449i6dau8cd2BM1EGmyiBTZTbVjg3GUk61yGOZYh8zep3lmWsXgOdALO0xzXNOYsq63HMo1l4BHDwwJo30AQfaMEfaGHh4fOwbds2aft9990XRxxxBI488kgceeSROOKIIzA0NNTjWRcqNPdVQF2hQgAajQZWrVqFhx9+GA899BAefvhhPP3004l2jDFg0gEbDwDOmSgHr1vCX03xdbINczYtcKq5pV1apABJ/HPdiiq1dVtT7adOWYFONk6eiOTc488C7JV88IEm/IEW+GALB5y4D9atWye1hC9dujQEvKOOOgpHHHFEUVWj0DNeBdQVekZq8+bNuP/++/HQQw/hoYcewqpVq6QBDGzKBRsLwM0Zb1vgPAPAJTpJ+fCNQ0EeB3vtOBnSgFD8xNJ8ZhaS+6YSZQk1fn5sQV1U8ajW2UodMhug5/qBNW+oCT7YxJLjFmLDhg2JdqVSCYcffjiOOeaY8N+iRYt6Pt9ChWZTBdQV2uvl+z7WrFmD+++/P/y3ZcuWZMMmgzNWCQBuLGaBA3q/LEZRL1JtpF3+5Tx9ct+56vuXJUlxt5U16KWb6vFjhJd88MEm/MEW+FAT81cMYMeOHYl2S5YsCQHv2GOPxfLly1EqlXo610KFeqkC6grtdWo0Gnj00Udx//3344EHHsADDzyQqGvqui78XU4Ab2OBFQ7TbjJBbzed67OmGMn7lSVCXaLigUnR/aCAYNRKRwXNLP5+0fFs9GNTUQtcFqtgGkXPCbWfrHkMo5/VzslOFZIwIGNeE/68Jg45cymefPJJ+H7nfvb39+PZz342nvOc5+D444/HihUrCsgrtFepgLpCe7xarRYee+wx3H333fjLX/6CBx54IBlZ57EA3kbLcEYrwZKqbwAPm1YwGeT0GubiUsxVlRZDCXaq/VDts03fPpl0VSG62X9aqRIFp51/WmVJeyM7RjZBz9a5j37UbVvz2qDXf0A5keC7gLxCe5sKqCu0x4lzjtWrV4cQd9999yXLGzWdAN5GK8GS6kQZjGJtmhkk/cSiDyaTpWq2gU6oPWdKQtsOqKPMP2qJ7LbVxpaVq5eAR6n+kCd5sUlUa2r4OuU5pChtZHgeyGMIfPPmNcCHG+g/uJy4b/T39+PYY4/FCSecgBNPPBGHHnpokSC50B6lAuoK7RHasmUL/vSnP+Huu+/G3XffnfSfaTE4u6twdlfBdleCZL5iKbUXAEV9uM8VmGuLpbBKcJ/Prfl3228va+UIyjzmkn9m2sCOtKXI0ub5y5oXMOVcOLgR8kZGRnDiiSfipJNOwoknnoiFCxemG69QoR6rgLpCc1LNZhP3338/7rzzTtx5551YvXp1ZwOPBVa40QqcXdXAEheFuLQWgOiDLc1DK200aNbqBLaVouxUWpgLk9wSa5EKsCS1TwlyzJFYT7kPrqlhKlWatCsUK22Kcx0Fb9K8s/jO6fqgyHTeum3Bk30u5VxCyBsOIK+61MHU1FRHm8MOOwwnnXQSTjrpJBx77LFFCpVCc04F1BWaM9q8eTPuuOMO3HnnnfjLX/7ScUN1HAd8lwtnVwXOaA1srDJTUiuLn5bqoZUX6FRzkc1jNr56KfzossJcog/JMZVZCLVQlwLmOkCuc0PyvbSAl/c6ywF0Hd2o5my7TBylb5lU59EGoPWoD844+FAD/oImDnvBUjz66KMd26vVKo4//niceuqpOO2007BkyRL6vAoV6pIKqCs0a/I8Dw888AD++Mc/4o477sDatWs7GzQcODsrcHZW4eyqgHluOj+tNNaTtEtKaaooiHnM9lfN8CDrsLDlhDmhOKiZlns72uexyskb6AbObr1LG+lsAerCKUTnbNuP06SskNcjy5uxvzSfYw54yYM/3IC/YBojRw0kql8ccsghOP3003HaaafhyCOPhEvwUy1UyLYKqCvUU01PT+Ouu+7CH/7wB9x2223YvXt3uM1xHPCdbghybKKUTDFCEWN2rAp7i7rkj0UJrsgiUvoUMQcTyHU2pk4gPeCR+k13q03t70hvnGoeZKX9znXLd65b/oeR/ePg4P0t+PPrOPrly7By5cqO9Cnz588PLXgnnXQS+vv7uzOnQoViKqCuUNe1c+dO3HbbbfjDH/6Au+66qzPdSJMFlrjtwhqXI9JM3MzT5kij9Ju2SoPNr1XWPrM8NFNYnUxAFbX4kfz20ljoiP1K+2cMrFTW9t0VqAOsWuk6uu0G1NlYyqVayGcT8LLk4ovtFy/58OdPwx+ZRv+yUkfARblcxgknnICzzjoLZ5xxBubPn08fp1ChlCqgrlBXtHnzZtx888249dZb8cADD3TWbpx24G6vwdlRBdtdzmaNA+Q3YeqDKE1NzbT1N20nB+4FzFE+Lzm2MrBTLd/GAUzpQ5ciT1smqAs/rIC7OWCpm3WgA1JZNnP1J7sGeg15efLwxQEv9MWbwpKTF2D9+vXhNsdxcNxxx+Hss8/GmWeeWZQxK2RdBdQVsqatW7fi5ptvxk033YSVK1d2bGPjpcAatyPHsipgvtFSIv/S1BpNW5fUdtmubgGdJX/EKNSZfPFSRcUS87PlgrqOjiKAtwdB3awDXZ5x0kScdwPy0uRFzGjF49wD7/PgL5zGoeftj8ceeyzSJcMxxxyDs846C2eddRb23Xdf+hiFCilUQF2hXNq2bRtuueUW3HTTTR0WOcYYsKsEd1vbIlfP4X9l00cmT9kjSr8UdSPJqu0yW2n9EqnJiKn+ixlKmelETa8CxsBcd1ahritWul4BXZ6xu3B9dCU4Kce9g1db8BbWceRLD8KDDz7Yse3II4/Eueeei+c///mFBa9QZhVQVyi1du/ejZtuugk33ngj7rvvvo6lVba7DGdbDe72Klgj9sBN6xtG9e+arQLn3U4gOxug2IYagAgMtqs0ZHhgGqNvI/53qayEaatmUNoRq0hQAkBC8ExbGUInItCJ+aWyFFLnYfP+kLXPblTPiIlXPHgLp3HMXx+C+++/v+MH8QknnIBzzz0XZ511FgYHB3ONU+iZpQLqCpHUaDRw++2344YbbsDtt9+OVqsVbmOjZTjbqnC31dQgJ2TjAW8juWpWZf26dKsgetoxNHm7pD5vFNmoqZrjAUnNsRdtlyonnu4ak+Who7Qjjq2Du4Q1MW9gQwoLXXxeqeFu5oOK97tw7WSFRRv58gzi5WCJ9shXHNzhulKpVPBXf/VXOPfcc3HqqacWyY4LGVVAXSGlOOdYuXIlbrjhBtx4440YGxsLt7HxEpyttQDk4kurNnzE4n2oisN3Wza+Hnlu/r14uEmALmyaxVrX4/QTCVhTXBfk5MjUQA1D3jtSW+LYCYiiJh/uwrKrCjQzg91MB7G/5xDYqT7fhfQpvNqCt3gaB561CGvWrAnfHxgYwFlnnYXzzz8fxx13XODiUqhQTAXUFUpow4YNuP7663HDDTd0RG6h7sDdWoOzpQ/OZMzvx6afGCU1STeBrhvpSPKoiykcSKlGKEpbz9TiAylcVjVcE+QkydSUKtRlT0o73yONGy57mnz+qMvC8fbE8VXKDXadnbX/t7wca6u/bvnniu5FLrzF0xh5Tj+2bt0ablu6dCnOP/98nH/++UWARaEOFVBXCABQr9fx+9//Htdeey3uueeemQ0eC5ZWt9TAdleSUas2b6RpnPNtQ53tr0Ga42IzojbFA4YSZMA9jw4vlHmKShw9lgh+IO0zEUyYw+iWTJvBB2lALY1fIKlLgq+fTbATmq0AijliDePg4POa8BZPoXYIw+TkJIDA/+6kk07CBRdcgDPOOAOVSmWWZ1potlVA3TNcq1evxi9/+UvccMMNGB0dBdCOXN1RhrulBmd7DczvIshF+zNZ5mz/Mu5G8mHRPu34afJn5R1XNDdZ6aiO+FSLSpoABEvqWJqNWLeMVjtK39RgAbG/tsAurfUtjU8gqVuNn18WoIsCm85aaRvshGylM0l7vDO2444Pf2Edx7xmOe69997w/Xnz5uG8887DBRdcgBUrVtDmXGivUwF1z0BNTU3h5ptvxi9/+cvOfHJ1B+6mPrib+8wBDyrl+QVMLX7ebR+1bgR3mOaRJ4mx7SAD2dIe1adRNuc0gQeWRN0vpZ8dZQxqsEAaXzyT8iynyj6bcS7W/eqoSai7BXZCFpMQB/0Rj3nGdrzWgrd4CiPP7VyePfLII/HKV74Sz3/+81Gr1UwzL7QXqYC6Z5BWr16Na665Br/5zW8wMTEBAHBdF3xLCc6m/qBMV/xqsL28qtxGLHjerSjSXlrKTNF0sxloQHHA14FFdO46q0uXwE5rgdP4oSWCLUzjUK1Vlq1kuZdTo5+3YDlMJJ/OIx2wRa+lboOdEMWSnhgz57Gnnp9oO86D5dn5DZz5/hNw6623otlsAgAGBwdxwQUX4BWveAUOPPBAwg4U2tNVQN1eLs/z8Mc//hE//elPO33lply4m/vgbukDa4plsZTLmzYtSbbzQtnob7YTCtsYk9INNdkuxUeL81S1W22J7B9I6Ccv1IXjEYI32p2Z2wQd0trZDOAgDUf0LaSImMevZ2AnRPF9DcckuCvYPEexH8K85MPbdwr7nDaEjRs3hu+feOKJeOUrX4nTTjsNpRQJrgvtWSqgbi/V7t27cd111+HnP/85Nm3aBCCoO4gtZbib+uVBDxTZBh1qFvluRNfm7adb/ZlkMdggTDSsAx7mBA9uCvgRoI7UV4oxqVUlAHtgR4E6m+PNdGiI8G2XOjOOazN4g9hXeD6p41JKhxG+W6xU6k6FEO2g9iKeSe0kKxwcHP6CBk5++1G4/fbbw+TGixcvxstf/nK8/OUvx4IFC8zjF9qjVEDdXqZVq1bhpz/9KX7zm9+g0WgEbzYZ3M39cDf2J33l0soCOKWqAWroy9q8ulmzlbKsSl16JdZEpci47NoGK22bcKN52ZXUV5oxJe2pyrsUaxvqTOMlO1bk4hP1a01j21yGJfSlPKd5AY9YvzVaem1OAR4lSIQaSBJbku3YVPXgLZnE0LEV7Nq1C0CQ2PiFL3whLrzwQixfvlzdb6E9SgXU7QXinOOOO+7A97///Y5oKDZegruhH862Ghi38Ks8h5VOWq3A1hJK1nnlufSpgQ2UoAtqYIbshp4B7EhBBApYSrSjBEZADkHxhztpPJkygp2sf2rgRKoyXgZlDtaQnPso1CnnYTFggtIX+bxmBTzCd1FWT7fncAck9zFPgAglACkOdw7gL5rGilfsj4cffjh8/5RTTsFrXvManHjiiUVS4z1cBdTtwWo2m/jtb3+LH/zgB1i9ejWAduDDplJglRstB0uss5ECRLzUVSqwYaVLC3S2K0SkDeqgZqTvUsCBMZDAAEgdD0LdvrfnbOwrzXgapVmC1Y1DTXViC+pspFYJa9tKgC4xF5uBG8S+lJGyhiV/ksQ9hGA1l4EdaS7dUHT/KAEilDbUACbGgsCKoSZOfe8xuPXWW8Ol2eXLl+Oiiy7CueeeW+S820NVQN0eqImJCfzyl7/Ej3/845kw9hYL0pFskCyx9rKqAbVKQa+BzpaoYEhZmqW0sRh0QDkvJFiJ1P1VilCUnjJer6AujcjHyZI/INVqp4O6cD69DNwgWFDJATom+R7pPmcroMaqqEm7TffMjL62vNaCt98kKodyTE1NAQBGRkbwN3/zN/jrv/5rDA0Npe6z0OypgLo9SNu2bcNPfvIT/OIXv8D4+HjwZsOBu74f7qY+MC9280sDRTb81gxAZ23Jda5esqIihs3ITmr0G6EPa5BF8Puj9ENOfmwSBR7aYGTjGJBLcDEHvNU0trFRpYE55mosJGsdUgRuEK7zVAmubczL1g8c8cOFcg+11cYkyg/KHD/guevDWzKFkZNqobFgYGAAf/3Xf40LL7ywCKrYQ1RA3R6gzZs34+qrr8Z1110X5h9iky7c9QNwttTAeMqKD9QlQGruuHYfuZdaTXOai5dqdJ5p622Sx8gBdpRlMMKyImnZNWJVpC6pKq+ZlBactMlw8xwLUs6+SBst2BH2QTW/zm4k12H8sx3nUBFokTZoIyfYKYMm8szPkktCh0Wa4iaRp028nUoU14+cKzOccfiLpnHgi0ZCt55KpYKXvexluPjii4tas3NcBdTNYW3cuBHf/e538etf/xqt9g2GjZYDmNueoQ4r9SZArewQ6yNxw00LcrL5zNXLk3LMrI2VEeooDuuEIAApYMXPCyE4glLRIetyHLm6Q4bPJY4bpSKApE0C7gj7IVN8jtLPyMYnBExIA5rMEzK3kfVNCZYgzDFoxuNvkOZk6lvqamAr+ClL5Zo8fropxbkPf6SOw/5mPzzyyCMAAp/tF73oRXj961+PAw44wMo4heyqgLo5qPXr1+Oqq67C9ddfD084cO+qoLRuAM5oNf2XmOrMr3pYpQC6XDAXnc9cvCxNFs24ZgvsNG0p9UrDNpQUJhqfP0o/pDx5Mx2ax8qYBDfNcdGeC8I5COGOsD86kZaU22NQ0pvkDtpIYbXLFCQR6V+7KpBiPsopRH+gqnxI01rN8rRRtY8qSwUMk0S1iuEGjnnj8jCBvYC7N77xjdh///3tjFXIigqom0PauHEjrrzyStxwww0zMLezgtLTg3BGI5FI1MoP1BuE6SH1TL5ETMeYWuzeylzyZ6qnZP8nJf21lGQ4VTUL01g5qxpQj42N88BbTdI+mUT1AaQkIyYFOJknZG5DEeEYk+ZrYz5z7f5nw4ePqti++0MNnPCOw3HnnXcCCODuggsuwBvf+MZiWXaOqIC6OaDt27fju9/9Lv7f//t/4TKrs6MC9+lBOGOSsHKqM77JQtcrmLOVSqTXshGdOsegLlXpoTxzofZhyzmeCEhGS5zrgjfN0b3GKEoK2FGiYzPm30tOxwCrrjly0lrVCwrIM4cM/MY6vBauw6AzQpCCjfscJdLVVkYDQz/MdaWWSn+ogePeeij+/Oc/AwDK5TJe+tKX4vWvfz0WL16cf26FMquAulnU2NgYvv/97+MnP/kJpqenAbQtc08NwhlXwByQ7wZkY7mVqj3BN04lauUJHRynSR+Rt64nYdmP1Cbeljp+nn4MTvEkh3hCJYPOj8p951ipFObsUsJdG9iUYEeYV9q0GTbgTgu0Yl8U5yK1FZQS6KCpKhJvnwfuSEuylOCXjk4N99c897voD0VKJY08IizZhudABnfzGjjmTcvCZdlKpYJXvepVeP3rX1+kQpklFVA3C5qensZPfvITfO973wtTk7DRMkprBwOfubiyOOFT/O7iN7JuwJxsLnNdaecvA7u0+cDyQJ3JST9LBQFbVQcIAQTxNiRnfUK/1DQn0fYd5aQ4l4NdDNoScEc4dllyoXXLakeZf6albcN5BSTHQXYeMwTTGANgKNe3rftslvtffAVABnfdyj9qqgYkg7vhBp51yYG4//77AQBDQ0N4/etfj7/5m79BtSp5phXqmgqo66F838f111+Pb3zjG2EeIDZRgrt2AM6OarL6Qx4LkMnvLk26Eops1lSdTWW1LkbBLmuC17Rgl8fqYCnwgtyHrp80DvA5UreopzgTcBCvOpCw2ilgoGPelDQnORLc2rbamSyOuXwVKec2mqtOojxpbzpqzuaw+Bq/m2lTm5hEqQPbzaTylKpAMbjj4PAXNHDgSxeEqVD22WcfvPWtb8ULX/hCuD1MEP5MVgF1PdLdd9+NL3/5y3j88ceDN6adwDK3tdaZmsTk6wbQbjA2kglTNBerPmRVXp8YakZ3yhKp6fN5/YSoUGej2HsvnN5z1H/t6EZRSiq02pnmQPBNIwUuGGQL7Ci+gXkDUEjnt10yTiUbiaqNgTBUn1STTPdf6j1G569LKY9GlcH3mpyoWfwNDn+faSw4vRoaLw455BC85z3vwcknn5x7uoX0KqCuy1q7di2++tWv4rbbbgveaDG46waCcl6ypMHdBrpuLbF2c6w9RRSosxFgYEM2YI3ST4ogBm03hCha/TQI6T+ghrqo/Ho911xMUEcN2DAuL7da5v2xEKVLUdqlcGUfeYNPfI8WtW2pcoW+D8MYFksE5poHzN8L2ZIsdzi8/SbRdyxCN6PTTjsNf/d3f4cDDzww21wLGVVAXZc0NjaGb33rW/j5z38Oz/Pgui74uiAIgrUkNyZKNKpONrOW69RrC+BsX55U651DWH4L++wy2KVZnlV10bY4Gf3ZcgRmpLE2qR7WWWqn6sZlooi5rzh2jgP4vhbsKFAHaPYpErAhA7voMrGuDq/YlgfsTDn1WDnig5gRQkmWwLZlKtwXwnWn7FdYuSg5Fi1VrdBKd3+xEV1vcsVJcY/VXUuqa5GXfLzi82fjZz/7GTzPQ6lUwoUXXog3vvGNGBgYII9diKYC6ixL+M197Wtfw86dOwEAzo4q3NWDcKY0N1cV1KWBOdFPmvZU9WKZda4EWKT1q4vfePMuwVL7MPWZIdgh7htmxcE8Y+WEji4J1SgSn6HknIv+XYlFnMvAznE6tsfhjgKZuqAJYaVj7WtQBnZS37/4Eljsb4oFMjEvQwUMcmBJ7DNxGaEuFiSQ2BfD9SftPx54EPsOkyqUdMOiTqjUknoeXQjmkF1Puh8YAOAP+DjhXYeEOe4WLFiAt7/97Xjxi19c+NtZVAF1FvXoo4/ii1/8Ih588EEAAJt0UXpyHpzdkioQccWhLmtYvW0r3WzAnK1+884jj+9Lr611FAfvNEDX/qyVdBA5ghjCbgn1YjvaZygTloA6oSjcOU5iWxTsskAdMLN/qmCNKCzJ2gCdD1XZAzYt2Elr1ra3x+FTNVf5EITghagkkZ/SfTFch4mxZBGlhvrFtsqRGRW999i01kVlIeVUB9QboE7shzd/Gvu9aADr1q0DABx55JH48Ic/jCOOOCLTHAp1qoA6CxodHcX//b//F7/4xS+CaDmPwX1qEO7Gtt9cmsoONpIKZ/lcmn7S9pVljF5elnmgUnXD7aW1zkJuOl0EJCVRbMdYiu15nPtD6LFR9UAi5jA11AEzYBeHuvY2AXZZoQ4I9lEJbOJ69DzSEpjqAUsFOynQRbar5inmSgW7tFa6jj5U+0KIQjeWM2x/r3MnNs4rQuWW9mTM/ahkIWkyK5XMUAeE+8IZh7dkArVjPExMTMBxHLzyla/E2972NgwODuaayzNdBdTlEOccv/3tb/Hf//3f2LVrFwDA2VpDac0QWCO6jEU8xHlBylbZsLx9zIUxejEH3c3WBtRR+snpxG50PqdAHWWcHiyv5InSNEKdSW3oMz7YTOfLYQnrVxpxzsENgRyAGe5MtVlZuaScJwXqSDJUVSABqkGm80UZw8b3wygbAXRzQbF7Ji97eN7HjsVvf/tbAMDIyAje97734fnPf36u78EzWQXUZdTGjRvxhS98IfQPYJMllJ6Y11mjVSgvTO1JUGjSbEfN2rRk6pY8qfV5s96sU5RRMvXPSmXlNpM1gpXKJPAzFYvvesWEcgnwPGWbEG4dfQoH7nnq7b7fttRnKFYfDiCqVSiseZwDPlduBwC/0dRWInDayWBNQKON0C2V9XPUHOtUMljqKBZc7Tlrb9d993MBMFXUrAV5fkgyx1x+LK9MJc4U8/eH69j3RX14+umnAQAnnngiPvShD+GAAw7oxiz3ahVQl1KtVgs/+clP8K1vfSso7eUD7rpBuOsHkilKhPJAXS+XTOdCKpRuXY42902XIDqezDkv1Ik+Y58hlVsyyfcAxuRQF/WnU5V8Ep/LCHUdCXC7BHXR6MwobEkjYsW5UICd0a9PQJ1kvMhAitmHEwvbxaFJAN3MHOR9+Y320qmiCoETyfCfBezCfVfAZxRsuwV2Hb5chvNC8ccM2yjuBV0Hu7TJi/P68XYL7kwlzjRQyhmHt/8o3BVNNBoNVKtVvO1tb8OrX/3qIpAihQqoS6FVq1bhs5/9LB599FEAANtdRumJYX1UK5AN6vKAhq055JlP2v5tjZFmTFuBI6ZyazatdZKyVKkfKPGbbRzsCAESifYpoS5NmhGqEn1GlghlFrQEVEbPgwTsjBG4cagDkmCX+lxHAhdiUBeM39lfCHQdb84kqnUkJZvSgl3HPsvmqDnOmWWIgNXOMcP24M3I9dGLZVjTfcMUGZvF5cM23JnKm5n8A30PvNbCse9chr/85S8AgKOOOgof/ehHsWzZMnvz3ItVQB1BrVYLV199Na688kp4nge0GEprhuBs7uusBqFSGqCarZQje5uVrlv7o4M6Vck1W9Y6TRF58gNFYb0Jl1EJqRsSlr2UUKddAs2hMMFw2zoX9cnRLYuGy7+y8xCBO22uPBnQCUU/l3a5PQJNMqibmUPQRgp1QGiVlUEdQAc76fUXn6PkOOUGu8h1qwzQMEB3lu3BBq4d1/h5qlTXjylK1UaOTFtwZypvRgn68L2gKsW+U6ge72NiYgLlchlvfvOb8drXvhYlC76Ue7MKqDNozZo1uOyyy/DII48AAJztVZSemAfWJJqD0/jD2YaNNPPYG6x03R4jT/8WwM7oF2SSxs+Kua4x0arS967dhgJ2Wr83C1CncuA3+roFE5C/3wY7rY8ZY2qoA4Kx8zi7t/39VFAHBGCnhLp2/yqoA2hgp7wGxfw0x8gG2Gkjf3Xnh+B/amzD+eyBHWB+RuStaGMD7AiWOFKbtnjFw3M/sAK33347AGDFihX4+Mc/jkMPPTTvTPdaFVCnkOd5+PGPf4xvfOMbaDQagXXuyXnJWq0m7QmRnLNtpesm0M2V+eeAOkp5JKWVTUh3wzZBnWhmdDbPF6mrhTpKuh9J3rRwfnmgDgiAxSAdFDDGwGpV+BNTyv6Z64I3Guq5GaAODtNGnTLX1QdY1OtdD2jJC3Z5S8rlDi4y1BjOneakFz9uTfeSvHBHscalGJ+Dw188jf6TgvRh5XIZ73jHO3DhhRfCkaUYeoargDqJNm7ciM985jO4//77AQDOjgpKTwx3pimharYiOSnj2wCVbgaB5Om/G36MWccRN7kM0EMFuuA/xVwIQKf9vGiqy2VHeZhlhTpqHjwVsJTbFkY/WB6XghNzwGrVYBlVZe0y1Y3VLNMyxsD6+gDPgz81Le2blUra+YXjq86TyP2mADtxLSkDLAy59oz1cw3niVxP1ZBIW3kdivdFkIahtFxmuDPkXTQFGBnV7R+ipkhaYioZpWVXjGta6jXl+IwdB172cOIHDw/rqJ9wwgn4+Mc/jn322Uc732eaCqiL6Xe/+x0+//nPBwWIPYbS6hS+czLNRjQnZXxblqduw1Pa/rsdENLNEmKSMkxpluxI5ZA6BugMBsgEdVGg7AbUpalWIYOVcmTJ2J95WCTASUBdu50U7IhQBySBIYQ6QA520WS+ivl1jC87V9FKDYqasaIv2bEyVcYwRitrzhUZ6GR9SbYn5hf/OxrpnNWXTiXZ9zSi3FUnuu1bbIqiTZEfUAp2uuwA8f5NUbxxsAOHv18dpaPrmJ6exuDgID784Q/jBS94gXbOzyQVUNfW1NQU/uu//gu/+tWvAABstIzyY8Ng9ZxOmbYPb9qEjGkiMXsBUGksh92GS5lsQl2OtANpgW7mrcicUgCd9POyj8Vqw3Z8zjbUpawp2wEqZYn/X7yWaxSeolDXbpsAuxRQB3TCQgfUAUmwi1doiM1NOnb0XMlKWsVKi3VOthPs4jVs4/sjTRfjGB7eph8cirbS/nJAXdhFitQnRhnqGc8psAPM9y1TKpJoV6a6r6YMAaZUJ7JjFQNRv9bCYZcsxMMPPwwAeOELX4gPfehD6O/v1879maBiQRrAY489hre//e341a9+BcYY3HUDKD8wkh/obIqxfECn+zznNJjJk+HbNEZWoLM9d6p/YuYoZUJAREag61AGoEul+EPWxpxnOtP3ZdouAzppP5oqEk4AeaxC7EvWffsYC3+6DrkunL5aeyxJyS3d3MI5GiCzrLl/cR/c058PE+RQ/eNSA138PdmPl+jcZNey5L3Ap1CzRB7ZbhSltmxH54ZrttuK3idl9zjfI0eoZqornOd+BSTm7EyX8MS3duHNb34zHMfBDTfcgLe//e144okn9P08A/SMttRxzvGzn/0MX/nKV9BsNoG6g/Jjw3BG1RFiGQbJ30dWmNJ9ieNt0o5ty+eumwEOeSE0j3Jkfmeuq38A5KlpaQA6kqVO5zOVw1pHKVmm/bzr6IEubqkL+w3KWiXAK/I53mhqIUoLAzpA4z78qWn1Q7E9Ny3A+Vy7nTdbeuf+HAEkpDJzWaAuOrauookJfHMEReQ9Ltr9zlvjO48oUbQ5SrTxVqs7zxzx2di91R+qY/7zHWzduhWVSgUf+MAH8NKXvvQZW2bsGQt1U1NTuPzyy8Oac872KkqrhsFaFn9NdTuFBmXsbn25KJ83aTaAzsZxocjkBKySJhcdgLDou07a1BQEK13WtCN5oI45LLCuZI2OpNRuVUFd2Icu3YOvPK6sDW06x/EgCEOdMkZbK5VzPWAYoI4xpplbUMfVn1JE5TIHTqWsTZVivJ5McGQoQ8dbmjQt7fkru240clmlTTVwdSJF2pqAtluVH7oNdqZ7gWWw4yUPJ7x/Oe644w4AwLnnnouPfOQjz8jl2Gck1D311FP4p3/6J6xevRrggLt6CO7G/uzBECp1K5Ewdcys4JI3CIOqvFU00vQd77/bEblZ/OkALdSFCWCzQl17n/NAnWn8LGAXAh2QDeooQCeksdYBkC/lRT4rXXqKWOIS26NLr4rEzqHvnuKa5Y2G2q8u2q9ie5gcWerU7gRLzJzLwa4NdYA6sXHu/ImA8poRuRGVYCd8UBVgJ/wSs0b05rLWUaNsDVHdSrgS95is4GfyRyb2L/Wxo0YA513JidxnOTi8/ceBQyfheR4OPPBAfOYzn3nGVaJ4xvnU3XzzzXjHO94RAF3dQfmBEZQ2Dux9QJd17F6ZrLsJdDJR+s9ruVT269P9yRRJfKPvZcr1NceXIhhjwXJJ2jxoaYAOkFvjoudd9wB2nMQDLAp05rFzWL65bwZebQ675Nw7xBicaCAH0AF0ADpeh01s1eQ0+JxpE18Deksn7PkHplG0Cod+ed7gb+e4encO03aTTPeGLD52kUhrvX+s4Zmj8pkWn4n4AjIwlDYMwbl3PhYvXox169bhne98J2699Vbt/Pc2PWMsdZ7n4etf/zq+//3vAwDY7jLKj86nV4ZIq7SHtRswl8ZSlzeqNq3SRtFm7Z9ybNLCnM3cdNLxOq11UqfuNNY6ybmdK9Y6YaVLlPSiPmTTQh0gjYLtENFapwK68NjLAiSAmX3jitQpkWs3b2qTxHmOWuyEla5j8hGLXQzqwi4ic8699Cr90Mz5kcFch9VOFoUasdrJcv6lierNY6mLj0XqzxQFbEoHksZq1+10J4SSg9rxpQPQonh5ycPR79wf99xzDwDgzW9+cxhUsbdr799DAJOTk/jEJz4RAp37dD/KK0fmBtDlsY7pIj+pQNdL65xsHt38TTGb1jkgG9DFu8hbdmgOW+hkQJdKWYAO6LTWyc5/SmtdXMZIwD3NYhfvIkdEMEkmUNoDrXZCVq12qtQgVKudygIWtYKl7J+3WjM/elS5DG1Z7jRRvKzl4sGvbMKrXvUqAMCVV16JT3ziE5iYmFD3vZdor7fUbdy4ER/96EeD5VYfKD02D+62vu4+7GzlTMszBgXqZnOpd7bV7chcG9dXnrJaMD+8ZttaxyoVJdAZrXVZgS4qEzAbjo8WRqN+gjL5HFySGy4qZckwwHhtiLJjWpnuEYbAElNKlKBNjh8l3NcCHG819Uu25ZL2GFJqEdu21EVFstqZarXqAI5itUsZkJC6fxNg5rXcEeTtMwXnmGk0Gg0cdNBB+OxnP4ulS5fm7neuaq+21N1///145zvfGQBdw0H5/hEz0HXbemQSZfy81qW8Oev2BuU5hhTr5iwfQ1NxdtPDSFs/0wAMJKArlbVQZAIm3fiMMW2N07CNyBOXQYwxoKpJfeRzQGcxkuWmi49hspgN6LcbZbhGKdCm/7zhR4Uujx7y++vZsNiZrIJ5lp/N0G2od+yo0wuF2/PcpxjTgxul/7zRuxZ+HLtb+sD/NIjFixfjqaeewrve9S6sXLkyd79zVXst1N1www249NJLsWvXLrDxEir3jsAZ13xBTWZdqrJacagwZ/oSPpOtbzZkOoY2kojm/bwBmKwBnWScjrxkkn6oQBeMY8rXp08xorW0aWqcMsYA0xKiARrRV6MFdajAwvO0YMdKJSSqUIQbnQDoxP95ZFjqzQt2JpnAzhhkpNues8JJ2KyLYEeS0Zpl2s+MwQhC0cTEWfrXfZ5yDiy4CDnjZey+luOII47A7t27cemll+Kmm27K1edc1V4HdZxzXH311fj0pz+NVqsFZ1sV5ftHwBqqvGFz0DJncmCVKS/MFUBHsHBa+LrYAjpFUtcOoJP6zOSz0Ok+TwqQSKkEmDlsxoonAbuOCFoJ2HUAncpaRwE6IZ21jiKDxU4HduL/BNhRll6jil8n0QCNHoEdCe7ybM+g6DG0AXZ5l6Izw61QFqtd9DMyMIveD/LAHUU54Y41Xaz+n504/fTT0Wg08MlPfhJXX3019jYPtL0K6jzPw//5P/8HV1xxBYAgIKL0yDCYH7kQolGRpou426I68nfLOlfA3Iy6DXRxCx+lv/hN2rKFLg6F0odOe0wl0KU8LvGHYypgiAKdrG8BdLHjLMBOaqHLuQwLx7AMCyStdfHjHLP4SdOmCLCTQdwsWOzylhiTaS6CXVSsVNbCHaXMWE+sdtqExl222okxdLKxJJvxmcd8hrs++zhe/epXAwCuuOIKfP7zn4eX97zMIe01gRL1eh2f+cxncPPNNwMA3CcHUdowkL6jubB8SU1w2825znGfMavKCnTcpx1H3eeNc3PUbZkTBiuYqkhoKzmA4PtDKQVFXHaVj2GwIHKuBjrHmYmilT1U21CiXHblHHxqOnidxkoXlc8BQ+ADBLTIjrXPZ6IGFZY7zjn4dB3OoOK+JkqO5fFFa997pAEGEUDOC3XaKhCGsmbiWjQlJM67/Kr1G2019UEcxCCl3BUn8mynPgNMlSfyjJEn9RN1DIVa+02Cr5iA7/s455xz8IlPfAKVvMFXc0B7BdRNTEzgYx/7GO699952hOsw3G2xmy/lAo22y6JeHcpezPGZAHWU42iqRUq9aak+b0NGS67BmpazdJkqYTL58zBDHRxHH43ptHOu6fZVNwbn8pxxkfmxkQXgE5PqPihgZ/LDM6XToNRa1eyHUX7bKmeqcmBQ3iAJU2RybosXkAvqqOq6Zc6GbFcGytJ/L7JBSNp4C6fBnj2JZrOJk046CZ/+9KfRZwhQmuva45dfx8bG8KEPfSgAuhZD+cEF2YEuj3oBOXlN59Qv12xHB1tJB0KIAO62DOH8JgsYZTnH+JAlpEUxAlfaKg+x8Z1KWQttrFzS1101yXXBBgayAx0AOC6c4XmZp8AYAyu5YP2aB0K1CuTNYWeC66ahmLrp++3oa6kCAKuU9W0cZoY2A7zmzRVH+e4Yl0p1NWdB8JPjvvm7k3Mp0sY9wphX0TgJQu45k7pdDYlz6XZ3ew24ewB9fX2466678KEPfQijo6P55jLL2qOhbteuXbj00kvx8MMPA02G8gML4OyOmE/Trr1nedD3yi8tL8zZ+LVEWmrMCUt50rEIOW1YUrWzBXS6MUxAZ7jZk6wE4kaqGivnHDrmYVjmkc5XUZFAKRXYifdl210XbHAggCHVw8kEdMwB668BriMFO+Y6wKIRcNcBG0gWCGeka3ImeCMz2AlQokB2zh81xhyAzAxuqu3htaIAN5GKhPvcCtxJ328vnVLAjgJ32jlQwM4C3Bkmof8BWSp1H+5MsvEsNWYvSG53dlfRur0PQ0NDePDBB/G+970P27dvzzePWdQeC3Xbt2/H+9//fjz++ONBDroHRuBMzES1dd0S00uYMwGdTjasc5R+5oJ1jZJNPe08syx/pIApWQBC/AatAiZbc1CNkWr5KQ52EqCTWeuMFp04yEX/FkAXbtOAnUoC6MI+O8FOAJ24blRgN/MBJrfWlaM/NnOAnWq7sNLF5pLq75gSYBcvKyYDu/h1ldNiBxADejSiWOxsWO20Yzhs77XaxeedO8LfEtyZtkfaOONlTN9SwcKFC7F69WpceumleyzY7ZFQt2XLFrz//e/HmjVrgLqD8soROJOl3sAcMDd853ppnUsLdGnPAeW8mcagwFy3rw0CVFq10MXHlr3OMAflPKiAq7HQRcFO+sCPQluWJdk42OmsdHGgC9/XX2tRsJNa6eJgJ4uOTQt20mO151nspNeVb6gegllYjpVc67mXYxH77skgLm9kKPYSqx3QfatdrI0zWcLYDS722WcfrF27Fpdeeil27NiRbw6zoD0O6nbs2IEPfvCDWLduHTDtorJyEZypUn5LE0VzwTpno+KEaQxqP91cbhV9U5dbs4xhQ8wh11vMA3ThNssWOtkYmR3ECQERYVOtT5ajBzoR7dqvsZgB5mVXZf8MzvC8GSudRCHYaa5f1t9HAy/DXIzbZVa62FyMS1IasUolaaWLfT7rUmyHfK7dDyrYkb5HGbeL5VgdvM2V5Vhj1DrBamcF7vLI5pKsKaAMAKuXsOvXwOLFi7F27Vp84AMf2OPAbo+Cut27d3cC3YMLwaYp+b72oEjNPEutNsYQ48z2cis16KMXQJc36ScIN3ISiOcDOpIsRMpq/egcB6yWM2EvYwHQKY4pK7nAwvn6LkolYIEmMKLkAvss0l4/3HROGQMbHNRsJ1jrAHMePApI6yCZ62EKCKDMlDbHWJqNAnYGUcDOWLPYYH1krmtMNmycA2U51nTuCWBnPB6E76uVSGLDGLnvTZyb703G7QSw4z5YvYTd17MQ7PY0i90eA3Xj4+P4yEc+EtRxrTuoPLjALtBpf8kSLpY88MDaX3DVhW9rKdWWZc2W5Uu1T2kskaobX09SAdDHUN18uc/Jv8pzRaEa5mHaFmuo3qabo+OE5a+UINK2cCkTAgugM8l1gflyaGOlEvjwkPk6djUWQ87Bmi01lDltYGMMrKqBCOZ0+tvFJbaZLLA6UNEFmkSktZJ5XkcuPdU42pq9QHB95L2OCdYf47VMcUHIAXbU76oW7Ij3WRLYmRKX5wU7inWx2z86uU9b9jU+X3ywKScEuzVr1uAjH/kIxsbG0s93FrRHQN3k5CT+4R/+AY8++ijQdFB+cARs2pR93IbZlhCqbQHm9DnALC2l9iKQIa9sLC0TLWe5lbLag7yLTqDr+i9m01wkr1NJV/GhDXRasXZ1h/Yv+wTYxYFOMk/mOOBD7eAJCdiFQNeGCy6zGjIGLkDMYUkYEkAnxqfslw7sAD3YCekeig4z+78B0n2JwpwS7MS+qsAutJwTwK4930QXaa5/1b058h4J7EwuETktdhTZWOYkRQoTwK7rcEd0VdGKAm6mNoRnDZtysOt/OUZGRrBq1Sp87GMfQ92Uh3IOaM5DXavVwj//8z9j5cqVQR66lQsCHzqVegFzgBWLlxHmZss6J2tvow+dKFY7CtB1S9G+M46TAKf4zY9wvrthrcsEcfFjkBLoEta6KNDJpLLQReYeAl10HrI5RY9hHOwE0MXaJGAofsyi+yfzCcwCdjLQSwt2MutcSotd4kFvw2IH5LfYAcb7dOLalt1z04KdjRrQ0nHSR27HNSesdgDNatcruNPJ8Jx1pksYu5FhYGAA999/Pz75yU+iZSrHOMua01DHOcfnPvc5/OlPfwK8ILGwM6n55WTD56xHS63SFBIivUWeJWPTAy2tepUexrR9NoGOOg5xDrol115b67TLwuYPB/8barKqFIKdCuii1jodiPhcDnTic21rXWili0uAnQzo4hJWOpnEQ1k1V8oxEiCns9zZsthpfOk63pddC1Gwk303U4JdruteXDeKezfJikUAu15Z7fIq1XdXcc+yBnazvSQrtudYknUmymjcUUWlUsFtt92G//zP/4Svq24zy5rTZcK+9a1v4corrwQ4UHp4PtydCj8bK9ExFP+8HDXu2uNo6wlS/at6kbbFJLG/vQjsoGguHBOAcPMwlxaj3NjzpnigyGgVZA4J6PT+Xu0UJBRfGVX/rgM+b9B8LbKc/lyeD1ZvkHKr6ebB65K6qlmku1eYrGliOtOEsma6/TVVJPF9UB4xxkAN17UCGlby5uWNbiXKuL95n1nkiRCC5vKUSxTqBQDmeL56I9Pgx4zB8zxccskleOc735l/Pl3QnLXUXXvttQHQASg9Ma97QGcS94MLwRhFRFkGVR9uSkH0nkhYxfKWG+tlLj9KFK2NNDAU5TyHJqDjPrfyUGFlvS8n6cHEfWONTn1qEhZYpHQPJ4eBDQ2CDWjKb7kueJ8GHEsu6gfMR3OJxEonxBh4VWOJYQz+vD74CzR9OAy8rwpe0wVGMHP0LzWYwFBX2BiNSpiLFtgF0JusFoY8dCagC+eSMx0Jc5j5ejUsT1LAkmIZpPRjTA9kmCslipeWsJhwLZp+2FGSL5ugjbB0bP4hSlh5Ujwv3B01sIeDaParr74av/71r/X9zJLmJNTddddd+PznPw8AcNcNwN1MiHbrhigF2ynSpUUQD+k0MNAtYLIBa73K5QfQvpwmRefbkxyE6tJiFKAzLZuIm5o2H52F1BId81JZhNpAJ90ugE4np53rTXOeWaUMf/F8cMcBr0keYCUX9X0HwR3ALzlo7iNJMcIY/GoZnAB2vOzCWzQsnWsYXMGYHOwErDkamIr78uWUCuwErOnATnzWBIcA5GAXt9JZsC4ry35FciwaIUUFVNH3LfzAVro2tMchJSumpKsxgQ5h6ZgEdhb8t0lgR4E7wxjW4C4md2sf3vjGNwIALr/88qDm/BzTnIO69evX41Of+hQ8z4OzpQb3KU2ep24ptM5ZSnqoHGaOWOcA+b7GgxR6Ze2iKAvQxd/rGhynP6epgE4xTqL0l+TG1gF0iqUzK8tHMQsdZSmw8/MxoHOchLUuBLp2mwTYRYAOADiTgF0b6MJ5ysCOMfj9EUgrOZ1gFwU6zf4k9o+Sry+LdSMGClksdvHPJPqQLbtLwY5r/6ZY6Uhl80yfiR9HylJuF8Guow0B7EhWO4OeiVY7Etxpx0k+937wzutxzjnnoNVq4R//8R/x9NNP6/voseYU1E1OTuLjH/84xsbGwMbKKK0aBkMPfaVswRwgv1i4H37J5wzQ5YW1Xlq5hPIkLY62S/O+TcWsdZmALtElbck1oRjYZQW6DmhTLLmGbUxWOpWFLgJ2caALx4iAHWcsBLpwO8PMZ2JAN9MmAnYC6OJzKTnwF2qSF0etdapjGgc7TTutog9ABSB0lGeTfH9IS7FpLHY6XzrLFjuT9U4pz6Mtx4qXGX365spyLNAJdpmPW8oUWqr7mzWrXY+XZBkY/njZQzjyyCMxOjqKj370oxgfH9d/voeaM4ESnHP80z/9E37/+98DDQeV+xaCNSim5zmy1GdLNpIld2O8uSDKPnd5uTxdPwbnf861QEcCf+YYb1rc5/ol17YLQG4LHXPM5aIqZS3QMdcB+mp6C7fDwAf7EkAX9uH7YC2/w0rXsZ0DTstHeeuEFOo65Bpu+C0fzsS0ejvnYA19zVD4HLxBCJ4wwZBvhhTu+cbAFtJcCOJe/tQZxrJdnmfFikWRleAkikWNsM/GPiiRujZSm4gAJN1cCJZV47H1PTvjGCGenkaMlz0MvwTYunUrzjzzTHz605/OlAXAtuaMpe473/lOAHQ+UH54Pg3oeilrjvSESKJejNPLudiQjcgnkzTpZjrUg3JtYSS0hbHMv4gNEYxBJ3pIBcGSE89Nl0G8WsbkikWo76P2s/X7yhh91nwp0AGBta5VczG+Yr56nLKDyYMHMLVEPQ5ngF8zJx6WJjiOipCGhDlOUP5M10fZ/CAnpcww5LGzJgpsmVKNtGvf6oehPKgN+e4ofs+U/aFUwzAtxxJ85EgBHQaXCOa6Vp4RNDg0HDvC/Z+3WundPOJKkcKLNV3s+q2PcrmMW2+9FT/4wQ/yjW1JcwLq7r77bnzrW98CEES6OuOEPEsU2c6xlucB26sAAupy6lwBOso5El9oSgi/ri/DNppTcorlZtWNyrCkQ09t48y0N0l3YxWfVyb+JRx3cexUkZAsAi6KfWOuAwgAkhxfXi1jctl8wAmASiZedTG2rB9ehaE+In/wcZehMc+FV2GYPGhAtUfgDoNfYZjaNxl5yxngV1xwl6G1UOP3W3IB18kPdu2ExlKwE/5tjOnrxLpuAEm6tEpe2yKSB+zEXDWQz1tt66UuerPcLilHjcTWbtZ8Rwx57tKMQ6poQ/iBZMMaRwnE0IGQNg9hSpGqVeiOXZqSjDaSAxPZwRkv433vex8A4Otf//qcCJyYdajbuXMn/u3f/g2cczib++BusRTpOpesTN2AOUogQNa59BLoTGNaSU4Z+YIqEjaTnLHzBlpQsrlTK03EHgqZl4ZMn4s/fGQPI9ftXHaIg50AuujD2Zc487cTAGslgh5chsbiTtgSQCcsdH4JqC/otEwJoBOSgR0vO5hc2h/5jH5KSrCLAlgOsGNRwFKBnYhmdRw92LXHkYFdx0M3L9gBIdgZLbiS70QIdIAa7Ail+qL7REpCnBXsspQNJIAdxWpn6lf6w7HZucRuBCFLRgnpXOLv2QhQsWG1A0jPwi+96mqcd9558DwPn/rUp7B9+/b84+bQrEKd7/u47LLLsH37drBJF6UnNY7HKsUPum3rXB6pvgizBXkU65zseHZDlH6zAh0FFiPbU1no0sqQggSYualpLXTR8bOWKZKUe0oo2jfFchcHurDv9v7KgC7enQroIvscWunCDwF+aQbs4kAXTqPMQrCLA51QFOxCoItMhbud1jphpeuYqsliB2QCOyYrORYFO0kUqhTs4te4wWIXdJQB7CRzjVvtQitdVPFI7vg+WbLYBU0M36WYJU0KVhTw6MZyrKR9r5Zjg0Y9tNpZUC+sdgwMt/zrfVi+fDl27NiBz3zmM7NacWJWoe5HP/oR7rzzTsBnKD06H8zP66it+PxsQF6ei5863zSJdfeE5VaxTRf1lAZoTNeDAejCbbkTMRMfNCmWXJV9mCRupqblKOKSq9Yx2AR0vme20HHeseza2X8M7BRT9ssM04vKUqALh3GYFOjCPtrLsDKgC/uIgp3K/y0t2Kmgqg12TPF9Yo4DVmsnbFdd4xGwUz5kbVjsxHwpFjvuK4NtOsCOUK5PBw42/OxCy7tpLpTlWIN6vRyrhSFLRolcy7FpxhH7lLciiQ7sfAdP/3QM1WoVf/7zn/HTn/4031g5NGtQ99hjj+GKK64AAJSeHFLXdKUuF6YIsc6lXgCUTUvenhTdSlVe3zqxnVIMvFfHj/TL33Tt+bQblzFCktCHCegcJ0iRobOuOC74YL/2XPFaBeOHL1DfqRjQHHCx5QS9lUzlgyfU7GfY8LwhKdAJeTWG3YerffCAAOy8EX0blFx4iwyrEg4Dhgz9OA5gyI9nikAN2hCsOIR+bAVY6HLXkS12hDbU6hBGZbWcx/uw4WdnIVkxAEIqEeK90cI+5f2xm6qNsQ/1deVMlfCe97wHAHDFFVdg9erV+cfLoFmBumaziX//938PEgxvr8LZrCgBZCU9BdHqYEt54dImRFhLzWFxSTvn/llJjNu+JnR9hTfzvGlU0lx/eY4xsfoJNV+W8Wbrc3UeMscB61OU9QvbuMD8IcBxwBVWLV6rYPyIBQEoVeTH0Ks4GD3YBdcEdXoVhl0rHOw+VPOgYkCrH9h1mGIuDjA97KBVYxhdri5ZxnwO7jB48xT73857x11HDXaMgVfKwf99GqteuRRcMxWNhcb3wU0pVYjSgp0J6CJ567QWpfZ3xVfMmXNOShzMGAv88gwpdqRLwYo5ZW6TanVB3w/Jz46QdJcWBZ3TLSVNAAplHEp9WdOcu8wDX37193DKKaeg0Wjg05/+NBqW0gOl0axA3VVXXYUnnngCaDooPTEvmWDYVqRoL2GOIt1D22Z0rCkwYK6LUgIr67mN+sqoyvjEfW6yHsNuXH8qJ+1IVK7qpm9KfB3/XCawSwN0JgvdEQvANQ8nr+Jg9CC3XQIMmFqYPN5ehWHsIAbuAl4NUrDzKgyjy5wA7GpysOMMoRXPq0ILdgDkYCeATqwgysCOMfAoiKjALtYmAXacw5+YDF6rwI6SH4/zDssZyWKnUuR7RcmjFgc7KtCJJWXGWAh3CUUj0FtNKdyZfNkS79v6vttajpVVlIm8x0olOdxFwYiUAJiyOmXp2FCekRQY7RIbMDDc86U1GB4exuOPP47/+Z//6co4OvWceh5//HFcddVVAIDSk8NgzdgJsBFYIKPxPA/nvDJZuuaCda6XUbEp/dBI5V4ootwss0aRxveJEjUqE8WSGwUymYVOAnbx/YqDnRIE0/ihZAU6xjqsdVKgY+iw1oVAF7l9+OVOsIsCHRCAWRzsvArD6HJnph8J2HEHqM/rPH8ysGPxYywBu/gysNZiF3YcAzsZpETBTgBd1Fk7DnYZgC58Ow52Kax0HVOOg53kO6Ky2OkkC7Kg1Ds2Wu3izxVCkIWNH5+qfihRo6RKM72w2gWTmT2rnWz+XbLasaaLiTuDfn/wgx/g8ccftz6GTj2Fularhf/4j/9oL7vW4GyP3PD2JOtcGp+5PXG5dQ5JdVNKba1TtI3CjhLoqD8IxLnMk+8NoIOd5SXXTBLWurwWujbYCR86qYWuDXYyoAunUwamR5wE0AlFwS4BdJFxBNj5brDsKvO1i4JdHOjC8QTYsVj92GgbAXZxK13HnAxLse02IdhJ67CmWIpVAF24WYAdFegUxycEO813w280U1vpEuNEwU4Xid4GO+13omf+WzQ/uzm5HGtrOZoSpKbrb5asdu6OPpx99tnwPA+XX345vLxBGinUU6j72c9+FlBr0wmsdOJOaW3ZsbuOkKnb9Aro5lIaF6pIAScWggcA842Rkr+KKtM1aHMZwnDD455n3C+SBYMUeWfop1QCRob1S679Vew+diG4q27TGHSw6VQJiEVUHwZ2nT+hbMMZ0JjHsflsT91P28du+7FyoBPyqsDuQ/VLsX7JwfTSIX2whuPAn2fI0cmYOqo2It7UgFsb7GyUAiMvxZquQcJSrA4wO/rSRSjastgBVu47QT+2UneY52ws4VcqmSHIcdOvJkgH69LKhUyzBHa3Xf4wBgYG8Mgjj+DnP/+59f5V6hnUbdu2baZqxNohsAabORmGtAj0FB+abNSUkku2gK6XsgWOeQMCbIpqfaJERQWNc86H+HlqXj0blTFMvi7tdC06SyerBqlEHJ2jfVtKsGun3+CcA6oHb6kEzJ/XTqGhsJj2VbD7WcPwykCrKp9zY8DB1hM5vAEfk0vl56TVD9RO2Y6ReZNgR41J2/hlDv/gaZQGmpg+WAE3DGj1c3g1YOxgeRMwhL56u1bIgYw7DM155SD1ygK5pY1xgDW9IGikT1MXV1jZVN8PzsHbfnTK6hSOA1atBJHJBplSkDARqKGS7xOjZs2wRVlG5J6nXa4V1j5rEaLU+4+NsShpkXJYMlOL9LywlKvNxliU1DM2xNvPJd8Da7p45zvfCSCoNrFlyxY7YxjUM6i74oorMDk5CTZWhrPZsEwjZAOgiEtUpCVT20CXt789HehM/pMKp/8E0FnKFWf8nDaFR8qbZVawi6dikfqKdObfiz8QQ6ATct1sYBdLlCsFuyjQheN17rsAOl/4vjlJsBNAx8s+OOPwazwBdq1+oHbydlTLLTDGMTwwlQA7v8zhHTQNxoJrplRrJcGuDXScBVY9vyoBO4aOvHgysBNAh3aQBXeTYBcCnZAC7FgcVmR+lBOTM+/LqlO0gS7okKnBLuxDnVuuA+gUyaepQBf2qVo6TZOehPtSsIsv3+YCu+i9Jw/YxX1jLbRRgl10fxX7TlqtoNwPo+9bKPulVdqxbI1Lke/hS6/+Po4++mhMTU3hK1/5Sk+G7QnU3X///bj++usBDpSelES7xmVjOTGNdY6U02wOWegogRe28vvZjMrNOQ73eZAU09YvZP1gtBsAJTrMhoR1TuurwoKINl1C5TjQCXWziLvpocxYCHTqNgAvRx5ejCeTDTOgWp6BSsY4SiUv0cZxOq8z5koigVnna1OpMEDRhsVed3M1IBGJbKgnyxhYX01vtVOV+orP0cY9sm2xIwGXTtyHX68bgyyY65rHotwH2paZ3KKMRSk1SKnY4Lp2rHakZ4iFJMLU68vSMbQl5vt47LsbwRjDjTfeiJUrV3Z9zK5Dne/7+K//+q9gsM19cMYNFgEbMJfFOqfa1m2YS9v/nm6dk41B9Q3T3ThtWut07aLHLS/MUa11cetcXG0/FyPMqYCuPU4qa50CGDqsdcJKJ1MbEnhfBbuPTLaJWusaAw62Pjd5fnllxlrX6geqJ+5ItBmoNkJrnV/m8A6cTk6l7M9Y69pWusRYpYi1LmalE/LLM9a60Eon2S9hrUtY6YQY67DWJax0YWeRNDYifUlc4jxFrXSS8UKwk32PYqW+tEuljGWy0iXmLNKS5Eki3Lba6QI1gJRWO909KA3YUZYCc7YJj4tu/0RFkbRWurgoz0vKfplEDUK0dAxtyJko44ILLgAAfPnLX1bn97Q1Xld7B3DTTTcFwREthtLaIXVDW9awNFYqG216qV4BXa+sczZFhVTSrzgL1l3qL0YLYg4jOZsbIZK4DAvuay1A4U0rvuwakz9Q61h2TfTjAFMjM8uuie3tZdixw1uonrQDtUoSfsQybOW4nfAOmk5Y6YRKtRbqy+vhsmtyrPYy7DI50Al5NWDnEf0zy66JCc0sw0qBTshxwKsVNdCFA/qdy67SvthMyTCVGKNZax3zKgEJ6IzO7czO94P7QVCIoS/K94cEf4WfnV42zmkaq10v5iOkub/+5p/vRF9fHx588EHceOON9saUqKtQ12q18I1vfAMA4K4fAGt1mSEpqSeoS5e9qGZhc5lUtMvbZq6lWDFYoMJxjHUaib9Ebex/N24muoTM1Mzt3DfWdDQVwNZa+0SbShkYma9t4w9Usf34eWj2q6+RVj/Djuf44FWNNaLPwwtPeAAn7Pu0ss1QtY53Hv4HvPaYPyvbVGtNvOk5t+N5z3tAPecSR/OABnYcr6kp6gCN+Qy7l2kggQPl8Rb8msbi1b4O+YAmslbkmjOdd2FR1rUT8Kj6rkVyzdkoks59WooSK6WxCNc1QAS7sr4sGyuVaDk1KfcrS3nfjJHDnmeeMzUTgWneYs6U52IvA/NsjaVYvWFNF6973esABPEF3aw00VXKuu6667B+/Xqg4cDdYAjXz6vogy1roIPE+Tj3fKhjKfuxZC205YeXZrzo/xn76FiGUQQFGKEmFnxhrMoQ/4xKqn7StsmoTJU1VMssPAAE3TJMCHQai04IdIwFx1DSnz9QxfZjh8BLCKJHJdGurX6GHcf74CU/WKeUDVnz8cJjHsSgW8dQeRpHLdicaDJYaeBV+92NIWcKh9U246Kj/pJoU601cfFhf8FwaRJHD27AWWcmwY67HHxhA8z1wQZaUrDjTlAfVlj1dh8sgQQfqIw2g+PtMDnYcQ54bYByHDnYCaATxzdn5HXHkhDBciOFJENuu7CZKEWnAbtoypVcYBfZLyXYRY6JCuyi76vALprWJxfYpb0PGSEpsFaazo21JO8Afd42+smjtMdaJVPwGoCr3nYtFi1ahE2bNuFXv/pV9rEM6hrU1et1fPvb3wYAuE8PgPldGorya6WXOePEnHR/dxPoVBGTOtmGudm00FGOdRzsVBa6tGDX7eirWJUNZUZ7Qx+Jh1s3gC7SdxTsokAXNomBXQfQhZ3HwC4CdADgwk+AnQC6fido48BPgJ0AukE38LVzmJ8AuxDo2ku3jPEE2EWBDoAc7CJAN/M5BdhFpAO7DskeJqpM+lHJlnij3z1FRYiO6ygl0IV/S8BOlkMvE9iZ5gxIvy82LHZB10Swy2K1y/rdj58jyXFNzDtrvlAbc1b13S3ZMm5IAuiYz3DJJZcAAL773e+iqcsnmWforvQK4Nprr8W2bduAaQfupi5Z6XSZ+6mWIoKjfqr5zEULnU69WG5Nsy+aCM6EtW6uLLn2MuKK+2YLnem4eN7Mw62bQBfOOehbBnRhk/bHpEAXDtIGuxjQCUXBLg50QlGwiwNd2KYNdmeeuTIBdOFUZGAXfxbKwE4GGlGwi1jpOttEwE5X4stUGincgfa5FIEEMrmuEujCebVamYEufD8CdrqkyFaWYqn9RC1zKutduRLCnSr5Ntn6Jc4H5VmU57svAztpNz222Jn2vxvLsbae+zrFvoNfvegHWLhwIbZs2YJf//rXdsaID9mNTlutFn74wx8CAErrB8G0qdQzKm8CV6C3vwBSRTrmPF62+kk7Zi/HojywdOKclvJmTwsYEaKAXbuyQG6gK5XUQNeWX6sogQ4A4ATlvZRAJ8bqb0mBTsiFj/1qu/F3B92UALqZoXwcVN2Olyx/MAF0YRvm49jB9XjRmfcmgC6ciwC753jwavJ9F2A3emApsNIpFIKdBOhm2jjg/bXOZVfp5Glpdni9YY7EIwRP5CozJ/rw84Fhh5hjfGBzzzN+R0jBRwDpWFvxswPsLGsKsCOUF8tspYttp8A26Xj32mpHEcWntX2NMM5C37rvfve7aFnwT00MZ71HALfccgs2bdoENBmcLfoSOqEozpEUWk9jEaGCSC8e/BRnf4p67WQK9AyeSVUkupGDiOKwbJKl4tGpcniZftE7TOs/xVwXrK9PD3SMBRUKpuQABQC8v4rRI4bgaE5dYx4DO3cHhpaOKtuU5zXwrdOvxGsW/knZps9t4nmDj2DImVIPhgD+ak4T4546KtRhPo4eWI9XHnWfsg1jHKV5DYwerXF85kBpChg/QB+B6pcceEPqIBTGOdjkNFhZ8/BzmDyvXHxK09NBfVhZjdiOQQluEO1xteMRYMyplPV59dB+8JtgzGHmsnXMCeZkKYKUVF+Zku/OJCJAkiyWlPKIFp8lFLA1LmtTg+JsPbMpfVHzFLbnfcXrfoSRkRFs2rQJv/nNb2jzSCHrUMc5x/e+9z0AgLtxAMzPkA/NtD6vc3bvtcS8VHOKShXEQXH2TzMX1d/dkG2g44QqErNx/lX7QTlv0W05zm/HjTpXrqcA6LR1Ml3XWEqKMQbW3xdcA54HNpm0evH+KnYfOQ9+CWA+h8zA1pjHUDprOwaqDQzW6pi373iiTXleA9845dvY1x3HEnccF8xPgpYAuprTRJl5WFLaLZ13k5fwdGOk/dpVgl2NNeHCxyF9W5Vg57g8ALv+FsaOSoId84HqTg7GAa/CMH6g/Ecubz/wuMukYMc4BxufDCx0bZA2SQt2UZhTgZ1435QDkbWvJcVDmwp0YV8KsOuw5BC+R6xUMsId99X37bCeKvfVS8eR91WA1PFZSpUKlVLmxSQlV4Zm3jGfSXkj8/2dEkDSUQFHB3YdAZEW4I4qyv4TwY75DBdeeCEA4Cc/+YnZWp5S1qHu7rvvDvLSeQzuRoIvHcnvKaXDehpltdbZumBsWuiyjp9V3bLQxcBOaqGTBTuknV9eUS10WT4X/4js5ky55mWBJDGgiyeTTQ10QjGwiwJd+LkY2Amg62/nmGNAAuzK8xr4+slXYbETJNh1wKVg57LA+iZUc5oJsBNA50eSyHmSxHM1NtOPCuwE0AXHIwl2UaATOycDOx570KnArmPJVQZ2ElCXgR2fliw5x8Eu/rcC7DquIwnYkfzX4mXsNGAX+6C5DST+bjE4koFdCHQzjZJBHqofnyZ18cenDJoS501y3OLzVkU32xDVYpeAO6lBhBgYZ2pDEeVzRLD7n7f+P1SrVTz++OO47z71SkAWWYe6a665Juh4S58+Lx11qVXrONmbjNAdY0b/181JJWGt05V9SvvQz+vwmaWqxVxYchXHm1oBIvdkog9VwnmzAeswLLmmATsZ0LVfC7DLDHRCbbCTAV34+TbYxYEu3I4ZsBNAt6/bab2Lg12f28TpA48lxoqCnQzoAMAH67DWRYFOKA52UaCbOS4zYJcAusjORcEuDnRCUbALrXRxRcFOY3mNgl247CqTeF+1PQZ2svF0FjuVZNa0ONgp/a2Ibg3hGAprVxTsEkA30yj1Uqyu2kUoi8uuym05LHadjbj8tWpcQgCJ1gpcnqlVrA2MNMmmxc7EAYTlWNZy8MIXvhBAYK2zKcYt2v62bduGCy+8EJ7noXzPQjiTii9iLyIu42P1KmiCtObfjrjUfVFFm15WkbDRT9r+bMjGvonz1oVlEKUIQEbyZ6LCo+bBzzkPtun8tRAAAqvVtMecD/Zj13P3kQKdULOfYcdzW1h68HZlm336x/DFZddgQpMOyQfDBC9hl9ffYaWLa8yv4c8ThySALqoy87CoNKaeNIBpXsYduw7B3U8dqJ6T74BvrmLRvZrrkgNug2NgvTxQQ8hp+Sht3KkPjOAcMDhcc87BJ6eMPnSsXDIHLHBu7IcTI2JNFUxMJb7Cds2G2Y8Olixp1O+bjSADIUvBGKT9t1UVg+qPSUmgTAmQIVnJmPmYU9pQpTlvfl8TzedsheM4+MlPfoJFixbZGdJKL2396le/gud5YKNlNdABNDDodXUE6nikFCmGenOkYA9LDqymSNFoOyttCDkDRTQQpfpH3jkRjxE5AIEZIsLC2sOaCM62I7NpTPKcqBUsdFGujAUBEZqbJ2uDrzY7f7WC1j7zUN2pbtPsZ9h5rA+U9Oem5Pg4qDSIgzUP62nu4qH6Umz1FDVmEQDdzaPPws6W2h3E4w62NIawur5YPW9ewprpRehzDfmlGIff72P7szXHm3O4TY7GfPUyo6gN6w8PqMdyGPhQP/i8Qf2cWi0z9LQDYozXHQHogOSyflzMYcaSYrzZohWoh/nBTwEaUpBBD0sAAqDdv33PWDWDDLQWMydQzomxjS2gE+oVfxieFc5UGcceeyx838f//u//mscjyhrUcc5x3XXXAUD+vHTdeJjnIW/dUqlqbFLVgoyVDdLAXJolQN0xTQN0lIAQ6lzyzCkl0CmrVoixjOOZq0nEy3qpHiCpolwVY5G2CUUjXGUJSVkkUtbzwWWJM6sVNJeOgDsMpWkPfVuTDxkBdLzMgaaDDZsWSKezZGAU/3fZtQCAfqciBbtJXsID9QPQ4CVM+FWsay5MtBnza7hx91Go+yX4nGF3Kxmo4HEHo61g+XXKK0vBrslLeGJ6MXzOMOA2cMJB66Tz9jmDNx78oPUG5WDHfI7yJAc44JeZFOwYB5x6cPx42YW/QAJtDgPvb1tNS64Z7By9r1q4TKsDG9MDOPadU4FdaFXiPq1WLNQPd95siMH1ufAMilq6SN+/vOBGuT8RgS7s0maKDEv+1pRzYiMtjlHR/aHkVKU8eyjHSPMj4OGfrQUA/PrXv7YWMGEN6h588EFs3LgR8Bic7Ybi0YDmoW84qHn8uShm17jiYESpLysdW2J9S/xNqGyQZimx470cpzqLhS5+nFRzivdN/ZXYJQudFOxkY1HKgcWHkyUNloBdaqDTzSEWTCJ9gMpSlkRush1AF26PgV0E6AAAPhJg1+xn2HlMG+jElKbdBNgFQPcLDDszAFZmneNHgU4oDnbCQtfkM5+Ng10U6IRUYOe38206zMeiykQC7EKgi0T8x8EuCnTh52JgFwJd5BpOgF0U6IQUYNdxnhRgl4AvGdilBLqwb4LlS3Zd+pJKF4lghWYs4lgCdiQLlURksMtwL7AGdLKuJWCXedm5RxY70YYSjJIQddmV8p6sDcUiJ3uOxSW5TpztNfT19WHdunVYuXKleT4EWYO63/3ud0GH26u0NCZx5SVngL4kSZXSakMAu6gTvy7JbTTYw0ZunbwOpZSLk9pvNCgkT/WPtHPKueTaAXa6sSiBOu1t1DqtmYFONicF5HU8QA3JZaVAJyTALg50QhGwC4Gukjw3UbATQLfA7bT2l5kbWutkQCckwE4AXV3i2CfATgZ0QlGwE1a6qOJgJwO68DC1wU4GdOGc2mAnAzqhBNjJrs0Y2Ektqm2wE3CnXCaNgl0eS0oMEKW+X7HrUgZ0YVNRfSIOdGED85JeXJRUG1qlCdqz+YxSAA1vtUK4y+1HmCWQTjZEBNp0cwrb9Mp6l3ZViPqckil2nJnn4KyzzgIww1B5ZQXqWq0WbrzxxqDDbcRkw0DkgZ+BhONKk0yQMpYNZ3gKZHJur7JBmuVNiqz40BGi05iToiB5b3zoAggz7z+5nI4hjx01pxRpHNOcxAPUVC3A983F3V0X/vxBZRQnfICXGCYOgBTowilNu9gx3i8FOqF+p4IlLpRAJ7S2vgj/8ujLpEAntLvZh+vWHq3cDgRg98jUfuGya1wC7J59wHol0Al5/T7GDnSkQCfE3eBY6a5hXnbhjwwFVjqV2mAnBbqZyQPQAF20nQ0IcRhYuaT/vrTrEuuALmxqeuC3wS7tsqt0O/F7aeX7K2QrMMIWGFHBjtDOhn9kqKxWuiyyxiqdP7h/+4U7AQRFG3xTMnCCrBDAAw88gJ07dwYVJHZV7FvMTOrGWHmDHWyLHHXaAz8PIVKUr4UKD9Tl5xRgb8M5N7yJ543eaqdKyLpMNDOhCNAZIdIxR0K6rv7cVcrgi0fADdem2F7epX5QlYfruPK5/wNPQz3bvAlcvu2v8PDU/uo2zSF8b9WJmGrooyo9zjAxWcUtTx+mbFP3S3h41xKsGlMHTzjMx+GDW3D6MY+rB+PBvms4dKapw+AN6nO08bILv6ZpwznY6DgxQIoaOW2oUEH97hnAJ6y8QPIDNQca2YgITQNGtGhPw5xSAB0l4tdaUAf1Rz4pxQihuoYJ2GxF6QpZyTtL3P9IO2dXBYODg9i+fbuVJVgrUHfbbbcFne2ogkXPVS/AJ8sYeebVa6DL4mOm+sIYv9wpgksoQJdmbFWftiywkvaULPEqGZeTZjbq+43mvuJ+drCLW+hUc2KxElIKsAsfFqqM+22gg8vAfB/upHwprDlUwtbjSgBncBpysCsP1/Hdv/oGlrh1THOObd5Eos02bwJf2HYqxr0qprwynpjeJ9mmDXTNpotm08UfNhwindNYq4Y/rTsYnDNMTVWkYFf3S1gzthAt7qDulfDkuDzdwLzSNMqOh2X923H6s5N58sCB8k4XzAO8CseOIxVL/pyjPN5edtKBnfieuwx+VQKunIPtHJ1ZyswJdh1pSRRgF6YdoV67NqO6FftHqWLQOVS+e3qYR08T/NT5AcWcMqwQKcHOxjNB1idl7nnALgprecGNtCSa0medNK4G7mI++owznH766QCAm2++OffQVqDu9ttvDzrbIUla2k0AygVnKf0MTL5x3RDVlyzDWn5yO3G/SOVZctxAon1TA16ynhOZU3VKoJt5k5ZEOl4yKDFeFrBTLblKgzIk84yBXeIhEQe7CNCFn2klwa45VMKW55ThCz7hDIhdAlGgA4LNcbCLAp1QHOy2NYfw/Seei2YzODecM0xOVxJgN9aq4fanlsFrzbSLg10U6ILdZ1Kwm1eahtv+FesyXwl2LHKKW/1JsGOcozzmgUWjAWVgF/+ex8EuDnRCMlCIX2Oya7Up8e2LgV0ij1wOsFP96DEqtn/SZMYZwY50P4gnRs4LdqaPyapGxPeZ4qifR/H+ZdeYDYsdILfa2Vp2zZpdQjpexoT0zMHvvhgswd55553Zxo4oN9StW7cOTz31FOAHZsSeqJfLu+ES4hxZbk1ElCramUpodbQlLmna+pKaxBzz8RbXQN7zEgG7zEAH4YMXi5LWjqvJTp8G7HQ+dIn0KZo5tcFO+atfgJ0E6MKpRMAuAXRiSq0Za10c6MKhMAN2MqATEmAngK7R6Jx7HOziQBdtJ8AuDnQzu98JdlGgE0qAXdtKF1cU7GRAF84rCnaq77kAOxXQCUUfuqprK2pVlgFd2FfQTpkYOAPYmdwTjGrvn245kgp24ruXCehmBksPdnmrRoh9pwR3xV9nkRhHN++0zwwdrIlttpddZUr7bKHW/lbIGa3BdV2sW7cOGzZsoI8r6yvXpwH85S9/AQCw0TKYp+iu1z52VJGsdcS523LGpPRFXZK14c8WjmkJ6HpV0i2NMkTLyRQmLjUcK2oyVStyguhVLdABgOOY/XOYA9ZXkwJd2KTlg7tMCnQAwmVYAPjOKd9KAJ2QD2Crx/Cz8RVSoBOa8sp4YnJxAujC4dpg97u1h+OOdUmgi7arN+RAF86pDXZPT85PAJ2QALuTjnkiXHaVqdXPsfNwVwl04bwo33OXgVfL5nxvjkurzuCZf8RyT5/MOg3YWfsuWAouANL50WkGo4MdZdmVkjaJ6mNn7blgIZgOoM+JCnRZrXSJfiwFHhpWuJjn4Oijg8Ctu+66K9dQuWd8zz33BB3t1viAhBUENMPNFvjZcLynJiK0kX8NsHehUcakRNRSv5ChdY3guNvriCVLMlrYKMeKObSHjzgvlAe17lp2HLBKWR8167pgA/0A53DGppTNvP4Kxg6sorpT3VVjgY9/OftncBRgBAATvoPbpg5Bk7s4sLZD2W5bfRA3PXo4GpoKNq2Wi6mNg5g2ROb7noN1O+crtzuMw2U+JlsVPDi6n7Jd3S/hqdEFwCFJ30Ah5jO4DWDXobqAB6A00Y4E1Z0/j8PZPaGv2euwAOx1ZbmiVUcsRHLyZouUCkVp7Uorm1UVCDIGEiEFHBLvoXlWE6LbrUXqkpPJp0w6r9vew/t50J8h7RMxIMekk08+GcAsQx3nHPfdd1/QkQzq2qkjosV7FR3JX6tk+6TlWVdPm8CQmgtH2cbp/N+WVMkZs/rPJdrFzjHF7y7vebaVWygibX4lCtCZlBbohFRjCwd2n8vBznHAqtWZX5KysQXQMRb05XlSsPP6Kxg9tA/cBUpTHH2bk101Rjz883nX4KDyDkz6VWySWOEE0E3z4GFfVpi7ttUHcceq5eANF2g5UrDzPAf+9irgMbCGg5bixydjwbFpNV1s2j0kbRPVeLMqBbtJr4JbNx2KRsvFYH8dfEUS7JjPUNkNgAOtPoadK2S+yG2gi/o7ys6fx+HuGg/aOUwOdpGav4wxOdi1ga7jGlE8+Ck1XTvykZlAxGF6sKPc6whVFXJHl0fUAUWK7zVvmVOzJD9kvi/mchOJBnjlhbu0zyByZCjR9SjNZ1Vtybnp5PMmB8wR9O33/wwAsHLlylzVJXKRwbp167Bjxw7AB9h40qlXmq0/7gif2SnRMthFlQfosiTvpbazWSXCNIduAV30PUqEbNbzbPPcRCXxd4v64eg+Z1RWoFMpPqf4Q1sAXbzv6ByiQBftN3ZOBdD5pTY88CTYCaBbVt4WvhcHuzjQAQHUxa11HUAnFAO7EOgi+eNkYCeATqjZKCXATljpooqDXRTohOJgJ4Au7IppwE4WmRw97lGgm5loJ9hFgG5mf+VgJ32QxO7haYAu/JsKdpWKNOjAKMmSXBzsyEBHWeKUgVDsc5mATjUHyZxsWOzStuv8UI5nj60k+DZXc2TvZXjeGg1YKnEfbKKMUqmEHTt2BNW5MioXFTzyyCMAADZeBuOd1iijQ7nNZU8bEmPaGNtklcsCF3mqRKRVt4EubX82f31l6TOuCNhZW86xAXSUKEQBdjKgi44hfPHiQBf244fWujjQhd1EwE4GdEIC7GRAJ9TvNEKwkwKdUBvsZEAXzisCdnGgE4qCnQzohATYyYBOSIBdAujCCcXALrrsKhPncqATEmAnAbpwyCjYRZddZWrfy7MAXfg+BeyATqtdRqALx0xbBzUr0KX4fOq5aPpMnXpJM3eriZMpSgN2ZGtajns61aAReV97PNOAnag65DMcfvjhAJArX10uInjssSDKyxmP3IQdoknXRmWANLLlOEnti+obYM3R1FZ+HQLQUUStpkH1x+uljx1FuujVWDuKrFnoiPnCKEERKJXUx0o8pD0uBbqwGw5wFxg6cFQKdELTvIwxXpYCnVC/00Cf21QDndCUi8pD/doKD+64i9q98soVQgLsVEAnNNmq4OHRJVKgE6pUPHhVngQ6oTbY7Tq0mlx2jcsHnMm6vo3DjBAVgp1qad6y0oCdrcAs3mrRfnjZiqjkPs1KlxNYw+GoYGfz/PYqCwJAf9baqAAVQqRh/yjZGTJKBEs8/PDDmfuwAnVsov2AaJe8Mvod2XqIz4ZFr5vLvirZqG5BzvRNDGQw9UGV7QCZXgfbGI4FK5VJjstGUUHbdG4UBd1l7eB74A1FfU0AvFrB9AFDQT1ThRpDDKPPrWO6Xsannni5Yigf851p1JiHY2vrlH1tbMzHNY8cB66rLd1kGFhbQmkK6NskP2ZOg2Hek0B1J0f1ngF1XwiWcNfvHta2AYLI2IUDk/IpeS4m1w2Blzim9lEfK8cD+rd5qI9oAh4E0HEOrgt6aEtnreKcg49PmMGgvd1YUgyEa5k55h8daSJPTfdjh+DELuCJcO+wUYkmlV+0jTmJGrBpLZeq+ZhgM00dXBuy7WdOrGRh5XjGct9ec9n1AIAnn3wyc5eZjwLnHKtWrQIQLL92XHwKsEsAXa5kuhmAzqbjfa+lKM5OCjKh5k+LLkHbqkpBlc0AmTkCdtEyYhTHZaXSAp3qHEWAjnON1ST6EGy1pGDH+6qYWr4A3AWcBkd1NDmmALpStQXuM0w01DDpgsMFx3xnWgp2W5rz8KOHT0Cr4YI5HChJ9rENdE4TAJcsc7bFOMI2lV1qsGMOB+cMzaarBDuH8fCfyqLHOQvGA+BX5GDntIDB9R5YC+AlhvoiSaRuBOiCCTIl2PHJ6ZnXkoePALrwR5XK6he7RoypcaC+pjveV4EdtVwe5TkSATol2MUf4DkgKhXQqf6WzSPPnOK+haogEtKqQ+czXt6G4Cetez+tbPqZU/Yv9n6uoJxoX+2x2UTwfX7yySczW88zH4GdO3difHw8uHlOyjKWd345lRa6LP5lNgMZqJpNoBOKJ46kRO2SgYAn/05b6stCImCj9hCwSzzYJGDXVQtd/G+JhU4LdlHFwC4EujAogifALgp0QqMTNfzLky+LTSuw0gnJwG5Lcx6+/9CJaEWWXBNgFwU60XcL6NvcefycBsPQ6pm/mS8HO+ZE7l0KsBMwF/07bq0TVrqo4mAngM5ptv00GUuCXRzoNOKT04nzH334dADdzJtJsJNdG44hiXVbpGs9/uDLAnThALH7gsRClwA7JZikh6hMQKd6P2M2Bmr6lATopQU6IeqSdZaSkXmUBexy7F+moBxZ35yDTbpwHAe7d+/G9u3bSePHlRnq1q1r33TrQe0yqdonz7jkSs3zlmapLm/qkDztuylKhYvwl3yOm4h4n2pKtwVRs5HSxrKUsBYBu54suYr3NUuuCbBTWTTaYBcHunCqEbBrDiaBLpgOw4YdwyHYCaBz0XnOo2AnA7pwTAF2EqALBgTc+gzYiWXXeDsBdpV7B2b6TRynTrCLA514r+x4Idg1PRcTT81LzgszYBcHunC8KNjpgC5mrZMBXbit1ZID3cxOzoCd7kGfEuy013r8h79JlOeIZsmV7MCeAqJsJSo2jpsS7LRL72JJNivQCXVYmwxuQqY2aZWzikMo0/4RKlmExzNvDWGfYb/9goj6p59+OlMfmaFODMimNH4WIlN/r6sI7Kk+dDYrXJhEuYmE4/Xw/HUjotmGiM7BFJ+invrQAcoIyLALAXaGBx5jDP68vgTQhds5B3eA6YVIAN3MdAOw+7fVL5UCnZALjkm/iuvXP0sKdKGaDvrXSYAuHDAAu4F1jhTowrn7QGU3B9aogyc4Z2i1XOyu1xJAJyTArr/SVAJd2J8L+GUkgC7czhi4y8DLBsdsxsDLJS3QtXcAmJo2gwMpmMGxl1aDGEBBAjKCDx1r+4vaEBnoSNGednzCuGdOwmxV/iw84ymymBkia+1gqQzXnoC6rGlNMu+1qE/GpnV13ywvldnsr5fLeNRIUNN4qQMQbARYWFwOp4yVN0Fl2jYUURxx2+fYGPlm8eZnfKC0U5NwzoGmel4h9Gn6Y+Uy/EULtMe01edg9zI3KAOmgaN5A9P4zCHXYIipHzzrW/Nw+ZoXwecMg8PyCha87qJvbRnMDwBJOXcPqO3gcKfVbbgL1BcwlMYZ+JNyHzvH4eirNtDyXGyf0kfOcgD9B46p5+QzVHYx+GVgdJkhAMEJYFo9GAdrtoKqIJo2aAaWOhvVIvzpurVrmbeaxms59I0zpOUgP3wp2QlsKQ1cdDP3WlQOccXA1jOiG0nziami9H0Q9k9E1tqIsAWMx2vJkiUAgE2bNmXqPvMRFuu9rOHm811L6RA6Kz5Vefqi7J/Mn83GHFRgNxeBDqAHdIRtLC6xK/shOOLGzrES7KgPQcK+d2TsV/URecCpwC5hxZM8XEOgKzlgTQ+VHcnACQF0fpsryqNMCnbDQ1P476O+j/1LU3AZUJNUi1jfmofPrnkxxupBFKgrsYoJoHPaXMgdOdgxH6iMBqlEGIe0FqsAOrCgjQ7sGOPwOZRg53OG0XoNADDUN43q8iTYMZ+hspPBac+l1S8HO+ZzVHY320uxjhzsOAdrNANrlyr3YBTohHKAXRTo8i49dnxXVAFHcd+4HHMPvy/MUd8jZgvoRPtug13Mmqk8nt1yhZkrYEcEuo5gGxXYpcqlqr/2fv3lmwHMAtTt2BEkAmWN+EMvRR6wrPBiC+zSnIisUJW1TVrYpWquAl3WX0FdzTRO8ElUXMMJsOsC0M10LQmOkVgs4mCXADrRT6T/KNAJuVPNDrCLA51QHOyiQBe2iYFdHOgAoFzyOqx1caAL34+BXRTowvdiYCeAjjudbeJgJ6x0QjKwE0AnzobDOOb1d4JdHOiE4mAngE6cEynYRYFuZqKdYCcDOqEMcJSw0FHzNUok/fETDzhS+cZlCDqSfk9sVJlRKSu8qB76mQAq+RnZMU0cP5vPYdlxmG2wSwl0M91IwC5LbldxjmXnp81UgrHSKjfUoSnMqilgDrC3zJhnHKB7YGcD1mz4z8WDHfYkoMtSBLrbQBfdbriGw4dWF4EufD9qgdAsQQmwU/rZRcBOBnRCAuxUQCckwE4GdGGbNtjJgE6oVm7NgB1HAujC/WuDnQzohATYyYAu2sZpBMdIAF28+kQU7OJAJxQFOxXQCQmwiwNduG9RsJMBXThoG+x0QCeUAuyUS64ZwE7bXmTYN/nGpQg60lq0qYF6aZQXWuJgZ6tagubHc3gcuw10lG1plQbsiM8ubbCNOI55kvULV6P49dcK+hsdHc3UbeajKgZkzQxd5LFgCZEvqh5HSlL953qZcoPzRJJDpWxGIFPGsuWnMBsyzZ3iYydEKMtG8aGjJIg1KgREJgW6cDjO0aoxJdCF4sAxizZKgU7IATDJq1KgE6qVWyjXWuh7Sj8g84C+bb66eoOYFoMU6MI5NQB/9YAU6ISCMrgMJcdXhHwEYDfUV4e3pK4EOiGvAnhVdYJeAXYol/RJfB0HrFbTA53o03Rd+b7Zhy4F2PFW0/wQtvlDyOTAbnPJ06ZYxGCia0at4ERJxGwTtCi1Untdnowqw709KHeaA+g6O+s4x4Kpdu/enam7zDOammrfoD2LF0Fcea15FMf7NIBCAZ5ei2ohtdEm7bEy+bz1ur4sNQiD1BXT+1gIiQhw07y0ffjGBxNz3cBR3nXNJcAcR/+wb9d95c0mnO3yX4t+xcXE0j44TaB/k7qv1iDH0pM2YKJVwde2nyZt43Fgt1/GEnc33rL8NmVf9WYJje01NOepx3NaQP9mH04LcBsqMAqsdI4HVHT3zXa7neuHlU1ch2OfgXGUmIcFNTm0er6D8ekqqn1NjD+rrh7OAwY2+oEFcZEcbhnncCYbAGPgg/rgCd5o6oMngCD/oM/VdV19H36DAGEgWsxSFLo3Vkog1F/Om2Iis0yVZiiF3wmVLpjrghRRnwZ+bazUUICOEPwSjmVhvPCckPZPf/7Ca9NGsFC8j9my1AmoY7qSPSrlXfJMA3Th3wYHd0p/Os0W0Mleq9rlCSzIeqxUviHdAjrVPNMGYWjG73Ayzgt2NoHOafflOEqwCx4CDPB9Odi1gU6cNz41JQc7h4X1XsuTXAp2rUGO/U/egAXVSbR8B7taycACAXQeGMrMw/G1p6RgV2+WMLphCKzF4NU46iPJ8ZwW0L/JD61hzE+CnQA6tE+h2+BSsOMOAnhkHO6kgx1Pz0+0cR2OJYNjKLWd9CpOSwl2vs/AGEdtsCEFO+YBAxt8uO30Jn5Z4mvTBjrmtffJceRgxzl4vRFcw4wpwU4AXfh3HOzSAF2JUrKMDnThZ0zuBrrPUoGuW+k4CIEfeSpdCKBrd6TNjzkzJcUPnej7VMsl5V6rEDn4heKulOV+TngWkiuH5Ll+JJ8VTNXQlGjUKRPUeZ43M6CX0WydFeyyAJ2pT0p/tvqyJaojLcURuFtAJ3uvFxa6+PtZHXVlXzhq8lLJnBI3g24AnZAE7FgE1gAkwS4GdOE0YmAnrHRRxcEuCnRC2+oDHda6KNCF/UjALgp0wY7wBNjFgS7c5wjYxYFOKA52Aui4SELMkQC7ONAJxcFOWOnC+UjALg50Yg5Ra10C6MIdj4FdFOhmBk2AXRzowvcF2M0BoAs/awoMkrw360Cn6F8apJC10oUkMl9WySY5JcKxygp2GYAufJ8SrJFhPPVEzM9CcuWQLNeR6jPtt5vNJsl9Iq7MUBcqD8+kBbu8QJfSUTLszzSvXotqcaOE7Hcb6KLbernkKrbnddSNzIfkOGuYU3hTsAF0DpMDnZATq2AhOz8C7BRAF06nDXZ+xcXkAf2hlS6q8lQAdq1Bjv1O2tgBdADQ8h2smliMr20/TQp0YT8RsKs3SxjdGAG6cOdnwC5cclUZQ/0gwa8M6IQE2CWALjwAbbBbP18JdEIC7ATQ+bHVjCjYyYBOyKsy1BdV1UAnJMBOBnQzg4ZgpwK6cFebrTkDdGEfphQ+kW1zBuhi4+h+EIbbTEmR2/c1StUa3T2GdKzSgl0OoAu3U4I1UowXtCdUIYm/jn6cWjkkzfVEaMs5n3FzS6FMUOeoHiJZlMYnzIYzq9WIm1ny1+il5qIDMZBveSDLcBQL3WwcK9N3kTE10Al5HnijaZ6/78OvuPAkS4MAIKJSuQOM1CakTVq+g831eXi0uVAKdEJl5mFxaQye74A1VT9OggoWpQmujIaNNFUCXdjG4wBHEuiEOMCaDLVSSwl0QiXmo+J6CaALx2IcbjXoQwZ0Qn6JAT5XA91Mh0CrZXyAMVcdhNEhCtApSs9lEukHu4WgiJmGtHa2RBkvzZwsRJWSqk4wB6xsPs89D3ig3tvJATf6mwO5QgdlvBTVTLIsweYnHN2xoDimx8N6jeMRrFSmSgo20pjYDBqgtqGMTVmqzrKcnVfC0kqpckFxiqVeM7ovEDEMnrzkappT21JprIVMHJd7Hvi02vEefiSFjeZa4J4X/JtSl1xg5TK8JQvgtHz0b5HfaPwyMLmEoTzGcO89h0rbDJbrOG14FUb9GjZ585TjrW/Nx5fWnoNKqYXyvvJfq06DYXBd2/9kUH2sOAvgSFPAom2hY2A+UB6V37P8CseCZTvhc4addX1FiYlWBa7jY8HgpHR7s1FC+ZF+cBcY31/+QGQ+0LclOL9+n75aBNs9HrzWPVy94Jpz+mrauVPK3bFKBUxAokHkqgW6gIC2RdAKPFDTX1BLe1EhSmPpmbHgE54T1L50+0moZwrMHG8d2Ak3D+N9khAhnSo1jtGqaQfoKNcneVxC8Av4zHxKpqA3ifJb6vI4psfbUJYLZX/L3jM+NHOAnc2gAWob05yo7+UJPMkyp/j7KrCL59CjXldZwc4i0JGcjGNLz7nBTmT0bzXlYOf75nMf8/PjrZYU7Fi5DG//heBtK4871UqAnV8GJvZz4JcAcKBvs5MAu8FyHWfNfwxDbgBpE35VCnbrW/Px/1tzHkanq2CMY6CvngA7p8Ew+JQT1E1lgF+Sgx1nQdABZwEkycCOO0BjmMEX1YCaSbDzKxwLlu9EXznooOm5SrAba9bgcwaHcVRcLwF2zUYJpUf64daD+Xm1JNgxH+jbXAfz/KDUm8PkYCeArn0eGWNysPNE5F+Qx1AJdlF3AwVACaCbaWf+4Z6nakF8iTcX2KVNVEu1iOUAu6SvLeE5odiPRK11Wbv4/VABR4kEzxKwS/jtGu5X4RxlTaLvU5+DSv9DS5bYrM9+ynEnPC/7+jQR7gplhrqKML27EssKxTFd1YYCcPH3VW3iBzZNBEyir5S0rurfRuBCfE6meVHm3i2wU0Fk/MaT1Sk2C9jZttCZ5qTwJcwMdrHPJMBOBnRh45lrQfqAiYFdB9CF/XOw1kz/HUAXdpQEO5fxEOiE4mAXBbpwDjGw6wC6sFES7KJAFzaLgV0c6ISiYBcHOiEZ2AmgC/thHGVn5nxFgS46zwTYcQRAN9NREuxiQDdzvGJg58XvewqwkwUGxR/sMaCbaZcB7AjfeZXPXiawy1pSKs97smlEf0gpo+LNzwmpE7/qB7OQCoJi7yuBPgJ2ygh7w/0qnKvm76CjjGDXLaAzvZ9oRzjusuelG3yuWq3CzXCdZ15+HRgISuhwV1QrsOSYnibDN2XJMlpNQdUHVTaDBqhtKHOizMtWGyrYmeYlwM5U5YJ6XVHBzjLQGTPVG4JDUoOd6he6ADsd0IWN9bnzBNhJga4tp+mhf0tDDnRhRzNgN1iu44zhx6XjCbCTAZ2QADs20kgCXdhoBuxkQBc2a4OdCuhm9hFwpxnmL9uVADqhKNjFgS469wWDk1KgE4qCXXTZtXNCEbBTAN3MmG2wiwNd2CAGdroUPmIJTgF0M+1SgB3hO28KwkgFdnmLv2ex3umm03Z50M/H8JyILGcqgS7S1rhc2d5OOa6mXJim+xUAWgBCWrDrNtBRt0dFDH4R//NS8H9/v97FQ6XMUBcOWBIPXf3DK7Uo69xkoLG4FFuIJpuBDJacqEl9mfz+ok0tJDYNMpPTfuyQfOyIDr3GBMUA0FeTAh2AwFrXDKo2SIEunFRQKuyJ3YsSVrqoJvwqHq3vJwU6oUarBL69iulFuoi9YD7NATnQReVV1UAHANwFGgs97N6tv7l6voOGX5ICHRBY6xiA1kRZCnTheCwYszza6rTSdXYGMAY2Oa0EulCma4E5gOvCGTAs8TAHTl+fFugAgKvmHOuLBA1zsdIAc+zei2xIgJ2xQofFwAKLVYAo91DSvSrojNDGknGDqhRBEaHcWYK6wcFBAG2qbEfYURwlpa/jbaiwFn7GwkmwDXa9WA61LdsRpUSnX9q4hi9smi9PxqXJzumY4JBwraeRSIugedgxhwWRrKrqAEKu25HuJNFPqQRnZAHAOdzdchDjZReNBRW4dY7B9epj4VeB1rJpbB8dwBVPnSVvwx2MeX0Ycqbx/KVya169Wcbk04NwWoCvC8YTp9BVt+MO0OpnAAc0lcsABsDl8KdL2Lh1WNrEYRz95cC/sKzIqVJvtT/vcEweqL6unCaw4LEmGAe8mmJpy+Nwt48F12pZbcnizRRpRJgDR/UAYU6QCkXlqyfGowBdtE/Ng9rmQzys3JAz4TgAcnBBe2BzG+N8iC4/toCOEIQR+vIa7n8dtaiV4znGNmHFDNM1kebZZeO528XsC7wUHOOhoaFMn8985S1cuDB4UY6txavKn5jW+sXfaaM3TW3TqBdgZytwwbZsXqRpg0Mo4+ssaFl+DaUMIujYlAboNO9lfdjIYKzjPe6rwS7aznWTPlMC6NzAKsEazQTY8bKL+kgFfpmBcaA84UvBzq8CjUOn4JaD1B7rdwwnwM7nDib8Kjw4cBjHobUtCbALga6d2sQvcUzuJ9k38RwR924nCXYC6ETNV+bJwY67wNR+rbBfGdgJoCu1feZKjp8AOwF0ftMFGMD7PCnYOU1g5NEm3On2Q9NlCbALgU5clw6Tgl0H0Jl+aDsszFGYADsBdFFJrr1UQBftW/Kg7njPVGuWkMex43UesCMGF8QmYG6jnEdGB31TPyrFgjCk977YMSdVpwBo/oeSNomKGSqws+nrTVG3jB/i/0pwDS5atIjeR0SZr7rFixcDAHhNHv7eAXamtX7xf17AmetgR40O7bW6BXSq96igJ5tD/FrKAnTR/gzbKdnsYw1I2/I+ZKLfOanFTQZ2snYRsOsAurCfTrCLAl04fhvsBjZEgieqQP2QabiRH31xsIsCnZAM7DhHCHTBgECrPwZ2MaAL346AXRzowu5iYMddYGr/1oxrSbt/v9U5zyjQCUXBrgPoInOPg10c6GbmMQN2CaCbmUgH2EktdCqwi74fBzvmgJUVD9HIdZQJ6IRiD2rpQ1vxAykN0HW8l+U7l+cekwXs8jrop20vu+/GwU5xzDNV8iBkw+gAusj2xDViMysDRbaflbIAmDbUhYazlMoMdSFFVtU7QI4eTGM+tunAqFIvl2KjbeYq0NnoKwwaIC7JqhQFuzw3247+9OZ4Sjb7dgPCeL615SAmsbTFPx+Cna6d68LpqyWBLuxnBuxEAEJiLhyojAdgJ4CuVElaCwXYfXXt2QmgE4qCXb1ZxtSGweScomCnALpw+k4QhCADurC7NthJgU6o5WDj1mEl0AmJ9xNAF5m7ADsV0M3MnamBTshhQKmkX3KN34tl92YBdoMDAdDpvou2fN7aD2rt8lrMlSEL0HVsS/Pd091jqPefNGBn6xlgA1Ii/nq5K3kQllrFdinQRbeLa8UGYKV57nbb+NF+/0XvCn709hzq9t13XwAAr6r9d0iRfWHjHjowUk5kmmTA1DHnomzNq5fBJpRgBsYCh16KUy8BJClJMY2QlUa2gjUICT/DprpExpyDNVtwp9Xfd8aD6ghelUuBTmiov46PLf8Vjq6uV7ZxGMfS6k4sG9kBp6G6AQKtAY7xg9RAByCILK2ogS4qr8blQAcE1rqmi4lGWQl0QFA1Y+dkH6p9GshiAC9xuA0ogQ5AUCJsnBAUUSmDDUngNyoBO7of24ZycTPtHDBKDi3KD3vXNUNiO1Lexg8rVi6RqmGQjBLUCgLW7rPEDBKE+x6lUkReiE7My0a7NMUKTKIGfdgaj8AVGzZsAADst5/Mx8SszFB30EEHAQD8GrF8hk45zZWZx9KNKzKFO4QbnEm2AZE6JlVzDTgtHavQv1P3xRVR23l8+mYGnPmlqWlj/LGTEuiMDzqfB/U+VVNiLCgd1WyATygiBxgDr5bhTDXRv0HeplVlGF3mwGkC/nq54/3w4DT+41k/xaHlnRhxp/Hs6jppuyZ3sbExH8sGduDAZ2+UtgmshhytAY6xg+XTVlkWE+1coDEMMB8o7VAtO3L0D0+h5bnYMiEHqJbvYOvEADzfQbnkoW+eokpHk2FgdQm+C+xeLn+4Mp+jvHUyOH9x37bo3MslcIeBl1w92InrhBJxqIMep+1r5zr6yFkqRBLEfU4GOl07ViqBMWaM5CU76EfGlSrtagIpFRYxpYrmvieAjlK7V5vuJu63aEGmahnc82aez3kkjo/x+UC07or2WbZF9NRTTwEADjzwQNqYMWU+KuGAVR8+mvK1dVshxmmc6rXm5Iw+e3l+GVCCBmwrTVSpEMVymWVbVuXJ8xf7EirBLtouJ9h1gJwK7CgVJTJa6LQPPO4rwa7j4eZz+UOIMfBaJTg+nMMdqyfArlVlGF3uwK8AzGcoTbAE2AmgW1baDQBwwaVg1+QunqovRN0voeR4OHr+pgTY8balK5ifHOzSAh1vpxJwGxKwczn650+h1M7LWW+WEmAngK7lzZx7Kdg1GQaebKc3YUH6lTjYCaBjYvnccbRgF+6LCuzi14cJkBwmBzsnEg0LAKWSHOyoy71RKX4Mkfy0CEu0ieoHCnDN5KCfp4KArt/oe6ZceUTwiFvosoKdLYiTDkepvEGR6p4efx7ong/UpWPdmMRnJHd97NixA8CM4SytMkPd0NAQRkZGgon0tTq+SFaBTqW0By5NGHOeygWm+XQb7NJGlUaVBey6uT9Zgi7aX8T4DScBdrJfXxnBTgVwcdBLdBX/nuRcck0LdlJrhed1WuuiQBf2FYBd38YAVoSFLhppKsDO2zADdiXXC4FOyAVHLVLiIQp04ediYNcBdOGAPFyKTSPuAo15M0AXzqsBlHa25xADOqE42HHOOoAu7Cv6uSjQhXPvBLsE0AlJwI5LghkSYKe6LtKCXRzohOJgRw3MkCn2XUoNdJH3op+VRtqyJLjmctDPUkFApbgxwARxKuCIwYpqyTUt2KmAzibo0SpvUJaj4z8wVNnGDc+HNMpozOF9wXd+ZGQkTBuXVrnsl4ccckgwkQER+k9MhJhGFOd7UzuKxJfNRuUCk7oFQlmjSqNKA3a9sDymSY+iALqwmQA73Rc2JdiZllq1Tr9I6XcK4kNO/WHjUmzHMqwM6MK+OEqj06jubAZAJ8kZzHyG8ngAdsOD0/iXFb+QDtnvtPDs6jop0AkJsDv4uA1JoAsH5GgOBmBHsdKFQKfoz60D7u6SFOiEBNi1fAfbJuVLzg7jqA3V5UAXzj0Au9GDK3KgCzubATsZ0EXbATCDGxXsVEAnJL4H1BQqOrX7ygx0kW3c5/qceBGwMznoRz6knw+1ggBFJrigLEO2YYXkQ2eSCPTSyDbYmStvpAA7kw8d5fmQRimfkXww+N4fdthh6caJKBfUHXnkkQAAfyhFokuhLMuuWduRfx31MBN4r33sqKLMi+IjmKbih43xRFPNDSUtQOUZqz0g6cHEfVogBmk+ppt8G+y0jvfRZVjNcecuA2v6mP+ExufGZyhNMYxO1HBoeae0jQuOIaeB+e6kFOjCaYHBYRwDB46p5844Wn0c9QX6c+OXgcklXA2I7TbOAZNwHP05bLZc1L2S1EoX9uUzDD6hryjhtIB5axrgisTDoUou/OEBfRsATJOcGEBwLXieOQgDAJpN43fQWCYsjSxWnTBVWWFtt4JMVp/EYMT7HfX5ZyWJsU+8r1OiggmJ2T2P5ktIzBZAko1zh8g9NO9YxPHifb3o/WcCAI444gjaGBLlumKe9axnAQD4YEqoswp0poeYxXDltG1tZa7OO16vAyFsJc5MOx7nQd1SykNKV9EEMFqIrZYxokb2wbDsQVmOadf8hO+rH3auG0Q2+j7YtNyqx0sOvMHAPNe/uY6Rh+TH03eDZdHGjhoufuAt0jYN7mCTN4j57gSOH3hK3sYv4cmxhWj5DhYOTCrBTlgH/QrQVKxe+GVgagmHX+VoKfz8/TKAZZOo1oJ7m64E2HBfsAw9VJMTW71RQuneQbjTABSn2GkCI4/U4U614Jdd+EM1RcMgYIWXXfABRRsAaDSD81hVldXwOwMndM7pU1PgnINPKoJoOA8ipx3HGICQRso8eWKbw/TLhu3vgO575dfr8OvBeeMt9XOMt8xQ25U8cnl/hEY+r90/cf4pz1LNvIOVOnFdmStTkHPY2hIh6INkaTRxh9hODWpp69FHHwUwYzDLIiuWOt7fAteE+HfI5gPe9BBLZeZOmTfMBtilUa/Hy6peg6Ui+EWaNFhWwUT3t8KnL169IWuC1MSYOcFO0jD5txOJ/JOBneuCDfQH+95+2CvBTszD41Kw812O1hAHdzlYi2HbuvkJsGtwBxu8ITR5CS44FpdGE2AngK7utRPxMi4FO+YzlEcZmBfMSwZ2IdBVOERakTjYxYEufD8GdgLoXMeHwzjKrpcAu3qjBPeeIZQn2nPkSIBdCHSTM+eClyT3IwF0LgvbyMCOTTdmvhcysIsC3czOJccDwCcmgwTDbWtyAuwE0InxLIBdNDpVBnYd76nALnbty37A+PV652oC51Lw0cHQTKOM97dugh3VRzcO9IRnqTKQIcv+UKtNmUS1oBGCPjIvIctAjugPyV0fq1evBjCLlrrFixdjyZIlwc1xXoYlWJWymoqzmqop48kuqjSgZSN7dZbxspQr6ZZ6CZzxpMEmy5xqe8ynT2mhywBneWCQXAIpGrnlSFI5RMEuCnTh9iTYRa10oWJgFwW6cCptsHvtyr8F0Al0QjKw8zgLgS7sKwZ2caALpx8Buw6gCzvqBDsV0MUVBbroe1GwiwNdOGQE7GRABwCcsU5rXQzownYxsOsAOqEo2MmATij+Q0gAnVAc7OJAF841G9jFU43IwE76/YuDnSIoKQp2IdAlGsbgpZtAl0ZpwU7RPro/Wn+16DEk/HBWAl3UWqf6AZzo23CvtqxcQR+U1RHdZyLv+UNNeJ6H/fffH/vssw+tL4lyL9ifcMIJAAB/WON8DSTBRqW8YJEG7MTSpskHSXcxpQ1CsJBxOtV4VPXKx8/mDZCQLZy3WuabASWRMWk+9GVUioO3SeRi5SqgE/J9cM6TQBdunwE7AXRcdsNrg938R/0E0IVTaTFsfWoBLrzvrQmgE4qCXcMvYe34iHy32mBX239CCnTh9CtAfYEE6MKOArBrDHMj0PmcSYFOSICd6/hSoAuH5IBb51KgC8cSy7AKoBPiJQe8vyoHOiEBdrrrKrIMmwC6SBvxAJcCnVBKsFO17YA819VG1rJSWftdEGCnBDrRrg0+PQM621BouJ/xVpPuw0uotmO00PmE4EnqUislVyhF7YAPK0EdlGAVwnLshZ8+HwBw/PHH55qORajTZ6MnieIYahNUer1UaSOR8VyXaf9s7n8vl6SJTsu5olPTijm0ck06oOvoT9NGgF29JQc60azkoNnP0LdR50sCNFolfHn985VNXHDMdydxQHVnwkon7VIBdEBQJcI5bjdKy8e1c4LLSRa6oVpdCnRCDc/Fzg3DaA6rrwXmA+VxoDFPv2+85GiBDgDgA2xKA3RAAO6eD+giZoEA2qbrxpqufGLS/L1yDIm4AVKgBmMMTqVsjpolWHJoP7hoAVUkv1qKTzT1PmYr+IDYjrR/FEOFo88AkGZO1GAOcxYHe0E9FDCkAOQ999wDYIapssoa1PHBFngph3m0vbSltTxElxQp9N/uVyvdF9hmrr0w7QYxLcpc8E3LKp2V0UYmcMpYceXdP4LTdSqgMxwD442COWBu2xpiyNhvBDrXhTNvSN/GCR5OrNFEecektIlfdTF6UAW8BFRGOfqfTj4UeJmjb9EkXMfHml0j+PqG50n7anAXE34V+5Z34/TFT0rbcM4w0aigWm6hcZjcid+rcVSOGMW8/mkMD0yhslRuOuMljvJiRSBAWywCdKrAielWCRvWLgRrMLT6OCb3l1grfaCym8PxOFo1hqkl6oAH1vKNQOdMTAfXtyo5se+Dt9pA4LhasBNWF20kq8/BPXr5OaWiy3e6CFXHMQNiuy+6k7vK4hcpLaj5joZzIVWr0f3AId4T0wQfUKVKpB4BEGNFDdO9hVqGiyLKc4MCvpq0V0KkCiaYud6M9YYN4qVmGCQx61C3aNEirFixAmCAPyIpiUNcco1+YUmpGUTfFIfKLGBne/0+vvaeBex6FUVqQ8Zfp3sQ2MWdriVf9kwWOsUxMP5CbgNd+KcK7KhAN394Jq+ZTE7E2sA52FQ9AXYC6EQCYuarwa5cCm68nu9Iwa7BXYz5fWhyFy7zsby6NQF2Auh8DjiOj3nzphJgJ4BuqB2dyhiXgp0AuoqmXi1jHPNqdZTdmYdGHOxCoKsLP0YOL7bcGwW64A0owc5pmpa12kDnB/cq7jpJsIsCXdixHOw6ltEcx5yihJiKR3o9yxztZWAXuy4pfaX2hQrHcjuBRmFgSDyrTNVqxN/GNooAhfg1IAMXS88r2bEzVtTQAXJn51knlQ3oZN8dItCZp5S0vEmPHSUAg/vwF9TBOccRRxyBRYsWGcfXycqT9YwzzgAA+COxJdgckJDwF9JZrijr8RSwo1r/op+hSPqlTwF2PQ4wsKZ44mBKVJCNsXRKu3+KOVpbZmWEh1asvexhKwM760AnFAO7ONCF48fATljpooqDXRTowmnGwC4KdOE0Y2AXB7qZY9IJdlmBTkiAXQLoxKFyEVrrEkAXDpAEu7RANzNeBOxkQDezU52fk/lFdQvsqBY+xXVJ6YsGdpE2baAz9SP7fmaqVmPT1SgP0BGqREhlCuJTWehSJ+8lwhylgodFoKO0IQVgtI//X/3tswEAp59+urFvk+xC3fw6uCFRZ0KGnF+kC43oA0GHqC4su0q3OXQ/uz0Z7Gxm6KaMZZKl/esoi5dH7V+ieXPfdYAdIWt/JqATioAdd1kC6MI5+UFlBgF0wkoXlQC7r60/OwF04XTbYHfqotUJoAunGwU7hgTQhXNiHLVKkwR0jgbohCabZSnQBYPxjmXYBNCF7WYqYGQFOiEBdkqgA4Jrrm2t0zq6666PcD5EsGPMCHShtY4yrskXj+DCAMaUQNfRDvofXOHnTfc66v3QdI8SEGPDQkepEiGsdbp7bPtYWltytbjc2iugIwdfRAIwuePjz3/+M4A5BHWHHXZYkNrEBfwFkRsp0XpiPJhU50iKbD30rTr8E6x2aZIQ90K2LYi9hNY0ia0NIke6WnPi1vcjwE5npeOct2u8KkIzg0ZBdGNdE9XOOeD5xnJcThOobHWlQBfVVKuMG3c+S9tmQXkCJ+yzTj2W42N4eBJ9R+7S9jNQbeDIo9dpga7sejh68SYcNLRT2Wa6VcKm9QvAWjq/qWAZVuGG19nU87XfBeZxuLsn1GXEhFoeWMlk9Z1ZUtc2q0lqwEXlsOChb/pR4khqqMYUTz2iFLFSi1F50lDERQ0IsGWhowCNRRn966gGEYoIx4C5rnlOAOB7VqJcSb5xhLJm8e3+SB3T09PYb7/9cpUHE7ICdYwxnHfeeQAAf5/p+EbdB4P/NSkcwhxjvQYaQroMcj+UZV3qcqzpeNo4Tt1Im6ILRrENdMZjRAxBt6FY/jpzc/X3QNwwSGWPVP23jzVvQxsf05Tc8nlg7VGAHa+U0dhvHliLo2+bwmrkBClFKqMMk4/Ml7ZxHR8L+qfAGMfGqXm4ddfhiTYed7DbC2qrHlzbgRP3lYOdw4B5tTpGBiZRVVjXyo6PI+ZvwSGD2/GsxZvlbVwPRy3ajKHyNIbK09ivfzTRRgAdGg4444Bqxclj6NvsgLvA9HzFkqIH9G9su6+olh09Dmd0MrBQ6cCv3gy2u64c7LgPNBtA+zrS1kYtlYKAHBXYCaCjWNYALdhFLd+6+sS8aU5TlNZ6rn3+EPpM9YNMN/e0oGZ51SF7B5EgRu29PsUqmK76g/gB0aMoVirQZWlz0puPAgCcd955mfI7xmXtiIRQN7+ejIIlJvflnpf8EsWrONjI35bX/yrLF4nyK0YFdpQkxHF/jW4qawCHLBglnpTZFuCRALkHS8JxZQC7+PeAAnbSfuOJVVVgxzl4M5KkVAJ2vFJGY/9h+BUHjAPlcS8BdtwBvBoDZwG01LYnwU4AXdkJbnY+Z2qwQ3BOy05LCnYOAwYqDTDW9mFjPAF2ZcfHiuGtGCjV4TAf+1THccSiLZ1tXA9HLtyCgdKMj3Cf25nqJAp04f5KwI55DH2bnLDmq18B6sMxPy0PGNhQh1NvtftBMkAgCnThe5LM+ALohOJgx/0A5nzeYe2SgVYAa+2gARnYyYAuowuB7JrnEmtkN4AuTz/UKElSIF6PLW8doubGlJ1fyvOACnOJ54HkGo/NgWKty3K/BGjLqTLrnLLiRvy9ko8//elPAGYYKq+sPb2WLVsWlLZwAF+WGoACJgDt4uqlNcomaGQBu6wQm/UYZc3tZ9Opt1tgRwnWsAl0OVLldPjrSdpnBbtEP3GwE0AXf8hGwC4KdEJxsIsCXdgmBnZxoBOKg13USicUB7s40IVjRsAuCnRCDvOxpDYWgp0AuqFy54pDyfFCa50M6MLjFAG7ONAJeVUWgl0c6Gb6QQhLMqAT96Uo2CWALtxJ4acVATqJog/HKNCF70XBTmehS7kMq7zfx677bgMdxSpHtdzFPmR+Pw/QWXs+0ZZOO8skEs5dnnt+5H3munKoJN6zKffLRKUeU59E65yqnbd4Cp7n4fDDD8fBBx9s7IsiqyaJ888PMiJ7+06ByypXh06iJnBo50CiRrN2C2A65sTtAF4ei12ineF4pl2OzQp01O1hOz9ppZP1ZS1pcA+DNYTyZkaHGujC7SnALm6li2/j03Xw3aNSoAvbtR3v40AnxDhQnvDRt91PAF3YJgJ2jPEE0An5nGGsVQ2BTljpohJgd8qSp6RAF47JOAYrjQTQCQmwO27fDVKgExLLsJwzKdAJccaVQCfkVRkag0wKdDP9AGAsCXRhgzbYtTw10CHog5VcLdB1NJcAXbitDXbGJVci2JmWNHmjAd5s9cxCR7G8pbLOUYDGhoVuNpZhTffvoMN8/bT7MAWRkXzrUsgG0Jn86zg4DjhnBADw0pe+NN0ENbL6NHvRi16EWq0GPtDKXwuW5PdEAUQDjFFBkzoeeU42o3V7YNlM0w8pvyDFidnS/s+GtAlHnZlE26ZuDDcz3k4ES+nH5K/BOQfq6sowzHXASy5KuzVtfI7SpI/adp2zP1DdybBz9QLtfHbW+/G99SdLgS6qPqeBg4Z2KLeXHB/79e9G1VUDsA+GXY0+jLcMQQEAtm7XJ2pmLYb+9WqgA9oWui2eEuiAAJLZdAtcVwWCc6BliJblHHxqinadaIAulOeZfehMFox2hYu0kYK5ZDGXW+ZceGm2pxHV3cSU9Nw1B3sYy4KFDS1ViCCImgjbCGJEqCWNZzqO85pYu3Yt+vr6rC29ApahbnBwMJyct5886zyAmYuLYjmxWYEgD/xEHey1lrF2G1OqEl0ARZabT16wIwNbTrDrVsSsNo+h+EdYBrH1AAGMYKcLs2cOC2+wxlQK3Nc/sMUDWFGPkzEGlEVuMx440cfbuA7Q3xdYjiamUdkqr77AHQav6qA86aNvm8Li5wB+CajucPHYwwdI2zR9Fxt3z8PGXfNw3YZjFW1K2NnqhwcH88tTOHBwZ6JNCHSOh6bvoiVJl9LiLtaMj6DulTDVKmPj1LB0vIlWFX9+6iD4TReoKLLxtxgGnnJRmg7ATdrGA4bWe3AaHM158lwwjAfLqYxzoOSCqwIVTKDGOfjERHh96Cy2FAUlxDygqfnRTgQ68T3LVVCd2p5aWzTPGPIPmN/P+6ObEvxFeIaykqIiSURkoDMOFrn/EVKg6OrwhttyPuNIy++E6NaOfdMc9zM/cDwA4Nxzz8XAwIC+zxSyvu70yle+EgDgL5wG+ri9XytZwE7qsJkBfuJLd9T8cpRl1Dxh4GkDFmwEmYj21OOUVVmWgk3HQ3as85SIo0jis9fxYJCAXeJmoAC7Tt8WBdjFLSoxsOsAOrQf+gqw4yIRLedSsOMOQ6vPAXcAcKA0lbTYcQfwqgCctsVuaxLsmr6LzaNDaLUc+D7DltHBBNgJoBM57RzGE8EMUaCL9h0HO48zNP2Z96ZaZWyemtfRZqJVxZ/WHozmVPtYOQDKMf+9CNABbTCL3f8F0LnTwbnyK04C7EKgi+a0kyUBTgl0M28b7hOqB9p0vSN6Wgp2KYFOpawpKFQZ+7V/Z+w7c5oMW368MrcSWV+E8RJAJ2lDBjrTalX7nkcpsRXtRwZ2OthT9iMLWKAExRCtc6Z9Y64L3s9xyy23AJhhJluyDnUrVqzAc57zHIABrf3GpQ+ohKggYNNip7s401ijRFuVz1ZasCMXZM4YsGA1v17KJQhbuQQpvhy67dTKIbbBTvXrLQJ2yl93MbCTR6EZLHZCCotd2E0M7EIrXWejDrDrADoxRx8oR5Zio0AXtomBXRTohOJgFwc6oarTCq11MqATioJdi7tYPzk/0WaiVQnBLgF0Qi4PwS4OdOH+RcAuDnTh/kXATgp0AMBYp7UuI9CRFQ+UiQDdzBAxsMsBdGkd1EmyaHXPZU2kPN8y/bAmWOfyWOgin00FdNrtitWJREkxPRjyVlMOdJTsEfG+KEExKYBO9n74sn3fftmnz4DneTjxxBODMqsWxXhee7xEf/rTn/CRj3wE8Biq9+wL1nJnnL67kf9Lut0SQADmOYu56NpR8rHlTbWStj/OLUNezv0P+8kZsEGVxSTEtG705niS2tHhpgz4zHVoucN0S7uMAeUS2PC8GStdshH8eX2YOHCgA+g6puwAzQEH40uZ8mckd4H6iIf+A8Y7gC4qx+FYNDSBUxavkVadAIIAi13NPmyenIeDJMuxYV/Mh8s4nppYgLqnd7Jeu2UkCXRRNRwMriolgK5zYsDgpiTQReXWfVS2TiSBLqqWBzYhX/oORQQ6Uk4sh0mBLtGP6VojWuhsyYbP00yzbFCQWtR7pC7oK4UoFWxCcOom0IVjtWj9mCTmSllJM/ZF9wvU7pvnhceblzzg9J2o1+v4whe+gBNPPNE8Rgp1IewPOOmkk4L0Ji5Ha0mQtZ70QON++vqrKtkCJGq0qg1RImytwqpFoDOOlSKi10YbW7LozGyjYgRxIJrvFGPKUlMdbXRVJQCw6Rb6tuiCJ4DKuI+BjYbgiR0uptaogxB8n2HzriFc+8QxyjYO46g6HnZO9ynbAMBYs4bfrztUC3TjjQqeeGR/PdA1GQaf1AMd83gAdHVNMlUfKI019Nc252DTdfM9wPeBsqJuW7Q7QuQ0bzSN15LRGui3r8de3UdBAxZShHqXLX0ZO9NvJ0bcmpYuQzA2rWoRAw2Nx4Di0kS4r7FSqXeGAQAwlFmL3/df+6XzUa/XccQRR+C5z32uvXm01RWoY4zhkksuAQB4S8bB3ZRfDBs3gDQnTQVSYVi2YcnOkhOudOxuykYQCiUQoWM8zQ3AZvqVXopy82+30VoQTNeRyOFoyuXIHHM9zujxk4CdsNIBwYOdTUqoJdLGHZtG/yY92FV3+xhYr/vBAlRGHTSfljsN+56Dxu4qprf34fon5eXEJlpV3Lt1KaYaZTy0c19Fmwr+8vSBmByvYt32+dI2440KNj++CO6YA2e3AvyaDINPlFHSxYR5HAObfSPQVXZMgzV9cMcBL0m+k5wHFrqW4UHbPues5ILVauqJNZsBbGnAjrdagO/rLXrielSVLRNA5xv8qyMuCnNC0WTfuiovhh9qZN+xcLWH4Oyvu9ekqVqhS3Mk7h3ac5bGTUndT8dx1AXYRZ/HsmEieey0UC8+34Nkz4nE8a6Pn/70pwCASy65hGYtT6mufYOe97zn4aCDDgJKHK39xtN3ICBBm6vOYmSsGJMyJ20bRTRrFkhLGwghlHZJ2aal0WRpNUUQp1GePmwsuwOd+0qMrpXClsmZOwJ0HX/r5qwCO9m+yyx2oh33lWDHRRtfDXYifRzjarALc9opwM73HDTHKoDHAA4p2EWBjnOG0alaAuwE0DWnSwAHGtPlBNgJoCtNOmAAnDpLgl1WoIsd+ijQzbwZaxQHOpVi51oJdlE/OAXYCaCbmZLsmoldj3GwiwJd2FE2R/4symytIwRW2Cj+HvZNNQZEz0HGecdBRhp8EL9nZPBTm2kX8cuTHDPa6gXhWJPOtWEVTNpxtmsxBNXYOXjN/zkXY2NjOOigg3DmmWdm6tukrkGd4zh429veBgDw9huHr8kRBUAOPmksQPHPZZXh10BmsMs7n27LVnSxeN9W5QyTsnyuG0Cnek/RpuPGSY3AVYGeTiaLXUfbdoqJiAWuY6wo2MnaSMAung9YBnZBkt3oWJ1g1wF0kTZRsIsCXdgkBnYdQBfpJwp2UaAL54wY2OW10InYKhnQIQDl0FqnA7ro909xjlncF1IWsRoD+jjQSSVLjB0FOxnQhZOiBA7MEtgpvotpK0mQAitU3/v4/cm0vEkBQ9+TW6Yi15AyXUcCuu34IucCusj7qnNMqnxhyVoXPW4hzMXOie+28OMf/xgA8I53vANuxpJ6JnUlUEKIc453vetdePjhh+Fs6kf5yfmaxgZrFtU5NKtVLItsBzbYkM3AD20bSw69tgA4zTHuJtTFP29ow1yXdAy01SUIOZEQ5r0z+bU4YJWyZoncAatWwIcHZ6x0iT4Ab6iGqX3ViXw5A+rDDsYPYAnr1cxYQHPQhzfP6wS6WJvycB3DQ1MdQNfRhHFUSi2MT9Y6gS7Wj+Ny+NsrHUDXMed2u+oOhvKEctfAPI7+LT5KmqAI+EB1exLoOvvx4OyeMFvoDADGWx749LQ+t5yo8GAAuhDUdNei66iBLuyIEDRn6d5ADpowpVlxXSsWOlOlmJmGlgLZKAF6ts9FXignwJa1mq+EPHmU/Q+vD0XbF1/+V/j5z3+Oo48+Gl/5yle6svQKdNFSBwS/+N/97ncDAPx9J+HXctSqpCzH0ifWmy9LGs0lHzHAzr5Rc/BZSWZJPKe2oNeGk7XJxy5s1kMnc88DVP5RQFBtoOQCDQ0g+IA70UBNFzzBgeqo3seOeUBtq4PaBk2ggg+0ttWwbcOwskm9XsLowwvhPaVO8MkbDsqP96G2VX2Dd5rAvCeAvq2aObc4Bjd6KE3mBDrOwaabxqhS3miG5duUfblO0mKXmJNPstBRf4QYy5FZslKQrD22vhs2gi+obay5qFB+nNp5joXVKExZEHokyr2VVF6MOGfdfZrXWvjlL38JAHjnO9/ZNaADugx1AHD88cfj1FNPBRjgHbxb3ojqJBpvL3uf+qvE9KWhQALVekjtpye/yijAQliCpijik5V5LKqo55TSj05duCmZ6l8C0C5TpSo3Rois5q2WHNpcNyjozhiY54OpwM5lAOcojRvAzgdqu30MPJ2cE/MBtx6AXWkCqG2W3Hw5wJoOmMfAplxMbO9PNGk0XPC1AyhNMpQmGZwtSeshbzqoPV2BOx2AW2kieTxZExhcB5SmAKcFlCYlc261l1ynebDsLLtUqEA3WQ9Ay3WAihxqeaMZ/njQgR1vNoPrpGKIiDUtuTrB90v7IHRYYKXTXZNimyFwwBSIILbl+v5Et2naiGPHtCXbfPN8RL437aqUpaARRq/YoLWMEa1UwZCEYBDKPZRUZUIT5EPIqxdEyRrun2nu95q2J73/CHieh1NOOQXHH388vc8M6kmo0bve9S64rgt/YR3e/CnDkhQxMtKG1Y458jDquK+XZikq/N/0BST3Y8GKqLppZPWbs2K1o1iuLIxl6xj2QjEnYqPVQXWdmc5r/Kali/QWf6p+5QrLEedmCOAcTsNgRfKB8pRsPpiBIg44CjaMBmGwRvI4cN9BaYqFbVxZdhafwY3EgDDJs4LxAOjEfGQlwII2BksXhxbogv5jx1Z1LVOW7RuNGatZ1rQajhMCXfh3XK4bQD9jaiuEwwI3AF0bAakGUDN9V3J9n6JNSmWwSoU0546/402Ev5oJ5mxYFdv9kKJudSLcs6MRp3n6sSXKcWalUgh0wRuyaHNLc+Yc3vxp/PGPf4Truvi7v/u7/H0a1BOoW758OS688EIAQGv5KDgzHLA0D+U0B15lWaNYyXTgF+2HMgft3xajQ9MCks7SmdaiZnoQUcaiShY9l+UYzoKVLjkEwSE7cjNKZaXrGMhwjDnvtNYJK120X58nrXVu53ychqe11gGA2+Ad1jrmJ+HLacWsdW0rXYdarMNa12i4wLrOfHWs1Wmt483k8i7jndY61gQGnkayTcRax1qBH128TYe1rh0YoRPjHGyqc+e5wxLWOh4/7hJrXQfQATRrXVyO5EdS3FqngrnotamCuVjggAzGSDU503xv4q8VbVilEixdx+bcYa2jBFaorHO889wY50wR6yxTFSqttS6FdS45BUIwSBesdRQraAhzvVgi5hzc4Vh8bnAPes1rXoNly5bZ6VujniUFevOb34zFixcDfR68AyZAS1nCOv9XSfSTx8pDsfB03NhyfAmp/dgEOxu/AG35EPbMz86hX0O9Bjpq3ibN5ykJvfXLRXpQD5dhBdDFLTScg7W8GbBzJcc45TKsWHZNLF3yyDKsWHaNTZtxgE0Gy7DhsusUS7QRy7DRZde4xDJsdNk1Ph+xDCuWXWVWuhDsUi67xhVdhg2XXRONZsAuAXRCrksHO0dzDxL9tIEusS+hVW/GOqdtM4escwBC65xyzsGAuskE/1HKa9ny+dP8yEtlrcsBdGn7saXU1rn49vY1aMs6J+byuq9fgI0bN2Lx4sV405velL9vgnoGdf39/Xjf+94HAPAOmAiCJijLbVEfuLwyOe6nATIb/ZgSSdoEux5+wUiyBYjGZW/CMRT59fKKunxMeajYyEDvMPMSqcGZmHte0EblsM85WLMFR1e6igh2fTt9DK/y5b5oAMCBym5g/spSAujCfjjg7iqhevdgAuiibcpjDIOPyoFOyK0D/ZtZEugi83HrHPPWtbTLrsznZqDzfbDxKf35Yiw4FwaY4FNT+kAFhwFlTfBJdDzDdp3DN2NBxLXRKZwCY7ZEDFKw4cgeOM4TLOKE+VDakCo25NkuxjEAHW+1zMfZGsgyOjjrfkhT0z4Z5zMzhl9r4Xvf+x4A4L3vfS/6+5M+v91Qz6AOAM466yycfPLJgAO0VoyCg/5FZmFKhpxTNgEO9cFsE5TyBH6QxyBYRm2qB2lcmOvKlxoSDXWm9sg88ywVdPSTb9+FBU63X+E2zdzCB5Mx55jh+9BqgU8qyEYs007X4YxqErcZwI75HKUJD33bWxhaJ5+P0wQGNvgY2Oxh+FH5sXEaDEOrGWpbOWrb5FNhHlDbDlR2c5QVedGZD5THONw6h6/gH8fj6NvWQmnSg6MANuZzVHbW4TQ8MMV1wXwfbGI6sHoqSm4xnxvLtQEAGk192a729WKMhgWMwA9AH50rtinaRNOeWC2jpVIKR32VEz7nnHZcLECLuLfZOjbafhzCvZSwT+FxowSCUJQ38I0gU7m0mfEMwTaRezYHx+FvWoJGo4GTTjoJZ599dv6JEtVTqGOM4cMf/jD6+vrAh5vwlmoeAuGHOh9u2iWnNHnjZJUPOpxdFXAXf3ib+qGqF7ClS+YcjUC2FWSQx2cu5RxygZ3Q/7+9Nw+zpKrv/9+n6vbePT0bMAPMIMvAgICgwBARZFFAxnFDg2tU9OcSCRpFIebxC2IE18QYDW5RkyDiEzUQF8LIg4oiAeKKyhpWYWaYfbqnb/e9t+r8/qg6dU9Vna2WXqbn83qefrq76tQ5p/Z3fc7n8zllhbpD4IFrP1LXt0bY5Zap+pwtoxJu8jKNsGONRvTinZrSCzuxbUlhx0IOvxnC63CwgKN/e17YeW1gaGOIxlQIL84DlxV2Xoth+FGGngke+8XlhV00x2zkx8c44LXywk4IOk+8n3zkhJ0XcPRv7UTJhXm0D1lhx0KOnh1TxmCRRNC19SMXiaATYkJnKWm1I4uDbvqv7HXiYq2zCRjG1KItuyzzv2qmiWkVdgXv65xfH+fRMQ0Cc0Rt1iLk8hxT9C13LIxuOp6yz87Egs5IJqhLhTUnXJkRN+UxLv6OUs6c0Wm7CTq535pznhXEwQET+MMf/oChoSF84AMfmNYUJllmVNQBwPLly7vDsAeNIxwsbvY0Wu0KBVk4vMRn0monW9KmM4myS3+nW9hVbFs1BFD4S1MnxiyRbM5k63ccRsn+n/uoUbYl9VPjw2QVcZllKWd4lbDjPJ/TrqSw8zpS0IFC2DEONKTZGbLCzmsxDD8WCbrUNpKwkwWdXEYWdllBl3RbOi0pQZcUiMWXqFcj6GRrXUrQyWUkS1tO0CG2wGavfyHoBGGYFmQq4eB79Qk7GVtuPV1i4rqG5HINGj5iTZvFIkVY55Q+e7bgC9ePydQmDh9yrnVnkYdYPV8t6LL7ZGmHdzpugq4Oyr6XstH902CdE4RDIfwjIqv6RRddhP32U89BPV3MuKgDgLVr12LNmjXxMOyOQsOwMtNqtcuWcfGNmO7h2DopEqhSR1uqv6eJqkMIyTXh4mdXh89MjLbfrlYMMbRmOm+OQ7HKXGSysBOCTlVfAWEnrHRZZGHntYHBTfkyKWEXAj27FVauWNgNbOI5QSeXYR2uFXRRochapxR0cp/aodVCxzjXCjrxrGFBqBR0SR2ysMsKuqQqEQhjGKJ3GYZ1wTLUKtbZZpqo1VpX0d2Ehzwl6IwYX/4F7l3XZ1dJkZTUbxhuTZZZgrkAi3WuziC9mkaQSlnnNOtVx4+D47DXLkWr1cKaNWtw3nnnVexxcWZF1DHGcOmll2JkZAR8pINgpcaxBYAtKsoq7IqIu6rUHZAw3SZb03Cs3IfpzJ1XBtuXo20GhumyCJgoY6Urg22KIl5gLlgVYexDN9UyC8RWG2y3IQpBCLtNUykrnQwLOPq3trHooXbKSifjxXOsLvm94RnBAX9SLeiSetrA0JOhWtAlfQYGtugFXRQRGyY+dPp6orQlOUEnrU9y1dnOlUbQAdAPw6bKcLMPHqShRxPMMfiiijgqgFN0pgtVBZ3L+qSYwzO2pqDBqu4qzPfdpuCqI6tATTMFWcWcaYg1U053/P7882fh3nvvxfDw8IwPuwpmRdQBwNKlS/He974XQBwNO2rIZWURdlaKHFiXtCam9XUKF1Pkpiy2ZuLCqSsS1wWr9cvhejCJ1RqHtlmjkQxjmPtjG+YvMGWYtjNe9JLWpSgRVpIgML/IQ4e+2ER6GIJNGYQd50AnhD82hZ5dmgAADviTAXp2ttEzpukPB/xmiL4dpshSoGeCKy15SRkO9I6H6N2lEZgdYPipNvymIeCBc/jjLbBWx+hPypotMNPUXq73WadjTygchvpzHXKEU1Pxtacuk1wztvvNs0eM8rYlKjK2rFW11iWzG5iEXQ0R6IUCGazvFM+a0sXahO2DzmGY1CUtTHJ8XabYMjdmX1+HkcTlHeko6EznOxidxLXXXgsAuOSSS6IUbrPArIk6ADjrrLOwbt06gAHtw3eC95inKuGKrybnyZGLip+iyYinC6Ow82AVf3X1wdaXunEUdsoHUOKXWNFy6rivyY2uEnYuea0kP0qlmMqIWOsDXiHschOxG17kAGLhp+iLx4BGQxra0/RFPPgNwo5xHifbbeeFHUccMRoJLm8qyAu72B+O8ciq17dLMYwbAo1JDi/g8FsaYRcCfTvDuGxe2AlB15gIkvJZYZcIuo7ZjYM1Iwsn9xR+cUD3ehG/NdYv3m5H55N55lyEgFrYCUFnEO/ZoVKtIJAFnUZIpQRdSR83F1JCrkIuURdBVwjjaJLDyIO1erugs+HUjsvxlVG5sLiItbpGvFzEXA2W1NDvYPi5ITjneOlLX4ozzzyzSC9rZVZFHQBcfPHFOOSQQ4DeMBJ2Nv+6uWa1q1K/cz889XRm2TJl2i4z64KtL3XhIOyUgscUoVynlS7zAnOaZ9H2QMsKO831bnTYBtQWO0WUdiFh5zGgpzexDmmFnZ++Pli7kxZ2nKdy0emEnZyLjsVDm906uoJOrPebYUrYCUEnBzDkhF0I9O8Ik6FZlbCLEhZnXk6Z/isFXeY6FIIuWZQVdllBxxigCGZIBF2yXcHHuErQZa4Fpe9bqBiGzVjostY63u64WegylLHWKYOnsiKkhCXG9r9uWb5QNiDBLOicrGYOlkKVoMsuc7HO1TKk7SLoZ9o6Z6vKcIx5yBGGIY5++wHYvn07Dj30UFx00UVFe1srsy7q+vr6cOWVV0ZpTha2zP51Ao3Vzpk6rXYzNfwJdIWb0XI3z4ZjnaKPJeGjtYYVtNpZ9s04RY4QdsZherPVotBQrO7hFAs7o3N6EWHHvNxwX07Y+QrBH/KuxS4WdCpLVyLsYitdvi88Za1TzSghhJ1K0AkSYZcRdEk9IeC3Y5HXAYY2qH1xhKXRaKETgQ9NtQ9iIux0M58IYSfKZwWdKOZqrTNZ6OJrwXi9yMt1Q67xvZGIuYKCTlBE2GkFh6uflGN7lYaGk74It5l8n5IAhDk43FoJV+tcXYLOuL4e65wYJXz1F16IX/3qVxgYGMAVV1yBvr4+7TYzwayLOgBYuXIl3ve+9wEAghW7ESyJv+ptB7/qRSCf/KrDrTMppmzr6xJcNkE114SdLbN4ncEaBpwsdg4OxJU+XASxD53tPtH54QHoCjuND01qW9MMA+1O5E9m8EljrU4y7JpfHw/D7grgaYIeomjXAEMb20pBJ2hMcix4oq0NnmABR/+2MD3smiUEEHD7kGtLEyWca9RwL/X0aAVdtK1nTSWCMLQnz+Wh1X+OdzpGHzqWZPm3+89VxcmCVKP/nBFnNyDze62O2TXqGG5NUocZCzk8/52St1vKOAWa1WCdk6KQXQRdsGQS//Zv/wYAeN/73oeDDjrI3s9pZk6IOgA4++yz8apXvQoA0Fm1E+FQ9HXsMr9lJYqIsZmKmnTNn+eSa862b1VTtcxU/qG6BJnr+ba0ZQ/UsD/IzJHb3ZD5yilaXDAEWADx17ohxQvnHDwMI+d9Qxus3THOjMDaARpjpunEOHp2TaF3p6EODjTG2ujbru4LC4D+zS00duv7ygJgYEsLPePmlA3+VABunEItAGzRpQ0f3DJHL5+YMIuxILBH2nmeZRoyL5rz1Gr140BbH0nIWw4zX9QQxeliQbKKSzhYvFzmnXWJKK8xM0KlKcFcArscsO5zXYYOl5ROluuJNXrAGpbobJe0MlLZcKiNxnGRAeqCCy7A2Wefbd9uBpgzog4A3vnOd+KEE04AfI726u1R4IR4udUxRVgd1BRSbsUlj5zrkGJVwWSLJK3t5q0utlyizJwtjMZjYgjUsCE9pFw/WkoP+xR5keiEnRAtQWAWbYBZ2HksEjqdQC/sghCs1YE/rhB2nMOb6oB1QnjNjjJqNppurAPGObwpfZ44rx1NydUzppp5Aegda0dztXL1EK4QdAhD9VM0K+h015s4toyBNxQv2jAEH98d5wTUXGspv0fNtSTlkWO9vfn1IuDC8V7WRli3Wt11FQIVukU11sAaBJ2TP1rYfQ5rZ1KwRorXNKxYAO1+uUwHZtoe0f5axXIRQ4npOrEJOhc/SRcxV/D88EaIJef2YHJyEieeeCLe8Y53FNp+OpkDKqlLo9HAhz/8YRx44IFAf4j2EdvBGU+d3Dkl7qYblzxyquTJqvJFRUzOyd5BZM4lYefkV1Fd2Kke9kXzwOWEneZBlnPYrsPXxSXAQrQjhnLLCDu573Fy3RzCihTyvLATgi6Ifd04zwm7RNDFdbOA56x1LAD6tnetTP5kJy3sZEEn9zdM3xuJoBOLVGJK3kfVNZndJueLKAm6pKHMcctca4wx6xRdeb89SdCJRTZrHfIWuZSgA9TpVrLXW4nnaClBlzluLh9JucwKmTp4NpBIUWa6xFypj8nM7BFawWwRdLW9B0ok901t6yDmXK1zReCM48i3LcfGjRtxwAEH4IorroBfV17EGpgD6ijNyMgIrr76agwPD4MvaKF9yLZuRKys3OeKsJsNq51KaMzEcKxrsuKiKKPCKg4bZ+tVOSa7BpbUkTdPalMr2ApY7JwEXR1+Kj096WG9MsJO9WDmPG2tCzO+XFlhx5EIuqT7krDLCjqx3p/oJMKOBUD/tlbOgpcIO5WgU/Q7K+iifZSEnbDSZZGvNd0k98JapxJ0QDotjYbU+dLMy5pY6xSCTvTVKOwy4j8n6JJ6PPXfBUgJEct172JFKiXoFO04VFJs+XShmw4sg1JExX11ts65PP/rsM6ZqncVc2UEHTie98Ej8dvf/haDg4O4+uqrMTIyUrie6YRxo4f07HHXXXfh0ksvRRAE8J8aQc8TC9MFxMXmmqeuDmxBG3VR5ZTUYelybYd5diuia13TWUdSxhZ0U2FoV9Tv4ks3HRa2LE7D8oY6Yqu4NsGoiNq0JCBlngf0ah6wYsixp6EfWvQYeI8P3uPnRJ2A+wxhf4/a+geAM4awzzcOyQJA2ONr60i60w6NfmksiCJ9bX50RsIQ2L4zL+hkfN+eY85GEtVssMy0DFn4pTmGje25fPDYAnlC7iTorILXVoctit7xHrdSgzHAaejYUs65jO05X5Nfuktfjdvbzq/DFGGmOtordyLYfxy+7+OTn/xk5C42x5gD5i41J510Ei677DIAQLD/GDrLxtIFXBR93cxEwIANzwfr6dU7uroEFNQVGetiGbStt0aJ1hPYUBmHqLXKQmomcemH6QHpYLFjjAH9ffp6OI8jYg2zyYQcbKoDb9LQTieEP6afkowFIXq2TKCxvalvJ+6Pfh3gj0+BNQ0vhRDRnLcGQcemWmAmoQSATbbMgi5OAG2sw7fP8BAVNH9QGeeGjacYqyrobFYvF7FWq99ayRQsANxGb2bgGeAq1pyGOCs/5z2n41JV0NmwXWe2SOrOsnEE+0cp1/7mb/5mTgo6YA6LOgA455xz8Pa3vx0A0DloB4LFDjnsVDheVEbkoUfTV1wdN7Q1R1o8ZFJDBNO0U9WCJtdTdpjUdu7EshmKgrZNB+T0AJtO67TH7FMAiQewRtgxxoCBfnDfi3Kx6QhCoBOAGSJik3lQNetYqxMJvwlFHSGHvzuaZ5W1A3UZAGEjGorX9ZXFQ6osCMBU1r4Q8HeMR3Pe6kQb59391ZRhU62o3EC/ug4A6OuLxJYuH1YyabvhuLfb5rll6/hICi3PS3RftMYgBGsgV+z+UMOzt5Y8dKb1MyjoXMpoy9bRzxr2t3QwmlyHy5C88NXX9LezaAKdZ+wEALzjHe+YM5GuKua0qAOA1772tTj//PMBAO1DtyMYnahWYdWL1cmvrIab2ybshM+LbWqquUCN2b0LC7ts8EdZn8AaHLzlbawpEqoIuzp86WJfLHU0bOYYqYQdY+CylUf1BRyE3XOiE3ai/VDhpyZywMX1qIQd4wDEPKuhOqdc2PAAn0VPQ18h7DhS9bKswJQEXbIvCtGWWqaw5rGpVtJX1miohd1AfzSkzZjaipYNplFdz4Z0JADS94znma11gNoa5+AW42ahk/z2VENnLv6s0vO2DouPto0q60vgNNOMYr3T8apKDXXUZp0zfFgk1jlDfzujTfCjdgEAzj//fLzmNa+p3K/pZM6LOsYYLrroIpxxxhmAB7QP34pgeEKyrpT4Gqjji2kmrHYWMSSEnXE4di5RV6bvOlO0uEQKuwq9gijnMTb8r6mkUh9yKKx0zv5ZsbBLhl3lOlRznWYFt8liJ9YLYScLOqlMStiFPG+Z4+lliaCTkYUdB/zdU2lByXnXWicLukxfZdhUK99XaRtZ0CXLskEOQtDJyNY6lZUpu0wl6IL0vlVGJegUkaNZUtP9qRKJp64XTZqROj6+ijCHhlsrfyjW8V7cQ6xzKTEn91cqz0OOYKQJduwYgiDAC17wAlx00UVubg2zyJwXdQDg+z4+9KEP4ZRTTomE3eptCIYnk5NW2mQ+F4ZkK1rtWPzFvscNx2qmyYnW1SDsAHdhp6u/rqFjQ7naLXY1WulSTYhjaRxKDaIXejzsmqtDFnYqv7OssFO91GVhp6mDtYNk2DUrlITFz5togTOWF3QCxtSCTqwOAnjNdl7QyWXi5TlBJ4j3VSXoAETnQVjrVIJOttYZzkvyEipiocv0w9laZ7LQiVlSClrolPVMp8Wp4j2drJsjw60zYp2bA2KO+X5azBkEnam/oh/hyCS8Z+9Gu93Gqaeeig9+8INzKnWJjj1C1AHdHHZr1qyJkhMfuQ3h8GR0AlySP5qoKiKKDMnaxJ9W6Dha7Wy+UKK/ValiLRPb2o5XxSFqaxnXtCiz/CXuLOxmOlWCik4HmDQEPnAOPjmlP/bC78y0vhOATZoCFji8ibZaKMXrWTuAbwh6YCFHY+u4OjWJIAi1gi4lUHWBEyKti66fiK11PY28oCuCx+yCzia0XO4VWxoQ16AJQ1vOU+cZ7slahmArOP074zATRi0fhdP8/JqJYwHYh1rBPONQa3Jt8RDh0CQaJzUxNTWFk08+GVdccQUaLu/WOcAeI+oAoLe3F3/3d3/XnXXiqO0Ih/RRbymsCRNrctZ37Yu2G5YoSx4ibLWVc/sxFwHiSl0mZpfgBe22DmlGTCQRq9NsLncRUw4fFlUffsYHOPMiwe/SRsHkyZlORHOUmmi1zakyOh1z4EQQxPPZ6q8t5rIPmjlbWYej8fQusOZUFImqQkx5ppoFItVXm19ZaJynk3cC/fXLObjpOIlihkhaznnyo+9jfCwrzH3q/mFiuoanP5DJPv2f/blVWcQ4fKA5zUNb8UPPxapqw7mftvWG6yKJ4LUYTGyCTrQVjrTQ+9wpNJtNPOc5z8FHPvIR9PRY8t7NIfYoUQcAfX19uOqqq3DccccBDY720dsRjhosA1nqsGjUJex05mFxkaouQM6BMLrZdOLOivPQYsn9NPnCqMpqo1K5eXvnHHZefYK8CtMo7KzRbEB3EnZTG8LyrZypwHE4OgjBdufTh7AgBB+PA506HbWwC+MHeKttFnaA3RKsnSopWs7CEL5iqjFwHqVZ0UXdCkEXhlFbKmHnYMlO7l1d5GernVwzPGvNE4JOnCddHe1OtB+mIXWBYl+dX+pVBJ18/2v9V2v8YNV2Q+qn7tmr+jvZxD79lkMnjKud2hAiyCW9lWrzmsScsZ8u72F5P8q04TDak/W9C0en4J80gd27d+O4447DVVddhT5dlPkcZY8TdQDQ39+Pj3/84ymLXbDI0WInqEPYTYPVTn6wGK12krgrJewAd2FXW167Kla7ikMmyfB2wX2p+0WS2cfcQ0kh7Iq+KFTO413fq/LCrlAfJqdSwi4RdPK1qhJ2spBXCbus8MheF9l9M75YOLypdkrYsQ5HY7OUEzPkaWudLOjkNrN9MCEEnXyeMsdaFnTRgnSQRUrQ6ZoRgk7ZBUXkZGaZ8sWunB2koqCzMc2CzsmXy/L8manhVuv2FUc3Som5zLlx6qdtfXY/5CnsXIRtETEX9ydYNAn27N2YnJzESSedhE984hMYGBgwtzMH2SNFHQAMDAzg6quvxvOe9zzAAzpH7kCwpISwmwvirqzVDoge8HPZapelSvBCyS/PFHUPx5a5frLbKCL2irwknFIbyJaagsKukJVO7kNG2CkTFYfSS0Ql2GRhp7KaydeESz9z6Uq6wk4edk3V3wkiYacSdALbMKxUX07QAeBBN2dcTtCJMp3ALOjk6FGVoDOlqUnqiC2DM2WhMyGeTdOYDsR5uNXA3BluLf98nBPWOVnM5T7WvKQN9aa8W87kT6kJpAiWTIIfM4ZWq4VTTz0VV111Ffr7Dbki5zBzdpowVzqdDq666irccsstAAcaDy2A//Tg7HXI9gCqMASXTNdiGnZiXnmhqvkyUpapY2ovHUkgRQ3+dDpcj1HV82mp2yzY3eo2vZiYSFGicrQP49kAjEO28XRhuqm+ug3p1/X2RG3oPjoaDbCGrz/fvg8+NGCcnks7DCoIuV3wdQL97Ba+B97fZ0+SbPOha7ftsyyYzrsk/rSbm/wNQ8sMEC7YptJCXRa6WbY5hObj7BKUVvU4OE2NBpiflVWzIlTto+tUnia/Ocuxth1nERmr6kew3wTCw8cRhiFe8IIX4IMf/OAeExShYo8XdQAQBAE+/elP4/vf/z4AwH98GP4TQ2Ao8QXFeT2WnLKCwmKlSd0gqlNXVdjVwVy5pKoKO3Et1CEOdQgHXmM/yr88jaIOiF7yJiESb2+b3B0mcepCo2FOm9FogPf3KlexkCfnivcpxGdsYeMei+aZVa2fmIxEp+5cCCug6dlgitqFg6ATIsIUGNFqG/Nkcc7dRF9ZXJMKV71nXLa3fQxVFYUmUceY0xzOlUSdy7vA1EfPj+qvepwqiDp7Zgq3d4VJ1Fmvt6RgxtUJHMHKcQQrdgMA1q5di0suuWSPSFtiYl6IOiB6mH35y1/GtddeCwDwNg2g8X8LwHgBgabyz6lK0YebVF51Q+cmnFb12ZY+pQ5MwrGuS4qx6ta65G+VX6KDqBP16Lav+hEgCUfjS0LTV5uVDszrTryeFXaulrpYFGpFl9i+rLAT9TJ1G+IRxXp6csKOhbwbXOF5auEXhJGFzbR+VzwFIWNqYSdfCyqLYF2CTrShaJ+3oqm9dNdJ8igPDX2J76lSws6WskSu0yQkbNZ+12em7Z6eLlGX5Nq0u0no7k+xnfI8uL4DTH30fBhTnhQ5TiVEXcqCqLmenYn3RdsGUHgfOOPoHLoL4X6Re8gb3/hGXHjhhXM+sbALe6xPXRbGGN72trfhve99LzzPQ7hfE+0jt4P7BYRN9oTW4cNVIY2K0YFXbJv1iZP90qY7+eV01i8nKa6DKgJX5+tni851qVf8Di0+LWWPs3h5GCI5TdsmD2ydRS/1gilxHGQRxw1thBy83VanGJGOI5tq57ZlIqUH50A2vUfI8z50uvp166sKOlN78f9C0EX/WoIcdFbZKvdSEUEH5Mu6OvFXsqxP8+hE7llbrj1rxKYBq+XP87UiKK5g2o+Tdb7egs/L7L7k/P+KCjovxPF//QyE+zXheR4uueQSvOUtb5kXgg6YR5Y6mZ///Of48Ic/jKmpKbDxBnruXQTWcndk1lL1pFf4ApUv7NyNnbXaqSxLdd/IpvrruKSqft3p6mBpEWHEZAUF1F/JRa4R1f54vrPFztVKl+5ebLErYqVLLctY03IBGQWtdSrrn2Sxy/XRY4nFLmWlS7aN9o/3RX58TBJDYj1v+NEwrBh2zebVk611OheHhjQzhuW6tOaSM11HGUGXrJauEeUjXHVcUp0qYK0rKuiSNqURA91xVJVXNmIe1bCuL4ODVdHJnyzVpbxAiVeo6xcfZbr7VFw7sd9crn55uzLHqICVTuvfV9FHWjyDrNeZDvmZ2RvgGa9bhAceeAB9fX244ooropmq5hHzUtQBwB//+Edcdtll2LFjBzDloee+RfDGHRMIWr8mp1ncGdZrTeq2iEpdubK4DK9Uqt8SqFGlDldMLyLm2YdnytQPOAs7q6jT1CG+SK2+dL6v3hch7HTtuwo73XBuLOp0opP5HjA4oB9m9Dzw3p68oEsqiIWd53WHXRVl4BuCN4SwM8wGARQcdlVtr9uHOILZ+PgODD56rqKurKADui4apmMoymkbsIx0OASeVSI0JH+Gu6jTBr9Z/MGss0aEgdEyZw1SqEHUOQVrlEX4BWo74O5LFw63MHIGsG3bNoyOjuLjH/84jjrqqJo6OneYt6IOAJ588kn8zd/8DR599FEgBBoPjcLf7JB3xuWQzITVrswDKRaFVn+KOgJCZkvYJe1Ms/i2WW2rWnUtEWs2YVdW1CUUtdKl1nvm4QoXYWcKjDBtK/qmi3YVw2SmaFkg2n/T7Be24+d51YZdTYIuFKlPTMLbcnwDy2wUNlFXRdAB5g8fQD2ikGuk/Eco8337cKVpe49ZRas1kAHm4VbbPezSf6NgtG9sXu8iqqdTQtieo479D/Zpwju6iVarhYMPPhhXX3019t9//5o6ObeYNz51Kg444ABcc801eO5znxvlsjt8JzoHjYGDmy8Gl9xtVf3trDl7LF9YOqQ0GfbcRiZRUjyaqHaqirZKQRYO+exmefox6/k1CgqLoDOJVh6JIeNLwyWNgen8tFv6FCiA+dgHIfhEM5pXVdf05FQ0B60OnZVSbt9wfHizqZ8XFnC6dyr5+IjZLnT4vlm0V50z1Pb8mOZ7xzQllNP2VZPbOgi6Su1bylXNOefQcNT2HLcJcXB0DhpD5/CdaLVaOOWUU3DNNdfMW0EHzHNRBwBDQ0P46Ec/ite//vUAgODA3egcuSMKoLA5+s+muBMvjRKOrYnJPb7xzAkhNf23DAOnyk2nuLMd3z1Z2BmmRErOWRVhx0P9y9nlvJmiKAHAlrDUJuxC3bXHu3OiZoVd7FMXWeJUvmQcvBUJQt7pKIUdn5yK6g0D9RC0LOiUfpnm+4lPTkYBGdrocGGJ19Qj9stkKTRZ6WwWyiT5tCWa2YBtnmEje7KgsyW3dZmdwtJ2FUFXKIlwGStdvP9WK2ZVXN69NmHtdfCcSw5BcGCUsuT1r389PvrRj2JwcBbz2M4A83r4Ncstt9yCj33sY2i1WkDTR8/9i+FNSH52Or80U164LHUNaWbN2i7+J6lqMkMb2eE6ldnc5LhcNLfUdJjlZ3I4VrXvFsfz0m0pts0NvVoCX3LTy2W3lZdlxZZct7DSyXiSuFVF0fqWoWLbUGw2/1ur3U1jwhggz73oMbDe3vS2MiEHn5iQ1vtgg/369UwxzJz93/XcyoJO4Pvp+nJRoZm6s4JA9ZKuQ9CJ5rPTDOqCsFKLDM732fOcHX4tEhyhaV9Hcg1KdRYRHmXSZhgD2DR16sobgxwUaIMuXCly7OOyqf0tOz2lsU8ln9EZwsEpLH1RLzZs2IDe3l584AMfwNlnn11DB+c+e5WoA4D7778fH/rQh7Bx48bIz+7hUXhPD6YTFeteeDMl7ky+Ci5+KFCIOiDpv9PMFKIfiu0dGp8+X4uZEnamvHSmemzrdaRSUmgcny35B41DPrKwM+XGUok6oCvsdKlRqgo74V8nCbqka41GJIxkK122biBlpetuHIu2vkgIJla61PZ+N6JXN+zqcl45Bx/LBF54DOiJRagtr6PmJc5bkrWxRkEXNc279TvkNDMGaanOry2hck2iTmedcxU61mHMktGpVXzuXEVdaYuZ67HXuPLUKuqKPi81fefgCPedgHdU5D+3//7748orr8Thhx9eQyf3DPY6UQcAu3btwlVXXYVf/OIXAADv6QE0Hh4FCzUipmz6jjqGGWwRmAa0U1AJq11ZJ2ZXcTddl1bVIASX7W1BIJaXe6lzH29nFEeWiD8ecv2LRAg7U2oAnagDklQoWmzCzib6gCjaU9W1RgPo7Ulb6TLkBF2ysRQ0onsRefFUaCax7jrsmkVY60yizvQCF9a6mgVd1HQs6kztO0Rb27bVUoOoMw232gRP2eTBYltrsJKl7rJBFHEB83oTBYantRbMmQiGU3dIuZh7ITqH7ES4b5RQ+LnPfS7+9m//FiMjI1V6uMexV4o6AAjDENdddx2+8pWvIAxDsN0NNB5YBK+ZSXti+gp1sdxNdwQmYLxBjcLOdmNOt7BziSC1WROrtG1iGqPybMLMZfqh6WobgN6BXljrTC9KzzNsb7cym77+WaMBNjyk2TAWVWUfZyEHG9L72vB2O7ISmtpWCTqBbu5czuMoVXM0vDb9TBj5HmqPeRzl6slD2KnV3BwwItrXWaJ6GuCm/Y6312K7z1xSiph83AzXqovvmjGDgO25a6m3iqCcCUFntCBaUvHYKy/5XtT0PRxoY8X5I3j44YfheR7e+ta34rWvfS08W4T4PGSvFXWCX//61/jwhz+Mbdu2AQFD49EF8DZJw7GyZcYmcMoKEBfLjwlL37QPPhdhZ6q/yIPFlnzUtL7KcdVRwVqXfKHr9t9BtGm3V/iuyLh+3ZeNuuMhB/N9KKcEiwUbDwKlsEv84EyRlTrBysOuODDMU8sG+sEGFGmJOI+S/JYZ9o/3hQ0Pq7sWpyZhfWorIZ9qRdG6qpewOA+q48E50O6Ac24QZVGwiy7BcJT2hEdWRkX9PA7Y8DTO4bzTic6nZehV5y/GGo1IGJqEnek+MeFiFWf66fXKWumcLWQWHztT3ZUFpQ6Li0YS5FDQXy/XpyqiroKgy/adgyPcbwLekdFw66JFi3D55Zfj2c9+dvn+7eHsfTI2w/HHH4+vfOUrOOGEEwCfo3PoTnSO2A7eyE57Y3mJu0RKmrBazCyiTxtF63UjorT9d6g/NGzvgq4Nl2PnEglVFJcXv2J/xcNOawG1Rv5Vv+VchsGqROBF14vFkph5kXbnHeV553uBS4odYbnSDCfy5iT4+O4oZYiycwXvQ4Og4e12JOg04oBPtSJBF2osbeIaYV4080Rq466gS/qRa8AQvSwEnU64xELLJGxEHjztcLvtfvd9e75CoNw1L4tz070qPkyzi0sIOmvkqiVi3Pax1fVltj9Htb6LlneQNnpWjlot8WxIHZvpTmWlQuHXxxsh1lx6GDqHRulK1qxZg6997Wt7taADyFKXEIYh/uM//gNf/OIX0el0gJaHngcXwdvRk36o2IY8XSIlc9sUjJwsOiSbCfyQBYlS7BWx3JW5wbPHxhRlbHJa163XlVVR8IWUi3YzRf+pRKE8rY4pChX5l0SZaLkiFrtc/bLFzvMin7lM5KQQFcrpvLIWO1sy5aw/XTbtRnaqLNlqJyx1mTq151+89EWfPZay1OXEHPNSlrpEzCV94+nyKtEvjmVW0IkmslGymfPRFc4KQScfa4WgYz2N1BBsNrGxcvYOU4R1TyM9L3BRa53LsGuqvPk6Zo20pbKIqCvluyb138k6J9Xh4l6hnQpS04/U/igidovsr7XsTA69avofLpjC6OkMW7ZsQU9PD97+9rfjla985V453JqFRF2GBx54AFdeeSUef/xxAID/5CD8x4bBwsyFaItCdYmUTMpahiZdt9H1Tycu4mFC5QPQtf4qX226Ye2suKsSaVpHNKxhSDT1wLYNUau+Ni3bF0mZUCYCL9eX7LZC2Gl85YSwU4qCrLArKuqAtLBTWO8SYacSdXG9uWtAZZ2TRJ3SOieJupygA9KiTmfF9T2toAMkUaex0PE48lhpoWNeNASrsdAxjyVDsLqZKlLWWUMqk5SgE4QhQlOyZblO12HXLI7DsK6CrnQggsVForu52rJVaL5Yy1CrMQ2Lbr1rVK3WSjxDok71vGQcnRU7ER4wAc45Vq5cif/3//7fXhXdaoNEnYLJyUl87nOfw3/9138BANiEj8aDC+CNZXxqXK12JqqKjrqCAWzpFsq24UpVnz0TNVjrKkepGeqo+pB1eUlV8eFhvh+9yDV+X8lwq8anLBF2ZUQd0BV2miFZ1tsbCSnPMl+uGBLW+b4JS5Ym5Qvr61ULOlFnEJiDQTymFXRALOoMQ67Jcdb1Lw5aUIkaIepMU48los6QMkcp6AA3a50LNp9Ii7Cz4TT8aAskchVlFkt9me2jSgwfmVLQTWmfQRvTLeo0/Q+HW9jvRf144oknAADr1q3DRRddhAGVj+1eDIk6A7fffjs++clPRkEUXLLacelic8kbV1Xc1RHpabKquQ6lTqfAc7F6TpfPYtIHiyWgwkOyUqRbDTDfMDF2nMrE9ELODt9lqSzsRECALvrVIuwAgPX3mYXdlCHK02PqYIZUA145QRcHgTDf1wo6hCFYT8OYWoQHAbhuH2JRF2oiWUVQgwlb3jEecnj9mmsgtiAaPyxcImVtaZZM2J4hLr59FQSdixhz+jjUbC8CrGzPodIfoC7HaLoFnSJoiDOOzoG7wFdMIAxDLF26FB/4wAdw8sknV+vLPIVEnYVdu3bhs5/9LNavXw8gtto9MApvPPbhcEwGDKC8aHId6jRsn5rcWuHfkrL26PxfXFK4iP6Woepwtut6bfvlLHZVRV0tgs4ytJUIBo1/EOuJolp1L13mscSnLpsrjsfBDTzrpyYQgkI41ZusFbogCyCJtNRa7Hpi0agTdlVFnTIClSfDz0rRJKJ6RZ45jZUr6oM+lxyAqJ2WYog5Pn9gDGFzUtl15vvGHIQ8MDvwi2tUKeocBR1jLJr+TTM8mljRVMLB5Rno4P5gpKSgq2JZc9m+yHBt6Y9Hl6FxFytqDZkK5PsoHGph/3VDePTRRwEA55xzDi6++OK9LvdcEUjUOfKzn/0Mn/70p9NWu8djXzsHYZcy+xcVZ0UCEzS+KEYH/aiD5iAA1VDtTIu77EOlaBDFNFjr5oSVzsEJnfXED0rduY/9sXTDaPI+sEYjJew450C73f1btCPw0kKwrLATD3s5YCC1PhYuwvKYE3d1izoh6ERKlGxUsCzoBNlcd6p9SDUpiVjO06JOiDkguW5Voi6pUyPqXAWdqCtpM+6/q6BLNlEMs1unn/LSx1VRQbbT5vVZyviu2YIZCgY+VfK907Rh3cb1OLmm7Soa9JfdJp5Nh3shOit2gR/QRBiGWLx4Md73vvfh1FNPtde3l0OirgA7d+7EP/7jP+KWW26JFkx6aPzfAvg7+p1EncCY40xGtjzZHlq6bQWZqadyArOEE/+MizvTl6Ipp50tH56pvKJPhSLnMINWunSj3T+F2BHI5555USBESozwnNUuuw+ysJNFXfK/3I6Xt+65CDsg/YLPDctkrHapl2BsWUyJgbpEnRQUkbI6ycEkKkEHpEWdKvBD/vjKWiVlUSdZ51IEQSKalKIgI+yKCLqkCmGtKyHoRJupyFzVc0e21tmefzbf4LLDrpoIV+NUaZr2imxfKjoW5udMbhvX42TLjGD6cC7hD84aDQQLJ7H4+Q1s2rQJAPCCF7wA7373uzE6OmqujwBAoq4Ud9xxB/7hH/4hmj8WgLelH41HRsHa+ptR+5XmKs7KJgCWtlc9LFxM94m4K/sVlzRQg7irYwigJmE3J6106cajXz0asSJ8cHSJayVhp9oPIeyyoi7aPL1fqum9kpe9i9Uuk04l1U4sfHLXd9ZqV1XUAVG+OXmoOVVHJJATMawq09Nj9gsUEZy6YeY4h6BS0MWEzUm9MJBEXRlBJ/rIfK+UoEv6KFnrtFYwMZuE6bnnMoJRxEpnEGRVhi6tzwselhZz2X4at3U9TqpyLoLNxfdZ8/zlPQE6h+1GuCTKQbls2TK8733vw5o1a8z1ESlI1JWk2Wziq1/9Kr797W8jCAKgw9B4LDMbhYSTk71NoNn8HWxYnP0rC5CZEHc2UVcnFSPtomIlhbIrtmGjrJVOVcwyxZRpWjDhK6eNqOQ8erHrptiCu9VORzKThe58CXFnnN7MUdS12vYJ1E3rbS9uQ/qWBMuLUxtFnLTB9P6Vog6HiGxbGU83NRq61jqjFdth+jQrrla6qvdhBSrNLuFYj/WajSowH1PXFF0mFM9uDo5wWRP9x3GMj4/D93286lWvwpvf/GaKbC0BibqKPPDAA/jUpz6F++67DwDAxnvQeHgU3rh6SqGyzrJ1RG7Jddl8RCpNoTMTaVBcrW1VLu8KU4lFqyzDrpaXSS3pFxQWshQh7wYyKOvnauf8bidT/nha4tkHlFWI42xKB+Ii7ILAGuGp3T4IwAb69QXiYWBt9KbGzy+HmD9XhdhHm8A1RWC22m4ipYKgc3KqRzVRJ+das/ZDRx3RsFVwPE5VPqadc1C6iDrtxjWIuWxdMeFIC8945VI8+OCDAIAjjjgC73//+ynvXAVI1NVAEAS44YYb8JWvfAW7d+8GAHhPD6Dx2ALtkKzV8dYWoWrDZj7P+Nil+iA98Ar72Ym2qwg7V2dbWxteJo1HmUt9GoRdd7ogrh9ekratIuySTPu6h78kJHKCiHfnDtU34EWpRERdJYUdEIs7jbATvnXa6M1YfIohLFdxl/LZG9RYBTqdbg431f7J15Vp/8W+q/ZBJHCGpu/SzB06yyaXrIjaoTyLECqaTNuEbg5h2afOmDzX1E4ZQVc0eMKC9qNLHrFwuL9NWBOKu2RFgEXU6eooE/Rg7ES3Pt4ToPOMcYT7RYE9w8PDeMtb3oKXvexl8B2GoQk9JOpqZNu2bfjSl76EH/7wh9GCgMF/YgT+hqF0bjuJog64RZ30jY6u8QPHJerVOTJWtFnVb801o7xLfj65X7ZtdPUY1xf7EndxBC8cZatLdCrXq3qJ6KaaAuxWuqijXVEn6rMJm+z0X3J1GmGXEl8a3zoucrR5iinKFKQS8XpeXtQJ65w800J233IRsZp9l/dXEdwgP4Zz/c6sV5XhmWFhpagrIugA9X2dpaC1TpXSJHet20RdUUFXZfQjt4nh+Zt9vmgEXW1iLtuuri6doDPV4fr8LQLn4IwjWD6BvqNDTExMAADWrl2Lt73tbVi0aFG1+gkAJOqmhT/+8Y/4zGc+0x2SnWjAf2wBvO19Rn87l8SQZVJqJNsD+pvVMVdd8nVqe1DWMQzrkvPIpQ3dQ77IpV+TsEtZ6Qz9LJsPTz4v2fkwAaSFnephL1u6XIZeRW44mTCsfThWmeJEOPzHgRop8eUxrdUuqUvun4hcFSJEts5l9y1qVL1f2X1W7aNwC4jL5gSbbIlTCDp5n4T/nFIoOb74ja4ftkCEAtY6XY467bylRfpRtGxBQecU6KbIOGCqQ0UhMZdtX1dnEZFcNs+crQ/gCBdNYf9zFyRTcK5evRrvec97cNRRR1Wqm0hDom6aCMMQN910E774xS9ix44dAAC2sxeNRxfA223xczJQeeoXW1qQIg/xMjnzVG2W3d41mtUlcrhqXwG3F4VDWhanrPUWci91GXEN2Rz6HaLlmG6GAVF/TVY7bUJixtJWulwbaaudaZoseF4SCawUdEBXsJqQrH+mMqZHL2s0tIIOgDWRLyBdRzZBZxM/VXzX0L0WjX31WDW/ryIUEHRWnz+HZ2ktPnO2zAOm+m3+idPsBx0OtXH0m1fi17/+NQBgdHQUb3/723HeeefBM90jRClI1E0zY2NjuPbaa/Gd73wHrdjq4T09gMbjI2Ctck7dQLUHhfUmlgMMbKKriiiz1e9ahwu2BNF1RO66vCxs0+wwFlnYNA9r16hZY3oEce245kvUNmIRdWFoDXDQzrIgmkjSbwRGkcRbLf0UW5LVzioyTcfNJuhioWY89hYxB2QskAaM07oJUW8RbLxjiZR1oY6AgyrXYREcA5NKizkgN/KRq6NIJGsFMefalnVqNpc0Jaq2ewN0DhpDuG/kN9fb24tXvepVeN3rXofh4eHC9RFukKibITZu3Igvf/nL+NGPfhQtCAF/wzD8Pw2DBRnrmE18SA64laaFqWP40VX8lam7aB1F2nF5WJYZiqgiHEUuQYO11Jq/Cw4vhDhXWZQLzTKUbgrC6O01WtqcRB1gDaBI6gL05drtfNJjGc1sCrk6dYLMJOgyQk074b2w/vFQ204qMXBJUZey0jq4SdRiIasi7ORn2nRSJWDBxTIntVN5OsGKYs65Td17gEn9cLHUSmW4HyI4cDf8Q9qJIePss8/GW9/6VixbtqxI94kSkKibYe677z5cc801iSkaHQb/yeEomCL7bNUNGTpEseY30zj1AtXEXRGHWtvXrQsudRSxEJYRYWWHYU3HPCvoFNvk/PE0+5C6HlR9kRPQ6oSdbZidefmkxVnBVUTU6eoQ9ZjaAcwzWgBqUaeqR+UfGFWaLxuvT46haEdRRy7Rb6aMcc7XDLIgL+VLlwtCqcFap6jXiezzrG5hV4eQSy3UPAsM/rAuOf8UCzPtFrdklrbS6QLMcuXSZbgXIlg+gYGjgfHxcQDAs571LLzrXe/C6tWrC/ScqAKJulmAc4477rgDX/jCF5KJitHyYnE3kI+Uzd5gGif7wuLOJeJJh4uAKiLuyjzMXeqZLutdUWHnkKFdGdggbWud7ByGl5XoT7w+ZxGyRT5m90El6oC0UCoj6rJ1iHpM7QC5GS0A5MWWfM50Fj+5L67Wuax4lIZ6U9Y5TTumNC0yuem2OM9P5WY6b4bre1asdTYr0TT0pbSYA9TiU/NBVSlZcBG/ZQOFRZ3uQ9eSCoYjQLBsAgue08D27dsBAAcffDDe+ta34nnPe57eQk5MCyTqZpEgCHDLLbfga1/7Gp566qlo4ZSHxhPD8J7WiDtbFGtcrtKUMUXFXV056cre/C6WtOmw3rkKO1uWdp2VTi4WBOYhcxdhzzz9pO6yADL57EkCQSnqgO4ME7YIWMDsw+Yyu4IooxB1QFoYMdNQsdyfota5VH+6otk4DZfhXGj7rljP2x23ITuL4Jpxa52LX29NbVcSckmBzP1eYbjZ2h/H3HM2CqdBcviQS60CR7jvBBY/tw9PP/00AOCAAw7Am9/8Zpx11lmUb26WIFE3B+h0OvjhD3+If/3Xf8XmzZujhU0fjT8NwdusEHeAXaQ4DMtaI98k3z2rg78LVYIuXHGpR5Rx9I9R11GvY7fWSie1p4sAjSpwtNYyT5kQNmnG5JeWrcowYwCAclY6VZ86Haecc1aLgEuknem60FnntJ0yp3Sx9ZcHof1cOfSDB4F1XtEZFXV1RFvKwqeKmCsSLFQxIMR19gcTTufSNr1aUtAi9jXHlzOOcJ8J7HvaUGKM2GefffDGN74R5513HholZ3Uh6oFE3RxiamoKN954I6699tokDQomY3GnstxZvnSdJoi2vXhZPH8oD/XDf3F71n7NZTO8yzCQ7UvWVK8luMLpQV3VUpdqz2K5sQkGHkZCq8KcrQDsok4MMdqmMhMzFJiOsyXFiLGMyTqX64/dOuki6ABoz5OruBTXjemjIbm2TJTJE6dszCHKXHdsHIRKzp9UF2yU7U/FtqrOzWrDmlhaLsN5LkdevrCDNR5IleGMI9xvAkv+rB+bNm0CEKUnecMb3oCXvvSl6OszRMITMwaJujnIxMQEbrzxRnzrW9/Ctm3booVTHvwnh+BvGgQLHcVdHdY6xA8RKW+ZUtwJi54tAMNF2BV5gdSNa1CEi9+LS11ZIaZ40Cpfutm6HRKdptI1CB88lWgQw6cwiDvRHyFQVC+aukRdq5UMVwLQT2cm7bNSNJUJwqjTOucy5Cr74CnEd+pxbehP9wUvDZdnjnWujK7PyPiKlRV2ZWYtcLSOucy0YJ1fW9re5BtXJgF8WUGnShysnYFD/oAsKNhy66Qy3AsR7DeBhSf0YOvWrQCAJUuW4DWveQ3WrVuHgQHN9HrErECibg4zNTWF733ve/jmN7/ZHZZtefCfGoS/cbCbCkWgi6i04GSt65FepDpxJwsL0wO8iLBT1TVTOFrZorIFgk6k+pTnxzU60fIQt718hLjLCbtMsENO2CnOR85q5+p47yrqup3Oi7tMwIBW3GWDOFRIfnwzKeYAqH3wpPNT1DqX64ZkrXO1zjnNzarZtruBxcUj2aaYz5rxY0gOLrL1QxO5Km9bS865AuiOsfy80KZZUVnpika3A+ANIFi2G8PHeti5cycAYN9998XrXvc6nHfeeWSZm6OQqNsDaLVauOmmm/CNb3wDGzdujBZ2GPxNA/CfGgJrZW5i6WXvJOqKWOtkpO2MSXGz1ruiok5X11zGxWfINFwa77/15WsZarENEeWsdgZrljWvnWy1c3nxixklTGRFXbfjXaHkeeqcbVlx5xJ4AXfxFBWub6hVm35EvkaKWOeyVTV6uuVKCrqo+gLWuiLuCVWFXNS5SkKuuxnXrlOVM+Eq6lw+rp1GQlzTkejEXG+AYPkE+o8Adu/eDQDYf//98frXvx7nnHMOenosvrTErEKibg+i0+ngRz/6Eb75zW92U6FwwNvcD/+pIXi7FTdb1UjYbD3a5KwZgaduyNyGok0tshNvXUKvRKJNLQ6irhYrquiTcXV03lxmIEhZZLMI65WtT/FQvc1vLymrQ/jKmdoTosf0clWkcdE36eA3J9qbLuucoh6ngAhLsAPz/WL3uqmtqrORKNrUr3ILXCozvFqa+DlQKgddBtdz4hQxXMF1JRxqI9h/N9jyNoL4nlu5ciXe8IY34KyzzqIAiD0EEnV7IGEY4s4778T111/fTWIMgO3oRePJIbAdvWDIPwitQwhFHvYGceec86qq03XZOl3acnWgdh1aytVjD2wo8pIywTwG1tsLHgR2Yef77tNcOQXZmB39tf54USG1lc7QnhabL1unYz+W8rlyEJpOItIY0ex47Qv/L9Oxiq81471psV4JnJ8XNlyFnKVsIq5KWuUKIYmmKoLOyZqYaa9yxLCqH+DgC1voHLAbfGH3+jnuuOPw6le/GieffDLNz7qHQaJuD+f+++/H9ddfj5/85CfJ1xXb3YD/1CC8LQNRUEXmgagdbigQ2p+qI/tSDgKnYQmpcWt79i4pHJvLvHTEy89UT5GhYZszuM5vyRSc4NKXZHUcNep1h3Od5gxVzYwg42q10wRkKHOwZdsrKuoybabQ5eeLRVUy3KbaZ9XLWbXfcrs2URcHo2iPoYugk3PixfUoRZt0jWnvc9dnRHqBvY86HHxATWXlPij3aTqEXLZN62aGY1j0Q802P2tBuMcRLm1ixdlL8MgjjwAAfN/H6aefjgsuuIBmgNiDIVE3T9iwYQO+/e1v4/vf/z6azWa0sM3gPz0Af8MgWKs3t03O36qCCALQfSkXsdZlKSFcusU0gQElhn21vmiW3Fi5ckBe2Cki/JzTI5ii1zJkBV1SRXxuZstqZ5r+CkD3Oior6qQ2EzIiKyvmupuw3HZK5P3VnQeXqcnCTP7BAtY55QwT2aASaO4Lh+vI6Zos+cxQtWErq2oztS/TKeTk5h2ebdbnR5E2dVa6MmKur4NgWRNDR/nYtWsXAGBgYADr1q3DK1/5SpqbdR5Aom6eMTY2hu9///u44YYbsGHDhmghB7ztffA3DoHt6EsPzcpU/PIuE+qvxdU6luuGxcJQ1hqpqssV+aFsSZGSsxLq6isw7Kqtpm6rHWAflgT0QkkUE8fI86qJOrndWAQJHzbTMWa+b+0jXBK8ukxNJkRdwaFW7QwT4njZhvYdE9Q6X4+uOPjryWVNbSgFeRVczoHjsGtlISejmsqrABwc4cIWwuUT4Etayb26bNkyvPzlL8eLX/xijIyMFK6XmJuQqJunBEGAu+66C9/97ndx5513JstZ04e3cQj+04qUKED0AHGNTq2QuLMQjiIm3YWK/oNRJU5+MXW++BJn9hpgvm8OfACSQASjyCki7myO/1GFdtGE9LCitT7H4+s0bGY5ZgDcImMBfURxUk8BUWfzC5Ry+rlYwGwWJ6frOmm8+v0klzPVyUOe9M12f5ayBKrqCgKn45GUqRCxnqvL9ZmcbaYRIti3iWXPW4Ann3wyWX7iiSfi5S9/Of7sz/6MpvKah5Co2wt44okncMMNN+Cmm27C+Ph4tDBg8Lb2R8mMx6TAiqyp3yVHm9hOsb7IBNe1kRGB/Mn4xwAAJWFJREFUlax3RSwLqrpVfbO05eqAbS0nWZy0YiwjxHR1ykPsxrrkdCAm0e94TK3CLhsdaji+rtdgZVEn9UFrKc1aN12G8zWBJ/LxsU4jFa9jjCFs6aNlXd0BhOA3pkmpIeLU1SrnkluuiJBzwdmNRX6uakRdVZcYDg4+0kawXxM9K0NMTU0BAIaHh/GiF70IL3vZy7BixYpCdRJ7FiTq9iKazSZ+9KMf4bvf/S4efvjhZDlr+vA2DcHfPADWYu7+GxZ/F1Gm1mFZOIgaR6fpIsEIpTPCV2ijSjb7XBoIjZWNB0EusbC1XV19Uv43rbhzHIIF0M0tZxrezQpEg7irQ9QlIlNuq9tArp2ctVS3L47pe5QBJ9kACd31KgvyuB+q4XcXtwPVDA5KYVfXvSMfgxL3SSkhZ/CfVaVZcZr5BYAqJ1/pJM+ibE+AYN9JHHDaIjz++OPJ8sMOOwwvf/nL8YIXvIBmfthLIFG3F8I5xx//+Ed8//vfx6233toNrAgBb3s/vE0D8Lb16H3vWP6Brm5I/yDuFil++VWKzMsIPOdh0wovp25Veuugdj7HEhYKZTlJ/Ii2coIu0zdrAlZZ3GkS+ubEXRErnUI05gSRrj6FuKsi6lRBCdk2dOKC9fba/Q5dPpDicsz3ctY5ZblMAJPqeMrWOtcUHLlgErmcnCuvqpVbIxCdU4lUEXKZdlP1aupO9t0xl5z1eFusdBwc4aIphPs1wfbtJNkP+vv7ccYZZ+DFL34xjj76aKfUOsT8gUTdXs7ExARuvfVW/OAHP8Af/vCH7oopD/6mAXib++E1NZYLxyzwgH3opai4qyWPlvDFqmkfipDqYwHfPZc6jeWyQQPmCt38klxmTZBFUFlRJ8gO85rqk45zGVGn2y95dg3b8CRrNAqlf7E61ntMn75ELhrPAmM7jrzdcbq2k2vBFhnqcE3LdWYW6Au7pjZyKGcVcqI++djZ9tuUdkRU4ZjA13Ruw/4Own2bWHT8ALZs2ZIsP+qoo7B27VqceeaZGBoacmqHmH+QqCMSHn74YfzgBz/AzTffnIS7AwAba8B7egD+ln6wdubB5mq1kzdx/UKtQWwV8p3z/WIv/xpEnpNoqpusH5qJAtHCLo78AOxCTFQpT+2lIhYlwlJofJQVSLPDehr2/XAQdEB8jbhMm+Yi6KSyLrNHgNU0Q4iqnzpcPgTkIA3XxLuGdp1mnJDaslnBXIVcqj4HQQfPd/+4zfSP9wQIlk4i3GcSfKR77kdHR3HOOedg7dq1OPjgg+19IOY9JOqIHK1WCz/72c9w88034+67707M+lFqlF54T/fD29YfJTYWuEzG7ZBPKnngZueINQ1POeansgm8ZH7bEtYdU9tOztvmiuXKim9vq9MF19k/LCk3ckLSNb0JoBd4ogznenHnKOqS3H4Zcn13sNA5kT0PrlG8tgnfdUOuAnGcyuRydPH/M5TXBlWU/TB07I9JzKWOk5Rv06m+ivM866yV3AsRLplCuLQJtk+QPId938cJJ5yAtWvX4pRTTqG5WIkUJOoII9u3b8ett96K9evX49577+2uCBi8LX3wN/crpiUzPHAdghiUD0tdnSUzyesEXiLsBAVe5Olu2KMHC6V3kKkq7KqknHFNY6MQd8Z5VV0td0Be3GUFpErclRR1NuFTOlea7cPHgkqg5K5dKKyd2aHrEm1HFVuuS3m9fC+0O/pyxuYKBD7o/CgNfqzinCuPjak+3eszc01mxbXumcB5AL6whWCfJvoOYl1/ZwCrV6/G2WefjTPPPBOLFy9Wt0vs9ZCoI5x54oknsH79eqxfv76b2BgA2nF6lC19doFXxGdGN6ThWmcZgSeXVVk5SlrxXFD2sahVxN5I8W1c2tbVK4k7o6jLlDeRE3e6oVJZ3BUUda5WLFd/R6kBe5mC1rqsdS7XZHx8tGKuYLtRpfbEy7nqDYmu1U0Ut8ZF/+otbCohlxTRRGxr7/Ps88mQWNwU4MHBwUdbCJY0sWB1L3bs2JGs23///XH22WfjhS98IaUiIZwgUUcUhnOO3//+91i/fj1+8pOfYOfOnd2VssDb2QvGFQIvO7Sqb8hexjWyS444s4jLlEO4qxO+Y4Z+V1wdvp2DGboVu5VzDSBxLefqw5fdxoB2ztgssbgz5WVL1ZtMU1bTUHdSseNxKjrFnmsC2Tp9KAGtNS6HiNJ1jVpV1Z/FMao5e7/rAhWyvoVOuSZdn2OqSFnGwUenECyZxMjhPaln6OjoKM4880ycffbZOOqooyh6lSgEiTqiEp1OB7/5zW/w4x//GLfddptC4PVFARY6geeC6yWajcY1+c+4+KlphhSVqNJLmJy7JeFgHZ41DNUlw3C2NAkFBafIoO+0bd0CMFu2DnHHOcLJKbe2UdL3UdVsJmedlmyuPVeLtq2fRXPhuWA7L44uC2VFXPSvoz+jIrcfkBdxtjrrsGJyxhGOTiFc0sTQYQ2MjY0l60ZHR3Haaafh+c9/Pp797Gej4RglSxBZSNQRtdHpdPDb3/42EXjyMAI6DN62vuhne280RVmZL1DHHFD57RT+NK5+TZahxRSmVBPZ4WBVFKriJai02smCLtOG9mWpStKrItMHo7hzPVbZsq45DuWyRYIqsgJqhkWdMmedStTp2nHNZWfZ3im/XFHBkm1T4ZvnlBBYrtPSp1JBKRlBl7PG2QRvkchvRX94yMH9EOHCKYSLJzF4sN+d0QfAokWLcNppp+H000/Hs571LBJyRC2QqCOmBSHwfvKTn+C2227D9u3buytDgO3qhb+1D972PrCpkg8zx2zt6m1Ds7DLlHUeOgOccoglljXV5PEKkZcTVmLI11S3/BJ3sapI7amrVYg7VyunrmyRl2kBC1XOejcDos5peNFRoKasdUX81yxDnak+lLXOWQIsCkV7a/pSObJYyueXqtd0z5S0xmX7E/Z1EIw2ES6ehLekG7UKAIsXL8Zpp52GM844A8ceeyzNvUrUDok6YtoJggD33nsvfv7zn+P222/HY489llrPdjdiK14/2HhDP5OFDeHjUjQ1Qo2+cElXTHNhpjtgDswAlFY1p/pF3S4vjrgN12ACZwrmXytctoD1ztWnLqrefR8Lpb1xmVdWUMQH0TCrRa4PcyCtTtYPtLC/nWPdRabasqIRchwcfLiNYFET4aJJ8MF0QMjKlStxyimn4JRTTsEzn/lMEnLEtEKijphxnnjiCdx+++24/fbbcc899yCUp5hqefB29MLb0QdvRy9Yu8IDsEC6hFQUY5EEq5bhRudJuYsIMCCfGkJXrSLNhZYgcE/ZItdZc0BB4YjSqLBV4FmjLyXL2LSJOpVlNotrfZnh9DIT0M8UWetdrSIuO4xad4BLXG9KyDUChAunEIxOYvTw/tRIhO/7OOaYY3DKKafguc99LkWtEjMKiTpiVtm5cyf+53/+Bz//+c9x1113pfIyAQAbb8Db3gdvRx/YWE862KIIJaM+dcJNng4p3YzB/03Ub+hjaojTwQnemlC1iKBzDfIo6JtVZDhON6OIc2Jnw3HTijpdImpHClvHbBZZm++hVFcqD2BgGJI39acsButdHUm7deT2UZfPsi6YB/gAH24hWDiJcHQKfDht9R0cHMSaNWtwyimn4OSTT8aCBQvq7wdBOECijpgztNtt/OEPf8Cdd96Ju+66Cw8++GC6QId1rXg7e4FJv/xQbZFIQI3Ic8mMn02p4DTXpRB3rtG3CnFXSdBl+pJbZE0hYn/Ba0Wai5+ga90ZgZcSda5D144USjCdFZ4mwa/xI9TOSTudws4g5GdNxCWV1ivmODjQHyBc2Ea4aAp9B7DcB+eqVatw4okn4qSTTsIxxxxDMzsQcwISdcScZevWrbj77rtx11134e67706nSwGAKQ/ezq7IY62ahmodXvg5XFNQ2IIuVEOApvKiTNZiV4egk5EDOwpQxEfPaai6oP9jKnVMQf+qsta6wjOFuOyzYoYObV/qEHYO1+h0zZHsJOJSDdSUfqYviFKOjLYQjraAvvR5GR0dTUTciSeeiCVLltTSLkHUCYk6Yo8gCAI88MADuOuuu/C///u/+MMf/oBOJzOc1vQjkRf/VPLHK4KwxBV8Ubs6ijvnixMUeYmKAAnLBPEA3KOFZUo68BcRmkX74kpRAetWacGAAykgxEnQxY9zl9kbCl9XDueysIBTTcdlS1uUlHdI/msaIu4NEgEXjraA/vQ15/s+nvnMZ+Kkk07CmjVrsGrVKni6+YcJYo5Aoo7YI5mcnMQ999yDX//61/jVr36F+++/P5U6AADYhA+2qxferl54Yz3Fh2uL+upIQs06zJoNjFCIGKd8dSZcIkPjl5QsApQCj3nVRI5lBoDcvsnlCwwNu/bBhdpEnTwcH+dNUyW/VZVP90eT1DYzx220sEJSa2UjmvyJ+cpT2+SrcZxyK6lPk3PRMZWO6GMYhkBfG+FIG+GCFvhoC3wgL+KOOOIIHH/88Tj++ONxzDHHYGBgQN0OQcxRSNQR84Ldu3fjd7/7HX71q1/hV7/6FR566CHkLu2WB29XTyT0xnrBdjfsgReOE3Z3l7v7fqXKqQSEyVpVQdzl5k7NIASeLO5KWel0KASeUUDpBN5cFnUKIZfqiphbtkhC5oy1znUu11w0cUExp8Ul8tulfrEfqnvK5Oqg8vcUH1WMgw+2EY60EI5MIRxpAb2ZBOSM4fDDD09E3LHHHouhoSF7nwliDkOijpiX7Nq1C7/97W/x+9//Hvfccw/uu+++/HBtwMDGeuCN9YCNRdY81lG9RApMU5b8bXe0V6ZRcZn2qYiPXhaPOYuVxHpXog3ntByuCXYz5Ys45ufacqVgsITYBtBb1VLdEda6sgJ9uo6xfP5cty16XsQ1VUTUZsilGBluJwKudx+Gqal0sulGo4EjjjgCRx99NI499lgcd9xxGBkZKdQmQcx1SNQRewVTU1O4//778bvf/S4RevLciwmTPrzxnkjsjfdEyZBDMeRT8FZRJEI2igSXgIgsushJS13y0KuRMAQPCoghIRrj3IOJRcqAbH1zHWIulVS2RP4yFwGcnd/VJOhSx0PkO3QR2UXObxFUs5kUEeWA3Sqn6nvRDwVIVjgvBB9qIxxuIRxugw+1wPvz18OCBQtw9NFH4+ijj8YxxxyD1atXo6+vr1CbBLGnQaKO2CsJwxCPP/54IvLuvfdePP744/khWw6wiQbYeA+8XdFvNuEwbCtjmeXCloNNK3QM00M5RTXaxF0Y5o+HLWms7+XrMwk8HoJnLaheV+QY8wQWpSZRZ7NGeb3p1BYqIZdqwyRkyw5/5jqlvh4YY2qfPIe+KI9DkeAPB8QwKl/QToQcGw7TCctjVqxYkQi4o48+GitXrqTABmKvg0QdQcSMj4/j/vvvx7333ov77rsP9957LzZv3pwvGAKs2Yh88sYb8Hb3RH+rhm4FrIQ/E6IXvlNgAdC1/Bgy9ivFXixcEoEnizAdygnrFYIut11a4PEg0DvJC2KRl8sRWJQKoq7UrBEOQQvJNmXnZI027v5tEG9ZXH3y8osdEmnrMFz/vBFGfnBDkYDjQ234o8i7TQDYZ599sHr1ahx55JE48sgjcfjhh9NQKkGARB1BGNmyZUtK5D3wwAPYtWuXuvCk1xV44icbcauL5qsJZfStg19Uzom+RFqUIv56CMNoLlaXNBYyXjfvHID6nP51lAzGYL5f2O+v9JysLkmJ5WjbgmlVeHY7l+OYjRyX2uTgQF+QEm/hUAfoUwv1kZERrF69OhFxq1evxtKlS+19IIi9EBJ1BFEAzjmefvppPPTQQ3jooYfwwAMP4KGHHsKGDRvUGwSxVW9C/PjwJhpRehWTYCgY9WfudPEhMefpyrJWG0nUGQVeGCLMOLKnKBOcAlgjMktRts4C56nwPLfiT8l/z5gmBeaheaPl0xSdajhPnCGalWEwssDxgQ74YAd8oAP46u2WL1+Oww47DKtWrcKhhx6KVatWYb/99nPK0UcQBIk6gqiFsbEx/N///R8efPDBRPA99thjaLVa6g2yYm+yAdb0o9+hJZiiQpqJ7t+Z297w0kzEmWp6K1NfMqJOFnm83XFKeKzsqwmTyKsy0XvZekr4UlZpPyfOXPttS/hrEm8eB+/vgA8EsXALIvE22AE0u9/b24uDDz44EW6HHXYYDj30UAwPD+v7QRCEFRJ1BDFNBEGADRs24JFHHsGjjz6a/BjFHgBMeZHgm/Sj30LsTfrqAA2TJUVGHj4rK5Sy89oWQUq0XM4nrsSjqqqFx/XYatsvf7x0U485WdWSDZl+XZG+MA7eH4u2gSD1d3Y6LZne3l4cdNBBeMYznpH6Wb58ORqNRun+EAShhkQdQcwwsth77LHH8Oijj+JPf/oTnnjiCXWaFQEHMOVH4k78nvSSv9Hy9DNm2ERJDYLJ5k+XiJGyQqnqo8qlPdcpqpzaK5DOBopgDJVlbZoe1xwc6A0jsdYXi7a+MPp7oANvEMqIU8Hw8DAOPPDAnIBbtmwZ/OmYbo0gCCUk6ghiDrFz585E4Mm///SnP6HZbJo3DgE25Uf+elM+2FQs+FpeJAZbXpRwuajwK+nflhpuDQJ7PSbRVMdjqg6rlamPDj50xvl+bVHAJeHggM/Be0OgVxJrfQF4f/Q3+gLtUKlgYGAABx54IFasWIEDDzww9TM6Okp+bwQxByBRRxB7AJxzbN26FU8++SQ2btyIjRs3YsOGDdiwYQM2btyIp59+Ojf3rZKAgU15kVWvFQu/Vmzla3lA2wNrG8RfEeEnR6pWsQTOpUeUZijaiazlreJ+CbGGnhC8JwTvjX7QF8R/B5H1rS/UBibI+L6PfffdF8uWLcPy5cux3377YdmyZdh///1x4IEHYvHixSTcCGKOQ6KOIOYBnU4HW7duTQm9TZs2YfPmzdiyZQs2b96M8fFx9wpDJAIvJfbE744H1mbR7078W+XvV5NP16ziOiepTAkBxxkHGiF4Q/odC7ZEuPWEkVBrRL9t1jWZ4eFhLF26FEuXLsW+++6L5cuXY9myZcnPkiVLyM+NIPZwSNQRxF5Cs9nEli1bEpEnC76tW7dix44d2L59OyYmJso1ECAt8uLfCBhYwIAg/jtkQIcBoVje/Y0w/uHQDxNPFwWtUDzqJODFw5vx7+jvMPkbHgcXf/tCtPFImInffgiUdD0bGBjA6OgolixZgn322ScRbkuXLk39PzAwUK4BgiD2GEjUEQSRYnJyMhF44ve2bduSv7dv347x8XGMjY1hbGwM4+PjRif60oToirwQkSUw/lsIP8TWQSaeYjxeDqTWgyMSYEK3sXhh6v/YWgZEFjAWCTIh3Lj0d7ROqq8mGGMYHh7GyMgIhoeHsXDhQixatAgLFy5M/pb/X7hwIYk1giASSNQRBFGJMAyxe/fulMgTf+/atQvNZhPNZhMTExPWv/fUx5Hv+xgYGEh++vv7U/+Ln8HBwZRok3+PjIxgaGiI5islCKI0JOoIgpgTcM7RbrfRarXQarVSf8v/t9ttTE1NodPpIAyjyd055wiCAJzzZFkYhqllnueBMZb6LX6yyxuNBnp7e9HT04Oenh7j3+KHgggIgphtSNQRBEEQBEHMA8jOTxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ9ozHYHCELAOcfk5ORsd4MgCKIQ/f39YIzNdjcIgkQdMXeYnJzEOeecM9vdIAiCKMTNN9+MgYGB2e4GQdDwK0EQBEEQxHyALHXEnKT3rn3BePzNwTwwjwHMAzwGMAbmiXXxcsYAj4GJMsk6lmyT/ADSMi+9PtowWcYZ6376SHUky1m3LXkZZ1E1yTovqjdazpJ1YhseL0vWA906vLi8WI90G6lt4u5zT7EuVR6pPnaXsdy63DaQ+5FZD81yTX26fuS2MdWbLOf57aVtkvVSXTxeDmm7aB2X+hOtZ/K6pKxYx5M6mVye8WRdcomJ5aK6uEx0KfDkf7GNF/8frYv+F9sl6xgHQ3c7L16W/IAn23kMqeXR9mF3O4jyIXyxTfx/t64wqc+X6vcRLfdFfUnZEL6oE6IfYbc8unVHdYbwELUfrYvq8+NlDCF8sb20jQ9E2yFqRxwP8X/UFo//RryOw4uPiw8GD4Afn2wPLF7G4DMGDx5YfObaLR/n/3/LQBBzCRJ1xNwkYPHjFZGoQyzA4rdldx0DvK6CYZFCiisRb3cPubd2VzGllYSoM/eWR2aZ3AYUy7LboSvmJFGXWyaJMPn/bBfT5RXbeIZ1ut3I9UOz26Z1ukNVtj6pTpXgm1ZRp1qP7P88qVvuh9ymal0iAiGVkcvntuGKtnjqRxZ1XaEY/+jWQQi/qEpZAArxBwhxhkQUyesiURd2RRGTRVH0t8dYJLji30j+Zsl2UT2I6xTbIt4uXq5aJ23jx4LUT/opRB23ijq5Pl8cD6SXeZD7KJ1Dgpgj0PArQRAEQRDEPIBEHUEQBEEQxDyARB1BEARBEMQ8gEQdQRAEQRDEPIBEHUEQBEEQxDyARB1BEARBEMQ8gEQdQRAEQRDEPIDy1BFzE5+D8yjhaJR3jUm/WSYhsPgt/Q15GZf+dlgnJS3rpojVLe/+5qm/kdqOAwAXy7t1cjCAI9lWXp/UkUquJvdF8T9PdSlzPDQ/2bIuuehM65zbclwnN2ncjlvq5Jo+6pMPp3PLSeuSsuWTD3f7IeWpQ/k8dRzd7Tjj6R9Ev6N1SC0PGQdY2K0Toq1QyqcXl4nXcxYm9SFVf/xbtBX/78VlxG8AuWWhdFuLv0MGhOjmqQvjZQy6PHUsSRjso3vOxP9evE0295178mGGbvJh1X1JELMLiTpiTtI66enZ7sL0IN6ZJclqEoIQyJdWOJsdKY2sqmkQiSDKQHcOMWeYnJyc7S4QBEEQxB4LWeqIOUNfX1/y94033oj+/v5Z7A0x00xOTuKlL30pADr/eyN78vnfk/pKzG9I1BFzBsa6A4r9/f0YGBiYxd4Qswmd/70bOv8EUQ4afiUIgiAIgpgHkKgjCIIgCIKYB5CoIwiCIAiCmAeQqCMIgiAIgpgHMM55haxZBEEQBEEQxFyALHUEQRAEQRDzABJ1BEEQBEEQ8wASdQRBEARBEPMAEnUEQRAEQRDzABJ1BEEQBEEQ8wASdQRBEARBEPMAEnUEQRAEQRDzABJ1BEEQBEEQ84DGbHeAIABgYmIC119/PX76059i48aN8DwPK1aswJlnnonzzz8fPT09s91FQsHOnTtx++2345e//CUeeOABbNq0CUEQYOHChTjiiCNw7rnn4rTTTjPWsW3bNlx33XW44447sGnTJvT19eHggw/Gueeei7Vr14IxZtz+ySefxHXXXYe7774b27Ztw+DgIFatWoV169bh9NNPr3FvCVeuvfZafOlLX0r+v+2227Rl6fwTRH3QjBLErLNx40ZcfPHF2LhxIwCgv78fYRii1WoBAFatWoXPfOYzGBkZmc1uEgrOOOMMBEGQ/N/b2wvf99FsNpNla9aswUc+8hH09/fntr///vtxySWXYOfOnQCAgYEBtFqtpM4TTzwRV199NXp7e5Xt33HHHbj88ssxOTkJABgaGkKz2UQYhgCA8847D5deeqlVGBD18fjjj+PCCy9M7l9AL+ro/BNEvdDwKzGrBEGAyy67DBs3bsSSJUvw93//91i/fj3Wr1+Pyy+/HIODg3jwwQdx5ZVXznZXCQVBEODII4/Ee9/7Xlx//fW45ZZbcPPNN+Nb3/oW1q5dCwC488478alPfSq37fj4OC699FLs3LkTK1euxJe+9CXcfPPNWL9+Pd7znveg0Wjg7rvvxuc+9zll20899RSuuOIKTE5O4phjjsE3vvEN3HTTTfjhD3+IN73pTQCAH/7wh/jmN785bftPpAnDEB//+MfRarXwzGc+01iWzj9B1A+JOmJWuemmm/Dwww8DAD7ykY/ghBNOAAB4noezzjoLl1xyCYBIGPzyl7+ctX4Saj7zmc/gi1/8Il72spdh//33T5YvX74cl156KV7ykpcAANavX49Nmzaltr3++uuxbds29PX14ROf+ARWr14NAOjp6cErXvEKXHjhhQCA733ve3jiiSdybX/1q19Fs9nE4sWL8bGPfQwrVqwAAAwODuLCCy/EunXrAAD//u//jrGxsfp3nsjxne98B/fccw9e+MIX4sQTTzSWpfNPEPVDoo6YVf77v/8bAHD88cfj6KOPzq0/66yzsHz58lRZYu7w7Gc/27heWOuAaKhN5uabbwYQnWNZEApe8YpXYGBgAEEQ4Ec/+lFqXbPZxE9/+lMAwMte9jLl0PzrX/96AMDu3bvxs5/9zGFviCo89dRT+MpXvoLR0VH81V/9lbU8nX+CqB8SdcSsMTk5id///vcAgJNPPllZhjGGNWvWAADuvvvuGesbUQ+yL5TwcwIivythuRPnN8vg4CCOPfZYAPlzf88992Bqasq4/fLly3HQQQcptyfq55Of/CSazSbe9a53YeHChcaydP4JYnogUUfMGo899ljyoj/44IO15cS6bdu2YdeuXTPSN6IefvOb3yR/H3LIIcnfYsgdMJ97sc2jjz6aWl50+0ceecSpv0Q5vve97+GXv/wlTjjhBJx77rnW8nT+CWJ6IFFHzBpbtmxJ/t5nn3205ZYuXarchpjbjI2N4dprrwUAHHvssVi5cmWybuvWrcnfLud+9+7dmJiYSJaL62BkZEQZVZvdXm6PqJfNmzfjmmuuQV9fX+IDa4POP0FMDyTqiFlDfkj39fVpy8kPbXkbYu4ShiE++tGPYuvWrejt7cV73vOe1Pqq516kTDG90OX1dN1MH5/61KcwPj6ON7/5zUrfOBV0/glieiBRRxBE7Xz2s5/FL37xCwDAX//1X+Owww6b5R4R08H69etxxx13YNWqVfjzP//z2e4OQez1kKgjZo3BwcHkb+H0rEIkFs1uQ8xNPv/5z+O73/0uAOCiiy5KRcAKqp77gYGB3HrT9nTd1M/27dvxT//0T/B9H+9///vRaLhPUETnnyCmBxJ1xKwh+8pt3rxZW072o5O3IeYe11xzDb71rW8BAN75zndqrTdLlixJ/nY590NDQ6kXs7gOxsbGjC92sb3cHlEPX/jCF7Bz506sW7cOK1euxMTEROqn0+kkZcWydrsNgM4/QUwXNPcrMWscdNBB8DwPYRjikUce0aY1EZFrixcvxoIFC2ayi0QB/vmf/xnXX389gEjQveY1r9GWlSNhH3nkETzjGc9QlhNRjtn12e2PPPJI4/amCEmiHBs2bAAA3HDDDbjhhhuMZUVE7Ctf+UpcfPHFdP4JYpogSx0xa/T39ycJh++8805lGc457rrrLgCwZqgnZo/Pf/7zzoIOAFauXIn99tsPgP7cN5tN/O53vwOQP/fHHHNM4mAvro8sGzduxGOPPabcnphd6PwTxPRAoo6YVcQX/K9//Wv88Y9/zK3/8Y9/jKeeeipVlphbfP7zn0+GXP/yL//SKugE55xzDgDg1ltvTaw+Mv/5n/+JZrMJ3/fxwhe+MLVuYGAAz3/+8wFElqLx8fHc9tdddx2AyJ/q1FNPdd8hwonPfvazuO2227Q/Yv5VAMmyiy++OFlG558g6odEHTGrnHvuuTjkkEPAOceHPvShZH7XMAzx4x//GJ/85CcBRFnjn/Oc58xmVwkFsg/dRRddhFe/+tXO27761a/G4sWLMTk5iUsvvTSZRqzdbuOGG27Av/zLvwAA1q1bl8zrKXPhhRdiYGAAW7duxWWXXZbMD9psNvH1r38dN954IwDgL/7iL5TTSBGzC51/gqgfxjnns90JYu9mw4YNePe7342NGzcCiIZlwzBEq9UCAKxatQqf+cxn6ME8x9i0aRNe9apXAQA8z7NODXXBBRfkrHj3338/LrnkEuzcuRNAZFVptVqJk/2JJ56Iq6++OjXdmMwdd9yByy+/PHGWHx4eRrPZRBAEAIAXvehFuOyyy8AYK72fRDm++tWv4utf/zqAyFKngs4/QdQLiTpiTjAxMYHrr78eP/3pT7Fx40YwxrBixQqcddZZOP/889HT0zPbXSQybNiwARdccIFz+Te96U248MILc8u3bduG6667Dr/4xS/w9NNPo7e3F4cccgjOPfdcnHfeefA884DCk08+ieuuuw533303tm7disHBQaxatQoveclLcPrppxfdLaImXEQdQOefIOqERB1BEARBEMQ8gHzqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gH/P/n4KRagEuQgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# expected src counts:\n", + "ax,plot = total_expectation.slice[{'Em':0, 'Phi':5}].project('PsiChi').plot(ax_kw = {'coord':'G'})\n", + "plt.title(\"model counts\")\n", + "\n", + "# injected src counts:\n", + "ax,plot = gal_511.binned_data.slice[{'Em':0, 'Phi':5}].project('PsiChi').plot(ax_kw = {'coord':'G'})\n", + "plt.title(\"injected counts\")" + ] + }, + { + "cell_type": "markdown", + "id": "2ee20295-ca20-4736-bad8-c87e6fc6a846", + "metadata": {}, + "source": [ + "Here is a summary of the results:\n", + "\n", + "Injected model (extended source):
\n", + "F = 4e-2 ph/cm2/s
\n", + "\n", + "Best-fit:
\n", + "F = (4.6951 +/- 0.0025)e-2 ph/cm2/s
\n", + "\n", + "We see that the best-fit values are very close to the injected values. The small difference is likely due to the fact that the injected model also has a point source component (which we've ignored), having the same specrtum, with a normalization of F = 1e-2 ph/cm2/s. In the next example we'll see if this point source component can be detected. " + ] + }, + { + "cell_type": "markdown", + "id": "c72fd667-9826-42eb-b996-7f39764d6b49", + "metadata": {}, + "source": [ + "## **********************************************************\n", + "## Example 2: Perform Analysis with Two Components" + ] + }, + { + "cell_type": "markdown", + "id": "807821ac-3063-4a53-a613-2fee043e9662", + "metadata": {}, + "source": [ + "Define the point source.
\n", + "We'll add this to the model, and keep just the normalization free." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ec211c66-d974-48e2-86a8-2c0f63b34fc2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * description: A Gaussian function\n", + " * formula: $ K \\frac{1}{\\sigma \\sqrt{2 \\pi}}\\exp{\\frac{(x-\\mu)^2}{2~(\\sigma)^2}} $\n", + " * parameters:\n", + " * F:\n", + " * value: 0.01\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * delta: 0.1\n", + " * free: true\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * delta: 0.1\n", + " * free: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * delta: 0.1\n", + " * free: false\n", + "\n" + ] + } + ], + "source": [ + "# Note: Astromodels only takes ra,dec for point source input:\n", + "c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')\n", + "c_icrs = c.transform_to('icrs')\n", + "\n", + "# Define spectrum:\n", + "# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]\n", + "F = 1e-2 / u.cm / u.cm / u.s \n", + "Fmin = 0 / u.cm / u.cm / u.s\n", + "Fmax = 1 / u.cm / u.cm / u.s\n", + "mu = 511*u.keV\n", + "sigma = 0.85*u.keV\n", + "spectrum2 = Gaussian()\n", + "spectrum2.F.value = F.value\n", + "spectrum2.F.unit = F.unit\n", + "spectrum2.F.min_value = Fmin.value\n", + "spectrum2.F.max_value = Fmax.value\n", + "spectrum2.mu.value = mu.value\n", + "spectrum2.mu.unit = mu.unit\n", + "spectrum2.sigma.value = sigma.value\n", + "spectrum2.sigma.unit = sigma.unit\n", + "\n", + "# Set spectral parameters for fitting:\n", + "spectrum2.F.free = True\n", + "spectrum2.mu.free = False\n", + "spectrum2.sigma.free = False\n", + "\n", + "# Define source:\n", + "src2 = PointSource('point_source', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=spectrum2)\n", + "\n", + "# Print some info about the source just as a sanity check.\n", + "# This will also show you which parameters are free. \n", + "print(src2.spectrum.main.shape)\n", + "\n", + "# We can also get a summary of the source info as follows:\n", + "#src2.display()" + ] + }, + { + "cell_type": "markdown", + "id": "e71243c5-3c9f-4ec7-b928-2cdbdee045e0", + "metadata": {}, + "source": [ + "Redefine the first source.
\n", + "We'll keep just the normalization free. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5bbdd2c6-39b0-4c69-bcaf-5a5b8becefdb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "
  • gaussian (extended source): \n", + "
      \n", + "\n", + "
    • shape: \n", + "
        \n", + "\n", + "
      • lon0: \n", + "
          \n", + "\n", + "
        • value: 359.75
        • \n", + "\n", + "
        • desc: Longitude of the center of the source
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 360.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • lat0: \n", + "
          \n", + "\n", + "
        • value: -1.25
        • \n", + "\n", + "
        • desc: Latitude of the center of the source
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • sigma: \n", + "
          \n", + "\n", + "
        • value: 5.0
        • \n", + "\n", + "
        • desc: Standard deviation of the Gaussian distribution
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 20.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    • spectrum: \n", + "
        \n", + "\n", + "
      • main: \n", + "
          \n", + "\n", + "
        • Gaussian: \n", + "
            \n", + "\n", + "
          • F: \n", + "
              \n", + "\n", + "
            • value: 0.04
            • \n", + "\n", + "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", + "\n", + "
            • min_value: 0.0
            • \n", + "\n", + "
            • max_value: 1.0
            • \n", + "\n", + "
            • unit: s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • mu: \n", + "
              \n", + "\n", + "
            • value: 511.0
            • \n", + "\n", + "
            • desc: Central value
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • sigma: \n", + "
              \n", + "\n", + "
            • value: 0.85
            • \n", + "\n", + "
            • desc: standard deviation
            • \n", + "\n", + "
            • min_value: 1e-12
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          \n", + "\n", + "
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    \n", + "\n", + "
  • \n", + "\n", + "
\n" + ], + "text/plain": [ + " * gaussian (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 359.75\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: -1.25\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 5.0\n", + " * desc: Standard deviation of the Gaussian distribution\n", + " * min_value: 0.0\n", + " * max_value: 20.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * Gaussian:\n", + " * F:\n", + " * value: 0.04\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define spectrum:\n", + "# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]\n", + "F = 4e-2 / u.cm / u.cm / u.s \n", + "Fmin = 0 / u.cm / u.cm / u.s\n", + "Fmax = 1 / u.cm / u.cm / u.s\n", + "mu = 511*u.keV\n", + "sigma = 0.85*u.keV\n", + "spectrum = Gaussian()\n", + "spectrum.F.value = F.value\n", + "spectrum.F.unit = F.unit\n", + "spectrum.F.min_value = Fmin.value\n", + "spectrum.F.max_value = Fmax.value\n", + "spectrum.mu.value = mu.value\n", + "spectrum.mu.unit = mu.unit\n", + "spectrum.sigma.value = sigma.value\n", + "spectrum.sigma.unit = sigma.unit\n", + "\n", + "# Set spectral parameters for fitting:\n", + "spectrum.F.free = True\n", + "spectrum.mu.free = False\n", + "spectrum.sigma.free = False\n", + "\n", + "# Define morphology:\n", + "morphology = Gaussian_on_sphere(lon0 = 359.75, lat0 = -1.25, sigma = 5)\n", + "\n", + "# Set morphological parameters for fitting:\n", + "morphology.lon0.free = False\n", + "morphology.lat0.free = False\n", + "morphology.sigma.free = False\n", + "\n", + "# Define source:\n", + "src1 = ExtendedSource('gaussian', spectral_shape=spectrum, spatial_shape=morphology)\n", + "\n", + "# Print a summary of the source info:\n", + "src1.display()\n", + "\n", + "# We can also print the source info as follows.\n", + "# This will also show you which parameters are free. \n", + "#print(src1.spectrum.main.shape)\n", + "#print(src1.spatial_shape)" + ] + }, + { + "cell_type": "markdown", + "id": "1677d2c7-8127-4383-a1d3-d0a5c3425e4d", + "metadata": {}, + "source": [ + "Setup the COSI 3ML plugin using two sources in the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "79816fcd-525e-4892-b179-b4cc8b502743", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... loading the pre-computed image response ...\n", + "--> done\n", + "CPU times: user 2min 10s, sys: 41.5 s, total: 2min 52s\n", + "Wall time: 3min 10s\n" + ] + } + ], + "source": [ + "%%time \n", + "\n", + "# Set background parameter, which is used to fit the amplitude of the background:\n", + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "# Instantiate the COSI 3ML plugin\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = response_file, # detector response\n", + " data = data_combined.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = ori, # spacecraft orientation\n", + " nuisance_param = bkg_par, # background parameter\n", + " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", + " \n", + "# Add sources to model:\n", + "model = Model(src1, src2) # Model with two sources." + ] + }, + { + "cell_type": "markdown", + "id": "d46ba4c1-9698-4114-9000-1a02feafa4ec", + "metadata": {}, + "source": [ + "Display the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a9423539-928d-41f6-9aab-04a18c1ea0b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Model summary:

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
N
Point sources1
Extended sources1
Particle sources0
\n", + "


Free parameters (2):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
gaussian.spectrum.main.Gaussian.F0.040.01.0s-1 cm-2
point_source.spectrum.main.Gaussian.F0.010.01.0s-1 cm-2
\n", + "


Fixed parameters (9):
(abridged. Use complete=True to see all fixed parameters)


Properties (0):

(none)


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
" + ], + "text/plain": [ + "Model summary:\n", + "==============\n", + "\n", + " N\n", + "Point sources 1\n", + "Extended sources 1\n", + "Particle sources 0\n", + "\n", + "Free parameters (2):\n", + "--------------------\n", + "\n", + " value min_value max_value unit\n", + "gaussian.spectrum.main.Gaussian.F 0.04 0.0 1.0 s-1 cm-2\n", + "point_source.spectrum.main.Gaussian.F 0.01 0.0 1.0 s-1 cm-2\n", + "\n", + "Fixed parameters (9):\n", + "(abridged. Use complete=True to see all fixed parameters)\n", + "\n", + "\n", + "Properties (0):\n", + "--------------------\n", + "\n", + "(none)\n", + "\n", + "\n", + "Linked parameters (0):\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Independent variables:\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Linked functions (0):\n", + "----------------------\n", + "\n", + "(none)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model.display()" + ] + }, + { + "cell_type": "markdown", + "id": "e57b7109-e602-4a83-b575-abf8d602b579", + "metadata": {}, + "source": [ + "Before we perform the fit, let's first change the 3ML console logging level, in order to mimimize the amount of console output." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c83d4333-90e1-4f55-b3f9-e5da1fd40598", + "metadata": {}, + "outputs": [], + "source": [ + "# This is a simple workaround for now to prevent a lot of output. \n", + "from threeML import update_logging_level\n", + "update_logging_level(\"CRITICAL\")" + ] + }, + { + "cell_type": "markdown", + "id": "17f87aa8-eade-410e-a793-c15ad4604703", + "metadata": {}, + "source": [ + "Perform the likelihood fit:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "85eae192-0970-406c-bbd3-fa9a133d32dc", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + ] + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
point_source.spectrum.main.Gaussian.F(0.0 +/- 1.3) x 10^-91 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result \\\n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 \n", + "point_source.spectrum.main.Gaussian.F (0.0 +/- 1.3) x 10^-9 \n", + "background_cosi (9.32 +/- 0.05) x 10^-1 \n", + "\n", + " unit \n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + "point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + "background_cosi " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "
1.00-0.01-0.40
-0.011.00-0.03
-0.40-0.031.00
" + ], + "text/plain": [ + " 1.00 -0.01 -0.40\n", + "-0.01 1.00 -0.03\n", + "-0.40 -0.03 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -1.527559e+07\n", + "total -1.527559e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -3.055119e+07\n", + "BIC -3.055119e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7min 24s, sys: 3min 55s, total: 11min 20s\n", + "Wall time: 1min 46s\n" + ] + }, + { + "data": { + "text/plain": [ + "( value negative_error \\\n", + " gaussian.spectrum.main.Gaussian.F 4.695126e-02 -2.403110e-05 \n", + " point_source.spectrum.main.Gaussian.F 5.975791e-13 2.623492e-10 \n", + " background_cosi 9.320815e-01 -4.914467e-03 \n", + " \n", + " positive_error error \\\n", + " gaussian.spectrum.main.Gaussian.F 2.433950e-05 2.418530e-05 \n", + " point_source.spectrum.main.Gaussian.F 1.929678e-09 1.096013e-09 \n", + " background_cosi 4.582905e-03 4.748686e-03 \n", + " \n", + " unit \n", + " gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + " point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + " background_cosi ,\n", + " -log(likelihood)\n", + " cosi -1.527559e+07\n", + " total -1.527559e+07)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = True)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "5c045f61-bd7a-44e3-933f-a4f1541b7aa3", + "metadata": {}, + "source": [ + "We see that the normalization of the point source has gone to zero, and we essentially get the same results as the first fit. This is not entirely surprising, considering that the two components have a high degree of degeneracy, and the point source is subdominant. \n", + "\n", + "Note (CK): The injected model may not be exactly the same as the astromodel, because MEGAlib uses a cutoff of the Gaussian spectral distribution at 3 sigma. " + ] + }, + { + "cell_type": "markdown", + "id": "0e47eea2", + "metadata": {}, + "source": [ + "## *****************************************\n", + "## Example 3: Working With a Realistic Model" + ] + }, + { + "cell_type": "markdown", + "id": "672fa8bd", + "metadata": {}, + "source": [ + "## Read in the binned data\n", + "We will start with the binned data, since we already learned how to bin data: " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9bce7e04", + "metadata": {}, + "outputs": [], + "source": [ + "# background:\n", + "bg_tot = BinnedData(\"Gal_511.yaml\")\n", + "bg_tot.load_binned_data_from_hdf5(binned_data=\"cosmic_photons_binned_data.hdf5\")\n", + "\n", + "# combined data:\n", + "data_combined_thin_disk = BinnedData(\"Gal_511.yaml\")\n", + "data_combined_thin_disk.load_binned_data_from_hdf5(binned_data=\"combined_binned_data_thin_disk.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "3466ee97", + "metadata": {}, + "source": [ + "## Define source\n", + "This defines a multi-component source with a disk and gaussian component. The disk and bulge components have different spectral characteristics. Spatially, the bulge component is the sum of three different spatial models, with majority of the flux \"narrow bulge\" with " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "3ca51102", + "metadata": {}, + "outputs": [], + "source": [ + "# Spectral Definitions...\n", + "\n", + "models = [\"centralPoint\",\"narrowBulge\",\"broadBulge\",\"disk\"]\n", + "\n", + "# several lists of parameters for, in order, CentralPoint, NarrowBulge, BroadBulge, and Disk sources\n", + "mu = [511.,511.,511., 511.]*u.keV\n", + "sigma = [0.85,0.85,0.85, 1.27]*u.keV\n", + "F = [0.00012, 0.00028, 0.00073, 1.7e-3]/u.cm/u.cm/u.s\n", + "K = [0.00046, 0.0011, 0.0027, 4.5e-3]/u.cm/u.cm/u.s/u.keV\n", + "\n", + "SpecLine = [Gaussian(),Gaussian(),Gaussian(),Gaussian()]\n", + "SpecOPs = [SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\")]\n", + "\n", + "# Set units and fitting parameters; different definition for each spectral model with different norms\n", + "for i in range(4):\n", + " SpecLine[i].F.unit = F[i].unit\n", + " SpecLine[i].F.value = F[i].value\n", + " SpecLine[i].F.min_value =0\n", + " SpecLine[i].F.max_value=1\n", + " SpecLine[i].mu.value = mu[i].value\n", + " SpecLine[i].mu.unit = mu[i].unit\n", + " SpecLine[i].sigma.unit = sigma[i].unit\n", + " SpecLine[i].sigma.value = sigma[i].value\n", + "\n", + " SpecOPs[i].K.value = K[i].value\n", + " SpecOPs[i].K.unit = K[i].unit\n", + " \n", + " SpecLine[i].sigma.free = False\n", + " SpecLine[i].mu.free = False\n", + " SpecLine[i].F.free = False#True\n", + " SpecOPs[i].K.free = False # not fitting the amplitude of the OPs component for now, since we are only using the 511 response! \n", + "\n", + "SpecLine[-1].F.free = True# actually do fit the flux of the disk component\n", + "\n", + "# Generate Composite Spectra\n", + "SpecCentralPoint= SpecLine[0] + SpecOPs[0]\n", + "SpecNarrowBulge = SpecLine[1] + SpecOPs[1]\n", + "SpecBroadBulge = SpecLine[2] + SpecOPs[2]\n", + "SpecDisk = SpecLine[3] + SpecOPs[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "008ec971", + "metadata": {}, + "outputs": [], + "source": [ + "# Define Spatial Model Components\n", + "MapNarrowBulge = Gaussian_on_sphere(lon0=359.75,lat0=-1.25, sigma = 2.5)\n", + "MapBroadBulge = Gaussian_on_sphere(lon0 = 0, lat0 = 0, sigma = 8.7)\n", + "MapDisk = Wide_Asymm_Gaussian_on_sphere(lon0 = 0, lat0 = 0, a=90, e = 0.99944429,theta=0)\n", + "\n", + "# Fix fitting parameters (same for all models)\n", + "for map in [MapNarrowBulge,MapBroadBulge]:\n", + " map.lon0.free=False\n", + " map.lat0.free=False\n", + " map.sigma.free=False\n", + " \n", + "MapDisk.lon0.free=False\n", + "MapDisk.lat0.free=False\n", + "MapDisk.a.free=False\n", + "MapDisk.e.free=True#False\n", + "MapDisk.theta.free=False" + ] + }, + { + "cell_type": "markdown", + "id": "d4dc7eca-6881-45cb-801a-3e796a13dbfc", + "metadata": {}, + "source": [ + "For the Wide_Asymm_Gaussian_on_sphere model, note that e is the eccentricity of the Gaussian ellipse, defined such that the scale height b of the disk is given by $b = a \\sqrt{(1-e^2)}$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "924aec1c", + "metadata": {}, + "outputs": [], + "source": [ + "# Define Spatio-spectral models\n", + "\n", + "# Bulge\n", + "c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')\n", + "c_icrs = c.transform_to('icrs')\n", + "ModelCentralPoint = PointSource('centralPoint', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=SpecCentralPoint)\n", + "ModelNarrowBulge = ExtendedSource('narrowBulge',spectral_shape=SpecNarrowBulge,spatial_shape=MapNarrowBulge)\n", + "ModelBroadBulge = ExtendedSource('broadBulge',spectral_shape=SpecBroadBulge,spatial_shape=MapBroadBulge)\n", + "\n", + "# Disk\n", + "ModelDisk = ExtendedSource('disk',spectral_shape=SpecDisk,spatial_shape=MapDisk)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b5784f63-3712-496b-a724-e64c2b66b180", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "
  • disk (extended source): \n", + "
      \n", + "\n", + "
    • shape: \n", + "
        \n", + "\n", + "
      • lon0: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: Longitude of the center of the source
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 360.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • lat0: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: Latitude of the center of the source
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • a: \n", + "
          \n", + "\n", + "
        • value: 90.0
        • \n", + "\n", + "
        • desc: Standard deviation of the Gaussian distribution (major axis)
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • e: \n", + "
          \n", + "\n", + "
        • value: 0.99944429
        • \n", + "\n", + "
        • desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard deviation of the Gaussian distribution (minor axis)
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 1.0
        • \n", + "\n", + "
        • unit:
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • theta: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: inclination of major axis to a line of constant latitude
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    • spectrum: \n", + "
        \n", + "\n", + "
      • main: \n", + "
          \n", + "\n", + "
        • composite: \n", + "
            \n", + "\n", + "
          • F_1: \n", + "
              \n", + "\n", + "
            • value: 0.0017
            • \n", + "\n", + "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", + "\n", + "
            • min_value: 0.0
            • \n", + "\n", + "
            • max_value: 1.0
            • \n", + "\n", + "
            • unit: s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • mu_1: \n", + "
              \n", + "\n", + "
            • value: 511.0
            • \n", + "\n", + "
            • desc: Central value
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • sigma_1: \n", + "
              \n", + "\n", + "
            • value: 1.27
            • \n", + "\n", + "
            • desc: standard deviation
            • \n", + "\n", + "
            • min_value: 1e-12
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • K_2: \n", + "
              \n", + "\n", + "
            • value: 0.004499999999999998
            • \n", + "\n", + "
            • desc: Normalization
            • \n", + "\n", + "
            • min_value: 1e-30
            • \n", + "\n", + "
            • max_value: 1000.0
            • \n", + "\n", + "
            • unit: keV-1 s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: True
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • dat_2: OPsSpectrum.dat
          • \n", + "\n", + "
          \n", + "\n", + "
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    \n", + "\n", + "
  • \n", + "\n", + "
\n" + ], + "text/plain": [ + " * disk (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 0.0\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: 0.0\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * a:\n", + " * value: 90.0\n", + " * desc: Standard deviation of the Gaussian distribution (major axis)\n", + " * min_value: 0.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * e:\n", + " * value: 0.99944429\n", + " * desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard\n", + " * deviation of the Gaussian distribution (minor axis)\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * theta:\n", + " * value: 0.0\n", + " * desc: inclination of major axis to a line of constant latitude\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * composite:\n", + " * F_1:\n", + " * value: 0.0017\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu_1:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma_1:\n", + " * value: 1.27\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * K_2:\n", + " * value: 0.004499999999999998\n", + " * desc: Normalization\n", + " * min_value: 1.0e-30\n", + " * max_value: 1000.0\n", + " * unit: keV-1 s-1 cm-2\n", + " * is_normalization: true\n", + " * dat_2:\n", + " * value: OPsSpectrum.dat\n", + " * polarization: {}" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ModelDisk" + ] + }, + { + "cell_type": "markdown", + "id": "ed7ac3ec", + "metadata": {}, + "source": [ + "Make some plots to look at these new extended sources:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "73d61cb7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG2CAYAAADLM3qLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvV0lEQVR4nOzdd3iUVfYH8O/09EnvhQQCJLSE3jsooCDiuio/YWkiuCKyoi6wWJdFdGFBISIEEHbVVZcivffeAlICpCekt5kkk8m09/fHZN7MpGfmnSSTnM/z+DiZ3Pfemyjh5N57zuUxDMOAEEIIIYS0GvyWngAhhBBCCDFFARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDAZoNUiqVePToEZRKZUtPhRBCCCFWQAGaDUpNTcW8efOQmpra0lMhhBBCiBVQgEYIIYQQ0spQgEYIIYQQ0spQgEYIIYQQ0spQgEYIIYQQ0soIW3oChBBCCKmfVquFWq1u6WmQRhKJRBAIBBb1QQEaIYQQ0oqVlpYiIyMDDMO09FRII/F4PAQGBsLJycnsPihAI4QQQloprVaLjIwMODg4wMvLCzwer6WnRBrAMAzy8vKQkZGB8PBws1fSKEAjhBBCWim1Wg2GYeDl5QV7e/uWng5pJC8vL6SkpECtVpsdoFGSACGEENLK0cqZbeHivxcFaIQQQgghrQwFaIQQQghpMf/617+Qm5tr1rMpKSnw9PRkP+7QoQO6du2KqKgoREZGYuPGjQ32MXHiRCQmJjbYbu/evbh27ZpZ8zQHBWiEEEIIaTH1BWg6nQ46na5J/f3666+Ii4vD0aNHsXz5cty9e7fe9ocOHULHjh0b7Le5AzRKEiCEEEJsxN7lF6GQVVitfwepBC/8fUiD7S5fvoz3338fcrkcDMPgs88+Q2RkJBYvXozc3FyoVCrMnz8fCxcuBKA/k7V69Wrs3r0bubm5WLlyJWbNmoVPP/0UmZmZeOmll2BnZ4cdO3Zg7969SExMRFlZGRISEnD48GH861//wpkzZ6BWqyGVSrF161aEh4fXO8egoCB07twZjx8/ho+PD958800kJCSAYRgsWrQIb7zxBgD9qtuBAwfQvXt3jBw5EgMGDMClS5eQmZmJcePG4dtvv8WhQ4fw22+/4cSJE9i6dSv+/Oc/Y+7cuZZ/w+tBARohhBBiIxSyCigKrRegNUZhYSGmTp2K3bt3Y/DgwdDpdCgqKsKzzz6LXbt2oWvXrlAoFBg4cCAGDhyI3r17AwDs7Oxw9epVPHz4EP3798frr7+OlStXYtu2bfj111/RvXt3APqVqtOnT+PWrVvw9vYGAHzwwQf48ssvAQA//fQT3n33XRw4cKDeef7++++Ij49Hr169sGjRInTt2hV79uxBbm4u+vTpg6ioKPTv37/Gc4mJiThz5gxUKhUiIyNx+fJlTJw4EZMnT0bfvn3x5z//mctvZ50oQCOEEEJshINU0uL9X758GZGRkRg8eDAAgM/nIycnB/fv38crr7zCtispKcGDBw/YAG369OkAgIiICAiFQmRnZyMwMLDWMZ577jk2OAOAY8eO4euvv0ZJSQl0Oh3kcnmd8zOsxjk4OGDbtm0IDw/HiRMncOfOHQCAt7c3XnzxRZw8ebLWAO2VV16BQCCAvb09oqKikJiYiEGDBjX4feEaBWiEENJGqdRqxCclIa+wEBKxBIG+Pgj08YFQSD/6bVVjth9bAsMw8PT0RFxcXJ1t7Ozs2NcCgQAajabOtsYV+NPS0rBo0SJcu3YNYWFhuHv3LkaPHl3ns8arccaql76oqxRGU+ZpTZQkQAghbVBOQQF+OngIF27ewqPkFNx99AiHzp7Djj17cSc+nq4NImYbPHgwHj58iEuXLgHQH+T38vKCg4MDdu7cybZLSEhAYWFhg/25uLhAJpPV+XmZTAaxWAxfX18wDINvvvmmyXMeO3YsvvvuOwBAXl4e9uzZU2+QZ848uUYBGiGEtDGFxTIcOHUapQpFjc+p1GpcvHUbF27epCCNmMXNzQ179uzB0qVL0bNnT0RHR+PKlSvYv38/fv75Z/Ts2RPdunXD3LlzUV5e3mB/ixYtwqxZsxAVFVXrClyPHj3whz/8Ad26dcPIkSMRHBzc5Dlv2LABd+/eRc+ePTFq1CgsX7681u3N+rz++uv44YcfEBUVha1btzZ5Dk3FY+hPqM159OgR5s2bhy1btqBLly4tPR1CSCui1Wrxy5GjKKz8Td/XyxODo6OhKFciKT0dj1NS2LYj+vdDt06dWmimpDGUSiWSk5MRGhpqsvVGWjcu/rvRQQRCCGlDbt5/wAZnHq6ueH7kSIhEIgBAWFAgAn19cOrKVQDAxZu3EOznB2dHxxabLyGkdrTFSQghbYSivBxxDx8C0GfWjRk0kA3ODLqGhbGrZhqtFpfrOdRNCGk5FKARQkgbcevBQ2i0WgBAt04d4enmVmu7gVG9YCfRl1NISE1DQXFxc02RENJIFKARQkgboFKr8aDyPkGhQIDe3brV2VYiFqOP0ecNq26EkNaDAjRCCGkDHiUls/WauoSGwtHevt72kZ06QiIWAwCepKSirJaMT0JIy6EAjRBCbBzDMLj35An7cffO9d9RCAAioRDdK+8y1DEMHiWnWGt6hBAzUIBGCCE2LregEEWVV9/4eXnBw9W1Uc917RjGvo5PSqK6aIS0IhSgEUKIjUtITWVfdw0LbfRzUicn+Ffed1hcUoLs/HzO50ZIc9mxYwdcXV0RFRWFqKgo9OrVC/v27WvUsyNHjmzw8vXmRgEaIYTYMJ1Oh4S0NAD60hqhQUFNet44oEtMS+d0boTUpfr9llzddzl27FjExcUhLi4OW7Zswdy5cznptyVQoVpCCLFhWXn5KKu8TifYzw92lQf/Gys0MBB83jXoGAbJGRkY0ju6zkukSct79eFa5KtLrNa/p8gZP0YsqbcNj8fD6tWrsXv3buTm5mLlypWYNWsWAGDp0qU4c+YM1Go1pFIptm7divDwcKSkpKBv375YtGgRjh8/jhdffBH79u3DkCFDcOXKFQDAsWPH8MEHH+DIkSMAgFGjRuGf//wnVCoVgoODkZOTA5FIhN69eyMiIgL/+c9/kJSUhHHjxiGxMoPZWGFhIdyMSs106NABBw4cYC9S79u3L7766iuMHDnS5LmnT59ixowZyM7ORmio/heYZ599Fn/+859RUlKCJUuW4M6dO1AqlRg8eDC+/vrrGvUGuUAraIQQYsOSM6pWvTqFNP2OQolYjABfHwBASVkZ8ouKOJsb4V6+ugS5apnV/mls8GdnZ4erV6/i0KFDWLRoEbsC9sEHH+D69euIi4vDggUL8O6777LPFBQUoFOnTjh//jz7flxcHI4cOYKTJ0/iu+++w82bN3Hz5k3ExcUhMTER69evh5OTE7p164bLly+joKAAWq0W169fBwAcP34cY8eOZcc4ceIEoqKi0LlzZ0ybNg1r165t8vd40aJFGDVqFO7fv49Nmzbh3Llz7Of+8pe/YPjw4bh27Rru3LkDjUZj1uXtjUEraIQQYsNSn2YC0K9qhPj7m9VHWFAQ0rOyAQCJ6enwcnfnbH6EW54i51bR//Tp0wEAEREREAqFyM7ORmBgII4dO4avv/4aJSUl0Ol0kFcmrwD6oO7VV1816ef1119nV59OnDiBOXPmQFJZRHnevHn49ttvsXTpUowdOxYnTpxATk4OnnnmGTx8+BD37t3DiRMn8PLLL7P9jR07Fr/++isA4N69exg7dixu3boF/yb82Th9+jQ2bNgAAAgODsaYMWPYz+3duxdXrlzBP//5TwBAeXk5xE1ctW4sCtAIIcRGFctLICstBaDP3pSY+RdFaEAAzkK/IpGWmYmBvXpxNkfCrYa2H5uL8QXgAoEAGo0GaWlpWLRoEa5du4awsDDcvXsXo0ePZts5OjrW2D53cnJiXzMMU+Pzho/Hjh2LpUuXIjc3Fy+++CICAgJw/PhxnD17Ft9++22tc+zevTuCg4Nx8eJF/OEPf4BQKIS28qYNQH+heV3q2uZnGAZ79+5FWFhYrZ/nEm1xEkKIjUrNzGRfh/j7md2Pg709vCrP6uQXFUNReaaNkKaQyWQQi8Xw9fUFwzBN3vobN24cduzYAZVKBY1Gg9jYWHb7csCAAYiPj8eJEycwbNgwjB07FuvXr0dQUBA8PDxq7S8jIwNPnjxB586dAQAdO3bE1atXAQDXrl3Do0ePan1u5MiR2LFjBwAgPT0dp06dYj83efJkrF69mt3SLSoqQkJCQpO+zsaiFTRCCLFRaSYBWoBFfQX5+SGv8vxZRnYOOod2sKg/0v706NEDf/jDH9CtWzcEBwdj3LhxTXr+jTfeQGJiInr37g1AHygtWrQIACAUCjF06FCUlpbC3t4e3bp1g1qtNjl/BlSdQWMYBhqNBqtWrUKvyhXhv//975g5cyZiY2PRu3dvdKvjOrT169djxowZ+O9//4vOnTtjyJAhkEqlAIB//etf+OCDDxAVFQU+nw+RSIQvvvgCnTp1atLX2hg8xsYqEyoUCmzduhWnT59GSUkJgoODMX36dJM94roUFRUhJiYGly9fhlKpRKdOnTB37lz06dOnRtsbN24gNjYWCQkJsLOzw6BBg7BgwQKTjBBAnxq8a9cuHD58GAUFBfDz88PUqVMxbdo0k3bbtm1jI3JjYrEYJ06caNL34NGjR5g3bx62bNmCLl26NOlZQkjboNZoEPvr/6DT6eDk4IDXp0y2KPvyaU4O9p3UrxR0Ce2AMYMGcTVVYgGlUonk5GSEhoaabCsS6ykvL4dIJIJQKERWVhb69euHkydPNunvWy7+u9ncCtqKFSsQHx+P+fPnIygoCCdOnMAnn3wCnU5Xb7SuUqmwePFilJaW4u2334abmxv27NmD9957D+vWrUNUVBTbNi4uDkuXLsWgQYOwatUqFBUVYfPmzVi8eDG2bNliciBw7dq1OHbsGObMmYOuXbvi2rVr2LBhAxQKBV5//fUa8/jqq6/g6OjIfkzp7IQQc2Tn50On0wHQr35Z+rPE19MTQqEQGo0G6VnZtZ4HIqQ9ePLkCWbMmAGGYaBWq/HRRx+1yGKITQVoly9fxo0bN7By5Up2WbN3797Izs5GTEwMRo8eDYFAUOuzBw8eRHJyMjZt2sTWQImOjsbs2bMRExODzZs3s203bdqEoKAgfPrppxAK9d8iPz8/vPXWWzh06BBeeOEFAEBycjIOHjyIefPmsZkp0dHRkMvl2LlzJ6ZMmQIXFxeTeXTu3BmujbyGhRBC6pKZk8u+DvDxtrg/gUCAAG9vpGZmQqFUokgmh7ur1OJ+CbE1PXv2RFxcXEtPw7aSBM6fPw97e/saReUmTpyI/Px8PHjwoN5ng4OD2eAM0O9pjx8/Hg8fPkReXh4AIC8vD/Hx8Rg/fjwbnAH6vfWgoCCTeijnz58HwzCYMGGCyVgTJkxARUUFexiREEK4lplbFaAZrmuylL9RoJeZl1tPS0KItdlUgJacnIyQkBCTwAnQZ2YYPl+XpKQktl19zxr+XVdb4zGSk5Ph6upaI4Okvvn86U9/wsiRIzFlyhT8/e9/R05OTp1zJoSQ2qg1GuQUFAAApM7OcHJw4KRffy8v9nVWbh4nfRJCzGNTW5wymazWYnPOzvrCesYF8aqTy+Vsu/qelclkAFBja9LQ1ngMmUxWazt7e3uIRCK2LwAICAjAvHnzEB4eDrFYjIcPH+LHH3/E9evXsWXLFngZ/WCsLj8/HwWVP4wBINXoYmRCSPuTY3T+LICj1TMA8HR3h1AggEarRWZeHp1DI6QF2VSABlh2qL6+Z+sqjmfJ+MZtn3nmGZPP9e7dG9HR0Vi4cCF++OEHvPPOO3X289tvv9WaAUoIaZ+ssb0JAAI+Hz6enniak4MyhQIlZWVwMSokSghpPjYVoEmlUpNVKYOSEv3dYbWtZhm4uLjUusJmeNawkmaodVLXOMarcFKptNYCdeXl5VCr1fXOBwAiIyMRGBhY79k5QF8Yb8iQIezHqamp+Pzzz+t9hhDSdpkEaBwkCBjz9/bC08qjF1l5eRSgkRp4PB5KSkpMbgGwJsNF6/n5+ez4PXr0AJ/Ph1KpxLhx4/Cvf/2rziRBgx07duDAgQPsVVCtnU2dQQsLC0NqaipbwdcgKSkJANhb5+t6trbb7g3vGa5tMPRh6LP6OMZjhIWFobi42GT7sbHzMcbn1/+fwdPTE126dGH/CQkJaVS/hJC2R6vTIaegEADg4ujI2fkzAz86h0Y4Uv3vai5dunQJcXFx+P3333H+/HkcOXLEamO1FJtaQRs2bBj279+Ps2fPmhSmPXLkCDw9PREZGVnns8OHD8fatWvx4MEDtp1Go8Hx48cRGRkJT09PAICXlxciIiJw7NgxvPLKK2xEfv/+faSlpeEPf/gD2+fQoUOxdetWHDlyhL04FgAOHz4MiUSCAQMG1Pv13L9/HxkZGTWK2hJCSF0Ki4vZ+wR9Kn9uccnH0xM8Hg8MwyC7IJ/z/ollZiz6CAVFNXd4uOLhJsXODZ802O6rr77C8ePHkZeXh08++YQtNcXj8fDVV19h//796NevH9577z28+eabSEhIAMMwWLRoEd544w0AwNKlS3HmzBmo1WpIpVJs3boV4eHhAICNGzdi3bp18PPzw4gRI+qch0KhgFKpZIvIf/zxxygtLcVXX30FAPjmm29w48aNWo8JLV++HP/973/h4eGB4cOH4/Tp07hx4wYAYNeuXfjmm2+gVqvh7OyMjRs3mlSBaA42FaANHDgQffv2xdq1a6FQKBAQEICTJ0/i6tWrWLFiBRtMrV69GkePHsWPP/4IX19fAPpSHHv27MHKlSsxf/58tlBtWloa1q1bZzLOm2++iSVLlmDlypWYOnUqW6g2NDTUpKRGaGgoJk2ahO3bt4PP5yMiIgLXr1/H/v37MXfuXJMtzlmzZmH8+PEICQkxSRJwd3dn/8cmhJCG5ORXrdj7eNZ+B6ElREIhPFylyC8qRpFMDrVGA5HQpv6qaNMKimTILShq6WmAx+Ph4sWLSEpKQv/+/TF06FAEBQUBACoqKnDmzBkAwB//+Ed07doVe/bsQW5uLvr06YOoqCj0798fH3zwAb788ksAwE8//YR3330XBw4cwN27d/H3v/8dt2/fho+PDxYuXFhj/MGDB4PH4yEhIQHTpk3D4MGDmzT//fv348CBA7hz5w7s7e3x0ksvsZ+7ePEifvrpJ5w7dw4SiQTnz5/H9OnTcefOHTO/W+axuT91n3/+ObZs2YLY2Fj2qqePPvrIZEVNp9NBq9XC+BYrsViMdevWISYmBuvXr4dSqUR4eDi+/PJLk1sEAH2x2TVr1mDbtm348MMP2aueFi5caHKLAAAsWbIEnp6e2L17NwoLC+Hr64tFixbVWBXr0KEDfvvtNxQWFkKtVsPT0xNjxozBzJkz2dU7QghpSHZ+1aqWj4d1fnZ4e3ggv6gYDMMgr7CQ00QEYhkPN+sWD25s/3PnzgWgP+ozdOhQnD9/Hq+99hoAYPbs2Wy7EydOsIGNt7c3XnzxRZw8eRL9+/fHsWPH8PXXX6OkpAQ6nY49J37mzBlMmjQJPj4+APR3dP78888m41+6dAlOTk5QKBSYNm0avv76a7z99tuN/jpPnz6Nl19+mb3ZZ+bMmfjss88AAPv27cOdO3dMdsHy8vKgUqlqxADWZHMBmoODA9555516sx6XLVuGZcuW1Xjf3d0dy5cvb9Q4/fr1Q79+/RpsJxQKMXv2bJP/IWvz0UcfNWpcQgipj6H+mYDPh6ebq1XG8PbwwIME/fnc3IICCtBakcZsP7YE46oF1ZMHaquSkJaWhkWLFuHatWsICwvD3bt3MXr0aABAU64Id3BwwPPPP4+DBw/i7bffhlAoZI8AAPo7MWtTXwkZhmEwe/ZsfPrpp42ehzXYVJIAIYS0Z8qKCsgqM8893dwazFozl49R8W1DQgIhxrZt2wZAn2F54cIFDB06tNZ2Y8eOxXfffQdAvwq1Z88ejB49GjKZDGKxGL6+vmAYBt988w37zKhRo3Do0CHkVmYrx8bG1jkPrVaLM2fOsHdlduzYETdu3IBOp4NCocD//ve/Wp8bNWoUfvnlFygUCuh0OuzatYv93PPPP4+dO3ciPT0dgH5XznA2rTnZ3AoaIYS0VzkFxufPrHc0ws3Fhb04PbdaljohACCRSDBkyBDk5eXh66+/Zs+fVbdhwwa8+eab6NmzJ3Q6HZYvX47+/fsDAP7whz+gW7duCA4Oxrhx49hnevbsiWXLlmHw4MHw9fXFpEmTavQ7ePBg8Pl8qFQq9OrVi92lmjZtGn799VdERkaiQ4cOiIqKQnl5eY3nJ0+ejEuXLqFXr17w9/fHwIEDUVSkP9s3fPhwrFq1ClOmTIFWq4VarcakSZPQt29fi79vTcFjmrKWSFqFR48eYd68ediyZQv7WwMhpO27dvd33Lh3DwAwbshghFux5M7eEyeQWVlm408vToWDnZ3VxiJ1UyqVSE5ORmhoKOzovwGnDLVNdTod5s6dC39/f85qjHLx3422OAkhxEbkFBgnCHCfwWnM26h/WkUjbdGMGTMQHR2NyMhIKJVKvP/++y09JRO0xUkIITZAn1Gp34Kxk0jgXJl9Zi3e7sYBWiE6BARYdTxCmtuePXtaegr1ohU0QgixAWXl5VBWVAAAvNzcrH6JuZe7G/u6oLjl624R0t5QgEYIITYgr7Aqm9LTKHiyFhcnJ7ZAbX5RsdXHI4SYogCNEEJsQH5R1SqWl5u71cfj8XjwrLw+p6SsDEqVyupjEkKqUIBGCCE2wHD+DAAbOFmbcSHcgiLa5iSkOZmVJBAWFmbxwIsXL8aiRYss7ocQQtoDwwqaSCiE1Nmpgdbc8DAKBPOLihBQefUOIcT6zFpBS0lJQVFRERiGMeuf1NRUFBcXc/ylEEJI21SurECpQgFAv3pm7QQBA89qARohdeHxeCgtLa2zMKxBSkoK3T/dSGaX2Xj33XexcuVKs57l82lnlRBCGiu/qCpBwKsZEgQM3KVS8Hg8MAxDiQKkUeLi4lp6Cm0G1UEjhJBWznj1qrnOnwGAUCCAm9QFhcUyFMlk0Gq1Vrv/kzTOL0eOQlHPCpWlHOzt8Ydnn2mw3e7du7Fs2TK4ublh4sSJ7Ps8Hg8lJSVwcHDAokWLcOLECUgkEgiFQly8eNGkD5VKhdmzZ8PJyQkbN26k/7eqMStAe/LkCdzdzc8isvR5QghpT1oiQYAdz9UNhcUy6BgGhTIZvOhnd4tSlJejzIoBWmPk5uZi3rx5uHTpErp06YI1a9bUaHPnzh2cPHkSDx48AJ/PZy9HNygqKsK0adMwfvx4fPjhh805fZthVoDWsWNHiwa19HlCCGlPDCtoAj4fblJps47t6eaGxykp7DwoQGtZDvb2Ld7/lStX0Lt3b/Yu6DfeeAMffPCBSZuwsDCo1WrMnj0bo0aNwqRJk9jjTUqlEkOGDMGKFSvw2muvcf9FtBG0xUkIIa2YWqNBcUkJAMDd1RWCZj7Da1Jqo1jWrGOTmhqz/WhtDMM02EYqleL+/fs4e/YsTp8+jb/+9a84d+4chEIhJBIJhgwZgv379+Pll1+GUEihSG3otD4hhLRihbKqoMjDtXlXzwB9okBtcyHt16BBg3D79m08fvwYALB169YabfLy8lBWVobx48dj1apV6NChAx48eABAf07tu+++g4+PD1588UVUVF5hRkxxGqAVFRVh586dXHZJCCHtWqFRSSIPV9dmH9/ezg52Ev3ZIQrQCAB4e3vju+++w/PPP4/BgwfXWpkhPT0d48aNQ8+ePdGjRw90794dEyZMYD/P4/Hwr3/9C7169cKkSZNQVlbWnF+CTeB0XTEtLQ2zZs3CjBkzuOyWEELarUKjbUX3Zj5/Buj/InWXSpGZmwdF5YXtdhJJs8+DtC4vvvgiXnzxRfbjJUuWAKja/uzduzdu3rxZ47kOHTogPz+f/fizzz6z8kxtV5MCtLS0tHo/n5mZadFkCCGEmCqQFbOvW2IFDQDcpa7IzM0DoF9F8/f2bpF5ENKeNClA69ChQ70VrBmGabYK14QQ0h4YDubbSSSwt7NrkTlUP4dGARoh1tekAM3NzQ2rVq3CyJEja/38w4cPMW3aNC7mRQgh7V65UolypRJAVVX/luBulJxQROfQWkRjMidJ68HFf68mBWh9+vRBXl4eW/ukOqVSSf8TEUIIR0wzOF1bbB7GK2hUaqN5iUQi8Hg85OXlwcvLi3apbADDMMjLywOPx4NIJDK7nyYFaAsWLKg30yI4OBjbt283ezKEEEKqGAdD7i1QYsPAsL1arlTSClozEwgECAwMREZGBlIqCwaT1o/H4yEwMNCi66uaFKBNnTq13s+7ublh5syZZk+GEEJIFZMSG1LXFpuHfnwpMpRKlFdUQKFUwqGFzsO1R05OTggPD4darW7pqZBGEolEFt8tSuV7CSGklSqQtY4VNABwk0qRkZMDQH8OjQK05iUQCOgy8XbG4kK1AoGgwfIbhBBCmoZhGHYFzdnREWILzrJwwfgWAzqHRoj1WRygUVIAIYRwr6SsDGqNBkDLFKitzs2k1EZxy02EkHaC7uIkhJBWqLAVbW8CpkFisVzegjMhpH2gAI0QQlqhgha+g7M6iVjMnjsrogCNEKujAI0QQlqhIllVENQatjgBwNXFBQBQrqyAsqKihWdDSNtGARohhLRCxqtUrs7OLTiTKoYADQCK5SUtOBNC2j4K0AghpJVhGIYN0FycnCAUto6KSG4uVYFicQltcxJiTRSgEUJIK1OqUEBTmcHpZrRq1dKM50Ln0AixLosDtOXLl8O1FRxgJYSQtsI4+HGTtp4AzXSLkwI0QqzJ7HVzjUYDoVCIzz77jMv5EEJIu2ecINCaVtCcHR0hEAig1WppBY0QKzN7Bc3f3x/vvfceHj58yOV8CCGk3TNZQXNpHRmcgP4CaEPCgrykFFqdroVnREjbZXaAJpPJsHbtWnTv3h2DBw9GbGwsSktLuZwbIYS0S8XyqiK1rq1oixOo2ubUMQzkJfQznxBrMTtAy8rKwrp169CjRw9cuXIFb7zxBvz8/DBnzhxcuHCByzkSQki7YlhBs7ezg51Y3MKzMUWJAoQ0D7MDNHd3d7zzzjuIi4vDjRs3sGDBAojFYmzfvh0jRoxAREQEvvzyS+Tk5HA5X0IIadOUFRUoV+qLwLam82cGVGqDkObBSZmN3r1745tvvkFWVhZ++OEHjBkzBk+ePMGHH36IoKAgTJ06FQcOHICOzisQQki9WmsGpwFlchLSPDitgyYWi/HKK6/g2LFjSElJwccff4ygoCDs27cPU6ZMQVBQEJfDEUJIm2Oawdl6EgQMjAM047kSQrhltUK1gYGB+Nvf/oZDhw5hyJAhYBgG2dnZ1hqOEELahCKjBIHWuIImEgrh5OAAQL+CxjBMC8+IkLbJKveHlJWV4eeff8a2bdtw6dIlMAwDBwcHvPTSS9YYjhBC2owiozsuW+MZNEC/ilaqUKBCrUa5UgkHe/uWnhIhbQ6nAdr58+exbds2/Prrr1AoFGAYBv369cOcOXPw6quvwrmVXPhLCCGtVbFMv4ImEgrh2EoDHzcXF2RU7ogUyUsoQCPECiwO0J4+fYrvv/8eO3bsQGJiIhiGgYeHB+bOnYs5c+age/fuXMyTEELaPI1GA3lZGQB9EMTj8Vp4RrWTGv2yLSspQYCPdwvOhpC2yewA7eeff8b27dtx4sQJaLVa8Pl8jB8/HrNnz8YLL7wAkUjE5TwJIaTNKy4x2t5shefPDFydndjXMqM5E0K4Y3aA9sorrwAAOnTogFmzZmHWrFkIDAzkbGKEENLeFMmMEgRaYQangfEKWjEFaIRYhUUB2pw5czBmzBgu50MIIe2WSYJAK15Bc3Z0BJ/Hg45haAWNECsxO0D74YcfuJwHIYS0eyYlNlppBicA8Pl8uDg5obikBLLSUjAM02rPyxFiqzirg6bRaLBu3Tr0798fLi4uEAqrYr+4uDgsXLgQjx8/5mo4Qghpc4orV9D4PB5cnJwaaN2yDNucWq0WpQpFC8+GkLaHkwCtvLwco0aNwnvvvYfU1FS4uLiYFC8MDQ3F9u3bsXPnTi6GI4SQNodhGMhLSwFUbiHyrVZHnBPVMzkJIdzi5CfAqlWrcPHiRfzjH/9AdnY25s6da/J5qVSKESNG4OjRo1wMRwghbU55RQXUGg0AwMW5da+eAYCrSYBW2oIzIaRt4qRQ7X//+1+MHDkS77//PgDUehYhLCwMt2/ftngshUKBrVu34vTp0ygpKUFwcDCmT5/eqGSFoqIixMTE4PLly1AqlejUqRPmzp2LPn361Gh748YNxMbGIiEhAXZ2dhg0aBAWLFgANzc3k3YajQa7du3C4cOHUVBQAD8/P0ydOhXTpk2rdy6fffYZjh8/jkGDBuGLL75o2jeBENLmyI2CnNa+vQkAUqMgkjI5CeEeJytoaWlp6NevX71tXFxcIDNKITfXihUrcOTIEfzpT3/CmjVr0LVrV3zyySc4fvx4vc+pVCosXrwYN2/exNtvv41Vq1bBzc0N7733HuLi4kzaxsXFYenSpXBzc8OqVavw9ttv4+bNm1i8eDFUKpVJ27Vr1+I///kPpk6diq+++grDhg3Dhg0bsGvXrjrncvnyZVy4cAGOjo5mfx8IIW2LrLQqyJHaRIBGW5yEWBMnK2jOzs7Iy8urt01iYiK8vLwsGufy5cu4ceMGVq5cibFjxwIAevfujezsbMTExGD06NEQCAS1Pnvw4EEkJydj06ZN7O0G0dHRmD17NmJiYrB582a27aZNmxAUFIRPP/2UTXbw8/PDW2+9hUOHDuGFF14AACQnJ+PgwYOYN28eXn31VbZPuVyOnTt3YsqUKXCplolVWlqKr776CnPmzMGvv/5q0feDENJ2GM6fAYCLU+u/Fs/JwQF8Ph86nY4CNEKsgJMVtIEDB2L//v11rpBlZGTg0KFDGD58uEXjnD9/Hvb29hg5cqTJ+xMnTkR+fj4ePHhQ77PBwcEmV08JhUKMHz8eDx8+ZAPMvLw8xMfHY/z48SaZqD169EBQUBDOnTtn0ifDMJgwYYLJWBMmTEBFRQWuXr1aYx4bN26Eh4dHg1ughJD2xfgcl9QGzqDx+Xx2pU9WWgqdTtfCMyKkbeEkQFu6dCkKCwsxduxYXLp0CZrKg64KhQInT57E+PHjoVarsWTJEovGSU5ORkhIiEngBAAdO3ZkP1+XpKQktl19zxr+XVdb4zGSk5Ph6uoKDw+PRs3nxo0bOHr0KN5///06V/pqk5+fj0ePHrH/pKamNvpZQohtMF1Ba/0BGlC1zanT6ajUBiEc42SLc/jw4di4cSMWLVqEYcOGse87V/7hFQgE2LRpU62H8ZtCJpPB39+/xvuGceRyeZ3PyuVytl19zxpWAatvTRraGo8hk8lqbWdvbw+RSGSyoqhQKLBmzRq88sor6NSpU53zrM1vv/2GHTt2NOkZQohtkVUGaA52dhAJOfnRbHXVz6HZSmBJiC3g7KfAm2++iREjRuDbb7/F1atXUVhYCBcXFwwYMAALFy5Et27dOBnHkmrV9T1b/XN1tW3K+MZtN2/eDKFQiJkzZzb6eYPJkydjyJAh7Mepqan4/PPPm9wPIaR1UqvVKFcqAdhGiQ2D6qU2gvxacDKEtDGc/poWERGB9evXc9mlCalUWus5t5LKA6q1rWYZuLi41LrCZnjWsJImleovKK5rHONVOKlUioSEhBrtysvLoVar2fk8ePAAe/fuxeeffw6VSsVmgup0Omi1WpSUlEAikUAsFtc6d09PT3h6etb5tRFCbJvMaHvTFjI4DajUBiHW06ylqi09RBoWFobU1FT2jJtBUlISAP2NBfU9m5iYWON9w3thYWEmfRj6rD6O8RhhYWEoLi5GQUFBvfNJTU0FwzBYvnw5Jk2axP6Tm5uLa9euYdKkSdi7d2+9XzshpO2ytQxOAyq1QYj1cBKgbd26tcE2Wq0Wr732mkXjDBs2DOXl5Th79qzJ+0eOHIGnpyciIyPrfHb48OFIS0szyfTUaDQ4fvw4IiMj2RUqLy8vRERE4NixY9BqtWzb+/fvIy0tDSNGjGDfGzp0KHg8Ho4cOWIy1uHDhyGRSDBgwAAAQP/+/bF+/foa/7i7u6Nbt25Yv359jcxUQkj7YasraE4ODmzCEwVohHCLky3OBQsWwMvLC1OmTKn18wzDYPr06fjll1/w008/mT3OwIED0bdvX6xduxYKhQIBAQE4efIkrl69ihUrVrA/KFavXo2jR4/ixx9/hK+vLwB9KY49e/Zg5cqVmD9/Ptzc3LBnzx6kpaVh3bp1JuO8+eabWLJkCVauXImpU6eiqKgImzdvRmhoqElJjdDQUEyaNAnbt28Hn89HREQErl+/jv3792Pu3LnsFqeHh0eNTE8AEIvFcHFxQXR0tNnfE0KI7TNZQbOhM2g8Hg9SJycUymSQV5baaO13iBJiKzgJ0AYOHIhXX30VR48eNcniBKqCs59//hkLFiyweKzPP/8cW7ZsQWxsLHvV00cffWRy1ZPhbJfxhe1isRjr1q1DTEwM1q9fD6VSifDwcHz55ZeIiooyGSM6Ohpr1qzBtm3b8OGHH7JXPS1cuLDGObElS5bA09MTu3fvRmFhIXx9fbFo0SKqc0YIaTTja55saQUN0G9zFspk0DEMSsrKTLY9CSHm4zHGUYyZZDIZhg4dioyMDJw7dw49evQAoA/OXn/9dfzwww+YP38+YmJiLJ4wAR49eoR58+Zhy5Yt6NKlS0tPhxBioX//th/y0lKIhELM/cNLFmWrN7fLt+Nw++FDAMBzI0cguJZSSISQpuNkLVoqleLo0aOQSqV49tlnkZKSAoZh8H//93/44Ycf8MYbb1BwRgghtdDpdCgtKwOgz4q0peAMqJYoYLRVSwixDGeHBfz9/XHs2DGoVCqMHz8er776Kn788UfMnTsX3377LVfDEEJIm1KiUEBXuZFhSxmcBsalNoy3agkhluH0NGfnzp1x+PBhZGdn45dffsGcOXPw3XffcTkEIYS0KXKj7EdbO38GmF5LRStohHDHrCSBTz/9tN7P9+/fH3FxcQgICDBpy+Px8Le//c2cIQkhpE2S2WgGp4GjvT34fD50Op1JNiohxDJmBWgff/xxo9pVD+QoQCOEEFNyG62BZsDn8+Hi5IhieQnkpaVgGMbmztER0hqZFaCdPn2a63kQQki7JCsxvkXA9gI0QH92rlheAo1WC0V5ORwdHFp6SoTYPLMCNONq+oQQQsxnWEHj8/lwstHARlrtHBoFaIRYjko+E0JIC2EYhj2D5uzoaLNV+I1X/ugcGiHcsM2fBoQQ0gaUK5XQaDQAbPP8mYFxqQ0ZldoghBMUoBFCSAsxyeC04QDNtNQGXZpOCBcoQCOEkBZiksFpgyU2DEy2OGkFjRBOUIBGCCEtpC1kcAKAUCBgEwOoWC0h3KAAjRBCWoi8jWxxAlVn6CpUKlSoVC08G0JsHwVohBDSQtrKGTSArnwihGucBmhFRUXYuXMnl10SQkibJa88UO9gbw+R0KyylK0GXZpOCLc4DdDS0tIwa9YsLrskhJA2SaVWo1xZAcC2S2wYUCYnIdxq0q9saWlp9X4+MzPToskQQkh70ZbOnwGmQSYVqyXEck0K0Dp06FDvJbh0SS4hhDSOzMYvSa/OxdmZfU3FagmxXJMCNDc3N6xatQojR46s9fMPHz7EtGnTuJgXIYS0acbntFxsuAaagZ1YDIlYjAqVilbQCOFAkwK0Pn36IC8vD126dKn180qlEgzDcDIxQghpy9raChqg36rNKyxEqUIBrVYLgUDQ0lMixGY1KUlgwYIF6NChQ52fDw4Oxvbt2y2dEyGEtHlyo4P0Lk7O9bS0Habn0MpacCaE2L4mraBNnTq13s+7ublh5syZFk2IEELaA8MWp1gkgp1E3MKz4YbxVq2stARuUpcWnA0hto0K1RJCSDPT6nQoUSgA6LcF20pyFWVyEsIdCtAIIaSZlZaVsed128r5MwCQUiYnIZyxOEATCAQN1kcjhBBSRdbGMjgNXGgFjRDOWBygUdYmIYQ0jbwNZnACgKO9PZu5SfdxEmIZ2uIkhJBmJjPJ4Gw7ARqPx4OLkyMAoKS0lH6BJ8QCFKARQkgzM1lBc24bJTYMpJUlQ7Q6HUorEyEIIU1HARohhDQzw/Yfn8+Ho7291cdLe5qNUxdvICE53epj0Tk0QrjRpDpohBBCLMMwDFvE1dnREXy+9X5P1mg0WBOzC3sOn2Hf6xwWjPcXzkCvyHCrjGl8pk5WWooAHx+rjENIW0craIQQ0ozKlUpoNBoA1k8Q+Mc335sEZwDwOCkNby1fgwePk60ypnFWqpxKbRBiNgrQCCGkGRlnN1ozQeDs5Vv47dg5AIBIKMSrL4xHx5BAAEBFhQp/+/JbVKhUnI9bfQWNEGIeiwO05cuXw9XVlYOpEEJI2ydvhgBNo9Fg7Xf/YT9e/s4sLHljOnZu+BiRnUMB6M+l/e/gKc7HdnZ0ZG9GoDNohJjP4gDts88+g4sL3bdGCCGNYVykVmqlIrXHzl1FZk4+AKBfVCQmjh4CQH/v5/JFs9l22/97AMoKblfRBAIBnBwcAADykpIGWhNC6mLVLU6GYfDkyRNkZGRYcxhCCLEZ1l5BYxgG//7fYfbjua9OMbnrs3NYMMYNHwAAKJaX4MT5a5zPwfB1VajVUFZUcN4/Ie0BJwHavn37MHv2bBQVFbHvpaSkoEePHujatStCQkIwffp06HQ6LoYjhBCbZe0A7VFiKp5UltPo1jkM0d271Gjzx8nj2NfW2Oakc2iEWI6TAO3bb7/F9evX4ebmxr63ePFiPHjwAKNGjULPnj3x008/Yfv27VwMRwghNssQsDjY2UEk5L7S0aFTF9nXk58ZbrJ6ZtAzohPCQ4MAAPceJSI9M4fTOZjUQqNMTkLMwkmAdv/+ffTv35/9WCaT4dChQ/jjH/+IEydO4Nq1a4iIiEBsbCwXwxFCiE1SazQoVyoBWOeSdI1Wi6NnrgDQnzcbO7R/re14PB4mjBrMfsz1NqdJqY0yCtAIMQcnAVpeXh78/PzYjy9cuACNRoNXX30VACASiTBu3DgkJCRwMRwhhNgka1+Sfi8+EYXFcgDAkH694OLsWGfb0UP7sa+5DtBMtjhpBY0Qs3ASoLm4uKCgoID9+MyZM+Dz+Rg2bBj7nkgkQllZGRfDEUKITTIOVqxx/uz8tTj29chBvettG+DrhYhwfcmNx0lpyMzJ42wedN0TIZbjJEDr2rUr9u/fj8LCQshkMvz000/o3bu3yZm01NRU+NCVH4SQdszaCQIXKgM0Ho+HQX17NNh++IBo9vWVW/c4m4dELIadRAyAkgQIMRcnAdqiRYuQmZmJgIAABAUFITMzE2+++Sb7ea1WiwsXLqBXr15cDEcIITbJdIvTmdO+M3PykJT6FADQvWtHuEkbrk85qE939vWVm9wFaADgUvn1lSkU0Gi1nPZNSHvASYA2bdo0bNy4Ed26dUPnzp3xj3/8A7NnVxVDPHnyJBQKBZ599lkuhiOEEJskK60q3OriVPf5MHMYB1hD+zXul+GunUIhrTyndv3OA04DKSltcxJiEc5yvBcsWIAFCxbU+rnx48eb1EgjhJD2SF6qP4crFAphb2fHad+3fo9nX/eP6taoZwQCPvpHd8fxc1dRWqbA/UdJ6BUZzsl8qp9Dc5dKOemXkPaCLksnhJBmoNPpUFKZKCV1cqq1Ppm5GIbBrXv6AM3eToKunUIa/Wz/qEj2ddz9x5zNyfgaK8rkJKTpKEAjhJBmUKpQsLepcJ0gkJGVi7yCYgBAr8hwCJtQADfK6KYBLgM0yuQkxDIUoBFCSDOwZgan8fZm7x5dm/RsSIAvXF30B/rvPnjC2ZV8dN0TIZahAI0QQpqBSQYnx7cImARotdy9WR8ej4eobvpzZ/LSMiSlZXIyJwd7ewgEgsp+KUAjpKkoQCOEkGZgvIrk4shtgGbYmpSIRYjsHNbk53t168y+vsPRNiePx2MzVUtKS8EwDCf9EtJeUIBGCCHNwForaEUyOTJz8gEAEeGhEImanpwfFWkUoD14wtncDLXetDodShUKzvolpD2gAI0QQpqBvDKTkcfjwcmRuxpoDx4ns6/NWT0DgM4dgyGqTCx4mJDcQOvGo0QBQszX5ABNp9Ph3r17yMyseU5BrVbj3LlznEyMEELaCoZh2C1OJwcHCPjc/W58/1ES+7qbmQGaWCRCp9AgAEBqRjZKFeWczI0SBQgxX5N+SqSmpqJHjx7o2bMngoKCMHnyZJNL0gsLCzFq1CjOJ0kIIbasQqWCSq0GYBq0cOHBE+MVtFCz+4kM7wBAH0w+Sky1dFoAABejrVw51UIjpEmadFjh/fffR2BgII4ePYri4mL85S9/wZAhQ3Dq1Cn4+/sDgNUPgioUCmzduhWnT59GSUkJgoODMX36dIwZM6bBZ4uKihATE4PLly9DqVSiU6dOmDt3Lvr06VOj7Y0bNxAbG4uEhATY2dlh0KBBWLBggckF8ACg0Wiwa9cuHD58GAUFBfDz88PUqVMxbdo0k3YnTpzA3r17kZ6ejtLSUri4uKBLly6YPn06evRo+FJjQojtMkkQ4PD8GcMw7Aqa1MUJAb5eZvcVER4K4DQA4OGTZPRpYrmO2tAKGiHma1KAdvbsWRw9ehSBgYEIDAzEkSNH8MYbb2DYsGE4ffo0JBIJp9Wxa7NixQrEx8dj/vz5CAoKwokTJ/DJJ59Ap9Nh3LhxdT6nUqmwePFilJaW4u2334abmxv27NmD9957D+vWrUNUVBTbNi4uDkuXLsWgQYOwatUqFBUVYfPmzVi8eDG2bNkCsVjMtl27di2OHTuGOXPmoGvXrrh27Ro2bNgAhUKB119/nW0nk8nQo0cPvPTSS3B1dUVBQQH++9//YtGiRTXGJ4S0LcarR1yuoGXm5KNYrr/fs1vnMIt+/uoDNL2HT7g5h+bs6AgejweGYegMGiFN1KQATaFQQCKRsB/zeDxs2bIFCxYswPDhw/HDDz9wPkFjly9fxo0bN7By5UqMHTsWANC7d29kZ2cjJiYGo0ePZuvuVHfw4EEkJydj06ZN6N69OwAgOjoas2fPRkxMDDZv3sy23bRpE4KCgvDpp5+yFbn9/Pzw1ltv4dChQ3jhhRcAAMnJyTh48CDmzZuHV199le1TLpdj586dmDJlClxcXACgxooaAAwYMACTJ0/GwYMHKUAjpA2Tl1mnSO2Dx1XnzyzZ3gSAsJAASMQiVKjUePgkxcKZ6QkEAjg5OKCkrAzykpKGHyCEsJp0Bq1Lly64ceNGjfdjYmIwceJEPPfcc5xNrDbnz5+Hvb09Ro4cafL+xIkTkZ+fjwcPHtT7bHBwMBucAfoLi8ePH4+HDx8iLy8PAJCXl4f4+HiMHz/e5LqUHj16ICgoyCQJ4vz582AYBhMmTDAZa8KECaioqMDVq1fr/XocHBwgFovrDCoJIW2D8V2UnAZoRitd5iYIGAgFAnTuqL/DMz0zB/KSMov6MzB8vRVqNZQVFZz0SUh70KQA7cUXX6xzlWzTpk344x//aNUzaMnJyQgJCalxz1zHjh3Zz9clKSmJbVffs4Z/19XWeIzk5GS4urrCw8Oj0fPRarXQaDTIysrCP//5TzAMg6lTp9Y5bwDIz8/Ho0eP2H9SU7k5wEsIaR7WuubpcWIa+7prpw4W9xdh1MeT5LS6GzaBlEptEGKWJm1x/vWvf8Vf//rXOj8fExODmJgYiydVF5lMxiYjGHN21hdDlMvldT4rl8vZdvU9K5PJAIDdmqze1ngMmUxWazt7e3uIRCK2L2MzZ85EWpr+B5+Hhwe++uordOlS/9Usv/32G3bs2FFvG0JI62UITOwkYkiMzrBagmEYNohykzrDw01qcZ/hlaU2AOBJcjr69IywuE+XaokC3tV+oSWE1K7pJadbmCWHYOt7tvrn6mrblPFra/vZZ5+hvLwcubm52LdvH5YuXYp//OMfiI6OrrOfyZMnY8iQIezHqamp+Pzzzxs9D0JIy9FqtWwVfRenmr8kmqugSIYimf5cV3hoMCcJWsYBWkJyusX9AdVKbdAKGiGNZlMBmlQqrXVVqqTy8Gltq1kGLi4uta6wGZ41rKRJpfrfQusax3gVTiqVIiEhoUa78vJyqNXqWucTGqo/yBsZGYmhQ4dizpw52LBhA7Zv317n3D09PeHp6Vnn5wkhrZe8tOosF5cZnE+MAqjwsKB6WjZeWEggm3X5JIWbAM2k1AbVQiOk0SwuZy0QCNgtO2sLCwtDamoqNBqNyftJSfpMJkPwU9eziYmJNd43vBcWFmbSh6HP6uMYjxEWFobi4mKTYr2NnQ+gT1Lo3Lkz0tO5+UFICGl9rHX+7ElS1c9d45UvS9jbSRDk5w0ASEx9Cq1WZ3GfdN0TIeaxOECzdmFaY8OGDUN5eTnOnj1r8v6RI0fg6emJyMjIOp8dPnw40tLSTDI9NRoNjh8/jsjISHaFysvLCxERETh27Bi0Wi3b9v79+0hLS8OIESPY94YOHQoej4cjR46YjHX48GFIJBIMGDCg3q+noqICDx48QEBAQMNfPCHEJsmslSBgvIIWGsxZv4YrnyoqVMjIyrW4P4lYDDuJ/twdFaslpPFsaotz4MCB6Nu3L9auXQuFQoGAgACcPHkSV69exYoVK9hyFatXr8bRo0fx448/wtfXF4C+FMeePXuwcuVKzJ8/ny1Um5aWhnXr1pmM8+abb2LJkiVYuXIlpk6dyhaqDQ0NNSmpERoaikmTJmH79u3g8/mIiIjA9evXsX//fsydO9dki3PBggUYMmQIQkJC4OTkhOzsbOzduxeZmZl0noyQNkxeWlX/S8rhLQKGBAGhUIDQoJrJU+bq1CEQpy7qyyklpKQjJNDX4j5dnJyhrChAmUIBjVYLIZUWIqRBNhWgAcDnn3+OLVu2IDY2lr3q6aOPPjK56kmn00Gr1Zqs7onFYqxbtw4xMTFYv349lEolwsPD8eWXX9YoEhsdHY01a9Zg27Zt+PDDD9mrnhYuXGhyiwAALFmyBJ6enti9ezcKCwvh6+uLRYsW1ShM2717d5w6dQrZ2dkoLy+HVCpFt27d8Oc//5mueiKkDTM+g8bVCppKrUZqehYAIDTIHyIRdz/KO1XL5BwztJ/FfUqdnJBbeRREXloKd6nlGaeEtHU2F6A5ODjgnXfewTvvvFNnm2XLlmHZsmU13nd3d8fy5csbNU6/fv3Qr1/DP5iEQiFmz56N2bNn19vurbfeatS4hJC2RVa5gibg8+Fob89Jn8lpmdDq9OfDOnXg5vyZgVUyOaudQ6MAjZCGWXwGjRBCSO30d1DqV9BcnJw4u6v4sXGCAEcZnAb+Pl6wt9Nf6cdZsVpnyuQkpKkoQCOEECspKy9nk424TBAwXtnqzGGCAADw+Xx0DAkEoL+MvVxp+fVMlMlJSNNRgEYIIVZivFokreUmE3MlpWeyrzt2COSsX4MOQX7s69SMLIv7o+ueCGk6iwO05cuXw9XVlYOpEEJI2yIrsU4GZ3LaUwCAs5MDJ1c8VWecFZpsFAyay8Hens2yp1IbhDSOxQHaZ599Vm8Ff0IIaa9kJiU2uFlBK1OUIyevEIA+kOLqXJuxDsFGAVqa5QEaj8eDi5MjAKCktLRZ62cSYqtoi5MQQqzEGlucKUZbjlzWPzMWFsztChoASCvvIdXqdOzdpISQunFaZkOn0yEjIwNPnz6FWq2utc3w4cO5HJIQQlotwxYnn8eDs4MDJ30ar2iFBlvnFhI/by+IRSKo1GqkcBSgVU8UcHZ05KRfQtoqTgI0hmGwevVqrFu3rsa9lNUZX59ECCFtFcMw7HkrZycn8PncbFgYzp8BQGiwdVbQBAI+QgJ98SQ5HemZuVCrNRYXwzW5NL20FAE+PpZOk5A2jZMA7a9//SvWrFkDb29vzJo1C35+fhAKba4GLiGEcEahVEKj0QDgOIPTaAUtzEoraADQIcgfT5LTodVqkZ6VY/FYLkZJEnKqhUZIgziJonbs2IEuXbrg+vXrcOKw1g8hhNgqkwxODn8uGlbQHOzt4OPlzlm/1RmvzqWkZVocoFVfQSOE1I+TNffS0lJMmjSJgjNCCKlkWmKDmxU0ZYUKmTn5AICQQD+rZHAacF1qw9nRkZ0v1UIjpGGcBGhRUVHIzOTmICkhhLQFxhmcrhzVQEvNyGJLVIRZ6fyZQQeTAM3yYrUCgQBOlYkSFKAR0jBOArQVK1Zg3759uHXrFhfdEUKIzbNGDbTmyOA0CA7wAZ+vX/HiOpOzQqWCUqXipE9C2ipOzqA9++yz+P777zFhwgRMnjwZvXr1qrN47YwZM7gYkhBCWjXDFiePx4MTRyUlmiOD00AsEiHQzwdpT7ORkpEFnU5ncSaq1MkJT3NyAADykhLYeXhwMVVC2iROArSKigrs27cP+fn5iI2NBYAaZyMYhgGPx6MAjRDS5jEMw25xujg6QsBRiQ3jOzitvcUJ6O/kTHuajYoKFXLyCuHn42lRfy7VEgW8KUAjpE6cBGhLlizBf/7zH/Ts2RMvvfQSldkghLRr5Uol1FYosWHY4pSIRfDz9uKs37qEBPgBuA0ASHuabXmA5kyXphPSWJxEUb/88gv69OmDy5cvU2BGCGn3TK944iZBQK3WICNTvz0YHOgHgcD6N/UFBVQVk019mo0Bvbtb1J9JqQ2qhUZIvTj5E65UKjFq1CgKzgghBKYJAi5O3KygpWflQKvTAQBCg/w46bMhwQG+7Ou0p9kW91f9uidCSN04CdD69OmDhIQELroihBCbZ1pig5sALS2jKkDqENg8AVqIUYCWXrl6ZwmJWAw7iRgAFaslpCGcBGirVq3CkSNHcODAAS66I4QQm1ZsUqSWmy1O4xUs45Uta/Jwk8LB3q7G+JYwrCiWKRTQ0N3MhNSJkz3J48ePY+TIkZgyZQpGjRqFqKioWsts8Hg8/O1vf+NiSEIIabXkRiU2nDkqsdESARqPx0NwgA/iE1KRmZPH2aXpuQUFAPTbnO5SKRdTJaTN4SRA+/jjj9nXp06dwqlTp2ptRwEaIaStYxiG3b5zdnSEQCDgpN9UowAtqJkCNEAfDMYnpEKnY/A0O9fkhgFzVD+HRgEaIbXjJEA7ffo0F90QQojNK6+ogEqtBsDtJemGFTQPNymcHOw567chxqt1qU+zLQ7QpFRqg5BG4SRAGzFiBBfdEEKIzbPGJeklpWUoLJYDaL7tTQNrZnJSqQ1C6mb9QjqEENKOWKMGWppRBmVIoG0HaFIqtUFIo3ASoF28eBFLlixBdnbtf3izs7OxZMkSXLlyhYvhCCGk1bLGClpLJAiw4/lXFatNe2p5qQ0He3v2XB6V2iCkbpwEaGvXrsX+/fvh61v7Dw5fX18cOHAA69at42I4QghptYyL1Eo5KlLbkgGas5Mj3KTONeZhLh6PBxcnfWZrSWkpGIaxuE9C2iJOArTr169j6NCh9bYZPnw4raARQto8mbyqxIYhELGUcWAU0swBGlAVFOYXFkNRrrS4P0PgqtXpUKpQWNwfIW0RJwFabm4uAgIC6m3j6+uL3NxcLoYjhJBWiWEYtkgtpyU2Km8R4PN5CPD15qTPpgjm+EYB47N5xlvChJAqnARorq6uSEtLq7dNamoqnDhMOSeEkNZGUV4OtUYDgLsrnhiGYVfQ/H28LC4Uaw6TUhsZlm9zujpXFTIvpgCNkFpxEqANGjQIe/bsQXp6eq2fT0tLw969ezF48GAuhiOEkFbJONhwreU2FXPkFxajXFkBoPnPnxlwnslpvIImpwCNkNpwEqAtWbIECoUCQ4YMwc6dO5GVlQUAyMrKwvfff48hQ4agvLwcf/nLX7gYjhBCWqUiuZx97erCfYJAc5fYMOA6QDMOXmkFjZDacbJWPmzYMGzYsAGLFy/GrFmzAOgPyBqyc/h8PtavX4/hw4dzMRwhhLRKxqtBXG1xprZgBqdBoJ83+zOdiwDN0d4eQoEAGq2WzqARUgfODjO89dZbGDFiBGJiYnD9+nUUFxfD1dUV/fv3x5tvvonu3btzNRQhhLRKRVbY4mzJEhsGdhIxvD3dkJNXyEmSAI/Hg9TZGQXFxZCXlkKn04HPp7rphBjj9LRp9+7dsXHjRi67JIQQm1FcucUpFArhaM/NfZmtIUADgCB/X+TkFUJeWoZieSlcXSxL+jIEaDqGQUlZGWdFfQlpK+hXFkII4YBWq0VJWRkA/fYmj8fjpF9D1qREIoa3hxsnfZojJKDqRoH0TC4yOasCMjqHRkhNFKARQggHZEZV8blKENBoNHianQdAf+VSS24DBvlznclpFKBRJichNVCARgghHCg2SRDg5vxZZk4+tFotgJa5QcBYUAC3d3IaB7GUKEBITRSgEUIIB2Ql1i2x0ZLnzwDTS9O5uU2AtjgJqQ8FaIQQwoEiuZUzOFuoBppBgK83+Hz9uTouzqDZSyQQi0QAaAWNkNpQgEYIIRwoNl5B4ygjsTWtoIlEQvh6ewIA0p/msOftzGUotQEAJWVl0FRu5RJC9ChAI4QQDhiK1DrY27MrQ5ZKNTrr1dIBGlC1zVlWrkRhsbyB1g0zDmTlpaUW90dIW8JZHTSVSoW9e/eyRWq1tfw2xOPxEBsby9WQhBDSKihVKpRX6O/L5Gr1DADSMvTX5kldnEzur2wpQf4+uHLrHgD9OTQPN6lF/VXP5HSXWtYfIW0JJwFaamoqxo0bh8TExHqXvSlAI4S0RcVWuINTUa5EbkERgNaxegbUvJMzqltni/qjTE5C6sZJgPbuu+8iISEBr7/+OmbPno3AwEAIhZxeUkAIIa2WNUpsGGdKtnSJDYMgyuQkpNlwEkWdOnUKY8aMwffff89Fd4QQYlOK23iJDQPjeXARoBlvB9MKGiGmOEkS0Ol0iI6O5qIrQgixOdZYQTMO0FrLCpqfjycEAgEAbm4TkIjFsJdIANAKGiHVcRKgDRo0CA8fPuSiK0IIsTmGM2h8Hg8uTo6c9NkaV9CEAgECfCpLbWRaXmoDAKSVK46K8nKo1WqL+yOkreAkQFu9ejVOnz6NX3/9lYvuCCHEZuh0Onb1R+rszNl9mcbXKQUanf1qaUGVwaKyQoW8yiQGS9Cl6YTUzqwzaJ9++mmN90aNGoU//vGPGDFiBKKjoyGtJV2ax+Phb3/7mzlDEkJIqyQvLYNOpwMAuHFUJoJhGKQ+1ZfY8PXygJ1EzEm/XKieKODt6W5Rf1KTc2il8HK3rD9C2gqzArSPP/64zs+dOXMGZ86cqfVzFKARQtqaIrmMfe0u5eb8WbG8BCWlCgBASAtf8VSdcYCWlpmDPj0jLOrPdAXN8uK3hLQVZgVop0+f5noehBBik4pkVUGFG1d3cGa0vvNnBsYJC+lPOS61IactTkIMzArQRowYwfU8CCHEJhXKqlbQuNriTG2FCQIGQQHGW5yWZ3JKqdQGIbWyuWqyCoUCW7duxenTp1FSUoLg4GBMnz4dY8aMafDZoqIixMTE4PLly1AqlejUqRPmzp2LPn361Gh748YNxMbGIiEhAXZ2dhg0aBAWLFgANzc3k3YajQa7du3C4cOHUVBQAD8/P0ydOhXTpk0zaXfgwAFcunQJCQkJKCwshJeXF/r27YuZM2fC09PTsm8KIaTFFMnb9iXp1fl4ekAkFEKt0SCNg1poIqEQzo6OKCkrQ5FcDoZhwOPxOJgpIbaN8wBNo9Hg8ePHkMlkkEql6Ny5M6e3CqxYsQLx8fGYP38+goKCcOLECXzyySfQ6XQYN25cnc+pVCosXrwYpaWlePvtt+Hm5oY9e/bgvffew7p16xAVFcW2jYuLw9KlSzFo0CCsWrUKRUVF2Lx5MxYvXowtW7ZALK46sLt27VocO3YMc+bMQdeuXXHt2jVs2LABCoUCr7/+Ottu27ZtiI6Oxrx58+Dl5YW0tDR8//33uHDhAmJjY+FOB2MJsTkMw7ABmouTE2c/69Ja2SXpxgQCPgL9vJGcnomMzFzodDqLM1fdXFxQUlYGlVoNhVIJR3t7jmZLiO3iLHLKy8vDsmXL8OOPP6K8vJx9397eHq+99hr+/ve/w8vLy6IxLl++jBs3bmDlypUYO3YsAKB3797Izs5GTEwMRo8ezRZRrO7gwYNITk7Gpk2b0L17dwBAdHQ0Zs+ejZiYGGzevJltu2nTJgQFBeHTTz9lf+D6+fnhrbfewqFDh/DCCy8AAJKTk3Hw4EHMmzcPr776KtunXC7Hzp07MWXKFLhUnkmJjY01WX2LiopC586d8cYbb2D//v2YOXOmRd8bQkjzK1UooNFoAHB3/gyoWkETCgXw8259K+xBAT5ITs+ESq1GTl4h/Hwsm6OriwvSsvRZq8VyOQVohICjOmhPnz5Fv379EBsbC0dHRzzzzDOYMWMGnnnmGTg6OmLr1q3o378/nj59atE458+fh729PUaOHGny/sSJE5Gfn48HDx7U+2xwcDAbnAGAUCjE+PHj8fDhQ+Tl5QHQB5rx8fEYP368yW/DPXr0QFBQEM6dO2fSJ8MwmDBhgslYEyZMQEVFBa5evcq+V31rFAC6dOkCgUCA3Nzcxn0DCCGtSpHMOIOTm/NnWq2OvUYpyM8HAgE3ddW4VD2T01LGwa1x0gUh7Rknf/Lff/99pKWl4ZNPPkFqaioOHTqE7du349ChQ0hNTcXHH3+M1NRUfPDBBxaNk5ycjJCQkBrbCB07dmQ/X5ekpCS2XX3PGv5dV1vjMZKTk+Hq6goPD48mzwfQb6VqtVqEhobW2y4/Px+PHj1i/0lNTa23PSGkeRQaZ3ByVGIjJ78AqsqK+q2txIZBsL/xnZyWJwoYf++Mz/QR0p5xssV55MgRPPvss7XWOLOzs8PKlStx6dIlHD582KJxZDIZ/P39a7zvXHkwV17PH2y5XM62q+9ZWeVvxC61bFc4OzubjCGTyWptZ29vD5FIxPZVG4VCgbVr18Lb2xsTJ06ssx0A/Pbbb9ixY0e9bQghzc84mHBz4WYFrTUnCBiYFKvloNSGq/EKmrzun5uEtCecBGgqlQq9e/eut02fPn1w8eJFi8eyJLunvmerf66utk0Zv662FRUVWLFiBXJycvCvf/0LDg4O9fYzefJkDBkyhP04NTUVn3/+eaPnQQixjiKTEhvcX5LeagO0AG63OO0lEkjEYlSoVCiiWmiEAOAoQOvTpw/i4+PrbRMfH19rOYumkEqlta5KlVTWzqltNcvAxcWl1hU2w7OGlTTDFVV1jWO8CieVSpGQkFCjXXnlpb+1zUelUmHFihW4e/cuvvjiC0RGRtY5ZwNPT08qxUFIK2Ocweno4ACxSMRJv605g9PA28MNEokYFRUq9rycJXg8HtxcXJCdn48yhQIqtZqz7ychtoqTM2ifffYZDhw4UOc23LZt23Do0CGLV33CwsKQmprKZk0ZJCUlAUC9Z7nCwsKQmJhY433De2FhYSZ9GPqsPo7xGGFhYSguLkZBQUGj5qNSqbB8+XLcvn0bq1atsjhgJYS0nHKlEhUqFQDAncMMztZcpNaAz+cjyM8bAPA0OxcardbiPo23OYvpHBoh3ARop0+fxqhRozBnzhxERkZi3rx5WL58OebNm8d+PHLkSJw6dQqffvop+89nn33WpHGGDRuG8vJynD171uT9I0eOwNPTs97VqOHDhyMtLc0k01Oj0eD48eOIjIxkV6i8vLwQERGBY8eOQWv0Q+f+/ftIS0szuUVh6NCh4PF4OHLkiMlYhw8fhkQiwYABA9j3DMHZrVu38Nlnn6F///5N+toJIa1LoRW2NwEgLUNfbsLRwR7urtz1y7WgykQBjUaL7NyCBlo3jBIFCDHFyRan8eXp8fHxtW53Hj16FEePHjV5r6mXpw8cOBB9+/bF2rVroVAoEBAQgJMnT+Lq1atYsWIFWwNt9erVOHr0KH788Uf4+up/iEycOBF79uzBypUrMX/+fLZQbVpaGtatW2cyzptvvoklS5Zg5cqVmDp1KluoNjQ01KSkRmhoKCZNmoTt27eDz+cjIiIC169fx/79+zF37lyTLc6VK1fi6tWreP311+Hi4oL79++zn3N0dESHDh0a/X0ghLQ8kwQBjkpsVKhUyKoMdkICfVt1RX3TK59yEFi5omYuN5MVNDqHRggnAVpzXp7++eefY8uWLYiNjWWvevroo49MrnrS6XTQarVgGIZ9TywWY926dYiJicH69euhVCoRHh6OL7/80uQWAUBfbHbNmjXYtm0bPvzwQ/aqp4ULF5rcIgAAS5YsgaenJ3bv3o3CwkL4+vpi0aJFNa56unTpEgBg165d2LVrl8nnoqKisGHDBi6+PYSQZmKNS9IzsnLZn1utdXvTINjf9E7OQX16WNSfG2VyEmKCkwCtOS9Pd3BwwDvvvIN33nmnzjbLli3DsmXLarzv7u6O5cuXN2qcfv36oV+/fg22EwqFmD17NmbPnl1vO+MCt4QQ21coK2Zfc1Wk1hYyOA1MitVyUGrD2dERfD4fOp2OtjgJAUdn0AghpD1hGAYFxfpVHkd7e9hJJJz0axzohLTyAM04gDQOLM3F5/PZy+ZlJaXQ6XQW90mILTMrQHvttdewe/duswe19HlCCGlJZeXlVRmcrtysngG2tYLm4SaFg70dAHBSagOoShTQ6XSQl5Zy0ichtsqsAO2nn37CvXv3zB7U0ucJIaQlFRYXs689XF0569c4QDPeQmyNeDweO8esnPwa5Y/MYXoOjbY5Sftm9hm0uLg47Ny5k8u5EEKITTBsbwKAu9SVs35TK0tseHm4wtHBnrN+rSXI3wePElOh1enwNDvf4rtDXasFaPXfUkxI22Z2gLZ3717s27evyc8ZZ1YSQogtKjBZQeNmi1NeUoYimb68RGvf3jSonslpaYDmRsVqCWGZFaBt377d4oGrl7YghBBbYcjg5PF4nNVAS8+0nfNnBkHGiQIcnEMzXkErlFGARto3swK0mTNncj0PQgixCTqdjq2BJnV2hrCyQLalbOGKp+qMz8mlc1BqQyQUwsXREfKyMhTJZGAYplUX6yXEmqjMBiGENEFxSQm0lSUguNreBGzjkvTqggNMtzi5YFiRVGs0KFUoOOmTEFtEARohhDRBoVGCgAeHCQK2VGLDwNXFGU6ODgC4KVYLmJYtMT7rR0h7QwEaIYQ0gXHQ4G6FEhsCPh8BPl6c9WtNxqU2svMK2NpwljAOeo0vpCekvaEAjRBCmsD4iieutjgZhmEDNH9fL4hEnNzC1ywMq30Mw+Bpdp7F/RmvoBmvVhLS3lCARgghTWCogSYUCuHi5MRJn7kFRShXVgBo/Vc8VRfMcaKAq4sLmxhAK2ikPaMAjRBCGkmtVrNXELlLpZxlGBoK1AJAcKAfJ302lyCjRIE0DhIFhAIBpM76wLdIJqM7OUm7RQEaIYQ0UoHRig6XGZypGVWBjaXFXpubabFajhIFKs+haelOTtKOUYBGCCGNlF9UxL72dHXjrF/jFbQQW1tB868KKLnY4gT0q5MGtM1J2iuzA7TevXvju+++M3nv6NGjWLJkSa3tP/nkEwiFtnPwlRBCqssvNArQ3DkM0IxKbNjaGTQXZ0dIXfRbklzcJgBQogAhgAUBWlxcHLKzTc8bXLlyBevXr6/zGbqHkxBiy/JMVtBcOes3rXIFzdHBHh5u3G2dNhfDNmdufiGUlckOljBeQSugFTTSTtEWJyGENIJWp0NhZQ00V2dniEQiTvpVVqiQlVsAQH/+zBavNjK+8ikjK9fi/qTOzuDz9X89GZc1IaQ9oQCNEEIaoVguZ6948nTjbnszIzOH3V0ICbCt82cGxufQjG9EMJeAz4db5cXpMnkJtFqtxX0SYmsoQCOEkEbIs9L5sxSTBAHbOn9mYHw1FWfn0Cq3OXUMg+KSEk76JMSWUIBGCCGNYJLByeEKmi1ncBqYXppOiQKEcIECNEIIaQTjAM2L0wDNdmugGQSZ3CZg+RYnQKU2CLGo7sW///1vXLlyhf04ISEBADBx4sQabQ2fI4QQW8MwDBugOdrbw97OjrO+U5/qV9D0F4/bZoDm6GAPdzcpCotknG1xehhlyRpfUE9Ie2FRgJaQkFBr4HXkyJFa29tidhIhhMjLyqBSqwFwu73JMAy7gubn7QE7iZizvptbsL8PCotkKCiSoUxRDkcHe4v6c3Z0hFgkgkqtNlm9JKS9MDtAS05O5nIehBDSahkXqPXiMEHAEMwAtncHZ3VB/j6Iu/8YgL7URpeOIRb1x+Px4OnmiszcPJQqFFBWVMBOIuFiqoTYBLMDtJAQy/7wEUKIrbBagoAN3yBQnfE5tLSn2RYHaADg4eqGzNw8APr/BoG+tv09IqQpKEmAEEIakFdYyL72cnfnrN+2kMFpYFxqg6tMTk83V/Z1flExJ30SYivMWkGbPXu2WYPxeDzExsaa9SwhhLQEhmGQU6Cv9G8vkcDJwYGzvttCBqeBcakNLorVAqarlXQOjbQ3ZgVoO3bsqPV9Ho9X632bhvcpQCOE2Bp5aSkqVCoAgLeHB6fJTinpmexrW19BC/IzCtA4WkFzk0rB5/GgYxjkF1OARtoXswK06gkCOp0O77zzDq5cuYJ33nkHw4YNg4+PD3JycnDu3Dls2LABgwYNwrp16ziZNCGENJfcgqrtTW8PD077Tk7TB2iODvbw9uDubFtLsLOTwNvDDbkFRUh/yk2AJhQI4Cp1QWGxDMUyObRaLQQCASd9E9LamRWgVU8QWL16Na5evYo7d+7Az6/qt8AuXbpg+PDhmDVrFqKjo/Hrr7/i/ffft2zGhBDSjHIrtzcBwNuDu/NninIlsnLzAQBhwf5togxRUIAPcguKUCwvQUlpGZydHC3u09PVDYXFMugYBoUyGadnAAlpzThJEoiNjcXLL79sEpwZCwgIwMsvv4wtW7ZwMRwhhDSbnEKjAM2duxW0ZKPtzbDgAM76bUkmmZycJQoYn0Mr5qRPQmwBJwFaRkYG7BqorG1nZ4eMjAwuhiOEkGah0+nYGmgujo6wt+OuDldS6lP2dWgbCdCCjW5C4Gqb0zSTk86hkfaDkwAtMDAQe/bsgVKprPXzCoUCe/bsQWBgIBfDEUJIsyiUyaDRagFY7/wZAISFtI0AzeROzkzuMzkLKFGAtCOcBGhz585FUlIShgwZgn379qGg8sxGQUEB9u7di6FDhyIlJQXz5s3jYjhCCGkWpufPuA7QjFfQ/Dntu6UEBXC/xWknkcCxsrRJflFxrZUCCGmLLLqL02Dp0qV4/Pgxtm/fjhdffBEAwOfzodPpAOjrCM2aNQtLly7lYjhCCGkWOSYZnNweTk+qDNAc7e3g42m9g+8Mw+CpqhBFmlJIBQ4IkHhAwLNOjfJAP2+2rBJXW5wA4OnqijKFAiq1GvKyMkidnDjrm5DWipMAjc/nIzY2FjNmzMD333+Pu3fvQiaTQSqVolevXpgxYwZGjBjBxVCEENJsDCtoPB6P0+zBcmUFMnP0GZyhwQFWyeDUMFrszr+KnTmnkV5RtRIo4Qkx2rUH5vuPR6idTz09NJ1ELIavlweycvORlpnN1r+0lJe7G1Iz9VvCeYWFFKCRdoGTAM1gxIgRFIgRQtoEtVqNQpkMAOAmdYFIyN2PS+PzZ9bY3sxXy/FB0i7cKE2s8bkKRoPDRbdxsvh3LA16AS97DeZ07CB/H2Tl5qOkVIEiWQncXV0s7tM4ezavoBCdgoMt7pOQ1s7sde7t27cjLy+Py7kQQkirkVNQwJ538vX04rTv5PSq82dcJwjkqeWY9WijSXDW16kj/ug1BGNce8BNqK9NpmI0+Hvar/g28yin4xsHnMaZqpbwMtpezjUqe0JIW2b2r4Rz5syBQCDAwIED8cILL2Dy5MkIDw/ncm6EENJisvLy2dd+Xp6c9m1SYiOIuxU0hbYC8x9/i7QK/S/P3iIpVof+H/o4d2TblOtU2PD0IH7IPQ8AiMk6Cm+xFC96DuRkDsYBZ1JaBvr2irC4T0d7ezja26OsvBx5hUWcbZ0S0pqZvYJ26dIlvPfeeygsLMTSpUvRtWtXREREYNmyZbhy5QqXcySEkGaXZbRD4OfF7QpaktEWZ8cQbsoPMQyDj1P/i0SlvrxFgNgdO7suMgnOAMCeL8YHQVOxJOB59r2/p/6K38tSOZlHR6OablytoAFVSRoqtRrFJSWc9UtIa2V2gDZw4ED84x//wP379/HkyRN88cUX8PLywpo1azBkyBD4+flh/vz5OHToECoqKricMyGEWJVOp0NOvn4FzcHeHs6Oll9ZZMyQwelgbwcfL26SD/YVXMfRojgAgBPfDpvC34CfuO77PWf6jsJ072EAAA10WJb8AxRay39Wm66gZdbTsmm8qp1DI6St4yTXumPHjnjvvfdw7tw55OTkYOvWrRgwYAD+85//4Pnnn4enpyemTZuGXbt2obCQ/mARQlq3QpkMao0GAODn6cnpdpqiXIksQwZnEDd3cBaoS/DPjH3sx590eAUd7LwbfO7dwMno5hAEAEiryMPGzCMWz8XZyRFeHq4A9IEoV3XLvN3pHBppXzgvhuPh4YFZs2Zh7969yM/Px549e/Dyyy/j4sWLmDlzJnx8fDBy5EiuhyWEEM4Yb2/6cnz+LCElgw1aOoUGcdLnmvS9kGvLAQAT3XtjrFvPRj0n4gmwKnQ6JDz9ceSfcs8jsdzyGwAMd4vK5KUoLJZb3B9gWocul37RJ+2AdaoVVrKzs8PkyZMRGxuLrKwsnD9/Hu+++y6ys7m5AoQQQqwh2yhBwJfj82dPktLY153DLA/Q7pSm4EjRbQCAq8ARSwNfaNLzHey8Mdt3DAD9Vuea9L0Wr3qZbHNydA7NTiKBS+VWc35hEVsInZC2yqoBmjEej4chQ4ZgzZo1iI+Pb65hCSGkyQwraEKBwOQuSC48SUlnX4eHWlbPi2EYrHu6n/34zwET4C5qehHXP/mOgr9Yv0J1peQxrpU8sWheYcaJAmncJQp4VV63pdFqUSTnZmWOkNbK7DIbCxcubPIzPB4PGzduNHdIQgixulKFAqUKBQD9/ZsCPre/xxqvoHXqYFkG51nZA9wuTQYAdJB4Y6rnALP6seOLsShgEj5M3gUA2JR5BP2dw80+HxdmlJnKdSZnYpr++5dbUAAPV1fO+iaktTE7QPv2228b3db4DzkFaISQ1iwzJ5d9zXV5DZ1Oh4SUDH3f3p5wdjI/O5RhGGzKPMx+vChgIoQ8gdn9jXfrhe+yjiFJmYO4shRckj/CEGlXs/oKMy5Wy+EKmkmiQEEhIjp2rKc1IbbN7ADt9OnTjWqXlpaGTz/9FImJiVRYkBDS6j3NrbrkO8Cn4UzIpsjMyYeiXAkACLfw/NlFeTwelevLWHRzCMJo1x4W9Sfg8bHA/xksTdoJANicdczsAM3J0QHenu7IzS9EUupTDu/kdGcvY88pyG/4AUJsmNkBWkN3bhYVFWHVqlXYuHEjlEolBg0ahC+++MLc4QghpFk8zdYHaHw+H76e3GZwPkmu2t609PxZbPZJ9vUc3zGcBEBjXXuio50vEpXZuFOWgjulKejl1MGsvsJCApCbXwh5aRkKimTwdHe1eH5ikQjuUikKiotRUCyDSq2GWCSyuF9CWiPOkwSUSiVWr16Njh074p///Cc6dOiA3bt34+LFixg6dCjXwxFCCGfkpaWQl5UBAHw9PSHk8IJ0AHiSZJwgYP4K2u3SZNwqTQIAhNp5Y5Rrd4vnBgB8Hh8zfEayH+/KOWt2X8aJAokcnkMzlD1hGAa5BVQPjbRdnAVoDMNg69atCA8Px7Jly+Dg4IDvvvsO9+7dwwsvvMDVMIQQYjVPjc6fBfj4cN6/aQan+QHa9uxT7OtZPqPB53H3u/ZE997wEDoDAE4W30VGhXlBUEcrlNoAYLKqaVwOhZC2hpM/1Xv37kW3bt0wf/58lJaWYtWqVUhISMDcuXPB5zgDihBCrOVpjvXOnwFVGZx2EjEC/czrP02Zh7Oy+wAAX5ErJrr35mx+ACDmC/FH7yEAAB0Y/JB7zqx+jAO0BKPA1FLGdemy8ylAI22XRev3Fy5cwAcffIArV65ALBbj3XffxfLly+HGcd0gYwqFAlu3bsXp06dRUlKC4OBgTJ8+HWPGjGnw2aKiIsTExODy5ctQKpXo1KkT5s6diz59+tRoe+PGDcTGxiIhIQF2dnYYNGgQFixYUONr02g02LVrFw4fPoyCggL4+flh6tSpmDZtmkm75ORk7NmzB0+ePEFiYiKUSiXWr1+P6Ohoy74hhBBOMAyDp7n6FTShQAAfD48GnmiaUkU5nmbr66t16hBk9i+vP+ddYl+/4j0UIj6327AA8LLXYMRmnUAFo8FvBdfxdsAk2PPFTeqjY0gg+HwedDrGpLSIpVwcHWFvZ4dypRLZ+fmcJSAQ0tqYvbw1efJkjBgxAteuXcPMmTPx5MkTfPXVV1YNzgBgxYoVOHLkCP70pz9hzZo16Nq1Kz755BMcP3683udUKhUWL16Mmzdv4u2338aqVavg5uaG9957D3FxcSZt4+LisHTpUri5uWHVqlV4++23cfPmTSxevBgqlcqk7dq1a/Gf//wHU6dOxVdffYVhw4Zhw4YN2LVrl0m7+Ph4nD9/Hs7Ozujdm9vfeAkhlpOVlKKssv6Zr5cXBALzS1bU5lFiKvu6S0fzEgTKdSrsLbgGABDzhHjBsz8nc6vOTeiEZ9z1vzyWaJU4WhjX5D7s7CQIDvAFoD+Dpqm829RSPB6P3eZUqdUolMk46ZeQ1sbsX70OHDgAHo+H4OBgZGdn44033mjwGR6Ph4MHD5o7JC5fvowbN25g5cqVGDt2LACgd+/eyM7ORkxMDEaPHl3nD9WDBw8iOTkZmzZtQvfu+gO10dHRmD17NmJiYrB582a27aZNmxAUFIRPP/2UPSTs5+eHt956C4cOHWLP1CUnJ+PgwYOYN28eXn31VbZPuVyOnTt3YsqUKXBxcQEAPPPMM5gwYQIA4MyZM7h0qeq3YEJIy8vIqbqCzhrbm/FPUtjXEeGhZvVxuPAWSirv3HzWPRpuwqbfGtBYf/AajN8KrgMAfsm7ZFYwGB4ajJT0LKjUaqRkZFtcmNfA18sTyRn6enLZ+flUsJa0SRatjTMMg+TkZCQnJzeqvaXL0OfPn4e9vX2Ny9YnTpyITz/9FA8ePECPHrXXAjp//jyCg4PZ4AwAhEIhxo8fj++++w55eXnw8vJCXl4e4uPj8cYbb5hkcPXo0QNBQUE4d+4cG6CdP38eDMOwgZfBhAkTsH//fly9ehXjxo0DADqLR0grl56Vxb4O8vXlvP+HT6p+TpoToDEMg59yL7If/9FrCCfzqksPh2B0sffHo/JM3FOkIV7xFF0dAhp+0EjnsGAcP3cVgL7ECGcBWrVEgW6dOnHSLyGtidkBWmODMi4lJycjJCSkRup7x8pq0snJyXUGaElJSejVq1eN942f9fLyYr+ujrVUqO7YsSN+//13k/m4urrCo9pZFeM+uZCfn48Co3Ty1NTUeloTQppKq9Uio7L+mb1EAi+jivVcMQRoErHIpNJ+Y8WVpeBRuT4bsrtDMLo7WlZHrSE8Hg8veQ3G39N+BQD8mncZK0JealIfncOq5vg4KQ0TRg3mZG5e7u7g8/nQ6XSUKEDaLLMDtJCQEC7n0SgymQz+/jV/sDk761PC5fVcniuXy9l29T0rqzzPYNiarN7WeAyZTFZrO3t7e4hEIrYvS/3222/YsWMHJ30RQmrKzs+HuvKMVJCfH+eHzktKy5CWqQ8Aw0ODzaqv9nNe1erZK97WXT0zmOjeG2szfkO5ToWDhTexJPB5OAgkjX7eOEDjMlFAKBDAy90dOfn5kJWUQFFeDgd7e876J6Q14D79x8os+cFZ37PVP1dX26aMz9UP+cmTJ2PIkKofyKmpqfj888856ZsQAqRlVm1vBvv7cd5/fELVqndEeIcmPy/TlOFE0V0AgKvAEePdojiaWf2cBHaY6N4b/8u/AoWuAseL7mBKE86iebhJ4e7qgsJiOR4npXGacenv7YWcytWzp7m5CG+BRQNCrMmsAG327NlmDcbj8RAbG2vWswAglUprXZUqKSkBUPuql4GLi0utK2yGZw0raVKpFADqHMd4FU4qlSIhIaFGu/LycqjV6nrn0xSenp7w5PjKGUJIldSsTPZ1kK81ArQU9rU5588OFt6CitGv8D3n0QcSfvNdb/SCR3/8L/8KAOC3gutNCtB4PB46hwXjyq17KJKVIL+wGF4e3GT6B/j44PaDhwD0BYYpQCNtjVkBWl3bbYZLbOt639IALSwsDCdOnIBGozHZIkhKqrzyJLTuH3xhYWFITEys8b7hvbCwMJM+kpKSMGjQIJO2SUlJJmOEhYXh5MmTKCgoMDmH1pj5EEJah1KFAoXF+l/IvD08YG/X+C28xnpgQYIAwzDYUxkgAcALngM4m1dj9HAMQQeJN1IqcnGjNBEZFQUIlDS+Rlx4qD5AA/Tn0LgK0Pw8PcHn8aBjGGQaXXBPSFthVmqhIXPT8E9iYiKee+45eHh44LPPPsOZM2fw8OFDnDlzBp9++ik8PDzw/PPP48mTJxZNdtiwYSgvL8fZs6b3wx05cgSenp6IjIys89nhw4cjLS0NDx48YN/TaDQ4fvw4IiMj2RUqLy8vRERE4NixY9BqtWzb+/fvIy0tzeSS+KFDh4LH4+HIkSMmYx0+fBgSiQQDBjTvD1JCSNOlGWVvBvtxv3oGVCUI2EnE6BDUtDEeKDLwuFw/xx6OwQi3t84c68Lj8TDZsx/78YGCG016vnqiAFdEIhG8K38xLpaXoKy8nLO+CWkNzFpBq54gsHr1aly9ehV37tyBn9EPuC5dumD48OGYNWsWoqOj8euvv+L99983e7IDBw5E3759sXbtWigUCgQEBODkyZO4evUqVqxYwdZAW716NY4ePYoff/wRvpXp8hMnTsSePXuwcuVKzJ8/H25ubtizZw/S0tKwbt06k3HefPNNLFmyBCtXrsTUqVNRVFSEzZs3IzQ01KSkRmhoKCZNmoTt27eDz+cjIiIC169fx/79+zF37lyTLU6lUokrV/S/Bd+/r7+mJS4uDjKZDHZ2dhg4cKDZ3xdCiPmS0zPY1yFWOH9WLC9lbxDoHBYMYRML4O7Jv8q+nurRMr/0PefeB18/PQQGDH4ruI43/MY1+v7PzkZFeR8ncpuB7u/jzWZxZubkILxDB077J6QlcZIkEBsbi5dfftkkODMWEBCAl19+GVu2bLEoQAOAzz//HFu2bEFsbCx71dNHH31kctWTTqeDVqs12W4Vi8VYt24dYmJisH79eiiVSoSHh+PLL79EVFSUyRjR0dFYs2YNtm3bhg8//JC96mnhwoUQi02vO1myZAk8PT2xe/duFBYWwtfXF4sWLapx1VNRURFWrlxp8t727dsBAL6+vvj5558t+r4QQppOpVYjI1tfoNbR3p5dkeHS7w+rzql279q0el3lOhUOF94CANjzxXjWvWWuhvMRu2KgS2dclj/CU1UhbpUmoa9z476W4ABfSCRiVFSo8NDoLB4XAry9ceu+flfkaW4uBWikTeEkQMvIyICdnV29bezs7JCRkVFvm8ZwcHDAO++8g3feeafONsuWLcOyZctqvO/u7o7ly5c3apx+/fqhX79+DbYTCoWYPXt2g4kTfn5+OHfOvEuHCSHWkZ6VBa1OBwAIDQy0yp2Odx9WHe3oFdG0AO1E0R2U6pQAgPFuUXAU1P9z1pqmePTDZfkjAMC+guuNDtCEAgG6hAXj7sMEPM3OQ7G8FK4u3NyA4OvlxdZDe5qTy0mfhLQWnJS3DwwMxJ49e6BUKmv9vEKhwJ49exAYyE0VaUII4UKS0fZmaGDTquQ31l2jFbQeTQzQdhttb77YzMkB1Y1y7Q4nvj5APF50BwptRaOf7dYljH1tfKOCpURCIbw99EWFZSUlKK28S5WQtoCTAG3u3LlISkrCkCFDsG/fPrbqfUFBAfbu3YuhQ4ciJSUF8+bN42I4QgixmFarRWqmvryGRCSCv48P52NoNBrcf6zP6vb38WxSBmOKMhe3Siszwu280cuxA+fzawo7vhjPuEcB0G+9nii+2+hnI8OrArT7j5I4nVeAd9V/N8NtEIS0BZxscS5duhSPHz/G9u3b8eKLLwIAu+wM6NPEZ82ahaVLl3IxHCGEWOxpbi5UajUAICQgAAIr3Jf7OCkdFRUqAECPiPAmPWuSHOA50Crbr0012aOfSU20yR4NHwMBgMjOVaVFHjzhNkAL8vPFzcrEq/SsLHQNo/JGpG3gJEDj8/mIjY3FjBkz8P333+Pu3buQyWSQSqXo1asXZsyYYVKeghBCWlpiWlXJh1ArHb8wPn/Wswnbm2pGi/2V5SyE4OM59z6cz80cvRw7IFjihbSKPFwvScDTikIESBq+tzTI3wfOTg4oKVXg/uNkTm8U8PH0hFgkgkqtRnp2FnQ6HfhWCLYJaW6cXvU0YsQICsQIIa2eVqtFYlo6AP05JmuU1wBMz581JUC7IHuIAo3+lpORrt3hIap5j3BL4PF4mOzRF99kHgYAHCi8gfl+4xv1XGR4KK7evo/CIhly8gvh68VNxqyAz0egrw+S0jOgrFAhr6gIPlbIxiWkudGvGYSQdic1M4vd3gwLCjTr8vKGMAyDOw/0K2h2EjE6hQY1+tndRjcHTG3h5IDqnvPoCx70q1/7C67XentMbSI7V51De8DxObQgoxJP6Ub3qhJiyyhAI4S0O09SUtjX4SEdrDJGRlYucvMLAeizNxtboDZHVYwLMv0dkz4iVwxy6WKV+ZnLT+yG/pUlNtIrCnC7rHFZmZFGV1zd5zCTEzC9AcL4ZghCbBkFaISQdkWlViPl6VMAgL1EgkBf7rM3AeDG3Yfs63696r6Grrr9BTegg35VaopnPwgaWbG/ORknB/yWf71RzxiX2uB6Bc3Z0RFulTe35BQUQKlScdo/IS2h9f3JJ4QQK0pKT2eL03YKCbbagfIbd6ru/e3bK6JRz+gYHfYW6LM3eeDhhRa62qkho117wIGvv1T+WFEcynUNB0ReHm7w9tQnFNx/nASNRsPpnAzbnAzDsLdDEGLLKEAjhLQrDxIT2dfWuhqIYRjcuBsPAHCwt0NEp8aNc6M0EekV+jqSA5zDG5Uh2RIcBBKMd+sFACjTVeBU0e+Nei6qm77USLmyAo84vDgdMN3mTMl4ymnfhLQECtAIIe1GoUyG7Dz95druUqnVsv1S0rNQWCQDAER169zoJATj2mcvtLLkgOpMtjkLGrfN2SuyM/v6zv3HnM4nwMcbosrvc2pmJrtKSoitogCNENJuPEyoWj2L6NjRasVfjc+fNXZ7U65R4ESRvjq/VOCA0a7drTI3rkQ7hSJQrA9wr5Y8QbaqqOFnulcFaHH3n9TTsukEAgFCAvwBABUqFbJy6W5OYtsoQCOEtAsarRaPUvTZgwI+H11CO1htrOtxRufPejYuQDtUeAsqRn8ua5JHH0j4IqvMjSt8Hh/Pe/QFADBgcLDgZoPPhAUHwsnRAQBw58HjRpfoaCzjgsPJGRn1tCSk9aMAjRDSLiSlp0NZee1SWFAQ7CQSq4yj0WhwLU5/9ZDU2RGdw0IafIZhGJOL0ae20uSA6p6rDNAAYF8jaqIJBHy2YG9hsRxpT7m9OzPE359N+kjKeMp5AEhIc6IAjRDS5jEMgzvxj9iPIzs1vqp/U915mIAyRTkAYGCfnhAIGv4x+0CRgUfl+oPt3RyC0NnB32rz41KgxAN9nToCAFIr8vB7WWqDz0R1MzqH9oDbc2hikQiBlZfelykUyCtqeNuVkNaKAjRCSJuXnZePvEJ90VhPN1f4e3tZbaxL1++wr4f069moZ/6Xf5l9/ZLXIM7nZE3GyQL7GpEsYByg3b73qJ6W5gkNqtrmTEpP57x/QpoLBWiEkDYvLj6efd2ra1erJQcAwMXr+oP+PB4Pg3r3aLB9mVaJQ4W3AAAOfAmedYu22tysYaxbT9jxxQCAo0VxqNCp620f2TkUYpH+fN3Nu/Hcn0MLCGD/+yakptE2J7FZFKARQto0WUkJe2Dc0d4enYKDrTZWdm4BElP1Y3Xv2hGu0oYvOT9ceJst9DrRvTccBNY5G2ctjgI7jHPVrxSWaMtxpvh+ve0lYjF6RurroWXl5iMji9tsSwd7ewT4eAMA5KWlyC0o4LR/QpoLBWiEkDbt5v2qjMoenTtD0Mg7Mc1x/loc+3pI37a/vWnwvElNtGsNth8Q3Y19fe12/QGdOYzvV32c0vC5OEJao8ZVTySEEBskKynBo2R9aQ2xSIRu4dZLDgCAUxdvsK+H9o9qsP1DRQYeKPQrbpEOgYhwCGzgicarKFMj/XYu8pJkkGcroFFpIRDxYS+VwMXXAQHdPODZ0RV8vuXbvf2cO8JP7IYsVREuyR8hR1UMH7Frne37R3XDRvwCALh6+z6mTRpt8RyMhQUF4tz169DqdEhIS8OQ3tFWu9KLEGuhAI0Q0mbdvH+fPYPUq2sXSMRiq41VWCzHrd/1BWqD/H3QOazhrdRf8i6xr1/0HMjJPArS5LizNwkp17Oh09Z9/uomnsDZyx4R44IROS4EQon5K4t8Hh9TPPrh26xj0IHB//KvYKH/s3W279IxBC5OjpCXluHG3QfQanWNynZtLIlYjJAAfySlZ6BcqcTTnBz2rk5CbAX9SkEIaZOK5SV4lJwCAJCIROjZpYtVxztz+SZ0On1ANHpI3wYTEWSaMra4qyNfggnuvS0aX1miwtlv72LPhxeRdCWr3uDMoCSvHNd+eISf/3IWiZcyLTpQ/6LnQAgq/0rZnX8FakZbZ1uBgI9+UZH6OZQqEJ+QbPa4dTHe5jT8f0CILaEVNEJIm3Q57rbR6llXq66eAcDJ81UlJsYM7VdPS73d+VehZPQZj1M8+8NJYGf22Gm3cnHuu9+hlKvY9+xcxOg42A9BUV5wD3aB2EEIjVILRXEFchOLkXI1Gxl39feSKgorcPqbO0i9kYshs7tB4tT0Wwx8xK4Y7hqJ08X3kKeW42zxPYytvFC9Nv2juuHkBf337Ort++jWpWOTx6xPSIA/JCIRKtRqJKanY6iqD+ys/P8AIVyiAI0Q0uZkZGcjOUNf+NXB3h69ulp39aywWI6blfdv+vt6oWunDvW21zBa/JR7AQDAAw+veA01a1ydjsHt/z3B7T1Vd4yKHYToPa0Tuo4JhlBsum0pFAtg5yKGe7Azuo4KQtHTUlz7IR7pt/MAAElXspCXVIzxS/vCLcCpyfP5o9cQnC6+BwD4Oe9SvQHagN5Vd41euH4Hs1+Z3OTx6iMUCNA5NBS/P34MrVaLJ8kp6NGlc8MPEtJK0BYnIaRN0el0uHDzFvvxwF49IRJZ917Lw6cuQavTAQDGDuvf4Pbm6eJ7yFYXAwCGSiMQYtf0wrkalRYn1982Cc5C+njjpS+HofuE0BrBWW3cApzwzNK+GL0oChJH/feoJLcc+z+6jKe/5zd5TgOcwxEs8QSgv0A9RVl3CY0AXy+EhQQAAO7FJ6KgSNbk8RoS2alqVe5+YgLVRCM2hQI0Qkibcic+HoUy/V/2Xu7u6BIaatXxGIbB/uPn2Y+fHzeswWd+yK1qP9274fbVqRRqHF1zA6nX9XdZ8nhA/9e6YOyS3nBwa/pWadhAP0xdPQQeIc6V/Wtw9MsbSL3ZtLsy+Tw+XvIazH78S97leloDwwfoi/IyDIMLRiVKuOLh6gofT33AWFgso5poxKZQgEYIaTOK5XJc+/0e+/Gwvn2semsAAMQnpLDFaXtEdEKHwPqzBe+WpuBWaRIAIMzOBwOdm7btpixV4dDfryHrgf7qKqFEgGc+6Iuez4VZ9LU6edjjuY8GIri3vsirTsPg5L9uI+V6dpP6meLRD2Ke/vTMvoJrUGgr6mw7YmBVYsS5q7fNmHXDIjsaraIlJFhlDEKsgQI0QkiboNPpcPrqNWi1+uzBXl26wLdy9cSafjvWtNWzrdkn2dev+4xoUlClUqhxdPUN5CfLAQASJxEmLu+PwJ7c3C0qshNi7LvR6DhYH2TqtAxOro9D2q3GV/t3FTqyGakl2nLsyb9aZ9vIzqHwcJMC0CcKKJV1B3Pm6hQSzF4t9TglFYrycs7HIMQaKEAjhLQJN+7dR1ae/rC7i5MT+vdqXCV/S5SWKXDo1EUAgEQixrhh/ett/1iRibMyfeV8X5Ernnfv2+ixNBVaHPvqJvKS9Nu39lIxnls5AN6dXM2bfB34Aj5GLOyF8GH682GMjsHJ9beRHV/Y6D5m+IxkX/879yw0dZTc4PP5GDYgCgBQUaHClVv3am1nCZFQiG6d9AWKdTodfn/8hPMxCLEGCtAIITYvIzsbN+7p/3Ln8XgYPXAARELrJ6n/duwcFOVKAMBzY4bAydGh3vaxRqtnM31HQcRv3By1ai2Or72F7PgiAPqVswnL+sMtsOG7Ps3B5/MwfH4PdiVNq9bh2Fc3UZhW0qjnO9n7YqhLVwBApqoIJ4ru1tl25KA+7Ovj5+tebbNEjy6dwa9cqbz35AnUGo1VxiGESxSgEUJsmry0FMcvVlXk79+zB/y9va0+rlarw3/3n2A//uPk8fW2T1Hm4lhRHADATeiEqZ4DGjWOTqvDqW/usFmVInshJnzYD+5B1gnODHh8Hoa/2RMBPfTbxCqFBkdWX0dJnqJRz8/0HcW+/j7ndJ0ZlAOiu0Hqoi/pcfbKbTbg5ZKTgwM6hYQAACpUKjxK4r4wLiFcowCNEGKzlCoVDpw5i/IK/dmlID9f9I6MbJaxT128jsxs/ZbqwN7dERrsX2/7b54ehg76IOV1nxGw5zdcNJVhGFzc9oDN1hRKBHjm/b7wDJNaOPvGEQj5GPtuNLw66cdTFFfgyOobUJaoGngS6OfUib1b9IEiA9dKaj+gLxQKMbaysG9FhQpnLt/kaPamoiK6sq9vP3zInlUkpLWiAI0QYpPUGg0Onz2HYrn+wLyriwvGDRli9axNQL96tuWHvezH01+s+95JALhXlobjxXcAAB5CZ7zayMK0t/6XgEen0wEAfAEPY5f0hm8XN/MmbSaRnRDPLO0LqZ8jAECWVYZjX92ERlV/gMPj8TDT6Cza5qyjda6iPTNyEPv66Jkrlk+6Fp5ubgiuvI+zpKwMD5OSrDIOIVyhAI0QYnPUajUOnjnDJgXYSySYNHJEs13lc/LCNSSnZQLQl9YYEN29zrYMw2D904Psx/P9xsNBIGlwjAfHU3F7d9Wq04gFPRHYw/pZqbWxcxbj2Q/7wt5VP+/cJ8U4/XUce/doXca7RaGDRL/dfLM0CddKaj+g3ysyHL5eHgCAq7fuIb+wmLvJG+nXswf7+ua9+9DQKhppxShAI4TYFIVSid9On0Fmrj44E4tEmDRyBKROTb+ayBxqtQabd+1mP57/fy/Wu2p3Qf6QDUyCJB540Wtgg2MkX83CpR0P2I8Hvh6BjoPr30K1NmcvBzz7fl+I7PU3FKTezMXlHQ/qrc4v4PHxpv8z7MebMo/U2p7P52PCaH2BW61OZ1L4l0s+Hh7oEKDPTi0rL8f9J1QXjbReFKARQmxGQXEx/nf0GHLy9QfmJSIRJo8eBW8Pj2abw497jyItU38mLLp7F/SPqvvMW4VOjS/S97Af/9l/IkS8+q9gynxQgNMb76DyuBp6Ph+G7hM6WDxvLnh0cMHYxb3BE+gD0ocn0nBnX/1bhePdeqGjnS8AIK4sBZfkj2ptN+WZqppwew6fgVar43DmVfobraLduHcPygrua68RwgUK0AghrR7DMLj/JAH/O3oMJWVlAABHe3tMGTumWYOz3PxCbP1xHwB9KYq/zJ9e7+rZ9uxTSK/QXy/U16kjnnGLqrf/glQ5jv/zFnQafXQWPjwA/V5pXRd8B/TwxPD5RkHOz4/x+GxGne0FPD4WGK2irX96AFqmZvAV4OuFQX30/Wbl5uPyzbpLc1jC080NnTt0AKDP6Lx293erjEOIpShAI4S0arLSUhw6ew5nr19nzwx5ublh2jPj4enWfAfmGYbB3zdsR3lltfupE0ahS8eQOtunKfOwrbLumRB8/DV4Wr3BXEmuAke+uAF1ub5GV1CUF4bN7d4sSQ9NFT40AP1e7cJ+fH7LPaTfyauz/RjXHoiszOh8VJ5Z5+0C0yaNZl//bFTChGuDonpBWFkn735CAvKLiqw2FiHmogCNENIqKVUqXL1zFz8dOIjUzEz2/W7hnfDCuLFwcqi/KCzXdh86jUs39Ks6Hm5SLJgxrc62WkaHFSk/ooLRB1vTfYajk71vne0Vsgoc/sd1lBfrgz/vTq4YvSgKfGHr/RHd87lQRD6jD1AZnf7ezvzKWw6q4/P4WBr0AvvxN5mHUaKteeXSkL694OetT4S4fPN3PEpM5X7iABwdHNC3ezcA+sD77LXr0Omss6VKiLla759+Qki7VFJWhstxcdi1dx9u3r8PbeVfnA729pg4fDhG9OvXLLcEGLv/OAnrtvzAfvy3xXMgda47KWFH9incKUsBoE8MeNPvmTrb6u/XvA55jr4ArGuAI8Yv7QORXfN+jU3F4/Ew8PUIdOjvA0B/FdWRNTfYr6O63k5h7BZvkaYU32YerdFGIODj/6ZVlSz5/peDNdpwpVeXLnB11hf7zSkowJ342s/GEdJSKEAjhLS4CpUKT1JSsP/0aeza9xtuP3jIXsfD5/MRHRGB156bhA6BAc0+t7yCIiz9bD0qVGoAwEuTxmBIv151tr9blopNWfrggw8ePuvwWp1lNTQq/RVOBan6K5QcPezw7If9YOfcPOVCLMXn8zByYS/4dtVvNSvlKhz54jrK5bUfvF8c8BwkPH3g+UPuedwtq7lCNnn8CLi7ugDQlzNJe5ptlbkLBAKMGlh1m8O1u3dRKKt9BZCQlkABGiGk2anUamRkZ+Pm/fvYe+Iktv1vN45fuoz0rKq/jPl8PiI7dcJrz03CoOgoiEWiZp9nQZEMC5d9gbyCYgBAVLfOWPLGa3W3V5fgL4k72MvBZ/qMQrRTaK1tNSotjv/zJrIe6C8hlziJMOHDfnDysOf2i7AyoViAcUv6wDVAv6Ioz1bg2Jc3oVbWvO/SX+LOlt3QgcFHKT9BpTNtZycR49UXKtvoGMTs/J/V5u7n5YVeXfU3DGh1Ohy7eJHu6SStBgVohBCrUGs0kJWUICs3D/FJSbgSdwdHzp/HjwcPYusvv+K3U6dx9c5dZObmmtTGcnZ0RL8ePfB/k5/HyP794NJM9c2qy8zJw4IPVyMlPQsA4O/rhS+Wvw2RqPatR5VOg6VJ3yNXrV+FiXYKxVsBE2ptq6nQ4thXN/H0d32Gp8hOf4WTIcixNRInEZ79oC8c3PQrhXmJMpz6Og66WkplzPAZySYMJClz8G1Wza3Ol54bw66inTh/DXcfWq9e2YCePeAm1Y9VWCzD2WvX663tRkhz4TH0f6LNefToEebNm4ctW7agS5cuDT9Amp3hjxXDMPpyVoaPK18ztbQz+bz+RY1nq7evdQyTZytfMew7tY7JMAx0Oh10OgY6Rlf5uuofra7y85Wf02p1UKnVUGvUUKk1UKvVUGnUUKs1UFZUoKy8vEkrEVInJ4QEBCA0MAD+3t4tnrl48+5DfLhqI4rl+q1HXy8PbF7zV/j7eNXaXsvo8EHSLvY6Jy+RC36KWAJPkUuNtiqFGifW3Ubm/crgzF6AZz/oB5/OzXuFkzUUpMlx4JOrbCZq55GB+kxUvul/z8eKTLz6cC000IEHHjaFv4HBLqY/y/538BRWb/wegP62hq1fLgefb501hUKZDP87eoz9f3ZI797o1ZV+tpKW1bpPoZJmk19UhDvx8Ya/403/UmcMNTOrXlcFCEzVMzWCEaNn2aCkqr3hdfV2lSNVjVHtWaZqQjXmxzDG7ateVw+ATMeov48awRNQ7xikfnw+H+5SF/h4esLHwwO+nl5wdXFu6WkBABTlSny763/4ad9x9r9ncIAvNnz2Xp3BmY7R4fO0X9jgzI4nwtqOs2oNzsqKlDi65gYKK8+cieyFmPBhX3iH235wBgAewS4Yt6Q3jqy+Dp2WweMzGdBpdBj+Rg+TjNTODv54K2AC1j89CAYMliX/G/+N+At8xK5smynPjsBPvx1DSnoWfn+YgN2HT+OlSWOsMm93qRSjBg7AsQsXAQAXb92Co4M9OgUHW2U8QhqDAjQCAChVKPAoOaWlp0HaAJFQCAd7ezja28HBzh4O9nZwdnSEq7MLXF2c4ezoaLWVEHMpypX47dg5bPvpNxTJStj3B0R3w6oP34KLs2Otz6l1GqxI+RFHim4D0Nc7W9vxT+jpWLM+WmFaCY5+eQNlBUoA+m3BZ97vC+9Ortx/QS3Iv5sHRizshTMb74DRMUi4kAmVQoPRi6IgFFfdovAnn1G4VZqM87IHKNKU4d3E7djaeSGbUCEUCLB0wet4a9kaAMDX237Wl+Hwsc59pJ2Cg1HQrRg3798HAJy4dBkSkQhBlResE9LcaIvTBlljizPl6VMcOnuOk764Ytjm4uk/YN/jVTVgX7Pvs+30T/KM29XybK1jGN436aPyFY99p3Fj1NLe8NrQX80xTL8uk7GqtTe8ZrcEq41XtVVY/VnTMXk8fa0qPt/wD6/qNY8PQbX3BHw+REIRxCIRRCJh5b9FEAmFELSy4KsuGo0Gcfef4OSF6zh8+hLKFFV1uSRiERbMeAmvTBkPgaD2r6dQXYoPk3fhauU9mwLw8ffQ6ZjgHl2j7ZMLT3Ex9j40FfrkAWcvezzzQV+4+tvmmbPGSLmeg1Nf32ZvRfDu7Iqx7/aGg7Qqo7VYU4ZXHq5FlkpfKHa4NBLrOs6C0Og6rL9v2Ia9R84C0CdpxPzjA7bILNcYhsHpq9cQn6S/vkrA5+OZoUNbJHuYEArQbJA1AjS1Wo3S8nLDX+36v8xrCRQMr2sPeAxBQM1nqwdAtQU0VcFI66ucTmybUlmBrNwCpGVmIz4hBQ+fpCDu/mOToMxg3PABWDBjGoL8fers71ZJEj5M/jdy1MUAAAlPiC/DZmKEazeTdmqlBlf/HY/4U+nse55hUoxf2sckUGmrMu8X4Pg/b0Kt1Aemju52GLekNzzDpGybJ+WZ+FP8NyjV6VcWn3fvi487/JEN0krLFHhl4XLk5OmzXV+ZMh5/mT/danPW6XQ4euEikjP011fxeTyMHNAfXcPCrDYmIbWhAM0GUZKAeRiGqfyn8mMwJgfrGTBGB+hR4xxazYP81Z9lGxsdyDd9tra+qs7aGc7xmT6LGh9XjdnQ/A1fp/GzNeZglEBgSFCoMYc6EhWqJydUn39dc6j572pJDMZtK5/VaLTQaDX6f1e+Vqu10Gi1UKs10Gi1KFdWoLRMAXlpGUpL9f/OLyxGYbEc9bGTiPHMyEH4w3Nj6r2+Sa4px4anB/FL/iX2PQ+hM77qOBO9nUz/As+8X4Dz3/2OkryqILDzyEAM/lOkyVZfW5efJMOxtTehKNTXRhOI+Bjwf10RMTaY/WXsqvwJFiZ8x5YnGe8WhVWh09mL5e8/SsS8pavYQ/xLF/wfXn5+nNXmrNXpcOryFTxJrarT1qNzZwzuHW0zK8TE9lGAZoOsEaDdvPsQ//jme/Yv4+qBicmBeJOkgJqBSY2kAfa5msGR8cfGz1k6h8qXdHCf1MnVxRkD+3THsP5RGNy3J5wc6746qlSrxI+55/F9zhmTK4p6O4VhTdgMeBklBJTklePGz4+ReLHqeiqBmI8hf+qGziMDrfPFtHKK4gqcWHcLuU+K2feCorww7I0ecHDVrySeLLqL95N3sUFaP+dO+DJsBtyE+m3g3YdP4x9f72CfX/nuXDw/bpjV5qzT6XDh5i3ce/KEfc/L3R1jBg2Eu1Raz5OEcIMCNBtkjQDtwrU4vPvxOk76IqS1EAgE8HB1gZ+PJ/x8POHv44XOYcGICO8AP2/PerfTdYwOv5elYV/BNRwqvIVynYr9nD1fjLf9J+IV76EQ8PQrKqUF5bh3OAUPj6dBq66q/+Xb1Q3D5vWA1K/2RIP2QqvW4sq/4/HweBr7nsheiD4vhSNyXDD4Qj7Oyx5gSeIOqCrvMPUXu+OL0P9DT6cOAICY73/Ftv/uZ5//86yXMeOliVY9FvEgIRHnbtxg7+rk8/no0y0SURERzX7lGGlfKECzQdYI0K7euoe/rt4IoOrQeNWZMZ7pgfPq58uMDqbXPBhf81ya8VmzGgkA7Fn3ygP51eZgaNeYOVQ914g5sM9Vn0P1vuqbQ80Egaoxqs+h+udbwRyqnzOsaw6Vz1Z204g5mCZGVJ8D+7la51B1blEoFFT+I4RQIIBIVPlvoRBCof7fEokYzk4OcHZ0gLOTI+wk4kb/5a1jdEhR5uGeIg03SxJxXvYQBZoSkzZ88PCcR18s9H8WfmI3MDoG2Y8K8eh0BhIvZ4HRVv04lTiJ0OcP4YgYE1yjDlh7ln47F+e++x3lsqqA1zXACb2ndUKH/r64q0jBksQd7PeeDx5m+IzEfL/xsOeLsfa7H/DTvmPss+OGD8CHb82sM9OWCzkFBTh5+QqK5VVb5Q729ujXvTu6hIVCKGg/W9ak+VCAZoPoDBohjcMwDFSMBhU6Dcp1FZBpFCjSlEGmLUOxRoFsVRHSKwqQUZGPVGUeynS13yHpwJdggns0ZviMRJDAAzmPi5F+Jw/JV7JQmq80aSsQ8dHt2RD0mtwREsfmv57KFijlKlz76REen80AjP4Gkvo7osfEUDj1dcBfM/9tclenp9AZ8/3HY4p7f/zw6xFs+v5X9nPeHm5YNOePGD9ioNVW0zQaDa79/jvuxD8yOTphbydB9/BwdA0Lg7Nj+14lJdyyuQBNoVBg69atOH36NEpKShAcHIzp06djzJiGCxgWFRUhJiYGly9fhlKpRKdOnTB37lz06dOnRtsbN24gNjYWCQkJsLOzw6BBg7BgwQK4ubmZtNNoNNi1axcOHz6MgoIC+Pn5YerUqZg2bVqNPjMzM7Fx40bcvn0bWq0W3bp1w/z585scZFkjQHtSnomfcvVFGhnU/F/C+D2Tc2Ts52u+Z/K88QH7am3Ne8Z0dvXPrYF51vP11DkmU3PuDT1T2x+1huZm3jM1Z9TQ972271ttY9b29dT536KB70F9/8/U/vXU/9+fAQMNo0OFTg11ZVBm2Cozhx1PhAHO4RjA64yo/BCUJZcjP0mO3IRitlyGMYmTCJHjghExPqRdZGhyIS+xGJd3PjQ5mwYAQokAIQO9catfKn7EBaiZqu+3m9AJL3kOgtdjMTbH/IqSUgX7uYhOHfDa1GcxZmi/Oq/kslSRXI4rcXFIznha43N+Xl7oGByEID8/uDo7U0Y6sYjNBWhLlixBfHw85s+fj6CgIJw4cQIHDhzA3/72N4wbV3dWj0qlwrx581BaWor58+fDzc0Ne/bsweXLl7Fu3TpERUWxbePi4vDuu+9i0KBBmDp1KoqKirB582Y4OTlhy5YtEIvFbNs1a9bg2LFjmDNnDrp27Ypr167hhx9+wNy5c/H666+z7YqLizF79mw4Oztj9uzZEIvF+M9//oOEhAR89913CG5CxWprBGjnZA/wdsJWTvoixNbwGB48tE4ILHNHYLE7vLNc4PbYEap8dfVo0PQ5Pg+BPT3Raag/Qvr4QCihra6mYhgGT+8VIG5PArLji2p8vsRHiZvjU/D7/7d373FR1fn/wF8HBobhMjMiCEoCcjEwSSTUvADeBcNqWX+aiaai2CNb2azV7SLYZStrw8e6reYql/Ch5tfUTVPUXNmkICQxbXM1lAEvoHKHBAZm+Pz+UI4c5gwXGeQMvp+PBw+Zz/mcz/m85/hh3nMunzPgqsEyb60zmv9Vjev/LRGUq5UOCHtyJELHBmHEMF+oHEw/39zN8nKc/d8FXL56VfSLlL2tLQY6O8PZ0RHOjo5w6qeGvNVnByEdMasELTs7G2vWrEF8fDymTp3Kl69atQqFhYXYs2cPLI1cC7B//35s2LABmzZtwvDhwwHcOfq1ZMkSKBQKbNmyha8bGxuLhoYGJCcn8xMi/vzzz1ixYgVWrVqFZ599FgCg0WiwaNEiLFu2DNHR0fz6H3/8MY4dO4a9e/dCqbxzd9fmzZuxZ88e7Ny5E66urgCA27dv47nnnkNQUBDefvvtTr8PPZGg7T/7A9bp/s8kbREzdvevASf4q8CJlAnr36nFGZSLHT/gmEhpV9phIvXustBzkOktYKmzhKWeg6XO8u5rC8h0FrBpsIJNvTUU9VawqbeC3W05VFUKONQoYNncuekTbPvJ4RbghEced4LbcCfYKOlD11TKCqpxIeMqLmcVo6leeJTyhms1fnqiCJeG3gKzEP5n5PIbITtWB+6G4ZFNABj8iAt8vdwxxG0g3N1c4eLkiH5qJRxVSigduvdki9rbt3FRU4j8wkJU1nQ8nYvS3gEqe3vY2Spga2MDhY0NFHIbKGzksJLdnfhZJoNMJqMjcA85s7oFJTMzEwqFAhMnThSUz5w5E++88w7Onz+PgIAAo+u6u7vzyRkAyGQyTJ8+Hf/85z9RWloKZ2dnlJaW4sKFC4iNjRXMVh0QEIDBgwfj5MmTfIKWmZkJxhgiIiIE24qIiMDBgweRk5PDH9U7efIkgoKC+OQMAOzs7BAaGopjx45Bp9P12OzYneGnH4Tn0p40KBf7UBb9gDVSt70Pd7EkwGg7jGtTC0aSgI7aaanVURLQqh2RZjrfTuuecQZl9/pquJUOk5JOvqei7714VKQVGwcrOAywhcMAW6gG2sFpiBJOXirY9bPp7a71WU5eKkzwUuHJaH9c/7kMRXm3cCXvFhpqGuF6Q4XwQ4/jt28b8KvfDVwaehM3B95JiJivNZp8rMAV6WCR0wCLXxvB3bsHAVev3cTVazeNbpez4sBZWYCT3fmxkHF3buzgWv5tuSnn7r8W917fbQEAoLa1hYtaDReVCs5KpcGcaQ3aRjRoy3GrvLxT74dOf2eev+a7Uw013/1hIv8CEM5L2Kodg0sLOqhD7hjo6oo//L/ZvbZ9s0rQNBoNPDw8DBIZb29vfrmxBK2goAAjRowwKG+9rrOzMzQajaC8bd2ff/5Z0B+1Wo3+/fsbbRMAtFotiouLERoaKtqmVqtFSUkJBg8eLNr3srIylLca0JcuXQIAFLWaRLG7ym9Uwa62SVjY5jPc8Mtc2wrtvjQs6OK3Q4Nvkwbtda35jjffJvXrYHtd3UBH72fH71/bl51/f5hY+x1tz2A5J/arkapd3dftd6bjfSEssLAELKwsYXn3w9fSyhKWMg4WVhaQWVnC2k4Ga4UV5HYyWCmsYGMvg8ym9d+ZZjSgCtduVQG3uhQKuV8OgEuYNVzCHsFvZfWouFKL8qJasFt6+OTZwSPLA3W2WpQNqEXpgFqUOf2GWqUOunEW0I+2AXetCRbXdeBu6ICyZnDN7WxLD7CGewmL+HG4jtUBaJn9zsKCg4O9AmqVA1QqO9jbKWBnawMbm87fWdwRDgCdVO85BZfycfHixR5p28PDAzY27X/ZM6sErbq6GoMGDTIod3BwAADUtHN4uaamhq/X3rrV1dUAwJ+abFu39Taqq6tF6ykUClhZWfFt1dbWgjEmuv2W9aurq40maAcOHEBqaqpB+XvvvSdanxBCHhqF935V9FonxGlvAzdvAsaP3RGpW5ae3iPtduYSJbNK0ICufxPv7Lptlxmr25Xtd7bNjpY9/fTTGD9+PP+6trYWRUVFGDp0qOCGhe4qKirCe++9h7feegseHh4ma1cq+np8QN+Psa/HB/T9GCk+89fXY3wQ8XWmXbNK0FQqFX9UqrXa2jsTGoodzWqhVCpFj7C1rNtydEt19xEexrbT+iiYSqXiTze2Vl9fj6amJr4/DndvtxbbfktZe313cnKCk5OToCw4ONho/e7y8PDo0/Or9fX4gL4fY1+PD+j7MVJ85q+vx9jb8ZnVU1+9vLxQVFQEnU44t1FBQQEAYMiQIe2ue/nyZYPyljIvLy9BGy1ttt1O6214eXmhqqpKcH2YWH/kcjnc3NyMtimXyzFw4ECjfSeEEELIw8WsErSQkBDU19fj22+/FZQfOXIETk5OGDZsmNF1Q0NDceXKFZw/f54v0+l0+OabbzBs2DD+CJWzszP8/f1x7Ngx6PX3LhX95ZdfcOXKFYSFhfFlEyZMAMdxOHLkiGBb6enpkMvlGDNmjKDveXl5uHnz3tUIdXV1OHnyJMaPH9+rd3ASQgghRFrMKit48sknERwcjMTERNTV1cHNzQ3//ve/kZOTg7feeoufA+3DDz/E0aNHsWvXLn5ai5kzZ2L//v2Ij48XTFR75coVbNggfEj4iy++iFWrViE+Pl4wUe2QIUMEU2oMGTIETz31FFJSUmBhYQF/f3/k5ubi4MGDWLp0qeC05bx583Ds2DGsWbMGMTExsLKywo4dO9DY2IjFixc/gHevY/3798eiRYsM7krtK/p6fEDfj7Gvxwf0/RgpPvPX12OUSnxmNVEtcOeo09atWwWPeoqOjhY86un999/HkSNHsHv3bsGpw4qKCsGjnnx9fRETEyN6PVdubi6Sk5ORn5/PP+rppZdeEn3UU1paGtLT01FRUQFXV1dERUWJPurp+vXr2LRpE/Ly8vhHPb344ot9+hw+IYQQQrrO7BI0QgghhJC+zqyuQSOEEEIIeRhQgkYIIYQQIjFmdZMAuePMmTOIi4sTXbZ582Y89thj/OuLFy/is88+w/nz52FpaYmRI0dixYoVok9k2Lt3L/bv34+SkhL0798fERERWLBgQafuMNXpdNi+fTvS09NRXl6OgQMH4ne/+53otXi9EePVq1dx4MABnDlzBsXFxeA4Dh4eHpgzZ47Bs13FlJSUYO7cuaLLEhISBNdA9kZ8AEQfJQYAsbGxiI6O7rBPUt+H6enp+OCDD4xur6M4e2sfnjt3Dunp6cjPz4dGo0FTU5PB9bGtSWUcmjo+qY1BoGf2oZTGoanjM8cxqNfr8eWXXyI3NxcajQY1NTVwcXHBhAkTMH/+fNEn/EhlDFKCZsZiY2MxcuRIQVnredqKiooQFxcHHx8frFu3Do2NjUhOTsbLL7+M5ORkqNVqvm5aWhqSkpIwf/58jBo1ChcuXMC2bdtQVlaGP/3pTx32JTExEceOHUNMTAz8/Pxw6tQpbNy4EXV1dViwYEGvx3jq1ClkZ2djxowZ8PPzg16vx4kTJxAfH48lS5Zg0aJFnerP73//e0ydOlVQ9sgjj/R6fC0mTpxo8AfQxcWlU32R+j4cO3YsNm/ebNB+UlISfvzxR6MfjG096H14+vRpnD59Gr6+vrCzs8OZM2eMtiXFcWiq+KQ6BgHT7kNAeuPQVPGZ4xjUarVISUnBlClTEBkZCZVKhV9//RVpaWnIysrC1q1bIZfL+fUkNQYZMTt5eXksJCSEZWRktFsvPj6eRUZGst9++40vKykpYZMmTWKbNm3iy6qqqtiUKVPYRx99JFg/LS2NhYaGMo1G0+52CgoKWGhoKNu+fbug/KOPPmJTp05l1dXVnQusFVPHWFlZyZqbmw3WX716NZs2bRrTarXtbqe4uJiFhISwnTt3di0QI0wdH2OMhYSEsMTExPvqjznsQzF1dXVs+vTpbMWKFR32p7f2oV6v53/fuXMnCwkJYcXFxQb1pDYOTR2f1MYgY6aPkTFpjcOeiK8tqY9BnU7HqqqqDMozMjJYSEgIO3r0KF8mtTFI16D1UTqdDllZWQgLC4OdnR1f7urqipEjRyIzM5Mvy8nJQWNjI2bOnCloIyIiAowxQV0xmZmZYIwJ5ohrWV+r1SInJ8cEERnqSoxqtVr0eaf+/v5oaGgQfQxXb+tKfN1lDvtQzIkTJ1BfX4+nnnqqR/pnChYWnfsza67jsLPxmeMYbNHZGLtL6vtQjNTHoKWlJf8Ix9b8/f0BALdu3eLLpDYGKUEzYxs2bMCkSZMQHh6OV199FefOneOXFRcXQ6vVwtvb22A9b29vXL9+HVqtFgCg0WgA3HvcVQsnJyeoVCp+uTEajQZqtdpgUr+WbXe0fntMFaMxZ86cgVqtNpjfzpidO3di8uTJmDZtGlasWIHvvvuuawG1Yer4jh8/jqlTp2LKlClYunQpDh8+3Kl+mOs+PHToEOzs7DBp0qRO9+dB7sOukOo4NFV8xvT2GARMH6PUxmFP7kNzHYN5eXkAAE9PT75MamOQrkEzQ3Z2dpg9ezZGjhwJpVKJ69evY9euXYiLi8P69esxevRo/mHvYg9hVyqVYIyhtrYWcrkcNTU1sLa2hkKhEK0r9uD41qqrq0W3o1AoYGVl1eH6DyJGMV9//TXOnDmDlStX8k+hMMbKygqzZs1CcHAw+vfvj5s3b2Lfvn144403sHr1akRGRvZ6fFOnTsXYsWMxYMAAVFZW4tChQ/jwww9RXFyMpUuXttsfc9yHRUVF+O9//4unn34aNjY2HfanN/ZhV0htHJo6PjG9OQaBnolRSuOwp/ehuY7B0tJSbNmyBX5+fhg3bhxfLrUxSAmaGRo6dCiGDh3Kvx4xYgRCQkKwaNEibN68udODTux0Q3fqmXL9no7xhx9+wIYNGzBx4sRO3V3j5ORkcIHopEmTsHz5cmzZsgXh4eFdep5qT8QXHx8vWDZx4kT8+c9/xo4dOzB79myDGwq6Qor78NChQwDQ6T/qUt2HnfWgx2FPx9fbYxDomRilNA57eh+a4xisqanB6tWrwRjDunXrunR690GPQTrF2Uc4ODhg3LhxuHz5MrRaLX/OXey6jpqaGnAcB3t7ewB3vhk0NjaioaFBtK7YN4LWVCqV6Hbq6+vR1NTU4fqd1Z0YWzt16hTeeustBAcHY+3atfc96GQyGSZPnozq6mpcu3btvtpozVTxtTZt2jTo9XpcuHCh3Xrmtg91Oh2OHj0KHx8f+Pn53Xd/enofdoU5jMPuxNeaVMcgYLoYW5PSODRVfOY4Bmtra7Fq1SqUlZUhMTHRYKoiqY1BStD6ENbqqV2DBg2CXC5HQUGBQb2CggK4ubnxp41azre3rVteXo7q6mrB7dhivLy8UFVVhfLycoPtAOhw/a643xhbnDp1Cm+88QYCAwPx7rvvwsrKyiT9MdVFxN2Nz5iO+mdO+xAAsrKyUFlZaZILk3tyH3aFuYzD+42vhdTHYOs2TU0q49AU8ZnbGKytrcUrr7yCkpISfPLJJ6LXvUptDFKC1kfU1tYiOzsbvr6+kMvlkMlkGDduHE6ePIm6ujq+3s2bN3HmzBnBfDVjxoyBtbU10tPTBW2mp6eD4ziEhIS0u+0JEyaA4zgcOXLEYH25XI4xY8aYIMLuxQjc+2B4/PHH8Ze//AXW1tbd6o9Op0NGRgZUKhXc3Ny61RbQ/fjEHD16FDKZTHAaQIy57MMWhw4dgrW1NaZPn96t/vT0PuwKcxiH3YkPkP4YBLofoxgpjUNTxWdOY7AlOSsuLsYnn3xidD9IbQzSNWhm6J133sGAAQPg5+cHlUqFa9euYffu3aioqMDrr7/O11uyZAliY2OxZs0azJ8/H42NjUhKSoJKpcJzzz3H11MqlVi4cCGSkpKgVCoxatQo/O9//0NqaioiIyMFd7kcOXIE69evx5o1axAeHg7gzreCp556CikpKbCwsIC/vz9yc3Nx8OBBLF269L4Oy5s6xnPnzuHNN9+Eo6MjoqOjcenSJcH2PD09+WkexGL89NNPodPpEBAQAEdHR9y6dQt79+5Ffn4+Xn/99Q4vcO7p+Hbt2oXCwkI88cQTcHZ25i9Ozs3NxeLFiwXXvZjrPmxRVlaGU6dOYdKkSaKzgBuLsbf2YVVVFX766ScA975J5+TkQK1WQ61WIzAwEID0xqGp45PaGOyJGKU2Dk0dXwtzGoNarRavvvoq8vPz8Yc//AF6vR6//PIL34ZareYTQ6mNQUrQzJCXlxcyMjJw4MAB1NfXw8HBAQEBAXjzzTf5uV0AwMPDAxs3bsRnn32G+Ph4WFpaIigoCC+99JLBhaoLFy6Era0t9u/fjy+++AKOjo54/vnnsXDhQkE9xhj0er3BIeRVq1bByckJ+/btQ0VFBVxdXbFy5cr7fkyQqWP88ccfodVqcePGDfzxj3802N7f/vY3fiZqsRiHDBmCAwcO4Pjx47h9+zZsbW3h7++Pv/71r/d1oa2p43N3d8f333+P7Oxs/q5HHx8f0cenmOs+bJGeng69Xt/uhclS2ocajcbgwvHExEQAQGBgIDZu3MiXS2kcmjo+qY3BnohRauOwJ/6PAuY1BisqKvhr/9rGAQDh4eF44403+NdSGoMc66mT7YQQQggh5L7QNWiEEEIIIRJDCRohhBBCiMRQgkYIIYQQIjGUoBFCCCGESAwlaIQQQgghEkMJGiGEEEKIxFCCRgghhBAiMZSgEUIIIYRIDCVohBBi5goLC8FxHP/j6uoqWL5u3TpwHIf//Oc/vdPBNqKjowX9TU1N7e0uESI5lKARQiSrbeIh9tP2OYEPsxEjRiAhIQGvvfZaj29ry5Yt4DgOL774Yod1n3jiCXAch7y8PABAVFQUEhIS8Mwzz/R0NwkxW/QsTkKI5Hl7eyM6Olp0WdujRQ+zwMBArFu37oFsa968eVi1ahW++OILbNiwAQqFQrTeuXPnkJeXh8DAQAQFBQG4k6BFRUUhNTUVX3311QPpLyHmhhI0Qojk+fj4PLDEg3SOUqnE7NmzkZaWhn379mH+/Pmi9ZKSkgAAMTExD7J7hJg9OsVJCOlTOI7DxIkTUVpaiiVLlmDAgAFQKBR48sknjV6DVVtbi4SEBDz22GNQKBRQq9UIDw/Hd999Z1B34sSJ4DgOWq0W8fHx8PHxgZWVlSCB3LdvH4KDg6FQKODi4oJly5ahsrISnp6e8PT05Ou98MIL4DgOubm5ov1avXo1OI7D/v37u/OWGHXu3DkMGjQITk5OyMnJ4cs1Gg2WLl0Kd3d3yOVyDBw4EIsWLUJRUZFg/ZakKyUlRbT9xsZG7NixA3K53GgCRwgRR0fQCCF9TlVVFcaPHw+lUon58+fj1q1b2L17N2bMmIHTp09j+PDhfN2KigqEhobil19+QUhICGbMmIHq6mp89dVXmDRpEvbs2YNnn33WYBtRUVE4e/YsZsyYAUdHR3h5eQEAkpOTERMTA7VajYULF0KlUuHw4cOYNm0ampqaYGVlxbexfPlypKWlYevWrRg1apSg/aamJqSlpcHV1RWzZs0y+XuUmZmJWbNmQalU4sSJE/Dz8wMA5OTkYMaMGbh9+zZmzZoFHx8fFBYWYseOHUhPT0d2djYfa2hoKHx9fXHixAkUFhYKkk8AOHDgAMrLyzFv3jz069fP5DEQ0qcxQgiRKI1GwwAwb29vlpCQIPqTnp4uWAcAA8Beeuklptfr+fJt27YxAGz58uWC+s8//zwDwJKTkwXlN27cYIMHD2bOzs6svr6eLw8LC2MAWGBgICsvLxesU1lZyezt7ZmDgwO7fPkyX97U1MSmTp3KADAPDw/BOsOHD2cODg7st99+E5Tv27ePAWBr1qzp9Pv0wgsviC5PSEhgAFhGRgZjjLF//etfzMbGhg0bNoxdvXqVr9fY2Mg8PT2Zg4MD++mnnwRtZGZmMktLSxYZGSko/+CDDxgAtm7dOoPtRkREMADs+PHjov1KSUlhAFhKSkqHMRLysKEEjRAiWS2JR3s/cXFxgnUAMDs7O1ZbWysob2pqYjKZjAUFBfFlpaWlzNLSkk2ZMkV0+xs3bmQA2MGDB/mylgTtq6++MqifmprKALBXXnnFYFl2drZogtayjaSkJEH5zJkzGcdxLD8/X7RvrXUlQdu2bRuztLRkY8eONUgwW5LCd999V7SdqKgoZmFhwaqrq/my4uJiZmlpyTw9PVlzczNffv36ddHy1ihBI8Q4OsVJCJG8GTNm4MiRI52u7+vrC3t7e0GZTCaDi4sLqqqq+LLc3Fzo9Xo0NDSI3oSQn58PALhw4QIiIyMFy0aPHm1Q/+zZswCAcePGGSwbPXo0ZDLDP7kLFizAmjVrsG3bNixZsgQAcP36dRw9ehRhYWHw8fFpP9gu2LBhAw4cOICZM2diz549sLW1FSz/4YcfANyJV+z9uHHjBpqbm/Hrr78iODgYADBw4EBERETg66+/RkZGBiZPngwASE1NhV6vx+LFi8FxnMliIORhQQkaIaTPUalUouUymQx6vZ5/XVFRAQD4/vvv8f333xtt7/bt2wZlLi4uBmU1NTUAAGdnZ4NlFhYWcHJyMihXq9WYM2cOPv/8c5w/fx7Dhg1DSkoK9Ho9li1bZrRP9yMzMxMAEB4ebpCcAffejx07drTbTtv3IyYmBl9//TVSUlIECZqFhQUWLVpkgp4T8vChuzgJIQ8tpVIJAHj11VfB7lzyIfqTkJBgsK7YUaGW9kpLSw2WNTc3o6ysTLQfy5cvBwBs27YNjDGkpKTA0dERUVFR9x2bmKSkJAQFBSEuLg6bNm0yWN7S/4MHD7b7foSFhQnWi4yMhIuLC/bu3YuamhpkZmYiPz8f06ZNg7u7u0ljIORhQQkaIeShNWrUKHAch+zsbJO0N2LECABAVlaWwbJTp05Bp9OJrjd27FgEBARg+/btSE9PR0FBAaKjo2FjY2OSfrXo168fjh8/jqCgIKxYsQL/+Mc/BMvHjBkDAF1+P2QyGRYuXIj6+np88cUXSE5OBkBznxHSHZSgEUIeWq6urpgzZw6ysrLw8ccfgzFmUCcnJwd1dXWdau+ZZ56Bvb09tm3bBo1Gw5frdDqsXbu23XVjY2NRVlbGn9ZcunRpFyLpvJYkLTg4GC+//DL+/ve/C/rv7u6OxMREnDx50mDdpqYm0bnhgHvJ2KZNm7Bnzx7079+fHuVESDfQNWiEEMm7dOlSu08S6M5TBjZt2oSLFy9i9erV2L59O8aOHQuVSoWrV6/i9OnTyM/PR0lJieg1W22p1WokJiYiNjYWQUFBmDt3Lj8Pmlwux6BBg2BhIf69uOVmgeLiYowZMwYBAQH3HVNn+vnNN99g+vTpWLlyJRhjWLlyJeRyOb788ktEREQgLCwMU6ZM4eeMu3LlCjIzM9G/f39cuHDBoM1HH30U48eP56/lW7ZsGaytrXssBkL6OkrQCCGSd/nyZbz99ttGl3cnQXN0dERWVhY+/fRT7N69Gzt27EBzczNcXV0xYsQIrF27VvTifmOWLVuGfv364f3330dqaipUKhWefvpprF+/Hh4eHvD29hZdT6VS4ZlnnsGuXbtMfnOAmNZJWlxcHBhjiIuLw6hRo3D27Fl8/PHHOHz4ML777jvI5XK4ubnh2Wefxbx584y2GRMTwydoLXekEkLuD8fEjukTQggxqUuXLsHX1xdz5szB7t27Res89thjuHLlCkpKSgymCWlPYWEhhgwZghdeeAGpqakm6nHPS01NxeLFi5GSkkJ3exLSBl2DRgghJlRZWQmtVisoq6+vxyuvvAIAoo+NAoDDhw/j/PnzWLBgQZeSs9Y+//xzcBwHV1fX+1r/QYmOjgbHcVi8eHFvd4UQyaJTnIQQYkLffvstYmJiMH36dLi7u6OsrIx/VuXkyZMxd+5cQf3Nmzfj6tWr2Lp1KxQKBVavXt3lbarVasFUIPeb4D0oUVFRggl4AwMDe68zhEgUneIkhBATys/Px9q1a5GVlcXPh+bj44O5c+fitddeM5g6w9PTE9euXcOjjz6K9evXGzyxgBDycKIEjRBCCCFEYugaNEIIIYQQiaEEjRBCCCFEYihBI4QQQgiRGErQCCGEEEIkhhI0QgghhBCJoQSNEEIIIURiKEEjhBBCCJEYStAIIYQQQiTm/wOgtM9bys6nzQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot spectra at 511 keV\n", + "energy = np.linspace(500.,520.,10001)*u.keV\n", + "fig, axs = plt.subplots()\n", + "for label,m in zip(models,\n", + " [ModelCentralPoint,ModelNarrowBulge,ModelBroadBulge,ModelDisk]):\n", + " dnde = m.spectrum.main.composite(energy)\n", + " axs.plot(energy, dnde,label=label)\n", + "\n", + "axs.legend()\n", + "axs.set_ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "axs.set_xlabel(\"Energy [keV]\", fontsize=14);\n", + "plt.ylim(0,);\n", + "#axs[0].set_yscale(\"log\")" + ] + }, + { + "cell_type": "markdown", + "id": "db4cfb6e-e812-4f16-9c4c-95176bcc0dee", + "metadata": {}, + "source": [ + "The orthopositronium spectral component appears as the low-energy tail of the 511 keV line." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8b588f46", + "metadata": {}, + "outputs": [], + "source": [ + "# Define healpix map matching the detector response:\n", + "nside_model = 2**4\n", + "scheme='ring'\n", + "is_nested = (scheme == 'nested')\n", + "coordsys='G'\n", + "\n", + "mBroadBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mNarrowBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mPointBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mDisk = HealpixMap(nside = nside_model, scheme=scheme, dtype = float,coordsys=coordsys)\n", + "\n", + "coords = mDisk.pix2skycoord(range(mDisk.npix)) # common among all the galactic maps...\n", + "\n", + "pix_area = mBroadBulge.pixarea().value # common among all the galactic maps with the same pixelization\n", + "\n", + "# Fill skymap with values from extended source: \n", + "mNarrowBulge[:] = ModelNarrowBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", + "mBroadBulge[:] = ModelBroadBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", + "mBulge = mBroadBulge + mNarrowBulge\n", + "mDisk[:] = ModelDisk.spatial_shape(coords.l.deg, coords.b.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b80ae9d2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAADz9ElEQVR4nOydZ5gc1Zlwz62qzt2Tk/IoB5SIAoEQIopgwGvDGq+NAxivMZjguGu8NmadP+MFpzW2WZzAgSByMiCRo3JOI2lyzp2r6vvRYTpUt8KM1BrpnueZR6Oet+99u7q66vSNwjRNE4lEIpFIJBKJZBgohU5AIpFIJBKJRDL6kVIpkUgkEolEIhk2UiolEolEIpFIJMNGSqVEIpFIJBKJZNhIqZRIJBKJRCKRDBsplRKJRCKRSCSSYSOlUiKRSCQSiUQybKRUSiQSiUQikUiGjZRKiUQikUgkEsmwkVIpkUgkEolEIhk2UiolEolEIpFIJMNGSqVEIpFIJBKJZNhIqZRIJBKJRCKRDBsplRKJRCKRSCSSYSOlUiKRSEYIIQRCCM4555wRL3vPnj3J8j/96U+PePkSiUQyXLRCJyCRSCRHEiGE5eN2u52ioiKKi4uZOHEiJ510EosWLeKyyy7D5XId4SwlEolk9CGlUiKRSIBwOExHRwcdHR3s2rWLV155BYDi4mKuvfZavvvd71JSUlLYJCUSieQoRkqlRCI5bnnssceSv5umSW9vL93d3axdu5ZXX32VPXv20Nvby89//nMeffRR/vKXv7B06dKc5ZmmeSTSlkgkkqMSKZUSieS45corr8z5N9M0efbZZ7n11lvZsWMHjY2NfOhDH+KNN95g3rx5Ry5JiUQiGSXIiToSiURigRCCSy65hPfff5+zzjoLgP7+fq666ioMwyhwdhKJRHL0IaVSIpFI8lBUVMTf//53SktLAdi2bRt//etfLWMPZPb3jh07+PKXv8zJJ59MSUkJNpuNyspK5syZw8UXX8z/+3//j82bNx9yvm1tbZx88snJXG6//XbZLS+RSI4IUiolEolkP4wZM4Ybbrgh+f/777//kMr53e9+x9y5c7n77rtZvXo1vb29RKNROjo62LJlC8899xxf/epX+fjHP35I5dfV1XHmmWeyevVqAL7//e9z991355zxLpFIJCOJHFMpkUgkB8A111zDj370IwDeeustIpEINpvtgJ+/Zs0aPv/5z2MYBqqqcskll3DeeedRVVUFQHNzM2vWrOGFF144pPzWr1/P8uXLaW5uRlVVfvOb33DdddcdUlkSiURyKEiplEgkkgNg7ty5eDweBgcH8fv9bN68mQULFhzw83//+98nx2L+5S9/4V//9V8t43Rd55133jmo3F577TU+9KEP0dvbi9Pp5K9//StXXHHFQZUhkUgkw0V2f0skEskBoKoq48ePT/6/vb39oJ6/c+dOIDZG8+qrr85bz+LFiw+43Mcff5wLL7yQ3t5eiouLef7556VQSiSSgiClUiKRSA6QxGQdgM7OzoN6rtvtBmBgYID6+voRyef+++/nIx/5CMFgkJqaGlatWsXZZ589ImVLJBLJwSKlUiKRSA6Q1KWEDnbyywUXXJAs45xzzuH3v//9QYtpKj/84Q+57rrr0HWdqVOn8sYbbxxUd7xEIpGMNFIqJRKJ5ADp6elJ/l5WVnZQz73uuuuSSw3V1dVx/fXXU1lZybx58/j85z/PQw89RG9v7wGVtWLFCv7jP/4DgAULFvDGG28wZcqUg8pHIpFIRhoplRKJRHIARKNRGhoakv+vrKw8qOfb7Xaef/55fvKTn1BbWwvEdu3ZuHEj9913Hx//+Meprq7mi1/8In19ffvNJUEgEEDX9YPKRSKRSA4HUiolEonkANiwYQN+vx8Aj8fDnDlzDroMu93OV77yFerq6ti0aRP33Xcfn/rUp5ITgEKhEL/61a84++yzCQQCOcv56Ec/ys033wzA9u3bWbZsGU1NTYfwqiQSiWTkkFIpkUgkB8CDDz6Y/H3x4sUHtUalFXPmzOFzn/scDzzwAPX19bz88svJFsx169bx+9//Pu/z7733Xr70pS8BUiwlEsnRgZRKiUQi2Q9NTU387ne/S/7/cCwqvmzZMn7xi18k///666/v9zn33HMPt9xyCxATy3POOUeKpUQiKRhSKiUSiSQP/f39/Ou//mtyks7s2bO56qqrDktdiZZKSB83mY//+Z//4dZbbwVi+4qfc845NDY2HobsJBKJJD9SKiUSicQC0zR59tlnOeWUU5KthkVFRfzjH/9AUQ7+0vnlL3+Zt99+O2/Mr3/96+TvB7M80M9+9rM0sVy2bJkUS4lEcsSR2zRKJJLjlhUrViR/N02T/v5+urq6WLt2La+++ip1dXXJv48fP56HHnqIE0444ZDqeuSRR7j77ruZPHky559/PvPnz6eyspJwOEx9fT0PP/wwa9asAaC8vJwbbrjhoMr/2c9+hhCCn/3sZ0mxfOWVVxg3btwh5SuRSCQHi5RKiURy3PLhD394vzElJSVce+213HnnnZSUlBxyXYnWzbq6On7729/mjJs0aRKPPvoo1dXVB13H3XffjRCCu+++O9kVvnLlSimWEonkiCClUiKRSACbzUZRURFFRUXU1tZy0kknsWjRIi677DJcLtewy1+9ejUrV67k5Zdf5p133mH37t309vaiKAqVlZXMnz+fyy+/nGuvvXZY9f30pz9FCMFPf/pTdu7cKcVSIpEcMYRpmmahk5BIJBKJRCKRjG7kRB2JRCKRSCQSybCRUimRSCQSiUQiGTZSKiUSiUQikUgkw0ZKpUQikUgkEolk2EiplEgkEolEIpEMGymVEolEIpFIJJJhI6VSIpFIJBKJRDJspFRKJBKJRCKRSIaNlEqJRCKRSCQSybCRUimRSCQSiUQiGTZy72+JRHLcYZom4XCYQCBAIBAgHA6n/YRCIcvHIpEIuq4nfwzDSPs38zEAIQRCCBRFSf4/8buiKAghAFBVFbvdjqZp2Gw2NE1L+3/iJ/G40+nE6XTicrnSftc0eVmXSCSFQV59JBLJqCMajdLf309fXx99fX1Zvw8MDBAIBPD7/QwODuL3+/H7/WmP6bpe6JdxWNA0LU02XS4XHo8Hr9eLz+fD6/Va/iT+VlRUhMvlKvTLkEgkoxBhmqZZ6CQkEsnxTSQSobu7m+7ubrq6utL+TfykyqPf7x+xujVNi/2oGqqqxv+NPWbTNGz2eCuhw4bdbgeT2A8C0zDBANNg6PH4j0BgmuDv9eMpc9PV2IsQIBSBogoUVUFoAs2motpUVFvs/0IFBIRDYUKBEMFAmHAwTDgUJhyMEAlHiEQiGKaOqZh4ylwEg8ERlWSHw0FJSQnFxcWUlJRk/SQeLysro7y8HKfTOWJ1SySS0YuUSolEctgwDIPu7m7a29tpb2+nra0t+XtHR0dSHPv6+g66bCEEDrsDh92BXbNjU+yoQkNFQ+gKRAVGxMQImhghg6jfRA/q6EEDt8dNWU0p1bWV1EytpGJSGWXjijEMk66GHrqbeulq7KWvrZ/+jgH6Owbp7xhkoGsQPWocVJ6KqvBfK7/Ed8+5F0M/sOcqqoK3zI2vwoOvwouv3ENRlZfSsSWUjS+mbGwJml2lu7mPjr1dtOxsp2V3O2172+lu7cUQBigmqCamaoJqgGZiaiZoRuwxzUj+H9WkZFwR/f39RKPRg34vvF4vFRUVVFRUUF5envZ76v9tNttBly2RSEYPUiolEskhEwwGaWlpobm5maamJlpaWpLSmBDHA5UUIQRupxun3YlNdWDDhqJriIiCEQDdbxDu1wn3RAj1RjBCsdbA/VFSU8T4E2oYP2cM42ZXUz21gmhEp213J627O2jd1UH7nk666nsY7AkM95BkcShSeSC4ipyUjy+hsraMqqkVVE+poHpqBXaXjba6Tho3t9CwpYWGTS10NfQcUJkmMRFFMzBtJqbNAJth+a9pM3EUa4RCoQMqWwhBWVkZNTU1VFdXU11dTU1NTfL/NTU1uN3uYRwRiURSaKRUSiSSnOi6TltbG01NTTQ3N2f9dHV17beMhCy6HG4cihNVtyHCCsYghHt1Ql0Rgl3hA5bEfCiqYMyMKmpPnMCEuWMYf0INmk2jYUsLjZubadjcQsuOdvo7BodVz8HldHikMheeUjc10ysZN7ua8SeMYfzsGoCYYG5spm5NPY2bW0ckl4SEmnYD7Dqm3Yj97hj6vWZmBZ2dnYTD4f2W5/P5kqI5fvx4xo8fz7hx4xg3bhyVlZXJCU4SieToREqlRHKcY5omPT091NfXU19fz759+2hoaKC+vp7GxkYikUje59vtdrwuH07VhabbIagQ7TUIdkbwt4Ux/CbCHJ4s5qN6agWTT5rA5JPGM2nhePy9AfasaWDf+iYaNjXTWd9NIa9yR1oqrSgbV8z4E8YwYd5YJp84nqJKL3vXN1G3up66D+pp2dF2WI+RiRnrfnfqmI7YD04d02FgOnS8Y1z09/fnLcNutzN27NikZCaEc8KECVRVVUnhlEiOAqRUSiTHCbqu09TURF1dHXV1dUmJrK+vZ2BgIOfzVFXF6/bh0txoug1zUCHSoxNsjRDsiEJUDLuF8WDQ7CqTT57AzMVTmLF4MkJVqPtgH3Uf1FO3uoGeloMfn3k4ORqkMhNfhScu4hOYcsoEVE1l+1t1bH+zjt3v7yMcyP9F4nBgqkZSMnHqMQF1RRm3oJrm5ua8wyhcLhcTJ05k0qRJ1NbWJv8dM2aMXGJJIjmCSKmUSI4xDMOgtbU1KY+Jn7179+bsghRC4HF58dg8aLoDBhXCHQb+phCRXuOISqMVLp+DWWdPY9aSqUw+aQLtezrZ/mZMgg53K9twORqlMpOqKeXMWDyFmYsnUzOjir3rGtn22i42r9rJYPfIzbQ/VExMcBiYrmhcNnVMZ5TxJ9bQ1NSUUzhtNhvjx49PiuaUKVOYOnUq48aNky2bEslhQEqlRDKKCQQC7Ny5kx07drBjxw52797Nnj17CASsJ5xomkaxpwSXcCMCGpEug8GGIKFOA2EUVhwzcbjtzFwyhbnnzWTyiePZs6aBLa/tYsebdfR3HrkxkcNlNEhlKu4SF9MX1TJ76TSmnDKR+o1NbHp5O1tW7STQf2CTco4kpoh3q7ujMdl0RzHdUezlas5JRE6nMymY06ZNY9q0aUyZMgWPx3OEs5dIji2kVEoko4Te3t6kPG7fvp0dO3ZQX1+P1UdYURSKPSU4hRsxqBJuNxisD6H3D38yzOFEURVmLJ7M/AtnMW1RLQ2bm9n4Ulxo+oKFTu+QGG1SmYrDY2fWkqnMPXcGtSeOp251Petf2MbW13YSDR/di8cnWjeNuGQmfmzlSs4W+zFjxiQlc+bMmcycOZPy8vIjnLlEMnqRUimRHIX09/ezdetWNm/ezLZt29i+fTttbW2WsW6XB5+jGHvIQaTDZGBfiHCXflgnx4w0FRNLOfGyE1hw0Wz6OwZZ88wmNr+yg4Guwne9DpfRLJWpuIudzD57GgsunkPFxFI2vLiV1U9tonVXR6FTOyhMzFiLpieK6YlgeqKUzyymvb3dMr6yspJZs2Yxc+bM5L/FxcVHOGuJZHQgpVIiKTCRSIRdu3axefNmtmzZwpYtW9i3b59lbJGnCI/qgwGNYEMEf0MYwuoRznhk0Owqc8+byUkfmktlbRkbXtjK6qc30bLD+uY+WjlWpDKVytoyTrzkBBYsn01vaz+rn9rI+he2FmSCz0hhagamJ4oRF82Ji2rYu3evZU/AmDFjmDVrFrNmzWL27NnMmjVL7iokkSClUiI54rS1tbFhwwY2bdrEli1b2LFjh2V3XJGnCK9WjOjX8NdHGNwXiu0UM8opqvRyypXzOfnyuXTs7eb9FevZ8urR3516qByLUplA1WLDFU65Yj5jZ1ez5ulNvPfoOrqbj64Z+IeKqRiY3iiGN4LpjTLmxHIaGxuz4lRVZfr06cydO5e5c+cyb948KisrC5CxRFJYpFRKJIcR0zTZu3cv69evT/60tLRkxTnsDoodpSiDdoKNUfx7I4jo6BfIVMafMIbTr1rI9DMms/mVHbzzyNpjrlXSimNZKlOpmFTKoo8sZP6Fs6hb3cA7D6+hbnVDodMacUzVwPRGMHxRTG+E0pleOjs7s+Kqq6uTkjl37lymTp0qlzeSHPNIqZRIRpBIJML27duTArlx40Z6e3vTYoQQlHrLcBleom0mfTuDR/0EmuEw9bRJLPnkqZSPL+HdR9fxwZMb8R+G7RCPVo4XqUzg9Do48dI5LPrIiQx2+3ntz++x7fVdR/WyT8MhOSHIF8YoijDtnAns3LkTw0h/r10uF/PmzWPhwoWceOKJzJw5U0qm5JhDSqVEMgx0XWfHjh2sXr2aDz74gA0bNhAMps9S1lSNElcpmt9JYF+UQH30mOjGzocQMOvsaSz55Km4fE5e/8v7rHtu8zHbxZ2P400qEyiqwtzzZ7DkE6dimvD6n99j40vbMPRj/5ZjKgamL4pRFMb0RXBPtGdtMCAlU3IsIqVSIjkIEt3ZH3zwAatXr2bt2rVZ28s57E5KnKWIHhv9O0NE2g/vNoVHE0LAnGUzOOczp2MaBq/9+T02vbz9uBCJXByvUplACJi1ZCpLPnkariInr/7hHdY9v+W4OidMzNiSRsURjOIwvqnOrB6MVMk89dRTmT59ulygXTLqkFIpkeyHjo4O3n333aRIZo6fstvslDjLULrt9G8PEekyj9mu7HxMP72Wcz+3GNWm8srv3mTra8dul+fBcLxLZSrTTpvEuZ9bjN1l4+XfvcWWVTuOy3MkUzK9Uxz09aVPbiouLubUU09N/lRUVBQoW4nkwJFSKZFkEI1G2bhxI2+//TbvvPMOu3btSvu7qmqUuspQeu0MbA8R7Tyye18fbUycP5bzbjiTokovr9z/Fhte3IZpyMtKAimV2cxeOo1zr19MJBTh5fveZOe7ewudUkFJSKZRHMEsCeMYr2TtijV58mROPfVUTjvtNBYsWIDD4ShQthJJbqRUSiTElvl59913efvtt/nggw8YHBzaBjAxscYR9DC4M0ywwThuurPzUTq2mAu/uITxJ4zh1QfeYfVTG9GjUpoykVJpjaIK5l84m3M+ezqd9d08//NXaavLnkV9PGIKE9MXwSgJM+OiiWzdujVtvUy73c78+fNZvHgxixcvZuzYsQXMViIZQkql5LhE13U2b97M66+/zttvv01dXV3a3512J0VqGdEGGNhx7C3vMxwcbjtLrj2NU66Yx7uPruP1P783qhe9PtxIqcyPZlc5419P4sxrTmH9C1t45f63R+2WnIcLUzMwSsIYJSHK5/mydv+pra1l8eLFnHnmmcyZMwdVHZ0bIkhGP1IqJccNoVCI999/n9dff50333yT7u7u5N+EEJR6ytD6XPRvDaF3Hd9d2lYIAQsvOYHzPreYvesbefHXr9NzjCxyfTiRUnlg+Mo9nPf5M5lxxmRWPfAO761YL4+XBYltJo3SEPM/Mp3169ej60OrKhQXF3P66aezePFiTj31VLxebwGzlRxvSKmUHNP09vby5ptv8vrrr/Pee++lLfdjt9kptVUQaRQMbAvL1sg8VE+t4ENfPQ/NrvHsvSvZuzZ7VxGJNVIqD46xs6q5+EtLsblsPPmTl2jcnL1ZgGQIUzUwSsMYZSE8U21pq1GoqsqJJ57I0qVLWbJkCWVlZQXMVHI8IKVScszR0dHBypUrefXVV1m/fn3aIsRupwdvpJjB7VEiLcixkfvB5tBY+ulFnHLFfFb94W3eeXjtcbUUzEggpfLgEQJOvGwu53/+TDb+cxsv3fcmIX/2VqaSdExMzKIIRlmIcYsr2LdvX/JvQgjmz5/P0qVLOfvss6mqqipgppJjFSmVkmOCzs5OVq1axcsvv8yGDRvSBrUXu0twDHro2xTC6FFkt/YBMvXUiVz2lfNo39PJ03e/Qm9r//6fJMlCSuWh4y1zc9HNS5m0YBzP/s8rbHl11/6fJEliOKMY5SGmXzyerVu3pv3thBNO4Oyzz2bp0qVyoo9kxJBSKRm1dHd3s2rVKl555RXWrl2bJpJlnnLULhd9m4Lgl4PWDwaH287yLy1l2um1PPs/K9m8ckehUxrVSKkcPtMW1XLp7cto2tbK03e/clxt8zlSmA4dvTzInCsms3HjxrTr5YwZMzjvvPM477zzZAumZFhIqZSMKvr7+1m5ciUvv/wya9asSevaLnGXobQ5GNgcQYSlSB4Kk08azxX/cSH1G5p45mevEOgPFTqlUY+UypHB7rJx4Y1LmLVkKk/+5CW2vbG70CmNWkybjlEeYt5V01i3bl3yOiqEYMGCBVxwwQUsXbqUoqKiAmcqGW1IqZQc9UQiEd555x2ef/553nzzTSKRoeVrStxlqJ1O+jeFEUEpkoeKzaFx/r+fydzzZ/L0T1+RrZMjiJTKkWXaaZO4/BsXsOu9vTx37ypCg3Ks5XAwNQOjIsicf5nM+vXrk49rmsaiRYu44IILWLx4MU6ns4BZSkYLUiolRyWmabJlyxZeeOEFXnrppbR9covdJdh7PPRuCCECUiSHS820Sj76nYvprO/myZ+8xECXv9ApHVNIqRx5nF4Hl9x2DpMWjOPhO5+lfkNzoVM6JjAdOnpFkNrzq9N2EnO5XJx99tlcdNFFnHTSSXJPcklOpFRKjipaWlp44YUXeOGFF9JmLjrtLryhEvrXR6BfiuRIceqV8znvhjP5529e5/3HNxQ6nWMSKZWHj3nnz+SS25fxxoMf8MZf3jsu9xE/XBjuKEZlgMpTi2hpGVrWqaamhuXLl3PxxRczZsyYAmYoORqRUikpOJFIhNdff50nn3yS999/P/m4pmqUqhUMbtGJNsvFyEcSp9fB5V8/n6rJ5fzj28/Ququj0Ckds0ipPLyUjS/hqjsvYbAnwGP//TyD3bKlfSQxiW0ZqVcFcU9XGRgYSP7t5JNP5pJLLuHss8+We5FLACmVkgKyb98+nnrqKZ577jl6enqSj5e5KzD2afh36AhddrOMNONmV/PR71zC3nWNPPOzV+QWi4cZKZWHH9WmcuGNZzFn2Qwe/e6z1K1uKHRKxySmYmKUB1nw8el88MEHyce9Xi/nn38+l1xyCTNnzkQI2QBwvCKlUnJECYVCrFy5kqeeeop169YlH3fZXbgHiulfH5UTbg4jJ156Ahd+cQnP//xV1j67udDpHBdIqTxyzFoylcu/fj6v/ek93vrb6kKnc0xjOnT0qgCVi3xp3ePTp0/nyiuv5Pzzz8flchUwQ0khkFIpOSLs3buXFStW8Pzzzye7T4QQlNorCG01iTTKRckPJ6qmcNHNS5mxeDJ/++aTNG9vL3RKxw1SKo8s5RNKueYHH6JpWxtP/vifRELRQqd0TGNiYhZHOOf2U1i1ahXhcGw2vsfjYfny5VxxxRXU1tYWNknJEUNKpeSwoes677zzDo888gjvvfde8nG3w4Oz18fA+qhcT/II4Cl1c/V3L8EwTP7x7WfkwtFHGCmVRx6Hx86/3HERRVU+/vqfT8rdoI4QpmagVwWoWVJMY2Nj8vETTzyRK6+8kiVLlqBpWgEzlBxupFRKRpz+/n6eeeYZHnvsMZqamoB4q6StguAW5KSbI0jNtEqu+eHlbFm1kxd+9ZqUmgIgpbIwCAFLP306p1w5j7/f8TT7NjQVOqXjBhMTsyTM6V+YxxtvvJFcXL28vJzLLruMK664goqKigJnKTkcSKmUjBh1dXU88sgjvPDCCwSDQQDsmh1voJTBDQZKSH5DPZJMPW0S/3LHRbz469dY++yWQqdz3KKoCne8dBP/fd4vpFQWgFlnT+VDXz2Pp+9+hc2vyEX9jzSGXUev9lM0305XVxcQW1j9/PPP5+qrr2batGkFzlAykkiplAwL0zR57733+Otf/5q2HJDPUQT1ThadcSrnXX9WATOUSCQSSaF5+fdv8spTrzLn6klpO/ecfPLJXH311SxatEguqn4MIKVSckhEo1FeeeUVHnroIXbu3AnEu7i1CvwbTYz22MQboQi5vMQRRAg49/rFzD1/Bg/9xxO07e4qdErHPbKl8uigdGwR1/zwcvaubeTZe1Zi6PLWdyQxTRPTiB1zwxthye0LWbVqFbquAzBx4kSuvvpqLrroIrnm5ShGSqXkoPD7/Tz99NP84x//SC4joakavlAZg2sMREhOvCkUiqpw5X9eQGVtOQ9+7XH6OwcLnZIEOabyaMJV5ORj37uMkD/M37/1NNGwXuiUjmtMh44+xo9zpmBwMHa9Ki4u5sMf/jAf/ehHKSoqKnCGkoNFSqXkgOju7uaRRx7hscceo78/NpPSYXPi7CoisMlERGW3RSHR7CpX3XkJdredh77xhFzQ/ChCSuXRhWZX+eh3LsHpc/DQ158g5A8XOqXjHlM10KsDVC72JhsrXC4XV1xxBVdffbWc1DOKkFIpyUtHRwcPPvggTzzxxND6Y3YvSr2L0C6BMGTXdqGxu2xc84PLCQcj/OO/ZOvL0YaUyqOPRKt+xcQy/vyVx/D3BgudkoTYrHGjIsTkD1WxY0dsUpXdbufiiy/mmmuuYezYsQXOULI/pFRKLGltbeXBBx/k6aefTspkkb2Y6DYbUblQ+VGDq8jJJ35yJV2NPTz2vRektByFSKk8OhECLr51GbUnjudPtz9Kf4ccLnK0YGJilIaZ9a/j2bhxIwCqqnL++efziU98gkmTJhU4Q0kupFRK0mhpaeHPf/4zzzzzDNFobCeKIlsp4Y0KRrsqZfIowl3s5Nr/+QgNG5t5+mevJAfBS44upFQe3Zx3w2JOWDaDB770MH3tA4VOR5KCiYlZFGHhddOSG2goisIFF1zApz71KcaPH1/gDCWZSKmUANDW1sYf/vAHnnnmmeRsvGJbKaH1CkanlMmjDZfPERPKTc08ffcrhU5HkgcplUc/y647g7nnzeCBmx+WE9yOUgxvhNO+OJs33ngDiLVcXnTRRVx77bWyW/woQkrlcU5PTw9//vOfWbFiRbKbu9hWRnCdgC65WPnRiNPr4FP3fITGLa08/dOXkJ/goxsplaOD825YzOyl03jgSw8z0OkvdDqSHBjeCCf/+wzefvttICaXl1xyCddeey3V1dUFzk4ipfI4ZXBwkL/97W/87W9/IxCI7QVdpJUQWqdCt5TJoxWn18G1P/sXWna28+SP/ymFchQgpXL0cMEXzmLG4in84ZaHGeiSYnk0Y/jCLLx+qFvcZrNx5ZVX8slPfpKSkpLCJnccI6XyOCMUCvHYY4/xl7/8hd7eXgB8tiLCGzTMDk12cx/F2F02rv3Zv9C+t4snfviiFMpRgpTK0cWFX1zCtNMm8X83/YNAf6jQ6Uj2g1EUZu6nalmzZg0AHo+Hj3/841x11VU4nc4CZ3f8IaXyOME0TV566SXuu+++5DpgHrsXY6sDvUmOmTzaUTWFa354OSF/mIe/86yclDOKkFI5+rjsK+dRPaWcP97+KJFgtNDpSPaDiYlZEqb2w5XJpYgqKir47Gc/y/Lly9E02ft2pJBSeRywfv16fvnLX7JlyxYAnDYXap2byB4pk6MBIeDDdyzHW+7mL199HD0i16EcTUipHH0IRXDVnZdgc2g89B9PyvdtlGBiYlQGqVjqTjaeTJo0iS984QucccYZcsvgI4CUymOYhoYG/vd//5dXX30ViG2n6GwrJrxNlYuWjyKW37yUiQvG8sDND8udckYhUipHJ5pd5d9+ciV97QOs+N7zcrjJKMIUJvoYP56FCn19fQCcdtpp3HTTTdTW1hY2uWMcubfeMYjf7+dXv/oV1157La+++ipCCIpC5ShvlhDZokmhHEWc9W+nMP2MWv7ylRVSKCWSI0g0rPPX/3iSqsnlXPCFJYVOR3IQCFOgNXkIPu/gmmuuwWaz8e677/KZz3yGe++9N7nVsGTkkVJ5DGGaJi+++CL/9m//xl//+lei0ShFohTb6jJC72mIiFroFCUHwQnLpnP61Sfypy8/xmBPoNDpSCTHHSF/mL98dQVzzpnOKVfMK3Q6koNE6AqPfvFlxFtFnHXWWei6zsMPP8zHP/5xHn/88eQGH5KRQ0rlMcKuXbv40pe+xF133UVnZycuzY1jWxmh1+yIQTlIebQxbnY1l331PP72zafoae4rdDoSyXHLQJefB7/+OOfdcCZTTp5Q6HQkh4AIarz3wx3YNpZQW1tLb28vP/3pT7nhhhvYtGlTodM7ppBSOcoZGBjgnnvu4brrrmPdunWoioq7owx9lRfabYVOT3IIFFf5+NgPLueZu1+hfmNzodORSI572uo6efSu5/jody6hYmJpodORHCJKj4OmP/vRdvnw+Xzs3LmTG2+8kZ/85CfJsZeS4SGlcpRimiYrV67kE5/4BI888giGYeDTS1HfKUXfakOYctzkaMTusnHNjy7ngyc2sOGf2wqdjkQiibPj7T2seuAdPv6jK3AXy/UPRysCgdrsJvSik4svvhjTNHnyySf5xCc+wXPPPYecuzw85OzvUUhrayv/8z//k9wD1a150Dc4oFO2TI52rr7rUkzD5OHvPCNnmx4jyNnfxxaX3r6Mioll/OnLj2Lo8kM62jGKwoy7vJg9e/YAsHDhQm6//XY5S/wQkS2Vowhd13nkkUe49tpreeONN1CEgruzlOgqjxTKY4DF15xM+YRSVvzgBSmUEslRynP3rkK1q5z7uTMLnYpkBFD67DT9xY9a58XhcLB27Vquu+46/vznP8uJPIeAlMpRQl1dHTfddBP33HMPgUAAj/ChflCKvsUuu7qPASafNJ4lnziVv3/rKbmDh0RyFKNHDf7xradZsHw2s8+eWuh0JCOAMAVaowfzdR+nn346kUiE++67j3//939n586dhU5vVCGl8ihH13Ueeughrr/+ejZt2oSm2nA1lhF5zYXil7O6jwWKKr185NsXs+IHL9BZ31PodCQSyX7o7xzk4e88w+Vfv4DyCXLizrGCCKms/n+70bYV4fP52L59O5/73Oe4//77iUTkOsEHgpTKo5j6+npuvvlmfv3rXxOJRPAaxShvFWPU2eT2iscIiqpw1Z2XsObpTWx7fXeh05FIJAfI3rWNvPrHd/nX712GzSm/4B8rCARqu4vQPx0sWbIEXdd54IEHuP7669m2TU6e3B9SKo9CDMPgkUce4bOf/SwbN25EUzSce0oJv+lAhOUC5scSy64/A103ePl3bxU6FYlEcpC89bfVdNZ3s/zmpYVORTLCiIjKOz/YhralmJKSEurq6vj3f/93/vznP6PreqHTO2qRUnmU0d7ezpe//GXuueceQqEQbsOH8k4JZoNdtk4eY0w+aTwnXzaXR+96DtOQM3MkktHIEz/6J9NPr2XOOdMKnYpkhBEI1E4n/udsLF26FF3Xue+++7jllltoamoqdHpHJVIqjyJee+01PvOZz/DBBx+gKhrOhlKib7oQIdk6eazhLnby4TuW8+RP/klf20Ch05FIJIdIoC/Io//9PJd9+TyKq3yFTkdyGBBRhbe+twVtexFut5v169fz2c9+lmeffVaua5mBlMqjgFAoxN133803v/lN+vr6cAsvyrvFmHtk6+SxyuVfv4Dtb9ax5dVdhU5FIpEMkz1rGnj/iQ38y7cuQijymn0sIhCobS6iq9zMmzcPv9/PD37wA77zne8wMCAbBhJIqSwwu3fv5oYbbmDFihUAuDqLib7uRgnKgd/HKidddgLlE0p5/uerCp2KRCIZIVbe/zaqTeXMa04udCqSw4gIqWz7dSs33HADqqryyiuvcP3117N169ZCp3ZUIKWyQJimyVNPPcUNN9xAXV0ddtWBbVMpxhanXHfyGKa4yscFX1jCiu8/TyQk16OUSI4VDN1gxfdf4Kx/O5XK2rJCpyM5jAgEf7j2cZQPihkzZgxNTU3ceOONPPLII8d9d7iUygIQCoX40Y9+xI9//GPC4TDuqA/eLELpthc6Nclh5kNfO48PnthA45bWQqcikUhGmI593bz6p3e54j8uRFFl48CxjjJgo/PRKEuWLCEajXLPPffwrW99i/7+/kKnVjCkVB5hEt9onnnmGQQCZ3MJ0bddiIh8K451TrxkDsXVRaz8v7cLnYpEIjlMvPW31WCanH71SYVORXIEELrCOz/YhrrLh6ZpvPrqq1x//fXs2LGj0KkVBGkyR5A333wzebLZFDvahmLMXQ45Gec4oKjSy4VfPJvHf/AC0bBc40wiOVYxDZMVP3iBsz95GhUT5W47xwMCgdbsRrxfRE1NDc3Nzdx444289NJLhU7tiCOl8ghgGAb3338/3/jGNxgYGMCpexBvF6H0OgqdmuQIcclty1j99EYaNrcUOhWJRHKY6djbzet/eY/Lv34+QrYZHDcoAza6VuiceuqphEIh7rzzTn79618fV4ulS6k8zASDQb7zne/wwAMPAODqKcZ42yN3xjmOmHnmFGqmV7LyftntLZEcL7z519U4vQ4WLJ9T6FQkRxARVVj3s71cc801ADz00EN87Wtfo6+vr8CZHRmkVB5G2trauOmmm1i5ciVCKNh3l2BslLO7jydsDo2LbzmH5+5dRSQoZ3tLJMcLhm7w1E9f5oIvnIXLJ3uljicEgke/+DLa1mIcDgfvvfceN9xwA3v27Cl0aocdKZWHic2bN/P5z3+e7du3YxM2tHXFiCZ5YTneWHLtabTVdbD1NbnIuURyvLFvfRM73t7DeTecWehUJAVA7XBivO2hpqYmOUl3zZo1hU7rsCKl8jCwcuVKvvSlL9HZ2YnDdCHeLUbpk8sFHW9UTCzltH9ZwLP/s7LQqUgkkgLx4q9fZ86y6YybU1PoVCQFQBmMjbM84YQTGBgY4Mtf/jLPPfdcodM6bEipHGEeeeQRvv3tbxMOh3EGvZhve+Xe3ccpy285h7f+tpru5uNjLI1EIslmsNvPK797i0tvWyYn7RyniKjCjt+2s2zZMqLRKN///ve5//77j8mF0qVUjhCmafK///u/3HPPPZimiaPLh/G+G6HLQ3w8MvW0SVROKuONB98vdCoSiaTAfPDkBjS7ytzzZxY6FUmBEIbgjbs28fGPfxyABx54gO9///tEo8fWWPtRZzy7d+/mxhtv5Oabb+ZrX/safr+fl156iS984QvccssttLbGdip56623uPHGG3n66acPe06Jbx4PPvggAPaGIszNLrn+5HGKUAQX3riEl377hlyTUiKRYOgmL/zqdc674Uw0u+y5Ol4RCB658SW0HT5UVeX555/njjvuIBQKFTq1EWPUSeXEiRP51a9+xc9//nNmz57Na6+9xt///nfuvfderr/+ev74xz8CMan8xS9+cdg3eQ8EAnzjG9/g+eefRyCw7SxC7JFCeTxz4iVz0KM6G144vOeeRCIZPex8Zw+d9d0s+uiJhU5FUmDUVjdivQ+73c6bb77JV77yFQYGBgqd1ogw6qRS07Tk78FgkOrqaiZPnozNZmPevHns3r0bgNNOO40vfvGLzJx5+LobBgcH+epXv8q7776LKlTUTcUoLa7DVp/k6MfusrHs+sW88MvXOAaHy0gkkmHwwi9f46xPnIK7RN4njnfUbgfm+x48Hg/r1q3jlltuobu7u9BpDZtRJ5UA7733Htdddx1r1qxBVVXcbnfyb4mV68866yx+/etfc9lllx2WHPr7+7n99ttZv349qtBQ1hahdsslg453zvjXk2ja0sKeNQ2FTkUikRxltO7qYOuruzj72tMKnYrkKEDpsxN+3UFJSQk7duzgpptuSg7hG62MSqk89dRT+f3vf88555zDunXr8Pv9yb+p6uEfr9LT08Ott97Kli1b0NBQVheh9Mslg453nF4Hp199Ii//7q1CpyKRSI5SVt7/NideMoeiSm+hU5EcBSiDNgb/qVJdXU19fT233norbW1thU7rkBl1UhkOh5O/ezweXC4Xe/bsIRKJsGHDBqZMmXJY6+/q6uKWW25hx44daNgQq4tQBm2HtU7J6OCMfz2R3e/to3VXR6FTkUgkRym9bf2sf2ErZ33i1EKnIjlKUIIa3U/qjB07lsbGRm655ZZRK5ajTirff/99br75Zm655RZWr17NpZdeylVXXcWXvvQlfve733Httdcetrp7e3u57bbbqKurw4Yd8UERil8KpQRcPgenfWQhK/9P7u8tkUjy89qf3mPBRbMorvIVOhXJUYIIq3Q8HmbMmDFJsWxvby90WgeNMI/F1TcPA/39/dx2222xbRexI973IYLa/p8oOS4493OLKR1bzCN3PlvoVCRHGYqq8F8rv8R3z7kXQzcKnY7kKOHiW89BVRWe+unLhU5FchRhOnTKL7fR3NzMuHHjuPfee6msrCx0WgfMqGupLAR+v5+vfe1rbN++HQ0bfCCFUjKEq8jJaf+ygFUPyFZKiURyYLz+p/eYd8FMiqtla6VkCBFS6XwiQk1NDY2Njdx+++309vYWOq0DRkrlfgiFQvzHf/wHmzZtQkVDrPGhBKRQSoY49cPz2fXuXjr2jv7lICQSyZGhv3OQ9S9s5YyrTyp0KpKjDBFS6XoySmVlJXv37k1u9DIakFKZB13XufPOO2NLFwkVZa2clCNJR7OrLPrIQt546INCpyKRSEYZb/1tNQsvmYPLJ5ejk6QjQio9zxkUFxezZcsW7rjjjrSJykcrUipzYJom99xzD6+//jqKUFDWFaEMSKGUpLNg+Rza6jpp2jq61xaTSCRHnq7GXna9t5dTrpxf6FQkRyFKQMO/SsXlcvH+++/zve99L7kW99GK7MfNwUMPPcSKFSsA0LYWoQ46QW7ZKklBKILFHzuJ53/xKooqv59JrEmcG/IckVjx1t9X87HvfYh3Hl5LNHx0C4PkyKMEHOgfgDY/wiuvvEJZWRm33HJLodPKiZz9bcGLL77IXXfdBcCll17KWWedVeCMJBKJRCKRHK+sX7+ehx56CIDbbruND3/4wwXOyBoplRmsW7eO2267jWg0iq3Fg1ZXVOiUJEcpn7z7w2z45zbWPrO50KlIjmIUVeGOl27iv8/7hVxSSGLJjDMns+yzZ/Cb6x4sdCqSo5hP3H8Zv/3tb1FVlR/96EecdtrRt92n7P5OobW1lW9961sxoex1I3Z6MJA3AUk2lbVl1Eyr5MGvPS5FQXJAGLohzxWJJdte383ym5cyfk4N+zY0FTodyVHKHz71OBfddRHPP/883/72t/n1r39NbW1todNKQw7yiRMKhfjmN79JT08PWtiB2ORFIAqdluQo5ZQr5rH2uc1EQtFCpyKRSEY5pmHywRMbOPXDcsKOJDcCwSv/tYb58+czODjI17/+dXp6egqdVhpSKonN9P7JT37C9u3bUU0NZZ0PYUihlFhjd9lYcNEc3l+xodCpSCSSY4Q1T29i5plT8JS6C52K5ChGmIKt9zUzduxYmpub+e///u+jaka4lErg73//Oy+88AICgbLRhwjJad6S3Mw7fyaNW1vorJeLnUskkpFhoMvPtjfrOPHSEwqdiuQoR0QV2p8K4nA4ePfdd/njH/9Y6JSSHPdSuXHjRn79618DoO7yovTaC5yR5Gjn5Mvn8f7jspVSIpGMLO8/vp6TPzQXITvKJPtB8dv48pe/DMADDzzAu+++W+CMYhzXUtnf3893v/tdDMNA63KhNLsKnZLkKKeytoySMUVsf7Ou0KlIJJJjjH3rGgGYOH9cgTORjAZ+esnv+dCHPoRpmtx11120thZ+E47jVipN0+THP/4xLS0tqFEbyjY5MUeyfxYsn8PGl7ajR46eMSwSieTYwDRh3fNbWLB8dqFTkYwSnv/GO8yYMYPe3l6++93vFnx85XErlU888QSrVq0aGkepH7eHQnKACEUw/8JZrHtOrkspkUgOD+ue28Kcc6Zjc8gV/yT7R5iCPX/pwu12s2HDBh58sLBrnR6XJrVnzx7uvfdeAJTdHrmnt+SAmHzSBML+MI1bCt/FIJFIjk26m3pp293BzLOmFjoVyShBhNTk1o33338/27ZtK1gux51URqNRfvCDHxCJRND6nKhNcvkGyYGx4KJZrHt+S6HTkEgkxzhrn5Nd4JKD46eX/p6lS5ei6zp33XUXwWCwIHkcd1L5j3/8gy1btqCYKspWOY5ScmCoNpWZZ01l4z8L9w1QIpEcH2xZtZPaheNweh2FTkUyShAI3vrRZsrLy9m3bx+/+c1vCpLHcSWVe/fu5Xe/+x0Ayg4PIizXo5QcGFNOmUB3Uy/dzX2FTkUikRzjBPqC7FvfxMyzphQ6FckoQkQV+lbFJuo8+uijbNq06YjncNxIpa7r/PCHPyQSiaD2OlDanIVOSTKKmLN0OptX7ih0GhKJ5Dhh88odzFk6rdBpSEYZSo+Diy66KLlTYDR6ZLcSPm6k8qmnnmLTpk0opoK6zSe7vSUHjKIqzFoylc0rdxY6FYlEcpyw9bVdTDllIg633JBDcnC8cudqiouL2b17N3/729+OaN3HhVT29vby29/+FgCxW3Z7Sw6OySeNp699QG7LKJFIjhiDPQEaNrcwY/HkQqciGWWIqMKNN94IwP/93//R2Nh4xOoeEans7+8v6BT2/fHb3/6Wvr4+1IANVe6aIzlIZpw5ha2v7Sp0GhKJ5Dhj62u7mHGmHFcpOXh+eunvOemkkwiHw/z85z8/YvUOWypXrVrFDTfcwLe+9S0Adu7cyVe/+tVhJzZSbN26lSeffBIAZYec7S05eKYvqmXnO3sKnYZEIjnO2PnOHqaeOhGhyPuW5OAQCDb8di+qqvLmm2/ywQcfHJF6hy2Vf/zjH7nvvvvw+XwATJs2jba2tmEnNhKYpsm9996LaZoo7U6UPjk2RXJwlI0vwVXkpGFzS6FTkUgkxxmd9T0EB0KMm11T6FQkoxAloHHllVcC8Mtf/vKIbOE4bKm02WxJoUwgxNHxreqNN95g48aNCFNBq/MWOh3JKGT66bXsem8vpmEWOhWJRHIcsvPtPUw/fVKh05CMUp786qt4vV527tzJc889d9jrG7ZUjhkzhvfeew+AwcFB7r//fqZNK/wyCLquJyfnKA1OOTlHckhMP72WHW/tKXQaEonkOGXH23uYtqi20GlIRikiqnDttdcCsfklgUDgsNY3bKm8/fbbeeGFF2hvb+djH/sYzc3NyT0oC8lLL71EXV0dwlBQGzyFTkcyCtHsKpMWjGPnu3sLnYpEIjlO2bOmgaopFbiL5drKkkPjd//2MGPGjKGrq4vHH3/8sNalDbcAn8/HN7/5zZHIZcSIRCL8/ve/B0DZ50box8XKSZIRZtzsGnpa+hjs9hc6FYlEcpwSCUVp2tLCxPnj5CoUkkNCmIJrr72WH/3oR/z1r3/lyiuvxOk8PF9SDlkq//SnP+X9+yc/+clDLXrYvPjiizQ3N6NEVdQmd8HykIxuJi0cx561R259L4lEIrFiz9pGaheOl1IpOWR+dvn/UfORGlpaWnjiiSe4+uqrD0s9h9yEF41GiUaj7N27l2eeeYbe3l56e3t55plnaG5uHskcDwrDMHjooYcAEPUuhHF0TBqSjD5qF45n79qGQqchkUiOc/aubWDSwnGFTkMyihGmSDb2Pfjgg4RCocNSzyFL5Wc+8xk+85nP0N7ezu9+9ztuuukmbrrpJn7729/S3t4+kjkeFG+99RZ79+6NjaVskQudSw4NVVMYf8IY9sqWSolEUmDqNzVTWVuG0+sodCqSUcw9V/6B6upqurq6ePbZZw9LHcMebNjZ2YnLNSRvTqeTlpbCremXaKVUGp1yLKXkkBkzs5r+jgH6OwcLnYpEIjnOiQSjNG9vZ+L8sYVORTKKEabgYx/7GAAPP/wwhmGMeB3DnqizaNEibr31Vs477zwgNut60aJFw07sUNi0aRPr169HmAK1WY6llBw640+ooX5j4YZxSCQSSSr1G5sYP6eG7W/WFToVySjm1x97EM/5Hvbt28d777034r427Ka8m2++mauuuor6+nr27dvHVVddxU033TQSuR00K1asAEC0OeS6lJJhMW5WNU1bWwudhkQikQDQtLWVsXJnHckwEbrCJZdcAsRaK0eaYbdUAixZsoQlS5aMRFGHTF9fH6+88gqAbKWUDJuxs6p5++G1hU5DIpFIAGjc0solty0rdBqSY4DHv/Yy4jTBO++8Q1NTE2PHjtywimFLZa6Fzu+5557hFn1QPPfcc4TDYcSghhgYEVeWHKc4vQ6Kq3207izchDOJRCJJpbupFyEEpWOK6G7uK3Q6klGMCGmcfPLJvP/++zz77LNcd911I1b2sO3r+uuvT/4eDod59dVX0ybuHAlM0+Tpp58GQG12IZDLCEkOnbEzq2ir6yQa1gudikQikSRJdIFLqZQMl7V/3gGz4Nlnn+XTn/40qjoyQwaHLZXz5s1L+//JJ598xLdp3L17N3V1dWAKlHa5lZVkeIyZWUXztrZCpyGRSCRpNG1rZezMKja9vL3QqUhGOUqnA6/XS1tbGx988AGnnXbayJQ7IqWksHPnTtrajuwN+cUXXwRA6bTLZYQkw6aytpy23Z2FTkMikUjSaKvrpLK2rNBpSI4BhCk4//zzAXj55ZdHrNxht1QuW7YMIWLdzYqiUF1dzY033jjsxA4UwzCSB0S2UkpGgsraMtY9v6XQaUgOBCHANIcfM5LInA6MozGno5z2ui4qa8sLnYbkGOHpu1bBPHjttdf4yle+gqYNfz7KsEtIzLguFFu3bqWlpQWhC5RuuduAZHgIEWupbN9TwJbKA73ZwsjclEeqvoPJaSTKEgcxdnp/r1HmVJicRuL8PBzHaX9xBRLdjn1dFFf5sDk1IsFoQXKQHDuIXhulpaV0d3ezevXqEekCH3Zf8e2335712Fe/+tXhFnvAvPXWWwCIbrvc51sybIqri9AjOgOd/oN/8oHcvIXIH5d6sx1OPQdb1nDrS4050LJyxY1UzJGuT+Z04PXles5oyWl/5ezvc36gMRlEwzrdzb1UTpJd4JLhIxCcffbZAKxatWpEyhy2VPb29qb9PxQKHdExlW+++SYASpdspZQMn8raskNrpTxYObOKy3zsUGNGsqxDicnFkc7hYGW4UDkdyffhaMjpSNZ3OM+VIy26cdr3yC5wycjxzPdiMvn2229jjkAL/CF3f//hD3/ggQcewDAMzj33XCC2tI/L5eKjH/3osBM7ENrb29mxYweYUiolI0PFpFI69nUf3JOGczNPfIjz3XwOJmY4+RQqp0TsSMUMN/eRzint9xwX7WP9GBSqvuHkNFLn+cHmsx869nZRMan0gGIlkv0h+uzY7Xba29vZu3cvtbW1wyrvkKXyU5/6FJ/61Kf4xS9+UbBtGd9//30AxICGiB6BWd+JC8bRNHBcCBAKGEdoTUVFRSgCM3qExvMoKkJVMSPhI1JdSU0R3U29eWOEpiE0DSMUyhFwkEK1H4SmIex2jEBgWOUcaIuI0DSEw4Hhzz0EQGgawuXCGBgYdn0HEitUFcXtRu/vH1Y5BxpzpOs7kDihqiheD3rvftYoHKmchIJa7D2y9fk8+Y/5gcSMaE4Cxesd/nl+oIIKKC5X3s9ed3MftQvH7b/OEURxOjGCwSNWn7DZj9g1H2LXsyN2TztQFPWI3NeFIViwcCHvvvsu77zzzrClctgmViihBFi3bh0ASo/dOkCI9J9cCBF7A/cXI/ZzuBLlHEBZQtMOLEbJsyCpEAjNhlDV/HGKirDZDyhG5Jv9pagI2wF8D1FUhMOx/7IcjlheeWIUu22/dSlOJ4rTuf+y3G6EI3eLttA0SsaV0dORW94SwoXNhrKfshSPB8WZe0WCmCR4UfJsFpCQmwMRDtXn229Zqs8XKy9vTh5Qcp/riRihaSheb/76iov2H1NSst8YxecDm4bq8+23rJGIUYqLwG5DLS7KX1ZZ6QHElOT8+8GUoxQXgabljUMosdc3EjHFRRB/D0eirHzHHKGgFnlj9eWLg/3HCAXV59tvOarPl/e8SxYXF8t8KF5v3s8VELseeDz5Y9xuUNW8cT0tfZSMK8lfnxAobvf+Y+LXznzXqVhiyn5jhMOR9/p6oDGx+kT+6zkx8RyRGE0DoeS/XzHUmDDcmKQj5Lsfp8YeSFn7i9mPAyUm6CQa6obDIUvlDTfcAMCyZcs499xzs/49EqxduxYApdfipElIYOInF6myKJTc3RcHGCMUgVD2I4vxleuFmkM+U2MUYX3SxIUyLwlRTK3Pqqx4ayCKyP3hShVKVc0d43AgbBpCiLxxit2GEAKhKtYf+oRQKkr+GKcjJkCKEsvfAqFpsbi4qFtd1BKPl9T46G0fzBuTT7ggdpyFyxWLyyGfiRgRz8lKBpNCqcTOh1zCmBZnt+Uuy+uJvSc2zfJmk4yJnwP7i0kcE6sbblIE4+dA3phE3vuJAXKK5VB9Sv6Y4qJYjN2WPybxucxx7UiLyyF6mWWpxfupb7/CGM8pV1xSBJUDi8kljImYxDE/kLh8MXFZzPmlIBGTONa5pDERt7+Y+HmOklsG1cR5pyp5hVHxemNxecRS8Xrj1zI1p8TFPp+x61Re0UtcWxTFWiyFoK8nTEm1LymOVjGKy5UUif3Wl8grhzQmH88TIxyO2DEQIqc0Zsbki4vVl1ssY40kYv8xKb/nlMuUe3suIUx9fDgxsWrEkCfkEsLUx4cTM1RpbncBfnP9QwBs2rQJwzDyl7UfDrn7+7777gMKt6RQW1sbTU1NYIIYyDhZrFoVhQIY6V0Q+2t5PMiyUmVSqCqmrqfFJOQuqywzpYnbIk4oApOUpnALoRSqGhutlYhJiGJWdQIz9ZxJFUqI/Wso6d0BVi2UqoqArBiRctIKITAzj51F66NQFSCluyNFKGP/V+Ibb2bEOB0Z5aiQ0W2S6DpO/TAlPvBmvPs6VTRLqr30tA7kjkkVSpsNBdK6wZNCmUpGXKpQpuakuFzJLu5UUYy9XpE7Jv73ZFn2eH2pcSkiiFCSYpnoZsuKAYTdHisnTwyQ9jqScakimMg9pRsxKyaR935iMl9rWpyaeH0iKTCJbtIsWYSkWOaNUZW0mJxxcYlLdBWPVExaXCqZcamyeKAxYkgGs7q4M495ZlymeOaKSQhlgoz3ZehFZlwn4tKYjMsUz1wxCaGM/1+oZHVfq5nnXfw9Nk0zLU7xeuPXptjxEEZ2WQmhHCpLTftcQYpQJh9QsmKScWkPxMTSGByMFx6TxZ62QTwlLlSbih7R08tKFcpkUiK7PiGyv+zGpTG1m1txOrNzz4hJyOJQ0QIcjuS1M+3xzN8z4rJEMy6Nadf0hFDmiclFVlmZ8icy7n1WMfHH9tddnryHpMYp+7m3W8QkH9tfV3jieUa6T2RUSJq7xGPEoIbT6WRgYIC9e/cyefLk/HXlS+OQnxnn+9//ftZjP/zhD4db7H7ZunUrAGJQi+2ik2xZyCOLCVM/kJiDLMuqdTLZEplLKImdVKn15Y2LN2PnaqFMtkTmEMpk3omTL1MoE6R9YPN0eSdaIi2EMrWs5IfyQLuzU4Uy+XhKi6WFUCZfnk1LfiO1Esqs+BShdPkcqJrKQLc/7W95WyjjLZGJm0mWUKbkD9ZCmZqL4nJlC2WyDGEdY9VCGy8/lwimimXOGOJiuZ8Y4t34yfpyiGBCLHPGMCSW+WJSW6myhDL19ccFxlLeEsTF8kBikvXliotL3EjFHGh9lkJ5oDEpYhn7v5K7tTQRZyWUVjGZQpkgtcUytfXRqiyfz1oorWJShTL5+pTs1kirvDNaLdOEMjUmpcUyUyiTVWa2WFpdN+JimYjLEs/UOI8nTRb1iM5gT4DiqvhrymyNzNH7lYxJCGWu+uKtkVlCaRETK87iGGS0WOZslUyJy9ktntkamev9y2iZzEXq/cHynEppsczb4nigLZMp9z9LT0htsdzPEDXL33PF5fKXTMcBBILZs2cDsHHjxtxlHwDDlspdu3ZlPbZ9++HflzRRhxhMkZQDaH1UHI68Y+GSMW73fstKNCnn6+5W3O4DGo+jFhXlFsFkdfvv8la9HtTS4vwxRV7UinJroRyqLN5lkL8xWykuQquutBZKYhcNpaQYbdzYvEIp1NiFylIok5UpsbIm5h+krpSVoE2pzSuUie7d1AtZUYWH/s7BtAm6alkpyvTJuXMClPIylJlT88aQIp25jlUs91LE3Bm53xdFoJSXwYKZuWOIyXVszFgOEQQQCkpZKcapJ+Q915WKMoxFc/PGiLi85BTBZO6l6GfOy5u7Ul5KdMn8vDHYtNhYTCuhTCYlEGUlRJYuyP/ForSY8LkL88Zgt8XqyyV4ibKKiwidl78s4fPtNwZNO7D6vF7CF56U+xgkYi44Me9xIjHWNJcsJkJdLiLnn7j/mHMXWgtlAlvsfMkpiwlcTqLnLMwf43Cgn70gd31xsTyQcZbCYcc4c0G2UCaID9Uwz5if93OcHC+9n65nYdMQp8zNe+0Qqoo4aU7aedDXPkhxZUr3eGIMZZ4x1QgRG9d5wsz9XqvUOTPyx8TFMu8Y9fiYTXX6lPzHSgi0KbW564LYcd/vGPyYWGoTxucvC9DGjc1/Th3AGEuIX/cqK/cbp1aU5/WEvF3hqSgqakn++zuAWlS039eXeV2ZO3cuAFu2DG83uUOWykceeYRrrrmGvXv38vGPfzz5c+WVVzJjxoxhJXUgJKRSGYiJirDbY98c80iQYrchnPnHxCl2W+zG73DkbA0DUJwO1NJiFFeeiRgOB8Ltzv+BcrlQPG6E25V/AoXLhVpZEZOEXDm5nIgiX96TU/G4EMVFCK8HJc/JqXg9qOPH7DeGspK8Nw/h9UB5KWaRB6Ui99pqwudDTJ6AUp37Ayp8Xswx5ZhantdX5MMcU4Fe6kGMrc4d5/Nizp6MGFeTfMxT4mKwZ2iSjlLkIzqhEtOWv77IpEoipS6YlFt2leIi9IXTYUruC54o8hGaVo1hz3M8fT6C06sJl7swpk3IHVdcROjU6eizJuWpz4t/Tg2mPc8NrcjL4JwaQmV2IifkKavYh3/xDCLza/Pk7mVgXg1RZ77X56V/QQ3BMhuhBbm7YITPy8DZ0wmePCV3jNdD34ljCJZpBE+yLkt4PfSdPJZQiUbg5Dz1edz0nzODwKlT88YkyzrFOi/hcdN36jhCJRr+U/Pk7nLRf84M/Kflqc/lou/U8YSK1ZxlCaeTvlPHEy7eT31OJwNnTyewaFr+mFMmEi5S8x4HgEhR7mMAIGw2/ItnEDwld33YbQROnETUoxI6KXdZKIKoRyW8ME+Xnc1O6NTphE/KU5+mEZ43iahHIzIvT32A7tKI5otRVfT5U9Hn5zmeqkJ0di26U8OYXZu7LEVgODTM2UOvb7AngLs4pbVQVWN/n5GvHAWmTcR0ajBtYu44wLRriMm5ry9A7Ho9JU85ioKYOA5sGmLC2Pz12TTUcWPyxqhja1BTrtfWMdWgqag1VXnj0FTUqor8ZVVWoFbmj1HKyxCaGvuin7cwNe+9FEAtLT6gBiFUNXfrfjIxEWu5zxfi9aY1eD30zScA2L17d/6y98MhS+VFF13E3XffzaJFi7j77ruTP3/605/4xje+MaykDoQdO3YAxLq/7fbYjxCxfy3EMimUEOtis2g1SwhlcgBwDrFUnA6EyxlrCXFZf1tLCCVKbHyJVbdoQiiTXeQ5xDLW2hmfZOF2WYplUihVBeF0oFicdAmhRIl9SxEeF0pRdleX4nYjSosxVQXhcVt+GJJCqSiYbidKaUn264sLJWqsPtPnthRL4fNBZSmmTcXweVAqrWK8mNVlsfo8Tkv5VIp8GDXlmFqsPqPYjRiTfXFRfF708TFZNIrdSbF0lziTUpkqlLrHgRiffTFLCKUZf33REqelWCrFRYRrKzHsCtESJ+bk7JikUGqCqNeOMTlbPhNCadgEpoBwmdNSLEVxEYHpVegOhXCJA326RVlFXvyzqjFsChGPRnR29s0hIZSGXWAqEC61FktR7GPwhGp0h0Ko1EZkjkWMz8vA3Bp0uyDqVgnPq7WM6V9Qg2ETICBUqlmKpfB56V9YE399GqEFFmXFhVK3C0xFoOcSZyHiMRAuthbLhCzqDkGoWLWUpWSMPZa77szVAyCSMeEiaxmMyeI4dIfIH3NKLAYBhiN/faaAiC9HWQ4H/aeMjx1Pn2IpjMLpZOCk8bH6gIhXsT4OdjsDJ0/EFBD1qJbSL2w2Bk+aiO5QiHqtYxJCqTti703UnUMsNY3ggomYIn5eWYmlqhCaH6/PpRJeaCHEcaFMnCdRt2otlqpKZM4kTAG6U7UWS1UlOmcShl3BcKrocy2OQVwoTS1Wn+GwFkshBMb0ibHrmV3FnBWLGewN4ilxxctSMaZPiF3PnBpMt/jypygwZXzyC7JpzyGWQkBcJk2bmlMsxaRxmDY1d4yiIMaPgUQDQB6xFOPHxOvLLZbq2BpMVcHUVNQx1o0Fak3VUINRHrFUE/eOPGKpVpTFGktUFTVHY4hSXoZIDGtSlJximbx/5hHLZI+EEDnFMm04SR6xTMpkHrFUPO7kpKnk0CV/zInq6uqGNVnnkKXS6/UyZswYvve971FTU5P88e1vOYgRYHBwkM7O2K4nqihOCiVgKZapQplAOB1pYpkmlMkHU8Y7Jh5KEcpkWRlimSaU8XKE05kmlmlCmXwwe3yc4nYjfCknU0I+U06WVKFM1ud2p4llmlDur77SYsz446YissQyVSgT5Zg+T5pYpgllan0Z3UpJodQSuZMllqlCmSjHKHKniWWaUKbUlymWSaGMx5mqSIplrKUymN1CqQiiJe40sUwTypT6MsUyIZSmTUkez0yxTBXKWAxESp1pYpkqlAmsxDIhlIZdSZYVLnOmiWWqUCZyCpfY08QyVSiT9VmIZVIoE/UJQag8XSyTQukYen2hUlu2WAqR9vqsxDIplPah3GMxQ2WlCmWCqEtktVbG4obeUyuxTJPFRE4ZYpkVA0Qd2dIlPG76Tkq5aVqIZVIoU+qzjEkIZUp9mcIonE76Tx66kVuJZapQxh4QWWKZKZQJdGfGZzkulMn3WUAkQxpThTIWI7LFMkUok7lbiaWmETxxUtq5lyWWqkJoQW3K6yNbLDOEMnlMM8UyLpRDuVuIZYpQJsgUy0yhTMZliKUQAmPmpKGeCxFvsZxVy2BPAE+JK00oh+rLEMsMoUwe00yxTAhlSl5W0pgQynwxwJBQJrAQSzF+TFpPl5VYJoQyGZNLLDN7IC3EUq2uzJjMli2WSaFMxmiWYiky6rMSS6WkOL0sC7HMGuKSSywzewQtxFL1erIcJlMsE0I5VF1MLFW1GLvdTiAQoLm5Obv+A2TYYyp37NjBF77wBZYvX865556b/DmcNDQ0xH6JqChm9gSRhIGDtVAm4+JiaSmUiRi7HcXpSHZ3ZwplMi4ulllCmSBFLC2FMpmTMzmAW62sQFjFpYhlllCm1hcXS0uhTMk70VqZKZQJUsUySyhTckqIpaVQJspyO5OtlVlCmcwdTK8bpbI8WyhT6kuIpaVQpsQlPoyZQpnMKS6W3vEV+AO6dZd3ilhaCmVqffHyM4Uy9XgmxFIU+QhPrUoK5VDMkFhaCWUyToARz1X4fGlCmVpWQiwzhTI1p3CJneisiZZCmVZWSUwsM4VyKCdBqCwmlplCmVpOqlgKn5f++RY3ihSxzBTK1NwTYmkllMmYYpXgwnh9OeOGxNJKFpM5FasHFpMiln0nWceFi2JxWUKZEeM/dYqlUGbGQFwoTxlH1JH53sTEMnDKlGyhTJY1JJa5hBLAsInk6xN2O4MnTch+n1PEMlMoh2JSxNJCKJNxqWKZIZRpZSXEMlMoU45V1KUSWTD03uRqyU6KZYZQpr6+pFhaCGXyWGWIpeW1iiGxzBLKZO4xsRy0u/CUujGmTrAcnpMplrmG8CTF0kIoU5+bkMZMoUyLmRT/4ppopbQiRSwzhXKorJhYCiGyhDIZkyGWalWOYVMpYqlWVeSYzDYklllCmYzRYt3h8XtXrlbJVLHMEspkskNimXPMdFwsE3KZdzJb/G9ZQpkgQyxzTaxShML48bH3MOlYh4Awh7nZ4xe+8AVuu+02fvSjH/Hzn/+cJ554AsMw+PjHPz6cYvPy0ksvceedd6IMOnHusm6eT7ysnAOu44j4zDozz24lwu0GVcEcGNx/ckLJP8HAF+/G7su9Q4NZ5MW0aSg9+9k1IkGe12gUezCcNrT2vpwxepkXw6Fha+nNEsoshMg7JjVa7iHis+Gqz10fpgmGGTumOS6uAJFyN6FSG97duY9DqMpNsFSjaFeeHS9ME6GbmFr++i795AnsDQTY8NienDHBSjsDNSrlm/LsLpGoTxVZQplKoNJO30SFyrU5duYBApU2+moVqlbnXi5DmKBEDAxVWN7QkmVVaPTMgJq3cy9NEahQ6Z4FY97Kv3yFMEAYZu5uZSBQrtA1z2Tsq7kvMcIANWxgaMJSmpNllSl0naQz9uXc9QVLBV2nRhjzYp6ZmIaJGjZjXeK5uoyBULGge3GImmdzTwwIFQu6zwxR80yeyQMm2KLww1tP56u/fgfDsD4WoSJBz9lBqp/KPY477BN0L80fgwlaKNZ1lSmUqUTcgs5lIcY8lTv3iFvQcU6YsU/ln7CgBk2EaRJ15rkuOAWtS3XGP5s7RpgmStjMex4A6HZB81KY8Fzu80p3CJrPEkx4Mc95bIIaMhBm/vPY1ARNZ2mMfyn3Z9DUFJrPsDF+Zf5dZ5SQjjDM5BfBXPW1nOZk7Ou5d9WZd2I105bUsOJna/LWJ0I6wjDyjgs3FUHHQi9V7/bmjlEFXfOKKF+dfwtbEdFBN7JbKdOCBL1zSihe35m3LPT97yYjdIPBWVV4trbljQtOqcC5M38MUd1a8DKITKjAtqc1b4w+rgKlfj/1HcDrA6CqHFo78seUl0LbfmIME9M0887xOPELVbzxxhvcfvvtXHnllQeWXwbDbqmMRqPMmDGDaDSK2+3mYx/7GG+++eZwi81LU1MTAELPPUlG8XoQ1RUxacyB8Hoxizx5PwDC68Eo9WIUxbuhc8UV+TAm1EBJnu7/Ii96hY9omQez1HrZDrPER6TKR7TchVGWuyyjxEdoejV6dUnumFIfgXE+QhVOotXW4zT0ch/+CR4C1U7C40pzlqVX+OhbUEVoYu6YaIWXvsku/FU2/JNyDziOVHnpOL2Sgem5cw9Xeuia6SCa58YfrHbTNcvO4FiF3hm535tgtZvGc0vompv7eAYrnahVNno8Op0nWM+gDFQ7aDtRY3ACdCzIPcvSP8bB3kvdtJ6We+KVv9pO6yIYnKjTdoq1JASqbLQuNvFPitJ6Wu6b/2C1jV1XaTQuzR3jr9RoWxohWhuk+azc57thA2XyIE1n5740+CtVGj8WYd9F+QRWYfCiAUomd9N4fu6bv79Koe0zAeovzRNToWBc2o29NPcNO1AmUD7UybTJrbRcmvvmH6hQCHyuh+aP5o4JlgqcH25lzqRm2i+3rjNYInB9uJW5k5rouDL3zT9YKohen/9iHyoWuP6llXkTmuj8sHVZoSKB4yOtnDChOWcMxMQzcH0PLR/LfawiHoHxL51MH9dG+4dzf5k2FZg0roOWf8n9pSfiVmj/tJ/6a3Kv2Rd1CXquGKRibC+NV+SOi7gUGv4tSv3lucdz6Q6F5ssiKKW53z/dIWhcbiCqg+y7NM8Xbodg90dV6q7I/bkxbAr7LlSJlEfZd5F1nGFTaDhXI1yus++C3MJvqIK9l7jZe3Hua5WpCRrPdhIuMWk4x/r6YSqChikKLpdK09l5ylIETcuKaVqW+5ptKoK203xEfIKWxSU54wAiXkH7abnLQgg6Tqug8/Q8k2SEoHt+KRG3Qs+J+SfB9C2oon9+/rIG5lYTdSsMnJB7UqZ/RiVRl4p/Vu4YgNCMGkLT88dEJlViOFQiU3JPGIpOqMSwq+iT8pdlTKjBHJ8/xqypjLUm1+xnhrlNgzyTXAGoKkdU5z/mY8bEWpgL2v2txafd19TU8PLLL7Nhw4bkeMfDRaJ8RbjAYva18Lgxve7kJBIrsRReL6YvHuOKd1lnxXgwiuNb1ikKhs9lKZbC50Uv9YCmYBS5wKqpusiLXu6NtQQKMC1a+8wSH5EKb6yFSwiipdZiaZT4CFd70O0K4VInekW2oBolXgJjPLGyFGHZhaCX+/CPc2OoscHwwQo7kTEl2XEVPgYmuNDtgkCFjdD4bGGMVnjpq3ViaLGyAhWapVhGKj30THGiO8BfoTI4OTv3cIWH7ul2DJsgWKrQPy37GASr3XTPtKPbwVDBX20tlsEqF51zbOhO8NcIumdlnwvBSicd8zTsdpWgaVh2+waqHbQvUDEcJqYK/jGmpVj6a+y0n6QQdZv4x5i0nZh9fvqr7bSdAobTBBV0i/tQoMpG6xkmpsMAxSQwzlos/VU22s7UEZ4o4XERms/IblXyV2q0nx1Bc0VRFBN9vLVY+qtUupaEUFUDdbzfUiz9FSq95wbweIK4xw/QuMwi9wqFwQsH8LmDaKpB6bheGs/LlsZAuUJ4eS9lXj/V47tpvDBbJgLlCubF3ZR5/FSX9NO0PFtKAmUC9bJOyt2DqMJg8tgOWi7Jlo5gmcD+oXbG+PqYNqaN1suyZSlYKnBd0Uq1ux+7EsXryZazYInAfWUrNZ4+7EqUWWPa6LgiW84SceO8sRagzsuzZTBUHBPYGk8fmqIzs6bNUhpNBard/Wgid0zYK1A+3BF7fdUddFjERDwC48OdVHoGEcJkclWnpVhG3ILw5T0owmRCZbelWEbcCgNX9FHm9VNT0UvzldnHPOoSdH/IT5EniBAm5RX9lmIZdQraPxTE4wniKx+k/kPZ54LuUGi+NIzTE8Zmj7LvsqyQpFBqnggCUEpDlmJp2AX1F4LwRDFLIuy7OPtzY9gUGs5XMF2xFiW9OLdY6h4j1q1eZFiKpaEKGpfZibpNol6DhvOyrx2mJmhc4kR3mbGyvCaNS63FMqAaOFSVqBualmRf90xF0HK6B90JURc0n5l9nU0IZdQZ78Z3QesZ2ddsUxV0nFQU7+oXtJ9qIZZC0LmwBN0BUSd0nmwxuSUulInhHVGHyCmWfXPLY5P6HMJaLIVgcFZFsizdIXKKZWKoj2FTCMy0jglNqUS3K+h2hdA065jIpMq0snKJZXK8vqZgTMyR09hK0JTYZKccYmnWVCaHI5g2NbdYVsS74jU1t1hWlCU9hirriUeirIQnfv8uAC0tLdblHADDlspPf/rTDAwMcOONN/L444/z85//nFtvvXW4xealq6sLAGHY05pyhccNVeUxoUxZ3DNTLFOFEoiJpdeVJpZpQpnAQiyFz4te5k0rK0ssU4Uyju5zpLVWpgpl8jELsUwIZXJShyqyxNIo8RIYm15WuNiW1lqZFMqUsXxWYpkQytRJJJlimSqUqWWZGeMEE0JpxOdHmWq2WIYrPHTPsCe7wEwVBqvUNLFMFcrka7YQy4RQGvahnDLFMiGUugOcqkJQ1wmWkdZamSqUyddnIZYJodTjcaaaLZZJoXQNlRUqM9JaK9OEMoGFWCaF0hW7SQvVyBLLVKFMFmUhlv4qlc5zQjjdMTGwEkt/hUrveQHc7phgqIqRJZapQplAUw1Kx6eLZaBcIXxxL8WuWJymGFliGShXMC6JCSWATdWZMK4zTSxThTKBTdGZPC5dLBNCWeWJDZOwqzrTx6aLZapQJhhX3EtbSmtlqlAmsCtRZo1tTRNLq7jZY1rTWjUTQjkmo6xMaQwVCRxXDHWlWYllQihrvP3J45kplqlCmcBKLCNuQejKHiq8sTgrsUwIZaknvmsTUFOZLpYJoSz2DpVtJZZJoYyfVwLwVaSLZapQJspxlgfSxDJVKJP1kS2WqUIZCzKzxDIhlIY7vYsyUywNm0LjshQhtRDLpFDGP/Oxca3pYpkUSreZVlbEly6WpiJoOstFKKrjUJX4LPt0sUwVymRO7nSxTBXK5GMCom6RJpYJoYw6hyZf6a4MsUwRygRRl7VYZo4XthLLhFCmxqSJZYZQJsu2EEv/jHTJ0u3ZYpkQyqFyssUyVSgTWIlldEJlVkymWCaEMoGVWKYKZWpcllhWlKX3tFqJZUIoEyTEMlMuFQURv6l2d+cf5pCPYUvlokWL8Hq9TJo0iXvuuYf77rvvsLdUJqVSt8VaKl3OtNZJq4ktCbHMEsoEKWJpKZSpcfFWvyyhTIlJiqWFUMaeDNFiF2aJz1IoE6SKpVnsTRPKZEyKWFoJJcQnKpQ5iFYXo5d5s4RyKG5ILDOFMjUmIZZWQpkgWKImWyszhXIo9yGxDFd46JluzxpTlSqWVkKZwFCHLlqZQpmae0IsU4USwKGqhKJGLKcaQecJLgJVDjrmpwtlWu5xscwUyqGYIbH0V2ULJQCaiX9MTCwDVTZaT88QygQJsTzVniWUCRJi2XK6ZimUyaIUM3mT81emC2WCpFguUbKEMhmTEMtzBIEKhYEL0oUy+RJTxDJQrhBa3pcUymRMQiwvMLKEMkFSLC+KWgplMi5FLIOl6UKZIFUsg6UCx+VtaUIJQ8KYEEtTFWmimBnXcUUg1jWeIZSx16czJy6WVkKZWlZCxEJFAvuH27LiNKEzvbqdjiv9WUKZejwTYmkllAmEMJlU1UXblcEsoUygCJPxFT20fDicJZTJchgSy6gzWyhT60uIZdQpaL8slBTK1LISYqk7FJoviSSFMrWcNLEUpAllallKaYh9lyjZQpkMiovlci2nUCbQi6PUX2hPCqXuyfispoiloQoazxkSygSpYmkplCllJcTSVATNZ7rQnRDUDZxxmUgVyyyhTM0pQyyjFqPHUsUyUyhTY5JiaSGUyfJTxTLeSmlF1CHoWRgTy0yhTI3pn18VE8qZ2UKZQHcIBufEBNQ/I1sEIV0sM4VyqJwhsbQSygSpYhmdkD0JNBGTEEtzTEXOyVBpYplj7H+aWGYKZfK5KWKZKZQJ4q2WIt7KKcpKYv8asS9Ivb25x9fuj2FP1LHiox/9KA8//PBIF5vkk5/8JHv37sXZMQs1XIxp02KTY/T9rK1k0zBVgdBzv2TTpmJqCiKap6z4Gk6mTc07acWwqxg2BSWce0Cu4UjE7H9dKFMVlvI2VJ+CbheooTwD2J1ivzEQ+3BGHQItmDsu6hToDtByD8tKmdAhsoQyrSyXQHeBlmculO6KXajyxSg6iGisSzlTKNPrM4l6TWx9Q+/fj86Yzy827KB+IPaCdKdJtEjH1pt/p4Ooy8T0RVF6ck9oMNwGWlEYvTv3mCvTpeMpCTDYkWcXDkBxRykvHaCjI/cYUbsrwriyXva1Wc9SBDAMgRHQEA49SyhT8TjDzC5vYV1r7sXdi11B5pc18W5b/kWVdUMQitgocec+aUqcARaX7ealtpk5Y0odfpaW7eDp1rl56ytz+DmnbBtPtc3PXZ/dz/mlm1nRdmLOmLCh0TboxabqliKYoNgW5JKy9TzUelryMQXBbfwbP+MvGJiWMVb1tQz4UBUjb31uLcJl5et4sGVRnpgwl5Sv58Gm3DGJuOWVm/hb4yk5YxxqlAurNvNw/Uk5Y0yge8CN15V7LCbEpP7M6t08t3d2zhhN1VlUs4+Ve3MvIm6agmC/A3RhKZUJhGIwo6adzXtzL7ItFJMJ1d3s3bOf8WmKSVl1H9378oxXFCauKj+hfXkWqhZAZQi1Iff8AIgd02hFBEdj7KJWYrfxvdPn8cVXV6eUZRIuN3A15rlemaAFQQnHrqX5CJeauFryT1wJF4OrLf+9RAuCEjFziiAQW73AJ3B15L8Phn0CV+f+75URj4KzK/9EmIhXwdGdf/9uNWzAARhS1K1i78m/97ju0rD15Y8RER2iRk6pTGA4NdT+/J8vw66hDOafOAZg2m0o/licrg0SrNpIWVkZK1as2O9zrdj/PkSHwGHw1DQCiZnaporpsGE64rvqRHSIWJ8kpjMeFzUQunWM4dQwnDZMAWpIj5VnFee2o7s0lLCRUxh1p0bEGzu8qiJQg9l16i6NiE/FFAJVFWgB67KiLpWIT0UNG6gB6w+U7lIIFamYAmyqiebPjou6FULFsYWQNVVgs4iBWNdWqESghk3IcU5G3IJQuYgvaQP2Puv3POwThMoEagjsvdYxUY8gUGnG1qjUBHaLL0lRDwSqjFiMXWDvtr5AhYsgWB1F9Ss4uqw/mBGvSXRsGBSTsN2GvSN2EXaoKsH4F5Oox0AZ78epmgTtDmzt1kYc9Rr4xvcRCmtEckil4dWZMKkDm6rT6vThb7a4yXgjzKttwq5EaXCW0NpgfbPSvBHOmLwblxphj7OcHQ3Z441c3hDLa7fgUiOUOwdZs896hYTiIj8fmreRllARr+2z3iGl1OvnkxPfwacGGePssxSACu8gn5+4iiIlyARnF4/sW2hZVoV7kC9OeJn6cDl/3mctOFXufr42/jmKlRBTHG38tn5JVky1q59vjnuGYkVnkr2dX9VbDOwEqlz9fHvsM5QpClPtrdzTcEFWTKVjgDvHPkeZYmeGvZUfNyy3LGucu4f/nfIPWnU7P2i4xDKm3DHI98b8k1LFxdTxT/PfDZfmjZk+4Sm+W28xMBCodvbzq8kP06HbcsYU24PcNfZZyhQ70yc+wZ37Ls+KKbIFuXPcU7FjUNvGXXs+ZFlWkT3IHeOfplKJMnVyK9+vy87dYwvznxOepkwNMmVqGz/eZX2svLYw/7nwGXp0D/fsPNcyxqlFubF2JWXqABNndHLf9rOyYuyazqenvEW5OsD4Gd38efuplmXZbFE+dvIHDOgOVmxdYBmjqAYXT9tMsRZgjKuPl7Zmf2ERqskZU+oosQWocA3wwZbJlmWhmpwwtRGvLUSnO8CurdmLepuKybjJHXhsYbpdITq35dhNTEB56QCDrjCRHTkmbwJikh+XTSfs0tF2ugjpBs7U5WqESWhCGMVm4HeouHdbf6M2FeibHkUYAs+e3PIZGGNg2GKz4r37rK+1gRoz1jvkAG99zqLonyjAFHgbcniBgECliPVI2RU8TbmlMeoWDNpUPC25hTFYpsTysql4Wq3jgqUqpgpGpYarPbdYBirtYJq42nN/WQkXa7GewHIHjk5r0YsU2TEVMMocOLryTHwrdcZWjOjJLYO6x44pwCx2ovXmjjNtsR5TpS/PZDxXbCtjw+dC6Q8kWyr7+w9w5RkLht39bUXqOMdf/vKX3HTTTXz3u98lEonwhz/8gZtvvpmtW7cecvnBYPxA2hxJoYR4y6HFbjoJoTQFycGxmaQKJYDuUHPGRd22+JIkquWWekmhFICINaXrzvS8UoUy9pzYbg+ZRF0q4SI1tkabQ0F3WTTVJ4RSidUXcQmi7vS4hFAaany9N1dMHjNJCKWpxlorI97sC0pSKOP1Rd0QLrKI8whC5WBq8Zhii26NuFCaSvzbuNckXJwZExNKUzMxFZOoxyRcmn2BinogWBMFzUT36YTKsi9OCaEUmoFQTPBFCFfELjyaEOiGmRRKm01HUQycRSEildkXlYRQOmxRfO4Qoib7A54QSpcWQRMG1UX9uMdkL38kFBO3FkZTDMb7eqgenz2mJSGURVoImzCo9XUyfXz6shUJoSzSgtiEzgxvGydOzL7i+7wB/qV2HVW2PmZ7mlkycVdWTEIoy7QBbCLKfHc9yyel7wubEMpyNRazwLWPj0xcm1VWhXuQWye8SI3ax0LnPj4x8Z2smIRQVqoB7MJggaORz014Lfs4KDqVqoFdCE5ytHHjhFeyy4oLZbWqYRMKlWp283ZCKKtVFzahMt+u87Xxz2XHOQe4a8w/Ga95mW9X+Y/xz2TFJGSxQvWgCoV5dht3jH86LabM7k+LOcFm578mPJVVVqk9wPfGvsB4zcsJds0yJiGUidxn2+DbE5/IilOEkTwGc2xBvlX7ZFZMQihrVB1VCGrU7PMzIZSVagAVk1n2dr42NftYeWxhbpsUe5+n21u4ZdrLWTEJoazU+lCFwXR7CzfMeD0tJiGUlVofijCY4mjjEzPeyypL03SunrKGCls/tc4Orpy1LvsYxIWyVPOjYDLW2cN5s7alxaQKJUCNs5+TZ9dllZUqlAA+W/ZnPlUoAUqdAcpnWgwJU8BTG/sG7XGGsU3PbpFOCKXNHkUIE7sjQnRagIhpoAgRW70uRSgBFKeOf0p2i5gpIDAudn007QaDtdbClRBKAMNhMDDRYpJdXCgh1qgwkGNHx0CVwNTAtMHAeKv1GIeEMlHW4FhrLQlUKEMxNdZCnBDKZFx1dlxCKCHWiBGotG4MiMlirIcwUGndqJAQykRZofLsnqiEUEKsrFCZdW9V1GuLT6oVREqsW64TQgmxIW3RYus4w21PxhhF1k3SCaEEkmIp4koYiUQOeVedQ5bK22+/PedPoj9++/btdHV18Ytf/ILa2lpWrlxJe3s7P/7xj3nppZcOteqkVJq27DcnUyzThJLYByuxvVSCTKFMkCmWCaEkESfIEss0oWQoLvX/mUI59Nx0sUwIZWp9mWKZJpQp9aWKZapQJo+LhVimCuVQTLpYpgllSn2ZYpkUSjUjJkUsU4UymRcpzyFdKIdyzxbLpFCqZrK+TLFMFcpk6iliKQSEXXpSKBNYiWWqUEJsfFdpkT9NLFOFMoGlWHojnDBxaAkHK7FMFcoENmGklZ0qlEMx2WKZEMrS+DgCm9CzxDJVKIfKShfLVKFMjckUy4RQlqtD9WWKZapQJrASy2pXP18f83xKTLZYpgplggmqwS3jX0z+P1Uoh3LPFsuEUFapnpSYdLFMFcoEVmJ515iXsmIyxTIhlKn1ZYplqlCm5p4plkW2IN8e+0xKTLZYpgplgjJF5z8nD+WdKpTJ3C3EMiGUlWp/MiZTLFOFcug4pItlqlAmsBLLhFCWpoyHyRTLVKFMPpZDLBNCmSBLLDOEEmJd+FNnNSX/nymUCbLEMi6UTttQK1mmWKYKZYKkWE6JT5ASpAllsvgMsUwVyuRjFmKZKpQJrMTSyHA1K7FMCGWyvkyxzBDK1LIyxTJQoaTFWYllqlCmxaWIZapQJmMsxDIhlMncLcQyVShTy8oUSzPDsqzEMiGUqTGZYpkqlENlZ4ul4U6PsxLLNKFMIASGZ2joVSSSu3U2H4c8pnLt2rV5/75w4UIee+wxXC4Xy5cvZ9u2bTzzzDMUFxezevVqbrzxRubMmXMoVXPOOedgGAbOwcUIM8duORE9tpyOI1sWIbZgdCLGSihTUUOxuDShTMWMxyiCqEfLOomGYoz4wOtsoRzKy0SJj3dME8qMshILHGcJZUYc8e7pzA9bsj5jaExkqlBmx5hgQKjMOiaZlx+ETrpQWsQoUbKEMlkfoA2IWEyGUKbnJdAGBUpYpAtlRn1qv4oSFkTGZF98k2GG4HeTFvP11rfxq9bdBYahEOxzIPwqvglDQpmKbgh6+93oAzbGTezMurkkiJoKrX0+/P0O5kxqTrtRJWMMhYb+Ejp7vFlCmSBiKuzur6Cpp4gLarel3TzT41S2D1Sxs6siTSgzYzYNjGNzd3WWUKbHafTrTkpUf9qNPzNmXWAiqzqmpwllZn1rgxN5oWNOllCmEjYVVocm8HTHfL4x7tk0ARqKMVkdquLhjlOyhHKoPoPVYR8Ptp+RJZTpcTprwhp/7DgzTSgzY9aHde5rX5ollKnopkFrNMTefX9j0ZTrUER27rppsCEc4Zdt56YJZWZ9m8JR7mk9P0soM+M2RgT3Nl/AneOeynkcNkec3NN0QZZQDuVksjlSzD0NF/D1Cc9Qo1qfVzqCreFKfrnv3DShzIzZEa7hN3vOzhLK9DoVWqLF9BuunDGGqbA7VMVfd5+UJZSp7AlW8MSOeVlCmVYWgqZgCS/vmJHWSplJS9DHB9trmT2liSK7dXdje8DL7h01jJ3cgTfHZ95A0Bt00rmjPEsoUxkM2gnvKMoSylQUU+G+6vO4dufrGLY8Y/aDKq46e5ZQpiLCCp49qqVQptUZinWFp7ZSZsVEYl3hmUKZFhMGT5NpKZSZZXmaDILlCkausiLgadEthTItLgpqKMc9KRlj4mqPZgllKkKPdYVbCWVmWY7OUForpVVZjq5QllBmxth6gpZCmRZnmGi9wSyhzIxR+gLWQhnHxCDoXQXAP/7xD6qr86+jacUhj6lcuHDhfmMGBgaoqIjN6vJ4PPT393Pbbbfx2c9+9lCrBYa614UiUHIcQRFfm9FQhaWXAQhDQaix5uZ8w5GFKkBVWHLWDKZPr2bzlkbefa8uK0aoAqHlLktRY2MQharkqU+gqDH5VOIzuM86aSqzJlezaVczb62ti9engIjXm7uo2AdNy9MkrYJQ45Kdkfs5cyZzwoRq1u9r4a3VdbHNdPJMFIrlE6tLyXVmCVDi9Sk5PuDnTp3CgopqNuxp4fm+XVibNaDE8lF0Ed8Ny7p7RdEEqi7AZuYtq6qsnC9Wnsn7Xft4tXVHVoiqmES12DqVLptuWZaigEMzCCngs0Vy1mcXJk5NJ6zAsspZTPFOYkd/HWt7NqbFuDWdPtWkWI1kf+UF7IBPi2BToEwNWsbE4kyK1DA2BUrVAJgKkz1nUOWaQUtgK3sH38GGSakWxCagTPXnLMuGQY3Wj08J5rxK2zApVQPYFZMyJYiZElfiOh+PfR4D4bWURTZgFyYVSjgtJr0sqFQGsQuDagXLuFiMHzsmVYoDq6/KTsdFzPXM58RIlErldXJsboOKSrUSQENQoRRZxqmoVCgD2IGyHDEAAh9ja/5BWfkYjB4fkC1dApUqJYQKeeurUsLYMKlUvAeQu8lY18Wo9oXo4fVEQ/9MxmioVCshNMh5PBWIlwPVSijne6MA1eoAqoAKxY9pqhS7zsVrX8BgeAM9gX+iADVqP5ogNgwhR1kqUKMO4BR6znNPAaq1fhRE8jxOMMmziBrXLNoC2xmMrkET+T8TKlBuC6AiKNVCOePKbEFUBCW2EFZ37IUlc5kybgr/DIfYa2sm12deAXz2CD0I3DmuHwBuexRdEdjtuWOEMCktLeXLJ5/Fus5mXmrMvl4BKHYTVQhi3y1yXPtsJqoiEDZQ890J7aAIwbLpk1kwtoYNLa28vGt3el72+MTifLsi2WPzavPeSxJxigBbrFN2yexa5k+sYVN9Kys3x++/tniMJvJ3u9pijR15a7QJFCX7Hn7GwsmcMHUMW+taeX31rnhMvns4YLcuKw1F5C1r0WlTmT1rDHVr6nnt/d3564uXlddlFBFzkDw78JkpRzGQZ5fBfByW2d8JVqxYgdPpZPny5WzdupVnn32W2267bdjlnnvuuUSjUb7xjW9QXJx755aRpra2ltLSUjo7O9m3b98Rr7erq4u9e/fKemW9x0S93d3d7Nmz55iuV1EUFiyITR5Zt27dIY9TOhSOp+NcyHonTZpEWVmZrFfWO+rr1XWdO+64AyhAS+WBMGfOHP72t7+xfPly3n33XebNmzci5SrxZXzu/c9XEFpGV1HUQESjJJsqhMB02tPGPYqIgRIe6lYwhcB02dAd6d+glaiBkjJr+9+/ejELFzl49Y19PPDH2PgfJWyghKIIM1EW6B5b1qQbNWSgBmJlJbrJo+6MmPjsbhFvhojFqdz0BTennOBk1fsN/P7Bt2Mzu1NeX8SrEPYoGWWZ2PwGQo81DEQ8CiFf+ncYNQT2QQMRv8+ZCoQ9SnLc49evdHP6NCevrm7kN/94ZyjGK4iUpJelBGMzwBO9e6YSG2MZKU2JCYG9Jz0mUiwIZUy6+Zbm5kzVyStbm7n3mfeIFkGwIr2LRw0oOLpFsiwUCBebhCtSxh8FFZwdanpOJQZmdXo3suHXsHdovDhpEi2BAM+3NvLLtn+mxQT9dkSrEyVRloBoSZSKcT3JmMGAg2CTB6EnBj+DWRZm2rj0yTRdATedjcWIaOw9+0+fg6VeOxvZwF/F4wC0B73saajEDMffV9XEW+Znybj0loHGQDEb9sSW+hGKSVnZAJeM25wW0xQq5o36KUTCWjzOYExZHz9zLsKlnkKL802e8jzKc/WzCUdiMYpiMqG0m2vHpm+52hgu5+GGhfhDdlTFYFppB58b82paTH2kjD81nM5gODZYXFUMZpa0cWN1bNyj4v1Pouq5vKnXcc9gbJyjTdWZVdzGbVXpY60bokX8omkZveFYd68mDGYVt/KNqqE666M2/qfpArrCsfFAmmIwp6iFb1a+kxJjsF78lrnmAt4ztvJn81Fm+1q5ozJ9YkeLHuCupgvpicTqU4TJHF8L/1U5dExbogN8t+X8ZH0KsZg7KtMnMbXrg/yg9VIm8G3KKGal9xd8teKDtJhOfZBvNZ+XVtYsX2tafe36IN9qSqlPmEz3tPNfVWszygpwR9NFdIVj18TPGJezWMyivOgZvLXfj5cV5TuNl9AR8iSP1SR3N3fUvJJSjuC7DZfSGY9RhMkEdzffGPNCWn09hp3/rr+MrsBQXmM9vfzMexJCW4biXUVozN38YO/F9AadyZgqzwA3j0t/n/sNJ3fvvoD+oANFmJR5/HxuQvp51a+7uG/3EvzBoZnNRZ4AH58YG2fpdHwOh3IG/ww08L36WBeeECZud4grJm1IK8tv2Hl8+zyiofhnQjW5aEb6+xcyVFbumIERiN8mBSiuKKfUDn0Bi5oK53ddy/luF6vam/n++rcxnTrTa9N3JImaCnu2jUGEh66bhsOgYtLQuGndEPTuLENNidHtJs6J6a3bhqGg7/by0qRJtPgDvNrcyn/vTT9WmGDf7UJJ6Yk37BAcE0mLce+1oaQ8ZNggUJPRnW4KPPVKsqybL7Oz9EQXbzS38r03302GeeoFSsRMKUsQyliZyd1gZtUXqshuW3M3mSjRlLJUwQ2ftLNsrou3d7fxo8few9NqpMWYqiBQml6WMMHdbiTzMjUIFme3lLvbo2lLDZqKIByP+/xVGmef4mLNe8386hdD47tNVRAuylYoZ1cYERn68hguyZ6Jb+8Oo6QsW2iqgqgnfczm9f+qc+YyB2vebeB/f/IiphDonuwJQ1pfMD13ITDc6XHqQDB9ycW4F2XhH4T4WvQ+X54tp/NwWGZ/J5gxYwZlZWXcdNNN7Nmzh6VLl45IuQ5HbBylEQpihqIYhhn7CeuYoQhG1MDQzdhP1MAcDEEwFmeGdAhGhp5jmJi6gTkYRgSGyiKsgz89TlFEbFP2kB6LCeoQiGDqqWWZiP4wymBKWUEdUso2owZKfwRlYOgxEdQRgzpm1MiIi6LGPcmIGCgDOoY+FGPoBmqfjtavY5gmhmkiggbqgI4ZiZcTMVH7dWy9RkqMidavY0ZTco/GHtN6YnGqIRAG6Gk5mWh9Bmq3gW6a6KYJAROt14iVFS/f1GOPqV2xGDNoonVnx6g9BloXybJEANRwbDiorhuYuonSa2JrV9Ax0THBL9C6wIiayefpuonaA2q7io6JERTY2pW0GEM3UbsFRos9WVbEr6K2qxgRAIEwBQRhoMmTjBn02zBaHJipZRkmolultbEYA5O+gJ3BJjdGdOi16IaJ0WVjW2MlBiYGJh0BF22NRRhRkSxfmAITEYsRJq1BD7saKoiGh2J0HXq7XKxsnIwpDExh0BzysKGxJhkTNaC9y8NTjbOTMY1hH6/WTyYYVlPiBA1dPnYMxK74/bqDZ+pnEYgMxUQM2NNdwgNNZyQWG6UhUsrfGxYwELJhYBIxBNu7y/lNy5J435JOfbSEPzQsoj9sS77miCHY0lPJL9vOQQidAdNJT9RNUFeSMSFdYXNvJXe3L0MIHSF0GnQP9zadQ3fYmYwLm4LOiDMlRuHu5vPpCLuGYgzBxr5q/rvj1GRcVJgEDQ0zWY7Cpv4q7uqYhyJ0FKHTagzw3eYL6IoM1Rc1YWN/NXd2zIrF6L3c2XpuWn1RYONANXd1zEyW1WH08V8ty+gIu5LL3G0brEyL6TL6uCMek1rW5oGqZH0dRh93NJ+XHmPCtsEK7myfn1LWAN9svpCOsDsZZxCTGYGJEDodRoj/arqYtpA77VjV+Uu4q3Vp8liZwqA9JSZqwl5/CT9ouSAZ02uqfLf+UjoC6Xk1DBbx7sAkAMKmyvf2Lqc76EiLaRn0cE/juclzpt+08/92n09v0J6M6Rh08Zv6Jclzr99w8L+7z6I/aBv6TGDSPejkz/tOAWEQAXojLvRoyrluQr/fzmN75yY/E4OmxqPb5xIKpcTp8M+905IxQVPhpR3TiQSGYnTTJBJQeWfPRAwR+6xGTTAiIvYeC+LXHoWte6rTztld22owQinXBtPEDApa95bEPyPQtaMUMmIIweBeb8rnUhDe5UGEYkv3mSYoBtDgSMtT3eXEDJnp9YVMbE1aMsaxR8MMZ8SETezNSkpZ4NonIDR03TYMAxGNDUNLPM+1DwgP3V8M04Swga1tqGxnvQFhMyPGxNZupOXgbDRiZaXce4kYmAN6fJqAwNWsZ8WYEQNH51AOpmHibNUhlHL/CpvYu6NpOThbI5iRjLKiBlp37P4ciRqIqImCyKpP60l3BHtHKOkHiR+1Nz1G6wxBWM8qS+kPDz2nK4AeNWLvryKSniJSYgzDROkJZOeuGzAwFCd6AxhhfciJUrwo7Xn9AczokPE7nfnXTs3FsKXy29/+dtqaRn19fXznO99J/v+LX/wiv/jFL/iv//ovbLY8q18fBJ7klotRCIWTC4aKSEoLZSqmiQiE8y5CLkwTEYighvSsFsoE+3a3s2NLE/U7WrH1hdNaKNPLAnUwghbQUcIGalBPtj4mYwwTbTCK5tezWigz4/btbGPH1mYadnfmfH22AQP7gIEaGmqhTCtHB9uggaPPjLVQDgy1UKbXF/ubvddkd3Mn2+pa2dfclR3Tb2LvMVEzWiiz4vpM3M0mjp48Mb0mjm6BGhLYe2BXUxeb69vY09adjLH1gbNdja0/mdpCmYoB9l6Ba68NZ7uau74eBdHiiLVQtmuIaHxJCMzYOFTdxNajEGj2xlooW4ZaKNPKMkHr1mhvLMEwRLKczJxEl50djVV0Bdx0pLRQJtjR3cmG1lbeagzTHvBSl9pCmYouGOhys6phKi1BH+vqx6NH0uNMQ9DZ5eXphhNoChXz2r6pyRbK9DiFde39vNHWzUuNJqGIxd7HhmBfdykPNJ5JQ7icf9SfiD+U/u1WNxR2dZfzm+ZzqI+U84f6M5ItlJlxW7ur+Gbdh3m6VWNzbzN7B9rTYiK6ypaean7adj710SLubTwv2UKZSqu/iO+3LaU+auOnTRfRFcpeLD5qKGzqHcNd7adTHzX4WcsF7PO3snOgnoZArBUpaqps7qvhzvaFNOsB7mq+iG6L+gxTsKW/hhsbT+c7LRckW/AyYzb1j+HO9jm06YN8q/n8rLioqbBloIY72+fQoQ/yTYuY1PpualzEN5supNPi9RmmYPtAFd9uO5EOPcAdTcuzyqoPtLC9v4EV3SZdRpRvNV5GRzC7vqihsGewjO+2nEunLrizIXtdTMMU7Bss5fvNy+kx7Ny57/JkC2Vm3ObuXt7u7uGRFneyhTIzpm3Qyz0NF9BvuJItlJkxXYNuflt/Nv26i//ddTaDQYuWFaB30MX9u87gyX12NnS2sKuvI+3vpikY9DtYsWc+fsPOiu3zky2UqYT8Nl7aM4OQofHy9pQWyrTCwAhovFc3iaihsGb7JHb2dLGhvYWd3UPXSRFU2b6nhqipsHt7DSKUY5xlWEE3BD070lsoU1HDguA+X6yFcpcXJSSwK0pMnGK1oYREbAF1E+y70lso0+sDZ6MN9570Fsq0mAi4mtXY2pL7lKyy6lq72byvjT11sdfrbUhvoUwvy8TZBp5GM299zo7Y8z1NZs6y6hs62VLfRsOOzrQWylSEbuLqMmMtlG2GZVkiCs6e2AXd3RbNuRmKMEzsvTrN29vZvq2FvXs7smN0E3tfzBUyWyiHYgxs/bGYzBbKzLK0wQi2nljLY8OeDnZsaWLf7qHrpDBN1MHYgcxsoUwrK+4Jan9GC2UqcS8CEINBhG5gxm+aLpcr2SN8sAx7TOV1113H73//+/0+NpJ89rOfZefOnTg6Z6KFSiAUjm2f6Mq9WwmASMS5cxu4CIRia0V5c283IAaDiAE/ps+DUZx79xPFH3vDcq0lBaD6YydIrnWpEmgDYTBNQhW587INRMEwLdfKSo0RukmgKs92M4BtQEeJmPirc38RsPcbKBGDwZrcMY4+A0/9IKEKF30Tc4+2sPeb2AIGfRPyxPTFhLlvUu4pfI5uk5JdIQKVNnqm546z98bK6502dCF//tNXIdxunty0jZ+veht7b6y83twbuwBg6xU4O016ZuX+KNl7FJwd0HtC7i82th4FV4ugd17+pRy0Hg13s6B/YZ7dEnrseOoVgidZz3wF0LsdVL0lCFQqRM7MvWtLoMeJe5cdbVH22pkJ+ntdOHc48Z7RnjMGoLPbi2uDi5JlLTljOvo8iM0+xp7VkDOmtc9HdEMxtUvyjwVt7fcRWFfKjKUWaw7Gae4von91OXPO2ZkzpqG/hMjTlYSLYfYl23OXNVhE57vVzF0WmzjhVJz8aMHXKKeYG9bdgd8I0DJYRMc7Ncw9N385/idqiPhgxqXWkzAA2vw+Ot+sYfp5u3PGdAbcdL9ew8Rz8x+r3pCTvteqqTk393HvCzoJvF5ByTm537/+oAPln6XYLs5/LgTCNsRrJYizc59XobCG4w0fkSW5z89wWKP8WReGDXrOzz25QI8qlL7hoHtx7sWnzYhC+Vs2Ohfl32kFXVD5tkrHaXnGyEYFVe9C+8m5Q4QuqH7PpP2k/JNWhA5VHxi0L4hd03w2jX9cczmG28s7exq487mXYzFronTMyzOqzYQxb8euG60n57kPGlCxPkTX7Nz3EmFA+aYg3TPyxJhQsTa2ikTXnDw7CwGlWwbom2q9ikKirKId/QzU5i9HmODd2Yt/ovVi8gk8u3sITMgdI0xw7ewgNDH3rmQJHPu6iNTkn99ha+pGr8wfozbEPjNGdf46ldYuzLL9zCfp6IbiA+jC7upBFMXiEjvqlJeX89hjj+3/uVa5HdKzUtB1Hb9/6MY1ODhINLqfD+QwSbZUCh0CQczBQcz+foQ/901WBEKYA4OYff2IQesLj/AHMfv6oacPMZBn5pNpYkYi0NuP0mt901YGQ4iuXkRXL1qPdVnqYBiloxeloxdbd+76tIEwansvakcfjg7rOFtfBFtzD7aWHpxt1jH2/gj2xh5sLb24W3JfWO29UVz7enE09uJptv7K6+jVce/pw9XQj7cxR0yfgbeuH8UfxtnUT9E+6/PC2WNSvGMA995BiuusYxw9JqXbBvHt8VOyK7eYKXrseHkagpTssI5zdJuUbwpSVBegdGvKuBYR61oxDBNHN1SuC1GyO0jpppzV4egSVK2JULIzTNkG6xuDo0uh+oMIpTvDlK3NMaO6S6H6XZ2SnRFKV+e+KWhdGjVvG5Ruj1D8rvVNQXTaGfO6Sdm2KJ6382z5GBU4egyK9ujY3rC+uAa6XFS/olG6Xcd4vdQypq/bTeVLDkq36QRW5d7errPbS/k/nRTtMehZWWMZ09bjxfecl9KtBi0vjbeMae4pwvlMEaVbDepfnJSzvqa+IpSnSyndarLr+SmWMQ29xRhPllOyzWTbc9OtY/pLiD5ZgavLwJ7bbWjoLyGwopqSbSZbnplhnftgEf4V1ZRsN3LGQKzV1tVl4G0w2P6MdV6tfl+srJ0GdU9bv752v4fgY9UU7zJofCb3seoKuAk/VkXxboP2Z6yPe0/AibminOLdBv3PWr9//UEHtidL8LToRJ7NfS74Q3acTxRTvEdHfb7EMiYU1ih+ykvx3iiuF6xvjuGwRsUzTpzdOo6+3IKnRxSqn7Xja4hS+ZK1BJkRhbEvaPgao1SvyrP2jC4Y90+BtzFMzas5ZDAqGP+Kgac5wpg3crTiRQXjVum4W0PUvJWnF02Hsa9FcbWGqHkn9oXTpijo8Z4tIWIxY94M4WwPUv1+jmbKuFBq/eFka5dlfQZUv+vH3hmkcm2Oe6UBlasHsXX5Kd9gfQ9MCKUyGEIZDFG22XqJMoCy9X2ovQFKtlh/wIQJxZt7UHr9+Lb15s7dBN/WbpT+AJ5dub+seLZ3IgYDuHZ3Wf49IZSEIzj2WcckcOzpgEAQW2PuOFt9J2YgiNqcO0ZtaMeMRGJukQfR3IEZDsekMRdtXRAKQVdP3rLo7IZwBLM7fkyV2P33UMdTwghI5WWXXcYtt9zCo48+yqOPPsqtt97K5Zdnbxc2kpSXx7a8MtVY6x1G7MccGIDO7iy5FIEQpt8Pug66jtk/kCWWwh/E7B+IlWeaOcVSDAahP742mq5biqUyGEJ092EaBqZhILr7ssRSHQyjdPYlc1I6+yzFMiGU6AbohqVY2voi2Fp7Y2UZBlp7X5ZY2vsj2Jp6EVEdEdXR2vosxdLeG8XZ2Bfb7lLXsTf3ZYmlo1fHta8/NtwgquNsHrAUSyVqIuITokTUsBRLZ4+Jb/cAIhxF6DquxmyxdPSYlOwYRAlGEREdT4O1WDq6TYp3xl63EtEtxdLRbVK2JYQajKJEDbz1waRYDgZCdPQP0NM2SMWGUGzYQtSkaJ+1WDq6BBXrI2iDUZSIQdHebLF0dClUrYmg+fV4TCRLLG1dCtXv62iDiZiopVhqXRo17xpog7G8ivdki6XotFPzlolt0EDoJsV11mKpdzuoeYv4sTItxTLQ5aJ6lYp9IDYgvrguWyz7ut1UvWKPtVpHoajOWiwTQhmLMymqyxbLth4vxS94cPQl6ssWy+aeItzP+XD0mSg6FO2xFsumviJsz5Tg6I0NuyjaY2SJZUNvMeLpMhy9sbJ8e40ssUwIpbMndgN39BhseTZbBhv6Swg/UYmzJ17Wvpg0Bo0gt625izVr1lDXbyewojorJpPmwSKiT8ZGyys6eOuzxbLV70uWJQzwNmSLZbvfQ3hFVWzoiQHeRmux7Aq40R+vGCqrKVssewJOxOPlOHtiw3S8zdlimRBKZ09sv+RcYukP2XE9WTQU12pkiWVCKB29eiymTc8Sy4RQOnpin181ZFLyz+yeHD2iUP2cPVmWqzNbLBNCae+NDaFyderWYhkXSntvvMuzM5ItlnGhtPdGEaaJozuaJZZKVDD2VR17bwQMcPRELMUyIZS2/pho2Hsj1LwTwaYo/7+9+45vo77/OP66k2R5x07iJM5wdshehAQyGAkhgQBhz/YHZZW9N5SyWkoptECAlpRVNi2j7BUChTASQsgiew87Trxtbd3398dJsqbteEQen+fj4Ydt6aPvfXU+S2/dfe97OF0uCiur2FtVQ/63bmzVgcBZ6YkNlmGBEsxDu91+in39DwZKa7XHPNRa7YkJlsFAaakxH2+pcccEy/BAGXrOjvhht/OKSnSHWac5PTHBMhgotWCNyx03WAYDpeYM1nniBsuM9SXmUUtA83hjgmV4oATqDJb2rfvMI6WBunjB0rajxAyBgPJ64wbLYKAM0vckCLuF+yC4087nix8si0vB66mtiRcsS8rMr+Blrf3mtmdYzMcFp4JsjCaHytNOO41LLrmEoqIiCgsLufTSSzn11FOb2mydgk/YUE6UKyxAGgq8PlR1dShYRgTKoKhgGREog+IES63GBZXVMW2FB8vwQBlqKl6w9KuYdqKDpbXag2VfZeSYiKhgGREoQ+shNlhqPoXm84f9HhssIwJlWL/Cg2VEoAyKEyztlQbpOyI/mQaDZdYOX6Ct2kAZqgkGy62BmrBAGaoJBsvNtc/HXqbIXeeMuMZ6KFhuNEI1wUAZqgkGy3UGyzZs5N73P+Wtb1ZhcYWvq0CwDDupOjxQ1i4vMliGB8rImshgqfs0rDXRNZHB0lpqpfsSI6IuFCyXmMFSK02hx/fm2Nna9anI3uYj/YfaYOkvs9P9Gw1bdW1dMFhavzWDZXigrO1nZLAMD5S1NbHBMjxQhrcVHiyLyzPJ/iwjYm9TdLAMD5ShmjjBMjxQ1q6HyGAZHijD24oOll6fJRQow2vCg+Wu6k543suLrdseWed8t3v8mrBgWViTjfO/sXUpYb+HB8rQ8wsEy80fms8vPFBG1Owy2PVR7boKD5QRdWHBstyZivauGShrawLB8mPz7xcRKIMCwdLzce22EBEow+rSi2uDpdtjJfuDQKAMbyssWEYHylA7e/10WlAbLCMCZVhdWomPrl+YwVJ5dfI/s4aConljnGAZFSiDUirD2g4LlKF1FRUsIwJlUJxgqfkh/5vaQBlkq/KRYtHYtGsXF734Nm8/8L9QoAzVVHrottQTer7hgbK2xh0RLDUDui9xmkOtwvoeHiyjA2VQeLCMFyjNfqiYvZXhgTK0TKeHTmurQm2FB8pQTVSwjA6UtXWRzzk8UIZqPF7StpSF2kndXFIbKIPiBMuIQBlWFy48UAZFB0vL7pKYvZPK640JlnpRSW2gDIoOluGBMrwmPFgGw6Q3si1VVoGymP0I7rhrjBadp7KlvP766zzxxBNYyrOwb49/GAZdIzAjdmTgCmexoGWZ4zNUVYJd85oGOdnm9+hAGd2W1QqBvZNxm9J1VG42ymap3UsZpx2ji1lj2VcJvkTL01E2q3lyT6I+6Tq+vGyMNCu2wsrIIBigrBZ83bLxpVliA2VUv1SqDfwqbjsAWC248jPxZlnJ3FIVERYjl6ljpNrQDJW4xmLB2SsDT5ae8JCIslmo6ZOOM1ePCZThDJsFf5q5rhLWWHXOvXwsC3fuZecnRRGhsrbfGpV9U3H0iA2UkcvT8WVYzJOxHPH/NoZNp7KvjaoCQnsp49dYqeoH3ZcY2Krjt6WsGp4si3lCU4Iaw6ZR0c9K1RA/3b/RIgJeuJp8CyWH+GICZURbVg13tm6GnQTtGFao7G/BMdoZEyij2/Jka2BAakXimor+Or6x1XR9M/7hfMMClf10LJPKYgJlOGUBV46O7lcJawwLVPXVyZiyN2IvZbya7Gl7cL/bjdSyxG15O1uYd8Yh3PTUD+aZrPHaKtDJOaLIDJRx2jIsUN1Hp9ORRTGBMuL56WHPr46a6t46aUfujQmU4TyZGsbJJWagLEtwJSpdw5VjnjgXERTDaVCdb8F3VEVsoIzql7uTHmgrwWuaBjXdLFQc4aLXqwnGcgdqSg93xwbKqDp3tvl/Yy9P8JqmaTi7WNgz1YgbKINcXWwUTSYmUEY8P03Dm21B8xEZKMPp4M6xsWeihfxvfKRUxq/rObILs08cwNN//SkmUIbzZZivs9GBMpw3287esXYzUFbFHxalLBp7Du0UN1CGM9JT0PwqNlCG12TYKR2eGTdQRiwzLQUMIyZQRtSk2qke0iluoKytSaFmYG7cQBlRl2IzT15xJa4hxYa7oHP8QBlW4+3VOW6gDKfZzOUpd+Lnp9lsGN07oxfFBs8IPfLiB8pwVqu5syzR+zdw7D2jefPNNznnnHO49NJLE7dVh0aHykceeSR0re9E97eUL7/8krvuugu9JpXUTX3i1iiPB+XzoaWkoKUkPpFE+Q3zCj22OgY3e31mSLXWM61n8FNKWh0n3QQ+aWgpiU+UUYEgqdnrPplGuVzmP0Fm4sHNoT6l1nESk9eHqnGYz69T4kHQmssDPh+qjsG/mtdnBuv6ToYqK0fLyMDoUsdAabd5CL7Ok6a8fvD6Yq5tGk6vcUNxCVpWJr4eOQnrTjtrOFvX7GXJqpLEbbl9aB4fvk6Jl2dxeNB37oWsDDx94o9DNNvyozt9eLrUcSKX28Di9OKuo8ZW7cO2tRiVmY5jYOLlWdwG1ioPrm519N1jYK3y4upW90lv1ho/qburqDqo7uWlVHhx9KjjxLEag/Q1RajMdCqH5SSs070Ke4kHR8/E60H3KlL3eajpWcfyHAaZK4tQGWmUj6rjb+NVpO3zUJOfuC3zsm5111jcipyVe7j9uZMShspQW3s81PSqZ3lFbmp617W9KLKXFaLsKZSPTXwIS/cp0ovc1PSq4//Ur0gvdNW9zn2KrGWFKJuVyjHdEtf5FWm7nTh61XFio1eR+UsxVaMSt2P2C9KKHDh7JG5LMxSphQ5c+XXU+BXpq3aDruMYnmDnBObeK3tRNe5udZxEYoB9TzWeOmsUtrW70DQNz+CeCetQCltxFb68xK+zQ4d3YdLBPfjX8ysT1mAoLJvN65Ib/fIT1wGWfZUYOXWfAKOXVGLk1lFjgLaz0Py5Z92TZmtllajsOtpSClVYjNa97sOwqrAYLT0dLbOOseOYO420jLprjL0l6J0TvyaE2qquRktL/BoKmO+ndeUAwCivQM+qe50DKKcLra7372BNHTkHwKg2h+3p6YnXw+hLuvD9999zww03MHfu3Hr7Fk+jJz+fM2cOAP/3f//X2CYarU8fM0gadg8KRaILEylDQeCTQrwVrjxeM3wCmt0e9w+nPF5U8HJFmo6Wao8f9jxeDKd5yF2H+BuU240ROOSuZ6TF3TCVxxP642uahpaWFvefQblcGIG9qzrEDZbK5UZVmHv5tMyM0F7ZCC43RkUlyu83l6drkBXbluZ0Y5SVh5YXL1hqDhdGaRkohd4pG5UbGxg1pxtjXyl4vSivDx3iBkvNYQZBpRS6Kxuja+yZbmbNPpTfwOLOSXxmnaFQLjd4fVghbrDUqz04i8pJ87qw7S7D2zP2xcVS7UbbucccEtA5F0+v+C9Aml+hHE40j5cUiBssrdVe9K1F4PORWp2Lq2+cmhof1s2F4PORVpmLs3+CFzxDoWpqwOUiHeIGS1uNj5R1u1E+HxlVnalJUGNfuxvl9ZJZ3pnqIfGXZ6v2k7q2EOV2kwVxg6XV4Sd9dSHK7SG7LJfKYfFqDNJX7Tb/vxwusiFusLQ6DDJWFqJcbjqVdaZiRPy2MpfvRrnc5JR2pnxknOfnMMhcUWi+4Dtd5KwkbrC0Og2yfjaXl7MvN36NyzDDVB01Frci+6fdKJf5P5+zopTSOP0KBcEaJzkluZSPjj3z0+JRZP8UrMmhfEzs4SmzZrf5/Gqc5PxM3GAZqnO46LSvExVj4tUEnl+Ng+x9OVSOjq0JBcrqGtA0sldoVI6OHUNp8Sgyfzb/zlml2XFDo+5V5t/P4SBrJQmDpe5TZCw328rcl0n1yNgwqPkVGSt2oRxOMkozqRkRvyZ91W7z/6aOnQWaX5G2ehfK6SStNBPn0Ni2dL/CvsZcnr08E/eQOMsLBErlcEIdl8lDKWzrdqFcLqwVVfgGxQmfhiKzshrHviosmwrxD4wTGA2FZdMu83WvrqlhlELfWojhdKFVVaP6xA/X2rZCDLcbrboG1SdOYAwESuUKjGfcvSdxsNxZhOHxoNU4ID/O3zkQKJXHA3v2JQyWqrAY5fOhKivRHA70bvHrjOJ9KI8XzeFEz4t/WNfYW4Ly+jBKyxIGS2OfubNB+XxoLjd6bk78urJylM8Hbjd6Tvz3JKPcHLJmVFUnDJZGhTkEQPn9aB4veoIQblRWmzVeH3pG/LBrVNeYeageO3bsAKCgoKDe2kQaPabyoIPMeVY2bdrE2LFjI762bEk8fUdz6N27t7l30WpgeKtjxyz4fBiBPXTKUGZwjBrrEAqUhjlJqnK7Q/8QEQyjtsbvRzmdqDjjKAynC5QByjB/dkadiR4MlMGaGmdtWA0XOHEHv998Hg6H+SYR3vdgoAycoGRU15gv7BE1ZqBUfsP8qq6Je4hfGQYqcPhcKWWG0KrItoKBUvn9KL8fo7IKrSLyKg+hQBk4WcioqEQri3PY2jAguBvf7zc/rZVEDcwOBkqfuafSqKhE31cRp8Z8scDvxygtN09oiqI7PLDHnKZB+f2o0nKsReWRNdUetF17cFY4SMtMQZWUYdsdOQA6GCiVx2uuz9IyUnbFDpK2ODxm8MTcDikpJ2VHZF0oULrd5vraV0bqtqiaYKAM1pSUhcb9hLNV+7BtKQqtT/aVkh41OD0UKN0ec3zu3tKYAeyhQOlyh2oy18dbXiBQOpxmXXEJWeui+h4MlE4nGH7YW0b2mugag4yVu2v/Bwx/3NkbQoHS4TDbKi6l0+rYtjIDQQNlQHEpOauinl94oAytqzJyVka1FQyUNY7ENa7awJWoJhQow/93S8vJWVEaWxcMZsqAvWWxNcFAGazZV07O8pLYmqVhy1MGlFaQ8/O+OG0F6gI1nZZH1xi1YVEpKC0ne0XsHH0oal93lIKyCrJX7I1qKxAoHY7QOPWslZFXmAoFyuoa8wNSRWwNhAXKGodZV1VN5qrIqY3CAyWAqqwmY3VsTShQAvgN0n+JnSIpPFCCuYcqbW1kXXigBHOPmH191PLCAyWAoUjZWBizvPBACaAcTqwbd0fWGArrhp2kpeo4K10olwvLpsKYmlCgBDAM9K3xl6dvLUQF3quU04W2I8562FYYOkSr3G60HXuilhcZKIGY99uQnUW1J614PFAY9XcOD5SBGrUndtsLBsrQ7wlmnAkGSsAMjXtjj0IFA2WopjT2dc/YZ74fBZeTcHnBQAmh97eYmvKwcyACwTKmpqIq9H4LhL7H1AUCZbDGiDOzTXSgNByO2BqHA7+zhsJCczsJ7rhrjCafqPPhhx/G3PbRRx81tdk62e128vPNT2eG3Y0RCIgQCJRR4TA6WCqvLxQoI2qigqXyeGPGOyhDRQbL8EBZWxQZLMMDZXhNVLBUHk9ob2eI3x8RLCMCZVBUsAwPlKG24wVLlzsmaEYHS83lCQXK2rYig6XmctcGylCfYoOl5nRjRJ+JFhUsIwJleE1FZVTNvsgXrjjBUnd4oHBv6AUj2PfwYBkMlMrjwVnpJi071awJC5bhgTJifUYFS4vDg76tKOJDR3SwtNSEBcqwvocHy4hAGV4TFSytNT5smwojT1aLCpa2Gh8p6wsjPwhFBcuIQBlVk7mhPGx5YYEyvC4sWEYEyqBgsFxbHqiJCpTBdVXtIHtN2PLCA2V4W2HB0uowyFwZtTxlmEEvPFgqYj6c4Y8MslZXWKCMWJ+1odGsKaqzBswTHOpbnsUTFijD+15SGz4jAmXE84sMlpoRZ3nKiF1edNCNCpa6N2zvY6gmNljqPkXWz1FBJSpYRgTK8JqwYBkRKIPiBMuIQBleV1VN5moz5EQHytAiK6vJ+KW2JiJQBtaBqq6JCJbRgTJUGhYsowNlqCYsWMYESgKvsTWOyGAZFShDNzuc2IKh0VBYN+5GOV2kZafirHKZOz3Cg2XgkHf0DhLldEUGy6hAGV4XHizDA2WoJjxYxgmU5u0G7I4Kn2GBMtRWeLCMCpThNeHBMjpQhhZZvC/m95idSV6feaQsWBMWKCNqwoJlMFDGLC9w5C7895i6qGAZESjDa8Leh4OBMmZ5ldUxv0fXRQfLeHsolaEigqXhcJiPS3FjGAbp6elNOlGn0Ye/Fy1axKJFiyguLuahhx4K3e5wOLBY6pjjq5n079+f3bt3Y6T70CsMDI8XzedLuIs3/FB46Pd4NcF/IF03w2OiOqfT3PgNFRkWa4swnK7a1J6opsZp1lgs5mHveJ9IAsFSczpRwSmUogWCpQ6gWyICZWhxfgOCh9ZtttBh75g6paCiEhzOiE9LkW2ZwVIH8/BRvH4HgqUOkGoPHfaO+/zKK9BqAnsq4n0KDIZPpVCpKfE/CQeDJaAy0sxAGWegtPL7obQcS3UN+I1QjaPKRVqWvbampAwbYGSlxV2e8htQWkYK4M/NiAmUoTqfD62kHHu1w3xMvIHZwWAZaCthTUkZaYC3WxYpGwtj3oRq2yolo9oReNOJ11YgWALebpmJa4pLyARcPbNIW1MY8wYaXpddY+69jLsHPhAGswFn76x6axx9s2MDZVRdTo3TfCOKDlOhdVBGziqoGdDJDJ6xVSiHk5yVZVQP7lS79zFBW7k/mGOYo48KRCxvJVQNyTGDZ7zlOV3krCilamhubFgMb6uknNwf3ImXFwqWUDWsc+LludzkrCihamjn2EAZ3lZpBTmLPXUsLxgsoXp4l9jgGVanVTviB8rwtsoryf7JF5gKLk47oWAJNcPyYgNleJ3DmTBQhhZZUUXGCn9ge4m/PoPB0nlQ97iBMlTqdCYMlKGaqmrzfqXi1iilIBAsPQN7xA2UoVqXqzZQBtZnWradvVsDwScYLDfuCvQvQTuBYGn07RE3UNYuL3AIO06gDNUEg6VK8PoSaCd0GDxOoAzVeczpi+IFyvAa9uwzn2uCvYTK58Mo3oferWvcQFnblnl7vEAZqgkGy/qWV1aOnpsTP1AGBafriRcow2qCO4sS7ZU033Or0bMz4wbK8Dqo+5B3eLAM7enMMPs/aNAg80hwIzX6RJ2NGzeyYcMGnn32WS644ILQ7RkZGYwfP57MzPoHoDbFCy+8wDPPPIO+NxXb+pzIO7VmuKR5MATW1VagRmuGEB3842t64j9mqKY5QrsyD+triU5QCoRJzWKpPYu+DvVthMpvHvbXEoxfUn4D5fOiWSx1nsTUYIZ52D/eWFpd17jpHxfTJT+HPdv28bdrXmDqiQdz1k3Hk9E5jRumP8DeXaVMnDWGs248no9f/JpPX/qmaf3x+zFcbjSbFd1e96Brs5ON/6eGwPp0OsFiqXNgdrMJfPDBYkGv68Sx5lxedY25vAYMdm/68gyMqqoGL++iu09l6Ph+FO8q42/X/YvHv76Jyt1unr7rP2xYvr3+5SmFUVF54J+fpiccu9WsDFW7vAOxvSij9kSFpi6vAWPTAPzVNWi6Vu9JHfEMGtuXyx44G8NQlO+t5M+XzOcPb5knxdpTbeT17cz9v3mc6j0urnn8fHSLzvO/e41lC1bRc1gfrn38N+xYt5snbnwpsutOF3o9J300lBEI3XW9nhlud4Ne7xoSQ1To/Ig6TnL1eNCszXM56OD7UZ01wffIZlmeD/R62jL89dc0lOE3Z7UJOP6RKbz55pucfvrpXHXVVY1uttF7KgcNGsSgQYM44ogjSD8Qb1pRhg0bBoDKDPs0EtowjfhhUBm1NZpWf00D20q0YSlDmX84AN0SNzBG1ACK+usU8YOl8vsjlxdvY1eRn7yUl8TBUpl7DTWIHywNVXsB+uCUSjF9MsMiSoU24ETBEhX4lObxxH3hUH5/7QuL1Ra336Ga8OVFBcspJ06gcEsxD5zzV864aS5TjhvLKVfO4vfn/I0rnjyLc245kUevfp6Jx4ziuql3ctW8C/nE5Y5/Bl4gLKLM7USzWBKfqafMvaIG8V+Ild8fGkqhpaSgxznZS3l99dYAgVBtjs01iH/Gn/L5MAJj67SUlPjh0+/HHxjLV1dN8BCKGfYSvHEHgqDy+822mqGmzsHugaAUaqsZahqyvAGj+pCbm86NJz7MWdcey9Tjx2O327nr3Ec49/o5rPtqZd3LCwTKepcXVteQthr0/KjdGxIjEASV349mtTVLDZh/y0RBL6KteDWBsBh8DdbjXQkkrKZOhqrd1hN9OIquSfDeF6xRfhKcRor5vxfoH5qOHnZCZsnuMm4/5RHcTg/n33Yik6YP5caj7kZPS2X6mYdxwlVHUrm3mgvvPouHL3uG0m3F/PGDW1n2+Qqmzp3Ao1c/x8xzp5HdJZPKEvOwqeF0gRH48KdbEoZLw+UOhZeENU5n1PtknBq3uafdcLlA0xKGy2AdmpYwMIZe0+sQrFFej9lWgnAZ/n5UX01doVH5/aH3SEj8vhb+fltvTV2hMfjeHvYeX2ddQ2rC3ifXrVsH1J4v01hN3qV30003UVVVe9JGZWUlV155ZVObrdfQoUMBUGl+lDUqCKo4h6Sjw6IKhLR4h6UjHtewtmLGNkSFRQzzxJt6z8Ay/HHHQMS0FWcsRX01CZcXfQgg6pB38ISZyMep2n/OwPNPuPs/uK4S1IWCZ3hN9Lia8LCozGXHjIUJrwm25fPGHAbJ79uFjT9tAmDDT5s57sKj2Lp6B6W7K/ApD/1H9Aa/nyUfLuWv/7uXDUs3me1EH+YJD5QQCOx11AX76fGYL6RRfQ8fmxtvfG14oAzVVNfE1vmNiNuUxxMzODs8UCaqCQ+UCWvC+h+xvOhDmuFBsCk1iZYXPdg9Iig1X01D6oYfOoQfP1mGUVXNj1+sZtiEAXg8Hu57+Uq+euV/dS8vPFDWtbyoukbXxHt+cYeyqMh15fPGjPFqTE3C5UFsW9HbQlRYVH6/ufezjhogtp3A0KGIbT24JzyqLqYmzv9DeA0Q9zB66H8v7LXDCDu8X1Zcidvpwahx4PN48XvN9yrD6eLwkw+horKMyr01dO7eiZ2rtuGoqKaypIrszpl88+9vufbx35DdOSMmUNZ2wB9z7gGEBcq6aqICZfRrWei26PfbOCLqlIo/XCkqUDakJtHyQu9ZweX54gxriq5JMPyr3pAbdmJP+G3x6iIY8f7/GvZeHlPXkLaUQmmK9evXA7XZqrGaHCqdTmfEdSKzs7MjrgXeUrKzs+nbty8ARnacMR3xwmA84XUxeyn3ryZi40u07LDQGBMW97em3k/efjPkBOtUgvEh4cEyGCijnmNEsAwPlKEC8/kbbnftGXLhYTGqLqYmTluhk6+iw2KwJk6wjPnbRAdLv59tq7Yx7qgRAIw/ejQAjooavFUunNVubHYrhtvNd+/+yLVT7+SjZ76obSf8RdYw4v6dI+qig2ewJixYRgfKiJrgmZlRgTJUE1g3oTq/EREWI9oKjqGJCpTxaqIDZdya4POL8/8eEQijwmKja8Lq4i4vGJjiBKVG1QRvi/emUkdbmTkZOCrNMdfVhSVk5WSwY8cObpx+N2t/WJ+4nTiBMvx51z4ofl1D2mrIOkAZkWEwThCEqNDYhJrwQ9OhRSZqK3S2efy9jxHBsq6aYDuBoGi+5sX+b0XXxa0J2/4T1YQHy3j/e8H+RqyDGgd5vXIZP2MU37+/FJQiLSOFvF6d8SkvVaUOoPb9oabCQVbnTHZv2M1NM+5l3vUvmu1EB8pEywsPlKEbI4Nl3D2USkUEy5hAGX572M9x66KCZdw9lA2pgYj3HuXzxr7PBNqKeUy85UV/CIq7vPrPRq/rMRGiPgA0uqaux4T3I9ODx+Ohc+fOTTrzG5pw+DtI0zRKS0vp3NmcW62kpKRB4yOaw/jx49m2bRtGJw+WkjiHAZUC1YCV3ZA6pYD692o2aGMy/PXnXcOPUlrdn4YMf+3g/EQbVeC5qURhOLwtj1H7mHhNBQ+FJ6oJGw5QG2QTB/CG1ODxmMMPEtVEheb4HQ+rUwbfv7eUMUeO4KEFv2fr6h1Ul1WTnp2G8nmp3FOF1quOPvm84DKHDBiJps0g8CJWU3e/lMeDPxiK66gxCBw2qWOjUR4Phj/wYaSuthpSQ2DcUj01ut1ee9g7UV1F7V6kJtVUg56WWudhTOXxhM60bHJNVTV6enrsnq8GtFVVbm5PABkZNiqLy+jSPaNpfQoeBs/MSBw89+f51VcTCIN6Zkb8IBheF5gLt8k1gcPgdS4v8D9c53YQFizrrAmeyFDX/5XfnzBQhtf4w8JuopqI6Z4SMGoc6BnpGDUO0jNSuPVfV/HQBU/iD1wQ47ATDubnr1aSUZCCv8ZJ+AmZmTkZVJUGA7y/9mhFHe8NEXsi6wkvdR7yDg+WTakJu6/OQ97hwbKumrAjYAkX5/OiWW3xA2V4W3W9X4Xaqv/9v6GBE6g/LDZ0D2Y9zn1kLs8//zzjxo1r0kk60Ax7Ks8991wuu+wynnzySZ588kmuuOKKAzYh+vjx4wFQOXVcmqg5BQ69HjANWVa8Xd6NbasBzy/eLv2E7dT3wtGAGnN5dVyeKjiMwajncERouINCKcXfr3+Bm2bcQ2VJFW89+gF9h/XGarVgt9op3rG3znaUzxt4ga3jk0F4v+rSgJq6DjtH9stXf1sNqfF4Ig7FJarx1/HGHr68+raXOodOhC+vjjMe92t5DanxePDXEd4i2oqqWfP9Bg6eOQaACceMYfU3a+psA/ZjHZRVHLh14PM2eh202PKU0azbQUNeO+sKlCENGUrVkNcDZWBUV6OjuPWlq3npvn+za0PtVECHn3YYq79fS0VxFRh+SovK6TWoB+lZaWR1zqSyJOxD0P68/tRT15AxlA16f2zge2hDxlA22/JUYBxmM/W92TR072MzWLZsGQDjxo1rcltN3lM5ffp0BgwYwE8//YRSigcffDB0WLqlBVO1SvejUvxonpafykgkQTP/I+d2z+GOV6/F7/Pz04KVrPpmLW89+gEPf3kPmV3TeecfsXOv1tmf6E928Q6xxPv0Fz0GqL6aeMtq7uUF7wvuuW9qTUOX11x9qm95zb0O4rSz6eetlBWV88iX91C8fR//eeQ9Dr9sQoP2zrSXddCiy9ufdZBIa1sHUX0+4szJjJh8EOlZaZx752m89/dPWfzhT3Qr6IrH66Z0ZxkAz97xKjc+ewW6ReeF378ef9nN4UCGqWQsrwNTFoNVq1YBtTvqmqLRUwq1FpdffjmrVq3CuikLS+GBPwtdtC8HnziKfuN68+Y9+zmBf/ibRKJ/qQNZE12XqPZA1jShLXtaChc+cC6HHn8wjionKPjxs+U8e/sr5vW0Eyzv178/A7/Pzyt/fGu/+z5wTD+6FXTlu/d+BE1jyMEDOPbCGTx6+fwGtTP68GGce8ep3HbsH7jry6u598jHMPxGs6/zJ354gCsm3QZK8avfncZL9/1n/9qhaetpv2uas6320Kf9fAs+9tojqS6p4esXl+zX44SIx9/VhW9oBX379uXFF19scntNPvy9YcMGLrvsMmbPns306dNDXwfKtGnTAPB3jj8BqxD7o2R7GV0LElxjuy7heysOVE1D+1TXY1qipgX6dN3Tl5LVOZOLR13PpeNu4qrDbsdZ5cJmt9Wz7MY/v4Fj+3HYiRNCt69fujlxoKyjnUbV7UdNMFAC/Op3pzWuT01YT41bXoLHtMTyWnOfGrFPp2tBLiVRl34VorGOvPIQAKZMmdIs7TX58PcjjzzCddddx4MPPsjjjz/Ou+++i2E04KzrZjJ16lSeeuopVCcPymKg+Zth4nPRYe3bUUqXPrlo9ZwjFdf+HnZr6ZrmXl59A7iDNfW1t5996tG/G4edOIGze/8Wt9McP+11e3n5/v+E+nTFYxcwbNJgUlJT2LR8K49c9BRejy+ivUNmj+XXd52ONcWKz+vnscvns3HZFgAOP+1QzrntFNDAVePmttn3c949Z5KaYWfIwQP5+Lkv2LxiG+fecSq3HHMfACdddSzHXXQ0hmGwa0MR953xcIPWU9denbn+n5fRJT8Xr9vLE1c/y5ofNjD6iOFccP/ZFG4pZsjBAyjaUszdp/4Fr9tLj37duPXFq0jvlM7qRWs5ZPY4rp16J/t2lfKx5zVmp5zFpY+ch8Vq4e8/PUTFvkpuOea+0H1oGiOmDOU3953FjdPvBuDSR85j4rHjKS0sY+/OEnas2w1KkZWbyVVPXET+gO7Y7FZevv9Nvn7z+0b97eqsaeg/WTNvT22qT3F0Lchl3zYJlaLplKb4/nvzf7vVhEqfz8eQIUPw+Xykp6dz1llnceWVV3LOOec0R//q1adPH/r378+WLVswurixFO//1QuECKoucaAMg6y8TCqLq+t/QEfSgm+Udek3og+Fm/aYh70TLO9fd78ROvP18kd/wzHnH8kHT38eLALME2iumXInSikGjevPVfMu4popd1AwtBcX/elXXDf1TkoKy8jqnImz2sULv3+dkVOH8sjFfwdg9BHDQ4sdf/RojjnvSK6d9jscleZULg1dB1c8egGLP/yJdx7/iCETBvK7N67n/CFXAzBgbD/+9H+PU7SlmPvevZVpp07ii1e+4fK//YZPXviSj/65gElzxnP8b4+Jaffv17/ASVcey6Xjb0q4noImzz2EweMHcPGo67Gn23lq6YPsWGde5u+yv57Pp88v5MdPl5OZk8G8xX/i5y9WUVXWzP8PSdqemry8JI4Ys6VayeqSSemu8qT1QbQfRq6b6upqunTpwvDhw+t/QAM0OVRaAzPE9+jRgy+++IK8vDxKSkqa3LH9cfTRRzN//nz83VwSKkWT7dtWRl7fzhIqW5Hwod9HnDGZs289mazOmdx7+sOsW7KRyXMP4YRLjyElNYWMTunoeuwRi849crj1xavp1rcrhs+g56AeAIybMYpFb/9ASaG59yc0LUsdJswawyfPL8RR6WjwY4JGHzmCB8+bB8D6HzdRU+6g1+B8ADb+tIWiLcUArPtxIz36dwNg5LSh/OHsvwLwwwc/Ubkfy4vbhyOG8+Xri/D7/DgqHea40YBDjh3HgNF9uehPvwLAarOQP6AbVUvl/yHZuhbkUlFchc9z4M4MFu3XtCvGs3DhQmbMmIGlmS432eRQef7551NdXc3ll1/OI488gtPp5JprrmmOvjVYMFSqTh45C1w0WdGmvXQflMemJQ24RrNocVtX76DnoB6kZabirHbx1Rvf8tUb3/KXL+7GmmKle988/u/3Z3D5hFuo2FfJ3CtnM3BMv5h2rnriIj6c/zkLX1tEWmYqb5c+b97RiGnZmjqXW4xAaPa6a6fPMvwGFmv817KGLt4IuzpXir325b6u/uu6xg1H/Z6aipa/iIXYPz0G5VG0oY4pz4RoIGUxWLRoEQAzZ85stnabPABx0qRJZGZm0rdvXx599FGefvppDj300OboW4Pl5+czZswY0MDfzVX/A4SoQ+H6veQP6ZbsboiAoi3FfPvfJVz5+IWkpJrXBtY0jZRU87q9aVlpuJ0eqsqqsaelMOPcw+O2k56dzt6d5lGUOZccHbp92ecrmXLyJDr3yAEIHcp2VDpIy4x/5GPxR8uYdf5RpGenRzymIVZ8uZpjLzRPZhwyYSAZOens2lhU52NWfbOW6eeaJyVOmjOerNz4y3M53NjTaq+fXLxtLwPH9gNg6imTQrcv/3I1R545BYvVQnp2OoedMCHiuZ12/Qmh3+MFdJEc+UO6UbihONndEO2A0dWFx+OhoKCAIUOGNFu7jd5TWd+p57/+9a8b23SjzJ49m+XLl+Pv4cSyMx2tMbsfhACK1hdz6Gljk90NEebRS5/mgj+ewz9X/xVHhQOXw83PC1exeflWnNUuln+1mmdW/5Xi7ftYt2RjRLAKeuGu17jx2SsoKyrn+w+Whm7fvnYXz9z2Mg98bI63dFa5uO7w37Hsi1WccdNcnlj8Jz594Uu2rKrdc71swUo++9dXPLrofvxePzvX7+b+s/4as8yRU4fy0pYnyc7L5KUtT/Kvu9/giWue5fr5lzH7gul43V7+eM6joSumJPLUdc9z64tXc/xvj2HF/36htKgcR2XsGNO3H/uQx394gH07S7n9uD8w/5aXuOvfN7B3Rwlrl2wM1X373yWMPmI4T694mD1b97L8q19C9z15zXNc/uhveHr5w2i6xt4dJdwx54+08dnn2oUeQ7rx9YuLk90N0Q4MPL4n69at4/jjj2/WIy+Nnqfyueeeq/P+3/zmN43qUGO5XC5OOeUUqqursa7OwVJmP6DLF+2HzW7l1o8v48Hj/o7HWcfVfIRoAN2iR85T2Qj2tBQ8Li9KKUZMGcr1T/+WC0dc18w9Fa2Zpmvc9tFlPH7OC1SV1NT/ACESMDK9eMeWkpKSwn/+8x9ycnKare1G76k80KGxPqmpqRx77LH8+9//xsh3SKgUjeZ1+yjZUU6PQXlsX7k72d0Rgv6jCrh+/mUopfB5fDz0myeS3SVxgHXpnYPH5ZVAKZps5u2H8uGHH3LkkUc2a6CEZppS6KOPPmLz5s14PLXX4L7ppjjTWrSwuXPnmqEy14NK9aG5mvz0RAe1e+0eeg3vLqFStAprF2/kkjE3JLsbIol6DevB7rV7kt0N0cYpm5/PPzenW5s7d26zt9/kE3UefPBBNm/ezKJFixgwYACbNm0iJSV2PNOBUFBQYJ4kpIGvt5y5KBpv+8rd9BnZM9ndEEIIAApG92T7ysJkd0O0cac/NguPx8PIkSMZOXJks7ff5FC5ceNGrrnmGtLT0zn11FP529/+xrZt25qjb43yq1+Zc6sZ3ZyoFJnLSzTO9hW7KBgtoVII0Tr0GdWT7St2Jbsbog1TFoN33nkHgHPOOaf5p0ajGUJlcK9kSkoKlZWV2Gw29uxJ3i760aNHM3r0aNDB30v2VorGKdlehm7R6dyrU7K7IoTo4NKy7HTu2UkOf4sm+c3zp1BTU0O/fv2YPHlyiyyjyaFy+PDhVFVVMXfuXC688ELOO+88xo0b1xx9a7Tg3kp/DyfKeuCuQy7aD6Vgx6pC+oySvZVCiOTqM6onhRv2ypV0RKMpXfHvf/8bMPdSxrvqWHNo8pkswavnzJkzh4MPPhiHw8GAAQOa3LGmmDRpEoMHD2bDhg34e9dg3ZqV1P6Itmn7it30HdOL5R+vSXZXhBAdWMHoXmxfKYe+ReOd99xc5s+fT35+PkcffXT9D2ikRkdVpRRutzv0+9q1a9m7dy81NTU4nbGT8h5ImqZx0UUXAeDv6UDZ5dOd2H+bf9zOgAkFye6GEKKDG3hIAZt/3JHsbog2SlkNXnnlFQAuvPBCrNaWmxmn0aHyH//4B6+//nro99/97nf885//5Mknn+Sll15qls41xaGHHmoehtfBV1Cd7O6INqhoQzEpqTa69MlJdleEEB1Uek4aXft2Zvty2VMpGueUv82gpqaGQYMGteheSmhCqFyyZAlnn3126Pfs7GweffRRnnjiCX7++efm6FuTaJrGb3/7WwCMbi6MdLkyitg/SsHmpdsZeEjfZHdFCNFBDTi4gB0rd+N1+5LdFdEGqRQ/b731FgCXXHJJi42lDGpS6zabLfTzueeeazao67hcrqb1qpkMHz6co446ypy3sn81Crl2rdg/m5bIIXAhRPIMPKSATUuSN02faNum3TYGj8fDmDFjmDRpUosvr9GhsqamJuIKOtOnTwfA7XZTXd16DjdffPHF2Gw2VK4Ho4u7/gcIEWbzku30H98b3dKyn+6EECKegYcUsGnx9mR3Q7RBRicPCxYsQNd1rrrqqhaZlzJao98pDzvsMB566KGIk3KcTiePPPIIU6ZMaZbONYfevXuH9qL6BlShLDLFkGi4iuIqKvZU0Xdsr2R3RQjRwfQYlIema+zZtDfZXRFtjNIU+XPMmW9OOukkhgwZckCW2+hQeemll+L3+znllFO48MILueiiizjllFMwDCM0lrG1OPfcc+nZsyfYDfx9apLdHdHGrP16E8OmDUx2N4QQHczQwwey9pvNKBm5JfbTBS+ewvbt28nJyeHCCy88YMtt9Hnldrudu+66i927d7N161YA+vXrZ4a3VsZut3PNNddwyy234O/lQC9ORXfY6n+gEJih8qw/nsCHf/sy2V0RQnQgQ6cN5LOnvkl2N0Qbo+x+XnjhBQAuu+wysrIO3FzdTR4o1rNnTyZPnszkyZNbZaAMOuyww5g2bZp50s7gSpQmH/1Ew+xeV4xS0POgbsnuihCig8jNzyanRzZbf5L5KUXDKRQjf1uA0+lk9OjRzJo164Auv0OdfXDdddeRlZWFyvLh7y2HwUXDrf1mE0PlELgQ4gA5aNpANny3Bb9PzgMQDWf0cPLTTz+RmprKrbfe2uJTCEXrUKGya9euXHvttQD4C2owMmTuStEwa/+3keFHDk52N4QQHcTwIwax9utNye6GaEOU3Yd1pJlrfvvb39K7d+8D3ocOFSoBjj76aI444gjzMPgQOQwuGmbrz7uwZ9rJH5KX7K4IIdq5nB7ZdB/YlfXfbkl2V0QboVAMu6g3LpeLcePGcfLJJyelHx0uVGqaxg033EBOTg4qw4e/b+uZU1O0XspQrFqwjlEzhya7K0KIdm7UzINY+/UmuYqOaLD/e/5Eli9fTlpaGrfccssBP+wd1OFCJUBOTg4333wzAP7eDvydZVJ0Ub+Vn65l1NEHoektP4GsEKLjGjVzKCs+W5fsbog2wsj28OyzzwJw7bXXJvWk6Q4ZKgGmTp3K6aefDoBvcAXK7k9yj0Rrt3tdMW6Hh37jDvw4FSFEx9B9YFfSO6WyZalcRUfUT1kNcmZYMQyDWbNmceyxxya1Px02VII5gfvQoUPBpvAeVCHjK0W9Vn62jtHHyCFwIUTLGD1rKKu/WI/hl/cjUTeF4uDrBrF371769OnDddddl+wudexQabPZuPvuu8nMzERle2V8pajX8o/XMPyIQdjTU5LdFSFEO2Ox6oydPZxlH/yS7K6INuD8f53Ed999R0pKCvfccw/p6enJ7lLHDpVgTt5+2223AYHxlXnOeh4hOrLyokq2ryxk1MyDkt0VIUQ7c9DUgZQXVlK0Ua71Lerm7+xm/vz5AFx99dUMGjQoyT0ydfhQCTBt2jR+/etfA+bVdoxMmb9SJLb03ZUcfOKoZHdDCNHOHHziSJa+tzLZ3RCtnJHmI2WCB6UUc+fO5cQTT0x2l0IkVAZceOGFTJ06FXTwDitHpciJOyK+9d9uIbNLhly2UQjRbHJ7dqLXsB6sWrA+2V0RrZiyGHSfm4bD4WDMmDFcffXVye5SBAmVAbquc+edd9K/f3+wG2aw1GWgtIhl+A2WfbCag+fK3kohRPMYf8JIVn2+Do9TjpSJ+JSmGHN1P3bu3En37t257777sNlsye5WBAmVYdLT03nggQfo1KkTKsuHb0gFCgmWItbSd1cycvoQ0rLsye6KEKKNs6ZYGH/8CH78rxz6FvEpFEf/YQJLliwhNTWVP/7xj+Tk5CS7WzEkVEbp2bNnKP0bXd34BlRJsBQxKvZUsXHxNg6eOzrZXRFCtHFjZg2jeFOJnKAjEvIX1PDhhx+i6zp33303gwcPTnaX4rImuwOt0dixY7nzzju5++67MXo6MXwWbLuykt0t0cp8/++fOePe4/jh38vw+4xkd0e0UrpFj/guRDhNg0PPGM/n//hGthERl69bDf6CGgBuuOEGJk+enOQeJaYppWQ3XAJvvvkmjz76KACnnnoqEyZMSHKPhBBCCNFR/PLLL7z00ksopTj//PO54IILkt2lOkmorMff//53XnnlFVCQsj4XS2lqsrskWpHhRw1mytkHM/+S15LdFdFK6RadOxdcyf0z5mH4ZY+2iHTuX+ay7uvNMp5SxPB3cqPGVOH1ejnuuOO45ZZb0DQt2d2qkxz+rsdvf/tbSktL+fjjj/EMLsO6JgdLmZycIUy/LFzP0ZdMod+43mz+Ua7VKxIz/IaEShEhf0ge+YO68dpt78m2ISIY2R70cQ48bi9Tp07lxhtvbPWBEtrYiTqbN2/m8ssv56qrruLmm2/G4XAAsGDBAi677DKuueYa9uzZA8B3333H5ZdfzgcffNCkZWqaxs0338z06dNBB9+wcowcd5Ofi2gfDL/im5eXcMR5E5PdFSFEG3P4eZP47o2f8Lp8ye6KaEWMLA/WSS7cbjeTJk3i7rvvxmptG/sA21SoLCgo4Mknn+Txxx9n2LBhfP311/h8Pt544w0ee+wxLrroIv71r38BZqicN28ea9eubfJyrVYrd955J9OmTTMnRx9ejtHJ0+R2Rfuw7MNfyO3Zib5jeyW7K0KINqL7wK70G9ubxW8tT3ZXRCtiZHixT/HidDoZP348999/PykpKcnuVoO1qVAZntRdLhcFBQXs3LmT/v37Y7PZGDVqFJs3bwZg4sSJXHHFFRx0UPNco9lqtXL33XebZ11JsBRh/F4/37zyI0ecNynZXRFCtBHTfj2RH/7zM+4aeR8RJiPTS+rhXqqrqxk9ejQPPPAAdnvbGm7XpkIlwJIlS7jwwgtZtmwZvXr1oqqqivT09ND9fr95ecWpU6fy1FNPcfzxxzfbsm02G/fccw8TJ04Ei8I7ogx/rhwKF/DTe6vI69+FPiPzk90VIUQr17VvLoMm9uX7fy9LdldEK2Fke7BNdlFVVcWIESN48MEHSUtLS3a39lubCJWvv/46V199Na+//jqHHHIIzzzzDEceeSTvvvsuWVlZobGVABaLpUX7Yrfb+cMf/hDaY+kbVo6/i6tFlylaP5/Hz7ev/siRFxya7K4IIVq5I39zKIvfXo6rWnZKCDA6ubFMdOJwOBg3bhwPP/wwGRkZye5Wo7SJUHnmmWfy2GOPcfLJJ4duy8jIIC0tjd69e7N161a8Xi8rV65kwIABLd4fu93O/fffX3vyztAK/N2cLb5c0boteXsFXQs6M2BCQbK7IoRopfKHdGPAhAK+fXVpsrsiWgF/rhvtYAcul4tJkybx5z//OeLoa1vTNk4nCvjxxx959dVX0XWdnJwcbrvtNqxWK6effjpXX301KSkp3H777QekL1arld/97nekpqby4Ycf4htSiS3dgrG17QyoFc3L5/Gz8NnvOPrSKcy/eDsyA6wQItrRl07hm5eWyF5KgT/PiRpeg8fjZ9q0afz+979vUyflxNOmQuXkyZPjXp5oxowZzJgx44D3x2KxcPPNN5OWlsabb76Js3cZFpWOZVsmGq1/PinR/JZ/vIbJZ45nxPQhrFqwPtndEUK0IgMmFNC1oDOv3vpusrsikkih8Pd24O9XDX6YOXNmaCdZW9cmDn+3Zrquc/XVV3PhhRcC4O/jwDekEqXJbqqOSBmKz/+xiOkXT8ZilX8vIYRJ02DmZVNZ+Ox3+Dz+ZHdHJIlC4RtQZQZK4Oyzz+aOO+5oF4ESJFQ2C03TOO+887jtttuwWCwY3Vx4R5ShLHKFhI5o/bdbqNpXw4STRie7K0KIVmLUzKFYbBaWf7wm2V0RSaJ0xaTbDsLo6UTTNK666iouu+wydL39RLH280xagWOPPTY0DYDK8eIdXYqyyyfSjuiTx7/iiPMnkZHT9qaEEEI0r5Q0GzMvm8onj3+FMuQoVkekbH4GX5zH119/jc1m4+677+b0009PdreanYTKZjZx4kTmzZtHly5dUBl+PGNKMbJkctuOZve6YtZ8tZEZv52S7K4IIZLs8PMmsXN1EZuWbE92V0QSGBleck7QWb16NZmZmTz88MMcddRRye5Wi5BQ2QIGDx7M3//+dwYNGgQpBt5RZfi7y5RDHc2C+d8ydNpAeg3rnuyuCCGSpEufXCbMHcUn8/6X7K6IJPB3cWE5zEFxcTF9+vThH//4B2PHjk12t1qMhMoW0r17d5544gmOOOIIcy7LwZX4+lehkEMfHYWj3MnCZ77juGuPQpPJAITokI695gi+e/0nyosqk90VcQApFL4+1fiGVeByuZg4cSJ///vf6dOnT7K71qIkVLagtLQ07rnnHi644AIA/L0ceEeUo6xyAk9HsfTdlVhsFsYdPzLZXRFCHGBDpw2kS59cFr3yY7K7Ig4gZTE47I5h+PvWAHD66afzpz/9iaysrCT3rOVJqGxhuq5z/vnnc99995GamorK9eAZW4KR6U1218QBYPgV7z/8BUf/dgqZXdruVRKEEPsnNdPOcdcdxYd/XShTCHUgRrqXbqfb+eqrr7Bardx8881cddVV7WbKoPpIqDxAjjjiCJ566il69eoFqQbe0aX48x1yOLwD2Lm6kBWfruW4a9vnwGwhRKyZl01l67KdbPh+a7K7Ig4Qf54T/bAadu7cSbdu3Zg3bx7HH398srt1QEmoPIAGDhzI/Pnza8dZDqxCjaiW+Sw7gC/mf0vPg7oz7PCBye6KEKKF9Rvbm6HTBvLx418luyviAFCawjuwEt9Blbjdbg455BD++c9/Mnz48GR37YCTUHmAZWZmcu+993LllVdisVjw5jrwjinFSJfD4e2Zx+nlvb8s4Ljrp5OaaU92d4QQLcSaYuGEm2fw8eNf4SiXWT/aOyPVR/8LcjHyzQnNzz//fP785z+Tk5OT7K4lhYTKJNA0jTPOOIPHHnuMvLw8VLof79hSfHI4vF3btHgbmxZvY9aVhye7K0KIFnLURYdRsrOclZ+tS3ZXRAtSKPzdnFinOVi3bh3Z2dn8+c9/5oILLsBisSS7e0kjoTKJRo0axTPPPMNhhx0GOvgHVuEbXo6yyaDu9urjx75i4CEFDJ0mh8GFaG/6je3NuGNH8P5DC5LdFdGClMVgyu9G4BtSidPpZNy4cTz33HNMmjQp2V1LOgmVSZaTk8Of/vQnrr32WlJSUjA6e/CMK8Wf605210QLcFW7efuPn3LCTTPkbHAh2pHUTDsn33kMHzzyBZV7q5PdHdFCjCwPuSfpLFy4EIvFwiWXXMIjjzxCXl5esrvWKkiobAU0TeOUU05h/vz5DBgwAFIMfCPK8Q6oROlyOLy92bJ0Bys+XcvcW49JdleEEM3kuOuOZOuynaxeuCHZXREtQGkKX98q/OMq2LNnD7169eKJJ57gV7/6VYc+3B1NQmUr0r9/f/7xj39w2mmnAWD0dOIZV4KRLdcOb28WPL2I7LxMDjl5dLK7IoRoopEzhlAwqhcf/u3LZHdFtAAjw0uvX2Xg7+PAMAxmzZrFM8880yHP7q6PhMpWxm63c/XVV/OXv/yFbt26QZof76gy8xKPstey3fB5/Lx138dMv3gyPQbJYRMh2qrcnp047rqjePsPn+CukR0A7YnSFL6CaowJFWzZsoXc3Fz+8Ic/cMcdd5CeLsOX4pFQ2UpNnDiR559/njlz5oAWuMSj7LVsV/Zs2sfnf1/E6fcehz0jJdndEULsJ2uKhTPum8N3r//EtuW7kt0d0YyMDC8F52XjL6jB7/czffp0XnjhBaZNm5bsrrVqEipbsczMTG655Rb+/Oc/m1MPBfdaDqiUCdPbiaXvrmTXmiJOvOXoZHdFCLGfZl11BNWlDr55aUmyuyKaidLNsZPGhAo2btxIp06duOeee7j77rs77NyT+0NCZRtw6KGH8vzzz3PccceZey17OvGML8HfxZXsrolm8P5fvqBb/65MPHVMsrsihGigUUcfxJDD+vP2/R+jZGRSu2DkuOl6mhV/Hwd+v58jjjiCF154gaOOkkvsNpSEyjYiKyuLW2+9lYcffti8frjdwDesAv+oSlSKzGvZlnmcXt743fscdeFh9B7eI9ndEULUI69fZ467/ij+c/eHOCrkw31bp6wG3iEVeEeWs3v3bvLy8vjjH//IfffdR+fOnZPdvTZFQmUbc8ghh/D888/z61//GovFgq+TE8/BJfh6ytV42rK9W0v54OGFnPmH48nqmpHs7gghEkjLsnP2Ayey8Jnv2LGqMNndEU2gUPi7O0k9xo3RzYWmaZx66qm8+OKLTJ06Ndnda5MkVLZBdrudiy++mGeffZaRI0eCReEfUIV3bKmcyNOGrVqwjp8/+oWz/ngC1hSZ90yI1ka3aJx+7xy2/LSDxW8uT3Z3RBMYmV4GXtwF3+BKKisrGTRoEE899RTXXHONnNndBBIq27D+/fszb948brjhBrKyslCZPryjy/AOqZBD4m3UF/O/pbqkhrm3zkx2V4QQUWZdeTgWm4UP/7ow2V0RjaSsBt5BlfjGlbFmzRrS09O5/PLLefrpp2XeyWYgobKN03WduXPn8vLLL3PiiSeiaRpGN5d5SLx3DUqTQ+JtiVLw1n2f0H1gV6b+6pBkd0cIETD++BEcNGUgb9z5Pn6fzL7R1igU/nwHKUc7MXo4UUoxa9YsXnrpJc466yysVmuyu9guSKhsJ3JycrjxxhuZP38+o0aNMg+J96s2zxLv7JLxlm2I2+Hh1dve47AzxjHiqMHJ7o4QHd7AQwqYedk0Xr3tXWrKncnujthPRo6bXr/OwDewiurqagYPHswTTzzBHXfcQdeuXZPdvXZFQmU7M2TIEObNm8edd95Jly5dIM2Pb3gF3lFlGJneZHdPNFDZ7gpevfVdjr9pBn3H9kp2d4TosHoMzuO0u4/jzXs+Ys+mfcnujtgPRrqX0dcV4B1ZzpYtW8jKyuL666/n6aefNne+iGanKSUzbLVXDoeDl19+mTfeeAO32w2AvteOdWsmmlt29bcFB00ZwNxbZ/LcVf9m79bSZHdHNIJu0bnry6u598jHMPxy2LQtyemRzYVPncGCp7/l549+SXZ3RAOpFD++gmpUvhulFFarlVNOOYX/+7//Izs7O9nda9dkT2U7lp6ezsUXX8zLL7/Msccea463zHOb4y37V6Gs8gbX2q1btJkv/vktv/rLSTLVkBAHUFqWnXMfOoklb6+QQNlGKIuBr6Aa/fBqjB4ulFIcddRRvPjii1x55ZUSKA8A2VPZgWzcuJGnnnqKJUsClxTzaVh2pWPZnY7ml88Xrdn0iydz0JQBPH/1f3BWymTLbYnsqWx7UtJs/Prhk9mzuYT3/7Ig2d0R9VC6eRJO5lgLFRUVAIwYMYIrrrjCnHZPHDASKjugxYsX89RTT7Fp0yYANJ+OfU829n1ZuKpknsvWas4N0+k1tDsvXPsm7hr5O7UVEirbFmuKhXP/fBI15U7euu8jDL+8RbZWSlMY3Z3kHGpn3z5zvGtBQQEXXXQRRxxxBJqmJbmHHY+Eyg7KMAwWLlzIs88+y44dOwDI6ZRD9VI/+p40NCX/jK2NpsHc246hc+8cXrrhbTxOOfGqLZBQ2XZYbBbO+sPx+H0Gb/zuA/l7tVIKhZHnIu/IDAoLzasa9ejRg/PPP59jjjlGpgdKIgmVHZzP5+PTTz/l+eefp6ioyLzRpWPdkYFeLOGytdEtGqfedSxpnVJ55eb/4vPIJPetnYTKtkG3aJx293GkpKfw2m3vyv9WK6Q0M0zmz+gU2hnSuXNnfv3rX3PCCSeQkpKS5B4KCZUCAI/Hw/vvv8+//vUvSksDZxm7daw7M8w9l4aEy9bCYtU54/7j0XSNN+58X978WjkJla2fbtE46fZZZHfL5OUb38Hr9iW7SyKM0hRGNyd5h2eG9kxmZ2dz9tlnc8opp5CWlpbkHoogCZUigsvl4t133+XVV1+lpKTEvNGjmyf0FKahGXJCT2tgTbFw5v3Ho1t0Xrv9PXkTbMUkVLZuukXn1Ltmk9klg1du/i9uh4xXbi2Ubo6ZzD00lb179wKQm5vLmWeeyUknnSTX6G6FJFSKuNxuNx999BEvv/wye/bsMW/0Bs4WL5SzxVsDi83Cab8/lrTsVF655b8yxrKVklDZellTLJx+z3HY0my8euu7eF3y4aw1ULqBP99Jp4NTQkfOunbtytlnn80JJ5xAampqknsoEpFQKerk9Xr59NNPeemll9i1a5d5o1/DUpRmTkXktiS3gx2cbtE5+c5Z5PTI5uWb3sFV7U52l0QUCZWtk81u5cw/noDhN2QYSSuhbH78PR2kD7dQVVUFmCfgnHvuucyePRu73Z7kHor6SKgUDeLz+fjiiy949dVXQ1MRoUDfZ8eyKwO92pbcDnZgmq5x4i1H031gV16+6b/UlDmS3SURRkJl62PPSOHsB07EWeXiP3d/hN8rgTKZjHQf/l416L18+Hzm3uJevXrxq1/9ilmzZsnZ3G2IhEqxX5RSLFmyhNdee40ff/wxdLtWbjPDZVkKGnJSz4GmaXDMlYdz0OQBvHTj25Tuqkh2l0SAhMrWJatrBr/6y0kUrt/Luw9+Ln+TJFEoVCcPvt4OVG7tONZRo0Zx5plnMmXKFCwWORLW1kj8F/tF0zQmTpzIxIkT2bhxI6+//jqff/45/hwvvpxytBoLlsJ09OJUOannAFIKPnn8f1TtreaCJ87glVv+y+51xcnulhCtSte+ufzqLyez4tO1fDH/22R3p0NSmsLo6qLfnG5s3LgRAF3XOfzwwznzzDMZMWJEknsomkL2VIomKy4u5s033+Tdd9+lpqYGAM2vkVKSScq+LDylcmjpQBo18yCOu/Yo3rznIzYu3pbs7nR4sqeydegzMp+zHjiBr577gcVvLU92dzocZffj7+Ega1QK5eXlAKSmpjJnzhxOP/10evbsmdwOimYhoVI0m+rqaj788EPeeecddu7cGbpdL7djLUxHL7fLofEDpP/BfTjt98eyYP63/PTeqmR3p0PTLTp3LriS+2fMk1CZJMOPGsyc64/i/b8sYM1Xm5LdnQ5DoTA6efD1qIGuXgzD3P7z8vI46aSTmDt3LtnZ2UnupWhOEipFszMMgx9//JG33nqL7777juAmlpuby6GHHsrBBx9MRkZGknsphBCiJbhcLpYuXcr3338fuiY3wPjx4zn55JOZMmWKnHzTTkmoFC1q9+7dvPPOO3zwwQehKSIwwFKSiqU4Hb1STuxpSek5aZx+z3H4vD7evPtjmXIoCWRPZXLYUq3MvW0mufmdeOPO96kork52l9o1hUJlevF1c2Drq3C5XACkp6cze/ZsTjrpJPr165fcTooWJ6FSHBAul4sFCxbw1ltvsWHDhto7nBYse9KwFKeieeRMv5ZgserMuWE6fcf04tVb32Xf9rJkd6lDkTGVB16nblmc/acTKd1Vztt/+EQmNW9Bymrg7+akYEYeW7ZsCd3ev39/Tj75ZI455hi58k0HIqFSHFBKKdatW8f777/P559/jsMRmFNRgV6agr4nDb1Uxl62hEmnjeXI3xzKew8t4JcvN9T/ANEsJFQeWIMm9uXkO2ex5O0VfPX898g7XPNTKFSOB38PJ3oPf2huSbvdzpFHHsmcOXMYM2YMmiav4x2NhEqRNE6nky+//JIPPviAFStW1N7h0bHsSUXfm4bukHE3zalgdE9Ov+c4Vi/cwGdPfo3fJyGnpUmoPDA0XePI30xiwkmjefv+T9n4w9Zkd6ndUXYf/u4uukzIoLi4dsqygw46iOOPP54ZM2aQmZmZxB6KZJNQKVqFbdu28cEHH/Dxxx+HppsA0Kqt6MWpWPamonnl8HhzyMhN59TfzyYl1ca/7/qQiuKqZHepXZNQ2fIyctI49ffHkpKewr/v+oCKPbJNNxdlNTC6uvB3c6GyvaHbs7KyOOaYY5gzZw6DBg1KYg9FayKhUrQqXq+XRYsW8cknn/D999/j9wfmuFSgladgKU5FL7HLxOpNZO7VOZQJJ43ivw98xvpvt9T/INEoEipbVr+xvTnlrtms+WoDnz4he9+bg9IVRmc3RjcnWp4/9Dqs6zrjx49nzpw5TJ06Va7FLWJIqBStVnl5OV9++SWffPIJq1evrr3Dr2GrSCOlLBNrVaqc0dwEAyf25aTbj2Ht15v4dN7/8LrlhIbmJqGyZVisOkddNJnxc0bw/sNfyDjhJgpeNtHfzUVqf712vDswZMgQZs6cyYwZM+jatWsSeylaOwmVok3YtWsXn332GZ9++mnExOoZ6Rk4t/jNw+MVKWhKBobvr/ScNE68+Wi6FuTy5r0fU7heLu/YnCRUNr+ufXM59a5jcVa6eOePn1K5V6YLagwzSHrxd3GRMzKN0tLS0H09evRg5syZzJw5U6YCEg0moVK0KUop1qxZw6effsrChQspKwubHseroZfa0felopdLwNxf448fwczLp/Htq0tZ9MqPGH55aWgOEiqbj6bBISePYfpFk/nqhR/4/o2f5Ozu/RTaI9nVTafhqRGvoVlZWUyfPp2ZM2cycuRIdF2GGYn9I6FStFl+v58VK1awcOFC/ve//0V8ysanoZdIwNxfnXvncPLtx2CxWfjvnz5jz6Z99T9I1ElCZfPo0ieHE28+GnuGnbf/8Ilsm/tBabVBMuugFCoqKkL3ZWVlMW3aNI488kgOPvhgbDZbEnsq2joJlaJd8Pv9rFy5ki+++CJ+wCxLMfdiltnRfPLpuy6arjHx5DEceeGhLH5zOf/712L8Xn+yu9VmSahsGt2icdiZ45n2q4ksevVHFr2yVNZjAyiLgZHjwejiJnNQCpWVlaH7OnXqFAqS48ePl0smimYjoVIktGzZMl544QX8fj9nnHEG06ZNY8GCBfznP/8hJSWF22+/ne7du/Pdd9/x4osvMmfOHObMmZPsbocC5sKFC/nqq68iA6YCrcKGXmrHUmJHc8uLaSI5+dmccNMMsvMyeffBz9mxqjDZXWqTJFQ2XveBXZl760z8PoN3H/yMvVtL639QB6bsfozObvyd3Vi7Kbze2imAcnJyOPzwwznyyCMZO3ZsqwqSbfW9RsRqPVuVaFXcbjevv/46Dz30UOhwiM/n44033mDevHmsXbuWf/3rX9x000189913zJs3j7/+9a+t4h/dYrEwduxYxo4dyzXXXMPatWtZtGgR33zzDVu2bEHlePHnePEPqEarsZh7MEvtaFU2uZJPmPLCSl68/m3GHTecsx84kXWLNvP537+hptyZ7K6Jdi41085RFx7K6FnD+Oq5H/jhzZ9Rhuz/iGZeb9tnTv/T2Y3KrJ29weuFXr16MXXqVKZMmcLIkSNbVZAMasvvNSJW69vCRKuwatUq7HY7t956K6mpqVx//fVUVVXRv39/bDYbo0aN4sknnwRg4sSJXHHFFa3yn1zXdYYPH87w4cO5+OKL2b17dyhgLl++HCPDjz/Dgb+PwzzRpzwFvcyOXpYik60HLPvwF9Z+s5kZl0zhipf+jy+f/Z4f/7tCTuQRzU7TYMyxwzn6t1PY/OMOnvz1i1SV1CS7W62KshoYOW6MXA+5wzMoKande6vrOiNHjmTKlClMnjyZgoKCVn+pxPbyXiNMEipFXGVlZRQWFvLEE0+wdOlSnnvuOWbNmkV6enqoJjgh7tSpU5k6dWqyurpfevbsyemnn87pp59OVVUV33//PYsWLeKHH36gpqYGI8+NkWfOe6lVW82xmOV2tEpbhz7Zx1np4v2/LOCn91Zy3PXTGX/8SD7820K2r9id7K6JdiJ/SDeOu+4oUtJs/Pv3H7Lt513J7lKroFCobK85PjLXDdl+gqPWSkpcpKWlMXHiRCZPnsxhhx1GTk5Ocju8n9rre01HJaFSRHj99ddZtGgREyZMYNSoUdhsNsaPH89LL71EVlZWxIS4Fkvb3pOXlZUVmofN5/Pxyy+/8MMPP7BkyRLWrl2LyvThz/SZezH9GtbqVGyVafiKNTSnpUMeKt+9rphnLn2NcXNGcMa9c9ixupAF/1jEvu1l9T9YiDhyemQz/eLJDJrUl/+9sJjFby3v8GNPld0f2huZ1tdKTU3Y3loFAwYMYOLEiUycOJFRo0a1ySvbdKT3mo5EQqWIcOaZZ3LmmWdSUVHBvffeC8CGDRvo2bMnvXv3ZuvWrXi9XtauXcuAAQOS3NvmY7VaGT16NKNHj+biiy+mrKyMJUuWsHjxYhYvXkx5eTm+Tk58nZzQB3Dr6BUp5ld5Cpq747zoKQU/vb+aVQvWM/msg7no72excsE6vnrue6pLHfU3IASQlmVn2v9NZPzxI1n63koeP/t5nFUd8+pYKsWP0clj7o3s5IHU2lBdU+MmOzubCRMmMHHiRA455BDy8vKS2Nvm0VHfa9o7OftbJPTWW2/xxRdfoOs6t956Kz179ox7Rl57ZxgGGzZsYPHixfz444+sXr0aj8cTWeTSzfGYgaCpeTpOyMzsks6R5x/KyBkH8cObP/P9Gz912HAQj5z9HSklzcbEU8cy+azxbPh+Kwv/+R3lRZX1P7AdUbZgiPSiOnlQaZFTdlksFoYNGxbaG3nQQQe167118l7TfkioFGI/ud1uVq1axU8//cSyZctYs2ZNaMxPkOawoFXa0CtTzPGYrvZ/uLxrQS5HXnAoAyf2ZfGbyyVcBkioNIXC5Jnj2bFqNwuf/Z6iDXuT3a0Wp1BgNzCyPRjZgRCZHvl6oes6Q4YMYdy4cYwbN47Ro0dHjCkUoq2QUClEEzkcDlauXBkKmevXr8cwosKDR0evtKFV2cw9mTXWdnviT16/zhx+3iQGT+rH4rd+5rs3luGsdCW7W0nT0UOlPT2FiaeO4bAzxrN95W6+ev6Hdn19+dA0P9leVJYZJLFH/t01TWPQoEGhEDlmzBgyMzOT1GMhmo+ESiGaWVVVFStXrgx9rV27NvZwuR+06to9mXq1td1NYRQKl4f2Y/nHv/D9G8soK+xYhzmh44bKrK4ZTDptHAefOJJtP+/iq+e/p3B9+9szqawGKtOLke3FyPZg72HB5Yr8EGWxWBgyZAijRo1i9OjRjB07luzs7CT1WIiWI6FSiBbm8XhYt24dq1atYsWKFaxatSri2rshLh29OrA3s9qGVm1F87f9S0rm9uzEoWeMY+zsYWxcvI3vXvuJnb8UJbtbB0xHC5XdB3Zl8lnjGXr4IFZ/sZ7vXv+p3VwJR+nKDJCZXlSWFyPTB2mxlzDNzMxk5MiRjBo1ilGjRjF06FBSU1OT0GMhDiwJlUIcYEoptm/fzsqVK1m1ahVr1qxh69atxPwrqsDYzGobepWNVH8GFldK6LC5s7ptHVJOy7Iz4aTRTDx1LGW7K1j85nLW/G9ju7+ueEcIlbpFY8jkAUw8ZQw9BuWx5J0VLHl7eZucDSAt0wx/SlP4Uz24LDWBEOlDyzJih7ZgXrlm5MiRoSDZr18/dL3tfyAUYn9JqBSiFXA4HKxbt441a9awdu1a1qxZw549e2LqdF0nv0dP+vbuyw+vLzcPm9fY0Hxt5w3MYrMwcsYQJswdTefenVj2wS8sfXclZbvj7L1tB9pzqOzULYvxJ4xg3JyROMqdLHlnBSs+WYPX7av/wa2IshioDB9Gpo/J545j+85t7Crchc8X+zy6dOnCsGHDGDp0aOh7VlZWEnotROsjoVKIVqqkpCQUMNesWcP69evjHzYHc97MGitatc08CajG2ibOOO8xKI+D545i1NEHseuXIn76YDXrvtmEz9N+9l62t1BpsVkYfGg/xh03nH7j+/DLwg38+O5KdrWBIQ2hM7EzvKhMnxkkM7wR80KGy8zMZOjQoREBsj3MESlES5FQKUQboZRi3759bNy4kQ0bNrBhwwY2btzIrl0JLmdngOYMBEyHBc1hNb9aYdhMSbMx6uiDGHPscLr178Ka/21kxSdr2PrzLpTRtl+i2kuoLBjVk9HHDGXE9CGU7a5g+cdrWP7JGlzVrW/aKDM8+jEy/Kg0Hyo9+OUHS/ztqUePHgwaNCjiKz8/v9VfO1uI1kRCpRBtXE1NDZs2bYoImtu2bcPtTvBmb1AbMB0WM3i6At+N5L+B5uZnM+qYoYyZNQyb3crKBev45cuN7F5TRFt8tWrLobLH4DyGHzGIUTOHomkaKz5dw4rP1rJvW+u4LKfSFCrNj0o1A2MoPKb5IMFkCjabjX79+oWC4+DBgxk4cKAcwhaiGUioFKId8vv97Nmzhy1btrBlyxa2bdsW+p4wbAK4dfO65qGgGfZzEubV7Dm0O6NnDmXo4QPRLTprv97E2v9tZOvPu9pMQGtLoVLTNfqMzGfYEYMYOnUgVruVtV9vYuVna9mxcndSQr3SFCrVXxse02p/1tJU7AluASkpKRQUFNCvXz/69u1L//796devHz179sRqlSsUC9ESJFQK0YHEC5s7d+5k586dicdrAijMwOmyoLkt5vewn/HoLX5IPX9IN4YdPpChhw8iq0sGG3/YysbF29i8ZDtVJTUtuuymaO2hMiMnjQETChg4sS+DJvXFXeNh7debWPO/Tez6pbDFg6RCQYqBsvvN8Gg3At/N8Kinq7hnXIf6n5FB79696du3byhABsNje760oRCtkYRKIQQAlZWVoYC5Y8eOiO8ORz1TwxiA24LVZ0P3WNE9FjSvFV+lHzwWNLcOfq3ZgmeXPjkMmtiPgZP60m9ML8oKK9m0ZBubFm9jx6pCPE5vsyynObS2UGlNsdB7RD4DJ/Zl4CEF5PXtzPYVu9m0ZBsbf9hG8ZaSZl2eshioFANS/NiyLRgpPowUP0aKD7/Vi7L7oZ7JC9LS0ujdu3fcr5ycHBn3KEQrIaFSCFEnpRSlpaXs2rWLoqIiCgsLKSoqiviKvvZ5XH7QPBZzj6fHgubRwW1+17y6ubfTu//h02Kz0GdkPoMm9mXgxL7k9evMnk372LGykO0rd7F95W6qS5I3X2KyQ2V6ThoFo3rSZ1Q+BaN6kT84j5Kd5WYIX7Kd7ct37fcUQAplnvBiNQOjGRoNVEpgT2MgRKoUA6z1v8VYLBby8vLo0aNH6Cs/P5/8/Hx69+5Nly5dJDgK0QZIqBRCNInf72ffvn0xgXPfvn3s3buXffv2UVVV1fAGDcAbGTQ1r157m09H82m13716xHhPe0YKvUfkUxAIUb2G96CmzEHh+uLA114K1xdTU3ZgguaBDJXpnVLpMbgb+UO6kT8kj/wh3cjulsXuNUVsX1XI9hW72LmqEGdV5LhapQUCojXsu81A2YyY78GfE50IE09GRgZdu3YlLy+PvLw88vPz6d69O/n5+fTo0YOuXbvKOEch2gEJlUKIFudyudi3b18oaAa/greVl5dTVlZW/2H2RPzEhk2fuddTVzqZnTLJycumc49cuvbqTLeCruDXqN7rpKbYQWVRDeW7KindXkllcRU040lJLREqM7um07VvLrm9OpHdM5PsHulkdkvHYtcp3r6PvTtK2LerlLLicipLqzAwwBIWGi2RIXJ/AmI4u91Obm4uXbp0oWvXrqGvvLy80PcuXbqQnp7eLM9bCNG6SagUQrQabrc7FDDLysooLy+ntLQ09HNZWRlVVVVUVVVRXV1NVVVVnSdxNJZFt6DrFnRNQ1M6GKB8oPwK5QPDpzD8yryUZvAVVGnmCU1gfg8EUw2NUcccxMrP1pqHjc0bw74rCDxUt2joNg3NqqFbze+aJXAGtKZQysBv+PH5/NQurHlomkZGRgZZWVlkZWXRqVMncnNzycnJSfg9LS2tWfsghGjbJFQKIdoswzBwOByhoBn95XQ6cTgcOJ3Oen9uqy+Fuq6TlpbWoK+srCwyMzNDwTH854yMDLletRCiSSRUCiE6PKUUXq8Xj8cT+h78ine71+vFMAwMw0Aphd/vRykVui36S9M0dF1H1/WIn8N/D363Wq3YbDZsNhspKSlxvwd/Dn7JSSxCiNZAQqUQQgghhGgyOdYhhBBCCCGaTEKlEEIIIYRoMgmVQgghhBCiySRUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJJFQKIYQQQogmk1AphBBCCCGaTEKlEEIIIYRoMgmVQgghhBCiySRUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJJFQKIYQQQogmk1AphBBCCCGazJrsDgjRGiilcLlcye6GEELsl9TUVDRNS3Y3hAAkVAoBgMvlYtasWcnuhhBC7JdPPvmEtLS0ZHdDCEAOfwshhBBCiGYgeyqFiJKyuBuaCnze0nQ0XQNNB10DTUPTg/cFbtc00DW0YE3oPi30mNAXhN1W22boMdQ+Rmla7ce+sDZCt4c9Lvw2FWgmdJ8OELxdC90XfIwK3Ba6H2rb0AP1ocdELiPiMQRu0+PcF1FPRB9rb9Ni7ot5DJGPibif2sckWlbE7wn6EfOYutoN3a4iHh/dXuj+sLZU4HaiHoemwh5v3q+F3xeqDd6nQm1q4fWB2zVN1W5+gdtrNw8Vul9HhX437wM98Lt5n/l78HGh+zSFRu3j9MBtoS9U6HG6RsTttY8xamtR6JqBJXhf4PfatoxQe5aw9i2Yt1s0I+pxBpZgm9QuL1RPbXs65uN1zOWb95ntWQK3aRhYgo8n2A8DC5iPw1xO8LkFfzeXpQI/E7hPoQfWiwUNHbAE/tg6WuA2DYumoQdeDDQ0vB4Lp17cAyFaGwmVQkTza4GXd8xQSSAABt6ta+/TQK9NUJqZ0AKNBJOHXvtzTNrQYxOPpsXWh7dHVH3EfdE/h9UEw2RYqIy5LSwEhv8e3cXI+jiP0eu4L9HTiNduosfVdXuDl7V/bcYNsRGPa+ZQGe9+on9XobbD+xG+zMjHRIXQ0H3h96s47ak4y1IRX+GhsjaoBr4S3RcvbBIMo0QEveDvFiLvM0OlURvKtPBQZv6sa5oZ+ALfCf2shR5XG2DBotV+t0BYAIxzX6A983cVCKUqFCLNx6l6Q2V4e5bAfTqRtwUDrB543kK0RnL4WwghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFkEiqFEEIIIUSTyTyVQkSzKJQyJzw2513Uwr5rUROSB7+H/Uz4bSrs5zruC94eNmlh7RTVJLi99ruK+JmIxykAFby9tk2FBorQY8PvD7URMblieF/i/K4iuhS1PhJ8RdfWN3ckCW6v77665qKs677wZ1jn4+LNNxn+pRL0MfHk55FzS4bdF6pt/OTntf0Im6eSxs9Tqah9nNJU5Bfmd/M+Im43Qu0ZtctBgWaEzaepIu5XmhFqj4j2A9+Dywr8rgdqgt+BmNuMsLkhDa32u0HtPJVG4DaNRPNUaqEJyy3U/s2Cv+uBx0TPfdnwyc+1wJ9Fw+uJ938pRPJJqBQiimdicbK70DKC79lNEB1nhYDITctIZkcaLXzLlgN4QjSW/PcIAbhcrmR3QQghhGjTZE+lEIDdbg/9/N///pfU1NQk9qbtcLlczJ07F5D11lCyzhpH1lt8sh5EayKhUghA02oP6KamppKWlpbE3rRNst72n6yzxpH1JkTrJIe/hRBCCCFEk0moFEIIIYQQTSahUgghhBBCNJmESiGEEEII0WSaUqqJM9cJIYQQQoiOTvZUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJrMnugBDNzeFw8Nprr/HVV19RVFSEruv06dOH6dOnc+qpp2Kz2RrddmlpKa+88grfffcde/bswW63079/f2bPns2cOXPQNK0Zn8mB0xLr7Nlnn+X555+vt+6VV16hd+/ejeh18rhcLn7++WfWrVvH+vXrWb9+PXv27AHg/PPP54ILLmjyMtrjttaS6609b29CtBUSKkW7UlRUxNVXX01RUREAqampeL1e1q5dy9q1a/nss8/429/+RlZW1n63vW7dOm688UYqKioASEtLw+FwsGLFClasWMHChQt54IEHSElJadbn1NJacp0BWK1WsrOzE95vsVga1W4yrVmzhptvvrnF2m+v21pLrzdon9ubEG2FhErRbvj9fm699VaKioro0qULd9xxBxMmTMAwDBYuXMhDDz3Ehg0buPfee3nooYf2q+3q6mpuueUWKioqKCgo4M4772To0KF4vV7ee+895s2bx5IlS5g3bx7XX399Cz3D5teS6yxo5MiRPPbYY83c8+TLyspiyJAhoa/HH3+c0tLSJrfbXre1oJZab0HtdXsToi2QUCnajY8++ojNmzcDcN999zFy5EgAdF1nxowZKKW49957+eGHH1i6dCkHH3xwg9t+7bXXKC0txW638+c//5mePXsCYLPZOOWUU3A4HDz99NO89957nH766fTp06f5n2ALaMl11p6NHj2aDz74IOK2f/zjH83Sdnvd1qBl15sQIvnkRB3Rbnz88ccAjBs3LhSOws2YMYP8/PyI2ob65JNPQm0E3+TDnXLKKaSlpeH3+/nss8/2t+tJ05LrrD1ryUOo7XVbAzn0LER7J6FStAsul4tVq1YBcOihh8at0TSNSZMmAbBkyZIGt719+/bQyQTBx0dLT09n9OjR+912MrXkOhON0163NSFExyCHv0W7sG3bNgzDAKB///4J64L3lZaWUllZWeeA/qDg4eH62h4wYAA//PADW7dubWCvk6sl11m4LVu2cN5557Fr1y4sFgtdu3ZlzJgxnHTSSQwZMqTxT6Adaq/b2oEk25sQySN7KkW7sG/fvtDPeXl5Ceu6du0a9zF1KSkp2a+2a2pqcDgcDWo7mVpynYWrqKhg27ZtpKam4vF42LFjB++//z4XX3wx8+fP3+/22rP2uq0dSLK9CZE8sqdStAvhb6x2uz1hXWpqatzHtETb6enpDWo/WVpynQH07t2byy67jKlTp5Kfn4/VasXr9bJs2TLmz5/PunXrePHFF8nKyuKss85q3JNoZ9rrtnYgyPYmRPLJnkohRIs45phjOPvss+nTpw9Wq/n51WazMXHiRObNm8fQoUMBeO6556iurk5mV0U7INubEMknoVK0C+F7atxud8I6l8sV9zHJajuZkvm87HY7l1xyCQBOp5OlS5c2S7ttXXvd1pJNtjchDgwJlaJdCB/3t3fv3oR14WMCwx9Tly5duuxX2xkZGW3ijb4l11lDjBgxIvTz7t27m63dtqy9bmutgWxvQrQ8CZWiXejbty+6bm7OW7ZsSVgXvK9z584NPot5wIABMY+PJ3jmbr9+/RrUbrK15DoTjdNetzUhRMcgoVK0C6mpqaHJu3/44Ye4NUopFi9eDMAhhxzS4LYLCgro3r17nW07nU5WrFix320nU0uus4b45ZdfQj8HJ1jv6NrrttYayPYmRMuTUCnajdmzZwOwbNmyiDeQoIULF4YOewVrG2rWrFkAfPHFFxQWFsbc//bbb+N0OrFYLMycOXN/u540LbXOlFJ13u/xeELTu6SlpcnlH8O0122tJcn2JkTrIKFStBuzZ89mwIABKKX43e9+FxqMbxgGCxcu5KGHHgLMK5VEv6k8++yzHH744Rx++OFx38jPOussOnfujMvl4pZbbmHdunUAeL1e3nnnHZ555hkATjjhhDZ1LeaWWmfLly/nuuuu49NPP6W4uDh0u8/nY+nSpVx55ZWhEHveeeeRlZXVkk+zRVRVVVFeXh76Ck4k73a7I26Pnoapo25rQS2x3jrC9iZEWyDzVIp2w2q18sADD3DNNddQVFTEddddR2pqKoZh4PF4ABg8eDB33XXXfredmZnJgw8+yI033sjWrVu5+OKLSU9Px+Px4PP5APNQ5JVXXtmsz6mltdQ6U0qxdOnSUEi12+2kpqZSU1MTWl+6rnPuuedyzjnnNO+TOkAuvPBCioqKYm5/9dVXefXVV0O/z549m9tvv73B7bbXbS2oJdZbR9jehGgLJFSKdiU/P5/nn3+e1157ja+++oqioiKsViv9+/dnxowZnHrqqdhstka1fdBBB/HCCy/wyiuv8O2331JcXExqaioDBgxg9uzZHHfccaETX9qSllhnAwYM4PLLL2f16tVs3ryZiooKqqurSU1NpV+/fowePZoTTjiBgQMHttCzatva67bWUmR7E6J10FR9g1GEEEIIIYSoh3zUFUIIIYQQTSahUgghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFkEiqFEEIIIUSTSagUQgghhBBNJqFSCCGEEEI0mYRKIYQQQgjRZBIqhRBCCCFEk0moFEIIIYQQTSahUgghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFk/w8P8cCe7IkhUwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAACk2ElEQVR4nOzdd1yVdf/H8dd1JocNgoIi4t57b03NWdqwsmlqyxzZ7q7uLNvD+2fLyjIry5Zp5i5X5t57i6CAgux55vX7gzhJIiLrYnyejwcPD+dc57o+wBHe5zsVVVVVhBBCCCGEKAGd1gUIIYQQQojKT0KlEEIIIYQoMQmVQgghhBCixCRUCiGEEEKIEpNQKYQQQgghSkxCpRBCCCGEKDEJlUIIIYQQosQkVAohhBBCiBKTUCmEEEIIIUpMQqUQQgghhCgxCZVCCCGEEKLEJFQKIYQQQogSk1AphBBCCCFKTEKlEEIIIYQoMQmVQgghSkW/fv1QFAVFUbQuRQihAQmVQlRheX/g8z62bdt21ed8//337uOnT59e9kWKIlu/fv1lP9NLPwwGA4GBgXTq1ImpU6eyZ88erUsWQlQjEiqFqEb+85//aF2CKENOp5Pk5GR27drF+++/T8eOHZkyZQoul0vr0oQQ1YBB6wKEEOVn7dq1/PHHHwwcOFDrUkQJtWzZkldffTXffXa7ndjYWFatWsWKFStQVZUPPvgAT09P3nzzTY0qFUJUFxIqhagGPD09ycrKAuC5556TUFkFBAUFMWrUqAIfmzp1Kl9//TX33XcfADNnzuTZZ5/F39+//AoUQlQ70v0tRDVQt25dbrrpJgB27tzJL7/8onFFoqzde++9tG/fHshtwdyyZYvGFQkhqjoJlUJUE6+++io6Xe5/+RdeeAGn01mi8+3evZsZM2YwZMgQwsPD8fDwwGKxULduXUaNGsX8+fOveo158+a5J5nMmzcPgC1btjB27FgaNmyIp6cniqKwd+9eAKZPn+4+fv369QCsXLmS0aNHExERgdlsRlEUUlJS8l3HZrPx6aefMmTIEGrXro3ZbCYoKIhu3brx8ssvk5iYeMUaGzVqhKIotGrV6orHDB8+3F3XkCFDrnhc27ZtURSFunXrFvp9KS3NmjVz305LS7vs8TNnzrjrHjt2bKHnupZjryYnJ4d33nmHzp074+fnh6+vL61bt+all17i4sWLwLXNJI+Ojub555+nS5cuBAcHYzKZCAkJYdCgQcyePRubzVaieoUQRaQKIaosQAXUpk2bqqqqqvfdd5/7vi+//LLA5yxYsMB9zEsvvVTgMdOnT3cfU9hHx44d1ZiYmCvW9+WXX+arZ8aMGapOp7vsPHv27FFVVVVfeukl931r165VH3rooQKvm5yc7L7G4cOH1UaNGhVap5+fn7p48eICaxw/frz7uAsXLlz2uMPhUH19fd3HeHl5qTab7bLjEhMTVUVRVEC95557rvg9Kcy6devc1+nbt+9Vjx80aJD7+M2bN1/2eGRkpPvx++67r9BzFeXYvn37uo+5kujoaLVZs2ZX/FmEhYWp+/btK9K5VFVV33rrLdVsNhf6823cuLF67NixQs8jhCg5GVMpRDXy8ssvs2DBAmw2G9OnT+fOO+/EZDJd83mys7MxGAx0796dnj170qhRI3x9fUlKSiIyMpL58+cTExPDrl27GDlyJJs3b8ZoNBZ6zh9++IGVK1fi7+/P/fffT/v27VEUhV27duHl5XXZ8W+//TYrV66kdu3ajB07lpYtW2Kz2di0aRN6vR7IbcHq3bu3uyWyWbNm3HfffdSvX5+LFy+ycOFC1q1bR2pqKrfccgtLlixh2LBh+a7Tv39/vvjiCyB3SZ/bbrst3+O7du3K1wqYmZnJjh076NGjR77j1q9fj6qq7nOWtRMnTvDnn38CEBwcTNu2bcv8mleTlZXFwIEDOX78OABhYWGMHz+e5s2bk5aWxtKlS1myZAk33XRTkcZ/Pvnkk7z33nsA+Pj4cMcdd9ClSxf8/Pw4f/48ixcvZu3atZw4cYI+ffqwd+9eQkJCyvJLFKJ60zrVCiHKDv9qqVRVVZ08ebL7/lmzZl32nKK0VG7fvl2Ni4u74nWtVqv62GOPuc8zb968Ao+7tKUSUFu2bFnoeS9tqeTv1rq0tLQrHn9pS90dd9yhWq3Wy46ZOXOm+5iaNWtedr6YmBj34w8//PBlz3/rrbdUQA0NDVXr1aunAuqrr7562XGXft9Pnz59xZoLc7WWSrvdrkZFRalz5sxRa9eurQKqoijq3LlzCzxfebdU/uc//3E/3qNHjwJ/dl9//bW7Rbewcy1ZsiTfua70uvn000/dx40ePbrQr1EIUTISKoWowgoKlRcuXFC9vLzcISo9PT3fc4oSKovC4XCoDRo0UAF1wIABBR5zaahUFEXdv39/oee8NFR6e3sXGkD37NnjPrZBgwZqdnb2FY+9/fbbCw3ajRs3vuz7mGfIkCEqoN55553q2LFjr/j1tmrVSgXUevXqFfo1FubSUHm1D71er/br109dunTpFc9XnqEyJydHDQwMVAHVw8NDjYqKuuK1xo0bd9VQ2a5dOxVQg4KC1MTExEJrv+eee1RA1el0hV5XCFEyMlFHiGqmZs2aPPbYYwDEx8fzf//3f2VyHb1eT5cuXQDYvn27u+v3Svr27Uvr1q2LfP5bb7210K7MRYsWuW9PnjwZDw+PKx779NNPF/i8PP369QPg2LFjxMbGuu93OBxs2rQJyO3SzuvW3rx5M1ar1X3cxYsXOXTokPu48qDT6TAajRgMFWOU019//UVSUhIAo0aNIjw8/IrHTp48udBz7du3zz15a9y4cQQGBhZ6/N133w2Ay+VizZo111C1EOJaVIzfNkKIcvXUU08xe/ZskpKSePfdd5k4ceJV/zD/m8vlYvHixSxcuJA9e/YQGxtLenp6gbu3pKenk5aWhp+f3xXP16tXr2u6/tWO3759u/v2oEGDCj22Q4cO1KhRg8TERHbs2IGqqvlmHffv3585c+YAuWMj77zzTiB3eab09HT3MXnjU7Ozs9m2bRt9+vRxPycvVOcF1JIqaPFzl8tFcnIyu3fvZsGCBfz+++/8/vvvPPnkk7zzzjulct3i2rlzp/v21b4H7dq1w9/f/7JZ/Hk2btzovp33OixMTEyM+/bRo0evWqsQongkVApRDfn5+fHMM8/wzDPPkJqayptvvsnbb79d5OefO3eOUaNGsWvXriI/52qhsnbt2kU+V1GOj4uLc99u1KjRVc/XuHFjEhMTyczMJD09HV9fX/djl4agtWvXukNl3rJGdevWpWHDhgA0bNiQU6dOsXbt2nyhMk9ptVQWtvj5+PHjmT59OgMHDmT//v28++67tG7dmnvvvbdUrl0cl/486tevf9Xj69evf8W9y8+cOeO+/e677/Luu+8WuY681lIhROmT7m8hqqnJkye7g9mHH36Yr1u3MHa7nSFDhrgDZVBQEOPGjWPmzJl8++23LFy4kEWLFrFo0aJ8Aepqa1ZaLJZrqv9qx2dkZABgMBgwm81XPd+lM8zzWh/zhIaG0rRpUwDWrVvnvj/v9qVfZ97tgo5r0KBBod2+pSk4OJgPPvjA/fmMGTPK5bpXkvfzAAqczf9vhR2Tmppa7DrsdnuxnyuEKJy0VApRTVksFl588UUeeeQRsrOzeeWVV/jkk0+u+rwFCxa4xwcOGjSIRYsWXTEAfPvtt6Va87Xw9vYGcsc92my2qy6dlJmZ6b7t4+Nz2eP9+vXj2LFjnD59mujoaEJDQ/ONp7z0uM8//5ytW7eSnZ1Neno6hw8fvuy48tCrVy/3Fp0nT54kOjq62KG2oGEN1+LS10jelqGFKeyYvJ8t5LYC9+3bt0S1CSFKh7RUClGNjR8/3t1t+8UXX3Dy5MmrPuePP/5w3/7f//5XaItSVFRUyYssptDQUPftonxdecd4eXkVGCovDYTr1q1jx44d7iBaUEulzWZj8+bN+bq+S2s8ZVHpdLp86z1eOrYQyNeCe7VdZ/J2uimuS38ekZGRVz2+sGPq1Knjvn3w4MES1SWEKD0SKoWoxoxGI6+88gqQ26L33//+96rPuXDhgvt2XiAtSHx8vHuGrhbyZp5D/iBckL1797pDU+fOnQvcGvDSQLhu3Tp3WGzQoAH16tVzP1a7dm2aNGly2XH/Pkd5cDqdJCcnuz/39PTM93hhgfPftm3bVqJaOnXq5L596fekIPv27ctX97/ljVUFZB97ISoQCZVCVHNjxoyhTZs2AHz//ffs27ev0OMvDSanTp264nFvvPGGpuPXbr75ZvftDz74IN8SP/926SSlS593qVq1atG8eXMgNywWNJ4yz6XjKvOOa9y4MWFhYdf4VZTMxo0byc7OBsBkMl32JsBisbgnzezcuTPfuMdL2e32Ig2NKEzv3r3dKwwsXryYs2fPXvHY999/v9BzderUyf2zWLt2LatWrSpRbUKI0iGhUohqTlEUXnvtNQBUVc03uaMgl7YAvvjiiwWOtfvss8+uGgzKWtu2bbn++uuB3K7tCRMmFBhyP/jgAxYsWADkruE5duzYK54zr6UxOjra3dpWWKjcvn27ewmb8m6lvHDhQr71Hm+44YZ8YxHzDB06FMgdw/jSSy9d9rjD4eChhx5yjwstLrPZzMMPPwzkLrk0ZsyYyyZEAXzzzTd8+eWXhZ5Lp9PxxhtvuD+/4447WLFiRaHPOXToEI888kgxKhdCFJVM1BFCMGLECHr06MHmzZvzTVgpyLhx43j99dfJyMhg0aJFdOjQgXvuuYewsDAuXLjAL7/8woYNG6hVqxZt2rTh999/L6ev4nJz5syhQ4cOJCYmMn/+fHbt2pVv7+9ffvnFvRi2Xq9n3rx5BY6nzNO/f39mz54N5IatvPv+LS9A5h1zpeNK4uLFi5etz6iqKsnJyezatYsFCxa4u5Br1KhxxSWjpkyZwueff47NZmPmzJkcPXqUm2++GR8fH06ePMnXX3/NsWPHuOOOO/j+++9LVPPzzz/Pzz//zPHjx9m0aRMtWrRgwoQJNGvWLN/e3w0aNMDPz489e/YUOBQBYOTIkfznP//h9ddfJyUlhWHDhtGrVy+GDRtGvXr1MBgMJCUlcejQIdavX8/BgwfR6/Xun58Qogxoup+PEKJMUcA2jVeyYcOGy7b6u9I2jb/99ptqsViuuEVg7dq11W3btqn33Xef+77IyMjLznPpNo1ffvnlVWu8dJvGdevWXfV4VVXVw4cPq40aNSp0S0M/Pz910aJFVz1XfHx8vuc1adLkise2aNEi37GxsbFFqrcw17JNY95HixYt1H379hV63i+//FLV6XRXPMeECRPUU6dOlXjvb1VV1aioKLVp06ZXvFZYWJi6d+9etWfPniqg+vr6Flr7J598ovr4+BTpe1GSLTKFEFcn3d9CCCB38sOQIUOKdOyIESPYvXs3999/P+Hh4RiNRgIDA+nQoQOvvPIK+/fvz9dNrqXmzZtz6NAhZs+ezfXXX0+tWrXc9Xbp0oXp06dz8uTJKy4kfqng4GBatmzp/ryw1sdLH2vatGm+2c9lRVEUfHx8aNSoEbfddhvff/89e/fudY+ZvZKxY8eybds2br/9dkJDQzEajYSEhDB8+HCWLl3KnDlz0OlK589FeHg4e/fu5e2336ZDhw54e3vj4+NDq1atePHFF9mzZw9t27YlMTER4Ko7PT300ENERUXxzjvvcP3111O7dm3MZjNms5mQkBD69OnDU089xZo1azh9+nSpfA1CiIIpqnqVDXmFEEKIcpSWlkZgYCBOp5MbbriBJUuWaF2SEKIIpKVSCCFEhfLpp5+6d2Aq7wlOQojik5ZKIYQQ5WbXrl00a9bsiovmL1++nFtuuYWcnBwsFgvR0dEEBQWVc5VCiOKQ2d9CCCHKzezZs/npp58YMmQIXbt2de+Oc/bsWVauXOmejQ/w5ptvSqAUohKRUCmEEKJcpaWl8eOPP/Ljjz8W+Lher+eVV15hypQp5VyZEKIkpPtbCCFEuYmOjua3337j999/5/jx4yQkJJCSkoKvry/16tWjf//+PPzwwzRu3FjrUoUQ10hCpRBCCCGEKDGZ/S2EEEIIIUpMQqUQQgghhCgxCZVCCCGEEKLEJFQKIYQQQogSkyWFhBDVjqqq2Gw2srOzyc7Oxmaz5fuwWq0F3me323E6ne4Pl8uV799/3we5+3EriuLeO/vS2zqdDkVRgNxldEwmEwaDAaPRiMFgyPd53kfe/R4eHnh4eGCxWPLdNhjk17oQQhvy20cIUek4HA7S09NJS0sjLS3tstsZGRlkZ2eTlZVFZmYmWVlZZGVl5bsvbxvAqsZgMOQLmxaLBS8vL7y9vfHx8cHb27vAj7zHfH19sVgsWn8ZQohKSJYUEkJozm63k5ycTHJyMklJSfn+zfu4NDxmZWWV2rUNBkPuh96AXq//+9/c+4wGA0bT362EZiMmkwlUcj9QUF0quEB18c/9f38oKKgqZKVm4RXoSVJMKooCik5Bp1fQ6XUoBgWDUY/eqEdvzP1c0QMK2Kw2rNlWcrJt2HJs2Kw2bDl27DY7drsdl+pE1al4BVrIyckp1ZBsNpvx9/fHz88Pf3//yz7y7g8MDKRGjRp4eHiU2rWFEJWXhEohRJlxuVwkJyeTkJBAQkIC8fHx7tsXL150B8e0tLRrPreiKJhNZswmMyaDCaPOhF4xoMeA4tSBQ8FlV3HlqLisLhxZKs4cJ84cF55engSGBFArIpiQhsEE1QsksI4fLpdK0rkUkmNTSYpJJS0+nfSLGaRfzCT9YiYZSZk4Ha5rqlOn1/Hf9VN4pd/7uJxFe65Or8M70BOfIC98grzxqeGFb01vAmr7ExjmR2BtfwwmPclxaVyMSuL8yQTOn04gPiqB5AupuBQX6FTQq6h6FfQuMKioBhUMrtz7DC735+hV/Ov4kp6ejsPhuOafhbe3N0FBQQQFBVGjRo18ty/93Gg0XvO5hRCVh4RKIUSx5eTkcP78eeLi4oiNjeX8+fPu0JgXHIsaUhRFwdPDEw+TB0a9GSNGdE4Dil2HKxucWS5s6U5sKXasqXZc1tzWwKvxD/ElrGUIYS1CqdO8FrUaBuGwO4k/nciF0xe5cOoiCWcSSTqbQmZKdkm/JZcpTqgsCouvBzXC/AmOCKRmwyBqNQiiVsMgTBYj8ZGJxBw+z7kj5zl36DxJ51KKdE6V3CCKwYVqVFGNLjC6CvxXNaqY/QxYrdYinVtRFAIDAwkJCaFWrVrUqlWLkJAQ9+chISF4enqW4DsihNCahEohxBU5nU7i4+OJjY0lLi7uso+kpKSrniMvLFrMnph1HuidRhSbDlcm2FKdWJPs5CTZihwSC6PTK4Q2qUlE+7rUbRVKWMsQDEYD546cJ+ZwHOcOn+f8iQTSL2aW6DrXVlPZhMor8QrwJKRxMHWa1yKsZShhzUMAcgPmwTgi95wl5vCFUqklL4SqJheYnKgmV+5t8z+3Q5oGkZiYiM1mu+r5fHx83EEzLCyMsLAw6tSpQ506dQgODnZPcBJCVEwSKoWo5lRVJSUlhbNnz3L27Fmio6M5d+4cZ8+eJSYmBrvdXujzTSYT3hYfPPQWDE4T5OhwpLrISbSTFW/DlaWiqCULi4Wp1TCI+h3qUr9DGPXahZGVms2ZPeeI3h/LuUNxJJ5NRsvfcuUdKgsSWMePsJah1G1dm/rtw/AN9iZqfyyRu88Suess50/El+n3SEXN7X73cKKacz/wcKKaXahmJ96hFtLT0ws9h8lkonbt2u6QmRc469atS82aNSVwClEBSKgUoppwOp3ExsYSGRlJZGSkO0SePXuWjIyMKz5Pr9fj7emDxeCJwWlEzdRhT3GSc8FOzkUHOJQStzBeC4NJT/2OdWnaowFNetRH0euI3BVN5K6zRO4+R8r5ax+fWZYqQqj8N58gr7+DeF0adKqL3qDn+JZIjm+O5PTOaGzZhb+RKAuq3uUOmXg4cwOoxUGdtrWIi4srdBiFxWIhPDycevXqERER4f43NDRUllgSohxJqBSiinG5XFy4cMEdHvM+oqKirtgFqSgKXhZvvIxeGJxmyNRhu+giK9aKPdVVrqGxIBYfM836NKJZ74bU71CXhDOJHN+cG4LKupWtpCpiqPy3mg1q0KRHA5r2qE9Ik5pE7Yvh2MZTHN5wkszk0ptpX1wqKphdqBbH32HTierhIKx9CLGxsVcMnEajkbCwMHfQbNCgAQ0bNqROnTrSsilEGZBQKUQllp2dzcmTJzlx4gQnTpzg9OnTnDlzhuzsgiecGAwG/Lz8sSieKNkG7EkuMs/lYE10obi0DY7/ZvY00bR3A1oNaEr99mGc2XOOIxtPcWJzJOmJ5TcmsqQqQ6i8lKe/hcZdI2jetxENOoVz9mAsh9Ye58iGk2SnF21STnlSlb+71T0duWHT04Hq6cBUQ3/FSUQeHh7ugNmoUSMaNWpEgwYN8PLyKufqhahaJFQKUUmkpqa6w+Px48c5ceIEZ8+epaD/wjqdDj8vfzwUT5RMPbYEF5lnrTjTSz4Zpizp9Dqa9KhPm+ub0ahrBOcOx3Fwzd+BJi1H6/KKpbKFykuZvUw0692QVtc1IaJ9GJG7z7J/9TGObjyJw1axF4/Pa910/R0y8z6MNXRXbLEPDQ11h8ymTZvStGlTatSoUc6VC1F5SagUogJKT0/n6NGjHD58mGPHjnH8+HHi4+MLPNbT4oWP2Q+T1Yz9okpGtBVbkrNMJ8eUtqDwANqPaEnbwc1Jv5jJnuWHOLzuBBlJ2ne9llRlDpWX8vTzoHmfRrQd2oKg8AAO/H6U3UsPceHURa1LuyYqam6LppcD1cuO6uWgRlM/EhISCjw+ODiYZs2a0bRpU/e/fn5+5Vy1EJWDhEohNGa32zl16hSHDx/myJEjHDlyhOjo6AKP9fXyxUvvAxkGcs7ZyTpnA5u+nCsuHQaTnlYDmtLhhlYERwRyYPVRdi87xPkTBf9xr6yqSqi8VHBEIO2HtaTtkOakXkhn99KD7F99VJMJPqVFNbhQvRy4/g6a4V1DiIqKKrAnIDQ0lGbNmtGsWTOaN29Os2bNZFchIZBQKUS5i4+P58CBAxw6dIgjR45w4sSJArvjfL188Tb4oaQbyDprJzPamrtTTCXnG+xNp1Ft6HhjKy5GJbNz8X6O/Fnxu1OLqyqGyjx6Q+5whU4j21C7eS32LDvEjl/2kRxXsWbgF5eqc6F6O3B521G9HYS2r0FMTMxlx+n1eho3bkyrVq1o1aoVrVu3Jjg4WIOKhdCWhEohypCqqkRFRbF//373x/nz5y87zmwy42cOQJdpIifGQVaUHcVR+QPkpcJahtJtdDsad6/P4XUn2LZwb5VrlSxIVQ6VlwqqF0DXW9rR5vpmRO4+x7af9xC5+5zWZZU6Ve9C9bbj8nGgetsJaOpNYmLiZcfVqlXLHTJbtWpFw4YNZXkjUeVJqBSiFNntdo4fP+4OkAcPHiQ1NTXfMYqiEOAdiMXljSNeJe1kToWfQFMSDbvUo/c9nakR5s/2X/ax67eDZJXBdogVVXUJlXk8vM20H96Crre0JzM5i43zd3Dsr1MVetmnknBPCPKx4fK106hfXU6ePInLlf9nbbFYaN26Ne3ataN9+/Y0bdpUQqaociRUClECTqeTEydOsHv3bnbt2sWBAwfIyck/S9mgN+BvCcCQ5UF2tIPss44q0Y1dGEWBZn0a0fuezlh8PPjr253sW3m4ynZxF6a6hco8Or2OVgOb0Pvuzqgq/DV/BwfXHMPlrPp/clSdC9XHgcvXhupjxzPcdNkGAxIyRVUkoVKIa5DXnb1r1y52797N3r17L9tezmzywN8jACXFSPpJK/aEst2msCJRFGjRvwn97u+G6nKxcf4ODq09Xi2CxJVU11CZR1GgWe+G9L6nCxZfD/78ahv7Vh2pVq8JFTV3SSM/Oy4/Gz4NPS7rwbg0ZHbu3JnGjRvLAu2i0pFQKcRVXLx4ke3bt7uD5L/HT5mMJvw9AtElm0g/bsWepFbZruzCNO4WwXUP9EBv1LPu880c3Vh1uzyvRXUPlZdq1KUe1z3QA5PFyNrPt3Bkw4lq+Rr5d8j0bmAmLS3/5CY/Pz86d+7s/ggKCtKoWiGKTkKlEP/icDg4ePAgW7duZdu2bZw6dSrf43q9gQBLILpUExnHrTgSy3fv64omvE1tBjzYE99gb9bN3cKB34+huuTXSh4JlZdr3rcR103ogd1qZ+1nmzm5PUrrkjSVFzJdfnZUfxvmMN1lu2LVr1+fzp0706VLF9q2bYvZbNaoWiGuTEKlEOQu87N9+3a2bt3Krl27yMz8ZxvAvIk15hwvMk/ayDnnqjbd2YUJqO3H9Y/2JqxlKH/O28bupQdxOiQ0/ZuEyoLp9Aptrm9Ov3HdSDybzKoP/iQ+8vJZ1NWRqqioPnZc/jaaDA7n6NGj+dbLNJlMtGnThh49etCjRw9q166tYbVC/ENCpaiWnE4nhw8f5q+//mLr1q1ERkbme9zD5IGvPhDHOcg4UfWW9ykJs6eJ3vd2odPI1mz/ZR9/zd9RqRe9LmsSKgtnMOnpfnsHeo7pxP7VR1g3d2ul3ZKzrKgGFy5/Gy5/KzVa+1y2+09ERAQ9evSgZ8+etGjRAr2+cm6IICo/CZWi2rBarezcuZO//vqLzZs3k5yc7H5MURQCvAIxpFlIP2rFmVS9u7QLoijQblhLBjzQg6j9Mfw++y9Sqsgi12VJQmXR+NTwYsBDPWnSvT4b5m1jx+L98v0qQN42k64AK21uacz+/ftxOv9ZVcHPz49u3brRo0cPOnfujLe3t4bViupGQqWo0lJTU9m8eTN//fUXO3bsyLfcj8loIsAYhD1GIeOYTVojC1GrYRA3PDUAg8nAivfXE7X38l1FRMEkVF6b2s1qMXRKX4wWI7+9s4aYw5dvFiD+oepduAJsuAKteDU05luNQq/X0759e/r27Uvv3r0JDAzUsFJRHUioFFXOxYsXWb9+PX/++Sf79+/Ptwixp4cX3nY/Mo87sJ9HxkZehdFsoO/YrnQa2YYNX21l2897q9VSMKVBQuW1UxRoP6IVAx/qycE/jrHms81Ysy7fylTkp6Ki+tpxBVqp0yOI6Oho92OKotCmTRv69u1Lnz59qFmzpoaViqpKQqWoEhITE9mwYQNr167lwIED+Qa1+3n6Y870Iu2QFVeKTrq1i6hh53BGPDmAhDOJLJu5jtQL6Vd/kriMhMri8w70ZPDkvtRrW4cV/7eOI3+euvqThJvLw4GrhpXGQ8M4evRovsdatmxJnz596Nu3r0z0EaVGQqWotJKTk9mwYQPr1q1j7969+YJkoFcN9EkW0g7lQJYMWr8WZk8TQ6b0pVG3CFb833oOrz+hdUmVmoTKkmvUNYLhj/cn9tgFls1cV622+SwtqtmJs0YOLUbW5+DBg/l+XzZp0oQBAwYwYMAAacEUJSKhUlQq6enprF+/nrVr17Jnz558Xdv+noHo4s1kHLaj2CRIFkf9DmGMfO56zh6IZfn/1pGdbtW6pEpPQmXpMFmMXD+xN816N+S3d9ZwbNNprUuqtFSjE1cNK61HN2Lfvn3u36OKotC2bVsGDRpE37598fX11bhSUdlIqBQVnt1uZ9u2baxatYrNmzdjt/+zfI2/ZyD6RA/SD9lQciRIFpfRbGDgwz1pNbApy95bJ62TpUhCZelq1KUeNz47iFM7olj5/gasmTLWsiRUgwtXUA4tbq7P/v373fcbDAa6du3KoEGD6NGjBx4eHhpWKSoLCZWiQlJVlSNHjrB69WrWrFmTb59cP09/TClepB6womRLkCypkEbB3Dp9KIlnk/ntnTVkJGVpXVKVIqGy9Hl4mxk2rR/12tbh55dXcPZAnNYlVQmq2YkzKIeIgbXy7SRmsVjo06cPgwcPpkOHDrInubgiCZWiQjl//jyrV69m9erV+WYuepgseFv9Sd9vh3QJkqWl86g2DHiwJ398+hc7fz2gdTlVkoTKstN6YFOGPd6fTd/tYtO3O6rlPuJlxeXpwBWcTXBnX86f/2dZp5CQEIYMGcLQoUMJDQ3VsEJREUmoFJqz2+389ddf/Pbbb+zcudN9v0FvIEAfROYRJ444WYy8NHl4m7nxmYHUrF+Dn15azoVTF7UuqcqSUFm2AsP8Gf3yMDJTsln06ioyk6WlvTSp5G4Z6ayZg2djPRkZGe7HOnbsyLBhw+jTp4/sRS4ACZVCQ9HR0SxdupSVK1eSkpLivj/QMwhXtIGsE04Up3SzlLY6zWtx6/RhRO2LYfn/1skWi2VMQmXZ0xv1XD+xFy36N+GXV1YQufuc1iVVSapOxVUjh7Z3NmbXrl3u+729vRk4cCDDhg2jadOmKIo0AFRXEipFubJaraxfv56lS5eyb98+9/0WkwXPDD/S9ztkwk0Zaj+8Jdc/2ptVH/zJ3hWHtS6nWpBQWX6a9W7Ijc8MZOM3O9jyw26ty6nSVLMTZ81sgrv65Oseb9y4MaNGjWLgwIFYLBYNKxRakFApykVUVBSLFy9m1apV7u4TRVEIMAVhPapij5FFycuS3qBj8OS+NOlRnx+e/4244wlal1RtSKgsXzXqBjDmjRuIPRbPb2//gd3q0LqkKk1FRfWz0+/xTmzYsAGbLXc2vpeXF0OGDGHkyJFERERoW6QoNxIqRZlxOp1s27aNhQsXsmPHDvf9nmYvPFJ9yNjvkPUky4FXgCe3vTIMl0vlp5eWy8LR5UxCZfkze5m4+YXB+Nb04fv//Ca7QZUT1eDCWTObkN5+xMTEuO9v3749o0aNonfv3hgMBg0rFGVNQqUodenp6SxfvpxFixYRGxsL/N0qaQwi5wgy6aYchTQKZsybN3Jkw0lWf7xRQo0GJFRqQ1Gg79hudBrVmh9fWEb0gVitS6o2VFRUfxvdHmnNpk2b3Iur16hRgxEjRjBy5EiCgoI0rlKUBQmVotRERkaycOFCVq9eTU5ODgAmgwnv7AAyD7jQWeUdanlq2KUeN78wmN9nb2TviiNal1Nt6fQ6XlgziVcHfCihUgPN+jTkhqcGsGzmOg6vk0X9y5vL5MRZKwvfNiaSkpKA3IXVBw4cyG233UajRo00rlCUJgmVokRUVWXHjh18//33+ZYD8jH7wlkPunbvzIAJvTSsUAghhNbWfrGZdUv/pMVt9fLt3NOxY0duu+02unbtKouqVwESKkWxOBwO1q1bx4IFCzh58iTwdxe3IYisgyquhNyJN4pOkeUlypGiwHUTetBqYBMWPLeE+NNJWpdU7UlLZcUQUNuXMW/eSNTeGFbMWo/LKX/6ypOqqqiu3O+5y9tO78fbsWHDBpxOJwDh4eHcdtttDB48WNa8rMQkVIprkpWVxbJly/jpp5/cy0gY9AZ8rIFk7nGhWGXijVZ0eh2j/jOI4IgafPf0r6QnZmpdkkDGVFYkFl8P7nhtBNYsGz++uAyHzal1SdWaanbiDM3Co6lCZmbu7ys/Pz9uuukmbr31Vnx9fTWuUFwrCZWiSJKTk1m4cCGLFi0iPT13JqXZ6IFHki/Zh1QUh3RbaMlg0jP65WGYPE0seHaJLGhegUiorFgMJj23Th+Gh4+ZBc8swZpl07qkak/Vu3DWyia4h7e7scJisTBy5Ehuu+02mdRTiUioFIW6ePEi3333HUuWLPln/TGTN7qzFqynFBSXdG1rzWQxMuaNG7Hl2Pnpv9L6UtFIqKx48lr1g8IDmf/kIrJSc7QuSZA7a9wVZKX+DTU5cSJ3UpXJZGLo0KGMGTOG2rVra1yhuBoJlaJAFy5c4LvvvmPZsmXuMOlr8sNxzIhDFiqvMCy+Htz9ziiSYlJY9NpqCS0VkITKiklRYOhj/YloH8Y3j/9C+kUZLlJRqKi4Amw0uz2MgwcPAqDX6xk4cCB333039erV07hCcSUSKkU+58+fZ/78+SxfvhyHI3cnCl9jALaDOlwJegmTFYinnwf3/t8tnDsYx7L/rXMPghcVi4TKim3Agz1o2b8J86b8TFpChtbliEuoqKi+dtqNb+TeQEOn0zFo0CDuu+8+wsLCNK5Q/JuESgFAfHw8X331FcuXL3fPxvMzBmDdr8OVKGGyorH4mHMD5aE4ls1cp3U5ohASKiu+/uO702pAE+ZN/lkmuFVQLm87XR5tzqZNm4DclsvBgwdz7733Srd4BSKhsppLSUlh/vz5LF682N3N7WcMJGefAkmyWHlF5OFt5r5ZtxBz5ALL3luD/A+u2CRUVg4DHuxB876NmDflZzISs7QuR1yBy9tOx4ebsHXrViA3XA4bNox7772XWrVqaVydkFBZTWVmZvLDDz/www8/kJ2duxe0r8Ef6z49JEuYrKg8vM3c+7+bOX8ygd/e/kMCZSUgobLyGPRIL5r0aMBXU38mI0mCZUXm8rHRbsI/3eJGo5FRo0Zxzz334O/vr21x1ZiEymrGarWyaNEivv32W1JTUwHwMfpiO2BAvWiQbu4KzGQxcu//biYhKoklb/4ugbKSkFBZuVz/aG8adanHl5N+IjvdqnU54ipcvjZa3RfBnj17APDy8uLOO+9k9OjReHh4aFxd9SOhsppQVZU1a9bw2WefudcB8zJ54zpqxhkrYyYrOr1Bx5g3b8SaZePn6StkUk4lIqGy8hnx5ABqNajB14//gj3HoXU54ipUVFR/GxE3BbuXIgoKCmLcuHEMGTIEg0F638qLhMpqYP/+/Xz00UccOXIEAA+jBX2kJ/YzEiYrA0WBm14YgncNT7596lecdlmHsjKRUFn5KDqF0S8Pw2g2sOC53+TnVkmoqLiCcwjq6+luPKlXrx6PPPII3bt3ly2Dy4GEyirs3LlzfPLJJ/z5559A7naKHvF+2I7pZdHySmTI5L6Et63NvMk/y045lZCEysrJYNJz1zujSEvIYPFrq2S4SSWiKirO0Cy82ulIS0sDoEuXLkyaNImIiAhti6viZG+9KigrK4uPP/6Ye++9lz///BNFUfC11kC32R/7EYMEykqk112daNw9gm+fXCyBUohy5LA5+f6536hZvwaDHumtdTniGiiqgiHWi5xVZsaMGYPRaGT79u3cf//9vP/+++6thkXpk1BZhaiqyu+//85dd93F999/j8PhwFcJwLg7EOsOA4pdr3WJ4hq07N+Ybre155snFpGZkq11OUJUO9YsG98+tZgW/RrTaWRrrcsR10hx6vjl0bUoW3zp1asXTqeTn3/+mTvvvJNff/3VvcGHKD0SKquIU6dOMWXKFGbMmEFiYiIWgyfmY4FYN5pQMmWQcmVTp3ktRjw1gB+eX0pKXJrW5QhRbWUkZfHdM78y4MGeNOhYV+tyRDEoOQZ2vHkC40F/IiIiSE1N5b333uPBBx/k0KFDWpdXpUiorOQyMjKYNWsW48ePZ9++feh1ejwvBuLc4A0JRq3LE8XgV9OHO964keUz13H2YJzW5QhR7cVHJvLLjJXcOn0YQeEBWpcjikmXYiZ2fhaGUz74+Phw8uRJJk6cyDvvvOMeeylKRkJlJaWqKuvXr+fuu+9m4cKFuFwufJwB6LcF4DxqRFFl3GRlZLIYGfPWjexacoADfxzTuhwhxN9ObD3DhnnbuPOtkXj6yfqHlZWCgj7OE+vvHgwdOhRVVfntt9+4++67WblyJTJ3uWRk9ncldOHCBf7v//7PvQeqp8EL5wEzJErLZGV324zhqC6Vn6cvl9mmVYTM/q5ahj/en6DwQL554hdcTvlPWtm5fG3UudGPM2fOANCuXTsef/xxmSVeTNJSWYk4nU4WLlzIvffey6ZNm9ApOjwTA3Bs8JJAWQX0GNORGnUDWPzGagmUQlRQK9/fgN6k57oHempdiigFujQTsd9moY/0xmw2s3fvXsaPH8/8+fNlIk8xSKisJCIjI5k0aRKzZs0iOzsbL8UH/a4AnEdM0tVdBdTvEEbvuzvz44tLZQcPISowp8PFTy8uo+2Q5jTv01DrckQpUFQFQ4wX6l8+dOvWDbvdzmeffcbDDz/MyZMntS6vUpFQWcE5nU4WLFjAhAkTOHToEAa9EUtMIPaNFnRZMqu7KvAN9uaWl4ay+I3VJJ5N0bocIcRVpCdm8vP05dz4zCBq1JWJO1WFYtWz+93TGI754uPjw/Hjx3nggQeYO3cudrusE1wUEiorsLNnzzJ58mRmz56N3W7H2+WHbosfrkijbK9YRej0Oka/PIw9yw5x7K/TWpcjhCiiqL0x/Pn1dm5/bQRGD3mDX1UoKOgTLFj/MNO7d2+cTifz5s1jwoQJHDsmkyevRkJlBeRyuVi4cCHjxo3j4MGDGHQGPM4EYNtsRrHJAuZVSf8J3XE6Xaz9fIvWpQghrtGWH3aTeDaZIZP7al2KKGWKXc+2N45hOOKHv78/kZGRPPzww8yfPx+n06l1eRWWhMoKJiEhgSeeeIJZs2ZhtVrxdPmg2+aPes4krZNVTP0OYXQc0YpfZqxEdcnMHCEqoyVv/UHjbhG06NdI61JEKVNQ0Cd6kLXSSN++fXE6nXz22WdMnTqV2NhYrcurkCRUViAbN27k/vvvZ9euXeh1BjzOBeDYbEGxSutkVePp58FNLwzht3f+IC0+Q+tyhBDFlJ2Wwy+vrmLEEwPwq+mjdTmiDCgOHVteO4LhuC+enp7s37+fcePGsWLFClnX8l8kVFYAVquVmTNn8vzzz5OWloan4o1uux/qGWmdrKpufGYQxzdHcuTPU1qXIoQooTN7zrFzyQFufnEwik5+Z1dFCgr6eAuODZ60bt2arKws3njjDaZPn05GhjQM5JFQqbHTp0/z4IMPsnjxYgAsiX44/vJElyMDv6uqDiNaUqNuAKs+2KB1KUKIUrJ+7lb0Rj09x3TUuhRRhhSrnmOzL/Dggw+i1+tZt24dEyZM4OjRo1qXViFIqNSIqqosXbqUBx98kMjISEx6M8ZDAbiOeMi6k1WYX00fBj3Sm8Wvr8JulfUohagqXE4Xi19fTa+7OhMcEah1OaIMKSh8de+v6Hb5ERoaSmxsLBMnTmThwoXVvjtcQqUGrFYrb731Fm+//TY2mw1Phw9s9kWXbNK6NFHGbnh6ALuWHCDmyAWtSxFClLKL0cn8+c12Rj53PTq9NA5UdboMI4m/OOjduzcOh4NZs2bx4osvkp6ernVpmpFQWc7y3tEsX74cBQWPOH8cWy0odvlRVHXth7XAr5Yv67/cqnUpQogysuWH3aCqdLutg9aliHKgOHVse+MY+lM+GAwG/vzzTyZMmMCJEye0Lk0TkmTK0ebNm90vNqPOhOGAH+ops0zGqQZ8g725/tE+/PrGahw2WeNMiKpKdaksfmM1fe7pQlC47LZTHSgoGOI8UXb6EhISQlxcHBMnTmTNmjVal1buJFSWA5fLxdy5c3n22WfJyMjAw+mFstUXXapZ69JEORk2rT+7lx3k3OHzWpcihChjF6OS+evbHdz4zEAUaTOoNnQZRpIWO+ncuTNWq5WXX36Z2bNnV6vF0iVUlrGcnBymT5/OvHnzALCk+OHa6iU741QjTXs2IKRxMOvnSre3ENXF5u934+Ftpu2QFlqXIsqR4tCx739RjBkzBoAFCxbw9NNPk5aWpnFl5UNCZRmKj49n0qRJrF+/HkXRYTrtj+ugzO6uToxmA0On9mPl+xuw58hsbyGqC5fTxdL31jLokV5YfKRXqjpRUPjl0bUYjvphNpvZsWMHDz74IGfOnNG6tDInobKMHD58mIceeojjx49jVIwY9vmhxMovluqm971diI+8yNGNssi5ENVN9P5YTmw9w4AHe2pditCA/qIHrq1ehISEuCfp7tmzR+uyypSEyjKwfv16pkyZQmJiImbVgrLdD12aLBdU3QSFB9Dl5ras+L/1WpcihNDI77P/okX/xtRpEaJ1KUIDuszccZYtW7YkIyODJ554gpUrV2pdVpmRUFnKFi5cyEsvvYTNZsMjxxt1q7fs3V1NDZnajy0/7CY5rnqMpRFCXC4zOYt1n29h+LT+MmmnmlIcOk7MSaB///44HA5ef/115s6dWyUXSpdQWUpUVeWTTz5h1qxZqKqKOckH105PFKd8i6ujhl3qEVwvkE3f7dS6FCGExnb9dgCDSU+rgU21LkVoRHEpbJpxiDvvvBOAefPm8frrr+NwVK2x9pUu8Zw+fZqJEycyefJknn76abKyslizZg2PPPIIU6dO5cKF3J1KtmzZwsSJE1m2bFmZ15T3zuO7774DwHTOF/WwRdafrKYUncL1E3uzZs4mWZNSCIHLqbL6478Y8GBPDCbpuaquFBQWTlyD4YQPer2eVatW8cILL2C1WrUurdRUulAZHh7Oxx9/zAcffEDz5s3ZuHEjP/74I++//z4TJkzg66+/BnJD5Ycffljmm7xnZ2fz7LPPsmrVKhQUjCd9Uc5IoKzO2g9rgdPh5MDqsn3tCSEqj5PbzpB4Npmut7bXuhShMf0FT5T9PphMJjZv3syTTz5JRkaG1mWVikoXKg0Gg/t2Tk4OtWrVon79+hiNRlq3bs3p06cB6NKlC48++ihNm5Zdd0NmZiZPPfUU27dvR6/o0R/yQ3feUmbXExWfyWKk/4QerP5oI1VwuIwQogRWf7SRXnd3wtNf/k5Ud/pkM+pOL7y8vNi3bx9Tp04lOTlZ67JKrNKFSoAdO3Ywfvx49uzZg16vx9PT0/1Y3sr1vXr1Yvbs2YwYMaJMakhPT+fxxx9n//796BUDur2+6JNlyaDqrvvtHYg9cp4ze85pXYoQooK5cOoiR/88RZ97u2hdiqgAdGkmbH+Z8ff358SJE0yaNMk9hK+yqpShsnPnznzxxRf069ePffv2kZWV5X5Mry/78SopKSk89thjHDlyBAMGdLt90aXLkkHVnYe3mW63tWft51u0LkUIUUGtn7uV9sNa4BvsrXUpogLQZRrJ/ENPrVq1OHv2LI899hjx8fFal1VslS5U2mw2920vLy8sFgtnzpzBbrdz4MABGjRoUKbXT0pKYurUqZw4cQIDRpTdvugyjWV6TVE5dL+9Pad3RHPh1EWtSxFCVFCp8ensX32UXnd31roUUUHocgwk/+akdu3axMTEMHXq1EobLCtdqNy5cyeTJ09m6tSp7N69m+HDhzN69GimTJnC559/zr333ltm105NTWXatGlERkZixISyyxddlgRKARYfM11uacf6L2V/byFE4TZ+s4O2g5vhV9NH61JEBaHY9Fz81UZoaKg7WCYkJGhd1jVT1Kq4+mYZSE9PZ9q0abnbLmJC2emDkmO4+hNFtXDdAz0IqO3HwpdXaF2KqGB0eh3/XT+FV/q9j8vp0rocUUEMfawfer2Ope+t1boUUYGoZic1bjQSFxdHnTp1eP/99wkODta6rCKrdC2VWsjKyuLpp5/m+PHjGDDCLgmU4h8WXw+63NyWDfOklVIIUTR/fbOD1oOa4ldLWivFPxSrnsQldkJCQoiJieHxxx8nNTVV67KKTELlVVitVp577jkOHTqEHgPKHh902RIoxT8639SGU9ujuBhV+ZeDEEKUj/TETPavPkr32zpoXYqoYBSrnqTfHAQHBxMVFeXe6KUykFBZCKfTycsvv5y7dJGiR7dXJuWI/AwmPV1vacemBbu0LkUIUcls+WE37Ya1wOIjy9GJ/BSrnpSVLvz8/Dhy5AgvvPBCvonKFZWEyitQVZVZs2bx119/oVN06Pb5osuQQCnyazukBfGRicQerdxriwkhyl9STCqndkTRaVQbrUsRFZAu20DWBj0Wi4WdO3fy2muvudfirqikH/cKFixYwOLFiwEwHPVFn+kBsmWruISiU+hxRwdWffgnOr28PxMFy3ttyGtEFGTLj7u547Ub2PbzXhy2ih0YRPnTZZtx7gJDGzvr1q0jMDCQqVOnal3WFcns7wL8/vvvzJgxA4Dhw4fTq1cvjSsSQgghRHW1f/9+FixYAMC0adO46aabNK6oYBIq/2Xfvn1MmzYNh8OB8bwXhkhfrUsSFdQ9M2/iwB/H2Lv8sNaliApMp9fxwppJvDrgQ1lSSBSoSc/69B/XnU/Hf6d1KaICu3vuCObMmYNer+ett96iS5eKt92ndH9f4sKFC7z44ou5gTLVE+WkFy7kj4C4XHBEICGNgvnu6V8lKIgicTld8loRBTr212mGTO5LWIsQog/Eal2OqKC+uu9XBs8YzKpVq3jppZeYPXs2ERERWpeVjwzy+ZvVauX5558nJSUFg82McsgbBUXrskQF1Wlka/auPIzd6tC6FCFEJae6VHYtOUDnm2TCjrgyBYV1/91DmzZtyMzM5JlnniElJUXrsvKRUEnuTO933nmH48ePo1cN6Pb5oLgkUIqCmSxG2g5uwc7FB7QuRQhRRexZdoimPRvgFeCpdSmiAlNUhaOfxVG7dm3i4uJ49dVXK9SMcAmVwI8//sjq1atRUNAd9EGxyjRvcWWtBzYl5uh5Es/KYudCiNKRkZTFsc2RtB/eUutSRAWnOHQkLM3BbDazfft2vv76a61Lcqv2ofLgwYPMnj0bAP0pb3SpJo0rEhVdxxtbs/NXaaUUQpSunb/up+MNrVCko0xchS7LyBNPPAHAvHnz2L59u8YV5arWoTI9PZ1XXnkFl8uFIcmCLs6idUmigguOCMQ/1JfjmyO1LkUIUcVE74sBILxNHY0rEZXBe8O+4IYbbkBVVWbMmMGFC9pvwlFtQ6Wqqrz99tucP38evcOI7phMzBFX13ZICw6uOY7TXnHGsAghqgZVhX2rjtB2SHOtSxGVxKpnt9GkSRNSU1N55ZVXNB9fWW1D5ZIlS9iwYcM/4yid1fZbIYpI0Sm0ub4Z+1bKupRCiLKxb+URWvRrjNEsK/6Jq1NUhTPfJuHp6cmBAwf47jtt1zqtlknqzJkzvP/++wDoTnvJnt6iSOp3qIsty0bMEe27GIQQVVNybCrxpy/StFdDrUsRlYRi1bu3bpw7dy7Hjh3TrJZqFyodDgdvvPEGdrsdQ5oH+lhZvkEUTdvBzdi36ojWZQghqri9K6ULXFyb94Z/Qd++fXE6ncyYMYOcnBxN6qh2ofKnn37iyJEj6FQ9uqMyjlIUjd6op2mvhhz8Q7t3gEKI6uHIhpNEtKuDh7dZ61JEJaGgsOWtw9SoUYPo6Gg+/fRTTeqoVqEyKiqKzz//HADdCS8Um6xHKYqmQae6JMemkhyXpnUpQogqLjsth+j9sTTt1UDrUkQlojh0pG3Inajzyy+/cOjQoXKvodqESqfTyZtvvondbkefakYX76F1SaISadG3MYfXn9C6DCFENXF4/Qla9G2kdRmiktGlmBk8eLB7p0CHo3y3Eq42oXLp0qUcOnQInapDf8xHur1Fken0Opr1bsjh9Se1LkUIUU0c3XiKBp3CMXvKhhzi2qx7eTd+fn6cPn2aH374oVyvXS1CZWpqKnPmzAFAOS3d3uLa1O8QRlpChmzLKIQoN5kp2Zw7fJ4mPeprXYqoZBSHjokTJwLw5ZdfEhMTU27XLpVQmZ6erukU9quZM2cOaWlp6LON6GXXHHGNmvRswNGNp7QuQwhRzRzdeIomPWVcpbh27w3/gg4dOmCz2fjggw/K7bolDpUbNmzgwQcf5MUXXwTg5MmTPPXUUyUurLQcPXqU3377DQDdCZntLa5d464RnNx2RusyhBDVzMltZ2jYORxFJ3+3xLVRUDgwJwq9Xs/mzZvZtWtXuVy3xKHy66+/5rPPPsPHxweARo0aER8fX+LCSoOqqrz//vuoqoouwQNdmoxNEdcmMMwfi68H5w6f17oUIUQ1k3g2hZwMK3Wah2hdiqiEdNkGRo0aBcBHH31ULls4ljhUGo1Gd6DMoygV413Vpk2bOHjwIIqqwxDprXU5ohJq3C2CUzuiUF2q1qUIIaqhk1vP0LhbPa3LEJXUb0/9ibe3NydPnmTlypVlfr0Sh8rQ0FB27NgBQGZmJnPnzqVRI+2XQXA6ne7JObpzHjI5RxRL424RnNhyRusyhBDV1ImtZ2jUNULrMkQlpTh03HvvvUDu/JLs7OwyvV6JQ+Xjjz/O6tWrSUhI4I477iAuLs69B6WW1qxZQ2RkJIpLh/6cl9bliErIYNJTr20dTm6P0roUIUQ1dWbPOWo2CMLTT9ZWFsXz+V0/ExoaSlJSEr/++muZXstQ0hP4+Pjw/PPPl0YtpcZut/PFF18AoIv2RHFWi5WTRCmr0zyElPNpZCZnaV2KEKKaslsdxB45T3ibOrIKhSgWRVW49957eeutt/j+++8ZNWoUHh5l8yal2KHym2++KfTxe+65p7inLrHff/+duLg4dA49+lhPzeoQlVu9dnU4s7f81vcSQoiCnNkbQ0S7MAmVotj+d+OXhNwSwvnz51myZAm33XZbmVyn2E14DocDh8NBVFQUy5cvJzU1ldTUVJYvX05cXFxp1nhNXC4XCxYsAEA5a0FxVYxJQ6LyiWgXRtTec1qXIYSo5qL2nqNeuzpalyEqMUVV3I193333HVartUyuU+xQef/993P//feTkJDA559/zqRJk5g0aRJz5swhISGhNGu8Jlu2bCEqKip3LOV5WehcFI/eoCOsZShR0lIphNDY2UNxBEcE4uFt1roUUYnNGvUVtWrVIikpiRUrVpTJNUo82DAxMRGL5Z/w5uHhwfnz2q3pl9dKqYvxkLGUothCm9Yi/WIG6YmZWpcihKjm7DkO4o4nEN6mttaliEpMURXuuOMOAH7++WdcLlepX6PEE3W6du3KY489xoABA4DcWdddu3YtcWHFcejQIfbv34+iKujjZCylKL6wliGcPajdMA4hhLjU2YOxhLUI4fjmSK1LEZXY7Du+w2ugF9HR0ezYsaPU81qJm/ImT57M6NGjOXv2LNHR0YwePZpJkyaVRm3XbPHixQAo8WZZl1KUSJ1mtYg9ekHrMoQQAoDYoxeoLTvriBJSnDqGDRsG5LZWlrYSt1QC9O7dm969e5fGqYotLS2NdevWAUgrpSix2s1qsfXnvVqXIYQQAMQcucCwaf21LkNUAb8+vRali8K2bduIjY2ldu3SG1ZR4lB5pYXOZ82aVdJTX5OVK1dis9lQMg0oGaWSlUU15eFtxq+WDxdOajfhTAghLpUcm4qiKASE+pIcl6Z1OaISU6wGOnbsyM6dO1mxYgXjx48vtXOXOH1NmDDBfdtms/Hnn3/mm7hTHlRVZdmyZQDo4ywoyDJCovhqN61JfGQiDptT61KEEMItrwtcQqUoqb3zT0AzWLFiBWPHjkWvL50hgyUOla1bt873eceOHct9m8bTp08TGRkJqoIuQbayEiUT2rQmccfitS5DCCHyiT12gdpNa3Jo7XGtSxGVnC7RjLe3N/Hx8ezatYsuXbqUznlL5SyXOHnyJPHx5fsH+ffffwdAl2iSZYREiQVH1CD+dKLWZQghRD7xkYkERwRqXYaoAhRVYeDAgQCsXbu21M5b4pbK/v37oyi53c06nY5atWoxceLEEhdWVC6Xy/0NkVZKURqCIwLZt+qI1mUIIUQ+CZFJBEfU0LoMUUUsm7EBWsPGjRt58sknMRhKPh+lxGfIm3GtlaNHj3L+/HkUp4IuWXYbECWjKLktlQlnpKVSCFGxXIxOwq+mD0YPA/Ych9bliEpOSTUSEBBAcnIyu3fvLpUu8BL3FT/++OOX3ffUU0+V9LRFtmXLFgCUZJPs8y1KzK+WL067k4zELK1LEUKIfBw2J8lxqQTXky5wUXIKCn369AFgw4YNpXLOEofK1NTUfJ9brdZyHVO5efNmAHRJ0kopSi44IlBaKYUQFVbCGekCF6Vn+Wu5YXLr1q2oqlri8xW7+/urr75i3rx5uFwurrvuOiB3aR+LxcKtt95a4sKKIiEhgRMnToAqoVKUjqB6AVyMTta6DCGEKNDFqCSC6gVoXYaoIpQ0EyaTiYSEBKKiooiIiCjR+YodKu+77z7uu+8+PvzwQ822Zdy5cycASoYBxSGzvkXJ+Yf4khybevUDhRBCA8lxaUS0q6N1GaKKUFwKbdu1Y/v27Wzbtq3EobLESUyrQAmwb98+AHQpJs1qEFWLf4gvKbKwsBCigko5n4Z/iK/WZYgqJG+CTl5DXUkUu6XywQcf5LPPPnMvKaSqar5/S3PdoyvZu3cvALpUCZWidPiH+pFyXkKlEKJiSolLwz9UQqUoPZ+O/w7aw6FDh3C5XOh0xW9vLHao/OyzzwDtlhSKj48nNjYWVFDSjZrUIKoe/1BpqRRCVFypF9LwCvDEYNLLVrKiVCiZBjw8PMjIyCAqKor69esX+1wl7v5+/fXXL7vvzTffLOlpr+ro0aNA7jdDdtERpcHi64HeoCMjKVPrUoQQokAOm5PM5Cz8avloXYqoIhQUmjdvDsDBgwdLdK4Sp7FTp05ddt/x42W/L2neNZSMkq8ALwSAb7A36RczKYVVFUR1pSgo5qusRKHTo/OQ3b9E8aXGZ+BbU0KlKD2tWrUC4MiRku0mV+xEtnDhQn7++WcSEhK488473fdnZWXRrVu3EhVVFHmhUpchXd+idHgFeJKRJIuei2JSFHRmM+h0YDajWq2XH6PTo7N4gE6HDnDl5JR7maLyy0zOwsvfonUZogpZ8PwSaAanT58u0XmKHSoHDx5Mjx49+PDDD5k8ebL7fi8vL3x8yv4d1IkTJ4Dc7m8hSoNXgIXMZAmVohguDZSQO2nxSsfmDYI3GiVYimLJDZWeWpchqpC8LBUZGVmiyTrFTmTe3t54e3vz2muvFfcUxZaZmUliYu6uJ0qWhEpROrwCPMlMkVAprtG/AiUAOh3Kv1srdXp0pn+tVCHBUhRDZko2XgHSUilKj5Ktx2QykZ2dTVxcHHXqFG8t1BInshMnTjBz5kwiIyOx2Wzu+8tySaFz587l3rDpZJKOKDVeAZ5kJmdrXYaoTAoKlHkP6fVgNoPDDoDOYsalKpefQ4KluEaZyVmy/7coVQoKdcLCOH36NOfOnSt2qCxxIps5cybTpk2jTp06LF26lAcffJAJEyaU9LSFyguVSra+TK8jqhcvf+n+FtdGMZkKDJTux/WXTMoprDvJaETnKd2Zomgyk7PwCpDXiyhdoaGhAMTFxRX7HCUOlQ6HgyZNmuBwOPD09OSOO+5g8+bNJT1toWJjYwFQciRUitJj8fUgJ72AyRVCFEAxm1EUBVyuKx6jC/An/p52RTuhXi/BUhRJdpoVi89VVhkQ4hpViFBpMOT2oIeEhLB27VoOHDjgHu9YVtzjKW0SKkXpMXkYsWXbrn6gqPbcgTJPAcFSF+BP3A31sHvnHpd8Q8urn1iCpSgCe44do0VWPhGla9HbKwE4f/58sc9R4jGVY8eOJSMjg4kTJzJz5kyys7N57LHHSnraQiUlJQGg2GQ8pSg9JosRW7Zd6zJEBXdZoMzjcrm7uPMCpcNLcb9zzw7W4bqxJQFLDhV+gb+DpStLhmKIgtmybZgkVIpSltdQl5ycXOxzlDhUdu3aFcidDT5r1iwAli9fXtLTFiovVCKhUpQik6eESnEVilJwoMzjcqGrEegOlJdSdZBdUwdFCZaFXUNUe7ZsOyaL6eoHCnENFHvu753U1NRin6NMUtncuXPL4rRueV+w4pBQKUqP0UNCpSic8u8lgf5FFxxE1N0RlwXKPKoOMurqOPN468IvpNNJN7i4otxQKS2VopT9nakqXKhUy3ifu+zsv5d9ccq7eVF6pPtbXI1qd1zxMV1wEGfuDsfmp2LzLfgYpwkyG9nIibAWHixdLlw5MmlMFExCpSgLij03Eqanpxf7HGUSKi/tHvroo4+YNGkSr7zyCna7na+++orJkydz9OjRYp8/J289NwmVohTpjXqcDqfWZYiKzOXEZbv8jUdeoLT75L6hdhkvD5YuE2Q1tKGYXCh69crB0uXClZ0Dqku6wUWBnHYnOr0OnV5eH6IUuXJfT3a7HVchq1oUpthjKh9//PErPpbXdHr8+HGSkpL48MMP+frrr1m/fj0JCQm8/fbbzJ07l2bNmhXr2nmhUnHJfyhRehRFQXWWbSu7qAJcTlw20JlyW4r+HSjdhxlVbL4KHn+/6c9qkBso81waLCNmHvj7SZcESveBCpRx74+oXP55OShw5Q1Bhbg2l7yU7HY7ZvO1L1tV7FB57733XvWYQ4cO0blzZyB3Qs/y5csJDAzkqaeeYuLEicW9NA7H311QxQvSQhRI0SllPnRDVBF/B0tDndACA6X7MKOKNSj39qWBMo87WE5rTcR7+y4PlO4DJViKf6iu3NeColNAOldEabmkoS4lJYVatWpd8ymKHSrbtWt31WMyMjIICsr9jerl5UV6ejrTpk1j3Lhxxb0s8E/3uk6vQ3GV32Sd7jd2pnGHCI5sPcGOlXvL7brdbuhIk44NOLrtJNtX7JHrlpGg4CDGPHczBzYcqRZfr1y3hHQ6FD8vXL6gp+BeE0+TiZ/vvYNQiwWfs9tJdxQwTlIPjhoqhqAAHDFxFDoq6RqCZdfhHWjauSHHd51m62+7ivy8ktLqul2GtqdZ10bV4rqKTiEgIID7pt/G0R0nq/zXW52ve2L3GbYs2VEu11Qvaap0z125Ropahk0zixcvxsPDgyFDhnD06FFWrFjBtGnTSnze6667DofDwbPPPoufn18pVFo0ERERBAQEkJiYSHR0dLlfNykpiaioKLmuXLdKXDc5OZkzZ85U6evqdDratm0LwL59+4o9Tqk4qtP3Wcvr1qtXj8DAQLmuXLfSX9fpdPLCCy8A8NNPP5VvS2VRtGjRgh9++IEhQ4awfft2Wre+yjIaRaT7e4Hh/42ei64cd9WZ+H9jaXdda/76ZRtfT/+p3K+7adF2vnrph3K77iMzx9J+YGs2L97BvP9+X+7X3bJkB1++UH7X/eLUeySeTWbT4vK97kPv3kvH69uW+9ebd92tv+1k7vMLyu26D759D52GtGPb0l188Z/vyv2625fv5vNnvy3+iXR69IF+oM/93aPodNgahBA91JLvMLu/kyVDvsTDuIQceyiJwU8zdevw/OdKM9JofhaGxEtmW2bn4Dgfn/+4Yrz3n/DmXXQZ1oEdK/Yw55n51/z84sq77s6Ve/ns6W/K7brjX7+TriM6lvt1x702hm43dCr3634R+R6J0cnsWLWXT5/8utyue/+rd9D9xs7s/n0/nzzxVblfd88fB5j9+Lxyu+7YV+6gx6jyv+59L99Oz5u6sHftAT5+rHyuq+pUyF16HB8fn2Kdo0xDZZMmTQgMDGTSpEnUrFmTMWPGlMp5zWYzNpsNF85ynQGeF2addhcuZ/m1OOR19zsdznK9bt7MwvK+bh6no3y/z7mN9gouZ/leN095XzdvXJZmX69L1eDnW8KvV6dH7+eLCx3kTepyOjGciCPMFULUsNxgaQ9wsnToLFqYgtwd4wM803mv+wIe23JH7h1pRhp/nYnuYnr+4eEmM7rgYBznL+QVXqxS836+qlq+3+e8a5X7dV3/fJ+0+HrL87o6fe74b1XNHW6rxderKEq5Xtdh+3vwqK6cr/v3MmI6ffleN28lEp1OV27XVXX/DND18PAo1jlKHCpfeuklnnzySXeqTUtLY+bMmUyfPh2ARx99tKSXuEze+Ez05TtwPerwOSw+Fs4eiyn363r6enL2WGy5X9fLT4vrnsU7wItz5fx9VlUVnaLgKucZ4FGHz+Fbw4ezx+LK9brRR2PwC/Yl+mg5/3yPnMO/pi9nj5bvzzf68Dn8a/oV//Ws06MP9He3UF5KdbkwnTpPveUhnLzLxK9D36elKX/LpVHRMdQzBbp/z2Or7qHx/GwMF6+wHpzFA0NILRxxxd+DN/poDIGhAZw9Ur7f57PHYgmqc5rocv75nj0aQ1CdwHK/bvTRWIJ3le/XazAZUF0qKgqKUr6bgJw9GsOJXaeJOny2fK97LJaTu09z9si5cr9u7tdbDa77d6ayWCzuRrRrVeIxlePHj+eLL7646n2lady4cZw8eRLjQX90Kdc+5V2Ignx+4l30LhPrFvzF19N/1LocUQEpZjM6/yuP41YsHsSOCGPPfz7++x4vlBoLybaHYkrthU5JZ3WWkZefG4f/rgtXvpDTiTMmDtVx5cXWRfXl6W9h1s5XUKwG9q07yAeTyu7vrag+XF527O2TqFGjBosWLSrWOUr8FsfpdJKVleX+PDMz858lf8qIl5cXAKpBltgQpUdVVRRd+XYlicqlsB11FKMRe51A/E/YaP5JwUum/ZkDz8x8AEOOSk5EjcKvJYFSXIHRZHB3jxa6F70Q18KQ+7evuOMpoRS6v0eMGMHUqVMZOnQoACtWrODGG28s6WkLVaNG7i9j1SQLdInSk5WRjTMzm6TzKVqXIioqlxNXSuplrZWK0Yi9XjAuow691UXINhvNmciRhz/GeXE4e05/gb12FlPfm4hPjANVBw4vPTkRNfA4k5j/Gk4nzthCWjFFtWcw68nKyiHnQrr8vhKlRv17Ld28pSCLo8Sh8tZbb6VevXrs2LEDVVV5+OGH6dixY0lPWyj3F1zAYsJCFNeBHYdZ89kmIneV71ghUbmoVmu+YHlpoMzjDpbKRA49+CkA0/73MD4x/2zxWGCw/DtQqnZb+X1BotIxmAycOX6G9++Yp3UpogrJC5V5DXfFUSqzvzt37uzeOac8BAcHA6CapaVSlB5rphUPL5PWZYhKIC9Y6oODLguUefRWFyFbbXS98BDv3wU+MY7LNgHLFyxPxUugFEXi4W3GmimvE1G6Rj05mIULF2oTKmfOnMnjjz9+xT3AZ86cWeyiriZvQU7VLC2VovRkp+Vg8bNc/UAhyA2WakYGLuOVFwg2ZjgIWR0Pd3W58nl0oBoUnOfjJVCKIrH4epCVWrwdT4S4kpiY3BUMQkNDi32OYofK4cNzF/Etyh7gpa1u3boAqJ4O/l5UodxrEFVPVmoOFp/irc0lqidnWgamQ2extax72WM6uwtj9EVw5U648T6RTFpD/8uO0+e48Nh6HKfNJnt8iyKx+HqQnZajdRmiijl7NnfoV3h4eLHPUezZ302bNgXg1KlTtGvXLt9HZGRksQsqirCwsNwZbwYVjNJaKUpHdloOnn4SKkURKQqoLpyJSZgO5R+H6w6U9n/GUCop6XgfT853nD7HhWXLcZzpl6xXKbN5xVV4+kmoFKVLVVTi4nLXSs5ruCuOEi8ptHz58svuW7FiRUlPWyiz2exunlU9ZVylKB3ZaTlYfCVUiiK4NPjlBctLF2VW1XyBMu8+Jdvq/rTAQFnQ+YX4F4uvhaxUCZWi9KgWJy6XC09PT23GVG7atIlNmzYRHx/PO++8474/KysLfQE7TpS2+vXrExsbi8vLji5VJleIkstKy8ZTxlSKqyko8KkunAmJmABHo9oYzyZefgyA1Yb38WSyw/2uHCgvvY50hYsCePp5EH/6Cq8xIYpB9c59E9yoUaMSrX1a7FBZq1YtWrduzY4dO2jVqpX7fi8vLzp06FDsgoqqWbNmbNq0CdVbFggW10an0/H0V5MIqhPIhTMJzHzwE3rd3JU7/3MTXkGerPl4MwnnEukyrAN3PncTK+auZdWX67QuW1R0fwdLQ3YOE968k6bt65EQk8z/PfktYWFhvPnTFOZMX8TxfVFYYi4UHihBAmU11rhDAx7531hUl0ryhRTeuvcD3lj5AgAmi4maETWYcdd7hDcPY9qnD6HT65j33+/Zs+YAIfVr8vhnDxN9NIYPJ8tOO6JoRj43iIULF7qHNhZXsbu/GzVqxNChQ/nqq68YOnSo+6NPnz54e3uXqKiiaN68OQCqj/0qRwqRX6+buxAXeYEnr5tO1JGz9Lq5K7dMG8GLN79F5Okz3PXirQB0Hd6BaX3+S9POjbQtWFQshYU9l5OIBoH4+3nw1E3/R/Tx8/Qc3g6z2cxL935Cnxs74EpMwpmWVvh5JFBWaxdjknhuyKs80f8lYk+dp/uNnXjyuuk8ed10fv1wBRfi4kmLT2fca2N4d9xHPDfkVe57+XYAet/Sjf899CnpyRn41ij+ziiiejl27BiAdqEyz1NPPUX6Je+409LSmDRpUklPe1XNmjUDcscBqAaZrCOKLrRBLU7tPQPAid2RDH9wEFGHz5Ick4JDtdGgde7Mt50r9/K/jTM4seuUhtWKCqmg0Pf3fS26N2Hnyt04k1PYue4wzTs2wGaz8crXj7Bh/vr82y8Wch5RfSVfSMGanbu8lMPuxOn4529cn1u7k5qeQmp8OoGhAcScPE9WejZpien41vBh06LtTPvsYXxr+JCWeJXWcCHInaRz/Phx4J9sVVwlXvw8Ozs73z6Rvr6++fYCLyu+vr7Uq1ePqKgoXH429IkywUIUTfSRGDoNbstfv2yjw8A2QO54SrvVQXZ6DsbQ3P8WW37byZbfdmpZqqjIVPWf8ZWXBEFvfy8SY5NRrVbSz8Xj4+/J2bNnmTHwY5zWAtahvMJ5hAiuG0SHAa359tWFAFi8PahZL4i4tHNkJGbmG/uWmZqFT6A3MSfieHrgy1qVLCoh1ceO3WYjMDCwRDO/oRRaKhVFISkpyf15YmIiajn9Yswbu+nykwWDRdFtXboLu83BO2tewsPLTEZyBp6+uRN00uIzUHQy81YUkapeFgTTkzPdrycvTwNp53N/P+ZroSzCeUT15ulj4dmvJ/POuI9xOnJXOel+Yyf2rj9IRmImLqeK6vqnBdPb34v0pAytyhWV2F0zRwLQvn37Ek3SgVIIlXfddRePPPIIH3/8MR9//DGPPvpouS2InhcqVX8JlaLoVFXlk8e/4qkBL5OWmM4vs5ZRr3kYBqMBs8FM/LmLWpcoKrEjW4/TcVBbADoNbsehv45oXJGobHQ6Hc/On8L8GT8RcyLOfX+fW7tzaNtRUuNzw2PS+RTqNArB08eCT6C3dHeLYtmzZw+QGypLqsTd39dddx0NGjRg9+7dqKrKW2+9Rb169UpcWFHkpWrV04lqcqLYyn4pI1H5BdTy5/kFj+F0ONm95gAH/zrKL7OW8d76l/EO8mTxp5evvSpEUZ3ae4bkCynM3PAK8dEX+Xnmb/R5pJPWZYlKpO9t3WnZoymePhbueuFWfvtkNduX76ZmeBA2u5Wkc7mL6M99fgFPzn0UnV7HVy/9oHHVojJS9S4OHjwIUCor9yhqefVVl5GJEydy8OBBDKd80Md5al2OqOQ63tiaiPZhLHy5bBfwF9fGbDEx/o276DaiI1np2aDCzt/3Mfe573C5rjxR756XRuN0OPnutV+u+ZoN20ZQMzzIPa62SccGDJ0wgFmPzCnS89v0bcFdz9/Cc0Nf47/rp/BKv/dxOUt/UuFH29/k0S7PAnD3i7cyf8bP13yOknyfRPka+lg/MhIz2fjNDq1LEVWAMygHR7NU6tWrxzfffFPi85W4+/vEiRM88sgjDBkyhOuuu879UV569+4NgDPQepUjhbi6xOhkgsIDtC5D/Mu0zx7GJ9CbB1o/zsPtn2Jy9/+QnZ6N0VzizpYratgugu43/tPCeHzX6SIHyvKUFyghN1SKqi0oPIDEs8lXP1CIIug3qTMAPXv2LJXzlfg38syZM5k2bRpvvfUWH3zwAUuWLCm05aC09erVi9mzZ6P62VD1LhRniXOyqMYunk2iRt0A2cykAgmpX5PuN3ZiTNhD7mVW7Fa7e0YswKPvj6N518aYPEyc2neGmRNmY7flnxjTeUg77vnvaAwmAw67k/cnzuHknkgA+ozuzp3P3QwK5GRa3ev+eXiZadKxISu/XMvp/VHc9fwtPHP9DABGTR7KsAkDcblcxJw4z4zb3ivS1xNUJ5DH5zxCjdoB2K12PpoylyPbTtCmbwvGvTqGuMh4mnRswPnIeKbf8i52q52QiJo8+81kPP08ObTpKJ2HtOexXi9wMSaJlbbvGWK6g4dn3ofeoOeT3e+QejGNZ66f4X4MoGXPZtw/4w6evG46AA/PvI8uQzuQFJdMwrlEzh6LAcAnwJvJH00gtEEtjGYD3766kI0Ltxb75ydKV1B4ABejJFSKklMVla1bc/9vV5hQ6XA4aNKkCQ6HA09PT+644w4mTZrEnXfeWRr1XVXdunWpX78+kZGRuGpY0cfLNnui+DISs1BdLnyCvUmLl5mUFUFEy7rEnbqQ2+19BV9P/9E983XirPu5fmw/ln32R75jjmw9wdSeL6CqKo3a12fyhxOY2vN5wpvVYcKbdzOt1wskxiXjE+hNdkYOX730A616NWPmA58Aud3ZeToMbMP19/Xjsd4vkpWWu5RLUT06axzbV+xm8QcraNKpIS/++Dhjm0wBoEG7CN689wPOR8YzY8mz9L6lK2u/+4uJ/3c/q75az4rP19B1eAdGPHT9Zef95PGvGDVpKA93eOqqNfQY2ZnGHRrwQOvHMXuamb3rLXeofOR/Y1k9bx07V+/D29+LD7e/yd61B0lPlv8PWjN6GPCp4U1STIrWpYgqwBVgJSMjgxo1atCiRYurP6EIShwqDYbcU4SEhLB27VqCg4NJTCzfPUkHDhzInDlzcNbMkVApSuxiVDLB9QIlVFYglw797ntbD8Y8exM+gd68Mvo9ju04SY+Rnbnh4esxeZjw8vNEp7u8xyIwxJ9nv5lCzXpBuBwuajcKAaD9gNZsWrSNxLjc1p+iLMvSaXBbVs1bR1ZaVpGfk6dNv5a8dd+HABzfeYrMlCzqNA4F4OTuSM5HxgNwbOdJQurXBKBV72a8NuZ/AGxbtpu0Ei4d06ZvC9b/sAmnw0lWWla+9Vg7D21Pgzb1mPDm3QAYjHpCG9QkfZf8f9BaUHgAqfHpOGxOrUsRVUDvRzuwbt06BgwYgF5fOhOdSxwqx44dS0ZGBhMnTmTmzJlkZ2czderU0qityPJCpepnk1ngosTOn0qgVqNgTu2I1roUAZw5dJbajUKweHuQnZHDhh83s+HHzby7djoGk4Fa9YK596XbmNjpGVIvpjFy0hAato247DyTP5rA8jl/sO77TVi8PViUNC/3gWIsy1bStdwu83dotlv/2XbW5XShNxT8u6yol3e5/gnjpkvGnxZWv06n8ET/l8hMLftNLMS1CWkUzPkTCVqXIaoAVe9i06ZNAAwaNKjUzlviAYhdu3bF29ubevXqMWvWLD777DO6detWGrUVWWhoKG3btgUFnDVzyvXaouqJO55AaJOaWpch/nY+Mp7Nv+5g0gfjMXmYgNxQZPIwAmDxsWDNtpGenIHZYmLAXX0KPI+nrycJ53J7UYY/ONB9/54/DtDzpq4EhvgDuLuys9KysHgX3POxfcUeBo/tj6evZ77nFMX+9YcYOj53MmOTTg3x8vck5uT5Qp9z8K+jXHdX7qTErsM74BNQ8PVysqyYLSb35/FRCTRsFwFAr5u7uu/ft/4Q/W7vid6gx9PXk+43/DMhafuKPdz6+A3uzwsK6EIboU1qEnciXusyRBXgCsrBZrMRHh5OkyZNSu28xW6pvNrU83vuuae4py6WIUOGsG/fPpwh2ejPeaIUp/lBCOD88Xi63dpO6zLEJWY9/BnjXr+Tzw/9j6zULHKyrOxdd5DT+86QnZHDvg2H+OLQ/4iPvsixHSfzBas8X/33e56c+yjJ51PYumyX+/7oozF88dy3vLEyd7xldnoO0/q8yJ61B7ntqZF8tP1NVn+1nsiD/7Rc71lzgN+/3sCsTa/itDs5dzyWV+/432XXbNWrGfMjP8Y32Jv5kR/z9fQf+WjqXB6f8whDxl2H3Wrn9TtnuXdMuZLZ0+bx7DdTGPHQ9ez/8zBJ51PISrt8jOmi95fzwbY3uHguif8Me405z8znvz89QcLZRI7uOOk+bvOvO2jTtwWf7X+PC2cS2LfhsPuxj6d+ycRZ9/PZvvdQdAoJZxN5fvjr5bZTmriykCY12fjNdq3LEFVAwxG1OXbsGCNGjCjVnpdir1P55ZdfFvr4/fffX6yCiisnJ4ebb76ZjIwMDIf80Seby/X6ouowmg08u/IR3hr2CbZs+9WfIEQhdHpdidepNFtM2HLsqKpKy57NePyzhxjfclopVyoqMkWn8NyKR/jgzq9IT8zUuhxRibm87djbJWEymfj555/x9/cvtXMXu6WyvEPj1Xh4eDB06FB++uknXKFZEipFsdmtDhLPphDSKJjoA7FalyME9VuH8/icR1BVFYfNwTv3f6R1SaKc1Qjzx5Zjl0ApSmzQf7qxfPly+vXrV6qBEkppSaEVK1Zw+vRpbLZ/9uB+6qmrL2tR2kaOHJkbKgNsqB4OlJyyWxhZVG2xRy9Qp0UtCZWiQji6/SQPtn1C6zKEhuo0DyH26AWtyxCVnGp08scfucutjRw5stTPX+KJOm+99RanT59m06ZNNGjQgFOnTmEyXT6eqTyEh4fnThJSwBEmMxdF8UUfiKVuq9palyGEEACEt6lN9IE4rcsQldzo9wdjs9lo1aoVrVq1KvXzlzhUnjx5kqlTp+Lp6cktt9zC//3f/xEVFVUatRXL3Xfnrq3mqpmNapK1vETxRO+PIbyNhEohRMVQt3VtovfHaF2GqMRUvYvFixcDcOedd5b+0miUQqjMa5U0mUykpaVhNBq5cEG7Jvo2bdrQpk0b0IGzjrRWiuJJjE5Gp9cRWMdP61KEENWcxcdMYG0/6f4WJXL/vJvJzMwkIiKCHj16lMk1ShwqW7RoQXp6OiNHjmT8+PHcd999tG/fvjRqK7a81kpnSDaqofz2IRdVh6rC2YNx1G0trZVCCG3VbV2buBMJspOOKDZVp/LTTz8Bua2UBe06VhpKPJMlb/ec4cOH07FjR7KysmjQoEGJCyuJrl270rhxY06cOIEzLBPDGR9N6xGVU/T+WOq1rcO+lUe0LkUIUY2Ft6lD9AHp+hbFd9+XI5kzZw6hoaEMHDjw6k8opmJHVVVVsVqt7s+PHj1KQkICmZmZZGdfvihveVIUhQkTJgDgrJ2FapZ3d+Land4ZTYNO4VqXIYSo5hp2Duf0zrNalyEqKdXg4rvvvgNg/PjxGAxltzJOsUPlp59+yg8//OD+/MUXX+Tzzz/n448/Zv78+aVSXEl069YttxteB47wDK3LEZXQ+RPxmDyM1Kjrr3UpQohqytPfQlC9QKL3SUulKJ6b/28AmZmZNGrUqExbKaEEoXLHjh2MGTPG/bmvry+zZs3io48+Yu/evaVRW4koisJDDz0EgKtmDi5P2RlFXBtVhdO7omnYuZ7WpQghqqkGHcM5eyAWu9WhdSmiElJNTn755RcAHnzwwTIbS5mnRGc3Go3u23fddVfuCXU6cnJySlZVKWnRogX9+/fPXbeyfgYqsnetuDandkgXuBBCOw07h3Nqh3bL9InKrfdzbbHZbLRt25auXbuW+fWKHSozMzPz7aBz3XXXAWC1WsnIqDjdzQ888ABGoxE1wIarhvXqTxDiEqd3RFO/Qxg6fdm+uxNCiII07BzOqe3RWpchKiGXn401a9ag0+mYPHlymaxL+W/F/kvZvXt33nnnnXyTcrKzs5k5cyY9e/YsleJKQ1hYmLsV1dEgHVUvSwyJokuNTyf1Qjr12tXRuhQhRDUT0igYRadw4VSC1qWISkZVVEKH5658M2rUKJo0aVIu1y12qHz44YdxOp3cfPPNjB8/ngkTJnDzzTfjcrncYxkrirvuuovatWuD2YWzbqbW5YhK5ujGUzTv3VDrMoQQ1UyzPg05+tdpVBm5Ja7RuG9uJjo6Gn9/f8aPH19u1y32vHKz2cx///tfYmNjOXPmDAARERG54a2CMZvNTJ06lWeeeQZnnSx08R7osoxXf6IQ5IbKO16/geX/t17rUoQQ1Uiz3g35ffZfWpchKhnV7OSrr74C4JFHHsHHp/zW6i7xQLHatWvTo0cPevToUSEDZZ7u3bvTu3fv3Ek7jdNQFXnrJ4om9lg8qgq1m9bUuhQhRDUREOqLf4gvZ3bL+pSi6FRUWj0UTnZ2Nm3atGHw4MHlev1qNftg2rRp+Pj4oPo4cIZJN7gouqN/naKZdIELIcpJ094NObElEqdD5gGIonOFZLN79248PDx49tlny3wJoX+rVqEyKCiIxx57DABneCYuL1m7UhTN0T9P0qJfY63LEEJUEy36NuLoxlNalyEqEdXswNAqN9c89NBDhIWFlXsN1SpUAgwcOJC+ffvmdoM3kW5wUTRn9sZg9jYT2iRY61KEEFWcf4gvtRoGcXxzpNaliEpCRaX5hDBycnJo3749N910kyZ1VLtQqSgKTzzxBP7+/qheDpz1Ks6amqLiUl0qB9cco/WgZlqXIoSo4loPasrRjadkFx1RZPfOu5F9+/ZhsVh45plnyr3bO0+1C5UA/v7+PP300wA4w7JwBsqi6OLqDqw+SuuBTVF0Zb+ArBCi+mo9qBn7fz+mdRmiknD52pg7dy4Ajz32mKaTpqtlqATo1asXo0ePBsDROBXV7NS4IlHRxR6Lx5plI6J9+Y9TEUJUD7UaBuHp50HkLtlFR1ydanDhP8CAy+Vi8ODBDB06VNN6qm2ohNwF3Js1awZGFXvTVBlfKa7qwO/HaHO9dIELIcpGm8HNOLT2OC6n/D0ShVNR6TitEQkJCdStW5dp06ZpXVL1DpVGo5Hp06fj7e2N6muX8ZXiqvatPEKLvo0we5q0LkUIUcXoDTraDWnBnmWHtS5FVAJjvx7Fli1bMJlMvPzyy3h6empdUvUOlZC7ePtzzz0H/D2+Mjj7Ks8Q1VnK+TSiD8TRelBTrUsRQlQxTXs1JCUujfMnZa9vUThnoJU5c+YAMGXKFBo1aqRxRbmqfagE6N27N/fccw+Qu9uOy1vWrxRXtmvJATre2FrrMoQQVUzHG1ux67cDWpchKjiXxYGpkw1VVRk5ciQ33nij1iW5Saj82/jx4+nVqxfowN48BdUkE3dEwY5vjsS7hpds2yiEKDUBtf2o0zyEg2uOa12KqMBUvYtaIy1kZWXRtm1bpkyZonVJ+Uio/JtOp+OFF16gfv36YHblBkudDJQWl3M5XexZdoiOI6W1UghROjrc0IqDfxzDli09ZaJgqqLSdkoE586do1atWsyYMQOj0ah1WflIqLyEp6cnb7zxBn5+fqg+DhxNUlGRYCkut2vJAVpd1wSLj1nrUoQQlZzBpKfDiJbs/FW6vkXBVFQGvtaJHTt24OHhweuvv46/v7/WZV1GQuW/1K5d253+XUFWHA3SJViKy6ReSOfk9ig6jmyjdSlCiEqu7eDmxJ9KlAk64oqc4ZksX74cnU7H9OnTady4sdYlFcigdQEVUbt27XjhhReYPn06rtrZuBx6jDE+WpclKpitP+3ltleGse2nPTgdLq3LERWUTq/L968Ql1IU6HZbB/749C95jYgCOWpm4gzPBOCJJ56gR48eGld0ZYqqqtIMdwULFy5k1qxZANxyyy106tRJ44qEEEIIUV0cPnyY+fPno6oqY8eOZdy4cVqXVCgJlVfxySef8N1334EKpuMB6JM8tC5JVCAt+jem55iOzHnwe61LERWUTq/jhTWTeHXAh7ic0qIt8rvr3ZEc23haxlOKyzj9rKht07Hb7QwbNoxnnnkGRVG0LqtQ0v19FQ899BBJSUmsXLkSW+NkDEf80SfL5AyR6/C64wx8sCcR7cM4vVP26hVX5nK6JFSKfEKbBBPaqCbfP/ebvDZEPi5fG7r2Wdisdnr16sWTTz5Z4QMlVLKJOqdPn2bixIlMnjyZp59+mqysLADWrFnDI488wtSpU7lw4QIAW7ZsYeLEiSxbtqxE11QUhaeffprrrrsOdOBonoLL31rir0VUDS6nyl/f7qDvfV20LkUIUcn0ua8rW37cjT3HoXUpogJx+dgwdM3BarXStWtXpk+fjsFQOdoAK1WoDA8P5+OPP+aDDz6gefPmbNy4EYfDwY8//sj777/PhAkT+Prrr4HcUPnhhx9y9OjREl/XYDDwwgsv0Lt379zF0Vuk4PKzlfi8omrYs/wwAbX9qNeujtalCCEqiVoNg4hoF8b2X/ZpXYqoQFxedsw97WRnZ9OhQwdeffVVTCaT1mUVWaUKlZcm9ZycHMLDwzl37hz169fHaDTSunVrTp8+DUCXLl149NFHadq0dPZoNhgMTJ8+PXfWlQRLcQmn3clf3+2k731dtS5FCFFJ9L6nC9t+3os1U/6OiFwubzsefexkZGTQpk0b3njjDczmyjXcrlKFSoAdO3Ywfvx49uzZQ506dUhPT8fT09P9uNOZu71ir169mD17NiNGjCi1axuNRl5++WW6dOkCehV7y2ScAdIVLmD3bwcJrl+Duq1CtS5FCFHBBdULoFGXemz9aY/WpYgKwuVrw9gjh/T0dFq2bMlbb72FxWLRuqxrVilC5Q8//MCUKVP44Ycf6Ny5M1988QX9+vVjyZIl+Pj4uMdWAuj1+jKtxWw289prr7lbLB3NU3DWyCnTa4qKz2FzsnnBTvqN66Z1KUKICq7f/d3YvmgfORnSKCHA5WdF3yWbrKws2rdvz3vvvYeXl5fWZRVLpQiVt99+O++//z433XST+z4vLy8sFgthYWGcOXMGu93OgQMHaNCgQZnXYzabefXVV/+ZvNMsFWfN7DK/rqjYdizaT1B4IA06hWtdihCiggptUpMGncLZvGCX1qWICsAZYEXpmEVOTg5du3bl7bffztf7WtlUjulEf9u5cycLFixAp9Ph7+/Pc889h8FgYPTo0UyZMgWTycR//vOfcqnFYDDw4osv4uHhwfLly3E0ScPoqcd1pvIMqBWly2Fzsm7uFgY+3JM5D0QjK8AKIf5t4MM9+Wv+DmmlFDiDs1FbZGKzOenduzcvvfRSpZqUU5BKFSp79OhR4PZEAwYMYMCAAeVej16v5+mnn8ZisbBw4UKyw5LRq57oo7xRqPjrSYnSt2/lEXrc3oGW1zXh4JrjWpcjhKhAGnQKJyg8kAXPLtG6FKEhFRVnWBbOiAxwwqBBg9yNZJVdpej+rsh0Oh1Tpkxh/PjxADjrZuFokoaqSDNVdaS6VP74dBPXPdADvUH+ewkhcikKDHqkF+vmbsFhc2pdjtCIioqjQXpuoATGjBnD888/XyUCJUioLBWKonDffffx3HPPodfrcdXMwd4yGVUvOyRUR8c3R5J+MZNOo9poXYoQooJoPagZeqOefSuPaF2K0IiqU+n6XFNctbNRFIXJkyfzyCOPoNNVnShWdb6SCmDo0KHuZQBUfzv2NkmoZnlHWh2t+mADfcd2xcu/8i0JIYQoXSaLkUGP9GLVBxtQXdKLVR2pRieNHwhm48aNGI1Gpk+fzujRo7Uuq9RJqCxlXbp04cMPP6RGjRqoXk5sbZNw+cjittVN7LF4jmw4yYCHempdihBCY33u68q5Q+c5tSNa61KEBlxedvxv0HHo0CG8vb1577336N+/v9ZllQkJlWWgcePGfPLJJzRq1AhMLuytk3HWkiWHqps1czbTrHdD6jSvpXUpQgiN1KgbQKeRrVn14Z9alyI04KyRg757FvHx8dStW5dPP/2Udu3aaV1WmZFQWUZq1arFRx99RN++fXPXsmychqN+OirS9VFdZKVks+6LLQx7rD+KLAYgRLU0dGpftvywm5TzaVqXIsqRioqjbgaO5qnk5OTQpUsXPvnkE+rWrat1aWVKQmUZslgsvPzyy4wbNw4AZ50s7C1TUA0ygae62LXkAHqjnvYjWmldihCinDXr3ZAadQPY9N1OrUsR5UjVu+j+fHOc9TIBGD16NG+++SY+Pj4aV1b2JFSWMZ1Ox9ixY5kxYwYeHh6oATZs7RJxedu1Lk2UA5dTZel7axn4UE+8a1TeXRKEENfGw9vMsGn9Wf6/dbKEUDXi8rRTc7SZDRs2YDAYePrpp5k8eXKVWTLoaiRUlpO+ffsye/Zs6tSpAx4u7G2ScIZmSXd4NXDuUBz7Vx9l2GNVc2C2EOJygx7pxZk95zix9YzWpYhy4gzORtc9k3PnzlGzZk0+/PBDRowYoXVZ5UpCZTlq2LAhc+bM+WecZcN01JYZsp5lNbB2zmZqN61F8z4NtS5FCFHGItqF0ax3Q1Z+sEHrUkQ5UBUVe8M0HE3TsFqtdO7cmc8//5wWLVpoXVq5k1BZzry9vXnllVeYNGkSer0ee0AW9rZJuDylO7wqs2Xb+e3dNQx7/Do8vM1alyOEKCMGk54bnh7Ayg82kJUiq35UdS4PB/XHBeAKzV3QfOzYsbz99tv4+/trXZomJFRqQFEUbrvtNt5//32Cg4NRPZ3Y2yXhkO7wKu3U9ihObY9i8KQ+WpcihCgj/Sd0J/FcCgd+P6Z1KaIMqag4a2Zj6J3FsWPH8PX15e2332bcuHHo9Xqty9OMhEoNtW7dmi+++ILu3buDDpwN03G0SEE1yqDuqmrl+xto2DmcZr2lG1yIqiaiXRjth7Zk6TtrtC5FlCFV76Lniy1xNEkjOzub9u3b8+WXX9K1a1etS9OchEqN+fv78+abb/LYY49hMplwBdqwtU/CGWDVujRRBnIyrCx6fTU3PDVAZoMLUYV4eJu56YXrWTZzLWkJGVqXI8qIy8dGwCgd69atQ6/X8+CDDzJz5kyCg4O1Lq1CkFBZASiKws0338ycOXNo0KABmFw4WqZgb5CGqpPu8KomctdZ9q8+yshnr9e6FCFEKRk2rR9n9pzj0LoTWpciyoCqqDjqpeNsn8qFCxeoU6cOH330EXfffXe17u7+NwmVFUj9+vX59NNPufXWWwFw1c7G1j4Rl6/sHV7VrPlsE77B3nS+qY3WpQghSqjVgCaEt67D8v9br3Upogy4vOzUudsLZ90sXC4XgwcP5osvvqiWs7uvRkJlBWM2m5kyZQrvvvsuNWvWBIsTe+vk3C0epdWyynDYnPwyYyXXPdCDkEbSbSJEZRVQ249h0/qz6LVVWDOlAaAqURUVR3gGrk6pREZGEhAQwGuvvcbzzz+Pp6cMXyqIhMoKqkuXLsybN4/hw4eD8vcWj9JqWaVcOHWRPz7ZxOhXhmH2MmldjhDiGhlMem6bMZwtP+wmal+M1uWIUuTyshN+ny/O8EycTifXXXcdX331Fb1799a6tApNQmUF5u3tzTPPPMPbb7+du/RQXqtlgzRZML2K2LXkADFHznPjMwO1LkUIcY0GT+5LRlIWf83foXUpopSoutyxk65OqZw8eRI/Pz9efvllpk+fXm3XnrwWEiorgW7dujFv3jyGDRuW22pZOxtbh0ScNXK0Lk2UgqXvrqVm/SC63NJW61KEEEXUemBTmnSvz6JXV6LKyKQqweVvJehWA866WTidTvr27ctXX31F//6yxW5RSaisJHx8fHj22Wd57733cvcPN7twNE/F2ToN1STrWlZmtmw7P764lP7juxPWIkTrcoQQVxEcEciwx/vz8/TlZKXKm/vKTjW4sDdJxd4qhdjYWIKDg3n99deZMWMGgYGBWpdXqUiorGQ6d+7MvHnzuOeee9Dr9Tj8srF1TMRRW3bjqcwSziSx7L113P7aCHyCvLQuRwhxBRYfM2PeuJF1X2zh7ME4rcsRJaCi4qyVjcf1Vlw1c1AUhVtuuYVvvvmGXr16aV1epSShshIym8088MADzJ07l1atWoFexdkgHXu7JJnIU4kdXHOMvSsOc8frN2AwybpnQlQ0Or3C6FeGE7n7LNsX7tO6HFECLm87DR+ogaNxGmlpaTRq1IjZs2czdepUmdldAhIqK7H69evz4Ycf8sQTT+Dj44Pq7cDeJhl7k1TpEq+k1s7ZTEZiJiOfHaR1KUKIfxk8qQ96o57l/1undSmimFSDC3ujNBztkzly5Aienp5MnDiRzz77TNadLAUSKis5nU7HyJEj+fbbb7nxxhtRFAVXzZzcLvGwTFRFusQrE1WFX2asolbDIHrd3VnrcoQQf+swoiVNezbkxxeW4nTI6huVjYqKMzQL08BsXCHZqKrK4MGDmT9/PnfccQcGg0HrEqsECZVVhL+/P08++SRz5syhdevWuV3iERm5s8QDc2S8ZSVizbKx4Lnf6H5be1r2b6x1OUJUew07hzPokd4seG4JmSnZWpcjrpHL30qde7xwNEwnIyODxo0b89FHH/H8888TFBSkdXlVioTKKqZJkyZ8+OGHvPDCC9SoUQMsThwtUrG3Tsblbde6PFFEybGpLHh2CSOeGkC9dnW0LkeIaiukcTC3Th/GwpdXcOHURa3LEdfA5WmnzbRw7K1SiIyMxMfHh8cff5zPPvsst/FFlDpFVWWFraoqKyuLb7/9lh9//BGr1QqALsGM4Yw3ilWa+iuDpj0bMPLZQXw5+ScSziRpXY4oBp1ex3/XT+GVfu/jckq3aWXiH+LL+Nm3seazzexdcVjrckQRqSYnjvAM1FArqqpiMBi4+eabuffee/H19dW6vCpNWiqrME9PTx544AG+/fZbhg4dmjveMtiaO96yfjqqQf7AVXTHNp1m7eebufvdUbLUkBDlyOJj5q53RrFj0X4JlJWEqnfhCM9A1ycDV0gOqqrSv39/vvnmGyZNmiSBshxIS2U1cvLkSWbPns2OHX9vKeZQ0Md4oo/1RHHK+4uK7LoHetC0ZwPmTfmZ7DRZbLkykZbKysdkMXLPezdx4XQiS99do3U54ipUXe4kHO92elJTUwFo2bIljz76aO6ye6LcSKishrZv387s2bM5deoUAIpDh/mCL+aLPuSkyzqXFdXwJ66jTrNafPXYQqyZ8nOqLCRUVi4Gk5673h5FZko2v8xYgcspfyIrKlVRcdXKxr+bmYsXc8e7hoeHM2HCBPr27YuiKBpXWP1IqKymXC4X69atY+7cuZw9exYAfz9/MnY50V2woKjyn7GiURQY+dz1BIb5M/+JRdiyZeJVZSChsvLQG/Xc8doInA4XP764TH5eFZSKiis4h+B+XsTF5e5qFBISwtixY7n++utleSANSais5hwOB6tXr2bevHmcP38+984cHYazXujiJVxWNDq9wi3/HYrFz4Pvnv4Vh00Wua/oJFRWDjq9wq3Th2HyNPH9c0vk/1YFpCq5YTJ0gJ+7MSQwMJB77rmHG264AZPJpHGFQkKlAMBms7F06VK+/vprkpL+nmVs1WE455XbcumScFlR6A06bnt1BIpO4ccXlsofvwpOQmXFp9MrjPrPYHxrevPtk4uxWx1alyQuoSoqrprZBPfxdrdM+vr6MmbMGG6++WYsFovGFYo8EipFPjk5OSxZsoQFCxaQmJiYe6dNlzuhJ86C4pIJPRWBwaTn9ldHoNPr+P4/v8kfwQpMQmXFptPruOW/Q/Cu4cV3T/+KNUvGK1cUqi53zGRANw8SEhIACAgI4Pbbb2fUqFGyR3cFJKFSFMhqtbJixQq+/fZbLly4kHun/e/Z4nEyW7wi0Bv13PrSUCy+Hnz3zK8yxrKCklBZcRlMeka/PAyjxciCZ5dgz5E3ZxWBqnPhDM3Gr6PJ3XMWFBTEmDFjuOGGG/Dw8NC4QnElEipFoex2O6tXr2b+/PnExMTk3ulU0J+35C5FZNVrW2A1p9PruOmFwfiH+PLtU4vJybBqXZL4FwmVFZPRbOD212/A5XTJMJIKQjU6cdbOwrOFnvT0dCB3As5dd93FkCFDMJvNGlcorkZCpSgSh8PB2rVrWbBggXspIlTQXTSjj/FCl2HUtsBqTNEp3PjMQGo1DOLbp34lMzlL65LEJSRUVjxmLxNj3riR7PQcfp6+AqddAqWWXJ4OnHUy0dVx4HDkthbXqVOHu+++m8GDB8ts7kpEQqW4JqqqsmPHDr7//nt27tzpvl9JMeaGy2QTCjKpp7wpClw/qQ9NezRg/pOLSIpJ1bok8TcJlRWLT5AXd787irjjCSx56w/5mWhERUX1s+EIy0IN+Gcca+vWrbn99tvp2bMner30hFU2Ev/FNVEUhS5dutClSxdOnjzJDz/8wB9//IHT347DPwUlU48+zhNdvIdM6ilHqgqrPviT9IQMxn10G9898yuxx+K1LkuICiWoXgB3v3sT+1cfZe2czVqXUy2pioorKIeI4TU5efIkADqdjj59+nD77bfTsmVLjSsUJSEtlaLE4uPjWbhwIUuWLCEzMxMAxalgSvTGdNEHW5J0LZWn1oOaMuyx/ix8eQUnt0dpXU61Jy2VFUPdVqHc8cYNbPhyG9t/2ad1OdWOanbiDMnCp7WJlJQUADw8PBg+fDijR4+mdu3a2hYoSoWESlFqMjIyWL58OYsXL+bcuXPu+3UpZgxxnuhSzNI1Xk7qd6zLrS8NZc2czez+7aDW5VRrOr2OF9ZM4tUBH0qo1EiL/o0Z/nh/lr67hiMbTmldTrWhouLys+EIyYQgOy5X7us/ODiYUaNGMXLkSHx9fTWuUpQmCZWi1LlcLnbu3Mkvv/zCli1byHuJBQQE0K1bNzp27IiXl5fGVQohhCgLOTk57Nq1i61bt7r35Abo0KEDN910Ez179pTJN1WUhEpRpmJjY1m8eDHLli1zLxGBC/SJHujjPdGlycSesuTpb2H0y8Nw2B0snL5SlhzSgLRUasPoYWDkc4MICPXjxxeWkhqfoXVJVZqKiuptx1EzC2M9lZycHAA8PT0ZMmQIo0aNIiIiQtsiRZmTUCnKRU5ODmvWrOGXX37hxIkT/zyQrUd/wYI+3gPFJjP9yoLeoGP4E9dRr20dFjy7hIvRyVqXVK3ImMry51fThzFv3khSTAqLXlsli5qXIdXgwlkzm/ABwURGRrrvr1+/PjfddBPXX3+97HxTjUioFOVKVVWOHTvG0qVL+eOPP8jK+ntNRRV0SSZ0FyzokmTsZVnoems7+t3fjd/eWcPh9Seu/gRRKiRUlq9GXepx0wuD2bFoPxvmbUX+wpU+FRXV34YzJBtdiNO9tqTZbKZfv34MHz6ctm3boijye7y6kVApNJOdnc369etZtmwZ+/fv/+cBmw79BQ90CRZ0WTLupjSFt6nN6JeHcWjdCX7/eCNOh4ScsiahsnwoOoV+93el06g2LHp1NSe3ndG6pCpHNTtw1sqhRicv4uP/WbKsadOmjBgxggEDBuDt7a1hhUJrEipFhRAVFcWyZctYuXKle7kJACXDgC7eA32CB4pdusdLg1eAJ7e8NASTh5Gf/ruc1Ph0rUuq0iRUlj0vfwu3vDQUk6eJn/67jNQL8pouLarBhSsoB2fNHFRfu/t+Hx8frr/+eoYPH06jRo00rFBUJBIqRYVit9vZtGkTq1atYuvWrTidf69xqYKSYkIf74Eu0SwLq5dQbqtONzqNas2vb/zO8c2RV3+SKBYJlWUrol0YN/93CEc2nGD1R9L6XhpUnYor0IqrZjZKsNP9e1in09GhQweGDx9Or169ZC9ucRkJlaLCSklJYf369axatYpDhw7984BTwZhqwZTsjSHdQ2Y0l0DDLvUY9Z/rObrxFKs//BO7VSY0lDYJlWVDb9DRf0IPOgxvydL31so44RLK2zbRWTMHj/q6f8a7A02aNGHQoEEMGDCAoKAgDasUFZ2ESlEpxMTE8Pvvv7N69ep8C6t7eXqRHenM7R5PNaGoMjD8Wnn6W7jx6YEEhQew8JWVxB2X7R1Lk4TK0hdUL4Bb/juU7LQcFr++mrQEWS6oOHKDpB1njRz8W1lISkpyPxYSEsKgQYMYNGiQLAUkikxCpahUVFXlyJEjrF69mnXr1pGcfMnyOHYFXZIZ3UUPdCkSMK9VhxEtGTSxN5sX7GLTdztxOeVXQ2mQUFl6FAU639SW6yb0YMNX29j6426Z3X2N3C2SQVb8Wnjk+x3q4+PDddddx6BBg2jVqhU6nQwzEtdGQqWotJxOJ/v372fdunX8+eef+d5l41DQJUrAvFaBYf7c9J/r0Rv1/Prm71w4dfHqTxKFklBZOmrU9efGpwdi9jKz6LVV8tq8BqryT5D0aWoiNTXV/ZiPjw+9e/emX79+dOzYEaPRqGGlorKTUCmqBKfTyYEDB1i7dm3BATPZlNuKmWxGcci778IoOoUuN7Wl3/hubF+4jz+/3o7T7tS6rEpLQmXJ6PQK3W/vQO+7u7BpwU42fbdLvo9FoOpduPxtuGpY8W5kIi0tzf2Yn5+fO0h26NBBtkwUpUZCpbiiPXv28NVXX+F0Orntttvo3bs3a9as4eeff8b0/+3de3RU5aH38e/ek8kk5EK4BAhCEu4Bk3ARgkVeak0VlGN1SRG73r7nqK3nfVtvrZdqW11dS5fLnmJXXVa07aqtx1oX6NJiPbVFj3KgIjdBIZGEm5AASYCQAEkmySSz9/vHzOyZyYWLA0yS+X3W2mvv2c9+9jzzkGR+7Muzk5P5yU9+wsiRI9m4cSN/+tOfWLx4MYsXL453s52AuXbtWtatWxcdMG0wTrkxGzy4Tngw2vXHtDdZOZnc+HApmdnp/PU//ptD5bXxblK/pFD55Y2cMJybHr0Wf6fFX//jfY4fbDh7pQRme/xYQ9vxD20naYRNR0d4CKCsrCwWLFjA1VdfzYwZM/pUkOyv3zXSXd/5qZI+pb29nVWrVrF8+XLndEhnZyevv/46zz//PJWVlbzyyis8/PDDbNy4keeff55f/epXfeIX3eVyMWPGDGbMmMH9999PZWUlGzZs4KOPPuLAgQPYWR34szrwj2/GaHEFjmA2eDCa3HqST4STtaf50wN/YeYN0/jW099g94Yv+O/ffETLydZ4N00GuJR0D1/7zpUUL5zKuj9uZvObn2FbOv7RVeB5252B4X+GtmOnh0dv6OiAyy67jPnz53PVVVdRWFjYp4JkSH/+rpHu+t5PmPQJ5eXleDweHn30UVJSUnjggQdoampi3LhxuN1uioqKeOGFFwAoKSnh7rvv7pO/5KZpMm3aNKZNm8Zdd91FTU2NEzB37NiBlebHn+bFP9YbuNHnZDJmowezMVmDrQd9+u4uKj/6gtJ/v4q7X/1X/ucPm/jk7Z26kUcuOMOA6ddP4+v/9yq++OQQL/yfP9F0oiXezepT7CQLK6sda4iPIdPSOHEifPTWNE0KCwu56qqrmDdvHrm5uX3+UYkD5btGAhQqpUeNjY3U1tayYsUKtm3bxh//+EcWLlzIoEGDnG1CA+LOnz+f+fPnx6up52X06NEsXbqUpUuX0tTUxKZNm9iwYQObN2+mpaUFK7sdKzsw7qXRnBS4FvOkB+O0O6Fv9mk93cZ/PfMB298p44YHrmHWvxTy7rNrqd5ZE++myQCRM3kEN/zwaySnunnjZ+9S9dmReDepT7CxsTM7AtdHDmmHTD+hq9ZOnGgjNTWVkpIS5s2bx1e+8hWysrLi2+DzNFC/axKVQqVEWbVqFRs2bGD27NkUFRXhdruZNWsWr776KhkZGVED4rpc/ftIXkZGhjMOW2dnJ7t27WLz5s1s3bqVyspK7PRO/OmdgaOYfoOk5hTcp1PpPGZgtLoS8lR5ze5jvPT/VjJz8eXc+sRiDn1eywe/3UB9dePZK4v0IGtUJtfcNY+Jc/NY/59b2PLWjoS/9tT2+J2jkal5SbS0RByttWH8+PGUlJRQUlJCUVFRv3yyTSJ91yQShUqJsmzZMpYtW8apU6d44oknANi7dy+jR49mzJgxHDx4kI6ODiorKxk/fnycW3vhJCUlUVxcTHFxMXfddReNjY1s3bqVLVu2sGXLFk6ePEnn4FY6B7fCWKDdxDyVHJhOJmO0J84fPduG7f/1OeUf7GHebVfw3d/cRtkHu1n3x000N3jPvgMRIDXDw//61xJm/Ush294p49ffepnWpsR8Opad7Mca7AscjRzsg5RwqG5paSczM5PZs2dTUlLCnDlzyM7OjmNrL4xE/a4Z6HT3t/Tqrbfe4sMPP8Q0TR599FFGjx7d4x15A51lWezdu5ctW7bwySef8Pnnn+Pz+aI3ajMD12MGg6bhS5yQmT5sEFfffiWFpVPY/OZnbHp9e8KGg57o7u9oyaluSpbMYN5ts9i76SBrf7+Rk3Wnz15xALHdoRDZgT3Yh50aPWSXy+Vi6tSpztHIKVOmDOijdfquGTgUKkXOU3t7O+Xl5Wzfvp1PP/2UiooK55qfEMPrwjjtxjydHLges23gny4fnjuEq++8kgkleWx5c4fCZZBCZYATJpfN4lB5DWv/sIm6vcfj3ayLzsYGj4WV6cPKDIbIQdF/L0zTZPLkycycOZOZM2dSXFwcdU2hSH+hUCkSI6/XS1lZmRMy9+zZg2V1CQ8+E/O0G6PJHTiS2ZI0YG/8yc4fyoJ/m8ukuflseeszNr7+Ka2n2+LdrLhJ9FDpGZRMyZLpfOXWWVSX1bDu5c0D+vnyzjA/mR3YGYEgiSf6390wDCZOnOiEyOnTp5Oenh6nFotcOAqVIhdYU1MTZWVlzlRZWdn9dLkfjObwkUyzOWnADWHkhMsr89nxj11sev1TGmsT6zQnJG6ozBiextxvzuSKbxRS9dkR1r28ido9A+/IpJ1kYad3YGV2YGX68Ixy0dYW/Z8ol8vF5MmTKSoqori4mBkzZpCZmRmnFotcPAqVIheZz+dj9+7dlJeXs3PnTsrLy6OevetoMzGbg0czm90YzUkY/v7/SMkhowdz5a0zmbFoKvu2VLFx5XYO76qLd7MumUQLlSMnDGfebbMoWDCRzz/cw8ZV2wfMk3Bs0w4EyPQO7IwOrPROSO3+CNP09HQKCwspKiqiqKiIgoICUlJS4tBikUtLoVLkErNtm+rqasrKyigvL6eiooKDBw/S7VfRDl6b2ezGbHKT4k/D1ZbsnDZvbe5fp5RTMzzMvrmYkiUzaKw5xZY3d1Cxft+Af654IoRK02Uwed54Sm6ZzqiJ2WxdvZOtf9nRL0cDSE0PhD/bsPGn+GhztQRDZCdGhtX90hYCT64pLCx0gmR+fj6m2f//QyhyvhQqRfoAr9fL7t27qaiooLKykoqKCo4ePdptO9M0yRk1mrwxeWxetSNw2rzFjdHZf77AXG4XhaWTmX1TMUPHDObTv+1i21/LaKzp4ejtADCQQ+XgERnMuvFyZi4uxHuyla2rd7JzTQUd7Z1nr9yH2C4LO60TK72Tef97JtWHqzhSe4TOzu6fY9iwYUydOpWCggJnnpGREYdWi/Q9CpUifdSJEyecgFlRUcGePXt6Pm0OgXEzW5Iwmt2Bm4BakvrFHeejJmZzxU1FFH19Ckd21bH9b5+z+6P9dPoGztHLgRYqXW4Xk67MZ+YN08ifNZZda/fyyV/LONIPLmlw7sRO68BO7wwEybSOqHEhI6Wnp1NQUBAVIAfCGJEiF4tCpUg/Yds29fX17Nu3j71797J371727dvHkSO9PM7OAqM1GDC9LgxvUmDqg2EzOdVN0denMP36aYwYN4yK9fvYuaaCg58dwbb695+ogRIqc4tGU3xdAZdfM5nGmlPs+EcFO9ZU0Nbc94aNCoRHP1aaHzu1E3tQaPKDq+efp1GjRjFx4sSoKScnp88/O1ukL1GoFOnnWlpa2L9/f1TQrKqqor29ly97i3DA9LoCwbMtOLfi/wU6JCeTousKmL5wKm5PEmUf7GbX/+yjpqKO/vjXqj+HylGTspn21YkUXVuAYRjsfK+Cne9XUl/VNx7LaRs2dqofOyUQGJ3wmNoJvQym4Ha7yc/Pd4LjpEmTmDBhgk5hi1wACpUiA5Df7+fo0aMcOHCAAwcOUFVV5cx7DZsA7WbgueZO0IxYjsO4mqMLRlJ8bQEFCyZgukwq/7mfyvX7OPjZkX4T0PpTqDRMg7GFOUz96kQK5k8gyZNE5T/3U/Z+JYfKauIS6m3Dxk7xh8NjanjZSLW73+AWlJycTG5uLvn5+eTl5TFu3Djy8/MZPXo0SUl6QrHIxaBQKZJAegqbhw8f5vDhw71frwlgEwicbS6MdldgHrGMz7zop9RzJo9g6oIJFCyYSMawNPZtPsi+LVV8sbWaphMtF/W9Y9HXQ2VaVirjZ+cyoSSPiXPzaG/xUfnP/VSs38+RXbUXPUja2JBsYXv8gfDosYLzQHg0B9k93nHttD8tjTFjxpCXl+cEyFB4HMiPNhTpixQqRQSA06dPOwHz0KFDUXOv9yxDw1hAu4ukTjemLwnT58LoSKLztB98Lox2E/zGBQuew8ZmMbEknwlz88iffhmNtafZv7WK/VuqOFRei6+144K8z4XQ10JlUrKLMZfnMKEkjwlzcsnOG0r1zhr2b61i3+Yqjh04cUHfz3ZZ2MkWJPtxZ7qwkjuxkv1YyZ34kzqwPX44y+AFqampjBkzpscpKytL1z2K9BEKlSJyRrZt09DQwJEjR6irq6O2tpa6urqoqeuzz3vkB8PnChzx9LkwfCa0B+ZGhxk42tlx/uHT5XYxtjCHiSV5TCjJIzt/KEf313OorJbqsiNUl9XQfCJ+4yXGO1QOykolt2g0Y4tyyC26jJxJ2Zw4fDIQwrdWU73jyHkPAWRjB254SQoExkBotLCTg0cagyHSTrYg6exfMS6Xi+zsbEaNGuVMOTk55OTkMGbMGIYNG6bgKNIPKFSKSEz8fj/19fXdAmd9fT3Hjx+nvr6epqamc9+hBXREB02jwwyv6zQxOo3wvMOMut7Tk5bMmMtzyA2GqMumjaKl0UvtnmPB6Ti1e47R0nhpgualDJWDBqcwatIIciaPIGdyNjmTR5A5IoOaijqqy2up3nmEw+W1tDZFX1drG8GAmBQxd1vYbqvbPLTc240wPUlLS2P48OFkZ2eTnZ1NTk4OI0eOJCcnh1GjRjF8+HBd5ygyAChUishF19bWRn19vRM0Q1No3cmTJ2lsbDz7afbe+OkeNjsDRz1N2yR9cDpZ2ZkMHTWE4ZcNZUTucPAbNB9vpeWYl9N1LZw8cpqG6tOcPtYEF/CmpIsRKtOHD2J43hCGXDaYzNHpZI4aRPqIQbg8Jseq6zl+6AT1RxpoPHaS0w1NWFjgigiNrugQeT4BMZLH42HIkCEMGzaM4cOHO1N2drYzHzZsGIMGDbogn1tE+jaFShHpM9rb252A2djYyMmTJ2loaHCWGxsbaWpqoqmpiebmZpqams54E8eX5TJdmKYL0zAwbBMssDvB9tvYnWB12lh+O/AozdBfUNsI3NAEgXkwmBoYFF03hbL3KwOnjQMrI+Y2BKuaLgPTbWAkGZhJgbnhCt4BbdjYtoXf8tPZ6Sf8ZheGYRikpaWRkZFBRkYGgwcPZsiQIWRlZfU6T01NvaBtEJH+TaFSRPoty7Lwer1O0Ow6tba24vV6aW1tPetyf/1TaJomqamp5zRlZGSQnp7uBMfI5bS0ND2vWkRiolApIgnPtm06Ojrw+XzOPDT1tL6jowPLsrAsC9u28fv92LbtrOs6GYaBaZqYphm1HPk6NE9KSsLtduN2u0lOTu5xHloOTbqJRUT6AoVKEREREYmZznWIiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMyS4t0Akb7Atm3a2tri3QwRkfOSkpKCYRjxboYIoFApAkBbWxsLFy6MdzNERM7LmjVrSE1NjXczRACd/hYRERGRC0BHKkW6SN4yAsMO/n/LMDFMAwwTTAMMA8MMlQXXGwaYBkZoG6fMcOo4E0SsC+/TqUO4jm0Y4f/2RezDWR9RL3KdHdyNU2YChNYbTlmojh1c55RDeB9mcHunTvR7RNUhuM7soSxqe6LaGF5ndCvrVofoOlHlhOv09l5Rr3tpR7c6Z9qvs96Oqt91f055xL7s4Hq61MOwI+oHyo3IMmfbUJnt7NOI3D643jDs8I9fcH34x8N2yk1s53WgDMzg60BZ4HWonlNm2BiE65nBdc6E7dQzDaLWh+tY4W2xMQ0LV6gs+Dq8L8vZnyti/y4C612G1aWehSu0T8Lv52xPeH8mgfomgfcPlAX25wquM7BwheoTaoeFCwL1CLxP6LOFXgfeyw4uEyyzMYP94sLABFzBf2wTI7jOwGUYmME/BgYGHT4XS+4ahUhfo1Ap0pXfCP55JxAqCQbA4Ld1uMwAM5ygjEBCC+4klDzM8HK3tGF2TzyG0X37yP3RZfuosq7LEduEwmREqOy2LiIERr7u2sTo7XuoY56hrLeP0dN+e6t3pvXn/F7nt88eQ2xUvQscKnsqp+tr29l3ZDsi3zO6TpcQ6pRFlts97M/u4b3sqCkyVIaDanDqraynsEkojBIV9EKvXUSXBUKlFQ5lRmQoCyybhhEIfME5zrLh1AsHWHAZ4bkLIgJgD2XB/QVe28FQajshMlDPPmuojNyfK1hmEr0uFGDN4OcW6Yt0+ltEREREYqZQKSIiIiIxU6gUERERkZgpVIqIiIhIzBQqRURERCRmCpUiIiIiEjOFShERERGJmcapFOnKZWPbgQGPA+MuGhFzo8uA5KF5xDKR6+yI5TOUhdZHDFoYHqKaXtaH53bUMlH1bAA7tD68TxsDbJy6keXOPqIGV4xsSw+v7agmdemPXqau255t7Eh6WX+2sjONRXmmsshPeMZ6PY03GTnZvbSx98HPo8eWjChztv3yg5+H2xExTiVffpxKm3A927CjJwLzQBlR6y1nf1b4fbDBsCLG07Sjym3DcvZH1P6D89B7BV+bwW1Cc6DbOitibEjLCM8twuNUWsF1Br2NU2k4A5a7CP+bhV6bwTpdx74898HPjeA/i0GHr6ffS5H4U6gU6cJXcizeTbg4Qt/ZMegaZ0Ug+kfLimdDvrTIn2ydwBP5svTbIwK0tbXFuwkiIiL9mo5UigAej8dZfvvtt0lJSYlja/qftrY2brrpJkD992Wo/2KTyP2XSJ9V+j6FShHAMMIndFNSUkhNTY1ja/o39V9s1H+xUf+JxI9Of4uIiIhIzBQqRURERCRmCpUiIiIiEjOFShERERGJmWHbdowj14mIiIhIotORShERERGJmUKliIiIiMRMoVJEREREYqZQKSIiIiIxU6gUERERkZgpVIqIiIhIzBQqRURERCRmCpUiIiIiErOkeDdAJN68Xi8rV65k3bp11NXVYZomY8eO5ZprrmHJkiW43e54NzEuTp06xYYNG9i2bRt79uzh6NGj+P1+srKymDJlCosWLWLBggVn3EdDQwOvvfYaGzdu5OjRo3g8HsaNG8eiRYtYvHgxhmFcok/TN7z66qv87ne/c16vX7++123Vd2EtLS2sXr2ajz76iMOHD+P1esnKymLMmDFMnz6dpUuXkpGR0a2e+lDk0tITdSSh1dXVcd9991FXVwdASkoKlmXh8/kAmDRpEs8++2yPX1gD3de+9jX8fr/zOjk5GZfLRWtrq7Nu7ty5PPnkk6SkpHSrv3v3bh566CFOnToFQGpqKj6fz9nnnDlzePrpp0lOTr7In6RvqK6u5s4773R+tqD3UKm+C9u+fTtPPPEEDQ0NALhcLlJTU2lubna2eemll5g0aVJUPfWhyKWnUCkJy+/3853vfIcvvviCYcOG8dOf/pTZs2djWRZr165l+fLleL1e5s6dy/Lly+Pd3EtuwYIFTJ06leuvv56SkhJGjx4NQG1tLa+88gp/+9vfALjuuut47LHHouo2Nzfz7W9/m4aGBnJzc3nssccoKCigo6ODd955h+eff57Ozk5uvvlmHnjggUv+2S41y7K49957KSsr4/LLL+fzzz8Heg6V6ruwsrIyHnjgAdrb25k9ezZ33HEHl19+OaZp0t7ezsGDB1m/fj2LFy92fj5BfSgSL7qmUhLW3//+d7744gsAnnzySWbPng2AaZqUlpby0EMPAbB582a2bdsWt3bGy7PPPstvf/tbbr755qgv7JycHB555BG+8Y1vAPDee+9x9OjRqLorV66koaEBj8fDL37xCwoKCgBwu93ccsst3HnnnQC88847HDp06BJ9ovh58803KSsr49prr2XOnDln3FZ9F9DW1sZTTz1Fe3s7X/3qV3nmmWcoKirCNANfWx6PhylTpnDXXXdF/XyC+lAkXhQqJWH94x//AGDmzJkUFhZ2Ky8tLSUnJydq20Qya9asM5YvXrzYWd69e3dU2Zo1a4BAH3b9wge45ZZbSE1Nxe/38/7771+A1vZdNTU1/P73v2fw4MHce++9Z91efRewZs0aampq8Hg8PPjgg06YPNe6oD4UudQUKiUhtbW1UV5eDsCVV17Z4zaGYTB37lwAtm7desna1l9EXotmWZazXF1d7Ry5DPVfV4MGDaK4uBgY+H27fPlyWltbufvuu8nKyjrjtuq7sFAwnD9//ln7LZL6UCR+FColIVVVVTlBaNy4cb1uFypraGjg9OnTl6Rt/cVnn33mLI8fP95ZDl1SAGfu21CdgwcPXvC29RXvvPMO27ZtY/bs2SxatOis26vvAnw+n3P0e8aMGdTU1PDzn/+cJUuWUFpays0338yPf/xjNm3a1K2u+lAkfjSkkCSk+vp6Zzk7O7vX7YYPHx5VJzMz86K2q79oamri1VdfBaC4uJjc3Fyn7MSJE87yufRtS0sLXq+XQYMGXaTWxsfx48d58cUX8Xg8zvW5Z6O+C6irq6OjowOAY8eOcccdd9Da2orb7cbj8dDQ0MCGDRvYsGEDN910Ew8++KBTV30oEj86UikJyev1Ossej6fX7SKHyomsk8gsy+Kpp57ixIkTJCcn84Mf/CCqXH0b8Mwzz9Dc3Mwdd9zR43V9PVHfBTQ1NTnLf/7zn3G5XPzsZz9jzZo1vPvuu7zxxhuUlpYC8Pbbb/PGG28426sPReJHoVJEzstzzz3Hxx9/DMAPf/hDJk6cGOcW9T3vvfceGzduZNKkSdx6663xbk6/E3mNrmVZPPjgg5SWlpKUFDi5NnLkSB5//HFnbMpXXnmFzs7OuLRVRMIUKiUhRZ7qam9v73W7tra2HuskqhUrVvDWW28BcM8990TdAR6S6H3b2NjIr3/9a1wuFw8//LAThM5FovddSORnGjFihHNUMpJpmixbtgwIPP1pz5493eomch+KxINCpSSkyGsljx8/3ut2kddeRtZJRC+++CKrVq0C4Hvf+16vR+CGDRvmLJ9L36alpQ2oL/Xf/OY3nDp1ihtvvJHc3Fy8Xm/UFHlELbQudP1govddSOS1kJHX63aVl5fnLIeeiqU+FIkf3agjCSkvLw/TNLEsiwMHDvQ6rNCBAwcAGDp0aELfpPPCCy+wcuVKIBAov/Wtb/W6beSd4AcOHCA/P7/H7UJ36fZW3l/V1tYCsHr1alavXn3GbUN3hH/zm9/kvvvuS/i+C8nMzCQ7O5vjx4+f8/O5Q9upD0XiR0cqJSGlpKQ4A55v3ry5x21s22bLli0AZ30KykC2YsWKcw6UEDiyNHLkSKD3vm1tbWXnzp1AYvdtV+q7sNBnq6qqorenCVdVVTnLoQcVqA9F4kehUhJW6CjRp59+yq5du7qVr127lpqamqhtE82KFSucU97f//73zxooQxYuXAjAhx9+6By5i/SXv/yF1tZWXC4X11577YVrcB/w3HPPsX79+l6n22+/3dk2tO6+++5z1iVy30W6/vrrgcCQQh9++GG3csuynJ/N7OxsJk+e7JSpD0XiQ6FSEtaiRYsYP348tm3z+OOPO8/3tiyLtWvXsnz5ciDwVI4rrrgink2Ni8hrKO+55x5uu+22c6572223MXToUNra2njkkUecgaw7OjpYvXo1L730EgA33ngjY8eOvfCN78fUdwHTp0/n6quvBuCXv/wlH3zwgXM96tGjR3nyySfZu3cvAN/97nejHuOoPhSJD8Pu7byCSAKora3l/vvvdy7yT0lJwbIsfD4fAJMmTeLZZ58lIyMjns285I4ePcrSpUuBwF22Z3tM3rJly7odxdy9ezcPPfQQp06dAgJ32Pp8PicYzJkzh6effjrqcY+J4A9/+AMvv/wyEDhS2RP1XUBrays/+tGP2LFjBxB4NKjH44kax/L222/nzjvv7FZXfShy6SlUSsLzer2sXLmSdevWUVdXh2EYjB07ltLSUpYsWYLb7Y53Ey+52tpaZ7iWc9HbF3tDQwOvvfYaH3/8MceOHSM5OZnx48ezaNEibrjhhqijS4niXEIlqO9CLMvi3XffZc2aNRw4cACv18uQIUMoLi7mlltuoaioqNe66kORS0uhUkRERERipv+miYiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISs/8Pb5bYec6bJQoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAAC+8UlEQVR4nOzdd3xUVf7/8de909MTCL33XkRAEUQFV8S6trUXYFGxgmXd7+pPXXfXVVd37bu6unbFrggiijQB6R1CDRBqQnqdds/vj8kMKTOTkDYpn+fjkQfJ5OTczyQwvHPOPedoSimFEEIIIYQQtaBHugAhhBBCCNH0SagUQgghhBC1JqFSCCGEEELUmoRKIYQQQghRaxIqhRBCCCFErUmoFEIIIYQQtSahUgghhBBC1JqESiGEEEIIUWsSKoUQQgghRK1JqBRCCCGEELUmoVIIIYQQQtSahEohhBBCCFFrEiqFEEIIIUStSagUQgghhBC1JqFSCCFq4YknnkDTNDRNY/HixZEup974n+M555wT6VKEEI2UhEohRCAwBHvTdZ24uDj69+/PjTfeyHfffRfpcpulsuE02JvNZqNt27acc845/OUvf+HIkSORLlkIIcqRUCmECEspRX5+PikpKXz44YdccsklnHPOOWRmZka6tBbF5XKRnp7OkiVLeOyxx+jTpw/vvvtupMsSQogAc6QLEEI0Ll999VW5jw3D4MSJE/z66698/PHHlJSUsGTJEi655BJ++eUXdF1+N61rv/vd77j22mvLPVZcXMzevXv57LPP2Lx5M4WFhdx22220adOGCy+8MEKVCiHESRIqhRDlXH755UEfnz59OrNmzWLMmDHk5+ezcuVK5s+fz+TJkxu2wBagX79+IX8O//d//8f06dN56623UErx+OOPS6gUQjQKMsQghKi2QYMGMW3atMDHS5YsiWA1LZOu6zz33HOYTCYA1qxZQ1FRUYSrEkIICZVCiFPUr1+/wPt5eXlB29x6662BBSb79+8H4JNPPmHy5Ml06tQJi8VCQkJCpa8rKCjgH//4B+PHj6dt27ZYrdbA4pQXXniBwsLCKutLSUnhueee49JLL6VHjx5ERUVhs9lo3749kyZN4rXXXqOkpKTaz/fLL79k0qRJtGnTBofDQY8ePZg2bRpbtmypdh91LTExkTZt2gQ+zs/Pr9TmnXfeCfwM3nnnnbD9nUrbqhw5coRZs2bRt29fHA4HycnJjB07ln//+994PB7g1FaS//rrr9x5550MGDCAhIQE7HY7Xbp04Xe/+x1z586tVa1CiLol099CiFNy4sSJwPtdunSpsr3T6eTSSy9lzpw5YdstX76cq666imPHjpV7PD09PbBA5R//+AdffPEFZ555ZtA+3nvvPW655Zagnzt27BjHjh3jhx9+4IUXXmDOnDn0798/ZD1ut5sbb7yRTz/9tNzjqampvPXWW3zwwQe8+eabYZ9TffF4POTm5gJgt9vLBcxI+umnn7jqqqsCtQGUlJRw4sQJli9fzscff8w333xTrb6KioqYNm0aH3/8caXPpaWlkZaWxqeffspFF13Exx9/TGxsbJ09DyFEzUioFEJUW0lJCR9++GHg44kTJ1b5Nffffz/z58+nd+/e3HTTTfTu3ZvCwkJWrVoVaLNu3TrOP/98iouLATj99NO5/vrr6dChA0eOHOHDDz9k3bp1HD16lIkTJ7J8+XKGDRtW6VpFRUVomsaIESM4++yz6du3L4mJieTl5XHgwAFmz57Nrl272Lt3LxdeeCEbN24MOmIKcOeddwYCpd1u57bbbuPMM89EKcWyZct49913mTp1Kueff/4pfAfrxscffxyY8p4wYQKapjV4DRVt2bKFSy+9NPAzHDlyZOBneOjQIT744AOWLl3K9OnTq+zL5XJx/vnns2LFCsD3y8t1113HwIEDsdls7Nmzh/fee4+dO3cyd+5cLr/8cn788UdZNCZEpCkhRIsHBN4q8nq9KiMjQ82ZM0eNHj060O7WW28N2d8tt9xSrs9rr71WOZ3OoG29Xq/q169foO2DDz6oDMOo1GbmzJmBNgMHDlRer7dSX1u3blX79u0LWZfX61X/+Mc/Av088cQTQdstWrQo0CYxMVFt3LixUptff/1VxcbGlnueixYtCnntqjz++OOBfh5//PFKny8uLlbbtm1Tjz/+uLLZbApQ8fHxatOmTUH7+9///hfo73//+1/Ya1enrf/z48ePD/r5MWPGBNrcd999lX6GHo9H3X777eW+X6H6mjVrVqDNHXfcEfTvjsvlUjfffHOg3auvvhr2OQoh6p+ESiFEuf/oq3obOHCgev755yuFhrLKhsouXbqooqKikG2/+uqrQNsxY8aE7NcwDHXGGWcE2n7zzTc1fr7jx49XgOrZs2fQz19yySWB67z//vsh+3n99dfrJVRW9RYTE6OuvvpqtWPHjpD9NWSoXL16deDzgwcPVh6PJ2gfLpdL9e3bN2xfR48eDYTmCRMmhK3b5XKpHj16KED16tUrbFshRP2TuQIhxCmxWCzY7XYMw6hW+ylTpuBwOEJ+vuy+mA899FDIqVxN03jooYeCft2p8t+TuXfv3nL3iIJvin/+/PkAtG3bluuuuy5kP1OmTCExMbHGddSUyWTCbrejlGrwawfz7bffBt6/6667AivTK7JYLNxxxx1h+5o9ezZOpxOABx54IGxbi8XC7373OwD27NlDamrqqZQthKhjck+lEKKcYGGtoKCAlJQUZs+ezcaNG7nrrrv47LPP+O6774iOjg7b39ixY8N+fvXq1YAvNE6YMCFs24kTJ6JpGkqpcvdkVvTTTz/xySefsGbNGg4ePEh+fj5erzdo28OHD9O6devAx5s2bcLtdgMwfvz4kAEJwGq1ctZZZ9X50ZXBNj/3eDwcP36cpUuX8tVXX/H+++/z2Wef8cEHH3DllVfW6fVP1dq1awPvV7Wiu6rPL1u2LPB+eno6X3/9ddj22dnZgfdTUlLo3r172PZCiPojoVIIUU6oTbcBHn/8caZNm8Z7773H4sWLueeee3j77bfD9tehQ4ewnz969CgA7dq1q3IFb1xcHG3btg2s5K4oNzeXa665hgULFoTtp6yK2yKVPVO7V69eVX59ddqcqnCbn991112sWbOGCRMmkJ+fz4033sjgwYPp06dPnddRXf6fIVBlqOvRo0fYz/u3oALf1lSnIisr65TaCyHqlkx/CyGqzWKx8MorrxAXFwfAu+++y8GDB8N+Tbipb/CNggJVjnj6+dsF25vx6quvDgTK2NhYrr/+ep599lnef/99vvjiC7766iu++uqrwJQpUGkEs+xemFFRUdWupyGNHDmSBx98EPBN1z/33HMNXkNZ/p+h2WzGarWGbVvV96vsdkSnyj/CLISIDBmpFEKcktjYWM4880x++OEHDMNg8eLF3HzzzTXuLyYmhtzc3GqfCuMPfRVHNZcuXcqPP/4IwNChQ/nxxx9JTk4O2sfy5ctD9l829FSnpupsyF4ffvOb3/D4448DsHDhwlr1Vd37Y0Pxf888Hg9utxuLxRKybVXf05iYGMAXUIuLizGb5b8pIZoKGakUQpyyVq1aBd4/fPhwrfpq37494Nuc3D/iFUp+fj7Hjx8v93V+P/30U+D9v/71ryEDJcCBAwdCfq7sdP2ePXvC1lPdNvWhqp+BzWYLvO9yucL2VXGx0qkq+7OoarHMvn37wn6+Y8eOgC+g7ty5s1Z1CSEaloRKIcQpKxtCqjNFHM6oUaMA32jZzz//HLbtwoULAyue/V/n5w+bAD179gzZh8vlYvHixSE/P3To0MBI29KlS0Mu8PH3FW7Usz5V9TMouyq9quAfbtFTdZx++umB98N9b6vz+bPPPjvw/pdfflmbsoQQDUxCpRDilOTl5bFy5crAx+GOOqyOK664IvD+888/H7KdUop//OMfQb8OygervXv3huzn9ddfJyMjI+Tn7XY7kyZNAnyjp7Nnzw7Z9p133im3+rgh/fDDD4H3g/0MBgwYEHh/0aJFIftJTU2t9er1yy67LPD+q6++GjKIu91u/v3vf4ft69prrw2E+n/961/lFk4JIRo3CZVCiGpzu93MmDEjsEimffv2VW4RU5VLLrkkEIqWLl3KH//4x0r7LyqlePjhhwOjggMHDuSiiy4q16bsyOWf//znwF6HZX333Xc88sgjVdY0c+bMwPv33nsvW7ZsqdRmzZo15fbNbEirVq0qF8Cvv/76Sm26dOkSCJbLli0LevZ6RkYGV111VZXT41UZOXIkY8aMAWDz5s088MADlX6GhmFwzz33kJKSEravLl26cNdddwG+1dwXXHABu3fvDtneMAx++ukn/vKXv9TqOQghak/ugBZClBNsX8DCwkJSUlL45JNPAvcQ6rrOq6++WuVq36rous7777/P2LFjKSkp4e9//zs///wz119/Pe3btw+c/e3fC9HhcPDBBx9UOuf5t7/9LZ07dyYtLY3Vq1czYMAApk6dSo8ePcjJyWHevHnMmTOHqKgorrjiirBTq+eeey5Tp07lrbfeIjMzk1GjRjFlypTA2d+//PIL77zzDkopJk+ezLx582r1PagoJSWl0s/B4/GQnp7OkiVL+PLLL/F4PIAvTN9+++1B+3nooYe47bbbALjyyiuZMmUKZ599NkopNmzYwP/+9z9ycnK4+uqr+eyzz2pV87///W9Gjx5NcXExL774IitWrOCGG26gffv2HD58mPfff58NGzZw1VVX8fnnnwOEPKv72WefZePGjSxevJitW7cyYMAALrvsMsaPH0+7du1wu90cP36cTZs2sWDBAo4ePcqECRN49NFHa/UchBC1FKmjfIQQjQencEwjoJKSktTs2bND9lf2mMbU1NRq1bB06VLVtm3bsNdt166dWr58ecg+Vq9erZKSkkJ+fXx8vPruu+/KHYkY6mhFl8ulrr766pB92Ww29d5771Wrr+o4lWMa/W+XXHKJysrKCtvvlClTQn691WpVb775Zp2c/a2UUgsWLFBxcXEhrzdu3DiVkZER+PjSSy8N2ZfT6VQzZsxQuq5X63tx8803V+fbLISoRzL9LYSoksPhoGPHjkyaNIl//etf7N69m2uuuaZOrzFu3Dj27NnDs88+y7hx42jdujVms5nWrVszbtw4/vGPf7B79+7ANGswI0eOZNOmTdxzzz306tULm81GfHw8gwYN4g9/+AObN2+uNG0eisVi4dNPP+Xzzz/nN7/5Da1atcJms9G9e3emTJnCmjVruOmmm+rq6VdJ13USEhIYOnQo06dPZ+nSpXz77bdVHhP51ltvMXv2bCZMmEBiYiI2m41u3boxZcoU1q5dy7Rp0+qsxvPPP58dO3Zw//3307t3b+x2O61atWLMmDG8/vrr/Pzzz+Xut0xKSgrZl9Vq5dVXXyUlJYVHHnmE0aNHk5ycjNlsJioqiu7duzN58mT+9re/sXnzZt599906ex5CiJrRlGokh8cKIYRo9ubOncvFF18M+BZmzZo1K8IVCSHqioxUCiGEaDCvv/564P3aLvISQjQuEiqFEELUiWXLloU8nUcpxRNPPMHcuXMB396Wp512WkOWJ4SoZzL9LYQQok706tULp9PJ5MmTGTZsGMnJyTidTnbu3Mnnn3/Ojh07AN/9qitXrmTEiBERrlgIUZckVAohhKgTvXr1CrvxPEBCQgKffPIJF1xwQQNVJYRoKBIqhRBC1In169czb948fv75Z9LS0khPT6e4uJjExET69+/PpEmTuOOOO0hISIh0qUKIeiChUgghhBBC1Jos1BFCCCGEELUmoVIIIYQQQtSahEohhBBCCFFrEiqFEEIIIUStmSNdgBBCNDSlFC6Xi+LiYoqLi3G5XOXenE5n0MfcbjderzfwZhhGuT8rPgagaRqapqHreuBj//u6rqNpGgAmkwmr1YrZbMZisWA2m8t97H/zP26327Hb7TgcjnLvm83ysi6EiAx59RFCNDkej4f8/Hzy8vLIy8ur9H5BQQHFxcUUFRVRWFhIUVERRUVF5R7zer2Rfhr1wmw2lwubDoeD6OhoYmJiiI2NJSYmJuib/3NxcXE4HI5IPw0hRBMkWwoJISLO7XaTnZ1NdnY2WVlZ5f70v5UNj0VFRXV2bbPZ7HszmTGZTKV/+h6zmM1YrKWjhDYLVqsVFL43NJShwABlcPLx0jcNDaWgKLeI6KQosg7nommg6Rq6SUM36WhmDbPFhMliwmTxfayZAA1cThfOYiclxS5cJS5cTheuEjdulxu3242hvChdEZ3koKSkpE5Dss1mIyEhgfj4eBISEiq9+R9PSkqiVatW2O32Oru2EKLpklAphKg3hmGQnZ1NRkYGGRkZpKenB94/ceJEIDjm5eWdct+apmGz2rBZbVjNViy6FZNmxoQZzauDR8NwK4wSheE08BQpvCVevCUGUdFRJLVLpG23ZNr1TKZ11ySSOsZjGIqsQzlkH8kl63Aueen55J8oIP9EIfknCinIKsTrCX62dSi6Sef/Lb6XP5/zEoa3el+rm3RikqKIbR1NbOsYYltFE9cmhsQOCSR1iiepQwJmq4nso3mcOJDFsT0ZHNuXQfqBDLKP52JoBugKTAplUmAywKxQZgVmw/eY2Qh8jEmR0DGO/Px8PB7PKf8sYmJiaN26Na1bt6ZVq1bl3i/7scViOeW+hRBNh4RKIUSNlZSUcOzYMY4ePcqRI0c4duxYIDT6g2N1Q4qmaUTZo7Bb7VhMNixY0L1mNLeOUQzeIgNXvhdXjhtnrhvD6RsNrEpCuzg6DWxHpwHt6di/LW17tsbj9pK+L5Pj+05wfO8JMvZnkpWWQ2FOcW2/JZXUJFRWhyPOTqtOCSR3S6JNz9a07dGatj1bY3VYSE/N5PD2YxzacYxD246RdSinWn0qfEEUs4GyKJTFAIsR9E9lUdjizTidzmr1rWkaSUlJtGvXjrZt29K2bVvatWsX+Lhdu3ZERUXV4jsihIg0CZVCiJC8Xi/p6ekcOXKEo0ePVnrLysqqsg9/WHTYorDpdkxeC5pLxygEV64XZ5abkixXtUNiOLpJo32fNnQb3pnOg9rTaWA7zBYzh3Yc4/D2oxzafoxjuzPIP1FYq+ucWk31EypDiU6Mol3vZDr2b0unge3p1L8dgC9gbj1K6oY0Dm8/Xie1+EOoshpg9aKshu9928n32/VtTWZmJi6Xq8r+YmNjA0GzU6dOdOrUiY4dO9KxY0eSk5MDC5yEEI2ThEohWjilFDk5OaSlpZGWlsbBgwc5dOgQaWlpHD58GLfbHfbrrVYrMY5Y7CYHZq8VSnQ8uQYlmW6K0l0YRQpN1S4shtO2Z2u6n9aZ7qd1ouuwThTlFrN/wyEObj7CoW1HyUzLJpKvcg0dKoNJ6hhPp4Ht6Ty4A92HdyIuOYYDm4+Quj6N1HVpHNudXq/fI4XyTb/bvSib7w27F2UzUDYvMe0d5Ofnh+3DarXSoUOHQMj0B87OnTvTpk0bCZxCNAISKoVoIbxeL0eOHCE1NZXU1NRAiExLS6OgoCDk15lMJmKiYnGYozB7LahCHXeOl5LjbkpOeMCj1XqE8VSYrSa6j+hM3zE96DOmO5pJJ3XdQVLXpZG6/hA5x079/sz61BhCZUWxraNLg3hnepzeGZPZxK6Vqexakcq+tQdxFYf/RaI+KJMRCJnYvb4A6vDQcWhbjh49GvY2CofDQZcuXejatSvdunUL/Nm+fXvZYkmIBiShUohmxjAMjh8/HgiP/rcDBw6EnILUNI1oRwzRlmjMXhsU6rhOGBQdceLONRo0NAbjiLXR7+xe9BvXk+6ndSZjfya7VvhCUH2PstVWYwyVFbXp0Yo+Y3rQd0x32vVpw4FNh9m5bC/bl+yhMLvuVtrXlEKBzUA5PKVh04uye+g0vB1HjhwJGTgtFgudOnUKBM0ePXrQs2dPOnbsKCObQtQDCZVCNGHFxcXs2bOH3bt3s3v3bvbt28f+/fspLg6+4MRsNhMfnYBDi0IrNuPOMig8VIIz00AzIhscK7JFWek7rgeDJvSl+/BO7N9wiB3L9rJ7RSr5mQ13T2RtNYVQWVZUgoPeo7vRf3wvepzehbStR9j28y52LNlDcX71FuU0JKWVTqtHeXxhM8qDivJgbWUKuYjIbrcHAmavXr3o1asXPXr0IDo6uoGrF6J5kVApRBORm5sbCI+7du1i9+7dpKWlEeyfsK7rxEcnYNei0ApNuDIMCtOcePNrvximPukmnT5jujPkN/3oNbobh7YfZevC0kCTVxLp8mqkqYXKsmzRVvqN68mg8/rQbXgnUtensXnBTlKW7cHjatybx/tHN43SkOl/s7TSQ47Yt2/fPhAy+/btS9++fWnVqlUDVy5E0yWhUohGKD8/n5SUFLZv387OnTvZtWsX6enpQdtGOaKJtcVjddpwn1AUHHTiyvLW6+KYuta6SyLDLx7I0Av6k3+ikA3ztrF90W4KsiI/9VpbTTlUlhUVb6f/2b0YeuEAWndJZMuPKaz/bhvH956IdGmnRKF8I5rRHlS0GxXtoVXfeDIyMoK2T05Opl+/fvTt2zfwZ3x8fANXLUTTIKFSiAhzu93s3buX7du3s2PHDnbs2MHBgweDto2LjiPaFAsFZkoOuSk65AKXqYErrhtmq4lBE/py2iWDSO6WxJYFKayfu41ju4P/595UNZdQWVZytySGTx7I0En9yT2ez/rvtrJ5QUpEFvjUFWU2UNEejNKg2WV0Ow4cOBB0JqB9+/b069ePfv360b9/f/r16yenCgmBhEohGlx6ejpbtmxh27Zt7Nixg927dwedjouLjiPGHI+Wb6YozU3hQafvpJgmLi45htMvH8KISwdx4kA2a7/ezI6ljX86taaaY6j0M5l9tyucftkQOvRvy4a521jz5SayjzauFfg1pXQDFePBiHGjYjy0H96Kw4cPV2pnMpno3bs3gwYNYtCgQQwePJjk5OQIVCxEZEmoFKIeKaU4cOAAmzdvDrwdO3asUjub1Ua8LRG90ErJYQ9FB9xonqYfIMvqNLA9Z1w9jN5ndmf7ot2s+mJjsxuVDKY5h8qyWndNZPSVwxjym36krj/Eqs83kLr+UKTLqnPKZKBi3BixHlSMm8S+MWRmZlZq17Zt20DIHDRoED179pTtjUSzJ6FSiDrkdrvZtWtXIEBu3bqV3Nzccm00TSMxJgmHEYMnXZG3p6TRL6CpjZ6jujLuppG06pTA6i83sW7OVorq4TjExqqlhEo/e4yN4RcNYPSVwynMLmLZB2vY+cveRr3tU20EFgTFujDi3PQ6pzN79uzBMMr/rB0OB4MHD2bYsGEMHz6cvn37SsgUzY6ESiFqwev1snv3btavX8+6devYsmULJSXlVymbTWYSHImYi+wUH/RQnOZpFtPY4Wga9Du7F+NuGokj1s4vH65l0/ztzXaKO5yWFir9dJPOoIl9GHfjSJSCXz5Yw9aFOzG8zf+/HKUbqFgPRpwLFesmqou10gEDEjJFcyShUohT4J/OXrduHevXr2fjxo2VjpezWe0k2BPRcizk73HizqjfYwobE02DAef24ZzbzkAZBss+WMO2n3e1iCARSksNlX6aBv3G9WTcTaNwxNlZ+u4qNv2wo0X9nVAo35ZG8W6MeBexPe2VZjDKhsyRI0fSu3dv2aBdNDkSKoWowokTJ1i9enUgSFa8f8pqsZJgT0LPtpK/y4k7SzXbqexwep/RjfN+PwaTxcSi/64gZVnznfI8FS09VJbVa1RXzvv9GKwOCz//dyU7luxukX9HKobMmB428vLKL26Kj49n5MiRgbfWrVtHqFohqk9CpRAVeDwetm7dyq+//sqqVavYu3dvuc+bTGYSHUnouVYKdjnxZDbs2deNTZchHZgw/SzikmNY9PZKtvy4E2XIy4qfhMrK+o/vxXnTxuB2uvn5jRXsWX0g0iVFlD9kGvFuVIILWye90qlY3bt3Z+TIkYwaNYqhQ4dis9kiVK0QoUmoFALfNj+rV6/m119/Zd26dRQWnjwG0L+wxlYSTeEeFyWHjBYznR1OYod4fnPXODoNbM/Sd1ax/ruteD0SmiqSUBmcbtIY8pv+nDPlDDLTsvnh5aWkp1ZeRd0SKU2hYt0YCS76XNCFlJSUcvtlWq1WhgwZwpgxYxgzZgwdOnSIYLVCnCShUrRIXq+X7du388svv/Drr7+Smppa7vN2q504UxKeQ1Cwu/lt71Mbtigr424exemXDWb1l5v45YM1TXrT6/omoTI8s9XEmb87jbOuO53NC3aw6O1fm+yRnPVFmQ2MBBdGgpNWg2Mrnf7TrVs3xowZw1lnncWAAQMwmZrmgQii6ZNQKVoMp9PJ2rVr+eWXX1ixYgXZ2dmBz2maRmJ0EuY8B/kpTrxZLXtKOxhNg2GTBzLh92M4sPkwP77+CznNZJPr+iShsnpiW0Uz4faz6HNmd5a8s4o1X2+W71cQ/mMmjUQnQ67szebNm/F6T+6qEB8fzxlnnMGYMWMYOXIkMTExEaxWtDQSKkWzlpuby4oVK/jll19Ys2ZNue1+rBYriZbWuA9rFOx0yWhkGG17tuaShyZgtpr5/qXFHNhY+VQREZyEylPToV9bLrx3PBaHhTnPLeTw9sqHBYiTlMnASHRhJDmJ7mkptxuFyWRi+PDhjB8/nnHjxpGUlBTBSkVLIKFSNDsnTpxg8eLFLF26lM2bN5fbhDjKHk2MO57CXR7cx5B7I6tgsZkZf+toTr9sCEve/ZVVn29sUVvB1AUJladO02D4xYOYePtZbP1pJwvfWIGzqPJRpqI8hULFuTGSnHQc05qDBw8GPqdpGkOGDGH8+PGcffbZtGnTJoKViuZKQqVoFjIzM1myZAk///wzW7ZsKXdTe3xUArbCaPK2OTFydJnWrqaeI7tw8YMTyNifydwXFpF7PL/qLxKVSKisuZikKC64Zzxdh3bk+38tYsfSvVV/kQgw7B6MVk56X9iJlJSUcp8bOHAgZ599NuPHj5eFPqLOSKgUTVZ2djZLlixh0aJFbNy4sVyQTIpuhSnLQd62EiiSm9ZPhS3KyqR7x9PrjG58/6/FbF+8O9IlNWkSKmuv1+huXDTrXI7sPM7cFxa1qGM+64qyefG2KmHAZd3ZunVrudfLPn36MGHCBCZMmCAjmKJWJFSKJiU/P5/Fixfz888/s2HDhnJT2wlRSejpNgq2u9FcEiRrovtpnbjsj78hbcsR5v1zEcX5zkiX1ORJqKwbVoeF38wYR79xPZnz3EJ2Lt8X6ZKaLGXxYrRyMvjqXmzatCnwOqppGkOHDuX8889n/PjxxMXFRbhS0dRIqBSNntvtZtWqVfzwww+sWLECt/vk9jUJUUmYMu3kb3OhlUiQrCmLzczEO85i0MS+zH1+kYxO1iEJlXWr16iuXPrI+exdc4D5Ly3BWSj3WtaGMhsYrUsYcEV3Nm/eHHjcbDYzevRozj//fMaMGYPdbo9glaKpkFApGiWlFDt27GDBggUsXLiw3Dm58VEJWHOiyd3iRCuWIFlb7Xolc9UTF5KZls2c5xZSkFUU6ZKaFQmVdc8eY2PyzHPoOrQjnz/5PWlbjka6pGZB2bx4W5fQbWLbcieJORwOzj77bC644AJOO+00OZNchCShUjQqx44dY8GCBSxYsKDcykW71UGMM4H8zW7IlyBZV0ZePoQJ08/ip//8wtpvtkS6nGZJQmX9GTyxL5Nnncvyj9ax/MM1LfIc8fpiRHkwkotJHhnHsWMnt3Vq164dkyZN4sILL6R9+/YRrFA0RhIqRcS53W5++eUX5syZw9q1awOPm01mEk2tKdzhxXNUNiOvS/YYG5f+YSJturfis8fncXzviUiX1GxJqKxfSZ0SuPrJyRTmFPPVX36gMFtG2uuSwndkpLdNCVG9TRQUFAQ+N2LECCZPnszZZ58tZ5ELQEKliKCDBw/y3XffMX/+fHJycgKPJ0W1xjhopmi3F80r0yx1rWP/tlz1xGQObDrMvH8ukiMW65mEyvpnspj4zYyxDDi3D1/++XtS1x+KdEnNktIVRqsShl7fm3Xr1gUej4mJYeLEiUyePJm+ffuiaTIA0FJJqBQNyul0snjxYr777js2bdoUeNxhdRBVEE/+Zo8suKlHwy8ayG/uGscPLy9l4/fbI11OiyChsuH0G9eTS/8wkWXvr2Hl7PWRLqdZUzYv3jbFJI+OLTc93rt3by6//HImTpyIw+GIYIUiEiRUigZx4MABvv76a3744YfA9ImmaSRaW+NMUbgPy6bk9clk1rngnvH0GdOd2X+aw9FdGZEuqcWQUNmwWnVO5LqnL+HIznTmPPsTbqcn0iU1awqFindzzqzTWbJkCS6XbzV+dHQ0kyZN4rLLLqNbt26RLVI0GAmVot54vV5WrVrFF198wZo1awKPR9misefGUrDZI/tJNoDoxCiu+fNkDEPx2ePzZOPoBiahsuHZoq1c8egFxLWJ5ZP/myOnQTUQZTbwtimm3bh4Dh8+HHh8+PDhXH755YwbNw6z2RzBCkV9k1Ap6lx+fj7z5s3jq6++4siRI0DpqKSlNSU7kEU3Dahdr2Su+/ul7FiyhwWvLZNQEwESKiND02D8rWdw+uWD+fTRuRzcciTSJbUYCoVKcHHGnYNZvnx5YHP1Vq1acfHFF3PZZZfRunXrCFcp6oOESlFnUlNT+eKLL1iwYAElJSUAWM1WYooTKdxioDvlN9SG1HNUV6549AJ+fH0ZG7/fEelyWizdpPPowrv5y4RXJFRGQL+ze3LJQxOY+8Iiti+STf0bmmH14m1bRNwQK1lZWYBvY/WJEydyzTXX0KtXrwhXKOqShEpRK0op1qxZwyeffFJuO6BYWxyk2Rl95kgmTBsbwQqFEEJE2s9vrWDRd0sZcE3Xcif3jBgxgmuuuYbRo0fLpurNgIRKUSMej4dFixbx8ccfs2fPHqB0itvcmqKtCiPDt/BG0zXZXqIBaRqcN20Mgyb24eM/fkv6vqxIl9TiyUhl45DYIY7r/n4pBzYe5vsXF2N45b++hqSUQhm+77kR42bcrGEsWbIEr9cLQJcuXbjmmmu44IILZM/LJkxCpTglRUVFzJ07l88++yywjYTZZCbWmUThBgPNKQtvIkU36Vz+f+eT3K0VHz38DfmZhZEuSSD3VDYmjjg71/71YpxFLj59bC4elzfSJbVoyubF274Ie1+NwkLf61V8fDy//e1vueqqq4iLi4twheJUSagU1ZKdnc0XX3zBV199RX6+byWlzWLHnhVH8TaF5pFpi0gyW01c/eRkrFFWPn7kW9nQvBGRUNm4mK0mrnpiMvZYGx//4VucRa5Il9TiKZOBt20xyWNiAoMVDoeDyy67jGuuuUYW9TQhEipFWCdOnOCjjz7i22+/Pbn/mDUGPc2Bc6+GZsjUdqRZHRaue/pSXCVuPvt/MvrS2EiobHz8o/qtuyTxwYNfUZRbEumSBL5V40ZrJ90vacPu3b5FVVarlQsvvJDrrruODh06RLhCURUJlSKo48eP89FHHzF37txAmIyzxuPZacEjG5U3Go44Ozc+dzlZh3P46q8LJLQ0QhIqGydNgwvvP5duwzvx/qwvyT8ht4s0FgqFkeii3+86sXXrVgBMJhMTJ07kxhtvpGvXrhGuUIQioVKUc+zYMT744APmzZuHx+M7iSLOkohrq46RYZIw2YhExdu5+V9XcmjrUeb+c1HgJnjRuEiobNwmTB/DwHP78M69n5OXURDpckQZCoWKczNsaq/AARq6rnP++edzyy230KlTpwhXKCqSUCkASE9P591332XevHmB1XjxlkScm3WMTAmTjY0j1uYLlNuOMveFRZEuR4QhobLxO3fqmQya0Id37vlcFrg1UkaMm1F39Wf58uWAb+Tyggsu4Oabb5Zp8UZEQmULl5OTwwcffMDXX38dmOaOtyRRskmDLNmsvDGyx9i45cUrObzjOHOfX4j8C27cJFQ2DROmj6H/+F68c+/nFGQWRbocEYIR42bEHX349ddfAV+4nDx5MjfffDNt27aNcHVCQmULVVhYyOzZs5k9ezbFxb6zoOPMCTg3mSBbwmRjZY+xcfM/r+DYngzmPPuTBMomQEJl03H+nWPpM6YH7973OQVZEiwbMyPWxbBpJ6fFLRYLl19+OTfddBMJCQmRLa4Fk1DZwjidTr766is+/PBDcnNzAYi1xOHaYkadMMs0dyNmdVi4+Z9XkHEgi2///qMEyiZCQmXT8pu7xtFrVFf+d/dnFOc7I12OqIIR52LQLd3YsGEDANHR0Vx//fVcffXV2O32CFfX8kiobCGUUixcuJA33ngjsA9YtDUGI8WG94jcM9nYmcw61/39UpxFLj5/4ntZlNOESKhsei5+cAJte7TivVlf4i7xRLocUQWFQiW46Pbb5MBWRK1bt2bKlClMmjQJs1lm3xqKhMoWYPPmzbz66qvs2LEDALvFgSk1Cvd+CZNNgabBbx+dREyrKD586Bu8btmHsimRUNn0aLrG1U9OxmIz8/Ef58jPrYlQKIzkElqPjwoMnnTt2pU777yTM888U44MbgASKpuxQ4cO8e9//5ulS5cCvuMU7enxuHaaZNPyJmTSPePpMrQD79zzuZyU0wRJqGyazFYTNzx3OXkZBXz91x/kdpMmRGkKb/sioofp5OXlATBq1CjuvvtuunXrFtnimjk5W68ZKioq4rXXXuPmm29m6dKlaJpGnLMV+ooE3DvMEiibkLE3nE7vM7vx4YNfS6AUogF5XF4++eMc2nRvxfl3jot0OeIUaErDfCSakh9sXHfddVgsFlavXs1tt93GSy+9FDhqWNQ9CZXNiFKKH3/8kRtuuIFPPvkEj8dDnJaIZX0SzjVmNLcp0iWKUzDw3N6ccc1w3n/gKwpziiNdjhAtjrPIxYcPfc2Ac3pz+mWDI12OOEWaV+fLu35GWxnH2LFj8Xq9fP7551x//fV88803gQM+RN2RUNlM7N27l3vvvZennnqKzMxMHOYobDuTcC6zohXKTcpNTcf+bbn4oQnM/tN35BzNi3Q5QrRYBVlFfPSHb5gw/Sx6jOgc6XJEDWglZtb8fTeWrQl069aN3Nxcnn/+eaZPn862bdsiXV6zIqGyiSsoKODFF19k6tSpbNq0CZNuIupEEt4lMZBhiXR5ogbi28Ry7dOXMu+FRaRtPRrpcoRo8dJTM/nyqflc9cRkWndJjHQ5oob0HBtHPijCvDeW2NhY9uzZw4wZM3juuecC916K2pFQ2UQppVi8eDE33ngjX3zxBYZhEOtNxLQqEW+KBU3JfZNNkdVh4bpnLmXdt1vY8tPOSJcjhCi1+9f9LHlnFdc/cxlR8bL/YVOloWE6GoXzRzsXXnghSinmzJnDjTfeyPz585G1y7Ujq7+boOPHj/Ovf/0rcAZqlDka7xYbZMrIZFN3zVMXoQzF50/Mk9WmzYSs/m5eLpp1Lq27JPH+A19ieOUfaVNnxLnoeGk8+/fvB2DYsGHMmjVLVonXkIxUNiFer5cvvviCm2++meXLl6NrOlGZiXiWREugbAbGXDeCVp0T+frpBRIohWik5r+0BJPVxHm/PyvSpYg6oOdZOfJhEabUGGw2Gxs3bmTq1Kl88MEHspCnBiRUNhGpqancfffdvPjiixQXFxOtxWJal4h3h1WmupuB7qd1YtyNI/n0se/kBA8hGjGvx+Czx+YydFJ/+p/dM9LliDqgKQ3z4WjUL7GcccYZuN1u3njjDe644w727NkT6fKaFAmVjZzX6+Xjjz9m2rRpbNu2DbPJguNwEu5lDvQiWdXdHMQlx3Dl4xfy9dMLyEzLiXQ5Qogq5GcW8vkT87j0D+fTqrMs3GkuNKeJ9f/Yh3lnHLGxsezatYvf//73vP3227jdsk9wdUiobMTS0tK45557eP3113G73cQY8egr4zFSLXK8YjOhm3SufnIyG+ZuY+cv+yJdjhCimg5sPMzS91bzu79ejMUuv+A3FxoapgwHzp9sjBs3Dq/XyzvvvMO0adPYuVMWT1ZFQmUjZBgGX3zxBVOmTGHr1q2YdTP2/Ym4VtjQXLKBeXNy7rQz8XoNfv7vykiXIoQ4RStnryczLZtJ94yPdCmijmluE6ue3ol5RzwJCQmkpqZyxx138MEHH+D1eiNdXqMlobKRycjI4IEHHuDFF1/E6XQSZcSir0pAHbLK6GQz0/20Toy4eBBfPjUfZcjKHCGaom+f+YneZ3RjwDm9Il2KqGMaGqZMO0XzLYwfPx6v18sbb7zBfffdx5EjRyJdXqMkobIRWbZsGbfddhvr1q3DpJuxH0rEs8KB5pTRyeYmKt7Obx+dxJznfiIvvSDS5Qghaqg4r4Qv//IDFz8wgfg2sZEuR9QDzaOz8q87MO+KIyoqis2bNzNlyhS+//572deyAgmVjYDT6eSFF17gT3/6E3l5eURpMeir41H7ZXSyubr0D+eza0UqO5bujXQpQoha2r/hEGu/3cIVj12ApstrdnOkoWFKd+BZEsXgwYMpKiri6aef5oknnqCgQAYG/CRURti+ffuYPn06X3/9NQCOzHg8v0Shl8iN383VaRcPpFXnRH54eUmkSxFC1JHFb/+KyWLirOtGRLoUUY80p4mdrx9n+vTpmEwmFi1axLRp00hJSYl0aY2ChMoIUUrx3XffMX36dFJTU7GabFi2JWLssMu+k81YfJtYzr9zHF//7QfcTtmPUojmwvAafP23BYy9YSTJ3ZIiXY6oRxoa7978Dfq6eNq3b8+RI0eYMWMGX3zxRYufDpdQGQFOp5NnnnmGZ599FpfLRZQnFlbEoWdbI12aqGeXPDyBdd9u4fCO45EuRQhRx04czGbp+6u57I+/QTfJ4EBzpxdYyPzSw7hx4/B4PLz44os89thj5OfnR7q0iJFQ2cD8v9HMmzcPDQ370QQ8vzrQ3PKjaO6GTx5AfNs4Fv/v10iXIoSoJytnrwelOOOa0yJdimgAmldn1dM7Me2NxWw2s3TpUqZNm8bu3bsjXVpESJJpQCtWrAj8ZbPoVsxb4lF7bbIYpwWIS47hN3edzTdPL8Djkj3OhGiulKH4+ukFnH3TKFp3kdN2WgINDfPRKLS1cbRr146jR48yY8YMFi5cGOnSGpyEygZgGAZvv/02jzzyCAUFBdi90Wi/xqHn2iJdmmggk2eey/q5Wzm0/VikSxFC1LMTB7L55cM1XPqHiWgyZtBi6AUWsr72MnLkSJxOJ08++SSvv/56i9osXUJlPSspKeGJJ57gnXfeAcCRE4/xa7ScjNOC9D2rB+16J7P4bZn2FqKlWPHJeuwxNoZOGhDpUkQD0jw6m/55gOuuuw6Ajz/+mIcffpi8vLwIV9YwJFTWo/T0dO6++24WL16MpulY9yVgbJXV3S2JxWbmwvvOYf5LS3CXyGpvIVoKw2vw3fM/c/6dY3HEyqxUS6Kh8eVdP2NOicdms7FmzRqmT5/O/v37I11avZNQWU+2b9/O7bffzq5du7BoFsyb4tGOyAtLSzPu5lGkp54gZZlsci5ES3Nw8xF2/7qfCdPPinQpIgJMJ+wYv0bTrl27wCLdDRs2RLqseiWhsh4sXryYe++9l8zMTGzKgbY6Hj1PtgtqaVp3SWTUFUP5/l+LI12KECJCfnz9Fwac25uOA9pFuhQRAXqh7z7LgQMHUlBQwAMPPMD8+fMjXVa9kVBZx7744gsef/xxXC4X9pIY1K8xcnZ3CzXpvnNYOXs92Udbxr00QojKCrOLWPTflVw081xZtNNCaR6d3W9mcO655+LxePjb3/7G22+/3Sw3SpdQWUeUUvz73//mxRdfRCmFLSsWY20Umle+xS1Rz1FdSe6axPKP1ka6FCFEhK2bswWz1cSgiX0jXYqIEM3QWP7UNq6//noA3nnnHf72t7/h8TSve+2bXOLZt28fM2bM4J577uHhhx+mqKiIhQsXcuedd3Lfffdx/LjvpJKVK1cyY8YM5s6dW+81+X/z+OijjwCwHopDbXfI/pMtlKZr/GbGOBa+uVz2pBRCYHgVC177hQnTz8JslZmrlkpD44sZCzHvjsVkMvHDDz/w6KOP4nQ6I11anWlyobJLly689tprvPzyy/Tv359ly5bx6aef8tJLLzFt2jTee+89wBcqX3nllXo/5L24uJhHHnmEH374AQ0Ny544tP0SKFuy4ZMH4PV42bKgfv/uCSGajj2r9pOZls3oq4ZHuhQRYabjUWibY7FaraxYsYIHH3yQgoKCSJdVJ5pcqDSbzYH3S0pKaNu2Ld27d8disTB48GD27dsHwKhRo7jrrrvo27f+phsKCwt56KGHWL16NSbNhGlbPPoxR71dTzR+VoeFc6eNYcGry2iGt8sIIWphwavLGHvj6UQlyP8TLZ0p24ZaG010dDSbNm3ivvvuIzs7O9Jl1VqTC5UAa9asYerUqWzYsAGTyURUVFTgc/6d68eOHcvrr7/OxRdfXC815OfnM2vWLDZv3oxJM6NvjMOULVsGtXRn/u40juw4xv4NhyJdihCikTm+9wQpS/dy9s2jIl2KaAT0PCuuX2wkJCSwe/du7r777sAtfE1VkwyVI0eO5K233uKcc85h06ZNFBUVBT5nMtX//So5OTncf//97NixAzNm9PVx6PmyZVBLZ4+xccY1w/n5vysjXYoQopFa/PavDJ88gLjkmEiXIhoBvdBC4U8m2rZtS1paGvfffz/p6emRLqvGmlyodLlcgfejo6NxOBzs378ft9vNli1b6NGjR71ePysri/vuu4/du3djxoK2Pg690FKv1xRNw5m/G86+NQc5vvdEpEsRQjRSuen5bF6QwtgbR0a6FNFI6CVmsud46dChA4cPH+a+++5rssGyyYXKtWvXcs8993Dfffexfv16LrroIq6++mruvfde/vvf/3LzzTfX27Vzc3OZOXMmqampWLCirYtDL5JAKcARa2PUlcNY/D8531sIEd6y99cw9IJ+xLeJjXQpopHQXCZOfOOiffv2gWCZkZER6bJOmaaa4+6b9SA/P5+ZM2f6jl3EirY2Fq3EXPUXihbhvN+PIbFDPF88+X2kSxGNjG7S+X+L7+XP57yE4TUiXY5oJC68/xxMJp3vnv850qWIRkTZvLS61MLRo0fp2LEjL730EsnJyZEuq9qa3EhlJBQVFfHwww+za9cuzFhgnQRKcZIjzs6oK4ay5B0ZpRRCVM8v769h8Pl9iW8ro5XiJM1pIvNbN+3atePw4cPMmjWL3NzcSJdVbRIqq+B0OvnjH//Itm3bMGFG2xCLXiyBUpw08rdD2Lv6ACcONP3tIIQQDSM/s5DNC1I485rTIl2KaGQ0p4msOR6Sk5M5cOBA4KCXpkBCZRher5cnn3zSt3WRZkLfKItyRHlmq4nRVw5j+cfrIl2KEKKJWTl7PcMmD8ARK9vRifI0p4mc+Qbx8fHs2LGDRx99tNxC5cZKQmUISilefPFFfvnlF3RNR98Uh14ggVKUN3TSANJTMzmS0rT3FhNCNLysw7nsXXOA0y8fEulSRCOkF5spWmLC4XCwdu1a/vrXvwb24m6sZB43hI8//pivv/4aAHNKHKZCO8iRraIMTdcYc+1p/PDKUnST/H4mgvP/3ZC/IyKYlZ+u59q/XsKqzzficTXuwCAanl5sw7sOzEPcLFq0iKSkJO67775IlxWSrP4O4scff+Spp54C4KKLLmLs2LERrkgIIYQQLdXmzZv5+OOPAZg5cya//e1vI1xRcBIqK9i0aRMzZ87E4/FgORaNOTUu0iWJRuqmF37Llp92snHe9kiXIiJF006+H+ylVNPQTTqP/nQXf5n4KoYnyEhUVX2IZq/PWd05d8qZ/GfqR5EuRTRiN759MW+++SYmk4lnnnmGUaMa33GfMv1dxvHjx3nsscd8gTI3Cm1PNAayr5yoLLlbEu16JfPRw9/I3oMtlaYBFUJg2VBY4fOG18AwVNg2lfoQLcLOX/Yx6Z7xdBrQjoNbjkS6HNFIvXvLN1zw1AX88MMPPP7447z++ut069Yt0mWVIzf5lHI6nfzpT38iJycHs8uGti0GDa3qLxQt0umXDWbj/O24nZ5IlyIiQQvx2hDq8frqQzQLylCs+3YLI38rC3ZEaBoai/7fBoYMGUJhYSF/+MMfyMnJiXRZ5UioxLfS+7nnnmPXrl2YlBl9UyyaIS/sIjirw8LQCwaw9ustkS5FREJ1Ql+4NrX9etEsbZi7jb5n9SA6MSrSpYhGTFMaKW8cpUOHDhw9epS//OUvjWpFuIRK4NNPP2XBggVoaOhbY9GcssxbhDZ4Yl8OpxwjM002O292qgqDugm0MC+bmo5mruKuomq00Uwm37XCNpLg2ZwUZBWxc0Uqwy8aGOlSRCOneXQyvivBZrOxevVq3nvvvUiXFNDiQ+XWrVt5/fXXATDtjUHPtUa4ItHYjbh0MGu/kVHKZscf0oKFNU3zhUE9XOjUfWFQ09HMIfa0rU6bQFMtdLAMV6tostZ+s5kRlwySH6uokl5k4YEHHgDgnXfeYfXq1RGuyKdFh8r8/Hz+/Oc/YxgG5iwH+lFHpEsSjVxytyQS2sexa0VqpEsRdaka/4v7A6Wma5VHK/1hsexDFUNjsDamyqEx2GPhC5ME0lwc3HQYgC5DOka4EtEUPD/5LS655BKUUjz11FMcPx75QzhabKhUSvHss89y7NgxTB4L+k5ZmCOqNnTSALYu3IXX3XjuYRG1FGpksuz7FUJkuWAZJCwG2pUJlkHbVPjaSqEz2GhlVfWKJksp2PTDDoZO6h/pUkQT8cMjq+jTpw+5ubn8+c9/jvj9lS02VH777bcsWbLk5H2U3hb7rRDVpOkaQ37Tj03zZV/KZqOqeyjDTHsHHbEM1k0V09z+PkIG07LBsrYLgESjt2n+Dgac0xuLTXb8E1XTlMb+D7OIiopiy5YtfPRRZPc6bZFJav/+/bz00ksA6Pui5UxvUS3dT+uMq8jF4R2Rn2IQdaA6U95mS9j7KDVdQ7fbaleHrqE7wt96o+kamqUa93tLsGzyso/kkr7vBH3H9ox0KaKJ0JymwNGNb7/9Njt37oxYLS0uVHo8Hp5++mncbjfmPDumI7J9g6ieoRf0Y9MPOyJdhqgL1QyUvndCv0xqNlv4vnQN3VGN0KlpaNYwodE/mlnVqGdpX6Jp2zhfpsDFqXn+orcYP348Xq+Xp556ipKSkojU0eJC5WeffcaOHTvQlQk9Re6jFNVjspjoO7YnW3+K3G+Aoo6cSqAM18Z2MixqliBTlbqGXraNPUho1LWT2wtVFSxPoTYJlk3bjiV76DasI/aYWo6CixZDQ2PlM9tp1aoVBw8e5D//+U9E6mhRofLAgQP897//BUDfHY3mkv0oRfX0OL0z2UdyyT6aF+lSRG3UNFBWXKhjq/CfvaaVD5YVAqWviYZWdqq8bKAs20/FYBlkpFSCZfNWnFfCwc1H6Du2R6RLEU2I5tHJW+JbqPPll1+ybdu2Bq+hxYRKr9fL3//+d9xuN6ZcG3q6PdIliSZkwPjebF+8O9JliNqo7Qilfwq6YqAs079mMQcNlCeblAbLYIGybD/+YBlu6l2CZbO2ffFuBozvFekyRBOj59i44IILAicFejwNe5RwiwmV3333Hdu2bUNXOqadsTLtLapNN+n0G9eT7Yv3RLoUUVNVhStNr3LqWTPp6LGx4duYzZiSEqtuk5gQvh6TCT0mOnwbvXrT5RIsm6aUZXvpcXoXbFFyIIc4NYueXE98fDz79u1j9uzZDXrtFhEqc3NzefPNNwHQ9sm0tzg13U/rRF5GgRzL2FRVJ1BazGiaBiFWemsmHS06KmyQ00wmtNgYMJl8bYPxf85sRo8LEVB1Hc1q8QXL6BCrwnXNN+pZzfswJVg2PYU5xRzafow+Y7pHuhTRxGgenRkzZgDwv//9j8OHDzfYteskVObn50d0CXtV3nzzTfLy8jAVWzDJqTniFPU5qwcpy/ZGugxRE6cSKCFosAwESr8gwTIQKP3XCxYsTSa0KEe5jysFS3+gLNumYrAsDZQnn6IEy+YqZdle+pwl91WKU/f8RW9x2mmn4XK5ePnllxvsurUOlUuWLGH69Ok89thjAOzZs4eHHnqo1oXVlZSUFObMmQOAvltWe4tT13t0N/as2h/pMkQ90WoStoKNaFbsRw/y8lqTa1Vjg3XRPO1ZtZ+eI7uEP3NeiCA0NLa8eQCTycSKFStYt25dg1y31q9W7733Hm+88Qaxpfca9erVi/T09FoXVheUUrz00ksopdAz7Oh5cm+KODVJnRJwxNk5tP1YpEsRp6qao5SVv+zkaGWlUcqy7UpHBwOjlEGuX/Zry41S+pUdraw4SumnaydHKyuMUpatWUYrm5/MtBxKCpx07N8u0qWIJkgvNnP55ZcD8OqrrzbIEY61DpUWiyUQKP1q9Jt/PVi+fDlbt25FUzrm1CAv+kJUofcZ3di75gDKUJEuRZyKU5z2rvzlvpXcIe+NBF/Ac9jLT3tXVDZwhmmjx8UGD5Rl28REh31tlWDZPO35dT+9z+ga6TJEEzXnoaXExMSwZ88e5s+fX+/Xq3WobN++PWvWrAGgsLCQt99+m169Ir8NgtfrDSzO0Q/ZZXGOqJHeZ3Rj98r9kS5DnIpqBErdagn/y68/DIba9gd8n0tOQsWECZ5mE9624VeDY9JRiXHQKkw7TUOzWdGqWn0uwbLZ2f3rfnqN7hbpMkQTpXl0br75ZsC3vqS4uLher1frUDlr1iwWLFhARkYG1157LUePHg2cQRlJCxcuJDU1Fc3QMR2qYmsOIYIwW010HdqRPasPRLoUUV3VDJRhmUxopaOCmqYFD5ZmM7RK8N03aTahgq3SNpvwtooN1GQkxQW5lu77Wk0Dizl4sNRO7mmpmXQJli3M/g2HaNOjNVHxsreyqJn/3vA57du3Jysri2+++aZer1XrUBkbG8uf/vQnvv32W+bMmcOf/vSnStPhDc3tdvPWW28BoB+MQvPKje7i1HXs346cY3kUZhdFuhRRHXUcKE92WyFY+gNl2etVDJYVAiWAspgwWpUJlmUDpV/FYKlV3iRdgmXL4nZ6OLLjGF2GdIx0KaKJ0pQWGK385JNP6vVc8DBzO+G9//77YT9/00031bTrWvvxxx85evQouseE6UiYqSkhwug6rCP7Nzbc/l6iFuoiUOp6pUB5snsN5Q93FQOlX2mw1JyuSoHSzx8s9ZyCyoHSzx8ss3JCnrqjmXSIjUXl54d8OpqmgdWKcrlCtiltCEruGW7M9m88TLdhnWRrM1Fj/7z0f7S7sh3Hjh3j22+/5ZprrqmX69R4CM/j8eDxeDhw4ADz5s0jNzeX3Nxc5s2bx9GjR+uyxlNiGAYff/wxAFqaA82Q38RFzXQb1okDGw9FugxRlboaoYyNCb8QJtgIZQXKYaWoX9uwbQyHpco2WMyQlBC2ZBmxbDkObDxE12EyUilqTlNaYLDvo48+wul01st1ahwqb7vtNm677TYyMjL473//y913383dd9/Nm2++SUZGRl3WeEpWrlzJgQMHfPdSHpONzkXNmMw6nQa254CMVDZu1VzlrcKNxJlM6LExaMH2lfSzWPC2T8IIc2Sespgo6hSDqmJNoNI0vHad4s5B7rEs08aIj8Jo1ypsX5rZVGWw9LWrxjnhotFK23aU5G5J2GNCnDsvRDW8ePm7tG3blqysLL7//vt6uUatbzbMzMzE4TgZ3ux2O8eORW5PP/8opX7YLvdSihpr37ct+ScKyM8sjHQpoqYq7EMZNFiWBspAOA06HW3B2y4RZdZRuobhqBzQAoHSDIZZoyQ5+C+0yqzjbG0DDbw2LWiwVJqGEWVBmTQMqyl0sPSfAhQmWAaes65VHSxltLLRcpd4OLorgy5DOkS6FNGEaUrj2muvBeDzzz/HMIw6v0atU9fo0aO5//77+eabb/jmm2+YNWsWo0eProvaTtm2bdvYvHkzmtIwHZV7KUXNdRrYjrStkbuNQ1RDuBAUYmPzcsGyYqAM1q8/UJpKH9O1oMFSaRrKfzkNDGvlYKnMOiXJ9pMjmRqoCq/A/kAZOLFHDxEsK9QcLFhWCtESLJu0tK1H6DRANkEXtfP6tR8RHR3NwYMHA9tB1qVah8p77rmHq6++mrS0NA4ePMjVV1/N3XffXRe1nbKvv/4aAC3dJvtSilrp2K8tR1KOR7oMEUoNAqWfUip0oCzbf8VA6VchWCqLieKOFbYtCxIsywXKUobl5GhlpUBZ5nrlgmWoDdvLBMuQ0/0SLJusIynH6SAn64ha0rw6kydPBnyjlXWtxqu/yxo3bhzjxo2ri65qLC8vj0WLFgHIKKWotQ792vLr5xsjXYYIporQEy5QQumxilFR4fuxWvC0D7MZua6hAE+8HWeS7eQoZbkL+YJlcTvf65EyARVnm0qnwYu6xGHLLAl+pnjp9Qy7GdUpGdPhE6Gfm9kE0VGogjC3bZQGS+Vxh24jK8IbncM7jjN55rmRLkM0A988/DPaKI1Vq1Zx5MgROnSou9sqah0qQ210/uKLL9a261Myf/58XC4XWqEZraBOsrJooewxNuLbxnJ8T+QWnIma0UwmMFTIcKaZTGjR0aHDW6ChbzQSQAtxRKfhMJPb3Q4K7LnBz9T1WjXyuoZ/PVImjcJ2JpyJ0cTtC70nqtK1qusG0H1HOhrhgqUy0EwmVAOcBSzqRvaRXDRNI7F9HNlH8yJdjmjCNKeZESNGsHbtWr7//numTp1aZ33XOn1NmzYt8L7L5WLp0qXlFu40BKUUc+fOBcB01IGGTN+ImuvQtw3pqZl4XPIfbqOkVNBRRs1UOresDDD0SgGsYqBUhhF8xbfVgqddwsnL6VqlYGnYTOR2t2OYAQUl8aZKwdJr0cjvYkIrfZXN62wm5kD50UGla5Qk6Cgd3A6NvB5RQYOlP+Aqs463Y+uQo5XKMEqfX5hgWSZIhgyWMkrZKPmnwCVUitra+MFu6Afff/89t956KyZT3dwyWOt7KgcPHhx4GzFiBDNnzmTHjh11UVu17du3j9TUVFAaeoYcZSVqp33fNhzdmR7pMkQ4FUKPVvEFURm+Ecsynw82Qqkqrn4snfZWYUYEywVK8E1zm33B0s8fKI0yv7Ybdl+wDFy7TKD09+MPluEYVhPeDpVXhJd7LroWGLEsJ0iArPy9k0DZWB3ZeZwOfdtEugzRDOiZNmJiYkhPT2fdunV112+d9VRqz549pKc37H/IP/74IwB6plW2ERK1ltytFen7MiNdhqhKafipFIoCn/cFy6qmvANhLEyg9D9WKVD6lQmWwQIlgNLA6/AFy0qBskw/FYNlsHoMm7lcsKwUjqFysAwz1X1ylFcCZWOWnppJcrekSJchmgFNaUycOBGAn3/+uc76rfX097nnnhs4hULXddq2bcuMGTNqXVh1GYYR+IbIKKWoC8ndktj0Q8OOtosa0qr4JVLX0KxBVlRXZDJVOULpdZjJ62qrHCgDtYA7RiNrsIY9xO24SgN3LBwbrRO/O0w/pcEydn9xyHoMmxk6tEI/FObe39KpcM1qRRWH7ks0DRmpWSR3C78hvhDVNfepJTAYli1bxoMPPog5xLGwp6LWPfhXXEdKSkoKx44dQ/Nq6Nly2oCoHU3zjVRm7JeRykZPP4V7gFxuCHFUo2Y2401OCLvAx2s3k9PbitJBD7Fo2mvTyO3nhSoG+5QGnjgvOX1NJOwM0UiHkgQdT98oEneGXryDpqHaJqEdzwr+eUOB2+U7uzx8WaUB3ZDRykbsxMEs4tvEYrGbcZd4Il2OaOK0XAuJiYlkZ2ezfv16Ro0aVes+az1XPGvWrEqPPfTQQ7XtttpWrlwJgJZtlXO+Ra3Ft43D6/ZSkBnmP3IReWUCpQqxOhuTCd1m8zfyBcsKNLMZb5tEMPkW42ieytPI/kBpmEv3pwySTf2BUlkUyqIobhf8pAplgpIOXt9WQjFecvoGaaT5Vo2jgSdKI7tv8HssdbfvGspqRrUNMiVaGih9jTW0MAsoA99DTZd9Khsxj8tL9tFckrvKFLioPQ2Ns88+G4AlS5bUSZ+1DpW5ubnlPnY6nQ16T+WKFSsA0LNklFLUXnK3JBmlbOyCjFBWCpb+QBlmOrtsoAw8ViFYlg2UgWtVCJZlA6WvEzDsRqVgqUxQ3NGLMp1sVylY+gNlGZ4ojZw+5YOl7i4/ohgyWJbt2qQHDZaVvncSLBu1jP0yBS7qzry/+sLkr7/+GvrQhFNQ4+nvd999l3feeQfDMDjvvPMA39Y+DoeDq666qtaFVUdGRga7d+8GJaFS1I3WXRM5cTA70mWIUMJMeStDoela6EDpH620WoIGSj/NUOAx8MRYKwXKQFe6hmFRKL1CoAx04g+WEHPcV3NxhzKBskw7X7A0kbCrcqD0c0f7gmXCrqJKgTJQk9UM/qnwsqOUZS9n0sHhCNxfGXKUV6bCG60TB7Jo3TXMxvxCnAItz4rVaiUjI4MDBw7QrVu3WvVX41B5yy23cMstt/DKK69E7FjGtWvXAqAVmNE8supb1F5Cuziyj+RW3VA0vGqOnoUdoVS+0cNQgdLPsJrI6xo8UAa60jW8NioHykC9vmBZ1Km0fcVAWbadVeG1hn8Nc0dp5Hd1EL+7IHRNVjMkJ6EdCn1uvT9YGoVV3OKh6aBkr9bGJvtoHt2GdYx0GaKZ0AyNocOGsXr1alatWlXrUFnrJBapQAmwadMmAPQca8RqEM1LQrs4cmRj4cZLBb9X0U8zm8OfEmM2Q1wMuiv0Igev3UxuTwdKB5Mr9EidxwEFQ0vQo8Mcd2gzGDj4QNia0RRaKyc5g8MsvFC+WjwOjdzeMWHaKTS3By0pzEiWocDrrfI4S5Qh0+CNUM6xPBLaxUW6DNGM+Bfo+AfqaqPGI5XTp0/njTfeCGwppJQq92dd7nsUysaNGwHQcyVUirqR0D6enGMSKhudsuFGGUG3EtL9q7u9XhRBzgA3myExHnQdPF70YjAc5Vfd+ANlYNugEJnS44DCwSWYLKUhN9qNUVhhBY/VYHDPQ8SYXKCgS490UvclV3heClOMB01TaHEucgZDwpYQL8uqdOV4abCsNGKpFHqRb8pbmU1oSYmorAq3chgK5fGAYfi2grOYUe4gYbZseJdzwBuVnKN5JLSXUCnqzn+mfgTDYdu2bRiGgR7spLFqqnGofOONN4DIbSmUnp7OkSNHQIGWH3yrECFOVUJ7GalsdKoxWqZX3C6oYrAsGyj9KgTLSoESAiOEZe91rBQoAd2kygdLf6A0O31JEGgXlYfRQ3FgX+mJKGUCJYAGmIIFS1V+xDRosPQHysAqbq1ysCwTKP3CBsuyJFg2GrnH84hOjMJsNclRsqJOaIVm7HY7BQUFHDhwgO7du9e4r1pPf//tb3+r9Njf//732nZbpZSUFMD3zZBTdERdcMTZMZl1CrKCnJcsIiNUoCwzklYpUPp5vb6wFCxQ+nm86MXu4IHSzzgZ6oIFykAdJuWbCi8bKMt+HkW76Dy69kivFCgDTxd/sCwNef5AWSHPlQ2WlQJloLOTwTJYoDzZTCs/qhvqFgOZCm8UPC4vhdlFxLeNjXQpopnQ0Ojfvz8AW7durVVftU5je/furfTYrl27atttlfzX0ApqvwO8EABxyTHknyiUAZnGoiYjlMG6sdmCB8pSyqThbG0NfVIO+BZCm0IHSr+oGCc3nLaqUqAM1IuiS2wWl52+oVKgDNRLabAc5AkaKAN1a77tjJytHZUDZaAzDWXSwWYLGihPNisNllXcsyoah9z0AuLaSKgUdWfQoEEA7NhRu9PkapzIvvjiCz7//HMyMjK4/vrrA48XFRVxxhln1Kqo6vCHSr1Apr5F3YhOjKIgSzY9bzSUChssNV1DeQ3fauZgTCa0mGjf/YNFJaioyse4KpuZ4k6xoMCea1ASH7wvr0Mjt78HwhywYHe4uLn3KuJNxcSaStiU16lSG5vJw+lx+zFhYOpr8O3OISH7w2qQPVAncWvwa+pesOUaGFadkq4J2A/kVG5U+twx6RAbi8rPD309r7d0xXeIYCm/bTUahdlFRCeE3sxeiFP18Z++hX6wb9++WvVT41B5wQUXMGbMGF555RXuueeewOPR0dHExtb/b1C7d/sOztUKZaRS1I3oRAeF2RIqG5UQwVIzle5XqQyUl8rBsjRQav57AcOM0hkWX/+6WwUNll6HRs5AD1gMMDQ8ThNmW/l72coGSgBbiLMcdRQWzfe1vR3HubTv5krBUgHeEjMoMGK8ZA80kbit/PfAHyg1Q6F0MMJsj0TpangtTLBUHt90u6ZrKCNIsJRA2aj4QmXwk5aEqAl/lkpNTa3VYp0aT3/HxMTQvn17/vrXv9KuXbvAW0MEysLCQjIzfaeeaEUSKkXdiE6MojBHQmWjUyHQBAJl4PMGylsmBJUNlH7+EbuyX+YfpSzDHyz9ygVK8CW+0mDpVzFQAkTpLobGHSrXt9XkYVhs2slraSoQLAM1URoo/SVoCiPWS/bAk9+DsoEy8HVmjZKuCeW/L0Ges2bS0Sq8RvsDZaCNrpVfXS+BstEpzCkmOlFGKkXd0YpNWK1WiouLOXo09D63Van1PZW7d+/mzjvvZNKkSZx33nmBt/p06FDpi7VLl0U6os5EJ0ZRmF1cdUPR8EqDTaVAGfh8abAMFij9X+/xBEKWP1D6RynL8gfLSoEy0BeBYGl3uLix15pygdIv0VxYLlieFptWaQSzbLCsFCj9ygTLYIESQOngtemUdI73PeAPlEH27CwbLCsGykAbf7CUQNkoFWYXEZ0oI5Wi7mhodOrku2UnkLFqoNaJ7IUXXmDmzJl07NiR7777junTpzNt2rTadhuW/wlrxaGPbBPiVEUnyPR3U6eZTJUDpV9psMTrDRkoA011jeJkKgfKQAMw2bxc0m0riebQuwUkmgs5IyEVAGuoKXFN0cORwbgeeysHSj9NYUQZFLfRKgXKkzWD12HC2Sk+ZKAsc1EIFdD9l9Q1WfHdSEmoFPWhffv2AJEdqfR4PPTp0wePx0NUVBTXXnstK1asqG23YR05cgQArURCpag7jjg7JfnBV+2KCKsq3Gg6mtWCUgpVUhK6ndmMERuFNTf0KThem05OTx3NAEtG8IWApigPl/XdTJTJRa439DRkgqmQW+LD74ZhKI1cTxTdHJmMGxiirVfDlm7CY4ecXqFv+dEMhTnfhZEYenNspRQU+75HmrUaB0dIsGx0ivOcOGJtkS5DNDONIlSazb4XuHbt2vHzzz+zZcuWwP2O9SVwP6VLQqWoO1a7BVexK9JliIrKhJqgRzCWBkr/tkHKawQPlhYLRqs4MGnoTg/2E5V/1v5AaZRmLS3I5fyBMtHiG9V2GpagwTLBVMjFURlE675V5xdH767UxlAaWZ4YDDRMmkHPqBOcNWBP5YsqDc2rgQbu6ODBUvcobBklvsU7NhNG68pHNfoDpVLK9/3StJDBstz3WoJlo+IucWNxyM4nom599ex8AI4dO1bjPmodKm+99VYKCgqYMWMG33zzDS+//DL3339/bbsNKysrCwDNJfdTirpjdVhwFYc5x1k0vCBhpnzYKR8oT7apECxLA6Uyn2xXMVhWDJQAulvDcuLkf94VA6VfxWDpD5RR+snO2pljuCT65Ehk2UAZ6F8z6B2dXj5Ylo5SnnzOlYNl2UDpa6NVCpblAmXgC4MHy+DhXYJlY+EqdmGVUCnqmH+gLjs7u4qWodU6lY0ePZqYmBi6du3Kiy++yBtvvFHvI5X+UImESlGHrFESKhuVMCFGle6pGCxQnmxTGiyDBEo/f7AMFij9TMUng6UGlQKlnz9YBguUfu1Lg2WwQBm4nmaQZC29T9OrYTtu9o1SllUmWFYKlIE2J4Nl0EAZ+CaUD5ZBA2WZPkXkuYrdWB3VuHVBiFOguX3/vnNzc2vcR72ksrfffrs+ug3wP2HNI6FS1B2LXUJlk1OdvdRMetBAGaAUHrsWNFAGuijW0AvM5bb/CSZKd3G+42jQQOnXxhTF+dE7gwZKv1aWQkb03R88UPpp4LWCx66HXLyDpoFZR9P14IHSrzRYiqbBFyplpFLUsdJM1ehCZdgXrzpQXFy6fUeoF1shakCmvxuZMK8j/q2FlCv0PbCapqFFR4PXQM8JvkLbsJoo7GhHdyuiD4e+ntemsHfOZ3NOx5Bt4k3FXB2bQpRuwa1Cj/Z58NLeZOWa+HUh2xQZVg7lJ+DpGXrRke6GmEMKw6JR1CnESmCvQs/OB5MJPTrMamHDQLl8f/dDbtsEssVQIyGhUtQHze2LhPnhTt6qQr2EyrJberz66qvcfffd/PnPf8btdvPuu+9yzz33kJKSUuP+S/z3SkmoFHXIZDHh9YSZ+hMNL1yIUQYYKmiw1DQNLTbGN/qmFFqQn6s/UCqThqbAUhg8WHptCnOffGwWD1lFDpZk9K7UJt5UzO/ithNfOkJpYAQNlk7lC24mTaOTyRI0WOZ77Sw91hOXx0R0dAnuPpX3wNTdEJOmMLl99XrsetBgqSkF/o3hzebgwdIfKKs691sCZaPhdXvRTTp6uJOUhDhVpcfQut1ujDCnkIVT4+NoZs2aFfJz/qHTXbt2kZWVxSuvvMJ7773H4sWLycjI4Nlnn+Xtt9+mX79+Nbq2P1RqYc7hFeJUaZqG8sp/nI1OhaMay42kKQMMHeVyBe4JLBco/UpHK42EaKB8oAz0GwiWUNjR97g/UNqt7tJStECwHJ/sW81dMVD6+YIlmPDV61LuciWVDZaf5o4ATgZKp9v30mzSDaKjSyjsA5ZdvoVAFQOlnz9YRh0qvefTP0pZVmmwNApL24QIlJrJVP7eSgmUjcrJH4eGbzd+IepAmb9Kbrcbm+3Ut62qcai8+eabq2yzbds2Ro4cCfgW9MybN4+kpCQeeughZsyYUdNL4/GfAlGzIC1EUJqu1futG6KGSoNl0KnZMsFSt9kqB8rSr9ecbvScQjxt4ijqUD5Q+mkKLEW+YJnXg3KB8mRXJ4Plpe02Bw2UfgYGXhX6loqywfKtrLPKBcpAmzLB0rbNQcyhyoHSLxAsDxRiyso7OUpZlj9Y5heEHaEMBEv5N9HoqNJ7aDVdA5lcEXWlzEBdTk4Obdu2PeUuahwqhw0bVmWbgoICWrduDUB0dDT5+fnMnDmTKVOm1PSywMnpdd2koxkNt1jnzEtH0vu0buz4dTdr5m9ssOuecckI+ozoQcqqPaz+foNct560Tm7NdX+8gi1LdrSI59vkrqtpaKYw/941Dd2io4VYlDN64iB6D+vCtoOZ/Hz4SNh7f5RHw2SCKKsHgi2oURolbis6EKc5wuSuaGzJXzI8oQMqOxaofK+SDsTgRRkm3G5L0Lp0XWG3etHRsHiU70ScUKw6Jg3OOK8/fYZ1ZffmNFb9tLVCh2YwaSjdX0FwCnXKoXL0RafRd2RPdq3bx69zQt83WtdGXTicfqN7tYjrarpGYmIitzxxDSlr9jT759uSr7t7/X5WfrumQa6pygxVBtaunCJN1ePQzNdff43dbmfSpEmkpKTw/fffM3PmzFr3e9555+HxeHjkkUeIj4+vg0qrp1u3biQmJpKZmcnBgwcb/LpZWVkcOHBArivXbRbXzc7OZv/+/c36urquM3ToUAA2bdpU4/uUaqIlfZ8jed2uXbuSlJQk15XrNvnrer1eHn30UQA+++yzhh2prI4BAwYwe/ZsJk2axOrVqxk8eHCd9KuXbiPyz6vfRm/AU3Vm/OtWhp03mF++XMV7T3zW4Ndd/tVq3n18doNd984XbmX4xMGs+HoN7/y/Txr8uiu/XcP/Hm24676193ky07JZ/nXDXvf2f9zMiN8MbfDn67/ur3PW8vafPm6w605/9iZOnzSMVd+t463/+6jqL6g4la3pvmm/sh9bzeW2F9LMZrSyi1LMJqY8fgUjz7Kyavl+3nplIZ4YK0Xtyk9bey0ahZ00DP/CWg1ccQZxPU9uBmyzeBjXdh+xJt+93TqKLrYTXBlzvFLpVi0e3fIZJe72DOtyN0rLKff5XMPFZ3n9Axune5XOcVccq451CbRxuix4dsdicpY+ZwXmYog5VOE+SK8i+lAJuts3Hzr17gmMHmNh7cJdvPW3b0u/VqHyC07e5mEYvsdcFab4g+1VWc3xh2l/v4FRk09j7fyNvPHw+9X6mrow9W/XM/riEQ1+3Sl/vY4zLjm9wa/7VurzZB7MZs0PG/nPg+812HVv+8u1nHnpSNb/uJl/P/Bug193w09beH3WOw123Vv/fC1jLm/4697y5O8467ej2PjzFl67v2Guq3QFo33vx8bG1qiPeg2Vffr0ISkpibvvvps2bdpw3XXX1Um/NpsNl8uFgbdBV4D7w6zXbWAEu1epnvin+70eb4Ne17+ysKGv6+f1NOz32fcfrYbhbdjr+jX0df33ZUXs+Rqq6utqwRYiGCfvrdR0NKsJpTQou8jK60bzFp4MlppCaRrKf11Doec5sRsqECy9Vo2CjmCY1clLKjDlamTvSSC+VzY2i4ex7fYSYyoJNPECB1xJfFFocFXMyePNbJrFV2vpxxbdN7nkKb0JLtdw8Wn+AHING2i+74OuGbSx5TCqvcGvR7tS4rLg2RWDyQneMt8Hrx28HTVi03xfp3kVUYdKwO0N3GquFCh89wkbXlU5UPq+EgwFJnO5VfQq1M+lGsHS/zP1Xbfh/l4ZZfbqbNDrlrlWQ11XN/l+rv41bJF4vpqmNeh1Pa7SX3T0Br6u27eGQzc17HX9O5Hout5g11X6yV8m7XZ7jfqodah8/PHHefDBBwOpNi8vjxdeeIEnnngCgLvuuqu2l6jEf38mpoa9gfzA9kM4Yh2k7Tzc4NeNiosibeeRBr9udHwkrptGTGI0hxr4+6yUQtc033/ADejA9kPEtYolbefRBr3uwZTDxCfHcTClgX++Ow6R0CaOtJQqfr7hTtQxFJrJFP5EHY8HCovQ4mMxEmI4mJpOQmIUhw6cPPHLXOAi6hjkd7FR0LHMCGW5jsCap5NzMIGrz1oVGKEsy0DjgLM1nwNXxRwrDZSVmTQdFGQaxczOGxD0zHCTZtDWmke/VumsXdLv5AhlWRp4HJDfWSduv7fcCKVf2v4TJLWK4cCR3BCBspSug2GgWa0ol6vqE3WqCJZpO4/QuuM+Dlb1861jaSmHad0xqcGvezDlCMnrGvb5mq1mlKFQaGhawx4CkpZymN3r9nFge1rDXnfnEfas30fajkMNfl3f820B1y3NVA6HIzCIdqpqfU/l1KlTeeutt6p8rC5NmTKFPXv2YNmagJ5z6kvehQjmv7v/gcmwsujjX3jviU8jXY6o4oQXzWxBs4f/969pGlpiPN7k0PdeGxYTBV0dZPcN/SJqmBWuth5ikgv5Xc/1IdvZdDeD7YeYFOUsfSQardUXFLvbY80di67lU2CU8E1hR1KdySH7yXZH8U3KUIwca/lzvyvQXdB6iwfHseBHRwJoHgP9WObJbYRCPkkD5XSGD5Ugq8EbgagEBy+u/TOa08ymRVt5+e76+/9WtBxGtBv38CxatWrFV199VaM+av0rjtfrpajo5ItVYWHhyS1/6kl0tG+vOWWWFzdRd5RSaHrDTiWJMKo6UUcZVZ6og8MOLjemzOAnRCizjivRirnEIC41+PUMs8KV7AVdUVIc+vhFHUWsXsJhdyILioKPVBYZLuYVtaXQsJFoDn7KD4BbmfAWm1A2L842wUOe7oKEvQZo4GwVfKpK8xjoJ0qPtQ03nVXmRB3CjXxJoGwULFZzYHpUk+M1RV0x+/7vq+n9lFAHofLiiy/mvvvu48svv+TLL7/k/vvv59JLL61tt2G1atUKAGWVDbpE3SkqKCbrWA5Zx3IiXYrwCxJiyu1V6fWGPFEHh933p1JQ4qwULJVZx5lkw7BooMCW560ULAOBsvTF1lNiZvbe0ypdT0eRZC5A1xRedNLcrUqDZSHeExexYcMGio0cvitKJsfr+6XYonmDBstsdxTzdg08WWeQYOkPlCangdLBsOqVgmUgUJb+kq+Z9ODBssIG6JquBQ+WEigbDbPNRFFRCekHT8jrlagzyup7DfBvBVkTtb6n8qqrrqJr166sWbMGpRR33HEHI0aMqG23YQWesFVGlETd2bJmOwvfWE7quoa9V0hUocyJOkE3Py8NlmVP1AkEyrJ9lDgxZYK3VWz5QBlo4w+WJvK6lz6uEQiUABhQkB3F7L2nBabBywbKQEmBYJnJRIfv6+cWtSbHKH8PpT9YZnt8QTPbHcU3O4fgLSr/0qzK3D9eNlAGPl8mWNoySyoFSj/NpIPdjvIfdRvqRB1dQxn6ycclUDYqZquZ/bv289K170S6FNGM+EOlf+CuJurkDt+RI0cyY8YM7rrrrnoPlADJyb57kZRNRipF3XEWOrFHh57eFBFUVajxB8tggbJsHyVO9NyiyoEy0ObkiKVhVrhaB3mNKRMsgwXKQEmlwfKrAt9Ukn+EsqJAsAwRKAEwGziTvUEDZaD00mDpSrAFDZR+gRHLKs78DmzbJIGy0bHH2HAWhr71Q4iauPzBC4Dahcoaj1S+8MILzJo1K+QZ4C+88EKNi6qKf0NOZZORSlF3ivNKcMRXXo0rmghDBVbwh6TroGnY04sp6hgVvI0CS6GBPcuEq32I1xgDCnMdzDk8iNu6rQx5uSLDxsqc3kytovQCr53vUwcED5T+snSFI0MFDZR+mldhO1aIslvRCsLc265r4PWGDJSicXPE2SnKrdmJJ0KEcviwbweD9u3b17iPGofKiy66CKjeGeB1rXPnzgCoKA+lmyo0eA2i+SnKLcERW7O9uUTDUF5v8ClwSqd2vV5UUTFaVJBfDkwmVJTdd5xjoZOowwQNlkrXcMXqWAoUMbusFPQJMiKkg271kpkbzbsHzuCWrr9WauI0LGzM74zT61u0s6WgM4NjK59clO2J5oM9I3G7zOh2L0ZJkOfn1knYbkYzFM44E7a8yiOoulvhOJSP5vb4wnOUA4oqBw+lFKqgMPA9IcRq7ypXgYuIccTZKc6rvLWVELWRlua79atLly5VtAytxtPfffv2BWDv3r0MGzas3FtqamqNC6qOTp06+aa3zAos8pu2qBvFeSVExUuobJTKjD4GCzuaufT3Y8NAeTyoimHKHyj9e68ZqjRYlt9mR+kazngdwwQYYMv2BctydDDZPWiAMnQycmJ498AZ5Zr4A2Wx9+Qq8GyXg80Fncu18wdK/6pyXVfo9grPz62TsM2MqVihNDAs4IwrHzwDgdLpCXy/lNnkC5Zln58/UHrLrBwOEtLLfY9ldXGjExUvoVLULaUpjh717ZXsH7iriVrfUzlv3rxKj33//fe17TYsm80WGJ5VUfLbtKgbxXklOOIkVDY6QUJN2dATCJR+oYJlxc18DYXmOjlFXC5QBtpUCJZlAmXg60qD5XtlgqUXrVyg9CsXMj3RfLj39ErbFJULlmUCZeB6wYKl4mSg9NM0lOnkc64YKE82Kx8sg45QSrBsVBxxDopyJVSKuqMcXgzDICoqKjL3VC5fvpzly5eTnp7Oc889F3i8qKgIU4jpqbrUvXt3jhw5ghHtRs+VxRWi9oryiomSeyoblypO1dGtwfeD9AdLiorRYmN8o5TBund7iTpcRGHn6MqBMtCXL1iq3VZKhhYFvdlGGTrpOTG8xxn8rvM6tuR3Cnq9Yq+FzQWd6WzP4sO9p1NcFHzzdl1XGBqVAmXgemWCpSPTg+Nw8H040TSIcqAKi4IGypPNNJTJFHbfz+qcpiMaRlS8nfR9mVU3FKKaVIxvn9pevXrVau/TGofKtm3bMnjwYNasWcOgQYMCj0dHR3PaaZX3catr/fr1Y/ny5aiY+t1oXTQ/uq7z8Lt307pjEsf3Z/DC9H8z9orRXP9/vyW6dRQLX1tBxqFMRk0+jev/+Fu+f/tnfvjfokiX3fJU44VNeTyVRyr9/MHS5YaYEItyDIVe5MKWY6U4KczpPAosheBNicLTL/jJNMrQOZ4Vx6t5Z/PCmDPoFdOdE84s/rPnXTp17MRjCQ/w/oHP2Jx7jPm7+4e9E9zrMhGTYkULc2So0gANbCdKKo9S+vlHK53OkIEy0J9bXksbi96n9eDOf96KMhTZx3N45uaXeXr+owBYHVbadGvFUzc8T5f+nZj5n9vRTTrv/L9P2LBwC+26t2HWG3dwMOUwr9wjJ+2I6rnsj+fzxRdfBG5trKkaT3/36tWLCy+8kHfffZcLL7ww8Hb22WcTExNTq6Kqo3///gCoWHe9X0s0L2OvGMXR1OM8eN4THNiRxtgrRnPlzIt57IpnSN23nxseuwqA0Redxsyz/x99R/aKbMEtVbhRsdLNuZWhfMExGF33BU6PBy03xEiermE4LJgK3cQdCDFKp4HXWrpBejaYU4IHVKU0PPkWemld8bja88S25zhUfJTRrU7DZrPx7I6XGZF4Blv2dcSbZ8UTYqW312UiepsNc5FvSt4IMRFjckPcvmI0Q6EcIRoZBmSXnqhjDT2jY8hpOo3KicNZ/HHSX3jg3Mc5svcYZ156Og+e9wQPnvcE37zyPcePppOXns+Uv17HP6a8yh8n/YVbnvwdAOOuPIN/3v4f8rMLiGtV85NRRMuyc+dOgMiFSr+HHnqI/PyTL9h5eXncfffdte22Sv369QN89wEosyzWEdXXvkdb9m7cD8Du9alcNP18DmxPI/twDh7losdg38q3tfM38s9lT7F73d4IVtvCVSPIBA2W/kCpa77jHJ2uysFS1zCirKBpaIbCkueqHCz9gdK/F7oRPFgqpeEtMIPSOK1tB5akprHmQFc25WylT2xPXC4XD/S/j3c3HwJn6Ry7R68ULMsGykDfQYKlP1CaSnzPW5n1ysHSHyj93xtdCxosA4Ey8JzlNJ1Iyz6eg7PY93fR4/bi9Zz8P+7sq84kNz+H3PR8ktoncnjPMYryi8nLzCeuVSzLv1rNzDfuIK5VLHkhjicVoiylKXbt2gWczFY1VetQWVxcXO6cyLi4uHJngdeXuLg4unbtCoARL5vAiuo7uOMww8/z3bJx2sQhgO9+SrfTQ3F+CRab7z/6lXPWcv/YR/n+rZ8jVqugcqAJEnrKBcuygfJkg/LBskygDHQbJliW+7BCsCwbKAHirDYKXE48eVZWHUwi2hxNWloal379BZsOp5fvrEywDBYoA+WXqbNioAy0KRssKwZKvwrBslKgDEYCZcQkd27NaRMG8+t36wBwxNhp07U1HuWmILOw3L1vhblFxCbFcGTvMR6e+CQv3/XfSJUtmhgV68blcpGUlFSrld9QB6FS0zSysrICH2dmZqIa6EXIf++mhEpxKn79bh1ul4fnFj6OPdpGQXYBUXG+BTp56QUnTxIRjYf/NSXM9KwyFMprVA6UJxv4gmVeQaVA6VcuWPpHKYPwB0vL9qhygRIg1+kkxuq7PzPKFcPezNKRSWeIBYweHW+2LWSg9F0QDGvoQBl4imYdZTMHD5R+ugYWS/hA6f8+S6CMmKhYB4+8dw/PTXkNr8d3P+yZl57OxsVbKcgsxPAqlHFyBDMmIZr8rIJIlSuasBteuAyA4cOH12qRDtRBqLzhhhu48847ee2113jttde46667GmxDdH+oVAkSKkX1KaX496x3eWjCk+Rl5vPli3Pp2r8TZosZm9lG+qETkS5RBFOdgKOM8CuYAWUYmMJMC/qDZcwRT6VRynLtvGDNo1ygBNiQfoSzO3UDYHzH7mzZml75iyv25daw5oZ/fpoXYtOcIQMlAF6FnpkX/mKG8h1pWdUvT+HurxT1Std1HvngXj546jMO7z4aePzsq85k26oUctN94THrWA4de7UjKtZBbFKMTHeLGtmwYQPgC5W1VePV337nnXcePXr0YP369SileOaZZwLT0vXNn6pVlBdl9aK56n8rI9H0JbZN4E8f34/X42X9wi1s/SWFL1+cy/OLnySmdRRf/6fy3quikVBGyLDjD0nKa0CJE81uq9gASleKq+ISTCfA2zouSEcayqxjyXMTvx9yuwXZtkiBya3ADTF7zRT0PBn0tmWmk1FUyGcXX8fxjHw+2rSBy9uPwJZupqhN5dFBzaURu1dHMxS6WwU9k1x3KxL2utCdXgyLCd0dZCW3V2FKz/bdBuB/rhVHKw2FUWYluKZrKCNEmDVkD+BIGX/NmQwc05eoWAc3PHoVc/69gNXz1tOmS2tcbidZh7IBePtPH/Pg23ehm3TefXx2hKsWTZEyGWzduhWgTnbu0VRDzVXXkxkzZrB161bMe2MxHQ2xbYgQ1TTi0sF0G96JL56s3w38xamxOaxMffoGzrh4BEX5xaBg7U+befv/PsYwVOVRN01HM+nc9PjVeD1ePn5+ri9oVdjXUoty4C27QlbTMCy+0NqzV1uS28ezZNsB8rqaGdC5LVeMGcRfPlnoC5T+V04NnAlauWCpeTTOtnflzrNHM/3tL/n3RSO5Y94anHaFs22Zdi6NuN0mzGU3N9cpFyz9gdJUXCYgKgLB8pV3f8/dN76BKSOH6+6eyEf/LP27ayhwlxm1rRAoy7rx0Svxerx89LevSttKoGysLrz/HAoyC1n2/ppIlyKaAW/rEjz9cunatSvvv/9+rfur9fzG7t27ufPOO5k0aRLnnXde4K2hjBs3DgBvkrPBrimar8yD2bTukhjpMkQFM9+4g9ikGH4/eBZ3DH+Ie8b8qXRRlSX4NK4yUF7j5OKdMqOU5ZoVFZ+cCi8TKAF69m7LmDG9sea4iDvgYXva8cqBEnxbDeUoYvb6+tc8GvZjJrSKs9QKzMVgO17aLkigBN/9mrrb91jQQAm+eywtvpkZf6BUbjc3zLqwfLvA8ZWhA2XpUz9JAmWj1rpLIplp2ZEuQzQT59w9EoCzzjqrTvqr9fT3Cy+8wMyZM3nmmWd4+eWX+fbbbzGMhtviZ+zYsbz++uuoeBfKZKB55T4gUXMn0rJo1TlRDg9pRNp1b8OZl57OdZ1uD2yz4i5x8eFfPveNSOoaM/55K/1H98Jqt7Bv80FemP4f3C6PL/zpGpjNnD5xIDfMmozFasLjNnjlkU/YsyUNVVTMOZOHcs2956NpGiXFLh6Z9TG3ThuP3W6hT7/2zJ+3iV3Hsrjh5jHc+c8vALj2vOH8dtxglKE4mJ7Nw298B3vNFHb2oodaA6OgvT2GP18wkfaWGNwuL89+vIgtqUcZ0acTd11+FkdO5NG/axsOZ+Tx50c+xyj20K59Ao88dhnRMTa2bk5j1Bm9uO/Od8g6ksv3qx7los73Mv3JKzGZTbz64x/Jyyrgj797mblpr3JRh7vA5Wbg6F7c+uQ1PHT+UwDc8dxNjLxwGFlHczhxOIuDKYfB8BKbGMM9r06jfY+2WGxmPvzLFyz74tcG+EmL6mjdJZETByRUitpTmuLXX33/thtNqPR4PPTp0wePx0NUVBTXXnstd999N9dff31d1Felzp070717d1JTUzFaOTGlyzF7ouYKMotQhkFscgx56bKSsjHoNrAzR/ce9017l6UUYAAm3n/q88DK1xkv3MJvbh7P3P8uBKVQHi/oGinrUpl1yfMopeg1uDN3/e0aZl7yPJ17t2XKQ5OZdcPrpCuIi3NQXOzinf8uYdCQzrzwzFwAhg7riqnE95vG6P5duGTMAKY++wkFxS7io+2+EcsshT1Tpzg59PN5bNI5rP5lPx8v2cCArm159vaLufyx/wHQt3MbHnt7PkeP5vLy9Es5d1QvFv60jRn3/YYF329m3pwNjB7Ti0suH4FmKEwZuYF+33j8Cy6bMp67zn+60jUrLl4ac+np9D6tO9OHPYwtysprq57m4I5DANz5z1tZ8M4i1i7YRExCNK+s/jsbf95Kfrb8e4g0i91MbKsYsg7nRLoU0QwYiU4KCgpo1aoVAwYMqJM+ax0qzaXTK+3atePnn38mOTmZzMyGPZN04sSJvPnmm3jblEioFLV24kA2yV2TJFQ2ImVv/R5/zRiue+S3xCbF8Odrnmfn2lTGXHI6F98+EavdQnRclG9KXNN987peL6qomMTebXn4lVtp0ykJr8egQ3df8hs+rj/Lv99E9v4MzFF2gq2d1gwFSqF7FLFpbs68qhvfLt9GQenIaW5hCZoXbHkGmgEmlwbdK/eju2FU90488/RcbIZi+4Hj5Bc76dwmAYCUg8c5ejSXuANOdm07TLsOCWiGYvDQzvz18S8BWLViD3l5xZgz8sDpu76maSG3clNFxb7PlZnjHjKuP4s/XYnX46Uor5iVc9YGPjfywuH0GNKVaX+/EQCzxUT7Hm3IXyf/HiKtdZdEctPz8bjkFgVRe+PuOo1FixYxYcIETKa6Wehc61B56623UlBQwIwZM3jhhRcoLi7mvvvuq4vaqs0fKlW8S1aBi1o7tjeDtr2S2bvmYKRLEcD+bWl06NUOR4yd4oISlny6giWfruAfPz+B2WqmbZdW3PTYldx1xv+ReyKfy2ZcQI8hXcvtValcLu7+y9V8//FKFn+9Dke0jc9TnkPT9ZNZyzDQikowZ4AnOdTxdgpLnhtbfvlbfPyBUi89q9tSCPbMCvdKuiH6sBG4H9PkMrDl+feD9P3hcnmJO+DbNsgwDEymyrfzaIZCU8p3pnngQa3y7kdeL4ahUKX3UVrs1nLtA8+o7H2Wmoauazxw7uMU5tb/IRbi1LTrlcyx3RmRLkM0A8pksHz5cgDOP//8Ouu31jcgjh49mpiYGLp27cqLL77IG2+8wRlnnFEXtVVb+/btGTp0qG+z4jYlDXpt0fwc3ZVB+z5tIl2GKHUsNZ0V36zh7penYi0NRpquY7X7VnI7Yu04i13kZRZgc1iZcP3YoBubR8XYyUg9DsCFN44NPL5h2U7OunAoiW3iwDCIs+qYM/IpKnQSFWX1jVKWoSnFuqW7+e3IAcQ4rGheSDasgUDpb2MpVpicJx+LOWJgdhps2JbGxRMGAzCwSxvi7DbSMnLQPWAuMYLuQ7l1UxoTfjMYzVCMGdCe2PggO11oGs5iFzaHJTA6m37wBD2H+rZ4G3vZ6b7vi6azeel2zrnmTHQNouIcnHnJiEA3q+dv5KpZlwQ+7jm0W/AfjGhw7fu04ejuqvc9FaIqRusSXC4XXbp0oU+fPnXWb41HKqtaen7TTTfVtOsamTRpEps2bcLbrhjToSiC/N4uRLUc25XOGVcNi3QZoowX73iDKX+7nv9u+ydFuUWUFDnZuGgb+zYdoLighE1LtvHWln+QnpZJyrp92OyVz7h+58+fM+vVKWSn57H6522Bx9P2HOd/T3/LXz+cgQKKC0p48NrX2LB+P7+7/kxefWsqC+ZtInXfyRGiDWv28eN3rXl35u9wozh0OIv/9/ycctfTlGJo744sfHAq8dFWvn5pCG99spx/vbWQR2ZM4qIJQ3B7PDzx/HdYMjxE2d2VAqzf6y8u4JHHL+fiy4azdWkKWel5FOVX/gX667eW8OLchzhxKJP/u/RZ/vunT3jso3vJOJTFzrWlZ9jrGivmrGfw2H68sekfHD+QwaYl2wN9vHbf28x4cQpvbHoeTdfISMvkTxf9rcFOShOhtevThmXvr450GaIZ6HlxB3bu3MnFF19c61N0yqrxPpX/+9//wn7+tttuq1FBNVVSUsIVV1xBQUEB5m0JmLJtVX+REEFYbGYemX8nz0z+N67iapyNLBpWVS+Amo5mCf/7sm6zoUWH2ddW11EOG97WoabBQfMqNJcHw2GhuJ09eBsPOHJcPP70OfzxnysxgoRG3a2wHytC8xgYjiAbrQM2mxl3kQs9PZeBQztz73PXcfs5f63cUCmM/IKTWymFoNwe30byIRtIgGxsNF3jj9/fycvXv0t+ZmGkyxFNmBHjxj0sC6vVyueff05CQkKd9V3jkcqGDo1VsdvtXHjhhXz22WcY7YskVIoaczs9ZKbl0K5XMge3HIl0OaKiCotOKn/eQLk9IYOlpmmB1dAhg6XXi1ZYjAmCBkvNq9CcbjSvQi9w4ThGpWCpecCW6UT3+sKbLdNNcWL5mvyBUi+d8taL3UGDZY9uycz8w0VgGLjdXl6Y+UGQ5+0LlHi94RfuSKBsklp1SsBV4pZAKWrt/P87g3nz5nHOOefUaaCEOtpS6Pvvv2ffvn24ymxb8dBDD9W261N22WWX+UJlogtl96CV1PrpiRbqSMpxOg5oK6GysaphsCw7zRMyWPpDlVJBg2XZQAm+aW7NWX41ruYBW5bTd+pN6YIhU4kHW6bC2apMaFQEAqXv64xKwVLzGOxevJ0ZP2wsX2fZ518mUJZ9rhWDpQTKpqtj/3YcSTke6TJEE6csXn766SfAl5nqWq0X6jzzzDPs27eP5cuX06NHD/bu3YvVWvl+pobQpUsX3yIhDTydZOWiqLmDW47QeVCHSJchwqkqAJUGS79g9w0plwtVWOa1omKf/mB5wnfqTsVAGejb7cV+3HeqVyBQVtz2RanSYOm7pUJ3K+zHK79O+YOl/31TRm5g66CK/fn/rBgogz1nCZRNW5chHTi45WikyxBN3NUvXYDL5WLQoEEMGjSozvuvdajcs2cP9913H1FRUVx55ZX861//4sCBA3VRW43ceKNvbzWjTTHKKnt5iZo5uPkwXYZIqGz0qhEs/dPBIZv4g2WovkqDpfl4btBACb7RSlO+E/txJ5pSlQNl2b48RqVp70r9eQxM+c7QgTLw9IyQgbJcu6oCpWj0Og/uwMHNhyNdhmjClMng66+/BuD666+v0wU6frUOlf5RSavVSl5eHhaLhePHIzdEP2TIEIYMGQI6eDvKaKWomcyD2egmnaSO8ZEuRVSlimCpvN6qF664XKii4jANFBSXoGflh2yiKYU5r4So1NyQbQB0l4eofTkhAyXg2zMzMyd8oFQKVVAYNlAqpaoXKGWUslFzxNpI6hAv09+iVm575woKCwvp1q0bY8aMqZdr1DpUDhgwgPz8fC677DKmTp3KLbfcwvDhw+uithrzj1Z62xWjzPLbuTh1SkHa1qN0HiyjlU1CVcHSULUOlsrjQZWUoOWGOFlGKbSCIrT8IvRQG4d7FaasArSCYrSiEHvqGgZadh7K7UZ5g79+SaBsWToP7sDR3Rlyko6oMaUrPvvsM8A3SqnrtY5/QdV6JYv/9JyLLrqIESNGUFRURI8ePWpdWG2MHj2a3r17s3v3brydCjHvD70tiBChHNx8hK5DO7Jp/o5IlyKqI9ziHWWgDB08HjRz6Je9wOKdqPLHvSqPJxC+VEkJGqDiY8pdWysshtIQqJW40AGj7CblXoUppwD893l6vGhFJaioMqvGywRK38deFKCVOVlHAmXL02VIRw5ukalvUXO3/O8y3nzzTdq3b8/EiRPr7To1jqpKKZxOZ+DjlJQUMjIyKCwspLg4zDRSA9A0jWnTpgHg7VCEsslvd+LU7Vt7kB6nd4l0GeJUhAtJyqjRiGXZQOm/RrkRywqBMvBYiavciKUpt0yg9NdaGiyByoHSz/AGRiwlULZMPUd2Yd/atEiXIZooZTb46KOPAJg6dSrmML9Y11aNQ+V//vMfZs+eHfj4scce47///S+vvfYaH3wQZA+1BnbGGWf4puF18HQJMV0lRBjHdqdjtVto1Tkh0qWIU1FHwdIoLKocKMtcQ5WUoGXlVg6UZdpoJS5M2aWvP+4g1/QHy4Ki4IHSz/D6psMlULY4UQkOWndN4uAmGakUNXPFvyZQWFhIr1696nWUEmoRKtesWcN1110X+DguLo4XX3yRV199lY0bN9ZFbbWiaRq33347AEabEowoORlFnBqlYN+6g/Qc2TXSpYhTVVWwrO7ineIQ9z2WXkMVFvmCXiiGgcrNC19raZuwC4WM0muFqVkCZfPUY0QX0rYcwe0M//dViGCU1cuXX34JwPTp0+vtXkq/WvVusZzcoPeGG27wdajrlJSEeSFuQAMGDODcc8/17VvZvQCFvJiKU7N3jUyBN1m1WBWulPIFOY8HVeIM3sbl9vXhcqOC3fKjlC8olo5QqmCvi0qhCgtRbo/vmsFGMw2FKi72TYEbKuhJORIom6+eI7uwd03ktukTTdu4Pw7F5XIxdOhQRo8eXe/Xq3GoLCwsLHeCznnnnQeA0+mkoKDxTDf//ve/x2KxoBJdGK2C/+cgRCj71hyk+2md0E31+9udiAwV5Cxuf6AEfH+Gmm42jJN/BguDUP5rg02RG2U2aDeM0EcrhlgFXr6R7HTRHPUc2YW9qw9GugzRBBnxLhYuXIiu69xzzz31si9lRTX+n/LMM8/kueeeK7cop7i4mBdeeIGzzjqrToqrC506dQqMonp65KNM8sIrqi83PZ/c4/l0HdYx0qWImqjOqTtVTYMrVWm0UrnclduUHa30j1JWvFbZ0cqKX+NXNqAaQdpUGK0MjFJWRUYpm5x2vZLRdI3jezMiXYpoYpSmaH+Rb+ebyy+/nD59+jTIdWscKu+44w68Xi9XXHEFU6dOZdq0aVxxxRUYhhG4l7GxuOGGG+jQoQPYDLydw9z/JEQQKcv20n9cz0iXIWrqFKbBy41S+lWYBlcu98lRykAb4+Q0uD9QVhzhNBSU7nVZdtq7Uj/+afCy094VlQZLmfZu3vqd3ZOUX/bJj0+csinvX8HBgwdJSEhg6tSpDXbdGq8rt9ls/L//9/84cuQI+/fvB6Bbt26+8NbI2Gw27rvvPv7whz/g7ViEnm5HL7JU/YVC4AuV1/7tEub9a3GkSxE1FW4PS0qDpaHQTKbgDfwrxgu9ELKNgSpxokqcYfvB5cYItwDIMFCAcjorB9yKNXm9EiibsX7jevLj679EugzRxCibl3fffReAO++8k9jYhturu9Y3inXo0IExY8YwZsyYRhko/c4880zGjRvnW7TTOw+lyQutqJ4jO9NRCjr0bRPpUkRtVGcqPNwZ2qUjmmFXYHs8vhFLV+jjFQ2n0zfaGW5rIP/nwwRGCZTNW2L7OBLaxbF/vexPKapPoRh0exeKi4sZMmQIF1xwQYNev0WtPpg5cyaxsbGoWA/eTjINLqov5Ze99JMp8KavpsGybHgLsWpceTyBkUXlNYIGS6PM6KPyGkGDpXK5y18vSHCUQNn89R3Xk90rU/F6ZB2AqD6jXTHr16/HbrfzyCOP1PsWQhW1qFDZunVr7r//fgC8XQoxomXvSlE9KUv3MOCc3pEuQ9SF2o5YQqVgWTZQBh6rECwNpytom7LBslKgDFaeBMoWYcD4XqQs2xvpMkQTomwezIN8ueb222+nU6dODV5DiwqVABMnTmT8+PG+afA+Mg0uqmf/xsPYYmy075Mc6VJEXTiVYBkqwJUNliHuffQFS3f4Nv4zxcMFytLHJVC2DAnt4mjbszW7VqRGuhTRRCgU/ad1oqSkhOHDh/Pb3/42InW0uFCpaRoPPPAACQkJqGgP3q6NZ09N0XgpQ7F14U4Gn98v0qWIulJXI5bO8PvfVrnHpKF8fYS7f9JQKE/Vo5gSKJuHwef3JWXZXjlFR1Tbze9cyqZNm3A4HPzhD39o8GlvvxYXKgESEhJ4+OGHAfB2KsKbJJuii6ptWZDC4Il90fT630BWNJCqQpjhDRksVenq62AbqJdrV1UwhbD9KEP5wmSVIVgCZXMx+Px+bP5xZ6TLEE2EEefi7bffBuD++++P6KLpFhkqAcaOHcvVV18NgKd3LspW9Qu/aNmO7EzHWeSi2/CGv09F1KNQYcz/uFKVgmEg6Pk+CB08y0xXh23j76fiPZcVA2VVtYomr23P1kTF20ldJ6foiKops0HCBDOGYXDBBRdw4YUXRrSeFhsqwbeBe79+/cCicPfNlfsrRZW2/LiTIb+RKfBmp2IoCxPSygXKkw9WDp5B7n+ssk2QYFllbRIom5UhF/Rj28+7MLzycxXhKRQjZvYiIyODzp07M3PmzEiX1LJDpcVi4YknniAmJgYV55b7K0WVNs3fwYDxvbBFWSNdiqhr4cJZkNHKym1OBsugC2oqjFiGXHTjbxcsvJ5KzaLJMZl1hk0awIa52yNdimgCbn3vclauXInVauXJJ58kKioq0iW17FAJvs3b//jHPwKl91cmBzmLV4hSOcfyOLjlKIPP7xvpUkR9CTPFXOXqa2WEX1CjjKrbUCZwhpvulkDZ7PQd25Oco3kc2yNnfYvwvElO3nzzTQDuvfdeevXqFeGKfFp8qAQYN24cN910E+A7bceIkf0rRWjrvt3CiEsHR7oMUR+qsximtgtmqtuHhMYWZ8Slg1g3Z0ukyxCNnOHwYD3dhVKKyy67jEsvvTTSJQVIqCw1depUxo4dCzq4++egrLJwRwS3a0UqMa2i5djGlqwai3vqvG/RrCV2iKdj/3ZsXbgr0qWIRkyZDNpe5qCoqIihQ4dy7733RrqkciRUltJ1nUcffZTu3buDzfAFS11e3EVlhtdgw9xtjLhMRitbtJosmCnbJlh7CZQt1mmXDGLrTztxFctMmQhOaYqh93bj0KFDtG3blqeeegqLxRLpssqRUFlGVFQUTz/9NPHx8ahYD54+uSjkRV5Utu7bLQw6rw+OWFukSxGRFG5ksjqhs6qQKVoEs9XEaRcPZO03MvUtglMoJv71dNasWYPdbudvf/sbCQkJkS6rEgmVFXTo0CGQ/o3WTjw98iVYikpyj+ezZ/UBRlw2JNKliEirYtV4tb5eAmWLNvSC/qTvzZQFOiIkb5dC5s2bh67rPPHEE/Tu3TvSJQVljnQBjdGwYcN49NFHeeKJJzA6FGN4TFgOx0a6LNHI/PrZRq7582RWfbYBr6eKrV9Ei6WXnsCkm+R3eFGZpsEZ15zGT//5Rf6OiKA8bQrxdikE4IEHHmDMmDERrig0TSn5FTmUL774ghdffBGAK6+8ktNPPz3CFQkhhBCipdi+fTsffPABSiluvfVWpkyZEumSwpJQWYV///vffPTRR6DAuisRU5Y90iWJRmTAub0567oRvDn9k0iXIhop3aTz6MK7+cuEVzC8MqItyrvhH5exc9k+uZ9SVOKNd6KG5uN2u5k8eTJ/+MMf0DQt0mWFJdPfVbj99tvJyspi/vz5uHpnY96RgClbFmcIn+2LdjFx+ll0G96JfWvlrF4RmuE1JFSKctr3SaZ9rzZ88sc58ndDlGPEudCHF+Fyuhk7diwPPvhgow+U0MQW6uzbt48ZM2Zwzz338PDDD1NUVATAwoULufPOO7nvvvs4fvw4ACtXrmTGjBnMnTu3VtfUNI2HH36Y8847D3Tw9M/BSHDW+rmI5sHwKn75cA3jbxkV6VKEEE3M2beMZuWn63GXeCJdimhEjFgX5tElOJ1ORo8ezRNPPIHZ3DTGAJtUqOzSpQuvvfYaL7/8Mv3792fZsmV4PB4+/fRTXnrpJaZNm8Z7770H+ELlK6+8QkpKSq2vazabefTRRxk3bpxvc/QBORjxrlr3K5qHDfO2k9ghnq7DOka6FCFEE9G2Z2u6DevE6i83RboU0YgY0W5sZ7kpLi7mtNNO4y9/+QtWqzXSZVVbkwqVZZN6SUkJXbp04dChQ3Tv3h2LxcLgwYPZt28fAKNGjeKuu+6ib9+6OaPZbDbzxBNP+FZdSbAUZXjdXn75aC3jbxkd6VKEEE3EuJtGserzjTgL5f8R4WPEuLGf7aagoIAhQ4bw9NNPY7M1rdvtmlSoBFizZg1Tp05lw4YNdOzYkfz8fKKiogKf93p9xyuOHTuW119/nYsvvrjOrm2xWHjyyScZNWoUmBTugdl4E2UqXMD6OVtJ7t6KzoPaR7oUIUQj17prIr1GdeXXzzZEuhTRSBhxLixjSsjPz2fgwIE888wzOByOSJd1yppEqJw9ezb33nsvs2fPZuTIkbz11lucc845fPvtt8TGxgburQQwmUz1WovNZuOvf/1rYMTS0z8Hb6uSer2maPw8Li8rPl7LOVPOiHQpQohG7pzbzmD1V5soKZBBCQFGvBPTqGKKiooYPnw4zz//PNHR0f+/vfsOr6LM9wD+nZlTk5wUUkgoCb0mNCEgHSI1IiAC8qzuoiv3Xte6uiq2VXHdInh3r4K4uioqLJYFEQEBhQgr0lEIEOrSkxBCek6fmfvHSU4SSEA8SeaU7+d5zjNzpp1f2jnfvDPvO1qX9bMERKicOXMmXn/9dUydOtW7LDw8HGazGW3atMHp06fhcrmQnZ2NDh06NHk9RqMRf/jDH2o673QrhZxga/LXJf+2+/MDiEtugQ79k7UuhYj8VFKXBHTon4zvl+/VuhTyA3KMA8JNVtjtdgwcOBCvvvpqnbOvgSYwuhNV2bNnD5YvXw5RFBEdHY2nn34aOp0O06dPx8MPPwyDwYBnnnmmWWrR6XR4/vnnYTKZsG7dOri7lEEfJkE5HTgX1FLjcjtlZL23Hbf8zxC8M+cs77xHRFe55X+G4Lulu9lKSZDjbVB7VMLplDFs2DC88MILAdUppz4BFSoHDx5c7+2JMjIykJGR0ez1SJKEJ598EmazGStWrICtTTEkNQzSmQgI8P/xpKjx7V+fg8Ez+6Hn6C44uOmY1uUQkR/p0D8ZccktsHzuaq1LIQ2pUCG3sUJuVwHIwJgxY7yNZIEuIE5/+zNRFPHwww/j17/+NQBAbmuFu0sZVIHNVKFIVVR88/dtGD1nMCQd/7yIyEMQgDH3D0XWe9vhdspal0MaUaHC3aHcEygBzJo1C88++2xQBEqAobJRCIKAX/3qV3j66achSRKUBDtcPYuhSrxDQig69v0plBdWov+UXlqXQkR+Im1MN0h6CfvX52hdCmlEFVUMfLorlFY2CIKAhx56CPfffz9EMXiiWPB8JX5gwoQJ3mEA1GgXXL2KoBr5H2ko2vDGFoyYPRDh0YE3JAQRNS6DWY8x9w/Fhje2QFV4FisUqXoZnefE49///jf0ej1efPFFTJ8+XeuyGh1DZSNLT0/HwoULERsbCzVchrN3ERQLB7cNNblHC5Cz5QQy/nuI1qUQkcaG/2ogzh/Kx8ndZ7UuhTSghLsQPUnEoUOHEBERgddeew2jRo3SuqwmwVDZBDp37oy33noLnTp1AgwKXGnFkFtyyKFQs+md79FtWEe07t5S61KISCOxbWPQf3IaNizcqnUppAE51g7pZisKCgrQtm1b/P3vf0efPn20LqvJMFQ2kZYtW2LRokUYMWKEZyzLzmVwty+HCp76CBXWEhuy3t2OiY+OgsDBAIhC0oRHRmD7J/tQkl+mdSnUjFSocLetgLt7Kex2O9LT0/HWW2+hbdu2WpfWpBgqm5DZbMZLL72Ee++9FwAgt7bC1bMEqo4deELF3tXZkPQS+t6aqnUpRNTMug3riNi2Mdj2zz1al0LNSJUU3Pxsd8gplQCA6dOn489//jMsFovGlTU9hsomJooiZs+ejZdffhkmkwlqjBPOPpehRLi0Lo2agSKrWPPaZtzy30MQERu4d0kgohtjijBi4m9HYd1fsziEUAhRwlxImG7Eli1boNPp8OSTT+Khhx4KmiGDroehspmMGDECixcvRuvWrQGTAlevIshJVp4ODwHnD+XhwMYjmPhocF6YTURXG3P/UJz+4TyO7zitdSnUTOR4G8SbK3H+/HkkJCRg4cKFuPXWW7Uuq1kxVDajjh074p133qm5zrJjOdSeFRzPMgRsfud7tOraEt2Hd9S6FCJqYu36tEG3YR2x/o0tWpdCzUAVVLg6lsHdtQwOhwMDBgzAP/7xD/To0UPr0podQ2Uzi4iIwLx58/Dggw9CkiS4Yqxw9S6CEsbT4cHMaXPhywWbMPGx0TBFGLUuh4iaiM4gYdKTGVj/xhZYSzjqR7BTTG60vzcGSpJnQPPZs2fj1VdfRXR0tNalaYKhUgOCIGDGjBl4/fXXER8fDzVMhqtPEdw8HR7UTu46g5O7zmDcg8O1LoWImsio+27G5fMlyP76qNalUBNSoUJOsEE3zIqjR48iMjISr776Ku69915IkqR1eZphqNRQWloa3n33Xdx8882ACMgdy+HuUQJVz4u6g9X617eg44BkdBvG0+BEwaZdnzboO6En1szfpHUp1IRUScGQ53vC3aUMNpsNffv2xfvvv4+BAwdqXZrmGCo1Fh0djT//+c949NFHYTAYoLRwwtm3CHKMQ+vSqAnYKxz4/I8bMemJDPYGJwoipggjpj43Fmv/dzPKLlVoXQ41EcXiRMwUEVlZWZAkCf/1X/+F//3f/0V8fLzWpfkFhko/IAgCbr/9drzzzjvo0KEDYFDg7lkCV4cyqCJPhwebU3vP4cDGI5g8d6zWpRBRI5n425E4/cN5HMo6rnUp1ARUQYU7pRxy31JcvHgRrVu3xqJFi3DXXXeF9OnuKzFU+pH27dvj73//O+644w4AgNLKBmffy1Aiee/wYLPp7W2IjI/AgKm9tC6FiHyUmtEFyWmtse5v32pdCjUBJdyF1neFQ25rhaIoGDduHN59992Q7N19PQyVfsZoNOLhhx/GggULkJCQAJhluNKKPbd4ZKtl0HA7Zax8eT1GzxmMxE48bUIUqGJaRWHib0fh81c2wFHJBoBgogoq3MkVUPqX4tSpU4iJicErr7yCZ599FmFhvHypPgyVfio9PR1LlixBZmYmIFTd4pGtlkHl4slCfPPWNkyfNxHGcIPW5RDRDdIZJMx4ORPbP9mHM/svaF0ONSIl3IXkX0VCTq6ELMsYPXo0PvjgAwwbNkzr0vwaQ6Ufi4iIwFNPPYVXX33VM/RQdatlhzIOmB4k9q7OxoWcfNz21C1al0JEN2jcQyNQUWTFd0t3a10KNRJV9Fw7qfQvxYkTJxAVFYWXXnoJL774YsiOPXkjGCoDwKBBg7BkyRJMnDjR02rZygZnv8uQY+1al0aNYM2CzUhoH4f0ab21LoWIfqK0W7qiy83t8fkf1kPllUlBQYl2IO4OHeS2VsiyjBEjRuCDDz7AqFG8xe5PxVAZICwWC+bOnYvXXnvNc/9wowJ391LIaWVQDRzXMpA5bS58+vwajPr1zWjTI1HrcojoOuLbtcDEx0bhXy+ug7WU/9wHOlWnwNWlFK7UEuTm5iI+Ph5//OMf8fLLL6NFixZalxdQGCoDzIABA7BkyRLcfffdkCQJ7igbnDddhrsV78YTyC6dLsLa17Iw85VbYYkL17ocImqA2WLErD/dhqx3t+PcwTytyyEfqFAht7TBNNYBJcEOQRAwbdo0fPTRRxg6dKjW5QUkhsoAZDQaMWfOHLz33ntITU0FJBVyh3K4+hSxI08AO7jpKH786jDu/OMk6Awc94zI34iSgOnzMnFq3znsWrFf63LIB0qECx3nxMLduQxlZWXo1KkTFi9ejEceeYQ9u33AUBnA2rdvj4ULF+Lxxx+HxWKBGuGGq1cxXF1KeUo8QG1+53tUXK7E5LljtC6FiK4w7sHhkPQS1v01S+tS6GdSdQpcncrg7luMnJwchIWF4Te/+Q3efvttjjvZCBgqA5woipg8eTKWLVuG2267DYIgQEmwe06Jt6mEKvCUeCBRVWDlyxvQsmMcht41QOtyiKhKv1t7ouuQjvj0uTWQ3Rx9I9CoUCEnWWG4xQYl0QZVVTFu3DgsXboUd955J3Q6ndYlBgWGyiARHR2N3/3ud3jnnXeQlpbmOSXersLTS7yFnddbBhCH1YnlT3+Jm2f0Rc9RnbUuhyjkdRyQjDH3D8Pyp1ejssSmdTl0g5RoB1rfHQ53x3JUVFSgc+fOWLRoEZ599lnExcVpXV5QYagMMl26dMHChQvx3HPPITY2FjDLcPcohSutGEqES+vy6Ccqzi3F8rmrcesTGUjp01rrcohCVmLneNzx4kSseOkrXDxZqHU5dAOUMBd6/TYZrtQSnDp1ChaLBY899hjefvttT+MLNTpBVTnCVrCyWq1YtmwZPv30UzgcDgCAeMkI3ekICA429QeCrkM6YPLcMXj/oc9w6XSR1uXQzyBKIn7/7cOYN/J1KDJPmwaS6MRI/HrxDGx6+3v8+NVhrcuhn0g1yHAnV0BNckBVVeh0Otx+++345S9/icjISK3LC2psqQxiYWFhmDNnDpYtW4YJEyZ4rreMd3iut2xfDlXHDzh/d3Tbf7D5H9/jrgVTONQQUTMyW4z4xfwp2P35AQbKAKFKCtzJFRCHV0BJtENVVYwaNQofffQRHnzwQQbKZsCWyhBy4sQJLF68GLt3V91SzC1AuhAGKTcMgsz/L/zZ6DmD0XVIByx5+F+wlXGw5UDClsrAYzDrcfdrU3HxP5exZsEmrcuh61BFTyeciD4SSktLAQA9e/bEAw884Bl2j5oNQ2UI2rVrFxYvXoyTJ08CAAS3COPFSBgLLbCXc5xLf5X5+Gi07tYSHzy6Ao5K/pwCBUNlYNEZJPzi1SmoLLFh5ctfQZH5EemvVEGF0tKG6EFGFBZ6rndNTk7GfffdhxEjRkAQBI0rDD0MlSFKURRkZWXhvffew7lz5wAA0VHRqNgrQ7xohqDyj9HfCAIw+emxaNEmGksf/xxOGzteBQKGysAh6SXc+cqtkN0KPn1+LX9efkqFCiXejviR4cjL89zVKDExEbNnz8bYsWM5PJCGGCpDnNvtxsaNG7FkyRLk5+d7FtpF6M6FQyxguPQ3oiRg2u8nwBxlwj+f/AJuJwe593cMlYFBlATc8eJEGMIM+Pjp1fzb8kOq4AmTSRlR3saQFi1a4O6778akSZNgMBg0rpAYKgkA4HQ6sWbNGnz44YcoKqrqZewQoTsf7mm5VBgu/YWkEzHjD7dCEAV8+twafvj5OYZK/ydKAqY8Mw6RCRFY9rtVcDncWpdEtaiCCiXBhvjhEd6WycjISMyaNQu33347zGazxhVSNYZKqsNut2P16tVYvnw5Ll++7FnoFD0devLMEBR26PEHOoOEmX+4FaIk4uNnvuSHoB9jqPRvoiRi2u/HIyI2HP988gs4rLxe2V+ooueayZhBJly6dAkAEBMTg5kzZ2LKlCm8R7cfYqikejkcDnz11VdYtmwZLl686Fnoquotnsfe4v5A0ku444UJMEea8M+nvuA1ln6KodJ/6QwSpr80EXqzHsvnrobLzn/O/IEqKpCTbIi6yeA9cxYXF4dZs2Zh0qRJMJlMGldIDWGopGtyuVzYuHEjli5digsXLngWygKkfLNnKCKHpG2BIU6UREx9bhyiEyOx7IlVsFc4tC6JrsBQ6Z/0Rh1m/nESFFnhZSR+QtXLkFtZEdZDQnl5OQBPB5xf/OIXGD9+PIxGo8YV0vUwVNJP4na7sXnzZixfvtw7FBFUQCw0QroQDrFCr22BIUwQBdz21C1o2TEOy574ApXFVq1LoloYKv2PMdyAWX+6DbZyO/714leQXQyUWlLC3JBbV0Js7Ybb7Wktbt26Ne666y6MGzeOvbkDCEMl3RBVVbF79258/PHH2LNnj3e5UKL3hMtiAwSwU09zEwRg7IPD0XVwByz93ecoulCqdUlUhaHSv1jiwnHXginIO3YJq//yDX8mGlGhQo1ywt3GCjWm5jrWtLQ0zJw5E0OGDIEk8UxYoGH8pxsiCALS09ORnp6OEydO4JNPPsE333wDOdoFd3QJhEoJUl4YxAITO/U0I1UFNryxFeWXKnDvohn451NfIPdogdZlEfmVuJQY3LVgKg5sPILN73yvdTkhSRVUKHF2tMtMwIkTJwAAoihi+PDhmDlzJnr27KlxheQLtlSSzwoKCrBixQqsXr0alZWVAABBFmC4HAFDoQXOIp5aak5pY7pi4qOjsOKlr3Bi1xmtywl5bKn0D21Tk3DnnyZhy/s7sWvlfq3LCTmqUYacaIUlzYCSkhIAgMlkQmZmJqZPn45WrVppWyA1CoZKajQVFRVYt24dVq1ahfPnz3uXiyVG6PLCIJYYeWq8mbS/qS3ueGECNr3zPfZ9eVDrckKaKIl4btOD+EPGQoZKjfQY1RmZj43CmgWbkLPlpNblhAwVKpQoJ9yJlUCcC4ri+f2Pj4/HlClTMHnyZERGRmpcJTUmhkpqdIqiYM+ePVi5ciW2b9+O6l+xmJgYDBo0CDfddBPCw8M1rpKIiJqC3W7H3r17sWPHDu89uQGgX79+mDp1KoYMGcLON0GKoZKaVG5uLlatWoW1a9d6h4iAAkiXTZAKwiCWsWNPUwqLNmP6SxPhdrmx4sX1HHJIA2yp1IbepMPkp8cgJikKnz63BqUFFVqXFNRUqFAjXHAnWKFPUWG32wEAYWFhGD9+PKZMmYJ27dppWyQ1OYZKahZ2ux2bNm3CypUrcfz48ZoVNgnSRTOkAhMEJ3v6NQVJJyLz8dFI6d0ay+euRuHZYq1LCim8prL5RSVYMOvPt6HoQgk+f2UDBzVvQqpOgZxgQ3JGPE6dOuVd3r59e0ydOhVjx47lnW9CCEMlNStVVXH06FGsWbMG33zzDazWqjEVVUAsMkC8aIZYxGsvm8LAO/pg5D2D8OX8TTj87fHr70CNgqGyeXVKT8HU58Zh9+cHsGXJDvATrvGpUKFGOyEn2iAmyt6xJY1GI0aOHInMzEz07t0bgsD38VDDUEmasdls+Pbbb7F27VocOHCgZoVThHTRBPGSGaKV1900puRerTD9pYk4lHUcX7/5b8huhpymxlDZPARRwMh7BqL/lF74/A8bcWLnaa1LCjqq0Q25pR2x/cNRUFAzZFnXrl1x6623IiMjAxERERpWSFpjqCS/cObMGaxduxbr16/3DjcBAEKFDmKBCdIlEwQXT483hvCYMEx7YTwMJj0++/06lBaUa11SUGOobHrh0WZMe2ECDGEGfPb7tSi9yN/pxqLqFChxdsgJdqiRLu9yi8WCsWPHIjMzE506ddKwQvInDJXkV1wuF7Zt24YNGzZgx44dkOWqMS5VQCgxQCowQbxs5MDqPvK06gxC/ylp+OJPX+PY96euvxP9LAyVTatdnza4/ffjkbPlODYuYut7Y1BFFUoLB5QEG4R42fs+LIoi+vXrh8zMTAwdOpT34qarMFSS3yopKcG3336LDRs24NChQzUrZAH6UjMMxRHQlZvYo9kHHdNTMOWZsTjy75PYuHArXA52aGhsDJVNQ9KJGHXfYPTL7Ik1r23mdcI+qr5topxgh6m9WHO9O4AuXbpgzJgxyMjIQFxcnIZVkr9jqKSAcOHCBXz99dfYuHFjnYHVw8PCYTsle06PlxogqLww/EaFRZtx25O3IC45BivmrUfeMd7esTExVDa+uJQYTPv9BNjK7Fj1x40ou8Thgn4OT5B0QY61IzrVjKKiIu+6xMREjBkzBmPGjOFQQPSTMVRSQFFVFTk5Odi4cSOysrJQXFxreByXALHICLHQBLGEAfNG9bu1J8b8Zhi+X74X2/65B4rMt4bGwFDZeAQBGDC1N0bfNxhbPtiJHZ/uY+/uG+RtkYxzIKqHqc57qMViwejRozFmzBikpqZCFHmZEd0YhkoKWLIs48CBA8jKysLWrVvr/JcNtwDxMgPmjWrRJhpTnxkLSS/hiz9/jYsnC6+/E10TQ2XjiG0bjduevAXGcCM+f2UDfzdvgCrUBElLVwNKS0u96ywWC4YNG4aRI0fipptugl6v17BSCnQMlRQUZFlGdnY2Nm/eXH/ALDZ4WjGLjRDc/O/7WgRRQPrU3hj560HYtWI/tn64C7JL1rqsgMVQ6RtREnDzzH4Ydlc6ti3fg23/3Mvv40+gSgqUaCeUWAciOhlQVlbmXRcVFeUNkv369eMtE6nRMFRSg3744Qd88MEHkGUZM2bMwLBhw7Bp0yb861//gsFgwDPPPIOWLVti+/bt+Oijj5CZmYnMzEyty/YGzKysLGzZsqVuwFQBoVQPscgI6bIRgoNvpg2JTorEpCcyEBkfgdV/+QbnDuZpXVJAYqj8+Vp2jMPkuWMguxWs/svXuHS66Po7hTDVKENp4YDcwgFdggqXq2YIoOjoaAwfPhwjR45Enz59/CpIBupnDV3Nf36ryK84HA588sknmD9/vvd0iNvtxqeffoqFCxfiyJEj+PDDD/HEE09g+/btWLhwIf7617/6xR+6JEno06cP+vTpg0ceeQRHjhzBtm3b8N133+HUqVNQo12Qo12QO1RAqJQ8LZhFRgjlet7Jp5aSvDJ89Njn6DuxB2b96TYc3fYffPPWd6gssWldGgU5U4QRo349CL3GdceW93di54ofoSps/7iS537bbs/wPy0cUCNqRm9wuYDWrVtj6NChGDJkCFJTU/0qSFYL5M8aupr//YaRXzh48CCMRiPmzp0Lk8mExx57DOXl5Wjfvj30ej3S0tLw5ptvAgDS09PxwAMP+OUfuSiK6NGjB3r06IE5c+YgNzfXGzD3798PJVyGHG6F3Nbq6ehTYoBYbIRYbOBg61V+WHcYR777DzL+awgeWPpLfPveDuz54gA78lCjEwSg94QeuOW/h+A/e87hzbs/QvnlSq3L8iuqToES7YAS40RMj3BcvlzTeiuKIlJTUzFkyBAMHjwYycnJfn+rxGD5rCEPhkqqV3FxMfLy8rBo0SLs3bsX77//PsaNG4ewsDDvNtUD4g4dOhRDhw7VqtQb0qpVK0yfPh3Tp09HeXk5duzYgW3btmHnzp2orKyEEu+AEu8Z91Ko0HmuxSwxQijTh3RnH1uZHWsWbMK+L7Mx8bHR6HdrKtb9LQtnD+RqXRoFiaQuCZj421EwmPX47IV1OPPjBa1L8gsqVKiRLs/1kTEOIFJG9VVrly/bYTabkZ6ejsGDB+Pmm29GdHS0tgXfoGD9rAlVDJVUxyeffIJt27ahf//+SEtLg16vR79+/bB06VJYLJY6A+JKUmC35FksFu84bG63G4cPH8bOnTuxe/duHDlyBGqEG3KE29OKKQvQVZigLzPDXSBAsEkheao892gB3v2fj9E3sydmzMvEuUN52PT3bSg8W3z9nYnqEZ0YidFzBqPTwBRs/WAXdq3cH/LXnqpG2dsaaU7RobKyVmutCnTo0AHp6elIT09HWlpaQN7ZJpQ+a0IJQyXVMXPmTMycOROlpaWYN28eAOD48eNo1aoV2rRpg9OnT8PlcuHIkSPo0KGDxtU2Hp1Oh169eqFXr16YM2cOiouLsXv3buzatQu7du1CSUkJ3FE2uKNsQFsADhFiqcHzKDFAcITOm56qAvvWHMLBTccw+M6bcN9bdyJ701FseX8HKoqs1z8AEQCzxYhhv0xHv1tTsffLbLwxawls5aF5dyzVIEOJcnpaI6OcgKkmVFdWOhAZGYn+/fsjPT0dAwYMQHx8vIbVNo5Q/awJduz9TQ1auXIlNm/eDFEUMXfuXLRq1areHnnBTlEUHD9+HLt27cKePXtw6NAhOJ3OuhvZRc/1mFVBU3CGTsiMiA3DyNmDkJrRFTtX/Igdn+4L2XBQH/b+rstg1iN9Wh8MvrMfju84jax/bEdJftn1dwwiqr46RLqgRjmhmusO2SVJErp37+5tjezatWtQt9bxsyZ4MFQS3SCHw4GDBw9i3759+OGHH5CTk+O95qeaYJUglOkhlhk812Pag/90eVxyDEbeOwgd01Owa8V+hssqDJUe3jA5sx/OHcxF1ns7kH/8ktZlNTkVKmBUoEQ6oURWhciwuu8XoiiiS5cu6Nu3L/r27YtevXrVuaaQKFAwVBL5yGq1Ijs72xsyjx07BkW5Ijw4RYhlegjlek9LZqUuaDv+xLdrgeG/GojOA9th18ofsf3TH2Ars2tdlmZCPVQawwxIn9YbN8/oh7PZudiyZGdQ31/eO8xPpAuqxRMkYaz7cxcEAZ06dfKGyN69eyMiIkKjiokaD0MlUSMrLy9Hdna293HkyJGrT5fLgFBR05IpVuiCbggjb7gc1A771x/Gjk9/QHFeaJ3mBEI3VFriwjHwjr646bZUnPnxArYs2YG8Y8HXMqnqFKgRLiiRLiiRThgTJdjtdf+JkiQJXbp0QVpaGnr16oU+ffogMjJSo4qJmg5DJVETczqdOHr0KA4ePIgDBw7g4MGDde6962UXIVZUtWZW6CFU6CDIgX9LyZhWURg0oy/6jO+OE7vOYPvH+3D+cL7WZTWbUAuVLTvGYfCd/dBteCcc2nwM2z/ZFzR3wlFF1RMgI1xQLS4oEW7AfPUtTCMiIpCamoq0tDSkpaWhW7duMJlMGlRM1LwYKomamaqqOHv2LLKzs3Hw4EHk5OTg9OnTuOpPUa26NrNCD7FcD5McDslu8J42t1UE1ills8WI/lN6IX1aHxTnlmLXiv3I2Xoi6O8rHgqhUpQEdBncAem390Zip3jsXnUAuz/fH5CjAZgjPOFPFVTIJifsUmVViHRDsChXX9oCz51rUlNTvUGyXbt2EMXA/4eQ6EYxVBL5AavViqNHjyInJwdHjhxBTk4OLl68eNV2oigiKbEVUtqkYOcn+z2nzSv1ENyB8wEm6SWkZnRB/8m90KJNFH5Yexh7V2ejOLee1tsgEMyhMirBgn6TeqJvZiqsJTbsXnUABzbkwOVwX39nP6JKCtRwN5QINwb/oi/Onj+DC3kX4HZf/XXExsaie/fu6Natm3dqsVg0qJrI/zBUEvmpy5cvewNmTk4Ojh07Vv9pc8AzbmalDkKF3tMJqFIXED3OEzvF46bJaUi7pSsuHM7HvrWHcPS7k3A7g6f1MthCpaSX0HlQO/Sd2APt+rXF4azj2LM6GxcC4JIGb0/scBfUCLcnSIa76owLWVtERAS6detWJ0AGwxiRRE2FoZIoQKiqisLCQpw4cQLHjx/H8ePHceLECVy40MDt7BRAsFUFTKsEwarzPPwwbBrMeqTd0hW9J/RAQvtY5Gw9gQMbcnD6xwtQlcB+iwqWUJmc1gq9xnZDz9FdUJxbiv3rc7B/Qw7sFf43bJQnPMpQwmWoZjfUsOqHDEj1/z4lJiaiU6dOdR5JSUl+f+9sIn/CUEkU4CorK3Hy5Mk6QfPMmTNwOBr4sFdQEzCtkid42qumivYfoDFJkUgb2w29x3WH3qhD9qajOPztCeTm5CMQ360COVQmdo5HjxGdkDamGwRBwIGNOTjw9REUnvGP23KqggrVLEM1eQKjNzya3UADgyno9Xq0a9fOGxw7d+6Mjh078hQ2USNgqCQKQrIs4+LFizh16hROnTqFM2fOeKcNhk0AcIie+5p7g2ateQ3G1WzVrSV6jemGbsM7QpREHPn3SRzZegKnf7wQMAEtkEKlIApom5qE7iM6odvQjtAZdTjy75PI/voIzmXnahLqVUGFapJrwqO5Zl4wq1d3cKtiMBiQnJyMdu3aISUlBe3bt0e7du3QqlUr6HS8QzFRU2CoJAoh9YXN8+fP4/z58w1frwkAKjyB0y5BcEieaa15OMUmP6We1CUB3Yd3RLfhnWCJDceJnadxYtcZ/Gf3WZRfrmzS1/aFv4fK8GgzOvRPRsf0FHQamAJHpRNH/n0SOVtP4sLhvCYPkipUwKBANcqe8GhUqqae8CiGqfX2uPbWHx6ONm3aICUlxRsgq8NjMN/akMgfMVQSEQCgrKzMGzDPnTtXZ2q1XmdoGAWAQ4LOrYfo1EF0ShBcOrjLZMApQXCIgCw0WvCMbRuNTunt0HFgCtr1bo3ivDKc3H0GJ3edwbmDeXDaXI3yOo3B30KlziChTc8kdExPQccByYhPaYGzB3JxcvcZnNh5BgWnLjfq66mSAtWgAAYZ+kgJisENxSBDMbgh61xQjTJwncELzGYz2rRpU+8jOjqa1z0S+QmGSiK6JlVVUVRUhAsXLiA/Px95eXnIz8+v87jy3uf1kgHBKXlaPJ0SBKcIODxTwSV6WjtdNx4+Jb2EtqlJ6JSego7pKYhv1wIXTxbiXHYezmZfwNnsXFRc1m68RK1DZVi0GclprdA2LQnJaa2R1Dkel8+XeEL47rM4u//CDQ8BpEL1dHjReQKjJzQqUA1VLY1VIVI1KIDu+h8xkiQhPj4eiYmJ3kdSUhKSkpLQpk0bxMbGMjgSBQCGSiLyiSzLKCwsvCpwFhYW4tKlSygsLER5eflPP6ACwFU3aAousWaZW4TgFmqmLrHO9Z7GcAPa9ExCclWIat0jEZXFVuQdK6h6XELesQJUFjdP0GzOUBkWZUJi5wQkdUlAUpd4JHVJQGSCBbk5+Th7MA9nD1zA+YN5sJXXva5WFaoCoq7WVK9A1StXTavnG+oIU5/w8HDExcUhPj4e8fHxSEpKQsuWLZGUlITExETExcXxOkeiIMBQSURNzm63o7Cw0Bs0qx/Vy0pKSlBcXHz90+wNkXF12HR7Wj1FVUREVASi4yPRIjEGca1bICE5DpAFVFyyobLAirL8SpRcKEPR2TKUFZQDjdgpqSlCZURcGOJSYhDTOgqRrSIQmRiGiIQwSEYRBWcLcencZRReKEJxQQnKisqhQAGkWqFRqhsibyQg1mY0GhETE4PY2FjExcV5H/Hx8d5pbGwswsLCGuXrJiL/xlBJRH7D4XB4A2ZxcTFKSkpQVFTknS8uLkZ5eTnKy8tRUVGB8vLya3bi+LkkUYIoShAFAYIqAgqgugFVVqG6AcWtQpFVz600q99BVcHToQnwTKuCqQABaWO7IvvrI57Txp6FtaYqULWrKAkQ9QIEnQBR55kKUlUPaEGFqiqQFRlut4yaF2scgiAgPDwcFosFFosFUVFRiImJQXR0dINTs9ncqDUQUWBjqCSigKUoCqxWqzdoXvmw2WywWq2w2WzXnQ/Ut0JRFGE2m3/Sw2KxICIiwhsca8+Hh4fzftVE5BOGSiIKeaqqwuVywel0eqfVj/qWu1wuKIoCRVGgqipkWYaqqt5lVz4EQYAoihBFsc587efVU51OB71eD71eD4PBUO+0er76wU4sROQPGCqJiIiIyGc810FEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPtNpXQCRP1BVFXa7XesyiIhuiMlkgiAIWpdBBIChkggAYLfbMW7cOK3LICK6IRs2bIDZbNa6DCIAPP1NRERERI2ALZVEVzDsSoCgVv2/JYgQRAEQREAUAEGAIFavq1ouCIAoQKjexrtO8O7jfQC1ltUc07sPavZRBaHm375ax/Aur7Vf7WVq1WG860QAqF4ueNdV76NWLfOuB2qOIVZt792n7mvU2QdVy8R61tXZHnVqrFkmXLXuqn1Qd58661GzT0OvVed5A3Vctc+1jutdrtbZ/8rjedfXOpZatRxX7AdBrbW/Z71Qe5132+p1qveYQu3tq5YLglrz61e1vObXQ/WuF6F6n3vWAWLVc886z/Pq/bzrBBUCavYTq5Z5H1C9+4kC6iyv2Uep2RYqREGBVL2u6nnNsRTv8aRax5fgWS4JyhX7KZCqj4ma1/Nuj5rjifDsL8Lz+p51nuNJVcsEKJCq90d1HQokwLMfPK9T/bVVP/e8llo1j6p1KsSq74sEASIAqeqHLUKoWiZAEgSIVW8GAgS4nBKmzUkEkb9hqCS6kixUvb3DEypRFQCrPq1r1gmAWJOgBE9CqzpIdfIQa+avShvi1YlHEK7evvbxcMX2ddZdOV9rm+owWStUXrWsVgis/fzKEutuX88+4jXWNfRl1Hfchva71vKf/Fo3dsx6Q2yd/Ro5VNa3Hlc+V73Hrl1H7desu88VIdS7rvZ6tZ7jqfW8llrnUTtU1gTVqkdD6+oLm6gOo6gT9KqfS6i7zhMqlZpQJtQOZZ55URA8ga9qCu+84N2vJsACklAzlYBaAbCedVXH8zxXq0Kp6g2Rnv3U64bK2seTqtaJqLusOsCKVV83kT/i6W8iIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZxynkuhKkgpV9Qx47Bl3Uag1Fa4YkLx6WmsetZepteavsa56ea1BC2uGqEYDy2umap151NlPBQC1ennNMVUIgArvvrXXe49RZ3DF2rXU81ytU9IV348GHldue72xI9HA8uutu9ZYlNdaV/srvOZ+9Y03WfuhNlBjw4Of1x1bstY677Y/f/DzmjpqjVOJnz9OpYqa/VRBrfuAZ+pZhzrLFe/xlJrXgQoISq3xNNU661VB8R4PdY5fNa1+rarnYtU21VMAVy1Tao0NqQg1UwU141QqVcsENDROpeAdsFxCzc+s+rlYtc+VY1/+9MHPhaofiwCXs76/SyLtMVQSXcGZXqB1CU2j+jPbB1fGWSKg7q+WomUhP1vt32yewCP6ufjXQwTAbrdrXQIREVFAY0slEQCj0eid/+KLL2AymTSsJnjZ7XZMnjwZAL/PTY3f6+ah9feZP1fyJwyVRAAEoeaErslkgtls1rCa0MDvc/Ph97p58PtMoY6nv4mIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5TFBV1ceR64iIiIgo1LGlkoiIiIh8xlBJRERERD5jqCQiIiIinzFUEhEREZHPGCqJiIiIyGcMlURERETkM4ZKIiIiIvIZQyURERER+UyndQFEWrNarfj444+xZcsW5OfnQxRFtG3bFqNHj8a0adOg1+u1LjGglZaWYtu2bdi7dy+OHTuGixcvQpZlREdHo2vXrhg/fjyGDx+udZlBa+nSpXj77be9z7du3aphNcGnsrISq1atwnfffYfz58/DarUiOjoabdq0Qe/evTF9+nRYLBatyyRqFryjDoW0/Px8PPzww8jPzwcAmEwmKIoCp9MJAOjcuTP+9re/8UPBB6NGjYIsy97nBoMBkiTBZrN5lw0cOBAvv/wyTCaTFiUGrbNnz+Lee+/1/j4DDJWNad++fZg3bx6KiooAAJIkwWw2o6KiwrvNu+++i86dO2tVIlGzYkslhSxZljF37lzk5+cjNjYWzz77LPr37w9FUZCVlYX58+fj+PHjmDdvHubPn691uQFLlmV0794dEyZMQHp6Olq1agUAyMvLw4cffoi1a9di586dWLBgAZ577jmNqw0eiqLgL3/5C5xOJ3r27IlDhw5pXVJQyc7OxlNPPQWHw4H+/fvjnnvuQc+ePSGKIhwOB06fPo2tW7ciPDxc61KJmg1bKilkrVmzBq+++ioA4M0330Rqamqd9d988w3mzZsHAPjrX/+Km266qdlrDAb79u1Dv379Gly/YMECrF69GgDw2WefoWXLls1VWlD77LPP8MYbb2DMmDFo3bo1lixZAoAtlY3Bbrdj9uzZyM3NxYgRI/DSSy9BFNlFgYh/BRSy1q9fDwDo27fvVYESADIyMpCUlFRnW7px1wqUAJCZmemdP3r0aFOXExJyc3Pxj3/8A1FRUXjooYe0LifobNiwAbm5uTAajXj88ccZKImq8C+BQpLdbsfBgwcBAIMGDap3G0EQMHDgQADA7t27m622UGMwGLzziqJoWEnwmD9/Pmw2Gx544AFER0drXU7Q2bBhAwBg6NCh/P4S1cJrKikknTlzxhtg2rdv3+B21euKiopQVlaGyMjIZqkvlPz444/e+Q4dOmhXSJD48ssvsXfvXvTv3x/jx4/Xupyg43Q6vS3qffr0QW5uLj788EPs3r0bJSUlsFgs6N69OyZPntzgP6xEwYqhkkJSYWGhdz4+Pr7B7eLi4ursw1DZuMrLy7F06VIAQK9evZCcnKxxRYHt0qVLWLx4MYxGI373u99pXU5Qys/Ph8vlAgAUFBTgnnvugc1mg16vh9FoRFFREbZt24Zt27Zh8uTJePzxxzWumKj58PQ3hSSr1eqdNxqNDW5Xe4ib2vuQ7xRFwSuvvILLly/DYDDg0Ucf1bqkgLdgwQJUVFTgnnvu8fayp8ZVXl7unV+2bBkkScILL7yADRs2YN26dfjss8+QkZEBAPjiiy/w2WefaVUqUbNjqCQiTbz++uv4/vvvAQC//e1v0alTJ40rCmwbN27E9u3b0blzZ8yYMUPrcoJW7et+FUXB448/joyMDOh0nhN/LVu2xPPPP+8dm/LDDz+E2+3WpFai5sZQSSEpLCzMO+9wOBrczm6317sP+WbRokVYuXIlAODBBx+s0wOcblxxcTHeeOMNSJKEJ554whtwqPHVfh9ISEjwtkrWJooiZs6cCcBzR6ljx441W31EWmKopJBU+1rJS5cuNbhd7Wsva+9DP9/ixYvxySefAADuv/9+tqo1grfeegulpaWYNGkSkpOTYbVa6zxqt5RVL6u+LpBuTO1rsK91DXBKSop3vvqOXUTBjv/OUkhKSUmBKIpQFAWnTp1qsJfmqVOnAAAtWrRgJ51G8Oabb+Ljjz8G4AmUs2bN0rii4JCXlwcAWLVqFVatWnXNbat7hN9xxx14+OGHm7q0oBMZGYn4+HhcunQJgiD8pH1+6nZEgY4tlRSSTCaTd8DznTt31ruNqqrYtWsXAGDAgAHNVluwWrRoEQMlBYXq94MzZ86goZvSnTlzxjtffRMFomDHlkoKWePHj8eBAwfwww8/4PDhw+jRo0ed9VlZWcjNzfVuSz/fokWLvKe8f/Ob3+DOO+/UuKLg8vrrr19z/XvvvcfbNDaiCRMmYN26dSgoKMDmzZuvuq5SURTv73t8fDy6dOmiRZlEzY4tlRSyxo8fjw4dOkBVVTz//PPYu3cvAM8HQlZWFubPnw8AGDhwIO/77YPa11A++OCDDJQU8Hr37o2RI0cCAF577TVs2rTJe93qxYsX8fLLL+P48eMAgPvuu4+3caSQIagNtd0ThYC8vDw88sgj3gvpTSYTFEWB0+kEAHTu3Bl/+9vfYLFYtCwzYF28eBHTp08H4OkRe71b2s2cOZOnxZsAWyobn81mw5NPPon9+/cD8Nxu1Gg01hnHcvbs2bj33nu1KpGo2fH0N4W0pKQkLFmyBB9//DG2bNmC/Px86HQ6tG/fHhkZGZg2bRr0er3WZQasK8f0Kyoquub2NputqUsiahRmsxn/93//h3Xr1mHDhg04deoUrFYr4uPj0atXL9x+++1IS0vTukyiZsWWSiIiIiLyGS/0ICIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZ/8P6aJnBuZt95QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "List_of_Maps = [mDisk,mNarrowBulge,mBroadBulge]\n", + "List_of_Names = [\"Disk\",\"Narrow Bulge\",\"Broad Bulge\", ]\n", + "\n", + "for n, m in zip(List_of_Names,List_of_Maps):\n", + " plot,ax = m.plot(ax_kw={\"coord\":\"G\"})\n", + " ax.grid();\n", + " lon = ax.coords['glon']\n", + " lat = ax.coords['glat']\n", + " lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)\n", + " lat.set_axislabel('Galactic Latitude',fontsize=5)\n", + " lon.display_minor_ticks(True)\n", + " lat.display_minor_ticks(True)\n", + " lon.set_ticks_visible(True)\n", + " lon.set_ticklabel_visible(True)\n", + " lon.set_ticks(color='white',alpha=0.6)\n", + " lat.set_ticks(color='white',alpha=0.6)\n", + " lon.set_ticklabel(color='white',fontsize=4)\n", + " lat.set_ticklabel(fontsize=4)\n", + " lat.set_ticks_visible(True)\n", + " lat.set_ticklabel_visible(True)\n", + " ax.set_title(n)" + ] + }, + { + "cell_type": "markdown", + "id": "915bc5ee", + "metadata": {}, + "source": [ + "## Instantiate the COSI 3ML plugin and perform the likelihood fit\n", + "The following two cells should be run only if not already run in previous examples..." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5b3abf0b-7631-419c-b5b7-a31dbfe1b65c", + "metadata": {}, + "outputs": [], + "source": [ + "# if not previously loaded in example 1, load the response, ori, and psr: \n", + "response_file = \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "response = FullDetectorResponse.open(response_file)\n", + "ori = SpacecraftFile.parse_from_file(\"20280301_3_month.ori\")\n", + "psr_file = \"psr_gal_511_DC2.h5\"" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "522db694-3a1d-4d0d-a3d9-0e028bb5cbcc", + "metadata": {}, + "outputs": [], + "source": [ + "# Set background parameter, which is used to fit the amplitude of the background:\n", + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")" + ] + }, + { + "cell_type": "markdown", + "id": "34287711-a61b-4496-bc3e-b5f2f9e02298", + "metadata": {}, + "source": [ + "We should re-run the following cell every time we set up a new fit:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "5ca19bc5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... loading the pre-computed image response ...\n", + "--> done\n", + "CPU times: user 1min 56s, sys: 37 s, total: 2min 33s\n", + "Wall time: 2min 51s\n" + ] + } + ], + "source": [ + "%%time \n", + "\n", + "# Instantiate the COSI 3ML plugin, using combined data for the thin disk\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = response_file, # detector response\n", + " data = data_combined_thin_disk.binned_data.project('Em', 'Phi', 'PsiChi'),# data (source+background)\n", + " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = ori, # spacecraft orientation\n", + " nuisance_param = bkg_par, # background parameter\n", + " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", + "plugins = DataList(cosi)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "774aba03", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Model summary:

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
N
Point sources1
Extended sources3
Particle sources0
\n", + "


Free parameters (2):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.e0.9994440.01.0
disk.spectrum.main.composite.F_10.00170.01.0s-1 cm-2
\n", + "


Fixed parameters (27):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.lon00.00.0360.0deg
disk.Wide_Asymm_Gaussian_on_sphere.lat00.0-90.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.a90.00.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.theta0.0-90.090.0deg
disk.spectrum.main.composite.mu_1511.0NoneNonekeV
disk.spectrum.main.composite.sigma_11.270.0NonekeV
disk.spectrum.main.composite.K_20.00450.01000.0keV-1 s-1 cm-2
broadBulge.Gaussian_on_sphere.lon00.00.0360.0deg
broadBulge.Gaussian_on_sphere.lat00.0-90.090.0deg
broadBulge.Gaussian_on_sphere.sigma8.70.020.0deg
broadBulge.spectrum.main.composite.F_10.000730.01.0s-1 cm-2
broadBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
broadBulge.spectrum.main.composite.sigma_10.850.0NonekeV
broadBulge.spectrum.main.composite.K_20.00270.01000.0keV-1 s-1 cm-2
narrowBulge.Gaussian_on_sphere.lon0359.750.0360.0deg
narrowBulge.Gaussian_on_sphere.lat0-1.25-90.090.0deg
narrowBulge.Gaussian_on_sphere.sigma2.50.020.0deg
narrowBulge.spectrum.main.composite.F_10.000280.01.0s-1 cm-2
narrowBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
narrowBulge.spectrum.main.composite.sigma_10.850.0NonekeV
narrowBulge.spectrum.main.composite.K_20.00110.01000.0keV-1 s-1 cm-2
centralPoint.position.ra266.4049880.0360.0deg
centralPoint.position.dec-28.936178-90.090.0deg
centralPoint.spectrum.main.composite.F_10.000120.01.0s-1 cm-2
centralPoint.spectrum.main.composite.mu_1511.0NoneNonekeV
centralPoint.spectrum.main.composite.sigma_10.850.0NonekeV
centralPoint.spectrum.main.composite.K_20.000460.01000.0keV-1 s-1 cm-2
\n", + "


Properties (4):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valueallowed values
disk.spectrum.main.composite.dat_2OPsSpectrum.datNone
broadBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
narrowBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
centralPoint.spectrum.main.composite.dat_2OPsSpectrum.datNone
\n", + "


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
" + ], + "text/plain": [ + "Model summary:\n", + "==============\n", + "\n", + " N\n", + "Point sources 1\n", + "Extended sources 3\n", + "Particle sources 0\n", + "\n", + "Free parameters (2):\n", + "--------------------\n", + "\n", + " value min_value max_value unit\n", + "disk.Wide_Asymm_Gaussian_on_sphere.e 0.999444 0.0 1.0 \n", + "disk.spectrum.main.composite.F_1 0.0017 0.0 1.0 s-1 cm-2\n", + "\n", + "Fixed parameters (27):\n", + "---------------------\n", + "\n", + " value min_value max_value \\\n", + "disk.Wide_Asymm_Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.a 90.0 0.0 90.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.theta 0.0 -90.0 90.0 \n", + "disk.spectrum.main.composite.mu_1 511.0 None None \n", + "disk.spectrum.main.composite.sigma_1 1.27 0.0 None \n", + "disk.spectrum.main.composite.K_2 0.0045 0.0 1000.0 \n", + "broadBulge.Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", + "broadBulge.Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", + "broadBulge.Gaussian_on_sphere.sigma 8.7 0.0 20.0 \n", + "broadBulge.spectrum.main.composite.F_1 0.00073 0.0 1.0 \n", + "broadBulge.spectrum.main.composite.mu_1 511.0 None None \n", + "broadBulge...sigma_1 0.85 0.0 None \n", + "broadBulge.spectrum.main.composite.K_2 0.0027 0.0 1000.0 \n", + "narrowBulge.Gaussian_on_sphere.lon0 359.75 0.0 360.0 \n", + "narrowBulge.Gaussian_on_sphere.lat0 -1.25 -90.0 90.0 \n", + "narrowBulge.Gaussian_on_sphere.sigma 2.5 0.0 20.0 \n", + "narrowBulge.spectrum.main.composite.F_1 0.00028 0.0 1.0 \n", + "narrowBulge.spectrum.main.composite.mu_1 511.0 None None \n", + "narrowBulge...sigma_1 0.85 0.0 None \n", + "narrowBulge.spectrum.main.composite.K_2 0.0011 0.0 1000.0 \n", + "centralPoint.position.ra 266.404988 0.0 360.0 \n", + "centralPoint.position.dec -28.936178 -90.0 90.0 \n", + "centralPoint.spectrum.main.composite.F_1 0.00012 0.0 1.0 \n", + "centralPoint...mu_1 511.0 None None \n", + "centralPoint...sigma_1 0.85 0.0 None \n", + "centralPoint.spectrum.main.composite.K_2 0.00046 0.0 1000.0 \n", + "\n", + " unit \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lon0 deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lat0 deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.a deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.theta deg \n", + "disk.spectrum.main.composite.mu_1 keV \n", + "disk.spectrum.main.composite.sigma_1 keV \n", + "disk.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "broadBulge.Gaussian_on_sphere.lon0 deg \n", + "broadBulge.Gaussian_on_sphere.lat0 deg \n", + "broadBulge.Gaussian_on_sphere.sigma deg \n", + "broadBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", + "broadBulge.spectrum.main.composite.mu_1 keV \n", + "broadBulge...sigma_1 keV \n", + "broadBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "narrowBulge.Gaussian_on_sphere.lon0 deg \n", + "narrowBulge.Gaussian_on_sphere.lat0 deg \n", + "narrowBulge.Gaussian_on_sphere.sigma deg \n", + "narrowBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", + "narrowBulge.spectrum.main.composite.mu_1 keV \n", + "narrowBulge...sigma_1 keV \n", + "narrowBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "centralPoint.position.ra deg \n", + "centralPoint.position.dec deg \n", + "centralPoint.spectrum.main.composite.F_1 s-1 cm-2 \n", + "centralPoint...mu_1 keV \n", + "centralPoint...sigma_1 keV \n", + "centralPoint.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "\n", + "Properties (4):\n", + "--------------------\n", + "\n", + " value allowed values\n", + "disk.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", + "broadBulge.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", + "narrowBulge...dat_2 OPsSpectrum.dat None\n", + "centralPoint...dat_2 OPsSpectrum.dat None\n", + "\n", + "Linked parameters (0):\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Independent variables:\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Linked functions (0):\n", + "----------------------\n", + "\n", + "(none)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# add sources to thin disk and thick disk models \n", + "totalModel = Model(ModelDisk, ModelBroadBulge,ModelNarrowBulge,ModelCentralPoint)\n", + "totalModel.display(complete=True)" + ] + }, + { + "cell_type": "markdown", + "id": "5de3240f-7d7e-4cb4-9f23-6f976525cdf1", + "metadata": {}, + "source": [ + "Before we perform the fit, let's first change the 3ML console logging level, in order to mimimize the amount of console output." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a9d24b46-70a6-4b3c-be9a-df701d9f26e8", + "metadata": {}, + "outputs": [], + "source": [ + "# This is a simple workaround for now to prevent a lot of output. \n", + "from threeML import update_logging_level\n", + "update_logging_level(\"CRITICAL\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c424a2e2-9bf9-457d-a54b-23d8ea30fd56", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + ] + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
disk.Wide_Asymm_Gaussian_on_sphere.e(9.9985 +/- 0.0005) x 10^-1
disk.spectrum.main.composite.F_1(1.643 +/- 0.011) x 10^-31 / (cm2 s)
background_cosi(9.906 +/- 0.032) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "disk.Wide_Asymm_Gaussian_on_sphere.e (9.9985 +/- 0.0005) x 10^-1 \n", + "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (cm2 s)\n", + "background_cosi (9.906 +/- 0.032) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
" + ], + "text/plain": [ + " 1.00 -0.33 0.09\n", + "-0.33 1.00 -0.60\n", + " 0.09 -0.60 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-166772.754018
total-166772.754018
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -166772.754018\n", + "total -166772.754018" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-333547.508036
BIC-333545.508036
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -333547.508036\n", + "BIC -333545.508036" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 30min 29s, sys: 15min 41s, total: 46min 11s\n", + "Wall time: 8min 12s\n" + ] + }, + { + "data": { + "text/plain": [ + "( value negative_error \\\n", + " disk.Wide_Asymm_Gaussian_on_sphere.e 0.999853 -0.000045 \n", + " disk.spectrum.main.composite.F_1 0.001643 -0.000011 \n", + " background_cosi 0.990610 -0.003091 \n", + " \n", + " positive_error error unit \n", + " disk.Wide_Asymm_Gaussian_on_sphere.e 0.000045 0.000045 \n", + " disk.spectrum.main.composite.F_1 0.000011 0.000011 1 / (cm2 s) \n", + " background_cosi 0.003209 0.003150 ,\n", + " -log(likelihood)\n", + " cosi -166772.754018\n", + " total -166772.754018)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time \n", + "# likelihood of data + model\n", + "like = JointLikelihood(totalModel, plugins, verbose = True)\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "3e61859f", + "metadata": {}, + "source": [ + "## Results" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "dd097a0a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
disk.Wide_Asymm_Gaussian_on_sphere.e(9.9985 +/- 0.0005) x 10^-1
disk.spectrum.main.composite.F_1(1.643 +/- 0.011) x 10^-31 / (cm2 s)
background_cosi(9.906 +/- 0.032) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "disk.Wide_Asymm_Gaussian_on_sphere.e (9.9985 +/- 0.0005) x 10^-1 \n", + "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (cm2 s)\n", + "background_cosi (9.906 +/- 0.032) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
" + ], + "text/plain": [ + " 1.00 -0.33 0.09\n", + "-0.33 1.00 -0.60\n", + " 0.09 -0.60 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-166772.754018
total-166772.754018
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -166772.754018\n", + "total -166772.754018" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-333547.508036
BIC-333545.508036
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -333547.508036\n", + "BIC -333545.508036" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# thin disk model to data\n", + "results = like.results\n", + "results.display()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5b6c0a71", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAHOCAYAAAAsQvUnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDh0lEQVR4nOzdd3hUVfrA8e+k9x5ISCGEXk0AKdIFUUFBBF0VFaWIFRHBymJnscHi7gosICA/21oAUZoUFZCqRqWEGhIChPReZ+b+/pjMZYYUksxNfz/Pw+Nk5t5zTsYQ3jnnvO/RKYqiIIQQQgghGgy7+h6AEEIIIYSwJgGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEKUIycnh2eeeYY2bdrg6OiITqcjJiaGH3/8EZ1Ox6uvvlrfQ2xSIiIiiIiIsLkdnU7H0KFDbW5HiPomAZoQQjM6na7MH2dnZyIiIpg0aRLHjx+v0/E89NBD6HQ6zp07V+17n3/+ef75z3/SrVs3XnjhBV555RWCgoIqvH7o0KHodLpq9/Pqq6+i0+n48ccfq32vEKLpcqjvAQghmp5XXnlFfZyVlcXBgwf5+OOP+frrr9mzZw9RUVH1N7gq+vbbb+nQoQMbN260et7Ly4vjx48TEBBQTyMTQjQHEqAJITRX3vLfU089xb///W/++c9/snr16jofU3VdvHiRwYMHl3nezc2NTp061cOIhBDNiSxxCiHqxMiRIwFISUkp9/XPPvuMYcOG4evri4uLC507d+bNN9+kqKiozLU//vgjt912G6GhoTg5OREYGMj1119vFRjqdDrWrFkDQJs2bdQl12vtczIvVSqKwk8//aTeZ97XdPUetHPnzqHT6fjpp5/Ufq++pyIRERG89tprAAwbNszqXksXL17k8ccfJyIiQv1+x40bx6FDhypt/2rmMV2+fJnJkyfTsmVL3N3dueGGG9i9ezcAubm5zJo1i/DwcJydnenatStfffVVue0VFhbyj3/8g+7du+Pm5oaXlxeDBg3i888/L/d6RVH497//TdeuXXFxcSEkJIQnnniCrKysSsddnZ8NIZoKmUETQtSJ7du3A9CnT58yr02ZMoWPPvqIsLAwxo8fj7e3N/v37+fvf/87O3bsYNu2bTg6OgKwadMmbrvtNry9vRkzZgwhISGkp6dz/PhxlixZogZOr7zyCuvXr+ePP/7g6aefxsfHB0D9b0Ueeughhg4dymuvvUbr1q156KGHACoM7Hx8fHjllVdYvXo18fHxVsu71woGZ86cyfr16/npp5+YNGlSudefPXuWgQMHcunSJYYPH869997L+fPn+fLLL/n+++/58ssvGTt2bKX9WMrMzGTAgAF4enpy7733kp6ezueff87NN9/ML7/8wrRp08jKyuL222+npKSEzz//nLvvvptffvmFfv36qe0UFxczcuRIdu/eTZcuXXjiiSfIz8/nyy+/5N577+X333/n7bffLvP9fvDBBwQHB/PII4/g6OjIhg0bOHjwIMXFxTg5OZUZb3V+NoRoUhQhhNAIoADKK6+8ov555plnlIEDByo6nU4ZO3askpOTY3XPqlWrFECZMGGCUlBQYPXaK6+8ogDKokWL1OfGjRunAMrvv/9epv+UlBSrrydNmqQASlxcXI2+lyFDhpR5fteuXer3aGnIkCFKTX6lmr/HXbt2lfv6TTfdpADKggULrJ7fvXu3Ymdnp/j6+irZ2dlV6sv8/2f69OmKwWBQn//4448VQPH29lZuu+02q/8Pe/fuVQDljjvusGrrrbfeUgDltttuU0pKStTnk5KSlLCwMAVQdu/eXaadtm3bKmlpaerzBQUFSr9+/RRAad26tVUf1f3ZMH+P5f1/E6KxkQBNCKEZcwBQ3p8uXbooa9euLXNPVFSU4ujoqGRkZJR5Ta/XK/7+/krv3r3V5+68804FUE6cOHHN8TT2AO38+fNq4GIZBJndd999CqCsWbOmSn0BipubW5mATq/XKw4ODgqgnDlzpsx9bdq0USIiIqyea9u2raLT6cr9//Df//5XAZSHH35YfW7q1KkKoHz00Udlrje/p1cHaNX92TB/jxKgiaZAljiFEJpTFEV9nJeXx9GjR3nhhRd44IEHOH78OG+99RYA+fn5/PHHHwQEBPDPf/6z3LacnZ2JjY1Vv544cSLffPMNffv25Z577mHYsGHccMMNhIaG1ur3VB9+//13AAYNGoSDQ9lf1yNGjODTTz/lt99+48EHH6xSmx06dMDT09PqOXt7e1q2bEleXh6RkZFl7mnVqhUHDhxQv87JyeHMmTOEhobSoUOHcscF8Ntvv6nPmR8PGTKkzPXlfX81+dkQoimRAE0IUavc3d3p06cP33zzDaGhobzzzjs8+uijhIWFkZGRgaIopKSkqJvlr+XOO+/ku+++4/3332flypUsXboUgN69e7NgwQKGDx9em99OnTJvnq+o/lpwcLDVdVXh7e1d7vMODg6VvqbX620al/lxy5Yty1xvb2+Pv7+/1XM1+dkQoimRLE4hRJ3w8fGhY8eO6PV6dTbFHBBER0ejmLZcVPjH0ujRo9m5cycZGRns2LGDZ555hiNHjjB69Og6L4Zbm8zvT1JSUrmvX7p0yeq6ulKTcZkfX758ucz1BoOBtLS0cvuo7s+GEE2FBGhCiDqTkZEBgNFoBMDDw4OuXbty9OhR0tPTq92eu7s7N954IwsXLuSll16iqKiIzZs3q6/b29sDpgCgttW0r8rui46OBmDPnj1WM1hmu3btAqBnz57V6tNWnp6etG3blgsXLnDq1Kkqjcv82FyOxNLu3bvLfH+2/mwI0dhJgCaEqBPr168nLi4OR0dHbrjhBvX5WbNmUVxczOTJk8nMzCxzX0ZGhtVeph07dlBQUFDmOvPMjIuLi/qcedns/PnzWn0bFappX5XdFxoayk033cS5c+fK7MM6cOAAn376Kb6+vowbN65mg7bB5MmTURSFOXPmWAWXqampvPHGG+o1ZuZyJW+99ZZVwFVYWMiLL75Ybh/V/dkQoimRPWhCCM1ZFozNy8vj2LFj6szW/PnzrfYhTZ48mV9//ZUPP/yQtm3bcvPNNxMeHk56ejpxcXH8/PPPPPzww+pes2effZZz584xdOhQtXDrr7/+ys6dOwkPD+eee+5R2x4+fDjvvvsu06ZNY/z48Xh4eODj48OTTz6p+fc8fPhwvvzyS+68805uvfVWXF1dad26NQ888ECl9w0bNgw7OztefPFF/vrrL3x9fQGYO3cuAEuXLmXAgAHMmTOHbdu20bt3b7UOmp2dHatWrSqz6b8uzJ49m82bN7Nhwwauu+46Ro0apdZBS05O5rnnnmPgwIHq9QMGDOCpp57iX//6F926dWPChAlqHTRfX19135ql6v5sCNGk1G3SqBCiKaOc8hr29vZKUFCQMmbMGGXbtm0V3rtx40Zl9OjRSmBgoOLo6Ki0bNlSuf7665WXX35ZOX78uHrdF198odxzzz1Ku3btFHd3d8XT01Pp2rWr8tJLLynJycll2n3//feVTp06KU5OTuWWcqjse6lOmQ29Xq+8+OKLSps2bdSSFVUt97B27VrluuuuU1xcXNT3zVJiYqLy6KOPKuHh4Yqjo6Pi7++vjB07Vjl48GCV2r/W96QoitK6desK35uKSogUFBQob731ltK1a1fFxcVF8fDwUAYMGKB8+umn5bZjNBqVf/3rX+r/j+DgYOXxxx9XMjMzK+2/qj8b1/oehWhMdIoiOyyFEEIIIRoS2YMmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIDWCBUWFnLixAkKCwvreyhCCCGEqAUSoDVC8fHxTJs2jfj4+PoeihBCCCFqgQRoQgghhBANjARoQgghhBANjARoQgghhBANjARoQgghhBANjEN9D0AIIYSoCwaDgZKSkvoehmgGHB0dsbe3t6kNCdCEEEI0ebm5uSQmJqIoSn0PRTQDOp2O0NBQPDw8atyGBGhCCCGaNIPBQGJiIm5ubgQGBqLT6ep7SKIJUxSFlJQUEhMTad++fY1n0iRAE0II0aSVlJSgKAqBgYG4urrW93BEMxAYGMi5c+coKSmpcYAmSQJCCCGaBZk5E3VFi581CdCEEEKIehAREUGnTp2Iioqic+fO3HfffeTl5dW4vdWrV3Py5MkKX9+/fz/du3cnOjqarVu3MmrUKM6cOVOle2vTuXPn+O9//1vj+1999VVmz54NwI8//oibmxtRUVH06NGDgQMH8ueff1Z6/+HDh5k4cWKV+youLq7xWKtDAjQhhBCinnz11VfExMRw7NgxsrOzWb16dY3bulaQtWbNGh588EF+//13br75ZjZt2kTbtm2rdG9tulaAptfrq9Vely5diImJ4c8//+Suu+7i4YcfrvT63r1788knn1Sp7ddee00CNCGEEKK5KCoqIi8vD19fX/W59957jz59+tCzZ09GjRrF+fPnAdi4cSM9evQgKiqKbt26sWHDBlasWMHhw4eZMWMGUVFRbNq0yar9BQsW8MUXX7B48WKioqLIzMwkIiKCI0eOXPPe8rz99tt0796d6667jn79+pGfnw/A2rVr6du3Lz179mTIkCEcOXIEMAWAN998M/feey/du3end+/enD17FoBHH32UY8eOERUVxZgxYwDT7OJbb73FsGHDmDRpEklJSQwbNoxevXrRtWtXZsyYUaWM3JtuuokTJ04AsGXLFnr27EmPHj0YMmQIx44dA0yzbr179wZMwWJAQADz5s2jV69etGvXTn0/Hn30UQBuuOEGoqKiSE5Ovmb/tpAkASGEEM3O+pf3kp9VVGvtu3k7c8dbA6553YQJE3BxcSEuLo5evXpx9913A/Dpp59y8uRJ9u3bh729PWvXruXJJ59kw4YNzJ07l6VLl3LDDTdgNBrJzs7Gx8eH//u//2P27NncdtttZfp54YUXiI2NpXfv3jz55JNWr02dOrXSe6+2Zs0a1q9fz969e/Hy8iIjIwNnZ2f27t3L559/zs8//4yzszO7d+9m4sSJ/PHHHwAcOHCAP/74g9atW/PCCy/w9ttvs2zZMpYuXcrs2bM5fPiwVT8JCQns3LkTnU5HYWEhGzduxMPDA4PBwNixY/n666+ZMGFCpWP9/PPP6dWrF8nJydx///3s2rWL7t2788knn3D33XerAaSltLQ0evXqxeuvv86WLVt4+umnGTVqFEuXLmXZsmX88ssvNpXPqCoJ0IQQQjQ7+VlF5KfXXoBWVV999RXdunVDr9czffp0nn/+ed5//33Wr1/P4cOH6dWrF2AqFWLOBhw+fDgzZ85kwoQJjBw5kqioqDod83fffcdjjz2Gl5cXgDrrt2HDBv744w/69u2rXpuSkqIuCQ4cOJDWrVsD0L9/f/71r39V2s/DDz+sbrY3Go08//zz7NmzB0VRSE5OJioqqtwAzTwbB9ChQwfWrFnDgQMHiIqKonv37gBMnDiRJ554gkuXLpW5393dnbFjx6rjNO/Tq2sSoAkhhGh23LydG1T7Dg4OjB8/njlz5vD++++jKApz585l8uTJZa5duHAhR48eZdeuXUyaNImJEyfy3HPPaTX0GlMUhcmTJ/P666+X+7qLi4v62N7e/pp7yyxnqRYuXEhaWhoHDhzAxcWFWbNmUVhYWO59Xbp0KTMb9+eff5abWVnec1eP02AwVDrO2iIBmhBCNFH5BQUcOXWK/IJCPNzd8ffxpnWrVtjZyfbjqiw/1rWdO3fSsWNHAMaMGcPixYu544478PPzo6SkhCNHjhAdHU1sbCxdu3ala9euODg4sG3bNgC8vLzIysqqUd9X33vhwgWGDx9ObGxsmWvHjBnDhx9+yB133IGXlxeZmZl4enpy++238+CDDzJt2jTCwsIwGo389ttv6v6uqvZdnoyMDIKCgnBxceHy5ct8+eWX/O1vf6vy99e/f3+mTJnC8ePH6dy5M59//jmhoaEEBQWV+z1WxNPTk6ysLFniFEIIUTOpGRls+ulncks3b5t5eXjQs0tnOkVGSqDWAJj3oJWUlBAREcHSpUsBeOCBB0hLS2Po0KHodDr0ej1TpkwhOjqaF198kZMnT+Lk5ISbmxtLliwB4JFHHuHZZ5/l3XffZf78+YwaNarK47j63sDAQBwcyg8RHnjgAS5evEj//v1xdHTEzc2N7du3M3jwYObPn8/YsWPVc09Hjx59zQCtR48edOzYkW7duhEZGcm3335b5poZM2Zw1113ERUVRUhICCNGjKjy9wamwrFr165l4sSJGAwGfHx8+N///letNgCeffZZbrzxRlxdXdm2bRstWrSodhtVpVPkYLJG58SJE0ybNo3ly5ern7aEEMIsMSmJzT/vpqSSJaROkW24sV+/OhxV/SksLCQuLo42bdpYLV+Jii1cuJAWLVpw//331/dQGiUtfuZkBk0IIZqQ4pIStv+yTw3OWvj7MyA6mryCAo6dOUNiUhIAsWfjCA9uRbvW4fU5XNFAzZo1q76H0OxJgCaEEE3I78eOk1+6eTo0qCWjBg9Wl6ratQ4n9uxZdu4/AMBPhw4RHBiAu5tbvY1XCFE+2YAghBBNRE5eHjGlG57t7OwYcv31ZfYRdWzThrbhplmzouJidh08VOfjFEJcmwRoQgjRROyP+UMtCdC9Q3u8PT3LXKPT6RhyfW/cXF0BSLh4kZT09DodpxDi2hrdEmd+fj4rVqxg165d5OTkEB4ezsSJExk+fPg1783IyGDJkiXs27ePwsJC2rVrx9SpU9VCgJYOHz7MypUrOX36NC4uLvTv35/HHnvM6hgOMJ0RtnbtWjZv3kxaWhrBwcGMGzeO8ePHW1330UcflXvGmpOTE9u3b6/emyCEEFfJzs3lVHw8AC7OTvTu1q3Ca12cnendrSs/HzLVijpy6hTDLIqLCiHqX6ML0ObOnUtsbCzTp08nLCyM7du389prr2E0GrnpppsqvK+4uJiZM2eSm5vLU089ha+vL+vWrWP27NksWrTIqhJzTEwMc+bMoX///syfP5+MjAyWLVvGzJkzWb58OU5OTuq1CxcuZNu2bUyZMoVOnTpx8OBBPvjgA/Lz83nggQfKjOO9997D3d1d/bq8InlCCFFdJ+LOqY97dOyIs8XvqfJ0jIhgf8wfFJeUcPJcPP2jonBxrt3irUKIqmtUAdq+ffs4fPgw8+bNU2ug9OzZk6SkJJYsWcKNN96oHoVxte+//564uDg+/PBDupV+soyOjmby5MksWbKEZcuWqdd++OGHhIWF8frrr6v7N4KDg3niiSfYtGkTd9xxBwBxcXF8//33TJs2jXvvvVdtMzs7m48//pixY8eqR2GYdejQAR8fHy3fFiFEM6coCidKD54G0z6za3F0dKRTZBv+PHESg8HA8bNnie7cuTaHKYSohka1B2337t24uroydOhQq+dHjRpFamqqejJ9RfeGh4erwRmYjtYYOXIkx48fJyUlBTCdGxYbG8vIkSOtNtd2796dsLAwfv75Z6s2FUXh1ltvterr1ltvpaioiAMHDtjy7QohRJVcTE4hOy8PgNCgIDwtZukr0619e/Xx0ZOnMBqNtTI+Ub6IiAg6depEVFQUnTt35r777iOv9P9jTaxevZqTJ09W+Pr+/fvp3r070dHRbN26lVGjRqnnTF7r3sZi6NChREZGEhUVRbdu3Rg1ahSXL1++5n3nzp0jICCgDkZYdY0qQIuLi6N169ZlspLatm2rvl6Rs2fPqtdVdq/5vxVda9lHXFwcPj4++Pv7V3k8Dz30EEOHDmXs2LG89dZbVfrBEUKIypyIuzJ71jny2rNnZj5eXoQFBwGQnZfHxeRkzccmKvfVV18RExPDsWPHyM7OLnevclVdK8has2YNDz74IL///js333wzmzZtUv+9qusAzWg0lvlAcK2zOavqgw8+ICYmhiNHjhAREcF7772nSbt1rVEFaFlZWWWWDMF0NhZAdnZ2hfdmZ2er11V2r/k8sIr6seyjovG4urri6OhodbZYSEgI06ZN44UXXmDhwoXcfffd7Nu3j+nTp6uzdxVJTU3lxIkT6p/40o3AQghRUlLC6YTzADg5OtImNLRa93eKjFQfxyVe0HRsouqKiorIy8uzSkR777336NOnDz179mTUqFGcP2/6/7xx40Z69OihzhJt2LCBFStWcPjwYWbMmEFUVBSbNm2yan/BggV88cUXLF68mKioKDIzM4mIiODIkSPXvPdqq1ev5uabb+bee++le/fu9O7dm7OlS+xJSUkMGzaMXr160bVrV2bMmIH5wKJXX32VBx54gDvvvJOoqCj27dtHQEAAr7/+OoMGDeJf//oXp0+fZsSIEer3t379egCWLVvG9OnTgSsHn//www8A/P3vf+eNN94oM069Xk9OTo76nv74449Wx06ZA7jyfP3113Tq1Ino6GjefPNNdDodubm5ABw6dIgbb7yR3r1707NnT77++utK36+aalR70MC2TfWV3Xv1axVdW53+La+9+eabrV7r2bMn0dHRPP7443z66ac8/fTTFbbz7bff2vSpSgjRdJ27cFGdeWhXzgrDtYQHB2NnZ4fRaCQuMZGBvXo2i+Sle48vJLUkp9baD3D05LPO167Gbz6LMy4ujl69enH33XcD8Omnn3Ly5En27duHvb09a9eu5cknn2TDhg3MnTuXpUuXcsMNN2A0GsnOzsbHx4f/+7//Y/bs2dx2221l+nnhhReIjY2ld+/ePPnkk1avTZ06tdJ7y3PgwAH++OMPWrduzQsvvMDbb7/NsmXL8PHxYePGjXh4eGAwGBg7dixff/01EyZMAGDXrl389ttvtGjRgnPnzpGWlka7du2YN28eAH379mXKlCk88sgjnDp1in79+tGrVy9uuukm3n77bQB27NhB//792bFjBzfddBPbt29n4cKF6thmzJjB3LlzuXDhAsHBwfz73/+u0vdklpyczCOPPML+/ftp3749//znP9XXMjMzmT59Ot9//z3BwcGkpqbSq1cvBgwYQFBQULX6uZZGFaB5e3uXe+J9To7pL1l5s1lmXl5e5c6wme81z6R5e3sDVNiP5Syct7c3p0+fLnNdQUEBJSUllY4HoEuXLoSGhla6dw5gzJgxDBgwQP06Pj6eN998s9J7hBDNQ8Kli+rjduFh1b7f2cmJVi1akJiURG5+PmmZmQRcVU6oKUotySG5pOzv+br21Vdf0a1bN/R6PdOnT+f555/n/fffZ/369Rw+fFgtA2UwGNQkuOHDhzNz5kwmTJjAyJEjraoQ1JWBAwfSunVrAPr378+//vUvwLR0+fzzz7Nnzx4URSE5OZmoqCg1QLvtttusDhh3cXFRk+xycnKIiYlhypQpALRv356BAweyZ88e9ZqzZ8+yfft2/vGPfzBnzhyys7M5efIk119/vdrmBx98wG233YaiKLz66qtMnjy5WrNc+/fvp2fPnrQv3aP58MMP88wzzwDwyy+/cPbsWau954qicOLEieYdoEVGRrJ9+3b0er3Vp0Tz1GqbSjKXIiMj1c2QlszPRZZO85vbOHv2LP3797e69uzZs1Z9REZGsmPHDtLS0qz2oVVlPJbs7CpfaQ4ICGhwmxeFEPVPURQSLl4CwNHBgeDAwBq10yY0RD2jMy7xQrMI0AIcy255qc/2HRwcGD9+PHPmzOH9999HURTmzp3L5MmTy1y7cOFCjh49yq5du5g0aRITJ07kueee02roVWJ5ALi9vb06i7tw4ULS0tI4cOAALi4uzJo1i8LSo8cAPDw8rNpxd3dXZ2zNS6EVrWgNHz6czZs3c/r0aYYMGYLRaOTrr79m4MCB5c4c63Q6/va3v6l70BwcHNRCzoDVuCwpilLhLLKiKPTo0cMqYbC2NKoAbdCgQWzcuJGffvrJqjDtli1bCAgIoEuXLhXeO3jwYBYuXMixY8fU6/R6PT/88ANdunRRA6DAwEA6d+7Mtm3buOeee9RPLEePHiUhIYG77rpLbXPgwIGsWLGCLVu2MHHiRPX5zZs34+zsTN9rFH48evQoiYmJZYraCiFEVSSnp1NQVASYsjcrKjN0LREhIew+/CsA5xITub57xUVum4qqLD/WtZ07d9KxY0fAtHKyePFi7rjjDvz8/CgpKeHIkSNER0cTGxtL165d6dq1Kw4ODmzbtg0wrRSVt/pTFVffe+HCBYYPH05s6dFhVZWRkUFQUBAuLi5cvnyZL7/8kr/97W9VHkNUVBRr1qzh4Ycf5syZM+zdu1ddohwxYgTPP/88gwcPBmDYsGG89tprPPvssxW2uWPHDvU9bdOmDXFxceqkytq1a8u9p1+/fkyePJnTp0/Trl071qxZo752ww03cOrUKXbu3MmNN94ImGqndunSxapGqhYaVYDWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dq/5yWrBgAVu3buWzzz5TpxxHjRrFunXrmDdvHtOnT1cL1SYkJLBo0SKrfh599FFmzZrFvHnzGDdunFqotk2bNlbTmm3atGH06NGsWrUKOzs7OnfuzKFDh9i4cSNTp061WuJ8+OGHGTlyJK1bt8bJyYnjx4/z2Wef4efnp07dCiFEdZhnzwDCWwXXuB1Pd3cCfH1JzcggJSOD3Px8POQA9Tph3oNWUlJCREQES5cuBeCBBx4gLS2NoUOHotPp0Ov1TJkyhejoaF588UVOnjyJk5MTbm5uLFmyBIBHHnmEZ599lnfffZf58+czatSoKo/j6nsDAwOrvZ8RTPu/7rrrLqKioggJCVFrllbVJ598wvTp0/nnP/+JTqdjxYoVhIWZlu6HDx9OQkKC2uZNN93Ee++9V6YP8x40o9GIr6+vGmCFhIQwe/ZsevfuTUREhBroXa1ly5YsXbqU0aNH4+/vz+23346joyNubm7Y2dmxceNG5syZwzPPPENJSQnh4eFqMoOWdIp5TrGRyM/PZ/ny5VZHPd1///1WM2rz589ny5YtfPHFFwQHX/mllZ6ebnXUU/v27ZkyZYpVVofZoUOH+Oijjzh16pR61NPjjz9e7lFPH3/8MZs3byY9PZ2goCDuvPPOMrNir732GrGxsaSnp1NSUkJAQAB9+/Zl0qRJ1V6+PHHiBNOmTWP58uXqJwMhRPPz9dZtXE5LA+CBsWOqXP+sPIf++otDfx0BYPD1va1qpDV2hYWFxMXF0aZNG6ulOVGxhQsX0qJFC+6///76Hkq9sNxzvmrVKlauXMmePXuqfL8WP3ONLkATEqAJIaCgsIhV33wDgJ+3N/eMrvpsSXmS09P5astWANqGhXHzoIE2j7GhkABNVNdbb73Fl19+iV6vx8/Pj2XLltG5GidtaPEz16iWOIUQQpicv3RlebN1q1Y2txfg44OToyPFJSVcTEmudKO0EE3dyy+/zMsvv1yvY2hUhWqFEEKYJF5OUh/bsv/MzM7OjqDSLNCCwiIys2uvRpgQ4tokQBNCiEboUrLpBBI7OztaalSGJ6TFlTIdcuyTEPVLAjQhhGhk8gsKyCo9dqalvz8ONSyvcbVgiwKiEqAJUb8kQBNCiEbmksX5vUGB2hWxDvTzU0srXExORnLIhKg/EqAJIUQjYxmgtQpsUcmV1WNvZ0dQ6XJpXkEB2aWzdKJ2RERE0KlTJ6KioujcuTP33XcfeXl5NW5v9erVnDx5ssLX9+/fT/fu3YmOjmbr1q2MGjVKPU3nWvde3Y/56Ka68uqrrzJ79my1fx8fH6KiooiKiuK6665jw4YNVWpn6NChfPfdd7U5VM1IgCaEEI2Mef8ZaDuDBtDKah9aSiVXCi189dVXxMTEcOzYMbKzs1m9enWN27pWkLVmzRoefPBBfv/9d26++WY2bdpE27Ztq3RvTVkeraSlESNGEBMTQ0xMDMuXL2fq1Km10k99kgBNCCEakeKSElIzMwHw9/HBWePjZVrJPrR6UVRURF5enlUx9Pfee48+ffrQs2dPRo0axfnz5wHYuHEjPXr0ICoqim7durFhwwZWrFjB4cOHmTFjBlFRUWzatMmq/QULFvDFF1+wePFioqKiyMzMJCIigiNHjlzz3vJkZWUxfvx4oqKiGDJkCAkJCYAp0Lvlllt48MEH6d27NwcPHmTLli307NmTHj16MGTIEI4dOwZAUlISw4YNo1evXnTt2pUZM2aoy+pZWVlMmDCBLl26cPPNN3P69OkKx5Kenm71vpm/L7PevXvz448/lrnPfJxV165due2227jtttvUY6VycnKYNm0affr0oUePHjz66KOUlJRc833RktRBE0KIRuRyaqr6j1hND0evTEt/f+zs7DAajVxOTdW8/YbiwRmvkJZRs3Mrq8Lf15uPP3jtmteZj3qKi4ujV69e3H333QB8+umnnDx5kn379mFvb8/atWt58skn2bBhA3PnzmXp0qXccMMNGI1GsrOz8fHx4f/+7/+YPXs2t912W5l+XnjhBWJjY+nduzdPPvmk1WtTp06t9N7y7Nmzh5iYGDp27Mg777zDo48+qgZ2e/bs4ffff6d9+/YkJyfTpUsXdu3aRffu3fnkk0+4++67OXLkCD4+PmzcuBEPDw8MBgNjx47l66+/ZsKECbz++ut4eXlx7NgxUlNT6dmzp/reAGzfvp2oqCjy8/O5cOECX3zxRZXGbWnGjBkMGzaMuXPnkpCQQLdu3bjlllsAePbZZxk8eDDLly9HURSmTZvGv//9b5555plq91NTEqAJIUQjYrn/LFjj5U0Ae3t7Anx9SU5LIzMnh6LiYs1n6RqCtIwsktMy6nsYfPXVV3Tr1g29Xs/06dN5/vnnef/991m/fj2HDx+mV69egGmp0Hze9PDhw5k5cyYTJkxg5MiRREVF1fm4Bw4cqJ5k88gjj/DKK6+oHxwGDhxI+9Kjwg4cOEBUVBTdu3cHYOLEiTzxxBNcunQJb29vnn/+efbs2YOiKCQnJxMVFcWECRPYtWsX//rXvwAICAjgzjvvtOp/xIgRfPXVVwAcOXKEESNG8Ntvv9GqGkWbd+3axQcffABAeHi41ZGR69evZ//+/bz//vsAFBQUaH4Y+rVIgCaEEI2IVYDWQrsEAUst/PxILj3jMyU9ndCgoFrppz75+3o3qPYdHBwYP348c+bM4f3330dRFObOncvkyZPLXLtw4UKOHj3Krl27mDRpEhMnTuS5557Taug28/DwUB9XdCKFTqdj4cKFpKWlceDAAVxcXJg1axaFhYXqfVXVrVs3wsPD2bt3L3fddRcODg5We9/MbZanotMyFEVh/fr1REZGVnkcWpMATQghGglFUUhOSwfAw80NDze3Wumnhb8fnDI9Tm6iAVpVlh/r2s6dO9VZqTFjxrB48WLuuOMO/Pz8KCkp4ciRI0RHRxMbG0vXrl3p2rUrDg4ObNu2DQAvLy+ysmq2bHv1veb9WbGxseVev3fvXk6ePEmHDh1YsWIFN954Y7nBTv/+/ZkyZQrHjx+nc+fOfP7554SGhhIUFERGRgZBQUG4uLhw+fJlvvzyS/72t78BplnCVatWMWDAANLT01m3bh133XVXuWNJTEzk1KlTdOjQAYC2bdty4MABrrvuOg4ePMiJEyfKvW/o0KGsXr2al156ifPnz7Nz5051Fm3MmDEsWLCADz/8EAcHBzIyMkhLS6Ndu3ZVf1NtJAGaEEI0EpnZOZTo9UBpEFVLWvj5q4/NAaGoHeY9aCUlJURERLB06VIAHnjgAdLS0hg6dCg6nQ69Xs+UKVOIjo7mxRdf5OTJkzg5OeHm5saSJUsA01Ljs88+y7vvvsv8+fMZNWpUlcdx9b2BgYFqTbzyDBkyhFdffZVjx47h7e3Nxx9/XO51gYGBrF27lokTJ2IwGPDx8eF///sfYNoDdtdddxEVFUVISAgjRoxQ7/v73//O5MmT6dKlC61bt+amm26yate8B01RFPR6PfPnz+e6664DTAedT5o0iZUrV9KzZ0+6du1a7tgWL17Mgw8+yBdffEGHDh0YMGAA3t6mmc9//vOfPP/880RFRWFnZ4ejoyNvv/12nQZoOkUqETY6J06cYNq0aSxfvlz9tCWEaPpOxMWxY99+APpe14NeFfzDYyuj0ciKr75Gr9fj4ebGg3eMrZV+6kphYSFxcXG0adMGFxeX+h5Oo7Bw4UJatGjB/fffX99DqTUFBQU4Ojri4ODApUuXuP7669mxY4cm/65q8TMnM2hCCNFIpKRfmc1q4Vd7M2h2dna08PPlYnIKufn55BcW4iaBTbMya9as+h5CrTt16hQPPvggiqJQUlLCK6+80qAmPSRAE0KIRiLZIkALrMUAzdS+v1qoNjktjYiQkFrtT4i61qNHD2JiYup7GBWSQrVCCNEIGI1GUtNNZSG8PDxwcXau1f4s97jJPjQh6p4EaEII0QhkZGejLy0dUNuzZwAt/C0SBdIlQBOirkmAJoQQjYDlLFZt7j8z83J3VwvUpqSlVasulRDCdhKgCSFEI2CVIFCLJTbMdDqdOlNXUFREfkFBrfcphLiiRkkCWlTWnTlzJjNmzLC5HSGEaA7qMkHALMDXh8SkJABSMzNxr6XCuEKIsmo0g3bu3DkyMjJQFKVGf+Lj48nMzNT4WxFCiKbJYDSSlmFKEPDx8sTJ0bFO+vX38VEfp8nvbM1FRETQqVMnoqKi6Ny5M/fddx95eXk1bm/16tWcPHmywtf3799P9+7diY6OZuvWrYwaNYozZ85U6d5r9TthwgQAvv32W+bMmVPp9a+++iqzZ8+uUV/NSY3LbDzzzDPMmzevRvfa2cnKqhBCVFVGVhYGoxGAQN+6mT2DqwK0jMw667c5MR+WrigKt99+O6tXr+aJJ56oUVurV68mICBAPfLoamvWrOHBBx9UA6ibb765yvdW1ZgxYxgzZoxNbQgTiZSEEKKBs5y98vf1qbN+fb281A/UMoNWu4qKisjLy8PX11d97r333qNPnz707NmTUaNGcf78eQA2btxIjx49iIqKolu3bmzYsIEVK1Zw+PBhZsyYQVRUFJs2bbJqf8GCBXzxxRcsXryYqKgoMjMziYiI4MiRI9e892rFxcVMnz6dDh06MGzYMA4cOKC+ZjmbdurUKQYMGMB1111H9+7dmTt3bpm2jh07Rvfu3dm8eXON37umqkYzaKdOncLPhj0Qtt4vhBDNiWVwFGAxq1Xb7O3t8fXyIi0zUy3z4WBvX2f916Yvt2yt1cQHN1dX7rrl5mteZz6LMy4ujl69enH33XcD8Omnn3Ly5En27duHvb09a9eu5cknn2TDhg3MnTuXpUuXcsMNN2A0GsnOzsbHx4f/+7//Y/bs2dx2221l+nnhhReIjY2ld+/ePPnkk1avTZ06tdJ7r7Zs2TLi4uI4evQoJSUlDB48mIiIiDLX/fvf/2b06NG89NJLAKRfVa5l586dPPXUU3zyySdERUVds9/mpkYBWtu2bW3q1Nb7hRCiOUm1WF70t5hhqQv+Pj6kZWaiKAoZWVl1lqBQ2/ILCshrAJmp5iVOvV7P9OnTef7553n//fdZv349hw8fplevXgAYDAbsS4Pj4cOHM3PmTCZMmMDIkSPrPLjZtWsXkyZNwtHREUdHR+6//3727NlT5rrBgwczZ84c8vLyGDJkiNVh6D/88AObNm1i69athIWF1eXwGw1Z4hRCiAbOPIPm4uxc52diWi6pNqVlTjdXV9xr8Y+bq2u1xuPg4MD48ePZsmULAIqiMHfuXGJiYoiJieGvv/5SjyVauHAhq1atws3NjUmTJvHOO+9o/fZUqqo18caPH8/evXvp2LEj//73v61m59q3b4+iKBw8eLC2htnoyVmcQgjRgOUXFFBQWAiYljd1Ol2d9h/QRBMFqrL8WNd27typHtY9ZswYFi9ezB133IGfnx8lJSUcOXKE6OhoYmNj6dq1K127dsXBwYFt27YB4OXlRVZWVo36vvreCxcuMHz4cGJjY8tcO3z4cNauXcvf/vY3SkpK+PTTTwkPDy9z3alTp4iMjOTBBx+kT58+3HDDDeprERERfPDBB9xyyy3k5eXx4IMP1mjcTZmmAVpGRgYbN26UN1oIITSSapkgUIf7z8rrsynNoDUU5j1oJSUlREREsHTpUgAeeOAB0tLSGDp0KDqdDr1ez5QpU4iOjubFF1/k5MmTODk54ebmxpIlSwB45JFHePbZZ3n33XeZP38+o0aNqvI4rr43MDAQB4fyQ4RHHnmEP//8ky5duhAaGsqgQYOIj48vc92XX37JJ598gpOTE4qiqN+bWatWrdi5cye33HILubm5PP7441Ueb3OgUzQ8v+OPP/6gZ8+eGErPixO148SJE0ybNo3ly5ern7aEEE3T78ePs+/3GABu7NeXThoUCq+uVd+so6CwEBdnZx6+c1ydz+LZqrCwkLi4ONq0aYNLHS8RN1YLFy6kRYsW3H///fU9lEZJi5+5as2gJSQkVPr6xYsXazQIIYQQ5bNcVgyo4wQBM38f04kChUVF5BcW4l7N/VWi8Zk1a1Z9D6HZq1aAFhERUeknJ0VRGt0nKyGEaMjMy4p2Oh2+Xl71MgZzgAamgFECNCFqX7UCNF9fX+bPn8/QoUPLff348eOMHz9ei3EJIUSzZzAYyMjOBsDHy0sts1DX/H281ccZ2VmEtwqul3EI0ZxUK0Dr1asXKSkpFe57KiwsrHL6rRBCiMplZGdjLD3iqS5PELiar9eVAC09K7vexmEr+fdJ1BUtftaqFaA99thjlR7kGh4ezqpVq2welBBCiPo7QeBqvt5XllYzaljGoT45Ojqi0+lISUkhMDBQtuKIWqUoCikpKeh0OhwdHWvcTrUCtHHjxlX6uq+vL5MmTarxYIQQQlyRbhEM+Xn71Ns4nBwd8XBzIzc/n4ysrEa339je3p7Q0FASExM5d+5cfQ9HNAM6nY7Q0FCbtiVIoVohhGigMiyWE/0s9oHVB19vL3Lz8ykqKWmUmZweHh60b9+ekpKS+h6KaAYcHR1t3jNqc4Bmb29PXFxcuVWEhRBC1Jx5Bs3BwQEPN7d6HYuflzfnL5kyOTOyshpdgAamf6/qK9FCiOqy+SxO2XQphBDaK9Hryc7NBcDPy6velxR9vZtGooAQjYUcli6EEA2QubwG1P/yJjT+RAEhGhsJ0IQQogFKz7wSBFnOXtUXyzFkZEuAJkRtkwBNCCEaoAyrDM76D9BcnJxwK913JkucQtQ+CdCEEKIBSm9gARqY9sIBFBYVUVBYWM+jEaJpkwBNCCEaIHOA5tgAMjjNJFFAiLojAZoQQjQwJSUl5JSe2uLn7V3vGZxmkiggRN2xOUB7+eWX8anHI0iEEKKpsczgbAgJAmZ+kiggRJ2pcaFavV6Pg4MDb7zxhpbjEUKIZs96/5lXJVfWLR9PT/VxRnZOPY5EiKavxjNorVq1Yvbs2Rw/flzL8QghRLPXEBMEAFxdXHAqPfw5M1v2oAlRm2ocoGVlZbFw4UK6devGDTfcwMqVK8ktrXothBCi5izP4GxIS5w6nQ6f0kzO3Px89Hp9PY9IiKarxgHapUuXWLRoEd27d2f//v088sgjBAcHM2XKFPbs2aPlGIUQolkxz041hDM4r2a5zJmZI8ucQtSWGgdofn5+PP3008TExHD48GEee+wxnJycWLVqFUOGDKFz5868++67XL58WcvxCiFEk6Y3GMguzeD09fRsMBmcZuYZNJAATYjapEmZjZ49e/Lvf/+bS5cu8emnnzJ8+HBOnTrFCy+8QFhYGOPGjeO7777DaDRq0Z0QQjRZWTk5KIoCgE8DShAw8/WymEGTfWhC1BpN66A5OTlxzz33sG3bNs6dO8err75KWFgYGzZsYOzYsYSFhWnZnRBCNDmWQY+vV8ML0Kxm0CSTU4haU2uFakNDQ/n73//Opk2bGDBgAIqikJSUVFvdCSFEk2CVIODVcBIEzLw9PNTHMoMmRO2pcR20yuTl5fG///2Pjz76iF9++QVFUXBzc2PChAm10Z0QQjQZGQ18Bs3BwQFPd3dy8vLILF2ObWj75IRoCjQN0Hbv3s1HH33EV199RX5+PoqicP311zNlyhTuvfdePC2yf2oqPz+fFStWsGvXLnJycggPD2fixIkMHz78mvdmZGSwZMkS9u3bR2FhIe3atWPq1Kn06tWrzLWHDx9m5cqVnD59GhcXF/r3789jjz2Gr6+v1XV6vZ61a9eyefNm0tLSCA4OZty4cYwfP77Ssbzxxhv88MMP9O/fn7fffrt6b4IQoskyz0rpdDq8PT2ucXX98PHyJCcvj+KSEgoKC3Fzda3vIQnR5NgcoF24cIE1a9awevVqzpw5g6Io+Pv7M3XqVKZMmUK3bt20GKdq7ty5xMbGMn36dMLCwti+fTuvvfYaRqORm266qcL7iouLmTlzJrm5uTz11FP4+vqybt06Zs+ezaJFi4iKilKvjYmJYc6cOfTv35/58+eTkZHBsmXLmDlzJsuXL8fJyUm9duHChWzbto0pU6bQqVMnDh48yAcffEB+fj4PPPBAuWPZt28fe/bswd3dXbP3RQjR+CmKos6geXl4YG9vX88jKp+PpxfnL5m2rGRk50iAJkQtqHGA9r///Y9Vq1axfft2DAYDdnZ2jBw5ksmTJ3PHHXfgWFptWkv79u3j8OHDzJs3jxEjRgCmDNKkpCSWLFnCjTfeWOEvtO+//564uDg+/PBDNWiMjo5m8uTJLFmyhGXLlqnXfvjhh4SFhfH666/j4GB6i4KDg3niiSfYtGkTd9xxBwBxcXF8//33TJs2jXvvvVdtMzs7m48//pixY8fiddUSRW5uLu+99x5Tpkzhq6++0vT9EUI0brn5+egNBqBhLm+a+VqV2sgmpGWLehyNEE1TjZME7rnnHrZu3UpYWBivvfYa586dY/Pmzdx11121EpyBaQnV1dWVoUOHWj0/atQoUlNTOXbsWKX3hoeHW83oOTg4MHLkSI4fP05KSgoAKSkpxMbGMnLkSDU4A+jevTthYWH8/PPPVm0qisKtt95q1dett95KUVERBw4cKDOO//znP/j7+19zCVQI0fxYJwg03ADNR0ptCFHrajyDds899zBlypQq7f3SSlxcHK1bt7YKnADatm2rvt69e/dy7z179izXXXddmect7w0MDCQuLs7q+auv/euvv6zG4+Pjg7+/f4VtWjp8+DBbt27lv//9b4NduhBC1B/LBAGfBh2gSakNIWpbjQO0Tz/9VMtxVElWVhatWrUq87w5+SC7kk9y2dnZ5SYpXH1vVukhxVcvTZqvtewjKyur3OtcXV1xdHRU2wJTcsM777zDPffcQ7t27SocZ3lSU1NJS0tTv46Pj6/W/UKIxsGqBloDLFJr5u7qioO9PXqDgaxcCdCEqA2aZXHq9Xr+9a9/8dlnnxEbG0u+xUG6MTEx/Pe//2XmzJl06NDBpn5sSeeu7N6rX6vo2ur0b3ntsmXLcHBwYNKkSVW+3+zbb79l9erV1b5PCNG4NJYZNFOGqSdpmZlk5+ZhNBqxs6u1sppCNEuaBGgFBQWMHDmSX375hYCAALy8vMgrPUsOoE2bNqxatQo/Pz/efPPNGvfj7e1tNStlllN6Hlx5s1lmXl5e5c6wme81z6R5e5sKQ1bUj+UsnLe3N6dPny5zXUFBASUlJep4jh07xvr163nzzTcpLi6muLgYAKPRiMFgICcnB2dnZ6vsUEtjxoxhwIAB6tfx8fE2vY9CiIYpq/T3kauLMy4V/D5oKLw9PUjLzMRoNJKbn4+XR8MsCSJEY6XJR5758+ezd+9e/vGPf5CUlMTUqVOtXvf29mbIkCFs3brVpn4iIyOJj49XZ+bMzp49C5gCwcruPXPmTJnnzc9FRkZatWFu8+p+LPuIjIwkMzPTavmxvPHEx8ejKAovv/wyo0ePVv8kJydz8OBBRo8ezfr16ysce0BAAB07dlT/tG7dusJrhRCNk16vJ6+gAAAvD9trRtY2b4sxZsmh6UJoTpMA7YsvvmDo0KE899xz6HS6cpcBIyMjSUhIsKmfQYMGUVBQwE8//WT1/JYtWwgICKBLly4V3jt48GASEhKsMj31ej0//PADXbp0ISAgAIDAwEA6d+7Mtm3bMJSmuwMcPXqUhIQEhgwZoj43cOBAdDodW7Zssepr8+bNODs707dvXwD69OnD4sWLy/zx8/Oja9euLF68uExmqhCiecnOvbLq4N0IZqMsi+hm5ebW40iEaJo0WeJMSEhg3LhxlV7j5eVV7rJhdfTr14/evXuzcOFC8vPzCQkJYceOHRw4cIC5c+eqmZELFixg69atfPbZZwQFBQGmUhzr1q1j3rx5TJ8+XS1Um5CQwKJFi6z6efTRR5k1axbz5s1j3LhxaqHaNm3aWJXUaNOmDaNHj2bVqlXY2dnRuXNnDh06xMaNG5k6daq6xOnv718m0xNMh8t7eXkRHR1t0/sihGj8si2CnMawXOjtKTNoQtQmTQI0T09PtY5YRc6cOUNgYKDNfb355pssX76clStXqkc9vfLKK1blPsx7uxRFUZ9zcnJi0aJFLFmyhMWLF1NYWEj79u159913rU4RAFOx2XfeeYePPvqIF154QT3q6fHHHy+zT2zWrFkEBATwzTffkJ6eTlBQEDNmzJA6Z0KIarHMhmyoRzxZsg7QZAZNCK3pFMsopoZuv/129u/fz+nTp/H29ua1117j9ddfV5cIExMT6dixI3fccQeffPKJzYNu7k6cOMG0adNYvnw5HTt2rO/hCCE0sPvwYf46eQqAcTeNIFiDD7S1SVEU/vu/LzEYDPh6eXHvbaPre0hCNCma7EGbM2cO6enpjBgxgl9++UXdxJ+fn8+OHTsYOXIkJSUlzJo1S4vuhBCiybGchWoMe9B0Op06zqzcXIxGYz2PSIimRZMlzsGDB/Of//yHGTNmMGjQIPV5c0kKe3t7PvzwQ3r16qVFd0II0eRk55kCNAd7e1xdXOp5NFXj7elBelYWRqORvIICPN3d63tIQjQZmhWqffTRRxkyZAhLly7lwIEDpKen4+XlRd++fXn88cfp2rWrVl0JIUSTYjQa1SxOLw8Pmwpy16WrEwUkQBNCO5oFaACdO3dm8eLFWjYphBBNXl5BgbpE2BgSBMysa6HlEhpUj4MRoomp07M5ZI+CEEKU1dhKbJhZ10KTUhtCaEmTAG3FihXXvMZgMHDfffdp0Z0QQjQploVevRvBKQJmUmpDiNqjSYD22GOPsWHDhgpfVxSFiRMn8uWXX2rRnRBCNCnZOZYzaI1nH5e7q6t6SLoUqxVCW5oEaP369ePee+9l9+7dZV4zB2f/+9//ePTRR7XoTgghmpQsqyXOxjODZmdnpy7JZufmokFZTSFEKU0CtO+++462bdsyZswY/vrrL/V5RVF44IEH+Pzzz5k+fTr/+c9/tOhOCCGaFPMeNJ1Oh6e7Wz2Ppnp8Spc59QaDeti7EMJ2mgRo3t7ebN26FW9vb2655RbOnTuHoijcf//9fPrppzzyyCMsWbJEi66EEKLJMQdoHm5u6pnCjYVlUV1Z5hRCO5plcbZq1Ypt27ZRXFzMyJEjuffee/nss8+YOnUqS5cu1aobIYRoUgqLiykqLgYaVwanmSQKCFE7NC2z0aFDBzZv3kxSUhJffvklU6ZM4b///a+WXQghRJOSbTHr1BiOeLqal5TaEKJW1KhQ7euvv17p63369CEmJoaQkBCra3U6HX//+99r0qUQQjRJ5hMEwDrYaSxkBk2I2lGjAO3VV1+t0nVXB3ISoAkhhDXLWafGuMTp6eaGnU6HUVFkD5oQGqpRgLZr1y6txyGEEM1StlWR2sYXoJlLbWTm5JBVWmqjsZwlKkRDVqMAbciQIVqPQwghmqWsnMZ5zJMlL09PMnNy0Ov15BcW4u7qWt9DEqLRq9OzOIUQQlgzz6C5ODvh7ORUz6OpGSm1IYT2JEATQoh6YjAYyM3PB8DLvXHOnoEkCghRGyRAE0KIepKd17gzOM28pdSGEJqTAE0IIeqJdYJA4zmD82o+MoMmhOYkQBNCiHqSbZUg4F6PI7GNh7u7mrkpe9CE0IYEaEIIUU+yci0DtMY7g2ZvZ4enuynAzMrJQVGUeh6REI2fBGhCCFFPrJY4G/EeNLgy/hK9noKionoejRCNn6YBWkZGBh9//LGWTQohRJNlDtDs7ewafe0wyz10sswphO00DdASEhJ4+OGHtWxSCCGaJEVR1ADN08Oj0Vfft8rklEQBIWxWrZMEEhISKn394sWLNg1GCCGai/yCAvQGA9A4j3i6muUMmuXSrRCiZqoVoEVERFT6KU/OYBNCiKqxThBo/AGal9RCE0JT1QrQfH19mT9/PkOHDi339ePHjzN+/HgtxiWEEE1aU0oQAPByv1ImJFuWOIWwWbUCtF69epGSkkLHjh3Lfb2wsFDSq4UQogqym9gMmoODA+6uruQVFJCdJwGaELaqVoD22GOPkWdxNMnVwsPDWbVqlc2DEkKIpi4rp2kFaGD6PvIKCigoLKK4pAQnR8f6HpIQjVa1ArRx48ZV+rqvry+TJk2yaUBCCNEc1PUMWlFxMXq9AXe32ivn4e3pwaWUFMD0/QX4+tZaX0I0ddUK0IQQQmjDHKC5u7riYG9fa/0c+O0IG7b9zM8HfkcxKjz64J1MHHcLdnba1ym3DDSzJEATwiYSoAkhRB0rLilRq+3XZoLA19/vZMF/1lg998HKL9j361+89fxj+Hp7adqfZbkQSRQQwjY2f4Syt7e/Zn00IYQQV9TF8mZGVjb/Xv2lRT9XDjQ/FHOM1xau0LxPy/NEs6QWmhA2sTlAk6xNIYSonro4JH3Z/60jNy8fgFuH3cDWTz/gP289h6+3qb+9h/4g9vQ5Tfu0nA3MllpoQthEDksXQog6Zrn85+3hXsmVNXP6XCLrNu8CwM3VhRlT/oaDgwPXR3Vh2sQryV5r/vedpv06OzmpmZuyxCmEbSRAE0KIOlbbM2jL1n6N0Wha3Xjo7tsI8PNRX7v9pkH4+Zj2nu3Ye5j4xCTN+tXpdOo+tJz8fAxGo2ZtC9HcSIAmhBB1zHL5T+skgZzcPPYc+gOAAD8f7ht3s9XrLs5O3HuH6TlFUVj71fea9m8+8klRFHIrqZsphKicBGhCCFHHsnNNgYuToyPOTk6atr37QAx6vekQ9hGD+pTb/oTRN6r10Dbt/IX8gkLN+rcqtSHLnELUmARoQghRhwxGIzmlM0teHh5qZqVWduw9pD4ePvD6cq/xcHfjlqH9ACjR6zkUc0yz/q1KbUgmpxA1JgGaEELUody8PDX73VvjEht5+QXs//UIYFre7NG5XYXXDrg+Sn2851CMZmOwLlYrmZxC1JTNAdrLL7+Mj4+PBkMRQoimz6oGmsb7z/Ye+oPikhIAhvbvVelpAddf11nNuPzl0J+alUzy9ryS9GBeyhVCVJ/NAdobb7yBl5e21aiFEKKpyqrFIrU79x5WH1e0vGnm4uJMrx6dAEhOy+BU3HlNxuDu6qoGhjKDJkTN1eoSp6IonDp1isTExNrsRgghGg3LGTQtlziLiovZW5q96evtSVS3Dte8Z2Cf69TH5nttZWdnh5e7qbZbdm6eFDMXooY0CdA2bNjA5MmTycjIUJ87d+4c3bt3p1OnTrRu3ZqJEydilJo4QohmzjKzUcsZtOOnzlFYVAzADddfV6UD2C33oWkVoMGV70uv11NQqF2GqBDNiSYB2tKlSzl06BC+vr7qczNnzuTYsWMMGzaMHj168Pnnn7Nq1SotuhNCiEbLPINmp9Ph4eamWbsxR0+qj3t261ile0KCAmkT1gqAv2JPk5mtTdalZW03OZNTiJrRJEA7evQoffr0Ub/Oyspi06ZN/O1vf2P79u0cPHiQzp07s3LlSi26E0KIRklRFDVA83R3r3QTf3VZBmjXdbn28qbZDdf3AMBoVPj9SKwmY5FaaELYTpPfDikpKQQHB6tf79mzB71ez7333guAo6MjN910E6dPn9aiOyGEaJQKiooo0esBbTM4jUYjfxw7BYCfjxfhIS2rfG+URTB35MRZTcbj7WGZySkBmhA1oUmA5uXlRVpamvr1jz/+iJ2dHYMGDVKfc3R0JE+O/RBCNGPWh6Rrdwbn2fgL5OblA6bZs+oUv+3Wqa36+OiJM5qMx8tTaqEJYStNArROnTqxceNG0tPTycrK4vPPP6dnz55We9Li4+Np2bLqn+qEEKKpsaqB5uGuWbu/WyxvRnVtX617A/x8CAr0B+DYyTj0BoPN4zFncYJ1UCqEqDpNArQZM2Zw8eJFQkJCCAsL4+LFizz66KPq6waDgT179nDddddV0ooQQjRt1jXQtJtB+8MqQKtagoAl8yxaQWERZ+Mv2DweBwcH3F1NZ33KEqcQNaNJgDZ+/Hj+85//0LVrVzp06MA//vEPJk+erL6+Y8cO8vPzueWWW7ToTgghGqVsi+U+bw33oMUcMwVori7OdGgbXu37u1sscx7RapmzNFGgoKhIPd1ACFF1Dlo19Nhjj/HYY4+V+9rIkSOtaqQJIURzZHn0kVY10C5dTuVySjpgmgmrSv2zq3XtaBGgxZ7hzluH2Twub08PLqWkAKZZtACLLS9CiGuTw9KFEKKOmJc4XV1ccHTQ5vPxX7FXZryiqlFew1LHtq1xcDAFdkditZ1BA6mFJkRNSIAmhBB1oESvJ7+gAND2iKcTZ86pjzu3b1OjNlycnWjfxrQ0Gnf+IjkaHHJu+T1KooAQ1ScBmhBC1IHsWjok/cSZePVxxxrsPzOz3Id27GScTWMC6yQImUETovo024NWV/Lz81mxYgW7du0iJyeH8PBwJk6cyPDhw695b0ZGBkuWLGHfvn0UFhbSrl07pk6dSq9evcpce/jwYVauXMnp06dxcXGhf//+PPbYY1alQ8B01tzatWvZvHkzaWlpBAcHM27cOMaPH2913fbt21m/fj3nz58nNzcXLy8vOnbsyMSJE+nevbttb4oQosGzOiRdowQBRVE4eTYBMB2QHuhf831e3Tq15X8btwOmRIG+PbvZNDbL7zFbaqEJUW2NLkCbO3cusbGxTJ8+nbCwMLZv385rr72G0WjkpptuqvC+4uJiZs6cSW5uLk899RS+vr6sW7eO2bNns2jRIqKiotRrY2JimDNnDv3792f+/PlkZGSwbNkyZs6cyfLly3FyclKvXbhwIdu2bWPKlCl06tSJgwcP8sEHH5Cfn88DDzygXpeVlUX37t2ZMGECPj4+pKWl8cUXXzBjxowy/Qshmp7amEFLScsgI8sU/HRs27paBWqv1qlthPr4dNx5W4eGs5MTTo6OFJeUyBKnEDXQqAK0ffv2cfjwYebNm8eIESMA6NmzJ0lJSSxZsoQbb7wR+woymL7//nvi4uL48MMP6dbN9MkwOjqayZMns2TJEpYtW6Ze++GHHxIWFsbrr7+OQ+lG3uDgYJ544gk2bdrEHXfcAUBcXBzff/8906ZNU4+1io6OJjs7m48//pixY8fi5eUFUGZGDaBv376MGTOG77//XgI0IZo4yzMptQrQTpxJUB93aNvaprbCQlqqAdWpc4m2Dg2dToe3hwcpGRnk5OdjMBqx1/DsUSGaukb1t2X37t24uroydOhQq+dHjRpFamoqx44dq/Te8PBwNTgDUzHFkSNHcvz4cVJK08FTUlKIjY1l5MiRanAG0L17d8LCwvj555+t2lQUhVtvvdWqr1tvvZWioiIOHDhQ6ffj5uaGk5NThUGlEKLpsFri1CxAs9h/FmlbgOZgb09k61YAnL+YRGFhkU3twZUjnxRFIVeO+hOiWqodoBmNRo4cOcLFixfLvFZSUmIVwGgtLi6O1q1bWwVOAG3btlVfr8jZs2fV6yq71/zfiq617CMuLg4fHx/8/f2rPB6DwYBer+fSpUu8//77KIrCuHHjKhw3QGpqKidOnFD/xMfHV3q9EKLhMQdoDvb2uLq4aNLmibOWCQK2BWgA7SLCADAaFc4mlP0dX11WpTZkmVOIaqnWEmd8fDyjRo3i+PHj6HQ6Ro8ezapVq9QAJT09nWHDhmHQ4Cy38mRlZdGqVasyz3t6mrKFsrOzK7w3Oztbva6ye7OysgDUpcmrr7XsIysrq9zrXF1dcXR0VNuyNGnSJBISTMsS/v7+vPfee3TsWPnRLN9++y2rV6+u9BohRMNlNBrJLp1B8vb0tGmvmKWTpTNobq4uhLVqYXN75gAN4PS583TpULOyHWZWpTYkk1OIaqlWgPbcc88RGhrK1q1byczM5Nlnn2XAgAHs3LlTDZwURamVgZrZ8outsnuvfq2ia6vTf3nXvvHGGxQUFJCcnMyGDRuYM2cO//jHP4iOjq6wnTFjxjBgwAD16/j4eN58880qj0MIUb9y8/MxGo2AdvvPsnPyuHg5FYD2bcKw02B/V7s21gGarayL1UompxDVUa0A7aeffmLr1q2EhoYSGhrKli1beOSRRxg0aBC7du3C2dlZs0+G5fH29i53Vionx/QXv7zZLDMvL69yZ9jM95pn0ry9vQEq7MdyFs7b25vTp0+Xua6goICSkpJyx9OmjekTaZcuXRg4cCBTpkzhgw8+YNWqVRWOPSAggICAgApfF0I0bFm1UGLDXF4DoENkzeufWWpvEaCdirM9UcDb4velzKAJUT3V+siVn5+Ps7Oz+rVOp2P58uWMHDmSwYMHc+aMNkeEVCQyMpL4+Hj0er3V82fPngWuBD8V3Vve+MzPRUZGWrVhbvPqfiz7iIyMJDMzk7S0tGqPB0xJCh06dOD8eds/qQohGi7LMhPeHmW3WtSEdYFa2/efAfj5eOHnY/pgeTruvM0rIu6ururMnuxBE6J6qhWgdezYkcOHD5d5fsmSJYwaNYrbbrtNs4GVZ9CgQRQUFPDTTz9ZPb9lyxYCAgLo0qVLhfcOHjyYhIQEq0xPvV7PDz/8QJcuXdQZqsDAQDp37sy2bdus9tIdPXqUhIQEhgwZoj43cOBAdDodW7Zssepr8+bNODs707dv30q/n6KiIo4dO0ZISMi1v3khRKNlubyn1QzaKYslSK1m0ODKPrTM7BzSMsquJFSHnZ0dXu7ugGkGrba3wAjRlFRrifPOO+/k008/5f777y/z2ocffoiiKFb1xLTWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dq5arWLBgAVu3buWzzz4jKCgIMJXiWLduHfPmzWP69OlqodqEhAQWLVpk1c+jjz7KrFmzmDdvHuPGjVML1bZp08aqpEabNm3URAk7Ozs6d+7MoUOH2LhxI1OnTrVa4nzssccYMGAArVu3xsPDg6SkJNavX8/FixdlP5kQTVxt1ECLS7gAmFYy2oSVTZ6qqXZtwjgYcxQw7UML8POxqT0vDw8yc3LQGwwUFBbi5uqqwSiFaPqqFaC9+OKLvPjiixW+vmTJEpYsWWLzoCrz5ptvsnz5clauXKke9fTKK69YHfVkNBoxGAxWn9acnJxYtGgRS5YsYfHixRQWFtK+fXvefffdMkVio6Ojeeedd/joo4944YUX1KOeHn/8catTBABmzZpFQEAA33zzDenp6QQFBTFjxowyhWm7devGzp07SUpKoqCgAG9vb7p27cqTTz4pRz0J0cSZ91/Z2dnh4eZmc3tGo5G40jIYIUGBuLg4X+OOqrPeh3aefj1t+/3k7ekBl0yPs3JzJUAToooa1UkCYCru+vTTT/P0009XeM1LL73ESy+9VOZ5Pz8/Xn755Sr1c/3113P99ddf8zoHBwcmT57M5MmTK73uiSeeqFK/QoimRVEUNUnAy91dk2zLyynpFJQWkm0Trt3sGUC7iFD18RkNThS4uhZacGCgzW0K0Rw0qpMEhBCisSkoLFQTm7zKqcVYE2dLlzcBIsO13cPaJrwVdnambPzTGgRolkkRkskpRNXZHKDZ29urhVeFEEJYy8rR/oin2gzQnJ2cCAkyFb2NT7yk1m+rKS9PqYUmRE3YHKBJVo4QQlTMMijRKkHgbLxFgNZa+yzw1qHBABQWFZOclmFTW+YsTrAuNyKEqJwscQohRC2ymkHTqMSGOUFAp9MRURpMaSki7Eqb8ecv2dSWg4MD7qWJAbLEKUTVSYAmhBC1yDIo0aJIraIoxJ03BWitWgZomsFpZhn0nUu0LUCDKzOHBUVFFJeU2NyeEM2BBGhCCFGLsnIslzjdK7myai6npJNfUAhAG433n5lZBWg2zqCB9cyhzKIJUTUSoAkhRC0yl9jwcHNTi2nbwipBoBb2nwG0tih8q+UMGsiRT0JUlQRoQghRSwqLiykqLgasDw63hXUGp7Y10Mx8vDzw8TKN91zpcqotLLNXsyWTU4gqkQBNCCFqSbbF8qZWJTbMCQKgfYkNS+ZEgdT0THLz8m1qy8ti711Wbp5NbQnRXNgcoL388sv4+PhoMBQhhGhasnK1z+C0LLERoeEZnFdrbbEPLd7GZU7rPWgygyZEVdgcoL3xxhtWh4ILIYQwsT4kXZsMTvOesOAWAbjWQganmWWpDVv3oTk7OeHk6AhILTQhqkqWOIUQopZYzhZpMYOWkZWjLje2Dg2yub3KaJnJqdPp1CXenPx8DDaeTiBEc6DpYelGo5HExEQuXLhASQW1bgYPHqxll0II0WBZz6DZHqBZLjWGh9RygKbhDBqYjnxKychAURRy8/I0S5oQoqnSJEBTFIUFCxawaNEi0tLSKr3WYDBo0aUQQjR45ppfri4u6hKfLSwDtNqeQQtuEYiToyPFJSU2nyYAZUttSIAmROU0CdBefPFF3nnnHVq0aMHDDz9McHAwDg6aTs4JIUSjUqLXk1dQAGiXwRl/IUl93DpE+yOeLNnb2xEe0pLT5xJJuHgZvcGAgw113CxPUZBitUJcmyZR1OrVq+nYsSOHDh3CQ6NfREII0Zhl10IGp/UMWu0GaABhrYI4fS4Rg8FAUnIaocEtatyW5SkKWZLJKcQ1aZIkkJuby+jRoyU4E0KIUlpncALEJ5pm0JydnWgR4KtJm5UJa3UlIEu8dNmmtiyXNGUGTYhr0yRAi4qK4uJF26tNCyFEU6F1Bqder+dCUgpgShCws6v9JPzQVi3Vx+cvJtvUlrurqzpmOe5JiGvT5G/43Llz2bBhA7/99psWzQkhRKNnGYRosQctMSlFTbJqXcsZnGbhFgFa4kXbZtDs7Ozwcjctc2bn5qIoik3tCdHUabIH7ZZbbmHNmjXceuutjBkzhuuuu67C4rUPPvigFl0KIUSDZnmKgBZLnHVZYsPMagbNxiVOMGVyZubkoDcYyC8sxN3V1eY2hWiqNAnQioqK2LBhA6mpqaxcuRIwFSa0pCgKOp1OAjQhRLNgPofTydERF2cnm9tLSLTI4KzlEhtmgX4+ODs5UlRcQqKNS5xQutRbGmdm5+ZKgCZEJTQJ0GbNmsUnn3xCjx49mDBhgpTZEEI0awajkZx8U8V/bw+PMh9Ya6KuMzjBtCwZEtyCs/EXSLyUjMFgxN6+5jtjrq6FFhwYqMUwhWiSNImivvzyS3r16sW+ffskMBNCNHu5eXnqHisvjQqyJljWQKujAA0gLLglZ+MvUKLXk5KWQVAL/xq3JbXQhKg6TZIECgsLGTZsmARnQggBZOVYZHBqXKTW39cbD7e6WxoMtSi1cd7GRAEvi2xWqYUmROU0CdB69erF6dOntWhKCCEaPasMTg1KbOTk5pGemQ3UXYKAWViwdokC5ixOgGwptSFEpTQJ0ObPn8+WLVv47rvvtGhOCCEatcycbPWxj2f5Ge3VkWAxc1XXAVqoVakN2xIFHBwc1MQAWeIUonKarEn+8MMPDB06lLFjxzJs2DCioqLKLbOh0+n4+9//rkWXQgjRYGVmX1m+8/GyfQ/a+QsWAZpFwFQXLE8T0KrURl5BAQVFRRSXlGhyiLwQTZEmAdqrr76qPt65cyc7d+4s9zoJ0IQQzUFm6R40Z0dHXJydbW7PMjAKC6nbAK1lgD8ODvbo9Qabi9WCacn3UorpRITs3FwCfGv/yCohGiNNArRdu3Zp0YwQQjR6eoOBnLw8ALy9vDQpsWE5g2a5J6wu2NvbERLUgvjES5y/lKzWtKypq0ttSIAmRPk0CdCGDBmiRTNCCNHoWW5+99GoxIZl9mRocItKrqwdYcGmAK2oqJjU9EwC/WseVFlmtWZLJqcQFar903aFEKIZsU4Q0CpAM5XYaBHgh4uL7Uum1WV9aLqNmZwWtdCyJFFAiAppEqDt3buXWbNmkZSUVO7rSUlJzJo1i/3792vRnRBCNFiWCQLeGiQIZOXkkpVjWjKt6wQBM8tEgcRLtmVyWpYdkVIbQlRMkwBt4cKFbNy4kaCg8tO/g4KC+O6771i0aJEW3QkhRIOl9Qya5cZ8y6KxdSnUYt+b5YkGNeHs5KRmbkqpDSEqpkmAdujQIQYOHFjpNYMHD5YZNCFEk5dpcYqAFgGaVQ20VnVbA80szLIWmo0zaDqdTt2HlpOfj8FotKk9IZoqTQK05ORkQkJCKr0mKCiI5GTb/mILIURDl1W6xOnu6oqjBjW+LGfQwuppiTO4hT/2dqZ/LmzdgwZXjnxSFIXc0oxXIYQ1TQI0Hx8fEhISKr0mPj4eD43OpBNCiIaosLiYgqIiQJsCtWA9g1bXNdDMHBwcCG4ZAJhm0MwHwdfU1aU2hBBlaRKg9e/fn3Xr1nH+/PlyX09ISGD9+vXccMMNWnQnhBANUpZlgoAGRzyBdQ20kKD62YMGVzI58wsK1XNBa8rbIpNT9qEJUT5NArRZs2aRn5/PgAED+Pjjj7l06RIAly5dYs2aNQwYMICCggKeffZZLboTQogGqXZKbJgCtJaBfrg4O2nSZk2EWdRfs/VEActMzqwcqYUmRHk0KVQ7aNAgPvjgA2bOnMnDDz8MmDaCmqfB7ezsWLx4MYMHD9aiOyGEaJC0PoMzKyeX7FzTHq2wekoQMLOqhXYpmeu6dqhxW94WwWumBGhClEuTAA3giSeeYMiQISxZsoRDhw6RmZmJj48Pffr04dFHH6Vbt25adSWEEA2S1hmc9XlI+tUsj5iyNVHA3dUVB3t79AaDzKAJUQHNAjSAbt268Z///EfLJoUQotHIKl3i1Ol0eGqQFJVw8UrNsfqqgWZmXazWtgBNp9Ph7elJWmYm2bm5GIxGNUtUCGEifyOEEEIDiqKoS5xeHh6aBBznG0ANNLNWQYHqIennL9peMsm8BGxUFHJypdSGEFeTAE0IITSQV1CA3mAAtEwQuBII1VeJDTMnR0eCAv0BU+Boa6kNH4ssV8vkCiGEiQRoQgihgSyN95/BlUPSdTodIUGBmrRpC/Mya25evno+aE1ZJlFYJlcIIUwkQBNCCA1YZ3DaXgNNUZQrJTYC/HB2qr8SG2aWiQK2ltrwkUxOISolAZoQQmggM9uiBpomJTbyyMnNB+p/edPMMlHhvI2JApalNrJkiVOIMiRAE0IIDVjOAnlrUWLDIoOzvktsmGk5g+bi7IyLszMgS5xClEcCNCGE0IA5QHOwt8fd1dXm9ixroNV3kVqzUMvTBC5pl8mZV1BASUmJze0J0ZRoVgetuLiY9evXq0VqDaXZTJZ0Oh0rV67UqkshhGgQDEajeqakj5enWo7CFpaHpNd3DTSzEK0DNE9PklJSAVOAG+jnZ3ObQjQVmgRo8fHx3HTTTZw5c6bS1GsJ0IQQTVFObq76u0+rQ9ITG1ANNDNXF2f8fb1Jy8giMSnF5vasS21IgCaEJU0CtGeeeYbTp0/zwAMPMHnyZEJDQ3Fw0PSQAiGEaLC0PuIJrsyg2dnpCAmu/xIbZqHBLUjLyCI9I4v8gkLcXF1q3Ja3RTJFluxDE8KKJlHUzp07GT58OGvWrNGiOSGEaFS0zuC0LLERFOiPk6OjzW1qJTS4BX8cOwXAhaRk2rcJr3FbUmpDiIppkiRgNBqJjo7WoikhhGh0tJ5By8zOITfPVGIjNLhhZHCaabkPzdvivFIJ0ISwpkmA1r9/f44fP65FU0II0ehYlonw1qBIbUM64ulqWmZyOjg44OnuDkBWdrbNx0cJ0ZRoEqAtWLCAXbt28dVXX2nRnBBCNCrm2R8XZ2dcNKj43xBroJmFBF0J0C5okihgmnEsKimhsKjI5vaEaCpqtAft9ddfL/PcsGHD+Nvf/saQIUOIjo7G29u7zDU6nY6///3vNelSlZ+fz4oVK9i1axc5OTmEh4czceJEhg8ffs17MzIyWLJkCfv27aOwsJB27doxdepUevXqVebaw4cPs3LlSk6fPo2Liwv9+/fnsccew9fX1+o6vV7P2rVr2bx5M2lpaQQHBzNu3DjGjx9vdd13333HL7/8wunTp0lPTycwMJDevXszadIkAgICbHpPhBD1p6i4mPyCAgB8NZg9A0hogDXQzCxn0C5oVAvtfJIpIM3MzsHVpeZJB0I0JTUK0F599dUKX/vxxx/58ccfy31NiwBt7ty5xMbGMn36dMLCwti+fTuvvfYaRqORm266qcL7iouLmTlzJrm5uTz11FP4+vqybt06Zs+ezaJFi4iKilKvjYmJYc6cOfTv35/58+eTkZHBsmXLmDlzJsuXL8fJ4hPywoUL2bZtG1OmTKFTp04cPHiQDz74gPz8fB544AH1uo8++ojo6GimTZtGYGAgCQkJrFmzhj179rBy5Ur8JL1ciEYpI+tKgoCvtzYB2vmLlgFaw6iBZubr7Ymbqwv5BYWa1ELztiq1kU1wi4aTsSpEfapRgLZr1y6tx1El+/bt4/Dhw8ybN48RI0YA0LNnT5KSkliyZAk33ngj9vb25d77/fffExcXx4cffki3bt0AiI6OZvLkySxZsoRly5ap13744YeEhYXx+uuvq+VCgoODeeKJJ9i0aRN33HEHAHFxcXz//fdMmzaNe++9V20zOzubjz/+mLFjx+JV+ol65cqVVrNvUVFRdOjQgUceeYSNGzcyadIkbd8sIUSdyMjOUh/7epVdOaiJRMsSG0ENK0DT6XSEBLfg1NkELiWnoTcYcKjg925VSCanEOWrUYA2ZMgQrcdRJbt378bV1ZWhQ4daPT9q1Chef/11jh07Rvfu3Su8Nzw8XA3OwLRBdeTIkfz3v/8lJSWFwMBAUlJSiI2N5ZFHHrGq5da9e3fCwsL4+eef1QBt9+7dKIrCrbfeatXXrbfeysaNGzlw4IA6q3f10ihAx44dsbe3JznZ9k+hQoj6kZGt7QyaoihqDbSgFgE4Oja8mpKhQaYAzWAwkJScZrXsWV2WZUnkTE4hrmhUZ3HGxcXRunXrMkVw27Ztq75ekbNnz6rXVXav+b8VXWvZR1xcHD4+Pvj7+1d7PGBaSjUYDLRp06bS61JTUzlx4oT6Jz4+vtLrhRB1J91yiVODPWgZWTnk5Zv2tDW0BAEzLfehebi5YW9n+qcoS2bQhFBp/tFMr9dz8uRJsrKy8Pb2pkOHDpqdKpCVlUWrVq3KPO9ZOkWebfFJ9mrZ2dnqdZXdm5VlWq7wKucXraenp1UfWVlZ5V7n6uqKo6Oj2lZ58vPzWbhwIS1atGDUqFEVXgfw7bffsnr16kqvEULUj8zSv+eODg54uLnZ3J7l/rOGVgPN7OpSG31taMvOzg5vT0/Ss7LIysnBaDRiZ9eo5g6EqBWaBWgpKSm89NJLfPbZZxSUZjSBKVi57777eOuttwgMtH3zpy2HEFd279WvVXRtdfqv6NqioiLmzp3L5cuX+ec//4nbNX6pjxkzhgEDBqhfx8fH8+abb1Z5HEKI2lGi15OdlweYZs+0OCTdKkGggdVAM7MqVpukRaKAKUAzGI3k5ufjZVHAVojmSpMA7cKFCwwYMICEhAQCAwMZPHgwLVu25PLly/z666+sWLGCH374gT179hASElLjfry9vcudlcopnRYvbzbLzMvLq9wZNvO95pk0c3mQivqxnIXz9vbm9OnTZa4rKCigpKSk3PEUFxczd+5c/vzzT95++226dOlS4ZjNAgICpBSHEA1Qpsb7zwDOX2i4NdDMtCxWC2X3oUmAJoRGe9Cee+45EhISeO2114iPj2fTpk2sWrWKTZs2ER8fz6uvvkp8fDzPP/+8Tf1ERkYSHx+PXq+3ev7s2bMAle7lioyM5MyZM2WeNz8XGRlp1Ya5zav7sewjMjKSzMxM0tLSqjSe4uJiXn75ZX7//Xfmz59fbv01IUTjYZUgoFEGZ8LFhlsDzaxloJ+aMa9JLTTJ5BSiDE0CtC1btnDLLbfw97//HZerigy6uLgwb948Ro4cyebNm23qZ9CgQRQUFPDTTz+V6T8gIKDS2ajBgweTkJDAsWPH1Of0ej0//PADXbp0UWeoAgMD6dy5M9u2bcNgMKjXHj16lISEBKsM1oEDB6LT6diyZYtVX5s3b8bZ2Zm+fa/szDAHZ7/99htvvPEGffr0qdmbIIRoMGqjBlripSslNlq1bJgz5w729urYEi8l23xEk4/FakNWTsV7iYVoTjRZ4iwuLqZnz56VXtOrVy/27t1rUz/9+vWjd+/eLFy4kPz8fEJCQtixYwcHDhxg7ty56ie6BQsWsHXrVj777DOCgkyfQEeNGsW6deuYN28e06dPVwvVJiQksGjRIqt+Hn30UWbNmsW8efMYN26cWqi2TZs2ViU12rRpw+jRo1m1ahV2dnZ07tyZQ4cOsXHjRqZOnWq1xDlv3jwOHDjAAw88gJeXF0ePHlVfc3d3JyIiwqb3RghR97SugaYoCudLTxEIbqAlNsxCgltw/uJlCgqLyMjKwc+n5gGq1QyalNoQAtAoQOvVqxexsbGVXhMbG6vJkt6bb77J8uXLWblypXrU0yuvvGJ11JPRaMRgMFh9qnNycmLRokUsWbKExYsXU1hYSPv27Xn33XetThEAU7HZd955h48++ogXXnhBPerp8ccftzpFAGDWrFkEBATwzTffkJ6eTlBQEDNmzChz1NMvv/wCwNq1a1m7dq3Va1FRUXzwwQc2vzdCiLplnkGzs7PDy8Pd5vbSM7PJKygEICykYS5vmoUGWe9DsyVAc3F2xtnRkaKSElniFKKUJgHaG2+8wU033cTq1at56KGHyrz+0UcfsWnTJn744Qeb+3Jzc+Ppp5/m6aefrvCal156iZdeeqnM835+frz88stV6uf666/n+uuvv+Z1Dg4OTJ48mcmTJ1d63c8//1ylfoUQjYPBaFTrdvl4eWpSGsIyg7OhJgiYWScKXKZH53Y1bkun0+Ht5UVyWho5eXno9XrNyjMJ0Vhp8jdg165dDBs2jClTpvDOO+8wYMAAWrRoQXJyMnv37uXEiROMHDmSnTt3snPnTvU+Lc7mFEKI+pCVk4OxdJZeqwSBxlADzUzzQ9M9PUkuTbjKzMkhoJzTV4RoTjQJ0CwPT4+NjS13uXPr1q1s3brV6jkJ0IQQjVW6RSkef2/tA7TwBloDzSwk6EpdSy1KbfhZvIcZWdkSoIlmT7MZNCGEaE7SM68EaH4+GgVoFjXQwhr4EmeIxrXQLLNgMyo5FUaI5kKTAK2+Dk8XQoj6kp6VqT728/bRpM3zpYGOvZ1dgy2xYebq4oy/rzdpGVkkJqXY3J7lOaYZlRyTJ0RzIQeeCSFEDZhn0Ozt7TXJ4FQURV3iDG4Z0Cg2yZv3oaVnZJFfmn1aU14eHmqihcygCVHDAO2+++7jm2++qXGntt4vhBD1Sa/Xk5WbC4Cfl5cmGZxpFkFOQ1/eNLNKFLDxTE47Ozu1Hlpm6aHpQjRnNfqt8vnnn3PkyJEad2rr/UIIUZ8ysrPVOoua7T+zShBo2DXQzGprH5rRaFQDYCGaqxrPocfExPDxxx9rORYhhGgULDM4Ndt/ZnUGZ2OcQdNiH5o3cB4wZXJa7ksTormpcYC2fv16NmzYUO37bD2zTQgh6lutZHBa1UBrUcmVDUdorWZyZgGhNrcpRGNVowBt1apVNnd89fFKQgjRWKRZzaA13yVOrYvVXl0LTYjmrEYB2qRJk7QehxBCNBrpmZkAODk64uHmpkmbCaUBmr29PcENvMSGmY+XJ+6uLuQVFGoyg+bj6YlOp0NRFMnkFM2elNkQQohqKC4pITc/HzAtb+p0OpvbVBSFxNIALaRlAA729ja3WRd0Op2aKHApOQ29Xm9Te/b29ni5m0qWZGRlyZYY0axJgCaEENVgtf9MowSBtIwsCgqLAAhtJAkCZuaEBoPBQFJKms3t+ZYuc+oNBjUQFqI5kgBNCCGqIc3qBAFt9p8lNKIjnq5muQ8t4cLlSq6sGstEgXQ5UUA0YxKgCSFENaRmZKiPA3x9NGmzMR2SfjXLhIbES7YHaJZBrwRoojmTAE0IIaohLSNTfezv46NJm9Y10BpHBqeZ1jNoVgFapgRoovmSAE0IIapIURRSSzM4Pd3dcXZy0qRd6wCtcdRAM7OeQdOgFpqXl5p4ITNoojmTAE0IIaooOzdXzVTUankTrgRo9vb2BLVoHCU2zPx9vXF1cQbgvMVeuppycHDA28MDMGVyypmcormSAE0IIaoo1Wp501eTNhVFUQO0kKDARlNiw0yn06mZpxcup6I3GGxu03w6g95gICcvz+b2hGiMahyg9ezZk//+979Wz23dupVZs2aVe/1rr72Gg0ONT5YSQoh6VxsJAilpGRQWFQONL4PTLKx0H5rBYCApOdXm9izLl6TJPjTRTNU4QIuJiSEpyXo6e//+/SxevLjCe6TooBCiMUsr3X8GEOCrzQya5cb61o3kiKerWdZuO39RgyOffCwTBTJtbk+IxkiWOIUQoorMM2hOjo54lla8t1V84iX1cevQYE3arGvhVgGa7fvQLDM50yRRQDRTEqAJIUQVFBYVqZXt/X18NDniCSD+wpUArbEckn41rWfQvD09sbMz/fOUblEYWIjmRAI0IYSoAuvlTR/N2o1PvDLj1Dq0cQZo1jNottdCs7ezw9fLdKJAVnYOBg0SD4RobCRAE0KIKrBMENAqgxOuLHG6uboQ4OejWbt1KcDPBxdnU004LQI0uLLMaVQUMnNyNGlTiMZEAjQhhKgCqxIbGs2gFZeUcKk067F1SJBmy6Z1TafTqRmoF5JSNC21AZIoIJonm+pe/N///R/79+9Xvz59+jQAo0aNKnOt+TUhhGiMUtLTAbDT6TQ74inxUjJGoym7PbyRJgiYhQa35FTcebXURmiwbSVD/K8qtdHexvEJ0djYFKCdPn263MBry5Yt5V7fWD8dCiGatxK9nozsbMA0s6NVMVmrDM5Gdkj61cIsxp9w4bLNAZrlDFqazKCJZqjGAVpcXJyW4xBCiAYrNSNDreMY6OevWbvWCQKNewbNsoZbwoUkbujdw6b2PN3dcXJ0pLikxGr/nxDNRY0DtNatW2s5DiGEaLDMy5sAgX7aJwhA4w/QLEuEWAaeNaXT6Qjw9eFicgp5BQUUFBapZ34K0RxIkoAQQlyDZYDWws9Ps3YTLA4Xb6w10MwsS4RY1nazhWW2bFqmzKKJ5qVGM2iTJ0+uUWc6nY6VK1fW6F4hhKgvyeYEATs7zRIEAOJLA7QWAX6NfnbIx8sTLw93snPzrAJPW1jWm0vNyCQ0qHEHsUJUR40CtNWrV5f7vE6nK/e8TfPzEqAJIRqbkpISMrNNdbj8vb2x1yhBIDM7l6zsXKDxz56B6fd869Ag/oo9w+WUdE2WJC3PO5V9aKK5qdESZ1xcnNWfM2fOcNttt+Hv788bb7zBjz/+yPHjx/nxxx95/fXX8ff35/bbb+fUqVNaj18IIWpVakbmlQQBf+2WN633nzX+AA2sS4VoMYvm6+2tZv+nyhKnaGZqNIN2dYLAggULOHDgAH/88QfBwVf+gnbs2JHBgwfz8MMPEx0dzVdffcVzzz1n24iFEKIOJVslCNRSgBbSuBMEzFpflSjQsa1tyWQO9vb4enmRnpVFZlY2BoNBsxlMIRo6TZIEVq5cyd13320VnFkKCQnh7rvvZvny5Vp0J4QQdaa2EgTizl9UH0eGt9Ks3fp0dakNLZhPbTAqCulZWZq0KURjoEmAlpiYiIuLS6XXuLi4kJiYqEV3QghRZywTBMznQ2rhbPwF9XGbJhKgWS5xapXJabkPTQrWiuZEkwAtNDSUdevWUVhYWO7r+fn5rFu3jtDQUC26E0KIOlFUXExm6QkCAT4+mi6vxSWYZtDc3VwJ9Neutlp5iowlnCtM5nxRarmJXFoJa9VC3TOmRS00ML3vZpIoIJoTTQK0qVOncvbsWQYMGMCGDRtIS0sDIC0tjfXr1zNw4EDOnTvHtGnTtOhOCCHqxOXUNPVxy4AAzdrNLyhUD0mPDG9Va8fgbc/4k7FHFtDn9+cZe3QBtx2Zz81/vcFr8V+QWJR27QaqydnJieCWpvcpIfGSJsGgv1UmZ6bN7QnRWNh0FqfZnDlzOHnyJKtWreLOO+8ETMsBRqMRAEVRePjhh5kzZ44W3QkhRJ24nJaqPg4K0O6Ip3Pnryz/RYaHaNauWaY+j/kJX7M1I6bMa5dLMvkm9QA/ZPzJO5EPcoNXR037bh0SxMWkFPIKCknLyCLAz8em9txcXHB3dSWvoEA9ckvOdRbNgSYzaHZ2dqxcuZJdu3YxadIkoqOjiYiIIDo6moceeohdu3axcuVK+UslhGhUamsGLe685f4zbQO0fEMRj5xcahWcdXQN4VbfaPp7dcRZZ/pcnmMo4IlT/+WL5L2a9t/aah+aNsuc5uzZ4pISsnJyNWlTiIZOkxk0syFDhjBkyBAtmxRCiHqhKAqXU00zaK4uLni6u2vW9tmEKxmcWiYIGBQjz8et5USBKQD0tnfjhfBx3OrbU/2AnGMo4OW4T/kp6yhGFP5x/hvCXAI0m0mzPpPzEr26d7K5zUA/P85dMH1PKelp+Hh52tymEA1djWfQVq1aRUpKipZjEUKIBiMzO4eikhLAtLyp5QpAXMKVGTQtlzgXJn7Lz1nHAPC0d2F1x6cY5dfLauye9q78s+3DPNhyKAAKCi/F/R+XizM1GYPVmZzntcnktCxvYlmXToimrMYB2pQpU2jVqhWDBg3i/fffl1MChBBNSlLqlf1nLf21W96EKxmcbq4utAzUprbawZxT/F/yzwA4YMf7kQ8T6dqy3GvtdHY8E3Ibg7w6A5Chz+O5sx+jVww2j8My4LSs9WaLQL8riQIp6ZLJKZqHGgdov/zyC7NnzyY9PZ05c+bQqVMnOnfuzEsvvcT+/fu1HKMQQtQ5ywQBLfefFRYVcyHJtPoQERasycxcsVHPW/Ffq1/PDhtLX6/2ld5jp7PjzTb3EexkCn5i8s7xdYrtv7v9fb3x9HAD4KzFTKEt3FxdcXcztZmSnl6rpUKEaChqHKD169ePf/zjHxw9epRTp07x9ttvExgYyDvvvMOAAQMIDg5m+vTpbNq0iaKiIi3HLIQQtc48g6bT6Wih8Rmc5gBDqwSB1Zd3ca4oGYAe7q35W+CAKt3n4+DO/DYT1a8/vLiFbH2BTWPR6XS0CTPtq7uckk5uvm3tmZmXOUv0ejJzcjRpU4iGTJMszrZt2zJ79mx+/vlnLl++zIoVK+jbty+ffPIJt99+OwEBAYwfP561a9eSLvsHhBANXHFJCemZpmOF/H28cXTQLp/KclYpMsz2BIHEojSWX/oBAHvsmBs+ATtd1X+19/SI5BbfaAAyDXksT/rB5jFZBp7xmi1zXgmSU9Lk3xHR9GkSoFny9/fn4YcfZv369aSmprJu3Truvvtu9u7dy6RJk2jZsiVDhw7VulshhNCM1f4zDZc34cr+M9BmBm3Fpe0UK3oAJrYcTEe36rf5dMhotfzGp8m7SSi0LQHM8mxRy4xVW7Sw2IcmiQKiOdA8QLPk4uLCmDFjWLlyJZcuXWL37t0888wzJCVpUxtHCCFqw8XkZPVxq8AWmrZ9+tx59XFka9sCtMSiNDamHQJMWZvTgm6qUTutnP14oDSrU68YWJ603aZxWX5fcRoFaFYzaBKgiWagVgM0SzqdjgEDBvDOO+8QGxtbV90KIUS1XUq+MoPUqkWgpm2fOmsK0NxdXWjV0rbZuRWXtqPHdGLL/S2G4OXgWuO2JgfdiKe96f5N6b/ZVHbDcmZQq0QBy1p0KRkZ6kk1QjRVNd5Y8fjjj1f7Hp1Ox3/+85+adimEELVOr9dzufQ8YW8PDzV7UAs5uXkkpZjabtcmzKYMzqtnz+5rMdimsbnbu3BP4ACWJ21HrxhYe/knZoeNrVFbLfx9cXd1Ia+g0Krmm60C/fzIyctDr9eTkZ2Nv8VB6kI0NTUO0JYuXVrlay1/CUmAJoRoyC6npamzM8EttF3ePBV3ZXmzfZtwm9pac3mXZrNnZve2GMTHl3+kSNHzVeo+pgWPwNuh+ico6HQ62oSHcOTEGS5eTqWgsAhXF2ebx9fS35+z503v4eXUNAnQRJNW4wBt165dVbouISGB119/nTNnzshZnEKIBu9ibS5vWgZokWE1bidbn8+3aYcBcLVz4r4Wg2weG4C/oydjA/rwv5RfKDAW80XKLzwSXLN9bW3CW3HkxBkAzp2/SOf2bWweX5BFwkZSaipd2rW1uU0hGqoaB2jXOnMzIyOD+fPn85///IfCwkL69+/P22+/XdPuhBCiTlyyTBCo1Rm0mgdo36Tup9BYDMAY/+vxctBuGXZSy2F8lbIPIwr/S9nLw0E34qizr3Y7lmeMxiVoE6AF+vlip9NhVBSrQsJCNEWaJwkUFhayYMEC2rZty/vvv09ERATffPMNe/fuZeDAgVp3J4QQmjEYDGqJDQ83N00PSAc4FZcAmJYA27YOrVEbesXA5yl71a+1mj0zC3X2Z4hPVwBSSrL5KfNojdqxPPLpjEb70BwcHPD3NZXbyMjKpqi4WJN2hWiINKu+qCgKK1eu5LXXXuPChQu0atWKd955h8mTJ2Nnp10cmJ+fz4oVK9i1axc5OTmEh4czceJEhg8ffs17MzIyWLJkCfv27aOwsJB27doxdepUevXqVebaw4cPs3LlSk6fPo2Liwv9+/fnsccew9fX1+o6vV7P2rVr2bx5M2lpaQQHBzNu3DjGjx9vdV1cXBzr1q3j1KlTnDlzhsLCQhYvXkx0dLRtb4gQQjMp6RnoDabzKINbBGq6LcNgMHIm3hSohAa3wM3VpUbt/Jh5hEvFpvMoB3l1JsJF21k+gLsDB7Ar8wgAX6b8wgjfHtVuwzJAOxuvXaJAUECAWmbjcloa4cHBmrUtREOiSeS0fv16unbtyvTp08nNzWX+/PmcPn2aqVOnahqcAcydO5ctW7bw0EMP8c4779CpUydee+01fvih8urXxcXFzJw5k19//ZWnnnqK+fPn4+vry+zZs4mJibG6NiYmhjlz5uDr68v8+fN56qmn+PXXX5k5cybFV31iW7hwIZ988gnjxo3jvffeY9CgQXzwwQesXbvW6rrY2Fh2796Np6cnPXv21OS9EEJo60LyZfWx1sub5y9dpqjI9PvDluXNz5L3qI/va2lb5mZF+nm2J8zZH4D9OSeJr0Hh2paBfmpiwNn4RM3G1jLAX318OTVNs3aFaGhsmkHbs2cPzz//PPv378fJyYlnnnmGl19+ucwsk1b27dvH4cOHmTdvHiNGjACgZ8+eJCUlsWTJEm688Ubs7cvfK/H9998TFxfHhx9+SLdu3QCIjo5m8uTJLFmyhGXLlqnXfvjhh4SFhfH666/jUHrES3BwME888QSbNm3ijjvuAEyzYt9//z3Tpk3j3nvvVdvMzs7m448/ZuzYsXh5eQFw8803c+uttwLw448/8ssvv2j/BgkhbHL+0pUi2qFBQZq2fepsgvq4phmccYWXOZxr2ngf4dyC/p4dNBnb1ex0dkwI6M+iC98B8FXqPp4NHVO9NuzsaBcRyl+xpkzO3Lx8PNxt3ytnmShwOVX2oYmmq8bTW2PGjGHIkCEcPHiQSZMmcerUKd57771aC84Adu/ejaura5mjokaNGkVqairHjh2r9N7w8HA1OAPTfoaRI0dy/PhxUlJMnxBTUlKIjY1l5MiRanAG0L17d8LCwvj555+t2lQURQ28zG699VaKioo4cOCA+pzWM4lCCG2VlJSo+8+8PDzw9vDQtH0tEgS+TtmvPp4Q2L9WM+PHBvRRkwM2pB6k2KivdhuWgejpc9rMonm6u6szc5fT0tSD54Voamo8g/bdd9+h0+kIDw8nKSmJRx555Jr36HQ6vv/++5p2SVxcHK1bt7YKnMB0WLv59e7du5d779mzZ7nuuuvKPG95b2BgIHFxcVbPX33tX3/9ZTUeHx8f/P39y1xnfl0I0ThcTE5R65+FaTx7BraX2Cg26tlYWlrDUWfPbf5l985qydfBg5t8r2NT+m9kGfLZnXWM4dXci2b5fZ6KO09UV9tn/HQ6HUEBAcQlXqCouJjM7Bx8vb1sbleIhsamJU5FUYiLi6tyIGLrp72srCxatWpV5nlPT08AsrOzK7w3Oztbva6ye7OysgDUpcmrr7XsIysrq9zrXF1dcXR0VNuyVWpqKmlpV/ZaxMfHa9KuEOKK80mX1MehwdoHaCfPmP7euru5Etyi+kc87cj8i0xDHgAjfHrg66DtDF95bve/nk3pvwGwMf1w9QM0ixk0cwarFlr6mwI0gEupKRKgiSapxgFafc0O2RLkVXbv1a9VdG11+tdq+eHbb79l9erVmrQlhCjf+STT/jOdTkdoy5aatp2anklyminzsnO7iBr9bvg6dZ/6eHxgf83GVpm+nu0JdPQipSSb3VnHydDnViswbBdxpZSI+QxSLQRbFBC+lJxMl3JWPIRo7GocoLVu3VrLcVSJt7d3ubNSOTk5QPmzXmZeXl7lzrCZ7zXPpHl7ewNU2I/lLJy3tzenT58uc11BQQElJSWVjqc6xowZw4ABA9Sv4+PjefPNNzVpWwgBufn5ZGSZfj+08PPD2clJ0/aPnbrygbZLh+oXbD1flMqhHNPvmnDnQHp71E1AYq+zY5RfT9Zc/hG9YmBregz3tKh6PUt3N1dCggK5kJTC6XPnMRqNmuzHbeHnh729PQaDwerkByGakka1cz0yMpL4+Hj0euvNqmfPngWgTZuKf/FFRkZy5syZMs+bn4uMjLRqw9zm1f1Y9hEZGUlmZqbV8mNVx1MdAQEBdOzYUf1TH8GxEE1ZYtKV7M2wWljePHbySoBWk4r635Yeig5wR0CfOj0273b/3upj8x646mgfaVrmLCwqJvFS8jWurhp7e3uCSstt5OTlkZOXp0m7QjQkNZpBmzx5co060+l0rFy5skb3AgwaNIiNGzfy008/WRWm3bJlCwEBAXTp0qXCewcPHszChQs5duyYep1er+eHH36gS5cuBJSmbgcGBtK5c2e2bdvGPffco5btOHr0KAkJCdx1111qmwMHDmTFihVs2bKFiRMnqs9v3rwZZ2dn+vbtW+PvVQhRdxIuWew/q4UEgeM2zKAZFaMaGNmh4za/2k0OuFp711Z0dA3hRMEFjuQncK4wuVrFcdtHhPHjL78CpkSB8BBt3t/gwBZcuGwK+C4mJ9NRow/EQjQUNQrQKtoPpdPpyk15Nj9va4DWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dqwZTCxYsYOvWrXz22WcElf6yHTVqFOvWrWPevHlMnz4dX19f1q1bR0JCAosWLbLq59FHH2XWrFnMmzePcePGkZGRwbJly2jTpo1VSY02bdowevRoVq1ahZ2dHZ07d+bQoUNs3LiRqVOnWi1xFhYWsn+/KUX+6FHT0SkxMTFkZWXh4uJCv379avy+CCFqzmA0knDRFKA5OTrSMqD6G/groyiKOoPm4+VZ7QSBQzln1JMD+nt1pKWTj6bjq4rb/XtzonRT/ndph3kyZFSV7706k3P4wOs1GVMrq31oKRKgiSanRgHa1QkCRqORp59+mv379/P0008zaNAgWrZsyeXLl/n555/54IMP6N+/f5lAqCbefPNNli9fzsqVK9Wjnl555RWrGTWj0YjBYLAKFp2cnFi0aBFLlixh8eLFFBYW0r59e959912ioqKs+oiOjuadd97ho48+4oUXXlCPenr88cdxumpvyqxZswgICOCbb74hPT2doKAgZsyYUeaop4yMDObNm2f13KpVqwAICgrif//7n83vjRCi+pJSUiguKQGgdatW2Gtcs/BSciqZ2aa9rp3bVz9BwHJ5c6x/H03HVlW3+kWzKHEjBox8l/4rj7e6BTtd1d6nWsvkDAjAzs4Oo9HIxRRtlk6FaEh0igZV/hYsWMCiRYuIiYkhuJxz0S5cuEB0dDSzZ8/mueees7W7Zu/EiRNMmzaN5cuX07Fjx/oejhCN2p5ff+PPEycAuOmG/rSPiNC0/e27D/LiP/4DwJR7x/LoA3dW+d5cQyHD/3iFQqUET3tXdvR4FWc7R03HV1VPnPove7JjAVjR4XGu92xXpfuMRiPD7nqM/IJCglsE8O3q9zUb0zfbflCLCz807g7cXF01a1uI+qbJR8WVK1dy9913lxucAYSEhHD33XezfPlyLboTQghNKIrCuQumpTs7nY6wcuos2sqW/Wc/ZPxBoWKa3bvVL7regjOA2/yvLE1WJ1nAfOQTmGYTs3O029BvWW7jYopkc4qmRZMALTExERcXl0qvcXFxITFRuwNzhRDCVhnZ2WTn5gIQ3KIFLhqX1wDrDM4u1czgtFzeHOOvzd6tmhrm0xUPO9Pv+R8y/qDAWFzley0zV4+fPqfZmEIsDrS/eFmWOUXTokmAFhoayrp16ygsLCz39fz8fNatW0doaGi5rwshRH04V7rxHSAiJETz9o1GoxqQtPD3JcDPp8r3JhSm8FuuqWRPpEtLurnV7IB1rbjYOXGTr+m4vHxjEbsy/7rGHVd0bh+hPj52smwJo5oKCgzErnRP33mLUilCNAWaBGhTp07l7NmzDBgwgA0bNqh1wdLS0li/fj0DBw7k3LlzTJs2TYvuhBBCE3EXLAK0UO0DtHOJl8jLLwCqv7y5Mf3KMuIY/+vrtPZZRSxron2f9muV7+vSPlJ9bFm011aWWbdZOTnqbKgQTYFNZ3GazZkzh5MnT7Jq1SruvNO0AdacXQOmfR4PP/wwc+bM0aI7IYSwWU5eHpdLN5j7eXvj7aH92ZYxR06qj3t0aV/l+66ufTa6jmufVSTaow1Bjj4klWSyL/skaSU5+DuWPeP4aq1Dg3B3dSGvoNBqyVcLYcFBXCrdf5aYlESXdlVLXhCiodNkBs3Ozo6VK1eya9cuJk2aRHR0NBEREURHR/PQQw+xa9cuVq5c2SA+AQohBMCZhCslH9qF187y4e9HT6iPo7tWPePasvbZDV4daeHkrfnYasJOZ8etfj0BMGBkW0ZM1e6zs6NT6TJncmo6qemZmo0pzKKwsCxziqZEkxk0syFDhjBkyBAtmxRCiFpxKt4iQGtdOwGaeQbN2dmJjm2rfkSbdXJA/dQ+q8ho/56surwTgE3pv3Fvi0FVuq9z+zb8+qepTMexU3EM7hutyXgC/fxwdnSkqKSExKTLmp33KUR9k59iIUSzk5WTQ0p6OgCBvr74WJz6oZWk5DSSUkz7cbt3bIujY9U+D+cZCtme+ScAnvauDPXpqvnYbNHetRXtXU0llf7Mi+d8UWqV7rPMYD2u4T40Ozs7Qkpn0YqKi0nJyNCsbSHqkwRoQohm53RCHcyeHb2y/yyqW4cq3/dDxp8UlpawqO/aZxUZVbrMCaZZtKro0sEiUaAW9qGZnb8ky5yiaZAATQjR7JyKj1cft62l/WcxFvvPorpUPUD7Nu2g+ri+a59V5FbLAC3tt3LPYL5aq5YBeHuZEjGOnYyr0j1VZbkPLTHpUiVXCtF4SIAmhGhWUjMySM/MAkznOXrVQvYmwO+lM2j2dnZ071y1zMLzRan82oBqn1Uk2MmXXh6mGbFzRckcz792EXKdTqcWrM3MzuFSctWWRqvCy8MDb09TNumllFQKi6teRFeIhkoCNCFEs3L8zJVCqR0iqr5xvzqycnI5G2+qsdahbWvcXCs/acXM8gilhlL7rCKjLEp/fF/VZU6LfWhHYs9oOp6IENMxXYqikHDxoqZtC1EfJEATQjQbeoOBk+fOAWBvb6/5wehmVvvPulat/pmp9pkpe7Mh1T6ryEjf63DU2QOwNeN3DIrxmvf0sJhJtHyPtBARcuWkGssTIoRorCRAE0I0G3Hnz1NUuvzVNiysVs7eBDj4+1H1cc9unap0z+HcM1xsgLXPKuLl4MZA784ApJRkcyjn9DXvua5Le3VWMObYKU3HExwYgHPp/8+ES5cwGAyati9EXZMATQjRbByzWN7s3LZtrfWz/1fTOZX29vb0jupSpXu+TW24tc8qMtpqmfPaRz95uLvRvk0YAKfjzpOTm6fZWOzs7GjdyrTMWVxSwsXS0wWEaKwkQBNCNAtZOTlcuHwZAG9PT1q1CKyVfhIvJZNw0dRPj05t8XBzveY9eYZCfmjAtc8qMti7Cx52pv11OzL+pMB47c350d1MJyooisKfx68961YdlgfeyzKnaOwkQBNCNAtHTl1ZUuvSNrLWNuDv/+0v9XG/Xt2rdE9jqH1WHmc7R0b49gAgz1jErsy/rnGHaZnT7PcjJyq5svrCgoPUUwTOXbigaSkPIeqaBGhCiCavqLiYY6dNWYP29vZ0ioy8xh01t//XI+rj/lUM0Cxrn41tJMubZrf791Yff2uRhVoR8wwawB8a70NzdnKiVYsWAOTk5amnRQjRGEmAJoRo8o6fOUOJXg9AxzYRuLpUrexFden1eg7/cQwAX2/PKp2/GV+YYlX7rKtbWK2Mrbb09IgkxMkPgAPZJ7lcnFnp9QF+PoQGm4KooyfOqkkbWmkbfuX9szwxQojGRgI0IUSTZjAa+fPElZIO13WsWlZlTfx5/DR5BYUA9InuVqVDu79J3a8+vsO/T4OufVYeO52dOotmRKlSskBUV9PJCiV6vebHPkWGhmFX+h6ejk+QZU7RaEmAJoRo0s4mJJCbnw9A61at8PXW/mB0s32/XtmD1b9Xt2teX2LU821p7TMHnT231+LRTka9EaPh2rXKasJy3BvTDl8zKDIHaKB9PTRXF2dCS49+ys3PJylVuxMLhKhLDvU9ACGEqC1Go5Ffjx5Tv47qXHuzZ4qisOsX0+yRTqejb/S1A7Sfso6Srs8F4Eafbvg5anPslEFvJDEmhfMxKVw8mkZeRiGGYiPowM3XGa8WboRFBRLZPxjPQDeb+wt19qenRyS/5Z7lbOFljuQn0N294uXdXj2u/H848PsRHv7b7TaPwVK71q1JuGQ6k/N0fDzBgbWTsStEbZIATQjRZJ1OSCA9q/TcTX9/dQN5bThzLpH4RFNQENWlPQF+Pte852uL5c07A/rZPAaD3sipnxKJ2XCG3NTCshcokJ9eRH56EUmxGRz6/CRh0YH0va8TPiG2BYdj/K/nt9K9dN+k7q80QAsNbklIUCAXklL449gp8gsKq3wcVlVEhoXy00E7DEYjpxPOM6BnzyotNwvRkMhPrBCiSTIYjRz688qSY9/retTq/q4de68Umh0+6NqZmBeK0tmXbVreC3Hyo69n1Y6EqkhqXBbrXtzLnpVHrYIzOwcdvmEetOzgS0CkN67e1qcnnP89ha+f38P+tcfRF9e8+v7NvlG42TkDsDn9d/IM5QSIFswlSPR6A4f/PF7jfsvj5OhI69KzOQsKC7mQnKxp+0LUBZlBE0I0SSfOxpGVa1o+DGnZQt2XVFt27DYFaDqdjhsH9L7G1fBlyi8omPZqjQvoi52uZp+XFaPCHxvP8utXp1AMV/Z+hV4XSOcRYbTq6o+ji/Wv+uzL+Zzdd4lj2+PJTy9CMSoc2XyOS8fSuPHpaLyD3Ks9Djd7Z0b59eSr1H0UGIvZkv474wP7V3h9/57d+fr7nYDp5IXBfaOr3Wdl2rduzdnziYApizeslv//C6E1mUETQjQ5JSUlHPrryuxZnx49arW/M/GJxJ2/CJgKsQb6+1Z6fYGxWM3edNDZ13h5U19sYOe/Yjj8xUk1OPOP8GLMa/245fnetO7VskxwBuDV0o2oO9py9/tD6DWhPfZOpn8K0uJzWP/yXhL/rNkxSeMtvg/L5dvy9L6uM/b2psPWLZMrtBIREoKLs2lG7+z5RAqLijTvQ4jaJAGaEKLJOXzkKHkFBYApc7O2N4mbZ88Ahg+8dibm5vTfyDKYMktv8Y3G39Gz2n0WZhez6a2DxB1IAkCng6g72jLm9f60aF95gGjm4GxP9J3tGPvGDXi3Ms2alRQY2Pbur5zZd6naY+riHkYnV9NxS0fzzxObX/FxS+5uruqpAomXkkm8dLna/VXG3t6ejm0iAFOyyIm4c5q2L0RtkwBNCNGkpGdl8UdsLAD2dnYM7NWzVvtTFIVtPx9Qvx52jeVNRVH4NHm3+vW9LQZWu8+C7CK+f+sgyacyAVOgddPsXvS+uwP2DtX/te4X5skdb95A6+tbAmA0KOz6dwyxu85Xu63xgVdm0b5M+aXSa/v1vJLpus/iBAatdG7bVn18/MwZqYkmGhUJ0IQQTYaiKOw+fBhj6T/E0V264O1Z/dmp6og5elLN3ozu1pGWAX6VXv9r7hlOFZiuv849gm7u4dXqLz+riE1vHiTjfA4Abj7O3P5KP8KjbctQdXRxYPjT0XQcFmp6QoE9K45wek/1Dh0f5ddLTRb4Lv1XsvX5FV57Q+8rS8/7fv2z+oO+Bj9vb4ICAwBT4H45LU3zPoSoLRKgCSGajKOnTnPhsiljz8vdnZ5dOtd6n99s3qU+Hnfr0Gtev+byj+rj6s6eFeeXsGXBITISTckP7n4ujJ7XF/8IbYrv2tnpGDi1G91GRZieUOCnpX9x7lBSldvwsHdhTGnh2kJjMesszhm9Wvs2Yfj7egNw8Pej5BdUnvlZE10sZtGOnNT27E8hapMEaEKIJiE9K4u9v/+ufj34+t44ONRuonpmdi4795gOCPf2dL9m9ubJ/Iv8nGUqnBvk6MMIn6onLxj0RrYv+p30eNPMmbu/C6P/3qdGGZeV0el09J3Yic4jTDN7ilFh17//4PLJjCq3YRl4fp68B4NS/gkGdnZ2DL2hFwBFxSXsORhT84FXoG14OM5OptIipxMSyMuveEZPiIZEAjQhRKNnMBjY/ss+DAZTHa9u7dsT3qpVrff7/fY9FJeUADB6+EA1EKjIR0k71MeTgobhaFe1AFIxKvy87C8uHjUt0Tl7OHLri9fj1VLb4MxMp9Nxw0NdaDfQ9B4aSoz88P6vZF+uWnAT4dKCAV6m0wIuFqerQWl5Rgy8UjNuu0WyhVYcHRzo2q4dYEoW+POktkdLCVFbJEATQjRqiqLw8+HDpGaYZnh8vby4ITqqTvpdt+VH9etrLW8mFKawNSMGAF8HD8YF9K1yX4e+OMGZvaYyHvaOdoyc3QufVtocC1URnZ2OwY90p1VXfwAKc0rY+u5hinJLqnT/fS0GqY//7/JPFV4X3a0jfj6mJdpfDv9RK8uc3Tt2UE8SOHbqNCUlVfsehKhPEqAJIRq1P0+c4PgZ0xFD9nZ2jLihf60vbQL8fOB3NTmgZ/dORIRVPmO36vJOjKWFae9vMRhXu8pn28yObj3HnxvjAFMpjRufiqJlh6qV0bCVncP/t3fe4VFV28N+z6RMJr2S0JIAoRMJEDqhd7GhV0SKdGwXrngFK2C5XssVfnIVRKpwAflQUFACiKC0SA1FEAwkoYWSRhJSp5zvjyEnM5mZJMAEZuJ+nyfPzNln7b3XOnt2Zs0ua6voM7WNEoIjJy2fnz9NRK+r/ND1Lr5NiVQbNy4cunmOYzdTrcq5uKjoZTbNecw+ypvgpdHQJNJ49FSxVssfySl2r0MgsDfCQRMIBE5LyqVL7Es8qlz36tSRkMCKd1HaA1mWWbL6e+X66UcHVCh/viid7zOM03feKg+eDOlapXpSDlwlYUXZMUhdxrYkIjb0DjS+c9Tebgx4JRYPX6NDmXYyk71LT1YaskIlqRgb1lu5XmIyvVuePibTnD/vsb2p4G5o3azsgPajf/yhTIcLBI6KcNAEAoFTcv5yGlv37FUchXYtW9IkMvKe1L334DH+OJsKQJOG4XTvVPExRZ+lxaPHOOo0KrQHvq6aSuu4ejqLXz4/xq1BN2IebaQs3L/X+IZ60m9aW1zcjF8Zf/5yieObkivN92BgW8Lc/AH4NeckfxakWZVrE92UAD9jOJS9h45zs6DQPoqbEOTvr6xLvFlQwKlz5+xeh0BgT4SDJhAInI7zl9OI370bg8Ho9DSOiKDDA9H3pG5ZlllsMno24elHKjyE/WT+RbbdWnsW6OrNqNAeldaRffkmP31yBL32ln3d69Lub3d3mPrdEtokgO7Plu06Pbj2z0rDb7ipXBkd1lO5XmpjFM3VxUUZRSsuLmHLzooD3N4ppp+Rw7+fRKvTVUs9AoE9EA6aQCBwKn7/M4nNu3Ypzlmj8HD6dO5UoZNkT3b9lsjJP42jR40b1KdHJ9snFciyzKeXf1CuJ9Xuh5eLR4Xl52cXsfXDgxTnGxey13sgmLgJre6ZfRXRqHNt2j1xy1GU4Zf5x8lIzakwz9DgTgS4Gtewbck+ytlC607dowPLHNf18b9US9T/WoGBNKxvDMRbUFQk4qIJHBrhoAkEAqdAp9ez6+Ahdh06pHx5NwoPp1+XzsoOveqmsKiY/3zxP+V6wtOPVlj3zzdOsD/P6ATUcw/iieDOFZZfUqBl64eHuJlh3MkYFOlL76ltUN3B8U3VRcxjjWjUpTYAumI92/5zmPxs2zsvNSp3ngntBYCMzH8v/2hVrmmjCFo2aQhAUvIFTp6pfAr1TugQXTYKeOTUKXGIusBhcZxeLxAIBDbIyM7mmy1b+T2pbMQjpnmze+qcAXy5agNX042xyDrEtFR2H1ojX1/Ehxc3KNf/qDekwrhnSiDaC8ZAtN4hGgZMj8VdU/07Um8HSZKImxRNrcb+ABRkFfPTfw6jK7a96H54rW7UcjOeGPBLzkmO3LTufA0d3Et5b3pCgz0J9PdT1ioWl5Sw/5j9j5gSCOyBcNAEAoHDUqLVsi8xkW+2biMrxziVplKp6NWxA13atLmnztmZc+dZs2ErAO5ubrz64jMVTjvOT9vCda1R526+zSo8NUA2yOz64rhZINqBM2Lx9Ffb0QL74eruQt9pbfEONm52yEjJ5ZcFx5AN1qclPVTuPFenbKfrp5d+tDqF2b97R7y9PAHYtms/eTfzq0F76BTTWgnFcvLsWXFGp8AhEQ6aQCBwOEq0Wo7+cZpVmzZx9I/TynqzIH9//jZwAM1Nzle8F9wsKOSNDxegv6XH2GEPUb+O7XAXv+dfYPX13QCoJVdeC3+8QmfuwJoznNtnjKl2rwLR3i2efmr6v9ION40LAKkHrnH4G9truh4Oak9DD+MzO5qfwrZsy3hnHh5qBvfuAhg3C3zz445q0By8PT3pEN1Kud518JDyGRMIHAXhoAkEAochKyeHfYmJrPx+I/sSEyksMq4PclGpaNeyJU8M6E+Qv/891clgMPD2J18qQWmjIusx+m+Dbcrn64t4NWWlEpR2Uu3+1FMH2ZT/PT6FEz+aBKKdcu8C0d4tgfV96P1iDKW+59HvzpG0+7JVWVfJhal1hyjXH1/6jpt6y7Vrwx7uh0plLHDVhi3VcrIAQHTTpgT6Gadd07OyOHbmTLXUIxDcKcJBEwgE9w2DwUBGdjaHfj/Jui1b+frHzRz94zTFJSWKTKPw+gwf8iAdWz+Ai4vLPddxyZrv+SXhCAA+3p58/NYU3N3cbMq/f2E9F4uNU2bRXuE8E9bLpuy5hCv8tvK0ct11XEsi2t3bQLR3S/02teg4srlyvXtR2Zmh5enh14Iefi0BSNfm8tnlzRYy4XXDGNDDuJkiJ/cm636wHeD2bnBRqejevuxw+/3HjivHhQkEjoBw0AQCwT1BlmVuFhRwIS2NA8dPsHHHTpZ+u57/F7+FA8ePk56VpciqVCqaNmjAUw8OZkC3bvh635/pviVrvufLVd8BxsXx777yLPVq23agvss4wA9ZhwDwUqn5oMEo3CTrTuXFo+n8uqBsmq/N0Cia9bk/gWjvlpYDI2jWpz4ABp3MT58cJj3ZMvyGJEm8Wv8xPG4dc7U2fS+/51+wkBs3/GFlFO1/38ZX2yhanVq1iGluPGHAYDDw0959IjaawGFwrO1BAoHAqZBlGa1OZ/zTainWaiksKqKwqJjCoiIKiorIy88nJy+P3Js30VVyvE5wgD9NGzSgSWQDNB73b4G8wWDgi5XrWbZ2k5I2ZfwwurZvbTPPwbyzvHthnXL9ZsQTNqc2Lx5N56c5hzHojNOgTXrWo+3jUXbS/t4jSRJdxrSgILuYC0euoy3Ss/XDgzw4sxMBdc2d6zrqQJ6t3Z//u/wDBmReT1nF182n4elS1t6R9WrTr3sntv6SwI3cPNZ8t5Xxwx+pFt07PvAAl65eIyM7m+zcXHYdPEjvTvcurp5AYAtJro5ogIJq5cyZM0ycOJFFixbRtGlTu5RpMBjQ6/Wlp8ogy7Lx/a2Ph/GlLM3s9Za82Wu5vDIyyEoJynvTj59pXtmYyaROyzJKdSqvb1myXFa3aRlm8uXqkGXLOs3sq1in8mnmOpbpZLMOWZEufXwmz6W8/eWeg2zy7MqXYaqLWR0yBoOMwWDAIBss3996lQ0G9Cb3dTodJTodurscbfDUaAgLDqZOrVpE1q1z30bKTMm6kcus/yzktyO/K2lTxg9j1OO2150lF15j9Jl55OmNRxQNC+nK6+GPW5U9f/gaP3+aqDhnDTqG0evF1qhcnH9CQ1eiZ8sHB7l62jhVqPFzZ/CbHS2cNK2sZ/TpTzlVcAmAR4I68E7kU2YyqRfTGPbc6xgMMmp3N75e8D71ateqFr2zc3JZt2WL8gOiU0xr2rZoUS11CQRVRThoTkh1OGiply+z+ddddilLICiPSqXCz9sbPx8f/Ly9qRUURFhIMN6eng4zUqHXG9i8Yy+fL19HZrZxek6SJKZNepqnHulvM19y4TUmJS0gXZsLQJxvc/4vahyuVqY2T++8yN7FvyuOc01yzkopKdCy+V8HyEgxPg+NnzuD3+hAQD0fM7nzRekM++MTCg3G9YYfNBjJoEDzUxnmfrma1d8ZQ5t0ahfNvHderrbPy7kLF9i6Z69yPSCuG43q16+WugSCqiCmOAUCQaWoJAmVSoVKpUKSJNxcXXFzc8Xd1e3WezclTaP2wFPjgcbDA0+1B95ennhpNPc0ZtntUKLV8vOeg6z8Np6k5LL1UIEBfrz7ymQ6xLS0mfdMwWUmJy0kW3cTgKaaunzUcLSFcyYbZI6sP0vi+rNKWqMutenx3AM1yjkDcPd0Y9BrHdj8/gEyU3MpzCnhh3f2M+CVdtRqXLY7NcIjhDfCH+fN1DUAzE5dS111EA94RSgyk0cNZfueg1zPyOK3wyf4add++vfoVC16NwoPp8MDuRw4fgKAn/buwyWuG5F161ZLfQJBZYgRNCekOkbQrmVkGCNqSwASEpT9UpWM19xKk27J3LqlyCtykpKivFfklB+/krEspSjzvFbrKFeGZBQ2f7Umb1qHmbxSobm9VvKW3iuf17pdtuowsatcGVJZgnleqdyzVfS0fA5K+5SzqzSv6ciDYo8k4XLL6Sp1wFTl3ku3/moSRUXFHD5xmt0HjrJjz0Gyc/LM7vfo1JbX/j6GoAA/m2X8nH2cmalfc9NgXMDeTFOXBY0nE+hmPp1XUqDll/nHuXDkupLWalAkHUc0Q1LVrOdqSvFNLfEfHCTj1mYBF3cVfaa0Ibxt2TSlLMvMPP81GzMPAhDg6s3/mk01W7v3y77DvPLePMC4i/ar/5tdYQy6u0GWZX5O+I0/U1MB48jvQOGkCe4TwkFzQqrDQRMIaholWi1Z2blkZt8gIzuHi2nXSL14hdNnUzmbclEJOmtKs6gIpo4fTmzr5lZKNFJs0PJ5WjxfXftFSWvtFclnURPxddWYyV5PyuaX+cfJvVYAGH88dHi6GdEPNrCPkQ5OSYGW7XMTy8JuSBD7tya0fqSh4vSXGHQ8l7SQQzfPARCuDmFxk+cIdfdXynn1/c/4eY/RiYuKrMfSOTOrbROJwWBge0ICZ88bR1NVkkRcbCwtGzvvJg6BcyIcNCekOhy0Eq2W3DzjsSqyLNtYsF+6uL78AnaTzQCy+cJ05PIL1cuusVqWST2VlmWSp9yGBdnkujSf6WJ7o9rlrsvZXnZtZSG/zbLMN0xYbGSwuinA/PmB9VezDQClz9oir7Wyyp6f6bVlWRU9g8rKMmlDG2XJJm1R9uwq/zzo9Qb0Br3xVa9Hd+u1NF2n01NcUnJr52gxRUUl5OUXcDO/gKrg5upKzy7teOLB3rRp1bTC0cLfcv/kXxe+5UJxupI2MKANsyKeNNuFqCvRc/S7cxz7/pxij9rLjV5/b029B0KqpFdNQa/V8+sXJ0hOuKKkRbQPJW5iKzy8jeE2cnUFjD4zj5Qi4yhjHfdAFjV5ThlJu1lQyNiX3ib1orGMPt3a868Zz+NSTdPD5Z00gOgmTejSJua+xOIT/DURDpoTUh0O2p4DR3lp9ly7lCUQODKSJNEwvC7RzRvRJfYBOrZphafGo8I8R24ms+jKT+zLLYs274qKafUf5umQOMWpk2WZC0eu89vKP8i7XqjIhkT50euFGHxDPavHKAdHNsgc/f6c8SioW984ngFquj/7APWigwFIK85iUtICJchviJsvcxqNVdakpV5MY8w/3ib/Vky0AT06Mfufk3CtJofJYDCQcPQox06XtXlwQAB9u3RWTiAQCKoT4aA5IcJBEwgskSQJD7U7Gg81Xp4aAv19CQrwI9Dfj8AAX+qGhhBRL4zI+nXw8tRUWl6mNo+t2UfZmHmQP26FgyglxiuSNyOeoLGmDmB0zC7/nsmRb5O4/ueNMp1cJNoOjaL1ww1r3GaAO+FC4nV++fwYJQVl4VmiutWhw/CmeAZ4cL0kh8lJX5BcdA0wHg/1Sr1HGBbSFUmS2HPgKK+8Nw+dzhgOo1eXWN755yQ8qjFm3qlz58zO6nRRqWjTogVtWjTHzVXssxNUH8JBc0Kqw0H7IymFpV9vNF5IksmCdpOF5yYLy5WF7aXyJgvWJZNF9eUXqFuWZb4A37j+XbJaluVr6QL5qpRVqnfZNabX5TcZ3HoGpuWWX2QvlSvbfKF+ZWUpJZldS5jUUyprpU7Ta4tNE+WfgfLMyrWpSdmlbVimp6U95mWVa9MKPw8m9lb6eSivB7i4uODiojK+qozvXU3SVCoVHu5uqNXud7yZQZZlMnR5nMy/wPH88/yW+ycnCy5ayNVxD2Ry7f48HBSLSlJRUqDl3L4r/PHzBbLOm280qN0ikC5jWliEl/irk59ZyK4vT3D5RNlxUG4eLkQPaUDLAZHkuxczLXkZiTdTlPudfZvyev2hhHuEsHv/UWb8679KxP+GEXV5/9XnaRRRr9p0Ts/KYntCAtk5uUqal0ZDbKtWNG3YoNpG8QR/bZzOQSsoKGDx4sXs3LmTvLw8wsPDGTFiBH369Kk0b3Z2NgsWLCAhIYGioiKioqKYMGEC7dq1s5A9dOgQS5Ys4ezZs3h4eNC5c2eee+45AgICzOR0Oh0rV64kPj6ezMxMateuzWOPPcbjj1sGqUxLS+Pzzz8nMTERvV5Py5YtmTx58m07WWKTgEBgiSzL6DFQYtChlXVoZf2t93pKZB15+kJydQXk6ArI0ReQrs3lUnEml4ozuFicqcTjskYLz3oMrxXHoMC2aG9ouXwik9SDV7l0PAO91nyzgX9db9o9EUVkh7Aat/vVXsgGmdM7LnJo7Z8U52uVdHdPV5r3DSeqdx2WFO9g5fVfy+5JrjxVqxujQ3ty9vh5pr83j6JiY5up1e6M+dsQRgwdWG2bB3Q6HQdOnOD46TMYTL42NR4etGrcmGYNG+Dj5VUtdQv+mjidgzZt2jROnz7N5MmTqV+/Ptu3b+eHH37grbfeol+/fjbzlZSUMHHiRG7evMnkyZMJCAhgw4YNJCQkMHfuXGJiYhTZo0eP8tJLL9G5c2cee+wxsrOzWbhwId7e3ixatAh3d3dF9qOPPmLbtm2MHz+eZs2aceDAAVavXs2ECRMYNWqUInfjxg3GjRuHj48P48aNw93dnVWrVnH27Fm+/PJLwsOrfgZfdThov+df4MsrPwEmUfGh7J3ponFr903SzdJsfLysypqWayVfpfXK5tIV62hal/U6Kq1XtrTBvF7LfGaL723UYTW/DR2tv6s4n219q66jVX0ryWezXqs6Wi/LdBOEaR6drKdE1lvV605pqqlDR48mdMyNwueiB1nnc8lIzSUnLd+qfEiUH9GDG9CgQ1iNDp9hT4pySzi07k/O7LyEbDBpOwnqRQeT1bWA5b6/cE2Xo9xyl1wZHNiWDkUN+N+8jZxNLZt+DgnyZ8Rjg3iwbzf8favnVIobubnsSzxK6uXLFvfq1KpFg3r1lFMxhIMuuBucykFLSEhgxowZzJw5k759+yrp06ZNIzU1lXXr1tncYbNhwwbmzp3L/PnzadWqFWD8RTRu3Dg0Gg0LFy5UZCdNmkRRURFLly7F9dYagxMnTvDCCy8wbdo0Hn30UQBSUlIYM2YMEydOZOTIkUr+jz/+mG3btvHtt9/i6+sLwIIFC1i3bh2rV68mLCwMgPz8fJ566inatm3L22+/XeXnUB0O2q6cU/z97GK7lCUQOBMusopgvQ/BxT6E5foTdtWP4BQfXK6Atqjis0M1fu5Edgijaa96BEeKheN3Su61fI5+n0zS7svIevOvJK27jt8HXmZ/o3NoVebtUVvyw+9nmdRfUzGYOHjubm5069CauI5t6NS2FcGB/nbX+XpmJol//EHyxUtWf1B6engQGhxMaHAQoUHBBAX442Hy414gqAynWuG4e/duNBoNPXv2NEsfPHgw77zzDqdOnSI6Otpm3vDwcMU5A3B1daV///58+eWXpKenExISQnp6OqdPn2bSpEmKcwYQHR1N/fr12bVrl+Kg7d69G1mWGTRokFldgwYNYtOmTezfv18Z1du1axdt27ZVnDMALy8vunfvzrZt29DpdGb13WsyUnIqF6rpmP6AN/t/K1lJs5EPySLd1m9oSbZyp5KyLMqTrcjaLK80TbJMq7AOy7Jt3S+ro+plgfVna/X52LivMki46FW3/iRUyvuyNPdiVzyK3PAockNd5IamwB2/HA3eeR6oytVlQI9llDTjov/gBr7UbRVM3ehgQpsGoBKjZXeNb6gX3SdFE/u3xpz59RJndlziZoZxF6xbiSttNkbQxDOMo7HnOfHAJbRqo6N2Rc7hSm8g2g/XbfmoThunS0u0WnbsPcSOvYcACA72p2lUBBG1w6gbFkLtWiHUCQsmwM8Xby8N7m5ut61zraAgBnTrRl5+PmdSUjmTkkJOXtk6xIKiIlIuXSLlUtkIn9rNDV8fH3y9vfD18kbjocZD7YGnhxoPDw/Ubm64urri5uqK6631lYK/Lk7loKWkpBAREWHhyDRq1Ei5b8tBS05OpnXr1hbppnlDQkJISUkxSy8ve+LECTN9/P39CQoKspArvQ9QXFxMWloa3bt3t1pmcXExV65cof59PPettSGCCfN7WL9pzWmoxGGwJWuKrS9g61/y1p2VsrKslmDTqbLp0AgEgKvaBa9AD7yCPAgM9yEo3JfACB/863rj4iq+NKsLzwAP2jwaRczDjUg/d4OUA9e4eDSdG5dv4lWgpuuuJnTY14hzja9zukUal+tnY3CRIcQF3QhfSNfjcqgI1dFipIKyzp+RcYOMjBvs5Zj1il0kVGoVkpsKyUVCUknKK6XvTTfHyFB6Oogx0fhfx0ejoW5QICG+fgT6eONe7ruqWKslPSuL9KysKj0PvcGATq9HZzAoMQUNSozIstiI1tKsYW3JitX7NnCiCTe7UDssjL//7Yn7Vr9TOWg5OTnUqVPHIt3Hx7hLKjc31+JeKbm5uYpcRXlzcowjSaVTk+VlTevIycmxKqfRaHBzc1PKysvLQ5Zlq/WX5s/JybHpoGVkZJCZWbbj6exZ43l+58+ftyp/J2Rcz0HlVmh5o5wfU5UlFZXLWBmRKZ9U7tri30K5DNb+bZT+H62w3soSrNhi4dxVKU8lVMVfLGdz1dri9h1Ryyy331539hCqoEslj94ik2Q8rsfF1fjF6+IiIbmpcHGRULmpcFO74ubhcuvPFbW3Gxpfd1w9zP81GrhJRtFNMs7dvg2CO8c/VsI/thZFef5kpuaSe7WAG1eKCU9VE3KsLlrXMNJDc0kPzSUzKJ/swGK0rUDfUo10TYfqvA7pqg7S9UjaCirSg1xSuYNSGfnAVcqC23p7aQjw9yEgwBsvTw1enmo0GrVd16ZJgNhDWj0kn03izJkzlQveAREREXh4VBx/0akcNLizL5yq5C1/z5bs7dRf1TIru7dx40aWL19ukf7ee+9VWReBQCCokaSVvfW49eco6AohPQPSKxcVOCgT4+OrpdyqrCF3KgfNz89PGZUyJe/WvL+10axSfH19rY6wleYtHd3yuxUh2lY9pqNgfn5+ymiWKYWFhWi1WkUfHx8fJEmyWn9pWkW6P/zww3Tt2tVMj/Pnz9OkSROzHaV3y/nz53nvvfd48803iYiIsFu5jkJNtw9qvo013T6o+TYK+5yfmm7jvbCvKuU6lYPWsGFDtm/fbrGgPjk5GYAGDRpUmPfcOcv5idK0hg0bmpWRnJxM586dzWSTk5PN6mjYsCE///wzmZmZZuvQyuujVqupW7eukl6+TLVaTe3atW3qHhwcTHBwsFlabGysTfm7JSIiokbHV6vp9kHNt7Gm2wc130Zhn/NT02283/Y51WrXuLg4CgsL+fXXX83St2zZQnBwMC1atLCZt3v37ly4cIFTp04paTqdjp9++okWLVooDlBISAjNmzdn27Zt6PVlW7pPnjzJhQsX6NGjbCF9t27dkCSJLVu2mNUVHx+PWq2mY8eOZrofOXKEa9euKWkFBQXs2rWLrl273tcdnAKBQCAQCBwLp/IKOnXqRGxsLHPmzKGgoIC6devy888/s3//ft58800lBtoHH3zA1q1bWbNmjRLWYvDgwWzYsIGZM2eaBaq9cOECc+ean0H57LPPMm3aNGbOnGkWqLZBgwZmITUaNGjAgw8+yLJly1CpVDRv3pyDBw+yadMmJkyYYDZtOXz4cLZt28aMGTMYP348bm5urFq1ipKSEsaOHXsPnp5AIBAIBAJnwakcNDAujF+0aBFLlixRjnqaNWuW2VFPBoMBvV5vtiXY3d2duXPnsmDBAj799FOKiopo3LgxH3/8sdkpAgBt2rTho48+YunSpbz66qvKUU/PP/+8xZqvadOmERwczPr168nKyiIsLIwpU6ZYHPXk7+/PZ599xvz583n//feVo54+/fRTh5nDDwoKYsyYMRZhQ2oKNd0+qPk21nT7oObbKOxzfmq6jY5in1OdJCAQCAQCgUDwV8Cp1qAJBAKBQCAQ/BUQDppAIBAIBAKBgyEcNIFAIBAIBAIHw+k2CQggMTGRqVOnWr23YMECWrZsqVyfOXOGL774glOnTuHi4kKbNm144YUXrB6Z9e2337JhwwauXLlCUFAQgwYNYtSoUVUKAaLT6Vi5ciXx8fFkZmZSu3ZtHnvsMYvNEvfLxosXL7Jx40YSExNJS0tDkiQiIiJ48skn6dmzZ6X6XLlyhWHDhlm9V36Tyv2wD7B61ivApEmTGDlyZKU6OXobxsfH8+9//9tmfZXZeb/a8Pjx48THx5OUlERKSgparZa1a9fajH3oKP3Q3vY5Wh+E6mlDR+qH9rbPGfugXq/nm2++4eDBg6SkpJCbm0toaCjdunVjxIgRVo9gdJQ+KBw0J2bSpEm0adPGLM00kO758+eZOnUqUVFRzJ49m5KSEpYuXcqLL77I0qVL8ff3V2RXrFjBkiVLGDFiBO3bt+f06dMsXryYjIwMXnnllUp1mTNnDtu2bWP8+PE0a9aMAwcOMG/ePAoKChg1atR9t/HAgQMkJCQwYMAAmjVrhl6vZ8eOHcycOZNx48YxZsyYKunz+OOP07dvX7O0evXq3Xf7SunZs6fFP8DQ0NAq6eLobdi5c2cWLFhgUf6SJUs4dOiQzS/G8tzrNjx8+DCHDx+mcePGeHl5kZiYaLMsR+yH9rLPUfsg2LcNwfH6ob3sc8Y+WFxczLJly+jTpw9DhgzBz8+PP//8kxUrVrBv3z4WLVqEWq1W8jlUH5QFTseRI0fkuLg4eefOnRXKzZw5Ux4yZIh88+ZNJe3KlStyr1695Pnz5ytpN27ckPv06SN/9NFHZvlXrFghd+/eXU5JSamwnuTkZLl79+7yypUrzdI/+ugjuW/fvnJOTk7VDDPB3jZmZ2fLBoPBIv/06dPlfv36ycXFxRXWk5aWJsfFxcmrV6++PUNsYG/7ZFmW4+Li5Dlz5tyRPs7QhtYoKCiQ+/fvL7/wwguV6nO/2lCv1yvvV69eLcfFxclpaWkWco7WD+1tn6P1QVm2v42y7Fj9sDrsK4+j90GdTiffuHHDIn3nzp1yXFycvHXrViXN0fqgWINWQ9HpdOzbt48ePXrg5eWlpIeFhdGmTRt2796tpO3fv5+SkhIGDx5sVsagQYOQZdlM1hq7d+9GlmWzIL6l+YuLi9m/f78dLLLkdmz09/e3eiB98+bNKSoqsnpO6v3mduy7W5yhDa2xY8cOCgsLefDBB6tFP3ugUlXt36yz9sOq2ueMfbCUqtp4tzh6G1rD0fugi4uLcsa2Kc2bNwfg+vXrSpqj9UHhoDkxc+fOpVevXgwcOJCXX36Z48ePK/fS0tIoLi6mUaNGFvkaNWrE5cuXKS4uBiAlJQUoO4+0lODgYPz8/JT7tkhJScHf398iqF9p3ZXlrwh72WiLxMRE/P39CQgIqJI+q1evpnfv3vTr148XXniBPXv23J5B5bC3fdu3b6dv37706dOHCRMmsHnz5irp4axt+OOPP+Ll5UWvXr2qrM+9bMPbwVH7ob3ss8X97oNgfxsdrR9WZxs6ax88cuQIAJGRkUqao/VBsQbNCfHy8uKJJ56gTZs2+Pr6cvnyZdasWcPUqVP58MMP6dChAzk5OQBmx02V4uvriyzL5OXloVaryc3Nxd3dHY1GY1W2tCxb5OTkWK1Ho9Hg5uZWaf57YaM1fvjhBxITE5kyZYpyTJgt3NzceOihh4iNjSUoKIhr166xfv16Xn/9daZPn86QIUPuu319+/alc+fO1KpVi+zsbH788Uc++OAD0tLSmDBhQoX6OGMbnj9/nt9//52HH34YDw+PSvW5H214OzhaP7S3fda4n30QqsdGR+qH1d2GztoH09PTWbhwIc2aNaNLly5KuqP1QeGgOSFNmjShSZMmynXr1q2Ji4tjzJgxLFiwoMqdztp0w93I2TN/ddv422+/MXfuXHr27Fml3TXBwcEWC0R79erF5MmTWbhwIQMHDrytA++rw76ZM2ea3evZsyevvvoqq1at4oknnrDYUHA7OGIb/vjjjwBV/qfuqG1YVe51P6xu++53H4TqsdGR+mF1t6Ez9sHc3FymT5+OLMvMnj37tqZ373UfFFOcNQQfHx+6dOnCuXPnKC4uVubcra3ryM3NRZIkvL29AeMvg5KSEoqKiqzKWvtFYIqfn5/VegoLC9FqtZXmryp3Y6MpBw4c4M033yQ2Npa33nrrjjudq6srvXv3Jicnh0uXLt1RGabYyz5T+vXrh16v5/Tp0xXKOVsb6nQ6tm7dSlRUFM2aNbtjfaq7DW8HZ+iHd2OfKY7aB8F+NpriSP3QXvY5Yx/My8tj2rRpZGRkMGfOHItQRY7WB4WDVoOQTY5VrVOnDmq1muTkZAu55ORk6tatq0wblc63l5fNzMwkJyfHbDu2NRo2bMiNGzfIzMy0qAeoNP/tcKc2lnLgwAFef/11YmJiePfdd3Fzc7OLPvZaRHy39tmiMv2cqQ0B9u3bR3Z2tl0WJldnG94OztIP79S+Uhy9D5qWaW8cpR/awz5n64N5eXm89NJLXLlyhU8++cTquldH64PCQash5OXlkZCQQOPGjVGr1bi6utKlSxd27dpFQUGBInft2jUSExPN4tV07NgRd3d34uPjzcqMj49HkiTi4uIqrLtbt25IksSWLVss8qvVajp27GgHC+/ORij7YnjggQf417/+hbu7+13po9Pp2LlzJ35+ftStW/euyoK7t88aW7duxdXV1WwawBrO0oal/Pjjj7i7u9O/f/+70qe62/B2cIZ+eDf2geP3Qbh7G63hSP3QXvY5Ux8sdc7S0tL45JNPbLaDo/VBsQbNCXnnnXeoVasWzZo1w8/Pj0uXLrF27VqysrJ47bXXFLlx48YxadIkZsyYwYgRIygpKWHJkiX4+fnx1FNPKXK+vr6MHj2aJUuW4OvrS/v27fnjjz9Yvnw5Q4YMMdvlsmXLFj788ENmzJjBwIEDAeOvggcffJBly5ahUqlo3rw5Bw8eZNOmTUyYMOGOhuXtbePx48d54403CAwMZOTIkZw9e9asvsjISCXMgzUbP/vsM3Q6HdHR0QQGBnL9+nW+/fZbkpKSeO211ypd4Fzd9q1Zs4bU1FTatWtHSEiIsjj54MGDjB071mzdi7O2YSkZGRkcOHCAXr16WY0CbsvG+9WGN27c4OjRo0DZL+n9+/fj7++Pv78/MTExgOP1Q3vb52h9sDpsdLR+aG/7SnGmPlhcXMzLL79MUlISf//739Hr9Zw8eVIpw9/fX3EMHa0PCgfNCWnYsCE7d+5k48aNFBYW4uPjQ3R0NG+88YYS2wUgIiKCefPm8cUXXzBz5kxcXFxo27Ytzz//vMVC1dGjR+Pp6cmGDRv4+uuvCQwM5Omnn2b06NFmcrIso9frLYaQp02bRnBwMOvXrycrK4uwsDCmTJlyx8cE2dvGQ4cOUVxczNWrV/nHP/5hUd+nn36qRKK2ZmODBg3YuHEj27dvJz8/H09PT5o3b85//vOfO1poa2/7wsPD2bt3LwkJCcqux6ioKKvHpzhrG5YSHx+PXq+vcGGyI7VhSkqKxcLxOXPmABATE8O8efOUdEfqh/a2z9H6YHXY6Gj9sDo+o+BcfTArK0tZ+1feDoCBAwfy+uuvK9eO1Aclubom2wUCgUAgEAgEd4RYgyYQCAQCgUDgYAgHTSAQCAQCgcDBEA6aQCAQCAQCgYMhHDSBQCAQCAQCB0M4aAKBQCAQCAQOhnDQBAKBQCAQCBwM4aAJBAKBQCAQOBjCQRMIBAInJzU1FUmSlL+wsDCz+7Nnz0aSJH755Zf7o2A5Ro4caabv8uXL77dKAoHDIRw0gUDgsJR3PKz9lT+G5q9M69atmTVrFv/85z+rva6FCxciSRLPPvtspbLt2rVDkiSOHDkCwNChQ5k1axaPPPJIdaspEDgt4qgngUDg8DRq1IiRI0davVd+tOivTExMDLNnz74ndQ0fPpxp06bx9ddfM3fuXDQajVW548ePc+TIEWJiYmjbti1gdNCGDh3K8uXL+f777++JvgKBsyEcNIFA4PBERUXdM8dDUDV8fX154oknWLFiBevXr2fEiBFW5ZYsWQLA+PHj76V6AoHTI6Y4BQJBjUKSJHr27El6ejrjxo2jVq1aaDQaOnXqZHMNVl5eHrNmzaJly5ZoNBr8/f0ZOHAge/bssZDt2bMnkiRRXFzMzJkziYqKws3NzcyBXL9+PbGxsWg0GkJDQ5k4cSLZ2dlERkYSGRmpyD3zzDNIksTBgwet6jV9+nQkSWLDhg1380hscvz4cerUqUNwcDD79+9X0lNSUpgwYQLh4eGo1Wpq167NmDFjOH/+vFn+Uqdr2bJlVssvKSlh1apVqNVqmw6cQCCwjhhBEwgENY4bN27QtWtXfH19GTFiBNevX2ft2rUMGDCAw4cP06pVK0U2KyuL7t27c/LkSeLi4hgwYAA5OTl8//339OrVi3Xr1vHoo49a1DF06FCOHTvGgAEDCAwMpGHDhgAsXbqU8ePH4+/vz+jRo/Hz82Pz5s3069cPrVaLm5ubUsbkyZNZsWIFixYton379mbla7VaVqxYQVhYGA899JDdn9Hu3bt56KGH8PX1ZceOHTRr1gyA/fv3M2DAAPLz83nooYeIiooiNTWVVatWER8fT0JCgmJr9+7dady4MTt27CA1NdXM+QTYuHEjmZmZDB8+nICAALvbIBDUaGSBQCBwUFJSUmRAbtSokTxr1iyrf/Hx8WZ5ABmQn3/+eVmv1yvpixcvlgF58uTJZvJPP/20DMhLly41S7969apcv359OSQkRC4sLFTSe/ToIQNyTEyMnJmZaZYnOztb9vb2ln18fORz584p6VqtVu7bt68MyBEREWZ5WrVqJfv4+Mg3b940S1+/fr0MyDNmzKjyc3rmmWes3p81a5YMyDt37pRlWZa/++472cPDQ27RooV88eJFRa6kpESOjIyUfXx85KNHj5qVsXv3btnFxUUeMmSIWfq///1vGZBnz55tUe+gQYNkQN6+fbtVvZYtWyYD8rJlyyq1USD4qyEcNIFA4LCUOh4V/U2dOtUsDyB7eXnJeXl5ZularVZ2dXWV27Ztq6Slp6fLLi4ucp8+fazWP2/ePBmQN23apKSVOmjff/+9hfzy5ctlQH7ppZcs7iUkJFh10ErrWLJkiVn64MGDZUmS5KSkJKu6mXI7DtrixYtlFxcXuXPnzhYOZqlT+O6771otZ+jQobJKpZJzcnKUtLS0NNnFxUWOjIyUDQaDkn758mWr6aYIB00gsI2Y4hQIBA7PgAED2LJlS5XlGzdujLe3t1maq6sroaGh3LhxQ0k7ePAger2eoqIiq5sQkpKSADh9+jRDhgwxu9ehQwcL+WPHjgHQpUsXi3sdOnTA1dXyX+6oUaOYMWMGixcvZty4cQBcvnyZrVu30qNHD6Kioio29jaYO3cuGzduZPDgwaxbtw5PT0+z+7/99htgtNfa87h69SoGg4E///yT2NhYAGrXrs2gQYP44Ycf2LlzJ7179wZg+fLl6PV6xo4diyRJdrNBIPirIBw0gUBQ4/Dz87Oa7urqil6vV66zsrIA2Lt3L3v37rVZXn5+vkVaaGioRVpubi4AISEhFvdUKhXBwcEW6f7+/jz55JN89dVXnDp1ihYtWrBs2TL0ej0TJ060qdOdsHv3bgAGDhxo4ZxB2fNYtWpVheWUfx7jx4/nhx9+YNmyZWYOmkqlYsyYMXbQXCD46yF2cQoEgr8svr6+ALz88svIxiUfVv9mzZplkdfaqFBpeenp6Rb3DAYDGRkZVvWYPHkyAIsXL0aWZZYtW0ZgYCBDhw69Y9ussWTJEtq2bcvUqVOZP3++xf1S/Tdt2lTh8+jRo4dZviFDhhAaGsq3335Lbm4uu3fvJikpiX79+hEeHm5XGwSCvwrCQRMIBH9Z2rdvjyRJJCQk2KW81q1bA7Bv3z6LewcOHECn01nN17lzZ6Kjo1m5ciXx8fEkJyczcuRIPDw87KJXKQEBAWzfvp22bdvywgsv8Pnnn5vd79ixI8BtPw9XV1dGjx5NYWEhX3/9NUuXLgVE7DOB4G4QDppAIPjLEhYWxpNPPsm+ffv4+OOPkWXZQmb//v0UFBRUqbxHHnkEb29vFi9eTEpKipKu0+l46623Ksw7adIkMjIylGnNCRMm3IYlVafUSYuNjeXFF1/kv//9r5n+4eHhzJkzh127dlnk1Wq1VmPDQZkzNn/+fNatW0dQUJA4ykkguAvEGjSBQODwnD17tsKTBO7mlIH58+dz5swZpk+fzsqVK+ncuTN+fn5cvHiRw4cPk5SUxJUrV6yu2SqPv78/c+bMYdKkSbRt25Zhw4YpcdDUajV16tRBpbL+u7h0s0BaWhodO3YkOjr6jm2qip4//fQT/fv3Z8qUKciyzJQpU1Cr1XzzzTcMGjSIHj160KdPHyVm3IULF9i9ezdBQUGcPn3aosymTZvStWtXZS3fxIkTcXd3rzYbBIKajnDQBAKBw3Pu3Dnefvttm/fvxkELDAxk3759fPbZZ6xdu5ZVq1ZhMBgICwujdevWvPXWW1YX99ti4sSJBAQE8P7777N8+XL8/Px4+OGH+fDDD4mIiKBRo0ZW8/n5+fHII4+wZs0au28OsIapkzZ16lRkWWbq1Km0b9+eY8eO8fHHH7N582b27NmDWq2mbt26PProowwfPtxmmePHj1cctNIdqQKB4M6QZGtj+gKBQCCwK2fPnqVx48Y8+eSTrF271qpMy5YtuXDhAleuXLEIE1IRqampNGjQgGeeeYbly5fbSePqZ/ny5YwdO5Zly5aJ3Z4CQTnEGjSBQCCwI9nZ2RQXF5ulFRYW8tJLLwFYPTYKYPPmzZw6dYpRo0bdlnNmyldffYUkSYSFhd1R/nvFyJEjkSSJsWPH3m9VBAKHRUxxCgQCgR359ddfGT9+PP379yc8PJyMjAzlrMrevXszbNgwM/kFCxZw8eJFFi1ahEajYfr06bddp7+/v1kokDt18O4VQ4cONQvAGxMTc/+UEQgcFDHFKRAIBHYkKSmJt956i3379inx0KKiohg2bBj//Oc/LUJnREZGcunSJZo2bcqHH35ocWKBQCD4ayIcNIFAIBAIBAIHQ6xBEwgEAoFAIHAwhIMmEAgEAoFA4GAIB00gEAgEAoHAwRAOmkAgEAgEAoGDIRw0gUAgEAgEAgdDOGgCgUAgEAgEDoZw0AQCgUAgEAgcDOGgCQQCgUAgEDgYwkETCAQCgUAgcDD+P7SyxYwOWgBNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Best-fit model:\n", + "energy = np.linspace(500.,520.,201)*u.keV\n", + "fluxes = {}\n", + "\n", + "for model in models: \n", + " fluxes[model] = results.optimized_model[model].spectrum.main.shape(energy)\n", + "\n", + "fig,ax = plt.subplots()\n", + "for model in models:\n", + " ax.plot(energy, fluxes[model], label = f\"Best fit, {model}\",ls='-')\n", + "ax.set_ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "ax.set_xlabel(\"Energy [keV]\", fontsize=14)\n", + "ax.set_title(\"Best fit to model\")\n", + "ax.legend()\n", + "ax.set_ylim(0,);" + ] + }, + { + "cell_type": "markdown", + "id": "b9fea8a7-5e10-46fa-a094-87c260c5f6b2", + "metadata": {}, + "source": [ + "In summary, we fitted the flux and eccentricity of the disk only, with the all parameters of the bulge component fixed. Considering $b = a \\sqrt{(1-e^2)}$, we recovered the following fitted parameters:\n", + "\n", + "##### Component..... Injected........... Best Fit \n", + "b...................... 3$^{\\circ}$..................... 1.6$^{+0.2\\circ}_{- 0.3}$ \n", + "Disk................. 1.7e-3/cm$^2$/s.... (1.64 $\\pm$ 0.01)e-3 /cm$^2$/s \n", + "Background .....1........................0.991 $\\pm$ 0.003 \n", + "\n", + "You can play around with the fitting to find the best parameters for fitting the scale height of the disk, changing the initial values for the fit and which parameters are allowed to vary. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:COSI]", + "language": "python", + "name": "conda-env-COSI-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/tutorials/ts_map/Parallel_TS_map_computation_DC2.ipynb.txt b/_sources/tutorials/ts_map/Parallel_TS_map_computation_DC2.ipynb.txt new file mode 100644 index 00000000..7d23a00f --- /dev/null +++ b/_sources/tutorials/ts_map/Parallel_TS_map_computation_DC2.ipynb.txt @@ -0,0 +1,1398 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "54329e0c-b926-45f1-bd4a-f6a1c6e68d52", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Parallel TS Map computation" + ] + }, + { + "cell_type": "markdown", + "id": "0ead2b89-59f2-49dd-ae7b-30068d9ba290", + "metadata": {}, + "source": [ + "## Fast flux and TS Map calculation" + ] + }, + { + "cell_type": "markdown", + "id": "b39635ea-ab7c-488e-b09f-26730d79024e", + "metadata": { + "tags": [] + }, + "source": [ + "### Possion distribution" + ] + }, + { + "cell_type": "markdown", + "id": "76e69ae4-f016-4f4d-a9af-db88ca8b184e", + "metadata": {}, + "source": [ + "A discrete random variable $X$ is said to have Poisson distribution, with parameter $\\lambda>0$:\n", + "$$\n", + "f(k;\\lambda)=\\text{Pr}(X=k)=\\frac{\\lambda^ke^{-\\lambda}}{k!},\n", + "$$\n", + "where:\n", + "- $k$ is the number of occurrences ($k=0,1,2,...$)\n", + "- $e$ is the Euler's number\n", + "- $\\lambda$ is equal to the expectation and variance of $X$: $\\lambda=\\text{E}(X)=\\text{Var}(X)$" + ] + }, + { + "cell_type": "markdown", + "id": "0a2f765f-79b2-4f9d-88a4-5b6d9c42e9be", + "metadata": { + "tags": [] + }, + "source": [ + "### Maximum Poisson log-likelihood ratio test statistic (TS)" + ] + }, + { + "cell_type": "markdown", + "id": "4c74dc69-dae9-43b7-9bbc-b7b5bc7677e0", + "metadata": {}, + "source": [ + "Here, we will examine two contradictory hypotheses:\n", + "- There are source photons emitted from a sky location (pixel) with likelihood $L(f)$, where $f$ is the source flux.\n", + "- There are only background photons emitted from a sky location (pixel) with likelihood $L(0)$, where $f=0$ since no source is present." + ] + }, + { + "cell_type": "markdown", + "id": "ea18a011-38f3-409f-a1b0-49ad666ee6c7", + "metadata": {}, + "source": [ + "The log-likelihood ratio test statistic is defined as:\n", + "$$\n", + "L L R(f)=2 \\log \\frac{L(f)}{L(0)}=2 \\sum_{i=1}^N \\log \\frac{P\\left(b_i+e_i f, d_i\\right)}{P\\left(b_i, d_i\\right)}\n", + "$$\n", + "$$\n", + "T S=\\max L L R(f)=L L R(F)\n", + "$$\n" + ] + }, + { + "cell_type": "markdown", + "id": "19a5f5b2-8a25-461b-8380-cfd1af01940a", + "metadata": {}, + "source": [ + "- $P(\\lambda, n)$ is the Poisson probability for n photons with mean $\\lambda$ (also called expectation)\n", + " - $\\lambda=b_i+e_i f$\n", + " - $b_i$ is the background counts\n", + " - $e_i$ is the expected excess per flux unit obtained from the detector response and source model (spectrum and location)\n", + " - $f$ is the free parameter representing the flux from the source\n", + " - $d_i$ is the measured count data, including both source and background photons\n", + " - $F$ is the best estimated flux norm that maximizes $L L R(f)$" + ] + }, + { + "cell_type": "markdown", + "id": "98b7b13f-992f-40e1-9fcf-d05cd2a10b49", + "metadata": {}, + "source": [ + "One good news is that $L L R(f)$ has analytic derivatives at all orders. What's more, the second-order derivative is always negative. Therefore, $L L R(f)$ has only one maximum, which can be solved by Newton-Raphson's method.\n", + "$$\n", + "L L R^{\\prime}(f)=2 \\sum\\left(d_i \\frac{e_i}{b_i+e_i f}-e_i\\right)\n", + "$$\n", + "$$\n", + "L L R^{\\prime \\prime}(f)=-2 \\sum\\left(d_i \\frac{e_i^2}{\\left(b_i+e_i f\\right)^2}\\right)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "4e1443e2-dfd9-47fd-a9db-1956b78ce33f", + "metadata": { + "tags": [] + }, + "source": [ + "### Parallel Computation" + ] + }, + { + "cell_type": "markdown", + "id": "bc922c16-5e70-44b6-9da6-e6afadb0ae14", + "metadata": {}, + "source": [ + "The way we generate a TS map is to iterate through all pixels in an all-sky map. Although this generally works, it needs a tremendous amount of time when we want an all-sky map with a good resolution (3072 pixels or higher). A solution to speed it up is implementing parallel computation in our method. The idea is very simple: **The computation of pixels is independent of each other. Thus, we can perform the computations together, depending on the number of available CPU cores per user.**" + ] + }, + { + "cell_type": "markdown", + "id": "9954578b-7d9f-43fc-9ad4-02a20d1e36ac", + "metadata": {}, + "source": [ + "Here let me describe the steps in the computation for a single pixel:" + ] + }, + { + "cell_type": "markdown", + "id": "0f887e07-6590-4814-9dc6-7ceb1c581393", + "metadata": {}, + "source": [ + "#### Step 1: Data Preparation" + ] + }, + { + "cell_type": "markdown", + "id": "53d7afaa-e1af-47e2-a10b-f538d095708e", + "metadata": {}, + "source": [ + "We need several data files to perform the TS map calculation\n", + "- Measured (observational) data in *hd5f* format (in this case, the measured data is simulated)\n", + "- Background model in *hd5f* format\n", + "- Response in *h5* format (we have both detector and galactic responses)\n", + "- Orientation file in *ori* format (needed when using detector response)\n", + " \n", + "With those files, we can then:\n", + "\n", + "- Read all the data files\n", + "- Generate a null all-sky map with a customized number of pixels\n", + "- Choose a pixel from the all-sky map\n", + "- Convolve the response with the pixel coordinate and spectrum to get the expected excess per flux unit $e_i$" + ] + }, + { + "cell_type": "markdown", + "id": "a039e477-d5ad-4c35-b0a6-6b51b19a5f2d", + "metadata": {}, + "source": [ + "#### Step 2: Data Projection\n", + "The data themselves have multiple axes. However, we only need Compton data space in a specific energy range. So, we will process the data to obtain the portion needed for the TS map.\n", + "- Slice the energy range we want\n", + "- Project to Compton data space (CDS).\n", + "\n", + " CDS is a 3D data space (Compton scattering angle, Psi, and Chi); here, I use a 2D slice (PsiChi) to represent CDS in the image below." + ] + }, + { + "cell_type": "markdown", + "id": "aa0e9b71-7ac2-44db-a791-9f5e59c6ad6c", + "metadata": {}, + "source": [ + "#### Steps 3: Newton-Raphson's Method\n", + "With the data we obtained from Step 2, we can construct the log-likelihood ratio function and find its global maximum. The returned maximum will be feedback to the pixel we picked as the TS value or the flux norm. At this point, the calculation of a pixel is completed." + ] + }, + { + "attachments": { + "4acba1f5-5083-4b35-9183-e711c3f39490.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAkACQAAD/4QB0RXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAKgAgAEAAAAAQAACiigAwAEAAAAAQAABgQAAAAA/+0AOFBob3Rvc2hvcCAzLjAAOEJJTQQEAAAAAAAAOEJJTQQlAAAAAAAQ1B2M2Y8AsgTpgAmY7PhCfv/iDSBJQ0NfUFJPRklMRQABAQAADRBhcHBsAhAAAG1udHJSR0IgWFlaIAfoAAEAAQAOAAUAMmFjc3BBUFBMAAAAAEFQUEwAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtYXBwbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWRlc2MAAAFQAAAAYmRzY20AAAG0AAAB6mNwcnQAAAOgAAAAI3d0cHQAAAPEAAAAFHJYWVoAAAPYAAAAFGdYWVoAAAPsAAAAFGJYWVoAAAQAAAAAFHJUUkMAAAQUAAAIDGFhcmcAAAwgAAAAIHZjZ3QAAAxAAAAAMG5kaW4AAAxwAAAAPm1tb2QAAAywAAAAKHZjZ3AAAAzYAAAAOGJUUkMAAAQUAAAIDGdUUkMAAAQUAAAIDGFhYmcAAAwgAAAAIGFhZ2cAAAwgAAAAIGRlc2MAAAAAAAAACERpc3BsYXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtbHVjAAAAAAAAACYAAAAMaHJIUgAAABIAAAHYa29LUgAAABIAAAHYbmJOTwAAABIAAAHYaWQAAAAAABIAAAHYaHVIVQAAABIAAAHYY3NDWgAAABIAAAHYZGFESwAAABIAAAHYbmxOTAAAABIAAAHYZmlGSQAAABIAAAHYaXRJVAAAABIAAAHYZXNFUwAAABIAAAHYcm9STwAAABIAAAHYZnJDQQAAABIAAAHYYXIAAAAAABIAAAHYdWtVQQAAABIAAAHYaGVJTAAAABIAAAHYemhUVwAAABIAAAHYdmlWTgAAABIAAAHYc2tTSwAAABIAAAHYemhDTgAAABIAAAHYcnVSVQAAABIAAAHYZW5HQgAAABIAAAHYZnJGUgAAABIAAAHYbXMAAAAAABIAAAHYaGlJTgAAABIAAAHYdGhUSAAAABIAAAHYY2FFUwAAABIAAAHYZW5BVQAAABIAAAHYZXNYTAAAABIAAAHYZGVERQAAABIAAAHYZW5VUwAAABIAAAHYcHRCUgAAABIAAAHYcGxQTAAAABIAAAHYZWxHUgAAABIAAAHYc3ZTRQAAABIAAAHYdHJUUgAAABIAAAHYcHRQVAAAABIAAAHYamFKUAAAABIAAAHYAEMAbwBsAG8AcgAgAEwAQwBEAAB0ZXh0AAAAAENvcHlyaWdodCBBcHBsZSBJbmMuLCAyMDI0AABYWVogAAAAAAAA8xYAAQAAAAEWylhZWiAAAAAAAACDIQAAPXn///+8WFlaIAAAAAAAAEvQAACzvQAACtpYWVogAAAAAAAAJ+UAAA7KAADIl2N1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANgA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCjAKgArQCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//cGFyYQAAAAAAAwAAAAJmZgAA8qcAAA1ZAAAT0AAAClt2Y2d0AAAAAAAAAAEAAQAAAAAAAAABAAAAAQAAAAAAAAABAAAAAQAAAAAAAAABAABuZGluAAAAAAAAADYAAK4AAABSAAAAQ8AAALDAAAAmgAAADcAAAFAAAABUQAACMzMAAjMzAAIzMwAAAAAAAAAAbW1vZAAAAAAAAAYQAACgRAAAAADZk12AAAAAAAAAAAAAAAAAAAAAAHZjZ3AAAAAAAAMAAAACZmYAAwAAAAJmZgADAAAAAmZmAAAAAjMzNAAAAAACMzM0AAAAAAIzMzQA/8AAEQgGBAooAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/bAEMAAQEBAQEBAgEBAgMCAgIDBAMDAwMEBgQEBAQEBgcGBgYGBgYHBwcHBwcHBwgICAgICAkJCQkJCwsLCwsLCwsLC//bAEMBAgICAwMDBQMDBQsIBggLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLC//dAAQAo//aAAwDAQACEQMRAD8A/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivy9/ae/4LTf8ABLH9jvVbjw78e/jZ4d0/V7NilxpmnyyavfwuP4JbbT0uJYm9pFX8q/LnxZ/wd9f8EcvDk7xaPqfi7X1U8PYaE6K30+1SwH8wKAP6iKK/kdvP+D0H/glHasVg8J/Ey4A7x6Rpwz/33qi1jv8A8Hqf/BLBT8vgP4qN9NK0n+usCgD+vqiv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaUf8Hq3/AASy/wChB+Kv/gq0j/5c0Af1+UV/IbD/AMHpv/BKyU4fwT8UY/8Ae0rSv6aua6/SP+Dyj/gklqThL3SfiDp4PVrjRrVgP+/V/IaAP6w6K/np+FX/AAdLf8EU/ihfRaXcfFK48L3U5ComuaNf2yZP96ZIJYE+ryKPev27+DHx9+Bv7R3g6P4hfs/+MdF8baFKdq3+h30N/b7v7peF3CsO6khh3FAHrdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+Uf23/wBsX4Q/sC/sueLv2rvjhcNFoXhOzM3kRkefeXMhEdvawg8GWeVljXPAzuYhQSADxb/gpV/wVE/ZV/4JY/A9vjH+0lqrG6vS8OiaBY7ZNT1e5QAlLeNmUBEyDLM5WOMEZO5lVv8AMS/4KWf8HFP/AAUS/wCCkmu3vhK2164+HHw8unaG28J+GJ5IBPC5wFvblNs14zDAZW2wkjKwqa+Qf2hPj3+2z/wXE/b+i16+s7jxT4+8d3y6Z4f0GyJNtp9mCzRWtuGO2K3t03PLIxA4eaVsl2r/AEkP+CM3/Bur+y3/AMEyPCul/FD4n2Vl8QvjY8aTXXiC6iEtppUx5MWlxSL+6Cfd+0svnycnMaN5YAP4If2OP+Da3/grb+2bpFt4t0D4fL4D8PXgDQ6p41mOkI6tyGW22SXrIRyHFsUYcgmv2U8G/wDBkN+1PfWyN8Qvjh4U0uYgb107Tru/UH2aU2pP/fIr/R8ooA/z57L/AIMavEsig6j+0vbRHuI/CLyD9dUStlP+DGOQj95+1CB9PBWf/cyK/v8A6KAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1Qf+DGM9v2ov/LJ/+/Vf3+UUAf5+83/BjNfqP9H/AGno2P8AteDCv8tYNcbrP/Bjn8UYI2Ph79orSrp+wuPDc0AP1K30v8q/0OqKAP8AL7+NX/BmN/wUy8BaXNrHwj8V+CfHgiBK2cN5cadeynsFW5txb8/7Vwtfg54k8B/8FNP+CPXx0g1DW7Pxh8D/ABnESILuJ5bOO8SM5YRzxE215BnhgrSxN0Oelf7c9eNfHz9nj4G/tS/DDUfgx+0T4V03xj4X1Rdtxp+pwLPETggOmfmjkXOUkQq6HlWB5oA/jU/4Ix/8Ha2hfGjX9J/Zq/4Ke/YfDniG9eO103x1aotrpl1K3yqupRAhLV2b/lvGBb5PzJCo3H+42KWOeNZoWDo4DKynIIPQg1/lMf8ABwF/wbw+Kv8AgmHqj/tK/s1teeI/gfq10sUnn5mvfDlzMcJBdOAPMtpGO2C4IB3Yil+co8v7L/8ABp3/AMFu9f8AG1zY/wDBLT9qjWGvLy2tmPw91a7fdI8NsheTSpHJy3lxqXtC3RFaLOBEtAH96dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/OD/AODzz9vm+8d/tA+Df+CePgu+YaP4EtY/EfiOKNvll1fUUP2SORfW3tD5i+10fQY/0fK/xMv+CpXxF8SftV/8FXvjV4rtXN5deIfiBqmm6duOSbeC7ayskz7QxxL+FAH9wv8AwZ9f8Ew9C+Dv7NV7/wAFHfibpyyeL/iR51h4badPnsdBtpDHJImeVe8nRiTjmGKMqcSNn+0ivJ/gN8H/AAr+z38EPB/wH8DxCHRvBmi2OiWSqNv7iwhSFDgdyEBPvXrFABRRRQAUV/mRf8HCFnbXP/BXf403LTrDND/wjgjjZWJmL6LYBtp2lVKLzzjOMDmvxUspptMvLbXLcRTXFpIsixzp5kbGPBXep4IyORXpwy1ygpqW67f8E8upmahNw5dnbf8A4B/tEUV/i03m7UvENxr2p2cMk15NJNJDEDFEGk5+RUxgAnhRx2rP03wbquvXjadotq0s2x5WRR82IxudsYHQcnir/st/zfh/wQWZp/Z/H/gH+1NRX+J/FptvCrKY1YFSPmGSD6jpjFV205oVNsgeOOQqZFDDD7c7ePQZOPqaf9lP+f8AD/glf2j/AHfx/wCAf7ZFFf4kC6DGjHdwPQYHX9BXSWen/ZoxBKgTuAVOcH8PypvKX/P+H/BK+v8AaP4/8A/2u6K/xddW0/wrPFZHw2lyk6w4umnKlWlzx5eMELj+9zmrHhvQtEuNSFnqkEk/2lTDGIXCMJZPlUkkHKgnkYyfWhZS7Xc/w/4JEsySdnH8f+Af7QVFf4ff7T2jwav8bfED6dtkjsJVs1C/eVbZFj6dcZU9K+fLrT4J8JqCFjjAcffGfX1/H86872HmeipH+8PRX+D34e8GXdzrNv8A2UxkMk6RxvESGDMQBwOQc9P0r9aP+CqXhxtItvAHw7EjSXEAihd3Jd2fyFUk9SST1PWpdJ3SvuO5/sOUV/kB/tk6f4T+Ef7GvhT4BaDfQvrVtNavqsELgzQyMpnYyAfMueACfSvib4YftKTQ6fF4R+OVhJ4p0lFEcN2snl6lZr/0zlPEij+5J+BFCpX1W39f1uCZ/tq0V/jZWnws0nxbpc/in4G6oninSIRumhTEeoW3tNbnDf8AAlyD2rzVILTzmEo2yDIZCMEYrspYKFRXhU/DX7rkOUo/GtO99D/aXor/ABQ9a02wvdSa4sLdbePAyoJIzjk5Pr1qWHT0jttwkTOcbSMnHqD0ruhkUpK7nb5f8E4a2Yxg7JX+Z/tb0V/imrA0kixR8luBk4pfKmjZgVOF4JHQH61f9gP/AJ+fh/wTH+11/J+P/AP9rGiv8UcRTyy+VGMl2AAPOSa1rvwzqVna3FxfKIXtZFjkidgsgLdMJ1Puaa4ffWp+H/BF/a6/k/H/AIB/tRUV/ihpCJAP6+ldl4e8O+JfG2qW2h6fHJdTuVhgiRfm5PCgZ5qP7Csrup+H/BK/tX+5+P8AwD/aKor/ABhPFfgbV/hz4rfQPHNlPa3FnJtuLdhslUdxhhgNjpkVyurRxJqMy2kMsMLEtEkuC4Q9MkcE+pAp/wBhaXVT8P8Agk/2trbk/H/gH+1LRX+KgyKACnpgnoB/StS11S708IdMmYbkYOHUMqlxhgAcjkd8Zqf7C/6efh/wS/7VX8n4n+03RX+K9YwKtyJHiScDqku7ac/7pB469a0YdPBXOBnuFz1/Gm8isv4n4f8ABBZpfaH4/wDAP9pCiv8AGSg02KKNJ7oFWboAM0+O6vtMv49QsW8uSBgyNjOCOhweD9CDWTye32/w/wCCarHt/Z/E/wBmqiv8WfV7iWe4e6nO55GJZjgZJ69OKwREu/3o/sb+/wDh/wAEf1/py/if7W1Ff4xvgyIxXqyv6iv12/Z38RQWllBY6hcpawyD5pWyVUe4UE/kK4MZhHQ2dz38pwSxl+afL+P6o/0/KK/zi/Ffivw1p1mJfCtyLiV/9Zjsa+U/HWp3uol7wS/Pjdn0IrjgpS3R6VfI4U3ZVr/L/gn+pBRX+RJ8QrDXrjSm8T3CM1m0xhaZiOZAMkdc9PavmfXbi9njGo+WxhLmMPjjcOozXo0svc1dS/D/AIJ4GLUaDte5/s50V/i5WuqSwSKwHOc819HfDE+JvFUptfDsD3cqqzFIQXbC8ngUq2AdNX5hYaVOq7OVj/X/AKK/yY/DXjzUtP1ZNP2M9wDjy1Us2R14HPFfUfg348Ih2s4LdM4rz6kZx2Vz3MNlFKt/y+t8v+Cf6fNFf5ifiT4ya74iljs7aQHB4QkDeADxk8V8razPY+Kb2/m1J1VfLITB/j7D6etOnGUt9ArZNCCdqt/l/wAE/wBZWiv8bTX/AArBNfxnUWleIqDKyICwbngAnBGcc8Z9K8ul0naCjLgjuBj/AD7V3rApr4vw/wCCeHUTi2rH+05RX+J7e2xAKHtWWLWdwdqkhcnIBPFWstur8/4f8E5amI5Oh/trUV/iOPb+adzdfepLW/m0uR5bOTy3kjaNjtDHY/DAZBwSO/UdjVf2Z05/w/4Jk8b2j+J/tv0V/iIXU73hEjMc4xyemOgHtX+3fXJisL7G2t7m1Cv7S+lrBRRRXKdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAed/Fz4TfDv48fC/X/gx8W9Kg1zwz4osZ9N1OwuRmOe2uFKOp7g4PDAhlOCCCAa/xfP27v2Zfi9/wSB/4KV+IfhH4W1S5s9Z+Guv22r+F9aUbJZbUMl3p10CPlL7CnmAZUSK69jX+2PX+eL/AMHvX7P+kaT8TfgX+1DpcCrea5p2reGdRlAwSunSRXNpk9z/AKVcdewFAH9wX7Bf7WHhf9ub9jf4c/tZ+EVSK28b6Lb380EZ3LbXgzHd2+ec+RcpJET3KV9cV/In/wAGZHxl1Hx3/wAExPFHwq1aYyt4F8cX0FohORHZahb290qj0zcPcN+Nf12UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8QH9mRB8T/wDgqN8PUvf3o8RfFPSRJnnd9r1ePP57q/2/q/xBf+CYY/tX/gqZ+zyJOftPxV8JZ99+r23+NAH+31RRRQAUUUUAf5k//BxHrF9ef8Fc/irpVxIpgsv7D8pQoBUy6Np7NkgZbJAIyTjtX4lNlANvP1r9of8Ag4c2j/gsH8Xs9/7A/wDTJYV+LC5kUKTnpx9a+tw0f3MPRfkfKYlfvZ+r/MQS3UNwtzbOY5YyGVl6gjofwpbu+u9XUWuoSlwHaTLf33OS2cdc89afKCcFRz9KhvpoJraKH7OFkTdmQEjcGPGR047Vty3M011JLm2k0O3iYSW9z9tg3YVhIYtxxhh/C4xxnkVTj0tpdIm1nzoVEMiR+UzjzWLAncFPJUY5I6EiqRYjK/h+VaOnBoy+oTWrXdvD/rFGVXLAhcsOnPPvitIwY3UQyBtEGlTSTNN9tzGYAqr5e0n59xJzkcbcAjrnFM8+61CdFkkaRmCxruJY8cAZJJ4zgCtrwzP4KsINRXxfZ3N00lpItmbVwgiumA8t5M5yg5yBya5SPcCkhyrDof5flRyatWKcrJWZsiRkJhHBUkH6ivT/AISQR6j8SNGgn5jS5WZ8/wB2HMh/9BryeEF3LDnv9a9Q+G96dIXxH4nkyi6Xod7IrDs8ieUuPxeislGjOXZMKPvVYx8z4Y8X31zrnirUvFSSeYby8muN68EGRy3PcVzF3dW16D9r/dOQf3q8gn/aH9R+VWdl1Z7Z4XBAHDL0/H/A1lXptL0HeRDMfwRv8D+lfMH05oeHpdX8OXtvrOlymKdJBJBNEejKcgg9OozX6ufFK7svHn7S/wAOtQ+O2oeZY+GdOh1jxBcsmQPLijkYuqjjJYDp3r80vhh4fv8AXPG2ieEEBzqV9bW5VhkHzHAyPwPWvsb4ra9Bq9v8XPF9qVJ1LVbXQ7fnGYvOJYD/ALZ24/CsZ6yiir9T56/ad+II8f8Ax48W+PtOlD22p37/AGaQco8CAKhGeCCBXgSmyu1wuLabsP4G/wAD+n0q3c3skUYt7hQ6E7jG+cA+3oapLZRXaGawPQfNGx+YfT1FbtW0JR9ifsDeEtU8Q/tW+GLdDJCLSV7mVkYrmKJSSCQeVJxkdDXpf7cnxFj8LftPanHYRQBYbnCxGIeX8qrncoxkEnPNeH/sXeMfiB4Y/aI8NWPgWdYpr67S0lWVN4MEh/eDnkfKO2K5r9urVjqv7TuteVlm+2TAe/zBR/KlhnbGUn6/kaNXo1E+y/M9c0TStT1nwdB4z03Tb2eBZXS8uPLzaK/3lVSuSOOu7HtWTcXS3V086ARhyTsXkDPpnmv0M8eeI/EX7HX7A3h+18OPHbeINWnt3l82MSKzXB3yKyNwQEG018OaD8T/AIEfHqUReIAngDxPLgCRDu0u5kPf1hJPrxXt0s6ipyU4+7eya1+9f5fceLPKXKPNCXvdn+j/AM/vORILkFTyOmPWrcF3dQW01pG5WO4IMig4DY5GfXFdV4h+H/iX4c6g0XjqJ7e2eMvbXkAE1vM38O11+Ug1jXd7perPFNptoLYLGqyAOXDOOre2fSvdo1IVYqVN3XdHiVoTpS5aiszH+wzSQmYAtGmNxK5HPvUHlnI8nIIHAB4/TFdRFbwG2kG5xIxXaoPyY7k8/lxWdLalWBXIIraxjGeow23m6fugibzIcmVyw24b7uB1479a6bTPFk/hg2F/4fEtlf2Z3tcLJkmQHKMuACpX61iQfPGS3BYcVvaNd6HZW12mq6eL15ItsDeYU8l8/ewPvcdqxcLbmqd3uQeNPiB4q8favPrvie9mv7y7bfNNM253b1LHkmuVurG8tp44r1WVtu4ByeFPfJqWW3iEpVM+vNSWsUUk672MalgrsOu09f0pqnZaA52eo6eO+tv+JXcR7MsH2OnPTg5Izg+lWbLTJNxDJz6V6r40vvDOoQWXh7wlZrKlguw6m28T3QPILqxIG3oMdqo2WjrBsP3ianoap3ZnaboWnf2bc3F3K8dymzyI1Tcr5PzbjkYx29adZ2gt/wB8wAPfHNd3N4du7PTIdbuIiLWeR4kfsXj+8PwqBr60j02a0ltUkeUrsnYndFtPOAODnvmsn7zsbJcquccLmU3C3PIMZ+TKggfgf61Fq+o6Zeadu8qU37SM0jgqISp6AKACD+ldNr1lpEumwXnh95mYLi7aXCp5hPGwdcY9a4a5uUlsks/LQJExO/HzsW988+1Qoa6FSq6WMCFlt7pLp1VxH82x87W9jgg81YnsLb7Z51uytuAJCg4BPbn06VZjs3uZNkcRbHfFbCWjIvluuCO+KmUEUm2tzY8N2olnAAx9K+tPA/ifUvDNvI1nFDc+bC0OLhdwUPxuXlcMOx7V4T8NfBet+MNbtvDvhi3e8vrtwkUUQy7sewA5NevTWV74Mv5LHX4/KntXKSRPncCOCD6Ed68zEwUpH02WVuWB7PYT6jpkUlrekSKuPnjbcp+jDrVDVtdglsZ3UgLEu5i7BTj2z1PtWG/iOO+t45ICUt5BhMnk7eD09DWz8TLL4R23wh0/UdH1S4l8SSTOL20KYijjH3Sr9yf0rgdBXStueusY6avc+UfHeveH59OuQY5Dfb1ELoU2bCDndnDZ9McV88NqN7a2l3a20aOLqII25FZ12HI2Mfun3HUcV33ima11LUpb2ztxaxseEDFwPfPvXA3USgdOfSvWo0eSNrHyuPxLqz5mReLL+w1rWX1PRdPXSbeRU22yOXVSAAxBPPJ5/GvYPgL+0J8SP2evEZ8W/DS//s2/aKS3MuwP+7mUq4w3HIPXFeRWGkz6nexadZpumnO1Fz1OM9fwqWSySJcT4YjsOKqpCMo8sloclOo73i9TrW+Knim08UDxbp189tqCymXz4vlO49emOvfsamtPiNrM2oSX9zcFpJ3MjHpkscngcVyVtf6ETFD4ksy9tCkuPshCTNI4+QszcEKcdhxx1riIruKG7zMC/HAHABxWTw0JK1jpp4+rTejPp+y8canqkTxhg4jXzJMn+HOO/Xk16Z4PUa1JDaL8qn7zHrivjCw1DbMpduR69Qa+g/A3io2U4BbH49a4q+G5Voe9gswlUfvvQ+r9b8D6BDabL2UCR+VGOCK+XvHXhW2sFYw/xHg+or30a3d6rZG9uSzI/wAqO3I46gH2zXzv4vv7uRpY1VsLzXLRUr2bO7FKm1e2h4Brtr5Q2+ma7/4Z/Ezw94B8L+IdE1vw/Z6zNq9i1tBcXBYPZPnPmRYIG/jHzZGK8+1e5eaXEgxg85rlLlkc/KOnWvUjSTjZnzNepZ6FCWZHlZh3OcfX6cVmXY6FV5PpW0VVuXAHqaqNEXkC26mQsQAByST6CqcLM4G0YiMiLhhg1/t71/iS2EEj38DpbLckyqvkNnMp/ujHI46n0r/baryM0+x8/wBD0MB9r5BRRX+eJ+zl/wAEu9G/4K4f8Fe/23/CvxX+KnjXwbY/DjxxM2nxeHr5UVxqN7fqyssyyKFQW67QgHU+1eSegf6HdFfyIf8AEIR+zt/0cT8Wv/Bja/8AyPR/xCEfs7f9HE/Fr/wY2v8A8j0Af130V/Ih/wAQhH7O3/RxPxa/8GNr/wDI9H/EIR+zt/0cT8Wv/Bja/wDyPQB/XfRX8iH/ABCEfs7f9HE/Fr/wY2v/AMj0f8QhH7O3/RxPxa/8GNr/API9AH9d9FfyIf8AEIR+zt/0cT8Wv/Bja/8AyPR/xCEfs7f9HE/Fr/wY2v8A8j0Af130V/Ih/wAQhH7O3/RxPxa/8GNr/wDI9H/EIR+zt/0cT8Wv/Bja/wDyPQB/XfRX8iH/ABCEfs7f9HE/Fr/wY2v/AMj0f8QhH7O3/RxPxa/8GNr/API9AH9d9FfyIf8AEIR+zt/0cT8Wv/Bja/8AyPR/xCEfs7f9HE/Fr/wY2v8A8j0Af130V/Ih/wAQhH7O3/RxPxa/8GNr/wDI9H/EIR+zt/0cT8Wv/Bja/wDyPQB/XfRX8iH/ABCEfs7f9HE/Fr/wY2v/AMj14n8dv+DZX9gb9mTwnB45+PP7VvxP8M6VdXKWcNxd6lb7ZLiT7sahbZmLNjgAUAf2t0V/E/8AAz/g2d/4J+/tMaDdeJfgP+1n8SvE9nYy+RdNZaras8EuM7ZYzbh4yRyAyjI6V7j/AMQhH7O3/RxPxa/8GNr/API9AH9d9FfxpfFD/g1X/Y8+DHgLU/id8S/2mfivpehaPCZ7y6kv7dlijHUkLbFj+ANdfpf/AAaNfs0azplvrGm/tG/FmW2u4kmicahbAMkgDKebfPIOaAP6/qK/kQ/4hCP2dv8Ao4n4tf8Agxtv/kej/iEI/Z2/6OJ+LX/gxtv/AJHoA/rvor+RD/iEI/Z2/wCjifi1/wCDG2/+R6P+IQj9nb/o4n4tf+DG2/8AkegD+u+iv5EP+IQj9nb/AKOJ+LX/AIMbb/5HrzTXf+DWn9i/wz8StD+D+uftO/Fa38R+I4bi402yN/AXnjtRulYEW20bR1yR7UAf2dUV/Ih/xCEfs7f9HE/Fr/wY2v8A8j15nrP/AAa1fsXeH/ifo3wa1f8Aad+K0HiXxBbXF3YWJv4C80NrgysCLbaAueckGgD+zuiv5EP+IQj9nb/o4n4tf+DG1/8Akej/AIhCP2dv+jifi1/4MbX/AOR6AP676K/kQ/4hCP2dv+jifi1/4MbX/wCR6P8AiEI/Z2/6OJ+LX/gxtf8A5HoA/rvor+OWL/g1B/ZEn8Yy/DyH9p34otrsNst5JYDVbT7Qtux2iQp5GQpPGcYzXV/8QhH7O3/RxPxa/wDBja//ACPQB/XfRX8cXj3/AINQ/wBk34Y+DtQ8feNf2kvi1aaVpURnuZhewSlEGATtjtmY9egBNb2k/wDBo5+zRrmlW2t6X+0Z8WpLa8iSeJ/7Qtl3JIAynBtwRkHoRmgD+v8Aor+RD/iEI/Z2/wCjifi1/wCDG1/+R64Zv+DVT9jhdU1nQk/af+KMl/4egW51K1j1S1ee2iZS6s8a25YBlBI457UAf2UUV/G98Pv+DUf9kr4peDrDx94H/aT+LV5pWpx+bbTG9giLpkjO2S2VhyO4Brsv+IQj9nb/AKOJ+LX/AIMbX/5HoA/rvor+RD/iEI/Z2/6OJ+LX/gxtf/kevnjQv+DbP/gn94o+OGo/s5+Gv2pPi3qHi7R0339pbzrJFanAOyW4FmYEkwQdhk3+1AH9u1FfyIf8QhH7O3/RxPxa/wDBja//ACPR/wAQhH7O3/RxPxa/8GNr/wDI9AH9d9FfyIf8QhH7O3/RxPxa/wDBjbf/ACPXm/xZ/wCDWb9ir4FeBLz4m/F39qL4o6DoOn7ftF5dalbCNC5wo4tySSeAACSelAH9m9Ffw5fB3/g3Y/4Jo/H7wdrXj74Tftf/ABJ1XSvDYY6tKdTgt2sQi7yZ45raOSIbfmyygEcjNdL8BP8Ag2o/4J5/tSeHb7xb+zz+1v8AEjxfpmmXTWV1dabq1rLFFOgBKFvs+MgEGgD+2iiv4Z/hp/wbzf8ABMT4xfFK++Cvwx/bF+Ius+KNP80y2NvqtuWbyG2yeWxtgkuxuH8tm2ng4pbH/g3m/wCCYmpfHB/2brH9sX4iS+No5GgOljVrbf5yDc0Qf7N5ZlUctGGLgckUAf3L0V/Ih/xCEfs7f9HE/Fr/AMGNr/8AI9cn4n/4NQ/2Q/BU2nW/i79p34oabJq90tlZLcaraRm4uGBYRx5g+ZyASAOcCgD+xuiv5EP+IQj9nb/o4n4tf+DG2/8AkesXxJ/waV/sseD/AA/e+K/FP7SvxVsNN02B7m6uZ9TtUjihiBZ3Zjb4AUAkmgD+wmiv4W/gR/wb6f8ABL79pnxHe+D/AIHfthfErXtWsIftEtmmoRQzGAnHmok1qjSRZ48xAy571mfDL/ggb/wSr+M3xLHwe+Fv7ZHxI1zxIZZ4BZWuoRMxkts+au77IEymDn5u1AH929Ffwzar/wAG9P8AwTB0P44R/s3at+2P8RIPG0sy2y6W2rW28XDruWFn+zeWszLyIi4cjotTfFD/AIN4f+CZHwW+KGn/AAY+Kf7YnxF0TxPqnk+RY3Gq2wcfaG2xeawtikPmNxH5rJvPC5oA/uTor+HT47/8G63/AATR/Zj1LS9H+PH7YHxH8NXWsqZLSK61S3LtECFMrBLZikQJAMr7UB6tX0hp/wDwaMfsz6tYQ6ppf7SHxWuba5RZIpYtTtWR0YZDKRBggjkEUAf190V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/m5/8Fiv+CNnhr/gkfZfBH4t/Bz4x+PvFNx4r8f2GiXVtrt+jQrDgzbl8hIjnKYIbIINf6RlABX5D+Jf+C9n/AAR+8H+ItQ8JeJvjz4ds9S0u5ls7uBxcbop4GKSIcQ4yrAg49K/Xiv4RP+Ddj/gnl+xH+2R4l/as8YftTfDLQvHmpaT8ULyzsp9Yt/tDW8BeZykYJwoLEk4GTxnoKAP6Kf8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxh/wR//AOjdvBP/AILk/wAaAOK/4iDv+CMf/RwXhv8AK5/+M0f8RB3/AARj/wCjgvDf5XP/AMZrtf8Ahxf/AMEf/wDo3bwT/wCC5f8AGj/hxf8A8Ef/APo3bwT/AOC5f8aAOK/4iDv+CMf/AEcF4b/K5/8AjNH/ABEHf8EY/wDo4Lw3+Vz/APGa7X/hxf8A8Ef/APo3bwT/AOC5f8aP+HF//BH/AP6N28E/+C5f8aAOK/4iDv8AgjH/ANHBeG/yuf8A4zR/xEHf8EY/+jgvDf5XP/xmu0/4cY/8EfR1/Z38E/8AguT/ABqhcf8ABEX/AII1Wn/H1+z/AOBIv9+wjX+ZoA5r/iIO/wCCMf8A0cF4b/K5/wDjNH/EQd/wRj/6OC8N/lc//GauTf8ABGf/AIIlW3Nx8Dvh5H/vWsI/m1c3ef8ABJf/AIIQafn7b8HvhpFjruhgH/s9AGx/xEHf8EY/+jgvDf5XP/xmj/iIO/4Ix/8ARwXhv8rn/wCM1wNz/wAEy/8Ag32sztuvhb8L0I9Y4P8A4qsuX/gnL/wbwQf634a/Cxfqlv8A/FUAepf8RB3/AARj/wCjgvDf5XP/AMZo/wCIg7/gjH/0cF4b/K5/+M15Wv8AwTo/4N3n+78NfhYf+AW//wAVV63/AOCa3/BvbdHFv8MPhc/0jg/+KoA9G/4iDv8AgjH/ANHBeG/yuf8A4zR/xEHf8EY/+jgvDf5XP/xmuZtP+CVX/BBG/YLZ/CT4ZSE9NsUB/wDZq6q3/wCCOf8AwRAugGtfgl8OpAf7ttAf5MaAI/8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmty3/4Io/8EX7r/j1+AngGT/dsoj/Jq1V/4Iaf8EenG5P2ePBBB7jTkP8AWgDjv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguT/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgA+G3/AAXJ/wCCTPxf+IehfCf4afHHQNX8ReJtQttK0uxgFx5tzeXkixQxJuiA3PIyqMkDJr9Xa/hh/wCCxv7C/wCx/wDsW/8ABVP/AIJy/wDDKPw60TwD/wAJL8UR/an9j2wt/tf2PVNB8jzMfe8vzpNvpvPrX9z1ABRRRQAV/Fx/we16DFcfsJ/CTxOVy9n48NqG9Bc6fdOR+Pkj8q/tHr+PT/g9atw3/BMX4d3WOU+KGnJn/e0nVT/7LQB8p/8ABjtrklx8Jf2h/DZb5LTV/DtyB6G4hvVJ/Hyh+Vf3b1/Aj/wYzTltN/adteySeDW/76GsD+lf33UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/gk/8AN/wVN/Zq3d/ir4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooA/zD/+DhwqP+Cw3xfJH/Qv8ev/ABJLCvxs0y408ajBFrQY2bSK0vl48wIp5CnsSCce9fs//wAHBF1aWP8AwWW+Lt1qFsLuFRoOYmJUEnQ7ADkc8HB49PSvxMBCjYeCQAfU/wCTX3GDj+4p6dF+R8fi3++m79X+ZfvPIW8cWSusO9wnmHLBATtz/tYxn3qxp2oW2mXLTXFnHe5jdEEucI7DAcYI5XqO1Z0MmGCsMZbnH/161Z9NW31X+z7qVYYw6hnB3hFbHOVznAOTj0xXUqbXQ4XO73Ofkj3yDcOWPPbk1f8AtmqaXBcaTDMyQzFTNGjfI5Q5XI6HaemfWm6nBZW2ozWtjdC7iidhHKFKiRRwGwRkfTFUEG49OnFKNNtms52ViTU76TUZI5DCkXlxpGViUKrbBgHA7nue9SWlpo82mXU99dtDdRqhghEZYSEthstn5cDnvmnKj8LGvmM3Rf6Vq3/hm1s9Ikv7y+ijvIsK1gyuswJbaecbeOvXp71qoWYQnzGbpmo6Za6XdWl5afaLmZV8ibcQIWB5O3o2RxzWpqeo22j/AAG8W3UxKtqE1hpysvXDu0rfhhOafrOn3/h/Trfwvq9jb291GwuhMm2SV4pU+VWkRiCuOQvBB61yvxbMVj8G9IsXZkGratPOMdMWkYUZ79ZDXHmjthpedjvy+N8QvK58oSRXGngSRncsg4IOVI9/8K526FvfyCKE+VIT90/dJ9jW7K1zprsvBU/irVhCGC9uVktflZefLJ/9BJ6/TrXyp9Mj6y/ZIszH8Y7PV74Zt9BtrvU2DjO37LC7KR6fPtqr48lvU+Bvhu0kGZta1bUdXmGfmZYUS2ViO/zs5rf/AGe3nsPhv8RfFjnDRaVFpkTEfMr38wUgH/cRq5f49iew1Lwx4Zi4Gj6BZq+OqTXha6kyO3LrWcVer6A3aJ853d8s0vl3f71AAAejL9DVCW1KL9os2MiA9RwV+vp9au3dxa3V2Rdrtbp5i+vuP8mqMi3GnP5kTbQejLyD/n0rV7gkfRf7K3xPf4Z/Hnw54tfTV1eVbkQRxltjZm+TcD3K5yM16l4L+G7/AB//AG/Y9Iu4vMs4L+a+vc/MoihkZyD9cAV5f+ytpena78b9Hv72PbHpAl1GXb9zbbIXyR25Arov+Ek1Pwx8Mte+Luh3b2esa7rqWdtcQNskSK2Uzy4Yc8swBrnbtWTW9n+Juv4cvVfqUP2t/jv4q+JvxU8Q+G9X1Ca68PafqsxsLYt8sHljysp7cHjpXyWun7ojNanzo++PvD6j/Iq/eXMWtTvdXrbLqZi8jnlXZiSSfQknJ7VSZbuykDAGMjow7/jWyjZWRk3ZHs/wx/aF+JHwwRdMsLoanoxP7zSdQH2i0kB7BGzsPuuDX6R/GL4W+EvBnwg0H4y6banSp/E8KM+nB2aK2dhuzG2RwR2Oetfkhotzo9zq1odezDCsqebLGM/JkZJX6elfsp/wUJ8deFtU/Zw8G3/ga7S60mVQLaRARlUQJ0OCMHqKIV6lGrB0nZtq/nr1JdGFaDhUV1Z/k9ux8g288iSeRLjzMA4BB689QcV3lx4M8RwaoNGazkmujCLjy4R5jGMruz8ueAOT6V47+yh4T1H4wePdK8Dw79t3IPOdRkpEv3j+Vfon8RfgXqvw/wDHl1pXwZ8TDUtZ06H97p4l2agkMi/wqcb1K8HbmvtKuY0KVSNOpKzav5fPsfJQy2rNSlTV7ff8u58qXWm3es6e2pQ6a0exEjWSBdsShepYY+83c1zEiW0wigs1ZpslWBHU9tte4aR8efGnhD4a6t8FngjhtNQnWW5SaEeerx8AbiNyj1Arxm0Se6u0ltDiTO5cHbjHueldkfe16dDhmuRpdepo3txb6vJez+KI5Uv0jWOAQosa7lwPnGPT8SetVdM0FJF8t1YOxygxwRXR6fosut6kZiXZmbJMh3Ek9ye9er2XhZ4AqzcY6ZpTko6I2p0pT1OO0Tw0A4wnH0rfk05c7Y1yV5NemxaE0Vu0VmE8wIzncwTheuCSOfbvXI6w9laWAm0suZ2iHm7mHBP932/WsNZM7HFQWu5wV1PEH+zRjOOfbNcjqc2ZVgjP1ArQuZJbTL7iWfnNc5Hayzz992c5HetVSSOR1rjtQ07U0s4b2YbYZyQjZB3beoIySMe9GnRTxykxIjFlKHeofr3GehHY9a6ax8LXMsNxcMwY2672VmCkKeOMkZ+got0gt0dmXeSCAVOAp/rUTiraGkW29TY1PT/D1uLf/hGmmK+Uhm87APm4+bAHbPSsWaO1tYHluT2JHHpWfJfBB5q9z371W1ASSWMd80qOsxdRGGy6hePmHbPaslRdzp9uuiO207XvFnwq8WwXumTS6df24jnhmiYrIm4Aghhgjg5FQ+JPGWva9qMl/rMssk9yfNaSUku+7+LJ9a821DUru/nF3fzPNKAF3OcnC8AfgOlb1tc6t4jufPv7gyvbwqieaekcfCqPoOgpyoR+JoKeJnfli9D0rw9cyXCLGXYd854Fdd4sstunR29rKtyzICzJnAJ7HPcd64eC0uNMjjndk2yoHVVbccH1A6Ee9dZplys+wTtuYkADPJz2rz6tKz5kfQUq14qLPJ73RZhHukTB9K4O/wBJkQ5Gc19ReI9HvbTUHsNQga3mjwGjZcMPqK8+1Dw5IczoOnXPSiNW25nWwnMm4ni8UJtzuCbm7Z7Gs67fYplkwq9MD+lfdH7O3wy+AvjfxGdE+Mmtz6DBLuxfKm+ODapI3KOWLHgAdOvNfLnxD0qw0/XdS0PwtdC409ZGYScLvSM/KecHPOcda1jKM24o8mrSlTXMzxy4O/7tc1fsQuwLknua7RINOtbm3e6l+0QPtaVYhtdVPVfmAGffmufuo4DM5gz5eTsBHIXtn3rRQsc6k7mnrUnh2W8iPhYTrAsMfmfaCCxmx8+MAcZ6e1aujazJbyAZ+7XNjTjJBc3ltKixwbAwdsO249VHfGOajt2YSBn4PWsZ0LrQ6aWIlCV0fVnhDxd4j1Gwk0fTmM9vbJJdmJnwqhQN7AEgZxjpyfetqzX/AISNLqKIAu68Fu1fOlnZXS6Zb6uLqAmW4aFrdWPmqqAHeR02tnA57V9bfCOx0q90i5ZVMt3GhIQnAK/415mIo+zVz6bAYp1/dk9j5J8T6NLb3ksM4IdcgFRwWHrXm1xBJFI24cE19ueLfAt3dxsYojnk4xmvmbXvDz2lw0cwIYdulaUKqtY5cfhHH3keZk/IWPGK0dN1G80K6j1bSZTBdRnMUsfVeOGBPQjpTJ7eRG+TIFQfY9oAB6cc11HkODKoklSZp4jiTOVbng+tf7atf4l7R/L8pwc1/toV4ubq3J8/0O7AK3N8v1Cv5EP+CBv/ACmd/wCCkX/Y7Wn/AKX6vX9d9fyIf8EDf+Uzv/BSL/sdrT/0v1evGPRP676KK+Cv+CoXizXPBH/BP/4q+JPDHi0+BtTh0KZLTWkDmS3nlKxxrH5as4klZhFGUUsHcEDIoA+8kkSQZjYNj0OaVXRyQpBI647V/JH4G+LPxJ/ZQ8WfFnxD4G8OeKPg9Np3wRu/EFj4L8W6pLrUuq6vZkl9Uhdp7iNGtsrHOvmJI5dS0agA19L+APDep/sW/E/9mjxj8L/Emu65d/F/wrrX/CYpqup3GoR6teW+jnVYr/y5nZIpUnQoDEEXyn2Y4FAH9IokQsUBGR1GaN6b/LyN3p3r+Vv4O2vij4VfAz9lD9vHRfFmu6j8Qvi74v0e08XyXepT3Npq1p4laQTW5tHcwRpa5U2/lopj8vqcmsLUNa8X/wDDHmsf8FUm8Ra0fivafFKS2gH9pXAsotKh18aQNKFl5n2cwNa5yDHvMjb92cUAf1gl0VgjEAnoO5p1fy3fGS08S/GrwL+13+2T4h8Va3pPjX4L63dWfgs2epXFtbaPDoVlDdoBbI4hkF3I7ef5qPvQhRgCv3S8P/GD4s+N7f4f2GgWltps/ijw4mtXd3eRGWISmKF2hRElRwQZSSWGMDg5oA+v6K8X/sn4/wD/AEGtE/8AAGb/AOP0f2T8f/8AoNaJ/wCAM3/x+gD2iivF/wCyfj//ANBrRP8AwBm/+P0f2T8f/wDoNaJ/4Azf/H6APaKK8X/sn4//APQa0T/wBm/+P0f2T8f/APoNaJ/4Azf/AB+gD2iivF/7J+P/AP0GtE/8AZv/AI/R/ZPx/wD+g1on/gDN/wDH6APaK/GD/gswuvt4c+Bw8L6zYeHtQ/4WfonkajqcAuLS3fL4eWMyRblHcb1+tfpv/ZPx/wD+g1on/gDN/wDH688+JfwN8U/GfQF8KfGC08I+KdLWRZltNW0Y3kAkXowSWVl3DscZFAH4EeFfjlZfs2/Fr9qnxN8VNdTx9rsnh/RL278R+BJF0a3RJGe3gshhp1trhCxkadpXOw5wAornfC/7TX7VH7OHjD42fC3wrrUlxcaZ8Mm8VWOnv4mm8aPpl+JljEwuLiJJFJjcsYssh2hhgdf388M/syP4L8E33w18HaH4H0nw7qYZbzTLPQFgtLgOMMJIkkCPkcHcDVD4afsoWXwYgNv8IvD3gbw0phe2b+zdBFuWhkILIxSQEqxAJBJBxQB+Uv7QHwz+GXhf/gmB8QPiV4F+KfiD4j6z4j8ELd3I1fxE+pW91LIqO0yW7M0cGXO390qqg4xxXmvh79qH9oyb9jn4rfF7xL4m1Hw/8W/Cmi2tiPBsKlLbw3pTBVW/gTpfNJF+9F0QVBGwKuDn9iPCX7FPg3wFLrE/grwf8P8ASm8QoY9T+y+HljF2jHcVlAkwyk8lTwTzXeeKPgd8S9f87VLC58LWOuf2fJpltqg0XzZ7e3kGPLXfLzHwP3Z+U45FAH4jaJ8QIfhP+1jp/wAN/wBn344+IvHOg3vwp1rX7q2v9bbWFS/REMV4JWLFHckkJkKv8KiuY8Kx/EvS/wBnX9mu6+IXxc8ZQW/xvvrWHxn4luNalikCrFJLDbWz5Edl57hYy8QV29cmv0P/AGfP+CY3jf4LfF66+NeueKPDWsanLpUujwWVj4Yg0fTIYLhg9w5trWQLJLMVAd3J4GAK+0vEv7Put+Mvh5/wqLxbp/g7UvCojWIaPc6KZLIRr91RCZdgA7YAx2oA/ECy/aB+LHwwvPEXw88K/EfV9d8B+Cfi54d0iz8QX999pl/s+8Aa7sri9P8Aro4nIUs7EgNtY1e/bJ/au+Keo+Mf2ldE+DPxHvbS38N23hW2sJ9Lug66bcXkzLOYsZVXZSNw57Zr9mbT9lwWHwqk+BVlongmHwXMjRyaGmh4sHVuSGhEuw5PJJGc1T8Mfsmad4K8PS+EvCPhzwJpulzrEktrb+H1jhkWE7ow6iTDbDyu7ODzQB+U3xn8V/G79ijxf8SfCPwe8a+JfEn2v4ZyeJE/4SC+k1WS11OGVImubfzc+WNjsxiTCZAwoxXLfBLwz4C8J/8ABSH9nX/hCvirrPxDl1zwVq+q3kesar/azLNPAjNcRsxJhWRiR5SkIMYAGK/c25+GXxLvNXPiG7k8MS37WzWRuX0p2lNs3JiLGbPlnuuce1eX/Df9kXR/g7qra98JvDPgTw3fM8khudN0AW026b75DpIGG7uAcGgD5r/by8Ua74l/au+EP7NnivxpqngH4f8AiuHU7nUb7Sb06XcX97aIDBZfbFIeIPy5VGVnxjNfNPxs/Z58K+M/26fgJ8HfDHxA8TS6FD4d8RiTVLTWZJdUuI1AzE2oKTMADwSrB+Mbq/Vr4o/AjxN8b/DDeC/jLaeEvFOkM4kNnqmjtdQ716MFkmIDDsRzUHhD9n7XPh/BpVr4F0/wdo8ehQvb6aLPRTD9kil++kO2UbFf+ILjPegD8SNI+PXjnVf2ePD/AOzh4m1nxD4m8Q3fjvXfD2k6hL4ol8OPJZaUd6/btTiRpnKocBV+eQgZNeI/Db9of9pL4q/Ajw/8IJPiTquntZ/GVPCLazpGrG/u5NKK7mt/t7Ro0+OVErJu9yRmv6BvGn7Kdr8R/CsngXx9oHgfWNFluzfvZXehebA12xyZihlx5hPV+p7mtTQf2brzwtYW+leGNI8Fada2lyt7BDbaEIo4rlBtWVVWUASAcBxyB3oA/Fj9uDX7nwP4z8U/BH4N6/4otLv4VeF01i41rWviFdaRHEZwzxusXlzPfSZX5jMSn8OOa0Pgt8afHf7a3jv4VeBv2l/iPrHg3w9qXw3t/EcH9iak+hvrmqNJ5crtdRGN2EKAN5aEAk5YY4r9gPiL+ydYfF/xTZeN/iv4e8DeJNZ01THa3upaCLmeJD/CrySsce3SofHn7I+lfFHwnp3gL4j+HPAuuaJo5BsLG80ESwWuP+eSNKRH/wABxQB+YU3wm+H+if8ABVafXYPHfiKa4tPhzaXOj7vEMirq01tMQsT4YC5VsDeozk8nmvmD9lbx5+3d8a9S8OftDafrhtfENx4rlg1ptV8cKunLZJO8clgNAMASKRUA8vB83dzuOa/fTUv2Z5tYl0KfVtE8EXT+F9o0ZpdBDtp4Xp9mJkJix22Yrmbj9jTw1d/E9fjZdeFfAUni9XEo1lvD4N75g6P5vmbt4/vZ3e9AH5IeH5fi9qH7K37RH7Vuv/EnxXd+JPDet67p+h2/9pyx2GnW0MqKqx26ERuRnh5AzL2xV39oO6s/2hfjV4O+Bvwk+LHinwp4xl0bR9U8X61D4onstN0e1aJGEcdn5ixS3d1zheiglm7Cv2vT4OeN4tAv/CkUXhRdL1WR5b2zGjsILmSU5dpU83a7MRklgSe9eS+K/wBiHwL478Q/8Jd438FfDrV9V2xr9svPDMc0+2IYQeY7lsIAAvPHagD8QP21v2jPG+leJfH3xT+C3iHWtIb4U6vp2jSanqnjiW1S5uVaJWSLREheGeOZW5Mp3SEkgivoX4feD/DS/wDBQT47fFHUvGWuaT4jfwnpGsWOnprUkFvdSyae7H/RdwEscbfcXBCmv1F1v9jHwr4m8Z/8LF8R+EvAF/rwhS3/ALQuPDqyXHlR4CrvaQnCgAD0A4rsde/Zz1HxT4osPHHibSfBeoa3pURgstQudCEt1bxEbSkcrSF1XacbQQMUAfiJ8Kfif8QP2jdf+CXwZ/aC+Jmv+E/Cmq+AbvX5b7TtVfSLrVdUimZD5l4hVyIEAfywwB6sCK5z4JfEz9oL9qHxZ8CPhH4y+Jvia38O6rP4rtLrUdKvDY3WvadpkoS0mknjAbLLyZY8M2Mg81+4Xjv9k2w+KHg+x+HvxH8PeBtc0HS2D2en3ug+bb27DvGjSlU/4CBmu50/4N+NdJm0q40uHwnbSaDCbbTGi0cobOFhgpARKPLUgAELgGgD5x/4Jl6/41uvhx45+HPjHxDqXiWPwb4u1TRdPvtWnNzfGzhf92kszfNIUBwGbLEdTX47XfgXxJ8HPBX7W/xN+FPjnxVo2vj4gR6dDcjVZZUhW5ngVpVifKeaFYgMQeOOlf0YaF8P/ix4W+1f8I1c+G9P+3Ttc3H2bTHi82Z/vSPtmG5j3Y8msK4+C3jK7tNRsLq38JSQaxcC7v420Ylbq4UgiSUGXDuCAdzZPHWgD8jvHPw7XSf2sfB/7JfxC+LfjTw14GvvCNz4na/k8ST2t7qurl9smb1mDrHbp+8FvGyoM5K44rxv4G/ET48ftSH4C/DDxv8AErxLBoer3Piy0u9S0m8Njd67p+lyLHZzSzxANl1+YyR7S3UHmv21+K/7Nd38d9FtvDfxr0nwZ4ssLJxJb2+q6IbqOJxxlBJK20444xxXT6f8IPHWktpT6VH4Utm0GI2+mmLSGQ2cTAApDiYeWpAAIXAOKAP57NDvPjr4M+AmrfH2b4s+MtU1v4dfFKPwrpMd1qbtayaOL9bYwXkI+S7ZkY5mlDSZAweK/o++Pfxm+D/wJ+C+qfGj493trp/hrRLdby6mulDqGH3FRTndIzEKgHJYjFcU3wR8WvpM+gSWvhFrC6u/t81udGPlSXe7f5zL5uDJu+beQWzznNW/Hvwh8efFXwvN4H+JyeFfEWi3BUy2GpaQ11bPsOV3RySspweRkcUAfBv7AujaX8Z/ir8Rf27viHPpOmTfEOws7S28MxTQyvYaHZBvJk1DaxBuJgxZwwwgwvavBf2VfEvhzUtN/bT8J/BXU9PfWbrxHrTaRa6dNEXY/wBnKqNCkZ6bsAFRjNfpT4B/ZE0T4UwalbfDDwv4B8Ox6zD9nv103w6lqt1CcjZKI3XeuCflbI5qr8OP2NvDHwd8Rnxh8JPCXw+8MasUaM3uleHI7O4KN1XzInVsHuM0Afjb8M9W+HuufBH9iTw98D5rJvFtnqm+eG0KG7ht4rOVb/zlX51AmKCTdj58Z5rxrw9qPgt/+Cdvw88C2MlqfivH8Z4FktgV/tRdVj1OR7p3X/W/8e+8uTxsPPGK/oN8HfsrQfDvx9qPxU8A6D4I0XxNq+77bqlloXk3c+45bfKkoY5PJ55PJzTrb9lmKz+Ksnx1tNC8ER+NZlKPri6FjUGBGDmfzd+SOCc5I4oA/KK28afET4Eftrab4m/aN1zXfFul+L/GEml6FrnhvxeW063M4fyLC78PqVRViClXkXzDuG5iK99/4LJeAPDPjG5+Al94t1/VPDthbfEK1hmvNP1J9NEKzW8wDtKpAVwQAjEgjJA619kaL+xx4e8N/E6X41eHvC/gOy8Xzu0j6xBoAS9Lv95vNEobc38TA5PevUPHnwl8f/FPw3N4M+Jq+FfEWkXODLY6npDXdu5XpujllZTjtkcUAfiH8bvEM/iT4ifH208bfGvxL4Hh+DHhyxufBCWeuNbLMhshcLqFxzjUDPcZhIl3oQNoGTX7U/s3fFDVfGn7HHhL4u/tBiDT7m+8N2+pa414ojhjzCHmaQNhVXGS2eAK4HxZ+xt4Z8d3Oh3njTwp4B1WXwyiR6S114eWU2SR8qsO6Q7FU8hRwDyBmvatY8EfGDxDoVx4X1+88O3umXcLW89pPpskkEsLjayMjTFSpHBBGMUAflV+zf4t+H/7e/7aGn/tp+HtQ03QvBngbSdR0DwfaLLCuoa3FcspudRkjDB47UbAsEbLkjMhxkV5N4Hi8Yf8E6fir8I/hn8G/i9p3xR8I/EXxVeaa/hZ7CzF5aw33n3cl5a3VqxlKW78SebuUqw5U1+nfgH9inwZ8KvEK+Lvhh4M+Hfh3VUjeFbzTfDUdrOI5OGUPG6ttYdRnBqT4cfsYeFfg74wufiH8J/CfgHw3r14GE2oad4fFvcsHOWHmJIGAY8kAgHvQB+F2s6n8PoP2APif4I1qW0HxQk+NUiLbOV/tJtZfXUe2dV/1hPkYZWA/wBX/s1vfFrUvAGh/A79vjw78bJLaPxhfajutIbsqLue3nsLZNI8kN87DzsCLZnDg45zX7oXv7K1vqfxUi+Oeo6D4In8aQKFj1yTQt1+oAwMTGXfkDgHOQOM4p/jT9ltPiR470v4o/ELQ/BOt+JNEx9g1S+0Lz7u22nI8uV5Sw2k5Xng8jBoA/HT4Oan4Q8DftKfGc/thzWltd3Pwa8ONbtrBVRJpkVnOt8sZk4I+0E+aB/ERnnFfPGjaV+0r4O/ZD+DnxO8ZaprGr+DPC3w1tbjUvC+i+MW8J63YtGXkF+V+X7Xm2CIkckiAMhABJr+hX4p/swH45XOm3nxn0TwV4rl0aTzbB9V0P7W1u+c5jMkrFeQDgcEisP4m/sc+HvjTrth4n+LvhfwH4l1HSkWKzudS0AXMsMaHcqKzyE7AeQv3Qe1AH0Z8AvHPh74m/BHwl8Q/Ccl7NpmtaTaXtq+pZ+2NFNErKZs8+YQfm969crxC18P/HWxto7Oy1bQoYYlCJGmnyqqqOAABPgADoKn/sn4/wD/AEGtE/8AAGb/AOP0Ae0UV4v/AGT8f/8AoNaJ/wCAM3/x+j+yfj//ANBrRP8AwBm/+P0Ae0UV4v8A2T8f/wDoNaJ/4Azf/H6P7J+P/wD0GtE/8AZv/j9AHtFFeL/2T8f/APoNaJ/4Azf/AB+j+yfj/wD9BrRP/AGb/wCP0Ae0UV4v/ZPx/wD+g1on/gDN/wDH6RtK+P4Un+2tE4/6cZv/AI/QB/Lx/wAHdX/JFv2av+ys2H/oiWv68K/jG/4OjPFmr+OP2Uv2WPE+vrEl5cfFi0WYQAiMtEk8eVDEkA7c4JNf2c0AFfyH/wDBqD/zd5/2Vm7/APatf14V/If/AMGoP/N3n/ZWbv8A9q0Af14UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhIHJ4ryL4i/H74LfCWwfUviP4n07R4YwSxubhEPHsTmgD16ivw5+On/AAcH/wDBOn4MedbWniR/Ed3DkeXpybxuH+0cCvxm+On/AAdq2kBls/gV4GTIyEn1CQtn0O1cV00cHXq/w4N+iNqWGq1Pgi38j+1+s3UtZ0jR7drvVrqG1iXkvK4RR+JIr/M1+M3/AAcof8FGfiY0kHh7xDF4dt3ztSwgjRlB/wBoqT+tfl38Uv8AgoV+2N8ZLiS4+IHj/WL7zM7la6cIc/7KkD9K9ajw1jqmril6s9GlkmKnurer/wCHP9XH4jft0fsg/CVHk+IPxE0PTfL5YPeRsR+Ck1+e/wASP+Dgz/gmf8PTLDH4xfWJUzgWEDSq2P8Aaxiv8unUfFviXVpWm1K9llZzlizEk1gvNLLzKxY+5zXp0uEJ/wDLyr9y/wCCjup8OS+3U+5f8Mf6F/xH/wCDrv8AZS0IyW/gHwpqepuudrzMkaH8M5r4T8f/APB3H8QZy8Xw++HthbAfde4leQ/lwK/i3zRk16FPhPDL45Sf3I7YcPYdfFJs/qA8a/8AB1J+3n4hDxeH7PRtKQ/dMVuSw/Eua+TfFv8AwcP/APBTLxSXUeNGs43/AIYIlQfyz+tfhjRXZDhzAx/5d39WzpjkuEX2L/Nn6aeKP+Cv3/BQbxY5fUfiTq6buvlXDx/+gkV4brn7fP7XviRidZ8f6zPu67ruQ/8As1fHtFdMcmwcdqKN45ZhVtTR7jqf7Sfxz1nP9p+KNRmz/euHP9a5ab4vfEyf/W63eH6zN/jXm9FbLLcMtqUfuRqsFh1tTX3I7eT4kePJP9Zq10frK3+NQH4geND97U7k/wDbRv8AGuPoq1gqH/Ptfcivq1H+Rfcjr/8AhP8Axn21O4/7+N/jUqfEXxzGcpqtyP8Ato3+NcXRTeCof8+19yD6tR/kX3I9Ch+K/wARbdg0Os3akf8ATVv8a3LL49/GHTpPMsvEV9G3qJ3H9a8hoqHl2Ge9KP3Il4Og96a+5H1No37a37Unh8r/AGT431aHb02XUg/rXsvh7/gqj+3j4YlEmlfEjWlA6K13Iyj8Ca/PSisZZPg5b0V9xm8twr3po/Znwl/wXs/4KV+DyosvH91MF7TASZ/PNfV/gr/g59/4KHeGgv8AbF3p2qbR/wAvFtnP1wy1/NvRXPPh7Ay/5d29GzCWTYR/Y/Fn9g3gP/g7Y/aEsdg8eeCtIv8AH3vK8yLP/jxr7h+G/wDwdq/BzUlU/ErwHc2fQN9kmDdfQPX8DFFcdThTCP4XJfM5p8P4Z/C2j/Tn+Gn/AAcn/wDBOjxwsQ17Ub/QnlOP9Ity6g+7LkV+g/w0/wCCpv7AfxZMcXg/4naLJNJ0imnET8+obFf5CYZlO5Tgj0rTt9b1e0YPbXMiEdMMa4KvCD/5d1fvX/BOOpw4/sVPvR/tWeHPiD4F8YQi48KazZakhGQbadJRg/7pNdcCGGQc1/jJeAv2qP2gvhjIsngXxZqemFCCPs9y8YyPZSBX6WfB3/gvr/wUe+EpjgtfHV1qNtEAFivVS4Xj/fUmvMrcL42GsUpej/zOKrkWKj8Nn6P/ADP9UKiv4JvgV/wdjfGrR3gsvjZ4WsdXjH+smg/cOfy+X9K/ZH4Ff8HOP7CvxN8i08fRX3ha5lwGMqiWJT/vL/hXk18vxNH+JTa+R51XB16fxwaP6SKK+Q/g/wDt6fsifHe3im+GfjzStQabGyLz1SQ5/wBliDX1rbXVreRCe0kWVG6MhBB/EVxnMT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676/kQ/4OK/8AlKn/AMEyf+yo3H/p08OV/XfQAUUUUAFfyA/8HqwH/DrPwCf+qq6V/wCmjWK/r+r+QL/g9W/5RZeAf+yq6V/6aNYoA+Af+DGMnH7UQ/7En/3NV/f3X8Af/BjF/wA3Rf8Ack/+5qv7/KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/xBv+CTv/KU39mn/sqvg3/072tf7fNf4g3/AASd/wCUpv7NP/ZVfBv/AKd7WgD/AG+aKKKACiiigD/MU/4OGAX/AOCwvxfH/Yv/APpksK/HK0lXw3r+7UbWG9Fsw3RM26JjjIGUPTnnBr9lf+DhGdLf/gsJ8Yt6hvMXQEyRnbnRNP8Am+or8WWhjLfKuBX6Bgo/7PT/AMK/I+Hxj/f1F5v8ytIyvJ8gIz61JnC7lzz07VLCgSUSKN23selejar4A1u28vWNdSPTLa+VpIMnKn5Q4VQNx5B4zXYk2cknbc4LUpoL2VZba1S3UIq7UJIYgctyep6ntWa0ahwgOfXAzj/Gu1stNtDrtvZ2EqSxmWIB58xIckEhs9FHQn05qPV08vWJ5LZUgHmuVSFt0agk/dOTkehz0oUbbEcz5tTlrezuZmJt1LFVZuBn5VGSfpjrVuxOnmG+/tGCSWZosQOr4CS5HzOCDvGMjHFSLE6tvjJXrzUs1n5ARiAzSLuOOqnPQ+h/pVcprF21Kq3PlaUdOCxTeeVZ5Xj/AHkew9Fc9Ae4HWuR/aZu7LTdC8EeGJiY5YNNlu2zyA13L3HuqDmuvNnvZY1HzMcD8a8Y/a+uoNQ+Md3oqOE/se1tLBD/AA7oIVLA+nzMa8XPJ2pwj53+7/hz2skjzVJSfRf1+R4Q801rGUlCtHJnKkZB9wf61z6WiXEnmWJJ5B2N94f4/hX7afsY/swfs7eM/wDgnZ8S/it8fZxb6lY3jnRlUYnZoISx8twcqC3XKlT3r8T7a0Lzpc2JJQHOejIff/Gvk6OJhVlOEb3i7PTrZPTvv0PpWmrM/Zn9izwp8Q/+GTvEOteFvCGkeME1/XIrG8ttVkMbrZWyAvJCEkjkZ0ZycqWKjnaRmvzn+Oetf218a/E+u2BH2X7fLDBtbcoit8QqB9Fj6V9Z+E2PhvVvhNpc0mz+w9JvPEc+eAGmE1xuI6A7I0Ge4Nfngt1ewLLe33zS3P7yQHkMX+Yn82Nb0ne7M5bGK/k3k25cRyZ6fwnP8v5VUNxPYOY5FyCfmQ8hv8+tWntoJctZNhgMmM9fw9azTckExXCmRR2JwR9KZaPrr9ndLPRPAvj/AOICbkMGmLp8YPOJLxwpwec/KD71y3xfvX8O/C/wH4KeNQ8llcatcRnkb76U7T658tBXW6RY/wBi/sr2uj2WXuPGGukIAMM0cAES/wDj7155+0/rNhJ8X73w7Goa20SKDTIWTqq2saofY/NmuaDvVk/l/X3m8v4cV6v9P0PC2sY7hfM05t57o33h9PWoIbuS3XyZFEid0bp/9Y1PLam3hE0bB4zgh16Z/oaaLuG6wl+OcYEi/e/H1/nXSczJ7fTBqk6Q6WcyOQvlMfmyTjg9/wCdfpn+39o8PgH4G/Dr4dQgJ9m05Gdf9t8E/qa/L+aznt1FxES0fZ09f6Gvsb44eG/F3iDwn8NfAd7cz3+pX9nGwM7l3RZ3+QZJyAAKm16tO+3Mv8zantJrs/8AI+4f+CaGk+B/hF4EvPj98U72PS7K+uE0yynnBCAtyxz2BPGelfA/7RPxM1Pxd+0R4h+JGiXUkLtfubO4icqyxx/KjKwwegyMV9IftZ/En4aj4D+C/gV8KLxbmHQJJBqYVSpW4iG07gcdWyQe9fnzbaiqqLa4TzY1wACcEfQ4OP5V0ym6tWVZ9dvRHGoqEVFH254Q/ap8L+OrSLwp+0/pz6mqgLDr9gqpqMJ6AyAYWdR3zhvrXrVx8HdWs7GPx18LL+Dxn4czkXdiN7wE/wAM8J+aNh3BFfmhLYLKDNp7eYO6H76/Ud/qK7b4M+MviR4O+JGmH4Y6nc6Zqd9cxW+YGwJN7AbXQ5V155DAiroYqthnei9Oz2/4HyJq4eliFaqrvv1/4Pz/AAP02+GekWEn+nXhCiIdDxzXUahrHnaixgVSinjjgV9K/t6+GfCHwd0/wtqum2aw6trClL94v3cbvGgLNsHAJbsOK+EdO1W6uIjJu5YZr6DLcbHGpztZp2t/l/SPHx1GWEUVF3TV7/hr/TO18Va1dXSwpJGAoT5HChdwz6jk/jXmt2l62HXr6itRoru5kXzWJC9MngV7K3jzw1B8NF8DLodtLd+a0ragxYTDIxtGDjA7ZFe6qVkeDUrOTPBLC6trW7gvre1jkkhBEiz/ALyORuRkqf8AOaitoreGUyzLjnJx6H0rc0q2slukl1EP9n8xfN8v74TPzbc8Zx0zUni2PRDqtzH4bMp0/efIM4Hm7O27aSM+uDUOOtjWEtNTnbu4SdriS2YLHGMhXIDEeg45P0qhGfDt3prR3jTw3hkGx8jyFi75XG4t6YNWLKx059QQaw0otucmJQzjjjAJA69ealK6YNL+ww2he7eTPnF+QvZQo4+vNT7O2wObOJnjf/Vg70Unbjjj156VteJ/DqeG786cl5b6gNiOJbVt8fzDOMkDkdD71XFtMXZXXlTjFRS2FxIj3JTagbBPoev1pum0xcz3MJIkLZbrXbaTZxKokXANZltp+nmCV7qVkcKDGAhIY/XPFaFjOgiUxsCpOMfxflWdSOjOjCO0k5HSSRsASgJFb/huxmu5gAu454GK1/D2lxXKqZFyDX078N/CUMdx5bQQstwpjzKu7ZnncOeD715Neqopo+qw2ElUakmeRf8ACOXSj7Teg5Pqcn86l0uKeLVFNh5KybJB+/2+XjYc53fLnHTPOenNfRnivwtbadGbTzQwXofWvkvxW01lI1uSUQ8nHSuOnebO+uvZJo838c6de6Be/Yy0bloklBhkWQbWUEAlSRnnkdQa8A1KaaWRtzZGea9b1W/iiPlxOp3AqcrnAJ5PQ15VfIPOfyyH5OG6Z969WlCyR8xjaictDmphvxxWdIQrHK5962pInDEg8DrVb7OzYbB2k8Ejg1soNnnudjMQpJ0HNXYoTnGBzVkWvzYIzj0pyxlG44FJwBVDZ01E3YYete7+C9evNIfdYNsZvlPOOK8Ihmiij+cFXzx/d/Ous0vXNmOeRXn4ijzI9nL8Ryux+gGia1pukeHodW1oJcSSZOGOeK8f8btp91qJ8T+F7KK4WGFjIksIliVWBUnaeMjOQex5qX4babYeMdO+zXFx5Wwfzr1XW7zxB8KNG1Hw/wCGJx9h1iz+zXjBFYSx53beQcc+mDXiL3Klup9fUvUo36H5o39iA5OOMkZA4yKxpbbbkHtX0N4w1PxB4tt9H8O3zRCDS4/stoVjWLajtn52AG7BJ+ZsnFcJ458GT+CfEl74Zvbq2vJLVtpktJRNC3AOVdeCOcV6MKiej3Pl69KUbtbHj5hAyw/Sv9sGv8V2S1YrgdeDX+1FXl5s/g+f6G2B+18gr+RD/ggb/wApnf8AgpF/2O1p/wCl+r1/XfX8iH/BA3/lM7/wUi/7Ha0/9L9XrxjvP6768Z/aE+Anw3/af+DWvfAj4t2r3nh/xFAILpIpGhlXawkR45FwyPHIqujDoyg17NRQB+eXw6/4Jy/DTQvHWpfE34zeJde+KWvX/h648Jx3PiWaJxb6NdkNPbxx28cKEzEL5kjAyNgDdim/s/8A/BNz4S/Afx1ovjebxB4g8Xf8IfpVxofhSz166W4t9C026CrLDbhUQuWjRYvMlLuI1Cg4zX6H0UAfmj8LP+CW3wM+Fnjnwzrlrrev6p4a8B6hPq3hPwrf3ay6Tot7cb8yQKEEr+X5j+SssjrFu+UDipp/+CXvwPn+I03iH+2dcXwhdeIx4wn8Fi4T+w5NcEgm+1FNnnAGdRMYhKIjIN23qK/SiigD82vi/wD8EwPgh8X/AIg+JvFd5rWu6Ronj6a1uPGHhzTrpYtN12WzCrG1wChkTciqkvkunmoAGzX1lrlpbWHxs8HWNlGsUMOl6nHGijCqq/ZwAB2AHSvc68U8T/8AJdvCf/YO1T+dvQB7XRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzeueMfCfhmVIfEWp2ti8gJRZ5VjLAem4810leA/GH9mf4TfHXULTU/iLaT3MtkjRxGG4khAVjk5CMM9KaaWrV/nb/ADNaEKcppVZ8se6XN+F1+Z33/C2Phh/0MOnf+BUf+NH/AAtj4Yf9DDp3/gVH/jXy9/w7u/Ze/wCgXe/+B8//AMXR/wAO7v2Xv+gXe/8AgfP/APF1XtIf8+3/AOBL/wCRO/6rgP8AoJl/4K/+6H0rqPxo+Eek2M2p6l4m0yG3gQvI7XUYCqvJJ5qroXx1+DPibSINe0HxTpd1Z3S74pUuoyrL6jmvlvxD/wAE1f2WfEWhXeg3GnX8cd5E0TMl/MWAYYyNzEZ+orN8D/8ABML9lTwN4Vs/CllY6hcR2abBJLfSh29yEKqPwApe1ht7J+vOvuty/jf5Gn1PLvZ831yXNfb2PTvf2vysfZn/AAtj4Yf9DDp3/gVH/jTk+KvwzldYo/EGnMzEAAXMZJJ7da+XP+Hd37L3/QLvf/A+f/4urVl/wT6/Zm0+9hv7XTLwSQOsiE305G5Tkcb6PaQ/59v/AMCX/wAiZPC4HpiZf+Cv/uh9rKyuoZTkHkEUtRQQpbwpBHwqKFHfgVLUnmBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3Mpht5JhyUUt+Qqaql/8A8eM3/XNv5UAZltZ6hcQLPJeOC4zhVXAz+FT/ANnXv/P7J/3yv+FXLD/jyi/3RXBfEbx9qHgK0t7qw8P6lr5nYqU02IStHjuwJGAa0pUpVJKEN2KUlFXZr2+pWF1rk/hm31fff2saSywDZvRJPusRjoccVtf2de/8/sn/AHyv+Ffmb4W/aS8Rr+1r4rQfDjxQd2kWHAtV3Dbu5I39DnjntX6L+BPFl34z0BNbvdJvdFdmZfs1+gjmGDjJAJ4PbmvRzLKquE5XNaNRe6e6v0OehiY1b27vv0Zt/wBnXv8Az+yf98r/AIVHJZ3EK75r91X1IUD+VbdfjV/wXVutXg/Yis7XRre6vpL3xl4ctXsbO5NpLeRzXaq9uJQybfNB2klgOeTXlHSfrhuiLpENVy0h2oMpliOcDjmrn2G627vt0mPXC/4V/Pl4J8O6R8BviP8ABnw14f8AgmPhrqfi3xNq0MS65qbatNDJDphZbqFobqRBuPyMrHoOADzXx5pvjD9v8/8ABKlvHc3xI0pnl+IMFpa3As7v7cg/t8wusk32r5oidoCADEYK55zQB/Wl/Z17/wA/sn/fK/4Uf2de/wDP7J/3yv8AhX4Z/H/9vP8AaZ+Ffxl0X9kaz1vQ7LxTYeGYvEOt+IR4f1DUrSVrmV47e3gs7aVpIwfLJllklOB90E1e+Hf7fP7Yn7TGq/C74MfDTQtL+H3jTxLoGo+IvEN14isrmWGCDTrkWipbWpeCU/aZPnDOwKR84JNAH7b28El2pe11FpFVipK7CAw4I4HUUQQPdhja6i0mxijbdhww6g8dRX5Uf8EYdS8a6t+zP4rvPiKIV1s/EDxWt4ttI0sCyrqUwYRM/OzP3Qegr87fhB8e/wBr79nH4bftC/tL+Crnw/d+AvAnxV16XUdGv4p5dS1Cza8jS4aG5Eojt3iDkxRmJw23BIyKAP6aYoJJpZIIdRZniOHUbCVJ55GOOKn/ALOvf+f2T/vlf8K/nS+Hf7YXjjw//wAFEPjN+zD8DbWCfx34+1/TdSs7rW2ePStP02HS7MzyE5UzzDPyW0RDEncxVQTXrvxi/bg/bgn0L4/fF34GP4Ut/DfwBku9Kk0/V7Wd7rWb7T7ZJ7qbzY5lW2jBfESbZC2OSMigD90P7Ovf+f2T/vlf8KP7Ovf+f2T/AL5X/Cvk34r/ALVP/Clf2FtU/a+8T6d9vl0fwsuvS2VudglmaEOI1JztVnYDJzgc9q+RvE37R37bH7M37JPin9sz9ou+8LeIrO38OxalZeHdFsp7V7bULx40t4Wu5J5BLCGlUSP5SHgsBjigD9a/7Ovf+f2T/vlf8KP7Ovf+f2T/AL5X/CvxO8Sftr/tl/sx+N774Y/tHN4Z8S3+vfDnXfG+hXmi209pHaX2hxK81nPHJLKZYj5iFJlZC3IKjivouH9tL4jya9+zLpZsrDZ8ZtB1PVNXO18wS2WlxXqCD5uFMjkHdk7ffmgD9Jv7Ovf+f2T/AL5X/CkGn3bfdvpD+C/4V+EHwo/bx/bivvBnwS/aN+KC+FD4P+LfiiLwo+iWFtcLe2f21547W8Fy8pRzuhUyw+WAFbhyRXkf7MPxs/4KIfDD9jj4x/GjSL3TviNd6P458R2GnabFp15PeQOutGCafCzu81vbQF5Eto0D7VChqAP6PDp17/z+yf8AfK/4UadcTz2sqXLb3ido92MZx0OK+GP2A/2hda+PnhLX5fEvxA0Hx1f6RdxQyjStMn0a6sDJHu8q8tLmWWSNyeUJ25XtxX3Fpf8Aq7z/AK7v/IUAfxff8HL/APyZr+yr/wBlci/nc1/a7X8UX/By/wD8ma/sq/8AZXIv53Nf2u0AFfyH/wDBqD/zd5/2Vm7/APatf14V/If/AMGoP/N3n/ZWbv8A9q0Af14UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV89fG39q39nf9nTRpdc+Mvi7TdCiiBJS4nUSHHomdx/KgD6FqCe5t7WIzXTrGijJZjgAfWv5Nf2xP8Ag6e+Anw4e58Nfsx6HL4nvULIL66PlWwI7qo+Zvav5dP2sP8AguV+3b+1PcT2mseJ5tG0yUtiz04mCMKe3ynJ/OvTwmT4vEa04ad3ojuw+W4it8EdO72P9HD9of8A4KUfsZfsw2ksvxT8b2EFxECfs0EgmmOPRVJr+fP9pv8A4Oufg34Ta40f9nbwpNrM6ZVLu/fy489iEXkj6kV/BZr/AIw8T+Kbx9Q8QX013NISWeVyxJP1rmySTk19HhuE4rWvU+S/zPcocOretP5I/eX9pH/g4f8A+ChPx6mntdM8TN4X0+XIEGlD7PgH/bB3/rX49+P/AI//ABm+KF7JqHj3xNqOqyynLG5uZJM5/wB4mvHsnpSV7+HyfB0fgpq/nr+Z69HLMNS+GCv56k0txPO26ZyxPqc1DRRXpJJKyO5JLRBRRRWi2GFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiihgFPR2jO5CQfUGmUVmB1vh/wAeeMvCt0l94d1O5s5Y+VeKVkI+hBr9KfgF/wAFlP29/wBn27t/+ET8e6nJaQ7R9nupmuYiB1yshYflivyporhxGWYWv/Epp/g/wOStgMPV+OCP7Vf2Z/8Ag7D8YWcsGi/tFeE7fUohhWvLI+RLgdypypP4iv6Gf2aP+C4n7A/7ScUFtYeJ18P6hOFP2bU/3XLdAG+6fzr/ACks54NaWn6zqmlSifT53iZSCNpxyOleBieFKUtaE2vXVHj1+Hqb1pSt66n+154d8W+F/F+npqvhfULfULaQZWS3kWRTn3BNdDX+QN+zv/wUn/a4/Zm1GG9+GPiy+s0iI/dCVjG3POUYlT+Qr+lr9j7/AIOr/F2mrb+H/wBqfw7FqcKlUe9sm8qfB4yUPynHfBr53F5DjKGrjdd1r/wTxcRlOJpauN15an9z9FfnV+zJ/wAFUf2KP2q7K2/4V74ys7fULhVb7BfOLe4BbttYjP4Gv0QgnguYlnt3WRGGQynII+orx2raM81q2jJaKKKQgooooAKKKKACiiigAooooAKKKKAP5EP+Div/AJSp/wDBMn/sqNx/6dPDlf131/Ih/wAHFf8AylT/AOCZP/ZUbj/06eHK/rvoAKKKKACv5Av+D1b/AJRZeAf+yq6V/wCmjWK/r9r+QL/g9W/5RZeAf+yq6V/6aNYoA+AP+DGL/m6L/uSf/c1X9/lfwB/8GMX/ADdF/wByT/7mq/v8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP8xj/g4Zi8z/AILA/F/Bwf8Ain//AEyWHH41+Q2marpFveRyalpiXUKQNFsDsm9yCA7Hk5BIPHBAA9TX7K/8HCdiF/4K9fFW5kOEmGhZO3kbdG08de/X9a/FxIiM7Rxk1+iYGP8As1P/AAr8j4PGu2Iqer/MsaNFp0U+dUDspjYDyyM7yPlJz2z1qa0srq4kkNsN4hTczE9EX3/GqYikjwRg81bLFpN54bHUV2JNnFJk16unywQLaRvE6piUswIZ/UDHAxjirw1a+Ogr4dKw+RHcG5V9g83eU2Y39duP4emeapwRLI4V/lXI3H0FXYrVZGaOPLDIAx3B71ooLqZqo0y14i1GXV9TudRWXzVndXz5SxAsFAPyrwADnGOvWucs445J8XcoiU5beQTgjp0B616hpeqaDbeHotKOmB9bS+VormRv3QhK4aN07ndgg9hXJ+KNBv8Aw/r1x4f1BMXNq7RyLGdw3DB+Ug8qQcinFLsbKV3c1/B1jceNvF+mpctHH5MlvGVXCGRVbnA7kDqfSvzu+LniGHxr8TNf12Vgsl3qV06E9CvmMoz+Civ0k+Gj6HpS6l4lvTKL3SLS5vIuB5QSKJjknOd27GO1fkmh+33SGQgTcFyeAzEZP45Jr5TPZ3rRh2X5v/gH1ORwtSlPuz3bw18evip8OPAut/C7RdSkGga9bm3urJ/mQBsFmjz91jjBxwR1ryTRbC6ubyJdLbcZ5FjUgc7nOACPqaoXmoOWFldqSozj+8M/56V7Z+zV4b/tz41+GLDIa3bUIZZCOQY4D5r5H0Q14m12e2fY/wAW5IdO1/4jXluwVNC0G18OWzdAJJ/Jt8A9uFlr877yaS1hMEkYZWJwjdue3pX1b8TNan1X4Ya1ratmbxT4oeTBPLRWUTS/+hzj8q+ePB3hfUfiB4x0j4eWClrnVLmK1hOMsryMFH1AJ6UUnanqTLWR5vPbrLi5tDlR1HRl/wA+tUWvFvGKXucjgSL1/H1/nXvn7Rv7N3xV/Za+IEvgf4l2jWsylmgnAwsyA43AHke4NeU+CNDTxh4v0vw8oCz3t3DD8o+Vg7AH6GiM4yipRd0Wkfr9B+y/cw/D/wCFHiiDXdNMXh+zOqalpLTxreRxAtOZfKZtzKxCjgV+N/iPV08X+J7/AFu6+Se9uJZ2bPBMjFvw61+zXxv+K3wT8W+DPGvibw14Zk0nxH4I01fD8eorNlL1LjEBLJtADDacEMeK/FKO0glJktDz3jPX8PWoppWuupTcr2l0LBmubBvLTI9VPII9xSFLO8A8nEUndT90/Q/41Et3ID5U43p/dPUfT0prW4YeZakuvf1H1FaGb3On8GaRqGr+LtP8M2wbzL+6ih2HkNuYDp3r9LNUvbG//ao1nXtqmy+H+jS+UOqhraLykA/4Gc18qfseaeurfGix1HVAJLTQoptSkZhyot0LDn0zitu01u/X4T/ET4isS0viS+h0xTjn5mM0n6CsZa1F5L89P8zaGlOT72X6nzFFcagt7NezsyTSuZHJ7ljk59a14PsOoMN37ibJJIH7tv8AD+VZ9nehIFgvEMsff+8Pof6Vfis0lVrqyYyR46fxL9RXXFHJJkd1Bc2jBnyjDkEfzBr2H4A/Efw38OPjF4e+JHjbTpNTttHvI52jgwJJNnTIJwcH6GvHE1KWFvs/Dx90b+npXqvwd8HWHjf4oeHfDKzpDDeajBHKJjt2ozjJyeMYpTV9xrQ/XX/grH8XrbWH+H2v6bE8cV1Y/b0hmXa4WcgjcO3FeI/CzW779oPxnpHh7T7CG2mvDFABApUKq/eYj6das/8ABWnVLMfHjRPDdvGstrpmnW0Kxg/KV7YI7cZr3L/gndF4O+EHhXVv2j/ipOmn6NZ7LK3nkGQskp5I9h0rpyqoqGEniOt3b8kc+ZU/a1adHpZX/Fntv7SP7PvwT+GniLSPB+heJoNH1rVYN9vaag+I52Xg7ZOgJPQGvh/xn4U8UeANXOmeLrN7VgflYjKMPVWHBFeJf8FJvjPpfxs/aQutU8O3K3uiadbRW1lKhzG4A3FlPQ5JrzT4SftifEP4faang3xrGni/wwTtaw1El5Yl/wCmEx+dCOwJIq8HnGKo253zrs9/k/0f4GeJyrD1louV91+q/wArfM+jvtazjfGflHSqU9w7Mdtd34a8P/Db452j61+ztqbfbY1Mk3h6/IjvI/XyyeJF9CK4eaz1LSr19O123ezuITtkSZSrK3pg19bgsyw+KVoO0uqe/wDXmtD5rF5bXw+stY91t/Xk9Rmm3F7bXsd9CweSBtyBl3Dj1ByDVe5R7q5e4kA3SsWOBtGT6CtOE+VLujYgkEcehp42qN7dR0r0eU8/n0sZMsAUCLv14rHniDMAewro5mjIIHU1kzxYIbIGT070uSxUL3MuZmMRjHQcHFVrRFhcVp38kNwwS2gMKAFdxPLEHqapmwu2t/tUCMY0YKz4+UE9B+NQ1dWZvGdnc9g8Fagq3K72A6V90/Di5tbu+SxSZHzjEmCByPfBr83PD959nlG/huK+tvBPiVFkU2O5VAXG7rnvXgZhhnuj7jJMamuWTPtz4g+BILXRo724cTEDh4xxz2NfKnxY8MfDez+GNpqel3s0/iGSZ1ubd12xxRr90hudxPp2r3aXx3c3vh9NMnlwr8DHXivln4qaNJcJi2JO/k15eFbUkpHqZnSjKHNA+F9bJLbGPIz0rkpIGZc44HfoM16prOifYywkJJHaum+FA+FcOp3o+KkVxLbNbSiBbYjIuMfuyd3G3PWvo00o8y1Pz6spe05djxddZuo/DVx4bFtBJHczJO0xjzOpQEbVfPCHPI709tQ1G50S10O6mZ7OzZ5IYjgBGk+9zjJzjua1r+1sbeeSSE/KzHaAegrmLqfcMJwPWtFFPYw9o1uy/oms3HhvVItX09Y/Ni3ACVBIhDgqcq3B4NZOrRaeqwy2dwZpJIg0oKbBHIScqM9RjHNUJJWPOevFReUCpMrYoce4JskfVJ2006VhDG0vnE7Rv3AbeG64x29eaktGkVwpHFVTDG6hxW5o9ld3sxhsoXmdVLEINxVV6scZ4HeuarFJanVRfM0e1/Dd9QgkH2NickcCvvayTT/Fvg5NF1OydrqEHMjdDnpivhD4eyyKypa48wkY9q/Qn4feINXubCOyhhVw5G44596+bx9k7o/Q8lg5QSex8veJ/h3FDbStDEcjJwO1eDWPw0fXrfV5Yrq1sv7LtjclbhwhlAYLsjH8T852jsK/btPhhpOsaJGbe3CPLkOSM5r87/jH8MRpVxctaQ4j37d+3jP+OOa48NjeZuN9T0cyyVxiprY/PCe0SASwS/fXOzHQ8859vSv9oGv8a7xHozWk7qAQFbA9sV/so1eayuqb9f0PlKFLknNen6hX8iH/AAQN/wCUzv8AwUi/7Ha0/wDS/V6/rvr+RD/ggb/ymd/4KRf9jtaf+l+r1450n9d9cN8SviR4M+EPgXUviT8Qr0afoukReddXDKzCNMgZwoJPJHQV3NQXQtzbv9rCtEASwYZGB65oA+P/AII/t/8A7Iv7RfjS++Hnwf8AGlpq2taZYHVLq0CvFJFZhthlYSKuE3HGelbXwP8A23/2Vv2j/F+o+A/gt4zsNe1XTImnkggYgyQI/ltLEWAEsSv8pkjLKDxmvxo0TRfF/wC05+zd+2D+3N4Bs3GreN9M1nwf4IaBcSNoXh6CaGN4cAH/AEm8a4kGOuF9qydH1/4cfET4hfsV2H7KU1nNqGleAvEEl2um7d9rpZ0NYNk4TlAb7ylCv/y1U9waAP2j+H/7dn7JnxS+L1x8CfAfjfT9S8UQSTwi0jc4lltf9ckMhASV4v41RiV7gVLL+3P+yjB8dR+zbL40sB4xNwLP7DuOBdMm8W5lx5YmK8iItvI7V/PN8KNa+HevfsX/ALC3w6+GTW7fEDSvHujG7tIMfb7WWyaf+2mnUfvFAXzPOLYB3DPUVi32o6J/w7J8Q/B9ZYR8ZG+OMiGzyP7TOsv4nSeOUL/rD/oe1w/Tyh120Af0afEn9ub9lH4RfFi0+CPxF8a6fpfiW8MCi0lc4ia6bbCJnAKQmVuIxIy7j0zXo3ic5+O3hMj/AKB2qfzt6/m4+K2tfD7w1+z5+354G+MTwL441jxDM1jbXGPtl3Hd6dbx6P8AZ1PzP++BWLZnDg45r96fh5pnjrTvF3wsi8bXO+7i8IyQ3cLp+9F6kVqJmZ885bIxjr3oA+yaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMgdaWvi/41fBT4p+NvHEmu+FbueK0aNFCprVzZLkdf3UcbKPrnmqjTnN2ha/m7L72b4eNFytXm4x7qPN+F0fZ+Voytfmt/wAMzfHf/n/uv/Clvf8A41R/wzN8d/8An/uv/Clvf/jVX9UxP9z/AMGI7fZZb/0ET/8ABT/+SP0neWKMbpGCj1JxTty+tfjL+0L+xt+1J44+Hb6H4J1C5W+NzBIM+JLs/Ijgtw0ajp717NYfsw/HuCxhhmv7rekaq3/FS3nUDn/llT+pYq3M/Z2/6+Rv93Ty7lujlPImsVPm1uvYvRdHfm1vrp0t5n6aZWjIr81v+GZvjv8A8/8Adf8AhS3v/wAar0L4WfAj4ueFPHdhr3iG8uJLO3YmRX126ulIx3ikjCt+JpPC4havkt/jRjOll6i+SvJvp+7t+PNofdFFFFZHnBRRRQAUUUUAFFFFABRRRQAVUv8A/jxm/wCubfyq3VS//wCPGb/rm38qACw/48ov90VbqpYf8eUX+6Kt0AeRaN8O9S034za18SpZ0a11OytbVIhnerQbsk9sHPFeu14loXxJ1fVPjtr/AMMJoo1stKsLS6jkGd7NcbtwPbAxxXttVLFOv7ze3u/+A6fobV8HPDNRn9pKXykuZfgwrwn9oX9nX4c/tN+DLHwH8T0uHsNP1ax1mEW0vlP9q0+QSwknByu4cjuK92r5r/aV+NvxE+B3hm38R+Afh9qnj8sZDcw6XLbxPbRRruLt9okjBBxjAJNSYnQfEr9nn4e/Fbx74G+I3ioXB1H4e3lxfaV5Um2PzbmEwP5i4O4bDwMjmvlmP/gmD+z3H4C8X/CYap4j/wCES8XXf9of2P8A2j/o2m3n2n7X59j8m+F/P+fl2Ge2OK4n9lf/AIKgeH/2h/Dmn/EXxx4Mvfhv4Q1jT21DT9Z8Q31lFFcIj7CFRZ2kBB7lQK/Rm3+Jnw8u9Cu/FFrrljJptgA1zdLOhihBAYF2zheCDz2NAHxZ4o/4J1+Bdfl8O+JtL8deMNH8Y+HLBtKTxTZ38X9qXdi7l/Iuy8DQzIrElN0W5STgjJq/49/4J6/Dvx5a+DtUl8YeLdP8WeCYLi0svFVrqCjWJra7IM8NxI8TRyRyEA4MY2kArgivqXxn8dvgv8OrrTrLx74q0rRptW2/YkvLuOFrjdgDywzDdnIxitP4p/EGz+GXwo8R/FSSE3tv4f0m81UxRsAZUtIWlKqemWC4B96APLf2U/2UvhZ+xz8L3+EnwhN8+lyaheam76jcG6ne4vpWmlZpCATl2J5r5K1P/gkl+zxqniTX71/EHiqLw/4v8Rv4p8Q+G01EDSdU1BpVmzNH5W8Rh0XMaSKrBRuzX1F+zj+178Hf2kvBGi694T1iwXW9U0m31afREu45by0SdA+2RFO4bcgE4qj+y9+134G/aO+B3hj4zXIj8Of8JVNcW9lY3k6ea8lvK8RVem4nYWwB0oA4rx5/wTq/Zu+Id54o1nW7a+h1TxNq9pry6ja3Hk3mm6jYwR28M1jKq7oSI41DD5lYZDAg4r8z/wBu3/gnR8YfjB418ZeDfgd4V1KLTviTZWllruuL4oSw0y8lEawy3l/pqIJJp40HSLasxVd/FftzbftC/Am98Vz+BLTxho8utW06Wstit5EbhJ5OFjKbtwZscDGa9J8Q+I9A8JaLc+I/FF7Bp2n2aGSe5uHEcUaL1LMxAAHvQB5wvwV8F6t8C0/Z/wDHNpHrWgzaMui3tvOvyXFt5XlOrDtuX05HavlXwT/wTk+GfhvwDrnwd8Y+LvFfjXwPrWjyaCvh/X79LmztbF8YWMpEkxdAAI5JJHdQBg55r6n0r9of4Ea54Fu/ido/jDR7nw5YOY7nU47yJrWJxjh5Q21TyOCe9bOg/GX4S+KPDFp418OeJdNvtIv7hbW2vILmOSCWdzhY1cEguTwFHJNAHx/8J/8Agm18E/h14k1Dxf4x1nxB8QdTu9Al8KwXHii9W7az0WfPmWsIjjiAEn/LSRg0j4GWOK5z4Pf8Etvgj8IfHvgz4hDxP4s8RXXw6tL7TfDMGs6ktxb6bYX8It3t40WJNyrGAFdy0mAAWIGK+/tX+IHgXw+9/HrmsWdmdLijnvBNMqfZ4pSQjyZI2qxBAJwDXj3in9rX9nzw38OfGPxNtfFOm6rYeBLKe91hbC6imkt0gQuVYBvlZtuFBIyaAODsv2E/gZYfCf4d/BmBb/8Asb4Ya3aeINFBnBlF5ZPJJH5rbfnTMjZGBniuNsf+CePw88M3vjS4+GfjTxj4Rt/G17NqlxZ6Tqax21nqFzOLia4tUkify2lkB3qSyEMw2816v8P/ANtP9mf4gfBHR/2gbXxhpdh4b1m3tplnvLuKIQvdRLKsMpLYWUKw3JnIr6I8LeK/DXjfQLXxV4Ov4NU0y9TzLe6tZBLDKh7qy5BH0oA+a/2Z/wBj7wH+zPrXirxtpmr6v4o8VeN5rabW9c1ydJry6Fkhjt0xFHFGiRISFVUHUk5NfS+l/wCrvP8Aru/8hW5WHpf+rvP+u7/yFAH8X3/By/8A8ma/sq/9lci/nc1/a7X8UX/By/8A8ma/sq/9lci/nc1/a7QAV/If/wAGoP8Azd5/2Vm7/wDatf14V/If/wAGoP8Azd5/2Vm7/wDatAH9eFFFFABRRRQAUUUUAFFFFABRQTjk1+fv7Zv/AAUu/ZW/Ye8Oy6n8W9fhOohC0WnW7q9zIe3yg8fjTSbdkCV9EfoCzKoLMcAdSa/Of9r3/gql+xn+xdYzL8V/Fdu2qxqSunWh8+4YjsVXO38a/i3/AOCgX/Byv+0V8fZ73wV+zzv8HeHXzGJIj/pUin1cdM+gr+aPxn8QfGPxB1ifX/GOoz6hd3Dl5JJ3LsxPXJOa+hwHDmJr2lU9yPnv9x7WEySvV96fur8fuP6qv23f+Dov44/Etrzwn+zFYr4X0xwyLdv89yynjIPReK/mU+Lv7R/xn+OmvTeJPif4gvdWup2LM1xKz9fqa8Nor7HBZHhcOk4xu+71PpMLlWHoaqN33Y5mZjuY5NNoor1+U9IKKKKOUAoooo5QCiiijlAKKKKpAFFFFABRRRQAUUUUAFFFFJsAorStNG1fULG71OxtZprawVHuZUQskKuwRS7AYUMxCjOMk461m1KmndIAoooqkwCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUVPKAUUUUcoBRRRRygFKMd6SijlA7Lwt8QPF/gzUE1Tw5fy200f3WViNv054xX7k/sV/8ABwN+2H+y6bfSPEOrSeJtHhKg2l+TLlM8hXJ3LxX4CUV52MyjDYlfvIa91ozixOX0K/xx179T/T5/Ym/4OEv2M/2pIbPQfHF7/wAIZr1xhPLvf+PdnPYS9B+OK/eHRNe0XxJpsWseH7qK9tZlDJLC4dGB7gjiv8TjS9Y1PRLpb3S5mhkU5BU4r9iv2HP+C1v7WH7HGp29po2tzX2jIQJNPumMtuy8dFY/Kfda+Px/C9aneWHfMu3X/gnzeLyGpD3qL5l26n+qnRX4G/sD/wDBfr9lP9riO08KeOblfCPiWQKpjuXAt5XP9x88c+uK/eaw1Cx1S0jv9NmSeCUBkkjYMrA9CCK+YnCUG4yVmeFKLi7SVmXKKKKkkKKKKACiiigAooooA/kQ/wCDiv8A5Sp/8Eyf+yo3H/p08OV/XfX8iH/BxX/ylT/4Jk/9lRuP/Tp4cr+u+gAooooAK/kC/wCD1b/lFl4B/wCyq6V/6aNYr+v2v5Av+D1b/lFl4B/7KrpX/po1igD4A/4MYv8Am6L/ALkn/wBzVf3+V/AH/wAGMX/N0X/ck/8Auar+/wAoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooA/zTf+DgzSFuv+CvvxKttLuFuLm+XQQ0I48p/7JsVVWJwMsAG+hr8UVjeP903UHBHuK/Zr/g4GjB/4K+fFxwSpz4fOR7aLYV+OkKgkzMu4KcnPcV+k4Ff7NSf92P5H5/jX/tFT/E/zHWWmXOqStBa43JG0pywA2oMnqevoO9O/s29GnjVmjP2Z3MQkPQsAGx9cEH8a0tZv7bUtTnvNOtks4JZCyQJkqgwMKCeccfrWYJJXhNu7NtyW2g4Xd0zj9K6opvY5WlsaG3TWsIBCWFzufzMgbdvG3Hv1zU1vFNADLDwVIOc4PtViGyW1lBmTzYpACCMgFe+0nv1Fa+moianFJHAJF80FY35DD0Prx1raMTJxad2Yk22Vy6qfm+Yk+vc/jRDfS2V4mpKzGeNgyOfm6eoPWr6QebcGNRyzYCjpkntV290Q2Czi8YLNbyCJ4urZyQSO2BjnmtOU2j0OV8Ty3WhfBbxt4ijBWS6tIbGI9ybuUBsf8BBr8wrZo769kn4V8M3PAPpX6H/tEahPo3wDs7KAkPqutl8A8mOyhLD/AMecV+dVjsuVl3YR/lHoD/8AXr4PN582Ln5afgfbZVDlw0f66gZA8zQXwyoAUH+Jf8a+s/2W7KbRta8QeM4umi6DfTROOgmnUW8f45kNfI8FwGk8m+U7skA4wR/iK+1fhHYXOhfs/wDjPWY/ml1W7sNMgI/i2h52A/HYDXly+Fo9E5v4rB7bwf4K8Mwn95Hpk2pyL0O7ULhmU/Xyol/Csf8AZ0+MGj/BP47+G/ip4jtmu4tAvI7oBMFt0Zypweu0849qv/H0Rr8Vb7SbF90eiQ2umKO4FlCkZ/DcW/GvnK/eG+DR3B2OTw3r7H/GtJwi4cr2ZCfvH3p/wUw/ay1D9q/9oCL4mf2r/bFu1giJMIwiZc7jHt9UAAOefevnr9lPT9PvvjHaa9Iu2PRLefUZVPI/cRkgg/72K+Z98thK0DDMZOSp6EV9WfAlbXQPht468dQfK/2OLTo8nkG5fLD/AL5U1yqlChQVKkrJKyS/A2g+aav3Oo8ZavJo37N7XF781z4x8QS3EnZmhtFwP/H2r5AEDD97at5ig5yOq/Wvo39oe8ttJ0TwT8PZgV/s/RkupCDyst4xkbI+mK+aY5J7CdZVb5T91h0P410Rio6LoTKXM79zR+1JeOI7/g9N4HP4+tV5Lee0YTqeP4XXkGpP9GviTGdkp7fwsf6U1JrmydopAQDwyt0NUZps+zfgJIvhn4FfED4jSKI7i5ih0iCQcZa4OX/HaKxvitcnwZ8A/APgyBjHcam1zrc4HfzD5cefw6V9tfCj4d/s/SfsaaD4O+MF7qWiaj4x1RrjTbq2tzPCj58tfN5UFT0HUjrXw9+1xqNjF8c7zwbpcguNP8NW9vpMHGARbr8xA7Esc1nGOrl3f5f8Oayl7qj2PA4Da30YE+IpD/EPun6+lWRFc6YNzAowzgjuKgS0WaBXsyWBPKH7wH9RVma8e0gdJQJIsfcP9D2rqSsrnK9WZcOpWOoMzXg8p1PMqjg/Uf1FdBa6XqN1f2dnZAl7mVI4nTuzEBcEd+a5CDTEuodmm5YO25o2++oH8xX1h+x54cbxX+0FoVjdjOnabI2o3QblRFaKZCT+QrFytFs25bvQ9Q/aY8O6zqf7RmkfDXTpHvr3T4LCwDSkyMZFjG/JOScE859K+g/2x/jN8KG/Zj8O/AT4PX63EumX7JrESKVYSwj5iw7gvnBryP4JeIYfF3xy8f8A7QuuL5g0Kzvb+JicjzpiViH16Yr89Hvb5LqW/mJW4ldpJCepLEk5/E0Xao06b6a/N6/kwmk6spfL7tBLS/lSJocK8IONjcj8PT8KvGxtb1Q9gdkn/PJzz+B71Gv2C7iAOLebrkfcY/0qrc209q4EoI9COmPY1DAW21DVvD14mqaXPLZ3du2YpYmMciMO4I5Ffsp+wXr3jD9snWdX+H3x3WLWLHRbFZYtVKeXexSscIpkXAcd/mBNfjVNfiXyre/USr2boyge/f8AGv3r/wCCRmufC/RfA2uaRZarDJ4l1K68+W1b5ZhbxDCEA9R1JxnFZ1HZc0dGuvUpM+WPi7YaJ8M/izq3w80q7e6j02fyQ8gAJ4zx64ziqenNBqTxxmdYlfq7dBXzB+0T45utY/aR8QT28hKTX859yN+B/KvafB8jTWSkAqpAwDzX3uR4mpVwtN1Xdtb/ANeR8rm+Ep08TNQVl/X6nWSRlZCvULwD61HAts0zrdBtpUgbfXt+FbEtkhcCJty469KhmtMEbDXtuPU8qTS3ZjGzV02HqG/DGP51J9pu7Oxk02GRhBKQzx5+UlehI9q1CnkpyMk1jXCu7Ybgdqlx0IVmZ1vujk3jnNfQHgBr/wA+3EmUWU/KSOGx1rxCwsprm7jtLVGlklO1VUZYsegAr03w0L/T9QW3ufMR4WKmJs5Ru4IPQ1x4qHNFrqepllZwqrsfbkXhvUJbKC4yJI05A/8Ar1zfixrW2tTFOvmuB2r1rwVqEd94ahtbciSRF5FeU+P7U2SytMhJYV8zGPv2Z97Ws6V4nxV4zMs87/utqnkDpxXkF9Yy2KxzyHAkyV57KcH6c17v4u1G/wBeu/teoNuZUWIHAHyoMAcewrxvUdODu23c5AJwozj/AD3r3qSSWh+f5gm53Zy8mXyRwBWY8YPOcVsCM4247c5qpKE4UCt7Hl3exgTRgN8vSlhuZ7dWWLayyoVbcM8H09DxV6VgBuAwOaqXGx5jLBGUTAwOvOOcUNG1OTKiYXj3ruPBPjrxH4Dv7m98LXRtJr61ms5mCq26CcAOp3A9R3HNcasLZyeOM1qWlo7FZCMDpmueqotO51UZyjLQ9t+Glv5lyig56c1+sPwE0S1knt/ta5iBGa/KTwRYapp62+ryQutrNI0aSkYUvHgkA9yAea/Wv9l/xnolhe41mzW9jlgaJVLFdjtwH/4D1r5DOoyjsfq/CThONmforb3Pga1sU0e1hUSFck9xXx78cvANpq+lNa6fbFQMsx5OSe9faOmeBrCdYb+M7mfDEDqBS/ErRNH0ewlWPEhMYPI9a+Upz5Zqx+iVKcZUnGWx/Nx418AS3OvpokKDzLiVYl3kKNzHAySQBn1Nf64Nf5Vf7RlrbQ6zK0SjqT09P/r9K/1VK9vEzcqcG/P9D8rzOjGnXaiFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8AKZ3/AIKRf9jtaf8Apfq9cZ55/XfTJYo542hmUMjghgRkEHqKfRQBheHPC/hrwfoNv4W8J6fbaZplonlwWlrEsMEakk4VEAUDJJwB3rz/AOHnwA+B3wk13VfE/wALvCGj+HtR1x99/c6dZxW0tw2c/vGRQW5OcdM89a9dooA8f8N/s+fArwd8RL/4ueFPB2jab4o1QMLvVbayiiu5t33t0qqGO7+I5+bvmiT9nz4FS/FNPjhJ4P0c+MUTYutGyi+3AY2/67bvzt+XOc446V7BRQB5D4q/Z++Bnjnx7pvxT8ZeENH1XxJo+PsWp3VlFLdQYORskZSw2nleflPIxVLxP/yXbwn/ANg7VP529e114p4n/wCS7eE/+wdqn87egD2uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKqX/8Ax4zf9c2/lVuq14jSWksaDJZGAHuRQA2w/wCPKL/dFef/ABI+G5+I1pb2o13VND+zsW36ZMsLPnsxZHyB+FdbZ6xp0drHHLIFZVAIPBBFWf7b0v8A57LUzgpLllsbUK86NRVKbtJf11Py58I/suPJ+2H4vP8Awn3ioeXo2n8i8j3tu3cMfKxgY4+Wv0n8B+Dm8C6AmgnVL7V9jM32jUJBLMdxzgsqqMDtxVmFfCVvrE3iCCOFL64RY5Zwo8x0T7oJ6kDPFa39t6X/AM9lrlwuChQu4rVtvr1dz2s64hxOY+zjVfuxjCNrRWsYpX0SNWuU8d28954H1m0tUMkstjcIiqMlmaNgAPcmtb+29L/57LR/bel/89lrsPnz+ZL9kL9kPxHrni/9km0+N3gSa6sPCPgzXlvodUsy8FpeyTR+UJkkUqHK7toYe4q3+1JqHiT4X/Dj9rD9mDT/AAN4g1DxD8QL577wzb6Vpc01pd2VzBAu6OaNPKRYdrB1LAjGAOlf0xf23pf/AD1Wj+29L/56rQB/KX8bPgZ4x8P/ALQnjq+/aPN5Y+GvG/hXRtP0C9/4RN/Eqx28ViIZ7SFkDNaTpMWfAVSzEMCSOP3Tj+G2reHf+Ca+o/CvRLnU9evYPAN7p9rLqEDRahcyGxdI/MiPzLKxwCvXPFfcP9t6X/z2Wj+29L/56rQB/MB+yF4B0DWG/ZY+HPwX+F+q+CPHfw5ha48b3t3pEli0NibJ4poLi7ZFFybm4aN0Xe+du7jFVP8Agm98A/jd8CNU8Ma7+0p4T1PWo/EdnqOneDdVe3cp4PuZJ5ybee1wfKM5IkW9xlgdhKgDP9RX9t6X/wA9Vo/tvS/+eq0Afx9aZ4Y8J/D3wJ+zF8CPGPwu1HR/ix4W+LWmjX9euNPMazzNJdPNML8gC7F1kSAK77QMkLiv3P8A+Csfw88ZePPgt4M1DSNFu/E/hrw1410fWvFmiWUZnmvtFtWYzL5C5M6xuUleLB3qhGD0r3/w9+xx+yz4c+LifHCDS5LzxBbTzXVpJfXlxdw2c9xkSSW8MrtHE7AkbkUEAkDAr63/ALb0v/nqtAH4KftO3PwX+LvgH4b/ABc+CHw+u7j4WeDvH0Go+NdHtvD0tmb63WzkiiuDZGFGuo7ad4mfCNjZnnbXyP4y+FPi/X9L+Jv7SvwN8B6tpfwrj+KfgnxVpejQ6fJbTz2+iqE1a/tdP2q6pIxDbVQF/LZgOa/qj/tvS/8AnstH9t6X/wA9VoA/mN/alsvGX7XWkftYeM/ht4N8QS6H4q8DeFtK0eS70+e1k1Rre6kafyI5FWQhQ+DwDxnpivov4+fsZxQftJa14W+CvgG2stD8SfAjWdDuY7OySKyutSS4T7JFPhdjzKGYoXy2Cea/ef8AtvS/+ey0f23pf/PVaAP5hZvBv7Pmofsf/Am7vND1r4a+K/hlCtpMs3gma/05tZXToba6+32QgAm3DiK4BzuB2vmv2v8A+Cc3ib4peLv2QfCmufGLwhZ+B9bkW5DaXYWZ0+DyVncQzLan5oPPjCymJuULYNfZf9t6X/z2Wj+29L/56rQBq1h6X/q7z/ru/wDIVP8A23pf/PZar6QS9rcTgHbLK7KT3HTP6UAfxf8A/By//wAma/sq/wDZXIv53Nf2u1/FF/wcv/8AJmv7Kv8A2VyL+dzX9rtABX8h/wDwag/83ef9lZu//atf14V/If8A8GoP/N3n/ZWbv/2rQB/XhRRRQAUUUUAFFFBIHJoAK8s+L3xr+F/wH8HXPjz4r6zbaNplqpZ5bhwucDOAD1PsK/Nj/gpP/wAFg/2dP+Cf3hC6s769i1vxk8Z+y6TA4JDdjKR90D86/wA7f9vP/gqT+01+3j4xn1b4k6u8OlBybbTrclLeJewC55OO5r0svyqvjJWprTq+h24PAVcTK0Fp36H9GP8AwUw/4OcdY1FtQ+FH7F8H2K3O+GTW5eZmHTMS4wv1PNfx3fFD4x/Ej4x+JbnxZ8RtXudWvrpy8ktzI0jEnnqSa8zZ2clnOSe5ptfoGW5Jh8KrpXl3f6dj7HBZXRw6uleXdhRRRXs2R6QUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA7D4e+EH+IPj3RPAUd/a6W2t39vYLeXzMlrbtcyLGJJmRXZY0LbnKqxCgkAnivtj9rH/gln+3L+xfZXPiH42+BrpPD1swVtc05lvtNAZgqs8sJPkhmIVRMsZJIGORX59wxTTTLDbqXkchVVRkknoAB3r+8f/gnj8PviL/wV08FeFv2ov27bc3/AMP/AAbbW2k+GvCUrF7DV9V0+JYb7Wb9DgXBecOkMTgomHUg8mT8x8ROLsZw17DM24fU1zKqmm5uWnIqVpL3pe9fm92KTk9tYlK2p8Qf8Ecf2dv2VfiT/wAE3fif8KvGsOqan4k+J9vN/bN5a6NdzRaTBZFv7PWOYxCOaWGYfa8Qs+SyqeVxX84vwy/YZ/av+NnxW1P4M/B3wPqniTW9Il8u7W2gaOGBWYqjzSziNIUfadpmKZx6giv9WDTNL0zRNOg0jRreK0tLZFjhghQRxxoowFVVACgDgADAr89v2yv2L7n4g3sf7TX7Mk6eEfjb4VjafStVt12RaqiYZtP1GMbVuLe4C7Pn+aM4ZWGMV/NfDHjpWw+bZhWcOWOLkpR9pJzjTmlyx5uVQfJZRi2tYxjF+8074e0km30P87H9sD9iv4u/sQfETTPhF8bZ9N/4Sa/0yLVZ7HTrg3RsY53dI455Aoj80+WX2xs6hCp3c4r5TvNOubHBmHDd6/QX9vH4ufEv4/8A7WvjT40fFzSJND1rXL3P2CUlvs1vbqLeGJWYLuEccYUsAAxBOAa+PLy1S6tzDN09fSv7P4fjjJ5bh6mYSi67gnPl+Hmau1HV6J6J3d0rkwxSlaUdUzy6ipp4vJmaIHOD1qGvTOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooqeUDoPDvijXPCl8NR0K4aCXjJHQgHODX9Bf/BN//g4A/aM/ZEmg8IfEK7fxR4XV1H2K7cs0ad/LkOSuOwORX86lKOua8/HZVh8XG1WOvfqcWLwFHEK01r36n+vj+xR/wUh/Zr/bj8IQa38MdXih1QoGuNLuHC3ETH2/iHuK+/q/xi/gV+0h8Vv2evFtp4x+G2rXGn3VpIJVaGQo2R2z6e3Sv7s/+CVX/BxB4N+MVhpXwm/a2uINN1qWNY4NWjOInYfLicH7jE9+hr8/zPJK+EfN8UO6/U+Px2V1cN728e/+Z/WDRWfpWraZrmnxato86XVtOoeOWNgysp6EEcVoV4p5gUUUUAFFFFAH8iH/AAcV/wDKVP8A4Jk/9lRuP/Tp4cr+u+v5EP8Ag4r/AOUqf/BMn/sqNx/6dPDlf130AFFFFABX8gX/AAerf8osvAP/AGVXSv8A00axX9ftfyBf8Hq3/KLLwD/2VXSv/TRrFAHwB/wYxf8AN0X/AHJP/uar+/yv4A/+DGL/AJui/wC5J/8Ac1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Q/v4ooooAKKKKACiiigAooooAKKKKACvn79oz9q39mv8AZF8Dt8SP2nPHOi+BtFG4Jcaxdx23nOoyUhRjvmf/AGI1Zj2Ffi5/wXz/AOC7Xgr/AIJK/C+1+HnwzgtfEXxp8XWrzaNplwS1tptoSyf2heKpDFN4KwxZUzOrchUav80jQvCv/BSj/gtZ+1RdXGlQ+IfjL8RtU/e3E8jgw2VuW43yOY7WxtVY4RSYoVJCqASBQB/oy/Ez/g7q/wCCNvgLUpdP8N694o8ZLESPP0bQpUjbH937c9oxHvtrwa6/4PS/+CVduxWLwV8UJwO6aTpYH/j2rLX4kfBb/gyc/bP8V6Db6p8dPiz4U8HXU6h2s9OtrnWZIc/wux+yR7h32M6+jHrX03af8GM2pugN9+07FG3cR+DS4/M6uv8AKgD9Dv8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD9DbX/g9L/4JVXDBZfBXxQgB7vpOlkf+O6s1e9fDP/g7q/4I2+PdSi0/xJr3ijwaspA8/WdCleJc/wB77C92wHvivxpu/wDgxn1REJsf2nYpG7CTwaUH5jV2/lXzH8af+DJz9s/wpoVxqnwL+LPhTxjdQKXWz1G2udGkmx/CjD7XHuPbeyLnqw60Af6E/wCzn+1b+zX+114HX4kfsx+OdF8c6Kdoe40e7jufJdhkJMinfDJj+CRVcdxX0BX+JJrvhb/gpR/wRU/aotp9Vh8Q/Br4jaX+9t543AhvbcNzskQyWt9asww6gywsRtYEgiv9Lf8A4IGf8F2vBX/BWr4X3Xw8+JcFr4d+NPhG1SbWdMtyVttStAVT+0LNWJYJvIWaLLGF2Xkq6mgD+iSiiigAooooAKKKKACiiigAr/EG/wCCTv8AylN/Zp/7Kr4N/wDTva1/t81/iDf8Enf+Upv7NP8A2VXwb/6d7WgD/b5ooooAKKKKAP8ANF/4OBY9/wDwV0+LbY4/4kPP/cFsK/G4L5UQMeTnqPx/wr9oP+Dga6WT/grT8V7URIhiOhkyDO592jaf97nHGOOBX42IikFEGdo/Ov0zL43wtL/DH8kfBYtfv6lv5n+ZTKBBkDrVi1hDckZNXbW2M7CNATIxCoP6VZWBopijZGK9BQObkuy60t9JbwR3LO8MIKRA/dAJyQO3Xmoyrhf3eevGKneW4kgEDOTGjFgCcgFuuB2qSBeM5xitOXQUo6m1rnhnUPDlyllqaCOZ1DbOjKeMhgeVIJ6H60lhqV7pssk1uFeSWFrf5kDYVxg498d6ZdXV1ezSXl/K9xPKQzSyMWdiBjknk8Y61FBeXlhdx31mxjlgYOjjqGHI6iqSCELnzX+2RqMdtbeDPCtovlPaabPeyoCSd9zMEB/FY6+HEj+0WzSrhZGYtjoGI9Pevu39q/4feJviLfD4v+E5TfLY2MEF/aKMT2/k7syBR96NyxYlfunrivg9ZhPYKSQshXI98/1r82xvP7efOrO7/M+8wnL7GHI7qyKdrFHNciO7yCCMN3GPX1r9KfhdosC/Dz4beEpCNmta7catP6GG3dVB+nlwvX5yaT/pTlLgAOnRu/HrX6caubfwYsdq77JfBXgY7VHT7VdRBM59d9yfxrjau0jobsfBvi7W5PEPiTVvFsb7mvbma5JHUGZ2cf8AoQrg3MN0pBwkuCenB/wrWmRreDfAflzjP6YI/CsedEuCzQkK/Tb2P0rWTJiYXnvCTb3ablzyD1H0r638F6JLF8E9J8P2Z3v4q11QOMZSABP5vXyI9z5reReAnsD3Br9J9CtbXw7qngLw5cxgr4e0WTWLhv7rOGlz+OFrN6yivO/3a/oawbV35fnp+p8lftG6vZ+JfjPrklsdgs5Vs4Rn5SlsojA9ule4/wDBOn9lmf8Aa3/ai0r4H3Soba+hnkmErmNAETglhnHJ4Ir4s1K9HiDVLjVw2ZriR5WB7lyScfnX0F+y1+1B40/ZW+JUfj/wmPMdkMEuGKSiMnny3HKn9KyxEasqM1QaU7Oze17aXFFJO72Oj/bV/ZZm/ZG+P+r/AAWi1KPVH03DM0ZDFAxOFyOGxjqP0r5g0ZrjUtQt9IlTzWnkWNP7wLHHX+leoftC/Eyf4v8AxY1X4mWolW2v5FMIlbdIiooADHJ5znNbf7Mmg2vjf44+H7DUI/kguBdTN/CY4BvOfwHWqp88aS9q7yS19eonrKyP2H8KftC63o3jGw/ZT1DTNNvfB3hHSRcTedaxvNHdW8PmGRZWBZCHIHB5r8Q/EXiYeM/Feo+JtVJabULmWcSjr87EjPqMY96+2bXxbLb+Cvi18bJCPtGpk6das3PzXkhyB/wACvgWxt7a7KLb/u3XHydjj0P9KuCdo37L8df1HUUVJ2/qxu20N1bXCFxkAZV1PFGrXcNxGIro7Hc8OB/Mf1qezluLNmjxhf4kPSsnUbaLUbxVsTgqPmjJ5/A966JP3TnjuV4hNZSCUHBH3XXofoa++P2Zbj/hGPg18SPjBcKqXCWcei2kp4JlvD834hB2r4LtZpLdGVxuiZv9W3Q4/ka+8/HcP/CBfsj+CfAdrmO88UXNxrtxGeWK58qEcde+K5pxc7U19ppfedFNqL5301+4yIC3gD9jXUb9cJd+OtZW3Q9D9lsxuPPoTivj171JEW11EFgRgOD8y/4j2r6//a51FvCEvgz4M2Tr5PhrRYXuUP3Tc3n7xsj1AxXxreLBqMoaxOyTr5ROf++T/TrW1WSlNyW36dPwMqafKrli4sWXMsB86PONy9vqO1MivpbfbbMA8bHlW6YHp6VRgnubSfEJKsDg+n4itCJ7K/cyNiGVRj/YY/0rMuxXnsobuR5dOb5sbPLc/Nn2Pf8AnX6r/wDBLbwI9vrPjH4xX6bE0jT2s7dyMYd1LPj6AAV+TcttPaSiO6UrsBkJ7E9ua/QD9i/45fE7SfD3jH4fWxil0BdIur24aRMSRSbdikOOu4nGDms6ukGyoK8kj5E1W4k134rX+oyfM0s7MT65YmvuXwTYP9gjDKegr4t8C2lnfeIXuUZ3naU7wRhQO2K/RPwnbIlhHFlVOMZbtX6BktHlowi+iX5HyOdVuavNruzQhsIUiPmgg4+Xjiofs8XJ/i7eldDdS3M1olqWysXC+wqteeH9ai0j+1GtpFglOyOTaQrOeAAe+Tivck1HdniczbstTWh+HXig6fYeJY9IudUsLrczC2RjwpI5YKcZ7da+hPAfwV/Z1+JEMGiXev6r4Z1WQ5kttQt1JDeiPwGHtkGv6Hvh7o3wE+EvwA+G3w9+Jktt4f8AEWo6ekelvJcCAXEwQNJGWJAL5PRsV5D8fPhJ8QfHOjG5+D+oaWuo6aAJ9K1e080TRd2WRTuHH8Sgg+1fBYriKpOUowi1ZuzT/Rpo+qpZRTik5vfuj8oP+Hc/iSzI8XfDPxjbXktm6yQEwNFIrDkMNpbke1efXX7Ef7Ql9rE14LzT7u+uJGkYSzmOWVyckguADn619cal8L/28/DPjCDVfhF4a0rVNERV8+zj1FVkX1MRmww/3WJ9jXu9z8afFWgxpoPxX0SONo1DOk2YbiJj3R+QSD6HFY085xb6p+qQ5YKlF6aejPzDbwt8W/gTqS2XxB0iaxdjgS/fhYf765X9a9IOr+FPEemCTxBceRby8SSRr5jIMHkL35wK/SnTvij4J8RtHomr39rqVpeoqC31PaXUMcKM4IbnjnmuS8TfsXeCNXlk13TYLjw9DcFlEdni5tiw6lVLB1+nNN5gp61Y2fdbHsYPEqMfZyeh+Dni7R7vzF1CBWWzlZ1jcrgOUODj6eleew3l3o1y95YSCOR43iLADlZBhhz6jiv1P+In7DXi/VL678PfDHW7XVtStVMzabcA21xtzgugOUOSR/FX5kfErwB45+GWtzeGviFplxpF5GSNlwpXd/unoR7ivewWNo1laElft1Pncxw84ty6dzzq/j0qS1a4gYWskKoqQnLmU/xEHGB64P4VyUMNvcTk3MpijAJ3Bc84yBj68VtTxow+8Dj0rHlUOcL0r0W+h4EtGUbe2sJYpmvJvLZE3Rjbnc3p7euay5A+xf8AZ6Ads1qfZg0mFPPUD1NXtftNIs74R6HcNcxeWjF2TyyHKgsMf7JyM98ZoLhKyuYCxt25PpW1qGpWuo6pJPZQpaW5YFYY8lFwAP4iTUU7aO9hapZLIt4pkNyzkFGBI8vaByMD72ep6VlNIMB/bPpUOCZsqlnoes6BrU6CG2kmZ0ViyxEnClupx0yQK+zPhH4ylsNQg8pufl4zX516dPtVF6Or7t46kelfTvgHXJjqK3lzKvmOdzHAA/IfSvHzDCqSbPsuHszcJKKP6Dvg54u1q7gh1C7P3xhV7Hitj4r6jrENs91NHlXGQB3FfEvwn+N9nBbWekrJl0K7fev0Z0rw2/jbw2uqao5KvFuj/ugfWvgMVh3TnzM/ZMJi41adrn4R/HyC7v8AU5rl02gk4Ff6pNf5v37QvwdNvYm4g8uTzUaRcNkqFYjDDscjp6V/pA12Tqc1OPz/AEPhM+w/s6/N3Cv5EP8Aggb/AMpnf+CkX/Y7Wn/pfq9f131/Ih/wQN/5TO/8FIv+x2tP/S/V6xPDP6768p+Ofxo8A/s7fCHxD8b/AIoXf2LQPDNlJfXkuNzBIx91R1ZmOFUDksQBXq1fn5/wVQ/Zv8a/tb/8E/8A4m/s/wDw3bGva7pimwXf5fmT2s0dwkYb+EyGLYD2JzQBQ+DP7cXjDxd4N8T/ABW+N3w+ufh94S8PaRJrZvru+trmQQRKXdJ4YHd4JVjG4o4BHTrXEfs+/wDBSW7+J/xA8J+Efi78PtT+H1j8SdFu9f8AB19qE0Ui6jaWSLNIkixsWgm+zsJxG+CY8nqCK/Lbw9+yL4u/aK8W+NvDn7NHw91z4SeDdc+EWreFPEEGuq9tHqPiK82izby2ZvNlgAk825H3g4GT296+GvhP45/tdfE74A+G/Enw/wBa8CQfBHw3q8HiS81eEQwSand6X/ZUVvZuCfOUszzF1+XYF7nFAH1L8I/+Cqdr8RPFXgbWPEfgDVPD/wAOPipq0ui+EPFNxLE0V9dDf5HmQKxkhS68tvIZx83HTIp9x/wVT06Hxdc+J18DagfhFZeLB4Kn8bedEIF1TzxaFxBu802y3TCAzAbd+ewzXwJ8Ivhd+0Z8Qfhb+zV+whr/AMPNY0HUvgj4p0rUvEuu3UQTSjZeHGcxvaz5xKbs+XsVeRk7sYrEvvgZ+0If2bNU/wCCVn/CCawdSvviRJqsPigQ50Y6DLrY1g3RuM4Eix7ovL+/5gA6c0Afo98aP+CpMHwz8ceO/wDhFfAOp+JvAvwmuba08aeJLWWJY9PluEWWQRwswkn+zROsk+wfIp9a+7dS1XT9c+MfgrWdJmWe2u9J1GeGRDlXjk+zsrD2IIIr8IfjF8M/2iPhT4e/ae/Y88NfD/V/Et18etYuL/wvrVnDv01I9atIbSf7XN0h+ytGztu+8hG3Jr9n/CHw3tPhv8QPhp4daRp7vSPCs+kvNvba62iWqZCk7QSRnOM0AfXVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANKITkgflSeXH/AHR+VPooAZ5cf90flR5cf90flT6KAGeXH/dH5UeXH/dH5U+igBnlx/3R+VHlx/3R+VPooAZ5cf8AdH5UeXH/AHR+VPooAZ5cf90flR5cf90flT6KAGeXH/dH5UeXH/dH5U+igBnlx/3R+VHlx/3R+VPooAZ5cf8AdH5UeXH/AHR+VPooAZ5cf90flR5cf90flT6KAGeXH/dH5USf6tvoafTJP9W30NAH8Uv/AAcv/wDJmv7Kv/ZXIv53Nf2u1/FF/wAHL/8AyZr+yr/2VyL+dzX9rtABX8h//BqD/wA3ef8AZWbv/wBq1/XhX8h//BqD/wA3ef8AZWbv/wBq0Af14UUUUAFFFVry8tNOtJL6/kWGGFS7u5wqqOpJPQUASTTQ20LXFwwREBZmY4AA7mv5QP8Agsh/wcD+E/gHa6l8Af2Ub6PUvE+Ht7zVIiHitWIwVQ9Cw9egr5K/4Lk/8F7Jjcan+y7+yXqbRxRM9tqerWz4ZypIZI2Hb1Ir+JvV9X1HXL+XVNVmaeeZizu5JJJ6nmvpMmyGWJaq1tIfn/wD28symVdqpU0h+Z3HxU+Lnj/4zeLrzxv8RdSn1PUb2QySTTuWYlj715pRRX6HRowpRUKaskfZU6cYRUYKyQUUUVqWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH9Q3/BDz9qn/gnn4HuoPhh4p+Fs2jfFO5gkjt/G8mdYQyspAcAqH0/BOB5EbAjl3Ff1i/8ABOvwB4f+FP7F3gH4ZeG2DQaFYNaOR3mWVzKT7s5Le+c1/nhf8E9v2jfDvwL+KEFhqegHVLrW54rOCaIbp1aVgqqi9yxIGK/v68X+MtC/4J6eBz4+8YXyTeDTbRSarbGZBdW92qKrzW6Oy+ashHzRg5HUcCv448dOGuXHLD4SU3VxUozjGU3NTlTUlaHM2429q+WLfL0ilex8Vjczx9DNW61FrCRjbm3u5NWlbsmrNLVc13ofoxSEgDJ4Ar80/Cn/AAWK/wCCZnjDw0vinT/jFoNrCV3GG+kezuV9QYJkSUkeynPbNYHwT/4KefsyftxfEnWPgb+zR4hS6XT0QXWq3WLJbhJCQUsoZylxMeCGcRBVyOSCDX87z4OzynCrVrYGrCFPWcpU5RUVe2raX3bn0leo6VNzUW30S6vp/wAP0PDv29fEP7Fnhr9kfxDrn7Q3gKw8dpaXF5dWVi7rZzxvPISDFegeZblupMWWPdTmv89Lxl4m03WdevbrwvZtpmmzTSPb2rSmdoYmJKoZCFL7RgbiAT1xX7e/8HAnjP4yeFf20NX+AOvXElv4Rsbe01DRoVYhLi2uowd7f3ikokiye6GvwMr+6vBPhueV5BDFTruo8QlUS5pOMYyV0lFvlT/maSd9G3Y5ckwuJp0EsXa60SXRLz6t7+QUUUV+yo9sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFq9p+qX+k3AutNlaGQfxIcGqFFRKCaaewmk1Zn9UP8AwSK/4L4fEH9nLXtK+DnxrmuNb8IS7Im81t81tzgtGTyQBzt/Kv8AQC+EPxi+Hfx18CWPxH+F+pw6rpOoRiSKaFg3XsfQjuDX+LHbXM9ncJd2rmOWNgyspwQR0Ir9xf8Agkr/AMFg/i7+wp8ULfS9evZtV8I6hNi9sZXJTDdWTPCsOvvXw+c8PcqdfCrTqv8AL/I+VzTJuW9agtOq/wAj/Ukorwv9nX9or4XftQ/C3Tfiz8J9Rj1DTdQjV/kYF4nI5Rx1BHvXulfHHzQUUUUAfyIf8HFf/KVP/gmT/wBlRuP/AE6eHK/rvr+RD/g4r/5Sp/8ABMn/ALKjcf8Ap08OV/XfQAUUUUAFfyBf8Hq3/KLLwD/2VXSv/TRrFf1+1/IF/wAHq3/KLLwD/wBlV0r/ANNGsUAfAH/BjF/zdF/3JP8A7mq/v8r+AP8A4MYv+bov+5J/9zVf3+UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKACiiigAooooAKKKKACuJ+JfxD8KfCL4ceIPix48uRZaH4Y0271bUbg8iK0sommmf/gKIx/Cu2r8af+DhTx3ffDr/AIIwftA+INOkMUlx4cXSyQcZj1S6gsnH/AknIP1oA/yvPjL8R/2if+Cy/wDwUvu/EttG1740+MnimGw0m0kcmKyguJFgtINwB2wWluEVnxwiFzzk1/rtf8E2P+Ccv7P/APwTE/Zj0f8AZz+BNhH5kUcc2t6y8YW81nUduJLm4YZPJyI48lYo8IvAyf8AOE/4NDvhjpPxA/4LG6P4k1SFZn8GeFNc1q33DOyZ0jsd31C3jY9M1/q9UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8Af8FJ/+Ccv7P8A/wAFO/2Y9Y/Zz+O1hH5ksck2iaykYa80bUduIrmBjg8HAkjyFljyjcHI/wAiX4M/Ef8AaJ/4Iz/8FL7TxNcxtZeNPg34olsNWs43IivYLeQwXcG443QXduXVXxyjh15wa/22a/yhf+DvD4Y6T8P/APgsbrHiTS4Vhfxn4U0PWrjaMb5kSSxLfUraLn1xQB/qifDT4h+FPi78OPD/AMV/AdyL3Q/E+m2mradcAYEtpexLNC//AAJHB/Gu2r8af+Dezx3ffEX/AIIwfs/eINRkMslv4cbSwxOcR6XdT2SD/gKQAD6V+y1ABRRRQAUUUUAFFFFABX+IN/wSd/5Sm/s0/wDZVfBv/p3ta/2+a/xBv+CTv/KU39mn/sqvg3/072tAH+3zRRRQAUUUUAf5qn/Bf2Iy/wDBXD4uADoNBOf+4NY1+OMavHKHXqK/Z3/gvnNPB/wVt+L6wNtE6aHE/uraNYZHtX44JCw+Zjk1+oZav9mpf4Y/kj4TF29vUS/mf5seiFm3g4IPBFbVilmJSb5GkUo2FVtp3Y+U556HqKueHreykupGv4zIiwSEAMFwwXg5PXB7d6qhkY4zXpGSsVPJI+QnnrWtpenz6ldR6baqXmkJCAd8AnH1NV44RySc8dK6K3S40C7triYSwzbRKpX5WAYZUqfcc/SmRJq+xztzAqu3kZ2r/f4NWbQ27pJ5ylsoQpBxhux9/pUhUysWlPXrV2GGD7MWP+tB49Me9XygpKxxF/b6lZXC6lpEzQXEXKuv6g9iD3B4NfOHxM+Cln8Rkk1rwFZx2OvRAvdaanyx3SqOZLcdm/vR/lX2lb2lu8LlvvZGOOPeue17QJL2CKK3wht2Lxug2uGOOdw54xx6V5eY5VHExvtLuduDx8qD027H5g/DTw5PrvjnTfCl9E0c91fQ2jBhhgXkCkMPUDNfZ/xn122l0v4i+JBzHqer2mkRH1iti0xA9tqJXsvw/wDDPw81X4zaD4s+Jsw0e9sLnzZdRVf3VxhWAaZR0cEg7h97HPNeCftW6Ho3w/0XRfBei6rBrlrqVzeawLy2PyypKVijPPfajZHavhq+Dq0KnLUW3X+vQ+qpYmFWPNBnxHc74HQxMCvX2I96wbkwS5lhxu5JX/D1rXvPMt7gspyhAGe2KwLqINGZrfI9u4xXOzoRr+D9OPivxVpugSKWkurmOIEDn5mAwa+6/iVrdtZXXxJ8T2xytjbQ6FbDthisfH/AUavm79l2xt9S+MWn6leDCaUk1/IccFbdC3PvkVsfEfW7iD4SJPd5ZvEmsS3LHuVt1Jz/AN9SVmtZ69F+en5XNFpB+b/r9D5na0V08+yPTqvcULMLgBLs7W7OB396bultsXMByOzen1qwrwXrYwI5fTorfSq0FcRftmnvnqGHXqpFfYf7MEMGiaL42+KSAo2l6RJbQ+gnvCIxg/QmvjyG6aD/AEa4G5CeVPUfSvuDwzpy+H/2YrXT7TPn+L9b3DIwWitF4H/fbVNRcy5Fu2l95VNrm5n01+4i+KNzF4O/Zo8KeFZFBl8RX1xqk46ExwDy4z+fSvkuC03L59q/mJn6EfWvp39ri9tB8SLH4fQnbF4Y0q0sFI5AlK75Mj/eNfPXh3Tb9tUttNtRmW5lSJNvIYuQPxra6lJtGLulqa9vcRyweXegnHHmfxD/ABrlmgmiu3vAcoBlXB71+0v7c/8AwSn8Yfst/BHRPj5aTiHS9VtIJJbe4cbvMkUZ2H6n7p5Ffi5p0lxYMyuOXb5kboR71jRxdHEQVShNSjtdd1oxcji7SWp2fh3Tm8V6vp3hx0LXV3PHAjqOS0jBRkDr161+6/xf/ZO8GfEb4r+FLXwT4w0y5fwfYWiaxpTzBbi3gs13ttT+LcQc46Gvy2/Y50DRtV+P2k+J9QybDw6k2r3cZ/uWilxg+7cCv0O8R/Gv4P8AxG8B+Nv2uPDHh0+GPEVpbz6YIkn3JcC6AVZduBhjnnrzWtOSU3Lqlp6vRDlfl02f/Dn5MfHfx5D8Tfiv4g8Wyg7bq9l8qT0ijOxBj0wK8f8AsbpGJZcYPKuvStG6t47mDzLM5Yj5kP3s98evNVYpWsk8sDK8ZRulQirireCRfLvQXGP9YPvD/Gq8unyw2KzQt5scp4Zf6+lWZreO5i32Z+Y/wE8/h61SN1PZ3BaE7di8jsfYigAOoGOBlmQSxMcKreg9D2r7j+FsNh8Mv2RvFPj/AGn7R4uvItLtw3DeTB88mPx718L3SQahIllbfup+FCfwszdh6c1+kvxe+HPiPXLf4d/sp+BvLF9Z6cktwJWCJ9puxvbcegwuBzUuKnKMHpd6+nX8C4Plbmuiv/l+J80/BvTpLmf7eY8JJISpI557Z9q+/dFj8mzRcYA9q77wB/wTe/ac8G6VFc32lRXMIOQIJlfBPfAr3aT9j/8AaJs4kj/4Ri5kLDIEYBNfoeX47CKNvax+9HxGNoYhyb9m/uPnHS1sn1KD+1Di28xPN/3M8/pX9ov7PXhr9hj4t/sp6Zoug6Tpmrm1tYXceWjyGZMHOeoKke1fyn+Cf2Nf2i/HnjKy8B6b4Xuobu/k2K9wPLjQd2ZjwAK/aP8AYT/ZE1v9g7x14k8R/tFa3awafqFqI9MSyuN9vPJH802AON4OFri4hq050lOnUTa6LXf0N8khUhUcZ02k+r0OF+LnhHRv2rf+CgMHgr+zv7Q8M/DbSftDWlyA0PnSH5iR9TgfTNX/ANq/9hX4y2t1afGf9i3xhqWha3ZW0cUGk30zTWhjXkxoXzxnorZ9jX0l/wAE/wC68BWfjT4g/GTxjKmn6n4u1eQ29tcuN6WcJ2oGz2b7341+m0fijSZbhbC2aCfT7phDC4w0e8DpnoCe1fn/ACSWtj666eh/OX8Dv+CjVtpOrr8If29dAm8CeJI5Vtm1SONhY3D5wrE/wbj65Hoa/TTxL8O/hX8cPCT6LrljaeKdJZQ0N3ayjzVXIKlXU5z0NfQXxk/Zj+CHxx0LUfBXxc8LxagqOVhkJAlRmHBjbqOPqK/m9+OXhH40/sKftVXPg79gix1PX9JtNNXUNY0CaU3McXbCdxxzwOKqNRp6mM6PWJ9z6p/wS7+Gl94gsNY8Maxqf2KCZ5Zrd5f3/wA7BsKxA+6RleOKz/jX8GvjB4L0CXw98C/E93qOkQ3D3Jtrxcy29w2AwZ2ySGHGMACvJvCP/Bej4aS2UejfFvwXf6Rqahbe5tTAXeObAHy7eevQV7h8Rv8AgpR+zr4ajg0z4leE/EWhXFwpxcXOnTK2CoZWyFwwI6Zq/aS6MXKtpRuZPhXW/il8JNDufin4/m0a/l1HTYrWazh8yKS2mDE/KWLAgsQSQR0r9Atd/ZX+HX7UfwF0jSbdIPGWpDTxfXiahEVEZbJTyrhQGXK9jxX56fBb9qH9mn9py+1Hw98G9YbWdQ01FlvI5oTFJBFKdgyGHrX6N/D7xV41+HmkT6X4du31TSQqQyRo5wBIcBOCCPp2zSpVnGXM1r+IVKKlHli7H5pad/wT/wD2NtbtDpuseGbvSr6GRoX8i7by3Zeu1mDA+3SvhL9pX/gkz4j8NadL48/Zs1Jtf0wB3bTbr5L2Pb/Cp+7J7YwT6V/RZ4ytp/GukafYeD7a3gTy3hvbW7AEhwfkKdPmAyp6Hoa+D/E8njbwH4nmi0y5urJC/wAtncFioHcZJyR6da9ejjq0Xz06l/J6nlVsLTa5asPmj+THWtP1jw1q0ui+JLSbT76BirwzoUdSPUGsy3tdQ1i+h03SI2uLu4dYoYlGWklkYKigdyzED8a/rz8Yfs/fB39p7w4th8eNBtVujGFg1C3Ihukz0xL/ABf8CFfQX7Gn7M/7CHwc8P8Ahnwr8dvh7G+rfD+7iu9O8WIjPJcmOQukl2qnAZGxzgrwMV67z+Ead5QfN2OKGUXlZT90/Hf/AIK7/so/sx/sGfsy/CD4QaPpSP8AFPUdLS61zUPM+ZsqrOWUcZ3kqvHQda/n6g1C98QTzXcKB2VTI+xcKFGBnA4A/rX7F/8ABxn4x8L+P/2toPid4Z8YReIDqcCxW9jbo3l2llGvyMHPGGbOa/FX4bzQWV8y6sZGiwySLC2N57AnoRkDPtWmSOSwycpNybbd7736eXpoLM6aVV2VkkrHZxYA8z8q9E8N6/dW8T2KMBFKyM/A3ZXpg9QPUDrXnrgBz5X8Xb0rUsTPBcJHKMMSDg8cGvWqw5onHgqsoTTXc+3fhpq5fUIrlDl0AwM9AK/aH4QfHVrzwrB4aQg7FC4PpX4P/DmO5uAkUBwzEDPoTX6mfs+6FLJcQyrl1k2kt718TmlKOrkfsnD1apKC5ep9D+M1uL77U0VukkVzC0bFxuOCQePQ8da/vyr+LbV/A2i/8I0bhRiTaPzr+0mvCpyT0QcUJ/uW/wC9+gV/Ih/wQN/5TO/8FIv+x2tP/S/V6/rvr+RD/ggb/wApnf8AgpF/2O1p/wCl+r1ofJn9d9FFFABRRRQAUUUUAFeKeJ/+S7eE/wDsHap/O3r2uvFPE/8AyXbwn/2DtU/nb0Ae10UUUAFFFFABRRRQAUUUUAFFVr29tNOtJL+/kWGCFS7u5wqqOpJ7AV5D/wANF/Af/ob9J/8AApP8aai3si405S+FXPZ6K8Y/4aL+A/8A0N+k/wDgUn+NH/DRfwH/AOhv0n/wKT/Gq9nLsV7Cp/K/uZ7PRXzsf2tf2aR4mHg//hNtI/tFoTOIftKZ8sHGc5xXRf8ADRfwH/6G/Sf/AAKT/GlyS7FSw1aNuaDV/Jns9FeMf8NF/Af/AKG/Sf8AwKT/ABruPCXj/wAEePIZbjwXqtrqiQELI1tKsgUnoDjpQ4SWrREqU4q7i/uOvoooqTMKKKKACiiigAooooAKKKKACiiigAoorzf4tQfE648B30Pwdls4PEJUfZXvgWgBzzuC89KaTbsv6+8qCTkk3Zd9dPuu/uR6RRX5m/2F/wAFTv8AoL+Dv+/U3+NH9hf8FTv+gv4O/wC/U3+Na/Vq3Zf+Bw/+SO/6nh/+gqH/AIDV/wDlZ+mVFfmb/YX/AAVO/wCgv4O/79Tf415t8PNF/wCCvjz6wPFep+FY1F4wtfPjZg0XYpsPC+m7mk8PWulyr156en/kxrDL8M4Sk8ZBWtpard37fu+nU/XuivzN/sL/AIKnf9Bfwd/36m/xpG0L/gqfg7dY8HZ7fupv8af1at2X/gcP/kjL6nh/+gqH/gNX/wCVn6Z0VyfgWPxhD4Q0+P4gSQS6yIVF41sCITLj5tgPOM9K6ysmraM8+SSbSdwooopCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZJ/q2+hp9Mk/1bfQ0AfxS/8ABy//AMma/sq/9lci/nc1/a7X8UX/AAcv/wDJmv7Kv/ZXIv53Nf2u0AFfyH/8GoP/ADd5/wBlZu//AGrX9eFfyH/8GoP/ADd5/wBlZu//AGrQB/XhRRRQAySSOJDJIQqqMknoAK/iy/4OBf8Agtj/AGLFqX7H37M2qDzDmHWtRtn5ORzEjDp6Ma/R/wD4L4f8FX9M/Yu+D83wQ+F16D478TW5UtGebO1fIL+zN0H51/mv+J/EuseL9duvEWvTtcXV3I0kkjnJZmOSSTX0OQ5P9an7Sqv3a/F9v8z2cpy36xPnn8C/Ey76+utRu5L29cySysWZmOSSaqUUV+kxgopJbH20YpKyCiiiqGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBu+F/E/iDwV4k0/xj4SvJdO1XSrmK8s7uBtksFxAweORGHKujAMpHIIyK7bxN8cPjD41t7+38aeJ9U1j+1JRNdvfXUlzJPIP4neRmZj9TXllFZSw9KU/aOC5tr2V7b2v6mdSlCaSnFO2uvdbM/pJ/wCCb3/BUz4Wfs9/8E6/iX8N/ifpmlaj478DwmfwE99axTzTHVH8vy1LqSVs7hzcMM8xuVH3a/BX4T6z4Yvvihbz/FSNtQstUmZLqaSV0dZZjkTF1YNkPyxJ6E968gor5fBcG4HCVMwrYZyjPFvmk02nF8tvca297mn/AIpPpY68HX+r14V+VS5WnaSunbo090+p+1fxX/ZzsvjGunN418VeINRk0a2+xaeb+9a++zWwYuIYzPvdYwzMyoHCgkkDk18va5+wLq8eX8N+IoZvRbmBo8f8CRnz/wB819Mfsr/FP/hZXwyht9Qk36no+20ucn5mUD93If8AeUYJ7spr6Wr+cqvGHEuQ4qpl0sQ/3bas4xafW6ur2e++tz+qcLwXwvnODpY6jhUo1EmuVuNu6tFpXTunpuj8cNc/Y1+OWkZNnZ22oqO9tcKP0l8s/pXjuufB/wCKfhvc2teHtQhRer+Q7J/32oK/rX7z317aabZS6jfyCKCBGkkduiqoySfoK+BPin+3Fpdj5mk/Cm1+2S8r9uulKxD3SPhm9ixX6EV99wp4icT5rV9jQwcKqW8tYJesruK9Er9kz4finw94Zyul7atjJ0m9o6Tb9I2T+bdl1aPzPkjeJzHKpVl4IIwRTK6nxf418VePdYfXvF99JfXTcbpDwo9FUYVR7AAVy1fu9B1HTi6ySl1Sd0n5NpN/cj8MrKmqklSbcejas7eaTdvvYUUUVqZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABShiOnakoqWgP3X/4Iy/8FVviZ+w98arbQdQmk1Hwnq5Ed/ZO3y7QR+8UHgOo/Ov9Mz4P/F3wL8c/h7pvxN+HN9HqGlapEssUsbZAyOVPoR0Ir/FiguJ7WZbi3Yo6HKspwQa/rb/4N9P+CsjfAvxhB+z98UrueXwxrLokss7ZSyunYqki+iPkBh2IzXwnEWTqF8VRWnVdvM+TzrLFD/aKS06r9T/QPoqtZ3lrqFpHfWUiywzKHR1OQynkEVZr5A+bP5EP+Div/lKn/wAEyf8AsqNx/wCnTw5X9d9fyIf8HFf/AClT/wCCZP8A2VG4/wDTp4cr+u+gAooooAK/kC/4PVv+UWXgH/squlf+mjWK/r9r+QL/AIPVv+UWXgH/ALKrpX/po1igD4A/4MYv+bov+5J/9zVf3+V/AH/wYxf83Rf9yT/7mq/v8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//S/v4ooooAKKKKACiiigAooooAK/Ar/g6Dna2/4IW/HSROCU8OL+D69pq/1r99a/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+Pj/gyxt1m/wCCqfjeRhzD8LdVcfU6rpC/1r/UFr/ME/4Mqf8AlKb4+/7JVqv/AKd9Hr/T7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMzWta0fw3o934i8Q3cNhp9hDJc3NzcSLFDDDEpZ5JHYhVRVBLMSAAMmv5Hv2vP8Ag8g/4J9fAzxhceCv2cvDGufGB7Qskup2rrpGlM6nG2KW4R55BnOXFuEIwUZwc1pf8HkP7RXxM+D3/BNvwz8Lvh9fXGm2nxH8VxaZrU1uzIZtPtraa4a2ZlI+WWVYyw/iVCpyCa/Dr/g1O/4I+fsJft9eBfiF+0Z+1vp0fjjUPCWswaPYeGZrqSG2to5IFn+2XMULI8olZmihDt5X7qTKscFQD9G/hH/we9fs56/rVvZ/HD4F+IPC9lLKEludH1e31kxRk43+XLBYlsDkgHPpmv64v2O/22v2YP2+fg9B8dv2T/Flt4s8OySm2lkhV4p7W5VVZoLiCVUlhlVWUlXUZBDDKkE/g5/wUx/4Ngf+Ccfx1/Zo8Val+yz4Ag+HHxL0jTbm90K60J5lt7q6gQyJa3Fo0jQuk5Xy96qsiFtwJwVb+Yz/AINb9K/4KGfsi/8ABT7w/wCBNf8Ah1420L4dfEi1vdN8TDUNFvrbT0Nraz3NncyNLCI0eKdBGshIISV1z82CAf6QH7Q37Vv7NP7Jfhyx8YftOeO9E8BaVqdz9jtLvXL2OyhmuNpfy0aVlDNtUtgc4BNb/wADP2g/gZ+034Cj+Kf7PHi7SfG3hyWaW2XUtFu47y2M0Jw6eZGzLuXIyucjI9a/ge/4O0P+Cn/7C37Y/wAAvCH7Ov7NvjyPxL4y8C+Ork65py6ffWptBbW1xay5kubeKJ9sx2fu3bPUZHNfQX/Br5/wV5/4J1fspfsF6L+yV+0D8SIfDnxB1nxpffY9Kl07UJvM/tJreO3Pnw2sluod+MtKAvVsCgD+8CisPxP4n8NeCfDl94w8ZahbaTpOlwSXV5e3kqwW9vBECzySyOQiIqglmYgADJNfzwfEr/g62/4Iv/DrxfL4RtPHuqeJPs8nlS3ujaLdTWYYdSskixeYoP8AFGHU9VJHNAH9HdFfDv7EP/BSL9ir/gov4Ou/Gf7H/juy8WR6Z5Y1CzCSWt/ZGTO3z7W4SOZAxBCuV2MVO1jg12f7Y37cP7LX7AHwrtvjZ+114qXwf4XvNSh0iG+e0ur0NeTxySpH5dpDPINyQyHcU2jbgnJGQD6vor8cte/4L/f8EivD/wCzrD+1Lc/GSwk8JXmoXOk2RWyvlv7y9tEjeaOCxe3S7cIJY90oi8lS4DOM18pfDH/g60/4IwfEnxbD4Su/HuqeGTcSeVFea1o11BaFjwC0sayiNT/ekCKP4iBQB/R1RWN4d8R+HvGGgWXivwlf2+qaXqUEd1aXlpKs9vcQSqGSSORCVdGUgqykgg5FbNABXOeMPF3hn4f+EtU8eeNL2LTdG0Sznv7+7nbbFb21shklkc9lRFLE9gK+R/8AgpF8f/in+yv+wl8Uv2ivgjp9vqvizwfoNxqWl2l3BJcwSzxYwHiieOR1wSSFdT71/lhf8FCf+C23/BYT9vX4b3vw7/aG1S88OeAZ9jX+jaFpL6Tp84U8C5lIaeVC2P3cs7RFgDtyAaAP9Hv/AIJ8f8F5v2Af+Cmvxwvv2fP2Xb3XbnxFp+jz65KNS01rOH7JbSwwuQ5dstvnTC45GfSv2dr/AC5/+DMD/lK74q/7Jpq//px0yv8AUYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8vr/g9Ot1g/4Kp+CJF6zfC7SnP1Gq6uv9K/1Ba/zBP+D1b/lKb4B/7JVpX/p31igD+wf/AINfbhrn/ghb8C5H5ITxGn4Jr2or/Sv30r8Af+DXH/lBR8DP+5m/9SDU6/f6gAooooAKKKKACiiigAr/ABBv+CTv/KU39mn/ALKr4N/9O9rX+3zX+IN/wSd/5Sm/s0/9lV8G/wDp3taAP9vmiiigAooooA/zaP8AgvpCkn/BW74rI52h/wCwiWPb/iS2P+Ffj9FbqWw3btX7I/8ABe2FpP8AgrR8V2bOP+JCB/4JrL/GvyNttOyc8gf4V+rZb/ulH/DH8kfA4uX+01V5v8zOSIpwPTFP+yF8CMYJ4AFeieH/AAle63c/ZbBPMkwXAJAyFGT19q1F0d9RMt/GoCwgSNjAwMgcV321OZ1Gloc5Y+BfEtxpU2v29nM9nasFml2HYjHorHpk1mNHcXcwa5YvtAUEnOFUYAr6K0X4r+MNB8A6l8NLW4H9l6tMk9xGRnfImdpJxnjNcRotlpepanBo8pSE3LqpkfhUBIyc+gHNOKlrzLToYyrKTXK/U83/ALNViOK6iTwrHJIkOnSifcIhgcMXkHKgd8dK7vxR4S0vRJ1TRrxL6GVSUlXg5UlSNvYZ5Geoqpb+FNWtNLt/EL4WCaVo42DDduQAngcjjvW8EpETqtJpI5DUNBbSr6TTxuLQna24YYMOoI9jVm00+14lvEZ0wQQpxzjiuvksPtsxmhRstgtu5JbufxrRi8NX7J8qEd66FSW7OF4yT2R43rHhi0v7TyniG7qT3NeLeN/h9o3ifS4PD3i9GWGzVls7uIfvLfdzgj+KPJyR1Ga+zRo720qteW5f1HTNYWpeDBcwrNdDEUncc/56VyY3K4YiDjJHXg83nRknc/E34kfDzxP8NtVOm67GJIbg7re4j5hnQfxKfbuOorya4Vs/aLXJ29R3Wv2P8W+A7C90i48Na9a/bdKnOWi6PE39+Jv4WH5HvX5v/Fj4G+IfhfINfs2a+0K4ciC8VcbST9yUfwsPyPavzjMssq4SdpL3ejP0HAZhSxMbxevY6b4Cq2l+BPGvjdlCyrZR6dEenz3bgHH/AAEGsf8AaAnt9OtvCnglhj7BpguJMdRJdsX/APQQK9U8GaB5PwM0DQ4Iytx4q10yMB3jtgFU/Tc1eA/tA6xb638YtdWNh5VpOLKFh0CWyiMD8wa8mO0n3f5L/gnpT0UV8/v/AOGPHMT2x3A/KfTkEVJ5Mdwubfhu6n+lRq72zGNuVbt2NOeEn99akkDk+q0zMt28qzgW1wpY5wGH3ga/U7RfC0D/ABO+HHwqnH+ieHdNhvLzPZpAbmQn6AAV+fPwg8Njx98TNC8MuuHvLyFCQOCoYbs/gK/QKTxUkF78WPjRGAUsbOexsyega4YW8YB/3VNOPxp9k3+i/ForaD87L+vkmfAHxE8U/wDCwPiFrnixjiXUL6aUZ6FSxC4/ACr/AMOfEt34I8V2HiRbdLo6dOlwsE33S0ZyAa86isPlWS1+ZQBkdxiux0+5ikiK3OemFYdR/wDWrSCM5vsfrH+3p/wUNvf2tvgF4f8ACqXNytzbSxrd6e/+qgjgX5SmOoJ79a/IO0vldBBeDeBwrfxD/GrOppcRXkQUnaOQy9DUDm3u1aXIilB4/ut/ga56OGpYePs6MVGPZab6spSb1kfbPwTtk8Efs9eOPiMG3T6u0GhWjjrtkO+bHvgYNdb8TrrRvAf7MfhXwBfGSA+JrqTUbjyxl9kQ/d5HHBYioNc0KfRvhB8M/g3Cmy61Pfq12q9d94+1M+vyCuE/bM1u21D4rQ+E9JkzF4YsINPEf+3je+PfJGa0h8Dl3f4L/gsc94x7K/3/APAX4nyJqEUtpOmDwCCGHQ1Za6gvCFvhhv746/jWOt5MlxtIDBjyrdKubI51aW0J46oeox6etAcotzazWk6ZOVHzBh0NQi4jvGAvBnec7x1wP50y3vpYUdx8yNxtPQ/4U+aGOSJnsPvKu3yyeR649aAPZP2avh2vxH+O+haRejzLBLj7XcuOght/nbPp0FfavwR+OPhS+/bP1LxR46U/YtY8+0tpF/5YOTthI9sKBXif7JGmX/hf4afED4uRQu0sFoulWpVSSJLj7549FrQ+AXwCvvH/AIB8XfGuWZ7aHwyYniAHDSMc8ntgc/Wt8LCEpVJ1PhivxloiK05Rgox3b/Bav9D+uP4OfELWvEngKGCYC4ntyEkccEFeATj1Fe3WeuPbu93epPsCBX8lske4B9K/OH/gnZrJ+MnwgkbTLopqcEm2+AbLgoMIx/3vT0r7j0zTNfu7V9AiCv5ZZ53GScDvXk1qfLNo0i7o9b8C+D/C3xi13VPhX8SdSvdK03XIgtlqVhObea2njYOmJOzE9uh6V8F/8FL9Q+PP7KHw68OfBDXNaHj921ltT0i4tLZhfRWiRhJhdMuQzOzDBGM4zivpy40u20uTTorO9dIVuklljKsQWU/p7Gus8RnwX+0D8cJvCmvaitxZaZZLBFJbsUkZ87pPm6ghzgH/AGa2p1+SHJbXuS6d3e5/OPJ+3T8QPAt4up+IfDl7ZWrHYzXcLqMjqASMV+xn7Ef7dfiHx5+z/qxvbVP7NutXtbPTJWH7z7SXBcIe+3vVP4uf8E8vFOuNHdWPirUNf8OvLltKv8Sug6Eq2OcfyrZ+AHwY8D+APib4Y8C3msWOk6R4FW5vzFfMsUSTykCSV8HaxUcZPQmrVaUk0LkSP3l1X4k6NaSLfzj57G3knlZxwoRQSc1+b/7AGiT/ABN1/wAc/tb6sm+88QazNBbzHqbOBtoA/wBnPSvU/wBuyPVpf2dfEo+EurQSS6oIdNe+jJCWwnAOcjqGU8Ecc15D+yJ8avB/wS+D+nfBu4c/8S6BY1li53tjLsR6k5NRKhUTs4lKpHufRP7Qn/BO79lj9qq7s/iDqmjxaL4l0+4S4j1OyRUYzxHcpmTG2Rc4yD1rhfHPiDVfB0ieAf2tfD1r4l0f5Vg1zTIMrCicKZYuWjx3KkivsD4Y+M9M8T+Hptdj3v4cSZVurlVO6PPBb6A4zXDfG6xvLbxxYXPhAPeWcmmTvArfdkwCO/c5PFROnKDtIpNPU+KtV/Yv+DnhTWb74ofBKyGnyarAj3eqaayLIVVt48yM4VwBkdjg1+TfxOX9pb9nj47XOu/BL4nqtz4h1IyrY6jD5llM7YOxkDHAwNoIxjFfSvxe0L41ftI/tMR/DX4P6ze6BaeEbRIdRjspfJWYuNziUHKsMkKO+Fr8n/2wPiFb+FvFGjS+C9QuL/XNKe5F5NI42wurGJFGB/dDc9yaiN1sxNJ7n64eBv22/B/iDUrXwN+17pk3hTxTKC76np0hfTJgOBIrKSUz6N0r7g1nwRfeI9Kt9b0e9i8QQxKr2twJN5aNvuk9dwI96/kK1r4/RWvhu90bX7NZLv8AdRwtBJkMXG5g5bJPXHHeua/Z1/4Km/tH/syfECfRvAzrqeg3LEPpV8TJDGo7RH7yevHFbwq2OepQvsf1t/F74CeH/jt4G/4R3xtbX2k3KAGK80m6aJ4mXpkLggcdwa6LwJ8N/D/gfw6+k6Rqd+TcxCCUXN200bFBwRn7uep9a/IK0/4LgfFHTvA48Q6/4F0xVmVVnJndGCP3X5Sd3pXK+If+Cu/g248MWE/jbwpK1xcOWezsJisyQuPkYsQMyMcnGDgD3q51Yz0ZEKU4bLQ+Vv8AgoT/AME5v2rfEni/Ufj14U1E+MNNUNBHZ2kQW4t7RTny9gHzgHuOa/LTwTZT6epsrtDFLCxR0cYZXU4II7EHtX7y6T/wVf8Ahp8QHmFtoniXw7Y6JF59xcMyhnQcgbR1ZsbePUV+GPiX4tW/xU+MfiL4h2Fi9ha65qU95Dbum0xpK2VU8YyB19Tk19HkWKm705apbP8AQ87NKF4qdrM9FitHcDHIPWtTy7medJZ2LFAFBPXavAH4Vp6LDe31hILOBpcFCxAzt5Pftn9aAqj738+hr6WVrHh042eh758H9Vn0rWLa7tiFkibcCwyM4I5B4PWv2Z+Aes6TPPDesscTfL8icLkDk/jX4QeDtW/s+/U9hX6d/Ab4h6XDcWv27gEK2FPavkM7w8mrxP1jhDHwjaMtz9xDpl9rlrbzx5EY2sSoz068e3av7BK/jx+Fni6LXtPgFiNkKjIDHn3r+w6vksMmuZM9bjBpujb+9/7aFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8pnf+CkX/AGO1p/6X6vXUfFn9d9fIv7e/jv4s/DH9jT4k+P8A4ERyS+MdJ0K6uNIWGH7RIbtF+TbH/Gc9F719dV558Vrb4m3fw+1OD4N3Fja+JjGDYSamjPaCQMCRIE+bBXIyOhOaAPxf+Av7dT/D74EfF74k+N/iNq3jfxR4A8LP4gm8O69pA0a6t0ghkcSIn3pIZZF2b+gI9af8Jv2iv2tPgF8Svgtf/tIeL4fGWkfHPw7qmoXNlHaLbDRtTsrD+1I47ZlOXgaEPEd/O5Q2ecV7HpP/AAT7+LPx6+KXjn40/travpUl/wCKvAtx8PbXTPDySC3ttMvJGlnlkklCtJKzkbRjaoHqTUPwO/YF/aBf4ifDnWP2q/FOla9ovwa0G/0Lw1HpkMkc169/bCya7vN4wsi2gMYRMjczNnpQB8t/CL9rb9sbQfBnwB/bM+J/iuDV/DHx28SWWkX3hZbVY4dJtddLixe3mB3s8REYl3cNuOMYrPvf21f2rk+Dmo/8FJE8URr4FsPiC3hxPBotU8l9Cj1UaO07T58z7SX3TDHyjAXFe+/CP/gmn8fPD7/Cn4JfE/xdpeo/Cj4Ja4mueH0toZF1S+az3mwhuiw8tVtt/JUkuVXpzUN1/wAExvjTLYXv7MMfibSv+FF6h41PjSS3MUn9roGvV1JtPU48sxG7Gd+chCRjNAHlPxj/AGr/ANsDxbaftC/tPfB/xVBonhj9n3VG0+y8OParLFrI0y2iu783MpO9C6yeXFs+6Rk5zX61aF8RtD+I3xP+HfiHTCUbV/DV1qywt1WG7W2dcnp3xX5/fGb/AIJufHnX9c+LXw3+D/i3TNJ+Gnx3vo77xLFdRSNqNg7wpb3gs9o2N9qijUfORsbJ5r9JT4c0nwj8VfAfhfQ4xFZ6Zot/ZwL3WKAWyIM+wAoA+iKKKKACiiigAooooAKKKKAKmoafY6rYy6bqUST286GOSNxuV1bggg9QRXhY/ZT/AGagMDwJof8A4BRf/E17/RUyhF7o6KOLr0U1SqON+za/I8B/4ZU/Zr/6ETQ//AKL/wCJo/4ZU/Zr/wChE0P/AMAov/ia9+opeyh/Kjb+08Z/z/n/AOBP/M+XD+xP+yg3igeMT4C0b7csPkBvsqbNh5+5jbn3xmul/wCGVP2a/wDoRND/APAKL/4mvfqKmNClG9orXyNJ5xj5258RN2VleUtF232PAf8AhlT9mv8A6ETQ/wDwCi/+Jr0TwR8Mfh38NYJ7b4faJZaLHcsGlWzhWEOV6FtoGcV3VFWoRWqRz1cdiakeSpVk12bbQUUUVRyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXjOq/tD/BDQ9Rm0jV/E9hb3NuxSSN5cMrDqCKz/APhpz9n7/obtO/7+j/CutYDEtXVKX/gL/wAjP2sP5l957tRXhP8Aw05+z9/0N2nf9/R/hXOa7+2T+zD4bu7Gx1jxppsUuoy+Tbgy/efGcVSy7Ft2VGX/AIC/8g9rD+ZfefTNFeE/8NOfs/8A/Q26d/39H+FH/DTn7P3/AEN2nf8Af0f4Uv7PxX/PqX/gL/yD21P+Zfee7UV5p4Q+Mnwt8f6k2j+DNdtNSukQyNFA+5go749K9LrnqUp05ctSLT81YuMk1dMKKKKzGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUyT/AFbfQ0+mSf6tvoaAP4pf+Dl//kzX9lX/ALK5F/O5r+12v4ov+Dl//kzX9lX/ALK5F/O5r+12gAr+Q/8A4NQf+bvP+ys3f/tWv68K/kP/AODUH/m7z/srN3/7VoA/rwr5l/bA/aY8Gfsj/s/eIfjj42mWODSbZ2hRjgyzkfIg9STX01X8GP8AwdJ/t+y+LviPpn7HvgK8zYeH1Nxqvltw91IBhTj+4v8AOujCYaWIrRow3bNsPQlWqRpx3Z/Mb+2f+1L48/a8+Pmu/GPx3dPPPqNw7RqxyI48nao9gK+T6XJ6UlfrWFw8KFONKnsj9EoUY0aapw2QUUUV1GwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHv/AOzX8Uj8Lfiba317Js03UMWl5noEc/K//AGwc/3cjvX7cggjIr+cev2R/ZP+KyePvhimnarLnUNBC285Y8tEB+7c/VQVJ9VJ71+CeM3DPNGnnVCOqtCfp9mX3+6/WJ+7+DnEnLKpk1eWjvOHr9qP3e8vSXc+iF8VeG20+91Zb6E22mtKl1IHGIWhzvD/AN0rjkGvwz+MPivw341+Ieo+IfCWnx6dYTSYiSNdu/HBkZegZ+pAAA9zknC1vxnrmo6vrV5a3U0MGuXEk1zErkLKGkMgDgcHB5Ga7X4EfCv/AIW78QbfwxPOtvaopnuW3ASGJMZVAeSxzjjOByelfS8KcGYbhSGJzTFV21y+a5YpXd0vid9F+GrZ83xTxjiOKp4bK8LQSfN680m7Kzfwq2r/AB0SPGyrLjcMZ5pK/bX4s/AP4X+NfBa2GpRR6QNJttttexAKbaKMdGzgNGAMkMfUgg81+Kd5DBb3ksFrKJ4kdlSQAqHUHhgDyMjnB5r6Tg7jTDcQ0ak6NOUJQdmnqtb2als7pbbr01fzvF/BuJ4frU4VqkZxmrprR6WunHdWvvs/W6Vaiiivsj44KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKUgCug8NeItS8L6xDq2lzPC0bKTsbBIBzjiuforKUVKLjJaMUoqScXsf6bf8AwQG/4KJ2H7VfwFHwZ8Waj9r8SeFIlEMsh+e4s8AA88koflNf0K1/kzf8Env2x/EP7JH7SOieM9LlZVtLkSSxhsCa2bAniPrlMsPcV/q0fD7xxoPxL8D6V4/8LzLcafq9rHdQSKcgpIARX5Xm2BeExMqfTdeh+fZhhHh6zh06eh/KD/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676/kQ/4OK/8AlKn/AMEyf+yo3H/p08OV/XfXmnCFFFFABX8gX/B6t/yiy8A/9lV0r/00axX9ftfyBf8AB6t/yiy8A/8AZVdK/wDTRrFAHwB/wYxf83Rf9yT/AO5qv7/K/gD/AODGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9P+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAooooAKKKKACiiigAooooAKKKKACiiigAooooA/KX/AILLf8Ew/DX/AAVi/Yo1T9mu81OPQfEVleQ634a1WZDJFa6paq6L5qr8xhmikkhkxkqH3hWZAp/zCPHX7EX/AAWq/wCCKvxck+KGm+HPGHw8vdODL/wlHhkyXekTwA5xLdWvmWzxtjcYbnBx96MEYr+63/g4U/4LrftV/wDBH74tfDrwj8F/A/hvxHofjfSLy8a811Lsut3ZTKkkcZgnhXCpJExBBOW9MV+oP/BFf/gpI/8AwVN/YO0D9pvxHBpem+LTe3+m+IdK0l2aCwu7W4cRLtkeSRfNtTDMA7E/PxxigD+ET9mT/g8g/wCCm3wkFvpfx/0fwx8V7CPHmzXVodI1JwP7s1kVt1z3JtGNf2hf8EiP+DgD9kT/AIK1yXHw98J2t14D+JmnWv2u58L6tLHKZ4V/1kljcptF1HHxvzHFKoOTHt+avp79sr/gjX/wTZ/bs0LUrP48/CrRP7Z1CJ1/4SLSbaPTdahduki3cCq7sh+YLN5kZP3kIJB/yp/+CeF/r37L/wDwWs+FOjfBPWm1VtA+LGn+HrPULY7BqVjNqQ0+XG3I2Xds7qQCRtkNAH77/wDB0t/wRz/Y9/YH+FWg/tV/AUa4PFXxI8dXi6x/aN8tzbYvIbi8k8qMRIU/ejj5jhePevbP+Dbj/ghJ+wv+3F+xtoP7a/xvHiH/AITXQ/GV0lt/Z+orb2mNKeCWDdEYXJ+Y/N8wyPSvun/g9r/5MW+Ef/Y9t/6b7mvq7/gz1IP/AAR9ix28aa3/AOg29AH4Lf8AB4D/AMFMPiH8Sv2mbD/gmJ8J767tPDXg2G0vfE9vayMv9q6vqMcdxbQSKh/eRW0DxOingzSklcxoa/Vf9i3/AIM5v2HfDn7O2lJ+2xfa94l+JOq2Uc+qPpeofYbLS7iVQzQWqxo3m+ScoZZS4kILBFBCj+ST/g5S8A3vhP8A4Lk/GbTfE100Vtq99o1+l0ylgtteabZtuCjBYRZZMd9lfvNo3/Blp8V/EWj2niDQP2qrO9sb6GO4triDQZnilhlUMjow1IhlZSCCDgg0Afh3+3R+zn+0n/wbVf8ABVTSr39nHxjdz28Fvb+IPDWqSfuzqejTysktlqEUZCSDzIXhnThZFCyqqFlC/wBTX/B0/wDHjwv+1H/wQT+D37SPgpGi0rx34r8Ma7bROcvEl/pOoTCNunzJu2N7g1+OX7Rv/Brv+zz+zJ4tsvB/7VH7dngfwVrl9aC8tbPxFYJZ3MtqXZBIiTamGMZdXUMBjcpHUGv0b/4OC/gP4e/Zj/4NpP2fvgV4R8WWvjzSvD3ibw5FZeIrFQtrqdvLpupyx3EIWSUeVIrhoyJGBXBBxQB+EH/BvB/wQ20z/grn458S+P8A4+axqWjfCj4fPDa3C6cVS61LULpWkFrBK4dIUjUCSdtjNh0VQC+9P3G/4LFf8Gm37M/wo/ZK8TftJf8ABPi51vTvEXgTT5dXv/D+o3R1G31LT7RC9x5DMgmjuURWkUbnSTaUCKWBH0X/AMGS/wAUvA2p/sOfFj4K2c8I8S6L45OtXcAP702OpWFrBbuQeq+ZZzrx0I5xnn+sP9r34leBvg5+yp8SPip8S547fQNA8M6rfX7y/dMENtIzLjuW+6qjJYkAAkgUAfwwf8GYv/BQ7x/J8RPGX/BN34gX9zqOgS6ZL4p8L+fKZF0+a2kjjvLaIMTtjnWZZlRcKrxyNjdITX+hTX+Tz/waLeGNe1//AILMeHNV0iRkt9E8Ma9e3wXo8DwC3Ab286eM/UCv9YagAr8rf+C4f/KIX9or/sRtV/8ARRr9Uq/K3/guH/yiF/aK/wCxG1X/ANFGgD+Dn/gzA/5Su+Kv+yaav/6cdMr/AFGK/wAuf/gzA/5Su+Kv+yaav/6cdMr/AFGKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/ME/4PVv+UpvgH/slWlf+nfWK/0+6/zBP+D1b/lKb4B/7JVpX/p31igD+v3/AINcf+UFHwM/7mb/ANSDU6/f6vwB/wCDXH/lBR8DP+5m/wDUg1Ov3+oAKKKKACiiigAooooAK/xBv+CTv/KU39mn/sqvg3/072tf7fNf4g3/AASd/wCUpv7NP/ZVfBv/AKd7WgD/AG+aKKKACiiigD/Or/4LsrZ/8PVvimZVy3/EkP8A5SLGvyu0G60e3lM19bLMGVl2sSANykA8dweR9K/Uz/gu1Oq/8FWfinG54H9h4H/cHsa/KGzuEjf5h71+s5ZC+Eo/4Y/kfB4+SjXqP+8/zOpEenxXTtp+826n5GPysR74qdJLcKVkXbwcVQhulkG0DHQCun0Lw9qniOaax0i3+0SRwvO4LBcRxjLHnHQdq9DkS1Z5Mqsm+U5aVEB3oMkUoNvcxrFNGI2RSN46uc8Z9PSt1rCOYtPFHtSPG7HQZ4/WpBYmQDyQp+ta8quZcxDpHhq+v7W61G1C+XZx+fJlgMJuC8A9Tk9BXWaBp8WH+0LvyuFBP3T6iq1vC8EKmQAjkFceneuhgns5FxbpzgZIpxT6GjlFWVzZ8PaRaz6isbnjPJr7Z+LPgL4ceFfh94au/DOsRaneXcLPcwKmxrdyR8pP8Wa+I1v4dOiEiocuMr6/WtH/AISHUr2FbcFm3HCA/wBKU8POc4yUmkuncVPFUqcJRtdvqdLPbWE96omUD1A7VjaroFl5mYcAPjg1nHX7qFoLOeJI5EYh5T95iT/ET6Ulzram4aNyH2HAYHgj2r0qVF3PLq14crvuczrfhSC8UOIlVAuCAep9fxrxrxt4Skg81dPtjJpMymNrW4AdJFIG4MPryD1FfSUWuBRJHDgLKpQ7hkgHrj0NWE0+zvkUShWHcGnisBTrQcakbmWFzCdGd6crHy3F4Q/Z3/4Q7w7/AMI8mpWGu+DLW7uxBJGJLeREzLs35znI4OOnFfhpqQbW72bUbr5Z7mR5Sf7xkJY59+a/pH8R/DlluF8Q6F+6nOSyovyqvTHuCOor88/2gf2Uj4gluPGvwutEj1BQXvNMjGBIRyZIF9e7J+Vfmec5DLC/vKa9z8v+Afo+T54sT7lX4/zPype3lgHkXIyvp3H0piWtxbMJ4Tlc/e7fQ13s1oVlazv42RoyVIIwyEdiDVA2MtrIf7revKmvnHGx9Dzo+iv2SLGC08aaz8RZhsTwzo93e+3muvlx499zCvQPihPb+EP2VtO0mfd5/izWvNlz94xWKZJ9x5hq18GfDZ0z9nbW9Rt1In8WaxaaXEO/k2oM8oHsflrH/bF8jTfEXhn4Wqdo8OaND5mOguLwmZ8j1xgVnCWsvkv1f6Gk4+7F9Nf6/M+NBFPaSrNG+5egZeldXAqXVuHGEm647NWFbRT2cvlyKNp6g8g1pXS7o5JbbO1FwV9P/rVtDRXMZa6FCO6nhuJFcfIvBRq7Pwh4Mn8aeLdJ8MaT87ahdxQ7P4gXYA/pXFWdysqpbXfO453DqP8AEV9f/sgaIIfi7L46vgDZ+FdOutVZ+q7kUrHz/vEVnOXLFtlxV2kj6r023sPF37W15d5H9keD4PLRgflWKwj2j9Qa/L34ja9d+JvGGp+KpWMn9oXUtx5gP99jj6YGK+/vC95N4V/Z68efEq4YJf6666bBITyXuGy/8zX5t3Hn2c4RRg/dKnkEdKclyqMOyX3vV/iwUuaUpLv+C0X5F2xjOovHDMuZ5CEjYDkk8DPrWt458AeNPhrq39jeLrKWwuWVXQsOGVuQVPQivWf2efDfh7xP8avDVhrUyW1kbyJphKwUbVOSAT69q/fH/gtL4v8A2Rz8FPC2jfBjQ4m1b9zHPeBWA3BQWALc7h3xxXn4jHOliKWHVOT576paRsur6X6GijeLlfY/mXeS3uRHDdfK4Gd4GAceorHv0ks1QTDrlwQeD+NXbm2S53T2Z3gnBU/eUV0Hw18PX3j34jaT4HgXzY9SvIoNnYKW+Y+2AK7mRc/eT9nS0+Jn7O37Etv470bwDD43stYDS6vBMjtiOX2TkHb0btWv+1L8UPhN8M/gzp3wa+AWjjw7ZeM7C21LU7NckpuAJBLZPJHSvCPAnx7+KFr+1RB4Z8BahNN4f0yRdNi0tpWS0kQ4i+YKRnoz89xXjX7SfipPiN8f9U1CzI+yi4FnAAeFhg+Xj24JrZRTpR5lo9fu2/zMp6Sa67H19+wV+0PY/s0/E/RZPEUxi0jW5Ftbtc/KDMDskYf7HH51/Sv4k0PWdB1SHxPp6C4tL9V2KuSoRhktx6g5Ffw//FHVZn1KGwg5W1i/h9W/wGK/rI/4I9/tP6T+098E/wDhVvxUuTLr3hS3WzYsSTLbDiJz6nsa4alNyh7Tq9fv2NnL3uXsfUviNpNRs9+lcOoxvkO1QDwOQOPxrU+Dnw7+HnhC1HjHQLu31LUBcvbTyRMGyyNk8cH7xPJHNe9av+zxqsljdReDLpQJOFikG7vncuf5V8K/FL4MfEjwFrEetaVFNo975nmS3tpETGCSPmeI/KQe4z+Vc5SPpz4ufEHxN8LvDt/4z0bRJb/ToYpZGSJgGik2nAGT91m6E9K/nW/YQ8efDfQP23v7Q/agjSbwf46ttS0u/t7lzPDG16VYM7ZwAGXBI6ZFfq9+2b8Q/HWqfs4SeFfE0UdtfMjTCeNvKhv4YV+bYh53ZOdhr+fNtC8T/brC70CwluFe0LROoBAZgd3y56j0qoScZJiaurH7j/t/6t8K/wBgn4Hap4G+F3xQfXvDXjRraHTvDl1MLtdOdZBIJIpQSyptAVVJPtX5peNfil+0D8NdF07xT450ifw5p14EKXtyhCuHGQQBzgivJvC37B3xM+Iv7Tfw1+H3jq7hufDtl5Gva1ciYOVRjuVGXrngKR2zVT/gsJ8YPGGpftDz/DG4d7fR7FY2hiz8vkRAbNvbB68V0TxMm9FYzVNW1P1q/YS/at+JepfCXxn4kkvnGi6i8eiWUBYhbm8mYZ2IeuB1x6V+2p8YR+A/hreeMPHcqwQeHtOcJ5x5Z9nzYz0yelfjZ/wRm/ZS8NXPwy0j46+Plm1DUrLdPZ2t07GG1jl5DpHnbvx/ERmv0W/4KRZ8VfCLw18ENAlEWo+NNViXC/fMOfmY+ihck1lUqORcYpHx7+zlqGtfBf8AZm8Z/tRXQeXV/Gc0zWayHMha4YxwKCeeFyx9hX8suq694q8efHnWLLw3jWLeW7khZgdkcgUlRITgkLuO6v3q/wCC0/xA8R/szfA3wf8AAn4fyzTx2cAuGa0QyIpK7UJdQQNq5I+tfK//AAQNX4RxfEG58b/HXTkFtGFktjeKBG1xNIYoxluMgKcD1OaKNPnkosU5WVz8gPjt8NfFnwe11H8ZSW84uk82CS3JK7ujDkAgr0rt/wBmL4Kr4e+FOs/tN+MbTzxqiz2ejxSAcxRgm5nGfRQVU1/eF+13/wAEk/2Vv+CgXgv7StosF6gMkF3ZN5csRP8Au8EevFfk18Y/+CKfxk+KXifw3+zdYa3YeDPCVrbxafFfyqx8uFWHmFOi75FGMHqTW9bByg7rVEQqpn81n7J1n8Yf2mPiMfgd8L/Bz+Ntc1UhNNhQfLaDPMrk/IAFwMucCv7vf+CVv/Bu18Kf2ahF8dv2xobXxn8RLlCYbMjzdO0oSDbtjVuJJADguRgdq/WH/gnL/wAEw/2Vf+Cb/wAKYvAfwF0yOfUJ1DajrdwFkvr2XHJeT+FfRBwBX6QScRkgZwK5DY/ysviNoGtfDr4w+JvhdHr2qNqum63e6YlnBZwTlnhneONAp5JOFAyOpr7h/b9/4J/+NfgD/wAEudc+LPxeuIL/AMX+HPHumQyGO2it2s9PmjEex/LAy7GdS/JHTHSuv+L3hPQ/gB/wdHXNp4jto5NN8R+IE1COGUZi338EVzGwU8ZEivg+tf0M/wDBaH4Tr8Rv2E/2p/A3k75G8PWHiu1ULn95aRhiV982nX1NdGFqOnVjNdGZ1IKcXFn+eH4M8X3Mmm+VazNGkqrvVWwG28jPrg9K15J1UnnAr5i+FeuPc2yc/Qex5H6GvqPw7PpyPcXeobWaKFjFHIpZZHPGOOnXIPqK/R6XvI+IxEnGXKLY3zLL8hwQetfTfwu8SfYr+D95jtjPpXybaERy57Z4r2HwZKRcxkHBBrkxtFSg7ns5LiZU6i1P6O/2YvHb3GnxLI3mHy+MduAK/vAr/N4/Zj8V6roflSIpkHQZ9+1f6Q9fnlSl7OpJH6Rn+JVajh5dfe/9tCv5EP8Aggd/ymd/4KRf9jtaf+l+r1/XfX8ev/BDO51yz/4K8/8ABTG78MW8d3qUXi2F7SCVtkcs63usGNGb+FWbAJ7CkfMn6afEH9vX9oPx/wDFfWf2P/g1qGmeHviRN481bTIp721knj0rwxpNml0t9PHwGFyfkjbO3L+oNfpr+xV8afE37RX7KPgP42eNLRLLVvEWkw3V3FECI/O5VmQHkI5Xeuf4SK/HLwX8df8Agox8NfF/j66+LXw/+Hlpr2ta3dtZT6t4ghguYtNliiWKFSVEj26sGK7uuTX7TfskeEvEfgT9mTwJ4P8AGGsW3iDVdO0W0hu9Rs9v2a4mVBveLYAuzPC4GMYoA+iKKrRXtnPPJawyo8sOPMRWBZc9MjqM+9UtP1/QtXuJ7TSr2C5ltm2zJFIrtGfRgCSD9aANaisi28QaFealLo1pewS3kAzJAkitIg/2lByPxFB8QaENXGgG9gF8V3i28xfN2+uzO7H4UAa9eKeJ/wDku3hP/sHap/O3r1W61/QrHUYdIvb2CG7uc+VC8irI+P7qk5P4V5V4n/5Lt4T/AOwdqn87egD2uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlnxB+xf+zn4p1u68Ra5oHnXl5IZZn8+UbmbqcB8Vj/8MI/svf8AQtj/AMCJv/i6+vqKz9jD+VHqRzzMIpRjiJ2X95/5nyD/AMMI/svf9C2P/Aib/wCLrhfF/wDwTR/ZH8Z6npOqaloEkb6PP9oiEdzIAzejZJ4+mK++KKieGpSVpRVjalxHmlKXPTxU09ftPqrPr2PkH/hhH9l7/oWx/wCBE3/xdH/DCP7L3/Qtj/wIm/8Ai6+vqKv2NP8AlRl/buY/9BM//An/AJngvwz/AGZvgx8INefxL8P9I+w3kkRhaTzZHyhOcYZiK96ooqoxUVZI4cRia1eftK83KXdu7CiiiqMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSf6tvoafTJP9W30NAH8Uv/By/wD8ma/sq/8AZXIv53Nf2u1/FF/wcv8A/Jmv7Kv/AGVyL+dzX9rtABX8h/8Awag/83ef9lZu/wD2rX9eFfyH/wDBqD/zd5/2Vm7/APatAH9Qn7R3xf0f4CfA3xP8XdckWO30PT57nLdCyqdo/E4r/H2/aa+MXiD49/HPxJ8U/E0xnu9Yv5rl2Jz99icfgOBX+iP/AMHMfx/uPhF+wI3g3TJ/KuvFmoJakKcExRqzMPoeK/zQJGZ3Lt1Y5/OvsOE8KnOeIfTRfPc+l4dw95TrPpohhooor7lH1Z+9H/BPX/gkX+yb/wAFEBpfgv4e/tQWWifEO6sEu7vwrf8AhidJ45RGHmjt55LyKO7ER3ZMXzFVLlAtfOP/AAVX/wCCS/xt/wCCWHxS0zwv42vl8U+FPEMHm6P4ktrZraC4ljA8+CSIvJ5U0ROdpdgyFWB+8q+R/wDBKWaWD/gpn8AXhYoT4/8AD65U4OGvYgR9CCQfav8ARv8AHviT9jX/AILG+Efjb/wTz+JUP2fX/h9rM+l31q7K17ZywEiz1ayYgZGTg8fK2+KTKODJ87j8fiMFiotycqTV2rK8dbXukjw8XjK2Grpt81O13otNbdEf5YPgDSfCGveN9J0X4gaw/h/Q7q6iiv8AU4rU3r2luzAPKturxmUouSEDqWxjIr+hfRf+CHn7H2vfsZXn7fNl+1rZj4aWExtLm+fwfdLcR3gdY/sxtvtvnGYu6gKEOQwYHZ81fjr+3L+xX8Zf2Av2jdc/Zw+Nlrsv9MfzbK9jUi21GxkJ8m6gJ6xyAHI6o4ZGwykD9dfh3cTn/g188eRlztHxthTGf4fsFi2Pz5+tehjas5RpVKFSylKK0s7p+qf9dDtxNSTjTnSnZNpaW2fqj8B/iZovgPw7491XQ/hhrk3ibQLWdo7HVbizOnyXcQ6SG2Mkpiyc4UuTjrg8Dhq/WX9k7/gi5+2r+258PIPiV+zb/wAIt4htJI1lntYvEVj9vsw7Mqi6tvNMtuzFCVWRVJHI4r5K0L9jL4x6t+1Lq/7HmrT6JoHjLQr+90y9GtavaafYx3VgzJJGLueRYWYspWMKxLnG3NdkMVRblBTTcd9Vdep0xr07uPOrrf8A4J8n1/Vn/wAEbv8Agg7+x3+3v4Qf4k/E/wCNq+IbrT7SyutU8KeEUNvdaW2oIzwx3l3dxHLgo6OkMJUOjBZWGDX5Gfttf8Eff23v+CfHwu0z4xftL6Lp2naFrGpx6Ray2eowXjNdSwyzqCsTEhSkLnd04A71+/X/AAZ1yMPij8dYgflOlaESPcTXf+NeZm+LbwM6+FqbdVZ9Uv6scOY4h/VZVaE9uqt3sfzHfD39nH4V+OP2ste+Bfjz4jaX8MvC+kajqMDa/r0c1yiQ2UzRqqx20ZMk7qMqp8tGIPzLwD+1H/BZ3/gir+zZ/wAEzf2M/h58XPhV4r1jxh4j8Sa+mn3uo3bwpYz28tpNOr28ESExgmNSuZpOCeTxj+fj9pP/AJOK8ff9jHqv/pVJX9nX/ByTI83/AAR//ZrlkOWa/wBEJPudFmoxlatDE4VRm+WTd1p2+8WIqVI16CUtJbr5H8Ldfsl/wSV/4JHv/wAFRrX4latd/Ee0+G+m/DW2066vLy9sPtkLx34uiWdjc26xLEtqzMzEjB7Yr8ba+t/hT+1743+EH7KHxS/ZT8KWqxWPxYvNCn1W/WVklFvob3EiW4UDDJLJOGfJ/gAwQTXp4uNaVJxoStLTXeyur6Pyud2IVRwapO0tNe2uv4H7gfCX/ggh+xd8efilY/BT4L/tteEvFHirUjMLTTtN0Q3Es/2eN5pNhXUCrBY43ckHGATW18b/APg3t/ZL/Zq+IkPwm+P/AO2h4V8IeIp4IrpLLVdDNu/kTFlSQltRCqrFWGSQOK+Mv+DcD/lMt8If9zxD/wCmS/r6V/4Otf8AlKLbf9iXpH/o66rxZTxax6wnt3Zx5r8sb3u12PMlLELFrD+1dnG97R7+h8+/8FOv+CLOlf8ABPP9mrwb+1B4L+MWmfFbw9401ddLs59KsFhtmV4Jp1mjuEu7lJVPksvy8e/GK0f2NP8AgiHefFj9l1/27P22fiZp/wACvhDInmaff39q15qGoqWKq0VvviwkpB8kgySy4ykTKQx/M66/bC+IWofsOwfsJapCt14csvGS+MrK6lldpbWb7HLaSW8SH5Vik80ysB/y0GR95if7z/8Agp3/AME/vEP/AAVL/wCCTfweH7Eup20x8JaZpmtaFpDTrHa6lafYBALcSEhI7iJfljMhChg6OVzuUxeLxGGjTpVqluaTTnZaLppsm/TTcMRiK1BQp1J25pNc1lt+Vz+dz4d/8EUv2BP227ifwn/wTY/aw07xN4yt0d10DxZo9zpEtyqDLPEzokzKo5YxW020HnGK/Kj/AIKf/sN2/wDwTs/avvP2YItdbxFLpmkaVeXN4Y/KU3N5bJLMsY6+WshYRkgNtxnnNfMt1pvx/wD2OfjtbPq9lqvgPx/4L1CK6ijuYntL2zurdg8b7WAPUAg8qy9Mg191/wDBZz9rL4dftt/tqN+0Z8NL2O8tdc8MeHjdiOOSNbfUEsYxdW+JFVj5M25MjKnGQSOa76MMRDERXtHOm090t9LapK/kddKNaNZJz5oNPot9Oqt8j8oqKK/U79ij/gjJ/wAFCP287W08S/BnwRJp/ha85TxHrznTtLZM43xu6mW4UEEE28UuCCD0rvrV6dKPPVkkvM66lWFOPNN2XmfljRX7cfs7/wDBvv8A8FF/2mPiB4x8H+B9I0qw0rwVr2o+HLrxHqt1Ja6Td3ul3ElrP9jbyWuJ4xJG3zrb4GMNtbKjxf8AaQ/4Iw/8FB/2Zv2iPC/7MniXwU/iDxD438z/AIR6bQZPtlnqPk4M2yUiPy/IBDTecsfloQ7YQhjgswwzn7NVFzb2uZLGUHLkU1f1Pyvor+h34l/8Gwv/AAVG+GvwgvPiw2n+HdcmsLZrufQtJ1F59WCIu5wiNAkMrqM/JFM7MRhAxIB/Ajwd4M8W/ELxbpvgLwLptzq+t6xcx2djY2kbS3FxcTMFSONFBZmZiAAB1q6GMoVk5Upppb2ZdLE0qqbpyTSOZor9+/D3/BuH+3Td3ui+FfiH4q+HPgTxb4hhE2neF/EHiRItZuc5+WO3t4rgOwxztcgdzkGvzM/a5/YG/an/AGIfjhb/ALPnx98MTWfiLUVifTFsz9sh1KOZtkbWjxZ83c/ybQN4b5WUHippY7D1ZclOom/Umni6M5csJps+N6K/YGz/AOCFP/BSO3/Zs8R/tTePPBP/AAiHh/w7ZfbvsetyGDVr1dwUJBYokk4kJYALOsWe2a+ofA3/AAa+f8FUfG3wst/iVLpfh3Rbu6hWePQdT1Mw6rtcZAdVheCN8Yykk6spOGAIIETzPCR1lVjvbdbkyx2Hjq6i7bn87tFekfF34QfE74B/EnV/g/8AGXQ7vw54m0Gc29/p16myaGTAYZHQqykMjqSrqQykqQa83rtTTSaeh0ppq6CvR/hp8SdY+GmqXt/pZLLf2VxZypnAPmoQjfVH2t9AR3rziisMXhaWJoyoV480JaNM6cLiquGqxr0Jcs46poKu6dqN/pF9FqelTPbXMDB45Y2KujDoQRyDVKit5RUk4yV0zCMnFqUXZo+kvH/7UPxD+Inw9t/AesFI8N/pdzF8rXSrjYrKOBg8tjhjjgYOeW+Bnwd1b4yeMk0WDdDp9tiS9uAP9XHnoO29uij6noDXi1fWH7Nn7R6/B6aTw34gtVm0a8l8ySSJAJ4nIA3f7a4HKnkdj2PyGbZfWyvJ8RT4cw8VVd2ktNXvJLq0vhW2iS0SifW5VmFHNM3oVOIsRJ01ZNvXRbRb6Jv4nvq29W2R/Hv9l7xH8KZJfEPh7fqWgE583GZbcHtKB29HGB64OM/Kdff/AO1Z+0pYeJ7Ffh58ObsTWEyLJe3UROJQwyIl74HV/f5exB+NvBfw58afEOW7h8G2El89jCZ5gmOFHYZ6sf4VHJwcCseDsyzJ5LDFZ+1CXeXuvl0Sc72SbfppbS7NuMMuy5ZzPC5CnOPaPvLm3aha7aS9db9DiaKklilglaCdSjoSrKwwQR1BHrUdfbJnxbQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSkAUUUVAGjpOp3ejalBqlgxSWBw6keo/pX+mP8A8G5P7WT/AB7/AGLYvhvrdyJtT8HSGEDdlvs0pLIP+A5x7V/mUDr6V/Vl/wAGun7QLeBP2rB8L7m6kNv4ltZrVoiMRI6fPGc92PNfL8U4VTw8ay3i/wAH/wAGx4HEFBSoqqt4v8Gfqd/wcV/8pU/+CZP/AGVG4/8ATp4cr+u+v5EP+Div/lKn/wAEyf8AsqNx/wCnTw5X9d9fn58cFFFFABX8gX/B6t/yiy8A/wDZVdK/9NGsV/X7X8gX/B6t/wAosvAP/ZVdK/8ATRrFAHwB/wAGMX/N0X/ck/8Auar+/wAr+AP/AIMYv+bov+5J/wDc1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9T+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAooooAKKKKACiiigAooooAKKKKACiiigAooooA/Gj/AILe/wDBJDwj/wAFdv2Tl+FMeoQaB478L3D6p4T1m4VmhhumTZJb3GwF/s1yoVZCoLIypIFbZsb/ADo9D/Zv/wCC/n/BCv406nqPwl8PeMvCEs4X7VqPh6zOu+HNUhiLeW0uyO4spdoZiizoJogx+VCTX+vnRQB/kx/Ez/gsR/wcd/t2eDrr4B6Zc+L7yx1mMWV5aeEPCv2O7uVlGCjT2doLhFkVsMqSIrKcEEGv3O/4N1v+Daf40/AT45aT+3d/wUM0pfD2qeFnW78JeE/OinuBeMp23t8YmdI/JBzDAGMnm4aTZsCv/edRQB/OL/wc+f8ABOr47f8ABRL/AIJ7af4e/Zn0s694y8B+JLfxFDpUbIk9/aC3uLa4ig3sqmVRMsqqTlxGUUF2UH+O3/gkt8eP+Dgv/gnx4q0L9lH4PfCvxzpngTW/F1neavp2qeB7u4FuLiWCG7kWWS1EkKNDGN537FwXG1iWP+qZRQB/KD/wcn/8EE/Gn/BTXSNE/ag/ZPSxT4seEbCSwu9OuXFuNf05SZIYlmb92lzA5cRGQqjrIVZ1CpX8sf7OP/BXf/g4i/4JleALL9kW48F65dWGgINP0nTvGXha8urqxhUARw20oEUjxIBiFWaRFTAT5AoH+q1RQB/lvfsnf8EZv+Cs/wDwXL/bJj/an/4KP2viDwp4Qv7iNtc8QeILUaXeTWdt9yy0qwdY2RWHyJIsK28eWcl3+R/6Kv8Ag8V8NaB4M/4I9+CPB/hS0jsNL0n4gaFZ2drCu2OC3g03UUjjQdlVQAB2Ar+vev5JP+Dzv/lFB4Y/7KVpH/pv1OgD+K3/AIJffA//AIK+fBn4U3H/AAVJ/wCCX9rqmqw+H9dvPCWt2Wgw/wBo3e2G2tLoi600q5u7SRblcFEkMTxlz5ZCPXuf7Zv/AAUj/wCC9v8AwVn0C3/ZV+IXhLxHPpM9xC1x4Z8K+GLqzF7PFyhugqPNIqsPM2O/khgH2gqpH9Wv/BlRDNH/AMEwPiBJIjKsnxQ1EoSMBgNK0oZHryCK/sFoA/l9/wCDan/giP4y/wCCXHwk8QfGv9pJbX/hbHxGt7aGeygIl/sPTIiZBZmZSVeaWQq9xsJjDRxqpbaWb+oKiigAr82v+CxHgLxx8Uf+CW3x6+Hnw00a98Q6/rHgzU7aw03TYHuru6neI7Y4YYwzyO3RVVSxPABNfpLRQB/nGf8ABpN+w1+2t+zj/wAFL/E3j/8AaH+D/jXwFoU3w91Syj1HxHoF9pVq9zJf6c6QrLdQxo0jKjsEBLFVY4wDj/RzoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8wT/g9W/5Sm+Af+yVaV/6d9Yr/T7r/ME/4PVv+UpvgH/slWlf+nfWKAP6/f8Ag1x/5QUfAz/uZv8A1INTr9/q/AH/AINcf+UFHwM/7mb/ANSDU6/f6gAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP85n/gu46r/wVe+K24Zx/YWP/BPY1+TEcyM2Wb8q/Vz/AILx/wDKWL4rbTjP9hD/AMo9jX5IxFAQmMetfrmWf7pR/wAMfyR+e5jG9eov7z/M6eO7GcQN059K0Ir+4V8pIRnrgkcH3FYst1DMkMcUIiMS7cg5L89T71ZgXf2/GvRT6HmShbqdRBq1xBBJaROyxzbd6g8HbyM/jWvYeZPbzXKlQIAGYMcEgnHHrXNW8sMayxzR796hUYn7rZ61E7NGpVhketbLY53T10Z31tcW8ljdXU1yqPAFMcZHMpZsED6Dmvpv9neT4ceL9XTwB8Sr2HRdKuXEr6gY9zxlFbCjHYk818WpM5XIHqR+NaVnJqDI0kSErF8xIHAHvVygpxcb27MuHNCSmle3fqeweNbGzs9UujotwLiytJTFG+eoJ4OPeuWhvY1ALZBHQ5rBN0l0YnUbSFw+T1PrVyKT5SCuc8Cu2kklY4atN83MzpYU1HVrKW5t0LpafPIwGSA3HPtWYGYHFbel6/JZGe1iVora6h8mWOM48wjoT+PNQWljbyW8s07EMuAoA6sfWumCZwVkt2xIZAOtej+E7E6jqUFhEHbzD8wXGSBycZ46Vx1voztprakGXCyBNmfmORnOPTium8P20L3kMVzJ5KSEZfsue/FdkE2medNpSTier2cQiQAKGjflSCD8p6Z96xNe8BrqIXU9OXZKvIZOGU+oxWvottHDetbWkg8k8At04716lpl/ZSx+XdDGyMhfLH3m9/aufFYKNSDTVzvwuPdJp7H5Q/tEfsn2HxQV9e0VI9N8SoDiTG2G9AHCv2WT0boe9fkF4h0DXfBus3HhnxTaSWl1bMY5YZQVZSPT/HvX9bt94S07XbYLcIoLDIwO1fIX7QH7Jnhv4yaeuk65F5N/FgWmpRrmSMZHyyd3Qj8RX5fneQyw7dSkvd7f5H6dk+cRxMVCb1PjP4UeBg9t8L/hyoyIdPk1m6BHSTUpcJn3ESn8K/Ov4/8AiuD4hfG3xR4ngbifUZkiz0MUJ8pMfgtfvb8UvhLpvwEsvFPxystTgvrPS9CiihRThoHgt/Jjj2/7xzketfzYSxvMGuoSWkJy4PJDHkn8Tmvi8PGV5SkfV4ia5YQXRGhbNgeXcruVeB6iql/E1pCJ4WyrnIYfyNalvIk9sIZ+Hxw3+NY2oNPa3QgPKbfmHYiuuWiOaO5TjEF05K/u5iMD0b/Cvuf4OafL4T/Zk8SeI5Mx3PijU4NJh3cEw248yXHsTgGvg+WNZE+1WgO1RkqfvA1+q0ng2WPw98NPgxz5tvp6X9yoGT9o1FwRn3CVyzSbjF9Wv+D+Bum4pyXRX/y/E83/AGn528JfBbwR8MbfiS5STWLtV65k+WPI9q/P77bG90I7kFlUcN/EK+qf2yPFg1n4+6qlg5W10dYtMt9p422ygN+bZr5LtvJv5j5ZCSk5K9m+npWkpczcu5FOHLFI2J4pbWVLmEng7ldT0P8AQivQfGnxm8c/EPw3p3g7xvqD3Vvo+TbPJywLDGGPfA6GvK1vrqydww453Kehoe2F3D59ocljlkPUf/WqSiqyTWDLKzbSo3Aj3r66/Y4s7eDxJr/xdvYgo8L6dLIjY+U3E42R/jzmvkI3pjgeCZd8btyD1GPT0r7u8J6ePAX7KEEdlkXnjPUDcc8MYIPlQfixqZpv3Y7vRfMqCXNrstWe5fsvxLoOkeJvjVqOd+nWs88RPeeTMMX1O4s1eIeBrWa+1G51S8YtsBOT3Z85/TNe++NUX4dfsz6J4RgBS48RXf2mQdzb2g2r+DOSa8lghj8P+ClvTxJcjp3xJwP0FdWMslyR20ivT+rnPRd3zvzbOBmthqGoTXM7cSyHr/dPSvevhv8AGT4p/staK3xA+DWpPpeuXcqQwsoDCRXbAVlPVfavBHjlnlRLcckheO4rv9fvdO1DxVoOgX0hjttOjNzIVGSG4VfyJzXPXeiiv6t/wSqfWTP2q/Zy/wCC/wB420nxTB8L/wBozwwdQkSUQ/2tpQYMWA5JhPJ/4DX9HnwG/ao/Z9/ad0+XS9B8V2F1cCILLYXDiO7XcPumN8NX4i/8EvPhb+z542+OS+OfGT6Pead4Lsvtk9/dqghEhXHzM2ASO4r8/viH4n/ZF8C/tO+JPF1nqMvjrxJql/Lc/bdHY6fploqOW2QsMNLIB8uB8orD6urXuP2vkf10+Pf2VfhT8ZvCUngXxlElxHHnyDjEkZJyCjdj/Ovx2+Lv/BMFvhbHca18P7qW5S2lMoUj5mGc7cjvX5J+D/8Agtd+1F8F/i/p/hPTpYfEfh5zme1vyTJCjMSFWbrlVwOa/cD4S/8ABZP9nj4oWItdeSbw7rEzCM214A0Ls391xwRn1qatCdO3N1Vy4VFLY+EvhbP4q+HXivXfEHiX7TeXV1F5OmWzRhGjYcvGzYGc9hXc3f7IHw//AGpNY0f4r/FTwz50drgGQTESjaf9XNH3APTtX6Y6H8JbP9p3VX8a+IdMgttJ0q4ie1mjcRtPKvJC44bIPT2rE8VfDSXwJrAh+Ft3Lfaes6tdyXH7po4pM4ZQeGwcAisLln29+z74a+G3hnw1D4S8Hf6NbeWEkBAXYo9ugHGK/PG81i6/ag/a217xxpM2dK8Jwx+HtNZeUSaT/XMvqViXr6tXokPjDWdJsdUudDtJ/tunxus6FSEePGHYeuAcj3rvP2PdL+C3hHWn8F6TqOy+dW1CRLhPLMtzdnc+1jw21Qq0AfR3if4MeEPHXh1dKs9IgZ4LZIXiljEqTkD5mZWzjd7dK/Mb4x/sZ/DfwBpUujXOn2+i2Gpz70tXby8yIPvxEEfd7EcrX7uS6RZSwySW7G3kA+Rl6Z9DX81n7d/7Q1l8Sv2hJ/Dct2Bovg23kSSX1nUF5Ap6Z3EL+FClbVA1c6n4EftNftF/sk67cRaJrcPiXwtanMEE10v2tYgeVUsRvIHbqa/Sn9p3/gsV8EYf2PvEHi3SUg1LxfEYdMt7aICWSG9uVBBZVzygOfrX8ZnxZ+INrPZXvia8bEcIaUZJACoMgAe5ryHwJ8bNK8TaCPFXhzQodA1O9RW1KGGRpILqVTtWfY33HI6gd67KWKk1Z/8ABMJUluf1Y/8ABEj/AIKvP8P/AI7aj8Hf2pdZ1N9R+Ic1qmg2txKblUnJYMXYnEW5RkDpgV/bdaa7ot8m+zu4ZQOuyRWx+RNf4wmv/ETUbP4lw+MtPmMmqaDJFOjKxTZMc7HO0g7VPbPWvsT4D/G746fD+e7v9e+JnjDRE1eIlytzK0TuTuV8OThc5PHUVzVJa3No7H9Hv/Bdv4FaX4b/AOCv3wy/aabVxpZj0fTtRbETSLO+mTywuNyA4JSQD8K/b7wl+1j+z9+3frHifwF8Obq5uDqvgG90rUhd20lvGH3bY8NIAGz5r4we1fwgTftVftO65fLN4w8c6p4h0yzjlhgu5JfNkSKXJ+ViCy4JyPQ18C/HL45fttfCXxFbwaV8UtdutH1SNZbWaG8IIB6xybcbWU9q1w1J1ZqEXqKclFOTPB/Ctpf+HPFd54S1NAlxpNzLYsAMYa3dozn3ypr6gEE9qVjmUqSAw3DBIPQ/jXy34E0zU7/UX1jVJXuLq5laaWVzuaSRzlmJ7kkkmvq5DqFw/wDxNGdpY1CnzOGAUcD8BX6PhIOMIxfY+HzBxlNyj3Jre2BhEgYA7sY717T8PrBJ7tA7AZZQB6kmvP8AwTpltq3iKGwuhmN1kYguEzsQkcngcivV/AEBg1SF+oDA/iM1ljNISOnJZXrxTP3h/Zj+FvhK8+G6+IZ7vbqi3EaLaleDFtzv3fXjFf341/npfs+eJrmDS0sbMndIBgfSv9C2vzuvJupK5+qZ3SUKGHs9+b/20K/kQ/4IHf8AKZ3/AIKRf9jtaf8Apfq9f131/Ih/wQN/5TO/8FIv+x2tP/S/V6yPnD6n8X/CH/hGP2mfi7ffGD9mW9+Lqa54mk1PSvEkt3AzNZTQxBbZY5ZAY44GVlQADIOTzX6rfFD9o3wh+x7+wefjnd+FJfDtpoWkW6WXhxcM9vcTlYbe1JjyABI6qzDhVyegr8y/2zdP/YT1f4yeN9J8f+AfiXqfie4keO4u9BS/FvJO0YCtbvG4jHbBAxmv1b/Yd8C+L7H9iL4b+BfjzpATWrXQLOHUbG+xcsrovyiXfu3SBdpcnPz5oA/nQ+Bf7TM3wz1L9sLWvBXxFPjH4gzfDiw8UC4hlkki/tdLW9e5NpGwwkVuTEiAAZVQTkk19T+EPA+g/slfEz9lLxZ+z9cXJv8A4leENdXxMxuZLj+2fJ0T+0Uu5g7MDIl0oIcAcSbemK/bnQP2Pv2evDXxJ8X/ABT0nw1Zxal440620rVlEKCKW0tVkRUCBQFDLKwfH3uM9K8m/Z5/4Jy/s5/s1+OIfHvgqPUb+702wl0rR49Uu3u4dJsJyDJBaK/EaNhVOMnaAuccUAfhv8IvDen/AA0/Zo/Y6/bG8F6jdyfEn4j+NNEg8S6m11JJLrEWvtKL6GZCxQog5UBRs8sYxisLUIJf+GENb/4KKfaro/Ge3+LkkcWo/aJPOjii8Rrpi6cI92zyTafu/L287s9ea/c74X/8Eyf2YPhL8VNO+KHhm21CRdBu7nUNE0i5u3l0zSrq73eZLa25+WNjubb/AHdxxip5v+CaP7Ms/wAZpPjC1vfhZtZHiOXQxdN/Y8mrrgi7a1+55u4B/TeN2M0Afi98XvDmn/F34Vftp/tS/EK/uofH3wv126tvCt6LmSKTRYtGsILm0ECqwUCWV2Z8qd+7Ffu/8P8AxX4q8YeL/hZ4g8TWZim1LwjLfXEpYD/SZ47VpE2dRgnrXA/Fz/gml+zL8Z/ipf8AxT8V29/E+uyWk2uabaXbw6fq8liR5LXcC/LIVAAP95QAcivpTxFDFb/HHwhbwKERNN1RVVRgAA24AA9qAPb6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSf6tvoafTJP9W30NAH8Uv/AAcv/wDJmv7Kv/ZXIv53Nf2u1/FF/wAHL/8AyZr+yr/2VyL+dzX9rtABX8h//BqD/wA3ef8AZWbv/wBq1/XhX8h//BqF/wA3e/8AZWbz/wBq0AfLf/B3J8TJZvE/w9+F0EhCW9tLdyJngs5wD+Qr+KOv6tP+DsLUp5f21dC0wk7IdCtmA92Z6/lLr9G4Yglgr92z7bIY2wt+7YUUUV9Gj2j76/4JVf8AKTH4Af8AZQfDv/pdDX2v+2j+118ZP2G/+C6fxY/aP+Bl99k1nRPGd95kLkm3vbV2HnWtwoI3xSqMMOoOGUh1Vh8gf8EjtA1fxJ/wU9+Alholu9zNF450W6ZI1LEQ2tyk0rkDskaMzHoACTxXb/8ABbHQtV8O/wDBVr452WsQPbyy+Jp7pFdSpMVyiSxsM9mR1YHoQa86pGM8b7OaunB6eXMcE4xliuSWqcP1P7ZP2kfgn+y9/wAHJH/BODSvjJ8FZrfSvH2jxyvo89wQbjSNXVVNxpd6VG7yJTt+YDoY51BHyt/Nvc/DPx78Gf8Ag3C+K3wo+KOlz6J4i8PfHoWOoWNyu2WCeGxsVZT2PPIIJDDBBIINfnn/AMEjf+CofxG/4JhftIwePtP8/U/AuvmK08VaIjcXNqCds8QJCi5t9xaInG4FoyQrkj+wb/g4t+IHwg+Mn/BGT/heXwPurLU9B8beJNB1eLUbJQovd6GJZJCAGMqxxJEwf508sI2NmB4To1sFiKeE3pSmnF9tdV/Xr3PK9nUwtaGH3puScX212/r/ADPxC/4NFbm4T/gox45s1ciKT4cag7Jngsmp6WFJHqAxx9TX4w/8FYf+Um/x9/7H3Xv/AEskr9c/+DTPxVo3h7/gprr2kapOkU+u+AdUsbRWODLMl5YXJVfUiKCRseik9q8q/wCCkn/BJj/goD8Wf+CsnxR8N/Cz4Ya7rFn4z8UXes6drKWjrpBtNTkM6ySXzAW8ax7ysm9wVZSuM4B9GNWFPNKrqSS9xb6dTsjUjDH1HN291bn7Bf8ABwhdXN9/wQl/Zkvbx2lmmvvCbu7HLMzeHrskk+pNeJf8Gdn/ACVX46f9gnQ//R11X6Ff8F3f2Ofj58Tv+CPHwQ+CXwH0C7+I2u+DNU8NR3SeGIJNR863ttHurRrmFY1LvAZXjw+0YVwxwM18E/8ABnjourQfEj486jPbSRwwWGhW0jMpAWUy3h2HPRsKeOvFePGpF5LWSfV/+lI85Ti8sqpPr/7cj+R79pP/AJOK8ff9jHqv/pVJX9m//ByL/wAoe/2af+v7Q/8A0yTV/Gx+1PpWo6L+098RtF1WF7e7tfFGrwyxSKVdHS7lBUg8gg8Yr+0T/g5S8M6/p3/BH79nmO9tJY20rVNDt7sMhBhk/saddr8fKdykc45GK9jHtfWcF6v8j0cW/wB9hvV/kfwg0UUV9AewfuJ/wbgf8plvhD/ueIf/AEyX9fSv/B1r/wApRbb/ALEvSP8A0ddV4F/wbWaBq+sf8FiPhjqOm27zQ6Vaa/dXbopIihbSruAMxHQGSVFye7AdTX0p/wAHYeharpv/AAUz0jWLyB0ttR8EaY9vKVOxxHc3aMAehKkcjtketfPza/tmP/Xv9WePNr+04/4P1Z/MfX7nf8Emv+C6f7Qv/BMpl+GGo2Y8b/Cy6uWuJ9BuJfKnspJSPMlsZ8N5ZY/M0ThonOSAjMXr8Ma/qx/4Lxf8ExPjRdaH8Nv2/fgv4eutf8M654E8PWvif+z4Wnm0+9sLKKGO4lRAWEElusSeZghHjIcjcme/Hyw8nDDYlJxnffurfjr/AFc68XKjJxo1lpK/3o/ps0XxX/wSG/4OE/gudLu4bPxDq+n225rW5A0/xVoRf+JGUmQIGIyY2ltXbAbf0r+Db/grh/wS98ff8Euf2jl+Gmp3j634P8QxSX3hjWXUI91bRkLJFMq8LPAzKsgHysGVwAH2jyz/AIJcaL+1Nq/7d3w3n/Y8gv5fGVnrNrMslkG2Q2nmKty10w+VbUxMyzl/kKEg5ziv6N/+Dvz4/fDrxP8AEP4R/s4+H7qC88R+FYNU1bVkjbc9nHqQtlto3xwrSrC8hU/Nt2NjDAnx8LQqYHHwwtKblTkm7P7Nuv3/AHnm4elPCYuNCnK8JJuz6H8Y9f2O/wDBpH8cfi94i/aZ8e/BrxJ4m1TUfC+neDBc2Ol3V3LNaWjwX0KqYInYpFxPJkIBnca/jir+tX/g0H0vUJf21fibrUcLtaW/gkwSSgHYsk1/bMik9AWEbkDvtPoa9LPkngKt+36ndmyTwlS/Y/Mr/gq9/wAFBv2yvHH/AAUT+Jljc/ELWdMsfh/421nS/D1lpV3JYWthFpd9NFC8cULKvnEIGkmIMjuSSegH9Xf/AAW1/bm/aL+EH/BGz4Q/tCfCLXG8PeMfiUfD9hqWsWiKl9DbavpE19dC1lA3W7SSwRgvGQwUfKQcEfxEf8FOdNv9J/4KQ/H6z1KJ4Zf+FieJ5ArgqSkuozujDPZlYMD3BBr+tL/gv/4c16x/4IFfs22d5ZzRTaVfeDkvI3QhoCvh+8jPmAjK4chDnGGIHWvNxdClz4GPKrX7eSOLEUqfNhVyq1/0PF/+DTH9pn45+Pv2g/it8IviD4q1TX9Gn0GHXFh1K7luxHexXKQtIhlZirSJNiQjG/auc7RX4q/D/wDah8Ef8E4f+C4vjH9oHVPDX/CQaD4G+IHi61/syArHIIJZr2zVoS+VDwiQOgPB24yudw/T7/g0E06/l/bE+KWrRwu1rB4NSGSUKdiyS30DIpboCwRyB1IU46Gqf/BNL9nX4W/GL/g5S+Meh/HbTYL1fC/ibxr4g03T7+PfFPqEGqEQMUbhtkczXCZBGUVh0BoqSpUsXjHKPu8iul10FN04YjE8y93lV0vQ80/aM/ZO/bL/AOCl/wC17r//AAVT8WW9j+zX8M7660u70jxB8QtSGmm3h0y3hit3gi/18ksnk+dHtRY2dsJIetfpL/wd839/4e0b9nTx/wCGbqWw1jS9S16WyvrSQxTwSKunyI8UqEMjK6KyspBBAI5r4Y/4LRfsP/8ABWL9uj/gqxr/AIE0vwZr+u+Eont4/Cd4VdPDdhpbQpukN2wFtC5cO1wGbzS4wAw8sV+v/wDwc1fsV/tEftc+AvgzpXwO0NtSg8MTa/d61qEjiGx021S1glM1zM2Fjj2wSYJ5ZgFALECuSNaCxOClOcbWlovsrl0Te7+dvQwjVj7bDSlJWs9F0VtLvqWv+CcX7Z3xw8Df8G5/iD9q3xJqcvjHxh4OtvENxYXXiCWS/Zpra7c2xmeRi8ghdgygtnChQQAMfzcf8E1v+C4v7dHw7/b08K+Kvj38Sdf8beE/GGsQab4g0rVbtri0WC/kEXnW0DnyrZ4GcSKIFiBC7D8pIr91f+Cbfwz8ZfGL/g108ffDf4eWEuqa3qdh4rFnZ26l5riWKd5BHGo5Z327VUcsxAHJr+O//gn5+zJ8RP2r/wBtD4f/AAI8BafNcXl/rdq96yq2LSyt5Ve6nlIGUSKMMST3wo+YgHpwOHw0vrvtYrSUr+S/Q2wtGhL6zzpfE/kv0P6X/wDg8A+A3hTw78U/hB+0bodlHBqniey1TRtVnT5TMNMa3ktSw/iYLcSru67VVScBQP40K/q8/wCDsb9rjwV8Zf2sfBv7M/gm6+2N8KbC7OrSRkGJNR1jyHaEEdWihgiLH+FnK8FWFfyh16mQxnHAUlU3t+F3b8DvylSWEpqe/wCl9PwCiiivXPRCiiigAooooAK/Zv8AZRf4Yx/DCCz+H04muFw+o+YAtx9oYc715wvZMEjA6k5r8ZK6Pwt4u8TeCdVGt+FL2WwugpTzIjglW6gjoR7Hvz1r43jjhWefZf8AVKdZwknzL+VvtJb27W2etmfY8E8UQyLH/WqlFTi1yv8AmS7xe1+991pdH1N+2drXw51D4gLYeFLVP7WtsjUrqI4R34whA4Lr/E3X+E5I4+Nq6Hw54e17xx4ktvD2iRtdX9/LsQE8sx5JJPYDJYnoOTX6t2/7HXw6b4YReCr0Y1VcytqiL+989hzwTzGMYCHtzw3NeZic/wAs4PwWDy3FVZTei7yS6ya6RT0SXTRJ2Z6WGyHMuLsbi8xwtOMFv2i30inbWTWrb66u10fkHRXY+P8AwVqPw88X33g7VZYZ57F9jPA29DkZHuDg8g8g8GuOr9Aw9enXpRrUpXjJJp909Uz4GvQqUasqNVWlFtNdmtGgooorUyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiilIAoooqACv1C/4JDfES9+G/wC2/wCB/EMV6LaC21a0eSMnHmhnCEfka/L2von9k3UZdK/aL8IX8PDR6pakH6SLXnZvBTwVVPs/w1OHMoc2FqLyP7dP+DiWVZ/+Cpv/AATGmTo/xPnYfjqnhyv686/j4/4OCpPO/wCCmn/BLub+98SZD+epeG6/sHr8oPz0KKKKACv5Av8Ag9W/5RZeAf8Asqulf+mjWK/r9r+QL/g9W/5RZeAf+yq6V/6aNYoA+AP+DGL/AJui/wC5J/8Ac1X9/lfwB/8ABjF/zdF/3JP/ALmq/v8AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9X+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAor8uf28v+Cyn/AAT6/wCCavjzRPhn+194wufDuteILA6nZQW+l3t+HtRI0W8vbQyIvzow2k7uM4xivhT/AIitf+CIf/RUNR/8JzVv/kWgD+jGivwe+GP/AAcyf8ETPiprtv4a0r422uk3ly+xP7a0vUtMgHu9zcWqW6D3eVa/b7wh4x8I/ELwvYeN/AOq2euaLqkK3FlqGnzpc2tzC4yskUsZZHRh0ZSQaAOjooooAKKKKACiuZsPGvg3VdQGk6Zq1lc3ZLAQxXCPISvJ+UEngA59K6agAooooAKKKKACivHP2g/j58Lv2W/gp4l/aF+NeoNpXhTwjYyajqd2kMlw0UEeMkRQq8jnJAAVSa/DH/iK1/4Ih/8ARUNR/wDCc1b/AORaAP6MaK/nRj/4Os/+CITuFb4o6ggJ6nw5q2B+VqTX6d/sc/8ABT/9gT9v4XEP7IvxQ0fxhe2kfnT6dGZLPUY4s48xrK7SG5CA8F/K254zzQB950UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVzOq+NfBug3f2DXNWsrOfAby57hI3wehwxBwa6YEEZFABRX4x+G/8Agv8A/wDBLbxb+1nH+xH4f8eXk/xGl8SyeEk0/wDsXUFiOrRTm2aLz2txFgSqV37tnfOOa/ZygAooooAKKKKACiiigAr/ADBP+D1b/lKb4B/7JVpX/p31iv8AT7r/ADBP+D1b/lKb4B/7JVpX/p31igD+v3/g1x/5QUfAz/uZv/Ug1Ov3+r8Af+DXH/lBR8DP+5m/9SDU6/f6gAooooAKKKKACiiigAr/ABBv+CTv/KU39mn/ALKr4N/9O9rX+3zX+IN/wSd/5Sm/s0/9lV8G/wDp3taAP9vmiiigAooooA/zsf8AgutpNvP/AMFUvirLNvEs39grARjbuOk2IO72xn8a/IVIILSWSO/UsyFk+TjDDjr6ZFfuT/wWy8Ky+K/+CqHj3RIp4rQ3s2hwiec7Yoy+l2Q3MeyjvX4leIdLk8P+IbvQZpYrprKd4WkhO6OQo2Mqe6nHBr9ZympGWFpLqox/I+HzWlKFaUraNmOFVBu3datx3LBdgGOaUygQPEsa/M4cHuuOwPpWlPY6lqVtL4lkjCwtKImZQAocrkDH0HpivTPJlYtaesEglNxKVCruQYzl/T8qesoWQGRd6g5IPfGKo2UblQACc9hWjFGxk8thg5xz2reCMZuzuTRKt5d7YFEYdjgE8KD2/Cuw0PVNZfSb7wzpcRf+0TGX2DL4hJbA9j3+lYFrp7yW8k8fAjxn159K6a28vT7xJ9BmkQhB85+VgxGGH05IrojTvpY562IUUZUNsxdD2I7V7bF8H/Et34Bk+Jllbu+j28iwSTnAxKwztxXBaVpN5qEcjWCbvIQu3sBXbaN4s8THSW8Gw3brZ3Dg+SzYj39MkdOK7VB/Yt5nk1sRzXUr67GBoiada3sVxq0TT2y5DopwxyDjB+tPs4oUlIYnae1bf9iW9vEkk8xkJlKyCMfKFHQg+/NRHTrf7TIbbIjySm7rt7fjXdTSvoeVUnJqzZpW0UlpG8OFxMoznnAPPHvWnaWjSyh1XHTpWZBA5YZPHHNdjp9vEHAZuK9CnFJXOSTNqxs5EAkZj1+YV21pLBsVYFO4ZDH19OKwLRkRjs7dM966i0tGkHmq6kjHA681Tj3E58qO+8OIsqn++vqe3pX0z4P8G6BrdhFJIVa5aUgp3C44/Wvm3w/YyJONyldwyCepr6m+H9i1s8UgbBJH614Wb0I1IOLPouHMW6VRSRD+0N+xT4V+M/wl1Pwdqe9LXUIQshh4YMp3Kc+xGcV/HT+1H+yP8SP2W/F0trrUbXmjPKVtdQQfKR6Sf3W/Q1/pMfBn4T3HiXwk7XyFopo8o5HynI7V+aX7Yv7Gtlr9tf6bqWnpeWV0rLLFKmVYH+R96/EsRhlTrzhTd9T91qWq0IVmrOx/n/Hyp2OMK+OnY1zjXTGZ4LkZXOPdfpX6Mftp/sHeM/gFqdz4v8C28994bYlpIwC0tmc9D3Kf7XavzjgZLmIC6xub7r/41yzfQ44Lqdt8JfBVz8Qvin4f8GWQLJqN9FEzL2QNls/gDX7HeEdT0/U/ih4q+LtyF+waCLiSDdwoisU8qID2JFfnz+xhosmi+MvEXxJuVxH4Y0e4njPb7ROPLjx75PFfT3xGu7j4d/sd6hk4u/ElxDp6t/EUB8yU/wCNck9aiS6fqdcWlTb76f1+B+WPiTxHfatrd5qepfO97M88it13SMWPP41jpYqsTXVqdy9Md1zTZrmK4HkXWcg/K4HI/wDrUuZ7FI9mf7wI6GtjIV7pLqMQ3nAztV++B/OrrQS2sokjOFx8rLVMLHf3G+PCOgyV7E+1aVvM9qpilXep6qaLgizZaN/wlWr2uj242XF1KkKYHDM5x09a/Sjxr4e/tv4teG/g5oa77fw/bwWahehdACx/Fz+lfMv7KXhez1j4u23iK4Aax0GGXUpg3byVO0H/AIFX2n+zCw1X4ieI/jbrq5g0WG4vWLdC6glR9S5FaYfWrzP7Kb/Rfi/wIqu1NpdbL9X+C/E5X9pXVYdY+LcfgnTW3Wnh6CHS4cdN6D94fxYk1458RNXjtri30OL7kCbz9Dwo/IUvh+7uvFHjS41+7yz7nupCeu+Qn+WTX0j8BP2UPFPx/wDGbeLPFEEtl4eMhcEjDzxrwAo7L70qk17Rcz0ir/N/0yYr3Hbr+h5T8AfC0PiHxEuu+IYJG0izyZHU7dxYYAUnqea+if2X/iP+zb8OP2kr7V/jl4dPiHwpqgk0koXAaCNcb7nJ/uHivfP2ifh3Z/Cf4d6hqHhq3FpZadF5ccaDAz0X6nJr8U/E+j3uu+I4NJhLFbKEROem6Vvmk/U1WDw7xdZxWiRnia0aFLmZ/Td8Sv2Y/wBhX4t/ALVPDn7HHxqg0zSrq7+2XNvfRmKQMM5j35G5R0A71+Zy/s9/ADRbuCw174i2KmyAUGJApBXqRzwW7mvmz4jeD9W8Dfsu6StlOLW2u5ADGRhmdz94HvmvlzVLjQPEk8a6no/lXccaRtJHIQ0rqANzDpzTpYZzxEqOtlpdK/39iJ1YRpKpprqfeFx+zj+zJpGrah4wk+J0d011IRsSNcqDzgE9cdDXpPwD/ZN8G/tF/FzS/h98KfF4vIN6yanPLHtW2tEb53yOA3ZQepr817fwFd+KtesPBfh6xkmvbtktbOGA75JZpDgDHqSa/sR/YT/4J16n+yV8FLXwzf2L3/iLXQLrV7i2UmVpivEKt2SPOPc5NcmLqc1R63S0Xojoox91aH61/D/xF8KPgh8FNM+HHhN4zDpcSW1qzfOSyjG9ic5bvmvlP4n/AB98A/CC90mLxsl3qNt4ivyZRENzBUUuSAcfLkDpXaaN8DNftri1tbiz8q3i+YeY5Pluexz1r8pP+Cw2nand+K/h/wDDu61620t54Lho7psrHGSMAErggt0HvXIlrY1P1x+Gvx7/AGXP2kNCkf4ReKLO8mDtBJZFhHdK/QqY2wT+Ga5H4m/Axr7UbWw0x2WSzlEiG3YrLGR1yfSv4lNaS++HV1bWWkXkmn6utwMXEUjQybg3DAg55r9J/gR/wVi/a4/Zo1L+z9buYfGulMFWS31Qbp9uP4Jh8w9qqULCTuf0o+LP2iPif8MvD02haf5GrWQjW3Z3Y+fCz/L5gx1VScsD2HFfildfs5eJ/H1t4wXw3eW+s6v9pdTdStst/Lc7t6jqQT1PrxX1XF/wVM/Zy+KHhc3njLQLjwprV1Y+fCZlzDJ5oIBSQDDD0z6Vwf7Pvwg8WeM9Yl+JHwVvNQ1O1uPMj+Z0FruY5bdjqo9O5qGirnwv42/4JY+OfF3wHSC41eGfxLqd1NC9mnENvAoBSUv1O4jG2via+/4J/ePfhY0dv4umm0+AssKTRITGWHqfT61/TX4sttO07VP+JzaX8M9s/lG4sSfKUJjccHqN2eK5DxF8avh9DcDwprtq+u6VdgQsXiCspPB/LrVJ6CZ/Pgv7AOu+Lrm21nTNXsprh5ESWRVCl41IOZFH3l4xX7pw/s2+B/inP4c8YePYIdTsNK086ZLpVntgEqAcMcjIZD0PpXgMHjz4M/DDxvdz+CtFvpZLktFGJCCFYdl9u9amq/tp6RpEctpa+Gp5L23+bzkm2fMv0461EmMwfit/wTVt/B2qSeIPg/p00mmSKxCR3CtKm/8AhdOmcHj3r4f+Lv7E9r4a+0eFvHeizW014ivbvO4WJi/Rww+44PBVuK/Rv4a/tR+Ofi/8Uf7C0HTRYX0tv5ksjSkht+FVAvQse57YzXtfiDxdf3epPoHxEbTWuNQtyUt7h/OmOD5UQYDo0jdT2xRFyT5ovVCaTVmfyoeNPhJ4r+A3ihdD8SQMlvI2be4IyrY7ZGRn8ea6a/1c65ejVZ52uLi5G+ZmAHzdMfkBX7Nft2al+yj8OP2YfEviTRZYdUuJitnp9lNKJHWcsVDAZJBXGeOAK/AHwBrj6nbRs55wOa+/yXHzr0r1FqtL9z5HN8FGlK8Hoz3awgImB7EV714Jh8tlY/wmvD9HjluJ4o4wXeQhVA7sxwB+JNe3ab9r0K+fT9VjaC4hcpIjdVZeoOK78bFyjY58jmozuz9RP2a9fa31KFQBgEDn3r/R4r/Mq+AHipLG+WBiNk7Jk9/l5H86/wBNWvz/AB1PkrM/TsfiPa4ahd7c3/toV/Ih/wAEDf8AlM7/AMFIv+x2tP8A0v1ev676/h3/AOCb2u/EXwx+3F/wVv8AEfwiEp8UWN/dT6X5A3Si6jn1oxmMd3DDKjucVyHkH6IftEeLvhE/7RXxWh/bm8W/ETw94nsdXkTwVa+GzdR2X9iiKM2klmLdSk07yFzKHOQ/HSv3Y/Yp1P4zaz+yZ8PtV/aFSRPGk+iWr6qJlCTGYr1kUcCQrtMgHRyRXgvw/wD2kv2Q9W/Yv0bx3r3xD0u50eDwzEJ9Xur2I38Z+zhZHYsfMW4DZyMbg/bNdF+x98ZPFOg/8E7/AAJ8a/2iZL19Rg8M299qUskDSXkqBfkd4lG4yyR7GZQM7iaAPviivjz4H/t1/s6/HzUtd0DwpqVxpuqeG7RdR1Cw1i2ewuYrJs4udkoBMOVI3jgEYNZvwC/4KB/sxftKeNG8BfDDWJpL+S0k1Gx+120ltHqNlC2x7i0eQATRKSMsvQEHoc0AfatFfDPw3/4KM/so/Ff4r2/wf8Ha9LLqGoXNzZ6ddS27x2GoXNnnzorW4YbJXTa2Qp5wcZxU8v8AwUQ/ZZh+NjfAh9bl/tSPUxoj3ot3OmpqjDItGuseWJzkDZn7xA68UAfb9eKeJ/8Aku3hP/sHap/O3rwz4qf8FD/2WPg18VJfhD451yWLUbJ7WPUriK3eWz01704gW7nUFITJ/DuPTk4Fe4+JXST46eEpIyGVtN1QgjkEE29AHttFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJP9W30NPpkn+rb6GgD+KX/g5f8A+TNf2Vf+yuRfzua/tdr+KL/g5f8A+TNf2Vf+yuRfzua/tdoAK/kP/wCDUH/m7z/srN3/AO1a/rwr+Q//AINQf+bvP+ys3f8A7VoA/M//AIOyvDVxa/tb+GfEzKRHd6LDGD2JjZs/zr+S+v7tv+DuD4RXN94J+HvxhtYspbyzWErgdyN65/AGv4Sa/ReF6ilg+Xs3/mfa5BNPDcvZsKKKK+kR7Z9+/sof8FQP22/2H/DUnhX9l7xXZeGLaWeW4eX+wdJvbsvMFVx9qu7Oa42EKPk8zYOSACTm3+1X/wAFTv25f22/Cg8GftP+LrLxRZiSKQSHQdIs7sGEkoBdWtnDcBASSUEmw9wa/PeisvqlDn9r7Nc3eyv9+5j9Xpc/PyLm72V/vCvqTTv2y/2gtP8A2TNS/YiOtG4+HOo6xBro02dBIba9hB+aCQ/NGsmcyIPlZhuwCWJ+W6K2nCMrcyvbX5mkoKVro9F+Efxb+JHwG+JmifGP4QavPoPibw5dpe6df2xHmQzR9DhgVZSMqyMCrqSrAqSK/WH9o7/g4F/4Kh/tOfC66+D3jPx1DpGialbm11FdDsYdPnvYm+8sk6Ayqrj5XWJo1dSVYFSRX4s0VlVwtGpJTqQTa2bWxFShTnJSnFNrbQ/VP4u/8Fp/+CjXxd+DHh/9nub4g3Phrwf4d0m10aGw8OqNMae2tIlhT7RPFieXKKA6mTy2/ucmo/2fP+C1X/BSn9lT4ZWHwc/Z8+IFr4Y8O6au2G1tvDuiszHu8ssli8s0h7ySu7nuTX5YUVH1HDcvI6cbb2st+5H1Wjy8vIreiP0J8b/8FTv23viR8ftD/ai8c+JdK1Lx34cjnjsNTl8NaLlftA2u8kIsRBNIBwkksbvH/Ay19HeL/wDg4H/4K2/EDw9c+EvHPxRtdY0u8XbNaXnhnQZoXA5GUfTiDg8g9jyK/Giih4HDO16UdNtFp6DeFou16a020WgUUUV1G5+mH7NX/BYH/goV+x98P7P4Y/s3eNrLwvpFkjxosPh7Rprh1eRpSJbmexkuJvnYkebI2BgDAAA6H49f8FrP+ClP7T/w/v8A4XfHvx9Z+JtE1G3mtZYbnw5oiyLHcLtk8qZLBZoWYcb4nRx2Ir8rqK5XgsO5+0dKPN3sr/fYw+q0ebn5FfvZXCv2E8N/8F5/+Cpfgvxlp/izwd8TrnTrbTdNsNKh0dbeGfSRb6fAkC4tJ1kjV5Am6WRArM7EggYA/HuitKuHpVf4sU/VXLqUadT44p+p++/iv/g5Y/4Kma94bm8PeGdd8P8AhR7mN45bzRtEtorlw+cndKJVVssSGVQQTkc81+F3jPxr4w+I3iq/8dfEDVbvXNa1WZri8v7+Z7i5uJX6vJJIWZ2PqSTXM0VNDCUaN/ZQUb9kTSw9Klf2cUvQK/Tj9mf/AILG/wDBRb9jv4Y2nwd/Zt8e23hfw/Z7ikEWgaPPK5d3kJluJ7KSeYhnbaZJGKqdq4UAV+Y9FXVo06seWrFSXZq/5l1KUKi5ZxTXnqfpR8QP+Cun7e/xV+L2gfHr4i+KtI1fxf4Y+0f2dqVx4W0JpEN1GsTl1/s8JMwRFEbSq5i58sqSc+7+Jf8Ag4R/4K6eNNEn8M+MPinbatpt0As1peeGNAngkAIIDI+nFWwQDyOtfjBRWLwGGdr0o6be6tPTQyeEoO16a020R+qPwA/4LXf8FL/2W/hpp/wg+AfxEg8OeHtMQpBbQ6Bo0rYZ2kO+WaxeWQ7nY5kdiM4zjivOfin/AMFV/wBvj4zfHHwn+0p488fM3jvwQ8smj61YaZp+mXMJnCrIJDZW0AnVkUIVnEi7CyY2swP56UVSwWHUnNU43fWyvrv941hqKk5KCu+tkfrl+0z/AMF0P+CnX7WXwyuPg78VfiPJD4dv4vJv7XSLO20w3qdGWeW3jSVkYHDxhxGw4KmuM+Of/BZP/go1+0b+zvafst/Fb4i3N54PggitbiCC3gtZ76GHAjS7nhjSWZVAGVZsOQC+5ua/MCul8G6xovh3xfpWv+JNIh1/TrG7hnutMuZJYYb2GNwzwSSQPHMiyqCjNG6OAcqwODUxwOHgly0o6arRb+XmJYWjFLlprTVaLc/vG/4JmfFj4j/Ab/g2K8XfGX4SajJo/iXw5H4iv9NvY0SRoZorzIcLIrIwHOQylSOCMV/OP4l/4OC/+ClesaJqdh4Y17QfCep67G8eq63oGgWNjqt6JPvNJcrEWV+4kj2Op5BBwa+uPA3/AAchTfDb9m5/2QvBX7OPgey+G0tldafLoX2q9kt5Le9LmdXMjtI5kLsWdmLknOc4r+eL4y+MvAnxA+JWqeMPhp4RtfAmh3rRtbaFZXVzewWgWNVcJNdySzuHcNId7nBYgYUAV5WAy797WniaK96Tkm7PTt/Wh5+EwX7ypKvTWrbV7P5f1oef6pqmpa3qVxrOs3Et3eXcrzTzzuZJZZJDuZ3ZiSzMSSSTknk1Roor6A9gKKKKACiiigAooooAKKKKALVle3mm3cWoafK8E8LB45I2KsrLyCCOQRX2/Yftu+K4vhpcaFf2/meIgBFBfrgJsIIMjr/z0XtgbSTkgYwfhaivEznhzLs19n9foqbg01fdeXmn1T0Z7WT8RZjlftPqNZw5007bevk10a1Ru6RpOv8AjTxDFpOlxyX2o6hLhRnc8kjnJJJ/Mk/U1638Yf2evHPwcEF5q6reWE6qPtcAJjSUjlGzypznaTww5HOQOs/ZW+Kvgj4X+NJp/GVoMXyLDHqAyzWwzzlf7rcbmHIx6E191ftL/HDwp4I8AtpNsLfVb3XYCLaFtssXkuP9c45BX+7/AHj04BI+K4g4qzrB8QYXLcHhOajLT/H3altHkXfzbVnFn2eQcL5NjMgxOY4zF8taOv8Ag7Jx3lzva3kk7qSPxxopyqznagJPXj2ptfqB+ZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSkAUUUVABX1Z+xP4R1Dxj+014P0ywiaUf2rab8dgZVHNfKYOOa/ZL/AIIY/CK/+K//AAUA8DWNq+Y7fUorieLHDxQHzGJ7YGK8zOanJgqr8rffocGZz5cLUfl+Z/S5/wAHCMXkf8FOv+CX0GMbPiXKv5al4cr+wKv5D/8Ag4qAH/BVL/gmQB0HxRuP/Tp4cr+vCvyo/PgooooAK/kC/wCD1b/lFl4B/wCyq6V/6aNYr+v2v5Av+D1b/lFl4B/7KrpX/po1igD4A/4MYv8Am6L/ALkn/wBzVf3+V/AH/wAGMX/N0X/ck/8Auar+/wAoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1v7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+QL/gyp/5Sm+Pv+yVar/6d9Hr/AE+6/wAwT/gyp/5Sm+Pv+yVar/6d9Hr/AE+6AP8ANT/4PbP+T5vhF/2Ijf8Apwua95/4JRf8Grf7En7e3/BPX4a/tcfE7x7440jX/GtldXN3aaXPYLZxPBdz26iNZbKSTBWIE7nPJPOK8G/4PbP+T5vhF/2Ijf8Apwua/ru/4Nvf+UJfwD/7BWof+nO7oA/mL/be/wCDK7xH4M+HOo+O/wBg74nXHivWNOheZPDPia2it5r3YCxSC+hKRLK2NqJLCiMx+aVBzX5Yf8G5v/BWn4yf8E3v22tI/ZM+Mt/eQ/Cvx1ra6BrWjagSq6Jq88nkR3kaSYMDRzkJdqNoaPcWBeNMf6wNf47X/Byb8N9J+EP/AAW3+OOleFYls7e+1HTNbXyflP2jVNOtLyd+OQzXEsjE+pzQB/sS1+dnxv8A+CuH/BMn9nDxLdeC/jP8c/B2ja1Ynbc6f/acVxdwN/dkhgMkiN/ssoPtX4pf8F8v2nP+CiPiD/glR8KPD37CnhTxX4g8QfGjTrOTxPqXhLS7rULu00uWwjmmizaxSPbm7kmVd+VJjSRB944/n6/4JE/8GmHjX9sf4Ky/Hv8Abr13xJ8JYbq8ntNN8MLpZs9ZaO3ba1xcfbkBhR3DCNPIYuo37gCAQD+/n9m//gol+wp+1/qT6F+zL8WvC/jTU4k819P03UoZL1U67jbFhMFHdtmBXsPxn/aV/Zz/AGcLKw1L9ofx/wCG/AVvqjvFZS+ItVtdLS5eIAusTXMkYcqCCwUkgEZ61/k7f8Fs/wDglLff8EMf2p/AD/An4m3mtLrts+vaHfACx1rSbjT51UM7QNj7xVoZkEe4q42jZk/2j/ED/gni/wDwci/8Er/2YPi3+0J4+vPB3iHT9FOqahd6dYRXH2++uYo7aeRoy8ax73gMmEGAXwAABQB/EV/wSK+LPwv+G3/Be/wJ8XPH/ibS9A8K2vjXW7ifWtQvYbXT44J4bxUd7mR1iVHLqFYthiwA6iv9cr4PfHr4G/tDeG5vGXwB8aaF450e2uGtJr7w/qNvqdtHcIqu0TS2zyIHCurFScgMDjBFf4wH7DP7Cugftdf8FMfDf7BOs+IbjRdP17xDqOivq8MCzTRpZJO4kETMqkt5IBG7AzX+kJ8If2A/iV/wb+/8EkvjloX7FV9rXxi8eXs8+vaDBFo/nXi6lew2unx+XZ2/nmdbfYLhlwcqrAjaCaAP2d/aN/b1/Yq/ZDnhsv2nPip4X8D3dyu+G01fU4Le7lTruSAt5rL7hCPevDPg9/wWM/4JafHvxRbeCfhV8efBuo6xeSeVbWUmpR2k88n92JLgxmRj2C5J7Zr/ADs/+CbP/Bv1+3p/wVd/ai8YeNf28F8Z/C3TYNura54g8VaLdxaprF7eyNiO1+3LCsjna7SyZYQjaNh3KK94/wCC6P8AwbQ/Cb/glz+yhD+1p8EvifqGvWNtqtppV7pHiCGBLiVr3cFktpoBGGZSuWiMROzc2/5cEA/0/QQRkUV/J9/waD/thfGn9pn/AIJ4+Ivhz8adXn15/hf4hXRdGvLpjJOmlS2sUsNsznLOIG8xYyxJWMqg+VFA/rBoA/I7/gvR/wAodP2hv+xQu/8A0JK/zSf+Dfn/AIJdfBX/AIK1ftkeJv2c/jtrut+H9I0TwZeeJIbjQZII7lrm2vrG1VGNxDOnllLpyQFDbgvOMg/6W3/Bej/lDp+0N/2KF3/6Elf5z3/Bs1/wUK/Zc/4Jr/t2+Lfjl+1trNzofhzVvAd9oVtPbWU987Xs+oadcIhjgR2AMdvIdxGARjOSKAP6ntV/4Mmv+CfU1hLHonxU+IdvdEHy5J5dNmjU+rItjGWHsHH1r+Kv9uj9lD9o3/ghJ/wUlj8BeEPF7v4j8Fy2XiHwz4m09WtGurOfJikaLexTJWSGeEs6Nh1y6HJ/0Ltf/wCDtb/gizo+kz6lp3jPX9VmiUstra+H71ZpSP4VM6RRgn/adR71/nsf8Fbv2/vFn/BZL/gohcfGvwD4YurGDVEsPC/hPQ+J797aJ2W3SQISpnnmmdyiEqpcIC2NxAP9Z74Kft6fArxl+xF8Mv21vjZ4m0L4daF8QtA0jVDNrmpQWFnBeanbLObUT3Lxozo29QM5bYSBwa9Ntv20P2P734N6l+0Tp3xU8I3fgHR5mt77xJb61ZzaVbzoFJikuklaFZAHT5C+75l45Gf5Fv8Ag4o/Z41P9kv/AINsfgf+zRrzxSan4I1XwjpGoPAd0T3ttpt2tyyHurTbyvsa/kB/4JqfsUft1f8ABXbWNL/YG+A+rC08CeD7u68U6jJqErRaRpUt+IreW8mVAWmuJViSKGNQzkK23YnmuAD/AFu/2VP2/wD9jP8AbhufENp+yX8Q9J8eP4UNuurf2W7OLX7WZBCWLKoIk8mTaVJB2nmsr9pf/gpB+wZ+xxqyeHf2nfi34Y8GarIglXTb/UIxfmNhkP8AZULT7COjbMHsa/jM8c/s++Pf+DSH9hj4s+MvB/xQtPHHxN/aDfRNA8KNBpJsxpFxpS3sl3eMs01wkywxXQ8rcoHnGPchUsK/Nb/gjr/wb2fGr/gtRoGvftz/ALW/xG1TQPC2s6pcxRakynUNb1+9iYC5n824bakSPmPzW8xmkVlCgLmgD/Ru/Zn/AOChH7D37ZNzPp/7LvxV8NeN762TzZrHTNQikvY4/wC+9sSJlTn7xQDPGc19Y65rmi+GdFvPEniS8g0/TtPgkubq6uZFihghiUs8kjsQqIigszMQABk8V/lQ/wDBXz/giT+0T/wQO8c+CP2xf2XfiLqOreF31VbfTfENuhsNW0XVlRpI4p/KJjdJ41k2SLhXCvHIgBXzP7If2Bf+Cmuqf8FTf+CD3xO+Nfj4QR+PPDvhLxP4d8UpbqI45L+1015FuUjGAi3MMkchAAVZC6LwtAH7XfDX9uL9iv4z32o6X8H/AIweCfFlzo9hLql/Do3iCwvpLWxgKrJczLBM5jhQuoaRsIpYAnkV8k6t/wAFy/8AgkHovit/Bl9+0R4K+2xuY2aLUkltgwOD/pMe6DGe/mYr/Io/YQ/Z9/aO/bA/aJ0r9jr9mO7kttb+KI/sW8UzPDaPYROl7M14YwxNtCbZbhxtbmIEKWAB/tO+In/BkN4ZtPglPJ8K/jleXnxFt7VpIl1LS44dHurlVysR8uR54EZuPN3TFQc7DjBAP7sfAHxE+H/xY8H2PxC+Fuuaf4l0DU082z1LSrmO8s7hASN0c0LNG4yCMqxGRXXu6xqXchVUZJPAAFf5Pf8AwQU/4KK/tGf8Em/+Clln+xr8c76/0/wHr/ieTwj4t8NXD+ZBp2sPL9jS8jXkRyQ3AQTPH/rYAQdxEZX+qL/g7C+JP/BRfVfgZ4K/ZM/YX8EeMfEOh+Pl1GXxnf8AhPSLzUHNnbeSkNjJLaxSGKO4MkjSqSpkWMJyhdSAftr8Wv8Agsp/wSt+B3iK58I/Ez4+eDLLVLKTyrm0h1OO8mhk7rIlsZSjDuGwR3xX0D+zf+3X+xn+2AtwP2X/AIoeGvHU1ou+4ttI1GG4uYVPRpIFbzUU9iyAV/Bj/wAEs/8Ag0GvP2nf2bdM+P8A+3V4u8RfDfVPEJmez8J2enLa6lZQRSNGr3rXqFkkl2l1hEI2xlSXyxVPxQ/4Kq/sLfEL/ggZ/wAFFfDnhj9nn4n3GparZabZ+LfD+uWqiz1KxE008AiuI1Z03gwPn/lnNE43LhmWgD/X2+IvxJ+HXwg8GX3xH+LOv6b4X8PaYqveapq91FZWVuruqKZZ5mSNAzsqgswyxAHJrybwF+2N+yL8VfCWvePvhf8AFTwh4k0LwrGsutalpWuWV5aabGwZg11NDM6QKVRiDIyghSexr8Mf+Cyfxg1j9oX/AINivE3x98QxJBqHjjwB4N8QXMcQwiTandaZcuqjnADSEAZ6V/m6/sB/BL9tT9u7xWv/AATc/ZPuZGsvHuowa1rFm8xttPI0lHCXd/IAT5Fqsrsq4bMjgKjyGMUAf7AH7N//AAUw/YI/bA+KOpfBf9mD4qaD458TaRYyaldWWkTm4KWcUkcTzCQL5bosk0akozDLCu+/aM/bk/Y4/ZEjtz+098T/AAz4Eluxut7fWdSgtbiZfWOF2ErgY5KqRX8o37EP/BCT9pr/AIIH+FfjF+3x8MfGMfxi8e/8Kw1jQ9G8LaJoFw0p1e6ubO4tpIwss0lzHG9tl4xCjMpPTFfzt/sB/wDBCX/gov8A8Fdf2yvFHi79vKDxp8M7SdH1zxD4q8W6FeQ3upXErhFt7RbtII3kYZ6N5cES8IQEQgH+ij8Kv+Czn/BKj41+J4PBfw4+Pvgy81W7l8m3tZ9Sjs5JpOyxi48vex7Bck9s1+g/jbx94E+Gng+++IfxG1qw8P6BpcJuLzU9SuY7Szt4R1eWaVljROfvMwFf5rP/AAW2/wCDYH4Qf8E0/wBjDUf2xfgh8U9S1qDw9eWFpqGj+IYYFluhfzpbq1rLAI/nR3DtE0bZjDtvGzB/R3/g2/174p/8FXP+CO3x4/4JtfHjxdero+htaaBo2sOgurvT9L1OJnW3QOy+ZHA9u3lKzfIr7AdioqgH4C/8HVfxp+Dnx7/4Ks3Xj74F+LdG8aaE3hPRrcaloV/BqNoZo/O3p51u8iblyNy7sjPNf6U37An7YX7Jvxr+Cfw/+GPwh+KXhHxb4osfCWly3Wk6Prdnf38KwW0KStJBBM8qhHYK5ZRtYgHBNf5PP/BaX/gm54Y/4JV/tqzfsp+EvFN14wtItEsNW/tC8tktZC155mU2I7jC7ODnnNf3uf8ABDr/AIN3fht/wT1+KXhX9vPw58TdT8S6h4h8HrE+kXOnxW8MQ1eKCZiJVlZj5ZXA+Xn2oA8A+G3/AARh/wCCR/hn/grBbftY+Gf2s9K1D4mRfEi48Sp4LGtaM9w2sSX73Daf5CS/aS6zMYtgXzMjBG6v7M6/yGv2c/8AlaD07/s4W+/9Pk1f2R/8HU3/AAV4+In7AH7PPh79mz9mnWbjQfiX8UPOmk1ezbZcaVolqQsskL9UnuZGEUUi/MiLKylXCMAD9xv2h/8Agqj/AME5P2T/ABRN4F/aF+NHhPwzr1t/r9Ln1GOW/h6EebbQl5o8g5G9Bntmu0/Zq/4KG/sM/ti30uj/ALMHxY8MeNtRgQyyafpmoxSXyRrjLtbFhOEGfvFNueM1/nT/APBGX/g2Q+In/BUj4Nn9sz9pvx5eeCfB3iG7nOkLawC91bWTFK8dxdPJMwWGPzlZVZlleVgzYVQrP4X/AMFhv+CGv7Rn/BCnxX4P/aq+APxBvtc8I3Gppbab4lslbStX0bVwryRxS+TI2BJGjGOeNwGKurIny7wD/WUJxya+WvhZ+3L+xR8c/GEXw9+Cfxh8EeMdfnjkli0zQ/EFhqF48cQ3Oyw287yFVXliFwBya/MH/g3p/wCCo2r/APBUP9gO08YfE+YTfEjwJcf8I94qkCLGLydIw8F6FQBV+0xEFwoUCZZAqhdtf5U37C3gf9pn4w/tL+H/ANnz9kfUbjTPGfxJZ/C0c1vK1v8A6JqI23QllQF44BCHa4ZefJDjBBIIB/sDeP8A/gs//wAEpPhf49l+GXjj4/8Aguz1q3lMM8C6nHMkMi9UlliLxRsp4YO4IPB5Ffe/wv8Aiv8AC/43eB7H4mfBvxFpnivw5qaF7TVNIuor2znUHBKTQsyNg8HB4PB5r+DT43/8GVeg+Bv2Uta8X/DH4w6jr3xR0XSZr+Ozn06KHSb+5t4jIbaMBzNF5hBSOVpHwSCyYzj85f8Agz4/a9+JXwo/4KVr+yhbapK3g/4qaTqBuNMcloRqWlW0l5DcoOiSCKKWNiPvK2GyVQgA/wBSSv8AME/4PVv+UpvgH/slWlf+nfWK/wBPuv8AME/4PVv+UpvgH/slWlf+nfWKAP6/f+DXH/lBR8DP+5m/9SDU6/f6vwB/4Ncf+UFHwM/7mb/1INTr9/qACiiigAooooAKKKKACv8AEG/4JO/8pTf2af8Asqvg3/072tf7fNf4g3/BJ3/lKb+zT/2VXwb/AOne1oA/2+aKKKACiiigD+D3/guF4ea9/wCCgXxFvLZcv5OlyNzjiPTLXOPfFfgTe26Rz8ADk5Br+g//AILYanprf8FCvHmmTH50XSifqdNtTj8q/CHXNLBv5JY0yoJr9SyJS+rQv2X5HzPEEIycZQ3/AFOR0vSp7+7S3t1LlzjaO9d94j8K6z4IEugeJLB7W4m2TKJgUeNTnHyn+8O9YunxajotxBq8QaPa+6NiMAsvp64r0L4hfELxt8Y9fPiLxfO2oXwgVGk28iKIYBOOwFe8oS5lorHycno09zz7SLiHTmd4o98w2tE5ONjKc5A7+nNaMYeZmlC7nfkn3PWqSWyLafa0deGCbc/NkjOQPSr8LKEC52n0rqpwOCopMvwQSHgr7ED2ro9Nv9NXbBfW4dVLHcp2sSVwMn0B5xVWw1+8ttQk1N3DzyRtHuIHAZdmcfSptK1K202OaN7eOcyqFDOPu854/LFdcItHHUi7mpbXWpWNmYoHMUVyATg8ttP+NLbSWsYK7iTkYNVoxJPbm9ygTeQFB6Z54HpUtvbRO+WcLxnJrrpRPPrJ9Tr2tLwaNHeqQls0mzbu+YsBnJHpSxMdyljkLxiudil2kLvJA9atwu0zYZq7aVORwT8zs7Vo3xK64jY4B7e+K9Z1fw5YaRpen3OnXsd49zEZHSPOYWzja2e/f6V5TpyXd5HHYJJlEbKqeACev5136WkstpBOEEMZ+TKt1ZOpx2zn6V1NSTV2Y8poWto32ZLosMs23bn5h7muy02Roo/Ljx83U454rNj0aWwgtp5mQi6QyLtYE4BxyOxz2rdsoVVsvjFVdNGNd8qseheHFupJFnPzBMdegzX094LKahHHbRljc+YAFX7u3vz618uaOZEffEx+gr60+Cnh7WPFmvQWOixNJcythVHU15ePSUHJ9Dsymo1JU11P6B/2TbJrf4eWtjdymVAOFP8ACfaup+OHgTStX01lkth8/Gcc1xH7KMtzBaJod6nlTW/yuvfI/wAK+0vHXh611DTdzrnatfhGOk6eOk5dz+ksJJVcBBR7H4V+O/2INL+IFjd3H2USxFWDArkEHqCO9fyAf8FKP+CTuv8Awi1G9+JXwX06RrUMz3emxjIQdS8Q/mtf6WXwn0vSpZLjQ7pFYSdM181/tO/skaN41sJ2gtVJOf4a4sZN+2bWxw0Famk9z/MV+AXhPUNH/Z5ELwulz4w11ImyMFbXTxuYHPQF+Ks/t/6qdBTwd8LbRto0yyN7cKO0110z9Fr+rj44/sl2Hw5hOj3fhq0u9NhuHuFPllJY2c/MUZeme471/F/+2B4v1TxR+0h4q1TU4JLdY7xoIoJlKkQxfKnBHTA4rnpq8nO+5tJuyjbY+YzaQXx8yH5JO6jo30qk115U7W0q7olxlT6+1aTRgv51s2UXrnqprOLx3WROcPkkP/jW4imkOyRp4zuQkDI6j61srdxXa+Vcna+Plb+hrnovtVgznkFuOOhFaEcRvQTYAmUkLs9zwMfjSBH3Z8F9NfwN+z34j8azgJc6/cJp9u3rDF8zkexNfTUsMvwr/Y2t7ONWOp+N71Y1RR87Qx/M2B1OSQK5BPBmmf2v8Nf2fb+OWSCJIHv44c+Yz3J3v07gfpX9jWt/sR/ssfB//gmlq3x28Q6LaX3ibTLeD+xUupFZ7WSSRUjVDzt35y2eTVU5clJzt8T/AAj/AMG5NRXmo9l+L/4Fj+Zr9jj9nTU/C8d3f/Eu1jSfXFj2WsqhmEGM85+6c+nav1l+GllZafrd9YWkSraWMHlRhRgKCOABXiH7bXwK8dfBPxV8K/jZHrtrp1hcWcn22FstHNcEA7PlPDOvCZGMiut8JfFDQ2+K8Pwh0qyuxrd5px1W5EqFFS2UArweTnPFceIjU5rzCFraHxt/wUS8bR6X4G0f4blS91e3b3tysYLObe1G4cDn5mIFfj98PtDvYmufGHiS2mtbVS0skkiMFBbnAyOSewr9ZfF48V/Gn47eMPi94XsGv9L8JiPR4k2kglPmmK8YyD1+lfOXxJ+IUnjiePwToOnRXMF2WV4bo+Q8Ui91Y4X6Zruy/NHg1LljeT6vocmMwKxKSlKyR8nftIfHzw9478MeGPCttbvbaVpC7UaXh5CTy2PT0rhtP8Fa2bEeOobGSfT3XzYp4xuRgOnIz+Oeler+BP2Y9G+MXjdp/FVvfvYWpMchs4zM+2M4YDYGAA7kCv28/Zi/Yu8PfEnxJ4d8C/CaKew8IaDN9r1q5X5zNEcbbYZH3piDuGMhajDZnOjKo0rue7+//MutgYVFBXsonX/8EVf+Cel28SftvfFq0W3lfePDEF2nARxh7sqeSTysfoOe9fUPxY/4OB/2Zf2Yv2p7n4Ha5bX2sWOlgQ3uu2BVkguTw8Yi/iCjqQc5rS/4LCf8FCdE/Ys+ANl8JvBjrY+LdftvsVjbWuB/Z9mBtMm0cAgcIPWv4VW8PReI2uddluBqM9zI0zSSnEpLcncD1JPvXnbnYf6jn7Ov7av7I37WHh1fE/wp8WadrKlPMa3DhLpP9+JsMMdzgiv5y/8AgvT8SvB2iftD+E4dBs1urWbTZIJYT82XY5BT0Knmvzr/AODdfwRb3/7b2rXl5I8cNh4euSI36Au6ADB5r6b/AOC7F74d8PftI6DfaxMksWn2CP5aLkHexyDyMZHejqDPEf2f/wBkm7/ad+FVx468D6zY634s0eRmu/D02Fvo4x911B5YY9M14Z4y+GF3pt9LZ+JrSSxvbdjHJFKhR1K+x9K8P/YH8RNrn7YPh7VbbX38IzXV6Vi1B5zGqovQPzjb7HOa/oT8Y/tPfseftJeONT+BP7S3k6Vr1nMbbTfGenpiGdl4H2hR93J/i6VpKKfqCPkr9lP4M+Gv2qvBOmeCvELxxv4BvJZLqN/lebR7n51Rf9ybKj0Vqv6x8JP2nf2Ovh5rn7VP7InjhvDfhO21/wDsu00m6zOupTysIkRY2ypUyH06AmvVtd/Yq/a//Zamufil8GBb+KtE1W1ltI9R0aRbpJYLgcEhTwynBHoa4C5+MvxY+NkHw+/Zv8WeHl0Sy+Ecc2t30Dg/6XeTkx2jzIf4hmRyPXBrRShyNSWpFnzaPQ/Qtvj18R7jT7Tw+bS01DUXgT+0blUxGZ3A8zYvQDdmmeHvh/beJ7s3WowpHHCdxWMYUMew/GuB8H2TeGtHhe6vf393lnIUADPYZ5r6I0nT9P0Lwk2sXV1KBgucNjPp+tcjNTwbxr8HfCX9sMllCzTKrMWDdCw5ryv4XfCLwLH4svY/ENil5ZxJlwxyoY9M17DZ39vrVzPqsSPdISwIZick9Pwqn4Wg8L+C52tnjE93eyiWUE7ggH8IoEVvE9t4M8LXdto/g+yt9P1S7Bla7iI8yNCegI5Hp+FfGv7ZnxW0L9mr9njxH4/tJEm8QXEQ0/Tpm5kN1c5CsCeT5aln/CvrDxU1v4b1K/1u4hUXWonEIwC+z2HYYr+cT/gqX8cL34ofF/TPgnp7/wCheF033Uang3twAWz7xx7V/E114Kg61aMOnUipNRi5M/MbR7LxH4vvt97c3E0LPvCyyM4yfqetfY/gLw1PpUCkjrUvwp+HipbRPLHg8ZyK+jj4dFnECqjiv0PC0IxSSPkMwrTqXfQx9Fe8MiadA4Q3MkaAnjB3Dbz2wTya7KO6urW/mtbyTzJIpGRm3bsspwTnv9a5hEj37SMYqYI6TKpIyT1FdtSneJ4lCbhM+qvhp4mltbxWQ8L39K/1ca/ya/h7DghepYda/wBZSvhc8go1I28/0P0XB1JSw8eYK/kP/wCCB6q//BZv/gpEjjIPja0BB7/6fq9f14V/Ih/wQN/5TO/8FIv+x2tP/S/V68I6D+ge9/4Jn/sH6j8Rj8Vrz4YaG+tNP9qaXyP3bT5zvMWfLLZ5zt619XfEHxp4J+F/ga98X+Ob+DRtE06JfPuphiGBCQik8YABIHoK7qs3V9H0nxBpk2i67axXtncqUlgnQSRup7MrAgj60Afyr+N7Dxp8Xvjx+0J4e+Ffi1PjFrGv/BHUbOy8TWESxDSZPOl8nSwYR5btcFzKOS4288GvXPCvj3wJ+0h8Sf2QfDf7MMq3GpeCvBOvSa4lshR9JtpNEFittc8Dy3a8KKI25LIWxxmv6LPB3w78A/Dyyl07wHotlo0Ezb5I7KBIFdvVggGfxp3hz4e+A/B+oXmreE9GstNutRbfdS2sCRPM3q5UAt+NAH8svwi8YeDPH37Kn7FX7M3w7XPxK8G+ONGk1vS0jK3mljRmmOqS3K4BjUjcCzYD7xjOaxb/AFjSv+He2vfsV78fG2X4zSbdK2n7e9zJ4kW+S9AxkxfY8Seb93YMZ4r+rLTPh34B0bxLc+M9I0WxtdXvBie9igRJ5B/tOAGPvk0N8O/AL+LV8fPotidcVPLF+bdPtIXpjzMbunHXpQB/MB8XvF3g34Z/Br9ub4AfFYf8V/451+4m0CwkjLXWrxarp9vBpxtRjMgSVSny/wCrIJOK/ev4f+G/Fvhrxf8ACzTPFt20l3ZeEZbS6hYA/wClQxWqyvu6klga+ldW+HngLXvEVp4u1vRbG71Ww/49ruaBHni/3XILD8DXC+J/+S7eE/8AsHap/O3oA9rooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZJ/q2+hp9Mk/wBW30NAH8Uv/By//wAma/sq/wDZXIv53Nf2u1/FF/wcv/8AJmv7Kv8A2VyL+dzX9rtABX8h/wDwag/83ef9lZu//atf14V/If8A8GoP/N3n/ZWbv/2rQB+p3/Bev9nKX9oj/gnj4ottNh86/wDDhXVYABlsRAhwPqDX+V1eW0lndyWkow0bFSPpX+2F4y8LaX438Kaj4Q1uMS2mpW0ltKp5BSRSp/nX+R5/wU6/ZS139j/9r/xd8KNUgaK2hvZJbNiMB7eQ7o2H4HH4V9Xwri1CtKhJ/Ft6r/gH0PD+IUasqT+1+aPz3ooor75H14UUUVYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU95ZJAokYttG1cnOB6CmUUAfqh+x98EfD+j+Govihqrw3+oajGwgCkSJbRHgr3HmN0buo+X1rwX9rz4L+B/h1qFt4m8KXMdo2pyNu0z0xyZI8fdTPBU4AJ+XjgeJfBr45eLvgzrButHP2mwnObmykYiOT3B52uOzAfUEcVxHj7x34i+JPii58WeJpfNubg8KPuRoPuog7Kvb8zySa/MMv4Xz2lxRWzOvi74eS6faWvLT5dUuTfm67p3lK36bmHE+R1eGKWW0cLbEJ9fsvTmqc275tuXp1VoxvxtFfX+jfsdfEDWPhf/AMJqjCPVZP3sOmuNrvBjuxPyyHqFPbqQTgfJF1a3VjcyWV7G0M0TFHjcFWVl4IIPIIPUV9zlme4DMJVYYKspum+WVuj/AFXZrR2dmfEZlkePy+FKeMouCqK8W+q/R909VpdFeiiivWPJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooopSAKKKKgBRX9oX/AAamfs4ahq3xD17476xD/omiWphti6YInuTzhu/yj9a/jr8DeE73xr4mttBslJMrDeVHRB1/wHvX+q//AMEYP2TE/ZK/YZ8MeGdRt/I1jWo/7SvQwwwablFP+6uK+S4rxajShh1u9X6L/g/kfOcQ4hKEaK3evyPxy/4OK/8AlKn/AMEyf+yo3H/p08OV/XfX8iH/AAcV/wDKVP8A4Jk/9lRuP/Tp4cr+u+vhD5IKKKKACv5Av+D1b/lFl4B/7KrpX/po1iv6/a/kC/4PVv8AlFl4B/7KrpX/AKaNYoA+AP8Agxi/5ui/7kn/ANzVf3+V/AH/AMGMX/N0X/ck/wDuar+/ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9f+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwC/4OjQT/AMEKPjnj/qWf/Ug0ygD+QH/gyp/5Sm+Pv+yVar/6d9Hr/T7r/MD/AODKkgf8FTvHwPf4Var/AOnfR6/0/KAP81P/AIPbP+T5vhF/2Ijf+nC5r+u7/g29/wCUJfwD/wCwVqH/AKc7uv5Ev+D2xT/w3J8IWxwfArjP/cQuK/MD9kH/AIOY/wDgpX+xF+zb4X/ZW+CR8KDwv4Qgmt9PN/pTXFyEmmknbfIJ1DHfI2PlHGBQB/rw3t7Z6dZy6hqMqQW8CNJLLIwVERRlmZjgAADJJ4Ar/GR/4K3fGi2/4KU/8Fk/iT43/Z7B12Hx54qsfDvhswncL8WsdvpNo8ffbcGFXTjOHGea9t/aC/4LKf8ABbv/AIKtaFJ+z+2t67r2ia5/o03hvwNoxgW+DZDRS/YomuZ0YfeikkaM45Wv6Uv+DcH/AINufix+z58WtI/b+/4KB6Smi65oa/aPCPhGYrLc211IpAvr4KWSOSJTmCDJdJDvfY6KtAH6Y/8ABdL/AILL3v8AwRB/Zw+G/wCzl+z1pVpr/wAS9d0iO00ubVEZ7DTdM0tIrdrqaJHRpJZT8kEYYJlXZyQgST+fr9l3wP8A8HX/APwWI+GkHx98KfGa98B+BteeU6dqdxqa+FoLmNHKMbeLSLY3RiVgVWRowGxwzcmvur/g8k/4J1/Hv436f8Ov23vgnoF54m03wZp13oXiaCwje4uLK1aX7RbXXkoGJgVmmWaQf6vKFvlJK/jr/wAE6v8Ag7O/aV/YS/ZS8PfspeJPhjonj3T/AAdaf2foeovezabcRWqkmOO4VI5km8vO1SoiJUANk5YgH54f8Ftf+CXn7TX/AATZ+JHgib9rn4oQ/FDxr8Q7C7v7m8jmu7xoY7J44kD3V6RNMW3HGY1ChcDPb/Sy/wCDfv8A5Qz/ALPn/YsL/wCj5a/zJ/8Agq18Zf8Agpr/AMFCLrRv+Cmn7Z3gi90DwPr5Xw74WuobCSy0aKCIPcJDaCZmlkVy0knnuziV94V8JsT+3D/g0b/4KReJf2rf2UNT/Yz17wvb6VF8A9L0q0ttWhuWkbUo9UnvnXfCYwIjEsIXId9+c4XpQB/IX/wRZ/5WL/h5/wBj5r//AKJvq/00f+CqX/BQ/wAC/wDBLz9i3xN+1n4002TXJ9OaGw0jSo3EZvtTvDtgiMhzsjGGklbBKxoxVWbCn/K+/aI0j9q7/gir/wAFg9T+LV14bax17wX4z1DW/D0mrW0p07WNOlnl8uWNx5ZlgngkKs0bhkJKkq6kD+qr4i/HH9qT/g53/wCCDfxT8TaF4I03SvH/AMOPHdvdaNomjSzMupJplnDNLGvml2ad4bycRJnDuqKME5oA/Nb9nD9vr/g5z/4LoePvEMX7JfjFfCHhrR3jXUJtGW30DR9MafJSMXbLLfSuwBOxZZpAOSACCfC/+Cvn/BEz/gp1+zD+yPd/tof8FF/j/D8TLnStTstOstMOq6prsgk1F9rFZ9QWERBVXJEaNnGOAM18tf8ABJD/AILn/tQ/8EQ7jxn8Dp/h/aeJNC1nUhd6poGtedpeo2WpQoIWKy7GaMsiqskcsL/cGNp3Z9Z/4KW/8FUf+Cn/APwXm+E2pXPhv4WT6P8ABf4Vb/Emq2/h+2nu7WCWBDF9ov7+QBZHhjmfZFGseEZ3KNtLqAf0T/8ABkV/yaJ8av8AscLP/wBIlr+22v8AMq/4NBv+CkXiX4JftWw/8E4ovC9vqWl/GXVLrUm1lrlop9Ol0nSrq4IEIjZZllFuicumzJPzdK/01aAPyO/4L0f8odP2hv8AsULv/wBCSv8ANQ/4N8v+CXnwM/4K0ftl+J/2dP2gNa13QtG0XwXeeJIbjw9Nbw3LXNtfWFqqM1zb3KGMpdOSAgbcF+YDIP8ApYf8F51Lf8Edf2hgoz/xSF2fyZK/h2/4MqP+UpXj/wD7JXqn/p30egD97IP+DKX/AIJkJMrXHxE+J7oDyo1DSlJH1/so1+s3/BPz/ggB/wAEz/8Agm/4wg+KXwS8IXGt+NbRWW28R+Jrn+0b+2DAgmBQkdvA5UlTJFCkhUlS2CRX7T0UAfye/wDB5R/yiS0r/soOjf8ApLfV82f8GSPgjRbD9iX4w/EiCNRqOq+N4tNmfA3GHT7CCWIE9SA13Jgds+9fSn/B5OrH/gkjpZAzj4g6MT7f6LfV49/wZPo4/wCCcXxMkIO0/Ei6APYkaXp2aAPiv/g+S0TxFJB+zX4jUltJibxXbMB0S4k/sxhnt86Icem0+tfnP/wS+/4Jlf8ABwb+0d+w94L+Lv7C37Qz+DfhhqR1FNI0SPxjqumfY2gvp4rhTa20DxRF7hZJcKx3B955av7af+C8P/BLVP8Agqx+wvqPwi8IGC2+IPhm5XXPCV1cv5cX26JSklvK+DiO5hZoyTwsmxzwmK/z+/2B/wDgrz/wUk/4N4vG3in9kH4reARdaOb5r298IeJlktJLW8cKjXNldRbvknRF+ZRNBIAHTklmAP0u+Pv/AAb2f8HIvx9+H7eAv2mf2htK8W+F/tEVy9h4h8batd2Rnjz5bmOe1aMsuTtJGQTxX60f8Elf+CVP7S3/AAS0/wCCX/7W3hP9onXPDusHxf4d1O808eHL+S+gjFrpN0kpkaSCHa7b04G7IXnHFfy+/wDBQH/gr3/wUg/4OIvE3hv9kf4L/DR7XQrS9XUYPCvhhJtQuLm7AMa3N9dMFURQB22kpDDHuLSEkKy/21fsV/8ABM9/+CVn/BCX4lfs8eJbm2v/ABlqnhHxTr/ii7tMmB9TvNOkTy4mYAslvDHFCGwN5QuAu7AAP4zf+DPbXPB+k/8ABYKGx8TOiXup+C9bttJDsFLXitbzMFB+8fs0c5wOcAnoDX+q7X+Gp+wh4T/bL1D48RfFP9g6w1O/+IPwztH8XQf2PGLi9ht7GWKOSWO3IY3AXzlEkIR90ZbcpQNX9M3jn/g9H/b51L4NXHw90b4a+FfD/jlreS0m8RKbmRYJiuwzRWErFUmRssBLJJGGwGQgEEA/MX/gvbd2XiT/AIOA/iwPgdLGbt/FWh2tq8RDAatFZWMU/wB3+JbxZAw6hgQea/tC/wCDjb/g4G8d/wDBLXVfD/7MH7LWl2N58T/EumrrV3qeqxG4s9K02WSWGIpCHXzLmWSJyvmHy40TLK+8bf5kP+Dcn/gkZ+0R/wAFA/229F/4KEftIaZdzfDLwvr0niW91fV9wk8R67G5uIkh3jNwouis1zIQYyFaMks2B93/APB5L/wTr+PeufHjwt/wUK+GmgXmu+C/+Ebg8P8AiGaxje4bS7qxmuJY57hVBMVvLFMEEv3FkjIcqXTcAcj+zx+zN/wdl/8ABVT4VaX8eLz443/w88I+KoFvNNub/WW8NG8s5hlJorXRLYzLFIpzGZI0EikMMowY/wA9P/BaT/gnL8ZP+CZ/7U2h/CT9oH4hp8TPGPi3wva+KtT1ZPPfZLc3V3aeSZrl2mnKi0D+a6oSHxsG3J/Zb9kL/g8Q/am/Zm/Zd8Nfs7+LfhV4f8Z33g/SLbRdK1pr2ewZrayiEMBuoESQSuqKoZo3h34zgEk1+JP/AAVL8R/8FJP2mviFpf8AwUO/b98H6l4eg+KYkg8O3E9g+n2Bs9PVNkFnDITIkCJKrRtISZgzSB5DuagD++T/AIKGf8qhemf9kg+HX89Ir8dP+DHjwRot/wDGT9oT4kTxqdR0nRvD+mwPgZEOoT3csoB6gFrSPI74HpXSeE/+CkHib9vb/g1S+OXw28R+FrfQH+BmgeDPBcV1b3LT/wBpRWdxYRpcNGY18likS7lDOM5IIHAv/wDBjUj/APCQftMSYO37P4RGe2d2q0Af2V/8FJv27/h9/wAE2P2NPGP7X3xFsZtWt/DcMMdnplu4jlvr+7kWC2gDkEIrSODI+G2RhmCsRtP8B/wC/wCClH/BzB/wXM+K/iDw9+xv4nj8IaDo4jfUf7CjttF0nSUuC3lB76ZZb15H2ttRZZJCFLBAoJH9n/8AwX7/AGIPiT/wUB/4JdeP/gT8F7YX3jK2ey1zRbMv5Yu7jTZ1leAE8b5YPNSINhTKUyQMkf5yf/BJ3/gtF+1X/wAELvG/jj4WXXw/g1nTtfuYG13w34gSfS9QtL6zDIrJJtLwvtcrIksLggLgKRkgH3J/wVh/4Iff8FVfgF+xj4i/bW/4KN/tCw/EYeFLiwS00dtX1TXZGm1K6itcLJfpAkGxZCx8tHyF2jg7h+tn/Bjr/wAkl/aH/wCwv4d/9E3tfiv/AMFEf+Crn/BVH/gvx8GNb8OfC74STaP8G/hsr+JPEEHh+Ga9jRrOMsJL7UJQiuYULvHbxJGSCXKSFFKegf8ABpX/AMFIvEn7Mf7Y3/DD9r4Xt9Z0347arZxyam9y0E2mSaXbXkm5YwjiYSBtpUsm3GcnpQB51/weCf8AKYa7/wCxN0P/ANr1/px/smf8mrfDP/sVNG/9I4q/zxf+Dy79kL41aH+3D4e/bEsNAvbzwD4h8LWOlz6vBC8ltaanYzTq0E7qpWIvE8TxbyPM+fbnY2P1R/4Nw/8Ag4D/AGlP26vjn4U/4J9/F7wjoFvp3hfwTKU12wM8d5cto628ETSRvI8QLoSZNoUF+VCj5aAP5hP2c/8AlaD07/s4W+/9Pk1ffn/B6zYa7F/wUy+Hep3Yb+zpvhnYx2zYITzI9U1MygHoWAdCfYrXwP8As5RSt/wdDafGqksP2hL8kY5GNbmJ/IV/dN/wcg/8Eb/EH/BVH9mHSfE/wGtrd/i98OZpbjRI55Vt01Kxudv2qxaV8IrsUSWBpCFWRCpKrIzAA/Qz/gjNrvgnxF/wSb/Zz1D4fPHJpyfD3QLZzEwYC7trSOG7Ukcb1uUlV/8AbBzg1+fH/B1zrvgnSP8AgiT8SrDxY8a3uqan4etdHV2AZ75dTtpmCZ6sLaKdiBzsDds1/El/wTt/4Lsf8FEv+CF8WufsZfErwOms6DpV9LI3hTxVHPp97o91Ixab7NKo3RxzMd7I6SRs3zx7S7luJ/bM/wCCh3/BT7/g5I+PPhb4B+AvBn2my0uUzaT4Q8NRubO3mfKPfX1zM2Nyo2wzzPHDEmQqqXcuAfvp/wAGOFhrsfhf9pnVJ1YaZNceE4oSQdpnjTVDKAemQrx5+or+fv8A4NZbW3uf+C5fwaNwiv5cPiR13DOGGiX+CPcV/o3/APBE/wD4JiaN/wAEqf2E9G+Al69ve+NdXkbW/F2oWxLxT6rcIqtHEzAEw28apDGcLu2mTaC5Ff5zX/Bq9FIf+C5Xwfwp+S38SluOn/Ekvhz6cnFAH+u8QCMHkGv8hn/g1m4/4LofBkf9MvEv/pi1Cv8AXnr/ACGP+DWf/lOh8Gf+uXib/wBMWoUAf689f5gn/B6t/wApTfAP/ZKtK/8ATvrFf6fdf5gf/B6sQf8Agqd4BA7fCrSv/TvrFAH9f3/Brj/ygo+Bn/czf+pBqdfv9X4Bf8GuQI/4IUfAzP8A1M3/AKkGp1+/tABRRRQAUUUUAFFFFABX+IN/wSd/5Sm/s0/9lV8G/wDp3ta/2+a/xBv+CTv/AClN/Zp/7Kr4N/8ATva0Af7fNFFFABRRRQB/AH/wW91i2h/4KXfEqzCATRvozb88kHSLLAx+tfmt4K8PS6neR63cLHLFbsJ2jkPyuqEZX3zX29/wXQ1FoP8Agqp8U4AD10P/ANM9lX50eDNXup5o7TzBGm4ck8Dmv1jAUv8AYaTX8sfyPlK1eP1mSl3f5nrHxh0fU/FWoTeIobRNO0+eV5oLW3GIIt/UIPTivmdLq70iaRYpGjYqY2wcZU9QfY19mXvxN0/UPDsukXUIkaNCiEdB2yBXxvrNuqTvu5YnJrswMpuNpLY4c4o0YyUqb33KslwJpHkjGxT0UdBUgkkkIL5OKhjgkdGYdBjntViKBVlXz8hSecelelG54jt9o07NofMbznKqEO3HJ3gcD8TWlbzEj5iTxxWLEFjuRJHyqtkA9xmteBN48w8Z6Cuqne5hUUbXZqRFj8/atgXc06qH/hAUYHYVU068Ony71RZMqy4YZHzDGfqKv6VLa2d1HPdx+fEh+ZM43D612RbTPLrpXLMDNnNa0UrqomA+XOM+9ZCESsXVQAe3pWjDCY4xk5BIyK7qbtueTVS1O7sNTSWyhsooQkiOzNLk5YHGAR7V3ViXkiDTHIyAcCuB0iSzs5XW8iMu5CFGSuGI+Vv/AK1dlYPKyho+2DXbG9rHG3qeiaO0QinQW+84+VySNh9feu0gmE5iVIRBtUAnJO4jvzWF4E1+y8OeIbTW9SthdpbyB3gf7kgHOD9a9O8X+PdJ8UeI77VtP06Cyt7whkhj6Q+yVk3Ln5VHTvcyrxi4OV9e1uncfockUUhNwPu9DmvqP4XeLz4anh1TRmeO6jfIYdhXyDpNzLcSmO3BfAJPrgdfyFeteGtTeMq8Lht46DtisMZSU4tMjL6sqc04qz7n71fsh/EE3+ria8mJdiCcnJJNfrgL+38Q2v2WM7sjHFfzA/Aj4i3nhfWIblpSiZBOOOK/dz9nr4yWfi+MQqw3kV+NcU5XOnXdaK90/oPhTMoV8JGlJ++j2OGMeDvE0N2B8hPNfSVzDZ6vaJOPmSQc14l4zgtb+18wfeC5BrjfBfxkTQg+k6r+8WIkLXzXJKtBOO6PVr01Slfo/wAzkf2hf2f9B8T6HNceQpLA9q/jw/4Kdf8ABLjwl8VVudd0q2XT9cgyYbyNcbsdFcD7y1/Zn4v+LFv4hjMMQ2pmvjH4qeCNE8c77UqrM/XIrWnhJKHvIx+KSaP8oj4r/Cjx78DvGF14N8dWjWl5CxCsR+7lX+8h7g15q6R3SFrf5Xxyv+Ff32/t9f8ABMjwX8Y/CFzBrNgPNVWaC5jXEsTeqn+lfxP/ALSn7LnxD/Zn8YyaF4piM1i7sLa9QfI4B6N/db2rmjK+h1VaThufNkTARrb3ILJ191+le3/s6/D0+NPjLoejEb7RZxczP2EUPztn06V5Auy6HlyDbJn73Y4r7O/ZVhk8LeG/GvxGuBta3s1sLYnj99cHnH0WipLli2RGN3Y/Wf8A4JoeCNE+O37beu+PvEiiW28PWc91bRfxM5bYgX6KOK/ZH4zeGPjV8ZdFX9mTQpVstOvfMuLWGQYXzM70eVhydh6dhXwf/wAEWtA8NfDvw7P8WvFUatdeJtS/smzLf7uSfoTX7mG80z4e+PZ/EWsyme4tI5Ukdhnyg4ygzXXGEbqi/spJ+u7/ABucXtHK9Vddfl0/Cx+Sv7Y/irR/BnhnRvgZ4y1CPWdZ0CytvMZvmJaLgy8/7WQK/NjRPjl4r+F/xO8cfHDxPfPqeoS+Hf7M0+aU/NHGw6D6cBa9y/aW0DVvF3xC8T/EbXJ0dtTv0igaNt3l2kI4BPYkkkivgnxhpt5458feG/hPo6faJNWv44pEBwXijYHGfckCuXEatm1PRH50ePf2i/2ifAOtN4a+H/iPU9MtJG864WzkZEnvJvmkZsdWycV2fw5/au8X+NvJ+HfxrvriVFJIunVfMQ/7WQCcevWv1r/ai/Z0+FXww1LUNG8SLdaTqOhbLxbO7hxDPLkZ8iYAbufevyw8Qfs56z+054kfxT4Rlj0m/ndkFvNv8shMDJldjzzgCuFrubXP0d/Y78CeKfFWraV4V+FM+qWviHV7qSLQr60kdbd2bgu5AIUKMlgcg1/XN498R/D/AP4JYfsTt4v+Iup/2rqml2/m3t7KFFxqOoyLgBcAZJbgccCvkX/ghL+xBrX7Bn7P9z8Z/wBomaKTX7n98tpMxeCysByZOchWYckjHFfzJf8ABcL/AIKj+IP23/2jrvQfh/K9v8PvC8z29pboSkd1Ju+aYjvnHy+1TYZ+Rn7U37SPxQ/ap+Out/Gb4l3LyXmq3BdIXJ2Qwg/JGoPQKOK8s0+9tCd9iWGB+8jJ447qazJdRN1fG9mTduOGT72R6VdvfskV4b2yiFpKmCI+eo9j61Qj+nf/AINrNPm8UfHj4g65cTcWWiQojOM53ynjPOOBXzr/AMF99U1C8/bFOhywOv2a0hCIT13Dg8V+g3/BsFpVnc2/xV8WXloIJW/s2246tne5NfF//BYOfQ/GX/BQPxDNeeeqWkcJDpCZR/o4UlT/AHc+tLqB+NGufCfxdZ2cFzMpSGKNSrbsFzjPDDpXReGJPGugGLWlle+s1Yh1bJkBxzuHU/WvedJ1bTviR4nax+HE5sDKwWVLkgRquP7rcHnt2r3j4R/DPwx4r8YXOgeNru28O31upiifdtguQR1DcrVN3YbHoX7N37Q/xg8IeE7q9+FWt65odkkuy4aJ2+yKwG5iyElcBeelfeP7HUviDXdI1X4meNRLf6v4yumv5ZZGALQINkAJ7fIM4968C+NPwAtPhX4E034baBc3U+r+MLoW+2OT9x9nVQ9xKFXr8gC5P96vqP4eWF/4D8LiC4LLsh2RRqpBCqMDHpxgVMrrQFbc9a0nxNqWueNv7J1CCOZ4G2iKJzsQe5xzXt/xJ+IV7p2k23h8W0JWYhAoDEhTwO9fKPw98WXmhzSajFaSK7E/Pj8+TXZ2HxBW/wDFUF/eoryNIBCkp6sTxxUDPd4NHj+H+lLZw6k4k1DDMpVeCeyiqD6X4Sk8Rrpdosy6lKVLO8hJGPTsM9au2/gjxXf+KoPFGuyxyOWAt4cEgH1/CqnxIhg+H/iVNbu5pG1jUj+7jUABVHGcUAeM/taeJNF+Ffh7VfiD4gVYrXwzYtPJK5y80gH7uMHtucqo+tfyYfD7T9X+JXja98c6/J5t3qN288pJyzPKxYnnt2r9cv8Agst8WrzS7Dw78DrK+ee91sLq+pLuOVhUlYEYf7Tbn/AV8Efs2+C7i5urdLePe4G8geiDJP4AZr6bJcPaDqvr+RwY2orqB+lDfBfwNoHgDRdU8L3kl3e3NuWvkZNohkBwAD3yOa8z1Lw7NFA2/pjivsXw5qUX/CGxR21uJtiZOB047181fEPU3tLxYlZG85N5VP4CTjaeOte7hpz+F62OPG0KUYc3c+cdRsngkYLnGaZpVjJNdKDk816dYeH7rWJTLDGW8tS5+grqk8MsEiZYRGI0Ccd8dSfeu2piklZvU8fC5POpLn6HTeA7IrtK9ecfSv8AV8r/ACqvCaxWMoDjGOK/1Va+LziblOLfn+h9rGnGFKCiFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8pnf+CkX/AGO1p/6X6vXjkn9d9FFeefFfW/iD4d+Hup6z8KtHh1/xDDGPsVhcT/ZoppCwGHkw21QCSTg9KAPQ6K/KPwV/wUL8cfD34g/EP4R/tleGbLw3rXgLwcPHklzolyb2zl0gPLGwYsFZJleJgFPDDkVV+BX/AAUO+KOv/ELwL4d/aQ8CweDNJ+LWiXuu+Erq3vPtMnl2MAu3t7xdq+XMbVvNG3I4ZeooA/Waivxo+Ev/AAVB+IfjDUvht8TPH3gKPRfhT8Y9ZGieFdXS782+E0+/7HJdwbQEjuvLO3axK5XPWm3P/BUjxpFcXfxuTwTD/wAKOsPGH/CFzeIDd41A3Iuxp7Xa2+3abZbs+Xndu2gt7UAfszXinif/AJLt4T/7B2qfzt6/N/4y/wDBTf4g+DPE3xN8V/DTwJH4g+G/wUvIrHxhqr3flXZl8pJ7n7HDtIkFrDIrPuI3HgdK/QefX9J8UfFvwN4h0SYTWuoaNqF1A4/iimFsyNj0IIoA+hKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqOpXNzZ6dPd2cJuZYo2ZIlOC7AZCgn16VeooGj8xvFn7Y/7XGieKtJ0bTPgNqk9tezPHLJ9sibCqOCCOFz/tV90fCLxp4z8eeEV17x34an8K37SMpsbiVZnCjo25OOa9RoqVCzbu3fvbT00R6OLx1GtShTp4aEGt3Hnu9XvzTkvLRLYKKKKo80KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyX4w/DHUfir4di0HTPEepeGXjlEpudMkEcrADG0kg8V81f8MX+Lv+iu+MP/AAKX/wCJr7vopa9397R3UMwrUYckOW3nGL/Fps+EP+GL/F3/AEV3xh/4FL/8TXA/Ej9gLx5418N/2Jp/xl8W20nnxS75LgOMRsCRgAde1fpbRUzhzRcXJ2f95/5nXQz7F0qkasOS6d1+7pv8HE+C4P2LPGEUKRN8XvGBKqAT9qXnH/Aal/4Yv8Xf9Fd8Yf8AgUv/AMTX3fRVWf8AM/8AwJ/5mX9sYn+7/wCC4f8AyJ89/Bf4G618Jb69vNU8Z614oW7RVWPVZhIsW3PK4AwT3r6Eoop/P9Thr15VZuc7X8kkvuSSCiiigxCiiigAooooAKKKKACiiigAooooAKZJ/q2+hp9Mk/1bfQ0AfxS/8HL/APyZr+yr/wBlci/nc1/a7X8UX/By/wD8ma/sq/8AZXIv53Nf2u0AFfyH/wDBqD/zd5/2Vm7/APatf14V/If/AMGoP/N3n/ZWbv8A9q0Af14V/KF/wc5f8E+JPjX8H9P/AGrPANl5useF0aDUhGuWktTgqxx12HP4Gv6va5bxt4N8PfELwlqPgnxXbJd6dqkD29xDIMqySDBGK1o1ZUqkakHqtS6dSVOanHdH+J7NDJbytDKMMpwQfaoq/ZL/AILOf8E5fEn7Bf7T+oaVYwO/hfWma80y4C/J5bsfkz0yvSvxtr9Xy/GwxVGNWHz8mfoeDxUcRSVSPz9Qooor0DqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK6Dwp4gk8K+JLHxJFbw3bWUyzCG4XfG5U5wwrn6Kzq0o1ISpzV4tNP0ZdKpKnONSDs07r1R+0ejftUfDDU/hrP8Qri4+zyWgCTWDEG4EzD5UUcbg2DtYcYBJxggfkt8SfHup/Ezxne+M9Wijhlu2BEcQAVUUYUZwCxAAyx5NcLX11+yN8JvCXxG8Xzap4quYpV0rbKmnMfnnPZmB6xqeoGcnAOBwfzjBcN5RwdRxebx5pLp1cY6WgvWVvefld6Nv8ARcZxHm/F9bCZTLli/uUpa3m/SN/dXnZapL5MuLa5tJPJuo2ifAba4KnDAEHB9QQR7VBX7CftWfCr4feJvA9z4016ePStQ02L9zd4/wBZ/dhYDltx4XHKnkcZB/Huvf4O4so5/gvrVOm4Si7ST2T30ls1+K6ra/hcX8K1shxv1WpUU4yV4tbtecd0/wAH0e9iiiivrD5QKKKKACiiigAooooAKKKKACiiigAooooAKKKKUgClHWkr3D4A/BDxf8e/iLYeAvBVubq8u54okiAJZ2kYAAAfr6CuevWhSpupUdkjOrVjTg5zeiP3D/4N+f2Abv8Aap/aOtPE3iiyc+HNAlS+1F2UhWWIho4v+BsASPQV/pbW1tBZ28drbKEjiUIqjgBRwAK/O7/gmL+xBoH7Df7NOmeAUjR9ev1S71a5A+Z52UfLn+6gGBX6MV+UY/GSxVeVaXXbyXQ/PMZiXXqyqvr+R/Ih/wAHFf8AylT/AOCZP/ZUbj/06eHK/rvr+RD/AIOK/wDlKn/wTJ/7Kjcf+nTw5X9d9cZzBRRRQAV/IF/werf8osvAP/ZVdK/9NGsV/X7X8gX/AAerf8osvAP/AGVXSv8A00axQB8Af8GMX/N0X/ck/wDuar+/yv4A/wDgxi/5ui/7kn/3NV/f5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Q/v4ooooAKKKKACiiigAooooAK/Bv/g5w0+TU/wDght8draIZK22hS/hDrenyH9Fr95K/OH/gr98B9a/aY/4Jg/HT4LeGbdrvVdV8IajLp9ugy015ZJ9qt41H955YVUe5oA/gG/4Mv9Sisf8Agq54rtZDg3vwz1eFfcjUdMk/khr/AFF6/wAd3/g25/as8Nfskf8ABXv4YeK/HNytloPiuS58J31w52rF/bEZitmYngILsQb2OAqZJ6V/sRUAFFFFABRRRQAV43D+zp+z5beLD49t/Anh6PXTydRXS7YXZ5z/AK7y9/XnrXslFAGN4g8OeHvFmjT+HfFVhb6np90uya1u4lmhkX0ZHBVh7EVzXw++FHwu+Eulvofwq8NaV4ZspW3vb6TZw2UTMO5SFUUn3xXfUUAZmraLo2vWv2LXLSG9hzny541kXPrhgRVixsLHTLVbLTYY7eFOFjiUIo+gHAq3RQB5P41+AvwM+JWsQ+IfiL4L0LX9QtyrRXOpadb3UyFRgFXljZgQOmDxXpVhpem6XYR6VplvFbWsS7EhiQJGq+gUAAD2Aq9RQB5V4T+BPwP8BeJbnxp4F8G6HousXpY3F/Yadb21zKW675Y0V2z3yTmvVaKKACiiigAooooAKKKKACuB8f8Awp+F3xX0+PSfil4a0rxLaxElIdVs4byNS3BIWZXAz3wK76igDivA/wANfh18MtM/sT4baBpvh6y4/wBH0y1itIuOnyRKq8fSvB/28P8Akx34zf8AYi+Iv/TfPX1bWTr2g6H4q0O98MeJ7KDUtN1KCS1u7S6jWaCeCZSkkckbgq6OpKsrAggkEYoA/wAt3/gzZ/5S3ap/2T7Wf/Sqxr/TO8V/s2fs6+O/En/CZeOPAPhzWdXyG+3X2lW1xc5AwD5skbPnHHWuH+C/7D37Ff7N/iqXx3+zx8H/AAT4C1ye2ezl1Hw54fsNLu3tnZWaJpraGNzGzIrFCdpKg4yBX1FQBBbW1tZW0dnZxrFDEoREQBVVVGAABwABwAKldElQxyAMrDBB5BBp1FAHjuh/s7/s/eGPE7+NvDXgXw9p2syEF7+20y2iumI6ZlSMOfzrvfF3gvwd8QNBm8K+PNJs9b0u5GJrO/gS5gkH+1HIGU/iK6WigDjfA3w6+H3ww0RfDPw10LTvD2mq24WmmWsdpAGPcRxKq5/CuyoooAK8q8dfAr4IfFHUIdW+Jng3Q/EV1bFTDNqenW93JGV6FWlRiMdsHivVaKAM7S9I0nQ9Pi0jRLWGztIV2xwwII40X0VVAAH0Fec+HPgP8DvB/i648f8AhHwZoWla9dkmfUrPTreC7lLcHfMiCRs98tXq9FAEc0MNxE1vcKHjcFWVhkEHqCD1FZOkeG/D3h8ONBsLay8w5f7PEse4++0DNbVFABRRRQB5x4/+Dvwi+LCQx/FPwro/iVbbPkjVbGG8EeeTt85Hxz6Vp+B/hv8ADv4Y6SdB+Gug6d4esWbebfTLWK0iLYxnZEqrnHGcV2lFABRRRQAUUUUAFf5c/wDweganFf8A/BV3wraxnJsvhppELexOo6nJ/JxX+oxX+O7/AMHI37Vnhn9rf/gr18T/ABX4GuVvdB8KSW3hOxuEbckv9jxiK5ZSMgobsz7GBIZMEdaAP9D7/g2Q0+TTP+CG3wJtpRgtba7L+E2t6hIP0av3kr84f+CQXwH1r9mf/gmD8C/gt4mga01XSfCGnS6hbuMNDeXsf2q4jYeqSzMp9xX6PUAFFFFABRRRQAUUUUAFf4g3/BJ3/lKb+zT/ANlV8G/+ne1r/b5r/EG/4JO/8pTf2af+yq+Df/Tva0Af7fNFFFABRRRQB/nP/wDBdmbb/wAFXfisp6D+wv8A0z2NflPp99LGvnL9wEA4Pfn/AANfqJ/wXnkKf8FXvisR/wBQL/0z2NfkrYSZ6H3xX67lj/2Oiv7sfyR8Hjb+3qer/M9s0cTNbm4jfn7p9ee+K1/+EL1DWHMkCk461U+HltFd3Mc11J5YXLA4zkjoPxr9LvhRo3gzXdHW1ezP2yUqAR90jvmrxOMdHWx6eXZX9bdpbH5b6jouoaLI1lLwH6r64rMM0kwSKY4CEhR2Gea/Wz4s/suaMttPfIMuCDHtPQ/4dq/ODx94HufC9/sKFFXpx1rpwOYUsSvdep5mcZDiMFJykrxPOrmBLS7eFGEqoxUOOhx3rQtGypGe9ZpmkEZt3PyglgPc4/wq3abixUe2a9amz52o7o3QoPI5q3D0FQ2zPFMkkRG5CCO/Iq7O8hnc3I2yliWBGME8niuuJ5tRN7GvZRwGeNJiVQsNxHUDvitGG6eFXt4W/dFt3I5ODxXMicM3PH6VtWstqqyfbGYfJ+724+92z7V1wmup59SnLY7GbXJNSvZNQvNvmORkKMAYAAwPwrpdK1uEXUaq4jAI+ZuQPrXkkc3zADn0rtdIupPD+qx3dzDFc+UMlH+ZG3DvXZCquWyRxTp+9dnpdzq9yZvtF4MNc5kU9MgnGfatiy1EzSrHvEYYgZ5OK8y0zUmtrmO5ZVlwThHG5efaum0mULLg87zj1xXQtrGVz2uG7tbNIv7PnaRyreYQNoB6YHqCK7Tw1rMdmdx+VsjBrxS0vvLkdEIZQSMjv712Ok6hY29wkmpI0sG4b1B2sc+hqJQ93UwlTaknE+stF8eRm5R0YybcKSeOBxX2h8Dfj5f+ANSjms5mKOwyT6V+WGjanBBOdShkbMTjy43HG33PqK9V0fxO32lIxJuJwcr93mvFx2WU60HCS0Z7mU51Ww1VTTtI/ql+FHxHvvinpazW77kcDJPvVb4ieCr/AMPS/b7fLK55Ir8/v2KPjjZ+HVgstYfbDMcKxI7de9frU3iHw945h8u0lWZNueDX4tmFGeBxcope6f0Pl1SGPwkKl7tr8T4n1rxJNpsJDcDdjms3wz4ml1DVvMKZAxgda7/4r+BVa5W3sR8zHIA6816V8J/guYEiudRAHSt542iqHM92RDLaiq3fwoxPF+kaf4r8OiyaBd8qY5Ffy9/8FBv2ZtAvtV1DRdWskvLafd5kLgFSD3B7EdiK/qL/AGlvFGhfDPw7LPBKqOi/Lt7mv51Pit8R4PHeqXkmqy5kkY43c108PZT9ccqnL7pw8UZlTwlGEL2k9j+Oz9o/9j/XPhMZvFHgkS6hoiEmWNhme1/3gPvL7/nXfx+Grjwp+zn4R8JIjNfeJbhtQkGOSrHZEP61+3/xU8BwXLSXMAB8wEHA3BvYjuD6VufBWD4UfGXx74U+EPxF8CxSLoCSXUF9AxQq0I3fMBxsGOlTmWQVMLP2lr01q/lqeJgs7hXi6TdpvT79D1jwP8JdI+FHgrwf4J0yZluNAsoL+dh0+1yAPn6jpX61+NtC0z4g/DPTfHdg6qdRsnS5JOFLAZ7/AMQPQV+V3j7xfBeXM+vW/wArXcrRgeiocKPyFfoT+yxr1n45+DOq+B9Vfe+gyC6EXd1cZUL79QPevlaFZ+0k31PbcUopdj8UfiR4JutK8SX/AIYfcbbUJg4OPuseG/WvxB+PHjG2+HHxT1Brq5uImt7wadFPbSGOVPL+eV0cdCCQM1/UT+0D8PtZh1d9fFmbZLsiSFW5wzZwDj6V/OD48/YR/aP/AGjvite2/gKzT7FoRE17dXBIU3E7lmbZjcwJxyOMVeKhZqY6UtLHReBv2g/2gNC8Jx3ngNZviH4TIb7Zp2v41SHc38K5/eRn3Br+oX4SfsR+BPGFr8MfjxefDy18EaLZ6VFe3Gn20jSGW9kwxEmScx55Gfxr8QPhp/wS1+MHijxPDJc6v/wiAgSMXzaTA9vHO3RmJY4J2+gr+iL4i/tZeHf2Kv2brL4c+Dbd9furTTRaabYO5lnBVSvnPuySobkj8qzpSjrGfUqSejiflx/wXT/4Kn29t4Mu/wBj34CahNBr95CkesSaehdVt/8Anhlfukj73txX8jqfDT4n61Cv27TLi4a5iHlyOuwZ7Bs88fSv1l+F3hHVPir8a9a8cahfWuneJ5y07TXS7YJHYk+XIpHygkgZ7V9wfs8/s1fHH9r7wB4sOkeCoLPWPBOorYy+W7D7TO4z+4YAqVXI5PFZqLbtHUu9ldn4D+F/2OfiDfaJ/abyQO0ud0KEvKuznIA71674S/ZC8P6zc28fimS+nk/ijxsyD2z7V+5n7VuheHv2W7nw7c+OdLm0DXo/KS6mSEojOBhicfIfTrzmvlq+/aj+D+sXlxM1n58jOWKuBEBjurE/pRODi7ME09j90f8Aghv8EvCnwd+E3im08KWk1g+o3sZkllbe7LHHxtPPHOK/Of8Aab8EeIb/AOKXjr4m2SrqFpeazdRSrKMyOkZCfIcYHTp3r7j/AOCan7RYf4N6zd/D3SHu1k1GVfIjfznUhBnG3tX583H7SfxFvU1bw/omjoZF1W8Msc8RZ8yStkEn5SQagZ85af8AAT4Xalf6f4kbT1W1vHBEkI2usmcNn3Hoa9ttf2TTb+In1DwrbW2raSVM0scww4IGANnTB7471j2+vfFd55NED22nxXMhZ4iirhj7Y4PvVPxjafEv4c+GNQ8aS+IlklhjCW0CSNvmmlISOMYx952A+lMLH23+x34X0H4lfELxZ8dfFVotroHgO0/4R7SrdPnQzJh7yRd3+1tj/wCA16N4WtLD4m+NLjXdQkWCz37Y4gOAmeOg9Kr/AAx+FM3gb4IeHfgr4bkaS4ggE+sXSt/r7y4/eTE+vzk5+lfV3wo8F6P4dg3fu0jtRyTgbmpMaRzfiD4a+CNK0tmsojMoG0KicZ+pr4T0D4fS+JvjZbfYYZUW0kMiAY5KHI9q/Szxrrel3+pR6JbXA2ovz7RkFj9M15D8MorWL4g3t5o1tIz2KHcWUAMzcAZPSpsByniXVPHfhe9m8T6r5f2TTgVTOfvf418pL4+ufFviy/8Aih47lNja2cTyHPSOGJSWI3eij86+2viQL7xVr8fhryhBa6eplujI2VdzzgAYzX4z/wDBV34r6f8ACb4EDwdoUqRan4xkNnGkXVLSLBmb1+Y7U9+aulSdSaguopOybPwp+LvxN139pn9ofXPinrMjOt5clbZWP+rto/liQfRAPxr7O+EunppFtGsZKMABxwcEV8e/AnwjYTXNu+rM0UDsvmOoyyrnkgV9uaaLfT4/9HOQOAT1IHSv0bBYVKCitkfH4vG/vrtn0zoXjK9021eytZmRHG1lzwQOefxrm9X019TY3ZyxJyTXC6dr3nW62MqIFDbt+PmyeME+g6j3r2OLWIv7L+zxxopMeMj+Z96ucOR3R3UKqrQUZEngzSj5u1uBgg+9ekalbQxBbdFGDXiWmXur2Ma6nGshthKIWlx8gkxnbn1xzj0r6b8HPpPiO2aPUIRLM4QRtnBjIOSR65HFeXi01LmZ9Nlc4zp+zgtThl8I6u9l/akUTeSXKB8fKWAzjPriv9TSv87yPwno9v4XVJGEMDOWVD93ft6jPcgYr/RDr5vMK/tHHyuduPwTw6gm97/oFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8pnf+CkX/AGO1p/6X6vXnHnH9d9eI/tIeN/in8OPgb4l8a/BLwyfGPiyws2fStGEywC6uSQqqZG4VQTub2Br26igD+er9nf8AZo+Nvxx/Z2+NPwu/aC8FaxofxM+Lfh27h1rxfq80EkM1xcRNFDZ20cRLRWttu/dpnGMk/MTW/wDDD4NftR/tM/Er4GaR8afAU/gHTvgd4d1Wz1W9uLiOaPU9UvNN/sqMWYj58kKzzlnwfurjqa/faigD+bz4R/s5ftc+Lfh7+zx+xF4+8By6Fp3wM8Tadqus+KXuI3sb+z8Ps5tfsiKfML3JMe4MBsw3Xisq+/ZP/aob4C6n/wAEw18EztoV/wDEN9di8aieP+z10GXWBrDbkz5v2kfNBsxgths4r+liigD+c34w/s8ftafD/SP2kP2UPhn4Fl8R6X+0Bq02oaN4kSeNLTTV1e1itLwXisd4MHlmRNoO8EDiv2C8NfDnSPhx8Rfhv4atAJZ9G8MXOk/aCPmkitEtUXP5Z/GvrCvFPE//ACXbwn/2DtU/nb0Ae10UUUAFFfNX7Q3xA/aD8Cxaa/wK8HQeLGuGcXQmuPI8kAfKRyM5NfMf/DQn/BQv/ojdj/4MB/8AFVpGjVkrxjdeq/VndRwPtIKftYLycrM/TGivzO/4aE/4KF/9Ebsf/BgP/iqw/E37SP8AwUW07w9e39h8GrMzwwu6Bb4OdwHGF3c/TvTeHrJX5Pxj/mbRyvmko+3p6/30fqbRX5OfDz9pv/go9r3gnTNY1n4NWguriFXl8y78ltx9ULfL9K7L/hoT/goX/wBEbsf/AAYD/wCKpRw9ZpPka9XFP5q5VXKeScofWKbs7XU00/R9V2P0xor85vD3x6/b2vtes7LXfhFZWllLMiTzLfhjHGThmAzzgc4r9GaUqc4fGrfNP8mzhxGH9k0ueMr/AMruFFFFQc4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMk/1bfQ0+mSf6tvoaAP4pf+Dl//AJM1/ZV/7K5F/O5r+12v4ov+Dl//AJM1/ZV/7K5F/O5r+12gAr+Q/wD4NQf+bvP+ys3f/tWv68K/kP8A+DUH/m7z/srN3/7VoA/rwooooA/Pr/gpD+wV8O/2/v2eNT+FniqCOPVoo2l0q9KjfBcAcc9drdCK/wAqr9qz9mP4k/sn/GTWPhD8TNPlsr3TJmjG9SFdezKT1BHINf7LVfiJ/wAFiv8Agkn4J/4KE/Cy48Q+FbeKy8faVEzWVzgL9oCj/Vuffse1evlGaywVW71g91+p6OW4+WGqX+y90f5ZVFex/HP4G/EP9nz4ial8M/iXps2m6npk7wSxTLtIZDj8R6GvHK/T6OIhVgqlN3TPu6VWNSCnB3TCiiitjQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArZ8P+INa8K6zb+IPD1y9peWrB4pYzgg/wBQehB4I4PFY1FRUpxqRcJq8Xo09U0+jLp1JQkpwdpLVNbp90ezfFz45+NfjJPaHxIyQ29nGAlvBkRmTGGkIPVm7f3RwO5Pa/Az9mbxJ8Y7C612eb+zNNiR0gndN3nTjoFGR8in7zfgOc4+ZK/Wb9m79pTwf4h8KR+EvFDW2i32k2/HSK3lhiXlk6BWAGWX8RxkD894yrY7I8lUOHsOkk7PlV+Rb3Udb3e71tu+6/QOD6OCzvOXPiDENtq65nbne1nLpZbLS+y7P8xvG/gjxJ8PPEc/hbxVbm3uoD9VdT0ZD/Ep7H8+RiuSr6X/AGlvjnD8Y/E8UOjQLHpWmF0tpGQCWUtjc5OMhTj5V/E89Pmoo4UOQQrdD2OK+vyPE4yvgKNbMKap1pL3op7P9LrW2ttrux8jneHwdDHVqWX1HUop+7J9V+ttr6X3srjaKKK9Y8oKKKKACiiigAooooAKKKKACiiigAooq9p2n3eq3kdhYxtJLIcKq8kmonJRV29BNpK7NLwx4a1XxdrcGgaNH5lxcNhRX+hd/wAG/H/BJaH4C+BbL9qD446XGviK+hH9kW0seHgibkyuD/G3b0FfCH/BBH/gh1e6le6d+1r+0/pZjsIws2kadcLgzNwRKyn+Eds9a/uKtra3sreO0tEEcUShUVRgBR0AFfnOfZx9Zl7Gk/cX4v8AyPi83zP28vZ0/gX4k9FFFfOHiH8iH/BxX/ylT/4Jk/8AZUbj/wBOnhyv676/kQ/4OK/+Uqf/AATJ/wCyo3H/AKdPDlf130AFFFFABX8gX/B6t/yiy8A/9lV0r/00axX9ftfyBf8AB6t/yiy8A/8AZVdK/wDTRrFAHwB/wYxf83Rf9yT/AO5qv7/K/gD/AODGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9H+/iiiigAooooAKKKKACiiigAooooA/wAiX/g4z/4JOeK/+Ca37beq+PfAmmyR/CX4lXs+r+GbyFSILG4lYyXGmsQAEe3ckwjPzW5QgllcL/T7/wAEJf8Ag6M+C3xY+Guhfsq/8FJfEkPhLx7o8Mdhp/jHU5PL0zW4YwFjN5cN8ttdhQBJJKRFKRvLq7bD/Wn+1X+yf8Av22PgdrP7Ov7S3h238S+FdcTE1vMNrxSrnZPBIuHhmjJykiEMp9iQf84v/gpD/wAGhf7an7PGvaj44/YYnHxg8D7nlh09nitfEVnFknZJC5SG62jADwMJHOf3C0Af6dWia5onibR7bxD4bvINQsLyNZre5tpFlhljYZDI6kqykdCCQa1K/wAPdfC3/BTf9iy8m8Pw2HxO+FE0TkyQRx6rohDdyQoi/PvV4f8ABTv/AIKl6H+4H7QvxUs9vG3/AIS3V48fh9pFAH+31RX+IN/w9h/4Km/9HLfFX/wstX/+SqP+HsP/AAVN/wCjlvir/wCFlq//AMlUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f8A+SqP+HsP/BU3/o5b4q/+Flq//wAlUAf7fNFf4g3/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqj/h7D/wVN/6OW+Kv/hZav8A/JVAH+3zRX+IN/w9h/4Km/8ARy3xV/8ACy1f/wCSqP8Ah7D/AMFTf+jlvir/AOFlq/8A8lUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f/5Ko/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV/wD5Ko/4ew/8FTf+jlvir/4WWr//ACVQB/t80V/iDf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSqP+HsP/BU3/o5b4q/+Flq/wD8lUAf7fNFf4g3/D2H/gqb/wBHLfFX/wALLV//AJKo/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV//kqj/h7D/wAFTf8Ao5b4q/8AhZav/wDJVAH+3zRX+IN/w9h/4Km/9HLfFX/wstX/APkqj/h7D/wVN/6OW+Kv/hZav/8AJVAH+3zRX+IN/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Ko/4ew/8FTf+jlvir/4WWr/APyVQB/t80V/iDf8PYf+Cpv/AEct8Vf/AAstX/8Akqj/AIew/wDBU3/o5b4q/wDhZav/APJVAH+3zRX+IN/w9h/4Km/9HLfFX/wstX/+SqP+HsP/AAVN/wCjlvir/wCFlq//AMlUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f8A+SqP+HsP/BU3/o5b4q/+Flq//wAlUAf7fNFf4g3/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqj/h7D/wVN/6OW+Kv/hZav8A/JVAH+3zRX+IN/w9h/4Km/8ARy3xV/8ACy1f/wCSqP8Ah7D/AMFTf+jlvir/AOFlq/8A8lUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f/5Ko/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV/wD5Ko/4ew/8FTf+jlvir/4WWr//ACVQB/t80V/iDf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSqP+HsP/BU3/o5b4q/+Flq/wD8lUAf7fNFf4g3/D2H/gqb/wBHLfFX/wALLV//AJKo/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV//kqj/h7D/wAFTf8Ao5b4q/8AhZav/wDJVAH+3zWXreuaJ4Z0e58Q+JLyDT7Czjaa4ubmRYoYo1GSzuxCqoHUkgCv8Rk/8FO/+CpeufuD+0L8Vbzdxt/4S3V5M/h9pNUW8Lf8FN/207yHw/NYfE74rzSuDHBJHqutkt2IDCX8+1AH91f/AAXa/wCDoz4LfCj4a67+yr/wTa8SQ+LfHuswyWGoeMNMfzNM0SGQFZDZ3C/Lc3ZUkRyRExRE7w7OuwfzBf8ABuX/AMEnPFX/AAUp/bb0rx7480yST4S/DS9g1fxNeTKTBfXETCS301SRh3uHAMy5+W3DkkMybvtz/gm9/wAGhf7an7Q+vad44/bonHwf8Ebklm09XiuvEV5FkHZHCheG13DILzsZEOP3DV/o6fsqfsofAL9if4HaN+zr+zT4dt/DXhXQ02w28ILPLK2N888jZeaaQjLyOSzHvgAAA+iqKKKACiiigAooooAKKKKACv8AEG/4JO/8pTf2af8Asqvg3/072tf7fNf4g3/BJ3/lKb+zT/2VXwb/AOne1oA/2+aKKKACiiigD/OU/wCC7Flc3/8AwVq+K0dtC0vlposjheuxNGsSzfgM5r8ltC1CDTbibzreO5SeJ41EgzsL9HX/AGl7V+rn/BeS4lt/+CsnxXaJymRoanacZDaNYgj6GvyEV4/MzENo7Cv1rLH/ALJR/wAMfyR8Ljb+3qer/M+pfhbJo5vrZNTV5IS2HVDhsfWv1s/Z60nTobP7WsZxu+Td1x2r8VvApvbDULZ71WiSdPMjyMBlJxke3Ffrr8EPEjR6bHZK+QcH3rgzhWifZ8Le/r2Ptjx1fWGn6QsNmv2iR4szbwPkYZ4H4V+Zfxzt9L8XaKn2WCNZbfzCzKME7znk98Y4r9A77wrr/iDTWdQQkvVvavk/4g/DW+0KwuHuwy7ssARjj/8AXXk5XXhTkrPU+lzvAzrUuVrQ/KHXILKzvDFZ7sKoDbv7/fHtWZBc7Dubt+tdp41t207VZiIUYSFgC4zjPGR7jtXC2uoXNrFJbowKuGByM/e9PQ1+gU614qSPxPE4d0qkoNbHU2Syz3cVtMy2rScq8uQoHY9DwaZ/aE17K0k53Oep9aydS07VrKWCPVFIaWJZI8sGzG3ToTj6U6zt2aKSUttKEADB+b8a6YVXc82pBLU6iKU317Gs8gQttUseijpk/QVqxWbO8kCjeQcBhwOO/wCNUbW0tV083LyjzQ2NnfHrnpWm/wBqsykcoKBkVx7g9DXZTvfU8nET/lL8FoQNjA+YTwOta0O5cq/VevrVbQ7C91e8WxsWTzWDMDI4QfKM9TgdqiinBJMjZY967qckmeXNN6s7q0Y6RCJ9Tsw6XUTeQX4xzjeMehqxZavOlz9qjcrIOhHFZ2mwNLPBNLG99bpy8UZO4KOSOnFCR2srTMqPGp3NEg5wM8Ak9cCuyE11MpR7Ha29/KW+1XDcOc7j1Yiukt9TEjAtyinI9Aa8vt5EEZDThCgJCtnt2HuauW2rSOwiU4Vsda20Znseypfyo6CVim/DD6HvXo2l3wtWd45C0I+7IVwGP58V8/2N/NDlzhww25YdB7V6X9j1nSfJj1WKS3FzEs0SuNoeNujD2NZTt8LYRg200j6s+Hfj7V4Z4IrN9pQ4XHXJ/nX6/fs0eNviDcaHda9azs8FlsEowSQrcZ/D3r8UPCz6pbQx2lxbYNuBLvA+YIRwSR2r7a+GfxN8Q+GfDs9nps7xxXS/vFU4DD3r4niDCqvBxhFXP03hXFVMPZymz9pNJ+Jfh67uhqWsShpFGQW46fWr/if9sfwF4Y0RkSZPNAI2qcEEV+Bfir46+J7K2ltYbll+UnuSQP5V8033xU1bV7oyXVwWC8kE8fjXzNDg1VZc05aH22L41o04qKjeR9s/tW/tWXXju4e1tZyYnPAzwK/Mm/8AEE01w07sckk9am8U+I47onB65+leaXF0FHmXcogRkLoSN27HQYB4zX6NlWX0sLRVOCsfknEWbVsdiHUm/Q7V9da9geO4wVXk56n6V7P+z2mnaFP4j8d2kIBa1/s+InqGn+8R+FfIP2+J1WaQskG4CRk5Kg+me9fdUc/hnwr8KtD0PSLd7aXUQ+oSea25yD8qE+meuO1fOceV4UMvcV8U2kvzf4I7ODKc6uNvf3YK7/JfmeA+I9Hl1HXG0VSyxwMZCR2zzX2x+xrr+l+FvidDHJJ58Org28qE8fKMr+JPAr4C1v4kQw63d3QAA8sIxHv0r239lTTrvxZ8YrbSraVktYWS+ZwekUXzYz7txX4jB2kmj9ctfQ/RzxP4I8T+KvH+r2ulob65njjgEMkB8pLeNy2Fk+5vA+X1NY/hLTv2dPDF7caVqmn6l4f8RWw8+4TYV8tlIwpOdrE5BAz37V9saT4m0XRrQ6TaHaZAXM8fJDsc/jisfVfDem+JdPOh6jo1rqY1K6WS4vWJMm0nLM2e/GBxXrc0asFGOv6HNyuMnK581+IPgd8UfF3jJp7O8iCyAOqM7LIY2/iKD1HoSK/mQ/aY+Hv7bfir9o/4nfCbVIEtbuxaB9MmSVoIjA+fKZHP8OAcjrmv67ZfB+r6Tr1vb/BS5lgNjC6P9skRgi7iQi7iC31OcV8KfHrSfE/jHxJZ+I/ja1vomn6fvnTWVhcDcpwN7xnaVH8ORjNckqMeey2N1N2uz+YC4/YE/aE8DNHqfxev73QNavrNpYJ53LW079UIIHzKeh6mv70/+CVHwf1P9jP/AIJx+DjeaeniHxbrkyXGrsZY4y1zeN8zGSTACRrzjqQOK/JPxJ8NPFH7Tknhb4e694ktvEHhe3ntrxtSspP3qWgYOEcMMoJMAEcHFfvNp8t1pfhd/C2jzCKxkhEQTCugCjCsAQVyvY4roWCum4P0M/bpWufzrf8ABcj496J8GvFeg+MNM0/TdW0nx7pOqWeo6XdKskcN3DJ5Md5bk52qxy3HDFciv5LrnQfgF4a8Nw+MtO1ZJNXkmIa2eMyBGHUk5OQ30r7z/wCDhTSvFHw4/aV03wP4j8bX3jbWNUtRfSpMgRrKFiRBAix4UDAzgKBX4V/8Id8QdFe11WGzvNkuFw8LAoT/ALwGfY1x1eZPll0Notbrqf6Jv/BLD4c6X4E/YXtfFd9axaff6iLm+UxRhCY5BlM4AzxX4m/B19N8feHvFF5ZwXVtdWd3NO4vEEJZmnYLJk/NskPAYgc96/b/APYR/aj1uL/gnN4N8eePtBhjvbLRW862jPlqy2wZQTnIBcLk+5r8IE+J2lfDTxLrn7QthJLotxrvmh/NkW5jEEzmRYXhddsi54xxjtTlCktVK4k5dj2fw6PC/iy7ubTxJpy2ur2qACUSEtjPB9D+ua4PX/BGl+L/AI/eF/hr4TiJtvDSN4n1UyjcvmgmO0jYcjG4s+PYVy3wT/ag/Yx+LnxWs9G8fXU3giR1lludR0uVY7KYxIW8uW3l3rGWxlWjIGeMV7v+w9o2pa3/AG/8aZYhIfGV7JNbeeCWSwhJS3UgY/gG4jpk1k1ZXRafQ+pbea18JaNFNfXUsl3duxkbO3OewA7VwHxB/bP+D3wD+Iug/Am8s7nWPE+ssjXUNjGZl01bj/VNcsOELEg7eoHJq5t8Sa18UWg0u585YH+WeRFESEHoqkdBXyD8OP2NfjV4o1vxL8HvFXimyXW/GWt3fiPUtetw0klrYx4LOxbGCseFRM7ckelVSp88uUJS5Vc+6NE+JWgXmoXl3rup2mlvA2B9omWPDHgAZPJ9AOa2pPE2v2GyLQrOZrVm8yW5C7fMP4kE14rD/wAEh9V1v4VeEPiT8NrmG6+06gL6wttSuXllNvbsf9Nu2LbV+UbwCMe3avR/E93rOm+OpfClpcS3drojKl7MImjRmAzlRIFIUjpkDIpVabg7MIyvqWPihr17Z2FtPaxCKTUzscu2ZWz6AdB6mv5E/wBu34zL+0H+1FeR6S2dG8PAaZZKrblKwn53B7733Gv6Kv8Agob+0ZafCX4Fav8AELTbf7Nd3Ft/Zmmuz4c3E4K7l6/dXJ49q/lK+EOiQalcTX+ohpJ5juVj/eJ5J/A17GSYbnqOo1sceYVvZ0nbc+sPh5oEGmWEARw+9Axx2Poa9cDMBgVz+jWaWOnRrHjcfvY7elXnmnLYxX3tFcsbHw1f3pXNuG8e3PmE8it9fFbhMF9pxg4NeZyXUu4jH1pbS/gXzhdxF2ZP3Zzjaeze4p1IpmuHqyppHrlj4pvja/2eJmNsZPM8vPy78Y3Y9ccV7Z4P+KGmeGBFMik3EbkyFmyhQ424GOo5zXxvb6rFE2MbiemOxqU+I7hMxsenFctfDRnoz1sNmrpap6n6UeJP2on10wWkap5ECkrH/CSRgk/zr/Udr/GrbxFdh8oetf7KlfI57hY0fZqPW/6HvYPNJ43mc+lvx/4YK/kQ/wCCBv8Aymd/4KRf9jtaf+l+r1/XfX8iH/BA3/lM7/wUi/7Ha0/9L9Xr587T+u+iiuM+Inh/xD4r8Dar4b8J6xL4e1K+tpIbbUoESSW1kYYEiLIGQsvUBgRQB2dFfg9+y7+1X8a/hF+wh+0r8U/ir4ku/HmsfBvxV4tsdOvtTC+dNb6RbxSQJIIwq43MegHBrD+GXxY/aX/Zd+JfwI1r4sfEHUvH9j8cPDeq3Wt2WoBPJsdVs9N/tWJ7EIB5UOFkgMfTG1utAH7+0V/Nn8JPj/8AtX+Dfhv+zl+3B43+IN/r8Pxy8UadpeveGZwn9l2ll4hLi1FnGFBje1Pl5YHL/Nu61l337UP7Tqfs96p/wVCHjvUhYWPxGfRYfBo2DSD4fi1gaOY2j27jcMN03m53B8AccUAf0wV4p4n/AOS7eE/+wdqn87evwx+MHx6/ao+I2h/tLftZ/Dzx/f8Ahu0+AOry6foHh63Cf2depo9rFd3n25CpMpuDIY1OfkUArzX7D+GPiJZfEf4i/DfxRBDJA+s+GLjVQhU7VS7S2cLu6EjOMdaAPrKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApkn+rb6Gn0yT/Vt9DQB/FL/wcv8A/Jmv7Kv/AGVyL+dzX9rtfxRf8HL/APyZr+yr/wBlci/nc1/a7QAV/If/AMGoP/N3n/ZWbv8A9q1/XhX8h/8Awag/83ef9lZu/wD2rQB/XhRRRQAUUUUAfh9/wVv/AOCOnwv/AOCg3gi48U+GbeDSvHlnGTb3iqFFxgcJJgc+xr/Nc/aV/Zd+L37K3xJv/hl8W9Jm02/sJGQiRSFYA8MpxyD2Nf7Mlfmz/wAFEf8AgmT8BP8AgoP8Nrjw947sYrPxBFEwsNWjQedE+OAx/iXPUGvXyrN6uCnprB7r/I9LL8yqYaWmsXuj/I1or9Qv+Chf/BLD9on9gTx7caP4306S70V3P2XUoEJglTPHPY+xNfl8ysp2sMEV+k4PHUsVDnpO6/Fep9thsVTrw56bEooorsOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA9X+Cvw5s/in8QbPwjqF/Hp8MuXdmOHdV6pHngue2egyecYP61eO/gB8NvFPw4i8CG2j06302MmzuEADW7YyWJP3g3V8n5up5wR+IlvcT2k6XVq7RSxMHR0OGVhyCCOQQa+jPHH7UfxI8dfD+28B6jIsQAK3lzGcSXSj7oboAP72PvH0GQfzLjXhjO8yzHB4jLsVyU4PVbcj19/8Av3Xu2fptKTX6XwZxNkuXZfjMPmGF56k1o9+dfyf3bP3rr13UU/n7WLCLS9WudNhuI7tLeV41nhJMcgUkblJAOD1HFZ1eo/Cb4S+KPi/4mXw/4dTZGmGublxmOCM9z6k/wr1J9skZfxI+G/if4W+J5vC3iiHZKnzRyL/q5oz0dD3B/MHg8193TzTCfWv7O9snXUVJxv71u9vxt89j4WpleL+q/wBoexaoOTipW0v2v+vy3ucFRRRXpHnBRRRQAUUUUAFFFFABRRXunwP/AGdPix+0H4ws/BPwz0i41G9vmCxJFGW3ZOO3Qe9Y169OlB1KkrJGdWrCnFzm7I8s8LeGNX8X63b6DokTTT3DqihQSck47V/a9/wRN/4IA3Fvfab+0x+1rYj7OhFxp2kzL80ndXlUjgdwK+/f+CSH/BAf4ffsuQaZ8aP2jrW31nxdHGklvZsgaG1frubP3nH6V/ThFDFBEsMChEUABQMAAV+eZxn08U3SpaU/xfr/AJHxuZZvKv8Au6ekPzK2nadY6RYQ6XpkKwW9ugjjjQbVVV4AAHQCrtFFfOHihRRRQB/Ih/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676/kQ/4OK/8AlKn/AMEyf+yo3H/p08OV/XfQAUUUUAFfyBf8Hq3/ACiy8A/9lV0r/wBNGsV/X7X8gX/B6t/yiy8A/wDZVdK/9NGsUAfAH/BjF/zdF/3JP/uar+/yv4A/+DGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooA/zd/+C977f+Cs3xYBOP8AkBf+maxr8gVnXAAIzX63f8F9Jdv/AAVs+LKr1/4kP/pmsa/IW38hrZ53kAdXVQh6sDkk/hiv1jLX/slH/DH8kfFYtJ1ql+7/ADO30fWprW4jkLFtnAyc4HXFff8A8DfiIkupW9mZlQswXLthR9TX5lQ3REg+bGea9i8CaxPBdqinGTxzV42iqlOzPQybGTw1b3ep/Sp8NPjLpmo2qadeupCcYzw2OK1vinY6JrXhmS+KNI8gbaOoAPSvz8/Z1voNRKLeZYBRg56Gv0y0+bS9T8Px6Zex425wQOvpXweIpqjV90/YKFX29C7W6Pwp/aA8MPbaltji2qowuBXyzqWlwabqBgguFuYwqHegIGWAJGCOqng1+wXxr+Hmm634ph0y6YadFJJtknnB2KrHhsDnAHWvzM+IOjRaDeXGn27B4RKV3p0YJkAjjPPWvucoxqqQULn5HxRlUqVSVe2h5tHceZLGbtmdFIHXkKOwrRlvJltzbRORAZNyoTznsT74rGuJLVrgpabvLGNpbr0/xrZN9ZyG3Bt0zCRuwTiQDnn6+1fQxPgZQvqzUsdQkt4ZEjCsJU2NuGcDIPHoeOtbZglXId1bAABBzXNmW1MjzxgKrsSEHRR6D6VPHKGG3oK7acras4q0ea6SOrWKeK2W8bmPcUyCOoGenXpT1ljXGFyTWbYWs9xbT3aYKW4DPlsHBOOB359Kda3KxXCyy5Kj0/8Ar10xqnmVaOx22hzQTRM81w8CxkBxGPmKN15yM49K07PW5YHli86WQHAi243EoflyP6CvP/tLR4H3eOBWjZ3t5ZTRXloSkisCjjsfatlK+5i4tdDqJL2a/aZ7hMzSMZGY9c96n0+B7qYRLwByz9Qo7k47Csa9juoblmuGPmdX3cHJ5NWoNRt1sDaqv74vkybsfJj7uPrXRGq0tDncNdTsLK/FheMsgE6KSATkqfevTNG1PVdXcrZt5xt4icysOI16gbvTsBXiJjmSF7klQsQUlS2CQ3THrXT6ZqVpcx24O1ZEyAI+OCc/N6+1FSaav1LopqVujPrzwVf3oRdsrKXAVgD1X0r6ng1620nw/g7clMYI5H4+tfJ/w9lmkjCxAYwAc9fwrrvG3iQ2MBs0kBCDscfzr5zEfvKvKfdYG1KhzM53xp4muheG608cOGjHcN6jFeHRam9gqThkO5z8pOT8vXI9K4DxF4skuLt3jkPJOMVw41q5mnE8rFsnGa9uhQ5YnzOKxvNUbR6br3iWOa6kfcAGycKMAZ9BXL3M0t1pE96iSGON1QOD8gLc4P17VLf6JeS2K61bQyxWMwKrJKOGYdRnpXG6f4o1DRJ52sNhWeNonV1DjDcEjPQ+hroVRKP7vc86abl7+x2PgLTbjxn410rwdZ5Zr+6ji49CeT+AzX1N8X/GFleeONR/sx8W2nMNNtgOgjgGzj6nNan7Iv7P/iUpcfGq5jMQtraX+y4ZBlppih+f2Udq+YdVuppNXS2ZsyylpJM/3snP61+Ocf5vHFYqFCm7qCd/8T3+6x+pcGZXLDYaVaorOb09Ft95Do+mJqtprd1efMqyLgd8Dmv1B/4Jv+AjrljrfjllKrLL9gtySFGyL5n5PbPFfnT4Z0triyiez/5fp2Uj1xX7h/A6w8L/AAU+B+m6AkBuXjtZLifnaolJLsTjrg9K+CR9mj82P2+dT+JOifG21tPAOuXejXHh+IMjWs7BTJL8xz2PGMg5FUfg5/wVS+NfgOJNC+Pfh6LxRbwNtXUdP/0a8VO5ZB+7f8Ap968q+KXju/8AEviS/wBc1A5lupncrL1OTwM/SvIrKCxvnxBENy/fVuRzWsZpKwtT+gr4Q/tX/sx/tLW32bwd4hi/tSVNr2N2DaXq56ja3DfVcivpDxDo1jq2l2/hu5tPtmkwhFkspDtD7M4579enQ1/JB4u8G2Flq0N7awmCVWBSeA4Ib6jBFfor8C/j5+0P4Z1LRfB8Orvrmn3EkcP2XUGLsgbqVlHzcDnkmumOIlaz1X4/eZ8qbP3A+Bfwk+FnhPxZrvxC8LaL/wAI5d6uqWrEZKvHAMDcn3ceny19CTacLORLfRLtYnlBJEJ+Qn/rmxP/AI6c+1fEmr/FDxR4GgiuLCVLhSfmt5jkH1weorufC3x80TxjZC01SwudMuZlIjaWMtAW/wBmQDHX1xXZRr02vdlZ+ZlOnJbo/OT9of8A4JyeHfEf7Wt1+1pNHaeJfFgIvDbag5xHHDGQqqrfIqqq/dYDiuZ8afs4L8ZPDOn6Nd/DxtAltZgs2sW6L/q2+b50fAZQTwynOPWv1K168/tjTNc0zxKtzLc+Jkjs3kg2bWjG1URWwSqhRg4PIzXmfjzRfixoarpnh7XX1aaY+SluU3GOKEAAsOg6gDuaxqSlyvS1y4pXWp8+fFH4c3/wz/Yv1zwB4Fjm1KWw0iaGDyIyCyICzEADqeelfxI/Gj4iftL/ALQt9pXwr0fQLiGz1CISWMFqhYzpGdhYtx0Iwc9DxX98p+O1toZs9B8W6e9pb3kj2sRljKjzAduGyMZflhntX5s/Gv8AZ00n9nnxJqXxO+FGnQazpOuXQnsLWMgHT7uY5uVV1zthc4fA6P8AWuJ0JrW25qqkX1P5Yfhn+xr8WNC1fR/AWrhl1bxJP9lbTmTMkaLzK5JGRtTI9Oa/p9+F8N78EtBsvCt1bKsywrBBC7/dRRgcAH0rwzwv4j8Wx/HaP9onx/4a+2ajpemPpen228CJTI25pXK8szDA6A4FeXeOPEX7U/jHx7deLdP/ALJ0lJuUkuAf3eeyrk8D6iq9hN9B88e5+gfh3wn4ouZptWvcWwlJYbFwcdT146fzry/xH8VdA8Dfs1eNPiD4cmkfX/FV/L4WhuX4Oy2bdc+V/sIMIWHVyfSvgPUfEvjKTUnuvi38bJg1p8zWml7IlXHVeN5yBn0rif2pv25fgF4xTw/4f8Cw3Z0XwrYC1t7KxjCrJMx3TTM7Z+aVuWOM1vSgqabb1M5y5rJH1x+zn/wUu0f9jf4Y6joXxJvZdUu9TvYFs4bhzIEtYUdvLQYOFMxRiOhC4r5D+Nn/AAVZ1fxBajRPDnhy6vReXHnXWt6r+5nvj1xsiAGFJIGWJxj6V892o1XxX9m8S+Evh+q6xf3EEEMmphrnypHQONyuQq4j+bha9km+F3xf+LF9p2keIxY2Ntpdol7OUQK+ZZcLuQ4VdqKWAxnFYyUW7tlptbHzj+218Tbn9qf9mqz8R+I72y0A+ELkG10tSwe8achWYbjyQPQHAFfB3wm0mBLKNwoBwOlc3+1x4ri8a/tD3un6TcLdW+mN9m82NQiOyHkhBwOfSvRvh3aywWaY44r63JqPLTR4GcVrWXU+hG1y4h8MDw3GE8j7R9pb5Rv37dmN3XbgdOmea5Z7zKlK1otS042Nxb3NqGmdI1ikDEbGVssxHfcvHtWH4k0vU9B1JtM1RNk6Kp2ggjDgMOR1yCK+m6HzyWl2Pa3tDpU1/NdBLlJUVLcqdzIwOXzjAC8cd81jTajczgNM24IgQcAcDtU+r6xc6xdi8vtgkKLHiNQqgRgKvAAGcdT3NYrFS3zc4qb6F6W0NDUZbAXrnSi4gONnmY3jjvjjrWdJOhI9R1qszANtWprO0N7I6b0iCI0mX4B2DJA9z2qW9NSG3tYhMu0ebHw3+Ga/2ha/xbF2lZGMgBHG3Gd2M1/tJ18nxM/4X/b36H0PD/8Ay9+X6hX8iH/BA3/lM7/wUi/7Ha0/9L9Xr+u+v5EP+CBv/KZ3/gpF/wBjtaf+l+r18qfRn9d9cz4zsfE+p+EtS07wVfRabq89tKlldzRefHBOykI7R5G8K2CVyM101FAH5E/sv/8ABOP4r/C/wd8WfhT8ffH1n428JfF271fU9UsrfSxYype60iR3DLIJH/d7EwqY4POa0fgF/wAE6fiT4T+IXgfxJ+0V8QB460r4T6He6B4QtEsltHjhvoVtXnvHDN504tV8kEBVwWOMmv1looA/Gn4R/wDBLfx14K1n4cfD/wAdfEM678Kvg7rJ1vwnof2JYrsTxb/siXdzuPmx2nmHywFUnC7icU65/wCCWfiyXU7v4QJ47UfA+/8AGH/CbTeGTZA3gvDdC+a1W63cWjXaiUrs3YJXdg1+ylFAH47/ABp/4JheOfHXiz4leHfhx8Qf+Ec+HHxpu4L3xlo32MTXLSpGkFx9jn3DyRdwoqS5VsYyuCa/Qi70XTPDfxc8D+HdFiEFnYaPqFtBGvRIohbKqj2AAFfQFeKeJ/8Aku3hP/sHap/O3oA9rooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDy74mfEHX/AcFrNoXhm/8Rm4Zg62JjBiA7t5jL19q8j/AOGiviD/ANEu8Qf9923/AMdr6torKcJt3U7fJHo4fF4aEFGph1J93KS/JpHyl/w0V8Qf+iXeIP8Avu2/+O1ma1+0z8RtK0e61OD4U+Ip3t4nkWNXtsuVBOBiTPNfYFFQ6VT/AJ+fgjeOPwSabwcf/Ap//JHw/wDD39rL4neM/B1j4m1D4ReI9Pmu497W7tAGQ+mGdT+YFdn/AMNFfEH/AKJd4g/77tv/AI7X1aBjgUUo0qqSTqXfoi6uY4GU5ShgopN6Lnm7Ltfm6HyvB+0N8QJZ0ib4Ya+gdgpYvbYAJ6n972r6licyRq7KVJAOD1FPorWEZL4pX+48/FV6NS3sqKh6OTv97YUUUVocgUUUUAFFFFABTJP9W30NPpkn+rb6GgD+KX/g5f8A+TNf2Vf+yuRfzua/tdr+KL/g5f8A+TNf2Vf+yuRfzua/tdoAK/kP/wCDUH/m7z/srN3/AO1a/rwr+Q//AINQf+bvP+ys3f8A7VoA/rwooooAKKKKACiiigDyD42/Aj4V/tD+BLz4c/FvSINX0u9Qo8cyBiue6nGQR2Nfww/8FUP+Dbfx58Imvvi/+yKJvEGhbmlm03Gbm3Xr8oH31H51/f7TJESVDHIAytwQehFdOFxdXDz9pRlZm1DEVKMuem7M/wATjxT4P8S+CtXm0LxRZy2V1AxR4pVKsrDsQa5mv9Uz/goR/wAERv2VP25dOudfXT4/DfitlYx6haLtDuf+eijAPPev4Of2+/8AgjD+1n+w3rdxd6/o0ureHAxMOp2SmSEr23YB2nHY191lvEtGr7mI92Xfo/8AI+swWeU6lo1vdl+B+PNFT3FtPaSmC5Qo68EEYqCvp1NNXR7qaaugoooqhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfpp+xj8YPBiaMnwru7eLTdT3tJFKvAvCeTknnzAOMdCo46Yriv2yvjN4O8UGP4c6Bbw39zYTb5r7r5LjgxxkHkn+PqvGOoyPgOKWSGRZoWKOhDKynBBHQg103grwfrPj7xTZ+EdACG7vn2J5jBFGBkkk9gATxk+gJr87fAWW4bOqnEVSq0lebTeilrzScr35bfZ236aH6F/r3mOJyWnw9TpJt2hdLVx05YqNrc1/tbvTrdnLUV+vifsdfDpfhg3gojOqt+9/tTb+988D0z/q+2zPTnO7mvyq8Z+ENZ8B+KLzwj4gVVu7KTY+xtynjIIPoQQR39ea9XhnjbLc8qVqWDk+aD2ejcduZeV/mtLpXR5fEvBWY5JTo1cZFcs1utUpfyvzt8nrZuzOYooor68+RCiilAJOBQAlT29vPcyCK3Uux6ADNfV/7L37Fnx7/az8Zw+DfhL4fvNSmlIBaGIlFyf4m6KPcmv7a/8Agm7/AMG0nwz+EFvafEL9rZ01vVwVlXS4jmCMjkB2/iPqOleBmPEOHw14R96fZfqzyMbnFGheMfel/XU/mJ/4Jw/8EWf2lP26PEVpqiadLo3hcSKZ9SulKxeX32Z5ZvpxX+hN+wV/wTD/AGcP2B/Bdvo/w809b7WvLVbjVblQ07kDnbx8q57Cvvfwd4L8KfD/AMP23hXwXYQ6bp9ogSKCBAiKo9AK6ivgcdmVfFy5qstOi6I+RxeNq4iV6j+XQKKKK4DkCiiigAooooA/kQ/4OK/+Uqf/AATJ/wCyo3H/AKdPDlf131/Ih/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676ACiiigAr+QL/g9W/5RZeAf+yq6V/6aNYr+v2v5Av8Ag9W/5RZeAf8Asqulf+mjWKAPgD/gxi/5ui/7kn/3NV/f5X8Af/BjF/zdF/3JP/uar+/ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP83L/gvhbafJ/wAFWvjJcTXJjuYv+Ee8mELnzAdHsd+TnjaMH3zX40w2cvltcS4G3HDcMd3TAr9if+C932L/AIe9fFNb0MImbQBIUIDBP7GsM4zxnHT3r8erfUYILqU3Mf2hdjRxmQ/dB4Vvqvav1PLX/stH/DH8kfEYlf7RP/E/zNnRZdJ+yajb6iyLNNGqwSOpJQg5JXHfHHPrXe/DxLG7vJvt0zQSRxb4FC7g75A2k5445zXkMUpcgqenQ16p8PXgXU1MjIgU5O7occ121LqLsa4dXqxR+w37K+mG6kt4ZPl8zHX64r9oPDngnTItLyxHmxqVYEevWvwH+C/xTvNMms4lmIFqdsY7AE5x+dfu18APFzeNrf7fqUvmNPguzHqSOa/Ps2jOM+Zn7Nk9SM6KjF6o+Lv2q0L3IvLlt52iJc9dqDgfQCvxt+Ks9hLNMspZWH+r29N2e/4V+/P7W3w/e9Zr6MBl24UgfwjpX4F/HHSH0+9kR+NpNe9w3Wg2knqfNcZ4SosPKcloeDoklw8aQgZk4XnFWgyRRnex80MVK9sDvn61j6e+mO5F+7RgKxUqMncBwPxNVYrlzwAT3455r7VVLM/Hp0rnWJNZ/Y8MWE+4/wC6Vx+ec1d0+e5jl85EEgj+Yg9OPWqXhzV7C3stSs9RTd9ptykTYBKyBgRyRkDg5xzWZBcFRgEitY1TnqUUd1bLdbBcyDCP0APWtZrzTTcfvFdYwACoPO4DrnGOv6U74feOovBseoG6sLe/F7ayWyi4Xd5RcffT0YdjXD/aTkuerc10wqHnVKF5XOwsZbdpgb0sU9V6/rXQ6fdXW1Ikc7Im8xR2DVxNrJvUDBwe9dBavK6tHAQMKWBY44FdCn1OOpB3sjttcMs91F5d1HdTXih2K/LtZv4TnjP6VgvMkCC2ZAk0RIY5zk5rJ0UW99qEUV9N5ETN80hBYKPoP8aiupC1w4ibcuSAcdRWsKjWjZjUpp6rS5t3F7vtQwlPmEhSuOw6HNdv4KuIU8qK1ZmuJZD5isoKbRyCD1zmvKUjuGKtCjFGYKGI+XJ9+le1+HtA1LwhqkkeulUmgVTtRw6/ONwO5cg8GlOvFLU1pYVua5VofU/gGeeKxnu4FaRoVOdoztUdT7CvC/iR44OoTnT7chjkgEdSTWjceMJNN0WSLT5/s7zIyu2doYHqDj1r5r1i4ubiSS5eWP8AdY+6eTurjwsffdSXyPXxtW8I0afzLOpX9sZEFn5gYKPM3kH5x1xjtVewEt3K6RsqlVLncdowvPHvXO/2jF9mFq0a7g24yfxH2+lSpcK1ykoiGyUjCdA3qB/9au/2yS0PL+pWlqe8av8AHXxbqnw4svhbcyxvpVlI00QCjcGcc5bGTXkli9rdwz2kihZiu5JGfao28kYwck9qwNTDQajNAbdrQhj+5bOU9jnmqEryEh8Hnpx1qFJRi+VW6/Mt0eaV5u/Q/a79mz4pzX3wv8J3ZJKaNI1tdbW+8pOOfoDXxD8QPCsemfFTXFt3K21vdypCT3VzuH6Gt/8AYm8Qi4tvEPhS7clfL85F6/N7fjXbftMW3l+KLPWohsh163WZcDGJYV2sD78V+G8RYf2WNqxW3M39+v6n67k9X2mEpPyS+7T9DpP2dvAQ8W+NtO8KI+Vt2M7P2CINxP8ASvuH4h/Eq40z4T6j4d0/KXdzIbdS6FWRQfmwe4I9DXAf8E7Phzq3ii01XxqsSs/lLZW5bj5idzkn9K3P2r7i+sPGH/CHXkyLNp8YLrCwwrPz/KvBvZHqWsfmL4vhuL2b7NqkTKSc71GRxT9C+Hii1Gqefh0O5XRuoHZlrqfF+o3LxSPIvmBOAyjDYHtXEfDq5k8R64+kGVgJeA3KkUkyTQvHhgvAxtPO28nacg/hX1v+yhY/8J54+a/tbCRP7Iiz8kbE+Y/C9vSvnC++FXiHTtR+2CdmhzyR97A/Q1+8X7Dfgmw+G/wXi12YD7drkhnZpMBhEOEzz6VSHE4K4+Gnh+81yNNctL24vDhRFMSEGe/bP0ro9Y0rxPphMehxmysohtKO+4HH91e30r7A1GXQ7t1m1eSInccMCN4GOxHNcLrPh3wzq9obnSr1hGDjBbdgnv60yjyT4ayyT6hHZeHbySxhXHnPdDK+Yepx/hX0c/w/1G9mfWNFumjmXI+1RAojk9wD/jXj6WVloUp0CzXz0k+dWdecivqb4a/E5rTTv7L8QWa3ahGjjjzgBiMKR9K2hWlFWT0IcEz5+8afD/UV8KrpV/ZfbmeNhJczR5kV5DzIoP8AERnB7V8ieI/2f9Mt9Nubf4c65Npdhp8fmXMV3AJY/NkOfk3HIPTJBr9d4l1DU1e1ursyyTqN8TD0/wAK+DP2/PHnhT4Gfs+XOpW7b9XvLgW8NuzBY52PLEt1AVc9K6o4qF7y0/IxlRPxT1N5fD9h400T4iX19Pqx0me80IWiqqM5wsOUALHLZwSRwa/Lef8AZ++JvjH4h6zqPiPxtK9vpwtUKySGKNGk2vKCCcZRQeAOWNb/AMevjz+0L4t8dat488JQRabFdpHDGsLbnWKJQFVc9APzr5E8LeHvjZ8TNTuobuS6eND9ou5dxRVA65zgFj0HvWFWupN22LhTsrH0h4c+EvwL8KaVfeMdcupbx5tRuZoLWRGYTxKrRRIWAwAWJc9zjFcloXhnwNo2mtqtrp0GYJ0ieIoPMZiC23nnG0cn3r6N8deFvD0vwy8Jx6Ez2mp2TSx3Gnxyb1RY+A5HUsxbqep56mul0rwx4H8J39hrXjiBEj0XSR5cFwhEU97cZceao+aQjcpPrgDgVj7V9DTlR54PjB4u8VavZ+MrOxj0mx092IEC7cyyDaTvYbWkEY/AV8H/ALZ/7Rj6L4d1GXwhqd3Jc6yRb/aGfy2cjq2B2UcD0r7l1jxdd+LtI03QblY4rexjkmhtUhMWd3DuFA5z61+H37a/j3S/Hvxqh8H+GJEl0vw/ElsjR4KvM2Glbj/aO38K6MFSlVrRj0JqNRi2eGfDfQ7rUNQ/tK7YyPI2WZuSSeSSTX3HoFjY2ulodzCbPIxxj61498NPDccNuHKgbF3HJxX06mm+GbnRLJ7S6+y3ccUgu1ZSwdwSY9nP8S4B6AV+i4akoJHxWLqurUbOVadw5TOOOtbXi620i2lsG0i5S58+yglmKEnZMwO9Tn+IcZA4rlXc+ZuY0yRsruHXFdMmcvn2ICCDuHQd6jJKtkd6stql19hbTBJ+4Z1kKdtwBANUnbKjvS5hpkJO4+ZmmSlmUYOc0uckpWtplktzYX032dpmgiWQMrhRGNwBJB+9nOMDkdamTJkc1vAOAK/2nK/xX2Qp8rHOO9f7UFfKcS/8uv8At79D6Dh/er8v1Cv5EP8Aggb/AMpnf+CkX/Y7Wn/pfq9f131/Ih/wQN/5TO/8FIv+x2tP/S/V6+WPpD+u+iiigAooooAKKKKAOM1n4jfD/wAOeIrHwh4g1ywsdV1LP2SzuLmOOefH/PONmDN+ANcP4n/5Lt4T/wCwdqn87ev5y/jB4I+HXxS8C/t5/Gb41Rwy+NfAupvBoOo3JAu9GttP0uG405rRz80O+dmkUpje+euK/cb4Sa9488S6r8INc8cwqt3feCzdXkjMRN9ulhtGmVkKgDDE87s54xQB9s0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVDcxyy28kUDmJ2UhXAyVJHBweOK+W3+Df7QjOWT4r3qgnIH9m2XH/AJCrOpOUfhi36W/Vo7cJhaVa/tK8adv5lN39OWMvxsfVVFfKf/Cmv2hv+isXv/gtsv8A41R/wpr9ob/orN7/AOC2y/8AjVZe3qf8+n98f/kjs/szDf8AQbT+6r/8rPqyivg/wz+zx+1npnjXXtb1n403lzp1+0Rsrf8As62JgCLhuGQoMn+4q+/Neif8Ka/aG/6Kxe/+C2y/+NVMcRUau6Ml84//ACRrWyjCQlaOPpvRO6VXqrtfw+mx9WUV8pn4NftDf9FZvf8AwW2X/wAar6M8K6ZrOjeHbTS/EOovq17BGFmu3RY2mYdWKoAoz6AAVtTqSk7Sg162/Rs4MXhKVGKlTxEZvtFTXz96MV+J0FMk/wBW30NPpkn+rb6GtTgP4pf+Dl//AJM1/ZV/7K5F/O5r+12v4ov+Dl//AJM1/ZV/7K5F/O5r+12gAr+Q/wD4NQf+bvP+ys3f/tWv68K/kP8A+DUH/m7z/srN3/7VoA/rwooooAKKKKACiiigAooooAKwPE3hXw34z0abw94ssYNRsbhSkkFwgkRgexBBFb9FAH80v7ff/Bt3+zL+0it54x+BCx+C/EEuX8qJf9Ekb/dH3c+1fxZ/tof8Ejf2vv2LtZuI/Hnh2e50uNmEd/aoZYHUHg7gOPxr/WmrF17w3oHinTZdH8SWUN9azKVeKdBIjA9iCMV6eCzfE4XSnLTs9Ud2FzGvh9IS07PY/wATG4tLm0kMVyjIw4IIxUGDX+nV+21/wbvfsY/tRi78R+A7Q+CdfmDMJLFR9ndz/ej6dfSv5Ev2zP8Ag3l/bX/ZinutY8K6W3i7RIsstxpymRto7sgyR+tfY4LijD1LRrLlf4H0uFz6jPSquV/gfgDg0V2fi34e+NfAmpSaR4u0u50+5hYq6TxsjAj2IFcZX0VOvCpHmg015HtQqRmrwd0FFFFaplhRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqxaXd1Y3Ud7ZSNDNCwdHQlWVlOQQRyCD0NV6KmSTVnsNNp3R90XH7bnit/himgw2+3xIcwvf8eX5eOJAv/PU9MY2g/N/sj410vS/EPjTxBHpumRy6hqV/KcKMvJI7ckkn8SSTx1NYNfpf+w1P8Njpt7BbQlPE4yZpJsEvb548k4GFH8Y655JIwB8BmkMDwllmJx+W4S8pO7S7vZt7qEey0V9LXbX3mWVcbxXmWGwOZYu0UrJvst0ls5y7vV9b2SPzy8V+FNf8Ea/ceGfE9s1re2rbXRv0IPQgjkEcEVzyqzHaoya/oyuv+Cc/xc/bwa1034SeF7u+1G3lEa6qieXbRJnLJLKRtI5yFHzA88AnP7mfsS/8Gtnws8AC08T/ALVGsnXLpdrvp1n8kJI52s55I9cVGQ8e08dltPFVaTjVejXRtdU39l9OvTpd/Jcd0MLw/mlXL6VVVbaqz1V/sz6KS6r0el7H8TP7P37I3x3/AGmPFFv4U+E/h+71O4uGCgwxFgM+p6D8a/rw/YE/4NdWhex8dftf34iTCyHSrY5kJ4OHbt9BX9ffwY/Zy+CX7PfhuHwp8H/DdjodnAoUC2iVWOPVsZJ+pr2yuHHZ9icT7t+WPZfqz8zxebV6+l7Lsj5/+AX7LnwJ/Zj8LxeEvgt4bs9Eto1Cs0ESrI+O7NjJP1NfQFFFeKeWFFFFABRRRQAUUUUAFFFFAH8iH/BxX/ylT/4Jk/8AZUbj/wBOnhyv676/kQ/4OK/+Uqf/AATJ/wCyo3H/AKdPDlf130AFFFFABX8gX/B6t/yiy8A/9lV0r/00axX9ftfyBf8AB6t/yiy8A/8AZVdK/wDTRrFAHwB/wYxf83Rf9yT/AO5qv7/K/gD/AODGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9T+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP82//gv3aaFb/wDBWP4tXN9ObmS4t9GKRxZQ2866PYCMSEjDAj5iFPQ4zmvxf0to/twuGtvtCRDcyMCVKr6lcHHrX7B/8F+bS/1X/gr/APFTStOglubiU6AkUcQyzFtHsAFA7kk4HvX5Dw2WraJq02i6kktncQyNb3EbKVkXBw6spwcjGCDjkV+nZc19WpK/2Y/kj4TGP9/UfTmf5mlfaRPpLxJclCZ4lmXY4b5XzgHBODxyDyK1NMla3kzbkbvTvVEWImv2s7QvMWkKRgLhzk4HHPPtmryRnRdVWG6DQywOUcNwysOCCPavUW1mTCdlpufU/wAL9ent7qNWIUjBr9pf2dfGurS2lparM8cCjkE8F2649q/CHwDcifU/OllM2CNrnhjj27cV+1P7MkS67YhbaSNVtFjd97BWwxxwDyfwzXymeQikfqHCeIckrn3B8UvFa22nTW2oRJcMIXiAb5grEfeBHcdj61+Bf7RdteX2qT3UcbeXuIzjjJ6D8a/f/wAVeF9Pv7Py4I2YhAUJ5B/ya/Lv9ov4ZCw0+5Qu1uHTzdjcq8gJ7cY4PFebkeIjRqpnu8T4eeKwsqaPxynBiY5/KnWc8tuGltmKlwVOPQ9a6TxTZmC/M4t0SKMqDGDw2OvfPPfHSq+sySa5eXGv6HpUen2krqgt4MlEYLzjcS3IGTX6Ip3sz8KqwdOTg+hkeagOTkn1q1azuzZdhj3rHe4RUKrwD6nn+VWNMvbW0vIrm9gF1CjZeIsV3gdsjkfhVqVtTDlTZ2aR3Hkx3EqOsMhIWQqQpK9cHuRVm3jNxemCA+amT8ydSo7gH+VckdWvZ7VLNpGNvG7PHGxO1C/XHv2zXQ6fqazzQvdx7kiAXC/JlR7gdffrW8KjZz1Kaij0G5t4tFiRWdxcYzJBLGyMgPIPPUEc9qhtTcNZOZxIsT/c4+VmHuapX2s3+rvMbmVpvOZWJkO+QBRhRvPzYA4rbsLnUxHC8KNNaWbA/Ou+JGbsQeOf1raM2lqefOkuhHavf2Mcttu2rINrqCOQOccZre8M2GnazqkWm6pdGyhlDfvVTzDuAO0YyOp4zniqiy6fMPJnbykJMjMqZIPpxjism1urGSSUylwiqxTYMHd2znt61sql01szldHlab1R0ul6jbw2U+mX3mOFIaJA2IxIOCWHfjIrqrPWVOlvAoRfLJcsfvsvYZ749K4HTZJbe6WdIyWjYcngBuoP9cVs+IItUsrf+1r0LIL5nzIwHJ7nHY/5FKpNOyNaEJJOZU1/xDPfqsanCrXLNcT6htjU7vLGOB0HvVO41JmdZ5FDJFhSOFz9cetXLvV4r61ht7O1EIDsEKuWY7v4TVqolsbQjvJ7sqxgecrtGZVQhnA/ug889q6PVPFF7fJ/Y2kI0Vgkga2ts+YyEnOFbG7JNchqK3+mag9nGksEn3WRz82T2OKXz5tOuItRsZXingZXDHh1kXkEfQ96znNPU1ej5kXb+fUWvZW1dJEuVb955wIfd/tA4Oas22rXunMJrRyHClc9cBuvWsPVfEGra/qk+t67cPd3d0/mTSynLOx7k1YgWSa0m1CKeOM2+0hGOHbJx8owc4704VHbUUoNy0PoX9kfxTBonxutLC4b5L5TEQeAT2r7Z/aJjE+gWSvEGbw/czKSvLfvzlMjtX5v/DTx8NA8S2NuulRXchu4nikO4tE2fmKgHGWHXNftroHw6j+KXiB/DOsAC21Fbe/eU9zAw+UD3r8z4wo/7Qqn8y/I+74cqN4dwfR/mfoB+xrouj/Bn4DWA8QvBFJHatez7mG4vIN+Mdc44r8Y/jT8Vl8b+NtU8VP80l3cSOOocLnj36elfqF+1FPb/D74S3er+HV8q+1JUtEjckqq45KjtwPevwh8VakdYn+y6iptp85DHoce44/lXw8ux9Gzu9M1GK+iMLHz1IIIPBBPvWLbLpvh7xPFJb7opc42nhjn0x1/Cm+G/DWpW1st/LI6t1IOGjdf5g1Yu5dHkvl+3RPmP5sNyAfYj+tSSfUekaVq3irWdO0DSpzL9tlSIhs7lB+8fXgZ61+63hfwtovh3wTZaNcrhI0UA528AYAHpX5ff8E+fhxb/E3xpe+OXytjokYjXcxKmaTsvB5Ar9fdb8JX18+x2eNE6KoDAAenI5+taR2HG9jy+6tbrSbvzLKNGik4j9QT9TWfc+DdT8TSefc3EemhGGGt85Yj+8OhrtT4ZvLm/gstLgDLGcu8vBA9s5r0Gyh/slRYXkELEHiQjgD6Z/nVIo89uPh5BZ2r6hBfyyOuCZZfmQYHrjgfSvMdQ8TeLNIvYtQ8Lhr6OJtrmFPNU5+gr6iuNBs9V05/JmbOCCFbb+IAryXxD4M8Q+GbE3fhNTPkYlRR87Kfp1IoA9E8PeKvFesaQt14iKaddBeikEhfU89fWv51v+Cpfxlm8d/GK28B2V15+j+Fo/nlydklzLy2D0O0YFfb/wAaPGnxE8NXR0zRjdwzuQFLBgGz9eMDvXJeEPgn4B1K0ufiJ8TLaz1KwtcWdrZMomZ9Tn+eW4l6r8q4Cg+vahjPw98JWep+ONPa98LaFda9c3DtDGtvGzxQgdXO3gn0ycCvtb4WfsZfHW9+C/iPT9QsYdIvdeeBYG1BgpiRG3F9qZJbHCDPHWv1Rs0s/DXkaB4fs4NPslAOVARQp9gAP1ro9T1NdQuLa0nuXeAEZEa4Vif4Qcj+dTzLoFj8vfhB/wAEt7Twfv1L4l+Mbi5muX82b7KCrkAYwrMWbn2wK/RTTf2fPgvYMPETaGdWvLdFQy348xyVUKvLeigDgdq9ms/Dc8d/jUHhsIWjO1c7ikY7nGOSfrXg3xa+MOlfB/wvJrNyZ7qGS5S1s4yQpuJjzuOSMKACSewpXuB+Qn/BTfxP4e+EnhTX/it8QmbSry3VrDQNKsmWI3G1QAZCBuCB23FVxnua/kO+Hln/AG3rs2oaoXkklLOWHPzsc85//XX6H/8ABVT41W3xQ+NkfhVNTk1C+EzXepzLM88Eck53JFEWPKopycDGTx618w/DbSV0K1m022eK5iuNhMpiww2nPylhuX3xjNfVZDhtPaPdnk5pXUIcp734L0EXm3T4nSKUozK0j7EGwZOT3J6AdzXdaFpmlayG0mSVYtQlOYppJPLt1VFZm38E5JACkd+O9cPAWgTg4wODWnpmnaprNybbSozPNtkmKg4IjjG5zz2A5r69OyPkOe7uZ0jD7uaru2znqMdqeQwOSOnaoGy7kelFzNau7HalfXWo3Ru7xtzsqjoBwoCjp9B9arxlfl9VO78RUssbK3lyYGBkY5496qlSDx+fWp5katX3GSlYwSoznrioVeXnYcA9RTydrbXHNIQOo4ockKxXkYdMV/tQ1/isTNsk2jocV/tT18pxG7un8/0Po8gVlU+X6hX8iH/BA3/lM7/wUi/7Ha0/9L9Xr+u+v5EP+CBv/KZ3/gpF/wBjtaf+l+r18wfQn9d9FFFABRRRQAUUUUAfFfxc/wCCev7JHxy+KY+MfxL8JxX+tyfZvtbCWWOC++xNvt/tcKMIrjyj9zzVbb2r1L4j6j/wi3xS8L+JZrK7nsbay1CB2tIGm2PJ5OwEJyMhTjjtX0FRgHrQB41/wvDwv/0D9X/8F83/AMTR/wALw8L/APQP1f8A8F83/wATXsMiMY2ERCsQcEjODX5Kfsq/ET9qfRv+ChvxO/Zr+O/jyLxro2m+FdL8RaYsemQ6cLN767uIjEPLLM4VIlG52JJ54oA++m/aF8DJqiaI1rqou3iaZYv7Pm3GNSAW+72JA/GtD/heHhf/AKB+r/8Agvm/+Jr8Qvg3+1R8ebD9r6+0b9qzx94w8F6Xc+OdS0bQbG88MW0Phy/sxKUsoBqflGQPOPulmXc2ADk1a+MH7U37Zfiy3/aC/ae+EXjOLQPDXwC1dtMsPDDWME1vrA02CO5vzdyupmUyCTy4fKdNmMnNAH7Z/wDC8PC//QP1f/wXzf8AxNH/AAvDwv8A9A/V/wDwXzf/ABNdn8O/F9n8Q/h/oXj+wjMUGuafbahGjdVS6jWQA+4DV2OFoA8b/wCF4eF/+gfq/wD4L5v/AImoY/jx4SlkkhSw1ctEQG/4l8/Gf+A817Vha/O79ujw18XNI8Mar8a9H+ONx8KPC3hjSpbmWO30+znSS5jyyvNJcpIzIeFESbSxPBzQB9P6n+0F4I0bT5tV1S01WC3t1LySNp8+FUdT901cX45eFXUOun6uQRkf8S+bv/wGvzz8LTftX/tI/sXfD348fEj4m3HwXu/+EefU/EiWenWhMr4JjmkN6kogQxgSNGFz820kYr5U+H/7a/7YHxc/Zx+Cnw+OsR6D4y+LfizUNFt/Fq6eivNoGnebKuoxWsoMazXMEQ2BlKAtuAxigD9uf+F4eF/+gfq//gvm/wDiaP8AheHhf/oH6v8A+C+b/wCJr5B/YN+NXxa8RePfiz+zP8btYHifWvhXrNtaQa40EdvLfWN/AJ4TNHEFjEqHcjFFAIAOM1+kWFoA8b/4Xh4X/wCgfq//AIL5v/iaD8cfC4Gf7P1f/wAF83/xNeyYWqGqW13dabcW2mz/AGW4kjZY5tofy3I4baeDg84PWgDySD47+ErmITw2GrlWzg/2dOOnHdaqJ+0N4Fk1STRI7XVTdxRrK8X9nzbgjHAP3e5HrX5E/CX9o346eGv+ChGifsraP8YpfihDf2epP4ls9Y0WHSTpLW6Zhls5Fhg+0fvCFaNDMNvJYYrtvGHij9q39mz9sX4WfDxfi1P8Trz4hatPHrXhi40y0t47HRkVma8ha3RZYUgO1cyu4kJx1NAH6o/8Lw8L/wDQP1f/AMF83/xNH/C8PC//AED9X/8ABfN/8TX4deFf2r/2gfD/AO2DrGkftO+P/GXgXwz/AMJk2l6HBJ4Xth4cvLMhBBE+pGJpFMzFl3EqM8Bq/ooAUjIxigDxef47eE7aFp5rDVwqjJ/4l85/QLmpF+OPhZlDDT9Xwef+QfN/8TXsu1fSjC0AeN/8Lw8L/wDQP1f/AMF83/xNVL/4/wDgvS7KXUdQs9WighUu7tp82FUdT90180f8FBP2m/HXwT+Gz+BfgEkNz8TPEdpdvo6TJ5kNnFaxmSa8nXn91Eo7/eYgV+Ov7Z//AAUI/bY8A/8ABLL4OfHn4f68lj4g8YxRprus2mnw3l80hVtq2tiQQzSsMHZG5Uc4oA/ofi/aB8F3EUE8FlqzpcgNGw0+fDAjIP3eOPWo7L9ofwLqNzc2dja6rJLaMEmUafNlGIyAfl9K/lD/AGQf+Cp/7Ufxp8D33wm0b4xXN/8AEXxh4psvD/h9tf0C2sZ9P0yUDzr8WqRoJJEYMmxmIU4LKM19t/szftH/ALfnwH/4KZfEj9kj41eMpPi74B8N+FT4kk1m50+2s7ixcRlkjd7VEXdIykBGBOORQB++X/C8PC//AED9X/8ABfN/8TUMvx48JQMiy2GrgyNtX/iXznn/AL5r8Sfhb+1l+2LoXhz4P/tj/EvxnFq/hL4u+JRpF14UWxgig02zvZHjtHt5lUTGVNoMnmOwbPAFf0QbV9KAPG/+F4eF/wDoH6v/AOC+b/4mj/heHhf/AKB+r/8Agvm/+Jr2TC0YWgDxWL48eEZ3eOOw1cmM7W/4l045/wC+f5VV1L9obwLo8cc2p2uqwrLIsSFtPn5d+g+73r8zf+CoOo/tUfBLwtP8Vfgr8ZtT0TUfEOoWOi+HfDMOl6fcQSX924QAvLC0xUDLv83AFfOv7WH7d/xn8K/tI2v7Htv4u1zQZ/BnhWy1vxJq3hjw9Hrep3dzMvzOI3RoILePBZ22lm6KKAP3HPx38JC4+ymw1feV3Y/s+fp9duKl/wCF4eF/+gfq/wD4L5v/AImvxa/aj/ak/aB/sv4O+J/gX468Wal8Ptb8P3l9rXirwj4Zt9VuZposeU80EkbLCPvb1VQQQeK/X/8AZP8AiT4X+Ln7P/hvx74S8XN46s722B/tqSFbaW5dThjJCioI3B4ZNowR0oA3/wDhfXhH7T9j+wav5m3dj+zp+n124qf/AIXh4X/6B+r/APgvm/8Aia9k2r6UYWgDxv8A4Xh4X/6B+r/+C+b/AOJo/wCF4eF/+gfq/wD4L5v/AImvzw8F/En9qbwZ/wAFUZfgH8RPHcXiPwXr3hW416x0tNMhtBYNHceWieapaSU7epYjJ7UvxS+I37VHwr/4KX/DPwFe+PItQ+H3xDj1fHh5dMhiNqLGNGQm6y0sjEsc/dHtQB9+6V+0P4F1yyXUdJtdVngckB10+fBKnB6qO9aP/C8PC/8A0D9X/wDBfN/8TX5t/wDBSC5/aU/Z/wDAPiP9pr4e/GS40FdL+zJ4e8IxaXZy2l/eO6oLWQvG1xM85JA8t0K9R0rlvHXxs/a9/aJ/aNsP2Zvhn4n/AOFWXeheBbXxTrdzb2kF5PLqd5kRW2LhXVYEKnzAAGOcBhQB+pv/AAvDwv8A9A/V/wDwXzf/ABNH/C8PC/8A0D9X/wDBfN/8TXiH/BPj9ojxN+1J+yl4b+LPjmGKLXZfPstS8hdsT3VnI0MjoOysy5A7Zr7TwtAHjf8AwvDwv/0D9X/8F83/AMTR/wALw8L/APQP1f8A8F83/wATXgP/AAUOufj9oP7Lfijx7+zv40j8Eav4Z0681aS6fTotRaaO1heQRKsxCpuYDLYOB2r4v/aN/b++IfwQ/wCCdPwv+Lr36x+NPiSdI0qPU/sJuxBc3yb5JltIsea+FIjjAwXIzxmgD9Prn9oXwNZ3tvpt1a6qk91u8pDp82X2cnHy9s1of8Lw8L/9A/V//BfN/wDE1+L1h+1B8c739jX4sXPwa8feKfGvxW8KvZhNO1nw1b2Ovab9pkjDFLKOMJKjxF3iJDA9CeK2/hD+3brXw0/Ze+MHxH8XeOfEfjHxx4D0gag/h/xjocGg3tm8iYhYRQRxiSCSQj5wzDgjINAH7Df8Lw8L/wDQP1f/AMF83/xNQz/HfwlbR+bNYauFyB/yD5z147Ka/Lj4F/F79rj4J/tK/Cf4cftDeOV8e6T8Z9BvL7Y1hBaNpOqWaRzMluYFQtbtHLgCTcwK53c1+2O1fSgDxv8A4Xh4X/6B+r/+C+b/AOJo/wCF4eF/+gfq/wD4L5v/AImvFP2uvAXxS1/Rf+Ez8OfGS4+Efhrw/ZXF1qlza2VnMXKDcJJJrtJAkcYHKqoLetfFPwj+NH7Q/wAbf+CcHhn48/F/4iXnwyv4pJpr7X9M0VLq41DT0laK3nW0eKcxfaE2SkLGSM8YFAH6XyftE+A4tWj0KS11UXksZmSL+z5txRTgn7vr71pf8Lw8L/8AQP1f/wAF83/xNfgr4e/bI/bT+JX/AAT81j4ofC7Xr3xXqlh8QItB0vxNoWiwz6xe+HFn2zXMmmsCkVwq7gUdE6AlVzXrkP7e/iT4b/sJ/EH4heD/AB1qvjj4iaJq1noaWvi7R4dHv9Iv9Umit4FubOFIwY180SqeQ46NigD9jv8AheHhf/oH6v8A+C+b/wCJo/4Xh4X/AOgfq/8A4L5v/ia/Pn9nL4k/tI/B39tGL9kX4++Nm+Ill4n8Gr4s0zU7iygs7m0uIJ/s91bkW6ojREsrxZG5RkEnrX61YWgDxZ/jv4TjkSF7DVw0mdv/ABL5u3/Aal/4Xh4X/wCgfq//AIL5v/ia9O16y1G/0O8sdFuvsN7NBJHb3OwSeTKykK+xuG2nB2ng4xX4Z/s7/tN/GXR/+Ch9r+y5B8XJPitoS6JqN74nTWtIh0afSLq0kVIjaOsVv9ojc7w4VZVQKCX5xQB+ul98fvBmmWU2pahZ6tFBAjSSO2nzYVVGSfu9hTrP49+DtQtIr6zstWkhmQOjDT5sMrDIP3e4r8n/AAf+3H8efjB/wUp8CeFfBt7aw/A7xbpniO2063NsrXGqXGhtAkl95rDcsLSSOkQU4dFDnqK8f+E37V3x70f9rq98P/tVfEHxj4G0e68eajovh+wu/C9tD4bv7RZ3Sxt11LyTIHnjA2szLubgGgD9yP8AheHhf/oH6v8A+C+b/wCJqEfHjwkbg2osNX3qoYj+zp+h99uO1fil8eP2rP2xNY0n9of9q34TeMotB8L/ALPWuTaTZeFzYwTQaymjxwy6i13M6mZTKJHWDynQJtUnOTX7y/Dvxba/EDwFovju0j8uLWbG3vUU9VWdA4H4ZoA43/heHhf/AKB+r/8Agvm/+Jo/4Xh4X/6B+r/+C+b/AOJr2TC1/PHoH7V3xy8MftlatpH7TfxD8Y+A/DD+PJdG0G3n8MWy+Gb20LKtpA2pmJpFa4OVDsygscBs0AftyPjf4YJx/Z+r/wDgvm/+JrN0z9obwLrVsbzSrXVZ4lkeIsunzYDxMUYfd7MCPwr8ZvjN+1J+2B4yT9o/9pf4R+NY/DXhf9nLVLjTrHw0LGC4h1s6LbR3WoG8mkUyr5wdoofJZNmAxyTXa+Kvj/8AtV/ta/F/x94d/Zh8ar8NtH+GXgjRPEMSLYW942qazr9tLfxx3JnVttrHEiIyx7HZnJ3cCgD9df8AheHhf/oH6v8A+C+b/wCJpr/G/wAL7D/xL9X6f9A+b/4mvxr+G37Z37Qv/BQbxd8IvhN8HPE7/Cw+I/henxF8QalY2kF5cm5nnSzhtIVuVkjWETGWSQ7dzBVUEZJr9Cf+Cbf7R/jj9qH9lbTvHXxUSAeLNI1PVfDmtyWqeXbz32iXktnJNGvO1ZfKEm3+HdgdKAP5nv8Ag5rsNQ039jv9lS21O3ktZj8WbeQxTLsdRILh13DsSpBxX9qdfyH/APB3V/yRb9mr/srNh/6Ilr+vCgAr+Q//AINQf+bvP+ys3f8A7Vr+vCv5D/8Ag1B/5u8/7Kzd/wDtWgD+vCiiigAooooAKKKKACiiigAooooAKKKKACmSRRzIY5VDKeoIyKfRQB8K/tKf8E3P2Ov2rtOktPi34Msri4kBxdwIIZwT33qAfzr+aD9r3/g1F0PUxceIf2UfFHlSHLLp2pDAz2CyL/UV/aTRW9DE1aL5qUmn5GtKvUpO9OTR/ky/tLf8Eav29P2Ypp5fGngi8uLGHJ+12YFxEVHfKE4/EV+ZOs+FvEfh66ax1uymtZU4ZJEKkfga/wBsS+06w1O3a11KBJ4m4KSKGU/ga+Bf2gf+CXH7EP7SlvKPiN4FsDczZzc20Yhlye+VAyfrX0GF4pxNOyqxUl9z/r5Hs0M/rw0qJSX3M/yFsGkr+/v9o7/g1F+C/itp9T+AHiubR5my0dvfr5keT23KM4/Cvwi/aB/4NrP+ChXweW41DwvpFv4qs4skNpsu+RgP9hgDX0GH4owlTSd4vz/4B69HPsNP47xZ/PDRX0Z8UP2TP2iPg3fS6f8AEfwlqekvCcN9otnRQf8AeIwfzr5/udPvrNil1C8ZH94Yr2qONo1f4c0/mepSxNKp/DmmU6KKXBrp5mbiUUUUJgFFFFUAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUm7AFFLg5xSYNLmYBRUscE8zbYkZj7DNegeE/hJ8SfHN4th4T0W7v5nIASCF5GOfZQTWNXE06SvUkl6syqVqdNXnJL1Z51RX7G/AD/ghZ/wAFEvj+YLjRfA9zpdnNgi51H/Ro8H/e5/Sv3T/Z2/4NMfFEktvqn7Q/jK1tU4aS208GV/cbmAH5V4+I4lwdP4Zcz8v8zza2d4WGzv6H8VNtZXl5IIrWNpGPZRmvr74EfsD/ALV37R2pR6f8KvBmo6l5hA8xISEAbuWbAH51/pG/s4/8EIP+Cfn7PXk30XhdfEOoRYP2jUsSZP8Au4xX61eEPh74G8AacmkeCtJtNLtoxhY7aJYwAPoK8DFcWVpaUYKPm9X/AJHkV+IastKUUvXU/gg/ZN/4NXP2hvHstvrf7R2q2/hSxbDPbownuSO4wp2g/Umv6Z/2Zv8Aggp/wT+/Z10U2k/hw+J7+WJopbvUXJYhhglQhXYcHgqQR1BzX7U0V83i8ZWxN1Xk5J9Ht92x5EsfiJTVT2j5k7pp2s1s1bZo850bQfhd8B/h4LHRrew8MeGdAtSxxtt7a2giGWZmOAABkszHnqTmvw51D/gu58O1/antfCOnaVu+FilrK41llcXjTMwAu1j7W6Yx5ZXzGUl+GAjr9wPjH8IfAnx5+GWsfCP4l2n23Rdbg8i4jB2sMEMjo38Lo4DoezAV/KJpv/BEf9oW8/aku/hDdTfZ/A1oVuv+EpZP3ctk7Hakceebrgq0ecIRuJ2FS3xXEVfNKMqEMuh7t1e3fon2jbr+XX9X8M8BwnjaeOrcTVmqqi2uZ2VnvOL1cqib0jbzSk27f17aPrGleINJtde0K5ivbG9iSe3uIHEkUsUgDK6MuQysCCCDgitGvLPgn8HfBPwA+FujfB/4dxzRaPocHkW4nlaaQ5JZmZm7szFiAAoJwoAwK9TBBGRX1NNzcE5q0ra22v1PyTExpRrTWHk3Tu+VtWbV9G1d2bW6u7dwoooqzAKKKKACiiigAooooAKKKKAP5EP+Div/AJSp/wDBMn/sqNx/6dPDlf131/Ih/wAHFf8AylT/AOCZP/ZUbj/06eHK/rvoAKKKKACv5Av+D1b/AJRZeAf+yq6V/wCmjWK/r9r+QL/g9W/5RZeAf+yq6V/6aNYoA+AP+DGL/m6L/uSf/c1X9/lfwB/8GMX/ADdF/wByT/7mq/v8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP81v/gvfrF9ov/BYL4qarpc7W15aSeH5YJUOGR00awZWUjoQeh7V+QN7q2sa5q02r6vM95e3sjTTTSMWeWRzlmYnkkk81+rv/BwTJAv/AAV1+LxcneD4eCgDg50Wwzn6DFfkRp8iSbklZlPzYIHccr+fev0zAW+r0nbXlj+SPgcXJ+3qxe3M/wA2bxv0jufNtg0LI2VGfmGPf2rQt7+5WaW7uNsxnVgWkAcjd356H361oeINbuNY0DQtEF1HPDpdtN8qwrE8ZlfcylwAZc9QSTjoK29f0TwbpvhrSdT0jU/tl7dI5urYxlfs7KflBbo2evFd0Kr0TW5MtNYlvwhrD212qL3xya/WH9nPxXJYeQ4ILnAz7V+O3h2VXuQ4+8CMYr9LvgFdTu1uG4yVxzXkZyk4an3HBlaSqWZ+/vwzhn8Y6TAqyDciYY/rXzt+0h8NdSudHm+2DKquAeua9k/Z+8Q2Gl6dE18flZcH8utaHxk1ay1m0nttPdnUqetfBRqShV90/XJU1KDUluj+an4s+DDpl5KbxSOu0Aehr5inma1dlViD0Nfpf+0PpUVwClvbGCeMkMRyrL/ewe/6V+aHiBGtb14CvJPU1+l5VieelZs/C+JsAqddySsjPt72GCUSXEfnrzlGOB+nNVUaWRsjJz0AquHjx83Wrdmdr7m4x3r1Uz5d6I98+Cfw60f4keIZNH8QazBodvFbyTedc52sY1JCjHdsYHvWRcWtvaXr29uRJGjEAjjIHSuOPiSWSwtbFI4ovsoceZGu15N5z85746D0Fan9oWkGwW0pmDIpbcu3DHqPcD1qouSd7mM1zJK3zO/tb62ubWHT5YI44oycyxrh2z/ePfFVo7yeyDQCU+W7cjnBx0JFc7HfSyRgWwJyMvx0FTv58rL9mAleNfMZOeVHP1rWMkYzi7GuNXaPdFFyMYLeoqqHdQJYzu6Hisz+2Yr67nuFt44EuMfImSFA/uk5P612mjWIeSK7eIOq84PQitPbWRg8O5bGrp1zcXjy6lfytLMwDMW5PHGc+wrn9R1q2uLiSW/3SRYKptbBB7H/ACKh8RXtvYEpbkrgYIzXmi3izzFXJw2ehxz2pe0W6NI0W/dvoejv4q1NbOxia3t1htTuT9wp81h/fyDu/HismGSW+aSO1ty9xIxkBjBG0dThRxj6dK5y48SalqNtbafdMGitAViAUAgN1yQAT+NSJrmr6awjgla3Zc42/Kw3DB568inzm/sbKyRvz31i9jvYytel+WY5Tbj885p0iWTaGl29wrXRmKmEZ3BAPvHjByff8K4r7W5b5h37VfvZbIS7bRmeEnguNrdPSjn1EqN9i28zKcMPxPSrInURZC1tf8LNuodDTw3pumWcW2XzhcbS8hymwghyRjv7GuHF5MEETHd0AA6k9qUKrd7mjwqdrMv3WoyWxW4gYrIhDAg9xX7+fsq/GLwp4p8M+GfGNvqcWLcCw1EE4a3LAA7h1GT0PQ1/Pxc20K2jidnS5WRU8opwAepLZ4PtivR/CPxX074E6bbeLvBRmk8Q/aMXtrJj7FcWg/gbvuzyD2rws9wP1ukrfEtj0crxSwtS1tGf2DeOPglpfxo0S3e41BL3S4x+6eJMSKT1KndtYY9R+FfAHxy/4J2+MnsptX+EWowa+VXmycCC8XHba3yt+BH0qt+x/wD8Fjf2UPG+k2Hw08SzSeENRgVYhbasQiSOevlzjMbZPQEg1+sMkug+NZ7LVvCd/HKJNrrhwGKn+6wOCPoa/Na+ClCXLNWZ9rCrGaundH8veieBfiPovim48C+MLS60i9TOIblDERj/AGWAH5darXHgzx5oWsie5kxAzcuASAo9utf1XeMPD+l+K7VdM8a6VbatHGpUC5QCQA/3XAyK+L/iB+w34J1m6stY8F649jEsscl1Y3S7lWPdllR856cdx71xypSRp6Huf7F3heD4L/ASwN/bbLvWQdQmdE2k+Z930/hr3WXxrPfWs+oRRNHCDgMx5dj2Hqa6u914WfhK38N2kSS7FEUIYbgqAYGPwryzxFrQ8NQpYKEvZFwCqDAU/XoBTLR2NvFq15ZRi4AtWky2+TkhRzkkHArzafSNQ8RzSPBqkRiDEKwyg46nHJNYl74n+3o/9oNIWddoSLhcfXvXX+D9Kb+wxIrCEFmOJAc49zQBraRZy+ErIHUtVDkZZCmSrH0GR/OpNY+N1no+kzxGERyIpOf4iw7e1eX+KdX1Wdm0zShE0MR8yWd2zGgX+L6+nrXj9nqrXUkmo6mBKYQW86ZR5Uqjsh56ep5oA+KP21/2ldU8TeCYdOEqSajfXflW1oxDN8owG6dAxz15OBXotz8K9T+Fnwg8N+DmunmvdNs/tV3DA2ZZdQu8PIz55+XIHtivmj4OaT4R/a0/biTxe8iLovhWRr+4thGVtlisjiJQ3QmSTBJr7v8AjV+0T8FvDOr3d78RfElhFf3EjFLW3dZHA9Nq5JP4VMtUUjyzwQdQsrQazrww4XbunbIBHJGD/jXR3Wv/AG3UbW9ZmkVXVsRfKgyeSemMfWvjv4jftp/D+40G5Twlosv2eAL5d1et5YlduixryxJ6npxX59/ED9pD4qeO9PFhDqDaRAoJcWY2Ej6/eP51HKxtn70fEP8AaD+GfgPTVv8Axl4h07RbWU/MZJQJHVeAqg/MxPsDX8/v7fX7XWhfGrWxc+DZJZvCvhG2lne58plDy4/ekBtvbain3NeKeHvhdb+LvEp8Q6oJtUu4sSGe6Yy7QOe5Pbmvl3/god8bJfhr4Dh/ZvstsT+KpLe/1W4g2mRbRfmWBRgcFzuY5+YgDtW1Gk5zUV1Ik7K5+Og1LU/iF46u/FWpndNeTtK3XC5PAHsBwK+y/BekGOCOFFzI5CgerHpXz/8ACfwrBdX8aq/lRSOMPKOik9SBnt1xX1ZbWgtojDGc4JAI7+9fo2BoKnTSR8bmmI56luhrX9nc2M72F7H5csbFWU9iOo44qkVIO7lTitvXv+EcOo7fC/2j7IETi4wHD4G7hSRjdnHtWDJJhto/M13I8pxu9BJZkxszzRvZYyRUTxMIjdxjKggZPvn/AApltC107ksECKWO44Bx2HvUyf3GqikXp5tNfTrZLGKX7WBIs7u4ZHycrsUAFcDg5JyeeKysSA7GXBrt/AWoeFrDxlZXXjS3kuNKimQ3UMLbZHhBG8KeQGIzg1s/ELxHoa6jrEPw7tZLTw1qdzutkuQrzCOM7o18zGQyg/NtxnvWN7N6FNXPJndlBJ+8egqokjLIJTkoT9QfY+1MDKwzuxjpW7o954YXZD4jtJ5Qpmy8EoVjvTES7WBGFk+Zj1K8DpSch21sc/I0krsQ3qcHsAa/2rK/xUITGrRPer5oQ4YdCegIz+Ff7V9fM8Qu/svn+h9Bka/ifL9Qr+RD/ggb/wApnf8AgpF/2O1p/wCl+r1/XfX8iH/BA3/lM7/wUi/7Ha0/9L9Xr5s98/rvooooAKKKKACiiigAooooAa+7adnDY4z61+T3w4/ZJ/bX8L/t4a3+1x4l8aeErrSvEWm2eg3umW+lXMc66ZYzzTReXK1ywE584hmKlTgYUV+sdFAH5RfGP9kT9sT9qPxPpngX9oLxl4Xj+Gmk+IrTXhBommXEOr3Q024W5tYJJpZ5IkG9E81kTLAEDbmvP/i//wAE0/jT4j1/4peAfhN460/RPhl8b76PUPFVnc2TzapaytEkF0LCZZFiUXMUahvNRyjZIr9naKAMTw14e0vwj4c0/wAKaHH5VlpltFaW6f3YoVCIPwUAVt0UUAFflX+3T+xv+1J+078X/BvijwD4x8PQeCvCZN6/hbX9NmvLO+1NTmG4uPJniMiwfejjb5d/zEHAr9VKKAPyP/bH/Y2/bO/as8CeAPB8vjvw1Z2Wiym78U6PJply2l67NG2YI3VLlZVt0wC0RkIcjk44rufil+yD+0J8WPhv4A8Sap4k8PaX8VfhjrP9raHe6fp0seilBG0JtpbZpjL5TwuyNskBHBGMV+m9FAHxL+x1+y54s+BF743+J/xa1m217x58SNUTVNauLCFreyi8iIQwQW8bs7iONF6uxYsSa+2qKKACsfxBDrdxod3B4bnittQeJxbSzIZI0lI+UsoILAHqARmtiigD8pdL/Y9/az+Kv7QPgr43/tS+LvDDr8OJLq70a28MaZPavc3lxE0O+6luJ5W8tVbPlR4BPU1yf7L/AOxX+2t8D/2gNf8AjR498beEPFdz4u1FptX1KbSbldV/s9SfJs7eQ3RihiiXGFVMFssQTX7DUUAflV8e/wBlD9s/9qLVT8L/AIt+NPC1r8L21iDUJY9L0udNantrWUSxwGaWd4UJIAaRY8kdAK/VCCGO2gS3i+7GoUfQcVLRQAUUUUAfBP7V/wDwTs+AH7Wer3XjrxrFqNp4oOjz6PbahYaneWOyGYHCulvLGrqGwSrA5xXxBoX/AASN8e/Bb4IfB3RP2c/G1tB43+EE1xcW8/iKG41TSr5rtCkoeFphLENp+Ty3G09BzX7q0UAfy96T/wAEFfj94i+Mvi79sb4k/FjTbL4w3uprq/hmXQ9JMWi6RdAAEtBLI0kwcABgXHr1r6d/4Ju/8Etv2n/2Q/iD8QvF/wAe/iBofjxfiopfxHcx2NzFfzTbGQbJZLh1VMMfl2YHAGK/eeigD8X/AIX/APBM74yeHdT8BfCr4h+OdP1b4S/C3W31zQLCGxeLVZpAzPBDdzGQxNFAznGyNWbjJr9oKKKACiv5+/2/fjX450b/AIKLeFPg1c6v8SF8J3Pg261KTTfh1C89012k4VZZVjUttC8dcV9E337WfxX+FEnwp/Z9+AvhDWPFeu/ECx1C6guPiDeyabe2YshuJvR5MkpznACruoA+rvjR+yld/G79pv4cfGjxPrI/4R74dfary30Xy8ifU5xsjuHfOP3SZ2jHU5zXh3x+/Ys+Nt1+0dq/7UH7KvibRtD1/wAW6Cnh3XYNfsZLy3e3hJ8qaHyZImWVAx4YlG7ivnfxJ/wWMh8LfCHQZPEfhzStE+I+teI77ws+n6rqwtdFtbvTeZ55L4xbvI2kFQIt7ZxgVDZ/8FgPEN78IZNa8O+DtK8U+M7TxfY+EJrTQ9ZFxpM8uoAmK4gvTCCY8DLK0e5enJoA+iPC37K37Xv7N3wG8JfAf9kzxf4Z+x6TYS2+pXXifTZ7iaW6ndnaeEW88SqAWOI2BHTmvpD9ib9lmz/Y8+AOn/BuLVpNdu0uLi/vr+RBEJ7u8kMsrLGvCJuJ2rzgd6+LvEX7eP7X1p4u8TfDfwd8NPD2ta58NtGGs+LyNamhtUMqNLHa2LtalpZfLXLNIqIDwPWum+Dn/BTzT/GJ8D6t8VvDi+FNF8eeD7nxPZXjXPmiOewy1zaPlVG9IxuUg/N6UAfq/RXyl+zp8d/Ef7RX7Mlv8c9V0VvDh1y1urqxtjIZJBajcIJGO1cM6gPjHGa/Da2+MWvfBD/glX4L/aM8ReONXsrjVPHNhda9q+oajNMVtRdyrKu6Rm2Q7FAKLhfagD9FPE37In7Z2qft82X7X2k+M/CkOkWGnNoUWly6VcNOdNkl81t0ouQvn9QG27f9mp/2jf2R/wBsr4r/ALYHgj9ovwH4z8K6Zo/gF7pdO0+90u4nnkivlRJxLKlygLAL8hVQATzmuF+J/wDwVeu/Afwn0/4xnwhb6Xo/jjV49H8Dy+INRGmrqKlSzX12xRha2oUbkzvkcEfKCa+b/G//AAUd+L3xf+E2t/ED4c3unaf4k+CHiPTLzxNH4X1EatomsaFdkCYxzNEjELG24qyhkZfSgD6k/aD/AGKf2zvin+1xpv7R3h/xv4UvNI8N2yR+HtC17Srm5t9NumGJrpRFcxB535Cu4JReBXoHxt/Y5/aK1T42Wv7UH7PPi/RtC8caj4cHhrX01OxluNOuIQSyTwpHKkiSxMzbAzspGAawF+LvjH9qr9vSL4V/DfX7q0+G/gvwol/4gFhL5Yvr/W1zbRGRfnHlQ/P8rAgsK6L/AIJQav4j1D9n/wAR6Z4i1e/1n+yPGOu6faz6lcyXdwttb3LLGhllLOwVRgZJoA+rf2SP2cNC/ZO+AGgfAzQbyTUl0iJjPeTAK9zczMXllIHA3OScDpX0jRRQB8qftnfCf4z/AB0+AOvfCH4KazpWhXviO1n067utWtZLuNbW5jaOTYkckREgDZUkke1fGcX/AAT++Ofir9j/AMJfA34m+LdDl8YfDXUbDUvCur6fp0kdpHJpq7YhcwSTO0m9SyvsdeDkYIr9d6KAPyt+Gv7IP7V/gzxf8Qf2mdU8YeG7j4u+NrfT7CIx6bOug2lnpwISPyfP892fJLOZeCeBgVz+nf8ABOr4jfGvWPiT4/8A20PE+m6nr/xA8MDwikHhm0ezsbDT0LurqJ5JZJJvNcvuZsDAAFfrlRQB+VPwB/Yc+Pul/G3wb8W/2o/GumeJl+GGjT6L4Xt9JsZLPetzsWS6vDJJJunKRqoEYVBycc1+q1FFAH5l/wDBQv8AZF/aP/a1uvCGh/DLxfouleENFujfazoGtWEt3a6zPGQYFuDDNExhjYbzFna7AbsgYr1fVvCH7eFh8HdD0fwVrvgZPFtnI6X/ANo0q6GkyWw4jWGJLkSRsoxnLsD6Cvt2igD8tPgx+yB+1J+zx8OPGXiH4c+L/Dt38TPiB4lbxJrM19pkq6IrSRrEYLe3imWWNQqL85kZick5zXnDf8EvPFvxZ8B/F/U/2kvF9tc+P/i7Jps019oVobaw0uTRPLNgbeGVpHfY0atI0jkvkjgV+yVFAH5w/s3/ALJPxz0T9oSf9qT9qrxTpXiLxTaeHovCukQaHZyWdlbWCSGaWRxLJK7TzyYLkMFUAACv0eoooA5/xXb+JbvwzqFt4NuYbPVpLeRbOe5jMsMc5B2M6AqWUNjIDAkd6/Lay/Ya/aG+OP7QPhz42fto+JfDl7a+DtO1XTtO03wpYT2P2oaxGIZ3up5ppZCPLGEjQqAx3ZzX600UAfi7pH/BFX4AeAv2ovhb8dPhVqGr6Tovw4tb+FdIl1fULhXe4MRgEZe4KxxR+Wd0QGxwQGBxXovxt/ZF/bI/al8U6X4F+OfjTwxbfDLR/E1l4iWDRdLni1i7XS7gXNrbyTTTyRIN6J5rxx7mAwNua/V2igD8YvjX/wAE0fjL4v1b4p/DT4V+OdP0b4W/HHUk1TxZZXVk82qW00iRR3i2EyyLGq3aQqG81HKFmK9Rj9gfDHh3TfCPhuw8K6Mmy0023itYF9I4lCqPyFblFABX5PftF/sgfti/tb3v/CoPjR418MWnwoOv2erzR6Rpc8euXNvp1yl3b2zTSzvDHl40EkiR7ioONua/WGigD8aPjD/wTZ+NOu+IPix4F+DXjjTtF+Gnx4vFvPF9je2L3GpWsk0Mdtff2dMsiRr9qhjAPmo+xyWHXFdX8Wf2BPjh4f8AiZ4k8efsZ+M9L8JweP8Awrp/hLxDbazYyXoii0qOSC1vLIxyRbbmOCVoysm6NsKSOOf1sooA/Il/+CcPjr4A6n8NfHf7D3iPTtG8ReAfBY+H8y+JLWS8s7/SA8cySOsDwutxHPH5isG2sHYEcg19m/sXfsv6X+x/+z1pHwTsdSk1u7t5rvUNT1OZRG97qOozyXV1OVXhQ80rbVH3VwMnGa+qaKAP5D/+Dur/AJIt+zV/2Vmw/wDREtf14V/If/wd1f8AJFv2av8AsrNh/wCiJa/rwoAK/kP/AODUH/m7z/srN3/7Vr+vCv5D/wDg1B/5u8/7Kzd/+1aAP68KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM9aKKAOI8W/DT4fePLRrDxnotlqkLDBW5gSQY/4EDX5u/G3/gix/wAE8Pjkssuv+ArPT7ibJaewHkPk/wC7xX6s0U02tUNNrY/ky+M//BqJ+zX4qMt38J/F17ocrZ2RXEYmjHpyCGr8q/i7/wAGoH7VPhjzLj4Y+JdN16JASFbMDn6Ak/zr/Qhoruo5pi6XwVX+f5nVSx+Ip/BNn+U78VP+CE3/AAUb+FTSvqPgK9vYY84ktF84Nj0CEmvz+8cfsk/tGfDiVoPGng/VNOZDgie2kTp9Vr/ZiKg9Rmud1bwf4T15WTXNMtbwMMETQpJkfiDXp0uJ8bD4mn6r/Kx3U89xUd2n8j/FRvvCviPTX8u+spom9GQisZ7aeI4kRl+or/Yr8d/sBfsYfEpZP+Ez+GugXjyZzIbKNX5/2lANfEXj7/ggV/wTM8emSWbwN/Z0r5+ezuHjAz6Lkj9K9CnxfP7dJfJ/8A7IcRy+3T+5n+VYQR1pK/0jfGX/AAaz/sA+IN8mg6jrumSHoFmjdR+DJn9a+UvFv/Bo98F70u/hP4iX9t/dWeBH/liuyHF1B/FBr7n/AJHVHiKi/ig/wP4H6K/tF8V/8Gjfj2It/wAIh8QrSUdvPiK/yBr598Q/8GnX7Xum7jo/ibR70DphmUn8xXVHijBPdtfI3jn2Fe9/uP5PKK/pZ1n/AINd/wDgoHY7v7Pi066x023Cj+deY6j/AMG1P/BS6xY+X4bt5lHdLqM1quJMC/t/g/8AI1Wd4T+b8Gfz6UV+617/AMG7f/BS2zJDeDi+P7symsOT/g33/wCClMXXwPMfo61a4gwP/P38H/kV/bGE/n/Bn4i0V+28f/Bv3/wUofr4GnH1da07X/g3n/4KV3JA/wCELdc/3pVFP/WDA/8AP38H/kH9sYT+f8GfhrRX782P/Bt1/wAFML0gDwrEmf79ygr0XSf+DYj/AIKKXpH27TrG2z13XKnH5VD4jwP/AD8/B/5EvOsJ/P8Ag/8AI/nBor+p7w9/wan/ALa2qY/tXV9JsvXfKWx+Qr3fwx/waQfHCV1/4Svx5psK9/IVmP6ispcUYJbNv5Gbz3Crq/uP468Gkr+63wn/AMGivgtQsvi74lTk/wASwWw/mTX1N4N/4NSP2KtKCv4t8S65qDL18toowf8Axw1zT4twy+GEn9yMJcQ0F8MW/uP868RSNwqnmtC30XVrtxHbW0jk9MKTX+n74E/4Nyv+CZvg0I1/4bvNYdO91dNz9Qm2vtr4f/8ABK39gD4ahW8OfDDRGdMbXuLdZ2GPd81x1OL39il97/4BzT4jf2af4n+Tf4Z+BXxc8YXK2fhzw/fXcj8KsULMT+Qr7X+F/wDwSH/b++LMka+F/h1q+2TGGmt2hX83AFf6vHhr4PfCnwbbra+FfDmm6eidBBaxpj8hXoccMUShIlCgcAAYrgq8U4yfwpL5f5nJUz/Ev4bL5H+bx8If+DXn9vLx2Y7nxobHw5C2NwuZQXH/AAFc/wA6/U34Of8ABpH4QsjHdfGT4gtccgtFY2+Pwyzf0r+z6ivMrZxjKnxVX8tPyOGpmWJqfFUf5fkfhd8Ev+Deb/gnT8ITDc6j4dk8RXMeMtfyFkYj/Y6V+q3w1/Zc/Z5+D9pFZfDfwdpWkpCAEMFsgYY/2sZ/Wve6K8+UnJ3k7nE5N6tjI4o4l2RKFX0AwKfRRUiCiiigAooooAKKKKAP5s/+Cxv/AAUN+MngDxVefsm/DOxvPC9tNaxyahrL/u5r+CdfuWjKflh6rJIDvZgyfKFbd2X/AARW/bz8ZfEu2H7JfxOiu9TudFs2n0fVVRpQlnDgG3uXAOwJkCGRiAR+7zkIG/T79uX9h34c/tvfDJPCXiWUaVrmmsZdJ1hIhJJau2N6MuV3xSAYZNw5AYcgV6F+yv8Asl/B79kH4cR/D34T2OxpNr3+oTANd30yjG+VwB052oMKgPA5OfkYZXmSzh4p1v3Vvw/lt5d/nq9D9mrcW8LPgmOURwVsZfW3Sa/5eub1aaduT1jorM+mqK+dPDf7WX7Pvi/47al+zb4b8S2t54v0m3+0XFnGcgbSRJGsn3GliGDJGCWUHkcNt+i6+qpVqdRN05J2dtNdVuj8jxWCxGGlGOIpuDklJcyavF7NX3T6MKKKK0OUKKKKACiiigAooooA/kQ/4OK/+Uqf/BMn/sqNx/6dPDlf131/Ih/wcV/8pU/+CZP/AGVG4/8ATp4cr+u+gAooooAK/kC/4PVv+UWXgH/squlf+mjWK/r9r+QL/g9W/wCUWXgH/squlf8Apo1igD4A/wCDGL/m6L/uSf8A3NV/f5X8Af8AwYxf83Rf9yT/AO5qv7/KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/glL+4/wCCpv7Nu7jZ8VfB36ava1/t81/iCf8ABOk/8I3/AMFS/gSZfl+wfFTwxuz28rV7fP8AKgD/AG+6KKKACiiigD/NG/4ODbVP+HtPxY1I3MRcSaFD5AyJAo0SwbeeMYJOAc5zxjFfj1G08FpFPLEyRS7tjleG2nBwe+DwfSv1j/4OEbho/wDgsB8XkXv/AGB/6ZLCvx5S41GW0VWaSS3gOAf4Y/MOSB6E4zj2zX6VgJWw1L/CvyR8DjE/rFW3d/mdjryR2V/5MLRshAKiNt+3gdWwMnn04qrbtIV2sx5OR+FYKMW4wSSeMV2cVwItOhsXto1eOVpTOM+YysAAp7YGMj3NdinoYwXNLU9B8E6d5lyrbd244r9MPgtocvhjUJrTWbctLFGAELgFXbBUjGQeuSPSvzy8Hatpiw20dvAI5oy2+QE5fJ446DA9K/Rr4L3P9rX8VzcHLEgn37foK+ezbEPVH6TwthUrNH64/BnQJtb0RZQxUIm7GOmOx+prptQ8P31zOS4O0ZHNaPwfvzpGkrbWajdIoxx7V9J6N4Pnv4ftV+oWMqScCvhKle02z9bVJ8iuz8Zv2jvA8Nm7tcBSso3EKei+h9DX4t/FXT7Fdfm/sqNo4dxKBzlse5r95f2xrSG2u50sX3AZGa/DX4iLLFePsQSNzgHoa+0yDEO1z8z40wqcWeJzf2fDbRhN5nBPmhgNox02nqeOvvWgonh00TSWwKXTHyZieRsOGAAPuOtYeoW8lnceVLIkm5Q3yHcBntnHUd6lstRSzuEeVPNRN2UbpyP8mvs1LQ/IndXibQuLeCRQyExjaGPqe+KdDIZrjEAIBY7QeuD0rntOFvdyO9xIyIoOzAzlscA/U966fTfFWs6Vol54ds2QW2peX5oKAk+Udy4YjIwfQ80+drYa7PY6KS+jRcWDSR4TZKrHq/fp2PpV/RJ9TtorrXLO8S1khTYV3bZHV+CFHfjr7VwMM0jyqsJ3dzjjmvVvD9pfRAxCRY/toEcm9fur68jI+opuaW4vZcz0IfDunTajOsiqEVOx716A2pxaSk63ZcBYyIwOBu7Z9qv+GPEHhrwRf7tXh+1REFSqY49DzWt+058V/hF461K0m+EejPolpFaxJNC0nmb5gMOxJ5+Y846Cud15Ooo8t4vr2NlSUINqXvdu58++JpdW8mDUb2B4re83GGVxhJNhw2D3weuK5+5TTrG5eIXKXOzaVaMExsCMkAkAjB46VlwSapr1slvcTnyrYMbWKQthmYjKR8YyetVbqSG1f7PDG0UiqVmDnP7wHBx6V08zIULK73N661G1lnaazj8hDjamd/bnnirFlqkC3K3N+vnY/hbkN9eaztFmsL7T2sZGt4H81P30hbzMHggY42+vGaei2eh6+LTxXbXPkpktEAYHYH7pG8Z2nrnHIqlMe+iOt0fxpP4cttRt7C2hli1CIxEzoHaMZ6qex96yZp7l7WPULlf3cuVV+OSvUfhWfc6toc63s8FutmsgUQxDL7MdeSc8/jWPaf6VKtuJhGHOAZDhVz69cD1p8zBUupqtcpGP3XJ681Jp120l3CiuIXLgB242nPB9sVR1TUBaiDTXgiWWzLK0ijmUE5BJPX246VnPcXbRz3lhG8dsWBLEEgfVsY/WkpM3tZXOn1nVb5r+6W9uDcO7EySBiwkYfxZPX61Nq3gu9i0201CC6g1C1uofNd7Zs+Se8b7to3juBmuLutQN3MboqkalVAVBgDAx+vei51q6vk23EpO0BQq8LxxnA4zik22ZKMjy/wAWeArDVI3hZRIWzlSMjHavQ/gf+1X+1x+yJqsdz8J/E08mmxc/2XqBNzZlR2Cscp6fKRViVojZxXFssodDh3A+QHsAccHHYnNVpfDsutW4TT0NxMVd2jjBLKqdSfw5rixGCp1VaauddGvOm/dZ+9/7NH/Bwt8NtZhtfC37TuiXXhm+b5ZL2FftdhkdyciVB/wFq/b74d/tB/Bv43eHIfE3w/1e01XTrlQySwSLLHz645X6MAa/gr+Jvww8JW929v4Rl/tS2NrDI8x58qRh844AHB45rzT4bap8VPgx4ztdf+FPiW78M3KSA+fDK4Qj0eMHDD2Ir5rFZFHV0nbyf9f5ns0M1/nR/ox3JvRpb2mh3fkrJ93+MAexzkVz2PJeOPUBJJNIwMkp5jz6ev51/LT8FP8AguJ4u+Gc1n4c/aC09tetmCiXV9LjEMqHuXgJ2OPddpr93f2fP25v2fv2ltJ+3fCjxLZ6syrultlby7qL13wPiQY7kAj3r5zE4CrS+NW8z1aOJjUV4O5+gsGnan9nUuls8LYCkYDD8RxTp7y4tYZIoknMeQpEceTIf9n2+teM2niKBLiLUNMm2tGdy45TPuvT8xXrXhvx+Y7LztUWR5mPzTxkEf8AfPb8K4JU2joUkYXiW2TSNIk3WYzdEMUJGAB0DYr8/v2xvilN8KvgRqGpL+7n1L/QrRVGAJZQckf7q5PFfpGmpeHvFOtLc3F+YraL7y7MtKw/hH93A5JNfzr/APBYb9ofw3e/Fi1+Eml3cVtpXhG3WSeNWyWvLjBOcdWC4GOvNZso/N3Q/F3inSml07wrf3WnRagnl3AglaIzrnhW2kZGeea6j4N/BtfiL4zudGie3sLext5b2+vLgGQRRR8Fjg8sThVGeSa8m8J2Xxs8eQ2Unwv8KXV4kz5e7uE+zW6xj1aTnn/ZBr6z+HX7M/xX0S9l1Pxz4nXTrK9UfadL0scSbfuq8rDJAz0AAzzQosVzwb4peK7b7SiahdJ/Zem5itTsCO+eNxAJyx9qn8NeE/F3i0wR+G7GeVJsASsuxcHv82K+6vDn7P8A4S0u5e78PaIsk8hy1xcjewHrls4/CvL/AIqftG/su/AJZYvil44tI7yIEf2fprfaLjP93Eedp/3itaKkxc3Y0Pg1+zx8bG+J1rpVj4is9KXU5FtIrOzT7RK6OQG8x3AUZAJbGcAV/M9+2jptz4k/bK8UeGdFvW1iKwvTYwPnosORtyeOCDz3r9QfG/8AwXYHgO/aL9lLwRDbzRJJFHqmtfvJRvUr5iRIQAwB43M1fiRol34l8Z+NL3xrrzmS91O4e5uJAMbpJGLMcDpkk17WV4OXtVNrQ5MXW5Kbdz6o8D2mi2vg23sY4XXUIpnZ5ABsMTADGeuQQfwr0VdPvvsP9rPE32VXEbSKON3XH1xXEaDC8VmIVAHHPvXSfb5YYTCWPlk5K54z64r7WnHlij4qq+aV2TSng/Y17cbhjn3xW9qul6bqN9Pc+DIruSytoUlkM6jevRWJ25AXecKfpWf4avvDtr4lsrjxlDLd6VFMrXcFtJ5UrxD7yq2PlJ9cVT1HULY6leSaAsttaTsypGzlm8ndlVcjGSOO1TKV5WLULRvf/MyJpQTtzgUzdiJo8fKecjr0xVSR3PLDilSeIAKTjOQOaAS1JcZ/eEHnHXrV7WG1iyt4tE1R3ESfvo4mbKr5ozuA5A3CsW4llhY28ylWHBU8EeoqCWZ5RliSRwo9uwyayb6s1UCFlCng8Gt3QtDTWLa+vJryGzWzgMyG43DzmyB5cZAILkHdzjgGodR0/TrNrb+z71b0SwpJIUUr5TsMsnPUqeMjg1mTzz/ZltQzLCG3hM/LuxjOPXFZyaa0ZSjZ6gYoBAG80+ZvO5cfL0GDn61/tW1/ifmR2BVck7sdK/2wK+dz9/w/n+h7uTq3tPl+oV/Ih/wQN/5TO/8ABSL/ALHa0/8AS/V6/rvr+MXXf+CMH/Be34Fft2fH39qj/gnZ8cfh38PtJ+Nfia51i4h1CN767ktftE81qkyXWiXscbxi4fd5L4JPLMAMfOHtn9nVFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB+7P7Q/7D/xL+J37Tej/tUfBb4pXXw98QaZokuguiaTaapDNbyyCQki5+6wI7V3Og/sjeKrr4rfD342/Fvx3ceKfEvgO01C0NwLC3sY70X4A3PHD8qFAONvXvX89v8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH7A+Mf8Agkz4H17SH1Dw/wCLLnTvFdn4rvvFmk6vNY294lrNqAAlt5LaYGOeBgMENhu4INejxfsBeIvE3gfw/wCG/i145i1O+0DxRZ+JYp9J0O00eAtZ52weRDn5Wzy7Ozelfhv/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB+hX/BRL4M/Ffw98X/EXjX9mOx+IMGtfEbw+dI1geFrCwvdLv2VWih8+W7YPZyKGw06D7nvXlfx2/YQ+Ifjj9kX4AfsF3vhjWbnXtHlsZtU8T2DqtjpVpEc3kUtyWDOZk/dlFB3g56V8k/8MY/8HiP/AEdv8L//AAU2v/zL0f8ADGP/AAeI/wDR2/wv/wDBTa//ADL0Af1d2vg7TvD3w9XwF4WhS3tbSw+w2sSjaqokexB7DpX5IfAv9gbx/wDEj9iHQ/2S/wBqjSYfDq+FfEcepKba4h1ODU7e3neZQ6FQESQPtZWBIr8s/wDhjH/g8R/6O3+F/wD4KbX/AOZej/hjH/g8R/6O3+F//gptf/mXoA/YPxj/AMEnfCGs+FG8D+E/G2paTpOiaymv+Draa3hv4/Dt3giWKEXAYS2kgJBt5BtUcKRxX0t8Hf2T/Evhn4Y+Kvhv8cPE1h4vh8V28tpMLDQrTRIIreWMxsojt9xckHO6R256YFfzzf8ADGP/AAeI/wDR2/wv/wDBTa//ADL0f8MY/wDB4j/0dv8AC/8A8FNr/wDMvQB+8X7Df7Ceh/8ABPH4J6/4M+H+qah481rU7yfUpL3VpEjurpsYgtzJyqpEgWNCeAoq5/wTh+Cvxd+CHwS1jSfjZpcGi63rXiXVtZNlb3S3iwxX07SRqZUAVmCnnAr8Ef8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AD/g7q/5It+zV/wBlZsP/AERLX9eFfw7ftFf8ESv+Dj/9uLU/AulftvftCfDPxt4b8FeIrTxBbWkUDWEiTQHDMrWegWzOxjLKFd9mT2PNf3E0AFfyH/8ABqD/AM3ef9lZu/8A2rX9eFf56P8AwTu/aQ/4Kw/8ElfiF8efCfhD9iPx78T9N+IPju/1231BLe/06NIlllRNm3TroSrIpDqwZePXrQB/oXUV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14V8j/ty+D/2hPHP7NHiLQP2YtYOj+K3i3xMgCzXEKg+bBDLkeTLIvCSdQeMrnev84//ABECf8Fhv+ka/j//AMCtR/8AlJR/xECf8Fhv+ka/j/8A8CtR/wDlJWOIoqrSlSbaTTV07PXszty7GyweKpYuEYycJKSUkpRdnezT3T6n5g/s7eBP2i/EX7QekaB8A7O/Xx7YX3mweUDHNazQNh3mL4EaIciQyYXGQ3XB/wBATwMPGa+DNKX4jG0bXxaQjUTYbvsputo80xb8NsLZ27ucda/j38Lf8Fq/+CnXgjxXrnjnwj/wS68ZadrHiWVJ9UvIJb9JrqRFCqZGGiZOAM46biW+8ST3Hgn/AIORP2vvFf8Aaek/EX9my3+F+o6dOIDDreuTXd0JI3HmpJZiytXjwoZcvIpDYOxhmvlMsy+hkFCpVxVe6k/l5WWrcn1/yVz9f4r4jx/iLmGGweVYCzpx30ctbc3NPRKCfwp+u8uVf19UV/H9Zf8ABxb/AMFPfFN3fS/Cn9gTxL420mzuntV1bQNXu7+ymZMH5ZYdGdc7SpKkhlzggGtH/iIE/wCCw3/SNfx//wCBWo//ACkr62lVhUgqlN3i9Uz8bxeErYWtPD4iDjUg2pJ6NNaNM/rwor+Q/wD4iBP+Cw3/AEjX8f8A/gVqP/yko/4iBP8AgsN/0jX8f/8AgVqP/wApK0Oc/rwor+Q//iIE/wCCw3/SNfx//wCBWo//ACko/wCIgT/gsN/0jX8f/wDgVqP/AMpKAP68KK/kP/4iBP8AgsN/0jX8f/8AgVqP/wApKP8AiIE/4LDf9I1/H/8A4Faj/wDKSgBf+Div/lKn/wAEyf8AsqNx/wCnTw5X9d9fwCftDfG//gqN/wAFV/8AgpF+xj8Qvih+xt46+EGg/Bn4i2WoX+oXNvfX1s1pf6jpck000kmn2iwR26WRZmJYEMSdu3n+/ugAooooAK/j/wD+D1dwP+CW3gCPufippZ/LSNY/xr+wCv45v+D169WP/gmv8NtOJ5l+JdnIB7R6XqY/9noA+H/+DGNCI/2oX9T4KH5f21/jX9/NfwPf8GNVmyeHP2mNQI4lufCMYPvGuqn/ANmr++GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8PuwmX9nz/gp/Dcar/o48D/FFWm3cbP7M1bLZ9MeWa/3BK/xwv+Di39mHVf2Wf+Cwfxi0K4t2h07xjqp8ZaZKRhZoNezcysnsl008X1jNAH+x7RX51f8ABJn9sfSP29P+CeHws/aXs7kXGo6vosFrrQzlo9YsB9mvVYdRmeN3XPJRlboRX6K0AFFFFAH+Yl/wcM7/APh8N8XyvH/Iv8/9wSwr8d7eWZYjCWO04JGeCR0OK/rR/wCCy3/BHP8A4KO/tYf8FHfiF8ePgH8NE1vwnrS6QtjqC6tpdobj7LplrBKWjuLyKUFZY3jy6DIUEZUg1+YMX/BvZ/wWDQkP8Icjt/xP9E/+T6++wWOw6w9OMqiTUV1XY+PxeDrOtOUYPVvo+5+RdtdtbYmjwWHTufw4xXWTabpn9r2lmmsQ3MF3Cks1xHG+Ld2zmNgQCWXHJXjniv1Pi/4N8v8AgsIvDfCDH/cwaJ/8n1s6d/wb6/8ABXcyBbz4TmNCcEjXtFPB6nAv+v41v9fw3/P2P3owjg63/Pt/cz8y/C07R3X2eFWmIzgqCeB3xz9a/Qj4Ia3eacllqcm3yrksI/mBY7GwcjORz6gZr6r+HH/BAT/govoMp1zxf8Mby8SFGWTTYNe0i3e53ZVQk63zhAvyuwZcHlR616h8N/8AgiP/AMFNPDk1rc3/AMOmh3cyxnWNKPl89Mi9bdxzwBXiY/EUZp8s0/mj7jh6tOjOPPovM+/P2Y501WW3TVYHRmCN8ykEqehwexr9P9Rbwrb6E1nLiI+XhcjHavNPgF+xH+1NoFta3HxL8Plbm1tYrZCb21kIWIYUZWdhwOPSvdPiF+yx8f8AW9OFto2glnQcEXdsp4+sor4OpzuV+Vn6z/aGEdl7eP8A4Ev8z+eT9sTQTHcy/ZpoxHKzfOx4UE98f0r8IvifMtnqU1vvSVYmYF4ySG56gnFf1P8A7Qf/AATH/b28e2k0nhnwaLgodqRHU7BGcHuC1wF49yDX5SePP+CGP/BVbXJy+nfC3zAc/wDMc0gfzvRX12R1oQVqkkvV2PhOMK9Krf6vJS9Hf8j8Q9Kn0n7e8urWr3cbJIFSOQxEOwwjZAOdp5I/i6VSurSSFHV1McsXLK52MVbGPlYA/wAzjrX6+Wv/AAQR/wCCuFiy3dr8K3WZCcbde0YY+h+3U6b/AIIN/wDBXi71Eane/CYXMpYM5ude0aQPjs2b/kV9asww62qx/wDAkflc8FWa+B/cz8epb8yokDlRtG1eMAAn2rQtze6gscMz/LECq56AE5r9eov+CBX/AAVdldvtHwlVC77gU1zRgiD0Ci+PFdeP+CCX/BU3T2CQfDFJ8BTuXW9JwT6Ya8HTvxj0qnm2HWntI/eiY5bWeri/uZ+ZtvZeAbXwSmmPbMNchl8xrtZRJC8ZH3NoHDZ759sVnXfiGSzkDTSbmIC7v9kdK/Wu5/4Is/8ABW6SyudKg+EcENldmNpYINY0WJWaIYUgi9JHqQCMnrXAa/8A8EKv+Cst1tXR/hC6KEAYPr+inL9yv+nDA/Wohj8M3eVWP/gSNJ4WslaNN/cz8kPFWtPf38v2NnmijALMinaoPc+n41S0vQbnxBLcaZZXNsktvBJc/vZAqsIhkrvzjJHQc5PHWv1m0D/ghX/wWE0KHULP/hVEj2+pQGCaJPEekRq4PI3bdQG7aecHINc7L/wQR/4LCSKiH4UOUiTy0X/hING+VfT/AI/xx7V0/wBpYa1lWj/4Ejmjg8Re/s3f0Z+RcOq6pdaemnKzNDbsZgqj7hIwSSOQMevFME5kZlckkjJr9kI/+CCv/BViLwo2nRfBaZNYe43NfDxNo3ltb4/1Rh+2/wB7ndu9sVkRf8EB/wDgrqmWk+EqsTx/yHdG4H/gf2pxzLDdasf/AAJf5lLCYhf8u5fc/wDI/Kq/8Wa3rWl6douruv2TSAyWxWNUcBzuOWUBm56Ek1taj418UeIdZ/4S3VLma+vlVIVuLgeYu1F2qp3Ag4HAFfrDH/wQe/4K4GO3mk+E6yTwr5ISbWtEaER9jxfZJHuKzp/+CB3/AAV3s4vsVr8MDPHu3HZr2jqm4dCA18OnrgVSzHCf8/Y/+BIawldaqnL7mflloenpPcJBc6VPqUriVpI1YwspA/kvXnGelV/DXiHT9CMsU1qk32iMxmSVA5i5zujBI+YYxnNfqa//AAQd/wCCxE873E3wrkZ5Pvs3iDRiW+p+38/jSL/wQL/4K5y5M/wp+4AFzr2jc+3/AB/Uv7Rwr3rR/wDAl/mWsPXTv7N/c/8AI/JLUtdur3WG1nVk+0uzAsJfuMBwAcdsViS6xeyRTW0Uuy3Y7jGrHb7DB9K/X2f/AIIC/wDBXecGNfhSFBGTnXtGwcduL41Wh/4N/P8AgrhbTxSSfCXzk4ZlXxBoyn6ZN9+ozR/aWF/5/R/8CQpYXEP7D+5n5FWl0ZYlgQF3Y8KOpP8AWtW7tdUvbJ9QkjKxWmEdsBdp7Ajg5r9cD/wQU/4K72+qvqWjfCOSzAfdEv8AwkWjOyA9g324ZPvgUaj/AMECf+CtUs7my+EkjRvhj5viDRdxY9ScX+OtP+0sLb+NH/wJf5g8JiLWUH9zPySsbvWLrTm022eRrZXErRrkoGPAY9h9TTbt9X8Maq0KS+XdQHlonB5I7FSR096/XjS/+CDf/BW/T7O5guPgvFdyyhRFJJ4g0geVtPJ2rqIV8+jA+1Y6/wDBAP8A4K5SXAMnwkMaE8lde0U4HsDf0v7Swv8Az+j/AOBL/Ml4XEf8+39z/wAj8gZbl5RKWL+a/LEHAx1+bjnP1FY2oNeXBF7e73WT5UkKkKwHGAehxX7KXX/Bv/8A8FdA3l2vwnYrjJb+3tF5PoP9PHFRWX/Bvz/wVsa6jfV/hLLJbRuC0cfiDRQ5Un5gub4qD7molmOF/wCfsf8AwJf5hHC4j+SX3M/D7VvDdtfRtvAYfyNeeHwzrnhXU4fE3gm9uNK1G3YPHc2kjQyow5BDKQa/oQ8Q/wDBvr/wVdhmQ+F/hTLNBIu9ln1vREeMk/cJGoENgfxDGT2rLsf+Dfb/AIKzFZv7W+D8rMYyIjF4g0MAP2LZv/u+uOawni8JJa1Y/ejaNHExd1CX3M+K/gB/wWS/an+Dc8Oh/Gi1j8d6QmF89z9n1FEHpKo2yYH/AD0Uk+tfvx+y9/wU4/Zh/aJeDSPCHiVNN1yUDOlaoRZ3W70QMfLl/wCAMT7V+d2l/wDBv1/wVh/tJIG+DdtZ2k4RLgy61o10vy/xbG1DJz6AgV4T4t/4Nqf+CtU+qy3Hhv4ROYwx8t217Q42+u0agQPYZ4rw8ThMDO/JUjF/4lb7r/ketRxGISXtIN/Jn9T2neJfKlfU4ZjFLGCcjjgcmvzqu/gV8FbDx3qPxLj8ORan4j1a4kuZ768HnvvkOflMmdoHYKOK/InR/wDght/wcj+B1ji8A6J4ksYoSPLij8a6UIgB22HVNuPbGK6fxT/wSJ/4OlfHXh2fwp4j0bVWspV+YDxRoMLuB/D5kV+H59CQPWvHngYp6VYv/t5HpwrXXwtfJn3L8a/2i/gF8CLZpvi/4w03QTgkWaOJLlh/swx5k/8AHa/Ij4xf8FuPht4fkm0X9nPwjLrV0Ttj1LV28qHPqIUJdh9XX6Vwz/8ABr//AMFvdTu2vdX+D7SzSEtJJN4l0KRmY9SSdRySfeus0v8A4Nev+CxsGHuvg6Nw5/5GHQ+v4ahWtLBUft1Y/JomdZraLfyZ+U/x3/by/a9/aAuJtH8UeKriDTXyPsWmr9jt8HsVTBYe7Emvl7S/h3q+qS/aLrczNyWY7ifqTX9K+n/8G2X/AAV+gs4bW5+D0REQIX/ifaJlcnJ5F+CfzrtND/4Nw/8AgrUZXt9Q+E4tYhE7K/8AbmiyZdR8q4GoDG49+g969SjDBw2nH71/mcFbEYlq0YP7mfzj6F8LLeP55V3EV9Q+Fvh34B1HVtO07T7mTSYWt1F3PeMjqLjax+UDZhGYADJ+XOSa/ZuP/g3d/wCCvw+RvhABjv8A2/on9L+rMP8Awby/8FflkUz/AAeLJn5lHiDRASO/P284+uK71icMtqsfvR50qeJn8UG/kz8btNsLKC1uLjULhLeaGLdDE6mQTMWwQCOBtGTk1l6nqVzqt8by527yFH7tAgwBgcKAAfWv2el/4N3/APgr+ZC8XwgwD2/4SDRSfz+3j+VNb/g3h/4LBoAE+EGT3P8AwkGif/J9b/2hh/8An5H70c31Gt0g/uZ+Ouq+JtY1DRdP0C8kU2ulhxbqqKpUSHc2WADNk/3icVhROWU/mK/aST/g3k/4LEHlfg/n/uYNE/8Ak+np/wAG8v8AwWJAG74Qe3/IwaJ/8n1Cx2HX/LyP3oHgq97uD+5n4zaTa6Xf6pBp+qXYsbeRsPcFDIIxgnO1eTzx+Oao6tpi6SlnMbi3uPtcCXAFvIHMW4n5JB/A645U88g96/ZZ/wDg3c/4LGCT938H8qeM/wDCQaIP/chTpf8Ag3M/4LBxWUd5F8JkeWRmDQjX9GDoBjBJN8Fwe2GJ45xU/XaH/P2P3ot4Srt7N/cz8SJiXcyyEsx5JPOTW/4S8U6x4H8S2HjDQHjF7ptxHcQebEssZkQ5Xcrgqwz2Iwa/Ys/8G6//AAWOJAPwe6YOf+Eh0T/5YVaP/BvD/wAFkntvsb/B9jGrlwD4i0QjLdePt9RLF4dpr2i+9f5lxwtZa8j+5n4sanqVzfahNqVxtM107SyFFCpuckngcAZ7Va1y50m8lgbS7V7SNIFjZZJfMLPgb2BwuAx5A5wOM1+ysP8Awbr/APBYvkS/B44J7eIdE6f+DCo5P+DdX/gscWyPg+TjpnxBofT/AMGFZfXKOymvvRp9Wq3vyv7mfjNqGq3up2lpZXjKY7GIwQ7VCkIWLckAFjknk5PbpX+1PX+Xkf8Ag3W/4LG8L/wp3j/sYNE7f9xCv9Q2vCzirCfJySTtfZ37Hr5ZSlDm5k1t+oUUUV4p6gUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/KH/wUQ/4JG/EnTfj1ZeKP2UdCk1TQPG14yvYwYVNKvHy772OFjtWALq5IVDlOPk3f1eUV5Wb5PQzGkqVfo7prdd/v/rY+w4M42zDhnGSxeAafMmpRlfll2uk1rF6ppp7q9mz86/+CdX7BOn/ALDXw4vdMvtam1nxD4gMM2qOjstjHJECFS3iOOF3EGVhvf0UYUfopX5b/wDBS7/gokf2IfC1hoHhTRZdT8WeI4ZX0+a4jYadbrGQrPI/HmOpIxChzggsVBXd+Y//AASy/wCCqPjnVPi7dfBf9qjXpdUh8YXpl0vVbthm1v5iALc4AVIJTgRqoCxvgABWJXzo5xl2X16eVQ06eSb1V2+rv+Op9LV4K4m4iy/E8XYhc9/e/vTS0k4xSslBLbS6Xupn9QFFFFfTH5UFFFFABRRRQAUUUUAFFFFABX8QX/B7z4ytrH9ln4H/AA9ZwJtU8VajqKp3K2FoImP4G6H51/b7X+Xd/wAHjH7Y+kfHn/gofoH7M/hS5Fzp3wZ0U2t2VO5V1jWClzcqCOPkgS0Ru4dWU8igD9iv+DIPwnPZ/szfHTx0yERaj4n0uwVuxaytHkI/AXI/Ov7h6/m+/wCDU/8AZh1X9m//AII++Etd8RW7WupfE7VL/wAZSxuMMILvy7a0b/dktbWGVfaSv6QaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv48/8Ag72/4Jm6v+05+ylo/wC3F8J9Pa78VfB2OZNZhgTdNc+HLlg0r8ZJ+wyjzsdFikncn5a/sMqpf2FjqtjNpeqQx3NtcxtFNDKoeOSNxhlZTkFSDgg8EUAf5cX/AAa1f8FnPD37BHxwv/2Qv2kdVXT/AIVfEu8jmtdRuX22+ia6VESzSE8Jb3SBIp3PCMkTkqgkNf6kyOkqCSMhlYZBHIINf5aP/Bw5/wAG8fjj9gfxxrH7W/7JGkT6t8DdWnNzd2lsGln8LTytkxSgZY2JY/uJ+fLyIpSCEeWx/wAEY/8Ag6V+OH7BHh7Sv2bv2vrC8+Jfwq09UttOuoZFOu6JbrwI4WlZUurdBwkEro0YwElCKI6AP9Siivzq/Y4/4Kzf8E8P29NItrz9mj4p6Lq+o3AGdFupxYaxGx6q1lc+XOcHjciMhP3WI5r9FaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlz9sH9lTwH+2F8FNQ+EvjRRBO37/AEy/C7pLK9QHZKvqOSrrkbkJGQcEfGP7AX/BKD4Y/slpbfEb4ktb+KvH4AZbraTZ6efS1RwCX9ZnAf8AuhATn9ca8W/aK8R/Fzwh8EvEnif4EaTb654ssbN5tPsrpmEcsi8kYXl2C5KJld7ALuGc15eKy7COt9eq07zgu19tdur7dT6vKuJ85hgXkGFxLhQrSV02oq70d5P4YvTm1s7a9T0268TeG7LX7XwreahbRapfRyTW1m8qrPNHDjzGSMncypuG4gEDIz1rcr/PZvP2q/2itR/aFtP2kdX8Q3l143sbtZ4bqXkoyEjyViGFWIglDCoCFSVxgmv7yPgF8RfEvxa+DXhz4j+MdAuvC+q6vZRz3Wl3i7JbeU8MMHkKSNybgG2kbgDkDz8h4jp5nOrCMHFx28159n5fdfU+m8QfDHE8LUMLXqV41FUVpW0tNatJPVxttK26d0rq/r1FFFfSH5cFFFFABRRRQAUVxnj34jfD34VeG5/GXxP17TvDej2wzNfapdRWdtGOuWlmZUX8TX8uP/BSH/g7W/YN/ZY0bUfBX7IEq/Gvx2geKGSxLReHrWXGA816QDcqpwwW1Dq4yvmxnmgD9XP+Cxf/AAVY+En/AASe/ZO1H4w+Kpre/wDGusRzWXg/QHb95qOo7RhmUEMLa33LJcScALhAd7oD/lb/APBPb9kP46f8FlP+CkGl/DPW7671LUPGmr3HiDxnrzDe9tYGXzr+7dsbQ7F9kQOFaaRE4zXO+P8A4j/8FCP+C4X7bdtPq4v/AIkfEvxbKLXT9PtE8u1sLRCSI4Y8iK0s4ASzuxCr80kjlmZj/qM/8EPf+CNnw1/4JFfs3v4cmlg174n+LVhufFuvRKfLeWMEx2druAYWtuWYKSA0rlpGAyqIAfsl4O8IeGvh94Q0rwF4Ls49O0fQ7ODT7C0hGI4La2QRxRoOyoihQPQV0lFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9H+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAqX9hY6rYzaXqkMdzbXMbRTQyqHjkjcYZWU5BUg4IPBFfx/f8FMv+DQn9lL9pzV9Q+LH7DmsR/B3xVds882jPC1x4cuZW5+SJT5tjknnyfMiUYCQLX9hlFAH+OF+09/wbpf8ABYP9lrVbiDXfg7qvjHToWIi1PwaP7egmUfxrFbBrpF/66wRn2r45hv8A/gp/+z4o0q3m+KPgcW/yiFW1bTNmO20eXjH0r/cDooA/xBB/wUW/4Kl+G/3Q+O3xUsNvGP8AhJ9Xix+H2gU7/h6z/wAFTYPl/wCGkviqn/c46uP/AG6r/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/CYtf2yf2vrHxh/wsOy+KvjCHXxctef2mmuXq3n2liWMvnCYSeYWJJfduJOc17d/w9h/4Km/9HLfFX/wstX/APkqv9vmv4fP+Crnwa+O3wu/ay1S8+L2r3via18QFrrQ9TueRJZluIFVQERoCdjRoqjowUBxXgZ1mayugq1OhzJvW1kl5vR7+n6H6LwJwpLi7MHgcTj/AGcoxvHmTm3bdRTlFaLV+9tqk1dr+In/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/Vz/wCCNPw8/at+GX7PVx4c+Ptl/Z3h2SVbnw5aXjMuoQRy5aVXiI/dwsxDxqxDhi5K4Za/YavTy/FPE4eFeUHFyV7Pdf108j5XiPKIZXmVfAU68a0abspx2l+Ls+jV3Z3V3uf4g3/D2H/gqb/0ct8Vf/Cy1f8A+SqP+HsP/BU3/o5b4q/+Flq//wAlV/t80V2HiH+IL/w9F/4Kmal8n/DRXxVnz2/4S7V2/wDbmmN+19/wVI+Ig+yv8UPiprvmcbDrer3W7Pt5rZr/AG/aKAP8Rfwv+wD/AMFTv2rtehutF+EvxI8aXUx2i9utJ1CeJd39+5nTy0B9WcCv6Av2F/8Agzg/bk+NN9aeJv21de074QeHiVeXT7d49Y1yVeu0JA5tIdw43tO7IesRxiv9OaigD89f+Ce//BLj9jD/AIJi/DiT4f8A7KXhZNOuL5UGqa5et9p1fU2Tobm5IBKg8rFGqQoSSqKSc/oVRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq15eWenWcuoahKkFvAjSSyyMFREUZZmY4AAAySeAKTaSbb0Gk27Is0V5v/wuT4Q/9DXo/wD4HQ//ABdH/C5PhD/0Nej/APgdD/8AF15/9r4D/oIh/wCBR/zOr6hiv+fUv/AWekUV5v8A8Lk+EP8A0Nej/wDgdD/8XR/wuT4Q/wDQ16P/AOB0P/xdH9r4D/oIh/4FH/MPqGK/59S/8BZ6RRXm/wDwuT4Q/wDQ16P/AOB0P/xdH/C5PhD/ANDXo/8A4HQ//F0f2vgP+giH/gUf8w+oYr/n1L/wFnpFFeb/APC5PhD/ANDXo/8A4HQ//F0f8Lk+EP8A0Nej/wDgdD/8XR/a+A/6CIf+BR/zD6hiv+fUv/AWekUVwFn8V/hbqN5Fp+n+JdKnuJ3WOKKO8hZ3djhVVQ5JJJwAOSa7+uqhiqNdN0aikl2af5GNWhUpO1SLXqrBRRRW5kFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXl3xa+LXhz4NeHIPE/ieC5nt57lbVVtVV3DsruCQ7oMYQ985xxXLjcbQwlCeJxM1GnFXbeyRth8PUr1I0aMbyey7nqNFfE/wDw3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/Xy3/EROG/8AoOh97/yPb/1Uzf8A6BpfgfbFFfE//DePwh/6B2sf9+Yf/j9H/DePwh/6B2sf9+Yf/j9H/EROG/8AoOh97/yD/VTN/wDoGl+B9sUV8T/8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P0f8RE4b/wCg6H3v/IP9VM3/AOgaX4H2xRXxP/w3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/R/xEThv/AKDofe/8g/1Uzf8A6BpfgfbFFeJ/B348eEPjb/aP/CKW15b/ANmeT5v2tETPnb9u3ZI+cbDnOO1e2V9Nl+Y4bH4eOKwdRTpyvZrZ2bT/ABTR42KwlbDVXQrx5ZrdPzV/yYUUUV2nOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcT48+Ivg34ZaPHr3ji8+w2k0wt0k8t5cyMrMBiNWPRSc4xxXkv/DXP7PX/Qwf+Slz/wDGq8fG8Q5Vg6vscXi6dOe9pTjF29G0zvw+VY2vD2lChOUe6i2vvSPpCivm/wD4a5/Z6/6GD/yUuf8A41R/w1z+z1/0MH/kpc//ABquX/XDIf8AoYUf/BsP/kjf+wcz/wCgWp/4BL/I+kKK+b/+Guf2ev8AoYP/ACUuf/jVH/DXP7PX/Qwf+Slz/wDGqP8AXDIf+hhR/wDBsP8A5IP7BzP/AKBan/gEv8j6Qor5v/4a5/Z6/wChg/8AJS5/+NUf8Nc/s9f9DB/5KXP/AMao/wBcMh/6GFH/AMGw/wDkg/sHM/8AoFqf+AS/yPpCivm//hrn9nr/AKGD/wAlLn/41XbeA/jn8LPibrEmg+B9U+3XcMJuHj8iaLEasqk5kRR1YDGc81thuJ8nxFWNGhjaU5y0SjUg235JO7M6uT4+lB1KuHnGK3bhJJeraPWqKKK9w80KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK8B1n9qL4F+H9Yu9B1fXPJu7GaS3nj+zXDbZImKsMrEQcEEZBI9Kzf8Ahrn9nr/oYP8AyUuf/jVfPz4tyOEnCePoprRp1YXT/wDAj1I5HmMkpRw1Rp/3Jf5H0hRXzf8A8Nc/s9f9DB/5KXP/AMao/wCGuf2ev+hg/wDJS5/+NVP+uGQ/9DCj/wCDYf8AyRX9g5n/ANAtT/wCX+R9IUV83/8ADXP7PX/Qwf8Akpc//GqP+Guf2ev+hg/8lLn/AONUf64ZD/0MKP8A4Nh/8kH9g5n/ANAtT/wCX+R9IUV83/8ADXP7PX/Qwf8Akpc//GqP+Guf2ev+hg/8lLn/AONUf64ZD/0MKP8A4Nh/8kH9g5n/ANAtT/wCX+R9IUV83/8ADXP7PX/Qwf8Akpc//Gq+kK9HL84wGO5vqOIhV5bX5JRla97X5W7Xs7X3szkxWAxOGt9YpShfbmi1e29r+oUUUV6JyBRRRQAVx/ib4feBfGmpaTrHi7R7PU7vQrk3mnS3UKyvazlSvmRFgdrYPUex6gV2FFKUVJWkrounVnTlzU5NPutN9H960PnX9pP9qr4I/sn+CG8cfGbWEsY3DC1s48SXl5Iv8EEWcsemWOEXILMo5rxj9hL9vb4eftzeENX1nw5Ztomr6JdtFdaXNKJZVt3J8icMAoKyKMNgfK6svI2sfzt/4Lb/ALEGqfEzwtB+1f8ADeCW61bw5bra6zaR5cy6erEpOijPzQsx3gDmM7jjZz5H/wAEiv8AgnX+0v8ADL4kaf8AtPfEK9m8FacbeSJNHkTN5qVvMPu3EbcQxZ2uAw8zcoO1eGr5KrmuZLOI4WNG9Lrbs/tNvaz6eq10P2PB8JcLT4KqZtUxlsY27KTtacf+XSgrt8yafNra6l7qUkf0v0UUV9cfjIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK83+Mn/JIfFX/YHvv/RL16RXm/xk/wCSQ+Kv+wPff+iXrzs4/wBwxH+CX/pLOvAf71S/xR/NH4D0UUV/n4f1CFFFFABRRRQAUUUUAekfBv8A5K94V/7DFj/6OSv34r8B/g3/AMle8K/9hix/9HJX78V/TngP/uGM/wAcf/ST8f8AEv8A3nD/AOF/mFFFFfvB+ZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8T/ALeP/JIdN/7DEP8A6Jnr7Yr4n/bx/wCSQ6b/ANhiH/0TPXxniJ/yTeO/wP8ANH0PCn/I3w3+L9D8l6KKK/h4/osKKKKACiiigAooooA/SD/gn1/zN3/bh/7Xr9IK/N//AIJ9f8zd/wBuH/tev0gr+z/Cf/klcH/3E/8ATsz+fuN/+R1iP+3f/SIhRRRX6KfKBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxP+3j/ySHTf+wxD/wCiZ6/Jev1o/bx/5JDpv/YYh/8ARM9fkvX8heM3/JST/wAEPyZ+78Af8iiP+KX5hRRRX5QfahRRRQAUUUUAFfbH7B3/ACV7Uv8AsDzf+joK+J6+2P2Dv+Sval/2B5v/AEdBX2nh3/yUmB/xr8mfP8Vf8inE/wCE/Wiiiiv7gP5zCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPwH+Mn/JXvFX/YYvv/Rz15vXpHxk/wCSveKv+wxff+jnrzev8/c4/wB/xH+Of/pTP6iwH+7Uv8MfyCobi4t7SB7q6dYoo1LO7naqqOSSTwAKmr+LT4k+FP2ov+C6X7eXj74XeGvFbeGfhd8OLqW1i81WltbaKORoInFvGyCe5u3ieUGRxtQMA4CKp9bhjhuOayrVK9dUaFGPNObTdk3ZJRWrbey/WyfBnGbPBRpxpU3UqzdoxTtfS7bfRJf11P7SIpY541mhYOjgMrKcgg9CDT6/lo/4LO/tP/tAfCK4+En/AATU/ZU1u9tvEWtaZYw393pjG1vLsSMLGzt0dG3QiV45HlAbJGwbtu7d8vfDvxN/wUa/4I2/tVfDPw3+1J4zfxd4C+ItwtndWyalc6nZxo0scc5j+1LG0NzbmWOQlAFkU7dzDOPfwPh1WxWBhio4qCq1FOVKk7qVSML3a7NpNpduq1PMxPFdOjiZUZUZOEHFTmvhi5dPO19Wf2cUUUV+cH1gV/SBX839f0gV/RXgF/zMv+4X/uQ/KfE7/mE/7f8A/bAooor+ij8pCiiigAooooAK+cf2m/2rPgt+yR4C/wCE/wDjLqRtIpi0dnaQr5l3eSqMmOGPjJGRliVRcjcwzX0dXyn+2f8AsseFf2wPgJq3wh8Q7ILxx9p0q9YZNpfxA+VJ67TkpIByUZgOcEcuNddUJvDW9pbS+1z1cijgJZhQjmjksO5JTcd1Hq1o9t3pe22p+XH7HX/BZz/hoX9quX4VfEXSLXw14c8QhbXw6wcvNHeKTtS4kOFY3AO1dqgK4VRncWr986/lW/Yv/wCCIHxL8Ra/D46/arupPDGm2Fxuh0qwmU39y0TcM0yErBGSMgqTIR02cNX9UsMSwQpAhJCAKCxLHA9Sckn3PJrxeGauYzw8pZitW7q+js+66W6f5H3nirhOGcPmVOnw1NOKjaajdwTWiam2+ZtfFa6ur3bbtJRRRX0h+XBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9T+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf4yf8kh8Vf9ge+/9EvXpFeb/GT/AJJD4q/7A99/6JevOzj/AHDEf4Jf+ks68B/vVL/FH80fgPRRRX+fh/UIUUV4F8aP2qf2bP2dYlk+OfjrRPC0kib44NQvY4riRfWOEt5jj/dU1tQw9WvNU6MHKT6JNv7kZ1asKcXOpJJd27I99or83dL/AOCvn/BNbWNS/sq0+LujJKWC7pxPBHk/9NJIlTHvuwK+8fAvxE8AfFHw7F4v+Geuaf4i0mckR3umXMd3buR1AkiZlJHsa6sZlOOwiUsVh500/wCaMo/mkY0Mdhq7tRqxl6NP8jsaKKK886j0j4N/8le8K/8AYYsf/RyV+/FfgP8ABv8A5K94V/7DFj/6OSv34r+nPAf/AHDGf44/+kn4/wCJf+84f/C/zCiiiv3g/MwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+J/28f+SQ6b/wBhiH/0TPX2xXxP+3j/AMkh03/sMQ/+iZ6+M8RP+Sbx3+B/mj6HhT/kb4b/ABfofkvRRRX8PH9FhRRRQAUUUUAFFFFAH6Qf8E+v+Zu/7cP/AGvX6QV+b/8AwT6/5m7/ALcP/a9fpBX9n+E//JK4P/uJ/wCnZn8/cb/8jrEf9u/+kRCiiiv0U+UCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPif8Abx/5JDpv/YYh/wDRM9fkvX60ft4/8kh03/sMQ/8AomevyXr+QvGb/kpJ/wCCH5M/d+AP+RRH/FL8worwz9pv40j9nL9nvxl8eG03+2B4R0m51T7D532f7R9nQvs8zZJs3Yxu2Nj0NfzOf8RS1v8A9ENb/wAKUf8Aytr5DIeDM5zmlOtltDnjF2b5oRs7X+1JHuZlxBgMvnGni6vK2rrST0+SZ/WtRX8lP/EUtb/9ENb/AMKUf/K2j/iKWt/+iGt/4Uo/+Vte7/xCfir/AKA//KlL/wCTPO/12yX/AKCP/JZ//In9a1FfyU/8RS1v/wBENb/wpR/8ra/qE+BvxMT41fBPwd8ZI7M6cvi3RNP1kWhk80wC/gSfy9+1d+zft3bVzjOB0rwM+4OzjJYQqZlQ5Izdl70JXa/wyf4npZZn2AzCUoYSpzOOr0kvzSPUq+2P2Dv+Sval/wBgeb/0dBXxPX2x+wd/yV7Uv+wPN/6Ogru8O/8AkpMD/jX5M5+Kv+RTif8ACfrRRRRX9wH85hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4D/GT/AJK94q/7DF9/6OevN69I+Mn/ACV7xV/2GL7/ANHPXm9f5+5x/v8AiP8AHP8A9KZ/UWA/3al/hj+QV/GP+w5+1x8Pv+CQ37cPx8+Bf7VFpfWOl6/qaT2l/awNcEC0luJLZigw7R3MFyGVhnawAIGWI/bH9v3/AILJfB7/AIJ+fGiw+Cnj3wlrOu3t/o8GsLcae8CxLHPNNCEPmOrbgYSTxjBFfjh+0l/wWT/4JbfteG2m/aK+AOseJLmyiMEF280NvdxxE7ti3FvPFMFzkhd+AST3NfpvA/D2ZrC14YrL6lXBYqMbuDgpe7LmjKPNJLR9Hb9H8dxHmmD9tTlRxUYYii3ZSUmtVZp2Xbt/wSr+w54tuP8Agpv/AMFwtW/a3sNPuV8HeDYHv7RLpQPJhtoPsdgr4JCyySsbnYGOGV8EhSa539r39prUf+CyP7fvws/Zr+BPhnULPw74H1i4N/c3yr5pj8+L7bcyrE0iRQxR24EWXy7Pg4ZlWvZf2f8A/gu9/wAE7f2WPBreAP2ffghrXhfSpJPOljtXtjJNJjG+WV5WllYDgNI7EDgcV/RN+xl4d/Z4vfgnoPxw+AHgfTfBdr8QNNtdamjtbSGC6lF2nnKLmSIZldd55Zm5JxXs59mlfJsWsyr5bOmoU1RwvNKNoWjJOUlFu8rS2/G+p5+WYKlmFD6pSxcZOU3UrWT97VNJXSsrr/gdD63ooor8HP0sK/pAr+b+v6QK/orwC/5mX/cL/wByH5T4nf8AMJ/2/wD+2BRRRX9FH5SFFFFABRRRQAUUUUAeQ/Hr40+Ff2d/hHrfxm8bQXlzpegwCeeKxhM87AsFAVcgDlhlmIVRksQATX8wuo/8F0vjdrv7SOheNF0+LSPh3p93sutCgCyz3NrJlHeWZgC0yKd8apsQMACDyT/WHruh6P4n0S88N+IbaO8sNQgktrm3lXdHLDKpV0YHqrKSCPSv51Ph7/wQO0RfjprerfEzxGT8Pra9Z9JsLJj9uurdsOqTysMRBM+WxUM0m0kFMg18pxHRzapUorL5WjfXpqtbt/y+X53R+weGON4Ow+GxsuJKV6ij7rd5XjJcrjCK2mnqpPVJ3Tjytn9EPhXxR4f8b+GdP8ZeE7uO/wBL1W3iu7S5iOUlhmUMjqfQqQa36434e/D3wX8KPBWnfDr4d6fFpWiaTCILS0hzsjQEnqSSSSSSSSSSSSSa7KvqYc3Kuffrba/kfkuI9l7WfsL8l3y3te19L2ur23tpcKKKKoxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf4yf8kh8Vf9ge+/9EvXpFeb/GT/AJJD4q/7A99/6JevOzj/AHDEf4Jf+ks68B/vVL/FH80fgPRRRX+fh/UJ/O9/wW5/4Kx+Jf2RLO2/Zq/Z1ukt/H2tWoutQ1MBZG0mzkJCCNSCv2ibBKlh+7T5gMujD+aH9mr/AIJl/t8/8FBrqX4q+GdKnm03VZHll8UeJbl4be6kBKsyyyCSe4O4FS0aSAEEEgivbviL4NtP21v+C6eufDX4mSvNpmrfES60i8UsUZ9P0eVoPJBBBXdb2wjBHIznrX9+/hzw5oHg/wAP2XhTwrZQ6dpmmwR21pa2yCOGGGJQqIiKAFVVAAAGAK/oPG57T4HyrCYPLaMXi68FUnOSvv06N2d1FbJK7TbZ+XYfLZcR42vXxdRqhTk4xivL77aat7u9rpI/iG1r/g2h/bk0/SBe6X4o8GX90FJe2S8vIyT6Iz2YU/8AAttfnha/8PBP+CRHxztNTu7bU/AWtSEsscpE2marBEQHUlGa3uo+RnDFkJBBRsGv9KKvzx/4Knfs4fDz9pP9h/x/onjeyimvPD2jX2uaRdMuZbS+sIHmRkbqA+0xuB95GIINeZkPi9jsTiY4LO6UKuHqNRl7tmk9Ntml1TV+zOzMuBcNRovEZdOUKsFda72/FPzudj/wT6/bZ8F/t6/s4aZ8bvDMK6fqKu1jrOmh95stQhALpnqUZWWSNjyUYZwwIH27X8cf/Br/AOO9Ztvin8U/hj5rHT7zSrHVPKPKrNbTNFuHoWWbBx1wM9BX9jlfn/HmQ0snzzEYKh/DTTj5KSTt8r2+R9Pwzmc8fl1LEVPid0/VO1/nuekfBv8A5K94V/7DFj/6OSv34r8B/g3/AMle8K/9hix/9HJX78V+2eA/+4Yz/HH/ANJPz3xL/wB5w/8Ahf5hRRRX7wfmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfE/7eP/JIdN/7DEP/AKJnr7Yr4n/bx/5JDpv/AGGIf/RM9fGeIn/JN47/AAP80fQ8Kf8AI3w3+L9D8l6+F/8AgpuSv/BPb4yMpwR4T1P/ANEtX3RXwt/wU5/5R6/GX/sU9T/9EtX8aZD/AMjPC/8AXyH/AKUj9+zP/c63+GX5M/zv/gD+yp+0t+1NJqsX7PnhTUPFTaGIDfiy2nyBc7/K3bmX7/lvj/dNek/Fj/gnl+3J8C/h/qHxU+Lnw71jQvD2leV9rvrkIIovOkWFN21yfmkdVHHU1++v/BrZ/wAhT43/APXLw7/PUK/YX/guZ/yix+Kf+5o3/p2s6/pjOfEjHYPiqGQQowdN1KUOZ83NaooX62uuZ20PyHL+EsNiMkeZyqSU1GcraW93mt0v011P4Zfgb+w5+2H+0t4Pm8f/AAJ8C6r4m0aC6eyku7QKYxcRqjsmWdTkK6k8Y5rivj1+zH+0V+y9qen6L+0B4Yv/AAtdatE89pHe4DTRxkKzLtZuASBX9l3/AAbYn/jADWP+xz1H/wBJbOvzc/4Ogv8Aks3wp/7Auof+j0rsy7xAxmI4tqcPypQVKLmubXm92La626djnxfDFClkcc0jOXO1F20tq7dr/if1B/sLu8v7EnwckkJZm8D+HiSeSSbCCvqevlX9hP8A5Mh+Df8A2I3h7/0ggr6qr+Vc2/36v/jl/wClM/acD/u1L/CvyP0g/wCCfX/M3f8Abh/7Xr9IK/N//gn1/wAzd/24f+16/SCv6/8ACf8A5JXB/wDcT/07M/CON/8AkdYj/t3/ANIiFFFFfop8oFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfE/7eP/ACSHTf8AsMQ/+iZ6/Jev1o/bx/5JDpv/AGGIf/RM9fkvX8heM3/JST/wQ/Jn7vwB/wAiiP8Ail+Z5v8AGH4U+Efjn8Ldf+Dvj6OWXRfEtjNp96kLmKRoJ1KsFccqcHg1+QX/ABDzf8E3P+gTrv8A4NpP/ia/cWivgcs4hzPLoSp4HEzpxbu1GTV330PpsXlWDxUlLE0Yza2ukz+Ir/gtt/wTL/ZY/YW+D3gzxn8AbLUbW+1vWZbK6N7eNcqYkgaQABgMHcOtfcf/AAT0/wCCKH7DH7Rf7GHw/wDjb8TdP1ifXvEWntc3jwai8MZfzpEG1FXCgBQK4z/g57+LnhGXw78MvgbZXkM2uR3d5rV1bI2Zbe38tYYWcdhKxk256+Wa/W//AIIneOfDvjj/AIJo/DX+wbhJpNHt7rTLyNWy0Nxb3MuUcdiUZHAP8Lqehr9izTP87pcEYHHrEVFVlVknO75nH37Xe9tFb5HwWCyzLp8RYnDeyi4RgrRsrJ+7ey766n8sP/Bbv9g/9n39hP4jeBPDXwAtb21tfEGm3d1di9umuWMkMqou0sBgYJ4r+0r9hP8A5Mh+Df8A2I3h7/0ggr+Vb/g5y8Y6Bqv7Snw88E2Fwkt/pHh6ae7jU5MQu7g+WG9CRETjrgg9CM/1c/sU6ZeaJ+xt8JNG1FdlxaeDNBhlX0eOxhVh+BFeXxxi8RieEcnrYublUk5tuTu3q7PXyt8js4coUqOe4+nQilBKKSWy2/W59NV9sfsHf8le1L/sDzf+joK+J6+2P2Dv+Sval/2B5v8A0dBXxnh3/wAlJgf8a/Jn0HFX/IpxP+E/Wiiiiv7gP5zCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPwH+Mn/JXvFX/AGGL7/0c9eb16R8ZP+SveKv+wxff+jnrzev8/c4/3/Ef45/+lM/qLAf7tS/wx/I4LxP8K/hf431BdW8aeG9L1e7SMRLNe2cVxIIwSQoaRGIUEkgZxkmv5eP+CR/wx/Z3/aj/AG6v2gPiR+0FoGk6j4z0LWTHougXttCbawsUmnhdobUjYxg8uGIvsJj4Od0mT/WJX8y//BTD/gkV8GV+LV1+2H8MfjFpnwN13Wrx7q6bWLsWFnNfyAtLNb3IljlilkJLuiiTcxLDbnB+v4JzGg6eLyzEYiVKVeEYwqRUpcrUuZxtHW01o7fPQ8DiLC1FKhjKVJTVOTcotpXurJ3el47q57b/AMF0f2cP2QtA/Yd134sajoOj+GvGWkXFmPDuoWEEVnezXbzoDApjCNKpi8xihyECmQAFc1+mn/BPTx/4x+KX7Dvwr8f/ABAB/tjU/DdjJcuVVTKRGFEuFAUeaoEmAAPm4Ar+aP8AZj/4JJ+F/wBsr4mWWs/tD/tS6R8WotJXzZdK0HWZNW1B4VYZQy3MnmwRNwGYQn0BBww/sI8M+GtA8GeG9P8AB/hSzi0/S9JtorOztYFCRQW8ChI40UcBUUBQOwFdHF9TC4PLMPkscTKvVhOU3JxlFQTilyR59bNrmfS5nkUa2IxlXMJUlShKKikmnzNNvmfLpdXt3NuiiivzY+tCv6QK/m/r+kCv6K8Av+Zl/wBwv/ch+U+J3/MJ/wBv/wDtgUUUV/RR+UhRRRQAUUUUAFFFFABWH4m1W90Hw3qGuadYzapcWdtLPFZ25UTXDxqWWJC5VdzkbV3EDJ5NblFJq6sioNKSbV12P4q/2mv+Cvn7WXxl8e2154RvH8B6Not9Hc22lWLHe0tu4ZftcpAabDD5oyFiPQpnmv6wf2SP2kvC37WHwE0L40eGNsTX8XlX1qpybW+iwJoT3+VuVJwWQq3evz3+KX/BF74HfF/9qzVfjv4m1O4tvDWrlLy60CyXyTNfsT5zGfOUikIDsqLvLs2GUYr9Xvht8L/h38HPCFt4D+F2jWmg6PZj93a2kYjQHuzY5Zzj5nYlmPJJNfJ5DgM0o4qtUxtTmg9NXq7PRpbRVun4H7F4h8Q8JY7KcDhciw3s60Em7KyipL3oSb1nK9ve12fvatHe0UUV9afjYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//W/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK83+Mn/JIfFX/YHvv/RL16RXm/xk/wCSQ+Kv+wPff+iXrzs4/wBwxH+CX/pLOvAf71S/xR/NH4D0UUV/n4f1CfwA/wDBTvwt8TP+Cf8A/wAFbNQ+PXhaAr9t1yDxvok0oPk3X2iQS3ETbcfKJ/Nidc7thB43Cv7C/wBif/goz+zR+3H4H07WPhtrtpaeJZrcSX/hu5nVdRtJVH7xfLOGljU/dlQFSuCdpyo0P28/2Bfgt/wUA+Eo+HPxSR7HUbBmn0fWrZVN1p87AAld3DxPgCWIkBwAQVZVZf4wP2iP+CFn/BQj4A67NN4R8N/8J7pELboNS8OyCWQjPy7rVityr46hUdQejnrX7xhMRkXGGV4bCZjiVh8bQioKTtaSWi3aTvva6kpXtoz80rUsyyHGVq+Eo+1w9R8zS3T+SbXrZq1r6n+g/JIkSNLKwVVBJJOAAO5r+bn/AILO/wDBXX4LeB/gbr/7L37PGuWfirxb4ttZ9J1O606ZZ7XS7KZfLnDSoSjTyKWjWNWJTLM5UhVb+ZZv2LP+CoXjYJ4P1H4bfEa6t0IRIb7T79LZc+hmURAe+cV+pP7FX/Buj8f/AIh+IbPxX+2NPH4I8NROHl0q1njudWulHOzdGZIIFYdWLu46bAeRtgOBeHMgrRzLN8zjVUHzRhG15NarRSlKWvRJLu7EYniTNszpvCYHByg5aOTvonvq0kvXV9lc+xv+DZX9nTxF4e8DePv2n/EFu8Fn4ikt9F0hnGBNFZs73Mi55K+YyICONyOOSOP6o64z4d/DvwR8JfA2lfDX4b6ZBo+haJbpaWVnbLtjiiQYAHcnuWJJYkkkkk12dfkfFmfyzrNa+YyjZTei7RSSivWy187n3OSZYsvwVPCJ3cVq+7bu/wAXp5HpHwb/AOSveFf+wxY/+jkr9+K/Af4N/wDJXvCv/YYsf/RyV+/FfvXgP/uGM/xx/wDST808S/8AecP/AIX+YUUUV+8H5mFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXxP+3j/ySHTf+wxD/wCiZ6+2K+J/28f+SQ6b/wBhiH/0TPXxniJ/yTeO/wAD/NH0PCn/ACN8N/i/Q/JevnP9r/4Zap8aP2UviT8JdCTzNQ8R+GdU0+0X1uZ7Z1iH/fwrX0ZRX8S4bESoVoV4fFFpr1Tuj+h61JVKcqctmmvvP8+D/gjP/wAFD/BX/BPj45eIoPjNaXf/AAivjC1hs7+a1jMk9lc2bsYZWiyCyKJJFkVQXGQQDgqf0c/4LH/8Flv2a/2lP2ZLj9mT9mG6u9ePiS6tJdV1Ga1ls7eG2s5VuFjRZwkjyNNHHn5NgUHkkjH3P+3L/wAG+Pwc/ad+KOqfGn4NeKpPh/rGtyvdajZNZi90+4upDl5UUSRPA0jEtJgupY5CrznxP9mf/g2i+G/gXxxY+Mf2k/HT+MLGxkSb+xdPszZW87Ic7Z5nkkd4j0ZEWNiP4hX9D1+JOB8bjafEuJqTWKiov2aUtZxXu/Zs2rKzU1HRX7H5XSyniPD4eeUUoxdF3XPdfC9+t0nrdcreuh+Q3/BMj/grF46/4Jkafr/wf+IfgyfXvDmt3EWrrZtIbC8tLqeGMCZfMjYPHPAIjhgMgKytgkN86/8ABQn9uT4gf8FQv2lNF8R6T4bOkxxQwaFoOiwS/apmaaUkFpNqb5ZpJAMBQAAqjJBY/wBtX7X3/BKL9jH9tW+s/EHxT0CXTdbsbeO0i1TRJRZXP2eIYSJxteKRUGAm+NioACkLxXL/ALJf/BHX9iD9jrxrb/Ev4eaJd6z4kslItdS124F5LbserxIqRwpJ2EixhwMgEAnPNh/EjhanWnnsMFJZhKLTW8b2te/NZJ2V3y81r6b32q8JZzOnHLZYhPCp387Xv2vp0V7H3n8CPAEvwn+B/gz4WT7d/hrQtO0pthyubO3SE4PcfLxXq1FFfz9Wqyq1JVJ7ttv1Z+oQgoRUI7LQ/SD/AIJ9f8zd/wBuH/tev0gr83/+CfX/ADN3/bh/7Xr9IK/svwn/AOSVwf8A3E/9OzPwDjf/AJHWI/7d/wDSIhRRRX6KfKBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxP+3j/wAkh03/ALDEP/omevyXr9aP28f+SQ6b/wBhiH/0TPX5L1/IXjN/yUk/8EPyZ+78Af8AIoj/AIpfmfJv7d/xH8Z/CD9jP4nfFD4dXp03XdB8OX95YXQRJDDPFESjhZFZCVPOGUj2r+CfTv20v+Cs3xih+0+E/HXxF1eOcnDaNLehSc8hTagDr2HSv9HPxB4f0DxZod34Z8U2Nvqem38TQXVpdxLNBNE4wySRuCrKw4KkEEda/n7/AG7/APgvl8E/2S/GV58Cv2fPDkfjjX9DY2d7MJxa6TYyxfKYVZFZpnjIKuqBEQ8byQVF+GmaVqaqYHBZXHFVpPm5pcqUIpW1bi7K/mvK7I4uwVOThiMRjXRppWsrvme+ya6eTP5/f2R/+CPn7b/7ZvxfXUfjjouv+DdAuGa41bxD4kgliu5MqSvlR3RWaeRyAN2Nqjlm6A+OePfgZ/wU0/4JneONZ8KaK/i3whbTPtk1Tw7NdJpeoRjIjkE1uRG5wchXxImcFVPFf26f8Ewf2xPGv7c/7Ktp8fPH2l2Wj6jc6le2RttP8zyQls4Cn94ztkg884z0Ar5U/bE/4Lw/shfsn/Ea/wDhDp1pqfjnxDpMjQagmkiNbS1nT70TzyuA0inhhGrhSCrEMCB9hQ4/4kxOb18seXQrRh7sqS2jyvfnd1vpqraKyT38KrwxlNHA08YsXKm5aqb3d1ty6Pz013vc/ln/AGNf+CbP7Yf/AAUB+P1pr/xN0vXofD11eQ3fiLxRrwmR5bbcPM8qa5Be4uHQFUC7sEguQvNf6H2j6Tp2gaTa6Fo8QgtLKFIII16JHGoVVGecAACvyT/Ye/4LUfsmftt+No/hTpCX/g/xZcKTaafrIiVL0ryVt5o3ZXkA58tgjkAlQwBx+vtfnniRn+b4/GU6GZ4b2Cpr3KfRJ7u+0r2tdaK1u59TwllmBw2HlVwdb2rm/el6dLdN+uuvoFfbH7B3/JXtS/7A83/o6Cvievtj9g7/AJK9qX/YHm/9HQV5nh3/AMlJgf8AGvyZ2cVf8inE/wCE/Wiiiiv7gP5zCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPwH+Mn/JXvFX/YYvv/Rz15vXpHxk/wCSveKv+wxff+jnrzev8/c4/wB/xH+Of/pTP6iwH+7Uv8MfyCv44fgf+yvF/wAFov2zfjb8b/2l/FGpQ+F/AOpvpekaTp8ixSrBvnW2jHmLIIo0jgDSbUDSysxyDmv7Hq/n/wDAP/BOT9p/9lD/AIKY6h8d/wBm/Vkn+D/xKub258VaWJUjltpJYbiVFeKX/WRpdODDJCfMQSMhUJuZvrOCc0p4KjmDp1lRxLpr2c3/AHXecU7O0pxVo+em9jw+IsFLEVMKp03Oip+/FeatGTXVRer8j+ez4M/sMwQ/8ExLn/gpn8J/FepeHPiB4C16RiI5VSCS3imgiQwkKJI5lMu7JdlcArt5Br+3P9in416z+0b+yV8PPjf4ljWPVPEmh2l3fBE8tDdlAszIvZGkDFB/dI5NfyRfs1/8EsP+CsXxq+F2m/sk/E+Y/Dr4NQ6r/at9HdTWrNPI7KXKx2xead12ho0mZYQwByDzX9oHwr+G3hb4N/DLw98JPA8TQ6N4Z0620uyRzucQWkaxJubA3MVUFmxycmvqPFPNMNXiqLxMK9X2s5RcGpezpNK0HJbu+trvl27HjcF4OrSbqKjKnDkimpac003eSXRW0v1O9ooor8ZPvwr+kCv5v6/pAr+ivAL/AJmX/cL/ANyH5T4nf8wn/b//ALYFFFFf0UflIUUUUAFFFFABRRRQAUUUUAI24KSgyewPFfxP/wDBQj9v79sL4s/EbxB8FPiJK3gvStFvZbK40DTJGVGaJsZnn+V7gNgMpO2JhhlQda/thr81v2j/APglt+zt+1F+0JYfHv4kNdoYrRLfUNOtGEMeovCcRPNIP3g2p8jbCrMoTDDbz83xNl2MxmHjTwk7O+qvZNPu/Lt17N2P0/wr4nyXJMyqYnOcOprlvCXLzShJa+6np723Numlqk2Xf+CXn7XLfta/sy2Op+I5/N8VeGSulayW+9LJGo8q49/OjwWP/PQOBwBX6OVwvgT4ffDv4PeDofCHw80qy8P6JYISlvaxrBCgA+ZmxjJOMszZJ6kmu2iliniWeBg6OAyspyCD0IPcV7OBpVaWHhTry5ppJN9z4jP8XhMVmOIxWAounRnJuMW78qettNPRdFpd2uSUUUV1njhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/X/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK83+Mn/JIfFX/YHvv/RL16RXm/xk/wCSQ+Kv+wPff+iXrzs4/wBwxH+CX/pLOvAf71S/xR/NH4D0UUV/n4f1Cfyrft5/8F6/2jP2UP2ufGv7PXg3wd4b1LTPDN1DBBc3ouvPkWSCKUl9k6rkFyOFHAr5D/4icv2s/wDoQPCP5Xn/AMkVwP7dujXP/BSj/gtA37LPhKCw8PWdtqz6BJf21lEt1L/Z0Jkv7m4kVVknkVYZFiEjlVSNFG3LE/1C/CX/AIJH/wDBO74QeE4PCmmfC3RNcMabZL3XrZNUu5mPV2kuAwUnriNUUfwgV/QeOnwjkmW4FZll3PialKMnFN7NW5pNtL3mnok9brzf5dho55mOLxP1TF8tGE5RTa89krPbv6H83H/ETl+1n/0IHhH8rz/5Io/4icv2s/8AoQPCP5Xn/wAkV9df8Fov+CQH7NfgD9m/W/2rP2a9Gj8Iar4WaCbUtNsy32G8tJpUgYpExKwyRl1fMe1GVWBUsQa9w/4Ix/Cv9jD9tX9jS18WfE74PeDLrxV4X1CXQdTuv7FtFN20MccsU7AR4DPFKocjq6scAHFdVTEcF/2Ks7oZXz01Pkkr2lCVrq/vWaemqfVedsIUuIP7QeXVcbyz5eZPdSX3XT8rdH5X+kv+CPH/AAU0+K3/AAUas/iDP8UNA0nQm8Hvpa239l+diUX4ud2/zpJPu+QMYx1Oa/amvFvg/wDs4fAH9nxdQT4GeDNG8IDVjEb0aRZxWn2gwbvL8zy1Xds3vtz03HHWvaa/C+IMXgcVmFWvltH2VF25YdrRSffdpv5n6TldDEUcLCni6nPUV7y76u34WR6R8G/+SveFf+wxY/8Ao5K/fivwH+Df/JXvCv8A2GLH/wBHJX78V/QfgP8A7hjP8cf/AEk/LvEv/ecP/hf5hRRRX7wfmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfE/7eP8AySHTf+wxD/6Jnr7Yr4n/AG8f+SQ6b/2GIf8A0TPXxniJ/wAk3jv8D/NH0PCn/I3w3+L9D8l6+U/26PD/AMRfFf7HXxK8N/COK7m8T33h6+h0uOwYpctdPGRGImUgh89CCOa+rKCccmv4mwmIeHr066V3Fp2ezs72Z/Q1ekqtOVNu10195/ngS/sef8FroYmmfQfiOQgJO2/uWOB6ATEn6CvhzRPjT+1z4i8X23gHSvG3iltZvLpbGK0fVrmKQ3LtsEZ3yqFYt8uDjniv7N/+Cg//AAXh+AH7LH274bfAH7P8Q/HUO6JzDJnSbCUcHz50P751PWKE9QQzoRiv5E7T4V/tn/8ABSP4o+Nvjt4N8JXXi3VnMuq63c6XaR21tGVTO1QvlxmVlX5Yl3TSkE4diSf674RznH47DVMbnWCpYejZckn7t2+8ZfZelm3G/S97r8Lz3L8Lhq0cPl+InVqX95LX7muvlZ+drWf05/wxv/wWw/6APxG/8GFx/wDH6P8Ahjf/AILYf9AH4jf+DC4/+P1+u3/BGf8A4LQTX02l/seftj6mVvVKWXh7xHetgyMPlSzvXb+PosUzfe+453YY/wBYtfCcTeIOdZHjZYPGZfR7xkoytJd1r963T0Z9Lk/C2X5lh1Xw+Kqeaurp9np/w54H+ynpXjTQv2XfhtonxIS5j8RWfhbR4NUW8YvcLex2kSziViSTIJA28kkls8175RRX8+4is6tWdVq3M27LbV3P1ClT5IRgnskvuP0g/wCCfX/M3f8Abh/7Xr9IK/N//gn1/wAzd/24f+16/SCv7J8J/wDklcH/ANxP/Tsz8C43/wCR1iP+3f8A0iIUUUV+inygUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8T/t4/8AJIdN/wCwxD/6Jnr8l6/Wj9vH/kkOm/8AYYh/9Ez1+S9fyF4zf8lJP/BD8mfu/AH/ACKI/wCKX5nxv/wUJ+Omu/s1/sVfEf41+FZFh1bRdHk+wStyI7u5ZbeF8d9skisB3IxX8YH/AARq/wCCaugf8FCPiv4g8Y/Gm5uh4K8I+S9/HBIUn1G8uixSDzfvKm1GeV1+fG0AgtuH9ZP/AAWc8Hah45/4Jk/FjRtMR3lt9PtdQIjBJ8vT7y3upCQOwSJifQDPavxu/wCDYn40eCLTR/iT8ANRuorfX7q6tdasoXIWS6t1jMM2zu3kkIWHYPnpnHqcH4uvgOCszx+Xu1f2ii5LdQtDX5c0rPpq+hw59Qp4riHB4bFa0uVtJ7OXvafgvXY/ZL9pMfCb/gln/wAE4PHOofs5aVH4asdA0+YaTAs0s5XU9SdYIpC8zySOwmkVzljwvYDj+NX/AIJTf8E6bv8A4KOfHTVfD/ivU7vSfCXhu1W91vULUK1yz3DFYII2kDqskpV23srALG3BOK/d3/g5i/aT0jRfhD4M/ZW0W9RtV13UP7d1K3RsyR2VmrRwCQdlmmdmX1MJ/H3T/g3W+EmmfCP9g3Vfjf4meKxPjbWrm8N1OwjRbDTv9Fj3MxAAWZbg5Jxhq9HI8fisj4MxOcqT+tYqpaMnrJ62vrdt6VJJu+rTOXMcLRzHiCll9l7GjC7S0S6202WsUz+ez/gq3/wTduP+CYvxa8I+IfhR4hvtS8O+IPNutJvbrat/Z3unvGzo7xKiErvjeORVTPI2/Lk/3Kfsb/Gy9/aO/ZV+H/xy1VUS+8TaHZ3l4sX3FumQCcL6KJQ2B2FfyRf8HEv7afwf/aG+JHgr4JfBjWLXxDbeCUvrnU7+xkE1qbu98pVhSRco5iSIlyhZcvtzuVgP6if+CZXw61P4U/sA/CXwVrUElteReHbW5nhlBWSOS9BuWRgeQVMpBB6EYrh49q4rFcJ5VjM1X+1OUldq0nB31a03Sg/nfqdPDMKNHO8bQwT/AHKS2d1zabfNyPumvtj9g7/kr2pf9geb/wBHQV8T19sfsHf8le1L/sDzf+joK+F8O/8AkpMD/jX5M+k4q/5FOJ/wn60UUUV/cB/OYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+A/xk/5K94q/wCwxff+jnrzevSPjJ/yV7xV/wBhi+/9HPXm9f5+5x/v+I/xz/8ASmf1FgP92pf4Y/kFfx4eJ/A37Wv/AAXO/a++JXhHR/HT+Cvg/wDDfU30yGNN80D7ZJIonFsjxC4nnETyu0jgRKwUHBAP9h9fyseF/gZ/wUH/AOCY3/BQ7U7v4AeHJPF3wb+Lviqzkv5YbR72Oztry6wxmEOJLWW1E7hZT+5kUKWzjav2fh/iI0frtTDzhHGKCdF1LWVpXny811z8vw/Ppc+e4opOp9XjVjJ4dyftFG99vdvbXlvv/nY+a/2gf+CXv7YH/BIjwVL+2F+yj8XZ9Z07w3NDJq1kLZ9PYW8kiIPMg8+eG6hLsBIrbSoO4A4JH9YH7LXxvtf2k/2cvBPx5tbdbT/hK9HtNRlt0besE8qAyxBjgkRybkyQM4r8bv8Agt0f25PjfceGf2Hv2WfCc+reHvHlstxruoxW0hSE29yhjjmuyRBbwgqrvu+ZgAAcEq37G/sq/A62/Zp/Zv8ABPwFtrgXh8K6RbWEtwows08aDzZAOMB5CzAHkA81vxXmc8wyPB4zMqkJ4yc5WcVFS9la37xRSV+dPlutvmZ5Jg44XMsRh8HGUaEYq6d3Hnvf3b3+zv5/I9/ooor8zPrwr+kCv5v6/pAr+ivAL/mZf9wv/ch+U+J3/MJ/2/8A+2BRRRX9FH5SFFFFABRRRQAUUUUAFFFFABRRRQB/Fr/wVH/as/bG8QfHXxR+z78XtVOkaHo920cGlaWGt7O5tW+eCaQ5LzeZGVfEjFVbICqQRX7l/wDBGP8Aak1L4+fsxD4e+K2kl1r4fvFpjTuCRPZMpNs248FkVTEw5ICKx+9X05+0h/wTz/Zu/as+KugfFj4w2Fxd3ehWz2rW8ExghvYt2+NbgqBIViYuVCOud5BJGBX1n4V8IeBPhX4Si8N+DdOstA0TTYyUt7WNLa3hRRknCgKPVifqa+Ry3JMbh8zq4urWvB3STu21uvS36dEz9m4p48yLMeFsJk2EwPJiI8sm4pRjGa0k1a7nzre9t0224nYUVWsr2z1Kzh1HTpkuLe4RZIpY2Do6OMqysMggg5BHBFWa+uPxppp2YUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf4yf8kh8Vf9ge+/9EvXpFeb/GT/AJJD4q/7A99/6JevOzj/AHDEf4Jf+ks68B/vVL/FH80fgPRRRX+fh/UJ/n8/t4t8Z/8AgnJ/wV91z9oLSbD99L4in8WaNLcKwtb+01Is80YYEEr+9lt5MEFSDjtn+jP4Vf8ABw3/AME8fG/hOHWPiDqWreC9U2fvtPvNPnuyJAORHLaJMjKT91m2Ejqq9K/QL9uT9nH9jv8AaH+Ehsf2zItNttB0tmkt9Wv7xdOfT5ZRgvHdM6bC2BlWJR8DcrYFfz/+H/8Ag3O/Zb+Ovh21+Jf7NnxyvL/wtfSzC3uvsVvqccqwyNE6pNDLbqSrqylguMg8V+5wzzhjP8twz4ijUo1aMVT9pBNxkktFdRkru17ON027Ox+cSy7OMrxdVZU4ThUblySaur7u14+l09dL6nz3/wAFcv8Agt54D/as+EV5+y9+zDp94vh3VpoW1nWdRjED3MVvIkyQ28W4uqGRFLvJtYhdoXBJr9kf+Df79nDxr8Av2FRrnxBs5NPv/Hery6/BbzLtkSxeGGG3LDqPMWMyrnna44rwT9mP/gjl/wAEsPgH8WrbTPiP490/4jeMYpEFromsalZxIsyng/2fE4klbPGyUyJ/s55r+j1ESNBHGAqqMADgACvF4w4iymhlMOH8hpSVFy55TmmnN9LX1fS7stkkrHoZDlWOqY6WaZnOLqJcqjFpqK+X5Xe7bHUUUV+TH256R8G/+SveFf8AsMWP/o5K/fivwH+Df/JXvCv/AGGLH/0clfvxX9OeA/8AuGM/xx/9JPx/xL/3nD/4X+YUUUV+8H5mFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYGv8Aizwt4UhjuPFOp2umxykqjXUyQhiOcAuRk/Ss6tWFOLnUklFdW7L7yoQlOSjBXfkb9Feb/wDC5PhD/wBDXo//AIHQ/wDxdH/C5PhD/wBDXo//AIHQ/wDxdcX9r4D/AKCIf+BR/wAzp+oYr/n1L/wFnpFFeb/8Lk+EP/Q16P8A+B0P/wAXR/wuT4Q/9DXo/wD4HQ//ABdH9r4D/oIh/wCBR/zD6hiv+fUv/AWekUV5v/wuT4Q/9DXo/wD4HQ//ABdH/C5PhD/0Nej/APgdD/8AF0f2vgP+giH/AIFH/MPqGK/59S/8BZ6RXxP+3j/ySHTf+wxD/wCiZ6+kP+FyfCH/AKGvR/8AwOh/+Lr5C/bT8feBPFXwtsNP8Ma3YalcJqsUjRWtzHM4QQzAsVRicZIGemSK+P8AEDM8HU4dxsKdeDbg7JSTe68z3uF8HiIZrh5SpyS5uzPzEr4t/wCCjdprt/8AsGfF2y8MRTzX83hXUkgjtVZpmZoWGECfMSfQV6X+1f8AtIeDf2R/2evFH7Q/jyN7jT/Ddr5wt42CyXE8jLFDCpPAMkrqmcHGc4OK/nM/4JK/8FQP2r/2yP25PFerfHfXltfAmm+FtR1E6ZbQJDpunCKeAozSbd5ZUMnzyOWIz24H8vcN8N4+vh6ueUYr2OGak7trmaafLGyeu1+mqP2XNs2w1KrDLqjfPWTSt0TuuZ6rTf7j5w/4J1f8G9/j34o/YPi1+259o8L+Hm2zQeGoj5eqXa9R9pb/AJdYz3QfviMg+UcGv7CPhb8KPht8EvA9j8NfhJolp4e0HTU2W9lZRiKJfUkDlmY8s7Esx5YknNfxMft1/wDBcr9qz9pP4p3/AMMv2PdSvvCng03X2XSzpETJrWp7ThZGlXM0fmNykUOxgpAfcc18t3nw8/4LeeE7ZviteQfF61KIZJLw3GqGdYxyTIu8yBR1O5cY61+s57wjn+fqGIz3H08Pzawot2UfK1173d+8+l+i+Hy3PcsyzmpZbhp1baSqJb/PXTtsvzP35/4Km/8ABGz/AIWN8V9L/a//AGTtMVdfGrWlz4k0KABFvh5yl7y3HAE4+9MnAlGXH7zIk/pTr+PP/glL/wAFy/i4/wAV9G/Zp/bX1JNW0vV5Rp+n+IrmPy760vHYLFHduuFkidvk8xl8xGILsVyV/sMr8148w2d4H6rlWcNSVJS9nNXfNCVtLvfltazV1e21j67hqtl+J9tjcArObXPHa0lfp539H63Ciiivz4+oP0g/4J9f8zd/24f+16/SCvy7/Yb8ZeEPCX/CUf8ACV6rZ6Z9o+xeV9rnSHfs87dt3sM4yM46ZFffn/C5PhD/ANDXo/8A4HQ//F1/YXhZmWEpcL4OnVrRjJe00ckn/Fn0bPwbjTB155zXlCm2vd1Sb+xE9Iorzf8A4XJ8If8Aoa9H/wDA6H/4uj/hcnwh/wChr0f/AMDof/i6/Qf7XwH/AEEQ/wDAo/5ny/1DFf8APqX/AICz0iivN/8Ahcnwh/6GvR//AAOh/wDi6P8Ahcnwh/6GvR//AAOh/wDi6P7XwH/QRD/wKP8AmH1DFf8APqX/AICz0iivN/8Ahcnwh/6GvR//AAOh/wDi6P8Ahcnwh/6GvR//AAOh/wDi6P7XwH/QRD/wKP8AmH1DFf8APqX/AICz0iiuY8P+NvBniySSLwtq9lqbQgGQWlwkxQHoSEY4z7109dlGtTqxU6UlKPdO6+9HPUpzhLlmmn56BRRRWpAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFYmu+JfDnhe0W/8TahbadAzbBJdSrChY9gXIGfauS/4XJ8If+hr0f8A8Dof/i6462YYWjLkrVYxfZySf4s6KeEr1FzU4NryTZ6RRXm//C5PhD/0Nej/APgdD/8AF0f8Lk+EP/Q16P8A+B0P/wAXWX9r4D/oIh/4FH/Mv6hiv+fUv/AWekUV5v8A8Lk+EP8A0Nej/wDgdD/8XR/wuT4Q/wDQ16P/AOB0P/xdH9r4D/oIh/4FH/MPqGK/59S/8BZ6RRXm/wDwuT4Q/wDQ16P/AOB0P/xdH/C5PhD/ANDXo/8A4HQ//F0f2vgP+giH/gUf8w+oYr/n1L/wFnzf+3j/AMkh03/sMQ/+iZ6/Jev07/bT8feBPFXwtsNP8Ma3YalcJqsUjRWtzHM4QQzAsVRicZIGemSK/MSv5N8YK9KtxFOdGakuSGqaa28j9v4EpTp5VGNSLT5pb6GTr+g6P4p0K98MeIrZLzT9Rgktbq3lGUlhmUo6MO4ZSQR6Gv4Jf22v+CL37Yf7Inxdm8Sfs1aPrfjbwmZTcaTqmgxST6laBif3U8VvmZZIxx5qL5bjBypJRf7df2pvjRc/s6fs5eNfjtZ6euqy+EtHutUSzeQwrObdCwQuFYqDjGdpx6V/Ll/xFF+Of+iOWH/g6k/+Ra6vDD/Wag62JyShGrRbUZxlKKTdrreSd0nutNbO5hxj/ZFRU6OY1HCa1i0m3brsmraevY/LP9nn/gk9/wAFCf2x/ipC3jjwxr3h2yu5kbU/EfiyCe38uHoXUXWya5cKMKkeecBiq5Yf2TftXfskX1h/wS+8S/sd/s26S1/cWfhqLSNIs98cUlw0LRklnkZE8yQqzsSRuYk9TX4S/wDEUX45/wCiOWH/AIOpP/kWj/iKL8c/9EcsP/B1J/8AItfY8R5Xx1m2Kw1aeChCFCSlGCnC3MmneXv3e1tLWW27Z4OU43hvA0a1OOIlKVRNSk4yvZ9vd079dTF/4J3f8G9vxbn+JNh8T/257eDQ9D0eaO5i8OwXMN5c38sbblS4eEyQxwcDequzuCV+TrX9kIAUBVGAK/j4/wCIovxz/wBEcsP/AAdSf/Itf1YfAX4mSfGn4GeC/jHNZjT38W6Fp2staq/mCA39uk5jD4Xds37d2BnGcCvgvEijxPUq0sbxDTUIu8YKLi4rq7JSk9erbu++iPpuEqmTQhPD5XJyas5Np3fa7aS+SPWK+2P2Dv8Akr2pf9geb/0dBXxPX17+xZ4l8OeFfilf6h4n1C2023fSpY1lupVhQuZoSFDOQM4BOOuAa8Hw/qwp8RYKdSSSU1dvRbM9PiiEpZViIxV24n7B0V5v/wALk+EP/Q16P/4HQ/8AxdH/AAuT4Q/9DXo//gdD/wDF1/aX9r4D/oIh/wCBR/zP58+oYr/n1L/wFnpFFeb/APC5PhD/ANDXo/8A4HQ//F0f8Lk+EP8A0Nej/wDgdD/8XR/a+A/6CIf+BR/zD6hiv+fUv/AWekUV5v8A8Lk+EP8A0Nej/wDgdD/8XR/wuT4Q/wDQ16P/AOB0P/xdH9r4D/oIh/4FH/MPqGK/59S/8BZ6RRXm/wDwuT4Q/wDQ16P/AOB0P/xdbug+PPA3iq5ey8L61Y6lNGu9o7W4jmZV6ZIRiQPerp5ng6klCnWi5PZKSb/MmeDxEE5TpyS80zq6KKK7jmCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/Af4yf8le8Vf9hi+/8ARz15vXpHxk/5K94q/wCwxff+jnrzev8AP3OP9/xH+Of/AKUz+osB/u1L/DH8gr+VD4p/8Fmv+Cj3xC/aS8f/AAr/AGHvhLY+KdB8DarcaZJMul32p3OIJXhWWZ7e4jjjEzRO0abQcAjLYJr+q+v4+bL/AILM/sv/ALB/7QnxZ8LfBn9n+ez1PVPE17Fr18niaZ11G6sLm4TzxFPBMsO5nkbZHhRuxyAMfZ+H+WvFSxTpZesVVjGPLGTioK8tXK8o9NrX13stT57ijF+xVBTxXsYNu7Sbk7LRK0X13vbTueOfto/t5f8ABZn4i/syeKvBf7QnwfXwh4NvorddS1eDRNQsZLZFuImQieW5dE3SBEOVOQ2OpzX3f/wSM/a6/wCCnXjHxN8J/gl8S/hmtn8HRoxt08TtpN4kklpa2Ej2kpu3naEmaRIgW8vD7sAAkY+afjJ/wcQ/Bj9pD4ban8Evi1+z/c654e18RRXdiPEjwmby5ElRQ8FokoPmIp+VgTjHTIr+nn9jLVfCGu/sl/DbWvh/oD+FdDuvDemy2GjSTvdNYW7wIY4DNL88hjXC72+ZsZNfX8VYmtluR/VcfktOjKpOXLZxcVeFueNpuXOvNctktbnh5LSp4vMfbYbMJVFGKvdNN2lezvFLlfk73bPpeiiivws/Rwr+kCv5v6/pAr+ivAL/AJmX/cL/ANyH5T4nf8wn/b//ALYFFFFf0UflIUUUUAFFFFABRRRQAUUUUAFFFFABX8Wn/BVz4/8A7X15+0T4n+BHxk1+SHw/p1z5mn6bp6m1sJ7KX57eVkBJlYoRuMjvtcMBjGK/tLr47/aC/YQ/Zs/ah+JHh/4n/GjRn1S+8PQSW0cQlaKC4iZg6LOEwzrG24ou4L87bgwOK+f4jyuvjsKqWHnyu+urSa6p2+8/R/DHi3L+H81ljMyoe0hyuzUVKUZLVON7Wb+F6re99D4l/wCCJH7SWs/GL9mSb4WeKVmkvvAEyWMF06sUmsJgWgUPjaXhw0ZUfdQJ61+z1cromheCfhn4Uj0fw9aWWgaHpcR2QwIlra28S8nCqFRFHU9BXRWd5aahaRX9hKk8E6LJHJGwZHRhkMpHBBHII4Ir0stw08PhqeHqz5pRVr7en3bHzHFGZ0MzzTE5jhaHsqdSTko3vZvV62S1d3bpe2yLFFFFdx8+FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr3dtHe2slpMXVJVKkxu0bAH0ZSGU+hBBFWKKTSas9hptO6PzY+PPwq+PvgDzvFHgHxVrmp6MMu8X26dri3HfIDfOg/vAZA6jjNfF3/C5Pi9/wBDXrH/AIHTf/F1+/FfFHx5/ZD0Lx153in4eCPTdXOXkg+7b3B78D7jn1Hyk9RyWr8H468Ncf72OyCvPu6XPL/yR3/8lf8A269on6Xw3xdhtMNmdOPlPlX/AJNp+P39z83v+FyfF7/oa9Y/8Dpv/i6P+FyfF7/oa9Y/8Dpv/i65HxD4c13wnrE2geJLWSyvLc7ZIpRhh/iD1BGQRyKxa/nmpmmZU5unUr1FJaNOUk0+zVz9Uhg8JKKlGnFp9bI9I/4XJ8Xv+hr1j/wOm/8Ai6P+FyfF7/oa9Y/8Dpv/AIuvN6Kj+2cf/wBBE/8AwOX+ZX1HDf8APqP/AICv8j0j/hcnxe/6GvWP/A6b/wCLqtefFf4pajZy6fqHiXVZ7edGjlikvJmR0YYZWUuQQQcEHgiuAoqZZvjmmniJ2/xS/wAwWBwyd1Sj9y/yCiiivPOo/hN/4K9/Fr47ft7f8FKm/Y6+F5nvLHw7qEXh/RdIE2y3kvwubq6kGdgYMXUyH7kMfb5q/Sf9rbVvi9/wSK/4IxeFv2ZbbX7b/hPdd1G70calo8kiiC3vLi4vriS3d1jkysbLBv2qwMm4YIBH5t3PxD8N/sRf8HBut/Ez42FrHRIfFuqXVxcyqWENr4htpvKn4ydiC7VzgEhARjIxUX/Bfr9ub4V/ta/Gjwf8OfgRrMXiHw74Ks7lpb+0Ja3nv9QZN6xtjEgjjhjAcZG5mA71/UtPLK2KxOR5RRoJ5fCnCvKXLo5qMt3tq2m115m3c/GZYynRo5ljqlT/AGqU5U0r6qLa2W+iT16WPzT0r9gX9p3Vv2P739vC00uMeBbC7EJnabF3IomEDXEcWMtEk58tnzkMCcYBI/tn/wCCIv7V/jL9rL9hjTdb+JV7LqXiPwlqNx4evr2c5luhbpHNBI56s3kTRoznl2QsSSSa/NX/AIKZ/H7wF+wz/wAEtvB//BOT7LcDx14k8JaTDKsceLe3jSVHvppHOAWlmjmRUXJy244A5+kP+DbP4d694U/YX1vxnrMLww+KPFV3c2Jb7sttbQQW5kX/ALbRyof9yvA45zOpnPC9XMcbTUeXEWoO1nKntfzv719k+W9tEenw5g44DOYYTDzbvSvUXRS3/DT0vvqf0J0UUV/PJ+plmzvLzTryLUNPleC4gdZIpY2KujqcqysMEEEZBHINd/8A8Lk+L3/Q16x/4HTf/F15vRXVh8diaCaoVZRT7Nr8jGrh6VR3qQT9Umekf8Lk+L3/AENesf8AgdN/8XR/wuT4vf8AQ16x/wCB03/xdeb0V0f2zj/+gif/AIHL/Mz+o4b/AJ9R/wDAV/kekf8AC5Pi9/0Nesf+B03/AMXR/wALk+L3/Q16x/4HTf8Axdeb0Uf2zj/+gif/AIHL/MPqOG/59R/8BX+R6R/wuT4vf9DXrH/gdN/8XV3Tvil8btXvotM0rxJrdzczsEjiivJ2d2PQABySar/DD4R+Nfi3rY0jwnbbkQjz7mTKwwqe7Njr6KMk9hX69fBf9nzwV8GrES6en23VpFxNfSr85z1VBzsX2Bye5NfoPBfCef8AEE1VWInTw63m5S18oq/vP8F1d9H8txDnmWZXFw9lGVXpFJffLTRfi/xPO/gP8GPijpQh8V/F3xPqtzc8PFpv2+Zoo/8ArqQ+HP8Asj5fXPQfXtFFf1XkuS4fK8NHC4e7S3cm5Sk+7b/4CXRI/FMxzGrjazrVbX7JWS8kv6fdhRRRXrHCFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVi+IfDmheLNHm0DxJax3tncDbJFKMqff2I6gjBB5FbVFRUpwqQdOok4vRp6prs0VCcoSUouzXU/JP49fsi674D87xT8PhJqWjjLyQ/euLde+cffQf3hyB1HBNfFdf0gV8U/Hr9kTQ/HXneKfh4sem6wcvJB923uD36fcc+o4J6jnNfzxx14O/FjsgXm6X/wAg/wD21/8Abr2ifqnDfHvw4bM35Kf/AMl/n9/c/JWitrxD4d13wnq82geJLWSzvLc7ZIpRhh/iD1BHBHIrFr+eKlOdObp1E1JaNPRp9mj9UhOMoqUXdPqFFFFQUFFFFAH4Gf8ABx9PrEP/AAT1tY9MBMMvizTVu8HpCIblhn/toI64D9in4c6Pa/8ABvb4hX4N2aHWfEvg/wAVXF68Cfv7u9zdQuG28s4jjEKd8Kor9Wv+CiH7KSfto/sh+LvgLayi31S+t1utKlY7VXULRhLAGPZHZfLc84ViRyBX8P8A8C/26/8AgoT/AMEnNf1r9n1bUaTHHctPd+G/ElmZ4EmcAGaIqyOFkVR80UvlyD5hng1+48G4OpnXDcctwFSKxFCuqrhJ2U42+fXysrK9ro/Oc/xEcvzd4vExbpVKThzJX5Xf/L8/U/Uj/g2F+H3ws1rxx8UPiLrNvb3Pi/Q4NMt9NeVQZbW0u/tH2h4s9DIURHYchRjIDkH+xCv8uPwp+1t8XfhZ+0HeftKfAKS2+HWu3c0sot9ARksIlnwZIlguHnBhZhu8qQugONoAVQP0+v8A/g4q/wCCi954ZbQbefw3a3TIUGoxaXm5BIxuCvK0GR15hIz2xxX0PHvhhnGc5tLMsLUjyzUfdlJpwtFJrRNNX106t6dX5fDPGOAwGCWErRd4t6xWkru99079Ne2/Q63/AIOI/hr8PPB37fGjXnwqtY7XXfEug2uoarb2KbWkv3uZ40mIT/ltKqLuwMkqGOS2T/c14fXU00GxXWiDeC3iE5HTzdo3frmv8yj4JftNfEK4/bO8P/tH/E2G08e+J7nWrW4lk8RLLcRNcF0RJSkUsOWhwDEpPlrtUbMACv8ATur5bxXwNfLsDlGWV5c7pwmufu/cul1tGySvuvQ9ngnE08VicdjKa5VOUfd7L3tfV63CiiivxY/QQooooAKKKKACiirunadqGr30WmaVA9zczsEjiiUu7segAHJNVGLk1GKu2JtJXexSr6q+BP7LXir4rvFr+u79L0HOfOIxLOPSJT2/2zx6Z5FfSfwF/Y2stI8nxZ8W40uboYeLTuGij9DKejn/AGR8o756D9AURIkEcYCqowAOAAK/feBfB6dblx2fJxhuqWzf+Psv7q1722f5jxJx5GnzYbLXeXWfRf4e/rt2ucr4K8DeFvh7oUXhzwjZpZ2sfOF5Z27s7HlmPqf5V1lFFf0hQoU6FONGjFRhFWSSskuyS2PyWrVnUm6lRtye7erYUUUVqQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbq+j6Vr+mzaNrdvHd2lwpSSKVQyMp7EGvzB+PX7HeqeGPO8V/CxJL7Thl5LHl54R/sd5FHp94f7XJH6oUV8rxVwdl2f4f2WMh76+Ga+KPo+q7p6P11PayXP8XllXnw8vde8Xs/8Ag+a1P5wCCDg8EUlfsJ8ef2UPDfxNE3iXwl5el66csxxiC5P/AE0A+6x/vgfUHqPyf8WeEPEngbW5vDniu0ksryE/Mkg6jsVPRlPYgkGv5I4v4GzHh+ty4mPNSb92ovhfk/5ZeT+Ta1P3LIuI8JmlO9J2mt4vdf5rzXzsc3RRRXxh9AFFFFABRRRQB5/8Vvhh4M+NXw21z4SfES2a80LxFZy2F/AkjRNJBMu11DoVZcg9VIIr8rP+HBv/AATB/wChGvP/AAc3/wD8fr9k6K9bL8+zLAQdPBYmdOLd2oycU33dmjhxWWYTEyUsRRjNrbmSf5o/gq/4LqfsOfs3fsR+Pvh7oX7OeizaNba/p99cXqy3c92ZJIJI1Qgzu5XAY8DGa/b79kj/AIIlf8E6Pit+yn8Mfij438HXd1rXiTwnouq6hMurXsYkuryzimlYIkwVQzsTtUADoOK+E/8Ag6K0G+i8Z/B7xPsY201lrNrvx8okie2fBPqQ/H0NfuD/AMEiv2nPhX8fP2FPh5pXhLVbZ9X8HaDY6Dq2nmRRc2s2mQrb7njzuCSLGJEb7pVuuQQP2XPc8zlcF5ZmGHxNTncpqc1KV370kuZp36WV/JHwOW5dgP8AWDGYWrRhy2i4xaVto3srW69D+WP/AILo/sQfs4/sS/ErwD4c/Zz0aXRrTXdMvLm8SW7nuy8kUqqpBndyuATwMCv7NP2E/wDkyH4N/wDYjeHv/SCCv5DP+DjT9oT4Z/GH9qjwx4D+HGqW+sHwXo8ttqU9pIssUd5czFmg3qSC8aopcD7pbafmBA/sP/Y60C/8KfsjfCzwvqqNFdab4Q0O1mRhhlkhsoUYEdiCORXm8d1sVU4SyeeOlJ1pObbk25NdG767NfKx18N06Mc8x8cMkoJRStsu+3nc+jqKKK/Fj9BCiiigAooooAKKntra5vbiOzs42lllYIiICzMx4AAHJJ9K/Rv4C/saAeT4t+MEfo8WmZ/IzEf+gA/7x6rX0nDXCmY57ifq+BhdL4pPSMV3b/JK7fRHk5vnWFy2j7XEy9Et36L9dkfOHwO/Zp8YfGC4TVLgNpuhq3z3brzJjqsSn7x7bvuj3PB/XT4f/Dfwf8MdCXw/4PtFtoRgyOeZJW/vO3Vj+g6AAcV2dtbW9nbpaWkaxRRKFREAVVUcAADgAelTV/WvBvAGXcP0uamueu171RrX0ivsry3fVs/Ds/4oxWaTtN8tNbRW3q+7/pJBRRRX3Z80FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxl8efgv8WbnzvFnwf8T6vHJy8umG/mCn1MJL8f7h49COBX5u3nxX+NWnXclhqHiXW4J4WKSRyXk6urDggguCCPQ1+99fPXxs/Zz8GfGO0a9lUafrKLiK9jXlsdFlXjev6jsccV+OcdeHGJxfNjskryhV3dPnajL/DraL8vhflu/vuG+LaVDlw+Y01KHSXKm169157+p+Rn/C5Pi9/0Nesf+B03/wAXR/wuT4vf9DXrH/gdN/8AF1H8Sfhb4z+FOuHQ/F9qYi2TFMvzQzKP4kbv7jgjuBXndfzRi8bm2FrSw+Iq1Izi7NOUk0/S5+vUMPgq1NVaUISi9mkmn+B6R/wuT4vf9DXrH/gdN/8AF0f8Lk+L3/Q16x/4HTf/ABdeb0Vz/wBs4/8A6CJ/+By/zNvqOG/59R/8BX+R6R/wuT4vf9DXrH/gdN/8XR/wuT4vf9DXrH/gdN/8XXm9FH9s4/8A6CJ/+By/zD6jhv8An1H/AMBX+RZvLy81G8l1DUJXnuJ3aSWWRizu7HLMzHJJJOSTyTVaiivObbbbep0pJKyCvJPiT8dvgR8G3iT4v+MtB8KNcLviGsajb2Jdc4yvnumRnjI7163X8Wn7I/8AwTt0X/gql+158fviH+1z4q1mwv8Awp4mksZdP02WJbtXea4RUaSeOZUhgSDykRY+QOCoXn6vhnIsHjqeJxeYYh0qFFRcnGPNJuUuVJK667vpp3ueLnGZV8NKjQwtJTqVG0ruyVldtv06H6G/8FgNO/YS/a6/Z3m1f4H+PfhxdfFbRr20udHvoPEukWN08fmqJ43uXuYwUEbNIFd+HUFea/ZT9hzVfijrf7IXw71P40XtvqfieTRLb7de2t3DfxXTKuFnW5t3eKbzUCuXR2VixINfkp/xDT/sD/8AQw+OP/BhZf8AyDX7k/Bf4UeGvgT8I/DPwX8GyXEuk+FdMttKs3umV52htIxGhkZVRS5C5YhVGegFepxJmeVvKaGW5diJ1VCbknOFpRTVnFO791tX5bb63OPKcHjVjqmLxVKMHKKXuyum092rb9L320PTKKKK/Pz6cK9I/wCFyfF7/oa9Y/8AA6b/AOLrzeiunD4zEUL+wqSjfezav62MqtClUt7SKdu6TPSP+FyfF7/oa9Y/8Dpv/i6P+FyfF7/oa9Y/8Dpv/i683orp/tnH/wDQRP8A8Dl/mZfUcN/z6j/4Cv8AI9I/4XJ8Xv8Aoa9Y/wDA6b/4uj/hcnxe/wChr1j/AMDpv/i683oo/tnH/wDQRP8A8Dl/mH1HDf8APqP/AICv8j0j/hcnxe/6GvWP/A6b/wCLo/4XH8Xv+hq1j/wOm/8Ai65fwv4V8Q+NNah8PeFrSS9vJzhI4xk47knoAO5OAO9fqz8Bv2S/D3w68nxN438vVNbGGRcbre2P+yCPmcf3iOOwHU/Y8I5BxDxBW5cLWnGkn71Rylyr0196XkvnZangZ5mmV5XT5q1OLm9opK7/AA0Xm/lfY8v+A3wj+PHjPyfFXxK8U65p2lHDx2v26dbi4HbPz5jQ+v3iOmODX6JQQpbQJbxlisahQWYu2B6sxJJ9ySTUtFf1fw3w3h8mw3sKU5Tk/inNtyk/nsuyWnq9T8SzfN6uPq+0nFRS2jFWS/zfmwooor6I8kKKKKACiiigD+Ij/gqB8bf2t9S/aM8U/BL47+JLibS9HvWNjp9qPsunvaSYktpfJTh2MbKd0hdlbK7uK/fz/gi3+0TrHxq/ZLi8EeJ1mfUPAUy6StxIrbJrIrutsORtLRqDEVHKqik/er69+NX7Cf7Mn7Q/xZ0n4y/GLw8utaro9p9jiilkZbaWNXLp50a483YWbaGJXDEFTxj6Ytrbwd8OvCy21pHZaFomlxfKqBLW1t4l9ANqIo/ACvkcsyHFYXMauMqVrwd1Z3ba3V29rfP5XP2bivxCynNeGcJkmGwPLWhytyioxjGa0lyxim5c6ve9tWt2jpqKAQRkUV9cfjIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPJvix8GPBPxg0f+z/E8G25jBFvdxYE0J9j3X1U8H681+Qfxh+A/jb4N6l5etx/adOlbEF9ED5T+gb+4+P4T+BI5r91azdX0fStf02bRtbt47u0uFKSRSqGRgfUGvzrjXw4y/P4Osv3eJ6TS38prqvPdemj+r4e4sxWWSVN+/S6xfTzi+nps/wAT+dGivvL48/sc6n4a87xX8K0e908ZeSx5eeEf7HeRR6feH+11HwcQVJVhgjqK/k3iDhvMMlxLwuPp8r6PeMl3i+q/FdUmft+V5thcwo+2ws7rquq8mun9WEooorwj0gooooA/F3/gqX/wR78Ef8FBrmw+Jvg7V4/CfxA02EWpvZYmmtb+1XJSKdVIZWjJJSVQSASrKw27Pg/9h7/g3Sk+DXxn0b4wftO+LrDxFB4duUvrTRtKhk8ie5gcPE08swQtGpG5ohH85wC23Ib+pKivs8F4gZ7hcueV0MRalZpaJtJ7pStdLt26WPAxHC+W18X9cqUrz33dm+7Wz/Xrc/I79vH/AIJGfDH/AIKBfH/wr8Yfir4p1DTdK8O6YNNm0nT4UWS7UTPMD9pdm8sHeVYCInHRga/T/wCHnw88EfCbwPpfw2+G+mQaNoWi26WtlZWy7Y4YkHAHcnuScliSSSSTXZUV4GLzrHYnDUcHXqt0qXwR6K/pu/N3fmenQy/D0a1TEU4JTn8T6v8ArstAoooryzsCiiigAoorW0PQtZ8TarDofh+2kvLu4bbHFEpZmP0HYdz0A61dOnKclCCu3oktW32RMpKKcpOyRk19ifAf9kzxH8RzD4m8aeZpeiHDoMbZ7lf9gH7qn++Rz2B6j6Y+A37H2jeD/J8U/ExY9Q1QYeO0+/bwH/a7SOP++QemeDX3JX9B8C+Drly47PlZbql/8m+n+Fa92tUflvEnHqV8Nlj16z/+R/z+7uc94W8J+HPBWiw+HfC1pHZWcAwscYxz3JPUse5JJPeuhoor+iqVGFKEadKKjFKySVkl2SWx+VTnKcnObu3u3uFFFFaEBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeSfFn4LeCfjDpH2DxLBsuolIt7yIATRH2PdfVTwfY81+QXxg+Bfjb4N6p5GuxfaLCViLe+iB8qT0B/uPjqp/DI5r92Ky9a0TSPEWlzaLrttHd2lwuySKVQysPcH9PSvznjbw4wGfwdaP7vE9Jpb+U11XnuvNaH1nDvFuJyySpv36PWL6ecX09Nn+J/OnRX3T8ev2PdW8J+d4q+F6SX+mDLyWfLzwD/Z7yIP8Avoe/Jr4XIIODX8m5/wAOY/JsS8Lj6fLLo/syXeL6r8Vs7PQ/b8szbDZhRVbCzuuq6rya6f1YSiiivDPRCuM8ZfDj4efEWy/s34g6Dp2u2+MeVqNrFdJg9tsisP0rs6KqE5QkpQdn5ClFSVpK6PmP/hif9jP/AKJH4L/8EFj/APGaP+GJ/wBjP/okfgv/AMEFj/8AGa+nKK7f7Vxv/P8An/4FL/M5/qWH/wCfcfuR82Wf7Gf7H+nXcWoaf8KPB0E8DrJHJHoVkro6nIZSIcggjII5Br6Toornr4qtWs603K3dt/ma06NOn/Dil6KwUUUVgaBRRRQAUUV9e/Ab9lDxJ8TDD4l8XeZpehHDKcYnuB/0zBHyqf75H0B6j18lyLHZtiY4TAU3Ob+5Lu3sl5v89DhzDMsPgaLr4mfLFfe/JLqzw34Y/Cbxp8WtbGjeErYuqEefcP8ALDCp7u2PyAyT2Ffr18Fv2e/BfwasRNYr9t1aRcTX0qjec9VjHOxfYcnuTxj1fwn4Q8N+B9Ei8O+FLOOys4R8scY6nuWPVmPckkmukr+ruB/DLA5Eo4nEWq4r+a2kfKCf/pT1fSydj8S4j4wxGZN0aXuUe3V/4v8ALb13Ciiiv08+OCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzX4nfCbwX8WtDOjeLbbeyA+TcJ8s0LHujY/MHIPcV6VRXNjMHQxVGWHxMFOElZpq6ZtQr1KFRVaMnGS2a3Pw6+NP7PfjT4NXxmvl+26TI2Ib6JfkOeiuOdjex4PYnmvBK/oz1HTtP1exl0zVYEubadSkkUqh0dT1BB4Ir8z/AI8/sbXuj+d4s+Ecb3NqMvLp2S0sY7mInlx/sn5h23dB/MvHXhFXwXNjslTnR3cN5R9Oso/+TLz1Z+wcN8dU8Ry4fMGo1Oktov17P8PTY/PyinOjxOY5AVZTgg8EEU2vw4/RgooooAKKKKAPz6/4KT/sFeFv+Cg37O83wo1C8XSde02cajoepMhdbe7RSpWQD5jDKrFHA5HDAEqAf4ofib/wRW/4KTfDDxPP4fHw6udfhSTy4r/RZoru2nU/xLhlkVT/ANNY0I7gV/ox0V+g8JeJOa5BQeFoKM6Td+WSeje9mmmr9Vquu7Z8tnnCWCzOoq1VuM9rxtr6pp/5n8T3/BPr/g36/aA8XfEzR/iN+2XYQeF/CGl3SXM2iSTpcX+pCI7liZYS8cULkYkLOJCuQqjIcf2wKqooVBgDgAUtFePxVxhmHEGIjXxzVoq0YxVoxvva7bu9Ltt7LokehkuQ4XK6Tp4ZPXdvd/lt2sFFFFfLHshRRRQAV3fw9+G3jD4oa8vh7wfaNcSnBkkPEUSn+J26KP1PQAmvaPgV+y/4r+LUseuavv0zQc5Nww/eTgdREp6+m8/KO2SMV+tvgfwF4U+HOgx+HPCFolpbJyccvI3dnbqzH1P0HFfrXAvhZjM55cZjr0sNv/emv7qey/vP5J9Ph+JONKGAvQw1p1vwj6935L52PHvgd+zX4P8Ag9bpqcwGo64y/PeOvEeeqxKfujtn7x+nFfSNFFf1TlWU4PLcNHCYGmoU49F+be7b6t6s/Fsbjq+LrOviZuUn1f6dl5IKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDl/GHgzwx490OXw54ts0vbSXqrjlT2ZSOVYdiCDX5OfHf9lTxP8L2m8ReGN+qaEMsXAzNbj/poB1Uf3wMeoFfsXSMoYFWGQeCDXxfF/AuXcQUbYiPLVS92ol7y8n/NHyfyaep9BkXEmLyupek7we8Xs/Ts/P77n84FFfqZ8ef2OdN8Sed4r+FKJZX5y8lhwkEx/wCmfaNj6fdP+z1P5iatpGqaBqU2j61byWt1bsUkilUq6sOxBr+SeKeDsxyDEeyxsPcfwzXwy9H0fdPVemp+5ZLn2EzOlz4eXvLeL3X/AAPPb8jOooor5U9oKKKKACv5Dvir/wAExf8Agscv7YXjz9pf4GeKbDQbrxFqt4be8stVFlLPppmb7NHcRxxBZNsQQYkDHKjJJGa/rxr+YL4y/wDBHz/gpt4++MHivx14O/aJn0nSNa1i+v7GxGrarGLa2uZ3kii2p8i+WjBcL8oxgcV+heH+ZwwdbEc+JpUlKKT9rTdRSV9kl8r30eh8txRg5V4UuWlObTb9ySi1pvr+B5t/wyX/AMHH/wD0VSD/AMG0P/yNX9L/AOznonxU8N/APwb4f+OV6NR8ZWWjWcOt3SuJBNfpEonfcAobL5OQADX8cn7Zv/BP3/gq7+xn8I7r466/8bNX8T+GtKeIam+la9qX2q0jlcRiUxTNGHQMyg7XJGckBcsP64f2Jb2DUf2P/hjfW3iJ/Fyy+GdMY6zLv8y+byE3TP5paQOxyWDksGyG5zXr8eqNXLsPiqNXD1Kbm1ejSdNppXak7vo1ZOz6rQ4eGbwxdWjOFWMlFO1SfNo3ul8t/kfUNFFFfkx9uFFFFABRRT0R5XEcYLMxwAOSSaAGV7v8GP2fvGvxlvxJpqfY9KjbE19Kp2DHVUHG9vYcDuRX0X8B/wBja91jyfFfxbR7W1OHi07JWWQespHKL/sj5j329/0x03TdO0awi0vSYI7a2gUJHFEoVEUdAAOAK/cOBfCGvjuXG50nTo7qG05ev8sf/Jn5aM/OeJOOqeG5sPl7UqnWW8V6d3+Hrsee/C74Q+CvhHov9k+FLbEjgefcyYaaYjuzenoowB6V6fRRX9N4PBUMJRjh8NBQhFWSSskfj+IxFWvUdWtJyk929wooorpMQooooAKKKKACiiigCOZZHiZYW2OQQrEZwexx3r+C/wDbo+Of7Wnjb4z+Ifhh+0v4lur+48O6jNamwj/0fT0MTEJJFbptTDLhlcguVIJY1/epXxh8QP8Agn7+yl8VvjvL+0R8S/C8Wua9NbwQNHdsXs2a3BVZHg4SR9m1D5m5dqrhQRk/N8S5PXzCjCnQqctnqm3ZrzS3a6fM/UfC3jbLuG8bXxOYYf2ilH3Goxc4yT0s3blUk3zNPotGeb/8Er/2iL/9oz9jnw7rPiAyPrHh7Oh30kgP757NVEcoY/e3xFCzf89Nw7V+i9ZdlZaL4b0yDTNOigsLK3CQwxRqsUSAkKiKowo5IAA+grUr28HRnSoQpVJc0opJva9uvU+CzvG0MZj6+Lw1L2dOcpSUb35bu9r2W1+2iCiiiuk8sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5I+O/wCyl4Z+J4m8R+Ftml66cszgYhuD/wBNAOjH++Bn1B7fW9FeTnWR4LNsNLCY+mpwf3p9090/Nfkd2X5jiMFWVfDT5ZL8fJrqj+ebxf4M8TeA9cl8OeLLOSyu4eqOOGHZlI4ZT2IJFcxX79/En4WeDPivoZ0PxfaiULkwzJ8s0LHujY49wcg9wa/Ij42fs6eM/g3dteTqb/RnbEV9GvAz0WQfwN+h7HsP5S448MMbkblisNerhf5vtR/xpf8ApS0722P2vhzjHD5ilRre5W7dJf4X+m/qfPdFFFflx9mFFFFABRRRQAUUUUAFFFfcvwG/Y91jxf5Pir4mrJp+lnDx2n3bicdt3eND/wB9EdMcGvcyDh3H5ziVhcBT5pdX9mK7yfRfi9km9DzszzXDZfRdfFTsundvsl1/q58+fCL4H+NvjHqv2Xw9D5NlEwFxeygiGIemf4mx0Uc+uBzX6+/CP4IeCPg5pX2Tw9D5t7KoFxeygGaU+mf4Vz0UceuTzXpeh6Fo3hrSodD8P20dnaW67Y4ol2qo+n8z1J5Na1f1jwT4b4DIYqvP95ies2tI+UF09d35LQ/EeIuLcTmbdOPuUf5V1/xPr6bLz3Ciiiv0c+SCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Pfjz+yd4d+JIm8TeDfL0vXGyzjGILk/7YA+Vj/fA57g9R9hUV5Gd5Fgc2w0sJj6anB/en3i90/Nej0O/LszxOBrKvhp8svwfk11R/PB4p8J+IvBWtzeHfFNpJZXkBw0cg7diD0ZT2IJB7Vz1fvl8UPhF4K+LmiHSPFltudAfIuY8LNCx7q3PHqpyD3FfkJ8Z/wBn7xr8Gr8vqSfbNKkbEN9EvyHPRXHOxvY8HsTX8occeGWOyJyxNC9XC/zJax8pr/25aPybsftvDnGGGzJKlU9yt26P/D/lv67nhFFFFfmJ9gFFFFABRRRQAUUUUAFaWj6PqviDU4dG0O3ku7u4YJHFEpZ2J9AK9F+FHwZ8bfGDWP7O8LwbbeMj7RdyZEMIPqe7eijJP05r9fvg78B/BPwa0zy9Fj+06jKuJ76UDzX9Qv8AcTP8I/Ek81+i8E+HOPz+arP93hlvNrfygur89l1d9D5TiHizC5ZF0179XpFdPOT6em7/ABPnv4C/sd6X4X8nxX8UkjvtRGHisvvQQn/b7SMPT7o9+DX3cAAMDgClor+suH+HMBkuGWFwFPlj1f2pPvJ9X+C2SSPxDNM2xWYVnWxUrvouiXZLp/Vwooor3TzQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+VPjt+y14W+KyS6/oOzS9ewT5wGIpz6SqO/+2OfXdwK/Jbxp4H8U/D3XZfDni6zezuo+cNyrr2ZGHDKfUH9a/oUrz/4jfDHwb8U9CbQfGFqJkGTFKvyywsf4kbsfbkHuCK/I+OvCvCZxzYzAWpYnd/yz/xJbP8AvL5p7r7rhvjWvgLYfFXnR/8AJo+ndeT+TR/P/RX0V8bv2cPGXwdumvyDqGiu2I72Nfu56LKv8De/3T2OeB861/LGaZVi8uxMsJjabhUjun+a6NPo1oz9owWNoYukq+HmpRfVf1o/IKKKK846gooooAKKKKACiivRvhr8K/GfxX10aH4QtTIVwZp3+WGFT3dscewGSewNdGEwlbFVo4fDwc5ydkkrtv0Mq9enRpurVkoxW7eyOEsbC91S8i07TYXuLidgkccalnZj0AA5JNfpT8Bf2NbbT/J8WfF6NZp+Hi03O6NPQzEcMf8AYHy+pPSvov4Kfs7eDPg3ZrdW6i/1h1xLfSL8wz1WMc7F+nJ7noK+ga/pngXwho4Plx2dpTq7qnvGP+LpJ+Xwr+9ufkHEnHdSvzYbLm4w6y2b9Oy/H0GRRRQRLDCoREAVVUYAA6ACn0UV+5pW0R+bhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXiXxi+A3gn4y6bs1qP7NqMS4gvogPNT0Df30z/CfwIPNe20VxZhl2Gx2HlhcZTU6ct09v8AgPs1quh0YXF1sNVVahNxktmj8F/iv8GPG/wf1j+z/E8G63kJ+z3cWTDMPY9m9VOCPpzXk9f0S+IvDeheLdHm0DxLax3tncDbJFKMg+/qCOxGCDyK/K/48/sia74E87xR8PhJqejjLyQ/euLde/A++g9RyB1HBNfy9x14S4nLObG5Veph93HecF/7dFd1qlutLn7Lw3xxRxlsPjbQq9H9mX+T8tu3Y+KqKKK/GT78K/mC+M37V/8AwX70P4weK9F+F3wugvfDNnrF9BpFwdKVzLYRzutu+77QN26IKc4Gc9K/p9r+bj4u/wDBx/8AB/4R/FjxP8Kb/wCGesXk/hjVr3SZLiO9gVJXspnhLqCuQGKZAPIBr7rgbC42tWrLB5dDFNJXU7WjruryjufOcR1sPTp03iMXKiruzj18noz8o/28v2sv+CznjP4LTfC79rfws3gjwP4jubezv75dJ+zWrZkVkSe6Bm8tN6hiAVZgpHIyD/YD+xN8ILL4CfskfDr4Q2GpW+spomg2cTX9nJ5ttdSOgkklhf8Aiid2Zoz3Qiv5Vv26v+C8+g/tmfs3a7+y78L/AIY31pfeMvs9mbi7ukuWQLPHKBFBFGTJIzIFX5hgnIBIAr+oX/gnt4B+IHwt/Yg+Fvw9+KUclvr2k+HLKC7t5hiS3IQFYXHZoUKxkdiuK+r49o4ujkOFp4vCQwkvayfsoW973Vapo21bWLu308jxOGalCpmVaVCvKuuRe/K/u+8/d1S3327n2NRRRX40ffBRRX0j8D/2a/GPxhuE1OUHTdDVvnvJF5kx1WJT949s/dHqTxXo5VlGMzLExwmBpudR9F+beyS6t6I5MbjqGEpOviZqMV1f6d35I8c8E+BPFXxE12Pw54Qs3u7mTkheFRe7Ox4VR6n+dfrV8Cv2W/CvwoSLXtc2aprwGfPYfuoD6RKe/wDtn5j2xnFe2fDz4aeDvhdoS6B4PtFt4uDJIfmllYfxO3Un9B0AA4rvK/qjgbwrweT8uMx9quJ3X8sP8Ke7/vP5Jbv8X4k40r4+9DDXhR/8ml69l5L53Ciiiv1s+GCiiigAooooAKKKKACiiigAooooAK4z4jDxu3w/1sfDN7ePxF9huP7Ma6UvALvYfJ8xQVyu/GeRxXZ0UpK6aNKVTknGdk7NOz1T9V2P8+v42/tdftT/ABj8cx+IPjB4s1K51LR7wTQWzN5EFncwPkGO3QLFG6MOoTdkck1/cj+yp8dNN/aU/Z48J/GvTtqtrliklzGnSK7jJjuIx7JMrgeoANfP9h/wTB/Y2j+M+u/HbxD4XXXtZ16+fUXh1J/OsYJpTuk8u2wIyHfLnzRJhicYHFfe+n6fYaTYxaZpUEdtbQKI4oolCIirwAqjAAHYCvlOHclxuCrVauJq8yn6tuz0bb8r6a7n694l8dZHnuCweEyrBuk6Ot7RjFKSXNCMY7q6Wumz0d7lyiiivrD8dCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXtlZ6laSWGoRJPBMpSSORQyMp6gg8EH0qzRSlFNNNaDTad0fml8ef2NJrTzvFnwgjMsXLy6YTll9TCT1H+wefQngV+eM0M1tM9vcI0ckZKsrDBUjggg9CK/o7r5l+Of7MvhH4vQyavY7dM10L8t0i/LKR0Eqj73puHzD3AxX4Lx14P08RzY7Iko1N3T2i/8HSL8vh7WP0zhvjydLlw2ZO8ek+q/wAXdee/qfizRXb+Pvh34v8Ahnrr+HvGFo1tOMlG6xyr/eRujD+XQ4PFcRX824nDVcPVlQrwcZxdmmrNPzTP1ulWhVgqlOScXs1qmFFFFYGgV0XhXwn4j8ba3D4d8K2kl7eTn5Y4x27knoqjuSQB3r1j4L/s9+NfjLfCawT7FpMbYmvpVOwY6qg/jb2HA7kcV+vXww+Engr4SaINH8J2213A8+5kw00zDu7Y/IDAHYV+n8D+GWOz1xxNe9LDfzNay8oL/wBuei6XasfHcR8YYbLU6NL363bov8T/AE39Dwj4D/smeHPhv5Pibxn5eqa4uGQYzBbn/YBHzMP75HHYDqfsOiiv6uyTIsDlOGWEwFNQgvvb7ye7fm/TY/E8xzPE46s6+JnzS/BeSXRBRRRXrnAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVHU9M07WbCbStXgjuba4UpJFKoZHU9QQeDV6iplFSTjJXTGm0009T8vfj1+xvfaH53iz4Sxvd2Yy8un5LTRD1iPV1/2eWHbd2+A3Ro2KOCrKcEHggiv6Pq+UPjv+yv4X+Kiy+IfDuzS9eIJMoGIbg+koA6/7YGfUNxj8B468HoVebHZCuWW7pbJ/wCDs/7r07W2P0/hvjyUOXDZm7rpPqv8Xf13733PxuorqvGXgnxR8P8AXZfDni6zezu4v4XHDL2ZWHDKexBIrla/nCvQqUakqVaLjKLs01Zp9mnsfrNOpCpFTpu8Xs1swoorZ0Dw9rfirV4dB8O2sl5eXDbY4ohlif6AdSTwByamnTnUkoU03J6JLVt9khynGMXKTskY1faPwF/ZG17x/wCT4o8fiTTNGOHji+7cXI7YBHyIf7x5I6DnNfSvwF/ZC0TwP5Pin4irHqWrjDx2/wB63tz/ACdx6n5QemcA19tV/Q3Avg9flx2fx81S/wDk/wD5Ff8Abz3iflnEnHvxYbLH5Of/AMj/AJ/d3MPw54a0Hwjo8Ph/w1aR2VnbjCRRDAHue5J7k5JPJrcoor+iKVKFOCp04pRWiS0SXZLoflU5ynJyk7t7thRRRVkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7s7TULWSxv4kmhmUo8cihlZTwQQeCD6V+bvx6/Y0lt/P8W/CCMvHy8umZyw9TCT1H+wef7pPAr9KqK+a4m4Ty7PcN9Xx0LtfDJaSi/J/mndPqj18nzvFZbV9rhpadU9n6r9d0fziTwTW0z29yjRyRkqysMMpHBBB6EVFX7TfHP9mTwl8XoX1ix26ZroHy3SL8kpHQSqOvpuHzD3AxX5HePPh74t+GmvP4d8YWjWs68o3WORf7yN0ZT7dOhweK/knjLgHMeH6t6q56Dfu1EtPSS+zLyej6Nn7jkHE+FzSFoPlqLeL39V3X9NI4qiiivhj6QKKv6XpWpa3qMOk6PBJdXVwwSOKJSzux7ADk1+nHwF/Y40/wAP+T4s+LCJeXww8Wn8PDEfWQ9Hb/Z+6P8Aa7fU8LcH5jn2I9jgoe6vim/hj6vq+yWr9Ls8XOs+wmWUvaYiWr2it3/wPPY+bPgP+yr4n+KTQ+IvE2/S9BOGDkYmuB/0zBHCn++ePQHmv1l8H+DPDPgLQovDnhOzSztIeiIOWPdmJ5Zj3JJNdMqqihUGAOABS1/W/CHAuXcP0bYePNWa96o/ifkv5Y+S+bb1Pw7PuJMXmlS9V2gtorZevd+f3WCiiivtD54KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+LPjz+yLoPj3zvFHw/EemawcvJDjbb3Dd8gfcc/3hwT1GTmvyu8R+Gte8I6xN4f8AEtpJZXludrxSjBHuOxB7EZBHSv6JK8p+K3wa8E/F/R/7N8UW+J4wfs93HgTQk+h7r6qcg/XBr8a468JsLmfNjcrtSxG7jtCb/wDbZPutH1Wtz7/hvjitg7YfG3nS6P7Uf815brp2PwVrirv4a/Dq/upL6+0DTZppmLySSWkTM7Mckklckk8kmvqP4x/AXxt8G9R26xH9q02RsQX0QPlv6Bv7j/7J/Akc14jX8wY7A4zLsRPC4qEqdSO6ej/4K7NaPofseGxNDFUo1qMlKD2f9f8ADnLaT4G8E6Bdfb9C0exsp8Y8yC3jjfB7ZUA11NFFcMpyk7ydzpUUtEgqe1tbm+uY7OyjaaaVgiIgLMzHgAAcknsBXcfDr4ZeMvinrq6B4PtDO/Bllb5YoVP8TtjAH6nsCa/XX4Ifs2+Dfg7bLqJA1HW2XEl5Iv3M9ViX+Ae/3j3OOK+74M8Psx4gqKdNclBPWo1p6RX2n+C6taX+a4g4owuVw5ZPmqvaK/N9l+L6I+bvgN+xmF8nxZ8YI8nh4tMB/IzEf+gD/gR6rX6L21tb2dulpaRrFFEoVEQBVVRwAAOAB6VNRX9acNcK5dkeG+r4Cna/xSespPu3+SVkuiPw/N86xWZVfa4mV+yWy9F+u76hRRRX0Z5IUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfHf7e3xQ+NHwV/ZX8UfFb4Dx2kmuaFEly4u4TOFtAwE7ooZRvjQmTLbl2qcqa/kO+GH/BQ/9om2/am8I/H/AOMPi3Utej0XUUkubeSQi3FpNmK5WK3TbChaF3A2oOcHtX9z3iDQdI8VaDfeGPEEC3VhqVvLa3ML8rJDMpR1Psykg1+bfwC/4JE/sWfAqSLVbjQG8YarEdwuvEDLdKp6/LbhVt+D0LRsw/vV8ln+T4/F4qjUwtXlit027Jp3Tst3/kfsvh3xrw9k+VYzDZtg/aVZ3UXGMXJwnHllFyfwpW+fNs7H6YWF/ZapYw6np0qz29zGssUiHKujjKsCOoIOQat1DbW1vZ28dnZxrFFEoREQBVVVGAABwABwAKmr61eZ+Nytd22CiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOM8d/D/AMJfEnQX8O+MLRbq3blSeHjb+8jdVYeo+hyOK/JH46fsw+LfhHLJrWmbtU0InIuVX54QegmUdPTcPlPsTiv2hqOWKKeJoJ1Do4KsrDIIPUEdxXw/GPAOXcQUr1lyV0vdqJa+kv5o+T26NH0eQcTYvK52pvmpveL29V2fn96Z/ONHHJNIsUSlnYgKoGSSegAr9A/gN+xrd6r5Piv4uxtb23DxabkrI47GUjlB/sj5vXHQ/aPhX9nz4T+DPF1x420HS0jvZjujDHdHAe5iU8Jn9OgwOK9pr4Dg/wAGaOErfWs6lGq0/dgr8mmzldJu/wDLt3vsvp8+8QKlen7HL04JrWT+L0Xb137WKen6dYaTYxaZpcKW1vAoSOKJQqIo6AAYAFXKKK/doxUUoxVkj82bbd3uFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAee/Ef4X+DfiroTaD4vtRMoyYpl+WaFj/Ejdj6joe4NfkP8bf2cvGXwcu2vZAdQ0V2xFexrwueiyr/AAN+h7HOQP26qteWVnqNpJYahEk8EylJI5FDKynggg8EH0r4HjPw+y/iCm5zXJiEtKiWvpJfaX4ro+j+n4f4pxWVy5Y+9Se8X+a7P8H1R+Fvwg+Bvjb4yap9n0CLyLGJgLi9lB8qP2H95sdFH44HNfr98JPgp4J+DukfYfDcPmXcqgXF5KAZpT9f4V9FHH1PNek6NomkeHdMh0XQbaOztLddscUShEUewH6+talc/BPhvgMgiq0v3mJ6za28oLovPd+S0NeIuLcTmbdOPuUf5V185Pr6bL8Qooor9GPkwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArifHvw78I/EzQX8O+MLRbmBuUbpJE395G6qf59DkV21FY4nDUsRSlQrwUoSVmmrprzTNKVWdKaqU5NSWzWjR+LHxz/Zl8XfCGeTV7HdqWhE/LdIvzRZ6LKo+76bh8p9icV5v8LfhB41+Lutf2T4Ut8xIR591JlYYQe7Ng8+ijJPp1r96p4ILqB7a5RZI5FKsjDKsp4IIPUGsrQPDmgeFNMTRvDVnDY2iElYoECIC3JOB3PrX4ni/A/L6mZKvSrOOGerp7u/aMn9l+d2tru91+h0PEbFRwjpzpp1tlLp6td/Syf5+TfBn4A+Cvg1p4Olp9r1SVds99Ko8xvUIOdiew69ycV7nRRX7Jl2W4XAYeOFwdNQpx2S/rVvq3q+p8Di8XWxVV1sRNyk92/6/AKKKK7jmCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAz9W0nS9d02bR9at47q1uFKSRSqGRlPYg8V+Yvx5/Y41Lw753iv4UI95YDLyWHLTQj/pmesij0+8Pft+pVFfLcU8H5dn+H9jjYe8vhmvij6Pqu6ej9dV7WS59i8sq8+Hl7r3i9n/wfPc/nAZWRirjBHBBr6t+BP7LHin4qtF4g8Qb9L0EkESkYlnHpEp7f7Z49M81+k+v/s8/CXxN41h8eavpUcl7GSzqOIZn7NInRmHv1/izxj2lESNBHGAqqMADgACvybhzwRhRxkqub1VUpRfuxjdc67y7L+6m/wDFbf7fNvEWVTDqGBg4za1bs+Xyj39X919uV8F+B/C3w+0KLw54Rs0s7WPnC/edu7Ox5Zj3JNdZRRX77QoU6NONKjFRhFWSSskuyS2PzGpUnUk51G3J7t6thRRRWpAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5Df8ABWb9tL9ob9jfwh4a1L4MWGnfZPEUlza3Gp3kTTyWk8Sq0aom4R5dSxBcOPkPy1+vNfKv7Zf7Kfhf9sn4H3PwY8T3z6X5l3bXttfRxCZ7eW3fllQsoJeMyR9eA+ecYrzs2o4irhKkMLK1S2jWmva/nsfS8HY3LsLnOGr5tSU8Mpe+mm1Zpq9lvy35ra3tazPwT/4JJ/t//Gv4kftgXvgT9oHxXea8njXT3jsxdSAQwXtnmZBFEoWKIPH5oIRV3NtHYV/UtX5u/s0/8Eqf2Rv2ZNZsPGWgaVc694k051lg1XVpzLJFKv8AFHEgSFSD0Pllh/er9Iq4+HsHjMNhfZY2XNK7e7bs+jb63ue54lZ3kma5v9ayKk6dLljFrlUE3G6vGKei5bLVJ6bBRRRXun58FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5wf+ChX/BXj9oz4BfG3xF+z18NPDem6FNozog1W8LXs00c0ayxyxRkRxJuVxwwlAOR1r7y/wCCSP7WXjD9qv8AZuu774oal/anivw9qk9pfXDIkbyxT/voJCsaqijDtGoVQP3dch+3b/wSn0n9tb466L8Wf+EmHhmC200WGpLFa/aJrnyZGaIpl0VTtdlLNuwAvBr6l/Y6/YM+CX7Emm6nb/CiXUrq81tYFv7rULnzGm+z7yn7tFSJdpdsEJuwcZNfI4LC5vHNZ1a070NUrtbPVWiuq0V2u+p+zZ7m3BlTg+hhMDRUcwahKTjFt80dJ805fZkuZqKbV+XRWPtaiiivrj8ZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK+Cv25v+CnH7EP/AATi8Ix+Kv2t/Hll4cmu0Z7HSk3XWq3uMj9xZwhpmXcNpkKiJSRuda/jl/at/wCD3DXP7VudG/Yh+DdstnGxEGreNrp3eUdi1hYugT1/4/Gz6CgD/QPor/KG8Y/8Hef/AAWR8TXDzaJrPhTw6rHITT9CjdV+n2t7g/mTXjl9/wAHUn/Bce6YtB8XrW2B7ReG9FIH/fdk1AH+u5RX+QQ//B0h/wAF1WOV+OAX6eGfD/8AXTTTP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gYf8HR3/AAXWHX45Z/7lnw//APK2r9v/AMHTX/Bc+EgyfGiKb2fw1oQ/9B08UAf69VFf5KWg/wDB2V/wWt0eVZNQ8faLqoHVbrw9p6g/XyIYj+Rr7i+B/wDweq/t9+EdSgj+Pfw38F+NdMQjzBpwu9GvXHf98ZrqEe3+j0Af6ZdFfzof8E+P+Dnz/gmb+3VqOn+APEOtT/CbxvfssUekeKykNrPM38NvqCE2z5JCospgkdjhYzX9FwIYBlOQehoAWiiigAooooAKKKKAOA+K3xAtPhR8MvEHxOv7K51G38PafcajNbWYVp5I7ZDIwQOyqW2qcAkV/NL8Rf8Ag4E+JOqeIrWL4W+CLHSNHjuYzcPqEz3l3LArAuECeVHGzLkciTHrX9R2oWFlqthPpepRLNb3MbRSxuMq6OMMpHoQcGv5cvB//Bv58SdW8YahJ468bafougJeTiyWzie9vJbVXIjLhvJjjZkwThnxnkdq+U4lWbOVKOWt2d72t5W1e33n6/4XS4OjTxVTiiK5o8rhzc7TTvdKMd2rLdPc/qF0TWdM8R6NaeIdFlFxZ38MdxBKvR4pVDKw9iCDWnXmXwY+Gdr8GPhN4d+E1hqFzqlv4csINPhurzaZpIrdQibtgVeFAAwOgHU816bX1FNycE5qztqvM/J8TGnGtONGXNBN2e11fR26XQUUUVZgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5Uv8Ag4O/4OJfD/8AwTX06f8AZY/ZWe01z436nah7m4kCz2fhmCZcpLPGcrJdup3Q27DaqkSSgoUSX9Y/+CyH/BRrw/8A8EvP2DfFf7S04huPEsgXR/CtjNyl1rd4reQGXI3Rwqr3EoyCY4mAO4iv8p3/AIJ8/sT/ALSf/Baj9v8AT4aDVrm81bxReXHiHxl4oux55s7NpQ13eS8jfI7yBIkyA8rouVXLKAY37NX7IP8AwUV/4LU/tO6tP8OrXVPiJ4u1OZbvxB4l1m4b7JZrIcCS8vJMrGoAIjiXLlV2xRnbtH9u37FH/BmD+yR8OdLtfEP7c3jTVPiRrhCtLpWiO2kaPGT95DIM3k+D0kElvkHlAa/qn/Yz/Yw/Z5/YH+AOjfs3/sz6DFofh3SEBdgA1ze3LACS6upcAyzykAu57AKoVFVR9UUAfjl4G/4N9v8AgjN8PbWOz0H9n3wzcJGAAdTFxqbnHq15NMx/Emvb7H/gjz/wSh05Qlv+zb8NGA/56+GNPlP/AI/A1fo9RQB+fif8Emf+CWEYwv7NXwrP18HaSf52pqT/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB+f5/4JOf8EsW6/s0/Cv8A8I3SP/kWqFz/AMEiv+CVN0Nsv7NfwwGf7nhPTE/9BtxX6H0UAflb4h/4Ief8EhfE8TQ6l+zp4GiDdfsmlRWh/AwCMj8MV+dv7SP/AAaY/wDBH/436NcR/Dnwxq/wu1eRSY77w7qk8qCTsWt79rqHb6rGsZI6EHmv6ZKKAP8AJT/4Kof8Gxv7cf8AwTm0PUfjF4DdPi38MtPVprnWdGt2iv8AT4V5L3tgWkdI1HLSwvNGoBLmMYr3L/ghR/wcrfGP9grxHo37NX7YepXvjL4JzNHZ29zMWuNS8MqSFWS3Y5eazQfftiSUUZgwQY5P9Th0SRDHIAysMEHkEGv83j/g6O/4IK+Ff2Zhc/8ABRr9jPRU03wPqN2kfjHw/ZR7bfSLu5cLHe2yLxHazyMI5IgAsMrKUGx9sYB/oyeDPGfhL4i+EdM8f+AtSttZ0PWrWK+sL+zkWa3ubadQ8csbqSrI6kFSDgg10tf59v8AwZ5/8FYNZGv3v/BK342am09nPDc6v4AlnbJhkiDTX2nKT/CybrqEcBSs3J3KB/oJUAFFFFABRRRQAV8Q/tift+fA/wDYlg0xPivDqd3e61HNJY22nWwkMogKh8ySNHGuCy5BfODnFfb1fkd/wWA/ZC+In7VvwU8Nx/B3Sv7X8UaBrAaKDzI4SbS7jKTfPKyIMOsTHLDhTXm5vVxNLB1KmEV6iWitfrrp3tsfUcF4PK8VnWGw2cy5cNJtSfMo20dm5PRLmtfy6o0f2Ef+CpPh79t/4xeIPhhp/hh/DaaZpo1Gyee6E81yiSrHLuUIioV8xCFDP35r9YK/nR/4Jv8A/BKX9p79mf4+aL8ffiNrWkabb2cVzDc6VbSPdXE8VxEyFHZVWJdrFXBV35UV/RdXLw/Wx1TCc2YRaqXe6Suumi27fI9bxIwWQ4XN/Z8O1FLD8kfhbklLVNc0r3vZSum1rp2CiiivcPgQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wA0H/g8/wD2wtU+JH7afgr9jTRbo/2J8NNDXVb6FWwG1fWvn+cdD5dpHAUJ5HnPjrz/AEFf8GjH7COl/s1/8E4l/ad8RWap4t+Nd4+ptMy/vYtFsXeCxhz/AHXYS3PB+ZZlzyor+FP/AIOFfHVz8Q/+Cz/7QGvXTmRrbxEmmAk5wul2sFmo/AQgV/rbfsKfDuz+EX7Evwf+FlhGIovDngrQdNCgY/49rGGMk+5K5J7nmgD6qooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor+cz/gul+0F/wVW/4J/wD7P/jH9uv9mD4i+Er3wL4dudMS48K6r4ZZr2zt72WCyMiX4vCLkm6lVyht4tsbn5js5/MD/gl7+3F/wcsf8FV/gpc/tE/A/wAVfB3QPC1nq1xozvr+n3cdy9zbRxSPsito58riZOWde/pyAf25UV/HP+1f/wAFNv8Ag44/4JV6O3xY/bF+D3w4+LfwxsmH9oa74Ie/tzbBiApneR2kt0JO3zJLExhiBvyQD+0P/BJn/gs7+yn/AMFc/hxe658GWuPD/jHw/FE+v+FdTZTeWXm5AlikXCXNszAqsqAEHAkSNmVSAfrvRRRQAUUV8++Gf2oPgz4x/aT8VfsmeG9UN3428FaRp2t6zaJG2y1ttVaVbYNJ93zGEJcp1CMjHhhQB9BUUUUAFFFFABRXhf7S/wC0j8Hf2RPgV4l/aP8Aj5q8eh+E/Cdm97fXUnLYGAkca9XllcrHFGPmd2Cjk1+WP/BNr4kft0/8FDNa0H/goj8eL+f4VfCm8iuLjwJ8NdO2NNqdhdxNHDqmu3bKXmMiOZba1iEcSfu5TvOCQD9wqKKwfFOhf8JR4Y1Lwz9sutO/tG1mtftdjJ5N1B5yFPMhkwdkiZ3I2DhgDigDeor/ADftF8DfGX4l/wDB0n4c/YV8J/G34k/ET4d/DfxPY6zdHxZ4judT2NodjHql1C4Bji8sXiG2AES8nBz94/6Av7T3wh8cfHX4Ha58Mvhn461X4aeIr5YJdM8S6Mscl1YXVrMk8bGKUGOaFmjCTwv8ssLOhI3ZAB75RX4Jf8E4P+CqHxU8WftQ+J/+CV//AAUd0/T/AAz+0N4JjNxZahp2YtI8Y6WF8xL2wV8FJTFiSSAdg7KF2SRxfvbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV/ID/wXo/by/4LI/8ABInwrof7QHgL4jeCvGPgTxd4hn0e3tLjwq1ne6XJJHLc20LP9tmW5XyYpFMuIjuT7nzcdb+wz8U/+DlX9uP9lPwp+1x4I+JPwV0nSfGdm19pmn6jpGoGfy1keLFwYkKxnKE/u2k4xzQB/WjRX8Tnxf8A+DhD/gqp/wAEmv2itH+Df/BYv4L+GtV8K687Np/ifwFLPAt1axOFmntvtEssdw0W4ZtpFs5QGUttDKT/AGJfBL4z/DX9or4ReG/jr8HdUi1rwt4s0+DU9MvYshZbe4UMpKnDKwzh0YBkYFWAIIoA9RooooAKKKKACivlr9sGx/bL1P4NT6d+wnfeE9M8dT3Cot54yiuprCC1KPvdI7T5mnD+XsD/ALsDcWDYCn+S3/g1l/4KF/t3ftwftg/H63/bP+IWp+LZtI0mwaHT52SKwsbgXUsUn2e1hVIIeBtJjQbgBnJ5oA/t3ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8Y/aFj/AGhZfg9rMX7Ksnh6Hx86RLpUnipbh9JRjKgladbQidtsW8oqEbnCglVJIAPZ6K/hJ/4Ir/t/f8FNvjr/AMF/PiT+zB+3N8S7jxBH4G0nxNpVxommYtNAS70m9gtxLBaxJGrAfN5csqmYo3zNkmv7tqACiiigAooooAKKKKACiiigAorO1g6uNIuj4fEJv/Jf7MLgsIfO2nZvK5bbuxuxzjpX8An7VX7fX/BaX4Uf8F7/AIB/sY/tT/FDTNN8P614t8I3raL8PllsNGutN1W+SGSGZ5lF5cKdkkTpcSOjAZCjdigD/QMooooAKK86+Ln/AAtr/hWWuf8ACh/7I/4TL7HJ/Y39v+d/Zn2vH7v7T9n/AH3lZ+95fzY6V/Db+xD+39/wVh8Uf8HNGk/sRfttfE9dS03w5N4gsrzQfDafYfDsyJo1xeW7LAFWSUD93IjXJklU8buKAP716KKKACivxp/4Kaf8FQfFH7MPxL8CfsRfsfeHrL4g/tG/FmVo9B0O8maOw0qxVXMuqamY/nFtEEdgilWkWOQhhsOfvf8AZH+C/wAYPgd8JR4e+PvxH1D4peMtSvJdT1XWr2GK0gFxOFBgsbWEBLaziCARRZYglmZizGgD6for/Nl/4LIfCr4w6t/wXF+GH/BND4MfHT4peKtF8cS6D/wkNhr3ii5vINPn1a8la4WCKPykjhisBHNt2EgE84wK/wBJeKNIY1hiGFQAAegFAD6KK/Fz/gqTf/8ABQP9lmWT/goX+xVrj+MtD8G6Wg8Z/CnVFD2WraTZvJNNe6ZMqma11GKN23BdyTRouUZowkgB+0dFfHX7Bn7cnwI/4KK/syeH/wBqb9nq+NzoutoUuLSbaLvTr6IDz7S5RSQk0RIzyVZSroWRlY/YtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV4t8fvCfxx8a/Da50H9nbxlY+BPFDyRtBq+o6R/blvGinLo1p9ptN28cBvNG3rg1/C9qv8AwWj/AOC79h/wVkn/AOCSsXiz4df8JSPEJ0GDW5tAljsZA0P2mKdkWZ5EDwlSVAYqTjJxmgD/AECqK/nik+DX/BzoIyYfjJ8D2bsDoeogfnsP8q47/gmN+2L/AMFbrv8A4Ke/EH/gn1/wVDh8LGTQvA48XaHfeGLVorXULc30NoLiGV2DtES8iFJI43V0OVHGQD+k6iiigAooooAKKKKACiiigAooooAKKK+ff2ef2ofgz+1Lp3ivWPgnqh1ez8G+JdR8JalOI2SMappRVblI2PEiIzgCRcqxzgkc0AfQVFFFABRRXz7+zr+1D8Gf2q9B8R+KPghqh1fTvC/iLUvC17cCNkjOo6TIIrlYyeJI1c4WRcq/VSRzQB9BUV/OT/wXc+C3/BcP4r+NPhHdf8EkfE76Jo9hcXX/AAkkVtqFrpzrcM8Jt57o3TD7RaogcGGNXOc7o33Lt/om0lNTi0q2j1uSOa9WJBcPCpSNpQBvKqSSFJyQCSQO5oA0KKKKACiiigAooooAKKK/AD49/wDBQz9oL9r/APbg1v8A4Je/8ExL+y0m78G2yzfEz4oXEK6hB4WEhZRZWFs2IrjUnKlR5jNHEwcFGaOQxgH7/wBFcT8NPBkvw4+HHh/4eT6xqPiF9B02005tV1eYXGoXxtYliNxdShVEk8u3fK4UBnJOBnFdtQAUUV5T8c/htq/xh+EPiD4Z+HvE+qeC9Q1mze3tdd0SRYr/AE+c8xzQlgykowBKsCrrlTwTQB6tRX8937Ef/BT346fC39ti8/4JG/8ABUt9Pi+KyW32/wAFeN7CEWWl+NtMbd5beR923viEfdGn7ppI5EUKyr5v9CNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFebfGT4SeAvj58JvEnwS+KVgmp+HPFmm3Ok6layDiW2u42jkHIODtY7T1U4I5Fek0UAf4h3ifTfjF/wAEj/8Agpjd2Gkzk+LPgb42Jt5v9Wl4um3G6NiB/wAsruEAlT1jkwRyRX+1z8MviF4b+Lfw28PfFbwbL5+j+J9MtNWsZD/HbXsSzRN+KODX+Ul/wdnfDuz8D/8ABaPxrrtnGIv+Er0PQdXcAYBdbNLMn8fs2T6nJ61/ogf8EJvHVz8RP+CPn7PHiC7kMjweDLHTMnn5dMBs1H4CED8KAP1looooAKKKKACgkAZNFFAH5lfFf/gr3+wl8KzLap4sfxLeRZzb6HbvdZx6TNstz/39r75+FvxF8P8Axe+GugfFPwpv/s3xFp9vqNsJQBIsdygkVXAJAdQcMATggiv4tf2gf+Cef7TWo/tYePfA/wAHvAWr6rpUGt3T2V1FbNHZ/Z7h/OhX7RJshysbqD8/Udq/qj/4JyfDL4zfBf8AZF8MfCn472Kafruhm5gESTx3H+jvM8kQLxMyZVX2YDHhRXyOR5xmGKxlWliqXLCN7NJ2unbd/wBaH7Nx/wAF8OZTkuFxeU4v2labi5RlODlySg5X5IpNJOy26n3HRRRX1x+MhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AEq/4LGag2p/8FYP2kblzkr8SfE0X4RX8yD/0Gv8Aav8ABWnJo/g3SdJjG1bWyt4QPQIgX+lf4mP/AAVnkMn/AAVQ/aVY/wDRU/GA/LVroV/t3wRiKFIh0VQPyoAlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD8H/+Dmv/AJQcfHf/AK9dD/8AT1YV8N/8Ga3/ACiT1f8A7KFrP/pJYV9yf8HNX/KDj47/APXrof8A6erCvhv/AIM1v+USer/9lC1n/wBJLCgD+q7X9B0PxVoV74X8T2cOo6bqUElrd2tzGssM8EylJI5EYFWR1JVlIIIODX+UZ4h0/UP+CDf/AAcmjQPhFLLa+EdG8XWUaWvmMEm8LeJkike1cknzBBBclFZ8/vYFkPzAGv8AWJr/ACi/+C9c0f7Zf/Bx5qfwa+EpF/dz694V8FxPAc7r4R20MwyuSDDPI8bk/dMZ9KAP74v+Cvf/AAWc+CP/AASW8GeGrfxJoN946+IPjuWWDw14W02RYZLpoiqtLPMyv5MIeRIwRHJI7thEYK5T8wf2t/8Agur/AMFUv+Cb3hnwv8c/29P2TdI0f4deJr6PT3l0LxZHfX2nXEiNIsM5WF4jKUR2QALG+wr5imvpz/gvF8Cf+CRmm698Lf28P+CmfifVdA1D4Y3hPh/TdHuENx4haGVLkWRtDFJLOiSqrM0bQhA58yVVYGvw+/4L+ftif8FEf25P+CWutfFbWvgRa/B74AjV9Hu7W68Y3rN4w1VpJwtrLBYQDy7OMl8yLcFi0fMbEEUAf1h/Gb9uD4wePP2BtD/a4/4JifDl/jdrHjm0trjw9pst7b6RFFDdxu32m8a7lh+S3ZQksCN5rSHaCo3Ov8Mf/Bvb+3n/AMFKJf2xv2jfj34H+C1/+0l4/wDGqadN4pP/AAklj4efT5Ip7gIc3aOjxnmKOKLCxJGFA27QP7Gv+DciWSX/AIIofAJpDkjR71fwXULoD9BX80n/AAZm/wDJ3H7U/wD1x0z/ANLb2gD+jj/gpL/wXE8E/wDBM/4H/DO++LHw+1DVPjV8U7C2l034c2F7FLLa3siRefDc36I0flw3Egt1liiczuMxoVDFPgX9rf8A4Luf8FR/+Ca2keFPjH/wUC/ZQ0nR/h14qvk08z+H/Fcd/e6fcOjSeRMVieJpzGjui/LHJsZRICCR9J/8F2Pgp/wSI8KePPhT/wAFBv8AgpT4m1bRNb+GV2p8OaTo08bXHiJrSdbtLRrMxSSzRxzYZmjkgVBJiSVVYV+G3/Bwf+11/wAFFf23P+CYV78VfF/wItPg38B11/SLqyl8XXzP4x1OSRmW2mjsYB5dlGd58xLglyvKMQeQD+6r4BfHP4bftNfBTwt+0H8Hr46l4X8Y6bb6rplyUMbPb3Kh13I2GRxnaynlWBB5Feu1+M//AAb0yyS/8EX/ANn5pDkjw66/gt1OB+gr9mKAP4J/+DkL46a/+3b/AMFbP2fv+CL/AIYv5YfCUet6Jc+Ko4GZfMvtamUfvFB5+yacTLH05uGz0BH942i6NpHhzR7Tw9oFtFZWFhDHb21vAgjihhiUKiIowFVVAAAGABiv83XwZe3fjT/g9Ymn8WFi8PjW/jTzeTssNBlS2x7bYo9voMV/pF6xq+l+HtIutf1y4jtLKxhe4uJ5WCpFFEpZ3YngKqgknsKAPiv9v/8A4KLfsq/8E0PghL8df2qNf/syxkdoNN0+2UT6jql0q7vItIMgu2MbmYrHGCC7qOa/GXU/+Cz/APwU6tv2cLn/AIKJah+ylaeHfgDpSxandQ6v4jEfi650F2UNqEFl5CRIBGfNWKVwXXBVihElfz9/sLf29/wcrf8ABeTW/wBpL4+QyX3wU+EEbalpeg3a7rVdPhn8vS7KSPld93Lm7ugwIlEckZ+XaB/S/wD8HRf7VXhf9mX/AIJBePfCdzOseufE57bwjo9uMZkNzIJbpsdQiWcU3zYwHKA/eFAH4Wf8Gh3gDxN+1B+2z+0r/wAFP/iXDv1LVJpLCGV/mU33iO7fUb3YT0MSwwrng7ZcDgmv796/ne/4NbP2X/8Ahmr/AII8eAdU1G3+z6t8Srq98ZXoIwWW/YRWjZ6kNZQW7D/eOK/Xn4Z/tufsp/GP9orxn+yZ8MvG1hrHxF+HsUc3iDRIfME9lHIVGSzII32s6rJ5bv5bMFfaSBQB/Kn/AMHgPgfXvgTpv7O//BT34MyjR/Hvw68XrokOoxL+8cSxyajaLL3eOKSzmG0naRO6nIav6wP2N/2kfDv7YP7KXw7/AGovC0awWfjzw/Yaz9nVt/2aW5iVpYC3doZd8TH1U1+AX/B4D4Xt9f8A+CPF7qs2N2ieMdDvY89dz+dbce+2c/hXt3/Bqt4j1LXv+CIXwptNRDY0u88Q2cLMc7oxq13IPwBkKj6UAf0R0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Hv/AMHrP/KMD4e/9lR07/006tX6xf8ABvHf2L/8EW/gI6TRkQeH5VkIYYQi7nyG9CPevyd/4PWf+UYHw9/7Kjp3/pp1avNv+CPP/Bu9/wAEmv2tv+CYHwm/aA+Ofw7u9U8YeL9He71LUYtd1O2Lyi4ljBWGG5SBQFReBHjigD5p/wCDyb9vn9k34n/BrwL+xJ8M9bsfFPxD0bxRH4i1J9OkW5TSbSO0ubfyJZUJQTXDzo/lBiyrFudRujJ/pE/4N6/gL8Wv2Zf+CO/wZ+FvxztZ9M8QRWF/qctjdKUms7fVb+5vbeKRWAZHWGdC6OA0bEoQNuK/kG/4LT/8EFbv/gi3pmg/8FN/+Cbvi/VIdI8KaxbJe2WsLBfXWiXF03lW91BK8PlzQGVliKTRs6O6Hc4Y7P6t/wDg34/4KmeJf+Ctf7C9144+NVjbQ+O/COpSeHfEn2ZBHbX5MSSxXaRAkRiaKTa6fd81HKgIVUAHzJ4O/wCC+H7RX7ef7Q3jj4G/8EdfgbafFLRfh2Uj1jxl4m11NF0svM8qQmCEI8skc5hk8lt4dwpZo0UZruP+CZH/AAX/AL79rX9tPxH/AME2f2xvhdJ8HPjVoL3cMFjHf/2lZX8+no0tzCriNPLdYVM0ZDSxSxKzLIPlDfB37JnxY/YL/wCCSnxv+JH7Cv8AwRB8B+Lv2mvjH4vv4rnxBbLqNuuiaGNPMscUF1q5hjhihtWndT8sp3sY5JhJha/Jz9m+b9p0/wDB5B4b1L9sCw8PaR8R725efV7PwpJPLpduJ/BzmCOOS4/eO62xjWdvutNvKfIVoA/uw/4KHf8ABRf9mf8A4Jj/ALP1x+0N+03qU1vYNOLLTNOso/Ov9TvmRnS3to8qCxVGJd2SNAMsw4z+Fv7TP/Bcn/grR+y18ArT9t74s/sXQeHvhAxtWu0vfF0Ta5aQ3siR28t1AltvtvNZ1XY8DNG7BZCp6/m1/wAF4fiRZ/Fn/g5Y/ZF/Zs+KEjzeBvDt54TlOnXXz2k17q2sOZWKN8jLMsVtDJkHIQg8cV/b1+0X+z58KP2rfgd4n/Z0+OWmf2v4T8X2L6fqVoJHiZ4nwQVdCro6sAyMpBVgDQB84/8ABNr/AIKK/AX/AIKh/sv6f+1D+z+bq3sZbqbTdS02/VVu9N1G3CNLbzbGZCQkkciMrENG6ngkqP44f+DPVQP2/f2qQOALeEf+VG4r+y3/AIJ9/wDBOf8AZd/4Jk/BW7+A/wCylpV1p2i6jqcusXsl9dPeXNzeTRxxF3kfoBHEiKqhVAXOMlif8qz9lH/gof8Atbf8E7NR/ag8cfsm6MVvvFd1Hod/4qCmX/hHYpr65KSpHtK+bOwMcUsh2RuBwzsmAD+9b9o7/gvr+0R8Lf8AgpHrH/BNL9n39mOT4w+LbAxSw3Gg+LolVbWYBhLfKdPkj08oGUyrcTARhlJbDLn9rPDP7SfirwD+y3qv7SX7dHhzT/g7/wAI7aXeo61ZLrKa3BZWdsCwc3UcEAkd1HEaRk7iFXcSM/l9/wAG5Pw6/YTsP+Ce+i/G79ju7n8Q6943b7T488Qaw4m8QXfiNRuu4b9yWZfKkdjFHuKGNxKC5laR+r/4OSvhJ8WfjV/wRk+Mng74N29xfanb2+m6pcWdqpeW4sNNv7e6ulUAEnZDE0pA5IjI5zigD5x+Av8AwWT/AOCh3/BRDwJ4p/aA/wCCaf7Nml6v8MfDl9PZadqXjXxJ/ZWpeIpLZQ0qWVpDbyxxMCQu6a4MW4437g6p8r/AX/g78+B/xPd/h/4r/Z0+KD/EPTBMNX0LwpZ2+ui1NvIIpDuaa0nwrkK2+3XYxCkk9fb/APg0Z/aT+FfxJ/4JIaN8EtD1C2TxH8L9X1e01qzZ1SdI9QvJr+C4Zc5MTpOY1kIwWidf4TX4vf8ABG3wldfH/wD4OnPjt+0v+zWTffDPw/qniy71TVrQbrGddTeSCFVlHyN9pui08WM70iZhkAmgD9dv+Con/B0Z4e/YOisPC3gD4C+N9Q13V0b7Jf8AjKwm8NaMzxKhmW3kkSSS9aAyKsohVYwWGJWBGflH9pf/AIPCU+EvjPwle/CD4GXvjD4f36Qwah4mnu5rG0v9RWNPtttpMhtnjmFpKxjMjMfMZeFVSrnG/wCD32CJv2aPgVdEDenifVFB7gNaoT/IV/Vt+wh8Ivhj4I/YT+DXw78MaFZWuiaP4U0OeztBCrRxTC2jl80Bgf3pkZpDIfnLsWJ3EmgD5R/4KTf8FkPgd/wTu0rwV4Ofw7q/j/4sfE1oI/CXgHSU8vVL17hhGhnLBvs0ZlYRAlHdpMqiPscp+ZH7UH/Bb3/grP8A8E+PCml/Hz9uj9jqz0v4Y3txDb3174e8Vw6nd6U87bUW5MUUkYYkhVLBInchBKGYCvxw/Zq+Lc37Tn/B59rmsfFpjct4T1nxPoOg20wPlwr4e0u6tYQingDEctwCODIxccnNf3e/tcfs+eDv2r/2YfHv7N3j2zS+0vxpod7pcsb8YeeMiORT/C8cm2RG6q6gjkUAfOXwi/4KC6P+2Z+xPZfthf8ABOjQrf4pS6kVjt9B1LU18PzRXCOq3NtdTNDdLBcQA5KFGV/lKuUdXP5l/wDBLf8A4OCtc/4KIft4+Mv2BPiD8Drr4V+KPA+narc6nJPryaqYbzR7yGzuLVo0s7cBlklb51kYZTABByPwX/4Mh/jD43tfid8df2d7qa4fQJdN0zxBHbsT5NvfQyvbSMF/heaN0Df3hCufuit7/giF/wArXn7Wn/Xx8Q//AFIbagD93P8Agr1/wXM/aF/4JF+IrTWPiJ+zePFPw81y/OnaJ4otfF0Vubq4SESsk1n/AGfNJbvgPtBdgyoSGzwPq/8AaI/4LDeCP2aP2B/h7+3J4q+F/jTxPH8QPCNr4sXSPCenSatHpcE1lBeSnUL4JFBa28InAaebZvCsyodrAfjD/wAHsX/KOn4Yf9lHt/8A02ahX7K/Cq1hvv8Ag3x8N2VyoaOb9nmzRlPIKt4bUEUAfjH+zP8A8HbmkfHj4Q+Kdds/grqfiD4o3OuHTfBPw48JSz6tqmo2iQLLJc3cyW58qKMttLpbsWPCRsFdl9D/AOCff/Bzl4/+Nn7fNh/wT4/b4+CFz8FfFfiG6XT9MeaecSwahMnmW1teWt1BFIv2lSqxTKSGdkGza+9flT/gyK8C+C/+GevjX8S/7JtD4iPiKy0z+0zCpuxZC2EvkCXG8ReYd5QHaWwSMgV86f8ABw9pNj4d/wCDl/8AZG8T6NGtvd3y+A553QAF5YfE10iuxHVgiquT2UDtQB/cz+1d+1R8Ef2KfgB4j/aY/aI1hdE8J+F7fz7qcjfJI7EJFDCg5kmmkZY40HVmHQZI/n6+HX/BZT/grj+1J8G7z9sT9j39jmHVvhHEJ7jS01zxKlp4h1uyt87p7S0SIgZ2naiibew2xGU4r8lv+D2z9o3xZHffA79kPTNRks9BvU1DxTq0Az5c8yOlpZu+OT5Km6wB/fyRkCv7u/hd4B8IfCn4aeHvhh8PraKy0Hw5ptrpmnQQKFiitbSJYolQDgKEUAY7UAf50v8Awbo/H6y/aq/4ORPi5+0np+kT6BD460nxZra6bdMHmtPtt7ayGF2AUFkLbScDJHQdK/0la/z1P+CMXhvQ/CP/AAdj/tJ+HvDdslnY28/jvyoYxhED6pAxCjsMk4A4A4HFf6FdAH5Mf8FVf+CtPgb/AIJZfDQ+O/FHw18a/ECR7Rrvf4f0yRtJskEiwq2o6mw+z2ivIyoud8hLDCEEGvxm/Zp/4OndZ/aO/ZobxH8MfgTq/wAQ/jjqmt6hbaZ8OvBjz6gbTSLVYDHf6neC3c28TPKyBhAd7JwqLlh+1v8AwXEtIL3/AIJC/tFQ3ChlHgbVZADz80cRZT+BANfjj/wZk+GPDen/APBLLxL4rsNPt4dU1Lx9qUV3eJEqzzx21pZ+UkkgG5lj3vsBJC7mxjJyAcX+xP8A8HYnhbxV+0pr37L/APwU6+Go/Z81TSIr121C8uZjFa3FlE07Wt5b3EMc0UrxqRCV3mWQqipl1z5/+1D/AMHUf7XHwnsIv2gPhr+x74nX4ETXUcNj4u8VC80tdUilP7qWNltHgt1mH+qzJMG7HOVHwf8A8Fi/hv4D1/8A4OzvgJoXiLSLPUbDxLdeBpNUtbqFJoLs/bJIMTIwKyAxxIhDAgqoHTiv60/+C82iaXrn/BHP9obT9UhSaGLwhdXCowBAktmSWNgD3V0Vh6EAigD6p/YA/bd+E/8AwUU/ZN8JftcfBlZrfSPE8EnmWV1j7RZXdu7Q3FvLtJBaOVGAYcOu1xwwr8xP2iP+C3nibVf2wdX/AOCfH/BMX4TT/H74p+F0kfxNcNqUWjeH9B8lwkiXF5KrCSWJiEdF2gOdis0gZB+VH/Buj8bfFP7P3/Btd8afjx4VO/VfAU3jnWtOBXeBcafpcNzFle6+YMntjOa8/wD+DI+20PVvhJ+0N49v3N34o1HxBoyX91MS88kAhuZIyzsSSWlkmYk8k8nNAH2xqX/ByB8Zv2K/2qdJ/Ze/4LHfAOX4OQeIQsmn+K9D1QazpRhdgnnMFjG+GMkec0UryxcboRkV/U5deNfB9l4Nk+It3qtpHoEVkdSfUmmQWi2ap5pnMudnlCP59+du3nOK/lt/4PDf2ePCXxP/AOCVifHG+slfXPhj4k066s7wf6yK11WRbK4iz/cleSBmH96ND2r8U/il+3t8Y9C/4M5PAWnTareR6r4o8Rv8MGvmJMsuj29xeziEN2jFnarZn1jUr3oA/fDwB/wXM/bC/wCCgPxB8Xab/wAEev2e4fiN4C8EXTWN3428XayNCsL+7UBvJs4Sm8sykOpaTcEdGlSLcoP8q37Qv7Z/xP8A22f+Dlf9m7xb8cvhnd/CPxx4N8W+DPCmv+HLu6F55N7Y6y83mRTBI98MsdxG0bBcMDlWdCrt/aj/AMG2fw88GfDz/gi18Eo/B0MKnWtPvNWvpolAae9u7ycyNIerOmBFk9FjAHAFfzQ/8FmvDeh6F/wdo/sxappNskFxrOofDy8vXUczTrrEtuHb3EUMafRRQB/bP+3X+3X+zv8A8E6P2d9T/aX/AGl9TlsNCsZY7S3gtY/PvL++mDGK1tosjfNJtYjJVVVWZ2VFZh+Bv7TP/Bbr/gr7+zZ8E4v2y/Gv7EX9k/COKJLm8F74rik1u1tZmVYpru3ht2ksw24b1e3k8onEhXv8Df8AB0r8SPGvi3/gqT+xf+zFoniMeF7NNYsNYiv7q0F/YWt/qOrQWkV3NaSPHFdC1EBYxOwBRmXIDnP7ZfFH/gnJ/wAFkPjL8M/EXwg+IX7amh32geK9Mu9H1K2/4VZYL51nfRNDMmRqQI3RuwyORmgD7j/4Jg/8FOv2ef8Agqx+zfH+0J8AzcWL2lydO1rRb/YL3TL5UVzHJsJV0ZWDRSr8si9lYOi/yB/CYAf8HwGuAf8APzqP/qImv37/AOCGf/BCfXf+CMWvfEjUG+LY+Itj8Q7fS43tF0M6SLaXTGuCkm43t1vytw64wuPU1+Avwn/5XgNc/wCvjUf/AFETQB/oK1538X/ij4T+B/wm8UfGnx7MbfQvCGk3utajKOSlpYQvPMw+iITXolfj/wD8F+td1jw7/wAEbP2hNQ0IuJ5PCstq2zg+TdSxwzfh5Ttu9s0Afzs/8GrF140/b4/bp/ab/wCCtHx9xeeJ9SmtdF0zfmVLKPUneeWCAtyiW1vb2tvFjnyiQepz/dNX8cn/AAZQ2FlH/wAE2fiVqkePtM3xLvIpOOdkel6aU/V2r+gD/grt+09/wxz/AME0PjR+0LbXH2XUNG8M3dvpkucFNT1ECysiPpczxnA5wKAP4MP2PP26/gP4g/4L3fH7/grz+0Hc3Gp+GvBF1qcHg+x06P7XqWtalfH+xdEsLKDI8yebT0mdRkKnlliQoLD9jP2kv+DoP/goH+xf458OeJf2uv2NNR8BfDzxVK/9nNqWpyR6lLChBbEhtxCtwiMGNvIiN2JA+avkH/gzf/4JjeG/Fo8Sf8FL/jHpYvBpF82h+CIblcxR3cSZvdQVWGDJGJFt4JB9wmcfeAI+qf8Ag9r+OfgzT/2Uvg9+zDvSXxLrvi2TxNHGuGkistLs57Ri2OVEsl8oT+8Y2x900Af2Kfs//HP4eftN/A/wn+0N8Jbprzw1400q11jTZXXZIbe7jEiiRcnbIudrrk7WBHavXXRZFKOAysMEHkEGvyf/AGBLHwp/wTQ/4I8/C4ftV6rF4T0/4d+CLC68SXV5vK2EsyCaaNgqs7NHLKYgqqWZgFUEkCv0O+CHxv8AhR+0l8JtB+OnwN1u38SeEvE1qt5pmpWu4RzwsSMgOFdSGBVlZQysCrAEEUAfw2f8Eqfi2P8Agl1/wcq/HH/gmFprJZfDf4p6xcy6XYZ2wafevanV9N8odFH2WZ7TaAC5MWSdgr++ev8ANL/4K9RXXwz/AODuP4aeNtD+a51Txd8Nb10Q4Z/nsrRkP+/HFt+hr/S0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8034qarpmif8Ho0ep6zcxWltF430vfLM4jRc6HABlmIAySAPev9LKv8wD9rr4EfCf8Aac/4O9dW+Avxz0hNf8JeJ/F+mWmp6e8ssK3EP9iW7bS8LxyL8yg5VgeKAP8ASf8AFn7QvwD8B+H7rxX438b6Do+l2UbTXF3e6lbwQxRoMszO7hQABkkmvg7/AIJl/tDfCT/go98ObT/gpHpfhawsdeuLjxJ4O0fVofMNxJ4btNWcQqxfaQLj7NDO6FflfIGBmvlPxj/wa+f8ERPFnhq88P2nwa/sWa6ieOO/0/W9VS5t3YYEkfmXckZZTyBJG6E/eUjivfP+CGX7HPxM/YH/AOCf2nfssfFS0ktr/wAM+JvE0ds8rxu11p8mqXDWlz+6ZlAuICkoUkMu7DAHIoA/Jr/goX/wcx/tOf8ABMX4q23wu/aq/ZCutK/tZJrjRtSh8aQ3FlqVtC+xnhli0x1DLlTJExEke5SygMpP2x+1b/wW8+I37KX/AAS3+G//AAU38RfBvTdUsPHYtJbnQrfxjCGsoNUy9iYbn7AwvJJYsSSxRxKYfnyWCM1fXv8AwWP/AOCdHwe/4KXfsOeKfgt8T7qz0LUdJgl1rw/4ivCEj0fUbSNmWeSQ/dt2XdHcjp5TMeGVSP8AP8/4N0fH3gP9q39uX4S/sW/t6eOZ9Y8BfChtV1n4aeE7vY+jXXiSWRJdkjnBkCgS3FvHJuVpAUUgO0coB/fX+zz/AMFH/jp4p/Y11L9sj9rj9nvxP8L7UCzm0bw3o8kni7xBqlve7ViYWNnaxTwOzuo8uZFKg7pCgBr8N/hp/wAHif7Pvi749+PfDPxE+GeqeCPBHg7QLy8sjqNwsniXV9agure2h06PT0URxTSGZ9yGeTyxGzswVWx/ZjX+dL/wRv8AhH8MviV/wdfftLXXj7Q7TV28J698Qtd0gXUYkW01KLXo4Y7hFPy+YiTybCQdpbcuGCkAH1Bbf8HlXxN+GXxxs/DP7WH7MOp+CfCWpvHKm6+nj1m3sJGIFwsN1aQR3Xy8hVMKsQcPX9rnw3+PXwi+LHwN0j9pLwNrtrdeCNb0ePXrXVmcRwf2fJF53muXx5YVMlw+ChBDYINfgX/wdX/sk/D79ob/AIJLeMPizq9gj+KfhPNZ6/ot6qjzY0kuIra8hL43eVJbys7IDgyRxsfuiv5wPgf+018TfB//AAZn/EPSLS5vLSQ+MpvBlhco7caZqF9aXV0gIPEUqzXMDDgHew70Af0hJ/wWm/bg/bA0jxJ8Qf8AgkP+zFP8V/h14euXtLfxl4k1uHw9b6zPbnEy6dY3CpNMi4IEjSpz8rIr/LW//wAEf/8Ag4d+E/8AwUz+LOs/spfFbwRefCL4yaGt07aBfXH2mC8WxbbcpDI8UEqXMJDGW2kiDKilgzhX2fJH/BHz9k//AIKoeLv+CZHwX8T/ALOH7XWieD/Bd94chm07RG+G9jqDWG53M0DXTX8bTuk3mBpWRWdskgEmtD4F/wDBtD8bvh3/AMFQNC/4Kj/FH9pG28U+LbPxD/b+rWlp4NTSY9QeSMwzxgxak6Q+bGzBmETckkgk0AfrR/wUp/4K8fCH/gnv4h8KfA3QvDep/FH41fEJ0Twr4C0IhLy9EkhjE087K6W0G5WUSMrsxVtqFUkZPyO/ar/4OFP2/P8Agmj8QfCV3/wUs/ZUt/CngLxvNKllf+GvFNvrF3b/AGcI00bBY1ilnjEinY7W6yDJRm2tj8/P+CbfxIs/2jv+Dvr49+Mfi1I93f8Ag+38VaP4aW7G82z6LPb6WghDfcBtBcMNuMh2P8TGv6+P+Cgv/BOP9ln/AIKb/Bi0+Bf7V2k3Oo6RpupR6tYzWN09ndWt3GjxB45E6gxyOrK4ZSDnG4KQAflH/wAFnP8AgpL+2F4f/wCCaUX7SH/BLXwg3ifwn4z8LS67e/EZL+2tR4c0mREPmxWc0iXMl2yO20qp8hlJKs4wPxr/AODXj9rX9v74cfsVWvw1+Cn7M158UfA+reP7yTU/HC+LdP0xbJ7pbRLndZXKNcTG3QCUlW/eZ2rzX9D3/BUL4AfCz9lf/ggn8Y/2dvgjp39k+FPCHw5v9O021MjTMkMcZ+9I5LOzElmZiSzEk18Cf8Gb/wDyiNvv+x+1r/0nsqAPq/8Abw/4LoSfAz9tzRf+CY37EvwwuPjZ8d9WVHudNOoxaPpmmq9u13ie6lV90i2y+e6hVRY2H7zf8lfJHiX/AIOIP2kv2IP20PCn7JP/AAVx+Bdh8NdO8aLDLYeK/DmtHVbGKCdzEszRmLLxpKNk+JEliHz+WwK7pP25rj/gkl/wTM/4KwL+39dx+LfiB+1N48tFtNG+G/hVo9QknuLq1WwF0LVYg9u08K+XmSch8u8ULsDj+Z//AIOnPiT/AMFC/jBqvwL+K37cXw08PfCSx1GHxEvhXw9p2pvq2t28Mbae1wdUuFC22474fJSFQVPmCQA7aAP7Dv8Ag4g/bA/4KG/sq/sZ+Ib/APYb8AS3dncaRczeIvH41G1g/wCEZswyxube1eVbiW5dXJSVFIh+8Azfd/Ev/g17/ay/b7+Hv7EugfCn4OfsyXfxH8Aan45vP7R8dr4t0/TUshdvbrdM1hcI1xL9mT94drZl6LzX9Jf/AAXlYt/wRu/aEY9T4QuT/wCPJX5tf8Gev/KH2L/sddb/APQbegDzD/gqf/wdSad+wh8ST8E/hf8AAjxXqOtCeVE1TxpbT+G9NuoreZoZJrBJImnvIi6MglxEmeQWAwf6zfFPijw54H8Maj408Y30GmaRpFrNe315cuIoLe2t0MkksjtgKiIpZmJwAM1/AB/wfEWkCePf2aL5VHmSWnimNmxyVSTTCB+BY/nX7T/8Hcnx38Z/Bf8A4I/6p4d8GzSW3/Cw/FGleF76WLIYWUiT30q7h91ZPsYjfsyuVPDUAaXgb/gt7+2d+3rrfifVP+CQH7N3/Cyvh74UvJdOk8a+LNci8PWWoXkShvKs7aVRK+VIYMzgqrL5qxFgDof8E7P+DizwZ+0v+1de/wDBPj9tf4bX3wF+Ntpdvp8GmX9yLuwvbyMbvISYxxNFNIhDwKyvHMuDHKxZFb6D/wCDarQ/CWif8ES/gZ/wh8SJFd2Gp3NyyjBku5NSu/PZj3IkBXnoFA6ACv5Yf+DzP4TQ/AX9tr4G/tn/AArMmheKvEum3SSalaN5cv2/wxPbSW1wCORNGt1GofrtjQfw0Af0e/8ABYv/AIOEvC3/AASrvbrwNpvwb8Y+MddWWK0h1i8spdJ8KNdTwLcLFHqkkbi5lWNgzRW8bAYZS6Mpx8aa3/wc9/Fb4lfAfwrqf7CP7O2v/HH4gv4es9X8a/8ACP295PoHhq6uYBM1o08EE8k80YPzp+7CdN7OGRcD/g7K8WTfFP8A4Ib/AAz+JmrW/wBnutZ8W+GNVaJhgxS3el3zsuOxHmEV+1n/AAQe8C+C/Af/AASF+ANt4J0m00lNU8Iadqd4LSFYftF7dxK888m0DfLIxy7tlj3NAHzd/wAEMv8Agu94F/4LEeH/ABX4W1rwp/wgfxD8ErDcX2lJdfbLa6sbhii3NvIyRuNki7JY3U7CyEO275f6Aa/z3/8Ag3U0ix8Hf8HL/wC174I8PxrbaZYWvj22hgQBUSO28U2KRgAcAKvA9BX+hBQB+Rn/AAXO/br1T/gnh/wTM+Ivx+8HXItvFlzbx6D4bf8AiTVNUbyY5V7breMyXIB4PlY5zX59/wDBpX+zfZ/CL/glBpvxy1RTN4j+MWvap4i1C7m+a5kitp3sbdHkPzMuLd5lyTzOx6sa+Of+D2bXNYtf2B/hT4cty4sLzx8J58fdMlvp92sYPviRyPpX7vf8ELLCy03/AII/fs7W+n48tvBWnSnAx88ql3/8fY5oA/Vi6urWxtZL6+kWGGFS8kjkKqKoySSeAAOST0r+djUv+C9d5+09+0rqv7JH/BIX4XS/HvXPD3Ou+LLvUBo3hHS13Mu43hime4DMjKnloolwWhaVQTX50/8AB4d/wUr8a/s9/ALwt+wT8HdRk07VvivBcX3iW4t32TLoFuwiW2BHIW9m3q5BGY4HjOVkIrxD/gl38a/2hP2W/wDgmtoP7Iv/AAR5/Z38V+N/i94qtRqXin4ieI9JPh/wxZ6vfrl3W41HyTfGwQiGKLCRkIJPn3sjgH7Mf8Eov+C13xJ/bb/bS+Lv/BPH9pb4e6d4M+JXwmW9mubnQNRfUdLuk067jsrlFaSNGR0lmj2kk71JyEKkH+huvwA/4Ia/8EVLj/gl/oXi/wCNPx68UDx78cfifL5/iXWo2ke3hR5DO8ELygSTNJOzSz3Eiq0rbflULlv1X0T9tz9lPxH+1frH7DWi+NrCf4saBpser3/hweYLmGzlWN1csUERbZLG5jVzIEcMVCnNAH82n/B4Z8EXf9ij4eftseApG0vxx8IPGdk9lqtv8lxBa6gDnY4+YMl3FayJzhSDjk1+/v8AwS+/bHh/b9/YE+F/7WjJFFf+LNHRtUig/wBXFqdo7W16iDqFFzFJtB524r88/wDg6K8MW/iX/gh38Z3lwJNNOgXsRboGj1myB/EozAe5r5O/4M4/Eepa5/wSKu9Mvgwi0fx5rVnb56GNoLO4OPbfM/45oA/qzooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/Le/wCDzjTksv8AgrF4buVGDefDfSJj7kX+pR/+yV/aP/wbN6g2p/8ABDv4D3LnJWz1qL8ItZvkH/oNfxs/8HqUYT/gqh4EYfx/CzSj/wCVbVx/Sv7B/wDg13kMn/BCv4GMey+JR+Wv6kKAP35ooooAKKKKACiiigDnfE/jDwl4J0xta8Z6paaRZr96e9nS3iH1Zyo/WvHfhp+1h+zh8ZfHd38NPhP4y03xHrVjatezQadL9oVYEdI2fzUBiIDOowHJ56V+TH/Bfz4bf29+zx4Q+KFvHvl8O621o5H8MGoxHcfp5kEY+pr8sP8AgjVovxc8Mftm+HPGWleGtWuPDmo215p+oahDZzPaxRTQsyM8oXYq+ckfJbFfJY7iKtQzWGAVJcrcddW7PrbpZ+ux+y5D4Z4HH8JV+Ip4tqrCNS0LRS5oXfK27t8ys0lZ3dvX+zqiiivrT8aCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5YP+Dpv9vL9knwh/wAExPiv+yDN4/0S6+KXiKXQ7GDwta3sVxqkBW/s79nubaNmkt0+yxtIrzKitlAM71z+UP8AwbA/8Fkf+Cbv7D//AAT/ANV/Z5/at+JUHgzxXJ4v1LWI7W60++mjezuLe0jRxPBbyw5LRONhcNxnGDX93Gv/AAf+EnivVZdd8UeFtI1K+m2+ZcXVjDNK+0BRud0LHAAAyeAMVjD9n34CjkeCNA/8Ftt/8boA/l0/bi/4Ok/hH4i8MX/wP/4I9eHNe+OfxX1iI21hfafol42naa8vyiYwyRLcXMik/u4xCIiwyzkDa3if/BvH/wAG+nxw+APxwm/4KZf8FJlY/E27ku7zQ9Buplu7q0u9R3faNS1CVWZGu5FkcRxbmMe8u5EuFj/s+0Xw/oHhu0+weHbG3sIP+edtEsSfkoArXoA/zqP+DqzxD8QPgF/wWY/Z6/ar+L/h248TfCrw3YaHeWdljbaXj6Tqst1qNluOUE8kZi3ZHKPGDkKa9R/4Lu/8Frfhp/wVF/4Jl+Lfh/8AsNfDnxd4i8E6Le6NqPjHxrqVkNP0vRMXUQt7UZZzPcyzyIjKpARTvBdclf7zviF8Mfht8XPDb+Dfiv4e0zxPpErB3sdWtIr22ZlyATFMroSATg470zTPhZ8MdF8Dv8MdG8OaXaeGpImgbSYbOKOxaJxhkMCqIyrDgrtwaAP5a/8Ag1a/b7uvj1+xp4D/AGPfAvw+1tNI+FOgalF4m8Y3vlw6WurT6i0tlYWYBZrh5LWZ5pmPl+RsVSreYrV/Nf8A8EWf+Civgb/giT+31+0Z8M/2s/B/ia613xBM2j2Ol6PZCe9k1WwvJjDb+U7xnFyJv3bruB+UgEMDX+nn4H8BeBfhl4ZtvBXw20Ww8PaNZgi3sNMto7S2iDHJ2RRKqLknJwBzWPffCH4Tan49t/irqXhfSLjxRaJ5cGsS2UL38SYxtS4KGVRjjAYDFAH+cP8A8HBnxh/aB+G//BVf9lf9vb9sj4aXOneFLbw74V11/Cn2j7Xb21xp9897qWlG4KRRyXUZdRKTGoIZAQyDNfUn/BfD/gtD8Of+Cov/AATV8ReCf2IPh14t1/wFoGq6PqPi7xxqdl/Z+l6RJ5ypb2i7mZp7iWaVFcAgIvzDepyv97vxE+F3wy+L/hxvB/xZ8OaX4o0h3EjWOr2kV7bF1BAYxTK6ZAJAOM80ll8LPhjp3gV/hfp/hzS4PDMkLW76RHZxLYtC/wB5DbhRGVbuu3BoA/mI/wCDWr9vu7/aI/Y28Cfsn+B/h7rcGg/Cfwxd2viLxlfeXDpp1t7/AHWmn2QBZrhntJZJ5n+TyNqKVPmq1f1Z1yvgrwL4J+G3hm18F/DrR7HQNGsgVt7DTbeO1toQSSQkUSqigkk8Ac11VAH+d3/wUm+Ht5+wx/wds/B79pXVQ9r4b+KmueHNRiu2XEMZvEXQ71d/TKFfOkHVVlU9CK/ug/bk8B+OPin+xR8Yfhj8MUaXxL4j8EeINL0lFxua+vLCeKADJAyZGXqRX53f8F2f+CT1r/wVV/ZKj8M+BrpNI+KfgK4k1vwXqbN5YF5tHmWkknVIroIgLggxypHIchCrdz/wSH/4KPz/ALa/wZf4V/tAWzeEv2hvhqiaV8QvCV/H9lvoLyHCC+jhOC1rdjbKjpmNWfYCQFZgD+IH/g1//wCCsP7G3/BKuT46+AP24L298HXviJ9Jnspl027u5pbjSftcc1lJFBE7xSq04KeYqpneHZSBnwz/AIOTP2rv2qP23viN8Ivj58a/DeofDP4SeJbbU2+HegatGRqP9lxyW6z6texKSFmvSyFIQxKQxJjcHEkn+nVq37JP7Kmv/Ej/AIXJrvwy8J3vi8SLL/bk+i2cmpeYhyrfaWiM24EZB35Brofi1+zv+z/8fRpY+O3gXw941/sOZrnTv7e0y21L7HM4AaSD7RHJ5bkAAsmCQKAPyG/YC/bl8TeNvg/rHxv+HfgTVtJ/ZP8Ah74e0rw38PxDoV9feK/EzWOy3fUbewtg8yackYSKFPs7SOA0zNGiMot/8EkPjV/wS6/bk+Lvxh/b1/YJ8AahpPiXWL+30XxR4r1K1e0/tafy0nKQRtcShAoETz4ihLsUZg55H1R/wV4/aUh/Yx/4JhfGf476XKtjd6J4XubLSWT5BFqGogWNkVA7LcTxnA7DtXw3/wAG23wE8O/sb/8ABF74eaz42nttGn8WWl34+1u5upFghjg1Ql7eeV3ICILCK3y7EAbSc4FAHxF/webfF3TvBf8AwTA8M/C0Sp/aHjTxzYIsJPzG10+2ubiVwPRZPIU/74r9iv8Aght+zHrf7IX/AASf+CXwS8U2xtNZh0EatqMDgiSG71qaTUZYnB53xNceWw7FcDgV+Nd78Cz/AMHDn/BTrw5+0z4osLofskfs7vJB4Xnu4Gii8b680yvcz2wcfvNODwRI8nKyJCqLzLJ5f9edABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8G3/B4z+3p+yT8Xv2VvA37J3wf8f6H4t8a6X48GrarYaLexX7adHptle2kqXTQM6wy+dcqvlORJ8rfL8pr6i/4Iof8F+f+CS/7OP8AwTM+E/7Onx1+LEfhnxh4O0aS21SxudI1NxHJ9olkASaG0khkyrAgI5PbFf1qX/wL+CWqX02p6n4O0O5ubl2llll0+3d5Hc5ZmYoSSScknkmqo/Z++AykMPBGgAj/AKhtv/8AG6AP4Lf+C83/AAXZ8B/8FUvg8v8AwTU/4JZ+GvEXxMTxTqNjca3q1ppN0v2qKzlSe3trO1ZBdMTcJG8kk0MYXywFDbiy/s7/AMEb/wDglD+0t/wTm/4IyfFP4e3Kiy+O3xP0fW9Yhs4JFc6ZqEunNb6ZaeYpCmWJwryENtWSRlDEKGP9PGieG/D3hm2Nl4csLbT4T1jtoliU49lAFbVAH+YT/wAG2X/BYz9kv/gkz4d+L/wW/a+8Na/p3ijxDqlpc21zpmnm6vbiayV4Dps0LNG8cscjM0W75S0kgcoQu7zH4lf8FEPEHwb/AODmzS/+CkP7Vfwm8UeAbW7lsr1PCBijuteGn3nh8aVZP5RaJfPmUxyvDuDRMzRfM6c/6czfs+fAR/iMfjE/gjQD4uJB/tw6bbf2llcY/wBJ8vzeMDHzVua78JPhT4p8a6Z8SfE3hjSdR8RaIpXTtVurKGa9tFbkiGd0MkYJ67GGaAP4Kf8Ag5y/Ym/a2/aW+E/wc/4LIeDvAer+E/EujeHYLLxf4at3+06j4btoZ5r+xu5HiVW3Qmd1um2gwNszgBivsf7NX/B6f8N3/Z/0zw5+0D8IvEev/GGG2jtFTw4bYaVq999xH3SSefbGZtuUjguNrEhcjAr+7KSOOaNoZlDo4IZSMgg9QRXzp4U/Y6/ZF8CfEB/iz4H+FfhDRvFUjb21mx0Oyt9QZh3NxHCspPJ53UAfkr/wT08feJv2Sv2ZfHX/AAUi/wCCvPiXSfhf4x+OviCLXLyy1e6+xw6JpsNqIdJ0ZI5iGNxFbxSSGFQZizsHUyK9fx2f8G0/xl/YV8V/tQftJ/A79tXW9D0rwh8btDaytbbxLcx2Nrfh75m8hZpWRVucTK8IDiTeu6P5lGP9OnxN4P8ACXjWwXSfGWl2mr2qSCVYb2BJ4xIAQGCuCAwBIzjOCa4q2+A/wOs7iO7tPBmhRSxMHR0063VlZTkEEJkEHkGgD/Ml+Bv7Vfib/g1//wCCxXjj9nnQ/FMfxI+DF5ew23iCxsLiOe4+wy/PBK6KQkWq6eHKSxtsEg3KQqyIyf3H/tZ/8FXvh5r3/BKz4rftv/8ABNLX9K+LGs+FNCS5tbfS2F5Lp8120a+be2eRNCbWJ3upIZ0RtkTZXGa/VjWPgx8HvEWpza14g8J6NfXlw26We4sIJZXbplmZCScepr+WD/g6+/ac+L37EP7Bnh/4T/sraCfCug/FnVrnSvFWv6Jbra/ZrKGJG+x74lURyX4Zl3k5MUMichjgA/ld/Yh/b+/4ID+EPglZRft9/s9+OPG3xYvru/vfEniXRtSaGHU5r6d5W/c2+p6ZGsO0qv2cwlBjOWJJr+qr/gmd/wAHEv8AwQS8PXWh/sl/s2eFtU+A2l6rdrDaJq+j21jYTXk52qbi5s7q8O9zhTNcsAONzgCvQP2Sv+Chv/Brv8SP2fvC3hLRP+FceG7DQtNgsItH8caJbW2oWqwoAUmkvIGSeQ9XlSaUSOSd7MTX51/8FLvDf/BHj/gptotj+wR/wSA+E3hLxd8afE+p6c0njHwV4eXS9L8J6bHcI91fahf20EEcsbQo8IizICX4xII1cA8m/wCD0T9rf9nD4meFvhb+zT8N/GOma/418I+INUude0zTrhbmXSwII4wl15ZIilZm4jYh/lOQMV/Wj/wSP/bZ/Zp/bM/Yo+H998BPF+l6/qfhvwpoNr4h0q0uFe+0e8NqIzDdwcSREyQzLGzqFl8tmQsozX2zbfs/fBn7Hbxa34Z0rVrqGGKKS9vrGCe5nMShN8sjJlnIGST1Ndr4U+H3gLwJ5/8AwhGh6fo32rZ532G2jt/M2Z27vLVd23ccZ6ZPrQB/njf8F1v2Yv2g/wDgkd/wWV8L/wDBaL4HaHea14B1nXbPXdRmgyIrXUiot9R0+4kVW8lNQgLmOVxhjM6jJTB/o9+NH/BzF/wTC0n9ivU/2gvgx8QrTxB4zv8ASXGheDUSQa4+szxfuLWe2ALRBJmCyy5MWAxRn+UN/QxrOi6P4j0m40HxDaQ39jeRtFPb3EayxSxsMFXRgVZSOoIINfOPw5/Yf/Ys+D/i4fED4SfCDwT4W15WLjUtI8P2FjdhiME+dDCkmccZ3dKAP56/+DU3/glR8Tv2CP2WfEnx/wD2jNJl0Lx98XJbSVdKu02XenaNYiQ2yTKeY5p3leWSM4ZV8sOA4ZV/AS1/aS0v/ghv/wAHQfxf+NX7XGj6la+C/iHd69di9s4fPf8AsrxNcC+t7yFMjzo0njEUoQ7lKyAAumw/6WFeJ/GD9mj9nH9oU6efj78P/Dfjg6S5ksf+Eg0q11P7M5IJaL7THJsOQDlcdBQB/nj/APByn/wVatf+Cnn7Hvg7Xf2avAGtWvwP8P8AjaOJfHOuw/Yf7W102V2FtrC2LF3gih81ppW5EhRCqfx/t7+zb/wWB/ZYu/8AggNJonxUTV/h5c+Fvg9F4SsZ/FVoNNtPE2r22jPZtBoUkjk6i3mRoziFT5azIWx82P6gfGf7OX7PXxH8N6J4N+IXgPw7r2j+GrmO90ix1HS7a6ttPuYVZY5raKWNkhkRWYK8YVgGIBwTXdeJfAXgbxnZwad4w0Ww1a3tjuhivLaOdIzjGVV1IXjjjtQB/Bt/wZeftZfs4fDn4bfFL9m74jeNNI8PeNPEniTT7zRdL1O7jtJ9TSS3MOy0ErL58iunMce5wCDjBzXxZ/wcF/t2/so/Ej/gvV+z78b/AIU+N9L8WeEvhhB4TGv6votwt/ZwSWOuXF9OiTQF0laKB0ZvLLYY7fvAgf6Pek/BT4NaBqMWsaF4S0Wyu7dt0U8FhBHIjeqsqAg/Q1n/APDP3wF/6EjQP/Bbb/8AxugD+Oz/AIOof2N2/wCClP7Ivw6/4KJ/sJalZ/FHTfh4NRtdSbwxMmqLdaRdMhkuIXt2cP8AYZ4GWZFyyiR2YL5bVvf8Euv+Ds/9iuP9jnw/4D/b21HV/D/xL8G6bBpksttp0+pR+IfsqLHFPC1ujCO4mAHmpN5aeZkq+Dgf2c+H/Dnh7wnpceh+FrC30yyiLFLe0iWGJSxJOEQBRkkk8cmvCtL/AGOf2RdD+Ip+L+i/CvwhZ+LSwc63BodlHqO5TuB+0rCJcg8g7utAH+a3/wAEyP8Agoxonws/4OLfid+1n46+HPjNIviHfeKoF8L6bpUmoeIrSTUpxcQxSWUeJDKDGqSKudjN1Kgmv9Rvw/q48QaBY68La4shfW8Vx9nu08q4i81Q2yVOdrrnDLnggiuD8D/Az4J/DHxRr3jj4beDtD8Pa14puWvNa1DTNPgtLrUblzuaW6liRXnkY8l5CzE85r1OgD8Nv+Dh39qT4AfAP/glj8X/AAH8VvFmmaP4h8d+FtQ0nw9pE9yi3+p3M4WEi2t8+bKsZlUyuqlY1OXIFfjh/wAGc/7YP7MegfsH6/8Asu+KvHOiaN8QY/GerarDoOoXsVrfXVg1hbStcW8UjK00caW87SmPd5Sxsz7VwT/ZN4p+HXw+8cyQzeNtC07WHtwVia+tY7gxhsZCmRWxnAzj0rF0r4LfBzQb5dT0Pwlo1lcqroJYLCCNwsilHAZUBwykqRnkEg8GgD/N7/4Kpft8fsjeNf8Ag5w+DH7TPgXx1peu/D3wHf8Ag621nxFpswvNOi+yXjT3EiTw70mjhjmBd4i4yGAyQRX9VH/Bdn/goh+w2v8AwSE+J1rpHxX8LaxcfE/wpfWfhOHS9Ut7+XWHeb7IzWiwO5ljimDJLIuUjZGDkFSK/cv/AIZ++Av/AEJGgf8Agtt//jdat78GvhBqdjaaXqXhTR7i2sFZLWGSxheOBXO5hGpQhQWOSBjJ5oA/jL/4NMPjH+yl8aP+CYvjv/gnT8QvFenQeMPE+ueIYrnw1LdJBqV5o+p6fbxyTW0b8yqEEoYoG8vYS4AwT+WX/BLb41+PP+DZb/gqx45/ZU/b2tb7S/hh8QUWwHiFYHazmSzmZtN1iIIH82DZLJHOkeZITKQw3RFD/pE+HfhN8K/CGprrXhLwzpWl3iqVE9pZQwShW6gMiA4PcZql8Vfgn8Gvjt4dHhD43+EtF8ZaSH8wWWuWEGo24f8AveXcI6Z98UAfx6/8HAv/AAUe+C//AAUt/Z28Of8ABLv/AIJg6rD8bfiJ8U9b065u4fDZNzbWGmWD/aN89wAIo2MyxFw7AQxq7ylMLu+v/wBtf/ghZrup/wDBvPov/BNn4KSxat44+GVrbeJLAxrtTVdet2muL5I9+Cpujc3KQbiMFowxC5x/Rj8Hv2cP2ef2eLCfSvgB4D8O+BrW62+dD4f0u20yOTZnbuW2jjDYycZHGa9noA/zrf8Ag30/4OFPhD/wTt+Ct/8A8E6f+ClcGseDbfwRqV6dF1WXT7i4ewWaUyXGnXtpFG11G8Vw0siMI3++yME2Lu/Pz/gp9/wVN+Ff7R3/AAXm+B/7fnw58LeJI/APgy68JT6c17YPb3viDTtI1aW4lu7G3cBmjmYywwZJLNGd21sov+mf8Qf2Rf2UPi34xt/iJ8Vfhh4S8TeILQhoNT1bRbO9vIiBgFJponkUgcDDDiurHwA+BC/Ey0+NK+CdBHjKwsU0u217+zbf+04bGMkrbR3Xl+csKlmIjDhBk4HJoA/jN/4OYf2PPil/wU+/Yy+GP/BS/wDZZ8F+LLXUvAY1G31Lw3q+ky6frx0SaXKXos2zMohkh80LgsYJ/NwoRhXz5+w1/wAHoWj+Af2f9N+H/wC3J8OdZ8T+NNCtFtE13w9NBs1XyVCxy3UVzJGYZmx++eNpFZssqLnaP9BCvmmX9i/9juf4gj4tz/Cfwa/itW3jWm0KyOoBs7s/afJ83Oec7utAH5L/APBJDxf+0x8YY/ix/wAFdf8AgoBaj4W6f8RbOxt/DPhrVblre38N+DdBFxMtxdPceUqNcvPLPLLIiZRRIAkbhR/JF8MP2+v2SbH/AIO7NS/bF1Hxvplv8LrzWtR01PE8kwXTNzaA+mJMZz8n2d7oBRPny9rCTds+av8ATO1LTdO1nT59J1e3ju7W5RopoZkDxyIwwysrAggjggjBry//AIZ++Av/AEJGgf8Agtt//jdAHe+EvFvhXx94W03xz4F1O01rRNZtYr2w1CwmS5tbq2nUPFNDLGWSSORCGR1JVlIIJFfM37fX7PEv7Wn7EnxX/Zps2CXfjbwrqmlWbkgBLueBxbsc8YWbYT7Cvq6wsLHS7GHTNMhjtra2jWKKKJQiRogwqqowAoAwABgCrdAH8Of/AAZM/Eaey+C/x+/Zq19HstW8MeJdO1eWynUxzRtfwSWsoKtggo9iFcYypIB6175/weifFbx74U/4J2+B/hX4ZsLttH8W+MYpNYv4o2a3ih06CSSG3lYDapmmdJEz1MBx0rZ/bD/Zw+IH/BFT/gqfP/wWU+AOi3etfAr4n+Zp/wAY9H06AzzaJ9rkSSTV44owWaHz0W5kYKxR/NQkLOu3+qfwf4v+D/7SHwosPGngy90zxn4L8VWaXFrcwmO9sL61lGQR95HU9wRwRgjIoA/m4/YT/wCCsv8AwSn/AOCbH/BG74JaJefE/Q9b1fTfBemzS+FPDV1DqWv3Ot38YuLu3FjC/mRStezSqxnESq2d7DBr47/YM/4Jf/tYf8FYP+CiH/D5n/gq/wCGpfB/hjTJ7eb4f/Dy/DC4W2sm32BuonAaO2gYmYpIqvdXDM7IkJ2yf1o+Af2QP2S/hT4qPjr4XfC7wj4b1tmLnUNK0Szs7osRgnzYYkfJHGd3SvoqgD8WP+CyX/BQ3/gnt+yb8Eb/AODP/BRTwt4l8R+CfHtoLCe2sNEu59PvfM3uLdb8GC2S5HkmRUW5SZAocY4av00/Zl+F3wo+C37Pvg/4Y/A3wy3gzwlpWl26aZobgiSxhkXzPKky8hMqlj5hMjkvuJZicn+V3/gvch/bZ/4LDfsXf8EurP8A0rSo9Ufx34ntR8yS2EUjNhuylbWwvQM/89R6jP8AQf8A8FFP+ChPww/YB+A0vj/VI38S+NdeDWPgrwjpqm51TxFq8oxBb21vFmV0DMrTSIpEcfPLFVYA/i9+JXgC5/4KAf8AB5dHpnhZBeaH8KtZ0jU764T5kgTwjY280m/HT/iZBbf/AHmANf6JFfz8f8EGv+CU3i79hz4e+K/2q/2qpBqX7QnxyupNd8X3B2sNOF3K919hQrxv82RpLllO1pcKNyxIx/oHoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPi78aPhB+z/AOA7z4pfHXxTpPg3w1p+wXOqa1eRWNnEZCFRWlmZEDOxCqucsxAAJOK/yyPiL/wUO/ZXj/4Oh3/b/TxEJ/hRZeOLSWTXLeCWaM2drYx2ElykaIZZIg6FxsRmZOVByAf9WbxF4Y8NeL9MbRfFmnW2qWbsGaC7iWeIsvIJVwRkHpxxXn3/AAz98Bf+hI0D/wAFtv8A/G6APyZl/wCDkn/giRFbm5b496YVAzhdN1Rm/wC+RZk/hjNfmB4e/wCCvmkf8Frv+Cr3wk/Y6/YRvtYtPg58MdQk+IPjLxGqzabLrf8AYmPsVvHESky2Ju5YFlSdUaZn5jCxjf8A1S/8M/fAX/oSNA/8Ftv/APG66bwv8M/hv4Iu5L/wX4f03SJ5k8uSSytIrd2TIO0mNVJGQDg8ZoA/j3/4Kxf8FWfgH/wUQ/a+8E/8ESvgR8V9N8K+AvF2rLafE3xxHdrFBNBCS39h2Nyf3bTXToIpHBMbSOkWWHmofib/AIOtf+CeH7Kf7G3gj4NftffsoarpXwu8eeFWsvD9hoVjOLS91Gx0gJ9lvrRVPmvcac3lLNNyxSSMu4ZEDf3jp8DvgrFqA1aPwfoi3SyecJhp8AkEgOd27ZndnnOc5ro/FXw/8B+OxAvjfRLDWRa7vJF9bR3Hl78btvmK23OBnHXA9KAPwg/4IZf8F0/gZ/wU++Bnh3wH8Rdf0/Rfjzp9s1trXh6V1gl1KS0Tc99YxnAkilQGWSOPLQMHUjYqu38kv7Cf7dHwN/YE/wCDor9ob4mftGakND8J+JfGHj3w1c6tIrNBYSXesmaGWfaCViMlusbPjCbwzYUEj/Sm8O/CT4VeENTXWvCfhjSdLvEUqs9pZQwShW4IDIgOD35r/Pk/4Iuj4U/Er/g6J/au8N+ModM17QvFVz8RYILW+SK6tNQH9vwThRHIGSUGOJpAMH5V3dBmgD9YP+Dhb/gqb+z7+0f+xvN/wTk/4J8+JNN+N3xV+Nt5Y6Xb6d4Kuk1r7LYQzpdTSyS2jSRKz+SsQRnBCO8jAIhNfVFj/wAEMdS07/g3ivP+CUFtqUJ8cX2jDV5b5ipgPicXaaoIg/QQfaEW08zGfI+bGeK/dr4Rfsrfswfs/XU998Bvhv4W8ETXW7zpNA0e001pN5y2428UZbJ5Oete9UAf5cf/AASL/wCC9v7QX/BDF/EH7Af7bvw21fVPC2ialPMmlt/oet6DeTkNMkaTkRS20pzKqZQb3MiSFXwf6S/2OP8AgoB8ff8Agvz+2v4A+Inwe8Ea18Nv2ZPgdqkniTUNS1STy7vxN4ijgkhsrMNATEI7ZpjNLCkky4UGVgXiUf0tfFz9lr9mP4/3Vve/Hj4c+F/G01oVMEmv6Raak0RQ5XYbiJyuDyMdDXrHhfwp4X8D6BbeFPBWm2uj6XZLst7OyhS3t4VyThI4wqqMknAA5NAH+bV/wXT/AGf/ANrX/gjd/wAFl7X/AIK5/s66fNeeFPFGrpr9tqTwu9hDqd1G0OoaXetGVKi6XzGXJQvHMQjF42I/VRP+DvWD9qDwRYfBD9gj4CeK9b+P3i1fsGl6bdm3n0m0u5lx5/mwyNNPFATvYSQW6bFJeRFBI/tE8SeGPDfjPQ7nwx4w0+21XTLxdlxaXkSzwSrnOHjcFWGRnBBryb4Rfsufszfs/Xd3f/AX4deGPBE9/u+0yaBpFpprzbjuPmG3ijLZYAndnJ5oA/Ib4y/sK/Fj4P8A/Bvf8Qf2NrWefxr8RW+Huu3OqT2++5n1bxFqIm1G/MWR5krT3csoiGNzZUYB4r+Yz/g2j/4LK+GP2ZP2WB/wTr8A/DfX/iF8aPEvjuS60DS7LbbabLZ6glpHPNd3mJXtUtFinlmY27qEVeRlin+jDXnfhj4Q/CbwR4n1Hxr4M8L6RpGs6xzf39lZQ291dcg/vpY0V5OQD8xPSgD/ADYbb9sTS/8AglX/AMHSnxc/aP8A+Cg+g6ld6Xf6zr8VhfxQGa4stL1bjS763jLDzY1sgluwRsrGzgAumw+a/wDBz1/wULuP+Clth8FPjd8LPhr4k8NfCHR38Q2PhvxZ4ggFoPEV1cfYGujb22WZIIBDGI5WY+cWcAKYnA/01viL8B/gd8YL2w1L4teDNC8U3OltuspdX063vntmznMTTI5Q55+XFanjj4SfCn4m+F4fBHxJ8MaT4h0W3eOSLT9Tsobu1R4f9WyxSoyAp/CQPl7UAfz4/Gn9q34gf8FhP+CIn7RHxC+C3wt8ReHtD1jwvdweD01ZF/tPxEltapPcTQWkRkITzleCDa8nnlNy9do/An/g2h/4LL+Fv2ff2VdM/wCCcPw6+G+v/ED4zeIPHMs2j6dZ7bbS207UDbC4uru9xK9ulmiTyy/6O42ovI3MU/0P7W1tbG1jsbGNYYYVCRxoAqoqjAAA4AA4AHSuC8K/CH4TeBPEWpeL/BHhfSNG1bWTuv72xsobe4ujnOZpI0V5DkfxE0Af51n/AAefftUfAD40/H34N/CP4QeLNM8T658O7bxEniKDTLlLoadc3c9pGttO0ZZY7hWtZfMhYiSPA3KMjP8AVr/wUf8AhF8Df+C+H/BJTxZ4V/Y58ZaR4vuLgW+r+HbvT7yKWKLXbBEuY7K7wT9mmkil8mWOXY8PnBmAxz+x998DPglqd7NqWpeDtDuLm4dpZZZdPgd3dzlmZihJJJySeSa7Lw14S8KeC9POkeDtMtNJtGcyGGzhSCMuwALbUAGSAMnGeKAP4Lv+Da//AILGfCr9gv4deJP+CWX/AAUs1CX4U6z4K1m7udCuvEaPaW9ut24e50643qPszpO0lxG8mI5Flb5lKrvuf8FJbPQ/+Dlv/gqt8Jf2cP2N3m8SfBP4MQzyeM/HVtHImmRnUpopLyGCVgokd4bWGG32cySs7AGKMyV/bF8Yf2SP2U/2htRt9X+P3wx8J+Obu0ULBP4g0Wz1OSJQcgI1zFIVAPOARXqngP4eeAPhZ4Zt/BXwx0PT/DmjWmfIsNLto7O1i3HJ2RRKqLk8nAoA/jX/AODyD9pn9m/Sv2D/AAx+xt4Z8T6RN49t/GWlX0nhmzuY3vtP022sLvEs9uhLQRkSwiLzAu8OCmQCR+o3/BEL/goh+w1/w6F+FMmtfFnwnpEnw28Iabp/imHUtWtrKbR5oCLQfa455EaFZZgFhdwFlLLsLZFfuh4i+Efwp8X6m2t+LPDGk6peuArXF3ZQzykLwAXdC2AOnPFVLX4KfBuysLnSrPwlosNre7PtEKWECxy+Wdyb1CYbaeRkHB5FAH+cB/wQu/bz/ZL+G3/BxJ+0N+0T8TfHGleF/A/xQ/4TdNB1vWbhdPsZTqWu2+o23mTTlEh823hcr5hXLYX7xAP+mWrBgGU5B5BFeR/8M/fAX/oSNA/8Ftv/APG69dAxwKAP5mv+Ds79mLWv2h/+CQ+ueL/DMElzf/CzXdP8XGKFdzvaxiWyuuMfcihu2nc8YWIntX0L/wAG0Hxcsfi9/wAEV/gxdwzCS68PWuoaBdoOsT6dfTxxqfcweU/0YV+4Hi3wp4b8eeFdT8D+MrKLUtH1m0msb60uF3xXFtcIY5Y3U8FXRirDuDX8iH/BP/RvEf8AwbqftreJf2E/2hLyVP2YPjPrB1X4c+OL3i00zXJVWNtN1GfhIJJYY0TzHKo7QpIoAkl8sA/ML/g8b+Cfxd+HX7c/wW/b2h0STWPA1nodjobyMhe1i1PSdRur77POwUrGLmK4Gzd9/ZJjO0iv6B9J/wCDqL/glV4w+E+l+JvhjqfiTxZ4/wBajjjsvh7pOhXs+vTahIOLVT5QtGbdxvSdlI+7uPy1/RL4m8L+FfHXh658L+MdOtNY0m/TZcWl7ClxbzIecPG4ZGHQ4IIryn4Vfsufsy/ArUJtX+CPw68MeDbu4Vllm0PSLTTpHVjlgzW8SEgnk5PJoA+dv2UPjZ+13cfstan+0J+3r4Mt/CuvXdzc6pZeEPCtrdaxqWl6MVQW1pcCHzpLzUOGeU28SL8wUICrV8Kf8E2f2h/+CWH/AAUM/bj+Ln7X/wCyV8O9Xtviv4YsdP8AD/ijxfrOny6eZ0n3xR20cMs5KzIlkElY20UgREVmIwtfqV+2z+0Pp/7JX7IHxN/aZ1EpjwN4a1LWIkfpLcWsDvBF9ZJQiD3avwf/AODTv4CN8Ff+CUkfxz8dShNc+Lmv6p4uvrm6YCX7JE/2OFpGb+Ai2knDHtMTnmgDpv8Ag7T+LunfDb/gi/4y8IXcqR3Hj3XdB0K2DHDO8V4mosF9/Lsnz7Zr2v8A4NnP2Y9a/Zg/4I7fDDTPFVsbTV/Ggu/F91EwIITV5C9qSDzk2a25IPQkivz3/ab+F0f/AAcc/wDBQTwp8O/Cv2if9kP9n67mu9c8SRKyWXjHxGzBHstOnHE9vCieVJcRHCq021v3kDn+uywsLHS7GHTNMhS2traNYooolCJGiDCqqjAAAGAAMAUAW6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/zBP+D1b/lKb4B/7JVpX/p31iv6/f8Ag1x/5QUfAz/uZv8A1INTr+QL/g9W/wCUpvgH/slWlf8Ap31iv6/f+DXH/lBR8DP+5m/9SDU6AP3+ooooAKKKKACiiigDP1LSdK1m3FprFtFdxKyuEmQSKGU5U4YEZB5B7VPd3dnp1q95fSpBBEMs8jBUUDuScACodWsW1PS7nTUmktzcRPEJYmKyRlwRuUjkMM5BHQ1/nXfFvxv8X/EfizUNF+LviLVNd1DTrqW3mbUruW6YSwsUbmVmPUGvm+IM/WVqD9lzOV+ttrb6Pufp/hv4cy4snXgsWqSpcra5eZvmvsuaK+zrr1R/ouxyRyxrLEwZWAIIOQQe4p9fK37DnxA/4Wh+x/8ADfxq7+bNcaBZRTv13T20YglP/fyNq+qa9+hWVWlCrHaST+9XPzzMMHPCYqthKnxU5Si/WLaf5BRRRWpxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPMPjZ8YvAH7PPwf8UfHf4rXjaf4Z8HaXdazqtykTztDZ2UbSzOI4wzuVRSdqqWPQDNfhD/xFZ/8ABEL/AKKlqH/hOat/8i1+hf8AwWL/AOUT/wC0j/2TbxN/6QTV+Xn/AAbxfsW/sc/Ez/gjZ8EfHXxI+E3g3xBreoWOqPdahqWg2N3dTsuqXigySyws7kKAoLE4AA6CgDuP+IrP/giF/wBFS1D/AMJzVv8A5Fo/4is/+CIX/RUtQ/8ACc1b/wCRa/Wv/h3l+wF/0Q34ff8AhM6b/wDI9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/0VLUP/AAnNW/8AkWj/AIis/wDgiF/0VLUP/Cc1b/5Fr9a/+HeX7AX/AEQ34ff+Ezpv/wAj0f8ADvL9gL/ohvw+/wDCZ03/AOR6APyU/wCIrP8A4Ihf9FS1D/wnNW/+RaP+IrP/AIIhf9FS1D/wnNW/+Ra/Wv8A4d5fsBf9EN+H3/hM6b/8j0f8O8v2Av8Aohvw+/8ACZ03/wCR6APyU/4is/8AgiF/0VLUP/Cc1b/5Fo/4is/+CIX/AEVLUP8AwnNW/wDkWv1r/wCHeX7AX/RDfh9/4TOm/wDyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf8ARUtQ/wDCc1b/AORaP+IrP/giF/0VLUP/AAnNW/8AkWv1r/4d5fsBf9EN+H3/AITOm/8AyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf9FS1D/wAJzVv/AJFo/wCIrP8A4Ihf9FS1D/wnNW/+Ra/Wv/h3l+wF/wBEN+H3/hM6b/8AI9H/AA7y/YC/6Ib8Pv8AwmdN/wDkegD8lP8AiKz/AOCIX/RUtQ/8JzVv/kWj/iKz/wCCIX/RUtQ/8JzVv/kWv1r/AOHeX7AX/RDfh9/4TOm//I9H/DvL9gL/AKIb8Pv/AAmdN/8AkegD8lP+IrP/AIIhf9FS1D/wnNW/+RaP+IrP/giF/wBFS1D/AMJzVv8A5Fr9a/8Ah3l+wF/0Q34ff+Ezpv8A8j0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/AEVLUP8AwnNW/wDkWj/iKz/4Ihf9FS1D/wAJzVv/AJFr9a/+HeX7AX/RDfh9/wCEzpv/AMj0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/RUtQ/8ACc1b/wCRaP8AiKz/AOCIX/RUtQ/8JzVv/kWv1r/4d5fsBf8ARDfh9/4TOm//ACPR/wAO8v2Av+iG/D7/AMJnTf8A5HoA/JT/AIis/wDgiF/0VLUP/Cc1b/5Fo/4is/8AgiF/0VLUP/Cc1b/5Fr9a/wDh3l+wF/0Q34ff+Ezpv/yPTX/4J6/8E/41LyfA74fBR1J8M6aB/wCk9AH5Lf8AEVn/AMEQv+ipah/4Tmrf/ItH/EVn/wAEQv8AoqWof+E5q3/yLX6S+KP2Uf8AglZ4Jtzd+Lvhj8LNNjXq1xoWlRgfnDXyF48+IX/BAL4c7x4i8OfCVinBFtoGm3ByP+udu1AHi/8AxFZ/8EQv+ipah/4Tmrf/ACLR/wARWf8AwRC/6KlqH/hOat/8i15N4x/4KCf8G9fhguumfCTwnrZXp9g8GaewP03QrXzR4o/4Ktf8EarDP/CIfso6Dqg7GTwzpNvn84DXRTwtafwQb9EyHUit2feH/EVn/wAEQv8AoqWof+E5q3/yLR/xFZ/8EQv+ipah/wCE5q3/AMi1+S3iH/grH+wrNk+C/wBjLwHjsbzRdN/XZb15JrH/AAUz+G2rR+Z4Z/Y/+E1oh+6z+H7OX/23FdUcnxr2oy+6xjPG0I/FNL5n7if8RWf/AARC/wCipah/4Tmrf/ItH/EVn/wRC/6KlqH/AITmrf8AyLX8+lx+3hq2ssf7J/Z0+DenKehk8I2D4/OGudvv2qPGeoZb/hVHwets9ovBGm8f+QKr+xcat6f5f5nJUzvAwdpVV+f5H9Fv/EVn/wAEQv8AoqWof+E5q3/yLR/xFZ/8EQv+ipah/wCE5q3/AMi1/NPdfHvxjcEu3gL4XQj/AGPBelgfrb1y118fdejy0vhT4aLg4ITwbpXX/wAB6tZFjXtT/FGaz/Av4Z3+T/yP6gf+IrP/AIIhf9FS1D/wnNW/+RaP+IrP/giF/wBFS1D/AMJzVv8A5Fr+WuT9pHWrdgB4P+HEn08GaV/8j1etP2rNbtcbvAPwyl/66eCtLP8AKCr/ANXcw39l+X+Zqs3wr+0/uf8Akf1Df8RWf/BEL/oqWof+E5q3/wAi14l4g/4OIv8Ag3I8U/G3QP2kte8TLP4+8LwXFrpniD/hFdVXUILe6jaOWHzltAzxMrt+7csgJ3ABua/B/Sf2zNUtE80/DH4PzH+7ceB9NP8AKGvSND/bugj+e/8AgZ8FL5V4I/4RCwhz/wCQaylkeOjvSYf2xg1vO3yf+R/QL/xFZ/8ABEL/AKKlqH/hOat/8i0f8RWf/BEL/oqWof8AhOat/wDItfi/of8AwUH+Htqqyar+yh8G9SU/889CsoyfcYt69g0P/gpR+yFBt/4Sz9i74fSD+L7Fo+m/pvt655Zdio7039w45xgnoq0fvLP/AAV5/wCC0X/BEv8A4Kj/ALEOvfsi2H7QGo+CbjVL2wv4tSPhLV72IPYzCURywiGIsj4xkOCrYbBxtPPfsuf8FUf+Ddr4Tfsxah8Av2mvi9f/ABr1HxSujjxRqmueEdSt7fUY/D/l/wBmWkdlFa+TBYWQiUQ2gLRktIz72lk3fQXh7/gpl/wSTldIvGX7Imh6aW4YxeGdJuAD+EAr3rwn/wAFA/8Ag348QyLDrfwc8LaC5O1vt/gvT1AP1WFqwlh6sfig18jsp4mlU+Cafo0em6X/AMHT3/BC7Q9MttE0T4k3dnZWcSQQQQeGdVjiiijAVURFtAFVQAAAAABgVf8A+IrP/giF/wBFS1D/AMJzVv8A5Fr1zwD8UP8Ag39+I5VfD3hv4ToX6C68Pabbn/yJbivsDwn+y9/wSi8eQi48G/DT4VamjDINvoekvkH6Q1jY2Pzj/wCIrP8A4Ihf9FS1D/wnNW/+RaP+IrP/AIIhf9FS1D/wnNW/+Ra/WiP/AIJ7f8E/pkEkXwP+HrKeQR4a00g/+S9P/wCHeX7AX/RDfh9/4TOm/wDyPQB+Sn/EVn/wRC/6KlqH/hOat/8AItH/ABFZ/wDBEL/oqWof+E5q3/yLX61/8O8v2Av+iG/D7/wmdN/+R6P+HeX7AX/RDfh9/wCEzpv/AMj0Afkp/wARWf8AwRC/6KlqH/hOat/8i0f8RWf/AARC/wCipah/4Tmrf/ItfrX/AMO8v2Av+iG/D7/wmdN/+R6P+HeX7AX/AEQ34ff+Ezpv/wAj0Afkp/xFZ/8ABEL/AKKlqH/hOat/8i0f8RWf/BEL/oqWof8AhOat/wDItfrX/wAO8v2Av+iG/D7/AMJnTf8A5Ho/4d5fsBf9EN+H3/hM6b/8j0Afkp/xFZ/8EQv+ipah/wCE5q3/AMi0f8RWf/BEL/oqWof+E5q3/wAi1+tf/DvL9gL/AKIb8Pv/AAmdN/8Akej/AId5fsBf9EN+H3/hM6b/API9AH5Kf8RWf/BEL/oqWof+E5q3/wAi0f8AEVn/AMEQv+ipah/4Tmrf/ItfrX/w7y/YC/6Ib8Pv/CZ03/5Ho/4d5fsBf9EN+H3/AITOm/8AyPQB+Sn/ABFZ/wDBEL/oqWof+E5q3/yLR/xFZ/8ABEL/AKKlqH/hOat/8i1+tf8Aw7y/YC/6Ib8Pv/CZ03/5Ho/4d5fsBf8ARDfh9/4TOm//ACPQB+Sn/EVn/wAEQv8AoqWof+E5q3/yLR/xFZ/8EQv+ipah/wCE5q3/AMi1+tf/AA7y/YC/6Ib8Pv8AwmdN/wDkej/h3l+wF/0Q34ff+Ezpv/yPQB+Sn/EVn/wRC/6KlqH/AITmrf8AyLR/xFZ/8EQv+ipah/4Tmrf/ACLX61/8O8v2Av8Aohvw+/8ACZ03/wCR6P8Ah3l+wF/0Q34ff+Ezpv8A8j0Afkp/xFZ/8EQv+ipah/4Tmrf/ACLR/wARWf8AwRC/6KlqH/hOat/8i1+tf/DvL9gL/ohvw+/8JnTf/kej/h3l+wF/0Q34ff8AhM6b/wDI9AH5Kf8AEVn/AMEQv+ipah/4Tmrf/ItH/EVn/wAEQv8AoqWof+E5q3/yLX61/wDDvL9gL/ohvw+/8JnTf/kej/h3l+wF/wBEN+H3/hM6b/8AI9AH5Kf8RWf/AARC/wCipah/4Tmrf/ItfpX+wR/wVA/Yw/4KZaL4k8Q/sdeJp/Elp4SntrfU3n0+608xSXau0QAuooi+4RtyuQMc16B/w7y/YC/6Ib8Pv/CZ03/5Hr+br/g1k8O+H/CHx+/bq8J+E7G30vStL+KJtLOztIlgt7e3gudSSOKKNAFREUBVVQAoAAGKAP7B6KKKACiiigD8s/27v+Czn/BPX/gmx8RtI+FH7X3jG58Oa5rumjVrOCDSr2/D2hlkhDl7aGRVO+NhtJB4zjBFfD3/ABFZ/wDBEL/oqWof+E5q3/yLXwZ/wVK+Hnw/+K3/AAdKfseeAfijoWn+JdCv/BmofadN1W1jvLSbyl1mRPMhmV0bbIquuVOGUEcgV/S9/wAO8v2Av+iG/D7/AMJnTf8A5HoA/JT/AIis/wDgiF/0VLUP/Cc1b/5Fo/4is/8AgiF/0VLUP/Cc1b/5Fr9a/wDh3l+wF/0Q34ff+Ezpv/yPR/w7y/YC/wCiG/D7/wAJnTf/AJHoA/JT/iKz/wCCIX/RUtQ/8JzVv/kWj/iKz/4Ihf8ARUtQ/wDCc1b/AORa/Wv/AId5fsBf9EN+H3/hM6b/API9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/wBFS1D/AMJzVv8A5Fo/4is/+CIX/RUtQ/8ACc1b/wCRa/Wv/h3l+wF/0Q34ff8AhM6b/wDI9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/0VLUP/AAnNW/8AkWj/AIis/wDgiF/0VLUP/Cc1b/5Fr9a/+HeX7AX/AEQ34ff+Ezpv/wAj0f8ADvL9gL/ohvw+/wDCZ03/AOR6APyU/wCIrP8A4Ihf9FS1D/wnNW/+RaP+IrP/AIIhf9FS1D/wnNW/+Ra/Wv8A4d5fsBf9EN+H3/hM6b/8j0f8O8v2Av8Aohvw+/8ACZ03/wCR6APyU/4is/8AgiF/0VLUP/Cc1b/5Fo/4is/+CIX/AEVLUP8AwnNW/wDkWv1r/wCHeX7AX/RDfh9/4TOm/wDyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf8ARUtQ/wDCc1b/AORaP+IrP/giF/0VLUP/AAnNW/8AkWv1r/4d5fsBf9EN+H3/AITOm/8AyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf9FS1D/wAJzVv/AJFo/wCIrP8A4Ihf9FS1D/wnNW/+Ra/Wv/h3l+wF/wBEN+H3/hM6b/8AI9H/AA7y/YC/6Ib8Pv8AwmdN/wDkegD8lP8AiKz/AOCIX/RUtQ/8JzVv/kWuZ8Zf8HP3/BA/4jeF73wR8QvHb69oupRmG70/UfCmp3VrcRnqkkUlmyOp7hgRX7I/8O8v2Av+iG/D7/wmdN/+R6P+HeX7AX/RDfh9/wCEzpv/AMj0Afx5a3+0j/wZOeIPE6+Lr/wlYR3auZBHbaF4jtrXJ55toUSAj0Ux4HYV+lH7Pf8AwcHf8G2X7Jvg1/h7+zNrVp4E0WaXz5rXRPB+pWaTS4x5kvl2YMj443OWbHGcV+8v/DvL9gL/AKIb8Pv/AAmdN/8Akej/AId5fsBf9EN+H3/hM6b/API9AH5Kf8RWf/BEL/oqWof+E5q3/wAi0f8AEVn/AMEQv+ipah/4Tmrf/ItfrX/w7y/YC/6Ib8Pv/CZ03/5HqOT/AIJ7/wDBP2Fd0vwP+Hqj1PhrTR/7b0Afkx/xFZ/8EQv+ipah/wCE5q3/AMi0f8RWf/BEL/oqWof+E5q3/wAi1+j3ij9lv/glH4JRpPF/w0+FWmhPvfaNE0mMj8DDmvkrxz8Qf+CAfw8Lx+IvDnwl81M5jh8P6bK5x6Bbc0WA8W/4is/+CIX/AEVLUP8AwnNW/wDkWj/iKz/4Ihf9FS1D/wAJzVv/AJFrzLxb+3z/AMG9nhtmi074T+EdXkXoLTwXYMp/4EYAK+dPEX/BU3/gi3Zlo/DH7K2iak3RWPhXSYlP5xZreGGrT+CDfyZnKrCO8l959sf8RWf/AARC/wCipah/4Tmrf/ItH/EVn/wRC/6KlqH/AITmrf8AyLX5ca1/wVX/AOCf7ymPwj+xh4Knzwv2nRdMjP5LamvL9a/4KYfBG8fHh39jb4X2gPTz9CsZP5W4rojlWMe1KX3GE8fho/FUX3o/Zf8A4is/+CIX/RUtQ/8ACc1b/wCRaP8AiKz/AOCIX/RUtQ/8JzVv/kWvxAl/bmTVhu039l74Laeh/wCe3hm0dh+UVc/d/tZ69eZ8r4EfBW2B/ueELE/zhNH9l4r/AJ9s4p8QZdF2dZfifu//AMRWf/BEL/oqWof+E5q3/wAi0f8AEVn/AMEQv+ipah/4Tmrf/Itfz9XX7S/icAu3wj+DkI/7E3TsD84K5yb9qjV7eQrN8M/g8D6DwZpv/wAj1ccoxb2pslcRZe9qt/k/8j+ij/iKz/4Ihf8ARUtQ/wDCc1b/AORaP+IrP/giF/0VLUP/AAnNW/8AkWv5yF/bGvYm5+FPwhfHr4K07H/oit6z/bgMDKsnwV+DU2T/AB+DbAD9Ia0eR45f8umbf21g/wCf8H/kf0M/8RWf/BEL/oqWof8AhOat/wDItH/EVn/wRC/6KlqH/hOat/8AItfhLZft6aRaEJdfs8/A27Hr/wAItaIT+UWK9S0X/goB8MIWVdX/AGT/AIO3xPa30Oxjz+cBrCWWYuO9J/cL+28D1qpet1+h+xH/ABFZ/wDBEL/oqWof+E5q3/yLR/xFZ/8ABEL/AKKlqH/hOat/8i1+aOkf8FFv2Sbdgnif9iv4eso6vaaVpjfo1r/WvWdD/wCCkv8AwSsGF8Y/sd6JaerW/hrSJlH5wg1g8JWW8H9xtDNcHP4a0fvR9q/8RWf/AARC/wCipah/4Tmrf/ItH/EVn/wRC/6KlqH/AITmrf8AyLXinh3/AIKEf8EEdRAPif4FeHtD5Ck3HgnT2UE+pWE19OeCv2gP+DerxzsWx8LfC+ykfol74Z0+BufY29ZOnJbo7IVIzV4tM47/AIis/wDgiF/0VLUP/Cc1b/5Fo/4is/8AgiF/0VLUP/Cc1b/5Fr7x8H/Bb/gjp4/hSbwd4E+EmoB/uiLRdJLH8PJBr260/YD/AOCeV/GJrD4KfDqZG6NH4b01gfygqCz8oP8AiKz/AOCIX/RUtQ/8JzVv/kWj/iKz/wCCIX/RUtQ/8JzVv/kWv1r/AOHeX7AX/RDfh9/4TOm//I9H/DvL9gL/AKIb8Pv/AAmdN/8AkegD8lP+IrP/AIIhf9FS1D/wnNW/+RaP+IrP/giF/wBFS1D/AMJzVv8A5Fr9a/8Ah3l+wF/0Q34ff+Ezpv8A8j0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/AEVLUP8AwnNW/wDkWj/iKz/4Ihf9FS1D/wAJzVv/AJFr9a/+HeX7AX/RDfh9/wCEzpv/AMj0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/RUtQ/8ACc1b/wCRaP8AiKz/AOCIX/RUtQ/8JzVv/kWv1r/4d5fsBf8ARDfh9/4TOm//ACPR/wAO8v2Av+iG/D7/AMJnTf8A5HoA/I65/wCDqr/ghzeW8lnefE6+lilUo6P4a1ZlZWGCCDaYII4INeP/AAO/4OK/+DdH9mjwzfeCfgB4q/4RDRdR1G41afT9L8Larb2v2y62+bIkS2oSPftBKoFXPIGSa/dH/h3l+wF/0Q34ff8AhM6b/wDI9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/0VLUP/AAnNW/8AkWj/AIis/wDgiF/0VLUP/Cc1b/5Fr9a/+HeX7AX/AEQ34ff+Ezpv/wAj0f8ADvL9gL/ohvw+/wDCZ03/AOR6AP4eP2tv22v+CMX7UX/BUA/t+2X7XPiLwhoWseGYvC2v6BpngzU/7QudOCmO4t7XUmi3WaXUZ2SSRRCZFaQI48zK/s14W/4OBf8Ag2w8E/E7T/jP4V12Cy8VaRoFr4W0/U4/CeqfaLLRrIuYbO3Y2n7mFd7ZWPbuGA2Qqgfvb/w7y/YC/wCiG/D7/wAJnTf/AJHo/wCHeX7AX/RDfh9/4TOm/wDyPQB+Sn/EVn/wRC/6KlqH/hOat/8AItH/ABFZ/wDBEL/oqWof+E5q3/yLX61/8O8v2Av+iG/D7/wmdN/+R6P+HeX7AX/RDfh9/wCEzpv/AMj0Afkp/wARWf8AwRC/6KlqH/hOat/8i0f8RWf/AARC/wCipah/4Tmrf/ItfrX/AMO8v2Av+iG/D7/wmdN/+R6P+HeX7AX/AEQ34ff+Ezpv/wAj0Afkp/xFZ/8ABEL/AKKlqH/hOat/8i0f8RWf/BEL/oqWof8AhOat/wDItfrX/wAO8v2Av+iG/D7/AMJnTf8A5Ho/4d5fsBf9EN+H3/hM6b/8j0Afkp/xFZ/8EQv+ipah/wCE5q3/AMi0f8RWf/BEL/oqWof+E5q3/wAi1+tf/DvL9gL/AKIb8Pv/AAmdN/8Akej/AId5fsBf9EN+H3/hM6b/API9AH5j/Dn/AIOdP+CNXxX+IWg/C3wP8S7661rxLqNrpWnwt4f1SMSXV5KsMSl3tgqhnYDcxAHUnFfv1X8Uv/Bxh+zV+zn8Cf2kv2HNT+CHgDw34NudQ+K1tFdS6HpVrpzzol1p5VZGt40LgE5AbIBr+1qgAooooAK+av2yf2iof2Rf2UPiL+1FcaQ2vx/D/wAPX+vNpqz/AGY3QsYWl8oSlJPL37cbtjY64NfStfmZ/wAFn/8AlEt+0f8A9k78Qf8ApHJQB+B3w6/4OlP2yPjB4LsfiR8Jf+CfnxI8U+HdUVns9U0i5vr6yuFRijGKeHRHjcK6spKscMCOoNdr/wARJX/BQ7/pG78Wv++dT/8AlFX6Z/8ABt//AMoTPgH/ANgm/wD/AE5Xdft5QB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/FD+0P/wAFvf2rf2q/hbe/Bb47/wDBMn4vaz4a1F43ubSK61yxMhibcoMtpo8Mu3PVQ+GHBBFflpoeo/s2eGdXg8QeG/8Agjj8UtPv7Vt8Nzbaz4rimjb1V1sAyn3Br/SpooA/j70L/g4v/b98N6JZ+HdH/wCCbXxbjtLCCO2gRjqsjLHEoVQXfQyzEADliSepJNav/ESV/wAFDv8ApG78Wv8AvnU//lFX9d9FAH8iH/ESV/wUO/6Ru/Fr/vnU/wD5RUf8RJX/AAUO/wCkbvxa/wC+dT/+UVf13FgOpxWHqPifw1pGf7W1C2tcf89ZVT+ZFAH8lv8AxElf8FDv+kbvxa/751P/AOUVH/ESV/wUO/6Ru/Fr/vnU/wD5RV/Td4p/at/Zq8Fbh4q8daJYlevm3sQxj8a+cvFn/BV3/gnt4M3f2x8UtFbZ18ibzf8A0HNFgPwe/wCIkr/god/0jd+LX/fOp/8Ayio/4iSv+Ch3/SN34tf986n/APKKv1d8Rf8ABe//AIJg+Ht4PxBS7ZP4YLeRv5gV4jrP/Byh/wAE19L3C21TVb3b/wA8bTOfzYVpGlN7Rf3FqnJ7I+EP+Ikr/god/wBI3fi1/wB86n/8oqP+Ikr/AIKHf9I3fi1/3zqf/wAoq+sb7/g5z/YQiXfpukeIblT0P2dFz/48a5C7/wCDof8AZCiP+ieENelHvsX/ABrZYLEPanL7mLkl2Pn3/iJK/wCCh3/SN34tf986n/8AKKj/AIiSv+Ch3/SN34tf986n/wDKKvZpv+DpX9lyPmPwJrjD182Mf0rEH/B1x+yCG2v4M1oEdf3sf+FP+z8V/wA+pfcyo0akvhizzT/iJK/4KHf9I3fi1/3zqf8A8oqP+Ikr/god/wBI3fi1/wB86n/8oq9ksf8Ag6t/YonwbvwxrkXrgo3+FdtpX/B0h/wT8uxnUdP162A/6YI//swqXg663pv7mU8PVX2X9zPmX/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKvuXRP+Dlr/AIJp6u6pPqmq2ef+e1p/gxr3Dw7/AMF9/wDgmD4gVWPj9bTccDz7eQc/gDWUqU1vF/cQ6clumflV/wARJX/BQ7/pG78Wv++dT/8AlFR/xElf8FDv+kbvxa/751P/AOUVfuz4W/4Kz/8ABPHxgVGkfFLRl3dPOl8r/wBCAr6O8Mftcfsw+M9v/CLePdCvd/3fKvYjnP8AwKs7EWP5mP8AiJK/4KHf9I3fi1/3zqf/AMoqP+Ikr/god/0jd+LX/fOp/wDyir+s/TvFnhbWMf2RqVrdZ6eVMj5/Imt8MrdDmgD+RH/iJK/4KHf9I3fi1/3zqf8A8oq4H4of8F9f2w/jb4D1L4W/GH/gl98SvFHhvWIjBfaZqlrf3VrcRns8cmgspweRxkEZGCK/stooA/ji+H//AAcG/tw/CzwFonww8Af8E0Pivpug+HLC20vTbRP7VZbe0s41ihjBfQyxCRqqgsSTjkk113/ESV/wUO/6Ru/Fr/vnU/8A5RV/XfRQB/BX/wAFKP8Agrx/wUL/AOCh37EPj79jZ/2A/i94O/4Te2tYBrEVpqV41sbW6hugTAdGh8xXMOx18xMqx5r5X/Ya/a+/a7/Zl/Zm1H4A/tGf8E//AIv/ABtvNc8P2HhHUdQ1Sx1DTrX/AIRzSVKWel2tnBorrb2yZaSb948lzO7yzO5IC/6PlFAH8eHhT/g4d/bl8B+GrDwX4H/4JlfE/RtH0uBLaysbG31C3treCMYSOKKPQVREUDAVQAB0roP+Ikr/AIKHf9I3fi1/3zqf/wAoq/rvooA/kQ/4iSv+Ch3/AEjd+LX/AHzqf/yio/4iSv8Agod/0jd+LX/fOp//ACir+u+igD+RD/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKv676KAP5EP+Ikr/god/wBI3fi1/wB86n/8oqP+Ikr/AIKHf9I3fi1/3zqf/wAoq/rvooA/kQ/4iSv+Ch3/AEjd+LX/AHzqf/yio/4iSv8Agod/0jd+LX/fOp//ACir+u+igD+RD/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKv676KAP5EP+Ikr/god/wBI3fi1/wB86n/8oqP+Ikr/AIKHf9I3fi1/3zqf/wAoq/rvooA/kQ/4iSv+Ch3/AEjd+LX/AHzqf/yio/4iSv8Agod/0jd+LX/fOp//ACir+u+igD+RD/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKv676KAPxR/4Iz/APBYW4/4K26B8SdR1P4X3fws1D4barbaReaffagb6dp51lLq6m1tWheJoijIyk564IxX7XV/Ih/wa5/8ly/bn/7K1cf+lF/X9d9AH+YJ/wAHq3/KU3wD/wBkq0r/ANO+sV/X7/wa4/8AKCj4Gf8Aczf+pBqdfyBf8Hq3/KU3wD/2SrSv/TvrFf1+/wDBrj/ygo+Bn/czf+pBqdAH7/UUUUAFFFFABRRRQAV8rWH7Dv7INh4r1Dxz/wAK50K61fVLua+ubq9tEvHa4uHMkjjzw4QlmJwuAOgwK+qa/nI/4LB/tt/tdfszfHbSfAHwd8Tf2H4f1fQ4b4eVaW8kpn86aKQebLG7DARD8pGM15Oc4zDYSh9ZxNPmSfZNpv1tY+y4HyXNM4zB5ZlWI9lOcW3eUopqOtnypt90rH9E+laRpWhadFpGh2sVnaQDbHDAgjjQdcKqgAD6CtCvwD/4Ig/tS/F3483fxI8PfGjxNf8AiO+szp17ZtfTNKY45PPSUIDwi5WM4UAZNfv5W2V5hTxuFhiaSsnfR9LNr9Dh4t4cxGRZrWyvFTUpw5byV7PmipXV9ev3hRRRXoHzYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3NooooAKKKKACiiigAooooAKKKKACiiigAooqre39jpts97qMyW8MYy0kjBVA9ycAUAWqK/N/wDaF/4Ky/sJ/s2edaeNvG9rf6jDkGx0r/TJ93phDtH4mvxa+Nn/AAcr3+ovNo/7Lnw1lnkbKxXuuy7QffyIct/49XRQwtas7UoN+iM6lanTV5ySP6xa8m+Inx5+C3wlsn1D4l+KdM0SKP7xu7lIyPwJz+lfwx/EL9uz/gqp+1FI41vxtP4W0u44+z6Uv2GMKe24Zdvr1r56g/ZZuvE2pf238XfEl/4iuWwXNxM8rE9wWkYnH0reWBVP+PVjF9r8z+5XX3tHzmN4vy3DXTqcz7LU/rh+MH/BeT/gnp8KZZbHT/EVz4pu4uPK0e3MwJ9nYqv618B+MP8Ag4v8VeK7iTTv2dPg9eXZP3LnWZ/Kj56FkjGR/wB9V+R/hv4NfDHwpCsekaNbKyjbvdQ7H65r0dUtrWPEarEgHYBQAK55VMPHSKcn52X4a/mfKYvxFk7rDUfnJ/oj3nxl/wAFSv8Agq38WN8NhqWg+ArORiCtlbedcIPVXck18neMfHH7TXjhlufjb8c/E98CT5sMF8bOJs9sRFTiqfjHxd4L/s2bTdQ1PymPB+zt84PbpXw7q2vxNeSiKR7lQxAkc8sB0NezlmUyxacmuRL+69fmzzYcQ5vjb3quC/uxt+J7hf8Ah74Awh5NeN54huGc7pLy4luJD+LtyK4m8sPgTbh10bwba5B+Vn4yPcA5/WvKJNYunGFwv0q7pcDX0nnX04SJOeWwTX0lDIaNH3uaX3tflYzccRrOrXm/+3n/AJmheeBvCOsXz6jb2C2MRxthhY7Bj681s2nhLw3ZMZILKPJ4O4bv509/EugWsf8Ar1IHGF5NWLfWrS+h82zywPQsMV6DlVUba2+ZnOriXH3nK3m2W1gsLGPZDEkY9FUDmqE9xPIPLjwqe3FNd2dst3qLVLDxJHpZvtGszctgkDOOnfHeoT1V395lGOqu9X3My8uLewiM95IsajuTivM9W+I0UbGLSI9/+2/A/AVx3iS18YPP5viGCZDjIDKQoH9Ki0Dwlq/iFs2qbIx1d+B+HrXsUsLSjHnqST/I+lw+X4enD2teafz0/wCCZ9/4g1jUmJu52IP8IOB+VULdLtm/0cMSfSvfdN+GGh2sAF6zTy/3s4A/Cs7VvC0+lKZbbDwj0GCK0WNpfDBG0c1w9/Z0l+iPO7ayvJFBmAU1pjRJCAQ4qWS5gj+8wog1e3WXy2ztPenzTeqQ3Oq9UhiaI28CSQBc8kDOK7dPhddXFqLmyu45AwyvBGfxrJBDDI6Guj0jxZc6BbtE0fnxdQucEGuerOtb929ThxFbEWvSevbQwpfh34sststuVc9tjEEV0nhyLxZoW+WXzBKDg7/nXH45FasHxU0lowbm3lV+4Ugj+ldFp3jnw/qdxFaQSMJZiFVWXue1ctWpXcWqlO69Dhr1sW4ONWlp6G/p3xc1OzYjUdNsrhcAYMIQj3yOtd/ZfFH4X6sv2fX9Dii3EDmJJF56noMVyt7oUsbFb21IOOcr2+tc1c+GdMlBKqYz/s/4V408Jg62vK15xf8ASPHccPPWzXoz17T/AIefs2eJDm302wd5c/K42sfwJqxafsyfDfT5xeaBPqGnyBi6PaXkkRXPoVI49K+P9TtbmO6dbdztQkDsa09H8eeN/DU4lsL+ZQMfKzFlOO2DWFfhyrNN0a9/KWv4/wDAO6OHxsFzYfFSXk2/6/A+/fCd5+1d8MVM/wALfjX4s06RP9Uk941xCvoNrluK+v8AwF/wUu/4Kl/DI29nP4p0Pxnar/rP7VtPLlOP9tMHnvX5W6B+0zrEDLH4hsknQAAvEdjZ7nByPwr3HQ/jL4B8Uwm2W8azkcY2y/IwzxweRmvnsXk+No61KV13Sv8AkX/b2f4X4p8y80n+lz9rPA3/AAXx+L+hQ4+OXwdeVUba0+g3fmDH94RyDJz9a+1vhh/wXe/YL8eTLp/irU9R8HXrNsMWs2piAbv86ll49TX8yOp2nj2xQXnhe9h1BAvENwMZ9CHXr+NeL+LvGWlz7dL+KXhjYxB3TR4YZ/2cjn8TXPh8udZ/u2n6PX7nZ/cezgOOMXJ2q0oz/wALs/uZ/oFfDb9ov4EfGCzW/wDhj4u0rW43xj7LdI559s5/SvZgQRkV/mXppXgzTbv+2fAOpXGkXCjfvtZXs5k/GMgE/Svr/wCEH/BQf9vf4FbB8Pvibe6raR422euAX0OB2y3zDI75zW9XIcTFXhr+D+52PqMNxXg6n8VOD81/l/kf6CVFfynfBv8A4OJPH+grFY/tLfDhb2POHvvDkxLADuYZu59mr9f/AIAf8Fdv2FP2hpI9O8P+L49E1KTA+w60v2ObcewLHafwavLq4erSdqkWj38Pi6FdXozUvRn6ZUVQ03VNM1m0TUNIuIrqCQZWSFw6MPUFSQav1idAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Ih/wAGwv8Ayc9+3x/2Vqb/ANK9Tr+u+v5EP+DYX/k579vj/srU3/pXqdAH9d9FFFABRRRQB/Ih/wAFDP8AlbA/Yx/7EzU//RWtV/XfX8iH/BQz/lbA/Yx/7EzU/wD0VrVf130AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc34n8Y+E/BOmSaz4w1O10u0iBZprqVYkAHuxFAHSUV+P37QP/AAXH/YF+BEk2mW3iKXxdqcWR9l0OP7R8w7GQkIPrk1+PHxc/4OLf2iPiJcSaJ+y38OINISTIS71Z2up/r5UeFH/fVdNHB1qqvTg2u/T79jCtiaVJXqSS9T+wWSSOJDJKwVR1JOAK+e/ij+1n+zX8FraS6+J/jbSNI8oZZJrpPM4/2QS36V/Ex4w+KH/BUP8AahZp/ir8S9Q0awmz/o1pKbOMK3bZFyR9TXLeFf2HfAkVwurfEm/uvEd7ncxuJGZc9+WJY5+orlxFfCUL+2rxv2j7z/D3f/Jj5zGcY5dQuoycn5f5n9JvxU/4ODP2BfAM0th4RutV8YXSZ2rpdrmNiPR2IH6V8aeKf+C/f7QPjmF2/Z7+CkqQMcR3WtXJXGehKIBkfjXwv4Z+Efwz8HRrH4c0S0tygIDeWGbB9zzXdz3Flp0G+4dII1HchQAK8itn1FaUKTk/N2/BX/M+ZxXH9V6Yeil6u/5WN/xR+3h/wVp+K7s2oeMNE8B2jnBj0m0Ekmw+jSbsEfWvmLxcPi/4o82f45/HXxXq+5smFNQa2iwe3lxn+Vct8bvFegvB9p0XX385RhreJyUYH0xx+tfIdx4kMh3AM7ernmvosrybFY+kq06nIn0UbP75foeTPiLNsTr7VxXkkvx3PdfEXgL9le5djrNtf65KvO64up5tx+rua801XwR+z2YntfDfhFYS64SVpm3Kx745FcE+s3szBY8Lz2rtNHhg06MXmr3Ch36KzcCvpMPkNPCJS9rNv/G/yVjhq4rFpXnWk3/iZzmnfB7whafPNG8uR91mwB+WK6228E+FLSNY4rCI7ehZcn8zVuTxRoUUogNwpY9AvP8ALNW5bwSKPJ6Hv0r0qlau/jkzjqYjEy1nJ/iMkg0225gt4969MKBj9Kyrj7bctlzx6DpWhHFJNIIogWZuAB3rz/x7N8QdKP2PStLnRWB/fBd+R7Yzj8amj781G6T82OhTc5qCav5sl1rXdM0BN2oSAN2VeWP4V5Nq/wATL24UxaTGIR/eblq87u/t8t0TehzKx53g5J/GvRvDnws1jVwlzqJ+ywHnnlyPYV9DHD0KEeatK/8AXY+jjg8LhoqeIld/1sup53eatqeoOWvZ3kz6nj8qLWK+lP7pGda+i5vhNo1vAG05m80d5Pmz/hXB6hptzpEpgvE8sjp6VrSx1KppTNIZlRmuWijjU0q5b72BUv8AY8v98f5/CtV7+1j6uD9KW3vILrPlHkdjWjnLcHVqWvYdo/g+fWJzbx3Ecb9g2ea3p/hd4mtpAbV4391bbis+CeS2mWeI4ZTkGu8/4Wta2Aji1G1ck43OhGPy61x16mKUl7LVdjkq1sVzL2WvlY4X+wfHmlMyoJ1QHkoxIr0/RfG+v+HkEd1bQ3K44FzFk/XPBpbf4r+ELiURF5I8/wATpgV2mj6jpXiiN30lhdLH97C5xmvOxVWUo2xFHT7jgxNaq1+/o2XpY09M+MPhCdBB4l8OW7rjlolBBP0bpXRXFj+zJ49Ty9T0u1t3JH3ovKYk+61w914a0i4G2W3CYzyvy1534u8O22i6W99ZSNu6BW55PvxXkvLMLWkvZSnCT7Sf63OWlGnKa9lKUJPs2fQ7fsufAzV4Vm8LRvYyKciexuGVxjtkGux0X4X/ABS8BgS/Cf4p+LfD0ytuzFqMjIMf7JOK/Nq31vxjpM5n069nhb1icr/KvXfCv7TfxJ8NbINRZNShX+Gfh8DtuHNc+K4Vx8VehWU/JrX8b/me4qOb0VfDYty8rv8AW6P1e8Fftc/8FQPhXcQx+GPi4viGzTBaLXbVZycdtw+b9a+v/BP/AAWw/bo8Gw7viz8NtE8TRIwUvpNw9tMy/wB4I24fhmvxr8K/ta+DtT2W/ia1l0+U4Bdfnjz/ADA/CvcbfX9N8bwJeeCNcjDqM7VAdTn+8hwf1r5jE4TG4aVsVS5V3s7feroS4pzzCu2Is13lHT742P3k8Gf8HAP7OTzJY/Gbwd4l8Gy8B5JLdbqAE998Z4H4V+iPwi/4KOfsUfG8JH4A+IWkzTyYAgnmFvLk9tsmOa/jE8R+Kfit4XT7P4l0C312wGTJNbZyU/65sDg/ia+Yte1H4A+M7o3ElhLoGobiMtGNqn13IQy/hXZhcrrVo80Vdd42kvml7y+4+iwPGdaavWw913g7/huj/SnsNS07VIBdaZcR3ETDIeJg6kfUE1dr/N68AfGv48/Bi7iuPgn8T9a0cL88cUN881ucesUhIx9RX6dfBv8A4Loft1fC8wWHxJsNH8f2CYDSSBrK7x3O5Nyk/gKurk2Khqo3Xl/V/wAD6LDcR4Gro58r/vK3/A/E/tLor8F/gv8A8HBf7IfjieLR/i9pmr+A79iFZ7uIT2mfXzYz0+q1+w3wr/aC+CXxv0pNZ+E/inTdegcAg2lwjsM+q53A/UV5k4Si7SVme1TqQmuaDTXkexUUUVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wdC/8nCfsI/9lag/9KdOr+u+v5EP+DoX/k4T9hH/ALK1B/6U6dX9d9ABRRRQAV+Zn/BZ/wD5RLftH/8AZO/EH/pHJX6Z1+Zn/BZ//lEt+0f/ANk78Qf+kclAHzt/wbf/APKEz4B/9gm//wDTld1+3lfiH/wbf/8AKEz4B/8AYJv/AP05Xdft5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDPc29rEZ7l1jReSzHAH4mgCaiviX47f8FGf2Kv2b7eV/ix8Q9IsZ4Qc20dws05I7bEJOfY4r8H/wBpL/g6w/Ze8AGbTvgN4Yv/ABTOmQlxdkWsDHtxy/6CtqWHq1Xy04tvyRpTpTm7Qi36H9XVYus+JPD3h21a91++t7GFBlnnkWNQPcsQK/zhfj9/wdC/t7/FHzrD4ef2d4Qs3yo+xwlpdp/23J59wBX43/Fz9v8A/bD+PF48/wASPHmr6k02QY2uXCEHttBA/SvYocN42pq4qK83/lc9OlkmKnq1b1P9Tj4t/wDBTL9hL4JRyn4gfE3Q4JYusMNys8p+ixlq/Lj4v/8ABzl/wTy+Hhlt/Brar4qmTIX7LCIo2P8AvSEHH4V/nMWmh65rY+2+IruVmY/ddiTj3ya6CDwvpUONylyDn5jXvYfgttXrVfuX9fkbLKqUdJ1L+iP7Cvip/wAHcupOJIPg78LYYzyEk1G8aTPvtjRfyzX5z/Er/g5u/wCCj3jgSr4XbTfD1u2eLa1DMo9nfJr8HPs9hZriGJQfTFYl7ZPqDH7RK2wnhF4Ar1afCWBh8Scn5v8AysdNLAYXrF/N/wCVj72+If8AwWO/4KMfEppF8R/E7VgjZ+WCXygAew2AYr478UftPftE+OWZvFPjLWNQL9fNu5Xzn6sa4ZdJ0yAGRkGP9rmq8uoQQ5W0QA9M4rvp5Jgqe1KP3X/M74YfDr4KSM2813xfqS+Zf3lzKG7vIT/M1npbXk/MspPrzk1dlnlmbdI2abG21ga7IYWjD4YJfJHUopLSKXyCOwhQ5bLH3NdJodzcadPutIgyngjHb61sabptjLAtyMvuHet2ONYxtQAD2rrhTtqjirYhO8WrnUxSI8ayJ35xT8EmofD8SXczW0rYAGR713MVhaw8quT712J3R4FarGnLl6nHtbTSRMUU4wecV8zzsBO4z/Ef519nXAxbuB/dP8q+JLr/AI+ZP94/zrmxT2PWySq5+0+X6lmp4LeS7mW3hXc7nAFZYdh0Nen/AA9043E0mqSj/V/Kvpk9a5oLmaR7OIq+zpuZmDQvsalLqI7iMHcP5VQm8P2E3Kboz/snivdmRJBtcAj3rA1PSNNSB7l/3WwZ+WumdBWPIp49t67nhs+jana/Pazkjtzg1asdV8e6TmfTrm5jCcbkc4/nWtM5kcnt2+lPhup7d98DEVwzwlGfxRX3I9Fu696Kfqjr/DH7TH7RXgFlPhjxZq+nFfu+Vcyp/JhX2J8NP+CxP/BQ/wCGmyHw58TdXAUjHnz+aMDsd4brXxZb61bTjy9SiVu27GatN4b8OX6LKkK49UOK5KmR4KpvTj91vyOSpDDbVKK+X9I/dv4af8HLv/BSXwNFAdfnsfENsPvfa7VcsR/tpg1+iXws/wCDuLxRbtHb/GP4X204HDyafdtEfrh1YfhX8jGm6G+jOv8AZty4jz8yP8ykf0rppLHTL1cTwo3fkVw1eEcDNe6nF+T/AM7nnVsNhb6RdvJ/53P7/wD4Qf8ABz1+wB8QGhtvGsGreGJnUFzNGs8a590Of/Ha/Uj4T/8ABUX9gj40xw/8IP8AE3RXlnxshuJxbyc/7Mm2v8p658FaFcbmVGjZjnKmsK78Ma1o6/bdAu5d6HhVJBA9q8mvwV1o1fvX+X+Rz/2fQm7QqW9V+qP9lrQ/FfhfxParfeG9RttQhfpJbyrKp/FSa36/x4/hd+3D+1h8EL6Kb4c+N9W0prbCqsVy4UY9Vzj9K/YD4C/8HM//AAUD+FCw2XjS5sPF1pGApF/D+8I7/OhU5/OvDr8MY6nrGKl6P9GRVybEw1Sv6H+k5RX8mX7OH/B1f+z14yFtpv7QPhO88OzyHbJc2Di5hXHUlDh/yzX7u/Ab/gpn+w/+0fbwt8MviFpctzOoYWl1MLa4G7oCkhByfavErYerSdqsWn5o86pSnB2nFo+8KKrWl5aX8C3NlKk0bDIZGDKfoRVmsTMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5EP+DXP/kuX7c//AGVq4/8ASi/r+u+v5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvoA/zBP+D1b/lKb4B/7JVpX/p31iv6/f8Ag1x/5QUfAz/uZv8A1INTr+QL/g9W/wCUpvgH/slWlf8Ap31iv6/f+DXH/lBR8DP+5m/9SDU6AP3+ooooAKKKKACiiigAr4W/a4/4J7fAr9tPxL4f8TfF641SGXw7DPBDHp08cCzJOyMRKXikY7Svy7WX7xznivumvjT9vH9qPXf2Pf2fbr416BoUXiCS2vLa1e3mnMCItwSvmFlRycNtG3jOetcWYxwzw03i1emld3V9tdj3uGamZxzOhHJ5uOJk+WDTUXeXu2u9Fe9i1+zR+wh+zP8Asj6nea/8E9EmsdS1G3FrdXU95PcPLEGDhSsjmMfMAcqgPvivsGv5pv2YP+C03x5+PX7Uvgz4T+JdA0HSPD3iDUVsp/s8c73WZlZYwJHmKD95t/5Z81/SzXJkuOwWJov6hG0Iu1rW132PY47yDPcsx0P9YJudepHmu587tdxs3rtba9krBRRRXsHxIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//W/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3NooooAKKKKACiiigAooooAKKZJJHDG0srBVUZJJwABX5Mfthf8ABZr9jj9km4uPCr6q3jDxTECBpWibZ2V/SWUHYnvkk1UYuT5Yq7E2krt6H61V8fftIft7fsm/soaZLe/GrxlY6fcRjIsYnE9459FiTLZ+uK/js/ap/wCC1f7a/wC0rJcaL4Lv1+HPhybKi30xib1kP9+fgg/7tfkzNby6zqsms6/dS399Md0l1eSNNKxPcs2TX0OC4axNa0qvuR89/uPHxWeUKV1D3n5bfef0zftHf8HI+uav9o0L9kjwK8cZyser6+2wH/aWBCT9NzfhX4Y/Gn9sP9tX9qO8kn+Lvj/U7q1lbmws5WtbNQewRCOPrXhEEvh+zj33JMjD244qZPHWlRsI1gk2j+7ivp8Jw9hqOqp877vb7tj5zE57jat1RjZFXRfhzpdpJ9ovl81yQeOSfXJPJzXveg63N4ftkt/DWn21iVO7zdm9z+LZNeYWniqaZlbT7Aqh6vKcflXa6fqcd4u2TCSAZI7fhXViaHNHlnH3e3T7lofKY6pXqfx9fn+h6fF8TPGy4Ml2p9tgArU0/wCLHie1uBJeFLiPuhG39RXieoeJNH03IuJgW/urya4y9+ILN8unQ4Hq/wDhXEsnpVFb2Kt6WOGnlrq/DT0+4+jNf+O3iOZzBpEEdoBwWPztn9BXmt9r3jXxNKXup55c5OASFwfbpXVeH9Itn06C/voVNxIgZu4yfSunke3tYGmkIRIxknoABXPThhsO+WhSV11/rU51OlSfLTgrnheuaTd6RYfabtlV3OFTOWPvXAnPesfxx8V4NX1eRrSJnSI7EycLgd68/TxRrmqXAgtSsf0HavqMPhavInPRn1eFyvEunzVFbrqemXdx9nXC8selYbMxyWOc9TUabyo8xix7k103h/QzqU3nXAIhT/x41o+WnG7NbQoQcpEmgeHm1BxdXQxCOn+1/wDWr09EWNRHGAFHAAoREjQRxjCjgAU6vKrVnUd3seHiMRKrK72O30LRLRSl5fyKT1Eef513bSQwRb3IVF/IV4ta29xdzLb24LMemK9RsNCgt7PyLomRm+9k8Z9q8vERs7ykeTiYpO8pHPazrq3atawKDGeCSM5FcnHHHEgjiUKo6ADArd8XpoXhmybU725WBB/A3LN/ujqa5DSdb0vW4BPpsyyDuAeR9RXXRguTmgtDqo037Lngny9/MzvE2vy6DbLLFA0pbuPuj614vq3inWNYO2eTYn9xOBX0TcJBJEyXABQjnPTFfPXiSx0q3vC2jOXQk7h2B9vavVwLg3Zx17nu5RKi3yyh73f+tjma29P8NeIdXdI9NsppjJ93ahwfx6ViV9afAn4mo4Xwdr8iqVGLV24z/sk/yrozDEVaFF1KUOa39XPUzLE1sPRdWjDmtv6dzz/w78JviLcW2+ez8tOwkcKw/CuiPwe8ckc28f8A38FfZVWbWyvL5zFZRPMwGSEUscfhXxtTiKvrJqKX9eZ8PPP8ROTfKvuf+Z+dPjH4c+JfCUK6lqsKpDI20FW3YP4VwEUskMizRHaykEEdiK/UTxR8PtR8TaJPpF9p8zLIpxmNuGHQ9K/NXXfDmq+H9XuNHvoXWWByp+U/hXvZLnEMbCUZSXMu3Y+kybMniYOFX4l+KPv/AOGPi+08ZeEre4mZWuEXy5kOM7l4zj3rr7zw7o18uJ4FBPccGvzz+HviCTRta+xu5RLj5TzjDdq+nbXxJrdqwMdw+AMYJyK8PH5NOlWboysnqj5vMcslQrvkej1Rr638EtMu5WuNKungLEttcbhz+teT618KvFujgyGEXKD+KI7v0PNej6l8ZL/w8YRqFoLiJzhnU4bj9M11Gi/GnwPqzLDLM1rIwGRKuAD6ZHFFOtmdGPM480fv/LX7wp1cdTipW5o/f+Wp8baxb/Yj5c0Rjk9CCD+VYIlPev0W1LRvC3iq3BuYoLuM5w64bnp1FeQ6/wDALQr3dNoU72rnkK3zL/iK9LC8Q0WuWsnF/ejvw2eUX7tVOL+9HzZpvi/xLpLiTTb+eIgbRhz0rvLf4y+LJLdLLWWi1CBQQUuEDBs+p61z3iL4WeMvDh3z2pnjPR4PnH44GRXnx8xDtfII9a9X2GExK5koy81a56ao4bELmik/M7jUbvRtQcS2dubNj94A7o8+o7gfnXQW3grxS9oNR0Nft1uwJ3QHJAH95eo/KvK47h4+nSvo74KfBv8AaA+J0Vz4h+DOh32oRWDBZpbfARWPO0kkA8dua4s0xNLAYd169aFOC61GlHXZOTatrtr8h/Uq8vcoLmfazf8AwTzb+0dWsnEN4rxt12yqQTn61BfjSNXQDUbZGcdGxzz79a+sIPGCrdp4X+NWgS6Zf5xuu7cxqRkgE7gCB79K1dZ+CPg3XIhdaOxtS/zK0Z3Ic98f4V5H9t0NPrFOyezTUovzTW6PGnjvq9TlrwcJd0eXfBz9qL9p39nm+S/+Bnj/AFTR0Q5+xyzNcWj4HAMUhIx9K/az9nr/AIOH/iV4V8vR/wBq7wSurWqbVbVfD7AS46bmt5CAfU7Wr8Qte+BPizSojcaYyXqg/dTh8duD1ryS9s9W0qY2+oQyQMP4ZAR0+tEssy7GpuhJJ+X+X/APpMBxPXj8NRTXZ7/5n+gn+zb/AMFDv2Rv2rLZB8JfF9rJfsAW068P2W8XPYxSEE/8BzX2uDkZFf5gm23+1LqMG+1vIx8lzbsY5UPYqykEEV+n/wCzP/wVh/bg/ZftLWO41V/iB4bBC/Y9ZZmlVB1Ec/JB9mrwcZw9iKOsPeX4/d/kfV4TiXDVLRre4/Pb7z+72ivx6/ZI/wCC1v7I37TN1B4S8UXcngLxPLhfsOtFYopXPaKfOxuemSDX6/29xBdwLc2rrJHIAyspDKQe4I4NeFKLi7SVmfQxkpLmi7omoooqSgooooAKKKKACiiigAr+RD/g2F/5Oe/b4/7K1N/6V6nX9d9fyIf8Gwv/ACc9+3x/2Vqb/wBK9ToA/rvooooAKKKKAP5EP+Chn/K2B+xj/wBiZqf/AKK1qv676/kQ/wCChn/K2B+xj/2Jmp/+itar+u+gAooooAKKKKACiiigAooooAKK53xT4t8L+B9En8S+MNQt9L0+2UvLcXUixRoo6ksxAr8Cv2rv+DhD9nX4ZT3Pg/8AZqsJviDrcW5DdR/utNicccynl/8AgIq6dKdSSjBXfkROpGEeabsvM/oQubq2s4GuruRYokGWdyFUD1JPAr8wv2o/+Cwf7D/7LAm0vxD4mHiLW48gaXoYF5PuHZip2L+LV/Hd+0n/AMFEf20v2sruVPib4wn0rRZCcaRo7tbW4U9mIIZ/xr430vw/o9qDMSkWT8zH5pGPv3r6TCcMV5pSrvlX3s8HGcRUKWlJcz/A/dT9or/g4X/ah+J3n6N+zj4ZtvBOnvlVvb8/ab0qehCj5FP51+OXxG+IX7Sf7RGpvq3xs8Zat4hZzu23dy4gGf7sYIUflWVHqHhXSQGQGZz6jNb1j428PuwR4Z3Y/wAKKP8AGvoKGUYbDq9OlzPvLX8Nj5bGcQ4+qn7ONl5EXg34e+ENBmSa9sP7QK4JjzsTd+AyQa+otC+IviLQwU8OafYaZAeiRwjIx79TXi+leJ3mI3WH2eLPVj82Ppiu5W5haIT7gFPcmuLMMNCu7V4XXZu6+7b8D43G4itUl+9d/nf/AIB7Cnxq8chf3jwsf+uf/wBeuhs/2gbywsmbWbITyDo0Z2j8RXyvqHjXQrDKCTzXHZOaq+GvEk/izX4tIjtgIGyXJPzACvKq8M4KdNynQSite3+RyrCz5XNx0R7Vrf7QfjfVWaHSwlmjcDYNzj8TXnMz+OPFDbryW4nDEnMjEL79eK9jsdA0jTwPs0CgjuRk1zHxC8Z6f4G0B7+5PzN8qKOpJqcIsPSkqeCw6Tflr/n+JnTq80lCjDV7HgPiO2l0+8OnysrMnXacjNc5XneofEjz5HktoCzMc7nPrUOl63rmqs0kzCOHsAOv419zTwtSEFzn1EMurQp3mrHYX16xJhhJHqazV825ZY1JcnoOtRhSzADk17B4T8MpYwi/u13SvyAR90VFarGlG7M6tSNGN3uM8M+GU05Bd3gzM3Qf3a7+xsZtQuVtoMZPc8AUw8dsUAkcivCrVJVG5N6nh1akptyb1PaPD/h6x0qLIKzTd364+lamp6raaXCZLlhkjhe5ryrw3pV/qc5aN2jiB+ZgSM16PfeGdPv0AlLb1GA2cmvm8RThGr+9nfuebUilP3pXPJdcns9cu1uZrWIGP7h2DI/GqXQVB4k1PQPDWqppF3fRGaToueR9ewqdCrjchBB6Ed696nG1OPKvd6HbytRTtp0PHvEvxMuNPuXsLC2KuuQWl4/IV43qes6lrM3n6hM0h7A9B9BX0j4z0XQtSsd2quIWX7sg65/rXzHdwfZrhogcqD8rdMivpct9i43jG0v66n0+VOhKN4QtL+upAqu7bUBYnoAMmuo0bwh4v1V1l0fT7iUbtu5UOM+5qj4c1678N6zDrNiFaSFgcMMg1+mHgLxjpfjXw/Fq+nFQxGJY16o/cGuPPc2r4GKlCkpRfW+z9P8AghmuYVcLFONO6fU+OIfg58SXjDSacVY9RvX/ABqG8+CHxDuoDG+nH2+df8a/QKrkenahKgkigkZT0IUkV8bLjHFR1cYr7/8AM+Zjnde94xX4/wCZ+OWt6HqXh7U5dI1eMxTwnDKT0r0H4PeMW8JeLYfPbFtdERyDPHPQ19MftL/Cu9udPXxtY2ciyQ8TnaRlfX8K+EA2PmBwRX3mX42jmuB5u6s0uj/rVH1+GrQx+FfNu9Guz/rVH6wvaaffR72RJFYcHANcZ4l+HOieI7BrFmaDPIK9j9K+bvh74y1K70dRDO6ywfI2G7V6zZePNetFBkYTBez9T+NfJTyzFYepalPVHx1TCVaFRxT1R53rPwB8Q2qtLpFzFdAZ+VvlbH8s14zrXhDWtHcxa1YvEQSMlePzHFfRlh+0v4aTUZNN8R2ktmyNt3r868d/WvW9G8c+B/Glow0q7gucjmNyA3Pqpr0lmeY4bXE0rrv/AMFaHqfXcfh1evTuu/8AwVofllqmrwQXjQ2iZVTg5NXtH8VXWnTi40y5ls5cfeRip/MV9p+KPgt4H8QyyTG2+yTMSS8Py8/TpXz/AOJv2c/EOnKZ/Ds63iZ+43yuB/Kvo6GbYStHlm7X77f5H02EznL68VCb5X57ffsXNB+O3xO0JY0tdVkmijP3JTvBz655NXNY+KWneM0/4rLR4JJyTm5tR5MvtxyD+NfOV9p+ueHblrTUYZLeRTghwRRFrc68SKD9OK3/ALKwjl7WnBJ946P71Y7ZZRQk1UpRXqtPyPSYNOjv7vydIlwzfcWQ7WJ9M9P5VuGXxboTbL6OdF9SCQceleWwa3FIyptbcxwAOTmvq3TfDHx28AaLB4g8T+GdS/sW4A2vcW77Crc5Bx6evFY4/FU8PyRqzjeWiUmk5P8Au33flY5sVhq8Y3UOZdn/AJnnUHiw3Efl38SToevFaXh7xDceFNVXXfAOq33h2+Q7lmsZnt3DevyEA/jXqGmWXw68dRNNZQLFNxuUfI4P0rE1T4PSgl9HuR/uyf4ivMq1cHUbp14WfZo8WjmVOlUsnKnI/RT4Af8ABZr9u34D+TY65qdt8Q9GiIzBquVugg7LMvU49RX7r/s2f8F8P2SPi7PbeG/i9De/DvWpsDGoqJLJmPHyzoSBz/eAr+NDU/C3ibw9IftELhR/GnKn8qyhqryoYbtFmUjBDDnBrzcRw1hqq5sPK34o+qwfEeIilzWqR+5/5H+nZ4Q8b+DvH+ixeI/A+qWur2E4DR3FpKs0bA+6kiuor/NU+CX7QHxv+Auvwar8AfF2peGp1YE2sMrNayn0aIkqc9Olf0Afsz/8HCeteHJYPCX7YvheWSNSsZ1zRk3ADu0sBII9TtzXy+MybFYdvmjdd0fSYTOsLXajzcsuz0/4DP6q6K8H+A37TnwJ/aa8Kx+Mfgj4lstetHGWEEg82M+jxn5lI9CK94ryj1gooooAKKKKACiiigAooooA/kQ/4Ohf+ThP2Ef+ytQf+lOnV/XfX8iH/B0L/wAnCfsI/wDZWoP/AEp06v676ACiiigAr8zP+Cz/APyiW/aP/wCyd+IP/SOSv0zr8zP+Cz//ACiW/aP/AOyd+IP/AEjkoA+dv+Db/wD5QmfAP/sE3/8A6cruv28r8Q/+Db//AJQmfAP/ALBN/wD+nK7r9vKACiiigAooooAKKKKACiiigAorP1TV9L0Oxk1PWbmO0toQWeWZgiKB3JPAr8K/22P+Dg79hz9k9Lvw/wCGNVHjbxFAGX7Lpp3Qq47PL93r6ZqoQlN8sFdlRg5Plirs/eMsFG5jgV8Y/tI/8FCf2Pv2T9MlvvjX4503TZ4lLCzWZZbpvYRKS35iv8/r9s3/AIOOP23/ANpSa70H4f6l/wAIToM25Ft9O+WUoc/elxuzj0Ir8HfFXjfx18RNVl1vxdqNxqN1MxZ5biQuzE9ck5r6LB8MYqtZ1PdX4/cezhsir1Nanur8T+4v9qv/AIOv/BOkXFz4b/ZR8JNqUi5VNR1Q7U+ojU5/Miv5zv2mv+C0X7fX7UM08Pi7xpc6Zp82R9i01jbQhT2wpyfxNfkfZWv2UFm+8au5NfVYThnB0bOa5n5/5bfmexRyfD091zev+Rua54n1vXbl9S168mu5nOWeVyxJ9ya8+uJZLyb5BnHQCuujsI7hQZ+V7CtGK2hgXEKgfQV70MPGK5YKy8j0IShT0gjjLfRL6cgEbQfWvSvD/hS300reXR3ydQD0FU4ZTA/mKASOmaklu7mc/vGJzW8IxjqZVqk5rlTsjrptTtIOGbJ9uagGoSy52JtHbPWoNL0UyAXN5+Arp47aCL7ijNbq7POm4R0WrOdS3nlOVUmryaW5H7xsH2rbop8pk6r6Hluqx3kFyYrnOO3oRVO2s57ptsQ49e1eg6tBbXyqjclT1qCOOOFdqDArNx1O6Nf3VpqcTfWL2ThWOQR1qG3tZ7ptkClj7V3smnR3yYlHGevetK2tYLSPy4VCgUKBMsUkvMoaNYz2NuY5mznnA7VrsyqMscVXkuVXheTVJnZ/vGrulocjTk+aR0mhX4h1aIDhWO0/jXreDnArwW1ZkuY2U4IYc19JQQxogYckjOa1pO6PGzVKEoy7mU9rJJbuW+UbTXxNf2ciXUpTkB2/nX3fcf8AHvJ/un+VfEt3/wAfUv8Avt/OssQr2R28PVHep8v1OYIK8EYr23wYY7HR0WRcGQliRXlzQxy8MOfWvWbGJYbSONBgBRWVFWlc9rHyUqaidkhWX/VkH6Vz/iG1nvrX7NbsAQcketRxTSQtuiOKsfafMJaTqa6nK6szyIQcZKSPLLi0uLRts6ke/aprGxa8cqpxgda9LuLaC5Ty5lDCs2LTEsUxb8g8n1rF09fI9BYq8fM4K5s57R8SDj17VoaGmoXF6sNkT1y3oB711MkUcy7ZBkGtbw6LHTS8eNrSH739KFT1JqYl+zel2a76PIB+7YH61Qe0uYTkqePSutBBpcA9a6HBHkLESW5x5vHj++vFTx3lu7YDYPvXQy2sE3+sUGue1DSPKXz7bkDqKlxZpGdOWj0OU8R+ErbVib21OyUdQP4q8tu9CvrZjhdwGenbFexJJJGfkJFZ9/G0zGcde+KwqU09T1MPXnT91u6PGkDwyfOCPXIrrtJ1zXtFuI9S0S7lhlQgq0bkEY6flW5NawTjEyBvrWZLpsduha24XriuWdCE1yzV15na60Zq0kfpJ+zP/wAFhf26f2XZ7eDwZ4yvLiwg2j7JeObiEqOo2ue/tiv6Rv2Uf+DpmPVbW3sP2n/B4K/Ksl/o5wQe5aJz0Hsa/iGKq3DDNbGh6tJosjCMbo3xuU+3pXiYnhjBVndLlfdf5bHm4vLKM43pxtI/1of2av8AgpH+xr+1dp8M/wAJPG+nz3koGbC5kFvdKT28tyCSPbNfcyOkih4yGU8gjkV/jr+FfiDNpepQ6hol3JZ3Nu2+MqxQg9eCK/Zz9k7/AILl/tufszG00i611vFmiROA1nqp83Efokn3x+Zr5nG8IYuleVBqcfLR/ceBVwdSD1R/pHUV+B37IP8AwcE/se/tAPaeF/ircnwL4gnCjZeHdaOx/uzAYGT2bFfuxoHiPQPFWlQ654avIb+zuFDxzQOJEYHuGBIr5WpTnTk4TTTXRnK01ozZoooqBBRRRQAUUUUAFFFFABRRRQB/Ih/wa5/8ly/bn/7K1cf+lF/X9d9fyIf8Guf/ACXL9uf/ALK1cf8ApRf1/XfQB/mCf8Hq3/KU3wD/ANkq0r/076xX9fv/AAa4/wDKCj4Gf9zN/wCpBqdfyBf8Hq3/AClN8A/9kq0r/wBO+sV/X7/wa4/8oKPgZ/3M3/qQanQB+/1FFFABRRRQAUUUUAFfLP7af7PF1+1X+zT4k+BOn3sWm3WtC1MF1OpdIntriKcEheeRGV49a+pqyPEGtW3hvQL7xFeo8kNhby3MixDc7LEpYhQSMkgcDI5rHEUoVaU6VT4ZJp+jWp25bjK+ExdHFYV2qwlGUXv70WmtOuqPwE+AH/BCZ/hH8TvDXxY134mtdXnhvU7TVIra00vy0aS0lWUKZHuGO1iuD8g4r+hKvwX8T/8ABwF+zXZbl8IeDfEmosOhuRbWqn8VmmOPwr9wvBXie08b+DdJ8aaepSDV7KC9jUnJCXCLIBnvw1eLkTyqCnSy1ro3Zt+m/wCh934gri6tKhjOKYSV7xg2oR2s2rQS7rdHTUUUV9Afm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNf4g3/BWL/lKb+0t/2VXxl/6d7qv9vmgD83f+Cxf/KJ/wDaR/7Jt4m/9IJq+VP+Dav/AJQhfAX/ALB+q/8Ap2va+q/+Cxf/ACif/aR/7Jt4m/8ASCavlT/g2r/5QhfAX/sH6r/6dr2gD9zaKKKACiiigAoorxX48/tDfB79mjwDdfEv4063b6JpVopYvMwDuf7qL1Zj2AoA9qr8vf23P+CtP7Kf7E9vPoPiLU/+Eh8Whf3Wh6YyzXG49PNIOIx9Tmv51v27f+C73xt/aMlvPhv+yUlz4L8KyZifVT8upXSdymP9Up9ucV+FL6SbJrnxL4huGknmJluLy6cvI7HqXdskk19HlvDlbEWnV9yH4v0X6s8jG5xRoPkj70ux+lX7X3/BWv8AbF/bFubnRX1WTwR4QmJC6TpUjRySp6TSg7m9wOK/NW3tLe1BEKgFjlmPLMT3JPJNeFeJfjlZWV0bXw7B9pCHBkk+VT9AOa82vvjN41vQ8VvIkCv93YvzL9DX3uCyWjhl+5hZ93ucrybNMbadRcsezdvw3+8+xXdY13OcCsx795G8q0Usx4HGTXLfBb9nD9oD9oF0vri6m0rSkIJurncm4H+4oxur9IPD/hv9nv8AY60VrjxHqR1PWGALNOwmuGI/uJ/AK4Mwz7DYWf1einVr/wAkdfvfQ+azN4fBz+r05+1r/wAkE397Ph2y8Ja5qLCS6jeNT/eBz+VdbY+HtP09s7dzjqW7GpPi9+3L4w8XebpHw8tl0WxbK+dgG4YfXov4V5n8HPEWr+I1u7PUpmuZ1bzN8jFnO7qSTXoYeWNqUXVxVNU/7qld/PRL8WKvgMwWFeJxMVBL7Kd3bz/4c9jAA4FZWsuE0+Rs7T7HFdnBorHm4P4CuD+JxtrHRorWJfmkcc9+KmlOMpqKPFwzVStGC6s88n1SzhJy24+3NbfgmOTxP4nttNiTbFu3OevyjmvLa9y+FlzLoNrNqcSK0s/yqW5wBXfibxpScd+h7+YRVHDylH4tl8z622hFCjoo/Svnv46eOLfT9I/4RewfNxc4MmP4U/8Ar1Lq/inUzBJd3dwyogJIU4FfJ2q31zrmqS3mGdpDwBycdq8nLMs/eKpUei/M8PIco563tqr92Ovz6GPXR6ZcSWERMajc3c+lbOh/DjxnrUqfY9OmKsNyll2qR9TXpA+BfjaKwbUr0Q28aKWcO/KgV7tbGUIvlnNfefWYzMsLH3J1F955Y+q3znO/H0qc+INa4C3MigDACnA/IVlyqqSMiNuAJAPrWroUEL36T3K74ozll9fatJRja9hTjTUeZx2PX/A2ma4FGq6xM7K6/u0ZieD3Nejk4Ga4OPxtbIBGLcqo44PQVpR+LNJmYhmZAPUV4dalVnPmlE+RxNKvUm5yhb0PQdI1xtKLFY1bd3PUfjW7qnxBt7DS5L2G1knmTpEvevPbe5t7pPMt3Dj2qeuSWGpuV5I8+WHpuV5RPlrxj4q1nxZrEmoawSGBIWM9EHoBWLpmq3+j3Iu9OlMbj0PX619F+JvC2j60heZNk+OHXg/jXz7rOg32hziK7HDfdYdDX0OGq05wUEreR91l+Mw9amqMY20ty9Pl3O/j8bX/AIiUQXz7GH8K8A1KQuMN0rym2ineUNBwy969K026WZBFL/rAPzpzpRh8OxlicNCj/CWnbsRPpzu+6PgH1q5a2K20qz5O9CCCOMEVfqK4mS0QPP8AKG6e9Q5N6HI6s5LlPuv4Y+NI/F2gqJ2/0u2ASUHv6GvcfCHiW68Ka7Dq1uxCqcSKP4k7ivyz8KfEi98G6uNW0uISHaVZHOAwPriu71D9pLxxczB7GK3tkxyu3dz9TXxmZcMTrynThFOnJdfPofL4jhzEus5UElHfV7eR/QlpmoWesafFqdkweGdQyn2NRyaFokrF5bOBmPUmNST+lfn/APsMfH7WPiCNR8AeKNhuLRftNuyDaPLJwy/gea/QLWI9Sm0m5i0aUQ3bRsIZGG4LJj5SQeozX8w5/ktfKMyqYCpKzT0d9Gnqn925jWoVKM/Z1NzzTXvgL8HvEUE8Oo+HrPdcHc8scQSTd1zuABBzX5pfErwZN4B8Y3nh1/8AVxNuiPrGfu/pXg+tf8FYvjj8MvEl74A8a+HNN1C+0i7ltbi4UvF5nlsRkKOBkdK7HS/2vfDH7YvjaLRfD+hSaLqltatI7zSqyTKuMgYAORnj2r9f4TyXiHK67lj7yw0ot83OpJW1UrN3Sa029dj3cfwzmeHw/wBaqwvSSvdNNW773/AyPE2ltq2mNBEBvU7lzXi93pWoWR/0mJlHrjivq3UPB/iHTY/Mu7ZtuDyvOPriuGniaNzFKuMHoa/UsHj0o2g00eNhMc4K0dUeI6brmsaNL5umXMkDD+6xFe06B8e9as9sOuwLcpwC6/K+P5Gl0/wtoOu6klrqMZUSZG6Pg5pmu/A7UIEabQrkTAciN+G/PpVYivga0uTERs+//BRvVxGCrPlrqz/rqfV3w18UaR42s59U0gMUiYIwdcEE81c8T/C7wT4uBfVbJBKQQJIxsYZ9xXD/ALMekah4f0jVtP1eMwymdCFbuAp6etfTMlrDLywwfUV+bZnXeEx9SOHk0lazT6WR8xif3GIkqEnZbO58C+Kv2Y9atP3/AIUukuk5ykvyMPoehr+jj9hbSPhj8MfgHoPgXRNRs/7VkiNxfxrIvmNcty+c4JA6D2r8q7m3EDAZzmq6O8bb4yVb1Bwa+N8RMpxPF2WUsuxGJcIwlz3UU+Z2aXMrq9r6bH03D/GuIyys6k6aqaW10fya/wAj+hPxN4M8FeMNNlg8XaZZ6jayph/tMSSKUHPJYdO9fh38ZYvhLa+NLnT/AIQ6V/ZljbSOjlHJjlfPJVMkKAemO1ZNr8W/iVomlTaTYa3drbTxeQ0TSFk8v+6ASQB9K8uS6IHzDNfFeHfhti8gxNWviMW5w2jGLlGPm5RvZvot++9j0OLeN4Zvh4UaNDk6ybs35JO10u+z6F6s7UdI0zV4Tb6nAk6Hs6g1JNqNlbANcSLGDwNxxzVxWVgGU5Br9gXNFqS0PzxXWqPnjxN8DdDndrjS3a2Ldhyv5Vh+CrHxF8NdRa01+H7Zo1ySJAg3hCeA2O3vX1E6q6lXGQa4q/u9LtbkWjTx7n6KWGa9mjmlerTdCr70fPf5Po0d9PHVZRdOfvL+upz3i/4CeCfFVr52nxLbSsNykDKEnkcdvwr2f4BftnftyfsJXEUfhDV5fF3hKIjfpGoyPPEqDtExy0XHTtXHWmpXVqu2Nsr6HkV0tprtvOPLuRsJ6+hrzp1q8VaquePnv9+/5o9DLOIcdgX+6nePZ6o/pd/Yn/4K/fswftg/Z/C09y3hDxdIMHSdVIi81xwfIkJ2yDPYHNfq+CCMjkGv8+jx9+z/AOCPHIGoWIbTL5G8yO4tTsIcdG47j1HNfeH7KH/BVD9rH9i+4h8G/tAw3HxG8AxFY0u1cy6lZx9OGbl1A5wx+hrJxpz1oy+T3/yfy+4/Usm4wwWNtTm+Sp2ez9Gf2UUV8+/s5/tRfBH9qzwLD8QfglrkGr2TgeYiMBNAx/hlTqrD3r6CrE+tCiiigAooooAK/kQ/4Nhf+Tnv2+P+ytTf+lep1/XfX8iH/BsL/wAnPft8f9lam/8ASvU6AP676KKKACiiigD+RD/goZ/ytgfsY/8AYman/wCitar+u+v5EP8AgoZ/ytgfsY/9iZqf/orWq/rvoAKKKKACiiigAoor86P25P8Agpz+zX+wroJ/4T+//tTxHOhNpoliRJdSMOm4Z+Rfc04xbdktRNpas/QfVdW0vQ9Pm1bWbiO0tbdS8k0rBERR1JJ4Ar+fj9tj/gv98C/gvdXfw9/Zotf+E98Sxbo2uYzjTrdxxzIPv4PZa/nO/bJ/4KUftY/t66tLp3ifUpvDfg4ufJ0LTpGjjdO3nsCDIfrxX5/ardeG/h3pYuNSZLdQOEGN7fQV9Xl3C9SpaWJfKu3X/gfmeHi86jGfscMueb/r5n1L+0P+1t+0/wDtfa6+uftB+KLm/tCxaHSYHaKxhB6ARA4OPU5rwOGC2tkEVuioo6BRgV8war+0RcMXj0exVRn5HkbP5gVyqfF74meJNRjsNBX9/Kdqw28e9mJ9sE19xhcrpYaNqUVFf1uzkqcP5piX7SvZLze3yV7H2XJOie5qvH9svpPKs0LMfQZr234Af8E7Pjh4/SDxl8atfm8P6ZKBL9mif/SGU8854SvuHxl+0N+yr+y74fXwV4Ts4Nb1G3TaY4USVmdeMyyHue9fF5hxzQWJ+o5RSliq19VD4Y+s7Nfp3aPnMVRjTqKjhpKrPry3svn1Pzi03wJcyjzdUYoP7o5P413Wn6RYaam21jCn17n8a8f+L37XfxJ+K2obY1g0fTVfK2lnGqAgH+NgMtXuHhmK88QaNbanGoAmQMTnjPevoX9cVCNTGxUJP7KlzW+dlr6feeZm2DxWHhCeIatLoug+uM8T3DxyojSkIVztzxXs1v4cgj+e5YuR2HSvmzx5NDN4lnSBSqR4XHuKeCcalSy6HnZelVq2XRFOXVLZDhMsfavpb4CaXJNBc+IJ1A3Hy0/rXyVBE08ywL1YgV9iaL4judB0G30bTY1iES4LdyT3ozqEvYeyp7y/I6M5jy0VThu/yPeZ547eJppWCqoySfQV+dfxl8cL4y8Uv9jfdaW3yR+hPc16Z8UPG+pWujG3e4cy3HygbsAA9a+X7Sxvb6QQ2UTzOegQFifyrPIcqVFvE1Hrsv1NOHctUL4qo/JfqyGKMyOFH412sWpSW8Iht0CqBiuk8N/CH4gauizWmlzBZDt3uNoH1zWj4v8Ahb4o8CWi3niTyohIcIqvuZj9K9iePw0qipe0Tl2vr9x7NfGYepUVPnTfa5x8Ot6lbuJIXAYd8ZxWxY+IfGOo3SWVneTPI5wADXI16d4F1HTfD4e9vIWknfhSOwp4hRjByULswxcYQg5KCcumh7joVlfWOnJDqMxmmxlmY55rXLhT0zXCw/EHSJCRKkkf4ZrYtPEujXxHkzgMezcGvmKtGrdylE+SqUqibconsmleOLS0hS1mttiqMZT/AArzv4tfGd9D09tL8OQyedMuPtBXCKD6e9RggjIqvc2ttdQtDcoHRuoYZFcNHB4eNVVZwvbpcxoU6UKinON12PiW4uJ7qdrm5cvI5yzMckk13Phr4i674ej+yhvOh7K/O36V1Pi34dQpm68OjpktGT/KvGpI3hcxyAhlOCDX3EJUcRC1rrsfc054fGUrWuu3Y9am1i41tvtdxKZN3IyeB+FULqCO5j2N17VxukXNxaybs/uz1FdvFJHKgkj6GsXT5HaOxxVaXsXaOxhR6RMxzIQB+teu/CnxQfAevrPkm3nISUHnj1x61woBJwBms641S1tmKscsOwqMRSWIpyo1FdMxrc1eLpy1TP1StriG7gS5gO5JAGBHoa+vv2evHkZDeD9VcEnm33D8xX4m+Ef2jNQ8K6INFNiLoJnY7vgqPStTSP2t/iDo+rQapa21qphkDjCnOAemc+lfkHEfhzjMzwlXCcq7xba3Wz/R+R42AyvG4bEKpCOi890f0i6ho+k6tbm11W1iuYj1SVA6n8CK4DWvgp8IfEVg2m6v4a06WBuSv2dFz+IGat/Cbx/Z/E/4faZ43shtW+hV2X0buPzr5a/bt/aJ+Kn7Lfw8tPi14E0+z1XTbWdU1K2uchyjdCjDofwNfyhleAzSeZRyvCzcK/M4pczj7y6Xvo7qy8z7vD0XWqRpw3lov0MH4+fshfDTTPCV14u+Gekppl9aJuaO3yI3Qcn5emfevzCOFODxXS+Hv+C7Xg/W1udL+JHgKeGymiKD7FcCRiTwQQ4UYrF8L3tr8W9CX4i/D+zlTSdQkdoIpceagB6MBxxX9UeH+G4iy7D1cJxJGSs1yTlJSvfePNzPa1zyOKMjxWBca+Ihyxel9LXPm74k+F73+1zqVlGXSUZbHXIrykfabOUMpaKReQRwRX2Z4n0m9tbfF3C0bIf4hivM7izs7pSlzEsgPqK/ZcHjb0knqjnwGatUlCaulocD4c+LHjLw6wCXRuohxsmO4fn1r3fw58fNB1Ei212FrSQ4AYfMpJ/lXnC/C3TNZtmuNPlaCQHoeVrhdV+HPiTRp1byvPjBB3x89/Spq0MDiG01aX3f8AurSy3FNp+7L7v+AfZWq6bYavHjUYUnjcZG9cgg+leJeI/gT4f1IGbQ3NnIc8H5kP4dq+pNJijl0e2WRQf3SDn6VFc6LC/zQnZj8q+Xw+YzoytGTX5fcfKYbMq2Gl+6m1+X3Hz7+zH8AFvP2gdAtfiG8MWiwXAmlldwEby+VXn1OK/qwsJ9C1fTVg054bu02+WAhWRCAMY4yK/mpYbWKk5xXSaB408W+FbhLrwzqd1YvHnaYZWUDPXgHFfl3ih4e4ri7EUcWsZ7OVOPLGLjeO927p3Tel9Hoj63BcX1KatXpqXmtP8AM/Xz9o74P/s1aV4Rn8Z+M/DtvFcQALDJZKLedm7KGXHfrX4+3hsjdSHTVdICx8tZDuYL2BPc1c+IHx3+JHjiK00rxbqL6hDYjEfmfe565Pc+5rh7bxNaTcXKmNvXqK9Dw/4LzHI8A6WPxMq029uaTjFdFFS2vu9PLoeRn2YfXqinShaKXZX+Z0ZAYYbkehrkdb8EeH9aQmSBY5D0dBtNdFb6hY3TbLeVXYdQDyKuV95CpUpu8W0zwIVJ03eLsz571L4XajZSC50WYSFGyqtwwx719DeBG0T4h6UfD/jazVdVtR87bdjOvQMD396gnVAhlchcdzxWfYanBJJ9p02dWdON0bcj8RW+Kq1MVSs3aS2ktGv+AddXF1K1O091s+qN/Sfht8RfhJ4qTx98A/EN34e1SBg6S2krQyEjs235XHs1fsR+y1/wXl8f/DK8tPh5+3Fokt3AzLCmv6fH84zxmaLv6kr+Vfk7pnj6+t8R6gomQcFhw1dZdweEvHunmy1KJLhD/C4w6n1B6g/Svm68aif+1Quv5o7/AD6P52fmetlXFuOwTUa3v0/x+TP7lfg58cfhR8f/AAbb+PvhBrtprul3IBWW2kD7T/dYDlWHcHBr1ev8+P4c2Px4/ZW8b/8ACzf2U/FN3o9ypDy6e0h+zXGP4ZI/uuCOORn3r+kH9hz/AILXfDr40ahafCP9p+yHgTxu+2JJJTjT7tzwNkhPysT/AAmuGdJJc0Jc0f63XT8vM/Ucqz/B5hH9xP3v5Xo/69D926KignguoVubZ1kjcBlZTkEHoQR1qWsT2gooooAKKKKAP5EP+DoX/k4T9hH/ALK1B/6U6dX9d9fyIf8AB0L/AMnCfsI/9lag/wDSnTq/rvoAKKKKACvzM/4LP/8AKJb9o/8A7J34g/8ASOSv0zr8zP8Ags//AMolv2j/APsnfiD/ANI5KAPnb/g2/wD+UJnwD/7BN/8A+nK7r9vK/EP/AINv/wDlCZ8A/wDsE3//AKcruv28oAKKKKACiiigAoor86f25v8Agp5+zD+wf4Zku/iZqyXmuuv+i6NaMHupW7ZGflHuacYtuyWoH6F39/Y6XZyahqUyW8EKlnkkYKqgdSSeBX4N/t2f8F9f2Xv2XbXUPC/wpceO/FForhorM/6JCyg53yjg4PYV/MV+3R/wV1/am/ba1CfRjqM3hHwazHy9I0+Ro2lTt58ikFsjqOlfjD8SdXsLTwxd6Zay7J5l25Xrk9cn3r7DLOEa1Ze0xT5Y9ur/AMiaMvaVY0oa3Z9Hftxf8Fp/20v22tRubDxP4im0nw+7N5elaeTDAEPZtuC3H94mvyhaz1LUs3l85YnklzkmuistKt7fAjXc/qea6keHL2aNTcfulbsepFfZ4LKqGHjajC3n1+bPvaaw+GXLSSXn1Z51b6fGpwBuY1vSaRPa232m4AjB6A9TXpemaJBE4hsotznvjJrH8R6fO9+LS4O0RdQPU16HsrK4vrqnPlX/AATz1Y2kbbGCTV5NPlTDT8D0711EFtDbrtiXHvVpNP8AMbzJzkdhSUTSeIsc/HE8h2RDNTzWzW6gynk9q7ZNLnismu9myJRwx4GfQVzIgaabe/zMewq2rHNCspt22RkKjuflGa6bRtIJb7TcjIHQVJNplzYxpLdRmNX6A8E4olvp3URp8qjoBQrLcUpuatB/M6KW6t4Bhm6dhXZL4T1NvDy6/twp52dwvrWV8MdC0zWdfI1U58pd6Rn+I+/0r6paKFoTA4GwjGMcYrRSPlc3zT6tVjSpq73fp2X+Z8hVDfx3MMIkH3T1rsNS021tNUm+ztujDHbVNrc3Sm3Azu4rXkuj04YhO0lsefPIsa7n4FLp88F47Y/hrC1k3MF69ncDaYzjFW/DOnahfXubNcqgy57AVzp62PUkoqm5tnWqpJ2qKp3okjfyycCt+KIRDaevc1Wu7VLh0BOD/StmtDghUXN5GDFDJO+yMZomiMLmNuorp4okhXZGOKiFhFd3HmyH5V7ClyFKvq+xhW1pPdNtiH419Faft+wwhTkBAM/SvMLa0aVxBZpkngKo5r6J8K+F1hsYpNQ+ZlH3ew+tXpBXZ4Gd42EYRcvuMK30W91CByq7U2n5j06V8KahC8d7MvXDsM/jX6Xa3q2maLpryXjiNdpAHc8dhX5u3jrNeSyR8hnYj86wnJy1NuE8RUqutKStHS34mfZQvcXccMYyzMABXr9xZzWpAkHHY1xPhDRrrVvElpaaeu6QtuxnsBk17ld2ckDtbXibSOqtV0oppnt5jioxqxp36Xt1PPY0MjhB3okjeJtrCtq5tIbGdZQcK2RRJGsq7W6VTVjD2qdmtjKgMjvsHNW+V4P4ikt1jhlaMt81W3QOPemn0G52duhzOp3NvZsm7qxpsciSoHjOQayPFVhf2l0JLtMIwGxu1ZuhPdy30djbAuZTjbWTl71jtjCLpc6Z6jo9zOVIlOUHAJrogQRkVlfY3sh9mcYK9a19GCTX0cV0cRZG4+1dS0R41ZrWa2No+H9R/sZ9aVfkXnb3K+orlre/tLtcRt+HevqeGOBbdYYgNm3AA6Yr5b+J2iaXo2uIdLO1pgXdBwF9MfWsVVZ5GVZgsTVlRmrN6r/JnP6vp5iP2mBfl/ixXPq6vwKs2+s3UKmKX94h4Ibmo4dOudQEkunxlgh5UckZpNrofUQvBe+/mUf7Nedz5BGeoBqhNbywkpKpFaayT2smGBDKe/au1GnyXtgt4E8yJupHOD71HKnsVOv7Ozlszxi4tHRyydDVIgqcGvS77QFdS9scEc4NcdLDj5JV5FS4WO2lXU1oQQ6bcXNr9otvn7EdxVix1vUtLfyw2VHVWrY8MxzHUfscHPncAe9dJqeiRu7R3se1/pg1UY6XRlUrxU/Zz1Q3TPFVpcSKGPlSdiema/Tf9kH/AIKf/tYfsc6lAfhn4muG0pCC+m3LGe0cemxs7c+q4r8m7vwxeqrS2f71V7Driqllreo6W/lkkqOqtXJjMDh8VHkxVNPz6/ectXA06q/dv5H+jr+xF/wX/wD2dfj3HY+Efj0F8EeIbhUVZpSTYzuf7sn8GfRq/frR9Z0nxBpsOs6HcxXlpcIHimhYOjqehBGQRX+RP4H8S2GsaRCrnEqcFX6ZH86/W79ij/gqr+1D+xfrkVv4d1Z9Z8LA5m0W+dpIMd/JJJMR9Mce1fCZpwjVpJ1MI+aPbr/wT5ac3TqOnUVmj/R9or8wf2Dv+Cr/AOzD+3dosdt4O1EaP4lRAZ9IvWCTbuhMfOHXIPIr9Pq+NlFxbjJWZoFFFFIAooooAKKKKAP5EP8Ag1z/AOS5ftz/APZWrj/0ov6/rvr+RD/g1z/5Ll+3P/2Vq4/9KL+v676AP8wT/g9W/wCUpvgH/slWlf8Ap31iv6/f+DXH/lBR8DP+5m/9SDU6/kC/4PVv+UpvgH/slWlf+nfWK/r9/wCDXH/lBR8DP+5m/wDUg1OgD9/qKKKACiiigAooooAKr3drBfWktjdLvimRkdT3Vhgj8qsUUDTtqj+LLSv+CJ/7eWq3skM2h6dp0IdlSS71KA5UHg4haUjI5xjNf10/s7eDPFXw4+AXgr4d+OGhk1jQND0/Tbx7dy8TTWkCRMyswUkErnJA+leRfEH9v79jT4Wa/feFfHfxC0qy1PTZnt7q1DvNNDLGcMjpErkMCMEYyK9z+D3xl+Gnx98BWvxP+EeqLrGhXryxwXSxyRB2gcxuNsqo4wykcrz1GRg181kmVZdga044SrzTa1Tkm7J9lY/UuO+MOJc/wdGpnGE9nRjK8ZKnOMW5Lbmk2ndK6V+lz06iiivpT8sCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9D+/iiiigAooooAKKKKACiiigAooooAK/n6/wCCj3/Byd/wTf8A+Cdut6h8MrzWLj4k/EDT2aKfw/4W8ucWky8FLy7dlt4GBBDxq0kyH70Vfi3/AMHSH/BfLxr8ENcv/wDgmt+xbrcmleImtl/4TjxHYyFLiyjuUDJptrIvMczxsHuJUIZFZY1IYybf5mP+CQv/AAb+ftef8FabhviLpE8fgL4W2tw0F14t1SFphcyocSR2FuCjXUiHh2LxxKQQZN42EA/Zz4l/8HvP7TupalK/wd+B/hfRbPJ8tdZ1G71OXHbc0Ashn6LXgt1/wetf8FPHYmy+HfwvjXsH07VnP5jVl/lX9I3wX/4M9v8Agkn8O9Ct7T4mp4r+IGoqo8+51HVmso3fvsisUtyi56KzuQOrGvpu0/4NZv8AghhboFm+C0s5HeTxLroJ/wC+dQUUAfyI/wDEat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8gX/Eat/wAFTf8AoQfhV/4KtX/+XNH/ABGrf8FTf+hB+FX/AIKtX/8AlzX9fv8AxC5f8EKP+iGf+XN4h/8AlnR/xC5f8EKP+iGf+XN4h/8AlnQB/IF/xGrf8FTf+hB+FX/gq1f/AOXNH/Eat/wVN/6EH4Vf+CrV/wD5c1/X7/xC5f8ABCj/AKIZ/wCXN4h/+WdH/ELl/wAEKP8Aohn/AJc3iH/5Z0AfyBf8Rq3/AAVN/wChB+FX/gq1f/5c0f8AEat/wVN/6EH4Vf8Agq1f/wCXNf1+/wDELl/wQo/6IZ/5c3iH/wCWdH/ELl/wQo/6IZ/5c3iH/wCWdAH8gX/Eat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8gX/Eat/wAFTf8AoQfhV/4KtX/+XNH/ABGrf8FTf+hB+FX/AIKtX/8AlzX9fv8AxC5f8EKP+iGf+XN4h/8AlnR/xC5f8EKP+iGf+XN4h/8AlnQB/IF/xGrf8FTf+hB+FX/gq1f/AOXNH/Eat/wVN/6EH4Vf+CrV/wD5c1/X7/xC5f8ABCj/AKIZ/wCXN4h/+WdH/ELl/wAEKP8Aohn/AJc3iH/5Z0AfyBf8Rq3/AAVN/wChB+FX/gq1f/5c0f8AEat/wVN/6EH4Vf8Agq1f/wCXNf1+/wDELl/wQo/6IZ/5c3iH/wCWdH/ELl/wQo/6IZ/5c3iH/wCWdAH8gX/Eat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8gX/Eat/wAFTf8AoQfhV/4KtX/+XNH/ABGrf8FTf+hB+FX/AIKtX/8AlzX9fv8AxC5f8EKP+iGf+XN4h/8AlnR/xC5f8EKP+iGf+XN4h/8AlnQB/IF/xGrf8FTf+hB+FX/gq1f/AOXNH/Eat/wVN/6EH4Vf+CrV/wD5c1/X7/xC5f8ABCj/AKIZ/wCXN4h/+WdH/ELl/wAEKP8Aohn/AJc3iH/5Z0AfyBf8Rq3/AAVN/wChB+FX/gq1f/5c0f8AEat/wVN/6EH4Vf8Agq1f/wCXNf1+/wDELl/wQo/6IZ/5c3iH/wCWdH/ELl/wQo/6IZ/5c3iH/wCWdAH8gX/Eat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8iFr/wetf8ABTtGBvfh38L5F7hNO1ZD+urNXvPw0/4Pef2ndN1KJ/jF8D/C+tWeR5i6NqN3pkuO+1pxejP1Wv6Z7v8A4NZv+CGFwhWH4LSwE94/Euuk/wDj2oMK+ZPjT/wZ7f8ABJP4iaDcWnwxTxX8P9RZT5Fzp2rNexo/bfFfJcF1z1VXQkdGFAH1J/wTh/4OTv8AgnB/wUS1vT/hlZaxcfDb4gagyxQeH/FOyAXc7cBLO7Rmt52JICRs0czn7sRr+gSv8e//AIK9f8G/n7Xn/BJa4X4i6vPH49+Ft1cLBa+LdLhaEW0rnEcd/bku1rI54Rg8kTEgCTedg/pn/wCDW/8A4L5eNfjfrlh/wTW/bS1uTVfES2zf8IP4jvpC9xex2yFn026kbmSZI1L28rnc6q0bEsI9wB/dTRRRQAUUUUAFFFFABRRRQB/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmv8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNAH5u/8Fi/+UT/7SP8A2TbxN/6QTV8qf8G1f/KEL4C/9g/Vf/Tte19V/wDBYv8A5RP/ALSP/ZNvE3/pBNXyp/wbV/8AKEL4C/8AYP1X/wBO17QB+5tFFFABRSEhRuPAFfzdf8FYf+C1em/A/wDtH9m/9k24j1HxswMN/rAIe20sHqEIPzzY4A6Ka1o0Z1ZqnTV5PoTOcYRcpOyPtz/got/wVr+CP7Cujy+FtO2+KPH1wh+yaNbuMRsej3DA/Io646mv4n/2g/2iv2gP21viNN8S/wBoHWpdQLOWtrBGK2NmnZIYunHqeTXk0dpr/izXrnxt46vp9V1TUJDNc3l05kmmdupZjk49q9k+H3giw8c6/F4WuLt7COZWAeJQX4H8OeB+INfcYPKaGX03iMT70oq76qPourPhs54junCi7RW7Pn3xd478L/DXTSkhWS6wNsCn52z6+gr4y8WeOvGPxI1AxMJHi5MdtACQF9wOv1r92/C/7EXwF0GUXusafJrl2V2yTahIZN59dvAB+lfQnh74a/D3wokSeHNEsrPyF2o0UChgPTdjP61y1ePMHSv7ClKb7uy/zZ5WB4vyzL/foUJVav8ANK0V8l71vzP5vfAP7Pnxf+JF/BaeHNDujHPJ5fnyxlIkPcsT0Ar9if2f/wBgz4e/CqO38W/ELZrOsQoXZZAGtYjjnapHzY9TX3paRRo+2NQo64AxXK/FLXT4Z+HWta6pQNbWkrL5hwpO3gGvnMy4xx2YyjhqP7uMnbR6u+mr/wArHnZzx3mOZ2w9P93B6Wi3d37v/Kx+avx2/bl1iG8uPB3wdiWwt7fdC14VG8leD5YHAHocZr84dX1nVdf1GXV9buJLq6nYtJLKxZmJ7kmoJTPqN5JLGhZ5XZsKM8k5r0Hwx8KfFXiWTCILZMZ3S8cewr9cy3KsFltLloxUe76v1e5+j4LA5flFHS0XbVvd/Pf5I8zr6J/Z4t5/7fu7rYfLEW3djjOeleoeGfgV4V0fbPqu6+lA5D8Jn2H+Nev2ljp2kw+VZRR28a9lAUVGLzKE4OnBXv1Pn864moV6E8NQi3zaXen4b/kaFfO3xTvluNcS1QgiFOx7mvUtX8f+HtKBUSefIONsfP615BeWyavfyare8tKc49B2rmwNGUZc8keBlVCVOp7apFpW0OHs7SW8uEt4hkucV9B2NqtnaR2ygDYAOK5TQbOIXQMagKgzxXp1n4f1y/ge6s7SaSKNWdnVCVCqMk56cCtMbXirczsjbNMX7SSjskdD4R8Fad4qSR9aj8y2QgbM4DH39q9i0nwb4V0JFTSdPgg2ZwVQZ59+tfB2oft4fCHwLpf9keHLS61a6jUksoEcRkz0LMc49wK9B/Ze/aN8f/H3XtVudT0q3sdFtABE6FjJvP8ACSTg/gK8DGUsVJSm7qC8/wBDgx3DucQw1TGVqbhRj/M7XvppG92/kfaaqFGFAAFfM/7QfjZ7Czi8KafKUkn+eYqcHZ6fjX0RrGqWui6XPqt622KBC7H6V+VXjLxNd+LPEl1rdyxPnOSoPZewrTIsF7Wt7WW0fzMOF8s+s4j2svhh+fT/ADLysrMFDDJ46119o9pbQiMSLnvzXjW5vWtDTLSfUr6OziJy5/Svs5Qutz9Dr4JON3KyR7OCCMipIonmkWGMZZjgVr21jbW9slqoyEAHPXitPSng0u+F6sYcjsf6Vwyq6Oy1PmZ10k+Veh6VoOhQaTYCErmR+XJ9avXFowQmDk9gaqad4gsr8iPPlyHsf6Vu14c5TUm5bnzNSVRTbnuzgpBIHIl+93rL1TS7TV7VrS8Xcp6HuD7Vo+OfE2maBAiTL5lw/KqODj1NUNN1K11W1W7tGyrdfY+hrup83KqlrHo0o1VCNZJpdGeP6losuizeQw+T+FvUVRjkaNxIhwRXt+o6VHq1o1tJx3B9DXi15aS2Ny9rMMMhxXo0a3OrPc9/B4r20XGXxHufg7TNJvtPTUcCWT+IHnafpV/xp4dj1jR9sChZYPmTA64HSvM/h7rDafq/2OQnyrjg+zDpX0Aw49a8nEudKte/oeBjfaYfE8yfmj46COz+WqktnGAOc1sReG9emiWaO0l2OcBipAr7R8MaNoMUBkt7SFZg25m2jOfXJrd1qzF1p7xxgZX5h+FKedWnyxh95tV4lanywp/ez56+CV14y+FvxM0vxhbJ5ccEoWf5uGibhgQOvFftD/w1H8Gs86i4/wC2Rr8k6K+P4n4TwWeVoYjFNxlFWvGyut9bp7dDz8ZiZYiSnNJPyPAf+Cg3w1j+Jvx2/wCE9+CFhNqsGqWyveLbQMCkyHaWb1LDH5V8d/B678Z/A/4x6R4m1vTrmyFldLHciSIjEcnysOeM4PrX7FfC3WRpPiqOORsR3IMbc4GT0/WvqXUdF0fWLdrTVrSG5ifG5JUVwcdMgiutZp/ZlCnlsoOdNR5U2/ea210totNj3qfH1bC4RZbiKCnS5eW92nZ6ea0Wmxct54ry2juYTuSVQynrkEZFfN/xd0wWmvR38a4W4QZ/3hX0nDDDbxLBbqERAFVVGAAOgArxj44L9n8Ow6mIt/kygMe4Vh/jXz+T1OXFxS2eh+cYKVqyS66Hg2n3BtL2K5UkbGByOte82urWV2BsbaT2NfM9trFjcYAba3o3Fep2cglto5Ac5Ucivqsfhuazloz1MVQvbmWp61HLJGwkiYqfUGup03xdqVlhZz5yDs3X868+8CwHUtVaxuGJTy2IGeh4r0G98K3MJL2pDD0PWvmMWqCn7KqeTUSi+Vmt/wAJpot9dmCWTyXUAYfjP41vKyuoZDkHuK+aPEdvcW+pMJkK9OopNK8SazpTqtpM23P3G5Xn2qZ5NFwUqMvv/wAy3heZc0WfX+meEZNcsDcNJ5R3YXjII71mXvgbW7Uny1Eq9cqa9i0aF7fSbaKTBYRrkgYGSKn1C7j0+xmvpSAsKM5JOBhRnrX5+s4xEajULNX0RCprY+AfHl+0uttpTHDWvDJ3DH1rBsPEGsaaR9kuHCj+EnI49q+Wtf8AEF9qfiW+1yOV43uZ3k4YkjJ4Ge+K6zwp4w8Qahqtvo8irP57hATkEe/Fftiyd08PFSs7LVefU+hqZTKFO6aaS1PpHX/Heu6lpy2tji3c58x0OCR7eleNyrMjbps7j3PWvSrzRb6y5ddw9V5rEnSLyyZgCB2Nc2DdOkrU4qzOCjKMVaC0K2k+Mdc0plCymWMfwPyK9X0Xx1pOqbYZT5EvTDHgn2NeAMVZiUGBTa2xGX0autrPyNKmGhPpZnvXjTV/Enh2OLxJ4euGCxcSxn5kZT0JFb/hH4y6B4kj/s/xAq2k7/LhuY3z15P8jXjmh6p4gntm07Z9qtJFKFX6AexrzjWvD2oaNIWmjIiJ+Vuv515/9kUKsXRrWUltJb/Mzp4WnNOnU3WzW59Zy+LvGP7J3iWH46/s5a3P4Y1xGVDbWzYsr3JyRPD911xnPGfSv6eP+Cdf/BXv4TftlxR/Dnx8ieFPiBbqFls5WxbXhHV7Z2PIPXaeRX8Yup6zrOraVHpF5cvJBC29Fc5wcY781xLrqNjcR3mm3M1jd28izQ3Nu5jljkTkMjDkEGkuGr0Lc96ib16NH3XD2dVsJTVDEy54/il5f5fcf6f1FfzJf8EvP+C0EXiG/wBN/Zp/bA1FV1eRUi0nxHJ8kd32EVyTwso4AccN9a/prR0lQSRkMrDII5BBr5WtRnSm4VFZo/RqVaFWCnTd0x1FFFZmgV/Ih/wbC/8AJz37fH/ZWpv/AEr1Ov676/kQ/wCDYX/k579vj/srU3/pXqdAH9d9FFFABRRRQB/Ih/wUM/5WwP2Mf+xM1P8A9Fa1X9d9fyIf8FDP+VsD9jH/ALEzU/8A0VrVf130AFFFFABVPUdRsNJsZdT1SZLe3gUvJLIwVUUdSSeABXMfEH4heDPhX4PvvHvxA1GHStJ02Jpri5nYIiKvPU9/Qd6/iB/4Ka/8FhfiV+2jrtz8Hv2fZrrw78ObeRo5J0Yx3eq4OMtg/JF6LnJ7114PBVcVUVOirv8ABebMa9eFGDnUdkfox/wUo/4Lz23h641D4E/sQsl/qq7re98SsN0FuehFsP43H948Cv5fzp/iTxrr9z4++JOpXOr6reuZLi7vZDLNITySWboPYVb8M+ELLR7dGlQeYOQOw/8Ar19e/Db9kvRfjx4bTVtb8Q3NlaxzlZrWyXYzrjo0h5GfYV9ZUll+RYf6ziZeTlZvV9Elt6/ifAZpxD7efs1Lkp99/wAj84viR8d9I8Jq2ieEVS4ugMGQYMafl1NfHOo3vijxhfHUb3z72VzgEKzgZ7DHT6V/T/4J/YC/Zd8E+RLD4dTULi3ORNesZmY/7QOFP5V9LaD8M/h14XtPsPh3QrCyh3btkVuijPr0r5qv4vZfR0wmGnN95NR/+SN8DxbluWxtg8O5S6yk0m/zsvI/mq/Zz/YI+NHx41rF7Zy6BpMDL591doUbaf8AnmpHzGv298OfBz9m39gT4bSeLLiyF7eKQDezosl1LIRwEJ+6PYdK+9NKRUtVCgD6V+VX/BU3xO1r4V8P+E1RGW6mkmZs/MuwY6ehzXxVLirMeMM6oZVXk6eGk/ehB2ukm3d7vb08jmxOfYzOK9OjUfLTk17sdvO/f5nxX8ff26viz8Zkm0HS5P7D0VyR5FuSJHXtvfr+Ar4kZmclnJJPJJ5q3Z6df6jIIrCF5mPZATXu/g79nnxPr6x3msypZWzckfek/LoK/ozA4DLcmw6oYWEacOy3fm+rfm7n0kq2Ay2nZtRX4v8AVnz5X6U/ByKWD4eafFMpRgh4IweTVLwx8E/AfhtFY2ou5l6yTfNk/TpXqE1xYaXbhp3SCJRgZOAK8rNMzhiYqnTi9HufCcRZ/Sx8I0aEXZO931+QahcLaWUtw/RVJ5r4svZzdXktw3V2Jr37xV480rUrSXRNHYySOMF8fKB9a8qg0azhALAufeqy2DpRlKas2cmVx+rxlKorNk3gbSWvdT+1yLmOHnn17V7p5bMwUdTxXPeGrHyLEbFw0h4AFbmu+JPDfwwt7bxT8S3fTdMMm0SSI3zsOdqjHJrjx2J5qnn0XV+nc58VOpia3LTi29klqz2rSfgp4M1CKHVfE1r9suCAwEjHavtgV6rpfhvw9oiCPR7GC1AOR5aBea/Nzx3/AMFNPAGnQ/ZfhvotzqVwflVrnEMYPQcAliDX3x8J/FmveOvh/pvizxLYrp13fRCVoFJYKD05PPIr4fM6GZQpqti7qLdkm/0ucWbZNmuDoQrY6DhCTsk3r/4De6XyPQpZUhiaaU4VAST7CvzN+L/jqfxt4tmkWQm0tiY4VzwMdT+NfWP7RPj4+EPBzadZvtu7/KLjqF7mvzNLuxyxJJ719PwblfuSxk1vpH9X+h6XDGW8yeKl6L9WdzYwi4n5I2ryc11gZfuqR9K8aDMvQn8677wPpT3t019MTsi4A9TX2laCScmz6LGYdRi6kpbHUV03hfQJNd1BYzkRpy5HpU0lhaydVx9K7XwzrNholv8AZHiPJ5cda8vEVpcj9mtTwa9eXs37Nanpa2UKRLFGMBRgVjajDcwp8gyvc1t2l7a30fm2rhx7VYfbtPmfd75rwE7PVHz6k4vU86brXnnizwdDqROpWSgTLyV7N/8AXro7vxr4efXm0m1JGON5+7u9BXQe9enCVSk1K1rnqQlVoSU7Wb/I+YZI3iYpICGHBBre8OGKbUI7G5fy45Gxn0ruPG/hhjGdYtF5/jUD9a8nUlSGXgivVp1FVheJ71KrHEUrr/hmfXOm+HdJ06ICCIM395uSa8D+Jfhk6TqX9pW4xDcHkAdGr2HwFrh1nRUE3+th+U5712E+laXq7R2+sRLNDuBKt0rxKWJnhq7c9e589RxNTC4huevc+Jobe4uHEdvG0jE4AUZ5rWg8M6/cyFIrSQFeoIx/Ov0t0rw34c0yIHS7OGIMAcqg5rzLx5phtNRF2igJL6eoqqPEyrVPZxp29Wda4ic5csIW9WfQn7Bnxxtvh14X1HwT8ULoWFnE4ktGlyfvdVGM19V/HL4q/s7/ABe+E2u/D3VtYtp01KzliRZFYqHKnaeBng+lfkpRX5fnPhfluYZtLOFVnTqykpWhypKStqrpvVq713NY53Wi00l+J+EniX4SePtAvb0tpF41nbSuouBA4jZFJAYEjoa/Vb/gmP8AEKV9F1j4YanuSS3cXMKsCDtbg8k+voK/Rf4c30Os+HPsF4qzeSdhVwCCvbiultfBHg+x1r/hIrLS7WC/27PPjiVX2+mQBxX2GccQ+3o1MFXparZp9Vs9up63EHiE80wFTL8Vhkno1JS2a62a669epe17SrfVNIuLSaMMXjYDgZ6dq/O29tpLO8ltpAVMbFTnrxX6WEZGDX54/FKa20Px3eafPG0Ks29T1BB71nwlWbqVKPlf7j4vJpScpQXqM8P6hFabo5ycN0rtYp4p1zEwIryWxu7edh5Lhs+hraSSSM7kJB9q+rr0veuelWo3lfqepW2o3tmQbeQgDt2/Kt8+MY4LSSXUExtUksvT8q47SUlu7BZ2bLc5z3qrr0Eq6TcgjP7s9K86VCnOdpLU4HShKXKzfsdY03Vl82wmWTPOAefyrTRC7hB3r41t7q6spxNbO0bqeoODXvnwo8Ua1retf2dfssqIpfcw+auzG5a6MJVIO6R3YvLXSg6kXdI9D1DwVfyyNcW0itu52ng1xGt6fqGiWUt3eRFFRSd3avocZ718w/tU+IX0rwAumQlkkvZQuVbHC8nPsa83L8TVq1oUXrdnHlftMTiaeGX2mkeLpqN4ly19bzMkjHO5Tg16DoXxP1zTnCakftcXT5uGH0P+NfD2l+Kda0k/6PMWX+6/Ir3DwVrGoeK7SWdoAnknaSD1+gr7HFYCLj+8SaPvMzyL2UOaqk4rqdv428aeIvEt0d7tFaqfkjQ8D646muJ0zWdU0WcXGmTvC4OflOM/Ud66eSKSMlZFx9awdTjt0UHbhj6U6MYRj7OMdDHDKmoKioLlPXvDPxnnhAtvEkXmgf8ALVBhvxFe8aN4i03WoRdaPchuOqnDD+or4NrR0zVNR0m7W60yVo5R0K1xYnKKdS7p6P8AA4sbkNGpeVL3X+B9raf8a/EngrVm0XxOn2+1ByknSUKenPf8a9xng+HHxi0dUuEivQoyueJYm9QeoINfC0+peIPFljG+q2JSeLgSgY3D0IJrK0vVta8NX/2vTZpLWdP7pwfx9q+fxfDtKsuak+Sou2z+X+R4s8tTanTlyVV1T/HQ/bD9jz/grJ8UP2EvFkPwe+Ll9d+Ofh5GUUy3DeZqGnbzjETZ/eRqOqtyOxr+vr4JfHX4W/tE+ALL4mfCLVodX0m+UMskTAshPVXXqrDuDX+alq+s3mvajLqmpkPNOcufU19SfsfftpfHL9iv4lx+O/hbqTPpcrKdS0Sdj9ju416/KPuSEfdcDr1rzcfw3OFJVKLvJLVefVr/ACP0LJs9lyRo4x+9p73+f+Z/oy0V8bfsVftw/Bb9uT4Ww/ET4VXXl3MWI7/TZyBc2k2OVdcnj0YcGvsmvlGmnZn16d9UFFFFID+RD/g6F/5OE/YR/wCytQf+lOnV/XfX8iH/AAdC/wDJwn7CP/ZWoP8A0p06v676ACiiigAr8zP+Cz//ACiW/aP/AOyd+IP/AEjkr9M6/Mz/AILP/wDKJb9o/wD7J34g/wDSOSgD52/4Nv8A/lCZ8A/+wTf/APpyu6/byvxD/wCDb/8A5QmfAP8A7BN//wCnK7r9vKACiiigArM1jWdJ8PaXPrWuXMdpaWyGSWaVgqIqjJJJ4AFcR8W/i98O/gZ4Ev8A4k/FHVINI0jTo2lmnnYKMKOgz1J7AV/nzf8ABXH/AILp/FD9szXL34QfAaSfw/8AD6FmiPlsVnv8ZG+QjGFPZR2612YHAVsXUVKirv8ABeptQoTqy5YI/Xv/AIKq/wDBxp4a+Gy6j8EP2LJU1HWAHguteI3QwNyCIB/Ew/vHiv4rvE3xb+IHxf8Aia3xA+J+rXWs6jdz+bPcXUjSuxJ9+3tXDWmgz3TmfUWPPPua7Cz0+OICO1QAV+oZPw9RwaU3rPu/07HuQw9GjBreTW/+R3eueMZ7vNvp37uPoW7n/CvNtV02+1dUt4c/M2WY+ldbBpyL80hyfSty1sZZ/lhXA9a+l5LrU4adSnhlaktupymkeGrDSwH2+ZL/AHj/AErZHhu71W78+b93EvHPU121ppkNt8zjc9aftT5VayOOpj5uTknr3MI2mneH9OkuIEC+WpO49Tivna6lkvLmS6k6yMWNe6+OZnh0Fwh++Qp+leEVhWeyPTyhPklUe7NTSNHvNWuPIs1zjknsK9h0fwbp9kFmvB50noegrJ+G8aCyuJcfMXAz7Yr0mnCKtc48xxlT2jpxdkjhfEOjXuv3MenQ/ubWLlmx1PtWjYeH9D8OW5udoLKMl36/hV7WNestHiLTNufsg6mvHdY8QX2syFpztjB4QdBVSaTv1Jw1OvWgoXtD8/8AMztcvZta1J7yTIQnCr6Cs4iOIfL1p0kgUYWqyqztgDJNY9bn0EIqMVFbIvaZqVzpV9HqFqcPGc/Wvo7UfGR1HSYPsJ2PMoMmO3sK8X0fw7tIub4fRf8AGuxVVQbVGBW0IdWeLmNOjWqRla7iMlTzB6mt/TrBLdBKw+dh+VYg45rq4XEkSuO4rY4682o2Wx5t4w8IXGs6tBc2gCqwxI3pjvXaaVpVnpFmtnZrgDqe5Pqa2GGRUNSopO4pYqpOnGm3ojzrVEFndPF68j6VjK2GDGuy8T2m6NLtRyvB+lcXWctGethpKVNMsSy/wp+da/h7TLzVrs2topYkZJ7Cs3T7CfUryOythl3OBX0l4b8OWvh60EUODKw+d/Wle2pw5nj4Yanyx+J7f5sXQvDtlokI2ANMR8z/AOFWdb8b2WgWptYf3lyckKOg+tVvEWuR6NZM6kGZuEU14LcTS3ErTzcsxJJojHm1kfPYLAPFydbENtfn/wAAtaxq19rEr3d85d2H4D6CvnKc+XcNt4wxr37JzmvN/F2h7G/tO3GQfvj096K0dLo+3y+UKb9mlZdDoPgtNGPiDZFmA+/1/wB019m6/wCG7HXYCJVCygfK46ivzcsru4sbpLu1bbJGQykdiK+/fhr48tvGmirJKyi8iGJUHt3/ABrBNrVHznFmErQqwx1J6JWflq39zueBeNNJ1DR79LS9XaMEqex965u1u2iOyQ5X+VfYHizwpY+K7A21z8sq8xyDqp/wr5D1jSrrRNRl028GHiOM9j7itVK51ZNmUMXS9nLSa3X6ooyyF5S9b2iuby5S2fk56+1c5Xd+DrH/AFl+4/2V/rVx1Z6mKkoUm38jq9T0qz1azazu1BVhx6g1x3grwVPo2uTXl1hkjGIm9Sf/AK1eh1pQLtiHvzWjim7nhLFVIU5U4vRmXq+mR3sRkUfvFHB9fauWtYDCp3fePWu9ncRws57CuNqgw9SXK49DtdI8Yf2Xpky3x3+UhMfr9K+ctU1O61fUJNSujmSU5+nsK9XYBhtYZBrjdX8O5JuLEY7lf8KxnDqjsy6nRo1JztZyOUXbKPmHNauh6jNoeqR38RJVTh19VNYRDI2DwRVhJA/yngis0z2pwUouMtmfQt7omgeKLQXGwZcAh0+8M1neHNDvvDl49ix860m5Df3W9x715boviC+0SbfbNlCRuQ9DivbND8R2GtwhomCS/wAUZPIqz5jF0K+Hg4X5qb/D/L8iLU/C1jfbpIAIpP8AZ6E/SvDPEug3Oj3YS7UbZMlT2NfTFeafE+NG0u3mI+ZZCAfYiiWqDKsbUVaNNu6Z4VEstpdJd2/WNgw/CvpeKCw8R6ZFdXCAmRRz3FfOFe8fD+eSbw+qyc7HZR7ClTfQ9POk1TjVi7NP8zLl8OXWmXX2iD54jx7jNc/rXhfT9WVmZfLm7MOPzr2oqp61l3umQXOWTh/UVrZNWZ5NHM58ycnr3PDdC0u/0USWtz90NlWHQivSNI8Tz2pWC8/eRjjP8Qp93YTW3Eq5HrWJNYq3zRcH0pqKSsehVqQxGtRbnJaR8TPGvwx+Ib+LvA2oXGm3MNwJYpbd2icbTkbWHI/Cv7I/+CVv/BxTZ6vZ6V8GP20LgNO2IYNeXgoMhVFyO+c/fH4iv47b7T4bhfLu4w2a4TUPC9zbSfadKY8c4zgivnM44do4xOdrT7r9e56EqdCvBRekkt/8z/ZJ8M+KPD3jPQ7bxL4VvIb+wu0EkM8Dh0dW5BBHFb1f5vP/AASd/wCC1nxi/Yz8YWfwz+IG7WPA1yypPZSufMg7NJCzZAOOdnQ1/oPfAP8AaA+Ff7S/w10/4rfCDVYdV0jUYw6PGwLIT1Vx1Vh0INfluOwFbCVHSrLX8H6Hj16E6UuWaPaKKKK4jEKKKKAP5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvr+RD/AINc/wDkuX7c/wD2Vq4/9KL+v676AP8AME/4PVv+UpvgH/slWlf+nfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/AIPVv+UpvgH/ALJVpX/p31iv6/f+DXH/AJQUfAz/ALmb/wBSDU6AP3+ooooAKKKKACiiigAooooA/iF/4KF/s5/GnXP25/iS/gbwdresW11qxuY5bDT57hH+0RpKcNGjA8seh61/RV/wR08HfEf4f/sY2vg74oaDqPh3ULLV7/Za6nbSWkxhlKSK4SVVbaS7YOMEg1+qFVre9s7sutrKkpjOGCMG2n0OOlfM5bw3TweNnjY1G3Lm0tpq7/gfqnE/ihic6yGhkdTDRjGlye/zNtuEeW9rJK92WaKKK+mPysKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//0f7+KKKKACiiigAooooAKKKKACvnn9rb4/6N+yl+y58RP2l/EEYntfAfh3UtdaAnHntYwPKkQPrIyhB7tX0NX4e/8HI/iO48Lf8ABEj496nauUaXS9NsyR/dvNTs7dh+KyEUAf5dv7Ef7PvxP/4K2/8ABTTwv8I/GOpz3OtfFfxPPqXiPVBzKtuzSXupXIyCN6wrKyA8F9q96/2j/hF8Jfhz8BvhhoPwY+EWkW+g+GPDFjDp2mWFsu2KC3gUKijuTgZZiSzEkkkkmv8AMD/4M4PCln4i/wCCud9q9ygd9B8A61fRE/wu9xZWxI/4DOw/Gv8AVBoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzr4u/CX4c/Hn4Ya98GPi7pFvr3hjxPYzadqdhcruint51Kup7g4OVYEMpAIIIBr/Fv/bc/Z9+J/8AwSS/4KaeKPhH4O1Oe21r4UeJ4NS8OaoeJmt0aO9025OMDe0LRM4HAfcvav8AbVr/ACvv+Dx/wpZ+Hf8AgrnY6vbIEfXvAOi30pH8TpcXtsCf+AwKPwoA/wBLv9kn4/6L+1Z+y58O/wBpfw/GILXx54d03XVgBz5DX0CSvET6xsxQ+619DV+Hv/Btx4juPFP/AARI+Amp3TF2i0vUbME/3bPU7y3UfgsYFfuFQAUUUUAFFFFABRRRQB/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmv8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNAH5u/8Fi/+UT/7SP8A2TbxN/6QTV8qf8G1f/KEL4C/9g/Vf/Tte19V/wDBYv8A5RP/ALSP/ZNvE3/pBNXyp/wbV/8AKEL4C/8AYP1X/wBO17QB+5tFFfhH/wAFmv8Agpf/AMMt+CR+zz8FrsP8R/FEBzJGcnTLNuDK+OQ7DhB+NXTpynJQgrtkVKkYRc5uyR8tf8Fm/wDgr/cfD4al+yP+yrfE+ImXytd1yBvksEbrDEwPMzDhj/CPev5DFEjPJc3MjzzzMXllkJZ5HY5LMTySfWvWfEHhrXrfw5ca9qSTTvPMJbm7nyXmlkOSzMeSSa8qr9S4eyqlhaXPo6j3fbyR8nUzP65dw+FOy/4J7H4bd5NHhZzk4Ne8/BKfT7Px5BqWp3UVrDbI7s0rBQeOgz3r5S0+/u0sUgRyFHTHFPZ3flySfeuvG4D6xTqUnK3MmvvPlsTl7quacrXufqrrP7Rfwm0bbu1L7SWz/qFL4x69K8g1L9s/wnFHKul6VdSyLkIZCqqfrzmvgVzhSawmOSWr5/DcDZbD4+aXq7flYww3DmF+3d/P/I/QOw/a91jU7KV7PRo4JOis0hYZ+mB/OuF+IXxs8TfErwjd+C9eggW0vVUSGMENgEHg59q+efCqM1gQoJy3FdpHpd5JGZCu0AZ5rojkGXYarz0qSTTunduzXqzCpgsNQrXhGzT036HG6P4U0DQ1A062RGAxuxlvzrqbTVNP0qRri+kEaKp+tcNdaxeSsUjIQZxx1rjteZ3gVnO456k176w8p/Gz1VhZ15fvpPX5s9H1j4r28eYtFhL8fffjn6V5XqvijXNYbN7OxX+6vA/KptC8IeIfEMyx6ZbMyt/GRhPzrtIfh0tlctFqsu9kOCE6fnWkVh6Lst/vZ2RWBwjsrc33v/gHmWn28l1dpEi7uea9ZtdFuZQN+EX9a6Sz02wsF22kSp7gc1rWtrPeXCW1upZ3IUAeprKrir7aHBi8zdR+4rI+4P2ZvgV4Nu/CMXi3xHZm5uZZWMfmnKbV4GF/xrR/bt8eQfB79lvxHqehLHa3FzELSARsImDTEKSuOpA7CvqH4daEvhnwTpuihAhihXcAcjceTWB8Wfgr8OfjfokHh34l6eNRs7aZbhImJA3r0Jx1+lfzxic8VfOfrWLlKVKM7pb6J6JK9uh8thcZT+vU6+KvKCkm13Sd7fM/it0fQNf8R3i2WhWc99cSZISCNpGOOvCgmv3Y/Zd0Xw58H/g7p+lXzst/d5uLtCp3rI3YjtgYr9X9T8FfDf4NeAL6+8FaFZaallC7Ri3hRCC3ocZr8pbi4ku7iS6lOWlYuT7nmv1rJ89WeU6jVNwpxaW92392nQ+94j4zln9FYaNL2dKLvvdyetr6ad/U6z4m+KT4w8PyeG9GzCk7ASyOP4BzwPevmqL4QebIsS3hyxAHyev417ESFGTxXQ+F7eG71RXdl2xfNyRX0lKX1Wk1S0W54GFxdTBUXCg7Lf5nna/s1xEAnVT/AN+//r1taR8BhoUrXFrfCeRhgb12gD8M19DCWI8B1+mRUuCOteY81xT0cvwRxVM+x84uM6mj8l/kfOmreENZ0iNp51DRKcblOa5fHUGvY/iFqLDytNQkA/Ow/lXC+H9DfxFrVvo8PDTuFz6DvXp0MRL2XtKvr8jrw+Ik6XtKpR0y3x+/br2rutFl1K+nGnWURuJmB8tAeSRXZeLvhLq/heI3WnZurRRyVHzKB6ivS/gr4VW1sX8R3afvJvliz2UdTXmYvNKKw7rwal0XqedisdTdN1U79j82fFVxq8+u3K64rx3COytG/VMHpTvDXiB9Cvgz5MUnDD+tfcX7UPw20q90E+OrUxW1zakCUkY80HoPrX55Hk5r6DK8dTx2FU4q3Rrsz7bKcVRzDBq0bLZrs/I+u4JYpYVlgOUYZBHcGuf8UeBtS1PTz4jtoWEUXEj44Iq9+z/o194sElpfq/2O1IIkI4P+wDX23PpNlLpT6QsaiFkKbccYxXh47Mvqdf2cdWt/T/M+PxuMeAxPs4atPX0PzdtoUtVHkjBHfvXueh6gt/piXDnBUYbPqK8Z8YonhHV7nTb378TlQo7jtXG6d4mv72SSy3mOJvmCqeMivZlQdeCknp3PdqYKWKpqrHbe59YaB4t0eHWo9LE4Z5jswORu7c160Rxg18JWF5Jp9/DfxcPC4cfga+47K6W8s4rteBIiuPxGa8TM8KqUotdT5vN8EqEouOz/ADPjTxz4o8VeHvFd7pSThESQlAAD8h5H6UnhDxnrWp372uoTb8rleO4rZ+PmnRQ+ILfVISv+kR4IXrle5ryTwvcG31uA8/M23jvmvew8IVMNGXKr2/I+sw1CjXwEaigubl7dV/wx9J2es39jdx3kDYeJgy+mRXtFj8fvEMMmb+0imTGMLlTn1zzXiJ069HJjNVGR0+8pH1FeRiMFhsR/FimfNVMPRq/HFM+sdL/aA8NTkR6vbzWzbckqA659B3rX8Z+KPCnjHwTf2uk3UVzKIt6x5w27qMA45FfFs45BquGdWypI9xXmvh3DxnGpSbi0791/n+JzrKKXMpwbTQg5HNe4eDZ45tBiVM/uyVOfWvEB717Z8M7OfUdIuUtxzBJkgnruFejmNlSu+jOnMbeyu+jPSPDuuWvh7VY9TvmZYUyH2jJwfb619E6P4g0bXbYXOl3Cyqe2cEZ7EV8oa1ZypZSw3ClCBnn2rzq1vbuykEtpK0TA5BUkdK+axOUQxi51K0l9x4csJGsuZPU+/wC+0uw1KIwXkSup9RXnt78P9PsruLVrBiqQOsjxtyCFOSK9a+C3hy58bfDS2127uGN4zyKWboQpwKh8b+Gdc0TRLl5Ym2qpAdORXxFDNIU8VPBRq2lGTi131s7X3OF06tKVuh6ToPjfwz4hVV064USEf6tvlYfhU3i5rZtDmtLlQ6XA8sqeQQeufavheOSSNw8bFWHQg4NexeDdb1nVrWWLUbh5khYbQ3JBPvUYrhiOHkq9Kfup7Pf70VUXKro878S/s+eBtb3Taar2EpyQYvuZ7fKf5V5Fpnw3t/hZ4yS71+8ilheNvs7DIYHvuHbivtavhz4p+JbbxD4wuFtJVkjtP3Q2sGAI69PevrsixmMxM5YedRunZ3vq/vO3A4nEVuajKb5banvkFxbXcQmt3WRD0IORWJq3hqw1WIoR5bf3lr5r0/VtS0uUS2MzRkeh4/KvatI8cTeWq6ugJIHzJ/hXo1suq0Hz0nf8yKuDqUneDucpq3hDVdL+dV86P+8n9RVjwV4Vk8Uat9lclIYhukPt6fjXsdpfWd/H5lq4cV3+g6Ta6bbGSGNUeb5nIGM+lcuKzipTouLXv9GZyxs1BprU5u68Hx2MIXSV/dr/AAHrXK3NrHKDBdICOhVhmva6+nP2aPgxpfjvxE3i/wARW6S2OmMNqOMiWU5x+C9a+LzfiyllGBq47G6xgum7fRLzb/zHlmFq43Eww9P4pde3dv0PiVf2HfjL4u0JvFvhLSxFCV8xYZ3EbyLjPyKfXtmvjPxN4X1rwzq0/h3xRZyWV5bNskhlXaysK/rhVVRQiAADgAcACvnf49fszfDv4/aStr4hhFtfw7mhvIVAkViOjH+JemQa/KOGPpGYlY3kzqhH6vJ6OF+aHrdvnXfZ9V2P1GrwmoUV7Co3Nd+v+X4n8seq6TFOnlXA4zlGHBVh0IPYiv6Uv+CQP/BW+/0jU9O/ZH/av1MypNiHw7r9y/XHAtrhmPXpsbv0Nfzw/ELRY/CfjnVPBH2uK9fSLl7d5YSSjshwSM4//XXEy2ttcNG1ym/y2DrglSrLyCCOQQehFf1PjcDSzHDQrU3q0nF901dX9V9xx5VmNXBT5Z/D1X6+p/qDKysoZTkHkEd6Wv58P+CMP/BSa/8AjVoUX7L3x5u8eLNLgLaLezOCdTs4uCpOc+bEMZB5Zea/oPr8+qU5U5uE1Zo/RKdSNSKnB3TCv5EP+DYX/k579vj/ALK1N/6V6nX9d9fyIf8ABsL/AMnPft8f9lam/wDSvU6gs/rvooooAKKKKAP5EP8AgoZ/ytgfsY/9iZqf/orWq/rvr+RD/goZ/wArYH7GP/Yman/6K1qv676ACuO+IHxA8H/C3wdqHj/x9fxaZpGlwtPc3M7BUREGTyf0HeuruLiCzt5Lu6cRxRKWdmOFVRySSegFfw8f8Fef+CkmqftnfEqf4B/Bm8lX4deHLhormWAnGrXUZwT8vWJCDj1rpwmFqYiqqVPd/h5nPisVTw9N1aj0R8+/8FPf+CoXjv8Ab78dSeFPBz3OjfDHS5WFlZlikmoFTjzpgD0OMqvYV+YOhH7PqMIh+UAgcelaHifSb3RtRW0voGt2MasqMNvynocVj2LtHdxunUGv1fLMvo4XDqFLW61fc+PxOLli4Oo9mtD32v0d/Zj8QeGPA3w1e88VapaWS3lwTGJZAp445FflZJe3Uow7n8Krl3cYckj0JzXgcQcOLNcL9UqVOWLabsrvTofJTwLmkmz9jvE37X/wU8ORv5d9JfyRttKW0ZbPuCcAj8a8k1n9vrwVDKiaBo13dK33jIyxkH6ZOa/L68IEYHrVCAZmUD1FeDhfC7JKSXtFKb85W/8ASUjSnldFRvK7P1suv22NVMcR0TRI412/MJ5MnP8AwGvj3476zb/H/wAVWninxZarE1nF5SQxsdhBOcnNYFtDLLGixqWOB0pmtLdaNZi6mT7xwBmuvKOGMry2uq2BoqFTVXu27Pfds82lWnCadOVpdChpujaXo8AttMgSFB2UV1a+LtB8P6co1CcB+cIvLH8K8jutYvbnPzbAey155qQeS/ZRlmPQdSa+qWB9q/3jOqGB9vL97LzPVtb+MN7cZi0SEQj++/JryrUNZ1TVXMmoTvKSc4Y8V1Wj/DXxXrFm+orbmC3T+OX5c/QdTXZ6V8PtMs8Pfnz29DwtaxqYShdU7XXbVnWquDw2kLX8tX95554YsJ7mRpIkLdhXtngz4fXfiXxBZaPKTm5lVNqDc2CecVpW9pbWkQitUEajsBivqX9kjwhJ4o+LtnO8ReCyzM7A4Ax0r5ziTPfqeX4jG7KEZP5pafiefUxU69VRirXdj9Mvht+zR8J/h3ZRtY6at1c7FJluQJGBA7AjA5r+er/guF8VW1L4paD8I9PxFZ6XAbmRUK7GkfgcDkED1r+poEHmvjvxD+wf+zL4w+K158ZPGnh5NY1m92ljeMZYlKdCqHgV/IPA3HVLL88edZ5KpWlGMuVXu+Z6dWkla/8AkfoGTzoYLEwrOF1G7surtZf5n8Z37PHwvuviP8TNJsb2OWLTfPVprko3lqqnOC2MD86/o4k8c+D9FtVsraYyLAoRVjGeFGBz0r6B/bQi8J+A/D2m/D/wZpVrpcFw5mdLWFIlO3/dA5r85cHOPWv6gyvOFxTgaOZVaTpQfNyx5r6Xtduy3tsfLcb5vLNsZHmXLGmrJXvq93t6fcc38XdK1L4n+JRqaTLbWsK7IVYZYjuTiuI0L9n7UddnaKPUI4wgyTsJr1sg45r2bwPYC2037Q4w0pz+FfTVMwqYPDKnRdktFojwFmuIw9FU6UrJaLRHzR/wyvqv/QWi/wC/Z/xrrbb4La7oNh9msWinCdwcFj9DX1EGDdKY7qqMx6Ac15Tz7GS0lK/yX6HHVzrF1UlUldei/Q+NtS0fUtIn+z6hEY296z0Qu4QdTxXpHiG/bVNTlnkO4ZwM9gK7r4afCCbx3FdajbyCE2/CZ6Mx9a9etmdPD4f2+KfKtL/M61ibQvNanA6dCdPhVIjg9T71V8e33iS18HSappdrKYt3lyToMqmfWvQb/wAEeIdK12Pw/qEDRzSvtQ44b3B71906L4G0Wx8Ir4WuoElikj2zBhwxI5Jr53N+I6GB9jWSU+Z336dX/kcft4QnGclfU/BsuxbzCTu659692+HniePVI/7KvG/fRD5ST94VQ/aB+Gi/C3xvLpdtJG1vc5lhVT8yKT0I7V4ppd9c6dfxXloSHRgRiv0CE6WPwsa1F+7JXTPs6lGGMw6lHrqj7Oe1F4htCu7zPlwO+a8Y1/4fX/hnVzFqsbRI/wA8YYYytfdXwf8ABkU2kW3irWIj50yhkjcY2574NQ/tB+Ff7V8OJrVtHulszliOuzvXxeH4hjTxywsfhbs35nyGHzB0q3sls9H6nx14Yvl0u/VVGEf5SBXsNxd21tEZriQInqTivlbVPFMNkxis/nkHfsDTJdd1HWolnvZmfjGOw/CvqK+AdRqb0R6tbLZ1Gqj0R9/+BfElh4h0o/YpRIYDsOKxPi9Hfp4MudQ0oA3FuN659B1rxj9n/XGttZuNEP3Z13jjuPevqHXrS31HSLnT7jbiaNlw3TkV8di6SwmPVlpdP5HgV6Sw2JS3SafyPzO/4Wn4s/vx/wDfH/169N0LxdqWpaYlzIylzwcDHNfPmrWZ0/VLixbGYpGXjpwa9K+H32m7spbaIM+xs4A6Zr9BxGHo+z54xR9xj8HQVFVIQSPoLwl8UNa8JvKYY45lk6q3GD+Feq6b+0NbbF/tewZcfeaJgfyBr5nlsryFcyxso9xVbn7prwcRk+DxDc5w1fVNnzk8FQqauJ9q6H8dvhxrjCH7b9klIOVuBsxj36V8z/tLJp934hsta0srLHPFhpUO5SR05HtXztqUax30idearGWUx+UWJUc4J4q8Bw5RwmIjiaE3az0fn56HoYPJ6dCrGvSk7dn5lnTZBBfxOTgbhnFexA5Ga8TicRyq7dAQa99bSb6O3S4CFkdQwI54Nenj7JxbNcyspRbNXQ/E+j2LDSb6cRzMcqG4GPr0rvwUkUEYZT+Ir5N8cwBLyKXoWWp/AfiDWoPEFppsVw4hnlVGUnIwfauOrlqlT9tCXS7OOplXPS9tTlru0z33WPA2hauTK8flSH+JOOfeq3gew074f6tMNYmXZcgCKQjpjqD6V7ZqHg29tl82yPmrjp/FXzr8SkuLfUIra4DLhc4YY5rzMLiPrUXQ5/df3nm4arKuvYOXus+mLW8tb6Hz7ORZEPQqciuU8ZfDLwh8Q7VYvE9t5zICqODhkz6V8v6Vr2raPLu0ydoskZAPFfaWjtcPpcD3bB5GQFmAwCTXFjMLUwcozhP0toznr0KmCnGpTnZ9GtGfEXi/9jt1El14M1EHAJENwP0DD+tc/wCC/DsvhTSBo15tFyjMZQDkbvrX3V4u1ePRPD11fSMFIQhenU9OtfE7yGWQzN1Y5/OvdyvHYnE0pKtK6W3c+gwmb43GUHSxM7xT001+82pIo5RtlUEe4rjdX8LvcMZ7J+f7rf0rXa+mth13545q5balBLhHO1vevTi5w1RvTdWk+aB5Fc2dzZyeXcIVPvXsPgDwVFLbprmojJbmJCOnua07bTLfVp0trhA6k859K9QiijgiWGFdqqMAD0rHF42XLyR0bJx+azlT9nHRvczpIXj69Kig8IXHjC8XStMtWuLqThRGuW//AFVuJG0zrEo3FjgD1zX6Y/Aj4U2XgLw4mo3sKHUrwB3fHzIp6Lz6d6+J4l4nhlGG9s1eo9Irv5vyXU8WNRrVbn5QePPgL8Tvh5aDU9f0yRbQjPmph1Uf7WOn4146G28Hmv6NLuztL+2ezvolmikGGRxlSPcGvzD/AGr/ANnTwx4D0G7+Knh65SytEkHn20h2qN5wPL+p7V4/CfiVHH1o4PHwUKknaLjezb2TWrT/AA9D08NinNqnJavbzPnD9nb9of4sfsm/Fax+MnwVvmtb61dTdWhYi3vYQfmilUcEEcA9RX97f7Cf7cnws/br+Dlv8SfAT/ZdRt8Q6rpcrDz7O5A+ZSM8qT91uhFf53cTpLGJIW3KwyCOhr6f/Y9/al+I37G/xosfiz8MRLMzzImpaejkR31qTho2XON2OVbsa+uz/I1UTxNBe8t13/4P5n2uS5rKk1h6z93o+3l6H+j9RXh/7Of7QPw8/ae+EGj/ABm+GV0LnTNWiDbSf3kMo4eKQfwujZBBr3Cvgz7I/kQ/4Ohf+ThP2Ef+ytQf+lOnV/XfX8iH/B0L/wAnCfsI/wDZWoP/AEp06v676ACiiigAr8zP+Cz/APyiW/aP/wCyd+IP/SOSv0zr8zP+Cz//ACiW/aP/AOyd+IP/AEjkoA+dv+Db/wD5QmfAP/sE3/8A6cruv28r8Q/+Db//AJQmfAP/ALBN/wD+nK7r9vKACvJPjh8cfhl+zr8NtS+K/wAWtUi0nRtLiaWWWVgC2Bwqjux6ACu78VeKfD/gjw3feL/Fd3HY6bp0L3FzcSsFSONBkkk+gr/PB/4K7/8ABT7xP+3h8Xrjwd4OuXtvh34duJItPgUkC8dTjz5B3zj5R6V35bl1XG11QpL1fZdwPH/+Cpf/AAU/+MP/AAUb+JEmk2Ek2g/D7TZXWw09WwZQDgSSgdWOOnQV+Rd7o1ho2y0tF5xuLHqTXa32q2tiu3OW7AVxN7eS383nSfQAdhX7Fl2WUMFSVKivV9WenhPaadI/mUq6LT1AtgR3pNM8P3V+BI42J6mtSe1jspDbRZ2r0zXoxNK9aEnyRepGOSK7I3FvaW67zt44HeuDkuNpwtWjI8uGcknpzVHHVo81r7G02py3FyiJ8q5FWdW1+y0tCHbdJ2UVgeTL5TSIdpUZBrzkme7nLNl3Y8+tTJ2Lo4OFSW+iH+ItZvtXIaY4QHhR0FVdK8PXeokPIPLj9TXX6f4cQoJr4ZI6LXRSSw20eWwoHQVn7O7vI7ZYqMI+zoo1PDtna6datBDgAYJPr70mpa6kI8qz+Zu57CuNbWZZ5DDH8sbcEetSwW8tw+yMc1okmcLwvvOdVnGat5st+7NkluaihtMjdJ+VdjrelLaLHcdWPBNU9N0m61KQCIfL3PpWTjqenHER9mpXsjhorK4uJ/IhUsc44r0fSfD0OnRmWX55SPyrpBotrpJxbj7/AFJ9aoXt+lquF5f0q4wS1Zy1cZKt7tPYmiieVtqD8au3NqkMG5Oo6mnaTcpc2u5eCDzVm4lUoYl6nitDglKSly9jlLu+jt1Kjl+wrS8Nag06vbzHLDkfSuNvIpIbho35OetdHouj3DI1yxKEj5feoTbZ3VqVNUtXv1NrUtZSIGC2OW6E+lT6beC5td0h+ZOGrj2hkWQxMPmBxiuwtvDk6aa8rkiRhkKP60Jts5KsKdOCTe5j6pf/AGoG3i+53PrXHeS5l8pRk1ulWDFCOemK0YbIRr5xHzmnKNzshONKNkXfC0q6HfJcsM54Yn0Ne53OoW1tai6LblYZXHevAndUXc1amm61LcBbG4b5V+5n+VTKCdjxsdgnXkqvbf0LviMSakzX2OR29qy/D+hTaveKGB8lTl2rpghkOwd66/QBbW0AsYgFOSfrVPRaE1MVKjQcKa1/I4Pxb4ZGnsL2wX9yeGHoa8c8QakkcRso8Evw3sK+t72OK4t2t5gGVxgivkvx54YuNA1ZpF3PBLyrn+VZyk+U7Mixiqv2VV+8tvM8nuLV4pPl+72NfRXwl0Sfw+g8QTgiaX7qnj5f/r1x3gzwo2t3Iu7xc2qHJz/ER2r3pUWFRGgwF4GPSohT6s9HOMapReGj13/yPX7LVLW8tftSsAFGWB/hr568cyL4lv3uEwPLyqEdwKs6prs1kGsrVsb+Hx6elZMciyKGWtIU0rnzuXZe8NUddfI8zNrMs/2dhhs4rv8ASL4WKLav/q+x9Kju4Y5n8xVG4cZqgFZ2C96uMbH0NSarRsztry6WG33IeW6Yp+mazGyiC6OG6A9jVf8AsGY6ajhiZAM7TXOlXD+XjDDjFM82FOnOLimdP4ivfJiW3jbDNyfpWDbXazDa3DUy+tpnVZidxAwaz7eF55ljQYJNM3pUoKnudpaWazQFn6npWfLC8JIcfjXR25VYxF/d4qhrd1Ha2JdgCx4XPrSOOFRuVl1ON1PQINQj3p+7kGeR3rzueyuLe4+zzqQxOPrXq1hqKXY2PhXHatJNGtdVbFyv3OQfQ1lKKZ6FLGyo3jU2PLJbMBcxnkU2weaC8R4yVZTnjiup1TSLvTZT5gymeGHSp9G0VNRWSduGUYU+9PlOn61H2blLVHa6L4rinxb6kdj9A3Y/WpfGMVteadHDJg7myPyrzu7sriyk8ucY9D2qxHf3DQpDM25E4XPbNEVrZnnfUoqoqtJ/15HF3+jz2mXj+dPWtPw5rV7o4LQHKE8qe9dVlJBjqDVG50JfJ821GD1x60ezs7o9J14zjyVVuekaT4hsdWjCq2yTup6/h61kf21PY38sb/Om48d68vH2i0nDLlHU8V3sthO8QuM72YZbPUmqi7nm1MDSpS392R3C3lpf2zGMhuOR3rz5bgqxV+metQxyzW75jJU9KjYHqe9WkKjhlTulsyxe7XtmZeq8isBJhnBrfs4Fup1tX+6/BxVbUvD1zYkyR/vE9uoqXc6YVIwfI3qUo9F0/Wt0N2vzYyrLwRX6Z/8ABM//AIKL/Gr/AIJzfFWC70maXWPBl5Iq6jpjudjoepUdFcdQe/Q1+YdrezWMnmR/iDXYWOq218u37r91NefmOXUMbSdKsvR9Ux1/aJd4/l/kf6wH7NX7Snwp/au+E+m/GD4Q6il/pmoRglQR5kMn8Uci9VZTwQa99r/Nz/4JV/8ABRzxX+wZ8XYWu7me78JaxcJHqem8snltwZYx2kXr7iv9Ff4dfELwj8VvBGmfETwHex6hpOr26XNtPEcqySDI/H1HY1+O5nltXBV3Rq/J913POO1ooorzwP5EP+DXP/kuX7c//ZWrj/0ov6/rvr+RD/g1z/5Ll+3P/wBlauP/AEov6/rvoA/zBP8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINTr+QL/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1OgD9/qKKKACiiigAooooAKKKKAP45P+C551Kw/bW8jz5Rb3nh+wnEe87M7pYyducfwV95/8G9Wp+b8O/iZo+f8AUajp02P+usUq/wDtOv3P8a/AP4F/EnX08VfEXwXoWv6pFCtul5qWnW91OsSEsqCSWNmCgsxCg4BJPc10vg34b/Dv4dQzW/w+0DTtCjudpmXTrWK1EmzO3cI1XOMnGemTXyOG4bqUs2lmLqLlbk7Wd9U+p+y5r4oYbF8HU+GVhpKcY01z3Vrwkne1r6pW3O0ooor64/GgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9L+/iiiigAooooAKKKKACiiigAr8Bf+DomQx/8ABCr45sO48ND8/EGmiv36r8Af+Do7/lBR8c/+5Z/9SDTKAP4/v+DKyMP/AMFUPHbH+D4WaqR/4NtIH9a/0/6/zBP+DKn/AJSm+Pv+yVar/wCnfR6/0+6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4a/wCCjH7fvwV/4Jo/speIP2q/ji0s1hpey1sNPt/+PjUtSnB+z2kROQGkKks54SNWc5C4r/Nu8af8Fyf+C/3/AAVf+NNx4K/ZGvPEGkgI8sPhv4aWckQtLYsF824u0D3OPuhpZZ0jDH5Qm7Ff0t/8HqXgbx14h/4J2fD3xjoEMs+ieHvHUL6qI1LLD9psrmKCaTH3VDkxgnjdKo6kV+Of/BqT/wAFff2Ev2DPCPjv9mv9q+9XwTq3jTXINUsfFVxCz2M0SQLCtndSoGaAROrSRu48o+c+5kIG4A/Pr4hftd/8HO3/AATINh4/+Pnin4qeH9L+0rsu/FrS65pcsmQRE8159qgy3QIXDEdOnH9n/wDwb+f8HBOj/wDBV7TNU+Bfx90/T/C3xl8PW/20W+n70sdZ09NqvcWyyO7RyxOQJoS7fKyuhK71j/anxsn7Kn/BSP8AZc8X/Cnwr4l8PfELwZ400m50u5udJu7fVrVRcxkJIGhd0EkbYkjOQyuoYEEAj+Yb/gld/wAGrHxd/wCCcP7eHgT9sa6+OGn69a+EXvvtGmWujTWz3kV7Zz2pj8xrplA/fBuVb7vTOKAP2B/4Lnf8Fd9e/wCCPPwE8HfGjw/4Ft/HkninXzorWlxqDaesKi3ln8wOsM245j27do65zXsP/BGn/gpVqX/BVv8AYxh/as1fwhF4JuW1q/0h9NhvTfp/oewiQStFCfmEgyu3gjrzX+eH/wAF+/8Agrp+2x+3Tq1/+y/+0P4A0fwv4Q+HfjnU20XUrDTr+1uLs2jXFpH5ktzcSxPuhO8+Wi5PIwOK7/8A4Iff8Fvv2/f2KfAng39jf4HfDLRPE/gDWvGUb3mq3emajPdxjU5oIrgLPb3KQKUQZUtEdp5YMOKAP9Viivy2/wCCrn/BWj9m7/gkl8CIPiz8bxPq2t6681t4b8O2JAu9UuoVDON7ArDBFuQzTMCEDABXdlRv4WdV/wCDrX/gt/8AHbWtT8b/ALPvgbRbPw3pbl5rbR/Dl1q0NtEOQLm4eSU5wQWYeUD1AUcUAf6d9Ffxdf8ABGT/AIOwvDf7XXxN039mD/goJpOleBvF+uTw2eheIdKEsWkX91KQiW1xHLJK1rNIxAjk8xoXYlT5R2hv2E/4L+/8FNPjd/wSi/Yn0f8AaU+AejaHrmtah4tsdAkt/EEVxNai3urW7nZwttPbv5ga3UAlyuCcgnBAB+4NFf5xN/8A8Hov7YHiD4Aaf4W8E/C/wzP8YdU1O5jkuoLa8bSLaw2xrbpDZm6knnu3cyFmM6xoAgCOWbb886d/wdlf8Fqv2e/H9ov7SPg7QLq1nImfSNb8P3OjyyW7Y/1LpJE68H5XZZBzkhulAH+n5RX5m/8ABK//AIKofs7f8FY/2dz8cfgWLjTL/S5ksfEGg32PtelXzIH2Fh8ssTjJhmXCyAEEK6ui/plQAV/n9/8ABX//AIOxPjjp/wAd9T/ZQ/4JVWlvb/2JqUuj3Pi64s49UudSv45DDs0y1cSwmHzAQkkiStOSCiKuC/8AZN/wUt8RfFDwr/wT3+NWr/BHTtU1Xxl/wheswaHbaLBLc6g2o3FrJDbmCOANK0iSurgIM8Zr+FX/AINQf+CWnx08H/8ABQrW/j9+1/8ACLxP4StvA3huafw9L4o0K606E6vdzRQrJC13CivJFb+djZ8ylg3GBQB8Va3/AMF7v+Dln9jXW9K8dftN3fiCw0nUpBJBZeOfBVvpthf5G7akgsbObBUE4gmU45r+9X/gi/8A8FgPhV/wV/8A2cr34m+GtLbwx4x8K3EVh4n0B5RMLaeZN8U8DjDPbT7X8tnVWDRuhB2hm1f+C8vh74J+If8AgkH8fl+PEds2l2XhG/u9Pe5A/d61EhOltGT0kN75KLjBO7b0Jr+Lj/gyXm8YL+3v8WLexz/YDeAC17ycfbF1G0+zcdM7DcUAf6XVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX+X/wD8Hqcax/8ABVDwIw/j+FmlE/8Ag21cf0r/AFAK/wAwT/g9W/5Sm+Af+yVaV/6d9YoA/sB/4NdpDL/wQq+BjN2HiUfl4g1IV+/VfgD/AMGuP/KCj4Gf9zN/6kGp1+/1ABRRRQAUUUUAFFFFAH+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5r/EG/4Kxf8pTf2lv+yq+Mv/TvdV/t80Afm7/wWL/5RP8A7SP/AGTbxN/6QTV8qf8ABtX/AMoQvgN/2D9V/wDTte19V/8ABYv/AJRP/tI/9k28Tf8ApBNXyp/wbV/8oQvgN/2D9V/9O17QB+jP7bX7V3g79jP9nfXfjf4uIdrKPyrK2B+e5u5OI41HfJ6+1fxM2n/CRfFDxbqnx5+MEn9p+LPFU5vbqaX5/JVv9XCmc4WNcKAPSvr/AP4LIftPa1+1X+12Pgt4NufM8G/DKcQzYb91c6owBkOBw3l/dHuK+dol2xKvoBXbGk6dONW+sr/d/wAE/MOOs4blHA0paLWVu/RHzb+07qH2HwLBpsaDZczgHHGNvPFfBCRSyHbEpY+wzX6C/tE20Fx4fsvPUNtmJGfpXyYkUcYxGoA9hX6Jw5VUMDGy1u/zPNyLFKlhEktbs5S3VkhVWGCBW5pWmjUWZWbbt5rNmI81vqa6Xwsskt28ESs7MucKM9K9urJqLkj1K82qbktzTh8N6eWVZNzeuT1rsIPCXh+FxItsuR68irNh4e1u+k/0S0lk24Jwpr1jSfhv4p1NA/k+QvrIcfpXi4rHRgveqW+Z89icbKO9S3zPObeytLRdltGqD0UYqSbAhf6Guu+IfhC98E6Xb3hmWR5nKEAdOK8Wku7iZg0jk45rPDSjXiqsJXRlQj7Zc6ehnaT8O9f1d/NkUW8TE8v1x7CvT9L+F3h2zAbUE+1uDn5+n5V3mnzF9OhmlIGUBJrgfGXxU8N+D7bdIxuZmyFSPnkep7VMsViq8uSn+H+Zp9bxeJn7Kle/ZHoqQQ28Pk26BFUYAUYFfNPiXxNpGh3MrX8w3bj8o5br6V5b4s+OPi3xFGbSyYWMByCIiQxHuev5V43NPNcSGa4cu7cksck162AymcLyrPfofR5ZwxUXv4mVr9Fv959tfCmTTfiFJeXDKyRWjKAOhbNfVHhXQtOTWLSyt4QivKinaOcZr5l/Zls7aPwfc3iLiSSchm9QBxX1Pomr3Og6pFq1mAZYSSu7kZIxXzGeTn7SrSpdNEr9bf5nymdpQxdSlT+FOyR+gq+XbQKGYKqADJOOleQ+Mvjz8NfBTPb6jfCa4TrFB87Z9OOB+dfM+teMPEuuljqd3I6n+AHC49MCvjfxHc/a9dup8Yy5/Svhcm4DhWm3jKraXSP+b/yOTBYVVptSeiPoT45/tR/8Jp4bm8NaJp5gt5mH72Rvn+U56DjBr4luNe1J1ZjJtGO3FaXiWZYljDsAOTya4n7TDfP/AGfaMJJZcqoHrX65k+UYXAYf2WGhaN79/nqfY5fgqdOn7sdDkbvVtSumZZp3ZSc43HFUhcXCnKyMPxr0EfDLxCwyWiGf9r/61NPwy8QA8tF/31/9avbVejspI+hjjsGlZTRyGnXl8t7G8czqynIIY9vxr0yw8beKtPctBeyNnqHO7+dYSeCdY0p/Nn2NuGAFOTU9vpt0byOKSM8sAc9Kzqeynq0mjkxM8PW10a+R7NNHf65DHqd4QJ5FBYYwOle0fAbw+ja3dapeAbrdQqA9ct3FeZRqqRqidAABWjp+pX2lXS3mnytFIvQqa+cxlOVWhOjB2ufGYjmnSlTjpc+6XVXUo4yDwQaZDDFBGIYFCKvAAGAK8r8EfEy01+WPR9T/AHV4V+UnpIR6e9dt4u8Q2nhTw3ea/fPsjto2bPvjj9a+Aq4StTqKjJe89vM+XlQqRmqbWrPhX9qv4gXWpeIF8D2kn+i2eHkCnOZD6/T0r5p8H+F9Q8ZeILfw/pozJM3JPGFHU/gKzNZ1W61zVrjWL5i8tzI0jE9fmOa9T+FM914evV8S23EinC+69/zr9ZoYb6lglSpW5kvvff7z9ahR/s/LlTp25kvvkz9EPCvhrT/CWhW+g6aoEcCBc4wWPcn3NdFXKJ4w0lvCzeK2cLAkRkYE8ggdD715D8GPjC3jnUL3RNW4uA7SwHoDET936ivz76pXqRqV2vhep+Y/U8RVhVxDV+V+8/U8U/ah8MHTvEtt4jhXEd4mxiOm9f6kV8yWdwtrcLO3Rev0r70/alj08+B7eSfb563K+VnrjB3Y/CvgFhkEetfeZDWdXBQ5ul19x+k8NVnWy6Cn0uvkXL/xfO52aeoVf7zda+w/hfrU+s+CLKaVmyimM5OcleM18FsNrFfSvrf4EajJ/wAItNBMxKxTEIPQEVvmtFewTS2ZtxNgqccEpQWqa/E1fjNaGXQ4LpUyY5cFu4BFfOlhO9tew3Ef3kdSPwNfZOtaHbeMbI6LO7RKxDbhyflrnbD4G+HbWbzLueWcDoPu4P4Vw4XMKVGl7Oo9Tw8tzahh8N7Ks3fXS3RnU27mWBJD1ZQT+IrOvU/fZI6ith4Ut2MEf3U+UfQU5dLa/XerBccV58JpO/Q8GM0nfocrJbwyj51zVGXS425iJWunvtLnsLd7qXBRBk47CsWG6t7gZhcN9K6YSurxOqE3a8XoaN18O/EkGmx6rBGLiKRQw8vlgCPSvTfgur20WoWlwDHKHQlG4PftXqnhj/kXrL/riv8AKtgQQrL5yoA+Mbsc4r5vFZnOpCdGa67+jPFxGYTqQlRmuu/oxs9tBcxmKdA6sMEEV53q3w1s7jdLpcnlN/dP3a9Rt7eS7nS2i+9IQo+pq/e6be6bJ5N5GUPv3ryIYyVGajCVn2OCnVnB+6z339m+5s9H+H0Hh2+njS7jlkJjJ5wTkEV9FSQxTIY5VDKeoPQ1+daM6PvQlSOhHBFeoaB8X/Evh+IQXRF5EMACQ/MB7GvzrPeFK+IxFTF4ad5Tbk09NXro/wDOx0RxN37x7X4r+DPg/wATL5kEIspv78Ix+Y6GvnLUY9F+GWuv4Q1C4DSsBL5uMDDdAT619O+Gfit4T8QxhWm+yzcZSU45Poe9fBPxtlSf4n6rLGwdS64IOR90V1cIUsfWxU8vx0pKEYt2fe6Ss3019C3ThUVj1zxF4ksdH8L33iKOQSx2sDy5T5ug/wAa/Fu61i+n1SbVUkKSTSNISh28scmvrr4la9d6L4Mu47Wd4jdAQ4U8MG6g/hXxhX7ZwxlSwkKsr35mvuX/AA59hwrgVTpVKj1u7fd/w57D4G8V61f6pHYXmJo1BZmPUAe9fQ0Gp2s2BnaT2NfM/gHWND0sSR3b7J5T95hwAO2a9jt7mC5QSW7q6nupzXoY2knPaxjm1CPtnyx5UelQzSwMJIHKkcgg4r1bw/8AFK9tNtvraecnTevDD/GvEtKSZbbdKc7umfStOvBxWDo1ly1Fc+fq0Yy0kj7M8L39p4xu4LDQHE09w6xrGPvbm4HHWv3D+Gnw7sfAXgiy8NwACSJA0rD+KRuSa/J//gnf8D7vxD4wl+L2uQkafpQMdoWHyyTtwSPXYP1NftWcV/FPjtxBTlmcckwdS8KWs/8AG/s+fKvxbW6P0ngTIIUKU8bUWs9I36Jbv5v8vM56W0mh6jI9a+Cf29/2lrP4C/CabSdJl/4n+vI9vZhCN0SkYaQjIIABwD6196+LfFWgeCPDV74t8U3C2lhp8TTTyv0VVr+Rj9qr446p+0P8XL/4i3iGG2Y+TZwZyIoE4Ufj1Pua5vAzgF8S5ysTi4f7Jh7Sm+kpfZh895eSs90fSZzXhhoqMX70vy7nzmbiczm5d2aVjuZycsSepJ75rutIu5tThkcIf3ON5HQZrgK91+D+lmS1vb2cZim2xgEcHHWv9B8bONOk522PgsxnGnRdR7oq+FfF3ir4feJ7Dx54GuDZa5pE8dzYXSsVaKZCCCCOzD5WHcGv9Aj9gD9sHQP2z/2fdO+I9sBba3aAWes2X8VveIPm46hW+8vtX8B3iDwnc2NwJLBTJE54A6qfSv0x/wCCSP7Uuo/si/tMWlt4qkkt/CXjeaLSdVEmQkVw5ItrjngYc7GPoa+J4hwlOrTWLp7rf0/4B63DObRclhpS0e3k+3zP7na/kQ/4Nhf+Tnv2+P8AsrU3/pXqdf12qyuAynIPI+lfyJf8Gwv/ACc9+3x/2Vqb/wBK9Tr40+5P676KKKACiiigD+RD/goZ/wArYH7GP/Yman/6K1qv676/kQ/4KGf8rYH7GP8A2Jmp/wDorWq/qJ/aF+N3hD9nL4MeIvjV45mEWneH7OS5fJ5dlHyIOnLNgD60Afix/wAFp/22NY8OWdh+xN8F9Sa08SeLIjJrV3A2HstN/iUEHIeUcD2r8IPCfw88H+CbCHT/AA7YxQLCoUNtBc47k9cmvK/AfjT4hfG741eKf2hviizS6r4qka5/eHc0MTN+7jXPRVXAxX0RV4uM6ElTvuk389bH4lxnnUsXi3Rpy/dw0Vur6v8AQ/Mb9obVf7T+J96uzZ9mCxfXA615LpUT/alkKnaO+OK+mPiho2mt4/1G6kiDO0mSSM84rgNRSOOyKooUZHTiv1nLq0Y4SjCK+yvyPSweOUcNTpRj0SOZrsdP8LLdQJcyy4DDOAK46vXtBD3GlxPEjEAY6elXiajhFNMyxlSUIpxYui+BdEvJGS9DSADI5xj8q7Sy8DeGLEDyrVSQcgtyR+Nbnhfwx4huJt0NlMwcDadhwc17bpPwX8X6jhrkJaqf755H4CvlsfnNKi37WskvX9D5/EYupzNc7t6nj6RRRrtjUAVx3jayu9RsorSxjaWQvwFGTXTeMIr/AMOa9c6CzqTA23co603wReTjXlDHdvBBzWtOo4wWIhqrXXmZ03KH73tqcjoXwX1u9xLq8i2ycfKPmY17JoHwx8J+H5vtUFuJJ+P3knzHPtnpXdXN3a2kXm3Uixr6k4r548b/ALRfh/w7O+naFC19cIcMxO1Afr3riWIx+OlyU727LRfNhCeMxkuSnd+mi+f/AAT1nxzti0XI+Ubue1fMGs/ELw3o7mF5POlH8MfP614t4x+LHjTxnIy6hdNFAekMXyp/9euF0qOO41O3hl5V5FB/E19Nl2SOjStXeu9l/mfSYHh32dO+Il8l/mfqn4J8C6NPpNtrd8vntcxrIFboNwz071+gH7K+hWMWp319bKIzEgUBQACDXyZo9rBY6Ra2dsMRxRIqjrwAK9Z8K/FDxD4M0abSfD+yFp2DNNjLfQV+G8aUcZmeBrYXDy96bS1dklfX8PI+UwOMhTxarVb8qbf+R+lGo6ppukWzXeqTpbxIMl5GCgfnXzF45/bD+EPhHdBY3D6rcL/DbDK5/wB48V8LfFTxjruqaBcT63dzXJk+UbmJAz7V8jHg18xwv4LYOrD22Z1nLX4Y+6vv1b+Vj6R8R1Kqbox5V56s7n9oX48XXxZ8bHXILQ2iRp5YjZ9/418wa74i1aK2HlTFCT1Xg1e1S6QX0hmcA7iOvpWSNB1LxX8uiqJBH95icAGv6SynLMJl+GpYahBRpQSS62Xqx0lHm9pV9W2cXNqup3D+ZNcSM3ruNOXWNXRdqXUwA7B2/wAa7YfCvxb/AHI/++6P+FV+Lf7kf/ff/wBavY+s4bbmR6P1rC/zRK3h3xT4msY5Da38y7iP4zXrfhn4ieLb+5GkXMgnjkUqSw+YD1zXlKeGtX0xTb3EeWXrtORXe/D6wYahJcSoQUXAJrzsZToSjKfKmeVjlQlCU0kzsLjSLmFi4+ce1foZ8JfD0Hh7wVaQoF8yZRI5HctXxH9K9K8EfEvWPCUywys1xZ5+aMnJH0PavhuJcFiMdhVTovVO9u58/UnKSsfaVxp1jdzR3FzEkjxHKMwyVPtWf4l1qDw5oN3rdwfkto2kOfYVF4a8UaT4s01dT0iTeh4Yd1Poa+Rf2z/H7aN4Tg8HafNsnvzmQDr5Y/xr85ynK6uMx9PAyTTvZ+SW4sLh3WrRpLqz85PiP431T4g+LbrxLqrZaViFHZVHQCvdf2ZfhL/wlmt/8JZrMe6xsm+QMAQ7/wD1q+VoYnlnWBerHFfof+z34qh8Mxx+EL07YpuUPHDn1PvX71xA6mGy2VHBq1lbTpHrb5H2OdVZYfCeyoadPkfZKIsahEGAOgFYviTSYdc0K60mYZE8TLyM9RXj3x0+LT/DTTbX+zyGu7iQEKefkHWvUvBvivTvGvhy38QaY2Y7hQSD1B7ivyN4LEUqNPG2tFvR+a/r8D4J4erCnHENe63o/Q/GTxHpNxoWu3ekXQKvbyshB4PBqC31u10y2K3GSc8Ad69d/aIs9Ps/ipqC6fja5DNg5+Y9a+etWTdAG9DX7vgqv1jD06kvtJP8D9TwdsTSpufVJnofgDx3eW3jaxkjBjjaQKQvU596/QN5ZZhukYtn1NflRo1xLaatbXMBw6SqQfxr9OrTVY3s4pGyzFFJx64rxOIMOlOE4ro0eBxVhIU6lKUFumvuPhj4nWB07xpex+X5as+4D2Peul+D93Imo3FoANrru9+K9x8VfByPx7qra8b02+4bdm3PSrWk/CLRvA9u2pW88k05XaxbG0/hWss1w8sMqLfv2StZ7jq5vh54JUG7zslaz3J5l3xMO5FcC0ShiCK9Cxu+X1rGn8MXoJkiZWyelclOoo6N2PHpVFHdnnd74fsLxjIw2se4rEXwRe3M3lWLhmOcBuK7jUSmk3K2uoMI3cZAJ6itnw8Q2qRkcjmuz6zUhDmT0PQWLqwhzReh4bqmgavpEhiv4GTHfGVP419aaKY5dItmBDDy1/lWjLBFOmyZQynsRmkgght4hDAoRB0A4ArgxWNdeMVJao87GZg8RCKkrNHlnxA0DTdReISIFbBwy8GvM9C8Lz6V4msb4OHijnRmPQgZr37xFoep6jELyyiMqRD5tvJFebsjI2xxgj1rowuJl7J01LTVM6cJi5xpckZaH3La3VtdxCS2dZFx1U5FZms+HNE16PytWto5wBgFhyPoa+RNI8Qatoc4n02Zo/Vc/KfqK9j0T4yWzOttrsOz/ponI/EV8vWyivRfNRd/TRnjzwVSDvDX8zF1/wCCWnWc39q6ZPsgiIkeJ+RtXkgH6V3OieJ/D+rQrHps6/L8oQ/KePar/i/XNL1TwXfT6dcLIDEfutzXxcrMjbkJB9Rwa9DBUKuNpP283eLsv+CdVGjPFQftZO62PSv2lvEC2ui2vh9PvXDeYeOgWvj+z1q/s2HlSEj+6TkV1Pj3Wr7U9QitLudpltkwu45K57ZrhUVGcCTgZ5r7HLMGqGHjTevU+3ynBxo4SNOSve7fzPT9PubnVLMXUiAY6Ad6mIwdrjB96fpd7p0lskVq4woxg8GtGYR+WWcZFEnZ2sckp8smrWQumaxfaTN51q2fUNyK9O0rxnp1/iK7/cyHjnoT9a8cGR1qaGCa6mS1t0MkkjBVVRklj0ArGtQpzV5feY18JTq6y0fc+/fgH4I/4S/xjFfzKHtLHErk9Gb+EV+mMVyFG1hgD0r53/Zx+G0nw0+G1tYagCL66/f3GeoZui/gK99r+X+M81jmGYz5HenD3Y/Ld/N/hY+Zm+WTUXdGsHVhuB4r8Gv+Cg37QY+Injdfht4YuXOlaKStwFOEluAeTwcMF7Gv0D/bR/aHsfgj8MrjS9OlB1zWo3gto1bDRowIaUj0HQe9fzxC4e7JuZSWdySxPJJPWv0Lwl4R5qjzrErRaU0+r6y+Wy879j7vhHKXN/Xqq0WkfXq/kdt4V8ZXPh+XybjMts3Vc8r9K+jLScXNrFdx5CyqHXPBwelfICRtK4ijGWcgAD1Nff1h4Z/4peysJyBPbwIu4eoFftuPnCm4t9Tv4mVGhKnUStKTd/8AM/Un/gj7+3lqH7KXxzh+GHi2Rl8CeMZ0iutzkpaX8h2pcYPCh+Fft0Nf3JwzRXESzwMHRwGVhyCD0Ir/AC+m0nUgzQNFLtzhimR0Oeox06iv7iP+CNX7XF9+0P8As2j4d+Orky+LPAbJp10ZD+8uLQqDbz88nK/Kx/vLX5jxFl8aFb2tP4Zfgz18izFV6XspSvKP4r/gH5I/8HQv/Jwn7CP/AGVqD/0p06v676/kQ/4Ohf8Ak4T9hH/srUH/AKU6dX9d9fOnvhRRRQAV+Zn/AAWf/wCUS37R/wD2TvxB/wCkclfpnX5mf8Fn/wDlEt+0f/2TvxB/6RyUAfO3/Bt//wAoTPgH/wBgm/8A/Tld1+3lfiH/AMG3/wDyhM+Af/YJv/8A05XdfZX/AAUl/a/0b9iX9krxN8Z7uVV1NYfsmlRE8yXk/wAqADvt+8fpTSbdkB/Ol/wcRf8ABTOa5vH/AGIPg3qWy3iIfxLcwPySPu22R+bj8K/j7n1h1zHa8DpmtTx9458S/EnxnqfjrxbdPealq9zJdXErnJaSVixJ/OsbT9JmvW3MNqdzX7Fw/lKwWGSa9+Wr/wAvkepTw8KceeoUILe4vJhHCpZmrvdL8NQ2wE1587+nYVuWOn2tjEFgUe571l6n4jstPk+zqd8h4wO1e8ctXFVKz5KS0Nqe4gtI90pCgVwWpX4vJzIgwOlVbm7nu5PMmbJNRwqjOA/SqSLoYZU/ee4RwySnCCukt7IIoMnJqeCGONAE6VY2kDIpNkVKze2w1lBXZ2rMtNKtbOQzRjJbnJrU3ADJrnNU1kRKYrU/N3NIVJTl7sepd1HVILSMqOW9K4e6u5rp98h+g9Khd3lYu5yTW9pOkfaJFkuuE7Cpu2ejGEKEeZ7lfStKmvZQ+CqDvXoEFvHboFQfjT0SOCMIgCqoqraanZ3F79kDds57VaSR51atOrd20RcksI7+IwzD5DWja2kFlCIYBgCrHCj0Fcv4i1C6gtwbQ4U8MaZyw5qjVNPQq6/rcAU2tv8AM394dq4YtJKfmOTTcluO5Nbum2Ued8457Cp3PahThh4eZZ0eG4twZScKwxitigccVbtUjYnd1qkjz6s7tyZFFpUEswup1yR0FbCoFAC9qbJJHCheQ4UU7Q9QstQdgv31PAPpQclSc3FyeqRbtdGt/tP22Vfmx0rbd0RCzcAU2WZYULvwK5K/1CW4YqOEpHJGM60tXoZl3FavetcQjGahllSJC71JWJqnmiUK4+XHFNux69ON2otlGeYzOT0HapbK1uLqdYrcZPX6VWRGkYKgyTXovh+2ht7YheX/AIjWaV3c3r1VShdGxbQeTEquctjk1et1lMo8ngiqzyLGu5q2NMkhkh3R/e71o9D5+tJqLdjUJY8tXBfEHUtGstBlh1TDPIMRp33e30rumO1SR1r5J+IJ1lvEcr6uCMn93/d29sVlJ2RtkuDVfEJOVktfN+h7N4Q1HSr3SI00wBBGMMncH3rppELoQpwccV82eBZNUi11H09cqP8AWDPG33r6URxIu5auEro7sywyoVmk7p6/8OeX39rcWtwyXHU859ahhmaI4HQ16DrVpFdW21vvj7przx4niYqw5HFWdWHrKrHXc0lYMMrVmyNvHeJNOMqDWZaLIWKjpVwgg4NBM42vG56lFJHJGrocg9KxdR0iOV/tUQw47etYekXtzC/l9Yu4NdvHIky7l5FS1Y8WcZ0JXi9DhCCpwwotYYIpzLjBIxWtrj2kBDf8tCentWOrq4DL0pbHZBtwv0Zs571z+v2l1doJkOQg+7WtblyCDyKs8Hiq3JhJ05KSPKlZkbK8EV33h7XoSBZ3XyuTwx6GqOraOkime1GH6ketcedytzwRU7HpSjCvA9uubaG7hMEwDK1UrewisIfJgHyisfwxfXlxbt9qOUXAUnrXWfK4qjxpqVOTg2Y91aRXkRilHWuG1DSZrFsrlo/Wu3ur+2gufIY9uTVhlSVNrcq1B1Ua06dn0Z5ckjRniuktL2KdQnRvSs/VLOCC5K2x+Xv7VlKzKwK8EUbnpNRqxTR01xYW11Kskg+6e3tW2jqwwK5a01ZGPkzcHPWtwHjIOKSOKrCXwy6DrmwjnG4cN61hywyRHEgxXTRuSuGolhSVdrdKomFZx0exztjOtncCYjOK7aC4gu48xkEdxXBzIqSlU6A06GeS2fzYjgig1rUVUXMtzY1bw1Dd5ltPkf07GvPbm3uLGcxTqVZa9M03xBaXreQ52yZxg960NQ060v4yLhRx37ipaW6FRxdSi+SqtDzzTfEN3ZzxTbyrwkMjj7wI6Gv6xP8AggD/AMFMh4H8Zw/sl/FC/Y6DrZ3aZcXDfLbX7nmJSTwknYdjX8lF9p72rnb8yDoa6PwF4y1nwR4ktta0W5e1kjkRt6HDLtYMCD2IIByK8LPspjjsM4pe+tYv9Pmd1XDRqR5qZ/sGAgjIor81P+CVX7Ytr+2J+ynpHiTVLhZPEmgqmmawufmM0ajbL9JUww981+ldfjbTTae55R/Ih/wa5/8AJcv25/8AsrVx/wClF/X9d9fyIf8ABrn/AMly/bn/AOytXH/pRf1/XfSA/wAwT/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1Ov5Av8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINToA/f6iiigAooooAKKKKACiiigD+dr/gs5+17+0v+zh8XfCPh/4J+LLnw/p2p6O89xFBHC2+ZJ2XdukjZh8uBgEDitH/AIIqftXftA/tEeP/AB7pPxt8VXniKPT7CymtUudu2JmkkVyoVV6jGfpX6e/tTfsBfs9fth+IdJ8T/GeC/mudGt3tbf7JdG3Xy5G3ncADk5qx+y9+wR+zv+x/rmqeIvgrZ3ltdaxbpbXLXV09wGjjbcMBuAc9xXyKyrMf7X+t+1/cX+Hme3Lbbbc/ZpcX8MPgv+x1hf8Ab+VL2ns4bqpzX5783w6Xt5bH2fRRRX1x+MhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0/7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+QL/gyp/5Sm+Pv+yVar/6d9Hr/AE+6/wAwT/gyp/5Sm+Pv+yVar/6d9Hr/AE+6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzD40fBb4U/tFfCzXPgj8cNBtPE3hTxJbNZ6lpl8m+GeJsHnurKwDI6kOjgMpDAEfw/wD7Y/8AwZOeEtb1a78T/sH/ABYfQ4ZdzRaD4xga5hRjztXULVRIsY6APayvjq7HrR/4PVvgp8ZdIm+Df7XHgS71CHw3bw33hbV3tJZI47a5dxc2hk2ED98v2hQTjmMDPIFej/8ABsX/AMF4/wBk3wv+yLpH7B37Y/je18D+K/B93eDRdW8RXXk2GqWF9cS3QVryXEUM0Ekrx7JpFDJ5flljuVAD+ZD9oz/gg9/wWm/4Jnz3fxqsPCuqNp2gxvO/irwBqTXX2eKPl5CLZo76GNQNzPJAigDJPBx+3H/Buf8A8HHv7TfiL9pjwt+wd+3l4km8caH43nj0jw54k1Ng2qWGpuCLeC4nxvu47qTEKtKWlWV0+cpkD+yH9on/AILD/wDBMr9mH4aX3xO+JPxr8JXFvaQGeGw0jVbbU9SvDglUt7W2kklkLngELsGcsyrkj/Kw/wCCangnxJ+2R/wWw+GN78E9CfS4NX+J9r4qWytFwul6VaaiNRmwUGFW2t0YKeBlQB1FAH9mP/B7X/yYt8I/+x7b/wBN9zX1f/wZ7f8AKH2H/sdNb/8AQbevlf8A4Paba4f9g34S3ioTFH4+2M/YM+nXRUfUhTj6V1P/AAaH/tVfs1+Gf+CY8vwb8W+PNA0bxXZ+NtRVtI1DUYLW9cXy232do4ZXV3WVjsQqCGcFR8wIoA/ll/4Onf2lPFfx6/4LHeNvAPii/nPhv4Zw6b4c0q3TDi3iNtFc3bqmVUyPcTSEkkFlVFJwox/S3+zF/wAHUv8AwQ6/Y9+Bfhz9nT4A/Dz4iaF4X8MWcdpawQ6LpqtIUUBppmXUh5k8pG+WVvmdyWJya/nj/wCDsL9mvxj+z9/wWB1r47ajpC/8I18UbLS9d0qV1321xNp9tBZ3kLdi4lhDyJ12zKejCv7K/wBhj4V/8G5f7e37P2ifHT4UfCf4RwS3llHNquj3Wm6dFf6RdBAZ7e5ikRHUxOSok2+XIAHQlSDQB/np/wDBbP8Aao/YR/bK/bbuP2nP+Cf/AIb1rwfpXiTT4LjX7LVLK208NriSSCW5gjtZ50UTRCJ5DlS029zkuTX9Tn/BeX49+Kf2n/8Ag1+/Zs+PHjqVrjXfEWt+FZtTnf7097HpWoxTyn/rpKjP/wACrwn/AIKT/wDBUn/ghv8Asj/tPzfs9fsmfscfCv43WOmW8SahrtnFaW1p/aUjNutbYxWNytwI12bpUfaZGKAZQk/oF/wdP+F7TwZ/wQV+EHhqz8GWHw6Ft4t8NeZ4W0wqbPR5n0rUHls4WSOJWSCQsgYRpuxnaM4oA+dv+DK79iD4Vat8N/iP+394v0q31PxRZ69/wiOg3FzErtpsdvaw3N3LblgSsk4u442cYYIhUHDuD/VH/wAFdv2DvhP/AMFCv2EfHnwW+Iul29zqltpN5qXhvUJIw0+m6vbQs9vNE/DKCwCShSPMiZkPBr+MH/g0I/4Kufs/fsyQ+OP2Ef2k/ENj4QtvF2rx+IvDWqalKLezl1B4Etrq1lmciOJ3jggaEuVDkOmdxRW/qs/4LKf8FhP2VP2Ev2LvGmqWXjXRtY+IOv6Pdab4X0KwvI7u7nvr2FkhnkihYsltFu82SVtqkLtVt7KCAfxK/wDBnL8fPEfw4/4Km33wWhv5I9G+I3hXULe4ss/uprzTNt5bykf34o0uFU9lkb1r/Uwr/L7/AODNT9mnxb8SP+CkHiD9pBLInw78NfDN1FNeMPlXUdZIgt4l45Z4VuW9gnPUV/qCUAFfGv7cP7fn7Kv/AATr+DU/xw/au8UweHtKy0VlbD97f6jcKMiC0t1+eaQ8ZxhUB3OyLlh67+0p8ffAP7K/7P8A4y/aP+KM/keH/BGj3esXpBG947WMv5aZ6ySEBI1/idgBya/x+/iV+0f8RP8AguD/AMFIIPG37afxS0n4Y+H9duZQNR1q5b+yPDOjQ5dba0iYrvfaAqKNpnmbfIy5dwAfbX/BTf8A4K2/txf8HDH7Qeg/so/sz+DdRtvBa6iX8O+DNNPnXl9OoKi91KUERbo0LNyVgtkLEsfmlP8Ad7/wQP8A+COejf8ABI79ly60Pxhc2+r/ABR8dSQX/irULcZhhMKEQWFu+AWhtt7neQDJI7tgLtVfmv8A4J1fH7/g26/4JffC4fDv9l74y+Bba/u40XVvEN9qcU+sao687ri42qdoPKwxhIUOSqAkk/sv+zd/wUf/AGEf2wfHF38Nf2X/AIreHfHWv2Ni+p3FhpF4txPHZxyRxNMyjoiySxqT6sPWgD7XooooAKKKKACiiigAooooAKKKKACiiigAooooAK/zBP8Ag9W/5Sm+Af8AslWlf+nfWK/0+6/zBP8Ag9W/5Sm+Af8AslWlf+nfWKAP6/f+DXH/AJQUfAz/ALmb/wBSDU6/f6vwB/4Ncf8AlBR8DP8AuZv/AFINTr9/qACiiigAooooAKKKKAP8Qb/grF/ylN/aW/7Kr4y/9O91X+3zX+IN/wAFYv8AlKb+0t/2VXxl/wCne6r/AG+aAPzd/wCCxf8Ayif/AGkf+ybeJv8A0gmr8kP+CUn7Rlt+yr/wbHfDj4zlsXen6DrEdivd7ufVr2OID1O45/Cv1v8A+Cxf/KJ/9pH/ALJt4m/9IJq/kA8A/FWS4/4IV/sffs42Uny61/bOrXyA/ehs9VvdoYf75yKunBzkorqc+LxEaFGdaW0U39yPJPAljqFho8eo6/K0+pX8j3t9Mxyzzztvcknk8mvU9R+LXgHSYgbi/RznaVj+Yg+4rlmUMpUcA8V8V+I7T7Drt3a53FZG5+tfcYXKKOKahNtKK6H4fhsMsfXnOtJ3ev3s+hPin8UPCfjOwTStJ85pIX3K5ACEd/evCa562bZOp966ZYZWG5VNfR0MHTwtNUqe3me1HCQw8VTht5nluuXlzFqUkMbFVU9BXt/7L+rR23xNjtbrL/aYnRe4BxnmvFvGNu9rfrJIMeYuRWn8KvEw8M+P9M1bcUVJgrHGflbg8V142j7bB1IR6xf5HuYmh7fL5xit4v70fsSscacoAPoKfTUdZEEi9GGR+NfM3xa8T+KdK11tMt7oxWzqGUJwcHg5NfkeCwcsVV9lF2fmflGHoOtPkTNz4+yaXJ4ZjeWdRNDKNqAjJz14r40k1FAcRjP1rpdcklu7OSS4dnYYOScmuD749a/RspwKw9BUnK9mfZZbhlTpcrd9TbvPEOsXsItpp2EYAXavAwK8a+Iv+pt/qa7+4vY7ZjG4O4dq5jU4odWdHukBEf3RXtYeKg00tD38vSpVY1EtEeRWumXl4N0S/KOrHpViLT0Q5l+Y16fLGiWzJEoAxwBXBMCGOa71O59FSxcqt+h9s/s7qqeCpQowPPb+Ve5Xl/ZafEZ76VIUH8TkKP1r4T8JfFq98F+FX0PSIAbiSQv5r9FB9B3NeZ+NPGHiXxSpuNZunlwR8ucKPwHFfM1skq18TOpJ2i36s+Nq8OV8Xjak5Plg5b7v7j7A8W/tF+CdBD22lbtRuAcYThP++v8A61cAmoDVh/agXZ9o/ebc5xu5r4xHBzX2J4cs7q50i1ECM37teg9q7Xl9HCwXJu92zvzDJcNl1ODpt3e7bPJ/iLJIdSij3HaEzj61h+DP+RmtP9+un+KWm3en6vCLpdu6MY9K5bweSPEloR/fr06bTw+nY9fDtPL7r+V/qfVVRMCTntQZGxXwZ4h+JXjfSPFt4tpqEuyKdwqMcrjPp0ryqFB1L2Z89lGTVcfKcKUknFX1PtPWXAZErCK5NfI8Xxt8bmbzb2SO4AGArLgfpXt/wk8bah8TfEMXhGG1C3siM6lT8rbBkj2rqlSdKDlJqy3PWxPD2LwdF1aiTjFXbT2XzsesW2p3doBtbco7H0roND1+x16BpbPIaM7XU9Qa4PXnk06zuFlGHjypB4IPSvK9B12+0K/F1aHhjhlPRhUrDKpFyW55tPLlXpSnDdbeZ9ISX9za6it3ZuY5ITlWHUEVd+NvxguvEPgCz8NBtlzNJ/pWM/MidPzPUVx1hqcGqQfaYjyfvA9Qa8p8QXK6lfyMR8oJVfwrnp4GnUrQnUjrDVf1+JlgsDCeIhKpHWGpxMMLzyrCnVjivetKWKKxjt4uNigEV5Z4c05vtpnl6R9Pc16DDcfZm8w/d716WJ97RHr5pL2jUI9C14p8VajZ+HJvC9u58m6YOy56Y/xrzXwh4ju/CfiK112zJDQOCR6r3FWdSuze3jzk5BOB9KPDPh6TXPEEVio/d53Oe20daUKdOFKUZLR7lUKVKlhpxqLRpuX3Hb/Gn4if8J94gjezLCzt4wI1PHzMOTj9K8RciMEt0Fe3/FfwxHYSw6zZLtiYCNwOxA4NbnwT/Zf+IH7QsN9J4Rmt7SGx2h5bncEZm/hBUHmuX6/gsBgVXrTUKUd2+nT8ystr4alg4ST5YLTXoz5PY7mLDua+ofgb/wAi/df9dv6V9iaV/wAEtNal0+KTWfFUUN0R+8SKAugPsSQT+Ved638FLD4D6xP4KtNWGrOCJJZBH5YRiPu9TmvDp8Z5PmcpYTA1+ea10jLZPe7VvxOfO85wmIwzo0Z3lddH0+RFppIvY8HHNdwXQHDED8a86BKnKnBoklYKXck4GetRVo87vc+HnT5nuT3F1bNdOiyKTuPGRmtzSiDEwHrXyle3LPqEtxESu52I55617X8KZpptNujMxbEg5Y57V3YnB+zpc1+x6OLy72NH2nN2O68Tf8gC7/65mvnRWdGDIdv0r6vttGg8QO2kXLFEmUgletcRrPwI1i2VpNGuknxk7HG0+wz0rmwuOoUm6dSVmzDA42jSTp1JWbOp8JeLtWsdEtY2YSqI14b6ete1+Fb+fxZ5qWELF4EDuBzweOK+eLGxuNMs49PuxiWFQjAc8ivq/wDZzs4fJ1O+I/eBo0z/ALOCa+ez+dOhhqmJhHVWt82eTjIQ96aXUk0eKSLW7VJVKnzV4I96+j7qztbyMxXcayKezDNZmr2Fg8BvZYl8yH5kbHIIrPsPE8EuEvRsb1HSvzjHYmeM5atONuXRnltrY8M8aSwaL4kmsbePEQCkAds1htdwXMWYz+FO8e3cl54puZpBxkKp9QB1rj846HFfbYOhehTcvisvyOj2aaR1ArLvtIsr7LSphz/EOtU/7Te0iLzfMijJJqvpnjDQ9TwqS+W542vwf8K640qivKC26oSp1FdxPAPjr4cvV0m1srFldJJGY7uvyjj+dfI13pWoWTbbiIr79q+3fi9dpLqlrao+4Rxlio7Emub+GnhlPF3jzS9BkjMkc06mQAA4RTljz2wOa+twOPeHwXtauyTb9Fr+R9nlOYzw+FXMrrVnxuQV4PFdj4Js9W1DWY7fT5HjQEGQqeAtfuT4k/Z9+D3ikTHVNCthJMoVpIk2OAPQjoa84k/ZF+Gum28g8I+bYTOMbi3mAn3zz+Rr5aj4n5bVhy1IShJ90mvw1/A0q8UUqlJx5GpP0a/r5HxlDcMihGHA4Fdx4E8Kan8QvFdj4Q0IZub6QRrkZ2juT7Ac11fiP4CeP9BBkhhW9jH8UByfyOK/S/8AYf8A2dZvAuht8TPGdsY9V1FQLWKVfmgh/vDuC/8AKvn+NOPcBk+T1MfRqxlUfu04p7ye112W78lbdo87LMH9crKENur7I+1/hb4RtPhZ4K07wboZ2xWUQViOjufvMfqa9ZtfEOcJdL/wIVy/Xmvif9tr9qjTv2cPhy0WlbLnxDq6tBZw78GIEHMzAc4Xt6mv4awGTYziLNI4WhF1MRWlv3b1cm+y1bfY/UqOIeGglB2iuh8df8FNv2sYfFOor8BfAF2TZ2T7tVliYjzJR0hYdCF6n3r8cWUMpX1rJtdYv9V1K4vNWme4ubpzLJLIdzM55JJPc1txxvK4jjBZmOAB1Jr/AEd4J4OwnDGUUcpwmqjrKXWUn8Un+nZJI+XzHEVK1eVSo9f0KujaDf67rEWjWClpJWCjjIAPc+wr7ei8Fw+FdEt7Ox5SJQHx3bufxNRfCn4ex+E9P/tS+G69ukBbI+4vXH19a9ckCNE3mAYxznpiufNs4dWqoU/gj+L/AK2Phs2zZ1qihD4Y/iz5T+I+oyWenW8NvIY5Hk3DHGQv/wBeptG1s+NvDN1otw4W9WPCkHBLLyrDuCCAeDXA/EbVbbVPEkqWDbreD5FI7nviuR0+/udLvY7+0O2SM5HvXrrAxrYVQktWvzPUw+GaownHSa95Ps9z/QU/4Jj/ALScv7UH7Hnhbxzq8m/WrGH+zNUBPzC6tfkYn/ewD+Nfgh/wbC/8nPft8f8AZWpv/SvU69O/4N4vjREfHHxF+CTTkw3sVtrttDt2rHJkxzKvqSSGJFeY/wDBsL/yc9+3x/2Vqb/0r1OvzKvRlSqSpy3Tsfr+Fre2owq90mf130UUVkdAUUUUAfyIf8FDP+VsD9jH/sTNT/8ARWtV71/wcG/Hu61i48D/ALHvh64KxanK2t64qN1trbAhjbHZnOcHrivBP+ChpA/4OwP2Mien/CGan/6K1qvgb9sf4rz/AB8/bm+JvxNkkMtpZXw0WwychYbPKsB7Fs9K68DS9pWjF7bnicRY54XAVKkX7z0Xq9DgPBOp6Vot1I2oTJbxlAoLnavHaul1P4v/AA80p5I59RR3jGSsY3Z+h6V84fEW1a48NSspx5ZDV80fWvrKfD1DGSdapN9rKx+P4PKqeJTqTk/Q9y8Za/pHifxBPrWis7QzHP7xdpB/WuE1c7dPlfuBkVR0CUtG8XpyBXQT2cs8DxbM7lOM9K+jpU40VGmtlpqeqqcaTUFsjxd7u6fhnP4V+s/7I91pGtfCeKBoVkltZWSQugPJ5HPevyPlYRStE3VTg1+jP7DHilJbTVvCkjjKFZ41xz6E5rwvEDDOplEpw3i0/lt+p059RTwvNFbNM/QVI441CRqFUdABxSlgoJY4A7mqOqyXcWmzyWGBMqEpu6Zr8/8AxH8SPGuuzPDqF66KCQUiO1ffpX43kuQ1cycuSaSjvffXyPjKdNy2KXxxWwsfiBdvFOJfNw5x2JHSvIrTxLc6Zci604AOOhYVD4iBN4JmYszDnNc+ehY9q/bsDgo08NTozfNZJettD2qNGPIk9TV1PXNW1h/M1CdpD6E8flXyzr/OtXAHJ3n617/NqcSjEXzH9K45dJshdPesgaRzkk17WEcaSdlZHt5bNUG3y6WPLF0i9ZBI67VPc10fh/TYodVtmf5j5idfrXSa2uETHrWRYzJbXkNxJkrG6scdeDXa6jlBnq+3lUpv5n67Wf8Ax5w/7i/yrI13xT4e8M2rXmu3cdsi9dzc/l1r4t8UftKeI76MWXhaEWUKoE8x/mkOBjPoK+VvEOsatrOoSXWq3Ek7sckuxNfnuA4PrVXzYmXKuy1f+S/E+NwXDNaq71nyr72fdfiP48eE/GN4fCXh+OWXdz55wq/L6DrXMzsVhZh1wa+YPhd/yNkXf5TX1muiapeW0jwQsQFJyeOle3VwFDAWpUtF5vqbZhgqWDqKlT2t1Pkq9lkmupJJWLMWPX617x8Hcf2ddD/bFeC3aNHdyxuMEMQR+Ne9fB3/AJB91/vivYzH/dn8j1c1t9UdvI9mpCcDNeY/F7WtU0DwVcalo8pgnQjDr1FfIWnfHj4i2MBie6W43c7pV3H+leThcsq4im6kGt7HmZdkGIxtJ1qLVk7WbPr+/kEl27r0JqvFLJC2+MkH2r5csPjvrKEf2paxy5PzMh2k/QdK+nfDC3vinwUvj2yt2WwMvksx/hf0NdGJw8sPGPtbJN2Xm+iOjGZTicLFOtHTa+6Nk+LYdMRW1UnYxChh2z611091GLM3MRypXIIPXNfOfjy65itRn1PNWvCvjO4+yjRNQYlB9xvT2NRPL701Uh80cksuvSVWHz9D6W+F/wATdQ8B6vlzvsp2/eoe3uPevmr4/eP3+IfxGu9UiffbQ/uoMdNorq9VvFtLB589RgfjXhOoWrT5mjHzdT70ZdleGhjHjuW02uW/6+vQ7crowjVdVrXYt+ELFZ9UF3MMpH/Ovb45mgdZ4zgodwPpivOvD1p9jsFyPmbk1r6jqhtdOePOHbha78SvaT09C8Y3Wq6ehzfxP8Z6l4111LzUWJEMYiXnjjvXqvwO+NMfgDQdT0XU2JUxmS274fHSvALuDzojk8jkGvWPhX4Kh1XT7nU9SjysqmOPI/WssfhMI8D7CrH3FbRevQ6MXDDxwfs6i91W0PEtZ1K71vUJ9XvWLTTuXYn1NclqzqsAQ9TXd65o9xpGsS6PKp3q21ffPSvtfwN/wS//AGhviNYab4jmuNP07Tb+NZQ0sjGVEbkZQL19s1Ob8T5Rk1GFbMsTGlCXw8zteyvZLVvTsfQYLllyuG3Sx+aun/8AH/D/AL6/zr9H9N/48If9wfyr2HWP+CRnjPwppk3iTU/GenrBZKZXPkSdF5x1715RHbrZoLVXEgj+UMOAcd6+do8ZZNn8efKMQqqhpJpSVr7fEl+B4XFktaS66/odXoBPlOD0BpviaWMaU5LAfjXOLJIgwjEA9cGvPPiReeToJiJYGRgARTo4XnrrXdnx9HD89aKvuzXR0c5Qg/SunT7g+lfI9tfX0MirFM6jcOATX1fYEtZRM3JKivSxuH9lbW9z0MdhHRtd3ueA/Gf/AJCdp/uGuI8G6rqFprkKwSsF54zxX1J4h+D0nxEtY9StbwW80RKBWXKkfhzXj8/we8Y+DNUTUL9EltY85ljbgZ9Qea7cJmGFlQ+rua50mrM9TCY7DPC+wlJcyT0Z6RZ+LnXC3yZH95f8K76KOaW0jvQjCOUZUn0rw2vtTQLK3g0G1tVXKCNeDzXhZnVjh1GUVuz5/GqNNJpbnO+B+Vn78iq/jrwroNxol5qrW6rPFEzh14OR61e1O/t/C96ptYhsmGXUH09KyPGniqyl8FX8tkd0hjKlG688V40fayrxrU7pSa/pnFTU3UjKPWx8hWmu2852zjyz+laEjKzZXmvO6sw3dxbnMbHHp2r790FvE+teHV7xO63uEMYYhT1GeDVJ7VTynHtWIfEtpb7RegpuOMjkVuQXdtdRmS2kVx7HNTySjrYh05x1seNeJNG1R9RluvL3KTxt56Vxzq0Z2yAqfQ8V9DthiSec1+iv7D/wO8E+PdB13X/HOlxX8ErLaxrPGCuMZYq3UHnHFedxHxVRyLLp4/ExcoxsrLd3aWl/vPZw+YtJQlE/GEOwOU4x6V7f4C8MXus6W93qcrqhOIv8a/bvxN/wT3/Zv8Q3SXNvp02nbF27bWUqrH1IIPNeU+Mv2GNU0S2X/hW96lxBGvEFx8jADpggYP418ThfGfh7HctJTlSk/wCdWX3ptfeRmWLlOlalHU/LLUfB2p2e57fEyDnjr+VfTX7IfwdufGPjQeMtWixp+kPwrj783bjHIFdDN8D/AImWWvweH9U0qeB5nCeZt3IAep3Djgc1+kvgTwZpfgTw5B4f01VAjUF2AwXfux+tY8a8bU6WXewwdRSnVVk4tO0er077I8CpjqvI4S3Ope2U/c4ri/HXizRfh54UvvGPiWZYLKwiaR3Y4HA4H1J4Fd4zKilnOAOSTX8+H/BST9rlvH/iJvgn4DnddJ0qQ/bpkcFLmYfwjHVU/nX5Rwhw9XzrHwwsPgWs32j/AJvZeZ05FktTMsXGhD4d5Psv60R8sfH34y638cviRe+NdWdxCzGO1hZsiGEHhR/OvH7WXy32noaydOuVu7RJV64wfrXoPgLwVqHjvxDFolkfLQ/NJKRkIg6/j6V/YWHoUMJh40qS5acFZLskfss4UcHQcX7sIL7kj2D4IeApPEeujXrtf9EsmDDP8T9sfSvseRDG5Ruop3hzQbDwxo0Gi6auI4FCg92Pqfeq/inULfStIlv5ThlBC+pJ6V81icU8RWuttkfjmaZlPH4vmW20V5f8E8nj8fX2geMZpo3820LBHQ9MDuPcV+r/APwTi/aPf9n79tLwb4wiuCNA8XkaBqZU/JtnbMDt2yknGT0BxX4jSSNLI0rnJYknPvXfeEvGF1pFq2n+csBhkS7tpnyfJngIdCMe4/OozzKlWwzdNe8l99j6DDYb6riKOJpbqyl5p6P7tz+i/wD4OgyG/aD/AGEGU5B+LMH/AKU6dX9eFfw9f8Fvvi7B8d9B/wCCbHxXifzG1j4h2EkrHr5qz6cr5/4ECa/uFr8uP0UKKKKACvzM/wCCz/8AyiW/aP8A+yd+IP8A0jkr9M6/Mz/gs/8A8olv2j/+yd+IP/SOSgD52/4Nv/8AlCZ8A/8AsE3/AP6cruv5+f8Ag5W/a7u/il+0rpv7MXh27LaP4IhE13Gh+V7+4APPrsTA/Gv3X/4N/wDxbY+Av+CCXwb8bam2230nw7q13IT2WG/vGP8AKv4V/j/8RdT+NXx18V/F/X3aW61/U7i7DMc4RmIQD2CgV9JwrgViMfFyWkPe+7b8SoSSldngVloYMv2i54HZa6T91BH2VRU6RvI21Bk1514g1K8knewkUxhDgjua/Xm0jogp4idmzU1jxSxjNnYEg5wXH9K4ZmaRizZJJ70BSxwtbFrZhBvfk1nq2enTpwoxtFFm38zylEgwcVOoLHC8mnxo0riNOSa6my05LbEj8v8AyrU5qtZRJbKOUW6+dwfSrjMqKWc4A71IqM5woya4bXL26adrRwUVTjHrQ3Y4acHVnZCanq7TEw2xIXPX1rBwXO3ualhtpriUQxDJPpWzHZfZXKyj5qnVnq3hSXKtxmm6ZHnzJ+SOgrowMcCslGKMGFaqsGGRVJWOGtJyd2Y+s6hdbfs2Nqnv61zsMrwSCWM4IPWu3k099SxbxLlz0rjby0lsrhra4G11OMVL3OrCzptci3PRLHVf7StgehH3h71NNEk8ZikGQ3FcNoS3rX6R2KGRn42j0r0O4t5raUwzqVYdQapO552IpxpVOWL8zhm04WcxB55yPpUgJU5FdPcW32lNij5u1c5NBLbSGKYbWFCN4Vufd6l+KQSLnvUyOUbcvWsuDf5gEYyT2rTIIODTImrGLrV/cTP5BG1B29aztOubm1u1ktDh/wCddDcWX20eWg+btT7PTfsP+tH7zvUPcv2kIw5bfI27m/mugN4x7VTxuG2pYIJLiQRRjJNSSxNbyGKQYYdaDhhZOyK0cWDlqju4I54ircHsavRI0zBIxkmqdwkscpjlG0jtT3NlL3t9TMtbRbdeeW9a1LaaWGQNF1qvWhboFTcOpqiqkrrUuyytK2Wq1p888NwBBznqPWoLW1nvJ1t7dSzN6V1tvpn9nM0cgzIOppNrY86vVhFcj37FwsW5NcP4907Sr/QpP7SIRkGY3PUH2ruoopJnEUSlmPSvnbx9qWpXOsvZX0bQrB8qof51lJpCyqg6mIXLK1tfM6PwlpWnafpqtZNvaTl27k118UhiPHSvGvCd3qK6rFZWIL+e20r/AFr2i5tZrKYwXA2sKuEk1Y78wpuFZ80rt6+ZUkkaRsvWXfWKXS5Xhq1HAIyKjqzOnK1mjChhECbPzoeLccitlrV7lwkQy56e9UZ4JbaUwzDaw7UGyqJvfUuQJGkYWM5HrV6C5ktydnIPasqyimnuVgtxlnOMVq3VrNZzGCcYYUvIwqKN+VvU5K8nuJ7hpLj72afYmVpfJTkHrWxcWBvSFiHz9qs29gbH924w/ejyN5Vo8nL17E6KEXaKGOOaUkAVCW3c0zmSuBOTmsu60aG/kBT5WzyR3FbEMMlxIIohljWkLZrUmOQYbvSY/a8j916kVvBHbQLBEMKopLm+FlFuPOegq7b2811KsFupZm4AFchrkN5a6g9tfIY3XjaalbkUoxqT5W9dzLlkaaQu5ySck1fttTmt4zEeR29qpQwyXEqwxDLMcCnXFtNaSmGddrDtVnoz5H7rIWYuSzck9apzwEjdGOauAEnAoIIODQVGVtjmGDK2GGDW3p2qmIiK5OVPf0p8lkbtwkf3jWNcW01pMYJxtYVDVja8ZrlZ6OjK6hkOQaSZ5BCwj5Ncdo17crcLaoC6scYrtmRkbawwapO559SHJKzOWIIOG61XuPMMLCIZJrpLizFxyn3v51iyRvExjkGCKZ006ifqciCVfP3Sv6Gur0/xNMlr9kuzuJ4D98e9ULu1SUbl4b+dYLo6HDDGKjY7pQp1laSO6PlzJ/eU1jTaUqyebF09Kq6RPdNcJZwr5nmHAFdXNDLBIYplKsOOapO5xy5qM+W5+/8A/wAG937Zdz8Gf2sLb4Q+JLkx6R41gXTpNx+UXEWTbsffkpn0xX9/lf5Ifwg8S6x4G+JekeMPDsvk3enXUV1G24qA0DBwSR9P1r/Vk+BPxHsPi/8ABnwv8T9NffDrum294D7yICf1zX5HxZgVh8c5RWk9fn1/HX5nJVtzXR/LR/wa5/8AJcv25/8AsrVx/wClF/X9d9fyIf8ABrn/AMly/bn/AOytXH/pRf1/XfXzBmf5gn/B6t/ylN8A/wDZKtK/9O+sV/X7/wAGuP8Aygo+Bn/czf8AqQanX8gX/B6t/wApTfAP/ZKtK/8ATvrFf1+/8GuP/KCj4Gf9zN/6kGp0Afv9RRRQAUUUUAFFFFABRRRQB+Rf/BTP/goz4+/YX8Q+EtG8F+HtP1tfEVvdzStevIpjNu0agL5ZGc7znPpXMf8ABNP/AIKZ/En9uD4o+IPAfjXw7pmjW+kaWL+OSxaVnd/OSPa3mMRjDZ4HWvRv+Cjf/BN/V/279d8K6zpfiyHw0PDkF1Cyy2bXXnfaWjbIIlj27dnvnNc5/wAE7v8AgmDrX7DHxL1zx/qfjGDxImsaZ/Z4hismtjGfNSTduMsmfuYxgda+RnHOP7Xur/VrrrG1uX79z9mo1eCv9S3CfL/anK+lS/N7R21tyfBbr+J+vFFFFfXH4yFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/1P7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+QL/gyp/5Sm+Pv+yVar/6d9Hr/AE+6/wAwT/gyp/5Sm+Pv+yVar/6d9Hr/AE+6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyH49fAT4O/tQfCLXfgN8ffD9r4o8JeJLY2uoadeKTHKhIIIKkMjowDxyIyvG4DKwYAj+J79rD/gyY8A+JPGd14l/Yv+L83hjSLjLx6H4nsTqHkOTnal7A8bmMdFV4HcAcux5r+7+igD/OP8Bf8GQv7TF9rMcfxP8Ajl4Y0vT9675NL026v5tnG7CSm1XPXGXwf0r+vj/glX/wRU/Y5/4JJeGNTj+A1vea54t8QRRw6t4n1po5b+eJDu8iLy0RILff83loMsQpkZyqkfrxRQB+fX/BTX/gnD8Ef+Cpn7K+ofst/HKe7061e7g1TTNUsNhutO1G2DrFPGJFZGGySSORSPmjkYAqSGH8mHwh/wCDKjxJ8LPjh4a+JZ/aLtr3T/DesWWqLF/wizJNMLOZZhGf+JkVUtt27stjOcHpX96lFAHwT/wUO/4Jsfsqf8FO/gg3wQ/ak0Vr2C2d7jStUs38jUtKunXb51rNhgCRjcjq8UgADo2Bj+KD4gf8GQPx1tfFckXwr+O+g32htJ8kmq6TcWt2kZ7FIZJ0dl6ZDqG64XpX+irRQB/KN/wSn/4NS/2XP2BfilpX7Rnx98Ty/Fzx3oM32nSY5bJbLRdPuF+5MLZnmeeeI/NHJJIERsMIw6q453/g87/5RQeGP+ylaR/6b9Tr+tuvw2/4OBf+CZvx3/4KtfsR6P8As2fs8atoOja7p/i6x1+SfxFcXFvaG2tbW8gdVa2trp/MLXCEAxhcBssCACAfxgf8ETP+Df74Df8ABYP/AIJmeKviZf8Aii98BfErw38QdR0qx1qCEX1pPYDTtNmW3ubRnj3BJJZGR45Y2UyNu3jao+qPBn/BkF+0FceLorf4hfHbw9Z6CJB5k+naVc3N4Y++2KV4Ywx6DMpA684wf6fv+Der/glx8ef+CS/7G3if9nz9ojWtA1vXNd8Y3fiKKbw5PcXFoltPZWVsqM9zb2r+ZutnJAj2gEYYnOP3ioA+Gv8Agnx/wTw/Zn/4Jn/s+WX7PH7MukmzsUYXGpajckSX+q3pUK9zdSgDc7AABVCpGuFRVUYr7loooA+EP+Cmf7Ft/wD8FD/2HvHf7GuneLT4GfxvFZQNrQsv7RNvHa3kF04+z+fb7/NWExH96u0Pu5xg/wAeX/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VfsD/wRT/4Nv1/4I9/tR+IP2lf+Fy/8LEOu+Fbrwz/AGd/wj39keV9pu7O687zf7Qu9237Js2bBnfncMYP9PdFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/mCf8Hq3/KU3wD/2SrSv/TvrFf6fdf5gn/B6t/ylN8A/9kq0r/076xQB/X7/AMGuP/KCj4Gf9zN/6kGp1+/1fgD/AMGuP/KCj4Gf9zN/6kGp1+/1ABRRRQAUUUUAFFFFAH+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5r/EG/4Kxf8pTf2lv+yq+Mv/TvdV/t80Afm7/wWL/5RP8A7SP/AGTbxN/6QTV/Av8Asm+KbjxP+zN8CdAdyYPDPgy7jReyyXOq3khI+oIr++j/AILF/wDKJ/8AaR/7Jt4m/wDSCav88v8A4J9yvP8ABHwsshyIdAgVfYG4uD/Ou3LlfERPn+Kajjlla3Wy+9o+/wDJr5k+KmlyWfiL7bj5LhQRx3HWvpqvL/ivo0+o+HDe2ihpLU78YySvevucuq8ldX2eh+SZXW9niI32en3nzQjFWDDtzXpNvIJYFkXowzXi39pT+gr6g+BNt4a8VabcaZq0W+7gbcMnqh9PpXvZjP2NL2sldLsfTZrB0qPtZK6XY8O+INg0+mpdpz5Tc/Q149bTva3MdzEcNGwYH3FfqHrPw48OXOgXmmWdsqvPGyqxGSDjjGa/L++s5tPvZbG4BDwuUIPqDillGYQxMJRitv1OzhzMIYmlOlb4fyZ+y3gTxPZa74J07XZJgBLbqzF8KcgYJPPqK8L+MeteG9b1K1i0S7gubhUO8RMGIXtnHH61+d8Wtas0AgNzLsUbQu84A9MV2Hw71A2niWJGJxMChxzmvGocMLDVpYlVL2u0rfgeO+F/q7nXVS9rtKx9AnSvPjMdwflYc1LZ6Jp9lzGgZvVua1qgluYYvvH8q39pJ6I832k3omeJeNYY4ddfyxjcAa5u2tLm8k8q3QuT6V6/rOk2es3a3M+cIMYHGatW1rbWiCO3QKB6V6cMUo00ktT2qeYKFKMUtbHF2Hgxgvm6i2ePuL/jXgt/F5N7LFjG1yMH619e14jqfgHVtU8R3EoKpA7bg5759q1w2J96XtGdmV49Kc3WlZWPJsVBf20zWEkgHAFex+IfB+naBp0LwgyOW+ZzXEXcPmWkkS8ZU1306ykuaJ7uHx0alpw2ueQ1+h3w+vF1Dwdp90ECZiAwPbivz6htLi5l8i3Qu3TivuL4OyXY8GRWd8f3kLMuPQdq4s3jekn2ZzcYRjLD05J6p/g0cV8eY3K2EuDtG4Z7ZNeF+Hbn7HrdtcYztcV9W/FrTo73wz50n/LBwwHrXzLGkaEMgxj0p5fUUsPy+qOXJcQpYH2bXdff/wAOfSLX1nGu95VA+tfAXxaiEfjq9dF2pI25cdCD3r6qgfzIVcdxXzr8ZtNMOp2+pqDiVdpPbIqsLBRm0ejwpBUca4t/Emv1/Q8Wr7e/YL0mx1D4xS3l0u6S0s3kiOejEgfyNfEQUswVRknoB3r9Of8Agnv4bu7a91zXb6yeMNGiQzuhAPPzBSf1rk4hq+zy6s/K336H0PGmIVLJ8Rrq1b72jsP20LDwp4E06w8SH/R21W68iQDhd2Cdx9PevjSzCSyK6nK4yCO9eqf8FSNQia/8LaZHMDIizSPGG5AOMEj+Rr4i+DnxDjhkHhzXpj82BA7dB/s5/lWHDU5vLqTqO7d/zPE4ZyepPIKWMi25PmuvJO2npb7j6y0/UbjTmdoP4xgiqBOTk96QHPIqKW6jtAJZRkZHFe3bqZKCTbS1Z22nQeRbKvduar6vceVB5a9Wq/bzRTQLNEQVIyMV67qvwjmvvAcOsWiE6gB5hUH7yHt9cVx1sTTpOPtHa7seLVxVOlUj7Z2u7HzVzXvvwv0RrPT31SdRun+7nqFH+NeMaNpkupatFpzAgs+G46Y619ZWkMVtbpbQjCxqFA+lZZjWtFQXUxzvE8sFRj139DK8S6Ouu6JPpp4Lr8p9x0r9Dv2Xtf8AhT8G/g/ZaBqGswfb5gbi6AByJGH3enbpXwdRXxfEOSwzfCLBVqkow5uZ8ttWu90z5320/Zexv7t7/M/TjVP2svhVb6fPJaz3BlVG2ZhOC3bv61+XOt+LG1/V7nWtQdnmupGkckZ5Y59ayNeu0ULa7gD1PNcz5idAQfxo4b4PwOUKc8LzXna7bvou2iNKNBW5md3pwbVCwtATs6k8CtaTQL2WBgpUMQcA1p+GtOew0xd4+aT5j+Nb9enVxDU2obHHUrWk1HY+eZ/hJruHlSeFm5IUZGa6bwheWXhezbRNYdYrhGLMRyvPbPrXr7MEUu3Qc18xa3efbtWuLk8hnOPpXfhq1TFJwqvRdj0qNeri06dV6I+qvA91Y6lqyyWsyvtQtgHJ9K9fmZUiZmOAATXzn8A9OOb3VGAI4jU9wepr3bxHdmx0S4ugMlUPFfLZnBfW/Zxd9kfPY6mo4h04u+yPCbpxJcyODkFic/jXbeBvirf/AA8mmt4rdbiG4wzgnByOBg15hFqcT/6wbT+lUbqQSTFgcjtXs18HTr03RrxvF9D0PZJ+7JaH37o/xV8L+OdJkt7BzFdYBMLj5uOpHYioq+afgpYiXWrnUM/6mLbj13n/AOtX0Ze3cNhZy3twcJEpZvoK+CxuXUsHXlQw97b6930PDxdNQq8kRt3YWd8nl3UYce/WvLPEek2+k3Kx27lt4ztPUCur8P8AjzQPEBEMUnkzH+CTgn6etc54wnMurmMjiNQM/XmuzBQrU63s5pryYUozjPlkcBrk4t9JnkYZ+Uj868GBIORX0TcQQ3ULQTjcrDBBrgL7wGZZAdNcDcfutX1eBxFOmnGbsevhK0IXUjzG4jF2d85LN6nrXrHwL1HSvCXjhfEuoxyzC2icRrHj7zjHOe2Ca5vxB4C8VeGZCNTtH2AZ8xBuTH1Fafg232W8s5yCxA/KujGOjicJOCleElbR9H/wDqrVk6L5Xoz9E9P+MfgK9jaWa7NtsGT5qkfl61v6f8Q/AmqWq3llq9q0bZwTIFPHsea/OTxJd/Y9GmkHBYbQfc14YMjpXw0PDzCVk5Qqyj9z/wAjiw+DVSLk3Y/o+/ZY8E+FPi14ye7m1GzuLPSyrzW4lVnlLfdG0HOOOTX63XnhnQr2BbW4tY9ijaoCgYHtX8NmieI9f8N3q6j4evZ7GdCGWSByjAjkcgjpX2v4B/4Kf/tNfBzSG/tHWk1eyhQADUR5rAAknDHnJ6c1+LeIvgBnuaYpYvK8bGaSSjTleDXezV023rrbt0P1vgniPLcqwzwdfDtyk9ZK0ubsrO1ktkk336n7+ftWeLPhr+zL8JtR+LviaeRIbQBYbVCC9xM/CIgJHfknnA5r+Nv4xfFnxN8a/iBqHxB8USMZr2QskW4ssSdkXPQAV6V+1f8AtrfFH9s3xXD4r8aP9j0y2XFlpkTEwwA9Wx3Zu5NfMMR3IMV+xeCnhRPhTAPE5o1LHVfia1VOP8ifV31lLq9Forvuz7FYetiG8NT5YLT187dPQt20pgnWUdjX1b8N/CpsmXX9RjHmZDQq3YepFcj8Nvhi6smu+JI9pGDFCw5+rCvokAAYHAFfqGaY9SvRp/N/ofmud5lGb9jS+b/Q9ct5luYFnTowBryD4veNZfD+lDR7DcLi7BG8dFUdfxNdFa+IfsGltCOZAcJ9D/hXknjXTpNd02SZjunj+dSe/qK+ZwGEisQnVXupnzOCoxVdSqfDc+fCeee9IQelXrK3MreZIOFrRg0mfU9Uhs7UczNg+3qa+2c0nqfYyqJbn6n/APBFXxPe+Bf2/vB0812Ut/EVpf6b9mPRiybgw/EV9if8Gwv/ACc9+3x/2Vqb/wBK9Tr4J/YSxoX/AAUI+BsFkpA/tp4cL3UxNmvvb/g2F/5Oe/b4/wCytTf+lep1+W5zPnxk5rqfdcNYl18vhN92vxZ/XfRRRXlnvBRRRQB/Gr/wVd8Rx+EP+Dnf9lHxVMcLp3w7125J/wCudtrjf0r8ovh3LPqmgSeIdQO+41S6uLyVj1ZpZGOfyr9AP+C7V3LY/wDBwV+z3eQHDx/CjxMwx6iz12vgT4YqF+H2j/7VrGx+pGa9PK/jk/I+D49qNYWlBdZfkv8AgnUanp0WoadNaFR+8Qrzzya+N7iF7a4e3kGGRip/CvtvPFfKPxT0250XxC1zEo8m5+dT796+1yWt78qTe+x8RklX95Kl3/Qp+FLhYtR8p+jj9a9PIXpivnmw1aW3vIppOFVgWx1x3r9N/Dnw0+HviPQ7XWrGNnjuI1cHeepHNXnmNp4HkqVU7S008jpzeSoSjOS0f6H5jeLbA2Gtyp2c7hjpzX0F+yD4rHhz4sw2U0gSLUUaA8ZyeoHtzXf/ALUvw303SPD1hr2gWyxJA5jmKjkhuhJr4m07Ur7Sb1NQ02VoZozlXQ4YfQ10U50s5yqcI6Kacdej2/yZ6uGqRx+BcVu1b5o/oS1G/wBMsoGOpzxwIwIzI4UH8zX5wa7Da3Ou3b6O6S2xlbY8ZypGexr4vvvEniDV41XU76e4UcgSSFsfma+ifhJqf2zw81mxy0DY6djXy+V8JTyeE6rrc7lZNWsl57s+fxOUywtP2vNf5HXzeG4L5kkumPy9hU17ounxaVNBFGFGw8gc10NVJ54SjRnnIxXo+1lpdnmqpNtanyyx2nFbGmaFqerOBax/LnljwK9MtPB+mw3DXM/7wk5CnoM12NpGkQ8uMBQOgFelVzBLSCPXq5hZfu0eGeMvCUei+H/tcjGSXcMkdBXj1fXHjHTp9T8P3FpbDc7LwK8e8P8Aws1K92z6u3kR/wB3qxrrwWOiqTdWWtzuy7MIRot1pa3PKQCxwoyaxdXgkhmXzBgkV7Dqmj2ek6nLaWqYVDxnk1wPi+FtkcwxgEg16dGupSVtmevhcWpzjbZm58Fr6Gx+INl50fmiQlMehPev0kdEVDtGOOlfl14DTVLfxNZajYRnEUqkvjgDPNfqNE4lhWQchgDXyHFUP38J91+TPmeKYr6xGS6r8j84vGaFPFV+CMfvmxxivTvg9eqsd1Ztgchtxp3xZ0W3tPGU0zgMZwG+lc54cZLe88tPlDjtXtuoq+Dil1SO2rVVbBpLsvwPUPiaLW88GX9qdsj+WSF68ivzUwRweor9D72AXVpLbt/GpH518A6vZvp+qT2UgIMbkc9etduSpQjKF/M9/g6SjGrSv2ZnV/Qb+xd8MvC2ufsuW2m38PmR6k7yS7ucOOAR6Yr+fe3ikuJkhgQuzEAKoyST7V/UX+zlo1t4a+AmhWcMH2QCzDyIRtwxGSTnpX5v40Y+eHyzD06UmpSqJq391N/nY6+Kpr2MKfdn4ffGiLSPD3xa1fwJYzmSTTJNh3cEg8iuJtflXcK+Tvjd4n1K3+PviTXLK6aSQahKQ+7dlQ3TPcV9D+B/FeneLNGju7Vx5qACVD1DV+i4OnUjgqPtHeXLG787K7HmGRzwmEo1ou8JRV/JtHpFxq89zYpZS9E71TsoTcTqlVK09HvLVL37LIcOw4p2snyo+dceWL5Udbt2gKK4zV7ozXXl/wAK8V6x4T0GTxHrsGlIuVkb5/8AdHWs/wCLXw2uPAmr+baK72M/KOecH0JrjhjKMcQsPJ++1dHLh69NVlTk/ea0PK7K0l1C7js4Bl5GCivsXR9Oi0nTYbCIACNQDj1714d8KtHSe9fVpgCIvlXPqa+g683OK/NNU1svzPOzjEc1RUlsvzM/wv8AC7SfG3xk0G81q7gsbCOZXupJjhdsZz6c5r96NS/aJ+BvhLT4IW123eJQI0W3/eYCjjhRwK/CehmCgseAK/KeNeAqHE9fD1MdiJxhSTSjG3V3bu09dvuOjL+I6+EpeypxT83c/Qn9rT9qnwR4o8DReE/h/qBma7f/AEn5GQhB259a/MkaxYDox/Kud1W6+13ryA5HQVJounyanqEdug4zk+wr63hTg/AcPZf9Twl+W7k3K1233aS22Whjj8VUxU/b4h626bfqegW2n3d1Gs0a/K3QmuW8a+A9b8QWkdrYtENrZJYkV7EiCNBGBgAYp1ehDG1ITU4dDxaeKnTmpx3R8h3Xws8S6DLHfXgikgjYM7K3AA9c16vZa/olxGiwXCDsATg8V0fxK1EWPhmRMjdMQoB/pXyzGu+RVXqxwPxr3cO54ylz1Xa21j2qXPjKfPVdrH374NiCaMsqsGEhLDFcd8X7gR6DHAHwzyD5c9QK7fwfYf2Z4as7PbtKxjIHqa8g+NF/tubSxZeils18xg4+0xyt3b+48ahHmxCS7niEr+XGZP7vP5V694T+PWm+XFp2v25hCgL5icj8RXil/cIllI2cHFcBnPvX11TL6OJhy1l6H0H1OnWjaoj7Z8Satp+s3aXumTLPEUGGU5Fc2yK6lW5B6iuZ8HW32Xw/AhOdw3fnS6/4t0rw3LDFqJIMx7c4Hqa8mnhuV+xp62PIVB8/s6etjM1vwNpF+jXEX7iQAnK9PxFeCShI53hRt20kZ9a+lbrWLG70Oe/sJFmQRn7p9q+YGbexb1Oa9rLnNqSm9j2ct55KSm9jA15wWSPHTmsSG4nt23QOUPscV1V5ZR3Zy/3h3FVrHwhreqGUaZF55iXcwXrj6V7UZwjH3mfR0qtONO03b1G2nii/gASbEg9T1r9nv2Pvjd8O/BHwntNC1lrmCad5LiR3TKBmPQY56V+JP2C5ivEtLqNo2ZgMEYPJr9BdDs0sNHtrOPOI41Xnr0r4jjzIsJm2BjgsS2ouXN7rtqk7dH3PIznELDqEqKV3+R+yUHxl+Fdw1vGuvWaPdECNHkCsSe2D3rrx4o8ME4/tK1/7/J/jX88vxIvzLqUVqh/1S5+hNeefabn/AJ6v/wB9GvyJeBGGqwjOljZRv0cE/wAnEzw+KnOmpSWrP7Rvg98NdEg8OrrWrxW99JeruVhiVRGegB5HPtU/iv8AZx+HHiUtPBbmwmbJ3QcDJ746V/JZ8Lv2pvj58HLiOTwJ4lvLeGMg/Z3kMkJC9AUYkY9q+i/if/wXk+Mfw18ES+E9Q0qxvPEOo2xgs7qP5GhkIx5zp0PsB3r8gzv6PfGmFxzr5Rio1VJ7qTptK/WL0svJv0P1/Is6yPHUKeWVsHrbS6Ur93zaNetkT/8ABXH49aR+zIsv7PXgPU3u/Eeq24kuZYhs+x28mcAsD99gOnYV/MPJJJNI0srFmY5JPJJPrXV+O/Hni/4m+Lb7xz47v5tT1XUpWmuLidi7uzHPU9vQViaPo+oa9qEemaZGZJZDgADoPU+gr+zuBOE1w/lNLBVKntK1r1J2tzS62XRLZLtvrc9nBZZgsuhN4aChFu71b/F9jqPBNtd6tdf2RZrvkcggegPf6V+ivwc02y8Kp/Y8aDzJ13NJ3LD39K8h+Hvw/sPBWngECS8kGZJMfoPavT7K5ayvI7xOsbBvyr6PGT9rB01sfmnE+arHuVKj8H5vv6H0eSAMntzXzN4+8UNr2pm3gyLeA7VU8Zbua9e1bXvtkYisziNgCx9c14T4o0/7Lf8AnRj5JefxrzsuopT5p79D5PJqMY1eaa16HMVc0+2nvL6G1tf9ZI6quOcEnr+FadvYqsBWXq1esfBfwmbzV5dfu1/dWp2R57ue/wCAr0MViI0qUqj6Ht4nHxo0p1H028+x6r+094tvdc+Cf7BHhfVLoXdz4c+OU9g0inI2/a9MdQPTAav9JSv8v74wXjyL+yzp5zstv2jML6AM2kn+df6gNfi9RWnJeZ9/hKjqUKdR7tJ/egoooqDoCvzM/wCCz/8AyiW/aP8A+yd+IP8A0jkr9M6/Mz/gs/8A8olv2j/+yd+IP/SOSgD8U/2M/iJcfDL/AINPPB/iCykMdxP4Xv7OJgf4rjVblP5E1/J14r03TLLRoLyaVIXjVV5ON2a/os8LazPof/Bop8LLuHnMSKwHcf2xdEj9K/kZ8UeLNW8Uai17fOQvRUz8qgV99wTC3tqnovzHSy6riq0JRlyxjv8APofUVjbRQwhkw2ecjvXJ+L/Df9px/bLNf3y9fcVzHwy8S3F2p0S7DNsGUftj0Nev19/e+py1VVwmIeuq/FHzzFbfZ8q/3u9Woyd2M4B4ruPFmjxQk6jCQu4/MPU+1cHT21PdpV1Wjzo7qysorVAV5Y96vgZOK5nSNQkLC1k5HY+ldLWqd9jz6sZKXvHRW1qsSAjknqa53xLoa30YuIABKP1rRs7x0/dMMg1ZZtxyaVjipupTq86ZhaRo8Wnxbm5duppusWkbp564Vh+tbUjiOMuewrjLu7lupCz9Ow9KZ10uec+dspBQvXrV6ygnubhYIAWLVWRS8ioO5xXrWi6PBpkAZTudhktRJ2KxmKjRh5vYl0nSYtNi/vSN1NZHifwqmuRebari4Xpjv9a64DPFdFZWqQrv6k1hKVtT5t42pSn7ZP3jmPCHhC18O2wkkAe4YfM3p7CofHKaba6d/ad5IsJj7nv7V2V5ciztZLpgWEaliByTj0r4S8e+O9T8YamzTZigjJCR+n196z53fmOvJ8HiMwxTrOVkt3+iPpXTkt2t1ngYOHGQwqprGki/XzY+JAPzrxn4XeKLmG6/sK4DSRyfcxztNfQVaqbep3YyhUwmIav6PujhLWzFquGHz96lmhEgyODXRahaoVM6fKR196w62TujWnV5/eNPTbJbdBKcFjUl9Z/aBuXhhVS0uGjcIeQe1bg55oZzTclO7LemadFZxBhgsepqLVdLF2vmRcOP1p9vO0Z2nkGtEsTU2scTlOM+e+pladp6WUeTy56moNYsILi3MzEKy8g1tE4Ga4DVtTlvJTEPlRT0oRvQU6lTmTMardmJZJ1giBYscACqgHOK9v8ACHhu1062XUHIklkAII6DNE58qudmOxccPT5pbvY0fDOgrpVt5k4HnP1Pp7Vp6jpaXy7k4kHQ1q/Wr1tGAPMNccpu/MfF1cTPndVvUzdH0ePT4974aQ9T6VxHxN8FaR4g0mS/nZYLiBSyyHjOOxr1FjtUse1fJPxF8b6hr2oPpyAw20JxsPBYjuamHNKVzuyWhicRi1UpSs1q35Hc/DPwhpel6amrblnuJR94fwj0Fdxr2jrqVvmIYlXkH19q8G+H/iy50a+XTWUyQTsBtHJB9RX0wOn1rV3i7o7s3hiKGLdScr31T8ux4LPHJDKYZRtZeCKhr1jxFolvfQNdDCSIM59RXlBGDiumEuZXPSweJjWhdb9TutEsIIIBcAh3cZz6U7WNHi1KIleJB0NczpWpy2MuzG5G6ivQQcgN61Mrp3PPxHtKVXnv6Gd4Z8PRadH9qmw8x/StTWtJg1G3+b5XXo1PilaN8iobu7aVtoGAKjXmucjqVZ1vaX1OZ0zTvsYLyYLGpNRtI54jIcKw5zWkeOa4vW9Slkc2qfKoPPvWtzvpc9SpdPUw5pS7bR0FJBvMgjUZJ4xUJ4OK77w3pEKoL+XDMfuj0pOVtT0a1aNKHMzT0XSBYL58wzK36VpXmnpfrtA+c9CPWrldXoVjHs+1vgk9PasJVGtT5rEYuUX7VvUp+FfDn9lxm5usGZ+nsKh8a+F7LXNPa4kKxTRDIkP8jXb9a+WPi549v7u+l8MWYaGCI4c9C5/wrKLlKVzHK6WJxuMUqcrS3b7L+uhqeGtOtI7f7WjLIxyMjkDHpWpq+kxalDjGHHQ+9eD+F/Ed1oV4AuXhc4ZP6ivoyOQSxrIONwB5rsTufTZjQq4etzt3vszyOSzls5THMMMKjeMOPevT9V0yG/hJI2uo4NeayJscoexxVp3OvDYlVVfqbWjWaRp9oYgsf0qTV9Ji1OE9pB0NZNrdSW0m5eR3FdYjb0DjvTIqOcJ86Zi+GtDWwj+03ABlPH0FdHdWyXKY6MOhqNJChzT5JcjA4rPldzkqynKpztmdb2/lHc3JqO9sYLuMlxhh3q/XMa3qMiMbOLKjufWtDopqUp6bnMyYDkA5xVaa2FwNoHzHpU1d14S0aKdhqczA7D8q+/vSb01PSq4hUYuoy34O8MDTIvtt4uZ26ewrp9U0mLUotnRx90itYNg5FbujWaSP9ofBx0FYOVtT5XE42bm68nr/AFoZXgrwu+kqb+6CmduFDDKgf/Xr/Qk/4IkePbzxx/wT18I2+pyia60WS606QqcgeTIdoHsFIr+BnHav7Q/+DbvUpbz9hzWbOUki08UXsa57ArGf618FxrG8aVR73a/IeVYqdarUlN6ux8O/8Guf/Jcv25/+ytXH/pRf1/XfX8iH/Brn/wAly/bn/wCytXH/AKUX9f1318Ae6f5gn/B6t/ylN8A/9kq0r/076xX9fv8Awa4/8oKPgZ/3M3/qQanX8gX/AAerf8pTfAP/AGSrSv8A076xX9fv/Brj/wAoKPgZ/wBzN/6kGp0Afv8AUUUUAFFFFABRRRQAUUUUAfBv7Yf/AAUR+CH7EmuaH4f+LOn61eza/BNcW7aVBDMqrCyq2/zZ4iCSwxgGq37If/BRz4Eftq+K9V8HfCax1q0u9HtFvZzqdvDChjZwgCmOaUlsnoQOO9fB3/BYT9iD9pj9rH4geDdd+BWhR6xaaNp1zBcs95b2xWWWUMABNJGTwOo4rM/4I8/sPftNfsq/FLxh4k+PHhsaJaanpcNraSC9tbrzJFm3sMW80jLgDOWAFfIvMM0/tf6v7N/V778rtblv8W25+zR4b4TfBf8AaTxMf7R5b8ntY3v7S38O9/h1t8z9/wCiiivrj8ZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAooooAKK/mO/4Lm/8ABwt4k/4I8fHbwb8GNC+Fdt49XxToLa093cau2nmEi4kgEYRbWbd/q927cOuMcZP4g/8AEcd8Q/8Ao3HTv/Cnl/8AlfQB/oX0V/BB8Mf+D4rwzd67b2fxm/Z2urDTGf8Af3mi+I0u540/2Laeyt1c/W4QV/XR/wAE+/8Agpf+yD/wU3+E0nxa/ZP8Sf2pHYmOPVdKu0+zappc0oJWO6tySV3YbbIjPE+1tjttNAH3vRRRQAUUUUAFFfjD8Bf+DgD/AIJcftK/tO6d+x98JfHd5e+PNWv7rTLWym0a/t43urNZHkTzpIBEMCJ8EsASODyK/Z6gAooooAKKKKACivkD9v39qW5/Yl/Yx+I/7WNnoi+I5fAejTaqmmPcG1W5aPACGUJIUBJ5Oxq/iP8A+I474h/9G46d/wCFPL/8r6AP9C+iv89OP/g+P8fhwZf2cNPZc8geKJAcfX+zz/Kv2I/4Jp/8HYP7FP7dfxS0r4C/GLw7ffBzxhr86Wulf2heR6hpF3cyHCQC9WOBo5ZDgIJYERmIUPuKqQD+qSiiigAooooAKKKKACiv46br/g6i8XQ/8FZR/wAE0Y/grZ/Yz8VU+G39vnXX83Y2qjTDefZ/seM4Pm+V5mP4d/8AFX9i1ABRRRQAUUUUAFFFFABRX42/tif8F8P+CYn7Bvx51D9mr9pvxve6H4u0qG1uLm1h0a/vESO8jWWI+bbwOhyjAkAkjoea/YbTtQs9W0+DVdPfzbe5jWWJwCNyOAVPPPINAFyiv46f2Vf+DqLxd+0p/wAFN9G/4J9TfBWz0ez1fxbfeGv7aXXXnkjS0eZRN5H2NAxbyuV3gDPXiv7FqACiiigAooooAKKKKACiiigAr/ME/wCD1b/lKb4B/wCyVaV/6d9Yr/T7r/ME/wCD1b/lKb4B/wCyVaV/6d9YoA/r9/4Ncf8AlBR8DP8AuZv/AFINTr9/q/AH/g1x/wCUFHwM/wC5m/8AUg1Ov3+oAKKKKACiiigAooooA/xBv+CsX/KU39pb/sqvjL/073Vf7fNf4g3/AAVi/wCUpv7S3/ZVfGX/AKd7qv8Ab5oA/N3/AILF/wDKJ/8AaR/7Jt4m/wDSCav8+j9h3R5NE+Avw3upBgax4V+0p7iK+uoj+q1/oL/8Fi/+UT/7SP8A2TbxN/6QTV/Ed8H/AIaSeGv+Cb37H/xngjPka/oGu6NPIB/y0i1a9eMfiCa68DPlrxbPE4jourlteK7X+7U6j4gya74A8K2Hja7sXuNNv3eNZU/hZDjDccZ7V5DD8bfDN5btHqVvLHuyCoAYEGv3Ll+DHh3x5+z5b/DTXEDw3FmrKzjBSQjcG/A1/Nn488ON4F8aan4NuZknl02d4GkjOVbb3Br0+AeJsHxA8Vh5RtVoze19YXai/Xo/+CfnWX5Th6sFGonzWvdP+tju9K+FOreOTPrPhCSI2hkIVZDtZfYivSvAHwg+IvgzxRb62jQeWp2yKH6oeoryP4SfESPwP4jWW8djZ3A2SqO3oce1foTpuradrFst1psyTIwBBUg9a+uznGYvDt0mk6bWja/B+ZjnWMxmGbouzptaNrp5+ZoV+dPxd+HOrWfjy9k0uDdBO3mLg4xu5PWv0Wrx34q6Zuhh1RByp2NXj5JjHQxGn2lY8XJMwnhcRzQ6qx8HW3gDxD5XnSqsY9Cea6bSvBM9lcpeST7XQhhtr1t13KVrKIxxX2DxdSR9TUzavUTTaXyLkmoXcowz4+lSW7lo+TkisO6v7KyTzLqVYx7muLvviVpdiGWwUzvjjstZQoSlpCJy0cHVq6UoXPWMEnAroNO8Nahf4cjy09Wr5Mb4ieIJdThvHl2JFIrbFGBgHv61+gOkX8WqaXBqEP3ZkDD8a5cwjUw6i+5jm2ErYKMHK3vfgeP3MD2s7W79VOKgrqfEunyJqeYVLebyMetVZ/Dt7Bpb38nysvO32qI1o8sW3ucsaseVNvc898V2outEmT+JcMPqK8JIBGDX0BNmeNkc53AivC9QtnsruS3k6qa9jBS0cT6TKKmkqb9SzptpaQQf6OgXPXFexfDa+2XU2nsThxuUduK8jsIbhITK6MI88MRxmta0vbiwnW7tWKOvQjrzVYin7SLiXjaXtoShfU+ifEiWN1pM9jdyKnmqVGTjntXzBF4P1eRiCFVQcZJ6j1ro5bia5YyzuXY85JzXTaTcCa38s9U4/CuelTlh4Ozvc8/D+0wkHyO9zkDpc2lRLBMwb0IrIv8Awt4f8V3FrY+JmkSzWVWkaLG/b3xmvSdTtRc2xx95eRXm19q9hp4InkG4fwjk1pCUp7PU7cJXqzfNTbU+639T9DPhj+z/APBHwzp1tq/hfTIbouqulxOBI57g5PQ19AQW9taR+VbIsaeijA/SvzW+DX7STeEtQTw5ru5tJkOFc8tET3H+z61+ilpf22o20d/ZyiaKVQyspyCD0xX5jnuX4yhXf1mTkns273/4KPic8wmNpV74yTlfZtt3/rsfip/wU1sb0fFvSdUMTi2fT1jWXHyFwxyM+tfmurMjBlOCOQRX9Rfxa+E/hH4yeEZ/CXi23WSNwTFJj54n7Mp6iv55Pjx8B/F/wI8XSaF4gjMlpIxNrdKPklTPHPZh3FfZ8NZpSq4eOG2nFW9V3R+2+G/E+GxGCp5XP3atNaJ/aV27rzXVfM95+EVzrWr+Bor/AFMtIUcorEclB0Oe9dNrUp+WJfqa1/hHp0unfDzTba4wS0e/j0bmsPxAVOqyrGMBTjivq4O7aOKpVVTH1lFaJu1vWx3nwhsr7XfFttoUamSB23SDsqjqa/SyOKOKEQRrhFGAB0wK+RP2XvDO1b3xVOvX9zGSPxOK+stS1C20uykvrtgqIMkmvj88r+0xPs4/Z0+Z+b8U4hVcc6cNo6fPr/keBat4P0nSPGVzq9gAPOGdoHCsev51dU4NSXNybud7pushz+dch4x12PQNBmvi21yNqY67j0rempz5YN3eiMqcalVxg3eWiOxqGeaO2haeY4RAST7Cvjr/AIWJ4zz/AMf8n+fwq9Z+MvFmpl7e8vZHiK4ZT3z+Fel/ZVRauSPblw3XiuaU1b5/5Gzr+rTatqkt8SQrHCj0A6VwnijXZtF0tp4pGEjfKhB7mt+qWseBG8T2qSPcNEV+6uOM+pr1YqMEk9j38KqFKcFV0gjxNfH/AI3XGNWuhjp+9b/Gv0N/Z+n8V6z4MHiDxbeNdG6b9yrfwovH6mviyT4QXVtNE73KvFvHmcYO3vj3r718OeP/AARpei2+l2rNbxWyLGqsvZR14rzc4tOko0YXu90tjDi/E4ethoU8FTTberUdUl02vr+h6dc2UFzbvbtlQ4IJHXmvO7r4XaTLg20zoe+ec1vQ/EHwbOoYahEpPZjg1a13xFZWOjS3sEqyHG1dpz8x6dK+dp+3ptRjdXPz2n9ZpNJXVyl4F8deFPBto3h663h1lYNKF4PufpXV+OfFWmar4fiXSJ1lWZ+dvXA9fSvkt2aRy7cljk/jXaaHA0Npvb+PmumtldJVFiLvmv8Aed1bAQUvbXfNf7zaqxWJqepxaVEs8qltzYwOtWbDVrHUVzbuN3dTwa6OSVua2hTpy5ea2h7p8LfGWleHfOsNTBQTsCJewwOhr1vx7r1tF4PmuLGVZBcYjUjkHd1/SvklRgYq/DNP5Jh3t5ec7c8ZrxMTlFOpiFiL63Ta72/I82rg4yqKpceCVO5Tgityz8Q6hbtulcyg9dxyfzqvo2i6pr97/Z2kQtPOVZwijJIUZNUbm2uLOVre6Ro3XgqwwRXoS9nOTpuzfbrY3lGL0Z63pjTapp/9pQRt5QO0n0Iro/DFq15r1tAmPvg/lzXX+AtJTTPC1tEQC0q+Y3HUt/8AWrqrSytLG+GoWsapIBjgdjXx+Kx6TqU4LukeLUrrmlFHo0kUUq7JVDD0IrmLnwT4Yul2tZonU/INvJ78V0nh/wC2+I9Uh0XToWkuZztRV7muw1fwT4r0Nymp2M0eG252kgn2Ir4iWPhhqyoyqqM2rpc1m13sYwpVXFzhF27rY8i039l3Q/iRDJAt/LZx25BO0btxPTr6V558Tv2Lh4G0G88VWuuL9isoTI/nId5I7DHrX6NfDPSX0vw4rzoUlnYuQeuO30r5k/bl8YxaR8OLbwxE5E2pzdFbB2R8nI7g9K8nKOMc7xOf08vwtf8AdOdrWi9F8TvbsmfS4KnKNKKb1Z+R45FfH/xX8W3+sa9Lo6yYtbVtqqp4Y9ya+r9WvotM0ye+lO1YkLcdeBX5/wB1cPd3Ml1IdzSMWJ7nNf1Fl9O8nN9D73hLBqdWdeS+HRer/r8T1rw+C2k26rySAAB3Jr9Fvg1+zPq/h+4t/EnxRsmt5WjSe2s5hg7XGVdwfUcgV9+/8ErP+Cael6r4d0P9pH42pFfWk8S3OkaaQSucn95MrDkgj5R0717v+2eiR/HzU44wFVYoAABgABa/EM18YcJmHEVThjJ3zKnCTqVP7ycVyR9LvmffRdWPjTB4nC5Y8Xfl558q7tNSd/LY/N3xpGI9fl+XAIXHHtXK5GceldT8RtUtv7Y8u3YO6IFbB+6a8/052eV2YkkjNfaYKLeHhJ9kfltKL5E2aFyuUz6VnMAylTyCMVeuriOJCp5J7VRzxmumN7XNFseIarZf2fqEltjAByPoam0K+/s7VoLvsrYP0PWpPE+r2F/r0lpYsHaBAJCP7xzxVPT7GTULkQocdyfSvdV3T9/qj31rS/eaXR+oP/BOnwxL4q/4KNfCfyCrf2bc3V8U/i2xxH5voM19df8ABsL/AMnPft8f9lam/wDSvU6zv+CFHw4PjH9svWfiTLEHh8H+HzbrNu3fvr1tu0jsdoJrR/4Nhf8Ak579vj/srU3/AKV6nX5pmMr4iflofpHDNB0stoxfW7+9t/kf130UUVxHvBRRRQB/E1/wWs0GXxT/AMHGP7NvhyEbnvfhd4jhUepaz10V+dfwbtLjWPCGj6TZjdMwFso/2lbbj86/Xv8A4KQ2EWq/8HVv7HWlzcpc+B9WibPo8Gtg/wA6+Mv2YvhZL4X/AGsde+DepqYX8J6/fJsZc/u1cunB7EGlWzKOAwmIxktoQlL/AMBVz43jPByr4eio/wA6X/gWh8h+NPHw8A+J7vwl4m0+eC8spDHIpx1Hceorz/xp4t8H+NdMXTLSRluSw8ouuACexNfq/wD8FO/2ctO1vwwPjtoIjgvNNAS+3Nt8yI4CkDHJFfgqsinDIce9fVeHWe4HiTKKOa4e8ai0nG/wzW69HuvJnzcsipUKtldSj179n/XofQCfs0/FSRFkS1iKsAQfMHQ19g/ADwv488GaFP4e8YRqsMbbrcq+7APUVyP7OPxesNc0KPwfrtxi/tRiNpD/AKxO3J7ivq8EFQw5Brg4jzjHNzwOLhGyejs16Na9T5bNcfipOWGxEVo+34o82+LnhYeL/AGoaQoy5jLpnj5l5FflIPBHijzPLNm/XGe1ftE6h0KHoRivjXxbpbaRr1xaHpuJH0Nb8I5rOjGph1r1X5P9AyjM6mHUqcUmnrqfJVv8OvEQYRXISMY6k5r1bwVot74U80rN5nmgZXsCK7G6TIDVSIr6+rjKlaPLLY76+Pq1ouM9mXpL67mcGRjgHp2rYVtyhvWuD1DXNJ0xc3s6r7Z5/KuJ1b4tpDGINDi3MP45On5Vh9TqVbKETCngatW3s4/5Hu8UMsziOJSxPQAV0beGNStLI31yAoH8PevHvgJ4+1DUPFs2ma1J5n2pMpkcKV9PSvsPUrYXljLbnuprxcyqVMLXVGS7O5w46nUw1X2U/I8Fx2pcCr1vpl5dz+RBGWYHB46Uut6Xc6NIkMpDFhnIrb2keZRvqZ8yvY8L8e2vlamtyOki9fcVwLWVpeyJHeKHUHofWvY/Gdk91pvmxjLRnPvivIEBJGwZPbFfQ4Opekrbo+hwVS9JK+qOmgSO3CiFQoXoAMCvsXwnfjUvD9vc53HaAfqK+OwsiqPNUq2Oh612GieItVtbFtLgmKRHnAODXn5ng3iILleqZ5+NoOrFWeqO4+MGgtqjwXum4eZDtdQRnBryrT/A+urMJpNqBcHk11FtdyRXK3DksQecmvQY3WVA69DWdOpUw9KNJO67mUa9ShTVNao80ZGjYo3UV13wV/Zs+D/xW8c3Evj+9limkKtDbRnYkmOoLdc1la7aC2l+0dFbr6VyMPj6DwpqUWp6dORdQMHQx9iKWLo4nEYWpSwdV06klpJbpnZg69ePvYdtNroftJ4E/Z8+Dnw6tVtvC3h+zh24/eNEryEr0JYgnNegeLwieE9RhjHJtZQFH+6egr5h/Z8/ae0z4w6Z/ZGoOtprEC4eMn/WD+8v9a+lWy5O/nPrX8s5vgcyw+OcM1lJ1Yu/vNu/mm+j7k1qslJqafN5n8WPi6Ce28V6nBdIySLdShlYYI+Y+tX/AANrmraJ4ht30pyDI4Rl6hgT3Ffu9+3Z+wna/Ei1n+Kfwqtkg1uFS9zboNouQOpAH8X86/Dr4d6HqY+ItnpNzE0NxBN+8SQYZSp5BFf13wzxLhM5wSxGHeqVpRe8X5+XZn7flufYXMctnNJXjF80X0svyfRn3dNBJAo81cEgH864W5uXa8adDgg8fhXr+u+X/Z0sjDJUcV41bwvdXKW8Yy0jAAe5r1MO002z81y9qSlOSPvH9mfTZtQ0+bxNqMXzqfLjY9x3NfQXjnw3p3inw3c6ZqQG0qWVj/Cw6Gqvw48Op4W8F2GkKMMkYZv95uT1qPx1rMNpZf2bGw82b+HPIWvyfFYmeKzN1KTtrp5JH59iq7q4uVSnprp6I8B0HRYtB05dPiO7b1YdzXTRPuXHcVTrw34meP8AVNB1CLT9Bn8uQDMhAB+g5r6uGHnianKt2dtDD1MVV5I7s+gq4P4heIBomhPHGcSz/Kv9a+aT8WPHf/P6f++R/hUd94k1zxDHHLrc3nMn3eAMA/SvRw+SVIVIyqNWX9dj1aWQ1aU4zqtW/ryK3228/wCer/8AfRry/wAV/EfxNomoi08PX81syD5yjEEk16XHC8ziJOrdK4PWfg9ql9etdQXiuXOTvH+FfRR9knapY+ry2WDhWvirWts1dEHgj4u/F6+8SWulWGsTSSXUixASneoyfQ1+rFjazRWUUd6/mTKoDtjGW7mvzu+CHg7TPA/jFtb8YMHEA/cbBuG49/wr7si+Ing2Zgi3yAn+9wK+U4hgp1Yxw9PRLVpb/d2PnOLp0auIjHB01ypauKtdv07DvFHguy8UrGl3LJGsfOFPBNeT6r8NdP8ACzJrd1db7eKRSUI5I9K9xtPEWg38hisryGVh1CuCa8b+L+vJI0OiQHO353wePavNy+piPaKim1Hr6Hz+CnX51RTaXU9q0P4leDdVCW1tciJuFCONv5V8+fETVjqviedwwZI/lUjpgV5PEpZ1XuTW+STyea9PC5VTw1V1IN7dT0KeAhRnzRZi6zLtgEX941zIYIQx6A1JrWtWv9oG1c42cZ7Zqq0iuMocg+le7CDUVc9mnSlGKutz6O8NeJ9I1O0S3hcRyKANjcHivGPivqK3evLaIQRAmOOuTXKrI8R81SVI6EHFYF5dTXtw1xcMXY9ycms8LgI063tExYPL406/tYvQWC9u7ZWS3kZFbqAeD9atW96zMI3GSeBiozpWpCwGp+Q/2diQJMfLke9WfD9mL7V4bc9N24/QV6EnDlcux6VTk5ZS7GnLDLC2yZCp9DX0B8GrIrY3V+2MOwUevFYM9jaXS7J4wwHrXV+GNah8PWY05YgYgSQR15r5/H1nVoOEFqfNY3EurQcIrU9MvNF0nUJFlvLeOR0IZWKjII6c1oeUOADVnw/Z6h4msZNS0i3kliiO1iB0NdL4X0G71DxPZ6VPC4LyruBGCAOTXyNbFKnGXPL4E7q+3U+efNflZqP+x/eeK7ZfEDayI5LhA6x7MgZHAzXy58V/hBq3wkvbaw1q7guJblS4WLOVUdzn1r9poIo7eBYUGFQAD6Cvx9/aY8UL4n+K180Dl4bTECZOQNvXHtmvnOBOJs1zPMJUa006MU3blWnRK69fwPbwdSbajfRHyH8TPF7eBfA+oeJ4wrSW0RMascAselfj+/ivW/GnjceINfmae4mckk9APQegHpX3N+2f4o+w+FbHwxDIQ95J5jr6qnT9a+NPgN8NfE/xf+LGjfDnwciyajqkwihDnaufUnsK/Z/bU6EHWqySitW3skt2/Q/euAsvpYfLKmPqpJyvr2iv+Dc9k8GeCfE3xA1xPDvhS0kvLpwWKoM7UXqzegA6mv0l+Hnwd0f4Z+D7hCqz6lPHmabGTn+6voBX6+/AP9ivwb+yn8ANbDpHfeJr2wla+viuSDt+5GeoQfrX55agyx2kzyEKAjcmvicm47oZ/WxMcCv3NKSipfz9W7dF277n55xdxLVxU44eg7Uvxlbv5dl9/l870EZ61cjgy5d+meBVV8byB619zc8lSudNpknmWoB/hOKg1q0S5td5XJjORUej5UOD35q7qV3a2NhLd3rBY0Ukk1zu6noceqq+6cLX0H8HtVVtPuNIbG6J/MX6N1/Wvna1uEu7dLqMYWQBhn0NepeBIptJE+vysVRYZAFzgtgZ6npz0pZrGLw0ubpr9xrmNLnpOm976epb+O/hqfR/C/7H2uTYI1b9oaWZWU5DBJdKTr+Ff6bNf57f/BQT4VyfCf4Cf8E2dMuYTBPq3xVGrSo33g15eae/PqcYr/Qkr8im7ybP1ehT9nShT7JL7kFFFFSahX5mf8Fn/wDlEt+0f/2TvxB/6RyV+mdfmZ/wWf8A+US37R//AGTvxB/6RyUAfzw/C3w6/iL/AINH/hoiLvFnZ/anHX5Y9Yus/wA6/lY+IHwfZCdd8PECOTaWiPGC3cV/bv8A8Ew/hafjP/wa9+CvhzGnmS3/AIP1cxqOSXi1G7kXHvla/jF1rWry5jTTJQYzbjy5FPXenBz9CK+84IqXnWpejMJVsRSrQqUHZa37WMHwn4ag8N6cIFw0r8u2O9dFcXEVrC08xwqjNZlnfhB5U34GuL8R6y15ObWI/u0/U1+h8mpEaNTEVm5vfdmPrWrSapcmQk7B90egrIRGkYIgyTTmXPIrp9IsRFGLh/vN09qOV3PcbjShZIt6fYrZx+rHrWkASQB3pKu28P8Ay0b8K02PNnNvV7mpZ2iwrubljTLlEgXzGOFp0M2z5T0rlNa1F7mQ26H5FP5mktzlpU5zqeR0R2uvqDXO6jpuz9/D07iotN1EwEQSn5f5VrzTCXhelUdSjKnM5Cu08O+IGhZbK8OVPCn0rBubIHMkXX0qaxs9g8yQfNSaua4hU6lNqR64CCMitC1v1thic4Qdz2rhdM1XyALe5Pydj6Vj67rTXjm1tz+6HUjvWfs9bHgfUJTn7N7dz3BWWRdy/MCK+cfir8KVut3iDw8oWTrJGOAfcV2vhfxS1kwsb9v3R4VvStvW9XF8/kW5/dr39az9m72DBxxWBxSdN6fg0eXeBPBqeG7Q3FzhrmUAn/Z9hXoDEKNzHAFVo5dnDnI9azru581tkZ+WtFDodtaVSvVc6j1ZXu7pp3wPujpVIDPFSMmORV21twB5j/gK1Om8YRsixaWojG9+Sav/AEqFW29a0raM48w9+lJuxx1JW1ZPbW4Ub361ZdQBu6U0MRxVWecsdo6VBx6yd2WK57WNIW5U3Nvw46j1rXjlK/K3SpWbPAovY0pzlCXNE8tIKna3BFdz4R8TzabMtjcZeFzgdytV9W0oXCme3HzjqPWtTw5oJtcX1198/dHpRJpx1O3FV6M6D9ovl5nsKsrqGXvzViGUo23qDXOWN55f7qTp2rutNs1AFxJyTyK4ami1Pi8RaC94hrx34jfD231mB9Y0wBLmMEsOgYD+te53MCsDInbrXzf498bT3kz6NpxKRJkOehJ9KKCk37p2ZH9YliIyw7s1v2t5jvhz4PTTLUavfqDPJ9zvtFeq14h4N8VS2FxHpl2d0MhwCf4Sa9yQZGT0repF3O/OI1liHKs7329DyvxLrst3K1jCCkaHnsTXIgFjtHU16f4n8PG7H260Hzgcj1rJ0XRBAourkZfqB6VtGaUdDvw2Loww6cN+3mQ6Rowg/wBIuhluw9K6XrUjL3qhJKTwOlTfmOGdSVWXMzZtYAw8xvwpt7Zh13x9fSqVndGN/Lc/Ka0pp93yp0qHdM5pKUZ3OeIKnB49qxtU0pL5N6DEg6H1rqJ4d/zjr3qxY2QIE0n4VpzK1zqjiOT31ueKyxNDIYpQVZTg1s6Nqsunzhc5jbGRXaeJPD63iNeW3Eg6j1rmNK0gR4nuR83YU000eosTSq0ry+49CVg6h16GtjTNQNlJhuVbrXKW0/lsEf7v8quyTDG2Pv3rJwvoeFVo3vGWx6rHIkqiSM5U15t8Rfh9ZeK7JryHEV5EMq/Y47Gr2iav9jk8mY/u2/Sua8XeLWvGbTtObEQ4Zh3rONKXNZHNgaGIpYpOg7W6+Xn/AJHlnhHwStk/9oaoA0gJCr1Ax3r07pXKaZqDW7CKQ/Ia1Lq83fu4unc118ttD6LFSq1qvNN3MPXNZLE2dtwBwxrkq6PULMSp50Y+YfrVWzsMjzZuPaqSsehQcIQsh2n2HSeb8BW70FQIQnXgVmXd35jGKM/KO/rTMnzTkdBAqyDzAcip3QOPeua029MMohc/Kx/I11qLjk1lJtO5y1oyhPUyyCDg1m6hp8d9Fg8OOhroZ4t43L1FUlTPNaJ3Lp1ftLc8vkjeJzHIMEVqaNqsulXYmBJQ8MvqK6HW9OWeH7RGPmQZPuK5GCDdh26elB60ZwrU/e+aPb7a5hu4FuIDlWGRWrZXjWU3mDkHrXlOgas1hMLeQ/unPPsa6m81ISKYoOB61m4Hz1fAvndPoz2C2uIryETwHcp/nX9uX/Bu74SvPDH7CFzd3i7TqXiG+uBjkEDYvB79K/hC8K6nPBdfYdrSpLnCL1z7V/pI/wDBKP4UP8G/2Bvh34TnjaKabT/t0qv94PdsZMH35r8+42mo+xper/QeW4OVCpUvtpY/CH/g1z/5Ll+3P/2Vq4/9KL+v676/kQ/4Nc/+S5ftz/8AZWrj/wBKL+v676+BPYP8wT/g9W/5Sm+Af+yVaV/6d9Yr+v3/AINcf+UFHwM/7mb/ANSDU6/kC/4PVv8AlKb4B/7JVpX/AKd9Yr+v3/g1x/5QUfAz/uZv/Ug1OgD9/qKKKACiiigAooooAKKKKAPnr4t/tYfs4/AfxHbeEvjF4w07w7qN5bi7hgvJCjPCWZA44IxuVh17V0Hwm/aI+Bnx2a9T4N+K9M8Stpwja6XT7hZmhEu7YXAOV3bWxnrg1/NX/wAF0Phr8VfHX7Vuhat4Q8NarqunWnhW1ga5s7KaeES/art2UuiFdwVlJGcgEV9A/wDBv94F8UeEx8WLzxVpl1pskx0SKNbqF4Sdn2wtgOBnqua+Ro8QYmebvL3TXJdrm1vpFv06H7NjfDnLKPBi4kjipOvywbheNrymo225tE77n9HFFFFfXH4yFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//W/v4ooooAKKKKACiiigAooooAK/AH/g6O/wCUFHxz/wC5Z/8AUg0yv3+r8Af+Do7/AJQUfHP/ALln/wBSDTKAP5Av+DKn/lKb4+/7JVqv/p30ev8AT7r/ADBP+DKn/lKb4+/7JVqv/p30ev8AT7oAKKKKAP8ANT/4PbP+T5vhF/2Ijf8Apwua/oH/AOCCP/BMX/gnV8c/+CRHwW+Knxl+B3gfxT4m1nTL6S/1XVNDtLq8uXTULqNWklkiZ2IRVUEngADtX8/H/B7Z/wAnzfCL/sRG/wDThc1/Xd/wbe/8oS/gH/2CtQ/9Od3QB4T+29/wa8/8Erv2q/hzqOmfCzwRb/CPxiYX/s3XPDO+CGGYA7BPY7/s00RbG8BElKjCyIea/wA979gv9oj47f8ABDL/AIK3W0Pj+Z9NfwZ4jk8KeOrGJy9veaQZxDd46CRQgFzbNwC6Rt0yD/sq1/kBf8HQul6PpX/Bcn42xaOwImPh+eZQOEml0SwZx75J3H3NAH+tv8V/i98MfgX8MdZ+M/xf1yz8PeFfD1o99qOp3sgjt4LdBksW754CqMszEKoJIFfyafG//g9F/wCCd3gPxLdaB8GfA3jHx7bW52pqXlQaXaTn1jE8huNv/XSBG/2a92/4K1/8E3P26f8AgrZ/wTJ/Z7+C/wCzX4l0DQoYNO0nXfFMPiK8urVbyZdNiW3Aa2tbkyBJJJWZXCjdsbkgY+V/+CcH/BBj/gll/wAE3fgpcal/wV61n4ZeI/ile3c73Euva7GNGsLJTiGK3hvvsiszKN8kkkJcM21TtHIB9Qfsdf8AB3X/AMEzv2mviDp/ww+J9lr/AMJtR1SaK2tb3X44ZdJaaU7VV7q3kcwjcRmSaKOJRyzqM1+pf/BUT/gsJ+y7/wAElPCXg7xp+0lpfiPWLPxxc3Vrp/8AwjdtbXbK9oiSOZPtF1bAKRIu0qWzzwK/zcv+DinQv+CRuiftReG/+HUF3pc1lLpkx8VReHZJJtDjvRIPINq7Ex72jLeatuxhGExhy9f3h/8ABOH9jX9mD/gpX/wRq/Zhf9uPwdafEU+HfC0K6cdSkmBg8sfZQQYpEJJihjU7ifu0Af5vP/BPX9tz4Tfsof8ABWLwp+3N8RrHVbvwhonibU9YuLbToYpNQNvex3CIFjkmiiLgzKWBlAABwTxn/WG/4Jjf8FSP2c/+CsHwU1r47/s2WGu6ZpGga1JoV1D4gtobW5+0xwQ3BZVguLhDGUnXB3g5ByBwT/ln/wDBLD9nH4I/HH/gt54K/Zq+K/h631rwLqXi/WNPudImZxDJbW8V20cZKMr4UxqRhs8V/plfHr/glz4b+Fn/AATY+L37Gv8AwSm0bRfhRrvxHtZY4pJbm6hsxPeCG2upJJQLmZGeyRo1KIcNt6csAD4J/bV/4Oy/+CY/7JfxE1H4TeCV134ra3pFxJaXsvhqGEaZDNCSroLu5liWXDDG6BJYzzh/X5W+D3/B6j+wD4x8UW2h/F74deMvBllcSbG1GMW2pwQA9HlSOSObb6+XHI3oDXxv/wAE0/8Ag1r+E/7G/wAUtZ+MX/BaXxJ4B1rw5ZWkQ8PaVDrs8GnyXTOxmmvTdQ2O5YlVRHGGeNy7F1+VQfmb/g5A8Ef8G9Xhv9mKy/4YKuvBUfxkt9Wto7SD4fXKXVq9jyLoXv2Rns1CrgqWImMmAuV30Af6GXwO+OXwk/aU+E+h/HP4E6/aeJ/CfiS2W707UrJt0U0TcHggMjqwKvG4V0cFWAYED1av4uP+DJnxh4i1T9hr4seC9Qunm07SPGyT2kLsSsLXdlD5oXPQMY1OBxnJ6k1/aPQB+R3/AAXo/wCUOn7Q3/YoXf8A6ElfwE/8Gkn7NP7PX7U//BRvxt8Pv2lPBOiePdCs/hvqOowafr1jFf20d3HqelxrMscyuokVJZFDAZCuw6E1/ft/wXo/5Q6ftDf9ihd/+hJX+W9/wRw/4Kq+If8AgkJ+01rv7SfhrwZbeOZ9c8MXPhprC5vWsUjS5u7S6MwkSKUkqbQLt2gENnPGCAf6rmq/8EXf+CSmsWEum3f7OPw8SOUFWMGgWkEgB/uvHGrqfcMDX+Yh/wAHDH7Afwf/AOCaP/BS3VPg7+zc01h4T1XSbDxNpVi07zyaZ9raVGtxK7NKQksDPGXYuEZQSxG4/ubr/wDwfB/Hi40meHwv8AdAs79lIhmutbuLmFG7Fo0t4WYewkX61/OJYaH/AMFBf+DgD/goRca9FYzeK/HXjK6gF/c2tu0elaHpyYjVnOWW2s7aMfLucs5GMySv8wB/pU6X/wAFkvhp+yR/wRo+Bf8AwUN/bItde10+MND8O2OpNoltDPeT6teWTPLOY557ZBHI8Ejkh8jcMAjkeT3P/B01/wAEv7P9jdf2xtQl8SWVvfa1e6DpPhi5s7ca/qN1YRQSzSRQRXUsKW6rcIDNNPGu7K8ttDfDH/B018D/AAr+zN/wQQ+GX7Ongd5JdG8B+I/Cvh+ykmx5skGnaddwI7443uE3Me7E1/LV/wAG8P8AwRQ03/grp8Y/EXiH436rf6T8Kvhwlt/aQ09lS61C9vGZorOGRwwiQqjyTSBWYDaoAaQOgB/fj/wR5/4Ln/CD/gsDJ8TZPAHgvU/A9t8NF0yW5m1e6glWeLU/tW1v3fEfli1YvkkfMMHg18Yftp/8HcP/AATU/ZZ+Il98Kvhhaa38XdT0yQw3N94cFumjLIvDIl5NKvnEH+KGKSI9nNfkl/wcD/A79lf/AIIUfsNyfszf8E8dCu/B+pftR3C6b4pu5dTu76SfRfDCl5Y0+0SSeW08moJHLs2q8TOhXB44P/g2K/4N/v2Yv2sP2d5f2+P24dBPi/Tda1C6sPCnh+eaSKwMFhJ5U17OIXR5XNwksKRM3lqI2ZlcsuwA/WD9l/8A4PH/APgnH8avHdj4D+NXhrxN8LRqMqQpq2oJBfaXCzHA8+W3fzo1zgb/ACGUdWKgZr+sbwr4r8L+OvDVh4z8E6la6xo+qQJdWV9YzJcW1xBKNySRSxlkdGByrKSCOlfxGf8ABxJ/wbn/ALHXg39jPxN+2l+w34Ti8BeJvh5B/amsaRpsj/2dqelh1FwwhkdlgltkJmUxbFZFdWVmKFeS/wCDLT9vLxx408JfEL/gnj44uWvNO8I26+K/DJckvbW1zOIr63HbyvPlimQDGHllPORgA+jLv/goR/wbvH/grkPgXP8As8aqfj3/AMLYTQh4oGi2Qt/+Es/tYW4v/PGo+bs+24mMnkb8fNsz8tf2O6/r+heFNDvPE/ii9g03TdOhkubu7upFhgghiUs8kkjkKiKoJZmIAAya/wAi++/5WpV/7Ojj/wDUqFf0q/8AB5/+334z+Gvwm8B/8E+/h/ctZwfEBJPEPiaRGKvLp9jMEtLb0Mctwryyd8wIOhYUAfV37U//AAeN/wDBOj4H/EK/+HvwW8NeJPimNNleCXV9OEFlpUzIcH7PLO5llXOfn8lUbgozKQa+s/8Agm//AMHOP/BPH/goj8TrL4EQDVfhr431RvL02w8TCBLbUJjjENtdRSujTNnCxyCJnPCBjgV+EX/BCT/gnJ/wQd8K/sfeHfj7+358QPhp4v8AiX41tzfy6P4j8T2McGh2rsRDbGye5j/0goA87ToWRzsULtJb8nv+Djb9hP8A4Jl/s3+K/CH7Rf8AwS++IXhTUNH8S3UtjrXhXw74httXOmXkSCWG6t1inmmjglCuHDNsjkC7CA4VQD/Vur+e3/gpL/wcsf8ABO3/AIJw/EG5+CmtXGp/Ebx1Y5W+0nwssM0enSA/6u8uZZY4o5OuYk8yRCPnRcg1+Z3wP/4Lb/GSL/g1r8Qftk3Gote/FjwSrfDoanM+ZZNUkngtra9LHJaeKyuorli2fMmjJbhq/n4/4NjP+CNPwr/4KffGTxn8ev2tIJtZ+Hfw9e2ibSxPJCdX1i8LSKs0sZDmGGNC8qq6s7SRjO3eCAf0TfB//g9R/wCCfvjDxNbaH8Xvh34z8GWdzMIzqMa2up28CE/6yVY5Y5to7iKKRvQGv6Hfir/wU7/ZK+G/7Amqf8FK/Dusy+OfhZplnFfC78NolxcTxy3KWu2OKeS3CyJK+2SOVo2QqwYBhtr8b/8Agq//AMGy37D/AO0N+ybry/sRfDLSvAnxb0O2+0+HZNHk+wW9/LEQWtLpXcQMJlBVZXAeOTa2/bvDfJf/AAb6/wDBHH9uT9mz4c/Gn9jP/gqB8P7S7+CfxItNPvotMk1q3vrb+07KYb1WKzuGePz08tpHG0E26AnoKAP4xv8AguL+3j8HP+Ckv/BRHxP+1h8B7HVtO8N6zp+lWsEGtwxW94HsbWOCQskM06AFlJXEhyOuOlf6Rn/BJf8A4L9fsWf8FPfiOP2W/gDoni7SvEvh3wv/AGzcvr9jaW9q9vZyW1rIEe3vLli/mToQCigrk5yMV/no/wDBxv8AsxfAb9kD/gqt4x+Bn7Nnhq28JeE9O0vRZ7bTbRpGijkubKKSVgZGdvmdiTlu9f6eP7C3/BLT/gn/APsZ3th8b/2Yfhlpng/xXq2gR6fd6jaSXDSy21z5M0sZEsrrhpIkY4UHKjtQB+AP7J//AAUI/wCDd/x7/wAFQtF+DvwK/Z41XQfjXdeLr6xs/Ecmi2UEEWrxvMJp/OTUXkVXZZCGEJPP3R2/sE8f/EHwL8KfBep/Ef4nazZeHvD+jQNdX+pajOlta20KfeeWWQqiKPUkV/kk/wDBLX/lZK8Gf9lU1n/0bd1+4n/B6b+3l44j8b+AP+CcvhG5a18PnTYvGfiHyyQbu4lmnt7KB+nyQiGSYryGaSNjygoA/SD9on/g81/4J3fC3xte+D/gn4O8V/Ei3sZXiOrQJBpun3BU43QGdzOyHqC8EeewIr6L/YU/4Ovv+Can7Y/xGsvhB44XV/hHr+puIrKXxR9nXSp5WwFiF7FKyxu3OPPSJCcAOWIU/Gf/AAQV/wCDbf8AYng/Yq8G/tR/tveDIPiF45+I+nW+vW9jqru2n6Tpt4pktY0gR1SSWWBklleYMUZgiBdrF/ys/wCDoP8A4ILfs6/sP/DLRP24v2J9Ifwz4YudTi0XxJ4dSaSe1tZblXa3vLczO8iK7oYpY97KGaMoqjdQB/o7+I/EWn+GPDF/4tvt0lrp9rLdyeVhmaOJC525IBJA45A96/nD/Zn/AODrj/glf+0n4n13QifFXgSx8OaJc69f6t4psbS2sUt7V44zGptr26mknkeVEiiSJmkY7RyQD4P/AMG0P7eXjj9sL/gjz4w+FnxTuTfa/wDBq3vPDUV05LST6O1kZbAyE/xRL5luMf8ALOFCcsSa/gC/4JDfsJWn/BSP/goV8PP2SdcvptM0PXbme61q7tsCaPTdOgkurgRkhgskqReTGxVlWR1JBAIoA/uS8X/8HsH7COkeOpdG8I/CzxtrGgRSFP7TY2VtNIo/jS2advlPUB5EbGMgHgf0R/8ABN7/AIKpfsf/APBVD4WXnxL/AGV9ZuJp9GaGLWtF1KH7NqelyzhjGs8YZ0KuFbZJFJJE21gG3KwH5uftk/8ABt9/wSp8SfsReMfhx8H/AIUab4T8S6ToF5caDr9k8x1KHULWBngead5C9wjOoEqSlgyk42thh/G9/wAGfnxJ8ReDf+Cvdr4N0uaRbHxd4S1mwvYg5CMtusd3GzL0JV4AFJ5AY46mgD/VeooooAK/zBP+D1b/AJSm+Af+yVaV/wCnfWK/0+6/zBP+D1b/AJSm+Af+yVaV/wCnfWKAP6/f+DXH/lBR8DP+5m/9SDU6/f6vwB/4Ncf+UFHwM/7mb/1INTr9/qACiiigAooooAKKKKAP8Qb/AIKxf8pTf2lv+yq+Mv8A073Vf7fNf4g3/BWL/lKb+0t/2VXxl/6d7qv9vmgD83f+Cxf/ACif/aR/7Jt4m/8ASCav53P2WvgZffFv/g1v+C3jDw7b/aNZ8BxX2v2oUZcpb6xeeco+sea/oj/4LF/8on/2kf8Asm3ib/0gmr4+/wCDcjRNM8S/8EKPgj4e1qFbizvtJ1iCaNxlXjk1W+VgR7g0EzgpxcJLR6HxD8MviP4Y+Kvw0s/GfhOcTW11aK2B1RtnKkdiDX8pXj27eP4ja5vOQb+fOf8AfNft34n03xV/wTp/az8Z/sz6ykk3hwXMl7pW7pLp93l4ymccx7tp+lfh58SLW8Txtqt7PC8SXN3LLGWGMq7Ej9K7fCfheeT47HtO9GooOD66OV4vzV/mrM+Ey2l7LGVcNU3ivvV9GvkU1ZXG5TkVuaT4i17QphPpF3LbsOmxiB+Vedxzywn92cVt6fcvdzC3bAY9Ce9ft0oqStJaHq1sMuV8yuj6G8K/G74gwk2U98Zc8hpAGb8zXf6v8Ztf1bSG027toHyB82CDkd+tfLcMF3Z3CzBSdpzxXpUMFxPEssaMVYccV5dbL8LzKfs1f7j5fG5dhVNTUF8tChc+OtZkIWIJHjrgZ/nWLc+ItYumLPMRngheKh1OzkiuSQp+fnp3qsdO1DGTBIP+AmuuMKa1SR6NKjh0k1FGBrXnToJnYtjrk5rmq71rGedDHtxkd6htvCifeuXJ9hXRGaitT0qWKp042kzjoYJ7h9luhdvQDNfaXw01/UdK8Gw6bqULCaLITdwNvauD8DW+l28DWsMSrKvO7HJFeiV42Y11V/dOOiPls8zFYn9w4WSd79TqtJ1iaXVQ922Q/HPavQJ4VngaJujDFeLqSrBh1FcX8Q/jXquiS/2HokGyUIN0789fQV5H1OdaaVJHgUsuq4mqoUFr/Wpv6lbfYr6W2P8AAaw/7E0y6vft1xGHkx36flXmPgHxZd6jqM9nq0pklnJkVmOcnuK9fVthyK9adOdJ8rep6+Iw9XCzdOT1tuupHqNil1YPaxgLxlcccivKGVkYq/BHBHvXtCsGG5eQa5LVtKgjnN4iff6+gNOhV5bxY8HiOS8WJ4L8G6t4vuDbWJVQn3mY4wPp3r3WL4Jwadpss6XLTXYU7R91a8e8J+IrjwvrEWowfdBw6juvpX2tp2o2uq2Ud/ZsHjkGQRzXj5vjMVSmuR2g/wCtTyc2xeIhNOLtF/1qfF8sTwyNDIMMpII+leLeN/BjRF9Y0wZU8yJ/Wvsn4n+ETZ7vEWmRlkPMyr1B9a+c7vUHulMWMIeCPWvTy/Fe0iqsPmeplGMmmq1J+q/Q+bY4ZJThBmvrT4BfG688DTL4b8UStNpchARicmEn09vUV4frOimzY3FsP3Z6j0rnq9XF4WjjKLpVVeL/AA9PM+qxkKOPoOnUWj+9M/bW3mjuIEuoGDJIodSOhU8ivnf9oG3+D/jPwnceDfiEyTFwTF5YDSxSAHDKexr4q0T4yeO9O0oeHm1GX7JjaOfmUDsD1xVeW6NwTdTSFt3JZjnP418bg+E50a3tKlXZ6cu58VhuHa2GrqpKpbld047/AH9DM0rS7bQNLh0i1dpYrVNiOwwWVehI9cV45eusl5LIvILE16Jqvi+ytt0FsDK3Q+leZhxJJn1Nfc0oNas+/wAvpVE5VKi1Z9efA74i2/hqyi8M6xhbeU7kkH8LN6+1d18e/E0aafbeH7ViTPiViOhXt+dfKkQCxqq8AAYq5c3t3elWu5GkKKFXcc4A7V5k8spvErEL5rz7nz1TKacsYsUu92vPue1eA/ETalaHTr1sywj5c9SteT/FvX2v9ZGjxH91a9fdz/hUehTXsGqRSWBxJn8MU/UPh/dXk0t4brfLIxY7hwSa2hRp067qN6GtChh8PjHVm7K2i82eS1rWOpR2ieXsJ7k1v3XgLX4MmFFmAGfkPP5Vy13p19YuUvImjI/vCvRU4T2Z9FGtRrK0ZJ/M6zTbqHUrlbWLILH9K9MVPLQIvAAxXEeDNM8i3bUJB8z8L9K7K6mEEJc1xV3eXKjwMa4uryQ2RnX02+Ty16Dr9axb65FrbNKevQfWkLsSTnk1BcWX2+MLKSAORitIpLQuEFFrm2OFZ2dy7HJJzVqLUb+FdkUzquQcBjjI9q0NT0yGxj8xXJzwBWIOtdGjPYg4VI3S0O68Pa9q13fRWL4lVjyT1AHXmvoCz1G2kVYvuEDGDXlPhjw1d6Lbi61OF4ZpgGUOCDsPI6+tdHdTeRCW79q8rExhUl7v4HyuYRpVatqS08iLxNfG6v8AyEOUi469+9ReGrOS61WPbnbGdzH6VgkszbmOSete1+F/COp6boaazNGdt38wx1C9s0q9SNGko330RniZxoUFC+r0Rrck4FaLW8tuAsqlak0a0a6vV/up8xr0FrQXpFvs3lyABjueleDWrqDsz5urV5XY+hP2SvC/m32oeLbhciICCInHU8t+lfUHjH4VeCvG6Z1qzTzR0lQbX/MU/wCF/hCDwT4NtNGjjCSbd8uO7tya9EaORVWRgQrdDjg1/O2f59Vr5tUxmHqOOtotO2i0/Hc52+Z3PnzU/hlqenIf7MYTRIAAOjYFcDc2d1Zv5d1G0Z9GGK+xrSBri4SFe55rrtT8PaNrEIg1G3SUL03DmsYca1MPJQxMOdd1o/8AJ/gYf2f7RNxdjyf9lfwvLqPjC48TSxhoLCLarHtJJ0x+Gc1+gLoknEihh7jNfO/gR9P+H1i+maLbKIpX8x8n5mPTr7VyHxd/bO+FPwO1bSdL+ISXEI1RZW8yFRIIhGP4lyDgk4FflHFOFzPiLOpVMBQlO6tCK1lyxTb0vvu9PzPv+HZUMPhY4fm993b9f+GPq7+z7FjnyUyf9kV/N9/wUW+KzeJv2hLrw34emKWWgxra4RvlMx5c47HPB+lfqzp3/BRn9nHxLdDQ/CV3d3Op3CsttE8BRXlwdoLZ4BPevxB8U/s8fHXxb4lv/E+rWkclzqE8lxIzzBjukJPJ74r9Y8DeEsVlebV8wz6m6DhC0FU927k9Wk97JNf9vHoY3GYOm1GrKKe+tj4s8c61dx6X9jaVj5x5BOeBXJ/DPwZqHxF+Imh+BNLi8+fVr6C1WPON3mOARntxX2hJ+wr8bfGVy9xO9np8cICoJpCS+epG0H9a/Ur/AIJn/wDBOSx8I/H2y+KXivVBqMnh2H7QsCRgRLO4KjO7OQOSDwRiv6C4w8RMpyTJsXjVXjKcIScUtbytaKuu8mke7kmb5fKdLBUailUm9km/xtbRbn9H3gbwrpvgjwbpPg3SI/KttLtYbWNOpCxqF696/mz/AG7vjxdXHx68Q6VogVLq1n+zPIBkKsYAGPc1/SP4/wDFNp4J8Eav4vv5Ehi060muC8n3QUUkZ/HFfxU+J/EF/wCK/El/4l1Nt9xfTyTuck8uSe/NfyB9GLh/69mmPzjErmUIqOvWU3zP1so6+qO7xNqU5UMPhH3creisr/edDoM01zby3Fwxd2csWJySTWtbarFFem1iJLkc46CuBj1NoLL7JbgqxOWatfwlbTXuoPHCpkkYYXHJya/tKrRSUpy2PxqrRXvTkdeWLvnqa8O+IfxVktpJdA8PcOoKSSnqD6LX3H4X8BW2lwHVfEChpEG8J1Cgevqa/NuDwhrHxH8bX7eHYi0Et07GUjCorMev4dqyyivhq9SpKXwwS16XZ1ZHHD1alSpX+GCW+1yH4cW99qOszRx7mDLlyemc9zX01b2lroti8jHCxqXdu+AM11sXgbR/AvhWHTdLQGQuDLKR8ztg9fb2rsfg18EfE37Snxg8OfAHwgrG88S3iRTSKDiCyQhriViOgVMgHnkijMM1hOEqy+FbefY6favNcZGnRVot2+S3f3H9QX/BBb4CXXw3/ZQu/jBrtv5OpfEO+OoDK7XFpFlIQfqMn8a/Nr/g2F/5Oe/b4/7K1N/6V6nX9YfgTwXoPw58GaX4D8Lwrb6do9rFaW8ajAWOJQo/lX8nn/BsL/yc9+3x/wBlam/9K9Tr84lJybk92fr9OChFQjstD+u+iiipLCiiigD+RD/goZ/ytgfsY/8AYman/wCitar239rvwZ4e/Zf/AOCo8vjnWwlpo3xb0nfbzkYRdStMB1J6Aup/SvEv+Chv/K2B+xj/ANiZqf8A6K1qv2A/4LL/ALJmqftM/smXXiHwNFu8XeA5v7c0oqPnfyRmaIHr86Z47kCvOzfLKeY4Ktgasmo1E4trdX6nNi6TqUnGKXNur91qvxPxR/4KsTyL+y3I0LkK97BnacZB+lfzU6deedH5Un3h096/Vj46/tPT/Hb9juLwjqUTy6pBPA6OozuROGDDsy96/IVgyMVOVI7dK+r8EuHsVk3D08vxitONabutnFqNpLyf/APlKNeni+ecdHfVdU0ldfed1HLNbuJYWKMOhU4P6V6hoHxr+J3hyIW+natMYxj5ZDvGB257V4HDqdxFw3zD3rq7CGXUbb7RbjPOCM8iv1XEYWlUjatBSXmkzlxWEg1++imvM+4PDf7S/jK6gjur+GCZejKF2kn65rmvHvxiu9buo9SawSMgbThic189+FJbi3nezmVgH5XjjNdtf2Uk9q0bqR6EivAWT4KjW54Ukn5Hy1XL8PSr/DoVJ/iLrspbYI1U9BjOK5658S65dDbJcMB7cfyrHEE5coqEkegzTvst13jYfUV6caVOO0UenHD0YbRRg3fmGcmQkk85PNVhXTSaNd3RXaNvua2NP8O2tvOs14fNAOSvY11utGKOz63ThHXcp+BZNUsvEtnqOmxM7RSKxwMjGea/QPUPGctxAE05ChYDLN1z9K8w0O30xNPik02FI0I/hFbVfI5lOGKqRnKPw/1qfF5pjFiqqk4Wtoeq+FLxbqxZXwZFPPqc1U8a6d9q0/7Un3oufwrhtP1+Lw4ZNRuQxiRCWC9Tivmzx38fPEfifdY6Sv2G1z0B+dgPU15mGymvWxPNRXurqzmwWW1sRU/dLRdT2aeFLiBoZBlWGCKZo3hjRtNXzYIwz/3m5NYfhXXItf0WK+Q/NgBx/tCuwtJQjFG6GvQnz026bdi6inC8Nu5w/jXTysyXqDgjBxXFWzOs6mMEnPSvdb6zhvrZreYZDVyMGnW1ixSNMEd+9ddDEJQ5XubUcQuTle56t4K+A3ifxXax6ldSJZ2z4ILfMxB9BXU+Ofha/gO0hltZWuIDwztwQ1dl8CfiAP8AkUtUf3gY9PpX0b4g0Ky8RaXLpd+MpIPxB7V+a5lxBmGEzH2eJf7tPZLeL697/M8+rVnzWkfm5rOk2+t2D2VxnDjgjqDXyt4j8OXvhy9NtdDKn7rdiK+0PG2l3ngvVH02+jbqTG2OGXsc1454htV8QwlLrGV+6fQ1+kZXjPdU4u8Janq5bipUnr8LPDvD2r6z4c1WDWtDma3uIGDI6nBBFfs3+zt+0Fp3xY0tdI1UiHWrdB5idpAP4l/rX443llNYTm3mXBHfsa1fDHinX/BusRa94buXtbmHo6nt6H2rl4s4Vw+d4Xl0VVfDL9H5P/go9nFUFXjzLfof0IXVxbW0LT3TrHGv3ixwBX4/ftT/AA5+Bur/ABFt/iR4Bu44dajYrdxQJ+6l9yRjDe9cj4m+PPxC+IsS2uv37BEGDHGdiN7nHWvM7q7htITPcNtA6k96+U4P4DxOU11iq2Iantyx2a7Nta/ccOFhXoTbhJptW06p9DnPFsqJpbKTgseK890GeS11e3u4gC0LhwD7VteI/EFtqkYt7dSApzu9ax9FVTcFj1A4r9apwtTakj6HDU3DDyUlqz9Qvh58StK8baR5wIiuYF/exZ5GO49RXyL438fXV58QJtXtHJijby1B6bR1ry7TtV1HSJzcabM0LkFSVOODVFnZ2Luck8kmvm8DkVHDYipVjrGSsl27nzuHyunSqznun0/M+qZtdtY9DfWlOUWMtx64r4m1fUp9X1KbUbg5aVifwr16yt9a1rw/Jo1vMIoWbJJyT9K5S7+GusQnNtLHKMc9Qa9XAU6VCUuaWr/I78qjQw0p88vef5HnakBgT0rbj1KELgqRilu/DGvWKlrm2fA5yBkfpWRFbyyzC3UHcxxivWUoyV0z3n7OquZSuvU9H8PRpcE3nVV4FdS7BFLntVXTrNLK0W3Too/WqOrXBVRAh56mvOk+eZ89P95U02Ksshkcsa4nxRqBjAs4jgnrXSJJKeM81i3fhtbuZrh5Tuauinyxlqd+G5ITTqPQ4SC5urZt8EjIfVSQa2U8Ta4JjPNcNKx/vnd0+tZt9arZ3BgD79vUin6bpt3qt2tpaRtIep2jOAOp4rskoNc0j2ZqnJc8krHrfhfWJNRhNxdJtxwCO9dRe3sdrZSXYIIUHH1rDsrSOytlt4hgKK5TxPqDcWKHjq1eYoKpU02PnfYxrVvcVl+hyVxO9xO00hyzHNdHo8brAXbOD0FZOj6Te63qEem6eu6WQ4ArtrzS73RpjY38RjdeMGuypOK9y+p6WJqxVqaevYpSw3M0TC2QuQMnHaueWJ3kEKg72IAHua9m8LWDRWrXMn/LTpx2r0TwX4B0vxP4tt554crAwkcjodvTNefWzGFCM5SWiPLlmUaPNzLRH0n8PfB2n6R4As9Bv4ElDRhpFdQQS3JzXGat8BPDa3r6v4Z/0SZgR5fWM/Qdq97jTAEca8DgAUp61+WwzTEQqyqwm05O7XR/I+GWMrKcpxlbm3PjbWvB2v6Af9OhJU/xryK5jaSdo69MV92uiSLskUMD2IzXI3ngLwtfXiX0tsFdGDHZ8obHY17OH4iVrVo6+X+R108wW00e2fBLw3J4c+H9pBdRCOacGVx3JbkZ/CvVlt4EmFwiKJB/EAM/nXnFh48traBYbqDYkYxlTwAPrXz8n7fn7MsV3dafq2tPYXFnO8DxzREklDgkFcgg9q/LMTleZ4zEVa8KMpNu75Vff0NMLha+Lcnh6bm1vZN2v6H0Z8YPiEfhv8Mtb8ZzzFDY2kjx84JkIwoGeM5r+XjxB8W/iB4iu5rzUNTlJlkaQlflOWOe1frn+1f8abD9o74SL4U/Z7lbWo5bsC+kT92EVBkKQ3JyTnj0r8srz9mr43rbSGDRWL7Tj516/nX634c5VDL8JUq4pKFWctpaNJbXT1Wt2fqPBVDA4SjUlmMoRquVrTaTSXk9Vc+G/iR4n1PxL4gaTUbiS48gbFMhzjFfsZ/wQy+EUfif47a18U9Qtmkh8PWflQScbBPP2IPfb0r420T/AIJ4fGjWL1ZNfvLGwhlBdn3NIynrgrgfzr+nb/gmx+yxY/svfAVdKNwLzUNanN5cT7AhOQAqjuVAHGa8fxc4jpYTh+vSpzXPVtBW7PWX4Jr5n22f8V5XLL5YDL6ylNpK0b2Svrra3y8z6g/aN8UweDfgtr+uXAGxbcxnPo/FfzTeLPiBfeI7oWVqfKs94wvdvr/hX7G/8FOviDNoXwz0zwNZSKH1acyTKGw/lx9OO4Jr8LYDGkyPIMqpBOK8/wACcl9hkU8bUWtWba9I+7+aZ+cYfCU5P201drb+u57O8scEHmSnAAyTVOze3vlN1DyhPGfavNtU1m41F8DKxjotezeAPCep+I7SG20qL5eN7nhVz3NfsVZKlT55uxyYiiqFL2lR2M651ay0S1kv75tsaKST/T8a+ZfGvj+/8WSfZ0Hk2qnhAfve5r7N/aL8N+H/AAZ8KP7PjObu7uIwHI5Yrycegrxn4G/ADUPF18niLxbC1vpkJDLG4w0x6/8AfPvWWEx2HVCWLnok2l527HfkuJwNHCSzPEdG1G/W3Zd9fkbfwu0G51bw/aX2o58sL0PBbB4/Cvp/4cfDXUPjP8WvCHwN0GHzJ/E+q21mV2khYN4MrHHQBAeaj1XSki1iWw02JY4osKqqMKoAFfuf/wAEJf2WR41+L2uftX69Bv0vwwjaPo7OvEl64DXEqdeEUhAR3zXzWeZpeg31lsu1ziyWLzHMVVatCPvW7dl955N/wcpeF9N8EfFb/gn74O0dBHa6X8T7O1iUdAkU+mqP5V/YpX8iH/B0L/ycJ+wj/wBlag/9KdOr+u+vgj9QCiiigAr8zP8Ags//AMolv2j/APsnfiD/ANI5K/TOvzM/4LP/APKJb9o//snfiD/0jkoA+bP+Dcyzg1D/AIIf/Amwul3RT6NqMbg91bUbwGv4tP8Ago58Ar79l79tjx58J5oTFaR6g95ZZGA1tdfvFI9uSK/tV/4Nv/8AlCZ8A/8AsE3/AP6cruvz8/4OXP2MLjxN4M0L9szwZa77nQNum61sXLNayH91Icf3G4z2Br2+HsesJjoTl8L0fo/8mNJPRn8bakMKyb/S1uAXi4f+dTLLtO5eQeavwt5zCNOp6fjX7QmmZpypu8WcBLDLA+yQEEVfstRe2Ijbla95u/Clhf6UllMoVwAdw6g14trHhjUtIuvJkQsjHCsOhqYzT0NsLmVHE3hLR/1sbMciSrvjORVmKZozg9KW309Le2WFeo6mhLeR5lgHVjgVZlJxdzQRlcblPFZF/pazgyxcP6etejDR4fsawAYYDr71zlzaSWsmxxUJ9jjoYuMpe69TzZkZDtYYIq3a3ZiOx+V/lXZXulRXUQHRh3FcZLYXEM/kuPx7VZ6lLEQqqz3NyMrIAynIqxVaICJAi9BV62iNzII1/H6UHNN216GZdTYGxOves2u5vdJguINsQCuOhrE0rQ7m91NbKVSoHLH2qeZBTxFPkcnpYq6bZmVvNlHyjp710gAAwK72/wBDgntlS1AVkGBXDXMMtrIYphhhSjNM4aeMjXd19xn3E3/LNPxqnVqSLdyvWrGmWD3lyEI+VfvGqvpc6XKMItsq28Rdt7fdrQrqLzS45I824Csv61T0XSJL68CyghEPzGpU1a5x/XIOLm+hx1/dFP3KHnvU2k6qYSLe4Py9j6V6R4o8Jx38JurJQsyjp6iub8EeDptZ1IyX6EQQn5s9yO1Q6qtdkrHYeWHdSWlt+5ayD0qtLBuIYV634i8LRzxfadOXa6j7o7gVw+l6a9zLvmGFQ8g+tTCqpLmR51HHU5wdRPbocsepU9qeHxgGu11nQlnUz2gw47etYujaU1zN583CIeh7mnzpq5vHFQcOf8DJrRs7kJ+6kPHatvVdJEgNxbjkdRWr4N8MC/m+336nyozwD/EaiU4qN2YVcXS9i6kjHHB5rrND1toSLW5OU6A+la/iPw1kG9sVx6qK634X+Aft8v8Abmsxnykx5St/EfWuOtiKcabnI8XE42g8O6k/u63KvJHPFeHfE3wK93nXdIjG5R+9UdT719d+MPC0gdtUsF+X+NR2x3r5x8WeI1VG0yzbJPDsO3tWeCrc7UqfzMMjxlX20amH36+nmeXeDfBgi2arqq/P1RD29zXquAOlc1o2plz9lnPP8J9a9n8NeGg+L6+Xj+FTXXXq8ivI9TNcZPnc679F/keT3dzuPlr2rPFej+NPC4sX/tCwU+W5+ZR2rB0rSMAXF0PcClCqpR5kZ0sVTdJTicRNcE5jTp3qqAScDk10uuaPJBN59uuVc9B612nhjwqlqgvb8ZkI4HoDWsq0YxudNTG0qVJT/A8ygtyPnf8AAVcFdX4i0R7K4+0QLmNzjHoTXYeFfCUcCC91NdzsOFPYGsqmIio87OatmFONP2re/Q8Dv78yEwxH5R1I71paPqJZhaSH6VveOvB8mkX4uNOjJgnIAx2b0ro/CvhKPToxe3yhpmHAP8NautD2akjqq43DfVlUXXZdbmGcEEGsDULIofOjHHeu31fTpLW6xEpZJD8uPX0rd03Q4o4i92NzOOnYVn7VJKRyxxsaaU11PE6swv8AwGtnxDo0mmX5SMZjk5T/AAqK2sFQbpOW/lXQppq56ntoTgpLqUq5fV9O2sbmEcHqBXbR2M9zdC3t1LM3SvTNF8MW9nbML1Q8kgwc8gCpnWUFc5p5hHDe9u+x8uZHSr9vLuGw9RXQa/4TvLDXn061QurfMh9j/hXdaN4UtbGyKXADyyDk+ma1dWNk0erWzGjGnGad77Hl9QSbYxuPAra1HTJrG9a1I46qfalFnF5RRxksMGq5la6N1XjZSWqZxVxdGU7FHFQBS52IMnsK0BpV0939kjXOO/bFd5p+iW9jCVHzO3VqTkjprYunSiras5rT9KS3xNLy/XHpWySAMmrSWkrzeSB071sjTYhbNE33iOtQ5dzzKuJu7ydzkpJmb5R0qtJIkS75DgCrLwOkphPVTipJrJJrZ4W6sK1XkbqcVbscRe6jJc5jXhP51nJGzttQZJrZ0/QdQ1C6+zxqQAcMx6CvUbXw5aWWmvaooZyD8x65qZTSOuvjaVBKK1Z5jaWCxjfKPmrQd1jG5zgUTMIWMbfeHGKz5RJN8o5JPAFO19WXfmd2fTP7HHwZ1X9pL9pnwh8H9KiaQ6vqMKSBQeIVYNIxI6YUGv8AUw8OaHY+GfD9j4c0xQlvYQR28ajskahR+gr+R7/g26/YyI1jW/2svFdp+6sY/wCzNIdx96Z+bh1z2UbUz65r+vqvxviPHrF46cov3Y+6vl/m7m1ktEfyIf8ABrn/AMly/bn/AOytXH/pRf1/XfX8iH/Brn/yXL9uf/srVx/6UX9f1314IH+YJ/werf8AKU3wD/2SrSv/AE76xX9fv/Brj/ygo+Bn/czf+pBqdfyBf8Hq3/KU3wD/ANkq0r/076xX9fv/AAa4/wDKCj4Gf9zN/wCpBqdAH7/UUUUAFFFFABRRRQAUUUUAFFfxK/8ABXLxz4gh/wCChvjsaHqFxarZrpkCmCVo+VsLct90j+JjX7d/8EJdV8VeIv2UfEXiDxZqN3qUsnii4ghe7meZliitbUgKXJwNzNwOM18vgeJVicxnl6pW5XJXv/K7bW6+p+s5/wCFk8r4aocRyxakqkacuTks17RJ25uZ3tfsr9kftfRRRX1B+TBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1/7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AX/g6JjMv/AAQq+Oar2Hho/l4g000Afx/f8GVP/KU3x9/2SrVf/Tvo9f6fdf5gH/BlZIE/4KoeO1P8fws1UD/wbaQf6V/p/wBABRRRQB/mp/8AB7Z/yfN8Iv8AsRG/9OFzX9d3/Bt7/wAoS/gH/wBgrUP/AE53dfh7/wAHSP8AwR//AOCin/BRj9qv4c/Ev9jT4ef8JlouheE20y+uP7W0zT/JujeTShNl9d27t8jqdyqV7ZzX4C+Ev+CEX/Bz94A8NW3gzwJ4X8V6Lo9krJb2Nh4/0q2tolYliEij1hUUFiSQAMkk96AP9Ob9qz9r/wDZv/Yk+EWo/HD9p7xbYeE/D+nxu4ku5Qs1zIilhDbQ58yeZsYWKNWY+mK/yA/iPrnxL/4Lg/8ABYa91PwZp81pqXxt8ZxwWcG3zZNP0oFYY3l25BFnYRB5mHGI2bpX6JaF/wAGt/8AwXj/AGgfGkFz8bPDtpo00xEUmreKfFNnfiJB3Y2c9/OVHoqMfav7X/8AgiN/wb5fA7/gklZXPxX8U6onj34v6xa/ZbrXDD5Npp1u+DJb2ETEsA5AEk7nzJAoAWNSyEA/I3/g7d/4KVfH/wDY38L/AA0/YF/ZS1q68Dad4l0WTUtZ1HSpntr5tPtpBbWtnDPGyvFETHIZ9pDSKETITer/ABP/AMEj/wDg08+GX7bf7KfhP9sj9r74oa3ap8QbY6tZ6P4ZWBZ47aR22PcXt1HchpZANzIsA2ZwWY5x++f/AAck/wDBEH4jf8FXPhr4R+KP7Nt7aQfEz4eLd28Gn6hKLe21bT7so7w+cVIjnjkjDQlysZ3uHK5DD+T79lv9mv8A4O0v2PPD7fsz/s0aB4+8M6ErOYrAyafcaZbmRiX+z3F28tvBuYlj5MqAsS3Uk0AeEf8AByP/AME1P2KP+CWvxp+GP7P/AOyXNqdxqOoaBdavr8mr33227YS3HlWrPsSKKMERTYCRqT1OeK/0Jf8Ag37/AOUM/wCz5/2LC/8Ao+Wv4Sv2p/8Ag2G/4LXeKfhKn7YPxYm/4Wh8UvEd+X17w8uqLqOt21uIvknmu55RDcOpURmG3kl2Ls2FhuCf04/8Grfwn/4KsfAn4ReN/g5+37oWu+GvAPh230q28BabrkVvC9uXlvZb5Y1X/SduXhP77KjICcAigD+OP/gi7LHD/wAHFvw8eVgoPj3XVyfVor0AfiTiv9CL/g4e/wCCgnxV/wCCcH/BNPX/AIz/AALkjtPGWv6nZ+GdIv5UEosJr8SPJcKjfK0kcMMnlbsqJCrMGAKn+Nv/AIKB/wDBtX/wVp+BX7eHiX9oX9gXRJfFOgXviS68S+G9Z0HV7XTtU0l7idriOKRLia2lWaBjtEkO9GADblJKD96P2a/+CXP/AAU0/wCCgX/BGv4sfse/8Fcta1bSviXrXioav4O1PXr+11WS0SytrU2xdrSWfZA86zxyISJAkjsq5IJAP5nv+CKf/BEvx7/wXi1bxz+1D+1T8XdXttH8P6lFpl5du7arr2p3skYmfM927CKNEdcSOspZmICjaTX3F/wXh/4IE/8ABN7/AIJOf8E6m+L/AMKNW8S6x4/1rxFpuj6XceItSimJEglmuPLgtbe2jP7qJsl1faMchiDXwd8IP+CYX/BzJ/wSu+LWraf+yX4Y8U6TLqUi28974TubbU9H1JY8+XLJG7PEQAx2Ncwo6ZIwpJFfSnxK/wCCA3/BxV/wUp0LXvj9+3VrrS+IvDmmTSeHND8R6zbT3V9MShNtaQWkhsrBZQDuaRocyKu5cEuoB+uX/BkV/wAmifGr/scLP/0iWv7ba/zsP+Dbb9if/gt3+w3/AMFAtH+H/wARvAniXwN8EtWub648bxXsdp/Z9xLb6bdpZOsrF3ci6aEA2rHdxuygOP8ARPoA/I7/AIL0f8odP2hv+xQu/wD0JK/gP/4NHP2cf2fv2n/+Cj3jbwF+0h4I0Lx9odn8NtR1CDT/ABDp8GpW0V3HqmlRrMsVwjosipJIocDcFdhnBNf6Jv8AwVt+BHxV/ad/4JsfGX4AfA/S/wC2/Fvivw3cWGlWHnw232i4cqVTzbh44kzjq7qvqa/lY/4Nfv8AgjP/AMFJv+Cdv7fHi/41fti/Df8A4Q/wzqngC/0S1vP7Y0vUPMv5tR02dIvLsby4lGYreVtzIEG3BOSAQD+qyD/gkX/wSqt5lni/Zs+GG5DkZ8J6Ywz9DbkV9kfC/wCDnwi+CHhseDvgv4V0fwhpCtuFjoljDp9sG9fKgREz+Fej0UAfye/8HlH/ACiS0r/soOjf+kt9XiH/AAZNabYxf8E9/inq8cYFzP8AEOWGSTuyRabYsgPsC7EfU1+kP/By7+w5+1F/wUD/AOCdth8C/wBkXwx/wlviq38Y6Zqr2P220sMWlvBdpI/m3s0EXytKg279xzwDg15t/wAGu/8AwT8/a4/4J0/sU+OfhP8Atj+Ex4P8Q6142uNXs7P7fZ6gZLJrCyhWTzLGe4jXMkTrtZw3y5IwQSAfkb/wfEfCrxNqXgH9nr42WMEj6Po9/wCIdFvZgCUjuNRjsp7ZfQF1tJ+vXb7V+rX/AAaV/tMfDz4y/wDBIjwv8GdAu4v+Ei+FWparpGsWYKrKgvr2fULabYDny5I7jYHIw0kcg6qa/bf9uv8AYt+Dv/BQf9lnxZ+yd8coXOieKLYIt1AF+02N1EwkguoCwIEsMihhkYYZVgVZgf8AOM+IP/BBD/gvP/wSe/aFv/H/AOwDNrPibTyrW9p4o8D3aW9xd2jEOIbzT3l84cqpeNkmh3AbXYgGgD+5L/g4H/aY+Hn7Mn/BIz416p46u4orjxj4bvvCGk2rFfNur7XYmtFWNSRuMaSPO2OVSNm7V/Hx/wAGSfwq8Tap+2z8XfjfBA/9jaH4IXQ55sHZ9p1W/triJc9CdljIfUD618t3/wDwR4/4OP8A/grX8YNEP7aVr4gtdP09zENa8dX0VtY6XDMR5rQWUbeYWcKMi3t/nIXeQMMP9CL/AIJWf8Ezfg5/wSm/ZQ0/9mf4T3Ums3T3Mmpa5rlxEsNxqmozgK8rIpIRERUjij3NsjUZZmLMwB/me33/ACtSr/2dHH/6lQr9aP8Ag92+FuqaZ+1T8FPjY0chstb8KXuiK+D5Yl0u8M5GegYrej3IHtX5L3xB/wCDqVcf9HRx/wDqVCv9Lr/gq7/wTJ+Ef/BVz9kzUP2aPidePol7Fcx6noWuwQrPNpeowBlWUIxXzI3Rnjlj3LuRjhlYKwAP48v+CV//AAa//wDBOD/goz+wh8P/ANrK2+KnjaLVPEFiY9bs9Pm08Q2WrWzGK6gCyWbyKFkUlA7EmNlbJDAm9+3n/wAG6n/BCL/gmh4b8P8Ain9sb9oH4ieGYPFNzNa6XHFDa309w9uoeVhFbabI4RAyhnICguozlhX54eHf+CVf/By5/wAEh/iVrujfsaWniOfR7+fLal4JuoNS0vVFiyI5pLGUsyuFOB59srjJAJHJ9L+Gv/Bv3/wXT/4KyftEWPxW/wCCmGral4V0iLyYrvW/Fl9Fc36WIfc8Gnafbs4iYZLBHW3hDMWJLZBAPtn9rP8AY0/Y18E/8GsHjrW/+CbXjDxL4++HZ+IFp41fU9etGtLqeZJ7XRrlViNrakwQ7Fbd5ZAZGJb5SF9L/wCDIz9obwJ/wrz40/sqXt1HB4lTU7LxTaW7kB7mzlhFrOyc5YQPHFv4481fU4/sk+F/7F/7Ovwl/ZB0/wDYV8N6BHP8NLHQH8NPpd2fNFzYzxtHOJ24LvPvdpW4LO5PGa/zwf2xf+DZL/gqV/wTt/aMg+O//BLfUdV8b6HYTPc6Pquh3seneJNKEmVMM8RkiM3yMUMlvuWVc744wdtAH+g/+39+2j8Ov+Ce/wCyL40/a4+J8X2zT/CVmJorFZlglv7uVljt7aN2BAeWRlUHa2BlsEA1+XP/AARj/wCC9Wj/APBY74jeNvBvgn4T6j4K03wPptte3mqXepx3sbT3kpSC3CJBGQzrHM4bd0jIxzx/GT8RP+CcH/B0R/wVb1Xw/wDD79qzSvFN3oWm3IEMvjC8ttI0qxfGw3MlshR5WVcjzEt5piCQucnP95H/AARg/wCCS/w4/wCCRf7Ko+DuiXsev+MvEM66l4r15EMa3t4oKxxxKxLLb26EpEp5JLuQC5AAP88v/g7J/wCU13j7/sDeHv8A03w1/q5/C6WOf4ZeHZoWDI+l2bKRyCDEuDX8Tf8Awcwf8G/P7ZP7bv7Utn+2v+xLpdp4vm1HR7TS9d0F72CxvkuLHesdzC100MEkbQlEZDKJFZMqrBvl94/4Nzv2dv8Agvd8Cf2kr3RP+CkJ8UW/wf0jwTcaXotnrmuWWowQ6jHdWQtUjhiuZpxstknVHK7FT5cjKggH8oP/AAS1/wCVkrwZ/wBlU1n/ANG3dfcP/B558KvE3hX/AIKbeEvileQSf2P4s8DWSWlwQfLa40+6uY54gTxuRXhdgOgkU96+nP2B/wDggz/wVb+C3/Bbvw1+118TfhYNM+HWnePtU1ufV/7c0iYLYzvctHJ5EN69ydwdcKItwzyBg4/sO/4K/wD/AASi+EX/AAVx/Zf/AOFF+P8AUG8O6/o11/afhzxBDCs8mn3mwowdCVMlvMp2zRh13YVgQyKaAOi/4I0/tMfDz9rD/gmL8F/ih8O7uKdLXwtpui6lDGV3Wmp6TAlrdQuoOU2yxlkBALRsjgYYV+Mf/B4p+0x8PPhp/wAEyLX9nPUbuKTxR8SvENgLGyBUzLZ6VILq4uSCchFdIotw6tKB0zj+YXwr/wAEp/8Ag5f/AOCTXxG1zQf2QdO8TLpupTYk1DwPfQ6hpeprFlI5ntHYsGAY7TcWySKCcYHNdn8F/wDg3h/4Lc/8FTf2jIfip/wUUvNX8H6ZKEi1HxP4xvI77UxbRHIt7OxWZpQRuOxXEEC5Y7s/KQD9Zv8Agz7+FXibw/8A8E5f2kvjFqUEkWmeJtQOnWTuCBK2lafI8rJnqoN2q7hxuUjqpr8Gv+DSb/lNH4P/AOxf8Qf+kbV/pqfBL9j/AOG37JX7Elj+xz+zvYGDRfDnh240nT0kZRLczyxvvmmcBVM1xM7SythVLuTgDgfxKf8ABu1/wQy/4KlfsL/8FOfDv7Q/7VXwwHhXwfp2jaxaz351vSb7bNdW5jiURWd7PKdzHqEwO5FAH99nxg/5JL4p/wCwRff+iXr/ACo/+DSv/lNP4K/7APiD/wBIpK/1bfiRpOoa/wDDvXtC0mPzbq9066ghTIXdJJEyqMsQBkkDJIFf5/X/AAbwf8EMf+Cpv7C//BT3wv8AtD/tT/C7/hFvB2naTrFtcah/bekX2yW6tXjiXyrO9nmO5yBkIQOpwKAP9DmiiigAr/ME/wCD1b/lKb4B/wCyVaV/6d9Yr/T7r/L/AP8Ag9TkWT/gqh4EUfwfCzSgf/Btq5/rQB/YF/wa4/8AKCj4Gf8Aczf+pBqdfv8AV+Av/BrtGYv+CFXwMVu48Sn8/EGpGv36oAKKKKACiiigAooooA/xBv8AgrF/ylN/aW/7Kr4y/wDTvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2va+q/wDgsX/yif8A2kf+ybeJv/SCavlT/g2r/wCUIXwF/wCwfqv/AKdr2gCf/gtv+xHfftAfBGH49/DCz87xr4AVrhEjH7y8sD/roeOSQPmUV/InAvh/x1ocd5PCs0Uy8q4+ZWHBU9wQeDX+ldNDFcQtbzqHRwVZWGQQeoIr+LL/AIK0fsFX37G/xkufj98ObU/8Kz8ZXW66iiX5dK1GTrkDhYpTyD0B4r2cox/sJ8knZP8ABnyfFGUSxFNYqh/Eh23a/wA0fhp4q+A4kLXXhaUKf+eUh4/A14Vq/hfxF4Zutuo2zxmMj5wMr+dfogbd9gljIdGGQw6EGq09tBPH5dxGrr3DDNff4fNqkVaXvL8T47B8TYikuWqudee/3nxbZ3K3dskoPUc17B4D1VZYm0ubBKcrn0r1aLwH4Rvw1tJaLGWBw0fy4NVofhFp1jqEd9p1zJHs6g85qq+ZUKkXCV0zPE5rhq0HBpp9CobKzc7jGp/AVJLBFLGYmUYYY6V2B8LXGeJVx+P+FedeOdWk8DmJ7qFpopujp0BHY1w0p+0kowd2ebRl7Wap03ds8g1zTTpmpPbkfLnK/Q1j9D9aua944sdemiEVuYyP4iapHEicdxX0NNS5VzrU+rpQqKmlVVmXrDU10m7S7ZsKp+b6GtzWPiXZQoY9KQyOf4m4Arx2/SaK4aOVifr6VSNVLCwm1KWp0f2ZRqNVKmp9H+DfEh1+xPn/AOvjPze4PesT4meGm1fSft1qoM9tz7le9eT+H9an0PUkvIz8ucOOxFeyan41tntwumjfvHJboM1yToTp1lKmtDzK2Eq4bFxq4dab/wCaPmC0up7G5S6t2KvGcgivpXRtcXW9PS6hbHGGHfI614F4hsXgvGulHySnPHTNWfCmvyaLfjeT5MnDjPAz3/CvQr0vaRutz6LMMLHF0VVgveX9WPpexn2t5LdD0+taF15H2dvtJCpjkngCuZimjmQSxkEHkEV5N8TLzxAGRXlP2RhjC8fnXm06HPNK9j5fD4L29ZQUrH0b4D8BJ41jOoW15GbRHKsUOWyPbtX1J4d8O2HhmwGnafu2Zydxyc1+Wnw1+JOs/DnW11CwYtbuQJoSflZfp61+m1p4+8LXPhqLxVJeRR2siByzMOD3H1Brws+w+JhNRveD2suvZ+Z5fEmXYrD1VFvmpy2t37PzOwkjSVDHIAysMEHoRXyb8WvAtn4Yz4gsZEjtpG+ZGIBUn0HcVm+Pf2qLC232HgeEzP08+QYUfQd6+RPEnjLxH4uujea9dyTsTkAn5R9BW+T5TioSVWb5Y9ur+XQ7Mi4cxymqtT3IPo938unzOy1LxAZVMFoOP7x71y1YlnfMGEcxyD0NdXZ2D3J3twlfWqKitD7J0Y0FYx57mO3Xc5+grEudYvLiL7PuIjHRa6bWvDu5Dc2eSw6rXP6F4e1bxHq0ei6XEZJ5DjAHT3PsKtSilzN6I66EqHI6kntvfoYyI8rhEBYmutsPDyriW7PPoK+wtO/Z50O08NLbu2dSxuMvbd6fSvCPEnhfWPC10bbVYio7OOVb6GuGhmdGvJxpy1X9aHlQz+jiZOnQla34+hzvQYoqlJIzHjiprW+0izu4G1+bybQyKsj4yQpPNdLdlc0SdtFd+R9SfC74CeK/E3hj/hL7MxoJsiFJMhmUd+nepvEfw38Y+Ftz6rZt5QOPMT5l/MV+g/gW+8LX3hWybwbPFcafHEqRPCQVwB7d/WuplhhnXy51DqezDIr8pqcYYqOInzwXLfZ6NL/M/M6+eV3XlKa0vs915H5Y2cHlR5YfMadcWVpdp5dzGrqexGa+9PFvwb8MeJS1xbL9jnP8UYwD9RXzl4n+C/i7QZGks4/tkAyQ0f3gB6ivbwfEGFxD+Lll2en4nTRzKnUd72f9dTwd9BsNmyBfLA6beleY6y6i8a3ibesZxn1NejeKtSk0eE2bqyTvkYIwRivIiSxLE5J5r6vCKTXPJ6H02XQm17ST06CqMsB0q2zLGm4nAAqlXa+GdAS8H2y+QNERhQe9dVSooLmZ3YipGnHnkzxnUbo3dyXH3RwK+xP2Pf2epfin4rXxX4hjKaNpbrJhl+WeQHhOeCPWtf4V/ArSfil4xg0kWoW3iHmXDjKgRg8jjue1fsR4Z8M6H4O0O38O+HbdLW0tlCoiDA49fevzfjvjZYKg8DhP401q/wCVP9X07bnlZnxAvY+ww6ab3fZf5s5Txr8K/APjPTDaeILGIJGuFkUBGQAdj2Ar8kfiT8L1sdcuh4Pla6sYnKxh+HwP0NfoX8afi7aiWfwN4flVpQNtyysCQD/Dx+tfK6q0jBU5JrwuBaePwdB1q83yy+GL2t38rny+GxVWhLmi/kfMXgTwXdeI/EiafexskMJ3TZGMAdvxr7ajgggt1tkUCNFCgdsCqOnabb2KGVEAlcDewHJx61f1Gx1RtIfULWFmgDbXcDIFfUZjmH1ipFydlsvUyx+Oliqib0SODuILRLuR7NAgY9u+K9u+A/g5fEnioapeDNvp+HIPd/4R/WvEYIZbmZYIQWdzgAepr7B8GaN/wimlR21sxWU/M7Du1eDxJipU8HKjTlac1ZPy6v7tDCpUULXPqixsZ9QvI7GzUvLKwRFHcnpX6O6T8J/C0fg618M6vbJOYk+ZyPm3tySD1618pfsneEdQ8R3cnjbXFBt7M7ICRy8nc/hX6BBSegzX8N+JOeVI46OX0J29k7tp/a9fJfi2fs/AGRU3hJ43EQv7TRJr7P8AwX+R8q6r+zhDZzG78MXWePuTf0IrxHxPpN74Lkij8TqtmJnMcTSMArsOyk9fWv0YAPav5Vf+Cun7Us/xL+N9v8KfB92w0vwfuSR4nwJLyTG85B/gAC/XNfQeEuFzjizOo5XKd6ai5Tm1dwilp1V25NJJ979Gdme8JZfGnz4e8JPZLb7v8j9ejcQCA3O4GMAsXByuB1Oa/m9/a1+K0fxb+NGo6zYOzWFmfstsCcjbHwSPTJqX9nfx/wDGLWNak0S31+9GkQ27R3ERlZl2SfwgEnBPrXrt9+z94E1K5DQxyQk8bUbqTX9ecGcF0eFsxrV8XWVSTjaLStZPV3T6uy2vpc/Pvb0MsxTp13d26dL9/Mx/2LfALal4kvPHd9CGgsV8qBm/56t1I+gr9Mo0MjhB3rzv4Y+AtM+G/hG38M6VuKIS7FuSWbk5NeUfHL4o634S1G10fw1MYJ9pkkcc8HgCubM6tXPM1n7B6bRvskuvz3+Z8rmGIlmGMlOGz29EfYgMcMY3EKoHU8Cvvr4B/EX4NfA74Zy+IfG/iG0trzU5N8kO8NKgUHYpQZYZHPpyK/mxu/iD478XXi2uo6lMyyYVlDFVIHsK7R5ZpcGZy5wBljnpXzvE3hN/a2FjgsZi3CDaclBatLZXe2uu3RHsZFj6mS4r63CEZ1LNK97K/XS19Lo/TT9tX/gonoPxJ+Gmo/Cv4b2FxBDqbCKS9lbYWiUgnaozw3Qg9q/E+uy8RC51PUfKgU7IvlyemT1rpPAPguHV/ENvbXo8xAd7jttHb8a/QuEOE8p4Tyx4TLYOMG3OV23KTsldt+SWisvI7czz3E42X1nGz5pW7JWW9kkc54W8Ca/4suFSxiKQnrM/CD/GvrjwX8P9H8G25+zjzbh8b5G68enoK6qSTStA08u+y2toVz6AAVyX/CYwa1aC40Zj5T5AcjBOOOKxxmY4nG3UFy0/63Z8hicZVrrTSJ0Os6nbQwPajDu4KkegPrXk+h+H9E8J6cbPSYlghBLNjuT1JPeptd8Q6XoNsbzVpggPQE/Mx9h3rhNV1y41I5U7IscL659a6MFgpxhyrZ79nYVGlNxsrqL/ABsQ+MPFFnHayXV24jtLYF2Y98V/Tp/wQ6/Ytv8A4aeBL/8Aav8AiVZtDr3jKNY9KgnXEtppgOR24aU4J9sV+P3/AATF/Yb1H9uP4xL4p8SwyR/DbwlcK+pvIuE1G7Q7o7eM4+ZVI3SH8O9f262NjZ6XZQ6bp0SwW9uixxxoMKqqMAAdgBXn5nioyao0vhX4s/X+Esk+q0vrFVe/JaeS/wA2Wq/kQ/4Nhf8Ak579vj/srU3/AKV6nX9d9fyIf8Gwv/Jz37fH/ZWpv/SvU68g+xP676KKKACiiigD+RD/AIKGf8rYH7GP/Yman/6K1qv66pooriFredQ6OCrKRkEHqDX8iv8AwUM/5WwP2Mf+xM1P/wBFa1X9d9AH8M//AAUo/ZGuP2J/2proaRBs8B/ECaW+0lwP3dtdE7pbc9hknKjuK/O/xX8LPC/icNIYhbz/APPSMY/Md6/vu/ba/ZE8BftqfAbVPg342QRTTL52nXoH7y0u05jkU9Rg4zjqK/hq1nwD8QfhP4/1j4FfF22Nl4r8NymG4RhhbmIfcniJ+8jjBzX0WUZlKn7nNZrY/OOK8tq4Wr/aOFbSfxW6Pv6Pr5+p8LeIvgt4v0bfPZRi8gTnMf3sfSuP8OTzabqLWd4rRb+NrDHP41+jMIms5sTKQDwai1Twj4a1oh9Ss4pWByGKjP519fDPnblrRuu6PChxPNwdLEw5k+q0f+X5Hx7Z3T2dzHcxcMhzX1Hpk9jrWmx3exWDgZGOhrWk+CnhDWYlns2e2YZ3BTnmtHw78LL7w5bSW0V2JkZsqCMYrzsXmmFrRTUrSXc8jGY2hWinFtSRixaZp0DF4YEUnqQorn/FmiR6hpbNAoDx/MMCvWW8IakFJBU47V4HqnxQ0rSr2bTL62mEkLFGBx1FZ4SpKrO9F8zRz4WNWpO9LVo8pIKnB6ipVORUEmrWWq3ks1pGYlY5Ck+tUtRW4MBMDYK88V9NyuSs9GfSqLulLRnp/hjxjp+i20lrq0u1F5TufpVO9+Lqvfxx2EJEAYbmbqR7V4YzMxyxyfem0v7NouTlJXbLWVUXJzmrtn29bzw39qs8eGSRc+2DXyb8R/DEmga280S4t7gllPYHuK7/AOHHjaGygbSdWkwijMbHn8Kd4212LxNaNYxRAKp+ViOf/rVwYSnUw+Icbe7+h5+BhVwmKcbe719O5wXw78UnQ9R+x3LYgn4Ps3avoX7RI5D56civjiWOS3lMbAqymvePAHij+0rT+zb1szRdCe4rrzDCpv20V6nbm+CT/wBoh8/8z32xuhdRbu461T1EWvnxRPLHHJKwRQ7Bck9K5hrm8tYnksSPM2nG7pmvmLxFqut3uqu+rSs0sbcc8L9K8zC4B1ZO0rWPHwWXutN2lZI/VXwR8BZ4ZItW8R3Gwrh1SE8/i1fUyII0CDoBivz/AP2Wf2g7rUpI/h74xm3OBi2nkbk4/hJPX2r648e/FvwJ8N7Q3Hia+SN8ZWJTukb6Cvx7iTB5pLMPquJTnL7PKtGn1S/M87E4WtCt7KSvLpbqanjjwPpPjjSm0/UEAkA/dyDqpr82vHumSfDzVZdJ1plMicrtOSw7GtD4l/tmeJPERk03wNGdNtzkea3MrD29K+P73W9W1K+fUdSuHuJn+88jFifzNfoPB/DeY4Wm/rkkoPaG7T9dl6ans4HJq1uatou3X/gHeazrMmrSg7QiL09fzrFOMc1Ts7oXS7R9/wBK6BNKMsZE5K59OtfeWjTXKetaNJcpy15q62jfuDlx+lc3eahd37+ZcOWPp2q/rOjz6bMc/Mh6N1r0r4SfCPU/iNqQllBh0+EjzZfX2HvV1sRRoUnXqO0V1O11aFCl7eT07nkVtaTXLbYxx3NdPZ6fHZ5YHLHivqfx/wDs+yaJB9v8FqZYVBLxHlhj09a+bZYJoZTDMpR16gjBFcmFzOjjIc9CV1+PzOKGZQxUb0np26/MhrX0LRb/AMRaxbaJpib57l1jQe5rOCgV9bfsaf8ACv5PidJJ4jv4YtQt482sEpC7mPGRnqRXHnePeBwNbFqLk4RbSSvr0+XfyJrNxg5RV7HX3f7LvxN8M6eggto7sKm5vJbJB9MHGTXkF9ouraTeGx1W3kt5QeVkUqRX7Z4zXM+IPBvhrxRA1vrdnFOGGMso3fn1r8Py/wAUcSpWx1JSXeOj+56P8D51ym7tn4+bF27CARWNceHNFuZhcyW6CQdGAwa+7/Gn7LCAyXng+6291gl/kDXyt4k8E+KPCUhXXbKSFeQHIypx71+kZTxLgcer4Wr73Z6P7v8AIiNRxejszxvWdFtbC0e8WTaqDODXkTytM5kbvXa+MNf/ALRn+wWxPlRn5vQmuIr7XCxkoXnue/g6clDmnuyeBMksao6zqCWFoWzhm4FW4oZJ5BDEMs5wPqa9Y0/wRo/2FV1WFZpcclucfSrq1oU7OZpVr06UlKpr5HyekdxeXKxRBpJJWwAOSSfQV++n7Ef7KenfDbwQfFvji2iudV1mMN5cseTDEw+783c964D9jv8AZL8GmZPip4jsBJsbNnHJyuR/Fg/pX6c63rOm+HNIn1jUnEVvbIWYngADtX85+LfiPLFzeQZS3a6VSS3b6QVuz389Duq41V4JpWj59f8AgH59ftQ/sv8Awos/Ds/i7RCdIv2OI44hmORz6r2+or8Y/FfgfxN4duWk1KEuhJ/eJ8y//Wr9Uvi98Vbr4o66LyP93ZQZWBB6ep968cuLaC6jMFwiujDDBhkGvv8AgKrmeWZbCnmdR1JvVqTu4rpG+7t53Pm45y6NZunG8P627HgPwS8Fi0tT4mv0Ilk+WIEdF9a9d8V2OkXGmO+pQrJxhSRzmult7eOBEtrdcKAFVQK868cjU7bUhY38LwbBlVcYznvX0f1iWJxXtG7f5I86eInicS6rdv8AI4ONI4o1ijGBjAFfVXww8ODRdDF5OuJrn5j7L2FeIeAvDL+I9aRJB+5i+dz247fjX17a2zSPHaWy8sQqge/ArzuIcakvYJ+bMcxrbU18z2X4H+C28V+Lkurhc2tl+8kz0J7CvqLxf8CfB3iZzdWifYZz3iHyk+4rb+EXgn/hCfCsdtcAfap/3kpHqeg/CvVMEcmv5H4n4xxVXNpV8DVcYw92Nnulu+zu/wAD6vLcopRwqhXhdvV+R+enir4C+NvDitPaRi+hzwYeWx7rXikqNBcPZy/LLEdrofvKfQjqK/ST4z/FHQvgx8MNa+JfiJwtvpVtJMATje4HyqPcniv4ifG37RfxT8WfEzVPiXDrF1a3Wo3b3O2ORgq7jwAM44FftXhVVzTiWlXniuWMKdkp2+KT6W20Wra7rQ7MF4evMHOWFqciXfVX7f1c/dP9pj4l2nws+EWq61NIY7m4ia3tgDhjJIMAj6da/nFdrnULws2ZJpn+pLMf8a/TfwloXif44/DPT5vjXe3F+ULSWoZiCFboW9T6e1W/A37IPgy18U2urxXc7izlWbY2Cp2nIBr92yfD0sroTjUleV9WttNke7wtmeXcO0cRQxEnKtzO7SvF20ST/PTqfRn7OHw9X4dfCyw02aIR3dyvn3GOpd/X6CveDyeahlkitLZpm4SJST7Ba+Otc+MviybUbhdNmEduWIQYGQPrXk0MNWx1WdRerv5n5zGjiM0xNXEdW23fzZ92eE9FXxF4kstFeVYUnlVXdzhVXPJJPTiv0X8a/tG/Bj4PaPHpt3qcd1Laosa21mRI/A46cD86/no0PxB4l1SZ7++vZX+Xy/vnkVd1K8a3tZLqQlioPuc9q+d4j8NqOdYmi8diH7Knf3Iq12925Py02+Z6uFwUsLJwTTk/6sdv+1/8fU+P/wAS11uwiktrCwhFvBFIwJ4JJbjpnuK+VER5HEcYLM3QDkmuhtfD2qanMZZF8tXO4lvevrr4J/DTRLKwPiG/gWe434iZxnaB6Cv0HD08HkmX08Lho2p00lFX/X8Wz3MXmVLB0dXdrou55F8O/gPrXiUpqXiEGzs88KRiRvw7A19s6Loel+HdPTTtKiWKKMAcDk49fWlvta0zTJorS6lVJZiFRO5P0qy8jNXy2PzCvimnU0j0XT/gnwmY5lXxclKrpHouhyfi/wAGeHvG0lkviCHz1sZRNGpPylvcdxW3cXFvp1uAAAAMKo4rLu/EmnQ3babA4kuFXcVHOO3NcXr3iC30q2/tDU3ZssEVUUs7Oxwqqo5JJ6AVlGE3Fe0dooxpU61Xko6vsvXsvM6Xwp4G8V/G34n6N8Efh1G0niHxVcpBFsXPkxMQJJn9ERcnNf3ofsy/ALwj+zF8D/D/AME/BcYW00W2WN5AMNNMeZJG9Wdskmvyt/4I6/sAan8CvBjftIfG2yVfHPiiEfZYJFG/TtObmOPpxIw+Z/yr9y68HG4n21S62Wx+38P5Qsvwyg/jesn59vkfyIf8HQv/ACcJ+wj/ANlag/8ASnTq/rvr+RD/AIOhf+ThP2Ef+ytQf+lOnV/XfXGe4FFFFABX5mf8Fn/+US37R/8A2TvxB/6RyV+mdfmZ/wAFn/8AlEt+0f8A9k78Qf8ApHJQB87f8G3/APyhM+Af/YJv/wD05Xdfrn8YfhZ4T+N3ww1z4T+OLdbrS9etJLSeNhkbZBgEe4OCPcV+Rn/Bt/8A8oTPgH/2Cb//ANOV3X7eUAf5Zf7aP7IvjL9j/wDaG8Q/BHxTE6ixuHksJmGFuLRifLdT344PvXyEVmtpeflZTX+ir/wWT/4JwWn7b3wOPivwHCkPj7wor3OnSgYNzEoJe3Y9w38Poa/gKvPCF1FqF94d8S2r2Wo6fK0E8Ug2yRyocMpB96/VOF86WJo/V6r/AHkfxX/A6nJXr+x96fwnP6J4uJK22pcZ4D13Tpb3cO1gHVhXkWr+Gr/SiWYb4+zCt7wrezw2zZJYBsc19S4p6o87FYanKPtqDLuqaBJCTNafMncdxXNAvE4YcMpr1aG5inXKn8DWDqulwXbs0Y2v6jvTjU6MnD41r3KpnWOsI4Edzw3rWzLFFcJtYZBrhbi2ltn2SjFeg6fZEafGQTuIB5olZak4unCnacHuc1dWckHKjK1lTQJOu1hXcuCmQ46VyDHLFjxk1SZeHqto5i5tXgOf4aihmkgfzIzzXXRW/wBqmSH+8cVc1vwk0a/adP5/vL/hT51sztWNgmqdTqZdpex3I29G7itW2upbWTzYuvQ1yWmWskuoJCRjB5/CuzuLRo/mQZWpkl0McQoRlydzq7S+ivFBU4butRajpcGop+8GGHQ1zFgr/aAynG3muwguFI2vwTWTjZ6Hk1IOnO8GeX3tjPYTGOUdOh7UWV7JZybk6HqK9nttGg1eOSO5X5cYB96808ReGLrQ5s/fibo1VGrGT5ep34bMKVZ+xqfF+Zs29xHcxeZGePStC1uTbN8o4PX3qPwP4dF5ay31xkBvlT6+tWr/AE6exmMcg47Gs21dxR51WdL2sqKex0UMsc6Bkq9ZXP2EkRj5WOSBWRpVowt/Nzjd0FXmyDg9aydnoebUUW3HodrFKkyb0OQayLzSY2Bktxhjycd6k06F4IQW4JOSK1lORXNez0PO5nCXus4FlKkqwwR1qAx7SSvSuv1DThcDzYuGH61gW9nNc3S2kY+djjFbxqJq53068ZRuzNrqNC1VIR9juOFPQ1sa14R8i0Waz5dB8w9awPDfh678Raoun2/y45Zj2A61m6kJQcm9EYyrUatJyb0X4Hd/K68nivQvCuvRxxLpd2cEfcP9Kq+IvC0enWqXFiCVQAMv071Y+H/g648W6ssbhltozukcfyrx69ajKg6kn7qPnq1WlUoucnoj0NlV1KsMg18kfFn4cXGk3sniHSUzaycuq/wH/CvujxN4ZbSG+0WvMBwPoa8N8deIrWys30gKJJJlwQegBrkyrFvnU6Oqe5jk2OqUqynQ1vuvI+a/h94Nku511vUkxCnKKf4jXvowAB0FYmiX8dxarBgKyDG0dMCvYPCHg1NYhe91IfuiCqr0z71347F8rc6nQ780x8pzdStpbRI8E8QatHKDZW5yM/Mf6Vy3QV1Hi/wxd+FdYfT5/mU5ZG9Qelavh7wqZoTd33G4fIv9a7YVacKSlF3TOuFalSoqcXdP8Tl7GyJPmzD6A9q2v9kdasT20sE/2Zh8wOMetdXp+gpFAZJ/9a3T2rOpWS1ZzVsQvibOchsYyoecBj1AParzusaFm4Aqw0LrJ5R60t9pxmsyqfeHIx3rncrv3noczndq7OTvrkXhCso2KcgH1FVScVPDbyTy+Sg5/lWrdaUILTevLg5P0rr5oxsjquotRZgMiuQXGcdKgu7yGzhMspxitzTNKu9WuBBbKcd27Ck+Jfg+PT9Kt9RsASIvll989DQqsPaKm3qzenVp+2jRk9zx3UdQk1KUM/3VPyj0qGzs576cQwDr1PYV0Hhnwpe+JJzs/dwp95z0r1TUPDtrocMS2Q+TGCe5NdU8RCDVNbnqYjH0qDVGn8X5HKaZpFtpyfIMuerVburuO2X5jz2FTs4+7XM6jGy3O487ulZxXM9TzoRdSd5srTzNdSCWTqOlYeo6tb2C7Ty5HArpLeyMnzScLXlviG0kt9YlhAJyQV/Guqnyt8p62Dp06k+R9DNu7ua9mM03XtTYoHk57V3Oh+DnmH2nUvlHUL/jWLdwfZLiS3b+EkVsqsW3GPQ9OOLpuTp0uhVjiSMfKPxqwkZYg9qr7ssCK04kaQAIOTRJkydtWNCogzWbc6gEBSI5auhudPxYyO5O7bxiuMtrS4vJPLgUse9Omk9WVRcJJyb0RXOXbceSa1bTTXkO+cYX0rp4tBhsbQzSfNJ6+lVZJljHvQ6t9IililO6pigQ28fZVHf6Vxmr+J8E2+n/APfdO8TzSNaKwJA3YwK5/TNAvdSIZBtT+8acYq15HXhcPTUPbVnoY3zzSYHzMTz6mvpr9lf9m3xj+018a9F+DvgqJ5dS1WdFG0ZWKMMN8jnsqrk59a83t/DEcdza2FlG8sk8gjGxdzsznAAHc+1f3Zf8EVP+Cb3/AAyl8LU+NfxStkbxv4ntk2o6ANY2TfMkXs7Zy5/CvmuJ87WFoexpP95L8F3/AMj08PW9t70PhP1q/Zv+BnhL9mz4I+Hfgr4KiWOy0Kzjg3AYMkmMySN6l2ySa9woor8nO0/kQ/4Nc/8AkuX7c/8A2Vq4/wDSi/r+u+v5EP8Ag1z/AOS5ftz/APZWrj/0ov6/rvoA/wAwT/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1Ov5Av8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINToA/f6iiigAooooAKKKKACiiigDwTxz+yt+zN8TdYuPEXxC+H3hzWdSuyDNeXmmW8tzIQAo3Sshc4AA5boBXafC74QfDH4J+HH8IfCXQ7Tw/pck73TWtlGI4jNIAGbaOMkKB+Ffx6/GD/gql+3F4R+O3jSz8CePp7fSYNe1FLK2ktLS4jitluJBGi+dA52qmAOc4Ff1J/sE/E34jfGX9kTwT8UPizeLf+INatZri6nSJIA4M8oj+SNVQYjCjgDOM9a+ZyjO8DjsVOnQpNTim22l3tunfU/VOMuBM+yHKqGJzDFqdCo4qMFObs+VyV4yioqyVtG7dD6+ooor6Y/KwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigAooooAKKKKACiiigAr8Pf+Dkfw5ceKf+CJHx70y1Qu0Wl6beED+7Z6nZ3DH8FjJr9wq+ef2tvgBov7Vv7LnxE/Zo8QSCC18eeHdS0JpyM+Q19A8SSgesbMHHutAH+aJ/wZweK7Pw7/AMFc77SLlwj694B1qxiB/idLiyuSB/wGBj+Ff6oNf4lf7Ef7QXxP/wCCSX/BTTwv8XPGOmT22tfCjxPPpviPSxxK1urSWWpWwyQN7QtKqE8B9rdq/wBo/wCEXxa+HPx5+GGg/Gf4Ravb694Y8T2MOo6Zf2zbop7edQyMO4ODhlIDKQQQCCKAPRaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivH/jX+0L8Av2a/Ctv46/aL8ceH/AGiXd2lhBqHiTU7bSrWW6kR5FhSW6kjRpWSN3CA7iqMQMKcAHsFFfAH/D2H/gll/wBHLfCr/wALLSP/AJKo/wCHsP8AwSy/6OW+FX/hZaR/8lUAff8AX4b/APBwB+3r+1v/AME6v2LtB+O37Geh2niDxPe+MLLRru3vdPn1KJNPuLO9leTy7d43UiWGIBy20ZwQc1+tHwU/aF+AX7SnhW48dfs6eOPD/j/RLS7ewn1Dw3qdtqtrFdRokjQvLaySIsqpIjlCdwV1JGGGfYKAP8sv/ghZ/wAE1P28/wBuD/grT4e/bv8A2gvB2saH4a0PxbL8QPEXiLV9PfT4L3VTM99HHapKsfnPNdlS3lArEmWJHyhv9TSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/K+/4PH/ABXZ+If+CudjpFs4d9B8A6LYygfwu9xeXIB/4DOp/Gv9Pz4u/Fr4c/Ab4Ya98Z/i7q9voPhjwxYzajqd/cttigt4FLOx7k4GFUAsxIABJAr/ABcP23P2gvif/wAFbf8Agpp4o+Lfg7TJ7nWviv4ng03w5pZ5lW3do7LTbY4yN6wrErkcF9zd6AP9RL/g248OXHhb/giR8BNMulKNLpeo3gB/u3mp3lwp/FZAa/cKvnn9kn4AaL+yn+y58O/2aPD8gntfAfh3TdCWcDHntYwJE8pHrIylz7tX0NQAUUUUAFFFFABRRRQB/iDf8FYv+Upv7S3/AGVXxl/6d7qv9vmv8Qb/AIKxf8pTf2lv+yq+Mv8A073Vf7fNAH5u/wDBYv8A5RP/ALSP/ZNvE3/pBNXyp/wbV/8AKEL4C/8AYP1X/wBO17X1X/wWL/5RP/tI/wDZNvE3/pBNXyp/wbV/8oQvgL/2D9V/9O17QB+5tee/Fb4WeBvjV8PdV+F/xIsItT0XWIGt7m3lUMrK3cZ6EHkHsa9CooA/gj/bU/Y1+IX/AAT2+LR8HeI1lv8A4f6xM3/CPayQWVAefs0zfwuvRc9RXw98U213SdOj8UeHZcG3/wBYnVWU98V/os/Hv4C/C/8AaW+F2qfCD4vaZFqujapHseORQWRx92RD1V1PIYc1/Dr+3R+w58ZP+Ce3jCXS/FCya/8ADfUZDHpetFS/kq3SG5OPlYdAx4NfSZNmihUjCr+PXyZ8HnnDnJW+vYSF1vKPfvb/AC+aPzd0b46PGFXV7bLAj5ozj9K9u0X4weCNXVFNz5EjcbZRjp79K+WNb+Heo+e95o+2WCQ7kAPIBrz6602/smKXULIR6ivv55bha6vB29DzpZNl2KV6UuV+T/Rn6TWet6PqEYlsbmKVWOAVYVm+L/Dlv4p0GfSJuC4yp9GHQ1+c1veXdo6yW8jIyHIwSMGvpXwf4yvNc01RNcP58Yw4LHJ964K2TyotVKc9vI8jG8P1MJatSqXSfbbseC6zpF7oeoy6bfoUkiYjnv71taLdvcqLU5Zx09TXpfjnQJNbgOox5e5jHc8la8c0nU73QNUi1KzO2aBsjI717lOp7Snf7X6n0tCv9aoXXxr8/wDJnenwTr/iFANNs5HY9G24HHvXd+GP2etbvglz4imFqmeY15fFfRvw98ZWHjLQY72Dak6jEsa/wt9K72vlsXneJjJ0lHla+bPkMVxBjKblRS5Wvmz86viP4Eu/A2uPZ/M9q/MUhHBHp9RXJademJhDJ90n8q/RXxp4SsvGWhy6RecFuUfHKsOlfAniLwVrXhnVn0rUU27T8r/wsPUV7OVZksTT5Zv31+Pme/k+bQxdH2dZ++vx8/8AMLq2hvIDDMMg1wMukS285Sfgdsd69BhjMUYjJyRUd1brcxFD17GvWjKx6tDEOk3FPQl8Ka8lgRp90T5Z+6T/AA16Ne2Nrqdq1tdqHjcdK8Lmglt22SCu18M+JRBtsNSb93/Cx7fWsa9H7cDnxuEb/fUt/wCtTzfxR4YudAudwBa3Y/K/9DXM+fOYvJ3ts/u5OPyr61ubWx1W08i5RZYpB0PQ14f4k+H1/ZXBm0dDNE5wqLywJ7VeHxal7s9GejlubwqJU8RpJde//BPNavWNjeX0nl2kZf6dK+q/hr+zgdQt01jxuWjRxlbYcN7Fj/Sug8WfCyfwkpudIQPZ5wAo+Zc+tYf2vhnVdGMrv8DHEcUYRVXQpO8u/T/g/wBanzdp/hlLVg998z/3ewrpwoUYXituaBZAVPX1rnr6ZbH5XOW9K6OZy3Ob6xKs/e3Oi8P+HtR8Tagunaam5j95uyj1NfWfgX4e6T4MgMsSK95KP3k2OT7D2r4l8PeM9c8M6l/aOlSlCfvJ/Cw9DX1r4N+M/h3xDGltqbC0uschvuk+xrw85p4pxtD4Ott/meHntDGcvuK9Prb9T2SSRIkMkhAVQSSewr4u+L3jseJ9T/sixwbS1fhh/E3rX0f4s1+KaBtMtCHWQfMw6EHtXzzqnw80+6cy2DGFj26jNcWUUqdOXtau/Q83JVRpVPa19+n+Z4ieleVfEya9ikgsZVKRMvmA/wB6vom78G3OlXMI1CZPLlfaMHk1L458C2Xi/SVthiOeEfun9Pb6V9RHEwTTWzPusDmlCjiKc5ax79vM8C+Evx0+IHwd1IXfhe7Y25+/ayEmJs9fl6A+9frn8Ev2vvh78VEt9H1SQaZrDrhoZOEZu+1ia/DrVtH1HQ7+TTtSjMckZxz0PuPas3zZLdhPCxR16MpwQa83N+HcHmEXKatPpJb/AD7nu53wngM2j7X4aj2lHr69/wA/M/qQVldQynIPIIoIB61+D3wh/bL+KXwzMWnanOdY01MDybgkuo/2W6iv0j+Fv7aPwl+IUQt9Vn/sa8AyY7k4U/Rq/MMy4Tx+EblGPPDvH9VufkWb8GZlgG5OHPBfajr963R9CeK/hp4L8ZxbNesY5WHR8YYfiK+bPEP7IOkTl5fDeoNATjako3AevPWvsDT9T07VrcXel3EdxE3Ro2DA/lV6vNwudY7Ce7SqNJdHqvuZ4WGx+Jw+lObXl/wGfmjffstfETTrsbFiuod5GY25Kjvg+tdPpPwk8dXusweGbHTJjLI4jUKpKjPfI7Cv0X0vS77Wb6PTdNjMs0pCqqjJJNfoN8JfhJp/gKwF/fKsupTL87nkIP7q/wBTXl8V+L08nw168Yzqte7FaXfd9kvx2R9Llk8dmdRRlblW7tt/mz4p+FPwph+F/hddHjjL3LfPcSlcEt3GfQV8vfH39qi20I3fgvwCfMvBmOS7B+WM9CF9/evfP29v2tH8LRt8H/hlcILydSNQuoj88Knjy1I6E9z2r8VXdnYySElmOSSe5ro8O+H8RnVJZ/nlK3tHzQi3e6/mkrKy/lj21eljeWT06dZ3nzpeVtTSivtWn1L7VBJJJdTPncCS7Mx/XNffvgz4V+NIvC0Ota+E+1uu7yR94Kemfeua/ZX+HHhK5gHjO9niu79SRHAcHycd8Hv7191kdAK+i4s4pdOv9Uw0bcm7a38l5ef3HjZtjFOfsoLbr/XQ+TtH8P6jrGqDS4UIcH593G0D1r6p0vQ9P0jTE0yFF8sD5sjOT3NXLbT7a3la5RFEj/eYDk/jXLXfjnwy2uTeEba+hfVIUEkluHHmIjdCRXwuYZnWzGSjTjaMdXb835Hkxi7NpbHLS+B/DGn64NW0+HZIuTj+EE9wK9V+HvgbVviJ4qtvDGkKS0zDzHAyI4+7H6VwF9fW2nWcuoXziOKFC7u3QKoyTX4v/E39uf4r23xii8afBXW7vRLbSsx23lNtEmeGLr0YN6HtXq4PIc0zmjVpYKolUjB2nO7inb3b213/AKfX3eGsjqZri1Fr93HWT8uyfdn9v3hHwrpXgvw/beHNHjWOG3UDgY3Hux9zX8wX/BVr/goT4yvvjhafDP4BeIrvS7Pwk7LeT2chjE16DyDtPzKmMeler/Cz/gp5+1b+0L8Bdd8K6L4dtU8QfZzbpre4xRHeMMQn/PTHTHANfgj4j+D3xZ0jxGukeJdKuxfXkxUPIrN5jscE7uc8nk18T4M+C9bLc9xWZcVuEqtO6hByjNSck+ao/Kzsk1e7baVkfu7zfAOX1KnOMeRaxbStbZW8l2P2q/Zf/wCCoH7Y/wAYbDUPhldRWV9ILTyzq8imOW2BUrv+X7zk818TfED9kL41wajd6/JImtSTymSSYP8AvZGflmbd71+gn7N/wS0/4H/DyDQwofUbkCa9l4JMpHKg/wB1egrs/iD4lFnbf2RZt+8lHzkdl9Pxr9IyutgMpzWv/q1g6dKFVrmtG3Ny9dNlvZKy62ufkObca4mpjZPCy/dLRJ638++v5Hxp8GvAL+AfCa2l6oW9uG8yfHY9h+Ar33wrdeHrfUvtWtXcUAh5VZGAyf8A61chf3sOn2r3dwcKgzXznqWoT6nePdznJY8ew9K+tnhp491JTla+7X5I+YaqYyrOtUerd2foTqHxH8FadZyXsmowuI1LbUYFjjsBX51+LvEd14s8Q3Ou3ZOZnJUHsvYfgKyryUHEYqtBC08ywoMljXZk2Q0cvcqkW3J9X0R34TBxo3lfU6fw2n2YtelcseFz+tdJJdzynliB6CqcUaxRiNOgFeieC/CMWvLJd32RChwMdz3/ACrpxVeEL1Z7GFaorucjg44ZZ5BHAhZm7Dkmuht/E138OJ5DJb77ueMbAx4Vc9xX0Hp2h6VpSBbKFVI/ixz+dfKnjGG98QeKrq8ziPfsUn0XiuLC4mGMnKnKPuJa36mVCpGtNxkvdOe1/wAW+IPE0xk1S4Zx2QHCj6CupvfihpXhLw9b6TpKiW7EeGH8KMfWqNpo9tZLv++4HU14rHot9qN3Jc3HyIWJLN6Zr2Y4ehUSi1aMemyPUpUKFXSekY9O5V1bW9a8TX5udQlaeRiSozwufQdq/QH9i39lL4qft4fE+2+GPw18yx0PTPLfxDrRB2W0X/PJG6GV8HA7Vh/sT/sF/F79ub4hf8Ih8MkOm+F7J0Os+IJAfLiQ9Y4jj5pCOw6d6/u1/Zl/Zj+Ef7JXwnsPhB8HNMjsNOs1BlkAHnXMx+9LK3VnY9z06V89nucwa+rYbpu1+SPuspyKNRwr14WjH4Y/q128jpvgZ8EPh3+zr8MNK+EnwusE0/SNKiEcaIAC7fxO57ux5JPJNeuUUV8efaBX8iH/AAbC/wDJz37fH/ZWpv8A0r1Ov676/kQ/4Nhf+Tnv2+P+ytTf+lep0Af130UUUAFFFFAH8iH/AAUM/wCVsD9jH/sTNT/9Fa1X9d9fyIf8FDP+VsD9jH/sTNT/APRWtV/XfQAV+R//AAVJ/wCCcVn+2L4Mh+IvwxMWmfEnw1Gz6dd42i7j6m3lI5Ktj5c9DX64UU02ndEVKcakHCauno0f53uk6rf3GoX/AIQ8YWEmk+INHla21HT7hdssMqHB4P8ACeoPcV8/+K/iH4s+HHieTTL5Rd2ch3xFuG2ntn2r+yX/AIKff8EtdL/ausv+F1fA9odB+JulRHZOo2RalGv/ACxuMD5jxhWPIr+O/wCJ2k+JNRvr34YfEjSn0LxdocpjuLW5XY6sOCRn7yN1BHFfVZHi6U6vs66TT0f+aPyzMeG1l+J9py82Hl98f67m94T/AGh/CRuMamktqGwDkbhk175pXxC8F61H5mn6jC/O3BYA5/GvzM1XwZ4i0ck3NuzKP4k5FcxmWJsjKEdO1fS4jhrCV3z0ptfic1ThzCVveoVLfcz9iUlik/1bBvoc18tfH7wDJOF8W6XHkqNsyqOSPWvlvwV8QNd8M6qsv2uUwyELINxPH4mvqwa/f6jZ7vtLyRSr0LZBBry6eU18uxEasJpr8+6PInl9fLsRGaldfn3R8iW8728wlQ9Ov0rurUm9jVoAW3enNZ3i3w5Jod6ZYgTbyHKn0J7V6H8FfiJb+EdZGlatFHJZ3bDLMozG3YgmvpcVWl7B1qMeZpbbXPfxUueh7eirvsc/bfCnxrrdyv8AZVhJsc4LMNoB9816t/wzHrNvoNxe3V2rXiJujjQZBI5xmvt2GSGaJZbchkYZBXoQamAzX59iOL8ZJpU0opfNnydTP8U7KNkkfj7NDPZ3DQTqY5Izgg8EEV1+nXwvI8N95etfUfx2+D8+rs3i7w3GDKo/fRKMFsdx718i6fpl5HN5j5i2noev5V9zgswo47DqrB2fVdmfTUMXSxVFVE7Pt2JNc0n7Sv2i3X5x1965/T1msLhblGKuvIx2r0Wuf1PTyT51uPqBXbRq6ckjoo13y+zlsey+HfEFtrdoNpxMg+dT1+tZHi7wjDrcJubUBbhRwR/F7GvHbG+udOuVurZirKfzr6B8NeIbHW4AQwWYD5kP9K4K9KWHl7SnseXiKE8NP2tLY+Xrg3umXfl/NDLGeoOCDVe91C/1GX7RqEzzv/ekYsfzNfT3ivwVp3iKJplUR3IHyuO/1rxXTPhp4v1fXk8P2NqzysQCwHyAHuTXdRx1GcXObSaWtz2cJmNCpDmk0mt7nADI5FdLpWiajqY3LGQg6uelfcOi/sm6Vp+h+bf3Hn6mBkf88s+mK8x1vw7qXhm8Om6jF5bL04+Uj2rz6PEOFxEnDDSu1/V13OKpntKo3Chq+7/Q8o03SLfTl+UbnPVq1q2LiyVvnj4rjr7VRCTDByw79hXRGTqO5zRcqrvuz2zwL8Kb7xpi51AeVYg4YsOWHtX2Poeh6X4d02PSdIiWGCIYCqMfjXxR8NvjpqXhcR6Rr6m5shgBh99B/WvsPQ/G3hnxHZG/0m6SRQMkZww+or4LiSnj3UtUX7vpbb5+fqfP5rTxMZWqL3eltv8Ahx/i7xPYeEtEm1e+I+RTtUnBY+lfm/4h1ufxFrM+s3KhWnYtgdh6V9X/ABA+zeOZfJuwRFFxHg8/WvB9R+GN/D82nyrIPRuDXs8OYejhablUdqkvwXY7MndCim5u0meVSmTYxhBZgCcDrxXyzqOt6j/bratFI8M8b5RlJDKV6YI6V9z6FoRs7+UXZUyRfLtHOM14B8WfhdNZTyeJNEXfC5JlQdVPqPavssLiaftHB9T7jIcxw8cTKlU+0rJ9PT5n1j+zz/wUO8T+EPs3hf4sq2p2CkKbvOZ0X1P97FfsT4A+KPgj4n6GviDwRfx31u3XafmU+hHUV/J+Qa63wd8UfHnww1aPV/A2pz2EqnJEbkI3sy9DXwfFPhXgMxcq+B/c1X2+B+q6eq+49DM+E6VdueFfLLt0f+R/WIx3H5qpXunWOoQG2voUmjPVXAYfrX5EfCD/AIKdQiCLSvjBprGXIU3dr0x6spP8q/TTwH8Zvhn8SrGO98H6vb3XmjPl7wJB9VPNfhGc8I5vlE74mi1FbSjrH71t87M/P8flGLwjtiKbS77r7zx7xz+yF8MPFbyXmlxtplzJk5hPy5P+zXzB4o/Ya8d6crzeGr6G+UDhXyjE/wAq/VVUA5PWn5A6115dx9nWDSjGtzRXSS5vx3/E5aeLqw0jL9T8bNK/Z1+JPhiWa81rSndoujJ84A9RX0X8Bv2fPEnxE8Qre6tbS22m2bq0rSIQHx/CMjFfq58KvhRrXxO1oW1uDHZRkGaYjgD0HvX6Svp3w++EHgOW5vlgs9N06IyyySAAHaOSSepNfOcZ+PuLw8HgMPRUsTPS8W/dv5a+8+i+Z93wzwZis5jLG4mfs6K+01vbtrsur/pfmf4i13wz8MPCj6rqxSysLKPAGNowo4AHrX43ftI/tTav8YbkaF4d8yx0WI/6snDSn1bHb0Fbn7aP7XHiD9pHxzLb6eBY+HbB2jtLWLhXAP33x1Jr478P6Uut6zbaSZktxPIqeY5wq571+n+Gnh1HLsPDOM6p/wC1Nc3K3zKnfX5z7vo9F3PFx7pQqyhRnzU1s7Wv52107Ho/wk0zxr4p8RRaD4bUzK339+SiL6k9q+mvFnw88R+DnH9pR74z/wAtE5Wvrf4R/DLw18NfDMdhoeyWSUBpbgYJkP19K7nW5LOe3ayuY1lWQYKsMiufNPECVXMGsNSvRWmukn5+XkvvPlsVyzfMtD47+F/gZ9Vu11vU4/8ARozlAf4mH9K9o8ceC/C3irSnh1+EFUGVkAw6/Q11hOm6Lp7SNstraBSxJ+VVUdT7CvINb8Z6d4nhSTw/cLcWjdJI23K/0INcH1zF5hjViKbcYx2a6L17s4G3Bcx5xoXhnSvDED2Wk7ijMTub7xr6z+Afw2Ot6iPFWrR/6NbH92GH339R9K/PL9oX416L8EfAc+vXz5vJ1aOzjAyWkxwSPQd6/Ov9nT/gqb+0Z8G9bNnq8w8SaPczl2srjlk3nkRMOR7Cvo864ZzvN8qrSyyS9o9PednJdeV7X6a2XmfXcK8KYvMlLH8t4RfX7T8umnU/qy+M3xX8L/BD4Z6t8TPF04gstLgaTJ/ifHyqPcniv5LtF/4K0ftV+Fvinqnjey1c6jpl7O7Jpt4N8EceTtCj+HA9K+m/+Cjvxn/aL/ak8EaHceGPDN3pPhRIxPNbK5eeWVuhkRf4R/CK/NH9ln9nLXfjH8UItL1i2kt9M01xLfM67SAp4TB/vEYrn8NPDfAZZlFfEZ9ShOrU+KL5ZKEVsuvvN6uz7LofqmSwyujl9fHYycZJXurptW6adW/0P1o+PHxV/ab/AOCgPwH0w6VYW/hrTW/ey2hlOb5h91unAz0Br8vrL9kf4t6F41tNJ8Z6W0FkJVMs6kNGVHJAPev6DdP0/TdA0uLT7GNLe1tkCoqgKqqtfLvj/wAVP4j1cpCT9mg+VB6+pr7LhPExwcZYLLsPGnh020lfS/m3q/X8kfnOA49zCDq0cPCMaTvbR3jfbW+rXnc85s7W30+0jsrZQkUShFA4AAr07w7Po+nWWZLmLzJOW+YflXiHijVPslt9lhPzydfpXl8kojUu5OBzX1ksC8RDWVkePHAPERvKVr/ifQ/xa8eWOmaA2l6ZOr3F18vynOE79K+Po45JpRGoyznA+pqa7uGuZjIenb6V1ng3S/tN2b+UfLF0/wB6vTwmFhg6LS1PewuFhgcO7avf5na6Vo62VokLdQMnHrVm8jhRRGAPXmtdEeRxHGMsxwB7mvozwz8HdHjjh1HXN00xAYxn7o9q8rGZhTw/v1Xqzwq+NVN89R7nzLpeh6prLlNOhaQKMkgcAD3rtm+JV5peiRaDoSeT5S7Wlbk574r6N8cRW3h3wZdW+hwpC0q+WiouMlvpXyzpXga9uj5uonyl9P4q5MNi6WLg6laNop6IwpYmniE51lonoiDwtqK3PimHVPEE5ZYsu0jnpjp+tbPjX4xXF5v07wzmKM5Bm6Mfp6VB420mPTfD0djpUfMsoDYGWPFcJa+FobC1OpeIn8tF+7GPvOewHuegFdqhhZf7TW2WiXTTrY66VKhVkqsld7KP/AF8Ga2NI1aTXNXlZbYIxlkbkZ/qc1/SR/wSM/4Jt6z8VNd0/wDa8/aN04waHayrceGdFukwZWXlbqZSPXlAfrXE/wDBLL/gkZrHxb1TS/2lP2q9KNh4ZtHS50Xw3MuGuWXBSa6Uj7ueQh696/rbtLS1sLWOysY1hhhUIkaAKqqOAABwAPSvjc8zZYqralpH8z9CyXIlSmsZXj+8tov5V/n+ROAANoGAKWiivAPqD+RD/g6F/wCThP2Ef+ytQf8ApTp1f131/Ih/wdC/8nCfsI/9lag/9KdOr+u+gAooooAK/Mz/AILP/wDKJb9o/wD7J34g/wDSOSv0zr8zP+Cz/wDyiW/aP/7J34g/9I5KAPnb/g2//wCUJnwD/wCwTf8A/pyu6/byvxD/AODb/wD5QmfAP/sE3/8A6cruv28oATGa/lx/4LYf8Em77xrJdftffsz6aG1mBGk17SrdcG7jXnzYwP8AloOcjvX9R9NdElQxyAMrDBB5BBrbD4ipQqKrSdpIipTjOLjJaM/ylY5oLxGjlQqykq8bjDKw6gg9CKij8JwSWzy6cAjZ5Wv6w/8Agrz/AMEXJtem1H9qD9kPTwupHfcavoUIws46mSEDo3Ule9fym6Xqs2nXU1jqUL288TmOaKVSkkbrwVZTyCDX6pk+eQxtO0dKi3X6ryPmMbha2Gu6T0OJntrmylMcwKsOa7CHQp7zTItQgO5nGSK7GSHTdXhw4V8/mKs6bbDTrZbQHcqk4J7CvYnXbXmeXXzCTgrK0kzySexV2+z3SdwOeK9X1HwJfWVnHc6f+9iKBsdxkVNeaZaX65kHPUEV6tousW09slrKdrooXnoccVzYjEzSTh8zzsbmdTlhKmtr3R86WumR6hfR6fdAqJGCnsRmsjxh8OtV8MTvNEpntc/K46ge9fUF94V029votRQeXJGwYlehxXRzRR3CNFMoZW4IPSsv7SaknHbqjKPEE6c4yprTqj4T8PRrPqaKewJr0FkK8GvRvFPgbStId9c00eWXOGTtz6VwxAIwa74V41FzRPWlj4Ym1SGxqeGvh1b+KI7rUIv3U0SgI3Yk9jXF6xoOp6Fcm21GIoRxu7H6V9IfCxQmlXAH/PQfyruda0HTNftTaalGHXse4NefLMJU60oy1iePLO6lHEyhU1h+K0Pjmx0H7RYG6gGHJ6eorKeKSKQo4wRXveo+DLrw7DtgzLApOGHauOvdMtr3DSDDDnIrshiVJ3Tuj1KOZxm3K94ho0X2eyTcOW5NazafFqxWxlUOJCBg89ahUBVCjoK19EvotN1OK8nUsqHJArCcnrJbnBVlLWcdzc1PwJL4ftF/s8boEAzjqD3rAsNDj8QXsemyj5XPJ9AK+ira7s9TthNARJG45H1rK0/w5YabqD6hbAguMY7DNeVDHyUWp/EeLDMZpSU/i6PzPB/EHhO88PyFQu6AcKw6YqXwj4WPiW+ZXO2OJck+/avou7tIL23a2uFDIwwQapeG/Dtp4egljtST5rbiT/Kh5lL2TX2inm0vYtP4+54PqmkXujzm3u1OAcBscGu58HfDy78UaRdamreWU4iz0YjrXqmoaNa63D9huVzuOAe4Nep6JpFtoWlw6XafciXH1PeuPF5tKNJKOk/0OLEZvL2SUdJHw/fWF1pt29leIUkQ4INdbovhPbaf2ww/euOAR/DXv3j/AMLaPqkMd/cjZOrDBH8Q9DXLqqooRRgDitoZj7WknHR9TX+0XVprl0fU8+tNPur+8j061jLzTOERR1LHgCvtPX/2Ur/4e+A7PxNpcRlvJUD3yAcqT6ew71xHwDHg/Tvivp2peKkzHvxGxOFSQ/dJr9kGS3u4NrASRuPqCDX5N4g8b43KsbhqOHh+7tzSvtPpy38t/WxN/aRcU7H4YWmnyahcrZKuSxwQRXtmg+HrDw3p4sNPXauSxPqTXvPxQ+DEPg7XLjxboyZtLpslQOIif6V5Rwa9nD55RzPDQrYaXuPddn2fmjwsXKal7NlG4tIr2BracbkYYNfAfxT8Jal4X8Ry/aCzwTndHIe49Pwr9CQAOleR/GODQp/C0kergNKf9R67q9rJMZKhXUUrqWj/AMzoynFujXWl09D4l8PJJDfx3mMohyQeh9q+2dCv7TVNMhubHARgBgdj6V8jwQpBEI06Cv0H/Yr+Cmu+MtUPivW49ugwNkB/+Wrr2Ht616fGGY4XAYCePxUrRh/5M+kV5voe3mNB4lrk3O20D9lW8+KHgq817V4vJnjj32AYYLOOefY18Lajpl7o+ozaRfxmK4t3aJ0I5DKcEV/R7HFBaQLFCBHHGMADgACvyD/aKt/BepfFq91Tw3HznE7A5R5R1Ir8g8OfEDHZpmGJw+Jhem1zRttC2lm/P8ycTh44WlFJ3Pkt/CJa2/taRf3qDge1UbDT7vVLxLGxjMkshwFAr2IqCMGvavg34V8P2dpNrEI8y7LkEn+AdgK/VcZnTw1CVWau+n/B8jyZYtxi3L5Hzz4/+EN54P8ADtt4gdvMlc4uABwmeleceGvCms+K79LDSoi244Z8fKv1NfpV4h0Oz8R6PPot8MxzrtJ9PesLwp4R0rwfpaaXpiY2/eY/eY+pr52hxdUjhZKor1b6drP/AC7GUMxkqdnrI+EPib8MD8O7yAwkyRXKAl8fxjqKwfCngjUvFVwqouy2z88h6Y9q+8fiT4MsvGehi0uyQYHEikdeOo/GuN07T7TS7RLKyQJGgwAK9LBcSzqYNJ61dm/yZf8AaUlSS+13PmnUPDUHhW8bSbVcInKnuQa3tM8AyeJ7GRNSXbbSqRg9TXseqeGtP1a/jvroEmMYx2P1rUu7yy0u1M1wwjjQfoPStJ5tUlCKp/H1fn5GDxk2ly/F3PjZ9Hh0GZ9LhjEYiYrgDHSsrW7YXWmyJjJUbh9RXZ+J9St9X1qbULZSque/tWDs3jaehr6qjOTjGc9+p7FOb0nLc8ZjiklcJGCxPQCtnUfDTW2mfbbnmRWHHoK7/T9HtNPJaIZZj1NdnY+CrvxPbNFKTFA/V/XHpXVWx0YWk3ZHZVzJKSa0ieA6LoGq+ILtbPS4jIxOCew+prqvHHwvt/CVtYarP+9uJQySE/dB6jFfXGgeG9J8NWf2PS4wg/iPcmvN/jZEJdAtQe02f0rzKecTrYqEIaQ/M5aebzqYmMYaR/M+WEjZzgCvL/F9ssGrlU/iUE/WvZAAowvFd94Q+HOi+IpI/EerDzDCxVY/4Tj1r3pYuGHTqT2Pdo5hDCydWpseD+BPhZrni64SaZDb2YYF5GGCR7etS6zolvouu3OkWCllhkKL3JAr7whghtolgt1CKowABwBXG2HgTRbLWbjXJx5s80hcFui59K8yGfNzlKotLaJHB/rDOdSU6nw20S/U8C8O/CnVNVt2vNXH2eAIWA/iPFeY22nxW7G3s07496+0/EHiSy0+1e2hIkldSoA6DNeDWWl2tgCwHzdSxrowmOq1FKVRaO1kXhMzqzU5VNnayPO9T0GeDQri+uTtKLkL+NeW2tpc3sohtkLMa+h9ciTVLFrAMQrYyR6elYscWl6JDkBYgO5616NHEtRd1qerhcfKNN3V5N6Hml94Pit7BJ9SIZy3CdqoyTW9jFgDGOAqjk+wrf17WTrN1FZaahdidqAcs7HoAOpJ7V/Sn/wSG/4Iw6p4mvNM/ai/a408wWiEXGkaBOvL4+7LOD+YWuHNM6hgqPv61Hsv8+yPfy/CV8RFOq7I6D/gif8A8EpdX1S7sf2vP2ldOMNsjCfQNHuU5yPu3Eqn81B+tf1sKoUBVGAOABUNrbW1lbJaWcaxRRKFRFGFVR0AFT1+V4nE1K9SVWq7yZ9ZTpxpxUIrRBRRRWBZ/Ih/wa5/8ly/bn/7K1cf+lF/X9d9fyIf8Guf/Jcv25/+ytXH/pRf1/XfQB/mCf8AB6t/ylN8A/8AZKtK/wDTvrFf1+/8GuP/ACgo+Bn/AHM3/qQanX8gX/B6t/ylN8A/9kq0r/076xX9fv8Awa4/8oKPgZ/3M3/qQanQB+/1FFFABRRRQAUUUUAFFFeTfHr4jTfB/wCB/jH4r2sccs3hrRb/AFOKOXPlvJawvIitgg4ZlAOCDz1qKk1CLnLZam2HoTr1YUaavKTSXq3ZH5teNf8AgiH+xP4z1K61cf8ACQaZcXkrzSNaagG+eQlmP7+KXua/TH4MfCnw78DfhToHwg8JSzz6b4dsorG3kuSrTOkQwGcoqKWPUkKBntX823hb/g4P+KcUkcXiz4a6XqDMQMWV9Nakk+m9J/61/UhbvNJbo9wgjkZQWUHcFYjkZ4zj1xXgZHXyqvKdTLopSVua0Wt9vLp0P0fj7A8X5fSw+F4lqylTbbp3nGavFJNqzbVlJb230JqKKK+iPzIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9H+/iiiigAooooAKKKKACiiigAooooA/hW/4OkP+CBvjX4365f/APBSn9i3RJNV8RLbL/wnHhyxjL3F7HbIFTUrWNeZJkjUJcRICzqqyKCwk3fzMf8ABIX/AIOA/wBrv/gktcN8OtJgj8e/C26uGnuvCWqTND9mlc5kksLgB2tZHPLqUkiYkkx7zvH+whX8/X/BR7/g2x/4Jwf8FEtb1D4m3mj3Hw2+IGoFpZ/EHhby4BdztyXvLR1a3nYkkvIqxzOfvSGgD5c+C/8AweE/8Ek/iJoVvd/E1/Ffw/1FlHn22o6S17Gj99kti9wXXPRmRCR1UV9N2n/B0z/wQwuEDTfGmWAntJ4a10n/AMd09hX8zHxL/wCDIb9p3TdSlT4O/HDwvrVnk+W2s6dd6ZLjtuWA3oz9GrwW6/4Mpf8Agp4jkWXxD+F0i9i+o6sh/IaS386AP68P+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/r9/4ijf+CFH/AEXP/wAtnxD/APKyj/iKN/4IUf8ARc//AC2fEP8A8rK/kC/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKagD+v3/AIijf+CFH/Rc/wDy2fEP/wArKP8AiKN/4IUf9Fz/APLZ8Q//ACsr+QL/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKagD+v3/iKN/4IUf8ARc//AC2fEP8A8rKP+Io3/ghR/wBFz/8ALZ8Q/wDysr+QL/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApqAP6/f8AiKN/4IUf9Fz/APLZ8Q//ACso/wCIo3/ghR/0XP8A8tnxD/8AKyv5Av8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pqAP6/f+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/r9/4ijf+CFH/AEXP/wAtnxD/APKyj/iKN/4IUf8ARc//AC2fEP8A8rK/kC/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKagD+v3/AIijf+CFH/Rc/wDy2fEP/wArK/KD/gqX/wAFbP8Aglf/AMFT/FX7Jv7Lf7OfjW0+JV3N+0V4EvNa0K/0HUYLW40ZnubS5Ew1Kyht5onNykbxEsXVzlSobH4w/wDEFT/wVN/6H74Vf+DXV/8A5TVz/h7/AIN6f20P+CTX7aH7KX7Rf7RfifwVrWia18dfAvhuCDw3e31zdLdXN8LpXdbrT7VBEEtXBIkLbioCkEkAH9vv7bv7BH/BNz9mv9i/4vftF+Bf2Yfg/d634A8Fa/4k0+C/8FaXJay3WlWM11EkyxwRu0TPGA4SRGK5AZTzR+xF+wR/wTc/aU/Yv+EP7Rfjr9mH4P2mt+P/AAVoHiTUILDwVpcdrFdarYw3UqQrJBI6xK8hCB5HYLgFmPNfEH/BWL/gkR/xix+0t+1H/wANP/H/AP5FXxl4q/4RH/hNf+KV/wCPS6u/7N+wfZP+Qb/yw+zeZ/x7/Ju70f8ABJ3/AIJEf8Ysfs0/tR/8NP8Ax/8A+RV8G+Kv+ER/4TX/AIpX/j0tbv8As37B9k/5Bv8Ayw+zeZ/x7/Ju70AfD/8AwS0/4K2f8Er/APglh4q/ay/Zb/aM8a2nw1u4f2ivHd5ouhWGg6jPa2+jK9taWwhGm2U1vDEhtnjSIFSioMKFK5/V/wD4ijf+CFH/AEXP/wAtnxD/APKyv44vEP8Awb0/tof8FZf20P2rf2i/2dPE/grRdE0X46+OvDc8HiS9vra6a6tr43TOi2un3SGIpdIATIG3BgVAAJ6D/iCp/wCCpv8A0P3wq/8ABrq//wApqAP6/f8AiKN/4IUf9Fz/APLZ8Q//ACso/wCIo3/ghR/0XP8A8tnxD/8AKyv5Av8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pqAP6/f+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/r9/4ijf+CFH/AEXP/wAtnxD/APKyj/iKN/4IUf8ARc//AC2fEP8A8rK/kC/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKagD+v3/AIijf+CFH/Rc/wDy2fEP/wArKP8AiKN/4IUf9Fz/APLZ8Q//ACsr+QL/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKagD+v3/iKN/4IUf8ARc//AC2fEP8A8rKP+Io3/ghR/wBFz/8ALZ8Q/wDysr+QL/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApqAP6/f8AiKN/4IUf9Fz/APLZ8Q//ACso/wCIo3/ghR/0XP8A8tnxD/8AKyv5Av8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pqAP6/f+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/ruu/+Dpn/ghhboWh+NMs5HaPw1roP/j2nqK+ZPjR/wAHhP8AwST+HehXF38Mn8V/EDUVU+RbadpLWUbv23y3z25Rc9WVHIHRTX83Nr/wZS/8FPHcC9+InwujXuU1HVnP5HSV/nXvXw0/4Mhv2ndS1KJPjF8cPC+i2eR5jaNp13qcuO+1ZzZDP1agD8Y/+CvX/BwH+13/AMFabhfh1q0EfgL4W2tws9r4S0uZpvtMqHMcl/cEI11Ih5RQkcSkAiPeN5/pn/4Nb/8Aggb41+CGuWH/AAUp/bS0STSvETWzf8IP4cvoylxZR3KFX1K6jbmOZ42KW8Tjcis0jAMY9v7Sf8E4f+DbH/gnB/wTt1vT/ibZ6PcfEn4gaeVlg8QeKfLnFpOvIeztEVbeBgQCkjLJMh+7IK/oFoAKKKKACiiigAooooAKKKKAP8Qb/grF/wApTf2lv+yq+Mv/AE73Vf7fNf4g3/BWL/lKb+0t/wBlV8Zf+ne6r/b5oA/N3/gsX/yif/aR/wCybeJv/SCavlT/AINq/wDlCF8Bf+wfqv8A6dr2vqv/AILF/wDKJ/8AaR/7Jt4m/wDSCavlT/g2r/5QhfAX/sH6r/6dr2gD9zaKKKACuG+JHw08B/F7wXf/AA8+JelW+taLqUZiuLS6QSRup9j0I7Ecg9K7migD+J3/AIKGf8Egfil+yDf6h8XP2eYbjxT8Nyxlm09cyX+lqeuBj95EPzAr8f7C/wBF8Q2nn2pSZDwQw5BHYg8giv8ATdngguoWt7lFkjcFWVhlSD1BB6iv58/+Chv/AAQ18CfHG5vvjH+ydLB4O8avmWawxs02/fvuVR+7c/3gMZr3stzqVG1OtrHv1R8xm3DlPEN1aHuz/B/5M/j68SeC9KdjdRxBVY87eMGuY0vw+2jXqX1jMwKnkHoR6Gvbfib4H+LfwC8bT/C749aFceHdct2K+VdL+6mH96KT7rqeoINecSqyNu/hPSv0LB4xVqd4S5kfLP61QvQr3+Z21rdR3cQkTr3HpXMD4UN4x8RxWWl3UNk9ycbpyQm76jPWq9pcvaTCVeR3Fd5ZJPeRC6s0ZgO6joaipz003Tla/U85zqYaTlTla56x4O/Y3+NfhLV4tV07UrELkb1DsVZfyr5l/ad/ae+I37PvjK58B3fhxFnhZTHduzNBNGwyCuMc+2eK/Rf4DfHZlaHwZ4zc/wBy3uH/APQWP8jXs3x7+AHw/wD2h/Atx4P8Y26kyLm3uVUebDJ2ZT/MdxX5jiOJ8ZgszVPO6cZU9lKKtpf4vO3VHPg8yoLHwq5vRVSGzto7d9LXt2Z+Ln7Nf7Zq+PtWbwj8TDHbX08hNtMvyxsD0Q+hHY96+3/F3hHTPF+lm0ulAcDMcg6qa/Cv45/s0/FL9n/4lt4I1W0luHZ91jc2yMwnTsVwPvDuOxr9Hf2U/iB+0HqujjR/iD4W1KfTrNTGmoCEhwV5w4bBPHcCvt8ZRo8scbg6iSeq1ST81/kfWcXcMYSnCOcZLViqbSfLzJfOKf4x3T+4w/EfhvUfDGpPpuorgr91uzD1FYMQSS4S2ZwjOcDdxXqfxW+K2n6+suhW2nMkkLYEsw2upHX5ev5186tI7tvYkn1r6fBurUpKVWPLL+tTmwFOtVoqVaPLL+tT6CTwPps+mmC6G6Vh98dj7V41r/hrUPD8+y5G5G+646Gup8K+O5tNIs9WJkhPAbqV/wDrV7FjS9fssjbPC44PWsPa1aE37TWLOP2+JwVR+11i/wCtOx8/+H/El3psi2smZIc/d7j6V9pfDjQ9Eks01uOVLmVxkD+57Y9a+ZNQ8C/2UzXenZkTrg9RVfRfEGseHbn7RpUzRN3A6H6is8dh1iqb9hKz/P1M8xowxsL4eVn18/U+/qx9c1rRtCsTe65MsMGcZfoT6V5H4b+N2g3CJa+JT9klOBv6oT/SvW7i30TxRphhmWO8tpR7MOa+NqYSpQqJV4tLy/RnxlTCVKE0q8Wl/Wz2Phr4kePfCF/qJPg6B05+Z+it7gV5Kbk3TeazbifXrX0t8QP2cpIy2oeB2yvJaCQ/+gmvmDUdF1nRbw2Wo28kMwONrAj8q+9y+thqlJKhK9u+/wAz9MyipgqlFRw09V3+L5lmu98F+FpdYvFvLtCLaPnJ43EVseCPhzqF8yahr6+XCDkRn7zfX2r6Egtre2iEFugRF6ADArHF41QvCnqzgzPN4wvRou779jERVjQRoMKowBRJIkSGSQ7VXkk1tPbQt2x9K8j+LbalY+HlFjnypH2ykdQO1eZRh7Sahfc+ewtL29aNK9rs8T8b+KLjXNcaWFiIYGKxY46d69L8KeIk1qxCzcTRgBh6+9fPlXtP1C60y6W7tG2sp/A+xr6GeHi4KC6H6BiMrhKhGlDRx2/rzPorXvA2heLtOMGrwjeeVkHDL6c18j+NfhH4k8Ls8tshu7UdHQcge4r688L+NNO8QRCA/uZ1AyhPX6V2rKhBVwCD2I4rhhXqUW4vbseJgc5xmW1HB6x6xe3y7H5XsrIxVhgjqDTHDFSF644r7y8e/CzwjrVlNqJiFrcKCQ8fAJ9xXyhq/wAOtasGL2eLiPtt+9+VehSrKoro/Qss4iwuLjf4Zdn/AJnAeDvjJ8Uvhzd+b4R1y7tNhI2LISnXJ+U8c19h+E/+Ck3xm0ePyPEVrZ6oC4JdlKMF7gbTivgLVtJ1PTrySO9geNtx6isc8cVxYvK8JiP49KMvNrX79z3MZw9lWPXPXoRk+9tfvVn+J/RX+z7/AMFf/gX4Nhurvx94Tv479iBFNbMkvy9x823b/Wuv+Nv/AAXE+GGr+GpvDnwy0+/0m6u4ypvbtVzGDwdgUnnHc9K/mpjPUVgeKLT7TphdfvRnI+lfnuK8H+GK+Yf2pWw7nUTTtKcnHTb3W7W8tvI5cPwfl9OCw9LmjDya/Npv8T9Grf8AaQ+HPivXNk2qPLd3khJknB+Z25JLH1r12OWKaMSxMHRhkEcgivw1DYII4I7ivpX4Z/tG+I/BukHw7qC/aoeBDI5yYv8AEV+hRjGyjHQ83OPD7kgp5dJt9VK33p6fcfphJ8Urn4Vn/hIdNvHtrhPuqjYZ89sehr79/Zi/ba8HfGaQ+GPE6LpGsxICvmOPLnxwSp7HPavwAvddvvEk39pXczXBk5Bznr6V9SfA39nPXfFd5H4k8Uedp1hHtki2nbLIeoI9BXi8RcO4DHYZvE+7NbSW6/zXl+R8tnPC2W4bASqY6py1ekl37Jdf62P2H/ac/a+8EfAOwfRIz/aGvXMTGG3jIxGSOGkPYfrX8/P/AAsnx7d+OZfHNpqFyNXupjL5qOd5YnIX3HbFfbfx9/Zqv/FN3L4z8ITvPelczxTuWaTA42k9/bpWP8DPgKvhlV8UeMoQb9uYoGGREPU/7X8q5eG8qy/K8G3TfNOXxN7t9rdEc3D+MyXLMsliIvnqyVpRe7fa3SPn19dD1L4heOP2i/if8GrDQtRliguGDNerFmOSdONgOOnfI718hfBz4HeKvi18Q4PAttE9qAd1zMynEMY6k+56D3r9F+O3Fauga1f+F759R0JhbyyY3soALhegPrXTSxMsNhqlHBU4xk7tdEm+r726fdseDgeJ62Dw9WjhqUYuV2mlazf526f5H3J8Nvh54b+FnhC28G+FofKtbYdT95mPVifUmu3ltraZg00asy9CwBI+lfGdj+1bHpt2LPXrP7QqghpIDgg/Q8HnrXo9v+058M7ixNy0sscojL+Uyc5H8OemTX5Ti8gzVVHUqUpSctbrW9z4ithMVKTqTi23rfe53fxV+JGm/DnwzJqMrq124It4ieWb/AV+fT/GzxXcO014kUsrEksQec1zfxH+IGq/EfxHJrmo/IgGyGIdEQdPx9TWbofhq/vAt88RMf8AD71+hZJw9QwOGviUnUlv5eS/rVnu4bLqNGjeuryf9WO8vPFus+IrNBfhYl67Ezz9a565nEEeccnpWtJp13DG0sybFUZJPSuPmmadyzfhXsUKcNoKyHShF/CtBhdick11ug2ZjQ3Ug5b7v0rlYY/MkHoOTW493cOoTdhR2HArWu7rlRpWTa5UdlbqLm6js4iC8jBQB3NfVOjabFpGmxafEOEXk+p718qeCta8LeGLiTxJ4nuFjWH5Yk6uzHqce1Hij9qCAI9v4Vs2LYIEkxwM+uB7V8/j8BicVUVKhBuK3eyv/wAA82rgMRXmoUYNpdeh9T69fDT9InudwDBDtz3Jr5oJLHc3U1454b8e+IfF3iRrvxNeM8cMRZVzhAenTpXpvhNPGvxX8Y2/w2+Ceh3fifxBdMFS1tELbcnG526Ko7liK1p4D+z4P20l5vp6eZ1UMlxEavsILmk+3+ZPqOo2Wk2cl9qMgiijGWY+lfop+wL/AMEn/i5+21qEPjv4nxXHhH4aJKriVwY77U0BzthUj5I27ue3Sv1X/YE/4IdaP4Gu7P4xftqTQeJfESbZbbQostp1meo8wH/WuPptz61/RVZWVnp1pHYafEkEEKhEjjUKiqOgAHAA9q+ex+czqXp0dI/i/wDI/Rsk4YhhrVsT70+3Rf5s87+EPwb+GXwF8B2Pw0+EmjW2h6Lp8Yjit7ZAo4/iY9WY9SxySa9Noorwz60KKKKACv5EP+DYX/k579vj/srU3/pXqdf131/Ih/wbC/8AJz37fH/ZWpv/AEr1OgD+u+iiigAooooA/kQ/4KGf8rYH7GP/AGJmp/8AorWq/rvr+RD/AIKGf8rYH7GP/Yman/6K1qv676ACiiigAr8x/wDgoV/wTH+EH7c3hj+1wF8PeO9OQ/2drtsgWTPaObA/eRk9jyO1fpxRTTad0TKMZJxkrpn+dF8bPg78ZP2VPiA/wk/aQ0k6XqGSLS+QE2V8gOA0UhGMnup5FeYaj4c0XVYmW4t423DAYKM/hX+hj+0P+zL8Ff2p/ANx8OfjZodvrFhMpCNIo82Fj0eJ/vIw9Qa/j1/bg/4JJftIfsZXNz44+Ei3Hj74fAs58lS+pWCDtIg/1iAfxLz7V9Nl2dWahWdn3/zPgs24UnCTr4B2/u/5f5H46at8P7GGYxxs0R/MV2XgwzaEh066mMsJ5Qnqp/wqaHxFY+JbQyW7B2Q4PZ1PcMDyD7GqJDIeeDX2ftXWp2k7o+Zq1a04OjW6dz0jVdNttWsXs7jlHHB9DUnw6/ZE+J/xUgmufBc1lMIGwySS7JAOxxiuf0PVRgWdwef4Sf5V7T4D8ceKfhnr8PiLQZHhdCNw5CuvoR3rws0q5jRw1SGWziqu8edXi32eqevfoclDFVMNLlv7v9bHsmj/AAL/AGjvgl8PdU1rxVYRavaaZAZ44IJszEL94LkelflP4z/4Kb+IxqTWXhbw6lnFHIu43TEy4B+YEdAa/qW+Dvxg8MfGfwz9qs9q3SKFurZ8ZBPXjuDX5Ef8FLv+CZNp8Q7K5+N3wDso7fWbdTJfafEu1blRyWQAY3j9a/GeEfEOlUzmplvFmGjTrSlZSs4xT7SV2td1LbX5n12RZbks8R7XHU+eM+t2lF+aVlbv2LPwT+N3g/45eEo/EfhqQCQAC4t2PzxP3BHp6GuN+LHwmFx5niTw1Hhx80sS9/cV+EnwT8dfF74O+Nv7V8EWd3JPBJ5VzaCJ2ViDgo4A4Nfvl4e+Nt6fh7B4t+Inh3UdBunXD289uygt/sseCD71+qY3LK+WYuNTBPmjJ2Ub6+luq8+h4nE/CtbJcWquCkp0pPTVNrya39GfH7BkJR+CK3fDuinX7hkikUJGfn55rmviD43sPFWtPqOhWn2CKT7y5ySfXjpXFaXrGoaPdC8sJSj9/f619rDD1Z0uZ+7JrZ9Clhas6V/hl2Pc/FPw0ilgFzoQw6D5lJ+9/wDXrxVJLzSrvcuYpYz9CDX0T4T+IOma9GtrdN5NyAAQ3Rj7Vf8AE3gnS/ES+bjyZh/Go6/WuKjjJ0ZeyxK0/r7zzqGNqUH7HErT+vvRlfDjXV8XX0ej6jItvKxx5jcKf/r197eG/Dem+HrFYLJVLEfNJ3Y/WvzWm0K68PsICpXHRh3/ABr17wL8aNf8MOlnqZa7s142k/Mo9jXgcQZTWxUebCS93+Xv8/0PPx+E9q+eg9Ox93V438UfFnww0uwktfGM0bSqOI15lz2xXTeFfib4O8X4i0q7UT94XOHH4Vg/Ef4M+E/iPD5t+nkXaj5Z4+G/H1FfEYKlDD4qKxvNBLto/wDhvQ8mhCEKqWIul5bn5x674wtb69kh0jzIrYnC7/vEe+K54HPIrvfH3wO8beBZ3lktzdWgJ2zRDdx7jtXmWk2eq392tlp0bSuTjaB0+vpX7NhqmHqUVUw80497/mff0FQdLnoSXL/W5pAFmCKMk9MV9BfD3wtJpNt/aV7lZpei56CtXwN8O4NGi+260iy3J6DqF+lepPBE45GK8TH5lGV6VPbqz57MMyU70qe3V9zFrkfGniOHw3okl2SPMIwgPc13j2J5MbV8a/FS/wBVuPE8lpqA2pDxGvbHrWWXUY16tnstTDK8KsRXUW9FqzD0LxTdafrDX1yxdZmzIM+v+FfQMDwahArJh45B9QQa+Tz1r0Hwd40fQZRbX+Xt2/Na+ixeF5lzQWqPp8xwHOvaUl7y6dyf4gfAyw1dW1PwwFtrjqY+iN9PQ18deJtB1jw/e/ZNXt3hcf3hwfxr9QrO/tdRgW6s5A6sM5FZ+teHtG8RWxtNZt0nQjHzDJH41zYXNalL3KquvxHlPFWIwjVPELnivvX9eZ+VNUbzWtd0Ex6hoV5NZyxsCHhcocjp0r6t+InwN0/S7kS+Gp9nmAnyn6D6Gvmfxd4R8R6fZsLi1cheSVG4Yr34V6dandbPufpmWZvg8ZyuElZ9H/kz6A+Gn/BQn9pP4cQrZ/2uNXtlAAS+XzSB3w3WvuDwL/wV7tRdAfETwmzQDbzYzYY46/f4FfiEyOjFXBBHY02vlsy4IyTHXdfCxu+sbxf3xsdeL4SyrEvnlRSfdaflp+B/aL4B/wCC7H7A/hPwpa6bZ2Gt2TrGDJELZG+fHOW3DPPevzK/bQ/4LFeC/wBp+dfDnhfUJdC8NQ5zayEiWZh3kxx+Ffz314n4wsfsmqs6DCyfN+NfAZD4FcKZJmCzbDUpzrJ3TqTc1Fvqk1v2bu101PcrZX9fw6wE60oU10ioq6XR6bH7Q+E/iF4P8cRPJ4YvUuRGcMAcEfga7Tdt+YHGO9fhH4V8Wa74O1eLWdBnaGWJg3B4PsR3zX2jP+1HqvjXS00iwT7BPsAlYHlj32+1fqSw/M7RZ8Bm/h3iaNaP1OXNSe7e8fXv8kfp94S/bul+BOqxeHtWaXWLBuJIlYExZ7gn+VfqZ4D+Lfgj4l+EI/HXh2/jks3j8yQswBiAHIcdsV/J/pmla14m1NLDTIZLu5mOAqgsxJr9N/g9+zdqnh7wVfaf4i1a7tpNZg8ua3tpCiop559T618TxXwVlle2IhL2dVvVpX5l1uu/n99z5vinhvK8Bh6blWcat9evN3fL0t+Iz9u79ubSPGulyfCf4Q3UwgDst9dodqyAcbFxyVPrXyP+yt8bfjH4T8UQeHfCztqGmyMPOt5yWjjTuQf4TWB41/ZK+JHhvxfFotlGLqyunPl3S8qqZ/j9DX298MfhhoXw00NNO05Q9wwBmmI+Z2/wr6HB5dl2CwCwmHipQffW77s9nG4vIsBkyweEUa3tFfXXX+aXVNdFufG/7Wk3xk8WeLZfEnjRC+mqStqsBJiiTtx2Pqa9f/Yi/ZWHjW7h+LPjZSun2kubW3IIMrrzuOf4Qfzr6tu7O0v4Gtb2JZY3GCrjIP513Xh74kXfgbTFtEWMWMC4SLG0KB2GKzx1eu8H9XwUVGW3bTy8z53EcX4r+yVluEpqD2vHT3eyXd9WfXoRFUIANo4xjiqlrpum2LvLZW8ULScu0aBS31x1r5/0T9pjwNqDLDqkc1mxJG4gMoHrxzVb4iftAeGrPw80XhGb7VdXKsqkDAjHQk+/pXwEMjx/tVRdJq/3ffsfnkcsxfOqbg039xifHP4wnSrkeFNAKyHrcOD0/wBnj9a+bB8QLyRti265Pua4PN3qN2cbpppTn1JJrpbbwzrcS5a1kz/u1+l4PLMNg6Kpder7vufY0svw2GpKErN/mQ3V3Pe3BnuDlj+gqpLapdR7JMge1al3pN9Yqj3kfl7+gPX8qr4ruUlb3TZTSS5ClbaPab1jRNzE45r0S0tYrOBYIVAAHb1qjo9htT7TL949PpXQLGCwRRyfWuerUb0uceIrSk7Nno3wt8NHWtdF9MuYLX5jnoW7CvrGvnjTPiH4D+GmhrYXdwJ7tvmkSEbjk9s9OK8o8VftJ65qBMPhmAWkeCCz/M//ANavk8RgMXj67lCFoLRN6L+meLLA4nF1OaEPd6N6I+k/Hl4S8Vkp4xuP1rzqvP8Awt4lC+GE1nxFdl5Zdzu8h6cn8hX0l+zD+zF+0f8Atw+KB4e+AGkNb6KrhLzxFfKyWUCfxbDjMjgdAv50ThDBw5Kj2/F+R04HJsTXquhRjdp6vp954hfS3+p6vZ+EPC1lNq+u6jIsdnYWq+ZNK7HAwB0HqTwK/pQ/4Jvf8EZLXwZqdj+0N+2RbQ6p4jTZNpugZ8y008jkPKDxJKD+Cmv0T/YY/wCCZXwI/Yp0NNR06H/hIvGE6j7Xr1+gecseqxZz5aZ6Ac1+kVfO4zMJ1vdWke3+Z+p5Jw7RwC55e9U79vT/AD3I4oooIlhhUIiABVUYAA6ACpKKK88+iCiiigD+RD/g6F/5OE/YR/7K1B/6U6dX9d9fyIf8HQv/ACcJ+wj/ANlag/8ASnTq/rvoAKKKKACvzM/4LP8A/KJb9o//ALJ34g/9I5K/TOvzM/4LP/8AKJb9o/8A7J34g/8ASOSgD52/4Nv/APlCZ8A/+wTf/wDpyu6/byvxD/4Nv/8AlCZ8A/8AsE3/AP6cruv28oAKKKKAEIDAqehr+fj/AIKg/wDBFHwT+0/9t+Nf7Piw+H/HSI0ksCqEtr9hk4cDo59a/oIorSlWnSmqlN2a6ilFSVnsf5W/jzwL8R/gt45u/h38UtJuNB1ywdo5be4QpuwcbkJ4ZT2IzU+j6tcajdxaeELyyHaoHUmv9FT9tf8A4J5/s9ftx+D5NF+KGmJFq0SMLPVYAEuYG7HcOSM9jX8WP7WH/BM39pH9gH4iweJ/EunS+IfBFvcq0WtWaFwiZ485RkqR3PSvvst4ohWh7PFK07aPo/Xt+R83meVfu5VKSu0nZdT4fmgns5mgnQxupwVYcinxb3yR/DX2vrngrwf8TtJXWdIkQvIuUniII59cV856n8PvEPhDUmW8j8y3IP71RkGu/BZxRxEbXtLs/wBD88oZnSqpqS5ZrozldO8QXNniKb509+or0K2mS6gW5j+6wrhLvSI5MvD8rH8q67wkXFk9jcL9w5H0Nb1+Tl547meJUHHnjuUvE9k19o0sUa7mA3Ae4rwKSKSJtsilT719VzWWBlOQe1ec6zodtcM0VwmDnhhWuDxKj7r2N8uxqgnB7EHwtvARcWBxnhx6mvXq8AsNNvvDurRalZneiN8w77T1r6GjEdzClwnAdQR+NcuPSVTnWzObM4x9r7SD0f5lV1ikBhkwc9q898QeDVlzdaWMNyWT1+legXUDhd46iqqXDrw/NY0pyjrBnJRqzpvmgz57mgmt2KTKVI7Goq911HTLHURiZN2fzBrhtR8Gui+ZYNnH8Jr0qeJjLfQ9qjmEJaS0Zz2i69e6JcebbnKnqp6GvpNbPUU0y01O9gaFLyMSR7h1BrivgV8I774i+O4tOv4yllafvbgkcbR0H41+pPjb4Z6N4q8OR6NEgha1QC3I/hx2r4ribijC4HGUsNJXb1k10T2/z9Dy81r01USitep+dMUTzSCKMZZjgVeaJoWMTjBXgiu90XwrdaRqs41WMq9uxQAjqfWp/EHh8XIa8tB8/cetbvHU3NRT07nkTrJy5TkNDWFtQQSnGOR9a9CIxXjkjSJNk5VlOPQiu/8ADusf2g62M/8ArTwD61OLpNr2i2Ir0nbmRi+MvtQuIhIpEW3KnsTXHIjSOI0GSxwPxr6m1Dw9ZappY0+5XoOD3BrybTfBGoaf4nt4bld8AYtvHTj1rLB5nS9k4vRq/wAyqGJjyNdUebzwXNlOYp1Mbqehr9Af2X/jXf6qx8C+J5N4gj3QTN1wONpNeGeJvB1lr6eavyTKPlYf1rS+BPhu90nVdQur5djIojGe/PUV89xPDB5plNSGIXvrbunfdfqaU8auXnW6P031PTLHW9PewvVEkMowR2r4c+IXwp8T+CGGqy2sj6ZcM3k3CglMKcYJ7EV9E+GfG81hts9TO6FRgHuK/U74O+EfD/jb4LJoviS2jurO9MhwwByrHgj0r+dMVxVjODpRqzhz0pySavurPWPaSPrOHeHocQ1p4enPlmouSfmmtH5O+5/OhJJ5cTSH+EE18UeOvFN14m1p5JSRDESsaHtiv3l/aW/Ya8R+C/tnij4YxtfaVtLG3HMsQwc/UCvws0/wTeXepSzamDFGsrAqeCcGv6R8PeKspzrDTx+CqqVkrr7UW+jXR/h2Z5VbJcTlGJnSzCnyyWz6Nd4vqaXwU+GF98WviHp/hGA+XDO+6WQ9NickD3wK/oU8JeFNE8EeHbbw1oESwWtqu1VH8z9a/Jv9ma50jwz8WtIkuGWCFfMQE+rKQPzNfoz4p8fS3e6x0klYyMF+5r8z8X6mYZnmlDA07qhGCl5czck2+7slbt8zbD5hSjTlVnveyXU8b/aa+M95ocK+DfDEm2S4QmaZeoXpgGvz5hhub+5EUQLySH8ea+mPjX4futXubGezG+QkoR7etZvhnwfZ6CnnP+8mYDLHt9K+p4UpYLKcppwoL35Xu+rd935dj5/F42VWbnLft2PnSVHhkaKQYZSQfwr1T4UXd3Dq8lsoJgkXLHsGHSoNW8GXmp+KJktRthOHL9hntXrWjaRZaFarbWq4xyx7k17+Z5jSnhvZrVyX3HLOonGx22ay/tdtNcvBE4Z0+8B2rk/FPi6Owj+yWLAzMOT6CvPPC2sSWetCWc5E3ysT79K+foZXUqUZVnp2Xcwse5OnmqY8Z3cV5DdwPbXUlvIMFGIr3/T7DZieYc9hXLeJvCN3q+p250aIyTXDiMqoyST3rjy/MadOrKM3aNt+mhSg3seVLp2rXen3l/plu9wLKFppNgzhRXyL4j8Vaj4jnElwdqL91R0Ff0C/DD4RaJ4F8MSaXOgnnvo8XTMPvZHK/Tmvx2/ad+BV38JfiM1rpURbTNT3TWpHRRnlPwrbgLxBy7Nc2xGXpWa1pyf2kl73o+q8j6h5JPCUY16u738ux8wKmRk1ZihlmYJCpYnsK7TTvCDuN9823/ZHWu70zTLDTvuoBj16mv1ytj4Q+HVnnVcVFbamB4e8EqgW81XluCqf416NGsUKiGIAAdAKzZb6RztiHWrdpGyqZJOWavDr1Z1HzVH8jzqk5T1ky5XhPxq1FfIs9LUjJLSMO4xwK9ymkWCFp5PuoCx+gr5X1iy1HxVrcurXp8uNjhQeoUdK7Mopp1vaS2j+Z15dBe19pLZHm8cUkzbIlLH2r6S8F6e2neH4YpF2s2XYe5rltG0WztJljhXqRkmvRWn2jbFwBXqZjifaJQitNzuxuI9paC2HX19b6fbtc3BwqDJryfWvF95qBaG0/dx+3U10Hi6d/sa2iDJlOT9BXBwWKphpeTU4PDwUeeSuycNSjbnluYd1cNDh35ZulZga5vZhDEpdmOAoHU16HaeCNe8VaikVpGY4FHMjDA5r3rQPBPhjwFpx1PUXTfGuXmkIAGOe9a4rNKOHj3l2/wAzpqY2nSSS1l2R8E+IPEc2lXkumLGVmiO193Y1zfhzw349+Kniuz8HeB9OuNZ1jUHEVta26F2ZicdugBPJPAr7u/Zg/wCCev7R37fnxMvNW+G2lSaZ4Wmui02t3iFIAmcHy843nA4xxX9pH7C3/BNH9nv9hnwtHB4MsV1HxFKv+lavdKHndj1CE/dXPYVjj+JaVCmqeFV6jWr6J/r+R+l5Vk6VOFSpGzaV+/8AwD81f+CYX/BELwz8FZdP+O/7UkEWq+LFVJbTSz89tZHqCwP3pAfwFf0exxxwxrFEoVVAAAGAAKfRXwVatOrN1KjvJ9T6aMVFWitAooorIoKKKKAP5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvr+RD/AINc/wDkuX7c/wD2Vq4/9KL+v676AP8AME/4PVv+UpvgH/slWlf+nfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/AIPVv+UpvgH/ALJVpX/p31iv6/f+DXH/AJQUfAz/ALmb/wBSDU6AP3+ooooAKKKKACiiigArxP8AaO+D8vx/+Bnif4Lw6odFPiSxexN6IftBhWQjcfL3x7sjIxuHWvbK+QP20f2x/BH7Evw0034neO9Nu9WttS1SLS0t7EoJg0kUspfEhUEKIiDyOSK5sZOjChOWIdoWd/R6dNT1Mkw+NrY+hTy2PNX5k4JW+JarfTp10PxG0z/ggJ8RfC3jnSNc0z4gaXq2nWV9bz3CXFnLaSPDHIrOFCtONxUEAE4z3r+nivzE/Zl/4KzfsxftUfEzS/hB4FtNdsNf1YTG3h1C0jVD9nieZ8yQzSqAERiCcZ6dTX6d15eRYTLqUJ1Mtd4yetm3qumvqfWeIGc8TYvEUcPxPFqrTi3FOMYu0nq/dSTTcbX8gooor3T8/CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/IH/gsj+xV+1P8Ato/Cz4Qf8Mdah4VsPG3wm+Kvh/4j2v8AwmUt3FpU39gw3eyKT7DDNM26aaLcg8vMYfEitjP6/UUAfzw+LPCf/Bzj498K6n4F8daZ+yXrWia1aTWGoaffw+K7m1u7W5QxywzRSBkkikRijo4KspIIINHhPwn/AMHOPgLwrpngXwLpn7Jei6JotpDYafp9hD4rtrW0tbZBHFDDFGFSOKNFCIiAKqgAAAV/Q9RQB+QP/BG79ir9qf8AYu+Fnxf/AOGxdQ8K3/jb4s/FXxB8R7r/AIQ2W7l0qH+3obTfFH9uhhmXbNDLtQ+ZiMpmRmzj9fqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8Qb/grF/ylN/aW/7Kr4y/9O91X+3zX+IN/wAFYv8AlKb+0t/2VXxl/wCne6r/AG+aAPzd/wCCxf8Ayif/AGkf+ybeJv8A0gmr5U/4Nq/+UIXwF/7B+q/+na9r6r/4LF/8on/2kf8Asm3ib/0gmr5U/wCDav8A5QhfAX/sH6r/AOna9oA/c2iiigAooooAKKKKAPm/9pL9kv4B/tZ+CpfA/wAcfD1tq9u4IinZALiBuzRyAblI9jX8l/7aX/BCn9on9ntr3x1+zPO3j/wjETJ/ZrnGq2yeij7soHsd3tX9sFBGeDXThcZWw8+ejKzOfE4WlXjyVY3R/lpXWprpuozaLrMM2n39sxSa1uozFNEw6hkbBFdf4Y8YXOh3S3FhKGjJ+aPPBFf38ftff8EyP2Sv2ztMlf4l+HIbTXGX91rNgqwXqN2JdR8w9mzX8qn7XH/BBT9rr9n2S78UfA9l+IvhuLLCO3+TUo0HrEcB8f7JJr7PA8S0K0fZY2Nr9d1/mj5jGcMqUWoO67M+WfD2s6F4htEvdPEe/GSuBuU19J+BPinNphXTfELGSDGFfqVr8drXX/Ffw78UvpOpxXGkarZsVls7xGhlBHUFGwa+w/h/8VtK8XRpY3h8i9A+ZTwrH2rjznh+jiaLlF89Put1/X/Dn51m2Q18I3JJuP4r1P1Il0zw54g+z6tcW0F20fzQyugcrnupI4rXSKKNdkahQewGBXxl4W8fa34XcJC/mwd42PH4eleh/wDC8rv/AJ8l/wC+jX5Vi+FsdGfJSfNDpr+jPC5jiP2gf2UPD/xQSfxN4Y22Wt7OAPlilI/vY7+9fkj4z8CeKvh/rMmheK7N7WdDtG4fK3up6EV+uviH4z+PXJm8OLBGB/BIuf1r47+JPi/xT46ulj8bASm3ctGrIBtz6V+n8FV83w0Vh8XKMqSWmvvR8lpqv6TPpslzavS/dt80O19V6HyT4e8Jalr97HbD9xG55kk4UV9e+HPh/o+haP8AYLVy7N8xkPOT7e1ecKqqMKMY9K6DS/EN/pxCq26MfwmvscdUq1l7jsux05li6+JSUXZLoa2o6Nd2BzINyeorg9d0PTrmBrqQiFlGSw/rXtdh4k0rUUCOwRj1V+K53xh4Fj8SWgSxl8hs5wPut9a4aGJcJpVPd8zzcNiXColUfL5nxDry3c10zsMxqSFI9K0PDXj/AMV+EnJ0a7dFPBQnK/lXoniLwJr/AIeZvtcJkh/voMrXnN5ptmUaY/JgZJr6iFSlVhZpSj959/QxGHr0lCSUo/ee/af+0/eR6eY9R08SXKgYZThWPv6V4z4s+KfiPxZqaajdbIxC26NFUYH+NeRDVbfzCjZxnGauR3UEv3GFRRyzDUZOdOCTNqGQ4TDzdSFKzfzPf9C+M80X7rXYNy9A0fWvYNK8Z+G9YjD2l0gJx8rHaQT2wa+IpJ4Yhl2Ar9Qf2IP2Y/hz8TdBX4oeJroaiYJmi+wjgRuuCC/rXhcS4zAZVg5Y7E3UVpor3b2Xlfu2keNnOV4SjS9vZx6abN/p95wfPeqWoWFtqdnJY3a7o5AVI+tfUH7SHwuXwN4jXXNMQLp+oH5VUYEbgfdr5sryMqzKljsNTxeHfuyV/R9V6pnx8JvSS3Ph7xZ4cuPDOsy6fKPkzmM+qnpWXLps0dusw5PUj0r6F+KGpaZeNHpsaK8sZ3F+6+1eTEAjBr7bD1pTpqUlqfomCzCrUoQlNWfXz8zhYpJYZBJCSrqcgjrmvpDw9r12thENWJdioye/NeSWuiRXl+jrwF5YV6KABwKVdRkkmc2bVKdZRjbU6TxRf276GxgYPvIX6V5JW1q8uWWIfWsUDtSoQ5Y2McFR9nTt3K09laXJzcRI+P7wBrT0f4VeAvEWnONS06MlZM7k+U8+4qPyWxkGuv8ADuv6To1s9vqUojZmyB7UV3Lk93c1xFevCn/s8mn5N/odD8M/2Qfg/wDEnxjb+GdSEthFIrNvifDMwHA5zX1bN/wSi+Ac8bRPqOpYYYPzr3/CvGvhb4+0HR/HGla2tzEUjuFzubHBODmv2miljniWeIhlcBlI6EHpX5Dx1nWa4DFU/q9aUYSjtpunruvNHzeO4gzihNJYiaXqz+Oz9sX9ljxJ+y/8TbjQpYZZdBunLabeuMrIn90kcBh3FeHfDz4TeO/ifqkem+EbCScMwDTFcRID3LdOK/s3+Lnwd8A/G3wlJ4P+IOnxX9qxDp5g5R16Mp6g18Dar8PNO+D7nw7FaQ6daxf6vYoRGUd8969fhrjKOOoKlVX7+K17S81+qPt8L4sYiOAjRlR5sQtOZvR9nbdvutuvkfH/AMAf2U9D+FkKX/i6ZdXvgQygjMUR9getfa0IjWJVhAVQAAB0Ar558U/F6ysGaz8PqJ5B/wAtD90H29a8z0T4peJdK1Y39xK08Ttl4ieMH09K+lngMViV7Sbt2T/rQ+JxuHzLNJyxeKleT2vp8kun4H2tXEeLdf0bSI9tyN85BKqvX8fSuBvfjDZ6jZqmhqY5mHzb+q+uK8ynnmuZTNcMXZuSSc1lhsumnzVdPI8vD5ZUUr1lbyPT9P8AFthdDbdfuW9+lZGv+KQ6tZ6ax9Gf/CuBre0Tw7f63Ji3GEGNzHpXoewpQfPLY7/q9KD55bGByeTRjr7175F4K0GOBYmi3EdWPUmn/wDCGaB/zxH+fxrN5pS7MP7UpdmeZ+FfCsutSi7uQVt1PX+8fQV7iiQ2sIRAFRBwPQClt7eOFFt7ddqjgAV22maTHbJ5t7jc3Y9K8fGYx1HeW3RHj4vFupLmlt0R4JrVxqXiCVbfToJHhBwCAcMaqN4L16C0e+vYhBFH1Lnn8BX0hLquiWC7d6L14UV5J4s1G58Q3KxxPst06A9z61rh8ZUlaEI8se7KoYubtCMbI8yijES4HXuaJpRBC0zDhRmujOn2dspe6fgdycCuN8QeJtLleHw/4fR9Rv7pwsdtZoZpXJ6AKuSc12yrRXvTdl36HpUIzr1FCnFtvseUz6fqus3b3Uw2hzkbuw7VKmlWNpPHZvvu7uchYreBS8rseyouSa/ZP9lP/git+2d+0mbbxD8RLVfht4al2sZNQBN/Kh/uQgZXI7tiv6hv2Qf+CVv7JX7HsEeqeEtDTW/EeAZNZ1RVnuSw7puBEY9lrzcfxZCC5MKrvv0/zZ97hMlrzS9u+SPZb/8AAP5mv2LP+CIX7SX7S8Nn4y+M6P8ADfwjMQ5imH/E0uoz/djxiMEd3IPtX9bn7Ln7Fv7O/wCx94TXwv8ABLQILCRlUXF86iS7uGH8UkpG4/TgV9VgADA6Clr4rF42tiZ89aVz6XDYWlQjy0o2/P5sKKKK5ToCiiigAooooAK/kQ/4Nhf+Tnv2+P8AsrU3/pXqdf131/Ih/wAGwv8Ayc9+3x/2Vqb/ANK9ToA/rvooooAKKKKAP5EP+Chn/K2B+xj/ANiZqf8A6K1qv676/kQ/4KGf8rYH7GP/AGJmp/8AorWq/rvoAKKKKACiiigAqOaGK4iaCdQ6OCGVhkEHsRUlFAH4j/tyf8ES/gL+0vNc/EH4NungHxo+5/tFomLO5c/89ol459RzX8pn7TH7Kf7Sn7G2vnQP2i/DktpZsxW31uyUz6dOB38wD5CfRsV/o11y/jDwT4Q+IOgz+F/HGmW2radcqVltruJZY2B9VYEV6GCzOvhn+7enZ7HmY/KMNi1epG0u63/4J/mZW2rWE+2W2nQ55VgeK+jfhx8S7aV10TxWEmjYgRysAcH0Nf0Pftjf8G8vwk+IU9141/ZL1P8A4QnV5C0h02XL6dIx7KBkx59uK/mZ/aN/ZC/at/Y+1ZtO+PXhS80+0ViItUtVM9jIB3Eq5C/RsV9VDMcDmFP2Vd8kvPv5P/M+LzLhGo4vlfMu/VH6CeDtcuPBupJrfhdlgf1Tow9DjqK+/wD4a/F3RfHVqmn3bCHUMYeNuje4/wAK/ne+FHx+vvDpSz1CX7dpzsOQdzIPavvzwp4vstYt4tf8MXOQDlXQ4ZSP5V+W8deHkMZHmrfH9movwT8vL7j4uM8ZlNW0tYP7n/kz9UdK+GHw50K7uL3SNCsLea7fzJnSBAZG9Sccmr/i3wV4Y8caDP4c8S2cVzazoUKso4B9PSvk7wz+0nrGmWAtNctvtjpwJM4Y/Wty4/aicwsLbTMPj5SzZGa/CqvBXEkMSpxTlKL0lzrps027o9+Of5fKF27X6WPzK/ab/YT8V/C2WXxP8O0k1XRcF3UDMsPPTHcV+fHkzeaYNjbxwVxyD9K/cDx3+1J8YYbCWKztLVYn48xE3ED3Br8+dXMGra9c+IbmCNLq6cvIyIFBY+gHSv6v4DznP/qXs8+jCUo/DOMryf8AiVrX8193UxWdUv8Al0m15nm3ww+EN34puF1HVJvssEZzsBxIT9PSvrLUfBypCp00/cAGD3xXi9vdT2kizWzFGXuK9O0L4gMuIdYGR0Dj+tetmlTF1antYu6XT+tzwMfXr1587enRdjmb/TlbNtfx59Qa8X8b6XBoVubmycb3+7Ga+zCmj69BuQrID3HWvnLx58HPEl5eSanpkwuU6iMnBA9BSyzMIe05asuXyfUMBiYqovaSsj5BW91GyvPtcLvDMDncpIOa+g/BX7Tnjnw4Y7bWSNQtk4If7+PrXl+qaPd2E5s9UgaN17MMVw2ti20uIT5+8cba+srYXC4yKhWpqS/rZn2Lp4fFpQqQT7f8Bn2r4n/a5gu9M+zaDpmJpF+YzEFVP07182aN8TNZ0nVJtUEULm4bLLtCj8MdK8gh1WzlH3sH3rQSVGGUYfhWeEyPB4WEoUqdk992VTyTDUYuChvvc+xfD3xi8N6qVh1DNpKepb7ufrXqNpqFjfJvs5UlGM/KwPFfAPhu0tde8SWPh2a6jtvtsyRebJ91Nxxk1/Rf8K/+Cf3gDwF8NLm0W4/tDW76DP2wk7ASMjaOwr854+4nybhiNF4yUlOq7RilfS6TbeySvr17I8yvw053eGvdK9nt95+bVePfFjwQviDSzqdmo+024J9Mr3r3rxFoV/4Y1u60DUl2z2khjYH27/jXO3lxBa2zz3JARQSc9MV62CxdnCvRd07Neaf+Z8xh606FVTjuv6sfnPFA8s3k4wehpbi3e3fa34V6R4iuNNvtbnvdNhEKMeg7+9YM0Ec67ZBmvvo1rpNqx9/DFOSUmreQeDdX1Ww1JYrJzsb7ynkYr6FstatboBXOx/Q14p4a0r7GHuH5LcD6V1mdoLV5+LpwqS0PGzGNOrUuir41nE+r7APuKBXHtGjja4BB9as3MrTztIxzk96iVS5wK6KceWKR00YckFHsc3c+DPC+qOI72yicMwJ+UAn8a6qf9mf4W3z/AGs20kW8A7UfCimxho5FdxgAg17DbeLvDZVIReR7uBjPescTVqq3s2x18wx1Ll+r1ZL0bPR/gv8A8EpfhX8YPCh8Vv4hvLFjIyeRGFYKB7nmsX9oz/ginoml/C/U/E3wy1681LWtPhaaC1kRcTbeSox3x0r9FP2DfF+n3Ntq3heKWNpAVmGHBJHQ8V+i5AIwelfy1xf4jcTZRn9bDRxLdKMk1FxjZxdnba9ul73PYy7iDMVGFX28uZd3pp3R/nA6lpOp6LqU2j6rA9vd27mKSJ1Kujg4II619SfAj9kv4pfFi7TVYozpGnRkE3NwCpYf7A71/VT+07+wf8H/ABX4sf45aL4dt5dbUZuQEG18c79nQt718h6trGh+ErMi+dLZIhgIMDp2Ar9w4e48w+d4OOIwMff2lF7xfbTfyfU+gz/xRxKprDYGhy1GtZPVX/urr8/uPPvhZ8FfB/ws0xLfSYVmu8DzLmQAux74PYe1ev8AWvkvxf8AG3UNRBtPDqm2jz/rP4zj+VbPgj42iKI2fiws5H3ZVH869evleMqRdaprLt1PyrF5bmFdPFV25Te93dn0vKkTIfOAK9814B4p8T+H7PUPI0oGTB+fH3R9KwPFXxJvPEINtppMVtnscM31rzjFdeX5XKHv1X8v8zTA5W4+9W+7/M9VPiLSRam6MowO3f8AKvJfEHiCfWpsKSsK/dX+tSkA8EZrvPDHw+/tF1vdUj2Q9Qvdq9NRpUL1JHpQjRwv7yer6HjdORGdhFGCzMcADua+mH+GvhZ2LeURn0Jq9pngXw7pN2L22hy69NxzioebUbaJ3KlnVG3up3Ob8A+B/wCyVGr6kP8ASG+6v90H+td7rOsW2j2pmm+Zjwqjksa6nS9LudVuRb26/U9gK9Zt/D+g2Vui3MUbsnO5wCc/jXzOMzJKpzVNX2R8zicbz1OepqfCkukeKvE97Jdw2c0pJ/unCg9BVq78D6xoU8Y11BEW5CZycV9t6n4j0zTbWQ2W15cHCrxzXzveaHqes3z3+rTZdzn14rtwma1Kr96KhBet2ddHMZS0soxR52AAMKMAVzniW6uYbQWtmrNLLx8o7d69q/snQNJXzr2RRjJzIQOBXJ+HNM8Y/GfxyPA3wQ8PX3irVXYIsOnQmRVJ7u4G1R6kmuv6/Sg+eeiXc9DAxqYiqo0abkeI2vhHU7o+bdERjqS3Jrvfhv8ADLxH8TvGNt8O/hHoN74t125cItvZRmQIT3dvuoB3JNf0Cfsp/wDBAb4rePTa+LP2wdbXw/pzFXOh6U++4deu2WXGFz3C5r+l39n39lX4BfsueFo/CPwQ8NWeiW6jDyRRjz5T6ySEbmJ9zXiZhxXOV4Yf7/8AgH3WEyCtO0sXOy/lj+r/AMj+ff8AYs/4IETm5tPiJ+23fx3TJtkh8M6e5NugGCBcSYG8+oXj3r+l/wAD+AvBfw18NW3g/wAAaXbaPpdmgSG2tIxFGgHoFArrqK+Rq1p1Zc9SV2fUUMPTowUKUbLyCiiisjYKKKKACiiigD+RD/g6F/5OE/YR/wCytQf+lOnV/XfX8iH/AAdC/wDJwn7CP/ZWoP8A0p06v676ACiiigAr8zP+Cz//ACiW/aP/AOyd+IP/AEjkr9M6/Mz/AILP/wDKJb9o/wD7J34g/wDSOSgD52/4Nv8A/lCZ8A/+wTf/APpyu6/byvxD/wCDb/8A5QmfAP8A7BN//wCnK7r9vKACiiigAooooAKxvEHh3Q/Fej3Hh/xJaRX1ldIY5YJlDo6nqCDxWzRQB/PL+1z/AMEQ9C1C9vPiX+xlfjwvq8rGWbR5iWsLg9SFX/lmT7cV/P78ZND+JPwenuvhz+0Z4eufCuqcpHLMhNrOR3jlHynOPWv9ByvK/i18EfhP8dPC0/g34taDZ67p06lWiuog+M9wTyD9K3o15U5KS6Hz2bcM4PHP2ko8tT+Zb/Puf5xjW8Uy+bbsCDyCDwa3vCUq2+tJb3YBSb5Dn3r+hn9qz/g39udOuLrxj+xjrn2IMWkOhakxe3PfbG/VfavwK+Lfwo+NX7Oeunw98fPDF54duEbatwyF7VyO6ygYx9a+yoZxQxEHCT5W+/8AmfGZlw5i6EXZc0e6/wAjrL/wurZexOP9k1l6fpFtcSvperw538qT2P1rD0Hx9I0KsXW5hPRlOT+deiafr+kamQyNhh2bg1M3XpxtLVd0fGVI1qd1JHm+tfDmeLdNpR8xf7p611Hgi3jvLRvD+tReXPDzGTwStd8ORkdKagRJlnAG5eh71jUx1SdPknv0fUiWLnOHLL7zm9Q8H3kDF7X94g596bBoVhrVsY54/InThiBjNeowSrMgZabJbxN82AD61xLHVNnuuph7eVvM8Ubwzq+hXkd/ZqJxGd2Oo49RX0Bp3w58FfFDRk1PTP8AQb5RiZE4AYe1c6QV+Uitrw3rk/hzURfWoGDw49RXPmVbEVaanQly1I7NdfJ9xyxEnr1MDS/B3xH+EGuf27o8X2q3ztkCc709xX2n4f8AE1r4h0GLWLcFDIPmRvvKw6g1kaPrFjrlkt3aHcD1B6g1oRW8EBYwIE3HJx3NfnOdY945p4qmlVjo5LS67NfqTKs5brU5Lxb4Vi16JrmD5bheQfX2NeJ2ej3L6j9jukKmM/OD7V9QZPWsfUdIt73MqgLJ6+v1rXLs3nQg6U9Y9PIxZ8weO/h8mpKdT0ZAs4+8g/i/+vWV8GvBc994kfUdRjKpYnkEdXPave7i2ltXMcwwe1S6Zd/2bIzRKAshy4HevoHnFf6nPDwd7qyfW3X8C415KPIx+ueGmQteWPK9Svp9KxNJs0kV5J16/KAa9RtruG8j3xn6iqt1pcUmXiG1q8CnmE4w9lU+8xceqPML3TJYCZIvmT9RWzoLS21v5sZxuNa80EsJ2SDBqBVCjAGK6p4h1KfK9RWOmtdRjmwkvDV9+fBz4h+JfAWh2UVu5aHYC8L8g9a/OOFGklWNerEAfjX3fpsL22nW9vJ95I1B/AV+W+ImGo1MPSoVEnGTbs/Jf8E+n4XxNbD4iWIoScZJbr+vI/QzSPip4Z8ZeHru3ilEVybaQtE/HO05xX8mfjXWrLTvEOoITlvtEuFH+8a/cS+mmt7C4mgYowifBHB6Gv53deeSXXb2SRixM8mSf9417P0fOHaWDr5jOnJ8slT07W5+p9bxZn1XOIYeOJilKnzarre3T5Ha+CfEkjeP9Ju75/LhjuUJ9BX6B+MPifpHh1DBZkT3PZR0H1r8t7d/JuY5x1RgfyNfQKTtcoJ3JJcZyevNfumf5FQxdelWq7RTVu+tz4PGws422PVdE8ZaprniyO51aQsHDKq5wFzXQeJfHNtp6taacRJNyM9lNeHI7RsHjOCOhFSxQTXMm1BkmuOeVUHUjO1opWstjz3BN3Z6b4A12eXU5re+kLGUbgWPcV1ms+JOGtLPr0LV5jp2m/Y284n58dq2ERnbA71zV8JSlWdXp26GU7X0Mu5RjMCcsWrU0+wMJE0v3uw9KvR26IQx5atvTNIvtXuBb2KFyeuOgp1sUow1dkuor9Eez+E9XGsaciHmWMBWHrXqejxSaZcx36HEsZDD2IrlvCXg+18NweYTuncfMa7SvybNK1KrVnGj8D/r7jrpJxs+p9L3XxJ0bT/Bkniu7YfuU+aMfeL/AN0D3r81/G0PxI+OPiP+3taj+zWsZKwRvwI0PoP519HyIsyCKX5lBzg9M1R1DULbTLU3E52gdB6mvG4Wy+jktWpXwsFKtJ2jJ68sX0iu76vtoevmObVsXCMJu0UtfN9z5+uvh/4V8AaZJqWpf6ZdEYiRuhY9BivIF8L6vrl297dqIQ5zgDGK901rUn1m8+1TKMLwo9BWUSFFfqWBxuJpwc6suapLdvp5JbHz8qmuh55caDp2h2m2JPOuH4XPPPrVSy8MXlwwe4+RTyfWvRiqF/MYAmoLu5S1gaZ+1d0cdVtZayfUjmZ478QDFYaeugaOm+5nxvx1C/8A16850rwLczYk1FvLX+6OteuXLi6umu3A3tUWG3YAzmvfw2JqUaKpx33b63No15RjyxPP9S0uGBo9N0uLkcsR+mTV3T/C4xvvjnP8Ir2Pw94A8Q+I5/8AQbcqp6u4wK9z0T4ReHvDlsdW8YXKFYxube22Ncdc5rxcy4swuCjyTqXl2Wsn/kbU41allFfM+BLjwN4k8f8AixdF8M2bMkYCb9uEHckmvrb4ffsp+G9AiXV/HMouZY/mKZxGv1r07QPiJL4x1z/hBf2bfDF14w1UnZ/oEWLWM/8ATSbG0AfWv0O+DH/BIz40fGKeHxL+2L4kOl6Y5D/8I7ozlVK/3ZZRyffFeDiM9zvNIKlhV7Cjbd/E/wBdfK3qfZ5ZwzjMRFcy5Y93/luz8UUn8T/Fj4kXPw+/Z08Oz+J9T84wpFYpm3hVflBeT7qgfWv2p/ZR/wCCIrare2nxF/bU1D+1ZkxLD4ftGK2kR64lI/1hHftX7p/Bb9nj4Mfs9eGIfCPwe8PWeh2cKhcW8YV3x3ZurE9yTXtNe9C8acad9Ekj7nKeF8FgX7RLmqfzP9F0/rU5vwl4P8L+BNAtvC3g6wg03T7RBHDb26BEVR6AYrpKKKD6MKKKKACiiigAooooA/kQ/wCDXP8A5Ll+3P8A9lauP/Si/r+u+v5EP+DXP/kuX7c//ZWrj/0ov6/rvoA/zBP+D1b/AJSm+Af+yVaV/wCnfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/g9W/5Sm+Af+yVaV/6d9Yr+v3/AINcf+UFHwM/7mb/ANSDU6AP3+ooooAKKKKACiiigAr8iv8Agrh+yF8ff2v/AAB4R8M/BCGyuV0a9uby9hurkW7MzRqkWzcNp4MmcsMcetfrrXyl8UP24v2Uvgr8Rm+E3xW8Z2mha8sEVybe6SZUEU2dhMvlmIZweN+R3HIrzs1o4ethpUcVPlhKyvdLz3fofS8I4zM8FmlLHZTQdWtSvJRUZT0s4ttR1sr76Wdj8PP+CV3/AATx/af/AGef2w4/H3x18Kto+m6Zo98ba7Fzb3MT3E2yJUBglkIJR3PIHANf04V538OPi78KvjBpcmt/CjxJpniW0gYJLLpl3FdLGzDIVzGzbWI7Ng16JWeTZbQwOH9lhpOUW27tp7+asuh1cb8U5hn2ZfXMzpqFWMVDlSlFJK72k21vfcKKKK9U+QCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNf4g3/BWL/lKb+0t/2VXxl/6d7qv9vmgD83f+Cxf/KJ/wDaR/7Jt4m/9IJq+VP+Dav/AJQhfAX/ALB+q/8Ap2va+q/+Cxf/ACif/aR/7Jt4m/8ASCavlT/g2r/5QhfAX/sH6r/6dr2gD9zaKKKACiiigAooooAKKKKACiiigD48/aX/AGCf2T/2t9Mls/jb4OsNRu3XauoJGIr2M+qzKA+fqa/nA/aa/wCDb34h+GLi48S/sgeLk1C3Ql49K1liko/2UnUYPtur+wKiunDYutQlzUZuL8jOpShUVpq6P82n4q+Ef2vP2TtRfw/+0J4L1DTVg+UXMsLPbMPVZlBUj8a4DSP2lLO6gMlzZhznjymyMfjX+lx4j8L+GvGGlyaH4s0+21OymGHgu4lmjYe6uCP0r8gv2kf+CE/7Bvx8luNb0DQpPA+szZb7VoT/AGePd6mHmM574Ar2cPndNu2KoqXmtH/l+R8xi+D8BVblCFmfx52nx/8ACc0Ia6imic9VxnH40/UPil4A1238q5jkcdjt5Ffpt8ef+Dc/9rH4fSXGpfAvxFpvjSwTJjt7rNpeY9M4KE/jzX47fFj9mD9pb9ny/ksfjF4J1fQTETume3aS3wO4kQFcfXFe/ha2UVWnCo4S83b8dvxPCr8Gwpvmgn8nf/gkup634eWbOlvIyHswwRWHL4iQZEKE+hNeeWGpx3REcciSn2OD+IPNbhikABx1r6KnThZOLuvW5x/UoU3yy/E4vxRceKLqQzSSEwg5Aj4xWx4S+Mfirwwy2145u7deNknJH0NbnlSEYxVGbw3b6s2xoRv9Rwa6n7KUeSrHQ9JVsNKl7HEU04n0H4e+MPgzxMn2a5cW8jDlJuh/GofGfw+8J+JbIpbKIWkHDwnAwfpXzNd/C7V9nn2TKR12seazIdT8d+EJcLJNGq8YJLJgdq4o5fBT5sNUs+39f8E8+GT0XP2mX4iz7N/1+Rp698ANes902izLcoM4VvlbivIdT8JeJdFkK6hZyx7TtztOM/WvozRfjhdJiPXLcP2Lx8H8q9R034i+D9b2w+cqs/8ABIO9dKxeLpfxIcy8j01m+a4XTEUudd1/mv8AI/P9sg4bt619zfsJ/H5vhD8TB4d1hz/ZGvFYZMn5Y5c/K/8ASr2p+CvDGoEi7sYiNxbIXGT+Fctc/CXwdPOtxDC0DLjHlsRyO9cmavCZlg6uCxUXyzVn5dmvNPUeJ4iweLoSoVoNXXk7Po+h/QD8QvCmheOPCNxpOssqQyLuSY4+Q9mBNfi141m/4R/WrrQbSRZvIdkEqnKkDuK6mf4mePbvwtb+D7zVbiaxto1jVGc5Kr03Hqa86vLRbtOeG9a+A4L4ZxGTRqU8RX54N6JLReevV9VsfEUYJTvLY8T8RaJJHI2oQZZWOWHUg+tcXI6xqZJDhVGSa90mhMbGKX6Y9a8++IPwq8UX/h5r/wANKCXOXh6Ns9q/TaOJirRm7H12BxtNyjSrTUU9E2c14U8QaJqivHZyjzgTuU8Hj0rts45NfETJf6VdGNw9vNGcY5Vga+iPhPrXinxvqJ8OCNZSkZYynjaBxzXVWpqKc76HvZvkfsYSxVOd4LV36L9TrbvM07SDn0qnjyyC/A9a6/VfCmu6PIY7uBsA43KMg1wPiGRoLIxEYLEDn2qKc1JLld0eXhpRqWjTd0bKsp4U5rj/ABLGRMkueCMVzyzzp9xyPxpHlll/1jFsetbKNnc9ejhHTmpXGKxUhlOCORX68fszftZ+F4vhkmh/ES8cajpeY0JBZpYh93n1HSvyJWN3O1QSa6bw9Z6vb3yXMEbBeN2eAVNeNn+Q4XNsOqGK6O6a3Xz136nJneX0cXQ5ajs1qn+nzP1e8dftptJG1r4CsSjZ4muPT2Wvij4geOPF3xJuWvfEt6878lFJwi+wFYUNmzgOx4NX0t4Y+VHNebleQZfl2uFpJS7vV/ez5KhhqGHalTjr3PJbm0ms5PLnXBqvgngV67dWVteJsuFDe9ZkOgWls+6EZPbdzX0SxCtruezDMI8vvLU42x0m6nbzG/dr6967SJWhjCBiccc81fWwnI6AUosLg+n51hOrzbnLVxCqfExLW4iiuUkuU8yMH5lz1FetaP4zS5kj0zR9PZmPAVK850rTLKS4zq0jRxDGdgyx/wAK9e0Txz4f8N232XSNP24z85I3N9T1rzcbaStGHM/uR5GO5ZaQg5P7ker2Xh6aW2WW8/duwyV64qS40vTdOiae8kOBXmifEnxDqCYijigH98/0zXP+IfH+jwyGXWr+NWUY25/kBXhPC1k71HZHiRwdeUuX8Fqdheas3n508GNAMAnqazJb68nAE0rMB0yav/DbwJ8Z/jfeppvwP8Eaz4mkl4WS3tmSH8ZGwuPxr9T/AIN/8ELv24Piq0V58WdW0r4f6bJgvHGTeXu0+wAQH6msquY4WjpzXflqfQ4ThnHVrWp8q7y0/wCD+B+JfiH4oaJoc72/MjJncc4ANdD8KfA/7TX7TWqroPwA8IajrcrEDzbaBvJXnq0pG0D15r+xf9nP/ggp+wz8FLiHXvHOm3Hj/WIyGM2tv5kG/uRAMJ+YNfsb4T8FeD/Aekx6D4I0q00iyiACQWcKQRgD/ZQAVxV+I+mHppeb1f3bfmfb4PhTCUknV95n8jH7OP8AwbufHHx5NDr37W/i9NDsJMM+l6U/nXBz1DSEbV/DNf0X/swf8E6f2Qv2RbKJfg74Os4NQRQG1K6QXF6xHfzXBYfhivt+ivn8Ri61d81WTZ9HRw9OlHlpRSXkFFFFc5sFFFFABRRRQAUUUUAFFFFABX8iH/BsL/yc9+3x/wBlam/9K9Tr+u+v5EP+DYX/AJOe/b4/7K1N/wClep0Af130UUUAFFFFAH8iH/BQz/lbA/Yx/wCxM1P/ANFa1X9d9fyIf8FDP+VsD9jH/sTNT/8ARWtV/XfQAUUUUAFFFFABRRRQAUUUUAFYfiLwz4d8X6RNoHiqwt9SsbhSstvcxrLG4PYqwINblFAH4RftVf8ABAb9kX43SXHiX4OrL8Otely+7Tf+PN3P9+A/KBn+7ivwG+Mv/BKb/gon+xteT+IfDulr420OLJNzoxMj7B3eA/N+Wa/vWoIzwa7cPmFejFwjK8X0eq+5nFi8uw2Ki4V4Jpn+bNH+1fqOk3R0TxXo72WoRErLDcK0EgI6jawBr0G2/ag8HzMizWlwgOMtwQK/um+P37DP7J37TunSWPxn8DaXq0rggXXkLHdJnusqAPn8a/Bv9oH/AINsPCNy02sfss+OLrRZDlk0/Wf9Kg9lEgG8fjXdQxWXT0xNC3nFv8mfH4rgPBy1o6eV3/X4H41RfH74bXTeULh+f7yVyOv+JfhlrBNzZTPBKeeE+U1vfHH/AIJR/t//ALPZlufFHgpvEGnw5ze6E32pSB32YDj8q+Exf6p4f1A6RriS2Fwp2mC+jaBwR7OBXuYPA5Y3zYau0+zdvzR87ieEpYb3o8y/L7z6An13TI2bynLgdMDGa5zWfEl81oy6MoEp6F65iyuDeruVce4OR+dWyjehr3o0IRd9zhjh4QequeYr4v8AHOg6t/aK3c0MwPYnbj6dK+kfBP7TsTKtn40gIYf8toh1+orzeW1juBsmjDD3GawLn4crqA8zT1MX8q2xOHweJjavBLzR6FX6liIqOIhyvuj7ih1D4d/EWzWVWguwRkA43j+tfNvxA+AFlrdyZ/D10YdmdqPyteGz+DPGnhuUXljvBX+OFjn9K6DRPjL420Bhb6l/pKjgrKMN+dcOHyuth5OeCrXXZnNQy2vQl7XL66l5f1oee+Ivg7458O5eW1M8Y/ji+YYrzie3vrFjHcI8JHUMCK+8NC+PPhfUQItVje0c9SeV/OuwuR4I8Z2ZeCO3vBnJ+UE/j3ruWcYil7uJpfNf1b8T0Y8RYuhaOMofNaf5o/NeOWSKUTRkh1IIPcEV/Uf/AME5v2mI/jd8J08J6y5/tjw8iwybjkyRj7rV+L138IPAd7K0zWYRm/ukgD8K6/4QaRqXwO8WR+MPh7qVzaXKcMob5HX0YdxXwPihw5g+LMmlg17teD5qcmtFLqnbpJaP5PodseKcLdTUWmummq7H64/tq/CbRls/+Fl6bLFbzxjE8XAaX3Hqa/HnxVfnxDbPYITHGf1Ne4eOviX42+JOof2j4wv5Lt8YCk4QD2XpXjWp6YY/38A+XuK4PD7IcZk2WUsFmFdVKkNmlpFdIpvV26Npdj5PGYqjXxcsRShy3/Pv8z5v1DT7jTbgwTj6HsRWDf6tp2lbH1CTy1cgZr6GuNAXxFiwCZc/dYdRXyP8aPh/408Map5mrwl7IcRypyv4+9fquEr06s1TlK0vzPo8oqUsXWVGrPlf5+h7tYz2lxbJJZOHjI4Ip14+yBsdTxXxx4f8Xa14cnElnKWQdY2OVP4V9heFdK8T+N/C8fia2sykRzwDy2O4FViqCoe9OS5Ss0ymWCanOS5G9/0OZ8mReTzToWUMQSM1qXFndWjFLqNoyOoYYry7xBdu+pERnbtGODV01z6Izw8PbPlTPRJVLxlV7ivIbhDFcOh6gmrA1PUAMec2PrVNmZ23Ock966qVNwvdnqYXDSpXu9z2X4DfF7W/gv8AEiw8YaXO6RLIq3Kg8PCT8wP4V++uvftufAzR9Fh1Wzvmv5J4w6wwLlgT2OelfzSxxTTNtiVmPsK9V8Hx6ibY290pVR90txxX59xp4c5Vn+IpYzGXUoKz5WlzLono3p0t3OfMI8q9pGST6n6VfFD9vnx34mWfTPAtumlWkgKiRhumwffoK/NvxfHrOvX0ms3Mr3MkhLuWOTk9TXax2SjmQ5q2saKNqgAV6OQ5BluS0/Z5dQUE931fq3qzxIYhwnzrV+Z89kEHB606OOSVtsYya9g1Dwtpl8/mqvlt3K96pJ4ZktxtttpH619QsVBo9VZlTa03OR0+wmgIkkcj/ZFbgc1rNoV+oztH50o0HUPQfnWMqybu2ck8QpO7kjR8NapommyG41SFpZAflx0Fe8+EL258YTiPTLSRIgcNIwworzjwtoHhTT9moeIXe5kUg+Qgwv4mvb0+K+l6dbpaaDpwjUfw9B+leDmVSU21Rpty7t2S/r7jwsdPnk/ZxbffodiPALYy1wPyqhqmj6HpChZHaSXH3R0zWUnj/WrlXmnWO2iK8Dv9a831b4i+E9OuBFe36PO54jQ+Y7H0AGSa8OFKunetOy/rqeZSw9epLlSbfZa/kd9Dqd3arttG8sf7PFZWq62tlavfalMQi8sSa9G+E/wB/aq/aEnSH4IfDjVtRhlOBe3sZs7UZ773xkfQV+ovwn/4N+/j58TVgvP2nvGtp4esCwZ9N0NDNMR6NK4xn6ClLH4WnLXX0PpcBwljq8k5w5I9W9/u3PwG1v456Hpx2W0Zd2OAGPJ+gHNfRPwH/ZP/AG6/2urpB8HfB93b6XNgf2lfKbS1QH+Lc4yw+ma/sV/Zt/4JD/sKfszLDf8Ahnwbb63q8WD/AGlrQF7cbh3HmAqvtgcV+ldlY2WnWyWenxJBDGMKkahVUegA4Fc1fPW9MPTUfN6v8dD7rB8I4GjrNcz89j+ZX9mj/g3Y8LW09t4r/bG8Vz+JrtCHbStOdobPPo7fecdj0Ff0H/Bj9nr4J/s9eGo/CXwX8M2Hh2xQAFbOFY2fHd2A3Mfck17LRXiVa1SrLmqSbfmfS0qNOlHkpxSXkFFFFZGgUUUUAFFFFABRRRQAUUUUAfyIf8HQv/Jwn7CP/ZWoP/SnTq/rvr+RD/g6F/5OE/YR/wCytQf+lOnV/XfQAUUUUAFfmZ/wWf8A+US37R//AGTvxB/6RyV+mdfmZ/wWf/5RLftH/wDZO/EH/pHJQB87f8G3/wDyhM+Af/YJv/8A05Xdft5X4h/8G3//AChM+Af/AGCb/wD9OV3X7eUAFFFFABRRRQAUUUUAFFFFABXB/ED4X/Dz4q6FL4a+I2jWmtWM6lXhu4llUg/UV3lFAH8+X7T3/BAH4D+Pbi48Vfs2apP4C1R8t9ljPm2Lv7xt90H2r8Ivj1/wTd/bj/ZjlluvF3hY+JNJiyRqOiZl+X1aP7w/Cv76qjlhinQxTqHU9QwyK7cNmNehpCWnZ7HmY3J8Jiv4sNe60Z/nK/Cbxvoepa7J4O8RyPaXLAhI7kGKVHHYhsV9B3vga9iHmWTCVe1f2P8Ax7/4J/fsm/tI27j4meD7Ka7b7t5boILhT6h0wc1+QnxX/wCCFHi3wzLLqn7LHxEns4hkrpmtp9qhx/dWThh9TmpxOPrTqe1hZd10/wCAfC5nwHUcnUwdRektPxR+I9jayWFz5OqIyo3GfQ10s2gy7fMtm3qeRXvHxP8A2YP23fgQ0ifFP4cya1YxHBv9Cb7QhA7+WfmFfN9t8WvArXQ0zUZZNJuxwbe/ia3cEdsOBXLUxtVy5uWz/A+Jx2RZhhdatF27rVfernQeHY9Ks9ajXxTbNJZOdsm3qB6j6V73qX7NtprWnrrXgO/WaCUbkWT+WRXklvdWOoRCW0lSdD0KEMD+Ves/DX4hXfgq8FrLl7GRvnT+7nuK+dz6rmaj9ayypapHeD1jJej2f57HHhKtHm5MRHR9eqPM4/BnxE+HGpebc2MkkOQGCDcrA/1r1nS9RtNYh821OGH3kbhlPuK+xNJ1jSPENkt9p8izRt+hrOvPBvhy8dpjaokjDG5Rg1+cYjj515Wx2H5aq0bjp98X/mevPJLrmozuv66ny60Tr1FRV6Hr/hO/0WRmC74ezD0965Bo43BBHWvaw2Pp14KpTd15Hj1aEqcuWSszxnxp4hiMi2NkQWQ5Zv6ViWeqw3OEk+Vq6XxF8P5d73ulNuzyUPX868unt7i1kMc6lGHrxX3+XRwtWgo0Zar7zlkmnqdff6xNp+0WjYc9x6V0uieNba5UQal8jj+Lsa8mZ2c5Y5NNrqqZZSqQ5ZLXuJOx7L4z1iKx8Pvc27KXkwEIPc15to/jVWIg1IY/2hXD6jezTt5DMSidBnjNZddODyanCg4T1bd7lWue2a/rqad4fudXspAWhjLKc9+1T/Cv9tB7aCHR/iPAZAgCi5i+9x3Yd6+YPG+pTW2iGySQgTsAVz1FeJ12R4Jy/MMJKljoc2vuvaUfR/0j1MvcqcXOL3P3f8P/ABK8F+PtBuLvwzepNmJ/kJw4+U9RX8/njbxNovh7Ur6fVJ1jxPJxnk/MegrsrTXdY0FZLzR7mS3kVGwyMR2r8v8AxDq2oarq1xc6jK8ztI+Sxz3NejwD4e08lr4p0qzlTny2TWqtzddnv2Pscky55nOXtJWUbXt1v+Wx9AeLfjqpR7XwwnUY81v6CvtrwF4vtdR+Hum+ItWnRDJAC7E8bhwa/IgKT0r1fwvruoT6IukvMxigYlUzwM1+jY7KKdanGEdLPc97OeFqEsPCNH3bPV7tr+rH2l44+PNvZlrHwoolfoZW6D6Cvcfgl42h8SeBlvtSlUXFu7JMzHB9QTX5qV0ega3eaczWccrJDMRvAPB+tcWKyGjUw/saejve/U8LGcN0JYb2dHSSd79WffPjj426Ro8LWXh4/abg5G/+FT/Wtb4JfEmTxTaz6Rrbj7ZCS6sTjch/wr4eOTyeas2l7d2E3n2cjRvgjKnBwa5anD2HeHdGHxfzdbnlyyOj7B04/F3Pvjx58YPD/g+Nra2YXV5gYRTwPqa2/wBlr9oaC51y48J+NpFje9k3WsuMDcf4Cf5V+eNta6jq10IbZHnlc9ByTX0r8OvgXei4t9e8SyGHy2DrCvDZHTJrxs24fy2OXzw2Jl70lo+t1tZHNWwODwtBqpL3n16/JH7GzXVtboZJnVQOeTXJal4+8OacpzL5jDIwvPIr5hn1PULlQLiZ3wAvJ7Cuv8IeAdZ8VTq6qY7cEbpG9Pavx2XDuGw0HWxlb3V8j5xVZSdoI7e8+KN3ev8AZ9CtuT/E3PWprfSfFniEjz1ZyO7cKDXueheC9A0C3WGzgUkdWYZJrbvb+w0q2a6umCItfNVM/oQlyYCh6N6tnUsG2r1JHjtv8OVtITea5OEjQZIFea61cabJeldLUrCvAz1PvW94y8Y3HiG5NvbkpaoeB/e9zXn1xdWtpGZrqRYlHUsQB+tfUZVhsU17fGT957R6L/gnFWlC/JTX/BLLS7Ru7CuP1Oe51ObybVWZF9uprDv/AIueArO6/s+3um1G5PC29lG1xIx9MIDXvXwy/Z8/bO+O8iR/CH4bXNjZy9NQ1o/ZogD32feIr3qTcHeMbs9DA5DmGK/g0W13ei+9nkdv4bunG64IQV2mh+JPg/4DgOoeL72KW6c4gt0/fTNj0Rcnmv1A+FP/AAQy+Jni549S/af+Ijrbthn0zQo/IX3VpSSx+oxX67/AP/gnR+yL+znCj+AfCVrJerjN5ej7TOSO+588/Ss8dh6+Lp+ylVcU9+Xe3a59rlnANRSU8ZUS8lr+L/yZ/PL8Nfh5+15+0W6W3wD8Ay6VpshA/tbXgbaIKf4lj+83qK/Rv4Mf8EV9C1C8h8Vftf8Aiu78aXasH/su3Y2+nIfQouC4+tfu1Bb29rEILZFjRRgKowAPoKmrnwWSYPC604Xl3erPvMFkuDwutKGvd6s80+Gfwc+Fvwc0KPw18L9BstEsogAI7SJYxx6kDJr0uiivWPVCiiigAooooAKKKKACiiigAooooA/kQ/4Nc/8AkuX7c/8A2Vq4/wDSi/r+u+v5EP8Ag1z/AOS5ftz/APZWrj/0ov6/rvoA/wAwT/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1Ov5Av8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINToA/f6iiigAooooAKKKKACv4xf8Agq/8G/2jPGf7Z/jX4lL4H1+Xw+72tvZX8enzyWrw2ttFEWWVUKYLqzde9f2cO6RIZJCFVRkk8AAVieH/ABT4Z8W2A1TwrqNrqds3Sa0mSaM5/wBpCR+teLnmUQzKhHDzqctnfTXZNfqfdcAcZ1uGMdUzKjh1VvHkd21ZNp6NXs3y/mfjd/wQj8AXHhP9kXV/EeowNDda54jun+dSreVbRQwqCDzw6yfnX7XUUV25dglhMNTwyd+VWvtc8LifPJ5zmuIzSceV1ZOVr3stkr2V7LS9kFFFFdp4QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3Nor8jf+Cp//AAVn8A/8E4tP8IfDfwz4bufiT8ZPifeppngzwTp0ywzX1xJIsQluJSG8i3EjqgfaxdztUYV3Tl9B0L/gvxd+E4/iLrvif4JWmuvH5x8FrousNZqD8whbWBqBkEoGFaVbJ4w2SEZcZAP2aor+f79j/wDb4/4KRftjfs1fHfxbH4S8J/Cz4tfCXx7f6D/wi3iK3u9WslsLDSrScQvcW1zZuZZ7iV5I7tVeIwlQsTAiQfHP/BKn/gp1/wAFv/8Agq/+zvq/7THwf0H4G6Fo2la3c6AtnrC6/DdTXdrDBOxLQS3CJEVuEAb52yDlAMEgH9Y9FfzQ/D3/AIL0fFT9nr9tXR/2Bv8Agrz8J7f4PeIvFMiReHfGGi6kdR8Mao0r+XGweVI5IInfCb2d2R2AmSEZavtD/gqR/wAFKPiP+yR8RfhB+yH+y34f0jxJ8avjvqs2neHl8QzyQaJplvaBDPe33kkTSIu8BIYiryYfa25QjgH7HUV/M3+2/wDtj/8ABcf/AIJy/DbTviZ8S9H+GHxS8I6prGm6Rfa94fstR0q60F9TuobdJbmznurhJ4C8nkxtHIrB2QuOef6ZKACivxk/4KX/APBSb4sfs5fH/wCEH7BX7H+g6Jr/AMbPjdcXR0uXxPNLDoekadYoZJ7y7WBlnmyqSCKGJkZyjfNuCo/yJ+11+2R/wW2/4J9R+CdS+L+jfDT4l+C/F/izQ/Dl34o8O2eoaXc6IdUvoIc3djcXVwskcqu8MMkcoCyFTIMlQ4B/StRRRQAUUUUAFZer6JoviCzbTtes4L23f70VxGsqH6qwINalFAH5y/G7/gk5+wL8fPNufGHw80+yvZck3mlqbGbce+YtoJ+oNfkl8Yv+Da3wZO8t/wDs6/EjUdGPJjs9YjW8iz6eYoVgPwr+oeitqWIq0nenNr0ZlVoU6itUin6o/hF+KP8AwQ1/4KL/AAv8y40PTtI8a2sXRtMuDFM30jkA/nX55/EL9n79pT4QzvD8Ufh3r+jeV9+RrRpIhj/bTI/Wv9Maqd9p2n6nAbXU4I7mI9UlUOp/AgivYo8SY6no5cy81/wx5lXI8JPaNvRn+XRb+LbOKQQPciNv7kwMbfk2DXXw3ovoQssIlVh2wwNf6KvxF/Yq/ZL+LCSL8QPh3oOovL96R7KNZOfR1UMPzr4J+IH/AAQe/wCCeXjUyS6P4fvvDUrkndpN68WD7BtwrvhxS3/EpK/k7HkV+FIvWlUt6r/I/iNv/Avh3U1LPa+UxP3lG01zFp8LLG01aC8E7GGJwzIRycH1r+s3xt/wbg+B5C8/wt+KutaaedkN9BHcoPTLcN+lfIvjD/g3s/bQ0RnfwT488M67HnKJcwzWr/iwDCvQpcWU7WfMvxOV5JmlJONOomvX/M/HqPWdJnAEo29uRUog0e4X92V69jX3L4q/4I2/8FNPCG7/AIo/SdcC99M1IMT+EqpXzv4l/YW/b28Flv8AhJPg9ryhOptRHc/l5bGlDNMHLapb1ufPVOGMdDam/k0/1PHLvR4PJLW33hzXMkEHB7V0eq/Dr4/+Fmb/AISP4feKtO29TNpsoH8jXgviTW/GGmXrsunalbZ+8s9nKpz7fLXZQxWHm7e2j82kZU8ixvNyypteqZ6xEtus6zTRh9vrXe213BdpmI/h6V8eP8QNfi/17PHj+/Ey/wAwKpj4s3kZ2jUEjP5V1ujTntVj/wCBIufD2Kf9P/I+h/HXwi8H+O0abUIBDdEcTxjDe2fWmfCn4V6X8MbKdYpTcXNw3zykY+UdAP61wOgfHvTkiEOuOkhA4dGGT9RXpdj8WvAF8u5dQjjIxkOcdayq1Kqpuk53j6pmFeOaU6Dwk+Z0+260/rY9OZVcYYZHvzWDqXhXw5q0fl6hZRSDO7lR1/DFeb+J/i34ZsbY2+kXkUsz8bgwwo9a8p/4WZcFsf2so+sgFY0MM2uZVVH5nNhcpxUlzxvH70fQn/CtfA3/AEDYfyrkPGvw+8I2ujm4sLKOORGH3R1z2ryv/hZUzMIxq6knjiQGrWkeK3ttUivftJnCNuK7XkVvwANdUJ+yfPLEp26c2/4no08BjoS5/aN26e9qWrHwjqFySbKxYleOErvNP+FPiS5wZwkC8fePY+1eiaX8VLG+RUtdK1GaY9Vt7OVx/wCgCvSdHsvix4jA/wCEZ+HPivUd3TyNMlOfzArhr8Qy6OK+aZlOObVPgw8vuf6nl0Hwmt4bTYLtjL9Plrn7z4ca/A37gLKCexxxX2Z4f/Zf/bp8ZOo8J/BfxDIH6G7VLX8/MYYr3rw1/wAEtP8AgqF4ywtv4D0rQd3fVNSVcD38oPXn/wCsDi7uaf8AXkVQybO5O7pfe0v1PyuHw/8AEpOWiGP96s/UtDn0OEzam8cKrycsM/l1r91dC/4IIft6eLiD418f+GvDkTYLpaJNcsPUA7Vr6F8Gf8GzvgGWZL34u/FTWNVk6vFZwJCh9cMxLD8qtcTU/t3fov8ANnt4XhjHzd8RKMV5av8AyP5YL7xxodnM0SMZFHRxwD+dc7/wsyzlYw2kRlk7KmXP5DJr+5z4c/8ABAL/AIJz+BPLk1fw/f8AiSRMEtql40gJ9cIF/Kv0A+HP7C/7H3wmjjXwB8ONBsHixtkFlG8nH+24Zj+dZVeK42tSo/e/0Vj3qXDOHivfbZ/ni+Afg/8AtTfGJ47f4XfD7WtUMpG2SK0dYzn/AG3AWv0T+E//AARD/wCCl3xTaK913TdM8HW7YydUuMyLnuY4w2fzr+8XTtJ0vSIBbaTbRWsY/ghQIv5KAK0K8ytxJjZ6RaivJfq7s9CnkuDh/wAu7+p/LV8If+DbTTnMV3+0b8T7/UgMF7PQ4xax++JHDN/47X6zfBL/AIJCf8E/vgSUu/DvgCz1W+TB+16xm+lLDv8AvcqD9FFfpfRXjVcRVqu9SbfqzvpYelSVqcUvRGLofhvw94Yshpvhqwt9Pt1GBFbRLEgx/sqAK2qKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAK/kQ/4Nhf8Ak579vj/srU3/AKV6nX9d9fyIf8Gwv/Jz37fH/ZWpv/SvU6AP676KKKACiiigD+RD/goZ/wArYH7GP/Yman/6K1qv676/kQ/4KGf8rYH7GP8A2Jmp/wDorWq/pC/bY/bP+BP7AH7N3iH9qT9ovUWsPDnh6NcxwKJLq8uZTthtraMsvmTStwq5AAyzFUVmAB9W0V+A37MXx3/4LXft+/DHT/2nPBNp8OPgD4F8SwJqPhjRfEWmX/ifXruwlG6Ge9eG906CBJ0KuixoZApyccZm+BP7cv8AwU01T/go9e/8E7f2qvBng/wfeD4ba14m0LxdoovNS0bXdRgvLG3tp47eaS3mihtlmlF1ZG4MpYriZUKOwB++dFfyVfB7/gqb/wAFqfjp/wAFQvil/wAEwPA+j/BWDXfhVYnVb7WtRtddhtbqyLWgQwxxXkziVheREoxCjDfOcDPsH7VX/BYX/gpN/wAEqNc0Xxd/wUt+BnhzxJ8J9Xu47Kfxr8LtTupk06WQnCz2eoxJJ5jAZVWkijbosrMNtAH9OtFfmT+15/wVS/Z0/Zh/4Jtal/wUx8N3C+NvBr6XaX2gx2EojOqz6jIkNrCHZSYsyuBMWQvCquShZClfE1n8Xv8Ag4Qtv2drT9rXTND+D/i+XUdJj1z/AIVvp8Gp22opayoJo7e21VruWCe88pgHDQrC0gxGSCMgH9B9FfAn/BLj9qXx5+2x+wJ8NP2qfidZ2mn674106W/urWxVkt4T9oljVEDszfKiKCSeTk8ZxWf/AMFSf+ChPgX/AIJgfsX+J/2t/G+mSa6+ktBZ6ZpMUoha/wBRvH2QQmQhvLTOXkfaxWNGIVjhSAfoXRX8+fi34t/8HCXwn/Z+k/am1DQfg/4/lh0waxf/AA90aDVLLUYLcKJGhs9Se7nhubhIyS4aEI7KREWyob9M/wDgm7+0V43/AGuP2DvhR+018SILW217xx4cs9XvorFGjt0muF3MsaszsFHbLE0AfbNFFFABRRRQAhAYbW5Br5/+LH7KX7Nvxys5LL4s+CNH1wSAgvc2kZk59HADD86+gaKAPwX+Mf8Awb2fsZ+OGl1D4VX2s+BLx8lRY3HnW4bt+6lBAH0Nfl18UP8Ag32/bN8FNJc/CbxjoXi61UkrFeo9ncEdhkBlJ/EV/ZbRXVRx2Ipfw5tHHXy7DVv4tNP5a/fuf54HxM/YX/bp+DLuPiF8LNVeGLO640zbew4HfKc/pXyrc+JX8PXf2LxBDd6PODjy76CS3OfTDqK/052RXXY4BB7HmvLPGvwL+C/xHheDx74U0nV1cYb7VaRSEj6lSf1r1KfEOJjpNKXy/wAjxa/CmDn8F4/O/wCf+Z/nK6V4sgvuIJI7gf7DAn8s1q3elaNrK7b6zDk9yvP5iv7Z/iR/wRs/4J4fElnnuvAFtpEz5Jl0qR7Ns+vyECviXxx/wbt/AG8L3Hwu8eeJPD0n8EckiXUI/BgG/WuqHEUb3dOz8meJW4MqxfNh6qv81+Vz+T7VfhJol0d9i72xPbqK7X4U+F7XwNNc3Goy+a82FXaOAPev3Y8Y/wDBvn+1DpG5/hv8VNH1ZR91NVs5ID9CYt9fMHir/gjf/wAFNfCZZrPQfDviNF72Oo+SSPZZVBrslxDCtTdKpJpM4cVw9nDpOi2pRfZr9bM+OFuNCugdpX+VSHSLCU7o2wPY5rt/Ev7D/wDwUB8HM3/CQfBnXJkT7z2DRXKcfRhXh+r+E/jl4PYp4n+HvivTWH3t2myyAfigYVyKrQfwVvvPnanDOYw/5dS/P8rm/qNh9jcFDlDWWQGGD0Necax4/urCze31e11OxOOPtFlLGQf+BKK8gf42zQt5a3UZA6FkIP45FehhoxqK3tY39URTyTGta02mu6a/Q+vNAbTdPkbdGFdv4q6zUNN07WLNrLUYknhkGCrjI5r4ZPxsuANzXduB74FbGl/H6/tJ1ke8t5YhwULjn9a0qZZUk/aQmr/4iKmRYu/Mlr8ze8W/sleHNT1SO+8N3JsomcGWI/MNuedvpX1d4f0Ww8O6PBoumrtht0CKPpXj2kftAeAb9VW9uRbuRzlgVz9Qa72P4jeBJYfPTVrYrjd/rBnH51x42tjKkY08Q20tv66nPj6+ZVoQpYrmajtdfr1OsvNJ0y/Ure28coP95Qa4W++D/wAPNRuWu7nTk3t12kgV5N4v+NNvPdfZ/D19HFEnV94yx9ua4z/hbWsbd/8AbEeP+uiVth8FiYxUo1eW/m0Xh8uxkY80JON/VH0B/wAKR+Gv/QOH/fRrwTxp8PtC0HxE9rpNtlNu7bgtjNUZvilf30RSbWowoP8Az1UH9K7TwH8Y/CmgeYPEd3b3PmEfOTvcD8jXTGtWwydSdbn/ALvN/md1Kjj6N5uUp+WpzOl+AdeuyE03TnGRkHbgYr07R/gh4junD6jKlsnB45avRLT4+/D+9Pl6Ot5eHoFtrWST/wBBWur0/wAa+KNdYReF/A/inUWb7oi0qcKf+BFQK8uvxBiJaRSX4kunm1X4MPL/AMBf6nmOqfBbUoBu0u4Wbjo/ymuLl+HHi6OQx/ZS2O4PFfbGgfB79tbxlt/4RL4IeKJlbpJPFHAn47mz+le6aD/wTj/4Ki+N1B0/4f6XoETjiTUtTTcv1RATXPTz+vHSTT/ryOmhkedy09h99l+p+Wo+HfitRuktG4965fWEi8Phl1WWOFwMhM5J/Kv3I0f/AIIN/t8ePMf8LK+I3h7QIHxuj09Jp3X81VT+dfQfgT/g2j+GCMs/xe+Jus6w4OWWyiS2VvbLbziuynxDTWtXXyiv1b/Q97CcJY6WuJnGPktT+Xe78f6NbLvyT67sLWEfihaXdwtro8LXUrHAjiUyMT7BQc1/cZ8Nv+CDv/BOn4fvHc3/AIWn8QTpjL6pcvMrY9UGFr9Avh7+x5+yx8KYki+Hnw/0LS/LxtaKyi3DHoxUn9airxPH/l1R+93/ACt+Z7tLhLDr45Nn+fZ8Of2fv2yPjRcInwt+GmuX8cpAWV7VoYhnuWkxgfhX6R/CP/ghn/wUa8fKlz4vn0LwXbSEFjdzNc3Cg+iRjb+ZFf2821paWcYhs4kiQcBUUKPyFWK8uvn2LqKyaivJfrqz0qfD+Agv4d/U/m7+EX/Buf8ACSxMWoftD+P9a8Vz5BktrIixtT7fLl/1r9ZPgt/wTe/Yl+AMcZ+HXw70mO5ixi6uoRdXBI7l5dxz7jFfcFFeVOrObvOTfqerSoUqStSikvJWK1pZWenwLa2ESQRKMKkahVA9gKs0UVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wdC/8AJwn7CP8A2VqD/wBKdOr+u+v5EP8Ag6F/5OE/YR/7K1B/6U6dX9d9ABRRRQAV+Zn/AAWf/wCUS37R/wD2TvxB/wCkclfpnX5mf8Fn/wDlEt+0f/2TvxB/6RyUAfO3/Bt//wAoTPgH/wBgm/8A/Tld1+3lfhj/AMG7Gs6R4c/4IafA7xD4guobGwsND1O4ubm4cRxQwxaheM7u7EKqqoJZiQABk14p8BP+Con7cX/BWD4j+Kj/AMEsPD/hfwj8GPB2ovo9x8SfH1td6hJrF6ihnXS9LtZrUhUDI5e4nwY3UlVc7AAf0c0V/Od+1B+2t/wV8/YI8b/Cjwz8dfDvgL4h+BfiD8QPDPha98d+Gra+0uXSLbUtQhhnW80u4nu1Dzws6W9xHdeUkmA6bigfyL/gqP8A8FSP+Cpv7Cv7ePwh/ZI+FOnfCzxNp3x81k6Z4VvdX0/VrOSweS8htkjvzDfyh/L+0xb5oYx5mGYQpwtAH9R1Ffz3/tJftW/8F6v2L/hrd/Hfx18IPhb8ZvDGhQm61nTvAepatp2sw20alpZY4r+KdZEjAyfL8yQjny8AkfdP/BN3/gqh+y//AMFOP2Ypf2mfgpeS6ZBo7PB4h0nUiiXuj3MSeY6zhCymNk+eKVTtkT0ZXRQD9J6K/m1/ZE/b2/4Krf8ABVfwXr/7V/7DCfDL4ffCa01q70rwvY+NLPUdU1fW1sW2ST3slldQJYxuSCkaRyyIwIO9QrP9Zf8ABKb9uT9sr9rD4m/HX4S/tseBdJ+Hvij4Q6zpOinTNJmkuYpDd2rXDXKzuT5kVwpjlgwBtjYZJOaAP2YornPGHizQPAXhHVfHXiu4W00vRbOe/vJ2+7Fb2yGSRzjsqqTX87v7IP7cH/BXf/gqJ8J7v9s/9jiD4W/D/wCGF5qd9Z+E9E8Y2upanq2rW9hM9vJNf3NldRR2e+RG2JHDIykHO9drOAf0i0V+O3/BJP8Abi/a3/bHu/jT4a/bK8Dab8O/Fnwt8Ww+GX0XTZXuUjxYwTvIZ2YiVJmkMsLKAPKdRlvvH9iaACiiigAooooAZJHHKpSVQynqCMivAfij+yt+zv8AGizey+JfhDTNVWQYLSwLv/76Az+tfQNFAH4g/FH/AIISfsseJpZNR+FOoar4JvGyQbKcvCD2/dvkY+lfCvjv/gix+2X4FD3Pwq8daV4qt0yVt9SgNvKR6blJBPua/qoopNJnm4rJ8Fif49GL+Wv37n8SPjL4Cf8ABQf4KAjxZ8NNRaGFtxudFnW6j47leD+GK8hi/bP8a+CLhbDx9Y3+mtG/zjUrOSEn23YxX95Toki7XAI9DzXD+Jfhh8OfGMLW/irQ7HUEcbSJ4Efj8RXFiMqwOIVsRQjP1Wv37/ieHU4MwW9CUoej0/G5/Gl4c/bi8Ea5EIb5IJi7YIjlHCn2PNV/EXjTwPrqXGreDtSks5i27yZRlWz6Y6V/TV8Q/wDglt+wt8SxI2vfD/ToZJc7pLVPIc590xXxj4w/4IC/siauzzeC9U13w6x5RbW7LIv4MDkV52H4WyzD1fa4WMqb6pO8X5NSujycZwTXqRssQpf4o6/ej8K4fidq1vIYrlUlPHTpWpc+OPDusp5OrWpBx94dc1+lnib/AIN//GGnFpfhv8WbsD+GLULZJB7fMMGvAvEn/BF/9vrw1ubw54h8O6+o+6HWSBvxPIr2HlmCbUoxcX3Wh8/W4FzOPwOMvn/mfD1/baOwE2mXGQx+44wRXmXifXDaI1hb53ngt2FfW3iH/gnL/wAFLPCO43ngLT9UVec2F8GJ/BgK8V139nD9tvw+pHij4L67tXq8Plzj8NrE16eFlTptc8uZeZ5suE80pu8qDfo0/wBT57ttZvLc4Y719DW5B4gtH/4+AU9+1P1fwV8WdLZl1z4YeLrNh1K6ZK6j8QMV4p48tfGzWf2XT9D1uwDZEn2jTZ1YD/vk17lOvha0lFy5fMX9gYxyUZ0JR87P9Dy/4qfEG61XxQU0eUi3tPkQqeGPc1zen/EK8hG2+jEg9Rwa4rUNL1awkkFzY3oKk9bWYE/mlYxmlX79tcr9YJB/7LX2lCpgFSjTjUjZeaufWU8niqUafsnZeTPeR430O7tJVZjG2wj5vUivzQ1rxTpNvfzhWLnzH6fWvqy4vAbdwIp+VI/1T/4V8MXng7xdLdyyR6VdkM7EEQv0J+ldmGxGFpXcasdfNH1/B+U0qUqzndLTf5lm98Z3EhK2abB6nrWp4F8Y3GneIVOoyEwT/I+egz0NYkXw98dzLuh0a9b6QOf6V1Gk/BL4l6vs8jR7wbzjH2aXIHrgJW0szwy3qx+9H3Nelg/ZSpyas9PM+iX1CHGYvmzzkdKpSXsznCnaPavQfh3+z18UnhNrrWk6xdouBGLbTp3Yr35219QeGf2WPiNcOn9mfDHxbqTc4ZtNlVTn6gCuStxBgKf/AC8T9D88xE1Rk40qcp+ai7fjY+ZPB93fasyaWkTySdFYDr9TX0j4W+ExuT9q8S3At41PMScs1fV/hb9jb9tHUY1j8H/BbWlU45lRIR/48Qa+gfDX/BLz/gpT4t2m18CWWlhu9/equP8AvkNXz+M4lpTuqUuX8WfMYvA5riJP2GHcE+7V/wDgHytobeEPCcAh0Oy+bHLn7xP1raTxVq9/MsFlGAx9a/RPwp/wQ5/b08Qsp8S674d0JT94DfcEfTGK+oPCP/Bvz44uQp+IPxXniXjdHp1qqA/Rm5r5mtjcM25Wcpd2edHgjMKj5p8t/N3/ACPyq8Hw+ENIjg1nxtftczBtwt4xhVx6k9a7nXP2svBHhy3NtZfZ4BGcKHkH3R7Dmv228If8EAP2T9LdZvHGt6/4ib+Jbi62Rn8FAx+dfZfw7/4JTfsIfDTy30XwDYXEkf3ZLtTO3HfL5r5XG5XhMXV9rik59k3ZL0Sseph+A6q/iV0vSP6tn8lEv7W+ueLLlrHwXa3mpMzAKunWkk5B9MgV7b4H+CP7eXxiAXwP8L9VeOdtwudYlW0i57gHJwPpX9nXhf4S/DDwVAlt4T8P2GnpGAFEFuiYA+gr0BI4412RqFA7AYq6eBwtJWo0ox9Fr9+57FHgfAR/jOU/V2X4H8p/gX/gjN+294/WO5+JnjLR/B9u/wB6Cxha6nA7gsxC59xX3J8Mf+CDn7NehzR6l8Ydb1fxrdLglbmcxQZ/3Exx7Gv3PorpUUtj38Lk2Bw38GjFfLX73qfNvwn/AGQf2avgjaR2vwz8HaZpvl/ddIFMn/fRBP619HRQwwII4ECKOAFGBUlFM9MKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+RD/g1z/5Ll+3P/wBlauP/AEov6/rvr+RD/g1z/wCS5ftz/wDZWrj/ANKL+v676AP8wT/g9W/5Sm+Af+yVaV/6d9Yr+v3/AINcf+UFHwM/7mb/ANSDU6/kC/4PVv8AlKb4B/7JVpX/AKd9Yr+v3/g1x/5QUfAz/uZv/Ug1OgD9/qKKKACiiigAooooA+b/ANsTx6fhh+yp8RPHcb+XNp/h/UGgb/pu8LJF/wCRGWv8/wC8HX3iyz8R2kXgm7uLPUriVIYHtZWikLyMAoDIQeSR3r/SPdEkQxyAMrDBB5BBrwfxH+yz+zX4t1u28T+IfAWgXOp2c8dzDeHT4VuUliYMrCVUD8MAeuK+T4j4cq5lUp1IVeXlW1u73vf9D9i8M/E3CcL4bE4avhHUdVp8ykuisk4taq7bvzddj1vwpojeGvC2m+HHne5On2sNsZpWLvIYkC7mY5JJxkknJNb9FFfVpJKyPx+c3KTlLdhRRRTJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAPxCu729+MP/B68NH+J2Z7T4eeGUj8OQ3HzIif8I8LkbB04nvbmUejc9Rx/cVX8qn/AAWm/wCCbX7Wfhr9uD4Z/wDBav8A4Jq6FH4p+JXw5Edt4m8KK4jn1vTolkiLQ5PzyNayy2sqL+8MZjMQLpg/b3wo/wCC8Hwc+I3hyCy1b4I/GjRfHpRUn8Hv4G1Ga+S56MizrGLQJuBAlmmhXby4TkAA/VzxL8MfAPgzRfiH468LaXDY6t4vtXu9ZuYgQ95Pa2YtYpJOcFkgijjBAHyoAelfzH/8GX//ACij8V/9lM1f/wBN2l1+v138df2nPhT+zH47/aN/a+8MeIbnVfGTPB4a+G/grRbjxRfaJbfZpBb2076ZbSvJd3DBpLu4kcWcLlIY3G0PN/PN/wAG3vx/+LH/AATV/YZ8Q/s5/tNfs5fHG38TX3jG/wBetUsPh9qs9vLbXNpZQIvnNFGiPvt3z5hRQMHdzQB7X/wen+AfA2q/8E4Ph/8AE3VY4Y/EWhfEC1stNuSoM3kX9jeNcwI3UK5t4pG5wTCvtXtP/BQL/glN8dv+CtX/AATq/Zn/AGkvhb4sl8HftHfDjwno2u6ZqE9w9uLm8v7G0uLqKS5iBlhnW4iWSCcZCPuDABy6eQ/tRfsS/t8/8HAf7V3gp/2n/AWofAX9ln4Y6kNQj0XxBcRnxH4nmcjzHe1tpHFqzRAwqXk/0dJHKNKzMq/oJ/wUT+P/AO1D+xp/wUG+Anj39nH4TeJvif8ADu08G+JdK8X6J4StXuJbLTGutK8i4t4FwklxbvGvlQjDvEZFXaCWAB+InwL/AOC+Hxv+DfitP+CZP/ByF8KrjTE1R7ezfxa9v9mimjjmQxXN5HARBPAsqK322wfapUHy2IZh/dnY31lqdlDqWmzJcW9wiyxSxMHR0cZVlYZBBByCOCK/jv8A+C0Hxj8G/wDBa/8AZZ0X9i/9jL4MeOPFfxN1PXrG4tdY8Q+Fb/w/YeEFikBu5ry/1CCGNPMg3RGOJpA4bPLqit/Vx+zx8LZ/gb8APA3wTur99Vl8H+HtM0R72TO+5bT7aOAytnnLlNxz3NAH4d/8F6P+CO/xc/4KHaf4F/aY/Y48WHwZ8dPhDJLPoFyZ2tI72F2WXyftCAvBPHKga3k+5lnV8Bt6fkJ+zd/wcAfErwl49sv+CZ3/AAcX/C2Xw1qs99pwTxVNB9itpJ7O6jns7q+hjKwmFbmFJBfWTmDKgmMIGev2g/b/AP2o/wBrH9kf/gqL8NviZ8KPhV4u+K/wzuvAOo2HjOz8K2kl7cWCvqELwXsMC8T3ERUr5IO94ncjoK/M/wD4LS+OPC//AAXS+Bvgr9jz9iX4QeMvEPxBl8R2t4fFHiPwvf8Ah7TfCNmoIvGur7UIIRmRCoaCEyeYFyN0iRqwB6Z/wXf+OP8AwUp+Bf8AwUG/ZS8Ffsm/GU6Zovxk8Vvp9h4bmtEtdLgubGTTo0a+ubbN3e20z3bPLCzBNi7Qpzmvk79unx3/AMFWv+CDP7Vfwf8A2qfir+0drnx6+EnxE12PQ/F+m63bR2VtbStteVbe1WSWG23wiSa3e3EexoSsgZT8/p//AAcK3+p/sr/tT/8ABNS70nTNV8dXHw/8T3aCy06I3GqaqNNk0JWWGIZMlxMqHYg+85A719Hf8FJba/8A+C8Hj/4Efsj/ALOPg/xXD8N/DHjK28b/ABA8W+I/DuoeH7LT7fTYpYF06Eapb2z3N5OtxKjJCrrGdjMSu8oAfQf7c9v+09q37e3iLW/2x/jFqH7P37H3hrwjD/YGs+G/E1r4dv8AWfFFyY98csqsb53iUz7IFURt5cW1WLuD8sf8EUv+CqvxS/4Zi/bD8U/tLeMtU+KXhb9mTWtVudD1zVoTba3qWiWkV3JHHceZHC/nSLaAqJo1lV5Sj9Aq+SfGjxP+03+zv/wcX+NP2h/2m/2eviB8dvBcvh20sPhLd+FtIOsWWhzvFamR4fOeO1tJHlW4W5meVJIi2/HlOCPJv+CaH7OH7Z3xQ+Nf7ff7Hn7RXwK8SeALP9pTXNfv73xLfbW0TQotUi1R4/s92VRdUmW4vLURLbDY0fmSsybFSQA+zfhX8Cv+Clv/AAUq/wCCYqf8FAvCnx88W+FPjp47tZvEfg3w74e1RdJ8I6bbpORa6dJaiMi5EsEZ8ya6dyJJASSqnd3X7cX/AAUF/b//AGXf2Vf2V/2W/i+JtH/aF+O+of2R4r1XwhYJrV9p+n6UIzqdzptpCkkUuoSQzRFAkTwRyNIVG1UI/PH/AIJgf8FD/wDgpz/wSy+Dcf8AwSz/AGif2SPH3xE8WeC7q6svB2peHrdjpl7bTzNKiTXzRtbi1jkkOLtHdUiIV0Uxkn6p/wCCu37CH/BULxZ+zB+zl+3T8L3Xxt+0l+z7r2o+K9W0jTI/PWZNbuEvJ7KyjBVrmDTzDFZxQLmSe2DEFn4YA8/sfin/AMFH/wBm3/gpF8JfEP7HMH7QXxP+CnjC9g0v4haN8UdEv549KSeeOFr21ubm3RolSOQz7Y9qq0LKx8uQKv8AZfX8yP7LP/BVn/gor/wUz8XeEPgr8N/2cPFvwItrPU9PvvH/AI08TI8FnZWOnzpNd2Gmpc20bXFxfeX9lBI3QJKzsnAdf6bqACiiigAooooAKKKKACiiigCrcWNldjF1Ckn++oP86wL3wN4K1JDHqGj2U6nqJLdG/mK6migDxnUP2c/gDqxJ1PwVodxnr5lhC380rib79iz9kXUjuvvhp4akJ7nTYM/+gV9OUUAfHN3/AME9v2Ir07rj4XeHCfaxjH8hWTJ/wTc/YTl+/wDC3w/+Foor7cooA+Io/wDgm5+wnH934W+H/wAbRTWra/8ABPT9iCz5g+Fvhz8bGM/zBr7IoouB8w2P7FH7IWmkNZfDPw1GR0I02An9UrtNP/Zu/Z80kg6Z4I0O3K9PLsIVx+S17VRQBydj4C8DaYgj07RrGBR2jt41/ktdDb6fYWn/AB6wRxf7ihf5VbooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5EP+DYX/AJOe/b4/7K1N/wClep1/XfX8iH/BsL/yc9+3x/2Vqb/0r1OgD+u+iiigAooooA/kQ/4KGf8AK2B+xj/2Jmp/+itar5x/4PLte13XZf2UvgFqc0kPg7xX4q1W51YBsRNPamwt4WbHIZIby5wfRjjvX0d/wUM/5WwP2Mf+xM1P/wBFa1X6X/8ABfD/AIJRXH/BWD9i4/DrwBcW+n/Efwbef234VurpikUlwEKTWkjjOyO5TA34wsqRsflBoA/bPTdNsNH0630jSoUt7W1jSGGKMbUjjQBVVQOAAAAB6VyOsfDHwD4g+IGh/FXWdLhuPEXhu3vbTTL9gfOtoNR8r7TGpB+7KYIiwIOSinqK/ng/Y0/4LdfE/wCGvw00n4Ef8FS/gh8T/AvxZ8N28em32o2HhW+1zStdlt12farWfT4ptzzbS0iorRBidkjLwv6PfB39oX9pn9oD4g3P7ROueE/EXws+CHg/S7ya20bV9KaTxX4qu2jyZ30yGO4vLW1tkD/Z7ZFF9dzsCY1VVjlAPwk/4J3/APK3F+2H/wBiLB/7gK/oD/4K7fD/AMCfE7/glx+0H4V+JEUMmlDwBr96XuEDpBPYWct1bzgH+KCeJJUPUMoI5r+W/wDZI+N3xd+Cv/BwR+0P/wAFBfG/7O/xuPwz+JGgf2Jot7a/DzWpJ3kibSwJZLdrZJEjdbKRhlS4yoKgkgfoH/wUi+J3/BSv/grj8L5P2Ef2Hvgr4r+E/gbxuFg8X/ED4kQDw/5WmK4aS2trDfJeOJwArkorspaMoFZpFAPhr/ggn+yHD/wVE/4NtfGn7FPxu1C60vSLvxfqtl4c1FAJXsPsxs9QgmjRsZjW/ebzIwV3qZFDLuyPm/4Xf8FCf+CyX/Btxquk/s4/8FF/BU/xd+ANlImnaH4l0+Qym2tV+WOOz1BlAwqg7LG/WOQKoWN44wDX7rftUfsi/Eb/AIJcf8EXvBf7PX/BPDSL/wAW+Nfh94o8H3tlDZxMtxruqLrdrcXbzqjErFdPvEqs5SOA7C2xc1rfG3/gr58CPjh+yx4q+Cnxt/Zy+K95468RaLNp138Mb7wTqVzLeXVxHt8pLxLdrNoBIQVuvMUhQJFTcAtAH6tf8E9vi1+yZ8cf2QvB3xN/YheEfDbVIJp9Nt4QytaSSzO9xbyxszNFLFO0ivGSQrcL8u01w3/BUf8A4J9+CP8Agp1+xZ4r/ZI8aajJokmsCG70vVIkErWOpWb+ZbylDjem4FJVBBaNmCspIYfGf/Bun+wJ8bv+CdP/AATS0X4M/tFD7J4v1zV77xJfaWJVnGl/bliSO13oShZUhV5AhKiR2AJxk+o/8FsvGP7UHw6/Za8JfEH9jzw5f+MPHmhfEPwxf2eiafv36jFBclpraQp92GWMMkjH5VVsnpQB/L18I/8AgqB/wWB/4N3de0f9mD/gqd4Fu/il8FbR003QvFmnyefLFax8IlnqDBUnCIDts74RXCqAFdI1Ar9Z/wDgqR+0XeeEP+CBVv8Atkf8Ee/im3w8+HfhrSdP/s220eyillubO+1G1082ouLjfNYyWjSyhxGBKsi7CygV6v8AtV/8FXvgR+03+xv43/Z38cfs7/FfV/iD4s0KfS/+Fb6l4H1Jp3v7mLbGTeeQ1msMM5VxdCbcoUSou4KK/L34/wD7Cnxh/wCCeH/Bn58Q/wBn/wCPrrH4vmfTNa1KwSVZ49Ok1HxDp8i2quhKM0aBfMKEp5pfazLhiAU/2m/g3/wXK8M/8Ev/AAn/AMFY/C/7Vur/APCR+FfCOi+KJfBGmW/l6V/YgtYHeSeaWRvt94If9Ku2u4XWRzKqYATd+jPjX9rD/goT/wAFIf8Agnf+yv8AH79lTVYfhv4R+ImoRTfGfxVYajZ6dd6Do+nS/Z9Rkspr1v3SPJDclXjDzRlY1ztZyfCP+G+PEv7Rf/BDDQf2G/2f/hJ8QNW+Nnjf4Y6Z4Ch0G48M6ja2EMV/p0dhJqkmrTW6aatgbdmnimNz825AQvzFfl3/AIKW/sMftNfsQ/sxfsK/s76R4B8Q/HL4G/CbUPP+KHhjwnZy3w1bUDPBdFp7OMEzW5ke7+ziUCLcdsrAupoA+gf2HP259X8Gf8F6NK/Yf/Zr+PfiL46/Anx14LvNV87xPfya39h1ez+1O4sNTljVriEfZcB45JoT5rJuLx/J9ifAv4pfGf8A4LJ/tkftEeE4vif4r+F3wb+BOvnwLo9j4Fv10jVNX1iAut7f3d+qSTeUjxYtooyqFHBcEg7vzR+JHxG/bb8Vf8F5vgV+3v8ADn9kX4g6b4Mj+G9z4Q8N6TeW0NjKBnUVhl1QxmS30WJZbxBJFO7SRW4EgRmYQ1R0bXv25v8Ag31/4Kj/ABz8W6f8FPFPxl/Z8/aB1yXxLZ3PhCykvJ9PvriaWdYwI1dY5ImuZLdopjGZ0WORG+UrQB+ifw+/aF/4Ki/8Eiv+CYf7RHxk/wCCleqWfxHufhjeeX8OtYuLmO4vdXt76VLO0N+0O1vL+0zQsfMP2ja0ikkLGa/Nf4/+PP8Agpre/speDf2nv2UfGP7Set/tHqNM1fVdIu/C14ngjUfthWS7toNPNolnHBb7/wBw5DGSJCGyzhl/Vr41/s7/ALcP/BZT/gm/8ftO+Ovhq4+Ej/E/T9Li+HHgbWZFa701fD8/2+G61IhVMF1qlyBHLGQfs9vHECCwfd+f37DH/BY3/grl8JPgtoP/AAT5+Jf7G/jbxP8AG3wnaxeG9M1qeKWx0KeK1XyLe81C6eExJHGFXzJo5jFcBdyyIXFAH9an7LfxH+Ifxg/Zt8B/FP4u+G5/B3izxBoOn3+taFcxvFLp2oTwo1zblJAHHlSllG4BsAZ5r3ivJPgH4T+JHgT4I+EfBvxj8QHxX4u0zSLO31vWdixC/wBQjiUXE6oqqFSSXcyLtGFIB5r1ugAooooAKKKKACiiigAqGS2t5V2yxqwPYgGpqKAOO1D4eeANWydV0PT7nPXzbaN/5qa8+1n9mP8AZ08QZ/tnwLoVxnrusIf/AIgV7lRQB8hal+wF+xRrGf7T+F3hubPXdYR/4Vw95/wS7/4J832fN+Enh1c/3LRV/lX3rRQB+ck//BJP/gnfOxZvhdo4z/dix/WqR/4JCf8ABOstu/4Vjpf/AHycfzr9KKKd2KyPzej/AOCRn/BO2Nt3/CsNJP1Qn+tdBaf8Erv+Ce1mAE+E+gPj+/bBv51+gNFF2FkfGGm/8E6v2FdIx/Z3wo8NRY6YsI/6ivRdI/ZE/Zc0AhtH+H2gQEdNthD/AFWvoqikM8/0/wCE3ws0rH9meGtKt8dPLs4l/ktdlbaZptknl2dvFEo7IgUfoKvUUAIABwOKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+RD/g6F/wCThP2Ef+ytQf8ApTp1f131/Ih/wdC/8nCfsI/9lag/9KdOr+u+gAooooAK/Mz/AILP/wDKJb9o/wD7J34g/wDSOSv0zr8zP+Cz/wDyiW/aP/7J34g/9I5KAP5tn8f+NPhr/wAGTaeIPAcksV7c+Ff7LleI4YWeqeJPsd2D/stbzSK2OzHtX7Z/8G2ng3wx4K/4IpfAy38MRoq6jp1/qNy6dZLq6v7l5Sx6kqTs9goA4Arwn/gjd+zb8Pf2wv8Ag25+HP7MHxVjZ9B8ceE9Y0q6ZP8AWQ+dqF3smjzx5kMgWWPPAdRmvgn/AIJkfH79sv8A4IK+GdQ/4J1/8FB/hL4w8W/C/RNTvLrwX8RvA+kza7py2l5K0zw3MVuGkhRpTJMqsDOjyMpjKBXAB/X18Sfhj4B+MHhOTwL8TNLh1nSZLi0u2trgEp59hPHdW8gwQQ0U8UciEHhlBr+SP/g4L/5TR/8ABOD/ALHpf/TtpNfstZ/tq/Hb9ujV9L+HP7D3g7xb4H8Mz3UM3iH4j+MNDk0SK10+J1aSDSLHUohPeXtwoMSyvbi1twTIzSOqxn8Hf+C5vi34v/F7/grR+yn8VPgr8Efix4z8L/s9+Kft/inVNH8DazLbSCPUbOWRLGR7VEu9qWjlZYmMMm5SkjA5oA/tiIDAqwyD1Ffwff8ABvH4a074cf8ABef9uP8AZn+HMEf/AArFZfEEclhCoWyiex1zyLW38v7uIobi6iXjG0Hsa/d39oL/AIKtftX+Ofhfe+Gf+Cef7LfxT174g6pH9m0+88a+H28J6Lp0swK+fcSam8Ly+SSG8tU2PjBkUcnhv+CNX/BHjxP/AMEw/wBnP4mfEL46a9F4y+OPxXW41LxNq9qZJUjOySRLWGWQB5W86SWWWbYhlkcDbhFJAPwT8cfsp/8ABYn/AINmvih4l+LX7BUUvxl/Zg1O/k1O/wDD86PePYQnqbuCMCe3mjiG031qDC6orXCgBYx/Sv8A8EbP+CnP7E//AAVM8P8AjP8AaE/Z+0R/CPxJuv7Ni8c6JeyCS9RraJ47OUOp2T2+3fHHMqIx27ZEUhRXxH/wTJ/4LBfED4IfsXfDn4Sf8FMPg98T/BPivQ9BsbGz12Pwrqet2GvWcMCLazedZQTyR3cke0TxSqGEnzFhuKrgf8EP/wBiP4g6f/wUd/aP/wCCoEXw41T4LfDT4ogaZ4Q8Jazbf2dqFxE0sM1zqE9h1tRLNAZIo3AP79wo2BWYA/qO8WeF9C8ceFdT8FeKLdbvTNYtJrK7gb7ssFwhjkQ+zKxBr+AbX/gR/wAFl/8Ag2A8ea/43/ZQt5Pjh+ytd38upXWlzK1wbCBjy11HEvnWNwsY2veQK1rJtVpkztjX+679pVNTk/Zz8fx6IJWvW8N6qLcQZMplNrJs2bfm3ZxjHOelfgL+wB/wWR8X/Cf9knwJ8MP+Clvwb+KHgTx7o+hWViL+Pwnqet2GvpBAiQ3EU9lBOVuZ1wZoZQpjkJBOCMAH0B/wTj/bv/Zy/wCCun7OnxJ+Mv7AesSfB74seIbmwHjCS7s4NU1HTdQht47e3uGt5mNvcRPbW/k2821VYRnegdGQfgl/wSS8Df8ABZ7/AILE/sE+LviHqX7XetfD1NL8Varbadc2MLy6nqOqLBbSFLq6SSFrTTocosNvaAAmSVmXART+mf8AwQM/YV+I/wAPP2vf2kv+CiGo/DvUPgx4B+MGopD4M8FarCLK/SwSZ53u7myX/j03uR5MBwU3yADywjP+bX/Brl/wUa+G37K/7AHjb4YfFnwb46um/wCE11XUtFvfDvhbU9etdXmltbVWsYJbC3mRLxGjGUnaNdsqNvA3YAPrX/glN/wUj/4Ko/tVf8Eyf2jvgTpFvB4p/au+Al83hzTrm/e1R7qS4d4UacylLZ7q1a3ugryERzNHH5m4ly3xR+2p+2D8Yf8AgmxoH7P/AI9+GX7Vnir4h/Hn/hINC0r4ueC7/XF8R+Ho5r6CSa+geOGNrSxeOeNoIoY5Y5miPmIp8suPa9O/4J8f8FJ/hX/wR1/a6/aO+HPh7VPDPx8/ad8WyeMrjwtpTE61p2gz6gZ5LJDCdxu3t7i6Z4k/eeW/lBRNla+Hf21h+0H+0L/wRr+A37Pv7JX7GHxG8FaT8JPFnhzWPExudE+yTXmr21ndWszWVige+v0uJp2kmvnijCuUVwWc7AD+mj9vP9rH43fFn/gqB8KP+CQP7Pfiu7+Htv4j8PXXjjx14o0oRHV49Ht3ljgsdPklWRIJp5YGE0xQukboyEfMGv8A7MH7K3/BUD9kz/gprqelW3xG1f4l/soeINBa5Z/G+srqut6TrCIMRwyyKLlg0qkj/lj5MhDfvEUn8nf+CoHgP/go18Nv2zPgN/wX6/Zl+C2tX9/pOhzeH/GPw5TF7rMGktcXf2d7mO0ErCW5sroGdYlmFjPGoYyKpY/rh+xP+3F+2J/wU3+NHhvxzZfB3xR8C/gr4QhurzWZPGMYttR8U6lc2z20Fjb2xQH7Bb+a1zLcZ/eyxxINoV1IB+OPw4/bX+OH/BVz4ZfE79oyfxb8fvA9td63qem/DG2+E+h3z6JY2GnfLa3F/PZwP9vuZ5txuo3n2Ko2Js6j9uf+CDPx6/4KEfHD9iVrX/gpj4Q1rwx8SPCurzaSt3rmntptzrGnLFFLBdvGUjUuDI8Lsi4YxBj8zNX87n7FPxz/AOCjf/Bub8RvHn7BfxE/Z58ZfG34Q6lr13q3gbXfCVnNdOwuiFRA8UU0f75I0aW3ZklglDsA6uCf62/+Ce/iL9sL4k/CnWPjn+2fo3/CF67451d9T0jwV5qXDeGdFWCGC2tJplRTJcymN7q4JxtefZtTYVAB960UUUAFFFFABRRRQAUUUUAFIVDcMM0tFAFd7S1lG2SNWB9QDWTP4W8NXR/0nT7eT/eiU/0reooA4m4+Gvw9ugRc6HYyZ/vW6H+lc9c/Ar4M3nNz4X0x/raxn+ler0UAeLP+zj8BpPv+ENJP/brH/hSJ+zj8BY/ueENJH/brH/hXtVFAHk9t8CfgxZnNr4W0tPpax/4V0Ft8Mvh1ZjFrodhH/u26D+ldxRQBz8HhPwvbEG3062Qj+7Eo/pWvHZ2kQ2xRIo9AoFWaKAECqv3RiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvr+RD/AINc/wDkuX7c/wD2Vq4/9KL+v676AP8AME/4PVv+UpvgH/slWlf+nfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/AIPVv+UpvgH/ALJVpX/p31iv6/f+DXH/AJQUfAz/ALmb/wBSDU6AP3+ooooAKKKKACiiigD+dn/gup+0p8SPhTr3w48D/CbxHqPh3UNl9ql1Lpt1JayshMcUILRMpK5EuQeDXPf8EZ/2tf2uf2h/jbrXg34r+L7nXvDGiaK920d3DC8v2p5Y44h54jEv3TIcFyDtr9pPj/8AsWfsx/tQ30OrfHHwpb61f21uLWG782a3uI4VZnCCSF0baGdmAJIyT61y37KX7CHwH/Y01TxHqnwXS/jPicWy3Ed7OLhYltfMKLEdgcAmU7tzNnA6Yr5GWT5g84WM9r+5b1Sk1oo2Sa2d2fs1LjXhyPBbyR4S+NUWlOUINXlO7andyTUW7aLZI+zKKKK+uPxkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/W/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3NooooAKKKKACiiigAooooAKKKKAP5rP+Ct37Dv/AAUV/bA/by/Zy+P/AOz54O8KyeFv2c/Ej+IYn1bxDJa3WuG5lsJpIvKSxlFqE+xtGrl5SxfcVAG0/wBGnhS+8Q6n4X03UfF1hHpWq3FrDJe2UU/2qO2uHQGSJZtkfmqjZUPsXcBnaM4rfooAKKKKACiiv5uP+Dl79oX43fs4/speEPGHwM8Ual4W1GbXjFLPptw9u8kfksdrFCCVzzj1q6VN1JxhHdu33lQg5SUVuz+keiv8k60/4Kv/APBRe4+/8YfFH4alN/8AFV0dp/wVJ/4KGzqC/wAYvFXP/USm/wDiq+iXCmPfRfeelPKMRHe33n+sdRX+Upa/8FM/+CgsrAN8YvFeMf8AQTm/+KroLf8A4KPft+ykbvjJ4t5/6ic3/wAVVrg/MX0j95yzwlSO5/ql0V/loW3/AAUN/b2lA3/GTxdz6apN/wDFVu2/7ff7d8pwfjL4v/8ABpL/AI0/9T8x7R+845yUNz/USor/ADBIP27P26ZPvfGXxh+GqS/41sw/tu/txyAbvjN4x5/6isv+NS+EcwXSP3nLPH0o7n+nFRX+Ztb/ALZn7bsrbW+M/jL/AMGsv+NbEP7Xv7azn5vjR406f9BWX/GofCuPW6X3nLLO8LHdv7j/AEsaK/zY4f2rv20WGW+NHjXn/qKy/wCNbEP7T37ZrjLfGrxr+Gqy/wCNZS4bxi3S+85pcS4KO7f3H+kJRX+cfb/tJftjS43fGrxv/wCDaX/Gtq3/AGgf2wJQM/GvxwM/9RaWsZZFilul95jLizL47uX3H+itRX+d/D8c/wBruV8N8bPHA/7i0tbMPxj/AGtXwW+Nvjrn/qLSVjLKa8d7feYy4yy1buX3f8E/0J6K/wA/CD4qftYSnn42+Ov/AAbyVtW/xD/aqlOD8bvHf/g3krmng6kdzJ8cZWusv/Af+Cf360V/BJD4x/akkA3/ABw8edP+gvJWxbeIv2nZsb/jh4+5/wCoxJXNNcm4v9esr7y/8B/4J/eHRX8K1vqH7S8v3/jj4/H01iSt23X9o+VtrfHL4gf+DiT/AAriqY+lD4gXHWV95f8AgP8AwT+4yiv4kbbSv2iJWw/xz+IPPprL/wCFdBaeFv2gJ/vfHP4hj/uMv/hXn1eIsHT+Jv7jWPGmWy2cv/AT+06iv40bXwF8eJsB/jp8RM/9hl/8K6G1+F3xwmwH+OvxF/8AB0/+FebV43yun8Tl/wCA/wDBOqHFGBn8Lf3H9htFfyJ23wY+M833vjr8R/8AwdP/AIV0Nt8A/jBNjd8d/iRz/wBRt/8ACvLq+JuSU/ilP/wH/gnfSzbD1Phb+4/rLor+Va3/AGbfivMfm+PHxKH01t//AImuitf2VvihODu+PPxL/wDB2/8A8TXnVPGHh2HxSn/4B/wT0aUlU+E/qHor+Zq0/ZA+I0/3/j18Tef+o4//AMTXSWv7FHj2fG749/E/n/qON/8AE1yS8buGY7yqf+Af8E9Olldep8NvvP6QaK/EH/glFcfEfw78e/jx8HfGXjXXvGen+Fr7SE0+bXrtruaJbi2MjgMQMZY9h2r9vq/Usvx1LG4WljKHwVIqSvo7SV1f5M4atN05uEt1oFFFFdhAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Ih/wAGwv8Ayc9+3x/2Vqb/ANK9Tr+u+v5EP+DYX/k579vj/srU3/pXqdAH9d9FFFABRRRQB/Ih/wAFDP8AlbA/Yx/7EzU//RWtV/XfX8iH/BQz/lbA/Yx/7EzU/wD0VrVf130AFFFFABRRRQAUUUUAFFFFABX4z/8ABdL9l39rT9uj9g3xN+xf+ytoGiX1x48Nkt/q2t6s2nx6dHp19a3q7IktpzO03kFPvRhAd3zdK/ZiigD4l/4J1+Df2gvhd+xz4C+DX7S3h/TPD/iXwNomm+HGGkakdUtbyLTLSGAXSu0Fu0RlZGPklW2Y++2a+2qKKACiiigAoor/ADxv+CvX/BVv9v79nv8Ab88d/C74T/EvV9I0CxukW2s4ZAI4VManCjae59a6cJhKmJqKlSXvM2oUJ1p+zhuf6HNFf5WNv/wW3/4KgzAZ+L+uf9/V/wDia6C3/wCCz/8AwU5mPz/GDXv+/wAv/wATXsrhXMX9hfejqnleIjuvxP8AUuor/Lvtf+CxP/BTScc/GLXwT/02X/4mtyD/AIK6/wDBS+Xg/GXxCP8Atqn/AMRVrhLMn9hfejmnh5x3P9PSiv8AMlg/4Kxf8FKpuvxn8RD/ALap/wDE1rw/8FUf+Ck0oyfjT4j/AO/qf/EU/wDVLMv5F96OWdSMdz/TDor/ADUoP+Cn/wDwUikI3fGrxJ/39T/4itiD/gpd/wAFHpevxs8S/wDf2P8A+IqXwpmK+wvvRyzzCjHd/gf6StFf5wUH/BR7/go1IPm+N3ib/v7H/wDEVpwf8FEP+Ci0oG743+Jv+/sf/wARWb4Zx63ivvRzSzvCR3k/uZ/o1UV/nVw/8FAP+CiUpx/wvHxOP+2sf/xFaaft4f8ABRBiA3xz8Uc/9NY//iKylw9jVvFfejnlxJgVvJ/cz/RBor/PTi/bh/4KFzYz8dPFP/fyP/4iteH9s/8A4KDyfe+O/ir/AL+R/wDxFZSyXFLdL70ZPivLlvN/cz/QVor/AD/YP2wP+Cgkoz/wvjxWP+2kX/xFa8H7V/8AwUAlOG+PXiz/AL+Rf/EVjLLK8d1+Jk+McsW83/4Cz++uiv4KYP2n/wBv6br8fPFo/wC2kX/xFbdt+0X+31P1+P3i0f8AbSL/AOIrnnhqkdzN8a5Uvtv/AMBZ/d3RX8LMXx8/b1kxn4/+Lv8Av5D/APEVswfGr9vGUZP7QPi//v5D/wDG65ZyUPiF/rvlP87/APAWf3G0V/EZbfFf9uyb737QnjD8JIf/AI3W1B8Qv26Jhk/tDeMh/wADh/8AjdcdTMaEPif4DXG2VPab/wDAWf2s0V/GDb+L/wBuKfr+0R4zH/A4P/jdb8Gs/tuy4L/tFeNOfR4P/jdcFXiTA0/ik/uZrHi/LJbTf/gLP7H6K/j+t3/bYl6/tGeNf++4P/jdb9vpn7aU33v2jvGw/wCBwf8AxuvOq8cZTT+Ko/8AwFnVT4jwM/hk/uZ/XFRX8nlv4V/bMn6/tI+OB/wO3/8Ajdb1t8P/ANsafhv2k/HP/fdv/wDGq82r4m5BT+KrL/wCR3U8yoT+F/gf1S0V/Lzb/Cj9sGY4P7S3jof8Dt//AI1XQW/wQ/a8mI3ftMeOxn/at/8A41XDPxf4ah8VaX/gEv8AI9GlF1PhP6ZqK/m6tv2eP2t5zhv2m/Hn4Nbf/Gq85+P3wt/bD+EHwQ8S/FXSv2lPHN3c6FZPdxwSvbiOQpjhiIwcH2qMP4xcMVq0KEK0uaTSXuS3bsuh3xyvESi5Jaep/UXRXif7N2v614q+AnhDxJ4juHu7++0q1mnmk5aSR4wWY+5Ne2V+onnBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wAHQv8AycJ+wj/2VqD/ANKdOr+u+v5EP+DoX/k4T9hH/srUH/pTp1f130AFFFFABX5mf8Fn/wDlEt+0f/2TvxB/6RyV+mdfmZ/wWf8A+US37R//AGTvxB/6RyUAfO3/AAbf/wDKEz4B/wDYJv8A/wBOV3X7eV+If/Bt/wD8oTPgH/2Cb/8A9OV3X7eUAFFFFABRRRQAUUUUAFFFFAHmfxh174p+Gvh1qWs/BXw9aeKvE8SL9h0y/v8A+y7aZ2YA+ZciG4MaqpLcRMTjAHOa/CX/AIN3/wBg39uL/gmb+z14h/ZW/ap0Hw42mXuu33iWz13RNZe7czXcdpD9le1e1i2gCF5BMJT2XZ/FX9E1FABRRRQAUUUUAV7q7tbGBrq9kWGJBlnchVA9yeBWF/wmfg//AKC1n/3/AE/+Kr8//wDgr9fX2mf8E2Pi7f6bM9vPFoUrJJGxV1O5eQRyK/yvLf49/GmSZlbxTqZAJA/0mT1/3q9XLMpq45yVJpctt/O/+R3YPATxPNyNadz/AGQ/+Ez8H/8AQWs/+/6f/FUf8Jn4P/6C1n/3/T/4qv8AHlsfjT8X5cB/E2pnp/y8yf8AxVdVa/Fz4pvjd4j1I5/6epP/AIqvZXBuLf24/j/ka1Mqqw3aP9fD/hM/B/8A0FrP/v8Ap/8AFUf8Jn4P/wCgtZ/9/wBP/iq/yOLT4mfEiQZfxBqRP/X1J/8AFV0Vn8QPiA6fNr2on/t6k/8Aiq0/1Jxv88fx/wAjiqUXDc/1pf8AhM/B/wD0FrP/AL/p/wDFUf8ACZ+D/wDoLWf/AH/T/wCKr/J8tvGnjeQgNrmo8/8AT1J/8VXQW3ifxe7YbWtRPH/P1L/8VS/1Jxn88fx/yOGpiIw3R/qx/wDCZ+D/APoLWf8A3/T/AOKo/wCEz8H/APQWs/8Av+n/AMVX+V1a634mdRu1fUD/ANvUv/xVbtvqGvOwDatqB4/5+pf/AIqolwbi19uP4/5HFPN6Ud0/w/zP9Sf/AITTwd/0FrP/AL/p/wDFUv8Awmfg/wD6C1n/AN/0/wDiq/y9oJtWYgNqd/8A+Bcv/wAVWzAl+xG7Ub/n/p6l/wDiqyfCeKX24/j/AJHJPiPDx3jL8P8AM/08P+Ez8H/9Baz/AO/6f/FUf8Jp4O6f2tZ/9/0/+Kr/ADLbSwuJF3PqF+f+3uX/AOKrbtdF8zG6+vv/AALl/wDiqwlw3iI7yj+P+RzS4twsd4S/D/M/0t/+Ez8H/wDQWs/+/wCn/wAVQfGng4cnVrP/AL/p/wDFV/m0W3hm3kAd7y+/8C5f/i62rbwdYO+Gu77/AMC5v/iq55ZHWjvJfic8uNcGt4S/D/M/0ff+Ez8H/wDQWs/+/wCn/wAVR/wmfg//AKC1n/3/AE/+Kr/Oht/AukOo3XF8f+3ub/4qt+3+HOgOQDNe/wDgXN/8XXPPLKkd2jCXHmCX/Luf3L/M/wBD/wD4TPwf/wBBaz/7/p/8VR/wmfg//oLWf/f9P/iq/wA9+D4WeGJPvSXp/wC3yb/4uty2+EHhBvvten/t8m/+LrknQcd2ZvxAwP8Az7n9y/zP9AT/AITPwf8A9Baz/wC/6f8AxVH/AAmfg/8A6C1n/wB/0/8Aiq/getPgn4HfBf7YeP8An8m/+LroLP4EfD6U4dLw5/6fJv8A4uuCriIw3F/xELAf8+5/h/mf3g/8Jp4P/wCgtZ/9/wBP/iqP+Ez8H/8AQWs/+/6f/FV/DJafs9fDWRsPHef+Bk3/AMXXQ2f7NnwrlcB4Lsj/AK/J/wD4uvNq55Rp7xf4f5mkePsC/wDl3P8AD/M/t6/4TPwf/wBBaz/7/p/8VR/wmfg//oLWf/f9P/iq/iws/wBl74QyL89rdH/t8n/+LrpbL9lD4LzAM9ndHI/5/J//AIuvKrcZ4Ol8UJfh/mdVPjPBz2hL8P8AM/sq/wCEz8H/APQWs/8Av+n/AMVR/wAJp4OH/MWs/wDv+n/xVfx/2X7IHwMkwXsLk/8Ab5P/APF11Vn+xh8ApFzJptyc/wDT7P8A/F15FfxMy6l8VKf3R/8AkjvpcRYeptF/h/mf1rf8Jn4P/wCgtZ/9/wBP/iqP+Ez8H/8AQWs/+/6f/FV/KjafsSfs7ykB9KuD/wBvs/8A8XXVWf7CX7NcgzJo9wT/ANftx/8AHK8it4yZTT3o1Puj/wDJHq0cZCpsmf1Cf8Jn4P8A+gtZ/wDf9P8A4qj/AITPwf8A9Baz/wC/6f8AxVfzSWX7AH7MEyhn0W4Of+n24/8AjldZZf8ABPD9lSU/PoM5/wC364/+OV50/HfJI74er90f/kj16GDnV+Fn9F//AAmfg/8A6C1n/wB/0/8Aiq27O+stRt1u9PmSeJujxsGU/Qjiv53B/wAE4v2SjaSyf8I/PlUYg/brjqB/10r7N/4Inyzv/wAE9vC8dxLJN5OoavErSuXbZHeSqoyxJOAAK+x4L8QcBxLKvHB05x9ny35kvtXtazfYrGYCeHUZTa17eR+sFFFFfenCFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8iH/Brn/yXL9uf/srVx/6UX9f131/Ih/wa5/8AJcv25/8AsrVx/wClF/X9d9AH+YJ/werf8pTfAP8A2SrSv/TvrFf1+/8ABrj/AMoKPgZ/3M3/AKkGp1/IF/werf8AKU3wD/2SrSv/AE76xX9fv/Brj/ygo+Bn/czf+pBqdAH7/UUUUAFFFFABTJZY4ImmmYIiAszMcAAdSTT6xfEmg2Xinw7f+GNRaRLfUbaW1laJtkgSZSjFWHRsHg9jSd7aFQUXJKTsj+QMf8Fwf2w/DXxG1vUdKutK1zw/PqV1LYWWpWKjybR5WMUYktzBIdqEAF2Y8c5r+pz9l34o+Kvjd+z34R+L3jXTodJ1HxJp0WoPa27M0SJPloypb5sNGVbn1r8bvid/wb8/BzV/MufhD451XQ3OSsOpwRahFn0Bj+zsB7ksR71+8/gzwtpngbwfpXgnRV22ej2cFjAOmIrdBGo/JRXyfDuEzajWq/2hNuNtNU1dvp1VvPufsXiZnHB+NwWF/wBW6MY1bvnag4NRSSSeii+Zu91d3Wr79JRRRX1p+NhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9f+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/ABBv+CsX/KU39pb/ALKr4y/9O91X+3zX+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5oA/N3/gsX/yif8A2kf+ybeJv/SCavlT/g2r/wCUIXwF/wCwfqv/AKdr2vqv/gsX/wAon/2kf+ybeJv/AEgmr5U/4Nq/+UIXwF/7B+q/+na9oA/c2iiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Ov8Aguv/AME+vjt/wUR/Z68NfC34DmwW+03VzeXJv5/IQRGNl+U7WycnpX7i0VUJuElOL1WpUZOLUluj/OWt/wDg1n/4KMW+MXPh0n/r+P8A8brat/8Ag2A/4KNW4A83w4f+38//ABuv9E+ivYXEWYrar+C/yOyWZYmW8/yP867W/wDg21/4KIeENBvfE2pt4eNtp1vJcS7b8ltkSlmwPL5OBXJfAD/gg3+3Z+0P8ItD+Nvw5GgtoniCBri0+03pjl2B2Q7l2HByp71/oy+ItCsfE+gXvhvVAxttQgkt5dpw2yVSrYPY4NeefAj4KeCP2dPhJonwV+HCzJomgQm3tFuH82QIWZzubAzyx7Va4lzL/n8/uX+RhLE1Jbs/hOi/4Nwf+CkcQA8rw0cf9RFv/jdakX/Bur/wUoiORB4Z/wDBi3/xuv7+aKP9Zcy/5/P7l/kc8oqXxH8C8f8Awby/8FKo+lt4ZP8A3Em/+N1pRf8ABvv/AMFK4gB9j8MHH/USb/41X961FL/WTMv+fz+5f5HPLCUZbxP4O4v+CBH/AAUuiOVsfDH/AIMm/wDjVaEf/BBj/gpjH00/wuf+4m//AMar+7SiofEOYPer+C/yMJZXhZbw/P8AzP4XI/8AghR/wUyjAA03wsf+4m//AMarRj/4Ic/8FNoxj+y/Cx/7ib//ABqv7kqKh55jnvU/Bf5GMsjwL3pfi/8AM/g1+K3/AASW/wCCiPwO+F+v/F3xppXhr+yPDdjNqF55Oou8nkwKWbavljJwOBkV0nw0/wCCSn/BR/4meANE+JXhbSPDB03XrGDULXzdSdX8m4QOm4eWcHBGRX9sXxb+GPhf40/DHXvhJ42WR9I8R2M2n3ghfZIYZ1KsFbnBweDitH4deBNB+F/gHRfhv4WDrpug2UGn2okbe4ht0CJubucAZNZvN8W95/gjKXDuXPekvvf+Z/GhF/wRo/4KfRNuGi+Ez/3FH/8AjVaMf/BHn/gqBGB/xIvCZx/1FZP/AI1X9qNFZSzHEPef5Gb4Xyx70V97/wAz+L6L/gkV/wAFQosY0Dwnx/1FZP8A41WlD/wSc/4KjQ4x4e8JH/uLSf8Axqv7L6Kxliar3ZD4Tyl/8uF98v8AM/jij/4JXf8ABUqPp4c8In/uLSf/ABqtOD/gl/8A8FSoMY8M+ETj/qLSf/Gq/sKorCXvbk/6o5T/AM+F98v8z+QmP/gml/wVNj+74W8IH/uLyf8AxqtOL/gnL/wVRiII8KeDz/3F5P8A41X9cdFc08JRl8URrhLKV/y4X3y/zP4vvjr8AP8Agoj+zZomieIviJ4T8L/Z9e1qz0G1+zapJI32u+JWLcPLGFyDk9q+i4P2Ef8AgqtABt8HeDj9dYl/+NV/SJ8d/wBnr4eftF6JougfEdJ3t9A1mz121+zyeWRd2LFoixwcrknI717iBgYrknkuCn8VP8X/AJmkeF8rW1Ffe/8AM/lgg/Ym/wCCrUHTwZ4NP/cZl/8AjVa9v+x5/wAFXYCP+KJ8GHH/AFGZf/jVf1E0VxVOFMqn8VBffL/M3jkGAjtSX3v/ADP5joP2VP8AgrBB08DeCz/3Gpf/AIzWvD+zV/wVkhxjwH4KOP8AqNTf/Gq/paoriqcB5DP4sKvvl/8AJHVDLcND4YfmfzfQfAP/AIK0QdPAHgk/9xub/wCM1sQ/Br/grZB934e+CT/3G5v/AIzX9FNFcU/DPhmfxYNf+BT/APkjtpxUPhP57rf4Zf8ABXC3xt+HXgc4/wCo5P8A/Ga3IPBn/BXKDGPht4HOP+o5P/8AGa/fWiud+FPCr3wK/wDAp/8AyR208fXh8Mj8lf8Agm9+zf8AtPfCb4q/Fv4w/tM6ZpOj33j6602a2tdJu2u40WzhMTZZkUjPBr9aqKK+6weEpYWhTw2HjywglGK7JKyWuuiOWc3OTlLdhRRRXSSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyIf8Gwv/Jz37fH/AGVqb/0r1Ov676/kQ/4Nhf8Ak579vj/srU3/AKV6nQB/XfRRRQAUUUUAfyIf8FDP+VsD9jH/ALEzU/8A0VrVf131/Ih/wUM/5WwP2Mf+xM1P/wBFa1X9d9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/CH/wVO/4IWft//tW/tweM/jb8K9CsZ9B1a5R7WWW9jjZ1CKCSp5HIr+7yiujDYqph6iq0naSNaNedKfPTdmf5pkH/AAbYf8FQIMAeHNOOP+ohFXnngn/giB+3v4z+KPiL4O+HdCspte8KpBJqMLXsarGtwDswx4bOO1f6e1fPngD9nDwX8O/jZ4u+O2jT3MmreMoraK8jkYGFBa5C7AACOvOSa9ZcS5iv+Xv4L/I6ZZliJby/BH8A1t/wbwf8FP7cD/ildOOP+ojFWvD/AMG+v/BUCE5/4RHTj/3Eov8ACv8ARloqlxTmf/P38I/5HPPETluz/Oxh/wCCBH/BT6L/AJk/Tj/3Eoq1Yf8Agg1/wU+i4/4QzTj/ANxOL/Cv9Dmij/WnM/8An7+Ef8jmlCMt0f57MX/BCz/gp9ER/wAUVpxx/wBRSL/CtWH/AIIf/wDBT2HgeB9P/wDBpF/hX+gjRSfE+ZP/AJe/hH/I55YChLeP5/5n8AEX/BFD/gp/Fx/wgunH/uKxf4Voxf8ABF7/AIKfR/8AMh6f/wCDWL/Cv77qKzfEWYPep+C/yOeWT4SW8Pxf+Z/BJF/wRu/4KfRn/kQNOP8A3FYv8K474o/8Ez/+Ch/wW8Bah8TPH/gWxt9I0mPzbmRNTjdlTpkKBk1/oGV5N8cvg94b+Pnws1f4S+LpZodO1mHyZntyFkC5z8pII/Ss3n2Oe9T8F/kYvh/APen+L/zP4g/CH/BLT/gpP4t8N2HizQPh/p8tlqMCXEDtqsSlo5BlSRjjg12MP/BJ/wD4KfRDB+HOnf8Ag3i/wr+3vwP4S0/wF4O0zwVpLO9rpVtHaxNIcsUiUKCffArqazecYt7z/Bf5GT4Zy170vxl/mfw2w/8ABK//AIKfQjH/AArfTj/3GIv/AImtSL/gmD/wU+iOR8NNOP8A3GIv/ia/t+orKWY4h7y/BGT4Tyt70fxl/mfxKQ/8E0v+Cn0P/NMtOP8A3GIv/ia17f8A4Jzf8FP4f+aYacf+4zF/8TX9qlFYSxNSW7IfB+U/8+f/ACaX+Z/F7F/wT2/4KexY/wCLW6ccf9RqL/4mtaH9gr/gp5CMf8Kp08/9xqL/AOJr+yyiuecVLcn/AFNyj/nz/wCTS/zP46bf9h3/AIKewcf8Km08/wDcbi/+JrXg/Yy/4KfQ/wDNJNPP/cbi/wDia/r/AKK5J5fQn8UfxY1wdlK2o/8Ak0v8z+LiH4d/t623xqP7PzfCuzPif7ANT8j+2I9n2Ytt3b9mM57V71F+y7/wU8iAA+D2nnH/AFHYv/iK/pLP7OPgs/tHn9pwz3P9unShpHlbh5Hkht2cYzuz719BVxVOH8BU+On+L/zNY8K5XHal+Mv8z+UyD9nP/gp7B/zRvTz/ANx2L/4itq3+BX/BTyHr8F9PP/cei/8AiK/qZorgqcG5RU+Kj/5NL/M6YcP4GPw0/wAX/mfzAwfCL/gp3AQf+FKaef8AuPRf/EVs2/w5/wCCnkDZPwQ08/8Acfi/+Ir+mWiuCp4c8Pz+LDf+TT/+SOynl9CHwx/Fn821v4R/4KdQf80NsD/3MEX/AMRW5BpX/BTqEg/8KK084/6mCL/4iv6LaK4p+FPDEviwn/k8/wD5I76cnT+A/ntt5P8Agp5Af+SC2B/7mGH/AOIrg/jb4M/4Kc/GP4QeIPhQfgbYWH9vWj2huf8AhIIn8oPj5tuwZx6V/SdRU0fCfhelVhWp4S0otNe/PdO6+0dkcyxCTipaeiPH/wBn/wAJa34D+CXhXwb4kjEV/pmmW1tcIp3BZI0CsAe/Ir2Ciiv0Y4QooooAKKKKACiiigAooooAKKKKACiiigAooooA/kQ/4Ohf+ThP2Ef+ytQf+lOnV/XfX8iH/B0L/wAnCfsI/wDZWoP/AEp06v676ACiiigAr8zP+Cz/APyiW/aP/wCyd+IP/SOSv0zr8zP+Cz//ACiW/aP/AOyd+IP/AEjkoA+dv+Db/wD5QmfAP/sE3/8A6cruv28r8Q/+Db//AJQmfAP/ALBN/wD+nK7r9vKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5c/bU/Z7vv2rP2W/Gf7PWm6imkz+KtPayW8dPMWIsQdxUEZ6etfyTp/wAGi/iGNi6/FW1yTn/jyf8A+Lr+3uiujD4utQv7GbjfszWlXqU7+zk1fsfxLQ/8Glfi2D7nxXtf/AF//i60I/8Ag0+8bx42/Fez4/6cH/8Ai6/tZorqWcY7/n9L72U8TVe8395/FtH/AMGqPxBj+78WLP8A8AG/+Lq9H/waxfEmIYT4sWX/AIL2/wDjlf2d0U/7ax//AD/l97MpTk92fxoxf8GuHxRjOB8WrHH/AGDm/wDjlfNH7M3/AAQY+JH7RV947stN+JFppp8D+Jbvw5IXsmfz3tMZkHzjAbPSv7xa4bwX8NfAnw7l1SbwTpkGmtrd7JqN8YV2+fdS/fkf1Zu5o/trH/8AP+X3sylTi90fyRR/8Gx3xij+78W7D/wXN/8AF1bT/g2b+NMZyvxcsP8AwWt/8XX9hdFL+2Md/wA/pfezJ4Si94L7j+P9P+Daj44J934u6f8A+C1v/i6tp/wbafHZMbfi7p/H/UMb/wCLr+vWipea4zrWl97Mnl2Fe9NfcfyKx/8ABuD8fohhPi9p3/gsP/xyrcX/AAbnftDRfd+L+nf+Cs//ABdf1v0VDzLFPeq/vIeU4N70Y/cj+SyP/g3d/aNi4T4wab/4Kz/8XWJ4v/4IF/tIeC/COq+LH+LumyrplpNdlBpZBcQoXxnfxnFf1255qnqWnWWr6fPpWpxLNbXMbRSxtyrI4wQfYg1Dx2Ie9R/eQ8lwD3oR+5H8av7Lf/BGv9pD9pT9n7wr8eNM+KenaZD4nslvUtX03zGiBYjaW3jPT0r6FT/ggL+1In3fjHpn/gqP/wAXX9Q/gfwP4T+GvhOx8C+BbCLTNI0yMQ2trAu2OKMEnao7DJrq6h4mq95Mh5Flz3w8fuR/Kyv/AAQT/asQ5X4yaX/4KT/8XVyP/ghB+1nH934yaX/4KT/8cr+pqis3Uk92T/q/lv8A0Dw/8BR/LlH/AMEMf2vIvufGbS//AAUn/wCLq5F/wQ//AGw4jlfjNpX/AIKP/s6/qBorGVOMt0H+r2Wf9A0P/AUfzGx/8EUP2zovufGfSf8AwUf/AGyrsX/BGD9taEgp8aNI/wDBP/8AZ1/TLRWEsFh5fFTX3FLIcuW2Hj9yP5Rf2g/+Caf7a37PXwM8VfGu6+Luk38PhfTZ9Ra2XSdhlEK52hi5xn1rsvhB/wAExf24vij8LvDvxMsvjFpFpHr2n29+sLaPuMYuED7Sd/OM4zX9Mvi/wj4b8feGL7wX4xs49Q0rU4Wt7q2mG6OWJxhlYdwRVzw/oGj+FdDtPDXh63S0sLCJILeGMYSOOMYVQPQDgVzzyfAy+KhF/JGkcmwMdqEfuR/PBF/wSX/b1i+78a9G/HRf/s6vx/8ABKr9v+IYT42aKMf9QT/7ZX9E9Fc0+Gsql8WFg/8At1G0cuwsfhpr7j+emL/gl7/wUJi5X426L/4JB/8AHK0Yv+CaX/BROLlfjbon/gjH/wAXX9AtFc0uDsjl8WCpv/t1HRGjCPwxSPwKi/4Jy/8ABR+EYT436Hx/1Ax/8XWjF/wT4/4KUQ/c+OGh/wDgiH/xdfvJRWEuBeHnvgKX/gCOmFacfhlY/CkfsFf8FNAjR/8AC8tCwwIP/EhHQ/8AbSv0M/YG/Zg1z9j39mPRfgR4k1iPXr7TZruea9ii8lJHupnmOEJOMFsda+yqK9PK+H8ty1zeX4eFJytflile217drsdXEVKiSnJuwUUUV7BiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8iH/Brn/yXL9uf/srVx/6UX9f131/Ih/wa5/8AJcv25/8AsrVx/wClF/X9d9AH+YJ/werf8pTfAP8A2SrSv/TvrFf1+/8ABrj/AMoKPgZ/3M3/AKkGp1/IF/werf8AKU3wD/2SrSv/AE76xX9fv/Brj/ygo+Bn/czf+pBqdAH7/UUUUAFFFFABX5j/APBTf9vHxH+wz4J8J6x4J02x1bVfEOpSxNbX/mbDZ20WZihjZSHDvEAx3AAnKnIx+nFflJ/wUd/4Jsa1+3Xq2heJdI8Zjw/P4dtJbe3sp7Q3FvI0zhncusiMhbagOFfhRxXl519b+pzWBX73S23fXfTa59bwN/Y/9tYd59JLCq/NdSafuvlXu3fxW1OO/YV/4K4aR+2R8Ubb4MXvgW70PWJrWe6a5t7pLu0VLdcszlkidAxwoAV/mYAnGTX7GV+If/BLj/gmn8U/2L/i54v8efFu60y+e706HTtLuNNleVXjll82fcJI42QgxRdjnJwTiv28rHIJ42WEUsw/iXfRJ22W33nZ4iUshpZzOnw7b6sox1UpSTk1d2cm3pdK3RphRRRXtHwwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Q/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQv/grPGY/+CqH7Sqnv8U/GB/PVro1/t3wSCWFJR0ZQfzr/Ev/AOCxmntpn/BWD9pG2cYLfEnxNL+Et/M4/wDQq/2r/BWoprHg3SdWjO5bqyt5gfUOgb+tAHwH/wAFi/8AlE/+0j/2TbxN/wCkE1fKn/BtX/yhC+Av/YP1X/07XtfVf/BYv/lE/wDtI/8AZNvE3/pBNXyp/wAG1f8AyhC+Av8A2D9V/wDTte0AfubRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfnB+1R+2R8S/Bnx08PfskfsxeH7TxF8Q9ftJNRkfUpWh0/T7KLrLOyAv83RQoJNJ+yz+2P8TPF/x01/9kn9p/w/aeHfiFodpHqMT6bKZtP1Cyk6SQM4D/L/ABBhkV83+GnTw9/wXL8QR+JCFfXfAlv/AGUz/wAYgfMqpnuBnIFN8VuviD/guX4YTw587aF4Huv7UZOdgnP7oPjue2aAP1a+O3j7UPhX8GvE/wASNJhS4udE064vIo5MhHaJSwBxzg4r8wf2bvjr/wAFT/2hvhr4W+NGl6R8PLXQPEcUd2IpLm8+1Jbs5B4EZXfgHHOM1+sHxD8F6H8T/Aer+ANedvsGsWslncGM4bZKNrYPY4NfhP8AtgfsIeA/2Ef2WNT/AGgf2YPGXiLwrrngKCO6tUn1WaezulVwDbtA7GPD5IAUCgD9OP21f2uP+GTvhzo97pmlHxB4v8V6hBo2haTE20XN9N/eY/djQZZj6Cvm/wAG/to/tN/CD49+Efgp+3H4W0fRrf4hs9voWraDcvPbLeou/wCzT+YFKuVzgjg4r5X/AGsfHms+Nvij+xd8fvHkP2PT77Vw19vG2OK8vLb93nPAyc4z616z/wAFfv8Aie+Pv2cPBOgnzNcu/iJZ3NvGnMghgRmlYY527cgnpQB+2tFFFABRRSMCVIXg0Afkv4u/bT/ad+MXx88YfBH9h7wro+qw/DwpBrmr6/cvBbPeOCRbW4iDMzgDknAFfSX7EX7XsP7WHgfWH17SW8PeLfCWoyaPr+lOwf7PdxcEo38UbYyp9K+Kv+CRksOj/ET9o3wVrJC67afEG7ublG/1hhnX903rtODg9Ki/4Jmumr/thftReMtEYHQ5/E9vbxyL/q3ngRhJg9Mg8GgD9Of2hJf2j4fBcT/sww6HPr/2hfMXX3ljtvIwd2DCrNuzjHGK/KT4h/tg/wDBSn4K/H74bfBD4iaH4F1C6+IGo/Zki0me7kngto8GWZg6KAqr39a/dEMpXeCCOua/Eb9lDzP2tv8AgpT8TP2qLz/SPDfw4RvB3h5m5Q3CHN1KnbqCMigD3D9rH9qT9qnwj+1b4P8A2Xf2ZtL8O3V94i0e51WW51+WaONBbvtKqYgx57cV9T/s2XH7YVwmqn9q228M25Bi/s7/AIR2WeXI53+b5yrjttxmuD/aP/YC+Bn7UvxL0r4o/EuXVItT0Wyextm02+ksmWORtxy0RDc/Wvhr9jvV/Hf7Ov8AwUd8Z/sN2HivUPF/ghPDkPiGxXUpzd3OlSvJsMDSsS20jkBjnpQB+4tFFFABRRRQB+Lv7RX7b37cfwE+OPhjSPEfw/0TT/AXibxTH4es76W9M17NHLkrMI4+EyoJw3NftCDxmvxv/wCCvAJm+A4H/RRdP/8AQHr9ji6xpucgD34oA+Kf23/2vP8Ahk/wRof/AAjejt4j8X+MtUi0Xw/pSsEE93KCdzt/DGijcx9K+dfAv7Z37Tfwo/aB8J/An9uHwto+jR/EDzItC1fQbh57UXka7/s0/mBWVyucEcE15t/wUkZdA/bb/ZX8ceIiF0GDxNeWkjv/AKtbme2cRZPQEk4FM/4K0H+3PjD+zP4M0I79bn+IlleQon+sFtbKWmbA52hevagD3b4/ftkfGq6/aTH7IH7Hvh7Ttc8X2GnrqusX2szPBp1hbucIrGMM7SOSMACuy/Y3/bG8W/Grx14v/Z7+OegxeGfiR4EeP+0bW2k820ubeX/V3Fu5wxRs9xkV8qfslkeHv+Cu37Qmh+Ij5eoarpmmXliH+9JarwdueoBIzij4NuniD/gtz8UNW8PHzLTSfBljZag6cqLp3RlViP4goPB5oA/bKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/kQ/4Nhf+Tnv2+P+ytTf+lep1/XfX8iH/BsL/wAnPft8f9lam/8ASvU6AP676KKKACiiigD+RD/goZ/ytgfsY/8AYman/wCitar+u+v5EP8AgoZ/ytgfsY/9iZqf/orWq/rvoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjb9sz9r7Rf2TPB2mXcWlTeIfEfiO8TTtF0m3IWS6uZOmSfuqOrHsK+ya/FP/goky6f+3N+zbrOv4/shdXvIiX+4J3jGzPbJ7UAexfDj9u74x+F/jt4f+AP7ZHgODwTqHjGN20O90+8F7ZzSRjLQyMQpSTHbGK/UqvxL/wCCsDRXnxq/Z40XSedak8YxSwBfviFB+8PrjHWv2P8AF3iODwf4S1HxVeI0senW0lw6RjLMI1LEAdycUAfn9/wUV/4KAJ+xL4HguPCOhf8ACWeKb1Xmh0wOY1W2i5kmkYcqijv619gfs7/FO5+N/wADvC3xcvbRbCXxFp0F81ujFljMq52gnk4r+Vb4g/txfs4/Er4GfGD4tfFvWbk/ETxhZ3Gn6Tp0thc7dOsUJCRK5j2KX6sc4r98/wDglf8AHP4b/Gb9jTwZaeALyS6k8P6Xa2N6HheLZOicqN6jd9RkUAfo5RRRQAUUUUAFIxCjcTgDrS1ma0k8mj3aWvEhhcL/AL204oA/KrxL/wAFAPjr8Q/ib4r8Gfsc/DmDxppfgSU2+salfXos43nUZaK2GD5jAeuBmvsH9kL9qnwl+1z8KV+Inh20m0y7tbiSy1LTrjHnWl3CcPG2M556HuK/Pf8A4IxzWlr8KfihpOpYXVbTxjqn24N9/wCZiVLd+nSl/wCCQqtc+MPj1rGlf8ge58aS/ZSPuFlXDle3XrQB+kP7UH7S/gn9lj4ZyfEPxhHNeSSzJaWNjbANPd3UpwkUY9Sfyr58+Evxw/b68VeMdKm+JHwk0zQ/CupuC88WrCa+tY2GQZYcAZ9QCa+Fv+C42mfEDUr34KQeDdQOlpL4riha7xlYJJBhXweMgfdz3rB/aV8J/Fv/AIJ1eMPhv8XPh78S/EXia28Ra3a6VrWk67eteQ3QuSAXiRv9WVzkBaAP6F6Kht5fPt458Y3qGwe2RU1ABRRRQAUUUUAfM37WX7T/AIO/ZL+EN18U/FkE184kS2srG3AM11dTHbHGme5Jr4j0j/goL+0H8M/G3hTT/wBr34ZQ+D/D3jidLbTNSsb4XnkTS/6uO6XA2M2e2RmuR/4LGLNbaV8I9X1D/kD2vjTTzeE/cALAKW9s1d/4LLXGnXH7OPhDT7PDX954m0oWAX7xbzFPy9+npQB+yiOroJEOVIyD7V+Susft8ftEfFX4x+Lvhf8Asa/De08VW3gW4+x6tqGr34sYmuQMmOEAMWIHrgV+p3h7zrbwzZfbOXjto9/1CjNfzpfCP4KfET9rP9pb4w/Ez9k/x1ffB7TLTU30rUYrHEzalfRL807xvlYwemRyaAP15/Yr/a/tv2tPCGsXWpaHN4b8Q+GL99L1fTZmEghuY+ux14ZT2NfaVfjZ/wAEiNZi0HSfiN8BtasoW8SeDdeeHVtWiYudUllG4TuTzvI6jtX7J0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wdC/8AJwn7CP8A2VqD/wBKdOr+u+v5EP8Ag6F/5OE/YR/7K1B/6U6dX9d9ABRRRQAV+Zn/AAWf/wCUS37R/wD2TvxB/wCkclfpnX5mf8Fn/wDlEt+0f/2TvxB/6RyUAfO3/Bt//wAoTPgH/wBgm/8A/Tld1+3lfiH/AMG3/wDyhM+Af/YJv/8A05Xdft5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+GX/BSjxT+3X+z9c23x28GfEq10/wAIy+I9J0yDQ7exUytDeShH8yZ85PXoBX6C/to/tPP+yd+yZrnx5W2XUNRsra3isrdjgTXt2yRRKfbe4J9hXxN/wWu8d+B4P2ZdK8NTazYpqUPjHQJJLRriMTqguASxj3bgAOSSMVrf8FX9Ng+NH/BObWdW+Fd3D4gPhq50nV5006VbnMVjPHJKP3ZblUBbHXigDxL4qfEb/goD+xb8IfD/AO2T8WPHsHjLRZbixbxL4aNklvFZ2t8wDG3lUliYd3O7rivp/wDa9/ag+LevfFP4Z/sq/st6hDo/iD4j2z6rPrM8Ym/s/S4kDtIsZ4Z2yNueK+af+CnP7Svwk+OH/BNm18DfCvWrLXde+Jq6ZpmkadZTLPcvLcMm792hLL5YyWyOMVL8WrSD9lz/AIKCfs9/Fb4nyrYeHp/CUnhCfUJztt7e/wDKUIskh+Vd5U4JIoA9v+EHxk/aO/Zu/bN0j9kD9pLxSnjvS/G2mTahoGuNbra3KT2x/ewSomVPHKkdq4jTviz+1j+3b+0L8SvCX7O/jhPhx4N+F98uipdx2iXc+p6ls3vu3kBYl4HHNU/jB4l8PftDf8Fb/hDpXwovoNbh+HGk6hqWt3Vk6zQ232sbIo3kQlQzdQuc1zX/AATb8c+Df2avj1+0V8B/jNqlr4e1VPFkviG0OoSrbi6067TcJYzIVDqpyDjOKAPs3/gnZ+1B8Qvj34U8YfDz42JAvjn4a65NoOrSW42xXOwBop1X+HzFPI9RX6LV+Lf/AAScjfx98TP2gv2k9HVj4c8a+MSmkT4IS5gsY/LaVPVWY4BHBxX7SUAIc4O3rX5NfED9n/8A4KMnTtd+I8Xx0tdKu7P7Rd2elQaXGdPEUeWSOWRzv+6AGYfWv1mJAGTX4W/tIftOTftz/FLVv2Lv2f8AxRZ+H/BulyG38beKmuY4TsB2vZWZZhukbozAYAoAur/wVC+IM/8AwTP0L9pyDRoD488RX6eG7K2yTayam0pgEq9zGSpfH4VmfFL4i/tuf8E/pfBXxm+N3xAj+InhXxBqdtpfiCweyS1OnveHCyW7oSSqscENziqX/BSn4R+A/hR+w38Orn4EW8d14S+FPiXSL+VbFhOq2Vq+JZGKZDEfeY+5NTf8FY/jR8Nv2gP2ffAnwV+Des2XiTXviB4g0uTT7bT5luJPIikWV5SqElVUdScYoA96/ar/AGg/jt4+/a18MfsM/sx6zF4Yvr/Rm8Ra5r7Qi5ktLLeUjSKNvlLuR1PGKj/Zl+P3x3+FX7YOs/sLftOa7F4tuH0QeI9A8QLCLaW4tlbZNFNGuVDRkZyOxrxnxbqGkfs2/wDBZLQ/HPxMuU03QPHfgGLQ7HUbphFbC+spSTEZGwoZlwQCRnNFnf6R+0j/AMFml8WfC+6i1bQ/h74EutN1PULRhLbreak/yQ+YuVLKBkgHgGgCfwB4/wD21/2+fEXjz4kfArx/F8O/CPhbVbnRtCtY7JLttSns/lkkndyNqFxgBecGvtP/AIJ2/tS+J/2pvgXNrXxFtorPxZ4a1K50PWo4P9Ubq0YqXUdg4wwHbNfEn/BK/wCMHw1/Z5+F3xL+A/xl1uz8Oa74H8U6teXkGoTJbyNaXLmWOZQ5BZWXoRmvQ/8AgjPpGp6h8JfiD8ZpYHg03x94x1HVtN3qV8y13eWkgBx8r7cg9xQB+xtc94sstf1HwzfWPha6Wx1KaF0trh13rFIR8rFe4B7V0NYXibxP4e8GaDdeKPFl7Dp2nWSGW4uZ2CRRIOrMx4AHqaAPwr/au1L9s79jL4Vaj+0BdftBWfiO+0Nkkk8OX1hBDFeZYAwxbGMu8g/LxXtX7SX7Ynxv8Va58Gv2b/gGI/DPjX4t2H9q3t9dR+adJsIkVpWEZ+8+5sKDXz//AMFLPg9/wT1tfhJ4l/at0LVdIt/iGrLqekX1nfJczXWo/L5aiAO4k34A2ha5bxp448U+Bf2z/wBlj9rz9oC3GiWPiHwjceH9UuZ18q3s9SvFV0WQnAj3jpnAzxQB9WfCn4z/ALSH7Mv7avh79kD9pDxUvj3SPiBplze6Drb2y2tzFd2fzSW8iJ8pBQFlI9K54fE79rH9t39pH4ieAf2fvHC/DnwZ8NLpNKN7DaJeXGoaiV3ODvwFjXpxzXPfHDxP4e/aH/4K4/A/QPhRfQa5D8OtO1TWtburGRZ4bZbmJoYkeRCVDOWyFznFR/8ABPrx54K/Z1/aX/aE+Avxc1S10DVJvEp8Q2Z1CVbdbqwuYx+8jaQqGCnrjOKAPWf2Z/28vGFl8Cviw/7SyQy+LvghPd22ry2o2RXyQoZIZVX+HzBgY9a+Yrbx7/wUn1T9lAf8FDoPHNrGk1j/AMJHF4I+xJ9l/stv3giM+fM83ysHOMZryv4c/DrXf2pfhR+2d8UvhnE93pPxAuZrXQZowdt7/Z8JBaI/xB2GARwTXvGh/tk/A61/4I0215ca5ZLrFt4OTw/JpBlX7aNUSH7ObfyM+Zv8wYxtoA/Yf9nr4v6T8f8A4HeFPjVoieVbeJtMt9QWMnJQzICy/wDAWyPwr2Oviz/gnP8ADvxB8KP2G/hf4B8VRNb6jYaDa/aInGGjeUeZtI7Fd2CK+06ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+RD/g1z/5Ll+3P/wBlauP/AEov6/rvr+RD/g1z/wCS5ftz/wDZWrj/ANKL+v676AP8v7/g9SkD/wDBVDwKo/h+FmlD/wAq2rn+tf2Ef8Gu8Zj/AOCFfwMU/wB3xKfz1/UjX8a//B5xqKXv/BWLw5bKcmz+G+kQn2Jv9Sk/k9f2j/8ABs5p76Z/wQ8+A9s4wWs9al/CXWb5x/6FQB+7VFFFABRRRQAEgDJr8QfCf/BeD9lm+8V3/hvx1o2saLb293NBBqECpe20sMblUlbYVlXeoDbVjfGcZPf9fPi1oHizxX8LPEnhfwHdQ2Ot6lpl3aWFzPuEUNxNEyRyNtBbCMQxwCeK/jP+I/8AwR1/bs+Hepx2sHhqDxDZySrF9s0e5SeMbjjcY38ucKOpPlYA618pxLj8ywzpPAU3Ja83u3XS3mup+v8Ahbw7wvmkMVDiHEqnP3VTvPkfXmav7r6JJ366H9n3w6+IXhH4seBtL+JPgG6N9outW6XVncGN4fMhf7rbJFRxn/aUGu0rjfh14J0r4a/D/Q/h1oQxZaDp9tp1uMY/dWsaxrx9FFdlX1FPm5Fz/FbW21+p+T4r2Xtp/V7+zu+W+9r6X21tvogoooqzAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AGf8A+DhXwLc/Dz/gs/8AtAaDdIY2ufESamARjK6pawXin8RMDX+tt+wp8RLP4u/sS/B/4p2Egli8R+CtB1IMDn/j5sYZCD7gtgjseK/z6/8Ag8//AGPdU+G/7afgr9svRbU/2J8S9DXSr6ZVyF1fRfk+c9B5lpJAEB5Pkvjpx/QX/wAGjH7d2l/tKf8ABOJf2YvEN4r+LfgpePpjQsw82XRb53nsZsf3UYy23A+VYVzywoA/ZH/gsX/yif8A2kf+ybeJv/SCav5ZP+CMP/ByT/wTJ/Ym/wCCZnws/Zc+PGp+IrXxZ4StdQg1CK00h7mENPqFzcJskV8MDHKp9s4PIr+63VtI0rX9LuNE121ivbK7jaGe3nQSRSxuMMrowKspHBBBBFeO/wDDMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Jv+07/wAHD/8AwQY/aivNH8T+IvEfjrQPE/h5mbS9e0XSZrTULUP95VkV+VbupyKr/s2f8HC//BBf9miTXNe0HxL4817xN4lwNT1/WdJmutRuFUYVTKz8KvYDAr+tD/hmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+Sz4b/APBw/wD8ENvhv8CPEHwCs/HXxHvtO8RXl3eS3lzp1w17C92+8iKYOGRUP3AOgr50X/gsj/wQb1/UbBPjB8V/i9490TTZknh0XXba4uLAvGcpvj3DeFOOGJr+17/hmH9mr/onnhn/AMFNr/8AGqP+GYf2av8Aonnhn/wU2v8A8aoA/l1+PP8Awcsf8ED/ANoz4TP8GfiPc+KZNHXymtvI0KWKW0lgwYpIHVwY3TA2kYr56+BP/Bdv/ggt8GfijbfGbX/HPxJ8d+JNMt2tNMvPEunTXrWEL4yIAzAISBjdjOO9f2H/APDMP7NX/RPPDP8A4KbX/wCNUf8ADMP7NX/RPPDP/gptf/jVAH8+n/EXj/wRt/6Dfir/AMEMv/xdH/EXj/wRt/6Dfir/AMEMv/xdf0F/8Mw/s1f9E88M/wDgptf/AI1R/wAMw/s1f9E88M/+Cm1/+NUAfz6f8ReP/BG3/oN+Kv8AwQy//F0f8ReP/BG3/oN+Kv8AwQy//F1/QX/wzD+zV/0Tzwz/AOCm1/8AjVH/AAzD+zV/0Tzwz/4KbX/41QB/Hd8cv+C7P/BBT4w/FC6+M3hvxz8SfAXiXVIBa6pe+GtPmsm1CFeizgNhiOgbGfeu+0D/AIODv+CA3gz9mPVv2WPAWt+N9D0bW4ZUu7600iZdQkmn5edpy+4yseSxr+tP/hmH9mr/AKJ54Z/8FNr/APGqP+GYf2av+ieeGf8AwU2v/wAaoA/mh8D/APB07/wRe8A/B3T/AIOaR4s8by22m6aumRXs+jSyXZVE2CRnL8yY5ye9cJ+yv/wcpf8ABCn9kf4TW/wi+G+u+Mp7SOea7murvRJHuLi4uGLvJIwYbmJPWv6mf+GYf2av+ieeGf8AwU2v/wAao/4Zh/Zq/wCieeGf/BTa/wDxqgD+Rn9oD/g4a/4IufHTx0nxE074s/FjwXqP2dbWT/hH7Oe1ikRM43R7iueeuM1sfsu/8HCf/BAX9lK71jxJ4L1rxvq3iXxCytqmu6vpM93qF3t6B5WfO0f3RgV/Wd/wzD+zV/0Tzwz/AOCm1/8AjVH/AAzD+zV/0Tzwz/4KbX/41QB/Pp/xF4/8Ebf+g34q/wDBDL/8XR/xF4/8Ebf+g34q/wDBDL/8XX9Bf/DMP7NX/RPPDP8A4KbX/wCNUf8ADMP7NX/RPPDP/gptf/jVAH8+n/EXj/wRt/6Dfir/AMEMv/xdH/EXj/wRt/6Dfir/AMEMv/xdf0F/8Mw/s1f9E88M/wDgptf/AI1R/wAMw/s1f9E88M/+Cm1/+NUAfxLftEf8FlP+CHv7SvxCl8feOPjX8Y4VXUv7VsdPtrORbSwuBwpt0Odm3tjpXuV//wAHBH/BFXXv2aLv9mnxb8V/irq9td3a3bazdWMzaoNrBggnDAhOMYx0r+vf/hmH9mr/AKJ54Z/8FNr/APGqP+GYf2av+ieeGf8AwU2v/wAaoA/lh+Nn/ByN/wAEE/2hPgvbfA/4pal4vv8ATbJbc2tz/YsyXcE9qAI545Q+5ZVxncK8Q+A3/Bd3/ggt8Fvihb/GjXfHPxJ8d+JtPtmtNOvvEunT3r2ML8MsALAJkcZxnFf2G/8ADMP7NX/RPPDP/gptf/jVH/DMP7NX/RPPDP8A4KbX/wCNUAfyO/tJf8HBH/BBv9o3xhpvxQfxb8QPCHjDSomt4Ne8P6XNZ332dusTOGIdD6MDXZfsv/8ABxr/AMEFv2UdF1Kz8Ba140v9U1y4N1qusalo81zf305/jmlZ8n2HAHpX9WH/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF18mf8GlnxL8N/Gj4k/tpfGLwb5v9j+LPiJBrNj56eXL9mv5dRni3qCdrbHG4ZODxmv6vv+GYf2av+ieeGf8AwU2v/wAarvfBvw2+HXw5ing+HugaboMd0VaZdOtYrUSFM7SwiVdxGTjPTNAHa0UUUAFFFFAH8Pn/AAXL/au+Ev7D3/Bxn+yv+1N8dZLuHwn4T8EXcuoPYwfaZ1S5fVrZCsYKlv3kq5weBk89K/Qb/iLx/wCCNv8A0G/FX/ghl/8Ai6/o58Y/CH4TfEO+i1T4geF9I125gj8qObULKG5kSPJO1WkRiFyScA4ya5H/AIZh/Zq/6J54Z/8ABTa//GqAP59P+IvH/gjb/wBBvxV/4IZf/i6P+IvH/gjb/wBBvxV/4IZf/i6/oL/4Zh/Zq/6J54Z/8FNr/wDGqP8AhmH9mr/onnhn/wAFNr/8aoA/n0/4i8f+CNv/AEG/FX/ghl/+Lo/4i8f+CNv/AEG/FX/ghl/+Lr+gv/hmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+fT/iLx/4I2/8AQb8Vf+CGX/4uj/iLx/4I2/8AQb8Vf+CGX/4uv6C/+GYf2av+ieeGf/BTa/8Axqj/AIZh/Zq/6J54Z/8ABTa//GqAP59P+IvH/gjb/wBBvxV/4IZf/i6P+IvH/gjb/wBBvxV/4IZf/i6/oL/4Zh/Zq/6J54Z/8FNr/wDGqP8AhmH9mr/onnhn/wAFNr/8aoA/n0/4i8f+CNv/AEG/FX/ghl/+Lo/4i8f+CNv/AEG/FX/ghl/+Lr+gv/hmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+fT/iLx/4I2/8AQb8Vf+CGX/4uj/iLx/4I2/8AQb8Vf+CGX/4uv6C/+GYf2av+ieeGf/BTa/8Axqj/AIZh/Zq/6J54Z/8ABTa//GqAP59P+IvH/gjb/wBBvxV/4IZf/i6P+IvH/gjb/wBBvxV/4IZf/i6/oL/4Zh/Zq/6J54Z/8FNr/wDGqP8AhmH9mr/onnhn/wAFNr/8aoA/n0/4i8f+CNv/AEG/FX/ghl/+Lr5r/ah/4OS/+CEX7WHgBPA3xD1nxjA9rOl3Y39poksV1Z3MfKyROHyGB/Ov6n/+GYf2av8Aonnhn/wU2v8A8ao/4Zh/Zq/6J54Z/wDBTa//ABqgD+N34I/8F4P+CJfw6+LVn8cPiz8UPiR8TPEujwNbaTc6/ozutjG/DeUiELuI43EZr6D+GP8Awc1f8EdPhz8X/F/xWuPiL8QNZj8WeVjS73RpXs7Ly/8Angm87d3ev6n/APhmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+Xr4/f8HN3/BDv4+/CDXvhDq+s+KNOttdtmtpLm38ON5sYbuuTjNdH8D/+Dpf/AIIo/Av4T6B8JvD+v+LLi10Gyisknfw+6ySrEMBm2sBk1/TF/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBGz/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/F/8Vv+C4n/AARJ8WfEvW/iZ8IPiv8AEz4a3HikD+3LfQtHdIL84wWZGYhWI4LLg16va/8ABwV/wQr8K/svyfsw/Cfxj498J2kp8x9VsNHmW/eYtueRpd+S7nqTX9dP/DMP7NX/AETzwz/4KbX/AONUf8Mw/s1f9E88M/8Agptf/jVAH8qvxV/4OQv+CE/xu+A1t8Bvihr3jPVLW0hhWLUH0WUXiTwAbJ1k35EgIzn1r5a8Cf8ABbb/AIIl2XxG0L4hfHL4ufE74mf8Iq4k0Wy13R2a2tJF+6+xCN7DsWya/tP/AOGYf2av+ieeGf8AwU2v/wAao/4Zh/Zq/wCieeGf/BTa/wDxqgD+fQf8HeH/AARsHA1vxV/4IZf/AIuj/iLx/wCCNv8A0G/FX/ghl/8Ai6/oL/4Zh/Zq/wCieeGf/BTa/wDxqj/hmH9mr/onnhn/AMFNr/8AGqAP59P+IvH/AII2/wDQb8Vf+CGX/wCLo/4i8f8Agjb/ANBvxV/4IZf/AIuv6C/+GYf2av8Aonnhn/wU2v8A8ao/4Zh/Zq/6J54Z/wDBTa//ABqgD+fT/iLx/wCCNv8A0G/FX/ghl/8Ai6P+IvH/AII2/wDQb8Vf+CGX/wCLr+gv/hmH9mr/AKJ54Z/8FNr/APGqP+GYf2av+ieeGf8AwU2v/wAaoA/mM+P3/Bzt/wAEJ/2lPhhqHwn+KGoeK7rTL9RyuhyrJFIvKyRsHyrqeQRXxH8N/wDgtt/wRJ0Dx9oPjb4v/Fv4nfEaHwmwbRNP1zSHe2s2XhWCqw3so6F8mv7T/wDhmH9mr/onnhn/AMFNr/8AGqP+GYf2av8Aonnhn/wU2v8A8aoA/lhsf+Dmz/gjrZftI3f7QR+IvxAkhutPWw/sJtHlOnJtOfMWPfgOe5r5J8e/8Ftf+CKN18U9d+K/wE+MHxP+F954pfzNXg0LR2FvdSHguY5CwViOpXBr+1T/AIZh/Zq/6J54Z/8ABTa//GqP+GYf2av+ieeGf/BTa/8AxqgD+Un9k/8A4ONf+CEP7Ing288M+A9f8aX95q1y15qWp3+jSzXd5cN1eRy/J9u1fVf/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/BJ/wAFbf8Ags5+xR/wVL/at/Y38I/smXes3tz4R+J9jeak2paebJES6vLBIwpdyWLFG6DAA5IyM/6JteL2P7N/7O+l30Op6Z4C8OW9zbussUsWl2yPG6HKsrCMEEEZBByDXtFABRRRQAV+Zn/BZ/8A5RLftH/9k78Qf+kclfpnXlvxv+DHw7/aL+D3ib4DfFyxbUvC/jDTbnSNVtFlkgaa0u0McqCSJkkQspI3IwYdjQB/Pn/wb7/tw/sV/DH/AII7/BDwH8Sfi/4J8Pa5pumX0d3p2p+ILC0u4HOo3TBZIZZldCVIOGA4INfsj/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfqr/w8d/4J5/9F4+Hf/hUab/8kUf8PHf+Cef/AEXj4d/+FRpv/wAkV+VX/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFH/Dx3/gnn/wBF4+Hf/hUab/8AJFflV/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB+qv/Dx3/gnn/0Xj4d/+FRpv/yRR/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfqr/w8d/4J5/9F4+Hf/hUab/8kUf8PHf+Cef/AEXj4d/+FRpv/wAkV+VX/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFH/Dx3/gnn/wBF4+Hf/hUab/8AJFflV/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB+qv/Dx3/gnn/0Xj4d/+FRpv/yRR/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfqr/w8d/4J5/9F4+Hf/hUab/8kUf8PHf+Cef/AEXj4d/+FRpv/wAkV+VX/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFH/Dx3/gnn/wBF4+Hf/hUab/8AJFflV/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB+qv/Dx3/gnn/0Xj4d/+FRpv/yRR/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfRnxb1X/ghL8d/G1z8Rvi742+Euva3eBFmu7rxHpryOIxhcn7T2HSvV/g1+0R/wAEfv2e/Cl54G+DXxS+FugaRqDmS5tLbxLpgilYjaSym4IORxXw5/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB9XeAviB/wRB+GHj9/ij4B8dfCPS9fdmf7bB4g0sSKzdSv+kYUn2Ar2X4nfti/8Eq/jP4Um8DfFT4vfDDXtJuMF7W88SaXJGSOhwbjgj1FfnZ/xCq/8EPP+iS3n/hSaz/8AJlH/ABCq/wDBDz/okt5/4Ums/wDyZQB9z/Bb9oz/AII/fs66XPo/wR+KHwr8N290waYWXiPTEMhHTcftGTj3NYfxo+M3/BGD9ojULTVvjV8RvhR4iurIbYZrvxFpbSKvXG77QDj2PFfGn/EKr/wQ8/6JLef+FJrP/wAmUf8AEKr/AMEPP+iS3n/hSaz/APJlAH6ZeEf27f8AgmX4C8O2vhHwX8afhppmmWKCOC2tvEulxxxqOwUT4FdH/wAPHf8Agnn/ANF4+Hf/AIVGm/8AyRX5Vf8AEKr/AMEPP+iS3n/hSaz/APJlH/EKr/wQ8/6JLef+FJrP/wAmUAfqm/8AwUa/4J4yIY3+PHw6IYYI/wCEo03of+3ivgS+8I/8G+Wo6ndaxeeJvhA9zezPPPJ/wkenAySSEszHFz1JJJryf/iFV/4Ief8ARJbz/wAKTWf/AJMo/wCIVX/gh5/0SW8/8KTWf/kygD73+HX7UP8AwSR+E3w7b4TfD74sfC/TfDb7w2nx+JdMMDCX7wKtcEEHvXnvwp+JX/BEr4HeLJvHXwn8ffCXQ9XnyGurbxDpayDd12n7QdufbFfJX/EKr/wQ8/6JLef+FJrP/wAmUf8AEKr/AMEPP+iS3n/hSaz/APJlAH6A/Fz9q7/gkz8efDP/AAh/xh+LPwu8Q6bu3iC98SaXIqsO4zcZB9xiofg9+1N/wST+AHhxvCPwZ+K/wt8O6c7+Y8Nl4k0uMM/TLEXGSfrXwJ/xCq/8EPP+iS3n/hSaz/8AJlH/ABCq/wDBDz/okt5/4Ums/wDyZQB9dfFr4of8ETfjt4nh8afFzx/8Jde1WAAJdXPiHS2kwvQE/aBuA9819DaH/wAFAP8Agm14Y0i38P8Ah743fDaysbRBHDBD4m0xI40XoFUXGABX5f8A/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFYviP9vr/gmt4v0K68M+J/jd8Nr7T76Nori3m8TaY8ciNwVYG4wQa/MT/iFV/4Ief9ElvP/Ck1n/5Mo/4hVf8Agh5/0SW8/wDCk1n/AOTKAPoPwnc/8EF/A/iiLxn4X8XfB+11KBxJHMPEGlsUYdwGuCB+VfSfxI/bI/4JW/F/wjP4D+Jvxf8Ahhrej3AAe0u/EmlyRnHTg3HBHYivzp/4hVf+CHn/AESW8/8ACk1n/wCTKP8AiFV/4Ief9ElvP/Ck1n/5MoA+5Pgr+0R/wR7/AGc9PudL+CHxP+FfhqG8YNOLLxHpiGQjpub7Rk49zWP8afjR/wAEYf2iby21H41/Eb4UeI7iz4hlu/EWmNIo9N32gHHt0r4z/wCIVX/gh5/0SW8/8KTWf/kyj/iFV/4Ief8ARJbz/wAKTWf/AJMoA/S3wb+3P/wTG+Hnhm18G+B/jP8ADPStKsU8uC1tvEulxxRr6BRPivnmTxv/AMEOZviWfjBL43+ELeJDN9oN8df0reZc534+0Y3Z5zjNfLH/ABCq/wDBDz/okt5/4Ums/wDyZR/xCq/8EPP+iS3n/hSaz/8AJlAH6qL/AMFG/wDgnkoCr8ePh0AOAB4o0z/5Ipf+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD9Vf+Hjv/BPP/ovHw7/8KjTf/kij/h47/wAE8/8AovHw7/8ACo03/wCSK/Kr/iFV/wCCHn/RJbz/AMKTWf8A5Mo/4hVf+CHn/RJbz/wpNZ/+TKAP1V/4eO/8E8/+i8fDv/wqNN/+SKP+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD9Vf+Hjv/BPP/ovHw7/8KjTf/kij/h47/wAE8/8AovHw7/8ACo03/wCSK/Kr/iFV/wCCHn/RJbz/AMKTWf8A5Mo/4hVf+CHn/RJbz/wpNZ/+TKAP1V/4eO/8E8/+i8fDv/wqNN/+SKP+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD9Vf+Hjv/BPP/ovHw7/8KjTf/kij/h47/wAE8/8AovHw7/8ACo03/wCSK/Kr/iFV/wCCHn/RJbz/AMKTWf8A5Mo/4hVf+CHn/RJbz/wpNZ/+TKAP1V/4eO/8E8/+i8fDv/wqNN/+SKP+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD4c/4NVNf0LxX8Vf22vFHhe9g1LTNS+KT3Vpd2sizQXEE0188ckciEq6OpDKykhgQQcV/YLXwN+wd/wTI/Yx/wCCaXh/xF4X/Y48LS+F7LxVcQXWppLqF3qBmltlZIyDdzTFMK7DCkA55r6w+Mfxb8BfAP4T+JPjb8U79NL8N+E9NudW1K6kPEVtaRmSQ84ydqnaOrHAHJoA/wAqP/g7O+Iln44/4LR+NdCs5BL/AMIpoeg6Q5ByA7WaXhH4facH0OR1r/RB/wCCE3gW5+Hf/BHz9njw/doY3n8GWGp4Ix8upg3in8RMD+Nf5OXifUvjF/wVw/4KY3eoaTAR4s+OXjYi2h5kSzXUrjbGpI/5ZWkJALHpHHkngmv9rn4ZfD3w38JPht4e+FPg2LyNH8MaZaaTYxn+C2solhiX8EQCgDuKKKKACiiigD43/al/bt+AH7HWueHNE+NdzeW7eJhcNBLaW/2hYUtjGGaVVPmAEyALtRs4PpXpPwT/AGqP2dv2jYnb4J+MNO8QTRRefJawS7bqOLIG97eQLMi5IGWQDJx1r8Af+CyX7KP7Yvxv/aCT4meB/B15r/hHSNKt7CyfTWS5myC0sxNsjGfPmSFchCCFHNexf8EFP2fte8E6B8QPi7410y407ULm7g0K3iu4mhmjW2Xzp8q4DAM0kQ6dUr5GlnWOlm7wTpWpXdm007Jbp7NN7ep+zYzgbIKfBcM9hjObFpR5oRnCS5py0i4/FFxi9dej0P6G6KKK+uPxkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9L+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD8tf8Agsh/wTl8P/8ABUP9g3xX+zTOYbfxLGF1jwrfTcJa63Zq3kFmwdscys9vKcEiOViBuAr/ACnv+CfP7bH7Sf8AwRX/AG/0+JX9k3Nnq3he8uPD3jLwvdnyGvLNZQt3Zy9dkiPGHifBCSojYZcq3+1XX8qX/Bwd/wAG7Xh//gpRp0/7U/7KyWmh/G/TLUJc28hWCz8TQQrhIp5DhY7tFG2G4Y7WUCOUhAjxAH9Av7Gf7Z/7PP7fHwB0b9pH9mfXotc8O6ugDgELc2VyoBktbqLJMU8RIDoexDKWRlY/VFf4nX7NX7X3/BRX/git+07q0Hw6utU+Hfi7TJltPEHhrWbdvsl4sZyI7yzkwsikEmOVcOFbdFIN24/27fsUf8Hn/wCyR8RtLtfD37c3gvVPhvrgCrLquiI2r6PIR95zGMXkGT0jEdxgDlzQB/afRX45eBv+Dgn/AIIzfEK1jvNB/aC8M26SAEDUzcaY4z6reQwsPxAr2+x/4LDf8EodRUPb/tJfDRQf+evifT4j/wCPzrQB+j1Ffn6n/BWb/glhIMr+0r8Kx9fGOkj+d0Kf/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K/P8AP/BWL/glkBk/tLfCr/wstI/+SqoXH/BXT/glTaruk/aU+F5/3PFulv8A+g3BoA/Q+ivyu8Q/8Fwv+CQ3hiJptS/aL8CyqvX7Jq0V2fwEBkJ/AV+dv7SH/B2d/wAEfvgfo1w/w68T6v8AFHV41IjsfDulzxIZOwa4v1tYQvq0bSEDoCeKAP6YXdI0MkhCqoySeAAK/wA3j/g6O/4L1eFf2mRc/wDBOX9jTWk1LwPp12j+MfEFlJut9Xu7Zw0dlbOvElrBIokklGVllVQh2Juk/N3/AIKo/wDBzn+3F/wUZ0LUfg74CjT4SfDHUFaK50fR7hpb/UIW4KXt/tjd42HDRQpDGwJEgkGK9w/4IT/8G1Pxj/b28R6N+0r+2Hpt74N+CcDR3dvbTBrfUvEyghljt1OHhs3H37kgF1OIMkmSMA/Sn/gzz/4JP6ydfvf+CqXxs0xoLOCG50jwBFOuGmklDQ32oqD/AAqm61hPIYtNwNqk/wCglXM+DPBnhL4c+EdM8AeAtNttG0PRbWKxsLCzjWG3traBQkcUaKAqoigBQBgAV01ABRRRQAVz/i3xV4f8CeFdT8beLLlbLStHtZr28uHBKxW9uheRyFBJCqCcAE8cV0FfnN/wVXHxb1D9izxL4R+DGg6hr+q6/Jb2E0WmwtPPFZs3mTv5aAsylIzGcAn95XLjcQ6GHqVkruKbt3aWx6uRZdHH5jh8FOajGpOMXJtJJNpN3emi1PqP4Q/tPfs9fHu3Wf4P+MdK192Xcbe2uF+0qP8AbgYiVP8AgSCvdq/z9P2R/gX4h+K/7XPgr4LanaXFlcXWsQ/bopFaGaK2tj51xkHDKwhRyM45r/QLrxuG86q5lRnUq01HldtHu+uj2tp1e59z4ocC4PhjGUMPhMS6qqRcrNK8Ve0dU7S5tei2630KKKK+jPzEKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4K/bm/wCCY/7EP/BR3wjH4V/a38B2XiOa0RksdVTda6rZZyf3F5CVmVdx3GMsYmIG5Gr+OX9q3/gyP1z+1bnWf2IfjJbNZyEmDSfG1q6PEOwa/sUcP6f8eaY9TX+gfRQB/lDeMf8Ag0M/4LI+Gbh4dE0bwp4iVScSafrsaK30+1pbn8wK8bvv+DVv/guPaMVg+EFrcgd4vEmigH/vu+Wv9d2igD/IIf8A4Nb/APguqpwvwPDfTxN4f/rqQpn/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kDD/g1x/4Lrk8/A3H/czeH/8A5ZVet/8Ag1m/4LnzkCT4LRQ+7+JdCP8A6DqBr/XrooA/yUdB/wCDTb/gtdrEqx6h4B0bSgerXXiHT2A+vkTSn8hX3D8D/wDgyq/b88X6lDL8eviR4L8FaY5HmHT2u9ZvUHf9z5NrCfb/AEmv9M2igD+c/wD4J8f8GwX/AATN/YV1HT/iB4i0af4s+N7Bllj1bxWEmtbeZf4rfT0AtkwQGRpRPIjDKyCv6L1UKAqjAHAApaKACiiigAooooAK4ux+JHw91Pxhe/DzTtd0+fX9NCG702O5ja7gEiCRS8IbeoZGDAlQCDmuuuJ47W3e5mzsjUs2AWOAMnAGSfoOa/zzf2kvil4w+Jf7SHi74s67HdaXqmqavcXiRShobi1Uv+5jwcMpijCqO4xXznEWf/2ZCnJQ5nJvS9tFvrZ90fpvhr4dviutiqbr+yVKKd7c3vSeitdaWTvZ9j/QZuvCnhe+1+18V3um2s2qWSslvePCjXEKuCGCSEblDAkEAjINb9fBP/BMrQ/iVpX7FfgzVPi1rOoa3rOt27aoZtRne4ljt7pi1tGHkJbaINhAJ4JOK+9q9rCVfa0YVuXl5knb1XU+FznBvB42tgva+0VKUoKSvZ8raur9G7tBRRRXSeYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/Lv8AaK/aK+MngT4yax4U8Kax9lsLX7P5UX2eB9u+CN2+Z42Y5ZieTXzHFfFeE4fwkMbjYSlGUlBKCTd2pPrKKtaL69tD2MkySvmleWHw8kpJc3vXSsml0T7n6iUV+J//AA1z+0L/ANDB/wCSlt/8ao/4a5/aF/6GD/yUtv8A41X5/wD8R0yH/nxW/wDAYf8Ayw+p/wCIb5n/AM/Kf3y/+QP2wor8T/8Ahrn9oX/oYP8AyUtv/jVH/DXP7Qv/AEMH/kpbf/GqP+I6ZD/z4rf+Aw/+WB/xDfM/+flP75f/ACB+2FFfif8A8Nc/tC/9DB/5KW3/AMao/wCGuf2hf+hg/wDJS2/+NUf8R0yH/nxW/wDAYf8AywP+Ib5n/wA/Kf3y/wDkD9sKK/E//hrn9oX/AKGD/wAlLb/41R/w1z+0L/0MH/kpbf8Axqj/AIjpkP8Az4rf+Aw/+WB/xDfM/wDn5T++X/yB+2FFcT8NNX1HxB8OfD+vavJ513fabaXE8mAu6SWJWY4UADJJOAAPSu2r9hw1eNejCtDaSTV97NXPgq1J06kqct02vuCiiitjMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+J/i5+2J/wAKr+IWoeA/+Ed+3/YPK/f/AGvyt/mxJJ93ymxjdjqc4zXi57xDl+TYeOKzKryQclFO0patN2tFN7J+R6GW5VisfVdHCQ5pJXtdLS6XVruj7Yor83/+Hgv/AFKP/k//APaKP+Hgv/Uo/wDk/wD/AGivlP8AiLHCn/QZ/wCU6v8A8ge3/qRnf/QP/wCTQ/8Akj9IKK/N/wD4eC/9Sj/5P/8A2ij/AIeC/wDUo/8Ak/8A/aKP+IscKf8AQZ/5Tq//ACAf6kZ3/wBA/wD5ND/5I/SCivzf/wCHgv8A1KP/AJP/AP2ij/h4L/1KP/k//wDaKP8AiLHCn/QZ/wCU6v8A8gH+pGd/9A//AJND/wCSP0gor83/APh4L/1KP/k//wDaKP8Ah4L/ANSj/wCT/wD9oo/4ixwp/wBBn/lOr/8AIB/qRnf/AED/APk0P/kj9IKK5vwb4h/4S3whpXivyfs/9p2cF35W7fs85A+3dgZxnGcDPpXSV+g0asKtONWm7xkk16PVHy9SnKEnCW60YUUUVoQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfN/wC0H+0H/wAKJ/sj/iUf2r/av2j/AJePI8vyPL/6ZvnO/wBsYrzs2zbCZZhJ47HT5aUbXdm7XaitIpvdpaI68Dga+Mrxw+HjzTleyulsrvV2WyPpCivzf/4eC/8AUo/+T/8A9oo/4eC/9Sj/AOT/AP8AaK+L/wCIscKf9Bn/AJTq/wDyB9B/qRnf/QP/AOTQ/wDkj9IKK/N//h4L/wBSj/5P/wD2ij/h4L/1KP8A5P8A/wBoo/4ixwp/0Gf+U6v/AMgH+pGd/wDQP/5ND/5I/SCivzf/AOHgv/Uo/wDk/wD/AGij/h4L/wBSj/5P/wD2ij/iLHCn/QZ/5Tq//IB/qRnf/QP/AOTQ/wDkj9IKK/N//h4L/wBSj/5P/wD2ij/h4L/1KP8A5P8A/wBoo/4ixwp/0Gf+U6v/AMgH+pGd/wDQP/5ND/5I/SCivE/gN8Yv+F2+ELnxX/Z39mfZ7x7TyvO87OxEfdu2JjO/GMdute2V9xl2YYfHYanjMLLmpzV4uzV16NJr5o+cxeFq4atKhXVpx0a0f5aBRRRXac4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFS41CwtJ4bW6njjluWKxI7BWkYDJCg8kgDJA7V5L8XP2d/gX8edO/sz4xeE9M8QoF2o95bq80Y/6Zy4Ekf1Rga/mf8A+C83x7uvEH7QHhn4JaFcvHD4Nsft1wY2Klb6/wAMOndIUjZT28w19Jf8EMvit+1D8XNd8WN8RPF+pa14M8O2UFtDbag4uT9tuXymyaUNKFjijcFFcL865HSvlf8AWKhXzGWVypcyva+jWiu7p9Fr3P15+GmPwPDNLi2njFTlyqXL70ZJSlaHLOLd3JNO1lvuf0R6TpWnaFpdtomkQrb2lnEkEESDCpHGAqqPYAACtCiivqkraI/Im2223qFFFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/E/9rn/AJOF8Qf9un/pNFX7YV+J/wC1z/ycL4g/7dP/AEmir8Y8c/8AkQ0P+v0f/SKh+g+G/wDyM6n/AF7f/pUD5vooor+Uj9rCiiigAooooAKKKKAP34+Df/JIfCv/AGB7H/0SlekV5v8ABv8A5JD4V/7A9j/6JSvSK/0Dyf8A3DD/AOCP/pKP5ex/+9Vf8UvzYUUUV6JyBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4n/tc/8nC+IP8At0/9Joq/bCvxP/a5/wCThfEH/bp/6TRV+MeOf/Ihof8AX6P/AKRUP0Hw3/5GdT/r2/8A0qB830UUV/KR+1hRRRQAUUUUAFFFFAH78fBv/kkPhX/sD2P/AKJSvSK83+Df/JIfCv8A2B7H/wBEpXpFf6B5P/uGH/wR/wDSUfy9j/8Aeqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr83/APgoL/zKP/b/AP8AtCv0gr83/wDgoL/zKP8A2/8A/tCvzrxY/wCSVxn/AHD/APTsD6vgj/kdYf8A7e/9Ikfm/RRRX8YH9AhRRRQAUUUUAFFFFAH60fsHf8kh1L/sMTf+iYK+2K+J/wBg7/kkOpf9hib/ANEwV9sV/cPh3/yTeB/wL82fzpxX/wAjfE/4v0Ciiivsz54KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivye/4LKftAy/BP9jnUPDmi3Jt9Y8b3CaPblG2yLbn95cuMdvLXyyexkFcmOxcMLh6mIntFN+vl89j2OH8mrZtmWHy2hpKrJRvvZPd+kVdvyR+g3xZ+AnwW+O2k/2J8YfC+m+IoFUqn223WSSLP/POTG+M+6MDXM/s6fswfBr9lPwlf+B/glpjaXpmo38moyxPM87ebIiJgPIWfaFRQoLHHPrX8q//AATg/bd/bk1T9oPwb8A/DHi2fXdJ1m/jhuLTWl+3rDZx5kndJHImTy4VdlVZVXIAxX9lNeVkuY4XMk8XTpWnHS7Sv6J9UfXcdcNZtwtOOTYnGc9GoudRjKXLZNpOUHondO1r9dQooor6A/OQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvxP/a5/wCThfEH/bp/6TRV+2Ffif8Atc/8nC+IP+3T/wBJoq/GPHP/AJEND/r9H/0iofoPhv8A8jOp/wBe3/6VA+b6KKK/lI/awooooAKKKKACiiigD9+Pg3/ySHwr/wBgex/9EpXpFeb/AAb/AOSQ+Ff+wPY/+iUr0iv9A8n/ANww/wDgj/6Sj+Xsf/vVX/FL82FFFFeicgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+J/7XP/JwviD/ALdP/SaKv2wr8T/2uf8Ak4XxB/26f+k0VfjHjn/yIaH/AF+j/wCkVD9B8N/+RnU/69v/ANKgfN9FFFfykftYUUUUAFFFFABRRRQB+/Hwb/5JD4V/7A9j/wCiUr0ivN/g3/ySHwr/ANgex/8ARKV6RX+geT/7hh/8Ef8A0lH8vY//AHqr/il+bCiiivROQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/N/wD4KC/8yj/2/wD/ALQr9IK/N/8A4KC/8yj/ANv/AP7Qr868WP8AklcZ/wBw/wD07A+r4I/5HWH/AO3v/SJH5v0UUV/GB/QIUUUUAFFFFABRRRQB+tH7B3/JIdS/7DE3/omCvtivif8AYO/5JDqX/YYm/wDRMFfbFf3D4d/8k3gf8C/Nn86cV/8AI3xP+L9Aooor7M+eCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzD4q/BT4SfHLw/wD8Iv8AF/w5p/iOxXcUjvoFlMTNwWjYjdGxx95CD70vxq+KWhfBH4SeI/i54lI+xeHdPnvpFzgyGJSVjH+07YRfciv4rPhT/wAFVv23PhP4qu/EGm+LZNYtr+7lu5tN1dftloXmcuyxhj5kSZJwsUiCvns7z7CYGUKOJi5Kd72Sdl5p73/Q/SuAvDzN+IKVfG5XVVOVFxs25RvJ3doyinZpW+9H9TX7Pf8AwTN/Zm/Zf+Odz8dPhFb31pdT2M1jFYXFx9otbbzmQs8JcGUNtUp80jfKxr9B64H4Vax408RfDPw/4g+I9lDpuv32n21xqFpBu8u3uZYw0ka7iWwjErye1d9Xr4PDUaNPloQUYvWyVt/I+LzrM8fjsS6mY13VqR93mb5tI7a9V59dwooorqPJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//X/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/2uf8Ak4XxB/26f+k0VfthX4n/ALXP/JwviD/t0/8ASaKvxjxz/wCRDQ/6/R/9IqH6D4b/APIzqf8AXt/+lQPm+iiv5w/+Dg39v/x7+zl8OtD/AGZvg5ey6Vrnjq3mutT1K3kMdxbaZE4QRxMuCrXD71ZwcqiMo+/kfzbw7kOIznMKWXYbSU3u9kkrtv0X37H61muZUsBhZ4qttHp3eyXzZ+tfxm/4KKfsP/s+67c+Fvi38TdD0vVbI4uLFZ/tN1C3914YBJIrf7JUH2rkPhb/AMFUP+Cenxl1uHw34D+K+iyX1wwSGG+aTTmkduAqfbEh3MTwFGSfSv5Lv2Mv+CA/7Tv7Vnw7sPjH4/12z+H+h63EtzYC9gku9QuIX5WY24MYRHHzIXlDMCDt2kE6/wC15/wb1/tP/s5fD3UPil8M9esfiLpekQvcXttaW8lpqKxJyzx25MqyhVyzBZd+BwrV+rLgXgyNb+zp5vL6zfl2ShzbW+Frfpz+R8U+JOIHT+tRwK9lv15rfffb+6f3cghgGU5B6Glr+Vf/AINxP24PiR8Rx4j/AGOfiZqMur2/h3TV1jw/NcuXmt7SORIJrbcxJaJWliaJf4BuA+XaF/qor8u4o4dr5JmNTLq8lJxs01s01dPy810d1rufZZNmtPMcJDFUlZPddmt1/XQKKKK+fPUP34+Df/JIfCv/AGB7H/0SlekV5v8ABv8A5JD4V/7A9j/6JSvSK/0Dyf8A3DD/AOCP/pKP5ex/+9Vf8UvzYUUUV6JyBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4n/tc/8nC+IP8At0/9Joq/bCvxP/a5/wCThfEH/bp/6TRV+MeOf/Ihof8AX6P/AKRUP0Hw3/5GdT/r2/8A0qB830UV/Nb/AMHAfx1/bU+AEvgHxn+zTrPiHw/4aFrfrrl9pKP9jjmMkCwC5lVWSNm3MI95G7kDNfzdw5kVTOMwp5dSqRhKd7OW2ibtpfe1l5n61m2ZRwGFnipxclG2i31dvwP6UqK/zePB/wDwUc/4Kp/ELUzovgH4j+MtcvANxg0/fcy46Z2xoxxn2qz41/4KI/8ABV74a3qaZ8RfiF400C5kyUi1ISWrtt64WWNScZGa/Uf+IH5jz+z+uUubteV/u5T4z/iI2E5ef2E7d9Lfmf6P1Ff50PhT9uT/AILEePNGTxF4G8X+P9Z0+RmRbqxt57mFmQ4YB44mUkHgjPFfp9/wSb/aG/4KjeOP29PBXhb9o/U/G9z4Nuo9U+3x6zZzx2RKWFw8W9pIlUESqm3kZbA715ua+EeMwOFr4qpjKT9nGUnFN3fKm7LTfSy8zswXHNDE1qdGGHmudpJ2VtXa++x/ZBRRRX5IfcH78fBv/kkPhX/sD2P/AKJSvSK83+Df/JIfCv8A2B7H/wBEpXpFf6B5P/uGH/wR/wDSUfy9j/8Aeqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr83/APgoL/zKP/b/AP8AtCv0gr83/wDgoL/zKP8A2/8A/tCvzrxY/wCSVxn/AHD/APTsD6vgj/kdYf8A7e/9Ikfm/RRXnnxa+KvgT4HfDTW/i78Tb9NM0Hw9aSXl7cydFjjHQDqzscKijlmIUckV/GdOnOpONOmrybskt23skfv85xjFyk7JbnodFfwhftE/8Fz/ANv39qr4knwr+ytHd+DdJdpEsdK0K2F9qtyg5DzS+XI5cDnbAqKo67sbq+LvA3/BRv8A4Kl+HvEGpeIPDPxI8ZX9xoO6fUY7t5dRgtFRtrGeCdZYo1DfKd6gA8V+w4XwUzepR569elTnZPlbbavtzNJpfK58HW8Q8DGpy06c5Rv8SSs/S7v99j/SOor8E/8Agkh/wWWtf25dUl+BXxysrPQfiHa232izltGKWusRRAmUxxuSY5owN7RhmDLuZcBSB+9lfmWeZFjcoxcsFjocs18009mn1T/4Ds00fYZdmWHx1BYjDSvF/en2a6P+tgoooryDuP1o/YO/5JDqX/YYm/8ARMFfbFfE/wCwd/ySHUv+wxN/6Jgr7Yr+4fDv/km8D/gX5s/nTiv/AJG+J/xfoFFFFfZnzwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcn458B+DPib4TvfAnxC0u21nRtRQJc2d5GJYZVUhhlWyMqwDKeoYAjBAr8pNY/wCCJ/7JqfF3Qfin4Bkv9CttJ1KC/udGMn2uxuUgcSeUPNJlQORhv3jDbwFFfkB+0F/wV7/aX8Mftf8Ai7xR8DfESyeELa9NjZaXdxLc2E8Fn+680KcOvnMrSbo3RiGAJ4r+jr9gr9pPx1+1n+znpvxs8e+HofDtxqFxPDBHbzNLFcxW7eWZ1DqGjDSB1CFn+7ncc4HylDMcrzfESw8qfNOF7Nronumunk7H7Bj+G+LeDMtp5jSxPs6NZJSjGe0pxvyyhKyckk1eKdrbo+zKKKK+rPx8KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/2uf8Ak4XxB/26f+k0VfthX4n/ALXP/JwviD/t0/8ASaKvxjxz/wCRDQ/6/R/9IqH6D4b/APIzqf8AXt/+lQPm+v40P+Dnb4UeKrX42/Dn44+RI+h3+hyaF5wBMcd3aTy3G1j0VpEnyoPLBGx901/ZfX8zf/Bwt8IP2x/jYfh94J/Z30DxJ4l8NTW9/JrVjo0M1xatcRyQG3aeOMFd6jf5ZYZ+9jvX4r4WYz6txJh5ynGMWpJuTsrcr69+3d6H6DxpQ9rlNWKi2/dskru9107dz9zv2Rv2ivhF+1B8A/DvxU+DN7bXGl3NnDHJbQN81jMiAPbSJ95GiIK4PUAMMqQT3nxx+Nvwu/Z3+F2r/Fz4xapDpOg6RA8s8sxGXwCRHGp5kkfG1I1yzHgV/nd/D/8AYn/4Kp/CbVX134V/Dz4ieGb6RQjXGlWt7ZSsoOQC8IRiM84zV74jfsdf8FZfjDdRX3xb8C/EnxTNAWMcmr29/fMhbrtM28jOBnHWvt6nhNlcsa5xzan7Bu9rx57dr81r9Ob526HzsOOMYsPyvAy9pa17Plv3ta/y/E/U7/g25+D2u+Lv2rvH37SVjp7WPhnSNJn0yHAPli71GeKVIUY/e8qGJtw5xuQnGRn+0Kv85LwL+zV/wWT+F+gL4U+Gfhn4qeHdKR2kWz0walaW4d+WYRxFFBY9TjJr9Tf+CTPgf/gq7oP7efgvUP2lofiUngkR6muonxDNqD6dzY3Hk+aJ3Mf+u8vZkffxjmunxF4Up5liMTnMcxpWhD3YJpyahG9r31cnfpu7GXCmdywlKjl7ws7ylrK1leT322X6H9kFFFFfz4fqJ+/Hwb/5JD4V/wCwPY/+iUr0ivN/g3/ySHwr/wBgex/9EpXpFf6B5P8A7hh/8Ef/AElH8vY//eqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/wBrn/k4XxB/26f+k0VfthX4n/tc/wDJwviD/t0/9Joq/GPHP/kQ0P8Ar9H/ANIqH6D4b/8AIzqf9e3/AOlQPm+v44f+Dnb4zeKLj4sfDr9nuG5ePRbPSJPEMsCnCS3VzNLbRu47mNIXCHt5jetf2PV/MR/wcWfsLfET4x+F/D/7XHwss31R/BljLp2u2cKl5108yGWK4jUDLLC7yebjJCsGxtViPxbwrxOFocSYaeLaS95JvZScWl9+y82j9B40o1quUVo0E29G0uyd3/m/I/dT9jv9mP4Ofsn/AAG0D4XfBmwtoLOKzge5voVBl1GdlBa5mkADSNISSCeFUhVAUADvPj9+z/8ACX9pr4W6p8IfjRpEGr6LqkLxusqjzIWYECWFyCY5U6o68g1/Fv8AsWf8HB/7QP7Mnw0034Q/FXwxbfEXR9FgW10+5lvHsNRigThI5J/LnSVI1wqZiDgDBY8Vo/tf/wDBxH+0R+0L8Ob/AOF/we8L2vw3sdXge2vb2K9e/wBRMT8MsM3l26Q7lyrMI2cA/KynmvoavhVxVLNnVutZ39tzrvfmtfnv5W3PLhxrkscCoW+zb2fK+223Lb5nrv8Awbd/GPxV4P8A2q/Hf7MltqB1DwxqmlXGqRhCTEL3T54oVnQHhRLDIwYjG7amfuiv7Qa/lr/4N0v2C/HvwtsNa/bP+KVnJpb+JtPOkaBZzoyTPZNKks10ytjasjxIsWRllDN91lLf1KV4PitisLX4jrywrTsoxk1s5pWf3aJ+aPS4Ko16eU01XVrttJ9It6f5/MKKKK/OD6w/fj4N/wDJIfCv/YHsf/RKV6RXm/wb/wCSQ+Ff+wPY/wDolK9Ir/QPJ/8AcMP/AII/+ko/l7H/AO9Vf8UvzYUUUV6JyBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5v/8ABQX/AJlH/t//APaFfpBX5v8A/BQX/mUf+3//ANoV+deLH/JK4z/uH/6dgfV8Ef8AI6w//b3/AKRI/N+vwW/4ONte1/R/+CeCafo5cW+q+KdMtb7b0Nusc843e3nRRfjiv3pr4z/4KAfsnWH7a37J/iv4ASzR2moajAtxpVzKSEg1C1YSQM5UE7Cw2SYBOxmwM4r+UeE8fRwWc4TF4j4ITi35K+/y3+R+253hqmIy+vQpfFKLS+7b57H52/8ABvX8Dfhj4H/YI0j4yeH7O3fxN41vNQk1W9ADThLO6ltoYCx5VFSISBBgbnLd81+d/wDwQQiin/4KEftCQTqHR4b1WVhkEHUjkEdwa8l/4IvePP2zv2P/ANvqx/4J9fFi2utF8Pa/Nqk99pGow7kW4s7OaVbmzl6bZDCgLxs0cic8nDD8qPCH7bvx8/Yl/aR+LniD9n68tdN1PxLqGpabPdz263EkMYvHcNCHygcEdWVh7V+8PhnGYzG57hqVaM3ioU6lOV9OSVSXKm7P4VFpWvolY/M1nGHoYfLa06biqMpxkra8yir6ebd9batn2t+054G8Gfsyf8F69C0L9naKPT7VPGfhq5FhZ4WOCfU2tnubdAOFSTzW+QYVVk2AADFf3k1/Gt/wRU/4Js/GX40/H2D/AIKBftUw6hBYadetq+k/2orC71nVJCXF23mDeYYmPmLJx5km3aSqtX9lNfnXinjaEsRg8up1fa1MPSUJz7y6q/W1rvezdm73PrODMPVVLEYqUOSNWblGPZf1+XawUUUV+Vn2h+tH7B3/ACSHUv8AsMTf+iYK+2K+J/2Dv+SQ6l/2GJv/AETBX2xX9w+Hf/JN4H/AvzZ/OnFf/I3xP+L9Aooor7M+eCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLm2gvLaSzuV3xyqUdT3Vhgj8qnr+bH/gp5/wVC+NnwF/axsvht+zxq8NvaeFLJV1eCaFLiC7vLvbKY5ARuxHF5eCjKwZnGRXm5rmlDAUPb172ulpvr/wNT6nhDhLH8RY76hl9lNRcm5NpJLu0nu2ktN32Poj9on/ghX+zl8RzPrfwN1G68Cak+WFvzfaczdf9XIwlTJ7rKVXsnav2F+E3w28PfB34Y6B8KvCibNO8PWEFhBxgssCBdzf7TEbmPckmvgj/AIJq/t8+Lv26PCWu6h4r8JJoNx4ce3hnvbWYvZ3U04ZisaON6FAuWUu+Ay/Nziv04rDKMNl7X13AwSU1uk1s+3TXstT0OMs04jjNZFn9eU3Qd0nJSacktXJXctLWu21d7ahRRRXsnwwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/2uf8Ak4XxB/26f+k0VfthX4n/ALXP/JwviD/t0/8ASaKvxjxz/wCRDQ/6/R/9IqH6D4b/APIzqf8AXt/+lQPwj/4LO/Fb4k/BX/gnh41+Inwl1u88O67Z3GlJBf2EphnjWa+gRwrryNyMVOOxIr7a/Zh1zWPE/wCzV8PPEviK5kvdQ1HwzpNzdXEzF5JZprWJ3dmPJZmJJJ6k1+cv/Be3/lF74+/6+tG/9ONvX6C/sif8mn/DD/sUtE/9I4q/AcRSguGMPVUVzOvUV7a2VOnZX7avQ/TqU5f2xVhfT2UHbpfmmfQ9FFFfIHuhRRRQAUUUUAfvx8G/+SQ+Ff8AsD2P/olK9Irzf4N/8kh8K/8AYHsf/RKV6RX+geT/AO4Yf/BH/wBJR/L2P/3qr/il+bCiiivROQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/E/8Aa5/5OF8Qf9un/pNFX7YV+J/7XP8AycL4g/7dP/SaKvxjxz/5END/AK/R/wDSKh+g+G//ACM6n/Xt/wDpUD8hv+CkX7VXi79iz9kDxL+0V4G02z1bU9FlsI4ba/3+Q32u6igYt5bK3CyEjDDkCvpn4IeOtQ+KHwW8IfEvV4Y7e78RaJp+pzRQ58tJLuBJWVdxJ2gsQMknHWvzD/4L2/8AKL3x9/19aN/6cbev0F/ZE/5NP+GH/YpaJ/6RxV/PVfBUFw7Qxah+8dapFvryqFNpfJt/efqVPEVHmtSg5e4qcXbzcpJv7kjwb4y/8Esf+Cffx81668VfEz4X6VPqd6d1xdWRm06WVz1d2s5IdznuxyT3JqL4P/8ABKr/AIJ7fArXLTxP8OfhdpMWpWDCS3ub4zalJHIOjqbySbDDqGGCDyMV+gtFcH+sWa+x+r/W6ns9uXnly27Wvax1f2Vgvae19hDm78qv99rhRRRXjHeFFFFAH78fBv8A5JD4V/7A9j/6JSvSK83+Df8AySHwr/2B7H/0SlekV/oHk/8AuGH/AMEf/SUfy9j/APeqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr83/8AgoL/AMyj/wBv/wD7Qr9IK/N//goL/wAyj/2//wDtCvzrxY/5JXGf9w//AE7A+r4I/wCR1h/+3v8A0iR+ZHiC5nstBvby2bbJFbyOjdcMqkg8+9fkV/wQ5/aJ+NP7T37F1z8Sfjzr8/iPXF8SX9mLu4WNGEEUUDKmI1RcAux6d6/W7xV/yLGpf9es3/oBr8KP+DcD/lHtd/8AY26l/wCibav5dy7D0pcPY+tKCc41KCTsrpNVbpPdXsr97H7Li6s1mmFgpPlcal10duS115H7z3Gl6ZeXlvqN3bxS3FoWMEroGeIuNrFGIyu5eDjqOK8M0L9kz9lfwv4lk8aeGvhp4V07WJpjcvfW2jWkVy0zHcZDKsQcsW5LZznnrX0DRXzNLE1qacac2k9HZtXXmexOjTm05RTt5BRRRWBoFFFFAH60fsHf8kh1L/sMTf8AomCvtivif9g7/kkOpf8AYYm/9EwV9sV/cPh3/wAk3gf8C/Nn86cV/wDI3xP+L9Aooor7M+eCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvxv/AGuP+CMfwI/aM8Sat8TPA+rX3hHxXq88l3cylje2VxcSks7PFIwdSzH/AJZyKq9kPSuQ/wCCun/BQv4i/snav4N+HXwKv4bTxHdu2raiZYUnX7Cu6KKJkcH5Zn3kldrjyhgjNdn/AME3v+CpOvftq+K7j4VeMvBrabrmnWD31xqWnSb9PKIyp8ySHzIizOAqhpc8nIAOPmcbj8rxmJeV4pc0ltppdro1qn32P1XIuHuLclyqPFmVT5KTTbtJX5VK15QlpKLa0Xvd7H2L+wf+ypb/ALHP7Oel/B6WeC91QTT3uqXduCI7i7nb7y7gDhY1SMZAOEFfY9FFfQYfDwoUo0aStGKsvkfnGZZjiMfi6uNxUuapUk5Sfm3d+i7LotAooorY4QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9L+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+VvjN+0F43+DV75mpeD/tulSNthv4r0hCT0DjyDsb2JIPYnmvLzfOcJleHeKxsnGmt2oylb15YyaXm7LzO3AZfXxlVUcOk5Po2lf05mr+iPqmivzf/wCHgv8A1KP/AJP/AP2ij/h4L/1KP/k//wDaK+O/4ixwp/0Gf+U6v/yB73+pGd/9A/8A5ND/AOSP0gor83/+Hgv/AFKP/k//APaKP+Hgv/Uo/wDk/wD/AGij/iLHCn/QZ/5Tq/8AyAf6kZ3/ANA//k0P/kj9IKK/N/8A4eC/9Sj/AOT/AP8AaKP+Hgv/AFKP/k//APaKP+IscKf9Bn/lOr/8gH+pGd/9A/8A5ND/AOSP0gr8T/2uf+ThfEH/AG6f+k0VfSH/AA8F/wCpR/8AJ/8A+0V8T/Fz4g/8LU+IWoePPsn2D7f5X7jzPN2eVEkf3tq5ztz0GM4r8x8V+N8kznKKWFy3Ec81VjJrlnHRQmr3lFLdrzPsOCeHcxwGOnWxdLli4NXvF680X0b7M/Cv/gvb/wAovfH3/X1o3/pxt6/QX9kT/k0/4Yf9ilon/pHFXofxU+Evw0+OHgi7+G3xd0S18Q6DfNG1xY3qeZDIYXEiFlPXa6hh7ivyU/4Kd/8ABUKT/glxc+APh/4I8AWniDT9bsLkQRfbDYR2cWnmKOOONEhkBXa4AHG0ACvy/K4V83wOH4fwNJyr+0qVFqkmnCKtdtarkb1+R9njJUsDiauaYmdqfJGOzbupPsn/ADI/a+iv4/P+Io3xn/0Rqy/8Hb//ACJR/wARRvjP/ojVl/4O3/8AkSvY/wCIScU/9Aq/8GU//kjg/wBecl/5/wD/AJLP/wCRP7A6K/ED/gln/wAFe9e/4KM/FDxL8O9W8CQeE00DS11FZ4dQa8MpaZYthUwxY+9nOT06V5F+xV/wXM8Qfta/tqaX+ybe/De30O31OfVIRqSao1w6f2fbzzg+UbdAd/k7T84xnPOMHxa3AudUp4qnOhrh4qdT3oe7FpyT310T0V2ehT4ky6caM41NKr5Y6S1aaVttNWtz+hyiiivkD3T9+Pg3/wAkh8K/9gex/wDRKV6RX5d+Df25P+ES8IaV4U/4Rf7R/ZlnBaeb9t2b/JQJu2+ScZxnGTj1rpP+Hgv/AFKP/k//APaK/sLLfFPhelhKNKpjLSjGKf7urukk/sH4Ni+DM5nXqTjQ0bbXvQ7/AOI/SCivzf8A+Hgv/Uo/+T//ANoo/wCHgv8A1KP/AJP/AP2iu3/iLHCn/QZ/5Tq//IHP/qRnf/QP/wCTQ/8Akj9IKK/N/wD4eC/9Sj/5P/8A2ij/AIeC/wDUo/8Ak/8A/aKP+IscKf8AQZ/5Tq//ACAf6kZ3/wBA/wD5ND/5I/SCivzf/wCHgv8A1KP/AJP/AP2iut8FftmeKviHrsfhzwj4Fe8upOSFv8Ki92djBhVHqf51rQ8UeGa9SNGjinKcnZJU6rbfZJQIq8G5xTg51KKUVu3OCS/8mPvOiqti97JZxSajGkM5UGRI3MiK3cBiqkj32j6Var7+Luk0fMNWdgooopiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor53+J/wC0j4a+EWrDS/F+iauqSf6m5iiheCXHXaxmHI7ggMPSvPzPNcJl9H6xjanJT2u72XrZO3zOrB4KviqnssPHml26n0RRXxP/AMN4/CH/AKB2sf8AfmH/AOP0f8N4/CH/AKB2sf8AfmH/AOP185/xEThv/oOh97/yPX/1Uzf/AKBpfgfbFFfE/wDw3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/R/xEThv/oOh97/yD/VTN/8AoGl+B9sUV8T/APDePwh/6B2sf9+Yf/j9H/DePwh/6B2sf9+Yf/j9H/EROG/+g6H3v/IP9VM3/wCgaX4H2xX4n/tc/wDJwviD/t0/9Joq+2P+G8fhD/0DtY/78w//AB+vzx+OfjzR/ib8U9U8caDHNDaX3keWlwqrIPKhSM5Csw6qcYJ4r8q8XuK8ozPJ6VDAYmNSaqxk0t7ck1fbu1959pwLkmOwePnVxVFxi4NXffmi7fgz8Gf+C9v/ACi98ff9fWjf+nG3r9Bf2RP+TT/hh/2KWif+kcVc/wDtofsqeFv21f2d9a/Z08ZandaPp2tyWkkl1ZBGmQ2k6TrtEgK8mMA5HQ14x8av20v2RP8Agml4L8C/B745+I7vTohpMdlpT/Yp7ySeDTI4oC0ht4mVWwVzwMknAxX5DQqPHZPQyjBwlPEKtUnyxi2+Vwgrq2/wu/ZK593UisPj6mOryUaXs4xu2lqpS7+qP0Oor8av+H+n/BML/od73/wTX/8A8Yo/4f6f8Ewv+h3vf/BNf/8AxisP9Ss//wChfW/8Fz/yNf8AWDLP+gqn/wCBx/zP2Vor4U/ZQ/4KRfsj/tr+KtU8F/s7eIJ9Y1HR7QXt1HNY3NoEhZxGCGmjQH5iBgHNch8EP+Crv7D/AO0V8cLb9nX4T+KbjUPFd5JdRQ2r6ddwI7WUbyyjzZIlQYSNyMsM445Irhnw7mkJVYzwtROkuafuS92LTactNFZN3fRHRHNcHJQlGtFqbtH3l7z2stdX6H6NUUUV4x3n78fBv/kkPhX/ALA9j/6JSvSK/PrwD+2n8LfCvgTRfDGoWGqvcabYW1rK0cUJQvDGqMVJmBIyOMgHHaut/wCG8fhD/wBA7WP+/MP/AMfr+08s8QOHaeDoU542CahFNXe6S8j+fMZwvms8RUlHDys5N/ifbFFfE/8Aw3j8If8AoHax/wB+Yf8A4/R/w3j8If8AoHax/wB+Yf8A4/Xd/wARE4b/AOg6H3v/ACOf/VTN/wDoGl+B9sUV8T/8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P0f8RE4b/wCg6H3v/IP9VM3/AOgaX4H2xRXxP/w3j8If+gdrH/fmH/4/V3Tv23/hjrF/FpelaPrdzczsEjiit4Wd2PQACckmnHxC4ck1GOOg2/X/ACE+Fs2Su8PK3yPsuiqOmXk2oafDe3FtLZvKoYwzbfMTPZtjOufoxq9X2EZKSUl1PAas2mFFFFUIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivM/id8TrT4WaOPEGq6TqGoWS582WxjjkEPu4aRGAPqAQO5HFc2MxlHC0ZYivK0I6t6uy76dO/Y2oUKlaoqVJXk9kemUV8T/8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P18r/wARE4b/AOg6H3v/ACPb/wBVM3/6BpfgfbFFfE//AA3j8If+gdrH/fmH/wCP0f8ADePwh/6B2sf9+Yf/AI/R/wARE4b/AOg6H3v/ACD/AFUzf/oGl+B9sUV8T/8ADePwh/6B2sf9+Yf/AI/R/wAN4/CH/oHax/35h/8Aj9H/ABEThv8A6Dofe/8AIP8AVTN/+gaX4H2xX5v/APBQX/mUf+3/AP8AaFekf8N4/CH/AKB2sf8AfmH/AOP18l/tR/Hjwh8bf7C/4RS2vLf+zPtXm/a0RM+d5W3bskfONhznHavhvEjjPJMfw5isLg8XGdSXJZJu7tUg307Js+i4S4fzHDZrRr16DjBc12/OMl+bPi3xV/yLGpf9es3/AKAa/Cj/AINwP+Ue13/2Nupf+ibav3uubaG8tpLS5XdHKpR19VYYI/KvzU+Ovi74D/8ABHr9i/V/HnwU8BqfDulajBI2jWt28Jkn1CWOFpPOmE7ZHynBzwuBiv5/yfEutgK+TUYOVbEVKXJta8edWbbVm3JW6b3aP1DH0VDE08wqSSp0oz5t768rvounK7/qfplRX8o//EUb4Q/6Izef+DxP/kSj/iKN8If9EZvP/B4n/wAiV7X/ABCvin/oCf8A4HT/APkzz/8AXXJf+gj/AMln/wDIn9XFFfze/sxf8HD3hj9pT9oPwh8BLT4VXWkSeLNTh05b19YSZYDMcbzGLVS2PTcPrXrf7dP/AAXM8NfsR/tOah+zbqPw4uvEUmnw2Uz6hHqaWyt9siWXAjMEh+UNj73J9K8+Xh9xBHGLL3hX7Zxc1Hmh8Kdm781t9LXudS4oyt4d4pVv3afLe0t2r2ta+3yP3nooor4098/Wj9g7/kkOpf8AYYm/9EwV9sV+UH7NH7S/gT4NeBLvwx4ntL+e4nv5LpWtY43QI0caAEvKhzlD2xjHNfQ//DePwh/6B2sf9+Yf/j9f1vwRxvkWEyLB4bE4yEakYJNNu6d35H4dxHw5mVfMq9ajQk4uWj7n2xRXxP8A8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P19V/xEThv/AKDofe/8jxf9VM3/AOgaX4H2xRXxP/w3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/R/xEThv/AKDofe/8g/1Uzf8A6BpfgfbFFfE//DePwh/6B2sf9+Yf/j9H/DePwh/6B2sf9+Yf/j9H/EROG/8AoOh97/yD/VTN/wDoGl+B9sUVwPw78fR/EbQl8R2mlX+mW0uDCb9EjaVT/Eqo7nb6FsZ7ZFd9X1mFxNPEUo16LvCSunqrrvrY8OtRnSm6dRWktwooorcyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor8qf+Csf7bPiX9j74LaVB8LryO08Z+Jb5UsneNJvJtbUrJcSFHDKQcpFyOkhIwRmuXHYynhKE8RV+GKv/wAD5nr5DkmKzjMKOW4NXqVHZX2XVt2vokm3o9EP/bd/4JQ/Bz9sbxNc/FBNYv8Aw34wnhjhN4jG6tJFhUIge3kYbQAAP3TxjOSQxJNbP/BMn9gbUf2HPAviS18aXlnqniTxBqAaS7st5i+w24xboPMVWDZaR3GMZYDJ2gn5e/4J8/8ABYLxB+078SNJ+AfxS8HNH4i1JZPK1PRjm0IhjaR3mhlbdEoVTlld8sQAor9268fLKGV4yr/aeEj7+qb1Wr3utr67+fU+24pzDizJcG+FM4qtUbRajeMvdT93lkteW60i3py7IKKKK+iPzIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqWo6bp+r2Mul6rAlzbTqUkilUMjqeoIPBFXaKmUVJOMldMabTutz8wvjz+xteaR53iz4Ro9zajLy6dktLGO5iJ5cf7Jy3pnoPz/kjeJ2ilUqykggjBBHY1/R7Xyv8AHX9lzwr8WI5dd0TZpevYz56j91OfSVR3/wBsfMO+elfgXHXg9CtzY7IUoz3dLZP/AAPo/wC69O1tn+ncN8eSp8uGzN3j0n1X+Lv67977n4z0V1/jbwJ4r+HeuyeHPF9m9pcx8jdyrr2ZGHDKfUfzrkK/nDEYerQqSo1ouM4uzTVmn2aZ+tUqsKkFUptOL2a1TCiiisSwooooAK+WP2i/2Jv2Wv2tb7StS/aJ8H23iifRI5YrF7iWaMwpOVLgeVImdxVeuelfU9FdGFxdfDVFWw1RwmtnFtNX03VnsZVqFOtB06sVKL6NXX3M/Mb/AIc0f8Eyv+iS6b/4E3n/AMfo/wCHNH/BMr/okum/+BN5/wDH6/TmivW/1pzr/oOq/wDgyf8A8kcX9i5f/wBA0P8AwCP+R8m/s7/sL/snfsn65qHiX9nnwXaeGL/VYFtbqeCSaRpIVbeE/eyPgbueMZwM9K5T4Uf8E4P2Jfgd8Vrb43/CnwBZ6N4qs3uJIdQinuHkRrpHjlO15WT50kYHK9+K+3aK5JZ1mEnUlLEzbqK0/fl7yta0tdVZtWd1Y2WX4VKCVGNou8fdWj7rTR+gUUUV5h2BRRRQAUUUUAFFT21tc3lwlpZxtLLKwREQFmZjwAAOST6V+jHwG/Yzz5Piz4wR8cPFpgP5GYj/ANAH/Aj1Wvo+GuFcxzzE/V8BTvb4pPSMV3b/ACSu30R5Ob51hctpe1xMrdkt36L9du583fBD9m3xj8YrlNSYHTtEVsSXki/fx1WJf4j2z90dzng/rp8O/hn4O+FuhLoHg+0EEfBlkPzSzMP4nbqT+g7ACu3trW2sraOzs41hhiUIiIAqqo4AAHAA9Knr+teDPD/LuH6anTXPXa1qNa+kV9lfi+relvw/P+KMVmk+WT5aS2itvV93+HZBRRRX3h8yFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVgeJ/C3h7xnos3h7xRaR3tnOMPHIMj2IPUEdiMEdq36Kzq0oVYOnUinFqzT1TXZoqE5Qkpwdmtmj8h/j1+yX4g+HXneJ/BAk1PRBl3XG6e2H+0B95B/eA47gdT8b1/SBXw38ev2P9H8Yed4q+Gax6fqhy8lp92C4P+z2jc/8AfJPXHJr+duOvB5x5sdkEbrd0v/kH1/wv/t17RP1bhvj1Plw2Zv0n/wDJf5/f3PyjorV1vQ9Y8NarNoev20lnd27bZIpV2sp+h/Q9CKyq/nupTlCThNWa0ae6fmfqUZKSUou6YUUUVBQUUUUAFfkp/wAFLf8AglJ4a/4KQa94S13XvGdz4Vbwpb3cCJb2aXQmF20bEktJHt2+X75zX610V6OVZti8txMcZgZ8lWN7Oydrqz0aa2fY5MbgaGLovD4mPNB2utVs79LPc/lY/wCIXb4df9Fg1L/wURf/ACRR/wAQu3w6/wCiwal/4KIv/kiv6p6K+v8A+Ip8U/8AQa//AACn/wDInhf6l5N/0Dr/AMCl/wDJH48/8E2f+CRHhP8A4Jz/ABC8RfEPQ/G134qn8QacmnGGeyS1WJVlEpbKySFiSoHbHPWvJv2Q/wDghr4P/ZL/AGutL/ax0z4h3mt3OmTajMNOl09IY3OoQTQEeYJmI2CYsPl5xjvX7v0V5FXjXOqk8TUniG3XioVPdj70UnFL4dNG1pZndDh7L4RoxjS0pPmjq9G2nffXVLe4UUUV8se0FFFFABRRRQAUUV9ffAb9lDxH8TDD4l8X+ZpehHDKcYnuR/0zBHyqf75H0B6j18lyLHZtiY4TAU3Ob+5Lu3sl5v8APQ4cwzLDYGi6+JnyxX3vyS6s8N+GHwk8a/FvWxo/hK23KhHn3D/LDCp7u38gMsewr9e/gv8As+eCvg1YCXT0+26tIuJr6VRvOeqoOdi+w5PcmvVvCnhHw34H0SHw74Us47KzhHyxxjqe5Y9WY9ySSa6Ov6u4H8MsDkSjia9quK/mtpHygn/6U9X0snY/EuI+MMRmTdGl7lHt1f8Aif6beu4UUUV+nnxwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXRJEMcgDKwwQeQQadRQB+f8A8ev2N7HWvO8WfCWNLW75eXTshYpD3MR6I3+yflPbb3/MzUdN1DR7+XS9Vge2uYGKSRSqVdGHUEHkGv6M68G+NH7Pngr4y2Bl1BPsWrRriG+iUbxjorjjevseR2Ir8P468IqGO5sdkqVOtu4bQl6fyy/8lflqz9G4b46qYflw+YNyp9JbyXr3X4+ux+HFFemfE/4SeNfhJrZ0fxbbbVcnyLhPmhmUd0b+YOGHcV5nX8yYzB18JWlh8TBwnF2aas0fsFDEU69ONWjJSi9mtgooormNgooooAK8U/aE/Z4+Ef7U3wsvvgv8cdLOs+HNSeGSe2E8tsWe3kWWMiSF0kGHUHhhnoeK9rorWhXqUaka1GTjOLTTTs01s01s0RUpwqQdOok4vRp6prsz8fP+HDX/AAS4/wCidz/+DrU//kqj/hw1/wAEuP8Aonc//g61P/5Kr9g6K+g/1yz/AP6GFb/wZP8A+SPM/sDLP+gWn/4BH/I/L74T/wDBGz/gnh8EfiTovxb+GvgebT9f8PXSXthctq2oTCKeM5VtklwyNj0ZSK7D9oL/AIJU/sM/tR/Fa6+Nnxu8Hy6v4kvY4I5rpdSvbYMtsgjjHlwzpGMKoHC896/RGiuZ8T5w66xLxlX2iXLzc8ublve173tfW21zVZPgFT9isPDkve3KrX72ta/mFFFFeGeiFFFFABRRRQAUUV678Jfgp42+MWr/AGLw3D5dpEwFxeSgiGIfX+JvRRz9BzXXgcBiMbXjhsJTc6ktEkrt/wBdXst2YYnE0sPTlWrSUYrds830TQ9Y8S6rDoegW0l5d3DbY4ol3Mx+g/U9AK/Uf4C/sf6P4P8AJ8VfExY9Q1QYeO0+9Bbn/a7SOP8AvkHpng19AfCD4G+Cfg3pX2bQIvPvpVAuL2UAyyew/urnoo/HJ5r2Sv6f4F8JMPl3Ljc3SqV91HeEP/kpLvsntfRn45xJxxVxfNh8DeFPq/tS/wAl+L622Ciiiv2o/PQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvzk/bn/wCCa3wn/bhmtPE/iLVtQ0HxLplp9js723fzrcR7mcLJbOQrDcxJKNG54yxAArU/4KYftb3n7IP7Mt/4w8KXCQ+KtZmTTdE3qsmyeTLPMUYFSIowzfMCu/aCMGvzx/YY/wCC1XiD4y+PdB+Bvxx8JNPruuXMVjaanoY/dvJIcBp7eRvkUD5nkRyAMnYAK+ezTMstlWWW4zVytpZ21eiutn/Vz9K4U4W4op4F8UZH7qpuSumlKyV5PllpKPR76p6aH0F/wTI/4Jl+If2KvHXi/wAffEy/sNY1S8SPTtIuLLftWyJEkrsrqCjyOEUqM7dhwxDV+ydFFergMBRwdFUKCtFX/E+Q4i4hx2d46eYZhPmqySTsrKySSstltfTq2+oUUUV2HiBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4P4hfDXwd8UdCbw/4wtFuIuTHIOJYmP8SN1B/Q9CCOK/Iz44fs1+Mfg9cPqcQOpaGzfJeRrzHnosqj7p7Z+6fUHiv2vqG5tre8t3tLuNZYpVKujgMrKeCCDwQfSvhOMvD/LuIKfNUXJXS92olr6SX2l+K6NH0vD/ABRisrnaD5qT3i9vVdn+HdM/nFor9Ivjz+xmG87xZ8H48Hl5dMJ/Mwk/+gH/AICei1+cl1a3NjcyWd7G0M0TFHRwVZWHBBB5BHoa/kriXhTMcixP1fHQsn8MlrGS7p/mnZrqj9xyjOsLmVL2uGl6p7r1X67Mgooor5s9YKKKKACiiigAooooAKKKKACiiigArvPh58NPGHxR11fD/g+0NxLwZJD8sUSn+J26AfqegBPFe2fAr9lvxV8WHi17W9+l6DnPnsP3s49IlPb/AGz8o7bulfrV4J8CeFfh3oUfhzwhZpaW0fJC8s7d2djyzH1P8q/W+BfCvGZxy4zH3pYbdfzT/wAKey/vP5J7nw3EnGlDAXoYa0634R9e78l87HjvwP8A2a/B/wAHrdNTlA1HXGX57yReI89ViU/dHbP3j9OK+kKKK/qjKspweW4aOEwNNQpx6L829231b1Z+L43HV8XWdfETcpPq/wAl2XkFFFFeicgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjXxe+Bvgn4yaX9m1+LyL6JSLe9iAEsfsf7y56qfwwea/IH4tfBTxt8HdX+xeJIfMtJWIt7yIEwyj6/wtjqp5+o5r946xvEHh7RPFWkTaD4jtY7yzuF2yRSjKkf0I7Ecg8ivzbjfw2wGfRdenaniek0tJeU119d15pWPruHeLsTljVKfv0f5eq84vp6bPy3P52KK+2fj1+yHrfgfzvFPw6EmpaQMvJb/euLcd+n30HqPmA6g8tXxNX8nZ9w9j8nxTwmPpuMuj6SXeL6r8tnZ6H7dluaYbH0VXws7r8U+zXRhRRRXinoBRRRQAUUUUAFFFFABRRRQAUUUUAFaWkaPqviDU4dG0S3ku7u4YJHFEpZ2Y9gBXonwp+DXjb4waz/AGb4XgxbxkfaLuTIhhB9T3b0Ucn6c1+v3wd+A/gn4NaZ5eix/adRlXE99KB5r+oX+4mf4R+JJ5r9F4J8Ocfn81Wf7vDLebW/lBdX57Lq76HynEPFmFyyLpr36vSK6ecn09N3+J8+fAX9jvS/C/k+K/imkd9qIw8Vlw8EJ/2+0jD0+6Pfg193AADA4ApaK/rPh/hzAZLhlhcBT5Y9XvKT7yfV/guiSPxDNM2xWYVnWxU7vouiXZLp/Vwooor3DzQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOc8V+EfDfjjRJvDviu0jvbOcfNHIOh7FT1Vh2IIIr8oPjz+yh4j+GZm8S+EPM1TQhlmOMz2w/6aAD5lH98D6gdT+wVIQCMHkGvjOLuB8u4go8uJjy1UvdqL4l5P+aPk/lZ6n0GRcR4vK6l6TvB7xez/AMn5r53P5wKK/VH49fsd6X4o87xX8LEjsdROXlsuEgmP+x2jY+n3T7cmvzA1fR9V8P6nNo2t28lpd27FJIpVKurDsQa/knirg7McgxHssZC8H8M18Mvn0fdPVemp+5ZLn+EzOlz4eXvLeL3X/A81oZtFFFfKHtBRRRQAUUUUAFFFFABRRRQAUUUUAFFbfh3w3rvi3WIdA8NWkl7eXB2xxRDJPv6ADqScADk1+qXwF/ZF0LwF5Pin4gCPU9ZGHjhxut7Y9sA/fcf3jwD0GRmvr+EuCsx4gr8mFjamvim/hj/m+0Vr3stTws84hwmV0+au7ze0Vu/8l5v8XofNfwG/ZC1zxx5Hin4iiTTdIbDx2/3bi4Hb/cQ+p+YjoACDX6neH/D2ieFdIh0Hw5ax2dnbrtjiiGFA/qT3J5J5NbNFf1vwnwXl3D9D2eEjeo/im/il/ku0Vp3u9T8NzziHF5pU5q7tFbRWy/zfm/y0CiiivrjwgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivin/goJ+1DD+yT+y/r/wATrKVE1y4UadoiMAd1/cghG2nIYRKGlYHghCO9YYnEQoUp1qjtGKbfyO/K8tr5hi6WBwsb1KklGK827fd3fRamT+29+wF8Kv25NA0618dahqGk6roazDTb2zk3JEZ9u/fA+Y3DFFzja5wBvAr4b/4J1/8ABJ3xR+yL+0VrXxZ+KGp2GuxadZm28PT2gZWL3O5ZpZI3GYpFjGwAM4Ikb5uK+fP2LP8Agt/448XeK9E+D/7Q/hhta1DV7qDT7TVdDRUuJJ52EaebasVRizMMtEyADohr+lOvnsFSyrNK0cxoxvUi1fdO9tLrZ26Py3P0nPcVxfwngqnDWOqWw9WLSV1Jcrd5ckviSeqadtG/dTdwooor6g/JwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvnL43/ALNvg74w2z6ioGna2q4jvI1+/josq/xDtn7w7HHB+jaK87NcpwmZYaWEx1NTpy6P809010a1R14LHV8JVVfDzcZLqv17ryZ/P78RPhl4x+FuutoHjC0MEnJikX5oplH8SN0I/UdwDXA1/Qn418DeFviFoUnhzxdZpeWsnIDcMjdmRhyrD1Ffkv8AHb9lnxV8KXl1/Qd+qaDknzgMywD0lUDp/tjj128Cv5Y468KsXk/NjMBerht3/NBf3kt1/eXzS3f7Rw3xrQx9qGJtCt/5LL07PyfyufKlFFFfkZ9yFFFFABRRRQAUUV6d8L/hF41+LmtDSPCdtujQjz7mTKwwqe7N6+ijLHsK6cHgq+LrRw+Gg5zk7JJXbMcRiKdCm6taSjFbt7Hn2nabqGr30Wl6VA9zczsEjiiUs7segAHJNfph8Bv2NbLR/J8V/FtEuboYeLTshooz2MpHDn/ZHy+u7t9F/Bj9n3wV8GrASaen23VZFxNfSqN5z1VBzsX2HJ7k8V7xX9NcC+ENDA8uNzpKpW3UN4R9ekpf+Srz0Z+P8ScdVMRfD5e3Gn1ltJ+nZfj6bDURIkEcYCqowAOAAKdRRX7ifnIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXxZ8ev2RdC8e+d4p+H4j03WTl5Icbbe5PfIH3HP94cE9Rk5r7Torxs9yDA5xhXhMfTUovbvF94vdP/AIZ3Wh6GW5picBWVfCzs/wAGuzXVH87XiLw3rvhLWJtA8S2slleW52yRSjDD39CD1BGQRyKxK/ef4sfBjwT8YdH/ALP8TQbbmMH7PdxYE0J9j3X1U8H64NfkD8YfgT42+Dep+TrkX2jT5WIt76IHypPQH+4+P4T+BI5r+TuN/DXHZDJ4ilerhuk0tY+U10/xbPybsft3DvF2GzNKlP3K38vR/wCF9fTdee54tRRRX5qfXBRRRQAUUUUAFFFa+g6BrXifVodC8PWsl5eXDbY4ol3Mx/wHUk8Acmrp05VJKEE3J6JLVt9kiZSUU5SdkjIr7P8AgL+yRr/xA8nxR49EmmaK2HSLG24uV7YB+4h/vEZI6DnI+lPgL+yDovgryfFPxIWPUdWGHjtvvW9ue2e0jj1+6D0zw1fbtf0LwL4PN8uOz+PmqX/yb/8AbV/2894n5ZxJx7bmw2WP1n/8j/n93cw/DfhrQPCGjQ+H/DNpHZWduMJFGMAe57knuTkk9a3KKK/omlShTgqdOKUVoktEl2S6H5VOcpycpO7e7YUUUVZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeJ/GL4D+CfjLpvl61H9m1GJcQX0QHmp6Bv76Z/hP4EHmvbKK4swy7DY7DywuMpqdOW6e3/AAH2a1XQ6MLi62GqxrUJOMls0fgr8Vvg141+D+s/2b4ogzBIT9nu48mGYD0PZvVTyPpg15TX9EniTw1oHi/RpvD/AImtI72zuBh4pBkH3HcEdiMEHpX5VfHr9kjX/h/53ijwEJNT0UZd4vvXFsO+QB86D+8BkDqOM1/LvHXhNicr5sbld6mH3a3nBf8At0V3Wq6rS5+y8N8b0cZbD420KvR/Zl/k/LZ9Ox8YUUUV+NH34UUUUAFFFFABRRSgEnAoASvafg98CfG3xk1PydDi+z6fEwFxfSg+VH6gf33x/CPxIHNfQPwF/Y81XxZ5Piv4oLJYaacPHZ8pPOP9vvGh/wC+j/s8Gv1D0bRdJ8PaZDouh20dpaW67I4olCqoHoB/k1+2cC+EeIzDlxucJ06G6htOfr/LF/8AgTW1tGfnnEnHNLC82HwFpVOst4x/zf4LrfY85+E/wY8E/B7R/wCz/DMG65kA+0XcuDNMfc9l9FHA+uTXrNFFf07gcDh8HQjhsLTUKcdEkrJf11e76n47icTVxFSVatJyk92wooorrMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr43/bL/Yi+E37bfguy8K/Eu4v7G40h5ZdOvLGYoYJZQAxaJsxSA7R95dwGQrLk5s/t1/tNWH7Jf7M/iH4tF0/tUR/YtHifB83ULkFYuD1CYMrjuiNX4h/sa/8FxPiVea/pHwr/aO8PP4om1G4hsrbVNGjWO+eaZgiCS2ysUpZiBmMx4/usa8DNc3y6nVWAxv212ut9L2212+8/RuEODeJcRhZcQ5GrOjKyakoyuleTjfRpJ2kr63sk9T6N/YV/wCCP/iP9lv9qyb4t/EXWLHxHouh2rtoMsKNHK93PmMvNC24IYo92AHcbnVg2VOP3uoor0Muy3D4Gk6OHjaLbfff+rHzfE3FOY5/iljczqc1RRUVZJKy8lorttu3VhRRRXefOhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa6JIhjkAZWGCDyCDTqKAPgD48/sb2Ot+d4r+EqJa3Zy8unZCxSHuYj0Rv8AZPyntt7/AJmanpmo6NfzaVq8Eltc27FJIpVKujDqCDyK/oyrwr4zfs/+CvjLYF9TT7Hqka4hvolHmLjorjjenseR2Ir8P468IqGO5sbkyVOtu4bQl6fyy/8AJX5as/RuG+OqmG5cPmDcqfSW8l691+PrsfhpRXqHxR+EHjb4Ra1/ZXiu3xHIT5FzHloZgO6t6+qnBHpXl9fzLjcFXwlaWGxUHCpF2aas0fsGHxFKvTjVoyUovZrYKK1tD0LWfEuqw6H4ftpLy7uG2xxRLuZj9P5noBya/Ub4DfsfaP4P8nxV8TVj1DVBh47T71vAe27tI4/75B6Z4NfRcKcGZjn9f2eDhaC+Kb+GP+b7Ja+i1PJzviDCZZT568rye0Vu/wDJeb/PQ+aPgN+yZ4i+I/k+JvGvmaXojYdFxie5X/YB+6p/vEc9geo/Vrwt4T8O+CtFh8O+FrSOys4BhY4xjnuSepY9ySSe9dDRX9b8I8EZdw/R5cLHmqte9UfxPyX8q8l87vU/Ds84jxeaVL1naC2itl/m/N/KwUUUV9ieAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWZrOi6T4i0ubRddto7u0uF2SRSqGRh7g/5FadFTOEZxcJq6ejT2aHGTi1KLs0flT8ev2PdW8J+d4r+F6SX+mDLyWfLzwDvt7yIP8Avoe/Jr4WIIODX9H9fHvx5/ZO8O/EkTeJvBvl6XrhyzjGILk/7YH3WP8AfA57g9R/PnHXg8p82OyFWe7pdH/g7f4Xp2toj9S4b48ceXDZm9Ok/wD5L/P7+5+QNFdD4p8J+IvBWtzeHfFNpJZXkBw0cg7diD0ZT2IJB7Vz1fzpVozpTlTqxcZJ2aas0+zXQ/V4TjOKnB3T2a2CiivuD4C/sgaz408nxV8SVk07STh47b7txcDtnvGh9fvEdMcGvXyHh7H5zilhMBT5pdX0iu8n0X57JN6HBmea4bAUXXxU7Lp3b7JdX/TPAfhF8EPG3xj1b7J4eh8myiYC4vZQRDEPTP8AE3oo59cDmv1++EfwR8E/BzSfsnh2HzbyVQLi9lAM0p9M/wAK56KOPXJ5r0rQtB0bwxpMOh+H7aOzs7ddscUS7VUf4nqT1J5Na1f1lwT4b4DIYqvP95ies2tI+UF09d35LQ/EeIuLcTmbdOPuUf5e/nJ9fTZee4UUUV+jnyQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxF8ev2QdF8a+d4p+G6x6dqxy8lt923uD3x2jc+v3SeuOWr8s9e0DWvDGrTaF4htZLO8t22yRSrtZT/AIHqCOCORX9FNeP/ABc+CPgn4x6T9k8RQ+VeRKRb3sQAmiPpn+Jc9VPHpg81+L8deEuGzLmxuUpU6+7jtCb/APbZPvs+qWrP0HhvjirhOXD4686XR/aj/mvxXTsfg/RXsXxd+CHjb4Oat9k8QxedZSsRb3sQJhlHp/stjqp59Mjk+O1/L+Py/E4KvLC4um4VI6NNWf8AXZ7PdH7JhsVSxFONahJSi9mgoor3b4Mfs/8AjX4y6gG01Pselxtie+lU7F9VQcb39hwO5FVluWYrMMRHC4Om51JbJf1ol1b0XUnF4yjhaTrYiajFdX/X4HlXhbwn4i8a63D4d8LWkl7eTnCxxjt3JPRVHckgDvX6u/Ab9k7w78NhD4m8ZeXqmuDDKMZgtm/2AfvMP75HHYDqfdPhd8IvBXwj0T+yPCdviRwPPuZMNNMw7s3p6KMAdhXp1f1LwL4UYXKuXG5lariN0t4Qfl/NLzei6LS5+M8ScbVsbzYfB3hS6v7UvXsvL7+wUUUV+wnwQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfHX7eP7T9h+yR+zPr/xWDp/a7J9h0aJ8HzdQuARFweojAaVx3RCOtY4ivChSlWqO0Ypt/I7cty6vj8XSwWGjepUkoxXm3b7u76I0v2vf2M/hF+2l4EtvBHxVa9tzp0jz2F3YzmKS3mddpbYcxSZAxh0bAztKkk1+Xv7Fn/BHDWv2Zv2tF+LXjzW7LxL4d0C3efRHjRop2vZPkVp4W3KvlIWZSrtlyrAgjFfLH7F3/Bbj4yweIdI+FH7Qehv41Go3ENja6hpiJFqhlmYIitF8sM5JIAx5TdyWNf1OV85g45VnFSOOpw/eQav0d+l+j/HY/T87q8XcF4epkGJrWw9aMkrNSi0/icH8UL3s1Zbt2vqFFFFfUn5GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8T+FfD3jPRZvD3ii0jvbOcYeOQZHsQeoI7EEEdq/Nvxt+wv4lj8Xww+A72OTRrpzvkuWxLar1O4D/WD+6VwSeDgfNX6h0V8rxLwXlWeqH1+leUdpJ2lbtfqn2fqrPU9vKOIMblrl9Wno909V627/ANO60PHfhF8D/BPwc0r7L4eh869lUC4vZQDNKfT/AGVz0UceuTzXsVFFe9gMvw2CoRwuEpqFOOiSVl/Xd7vdnl4nFVcRUlWrycpPdsKKKK7DAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMfij8IvBXxc0T+yPFlvmRAfIuY8LNCx7q3p6qcg9xX5P/ABD/AGWvil4J8VQ6BpllJrFveybLS5tkyrnrhx/yzIHJ3HbgEgkAmv2uor4Li7w7yvP2qtZOFZW9+NrtdpaWemzeq9Lp/TZFxVjcsThTfNB/ZeyfddvPo/XU+M/gN+yRoHw98nxR47Eep60MOkeN1vbN22g/fcf3jwD0HGT9mUUV9LkeQYHKMMsJgKajBb92+8nu3/wystDyMyzPE4+s6+JnzS/BLsl0QUUUV7BwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk67oOjeJ9Jm0PxBbR3lncLtkilXcrD/EdQeoPIr8tfjz+yBrXgzzvFPw1WTUdKGXktfvXFuPbvIg9fvAdc8mv1gor5LivgzLs/oezxcbTXwzXxR/zXeL09Hqe5knEGLyupz0JXi94vZ/5PzX5aH5d/AX9ji/17yfFnxZR7SyOHi0/lZpR2Mp6ov+z94/7Pf9NtM0zTtF0+HStIgjtra3UJHFEoVEUdgBwKvUVrwtwhl2Q4f2OCh7z+Kb+KXq+3ZKyXrdkZzn2LzOr7TES0W0VsvTz89wooor6g8YKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5h/an/AGQ/gt+2J4Hh8D/GO0nlSyd5rK6tJmhntZnG0unVGOOMSI6+1eY/8FF/2rbf9kb9mPWfHenTKniLUx/Zmhxnkm8nU4kx6QoGlOeCVCn7wr8Ov2F/+CzP7Qdt4v0L4LfGnSZPiDFq11Bp9nd2u2LVlkmYIgOdsU/JA+fY3UtIa+ezTO8BSrrAYtX51rpda7J9dfQ/SuE+BOIsXgJ8RZO+X2MnZ83JN2V5OLdlZLR3avqtdUfbX7HX/BG9P2Yv2rx8Y/Euv23ibw9otvJLoaNEYrpb2T5A08fzR4ijLFWVuXIbC7cH916KK9PL8tw+Cpulho2i3f5nyvEfFGZZ7iY4vM6vPUjFRTslovJWWrbb82FFFFdx8+FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor+f7/go5/wcmf8ABNz/AIJ4arf/AA5u9bm+JPj+x3Ry+H/CxS4FtMONl3eMwt4CCMOgaSZO8XSgD+gGiv8AMu+PH/B6h+394z1SeH9n74d+DfA2lMT5X29bnWr9B2zMZbaA+/8Ao1fC+uf8HYP/AAW01aVpLD4jaTpYPRbbw7prAfTzoJT+ZoA/1uaK/wAg+b/g6W/4LoynKfGxI/ZfDOg/1041V/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/KynL/wdH/8ABdYHJ+OQP18M+H//AJW0Af6/FFf5Dln/AMHUH/Bcu2YNN8Y7e49pPDWhgf8AjlgteveDv+Dur/gsx4YuEn1rxF4Y8RKpyY9Q0GBFb6/ZDbt+RFAH+sLRX+fz+yJ/we1ajJq1roP7dnwggSzlIWbWfBE7q0XbP9n3sj7x3JF4CAOFPSv7N/2Kv+ChP7Hn/BQv4dn4l/skeOLDxXaQhftlpGTDqFi7dEurSULPCSQQpdAr4JRmHNAH2fRRRQAUUUUAFFFFABRRRQAUUV+Y/wDwVZ/a8b9lT9me7t/C939n8W+L/M0vSSjYkhUr/pFyvceUhwpHSR0PTNc2NxdPC0J4iq/dir/8D57Hq5Hk2IzbH0cuwivUqSUV5d2/JK7fkmfUv7TP7JXwM/a48HxeD/jXpP25LQyNZXcLmG6s3kADNDIOmdq5VgyNgblOBX51fsY/8EgdA/ZP/adu/jTqPiBPEulafasugRTQ+Xc29xPlZHmAzGxjiyqMpG4uW2oVGfzu/wCCdn/BWT9qO6+Jfhr9nj4h2T/EW21u7isLW4kfy9Ttw55dpsETJGuXcyjftBJkAGK/q5rwcvllubyjj4U/3kGt1Zp9L9HbpvbTY/QeIocU8GU6vD9bE/7PWi7KMlKLi3q4p+9C+qeivd77hRRRX05+UhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor+YT/g6i/4Ka61+wj+wdH8F/hPqLWHxA+M8lxo1pcQvsnstIhVTqFyhHKuyyR26HggzF1IZKAPwS/4OJf8Ag5Y8afEbxdr37Cv/AATu8QyaT4S02SSw8TeMdNlKXOrTLlJbWxmTBjtFOVknQ7rgghCIeZvxs/4JMf8ABu5+2p/wVPgt/ihb+X8OvhW8pVvFWsQPIbzaSrjT7UFHuirAguXjhBBXzC6la9F/4NvP+CNln/wVG/afu/iB8bbWRvg98NXgudcQFo/7Wvpctb6crjBCMFMlyVO5YgFBVpUYf6zvh3w74f8ACGgWXhTwnY2+maXpkEdrZ2dpEsMFvBCoWOOONAFREUBVVQAAMDigD+bH9mD/AINMv+CRPwG0O2X4neG9V+K2txqDLf8AiLUZ4YjJ/F5drYtbQhPRZRKQOrE81+kOgf8ABEr/AIJGeGoVg079nPwFIq9DdaLb3Z/EzrIT+Jr9RqKAPz1g/wCCSH/BKy3G2P8AZr+Fx/3vCOlN/O2NW/8Ah07/AMEsv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB+fLf8EqP+CVKXSWT/s2/CgTSKzqh8HaPuZUIDED7LnALLk9sj1qf/h09/wAEsv8Ao2n4Vf8AhG6R/wDItWv2z/GniD4feJvA/izwzN5N3aNfsP7rKfIyrDurDgivqT4RfFbw/wDF/wAHw+J9EOyUYS5tycvBKByp9QeqnuPfIHy+B4qwtfOMVkkvdrUuVr+/GUIyuvNOVmu1n3t7OIyWtTwFHMVrTndP+61Jqz8nbR99O1/lH/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6K+oPGPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLTW/4JN/8EsW6/s0/Cv8ADwdpA/8AbWv0BooA/Oi8/wCCQP8AwSlvlKT/ALNnwyUH/nn4V02M/mkArxXxz/wQE/4I2fEO0kstf/Z78K26SAgnTIpdLcZ9Hs5YWX8CK/YGigD+JX9u3/gzC/Zn8f6PeeK/+Cf/AIyv/AGvKjPDofiGR9T0aZh92NbjBvLcHu7G69kHWv4l/F/gj/gov/wRD/bIgXVBq/wq+JXh1vOs7y3cNbX9ozY3xyDdBeWc23DKd8bYKOoZSo/20q/M3/gqv/wS++BH/BVX9l3U/gR8V7aKz121SW58MeIVjDXWj6lt+SRT95oZCAtxDnEiejqjqAfJn/BCn/gtx8N/+CuvwQuLLxBDbeHPi94Rhj/4SXQoWPlTRMQi39kGJY20jcMhLNBIdjEho3f95a/xMv2evjL+07/wRW/4KSW3i24tZdM8afCnX5dM17SvMKw39rG/l3dqzYw8FzFkxyYIwUlXkKa/2gvgx8W/A3x9+EXhj44fDK7F/wCHfF+lWmsabcD/AJaWt7EssZIycHawyOoOQelAHpdFFFABRRRQAUUUUAFfPX7Q/wCyv8Cf2p/Co8KfGzQINVSEN9muh+7u7Vm6tDMuHTJAJGdrYG4EV+bH/Baj9sOf4GfA+H4GeCLtoPE3jpHSZ4m2yW2locStkcgzN+6X1XzMcgV+fv8AwSt/4KMfteeKPjL4e/Zm8QL/AMJ7o+oOUa4v5GF7p1rEu6Sb7ThjIkagnZKGLHaiuuRXzOO4gwSxv9mV4c3NZPS6u9k193c/Vcg8Oc9nkb4qwFZUvZuUo+84S5YLWcZbLW6s2rpPXVJ/qV+xL/wSm+H/AOxp8cte+LtjrcniJZrYWuhrdwqk9ikpPnl2U7XkZQqK6qnylxt+av1koor28FgaGEp+xw8eWN27ep8Fnmf4/OMV9czKq6lSyjd2WkVZaJJeb01bberCiiius8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0v7+KKKKACiiigAooooAKKKKACiis7V9X0nw/pN1r2v3UNjY2ML3Fzc3DrFFDFEpZ3d2IVVVQSzEgADJoA0aK/gk/wCCs/8AweDP4S8T6p8Cv+CWthZ6kbF3trnx7q0Pn27yKSCdNtGwsig/duLjcj87YSu1z/H149/bk/4Knft3+MriLxP8RviD8Q9SuCZG06wu7yaBAx/5Z2VpiGJSe0cSigD/AG4KK/xBF/4J0/8ABUrxiPtifAn4qarv53jwxq8+c+/2c5p3/DqD/gqa/wA3/DNXxVPv/wAIbq//AMi0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f8A+RaP+HT3/BU3/o2n4q/+Ebq//wAi0Af7fNFf4g3/AA6e/wCCpv8A0bT8Vf8AwjdX/wDkWj/h09/wVN/6Np+Kv/hG6v8A/ItAH+3zRX+IN/w6e/4Km/8ARtPxV/8ACN1f/wCRaP8Ah09/wVN/6Np+Kv8A4Rur/wDyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V//kWj/h09/wAFTf8Ao2n4q/8AhG6v/wDItAH+3zRX+IN/w6e/4Km/9G0/FX/wjdX/APkWj/h09/wVN/6Np+Kv/hG6v/8AItAH+3zRX+IN/wAOnv8Agqb/ANG0/FX/AMI3V/8A5Fo/4dPf8FTf+jafir/4Rur/APyLQB/t80V/iDf8Onv+Cpv/AEbT8Vf/AAjdX/8AkWj/AIdPf8FTf+jafir/AOEbq/8A8i0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f/5Fo/4dPf8ABU3/AKNp+Kv/AIRur/8AyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V/wD5Fo/4dPf8FTf+jafir/4Rur//ACLQB/t80V/iDf8ADp7/AIKm/wDRtPxV/wDCN1f/AORaP+HT3/BU3/o2n4q/+Ebq/wD8i0Af7fNFf4g3/Dp7/gqb/wBG0/FX/wAI3V//AJFo/wCHT3/BU3/o2n4q/wDhG6v/APItAH+3zRX+IN/w6e/4Km/9G0/FX/wjdX/+RaP+HT3/AAVN/wCjafir/wCEbq//AMi0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f8A+RaP+HT3/BU3/o2n4q/+Ebq//wAi0Af7fNFf4g3/AA6e/wCCpv8A0bT8Vf8AwjdX/wDkWj/h09/wVN/6Np+Kv/hG6v8A/ItAH+3zRX+IN/w6e/4Km/8ARtPxV/8ACN1f/wCRaP8Ah09/wVN/6Np+Kv8A4Rur/wDyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V//kWj/h09/wAFTf8Ao2n4q/8AhG6v/wDItAH+3zRX+IN/w6e/4Km/9G0/FX/wjdX/APkWj/h09/wVN/6Np+Kv/hG6v/8AItAH+3zRX+IN/wAOnv8Agqb/ANG0/FX/AMI3V/8A5Fo/4dPf8FTf+jafir/4Rur/APyLQB/t80V/iDf8Onv+Cpv/AEbT8Vf/AAjdX/8AkWj/AIdPf8FTf+jafir/AOEbq/8A8i0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f/5Fo/4dPf8ABU3/AKNp+Kv/AIRur/8AyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V/wD5Fo/4dPf8FTf+jafir/4Rur//ACLQB/t80V/iDf8ADqD/AIKmp83/AAzV8VR7/wDCG6v/APItMb/gnT/wVK8HD7Y/wJ+KmlbOd58MavBjHv8AZxigD/b8or/Ef8Bftyf8FTv2EPGVvF4Y+I3xB+HmpW5Ei6df3d5DA4U/8tLG7JhlUHtJEw9q/sF/4JMf8Hgz+LfE+l/Av/gqVYWemm9dLa28e6TD5FukjEAHUrRcrGpP3ri32onG6ELucAH97dFZ2kavpPiDSbXXtBuob6xvoUuLa5t3EsU0UoDI6OpKsrKQVYEgg5FaNABRRRQAUUUUAFFFFABRRRQAUUUUAFf5NP8AwdnftHat8b/+Cwfij4eNcNJpPwv0fSvDtkgP7sPLAt/cMB/e866aNj1IjA6AV/rLV/iq/wDBb/xFN4o/4K8ftF6lO25ovHer2gJ9LOYwAfgIwKAP9Pj/AIN4f2RtF/Y9/wCCSXwm8M21ssOr+NNMj8aazJjDy3muolwm/wD2orYwQfSId6/bKvKfgP4Zg8FfA7wZ4NtVCRaRoWnWSKOAFgt0QD8AterUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfDX7e/7c2lf8E/8A4Py/Hbxh8NvGvj7w1p8Vxc6vceDLSyvX0m2tlDNPdR3V7aOIiCx3xLIECMZNgwSAfctFfmZ/wS9/4Kv/ALMH/BWv4R698Xv2aLfWdMg8Nar/AGTqGm+IIILbUIpGiSWOUpb3FynkyqxCN5mSyOMDbztf8FGv+CkXg/8A4Jn/AArPx0+LXw28b+LvBdqqtqes+E7bT7uDSzJKkMQukutQtJlEjyKFeON0H8TKSAQD9GaK+JP2Cv23tF/b/wDgfa/tC+Dfh74x8B+G9WWKbSH8Y2lpZTanazLvS5t47W8u28hgRteTy94IZAykNX23QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV/Ol/wAFvv8AgoN8dfB3jf4ff8EpP2A7hI/j18fGa3XU1cg+GtCO5Z9QO3LLIUScxuAWjSGWQfOseQD+hHw54o8NeMNMOteEtRttUsxNPbGezmSeLzrWV4Jo9yEjfFKjxyLnKOrKcEEVuV8t/sU/smfDn9hf9lfwV+yf8KXmm0XwbYfZlubk7p7q4mkee6uZOTh7i4kkmcD5QzkDAAFfUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWBpvivwtrOt6l4a0fUrW71HRmiTULWGZJJ7Vp0EkYmRSWjLoQ6hgNynIyK36/mJ/4LO6T8c/+CaHx70j/guP+yjDNq2mWENj4b+MPhPzCINa0DzBHaXqg5CXNo8nlrKASgZCR5YnDgH9O1FeTfAb43fDj9pT4L+Fvj/8Ib9dT8M+MNMttW025HBaC5QOoYZO11ztdDyjgqeQa9ZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD83/+Cgv/ADKP/b//AO0K+Ovgx8Xde+DnjCPxFpeZbWTEd5bZws0Xp7MOqnsfYkH7F/4KC/8AMo/9v/8A7Qr836/jvxKx1fBcZYnFYWbjUg6bTXR+yh/TWzWjP3rhHDU8RkFGjWjeMlNNf9vyP6HPCPi3QvHPhy18VeGpxcWd4gdGHUeqsOzKeCOxrpK/F39mn4+3fwf8Rf2XrTtJoGoOPtCDnyXPAlUe3RgOq+4FfszZ3lpqNpFf2EqzQToJI5EO5WVhkEEcEEdK/o3gXjShxDgVVVo1oWVSPZ91/dl07aroflHEnD9XKsTyPWnLWL8uz811+8s0UUV9ufOBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf5p/8Awel/sjaL8Mf2wvh1+194ZthAvxR0a403Vig4k1HQDEizOf70lrcQxj2g+tf0Mf8ABoN+0dq3xs/4JMxfDbxDcNPdfC7xRqXh+Dedz/YZ1iv4cn+6rXUkajssYA4Ar5D/AOD27wzBd/sR/B/xkygy2HjiWyVu4W7sJ3I/E24/KvJv+DHjxFNc/Bf9oPwmzZjsta0C7C+huoLtCfx8gflQB/dbRRRQAUUUUAFQz3EFrH51y6xoCBuY4GScDk+pOBU1fzhf8F4P2r9X0TTNH/ZL8Jma3TU0j1bWpwrIssSOfs8Ct0Yb182THQqgz94V5ubZlDAYWeJmr22XdvZf10Pp+DuF6/EObUcrw75ebWUrX5YrVytpe3RXV3ZXR+5/x1/Zx+Cn7SvhJvBfxq8P22t2YDeS8q7Z7dm/ihmXEkbe6sM9DkcV8t/sTf8ABN/4TfsQ+KvFXizwVqFzrN14gKQWst8iCaysUwxgDpgOXk+Z32rkKg2/KSfyY/4Iz/thfth/E34qx/AbXLz/AISnwZptlJc3l5qZZ7rToUG2JYp/vPvkKqscm7C5KlQpr+nmuLLKuDzOMMxjStNXSbWt7WevVdv0Z73FeFzzhWdfhmpjOajNKTjGV4tN3V09YN2u0rXVrtpq5RRRXvn50FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/T/v4ooooAKKKKACiiigAooooAK/gk/wCDwb/grP4n8IvYf8EtfgVqj2R1Kzh1bx7c2zlZHt5/mtNNJByqyKPtFwv8aNCudpdT/e3X+I/+3J498Zft4f8ABU74jeJ4rg3GpfEP4g3dhpzSEsEgmvPsllH6lYoRFGP9lRQB+5//AAbq/wDBurY/8FE7FP2xv2xku7L4PWV29vpOk27tb3HiO4t22ykyrh4rKJwY3eMiSSQMiMmxmr/Sw+B37PnwM/Zm8BW3wu/Z78I6R4L8PWgAjsNHtI7SHIGNzCNRvc/xO2WY8kk0fs+fA7wF+zN8DPCP7PfwuthaeHvBekWmj2EYAB8m0jWMM2Orvjc7dWYknk17DQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHj3xx/Z8+Bn7TPgK6+F37QnhHSfGnh67BElhrFpHdw5IxuUSKdjj+F1wynkEHmv80//AIOKv+DdWx/4J2WL/tjfscpd3vwevbtLfVtJuHa4uPDlxcNtiIlbLy2UrkRo8hMkchVHZ96tX+ojXj37QfwO8BftM/Azxd+z38UbYXfh7xppN3o9/GQCfJu42jLLno6Z3I3VWAI5FAH8Qv8AwZ8/8FZ/E/i57/8A4Ja/HTVHvTptnNq3gK5uXLSJbwfNd6aGJyVjU/aLdf4EWZc7VRR/e3X+I/8AsN+PfGX7CH/BU74c+J5bg2+pfDz4g2lhqLRkqHghvPsl7H6hZYTLGfZjX+3BQAUUUUAFFFFABRRRQAUUUUAFFFFABX+In/wVxuGuf+Cqn7SkjHOPij4tT/vjVLlf6V/t2V/iDf8ABWI5/wCCpv7S3/ZVfGX/AKd7qgD/AG69Lt1tNMt7RRgRRIgH+6AKvUAY4ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Ev/g4Z+O2v/Bb/AIJU/ELw14D3P4r+KLWfw90K3Q7XuLvxHKLWWNT13fZTcMMc5X8a/bSv5w/+Ckc4/aq/4LVfsffsMW/7/SPh8+pfGXxLD94J/Zatb6O5HTi8SRDntIPxAP54/wDglDovib/ggb/wcJa5/wAE5PiNq0t34D+L1nZ6Xpuo3OES7luV8/SLkgBQ0guDPp5woHmSOcAAY/oU/wCDlrW9b+KP7Nfwo/4J1eCbhotb/aT+I+h+GJBH96PSbWdLq7n7/LDItsz8Y2k59D8Ff8Hh/wCxjr3iH9n/AOH/APwUn+ESyWfiv4OapBZale2vyzR6ZezK1rPuHINpfBBHjp9pYnpWp/wT8/a60v8A4Ldf8FcPgj+05YIsmhfs+/B5tY1WBRmG08ceJXNldwBTwFESM8RPJ8kN6YAP7BvCnhfQPA/hfTfBXhO1Sx0rR7WGys7aIYSG3t0EcaKOwVVAHsK36KKACiiigAooooAKKKKACiiigAooooAKKKKACvyf/wCCsyf8FAPBf7Puv/tD/sRfFnQvh+nw78O6trmq6VrmgR6nFqiWMJuOLt5c2pSOJwMQSBi2WIAr9YK/ni/4Oj/2oh+zR/wR48f6Zp9x9n1b4lXFn4MscHBZdQYy3Yx1IayguF+rDPoQD+X7/gmn/wAFvv8Ag4Y/4KkftQWf7LfwD8ceEbDUXsLnVb7UdT0K2SzsbG12h5ZfKikkOZJI4kVUJLyLnC5Yfpd+3/8At+/8HLH/AAR18Oaf8df2iv8AhWfxf+G893FY3Wp6Zp08SWs05PlpcJE1nNCZNpCShZIQxVWO5lU+Rf8ABkd+y39g8C/Gf9tDWLf59TvLPwdpUxGCEtEF5fAHurtNadOMxnv0/c//AIOevip8NPht/wAEXPi1o/xDuIln8WLpujaPauwD3WovewToIwepiSF5zjosRNAHuP8AwRm/4LH/AAb/AOCwnwI1Px/4O0mTwp4x8Jzw2viTw7NOLn7K9wGaCaGYKnm28wR9jFEYMjqV4DN+xtf58H/BkB8IvHn/AAl3x4+PTq0Phf7HpGgIxztuL/fLcMF7EwRbd3p5y+vH+g/QBy/jfxn4a+HPgvV/iF4zuksdH0GyuNRvrmT7kNtaxtLK7eyopJ+lfxVf8Gzdx40/4KQf8FCv2kf+CzPxyiMt9cXEfhjw1FIN8dhBdYleCLOQptbOK1gDDlllcnliT+tf/B0P+0pqv7N//BHH4ix+Hbj7LqXj+ey8HQSZwTFqblrtB677OK4T6NntXnn/AAaX/CO2+Gn/AARe8GeKYoxHN4713Xten4wSyXbaepP1jskI9sUAf0q1+Ln/AAXD0P8AaV8OfsZeM/2lPgH8fdY+DEXw08M6vrFzZ6ZptldrrNzDEHtoZJ7hfPgLSJ5KGFwMy5IbAFftHX8of/B4Z+07/wAKZ/4Ja2/wN0u48vUviz4kstMeMHDHTtNP2+dh3wJorZGHcSYPFAHyL/waEfFL9tH9rbxB8bf2q/2qvid4s8dadYLpvhvSYdc1a5vbNLmUvdXbRQSyNFG8aC3AKKDiVhwDz/btX8jv/BGn9ov9h/8A4Inf8ET/AIT+I/20fHOn+CdW+KYuvGpsWSW61G+GquBbSQ2dsktw6CyjtQ0gTy1P3mAxX61/sQ/8F1f+CYv/AAUI+Iw+Dn7OHxFS48Xyo8tvo2q2Vzpl1dJGCzG3+0RokxVVLlI3ZwoLFQATQB+u9FFFABRRRQAhIHXilr+T3/g8o/5RJaV/2UHRv/SW+r9dP+CIFxPc/wDBIj9nWW5dpG/4QXSVyxycLEABz6AAD2oA/U6iiigAooqvd3drYWst9fSpDBCjSSSSMFREUZLMTwABySelAFiivw/+M/8AwcY/8Eh/gv4m1LwdN8Uh4sv9GQy6h/wiem3uuW1tEp2tI93aQyWu1T94iY479q/SL9kP9sv9mn9vD4L2n7QH7KXiq28W+FrqeS1NzAskUkFzCFMkE8MqpLDKodWKSIp2srDKspIB9PUUVWvb2006zl1C/kWGCBGkkkc4VEUZJJPQADJNAEGratpegaVc67rlzFZ2VlE89xPM4SOKKMFnd2OAqqoJJPAAr+L39nP9r79un/g4s/bZ8faH+zx8TvEXwG/ZW+F0q2raj4RdbDxFrlxMXW3IvHR3ieVUeZkX93BF5asjyMHrS/4L0/8ABwh+wb8Rv+CZPjz4J/sRfFO08WeN/H/2fw80OnwXcMlvpl026+lZpoYl2Pbo9uQGzmYcEZrif+DXP/goD/wTF/ZP/YF8G/s1+MvijpelfFv4keK7y6vdEkt7r7R/aF7crYWMBlEBi/eQQQMvz7QZOSOaAPoD/g26+IP/AAWdj/aG+MXwI/4KF2fjW8+HfhiFhpGq+PIppL1dTS6EaRW1/PGjXsUttvkkdWeNdkbJtEvzf17UUUAFFFeFftEftO/s9/sk/De4+Lv7S/jHSvBPhy2byzfatcrAjyEEiOIE7pZWAO2OMM7Y4BoA1fj54C+I3xP+EOt+A/hJ42u/h14i1GJEs/EdjaW9/cWLLIrMyQXaSQOXQNGd6nAYkYYAj/Ol+AHx4/4KYfHL/g4l8O/8E/PFP7THjXx94W8B/EO4TUp7a8k0azvrPwwz3d1HcWlk6QbWNs9u6nKljgdQK/q2X/g5l/4JPeINI1y58CeN766mstG1jVdKm1DRdQ02w1eTR7WS6lt7a5ubeNDKVjwqNtLMQq5dlU/zVf8ABmt8FPEfx0/bV+OP7ffxGze3ulaeNPW6lH+t1TxHctdXMqn++qWzBueBP70Af6LNeZfGn4R+Cfj78IPFPwO+JNqL3w/4w0q80bUYCAd9texNDIBkHB2scHscGvTaKAP4mv8Ag1G/ar8ffB34ofGn/gir8dbzz9V+Eer6pe+HmkJUiK0vTaalboCfuC4ZLmNRknzpT0Ax/bLX+cR+0R4of9hH/g8r0XxtpB+z6X478S6HBMg+VGi8W6fDp9wz9iFupnl9ioPUV/o70AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+b/APwUF/5lH/t//wDaFfm/X6Qf8FBf+ZR/7f8A/wBoV+b9fxh4sf8AJVYz/uH/AOmoH9A8Ef8AIlw//b3/AKXIK+8v2SP2iv8AhFruL4X+Np8abcPiyuHPFvIx+4xPRGPQ/wALex4+DaK+X4c4hxeS46GPwj95brpKPWL8n+Ds1qj2c2yuhmGGlhq60ez6p9Gv68j+kCivg79kj9or/hKrOL4YeNp86nbpiync83Eaj7jE9XUdD/EvuOfvGv7a4c4hwmdYGGPwb917rrGXWL81+Ks1oz+d82yuvl+Jlhq61Wz6NdGv68gooor3TzQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/j0/4PWrdW/4Ji/Du77p8UNPT/vrSdVP/stfDf8AwYzXBbTv2nbXskng1/8AvoawP/Za+8v+D1Yf8as/AJ/6qrpX/po1ivgD/gxjP/J0Q/7En/3NUAf3+UUUUAFFFFAGB4i8WeFvCFtBeeLNStdMhup47WGS7mSFZJ5ThI1LkAux4VRyT0Fef/Gr4B/B/wDaJ8HyeBPjNoFrr2nPkos64khcjG+GRcSRP/tIynHHSv5h/wDguv8AHv4i+LfjfpnwLutOvdK8K+G4hc273ETRRaleTKN88ZIAkSJT5SkZw3mf3q+sf+CGfxa/a1+JsGu6P411l9V+HHh2BLa3fUVM1wl8+CkNvOSG2JHy6sXCAoFC7s18ouIqNfMZ5XKk5La+60Wt0+nnqfr9TwzxuX8M0eLKeMVOaSny3aaTdock4t++7r3dLXte6Z+tH7H/AOxV8If2KvC2s+F/hWbm4/tu+N5cXV6yvcFFG2KEsqqCkQJ28ZyzE8mvr6iivpaGHp0KapUo2itkj8tzHMcTj8RPF4yo51ZauT3fT8tAooorY4gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/1P7+KKKKACiiigAooooAKKKKACv8QP8A4J0r/wAJj/wVJ+BKXn7z+1fip4YD55z5+r2+fzzX+35X+IN/wSg+f/gqb+zVu7/FXwbn/wAG9rQB/t80UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXl3xP+OHwV+COnR6x8aPGGieELSbcY59a1CDT432Y3Yad0BxkZweM1+T3/AAXx/wCCoutf8Epv2Ebv4y/D20hvvHPinUY/Dnhpbkb4Le8uIpZWupUxh1t4omYIeHkKKflJr/Op/YF/4Jcf8FIv+Dgv4reKfjPqfjT7ba6NNHBrfjHxlfT3OJ5QXS1t0VZZJHVDuEahIY0wCyZRWAP9XH4W/tpfsdfHG/j0n4KfFnwb4wupX8tIdE16x1CRn6bQsEzkn2619L1/lM/t/wD/AAaoft+/sF/BjVf2mfA3iPRviToHhOFtQ1QaILi11Wyt4MM9ysEiYeOIZd2jlLoqltu0Ej9f/wDg1W/4Lo/HH4v/ABej/wCCbH7YOv3vjC51a1uLvwZr+pzm4v43sYTNNp88shLzRmCN5YXdi6FGQllZBGAf3z0V/Lh/wdU/t5/tbfsB/slfDf4h/sheM7jwVrOt+Ljp17c29vb3DTWos55fLIuYpVA3opyADx1xX0b/AMG0/wC2L+0j+3J/wTQt/jb+1R4ml8W+Kl8T6tp39oTQQW7m2t/KaNCtvHEh272wducdTwKAP6AqKKKACiiigAooooAKKKKACmu6xqXchVUZJPAAFeb/ABm+LngX4A/CHxR8c/ifd/YfDng7SbzWtUuApcx2ljE00rBRyxCIcKOWPA5r/KG+OH7Wn/BU7/g5d/bcf4DfCWa6/sC4lubrR/CcNybPRNG0eKQD7TqDKdsroGjEtxIHdpGCRKNyRUAf621hqWnarb/a9LnjuYiSu+Jw65HBGQSOO9Xa/wAi39sb/gjp/wAFdf8Agg/o2i/tZ2fiqGy0pLyG3fxJ8P8AV7sDT7uUHy47tZIbSUJLgoGMbwsSEZsuqt/dR/wbdf8ABXXxv/wVS/ZH1e1+Oaxv8TPhjc2uma9fQoscepwXaO1pemNAqRyS+VKkqINm+MuoVXCKAf0VUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH+IH/wUWUeDv8AgqV8dks/k/sr4qeJwmOMeRq9xj8sV/t+V/iDf8FX/k/4Km/tK7e3xV8ZY/8ABvdV/t80AFFFFABRRRQAUUUUAFFFFABRRRQAV/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+a/xBv+CsX/AClN/aW/7Kr4y/8ATvdUAf7fNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfiN8Xv+DjP/gjb8Bfin4h+Cnxd+L0mieKPCmoXGlarYTeGteZ7e7tXMciFk05kYBgcMjMrDlSQQaAP2V8Za3q3hrwhqviPQNIufEF/p9nPc22l2Twx3N9NEhZLeJ7mSGBZJWARGlljjDEF3Vckfyz/sCeAf8Agqnp3/BZv4rft4/tgfs06rovh74o6ZYeFNEurPxH4fvj4a0i0mi2/aI11ESSRuIlnuDbq7+YG2RvkAfX3/EUb/wQo/6Ln/5bPiH/AOVlH/EUb/wQo/6Ln/5bPiH/AOVlAH7KftIfAbwJ+1H8AfGX7OfxOh8/QPG2j3mjXoABZYruNo96Z6PGSHRuquoI5Ffz/wD/AAbDf8Euvit/wTW/Zs+KFp+0HpJ0vxt4q8Z3Ns5IAE+kaIDb2cqHnMcsj3M0ZzzHIp717Z/xFG/8EKP+i5/+Wz4h/wDlZR/xFG/8EKP+i5/+Wz4h/wDlZQB+/wBRX4A/8RRv/BCj/ouf/ls+If8A5WV9gfsU/wDBZj/gmz/wUS+KeofBX9jr4kf8Jh4m0vSpdburP+x9U0/y7CGaGB5fMvrO3iOJbiJdquXO7IGASAD9PqKKKACiiigAooooAKKKKACiiigAooooAK/zp/8Ag9q/aj/t/wCN3wf/AGONGuMw+G9Ju/FWpxocq1xqcn2a1D+jRx20zAdds2ehFf6LFf5Cv7dGrah/wV7/AODiTW/AehTPdaV4y+Iln4MspYjlU0fS5Y9Pe4THRPIgkuTjn5iepoA/pF/4JZfs7/8AByv+yT+wP4C+Gf7Iug/B+HwX4gsV8TWU2uvdnWEGugXg+1gPHH5qLIqFRG20KFy2MmX4j/8ABuR/wV9/4KhfFzSviN/wV8/aK0ZdE0pmNrpHheKS7NrC7AvHb25t7Kzt3cAKZ8TuQF3+ZjFf3JaZpmn6Lptvo+kwpbWtpEkMMUY2pHHGAqqoHQAAAD0q9QB8w/sc/se/AX9g/wDZ60D9mT9m7Rxo/hjw/GQgciS4uZ5DmW5uZcAyzyt8zuQB0VQqhVH09RRQB/Fn/wAHtnim4tP2GfhF4JUnytQ8dvfN6brPT7mMfpcGv3B/4N+dFg0D/gjN+z5Y26BFk8MrckD+9czzTMfxLk/jX4i/8HtPhe6vP2EfhL4zjjLQ6f48Nm79la70+6dR+PkH8q/bj/g321uDxB/wRl/Z9v7dxIsfhoWxI/vW1xNCw/AoR+FAH7G1/mQf8Hmn7S83xX/4KGeCP2XdCla6tPhl4bSSeBOWXVNfcTSKFGeWtYrMjvz09f8ATdZlRS7kBQMkngAV/mCf8EwfBmlf8Fkv+Dmzxb+0r4sjXVvB/h7XtV8eBJRvSXT9HmjtNGjbOVO12syVIwyRsMY6AH9T/wDwTF/4IY/C5/A1h+1f/wAFRfCWmfEv4yeKtNtY00TxFbJqGj+ENHhjVLLRrKyn8yAG0hCo8jIzK4KofvPJ/Gn/AMFR/gL8PP2Hv+DkPSPh/wDsS6enheKy8W+DdU03TLA+XBY6hqH2SdoYVX7kTu+4Rj5VWTYoCYWv9Rf9pf8AaN+E37I/wF8VftI/HHU00nwt4QsJdQvp3I3FUHyRRgkb5ZXKxxIDl5GVRyRX+eh/wQe/Zk+MP/BZL/gsr4u/4K7fHbS5LXwT4T8STeI0aUF4ZNaGP7L06F2A3jT4vKlZgCVWGINjzQaAP9KKivyX/wCC0En/AAVCj/Y6jP8AwSRWJviedfsRdbvsJnGkFZfPMH9pf6Lv83yN2/nyt+3nFfod8Av+FvD4FeCh+0GbU+Pf7B07/hJfsOBa/wBr/Z0+2eTt48vz9+zHG3GKAOw8deNPDvw38Eaz8RPF8xttJ0CxuNRvZlRpDHb2sbSyMFUFmwik4UEnoBmvwA/4ir/+CH//AEVW+/8ACb1f/wCRK/oE8aeD/DnxD8Hat4A8Y232zSNcs59PvrcsyebbXKGOVNyFWXcjEZUgjPBBr8OP+IYb/ghl/wBEKh/8KDXf/ljQB/N//wAHJv8AwXB/4Jtf8FEP+Ceth8BP2TvHFz4i8UQeMNN1Z7WbSL+xUWlvBdJI/mXMEceQ0qDbuyc8Dg1+hf8AwS0/4OPf+CRX7M3/AATr+DX7P/xk+I95pnirwh4WsNM1S0TQdTuFhuYE2uokitmjcA91Yg9jXw5/wcy/8EYf+CaP7An/AATq0/44/skfDOPwj4pn8ZaZpb3y6rqd6TaXFvdvJH5d3dzx/M0aHds3DHB5Nfot/wAEp/8Ag3v/AOCP/wC0b/wTf+C3x2+M/wAHota8V+K/Cmn6lqt8db1iA3F1MmXfy4b6OJcnsiKo7CgD7++GH/BzR/wRu+MfxL8O/CL4f/Ey9vNe8VanaaPptu3h/VYhLeX0qwwoXe1CKGkdRuYhRnJIFfvhX4k/DX/g3L/4Ix/CD4jaB8Wfh38FodP8QeF9StdX0y6/tzWZvIvLKVZoZPLlvnjfZIittdWU4wQRxX7bUAFf5yf/AAWB/wCCm37Rv/Baj/gojpP/AARs/YF1qXS/hvca9/wj+p31ox263c2rMb68uHjOX02yRJHSJTtmEZlO4mIJ/bt/wVN+M3ib9nr/AIJu/HL4z+CZntta8P8AgnWrjTp4wS0N2bZ0hlGP+ecjK/4V/nV/8Guv/BMjXv28PiP8Vfil4b+MXiX4RXPgOy03TGuvCDRQavcQa6bkyrHdSBmtgBZgb41LtuIyBkEA/ok/4Kp/GL9gD/ggv/wSd1//AIJnfstWtjefEr4m6BP4dOnQbJdWuv7VtzbXesaoVDMC0bv5CsAGcrHCoiRvL+1f+DWf9gL4z/sI/wDBOCZv2gLGfRfEvxK12TxQNIuCyzWFjLbQQWyTxHHlzusRlkX7yq6I4DqVH2P+yL/wRE/4Jo/sC+J5fj/4a8MNr/jiyEl7deN/G1++raojKN0lyZrgiCCQAEtNFFE2M5bGa/XPQPEGg+LNCsvFHha9t9T0zUYI7m0u7WRZoJ4JVDJJHIhKujqQVZSQQcjigDXprosilHAZWGCDyCDX4f8A7Ecn/BaGT/gqD8ef+GyRYL+zeouV+HwiGn7yftUX2IxG3/0v/jz8z7V9q/5bbdnFfuFQB/mtf8Hk9j8HPCf7TPwR/Zm+Bng3RdA1K00K/wBbvE0XToLSa6bWLpLa3RzCiltpsZNqn+/nuK/uw/ZM/wCCev7Mn7N3wI+G3w8h+H3hiTXvAuh6RY/2t/ZVq1417p0EaG58/wAvzDKZU8zzN27d82c1/B5+1tbf8PGP+Dv7QfhVF/p+ieEvF2jaa0R+ZfsfhK1W+1CJuwVpoLlT/vY61/pcUAFFc5pvjDwlrOs3nhzR9Us7vUNPwLq1hnSSaDPTzEUlk/4EBXR0AfKX7b37Ynwi/YG/Zb8X/tYfG+do9B8JWfnmCLHn3lzIwjt7aEEgGWeVljXPAzuYhQSP4XP+CUv7P3x0/wCDln9vHxD/AMFEf+CjrvqPwe+G16LXR/CgZ/7IlvJAJItNgTIHkW8flzXjn95OzRq+5Xbb7j/we8ftF+JLDw98D/2T9JuDHpWpzan4p1OIMR5stqI7WzyPRRLcnnOSR6V/Tj/wQl/Zt8O/stf8Elfgb8P9DhEdxq3hiz8S6i5ADvfa+gv5t57mMziJT/cRR0FAH5A/8HiTfC/wF/wSP8K+AYNOs7OR/G+kWWg2sEKRraJbWl2zeSigCONIUMfyAABgvQ4r6Y/4NQP2YP8Ahnn/AIJB+F/Gmp2/kat8UtV1DxXc7h84gdxZ2oz/AHWt7ZJVHQeaT1Jr+UX/AIOhP247r/go/wD8FL/CX7DP7Ol+utaF8PLxPDFqLd90F54p1WdIboqRwwiYQ2wODtdJdpIbn/SM/Z78M/CP4E/D/wAM/sg/D7VrGS5+HXhrSbBNLSeP7bBp1vF9ltppIAxkRJfIYK7DazKwBJBoA+gqK/D3wA//AAWgf/gth4tXxwLBf2QV0RP7JwNP5uTaxbDGV/4mH2n7X53meZ+58rOP+WRr9wqAP8yz/g6pvX+G3/BeX4X/ABA00/Z7iLw54U1USrwfMttUu1DZ9QIR+Vf6adf5lX/B1Hp//C0v+C9Xwx+G+nN5k83h3wno5VeSJLrU7tgPriYH8a/01aACiiigAoorifiXq+o+H/hz4g17SJPJu7HTbu4gkwG2yRRMynDAg4IBwQR61jia8aFGdae0U27b2SuaUaTqVI047tpfedtRX4n/APDXP7Qv/Qwf+Slt/wDGqP8Ahrn9oX/oYP8AyUtv/jVfj3/EdMh/58Vv/AYf/LD73/iG+Z/8/Kf3y/8AkD9sKK/E/wD4a5/aF/6GD/yUtv8A41R/w1z+0L/0MH/kpbf/ABqj/iOmQ/8APit/4DD/AOWB/wAQ3zP/AJ+U/vl/8gfthRX4n/8ADXP7Qv8A0MH/AJKW3/xqj/hrn9oX/oYP/JS2/wDjVH/EdMh/58Vv/AYf/LA/4hvmf/Pyn98v/kD9sKK/E/8A4a5/aF/6GD/yUtv/AI1R/wANc/tC/wDQwf8Akpbf/GqP+I6ZD/z4rf8AgMP/AJYH/EN8z/5+U/vl/wDIH7YUV+J//DXP7Qv/AEMH/kpbf/GqP+Guf2hf+hg/8lLb/wCNUf8AEdMh/wCfFb/wGH/ywP8AiG+Z/wDPyn98v/kD9sKK/E//AIa5/aF/6GD/AMlLb/41R/w1z+0L/wBDB/5KW3/xqj/iOmQ/8+K3/gMP/lgf8Q3zP/n5T++X/wAgfthRX4n/APDXP7Qv/Qwf+Slt/wDGqP8Ahrn9oX/oYP8AyUtv/jVH/EdMh/58Vv8AwGH/AMsD/iG+Z/8APyn98v8A5A/bCivxP/4a5/aF/wChg/8AJS2/+NUf8Nc/tC/9DB/5KW3/AMao/wCI6ZD/AM+K3/gMP/lgf8Q3zP8A5+U/vl/8gfthRX4n/wDDXP7Qv/Qwf+Slt/8AGqP+Guf2hf8AoYP/ACUtv/jVH/EdMh/58Vv/AAGH/wAsD/iG+Z/8/Kf3y/8AkD9sKK/E/wD4a5/aF/6GD/yUtv8A41R/w1z+0L/0MH/kpbf/ABqj/iOmQ/8APit/4DD/AOWB/wAQ3zP/AJ+U/vl/8gfthRX4n/8ADXP7Qv8A0MH/AJKW3/xqj/hrn9oX/oYP/JS2/wDjVH/EdMh/58Vv/AYf/LA/4hvmf/Pyn98v/kD9sKK/E/8A4a5/aF/6GD/yUtv/AI1R/wANc/tC/wDQwf8Akpbf/GqP+I6ZD/z4rf8AgMP/AJYH/EN8z/5+U/vl/wDIH7YUV+J//DXP7Qv/AEMH/kpbf/GqP+Guf2hf+hg/8lLb/wCNUf8AEdMh/wCfFb/wGH/ywP8AiG+Z/wDPyn98v/kD9sKK/E//AIa5/aF/6GD/AMlLb/41R/w1z+0L/wBDB/5KW3/xqj/iOmQ/8+K3/gMP/lgf8Q3zP/n5T++X/wAgfthRX4n/APDXP7Qv/Qwf+Slt/wDGqP8Ahrn9oX/oYP8AyUtv/jVH/EdMh/58Vv8AwGH/AMsD/iG+Z/8APyn98v8A5A/bCivxP/4a5/aF/wChg/8AJS2/+NUf8Nc/tC/9DB/5KW3/AMao/wCI6ZD/AM+K3/gMP/lgf8Q3zP8A5+U/vl/8gfthRX4n/wDDXP7Qv/Qwf+Slt/8AGqP+Guf2hf8AoYP/ACUtv/jVH/EdMh/58Vv/AAGH/wAsD/iG+Z/8/Kf3y/8AkD9sKK/E/wD4a5/aF/6GD/yUtv8A41R/w1z+0L/0MH/kpbf/ABqj/iOmQ/8APit/4DD/AOWB/wAQ3zP/AJ+U/vl/8gfthRX4n/8ADXP7Qv8A0MH/AJKW3/xqj/hrn9oX/oYP/JS2/wDjVH/EdMh/58Vv/AYf/LA/4hvmf/Pyn98v/kD9sKK/E/8A4a5/aF/6GD/yUtv/AI1R/wANc/tC/wDQwf8Akpbf/GqP+I6ZD/z4rf8AgMP/AJYH/EN8z/5+U/vl/wDIH7YUV+J//DXP7Qv/AEMH/kpbf/GqP+Guf2hf+hg/8lLb/wCNUf8AEdMh/wCfFb/wGH/ywP8AiG+Z/wDPyn98v/kD6Q/4KC/8yj/2/wD/ALQr8369I+IPxc+IfxU+yf8ACeah9v8AsHmeR+6ii2ebt3f6tFznavXOMcV5vX8+8b57h85zvEZlhYyUJ8tlJJP3YRi72bW6fXY/UOHctq4DLqWErNOUb3te2sm+qXfsFFFFfKHtlmyvLvTryLULCVoZ4HWSORDtZWU5BBHQg9DX7N/s1fH20+MHhz+zNZdY9f09B9pQcecnQSqPQ9GA+6fYivxbrpPCHi3XvAviO18VeGpzb3lo+9GHQ+qsO6sOCO4r7jgTjSvw9jlVV5UJ2U4913X96PTvqup85xLw/SzTDcj0qR1i/Ps/J9fvP6HKK8l+DPxc0L4x+D4vEWlYiuY8R3dtnLQy46e6nqp7j3BA9ar+0cDjqGMw8MVhpqVOaumuq/rdbp6M/n3E4aph6sqNaNpRdmgooorrMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+QL/g9W/5RZeAf+yq6V/6aNYr4A/4MYv8Am6L/ALkn/wBzVff/APwerf8AKLLwD/2VXSv/AE0axXwB/wAGMX/N0X/ck/8AuaoA/v8AKKKKACvIPiZ8fvgx8Gtb0Lw78VPEljoF34mmkg01b2TylnkiALDcflUDcoyxALMFByQD6/X8SH/BXXXv2hvFX7W2q6v8bdBvNB0y3zZeHYphut306FjtkikQmN2lJMkm1iVZtpxtArweIc4ll2GVaEOZtpdbLvd9PLzP0Lw24Jp8TZpLBV6/s4Ri5OzXM3slFPfXWWnwp6ptH9jvxb+C/wAKPj74Mm8B/F3Q7TxBpFwN3lXKbijEcPG4w8bgdHRlYdjWR+z/APAD4afsy/DCy+EXwntGtNIsXllXzW8yWSSZi7PI+AWY5xk9FAHQCvy0/wCCH3h39oSL9nS78Z/FTXr268LahMIfDWmXZ8zyYICyyzI7Ausbv8kcYYINjMF+YGv20rry6pTxdKnjnS5ZyXW17evZ7r8kePxPhsTlGKxHD8cX7WjTntFvkckrX5XopK7i99bq7CiiivTPlQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9X+/iiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5Yv+DuD9jD4sftVf8E29N8ffBvTLjWtR+FfiBNfv7C1RpZ30qSCW3uZI40BLGAvHK/HyxLI3QV/G1/wQo/4OBvGf/BH+2174QeLvByeN/hp4r1NdWvLe2mFrqdje+UsDzW7sDHIHjjjDwyBclFKunzbv9L39sP/AIKo/sA/sCeLtJ8B/tffEez8Fatrtm1/Y21za3dw01srmMuDbwSqBvUjBIPHSvzI8e/8ETv+CFf/AAWE+GNh+1h8JvC1taWPi8XElp4q8DPJobXLQzSQTO1q0YtmkE0bq7y2hcsDknuAN+Bv/Bzf/wAEWP2w/DNz8P8Ax143uPAT69ayWV1pfjSxksUeG4QxyI91CZ7NVKsQd1wvBr0v9hf/AIIM/wDBHL4CfFHwf+21+xppD6nqOkedd6Drdl4kudVsJBcQyW7OhWd4ZVKSOOrLmv5uP2yv+DKHx54Z0LUvF37CvxVXxNNbxvLb+HfFVslpczbORGmoQHyWkfovmW8KZ+84BJH43f8ABvN/wUM/aB/4J0/8FMPCf7PWuXl7a+C/iD4mtvB/ivw5dMRDDe3c32OK52NxFPa3DKZGUbmjDoeowAdp/wAF+/2T/wDgsJ8EdWv/AImft5+MdY1/4V+IPHOpjwhY3/iZ9Yt7YytcS2/l2jSuLfba5UYVdo+X2rv/APgh9+xh/wAF0/i54E8G/Gj9h7x1reifBew8ZRnUtNtPFj6ZaSPazQPe7rDzlSQPHgMChEg4Oa/oO/4Pa/8Akxb4R/8AY9t/6b7mvq//AIM9v+UPsP8A2Omt/wDoNvQB0P8Awcaf8F3tY/4JVeBtE+B37OcNjqHxg8cWk13DNeATRaFpoJjW8eA8SyyyB1t0f93mN2cMFCP/ACP/AAN/4Ji/8HI//BTT4dQ/tjxeL/E0ljrifb9IufEviufTri/iYApJZ25k/dQuDmFisMTLyh2kE/KH/Byh4u8X+M/+C43xkTxFA93Jpl/pGnWVnIGINtDp1p5SKqENtlyXwpBJkJGCa/ejSf8Ag4v/AODhrQdKttC0P9jSzs7KyiSC3t4PBPiWOKKKMBURFW6AVVUAAAAADAoA+Ov+Caf/AAX8/wCCgf8AwSe/arn/AGL/APgqlJr/AIj8JWd/Dpms2/iWaS61zw2z7dtzb3DmR7i2EbLJ5Rd0ki2vAwz8/wDTB/wdcftN/Gr4Af8ABLzwr8W/2W/HmseDtS1Px3pECav4a1Gaxmnsbiwv5dgntnRmikKI+NxViqnsK/h+/wCComvf8FYP+Crfx9039o341fsu+IPDGv2GjQ6LJ/wjfhDWoI7qK3llkjkn+0C4ZpV80oGBHyKq9AMf0Df8Fs4fipZ/8Gq37MGk/GzT77SfE+nav4VsL201OGS3vIvsel6lBGs0coWRX8tE3BgDnrQB+G/7J37d3/Bfr/gpV4TsP+Cef7LHj/xl4mvPtV5rOq6uNXnTUWt5ljj23urzyiS3sogmEhEqJJJIwIkZkUbn7Wf7Fn/Bwf8A8Eb9Nsf2l/HfjTxXpuiC6jSXxD4c8TXGo2cFxLjbHeoJMqrt8mZ4jC7YTcxIB/pj/wCDJf4Y+CNM/YY+LHxls4If+Ek1rx0dGu5gP3v2LTLC1nt0J/uiS8nYY6k+3H9Wn7Znwi8DfHv9kn4lfBr4lW8VzofiPw1qdldrL91Ukt3xID/C0bYdWGCrKCCCAaAPxJ/4N0P+C3etf8FY/g1r/wAP/jzBZaf8W/h6lsdRay/dRavp84KJfxw9I3EilLhEzGrFGXaJAi/0mV/k/wD/AAaI+M9a8L/8FldB0PS0d4PEfhbXtOvCvRYY4VuwW9vNt4x9SK/1gKAPkn9u79lS2/bh/ZG8c/sm3/iG68K23jqwGnXGqWcSzTwwGVHkCo5CnzEVozk9GJr8hf8AgmX/AMEbf2W/+Df3w78W/wBqTX/iRfa/pF3oUU+ranqmnrF/Zem6T51xcMi23myuHBVmVVJPlrgE1+4v7QH7R/wK/ZV+G8/xf/aM8U2Hg7wxbTRW8upanL5Nuks7bY1LYOCzcD3r5r0r4u/sN/8ABWn9m74ifBr4R+PNP8e+D9d0648N+IZvD12Glt49ShZGUSbTskMZJQlT06GgD+Mj/g4v/wCDjn9jP9sv9jnVf2GP2Jpr7xfF4svbCbWvENzZTafZQWunXEV2kdvHdJHcSSvNEm5mijVUBwW3YH6Uf8GeX7Afxx/ZU/Za+I/7Qvx00O88MXPxav8ASxpOnajC1vdNpmjx3BjumjfDIk8l5IIwygskYcZR0J+F/wDgqf8A8GgvwE+D/wCzD4v/AGiP2EvGGvprXgvTLnWrnQPEk0F5b3tpYxNLOlvNDBDJFN5aloxJ5iuw2Epu3K3/AIM6P+CnXx1+IvxG8W/8E6vjVr154j0PT9BfxJ4Vm1CYzS6f9knihubNHclzFItwksaE7YjE+0DeaAP7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/EG/4Kxf8pTf2lv+yq+Mv/TvdV/t81/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmgAooooAKKKKACiiigAooooAKKKKACv8Qb/grF/ylN/aW/7Kr4y/9O91X+3zX+IN/wAFYv8AlKb+0t/2VXxl/wCne6oA/wBvmiiigAooooAKK4r4hfEn4dfCTwpceO/itr+m+GNDtCiz6jq11FZWkRkYIgeaZkRSzEKuSMkgDk183/8ADxH/AIJ/f9F0+Hv/AIU+m/8AyRQB9i0V4Z8Kv2oP2aPjrq1zoHwR+Inhnxlf2cP2i4ttD1e11GaKHcF3ulvK7Ku4gbiAMkCvc6ACivLPir8c/gn8CdKtdc+N/jHQ/BtleymC3uNc1CDToppQCxRHuHRWbaCdoJOBmvDf+HiP/BP7/ounw9/8KfTf/kigD7Foryn4U/Hf4H/HfTrvV/gf4y0LxlaWEghuZ9C1G31GOGRhuCyNbu4ViOQCQSK9WoAKK8V+K/7Sn7OnwGurKw+OXj/w54Mn1FHktI9d1W10550jIDtGLiRC4UkAlc4yM15J/wAPEf8Agn9/0XT4e/8AhT6b/wDJFAH2LRXhHw6/al/Zk+MGoppHwl+I3hfxTdyZ2Q6Rq9pfSNtGThYZXJwBzXu9ABRRXzVf/tifsx6b+05p37Gc/jPT5Pijqmnz6rD4dhZprxLO2VWeWYRqywAqwKCZkMgyUDYOAD6VooooAKK+J/2yf+Cjf7EP/BPzRLHXf2wfiNpfgoapuNlaz+Zc310qHDNDZ2yTXMiKSAzpEVUkAkEiuM/Y5/4Ktf8ABP39vuLXF/ZS+JFl4lvPDMDXOqWElvdaff2sCnDSta3kME5jViFaRUZAxAzkgUAfoXRXzf8Asr/tffs0/tt/CmD42/sreMLHxp4Znle3N1ZF1eGdMFop4ZVSaCUAgmOVEfaQcYINfSFABRRRQAUUUUAFFFFABRRRQAUUV+P/AMfP+C+n/BID9mbx7efDH4vfHLRrfXNOma3u7bTbe91j7PMh2tHI+n29yiOp4dWYFSCCAaAP2Aor4+/ZL/b/AP2L/wBuzQ7rX/2SPiRovjiOwCtd29hPtvLVXOFae1lCXESsQQrSRqGwcZr7BoAK/iV/4OxP+CLH/C9fh/df8FNf2atJ3+MvCVmq+NrC1T59T0i2XC3wVfvT2SDEp6tbDOf3IDf21VDcW9vd272t0iyxSqUdHG5WVuCCDwQR1FAH+AbX9mv/AARt/wCDeb/gnF/wVp/ZKs/jd4d+L3i7R/GGjuuneLNAjSxY6fqAGQybotxtrhR5kDnPG5CS8b18af8AByp/wRguP+Ca37Sf/C9fgdpjR/Bf4k3csumrEv7rRdUbMk2nMRwsZG6S0zjMQZOTEWP5wf8ABIH/AIKffE3/AIJTfth6P+0B4S87UPDN7t07xXoiPhdS0qRgXCgkKJ4T+9t3OMONpOx3BAP7Uf8AiCO/Yu/6LJ41/wC/Fj/8ZqC4/wCDI39jdoiLT4zeM0fHBe2sXGfoI1/nX9iPwR+NPwy/aM+Efh346/BnVodd8LeK7CHUdNvoDlJYJhkZB5Vl5V0YBkYFWAYEV6lQB/mCf8FTP+DST4/fsVfBjV/2jv2WvGZ+LHhvw7bveazpUth9h1i0tIhmSeJUkljuo41BeQAxuqjIRwCQ7/gyo/5SleP/APsleqf+nfR6/wBPWaGG4ha3uFDxuCrKwyCDwQQeoNfwn/8ABE79kfSv2Hv+Dov9qD9nfwxarZaDYeBtW1HRYIxiKHTNW1PRL62iT/ZhjnEP1QjrQB/dpRRRQAUV+f8A+0//AMFVP+CdH7GkFyP2kPjH4Z8O3tpnzNMF6t5qgx1xY2vnXR9OIjzX0d+zV+0V8LP2tvgV4a/aP+CV5LqHhTxbafbdNuJoXt5JIdzJlo5AHU5U8MAaAPcqKKKACiiigAooooAKKKKAPzW/4KWeNP8AgpVonwpHg3/gmv4A0PxP4k8Q2V9bT67rWtJpy6DIVRYJorV4z9qkbe7L+9RY2jG5XDYr+Hv/AIJx/wDBAH/guF/wTs/bV8Gftn+H/hp4R8XX/hGa7k/s3UfEcEcdwt9azWsn71cskgSZmR9rbXAJVhwf9K2igDzj4Q+IfiR4s+GWieJPjB4ch8IeJ7y1SXU9Ft75dTisrg/eiW6WOJZgvZxGufQV6PRRQAUUUUAfz0f8HR/7PN5+0B/wRq+I9zo8LT6h4CuNO8W26KM/JYTCO5Y+gS0mnfP+z6V51/waU/F62+Jf/BGHwh4SikEk3gLX9e0GbnJDSXTaioP0jvVx7Yr+iz4heA/CvxU8Aa58MPHVot/oniPT7nS9Qtn+7Na3kbRSxn2ZGIP1r+LT/g210vxj/wAExv8AgpL+0Z/wRj+NtyfOkeLxR4Uupf3aajBajYZoh0Z7mylt5Sq52fZ5FJyhwAf2T/HTwFr3xU+CXjH4YeFtWbQdT8SaHqGl2epqnmNZT3lu8Uc4XI3GJmD4yM4xmv4X/wDgkj/wTR/4LLf8EJv2kfHXjTSv2fNN+POi+LtMj0ZL3w94s0/SzGYZhLHKn2/ZL5b/AHXV4Exw275cN/fpRQB/Ij8eP+CXP/BWj/gtz8SdKl/4Kg6zpnwE+BOh3a3lt8NvCmoJrGrXM8YIEl1eohtWlKswWbMixjIS3Uszn+oD9nP9nD4JfslfBrQ/2f8A9njw9a+F/CXh2AQWVhaLhRnlndiS8ksjEtJI5Z3YlmJJJr26igD+N3/gpx+3n/wVO+FH/BaP4O/8E3f2evjHp0eifFO+07Urq303wzZx3ukaPd38ySQy3F0175zx2dvJIZUWBiBnYoIr+yKv4J/2OfjP8Lfjr/wco/tQf8FK/j3rMGk/D39n23n8O2GoTBpI4r13TQLNIURXd2uljvWjSNWeSSQBFJbFf3sUAFFFFAH8qX/B4hoet+IP+CTulWGgWc99OPH+juY7eNpX2i1vsnCgnHPWv1j/AOCI1je6b/wSP/Z5sNRhe3nh8EaWrxyKUdWEYyCDgg/Wv1KooAKKKKAPJfj38FvBP7R/wP8AF/7P3xJiebw/420a90PUVjO2T7NfwtDIUbna4VyVPZgDX+fD+zt/wR2/4OJP+CJX7WuuePf+CdmhaL8UfDerA2EsrX1lHp2rWIcvAL6yu7uzuIZozzvhk/dsWVZmRm3f6PFFAH8qelfsBf8ABZ//AIKt6jp+n/8ABYrxVoXwl+DdvKk2ofDP4dzOLnXWhYMIdRvFnudtuxALLHdy7v4UjfbIv7N/t43PjX9lb/gn14q8V/so+I9F+FNv8KfDdzqVqbjRV1Oxi03RrKVksobUT2yx7tkaRuC+0DaI2JGP0Rr+ZP8A4O1f2lZvgN/wSF13wHpc/k6j8Utd0zwxGUOHFuGa/uCP9lo7QxN7S470Adp/wbQftaft1ft4fsc+K/2sf23vFv8Awkcuu+J5tO8OW6WFpYQW1hp0SLK8YtYYtwkuJJEJkLsDD15r+h3xL4i0Xwf4c1Dxb4kuFtNO0u2lu7qd+FihgUu7n2VQSa/mz+FXxf1r/gl1/wAEHtV+FH7IlhaeMfjP+z74B0XVPEPh4QTXEen6r4jb7ddtcCLZvMAlubp4VkEgiRWcKsiFvx31b/g4c+Lf7bv/AARkvf2dNPgtvFv7WHxmu9R8DWXhzwjaStOulXREc1/PCCwgLWryRJh/vlZQAivtAPD/APg02+G/iH9r7/gqv8eP+CkfjS1Z4tPi1G6WWT+HWPFt682Qe5W3juFYDp5i56jP+hv440bWvEXgrWPD/hu/bStRvrK4t7W9QZa2mljZUlA7lGIYfSvyi/4Ib/8ABMq3/wCCV/7BWg/AnxAYLjxxrUz694tuoCHjbVLpUUwxv/FFbRIkKnoxVnAG8iv2FoA/yZvAP/BNf/grR/wRx/4KPfAv4x/E+0j03VfF3xH07QdN1DTdcgvD4gNzdRi6idIpftbW1zG5WYzwpw43AMRX+szX4d/AP/glz8bfGf7ft5/wUg/4KPeNtP8AHXivwvNfWHw18M6HFLDoHhfTJndFuAs2Hmv5oSPMZlxG5OGk2xGL9xKAP5X/APg5q/4Io/HH/gqT4B8C/Fv9lM2l34/+HgvbR9HvLhLRdT0++Mb7Yp5cRJNDJHlRI6Iyu+WBCg/CH7Hv7Nf/AAdVfFP9m/wx/wAE+fixd6H8CfhjodhDodz40ea0u/FH9iwAQi1tjZXdxmRIAI4pPLtn2qMz55P9x9FAH+bp+0l/wbrf8FH/ANmD/grX4c+Kn/BL34cafqvgPwlP4b1PwxrWt39l9jhu9KtLWOefUo5Jo5mmN5FJcy+VES5fdGuflX+t39mP/gnn8U/2Kv2aPiN8WfEHxZs7j9on4hlfEHjr4n6zpX9q2ytZru+z29l51ptsLSAPHbx74wuS+wDbEn7XV+In/Bxh+0rN+y//AMEd/jJ4o0yfydU8T6bH4TscHazNrsi2k209itq87gjn5aAPgr/g2D/b0/4KF/8ABSnwr8X/ANpD9snxiuveGdM1Ow8P+HLG10yz0+2guo43ub1gbeFJHYRzWoHmSPgMfav6sK/nh/4NtfCPwn/Zu/4JxfDL9lmLU4D8SdZ8Nx/EvX9MjVjNBaeJp3exlnIUpGz2yxRojsJGETMF2g4/cT49/GnwP+zh8EfFvx++JdwLXQPBmkXms38hIB8iyiaVguerMF2qOrMQByaAP8/j4teBbz/goF/weU2/h/QkFzonw017SL+8k++kMPhCxguZQ+OzX6eTjpucA96/0Ya/i7/4NNP2WfiR491j40/8FiPjxZiDW/jfq99b6Gzg73tZb17vUp1J6xTXnlxJ0ObZ+MFTX9olABRRRQAV5v8AGT/kkPir/sD33/ol69Irzf4yf8kh8Vf9ge+/9EvXnZx/uGI/wS/9JZ14D/eqX+KP5o/Aeiiiv8/D+oQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPUvhD8VvEHwg8YQ+J9FPmRHCXVuThJ4ieVPoR1U9j7ZB/cTwT4z8P8AxB8M2vizwzMJrS7Xcv8AeVh1Vh2ZTwRX89NfSP7OPx5vvg34m+zakzS6FfsBdxDnyz0EqD+8vcD7y8dQMfrfhh4gPJsQsBjZf7LN7/8APuT+1/hf2l811v8ADcY8LrMKX1nDr99Ff+BLt6rp93p+19FU9O1Cx1awh1TTJVnt7hFkikQ5V0YZBB7girlf1xGSklKLumfhrTTs9wooopiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kC/4PVv8AlFl4B/7KrpX/AKaNYr4A/wCDGL/m6L/uSf8A3NV9/wD/AAerf8osvAP/AGVXSv8A00axXwB/wYxf83Rf9yT/AO5qgD+/yiiqOqNqSabcNoqRSXgicwLOxSJpcHaHZQxCk4yQpIHQGhjSu7Hyn8Qf26P2YvhV8ebT9nP4ieJYdI8RXdrHcq1x8tohmJEcUs/3IpHA3APtBUjnLKD7r8TPhX8Mvjf4Ln8C/FLRrTxBot6oLW90gkTOOHRuqMM/K6EMOoIr+E/9tf4PftS/Dz466xrn7Uelzx694ivJbr7co8yzvC5/5dpVyrIowqoMNGuFKr0r+vj/AIJofAP4jfs8fsnaD4R+K2p3t7rV6Pt8lndytIumRzAeXaRBidgjUAuo4EjNjjFfIZNnlfH4qvha9C0Fffouiknu2fs3G/AOX8PZTgM3y/MOatO3wu6lJK8p05Rs1GLstb7rVPQ+4PC/hnQPBXhvT/B/hW0jsdM0u3itLS2iGEihhUIiKPRVAArdoor65JJWWx+NTnKcnKTu3q2wooopkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9b+/iiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP4yf+Dw3/gm98S/2lP2e/Bv7anwW0ybWNQ+Ey3tr4hs7VGknOiXmyT7UqAElbSWMmTAyI5Wc/LGSPwL/AOCCv/ByvF/wTC+FL/slftPeFtQ8WfDSO9mvtIvdFaL+0tIa6YvPEIJmijuIZJSZRmaN42Z+XDBU/wBSkgMCrDIPUV+H/wC1h/wbof8ABIz9sLxndfEj4gfC6HQPEN9k3N94YupdH85ycmR4LdhbNISSWkMJdj94mgD8lv2if+D0X9gnwt8Nb64/Zm8EeLfFvjCWA/YLfV7aDTNNimYHBuZluZpSEOCViibfjG9c7h/KR/wQc/Yq/aF/4Kdf8FYfDvx9vLKS40Dwd4utvHvjXWymy1SWK7N8kGehlvJ02LGvzBC7/dQkf23+Av8Ag0X/AOCNfg3WY9V1vw/4n8Txxur/AGXVNdmWE7ccH7Its5Bxz8/fsK/oN+BH7O/wI/Zf+H1t8Kf2dfCGk+CvDlqdyafo9pHaQlyADI4jA3yMAN0j5dupJNAH8oP/AAeteENe1f8A4J3fDbxfp1u81lo/j+BLt0UsIhdWF4qOxH3VLLtyeNzKOpFfmn/wbRf8F5f2M/2Jv2VLL9hj9oS11+18Uat41kfSrrT7NLqymj1g28MfmP5qvG0cobeNhGzBUsSVH9/nxq+CHwh/aO+GOrfBf47+HLDxZ4V1yIQ32l6lCs9vMqkMpKt0ZGAdHGGRwGUhgCPxa8H/APBsR/wRZ8B/ETTvib4X+FFzbahpF7DqFmn/AAkOrtDFcW7iSNgrXhJCsoO1iQcYIIoA/k+/4PCv+CffxL+Ev7Zunf8ABRnwbb3F14U+IlrZWWp3kEZxpmtaVDHbRCV14Vbi3jiMLE5LxyDsuf2k/YY/4PBf2C/GX7P2iQftvNrPgv4jaZZR2+rNa6bJqFhqNzCgVri2a2DNGJyC5ikRBGSVDMAGP9dPjvwF4I+KPg3Uvh38StHs9f0DWYHtb/TtQgS5tbmCQYaOWKQMjqR1BBFfzqfED/g0v/4IyeOPFcnifTPCGveG4pZPNew0rXLhbQk9QFuDO6qT2R1A6LgcUAfzKftZ/wDByL/wU4/4KF/t9aR8G/8Agj7qGteEPDurGDRdB0X+z7C5v9TudzvLfXXnQ3It12n5gJfLihi3uQd5H7U/8Hcvh/xn4T/4In/DTwr8RtbbxL4h0zxr4ctdU1d4khbULyHStQSe5McSpGhmkDPtRVVc4AA4r+gX9hv/AIJPf8E//wDgnLbXEn7Jfw5sPD+q3iGO51mdpL/VZo2IJjN5ctJMsZIBMSMseQDtzzX4cf8AB53/AMooPDH/AGUrSP8A036nQB/Jp/wbwf8ABcix/wCCR/j/AMSeBfjrpOo638JfH8sMt22nAPc6ZqVopUXMETlElDxuqXEe9W2iNlJKbH/fX/grz/wdmfso+P8A9kfxT+z/AP8ABPtda1vxZ4606bSJ9cvrN9NtdKsr2Mx3Dx+YRNJc7GKR4RURj5m87Qrc9/wa6f8ABPz9jv8A4KEf8Eg/Hnw2/a+8C2HjHT7L4p6nJZTTF4L2yd9J0jc1tdQNHPDuwu8JIFfADBgMV+uHgz/g0m/4IzeE/F0XijUfCviHXoIpBINN1HXLg2Zx0DeR5MrLnqDKc9DkZFAH4H/8GX37A/jnU/jP41/4KJeMrK4svDekaXL4X8PSTRFI9QvbyRHu5YmI+ZLaOERMV4LzEZyjCv8ARSrkfAXgHwR8LPBWl/Dj4a6TaaDoGiW0dnp+nWEK29tbW8Q2pHHGgCqqgYAArrqAPy//AOCzf7GPif8A4KAf8Ez/AIq/su+AhEfEmtadDeaMJjtV9Q0u4ivYYtxwE89oPJ3HhRJk8Zr/ADhv+CA3/BZt/wDgi58fPG3w/wD2h/DOqX/gTxi0Nrr9laRqmqaTqWmNIkcywzGMOV8ySKeFnjbowOY9jf63Nfkh+3b/AMENv+CaH/BRbxV/wsb9o34exnxaUEb6/o1zLpmoSouABO0DCO4IACq08cjKowpA4oA/ms/4Kyf8HbP7J/xS/ZA8X/s9fsLaRrur+J/H+kXWiXGr6xaLYWel2d/GYbh0XzGlluPKd1jAVURyHLNt2N8+f8GYn/BP74rt8YvF3/BRzxjYPp/g2HRbrwr4flmG06je3E8L3M0IIy0VukJiZ+FMkhVSTG4H9DXwT/4NW/8AgjJ8GfEVr4ovPh7f+M7qymE8K+JNWubu3DKcgPbxNDBMnqk0bqR1Br+hDw14Z8N+DPD9n4T8H6fbaTpWnQpb2lnZxLBbwRIMKkcaAKiqOAqgADpQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH+IN/wAFYv8AlKb+0t/2VXxl/wCne6r/AG+a/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t80AFFFFABRRRQAUUUUAFFFFABRRRQAV/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmv8AEG/4Kxf8pTf2lv8AsqvjL/073VAH+3zRRRQAUUUUAcD8TPhT8LvjT4RuPh98Y/DWleLdBuyrT6brNnDf2chQ5UvDOrxsVPIyvBr/ABzv2p/2cfhf+1B/wXF8W/slfsf6TbeG/C3ij4nv4U0e30+P/RLSL7WLSaeFBwsCssk6quFWPhQFAFf63n7eP7SVj+x9+xf8Uf2nb10V/BPhrUdUtlkxtlvIoW+zRc8ZlnMcYz3av83T/g0P/Ztvv2hP+CsFz+0D4pR7y1+F2g6hrklxNl9+qan/AKFAHJ6uyT3EoJ/ijz1xQB/o6fsf/wDBPr9jb9g3wZaeDf2V/h9o3hQwWUdjcalbWkf9qX0ceDm7vNvn3DMwDEyORnoAAAPsqiigD5w/ai+CP7LHxl+F2oP+1x4O8PeL/C+g2t1fzr4h0+C/htIo4y00qecj+WwRSS6YYY4PFf5DH/BHH9h7wN/wUs/4KpeD/wBn7UdOmtfh/eaje63rFpHIwaLRNPV7j7OZQd480iO23g7gZMg55r/Sa/4OT/2ov+GWf+CPPxW1TT7n7Pq/je2h8GaeM7S7a03lXIB65FkLlxj+7+Nfzjf8GRf7Lv2jX/jT+2jq9txawWXgvSpyMgtMRfX657FQln07NQB/dJ8BP2ZP2df2WfCB8A/s2+BtC8C6OxRpLXQ7CGxSZ0XaHl8pVMsmBgu5Zz3Jr3GiigD8Y/8AgvL8Kv2Rdc/4Jl/GX4x/tN+B9D8S3fhXwdqg0PUNRs4pL2x1G6j8qy+y3LL50DNdvDzGy5PUEcH+An/g1z/4JifBj/go3+2n4n1D9prQP+Ek+H3w50D7fdae8kkUFzqd9KIbOKYxMjlNi3Eu0MNzRKDldwP9Qf8Awed/tQf8Kv8A+CfPg79mXSrjyr/4p+JkluYs/wCs0zQlFxKMe11JZn04r4N/4NYv22v+CZ//AAT1/YQ8a+Mv2mfi74e8KeOPHHid5rrTrmR2vo9N06FIrRWhjR5GzI9zICoIxIO+aAOq/wCDkb/ggP8AsVfsvfsW6l+35+xLobfDbXPAN/prapp9hdTPZXlrf3cdoskaSu7QXEU88TK0TKhQMChbDD62/wCDQ7/gpt+0L+2J8G/iH+zB+0jrd14qvvheNMutE1nUJGnvX07UPOja2nmYlpPIeAGN3JfbIVJ2ooH5V/8ABfH/AILs6J/wVl8Nad/wTR/4JheG9d8caVrOqw3GrajBpsxuNYezcPbW9hagG48kS4lkklijcsigKFDFv6H/APg2f/4JAePv+CXX7LWv+Mf2hYYrX4n/ABSntLzVLCNxJ/ZVhZI4tbN3UsjTBppZJih25dUBby9xALv/AAcAf8Fi/HP7C2geF/2NP2M4BrP7Rfxfkhs9Bt0jWY6XbXk32aO68t/leeabMVojApvVnfKoEf7I/wCCQX/BKPwR/wAE2Pg1PrXjC7PjD42eOsaj488ZXrtc3l/fzHzJII55MyfZonJ25OZWBlcbmAX+O7/gkN45m/4Kz/8AB0d4w/bH16dtR0Hweuu+JtHjnO5E0yx2aTpSqDwrRrcwzYGP3ilvWv8ASSoAK8h/aA+N3gT9mn4G+L/2hPihObbw94K0e81rUHQAv9nsomldUBI3OwXai9WYgDk169X+fd/wce/ts/8ABaj4b/sd6n8A/wBsbwj8NvCnw/8AijrI0q0u/Cl5eXOrT2+nyreKjedOVWNxFGJW8oZDbcANigD1X/g27+GXiH/gq7+3h8Z/+C1X7YtoNd1HRtWTRvB1pdEz2ml3MqGVkgVuB9gtHgig4PMzSH95h6/an9gX/ggJ4G/YX/4KZfFD/go3bfErUfFNz4+bWHstEuLIW/2A63drd3BnuhO5uypXYmYohg7mDMAR+Mn/AAQG8Gf8F3/2cP2DfAWlfsxfDL4WX3wu8a6g/iddR8QX15DrMttqDojyyJFOse7yol8r939wJkE9f7rqAP5Gv+Cvn7P3xf8A+CPvxYn/AOC1/wDwTVtksNJnvLaH4w+BIhs0jW7OeXauo+SvEVwJJNsksa7leQTYwbjzP6Xv2Tv2ovhD+2j+zr4T/ae+BWoDUfDHjCxS9tXOBJExyssEqgnbNBIGilXJ2upGT1roP2jvgxoP7Rv7Pvjj4AeKFRtO8baDqOh3HmLuUJfwPAWx6rvyO4IyOa/hx/4Mvv2tfEPhbxp8Yv8Agmx8QJHWWxLeLtJgY5WCe2kjsNTjB5HzFrVlUYHyyNzkmgD+/WiiigAor+bv48f8HUn/AASv/Z0+N/jH9n74iy+LR4g8Da3f6BqYttHEsH2zTZ3t5vLfzxuTeh2tgZHOK8o/4jCf+CPv/Pbxp/4JF/8AkigD+puiv5ZP+Iwn/gj7/wA9vGn/AIJF/wDkij/iMJ/4I+/89vGn/gkX/wCSKAP6m6K82+DXxV8K/Hb4QeFPjf4FMx0Pxlo9jrmnG4Ty5vsmowJcQ70ydrbHG5cnB4zXpNAH80f/AAcL/HX9qDx/J8J/+CSX7D14dN+If7Rt5dx6pqkczQvpfhzTAj3cjOmHjjlBbzHUlmhhljClpBXyz4Z/4Mu/+Catl8LIPC/i7xr471DxT5AE+uW13aWsbXGOWjtGtZlSLP8AyzZ3fHHmZ5r+qu7+BXwcv/jVaftHXvhrT5fHlhpEmg22uvCpvotNllEz2yy9RGZBuwO5Pqc+r0Af45X7TfwL/av/AODcP/gqpplt4J8Rtdar4WNrr2g6xAptodc0O6ZkZJ4dz7Y5THNbXERLAMjFSRtav9gT4d+NdL+JXw/0L4i6GCLLX9PtdStw3J8q6jWVM/8AAWFf50v/AAc+eDNU/wCCg/8AwXW+Ev7CvwDj+3+KofD2keHr54495tLjUbq4vXaXHPlW1lKlzITgKhY9jX+jL4K8J6V4C8G6R4G0JStjotlb2FuD1EVsgjQcf7KigDpqKKKAPmH9sr9kb4M/t1fs2eKv2W/j3YfbvDniq0aCRlwJ7WdfmhuYGIOyaCQLJG2CMjBBUkH/ABff+Chf7CPxm/4Jv/tXeJ/2U/jbBm/0SXzLC/RCtvqemzEm3vIM5ykqjkZJRw0bfMjCv9yCv5+/+DhL/gjpov8AwVU/ZRfVfhzaQw/GHwBFNe+Frs4Q30ZG6bTZXOBsuNoMRYgRzhTlUaTcAfyXf8GqP/Baf/hlP4twf8E8v2kNW8r4cePL7Phq+un/AHei65cEDyix+5bXrYB/hjuNr4Aklav9NWv8B3W9E1vwrrl34c8RWk2n6lps8ltdW1wjRTQTwsVeN0YBldGBDKQCCMGv9Tb/AINh/wDgtMP+CgX7P4/ZQ/aD1XzvjF8NrJFW4uHzNr2ixYjju8k5e4gysVznJbKSkku+0A/qsrxvTf2ePgVo3xx1D9pnSfCOk23xC1bTV0e98Rx2sa6lcaerRuLeS4A8xog0UZCE4yi+gr2SigAooooA/wA6/wD4O/v+CeX7HH7LHw4+E/xt/Zu8BaV4I1zxHr2rWesPpEX2eO+WSJLhWkjU7N6OG2sqg4cg5AGP6xP+Dff/AJQzfs+/9iyP/SiavwO/4Pef+TWfgf8A9jVqP/pIK/fH/g33/wCUM37Pv/Ysj/0omoA/Yyiv5GP+Cln/AAXK/as8a/8ABQjTP+CPX/BICx0i5+Jt1d/2frni/VUF3a6XcpGZ7iOGIq8X+hxKzXUsqTBWDRLEZFzW9+0l/wAE0f8Ag4Q+E3wlu/jX+zX+21q3xE+IOkW5vJPDN74fsdPstQdDvaK13PPAr4yI0lhCSHALRg8AH9ZNFfyLf8G//wDwcd67/wAFBPiGf2Jf22dMtPD/AMX4YJm0nUbSNra31w2as9xDJbHP2e8ijRpCqny5FV8LGUCt+zP/AAWG/wCCoHgL/gk5+xxqP7R/iSwXXdevrqPR/DWjM5jW+1SdWdRI6glIYo0eWVu6ptB3MtAH6oUV/HP+yp8Fv+C/f/BS/wDY2039vqT9rRfhb4j8YQ3Os+EPBeleHrT+x47Pc4to7qfmXbPgFTKt00cZVmMjEov5B/sff8HIX/BfPV/2no/2AdS8LeCfiR8UW1W/0P7J4jtY9GuxqOnCXz4GntruwslZTC6gFBvYBVJJAIB/pKUV8pfsR+L/ANrjx7+zL4c8V/t0+E9K8D/FG6N5/bGiaLcC6srUJcypbeXKs1wGL2wikbErYZiOMYH1bQAUUUUAFFFFABRRRQAV/PX/AMFt/wDgnL8avi14k8Bf8FNv2CtsH7Q/wDdrzTrPblfEekKWefTZMYZnKvMIlBAdZpYusisn9ClFAHyl+w7+1r4I/bq/ZQ8FftW/D60uNO0/xdZNLJY3alZ7K8tpXtry1kBC5a3uYpYS2AGKZHBFfVtZWjaFonh2zbTvD9nBY27TTXDRW8axIZrmRppnKqAN8krtI7dWdixySTWrQAUUUUAfgz+zN/wbufsK/syfti+If2yNFv8AxN4iv9Z8QP4ptPD+sX0cuhafqxeaSK6S2ihjM01qbiYWj3DyGAOSuZPnr95qKKACiiigAooooAKKKKACiiigAr8vP+Cqv/BJ39nz/grj8GtA+Dfx+1bW9Bh8NauusWN9oMsMVwsnlPC8bCeGeNo3Rzn5QwZVIOAVb9Q6KAPlz9j/APY++DH7EPwbh+C/wUgu3tXuptR1LU9UuGvdV1fUrog3F9f3T/PPczEDe5wAAFUKiqo9g8J/CL4UeAtYu/EXgbwxpOi6hqGftV1YWUNtNPkgnzHjRWfJAPzE16HRQAUUUUAFFFFABRRRQAV8A/8ABSz/AIJz/BX/AIKj/sw3X7LXx2v9U0nSZdQtdVt77RpI47u3u7TcEYedHLGylXZWVkOVY4IOCPv6igD4X/YE/wCCef7P/wDwTm+EEnwo+B/9pancX8kU2r6/r1z9u1jVZbeJYIWubjagKwwosUMSKkUSDCKMsT+Nv/BYyL47f8FS/wBpLSf+CJH7NUtzoXhKGLT/ABP8ZfFoiPladpDSebY6dEWG2S4uWj85UHUrHk+Ws+3+nqs210bSLG/utVsbSGG6vijXMyIqyTGNdql2Ay21eBknA4HFAHE/B34SfD/4B/Cjw58EvhTp0ek+GvCenW2laZZxfdhtbVBHGuepO0Dcx5Y5JySa9IoooAKKKKACvN/jJ/ySHxV/2B77/wBEvXpFeb/GT/kkPir/ALA99/6JevOzj/cMR/gl/wCks68B/vVL/FH80fgPRRRX+fh/UIUV/Oh4B/4L02M37fup/sh/F/wnZ+H/AA7a+JtR8MQ6/HeO7LPbXElvbyTRsgVUldFVzuwm7cTtBr9lv2yfj3qP7Lv7MHjT9oDSdOj1e58K6eb2OzmkMSTEMq7SygkD5uoBr6LMOFczwWIw+FxNK063K4apqXM7LVOy1tdPbqeVhc6weIpVa1Gd40782juravTf/M+maK+GP+Cc37Xesftx/sraP+0Pr2iQ+H7rUrq9tns7eZp41+yzNECGZVPzAZIx1r7nryMfgq2DxNTCYhWnBuMlvZp2eq0O7DYiniKUK9J3jJJr0YUUUVyG4UUV89/tV/tH+D/2R/gD4i/aI8e2V5qGkeGo4JLi309Ua5cTzxwLsEjxpw0gJyw4B78VthsPUxFWFCjG85NJLu27JfNmdWrClCVSo7RSbb7Jbn0JRXzz+yl+0h4P/a6+AHh39onwDZXmn6R4kSeS3t9QVFuUFvPJbtvEbyJy0ZIwx4I78V9DUYnD1MPVnQrRtOLaa7NOzXyYUqsKsI1KbvGSTT7p7BRRRWJoFFFFABRX53/8FOf229f/AGA/2bYvjr4c0C38R3EmsWumfZLmZoEC3CSsX3KrHI8scY71+Rfhf/gtb/wUk8b+G7Pxj4M/ZM1vV9I1GFbi0vbK11O4t54XGVeORLRldSOQVJBr6vKuCs1zHCLG4aMfZNuN5ThHVbr3pI8TG8Q4LCV/q9aT57Xsoyej9Ez+oSivwv8A2DP+C2Xhj9qn47n9lr41+A734Z+O5fNS0t7mZp4Z5rdDJJBIJIoJYJtoZlRkYEKRuDFVP7oV5Wc5Hjsqr/VsfT5JtJrVNNPZpptNejO3AZjh8bS9thp80b26qz7NOzTCiiivJO4KKK/I7/gpn/wUr8UfsDePfhX4Q8P+FbXxHF8Qrq7t55Li5e3a2FtJaoCgVGDFhcE84xtHrXpZTlOJzLFRweDjzVJXsrpfCnJ6uy2TOTHY2jhKMsRXdoq13a+7SW3mz9caKKK806wooooAKKKKACiivHP2ifife/BL9n7x18Z9Ns11G58I+HtT1qK1diizvYW0k6xlgCQHKbSQCRmtaFGVWpGlBe9JpL1eiIqVIwg5y2Sv9x7HRX5o/wDBLD9vPxH/AMFDfgBrXxl8T+HbfwzcaV4huNFW1tp2uEdIba2n3lnVSCTOVxj+Gv0urpzPLcRl+KqYPFRtUg7NXTs/VaGODxdLFUY4ii7xkrp7BRRRXCdIUUUUAFFFFABRXm/xk+J2i/BP4Q+KvjL4kgnutO8I6Pfa1dQ2wUzSQ2ELzusYZlUuyoQu5gM9SBzXzl+x1+3D8O/23P2fb79ob4WaVqOm6bZ3V3ZfZtVWKOcy2iK5P7mSVdp3gA7s9eK7qeW4mphpYyEG6UZKLl0Unsvmc8sXRjVVCUvfabS8luz7Vor8of8AglF/wUb8Tf8ABRn4e+LPGfifwva+GJfDeow2SR2ty9wsqzReZuJdFIIIx3zX6vVea5XictxdTBYuPLUho1dPdJ7q62ZOCxtLF0I4ig7wls9vLqFFFFecdQUUV+cn/BUL9uTxB/wT8/Zzsvjj4b8P2/iS4utcttJNrcztboFninkL7lVjkGIDGO9duW5dXx+Kp4PDRvUm7JXSu/V6HPi8VTw1GVes7Rirvqfo3RXlPwH+I1z8Yfgd4M+Ll5arYzeKdC07V3tkYusLX1ukxQMQCQpfAJAzivVq5q1KVKpKnPdNp+qNac1OKnHZ6n3F+yZ+0T/whN/H8N/Gk+NHunxazOeLaVj0J7RuevZW56Emv1er+b+v0/8A2RP2if7ct4fhT43n/wBNhXbp9xIf9aij/VMT/Go+6f4hx1Az/QXhJ4hcrhkWZT02pSf/AKQ3/wCkf+A/yo/LuOeFr82ZYSOu80v/AEpf+3ff3P0Booor+jj8nCiiigAr5p8e/tWfC7wV8WdG+BGmm58ReMdYuIUfS9Ij+0y2NtIyh7u8IIW3gjVt5LkMw+6rZrxr/go3+2TB+xh+z5ceM9HWOfxPrMh0/RIJOV+0MpLTOvdIV+YjoWKqcbs1l/8ABNb9nIfBb9n6y8feMd1948+IKJr/AIh1K4y1zLNefvY4nY84iV8EZx5hdu9eVVxsp4pYOhulzSf8q6L1f4LXXY+uweQ0qOUPO8wT5JScKUE7Ockryk30hDS9leUmoprVrc8Zf8FOv2F/h94v1TwH4w8fQWeraLdzWN7bmyvHMVxbuY5ELJbsp2spGVJHHBrmv+HtP/BPT/oo8H/gBff/ACNWT+yv+wB8PPAPiXx58XPjV4Z03WPF3jHxRq+pLNeJHerb2Fxcu8CRhwyIWU73IAbLbScKBX4ff8Fe/BvhDwt/wUI8E6H4Y0qz06ym0jSHkt7WBIYnZr64ViUQBSSAASRyBXiZjmuaYTCrFTUNXbltK6Tel3zb91Y+94Z4R4TzjNnlNCeIbjBydRTp8rcUnJRXs27Xuk77an7r/wDD2n/gnp/0UeD/AMAL7/5Gr7c+HPxO8CfFnwDp/wAUPh9qKahoOqQme2vArRK8akqWxIqsoBU/eA6V4z8V/wBi39lz4yeDr3wZ4w8D6MsV3C8SXVrZQwXduzDh4ZkQPG6nkEHB6EEZB/Jf9rrR/jD+xp/wR20j4M3s4g1hrwaDfz2cmQLK5uLmY4YdpYlSNwOzlckV6NXG47Ce0q4pRlTjByvFNO6to7t7309D5rB5FkOcPD4XKJ1aeJqVoU3GrKElyTUrzjywg3ytK680uun298Rv+CuX7Cnw38Sz+E7jxZJrF3aSGO4bSbSa7gjK9T5yqInA7mN3Fdt4f/4Kb/sS+LdI0zU/C/je2vp9W1G00uCwVHjv/tF5II0zbSKkuxSfnkClQO/Iz4t/wR0H7PUn7Hmin4PrZ/26qFfE20L9t+3lmz5/8ewj/U5+XZ053V4F/wAFHv2I/hp4c+KPwz/aq+F2lQaPqEPjTRLPXIbRBFDcR3N0gjnKKAokWQBGYAbw+WyQK5Hjsy+pxxsJQlFpNxSeifZ82rXXRbHsQ4f4XedVMhrQxFOcJSipynBqco30cPZpwU2vdalLdX3uv3cooor6o/IQr42+Lf8AwUB/ZG+BHjG58A/Fvxb/AGJqtqQJIZrC9ZfmUMNsiQNG4wwyVY46HnIr7Jr8uv8Agsro+man/wAE9fGl9fwJLNp0+lXFs7qCYpGvoIiyk9CUkdcjsxHevPzSvWoYWpXoNXinLVNppJu2jVvXX0PpOEsBgsfm+GwGPU+StOMLwkouLnJRT96M00r6qyv3Ot/4e0/8E9P+ijwf+AF9/wDI1H/D2n/gnp/0UeD/AMAL7/5Gr5b/AOCHfhDwnrn7Fk97rWl2l5N/wkV+vmTwJI20RwYGWBOK+ov23v2IvgX+1R8MtW+Geg6domm/EG3sjf6NcIsdvdRMGwpk8oeYbaRgY3JVlGcgblFeRQxmaVsFHF0nTbkrqPLL7r8+/wAj7PMMl4SwOfVcnxUcSoU58kqiqU3ZXtzOPsVouuui77Hr/wC0f+3T+zJ+ypp0Fx8XfEaQX17bLd2mmWqNcX1xC5IV1iX7qsVYB5CiEgjdkV1X7KP7Tfg/9rr4PW3xo8C2N5p2n3VzcWywX4QTA27lCSI3dcHqPmr5C/4Ke+AdJP8AwTi8Wy+JrG1uNY0rStLjF15avJHJBc2+fLkI3AZLemQT6muR/wCCLep6bo3/AAT+0rUtXuIrW3j1XUd8szhEXM2BlmIAySAPet44/ELNVhJtezdPm213tq7+vY8+fDuWS4QlnGHjP6xHEKk25Jxa5HL3UkrXut23po9bH6+UVzmkeMfCOv3JstB1WzvZlUuY7edJGCjAJwpJxkjmotS8ceCtGvH07WNYsrS4jxuimuI43XIyMqzAjIOa97nja9z899hV5uTld+1jqKK5+88WeFtOsINV1DU7SC1ucGGaSZFjkyMjaxODxzxVKx8feBdTu47DTdasLieU7UjiuY3dj6ABiTRzx2uCoVWuZRdvQ62iuQk+IXgGG6axl1zT1nVzG0ZuYw4cHBUjdnOeMV19NST2ZM6c4W5otX7hRRXH2XxD8Aal4wufh7p2uafca/Zw/abjTI7mN7yKHIXzHhDGRU3MBuKgZIHehyStd7hClOabhFuyu7dF3fkdhRXmGifG74MeJfFUngTw54v0XUNciLB9OttQglu1KfeBhVy4xjnK8V6fShOMleLuVWoVaTUasHFvXVNad9Qorzfxv8Y/hD8M547X4keKtH8PyzLujTUr6G0Z19QJXUkcdRXVeGvFXhfxnpEev+D9StdWsJs7LmzmSeFsdcOhKn8DSVSDk4Jq/YqWFrRpqtKDUHs7Oz9Hsb1FYfiTxP4a8HaNP4j8XajbaVp1qu6a6vJUghjX1Z3Kqo+prj9W+NPwc0Gy0jUtc8W6NZW+vokmlyz38EaXqSAFWt2ZwJQwIIKZyCMdaJVYR+KSQUsLWqJOnBu+mib1Sv8Alr6HplFcd4z+Inw/+HGkrr3xD13T9BsXcRrcajdR2sRZuih5WVST2GaoeOfiz8K/hgsDfErxNpXh4XJxCdTvYbTzDnHy+a6559KJVYRvzSStuOnhK9Tl5KbfNe1k3e29u9uttj0Cism217Qr3RU8SWd7BLp0kXnrdJIrQNFjO8ODtK453ZxiuJ8F/Gr4N/EjU59F+Hni3RtevLUFpoNOv4LqWMDgllidivXuKHUgmk2rvbzFHDVpRlOMG1Hd2dl69vmeY/G39q74Yfs6+MdB8PfGBbzR9J8Q7ooNfeEtpcN0DhYLiZc+S7j5kZwEIDEsMGvpS3uILuBLq1dZYpVDo6HcrK3III4II6GuI+KHwy8FfGX4f6t8MPiLYpqOja1btbXMEgzlW6Mp52uhwyMOVYAjkV+Lv/BNn44+MvgD+0R4q/4JkfGfUTft4almfwreznEklsoEwg5zw1uwnjX+AB1yQFA82tjZ4fFQp1v4dR2i+0v5X3v0ffR9z6nA5DRzPKa+JwN1iMMuapBu6nTvZ1I9U4NpTi7ppqSa1R+79FFFeqfHn8gX/B6t/wAosvAP/ZVdK/8ATRrFfAH/AAYxf83Rf9yT/wC5qvv/AP4PVv8AlFl4B/7KrpX/AKaNYr4A/wCDGL/m6L/uSf8A3NUAf3+V+XPhT/grp+yTr37QWu/ATW9SOjDTbz7FZa3csv8AZt7KmFkAlHEQEm5VZ/3bgbg4yBX3J+0F4F8efE34K+Jfh98MtdXw1rmsWMlra6k0Zl8gycMQFZWBZcqHByhO4AkAH+JLxR/wTl/as8F/tCaH+zn4l8PSRan4iu/s2n38WZdPnjHzSTJMBgpHGDJIpAkRR8yg8V8pxJm2Owc6P1SlzRb1drp9FHTa/f0tfVH6/wCGHB3D+eUcb/bGLVOpGPuRUuWSSXNKprpJJK1tbLmbt7rP7qfEHhbwd480y3tPFGn2esWcc0N5AlzElxGJYSHilUMCNykBlYcg8iumryP4C/Bzw5+z78HPDvwZ8KSSTWPh6zS1SWYkySsOXkbJOC7kttHC5wMAAV65X09O7ipTjaTSv1+V+tj8pxThGpKlRm5U4t8ratdX35buzaSbV/K7CiiitDmCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1/7+KKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvzt/wCCm3/BM34Ef8FWv2e7H9mz9ofVte0bQtP1y21+Ofw7cW9vdm5tYZ4EVmuba6Tyytw5IEYbIXDAAg/olRQB+cH/AATB/wCCXv7P3/BJv4C6t+zx+zjqmv6xo2ta7P4huLjxHcW9zd/ap4Le2ZVa2trWMRhLZMDy85JJY5GP0foooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/EG/wCCsX/KU39pb/sqvjL/ANO91X+3zX+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5oAKKKKACiiigAooooAKKKKACiiigAr/EG/wCCsX/KU39pb/sqvjL/ANO91X+3zX+IN/wVi/5Sm/tLf9lV8Zf+ne6oA/2+aKKKACiiigD+SD/g8g/ai/4VD/wTQ0X9njSrjy9R+LXiW2tpos4L6Zo2L2cjucXItAR0w358d/wZifsu/wDCr/8Agn14x/ac1W38q/8Ain4laG2kx/rNL0FTbxEH2upLwHtx+X89X/B4l+1pYfHL/gpTpH7Pvhm9W60v4Q+H4rC4WNg6Jq+qN9qusEEjIg+yo46q6MDyMD++X/gjzpHwM+GP/BMX4H/Dj4QeJNJ1nTdK8H6YZ7nT7qKaJ765hW4vGOxjtLXMsrMp+ZScHkGgD9QKK+DP2xP+CnH7C/7CPw9v/iD+0h8R9G0n7HE7w6VDdR3OrXsijiK2s42M0jscDO0Iucuyrlh+F3/Bvn8cPib/AMFQ/wBr79oX/gsH8TLKbSNIv/sPw38E6U0hkTT9IsSL64hJ4DuXktpXcDHnSS4wMAAH5X/8Hun7UX2jXfgt+xdpFzxbQ3vjTVYAc5aUmysGx2ICXnX+9X9HP/Bth+y5/wAMsf8ABHn4U6VqFt9n1fxvbS+M9RONpdtabzbYkdciyFshz/d/Cv8AO+/4LaftG+Ev+CgP/Bbzxtqk/iG3s/BcfiWw8F2eqvKv2S103TGjsprlZCSvkmUT3IfO3a+elf65vw41n4Sab8P9H0r4ZanpsnhzTrKC109rO5jlt1tYECRBHVipUIoAIPSgD0+ivyB/4KQ/8Fuf2D/+Cbnwp1TxT488Y6Z4m8ZRwv8A2V4P0a9iuNUvbkj5FkWMv9lhzy88wChQdod8I3w//wAG8GveL5/2Ffif/wAFVv2w9WjsNa+OvibVvHGrXty5itbHQ9JU2tuoDk7IIEgmMZJ/1GzqACQD+Sn/AIO9P2jtQ/aD/wCCr1j+zt4UZ723+GGg6foiW0Pz79V1X/TZigHVmjmtoiB/FHjrX7F/8Fzf+CDPwA+CH/BE3wz4++AfgXR9J+JPwT0/RbjxNq+lWccN5rdrHAtpqUlzJGoMzCVxds7klVjfHWv5wf8Agm7N/wAPTv8Ag4x8IfEvx3xbeM/iLqHjeWC5IIFtpfn6tDakd1CWyQBefl46c1/rY/Ev4d+Efi98OPEHwn+IFot/oPifTbrSdStn+7NaXsTQzIfZkYj8aAP4vP8Agys/am8GeMf2cPiT+yPqFpZW3inwZqcet2tzHCkdzeaTqY2sruo3yC2uY2JLE7ROijgV/ZH8eNY1Xw98DvGev6EN19Y6FqNxbgcZlit3ZP8Ax4Cv8of/AIJs/FXxF/wQt/4L0j4efGS+NjoOg+Ir7wH4oupf3UUujX8gjhvXz0hVhbX3+4nSv9b65t9N17SpLS5VLqzvIijrwySRSDBHoQwP4igD/NT/AODJdrL/AIb7+K6yY+0H4fsU9dn9o2e/9dtf6Xlf5n//AAbg+G7z/gnn/wAHFHxD/Yp+IKtHfXmmeJ/BVo0uV81rC4h1GCZc9VmtbEunqsgNf6YFABX+cx/wel/FnWPij+2R8C/2P/CQa7u9H0K41VbaI5L3niG7FrEhH9/FiNoPQP8A7Vf6M9f5qnxTtG/4KMf8Hi9l4XjH23RPA/jOzhZD80cUHga0We4R+217y1lUg8FpNvegD/RG/Z0+D2j/ALPP7P3gb4BeHtpsPBHh/TdBtyowDHp1vHbqfxCZr2WiigAr/L4/4N6r/U/Bn/By54m8LaApezvL/wAeadclegt4WuJVJ9vMhjH41/py+MPFeheA/CWqeOPFM4tdM0a0nvruZukcFuhkkY+yqpNf5yP/AAaG/CXxB+0Z/wAFQ/jH+3LqELxaX4e0u9Ztwyf7S8T3ZeNd3Q7YIbjdjnO3seQD/SQooooA/Lf4kf8ABFL/AIJRfF34g638VPiV8DPDGr+IvEl9canqd9PA/m3V5dOZJpXw4BeR2LMcckk1xX/Dg3/gjb/0b54T/wC/En/xyv59P2vv+DOHVv2pf2r/AImftMWv7QsOhx/EPxTq/iUac/hZrk2n9q3Ulz5PmjUo/M8vzNu/Yu7Gdo6V86f8QNOvf9HNW/8A4SDf/LWgD+pb/hwb/wAEbf8Ao3zwn/34k/8AjlH/AA4N/wCCNv8A0b54T/78Sf8Axyv5af8AiBp17/o5q3/8JBv/AJa0f8QNOvf9HNW//hIN/wDLWgD++zwT4M8K/DjwZpHw98CWEOl6HoNlb6dp1lbrthtrS1RYoYkHZURQqjsBXT14h+zL8G/+GdP2bvh9+z4NQ/tf/hBPDWk+Hvt3leR9q/su1jtvN8vc+zzPL3bd7bc4yete30AFfmT/AMFV/wDgpx8J/wDgl5+zZN8WPF0J17xhrkh0zwd4WtiWvNb1aQARxIiguIkLK00gB2qQo3SPGjejf8FGP+CiX7PP/BMn9mnVf2kv2hL7bBb5t9K0qBl+26vqDKTHa2ynqzYy7n5Y0BduBX8Rv/BPn/grx/wTV+LH7W2p/wDBVn/gr/8AE17v4uRzy2ngbwZbaJqd9pHgvTInYRtE0ds8UlywyyOrNs3GRiZnxEAf0D/8EJf+CR3xL/Z717xN/wAFLv8AgoCx1j9pP4vvPf3yz4YeH7O+YSNbIBlVuJMKJdvywxqsEeFVy/8AS3X823ij/g7I/wCCKOgaBdaxpHj/AFnW7m3jZ47Gz8Pagk87AZCI1xDDEGPQF5FX1Ir7b/4Ix/tbftJft6/spaj+2V8frGDQ9J8f+JdSu/BOixRKsun+GbdltrZJ5QAZpZJYppGkIAYMCoCFQAD9bqKKKACiivwI/wCDgP8A4LI+HP8AglH+yy9l4BuYLv4w+O4ZrTwrYtiT7GoG2XUp0OR5VvkeWrAiWYquCgkKgH8RP/B2tof7Fuj/APBT+6m/Zlmz41u9PSb4iW9oq/2fFrDYMTKVP/H3JDhrtQNobYxJlaXH7E/8Gj//AARl8Q+Gbqy/4KwftB21xp809vc23w/01y0TPb3UbQXGpyrwSksbvFbK3DKXlwQYmr8Of+CAH/BILx1/wWA/a41D47ftGG9vvhX4V1P+0/Fup3Tu02u6pM3niwWYnc8kzN5t3IDuSI9VeWM1/rMaNo2keHNHtPD3h+1hsbCwhjt7a2t0EUMMMShUREUBVVVACqAAAMCgDSooooAKKKKAP4gv+D3n/k1n4H/9jVqP/pIK/bz/AIIgeJLzwb/wQh+Dni/TovPuNK8D3N5FFjO94HuHVcDrkjGK/Cz/AIPfte0eH9nf4EeGJbhBf3PiPVrqOAsN7QwW0SO4HXCtKgJ6ZYV++f8Awb232j+I/wDgiv8AAL7K8d3bnw7LbSgEMu+K6uIpEPurKysPUYoA/iF/4M/PE8Hi/wD4LIeJfFvxDuHv9c1fwPr13FczHdJJqE97ZSSyMT1ZozMSfev9Ruv8mb4Z6H4y/wCDcH/gv3pEnxgs7uHwJo+sXUMV6yFxqHg7WfNt47xCAfMaGNhI6KcieBozyDX+q1pHxX+GOv8Awyh+NWjeIdOufB9xp39rx63HcxnT2sPL837R9o3eX5Pl/OX3bQvOcUAf5VP/AAUJ0ef9i3/g6Q1TVfhiP7New+KfhzxHElqdoJ1v7FqFwmB/DKbqRXXoQxGMcV/Sf/werfBL4qeOf2Mvhb8Y/CFrcXnhvwR4ku010QKXW3GpwoltcSgA7Y1eJot5wA8yr1YV+PX7L3wduv8Agu3/AMHMnjH9rLwFC8vwn8D+KrHxFfaoyFoLjTvDYgtNNiGQBu1FrSNhGcMITI3JQiv68f8Ag4O/4Kh+FP8AgmR+w3c6xceGLHxp4m+Iss3hzRdH1aBbjS3aSFmnmvon+WW3ijxuh6ys6pwpZlAPO/8Ag2H/AGy/hr+1F/wSi8AfDzQdShfxX8KrT/hGdd0zzAbi2W3dxZylOG8qe3CFHxtLq6Ako1fy/fD34SW/7Vn/AAeJ654o/ZdA1Twv4R8aL4i1rU7Ib7S2GlWMQv2eRAVAl1BXtwejySDnkmu2/YJ/Zd/4Nc4/gj4Z8XfF39ou9X4lanZrceJLiDUb7wrELm6Aa4so7aO3gWO2iYmMBWO4DIbaQB/WV/wTH8Z/8ENvgh4fHwD/AOCZnjD4d2s+oyR+dZaTrMFzrOoy8hDM88z3tyQWITezhM4XAOKAP2frwP8Aaq+IHxU+FH7M3xA+J3wN8PHxZ4z8PeHtR1HQ9EEckx1HULaB5Le22RESN5siqm1CGOcDmvfKKAP4g/8Ah+T/AMHK3/Ri0/8A4Idc/wDjtH/D8n/g5W/6MWn/APBDrn/x2v7fKKAP4g/+H5P/AAcrf9GLT/8Agh1z/wCO0f8AD8n/AIOVv+jFp/8AwQ65/wDHa/t8ooA/iD/4fk/8HK3/AEYtP/4Idc/+O0f8Pyf+Dlb/AKMWn/8ABDrn/wAdr+3yigD+IP8A4fk/8HK3/Ri0/wD4Idc/+O0f8Pyf+Dlb/oxaf/wQ65/8dr+3yigD+IP/AIfk/wDByt/0YtP/AOCHXP8A47R/w/J/4OVv+jFp/wDwQ65/8dr+3yigD+IP/h+T/wAHK3/Ri0//AIIdc/8AjtH/AA/J/wCDlb/oxaf/AMEOuf8Ax2v7fKKAP4g/+H5P/Byt/wBGLT/+CHXP/jtH/D8n/g5W/wCjFp//AAQ65/8AHa/t8ooA/iD/AOH5P/Byt/0YtP8A+CHXP/jtH/D8n/g5W/6MWn/8EOuf/Ha/t8ooA/iD/wCH5P8Awcrf9GLT/wDgh1z/AOO0f8Pyf+Dlb/oxaf8A8EOuf/Ha/t8ooA/iD/4fk/8AByt/0YtP/wCCHXP/AI7R/wAPyf8Ag5W/6MWn/wDBDrn/AMdr+3yigD+IP/h+T/wcrf8ARi0//gh1z/47R/w/J/4OVv8Aoxaf/wAEOuf/AB2v7fKKAP4g/wDh+T/wcrf9GLT/APgh1z/47R/w/J/4OVv+jFp//BDrn/x2v7fKKAP4g/8Ah+T/AMHK3/Ri0/8A4Idc/wDjtH/D8n/g5W/6MWn/APBDrn/x2v7fKKAP4g/+H5P/AAcrf9GLT/8Agh1z/wCO0f8AD8n/AIOVv+jFp/8AwQ65/wDHa/t8ooA/iD/4fk/8HK3/AEYtP/4Idc/+O0f8Pyf+Dlb/AKMWn/8ABDrn/wAdr+3yigD+IP8A4fk/8HK3/Ri0/wD4Idc/+O0f8Pyf+Dlb/oxaf/wQ65/8dr+3yigD+IP/AIfk/wDByt/0YtP/AOCHXP8A47R/w/J/4OVv+jFp/wDwQ65/8dr+3yigD+IP/h+T/wAHK3/Ri0//AIIdc/8AjtH/AA/J/wCDlb/oxaf/AMEOuf8Ax2v7fKKAP4g/+H5P/Byt/wBGLT/+CHXP/jtH/D8n/g5W/wCjFp//AAQ65/8AHa/t8ooA/Cv/AII4/t4f8FOv2zNd8fWH/BQv4CP8F7Xw/Bp0mhyvp99Zf2hJctOLhc3jsG8oRxn5MY389RX7qUUUAFeb/GT/AJJD4q/7A99/6JevSK83+Mn/ACSHxV/2B77/ANEvXnZx/uGI/wAEv/SWdeA/3ql/ij+aPwHooor/AD8P6hP8+5P2KNY/bd/bR/aw8JeCS7eKvC+o+I9e0WBTxdT2+sFHtyPWWJ3WPpiTbk7c1+qPw7/b7m/a/wD+CJ3xe+GvxJui3xD+HmgLp+pic4mvLQSItvdEHksQpjmPJ8xdzY3qKT/gjv8A8plP2oP+vnxH/wCnxa+Xf+C6X7Hvi/8AZC+NmpftU/Agyad4N+LkFzpXiCC3X9zFf3IEk8TrjHl3ZQXCekyORjCV/TuKxVDMc5oZFjGlKCoVaEn0lGMXOHpOKuv7y6uyPx6lQqYTAVcyoK6k6kKi7ptqMvWLevl8z7g/YL/a+tP2Hf8Agg9D8fRaJqGp2mpanZ6TaS58ua/uryRIhJgqfLTmRwCCUQgEEivKPhv8Hf8AgrF+0d8Drb9sR/2oE8PeJ9bs21jR/CMd2Le0kt5h5kKSKki28TyLgxo0EgUMu91O7Hlngz9n7xv+0J/wbk2OnfDyzk1HU/C/iO98QC0hBaWaG0up0mCKASxWKV5NvU7eMnArxP8AZ1j/AOCAWo/sqaV40/aBs9VsviFpemrDq2kJdamZ73UIUwz2/lHyAtyy7ly6rHuw20DNcqwdCM8wxeGpudd4upGfLQjXko/Zi4ylHlhLW8lu9Lqxt9YqOOFoVpqNNUIuN6kqab6u6TvJaWXzPsz/AIeQ/tQfti/8ElvGfxX8C+Ibrwt8V/g3qmny65c6N/o51DTZt0XnMgBVdytJJKi4UNbllCqwUeyfHf8A4KU/E1P+CG/gb47+C/EFza/EbxZPYeGP7Rt2/wBN/tCymcXUuAD880do5Jx/y2GOor1D/gjT8F/gP8Zf2Vvib4k8GfCG5+GPhb4mRnQJVutZuNXOq2kMM0Tyx/aIowiIbmSMMmQ7hh/BX8+n7Fvgv4qeO/2w/hj/AME1/HkW/S/h98SdU1nUITkh3sVhNzGwPAjC2Em31M7eornw2W5RiMVjKUcOqcMFWVdxfI37P2bc6b5XJOKqR2u0k7O2xrWxmOpUcPN1XKWIp+zTXNbm50oy1Sabg97K7V/M/cL9jb/go/8AFaL/AII+fFz4wfGPXbq++IXw3uNT0dby+YG6F3eiNbBn452XFx5YBGcR47V8A/FP4f8A7ePxs/4I2S/tZ/F74x6td6NcvPeX+gXymX+0bKS/tbS1UuGUIqSRNOuVbIcV8sf8FB/C/wAVPhL+2p8Yv2DfhtB/xLvjB410PWbeIEhZHujLNBEgxjYZ77a2OhhUc4r+n3/gp/8AB6w+Fn/BGvxl8FfAkDS2XhXw5pFjAqL8xt9NubXc5A/2Iy7n6k1OJeEyrF4DEYOnBPG4inVXuxfLScYXirp8vvzlZq1rXVmh0VXxtDE0q8pWw9KcHq1eacrN2evuxV73vfXc+DP+CRVl8Xv2Tf2B5/25Pit8RrvXvhhY+FNYuNO8ErEVWyuLe+c7o5WcqXleKRVGwAGbrgc+S/sweE/+CtP/AAVl8Oat+1A/xvuvhJ4XkvpYNE0/RxPDDK1vwyrHBLExgRvkMkskrs4bK4Fdt+wl8QvhP+2b/wAEbtV/4J3fCvWhc/FTTvCusXEujvDNDtaPUXngPnsggKyPLAvEhI38gYbGf/wR6/4Kq/swfsxfsq/8MqftZapP4D8Q+A7+/SNLyxuX+0Q3M8lw6kQxSOk8Usjo8bqpxt27juC8+YUsfGWbY3C4RTx0cRypOlGUo0Hzcs4w5XfnejnZuS1u9zXCzwzWBw9eu44d0r352k6ml4uV9OVbRurPSx9Cf8Ev/wBub9q/QP2vvFX/AATR/bsvU1zxVoMc02layFHmzeSomKO4CebHLbuJ4ZGQSBQQ+cgL8AfsV/Fv/gqX+3h8bfin+zv8P/jDdeGtA0vUWub/AF+6T7Vd6fbwzXEUNrZhShBnLbmwyHbAMOOVf1z/AIJ9axrX/BQf/gtR4v8A2/vA+k3Nj4C8L28sFtdXKGPzGaxGnW8ZxkGWSMvOyZOxeCc7c9X/AMG73/JxP7TX/YS0/wD9KdRqsyo4bL6GZYynhqaxEaGGnOLhFxp1pzalaLul0lba+6aFhKlbFVMJh5Vpuk6laMXzNOVOMbq7Vm+qvvbawv7Evx7/AG3f2R/+Craf8E6f2lPiFefEvQNct5Tb3+pPJcSA/YnvbeeJ5meZCfLMMkRkZASSM4DV/Qdr/wC2j+x34T1298L+Kfix4N03U9Onktru0utesYZ4J4mKvHJG8wZHRgVZWAIIwRmv57/jH/ys0eAf+wbH/wCmm7r9C/in/wAEHv2CfjF8TvEXxb8Y22vHV/FGp3erXxh1Ixxm5vZWmlKL5Z2rvc4GTgV8vxNQyatiMFiszcqTq4anN+yhH3ptyTbjeKV0lsezlFTH06WIo4NKfJWnFc8npFJNJPVvV9T5+/4OB/HXgj4l/wDBM3TPG3w51mx8QaLfeK9PNtf6bcR3drN5aXSNsliZkba6spwThgQeRXz9+xl/wXq/Yn/Z+/ZO+H/wV8b6d4qm1jwtodpp12bSxt5IWmgQK3ls10hK5HBKj8K7n/gtV+zz8O/2U/8AgkV4b+AXwnW4Tw/4f8V2gtBdy+dMBcm9uH3PgZ+eVsccDAr9Pf8Agmp8MPhrrn/BPj4Q3GteHtMvJLnwrp5mae0ikMhaMZ3FlOc9810qtlFDhOl9aozrUfrNRQtJU5Wto3pJXa3XfqY+zx1TO5+xqRp1PZQ5rrmW+qWq69T+f39lHxen/BU7/gtnF+1p8NdOHhvwt4MittQnivZ4k1GaKzgNvAzRI5LvJKVD7N6RxgKzkld337+154X/AOCuH7VX7ZeqfCb4W69qHwU+DehoRD4lgdbcXIiRd8zSxSLPI0krFY4w8aBFBI3BifiLxj4F8D/shf8ABxl4MsvhdZw+G9D8TvbObG1AgtQ+r2ctrIiRrhQsk/zhAMCQ8AYAHz14p8b/AAF/aD/4KlfFbwv/AMFbPGGtaN4X8OanqNr4f0tpbiKwjEFxst4j5CMY4zagSK6KnnMd5fJw/wBZVwf1jF0Mbg4R9hDBwdOLp+2qQTk17sOZKc0/tPRJ7dX4kK/sqFTD4iT9pLESU2p+zjJ2vrK14xfZat9T62/Z4/ab/aq/Yu/4KeeD/wBjDxl8cV+O/g/xh5EF1czTG8ltJrvzEjBd5Z5IJ4njVnj890aKQEjcQVg/a5/ae/4KL65/wWR8Xfsafso+OLjToNbisNPsLW6O+x02OfSbW5ubpV2tsaMebJu2sQSdo3FcfnBrPxb/AOCefwx/4KvfC7x1+yTF/wAI78JvCF7pqX+pTG7ljnuI5pHuLofajJcFAsiJyB/q8hduCfqf9pD9rHwl+yT/AMHCuvftD+KIZb3w1Amlw37Wyb5Es7/QbSLzkXqfLLq5HVgCo5NdzyVPH/WIYJSqzwM5JTpRjzVYzjbmgvdU9VdJ3s0mcyzB/VnSliGoRxEVeM27QcXe0nq46Ozfa57d+1bpv/BV3/gkb/YH7Sl18a7z4u+EbrUUtdVstXEzwJNKpYRPDNLMUikCsElhkQq4AwMgHlf+C/vxjs/izoP7Knx7+G0Bli8QWOo63psEwyxNx/Zk0cbhSPmBIVgCOcjNd/8A8Fof+CoP7M37Vf7OOl/ss/snanN4613xVq9lNMbOzuEWGKFt0caiWON3nllKKqIrEANuwdoPiX/BWH4Ra58BPhr+xB8G/FGBqnh2wms75Vbeq3SNpXnKrd1WQsAfQVx8OUassVlOOzTDqljHLEK3IqbnTVGTTlBJbPROy0OjNZwVDHYfB1XOglSd+ZyUZOotFJt7rV67nr37cfwh/wCCvn7JfwNX9urxh+0PfXmq2N1aSav4d07fBp2n/bZVRFjj3G2uFSV0jZWt1BB6sOvvH7ev/BU39pDwp/wS3+D/AO0B8I2j0HxN8UAlvqeqwQq62bwRP54gWTcqPNIhKEhtqBsfNhh95f8ABd7/AJRZ/Ev/AK6aJ/6dbOvy31/9pXSv2dP+CKnwJPxE+Edl8V/A3iK3uLPWI76doI7CZZ5GtnDJFIVd/wB4FkDIysoAOWrwckrRzXA5fjsTg6dSpHFSpqMY06alD2XOo/Zi7PWKk9bJXu3f08xpywWJxWGo4iUIOipXblK0uflv1aut2tr36HnXhb4Wf8FOH8K+HPjt+wt+1Wfjxrt20M2o+Gv7Wj22quhZw9vqN20TIhAR1eOCUbshBgkfob/wVE/4KUftIfsu/s5/DLwP4K0BNB+NXxSt0juLQCO9XSZkSJLhYNryRyStcSrHASZEKhiQSBX4K/tu+CP+CNmlfBJPjf8AsEePNb0b4gR3FtLp3h5TeOFJkXzQ73EXmwPChZlkFwysy7V3bgw+lP29fCX7V1r+yj+yf/wUG+J+nXes674Hgh/t83Yczr5d0l1p0tyCu4edFHtmkYZ8xlDEswr6Cpk+GxmMy/EY2nHkdSpFRq0VQqOSg5QhLlfJOHMkk1Fa+7d3Z5ccfWoUMVSw83zKMW3Co6kEnJKUo3XNGVru19tdLI+n/i/+yH/wWg/Zf+B19+1ra/tE6j4k8QeHrP8AtbWfDTSS3FrFb26+ZMIhMz283lqCXXyIwyqdpJwD6J8ff+CnPxY+Of8AwRYP7Wnwv1Kbwb46stcs9F1aXS2Max3ccqeb5JYsRHLE6OFJJXftycZPp37Wv/BdT9hzxL+xf4mHwm1yfVvF/izQ7nTbTQpLKeKe1uL6FomNy7oIQsG8ltkjh8YQsDkflz4g/Z18dfs9/wDBu/qr/EWyl03UPGnjKy8RJazgrLFbTtBBDvQgbS6QCQDrtcZ54Hl5dhK+KhhK2f4ONOssVThD93Gm5QfxxcUlzQjpZtPtc68XXp0JV6eWV3On7GUpe+5KMvsu93aT6q/yPpfwf8Hv+Cvn7XX7Flj+2FcfHq88JPYaD9t0Xw9phmtpNRt9OiK+ddXEMifv7sxtLh1lUlxnYDtT7/8A+CQX7Wn7Qv7d37Avi208YeIxZ/EHQ7i/8P2PiRrZJXV5bVJLS7lhwscskLy/MuAJBGC2WZifpr9in/lEr4F/7J3H/wCkZr81v+DYv/k1n4h/9jUv/pJDXhZti44zKM0lOhTi8NXgqfLTiuVOUk07L3k7a817vfoengaDoY7BKNST9tTk53k3dpJ330evS1uh5l/wUP8AEfxa/wCCNX7Gfgr4E/sxeI7t9a+Imu6rqXiXxlcwobuW92wNKyKd6wtPuAXAd1jiOGLksfO9B+E//BUXwzD4c+NH7Bf7UCftGXVxKkmpaI2rRPFAhXcwkg1C9dDGSPLcfuJ0LAhVOSv6a/8ABa/9pvwl+z98MvCWhfGj4PWnxT+Hnii+lg1Oa6uHg/s25hCGIxskbFJpI3mMTLJG3yMAcE1/OL+3T4K/4JG+Dfhpp3xq/wCCdfxE1ux8eLfQPZ6JEbwiKMn94/mXEST28kXVWM7bjwoOdw+l4SdbH5fh5VcP+8rTqc1R0YVqdVt2tVs1Oly7JJxVlfY8jPFTw2KqqFX3KcY2gqkqc4afYveM77vd303P7xvAGreKNe8CaLrnjjSzomtXlhbT6hpxkSY2l1JGrSw742dH8tyV3KzKcZBIr+er/gv/APta/tKfsseIvgjc/s7eJr3QpNXuNbe8tbZv3V81o2nmGOVRy6/vHGARw5Hev2d/Yh1j4veIP2Qvhvrnx7Ew8YXfh+xl1Q3KlLgzPGDumUgFZSuDKpAIckEV/P8A/wDByR/yU39mr/sJa3/6N0qvzzgHBUv9bKWGrwjOKdVNbwfLTnte91daX8mfU8TYif8AYk61KTjJqGu0leUe3XXU8a/bo8Kf8Fb/ANgb4c+HP21/G/x/v9e1PUtWt7bVvD1uHXS7Ce4R5lQQFzbTQgxGJtsEfJGMg5rp/jN4Q/4KyfFj9jS6/wCCm9/8dbrwsJNNHiW18F6CZ7Gzg0p8MmJElw7CHEgSVJCejSFia+//APg4y/5R2/8Acz6Z/wCgzV3Xi/8A5QAQ/wDZGbH/ANNcdfXYLPZzyzLsfLD0fazxDpN+yh/D918iXLZLW1171lvvfw8RlkY4zF4ZVZ8kaSmlzy+PX3r38ttvLY8P8C/8FbvHfgv/AII06b+2f8RooNZ8fvczeHLbzI/LgvNUSaRIppUj2AAQIZpVTaGZWC7dwx8e+E/gt/wVn+LHwEh/bHH7UI03xdqenHW9P8HR3Sx2z28q+dHEyK620czpjZE1uyqSFZ1+bHzdon7Pvjj49/8ABu5plx8P7OTUL3wX40vPEUttCC0slrCZ7eYqozuMaT+YR12oxHoed+Drf8G+9x+ynpvxC+LmnarF8QbHSkXUtAS81P7Rd6nFHhhA8ebcRzyAsjF1VAwD7SMV71DKcHhFi55fQcqn1qpCShQhXcYp+7DllKPJB916XVkebUxteu6EcVUtH2MZJyqSp3l1ldJ80l2frZ3Pta6/ae/aJ/4Kmf8ABKjxd8Q9F8cDwL4j+F+na4PG1pZW7eR4hsE095VTAcLELiNXRxyA4YhQpUVhf8ECvgV+0DefBO5+PVj8Sri3+Hdpda3Z3HgwQsYZ7s2iKLgyb8AgujY2HlPfNe4/sL+BPAmvf8El/wBoH4j/AAX+Et38M7Txv4Z163sbOfV7nWJNUW202dI54/PijKIZJXjXaDvKn0GeG/4IAftY/AWw/ZV1P9kjUNb8j4gXupazqNrpbW85861+yRuZFmWMwgARvkM4bK9ORnzsyqTp5Pm2EyyhanTrxXLyQk4RlFud3HmS5ZXSlzNwWiatZdWDhGePwNfGVbzlTb5uaSUmmlGyfLurXVveetmfnH/wRm+CP7cX7SfgXxz8Lv2bviUfhP4Qtby2vNZ1m0haTULi8ljZIYIikkThFRGZiskeCRktkAfqF/wS0/aa/bH+Fn/BRDxv/wAE4v2qvGNx49g0m1uZbPUL6Rri4Sa2EUsbpNJmUxz28m5kkZtrAbSPm3Vf+DYD/khPxR/7D1n/AOk5rnPgr/ysyfEH/sGy/wDpqtK6eJMYsbmmfZdXpQdOlRdSL5I8ynFU/e57czeve1rLbfHKaDw+DyzFU5y5p1FF+87crctOXbp231MeL9or9v7/AIK7/teeN/hP+yZ4/m+E/wALPAUrW8uqWIdLmVWdoopHeJllkmuGikeONZYkSNTklhl9Pwl+0v8At7f8EsP24PBn7Nn7YnjiT4pfDj4gyQW9lrF2Ge5i86QQeaskhMqPDKyGeN5JVMTAqdxBHgf/AATa/aG8Ef8ABIH9sL4v/srftief4b0rXbqCXT9ZaCWeErZvP9nkPlq0jQ3MMwKyBSFZcNtyxW5+298ePCf/AAV9/wCCifwZ+Bn7JKT6/wCHPBVy1xqGtiCW3i8ueaCW8lHmKrrFDFboqO6rvlYqoOVLaTy1fX55d9Th/ZCocyq8kdvZ83tPa2vz8+lubbp1Jji/9mjivby+ve0tycz/AJ7cnJty8uu3zPp39vn9rX9tT9qH/golB/wTS/Yi8Ry+CLfSI421rWbZzDKZDALmaVp4wZY4YI5FjVI9rPNkEkFcfnr/AMFc/wBnb/goJ+yj+zvofgb47/Fif4u/DnXNZglS91GOQ3thq9vDMUjLzSTS7JYml2/vWU7DlUIG76W+MPxDtv8AgmH/AMF1tY/aG+N1jcxfD/4k2chTVIYnmEUN5FCJXAUEs0F1DiSNcuImDBSWVTxn/Bdf/gp5+zb+1T8E/D37P37NGqt4pjh1aLW9V1OO2mht7dYYpYooQZkjZnczbmIG1QoXOSQNeHqGLoY/J6OW4SMsHKnCc6ns0/fs+eTqWbjKMtEuZdrO9jPNKlCphsfUxldrEKcoxjzNe7dcqUb2aa3dn38z+oX9iL/ky/4Q/wDYlaB/6Qw19P18wfsRf8mX/CH/ALErQP8A0hhr6fr+fM1/32v/AI5fmz9SwX+70/8ACvyCpra5uLO4ju7SRopYmDo6HayspyCCOQQehqGvov8AZ0+BOofGXxR5l8Gh0OwYNeTDgueoiQ/3m7n+Ec9cA3lGV4rMcZTweCjzVJOy/wA2+iW7fRE47GUcLQniMQ7Qitf8vV7JH6b/ALNnxJ8SfE/4ZW+u+KbV4bqFzbm4IAS6CY/eKP0bjG4HHoPfqo6Zpmn6Np0Gk6VCtvbWyLHFEgwqIowAB7Cr1f3jlOFr4bBUcPiqvtKkYpSk/tNLV/1r31P5ox1anWxFSrRhyQbbUey7BRRRXonKfyq/8FqvEF38UP24vh18B5pG/s60s7KPZngT6tdFJWA9444h+Ff1TxRRwRLDCoREAVVUYAA6ACv5Qf8AgrvYSeAv+Cl/gP4g36tHZ3Nrol75p+7m0vHVwPdQikj3HrX9YNfKZC28wzBy35o/dZ2/A/X/ABCjGHDfDkKXweyqP/t5yi5/O+4V/Jp/wWZ/5SO+Bf8AsD6N/wCl9zX9ZdfyY/8ABZqWNf8Ago34HZmACaPo272/065P8qXGf/IvX+OJXgf/AMlHL/rzU/JH9Z1eS/HT4J+Af2ifhVrHwe+JlqbrSNZh8uTadskbqQ0csbc7XjcBlPIyOQRkV61Xwh/wUP8A2i/FX7LXwQ0r4ueF7gwJa+JNJi1BREkpm095SbiIB1bBeMEBlww7EGvosbVpU8PUnXV4JO/p1PzTIcJi8TmOHoYCXLXlJcju1aV9Hdap32P5n/jl+xb+2x/wTK8fv8XfhXqN7Nodox8nxHowOwQk52XsHzbAeNyyB4WOAGJ4H6ofsM/8FpPDXxl1vTPg5+1Lp9vo2uX0kdvaazbjFhczkgIJo2JMDs2MOC0ZY/8ALMYr949F1nw94z8OWuv6FcQ6jpeqW6TwTRkSQzwTKGVgejKynPuDX8p3/BbT9jb4OfAbWvDfxn+EdrBoX/CU3FxbX2k24CQGaFQ4nhjGAgIbbIqgJnaQASc/E47LsRksXjcuqXoqzlB6qzfT+r+bP3nIeJsu45qwyLibCqONaap14K0rxTdpL5PTWLf2Y7n9ZtFfNv7M/iLVNL/ZL8A+JvizeJaXkfhjS5tSuryQRhZPs0Zd5XcgA55Yk9c17d4T8Z+D/H2iR+JvAuq2etabMSI7uwnS5gcr1xJGWU474NfdUq0Zxi9m1e3U/nzGYGpQq1YbxhJx5ls2m+vna68jpK/M3/gsN/yjq+IP10n/ANOVrX6ZV+Zf/BYhlX/gnX8QAxwS2kge/wDxMrWuLOv+Rfif8E//AElnvcC/8lJln/X+j/6ciflT/wAEtPHH/BQnw7+zJNYfsyeCvDPiDw2dZu3+06tdtBcC5KRb02iZBtACkHHevr39hXxT+1V4t/4KMfEK/wD2vtIh0LxNF4QtYraytcG0jsBdBo/IdZJQ6FzIS3mMd+4HBBUdl/wQmYH9iO4A7eJL8H/v3BX63L4E8Ip46f4mLYR/29JYLpjXvPmG0SRpRF1xt8xi3TJP0FeFkmWTnhMHXVaVo2fK2uXZrSyv10uz9B484qo0M4znASwVNSqOUFUipe0vzRd23JqztraKex8R/wDBVj/lH58Sf+vO1/8ASuCvnP8A4I+eCvB/xE/4Jy2Xgzx9pdprWkX2qaitxZXsKzwShZwy7kcFThgGGRwQCORX0Z/wVYIH/BPz4k5/587X/wBK4K8a/wCCJJ/4wL0j/sK6l/6NroqxUs/imtPYv/0o83B1JQ8O6s4OzWNi01o01SWqZ+Y/7BfgTwz8MP8Ags34z+H/AIJthZaRpUmvW9pbqSVihUgqgJJOFHAyScCvpX/gvN8DvhTp3wP0j47aVoVpaeLbvxJa2N3qcMYSe5ge0uPlmZceZt8mMKWyVC4BA4rxH9lq6g0v/gut46tL9hHJd3mupCDxuYp5gA/4ApP4V9X/APBffXtEt/2T/Dfhqe7hTUbrxTb3ENqXAmkhhtbpZHVM7iqNIgZgMAsAeorwKVOn/YeNi0rRnO3k7q1ux+iYrFYn/X3IqkZyvOhQ5mm/eTUnK/dO13f1Pq79nr9nj4OftJ/8E9vhZ4F+NGhW+t2A8M2DQ+aMS28jW4XzIZFw0bgHgqRX89/hHwrb/wDBJj/go5Yf8Ll0wa34XhMhsdSkgEkn9n3eVjvIRjieEgrIF54dV+8pr+nT9gCaOf8AYl+FjxnIHhrT149ViUH9RX5J/tn+EPGv/BWH4r6v8Mv2eUs08L/CK3uw2vzoGXUtbmUf6Fby5GI/kAZwSoI3tkeXnuzfBQlhMLiKC/2hcrhZXcrJNp+SWt+nzPA4LzytTznN8tzCbWWTdVVm5NRp80pKMovpKUny2XxXu17um3+xj+w78PP2v/i54n/b4+OPg620/wAN+Kb6S48M+GXjCQyQ/dN7cxj5XaXG7B+V3Z5MFSlf0HKqqoVRgDgCv59/+CM/7a+p39pN+w98b5JLTxH4Z82LRPteUleC3JEtk4bkSW2CUXr5YK4AjGf6Ca9nhr6tLBqrQXvS1m+vN1v6PZdj4nxSeaU87ng8wb9nTSVFXbiqVrQcb73SXM93JO+qPKfjR8JrD42+Arn4e6prWsaDbXbo0tzod2bK7KqeY/NAYhHHDjHI4r+RH9gv9mLxr8VP2yviH+zv4W8Z3vhrSLW21Ky1+9tcfb73S7a+ijeGN8EI8ziPex427gQwJU/2iV/MV/wSdZT/AMFRfjYVOQbfXiP/AAbQVwcRYSlVx2C51vJp6tXVttD6Lw1znF4XIM99jL4KcJxTSaUua3NZp6rS1+qTPnv/AIKhfsOfD/8AYEv/AIe/Ff8AZv1DUrCW5uZo3a4uPNlivLPy5YZo3CqQWy24dMqMAZNfu7+2T+2Zqf7PX7CcH7QGlrGviPxFY2FvpSsMxrf6jD5m/ByCIkEkoUjDFADwa+CP+Dg//kkHw7/7DF3/AOiBVr/gqt4E13xZ/wAEufhv4m0SOSaHw4dCvbwJyqW8ti1v5jfSSWNc/wC1XnTTwNfMo4NcqUItJdHbVr8z6Si45/geF6udz9pKderCUpbyipq0ZPqm0o+jPRv+Cdf7B/wT+K37Odh+0L+01o8fjzxl8QfO1G7vdZZrp44ZHZYlTccAlFDlwNwLYBwBX5y/EW98Uf8ABHb/AIKCQRfDy7u2+GniMQX0umPKZVm02ZjHKhB6zWzq5hc/PtChmIZs/tF/wSA+K+jfE79hbwrp1jKGvfCxn0a9jzko8MheP8GheMj8R2r8uv8AguzocvxH/aS+FHwt8HRC68R6jZSW6QIcu32y5WO3BA5ALq+D9fSlmOHo08nw+NwqtVjyNSW7bsmn3u3qmacNZnjcVxtmORZvJywtT20JQk/chCF3BxT0iopJRa2Tv5nWf8F2fgBpWi+BdG/aIg8R63qFzquvRaf/AGfd3hn023iltZZAbWHAEXMOTgncXJPaqHwh/wCCPT/tXfsyeBvi78TviHqNl4o1LSbE2gEMd3Y2ujJEq2lskWYmDiEBmYSAb2OVY5Zvfv8AguzpK+H/ANiPwToKOZBZeKLCAMerCKwvFyfriv07/YXdH/Yv+FLIQR/wiekDj1FtGD+RroWU4XE5ziKdeF48kXa73fXR7nmT4wzbLOCMuxOAr8tRVqkFLli3yRWkdU1Z6XVtbK5/MR/wV3/Za039mv4gfD+HQvE2u+In1fTpYmm168N48b2bxooiJUbI9rqAgyAFr9bPi/8A8Egvh/8AEf4Z+JfiB8ZfFes+KvileWM122uSzeXbR3caF0jhtgNq2wICCMkkJ90rwB8f/wDBwMQPiJ8Jsnpb6l/6Nt6/pP8AGv8AyJurf9eVx/6AaWBynCVMfj6U4XjHkstbK8Xr69nuuhefcY5xhuHeHcXQxDjVn7bmkkk2o1YpK9r8tt4rSVldOyP5P/8AglZ8DvHP7a/w38R/AP4heNtT034XeE723v7nRdPfy5r25vw+yMysG2W6GBnaMAgyNuADfMMP9uj9nTw1/wAE0v2vfht8QP2cr29srS8Md/HDPMZXjltplSaPfgFopY2AZWznLA5BAH1p/wAG7/8AyDfi3/110P8Ale1yv/BfggfFz4TE9ra9/wDR0FeK8JSXD1PG2/epq0uqtOyS7JLotOu59ws5xb8ScRkXPbCTjLmppJRk5UFOTkkvek5byd3bS9tD+niv5RP+CnPiS9+BH/BWbwX8XNIxFKINC1Rz0EiRzPbyKx9GjiKH2r+ruv5PP+C1umt4/wD+CgngHwBowEt5daHpVhhfvebdX9yFX8nUj619TxjdYGMo/Epxa9T8l8ElGXEFSlV/hzo1VLty2V7/AHH9YdFFFfVn4+fyBf8AB6t/yiy8A/8AZVdK/wDTRrFfl7/wZefFLwZ8E/ht+158V/iDdCz0fQrXwZdXMnViq/21hVGRud2IRF6sxA71+oX/AAerf8osvAP/AGVXSv8A00axX4X/APBqf+yDH+2p8Ev2pfhQfEd34dlgufA19byQgPbyzxLrgRbmPhnjG4kBWUhsNzgCufFzqxozlQjzTs7Lu+h6eTUcHVx1CnmFR06DkueSTbUb6tJXe3k/Q/r4/ZJ/4LgfCT4u+I5PBP7QtjF4GvLm5cWGoCQvpzxMx8tJ3b5oZAuAXP7piCxMYwtfubBNaX0EV7auk0TqJI5FIZWVhwykcEEHgjtX8jH7Kn/BHf43N+1zD4N/aP0XyfB3hvbqN3fQt5llqiK2IoIZMAnzWH7xWCukYbIUsuf664YYbeFbe3UJGgCqqjAAHAAA6AV4PDGJzGtQl/aEbNOyurN23uvyfU/QfFbK+GcFj6K4cqcynHmkoy5oRv8ADyvV3au2m3bTa9lJRRRX0x+VhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Q/v4ooooAKKKKACiiigAooooAK/xBv+CTv/KU39mn/sqvg3/072tf7fNf4g3/AASd/wCUpv7NP/ZVfBv/AKd7WgD/AG+a/h8/4PO/2j/2hv2ftH/Z0HwG8eeIvBI1ebxX9u/sDVLnTftX2ddL8rzfs8ieZ5fmPs3Z27mxjJr+4Ov4Ff8Ag+Y/5A/7Mn/Xbxj/AOg6RQB8u/8ABrb/AMFxPit4X/apn/Ym/bQ8dat4p0H4ozxr4c1bxDqE1/NYa8o2R2wmuHdxDeqBGq5IE6x7QPMc1/pGV/iJ/FD9hH4s/Bv9hj4Nf8FHfC09xP4W8f32qabNdwZR9J1vSb2eOKPeuCongiEsLZ3b45RxtXP+oz/wb9f8FV9P/wCCpX7DmneI/GV5G3xQ8CCHRfGFuMB5Z1U+RfhR0S8jUucAKJllRRhRkA/hO/4L3fttftm/DP8A4LS/GP4ffDf4ueNPD+gWGs6ZHa6bpuv31pZwo9haMyxwxTLGgLMSQFAJJPU1/rCV/ju/8HE3H/BdP43H/qOaV/6brOv9bj9o79oL4Xfsp/AnxX+0d8ar8aZ4W8G6bNqeoz4BfyoRkJGpI3yyNiOJM5eRlUckUAe1UV/mMfHP/g4c/wCC1X/BVP8AaQvPhR/wS60fWfCWgRh5LHQ/DNjDfas1rGcfab++eJ/KJyM+W0UKEqmXYB247w//AMFwP+Dg/wD4JH/HfQ9B/wCCgttrevaJekTTaB40s4UGoWqNtlaz1KKLeJFzgOkssasRvjYcUAf6jFFfz8ftNf8ABS7xt+1z/wAEO/Gn/BRb/glR4om0HxJoWmNrCrdWNreXVidIlSTVLK6t7hLiISJaiVgQDuGx0JRgT+Uf/Brv/wAFwP2yP+Chf7RvxI/Z0/bd8Yw+K9Qg8P2+veHXXTrHTTCtncCC8QfY4IBIZPtMDYfcVEZK4G6gD+2Oiv5Bf+Dpj/gsf+1V/wAE2Lr4R/Cv9i7xVD4Y8T+KV1PVdZnews9QYWFuYobZAl5DMiiSVpjuVQ37rGcEivfP+DXf/gqr+0P/AMFNP2bPiRH+1p4ii8T+PPA3iKAG7js7aw/4lWpW4NsrRWkUMeRNb3XzbMkYBPFAH9P1fl7/AMFnv2xPix+wH/wTR+Jn7XHwOh0+fxT4RTSmsY9Vhe4tCb3U7Szk8yNJImb93O5XDjDYPIGD/LH/AMHJH/Bfn9uz9ib/AIKB2/7LP7DfjiDwtpvhvw5YTa9G2l6fqLyarfl7gAteW87IFtWtyApXJckg8V8H/wDBcD40f8HES/BTxZ8Jv2mV1fVfgLP4Z8FTeJtUHhvTrXTm1Oaz0u5ul+2Q2qTIE1pmjwjqN67MBfloA/o8/wCDab/gst+1j/wVvtfjOv7Udj4dtH+HzeHv7NbQbOa03jVhqHnCUS3E4bb9kTZt24y2c8Y/qSr/ABwP+COXxp/4LT/CFfiKP+CQWmaxqI1A6R/wln9laHZ6zs8r7X9g8z7Xbz+Vnfc7dm3fg5ztGP8ASz/al/4Kh6b/AMEz/wDglx4M/a+/bXsLi88eX2gaHbXHh6IR2V5qHie8tEe4tguNkASQTPMQpEUaNtVmCowB+xlFf5YS/wDBaj/g4z/4Kw/GHWrH9iWTXbHTrNxJ/YfgTTYktdLgmJEQub+SNpdzhT8886qzBiiqMgbnw3/4OCv+C73/AASx/aCsfh//AMFBrPVvE+m4W4vPDHjXT47G7uLRiUM1nfxwrL1UhJN08O4HKE5oA/1IaK+Sv2Gf2zvg5/wUC/Zc8KftYfAqeR9B8U2xk+z3G0XNlcxMY57WdVLBZYZFZWwSDgMpKspP+bP+z7/wdpf8FTfhX8Zr3xF+0H4og+I/h20tNShttAbSdM0+Ka+eN0tHmuLW1iuBFDKVkdY3DOF2ZG7IAP8AVNor/Lo+Ov7av/B2lcfD66/bh8a/8J34Q8DRQ/2mW0/SLaysLKyZQwkey8ozC3VCGMtwjDb8zOeTX7m/8G1n/Bw38eP29/i1d/sQftuy2ur+MhpkupeHfElrapaS6gtn81xb3cUIWHzVjPmRSRRxqVRw4LYJAOE/4PMPjv8AtT/BC1/Z8vf2dfGPirwhY3K+K5NYl8Oahd6fFIYjpQgNy1s6A7fMkEfmHjc2Opr9X/8Ag1r+KvxQ+M3/AASI8L+OvjB4k1TxXrc2va5FJqGs3k19dOkd0VRTLOzuQo4UE4A6VR/4OKPAP/BUL9pX4KeFf2G/+CePgu013QviyuoWnjjW7p0g/sqzs5bN4F8+WZI40uN83m4jlldIysa7jz8uftPftU+HP+DV3/gj58KP2Z/A9rB46+J+qpf2mlvcBk0+XVHc3mpX0wBSRra3luUSKIFZHVo1LL8zAA/rXor/AC0vhp+3T/wdbf8ABSDw7qP7QH7OGpeMtS8Kw3EipN4asLLS9ODwnDRWxMcbXJQ8MqtK+eGJNep/sU/8HQ3/AAU5/Yd/aZj+Bf8AwVJt73xZ4csr9bLxFZazpUeneJdHVwP3kJjS38woCJDHcI/mpwjpuDUAf6bVFZ+k6rpuvaVba5os6XVnexJPBNEwZJIpAGVlI4IYEEEdRWhQB/nC/wDB4D+1r+1V8Cf+ClPgfwZ8EfiZ4r8G6PP8NNNvZbHQ9ZvNOtnuZNU1VGlaK3lRDIyRopcjcVRQTgDGL/waaf8ABVD496t/wUE1f9lf9pn4ha/4w074m6HKNH/4SDVLjUTb6vpAa5RYjcyP5YltjchwuN7JGDnAx4v/AMHqv/KU7wF/2SrSv/TvrFfhr4g8KfE//glZ+1b8Cf2jvCbSPLc+HvBnxR0KWQ7BdRX1vDcTxNgf6v7UlzbEc5ReetAH+2NX8bH/AAeD/wDBRP4j/sv/AAB+Gn7MvwC8V6l4U8W+ONVm1q/vtFvJbK9h0rS08tYzLCyOq3FxMpGD832dgeM5/rn+E3xO8IfGz4WeGvjJ8PrkXmg+LNLs9Z02cf8ALS0volmibjPVHBr/ACq/+CyXj7xd/wAFhP8Ag4Juv2fPhddG5so/EWn/AAx0KVf3iQQWExivLjjgxLdPd3BYceXzzjNAHD/8EMf25f21/iR/wVu+BPgb4h/GHxvr2ial4kSK70/UfEF/dWtxH5Mp2yRSzMjrkA4YEV/rmV/jhf8ABEbw/Y+E/wDgu38G/C2lljbaZ45ntIS5y3lwrOi5OBk4HPFf6nf/AAU0/wCCjHwV/wCCXP7KGr/tS/GqObUIraaKw0rSLV1S61TUrjPlW8TP8q/KrySOQdkSOwViApAP0Cor/Letf+Cvn/ByZ/wVv+Juv61+w8niDTvD2mzH/iVeCbGGCx01H5jjm1CZN7ysoz+9nBYglEUHA9Z/ZG/4OWP+Cqn/AATh/acX4Df8FadL1jxX4fgdI9W07WdOh0/xHpsU2CtzbSLHCLhcfMEmLLKvCSJw1AH+mRX8Ff8AwRY/4OWv+ChP7fv/AAU48AfsffHXS/BsXhXxWNaF1LpWnXFveIdP027vIjHI93KozJbqGyhypOMHBH6jf8FrP2xv+CsPiD4VfAH42/8ABCU6n4r8MeO9P1fVNZvdD0Sz1lHtpE099NaQXlvMYCRJcjaAjbgwcZQAf5vP/BOrxt+238Pf20PCfjH/AIJ62t5efGS1Oo/2HDYWMOo3DeZZXCXe22uI5YnxaNMTuQ7RlhggGgD/AFa/+DiT4i/EH4Tf8EafjZ8QfhXruoeGde0+00g2upaVdSWd5B5urWUb+XNCyyJuRmRtrDKsQeCa/AX/AIMw/wBpD9of9oDUv2jU+PHj3xF42Gkx+EjYjX9UudS+zeedV8zyvtEj+Xv2Ju243bRnOBXZ/tLfE3/gpP8AFf8A4Nbf2hvEX/BVDT7/AE74lw63Z28CalplvpM76UupaQ0DeRbRxRkeY0wD7ATjBziv5Lf+CP3/AAVB/bF/YJ0b4k/Az9gjwp/wkXxR+NlzoNjpVylo2pXFmNL+3F/s9kFZZp5DdLtMgaNFRiyNkFQD/ZCor/KZ/aJ/4KG/8HSv/BPXUNJ+LH7U3inxr4TstenCWs2tafYXWlzTAeZ5BUQS28UjKCfKwkhUMQPlJH9yH/BAj/gr1d/8FdP2TdQ8c/ELS7XRfiJ4Jv00vxJbWCullMZlMltdW6u0jIkyBgyM7FZI3/hK0AfutRX8gn/BwL/wcqXv/BO7x3e/sY/sdabZ6v8AFSKzhn1fXL/E9joP2pd8cS2+f392YisuJCIo1dCwkJZF/m28JftSf8Hbnx1+HyftTeAbz4o6r4au4xe213p2kQw29zBKNyy21lHbp58RHKtFC6Y6cUAf6olFfwJ/8ESP+DrL4vfEP41+H/2PP+CmqW1/c+J9Qj0vSvG0EMWnyW97MfLih1K3jWOHZJJhBPEsZjYjzFZSzp/YJ/wUe/b5+Ef/AATS/ZG8TftZfGFHvLTRUS30/TYXCT6nqVwStvaxsQdpduXfB8uNXcghSKAPuivzg/4LBeM/F/w7/wCCWvx+8ceANUu9E1rS/A2s3Fnf2Ez291bTLbttkiljKujr1DKQQeQa/wA7K/8A+C8n/Bwj/wAFOfjhe+Bf2Q9U1izkmLXlv4Z+H+kxEWNqrBd8t0YpLrywWUPJNOI9x6LkLXd/tHf8Fdf+C5v7KHwD8ffsNf8ABWDwrqWraH8VvC2qaNpt74hsIrO+t5J4mjE1rfWqLDdpG7r5ySea4UjDpxkA/Qb/AIM6P2pf2m/j1+2H8V9B+OfxG8UeNLGy8GxXFvba7q93qMUMpvYV3olxK6q20kbgAcHFf6Fdf5rv/Bkh/wAns/GH/sSIv/S+Cv8ASioA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aACiiigAooooAKKKKACiiigAooooAK/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uqAP9vmiiigAryn44/CHRfj18KNa+EHiLVNY0Wx12EQTXugahNpeoxKHV/3N1AyyxE7drFSMqSDwTXq1FAH8z2rf8Glv/BHvXtUudc13RvFl7e3krzXFxP4iuZJZZZCWZ3dsszMSSSSSTWf/wAQi/8AwRm/6FzxN/4P5/8ACv6caKAP5jv+IRf/AIIzf9C54m/8H8/+Ffo1on/BG/8AY88IfsP6b/wT4+HU3inwp8PdO1K41RxoevXWn6heS3RmMqXd1AyyTwv5xBifKEJHkfIK/VeigD+Y7/iEX/4Izf8AQueJv/B/P/hR/wAQi/8AwRm/6FzxN/4P5/8ACv6caKAP5jv+IRf/AIIzf9C54m/8H8/+Ffon+0d/wRl/Yw/af/Zx+H37Jfj7/hJdP+H3w20uPR9M0bRtcurC1uLaJIUj+2xRtsupE8hWWSVWZWZ2Byxr9XqKAP5qfDX/AAae/wDBIvwXr9p4r8Hab4w0nVdPlWe1vLPxJdQXEEq8q8cibWRh2KkEV/Qn8Jfhtpnwe+GmifC7RtR1PVrTQbSOzhvNavZdR1CZIhgNcXMxaSaQ93ckmvQ6KAPxG/bf/wCDe/8A4Jpf8FBv2gb/APab/aH8O6rL4t1W2tbW8uNN1OWyjnFnGIondEBBcRqqbu6qo7V98fsUfsS/Cf8AYK+EzfBP4K6r4j1Dw+s4mtoPEWsXGrmzRY0iWG2NwzeRAoQERR4QMScZJr7BooA/jb/4OMv+Ce/xX+Cfx28G/wDBej9iCyefx18Krywu/GWmQqW+3afYELHeFVG5lSHNteAZzakN8oicn+mX9h39t34Fft/fsu+HP2rfgXqUc+ha5bB7mGRx5+m3kag3Fpcj+CWBjhs8MuHUlGVj9eSRxyxtFKoZWBBBGQQexr8Bvit/wQP+Fcet/Ga8/Y+8dar8HvD3xy8IavoHibwfpcSSeHrjU76Ipb6jHbkqbYxFmEsUG0SoxRTGpcOAfsr4l/aC+EHh74I6/wDtEw6/Yan4Q8N6bfarealYXMdzbi306N5JyJY2KEoqNnngjmv4b/8Ag0E/Z38ZfH79qX48f8FX/ijaENqt1eaNp0z5ZZdT1m4Goak6E/xQp5Cbu4nYetd7+y1/wQP/AOCz3wz/AGLvFn/BKXU/FngPwb8J/Hnix9c8UeL9PvbzUdVutPeG2hazsrRoIURZPsqvJvMTOCULhMhv7Hf2Nv2Rfgv+wn+zZ4W/ZZ+ANg1j4a8K2vkQmUh57mZyXmuJ3AG+aeRmkkIAGWwoVQAAD6dooqnqFvc3dhPa2c7Ws0kbIkyqrNGxGAwDAqSp5AIIPegD+aP/AIONv+Cg2v8AgP4Ix/8ABMD9ki2m8WfH79oGA6FaaNpn725sdFvcx3dxKB/q/PiEkMZcqFUyTFgsRz+gX/BF3/gmL4Y/4JTfsQ6J+z5HNBqXi7UpW1nxZqkC4S61W4VQyxkgMYbdFWGLIG4IXKqzsK1f+Cf3/BJz4IfsN+KNf+POvavqHxQ+NvjVnfxL8Q/EeH1O88wgmG3jBMdnbDaoWGL+FVVmYIgX9UaACiiigAooooAKKKKACiiigD8lv+Chv/BFX9iH/gqF8QNB+I/7Wdtr2pXnhrT203T7ex1eaztIYnkaV3EKZTzZCwDyAbmVEB4Ra/Pf/iEX/wCCM3/QueJv/B/P/hX9ONFAH8x3/EIv/wAEZv8AoXPE3/g/n/wr+ir4PfCbwJ8BvhP4a+CXwusV03w34R0u00fTLVSSIrSyjWKJcnliFUZY8k8nk16PRQAUUVk69r2ieFtDvfE/ia8h0/TdNgkuru6uXWKGCCFS8kkjsQqoigszEgADJoA+Xf25/wBtP4J/8E+v2YfE/wC1R8e737Nonh23zHbxkfab+8k4gtLdSRummfCr2UZdiEVmH+Thoej/ALa//ByF/wAFU5JLh8694xufNuJcNJp3hjw7atjgcYgtY2CqMhp53GSZJST9Jf8ABdv/AIKv/E7/AILSftqaT8DP2bLe+1L4b+HtUGjeCdGtUYza1qNw4hN+0XDNLcMQlujDMcJAwrvJn++//ghD/wAEffBv/BJn9lKHQNfjt9Q+K3jFIb7xhq0WHAmUEx2MD/8APva7ioP/AC0kLycBlVQD9I/2MP2Pvgp+wd+zZ4Y/Zb+AGn/YPDvhi2ESu+DcXdw/zTXVwwA3zTyEu7YAycKAoUD6joooAK8v+N/xd8Ifs/8AwY8W/Hf4gSNFoXgvRr7XNRZMFxa6fC88u0EgFtiHAJGTXqFfxMf8HZH/AAWR+FngP9nfVP8Agmh8ANet9Y8c+MZIovF8ljKJV0fSoHWVrWV0OFubp1RWi5Kwb94XzEyAf1Mf8E+f23fh7/wUY/ZL8L/tg/CnRtW0Hw/4ra9W0tNajijuwLG6ltHZhDLMm1pIWKkOcjrg19n1+cH/AAR++DH/AAz9/wAEuPgJ8KpYvIubLwTpNzdx4xsvL+Bbu5H4TTP9a/R+gD+ff49f8G0X/BNr9qD4g3XxR/aBufHni/XLpnP2rV/Fd7evGjuX8uMzM5SJSx2opCqOgr6n/YR/4I1fsl/8E4vFI8Q/svat4002y2Tq+h3fiS8utFke4ADSvYMwt2lGBtkKblPQ1+sNFAHxb+23/wAE8/2Pv+Cifw2j+Fv7XXgq08VWNqzSWNyxe3v7GVsZe2uoSk0ROBuVX2PgB1YcV+MHh3/g1G/4J7+H9FfwGfiF8W7zwRLMJpfCUvihI9EkOSSGghtImOc8nzN3vmv6caKAPnD9lj9kP9mr9iX4T2vwR/ZX8H6f4M8NWrGX7LYod80xAUyzzOWlnlIUAyyu7kAAnAFfyn/8HI37VPwx/bA/aI+G3/BB74d+G9H1b4geN9c0iW+8U60rGPwob9h5TWgR0drp4GMkmW2eSyptd5P3f9n9fxw/8F5P+Dbb40/t1ftPf8N+fsM+L7PRPiHcw2A1XS9UnlshNc6ZGkNtd2V5CjmGdYo4l2OFXMYcSKeCAbGtf8GV/wDwTJ1CygXSvHvxIsLqOJEldb/TpIpHUAM+x9OLLuOTgPgZwK+A/wBu3/g0U/Zk/ZO/Za8d/tT/AAj+OniLRdR+HWjXniKFtdhtnhkk06MzJEstuLZ4pJHUJG67iHZcKx4rvfht4R/4Pa/hrbxfDK3utN1nT7ZRDDrOsXfhm9ZV6bmmd/tcpHUtKjsfev0M+DH/AAQ//wCChH7ZHivR/iH/AMF4fj7L8SdB0i6h1CD4a+GsWfh+e4gOYjf+RBaRShOQUjt9xyf3+0sGAP2g/wCCRHxM+Mnxl/4JjfA34o/tAzXN14u1vwjp1zf3V5n7Rdbo8RXEpPLPPEElZj94vnvX6M1R0zTNN0TTbfRtGt4rSztIkhgghQRxxRxgKqIqgBVUAAADAHAq9QAUUUUAFFFFABRRRQAUUUUAFFfMf7WnxR/aS+EHwo/4TD9lj4Wp8X/EyXccb6A+u2/h5jalHLypc3MUsRZWVFEZC7t+dw24P8eup/8AB6F4r0f4p3HwQvv2S9THi+11V9Dk0hPFYku/7SSY25thGmkktL5w8sKuSW4GaAP7pqK/k9+Nn/Bx7+2F+yR4ct/iJ+2X+wr458B+EpZI0l1iLWYtQgh8zG0SMLKKKN2zhUllQk8da/Xb/gmZ/wAFif2J/wDgq54Tv9V/Zl1m5t9f0SNJdW8NazEtrq1lHIdokMavJHLEW+XzYZJEBIDFWIFAH6mUUUUAfHP7e/7cPwT/AOCdf7LfiX9qz49XLpo2gRKsFpBg3OoXsx229pAp4Mkr8ZPyooZ2IRWI+Sf+COH/AA2v8SPgPrn7YP7dOpXFr4l+NOpJ4j0nwjuYWfhbQvKWOws4o25WR4gJpyQGZnHmASB6/AP9v34jzf8ABY//AIOGfhl/wS4tFN58H/gDdt4l8YQZ3QajqFlEs84lUfejRng04A4ZGmnwcMK/t4AAGBQAUV80/tYeIf2sPDPwkl1P9jDw34e8VeNftMapZeJr+bTrH7OQ3mP5sEUrlwQoVMKDk5YY5/kW/wCCU/8AwX5/4Khf8FEv+CtGk/safELQPBXhnwjoDa3L4oi0KzuJ5vI0qKWMbbqa7mUhrwwoHjVQQ2cHoQD+3+iiigAooooAKKKKACiivhL9v34ofty/CL4SDxr+w54K8LeNdVsUurnVLfxPqkumRxW0Ee9TD5cbLK5IIKvJEoH8VAH3bRX8a3/Bv9/wXS/4KG/8FeP24fE/gv4v6R4U8PfDnwl4Yn1O6t9DsLhJDeS3EMNqhnuLmdtxDSucbVIjPA4x/ZTQB/N58HP23/jJ/wAE7v8AgqBq/wDwTj/bv1u61zwF8a9ZvfEPwd8aX7F2SXUrgyTeH7qQ5yYJ5fKtSTlA0ScJLEsf9Idfz+f8HLf7GZ/au/4JdeLfHHhON4vG/wAHCPHegXkBKXEP9lgveqjrhxutPNdQp5ljjPVRX0T/AMEOf+Cjdv8A8FO/+CenhP49azIh8Y6SW8PeLYlAUDWbBE8yUAcBbmN47hQOF83Z/CaAP16ooooAKKKKACiiigAooooAKKKKACvN/jJ/ySHxV/2B77/0S9ekV5v8ZP8AkkPir/sD33/ol687OP8AcMR/gl/6SzrwH+9Uv8UfzR+A9FFFf5+H9Qnk/g/4C/A34eeM9U+I/gDwXoWh+IdcMjalqmn6db217eGZ/NkM88aLJKXk+dt7Hc3J55rpfH/w4+HvxX8MT+CPiloOneJdFuWRprDVbWK8tZGjYMhaKZWQlWAZcjgjI5rs6K3liazqKq5vmVrO7urbWe+nQzVKCi4KKs+ltDivh/8ADX4dfCbwzF4K+Fegab4Z0aBneKw0q1isrVGkO5ysUKogLE5JA5PJr568UfsB/sQ+NfF7+PfFfwl8J3+sSyNNLcy6TblppXOWeUbMSMTyWcMa+uqK0pZhiqU5VaVWUZS3ak036tPUieFozioTgmlsmlZehT07TtP0iwh0rSYI7W1tkWKKGFQkcaKMBVVQAABwABgV5ZpH7PfwD8PfEi5+MmgeB/D9j4vvDI0+uW+mW0WpSmUYcvcrGJmLjhsucjrXr9FYwr1Ic3JJrm0dm9V2fc0lThK3Mk7beXoeReIP2fvgN4s+Idl8XfFXgjQNT8Wab5RtNau9Nt5tRt/IJaPy7l4zKmwkldrDaTkYr1K/sLHVbGbTNUhjuba5RopYZVDxyI4wyspyCCDggjBFW6KJ16k1FTk3y6K72Xl2CNOEb8qSvv5+p4R8Lv2XP2avgh4hu/FnwZ+H/h3wpql9Ebe4u9I0y3sppIWZXMZeJFOwsqsVztyoOMgVzvxV/Yw/ZJ+OPiL/AITD4vfDbw34i1clS19fabBLcuEGFDylN7qAMBWJGO1fTNFdEcyxcavt1Wkp2tzczvbte97GTwlBw9m6a5e1lb7jkvA/gHwL8MvDVv4L+G+i2Hh/R7TIgsdNto7S2i3HJ2RRKqLknJwOTXMfDv4FfBH4Q6lqesfCfwbofhe71tlfUZ9I063spLtkLMpmaFEMhBdiC5OCxPc16pRWH1mr765373xavXrr3111NPZQ933Vptpt6djyu8+BXwR1D4m2/wAa7/wdoc/jO0XZBr0mn27anGuwx4S6KGZRsZkwHHykjoTXqlFFTUrTnbnk3ZWV3ey7LsvIqMIxvyq19X6nA/Ef4U/C74x+HR4R+LvhvSvFWkiVZxZaxZw31v5qAhX8uZXTcoJAbGRk+tdB4X8LeGPBHh2z8IeC9OtdI0nTolgtLKyhS3t4IkGFSOOMKiKB0VQAK3qKHWqOCpOT5U72vpfvba4lTjzc9te/U8d8afs7/s//ABI8aWHxI+IngXw9r/iLShEtlqmo6ZbXV7bCBzLGIp5Y2kQJIxdNrDaxJGCa474v/scfsp/H7X4fFfxp+HmgeJtUgVUS8v7GKW42L0VpCu5lHZWJUelfSdFdFLMMVTcZU6sk4qytJqy7LsjOeFozTU4Jp73S19T5Z8Y/sP8A7HXj/wANaL4O8X/DDwze6V4c3/2XaHTIFhtBKQXWJFRQiuQC6j5WIBINfizZ/se/F3Uv+C+3iL4z+IvAVxc/C3UdJWyOoXFosmlzR/2DBamIhgUZfMUxFSMZGK/pMor2Mq4oxuCjXipOaqU50/ebfKptOUo66Sul69TgxuTYfEOm7cvJOM9EteVNJPy1Plz4Y/sRfsffBfxZ/wAJ58Kfhl4a0DWlYtHfWemwR3EJYEHynC7ogQSCIyoIr0/4j/Ar4I/GK90zUvi54O0PxVcaKzvp0usafb3z2jSFSxhaZHMZYohJTGSq56CvVKK8epmGKnVVedWTmtOZybdu173O+OFoxh7OMEo9rK33HIePPh94C+KfhW58C/E7Q9P8R6Je7DcafqltHeWsvlOJE3xSqyNtdVZcg4YAjkCs6y+E3ws074er8I9P8NaVb+FFhNsNFjsoV04QsSTGLYKIthJJK7cZr0CisI16qioKT5U72u7X727+e5o6cG+ZxV7W+Xb0Pjvwl/wT2/YZ8CeKI/GnhH4SeFbHVIXEkNxHpcGYnHRowUIQjsVAIr621PTNN1rTp9H1m3iu7S6jaGeCZBJHJG4wysrAhlIOCCMEVeorXEY7E4iSnXqyk1s5Ntr0uRSw9KknGlBRT7JI+R/Dn7Av7EPhHxcnjzwz8JPCNjq0UizRXEOkWytDIhyrxAR7Y2B5DIFPvX0D8Qvhn8N/i34ak8F/Fbw/pvifR5nSR7DVrSK9tmeM5VjFMroSp5BIyD0rt6KdXMMVVnGpUqylKOzcm2vR30FDC0YRcIQST3SSs/U5nRPBXg3w14Sg8AeHNIstP0G1t/scOm21ukVpHbgbfKWFVEax7eNoXbjjFcz8MPgt8HPglpVxoXwZ8J6N4RsbyXz57fRbCCwillwF3ukCIrNtAG4gnAAr0yisfrFXllHndpatXer7vuaeyhdPlV1t5ehzni3wf4S8feHbrwh460u01rSb5PLubK+hS4t5kP8AC8cgZWHsRXzN4F/YB/Yj+GfiqPxv4D+FPhfTNWgcSw3UOmQeZC46NESp8sjsUxX15RW1DH4mjCVOjVlGMt0pNJ+qT1M6mGo1JKdSCbWzaTa9Aryv4k/Ar4I/GW50y9+L/g7Q/Fc2is76fJrGnW981o0pQuYTOjmMsUQsUxnauegr1SisKVWdKSnTk1JdU7P7zWcIzXLNXXmcH8RvhX8MPjD4d/4Q/wCLnhvS/FOk+as/2LV7OK+tvNTO1/LmV03Lk4OMjJqef4bfDq58AD4T3OgabJ4WFkumjRmtYjp/2JEEa2/2cr5XlBAFEe3aFGMYrtaKaxFVRUFN2Tuld2T7rs/MTpQbcnFXej9OxxHw9+GXw3+EfhqPwZ8KfD2m+GNHid5UsdJtIrK2V5DlmEUKogLHkkDJPWvnnXP+Cf8A+w74l8Xnx7rvwj8JXWrNIZnuH0m2zJKx3F5F2bXcnks4Jz3r69orelmGKpTlUpVZRlLdqTTfq76/MznhaM4qE4JpbJpaehVtLKysLOPTrGFIbeFBHHFGoVERRgKFHAAHAA4xXgvhH9kn9ljwB43k+JfgX4b+GNG8QyiUPqVjpVtb3RE4Ky/vEjDfvASH5+YEg5ya+hKKyp4mtTUo05tKWjs2r+vf5lzo05tOUU7babeh5f8AC/4IfBb4IWF1pfwX8IaJ4Qtb6RZbmHRNPg0+OaRRgM6wIgZgOASCQKjsfgX8EdM+Jlz8atN8HaHb+MrxCk+vRafbpqcqlQhV7oIJmGxVXBc/KAOgFeqUU3i67lKbqO8lZu7u12fdeolQppKKirLbTb0PGPjB+zn8A/2grGDT/jj4M0XxbHahhbnVbKK6eDfjd5TyKWjJwMlCM1Y+EX7P3wL+AGlzaL8EPB+j+Era52mdNJsorQzFMhTKY1UyEZOC5J5r1+in9dxHsfq/tJez/lu+X7thfV6XtPa8i5u9lf79zzn4n/B/4UfGvw5/wiHxi8M6X4p0rf5otNWtIryFZACA6rKrBWAJwwwRng1454f/AGGP2MPC/g65+H+jfCjwkmi3ssU9zZyaPayxTywbvLeUSRt5jR722M+Su44xk19U0VVLMMVSh7KnVko3vZSaV+9r7+Yp4WjOXPOCb2u0r2MvRNE0Xwzotn4b8N2cGn6dp8Edta2ttGsUMEMShUjjRQFREUBVVQAAMDitSiui8KeFdd8beIbXwv4bgNxeXjhI0HT3JPZQOSewFY06dStUVOCcpydklq23+bbNJzjTg5SdopfJJHV/CX4WeIPi74vh8LaENiffubgjKQRA8sffso7nj3H7jeBvBHh/4d+GLXwl4Zh8q1tVwM8s7H7zse7MeSfy4rjfgr8H9C+DfhCPQNNxNdzYkvLnGGmlx+ir0Udh7kmvX6/sPw34DhkOE9viEniqi95/yr+RP/0p9X5JH4NxbxNLM6/s6TtRi9PN/wAz/TsvNsKKKK/TD48KKKKAPxe/4LW/so6t8dP2frP4u+CbZ7rXfh+81y8MS7nm06cL9owByTEUSUeiB8cmv0D/AGNfj9on7TP7NnhT4taTcrPc3llFDqKg5aHUIFCXCMOoIkBIyBlSrdCK+nWUMCrDIPBBr86fBn7HXjb9mb46y/EH9k7UbO08FeK76OTxN4R1EuttEXYCS806RA3lSqvPksvluBt3KAgTxZ4SeHxzxlFXjNJTS3uvhku9lo1vbVXPuqGc0MxyGGS4yfJUw8pToSfwtS1nSb+zdpShJ6XvFtJpn3r4tsfEup+GL/T/AAdqEWk6rNC6Wl5Nb/ao4JSPldod8fmAHkrvXPqK/DP48/8ABGP4sftKfE6f4vfFj45fbdblSOJJIvDiwpDHD9xI1S/AULyfUkkkkkmv3uorqx+V4bGxUcTFyS6c0kvuTR5PD3FuaZHOVXK6ihOWjl7OnKVuyc4yaTtqk7HhnwJ8DfG/wFoE2k/G7xzB47uR5a293FpK6U6KgIbzFSeZZGY4OQEAx05ry39uP9leX9sX4Kw/BsaoNIgk1ewvLqfbuf7NA/71Y+oEhQnYSCu4DPHNfYtFbTwdKdB4eabg1Z3bbt6tt/icGHzrFUMfDM6LUa0ZKScYxik1taMUor0SsfjH4Q/4J5ftk/sz6bJ4X/ZA+Oj2vh1t5i0rxHp8d4lsW5zG5WRVyeSEijBPJBzVvwz/AMEtvGfxT+MVh8cf28viJJ8Sr3SdjWWk29qtpp0ZRg21kHytGSAWRI495HzlhkH9kaK4FkODVotNxW0XKTiv+3W7fofRT8Q86fPUjOEas01KrGlTjVae96kYKWvVp3fc+Pv25/2XtQ/a9/Zz1P4IaLrX/CP3F1PbXMU5QyQs1s4cRyopUlGx2+6wVsHGK/Mz/gjN8KvFfwR+K/xr+FFtrieIvDXh+702zN9bqy2kuqIkn2gQhifmj/1chHJ2oTwRX7OfGj4VD4z+BpfAUviDV/DlvcyxtcXGiXAtbqSFc7ofNKsypIOGKYbHQip/g58Fvhh8APAVp8M/hFpEOi6NZlmSGLLM7v8AekkdiXkdu7uxY4AzgDCr5WqmY0salZwWru7vRpK21tbt77I0wHFs8NwzisjlPmjWkmocqtBqUJObn8Tb5VGMVok2272T9Rr81v21P2JPjt+2Lp174BuPi1D4c8E3U8Fwujw6As8paEAgS3P2yNpB5gLgBEA4BBKg1+lNFeji8JSxNN0aybi90m1f1s1p5bHzGT5zisrxUcZgmlUjs3CE7Pe6U4ySa6NK66M/J79jP/gnn8ef2L3Xw94N+MsWpeE7nUEv7/Rrjw6gEx+RZPKmN67wvIiBdwDAYB2kiv1hooqcHgaOFpqlQTUV0bbt6XbsaZ3n2NzfEvGY+SlVe7UIQb83yRjd+bu/M+Gv24P2Uvil+194Bb4S+HviDF4N8M3qx/2lbDSBfz3bxSCVP3xuodiBlU7VXJI5Yg4rgv2Fv2H/AIt/sV6c3gb/AIWfH4o8HvLNc/2U+iLayJcTKAWS4+1ysq5AJQoQT0xk5/SKispZXhniVjGn7RaX5pbdrXtbytY66fFmZwyt5LGcfqzd3H2dP4v5ubk5ua2ilzXS0Tsfix+2l/wSd1v46/tAQ/tM/s/eM/8AhB/E0phe9bbKM3EICLcwyxMHjk2AKygYYjOQSc+efFf/AIIu658TPhZHa+JfiRdeKfiNearbT33ifXhNN5WnQxzKbW2iMkjKN8isd0nzFP4BxX71UVx1eHMvqTqTnT1nq9Xa73dr2T89z28J4ncR4ajh6FHE2VFJRfLBy5VtFy5eZxX8rdtrp2R+S3hj/gmT49+F/wCz/P8ABT4OfGvxFpNxqMQs729vYzfW8dkd5eGxtPPiSz3u+5pEd5OoDc5r6L/YR/ZH8UfsYfCy5+EWqeL4PFeli5NzYmPSl02SBpSzS+YyzzGYuSu1mIKhdoyMAfb1FdVDKMLRqRq0otOKsvelZLta9vwPJzDjLN8dhquExVVShUkpy9ymm5LZ8ygpaapWdkm1s2fgx8Sf+CMfxI+I3x+v/wBpFvjUNK8TXeoJqMc9h4dW3ME0W0Rsnl3yjcAoy2Mu2WbJJr9o/hT4d+IfhTwFYaD8VPEaeLddtw4udVjsk05bjLEqfs6PIqFVIU4bBIzgZwPRKKeDyrDYWc6lCLTlv70nd97NtX89yc74vzXN6FHDZhUjOFJJQtTpxcUlZJSjCMuW32b22drpHAfE/QviF4k8FXejfC3X4fDGtzbPI1K4sRqKQgMC37hpIg5K5Ay4AJzg4wfx2+AX/BI/42/s2/F67+N/w2+OSLr2pRzw3z3XhpZo7mO5cSyCRTf95FV8gghgO1fuRRTxeV4fE1IVayblHa0pK3pZpX8yMn4szPK8NWweCnFU6uk06dOfMuzc4Sdl0V7J3aV2fkb+23/wTX+Lv7b/AIjtZ/Gvxbh0vQNImmk0vSrfw+GEHnBQTJL9uUzPhQNxVQOdqrk19bfAv9mvxj4K+Bc/7Pv7QHiq2+JOhHT49JgWTShpzCwSMxGKXbPN5p27QH+VhjOSea+vKKVPKcNCvPERi+eWjblJ3XZptq3bTToXieMM1r4CjllSpH2NJ3glTpxcXe94yjBSTb1bvd9bn4WeC/8AglN+0J+y18S9S8ZfsQfFtfD2l6vhZ9O1myF0PKUkqrnDpKUydj+XG6gkZ5JP1b+zr/wT3TwD8abj9qX9ovxZP8SPiTOpSC+ngW1tLBSpTFvApIBCEqDwqgnaqkk1+k1FY0MiwdGScIuyd0nJuKfdRbsn8tOh3Zh4gZ3jac416seaceSc1CEak4fyyqKKm10avqt7n5X/ALdP/BPX4uftwapFpeufFePQfCNhcJd2GixaEs5inEXlmSS4+2RtKxy+35VChsAdz7z+xj+zL8Yf2WPBUPwx8ZfEdPG3hzTbYW+l2zaQthNaAOWwZhcTNImCQqsMqMYOABX2vRW0Mqw0MS8XFP2j3fNL7rXtbsrWXQ4a/F+aVsrhk1ScXho6qPsqSs+6koc3M+submd3du7PxZ/bC/4JS/Fb9s/4jp45+I3xijt7XTxLDpVhD4eGy0tpJC4QuL5TI+MBpCAW2jgDgfYus/AL9rrW/gVL8KLr4y2g1m5LwTa+vhpRcNZPCIvLEX23Ys27c5nBzyAFUjcfuGiohk2FhOpUimpT+J889f8Aybp07dDavxtm9ahh8LVnB06GtNOjRtHvb9313d93q7s/G/8AYx/4Jd/F39ifxrc+IPh38YYrrStXktf7Y02bw6u28htXLBVkN8xifa8iq4BxvJKtgCub/aw/4JOfGH9sTx/F43+KfxrVk08Sw6baReHERLS3kkLhAUvV3sMgGRhubaPTFftpRWL4fwLw/wBV5H7O9+Xmnb/0rvr66navEfiBZi82VeP1lq3P7GjzWtbf2e9tL720vbQ8i+CXhD4qeA/AcXh34x+L4/G2rwuf+JomnrppaEKoVXiSWVSwIJLhhuz0GK/CX9nn4f3P7dv/AAVT8U/tcJGZ/h/8Pr1bbTLvH7m7u7GNYbdYifvAMGuiR93KA43Cv2C/ae+FXx1+OlvbfCXwRr9v4R8G6rBIviDVLfc+sSRkgfZrRSBFEJUyHmYswBwF9fZPgx8G/h78APhrpfwm+F1gun6NpMXlwxg7ndicvJI3VpHYlmY9SanE4B4mtSpSTVKk1LV3cpLZa3bSvdt7vQ2yziGGV4LF4unOLxmKi6doxUY0qcn77tFKKlKyUYxXuq7drpP1GiiivcPgD+QL/g9W/wCUWXgH/squlf8Apo1ivgD/AIMYv+bov+5J/wDc1X3/AP8AB6t/yiy8A/8AZVdK/wDTRrFfAH/BjF/zdF/3JP8A7mqAP7/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0f7+KKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmv4Ff+D5j/kD/syf9dvGP/oOkV/fVX8Cv/B8x/yB/wBmT/rt4x/9B0igD9Af+CE/7Hfwo/b5/wCDZ/Rv2UPjNBv0bxbL4kt1uFUNNZXSapcPb3UOf+WkEqrIvY42nKkg/wAcf7CX7SX7QX/Bu3/wV0v/AAt8abaeOy0HUX8M+ONNh3GPUNFnZXW7gU43lUMd5at8pYYUkK7iv7zf+DUT/lCP8NP+wn4i/wDTpc18E/8AB3D/AMEmP+GkP2f4f+CiXwU0zzfG3wwszD4lht0/eah4cUlzMQPvSWDM0hP/ADwaQkny0FAH8cv/AAXy8Z+FPiP/AMFofiz8QfAmoQatomu6hoeoafe2zh4bm1udLsZIpY2HBV0YMp7g1/Y5/wAHqnxh8W+D/wBgf4b/AAf0GeW307xn4x83U/LJAnh0y2kkjhfHBQyyJLtP8USkdK/zUNJurm88Q2Mt3I0riWBAzksQqbVUZPZVAAHYDAr/AFdv+Dr39i/x5+1v/wAEsrzxV8L7T7drHwm1qHxhNbopaabS7e3uIL1Yx6xxzC4b1SAgZOAQD+Ov/gib/wAHCXwm/wCCPX7PXiD4T2vwHbxn4l8Uaw2pan4ij15dPkuII41jtrcxmxnISD94VHmEbpXbA3GvVf8Agr//AMHLfwh/4Kw/scah+zF4g/Z9k8N6zHqFlqmh6/L4hS+bTLq2kHmOsQsIS4ltmmgI8xR+83clQK+pP+DXr/gs9+xL+yz8Gtd/Yl/bluNP8LQnV5ta8O+I9QtBLZut0iLPaXMqq7RMrx+ZE7L5bB3VmUqgb9hP+Cv3/ByR+wh+yp8Fl0L/AIJ9ah4N+KnxU1S4hFv5FmNQ0XTrRXDTS3MsJiSR2QGOOKOYsGbe+FUBwD86f+DKLxZe+PfB37S37MHjOP8AtLwfewaLfvZy8wh79Ly0uwR/08QpEre0Qr8Q/wDgmNd69/wSZ/4OK/DXwf8AGNw8Nr4f8eX3gC/ll+RLix1V5NPgnfp+7PmwXIPAwATxX95f/Bu5+2V+2b+39+yXr37Un7WXhbwx4WsNX1j7F4YTw9pc2mm8tLNMT3MnmzzCWMzOYoiu3DRSZzkV/IX/AMHhn7MWp/s9/wDBS/wr+1z4KV7CD4o6Lb3n2uL5WXW/D5S2lZSOhW3+xNnruJNAGn/wV90iP/gq/wD8HQfh/wDY7E0t14c0jU9C8D3DW7YkTTrFTf6uUI+68RlvAD6oCa6f/g1D8da9+xp/wWP+Kn7DPxHnFvNrWmazoFxEx2BtY8LXRkyQeywR3n0z9aX/AINOPBXjP9sz/gsT8T/29PiwFvNT0LTNW8QXd0ikINd8U3Jj+UEnarQve4GSQBj1r49/4OHdA+I//BOf/gu742+N3wXm/sW88aaavifSrgKcquvWMunX7jBGWacXZB7E8g85APP/ANmXQ5P+Cz//AAcixeLb5DqPhrxV8QrvxLc7xuT/AIRzQnaeGGQ/3XtLaG2z6uMYzX96H/Bz3/ygx+Ov/XLw9/6fdOr+dL/gyT/ZJ+2eJPjD+3LrtrlLGG28FaNMRkGSYpe6hjPRlVbMAjnDsOB1/o+/4OZ9Kv8AWf8Agh18d7TTozJIlpok5A/55wazYSufwRSfwoA/nk/4MZP9V+1D9fBX/uZr5e/4Pbfiz4o1P9s34QfAuaeT+xdE8Fya9DBk+X9q1S+uLeRsdC2yxjHqB9a8x/4NKP8AgpZ+xj+wF4l+Onhn9r7xpb+CF8b2/h240m7vIZnt5TpJ1ATxl4o5Nr4u4yobG4BsHIxX33/weJ/skXvx9+D3wi/4KpfA2Rdf8IWWkw6Nqt3bhiF0zVHF1pd4MgfuXknkjZiAQ0sQx8xwAf0kf8G9/wCzF8O/2Yf+CRvwXsfA1pFFd+NfD1l4v1e7QL5t3e65Et0WkZQNxijkSBM8qkar1Br4y/4O0v2Yvh38aP8AgkX4o+NGvWcX/CSfCnUdL1fR70hVlRb28gsLmDeRny5IrjeUBw0kUZ6qK/Oj/g3V/wCDib9jrwp+xf4a/Yv/AG3/ABfb+APE/wAOoP7M0nVdUVk07U9KDsbdfPRSkMtshELLLsDIqMrMxcL8q/8ABz5/wX4/Zg/ah/ZxT9gP9iLxCvjKz12/tL/xXr1rG66eLawk86GygeRVM0jXCRTPIg8tVjVQzFmCAHsv/Bjz8WPFGpeA/wBoT4HX9xJJo2j33h7W7KEklIrjUEvILlgOgLrawdOu32r+Y/8A4IB/BvwT8ef+C3nwX+HnxDs4tQ0oa/qWrPbzLvjkm0axu9RgDKeGHnWyEg5B6EEcV/aP/wAGeH7CXjn9mv8AYd8U/tS/Ee2awvPjfe2V1pltICJP7F0lZ0tZ2B+758lxO6DHzReW4JDDH8h//Bs1/wAp9fg1/wBfXin/ANMWp0Af65niTw7onjDw7f8AhLxNbR3um6pbS2l3byqGjlgnUpIjA8FWUkEHqDX+Rb/wbJxy6H/wXo+DWl2UriNLjxNbsc43ouh6jw2OD0B+tf69lf5DP/BtZ/yn6+Dv/X/4o/8ATJqVAH+vNX8sX/B1J/wSs+PH/BRj9l3wV8Rv2YtL/wCEi8ZfCi+v7gaLEQLq+07VEhW5FtkhXmja2hcRkguoYJl9qN/U7X8rP/By3/wVU/4KDf8ABKq3+FfxA/ZPg0WTwl4uOpafq0+q6Y975Go23kyW6eYJY1TzonlKLjJ8pz24AP47P+CeH/BwB/wUi/4Iy+Ff+GQ/EHhKz1bwpo13PMvhjxdYXFhqGmPcSNJMsEqmGWISSszss0cqhiSoUk5/Zr4Y/wDBdP8A4IJ/8FJvjra+J/8AgqB+zXZeDvGespb2Enim8I1vTsQgRxfaZoktriJQCAGNvIqL99wozX6n/wDBPH/gvP8A8Euv+CkH7IWj+H/+Coes+AtK+JOnLPba/pHjGxgi0q4O9vLnszeiSBo5Ytu6PzPMSQMCu3YzfxZf8HAqf8EoP+GxLC4/4JPyWh8Py6Xu8RpowlGiLqnmtj7F5vGDFt8wQfuAcbPm30Af6+HgHRvBfh3wLovh/wCG8VtB4dsLC2t9LisiDbJZRRqsCxFSVMYjChMHG3GK62vy4/4ImeHvif4U/wCCS/7P3h74wwy22u2vgzTlaGdSksVqUzaI6nlWS1MSlTggjBAPFfqPQB/mB/8AB6r/AMpTvAX/AGSrSv8A076xXv8A/wAFt/2Lv+Fjf8G9/wCxl+2/4YtN+o/DfwX4b0TWJEXk6TrNjAInc/3YbtI0Qety1eAf8Hqv/KU7wF/2SrSv/TvrFf2Z/smfsxeGf20P+DeT4Z/sr+Ldi2njn4M6NpaTONwt7mTTYjbzgc8wTiOVeOqCgD8Rv+CKH/BYSx+E3/BuP8TvHHiq/R/Ff7Nlre6Np6TkM0v9qZbQtwP8DXM5tVGOEg6Gvy//AODNv9j6++OH7dHjb9uHxzE95Z/DHTHt7K5nyzSa5r++MyBmzuZLVbkP3BmQk88/yaax4k+NnwOsPHX7Mep3l1olrf6lDaeJ9GyAs17oc0qxpMMZJt5XkwAcZPfiv9Zz/g2n/Yu/4Yy/4JMfD+01u0+zeJPiMr+NtX3Lh92rKhtEOeQUsktwyno+7gZNAH+ef/wRs/5T/wDwr/7KFe/zuK/Z7/g9w+MPi3Uf2sPg58AJJ5V0HRvCU/iBIQSInu9SvJbZ2I+6zLHZqFPVQxx941+MP/BGz/lP/wDCv/soV7/O4r+mX/g9Y/Yv8d+LvAvwv/bs8IWn2vR/CIuPDHiJkUl7aO+lWWxmbH/LLzfNiZjjEkkY538AH56f8E2P+Dqz4O/8E4f2MfBf7I/gb9m+S/8A+EbtWOo6nF4lS2Op6jOxe4u3j/s6QhpHPCs7lECoGIUV+eH/AAXK/wCC4Pwp/wCCyOieBbyw+CrfD3xX4KnuUGttrS6k9zp90oLWrItnbHCyqsiMXbYd4C/Oxr+nH/g3+/4Lt/8ABN67/Ye8G/stftla3oXw98efDqyj0RLrXbdIbDVLC3JW1mjumVo1kSEJHKkrISy7lyGwvn//AAWP/wCDor4E/AHxLoHwv/4JYWXg34i6nE8s3iLXNR0p7rSYkxiK3tWR7YzSEkvJKpaJVCqpZi4QA/Qf/gz1+Kfiv4if8Egx4Z8SSvLbeCfGus6Hpu8522jx2t/tHsJryXHp9K/i3/4NfP8AlPF8Gfr4o/8ATDqVf6ZX/BJj4m/tO/G39gXwD8a/2vtA0fwv438X2smrzaVoljJp1vbWlzIzWgeGWSVxK9v5cj5IwW24BBz/AJXn/BD/APaS+E/7CH/BYn4a/HL9pjUD4f8ADHhjUNbsNXvDFJMLRr7TrywV3SNWcqs0ybyFJC5OOKAP9IT/AIOZf+UHfx4/689F/wDTzYV/Lx/wZDfBvwT4l+Pfx2+OmsWcU+u+EtG0TStNmkXc0EWsy3b3BQn7rN9ijUkDO0kZwSD+/H/BcH9rz9m39tb/AIN8/j78Xv2WPF1n408NQNpWmyX9iHEa3cGr6a7xkSKjZVZEPTGGGK/F7/gxn/5Cn7Tn/XLwb/PV6AP6EP8Ag6C8H6B4t/4IhfGafWrdJpdIGh6hZyMoLQ3EerWab0J6Exu6Ejna7DvX8+H/AAY0XVz/AGn+01ZeY3k+V4PfZn5d2dWGceuK/o2/4OXP+UH/AMef+vHR/wD072Nfzg/8GNH/ACHf2mv+uHg//wBC1agD+dr/AIJq+A9L/wCCmn/BeLwbYftC/wDE2tPH/jvU/EetQ3R3Ldrai51R7eQPnMcvkeSyf3DtGOK/2Mba2t7O3jtLSNYoolCIiAKqqowAAOAAOgFf4+n7W3w4+NH/AAQU/wCC358a6dYedF4O8Ur4t8NlsrDqvh2+mdljDkHG+BpbSZgDslV8ZwCf9Dn4Zf8AByb/AMEb/iH8FbX4y6p8YdP8NF7VJ7vRNVhnj1e1lK5aE20cbtK6H5S0HmIeqsRzQB/Dr/wd2/sy/D39nj/gq1H43+GlrFpyfE3wvZeKNRggCxoNU+0XNnPIqKBt84W0crt1eVpGPJNfZv8Awcu/tL/Eb4xf8EmP2BLzxXdTXEnj3wy3iXWXfJE+p2el6bH5rE9WJvbgjOSQxr8ef+Clf7VPxM/4L/8A/BXGxl/Z30O58vxJLYeDPBOm3YCzx6dA7sJbkpuCBpZbi6mOWEMbEFiE3H+tH/g51/4Jma9p3/BGP4Rw/CJDqsP7L9rp1hdhUPmyaKLOHT5rhQCT8kkMEkg5xHvcnCHIB9c/8Gif7M3w++En/BJXRPjzotnEfEfxW1jVtR1O9Kr55h0y8m063g343eVGLZ5FUnAeVz/FX23/AMHE/wCzn4A/aL/4JAfGW18bWkc114N0WXxZpNy2BJa32kAzh42PQyRCSFh/EkjDqQa/l8/4Nev+C9n7L37LP7O91+wR+2z4iTwZaaRqN1qXhXXruNjp5gvnEk1nO8YYxOs7STJI4EbLIyllKqH+m/8Ag4+/4OGf2P8Ax3+xp4g/Yi/Yi8XW/j3xF8QVSx1rV9LDPp2m6WkivMgnZQk0tyF8oCLeqxs7MytsBAPz7/4MkP8Ak9n4w/8AYkRf+l8Ff6UVf5rv/Bkh/wAns/GH/sSIv/S+Cv8ASioA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aACiiigAooooAKKKKACiiigAooooAK/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uqAP9vmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8/b/g7I/wCC3H2qXUf+CVn7Ler/ALuMqPiJqto/3mGGXSEdT0HD3mO+2EniZD/er8SPDWv+M/h7rvhDwprlx4Z1TVNPubS01e0jjlnsJ5o2RLiNJVaNniYh1V1KkjBGK/jM1n/gyf8A2avEWr3XiDxB8efGN9f30z3Fzc3FnaySzTSsWd3diWZmYksxJJJyaAP87X4S/F/4p/AX4had8Wfgp4h1Dwr4n0hpGsdV0ud7W7t2lRo3McqEMpZHZTg9CRX3P/w+Z/4Kz/8ARyHxF/8ACivf/jtf2o/8QQ37Kn/Rb/Fn/gvs6P8AiCG/ZU/6Lf4s/wDBfZ0AfxXf8Pmf+Cs//RyHxF/8KK9/+O0f8Pmf+Cs//RyHxF/8KK9/+O1/aj/xBDfsqf8ARb/Fn/gvs6P+IIb9lT/ot/iz/wAF9nQB/DZ8QP8AgqF/wUl+KunHRviL8ffiFq9kVKtbXHiS/aBgeu6Pzgh+pFfOPwE+F+p/Hj49eC/gvppdr3xnr+naJERy5l1G4SBcepy9f6EP/EEN+yp/0W/xZ/4L7OvpL9jv/g0S/Ze/ZE/ak8B/tQad8VPEfiO78Baza65badeWdrHBNcWbeZFvZPmAWQK3HORQB/WxpWl6foel22i6TEsFrZxJBDEnCpHGAqqPYAACr9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlPx3+L3hj9n74I+MPjv41bZo/gvRL/AFy9Odv+j6fA88mCe5VDj3r/ACu/+Da/4M+If26/+C5GifGr4gRi+HhebV/iNrT7flN4HIgYE5wRf3UMg6nCn6j+0P8A4OwP2o/+Gd/+CQ3ibwTpdz5GrfFTVbDwpbbT84gdjd3Zx/da3tnhY9B5oHUiv5M/+Dav9rr4mf8ABOzw18Svjzov7MHxM+MsPjprLSbHXvCGkz3dlappplkuLcypC6b3eaJnAbI2LxQB/pbftK+Cvhl8R/2ePHPgT40RW83hHVtB1C21hbtVaEWTwOJmYNxhUy2eMYzkYzX+VZ/wajX/AMQ7P/gtn8NoPBHn/YLrTPEMWuiIkRnThptw6+bj+D7WtsRnjzNnfBr+gP8Ab0/bz/4L6/8ABWv4Z6r+yF+yH+yT4w+Dng7xZH9g1nVfEkcthfXtlKMSw/ab+Kxt7eCRSVmCea7plQ4DMp/Wb/g3y/4IIaf/AMEmPCWr/GT43ahZ+IfjL4vtBY3c9gWay0nTSySmzt2cKZXklRXnlKgEoioAqlpAD+levJ/j18XfD/7P3wN8Z/HnxapbSvBOhajr14qnBNvptu9xIATwCVQ4r1ivxi/4OHPHdz8Ov+CLn7QHiC0lMTXHh+LSyy8Erql3b2TL9GWcg+xoA/m3/wCDN7QvEnx+/aW/ai/b7+J2LrxJrs1naPeEcyXGuXVzqN+BnoDJDbnHuPSv75a/jT/4MnPDFraf8E8Pij4yRf31/wDEWeyc+q2mmWDqPwNw351/ZZQB8ef8FB/2lLb9jz9h74rftNyyLHP4M8MajqFlvxh75YmW0j54/eXDRp/wKv4yf+DJn9m95X+OX7cfipSzMbTwhYXspySTi/1Hc7f9uTE59Sa/RP8A4PJv2nv+FS/8E1NB/Z40u48vUPiv4ntoJ4s4L6Zow+2TH323Isx6fNX4+/8ABDj9gX9oz/gql+wl4f8A2a9V8Saz8J/2WvCt9fXHiWXRGFtq/j7xJeSl5o/MYOi2Flb+TBl0kR5I87Gf/j2AP9A7wb8fPgV8RfEU/hD4feNdB13VrUEz2Wnalb3VxGF67o43Z1x3yK9ar/KN/wCDgj/glP4G/wCCHX7SPwj+Kn7Evi/XtOs/FkN7f6a91dhtT0rU9Ekt98kVxCkLbHFzEUyu4MHG4jAH+mD+wX8afFP7SH7D/wAHv2g/HMaxa3438FaDruoKieWn2rULKGeUovZC7kr/ALJFAH1jRRRQAUUV8If8FH/+ChPwN/4Jk/sr65+1H8dJTLb2O210vS4XVbrVdSmB8m0g3fxNtLO2CI41dyCFxQB9t61rei+G9Kn13xFeQWFjbLvmuLmRYoo19WdiFUe5NfiN/wAFtf2/vhN8J/8AgkH8cfiv8GvGGka/e3WkN4UtJdHvobwxX2vMLEYaF2CyRRyyTAEggRk9q/n2/wCCbv7L37Vn/Byr8TNR/b4/4Kna3qMPwA0XUpLfwl8P9LuZLHSdQuIHPmDYhDtb2/8Aq5bgnz55coJFWNlr8zv+Dsr9kH9l/wDYV+OHwz+H37H2gW/gLSvGnh97vxBoWku8Vjcy6XO0VlcyQ7yplCzTpvIycE8sWJAP3P8A+DLH9mR/h7+w/wDEX9qPVrfyrz4keJU060dhy+naDEVV1Pobm5uUIHeP8v7OK/PP/gk5+zB/wxr/AME3fg1+znc2/wBk1DQPDNnJqcWMbdTvgbu+H/gVNL15r9DKAMHxV4Y0Pxt4X1LwZ4nt1u9N1e1msruB/uywXCGORD7MrEGv8+T/AINA/ipr/wCzn/wUA/aC/wCCdHi27by5ILi7hikPyjUvDN6bKYIOzyRXBZsdRCPQV/oc1/mb/wDBP7UpPg7/AMHjfi3w5pR8qz1z4g+P7WdOgMd9bahdKo9hKEIHoKAP9MiiiigAooooAKKKKACiiigAooooAK83+Mn/ACSHxV/2B77/ANEvXpFeb/GT/kkPir/sD33/AKJevOzj/cMR/gl/6SzrwH+9Uv8AFH80fgPRRRX+fh/UIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFi0tLq/uo7GyjaaaZgkaICzMzHAAA5JJ6Cv2V/Zn+AFr8IfD39sa4iyeINQQee3XyEPIiU/q5HU+wFeVfsjfs6/8ACOWsPxT8bwY1Cdd1hbuOYI2H+sYH+Nh0H8K+54++K/p/wn8PfqcI51mMP30l+7i/sJ/af95rbsvN6fjnG/FP1iTy/CS9xfE19p9l5L8X5LUooor91PzYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kC/4PVv+UWXgH/squlf+mjWK+AP+DGL/m6L/uSf/c1X3/8A8Hq3/KLLwD/2VXSv/TRrFfAH/BjF/wA3Rf8Ack/+5qgD+/yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//S/v4ooooAKKKKACiiigAooooAK/xBf+CXJ/sn/gqZ+zqZuPs3xV8I7s9tmr22f5V/t9V/h5+Gr1f2SP8Agprp+peKwbQfDL4nxSXgbgxDRdVBkz/u+UaAP9wyvyJ/4Ks/8EXf2W/+CwNr4FtP2lte8U6GPh8+pPpx8M3VpbGQ6oLcS+d9qs7sNj7MmzaExls5yMfrlDNDcwpcW7iSOQBlZTkMDyCCOoNSUAfFX/BPn9hH4Rf8E2v2WtD/AGR/gbqOsar4b0Ce9uLe512aGe+Zr6d7iQO9vBbxkB5CFxEMLjOTzX2RqWm6drOnXGj6xbx3dpdxvDPBMoeOSOQFWRlYEMrAkEEYIq7RQB/Jdr//AAZo/wDBKrWfHN74003xR8SNIiur6S9i0yy1TTRZWqvIZFgiEulyTeVGDsTfK77QMuTzX9Zs0MVxE0E6h43BVlYZBB6gg9QakooA/lo/bo/4NKf+CcX7XPxIvvi98L73V/g/rOqOZbyz8OrA+jSStktItlLH+5ZjjKwyxxd/LBJNeQ/syf8ABmp/wTp+EPjCz8Y/HfxT4m+KS2Z3/wBlXTxaXpszA5HmpbD7QwH91bhQf4gRxX9etFAHPeEvCXhfwF4W07wR4I0620jRtHtorOxsbOJYbe2t4FCRxRxoAqIigKqgAADAr84P+CpP/BJP9mH/AIK4/C7w38Lf2lb3XdIh8Kao2q2F/wCHJ7e2vVaSJoZIS91bXSGGQFWZRGGLRoQwAIP6gUUAfk9/wSt/4I4/sr/8EhPDHjHw1+zRqfiLWT45urS51K78SXNrc3H+gpIkMaNa2toojXzZGwysdznnHFeY/wDBU3/ggz+xr/wVz8f+Ffib+0brPivQdX8JafNpdvN4Zu7O28+2lk80LP8AarK73eW5YpsKY3tnORj9r6KAPhn/AIJ2f8E+fgT/AMEx/wBmPT/2VP2eZtTvNCsb281CS91mWGbULq5vZC7vM8ENvExVdsSbYlxGig5ILH6q+KXww8A/Gv4ba98IPippcOt+GvE9hcaZqlhcA+Vc2l0hjljbaQwDKxGVIYdQQQDXeUUAfyAeNP8Agy2/4JleIfFtzrnhfxv8QtA025laQabBfWM8cCsc+XFJPYvLtXoPMaRsdWJ5r+oz4f8A7Ovwv8Cfs26B+yleWS+JPB2geHbLwv8AZdbjiuxeWFlbpaqt0nlrFIXjQeYPLCMScKBxXudFAH8hH7T3/Bmt/wAE8vjH4/vfHfwO8W+JfhfFqErTSaPaeTqOmwljki3SdRPGuc/K08ijooVQBXof7Fv/AAaHf8E4f2YviJY/FL4w6nrXxgv9MkEttp2urBBovmLyrS2kSFp8HnZLM0R6NG1f1aUUAVLCwsdKsYdM0uGO2traNYoYYlCRxxoMKqqMAKAMAAYAr+df9hn/AINiv2B/+Cf37Xvhv9tL4N+K/H2p+KfC76hJZ2mtahp82nk6laz2cm9INNglO2O4cpiYYYAnIBB/ozooAK/nJ/Yg/wCDYf8AYJ/YG/a+8NftqfB7xd4/1LxT4Wlv5rS11m/06bT3bUbWe0k8yODTYJSBHcOU2zLhgCcjIP8ARtRQAV4R+0r+zJ8CP2wfg1rH7Pv7Sfhq18V+ENdRVvNPutygmNgyOkkbLJFIjAMkkbK6kZBFe70UAfxffFj/AIMof2G/E/iK41b4RfFPxh4Usp5jItjdR2upxwoTny43KQSbR0UuztjqWPJ+0P2Gf+DUP/gmd+x38QdO+LvjP+2fiv4j0i4ju7D/AISWWIabbTxEFJBZW8caSkNzi4aZM4IUEZr+nGigAooooA/CL/gqB/wb1fsXf8FZfj5o/wC0V+0X4m8a6Lrmi6BB4cgh8N3tjbWrWlvcXNyrOt1YXTmTfdSAkOF2hRtyCT+t/wCzV8BPB/7LH7PXgn9mv4fXN5eaF4C0Sx0HT59RdJLuS2sIlhjaZo44kaQqoLFY0UnooHFe3UUAfzP/ALVH/Bqb/wAE1f2uf2qfFP7WfxA1vxzper+MdV/tjU9K0jULCDS3uX2mYqkmnSzgTuGkl/f7i7sVKggD+lTT9PsdJsINK0uFLe2to1ihijUKkcaDCqoHAAAAAHQVcooA/m1/Zr/4NcP+Cf37LP7Yeg/tsfDvxd8QbrxT4d1qXXLWz1DUNOk05ribflHSPTI5jGPMOAJg3TLHv/Q/458CeCfif4P1L4e/EjSLPX9B1iB7W/07UIEubW5gkGGjlikDI6kdQwIrq6KAP48/2k/+DMf/AIJ//Fbx1feM/gT428T/AA0tr+V5jpEYh1TT7csc7bcTBJ0QdlknkI7EDivpP9hb/g0//wCCav7HXxEsPi945fWfi14h0maK5sF8SPEumW1xC25ZVs7eNFlYH+G4eZOhC5Ga/p5ooAK/mK/bV/4NPv8Agmp+2N8cNc/aBttQ8VfD3XPE13LqGq23h67tzp9xeXDmSacQ3VtO0byOxZhHIseTwgr+nWigD8OPhL/wQJ/ZH+En/BMfxt/wSq03xP4uvPAXj7Vf7Y1PUpbqzGrx3Aks5cQSLZ+QibrKLh4JDgtzyNvov/BKb/gih+yr/wAEfpPHU37NOveKtcb4gjTF1E+Jru0ufKGlfafK8n7LZ2m3d9qffv35wuMYOf2CooA+UP24/wBjv4Z/t+/sr+Lf2Q/jHfanpvhrxlFbQ3tzo0sUN9GtrcxXSeU88M8YJeFQd0TfKSBg4I+J/wDglP8A8ES/2Vf+CP8Ad+Orz9mnxB4r1xviAmmpqI8TXdnciIaWbgxeT9lsrTbu+0vv3784XGMHP7D0UAfBf7fn/BNL9j3/AIKX/Cv/AIVX+1f4Wj1ZbYM2m6tbEW+raZI+Mva3IUsmcAtGwaJ8DejAAV/MDq//AAZE/slz6+9zoPxs8XW2llyUt7ixs57gJzgGZREpPT5vKA9q/tyooA/Iz/gmb/wRJ/YP/wCCVmnT3/7PmhT6t4uvkMV34r1947vV3ibrFHIkcUdvEe6Qxpv48wuQCP1l1PTNN1vTbjRtZt4ruzu4nhngmQSRyxyAqyOrAhlYEggjBHBq9RQB/JJ+1/8A8GeP/BPL9oT4kaj8Tfgh4j134SS6rK08+kaWkF5o8Uj8k29vKqyQqTk+WsxjXOEVFAFdB+zB/wAGgf8AwTd+Bmh+I1+J2teJPiHrev6NqOiwX969vbRaWNRt3tmu7O2WF0+1xLIzQyXBnSNwriPcoNf1d0UAfiJ/wS1/4IH/ALHv/BI/4oeJfi1+zh4j8Y63qXinS10i6j8S3llcwpAkqzZjW1sbRg+5ACWZhjt3r9u6KjmmhtoXuLhxHHGCzMxwFA5JJPQCgD/EJ/4KjH+1v+Cpn7RRh5+0/FXxdt99+r3OP51/t9V/h5+JL5f2t/8Agppf6l4UBux8TfifLLZheTINa1UmPH+95or/AHDKACiiigAooooAKKKKACiiigAooooAK/xBv+CsX/KU39pb/sqvjL/073Vf7fNf4g3/AAVi/wCUpv7S3/ZVfGX/AKd7qgD/AG+aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8s+OepfFPRvgl4x1j4GWEGq+NrTQ9Qm8PWV0wSC51WOB2tIpGJUKjzBFYkgAE8igD1OivyQ/4It/Ev/gpj8Vv2Pp/FP/BVTw9H4c+In9v3sVjCLaKznm0hY4TDJPBASkb+cZ0XhS0aIxXJ3N+t9ABRRRQAUV/If/wcj/8ABSn/AIK3/sLfA9fG/wABNG8OfDj4f6z4j/4RS38SLejVfE1zNLBPcRzxWzQC0soZY4JQpLTzggH90TX9Ln7GXinxF45/Y++FHjbxfeS6jq2seDtCvr26mO6Se4uLKGSSRz3Z3YsT6mgD6UooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor5w/ar/af8DfshfB67+NHxB0nxBrlhazR24svDOlXGs6hLLLnaEt7dWbBxgu5VF43MMigD/P8/4PXP2o/wDhNP2rvhb+yPo9xvtPAugT69foh+X7drcoREcf3o4LVHX0Wf3Nf2X/APBDP9mD/hkP/glD8FPhDeW/2bU5fD8WuamjDEgvtbZr+ZH9WiM/lewQAcAV/ma/t3aX+2X+3t/wUp8V/tpfFH4B/Eb/AIRnxP4ktrltK/4R++N0mhWXlQQ22fKCCX7HEqsQdvmEnODmv9YT9jv9rH4bftkfCAfFX4XaJ4i8OafbXTabJp/ifRrjQ76CaKKOQr5Fwi7kCyqBJEXiJBVWJUgAH1TRRRQAV+FH/BzBo8uuf8EPfjxZQgkpZaNccelvrFjKf0Q5r916+Ff+CnvwOv8A9pP/AIJ1/G34G6ND9o1HxF4L1m30+PGd18ts72wx/wBd1SgD+eT/AIMqL+Ob/gl98QNOGN8HxQ1JyB12yaVpOP1U1/YLX8LX/Bj98TbTUPgd8e/g00mJ9I13RtaEZPVNRt5oCQO+DZgH0yPWv7paAP8ANK/4OqvG3jL9uf8A4LN/DD/gnv8ACiQXN74dstJ8O28BOVj1vxROkzs2Oi/Z3syx7BSTx0/0N/2Vv2bvht+x/wDs5+DP2Y/hDbfZvDvgnSoNLtAQA8vlL+8mkxwZZpC0srfxO7HvX+cRqum/Gv8AYq/4OZtQ/br/AOClvgHxLonw9t/HPiDV112DSbrUdPOnyW91BpM8E0EbrNHDm1JCZkQIQUDgrX9Gv7Yn/BaH9qH9uvwvc/swf8EI/hn4r8Xaz4mhNne/EzUtLudD0TRLe4G0yW8t8kB+0bSxV5Qnl43RpK3CgH88n/BwJ8S/Fn/BZj/guB4M/wCCfP7Ksi6tD4KceDormMb4E1OWUzaxdMw58mzRAkvp9lcjORn/AEHviX8PPil8Bv2ENZ+E37EVnBN4w8GeCJdI8D218yeUb3TrHydPSQyFYz8yRj94VQn7xC5I/LT/AIIbf8EIfhp/wSb8GX3xJ8f6hD40+Nfiu38rW/EChmt7SFm3taWJkUSeWXAaWZwHnZQSFUBB4P8A8HLv/BQ79uX/AIJlfA/wr8cP2WviB4e0a28TatD4fTQ7zw+L3UjL5NzcTXsd5NctB5aCOKPyTZZDPu8w52gA/Tj/AII8ax/wUj139ibStR/4KqW0Vt8VX1G93BY7SKdtO3D7M1ylh/oyzH5+IwvyBN437q/Uivwd/bl+JX/BTL4L/wDBB2b4kfCe5vvEv7Rtt4S0KfVr2x06KS+S7untv7Vlt7OCERb7eOSbaEiGxU34yvP87X/Bs9/wV2/4KR/Er9vo/sQ/tw67rnizSPF2hX2q6c/iS2cajYXViDIJEmdUkNtKiSxsr7l8wJsK4YMAf6A9f5kv/B1n+0J8Sf2z/wDgrr4P/wCCdfgS5Yaf4IGkaHZ2jNiGTX/E/kTPO2Ov7me1iGQdmx8feNf6bVf5iP8AwcR/swftWfsNf8FtIf8Agpp4R8IXmv8Ag2+13w54y0bU0gkuLBNQ0RLQSWd3IgIiYz2u5VbG6KRduSGwAf6PX7Mn7Pnw8/ZO/Z68G/s2/Cq2W08PeCdJttKs1ChS626ANK/rJK+6SRiSWdiSSTX+bL+0/wDFax/4Lmf8HPPgz4d+GmTVvh/oHiSz8NWBjw8Vx4f8MSS3uoShh8rJcsl3JG/9yRBziv3707/gpd/wUR/4L1+Grf8AZc/Yk+Euv/AX4c+I4hb+PPiZr7FntdNkAF1aaSRFGklzKhMaupZ8OCVgH7wfyh/8EQtX/av/AGNP+ClPjbTf2efgZq3xE+K9npOr+EtB067DwWugapc3MMf23U5NgCQQQpIsm54QwfG9dwIAP9c+vw9/4I/eIv8Ags7r/jv43f8AD1vT7Gw0ODXIU8Ci2SxQm333H2hYjZHc9qqC3MT3P75iWyxwQPnv9sO8/b4/4JPf8EctZ+Otv8crPX/iR4UE+v8Ai3VvFOmS61Hqmq61dQxrZ6YWurZLC1imm8q3T7PKm3b+6jy1fVv/AAQP+PH7X37VP/BNjwr+09+2r4hHiHxV49v9S1OzK2NtYLa6WkxtraFY7WKJSrCBpldgzkSjLEAAAH7M1/mR/s0Wlx4x/wCDzTUo9M5MHxL8WSNt/u2On3zP+kZz71/puV/m6/8ABun4Tl/a3/4OMvjf+2JZRNcaNoN14y8SxXfVFn1+/e3t0z6vBcTsvbahoA/0iqKKKACiiigAooooAKKKKACiiigAqteWdnqNnLp+oRJPbzo0csUihkdGGGVlOQQQcEHgirNFJpNNNaDTad0eb/8ACm/hD/0Kmj/+AMP/AMRR/wAKb+EP/QqaP/4Aw/8AxFekUV5/9kYD/oHh/wCAx/yOr6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ+Xf7cng3wh4S/4Rf/AIRTSrPTPtH23zfskCQ79nk7d2xRnGTjPTJr4Dr9IP8AgoL/AMyj/wBv/wD7Qr836/j3xTo06XFGMp0oqMV7PRKy/hQ6I/eeC6kp5NQlN3fvavX7cgooor8+PqAr7q/ZJ/Z2/wCEvvYviZ41gzpVs+bOBxxcyqfvEHrGh/Bm46Ag+W/s2/AS8+MXiT7dqqtFoNg4N1IOPNbqIkPqf4iPur7kV+z1jY2emWUOm6dEsFvbosccaDaqIowAAOgAr9y8KPD369UjnOYw/cxfuRf25L7T/up/+BPyTv8AnHG3FP1aDwGEl+8fxNfZXZeb/Beb0tUUUV/UR+NBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/IF/wAHq3/KLLwD/wBlV0r/ANNGsV8Af8GMX/N0X/ck/wDuar7/AP8Ag9W/5RZeAf8Asqulf+mjWK+AP+DGL/m6L/uSf/c1QB/f5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9P+/iiiigAooooAKKKKACiiigAr/KK/4Ou/+Cfetfslf8FJNT/aF8PWLJ4J+NofX7WdV/dx6wm1dSgJ/vtKVuueonwM7Tj/AFda+Ff+CjH/AAT5+A//AAUz/Zc1r9l/4+W7C0viLrTNTgUG70rUolYQ3cBPG5NxVlPEkbMjcMaAPxP/AODZD/gsp4C/bk/ZV0L9kX4taxFbfGP4Z6bHpxt7mQLLrekWahLe8h3HMkkUQWO6UEsGUSniTj+pqv8AF3/b9/4Jfft+/wDBGP4/Wup+N7fUdMtbC/E3hfx94feaKyuXjJMUkN1GQ1tcgDLQuyyoQSNyYc/rH+yl/wAHin/BSr4HeGrbwf8AHbRvDvxbtrVQiX+pRPp2qsq8APPaFYXwP4mti5PLMTmgD/Ulor/Pm0z/AIPlfEsUQGsfs0Ws79zD4ueEH8G0uT+dbg/4PnDjn9l3/wAvb/7y0Af3+0V/AH/xHO/9Wu/+Xt/95aP+I53/AKtd/wDL2/8AvLQB/f5RX8Af/Ec7/wBWu/8Al7f/AHlo/wCI53/q13/y9v8A7y0Af3+UV/AH/wARzv8A1a7/AOXt/wDeWj/iOd/6td/8vb/7y0Af3+UV/AH/AMRzv/Vrv/l7f/eWj/iOd/6td/8AL2/+8tAH9/lFfwB/8Rzv/Vrv/l7f/eWj/iOd/wCrXf8Ay9v/ALy0Af3+UV/AH/xHO/8AVrv/AJe3/wB5aP8AiOd/6td/8vb/AO8tAH9/lFfwB/8AEc7/ANWu/wDl7f8A3lo/4jnf+rXf/L2/+8tAH9/lFfwB/wDEc7/1a7/5e3/3lo/4jnf+rXf/AC9v/vLQB/f5RX8Af/Ec7/1a7/5e3/3lo/4jnf8Aq13/AMvb/wC8tAH9/lfmB/wVT/4KE+O/+Cdvws+HXiz4W/DT/hbHif4mfEDSPh7pGg/2zHoW+/1mG6e3b7VNBcRDMtusWJAiDzNzOoU5/lC/4jnf+rXf/L2/+8teAfEn/g5C/wCHwf7U/wCyV+zR/wAKZ/4V3/Yfx/8AAfib+0v+Ei/tfzfs121r5Hk/2fabd32vfv8AMONmNp3ZAB/T7/w8O/4Lr/8ASOr/AMy74e/+R6P+Hh3/AAXX/wCkdX/mXfD3/wAj14B/wVi/4L1f8Env+GWP2lv2Kv8Aha3/ABc3/hFfGXgn+xv7C1j/AJDv2S6sPsv2j7D9m/4+f3fm+b5X8W/b81H/AASd/wCC9X/BJ7/hlj9mn9ir/ha3/Fzf+EV8G+Cf7G/sLWP+Q79ktbD7L9o+w/Zv+Pn935vm+V/Fv2/NQB+n3/BKz/goT47/AOCiXws+Iviz4pfDT/hU/if4Z/EDV/h7q+g/2zHruy/0aG1e4b7VDBbxHEtw0WIw6Hy9yuwYY/T+v84T4bf8HIX/AA58/an/AGtf2aP+FM/8LE/tz4/+PPE39pf8JF/ZHlfabtbXyPJ/s+73bfsm/f5gzvxtG3J9/wD+I53/AKtd/wDL2/8AvLQB/f5RX8Af/Ec7/wBWu/8Al7f/AHlo/wCI53/q13/y9v8A7y0Af3+UV/AH/wARzv8A1a7/AOXt/wDeWj/iOd/6td/8vb/7y0Af3+UV/AH/AMRzv/Vrv/l7f/eWj/iOd/6td/8AL2/+8tAH9/lFfwB/8Rzv/Vrv/l7f/eWj/iOd/wCrXf8Ay9v/ALy0Af3+UV/AH/xHO/8AVrv/AJe3/wB5aP8AiOd/6td/8vb/AO8tAH9/lFfwB/8AEc7/ANWu/wDl7f8A3lo/4jnf+rXf/L2/+8tAH9/lFfwB/wDEc7/1a7/5e3/3lo/4jnf+rXf/AC9v/vLQB/f5RX8Af/Ec7/1a7/5e3/3lo/4jnf8Aq13/AMvb/wC8tAH9/lFfwB/8Rzv/AFa7/wCXt/8AeWj/AIjnf+rXf/L2/wDvLQB/f5RX8AR/4PnDjj9l3/y9v/vLWHqf/B8r4lliI0f9mi1gfsZvFzzAfgulx/zoA/0Ga/ll/wCDm/8A4LKeAv2G/wBlXXf2RfhLrEVz8Y/iZpsmnC3tpA0uiaReKUuLybacxySxFo7VSQxZjKOI+f5dP2rf+DxP/gpV8cfDVz4O+BWjeHfhJbXSlHv9NifUdVVW4ISe7LQpkfxLbBweVZTivyc/YC/4Jfft+/8ABZz4/XWp+CLfUdTtb+/M3ijx94geaWytnkIMsk11IS1zckHKwozSuSCdqZcAH6J/8Gof/BPvWv2tf+CkemftC+IrBn8E/BIJr91cMv7qTWH3LpsAP99ZQ1zx0EGDjcM/6utfCv8AwTn/AOCfPwH/AOCZn7Lmi/sv/AO3Y2diTdanqc6gXeq6lKqia7nI43PtCqo4jjVUXhRX3VQAUUUUAFFFFABRRRQAUUUUAFFFFABX+IX/AMFaIzF/wVQ/aVU9/in4wP56tdH+tf7elf4mP/BZTS30f/grJ+0haSDBf4j+I5/wnvpZB+YagD/bIt5RNbpMOjqG/Opq5H4f6tHr3gLRNciO5b2wtpwfUSRqw/nXXUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Or/wcU/8FD/21/8AgmJ+zTpP7Rv7M+t+DbXS9S1S08Ptp+uaTc3mqS31ylxMZbadLyO3EaQw5Mcls5yCd/IWv6Kq/iB/4OZWvP22v+CoX7IH/BKTR3aSy1fUU17XooyT/omo3QtjIQOjW9pZ3kg6HD+4oA/aLxL/AMFD/wBrr9jj/gk/8GP2qPjB8MPEHx5+KHjWHSRrmj+FLPyLm2k1e0nvzI8NtbzBIrVUS2bEeC5XLZOT+eX/ABE3ftXf9GAfFz/vxef/ACrr9jv23v2/vih8F/2SPD/7RP8AwTk+Fr/tKf2n4iOgrpvhm5cRRWlst5HcXKSW8FwGjgubUW5wu3c4w3TP44/8P3f+C2H/AEjj8Xf+Bt7/APKygA/4ibv2rv8AowD4uf8Afi8/+Vdfst/wS3/4KN/E/wD4KJeE/F3iX4mfAvxV8D5fDN3a20Fr4oSVJNQW4R3MkPm21sdsZUK2A3LDkV+NP/D93/gth/0jj8Xf+Bt7/wDKyv2Z/wCCW/7bP7YP7aXg/wAW65+17+z7q3wCv9BvLaDTrTVZpZjqUMyMzyJ5ttbkeWyhTgMDuHTuAfix/wAHqP8Ayiv8C/8AZU9K/wDTTq9f0ifsD/8AJivwW/7EPw5/6b4K/m6/4PUiB/wSw8Cgnk/FPSv/AE06vX9Iv7A//JivwW/7EPw5/wCm+CgD6zooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/ge/4JjfDq6/4I8/8HOPxH/Yt8QQnSvAnxw02/n8IZ+W2kgmlOo6eFbgHyBDdWI6ZlGB1Gf74a/n1/wCDgL/gmz8Vf2xPgt4R/ah/Y/QW/wAffgJqqeJfCksWFnvooGWaayU/xSF4o5YFbgyIY+BKxr9D/wDgmf8At9fDz/gpH+yP4e/aT8Exf2bqM27TvEWiyE+fo+t2gC3dnKrYYbGIaMsAWiZGIG7AAPvuiiigAr+HT/gvE0X7d3/Bfb9kv/gnJK6z+G/CKp4n8QxsQIhBPM15fLJngbdP0wEM3CiX3Nf3F1+Dv7YX/Bvr+yZ+2r+3dH+3X8S/Ffi/TNRu9Mi0jW9D0a/WysdWtIojAYJpEjFwsM8B8m5jSUCVOAVySQD9TL/9p7wj4h/ZY1L9qz9nuxu/ijpKaNd6vo1n4fUPca0LZXKxWnm7A7TMhWM9HyCu7Iz+Sn/BMP8AYj/at8YftaeNP+Cuv/BSWwtdB+KfjXS4/DvhXwbaTC6i8I+GUcSi3kmBKvdTNhpCv3SZDwZWjj/efw34b8P+DfDth4Q8JWUGmaVpVtFZ2VnaxiKC3t4FCRxxooCqiKAqqAAAABW1QAUUUUAFFFFAH8dX/B478ZvEzfspfCH9iP4ehptf+MXjNCltGfmuINKVEWEj/bu7y2Ye6V/Sx+xDb/AzwL8A9K/Zl+A+t2uuWXwVt7PwFqL2eWS31DSLO3EkLtja0qq6NLtLbXYqxDhgPjT/AIKkf8EYfgX/AMFUfGXwx+I3xH8ZeKfA3iD4WXVxcaXqPha5itrjFy8EpIeWKQxSxSW6PDNGVZDuJDHbt/RX9mz9m/4Qfsk/BXQv2f8A4F6WNI8N+H4WjgiLmWWWSRjJLPPKxLyzzSM0ksjks7sSetAHzl/wVS/assf2Jv8Agnf8Xf2lp7r7Je+HvDl2ulPnBOq3i/ZbBR35upYgccgZPavw1/4NAP2J9U/Zy/4J0ap+0b4109rLXfjRqw1K3Mq7ZG0PTlMNiSDzh5HuZkPRo5UYcEE4P/BVgeMP+C2v/BQLwt/wR++A7zN8J/hNqlp4m+NHiK2crbxyqCINKjlXg3HlmQBAWxM+4qPs0mP6yvCvhfw54H8Mab4K8H2UOm6Ro9rDZWNpboI4be2t0EcUaKOFREUKoHAAxQBvUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+b//AAUF/wCZR/7f/wD2hX5v1+kH/BQX/mUf+3//ANoV+b9fxh4sf8lVjP8AuH/6agf0DwR/yJcP/wBvf+lyCvV/g58Jdf8AjF4wi8N6QDFAmJLu5IysMWeT7seijufbJHIeDPB2v+PvEtr4U8Mwme7u32qOiqO7MeyqOSfSv3D+D3wm0D4PeD4vDWjgSTtiS6uSMNPLjkn0UdFHYe+SdfDjgOpn+L9tXTWFpv3n/M/5F6/afRebRHFnEscsoclJ3rS2XZfzP9O78kzrvBvg/QPAfhu18KeGoRBZ2ibUHdj3Zj3ZjyT3NdPRRX9i0aNOjTjSpRUYxSSS0SS2SR+CVKkqknObu3q2+rCiiitSAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/j8/4PWJAP+CXXw+h7t8U9MP5aTq/+NfBn/BjJGRB+1BN2ZvBQ/L+2f8a+yv8Ag9j1aOH/AIJ3/C/QyfnufiLBOB6iHTL9T/6MFfLf/Bjdpbw+Bv2kdaI+W4vvC0APvDHqTH/0YKAP70KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//U/v4ooooAKKKKACiiigAooooAKKKKAOZ8ZeCvBvxG8MXvgj4haRZa7oupRmG7sNRt0urW4jPVJIpQyOp9GBFfgV8ef+DWv/gjL8dNauPEcHw4uvBN9dMXlbwvqdxYwkn+5bO0ttGB2WOJR7V/Q3RQB/I5qP8AwZff8EpL2QvbeLPiZaA/ww6vpxA/7+aW5/WsY/8ABlV/wSyJyPH3xVH/AHFdI/8AlNX9flFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1H/ABBU/wDBLL/ofvir/wCDXSP/AJTV/X7RQB/IF/xBU/8ABLL/AKH74q/+DXSP/lNR/wAQVP8AwSy/6H74q/8Ag10j/wCU1f1+0UAfyBf8QVP/AASy/wCh++Kv/g10j/5TUf8AEFT/AMEsv+h++Kv/AINdI/8AlNX9ftFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1H/ABBU/wDBLL/ofvir/wCDXSP/AJTV/X7RQB/IF/xBU/8ABLL/AKH74q/+DXSP/lNR/wAQVP8AwSy/6H74q/8Ag10j/wCU1f1+0UAfyBf8QVP/AASy/wCh++Kv/g10j/5TUf8AEFT/AMEsv+h++Kv/AINdI/8AlNX9ftFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1H/ABBU/wDBLL/ofvir/wCDXSP/AJTV/X7RQB/IF/xBU/8ABLL/AKH74q/+DXSP/lNR/wAQVP8AwSy/6H74q/8Ag10j/wCU1f1+0UAfyBf8QVP/AASy/wCh++Kv/g10j/5TUf8AEFT/AMEsv+h++Kv/AINdI/8AlNX9ftFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1fEH7Wn/BvT+xf/AMEmvj7+yF+0X+zp4n8a61retftFeAPDc8HiS9sbm1W1ubmW6Z0W10+1cSh7VACZCu0sCpJBH97lfIH7a37BX7J3/BRH4Waf8FP2xfCn/CYeGNL1WLW7Wz+3Xmn+XfwQzQJL5ljPbynEVxKu0uUO7JBIUgAP+ChPwt8d/HH9gX44fBT4W2P9qeJ/GHw/8TaJpFn5scH2i/1DTriC3i8yZkiTfK6rukdUXOWIGTR/wT2+Fvjv4HfsC/A/4KfFKx/svxP4P+H/AIZ0TV7PzY5/s9/p+nW8FxF5kLPE+yVGXdG7I2MqSMGvzA/4hcv+CFH/AEQz/wAubxD/APLOj/iFy/4IUf8ARDP/AC5vEP8A8s6APwh/ZL/4N6f2L/8AgrL8ff2vf2i/2i/E/jXRdb0X9orx/wCG4IPDd7Y21q1rbXMV0rut1p905lL3TgkSBdoUBQQSft//AIgqf+CWX/Q/fFX/AMGukf8Aymr+j79in9gr9k7/AIJ3fCzUPgp+x14U/wCEP8Mapqsut3Vn9uvNQ8y/nhhgeXzL6e4lGYreJdocINuQASxP1/QB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IGP+DKr/glkDk+Pviqf+4rpH/ymrZ07/gy+/wCCUllIHufFnxMuwP4ZtX04A/8AfvS0P61/XHRQB/PJ8Bv+DWv/AIIy/AvWrfxHP8OLrxtfWrB4m8UancX0II/v2yNFbSA91kiYe1fvr4N8FeDfhz4YsvBHw90iy0LRdNjENpYadbpa2tvGOiRxRBURR6KAK6aigAooooAKKKKACiiigAooooAKKKKACiiigAr/AB0/+Dkz4V3/AMJv+C0/xv026hMcGtajZa5bORhZY9TsredmX1AlZ0P+0pr/AGLK/gV/4PTv2CtR1Gz+Hn/BRrwPYtLHYRjwd4oeJciONnefTp3x0Xe88Lu3doVzyBQB/X1/wS6+Nmk/tF/8E5fgh8ZdHnW4Gs+C9HNwynIW8gtkhuo8+sdxHIh91r7wr+CX/gze/wCCoHh6TwnrX/BLj4s6ktvqVtc3Ov8AgczvgXEEw8y/sY84G6NwbpFGS4kmPRK/vaoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Dv29P8AggR8Gv28f28PDv7deufErxb4I1XS9EXQNQsfDkyWr3tntuIpES7wZbcT29zLbzhAd8ZIG0kk/vjRQBxHw0+G3gP4OfD3RPhR8LtKt9D8OeHLKDTtM0+0XZDbWtugSONB6KoA5yT1JJrt6KKACiiigD8H/wDgph/wQy0f/gqprMFv+0l8dvHUXhPS759Q0jwxpkWlW2nWEzoY9wIsfOmcKWVXuJJXUMwUgMQfv79hn9j7xt+xb8L7L4Nap8W/EvxL8OaHp9npeh23iO305JNNtbNSiIs9naW803ybUBneQhUGD1r7iooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvn34Q/st/Az4DfEXx/8UvhLoUWiat8TtRh1fxEbclYru/hi8rz/KzsSR15lZAPMfLtliSfoKigAooooAKKKKACiiigAooooAKKKKACiiigDwD9nz9l34FfstaR4h0b4GaBDocfizX9S8T6xIhaSa91TVZmnuJ5pHLO5LNtQEkJGqouFUCvf6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPzf/wCCgv8AzKP/AG//APtCvzqsLC91S+h03TYmnuLh1jjjQZZ3Y4AA7kmv0V/4KC/8yj/2/wD/ALQruP2Sv2dv+EOsoviX41gxq1ymbSBxzbRMPvEHpI4/75XjqSB/LfFHCeKz/jrF4ShpBezc5dIx9lD8XtFdX5Jtfs+TZ3RyzhuhXqay99RXd88vw7v9bHqX7N3wEsvg54a+26oqy69foDdSjkRL1ESH0H8RH3m9gK+lqKK/pLKMpwuWYSngsHDlpwVl+rfdt6t9WfkeOx1bGV54ivK8pf1ZeS6BRRRXpHIFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXLeOPG/hH4aeDNW+IvxA1G30fQtCs5tQ1C+unEcFta2yGSWWRjwqoiliT0AoA/g7/AOD4H42aSNM+Af7OVjOr35l1nxJewg/NHCBBa2rEekjG4AP+wa+vv+DKX4V3/hv9gL4mfFu/hMS+KfHDWluWGPMh0yyg+ceq+ZPIn1U1/E1/wVz/AG5vFn/BWX/gpN4m+Nvgqzu7zTtWvLfw54M0xUZ7j+zLd/Js41j5YS3MjNO0YziWZlGeK/1jf+CVf7Ftj/wT4/4J/wDwy/ZRQIdS8OaSkmsyx4Ky6ves1zesG/iX7RK6oT/yzVR0FAH6D0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvE/wBo/wDZ6+FX7WHwJ8U/s4fG/TV1bwr4x0+XTtRtidrGOTkPG3OyWNwskbjlHVWHIFe2UUAf4uX/AAUf/wCCeX7WH/BE/wDbTt/Dd9e31kNPvhrHgfxnp+6BL6C3kDRTxSL/AKu5hO0TxZ3Rv/eRkd/7df8Agjr/AMHXn7O/7SnhjSfgf/wUU1Kz+HHxIgRLZfEc+INA1lgMCSST7lhM3WRZNtuTyjruES/03/tj/sU/s0/t8fBK/wD2fv2pvDFv4l8O3p82MSZjuLO5UEJcWsy4eGZMnDoRkEqwZWZT/nVf8FHf+DQj9tT9nbVtQ8c/sOXS/GLwWpaWPT2aO08RWsfXa8LFIbraMAPAwkc5xAtAH+nToeu6H4o0e18ReGryDUdPvY1mt7q2kWaGaNxlXR0JVlI5BBINatf4fnhD9oP/AIKXf8E3fEs3w/8ACviv4hfBfUI3Zp9GNxf6KGfPJks3MaPz/ejPNfYegf8ABx3/AMFsfDUKwad8fdXkVehurHTrs/iZ7RyfxNAH+yBRX+P1B/wdA/8ABdG3AWP46SHH97w5oLfz041b/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9arxr8KvD/j7xhoHifxEPPj8P/aHit2GUeWYx7Wb1CbCcdyR2GD6hX+QL/wARRv8AwXX/AOi5/wDls+Hv/lZR/wARRv8AwXX/AOi5/wDls+Hv/lZXLRwVCjVq1qcEp1GnJ9W1FRV/RJJf8Fm1TEVJwhTnK8YppLtdtv8AFn+v1RX+QL/xFG/8F1/+i5/+Wz4e/wDlZR/xFG/8F1/+i5/+Wz4e/wDlZXUYn+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlI3/B0Z/wXWYYPxz/Lwz4f/wDlbQB/r90V/j3Xn/Bzl/wXKv1KT/Ha4UH/AJ56DokZ/NNPFeK+Of8Agvt/wWR+IdpJZa/+0L4rt0kBBOmTx6W/Po9nHCy/gRQB/rs/tVftrfspfsQ/D+X4m/tWePNJ8E6SiO0X9oTgXF0UGSltbrunuJP9iFHb2r/NI/4Lzf8AByF4+/4KYQXP7Mf7MtteeD/gpBOrXX2giPUvEUkLbke6CEiK2VgGjtgzbmAeQlgqR/kZ8B/2CP8AgqJ/wVG+II8T/DXwX4w+JeoamyifxLq7TPaY9ZtUvmWEY5IDTFjzgGv7e/8Agkn/AMGivwl/Z21zS/jz/wAFG9QsPiL4ps2W4tPCdkrPoFpKpDK108io986nH7sokAOQwmXBAB8S/wDBqh/wQu8S6h4u0f8A4KkftaaM9lpenD7R8PtHvUKy3NweBq0kbDiKME/Y8jLufOGFSNn/ANCuooIIbaFLa2RY441CqqjCqo4AAHQCpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDn/EvhPwr4z0xtE8YaZaatZPy1veQpPEfqjgg/lXzDrn/BPf8AYH8UStP4l+B/gDUXb7zXPhrTpifqXgNfX1FAHwVP/wAEq/8Agl/cndc/s3/C2Q+reD9JP87Wqv8Aw6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLSr/wSf/4JaKcr+zV8Kx9PBukf/Itff1FAHwtZ/wDBLz/gmdp7B7D9nb4YwEdDH4R0pT+lsK9e8HfsffslfDu4S8+H/wALfCOhTRnKPp+iWdqykehjiUivouigBFVVUKowBwAKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//X/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=" + } + }, + "cell_type": "markdown", + "id": "71c3a35c-b75c-417f-9beb-d563de5a696f", + "metadata": {}, + "source": [ + "![Xnip2024-01-11_00-36-07.jpg](attachment:4acba1f5-5083-4b35-9183-e711c3f39490.jpg)" + ] + }, + { + "cell_type": "markdown", + "id": "69c142ef-ea14-44bc-8ae5-5907ee3b30ff", + "metadata": {}, + "source": [ + "## Importing modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9485f7bb-ca6e-440e-8d2d-4b4f29d32781", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "# import necessary modules\n", + "from threeML import Powerlaw\n", + "from cosipy import FastTSMap, SpacecraftFile\n", + "from cosipy.response import FullDetectorResponse\n", + "import astropy.units as u\n", + "from histpy import Histogram\n", + "from astropy.time import Time\n", + "import numpy as np\n", + "from astropy.coordinates import SkyCoord\n", + "from pathlib import Path\n", + "from mhealpy import HealpixMap\n", + "from matplotlib import pyplot as plt\n", + "import gc\n", + "from cosipy.util import fetch_wasabi_file\n", + "import shutil\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "id": "91a91fd4-0ae9-46d0-b939-fa51cb18df34", + "metadata": {}, + "source": [ + "## Example 1: Fit the GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)" + ] + }, + { + "cell_type": "markdown", + "id": "4ab70a73-c526-4f63-bcee-54fc17cab95d", + "metadata": {}, + "source": [ + "### Download data" + ] + }, + { + "cell_type": "markdown", + "id": "f7bbfc30-ec3e-42b6-8b89-ff6ecb0187f2", + "metadata": {}, + "source": [ + "The cells below contain the commands to download the data files needed for the GRB TS map fitting. \n", + "\n", + "The files will be downloaded to the same directory as this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "86653160-3c45-4780-a3c3-7975828688f8", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8f6db734-409b-49c4-8f57-5afaef1853ac", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "GRB_signal_path = data_dir/\"grb_binned_data.hdf5\"\n", + "\n", + "# download GRB signal file ~76.90 KB\n", + "if not GRB_signal_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5\", GRB_signal_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0743ac61-e2e4-450e-be69-51cb4a30950d", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "background_path = data_dir/\"bkg_binned_data_local.hdf5\"\n", + "\n", + "# download background file ~255.97 MB\n", + "if not background_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/bkg_binned_data_local.hdf5\", background_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ccbf7f92-4c07-4f98-94c5-365ead967dc0", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "orientation_path = data_dir/\"20280301_3_month.ori\"\n", + "\n", + "# download orientation file ~684.38 MB\n", + "if not orientation_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", orientation_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5cf6c384-5551-4f8d-b34f-745d1f3ec7ea", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "zipped_response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " \n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\", zipped_response_path)\n", + "\n", + " # unzip the response file\n", + " shutil.unpack_archive(zipped_response_path)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(zipped_response_path)" + ] + }, + { + "cell_type": "markdown", + "id": "f53e01e8-b00d-49bd-8be2-1acd592df5af", + "metadata": {}, + "source": [ + "### Define a powerlaw spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f8b24951-eee1-421d-b72c-e457b64e9402", + "metadata": {}, + "outputs": [], + "source": [ + "index = -2.2\n", + "K = 10 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit" + ] + }, + { + "cell_type": "markdown", + "id": "2390232e-5879-43a7-83d4-6e2d9cd97881", + "metadata": {}, + "source": [ + "### Read the data" + ] + }, + { + "cell_type": "markdown", + "id": "d8e59409-b6f8-4864-a87e-7fd02a9d6a9f", + "metadata": {}, + "source": [ + "#### Read the GRB signal, background component and assemble the data" + ] + }, + { + "cell_type": "markdown", + "id": "ba0fe2e4-b532-4d44-bc3c-ba5d61b9e689", + "metadata": {}, + "source": [ + "We will read the GRB signal and extract the background component from the simulated 3-month background. After that, we can assemble the GRB signal and background to get the observed data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6b4e8302-80cc-4ce8-8a80-3e476400239c", + "metadata": {}, + "outputs": [], + "source": [ + "# Read the GRB signal\n", + "signal = Histogram.open(GRB_signal_path)\n", + "\n", + "# get the starting and ending time tag of the GRB\n", + "grb_tmin = signal.axes[\"Time\"].edges.min()\n", + "grb_tmax = signal.axes[\"Time\"].edges.max()\n", + "\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "signal = signal.project(['Em', 'PsiChi', 'Phi'])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "01672216-1a91-47ff-ba7a-6e4f12370e78", + "metadata": {}, + "outputs": [], + "source": [ + "# load the background file\n", + "bkg_full = Histogram.open(background_path)\n", + "\n", + "# Extract 40s background from the 3-month one\n", + "bkg_tmin_idx = np.where(bkg_full.axes['Time'].edges.value == grb_tmin.value)[0][0] # the time idx corresponding to the tima tag\n", + "bkg_tmax_idx = np.where(bkg_full.axes[\"Time\"].edges.value == grb_tmax.value)[0][0]\n", + "bkg = bkg_full.slice[bkg_tmin_idx:bkg_tmax_idx,:] # It slices the Time axis\n", + "\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg = bkg.project(['Em', 'PsiChi', 'Phi'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ced2bb37-ced1-492e-a6c3-4ec38c34cf2e", + "metadata": {}, + "outputs": [], + "source": [ + "# assemble the data\n", + "data = bkg + signal" + ] + }, + { + "cell_type": "markdown", + "id": "2fbc67e7-170a-4c50-bbf7-25e2a8941c19", + "metadata": {}, + "source": [ + "#### Read the background model" + ] + }, + { + "cell_type": "markdown", + "id": "682a893d-6f1d-4a27-a74d-3c1289738092", + "metadata": {}, + "source": [ + "Since we don't have a tool to estimate the background counts during a burst yet, here we average the full 3-month background down to the duraion of the burst (40s) to ensure good statistics." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "f8b4e218-30c8-455b-8220-8a1000dca8ba", + "metadata": {}, + "outputs": [], + "source": [ + "# calculate the duration of the background\n", + "bkg_full_duration = (bkg_full.axes['Time'].edges.max() - bkg_full.axes['Time'].edges.min())\n", + "\n", + "# average the background model down to 40s\n", + "bkg_model = bkg_full/(bkg_full_duration/40)\n", + "\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "1aa33727-7d30-4c9e-83a8-654c6f8ecaf8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ6UlEQVR4nO3deVxVdf7H8fflsoiAS4CC8CtziaVUTM0tTQ23LDW1zKzUXCY1l5pSc9J0tMnK1KwZtzTMmnHrV2PlkpimOWqb5gKSK5MG4opclO1yf3/48xapCMjlcD2v5+PBw7nnnPs9n3vlTG+/53u+X4vD4XAIAADAxDyMLgAAAMBoBCIAAGB6BCIAAGB6BCIAAGB6BCIAAGB6BCIAAGB6BCIAAGB6BKIiyMrKUlJSkrKysowuBQAAuACBqAiSk5M1ePBgJScnG10KAABwAU+jCyjP4uPjFR8fL5vNZnQpAADAhQhEhYiNjVVsbKySkpI0ePBgo8sBAAAuwi0zAABgegQiAABgetwyAwBck91uV25urtFlAIWyWq3y9PSUxWIpcRsEokIwqBqAmdlsNh07dkwOh8PoUoDrqlixokJDQ+Xt7V2i91sc/KZf1+VB1QsWLFBERITR5QCAy9ntdh04cEAVK1ZUcHDwDf3LG3Alh8OhnJwcnTx5Una7XXXr1pWHR/FHBNFDBAC4Qm5urhwOh4KDg+Xr62t0OUChfH195eXlpeTkZOXk5KhChQrFboNB1QCAa6JnCO6iJL1CBd5fSnUAAAC4LQIRAMAtWCwWnTt3rty250pBQUE6evSo0WUYKi4uTvv373dZ+4whKgRPmQEACmO322W1Wo0uwxTi4uJUpUoVRUZGuqR9AlEhWLoDAC6Z33i+bKmu/cehf4i/hnw/pNBjpk+fri+++EKZmZl65ZVX1LdvX0lS3759lZSUpJycHP3P//yPFi5cqJCQEEnSF198oUmTJiknJ0cWi0Xz5s1T06ZNnW06HA6NGzdOiYmJWrp0qex2uwYNGqSffvpJwcHBio6OVnZ2tuLi4hQXF6fFixfrlltu0c8//6z58+fr/Pnzeumll5SXl6eqVatqzpw5io6O1qZNmzR69Gjt2rVLkrR37149+OCDOnr0qI4ePaqYmBiNGjVKn3/+udLT0zV79mw98MADkqRVq1Zp7Nix8vLyUqdOnQr9Tl5//XV9+OGH8vDwkK+vr7766itVrFhRb775puLi4uTh4aH69evrH//4hypXrqxJkyYpISFBFy9eVFJSku644w5NmzZNf/7zn3XkyBE1atRIH330kTw8PNS/f395eHho//79OnXqlJo3b665c+fK19dXaWlpeuaZZ3TgwAE5HA6NGDFCf/rTnyRJNWvW1FNPPaX169crNTVVAwcO1MsvvyxJSk1N1ciRI3X06FFdvHhR3bp109SpUwt933vvvafvv/9ezz33nCZNmqS//e1vzu+qtBCIAADXZUu1KeN4htFlyGKxaOfOnTp8+LAaN26sli1bqmbNmpo1a5aCg4MlSdOmTdOkSZM0d+5c/fzzzxowYIA2b96syMhI5ebm6sKFC872srOz1adPHwUGBuqTTz6R1WrViy++KF9fXyUmJspms6lFixZq1KiR8z07duzQzp07FRERobS0NEVFRWnTpk2qV6+ePvroI/Xq1Uv79u277mdJT09X/fr1NXnyZK1du1ajRo3SAw88oLS0NA0YMEBbtmxRdHS05s+fr9OnT1+1jcWLF+vjjz/WN998o8qVK+vs2bPy8fHRmjVrtGjRIm3btk1VqlTRkCFDNG7cOM2ZM0eS9P333+uHH35QlSpV1KZNGw0aNEjr16+Xr6+vGjdurDVr1qhLly7Oz7t9+3ZVrFhR3bt318yZMzV+/HiNGDFCERER+t///V+lpaWpUaNGatCggZo1ayZJOnfunLZt26ZTp06pdu3aGjBggMLCwtSvXz+NHz9e9913n/Ly8vTggw9qxYoVeuSRR675vkGDBunDDz/U6NGj1b179+L/4hQBgQgAcF3+If7l4hyDBg2SJNWqVUutW7fW5s2bVbNmTf3zn//UkiVLlJWVpaysLAUFBUmS1q9fr06dOjlvs3h5ealy5crO9rp06aJu3bppwoQJzm0bNmzQzJkzZbFYFBAQoN69e+vgwYPO/S1atHDOSbdjxw7Vq1dP9erVk3Spp2r48OE6fvz4dT9LhQoV1KNHD0lS8+bNdejQIUnS9u3bVb9+fUVHR0uSBg4cqBEjRly1jc8//1zPPPOM8zNVrVpV0qUhH71791aVKlUkSUOHDnUGDknq0KGD89i7775bPj4+CggIkCQ1bNhQBw4ccB776KOPOvcNHDhQs2fP1vjx4xUfH68ffvhBklStWjX16NFD8fHxzkD0+OOPS7o0/qlWrVo6cuSIqlSpog0bNujEiRPO9m02m5KSkpyvr/a+sLCw636fN4pABFPY9uMXqnYyTxU9fIwupVgu5GcrrZqXmjcs3a5hoLiudyvLKBaLRd98841mz56tbdu2qVq1alq1apUmTpxYpPe3a9dO69ev16hRo1SpUqVrnuP3/P2LFg49PT1lt9udr7Oysgrs9/HxcbZttVoLHFvY+Uvij238fp4eq9V6xeu8vLwit1XUc+Tl5TlnPd++ffs15woqTi2liafMYArVTuapdoUwhXoHudVP7QphqpbGOlLAZe+//74k6ejRo9qyZYtatWqls2fPKiAgQIGBgcrJydG8efOcx3fs2FHr1q1zPp2Um5ur9PR05/7x48erR48eio2Ndd6WateunRYvXiyHwyGbzably5dfs55mzZppz5492rt3ryRp6dKlCgsLU1hYmGrVqqXk5GSdPHlSkrRkyZIifcbmzZtr9+7dzpoXLVqknJycqx7btWtXzZ071/mZzp07J7vdrtjYWC1fvlznz5+XJM2bN08dOnQo0vn/aOXKlbLZbLLb7Xr//fcVGxsr6dI42wULFkiSTp48qf/93/9V+/btC23L399fbdu21bRp05zbfv31Vx07duy6dVSqVKnA311po4eoEDxldnXu2NtS0+fS4Eq7w6603LMGV1M01byqymqxutX3DLia3W5Xw4YNlZmZqdmzZ6tmzZoKCwvThx9+qIiICAUGBio2NtZ5y6pOnTp6//339cQTTyg3N1dWq1Vz587VPffc42xz9OjR8vPzU7t27bRu3TpNnDhRAwcOVFRUlIKCgtSgQQPnrac/Cg4O1kcffaSnnnrKOah6xYoVslgsqlGjhsaMGaN77rlH1atXV+fOnYv0GYODg7Vo0SI9/PDD8vb2VqdOnRQYGHjVY5988kn9+uuvatGihTw9PeXn56f4+Hh17txZe/fuVfPmzQsMqi6JJk2aqGPHjjp58qSaN2+u0aNHS5Jmz56toUOHql69enI4HPrLX/5SYLD6tXz00Ud6/vnnddddd8liscjPz0/z5s1TeHh4oe8bMmSI/vznP2vmzJkuGVTNWmZFwFpmBR1a92/VruD6+7mucCjruGp37GZ0GUWSsn6tQr2DlJJzSqHtC3/KBChtWVlZOnLkiG6//fYSLYPgznJzc2W321WhQgVlZmaqY8eOGjFihHr37m10aWWuf//+iomJcYag8uxGf2fpIUKxXe6xcKfeFum38Ti1jS4EQLl29uxZde7cWXa7XVlZWerWrZseffRRo8uCixGIUGJpuWfdrueCMATgeqpVq+Z8esrs4uLijC6hzDCoGgAAmB6BCAAAmB6BCAAAmB6BCAAAmB6DqgvBPEQAAJgDPUSFiI2N1bRp0665hgwAwFhBQUE6evRoocdMmjTpimUzCvPuu+8WmEn54MGDeuSRR3T77berYcOGatCggV588UVlZ2dLujRXT1hYmGJiYhQZGaknn3yywAKyNWvWVEREhGJiYhQVFaXHH39cmZmZxfqcFotF586dK/a+a9m9e3eRJ4o0CwIRAOCmNnny5CIHoosXL2rGjBnOfwinpKTo3nvvVadOnXTkyBHt3LlT//nPf1SpUiVlZGQ43/fiiy9q165d+umnn3T48GG9++67BdpdtmyZdu3apX379ik9Pf2qj7MfPXpUbdq0KfHnLI769evLx8dHX331VZmczx1wywwAcF2N5zdWqi3VpecI8Q/R90O+L/SYVatWaezYsfLy8lKnTr/Ng/bCCy/o66+/Vm5uripVquRcWeCZZ56RJLVq1UpWq1Vffvml4uPj9fbbbysnJ0f5+fmaOnWqHnroIUmX1u1q2bKl/Pz8JEl///vf1aZNGw0cONB5Lj8/P02YMOGq9fn4+Ojee+9VcnLyVffn5OTowoULzpXmi2P69On64osvlJmZqVdeeUV9+/YtsN/hcGjcuHFKTEzU0qVLZbfbNWjQIP30008KDg5WdHS0srOznWGsT58+mjdvntq1a1fsWm5GBCIAwHWl2lJ1POO4oTWkpaVpwIAB2rJli6KjozV//nzngqxjx47V9OnTJV1aYHXUqFFau3at5s6dq3nz5mnLli3O9cg6duyoPn36yGKx6OjRo2rWrJmSk5Pl4+OjTZs2FViP68cff7zugqW/l56erk2bNum1114rsL13797y9fXV0aNH1ahRoxLNfG2xWLRz504dPnxYjRs3VsuWLVWzZk1JUnZ2tvr06aPAwEB98sknslqtevHFF+Xr66vExETZbDa1aNFCjRo1crbXvHlzDR8+vNh13KwIRACA6wrxDzH8HNu3b1f9+vUVHR0tSRo4cKDz1tb69ev1zjvvKCMjQ/n5+Tpz5sw12zly5Ij69u2rY8eOydPTU2fOnNGRI0cUGRmpY8eOFeh5+qOZM2dq8eLFOnPmjObPn+889s0339SiRYv0888/q0uXLmrbtm2B9y1btkwxMTHKy8vTn/70J40dO1ZvvfWWjh49qu7du0u61Hv03//+VzExMZIu3db64IMPnG0MGjRIklSrVi21bt1amzdvdgaiLl26qFu3bgV6rjZs2KCZM2fKYrEoICBAvXv31sGDB537Q0JCdPr0aWVlZZluvbqrIRABAK7rereyjGCxWCRJ//3vf/Xss8/qu+++U+3atbV79261bt36mu977LHHNG3aNPXq1UuSdMsttzjHGFWsWLHAeKOGDRvq22+/db5+7rnn9Nxzz6lNmzYFjnvxxRc1evRo/fe//1WrVq00d+5cDR069Ipze3p6qmfPnnrxxRf11ltvqWbNmtq1a5ekS2OI+vfvr02bNhXr80tSu3bttH79eo0aNUqVKlW67vHSpcVQrVarvL29i3S+mx2DqgEAbqF58+bavXu39u/fL0latGiRcnJyVLVqVXl5eSk0NFQOh+OKAc0BAQFKT093vj579qxuv/12SdKHH36os2d/W6S6fv36SkpKcr4ePny4NmzYUGAQdH5+/jUHad96661655139Ne//lUXL1686jFfffWVIiIiivfhJb3//vuSLgWnLVu2qFWrVs5948ePV48ePRQbG+u8jdiuXTstXrxYDodDNptNy5cvL9BeYmKi7rrrLnl4EAUkAhEAwE0EBwdr0aJFevjhh9WgQQMdOHBAgYGBCggI0GOPPaY777xTTZo00a233lrgfX/+85/Vvn17xcTEKC0tTW+//bZ69eqlhg0baufOnQWO79Wrl9atW+d8XaNGDW3ZskWfffaZatasqUaNGunee+/VfffdVyCQ/F7Xrl0VGRmpf/zjH85tvXv3VkxMjO666y4lJibq7bffLvbnt9vtatiwoTp06KDZs2c7b5ddNnr0aA0ePFjt2rVTamqqJk6cqIyMDEVFRalTp05q0KCBcxyVJK1du9bZSwbJ4nA4HEYXUV79fmLG3bt3O59aMLuU9WsV6h2klJxTbrfavTvhe4aRsrKydOTIEd1+++2mG1/SpUsXTZo0SU2aNDG6lBuSm5sru92uChUqKDMzUx07dtSIESPUu3dv5eTkqHHjxvrqq68UFBRkdKml4kZ/ZxlDVIjY2FjFxsYqKSlJgwcPNrocAEAZmD17thITE40u44adPXtWnTt3lt1uV1ZWlrp16+Z8uu3IkSOaNm3aTROGSgOBCACA36ldu7Zq165tdBk3rFq1avrhhx+uui8iIoI7Hn/AGCIAAGB69BAB5Zzdka/wGeFGl1FkAT4BmtJ2inpFM1gTgPsgEAHllMVyqQM31DtQ2++aZ3A1RZeRd0Fzf1hFIALgVghEQDlVsYK/ZJesFqvCfaobXU7R+UjPejxsdBUAUCyMIQLKqUoRkVLFCpK3l9v82B12SZK/1dfgbw83o9zcXE2ePFmRkZG688471bBhQ3Xv3t050/OmTZvk6+urmJgY1a9fX02bNtX27dud7580aZKCg4MVExOjBg0aqEmTJvrPf/5TrBoGDRqkjRs3lubHKmDSpEkaPXq0y9rHtdFDBJRXwbdc+nEjaf8/dxLgCgMGDJDNZtO2bducq8XHx8crKSnJuf5XRESEMyC9++67evrpp5WQkOBso2/fvpo1a5ak3xaB/e6774pcw3vvvVcqnwXlD4EIAHB9PyRIObmuPYe3l9Qo+qq7Dhw4oE8++US//PKLMwxJl+aLu5b7779fY8eOveb+9PT0Am393meffaa//OUv8vDwUF5enl599VV169ZNbdq00ejRo9W9e3elpKSoX79+OnbsmMLDw3XLLbcoMjJSkyZN0qRJk5SYmKgLFy7o0KFDCgkJ0cqVK3XLLbdoz549Gjp0qC5cuKCsrCw9/vjjevnll4v4JcFVCEQAgOvLyXV9ICrEzp07VadOHd1yS9F7TVeuXKnHHnuswLaPPvpImzZtUnp6us6fP19gmY7fe/nllzVv3jw1b95c+fn5On/+/BXHjBw5Us2bN9fkyZOVmpqqmJgYRUZGOvfv2LFDP/zwgwIDA/XYY49p3rx5eumll1SzZk1t2LBBPj4+unjxolq0aKHY2Fg1a9asyJ8NpY9ABAC4Pm+vcnWOQ4cOqWfPns5AcXnh08u3z1JTU5WXl6cdO3YUeN/vb5lt2LBBPXr0UFJSknx9C457u//++zVq1Cj16tVLHTp0cN6S+70NGzZo+vTpkqSQkBA9+OCDBfZ36tRJgYGBki4tTLtnzx5J0sWLFzVs2DDt2rVLHh4e+uWXX7Rr1y4CkcEIRIX4/VpmAGBq17iVVVYaNmyogwcP6uzZs6patapq166tXbt2KS4uTp9++qnzuMtjiHJzczVs2DD17dtX27Ztk8ViuaLN+++/X1lZWdq7d+8V65bNmDFD+/bt08aNG9WvXz/17dtXY8aMKbTGP57j9+tpWa1W5eXlSbq0Mn1QUJB27twpT09P9ejRQ1lZWcX9SlDKeMqsELGxsZo2bZpGjBhhdCkAYGp169ZVt27dNHDgQJ07d865PTMz86rHe3l56e2339axY8cKBKbf++mnn2Sz2a5YNV6S9u/frzvvvFPPPvushg4dWuBptcvatWunuLg4SdKJEyf0+eefF+mznD17VuHh4fL09FRSUpLWr19fpPfBteghAgC4hbi4OL366qtq2rSpPD09VbVqVQUHB19z4HTFihX16quvatKkSerevbuk38YQORwOWSwWLVmyRMHBwVe8d/z48UpKSpK3t7cqVqyoOXPmXHHM22+/rX79+ik6Olo1atRQ06ZNVaVKlet+jpdffllPPvmkFi9erNq1a6tdu3bF+h7gGhaHw+Ewuojy7vJq9wsWLGAxPEkp//9odUrOKYW272R0OShH+N24eWRlZenIkSO6/fbbC9z6wW8uXrwoLy8veXp66vTp02rWrJk+/PBDNW3a1OjSTOlGf2fpIQIAoAQOHDigp556Sg6HQzk5ORo2bBhhyI0RiAAAKIH69es7J4GE+2NQNQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQDALVgslgKzVJe39lwpKChIR48eLbPz9erVyzkLd2HatGlzzZnA3Q2BCACAErLb7UaXgFJCIAIAXFfjxlJ4uGt/Gje+fh3Tp09Xw4YNdccdd+ijjz5ybu/bt68aN26s+vXrq0uXLkpNTXXu++KLL9SkSRM1aNBAMTEx2rFjR4E2HQ6Hxo4dq65du+rChQvKyMhQ7969FRkZqVatWulPf/qT+vfvL+nS8iFt27ZVz549Va9ePX377bdat26d7r77btWvX1/33XefEhISJEmbNm1STEyM8zx79+51rpt29OhRValSRa+88ooaNWqkOnXqaPXq1c5jV61apaioKNWvX7/QRWXj4uIUGxurPn36KDo6Wi1atFBCQoIefvhhRUVFqUOHDs4Fym02m55++mnddddduuuuuzR58mRnO/v371eLFi105513qnv37jp//rxzX0ZGhgYPHqx77rlH9evX15AhQ5STk3P9vyw3w8SMBtv24xeqdjJPFT18jC6lyKp5VTW6BABlLDVVOn7c6Cou3ebauXOnDh8+rMaNG6tly5aqWbOmZs2a5VyTbNq0aZo0aZLmzp2rn3/+WQMGDNDmzZsVGRmp3NxcXbhwwdledna2+vTpo8DAQH3yySeyWq168cUX5evrq8TERNlsNrVo0UKNGjVyvmfHjh3auXOnIiIilJaWpqioKG3atEn16tXTRx99pF69emnfvn3X/Szp6emqX7++Jk+erLVr12rUqFF64IEHlJaWpgEDBmjLli2Kjo7W/Pnzdfr06Wu2891332nPnj269dZb9eSTT+qhhx7Sf/7zH1WvXl0PPvigFi9erOHDh2vKlCnKzs7W7t27dfHiRd17772KjIxU79699eSTT+qZZ57RwIEDtWfPHjVu3FiPP/64JOnPf/6zWrVqpQULFsjhcGjw4MF6++239eKLL5b0r7FcIhAZrNrJPNWuEGZ0GSVyIT/b6BIAlJGQkPJxjkGDBkmSatWqpdatW2vz5s2qWbOm/vnPf2rJkiXKyspSVlaWgoKCJEnr169Xp06dFBkZKUny8vJS5cqVne116dJF3bp104QJE5zbNmzYoJkzZ8pisSggIEC9e/fWwYMHnftbtGjhXNdyx44dqlevnurVqyfpUk/V8OHDdbwI6bFChQrq0aOHJKl58+Y6dOiQJGn79u2qX7++oqOjJUkDBw7UiBEjrtlO8+bNdeutt0qSGjdurNzcXFWvXl2S1KRJEx04cECSFB8fr7feekseHh7y8/PTU089pfXr16tz587atWuXsxesXr16uvfee53tf/rpp9q2bZtmzJgh6dIablar9bqfz90QiAx2uWfI7rArLfeswdUU3YX8bKVV81JtowsBUCa+/97oCq7OYrHom2++0ezZs7Vt2zZVq1ZNq1at0sSJE4v0/nbt2mn9+vUaNWqUKlWqdM1z/J6/v3+R2vb09CwwxigrK6vAfh8fH2fbVqv1muOR/nj+P/r9QqZWq/WK13l5ecVu9/f7HA6HPv74Y91xxx2F1uHuCESFiI+PV3x8vPP+qyul5Z51u9XBCUMAytr777+vSZMm6ejRo9qyZYtmzZqlPXv2KCAgQIGBgcrJydG8efOcx3fs2FF//etftX///gK3zC73Eo0fP945DmfNmjUKDAxUu3bttHjxYrVu3VqZmZlavny5GjZseNV6mjVrpj179mjv3r266667tHTpUoWFhSksLEweHh5KTk7WyZMnFRwcrCVLlhTpMzZv3lwDBgxw1rxo0aJSGbMTGxurhQsX6r777tOFCxe0ZMkSjR07VpUqVVLDhg31wQcfaMCAAdq3b5+++eYbPfHEE5Kk7t276/XXX9e8efPk6emps2fP6vTp06pTp84N11SeEIgKERsbq9jYWCUlJWnw4MFGlwMApme329WwYUNlZmZq9uzZqlmzpsLCwvThhx8qIiJCgYGBio2Ndd6yqlOnjt5//3098cQTys3NldVq1dy5c3XPPfc42xw9erT8/PzUrl07rVu3ThMnTtTAgQMVFRWloKAgNWjQQFWqVLlqPcHBwfroo4/01FNPKS8vT1WrVtWKFStksVhUo0YNjRkzRvfcc4+qV6+uzp07F+kzBgcHa9GiRXr44Yfl7e2tTp06KTAw8Ia/uwkTJmjkyJHO23uPPPKIHn30UUlyhqG33npLdevWVevWrZ3vmzlzpsaNG6eYmBh5eHjI09NTb7zxxk0XiCwOh8NhdBHl3eVAtGDBAud949KSsn6tQr2DlJJzyu16iIA/4vf55pGVlaUjR47o9ttvL3ALxgxyc3Nlt9tVoUIFZWZmqmPHjhoxYoR69+5tdGkoxI3+ztJDBADA75w9e1adO3eW3W5XVlaWunXr5uxJwc2LQAQAwO9Uq1ZNP/zwg9FloIwxMSMA4JoYVQF3kZ+ff0Pvp4cIAHAFLy8vWSwW5xNS13v0GzCKw+FQTk6OTp48KQ8PD3l7e5eoHQIRAOAKVqtV4eHhOnbsWJkuKgqUVMWKFXXrrbfKw6NkN78IRACAq/L391fdunWVm5trdClAoaxWqzw9PW+oJ5NABAC4JqvVelMu0wD8EYOqAQCA6RGIAACA6RGIAACA6RGIAACA6RGIAACA6fGUGYBSZ3fkK3xGuNFlFFmAT4CmtJ2iXtG9jC4FgEEIRABKjcVyudPZoeMZxw2tpVgypAkbJxCIABMjEAEoNZV8Kkn5Uqh3kH5tscbocorE7shXRl6mZqUuN7oUAAYiEAEoNRUr+EsXsmS1WBXqHWR0OUXnI71Q43GjqwBgIAIRgNJTs4Z09Fcpz250JUVmz74U4PytvkaXAsBABCIApSf4lks/biRt/Vr36s0C4BKmCURvvvmmtm7dqqysLFWvXl1DhgxRy5YtjS4LAACUA6YJRI8++qhGjRolb29vJSYm6vnnn9fSpUtVuXJlo0sDAAAGM83EjLfddpu8vb0lSRaLRbm5uTp16pTBVQEAgPKgXPYQXbhwQUuXLlVCQoISExOVkZGhl156SZ07d77i2JycHC1cuFBffvmlMjIyVLt2bQ0aNEhNmjS54tgZM2Zo9erVysnJUbNmzVSrVq2y+DgAAKCcK5c9ROnp6YqLi1NycrLq1KlT6LGvvfaali9frvbt22vkyJHy8PDQmDFjtHv37iuOff7557Vu3TrNnDlTTZo0kcVicdVHAAAAbqRcBqLAwEB98sknWrFihYYOHXrN4xISErRhwwYNGTJEw4YNU9euXTVr1iyFhIRozpw5V32P1WpVo0aN9MMPP2jbtm2u+ggAAMCNlMtA5O3trcDAwOse9/XXX8tqtapr167ObT4+PurSpYv27dunEydOXPO9drtdx4+70dICAADAZcplICqqAwcOKDw8XH5+fgW2R0VFSZIOHjwoSbLZbFq/fr0uXLigvLw8bdy4UTt37lSDBg2u2u6pU6eUlJTk/ElOTnbtBwEAAIYql4Oqi+r06dNX7Um6vO3yU2QWi0Wff/65Zs6cKYfDobCwME2YMEF169a9arurVq1SXFycy+oGAADli1sHouzsbHl5eV2x/fLj9dnZ2ZIkPz8/vf3220Vut2vXrgUmbUxOTtbUqVNvsFoAAFBeuXUg8vHxUW5u7hXbc3JynPtLIigoSEFBTOUPAIBZuPUYosDAQJ0+ffqK7Ze3EWoAAEBRuHUgqlOnjo4dO6bMzMwC2xMSEpz7AQAArsetA1GbNm1kt9u1atUq57acnBytXr1a0dHRql69+g21Hx8fr3Hjxumdd9650VIBAEA5Vm7HEH388cey2WzO219bt25VWlqaJKlnz57y9/dXdHS02rZtq/nz5+vcuXMKCwvT2rVrlZqaqrFjx95wDbGxsYqNjVVSUpIGDx58w+0BAIDyqdwGomXLlik1NdX5evPmzdq8ebMkqUOHDvL395ckjR8/XtWrV9e6detks9lUq1Ytvf7664qJiTGibAAA4IbKbSBavnx5kY7z8fHRsGHDNGzYMBdXBAAAblblNhCVB/Hx8YqPj5fNZjO6FAAA4EIEokIwhggAAHNw66fMAAAASgOBCAAAmB6BCAAAmB6BCAAAmB6DqgvBU2YAAJgDgagQPGUGAIA5cMsMAACYHoEIAACYHoEIAACYHoEIAACYHoOqC8FTZgAAmAOBqBA8ZQYAgDlwywwAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgej90XgnmIAAAwBwJRIZiHCAAAc+CWGQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD3mISoEEzMCAGAOBKJCMDEjAADmwC0zAABgegQiAABgegQiAABgegQiAABgegQiAABgejxlBgCS7I58hc8IN7qMIgvwCdCUtlPUK7qX0aUANwUCEQBTs1gud5Q7dDzjuKG1FEuGNGHjBAIRUEoIRABMrZJPJSlfslqsCgsIM7qcIkmxpSjfka+M7AyjSwFuGgQiAKZW0dNXyslVqH+ojj1/zOhyiiR8Rrh79WYBboBB1QAAwPToISoEa5kBJpKTK237yegqiuS7eu/pXG6GZqUuN7oU4KZBICoEa5kBJuBpvRSGpN/+LOdCvYMU6h2kF2o8bnQpwE2DQATA3GrWkI7+KuXZja6kyOzZWbJarPK3+hpdCnDTIBABMLfgWy79uJG09WsV6h1kdBnATYVB1QAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPRKHIgOHTqkL774QpmZmc5t2dnZeuutt9SjRw/16dNH//73v0ulSAAAAFcqcSD64IMPtHDhQlWsWNG5bf78+Vq1apUuXLigtLQ0zZw5U999912pFAoAAOAqJQ5EiYmJatiwoSwWiyQpLy9Pa9asUVRUlP79739r2bJlqlKlilauXFlqxQIAALhCiQNRenq6qlWr5ny9f/9+ZWZmqlu3bvLx8VFQUJBatmypgwcPlkqhAAAArlLi1e6tVqtyc3Odr3ft2iWLxaKGDRs6t1WuXFnp6ek3VqGB4uPjFR8fL5vNZnQpAADAhUociEJCQrRz507n640bNyo0NFQhISHObSdPnlTlypVvrEIDxcbGKjY2VklJSRo8eLDR5QAAABcpcSDq0KGD5syZoz/96U/y8vLSoUOH9OSTTxY45vDhwwoPD7/hIgEAAFypxGOIevTooTZt2igpKUl79uxR06ZN9cQTTzj3HzlyRAcPHtTdd99dKoUCAAC4Sol7iLy9vTV58mRlZmbKYrEUePxekqpWraqFCxcWuIUGAABQHpW4h2jXrl06ceKE/Pz8rghDklSlShUFBATwlBkAACj3ShyIRo8erTVr1hR6zLp16zR69OiSngIAAKBMlDgQORyOIh1zeeJGAACA8sqli7seO3ZMfn5+rjwFAADADSvWoOpp06YVeL1lyxalpqZecZzdbldaWpp2796tpk2b3liFAAAALlasQPT7MUMWi0UHDx685qBpi8WiyMhIPfvsszdWIQAAgIsVKxAtW7ZM0qWxQY899pgeeeQR9erV64rjPDw8FBAQIF9f39KpEgAAwIWKFYh+P6fQuHHjdMcddzDPEAAAcHslnpixc+fOpVkHAACAYUociC5LSEjQ/v37ZbPZlJ+ff8V+i8Wifv363ehpAAAAXKbEgej8+fMaP3689u7dW+icRAQiAABQ3pU4EL377rvas2ePYmJi1KlTJ1WrVk1Wq7U0awMAACgTJQ5E27ZtU1RUlGbNmsVs1AAAwK2VeKbq7OxsNWjQgDAEAADcXokDUZ06da46SzUAAIC7KXEg6t+/v7Zu3ap9+/aVZj0AAABlrsRjiM6cOaNmzZpp5MiRat++verWrXvNhVw7depU4gJLQ05OjmbMmKHvv/9eNptNNWvW1LPPPqu77rrL0LoAAED5UOJA9Nprr8liscjhcGjNmjVas2bNFeOJHA6HLBaL4YHIbrcrJCREf//73xUcHKyNGzfqpZde0rJly1SxYkVDawMAAMYrcSAaN25cadbhUr6+vurfv7/z9f333693331Xv/zyiyIiIowrDAAAlAvlcumOCxcuaOnSpUpISFBiYqIyMjL00ksvXfWcOTk5Wrhwob788ktlZGSodu3aGjRokJo0aXLN9n/55RdlZGQoLCzMZZ8BAAC4jxIPqnal9PR0xcXFKTk5WXXq1Cn02Ndee03Lly9X+/btNXLkSHl4eGjMmDHavXv3VY/Pzs7W1KlT1bdvX/n7+7uifAAA4GZK3EN04sSJIh9bvXr1YrUdGBioTz75RIGBgdq/f7+GDBly1eMSEhK0YcMGDR06VH369JEkdezYUf3799ecOXM0Z86cAsfn5eVp4sSJCgsLK3ALDQAAmFuJA9Gjjz5apEkZLRaLNm7cWKy2vb29FRgYeN3jvv76a1mtVnXt2tW5zcfHR126dNH8+fN14sQJZxjLz8/X1KlTZbFYNH78eCaUBAAATiUORB07drxqqLDZbDp06JBSUlIUExOjkJCQGyqwMAcOHFB4ePgVj/tHRUVJkg4ePOgMRNOnT9fp06c1ffp0eXoW/rFPnTql06dPO18nJyeXcuUAAKA8KXEgGj9+/DX3ORwOLV26VP/61780duzYkp7iuk6fPn3VnqTL206dOiVJSk1N1eeffy5vb+8CvUlvvPGGGjRocMX7V61apbi4ONcUDQAAyp0SB6LCWCwW9enTR9u3b9c//vEPTZ061RWnUXZ2try8vK7Y7u3t7dwvSSEhIdq8eXOR2+3atatatmzpfJ2cnOyyzwAAAIznkkB0WUREhD7//HOXte/j46Pc3Nwrtufk5Dj3l0RQUJCCgoJuqDYAAOA+XPrY/fHjx2W3213WfmBgYIGxPpdd3kaoAQAARVHqgSg/P18nTpzQ4sWLtXXrVt15552lfQqnOnXq6NixY8rMzCywPSEhwbkfAADgekp8y+y+++4r9NF1h8OhgIAADR8+vKSnuK42bdpo6dKlWrVqlXMeopycHK1evVrR0dHFnv/oj+Lj4xUfHy+bzVYa5QIAgHKqxIGoQYMGVw1EFotFAQEBioyM1AMPPKCqVauWqP2PP/5YNpvNeftr69atSktLkyT17NlT/v7+io6OVtu2bTV//nydO3dOYWFhWrt2rVJTU0vl6bbY2FjFxsYqKSlJgwcPvuH2AABA+VTiQDR79uzSrOMKy5YtU2pqqvP15s2bnU+KdejQwbnsxvjx41W9enWtW7dONptNtWrV0uuvv66YmBiX1gcAAG4eLn3K7EYsX768SMf5+Pho2LBhGjZsmIsrAgAAN6tSCUR79uzRgQMHdOHCBVWsWFF169ZVvXr1SqNpAAAAl7uhQLRnzx5NmzZNx48fl3RpIPXlcUXh4eEaN26c7rrrrhuv0iAMqgYAwBxKHIiOHDmiF154QVlZWWrcuLEaNmyowMBAnTlzRjt37tR3332nF154QXPnzlXNmjVLseSyw6BqAADMocSBKC4uTrm5uXrjjTfUtGnTAvv69u2rHTt26KWXXlJcXJwmTZp0o3UCAAC4TIknZty1a5fatGlzRRi6rGnTpmrTpo127txZ4uIAAADKQokDUWZmpkJDQws9JjQ09IpZpAEAAMqbEt8yCwwM1L59+wo9JiEhQYGBgSU9heEYVA0AgDmUuIeoZcuW2rVrl9577z1lZ2cX2Jedna1FixZp586duvfee2+4SKPExsZq2rRpGjFihNGlAAAAFypxD1G/fv20bds2ffjhh1q1apWioqJUtWpVnT17Vvv379e5c+dUo0YN9evXrzTrBQAAKHUlDkSVK1fWnDlzNHfuXG3YsEHbt2937vP29lbnzp31zDPPqFKlSqVSKAAAgKvc0MSMVapU0bhx4/TCCy8oOTnZOVP1bbfdJk/PcrsqCAAAQAHFTi0ffPCBsrKy9PTTTztDj6enp2rXru08Jjc3VwsWLJCvr6+eeOKJ0qsWAADABYo1qPr777/XokWLVKlSpUJ7gLy8vFSpUiW99957+vHHH2+4SAAAAFcqVg/RunXrFBAQoB49elz32Icfflgffvih1qxZo7vvvrvEBRqJx+4BADCHYgWivXv3qlGjRvL29r7usd7e3mrcuLH27NlT4uKMxlpmAACYQ7FumZ06dUo1atQo8vGhoaE6ffp0sYsCAAAoS8UKRB4eHsrLyyvy8Xl5efLwKPHcjwAAAGWiWGklMDBQR44cKfLxR44cUVBQULGLAgAAKEvFCkT169fXjz/+qJSUlOsem5KSoh9//FENGjQocXEAAABloViB6OGHH1ZeXp4mTpyoc+fOXfO49PR0vfLKK7Lb7erWrduN1ggAAOBSxXrKLCIiQo888ohWrFihp556St26dVPDhg0VHBws6dKg6x9++EGfffaZzp07p0cffVQREREuKbws8Ng9AADmUOyZqocPHy5vb2/961//0pIlS7RkyZIC+x0Ohzw8PPTEE09o0KBBpVaoEXjsHgAAcyh2ILJYLBoyZIi6dOmi1atXa+/evTpz5owk6ZZbblG9evXUuXNnhYWFlXqxAIDf2B35Cp8RbnQZRRbgE6ApbaeoV3Qvo0sBrlDiFVjDwsLoNQEAA1gsl4d/OnQ847ihtRRLhjRh4wQCEcollqQHADdTyaeSlC9ZLVaFBbhHb3yKLUX5jnxlZGcYXQpwVQQiAHAzFT19pZxchfqH6tjzx4wup0jCZ4S7V28WTIdppAEAgOnRQwSUUytWSBMnShludochIECaMkXqxTARAG6EQASUUxMnSvv3G11FyUyY4D6BaN+Kfdo0cZOyM7KNLqXIBr/TVAG3+Cj3Yp68jC4GuEkQiIBy6nLPkIeHFBpqbC1FlZIi5edLP/8shbvJ0+CZJ26TZ96jaquNulOJRpdTJA57viQp+3w2gQgoJQSiQjBTNcqD0FDpmHuMm1VU1KVerfx86bjbjJ/1l+SvjWqrZmFu8kX/P4fDYXQJwE2DQFQIZqoGimfKlEu3y9xp3NOvx/PlkIdyPSro+WPPG11OkWR8stXoEoCbDoEIQKnp1ct9xg5dVsWaqfT8AKPLAGAwAhGAUuOOA5Qd+e695iKA0kEgAlBqNk3cpFP7TxldRrFcHoVj8bAYWgcAYxGIYAruOKdPSorRFRTf5Z4hi4dF/qH+BldTNB4pFilfOm/3c5sn4xwXG6uSf77GP5qsJx82uhrg5kAggim485w+AW44vMU/1N9tBigviJLS90v5DosbPRnno1/PSFP/dauefNPoWoCbA4EIpuCOc/rkXcyVbBm6J22rZoQfMLqcIrGluN8UFe74ZFxKikP5+RbZLlqNLgW4aRCIYCruNKfP36Pm69SZU9IZyY3+Wy1J8gnwMbqEInPHJ+PCAnP06xn3+Y4Bd0AgginkXcyV5CVbSoZmhC8wupwiudzb4k7jcaRLYajtlLZGlwEAxUIggilkn8+W5KX8fIcyjrtXf0vgHYEanjjc6DIA4KZGIIIpOPIvPVxtkRQQ5j6jlOltAYCyQSAqBGuZ3XwsHha3efoJAFB2CESFYC0zAADMgUAEAG4q9Zy320wmmWL7TvI6p4sPzDK6FOCqCEQA4Gb8fe2SpPx8d5pMMlRSqM6vfcHoQoCrIhABgJt5uc9/9bflt+m8zUMWX/eYj+j4r3bJYVV+tvtMIQFzIRABgJvp3uK0nnzQpvMnL+q90d8ZXU6RvODXWw5bmORwXP9gwAAEIgBwMxaLxfm/3WZerf/vGLo8BQZQ3hCIAMDN+FTykeSQxerhPvNqpRtdAFA4AhEAuBkvX08pJ1cBIf5uM6/WCwFuM/obJuVhdAEAAABGIxABAADTIxABAADTIxABAADTIxABAADT4ykzAHBXObnStp+MrqJIqvtEKNUmVfD0VvgMN1mATVKAT4CmtJ2iXtG9jC4FLkYgQrGtWCFNnChluMl8cJJ0Pt/P6BKA0uNpvRSGpN/+LOeslks3JCpZ/XQ8w40ewc+QJmycQCAyAQIRim3iRGn/fqOrKK5L/2fs45FjcB1AKahZQzr6q5RnN7qSYrPIQ2EBYUaXUSQpthTlO/KVke1G//pDiRGIChEfH6/4+HjZbDajSylXLvcMeXhIoaHG1lJUtpQMeeVnqVOl7ZIeMroc4MYE33Lpx4048rMlSWlnfRQ645jB1RSRLUXyOqeLD8wyuhKUAQJRIWJjYxUbG6ukpCQNHjzY6HLKndBQ6Zib/P/ajPAFyjieoQBfN1nmALjJ+Pte6s3Kz7fouNvcMQuVFKr0NX82uhCUAQIRAMDlJjz+i15ddqvO2zyUcSbb6HKKJMPiJzmsyr/IGEQzIBABAFyudyebnuiyTxlnsrVgxA6jyymSF9J7y2Fzj/FOuHEEIgCAy7EgLco7AhGKLe9iriQv2VIyNCN8gdHlFIkthYHxAIBrIxCh2LLPZ0vyUn6+QxnH3etxVJ8AH6NLAACUQwQiFJsj3yFJskgKCHOfp7Z8AnzUdkpbo8sAAJRDBCKUmMXD4jZjAQAAKAyLuwIAANMjEAEAANMjEAEAANMjEAEAANMjEAEAANPjKTMAAArhyAxReLjRVRRdQIA0ZYrUq5fRlbgXAhEAAFdh8bbJIUkOq4672SoeEyYQiIqLQAQAwFVUaPmqLmx7SZasSqpR2T0WeU1JkfLzpQz3WkSgXCAQAQBwFV4Rq6RGS1TJVlnH3jxndDlFEh4ut+vNKi8YVA0AAEyPQAQAAEyPW2YAABTifMXzqvJiFaPLKJLz6fskhcl2IUOS+yy+XR6YJhB9+umn+uyzz3T48GE9+eSTevrpp40uCQBQjlWwV1C60uXwcCjdP93ocorG4pAkZeQSiIrLNIEoMDBQAwYMUHx8vNGlAADcwNg7x+r1fa8ry5pldClFdjm2OS5NGIBiME0gatWqlSRp+/btBlcCAHAHzw18Ts/pOaPLKBaPuceJQiVULgPRhQsXtHTpUiUkJCgxMVEZGRl66aWX1Llz5yuOzcnJ0cKFC/Xll18qIyNDtWvX1qBBg9SkSRMDKgcAAO6oXD5llp6erri4OCUnJ6tOnTqFHvvaa69p+fLlat++vUaOHCkPDw+NGTNGu3fvLqNqAQCAuyuXgSgwMFCffPKJVqxYoaFDh17zuISEBG3YsEFDhgzRsGHD1LVrV82aNUshISGaM2dOGVYMAADcWbkMRN7e3goMDLzucV9//bWsVqu6du3q3Obj46MuXbpo3759OnHihCvLBAAAN4lyOYaoqA4cOKDw8HD5+fkV2B4VFSVJOnjwoKpXry5JysvLk91uV35+vux2u7Kzs+Xp6Smr1XpFu6dOndLp06edr5OTk134KQAAgNHcOhCdPn36qj1Jl7edOnXKue2DDz5QXFyc8/WSJUuuOVB71apVBY4FAAA3N7cORNnZ2fLy8rpiu7e3t3P/ZU8//XSRJ2Ps2rWrWrZs6XydnJysqVOn3mC1AACgvHLrQOTj46Pc3Nwrtufk5Dj3l0RQUJCCgoJuqDYAAOA+3DoQBQYG6uTJk1dsvzz+h1ADADAjh8XhNuuvXVbBXkFj7xyr5wYaMxmmWweiOnXqaOfOncrMzCwwsDohIcG5/0bEx8crPj5eNpvthtoBAKAsWGRxzlTtNuuv/b90pev1fa8bNju4WweiNm3aaOnSpVq1apX69Okj6dLtstWrVys6Otr5hFlJxcbGKjY2VklJSRo8eHBplAwAgMsEeAUoXZLFYVElW2Wjyymy8xXPy+HhMHTduHIbiD7++GPZbDbn7a+tW7cqLS1NktSzZ0/5+/srOjpabdu21fz583Xu3DmFhYVp7dq1Sk1N1dixY40sHwCAMudfMUDpZ6UalcN07M1zRpdTZFVerGJ4j1a5DUTLli1Tamqq8/XmzZu1efNmSVKHDh3k7+8vSRo/fryqV6+udevWyWazqVatWnr99dcVExNjRNkAAMANldtAtHz58iId5+Pjo2HDhmnYsGEurggAAPeQkiKFhxtdRdGdT98nVTiv3OavGVZDuQ1E5QGDqgEA7iQg4NKf+fnS8ePG1lI8YZItTFlb/2JYBQSiQjCoGgDgTqZMkSZMkDIyjK6keI7/apccVjly/A2rgUAEAMBNolevSz/uxiMgVQ5bmLE1GHp2AACAcoBABAAATI9bZoVgUDUAAOZAICoEg6oBADAHbpkBAADTIxABAADTIxABAADTIxABAADTY1C1wT7bXF0zP4hU+gWLPHyMrqZozuf7GV0CAAClikBUiLJ47P7NxXV18Bdfl7XvGpc6Fn08cgyuAwCA0kEgKkRZPHafefHSX4GHh0OhoRaXnKO02VIy5JWfpU6Vtkt6yOhyAAC4YQSicqL6Ldk6dqyC0WUUyYzwBco4nqEA3wCjSwEAoFQwqBoAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgeT5kVoizmIQIAAMYjEBWiLOYhAgAAxuOWGQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD3mISoEEzMCAGAOBKJCMDEjAADmwC0zAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgesxUbTDH5T8d0ozwGYbWUlS2FJYyAQDcXAhEhSiTtcwcv/3PjOMZrjuPC/gE+BhdAgAApYJAVIiyXsssICzA5ecoLT4BPmo7pa3RZQAAUCoIROXI88eeN7oEAABMiUHVAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9FjtHgBQdnJypW0/GV1F0XlapZo1pOBbjK4ELkYgKkR8fLzi4+Nls9mMLgUA3Jun9VIYkn770x3k5EpHfyUQmQCBqBCxsbGKjY1VUlKSBg8ebHQ5AOC+ata4FCzy7EZXUnSXg5s71YwSIxABAFwv+Bb362XZ9pN79WbhhjCoGgAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6r3RdBdna2JCk5ObnU2/apkCM/P2/5VMhRUpJ3qbcPACih479IuXmSl6eUVMHoam5qfr4n5XDYZPE9qaQkW6m3f9ttt6lChcL/Di0Oh8NR6me+yXz55ZeaOnWq0WUAAIASWLBggSIiIgo9hkBUBOfOndO3336rTz/9VKNGjSrSe9555x2NGDHiusclJydr6tSpevnll3XbbbfdaKk3haJ+d0Yo69pcdb7SavdG2inJe4v7nqIczzV4pfJ8DUpch6XZjquvw/Ly38Ki9BBxy6wIqlSpog4dOuirr766bsK8zN/fv8jHSpf+sopz/M2suN9dWSrr2lx1vtJq90baKcl7i/ue4hzPNfib8nwNSlyHpdmOq69Dd/pvIYOqiyE2NtYlx6Kg8vzdlXVtrjpfabV7I+2U5L3FfU95/l0qz8r798Z1WHrtuPo6LO+/S7/HLTODJSUlafDgwUW6vwmg9HENAsYrD9chPUQGCwwMVP/+/RUYGGh0KYApcQ0CxisP1yE9RAAAwPToIQIAAKZHIAIAAKZHICrncnJyNG3aNPXq1UudOnXSM888o7179xpdFmAqb775prp3765OnTqpX79+2rp1q9ElAaa1d+9e3XfffVq8eHGptssYonLu4sWLWrZsmTp37qzg4GBt3LhRs2bN0rJly1SxYkWjywNMITk5WaGhofL29lZiYqKef/55LV26VJUrVza6NMBU8vPzNWzYMDkcDrVo0UL9+vUrtbbpISrnfH191b9/f1WvXl0eHh66//775enpqV9++cXo0gDTuO222+TtfWmtQYvFotzcXJ06dcrgqgDz+eyzzxQVFeWS2ayZqbqUXbhwQUuXLlVCQoISExOVkZGhl156SZ07d77i2JycHC1cuFBffvmlMjIyVLt2bQ0aNEhNmjS5Zvu//PKLMjIyFBYW5sqPAbgtV12DM2bM0OrVq5WTk6NmzZqpVq1aZfFxALfkiuswPT1dK1as0Jw5c/TOO++Ues30EJWy9PR0xcXFKTk5WXXq1Cn02Ndee03Lly9X+/btNXLkSHl4eGjMmDHavXv3VY/Pzs7W1KlT1bdvX/n7+7uifMDtueoafP7557Vu3TrNnDlTTZo0kcVicdVHANyeK67DBQsW6JFHHlFAQIBrinagVGVnZztOnTrlcDgcjsTEREerVq0cq1evvuK4ffv2OVq1auX45z//6dyWlZXleOyxxxzPPPPMFcfn5uY6xowZ45g8ebIjPz/fdR8AcHOuugZ/b+zYsY7//Oc/pVs4cBMp7eswKSnJMXDgQEdeXp7D4XA4Xn31VUdcXFyp1kwPUSnz9vYu0kybX3/9taxWq7p27erc5uPjoy5dumjfvn06ceKEc3t+fr6mTp0qi8Wi8ePH8y9ToBCuuAb/yG636/jx46VSL3AzKu3rcNeuXfrll1/Us2dPde/eXV999ZX++c9/6rXXXiu1mhlDZJADBw4oPDxcfn5+BbZHRUVJkg4ePKjq1atLkqZPn67Tp09r+vTp8vTkrwwoDUW9Bm02m7Zt26aWLVvK29tbW7Zs0c6dOzVkyBAjygZuKkW9Drt27ar777/fuX/27NkKDQ1V3759S60W/utqkNOnT181PV/edvkJltTUVH3++efy9vYukKDfeOMNNWjQoGyKBW5CRb0GLRaLPv/8c82cOVMOh0NhYWGaMGGC6tatW6b1Ajejol6HFSpUUIUKFZz7fXx85OvrW6rjiQhEBsnOzpaXl9cV2y8/2pudnS1JCgkJ0ebNm8u0NsAMinoN+vn56e233y7T2gCzKOp1+Efjx48v9VoYQ2QQHx8f5ebmXrE9JyfHuR+A63ANAsYrT9chgcgggYGBOn369BXbL28LCgoq65IAU+EaBIxXnq5DApFB6tSpo2PHjikzM7PA9oSEBOd+AK7DNQgYrzxdhwQig7Rp00Z2u12rVq1ybsvJydHq1asVHR3tfMIMgGtwDQLGK0/XIYOqXeDjjz+WzWZzdvlt3bpVaWlpkqSePXvK399f0dHRatu2rebPn69z584pLCxMa9euVWpqqsaOHWtk+YDb4xoEjOdu1yGr3bvAo48+qtTU1KvuW7ZsmUJDQyVdGj1/ef0Wm82mWrVqadCgQbrnnnvKslzgpsM1CBjP3a5DAhEAADA9xhABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABMJXWrVsX+MnOznbuW7NmjVq3bq01a9YYWOFv/v3vfxeo9W9/+5vRJQE3LVa7B+ASKSkp6t27d6HHhISEaPny5WVUUcHzdurUSZJktVpdeq5vv/1WL7zwgpo0aaK33nqr0GP/+te/Kj4+XhMmTFD79u0VERGh/v37y2azaeXKlS6tEzA7AhEAlwoLC1P79u2vus/f37+Mq7kkJCRETz/9dJmcq3Hjxqpevbp++OEHnThxQtWrV7/qcTabTVu2bJG/v79at24tSYqMjFRkZKRSUlIIRICLEYgAuFRYWFiZhY/yyMPDQ507d1ZcXJzWrl2rfv36XfW4+Ph4ZWdn64EHHpCPj08ZVwmAMUQAyo3WrVtr5MiROnnypP7617/qoYceUseOHTVmzBj9+uuvkqSjR49q/Pjx6tKlizp27KgJEybozJkzLq0rLS1N/fr1U2xsrDZt2uTcfvbsWb3zzjvq06eP7r//fj300EN6+eWXdfjw4QLvf+CBB2SxWLRmzRo5HI6rnmP16tWSpC5durjscwC4NgIRgHIlIyNDw4cPV0pKijp27KiGDRtq+/btev7553X48GENGzZMFy9e1AMPPKDIyEh9/fXXmjx5ssvqOXr0qIYNG6a0tDS9+eabatOmjSTp+PHjGjRokFasWKEaNWqoR48eatasmb799lsNHTpUCQkJzjZCQkLUqFEj/frrr9q5c+cV5zh8+LD279+vunXr6o477nDZZwFwbdwyA+BSx48f16JFi666784771TTpk0LbDt06JAeffRRPfvss85tM2bM0Keffqpnn31WAwYM0COPPCJJcjgcGjt2rLZv366kpCRFRESUau379u3T2LFj5enpqXfeeUd16tRx7nv11Vd15swZTZ8+Xffcc49z+1NPPaXBgwfrjTfeUFxcnHN7ly5d9P3332v16tW6++67C5yH3iHAePQQAXCp48ePKy4u7qo/O3bsuOJ4X19fDRo0qMC2+++/X5JUuXJl9erVy7ndYrE49x06dKhU6962bZuee+45BQQE6B//+EeBMPTzzz9r79696tixY4EwJEn/8z//owcffFCHDx8ucOusVatWqly5sr7++mtlZmY6t+fl5enLL7+Ut7f3NQefA3A9eogAuNQ999yj6dOnF/n48PBwVahQocC2wMBASVKtWrVksViuuu/UqVM3WOlvNm7cqO+++061a9fWm2++qapVqxbYf/l22NmzZ6/a+/Xf//7X+WetWrUkyRl4Vq5cqfj4eHXr1k2StHXrVp07d06xsbEKCAgotc8AoHgIRADKFT8/vyu2XZ4rqLB9eXl5pVbDvn37ZLfbVb9+/SvCkCSdP39e0qVepG3btl2znYsXLxZ43aVLF61cuVKrV692BiJulwHlA4EIAP5gyJAh+uabb7Ry5UpZrVYNHz68wP7LwWzUqFHq2bNnkdutXbu2IiMjlZiYqCNHjiggIEDffvutQkNDrxhXBKBsMYYIAP7A29tbr776qpo3b65ly5bp3XffLbA/KipK0qWepOK63BP0xRdfaN26dbLb7c7H8gEYh0AEAFfh7e2tqVOnqkWLFlq+fLneeecd577o6GhFR0drw4YN2rBhwxXvzc/P165du67abmxsrCpUqKAvv/xSq1evloeHh3MZEQDG4ZYZAJcq7LF7Serbt2+5nZnZy8tLU6ZM0cSJE7VixQo5HA6NHDlSkjRx4kSNHj1akydP1sqVK1W3bl35+PgoLS1Ne/fuVXp6uuLj469o08/PT/fdd5/WrVunc+fOqWnTptdczgNA2SEQAXCpy4/dX8sjjzxSbgOR9FsoeuWVV7Ry5Uo5HA6NGjVKNWrU0MKFC7Vs2TJt2bJFa9askYeHhwIDA9WgQQPnBI5X06VLF61bt07SpVmsARjP4rjWPPIAcBNq3bq1YmJiNHv2bKNLKbKUlBT17t1bnTp10vjx440uB7gp0UMEwHR27drlXFF+/fr15baH6t///rfeeusto8sATIFABMBU+vfvX+D15XmMyqOIiIgC9datW9e4YoCbHLfMAACA6fHYPQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAML3/AwXLkq2g7JBmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the counts distribution\n", + "ax,plot = bkg.project(\"Em\").draw(label = \"background component\", color = \"purple\")\n", + "data.project(\"Em\").draw(ax, label = \"data(GRB+bkg)\", color = \"green\")\n", + "signal.project(\"Em\").draw(ax, label = \"GRB signal\", color = \"pink\")\n", + "bkg_model.project(\"Em\").draw(ax, label = \"background model\", color = \"blue\")\n", + "\n", + "ax.legend()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "id": "2741ff6e-a653-4d89-86c8-27505a624311", + "metadata": {}, + "source": [ + "#### Read the orientation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "aa47b873-81f1-4d23-9624-6f62871c857c", + "metadata": {}, + "outputs": [], + "source": [ + "# read the full oritation but only get the interval for the GRB\n", + "ori_full = SpacecraftFile.parse_from_file(orientation_path)\n", + "grb_ori = ori_full.source_interval(Time(grb_tmin, format = \"unix\"), Time(grb_tmax, format = \"unix\"))\n", + "\n", + "# clear redundant data from RAM\n", + "del bkg_full\n", + "del ori_full\n", + "_ = gc.collect()" + ] + }, + { + "cell_type": "markdown", + "id": "06acabfd-438a-4091-adda-82dc1a91cbfe", + "metadata": {}, + "source": [ + "### Start TS map fit" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "814399a6-2a79-4a8f-9ed8-55cc4da60058", + "metadata": {}, + "outputs": [], + "source": [ + "# here let's create a FastTSMap object for fitting the ts map in the following cells\n", + "ts = FastTSMap(data = data, bkg_model = bkg_model, orientation = grb_ori, \n", + " response_path = response_path, cds_frame = \"local\", scheme = \"RING\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "a45a9e06-edd7-4b4e-9b64-c65863789f34", + "metadata": {}, + "outputs": [], + "source": [ + "# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source spectrum.\n", + "# note that this nside is also the nside of the final TS map\n", + "hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)" + ] + }, + { + "cell_type": "markdown", + "id": "1a9166fa-c2f2-4a76-93a2-d29bade03075", + "metadata": {}, + "source": [ + "Below is the actual parallel fit:\n", + "- In default, the maximum number of cores it can use is `max_number-1`. You can also customize the number of cores you want to use by the `cpu_cores` parameter.\n", + "- energy channel is `[lower_channel, upper_channel]`. Lower channel is inclusive while the upper channel is exclusive\n", + "- This might take long in a personal computer" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c3188898-ee3f-4100-b2da-340333f22756", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have total 56 CPU cores, using 55 CPU cores for parallel computation.\n", + "The time used for the parallel TS map computation is 1.896751336256663 minutes\n" + ] + } + ], + "source": [ + "ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [2,3], spectrum = spectrum, ts_scheme = \"RING\", cpu_cores = 56)" + ] + }, + { + "cell_type": "markdown", + "id": "f7bfce3f-e64d-4b22-b74e-2a697ed6e5a3", + "metadata": {}, + "source": [ + "### Plot the fitted TS map" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "940d989a-5671-4de3-962c-e49556240c5f", + "metadata": {}, + "outputs": [], + "source": [ + "# This the true location of the GRB\n", + "coord = SkyCoord(l = 93, b = -53, unit = (u.deg, u.deg), frame = \"galactic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "faa698a0-0ffa-4b1b-8b79-b66af1ff800f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeZhsVXno/7eqxzNzzgEkgEocQSQqKoM4MIjG2dwYR4jmuUaj3sTc+MSouYkZjSa5mR6HqzEqRoEoSRyiGJUAMqgoiopD8CcCiszDGfv0VPX7o2tV71p7rb3X8O7q6uL7eZ48hj7dq3fXsLu61vru1ep2u10BAAAAAAAAAAAYU+21PgAAAAAAAAAAAIAmMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAHAf02q1Sv/3oQ99KPjrP/ShDznHwNo79dRTS/fLK17xirU+LPmjP/qj0nEdddRRa31Y8OD+AgAAwDhiMgQAAAAAAAAAAIw1JkMAAMBIueGGG5zVQfH/jjvuuEa+90033SQTExOV35vV0QAAAAAArD9MhgAAgHXn2muvlauvvlp93HPOOUc6nY76uAAAAAAAYG0xGQIAANalc845Z12MCQAAAAAA1h6TIQAAYF0677zzZHFxUW28yy67TH70ox+pjQcAAAAAAEYHkyEAAGBduvPOO+XTn/602ngf+tCH1MYCAAAAAACjhckQAACwLuzcubP0Ma3LWu3fv18+/vGPD3xscnJStm3bpjI+MCyXXHKJdLvdgf9jog+x/uiP/qj0OLrhhhvW+rAAAACALEyGAACAdeF5z3uebNy4ceBjF154odxxxx3ZY//rv/6r7NmzZ+Bjz3jGM+Sggw7KHhsAAAAAAKw9JkMAAMC6sGXLFvkf/+N/DHxscXFRPvrRj2aP/cEPfrD0sVe84hXZ4wIAAAAAgNHAZAgAAFg3Xv7yl5c+lnsJoBtvvFEuueSSgY/t3LlTnv3sZ2eNCwAAAAAARgeTIQAAYN04/fTT5f73v//Ax771rW/JNddckzzmOeecI91ud+BjL3nJS2R6ejp5TAAAAAAAMFom1/oAAAAAQrXbbfnVX/1V+fM///OBj59zzjny6Ec/Onq8brcrH/7wh0sfH9Ylsm6++Wb51Kc+JZdffrl873vfk5tuukn27t0r3W5XNm3aJEceeaQcffTRcsopp8hzn/tcedCDHjSU44KO73//+3LhhRfKlVdeKdddd53cfPPN/ft38+bN8oAHPECOPfZYefKTnyy/9Eu/JIceeuhaH3Klb37zm3LBBRfIZZddJtddd53cc8890mq1ZNu2bfLgBz9YHvvYx8pznvMceepTnyrt9nDXXC0uLspFF10kF198sVx99dVy/fXXy5133in79++X6elp2b59uzzoQQ+Sxz3ucXLmmWfKmWeeKVNTU0M9RqzqdDpy+eWXy0UXXSRXXXWV/OhHP5Lbb79d9u3bJ5OTk7Jt2zY56qij5Pjjj5fTTz9dnvWsZ8mGDRvW+rABAACw3nUBAABGyI9//OOuiJT+7/Wvf3232+12f/jDH5b+7dBDD+0uLi5Gf69LL720NNZxxx3X//cHPvCBpX9/4AMfmP0zXnXVVd1nPetZ3Xa77fxZff/3lKc8pXvRRRdlf3/X2B/84AeDv/6DH/ygc4w6T33qU0tf88IXvjD6+K+77jrvbfS2t70terxzzz23NM7ExER3165d0WMtLy93zzvvvO7xxx8fdd9OTEx0X/KSl3Svu+666O9Z9JSnPKU09stf/vKsMa+++mrnuL7/e+hDH9r92Mc+NjDGW9/61kaeS3fccUf3zW9+c3fnzp1Rt/ehhx7affvb396dm5vLPoZUL3rRi0rHNTU11b3jjjtUv8/jHve40vc5/PDDu0tLS96vaer+2rNnT/cd73hH94gjjoi6v7Zu3dp905ve1L3nnnuivt/CwkJ348aNpfHe/e53Rx/7+973Pu/xXXnlldHjvepVryqN8/jHPz56HAAAAITjMlkAAGBdechDHiKnnHLKwMduv/12+cxnPhM9lmu/Ede+JFoOHDgg/+t//S858cQT5TOf+Yx0Op2or7/00kvljDPOkJe97GWya9euho6yOWeccUbpYxdffHHpMmV1LrroIu+//dd//Vf0cbnGe/zjHy9bt26NGue73/2uPOEJT5CXvOQl8o1vfCPqa5eXl+W8886T4447Tv76r/866mub9I53vENOPPFEufTSS4O/5oc//KG88IUvlLPPPlsWFhYaO7Z/+qd/koc+9KHyF3/xF3LXXXdFfe3tt98ub3rTm+RRj3qUXH311Q0dYTXXuWZxcVHOO+88te/xve99T77+9a+XPn722WfLxMSE2vcJ8alPfUqOPvpo+b3f+z25+eabo7529+7d8va3v10e8YhHyOc///ngr5uampInPelJpY9XnUN8hnHecZ0jAQAAoIfJEAAAsO643kQ855xzosbYt2+ffPzjHx/42OTkpLzsZS/LOjafu+66S57ylKfIu971rug3/23nnnuunHTSSXLjjTcqHd1wuN7ou+OOO+Tb3/521DhVb0peccUVMj8/nz3e6aefHjXGv/3bv8mJJ54oX/3qV6O+zjY/Py+/+7u/K694xSuiJ8u0/eZv/qa86U1vkqWlpaSv/8hHPiLPe97zkr/eZ3FxUV7+8pfLK1/5Srn33nuzxrruuuvkSU96knz605/WObgIT3va0+Tnfu7nSh+PPZdV8Y3V5KSvy1ve8hZ53vOeFz0JYrvlllvkmc98przvfe8L/hrfJGzM86vb7crFF1/s/ffYyZUbb7xRfvSjH5U+HnveAQAAQBz2DAEAAOvOi170Inn9618vc3Nz/Y995jOfkbvuukt27twZNMYFF1wge/fuHfjY05/+dDnssMNUj1VkZeLlaU97WmUtMDs7K8cdd5wcfvjhMjk5KTfffLN897vflT179jg//wc/+IGcccYZcuWVV478XhPG8ccfL9u2bStVLRdddJE86lGPChqj2+3KJZdc4v33ubk5ufLKK+W0004LGu/HP/6x3HDDDaWPx6zQPvfcc+VXf/VXZXl52fs5hx12mBx99NGyc+dOmZyclNtuu02uvfZaufPOO52ff84558imTZvkXe96V/BxaPrzP/9zeec73+n991arJccee6zc//73l61bt8ott9wi//3f/y233XbbwOd97nOfk9/93d+Vbdu2qRzX4uKivOAFL5BPfepT3s9pt9vyiEc8Qo444gjZsWOH7Nu3T2655Ra55pprZHFxsfT5c3Nz8oIXvEAuuugieeITn6hynCEmJibkrLPOkr/6q78a+PjVV18t3/3ud+XYY4/NGn95eVk+8pGPlD5+wgknyDHHHJM1dozXvva18p73vKfycx72sIfJAx/4QNm5c6fMz8/LbbfdJt/85jcHzvHG8vKy/MZv/IZs27ZNXvSiF9V+f9cEw9133y3XXHONHH/88UE/w7XXXiu3336799+vvPJKmZubC97XxFWSzMzMDPXxBwAAcF9EGQIAANadrVu3yi/90i8NfGxhYUHOPffc4DFcl8hqauP0N7zhDd6JkPvf//7ygQ98QG677Ta56qqr5BOf+IRccMEF8uUvf1luu+02+Zd/+Rc5+uijnV/7ox/9SF75ylc2csxNmJiYkFNPPbX08ZhV1d/61re8Ewgp47k+d3Z2Vp7whCcEff1ll10mr3jFK5wTIdu2bZPf+73fkx/84Adyyy23yMUXXywXXHCBnH/++XLxxRfLbbfdJldccYU84xnPcI797ne/Wz75yU8G/yxavv71r8tb3/pW579NT0/LH/zBH8iPf/xj+c53viOf/exn5fzzz5dLL71Ufvazn8kXv/jF0pvPf//3fy+XXXaZyrH95m/+pnci5Bd+4Rfkwx/+sNx5553yne98Rz73uc/JueeeK5/85CflqquukjvvvFM+8IEPyAMe8IDS1y4sLMhZZ50lu3fvVjnOUL5zzoc//OHssb/4xS/Kz372s9LHh1mFvP3tb/dOhDzoQQ+Sd73rXf2JtM9//vNy3nnnyb/927/JFVdcIXfddZdccMEF8ohHPKL0td1uV1796lfLTTfdVHsMj3nMY2T79u2lj+eeJ4rm5+fliiuuyBrvpJNOYpN4AACAhjEZAgAA1iXXm4iuCQ6XG264obQHwo4dO+S5z32uwpEN+tznPifvfe97nf/2K7/yK3LttdfKr/3arzn3p9iwYYO88IUvlG9+85vy6le/2jnGpz/9afmnf/on1WNukqu4+NKXvuRcse8S8gZm7pucT3jCE2R2drb2a3ft2iUvfvGLncf+zGc+U370ox/J29/+dnn4wx/u/Pp2uy1PeMIT5LOf/ax89KMflenp6dLnvPKVr6xcka5teXlZXvWqVzkndx70oAfJ17/+dfmTP/kTeeADH1j693a7LWeccYZ88YtfHNj3pNvtJu2pYPv4xz/ufC5NT0/LP/zDP8i3vvUtOfvss51vfIusTKL+2q/9mvzgBz+QF7zgBaV/v/HGG+U3f/M3s48zxiMe8Qh53OMeV/r4Rz7ykcrSKITrElkzMzPy4he/OGvcUF/96lfl93//90sfb7Va8uY3v1muu+46ee1rX+ut8TZs2CC//Mu/LN/+9rfl9a9/fenfd+3aJb/6q79aexztdttZimlOhsSO53o+sF8IAABA85gMAQAA69IZZ5whRx555MDHvvGNb8h3vvOd2q8955xzSvt2vOQlL3G+GZ2j0+nI6173Oue/PfvZz5Zzzz03aJPu2dlZec973uN94+8Nb3hD6ZJfo8p1yZq9e/fKVVddFfT19puIU1NT8tSnPnXgY1/72teCV/i79gEIvW7/W97yFufK+1e+8pXyH//xH8GXbBMReelLXyr/+q//Kq1Wa+Djd955p/z93/998Di53ve+98k3v/nN0scPOeQQ+dznPifHHXdc7RitVkve8IY3yNve9ja149q7d69zomJ6elouvPDCqEmMDRs2yMc+9jHnJZb++Z//Wa677rqsY43lmtg1lU2q3bt3yyc+8YnSx5/znOfIjh07kscN1el05Nd//ded+3Kcc8458ra3vS14A/eJiQn5u7/7O/nd3/3d0r9deuml8oUvfKF2DNdz+rLLLpOFhYXar11eXpYvfelLAx878cQTS7dj6GTI97//fbnllluCjhEAAAC6mAwBAADrUrvdlrPPPrv08brNh7vdrvMSNE1cOuazn/2sXH/99aWPH3744XLeeefJ5GT49m2tVkve//73O6/1v2vXLpXL6gzDscce61wJHvJG4uLiovNNSbvoWV5eLpU/Ltdee21pjwuRsBXaN9xwg/zjP/5j6eOnnnqqvOc97ylNaoR49rOfLb/zO79T+vj73vc+OXDgQPR4KXyXNHrf+94nD33oQ6PGevOb3yy/+Iu/qHFY8g//8A/O++pd73pX0pvIrVZL/vEf/1F+/ud/fuDj3W5X/uEf/iH5OFP4JmJzNlL/2Mc+5txvY1iXyDr//POdE9O///u/7zxvh3jb294mJ554YunjIZOFruf0/v375Stf+Urt17omV88888zSJf++8Y1vyL333ls7nutct3nzZjnhhBNqvxYAAAB5mAwBAADrlmtF9Uc/+lFZWlryfs2XvvSl0gTFscceK49//OO1D8+7+fU73vEO2bx5c/R4U1NT3jf+3v3ud0ePt1Zcb16HTIZcddVVpQLmjDPOcL7RmXpZmy1btjgvW2R717veVbo81sTEhLzzne+MmuSy/Z//839Kj40777xTPvaxjyWPGeqrX/2q8w3s0047TZ7//Ocnjfk3f/M3WbeHiMjS0pJzM/eTTz45a8+cLVu2yFve8pbSx8855xzZv39/8rixduzYIc95znNKH//EJz6RvIeJa3L0fve7n9rkVJ2//du/LX3sqKOOkj/4gz9IHnNyclL+7M/+rPTxz372s3LDDTdUfu3RRx8thx9+eOnjqecJ13lneXlZLrnkkqTxnvSkJ8nU1FTt1wIAACAPkyEAAGDdetjDHiYnn3zywMduvfVW+c///E/v13zwgx8sfayJ1dJ333238ziOOOIIeelLX5o87plnnimPecxjSh//7ne/K9/61reSxx0m12TIV77yFdm3b1/l1/mus/+IRzxCfu7nfm7g4yFvcrrGe8pTnlL75n2n05F//ud/Ln38l3/5l+XYY4+t/b5VDjroIHnZy15W+rjGnht1PvrRjzo/7qpVQh1zzDHeDeJDff7zn3deVijnjXXj7LPPLl2qLuaybVpc56C5uTn5+Mc/Hj3W9ddfL5dffnnp4y972cuyJ6ZCfO9735Ovf/3rpY+/8Y1vlJmZmayxn/rUp5b24Ol2u0GTEK7zTsilyOzn3oYNG+Tkk09OmoTtdDrOao39QgAAAIaDyRAAALCuxWykvnfvXrngggsGPjYxMZF82ZYqX/nKV0r7koisXBKn3c57CeY73i9/+ctZ4w6L642/hYUFueyyyyq/zn6jcdOmTXLSSSeJSPmNTt8lsAzfpbRCLrn09a9/3Tm2aw+KFK7Nnq+88kqVsau4vseOHTvk6U9/eta4rsmdGP/xH/9R+tiOHTvkzDPPzBpXZGVD8Sc84Qmljw/j9i56xjOeIYceemjp4ymXyvrwhz/sPPcM6xJZrvtrYmLCuWl9itTnh+u8c9VVV8mePXu8X3PgwIHS2E984hNlZmZGHv7wh8sRRxwx8G91kyHf+MY35J577il9nP1CAAAAhoPJEAAAsK696EUvktnZ2YGPffrTn5a777679LkXXHBBqT54+tOf7tzDIpfvWvTPetazsse298io+56j5qijjpIHPehBpY9XvZE4NzdXmuwpXlrG9UZnVU3x9a9/XXbt2lX6eMgKbd9+JBpvzouIPPaxjy197Ic//KHcddddKuO7zM/Py7e//e3Sx88444zsy/c84xnPSNpDxXDd3qeddppa5eC6vYf9XJqcnHROGl1++eXy4x//OHgc355Ij3nMY+QXfuEXso4xlOv+evSjHy2HHHKIyvip95frub20tFTah6joiiuuKO3XUxzHHtO3ObrhOsft3LlTHv3oR3u/BgAAAHqYDAEAAOvatm3bSvsZzM/Py/nnn1/6XFcx0tRqaddlYkRE5U2vBz3oQaVL+4isbPS7XsTuG3L55ZfLwsLCwMeq3pSsG881UXLIIYfIcccd5/0a45vf/GbpY0ceeaRs2bKl9mtDHHzwwc6P//SnP1UZ3+Xb3/52aQ8UEVF5A33r1q1y1FFHJX3t3Nyc/Pd//3fp48ccc0zmUa1y3d4/+clP1MYP5arcfJMbPpdddplz8mRYVYiI+/kxCvfX/e9/f3nIQx5S+njseUL7vHPaaadlTRYCAAAgXPMXjQUAAGjYK17xitLkx4c+9CF57Wtf2//vH//4x6UVwNu3b5fnPe95jRyTa3XwAx7wADnooIOyx261WnLcccfJFVdcMfDxW2+9NXvsYTnjjDPk/e9//8DHrrnmGrnrrrtk586dpc/3bWJsPOABD5AHP/jB8qMf/ajya6r+LfRNyR/+8Ielj83PzzvfzE7husSRiDgvr6PFN9ESMjkU4rjjjosqHIzrr79elpeXSx+/6KKL1CYsXPdnk7e1zy/8wi/Iox/9aLnmmmsGPv7hD39Y/vAP/zDosem6rNbU1FT2pcpC7du3z3nu+9a3vqX2/HCNv2vXLul0OrWXIDzjjDPk//v//r+Bj8WcJ7Zv3y7HH398/799k7pnnXVW6eMLCwvOvVy4RBYAAMDwMBkCAADWvTPPPFOOOOIIufnmm/sf+9rXvibf+9735BGPeISIrLxJaL/J/OIXvzh7Q1+fe++9t/QxrcvEiIhzf4Fdu3ZJt9tdF6uMTz/9dGm1WgP3SbfblYsvvti5t4C9otp1aZkzzjhjYDLkhhtukOuvv750Sa75+XnnHgOhmxgXH2fGHXfckbS/Q4wm36B3PV5F/JVKrNRxXLe1yMr+OE3ukbMWkyEiKxO7v/3bvz3wMbMh+pOe9KTKr/VtuP7MZz5T7X6s47u/vvOd78h3vvOdxr5vt9uVXbt2yfbt2ys/74wzzpD3vve9pWO74447Sufn3bt3lwq/U089dWDC5cgjj5SHPexhct111/U/5ptc+cpXviL79+93HhMAAACGg8tkAQCAda/dbjs3FTdvTvsuNaO1UtnF9Waq69JWqbZt21b62PLycuVmwKPk0EMPlWOPPbb0cdcbiffee6984xvfGPiYq+IIvWTNlVdeKXNzc6WPh67Qdu01Mgy7d+9ubGzfz6T1mE0dZxxv6yovfelLnXu0hFwq69///d+dz/9hXiJrre4vkbD7zHXe6Ha7zstXXXrppaUqyXWOsT/2k5/8xFkbuc5FZjIFAAAAw8FkCAAAGAuuiY2PfOQjsry8LJdccknpEj3HHHOMnHDCCY0dz969e0sf27Rpk9r4vrHWy2SISPjkxSWXXBL0pqTrjU7XeK6PPeABD3DuJ+Bib6g8LL7LZ2lwPV5FRDZu3Kgyfupjf61u67VyyCGHyDOf+czSxz/2sY85J/CKXGXSwQcfLM9+9rPVjq/OWt5fIc+Pgw8+2LkPTuh5ImQyJGY8LpEFAAAwXEyGAACAsfDwhz9cTjrppIGP/exnP5MvfOELQ9043di8eXPpY65LpKTat29f8PcdVa43EX/4wx+W9oKo28TYOOSQQ0pvdP7Xf/1X6U1S13gxb0pOTEwEf+564Zus0HrM+h6vdcbxtq7jOjft3r1bPvGJT3i/5uabb5YvfvGLpY+/5CUvcZYmTVkP91fo5IV9njj88MPl6KOPLn3eaaedVtqrxB5v3759ctVVV5W+lskQAACA4WIyBAAAjA3Xm4jvfOc75V//9V8HPjYxMeG8rJYm17XrNS+94xqr3W6rXoqraU95ylOcb57ab+rabyze//73l4c+9KHOMe03Ou+4446BvQr27NkjX/va12q/ropr4uCEE06Qbrfb6P81eVm3gw46yPlxrcds6ji+SZp3v/vdjd/ea+XZz362c4+PqktlfeQjH5FOp1P6eJOPGRff/fXGN76x8fvrqKOOCjpG1wTE9ddfLzfccEP/v2+//Xa59tprBz7Hd47YsWNHaf+iiy++eOAx9KUvfUkWFxdLX8t+IQAAAMPFZAgAABgbL37xi2V2dnbgY5/5zGdKq9LPPPNMOfzwwxs9Fteby3fccYfa+Lfffrvze66HzdONrVu3yuMe97jSx4uTH7feeqt873vfG/j3qjcQXW90Fse79NJLZWlpKejrfA477LDSx+6+++7grx9FvsmQO++8U2X81HFct7XI+r+9q0xNTclLXvKS0se/8IUvyC233OL8Gtclsh75yEfK8ccfr358VdbD/fXkJz9ZJicnSx8vTsK6irKY885dd90l11xzTf+/XeXJQx/6UDnyyCNDDxsAAAAKmAwBAABj46CDDpLnPe95tZ83jNXSP/dzP1f62E033aSy0r7b7Q7UDobvjchR5nqDsXh5mtBLZBmuNzqLb0S6xjv66KOjJsd+/ud/vvQxzYmutXDEEUc4P26vjk/leryGcN3WIuv/9q7jOkctLy/LRz7ykdLHv/a1r8n3v//90seHuXG6ceihhzr3mRml+2vLli3O/aLqzhNV5526S2/FjgcAAIBmMBkCAADGSt1Ex0EHHSTPf/7zGz8OV/HQ7XYHVgun+vGPfyy7du0qffzxj3989tjD5ioybrnlln4NErvpsOuNzi996Uv9GkRjE2P7kjgiIrt27ZIf/OAHUeOMkkc96lHOvSW+9a1vZY+9Z8+egUsQxTj00EOdE4tf+cpXMo9qtB1//PFy3HHHlT7uulSWqwqZmJiQs846q5Fjq9JqteRRj3pU6eNf/epXh34sVVzP+WINYp8nHvawh1VWHE960pNKzx8zAWJXIlXHAAAAgGYxGQIAAMZK3SWwXvziF8vMzEzjx2Fv5m585jOfyR7705/+dNT3HGWnnHJK6dJmIqtvRtorqo855pjaisNecW32CbH3D/F9fp0nPelJzo9fcsklUeOMkpmZGeeb7xdddJFzr4MYF154YdYeHK7b++qrr5a9e/fmHNbIc5Ud1157rXzjG9/o//fCwoKcf/75pc97+tOfvmalmOv+uvXWW0dqstD1nDf7hNx4441y/fXX135+0aZNm0rnX7NPiL1/iMjKpNFpp52WePQAAABIxWQIAAAYK3Urood16ZiTTjrJuX/Heeedl705s+tSOSIiJ598cta4a2F2dlae8IQnlD5+0UUXlTY1FgmbuPBdssb1pmS73Y5+U/L000+XzZs3lz7+T//0T1HjjBrX/XD33XfL5z//+axxzz333Kyvd136bmlpST70oQ9ljTvqXvaylzn3tiiWIJ/5zGfkrrvuKn3OsDdOL/JdqvD973//kI/E7+STT5YNGzaUPn7RRRc567GU886+ffvkq1/9qvMSWY961KPk4IMPjjhiAAAAaGAyBAAAjJ1Xv/rV8oY3vKH0f3/4h384tHpix44d8ou/+Iulj//kJz9xruQO9V//9V/y9a9/vfTxRz7ykc7L06wHrsvFXHLJJc434UPelDz55JNL+xb43uR89KMfLdu3b4842pWK4sUvfnHp41//+tflwgsvjBprlLzsZS9zfvzv/u7vksf87//+b/nsZz+b/PUiK2+uuzZ4/8u//EtZWFjIGnuUHXbYYfL0pz+99PHzzjuvX+u4LpG1fft2ee5zn9v48fmcfPLJ8rCHPaz08f/3//6f3HnnnWtwRGUzMzNyyimnlD7uOk+ETpj6JmE1Ls0HAAAAHUyGAACAsfOgBz1I/vqv/7r0f3/8x3881ON43ete5/z4G9/4Rtm3b1/0eEtLS/Jbv/VbUd9rPXC9ibhr1y75m7/5m4GPtdttOfXUU2vHm56elic+8YkDH/vyl78sn/vc54K+d4jf/u3flna7/FL6Va96ldx6661JY661k046SR75yEeWPv7FL37Re2m2Or/zO7+TfZmtTZs2yate9arSx3/yk5+s68d9CFfJdscdd8iFF14od955p3Oi6UUvetFQLgXo02q15Ld/+7dLH9+3b5+cddZZsry8PPyDcnA99y+99NLS5MWjH/1o2bFjR+14J554omzatGngYx/96EfluuuuC/reAAAAaB6TIQAAAA15xjOeIQ9+8INLH//pT38qZ599dvSbgq9+9avlu9/9bunjBx10kJx99tnJx7nWHv/4x8vWrVtLH//hD3848N+PfexjnYWAi73yen5+Xm666abazwt17LHHyq/92q+VPv7Tn/5Unve858kdd9yRNK5tYWFBPvCBDwxtRf1rXvMa58df+cpXlvZRqPOXf/mX2VWI8eY3v1l27txZ+vj73/9++ZM/+ROV7yEictNNN43U5bee+9znOsulc845R84991znRNNaXiLL+PVf/3V5+MMfXvr4f/7nf8prXvMaWVpaUvk+d955p7znPe9J+lrXhMSePXvktttuq/08l6mpqdJ+KfY5TERkcnJSnvzkJ0ccKQAAALQwGQIAANCQdrst7373u517h/z7v/+7nH322bJnz57acebn5+W1r32tfOADH3D++9/+7d+WViSvJxMTE0FvDsaspg75XNeblzH+6q/+So488sjSx6+66ip5zGMe49wrINRPfvIT+Yu/+As56qij5H/+z/85tM3CX/WqVzkvt3b77bfL0572NOdknK3b7crf/d3fyZve9Ca14zrooIO8b3q/9a1vlec///mlN7FDdbtdueKKK+Sss86SBz/4wSM1GeK7JNt//Md/OG+Po48+Wk488cRhHFqlyclJ+eAHPygTExOlf/vHf/xHOfXUU6Mn14quueYaed3rXicPeMAD5B3veEfSGMcff7xs27at9vO0zzsnnHCCc88hAAAANI/JEAAAgAY97WlP8662P++88+S4446Tc845xzkpcuDAAbngggvk+OOP974R/PznP38kVoLnSt0Y3ef444+v3QvEdVmbGNu3b5ePf/zjzo2Yb775ZjnjjDPkiU98opx//vly++23V461Z88eueyyy+Qd73iHnHjiifLABz5Q3vKWt8gtt9ySfHwpJicn5X3ve5/zEmA/+tGP5LGPfay89a1vlZ/85Celf+90OnLxxRfLmWeeKf/7f//v/mb1rVZLZY+EX/mVX3FefklE5JOf/KQcddRR8hu/8Rty+eWX1+4lctNNN8knP/lJed3rXidHHHGEPPGJT5SPfvSjasWCJtfze2FhQX7wgx+UPu66rNZaOfnkk+X//t//6/y3K664Qh72sIfJS17yEvnCF75Qe9nAW2+9VS688EJ54xvfKA9+8IPlMY95jLz73e+Wubm55OObmJioveze9PR01IRpyDmK/UIAAADWzuRaHwAAAMC4+6u/+iu56qqrnBuf33jjjfKKV7xCXvOa18hxxx0nhx9+uExOTsrPfvYzufbaa2X37t3ecR/ykIfI+973viYPfWjq3kT0bXjsY/YX+fd///fk7xnipJNOkgsuuEBe8IIXON+YveKKK+SKK64QEZGHPvShcuSRR8qOHTtkZmZGdu3aJffee6/ceuutcv311/cnD9baCSecIG9961vlrW99a+nf5ufn5U/+5E/kT//0T+W4446T+9///rJlyxa59dZb5Qc/+IFzv5Tf+q3fkoMOOiirlDH+5m/+Ru69915nvXHgwAF573vfK+9973tldnZWHvnIR8rOnTtlx44dsrS0JPfee6/ce++9cv3118tdd92VfSzDcsIJJ8gxxxwj3//+9ys/r91uy1lnnTWkowrz+te/Xu6++27npcyWl5fl/PPPl/PPP18mJyflkY98pBxyyCH9/TnM/XXjjTc2tg/PGWecIZ/85Ce9/37SSSfJxo0bg8d79KMfLTt37qx8fLFfCAAAwNphMgQAAKBhGzdulP/8z/+UZz7zmfLVr37V+Tlzc3Ny1VVXBY95zDHHyOc+9zk55JBDtA5zTT3ykY+UQw891FtQPOEJT3AWGFXOOOOMyskQrRXaz3zmM+ULX/iC/Mqv/EplyfHDH/7QuYfAKPrDP/xDufXWW71FUrfblW9/+9vy7W9/u3KcX/zFX5S//uu/lj/7sz9TOa5WqyUf+MAH5Mgjj5S3ve1t0ul0nJ934MAB5+TjevXyl7+89rJjZ5xxhvOybWvtj//4j+Wwww6T//2//7fMz887P2dpaUmuueaa4R6Y1J8DYicuWq2WnHbaaXLBBRc4/33Dhg1y8sknR40JAAAAPVwmCwAAYAh27Nghl156qbzuda9z7iES46Uvfal85StfkQc84AFKR7f2zJuIPimrqau+ZuPGjXLSSSdFj+lzyimnyLe//W0566yzsu/foqmpKe8m2k1797vfLX/+53/u3PchxMte9jL55Cc/KZOTuuuvWq2W/Omf/qlcdNFF8ohHPEJ17Pvd737y3Oc+V3VMDWeddZbz0mVFo3y5vNe85jXy1a9+VfU5J7Kyl8wLX/jC5K8/9thj5bDDDvP+u/Z555RTTpGZmZnoMQEAAKCDyRAAAIAhmZmZkXe+853yla98RZ71rGfVvrlpO/XUU+Wiiy6Sj370o7J169aGjnLtVL2JmFJxHH300XL44Yc7/+2JT3yiTE9PR49Z5eCDD5Z//ud/lquvvlrOOussmZ2dTRpnZmZGTjvtNPnbv/1bufnmm+WTn/xk0EbPTXjLW94iX/7yl6P2TXjIQx4i//Iv/yIf+chH1G/jolNPPVW+9a1vyTnnnCOPf/zjk8c57LDD5KyzzpJPfepT8tOf/lR+53d+R/EodRxxxBFy5plnev9969at8ku/9EtDPKJ4j3rUo+TKK6+UT3ziE3L66adHn/+M7du3yy//8i/LueeeK7fccov85V/+ZdZx+c4tmzdvlhNOOCF6PO3zGAAAAPS0uqNycWIAAID7mJtvvlk+8YlPyOWXXy7f+9735Cc/+Yns3btXut2ubNq0SY444gg5+uij5ZRTTpHnPe958uAHP3itDxkR9u3bJ5///OfliiuukGuuuUZuuOEGuf3222Vubk7a7bZs2bJFtmzZIocddpg8/OEPl6OPPlqOP/54edKTnhR9SbBhuPrqq+WCCy6Qyy+/XK677jq55557pNVqybZt2+TBD36wPPaxj5XnPOc5cuaZZya/0Z3jxz/+sVx44YVy1VVXyQ9+8AO56aab5N5775X5+XmZnZ2VrVu3ytatW+Woo46So48+Wo455hg55ZRT5Ljjjhv6sWJlU/TPfvaz8pWvfEW+973vyY033ij33HOPzM3NyczMjGzZskW2bt0q97///fv314knniiPe9zj1uTxBQAAgPWPyRAAAAAAAAAAADDWWFIDAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKxNrvUBAAAAAE064ylvW+tDKGnPL631IZRM7Dmw1ofgtHjw5rU+hJKLLn3LWh8CAAAAgEiUIQAAAAAAAAAAYKy1ut1ud60PAgAAAPcNo1hp5BjFwiPVqJYhqUaxKMlBjQIAAADkoQwBAAAAAAAAAABjjTIEAAAAfaef/hfJX9taXvuXlRN7F5K/tn0g/WtFRJa3zGZ9vZbJO/ekfeFieuXS3bwh+Ws1tfbOZX19d+um5K9d3LEx63traC8uJ3/tF678A8UjAQAAAEYPkyEAAADrVM7ERQ6NSY+cSYtYuZMcsTQnRZInNlJkTIak0JxAyZ0EiZUzaRJLY5IlZ5IkBxMsAAAAGCVcJgsAAAAAAAAAAIw1yhAAAIA1slZlR4hi/THMiiPVsOuPGHYpMtTaI8aQy5AYdkUy7BIkxjCrkVTF2mStqpEQlCUAAADQRBkCAAAAAAAAAADGGmUIAABAhlOf9nbvv7WXRuNlVmup4/23iX2LQzwSt87Gqcp/X9owUTvG7M27tQ4nWW2tMDU5nAOp0J2d9v5ba26++ouX1r4g6G6Yqfz32p9hCLoL9ZVS5/6HVv57e27tn5dVpdDyjtGoXxa3+h/Pl3zu94Z4JAAAAFgPKEMAAAAAAAAAAMBYowwBAAD3eVV1RyztGqSq6ojVVAVSV3aECilA6jRViKjuUaFciFTVHjFUqwrliqSuCInRVD0SUoTUqStGQjVWlijuK6Ndl1RVIrGoSgAAAMYTZQgAAAAAAAAAABhrlCEAAGCsaFYeIWJKEM3Ko0pMAaJVdYTSqD9ixJQiqvVHlYgyRKv6CDH0/TYi6hHNMqRKzG2gUYLE0KpGQkXVJYrFSJWYmkSzFAlBTQIAADD6KEMAAAAAAAAAAMBYowwBAAAja9iVR4iJA7p7IWhojeCruWEXIFVMHTK08iNErw4ZZvlRZ+hlSJ1eOTKsKiSEuY2GXYVUGXYxEqK9e4Seaz0Hjtq+1odQQk0CAAAwXJQhAAAAAAAAAABgrFGGAACAoXrqk/7c+29rVRPM/mxP5b8v7tg4pCMRWTiouhSYuWf4K9K7k63qf2/7/70zUf212jb84Fb/P7aGeyzG0hE7vP82sfvAEI9ERO64x/tPrY2z1V/bHp11VN2IfVc0tfb776/uYsQeG03btqXynztbNwzpQFa199WUR8vD2VNJRGTp4M3V/755uHspGe0F/23wX//15iEeCQAAwHhiMgQAAGSrmuAIpTURUjexEUJr8qNuYiOE5uRH3aRG7ddXTHrU0Z4UqZz0qNPApEjVhEeVRiZDKiY8qtROhlQZ84mSqkmQOutpkqSO5iRK7eRICKUJlLrJkaAxlCZQqiZEQjFxAgAA4DY6f7UAAAAAAAAAAAA0gDIEAABU0qg+XGJKEI3ao0pMCaJRe7jEFiC5lUft+BkVSJWYQiSr/ggRUYiklh91ksqQxPKjTlYZUmedliM5RUiIkahGMmuROrE1iUox4hJRkWiUIpXjR1QkGqWIC/UIAAC4Lxqdv0oAAAAAAAAAAAAaQBkCAMB9UFO1RxW7BGm69qhilyBN1R51ijVI06WHT1MFSJ1iIdJ4AVKnV4g0VX+EKBUiDdUfVRotQ6qMYDXSdBFSexz3gWLEp1iSNFaJ1LEqkqZLkSp2RdJUKVKFigQAAIyL0fnLAwAAAAAAAAAAoAGUIQAAjJHTT/+Lgf9uLw5/BamIyMTe1dW8rcXlNTmGxUM2Dfz3wpbwa7RrmZwb/NnbS8O9P+a3D/7MLcddMbV3aUhH0zsG6zE5fcMdQ/3+IiLLPzdYgHQj9jHRMgoliIhIa3r1MdLdPFhMtQ6Mxqp8idjjQ0vn9jsH/ru9/aChH4NMDK5b667V/VE8hsN2Dvx3ay5ur6Nsk9ZeU2vwp+zytsE9UNaqrpvYt3rbL26P25dFS8v6nXbRl35/TY4DAAAgFGUIAAAAAAAAAAAYa5QhAACsE3b1UaWpIqRYfFRpqgaxa48qTZUgdu3h0mQBYtceVVwliE9ThYhdgrg0WYfYFUiVpgqRUgXi0lAZUiw/6thlSO3YTZUKdhni0lAtYhchVRqtRSbq16yNYilSpdGKxC5GXBr6s9cuRSoPoaGKpFiJVGmqILELkSrUIwAAYC1RhgAAAAAAAAAAgLFGGQIAwAiIqT6qpBQhobVHiJwiJKb6cMkpQUJqjzo5NUhM7VElpgTxySlEQiqQKjmFSEwBUielEAmqP0JkFCIxFYhLbBniPIacWiGkCAmRUI3EFCF1soqRgCKkylrXIjGlSJWsiiSkEqmT8SdyTCni/NYZ9UhoIRIipSKJKUSqUI8AAICmMBkCAMAQaE12uIRMgGhOeBSFTH7kTnJUCZkA0ZjocKma/NCa3KiiMfFRpWpSJHfSo07VpIjmpIdP1WSI2qSHT8VkSO5kRx2NyZA6lZMlWpMhPhWTJJqTIT6VkySZkyB11nKSRGuCpErl5InG5IhLwJ/RuRMjld8+YNJEc3KkKGSiRGtixIXJEgAAkIrLZAEAAAAAAAAAgLFGGQIAQKYmq48qpghpqvqoYoqQJquPKp3J4a/nMCXIMKoPl6ZLEBdThzRdgvhMzK/BD93T3rdGK+l7ZUjTFYjLMMoQl34t0nQZ4tG55941+b4iIu2Dmy+dXMa9FHHp1yNNlSIVlrfODv17iqzWI00VIlVMPdJkIVKFegQAALhQhgAAAAAAAAAAgLFGGQIAQIAzTntb6WPdVvompyEm9i86P96eT9/gOsaBw8rVx+SBhlfqL7tflnRmhrOS98COwT0FJhaH8zJpear8WNp4u3sl78LWZouBifnyKt6J/cN5zPnu56ndza5qXnZ836m79zf6Peu0du1tdPzOwdvK33O/pxZoN7t+yruPyLBKEcd+HZ077270W7Y2u6u61uxMo9/X6O52PL4arpFaG937THQde7l0N0w3eixGa8E6tzX8e91YOsh9W7Q6w//TvD3nfq0xLEtbmn3Mu27TL17+fxr9ngAAYHRRhgAAAAAAAAAAgLFGGQIAgLjLDx/NIsRXf7hoFiGu6sNHrQbxVB8uTZQgdvVRRasIcRUfPr4SxEerEHGVIN7PVSxEYu5j7TLEVYJ4v/caFSJaZYirAPF+T18Z4qNUjHjLEBfNWsRRhPholyK+MsT5uYq1iLMI8VEqRXxFiI+rFPF+rlJBUipEKj9Zvx7xlSLOb38fqkc0q5GY241yBACA8UUZAgAAAAAAAAAAxhplCADgPiOm/vBJqUJi6g+XlCIkpvzwSSpCIuoPl5QiJKb48EkpQWKqD5/YGsSWUofElCDeMRIKEY3aJ6UQialAnN9zHZUhMRWI83vGliEuCbVIVBnik1KMRJQhLim1SEwR4h0joRSJKkJ8EkqR2CrEFlOJeMdIqEeiShHvIPG/I2IKEee3XINqRGRtypGUakTj9qEaAQBgfaMMAQAAAAAAAAAAY40yBAAwVjTqDxdXEZJbfNTxFSEa1YdLbQmSWX34VBUDGtWHS10JolF9uOSWID51hYhGDeIc11GINLHfS5GvDsktQLzfbwTLkNwCxPs9NcoQn4piRKUMcamrRTLLEB9fMaJRhVRxFSMqRYhLTSWSW4T4aJQiznFr6hGVUsQ5sP93TW4l4v2W96F6RMRdkDR1G1CNAAAw+ihDAAAAAAAAAADAWKMMAQCsK02VHz7tuYZWg/q+X68Gaar+cOkXIQ2VHz77fy7+et85TA3SVPXh0lQJ4mMKkaZKEJspQ5quQYpMGdJUCeL9vkMuREwZ0lQF4vyeTZYhLr1apLEyZESYUqTpMqTIVCKNlSG2XinSVBHi01Qp4vxevXqksUrEY2n7xqF+v7UoR9aqGlneFL+fTA7KEQAA1h6TIQCAkfPUU/6s//93p5uPGCfvPVD6WGem2TdYupODP9filviNaXNN7mv+DZ35natvNCxPNzsJMb3HPQGwsKXZx1B3YvDnahUOY+Ntzb7JO3eI+42c6d01lzzL1Jkc/Jmbnnxpzzf78zhZ9+vUHfsa/Xb2OaEvYRPmGK19hfPfPbsG/3HHQc1+70XPOajhP0+6+wfP+a2Ns81+P9eERMJm5FHfc//cwH+3Jpv9ndaa8bypvKHZ21YKj6HuVmuyaanZ80Z31n0fthYb/r5TqxPBy5uHu6jAaHrCxL406cT+hhcWOM6zyxubf102ee/q8/Rz1/55498PAABwmSwAAAAAAAAAADDmKEMAAENXLD+qaFchrgLEplmEeFd6Fwy7CNGuQYrlh49mEeKrP4o0SxC7+nBpBUQRmoWIrwZx0SpE7BLER6sQGXoJEnA/a5chIecHEVErQwYKEB+7DPFRKka8ZYhN+c8Vuwxx0axFgi5VpVSK2EWIj1Yp4i1CXDQrkYDHTqkUcVGsR3ylSJFmNVIsRHzWohzRrEbsQsRFtRoJ+H7axUixDqlCOQIAgA7KEAAAAAAAAAAAMNYoQwAAjQqtQFxSypCQ+sMlpQgJXtntsB6KkJDqwyelBgmpPlxySpCQ8sMWUoL45BQiMUWIkVOGhNYgtpQ6ZBRLEJ+UQiTnXJFShgRVIC6hZYhLQi0SXIa4JPwJE1KE+KSUIlmblyeUIqFViC2nEokqQ4ycQiTjMRNUitgyypGQUsQlpR4JqUR8hl2PpJQjIYWIT1I5kvj9UqqR0DLEhVoEAIB4lCEAAAAAAAAAAGCsUYYAALLklB8+VUVIavlRpaoKyVrR7TBKRUhO+eFTVYSklh9VqqqQlOqjSk4RYgspRFJKEJ+QQiS1BLGFliFDrUEUHwtVZYj2+UJEKlcoJxcgPjlliE9FMZJVhvhU/GmTU4bYQkqRrDKkKLASSS1DbCGlSFIR4hNSiig+VpIKkSoV9UhqHVKlqhzJKUR8hlmO1FUjOYWIS2U1ovy9RKrLkZxCxIdyBACAMsoQAAAAAAAAAAAw1ihDAADBmqhAiuwipIkKpKhYhDSyortgrYqQJuqPIrsEaaL+KLJLEO36w6ZZg7gUCxHNEsSnWIholSA+phBZT/uBhLDLkKbPHcXVyeoliK2JMsRWKEUaKUOKrD9zNMsQF1OLqBUhdXrFiFYR4lMsRVSLEJ9iKdLwY0S9ErFZ1UgTpUiRXY00UYoUrdV+I9qFiG2gGGn4e9m1SBOFSBG1CADgvo4yBAAAAAAAAAAAjDXKEABAyVOf2CtAmv4N0V5ZbText37/BA1LW1dWm7aWG17u37M8u7KatjPV8Er13YsiInLg0OZXaJqaYGrfcG7DuYNXVrW2G15AbkzMrzzom77P+t9vYeV2bLrSMCb3N3+/Lc+srLWZvWM4z+vljSvPs4khFShTP1upJ7obGl4h3165HVt7m10lPGCqVwDcftdQvl1r29aV/6fT7OOyu7dX87SGtA6s03ss1ux/oKa7cvt1G/7d1pqcHE4ZIiLdxZXfa60NG4by/fqPffP9NzT8+7T3J3jT5Ub/2/W+T9V+I2rfa7r32me62Z+t23sN2VoezvOs1bvP2geG9IJkaeX53Gr4/Gjqpc/94O3Nfh8AAEYEZQgAAAAAAAAAABhrlCEAcB/Vrz9cmvjN0C6vfG+iCDH1h4t2EWLKDx+tusCUHz7aRUhVpdBEEWLqj6JhlSCGKUJs2oWIKUGc36uBOmQYJYjIag3iol2ImBLEpl2GmALER70MabtvwzUpQ3yUi5F+GWJTXgndL0O8B6K8PqzjeSxqlyJd/+3URCVS3Duk/7EGShFThTiPQbsUqXvMOzRSjTj+JG+iGqkaU7saMYWIj1Y50nW8vizSLkdaFW+fNFKNLJWfy43UIkv++59qBAAwTpgMAYAxVznpYdP4jVDzR2lRzmRI1aSHLWcSpG7Co0jjjfO6iY+inEmQmDfecydAXJMdPsO+HFao1Pu2avLD+70yJkVGYfLDpjEZ4psAccmZFKmbACnKmgzxTHxUGcqkSOwbw4mTI95JkCoZb/7VToYU5UyM+CZBnJ+r8Au3YjKk9KkZvwddkyDez82YHKmaBPF+v9TJkYRJkFBZkyURf5rnTpbEfH3OREndpEiRxgRJ3eRIUc5ESdWkiC1rksQxGeKjMklSMSliY5IEALAecZksAAAAAAAAAAAw1ihDAGCMRFUgLqG/ESJW3bnEFCExBYgtpgiJKUBsMdVATPnhE1KEaFxyKaYIiak/bKNag9hi7ueUIqT/fSLuu1EsQXxiCpGYEsQWU4bElCC2qDIkoQSxjWQZ4hJQiySVIbaIFdBRZYgtphSJKUNKXxtxfoooQrxDBPx+jClCvGNElCIpZUj/+8QUIg1WIXWiqpGMP9Njqg+Ny3GFlCMxhYhPTDkSU4jYYoqRmELEFlWMRBQiLsHVSEQZ4kItAgAYdZQhAAAAAAAAAABgrFGGAMA6lF2AuLh+G2QWIC6uKiSn/nDxFSE59YdLXSmgUYEU+YoQ7Y23fUVITv3hsl6KEJvvfs+pQZzfx3O/rqcapKiqDMkpQXxchUhOCeLjLEQUShDbuilDbI5SRKUMsTlWPWcVIT6uUiSnCPGpKkUUypCB4Ty/MzXKkIHxPJVIThHi/D6+SmQNi5BQznJE+c91XwmivWG7rxbRKESK6mqRnELExVeN5BQiLs5qJLMOcXEWI5l1iAvFCABgVFCGAAAAAAAAAACAsUYZAgAjrpEKpMj8FmigAikyRYh2BWJrLXfUCxCbKQO0yw+bKUG0yw+bKUG0yw/bei1BfLRXgfqY+3+9FiE2U4g0UYMUmTKkiRqkqF+GNFCDFK3bMsR2+13NlCFFvZXOjZQhRaYSaaIMKTKViHIRYjOFiHYRYjOFiHYR4v1+W7cM5fs0rV+NNPy7xxQi2qWIzZQj2qWIzZQj2oWIrbXcbfx1Qb8WaaAQKerXIg0UIkXUIgCAtUAZAgAAAAAAAAAAxhplCACMiKc9/o8G/rsz08xKOXtlXKuh3wLthZXVZE1XGoubV8afmG941XzvZpvY32zecOB+vRpkopkVjK3CzbS4qblVksOqQBY3+H+G2XubeUwsbB5cSzKzp5mVk0uzK99nenezKzOXNq58n1bDi9s33rJSNixude8boMWUNBt/WN6rQsPiYdsG/ntyj38vlBz2quz2PXub+T4bV/co8F3jX1trz/7BD0xPNfONlgd/nu6+/Z5PzGNKiqZLB3P8rVn3/lHqXPujaGp4pX537sDgt7vfIc18o0XrF96Q9ibpbFrdG6W13OBzt7CnTGdLM3WvOd+1Gi4eOqZ6aeg1ljExt3IuGFZd03LskaWhO2P9HtpzwPOZeezH1ee/9keNfB8AAEQoQwAAAAAAAAAAwJijDAGANWBXIEVaRUjdtZG1ihBTgPholSGmAPHJLkNqFglqFSGm/PDRKkJaNTeHVhUyCgVIHY1CxK5BirTKEFOC+GgVIqYE8dEqREwJ4qNViNTtqZNbiNgliE2rDKlbQaxVhhRLENualSE2rVKkZrV8bilSt7eGVilSd5zrrhRpuAgx7DJk4BA0KhG7CLENoRAp1iEuasXIcvXvUa1ipO48qFWOdGq+T245YsoQ7/hKxUjdOVurGLELEZtWMVL1OKIWAQBooQwBAAAAAAAAAABjjTIEABpUVYD4pJQhdRVIUU4RUleBFKUUIXX1h0tSERKx4C+nCKmrQIpSipC6+sMlpQhZD/VHlZwypKoIseUUInVVSFFKIVJXg7ikFCJ1NUhRahlSV4LYUsqQuhrEJbYQiV0ZnFqGVJUgtpEpQ2yxpUjCaviUSqSuDCl9j8RSJObYRroSGYEixJZViNSVIUVrsI9InaRqpKYQcUmpRmLOjzm1SF0hUpRSi9QVIs7vk1CNxJy7c2qRukKkKKUWSXmsUIwAAGIxGQIAClImPWwhkyAxkx4+IZMhMZMetpBJkJRJD1vQJEjGzRUyCRIz2eETMgmSMulhC5kEaXrSo6nJjlAhkyIxkx8+IZMiMZMftpjJkJRJECNkMiRm8sMnZFIkdgKkKGQyJGXywxYyGZJzaZSQyZCYiQ+XkZ0MKQqZGFG4NFDIBETsZMjA+AETIxobvjc+ORIzKTLkDdNTBE2OxEyC2EZwUsQWNEmSMCliC3njW+NyUiGTJTGTIraQSZKUSZHS9wk4xpxzeMgkScxkiE/IJInGZdeYJAEA+HCZLAAAAAAAAAAAMNYoQwAgkUYNIuIvQjQqkCJfEZJTgRT5ihCNCqTIW4Qo3Vy+IkSjAinyFSEaFYiIvwRZ75e80uAqRDSKkCK7DskpQXxchUhOCeJi1yEaJYjNVYbklCAudh2iUYLYXGWI1ia5hl2H5JYgtmGUIVlViIurFNHaNLrArjRyqhDn+I5SRKMMsa1JKTKEy2NpVCFFzkIkpwjxabgUySlEXLzViEIpIuIvArTPpb5aJKcQKfLVIhqFyMD38Ryv1rncV4toFCJFvlpEoxARoRIBAAyiDAEAAAAAAAAAAGONMgQAamgVID7LGyI3ho1kihCtAsTnwME6q7d8+kVIQwtMTRGiXYDYuq1mV8iaImTc9//I1fTtY8qQJoqQovZSsy/jTBnSRBFiLG6dVi9BbFN7mk+iJvfMq69etrXmdVcVl8Zfj2WIbXqqkTKkZH6h0eG7i4uNlCHG0DZan2j2OWFolyG29o7tjY6/3goRW78YUSpEfJZ3bGp0fFOMaBUiNlOMaBciw2aKEe1CZNgoRgDgvokyBAAAAAAAAAAAjDXKEAAo+MVj39L//zsby9ex17K8cVqkwdPvwIqztv689/zO1Qqk2+CC7lan2+jK96UNKyvaug0tyCzuC6K1F0iRvc/FxGIzt9Xy9MrP0WloAeDU/tXj7vZ+pKXZ5h5Ym29ZrQT2H6J/508sFO6HBp8f07uX1fcIKSrWGltu0F+hvu/I1ZXKk/v1nyCt5dX7YXJ/c6VAZ3rlPpja3UwpUNwnRHuPEBGR7sxqnThxx67Bf9ug//0G6paFhldHTzT3/Oju3df//1tT+oVnt7DCvrtnj/r4wypDlu/dJRM7dzT3DTqF3x/z5X17crW2bF79/xu4n/tMWTGE+6Xbq1C6rv12NFhPu9YB/ed5Z1PhdWhDdUJ/774m3y1pibTnh7SZWwOKe690J5s737YPLEnHszehikK1/fmr3trc9wEAjATKEAAAAAAAAAAAMNYoQwDcpxVLEJtGGbJcNYbC6bfymsMKRUixAHHRqkJaHfdtoVWFmALEJ7cMKRYgLrlViF2A2HKLEFN++GgVIcUCpKhb8eNpFiLFIsTQLEMGihCbwo8xvdtfN2gUIlX7dmiUIcUSxKZZhhSLkNXx9coQU4K4aNQhxRLEplGGFEsQm12GlL5WoRSp3PdkHZUixTLE0CwHuhV7L2iUIk2XIcv3+h9LKqWI53WDiG4hUixD+h/TLESq9rdp+D7q1uxTkl2O1DzdcouRYh3ikluM9MsQ7ydkDb/K823WUzFSLERsGsVI+4D/tlApRir286MUAYDxQxkCAAAAAAAAAADGGmUIgPuEqgLEllKEVBYgLgmn3soKxJZYhdSVIEZOEeKrQFxSypC6CqQopQipq0CKUoqQugqkKKUIqatAilKKEF/94VJVhNhSChFXCeKTUohUliC2hOdMVQliyylDqooQI6cMqSpCbCmFiKsE8Y8fX4hUlSC2lDKkqgSxpZQhVSWIra4MKY2dUIpUliG2ESxFXEWIT0pBUFWElD43oxBZyzLEllSKRLyWSClFXEWI93NTSpGqIsS2xoXIwOem1CIRT7OUWqSuEClKqUVqC5GBT44ePur1wSjXIlV1iC2lFqmqQ1ySipGKQsRGMQIA6xdlCAAAAAAAAAAAGGuUIQDGVkwNUhRahkTXIEUBp96oEsQWUIaEViAuIWVITAFiCylCYgoQW0gRElOA2EKKkJgCxBZShMQUILaQIiSmALHFFCG2kEIkpgixhRQiUUWILeBuiSlCbCGFSEgJ4hNSiMSUILaQMiSmBCmPH3bbxtQgRaFlSEwNUhRahsTUIEWxZcjA9wysRKLKkKIRqURiyhBbSEEQU4aUvjagFBmlIsQWVIhkvLYIKURiipDS14YUIjFFiG2ECpHS14YUIxm/+0OKkZhCxBZSjEQVIqUvDvicjOFHoRiJKUNsIaVIbBlSFFyJRJQhRVQiALC+MBkCYN1LnfRwcU2EZE162Byn3KxJD5tjEiRn0sPmmgTJmfSwuSZBciY9bL5JkJyJjyLfJEjOxEeRbxIkZ+KjyDcJkjPxUZQzCWJzTYrkTIIYVZMhWZMghueuypkAKfJNhuRMgBT5JkNyJkCKfJMhORMgg+O7b+fUyQ+bbzIkdfLD5psMSZ38sOVMhth8kyPJkyG2NZocyZkMKfK9cZ4zGTIwjmdiZJQnQ4q8EyMKrzmqJkVyJkP6Y7ju25xJENsIT4oMjOObIFF6LeCbIMmZFCnyTZBkTYqUBnN8THH4tZgkyZkUsbkmSXImRWzOSZLECREXJkkAYDRxmSwAAAAAAAAAADDWKEMArDuaJYits3FatwSx9U65qjWISL8I0axAikwRolmBFJkiRLMCKTJFiFYBYjNFiFYBYjNFiFYBYjNFiFYBUqRZgxSZMkSjBnExhYhKDeLSuyu1ihCbKUS0ihCbKUS0ihCbKUS0ipDVcVdub60SxGbKEK0SxGbKEK0SxKZZhthMKaJWhtiGVIpolSGGqQi0ihCbKUTWSxFi6xciDb3+MJWIRhHi0q9ENMuQogbvV61CpDSuKUYaen1gihGtQsRmihHVQmTgG/T+t6Hhh1WLaBYiIquViGYZYuvMTqqWITZKEQAYDZQhAAAAAAAAAABgrFGGABhpT33in4mIyOQ99Zv2pljcuWnl/2loFdDyzMqc8/Q9BxoZf/6QjY2Ma3SmVm6X9oL26q6VcbsN3e6daTN+I8P3LQZsVp1qaq7TyPjmNpk80Myv/4XNvcdMb+FeU2XF8szK99l0azMrBOd2rqz8bDe0ANFUPhvu0v0G8wetHLdv/5pcbbNvTUPPrYn5lfG1zzlGyxy+cnEiIiJdkZmb7tYft2fxsG0yMd/Q6nKRlXKxd7tM3FO/EXfyt5mZltZiwyuTm6hEJnurwfc0U/3IpEkYG/rTbNG9n42a3nEv796tOuzE1q29/6ehcrThMkTM+Buaqei6nd65snf7tzY387qwqUpERKS1/4B0dmxpbHxTTzf1mrM71Rs/YBPwtG/Q+1/lwze1d2uxod8rvdu9tdDM+X4YpYiISGdDMyWmOf4vXPkHjYwPAPCjDAEAAAAAAAAAAGONMgTASDEliE2rDOmXILbM1WKmALFpFiHDqkCKNFdndx17F2is0us49tFYT0XI1Jz7Ns79Hr7bQKsIMQWIzVVSaNYhpggp0qhDTAli0ypDfPu9aJUhpgixaRUi/SKk9A3yxzY1yMD3Uzz3tByHrlqGOIbSKEQWD9tW+phqGeL6E8Bzu2iWIt2Z8r5cjZUimoXIZPk5plqJTDpW3mtUIkMqQmxahUi/DCn9g04pYsoQm0op4hhbsxDpVyFFnvtDqxhpqhBp7Xe/XlYtRtrl11WatYgpRAY+plGLuO5Sxde5rv0AVWsRx+2uWYv4buOmihGtUsR33JQiANA8yhAAAAAAAAAAADDWKEMArClfCWJLKUO8FUhRxoowXw1SlFOGNFWCuAoQW86qbFcBUvqchNvdVYC4x44eOkpqseErQDTGD/mZc4oQXwVSFFJQpBQirhLEllOG+IoQW2oh4itCbCmFiK8GKcopQ7w1yMA3SB/fVYSUjiHhXOQqQUqfk1OGBHxpShniKkFsWWVIyEv+wNslpxRxlSG2kSxFHGWILakUcRUhtpxCZI3KkKKUSsRbhJQ+Ma0Q8RUhtqxCJOB7pJQiziLEFnC/5NQiwy5EbMnFiKNScEktRlx1iPPzUoqRkNNAxu9kVyFS+pyUYiTgNs8pRUJuy1HcVyT0MUApAgD6KEMAAAAAAAAAAMBYowwBMDShFUhRTBESVILYIlZ+hZQgRkwRshZ7gfjErsIOqUBKXxNxm4fWIIPjR39JkJhiI7QCiR0/5WeLKUJCChBbSjERUoiEFCG2mEIktAgpCv1ZQ2uQopgyJKQIsYUUIkElSGng8E8NKUFsMeekkCKk/7kxZUjCzRJThoQUIUZ0GRL7Mj+hmImtRELKEKOxQsSIKUUCyhAjqhAJKUNsMaVIU2VIQq0SU4gElyEDXxR2H4VWIUVRhUjK+AGFSFARYku4n2KKkbUuRIqiapHAQqQo5PVraBky8DUxlUjKOzeRL0lCCpH+58aUIgm3eUwxEnM7jlIpklIJUYsAQB4mQwA0JmXyw1Y1GZI0+WFU/EETM+nhUzcZspaXwKpS98ZjyuRH/2srbvOUSY/y+NlDOFVNUqRMeoSOn/vz1E2CpEx8FOVsLF41GZIyCWKrmxRJmQgRqf+ZUyZBinwTIimTH7aqyZCkSZDSNyh/KGXyw1Z1ToqZ/PCO4XvzP3PsusmQmAkQF++kSO7LeoWN5X2TIzGTIC5rNjESMQniUzk5kjIZYnO9eTkCl8eq45scSZoIGRig+j5LmQwRCZgQSRx34HtUTIokTYYYmfdX3QTJKE2K2ConSRLeoLe5Xt+mTIqUxqh6kzzn7qx5qRIzGeL8+roJksTbvG5iRGOz+rXYdF3juJkcAYA4XCYLAAAAAAAAAACMNcoQAKo0apAiU4ZkVSAu1ioujRpEpFyEjNIlsOoUV2DnFCA+ZuWcRgUyOK7qcH12saFRgVSNr/Vz2EVIbgFiyylCbHYholGFiJTLkNQSxMe+DXKLEMMuQzSKEFuro1SClAZe/X81ihDDLkM0apCB8ewSQml8uwzJLUFs/TJE+2W8QhliM6VIbhliG9om6wplSFGpEtEoQ4ziiu4RujxWHbsQyS5D+gMN3nepRYhPqRRRGt+uQ7KKEJvy/WcXI6NciBSVahGFQkSkXIloFCID45mKoIl3cAqHnluHDAxrlyJKt3V/fKsY0SgtRIZ3KS2t4zWoRACgHmUIAAAAAAAAAAAYa5QhALJolyBGt93Mcv+lzSurcFpLuqv8De3VPUWaFUiR5uovF63qxtZUERK70WSshU0NPkaaWZCpWoM4NXSbN1JASHPnJ6PdwOp8Q7PaGBi3Yh8YlfHnmzlnt5aaOe72QuRG55Emmlqx2uBjr71fd1W+rbFSRHNVfkF3Tnele4lyBdHX8GuGJnWXmnmMtKbDN0uOMjPTzLhGU/fldqWyx0G7ELF1Dtat+PrjTuuXniIi3Ylm17a2GnqryLtfl4aGztnmqgLtOc/+UpmWtzTzfKcUAYAyyhAAAAAAAAAAADDWKEMARDn99L8Y+G+t1a9mbxBDc48QU4OI6BYhE4urYy1t0F+Sb5cPWvt4lFZjKS1yX9gyuOpNa6V4YwVIQbG6aSuuFF/csLrmoKu4/KCpfUHsce370N7nJJfZ/0HzthERmdo3+DzX2tOjqb1CREQmC8VGE4VP/75UftXXsc5LU/t1zrH2Y2JSac+e5enBgSf36xYcZhVta1F/ZepEcTVqS++xV7qee0FX8druE3fuWh1346zauKvfYOVYWwd098ro3n3PwH+3Dmpm5XhjpYhyIdLtFTitiQZWuhcLC3vvlgylP3eXdZ73nf2Dr10ntB8brd7zT7k8adnPa+u/u1q3/TZrTxXNvSIKq/81n/MDe4ko720h0tyeIu35wRcoyxt192gytEoRu2hpoqYs/m7rTij+MVG4DzUrkabKkAnrb+zPff8vPJ8JAPcdlCEAAAAAAAAAAGCsUYYAqGSXIIbGCh67BhHRKUKKJYgtpwyZqFjpm1OG1JUPqUVI7fV4FRZJ2TWIiE4R0lQNUrXvSk4RUixAXFLLB7vUsOUWIb7xq+7DnDqkVXMT5xYidhFiaBQcVfum5Iw/WbGHR04hUvk8zHiK2iWILbcM8T0GcssQuwjpj6tQhlStlM0pRCaqVpxmlCFVJUidnFKkWIaUxs0pRSquma+xYtwuQ/pjr7dCxMgoRboV+7JklSJV5UNGpVD5Z65CHWKXIUZ2IdKqeZ5llCKlKqTI82/ZpYhdiAR+31o1e0PkPP8HChFbxnnQLkMG/k2hErELEZHmKpGi1GKkbs+TnL83K6vHnFKk4j7UKEWGVYgYlCIA7osoQwAAAAAAAAAAwFijDAHQ56tAXFJW6rhKEFtKGVJVghgpRUhVCTLw/ROqkJDyIaUIqa1BBj45/FNdBYhPTBmyFgWIS2wVUleCGCmlQ10NIpJWhISMG3PfxRQidUVIUext5qtBXFIKjqoiJGfcqiLESClDgu7DhFd+dUWIkVKGxNznMYWIrwZxjhtRiMSsgI0pQypLkNLACb8fMooQW0ohUlWGlMaPKUVqVhYXxawU9xUhznHXYyWSUIhUlSFGUiESUjok1AlBf+YmFCK+IsQluhKpq0KKIgqRyiLEFvC5SbVIXSES+L1LagoRI7YUqaxDXCKOvaoQKX1uRDHiKkN8RmlfkbpCRCTtb8/Q33tJpUjAfZhSigy7DHGhFgEw7ihDAAAAAAAAAADAWKMMAe7DYkoQW9XqnJACxCekDAkpQWyhZUhoDVIUUoakFBAhZUhUCdL/ovpPiSlBjNCqYFRqEJGwIiS0AikKWekeUmrYQoqQlHFT9nkJLUNiqpCiutswpgixVZUcISVIyrghJYhPVSGStUdPwJeGFiFFoXVIUjkVUIbEFCH9cQPKkJTVriFlSFQR0h847H7RrEF8QiuRmDKkP3ZIIRJRhhghK8RjypD+uGNaiIQUIT6VpUjG3hdVpUjWn7cVpUhMEWKrLURiipCiwNswqgwxEr4mqBgJKURSjiWwECkKORdEFyIiwbddTCEiEl6JxBQixlqWIiFliC2kFEn5HRhciSQUmiGlyCiUITZKEQDjhskQ4D4kZ/LD8L3wzJkAEfFPgqRMfNhcEyEpkx421ySIxhv9vkmQpImPgQHcH06Z+CjyvRk7SpMeNtckSMqkh827+XPCBEWRbxIkd1yNze59kyKpkyCG77bMmQQxXJMWOZMgVePmTIIYvsmQ7PvP8+UpEyBFvsmQlMkPm2syJGXyozSuYzIkdUPYgTE8v2uSJkAGBvb8nhjC5Ecd3+RIymTIwLi+iZGEN9FsrjdEUyZDSuOut8kRz8RIzmSISMWESM5kiOF4813lz1vHpEjOZIjhnRRJnQwxPLdl0iSILXMM7wRJyqRIke+4EiZFbK5zQtKkiM1xzLETIi6+SZKUSZGiYU+QpEyK2Fx/q2r8bnROkijcd74JklGcFDGYHAGw3nGZLAAAAAAAAAAAMNYoQ4Axp1GDFJnVNrkliM2UIRoliK211FEpQWymDNEuIEwZkl2C2HrHmVuC2Mzq9FEuQQy7CNGoQUTKK95ziw3DLkK0xhXRqUKKTCGSW4TYzG2rUYQUmYpDowhxja1RhNhMIaJ231nD5BYhhl2GaBQhRrEM0ShC+uP2yhCNGqTIlCHZJUhp4N7viREoQeqYUiS3DCmNa0oRhZXERWZFuEYZ0h9znRciuWWI0S9ENIoQ28KiThFi6xUiGlVIUb8QyS1CbL3bVqUIKVIcr1SK5BYihn2MCoWISLkSUSlEjHZbpQyxmVIktwyxNV2KaJQhRebv1iZ+V3YnWipliM2UIqNchhRRiQBYjyhDAAAAAAAAAADAWKMMAcaMdglimBXDszfvVh13/1EHiYj+anIRkcm5BpZ8i8jixvoN05M0VFYsbNUtQYrai7p3nLker+ZKchGRVm9x4NKM7o2sXVcUVW2anaPbXrkNJg/olhYTvcfCvPLjLWTD7BTmdmhCU3WMa6+bHJ3QTUIjmePUPl6Rld9FEw1UN1P7mvl9Mbm7fnPqFK69sEZd++49jYzb3bKxkXHlZ7epD9natrWRlcRNFSKt3rF29uzVHbi3gr81o7vKvDtfvxl2qs6eZh6/E9u3Kw/Yu22ndOub7uLKavXWTDOr1bsbmhm3Eb3Hb3dW9zY2RXhnWvcFYHdm5XVZyObdsZoqRaSh12gT+5o5R3Qn9dcYt3fPiYjI8g73vpqpTH0zeafueX2pd5xfvOL/qI4LAE2gDAEAAAAAAAAAAGONMgRY55oqQUQGrx+vWYSYGkREdwW1fb376T06K6AWN1krtDSO2TUVrTBuZ3r1NliabW6+W6sI6Vor07WKkJa1aFqjCHHtJdBWeIgtbho8NrVV79aPbF+TWqsMmbAeC1plSGl/FMWXK8Vzhf1YSeJ4eGmMaz8ftEqLpooQkcFj1CxDiveZxnNk9vY558eXN+Wt9LVv2+l7FFfsFx5TLaVr4YuIdGZWf8dpX1++qFu4nr/m/iH9vUP6g2f+IvHtj3HHXXnjSq8M6f+H3vOw6TLEUCtErL0dNAqRpqqQ4m2wvFvvtXB70+Bq79a00gp76/GvVYiYMqTP2vejtUVp3w/7+yoUI6195fN9d9OG7HHtx7FWKWLvGahViphCxNAsRZY3F+6nTv7v6Il95apyecus4zMjWcemtZ/X8qbB56/m71JTiIjoViLF/Vk0KpElz7FRigAYRZQhAAAAAAAAAABgrFGGAOtUE0WIXVYU5ZQhxRLEllOGVB2vSFoZUqpAinLOllVTzzm3wbT/Nhi1MsSuQAb+LeNQq1bg5xQhrhLEyClC7BLElrTqvWJIuwgpyqlD7CLEllqIlIoQW8LLlqpzRVbBUXG754xb93zIKS60q5CqY8k6zor7LKcM8RUhRk4ZUnXbJhUiFY+hnDKkWILYhlWG2FJKkVIRMjBgxi8VXxliZBQiA2VI6R/Tn5vaZYhdhBRl1SEVjwGRvEJkGGWILaUUsYuQ0vdLLURqHvM5hUipCila8P9bE7VITiniKkT64+aUIhWP65xaxC5EilJqEbsMseWUIgNliC2jFHEVIv3vmVOKVBxTSi1ilyG2nN+txTKk9H0zSpFuxTkjpxShEAGwHlCGAAAAAAAAAACAsUYZAqwj2jVIXVlRFFOGVJUgttgyJOSYY4qQyhLEFnOsMVPNEeNWlSBFTVUhMUVIVQlS+tyIww1ZcR9bhFRVILaYKqSuAimKWu0eMGxVEWKLKUTqihBbTCFSW4WIRJUhMee4qJIj4uEVM27o8yCmuGhqf5CYY4g63oD7LLYMqatBimLKkJjbNqoMCXjMxJQhVSWIba3KECOmEKksQ0oDR/ySqStDiiIrkcoypP9JEb87h7RXSJWoUiTgMSASV4isRRFiiylE6soQkcg6JLKCiilEKosQW0Uh0v/eI7CvSFUdUho3thYJeHzHlCJVZYgtphSpK0SKYmqRyjqkKKIUqSpDSt8/phSJOYaY26CmEBGJ/z1bVYaUvn9EKVJVhthiShFfGVJEJQJgrVGGAAAAAAAAAACAsUYZAoywtSxBbHVlSEwNYoRUISnHXFWGRJUgRshZMmVqOfDsG1qDFGmXISFFSEwJ0v+amsNM3XehrgyJKUGMkCIkpgQxKle5JzxlY4oQW10hEluFiISVIUFFiK3iPkw5bwQ91hJu2rpxc/bLqSouRqEICf2a1N9NdYVITBFihJQhKbdtZRmScJ4LLUNiqhCRtS9DbFWlSFQZ0h8w4BhiyhCjphAJKkKcX1j9WBuFMsSoLEQS7vv+sdRUIqNQhhhVhUhIEVI6hpBCJGF/nLo6JKoIsQUUIjbtYiSkFIkpRPrj1pUiiY/zulokphAxQkqRmELEqCpFgsuQosBCI6YQMYJKkYT9TKpKkZAyxBbyezemDukfS02hEVOG2KpKkZAyxEYpAmDYmAwBRkgTm6IbqW82+SZBUiY/bK7JkJwJG98kSNIESJHvLJk732CNmzLpYRvW5bFSJj4Gvt5zmFmbWfe4JkJSJj8M1yRIyqSHzftGbsbQORMhIv7JkJRJkCLfhEjSJIjhuE9zzh+G9zGYObQ9bs4kiOGaZBjmBum5Y+TeX77nUMokiOGaDNG4TZ2TIRnnO99kSOzkh23UJkMM16RI0mRIaWDHMaVMhhieSZHkyZD+AO7H4DA3Tg/lnBTJuO8Ne1JklCZBbK5JkZTJEMM7KZLxZqaIf1IkazJEJGlCxGjqUloi7kmSlEmR/niuyRGFx7pvciRlUqTIniBJmQyxuSZHkiZFbNYkRcpkSJF3YiRjc3cR/8RIyqSI4fo9nDIZYvNNjqROivgmRFImQ2xMjgBoGpfJAgAAAAAAAAAAY40yBFhjTdUgGiukRVbLEI0SxNbq6h2nyGoZkl2C2MxZUnP6uKtTgtiaujxWbgliM6viNUoQwxQhORWIiylDNGoQkcJq9gauYpRbhhimEMktQgy7DMkqQmzdrup5pPSYVBrajKtRhBjF4qKJy2JpVCGucbTuL/NcyilBbMUyRPM27ZchSuc8uwzJLUKMUS1DikwlolKG9ActHFtOGWLrlSLZZYhhneNHsQwxBgoRpfteZLUQGeUyxFjevTurCLGVCpHMMqQ/bq8QyS5CjIwyxKepS2nllCHOcU0toviYN6VIbhliM6WIRiEislqJqJQhtk43uw4p6pcimWWIzZQiOWWIrT2/pFKG2EwpknO5rCK7FNEoRESoRAA0gzIEAAAAAAAAAACMNcoQYMie/ug/EBGRxR0bVcfVXBlttDoiyzP6c6balUG/BNA+mzWwct+UG22l1V0Lm8x4KsP1aRYbRqe38Ez7WJf1Fl+JiEi7tyh4caPuA2Bioblft1pFSH+83tN+dpfunbU8rX8+WZ4WaSkepqlhmjinaptY6Mry1OgWIYZ57C8r13CbfrJfdTwRkf1HrPxuntqjW0hM36W7gn9p28rK24n9uiuwmyhD2rtX7qflg3RXdrf3660SFhFp7V05TtXixIytvFK+u7/3eGorv55S/l3SG1Q6e/fpj6ustbG3ol+ztpmZke5+/fNUa4PyY3Sp97yf1C6re79LNGurHvW9RZZ7LyS0X09t0SuDRERacyvnve5W3XFFRJa36BYd/demSuep1vLKHyft/fpV2PIm3Z/dVCxBm7hHmLxjj+p4IiJLB29Wf9yLiHp1s9S78sMln3+T6rgA7psoQwAAAAAAAAAAwFijDAGGxBQhRm4ZsrRx8Pqu7YX8pfx2DaBVhTRWgvS/gd7YSxtWf2azb0LWeNYeHrlFiClBVsfLGm5A8efVWMHfsS5BrHWs9p4LHYWFjO3CokWNIqTJCqTI3tMgt+ixb1utMqSJPUOKRZBGGWLvj6JVhtj3icaeIcXHl2oZYg3Vztwzxn4eaJQhxWplwy1619A2RYiRW4a0rJtu6m6d1eamCDE0ypBiDdKdHjyhthbyV3SbMsTQKkTsfVNaB/JuC1OGGKqFSGHVbUthr4t+GWJkrrwu7UWhtXeEyMDPrlGIdPYOXpe+vVnp8WTKEEOjEJlZfb5qFCKtCeuF1fSU+xNjLVnP88xCpHPvroH/btt75miVIlPW+WpW4Tm7XHhBobFa3qp4upM6+3OYQqQ/rkIp0p1aPbbOrF4lVKqXc89Xy4Pnfo1SZGnr6v2kuTeLvc9Jdili1RaTd+31fGKcpYOt86jCY39ir/Wzb8xL+ZesPUEpRADkoAwBAAAAAAAAAABjjTIEaIhdghg5RYhdgxTllCG+1eSpZYh2CSLiqEEGvmH6uMUSxMgpQuwSxJZShtg1yOB40cP1uX7OnCLELkFsKcdatYo+pwhpOxYl5hQhwypBDLsIKUqpQ+pqhZxCxK5CRPLKkKo9YlIKEbsIsaUWIr77IacMqXqcJRUiNV+SWob4jjOnDKnaxySlELFLEFtqGWIXIf3xMsoQuwYpSilDqvYFscsQW0opYpchRTmViF2G9D+eWIjYZYgtqRSpWF2bU4iUyhAjccV1qQyxpZQiFT97TiFilyFGaiFSKkJsKYXIjP85m1OIlMoQkbw6xC5CbAmFiF2FFJUKkaKUWmSq5nyVU4osO15Q5KyWr9jnJaUWscuQ0pgZpUixEDFySpHKfe0Szll2GVIaMqMUKRYiq98v/TWrXYYUJVUiNftwpJYipTLEyHjM22VIUU4lYhciBqUIgBiUIQAAAAAAAAAAYKxRhgCKfDVIUUwZUlWC2GLKkNCV4zFlSOP7gji/afy4rhLEFluG1NUgInFFSFUJsjpe8HBRP09sGVJXg4jEHWvIqvmYIsRVgLjEViHDLkGMqiLEiClDYiuFmELEVYTYYgqRqiLEiClD6ooQI6YMaeq2D3m8RZUhgZ8aU4bEPCdiCpGqIsSIKUPqihAjpgzx1SAD4yWUIVVFiBFThlQVIUZdGWLEFCJVZYiRUoj4ypCBz4moROrKECOqEAlYVRtTiHiLEJeIFde1ZYgRU4gE/OwxhYivCHGJqURqyxAjphCpKEOMmELEWYTYYgqRuiLEFlGIVJUhRmUhYsSUIjWFiBFdirjqEOfAEb9/KwoRI6YUqStEROIrEVcZ4hNTjFQWIkbMeaumEBGJr0RcZUj5+8b/DVBViBhRpUhNISISV4l4yxBbxGO9qgyxxZQivjKkiEoEQB3KEAAAAAAAAAAAMNYoQ4AMISWILaQMaaIISdlHoKoMWZMSpHQQYZ8WUoMYIRVFSAliqypDQkqQ8njV/56y70lIFRJSghghRUjM6vjQIiS0BimqKkPWqgIpCilCbHXP+ZS9K0LKkJAixAgpQ0KKEFtdIRJahRRVFSJN7NMiEllbhJYhkQ+lujok5flRVYaElCC2kDIktAgxQsqQkCKkNG5FIRJSgtjqypCQGqQotAwpqqtEQsoQW1UpElKElL4moBAJLUOMoEIk4XrrVaVIVBli1Ky0Dq5CjNA6JOJnDylEYsoQo6oQCS5CiurqkIAixBZSiASVIUZIIRJbhojU1iEhRYgtqBCxVRUjgYVIUWUtElqGDAwY+LgPKESMkFIkpBDpjxdQisTUIUZdJRJUhtgqzl8hZUhpuIBSJKQOWT2GsBcCIWWIrbIUCShDbFWlSHAZUhR4f2oXIiFliI1SBICNyRAgQcokiOGbDImZACnyTYakvDlnuCZBhr4pegjPl8dMfthckwgpkx+GbxIkZQJkZTz3x3M2fXdNgsRMevj4jjV1A2nfZEjK5IfhmgQZhckPI2USxKa9kbdvQiRmEsTmmhRJmQQxfJMhKZMghmsyJOc8axTvB43HnndSJPGh5JsMyTlW12RIyiSI4ZsMiZ0AKXJNhqRMfpTGdUyGpEyCGL7JkNhJECNlMsTwTYqkTIYYrkmRlMmQ0hiOyZHYyZAi78RIxuazrkmRpMkQw/OmYvRkiOGbFMnZZLqnODmSMglic02KJE2GGL5JkYTJEMM1KRI1CWLzTYqkTISIeCdDUiZBbEmTIiL+iZGESRHDOTmSMinSH9DzfIiYDCnyTYzETIZ4x3ZMkqRMihi+yZGkSRER/zksYVKkP6RjciRmMqR8LJ7XTAmTIUWliZGEyRCba3IkaVLE8NyvMZMhRb6JkZTJEINJEQAGl8kCAAAAAAAAAABjjTIECJBTgthMGZJagthMGaKxQtkwZUgTNYiIfhGSU4IYxbIipwSxmTIktQQpj7fyvzkliM2UIRo1iMjqMaaWBza7CMkpQQy7CBmlGqSoiTIk936xy5CcIsQ2eaCbVYTYTCGSU4QUmTpE83xr7g+tx2C/DFE6fdtliEq9YpUhOVWISLkMySlCikwdolGE9MfslSE5NUiRKUNSSxBbThliM6VIThlSZCoRjTLEMIVIThVSVCpEMisJuw7JKkMMa3V1chliM6WIQhkislqHaJQhhilEsqqQIlOIZBQhtu7+/XlFiM0uRFLLEMMqRNa0DLHZpUhGISLiqERyCpH+oNbzI7EQsZliRKMQEVmtRHLKEJspRZLLEFvvXJZThpSGLJQiOYWIYZcio1iIiKxWIllliK13P6eWITZTiuSUITZKEeC+izIEAAAAAAAAAACMNcoQwOPJz/5LERHZ8NM9quPOHblFdbwJxULA0KpWjOwSxKJZbjRlaVa/qpnep3tfLyoUNUWaq6ebYu6X3JXow6BRhTSpifu7pbTCzQjZoD1Gt2Yj4hTaj8WqzclTTCmfd0RWa76Jed2xte+f6d06tUVR6Garoabuqd88PoZmGWJM3LlbdbzOVp3yp6h9Z/7q9qLuJqXyoMes9u4e0FlhOzD2rF7VICL55YE93K23qY4nIjJx6CG6Ayr/7pJ5/fu5aiPqFCGb3sdQq0Ma1NrQe14rP8ZFq1QqqtpoPkFnp+79s7zBs6dNBu2/NzuT+n9vTu5WqPsKljcpn78b+NNjYl/9pvUx5g/RfQ1groRx6YW/pzougNE2+u8oAgAAAAAAAAAAZKAMASzaRcj+B6yspNFc8dwprPyd2p1//VrtEqQzZe/HoLD6t3DzaewRYq+ezr0Ovr16em5n/m1qr3Ke2ZN3X9t7O9h7AaRoFw5JY4+QrrUiKbc+sAsdlVX4xSEaWEE1tW/1G8xvzb9R29ZK9NzixN5/w+yjkWP2ntUH0vw2hZ95yf7v/Pt94LGpcL1re4+eyfm8Y7Sffxr3S/F2m8g8PpHyuTu3DLF/17QULuc+c+9i///XKE2WNgze0VN781brthcHbzONa3Evb1rdM6I9Zx2fxspY60+NibvyXl91tm2qHD+XRiVirrffl3lNe3sfAI1CpLWlcIwaq8gXFwf/O/c8ad2vS7fdnjee6Bch9n4rKuWOdhVi75uRu+9FE3uGHLRt9T8aeGuieD91F/JXqfcLESO3FJmyKonMvU5EVvcQEdHZR6Szw7qyQebz2943xOwnkmNi/+B928msTzr2fikKj81iHZq7f4iIfhnSXhw8P3SmFf6enVp9HTF5r14Zs7Rl5WdfntV5H4NCBLhvoQwBAAAAAAAAAABjjTIE93mmBLHllCGmBinKKUM6jmvA5xQh2iWISHmFrkhmEeK5uVKrEN919HOKENe19HOKEN8q5NQixC5BjJwipO04lJwixC5BjJwixLVfS1YZ4PrShosQI6cMsYsQI6cMsasQkbwCoViEGDlliF2ErH48/f53PkYzVkTaRYiRWob4nn8594vr9sopQ3zn7dQyxPX7RiSvDCkWIUZOGWIXIUZOGWJXISJ5ZUixCOl/D7sMMXIKEcefGjl1SKkMqfg+OXIKkVIZYiQWIr6V3TklwkAZYuQUInYZ0v9Gic8jz/2ZU4g0XYYYWYVI02WISF4dMulewZ9TiAyUIUbDhUj/22SUIqVCRCSvErELkf7H06uJYiFi5JQipUKkP2ja89wuRPrfJ6MUsQsRkbxKpFSIGImPUd/eYTmlSNOFiJFTihQLESOnFDFlSFFOJdL1/H1EKQKMJ8oQAAAAAAAAAAAw1ihDcJ/lK0KMlDLEVYQYKWWIqwgxYsuQpvcFcYkqQwJvnpgyxFeDFMWUIa4SxBZThoSuOo4pQ3w1SFFMGeIqQWyxZYivBimKKUNcJYiRVATUfYlyFeIqQmwxhYivCLHFFCKuIqQ0XkSJ4CpCbDGFiK8IKX9e+OMh5HEasxLSV4QUxdYhVc+9lDKk6vZJKUPqztcpZUjV756UMsRVhBgpZYivCDFSyhBXEWLElCGuEqT0vXxliC2mFKn4UyOlEPGWIQHfL0VKIeItQ0SS6pC6ldwpJYKzDDFSChFfGSISv2o84D6MKUSGVYTYou6XYRQhtphCxFOE2GIKEWcRYlN+PtfddymliLMQMWJKEV8ZMvA5ccWEqwyxxZQi3jJkYMDw57uvDCl934hSxFWGlMaLKEW8ZUhRxOPUV4bYYkqRYZUhRbGViKsMMVIKEVcZYqQUIr4yxKAQAcYLkyG4T6mbACkKmQypmvywhUyGVE1+2EInQ9ZiEsQImgyJPANVvbkWMvlhhEyChEx+GKGTIDFvroVMgoRMfhghkyAhkx9FIRMhQW8q94RMglRNftiC3/yOeRyuwWSIUTcpEjoRIhI2GRIyCdIfL+DN95BJECN0MiR0ImTlc+t/npjHa8gf/CGTIEboZEjMBGTI/RIzSRQyKRJ7OcOqSZGY3zkhkyFVkx+20PN13QRIUchkSNXkhy1kMiRkEqT/vUMnQ4yQSZGIPzVCJkdqJ0MSv3eokMmRyskQW8XkSOzlbELefK+cBLGFTIpUTYKUvnng8znifguZFFmryRCRiAmRtZgMMUImRQInQ0TqJ0SCJkGMIU+GDHzrwImRyskQW8jkSMikSP9z6++XkAmRopDzTtCkSH/A+ud96KSISPjESMikSH/MgMmRoEkRo+JxGzoZYoRMiqzFZIgROilSNRliC5kcqZoMsYVMjtRNhhQxMQKsf1wmCwAAAAAAAAAAjDXKENwnxBQhhqsMiSlBbL4yJKYGKfKVIWtZghi1RUjCWUerCDGqypCYIsTwlSE5G/C6ypCYEsTmK0NiaxCR6pXpUSvre6qKkJgSxKhd6Z7ym28NixBDswwR8dchMUVIaUxHiRBThNh8hUhMEVL+2vLPl/K4rVrtGFOEGHVlSOwl6USqy5CUy8j5ypDYGmRwzPI5N+V3j+EqRGKKEKPu/B1ThBhVZUhMEWLUlSExVYhIQhkiUl+HJPypUVWIRJUhGcdQx1WIRBUhNkchkrPRsa9IiCpDjKpCJKYM6R9EzfM74f6qKkS0ypCYqsDmLUTWsgix+QqRiCpERLkMMdawEOkfQk0pElWIGFWlSEwh0v8a/30VW4iI+M9BUWVIadDy8z+mDCkdi6cUiSlD+mNVFCJRZYihWIiI1FciWoVITBli85UiMWVIka8SiSlDbK5SJKYMMShEgPWLMgQAAAAAAAAAAIw1yhCMpZQSxFYsQ3KKEMMuQ1KLEJHBKkS7BBHJW5Er4ihDFM4yxVXHKSWIzS5DUmoQo1iF5JQghl2E5NQgIuUiJKUEsRVXqCetqLfYZUhKDWIMrHbX+A03AkWIzS5EYosQm12IaJYhOVWISLkMySlCVsdY/fk0Hr/2KseUKqTILkRSipD+sVj3R0oNUmSXITlFyOqYq+ff3N8/IuUyJKUKKbLP6ylFiFEsQ1JKEJtdhsSWILakMsRmlyIKf2oUS5GkMkTxWIrsOiSrDDEKhUhOGWLYRUJSGVJkVyIpZUj/YKzne+b9Y9cha7lXiE+pEBnlMiSyCLHZhUhSEWIbgULEVixGkuoQw65EUsoQW+HxkFKG2OxzUlYhIlI6B+QUIkaxFEmpQ/rjWJVIUhliKzx+U8oQm12KrOXeIT7FUiS1DhEpFyI5ZYhRLERSyhAbpQiwflCGAAAAAAAAAACAsUYZgrGiUYQYGiv8B8bLW1w1YGr38kgWIYbr+u+55rfp/LymCMkpQWxzOyd0Hy/KJcLkAb3TvFmhrrKaXlaLkJwSxObbGyWZ0qFpFCGGKUNyixDDlCE5RUhpzF6RkFuGGIub9NZvtJe6ao9hEemvbMwtQgxThuQUIU0xZYhGEbI6Zkft94/IahmSW4QYi5v0foGbMkSjChFZLUNyixBDpQwxTCGi9KeGqUOyyhCb0rGZQkSlDDGWOypliGGKhOwyxNg/pzOOyOrqcKX7wxQio1iGGN1du9XGEpG8IsRmCpHMMsQwhYhKGWIoPVY071MREZlQ/PvMlCIahYhI/zGiUYgY3Q26t1+3rffaojM7mVWGlMbrlSIqhYiItJb0/17WplGGGJ3piawypETpbyBjSfG1HoUIMPpG8M9sAAAAAAAAAAAAPZQhWPee/Ky/VF1J379epNIzQ7MIMSutJ5RW+i9tWBlP4xr8xvJMS6Z3568iObB9ZdVNS3nRjNYqdRGRfYet3Ln29eljbbhr5Q6YO1jvwdJti0ztVyxCzNNCaQp9eUaxBDF7ICj9uGZPGtVKYqIlM7v1HswLW1buCHsvolTmHKBZIpjaZPbevCfI6s+afUh9ncny3hdZlMsQzceeOT91lY7N/B7SvD+0HsfmPLXhTp0i5MCOlVWguo+Vlf+ZuTtvter89uneOHrlQGdmon9fTOzWW03bl3k9brMad2JO5/4VEWktrJz8ukorfc1q9ZbSatrWXr36ort5ZS+D1rzS7dfpnQTsPTBGQNfUL7v3qo2pXhD0ZBciG2ZX/tfebyKD+Vm7OfvBNG1iQvVnNr/HW1oVhqFZiijspyEi0p3p/YyKFYZ0u9LdqLdfRdeUhbmvNXq/d7TOySKrJWZ3Quf2M/VKZzr/78DudFta9t6dGVq9PazUXqf17tfOjOLzQqkQWdy68rzQ2MvFaHVFLvkclQgwiihDAAAAAAAAAADAWKMMwbr15GcV9gfJWCjT9a1UHKEyxKzENVLLEFOC2HLKEHuFf24VYooQY5TKEFOCGFpFiJFThrhW9OeUIfZ+ChrFQKtwODl7hPRLEFvGc9bUICI6q/I71nmlePvN3pv/oDa1hJG6Yst+7mvcz/bPnlqG2D+jkXNO6BSeYiqr/a1VmjlliOtx3co4RPv8lFuG2L+Hcu6H6V3lXzqLW9IP0D5faZQhpgoRyXyseE51qWWIKUJWx8lflV9coWmfS0apEPFdpz2nFDFliIhSHWL9WZW1Gnmx/DzJqTpMGaIxloisliFGTiFi6oaiuQPJw3XtfVEUCpGmyhAjuRCxbzuFWsL+WUe2ELGrC41SpPB7Xb0SEckrRZYL5xOF/Vz6hYiRU4o43lLKKUX6ZYihVIgYOedm1x5dOZWIva9JbiHSnbb+RsgoRUwZUvp44t8d9v2qUYh0i8/ZjH1YTBliyylFiq/jKUSA0UIZAgAAAAAAAAAAxhplCNaNgRLElrDIsOkipD9cwuIOewWuLaUMcVUhKUVI3V4PsWWIXYLYtMqQlCLELkFsKWWIXYOIpBUhdSv4U6oQe3V1zPdz8a1qj61CvCWIkfCcLZYgtpQyxK4hjKrbLaUQ8dcS8cdc9fxPub99t4FIWh2iWYZ0Kp5iSav+PdftTilDqh7fKWVI3XkpthDx/T5KuR9cRYiRUoZUnbNE0gqRYhFipD1Gqv85pQyxq5CVceJX41etxKw7l6iVIgl1iK8M6Q+ZUIgUyxAjqRCp+XMqaRWyowzpj5dQddhlSPJYdhFiSylEXGWIkVCIlMoQI6EQaboIMZLKkKrbLaGSqPpZR7YOEfHXFimlSMW+HCNRiix7ziUJpUipDClKqURqzoMppUipEBFJq0RqfueknKO1ChG7DLHFliJ2GWJLKUVchUjK3x7O+7MgpRTpVj1nE0oRzUKk6nU8pQiwtpgMwcirnAQxAv+m9k6ADHxS2FihYiZD6iZBjJDJEN8lsYpiJkNCN7wOmQypmwARWbvLY9VNgIjETYK4Jj9sMZMhoW9Sh0yG1L2RGPP9RMLfuA2ZDKmdABGJeq5WTX4YoZMgVW/6GyG3W8xkiG9iwBbzh0nI8z/k5wi5PWImQ8J/1vrPqZoEMaLe6A7cvDRkUiTkMR4zGRJ6XoqZDAn5nRRyP1RNghgxkyEh5y6RsMkQ1+SHLe4xEvZpIZMhrsmP8jjhbzyHvMkQeg5Rv3xWwHmkbjKkP1TEpIhrMsQWNDkS+OdU1BtuFZMh/fECJjJ8kyCx4/TVTYYYMZMiVW/qGwGTIt5JEFvEpMiwJkOMqEmRkNstYEIg5Gcc6ckQI2RiIXSCJOD3/Zpstu6bDLFFTI5UTooYIZMjgefBmEmRujfPRSRuciTgd03oedo1GWKLmRypmxQRCZsYqZsMMWImRXyXyxr4nIDXD0H3p8RNilRNhhgxkyK+yZCB8QInRkJexzMpAqwNLpMFAAAAAAAAAADGGmUIRk5QCWKrWRAQVIT0Pzn+21cOV7OAI7QGEdErQoy6leGhNYiIXhFiaJYhIVVISBFiVK3ADilBbHVlSEydUVWEhK6mjvneMSvXq4qQoBLEVvElISVIUVUVElI+2GLus6pCJLSSKKpbmRVThFX9HCm3S10hEvPzVp0jQooQW+3q/8AqRKS6DEl5rFc9z2Iv1xdShsT8Xqq6H0KKECO0DIk5j1WVISFFiBFchkQcW1UZElKErI5Tv/o+ZoVl7GUvhlmIhJYhIuF1SEgZYlQWIhF/TgXXIQFlSH/MirIjpAwJGacvtAwxqgqRkLLBVlGIBJchIrV1yLCLkKLaOiTldqsoImJ+1pEuRFI2J68qRSJ+74sMuRQJLUREaiuRoDLEVlWKRJwP6yqR0JJgQNUpKuK1a8i5OqQOKaoqRULKEEOzEBGpr0RCypD+5yoWIiL1r2FCyhAjpBAJKUP649UUIimXu6UUAYaDMgQAAAAAAAAAAIw1yhCMlKQqRMS7GjOqCOl/UdoheIfzLNyIWXlruMqQmBLE5lshHlOEGK4yJKYEsTVdhsSUIDZ7JXZKDSLiL0JSNq82imVISglSdwwpK1yMYhmSVIIYni+NrUGKimVISvFg5Nx3rkJEswyJKUJsrp9LswxJ+TmN4rkipQgxvKv/I1eG9o/FOv3lPOZ9z7vYKsSw65CU30f9Y3Ccq2OKEJtdiOScx1xlSEwRYis9RjKOzVWGxBQh5fEGV9+nbEIqkrYhqqFaiTjOLzFlSGk4qxSJKUJszkIk48+p0urjiCKkNJaj7IgpQ2rHi61CDF8dklI4GFYhElWFFHkKkbUsQwxvIaJUhuT8jGNXiBjF2ynx97/IEDZbjylDbJ5SJKkQMYqlSMb50FeKJBUiIuVKJOM1vqsUiS1DiuxKJKYMsblKkZgyxPAVIjFlSOlrHa8rUu5P3+uamDLE5ipFYsqQ/jieQiT172bqEKB5lCEAAAAAAAAAAGCsUYZgJCQXIUZvQUBSCWJrqAzJWXlrFMsQzSIkpQSxmTIkpwYR0S1CjNl7lrNKEEOrCDFMGZJTExj2XiE5q6lFVo8ppwQx7L1CklfIW1+WU4IYpgjJqUFEdO5DuwzJqSVEVldi5RQhRvHny72tRFYLkdyfUUSvDDH6q/8zVpqJrJYhWRVUj/08TC1CDFOGaPxess/ZOVWIyGoZknsOExksQ3KKEGP1sZE91EAZklOErI63svI+tQgxcsoQo6lCJKcM6Q/XK0RyyhBjoBBR+HOqv+o4owwRKdccOWVIaczUMsSwC5GcMsToFSLJZYjRK0RGoQix9QsRjdurUD5o/KxjW4iIrN5Wma8HRBRLEftnyilEjF4pklWGiJT3EVE4L5pSJLkMMRQLEaO1uJxVhhiahYjIaiWSUobY7FJEqxDJvj9l9fVOThkiUq5DUsqQ0pi9UiT372gKEaA5lCEAAAAAAAAAAGCsUYZgTWSXIJauwurW1cGUhlEsQvpjKg2lUtBY7Ovjp2pirxCNKkREZOPtCkvse/YfqnNMxuSc0gNX8aFhihCNlfEiIstTegenXSBplCFGW2GRn4jIxIL+r3et+6DtubZuKs3bf0JpUbtmGWJoVD4iOjWgbeYenYNb2Kr0y0RWyxCNKkRE+Tml/PSc2qdz+2uUIYZqISIinVm935uTu+ZUxunXIYp/TrX2e/bXiDWl+zpDRKQ1p3RsCivt+7TKkJ7WAd3Hrabugs6xtewV/ApGshDJLUNsGhVGj3oponhs3U35NZmI6D7PRaSzVem4RNSOzRR9GoWI0Z7X+X2+vFm/cmvPKb0Qbes9NrQKEWNpo955Q/NvABFKEUATZQgAAAAAAAAAABhrlCEYqif+j78SEZH2fP7DrtNb2ap17XSjpbDgYXlWZ2WCuT65vedCKrMaWGN18cbbVlan7T1cZ9WJOTa1wkHyVz/btcvmW/JvuP2H9FZqZt6lU/tW0oau4sqa5elWfw+NHOY6qVqrz81zXON5oLVHiE2jTDDXlc2uVnrjaNyXRn9/lswhW72XHJplzsRCV+Wx0e4tatXYJ6dduO019jExz3ONMqG48n9pg8L1pHvPd7NvVCqzh1ITRVPu4808vycPKFYTc8uyPKu3+lCjDJkorPjM3XtERGR5auWGm77rQPZYMtFS2TOkr3fKmLw3rxDpbFhZ3d3f70OBqU3au/bnjTO7cq39lsaK8cJ14lsL+QVAd2Zab6yNhX00FMYzlY+990rSUDNTKuP09fYW6M7lPadGugxp9Y6t28AmglqliMJzqrW5VzLNK5VI073SROM5sGFW9e+L1tLK7dXNrNXMeaOr8PvJPmd3p/OOrTPT+3qNt9Z6Q7QV9rYS0d1DRK0M6VnetPK4nVAYtzPZVtmLZHHL4GOhlVmzd3p/Q03uzz+nLW1c+fku/7ffzR4LuK+jDAEAAAAAAAAAAGONMgRDoVGEdKxV5jlFiF2DiOQVIdoliC1n1XNxdX5OEWJKEFtOGVI8Ns0ixDV+DM0ipF+C2BLvUlOEGDkrt/qr/QtyagJ75UxOGeJ6fuc8D+yfa5TKELtEyFrF7rj7cu7T0mMkcaiW56VGys/qKgdyHhttaxFlThnSdtzWOWWI/fzOqSZce0HklCH28z2nDDFVSJFmIZL6nPI9r3MKkYm51dtJswwxcgoRrTLEFCG2rEKkcM7OKkQ8p4rUQsSUIf3hMwqRruPnyqlDTBliZBUiy+UnUU7VYVZ4q4xVLEOMnNXx1u+rnLKjO1PeFyJpvAn3cyq1ENEsQ9T3CmlZx6ZdiGjuI5LxnOqXIUU5lci09VjLeQ5sKD+ncv7eMGVIf6zEQsQ+b6x+PP0+1SpE+mWILeettsKX5lQiHc/PlFOKaBUipgyxpZYiHasMySlF7EJEJK8S6Vh/U+WUIhQiQD4mQ9AYMwEikjYJYk9+2FImQ7QmQbQmP4pcEyEpb/BVvQGdMhnimwQxYiZDqo5trSdDqjaAT5kM8U6CGBF3rT0BUpTyx4lrEsSIfeO86kVhymRI1fM65vlQ93Os5WRI3ZvtSW/cVowZc59WPTbqvo+PbyJEJO5nrXpzPOVcaU+C2GImRVyTIEbKZEjd8zpmoqBqQ+yUyZC6PwRjJkVckyCG9uWyUp5XmpMhxUkQ21pfLqvqTYeUSRHVyZCKc3XSpIjiZIg9ETLwbRImRVyTIUbMpIg9CWJLmhRxTIb0x4t409X3ZmbKWP0xXZMhRsx4NX8Sp0xiuCZDksbzTIaIpE2IrKvJkNI3VJoc0d5cXSRqcsQ5GWKkTIrYkyFFsc8rx2SIkfJ3hz0ZMjBexMRI3fkjZVKk6lwdMzHinQzpD5bwmqbiS2ImR3yTIf1vkzAp0tTlsopSJkTsyRBbyuSI1qSIPRliS5kcMZMiIkyMALG4TBYAAAAAAAAAABhrlCFQVyxCjNAypK4GEYkrQlwlSGm8gEUHwypBbCGrnWNW34eWIXU1iEhYERJzbGu1cXpVEWKElCG1JYihVIQYISu0alf7F4RWBCErYkLuh5jnc+jq/5CfYS3KkNDSIGoFe8CYIbdH8GMk4mlaVYT0PyfgZ40pBEIfI3VViEjY/VVVhNhCCpHQFZcht0lVEWILKURCV8FplSGGViESW4aEPKdDCpGqIsQ27EIkZtVlSCHiK0JsQYVIxDk6qBAJGC62DqkqQ/rfNqAQqSpCDM0yxAgqRCqKkNJ4AavP61Z2R41VVYTYQlbGh/zOCqw5qoqQpDErypD+94woRNZ1GdL/xiN6+azAOqSyDLGFlCJVZYgRWohUlCG2kNctVWVIfxzFQmT18+rv06BztGYhIhJeicQUygGlSF0hIhJeiQyjDLFFvWYJLEBCShFXGWKLKUXqChGR8EqkWIYYFCJAGMoQAAAAAAAAAAAw1ihDoCalCAkpQWxVK8lDSpD+ODWLC7RrkJASxFa1yjl2P4aqKiSkBLFVlSFrVYSEfP+QEsRWV4YEVyEilatTQ0oQW9WKrJgiRKS6IEi5NmrV/ZCy50/dqv+YvTGGXYbE7D9RuYI94elSdbvEPkZCjiGkCOl/bsXPmlIE1D1GQooQo+o+iylCjLoyJOU63K7bKKYIMarKkJTnfl0dElKEGMPeOyRm/x/DVYjEFCHGsDdU1ypDQouQoto6JOEc7SxEEk5xdYVISBFSOoyq69JH7H1SV4iEViFFlYVIRBnSH8+x+jx0JXfdOANjxpQhRtWYMb+7amqOmDIkaMyAMqT/vWsKEc0qRGQNyxAR/TpEZGiFSFQZYlQVIiFliK3q+RBRh4hUv4YJKUNK41WUIjHnk7o6JGl/p4rCIqgMKQ1Yc+5RKkRCypDSt64oRTTrkJAyxFa531nC3iB1lUhIIWJUvXYOKUNsdaUIhQgQjzIEAAAAAAAAAACMNcoQZHMVIYZdhqSUIIZvJXlMDTIwnmcxgVYRklKCGL7VzbE1SFGxDEkpQWx2GZJ6bMMoQ1JqEBF/ERJVgtgcN1NKEWLYK7GSVvr3uAqClFXh/WPxPCZSqhCR8vMipgSxNV2GxJQgPgMr2DPG891OyY8Va7iYEsTmWqWfUwL4zp0xRYiteF+mFCGGrwxJKUIMrTLEsAuR1Oe/rwyJKUJsTe8dklKEGFpliNH03iExRYjNVYiklCFGqRDJODdrlSGGrxBJKUOM4irkmCLE5itEUsoQEUcdklCE9MdSKkOqxhNJLEOM4pg5v8M8NUdKGVI5ZkQZUjoWqxQZ2TIkpgjx0SxFtAoRw3qOJZUhIv46JKUMMVzPscgypMh+XZNShvTHchQiOecTXymSUoiIlCuRpDKkP5jnXJR4irIrkZQypHQohVJEe98QkbRCxCi+tkkpQwxfIRJThhT5XkunFCKGXYq4yhCDQgRwowwBAAAAAAAAAABjjTIE0apKkKL2fDerBLGZ1eSpJUhpvN7iAc29QXJqkCKzujmnBLG1l3SLEK1ja7IMSS1CDFOGZJUgtt7NllODFJnVVzlFiDGx2M0qQWzmfkgtQWzmeZFThBhNlSEaRYjR6khWEWLYt1f2Y6U3XE4RYjOr9XNX/9tlSE4RYpj7NKcKKTKFSE4RYhRvr5wixDBliNZ5wBQiOUWI0dTeITlFiG3yQDerCDG09w4xdUhOEWIzhUhOFSKiW4YYnamJrCLEZgqRnCLE0CpDDFOIpBYhtn4hklGG9McqrDbPWcltj5dVhBSZ41P4XWbXHDllyMB4GUWIzRQiY12GGNp7iWhWIr3nWHIZYjOlSE4ZYltYzCpDDPM6J6cMGRivV4lonE/6Y/Z+l6WWIf1xetVFVhlSGrR3blJ6+WNKEa1CZNTKkCLzeienEDFMKZJahtjMa+ycMsQ2ub9TWYcUUYoAKyhDAAAAAAAAAADAWKMMQZTQKmTUdSZ1V4VrFSEHtvdWpyis8DU235xfgxTt+nmd1YciK8WA5mrfxY2692tbf8GLTO3XWa3WmTL1i+KqkgO6K+m0n2daVZiIfhmiuQq5P6RSUWPOJ12ln1nz/GS49lxIYVYhdhXvD+0iQaPiKtJ83mofm/Z4Inr3h3k+aNZwM/fo/tLQLkRm7zxQ/0mBFjcrrkIWkel751XH60zr3XbmvDIxp7QCvgGteaVfGGY8zz4daYMpnwcmlfdy8O3BkMKszle6/bRW1A/Q/HllRMsQY4QLkX6ho1U5aL+lo/izdnvPWa3zSmfzRpVxBig//Ja3KBVsslKtdBUrMW0thZKwz1zxYINShbGoew5Y2K5XJRmaf9+Gog4BKEMAAAAAAAAAAMCYowxBkJAixKy0bmeusrRXQ2vMli9uGJz3y91zYHlqcJXb9N78VQcHtk+orLi2V7xvvSlvteW9DxksQTRWq5sxtFb4Lm7q/cwKw83sXr0vFwOvvVnF3kNici7vsdJEEdJe6g78b6ol63mmtceCMYpliCl9FjflP1bsOsI+z8SyzycaZcjMrmVZ2KK3jkJrrxB7/w2NMsTeSyK3XjHjaRZTrU5X5Ty6PGP9sJkvDe37o6OwwG9qf1dtLBHlMqSw8n3m7vyVrwsHDf6QE5mPPbO/z8xdevXF/I6V1wbthbzfaV3ret4zd85ljScisrR5deVmeyH/RYt2GWKuTa+xZ4hY+z+0Mo+xvWffwH9rXJu/s3WDtPfoVUlm5bD9s2fTKCbsfRtyV8L3zi2tRb3qrLtvTlradY0oFCJ2iaDwN1Grd39053XOfa0NG1bGW8h/rAzs3aJRh9gFVifzb1PNfVJ6tAqR7obBv027GseqfDox5/fOrE5F2f+9oVCI2H8P5L4OUi1DjHZLpQ5Znh68vSb35Z1LF7cM3p9dhdf0dkWd+17aRO+9huUN9Y8VChHclzEZgkpVkyC+NxNzTuCuN9pT3gC1Jz+M1EkQ35uSOZMg5pJYRTmTIb77I2UyxJ4AKUqZDPF9TeqbeP3JD1vG2aw4CdL/PhmTIb6NtFMmQzqOx1/Om/m+SY/UyRB7EqQ/3ghPhhgpt6PrUmc5kyG+N9lTJ0N855GcyZCZXeUnccqkSKvm4Z9yTnBtRJ4zGeLbUDt1MsQ3Xs6kiOs+TrntSpMgRsZLQ9f9kTOBYSZBtMbzPQ+y3gxwXAYoZVLEngQxciZDWo77MmdSxEyCFOVMiNiTIUbKpEhxEsTImQxxPZZF8iZFXJv0Zk2KOCYEciZE7MkQI2VSpLN1g2P8jEkRz/0xUpMirk2sU974rbm0WMrkSHdf+Tk1UpMivje0M/42ajnuj5SJETMJUhorY1LEuZF9zqSI7zGTOinS4GRIUcrEiD0Z0v94zjE3NBliS50c8W3wnjI5UvX3QMproaYmQ2w5kyP2pIiROjliT4oYKZMjrkvK5ryfNuF5r6FqcoRJEdwXcZksAAAAAAAAAAAw1ihD4OQrQqpWUafMYFdVBppFiBFThoSsyo4pQ1wliC2mDAld0R5ThgyrCDFiVjJ7a5CiiIegqwQpfc+IMsRXgthiyhBXEdL/t4RV/nXlR0oZ4qtCRMavDHEVIbaYQqSuNEgpQ6rOITFliKsEscWUIXVFiBFzTvCt2h74nIib0FdwGLFlSN14KWVI1f0bc9t5ixBbxEvEkPsjpuhwFSE549U9/pPKkIrV25pliBFTiLiKEFtMIeIqQmwxhYivCDG0yhAjpRCpe0zHFCK+Vb0D3y+mEAmoIWIKEV8RYospRFxlyOr3SyhE6s4xa1mIuIoQW8wK+MBN52MKEVcZUhpPqRRJqkPqVvVH/I3kKkJsMYWIrwwpjRlRijjLEFtMKVL1mEmpQ4ZUhhgxhYivDCl9XszPMKQypCimEqn7HbKWhciwyhBbTCniK0OKYioRXxliaBUiRsr7bL5CRMRfiVCI4L6EMgQAAAAAAAAAAIw1yhAMsIuQmFXTITPWMXVB6CrwuhqkKKQMiVmNXVWGhJQgRSFVSMz9EVKEVJUgttD7LuY+DlnJHFSEGAFns5AipP+9A8uQ0CpEpLoMqSpBSp8b8FiILT1CPr+qBCmNNyZlSEgRYoSUITGFQd35KKYmCylDQooQI7QMCa1CRMLOCSEFQv9zQ4KyiGUhofddzJghhUjM/Vx3GwZXISJBZUjM/RFScoQUITHjicRVUUGrIQNXbYuEFSJ1RUhRaB0SUoYYVYVISBFihJYhdVVIUUghUlWE2EIKkZjHdGgdElKG9L9/SCESUUGEFCKhZYhIfR1SVYSUv29AIRJxf6jXISJhhUhIGWKErICPOMeE1iEhZUh/TOW9RGpLkZgV/AG/D0PKECOkEAktQ0TC65CgMsQIKUQiHjNBpciQyxBbVSkSWoaIRNQha1CGGCGFSNTvkMBKRPu1kXohEnPul+pSJKQMMUIKkboypCi0EqkqQ2wh77tVlSGl7239fU8hgvsCyhAAAAAAAAAAADDWKEPu43JKEJtrhjplnwnDtwo8pgQxqoqQlOvy1+0VEluFiFSv/E25X6rKkJgixPDdlzn3sWsFc1QJYvPchDE1yMCxeMqQmBLE5ipDYoqQ/tfUPCZS9v+o+pqYIqQ/3jotQ2JKEJuvDIndb8LwnZ9iSgGbayVYTBFi8xUiMUWIUVU1xKzW7n9NxZfE1BtG3f2YMmZVGZJyP/tuw6gipMjzMjHl/jBcRUdMERIynkjcqkebcxVkzMrbnqoyJKYIMerKkJgixNAqQ4y6QiSmDDGqCpGYMsRwFSI5j2lfIRKzmtfmXFmcUT74CpGYKqTIV4jElCGrx1BRiKTcL8MuRGLKEKOqEEk41/gKkZgipDTmsAqR1ArB8zsypgyxuUqRmDKkP05NIRJVhhhVhUjCY6ayEFnjMsRwFSIxZUjpa30/1xqWITZXKZL1u8RTiqS8RqoqRNa6DBGp30ckphAxqkqRmELE8JUiMWWIzfU+XEwZUjoWShHcB1CGAAAAAAAAAACAsUYZch/2xP/xV1kliGHPROeUAiLl1d8pJYjNLkNSapAiuwxJKUFsxRXAGveLXYak1CBF9v2aez+LDK5gzipCDOtsllqEGHYZklOEGMUyJKUI6X+t9RhJKUFsxTFSSpDSeOusDMkpQgy7DEktQgz7XJVThBjFlWA5RYhhlyEpRUiRXTbkrNbuj2ENkVJwFNn3a+54IoOFiMb9bN+OWmWIxv1hlxw5VYhrvJwixBhY/Ziy4tZiFyIpVUiRXYikFCG2YiGSUoTY7EIkpQgpsuuQlCLEVixENB7bdiGSs5pXxLG6WKF4sAsRrTIkpQixDRQiCveHeiFi1yEZBUKfvfI983xjFyI5ZUh/zKYLkdwKwfqdmVOGGMVCJKUMKY1nlSJJZUiRXYko/J4aKEVGpAwxioVIThnSH8P++UaoDDGKhUju7xKRciGS+1rJrkRGoQyx2aVIShlSZFciKWWIzS5FcgoRkfJ7czmFiLG8oU0dgrFDGQIAAAAAAAAAAMYaZch9kNknRKM+EKm+xnuKhc2jP0eXs6Lfp+ra9ik6+QsmB7SrL32bpKOwoK5oZpfuihSNOsKmUXAMUByuvdRV/ZnXUxmiUYWIrJYhuUWIYcoQjVLAMCvBNKoQkdUyJLcIMczvFI1V2oY5v2oUHCKr96/WeCIrZYjm/Wxux+QixKL9O0pE//XD8ozuQWo9pgfH1P2ZXftQZWngrwLt23HigM65q6i1pHuQk7sr9sBI0J1RfsEkIhO336syjilENMoQo73ngE4Z0h+woUJEowwxzMp3jRX+slqIaJQhIvp1iEihENGqEHrnV40yRGS1DtEoQ/pj9gqR7DLEMIWI0uNGRFYKEcUyJKcIcfLsgZFDo+RodLwGfubOtO4xuvbiyhtQ/4XnwjbdN0g0/1Yxljx7lqaa2qtzv5h9RChEMC5G/11nAAAAAAAAAACADHkXLMa6cvKL/6+IiLSUipDpPSuzzFqrTkV6K4w1VyWaH1VpTLMaeEGxDFnuLVBoL1Z/XihTHnQyrzdpmGuxa5YhmqupRfSLgaXZBooQU0koPXTMbaixd4uhXTyZPRC0ahizr8zUPr2TRH/M/UrjbV4ZT6sMWdy08r/Te1SGExGRhc2mDFEab4sZT+dnPrC9rTqeSOEcoTSkea7Y10vOMbHQLe19kcNUXtrFTu61jItMCWrvwwVgRem69go6vb1btEbubsy/fr+ts2VW2vvm6z8xeMDeOUZpNX5n28aV4eaUXrxLoeTQqk20axgzXkfvfN3atHI7dg/o3Nct5dXzrRn9x3ZrtjemvVdMIvN4sfeKyRpzalK3YjTVitIFSVp7Vl60d7dsVBmvCeb1ocYeZiKrValmiTC5Z+V5t7RF53FuahiN/U1EVmsYzb1IJntl6dKszm/A5d57BhMH9I6xO9FS/fui09snxd7HLZbZe8S8p/jl89+Qd2DAGuMyWfcB/UkQhZOqmQAR0ZkEsTfezX6jyn59oLHhdeFNzdLxJli26szcSRD7jealjfqb24qITGa8Weyb/EidxPB93ezd6b/knRMgGTel9xJRGWO6bsesyRDHsXQmcw7Q/eGcyZCFreXjyZkMmd/qfjBuvCPthtx/P/eDccOd6Y/FAweVf+bpPRk/8zb3z7zl5rQ/nPce7v6ZcyYvzKSU1njeSYXM3wlt62Gi8Xu1OFmhMRli/+GdOxlin8s0JkPsMXInQ5ZmrZ9Z4Xd/8XzbVniPyb4dcyfx7fOqxmUJp/au/qCLm/IfjPYE+8R83jFOzFtPQIX7eWDjeYXnc3dq8Hw7dVfeTHtpMiRzE3qR1ckQY+pnd+eNt33LwH93FY6xSHVSpD9o3jF2Zt3Pj5zJkZbjclY5EyO+NxC7e/aljec7lpzJEceYORMjLd+lorQnFXMeP643szMmRrpbNjk/njM54rokU87kSHfK8XzJeAuqtd99GcKcyRHty1r5HiPJkyOex3bO5Eh7vvwY0ZgYsV+D5U6O2PeNxuRIZ2Z1TI2JkaWNg2PkTo4sbrF/5vzXJ8VL0+ZOjIiILGxbeV4zKYL1istkAQAAAAAAAACAsUYZMsZMEWKkzCgXSxBbShlSW1akPBqrFkQkjFd1eZuUMsQuQWwpZUjVSvuUMqRqNXITRUj/3xMWYlR9TUoZUnlJrITFNrWrcxPGrLodk8qQimNIKkNqfuSUMsRVhBgpZYivCDFiyxBfEWKklCGuIsRIKUN8RYiRUob4qhCRtJLDVYTkjFdbViT8TrBrkKKclVquYiOnDKlbbZhSiFSdz1IKkaqvSalD7CLEllKIVJ1vUwqRqtsw5Xdg3fk0pRApFiG2lEKk7pKLKYVIqQopSrifW1V//iQ8r+0ixJZSiFReIiuhvrCLkKKUOsQuQmzrohARSVrl7ytD+kMmFCKuMsRIKUSqVk+n1CG1m5KnFCIVY6YUIt4yxBiFQqRqJX9CIeIrQ4yUQqRqs+6UQsRZhvT/MX48XxnSHzKhEBlWGSKSWIfUPLa1CxEjpRSpeu2VUonU3TcppUixDLGllCJ2GVKUUonYZYgt5e+PYhliSylFTBliUIhgvaEMAQAAAAAAAAAAY40yZAzZRYgRMoNcVYLYQsqQ6JIi5tEYsgAiYryQDY9jfp66IsSIKUNCVtjHlCEhq5Bjy5CQzdFjVsPGfG5IGRK1OXrgTRm1EjdgzJgN5oPKkIjFQtFlSMCPHlOGVBUhRkwZUleEGDFlSF0VIhJXhlQVIUZMGVJXhBSF1iFVRYgtpOioKkJSxosuKkIetxGL12JWaIUUGjE/T+gKw5gyJOScFlOGhHxuTBlSV4QYMWVIyHk3pgyJ+b0Q+nsu5lwa8v2rihBbSCFSV4QUhdYhlUWILeZXccifPxHP67oyxIgpRII2T4+oL6rKECOmEKkrQ4xxKkTqipDSkAGFSFURYgspRGJWSYcWIrVVSFFMIRIwbkwhUluGiOjXISJxhUjICv6IQqSuDBGJr0OqypDS2AGlSGUZUvrk+vHqypCB4QIrkWGWIaXvHVOKBDzGYyuRqjLEiClEQl57xRQiofdNzLmvqgwxYgqRqjLEiClE6soQW8jfIVVliC2kFLHLEINCBOsFZQgAAAAAAAAAABhrlCFjZFhFiFFXhqTsr1G5qi/lUpgV44WUILa6nym0BimqKkNS9lqoKkNSrkdfV4bEVAz9rwlY7JByLfWqMiSqCDFqHnMp12avGjPltqwsQxKeM7VlSMqeCxWP45ASxFZXhoTWIEUhZUhIEWKrKkRCihBbXSESU4WI1JchMUWIUVVyxBQhIeOJJO6zUTFkTBFiVP2eTdmrI/RnSrnudNXxpJzTqqqPlH1F6gqR0CqkqGqVYsp5t6oQSbkN637fpbwWqDqOmCLEVlWIxJQhRl0hElWGGFXXK0/5s6fi+R1ahBTV1SFBRYitor4IKUJsVYVIaBFSpF2HFKmXIhUrumPLEJH6OiSmDDGqCpGU6+fXFSJRZYhIfR2SsAdKVSESVITYmihEROqLgJS9HSpKkZAyxFZXisSUIf0xKwqRqDKk/0UVr6siypD+cDWFyFqWIf1jCHlNl/BYrytFQsoQW1UpkrJfW1UpknLf1J0HQ8oQW1UpElKG2KpKkdgyRKT+Pb+YMsSgEME4owwBAAAAAAAAAABjjTJkTPiqEBH/LHFKDSLiL0KSShBb8VBTSpCq8SStBimyf8aUEsTmKkNSVoEavjIkafW0+MuQlNW0/a91LHZIKUFsdhmSVIMUWTdlUglSM6ZI3m3pLUMSnz/eMiTjR3c9nlOKEJtdiKQUIUV2HZJSgthcZUhKEWL4ypDYIsTwlSEpRYjhKjlSipC6cVPPaX3WYaYUIbbi79uUIsTm+xlTihDDdVw55zZX/ZFShBi+MiSlCCmyVyrmnHcNuxDJ/R3h+z2Y85rAdUzaZUhKEWL4ypCkIqTIGjapCLFZr6dTqpAiXyGSVIYYjgIjpQwxXIVIShlirOdCJKUKGRjOKkRSihCbqxBJKUP643kKkegyxPAVIqnjibsQSSpDbNqliF0GpBQhNkchklKGGL5CJKUMEfHXIUllSP+Ly2OmlCGlYa1SZBTKEJvztV7GY91XiKSUISL+OiSlDOl/raMQ0bhv7PNiShlSZFciKWWIrViKpJQhNt97gCmFiIi/EvGVISLUIRhtlCEAAAAAAAAAAGCsUYasc1VFiGFmhVNLEJspQ1RKEMM8CjVqEMe4uUWIYX5mjSLEMGVIzsrPIlOGZK+a7jFliMYqWlt3QqcIMUwZkl2EGL3Ho0oRYo2pdXv2yxCl506pDFH80c1jXKMKEVktQ3KLEMOUIRpFiGHKkJwapMiUIakliI8pRHKKEJspOTSqkOJ4Wuc289jWKEIM8/tWowopMj9zThFSZI5P89xmapCcKqTIFCK5RYhhVipq/i7TLkMM83tR63WBOa6cIsRmCpGcKqTIFCLZRYjRRBli9J7nuWWIYQqRrCKkqFdf5BQhNlOI5FQhRU0VIup1iEh/hXduGdIfrleIaJQhIqt1SE4RUhqzV4gkFyE+phRRGtdUIipliNFUIaJRhoj065CcIsRmFyKpZUhp3I45Vyq9cOudxzXKkP6QvUJkFMsQozvRyipCvOP2HpOpZYjNlCI5ZUiRqUQ07xtznswtQwxTiGiUIUWmEtEoRAzzN0pqGWIzpUhVGWJQiGAUMRmyToVMgnR6584Nd+n98SsiMnew1jtRzZmc031Yzx3ce0GjOOzEwsr/hmxwH0PrjWZjQu/1Zl/XvLGnNSHQ+9tK+1i13ogq0pz8EdF/03W+9/iZqt5LM8qBHStjak1KGh2lN4b7GnhvZrlXkE/WbPoePF7vjeH2gspwfapvFPZUbTKdwr4sWi4zSVO3QXuMhd6Ys/fqPjGXZ5TP6zWbVqfoL5BQGnqyd4wd5XOm+qIL0X/Nof187PbeRJm9W+/EsbBl5c1M7d9p07t1TxxVm/qmqtuMNnq83v0zdY/Oi5jOxt4bzQ387BM1m4HH0p4U6UyvPCAn76nepD6GmaTqKr15ZkzcuVt1vEY2BJ9XfrGhPTFg3iCu2Fw9mfbtOak8Xu9N3e7GWb0x6za+T6V8W2pNJBZ1duhM9BrtvSvn887W6o3bQ/UnBBp4vV61eXmK5c3+zdVTNDEpsrh55c2IyQO6P/uBHYorZkVvwUnR5Jzu83xh88p5PWRxGZMiGCVcJgsAAAAAAAAAAIw1ypB1JqYIMTTKkH33W82Z2wolg33Zi9wV43ZhoLmCuF+FiKiseJ2wFlnlliHaJYjI4Kbu3g26E3StqCi3DLGrCI0ypHgJtKn9+Xe4fYwdpSsOLG0YvN81HvPzhceSRhliihAj93ne5CW8ljes/v8TCgsMl61FUbllyLJ1ztQoQzqFx7pmKaBdhCxbq6I0qovipbs0ypCFTfrHKFJedV96DiQoXmZM47xRumRm5pCT1mNRqwyxf99oXMZBuwixa0SN6qJbuLRGE2WIiNJxWqXfzD15BYK90fv0nvyiofgzi4hM7dM52XWty5/kFiL9MqT/AYXXMoU/F9sH8n/u1sLgGJ2NOqtpTRliaBQixcuXadQhLetScG3PpuWh7EsQadZQ3ULNoLIaX3tTcfvSQRqFyGzhBZxng/EU3Q2DLwx9m5cHsy6LplKIaJchTdRKIqXKprVrb/aQnZ1bV/9D4e0xU4b0x88sREpVRENv4WlUIvaxdmbyripiH5NGIWLKEBHdOsS+POXC1ryf3S7DNa4IUbykq8ZVMEwZ0h+TQgTrBGUIAAAAAAAAAAAYa5Qh60RdEeJaOZlThBRLEFtKGVK3AWrOinFXXZCz2nWgBCl9s/jx7BLEllqGNF2EGDlliF2ClP49YTq2akVEThmy7FiUmFOG1K3cSClE7BqkKOcxP+94LOWUIXYRYqQ+z2tXwycMWyxBbDlliF2EGKlliF2E2FIKkU7FAtyUQkS7BDHsIsTIqS6qNnNPKUTsIqQo5zh9K+1zyhDXxvM5541SEVKUMKxdhNhyChHX75qcMqTpIsSWU17Y1YFIXiFi1xEimcdXs/dTSiFiVyFFOYWI62fPqUNc983A2AmFSKkKGfjHjNc0jj8XcwoRuwwxcgoRuwopSilEqja0zylE7DLESC1E6janTilFuhX7WyQVInWbSacWIr7nUE4hMlux30FCzWEXIbbkQmTZ/RojqxAZ9TKkZt+VnEJkoAwxMt4ms8uQge+VUInU1hDKb+nlFCK+Y00tROqOJaUUKZYhtpxSxC5DRPLqkLo9A1NKkWIZUvq3jFLELkRE6isRChGsJcoQAAAAAAAAAAAw1ihDRpyvCAlZIRlThlSVILaYMqSuCDFiVoyH1AQxq10rS5DSNw//1LoixIgpQ7RrEFcJYkspQ+qKkP7nRdz0ISsfYsoQVwliSylDQldoxJQhVUWIEfOYd5Ug5fGCh+vzFSG2mOd70Er4iLupqggxYsoQXwniEluH1FUhInFlSFURYsSUIcMuQmwx5UVVEWLElCFVRYiRUoaErrCPKURcRYgt5vxRWYQYDZQhRkwhEvI7JqYQGXYRYospMOqqA5G4QsRVRZS+Z8zx1RQhtphCpKoMMWIKkZCfPaYQCblvRBooQ/qfFP64cxUhtphCxFeE2FIKkaoyxIgpRKrKkP7nRBQiviLEFlOI1FUhA98/4n6vKkP648UUInVliEh8HRL4PBKRuFKkqgwxImqOujJEJLIO8RQhpe+bUois8zLESClEnGWILeJts6oypP89IwqR4PphBPYSCTnWmEok9HvHFCJVZYgtphRxlSG2mFKkrgwxYgqRqjKk9LkRr1NdZUhpPM9NSSGCtUAZAgAAAAAAAAAAxhplyIiyi5CUa2WHlCExRYhRV4aE1iBFVSvFU/aVCFnlGlWE9A+m+p9Da5CikDJkLYoQW10hElqDDHxNyKrdiJUOIWVISBFiqytEUq7XGVKGhBQhRshjPqQIKY9b/e+hNUhRSBkStTdCwG+xkCLEVlWIxBQhRmgZElKEGCFlSEgRYqsqRJoqQkTCqxCRsPIipAixVRUiIUWILbQQiVlVH/L8CClCbFXnkaAixBb4CjO0ChEJez2UtB9VxSFoFyFGE2VIaHVQVFWIhFQRpWMIOc4GypCQIsRWVYik/OwhhUjMfRRahwQVIaUv8j/+QooQW0ghElqGiITXISFFiK2qEAkpQkpfE1CIhJYhIuF1SEwZ0j+Oivs9pAgpjRdSiISUIf3PDXx+JJzrKguRkCLEFlB0hJQhRlAhEliGDBxDXSWiXYQYa1SGFNVVIkFFiC2kmAsoQ/rHEFCIpOyL0UQlElJpxBxrSCGSsn9J3THElCFGSCESUobYqkqR0DKkqO59iZgypP81Aa9XQ8qQ0rjWTUohgmGiDAEAAAAAAAAAAGONMmQEFauQlCLE8JUhKTWIUVWFpBQhhmuleMrKTsO3ujWpBiny/PgpRYjhKkO0SxCRtBqkyFeGpBQh/a913B0plYXhK0NSapAiXxmSc6yuMiSmBPFxPfZTipDV8dwfTylCDNfzPaoE8XHcTSlFiOErQ1KqEBF/GRJTgvi4CpGUIsTwlSHaVUhMCeLjKi9SihDDV4akVCFFvkIkpgixuZ43KUWI4Tp/JBUhNs/vzpgipMj32ijndYOrDGmqCBGJr0IM3+MlpQgxtMsQw3uskVWI4atDUooQm6sQyfnZfYVI6v3kK0SSipDSIOXHYkoZYrgKkZgixOYrRFKKkCJfHZJShvS/1lGIxBQhPr5SJKUMEfHXISllSH9MVyESU4T4+EqR1HOerw5JKUMMR9ERU4T4OEuRhDLE8BYio75XiJHz+PQUIkllSJHnXBlThthcpUhSGdL/4uHuI5JzrK5SJKUMqTuWlDKkyFeJpJQhhqsQSSlDjKr3KVLqkP7Xel6/ppQh/TELNyd1CIaFMgQAAAAAAAAAAIw1ypARYoqQnBqkyJQhOSWIrViG5JQgNrNSPGdVZ5G9ujW7CDF6w+aUIDZThjRRg4jkFyGGKUNyShBb8f7OqSxsphDJLUIMU4ZoHmOxDNEoQgzz2M+pQQbHG/zvnCKkyDznVYoQo/f8zKlBiuwyJLUIsZlCRKMIMYplSE4RYjOFyCgWIUaxuMgpQmymEMktQgy7DMkpQorMcyinCLGZ84hKFSJSKkNSixCbeb2k9dpBZLAQaaIMSS1CbObxk1OE2IqFSE4VYesfa2IRYrMLEe0yRPNnN4WI1v1kFyIqZYhIvw7JKUJsphDJqUKK7EIktwwxTCGSU4TYioWIRhlimEIktQixmUIkpwgpjVksRDTKkP5YveeQ1jnPLkRyypCiXs2hUYYY/UIkowopKhUi94EyxGZKkewyxOidO3OKEFuxEMkqQ2zKb//Z5YbWsZpKJKcMsZljyy1DDLsQySlDikwlklOG2IrvY+SUITbzujanDBkYr3eTUoigaUyGjIATzl6ZBNF8o1VE+U1GM6be34cDJhZ0H4aaby4XVW2onGpxk+545s2GiYBNqqM0c5M2Q/m5NL1X/zS5/37tRt5o05pMNTRfhBU1sQn3cs3+kKPCd8m5HOb21HxDXKR6Q+0UmpMgRROKL+qNVkMbxc/s0T1BaS5MMMwk2NIG3YDYdYm8HMsNvSYR8V8eMZXWJIhN+7We5h/IRme6od8jyq8dmzS5X/fEP6H4BruISHu+9wau0hs5RRO79d4cFBFZOkhpxYNlYncDL/Ib0qraCDyF5qSFSP/N9da80oqsoon1cWELzQkmo3VAcTVeQXdWcRWNSCOTId0N06pvivfHVT7ntfc4LhenYHnnFv1Bld8GNJMX5veJlq7vUnkZFrbrTVYWab/WmzukmRe6vssh59D+e8QsdLrqn5kUQTPWx6sJAAAAAAAAAACARMprSJFCqwixLzuxoLha0FxuyLXBaIomVoWLiCw1sIpd8/IbIvortw2ty08MQ/E20HgsbLhz8Ek0t0PnTutXEYplyP77NTMHbVbc+zbFjLVkXRpIY5X8wGWBFM8BS9Yi0dzzVFOXx+qf681Nq3BXNXUu1Ti2osWNg48nrcv3ifQu3ac5Xu9Qu73FWFrHqnmJQWO+cBkrjTqmiZViIqvFmrnk2HRmcWTGM88p7d/TIiuPWY06xJz3lk21qXQbm99PmqXZxMLq71LNy2+Z55TWa8jVS/v0/lvhPNheXP3ZO1Oa111b+Z+lTSsPhMl9eXfYxJz1wyqvmG0trdwOGqulO73LkXR2bpKpu9wbgKfo3/9aP7u5xOaWlV/2E3v0qovW4pLaJa1EVi/x0p1auXxOe497E/ho5vmuvFK8O7Pyi1SlELFvR61LO9mXnsotT3qVjfrjVAYvb9Xan19cdQ4arA3UiiNzGypd1sswj3/NQsRcxq87rfM87WwZ/KNEoxRZ3r5p9fGuWHEVL2Go9fOL6Bci9t+2Gs+pYgXbUazWlzb0ftfP6TxG7fcJtV7vmp9f82cvXUUk89eJ9lVzABtlCAAAAAAAAAAAGGvsGbKGNPcKcW1GurApfa7Lt/F06qq+utXLOavZnTVIxjRf1Yz7ZMbiDl8RkrrqvK4EGaU9Q6pqmJyV7XYRYuSUIVV7ZGy4K/3J6ipCcvYMqdt7IfU5ZRch/fEy7qeqjaJz9uGxixAj9TxVdyw5hYjzPJ/xFPU9b7LLM88x5ayQt6sQEZ3awlVa5Dynup6nVOqx1pUgs/ekn0/mHRub55QhVbVCzr4hvj2McsqQqn2RtAuRnMd91XlPJL0Q8f2OyilEikWILacQ8R5r4s1a93st5/dUsQwxsgqRipstpw4plSFGxkrZqtW7OYVIx7GJbk4hsry1emOw5NXCnodVTiHS3/C6+G0UChHXxsRZdYhvb4fctwc81UZWIeK6/XLqkLpqIbUQ8azcz1rNXlED5BQidhnSHzO1EJmu2d8goxTpbii/OZFViFQ8djQrCSOnEFneXrHBaEYp4no+5vzspgjxGaW9RJY2+/fJyaklXK8bciqRAzurn1Opr3un9rof/zk/u3PPXoW3o9g7BE2hDAEAAAAAAAAAAGONMmQNmCLESClDXCWILaYM8ZUgttjVfKGr/mNWsQftC5IwzRcysx5ThoSu0E5ZbR6yP8golCEht0FsGeKrQYpSypCqIqT/vSPKkJC9QVJWsdcVIUbUc8pTgwyMl7CYp25ltEhcGeIrQWwpq45DjiPmuRp0Xk84zpDnS1QdEngMKSvkXUWILaa6CNlzI+U55StCbNrHmlKGuIoQW0whElInpJQhVfVGUUwhEjJmE3uHiMQ9/kPOeyJpZUjI76mYQqSqCLHFFCJBx5lw/gv9vRbz+8pVhNiSCpGAmyumEPEWIbaElbIhq3VjChFXEWJLKUTqyhCRyJXCgY/BlELEVYaUvn1EKeIqQmxJhYivDCkdQMQTNqDWSCpEQm6vmFIkpFJIqUMCV+pHPVYDxkwpRHxlyMC4MZVIXRliJBQirjLEFlWKBDxWmihEROIrkcoypD9o/GM15HkYcxvUlSEi+nVIUcxzqqoMMVIqiZDXCzGlSF0ZYsS+/vWVIbaY28BZhtgSXvvZPxuFCLRQhgAAAAAAAAAAgLFGGTJEdhFihKwgDilBbCFlSGgRYoSs5EvZAyJktV9QEdI/iPpPSVlBGlqGpFy3v2rVeUgJYlMvQ4yaQ4n92UMfLyFFiC2kEAlZwdo/hoAyJKQIsYWuZg+tQkQCn1MBRUhp3ID7K3RltEhYkRFahBSFrjqOKVNCypCkPaCUz6vBz8GEU0TICvmQIsQIqS1CKgtbyHMqtAgpqjvelGMNKURCihBbVSGSUiWEFiKhVUhRSCESM+5aFiJx57/Ac3/M65+ekEJEuwxJOs7Ah2JM7RjyeyqkCLEFFSIRN0FIGRJchBQFro5NWaFbVYiEFCG2kEIkpAix1a4QTilIAwqRkCKkdCgBxUNIGWIEFSKhRcjAQQTeaBF1RlAhkrLXSsgxxNQJoYVIwur8oNXsEeOGFCIhRUhp3JBCJLQMEQm+/UOKEFtQIRLxOF3rQiSoDBkYuPrxklJmhdwGIWWIba32EQkpQ2whlURMSRpSiISWIUUhr4FDyxAj5GcPKkNsAb9WfD8PhQhyUYYAAAAAAAAAAICxRhkyJL4qRKR6JXFKEWL4ypDYGqSoagVfShHSH9ex4i+qBPHxTPelrhr1lSEpJYjNteo8pQgxhl2GpN4GdY+blCLEcJUhKStX+8dSUYakFCGGbxV7TAni4ltJm1KE9Md03F8xK6F9fIVGShUiUr/aOKYIsbmeq0lFiNHQedX7nMw4NVStjI8pQmyu4iKlsrD5nlspVYiIvwzROFZXIZJShBjaZYjhK0RSihCjqgzJGVe7EKkrQ1LPhb77I+f3leEqRGKKEJurEFE5Ts9NG1OEDHxdzbkzpQwxnCs/M26CqkIkqQwxPCtkc1biapchhqsQSSlCbN5VwomnQF8dklKE2FyFSEwRYqssRFLKEMP31kHMfh2WypXqKWWI4TqmhP0q+uoKkYQyRKTicZo4XpGrFEkpQ/rj+QqRmCrExXO/pJQhRmUhkvF41S5F6gqR6DKkP7D78ZO0Z09P1c+eUoYYTe0l4ntupZQhIv5CImlvMYurFEkpQ4yq18CxZUiR7zZIKkOMit/JVT8HdQhyUIYAAAAAAAAAAICxRhnSsKoixLBXFOfUIEV2GZJThBSZ1Xs5K5ZLYxZW/qkUIUbvJtBaHWqXIRpFiLE8k1eC2IZVhmjdBubxlFOC2IpliMbKVcMUIjk1SJG9ej23CDHsFbU5RUhp7N79pVGFiJRLjdQixGbOVzkliK1YhmQVITblc2vpual0SrBXx+cUIbb2ok5lYdjPrdQixGYKEc1jLZYhOUWIzS5EcqoQkXIZklNuFNl1iNa4Is0XInrnwZVxNX9fFcuQnCLEVixEVI+3d9OmFiGl8azzaU4RYutMtbOKEJtdiGRVIUXWytjcFbh2HZJThNiKhYhGGWL0Vwcr/R60CxGNMsToTk1mFSG2UiGSU4UU2W8hZKy0L+qvWs8pQmzFY8spQ2ymFFEoOEQcq9iVxjV1SE4RUhrTLkRyyxDDun9yypCifiWi9DgVaX4vkeQipDTg4OMopwwpsn/+nDLE1vReIqlliM1UEhpliFEsRHLKEJt5LZxThRTZhUhWGVJk/WoJeQ1PIYIUzZzBEUVr8sOmNflh05wEMVQnQAq03wDRnPywaU6EiIgsz66Mpz0p0tRtoDkJYmi+QVOkNQlimBcPIZu+Ro2rOPlh03rzb3XAlf9Z2qg7rOYkSHHMjt5r0z7tc6sZT/NNZRHdyQ+b5uSCyOpzS/s8qH2cIiIHtrfVzwEiq5Or00p//EzOrYyzsFn3PLjQO19NNjWRr8g8B7RfvzXxO6s7sXqfaWr13ghdmtV9HGhNghjmuTrRwG3QXuxIZ1rv51/atHKynrlT+RdX7zZth2wqHKC1tHJbLm/Q/0W4uHPlzT+tYzXM48p1mbcUy1tWVkVM3l2/AXys1uKS6mRIZ8vKC6v2fuXHlbktl3Xvq+7MyuNK9Vxg3gxWnLQSkdU37rUmLczjNHTD9kDdjXoTi/0xZwevGdvSmmTo/ezaEw3mOdWa1/td0FpYfTxpHm9ni9KKsP6A+r//RFZ//uUt+o+vzsyk6oSI9msLo91bcKT5d+HSBu0/sleoLuCT1Z+9T2sypLk/M4EBXCYLAAAAAAAAAACMNS6T1ZCgy2P1bnmtVZD7D7YSSMWFOsXVj95N3hKYS5Zo1Qal1epKh7rx9sGp9APb9eYRzc/emVY6WGvWf2JB5/G1bB1fS+PUURhi0216yxV2P2DwgeDb9DiWuYSJVnFh11uTFXtdRo9dXKSjehmP3m2gVAdMWPs6apUh03usS+4oXXpMRKS90FWtbqasYzVVVy5TQywqHmvxslNqObSIzOxaHXdhq/7l3NpLOudB+3eMas1TOAVqrt4yxzyzS2fQ+W3NvNZoW+OUVpwl6EyuPpY0VwU2dZms1RWGo3+ZrMn9hcs47NBbEql9maziY0BEZGqP3ovjbmFszdfGhlYh0pkZfIBO7l1QGddcZqS1rPfcKt7vLcXLGWkVIbZ2r5Jp767eADlGZ3Nhxb3i74L2gcL9rrlK2vw90NTqc8Vj7U5NOjcUT6Z5Ka+CUhmi9Phtza88BjpblC6/JNYl4jSLFutnVquleo/XYtWRo7PJKmQ0q7bC39oqP7/1FG0pVV2d2cHXAFr3lfkdYGpEDQsH2UWTzrht6/fVwhad10Wrl+FS/B1WeFzZlxPOMX+Q9feB0m1rXseFvNbgclmIQRkCAAAAAAAAAADGGmWIsqoipFVzS+cUInYVIqKzWtN1Peyc1W91m9emFiLeVZkZk+h2DVKUU4b4fsbsMsRzuDlliF2DFGWVIY4v1ShD7CLESC1D6jYazqkDXHv6aJQhy67LtmY8tCb31dwGiYWIXYSsjpc03AC7ChHJW1HTrngO5TwG7CLEyC1DfPtj5BQiVSuHcgqRYhFiaJQhvr03cgqRqtX/WYWI49SnsZrKd7yphYhdhNhyXnPYVYiIfhli5KwytosQW2oh4vtZc85bVfdHTiFSLEJsOYWI7zVy6v3luu+LcgqRrmPsJsoQkbw6xC5CbKmFiG/jWY1CxHV/5xQiTRchpY8rFCIDZUj/g+njDRQhpXFzXst7vnYEC5FuRcGRVYoMqwwxEh/PpgjxySlFWq59WDQKEcfPmlUc1PzdmlqK2GVIfzyNQsRxzFm3QcVTM6cSscsQI7cQ8Z37c0oRuwwZGDfnPOs51tRCpO71X1Yp4nhcaRQidhkikneb1r2Oq3rNQSGCEJQhAAAAAAAAAABgrFGGKKnbI6SuChGJK0NcJUjpeyZM8LtKEFvK6re6IsSIKUOCVmAmTJpXFSFGShkS8rNF1SGBM+0pZUhVEWIklSEBXxJTiPhKEFtsGVJXhBgpVYCrCLHFFCLOEsSW8DyoK0KMlDLEV4UMjhs+nqsEsaWsoKkqQoyUx4CvCLHFFCK+GsQlphAJWSmUUoa4ihBbSiHiK0JsMYVIyO+apDIk4FSXsqIq5Hhj6pC6IsRIec3hKkJKn5NQiNStJhOJW2VcV4QYsWVI6M+Wcv4KuT9iCpGqIsRIKUNCXh+LxK8KD3kMiMQVIq4ipPQ5I1SI1JUhRkwh4qtCilIKkZD7N6UQ0S5DfEVI6fMSChFnEVL6pOhhq8uQ/rgR91nM6/8GKpGUQqSqDOmPm1KIKJch3iKkKOExXVeGGCmFiLMMscWUIgE/X1JxEPi4jS1EfGVIadyYUiTgWJNug5DXnQmFiK8MscUcc8j5PqUQqSpD+uOmnGcDjjemEgl93ZdUiAQ8vlJKEVcZYou5bYNey9e83qAQQRXKEAAAAAAAAAAAMNaaudAlgle6xQopQmKElCCpQmuQ6HFjFkKYHy/gWEKKkBip+5+EDR7+qabyCClEQoqQKA09vEKLEKMzFV6HhFYhoUJKkKRxQ4oQI+J5EFqE9D9/fze4DgkpQmKEFCGGWYEdsoImpAgxzO0VUoiEFiExYoqQGDErgsznhhQiIUVIrNAaJFbM7xpzvg8qRCLO393er/yQlVSp+1VUCa1Cit8/pEgIKUIM85wNqShCa4BQoUWI0VoOvx9iipeY81dMobM8vXL/VhUiIUWIMXv3yi/akEIk9nVyt90KXhEe8zhY3LJyh+XsIVJkjlG7EJk/eGU1a0ghElqEGEubp5P3D3HpTqz87CGFSMwqf7NqPmTFcFN7hYTqbN3Q//819hFZHcx8g4BPDSlC+p/cu71y9hBxjts7YMVCxDy3Qh47IUVI/3M3rrywDipEGtorJIhZ1R34GA+tQkRE2nv2iUhYIRJUhBjmOauxl4iUK4vcvSkGxpqeDK5DQqsQkdVjVNlLxDGO1m3QnegdZ0AhElqEGK3FZd37anLw8ZSzl8jAuBGvvUOKEGN6z8prpNR9RJzfv/BaMmsfEYv9N53GniIicbdt0HgTg8epsXcZ7jsoQwAAAAAAAAAAwFhjz5BMZq8QjRLEtWeIRgniWyWYWoXUrXbLKUJcNYXKalfHMeWUIHV7hqRWIbV7hmTMorvKEI0SxLl3SMbzoW7PkNgqxPCVIRoliKsK0ChCXHuHRBUhtpq7O7YKMXxliEYJ4to7JKYIsVWtmokpQmy+MiS3BvHtG6JRhLj2DslZ+VNVhuQUIb69Q3KLEN++IRq/c5yFSMb5u2oFVc7x+vYOiSlCXHyvO2KKkNLXVpQUOUWIb3VxbBVi890vKXugFPnOYSl7thhaZYjNV4jkvmb23We5ZZCvDgnZK8Rn2HuIxFYhNl8hErJXiE/VSs2U/R9Wxy0/bpssQkL3C/F+vacQCdorxKfikKLKkNK4rtf2Cn/sNrCHiIj/cRRThpTGrCpE1mKvkDqex35MGVJUV4dElSE218+r8Nx1VgcKj1tfKRJThgyMV1eHZByz8zZQeNq5SpHYMqSorhBJ2SNKpL4OCdkzxDu2Y+iYMsTHVYrkVB61X5v4+PL9jRiyV0gd122rUXub1x/sHQIXyhAAAAAAAAAAADDWKEMSaRYhRrEM0dwbxKwW1NofxF7lprk3SLGoUL3+uXWMWvuDmEJEa3+QUhmiuICqWIZo7g1SKkOUnhOmEEktQWx2GaK5N0ixCtDcI8QuQ7KqkKLe4aaWIDa7DNHcG6RYhuQUITZ71UxOFVJkHgta+4PYZYjmHiHFMkTrWrAi5UJEa58QU4ho7RFilyGav3MGyhDF87i9ckrrmE0hkluEGHalkFOE2Aauj6y4R4i9sji3DDHMfZRbhBj2uSunCLEVC5GcIsRmFyJar53Nfab1OLDLkJwixDasQiS3DDFMIZJThBTZdUhOEVIee/VxO8plSH+cXiGSVYQUWYeVVYSUxi7cT5pvGTRciOQUIQPj2XVIQ3uFqJQhhvUcSC1DbKYUySpCiuyfWfG5O1AdKD5u7UIktQwpjWtKEaVjLVUXmq9DC4VIThlis485tQyxmVIkpwgZGM8+3yodp8hgIaK5/0dpLKXHmfnbUaMMMYq3r+prfAoRODAZkuDEs/5vI+MubG7mBbzWH/S2zoT+8S4r/V1g23hHMy+69x/STFylvQmsyMqbXVpvdBVp/kFbtDzT0PNhbzPHO79d/3i1NhezTTZ0TmjqzZ52E5uhNfSbr6n7rCndBk5hZvIjZEP1GIuey7Hlcl7qT0Fb8f2okrXdGzjYRFO3QYOvXKf36j6Jm/od2dib6/d6rimpYH673hsnRdrnscm55k7kTd1vU3uU3qBsWHuxwV+SDT3XtCZBSpQnBNoHlhoZV0RWN8DW1tCkiExorqhbpTYRUKA6EVLQWmjmXN6dbeiP9Un9+8zeYFttXMVNwItCN26P1W3g+dCdaugCMw39jlzc3Mzrj4mGfqcd2KG4urJHa/Guran3bJp6vfS1D/1OI+Ni/eEyWQAAAAAAAAAAYKw1ND843jqTLe/GqynmzaU/lCaWm1jpaxQvr6R5aYaBy/8oLuzybZqda9/9Vm5kzVXgTd1vvg1yc3X6CyxWHhNal53SzEL7YxYXMe3VG3dhWzMrFuzLQbk2uk4a17pcUUdpkczUvpX/XdiiM56IyKbbV08wczv1nhwz9w7eBvNK9+HmWwZPiPvup7MKa/bewefvAcUUecNdHdW6TetyWDZziT/zv1q3gV1NLm1QGVZEmqtCzOqrCaXLutmX2VL7vd47vOXeOWZC8Xfx1L7V58TiRs00v9sbs3epO7XLZPVe4ykVbl27ylV82nXbq5e0mr1b705b2Lry54a5DUo/QyJT0WrXN0sbVh5XmoXI0uzqY1Xr+Ssi/ft/cfPKbTy1V2dl8eS+wft/aZPOC4ZObzWxaiHSUBFiCjz1YzY1orkskHad2O491jSri8kJkSXFP/zsy00pXcqpX270/letYujVG92JldXaLc1LkU0XnluKNUd348of15UbwUfoHLR54L9bB5SOtYEixOjMrD7O2vOjX8+15lYeV90NOlVAk5fLakq/cBORzuzov1W5uLH3u3e/3uPrwM7C/d/QJfmXZvXew7Avtax1ZQDz3th6u+oC1g/KEAAAAAAAAAAAMNbYMyTC41/xN/3/P6cMMSWIT+rsp68smFbYI8G14XbOCtLKjaAzDreuBLFXWYcyJYhPzoy1637TuEaiqwjR2DPEVxOkliF1JUhOMdOpWBA2c1f6A81VhGiUPb4NwnPLELsIMXLKEFODuCxsST/eYhFiyylE7CLEllqI2EWIoVGGuM5XOVXEhrv8J6qcQqSuCEldIVS3ejrntnCt+tcoQ5ouQmypK8zrNl7PKkQqDimnECkWIYZGGeKrCrLLEM/DPqcQqSwqMg636vdXTiFiihDn98yoQ3z7qjW1P4tGIVIsQ4ysQqTiS3PqELsIsWkVIoZKbdFwGVKUdbx1f3In/kleXEntlFOIVG1qnVOKuDYiV6hDfHt6JBciNft55BQi3Q0Vx5RTiFSUFjmViF2G9MfMLUQaLEOWN5ULi5xCpKm9Qtq79ld/38RSxHu8CqfdpvYMaS+Uzys5hUhTe4V0an7+nFJkoAyx5bxP5nj/UqMQ8b0Plvr3X93euVqlCHuHgDIEAAAAAAAAAACMNcqQAMUixEgpQ+qKECNmtjNmNXpMIeIqQWwpK0crixAj4REZujdIShlSV4WIpM1Qh9x3MYVIzN4gMYVIaD2QUoaE7A+SUlxUFSFGShkSskdIyvH6ihBbTCHiq0FcYgqRqiLESClDqooQI6UMqStCjNgyxFeE2FIKkZDzVEwVUVWE2GIKkdA9QmJXBoWulk4pQ0JW+6cUIsMuQopiV5fXVSFFUb/nAw4jpQxxFSG2lEIkpCJIqkMCH+4phUhQTRExbMzvq5hCpKoI6X/vhDKkbrWgMUqFiKsIsSUVIgFfElOI1BUhRdp1iEhicTHEIsSWdLyhf3JH/mleW4YYMYVIVRFiiylEXEWILaEQ8RUhtuhCpKYM6X//hEKksgwxUgqRgNIiphDxFSHOcWMqkSEXIbaUQmStyhCRtDok+Hhj3nsaYhFiSylE1qoMMVIKkcoyxEh5vyzg/cuYUiTm/a+YvwXDX+uFf/8qFCL3XZQhAAAAAAAAAABgrKVfgA9BQmuQWBr7E7iEFCH9Y+gtNghZORpUhBjmEGomr0NrkFghJUiKpu6zmCIkVkwxYFYwhxQiIUWIYWb9Q26/kCIkRkgJkiq0BokeN6IIiRFShPSPofezhRQiIUWIYQqHkEIktAjpf/6ubnAdElqFhErdy6hOTBESI7QIMSbnusErgmJWSJvbLaQQiVnhPzm38r8hhchaFiGxYoqQuIHDP3W59zslpBAJKUL6n7t/5XNDCpGYamBxY6s3fuDXRNxt3YlWcB0SVVEEvoZqQkgRYpifPfRnC10pKLJS1TZRhyxtWHl8hRQiIUWIYV57B53/In6sxc0r90fOHiIupiLRLETMKtug4mINi5D+IcQcb+xFGFqt4K8JrkJERNq9x2TOHiIuZoV/zh4iRTPWqmiFvUSM1oH58DoksAoREenOTvfGrz/WoCLEmO49x0IKkYjSortx5Q/znD1EnOPOrhxv9j4iQ9CZGfx9lbOXSKqQIsRoza08tkIKkeiCpS0q+4g0zT7f5ewlMiyLG1ePsa4SCSpCjIjXejFXtJk8sPK5GnuJDIw71xs3cR8Rl+J7Q1qVCO5bKEMAAAAAAAAAAMBYY8+QCq69QgzfDKtGCeKa2dSoClx7hsSUID6+MiSqBnHxPDI1ihDXSmyNIkT7vqvaMySnCKnbMySmCLG5ypCYEsTHdTtqlCCuvUM0ihDf/Z5bhPj2DdEoQlz3e0wRYqsqQ2KKEFtdGRJbhRi+MkSjBHHtHaJRhLiqCI0ixLd3SGwVYvOtCEq6Zn6Brw5J2vOhp6oMGcUixHcb5hYh3vpT4dWjqxCJKUJ8XIWIRingfTxl/srwFSIp+2qsfnHFP2W8LqnaOySmDLH5ftaYIsSlqf1DRNyFSEwR4uN8Liv8GL5CJGa/EJeh7yEyAmWIzXu8uX9me74+qghx8dUhMXuF+LgKkZC9Quo4CpHQvUKqeEuRiDKkqK4OiSpDbFWFSMYeHK5CJGavEO+4vkKkof1CQvYKqeMqRNZyr5A6rlIk63hrXoKt5Z4hPq5CZK33CqniK0SiyhAX33tnCXsd21yliEaN4fq7MPd1n0jasbF3yH0PZQgAAAAAAAAAABhrlCEOVUWIzcy0au4NUpzJ1Nxnwi5DNKoQkfKq0ewixLAemZp7hMze22lkb5CY/S1imEJEe38QU4jklCAupg7RKEKM4m2quTeIXYZo7RNiPwa09gixyxDNPUKKj4OcIsRmCpGcGsTFFCKpJYiPKUS09wYxdUgTe4SYMkJrnxC7DMktQgx7BVBuEWLYZUhOEWIrFiJNFSEievuEmNtUe4+Q/u/6Bl41TizqFCE2U4ho1wH9x5fSrzi7DMkqQmyFoTVfmxQLkZwixGb/7BorBEWaK0RMHaJRhNgmFrqNPN9MIZJbhNi0C5FSbTGCRYitdMxaf2Zb42SXIYZdiGiUISKrdYhGEWLrFSIaVUhRvxBJLEJ8TCmSVYS4mEpEsbIoFiIaZUh/XLsQGeEyRKRch4xyGWKYQkT9WM17GyNYhLiYSmSUyxDDLkSyyxDDfg9NoQwRKdchmvt0FP8+1HrdJ0Ihgmqjv+vQiGtig/TuhDTyx485GWhviGTecNF+Q72pDdJF2CTd0L7PVsfVf16Yx+9ywKbGMeZ3rhxrS3nfPPPmsfZjYtMtZqNg/dt48y3LMr9V/wX/5ltXXuhq3xbakyCG9iSI0dRG6SL6m6VvvGNlPK1Jc8NsoKf9Rr25bbWPV2R1Q/WO9uSC+Z2suJmgyOqkhfZt3Om9Ymzid/PSrO4ErNHYJZKUH2aqkx+2lki3geEP7Fh5AaH1R7ZhJoaWZ3R/YZhFJdqPCbOpehOv27vtisvUZVjcsvJk1p4Mac+vHGxnRufkY950Ms+PiZrNZ6M18Lzob6yu/AafmaRozymfgM2m6tprIxt6s1tEVjdYV54MaR2YFxGR7ibdPzTM5urq2vp/dPY3Vp+b1x3XbKy+2Mzr6+6k7m1hNldv6jWE5iSI0d9gfUr5D+V1dh2Z/kRxQ5Mhmoqbq6vq/W4zf7e0lU6VZnP1xU36C43M34cLW7Rf+638Lxusw2Wdnd4AAAAAAAAAAADicJmsgtDLYy0XFnh0NCd0iyuUFO+Vmd2Dg2mXIYZaZdDg5bGKlhVrZXujc62Z8pY1zNRenXH3HzY4D6pdRWjOvnesBVVaq50nrL0CtZ7L9uWwVC91V3gua5YhG+9cXamlWYZMW5e90botSpfmU6oBJg8MHm9Tq0i0LockUt7Ad3la50aemB8cd2GLzuNieu/gnTe/TWfc2bsHx913mN4vZ7NaSURkYbP+pn5aZUjxOEXK585UdlWg+Tu5eD7XrJvslWXtRZ3fnW3r3KN1mTf73Kh57hkYW/G1pbkcpohyhWQ93rTOaU2t8J3aM/igWNysd2MUqxvVQsS6jTfcOqcybMdana1ViNjllEohUnzdrvmnsHWZKddmzCnau637SOnyU/YldVoLOsdrb8itWVt0C7dxe49eUtjZsmngv1u+TeZj2QXLtNIfzPZG9W2915bFMqSzbVPFZ0aOWyxDtC7JJuUyxJQduSb2DhYynY3NVD6apUhnc/Harvnj2eee5e3/P3v/HabPdt11oqve1PGXTw5KVpasaFtClpxwHlvGNjYMMMYX/DADGO610TADeBiGwcw8YFtc4lzDJZjrwWAwOMgRR8mygpVzPJaOTj7nFzu+qe4f9a7qelftvWuHtbvf7vP9PI+en7pP936rd+3atav2+qylMx7k3NPf1clDO768PNdoPofPm+sRxdvGdFO8l1FqWxrtbHakwmYIo7XGJtI3Q5jRraP5XB6/DaTLOvvADAEAAAAAAAAAAAAAAAAAwJkGZgjFGSFMUjS5KyAi4axIE0SykmaI45BX0QyRJogkNgKxKxIgxQyRNsjS5yqbIXW7CUFVrqjmlChUaYS0Pjfymu4qkJ4SmTJyXNMphkjTCJGkGCLSCJHE9kVXZGyKISKtkKXPXUFDRBohdZuJUdTSCGFSzRBphDAaZoi0QojSzBBpWDRJMUO6xlGsIeI6XqI0Q8RVayLl3uyaw1MMEVdEWUrkmjRCJLGGSNdcmDL3ONtOWGM2jZBWsymXc8fwj53bstWNobYV0iTFEHHVYUkyRBx9nGKHSCOk9d8jDZGuWjpJhohrHZ/yaGyIdtewQ1pmCJNoiNiKLacaItIMqT8vwRApHSZBiiEijZAmSXZIV02TWENEGiGSBEPEVSskxRBx1gpJMES6aoXEGiLSCGm1u4KGyJIR0mo4uln73ENplkhXofdYU0SaIa3PTeiLuWsdknDbkGZIkxRLxFXrMMUS6TIrUtbbx2GGMDBEAMwQAAAAAAAAAAAAAAAAAACcaTQrXpw5TCaIpLcI+giKJvcJgOCfCdhY7TJCGN4J1jZEOEo0yBDxOGRuL5chEkKXEZKCVn5IicsIWUW08txLuoyQFLqskOh2Pa/pUFxGSApdRkgsqrnSBS4jZBWxGSFMfzyPiqC2GSHMaBEBHWOI2KwQIqK1G9V/CzFETCaIZOvR6uYcYoh0GRZERKOFnRdiiPhG9w/2y2A7xOeYe4vgupC51WWEMDH3Zh9zYP9KNX5DDBGfSLL5sPqjQiLWuowQhq20EEPEJzqRfybEEPGKeoxYY7qMkLrZRX8FGSKeQz50bjspI6T+mcW8F2KIuIwQhvs26L7o0cf7d1XRtCGGSJcRwvQOZ8F2SJcVQkQ026zm9yBDxGcdz5HqIYaII7pdRqeHmCKuqGwiquyDCDukKyq7HFVtxhgiNiuEiKjYrf4ezRoiREd2h2YNESKisleNcbX6IU3Gi5unVg0Rhuc+5WfW3o2qbzVriBDR0XWmWEOE6R1O1eqHLLW7Vy2stA2R+YXNqn3FGiJVw4t/lV8J9K9VY0KrjkiT2dZIrY5IE15PadYSqRpe/Btw23AZIQyvx0PeE7mMkPqzF+8BQwwRX5MiZr19nEYIMxTvLXz/PnB2wBkHAAAAAAAAAAAAAAAAAMCZ5mlfM8RUL8THCJF4mSExAQ+eZ8fXCmlyorVDIkbdSdYOiTFCfKMSY4wQn9ohMUbISdYOiTFCfKNPQ60QX9MrxghxRaKkmCCu2iEpJkhX7ZBYG6QzV36CDeKqHZJigpxE7ZAuE8TZbkcUdZcNYqPLDnGZIF24DBEfI8SGyxDxsStsuAyRlPHSZYikHLOzHlPCssB1j06pJeEyRFIiyboi1nytEEmXHZISjegaU0lRjo5D9jFCrM26znvCWOua23JZIT5GiA2XIeJjhNhw3isT+thliPgaIcbf7TBEfIwQG05DJCVK3vWonBDN7jJEOo0QFx2mSJcVYqPLEnEZIV24TBFXrZAuXKaIq1ZIF05TpKtWiIsuS6SrXoiNrlqXjlohXbhMEWetkC4c572rVogJX0Okq15Iq91M9UOI/AwRZ60Qa8MePxIxB/kYIjHzj68h0lUvxITP2slZK8TacPeP+JghEp/3Rj5miMTHEIkxJ3ztkJMwQ2yY/k7UDTmbwAwBAAAAAAAAAAAAAAAAAMCZBjVDKM4E8SZTiYkYE+REOWWHS5SvPghqgxxx2uqDoDbIEaetPshpqw1ClGaFuIg1QrpIMUJcpBghLlLsii5yWUS5jjnFCHG2m2CEMKYaIhoRZLacxrFGCGOrH6KRn7rstceWSt5rQ67rFCOkbtZWQyRxvPXHVSdIQ2QVjZC6DUMNkRQjhImqIeJBTA0RH3qH1YGG1hDxYbY5CKsf4ktMDREPOFI9pIaIF2wmRNQScZFSR6SLYndfvY4I0SmsJXLK6ogQnZ5aIvI606olwvVD6nYVTRGuIUKkXEdEDlulVwhcQ4TRqiUy21ruU81aIs01lWodkeawVbx1yPW61nslmTEmpJaIC15rMyF1RE4K1BJ5+vC0TZPF6bG0N0Lq9Draa43FWdLeBMmVKotokS4rw+jKnS5LexOEH861N0E4VVaOTZDc6bK0N0H4ZYD2Jghfzzk2Qcpenk0QTpelvRHC6bK0N0HqAsHKL3L4hWSOTZDc6bK0N0H4haH2Jginy9LeBOFUWTk2QThdlvamAqfL0h4bnC5L+3h5Ds6xCdKb6GyCSHgzRFul5wez1E0QSY7NEKJMmyF1Y0f/V2MzpG5WeTOEOU2bIU14Q0RjM0RSzChLIBZviqSkyDLBmyIp6bFM1Jsi2i9/Mxd7JkpMkWVisSkSmx7LBm+KpKTHMsGbIinpsWz0bu0mpceyUW+KpKTIMsGbIrHpsWwsrouU9FgmeEMkKT2WjaKISo/VBW+KhKbH6mw3U/os3hSJSo/lbHjxj/b8Q0ebItpzEG+KxKTHcsHrqqj0WM6Gq39i0mN1UZRx6bG64E0R7Q0BXnuvUnosF/z3I13W2QLbXAAAAAAAAAAAAAAAAAAAONM8bdNknRYjhCPHc6RWmmwWWSKc6whA5WPeuFod7GGmHWSkxcoP0mI12s6UGouvE23Wry1SWziKk8fA0cfzgW67609VCtl0Sz9Mpjee60cLEdHGE1WE02Rb99Y8ullFKs7WdI9587HqeLX7ePOx6tzNh/p9vPVo1ReuQu0xnHuoanfnbt1zx9fzpKOgeih1+qIMq8DpVkF9Jb2+CafL6utlRyCiRrqsme4xs52mHf2vaoJICspy7nKNN06XpX3/YLSNECaHEcJMN3tZUizu3VNF3q4/rhs9nWvtPd1iC1D3HPZvVn//7MK6artERPNF1PRpWd1zlLf6GWTLoq+/fivX19TbJCKar1UGR0/ZDGETotA2QzJRTDOmpM2UzEQ9TR23u0ifpW2I1KmzlNcsrdRZinD6rOkd51XblemztMiVAYAnS14DaK5dyuLIsCwUxwZnkSlmparByWtvNtS135cdXqjmzrUbOidTps4CZ4PTst4CAAAAAAAAAAAAAAAAAACI4mlXM+QVf7GqFaJVd2Iuo9yUNkxl1LjmbinXFCDS3fmWOaG1cpHbIt1TDRFbdCXn7U/C0IRGJODUEB2skZt9aglwG+6ktTu3BGBp1YeQRohWnvqNJ0ThrG29SIi160dta0aEyEJnWrnT5bnSMkNkATXNvhjeOory0rQW+o36I5pmyOjm8g1Jywzpi3opWmbIYM98AWv0tTxmojyGCJGOHbJ2w9wXqYbI0FIjRMMQMc2TrbVMBKa5QdMyaN6zB4o2oFyr2Po+lNHN5bGhlSNa1vJQWbOYPkfx3Mn7kZphKA5RFuqMZS6iH9eu60UOT841CqgrFhI1ze8ahohpraxhh8w2LJNO4im0PXtoGCL9G+2JR8UQMazXBk8lLsCJrAXU1fL2i1cIXEg7udmN5YeHUtEQKRrmRqlYYL7Zp70dvZoL5eZyXxQHSi8whJGlVTuE670cfUPxBcbsaD4r1/UKzM+EuTG4oXP+pheW+6KnVEelt2s+V/P1NEuisJyrYjd9wTW97Vz7mwpWoMks1HhmmG1Y2kgczrY1itYzsGxf0xBpommIyOcarXeecu2iZYjs3VE1/P5/gtohZwGYIQAAAAAAAAAAAAAAAAAAONM8bWuGzBcBBTGGiDOCknczEzZMTbUENPLpNY2Qut3FdliKIWKLxi/KNDskV+0Doow5t/MEaBqNEJV29VMeE5HdCNEgV30QaYM0Ge5UF16MIdI0QSQpOUOlCSIpe0WSHWKzd3rjxTEnRPaaomE18qc2jRBmsFv9ISnWgslW6HGu+gRDRBohzHCn+jtiDRHT8RIR9Q+r76cYIjYrJBXbMa8qNiMklS4rgf97jCHiMud6i0tHwxBpMlvkGk6xDEz3a753pRgitvUJ922sISKNEGawV43xFENEWiHN72kbIhrnznYP6o3LNDvEckh8b4k1RKQRwhxerC6MFEOkaYTUn8f1ahIMEe1aUIxrnXxwR7XIizFErEZI/cGLf5WXvdONqv/Va4gsbBHtGiLTK9tEpGSICIrJLM0OsUSQzy9sEVG8ISKNEKaYVecsxRApDLU8+HsphoipH+fblRGQYohII6T+/vowzQ6xRONz36cYIi0rhIioEJ8XY4rM2utD2Qcxpog0Qpim0aFliRAd1QQi0rNEmvQOFjVKEg0RSblVzW0ahsgSvD5QrhvVmyyez3JY5QWp18Ql0nkGNq17ctQQabaXYojYnmPKIu19p23twjVEiOIsETZCwNkCZxUAAAAAAAAAAAAAAAAAAGeap03NEK4VIgkxQ4IiJgM2Sk0miLXZgLNlMkGs7QZskIbUZQg1Q0JskJiaISFGSFCUZcCPhtQOCTFCQs5LiBESWjckxAoJqR0SYoSE9IXLCJGEmCEuI0QSEgnSZYQ0CTVDQs5HSFRvSNRrTFSMyQixEWKIhNgKIYaIzQgxEWqHhBxzSERxiBGSrY9XoHZIiBESWjckxEQIMUNC5sMYMyRkLgixDELu1yGGSMi6JNQOsVkhJkIMEZMRYmMVaoiE3HuCDJGA0xFqh9isEBMhhojJCLERcq8Mmr8jaoeEXH8hhkinGdIkcCiHXNshhoipVoiNIEMk4DoJMkQCTIcgQyTglUGoHWKzQow/G2CImIwQa7uZ+i3GELGZISaCTJGAKPxQS8Rohlh/OGAyN5gh1mYDDBGbGWIixBCRtUJchBgitlohJkLtEFu9EOPPBhgixlohNgLGpqlWiI2QZwdrrRDjQfj/6NGxBBx34PNwSNurUEsk5Dkm5P1nyNolxBCxmSGoHXK6gRkCAAAAAAAAAAAAAAAAAIAzzZk3Q2xGCONjhiTl0HZseoYYIa1mHb8aYoS02u3YIA2JMF36vY5DSqkP4jJEUmqDOKMrEwIvXWZISm0Qn3MTUyPE1wyJqRPiYyKk1Ahx9UmIESJxGSIhRoikKwokxApp0hWlG2KESFxRvSl50F19EWKCSHyshZj6FT5mSIgRwviaIbE1N7qii1NqhLj6OqVGyEkZIrF1QroMkdjaFETuyKrY+zWR37onpuaDj10Qc9/2MUNSaph1naMQI6RJlx0SYoRITsIQSalT1TmeIpvuipYMMUIkPoZIiBnC+Nw7Y2qF+BgiKetmlyESZIRIuoZG5CnsskNCjBCJ0xBJuE6chohy7YvlH4g7Zl9DJMQMqX/HwxAJMUPqdj36MaXmissUCTFCJE5DJKEuQ5chEmSELP1ix5gKMEJaTTsMkRAjROIyREKMEImPIRJihjC+hkiIGVL/jochEmSGSBxjNsQMkbieIYLMEImjC2PrmBF1vxuIbTuXHULkNkRiah4yrvefKWsXH0Okq2YIDJHTCcwQAAAAAAAAAAAAAAAAAACcaVKchzPBfNi2Q5JMEAcpJogPKUZIFykRpi5SjBAXKbvDDEdkLkVXKnQx7/BLQyTFCiE6iu6X5yrGBmky2a7+lYZIjAkiKft2KyHFCHGRYoS4SDFCuog1QhiOoJFRuylGCNMbl62I3hQjpG5jcX00I2JSjBBmsFv90dJaSDEViIh64+r3bYZIjBVCRDTcqf5mmyGSetw2UowQFxrH25ss+lrZEGHzQxoisUYIs/1IdQ6lIZJihDTbkFFWGvfr3uJSM62HYowQZrZe/a7JLki5b/N9zmaIpFghLmKNEGawV41laYikGCGyDW1DxHQOU4wQpjdezPlyfCU2zfejlMhMG4cXB1Y7JMYIYfhYTffSGCOEmS6iXk2GiMa6+eCOamEoDZEkK4ToaAzIoZF4Sqcb1TmShkiKESLbWDJEFK6T6ZVqUR5UQ8SDYhGZnmI8mJhf2CIiuyESY4QwxWxmtUNijBDT70pLRKN/5tuVQdA0RFKMkLqNhQ3RMkQSouiJjs6RNESijRCmWBxXhiQl3AchNUR8YPsjpIaID/PFuLIZIjFWCBFR72C8/DnCFIkxQphy62huk5ZIkhHCzMvW2E0xQhjTM0SSEcLwoSkPZ9PzsAZsb+QwRLjNkBoiPsh7fkgtEReHF5bPvzRFuqwQcHp52m+GNMm1CUKkvxHCk0HqC/RWu3ytKz8z8mS1fk3/xd3arXmdKkvjYc5Ivn0m9XNYt5u4CWJDYxOkCb+4G4TVWvSCX/avK2+6DXeqAc3psrQ2QuSCJ3UTxIbGJogJjU0QExqbIBLeFNFeqPGmyOBAt5PlpojWJkj/sGqHX7BpboI0N55ybdrkJHUTRMKbIocXdV828abK2JG+L5be9GhtlLIJIpEv1LXu3XJTRGsThDecuK9TN0FsaGyCmNrMkTKLzyFv6Ghh3RRJbVdsiqSkx2pyeLG6QHhTJGUTRDIfFvVxp2yCSOSmiPbamTdFhreUr5PF5aF9vLZNEQ36Nw7Ciqp7srQpkpAeS9LaFFF6US03RVI2QZoUM3HOFDacltpfbIzMFTYrJKZNEQ2smyKp7Vo2RZKRmyIJ6bFaTR9M6v5ISY8lSUmJ5WIuNtsG1/dU2+fNkdAC613wxkhIcXUv+HpW2ASR5AqskpsiWoEY7SBaneOWz8GamyPNtsbb+i/pykJvQ6QJb46EFFgHpxNscwEAAAAAAAAAAAAAAAAA4ExzZguodxVOb1KnkMmgiXGqiYFCOowmU06JpXzIHAHa0w6OWmysrmfYYT241Kvb12TWNDYyXCW8w69thky2VJur4TFRKPf1gE3/DIKMthHC9IUBoZ2CZbiItJ15FOUOob+wFspC94BrHVZZ4eW22bbQpBws+lb5Fsh90Z/kSgFYLP2rBfextilDVEVfzdb1cy3yMU+3dLXO/mE12c3WdI+ZUwkdXFY+3vHyGN6/rDtv8Jw/yWGejPMsQev7lbJUxhHpbPlowRZEDmtvNiqy2q1E+nYI0ZEJoZGCq8l0PVMc2KKPZfRmKmyw5Ih+5PHsU1g9BNleodwnHNGracsQHd3/1h/STUFVmyHKY5kZ3MyQV3ZhRJQbyhHkveqcyfQ9WswX0f+9HWV7YbFWnG/pWz69w4l6ejKijH3NzxDKzxLzUbU26u3pnrvZpc2lr7WfgXoHC3toXT/FSH+/snuKQ13LZ769MDk8CreHMNtazBfKc11vupjzM/TxUhriDMuD+bDI8h6pXssor+9GC6NzsqnbGdyettnJ7WVZIy2m5ZDsQSikfrqAGQIAAAAAAAAAAAAAAAAAgDPN07ZmiHZULdPTT22/xDRTkXS54zlf7IQmGyIi2OxgkYNPwxA5uNTYy+P/qxDcNstUw0M7WlCS2whh6h14hb4eNIPvLAUyYzguI0SLYYao2ib9DGYF0zTqOPpTwxBptstFyTUMkdoIqT9Ip4CjNAtnixy0qYZIrnsVI/tUs+hdr/G39xc1VDQMEXnMg92pih3CRoj8OtUQkZHt61erhYKGISKtEG2a87yslZRCbiOEKRddnGqIyEi2nburhlMNEVkXg6PQNAyR2chgt2aaTrgAvIYhIqP9a3s7MdI0txHCcM0vjTVfs64JG6ga0Y9yPE83eup2yNLnDQoVO6Qn7qey5lUs8n53cG9Vj0PDEFmqF8L3c23b6Xz1GSqGiCg8XuxXVoG2ISJrFqTaC3NRD2K+XdW3SDZExNqwt6iJoGGI9BrR/poF7NkIYebrozwmDveNtiEi6rNomyJcNFzDEGErpPn/NQwRNkKYcm2oYoewEVK3uxhv2oZIrrmuf7A8P6mbInyLUVguLNUKUSyu3lrLKK3vRqLGF7+b0DZE+LlC3RDJVFydaPn9bs4a0+D4gRkCAAAAAAAAAAAAAAAAAIAzzZmsGeKqF+ITZRtTO8THCImpG+JtgkScRZ+dzSQzxBFklmKGLBkhEZ9tw8sIiehn3+jA0NohuUwQIr/znmKGDFzBdgmRDSdphMTUDfE1QmJqh/jYIClRUa55MsUM8Zl/YwyRlhFi/KHwC9z3fhFjiPjcr1LMEVc/ppghMnq3SYoZ4nPeYwwRaYTYCDVEfCPZYwwRHyMkpXaIa35PMUOOywgxEWOH+EauxRgi0goxkWKIzFztZzJEUswQn+j+GDskmxFC5NWPMYbI3GP+TYl6dI3rFEPE53djDBHXPaVJqCHie5+LMUSWjBAbq1hDZGKfy1LsEGkrmIixF6QRYm07xhDxWBPGGCI9jwj/FEPE1ddJhojPM0PEcwXXCukixhCR9UJMxDwL9Q667/kphog0Q5qkGCLSDDG2H2GJ1LVCOg8gbM7jWiGdnx/R10u1QqwHENzsshFiI2Hqd65pEtZ20gwxEWOJ+P5OjCni8zsxa6XSY/p1vUdF3ZDTA8wQAAAAAAAAAAAAAAAAAACcac581rPs+dYz1QjJVRuEKCzXXVDtkIBgspDaIV4mSAKnsUbIcdUHcRFSO8RpgrQaXvwbcFpOW40QorA6IWx5+BgiIfVBQvLmhhhzMbVDYow8H7yMkAhCj3c27HnbISH3LY6U9vmdEKMmpnaIT/RuTO0QjVoxxmPxNEKaP+9rh4REsIfUEAmpEbKxmBdDDBGf+TymdshJGiFMaP2QkCi1kBoiPkZIfQwRNUScRkjd8OJf5eVPTO2QkGj+kPohJ22EMJo1RJrE1BDxGdPTjcU5DDBEQn6W1wU+hoivEcL0D+fe4ynk3qZZQ2SJVaoh4jBCGK4fwviYIj5GCMN1RHztBV8rhEixhohAs4ZIk5gaIj59HVWrJcScCKgj4muE1D+/uaZeP4RIt4ZIk5gaIi4jhCnXhktf+5giPkZI3X5AHRFvI4TpFVmMOK4lsso1RJaQQ82jS7zWNLIdjyHtY4QwueqIEOWvJaJZQ4So/Q4YtUROJzBDAAAAAAAAAAAAAAAAAABwpjlTNUOatUI0jBBb5G+qDdJVOyTaCuk4kyk7ls7oy4SgXZcZomKEWJpPtkE6+jo2ArCrbsgqGCESVyRxkBFi/YD2t3KZIEyKEdJVOyTECJG4zJAQI8SGKSpKw9hwGSIp7TtrXqQYIR23xdhj7jJDNO5bpjY0zApXFG1o9G4TlyGSctxdtUNCrRCmywyJqWnQxGaHhBghNlyGSEoNKJchsgpGiKTLDEmNSrPZISFGiA2XIeJlhFgbjv9VFy5DJLS+gwnb9ZbVCiFK6i/X+tCnVogNV9Rjyph2WR8p9UUYmyGScl8h6h5fsXWxuuwQr1ohNk6ihoiHEdKFyRAJMUJsdFkLIWbIUrtddkjCqxGXIeJTK8SGyxDJ1tcapoSjjVAzpEmXIeJTK8SGyxDxqRXShckU8TFCunAZIiFmSKtdhyESbIY06ZjvfOuFSLrsEK9aIS4sl5tXrZAuHF2StK5xHFqIGSLpMkRiDZKuNUvqOt22XvKpFdJF830raoesPjBDAAAAAAAAAAAAAAAAAABwpjmT2c1y1QlZ+fog3Mxit1Mzd52xdohCcL6pdkjOGiGrXh+ErSFpiKyiEcKYaoeoGCEWVr0+CEcbSEMkxQhh+uN5yw7RMEJM5Krhodn2fNEX0iBIrhPCUWEiOjD1uGfD6rikIZLtnqU4Nkw1RFIjd4nMNUQ0jnuwW92wpSESa4TI35eGSKoRYv08RbPCVEMkxQhhTDVEchkhROn3LVvtEK08xSH1Q0Ip+207JMkIqRte/HtMNUQ0rBDj562wEcLMB0VrzZhihDCmvNgaY9pUQ0TDCGFCaoiE0D9c1FoTYy3WCGFs9UOSjBDmOGuIKBghDNcS8akhEoKthkisEVL/vq1+iEKyjN7uQcsOSTFCmGZ0fkgdEV9C67V4Y6khkmKFEFX1Q4jahkiKEcIUjXHAloiGEcL0DqZBdUR84VoiTUMkxQip27XUEEmyQois812sEcL0xbk6NXVEiFrv8oiU1jWGNV6KEcLIdxtsgqTWFJHPJqeljghR9b4Y9UNOD2ciTdbL/9Kbs7bfP8zURZnSEsz110g1vfT1XMcH5Gl2tpbpZWOmAtv7t2UaHAs0NkFsDG/maXf92mpvgkj4RquxCXKs5DzcTMOaX55nK5aeuDC30cu04aT9Ummp7Uwv/ZlcG0OuVG0pzId5xtxkO+ONnIgOLmYMOtB9H1aT7b6Vac7jzRCN9FgmNF6gG8m4/AgpBB/U7mJeyrYZkqtPck2nGc/h+tVMkWEL+vt5Bsl0M8+cOtzJ1B+Z77WDp/JFLWkXE6/JdHn3bgUUmg+A+0FjM8TYviikrclpO2beFNHYDDFRJAbSWNvN9Boux4YZw5siyZshFnrjPH19cFueeWme6R3TNFPQCDPayfcyaO+2PLsB2TYZMsfRvPf/g3RZqwrSZAEAAAAAAAAAAAAAAAAA4ExzNiQeg1KWgmZaChODA3MqpFRq5WsR5aiplNWpfwbdxUeD2s2swU22FnqrcuDWUdqqqv216zpjZv92MSYUh2K/EeSj3c9EROtPVAerbeGMblXtzgd8LnU6pXWdKx32UGin2hHprGzniiaqt8gVo6VrDZXnEaXxZ0rdpAmncJorn8NcRggRUe+gkUpB05RZjLeyyKMVH6Wn0O1rqctPt3WiEtm+6U8XEXIbOlF4PKZHN6rjHl/QX6YNb07p4KJ+RB/fZ3tToolicCYXpZwvTh2voVKRa7DBru7A5nRZm0/pRt+xPWVLyZhCUZL6PE1E1BfnTKXQaINcxkk2mzFDmixmcHB08+YUV5ocXujT2g39Dj+6zqvrZnhTZ+Eui+Vq2Y18/XEqRk7NqIbys+1S02VJs8vVg0z/6q5au/PzG0dfKK5zejv79s9RgNvr3dzv+MlAFtc1p/Xq7SmloFqslzilFae40mApTZZGAXUBWwXa5kIxrh5yB4/dICKi6Z0XdBpezBflwgIuFNLDEhHNtpbXooMd3fRk88X6PzXllAk+d73xjOYjvfPIz8uzQTWn9vd05tTDy1VKNZ77tQ30tWvV2Du8pGs9yXuV5nEXJdFkqzp3w129+/n+lUHdPpHu+pToyBDXzoIjM9/MlU5lrsw0QA+YIQAAAAAAAAAAAAAAAAAAONOcDTNECasRohCdY4pktBXLjkF755XJEgFM9qKtxfSouGkMbIJIOMdgqiGSq5A5kcEKUaJvSPuqYQ+xCdL6vMNSZSecjRBtrNd5YmC6NEIYjiDXMETKRpRWdkNEAdv8UczTxp61kLmlUGMo/YPlc8lRvKmGyHEZIQzXOkkyRAzjS7XwXKtI/ZzKfnqchjRCtLDVY+E89ymGiGlcaxoizUjrc5+vohBvPSM9olTbvGRs9sB0vUiyQ2xrruli/aBtiOxdqcaEhiFiigzUiMAzXcsa6wRphDC9Salih8i6bcPd6qAnW4lzSMZgPpPdyvcG7TowXOhcwxBpzk+HF6oxrWGI2MbB5PwgyQ6RRghTm1XaRco1DZHmfVHREDGtFzUMEaOpwWM5w7qHDY5kQ0QW9VYyRGzHpWKIGM5hDkNk6bMUDJGytzwHFZOZih3Sv26ufZNsiFjmB21DhJluV+dOwxCZbRyFtc/F+l/bFOH6HpqGCDPbHKjZIU20DJGhODY2RJgUU2RmuC/mMltyGCJMUSq9oxRtNGsIplgitlqEbIpoGSJgdYEZAgAAAAAAAAAAAAAAAACAM01RliscVtzBy//ym83/IfAv8q4REtFTPtGLMWZIyC5rTFSfT8RvTO0QmxHSJMYMsRkhNkIiWUNskJjaIV5GSMTYMxkhrWYjxobNCDERY4j4GCExdUO8r/OICAabFWIixBApA6KxshkiEUFEPvNH1LwUEmEYGMkmbRAXMYZILivEZIRIosyQgPEUZYh4tB9jiPgaITG1Q2xWiIkQQyRkXMcYIj7R1TGGiM99NKZ2SIgxEGKIhK61tA0RJsYQ8YkEjIm+C7l2Y+ZsmxnSJMYQkUaIiSg75JiNEBsxhkizVoiNGEPEZ36KMURCznuIIWIzQkzE2CG+10yUIeJz342YlkLWhzGGiJehEbEGkrVCoj9bErA+DLVEQo4nyhDxOJcxhshSrRAbEYaINEKcPxtgitiMEBNRdojn3BBjiMh6ISZiDJGmEdJFjloiRHGGiM9zcYwhwrVCvI4hwLaQRkjncUQYIiYzRBJjiPjcv2IMEa4V4kOUKeLxOzGGiM0MabUdeApt778+8A9/IKwhkB2YIQAAAAAAAAAAAAAAAAAAONOczZohBXlHznhHi3O75Nd2SLRiSO2QVaoNwgaHjyHiY4TUPztdbr+LUCvEl5j6IIcXq2PxMUSCaoQEjD0fI6RuNiAneIgREkJMbRCOzPeNtAy6zkvyjg4NMUJCCDFCssNjw+MaDplHQsZekBESSIgRwvSmpbcdcpJGCBNUOyS3LBpinMwWx+1hiITWCBnsTLztkBAjJISYcR1SQyQkmjqkhkiIWTncq/71MUQ0akhoMt0qstghITVEQiL/QmqHxKz5QuZsHyOEYcvD5/z7GCFMcP2QFRp+ITVEfIyQ+mcDaoiEzE8hNURirvPJ+Wq+S6khYiK0fkjIdRNUQyTkvqtYQ8RESA2RICsjoIaIjxFS/2xo/ZDA9bVWHRFj2yE1RALGSEgNES8jRB5DpmeUYlLNHxq1RJoE1w8JMMbKYc/bDvExQhiuIcJo1BJpwrVETrKGSEimhNlmNZ/6GCIhRgiTqx4HUVVLxNcO8TFCmJBjDrl3cQ0RRruWSFCdu4DTwZaHjyHia4TUPz/xt0M06uaC4wNmCAAAAAAAAAAAAAAAAAAAzjRn0wxxEBQhHkGIEdL6XYchkmKEuKL5onK9B35u9O93GCIpRsh8YI9ujTFCfAgyQSIIMUIkrjGSYoT0D6vfte2Sx1ghQZ8fe73zr1lOWYoRwlHmpoiYFCOEfzdb7RCHIZIyj3RFG0dbIR0RbDFGSAirYIRInIZIwrjh+5N1HCSOyS5DJNQKYQY71aRpM0RSjJD+/sxaNySn6USUFj3tMkRCjBBJlyESa4VM16vf61p7xdRmI6rsEKI89UP2rvStdkhKdKIr6k5jzeeas0OMEEmXIRJihTTpNEQyB/HF1Dirf3dWWu2QECOk9bsOQyRlfgoxRGLoMkRC6oU06TJEUq6b6dbAboek3Bubw8LSTMp60GWIRNXpYByGSIgR0vrdUEMkkC5DJOVz55sjux2ScA5dhkiQESKRx2RYZ4fUCpG4DJGQWiGSTkMkooYQUWWHEMXVD/Fluj2y2iEhtUIkq2CIhMCGCBNTS8RFl20RWi+EWbtWPW/YDJEQI0TSvG/lMFvYFDEZIiG1QiROQyThzwgxRILaFe/ZQuuIgNUEZggAAAAAAAAAAAAAAAAAAM40RVnmThCuz8v/8pv9f3jx16kbIYvmUkwQG80Ixhw1QjiaT9sKYZMj1QiRSDNEu0YIR7tqGyFcNySLEVKmmSDWZsX2qHadEDZEtI0QjrxUv87FqdOuEcJ2SI4aIdkMEXF9a88j9fykHT2/6GNtI0TWDllFI8RGOehlqRFSjwnltqUZEmuE2GBDRLtGCBsiOYyQZu0Q7Xz6RJUhkmKE2GBDRLtOiFyTxRoh1vYzGCJER/VDckT1NdeRmvN1c72QYoTY4LERa4TYqA2RFTZCTLAhkmKE2Jhu9LLMT01DJEdNIJ7zYo0QGxxpq72+aRki2vdfFmIz3Nf7V3fzWBeLcZdihZhoHavyOjuXiVIbIsrnUNohSWaIjaJIMkJssCGSYoWYaBkikWaIDTZFQmqF+MCGSIoRYkLbDjExH/WDaoX4woZITL0QF7wmizVCbEhDJMUMMVHbjsq3ArZDUowQG0vvPDOsz9gUCa0X0tnu4lSG1Ar5wD/8Ad2DANGc+TRZ2dJiZdxCmg+IiowZXHKlxhrtVA1PNnVnsMn2or1Mx30a02IN9v0LzIfAG1lrT61OsXQf1m5WF8x0XXkRvjjc4c7pK5Tem5R5ChJzSqRMa+ZsKYQybQ7xfOpbgDWUHJsgTDEvs2y41ykOfAq2h7S7SJfVy5SKgPta+7iH1w+JiGh6rruYaSijG9Ms55DZemya5aGH1wsHl3QPntNmrVIxbB/G29WYG+5l3JzUbndxGfYyrbNzzal12qztPHK89iZIzSkb00RHabOGe3nmbFsqwlTKxcaT9sZ4XVR9J0M0E+U7biKi+da6eptEdJQ2S5l6s+KCJTdjKpnW73VR9d1D1XZ582N6aXPpa03mmyMqlINUiI7WlNrUabNuP5+l/dn5xZpP+bmGi6trPy/lSpnVJEfAB1E7fZYWudYhnDZr/zb95wIioj6nHVXeeJLF1TXhtepslJaW10b93kx5OuH0WTPdfThwTCBNFgAAAAAAAAAAAAAAAAAAzjRn0gxpRsRkUaIybZiPzzXSYy2OW8MQsUVwl0qbu5wOSpvxRbGbzV8qfNzUYDVrR7rzTrFmgaXB3tH/7yowH8LaVVkMb/Gv0qkdHC43pGVEbFzNEDpA7cjO2cI46Sump5gP8+xF98eZJigxFup0Vlofd8oyNpYimrGrAGsMxbykcrQozKh5XjNFZnHBRMZZsD2CurAhR78qRcXNlU0Qpne4PD8Nbi0iMxUNkWJe1tO1rdByDPO1PH0ir4/1a9UYObiUx+rTjqbXLqgu741s1moaIk1zYz7Sv/bno0LVDpFrU831cNVQ9U9nYfVA2NDidBd9pfReMrKTi55zEXQttOfVJpPNnqodIlOncXpKzTmQ6KjvtWyf3uI+zkWF5T0zFhltnS3Cm8eGYj/z+mB2ZZv6T+mlQcpmhAh6tw6qzzunZM4sno/m21V7vZ0DlWbZCJFfD67tmX48mnK9eijVNERm59bqf4ePXldrd3zfZeP35dotGb5elObWbAb9Yh6RRc815qnZeuNlBU9Liss+ngP74znNRnoN831xstVISSvTHUYgjRB+lpbpylPhe5eWIcLHJzPvzBTWlrNGl8wX3Z3DEJmtEfUVxbs6gw04lcAMAQAAAAAAAAAAAAAAAADAmeZUFVDvKpzukyM1yRBxBNjI6L4QmkaIJCUSzidiO8UO6TJCYmuHtIwQScKINRkhkly1EFIMkYEjcCfFDGkZIcYPiG+/67qINUS6jJCU2iE+EYAphshJGCFJtUM8zn/SNXNCt6D+YfxBSyvERIoh4vrdJEPEYYSk1J3wiRpLsUO6+jI2Sq7LCEk5Zp/IwhRDxNUnKdHRLiMkpXaIz/WgbocsHUCeZlMMEZ91Y4oh4rI1chgiXZ/Zhc96NMkO6fiTYw2RrrkzxRDxKDhdjwABAABJREFUieZMMUTYMjGRK/o4xRCRRoiJJDuk41djDZFex307JfLaJwd/iiFSHDqOLaGvXffXFEMktxHCJoj182MNkY7noRRDRFohJlIMkfmWPVl+iiHCRoiJFEPEZoQ0SbFD5hsda6XIuTWbEULkZYynzFNLZkir4ehmnfNfiiHi85yXYoh01QqJNUS63nOmGCI+x5RiiMwcXZJiiLhqeaQYIhpGCAqpnzwwQwAAAAAAAAAAAAAAAAAAcKY5EzVDfIyQKDIZAozLCGFiciXnMhuIwuqDDPfKYDuk0wohiqpn4WOE5CamhojLCGFiaod4GSGRhFhSRVkG2yE+dUIGC3MjxBDRyglt4yRrhHA0ZZAhklvYOGEpcbaIgA8xRHwihVLwiZ6PqiHiEfFVLD46xBDRynduw9euKftFcMScT52QmJon6rmmBT59EpM/36dGyMZT1d8WYoiEGFLZ6ocQVfNZhss3poZIyD0ypoaIj53BP6NtiHB7IYZIiKEcVT/E808c7s6D7RCf+TKmhkhI9GZMDRGXEcLkqiEy2aw+W7OGSJOo+iGePzofFMFrxS4rhEi/hkir/YgaIk4jhImoIeJzP51d2a6aVawhkkqXEdL8uWA7xOM5SLuGiCSmhojLCGFiaoi4jBBmctdFIkozRFzM16rjDlnTdRohTL8ItkOyWiGexMxTTiOkbnjxb8Dt18eIk8/HmrVEiI7qiIQYIl1GCFPMw+0Qn+w3zfuXVh2RJlxLJMQQcRkhTK4aItIa0awlAk4HMEMAAAAAAAAAAAAAAAAAAHCmOdVmSIwRMl9ElTl3TyOClaZri+hAR8SfjwliwycaLsYI4fa6IvNCjJAYvIwQiYchEmOE8E58TsOmCx8jROJjiEQZIZ4mTkrdHB98jBCJjyESY4TMFu25aofkMkEYHyNE4mWIRJxG72tmBUtU+RgiMUYIRy35RMbH1BfxMkQ8Iqdax+JhiMREr4ZYFlH94RnF7GOEtI7H49hjjJDBrTER+dUOiekTnwhpHyNE4mOIpNTMyQYf0gkZIrnvkTH1OlbJEAnByxCJ+JOGu9W13mWIxNRYijFEQvAxRHyMEMkqGCI+tUJav+NjiEScR46m7Vo7+hghrbYDIq99IqNb7XsYIl5GiMTDEImpwRViiOSqFeJrhJh+J7p+iAM2RIi6LRGfWiG233EZIj5GiCTGEPGBDRHGZYr41AqR+Bgi3kZIE75WTtr4iJlHPOYpLyOk1TAfU/iv+sDPzS5DJOZ5z8cQ8TVCmvAzdWz9kC74HtZliMR8vo8h4mOESOZiWLlMEVetkK7fcRkiGrVCwOoAMwQAAAAAAAAAAAAAAAAAAGeaoixXMFRX8PK//OalrzVqhBjNEEUTQEYAplghTWxRcFoWgzREtIwQWTskygSxYThEzRohuQwRWTskxgYxYTND1OqEiGa0ol1ttUNijBCJyQzRrBHSNERW0Qix0TJElLqkdc2s/m2GiNp2iGaNkGakvGbUvNEMiYj0siEjoLVymtuiRFP7xha9HGOEmJDHrVkjxGSIaI6VZoR0jBFiQxoiWsecpXZIk0zBXdIO0TRCTLVDNO0LbUOEMR1jSK2QLlprY6U/QxoiMUaICZsdopXDW9ohMUaIjVy5602GSIwRYqNliCidS9taMsYMWf598702xggxti/skCgjxIZh7RRjhlibb5giuYwQojgrxITVEAmsmWhDGiIxRogJaYfEGCE2TIaIT60QX5qGSIwRYsO05osyQySWeTVbrRCtecQyT0WZIcYPWP5Sa/4jWjZENJ/3TIZIjBliQ5oaPrVCfJDrDy0jxWaHxJghJqQdEmOE2DAZIjnMkA/8wx9QbxP4cSrSZOUokL6ULitjOiStTRCGHx65GHcutNNi8QP87j0ZXm4UVL/EXYVC6b7wOdQ+lzJdVq5i6dopP4rFC/P1a/oFJAcH83pDJEeh9Nl6L6ygaySaGyFLKHdJnTbrpPXvSHIUSi97RVDxUu92ZbosxQcFoqO0WcVEd4DL1FNaL9BlShetTRCGj7uY6Z/Lwa1xvSGSM82U5kYI0VHarINLim+3KXNBdaJsabNiiqr7Mtks6vVUjhRUvXGZZUNEps3S3AhZQvnQOW3WeFt3DMqUWdqFTDU3PyRlv8hyb5dpszQ3QogaabOU+1qmzUrdBKnbFaloNF8CEh3dG/u7GR4oZ2W9IaK5CVI3v0ifVWRYU+WglTZLaROE4dRZ2sFYMUXVfSnXB/WGiOYmCMPps7THn0ybpbIRQtTaQHSmwF0h5DyltglSf0D1T5ml2Hd32qwYZNoszY0QoqOAw0L5NuybNiuUvlirjpU3E3IVVydaTpuF9FhnE6TJAgAAAAAAAAAAAAAAAADAmeZUmCE5KYs8mRIOzy+iXZXTw3AqIVbL5G5rKrmi22/dv4jKz9D+VL8+3RK9abtgkwaD/erfHG0TEa09xSHduu1yVKp2ZOdgv2qXDY6Bozh5DL2MlkJvXGaxCXLD84n2PMVjjiN51O0+jqpTPm4upp7DHipmZb7+JqL52iI6a3I6osmYlSy07UDaPVppc5j+/iLacE0/dL6/GBvaZggbFutXqxv8wWXdY99+uGp35x7ddmXkubYRMVmYwdoW5f7l6vxtPaq/oJo0DAjt9SUR0XSjyNL2bC1Pu2xY8Np1rnxZsiGiHeHZF2OO+0eNTPdgoqMo3Z6yjTi8OV76+vCybjQ6p+HSjjIsOdo/0xp2tl09UPZ3xh0/GUbv+m7V/m3nVNslahifgx71lQtyExHNh4v1lHbDfA6VI697Nypzg493etu2avtsiGilSa3bvbKcziGHDdHfG9NsUzcyn4ioHObRG/k5oeQ1vWb6OmrY08rTyfhSNZ/29zO9SMpk8hLpW3fM4cUqH3pvWqrbFkQiy80pgFPmZysMn/FxUjP1FlgtYIYAAAAAAAAAAAAAAAAAAOBMcyrMEJkDPAVTMWyOcNewImT0lVYksK24dC641snoVtpxsxHCaO5i5zZC+o0gKc5DqGFxsBGi3fbohuVcKUVTDEX+c75eUg0RNkJyslQonP+vwsc2c7bz/JTTEJmNeip1Q2R+VI6KSY7Szz1NyXkwU3SqzAGegum+pWmIyHvDfNjLYodwFJxa7ZBMkViyv9nk0KgdkqPmS5NmbmuOBtQwROR1PdyZ0mRb4WZmGb7rV2cqdoi8N2gZItq1CCQy2m3/tuobG0+mj5/p+tF1s3tX1Q8ahsjEUBODi15q2BbSqJiNCp12RbSl5jGbyGWIsGGmEa0rrZDm9zQMkaXnKMV7sMz3Pdnq03A3X8jr2tVDHTtE/OnTjWpwDBIjpFvrA15bahkiYu2gaYj0bh3VmOg/eatqX8EQMd3HuUaBhiEyF9H+08tbNLi6m97uphhnvJbIUE+FiGjwZFVgXtsQkfUhUphtDVvfa9XAS6A3PhoP/b1qTGsYInI9VUzLLPUsmLmSISKfTbXuOdOt5bXkbGP5Gko1RVrP1IqGyHS9cawZzRMi3Xocco2p9W5NHpt8Z6ptcmgZIrL2br8q0UQz5feELZt8qDBYTldyhDMJzBAAAAAAAAAAAAAAAAAAAJxpirLMkPBVkZf/pTe3vhdjiJiMkHa7wc3W+ERbxUQB+xohuaLgUswQaYWYiNnFPk4jxEaMxSGNEK12rUaIJHIDWxohNmIMER8rJKV2iNeufcQQ73lcb7kMkRQzRBohJqLsEM8/Nbp2iK8Zl+l2FmOI+NynUswQn3tDrvohUXZIJhOE8V0XxBgiPkZISu2Q0uOYYgwRn2s5yhAJGLYxhojPfSHGDvE1QlJqh/hEuMUYIk0jxEaMIWIyQmzErDN9DIqodj2iK1PWxVwrpPM48qSNj4rWNRkhNmIMEZ/nqJh7sDRCTKQYIrJWiIkoQ8TzT40xRILWBjGmiMf6IcYQaRohNlIMEZ/7d4whIo0QEzGGSMsIsTYeF5vKtUK60DZE6s9PMERMZogkxhBpGiHWz44wRHzWUymGiNeaPsIO8X0WjTVEpBliI8YQ8Tr2iC5fMkIU22V83j3EGCI+68sUO8TnmGIsDq4VkqNtaYWY0DZEJFGGiOF6+8A/+oH0gwHBwAwBAAAAAAAAAAAAAAAAAMCZ5lTUDJGE1BDximSq2138jseuqkbeXeexBNYI0cq/LImpHeJjhDAheQ5zGSE+JkgKPkYIE1I/xNsIYUoKjnTwtUKIwmqIhNQJma5X48nHEFHJ3+jAxwhhctUQYbsjxBDxMUKY4PohAX8eR015GSLHXCfJRUgNkRBzMaZ2SMi9YT6szru2IRJcP2RFrBCisBoiITVCOKouxBDxMULqYwmoIRJidw13qpuOlyGS2SMOuS+E1g8JqRPC83yIIRIS0RZSQ8THCGE0a4ikEmJMhNT5CImmjKkf4muEML1ZHjtEs4aIiZAaIiHPUSE1RHyMEGayVXVyiCHiY4Qwa1cPicjTEAk8J9ONfnL9ECf9wt8OCVg/hNQQ8TFCmJgaIiFGZ0gNER8jhJle3iKiOEOku/HGReazNvE0Quomn9zJYofE1BDxMUKYkBoiPkYIo1lDpIl8tvExRYLW9AH1Q0KfPcsi/H7ja4UQHdUS8TFEgo49V60P2Rce7Ye8gwipIRKyvoypHxKyrgqt8+FrhcS07QvXEGFy1RLJlY0E5AVmCAAAAAAAAAAAAAAAAAAAzjSnsmYI44oGDYpksrZv/n6qFdIVBRxqhTC56oY0MRkiISaIDdcO9iobIS6DI8QICW0/2AqRdAyxECNE4jJDQiJ/rW0YDBEVI8RxaCFGiLX5E6ghEmKESDqjyxP/HKsdomGEZL6tmQyRmFpWrTYcxx17XyDKVzuEsRoiK2SEmLBFm4YYITZchkiIEWLDZIhE1fsROA2RhOa7aoek3htshkiIEWKiyw5JjWCz2SEhRogNlyESUitE4lpralgStvZjcmz7tMuEWiGSk6ofElIrROJ6ntF4jjLdi0OMEBsuQyTECLFhNUQSp9guQySljhgR2Q0RhXWVyxAJMUMkLkMkpsaXxGSIhBghNlyGiHetEOcHWNYngVaIJFf9ECK3IRJihNgwGSIhRogNlyGisa4yGSIpa3rGZYikPHN23XNCjBATNjtE5TnZ0YRXrZCI9jXeQbjWNxqmhOk9W+qaiqj72ELMkJB2fWqFuMhZR8Q5HhzXFmqGnAwwQwAAAAAAAAAAAAAAAAAAcKY51WYII6NDVaKZqG2GaNcJ4QggjeiAJrkNEbZDNIwQSXPnOpcRQqRfJ0QaHBpWiKndZCNEshh6KSaICWmHaBghS+0t7JAsNUIah6phhNTNZjJDGGmIpFghTVpRUcp/Rm2IaNcIOSY7RMMIkTSjQzXvD8dmiKy4ESLh6FMNI6SJtEM0jBCmaYZoRC5KlgwRxealIaJ9b2BDJNUIkUhDRDunMRsiGkaIpGmIpBghkuZaM4cVwe1rRC+a2mVSjRDJcRkiKUaIpPl8o/UMtUTjnqZhhjDSENGwQprUhojyFCsNkWQjRDLLs66SdkiKESJpGiIaRoiEDRENK6SJNERUrJClD1isTxKNEEkuQ0TaIRpGSBNph2iYIUzTEMmxrmJDRPu9jzREtJ83+d6TaoRIpCGidtyiGRUjxNG+5ruI5npHe51JdPSeTXtdJY811gjpaj/VCJHkMkRaY8JjOoEZcjKs7GaIzyaIRPvhl9GeMI6LXJsihxfz9sdcd920RK5i6dqTs2SgvFnBrN3kYsK5UjjlOe5ehhfQS+0rvmSQZNsU4WYzHbr6w/oCfijwKU4e9wF52u0f5t1YyEm2TZFFX+d4iCTKs/FEREdjRHtDbgEXss9BmbFtIqKJ8sMvo/0CmuEHkINM65RZhs0KIqLhTuYgloztZ7suuf2U6aos6Z/+1j+jVzz1ABERzaigP/11P0ifvXCX8178Mz//w3T33rX667c860vo77zmj3t/JlG+ddXgINOzTo7gkga5ntGIiDYf8Y9A+rfv/TG66/B6/fWv3v4K+vvP/Q7jz44vVi+2XWkPUxjuKe4MNRhcryrGTs/nedMzfOR6lnYnd10gIqJ/8r5/Ri/ceaj6XtGnP/eqv0if37xD5TNyzVc9j4LtMfBmwvDxW1naz5k2iyjfGsWVti2V+XrGFxGUb01YKAf0MDPeTMgU6NRzpHtOYbqRKTJhQVca1RRmGdsmomzPO+PtPO3aShdokW1TJGIdiE2R4yXPUy4AAAAAAAAAnBDf9Ln31BshRERvedaX0mcv3HWCR7T6bI336cVXH6T7bz1B5yYHNC8KujXcoM+dv50+evmZdDjI+6IQrD6bs0N6wcEjdO/kGm3ND6mkgnb6a/SF4WX6+PrdNO6ljZF//uxvoB/90L8kIqJhOaPv/8xb6K9+8f9D49ABAAAAAIjolG+GjG5K1V23fd6F7C+iSLTTZOWCo+Y5VZHmbur4QlHrkjkipZo7s6q7wItjnS3s5f6hTrO5jZChKFivpUyyEZILjvLn49VMu5DbCimmR/aGZgRZq4CeVtPyOlQ2RKSxIVOgxaKtibfbX/yfxedo2wqztWpw5zBEykb0leZx5zZC6i97yn0+55SS1ZddxR29ySzG1se7iNbTTJPF13cxnlOplBKvSW+/inJd25/S4W2KIVOL4x7sLdJCbeocu4xqX79efZCWIcL3BL7naxusk0U0XS5DhKP1NA2ROo3noFBN2cSkrhu2Jvv0Fz70lvrrg/6Q/sVLvr5Os8lMtrRuast9wPdOLUOE5z1+FtHs88H+nF794Kfojz3wO/Tqpz5Ng9Lc+Yf9Ab31npfQT77wq+jjl+/3br83LbPYq7zG3L23egDcekgpR61A+7mnTjuzUV1Eg30dq4CNkPrrm7qGyKuufZq+6wtvo1dd/4x9jBQDesfWF9F/vPRl9Kl1/43H6Z0X6n55/8Xn0DsvPZ9ec+2TRET06uufoTc8+RF6620viT72/v7RA9t8pPf6g+8NbHD0d/M8GE7uqNKIaRki43suLH3tKn6eQrFYd6oZIothxymt+nt6hsjk4tF10j/Q749m+lHNZ4fpJt/Dqn+HNzO9nOA1vZYhMl++R2plCMhthNRpDhe3m/EFvfmEny2JKMszSnOtrJmycry1aJcP+XS8Mm29O1Z7vmRke6ekX55OnOrNEAAAAAAAAABo8qc+/lt05XCn/vrnnv0aenLjQmsz5OnO1mSf/vp7/wN91WMf7vzZtdmUvvbBD9DXPPhB+k/PfR39w1d8K037eJQ862xND+hNn/wZ+oonP9L5s2vllL5y5xP0hp1P0M9feCX989u/mqZF+MvJf/uMr643Q4iIvu+BX6XfvfJCmke0BQAAAAAgOZUrWGmEMFy0OtUQsRkJHIW1qoaILWJewxAZX2j/zRqRUrly9NVYjm22lmaHHLcRwnCkZKwhYjNCNCMYTZEdGoZILiOkcERGaBgiLSOk/mBKi5DMPA3ZInR4HkkxRExWiGZkkGlOUrcVFmgaIqUh2krjuI/LCFHH8jerGCKmY1esHWIagyqGiOGwuaCohiHSM0Qorz1ZRRcnGSKWc5VqiOSuc2CrK/F0NkTmhicHTVtBwyS9dHCLvuvTb6u/nhR9+g/PfINxI4SLcKsZIoLU9ZVtntPo89uv36B/8M4fp2ftPh70ez0q6bs+/bv0nJuP0l95w5+lw8HI/HOm+7mCIWJbA+/eu6Fih3CtEElRpj3z2M6ltiEiSTFELo136Ec/+C/omXtPBP1ej4i+7cb76FnjJ+lv3vOddGhJnTW980Lre0VJ9PFz99P7LzybXnGjSnN338FT9E2PvpfecveXBh1H0wipj21RdDvFELHdG2ZbQxU7xFZ4fHLHuSQ7RBohzHxUzX8rbYgY7g0ahkjTCKnbFUW3U0yRphFSt6/w7HBkhIjPOz9UsUNkH9SkGiKWtb22IZKDwX57HIxuVPOJpiFCRO1nkYRnLtNamddyKYZIbYRIlAyRXLVCbO+KtTIQzG016U6ZOfN04FRuhgAAAAAAAACA5E9//Ddoc3b0cuxXnvkqenzj4skd0AoynE3p//z9f2XcCPn81m306898BX1h+woVZUn37j5FX/v5D9D9O08u/dyrH/8M/W/v+L/pf3799x7TUYPjZDif0g9/+N8YN0Ie3LiNfuv2l9Ij61eof32X7plcp6/Y+TjdO7m+9HMv33+Q/uqjv0D/+z3fHvz5P3XfG+rNECKiP/X536RfvfOVNOnh9QUAAAAA0jhVqwmbESIZ7MfZIbl2H3OSu36CyQiRxBgiPkZIktHicSwx9UNOygiRFPNwO8SnTkhKBGOuSI6TMEI0sBohSwfBPxzQsO+piTRPfM9jjCHiUyckJTLIZw5aRUPEZIRocNJGSHRfe/58VASPz7EnGCI+YzDKEPE47BRDxGSESKIMEc9zM9ibB9khvkZISu0QW+Rvk6eTIWIyQiQptoJWbbHzh7v0rQ+8c+l7P3vfazt/b7g7i7NDPOfDmPWVz9wW0+eD/Tn9+Y/9Ir3w5kNL358UffoHL/k2+oX7vqye/8bnqz755y/9BnrjZ99Fb3rPzyzVi/jKhz5M3/7pt9N/fu7r6u953b8j1j8+696U+iE2I6RJzDOP7z0q1hCRtUKsPxdoiPzZB36VXrDz8NL3JkWf/uFzv5V+8a4vObpHLkqD/MTDr6dvvPlB+ouP/1caNML4v3z30/TfXH8fveXiK70+l/n9i8+jh9cv0T0H14iI6I7xTfqaxz9Av3LXqzt/12SESGIMEZ/7Qkr9EJsR0iSmfojNCJGspCHicW/IUUNkqf2FJRFiiJiMkFa7meoPTs5X4yjGELEaIZJ5GW6HeKzvU54Dc9ULMRkhkhRDZKlWiA2ebwMMEZ+1soYhYqV5qCH3zBN+J5tiiFitkKUPWPwLQ+TE0a+6CQAAAAAAAADHzLd/9h20MTt6AfSJC/fSJy7ed4JHtHo8c+cx+s7P/W7r+3/zlX+KfuH+1xg3gsuiRz/7Ra+lv/7l39P6b//Dh36Jzo33shwrOBmesfc4ffvDv9f6/v/24v+WfvHuL7WMkYJ+6cLL6e/c/cbWf/vep95G2zO/TZuaoqBfunN54+OPPvT2sDYAAAAAAAycis2Q0c3S2wphBvtHNURcFLOj//mikRM5ld6sDI6YL/v+UdzjC4WXFdKkKLt3UGfr4XVCQo6bCgreZZ2tHVkiNnqT1bFCQlm7OfeyQpr0pmVnRAb/jM/PMmXP32iJGeM+FNNwK6TsF17RYESVEeJlhSwdFPmN29AIgsDrISYKx2fuLIvCywppMh8U3hG0ZZGWx1uT2VrPL8KHKnPC1woJ+dneZH7iVsjSr4REjkUYO17nvizDjz3gd2LGYDGd15aIvWEKNryK8by2RLro7U+9rJBgIo57sDeva4how4aIDyHzPZNrjTDZLmpLJAfj7aK2RGzMB35WSJPZWuFdX6+Y61kh/fmMvvMzyy/533K/f42B4e6sriHiRaa6ST7raUlIn//Jz/zWkt1BRPTz938Zvf3OF7d+dnRzRqObR33y1ntfSj/7nNcs/cz58T5916feFrQerPFYp4SsHZndezdqS6SL8cU1Lyukie85ioksZUPEB18rZOl3bnb/zn/7+d9ujZFfuOtL6PeuvMj6O5O7L9Lk7ov0ju3n0S+df9nSfzs3P6A3Xn9v/fX0zgvGeiGSX7nz1TRrDJDn7D1Gr7j+GevP9/cnXlZIk954Wlsimsy2hl6mR+jPMpM7ztWWiAtfK6QJGyK5KHzWqHPyskKazDZHtSXSxeTiurFeiLP99X6nOTHZHnhZIUvtBjw7TDf71nohrWM5P1z6n/MYPP62FvMyat3u1XTAs/R0o5/FChnsz7yskCajG9PaEuki5LzXFEWnuT4fFsE19ULWeuOtwl4vxIbnc0FuKyQkexA/2/k83837hZ8VsvQBlFY/FiRzKjZDAAAAAAAAAMDGax/9BN12cJQ6ZkYF/fbdLz3BI1o9zo336Ksf+cDS9yZFn/6/z/t67zZ+/KXfQNNi+RHy2z7zTirKTJvw4FjZnuzTVz3xoaXvTYo+/etnfZ13Gz9x5ctpKl4zfNPND1ARuIF4dXSOPnL+GUvf+8bH3mv5aQAAAAAAP1a+ZkioESJhO0TuAqbuOrId4huFpYVGpLyrFkeoDeJLqA1iwllDJONpWFUjhCMpbdFyoTaIid60bEVmaNQG4WM2RYOuco0QjhYuDMcYbIOYsOXQTm26Izd3rnovoTaIifmgsB5fig2Sq3YIY8oDrFEbpOu4V8kIWfr1rv5OPA/W/K4akduOGiLZjCSFw3bVEEmxQTprhyQeO9shthoiodFuTFf9kFAbxERvol8/hOhkaoiE2iAmXPUstGyQJt/0ufcsff2hy8+ia2vdkdMturo5YV4xrauYGItAMlsrrAb7YH9OX/3gB2lULi+k33bnizv7ie2Q8fk+Xd04T79z70voa75w9ML8jv0b9IonH6D33f5FcQceU0PNg64aIjNLBPwzbz1Gz7v1MF0+vEXD+YyujbboifUL9OFLz6L9wZFFYqshknouu+qHxBghS7/vqB/yhic/0hojv3vlRXRttO3V9uTui3TtEaLf234uvWHnk/X3b5/u0IvXr9IHLj4n6Fh/57aX0stufq7++vVPfow2vuhw6TyE2iAmXDVEUu4PXTVEQo0QSUwNER9OrH6Iwr3BVUMk1AYxtm+oIRJqgxjbddQQ8bVBXNhqiQQbIRJew9uecyLX+F31Q3LVCNHAVUMk2AYxEVFDxAdXDZFgG8SEpV7GKhkhJmzPmcE2iLFxQv2QE2LlN0MAAAAAAAAAwMb6dExf/shHl7739jvtKX2errzmyU+2vvfbd31xcDu/ef/LljZDiIhe++jH4zdDVoDBfErf/rnfo+/43Nvpnv2rxp856A3pHbe/gP7Nc7+WPnv+7mM+wuPhS699qvW937k93LB62/bzlzZDuO3QzZB3XH4Bff9n31J/vTEf0+ue+hj9+p2vCD4mAAAAAACiFdwMeflfejMRpRshNrR3HY/LEMkRLV/2j/pD0whpRklpGCGSliGidOhcN6R/WP2bywjRrg0iDRENI6RJLmuAqDpmPv5cRgiRjhXSRBoiKlaICe1mReSl1rnla5GvTQ0jpImMDNKMxj8uQ6Q30W1fHveqGiGt5mR/Z+r3LLn8y7KOxNIcg1w3pBz0suSOlYaIVo2QliGifOzSEIk1QiTSENEwQprw2iGXIZLLDiGqDJHBgX770hDJYYV8yeOforX58th+/5Wwl66dKM0rfC/je5uGEdJE9vdg/6jDv/jqA62f/+ClZ3u3Pbo5o/H5Pn3gtnbfvvzJdtvBNNYpoXVCXNT1QywZlu7ZfYp++L3/hp6z85iznfX5hL7qsQ/T6x//KP3Us7+S/sXzv57Komc1RFKRhkiqESIxGSJffOMPWj/34fPPDGp3cvdFev/lFxM9+gtL3//im+22u3h0/TI9unaR7jq8Xn/vtdc+Sb9xxyuod6D/sNY0RDTvD9IQSTVCJNIQiakVYuLEDBEFZpuj2g7RMEJa7a/3l+wQtXaFIaJhhTRhQ6TnWV/OG2mIKK3xpU05zzBWmoTWCXExujGt7RAVI0TSMES01slEbUNExQppYjFEtEk1QiTWTATJDVf/8LvwD/yjH1D+AGBi5WqG9A/LPAXKIwprrwL9SUl95ZdoTSZbBU20J7cFM+XJ57gY7JY02NXv89HNkkY3y6jCmF7t75Y0ynDcPoW6UshZNDemcHcIs/Uezdb1p9FiXmZ7OU8UV1jNh9moRzNDSh619tcLmq3nOZ/5NrSq62eeqV9CCqsHtTso8vUJ5bs2YwqZhzAf9Gg+yHMuc71oYIrJ3K9oaSDD3SkNdzMUYV+Q6x6xcbWkjav55tlc69npRkHTjTyDvDeJLALpyXS9R9MM98yyX9BrH/vE0vd2Bmv0yQv3qrRfzEvqa780IqLerPpfLmajgmajo3N528ENujLeWfqZR9cv0lPr54PaLWYlPbl2nh7dvLj0/efeeJh6SnVDmsetiel+edfeVfrH7/innRshTQblnP7UZ3+T/toHf3qpVkquNf50vU/T1FQ2Dvief9vhDbo8WR4jj61dpKfWwsYIEdGTaxfosbXlF/LP2X00aoy8/8Lyht2rr32ayiHR9PwaTc+vWX4rDVOKSRV6lPUNzOH9F+nw/ovq7U7Oj2hy3q84eQyztT7N1vTH+MEdm3Rwx6Z6u8zhpREdXsrTL1FFzQOYj3pZnk+yrcV7BVGvoN6szBpEqc18UAQVhI8h1/vC2aj6Xy7K/lEwpSbTDf2NkCa51srZ3oUDIytnhgAAAAAAAACAL6984jNLX3/6/D00L1Yu5utEecbOE63vPbR1Jbq9h7au0F171+uvN2YTumPvOj26dTm6zeNmMJ/R33nvv13aJPr81m30O3e+lB7evEL7/RFdPrxFL7v2B/TaJz7eso++4eH30q3hBv2jF7/xuA89C/fvPdn63kMb8efz4fXLdOfhjfrrjfmEbj+8QY+tXwpq55Pn7qNvfPx99dcXpnv07J3H6LPnzmaqMgAAAADkZWU3Q2TKolimIhCgXPzFWmlzcqXHkru7XcWyY5g2Iqy5P0qFEbHU54oFEXMXVloTEaK98SKNQWJ0Wq6Ub8xwf7l9V5HvYJqR2xkKdQ13jqLDeotd8LnCNSUjzufDQjVNkbQqXEW+Q5DnrE7DpRR5IKNSphvVhNJMoREDt1N/zqJ/tPpczks8RnoakRONQ2cTotBIH5bRSDLB0XT9w7SJUtognLZAzSgQXVv2F+3PdKOuc6Q/mw+PQpc0j7t5jL3JrPVZ6R+w/GU56NWpuVKYbyxfmMO9aiEx2cyztBzdWBRwvpDWNzJF0+YT1Tf2btdZYMkxp5lOtbkOYjtksL/6EWTynjzZ7NFQwfbhe+Pm5ICecWv5Rf9nMtRz4LX5zGJWfvMD76b/5d3/Qf1zfXhk6xJ9+xv/RvWFGBKHi2vmrgfbdTBCX0pPto6uE2mGEBHds3s1aTOk2bddxXND6I/NbXzFYx+uNzhuDTboH73oW+lX7nt16+f+47PfQFcObtKbPvwz9LonPrb0377jc2+nt975Enr/le56Kd/4hd+nv/ahn474C9J5dHiB/vRL/vLS9yaXl0Nn75xcb/3eY2sXgz+L58HHDb9798HV4HH3ma27Wt974a0v1JshbIcMbia+OCCi2XYjDJrX3wrPVLLIO38929BJlzUXVoXW86A0E9gOGd5sFyePYbq9/PfPFkWx+wqpippFzdlc17T8mgW8OXWTStpacc8s5rrvgCTzUU8lZZZ8XlV9J2GA7RDtCH0+r5rpsoja/aDxfN8cz7yummymDxY53vqT0rr2iWpfPtsvpt1e4rSS0wYhMtulGtjWKCAvCJkCAAAAAAAAnEpecO0h6otAjQfO3XlCR7O6XD7caX3v8Y34ugKPb1w0fMat6PZOAt4I2e2v0Zu+9M8aN0KYp9bP019/9ffQf737FUvf71FJb/rwzyylyzqtXB63z98Ta/FjxPS7lybtcdjFA5vt6/kFN78QdUwAAAAAACtrhqQijRBJqiGSs2C6K+dfiiEyzZRrv27f1ecJhkinEVJSK/I1BGmESHrjMsoO6TJCUostSiNEkhSN4YpqVzBEmkaIJMUQcdUg0LAVXHU2UiIYu85RqiHSlac0xRCRVsjS5yr0uYatZsQxhyYZIq4xyAWsM+SeZ2Zr/Sg7pKs+SLIh0tGVq2yIuCyNlON2HZOKIeI4peWi7kmMISKNEMlwb5rNDiGqDJEYO6SraLeGIeI6pymGiGsdpGGI9Aw1iDnSMiUvt+uezJGLMYaIvBfef6ud/unRjbDI8yU6TlGXIXKiOE7XVm+/9b39vl+9haYRUv/uoP27Fw73vNqTuPoyZX3lG235/37xt9HHL97f+XNl0aP/42XfRc+/+QV6xu5RSqn7956k1z7xCfq9O14UfIwngTRCmHOT+DHCNOfB/X472fx5w2d0sTdYp1v9dTo3Oyogf58hpVeKIbJkhEgUDZFW0/uTJDtEGiGSsl9EPQt21apINUSkEdL6/ARDpGmEtNpVMESaRogkyRBx3DNzZAlpkvKM0vV8mmyIdETjr7IhcnDFPs5Tnu9d41fTEFn6TPE8H7MG6nqun4/S7ZAc5DJCwMlyZjdDAAAAAAAAAGebu3evtb73ZGBRcA1ujjbpkxe70nPleaB+cqP7712ftt8wHPbjX8KafndttoJvMTr4+IX76FfufZX3z097A/qnL/wW+j/f86+Xvv/Gz7+jczPk5nCTPqVY5yLkhetTw3OdP7NuOH+HvfjXBYc9wxiZG3ZfPXhy7QKd2zvaDLnr4HrsYQEAAADgac7Kb4bM1sLrhnRZIU3Kgb8dktMGIXIbIZKQ6IAQIySmdkhIf4cYIkE1Qri9gFPUZYQ0Ca0fElInJMYQ6bJCmgRFY4TUOYgwRFxGiCTEEHFFn0pibAWXEZJCaIRMMSuDoke6jJAUXEZI6zgi+txnDoqqHRIQJBNkiISMwcyGSEj9kC4jpPXzw164HRJwesp+T90OIYozREKsjBBDJOQYogyRgFMaYoh0GSFNVq1+SJcV0iTGENGsTbPUbsA6KMYQMRkhkhhDJOSenGKIMHfsX29977FLF2my3qfhrn8nht7rZQ7tt937EnrbvS8x/3BEHamgCOCSOufawbzdx+OOF90mI4QxbYYMy7AI2pDI0hBDJCT/9s8/88uqnPkBa5R33P4Cenz9At1xcFQc/NVPfZr68xnNevZ56e13vpjefueL3Y0Hmtfrj+4G/bzNCiEiGhjO33jot2FmmgdN42s4j0vL8NTaOXr23mP117c3CrNLQgwRpxEiiTBEZK0Q18+EGCJdRkiTnLUbYgyRLiukiWYNkaV2IwwRlxEiCTJEAu4Pq2SIhBoNwZZSYDR+b1aq2yFEcYaIywiRhBgiIeM1xhAJGVchlmzIu8WY+iE5a4XktkJQL+TkQM0QAAAAAAAAwKlka9J+4bk/CHjB+TQm5RHcGMSTkEL1pHjrXZYNLAdl0aO33bG8qbE2n9Lzbj6sdVgrQ5lgM6X8ruRAbL4NyjmNZnGWCQAAAACe3qy8GUJU2SFE3YZIkKHQoKt+yCoZIRJXdEBKjRAfQyS2v6sPWPxr+NODjBCJpyESYoU06TJEQowQSVF22yEhRkjYhyeMcQ9DJMQICSEk+lTiYyvEGCG+kYux0Vm+0SMxVsh0o9dZNyTECJH49HlMjRAvQyRh699piKSMwRM2REKtkPr3fOuHRE5XueqHEPkZIil1OlzHnmIPeBkiCdO4yxAJMUIkuQ2RLkKMEMnmE/NOOyTmnPrUDklZB/kYIj5GiMTHEEm5J/sYIrb7nik107hfjbnJVnXNdBkisQZozvohxdwjSjNgCE577cb6I3O/uIwQZs3wInraG9Rr2cJxbCn95VpnhUZYPr5+ga6tV+mjQi3WT52/t/W95998yKv2iJHIjaSDu7aIqNsQcRkhzLRo32PW5hMqB4XVknXNg6aUWFOHOWOC10pjQ8qt9dmYxo5Uby5DJMgIkXgYIj5GiO13XIZIiBEi8TVEuuqFmJicH3XaISFGiGS20e+0Q1y1QqztehgiIUaIJKmGiINVMkRC8LaUIqPxc9UPIarGQZcdEmKESFzP+Ck1bnwMkZRx5FoHpdT+9DFEYISAFGCGAAAAAAAAAE4lffESeU4FlQUecSSHBlvGtKHhi+l3T5uR8+D27dG/+znD71463Ek5nBPHXAcmfoyMDCmxDnpxY2RmuKb7ZZ5gEgAAAACcbU6FGcLYDJEkQ6GBNERW2QiRNKPHUoyQVrsGQ0Srv42fp5UO1GKIxBohXaQYIU1s9UM0jBBjns4UI0RiMEQ0jBBT7ZCU6FOJKRJQo0aILXJRK1+vLXoktU4Imx/SEEkxQiTzYdGKvEyJHKnbNRkiiu/DgmqIBHDchkisESKxGiJK3ZPbEJHRrClGSKv9Ru0TzXoSRkMk41IlxQppkssQsdUOSTFCmtjqh2ic0/5h2Vpnqq2ByGyIxBghEpMhonlPthkiLhvysL88rnpU0mA2pWnj+zZDRKsmmDUyMrFvrNG/EUPwxqi9gN+YjunwQp/WboQPvg1DQfabjc8wGSKaBo1cZ8VEWe4M1tvtehoiu4bf3Z7uBx+DVmoxmyHiY4QwN4ftMcJF1eUayGce3Ji1jYybQ7/j4bURMzJYJqbNmy6SjBCJwRCJMUJazVoMkRQrpIktOj/GCGliqx+SYoQ0sdUPiTFCWm0bDJEUI0RiNEQU7p0nZYiE1guRWA0RpWj8XIaIrX5IihEiCa0R6ovJENEcN3IdpPFsT2Q3RHJZITBCnj4gbAoAAAAAAICnOb35nNamE+oZCm2vMvv9tdb3UqLZzypXF+mgmtyxZy9C3cWde9e9PmOVOUgwWQ767d/dnHYX7F5lro22W99zFSrvwvS714btz/BhzWSZGM4BAAAAAEAXp8oMYdgQKfU260X7p8cIaaJphEjYEJmc1254uX11Fl29dk23z7l2yOBAtdkajqIbHOgedx2FkfM9R1HQ8JZieOsCjvafrefZw9WKDm21u4ik6x/m6XSOqJmt6faLpgligvu7yFBsdb7WNk80KQeFagQ3k90QWUT89Qx1IVKoDZFMx50LjvxhA0UbTSNEUhsiI92FENcO4XOqTW5DZHIuz8KQDZH9K7r3Ca4fkmr0uZhuFFZ79cLBDn3zZ95Lr3j8AXrhU1+ge3eu1v/toe3L9PEr99H773g2/eIXvYpurC+/wJxnXk9w5OLAVQtqwbX19svV8+M92h21wwbZEEnJv23jyx/5CH3fx36ViHRtGR+e3DhPP/iV3+f8mYe3Lre+d/feNSIiOrzA9wf/ecu0GWL6jLLIO8brdVZEtOW6wW6p2+0wRNYNtWr2Bu2NuSave+yj9Gc+9asBRxiPrNny1No5+msv/17n7zyyfqn1vTsPri99Pd1cWFY73Q9vdxg2Qx41fEYTaYQw5yZ7S1/fGGzQ3DMdHtcOyXZfXsyH/R13zYzgZheGyORi20LSgJ8L58r3fDZEcvU3GyI56kLMRr0sUfnMfNgLmmd9OS5DRCvDAVO/m8h0aeY2RKaOOhwpcD+76rTFMtyb03g733M+v+ucKt/32RCZZ3oHnBsYIavHqdwMqV+gK0/6rYW68nhlVYwnBldxy1AOLx0dey9DUNK4sW7VfAlYt+UoqJ6C9iYIk2sTpG5fjg2le0nWNFmNz+CFwcBRCDWUaaOYZ44X0c0Fu6YeWaevs6SfSkUuwrT6Rs6r2i+85IOA9uZ2aCHUIMqj/tHsFy5enaPtrPC92FGEOwZ+QCr7i5d0Y90Ln4/36BuqzdeprHjjIkfbVFKWNFmc+kx7U4RfEHN6Aa0UFPywuHa9ejl3eFF3ecv3zs3Hq3/37lDql8WY43kqx6Z8OSA6vFy1y6lC79y5Rn/+fb9MX/fA+43R1kRE9+5cpXt3rtIf/twH6fvf8xb6tWe/gv7ZK7+RHtuuFoTNlKnDDGUS5otTOF6smUe79gv00c2Lre/dsX+DHtm+Yv0dn6K5oZwf79Pzbjyi1l4I58bd6Zk+d75d4+K+W08SUTtQS6ZrNXHv7lNLXx/0h/SY4Vz0x2X9EsBVwDWVyWavlV6ti+2pfUHftX7YMvzuzsCdt+P8ZI+ed+tkxohPCq8HN9tj5N79pww/6cc9B1eXvj7oDenxtYvGn+0dTBb/Vl/zBgZz++HNpa8f79hUaVIHP/QK9YAQoqN0pLO1DRo9FZEqzcL40vImiPYL48Gt5c2b8WWdTZdWSiXll6KcaopTP04T03u12l60m5o2zMR8WNT3es1nwuZ7rBybUEdr8sXzlXZhdUNaRQ1ybJgRNVIzZ9ps4TFSj5UDvf4+PH80rnOMlSkHls9JNQ+RfD823laeV/hxjQNNldOo5nrfCeJBmiwAAAAAAADOOmVJf+ST76B//7N/n77lM79v3QiRrM2n9C2f+X369z/79+mPfPIdajUOtHjYsOmRkv7prPLE5kW6urZs0dy9d42u7N+0/Iad2/Zv1FYJ8+kLd3tH6q8K9+08Ef27z9ht/+61tbgUUKvCk+sX6Opwa+l7dx1cp8uH4WPkyuFNuuvw+tL3Prt1V9QYKco5XR7fWvreIxv+myEAAAAAAE1O14q1IGMEZDFPi6CdDwqzvm35vBhMBYSmG0Vd4DKWw0vFkhVCRDRfq/6nwfjSshVCVEVwp0ZxFzNLBLtSf69dK7NYIYODvFbIYL80G0MlJe8iG7XWslR7qVHMytZnTDd7yfrodKu3ZIUQ6YxBppiXragI0/dCKXtma2260VNJQWXr29S+sR237fsx5NDDbTQjsJJRuA5NFNO50aZQU93FvWw+6NFcWhExzKm2QpqUg17bugig7BfGFAXzUV8tLZTx+BTv+U3mw75acXZjW5nGJdGRIZJKWRTGtEGD/VmrCGUIvVlpTCGwdn1aWyIpmO5rRESbj89p8/HEvjGcs96kVLPZysHy2rM3n9Nfe89P0w+9/adpexKnEG9PDumH3v7T9Nff9R+W6opMtqv/aTAfHFkhTcZb9ovz0xfvbn3vGbce9/q82ahXWyIpzIbFqUjd8P7bn9363isf/Wzre0XpjtB92ZN/0G77tucsfd00Qpjh3jzY3ghhstkLsk/uPLhBFw+X1Sbf6/D5Nx5qfe+T5+/1/uxV5UMXn9X63hff+FzrWplsD5yFq19683Ot733wfLttoiMrpMng5iENblZz1b37V2lQLo+bz2zfZf1sF2prIKqMkJkoaj6+skHjK3kq+/oYWz4Mbo1bVggR0ejqAY2uxj/o9sZzozFQTEsqFNb+vcl8uQD5gsHBjAYHaRauqe3+wYz6ie0ypucRjWdC03ussleoZTmwr8nzvEYsC51xPu8XWayQ+VpRWyFNbOvRqM8wPLdO13s0TUwVfni+v2SFEOmOlelacWSFMJZnxRBs78dGOzr93Zs1rJAG/UmZVN7A+vuZnjdBOKczTRYAAAAAAACgm7Kkv/lff5q+88PvTM6sVhLRd3zsXURE9Le/6ruzpNsM5aHt2+jGaJMujI9qCnzRjUeP/Th+8dlfSr/47C81/8fIfurcFA98Tn/H3S+kr/nCh5a+99UPfYh+876XB7Xz1Q99sN32XS8IO5gV4Q2PfJh+/lmvDfqdopzT6x//6NL3DnsD+tT5e5y/98v3fQn94rMsY2SB6WWv3zG5/7tvu+++8nz6yic+svS9r3j8w/QbgWPkK576SOt77770vKA2mC/aaacW+8T5+6LaAgAAAAA4HWaI5+5ZjCHiVdAvYfdORuaZiDFETEaIJMUQMRkhkpgIdKsRsvRDFN3fp9UIIfKsIRMRAWyLbF1uN94Q8Wk/xhAxGSGSFAtCw/4w4WtQxEYCadg2NnyOO8UQ6U1LqxXiNTckkGSIOK67lP6wGSFa7XfNpdGRkZ5RPqmGiPXjEwwRr2NaQUPE63dzmUuTebQhYjNCJKF2iG8EXooh4lMkNMoQ8ThPKYaIad35nR96h8pGCC1+nzdEvv1j71z6bymGiM0IaTLeKqyGyEeuPGPp6+ddfzjo82PtkNmw8MsrHbHO8pr7A+er37rvi2ncW55LvuKhD9PFA3PhF5MhcungFn3FQ8svup9YP0/vu70yQ0xGiGSVDJFv+fy7iSjsunvNE5+gOw6WU7G958pzadazz9PWTASJdFk89ecPe16Fst96+0toXCz/Ha9/4qMtg4YxGSIXxzv0uqc+tvS9J0fn6IMXnrX0vd7BxGiFNBncPKTnPfWFpe/NqaCPn+veDHFFPacYIiYjRJJiiIwvrbfqhTApkfM2I0SSYoe4SDFEfDbzNAwREymGiM/zR4wh4jOfpET924yQpWMY9bIaIjHkMkKIyGiESFIMEa+xEmGImIwQScpYMRohkghDxJoxpcFop4w2RGxGiCTUDvE2SmCInDinYzMEAAAAAAAAEMRdN6/Rm37n54hI75mL2/krv/tzdNeta86fPS7edefzl76+b+epqFoYZ52ba5v06/cvR/gPyxl930d/xbuN7/vor9KwXH6D8LPPeQ2Vp6xeCPPi6w/SNzz4Hu+f789n9Bc+/pbW93/uGWF2yapya7hJv33HFy99b1jO6M98+te82/jTn//11hh5y11fGj1GXnrr80tff/LcPXRztGX5aQAAAAAAN6u/ao14cvOxQ6KicwJ273yMEImPIeJjhEhCDBEfI0TiE50fFfUd0N+5jBCi4zFCvKyQQLyMEElA5GJU+x74GCGSEEMkxAgJ+dmYCP7QSKAQIyTEmIk59pDfcRkhkpUyRAIi7UP6w8cISWk/ZO4MjoyMCOQNsUO6otCWDiXAEImyVFbAEImySVbAEPE1Qpr41g+JibgLsUNi7m1ehkjEeQmJVLetO7//7b9E2+O4GiFdbE8O6S++65db3w8xRHyMEInJEHn7PS9q/dyrH/90ULuh9UO8jBCJxxoryggMmK9+8vlfTVPxUvrbHngnve6Rj1p+48g++PKHP0rf/tl3LP23m8MN+unnvt7LCCEiesWTn6G3/txfpbf+3F+ld/zUm+gdP/Um+s8/98N+B5+J/9eH/gs9z1ADpEVZ0v/0of9IzxTF07+weYXecbs5TVjoM6ePvcH4GCEx7f+7Z34lzcQY+dYH30V/6PGPWX7jyBB57VMfp2999N1L/+1Wf53+y91Hm0U+Rggzmk/ohbvLZsg7r7hTsoVEOYesg3yMEEmIIeIyQiQhhoivEdIktH6IqVaIjRA7xFYnxEWIIRLSfoghEmOka9WVlIRcDz5GiCSXIRJqQeU0QnyskCYhhkjUWPEwRHyMEEnIWPEyQiQehkjMu7EQQ8TXCGnia3tE1RiBHXJirP5mCAAAAAAAACCIi/s79E2feF/Wz/j6T7+fLu6b0+ccJw+eu50eOH/H0ve+9LFPndDRrDYPnL+LfuaLXrf0vR6V9Hd/7yfoWx54l3nDpizpWx94J/3d3/uJ1n/68Zd8A90abeY63Kwc9qqduO3pIf3Yu/85fd1D77X+7OWDm/R33vsT9A0PL//MnAr6kZd+56k1Y0z8wfad9F/uXTZdelTS//6+/x998xfebR0j3/Lgu+h//fi/a/2nf/XMr6Vbw7gx8sW3Pk8jYZm8/fb25icAAAAAgC+rW0A9cYeM7RAZWaWSq5UTJhsItUFMTDeK1m5oqA1igu2QniFAMNQG8UUlwpv/dEufn2YjJBpH4m8VW4MfcgyRvSnts9kwMOSJDrVBTLANYRp3KfVB+HdtkRLRNR0WcBTQYN8cKhFbI8TVH0Tpx81t2Gw8XxvEBB9zbE2YLjgCxxh1nXJpLvrU1CehNkho+9V/iGuXoyJ7tmNMPHS2Mmx9EBqF1mQ+6lNvbB7kKjVLOu5BsbDx0Zu0jz22tsgSfLzKEUdsh5SW6OJQI0TCdsh0Y7kPYnMwM2yHHF40L9Q07p2bj89p7w7RLwrjhucpU+Sga935LR97D41mGVU7IlqbTem/+eR76Sdf/hWt/8Z2yNCwVxJqg5hgO2S0W/XPrzzz1fQ/fOiX6v/++oc+Qv35zFnHIYYoI6SJZY2lcU92PaM0Ixb/2Uu/mV7xxGfp+TeOaqsMyxn9tff+NP2JT/4W/fr9L6eHt65QUZZ0z+5V+sNfeD89Y+fJVptvvfvF9LP3/yEvI8RJWdUR8a3z4Qu3Z6tP8jt3vpSetfMYPe/WI3R+sk8/9MF/T//dZ36D3nrnS+mhzcu0P1ijy4e36GXX/oBe+/jHaX3ethl+5pmvo/dd+SJj+7HPnWxv2CLWY4yQkPZnox79Xy/6JnrZjQfoebeOipcPyxn9Tx/+T/THH/gd+s27XkYPb16uxsj+VfqaRz5I9++1x8jbL7+Qfu7u11Sf52mDNHn9tWVj6Q/Wb6cHytuMPxub857IvQ4KtUFMsB0yemq//d88bRATHDlvGxOhRoiE7ZDxZfMxhhghTdgOKS3XSKgNYmJwMKPpuvncpbTPdsjM0HZ0fcIGrufClHdZfH2YnolT1uEM2yGxY8JG1xjPZYRo0JuV1uNTGSsLO2RwoNznjrESbIOY4MMVt/zUbClsh4y3LfNK4pKY11FyHRhlhDTJ9KwJ3KzuZggAAAAAAAAgilc+9MCxfM4rHn3AuBly3PzyM19Ff+5Dv0y9xdPkxfEeverxz9C773p+x28+/Rj3h/RXXv9n6R//9v9Fz9xZTvn0zJ0n6M987L92tvG+255D/+tr/iTRfHVfRHUx7fXph171PfRPf++f0JVxtWv3zN0n6Jmf/U2v3//Ve15J//hF35LzEE+McX9If/VL/gz9g3f9eCst2DN3n6Dv/cyvd7bxgfPPor/7gu82Blf5UJQlve76J5a+92tXXm75aQAAAAAAP1bP51XO0V3Mq/9F1QhxNkxLxxlTI8SHmBohXTRriMTUCLEh6zao5/0XfZ6rTsjgIK8VolYjROQfz1LDo6HBa7Y/3ezVtkNMjZAuWmMxwQppImuIROX1diBzxTb7KQXZH9rHLdsLqRHSRc76IUQiT6tirQXZJxpWiKt9rXtnK3e2R27XEGTtjpjcxCZk/ZCoGiFdZHrf16wLElUjpItjqiESUyfEhW8NkVDWrk+Xaoho3zu96odE0jTZfNadL37sC+4fUOJFT7g/R9YQ0bBCTDy2dYnefs8Ll7739Z+zpz0KZTYs0q0QA9r3ZHk/sOW6vrp+nv77r/5++u17XhLU/JwK+pnnvJb+ymu+jybzYfDhXRzvtr73wPk7iagyOGwWRwqTzZ7VOnl08zL9pdf+efqDrTuM/93EtOjRTz7nq+j/eNl3G9NjaT13zoe9pRofXLtFC9m+rJtzde0c/YXX/nl66x0vDmuXCvrZ+19D//NLv5cO+qOgGiFNXnXzs3RpejRexkWffu22VxAR0eDmUaqDkDz3XTTXQTE1QrqQNURSrJAmsr5CTJ0QF7KGSG88VzEAimm5VEMkpkaIC1k/RLP9Zv2QmLoPXTSfCzXfZcnrRWMd3uS4aojM+0VWKySmVogJWT8ky1hp1A+JqRViozlWomqEdKH8nMnIGiIxdUJc8LrKt5aIN5nqVQIzMEMAAAAAAAA4Q/Tmc7rv5tVj+az7bl6l3nxO897Jx1j9u+d/Jb3+4aMiz3/4wQ/QP3jlt9HuyK+A8dONW6NN+ut/6Hvpyx77BP2xT/0Ofcnjn6ZBaX4zcdgb0O/e/WL6yRd8FX3s8v3RqbFe9eRnWt/7ly/4uqi2tHho6zb6vi//f9J3fu536ds/93a66+C68ecOewN6x+0vpH/z3D9Mnzl/z/Ee5AmxM9ykH3rV99CXPPlJ+u4/eBu9+in3GPm9219E/+45X0Efv3A/DXemxp/z5ZuffM/S179+5WV0fbiV1CYAAAAAADZDEpmPqn+t+dsjObyQf0twfDFTw3kCImtGt/K0m71GyEGeJIAcgV+ewl3kyXZPNcJNUtfMUB6THNWq3S4z2e4v2tftHNXIUwOz0aIOh5IVUre7iJ5RjbyQnzHqUf9Q/4Ry5E8/7X2AldladVL7yvl55/1F3t95nkE+X0RaahszbIdoXzs1HEmXof352iBLu7np71WDe7oVHiHuA0d0zi01SmIZ3lrUJlGuUcCsX63O5YGy3ds/rNqddkSIDmeZJh3b581ndNixGTI+Vx2zih3bYLJZtTvcK+m9dz6XPn7pXnrhtYeIiGhjNqFv+tx76D8+7/Xe7X3Ht/6Npa8H+/PKUlQe4pwPfqJsx8bwrjtfQO+68wW0Pd6nF1/9PN23+yRtT6qF8c3RJn1++3b6yOVn0OFgRMW8TKrh86onP7309VvvejF94uL9S98bHMyXIl21+PY/Up3btevtENFJf0A/9ZyvpJ96zlfSs289Sl908xG67fAmDcoZXRtt0xPrF+hDl55F+4M1a/uz9UWedeXLb7pZ3duGu3l0WbYsZrfZNw1//7bn0+/f9nzanuzTi64/SPfuPUXb08UYGW7Qg1u300cv3k+H/VH9O+OL1UWz/mi4FXJxskOvbaTImhPRz9y5XNSd60For4GIiPq7E3UrpMnBnVVBee36CjxWBpmel2eLyPCennRStcv1JhStkCZ8rx/d0O5vPu5867fxuZ76ffM4YONEO3NF3eeHmd6tLMbgXPn652sn1/uDw3P55qvJVqF+X2uSKxNEzvdM4PSzcpshw4XONLEUvQmFX/7xyzktvVBa4Z1FbaM/aPGvaiqexheKBVYLsc4tC90JaHRTtD/gB460Dzn2TRClAknyQZT7WnVTpGgrtBoLmuZL+a6iaBrMh4XKIpVf9jPa173UlF3Fy8IaTvv1LuS82lWwNITp+lHbOTZFmml96o0FhU0ReS5nG33qK6b8kS+G+SEy+YWA6NquIqvBzcsx3lFYPfpztK6dJs0UUJqbIr1M7TKZNsrlmBjsVosAtU2RXGnJxBgcLOYprU0R1ZSsgua9ZrAoGj7dMn/epH+8S/yJo0i5TJ823SiyvNjhTZF/+ZKvo7/3tn9df/+7Pvk2+k/PfZ0xnZELWbyW13PN+5IGw13lTRHRtSH3zp3RBr3rrhfQu+gFxv++lCqUA04Cbm1XDm4u1SiZU0H/8gVff9Rmowu4IKzKpog4ZYcX+8YNEeaBc3fRA+fu8m5+ti7vbYuPTXx5JFOpTLZ0N0VkMe+1J6uvDx2bIjvDDXr37c+ndzvalUWxD+6qXvyvP7rnfWxvfPzdNGwYKG+79GL63MZRKrODOzbr/6+2BiKi4Y2j9FtdxcNjkPeI+ainsiEy21iegw/urM7h+mPtgu0x7N+9PCYmixevHFgQC2/e1O1uVRfPcFfnzevB5eU1yfhC1f7oRnr7h422+VrV3BRpppScbugFE8i1cTErVVNlyXcFWu8QZhvL9wJOYaW1KdJa1+4sgma20zYZZIrGHO8Nl1J4Kr7fa7431LqvNcn1/mci1sbafd4T7z0jMoYaGe5kfmkDljj5UCQAAAAAAACAGvNej75w/vKxfNYXzl9eiRRZzFvvfSl9+PIz6q+fsfMkfc2DHzzBIwKMtEJ+5+6X0qcvPD3STQF/1mdjeuPj76q/nlFB/+aerz7BIwIAAADAWWJ1nlwEw50yaWfMVoxQo7Cva+dPowjibGT4pkJxoemGsEKaZCqwKgtdxTC62bZClj4jYxRmCoOD0p0aK6FAkis9gUpxxaJYjoJukFLw2HV9aIwVFynFymajomWFNEm95rv6NLowZKbruokrCtpVsLSL6Xphjb7VKGLrKvY8W+vVlkhwu45zOdvotyL3QpHFTlufEVuwsGOsdH1uZ/NdYzxHwXNSKqrqmA+pVyybHSG4fjelXSZTEb6u4qNsiERjOe7UoqddhTYHe/PaEon+DMN8uH6tpPVraRNxMbdHsw12y9oSkXz0zvuSPteXj91u/hzXPDvdKOpI11hs653JZkH/7GXfvPS97/nYbxCVfudhsD9vWSFL/71rfdfVvuX3h7vz2hKJxnFY2QrA948skS6a9UJmVNS1Qlzrw8HBvLZEgnHMg4cX+3R4Me2ePFsvWlZIkzJS0Opas062+rUlEsPoqf2WFdJk7cn92hIJxfVcdnDXZm2JuPiWJ36fzs+O1P1fu/JyenDjtqqNOzaXrJAmsgB8CMMbh0tWSBNZPDwGVwHslILTXWtLNkRi2b97o2WFNJmc69eWSAjTzX7LCllqd2tQWyKxSCukyfjCoLZEQjm8PFyyQppoFMeeD5atkCYp985iXlqN6WJWJpsbXW3Evj+YbfRaVkiT1ELnqetLF67nYJX3hpnu6673huUg/t7G2NZvrvctPky2ipYV0iS1v3uTthXi+r4vqe++QRwruxkCAAAAAAAAiON99z77WD7n/Xcdz+eE8N47n0u/cd8X118///rD9LUPvv/kDggQ0fJmyG/e+zJ64Lx/Kirw9GBzdkh/7NG31V/v9tfoX933h0/wiAAAAABw1lj5zZCYHTKfHb8YQ2Q+9M8HF7PTOxtZrJClg6BgQ8RphEgiIsmLSbteSKvZiKj/LiNkqf1BEWyIDA7y1QsJihjMFL0bZYi4IqAFKYaIs90VMkS6jJAmMdd8aB8GRbgfgxHimxs/xBBxGSGSmGgYV6Ryq/0AQyTkXMYYIiFmRlBkZOCcH2OHBI3xDHYIUaQhEjAfBhFifcQYIidkhDQZ7E7CDRHP446J3nMZIZIYQ8RnPowxRFxGiMRkiPzCi15Nh5lrhxz2B/SW579q6Xsh82xMlKvP+mayWdCP/qFvo73B0cL6v//gL9PAUVi+ywhp/XyEHeLzO1GGSMBcHnPvdEUU14fQYYjcuXeN7tm7SkRE06JH/+r5Xxe0dkoyRBzEGCJdRkiT0CjakKjyGDvEZYRIQgyRkGcxlyHy3Y+8jS5Mjz7zJ+75Kro23HYaIZKQdZDLCJHEGCIh6+UQQyRkLXlw50awIdJlhEhC7BCXEdJqN8IQObg8dFohTUIMEZcRIokxRFxGSAo+83f9sxGGiIZVYqLLCJHE2CE+a8rBzqyuH+JLyLNv1HtDn/t4xHu9kPeGMYaIz/ot5P0L02WENInpb1/zI8YOgRFycqxcAXUAAAAAAABAGtc3tumXX/AK+raP/n62z/jV576Crm9sZ2s/hce2L9Hfeu2foOdfe6j+3t171+jBc7ef4FE9fXls8xK94Y1/76QPA6w4u4N1+rd3fyUREU16ffrZO77shI8IAAAAAGeNoiw9E+geE6/5kz9q/W+TbfduX2wOuK5oDV8bxIUrsq/TBnHh+Ju9bRAXjq7pskGczTpGna8N4my/w/pZCSPERMevu2qFdDbtGuYK0c/OHKEJwd7J9U866E3sH5CSt7IrmjfVqumM8MnUb77RbS6GhqhrXxvERd9xLn2jlJ3tH7aPW8OO6u/bo41S6nTU7Y8tgzFxjHRFU8X2TTHNk7d36TNc10/KWHG1m1oDpKv9TEadRh7l6VbHQiry2LuujxAjxMS0I6ovZT48uGT/XV8bxMV0ESF3181r9J9/4u/R9tgv8jmEneEa/dE//j/So+cuEZHOPDvYd9dEi2W417EuDDBCTHTdw2LXh5OtjnuAwr3ede/0jSY2/q4jkDY1bzcR0XTd0UjCUFy7bj9wXxvERWGXk4gozAxpMtx1Ry6HGCEmDm8zP1hq1G5cf3TP+t98bRAXpnWQrw3iYnx53frfNNbLPcNxp9aeIyJaf8w9FkKMkCbDW+4xGGKEGNvfdV88vjaIidENe9u+NogL1/Nmig3ivGcmzN+May2fYoN0/W6IEWKid+huP3ZtO912j+HYWplNnO8NU+qDOH5V472h696Wsn7rj+2/7GuDuOhac8fWAul6h+wyQt75k38l7kNBECufJgsAAAAAAAAQzqPnL9GPfMUbiUhvj5zb+dEvf2O9EQIAAAAAAAAAp4FTZYYw0hDRiC4iakdwaBghTeSuY5IRImn0gYoRIml0TYoR0mpWjD4NK2SpfWGIrKwRIhHNpRghS83KzfMM+fCbkR5a1ybR8RoiKUaIRF732nVWWlE/K2yENJF2iIYZwjSjXDUilVvtNwwRzfMpDRENK2SpfY4wVB4jMrpKq09yGyKta0dzrDTb1jBCXO1nrLGkYYU0aRkiSscur5VUI0QiDRGt+VDaIRpGiGS6VRCVJf2tX/sP9J0ffieVlNbt/Ps/86Ivo7/9Vd9NFFAfJAQZ7aq1BpCGSKoRIpH3Mq31YcsQUZ7HpR2iEVFct9W4tWmuC5klQ0RxKEpDRMMKaSKjaGONEIk0RFKNEAkbIhpGSBNph2gYIUzTDNEwQiRNQ0RzvSzNEA0rpIk0RGKNEIk0RFKNkFb7whBJMUIkTUNEwwiRNJ83NeuDNO+ZmvM3I9f2WjVCZDupRohEGiJa61ppiGgYIU1a7w2V7g9V40f/N8d7w+a9TfP9jTRENKyQJrLPY40QiXyn7FMjBGbI8YCaIQAAAAAAAJxVioL+9td+F1FJ9J0feWdaU0T0n17yGvrhN/zRLAEVAAAAAAAAAJCTU2mGMOPzeR7Cpht5H+40owCaTLfytNukK89tLGs38rTL+OzAxqBuhAh6HbVPYilzRCovfUC+fsltiDhrq6SQ+aWRVoSORNsIkeSIXiIi6mWaq47azzjGM7Wdywxhcp3L7IbISq2CAsk012obIZLptn60JRHRdF03+lQyPp+n/cMLeefZel1blvQdH3kn/Y+//bO0PQmPjt4ZrtHf/8pvo595yWvqe5pW5JyNrlofsWw85c5tv6poR59KBobaWCocwzw7VY4oZgYHeefDHGYVEdHW53eytJvLDKnJ2N3rT+haMpKDO3KkZ9C3ylvtZ5pWXHWDNJit5emX3P2d8zl5uJu/7l4O5opZGUwMdvIMxv078qxnGW3TmZnqiXdWcq0PtbP3SPr68uCiXf/rHmbI8XAqN0NybYIwteKu/DGleIbWfuk63eaGddslEosZxfbXry43pr34WLu2vCDQUtClpqee2iJTmix5Q83xErD5kniu+N6oOTZyvIhuvvRX3VjIvAkiN1dDbrQuZKoP7c0F+eCleU6b12OOtDNNNI+71SeOgnEpmArBpyDnVe32efO2N9Z9kCkHyx2uvQHAx51jk6iYNVK1KW5uy7b6h7p9PltfnrC0XqbJl4mzNeU0C+KecHBJJ6pFjo2DS/pvpJpz4KRRVP37f++X6Bs/+X5am3VP7of9Af3y819J//gPfSM9er6qEZJ7E0T2jVaaUznPbj6hO8blfOgqmhuCTN+pHagg14OmgtOxNK/PHPNhnSZLebnVXutnClBSXifKMb79B7qbInv3VdF32mtxea1ovgScN16ab37BXqw9lv27j94saj5DDG8uT7TjS5o5tttobYrI9av2830pbsGaY6V5v5+N9O/Jw8ZL+Vb6Q63PyLAhMltfPtZ+pk1i7U0ROTaaadBSyL0JIp/nNQMhZmtH/1++n9SA5xHtTYVWQLnyPZ/Xy9rrWzmvyjSwJrAZcjwgTRYAAAAAAABPEx49f4l+6Bv+BP3IV7yRvuVj76FXPvIH9OLHHqT7bl6tf+YL5y/TR++8n95397Po51/0JXRj4xj0YwAAAAAAAADIzKkyQ47NCJEofKxr11XDEKmtkKWG09t16q0K7UszhEgnekQaIZJUQ0RGizHJUegdfZpiiLiiZjQMEVeEWIoh4hoPGlFprujKpOiuYzZCJLGGSFchcw1DxBV5lnJOXddfLkNEYww6+yOTHUKUbnB0zaOp7duMBw1DRFohS+0rGCKmY9eIKm4aIT6fGYqpDQ07RBohrc+NjHLviqhONUS67rkphohrPGgYIq45z1Z0sjef03A+pUlvQPOe+RiO2whpkmKHdEU8pxoiXfNhrCEijZDW5yoYIqY1oIYZ4ro+NebD6brhpCosvWxrfKJ8dghRuiHSNcZTDRE2QiQa6yDX9aER9T83pFPSMESaRogk5RlCGiFNctshRPGGSNeaNfUZXxohkpSx4rrfaxgiQ0eaplU2RKQR0iSXHUKUbojYxkKqGZLbCCEyP8NrmCFNI0SiYYiY5g0NO8T5zkPhnm9bL6eud7vmUZchAjPkeIAZAgAAAAAAwNOcea9Hh738L9oAAAAAAAAA4KQ4FWbIiRkhkojDCNlljTFEjEZIq+HwdoMKnkW0bzJCWs1GRHd0GSFNYuwQV7RYk6go9IB+jDFEfKJlYgyRkIiwGEPEZxzERKWFRFMGRXedsBHSJNQO8Z4LKc4QCYk0CzmnIdfbKhkiQf2xQvVDQufO0M/wNRxiDBGXEdJqP8IQ8Tn2mMhilxEScwwxvxNjiHQZIUvHEBHh7htJHWOIhNxnQwyRkPMfY4iEzHE2Q8TESRohkhBDJGSejbFDfOfDGDOkywpZOo6I68dnzRdjiIQYDjHzodEIaTUc3Kz3Gp9otQyR0Cj+GEPEZoU0iVkHhVwXMVH/JiNEEmOIuIwQScgzhMsIkaxa/ZCQdWrMM36XFdIkZKyE3OtjDBGXEcLkMkPqY4gwRFxGCJPTDCGKs0N8z32MIXLcdUJMxBgiLiNEEmOI+MwVMYZIyDuPmHu+73o5dP0bOneaDBGYIcdD3pkXAAAAAAAAAAAAAAAAAADghFl5M2RlrBBJx6+l5N3zMUS8jJBWw90/EmSERLTvY4S0mvXY4Q8xQiQ+UX0h0WKMd3Rm5BXoG8kSE0nlEy2YkiPYxxCJiRryOaaU/Npe0V0ZzZCgCIkGvoZIzHzoY4jE5h6u2nfl7o5v9yQNkaT+OGFDJLbekm/7MVaDjyESYoS02vcwRGKO2yeyOMQIkfgcU8xx+xgiIUaIxMcQicmt72uHpNTm8jFEYiLKfQyRlDnNZYiskhHC+JghKfOsryESMx/6RMKHGCESnzVOjAXsY4ik1LzwGQdeRkir4e4fiVnj181nMkR8+zJ2nPvaIT5GiMRnHRRbQ4fI77nGxwiR+BgiIUaIxPUMEWKESHIZIr5jK3Zd6vucF2KEMD5jJOVe72OI+BghklUwRHyMEMmqGCIx7zx8DJFVMEIkPoZIiBEi8XmXGXP/8TFEYt93EFHnPT92rey7Fo69J0s7BGbI8QAzBAAAAAAAAAAAAAAAAAAAZ5qnrRkSbYRILM2kmCFEdjskygixfkj7W0lmiKPdGCOk1axltz/FCmlii/BLiRgjcuxAK115tsiWmOgIiSl6MMUIkZgMkRgjRGI6xhQjRGKM7lpBI0RiizxJnQ9tdkhKZO5y++bj1rA7jtMQ0eoPouM3RGKNEN/2YwyFJjY7JMUIaX2GwRBJPW4ic2RxihEiMR2jxnHbDJEUK6SJzRBJiT4nshsiKVGiTWx2iEYEuckQ0ZzDmobIKhohEpshojXX2gyR1PnQFhWfYoQ0sa13YowQickQSb0mm5jGRZQR0mq4/a3U9f1S88dsiGiNcZshEmOENLGt21KMEInpOSfGCJGYDJEUI4SxmSEpVkiT4zZEtNahtue+GCNEYhojWvd6IrMhEmOESE7CEIkxQiQnZYikvvOw2SGraIRITIZIihHCmN5laj7H2gyR5HcelqGgtVa2rY1T+wZmyMkAMwQAAAAAAAAAAAAAAAAAAGealTVDVt4IkSyaTTVCJGyIqBohSx9Q/aNihBja1jBCrM0vogC0zBCGI/40I8aIDDvSyl3DkS4aRkgTjiTUNEKasB2iYYRI+Jg1rZAmdZRXJitEywiRcCSK9nzIhohm5Mhy+9Vx57A5jsMQydEvuQ0RLSPE1r6GodCEDRFNI2Sp/Ume4yaqIos1jRAJH7P2sbMhomWESNgQ0Yw+JzoyRDSjRJuwIaIdMc52SI4567jMEO0+YUMk172HDRHt+ZCj5LWMEAmvfTSMkCZsh2hfk02KealjhLQarv7RXuPXzWc2RHKNcTZEUo0QCa+BNI0Qpvm8o2GESDa/sKdihEj42UHLCJHkNkRyrTv5OVDDCGnC4yTXvZ7tEA0jRHJchoiGFdIklyEizRDtdx5siOQyQjRMEBuTzZ6KESLhd5u57j1siKi/81gMjWzP94vpW7tf2BCBGXI8wAwBAAAAAAAAAAAAAAAAAMCZJlPccTzNqLQc7WYxIIhouggcseW/i2VyniOhc0W2Z2mWiIjWbuRrm4hodDPP7nqO6CWio53jXH2uHR3B2OrXaMGRljl27nNEbzeZrbFFpNvudC1vFBPnF9WOYMwVNcJw9OzgQL9fputFlnbryNxM0aIcDdlTjjbiqPlcx11H5SvPt7PNalnTM+S112C+iAAsMphy5aDIek8u+4sLVFkInq0pK7EC7utSOSq/tpMymYPrT1VhY4eWGiLR7S5s2MML+hPucLfMZikQEc0XUYv9fd12x+eqYx7u5pmv9m6vxvj69Twmci7q+VvZ4MhphDCD3VkeM+SUwiZvLqNF2whh+ByOJvo3t96spKkhX74Wu/dvZbHiJ9vVfJLLDJluVH0y2M8zX+UyQ/hcmuoSpZDrWYrJZfETNfo807sJbSNEtqttiPDY4zGuzf7teYyQycZi/s5ohkw387xj4vczuZ7x2YTgdZwWuYwQJld/5HoXDsysXJos5lV/7seISC/tlBxYWpPF1LJ21NoUGV9YPj2amyKFpehxKmvXDZ+luBAZ7uZtv9W2UtO2B5hcmxhqiMPTfBAzpWnSvHk129K8aZkWvpobIlOh+2st5G1jLfWF90ktODQ2L0wv/jQ3RZrHrvpQbZk21DZFRJ/nePm/9HFKD3ryxbbqpoihz1X6xTC+e5bi5DHMh6YqiBnPZ+YXpfNhnicQtU0RMZ9qb4ZINDdFmvOVZnrJuSF1Q39fbwzKTYVcmyKM9qYIoxV8Yl3vKFybuV7KMcNb7YeTgysKL6hOaQH1ieWln9axD8TLSq3r3tbO6Jbiva3xGbbCyjGYNvs01m+2F7ibDx8kt01EtHfPuvH7qZsiM0sKsoGhCHcMk3PLaxTtzZCcNItXr13XG9uHF9vrNs25Vz63aadSlKRuihxeML8Q1JoHrUEgCtMKb4Q00VxD7N/WnldU3nMa/nbNjb+168vnTmszJPdYzhW0xuu29/74D+b5AGAEITcAAAAAAAAAAAAAAAAAADjTrFyaLEkxS7NDbKoRtxm7u2czQhguYBRriEgjhCl76WmzchkhLrgoWorBYTJCNNu3tl2k7TJ3RS3kKnyuguGQOHoiJRrDVbi7TieWEDRh+l0NzdMVETFb1CtMMUSkEVJ/bmLxv66xxenEckU2puA6XzyOYkwOVyqYlHYZ03HLSMmoSMOOaWK+VqTZIZb+5qj5XIZIaioAW1Q/p7VKMkQcfZ6rX+aL1FMphojRCGE48jWHIVKWWe2Q3mSexQ6p03GlREYb5tC1a9WiK5chsnYjPW2Wab7i+SklUtxkhDAzThuRYIjY0kxNtoqsdsjBxarDtA0RXmumGCLONQ5f7xHX50kYISo4/lSN9exxGyFM6rFLI4RRue4dvzteWAAxhoirXU6fk2KIuNK/8WfHrNu6Uvrs3bOeZIfYjJBUbEYIM10U9441RKQRUn/uKE+6LE0mhvRsbHOkGCImI4TRSJlle7ZOfdfRRWzaLJsRUrerMIfnSg1qMkIYjTWEyQhRwdEdvcVtOsUQkUYIM7qVli7rtBohRPnTjAM76HoAAAAAAAAAAAAAAAAAAJxpVt4MITraiQsxRHyLzzTb9N3x67JCmsQYIjYrpEmMIZLbCDHVCpHEGBwuI0Sjfa92F90csuscGqXQm5WrY4d4HIaMpPD5e11GiCTGEPH52RhDJCQCIsYQsRkhrePoF0F2SOh4KntFcJRjrnohIedHw+TQajdsXAVEGgacyqii6p7HXQ6KrPVD5sMiOOrNJ5I/yhAJ6PMoQ8Sjz2MMEacRIslliCREoJ80UYaIx7y5ioaIz3wVEynuMkIkMYaIT+Fxfg7IbYjkqB8SY4jkiixcBSNk/amq0HRQ7ZCAvouJLs5p0nZZIU1moyL4ecNmhTSJuu4DfjbEEAlpN8YQcRkhKYQUeWa7I8QQ8TVCphu94LohXVbIUvsRhojNClk6hhU0RExGiCTGEHEZIZIQQyTkGS3mXUdOuqyQJjFzuJcRws0FTBEuI0QSY4j4GCFRGXAC/sYYQ8RmhEhGt8ogOyTneM1pgxDBCFkFcAoAAAAAAAAAAAAAAAAAAHCmORVmCONriPhaIZLUOiIuZmvddoiPESJhQ4QorY5ICj5GiMTH4AgxQmLaj2rXM2oiNnflidcPSfhYjbydJnwMkRg7QaOGiAsfQ8TXCGniWz8kdgz51g9ZBSNE4mNyxOSG9Wk3rRZNfC5qZ7s+hkjEca9K/ZCY2g5ehkhKvn6fvonocx9DJMgIkZwyQ6Q3qc5fjtohTDEtu8dYRHT4KhgiMfOVT6R4iBEi8TFEfIwQSW5DJFf9EKJqrdllh0Tdezyuy1UwQiRehkjmdeyqGCFNfNffPkaIxOu6T6mz5CClXR9DJMYI8VmvhRghEh9DJKZGCB9TlyESYoS0PmOr12mH+BghklUwRHyMEImPIRJihISQ8oyW0xCZrfc664aEGCGt9j1MuagaIR6GSIgRIvFZR8TUCPF6t5nxlZOvDSLxrR+SywqBEfL0AacCAAAAAAAAAAAAAAAAAABnmlNlhjA2QyTWCJHYdlFDaoWYsNUPiTFCTNjqiOSqFRJjhEhKEb2ubnKsUA2REI7dEFH8GFNURkitEBsmQ0TDTpBtNHfrQ3Jh2rAZIjFWSBNfQyQWmyGyikaIZLpetCyOqEggQ7tEy4aI5nEbIw4Vrk2rIZJ47CdliMQYIa22R722HaI4DxprqyiMFZMhkmSESGCILGGtH6IQHb52bZrNDiEyGyIa85UpUjzFCJHYDJEYK6TJcdQQyYGtfojKvcdwXa6iESKxGiJK04vNtMhlhcQaIb7EGCGS3rRsmRoaRoipdoimaWIyRDRqhNgMkRQrpInNEImxQprYDJEUI8SHGCNEMhv1js0OiTFBbJgMEQ0jxLZG1npOy/WuY7a+MH3EvJRihHh9rsJzIJXUus+kGCEuYkwQG8Z3mwqHbasdEmuESGyGCIwQoAVOCQAAAAAAAAAAAAAAAAAAzjSn0gxhsu/eLXZRZ2lBGC1shogWbIj0xnl2qjWMEBtlv6DRTf3t3uMyRLTrZZx4DZFIOPoixw542TuKRMhBMT+yOTThNjUi0ppIQ0R7rLAhol3PIjdsceQwWabr3TlpU6gjDpXnq9oQUY78PS5DRDsSyKt+SAJ1v2SIJmZDhHIFScIQWaI2RJSbz10/hKgyRA4u6fcL3xOmSla2hA0Rbbs5lyGSs3YI0dH8N88RPFuWWddVRDpGiKQ2RG5z1BBR4LQYIdJo0TBCmtTX/Lr+fDI+1++sZ5ECGyKzNd1j5/VaqrnWRaoRImFDRHtsT7cW5smidoiGEdLkOOqHaFohTXLVB+Gx13fVB1xB2BBJzZTQalfMgypGSJNFN0829a95XkeUmZaEtSGifPnw+mG4k3cMnjYjBCbI6oNTBAAAAAAAAAAAAAAAAACAM01Rltphf7q86s/9WOfPTEQeOZlXN5aZzIGsvbG82Iqaj3RPwWBP5nRVbZ5GN6p/c+zONneUNXetW5Evyscuj7WvFHk9E5FG2jv5dR0O7YhrEfyi3T4ft6zDoUEz96dmZL40NtSNBTk/KR36XARcDvZ1TyZH1sgaH6nIekTqNsRijGv3B9Fy7ubhnt5AkWNQO2qUIyRlHuBUWucyk4HCdoEW0gLrzfTab7atbTwS0XKojGL78l5c9pVjcnhdpd2urNegvB5ko2WynTdGSdMQaUbSTc5niIpeXC656lQx2oZIr5IVaLSre+DDm8tmhaZN1GtGRWaYTprRkaMbeobIbH15sal9/fB1PlQ2FuS9WDtymdfczTocGgz2lts7uJzHyMlhiHBtEm2rVxoKky3l6P9cNqVYR2lFMMvn1p5yxLW89w4O9cZK03jKEdHNzyHaFpF8TtDOEMDPJNrPaeOt5U7WWtvLdjRrEBEZahRrdkujaVkbWYP6OU07k8lk+WttS4lrhmi/T5LP8Fr3Ynmt+FhE7/3xH1T5bBDGqU6TJTdBmKLUf1AloqPJLrFteYOV6axiN0fkJkjdvqW4UQy8EUKkW1jLpNWZCmarUZDKzct2bLNhobYh0kSrT+QYlNdLyjk1pXDQHCvNY7cVJ4/BVAAtZ5Hysqc0tm3zUeIYl5sgzHTRT6mbAHJhYCpOHot8eU5kLzQY1/7R/9fqDyJzAUvW9VM2RWwPRtP1nsqGiHzQsBVHDMV0Hpufp70pwi+kNTZFTOnw+AW95qYIkXIaSNMLAD4PCe3bUnEUi75I3hSR66pFu8mbIpb51VbUOhSZ1mu4s0gtkmlTZP1a1X7KpogpncBwkd5UZVNEXB5Z14KklzZLvgzgFz2pmyJyE4TRSLFmfFHJp1B5vaaJ3ARhhjtzlWtHXteczip1U8R2L9ZK5yLX2Kbi5LHIjRAiovWrizRlypsitiLfMYxFmqbZSCfNqS1N03B3prMhImNVlTZFbOsmnl9Trlm5EUJ09EyosSmS5d0OmdO+afQHI587epNSZUPE9lzQm5VJGyKmZxEivec0uQmiiWl88/c0NkVaGyFaGJrltZbGpkjrOU1pHpTrnrr9tbTUbbJgOqP1PilHIGPdtuH6GO4t1sgZUquBNJAmCwAAAAAAAAAAAAAAAAAAZ5pTbYa4SInaa6XHkpQUZYf4Rhf0xoV66iyiNEOkaYRINK0CY/sJUYHOwnAJ0W8+x8IRMjGGiCm6pkmsVeA7BjVNDq12XceeYoiYjBBJiiHiis5Jinj1mYMUIzwlKUaEKzIiJfLIZhI0STFEXNE5Kf1hi8JqomGImOCIuBhDpCvKKtYQ8TmPzc9fJUPEZIS02k8wRFztJxkimUJjfIuzFrN5nB3S8StJhojHMExZa7qKva+iIeJTYDLJEOm4HNRsSguTrSLKDrFFRjIphojNCmmiYYgYSVg/uNZr4wvVccaky7IZIU1Srp2u63iy0YuyQ3yjtGMNka41dYohYjJCjosUQ0QaIU1kgeUQfAp3D3erPosyRLqyl5dllB2SK70oUfczK1GaIeK6LqdrizESkS7LZIRIUgwR13NGSsos7ecAxudZhCjtOc1lhaSs6X1+J8UQcRohKc/amUQBn78xZR7sWvekYLNCmqS8T3I9p6dYmtpp5MDxADMEAAAAAAAAAAAAAAAAAABnmlNphthqhZgIidrrNEKayM0/5Z1driPia4jY6oUY2w4wRFxGiI2Q3VpTrRBruwFR9L7RqNUPyw/y/1UfQgwRn+gaJtQqiIlqKQv/XXdTrRBXu0R+bYccNxsijHaB9RBDJCRfa9C5jJlrAqJWbLVCbEw3Cm8bIiRXJkceEeWJtggxRELytYYYIr5RWE1CDJGQMRhiiIRGVc3We+pF1ZvMB0WWqMcQQ8THCGm1H2CIhLQfZIiE3BcUaoe4CKofEng/683m/nZIxBwbstZ0GSGS3IZILoIMkYCpYdXqh4RER4YYIj5GSApB0dkB64eQ9VqIIeJjhEhCrp0Qsyu0foh2MWNJSGRsiCESYoTkqh3ChBgiLiNEEhIZ7WOERNNlg9h+3nNdELI+CjEhQp5ZmRBDJOS6DDFEfIyQGGKM8xBDJMQI4edU3/kn5nlkul54P5+F1AkJMURyGU9RtUFCDJGA5kNqh8RYLyHzYKgRMlsrvOuG+BghMcRkbAgxRELeUaB2yOpxup6uAAAAAAAAAAAAAAAAAAAAAinKMjQc4fh51Z/7MSIKM0JsuKIMgswQG5b2Y6Lym9gMkRAjxNhuhx0SY4Y0sUUshRgh1rYNARJBRkgXhqY0ohFthkhMhE2TrmNLHYO2cxlihIS0m3q8TUyGiE+tkC5MhohGFKDzXGoEE9jOZWJQny36QisCwhZ94VtjwoUpoivECLHhikiJicSSmCLFNMagzRCJiToyYTNFUs9lzrzYJkMkxgixtm8wRDTaNxoiGvOrwxDRuBdbDZHU9ZStXaVTaVtnhhghNnIZIq7aIT61QrowGiIK66mcNUSI7IZIar5smx2iYYS4aofE5OtvYegSjfWayRCJMUJsmK6dmFo/EpshknoftkWkatXys9khGjVCchkiLjMkxAixYYqM1jBCrLVDtF7BWNYJqesh23Wd+rxK5J6LNK5LkyGiYYSY+iTGCLFhM0RS64TY5qPU55CuqPgQI8SEbQxrrPVNzzNRRogN0yEqNG97Nk19PusyQ1LXPTZDJNUIsd0TY4wQicsM0chawe9H3vvjP5jcFogDZggAAAAAAAAAAAAAAAAAAM40p6JmiIYRwsjdw7JQMkLqBvmDFl8qbTeF1hDxblcEYrEpkmqEMLI2hIYRUredOXd0M/ej5mfIGiIaETZE7bEWkvfVq31xLlONEFu7OZiNjuwQDSOEadYQ0cwLbR3bWh8h8pqmGiFMSL2MqPYXdUQ4GkPDCGHmw6KO7tIwQhhTn2gYIYysIaI1DmUNES0jhJkt2mdDROtchuQaDm572POqHxLdfr9X2yGaxkmrhohWGIylhoiWodmqIaK1nprxtZInHkjWD9EwQpjhzjyLHbJ+reqTpiGiYYQwrRoiSpdR9nWgIDUykpH1QzRrhKxdm7bsEBUjhCmoXjtoGryyhoimFWJCI/qcqF1DROseLHOWa6+RZf0QDSOEWb86yWKHmGqHaBghjMydr1UnZLhb9W1tiGROyqG1/pHPkVrPq0TVM6Scl7SuSaLlGiKaNUJkn2haISZSjRBG1hDReg6Rz2WpJohEruk11/bc1nxQ6BohJhSblzVEtJ7P5Pyntd6xoVUjRL5H0nwH0bwP56hfyjVEwMkBMwQAAAAAAAAAAAAAAAAAAGeaU2GG5GS2Ttb8+SloRks1YUNEGh1arF2t/tWMjCbSjfZotd072rnN1e850IywMcHR/prRnUSNOjPK1009RjJ1y3ibo6P129a0QprweJ6Pqn/7h7rtT7YW7RpqqqTANkSu657bz3XcXXlTY9vOGb3M0VjakSscUZerFsd0ESlpqyESC+dd1o7a4yj/IlN/zNaq/ugpRaQuUUejKl+YbJ7ksmZyrafYEBnk+YA66lA5QHrtRnUTO7ygHzm/fm1Oh+fzLaRG1xfRo6YaIglom7AMR4uuXc9zvR9cWFgFN3XbXbtWPSRMzud5zON1YI57Glst2obpcKc62PG5POO77OVZ8HD0fK7nG00jpImMMtaEDRFtY7Vufz3PGnOWaS3P93ZVA6zBdGERaF/vfI/M+TysaYU0yfUehtestvqiqfBzjva57HONFmUzhMlZD1CrrqVktMiGomVASHLNf7lgG4nnQW1yvgM8Te8XQRg4tQAAAAAAAAAAAAAAAAAAONOcCjNERhdr5E2dbjQb5A9Kbzc3uSIRJDIfYSrrV5dDEOaKUSDNqKNc0YFZ8lLLLlAaf/Kc8dfqRoTydWMbExrRIByhRpSxPzIwF9ETs7UMEWXUiFZTioJrXX9ac6sYItrHfdRuhojGMk99HHl/nK7r5jXlyCP+d6BkcMgaIbKGSDSiP7QNkToSa/GvptFSNqK85qOFkZPDEJmVR/U+FOD6JuWIrRadybVUrLVhbL/HEZLl0tepFLN8i8leo+1chsjazWrMaRoicu00ulmq2yHNz9FaA/JcPb5QHevohtY8svz1rfurm9m5B3VuZrmMECK9enESec6mG4WqHcK1dmRNn1QGh6JmklL78h6pXgdw0c7u3dXY23pEbyG1e9fR4jXHemr9qaNk9nt36oUZ54r+Pbi0fNFwhHT/UKdPuI/5zjtUum40ayxKmteNdg1NouVnYc1n93Ytx0KlBoys4cFfj3Z0Dn6codYY0dE6hNm4Wr2o2r+scw/ia1LWR9QglwU7ulW2vla1QxZNybpSqeSw+IjEO9cGau9hMgoybAkSHRlEGnU+du+Cj7AqFGWZuYqXIi9905uXvk55oWS7MIko6cWddnopSa7NkC5FP/bvkpsgNlI2R1yTd9LC1jEOkhZWPn9qpjGYcuPpHAORx+x77lM2RVwLhVXcFJGbICZSNkUmm452E56HO6+32FPoOT2kHLt8ObXcbsoF2f0jKfcy1wuXlE0Rl36dsiHiUyg9aYOho/mUTRFXn6Qcc+mhuqdsihRTx+8mbIq4irynbIgc1yZI7H934doImW7ELxB7HhssOdJmEaW9MPBZK6VsirjWxCnrv645OWVTxHWvYVI2RbKlxnKtLROmbJ/zlLIpMnG8BEzZsJCbIJpt+9wnU8a363dTNkWamyCSlHVUc/PDRsqmiKs/1m7G38vkJoiN2E2RrpegKZsiro2QlOu967ohStsUcT4DpywtXb+b8CrNt5B57KZI1yZISp/IjZAmKZshPnNbyqaIc02TMG/LTZAmSZshnr8auynSNTenFFJ3vW9Vef/i+JOHu/HXZXMTpNVuwmaI3AT58I/8QHRbQAdsSwEAAAAAAAAAAAAAAAAA4ExzKtJk2YhJOeI0QpiI9D9n1QhhtNNmSThaN8QQ8YkyitLKPc57lrRZTTKNwZgUUd7nPHO6OY7KDjFEfKIkTlParCazterfEEPEZYTU7UaknvK+vpqnI8M4iTl2nyjdqDQPIT8acS/ziTrlyJYQQ8SnIB8XpAwxRHwiXZmolFmezcekzfLpk5hj9jFC6mOISJvlNEIYNg4Czo/LCGHmyimzNPA1PmLSZvmkxhrsV32RYoi4WKW0WdnWRgt81sQx6z/fOTgmbZbPvSaFkzBCmJg1cch54aK/IYaIywhhYlJa+US2x7Ydcp+MGd8+PxuTNstlhDAx6ygfI4TZfKw63hBDxKc/Ds9XF0CIIeJrhMQQEv3NdkeIIeKTGivmeve9bkIJeS8Rc9xeP8trogBDxNcIicU3LVZMn7iMECYmXVbuItVeaxg+hQGnx2WEyJ8JMkQy10f3nYvnw+rfEEPE531r1PuXgD6ZbC3mvwBDxGWE1O1GpMtCWqzVBWcGAAAAAAAAAAAAAAAAAABnmlNthjA5itJWDcoPUm7fg+MqmO5Lc/e2KxrDt15Ik96k7LRDYvLO5i6sLj/HfBARH+BhW8TYOlltiIDo/5haMfNB0WmHxOTNXAVDxKdWiMTHEPExQlrtZipOXuNrEkVcN7NR93HHROlmKazewOdeFpOH3McQ8bEf2u2GGyIheNsWEX0yHxaddkhMn6gVgrfgY4h4GSESD0PExwiRhBgiOWuFxNQBKeZl5+/FFEsPMUR8aoVITtIQiTFCRjcXEZMetUNi1sS+67+YZ4jxhaLTDom514QUVD9JI0TiE2WcO/rXxwiR+FocMdHtRdndbogREkNMn/sYIj5GiMRnHRVihMQQ0x++hkiMFTJbKzrrhmgVSbYRUyzd53qPuWZ8CqrnzsgRZTd6GiIxVsh4u9dZNyRXkXTGxwiR+BgiMdejT0H1XAXSGR8jxPY7nYZIxOXeH5ed80Su51fGKwOPwOv9S6bpz8cESQFGyOqDMwQAAAAAAAAAAAAAAAAAgDNNUZYBCQ5XhJe+6c3O/26K7orZqbTSaP+01goh8q8X0oXsgxgjxITNGtDY1TZGISheCUsRJZqbzoZj1BiDtt14tfEtjjvGCDEhDRGtyKnjtkNijBAbTUMkxgixtmsJDlSL8pRjW+m6kcetlbfdOg9pziPNe43iPNI0RGLsB3u75rlfK+q1ZVsoHbo0RLT6xGaHhNQK6aJpiEQZITYa5yzGCLFhM0RyWSExRohPOzFGiAmbHRJjhNjQNkTqdhtRl5o1QmyGiNZ6uGX0KnW1NES07jU2O2SVjBAbzXGhaYTYaofEWCEm5P1Wq96BbFfr3mjrW80+bxoiMUaIjeZaStMIsdUO0eoTaYho1QmRhojWc42tbkiMEWKjeb1r1ghpGiKa711s9y21+5l4xaZVJ0QaIlpGiO3vjjFCJCYzRHN+ahoiqkaI4ZTFGCESqxmidDnKeUPLCLHVDdF4z2p896L47NusHaJphJhqh3QZIR/+kR9Q+3yQBswQAAAAAAAAAAAAAAAAAACcac5EzRBJM/Jmtp7hAwrKXj/kNBghDO/kalsyHK3LFoFmnsOlaLUM6QLLXoYaNkRLdRY0+zu34cTHrRmF3myvq4ZIKLI/cpkimkYI41NDJKpdUUNEPe93prSduWqftPJeZ7jec8xNRH41ROLaXa4hop0Hva7Hcahbj4PvMV01REKR9UM0jRBmPupRfy/DgsGjhkgMsobIqhshTDHPc53L+iGaRgizdmOWxQ7hGiLaecplDRHt9XC9/lO+HMcXFvPqru45lPVDToMRwuSqDzJdRLOzIaJlhEg0o9uJjp4LtNfCsi5Orn7XNEIYXku5apPEsPlY1R4bIrn6RMsIYWp7QPlWwAYIGyKaRkgT7WuG6KiGiHZ+fx4TueuzahkhTK7aINwf69f0H3qbtUNyXItcQ0TLyKxZDOfRju64btUOyfS8p10jZD5c/JthGbJUOyRjKQ/teWSyWbXnU/cOrB4wQwAAAAAAAAAAAAAAAAAAcKY5k2ZIE9651N7154juHBHjzQjmXJEsOeBoPm24j+eLCFXtyEkZUaXWbiZjhqiKZK4jVTXbFVHA2n3NfayZX5xoOZ+sJhwBQYt/+we67fNx95Uj0ol064U0kREV2lEn00WExcCQgzOFyVb1r7YxM95e7g+NXLJNZASsatvrRZaIuOnGwohQHhs8f3D7g33diWSyVU3W2ubJbK063hxR/2WvoOl2NUENdvTyrTPzQU+tPsZSu2tVX6vfxxbHysesbZ6wcaJ93IODasEwz2DKlL2CRrcWFsc5vfY5yn3t1pwOFdtleE3J9wQt6uhD5XUIM93KY4js3Fc9eLCRo8l0rVA3bIny1b1i+ouaSRPl2L5sz16L/pDmuxbTtXxrysOLw+4fWiFsNUO04HWINmzsTpVtAraRDs/lMeqJFuM5gxnC9xftcc3XeS6DXNuOZuoxohzhzrDtlMMQKfuUxaRnI2msbWBnCvavnx25L5Q/p649pNwu1wzJYoYs6hOWgzzPS2xwaK/9Di/maRccD6eygDrjKqQ+2TZ/X+PFz9yxHtTYHDHdjDUW5trpsep2LQ98WgstW7qL5InSVv9Yoa9N40xjU8Sl1mu8nJGbIUQ6NyRbAcDUG0fnw3XiIsB2rWtsiky22gensdDPkeqiiel61HjpbXvhlbopYj2HiZsis47nbI1NkakhjUGOTREipYABy/WmtSlim5tTN0VmI3PDyZsilj9bY051pYHS2BThzYomKpsitpqRqfevjmNL3RSxFZFPPm5Lf2hsipjGSI7NkCY5NkWY1E0R2xos9wNs6qaILeWqxqaI6YWrxtrdlSZWY1PEVtD3wFCkNwTb+slWfNoby69rbYbYUh5prClNa45cL2E1UmV1bYKkPuPZ+jS1T2xpSzU2RUzPjpqbIaaX/rLIdwym+4nGmLaNgdTNkK6xlfoC2TpGMl2PGpshe7c7/miFIWhKyzY2PF8HY2ki9dlOBtDVaC2dbIen0CWm4ukahdNN62uVzRBHExrrPt4ECWkbhdNXj1PkHQAAAAAAAAAAAAAAAAAAAIRz5tNkSeSuvHaKkKXiP4G4IhJSUjnlMkK6aEaixESgdBVATUqb5bFbnCttVn0IyhH8Kek7TEaI/G8x/WwzQpiylzkqM1I/ddlfRESz9erfGEPEZITU7SakzToJI4RpFRMPoCvad7pZRNkhnecwU6F5hovixUQRmYwQ+d+0DZGklJId11dzHogZI11z8XSjF2WH2IyQ+r+vJRRsd/yZuVI+Milps0xGCMPRn1GGSMcYKXuRqR89j6WYzKPsEJsRUv/3lLRZjqZ7k2rMxRgirrlaI12WK+p/bdF+DkNksFdG2SFda61c6TuZlLRZrr4+PF8deIwh4oo257V7zLrddbwa2IwQZv3qNMoO6Vo/yeLTQTh+JSVdlk8B7JQ1pWuNkStNz+7dldURY4jkTovV1YcpfWKL+Cc6inyPMURc2QRSrnOf9E9c5DvGEHHdP1LGdNdaMjZd1nGkNHeOkUzXY0q6LKcRkoDJBFGlowvH54qo5zqrEcLwZRIzljJ3ickIYQb71b8xhohrfZ3rHV8KNhMEnG5ghgAAAAAAAAAAAAAAAAAA4ExzJs0QW70QE/OBfyRsV6RxkxBDJCQCIZe1EIOtVoiJkAiULiOk1Xa/yBJhG9PXIVHVIQXWXdE9kpBIVZcRYvvZXEXVGZ/ozOCc0yV52yEh13mKIeJsN2Nh9VBCrscQQyQkwjdXUXWiOEOkq15IkxBDxGWE2H52pQwRD0LGSMjcG1pUvcsKWfrZFEPEQcycGnI9hhgiLiOkdQwhhkjAXJ2rOHksXVbI0s+GHHtAn4QYIiFjI8YQCYn6z2WI8D3A5/4Rat9mN1UDCOnrEEMkJLo8ZN0ecrz8syHruC4jJJZQo3ayUfjbIQF9EmKI+BghKYSsKVbBEAk1Qop52Noi5zrcFe3f+tkAQyTkmTHo+TxTQXAmV82p0Hcms5H/u5mYdwQ+tUNCxkZuQgyRICOEh5PHnxpihIwW76eCaodkHNqdVkiTEEMkZIgEZMpwmSAahKytg56TAvoj1AgOsUJWaS0JulmBV+oAAAAAAAAAAAAAAAAAAAD5KMqyXJ2t50he+qY3E1GYEWKiKxI2JGJc4jJEQnNTmjBFJuSqFRJihNhwRaCEmiFL7XbtHCceui0CRCOK2hTFGBLdY8MVqRpihkhcfd1VK8QH2656sBXSatj9n2Ov8y47xFUrxPszDBFquWqFpFyHjCv6Pyb3O9NliKTM1UR2SyTECDFhs0NCjBAb2oYI45zbFCKpTGNEw3y0GSIhRoiJTjsk4TS45lSN69FkiIQYITaMhojC2HBaFgmGYlftkJCoNRPW41boE5chkjJGXIZISh2IXJG+jO0+klqTLWdUn6t2iEbNDZMhElNvQGJat2scr2tNl2KEdNUOSV07WQ0RhT4xGSIaRojLckhZQ2ibIRKbIZJaJ8S21ki1Qbr6IyXq36feTwqm61zDCDHVDtG4P3Sdq9j1ZNe7mdR1qs0O0TBCcl2PLjNEpUaI4U/XqBFiNUQSu6nL+A8yQiSu8aXxuGc4NA0jxFQ7JHVNTdTxfi+hP7rWeql1Qrj9D//IDyS1A/IBMwQAAAAAAAAAAAAAAAAAAGeaM1kzJBZbrvTUKGOi5Sg1tkQ0jJC6zcAcqCeNLUdpavSrNB3qnWSloOmcNVuKWXo0owlTLvMUI8TWBve1hhVCFJ7P0b/hxb/iMFOvc1v9EA0jpP6MYVFHQeUyQjSx1YdIsUKavy8NEY25mqhdRyTVCGFC6oeEcqw1RBSDzuQY0ZpbQ2uI+GKtH6IRDWyof6VhhDDNGiIaRggTVEMkpF1bHY7EzykWdTikIaIRvUZkOG7F66U3mbfsEI0xYqohomIpZKodwsgaIlprqGzrDyKabhUtO0Sjr42fpWCEMM11u+bx2mqIpNYJWb9a3bSkIZJt7aTYJ71JWdshmjVCTPXoNNYMuWqH2Eg1Qhj5TKdVH8TWHxpR/4PDsnVdaxghJjRrhIy3q05mQ0TrnmCrsZi6luR1v3xXk+tdi2aNkMFBmeVaNNUOUTFCLGhYIUaUukY+0yWZIJI5tUPWM3VHzhohWuvqVu0Qpb6wrfVSjRBwejhFr88BAAAAAAAAAAAAAAAAAADCORNmSGqtEIktj6MWOaL/iY52NQc7edon0qkX0kRGs2hH4dU7yY4aJTHwcWofL1tDM8VoPqbsFdmiCoh0bBMTdRSO9rEv2psrRf0zbIhwxLurXlBU+0NLtLQSmpHoDPdFqTy3cjQwz9naVgQbItpjj6OJNGoNSaYbRZb6IbUhojyeGR4j2nM1GyLq1yEbIge6NwGeR3NFihNVhkhvoh/yXhsiynNTbVooHzO3Nx/lWZTl6g8+dzNFu4cZ3ZrTZFs/Tiq3IbJ+tWp//3bd9nMZItOFMTrc0b/QD8/3qJ8ropbyzU3c7uim7mTNhoh2BDMbG8OOGmap7edgNiyMtWVSyWWI7N5dLdRz1fLRMkIkHBU9VDZUOWJ+vKU/n/Jzea7rPJsluBh7k0TzXMKGiPZ6ndvTXvMeB/sL2079fdbi1GlaMkREo90M5kaDXO3mfGdDZZ5n0MF+9a/2dViTa17KZIKcpqw9T1dwigAAAAAAAAAAAAAAAAAAcKYpyrI8fVvSFl7wt96s2p6MJNWKal67tvw1R5JrMbrBNQX0dzm1zRCmmSddK7+g8XOUIjBkNIR2vkUZVaUWoSPa0dyxbhoWmlHY0tRS7+vNPBHpsnaKVp/Ieag31jvuSSO6ZbCn1izNNpa/1j6HcoxomREzcR32tYwLMcVp9kezL3LUJmlaa5oRsc188ZpRmtJ06mm1Lc5hXynyU+bozhE1uNTXY72I1Wa7svZJCnIt0z/QmUxz1QypEc1pGSLyOOejPHFNmoaIvO72L+uElMoIUm0zpHXf1hoi4rLTnEubbanWx1iaNzLYh+I6X7+mE7aaq2aINNs1TYtpwwphG1iDZg7+HPZQc92r+XyRywiRaN23JhvLf7y2GTKWc7PiqWzOqZpZCuT9T+sdBVuHjHZEOh+ndv0K+Yw43FOcPzLV7pFrDy0zRN5P1E1M0R9aGWC4riSjVV+SaPna07zfNv/2wYH952Kp66Qq315kH6jVlxR1XbXWB9PN6t9P/K0f0GkQZONMpMk6LorFulw71YssuBy7OcKbIIxc1KUsPI5jE4QpFvtzOTZFbIXbk9sVhZtjX27aFjD8kilpU8TwuxoF4U1ppniBpJ2ahqjqa42Xx7KId/PBNmV82ArIa/SJae6Zc3oh5ZcTfCPX3BRhmtdLyrm0LWhTU0XJTZD6+4sXFNGbIpYpjftDe5NIs2C76aGYHzpTXuTJorlE9oKYQe1a0r1xUdroTRHLOZwtXn5obYowmvcsY18vXqSnbIqY2m0VO4zAtmaZrfeTNkTkJgijtvbIWHfRdGy9Maf70t0IGC4K3aZsitius42rM7UNkaV2n9BJl2W9T/Ofk3KODZeaxlxq+l1Oa5j0gG+cNxZztMK6I1eKVbkJwqT2ia1Y9eH5asylbIpMDamx+D6YsiliepHL93SNTRHbujeV49oEYTTuW3IjpPm9lE2R1gaIMtqpiRhbEEBvViZd+3IThOF5MGVTxHRcXLReY1Mk1/VyXJsgTDFL2xCx3T9S01Pm6gdGboJoYnrW0rjfmp6Xp4v3jSmbIpMtS1/ztyMPOUfARRO5CaLa9ma2pkEGkCYLAAAAAAAAAAAAAAAAAABnmjOVJotJTZcVErkdYonI9FguQu0QaYW4iInEOE4zRJIzbRZRWMRtSAREaJR3SCRDlCHi8TsxhohPAfIYGyJEYw3pa2mEONsNGBuhkT4xfeIz38QYIhOP4m8xhohMj+Ui5ByGjI0QQ8RmhJiIskM8m48xRHz6JMYQCUmTEBLVbLIJbIQYIjYjxESUHeLZfIwhIlNkmYgxRIL6OsAQCWk3JNI2ZI0SY4jYzJDWz8WsPTx+JSZdVsixrELarJBrK8YQ8YlijrFDvO/LMcvSgCkhZC4N+dkgGyJo3ggf0z7XeUyqLJsR0v784KatVoiJEEPEZITYCDFEQqLYYwwRn3VvzHPFcRshNkLuWyYjxEaIIRJkhEQsaXzm0ph0WT73uZj3ETYjxEaIIRJyPCHXVsjzYUy6rOM2QpZ+JmIeDblfhM4FIX0R8iwZYoPEpMvyucai7rMef2OMGWI1QkwEHnbI3xlyfwmxQWLWB00jBOmxTg8wQwAAAAAAAAAAAAAAAAAAcKZBzZBEctcR0S6uTnQU6eITAXGSRghTCHlJ2xTJXUdEuw4AURWR622HBPxZITVEfIyQ+hDEDrsr+jKmsFmuvs41NoiqPvGNQg2ZX0JqiPgYIYzMgekyRUKMECbXOeSIS62i6kxw/ZCAaSukL0KuF64hwrhMkZhIQJ+89yE2QX0sCjVETATXDwk49tlGz9sO8TFCmJA5KaqvPWqIxLSrkYvdxGy9urn4GCK+RghTlKX/eiMkSG5hL/lEzsasd06yhkiMbbVxtTp3PoZISF770PohQbZmSO2QTFHuMfVFvOplRM0b/jnNQ6KvDy5VNzhfQ8TXCiGq+sI3+jPECAkhxAhhfGqIxNQ18KkhElPrIOS5YlWMkBBCjJAQomqEeOTpj6kNwmPCZ10YYj6GvI8gCrdCfMlVtyjmeplsLurLOAyR3DUxQtYdfN/0NURy1YLI1Se56oPEPGP53Gdj3qGE1A4JMkICyTY2Mh0zaoOcDWCGAAAAAAAAAAAAAAAAAADgTHMma4YQxdUNicnhL7FFcIfUC3EhTZGQWiEubFERq2CG2MhVS8QUcRuTE7PVriXKWyuaoWWKKJ06WzRXiBliw3TNxUQ1SEx9HVIrxNquJRo7JvqniW3u0TLOpCUSYoR0YTJEYswQiekcaowNmyESUi/EhNUQSexq27yh0RdEdjskJmpJYopcjrEKJCZDJKRWiA1rVHti0zZDJMQIsWG8XyneGk2GiEb7pjWARnSmzRAJtUJav29bbyQesi2KVmN9k6t2CGMyRKLq8AhshkhMRPNSuxZDJHntbztVCkHMpjk0xgiRGI0I1Xkjz/VtM0RCjBATNkNEwwgx1Q6JMUIkJjMkxgiR2MyQ1HUuY3umWFUrxPa8qmGEmGqHRBkhEsMhp86fTeT6MKYOlgnbHJFqhNjqhmjMSaZrTuNaMZkhOY0QrXcq8n2JVrS/bX7Q6BPT85SGEWKqHaLxbGXr09TnQpsZomaDiMPWGhu2e4qGEWJaG3QZIagXcrqAGQIAAAAAAAAAAAAAAAAAgDMNaoYoU4igpdNSS0Tm7VxlI4ThWiKnrYYIo10bgaN1vWuJeCLz/WoYIUyzboZWpDtRu+aChhVClG9shNRUiSGkjkgo080jO0TDCGGa51BzbMgaIqlGCNOqIaI0LeWeN7iOCBsiGlFLTLOGiKatIGuIaFghRIYaIkrHPFtEkLIhomGEMPNBkaWmETMb9Wo7RPMcyhoiWjm7ZQ2RVCOEaa03tALlRP0QzfVMrtohTLOGiIYRwsgaIloRzbKGiNp9VtYPUYxwn2wWtQmiYYQwrdoheVPQq13fsoZIqhHCyP7QrBFyeL5X2yEaRgjTrB2iYYQwsnaIlhEiWVUTRCLvVZo1Qrit4f5cxwhhRO0QTStk6WOUjBBJrtogjGaNkOna0fWnea3I2iG5rJBcWTZOW20QRrNGSH9c/Tsb6T5bydohWs/IsnZIrvogp602CBHqg5xlYIYAAAAAAAAAAAAAAAAAAOBMc2ZrhjA+tUO0o7CbDHcXn5EpyMGW2zW5XUvewFQ0zZAmuSIbiI4iQrWpI8+Um+cIAY5I0GKyVf3by3S9aEYdS+aG3Mo67Vb/as8h00Vfm+pxpFCfQ20raZCnXaIqokYzUkeibVIx/UyReHVEkPLcz/eonjklexJln2i4o98fPIdqRsUSHUU75rpv5zC0iIiKTPdXpjfR7xC2ZHIdu/aaQ8tCkuQwQ5rkrB+iGfFogiNkteA1zJ6lhkh0uxOO0lTuj8Vhbj6uf/0dLszAoa3mVSLZnq8yDbk66li5O0a71bnLYVnM+4WxjlYqPCdrz3n8jJJjrZGTXIYMUXWfytE+X3/akdh8najfXxf3P75etDg8v5hEMy2Rcj1HEOWzb/j6M9UeSoGzSGjPSWzzaNRwlfQmZZa1Hb8jyGWz5BobmvZ6k1zvLA+usCmj3/b4nP/PolbI6QRmCAAAAAAAAAAAAAAAAAAAzjSoGXJMlD3dKFNj1LHCRi7njZekRg7YolI0dvhzWiHHgsjtqsVsUdtDe6eccyprGSJzyxjQuF5M+SN7Cv0h6zg0a5+kwEZI/fUiR6W2ISJrqqx6u7O16l9NQ4RtFr7stI6Zox7n28tjL9WMkFGDMq93LPI604zabM7vk0V/5DBEmjmbNeEIN617N7fHdWrU7CEOZl5EpBeZaojMF/U3NAwRGXlW9ossdojM9x5LLiNEkqMWWv9gWtu+k/N6Rb84KnGwX9JUMY9+LuSaZXNRQyTVEJH1UriGj4oh0ji0vTuqLzQMETZCmMlGoWqHTIUtpFnvhIjadVoSyZmHXjvKnWnWPZB1tFKQ83BtrSXOgTKvvdZaQ67HGa01Hfcp/zve0pvrcmVLyGVkHVfdCu5jjWuntkKIVJ+3TedOZZ0gmuW+0cpSkcvIKjMtATTru0g0a501kXPS4KDMcu3ImnPRiEPTmvOJlvuCs3RoPgeyFaJNiBECTjdP+82QnCmyJPJGoZ6CQ/nhoEmzUJ8m3P85tMdUsqfHan0gJS3QbAW0Zo13HzEbI5Mt8/flJkbM5ohtI4RI/0Vk/ZmL/tDYFGnCYzjHnJK6KWI9hwqbF6Vh3Gm0OzO8s9PYFDEdL9Hygi3muLsK2E22i6gFYFfqBK1NEUmuVBYamyKmOZRfvqVsitgeKFLnIttDosqmiGF4rPKmiEu/z5kya94vsr14SsE25jQ2RfoH7Yt3eLO68aVsipiOebDPBaL134hwAdnYdFm5UnsSuV+mJG2KOP7UlE0RuQnSZLKRnjJLboLUbTcKwauS+NxjfUGl8NLU9CKXA8NSUiLlejmYK1Vh19ooZa1h2whp/reY9ZxrU4nPa8qmiOlepDE2bM8fs1GRlCrLdp2kBhvkDGZc2gRRJNs6oqPZsiii3kt0XVcp73dcGyAaG7SmuU7jvZHpvq2xAeCaj1aSrOnJ87SLzQ+gzeqHcgEAAAAAAAAAAAAAAAAAACRw5guoM7ZC6rnMEC6c7kNItGlQBGnA5qktPZaJkOiB0EiUkJ3+3Omxjt0MMRFwCF3RV01CDBGbVWAjJArTZYZIQq4TU3osGyGGSEikQ8jcItNjuQixQ4LPXUAEnc2wSG3XZIR0EWKK5DrukOsvxIoIjRIMMURCrqmQqM2QeTykL0LmzhBDJEQxD+mz0LQBue7vuQwRJsQQCSnMuApF1XOmxwoZdyHrHZMRYiPEEAk53lxps0LskFAjJCRdVkh6jaA1X0C3hZghLiPERoghYjNCjO3mMESYgD8zKG1JwCGHpPYJub+HGCEh0dgh82zIfBiyJiIKW2OErMVD1nEh/RZihsTYBCFjI+R5I+S5PDS1T9C9NeCeFnJNBRkhAacl27ohZNkX8F4i1LQKebcTsrYNuaZC5riQ54yQ+3XQHBdhP+RMyRiULitkiGbqk5DnvxAjJOQdl4YRgsLppxuYIQAAAAAAAAAAAAAAAAAAONM8bcwQRhoiq2CGSFyRp9q5xZkQM0TiiiZIyVHateufywxZCSNE4jik0OirJl2756FmAdMVkRlihEhc10eIESLxMURiokB85pgQM4TxMURizx9RdzRdiGER0naMGcK4DJFcx5ty/XVFxcTmju6yQ1Lq8LiizVJy+Lr6ImXudBkiKUUHu/owtpik9z0+oktO0hAJMUIkJ2WI5LJCUsada90TYoRIXIZIyvGelCESWyekyw5JKbjqnMcSuslliMQYIYyPGRJihNTt5jRDiDrnxqTIXMehpxR7dt3rU2qEuKKyU+bVrrkxdl3UFc2ekofetY5LqWvgMkRS6ku4xkTKu4uu5/KU68Pn7415dve5tqJqhHicnpRz6LxOUl7ndLyniK3112WHpBRJd11jKXOc67kj5X7tOncp89CJmSEpt71MfeF67kupDeJjhsAIAQzMEAAAAAAAAAAAAAAAAAAAnGkSYlpPN6tohDBlrx11mmSE1A0v/m1stqYYIQzv9suIghQrhOjoHKVEG58ZuGuVA+o4Cj8kv6IPbH7ERme6aEampES4S+aNwFhpiaREPsjx25x7YoyQ+nc3l7+WpkiKFUJ09DfLaLoUw6LZtmw3xQip21ir/m0aIlrHS7R8zClGCDPZri5sGR0Ta4TUv7+I1pWGiMb1Mh/ER525sPVFKhy5HFJDxAeehzTnICKi2SJqzHrPT4nuWkSm5zZElj4zIeJPtqFtiHA0ooz8XEUjpG6jLFuRtSlGCDO8Wd30moaIxvEO9qsLRNsQGe5V7UpDJHXNsflE1a40RFIiTOs2FtfdkiGi0C17d1SNhNQQ8WGysZiTDYZIjBFSt7u5aDe3ISLIFZGbYoS4SImW7iJ1LuW5Qc6Vqesi/n25xkhZg8s2muu4FCOE4fPfNERSbAKGn6HlejD1/QW3J5/RNa6Peb9o308Vsjhw3zavtSgTRGJ5ttY4f0YyT3k51uZEaUaIi1xznMb92obGXJSLsle0120KXWya7zX6wfbcl2KFENnfbWnYIODsATMEAAAAAAAAAAAAAAAAAABnmqddzRDmhf/Lm7t/KAINM6QJR52qmCGtxnXMEAkbIqlmiIQj7J9WtUJc7WY0ZlY58sHEbCNTBF3G2XG2nqddNkRSzRAJR9NpmBamdjXMkCZsh2gfL1F1zBpmiISjY1LNEAkbItoWA0ehadt73A855s5B3Re6Fzf3rXYEXX3vV+6KnHZIbzJXMUJs5KohUmTqEu2xxvQO8yjO0+18C4BcNURma3naPbiYaf2mPMc32Xx8nlQrxAYbIilWiLHdXIbI4jDVjZDF4eYwQvjerx0xzQaE9tzJkcLa6yFeW+R4FulNdIwQCdsL2lYBjwntjBb8jK59ffDfn+tZPWe2iF6mdVGuvsgxjon05/gm2s8hR+3m6YtZpr7IZSrW/ZCh+bJXZJmT+Zkv1QiRsBmibYSgVsjZAmYIAAAAAAAAAAAAAAAAAADONE/fmiGZoji125V5yVWPtzyKvNWMhuBIhbKvG8lS1xA5ZaO2XGx0q0edZqojkrNtWy2DVPLl76/+7R/otktkrpuhwfhC9W+hnDt2fKE6Z8Nd3ciNw4tVu4M93XbHi3aHO/rhMeMLRANlC7Bqd3F97Ou2O1lECY9uKNfj2MxzPU8XpleO64Pz1Y8y1SbRjtTj+512VOh8cbw95XNHRDQf9fLYG0WeG1N939C2bzJFKnI09myjGhz9fb3Jfr7Wp96k6pD5UG/Byeug/kHV9mxdp21eu/am1QUy2dING16/vohYVDZEBruLqOwt/fvT/pWiVfdMg0O+Pymvh3i+Hxhqk6SQK/I9V/58oqPrRBs29gfaZkimKP3Rrep6Pris/wGztSJLRH09LpTv1Vz/QLuWlbaBzLDpNc4wt+WIdifKZyvU60LtupyL6Py+8ho559zG87G28c21IgfKz038fKO99tbOgtBkdKukybZ+u3yP1r5OeBxrGyFsKvLY0CLHMyk4eWCGAAAAAAAAAAAAAAAAAADgTPO0rRnCvOhvvFllJ3x0y/z91LaHluhVjWMeGKK7NAwR07Fp7Kznqr2Rq1YIR2K1Py+9bWN+Xo12TRELCu3acm6mRpTboipToxds0QQaEZETQ+5KjWgDUx5PDTtkumk+R6mGyGTL3K6GITLbaLetYYhMN9vf0zBEbNGVqYaI8XqmdEPElu9ewxAx3Ss0rg9TH4920sOcbPN8auSp7V6scS819YWKIWLoClVDpJF3u5jqhai17hdKS43cZgijbYbU/z+DGcJomyGMthnCaJohzflM0wwxXWsahojpPqKxFrKthVMNEdvce3g+fcyZzI21W+lzkSlHv7YJ0GRwkHbMc8t9L9VsWb9mvsFpGCKm/tRYAxyea48rDfPE1pe5xoXGewXTtcC1VJIw/Mkax2t7Vky9d9tqbqQaIrZ6DRp1l0z9aVvfhmCqH6vxPsf2nJ56/2AjRJK69rYZIRrXs6n+r4YhMjXUY9WwQ2zjOPWattWu0jAYexOij/0waoWcRU5ZwqE8yAtbUxNstp2rXc225Q1KK32WnIi0tcPThFzgqqXPkvesVW+XljdJNFPtyOtBS+2URc+10kXwwkBbwaxT7CinzCI62szQTpvFmy/aabMm23nSZk0XhepzpM2abeinzCI6SselnTYrVxq8XNfHeLuaKDReiEhmw0ypOBb30tOSNosLqSdtihiKj5aD6tylbIpY7wt8qJFTRa5NECLzg7NGuqzmJgijkS7L9kKvfzBP2hCxrU2Hu6ubLss0f2mky8qSko7sm+mpqKeMbZCroHCu9FU5CxXnwLYJooFtIySVXJsHpk0QDXKNtZxobAgaUU9dqdsek/M6zlGwmihfSizT5ocG2imPmtg2QFLJlRLLtPmhgWnzQ4NcY5jIvgGSClJiPX1AmiwAAAAAAAAAAAAAAAAAAJxpnvZpsoiqVFkmQnbNbWmyUtu1pclKbZfInCbLRoghEnIcIdGt2mmycqXHIopTS32i5aJ2wH3ajYle8GjXlh7LhU9UeUwUpW9EUEz0iY8hYkqP1YVPZEJMxIWPKWJLj+XC1xKxpciy4WuJmNJjdeFjipjSY3XhY4rEqLs+pkjM9exridhSZLnwuaZD7gUhETshfRxiiITM8SHRyqE2Zki/hfRFkCESMCSCotgNRoj1RwMMkaDo0MDhflypsVyEGCImI8T6swGGSEh0c4ghEnJ95EqZRRRmiITMVyFrm5BrKSRdVsj9I8SODTVCQtKdhMyxIemyQsZxSHR8SCR5LrPBN1VWjA3i028xJohPuqyY/vK598eYIL7jMtQGyZlCzecZPsYE8UqXFfFn+RxvjBHiey+PsUJ80mXFPNv5pMuKMUJ81rsxRojPe52YZ3Lfe0eMEeKz5g4xQkKu5RAjJCRNVogREnothYzjkLEZ8j4s6NnHsl5DiqyzC8wQAAAAAAAAAAAAAAAAAACcaVAzxIFPXY4QI0S269oBDTFCQtolCjNCGN69d0XlxUQb+OQ/z1U4fdUoi0y5lLn7tNvO1G6uugM8PnPkjJ2t69UPaXLaaomctjoiRKevlshso/rXZojE5nnvqiMSY4Qws7XCej3H1L6QkUam6yPGuvGpIRJj/fHvdEWJxtToKvvdfRjTF141RGKiOH1qiAQYIXW7HjVEouZ+z/ohq2CEMD41REKMEManhkhMvvv+IkK9yxAJvT5y1Q8h8qshEnPf9qkhElMjhO8LLkMk5t7BddS61j8xa9vpRtEZ4RtTI2TtZjXeXIZIzDhmc8AUNZ9SU4DnFm0bYLq43myGSEp9kKK09yFqgxxx2uqDnJbaIEtNn7I6IagRckSuOiGrVCPEZ36PqREy3Kn+dRkiMTVCfN+lRGWt8HiPGZMhhZ+RTM9CqA0CYIYAAAAAAAAAAAAAAAAAAOBMg5ohDWy1QyTNHcsYM8Sn3RgzxKddojgzxISM0tOKOpBRrrnMkFWrGWJCRtNF1QwxIduNjCa3tRlTK8SGjCiPqRdiQkY1aEWgyAjJmFohNpoRDJrRQ01DJKZWiA1piITWCrEhDZGYWiEmpB0SUyvERtMQiYnUtyENEZVrmdqGSIoZ0kRezzFmiAkZ3aPZx01TRGNul9HMMUaICdmXWn3QskMUb8lLUe4RRoi1XWGIqEWHikNcJSPERtMQiTFCbDQNEc0IZ2mIaF0fuWqISDtEM9Kwud6JMUJsSENE674h1z9atrM0RGKMEEnTDNEcvzJ6XiuC/Lhqh6QYIU1kn2oaIc3aIZr9Iq1QLStEjlet8XZctUM0jZCl2iGKhy/fQWjd8+U9Xut6lnVDNJ/pmrVDNN7NyHWvlg0i3+9oPYfL+4WmCdJcZ8eYIDbktRxjg5iQZkiMDWJCXl+a47c5ZtXee9HyM5HvOg21Qs4+MEMAAAAAAAAAAAAAAAAAAHCmgRliwNcQISIaKueDJ6p2RDXNkGa7RHpmCMNRe9r5KEvFKFFJLitEywiRaEY5N8mVm3SmFEVuosxU6Ui7LzhCUtMMITqKZshx7oqprhnCsCGiZYYwWWrsEFExzzN+c9SVYbQMC8nAUpskud29PCcvV35oIv06RhwtqhX5zrjy46ZQGyIZLo9iVqqaIUxvnGdA5FpD5Ir0zWWwEBHNRnniqspMVnAuQ2SsZK02mW4VqkYIw2aIlhHC8D1O+97Mkb4aRkiTgwv5YgJz5dLPNUf0MowzIqK165kWJ0S0f1ueB4JctTy07/W5zZAcNUJqM0T50HPVhZxlek7O9fxCRDQ4yNR4pmYnGe6dRJStFs080zsZIv33imyGaBkhDF9nOd5FlD1dI4QJmRtghDx9gBkCAAAAAAAAAAAAAAAAAIAzTaYY66cP/cXu+2xdb8d1/erR1rtmPsJWhK/SIfNOa71LfApG1bxfZImCyhWZkq3dRSSuepQrjy3FZmcbR/9fNSf3xvLXvan550I5vJSn3fGF5U6V9TNSOLxyNMD6+4rtXl5EwB+qNUlERxaLZh8QEc2Hi+Od6LbLZoyspaIB59rta/Xx4hC5bspgT6dZvj+Mz1cfMLqplHtYRCep9UOD2VqhaoewScj/Dvd1JvjpYj2iHUXNtRz6hxlsi0wm6GwtzzHP+9Xxaq0juD1GM2o0lxXC7Q4OZjRd1wuVrKOnp7y+1onbGuxVEeraZkivvs70x/DoZkmTLfVms0Ulc2724a7OB/AzENvGm0/qHfjebUfjSnNNWc+7yutgmV9f63lg65Hl4gX7d+iE+mpnC2iyfyXPg+Zwt+rU8bbuweeybnI8G+Z6hpcWVk9LGOLLjdtTq8dS/cvHqWkDrF8/OmGHinZaLjOa66SoGyf5xKZsaFtjZV82qNPHe3eJ+4XS9SZtUs2sBLmylfD7l5z3JHB6wbAAAAAAAAAAAAAAAAAAAMCZBjVDHLhqh6w/Ze42DUNk7Xq7bQ1DxBgpq7DDbcuLmxpdkrNmiGl3WCNyh6MnmqREarh2yVPa7arpkWKKzAx9oBHoMNtof08jmk+aIUQ6FoepXY22bTU9NOyI8YX2oEoxROZr9v+WYonMNtwDKrYvbDUWNAyReb99zBqGiGmeVbEiLIeWaojY7guphohtrsxhiFTt5lk6pdghtppVqYaI7V6sYVvkimQ0Re9pHK8tsix1/SDNECYlgj+3EWIixRCx5dNPNUPYCJHs356+sO4Zrq2Di+lxZqaoaQ1DxDYfzhz3ah9stQtSDBHXc8/mk/HXctMIkaSsKa3zbOJlKI0QJnXulEYIo2GGmObJ9avpIcRGI0ThUZGNEEmsIdJ5P0gYE7bxQJT4vGno2vUb6fdMW12eZDPE1ocK48E0fjXMkKYRwmiYIabznlKzyPQuo0mSIeJoerKp/N5HYyyYXmkohJK3jZCK1GchaYQwGgaHqcaYSruGW46GgWN73+I6f6gV8vQDmyEemDZFbJshkpjNEdNmSKvdiGc4r5dCEZOPzw03ZmMkx2aIzw0s5qVG18KBKG6R6qMMxrTrW+A8ZlPEuBkiiZh1TJshkpAHWdtmxVJ7ERsXPu1Gt+1R3DxmI8C0CSKJ2RRxbYYwMZsiXZshRHH94FtwOmRzxLQJIonZFPGZU6M2AjwOJWZDxPceEPMg4DNPnuVNEdsmiCRmU8TnPhyzyXCcmyCSmOP1ffgNXT/YNkEkMZsi2pshPu3FbIb4FhUO3RSxbYJIYjZFTJsgkphNEZ8XhDGbIj7zX8yGiG8B55BNEZ/nm5jNENcmCBOzGeI1r0Zciq6X3k1i5lLbRkiTmE0Rn3kyZlPEKy1WwDLKtvkhidkM8boHZBoPUc+ZHl0bsyli2wRpErUh4tt3Ea8QfMZvyKaIafNDErMZ4nOeYzZDfN5lEEVuhng0rb4ZEvDZEp+1ZMymiG0ThIl5BrJtgDSJ2bQwbX6otOtxa4nZDPF9r2I6b9gEefqCNFkAAAAAAAAAAAAAAAAAADjTnIJS16ebfmP3XLPIen8R1KNZYJ2IjiIufKIrA6IOeLfWJwIlZ3osH2SkplbhO7kTrRUZm6u4OlF1LnztEC8jhAkoLOljhDAcbaBVDFOOV60i6LJtzXZzFRVnG8PHEPExQuTP+hgiPkYIE9oPvlYIUVVgXbO4OhdWZ7QKrKsXVV8QWlQ9xAwcny+8I6NCiu3l6gue97QNkclGNbFrFVUnOjJI1AurBxQpP0kjhAk53tDIv3m/8F4z+FohREd/n48hkis9lg+DgypM0McQ8TVCmP7B3NsO8bVCiIg2nqgW1D6GiI8RwnBUsI8hEhIhPdyt/vUxRHIZcb5GSAghzzNsefgYIj5GCBOyhgyaRwOLqftaIUTVHOU7r/oYITFoF6bNVSCdyN8KISIa7cy97ZCgZ8WA8RA6Foj8xsNxFUpXIdMtLVdBZR8jhFlbWDc+hkjI+okzQPi+q/G1QoI5JUXStQujL7UdsNYbn69+1uc5yMcIOTqG6l8fk8PHCIkhR4F0zfcn4OkJzBAAAAAAAAAAAAAAAAAAAJxpUDMkgGbtEN+aISa6DBGfmiHGdi07ubmK6aYU53JFpBx34XQfuiJ+UiIqTJEeGrvnpnZ9a4U427VMGUFmSJOOYRRihkhc0X2+tT2M7RoiEVLac7VL5FcrxIXNjvCpFWLDZYiEmCESlyESYoZIugyREDOkic0Q8akV0oXJEEmJ5nPeCxKmhi5DJPaYuyKjUubJs1JDxLdeiKQrqjnlPuwyLrTNEI1oPtvxpkaN2tYNIUaIxGWGnETB9C5chkioGdLEZoiEGCEmbHZIiBFiw2SIpBQRdpkhKfNbV+2QWCvEVjdEw3A3GSIhRogN0xoyyazr+NUQC6BJ17yaYoS4aoekzJGm2iEqRoilC0OMkCZdZkhS9gDHr8aOBSL3eEhZQ9pqh6TaINZ5UOOWplwA21UzJMQIkXSZIbFrJ9u7Gg0TxFg7RGFNdtyF1GPXkV3jKMQIkbief0KMEInJDNEwQWzGSexzWtc5STFCmucNtUIAzBAAAAAAAAAAAAAAAAAAAJxpYIZE8KK/8eYkM0TCpkisEdJqT+zwqkbANnZqU8wQSTNSJYcZop0XlCOBNHNsNqM+NPMqNtvVMEPqdsXUEW2GSBbNphghkmZ0n4bBUbfbiEzI1S5RuhnCSDsixQxpwpZIihEiaRoiKUaIRPZBrBEikYaIhhlC1LZDNPM89w9JNZ+vNES0jlVGSGnNj7nskKrtvIZIrBEikVHOWvdfaVusQq2QLuQxa60beL2QYoQ0kXbIKhohEmmIpFghTdgQSTVCGGmGaBghTNMMSTFCJNIQ0ZrXpCGiVSeEDRHNmodNM0TDCGGkGaJWb0k0k2IBNJHzrGaNkP07hqrPUtIMUasTIroy1giRSENEq54kES2NB62xQHQ0HrTWYtIM0aoP0poPNW9pje7UHL9NQyTFCJGwIaK1ZpLvajTfWyyZIYprMXUzhFk0q10fhMdVigkiaT73pJggkqbBoVkbRJohWs9pfK40a4OUPRgh4AiYIQAAAAAAAAAAAAAAAAAAONMoxpg+fdC0QoiI+qaciynt6QUCtcnkEfGOr1a0a260IjybaNsrsl39XO0LG0AxsoCIVKNLGE3TZqndTDMotzsf6V5wbJjMh7rtsrlRzPVOnqZl0oT7oH+oO9DqPlW+ziZbeY6XqIr81bxfTDerf7tqiIQyPl/97YN95XG7GGM5DJHZWpHFDplsVBO6WmT94p6rGXVFRDRbW0TsW2qdpKId2Ud0dMy9ie4xa68X6kg5zcjkBjlMk8FBFTY4H+gudPoHuudq44lqQjy8qL9o4Ojh8TndPhjuVv9qr0d4Xpxu6I5fTSOE0bRBmvDacbinfE0sujTHswSRrhHCaD+jHFyuQuvVswEsTtVwT3duGO1U7WlfD0S6Nshyu7rtaZkgErYstNchRPmerTVtkCbaz+qcESLHmomIsjyz5yJXH2gaIcz4fFE/U2mi/s6G2830niXHnJDLVAenE5ghAAAAAAAAAAAAAAAAAAA406BmSCSv+Is/RkTtHHkpNCN0VXctlc+wjEiV+atTWKppkXFkqkWK1NFdOs2VMopHsQ/mwzx9KyMXtHbx63zVSgEXHGHPaEbaT7eP2u6ptrs8EfTGOm1Pz1Xt9g502pttLh/nYEfpgiCi6fmjSba/o7d/Pxd1SIbXddqenJ+rtiejbYY7euNrtnbUB6Nbeu3K6Cs182LR7kApSlfeBwb7Ks0S0fI9XLPugKxxo2Wf8H1cc03TRNMQaUbRFpnsCCI9Q+RU1QxppgBXfDwoxLpxtq5zj9C2WGRdjPF5vdDq5rEeXtC7R8prQKt+23RRz1BrDdaauxSt+GbbmnOYPObRLaVaYIt72KGSJSTnhK2H9cyQ3buPQok15wRp24y3lPpicZ0NlMaXNLm0rEyi5WdezXErj1GzXqQmsp6FVl0iomUrRvM9hVw3rt1QqkmjbQy2rq88Y2CgaEDnqhXCfTHeVro3iuOUtaVSaJobmmaXrGuqlRWAn1FV34c2nhk1+4DrsLz/n/ygXqPg1IPNkEQ0N0VME5PKpkjmzRBJyqLDuGDLNEKTNkQ67qexmyOtzZDWD8S1SyQ2QxTaY0waZ8qGiCza2SJyLSM3QxiNTZHmZgijsSkiN0OI0jZEeBPERuzmiNwMYTQ2RZqbIUzKpojcBGmSsoHBmyCabRLZ1WONTZHmZgiTsiniUtCTNkQs7aZuitjuARqbIqZ7d8qmiHwp1yRlQ8R2v17FTRFXKpEcmyKpmyG2NFapmyLWc5ayMeD41ZQXoHIThEndDMlVNN72Mi5lU8R1rCmbIrYxn7oZUm+CtD4wvk3n/JXw0trUrsbcZTve1M0QW7qtlE0R1zNXyqZIcxPk6LPSrztbH6Ruhtius5RNEdcL6pRNEdOzrsa4tR3TKm6GyI0QIp3NENPLU43NENt6MXYzRHvzo4npGlvFzZDcmx82UjZF5EYIkc5miCl9VcpGgNz8kMRuhtieSVXegxqeEzU2Q7AJAlwgTRYAAAAAAAAAAAAAAAAAAM40MEOUYEOEidkh9dmlDTJFshU792s4JhLDK3plFUwRj8OMsUM6zZD6B8PbNpohCe36FPaKMUQ6zRCiqAhFmxkiCTFFTEaIJMYQMRkhrXYjDJEuM4Qozg6xmSGSEFPEZIRIYgwRlxnCxNgcNjMkpV2fgnQxhojJCJHEGCI+xQmDDBHPQ4gxRHzm+xhDxOceHWOIuCKrmRBDxPf+vEqGiE+RWW1DJMYO8S1sHmOI+Jy3KGtC2QyxGSFNYuyQXEYIkV9Ucogh4nOsMWaIzxiPsUOsRkjrAPzb9Jq3IiL3fdqNmbt82o2xQ3wLsIcYIj5zQYwZYjJC2p+dpw9C7RCfayzGDPGJ2o8xQ3yecUPGre8xrJIZYjJCJDGGiE8Eech7Cd93AjFmSC4rxO8a0x0LMWZILiOEyLMPAswQkwkiiTFDfAqZx1gRXUYIE2OG+DyThsxfPs+DMX3AJggDIwS4gBkCAAAAAAAAAAAAAAAAAIAzjWJZGtBERhdpRVdypIJqgfVMNKOENYuX1VFpygGC3KdaxdV74pxrFVknoqoPPP9+LyOk2S75t9352WKG0SquXh+f55/ma4UQVVHzmsXV5yIKX6vA+nxUtetjiPgYIXW764t2PQ0RXyuEiGi6XV0UWgXWZwuDxscQ8TFCmMlF/yLoPkZITLvebS7sJM3C6kRE43NVuz6GiI8RwrD5pVZUnZYjt7SKqxMdRVj5GCIh92Sek30MEZ9IZYajwbWKqvPn57BDphvVNeBjiPgYIUy5sC20DJH5sDpOX0PE1wrhn/W1Q8IiWhd94GNR+PxIsWjPIxrcxwhh+gfVwPI1RI67TkgsIce5dqPqAx9DJGRM8xzga4h4WyGeBM1bi8/2MURC2uWf9Zm/Qtr1xdcGCSVkLti9pwo/9jFEfIyQGHL0Q8g1xmPbxxAJidjn+5KPnaFtZoRaKf1xeeJ2iI8REoJmYWVJyHuAwws9bzskd5H0k2C6uMf4GiLaVkiuPvAxQhg2JnwMER8jJBRfGyQUHxMkBs3nP6K2CQJACDBDAAAAAAAAAAAAAAAAAABwpkHNEGVk7ZAmXdFJMfn76rZNQQknXDPERFdEU3TkSoa/1RkZkhDYYDNEvOuF2LD0QZAZ4tkmkV/NEBsmQ8SrVkgXlj81xAxp0mWI+NQMsWEyRHxqhXS2azBFQsyQVnsdhkiIGdLEZof41ArpwmSKhJghEpfJEWKG+LabGo1js0R8aoXYcBkiIWaIxBghpBA4ZjNEUsw/lyGSYmuaDBGNSGWbIRJrauaqH0JkNkRCjBAbx11DJMQMaWIzRFKsWmf0dEq7jseGEDNEYjNEVtEIMdUO0ThOkyGSMoa7zJBoI8TyayrzliGCP6Vd17yV0q6tdohGpLKpdkjKXOAyQ1KMENtckNoHttohKdeYywxJidg3PRNrWBi2cRv7DH7cZoiGCWKao1OMkK5rKHZ9aDNDTrI2iA3tmiGMzQzJVR8kqQ8cNUNCjBCJzQyJtUG6xnqKEWJ656hhgpjmrRQTpKsPXFYIaoUAH2CGAAAAAAAAAAAAAAAAAADgTAMzJBMuQ4Th3dMUI2SpPRmYsIJmiISjNNQiVjL9za1oEcVABzZFks0QRvRBkhniaDfFDGGahoiKGcKIPznWDJGwKZJihDSRdoiGGVK33TBEUsyQVrsLUyTWCJFIQ0TDDCFq2yEpZohkeL2XZISY2muilaeVDZEUI0TSNERSjBDJUuSQYrtsiGjVgpJ2iGb9rqYhopnDng0RrdpduQwRaYesohnCSEMk1giRsCGiWWdtKZpas93G40OKESJhQ2QVjRBJ0xDJYYZojV9piKjVCFk0ozpfHeSZB+W8pdU2GyKaueubZojmXNA0RDRrhPBcoNUH0gzRnAsGB6VqxL58JtZ6npXjVevZO7cholkbRM7VWnVC+JrSWhdKM2QVjRDmuMyQVa4NIs2QFBukiTRDtOqD8LjXrA3SfPeoWRtEzlta9UG4D3zqg8AIASHADAEAAAAAAAAAAAAAAAAAwJkGZkhmfAwRVx7yFHJFb2qaIYyavSBRPlTNKDWJqhnRQCO6tolmZEKTHH07UTI4JKViFEWT+VD3eOeKRoCk7Om2zYaIlhnCFLNMc4uiEcD0d/PEJ9jy2KZiq02SgpYp2WrXkS88huGuanM1uaLhidw502PItsYw1FBJJZchMjjI0wma9gJRvr+fqLuOSijzUZ55ULtPmcm2/uJlvJ2nDw4v6LarZjQbyDEP5GDrsQyLAco0BjJ16Wg3Tx9MNvSv2VzPm1qWAcP3V+1n7pxmiKYVQpTxWHM1m+Ey0DQimmgbIrnej+T6+4mI9u7Qvmh1m2PG5/Tb1DQOmwz2crULIwTkAWYIAAAAAAAAAAAAAAAAAADONBljeoAvMupDO5JfG979zxUVqgnnGGzWpkhqT0Q+9Fa4DzifP0eEln2lcSW3UJUiYbTPFREtR2koRkHwONA6/5MLyw3193T2qcu15ZNTHOrtfxfb1Ykqd3RuI/O7D4joaHjNd3X0m+JCpRqUN/TyY5ejo34tDvT6dHqxGgeD6zohVvNRufi3+nqwqzMH8D1gfKFqf3RD75412dK1Lvg+xdGgWtHGnHN4tKM3scz7RLSYp/uKUdHcB7OhTtscYc+RsFp9yuNqxn2gbLLkYLqob6FliOSyF/j+n8MQmQ97qnYI21FafcH1TAri+VDxPqhscnF9n43DajztX9G5F3B07XCvanfn7rR26zlkYR1OFSP4i8UasCyKpbo0qXCUuVb0Ol9TO/dUfbn9sN4Dwe4dPRoqRtgOhbkx2dS5Bvj5dbqoSSPrBsSiVtOmyaLJ3rRUfc4e7VR9e3heqU8zmbxqz4ANtE0Qhs8PmxZa1s36orbHwUXFmjGN85WzxlEquWqFyDGgeS+YrRWqZsju3aIWkVIfc80NzfcXk229tprweNWyOtefEOdfaZzJ2iBa9YIAkCBN1jHhSpfFxfdMpCzYcmxWuB5MUj4vl7YsNy+Y2BvWzPI+VeOluHaaLFdx45RF8XTL8h8i34V0/d0pi4vJOcN4TZjxZuv2/5YyBuRmCJO6KTKzpJxK2hQ5335S09gQ6Z0zPwHGbor0tt1PlCmbI83NECZlU6R0pEdL2RjhzZBWmwmbIq6HvZRNEVMBP41NEdt9KfYFflmY/0aNTRHT/Spl48J1T05p1/aSOmVTxDWuUjZFcqaHMhG7KZJrE8SGdr9obIaUlvVubN90FXVP2RQxbYI0i6mH0ne8RE7ZELG9SErZDHHNHSkvwgrDWk9jM8SWaif2Ra5t/ayxGbJrSNuSsikiN0GapGyI2FI3pWyGuDZAXM8znRh+N+XZmjc/bMRuitg2QTQ2XE1j1vZ87EPuTRBJymbI+g37+UrZFDGdr5TNkK53KLHXVo5NENf5T7kHzNbav7t+LX1tITdBmNj3VraC4xqbIaZNkJT5z7W5mrIhIjdBmJTNEFdxdNdmCNJjgRSQJgsAAAAAAAAAAAAAAAAAAGcamCHHiM0OcZkhTEwUy3GbISmfq22G+ES8xOzg28yQVtsRfXCcZkj9MxGGiNUMYQKDOHz/7pjzZTRDJAEzoMsMYWLOvc0MkYSYIjYrpEmUIWIwQyQhpojNCGkSY4d0mSFMiCFiMkIkMYaIywxhQgwRmxHSajPCEPGJfAsxRGwRVk1iDBGf+1CMyWAzQ5gYQ8TnfhVjcmibIb4R+lH96tMHAYbIcRshTULskOM2QiSrYIjYjJDWzwX0VZcVQhRnhvhEaYcYIi4jhIkxQ3xTi8QYItpmiMkIaf1MxKNqV/HlmOh2nzVzjCFiMkIkIYaIywhhYswQ32LeIVHsPimxoiKjPX4n5Nm6ywhhYswQn9RYIYaIzziNMUO0jRDf/o8xQ1xGCBNihvicoxgzxPedSagZctxGCBNzDzAZIUyMGWIzQSRx76u6fybkfYVPOqyY+c9rvAaaITYbpEmMGeIyQhibGQIrBKQCMwQAAAAAAAAAAAAAAAAAAGcamCEngDREfMwQiU80xUmZITHHcBJmiMRnJ9/XDCHyNwS0jRAmJJLAJ4qo0wgx4RHQEfr3+5wnLyNE4vErPmYI43P+fY2QJr52iI8ZwngZIh5GiMTHEPExQxhfQ8TXCmniY4j4mCGMjyHiY4RIfAwRXzOEyN8OiYl48zFEfKKsGB9DJOa+52sydFkhTXwMkajITI9jDekDn/Zi7AXvPg3oAx8z5CSNEMbXDDlpK4QoX3/5GCK+RsjS73j2mY8ZwvgYIjF5+30MER8zhPE1RGIKzvoYIiE2mU90sI8R0vodj2eQLiOkiW+ke4xF7WOI+BghjI8Z4mOESHwNEV8rhMgvij2mSLrXc01Asz7P0r5GSBNfOySkWLrPHBQzTr3M1Aw1QmIyXvgYIj5GCONjhsQUtPdZ14SuVX2uqeMqku7CZ+53mSA2fA0RXyuEyO8chDyjMF7vKQIKpPu+zwkdq75miI8RwviYIT4miESaITBCgBYwQwAAAAAAAAAAAAAAAAAAcKaBGXKCsCESY4ZITBEWq2CG1L/XcSyrYIYwrh39EDOk1a6lD1bBDGn9riG6KMoMYRwBHSl/v+1cRZkhjONXQ8wQien8x5ghTJchEmKGNLFaIhFmCOMyRELMEInNFIkxQ4i67ZAQM0RiMkVizBDGZoiEWCHGdi2mSIwZwpgMkZhoK4nJFEm579lshhAjpEmXHZJynzJFaaf87a6o7xSDwdqnKX+7wxBZBTOE6TJEVsEMYY7bEImxQoi6+yzECJGYDJEYI4RxmSEhRojEZojEGCGMywyJqS/EmKKEY4yQ+nc7nkFCrJAmtsjnmEh7xmSGhJggNkyGSIwRwtjMkBATxIQtkj3GCGGMzzUJ02iXnRBjhRDZzZAYy4BxzUUp49S2DslhgxDFGSGMyQwJMUEkLjMk5VzZ1jcpazSXGaJthKSc+y4zJMYKIbKbISEmiMR1PlKeUUzvJkJMEEnX+5zYsWozQ0JMEInJDIkxQSRshsAIAdrADAEAAAAAAAAAAAAAAAAAwJkGZsgK8GXf86Mq7choi1UyQ1rtiGNbJTNE0tzhTzFD6vbE376KZkjdRiPaKMkMkTQCPDT+fhmFkWSGNFk0k2KESJrnP8UMkbApEmuESFqGSIIZwjQNkRQjRCINkVgzhJGGSIoR0kTaISlmCCMNkVQzpG53YYikRPA3kXaIhhnCDHd173fSZog1QyRsimjen5pR2xp9IKPAteyFVp8m9oG0Q1bJCJFIQ2SVjBBJbkMk1giRyD5MMUKYphmSYoRIpCGSYoUQtc2QFCOkibRDUowQphklnGKESPhZJNYEkchI6JRIe8n2wzMVI4SRZkiKFdKEDZFUI4SRkewpRgjTeq5ROk3y+TnWCGGkGZJiGUiac5PGOJXrEW0jJMUE+f+zd+dhclV14v8/Xb0knaSzkYAssoVNQJBNUBjZ3PCHC47LgDjihgoiI6OyOKPid4bFGR1lGEQUQUERBB0FwYWRXURk3zcJIWELJJ2kk+6kt98f3ady69RdzvK51dWV9+t55hnpVJ+6XVVdS5/zvseWLENiihCbKUS07if7/Y3Ge7Pk71Mz7A2SxS5DQksQm12GxBQhRvJ+0fxMYv4mEVODJNnPe2qP0/G3JjEliM0uQzSqEBGRu79HEYJyUIYAAAAAAAAAAICWln1CWzTMup6xWdTYvUPs1Txaq1nLoLXauBFGlH9LNFcFl612laji42l8GnZYaSWG9n1UVcKvkLn/s/aQCTU8TW+VlIjI6JSx8dqm6B1o2wzFpaEJlenjy2SU7q+2Wetq/nu0X+cBNjp1/D4a1ntgDc0eu3+y9hAJHnf62O9++4DOsa6bNTZexxr9X6rB6SJdK/XGM6Wi5kpmEZF1M8bG7ejXW4U13NkmHTl7aISMJ6KzKjypepsqrbgfHl9l3KG0KrpMQ1PHfjfb1zX/sY62t5VSh2gVIUb1caR4k1bWjagfp4hI18qxJ5LhKTrP0d2vjD3nD3WXs55N83ffPNcNK9ffWkWIPZ72+zIRnX1Ckganjf3/aUt1n0+0ihCbRhFitI0fYtreETFiSxDblJVj4w2W8DuqWS2JrH/Maz/vaxYhSZpFiKFZ7oiUc2aOoSltpXzWLWtvGK0ixNAoQWyaNUiSVhFiaD8+Dc0ixNAqQYzS/r4DjKMMAQAAAAAAAAAALY09Q5rIvh8a2ztEu5rQLESSK4c0j7NtfKGH1koSe9WQxv4ZeePHMCsT2pR+E+39VzTOpS0iMjheMGnWElpliG1w5tjPrLWaYmja2Hhtiiv6h2cnlp0P6Y3bPr63x/AaneUU0zeqPUH1mj6dTW6m9wyojiciMmN8zL4+nU1epkytfQD1L+9WGbdr5loREVm3XHEzmo71q+UqK/WW0oxOGS86Vug86ZkVc+1rFZ9IEkN1rdAb1jw3t/frjGfvudU+oDOuWdlp78sRw7wW2+d9D2W/ZmqtQq4+ngb0Vosm6wCt188krULEvK/Reu8wNuj6/6m5b0b7wNjr3YhSHaFZhBhtw+sHVTtOGStOREQGe3Te8Nj3y+B0nWM1z09r5mv+7GP/f1DrHPfW84hWaW0+z7Svy7+cj+Sxxe4Tk2TOR2+fQz+U2S9Ba+8Zkdrne83np/WfFXXGG7Eqiy6l0nBtj9l/RWU4EVn/fkRtTOt+Uas2u0wFqjKciNT+vWFqr+JeIbN07ydzG2ruC1bWynjzeOpcrXO/D2xU++SsVcdU9xXV/NvD+LaQWve7fR+NKt1n7WvHx1f8e9uU3sT9rfjcbI5V62fvHN9j8Y6f/LPOgEAGJkOakJkUESnndFIxkyN5f8CIOda0N00xEyNZkxXakyJF1+ciLdOM+fCQtRl97B91qpMhdQOHj6k9GWImQWyxkyJmMsQWMzlSMxlSvaL4B2h7ykbnMRMj9mSIETOJYSZCtMYzZqSMGzMxYk+GGKGTImYSxKYyKdJR/yQaMyliJkHqriZwUiTrg5HKpEjKEDGTIlnpfOykiD0ZUh03YlIk7bQuMZMiaa+7GhMiWa+RoZMimY+niEmRtFMklTEZYoROimS9j4n6o2PO98b8kcxMgtiCJxtKPNNYcjKkenURkyKVjPs3dFIk637QmAxJe26KmRSppEwqRE2IZDx/xP6RKOtzS8ykSNoxaUyGZP3hLnRSxEyC2GImRdKe5zUmQ7L+sB76h2J7EsSImQwxEyBJGn9sTXs/EjVuxv0R8zyfdto6jcmQtN/PmMkQM/lhi72fsm67mEkR9VN0Z7zsxE6G2JMgRsxkyHDax8GYvzV0pX899n7Puo9iJgTaUz4mxrzO1Ux+2CLu+rTjFIn72c0EiAiTIGgcTpMFAAAAAAAAAABaGmVIk0rWISLlbTgeUokUreQMOda8FSQhhYhLqVFGJRJSiLhs4OWzsiqrDKkZL2C1a2YZUh3Ue8iGlSFJIZVIVhlihBQiqWVI3RW7j5tWhNRdZ0AhklWGGCFFR1oZEjNuWhFiCylEssoQkbA6JKsMsXmVIilFiC2kEMkqQ0TC6hDXVWJepYjDRUMKkbzn5JA6JKsIqRvboxBx2eg3pBDJe70NKURcXxN9ChGXx1JIIZK3eXZZhYhvHeLyviVoJbZyGZJVhCR5VxclVSFpRUj1KgPKkKwiJMmnDnG9/UMKkbznppAyJK0IsXkVIo7PHyErZ/M+q4SUIS7H4FOIuK5aDilDsqoQkbAyxOV53ud5ybUqCFk9n1WFiISVIWlFiM1nBbrLZ8KgFe0Ft3/I83xaEVI/rvt4Ln8/CClDsooQI+T2dLm9fMqQsk+HlSWkDMmqQZJ8ypDUEqRuQPfxquNmFCFGyP3ucj+F1BFZpYVI2OtbbhEiElSF5B1jddiAnz1ZhIhQhaCxKEMAAAAAAAAAAEBLowxpcnYhYkzkJus+Kzhdj9Nn5YhLKeJTaEz0PiIuq4AMl5VVLmVIdTyH+7KwCEkd2O1iE1GGGC6FSFERksa1EnEqQ6oHUjymSxlSvW6HQqSoCEnjWnO4lCE+Y7qUIYZLIZJXhNh8ChHXMsRwKkQcyhDDpRDJK0LqrtqjEPFZJeZch3g8NbkUIj7PxS6FiGsRUjOu40PZpQypXtahEPEpMF0KkZBK0vW9hddjyaEQyStC6q5buRApowwxnFZie63WLr6wSxFiTHQZkleE1F21w7G6FCGGaxkSslrbpRDxeW5yKURcihDDuQwJKa0dHlI+n59cChGfVbuuZYjPimWfMiSvCLG5FCI+z/Muz0e++0z4rKbPK0JsLoWISxFiuNyfPu8/nB8fAS9XLs85LkXI+vGKL+PzO+lahhTVIGlcblef52SXMqSMIsTnsWS4FCIuRYjh8j7NqQipDuh2saIaJMmr2PK4n1zqCJfKonrdjr8fhTVIksdFfY7V5We3SxCDIgQTgTIEAAAAAAAAAAC0NMqQSSKrEDEaWYr4lCHV8QqOz3c1UFLaitaQVanV71UuRYqOJWQFh0j2KiufMqRuzJT7NqgMqQ6Y/88TWYbY0kqRkDLEKCpEvMoQI6cQ8SlD6o4lpRQJKUOMrJrDpwhxGc/wKUOMvELEpwyxZZUivlWIUViHeJQhRl4h4lOGVA+hoBDxWcmflFmIRDwl5RUiIc/FeYVISBlSHTfjIe1ThNR9b0ohErInl5FXiJRRhoQ+jkTSCxGfIqTuWBpciMS8L0l9rxBx+GkrY32KEFthdTGBRYgt7Vh9ihBbUSGiXYbEPCelFSI+RYgtsxCJeP+et4I25HNSXhkSch736rgZz51Be0FIcR3iU4QYeWVIyPN7URkS+jkwa8W2TwliyytDfIoQo+h+Df0cmDmu8vO7TwlSP172v4X8ThaVISFFiJF2e4Y8Bxt5ZUizFCFGWhniU4LYst6vedUgNQPm/7NPEWLk/V7G3D9pdYRPXVF3LAW/J15FiJHzLTHHmvazZ5UgBkUIJhJlCAAAAAAAAAAAaGmUIZNMUSEiol+JiNSWIiFlSN141jHGlCEi9atbY8oQW9mlSMxKDpH61VYxZUh1zMR9HFWG1A1c+5/NVIYYyUIkpgwx7EIkqAhJY1UiMWWIkSxEYsoQwy46QsuQrPFCipAsyVIkpgwx7EIktAwx6gqRgCLElixEQoqQLHYpErOiXySlEFF4SkoWIrHPwSL1hUjMCuyaca2HeEwZUh0jUYjElCGGXYjEvv7a7zFiHz+GXYfElCFG2YWIxvuPmvcIioebXDEbU4YYddVFExUhhn2MMVVIkl2IxKxGFqmvQzSej5JlSEwRYtSVIUrv2+1VtBqfiZKFSEwRUh3Pes4MLUIMuwwJKUGyJAsRjc9W9meW+M9/1n9HFCFGsgwJKUGy2Pdz7HuPuseNwvN78rknpghZP17tf2v9jcIuRGKKECN5e8Y+B4vUlyHaNYjGe1cjWYbEFCGG/b4tuAipDmiNF1CC2JL3t+Z9Y9cRMaWFSP1rTlAJYksMEXt8IvU/c1ENIkIRguZAGQIAAAAAAAAAAFoaZcgkNVGFiIjeKs3aQXWH01jNkqRdh4isX2GlubJDRGe1a9JQ+hYIccYPsRnLkKSRTv2nx5Ee3V+g9mlKpck4U4dolCGGKTpiyxBbpegk1J4Gh/SfNE0hEluGGNVCRKEMSWpbq/+zdy7TXW/Rvk73uc3UIZrPwaYQ0SpDjM7VqsOpFgKGKUS0ykxTiGi/59CoW23ahUhlUPn32xxeCWWIRhWSNNKp+1ykUYTUD6r7XGTKEI3VyCLryxDt5yERkYFZuvePan0s61fRan4GMmWIRhWSlHae/ihlPK8P6A5qnotiixDDrOjWKEJsmmcZEBH1z7rVle0lPK9rf47W/tnLeKy3r9Md1JQhzVyEGMNTlZ+HtfdEMX83UChCDPP7o32sGgV3Uucq/Qd71r6EoUwZQhGCyYYyBAAAAAAAAAAAtDTKkEnOpRAxs+naK1w0V2ua85ZXhnUfjkNTxsbVWkBevQ0VD3PYbAWgdozjd7jS/T04Y+z/l1EEDU8V1fOCD/aYJWc64w2NVxyVAcVfnvljhcDIgM5SlKmzx5Z3DK7TGW/enFU1/903EHui1/U2nbVSREReWNmjMt6rZ/eKiMiSFbNUxtt81lgqsPCVuSrjiYjM6B67v1f06SRWXV1jS5n6XpmmMp7R1jn+i9int+RstDL2+9j1ss5y2pHxFWGdfUq/4ONPFx39+RcLG1N5heH4SvQuh1VXLsz5mzVXh5lV6LHnv68a/1G1VmualeL2+fpj1K3k13o9My/jSntSlFGGGB1r4vdYEhEZ6Rh/nVWuLgzVQkT5GM37tuFunedK87hZN1tvyavZa2jNPJ0xp6waO8a+zXRzi8r488XgDL37qGN834zhKTpjmueirpU6v5BD08aOq0OxNDGvt1rHaKwbL4Gmapz3XkSGzIp2xcPU/rxs6pqhbp3HT0XnKbeG/TNr3QZdfePPRUp7r5gzNWiVRSLrV7V3rNF5EK2dM/azav4+Dk1rq9nvTYsp87QeU0PjH0009pUSKecsGmaPjOh9TMZNXTZ2v6ybpfu+YMorY+OOKNYw5vlcq/wy789dfh8pQtCMmAxpEbmTIhnPd804OZLczFVjYmTI+uASOylSd5sp/PYMT035YsS49oZtVYH3t5kMscXc36k/s8Ib2+pkiBH5Wj9kndJKZVJkfv3pkmImRsxkiC10csSeDDFiJkXMJEiSxoSImQwxYidFzGSIoTEpYiZDkmImRsxkiC10cqQ6CVI3YPgnDzMJkqQxIWJ/IIieFLEOU2VSJDGmxoTIaMYfXWMmRdI+AMZMiqSdiidqQiTjR4udFLFPm6MxKaI+GZL18h0xKZL6vkf5nX/MhEh1EsSmPOGgMhlS0iSILWZSJO2xEjMpkvYHuJgJETMJYtOYFKkkniM0JkPsP47GTobYz0EaEw1mIiQp5o+wWX94Cz3WdRmnQYuZDBlKO6WPxp7CJU2CGBqTIdoTIVk/c+htYSY/bDGTIWmnqtaYDLE3fY6dDDGTINXxFCZD0n6/YyZFsk5LGPq4Gsr46BEzGZL22NOYDLE3Co+dDDGTIIbGZIiZABHRmQTJet4OnQzJeh+e9/vIJAiaGafJAgAAAAAAAAAALY0ypIVk1iEOk7/qm8RJWDkwkrP5d0gpYpchSSGVSOHtFDBmaiURMV5mGSISNP2ZVYYYIfdz7s9sBKz6qStDkgIWQdhliC2oFEkpQ4yQQiSrDBEJq0OyyhAjpBBJK0OMkELELkJsIYWIXYWkCSlF0soQI6QQySpDDN9CJLMMqQ7ovxwrrQwxQgqRotVRQYVIzlNFUCGSO57/E3lWEWILKUTyVsOFFCJ5mzQHFSIFP1JIIZK3mXJIIZK70XXIitWCuzukDMl9j1PSO/+QQiSzDDGaoRBpUBFihJQheY+RkDIkb/VxSBmSVYTYQgqRSs5zQkghkrdCPKQOKdrMPaS6SFsxboSsSC96nfU9xqwixAgpQ1KLEKOMz3SBijadDylEGlWEuP57mqwqRCSsDEkrQoyQMsQuQWwhZYhdg9SMF/B7mPd7bYSUIVlFyPoxvYfMrEJEwsqQvMdcSBlilyC2kDLErkGSQsqQZAliCylDip6nQ4oQl/fcWb+PVCFodpQhAAAAAAAAAACgpVGGtKBmKkR8q4G8MsTmUorklSE2l1LE6/Zx/M1yqiQ8xixacVjD4ecpKkNsLve518/ssfontwwxPG6eojLE8CpEcsoQw6cQyStDDJ9CpKgMsbmUInlliM2lFCkqQ5JcKxGXMsRwKUTyihCbSyFSVIQk+dQhhWVIdVD3ZVl5ZYjhU4i4rI7yrkMcniq8ChGPd1IupYhrGSLiXof4rIJzKUTyihCbUyHicRu61iFFK7JrxnQoRHKLEJvPylXHu9unEHGqXydw75DCIsSYyA3VS7hun/doLoWIz2PCpRDxWXXsWoi4ViEibmVIXgli8ylDXFaG+5YhLs9BPtWFy8pxnxXprquPfY6xqApJcilEcosQm/ZnOUdFNUiSSxnS6BIk5vJ5RYjhU4bkFSGGTxlSVIQYPmVIXhFSHc/j99Dl99pweY4uKkHqxyy+TF4JUjeeQxni8xhzLUOKapAkl/fEeSWIzaUMyStBbL5liMtztE8ZQhGCDQFlCAAAAAAAAAAAaGmUIS2srhAJOa16g0sRnzLEyCtEfMoQI281ZdDtUfAb5lVJOIzpVYYYOT+XbxmSVHR/B/3sOauBnMoQW87N5VqGJBVWIg5liC2vFHEpQ2x5pYhvGSJSXIf4lCFGXiHiU4YYRYWITxkiUlyH+JQhRl4h4lOGGEWFiHMVUjNo9vIslyLElleIhJwvt7AQCXiKyC1EIt5BpRUiPkWIragQCTk/cl4h4lOGGLmFSMBtWbRyzacMqY6ZU4h4lSFG3q9ZyMt1QQkQsh9aowsR5yokqZF7h0xwEWLklSEh+8jklSEh56EvKkN8ihBbWiHiU4TY8gqRkL0CigqRkOeevJW9PivHjbyV6WWcj96nCDHyyhCvIsQouCu1P9f6FCFGXhmiXYSIhP3Med/jUoLY8soQlxLEVlSGuNYgSXnPAy4lSN14Ob9/Ib/PRc/RvjVI7djZ/+ZThFTHyylDQh6PRWWITxFi5L0n9ilCjLwyxKcIMbT3cRLJL0NC9uOzfw8pQjDZUIYAAAAAAAAAAICWRhmyAagWIgoL3couRULKkCS7EgkpQ2zJVZYqP7/1GxdUR+SMF1SG2FJ+zjIKkeCfPWNFUFAZYqTcbCFliJFZiASUIUZaIRJShhhphUhIGWJkFSIhZYiRVoiElCFGViHiW4YYWYVISBlipBUiIWWIkVWIBJUhIpl1SEgZYqQVIiErV43MQiTyHU9dJaLwDipZiMSUIYZdiIQUIUl2HRJShNjqCpHIIe0VbSGrsuvGTBQiQUWIzf51i7yr7TIgqAixlVyIBBUhSSUUGzWFSJMUIUl2HRJShNjsQiSkCkmyC5GYIsRIliExRYhhlyEhNUhSVhkS89yTttI3ZAW5kbUyPfS1NWslckgRYqSVIUFFiJFxtzZDEWKklSHNUoTkfW9IEWKklSEhRYiRVYaEFCFG2nNCSBFSHS/j9y/0dzrreVq7CAkpQerGtcqQ2N8/uwwJKUFsyffGISWIzS5DQmqQJPt5OqQEsSXLkJASxGZ+DylCMFlRhgAAAAAAAAAAgJZGGbIB0SxERPRX2YiMFQSxdUiSKUU0ChGR9SsvVX/28TGjCxFrPJVCRKQ6ZRpThthMKaL2M4+vTIgqQ5LGb7qYMsRWLUUiypAkU4nElCG2wXUdUWWIzZQiMWVIkqlEYsoQmylFQssQmylFYsqQJFOJxJQhNlOKBJchdQOOLdmKKUOSTCUSU4bYqqWI0lNEtRBRfAfV0T+qUoYYphCJLUMMU4holCFGtRBRGjJvD7EQHf1KvyNJyu+629cqH2MJnwoq6/ReS0WknEJEo/5J0HoPZsoQjSLEMGVIbBFimDJEowgx+jZrVylCDFOGxBYhhilDNCo0w6z8jalBkszKdK3XUnN8MSWIzZQhUTVIUhmf0ySuBLGZMkS7BtH8mUcrcSWIzZQhMTVIklmRHlOC2MxzQ0wNUjPeat3fZ/N8HVOC1I859v81ahCR9UWI1mPRFCEaJYhh3hNr1CAi64uQ2BIkaaRLpwQxTBGiUYOIUISgdTAZsgF64/v/U0SKN/9zpf2GU/OPQcaI4pslEVGbUErS+oOVoX07Ds5UHU5EijdE8zU4XffpbGim8h9wRKTSo/vpp2uq3h/Jt994qby0Wm/W6zVzXxQRkcWrZ6uMt+PMl0RE5G99G6mMJyKyXc9SERF5ctV8lfFmd439lfzJ3nkq4202Y2wi6allej9zZ/vY47p3+XSV8SrjkyrDK3T+4tI2PP6mfbX+jHvnKt3nxY41emONdIp06s1FVl+ntD78pG34Hkv7j0FMhihgMkSF2oIUM167/s88NF3nL/ltQ6Oq44mM3R+rN9Ybz0xgD+q87FVp/aFTZP2Es9YfeM3ns+Qp/2KMdI7/EV9xkmp0fAFcZ5/OmEPjZxm1T+8YPN74/Tt1md7zbP/8sTtmynLdP8Z2rtK7X9bOaZMZS/Set9fOVH4/V8KCTK2/i1Qpv5aqLSBM0P4c3qb3kXRsvBLegnXmbGwfQvtnFtGdfNVkjutPP//CBB8JoIPTZAEAAAAAAAAAgJZGGbIBe+P7/1NlFURd8ho7ZAkbgtsZe2yma4+nsXIhmYhrnIYkuUmWSPwK3CFrNZ3GqQGSNYzGbbhulrWh7FDkxqU9teONKuxQ2zF7/a5yI8Phxzd/o9ol5CtW12+67Wv7jZdW/7dGIWLKECO2EDFliKFRiJgyRESnDjFlSHXMyELElCGGRiFiyhARnTqkYp1uK7YQabN+LzaUQiS5Qk+lELF+xNBCpM1aHKpRmtjlYuyY9uuRxjFWhtaPoXE6IbOqujpm7DHa9+9A/Ito8jSlGj+z/V6mbTDyGCfBBuo144nISGfkmyXrNhyN3YReRDr6ane3Hdgk7P1D21DtsWmUIclCR6MM6ah9SW7KMsSuGGLLELvY1yhDks9fGmXIqHVK5NgyZMh6CGuUIcn7VqMMMUWIEVuG2Bs2a5Qha+esH1OjDOnbvPZ3OOYYhxMbz2s8pu3TvbWvy7igI7uysDcRD5E8RXVFoUCwP2vHnpXC/tuCxmnQkqfE0ihXuqzHXOwZTezXlGGFY5zaW3vHxJ42sGL96o4o/M2mY2CUIgQthzIEAAAAAAAAAAC0NMqQDZzZP8SIKUVSVwPETGxnPDJDSpG8iiFkFUNRFRFSOeStAggpRewyJCmkErHLECOmEElbkRJTiNhlSHXMwELELkOMmEIkWYYYIYWIXYbYQkqRZBliCylF7DIkKaQSscsQW0gpkixDjJhCxC5DqmMGFiJ2GWLEFCLJMsSIKUTsMsQIKUTsKiRJuxDRrkNEwgqRvJVvQYVIxo+lVYbEjieSvqdV1HgZr0MxY1aG6r83pJawi5Ca8UKOr+BhG1KIjHTkvV/wP8ai9yxBhYhyFWIXHLHXkTqeRJYhKbdjTBliFyGGVhlihBQieXu2hBQi9updWzMUInn1QkgdkrXiOWYVfdrzV0wZYhchRmgZYhchRkwZknZfhpQhdgliCylD7BokKaS6SJYgtpAyxC5BbCHHmCxCjJjHtF2EVMcMLDmy3sPFlCGDKR+5YsqQrM/WIWVI3t8QQv6mkrc5ekgZYpcgtpAyJO/1JKQMsUsQI6YIsWsQkbgixN63hCoErYgyBAAAAAAAAAAAtDTKENSIKUWcVgP4THg7PjJ9ShGXisFnVUPeeL6Fg8tqAJ9CJK8MMXwKkawyxOZTirisSPG5HbPKkJrxPCqRrDLE5lOKpJUhhk8hUlSGiPjXIXlliOFTiOSVIYZPIVJUhhg+hUhaGWLzKUWyypCa8TwqkawyxPApRNKKEJtPIZJVhNh8CpG8MsRotULEZeWbVyFSVA54rOrNqkJCx0srQqLGc3y98RkzrQipu4xHLZFXhlTH81lp7fhw9SlEtMoQ1/coXmVII4qQiOt0Gk88CxGH29GnEMkqQpJ86pCsIsTwKUPyihDDpwwpKkKMiSxDXKoFnzLEdaWzz2p67eetrCLE8ClDsmqQJJ8yxOW+8ylDiooQw6cMyStCDJ/qIq8IMXzLkKIqRMTvGNOKEMPnsZxVgtSN6VFyuLxv8ylD0kqQuvE8yhDXz84+ZYjL3wx8/oaSV4QYvmVIXhXiU4S4vI74FCFZJYjNpwxJK0FsPmUIJQg2RJQhAAAAAAAAAACgpVGGIJVdiBh5pUjIeSJzVzgGPDKLKhGfasHl5/EZz2WVhs+KANcVmC6FiJG36sO1DEkqun18VqS43H4uZUh1PIdCxLUMEXGvQ/LKEFteKeJShtiKShGXMsSWV4q4lCGGSyHiWoaIuNchLmWI4VKIuJQh1fEKCpGiKiRNXiniUoYYLoWIaxki4l6HuJQhRrMXIkV1SMi5kHMLEZ8VeY4rel3KEJ8xXcoQr/E8XoOLxnMpQuq+J6eacFlZXTde0c/scx87lCF5RYjNpRDxqVcL65CJKEI8j8FnTKcyxOP2cylDXIoQw7UMKapCkvIKEZcixFZUiLhWIYZmHeJSF/jUCq5liM9qZ5fV9D7PW3nPV0UlSJqiOsSlCDFcbmufmse1DHGtQkTcyhCXIsTIqy5cShBbURniUoLY8o4xrwSxuZYhrlWIiFsZ4vO+zaUMcSlCquMVlCEhe27mfQ73OXuE69+AXGoQw+W2LtofJMnludLnNaSoDHGtQZLy/g7kUoLY8soQuwQxKEKwIaEMAQAAAAAAAAAALY0yBLmyChGR7EokqBAx0r5XsRDxWUVa830ZP1PoeCLpKzh8ypC68TJ+lX3KEKNRhYhPGZKUtfrFpwypGzOlFPEpQ2xZpYhPGWKkFSIhZYiRVYiElCEi2XWITxliSytFfMoQW1Yp4lOGGGmFiE8RUjdeRiESUoaIZNchPmWILa0U8SlDjKJCxKcMMSZrIRJShhiphUjAYWfVEj5FiMuYPkWI03gRr71ZP3NIGVL93pRqQrUMiXhIphUiPkWILe1n9SlC6r43qxBRKkOCipCCY4gZM7UQibj90goRnyLEllWI+BQhRloZElKEGFlliG8RYmjvGyKSXhv4FCFGURniU4RUjyNlNX3I85SR9XwVUoWIZJchPkWILe229ylCjKwyxKcEsaWVIT4liC2rugipQkSyy5CQIsRIO0afIsTIKkN8SpC6MVOeNmPep2WVIT41SM14GWXIRBYhRtbfSXxKEFvabe9TgtiynjNDXz+yyhCtIiSkBDGyipCsGkSEIgQbJsoQAAAAAAAAAADQ0ihD4CSvEDFMKRJVhojUr4BUeITapUjMqlKR+p8xdjyRsZUdMWVIdRzrVzqkDEmyV4iElCE2c3uFliE2syompgypjpUoRGLKEMMuRELKkCRTicSUITZTioSWIYZdiMSUIUayEIkpQwxTiIQUIWlMJRJThlTHsgqR0DLEsAuRmDLE6F0+PagIyWJKkZAiJEm7DhEprxCJWWlo61wlUdWAYdcSMWVI2ngxZYg9psbrbXK8mCLESNYSMSutq+PZK64jhzR1SEwRYjM/c0wVIpJShjTDXiF1g7TpjSWJOkThI5hdhsRUISL1ZUhIEWIbmt4eVYTYTCESuqLXaEQZElKFJJlCJKQEydK+drSU56nQIsSwy5CYIsQwt39IDZLGFCIxRYiRLENiihDDri5CixDDlCExJYjNHGNIDZJklyExRUh1zMRTp8b7NFOGhJYgdeONlyEhJYjN/vwdUoMk2X8XiSlCjJHOuBLEsJ87Y1837CIkpASx2X//ialCRNaXIXkliEERgg0ZkyHw4jIpYmj8Yb8sGh8CasZz3OiwiHmDo3nbaf7hTURkxG0fZCej7XoTIiIigwqTF0kj3fpPj+1zFN4hSjmTIhtP71MbS0RkoymrVcYxEyIakyFGRePTRMLLa5U+7SSsGdL5ZTOTIhqTISIiK/sU/kJhGVmm80QwGSZFYj902joVf207+nWf87R/VhGRyrDOMWpOhpTFZdNyHxp/2Dba1+k+h2oem4jexMXYYMqTIQ6bn/tqHyjYXdfT2o2mqo013K37867t0fvjrEg5G6nHToIYmu+5Da23P2YyJHYSxGhTem5PyjptcvB4ig89MxmiMREiovdZtAxakyDGcBm/F8oPP81jrAzp/d6K6E6uirhtFu/K/N1CYyJERGdiJqlzte57HxG9v0v5vGdkEgTgNFkAAAAAAAAAAKDFUYbAm2sdol6GmOGUHrHm9FEaK0HMCgutlRZmVYTGqUWM0Q6FU5iJyNC0sf+ftZGb93hmkbniw0WrEBmePfZDtq3VWwrWMXdsueCoxp0hIpvMHTuV0tBI/INvhzkvSe+6adHjGPvPfUpERB5d/SqV8d4wa2y8+/teHT3W3j1Pi4jI3X1bRY8lIrLjtBdEROS25dupjCcisnl3rzyxauPocaZ11C7ZevSVuDHbK2NPmstX6j1WKpWx39mhl+Oqk9F267R0K+N/d0c7xsbsWq7zBG9WlmqsHE6uFMzaqN1vvLGfVWslnXkt0zi25GuEyqmtxl/DNAuHkY42lWOzX/ujj3H82zVPVWTeO1WyNkB3ZP+sseONDZKzMXuA0c6x3/3K2vi6rmYDdY2PYOO3X3u/ToY1NGNsOfPwlPjnu+Qq1cGZ8c/FZrz+uTpL4KesHD8N0Kbxx9ZlneJp7cy428+Ua4MzNE9tN/b/o+sG+yx+Cg/jkY7sTbFDDI0XCFqvZeazStom275MER97uh5jaDzi0vpcJiIyPFXnPcrw+LFpFaym4iqjOo19HJu/AWgWOuYxonZ60PHTJmmcNq77pVFZO1vv+alr5dixadVwpiyJPV24yPrTTWnVa6Pt46eW11yWPur+3pgqBBhDGQIAAAAAAAAAAFoaZQii5ZUiqnVI1lCBj+CslQIxK0OSM/wxs/1Z+3zElCKjiZUqmoWIEboiKXODxIhj1C5DbDGliClDkmIqEVOGGDGFyA5z6vfkiClFTBliCy1FTBlixBQipgxJiqlETBliaBQim3f3Vv93TCFilyFGaCFiyhAjphAxRUhSTB1ilyFGTCFiyhCRuDoka2VfzOrLtHNIx1QYdjkQuqo26zUsqhBRKkOyXqti6ou0jcljjlG1DEn51phCJO09UkzNoVqGpPx6xhQipgipu5qIQkStDMl4PxhaiJgixIgpQ9LOWx5ThmSdBz2mEDFViEhcGWIXIUZMGdK+LuX2iyhE7FX0wavMMx6uMZ+bkqvoNcqQIWtPipgyJO3zSUwZYu+RGFqGDGVs5xNThgynjBnz3sQeL6YMSdvTp5nKEPvzfkwZkvWYCP2dbbc20NYqQoyYMsSUILaYMiS5z0hMEZK18XhoGWJKkLqvxyxLtw4l7z0nJQiQjjIEAAAAAAAAAAC0NMoQqEkrRNT3DRHJLwY8Hs1FKwZCVojkzfCHzP5nra4V8a9ERnNWqoSECXYZkuSzOimzDDECjk2rDDGyChHDpxRJK0OMkELELkOSfCuRtDLECClEssoQkbA6xC5DbD6lSFoZYoQUInYZYvMpRZJFiC2kEMkqQ0TC6hC7DLH5lCJpZYgRUohklSGGTyGSLEJsIYVI0cq+kFWYWmVIXikQsrI277VLxPMYc54WQ+qLotenkApDqwwpel0PKkRyvsWnEMl7TxRScxT9rEGFiFIZklWEVK8moAypKULqrtDjsVL0GAkoQ+wqJCmkENEqQ7KKECOkDEkWITafQiSrCDFCypC0IsTwKUOKVs0HrTLP+XFDPi/lrZ73KUTsEqR+LOehEmPmjOdRhtgliC2kDMmqQkTCypC0IsTwfU+SN1ZIGZJWhBiaZYj25/2QMqToseDzO2vXIEkhZUiyBLH5liFZNYhIWBGSLEFsIWVIVhFi+JQhWTWISGARUnDVae85KUKAfJQhAAAAAAAAAACgpVGGQF3phYjPUA6PbpeVA66rRnxm+l0uW7S6VsSvEMmrQ2rHLL5MXhliqBYihsOxNboMEXGvQ/LKEJtLKZJXhhg+hUheHZLkUorklSGGTyFSVIYYLoVIXhli+BQiRWWIiHsdkleG2FxKkbwyxHAtRIqqkCSXQiSvDDF8CpGiMsRwKUTyyhDDpxBxWdnnuhIzrQix+dQXLoWA6wpbl9ctw+kYHZ7zXSoM31WzLhVGWhFSf70eKwkdXs+d6xCHi2mVIYZrzeHyc3qVIQ6/hi6FSFERUne1DoVIbhFSvWKHG9fjvZ5rHZJXhBg+ZUhRySHiXoi4jOVThuQVIYZLGVJUhBg+ZUheEWK4lCE+q+WdV5q7PDQdLuOzWt61DCmqQsbGcr9el88hLmVIURFi+JQheUWI4fIal1dvJPlUIS5jupQheSWIrdFliM/ne5fHuut9r1WEGC5lSF4JkuRTheQVIYZLGZJXgthcy5CiGkTErQjJK0HqLuvyeHL8USlCgHCUIQAAAAAAAAAAoKVRhqA0yUKk4XuHZEl5tIecU7JoFUnIuSDTvsdnhW11nJzVg65lSO14+f/uUogYeauWnMuQpIJj0ypEXMoQW1EpolWIuJQhtrxSxLUMMfIKEZcyxJZXiriWISLFdYhLGWLLK0VcyhCjqBDxKUOMvELEpQwxigoRnzLEyCtEXMoQI68QcS1CkorqEJcyxMgrRELOz160KtOlDDHy6gufMsAoWmmrVoYEvMbnVRgh51PPqjBcipD6688+Nt89wERyCpGAl728x0HI+dSzqo6QnzO3EAl4r5VViPhWISL5ZYhTEVJ3EHkbM+iVIS5FiC2vEHGpOIyiMsRnLCOvEHEpQoyiMsS1CknKK0RcihAjrwwJWSVf+Lrks41NzmVD9k8oKkNcipD1Y+WN4zzM+vEK3k65ViEi+XWASwliy3uNcy1CjLz3IL5jieSXIRNVhBh5j1/NIiRkj5i831OXEsQoKkJca5CkvDLEpQSxpZUhPiWIUfR3HZcSxJZWhviUINXvKXo8hbzfSry3pAgB/FCGAAAAAAAAAACAlkYZgoYwlciE7R1iUypEqodijRdShuR9X0ghUh0zsZowpAxZP076133KEFtyFVNQGWJkHNtEliFGViHiU4Yk2ZVISBlipBUivmVIkl2JhJQhRloh4lOG2OxSJKQMMdIKEZ8yxGaXIiFliJFWiPiUITa7FAkpQ0Sy6xCfMsRIK0RCyhDDLkR8ihBbWiESUoYY9upMnyLEllZhhJQhhr3iNuZ1KrUQiXiNtyuMkCpERLcMWX8s648tpJQwNMsQI/l4CClCDM0yJHXMiKVcmmWISH0dElSEVA8i5UaPeYxYhUhIEWKklSEhFYdhFyIxY6WVIT5FiM0uREKKECOtDPEpQoysMiR0pXzd61LE73vac0VIEWLYZYhPCVI/Vv3XYj5v2GWITwliSysFQooQw36dCyk4jLQyJGY8uwzxqUGSGlGGhH6Gz3rMhxQh1WNJ/J76lCC2rDIkpAgxkmVISAliZO0VElKFiNT/PSekBDG0ipDq99qPrZj3WePvJalBgHBMhqChmm5SRKTuhShmUsRoGw1/M5Vkxoj5I1PNeOMfqmMmRdaPNfb/YyZDksyb+KhJEWP82CZiI/UiZnIkdDLEMJMiMZMhtqGRStRkiGEmRWImQ5LMxEjMZIhhJkViJkNE6idEYiZDDDMpEjMZIrJ+QiRmEsRmJkVCJ0MMMykSMgmSZejl7qjJEMNMisRMhhjJSZGYyRDD/GEiZjLESE48xEyGGOaPTbGvU9XjUnx7YD4shk6GGGbiIWYSxFYZGo2aHDCqkyIKjw2tyRDDTGBo/JyVwRHVnt1MioROghhmMiRqEsRmPppF3m5mMiRmEsRITobETFwYZjJEY6zkZEjMJIhhJkNiJkGMtTMrQZMfWcykSOwfhauvS4p/BTDPGTETISLrJ0NiJkHWj1X737GfMcxkSMwkiGH+SB4zAZJkXudiJi2M9gGdcQwzGRI6CWKUuXF67Od287iPmfyoHsv472fMBEiSmQyJmfwwzCRIzARIkpkMCZ38SBruaoua/DDsSZCYCRCRxGNL430VkyCAGk6TBQAAAAAAAAAAWhplCCbE6z/8Td0BFVeSDnfqDGZWAWisrjQ0ViKJiIwo/YxJsat9DK0KRkRkcGbzlSFG53Td1nvjOatUxtl21ssq44iIvHnOwyIi8vzgHJXx5nSsVhlHRKSrTe++FBFZPaL0yykiCwfmqYyzpH+2yjhJTyyfrzLOij7FJYciMrhcb7z2NTrrRNqGx55nO1brPd/mbjjuoVNhxbNNo1oR0VlVWTX+Y3YUbMjrSqOkqY4Vv4C9RvuAzh1QSTktRKi2nE3jQ1SGdV/TNZjqJe10GhMtdjVr6pgVnTGHuxXX45k4SqHsFhFZ16N3bKolvIgMT9H9jKJJo4IU0T029Z9T8+5UesqoFjmKn5/UKD8tqp4mS+m+nPbi2BPQwFy9B5tGMSeSv3F9KK3fKa33ZSLrTz2oWe9qyTrNeKg/X/bPugMCGzDKEAAAAAAAAAAA0NIoQ9AU1EoRhdn3EWslXewKCM1CRKsMsfdFUTm28YXZI5Erw4a7aw+mbSj+TtUqRIZnWUt5I2+47tljGwEMDcYvp9tpsxdr/ntZf9xmLnvOe1ZERHoH4zdxMYWIEVqKHDj90Zr/vn/tqzMu6W7/7rF9SO4cqN8U3YdGGbLLlCU1//2bFbtHjffaaWP34W9feW3UOCIir562vPq//7hkh+jx5naPJQ5PL50bPVZn5/rfyzUvKSRq43uGtK+M+73ULEPsiiBtU1gfZgVv14r4J3979Xnsikbzs9ob1QZJHIrGKkRzTnCVPQASQ2hUNW3jb+crkT+nRhli6tP2/vgfbDSx0rN9bXxOY8oGjconuRdKM5UhbVZBM9IV/x7DPL5G2iP3WLGObXCGwiZ2SmWIeWwMTo9/zk6et35gdvzawykrxn7INRvH35fJfQiyNlb2YZ7zhyMrGPt5MHbvEZH4z3Cdq8d+tqwN7H3Yr+Ohx2Z/9NAoQqp7esyIG6divW5rHJspYuP3Jau94YYUfs+nvTiiUoRMWV57bLH3g9nPQ6Pks9/vxNRuU1es/yUYmhp/u2kVIRWrYtUoTLSKEEoQoDyUIQAAAAAAAAAAoKVRhqCpNMNeInYZIhK3sijre0OiAq0ypDpexiq6oGNLOWV/TCWiWYio7x2iVIiYMsQWU4okC5GYOsSUIbaYUiRZiMTsI2IXIkZMKWIKEZG4SiSmELHLEJGwOsQUIbaYQiRZhhghhYgpQmwxhYhaGdKR/nscWoiYMqQ6fEQhkrW/RGghYp/bPaYQSduXIKYOqatgYgqRlMOIKUTslcpRhUjKt8YUIm3W2/nQQiSmDLH3I4spQ0ZTVmbGlCH2CtmYMiRZhFTHa5IyxK5CROLKEPtxFVqGZO33ElWG2CVBYBmStXo6phDRKkNMEWILKUSSRYgRU4ZkPc+HFCJpz30xZUjM5zZTg4jEFSFZr9sxx5b8uBFTSmTtJRFTJCSrkJhjy9obLXRMzSLE7A+SFFOGaBYhpgZJCilDst7XaBUh68fzv92yji2m5LCrkNDx2BsEmHwoQwAAAAAAAAAAQEujDEHTUa9DRLwKkbQyxOazqqfosj5RQaPKEMPr2FLKEJtPKWKXIUm+lUjpZUhSQCWSVYgYPqWIvXdIUkgpklWIGD6liL13SFJIKZJViIj4VyLJMsQWUor4FCJpRYihWYYYPoVIWhFiaJYhhk8hkixCbEGFSEYZYvgUInYVUnM1AYVI1gpTEf86xK5C0viUImlliOFTiOT9jElepUjO1fsUIq4rlL1KkZyL+hQi9sr9ND6ViG8ZYtcgaXwKkbQipDqORxniuiLWpxBJK0Kq40xwGZJWhBg+ZYjL48m3DsmqQkQCy5Cch5NPHVL0GAkpQzpS6gvDpxDJKkIMrTLE8ClEip7XtcoQw6cQCakukiWIzbcMyXsdCzm2vI8UPqVEVglihBQJ9v4gST7HllWChIy1fsycx7rH73VaCWLzLUPsGiTJ535IK0FsPmVI0fsXnzIkrQSpH8/9dis6Np+SI60EiRlPuwgRoQoBGoUyBAAAAAAAAAAAtDTKEDQ91VLEYfbepQwxXFb5+KwEco0KtAqRojIkyfnYlAqRvDLE5lKKaNYhuWWIzeGGKypDklwrkbxCxHApRYrKkCTXSiSvEDFcSpG8MsTmUork1SFJLqWISxmSV4TYXAuRoiokyaUQyStDDJdCpKgISXKtQ/LKEMOpECkoQpJc65C8MqR6tQ6FiGstIeJeiLiUIYZLIZJXhhguhYjXz+pahzjctS6FiM/KZOc6xOFiLoWIy0p+w6UQcS1DXIoQw6UMyStCquM4liE+q2FdypC8IqQ6zgSVIXlFiOFShvg8jlzLkLwixOZUiDgM51qG+DxGXAqRvCLEcC1DiqqQJJdCJK8IMVzKEJ/Sz7UO8angXJ6HXT5z5ZUgSS5ViM/rlsuxuXzWci0limqQJJciIa8EMVyPragG8R0zrwSxuZQhLkWIiFsVkleC2FzuB80ixKdmdSlDNIsQn2NzKTlcihCf8TSLEEoQYGJQhgAAAAAAAAAAgJZGGYJJQ30vkYwZfZ8yxMhb7aN9jliRiSlDjMJjcyhDkooqEZ9CxEgrRbT3DRHxLESMlBvQpwwxigoRlzLElleK+BQiRlYp4lKGJBVVIj6FiJFXirgWIklZtUheIeJThhhZhYhPEWLklSEuRYgtrxDxKUOMrELEpQix5RYiHmWIkVWIuBQhdVefU4j4rDo1igoRnzJEJLsOcSlCbHkri4N+1qKVqgHvcNNKEZ8yxChc1RhwbGmrqH1W9Bt5hUhRGeJThBhpZYhLCVI3TkEZ4rPa30grQ1xKkLpxGlyGuBQhtqxCxPcxVFSG+BQhRm4ZEvD2LasQCXmM5JUhLkWILasQ8SlCjLwyxKUIseUVIj5liJFViPgUIUbe83DWZy3XCiQprwgJeZ3S3DtSJLuU8ClBjLwSwaUEsRVVHD5FSN6YPiWIUVSEuNYgSWlliE8JYhQVIS41SFLR85zX/mbj0soQlxKkfpz8X4iQY8srOXyKkKLxtPcHoQgBJhaTIZi01CZHFCdFjOQb35DJEJv9RrnRG6nnqTs2z8kQmz05EjIZYpQ9KRI0GZJk3XghkyJG2uRIyISIYU+MhEyG2JKTI74TIklZkyMhkyJGcnIkZDLEZk+OJCdFQiZBbPakSMhkiEj9hEjIJIjNnhQJmQgR0Z0MMWomRQImQWz2pEjIZIiRNikS8ocXw54U8Z0EsdmTIiGTIUbaH9Wiflb7jzYK72yTkyIhkyFG5gf7wGO0/4gYMhliS06O2JMhIZMfNnsyJGQiRCR7MiTkD9xGcjIkZBKkbrySJ0VCJkEMezIk9rFjT4qETIIYqZMhEW/X7MmQmMeIkZwUCZkEMTQnQ0TqJ0RCJkFs9qRIyESISP1kSMgkiC35fGx/xgqZ/LAlJ0NiXpeyPv/5Tn4kJScGQiY/bPYf4UMmQIz0SQu98UImQJLsyZCQyQ9DaxLEsO8H38kPm/18FzLBYGSdHitkImRsvNrbLubYjOTkRcjkR9o4SVqTIEx+AM2F02QBAAAAAAAAAICWRhmCSa+s02fFlCFJMStKbWY1UTOVIba20fg6RGR9IRJThiSZSqRpTpeVNH7HxpQhtqHB9qgyxGZKEY1CRERk7xlPq4wjsr4UiSlDkkwlolGIGHcObCVbd76sNp4pQ0KLEJspRDTKEMMUIqFliGEKkZgixLbmpekqZYhhCpGYMiSpc6Xec7IpRGLLEMMUIjFliE1jJbNIohBRumtNHaL5Ol5dBRl5jGaFtUYZYlTWjlbLEI0ixDBlSGgRUh1nvAzRWOVvmDJEowoR0S9DYkoQmylDtB4zpgyJKUJsg9N0ftlMGaL5WBmc3hZVhNhMIRJahBimDNF6HhVZX4aEFiE2U4holCHVMbt0ShDDFCExNUiSKUNiShBb0WkwXZkSIaYEsY10xpUgaeOJ6BUhMSWIzZQhMTVIkrk/YosQkbHnPI3awjBlSGgJUj/e2G2neYxaTBnC6bCADQNlCAAAAAAAAAAAaGmUIWgpmpVI3mZcYePpjTXaobMXSXW88RWRRRvfucrZMzrY4Ayt1Tdj46iuTpszJDKi93jpntOvNpaIyHbz9YqE/eeO1RJL1s5WGe/dc+4eG69gk3QfO3TpFTEiIj1KS+eWDuds4u3p1R0rRUTktv6tVcZ7VccKERH5v1W7qIwnIjJt/Hb708vbqoy3uHeWyjgiImvXdsrwaqUnPJHqKv+OXqVVzePVypRlek/0lSGdccxzp+YK0Mq6UdXnZFN4tivFdkWbinuNNaj7GmTeC7QrreDWWgkuItI2fu5urZXRptjtGNCrxLQqIlMgVAb1Hsij7W1SWaf3s2qXIZpGOsYeyMNdOs955n4Y7NF7892xZlgGe5QSO9FbfWyeS7L2IgnR1Tf2GBmYo3OQU3vHxluzseJrmtJz1VC38jJwxeFMKTA8RWdQUw+tm6l3kJVBtaHGx9N7fpqyYlStihVZ/7NqnVEhuWeVFq33embvDc33P5qlXhmGFYtYahCg+VGGAAAAAAAAAACAlkYZgpakUYgkVy9oVBj2KtDhrvCxRhML3TSOzT5XdmwhMtxd+98aK2CT+6SMdMY/bdmlScwxDs9JLMNRKEQ6e2pPCtzREXcD7rRxbSkxpLBMyhQiIjqViClEqmNGlCKHTFtY/d+Lh7qzL+hox87a++O5yH0hNAoRU4YYsYWIKUOMmEJkmlXSxJYhUzpql7k99fJGUeOJjJUhhkohYj0lxRYiI9Z+JjGFyKh1KLG1hP1cqVGIVBLnjlYpJqxf0dif2X6djakwkqteNX5WzWMT0VmVa4qQ6n8rfNJI7uPWTGWIvdJVowxJ7sejUYaYIsSILUPs94wx45kixIgtQ+zbX6MM6Viz/j7QKEMq1u9H7Gpk+3kkphAxRUh1rMgyxBQhhkYZEvscZe+7sXZ2/Pt2s5eWiMi6iPHsPSM0ipDkXjIaRcj0F2ofcP0bxd2nU5fXjrduRvwxTkncHzEfeezqRaMImdq7/vlk7cz434fOft3nE/v5SaMM0SpCRqz7sqLwVkCzBhGhCAEmE8oQAAAAAAAAAADQ0ihDsEEIKUXSVjHEVBhZK0BDCxF7tW/16xHHaK/2EwmrROwyxBayGnY4Zx+SkFIkbw+SoOObk3GS1ohSxC5EROIqEbsQMUJKkWQZYgspRewypGa8gEokWYekCSlG7EJEJK4SCSlE7CLE5luI2EWIoVmGiMTVIXYZYsQUIskyxAgqRHKeekLqELsIsYUUIlmvFSJhxUTW82NMIZIsQ4qux0nKr2XIz1r0ehpSYeStag75mbWPMWTVtV2C1P17wCeNZAliUy1DjIBjTHufGBsd+joAAJW4SURBVFOGjKb8zDFliF2EGCElR9r7w5jx7CLEFlKI5N32IYVIsghZP074MnN7xbURszI57TlDswypjulZiNhFiC2kEIkpQuwaRCSsCEkWIGlCqhC7BkkKKUOSJYgtpAyxSxAjpgixaxCRuCJkSsb9ElKF5O2BElKGJEsQW0gZYpcgtpDnk7TnppgiRHtvELsIMWLKEK0ihBIEmLwoQwAAAAAAAAAAQEujDMEGxacQcVnV4FNhuKz49KlE8lb71lzO4xjzVv4ZPqVIUSEi4r8SVqsQyStDDJ9jyyxDbB6lSFoZYvMpRbLKkCTfSiSvEDF8SpG8QqQ6nkcpUlSIGD6lSFohYvMpRnwKEc0yJKsKSfIpRNKKEJtPIZJVhNh8CpG0IsTmVYg4POX4FCJFZYjhU4i4vFb4VBMuz4u+lUhaGeJzfesvXHwRn5/V9fXTp75wWd3s8zO7HKP28SUVVSEifmVIXhFiTHQZ4vL+0KcQSStCquN4liFZNUiST8nh8r7QZ7yiIsTwKUNcbmufMiStCKkfz/29UlYRYvNZqezyHOFTiGQVITXjedQhmmWIz3NSWgFi8ylCikoQw6cIyStBDJ8iJK8EMXyLkKwaJMmnDEkrQWw+ZUhWCWLz+UiTV4QYPmWIZhFSVIOI+D1/uDwn+ZQh2iWISHYNkuRThrA3CAAbZQgAAAAAAAAAAGhplCHYYBVVIiGrHPJWaAbtQ5FTiriWIdXLO0x9uqwANFwKEZcyxHC9ffLKEJtLKeJSiBhOdY9rISLiXIm4FCKGSyniUogYLqWISx2S5FKKuBQi1fFyShHXMiSpqBJxKUNseaWISxlSVIQkudYhLmWI4VKIuJQhhksh4lqGiLjXIS5liOFUiHi8g3IpRFzLECOvEPF9jRDJryZCXsOKCpG8IiToOAIW/uX9zCF7cBVVGEF7cuT8zD7H6FKIuB6fSxFSvWzORV1KEFujy5CQ94N5tUJeCZI5XkEh4lKE2PKKDp/3gy7juRYhhksZ4lPfuJQhLkXI+vHcbm/XKkTEbeWyz/OwSxniUoRUx3MsQ4qqkCSXQiTvOcmlBLEVlSGuNUhSXhniUoIYLkWISwmS5FKFuJQghksR4lKCGK5FiGsNIuJWhLiUIIZLEZJXgthcyxCXIsRwef7weT5yKUM0ixCXEsSWV4ZolyAi1CBAq2EyBBu8rEmRmBf4tD9OxGwGmzYpEvKHrur3ZrwHC/nwa6RNjvhMhtgyN5z3mAxJypoY8ZkMsaUdo9dkiC1jcsRnMiQpa2LEZzLEljY54jsZkpQ1MeIzGVI3ZsrkSMikiJE2ORIyIWJkTYykTYr4TILYsiZFfCZBbGmTIj6TILa0SRGfSRBb1qSIzySILXVSJOKdU9akiO9EiJE1IRLzGpE2QRDzGpY1KRIyGZJ7LBGffdN+5pDJkOp4GX/Ai9kEOO3n1j7GrOPzmfyo+96Ubw2ZBDEaNRkS8z4w6w/1IRMhItmTISGTIEba5EXM+8CsyRDfiRAja0IkZpP6tEkRn0mQ+vHSb3+fPzra0v6IF/P8mzYp4jMJUjdexqSIzySILW1SJOu5KGQCxEibCAmZ/DDSJkF8Jj9sWZMhvhMgSWmTIT6TH7asyRCfCZCkrMkQn8kPW9pkiM/khy1rMsRnAiQpazLEZ/LDlva8EfM8lDUZ0qjN0V2kTYYwCQLAFafJAgAAAAAAAAAALY0yBLCYUkRr5YNZtRmzqsuWLEViVv9Wx7CmRWNWBorUVyIxhYiRvP1C65AkuxSJKURE6u/fqELEsEqR0ELEsEuRmELESJYiMYWIYZciMYWISH0lElOIGMlSJKYQMexSJFmIxJQhhl2IxJQhIvV1SEwZYiQLkZgyxLALkZgyxKgpRBTeOdmFSGgZYtiFiMZrQ7KW0HgNswuR0DLEqDsmhZft5M8cU11Ux7NWN8eUISL1P7P2MdrHF1OEVMewhoipQkTKL0M03v/Z9UJoEVIdzypDYooQI1lyxL7vs8cTCS9CDLsMiSlCjGQZElOErB+v9n6IWYltJFc2azzv2mVITBUiUl+GxBQhRrIMsZ+DYkoQI1mExJQghl2ExNQgIvVFSEwJYiSLkJgSxLCLkNASxLCLkJgSxLCLkJgaRKS+CAktQZKSVUhMCWLYJUTsc5BdhDRTCWIzZQibowMIQRkCAAAAAAAAAABaGmUIkEG7ECnL0DT9MWNXbdoGZ6oO57R5u6+1cxTTHREZmaVQhlg6p8evwE/adbPnVcfbd85C1fFERPae9jfV8UwpolGIJE1v019bsGxE9zH5VM5G8yFuX7296ngiInf1bqk63sNLXqU63nCf/pNPpU9xmZyIdK3UfSwWbYIeM2ZsGWLL26g7hEL0VKdzje7vtbaulfrVhfb7qDLKEI0yIqltRPfBaMoQjSKkbLEVTN14JbwN1z7G4W7d513t9+EiIiMdymMqDzc4Tf9n1n7smCIktgSpU8JfYzrX6A6qUSEmtZUQ+GmehUGknNfrEeWKQfsxrv0+SkS3BhEp728zFCHAhoUyBAAAAAAAAAAAtDTKEMDBPh/5ltpY2nuIVLcvUFwkUV09pvTsYNcrseeyL6MMGZy+/ocd6dJ7WhzpGV/6VNEZs3vW2Anth4b05rK32+RlERGZ2h55ct1xe89eJCIi7UoP8gOnP1rz36tHuzIu6e6AqQM1/710OO6k1Ft0zKj57+XDOsvpNeoQexHao+viCpGp1kmYb1i1c9R4Ns06ZFrH2NL+vz6jM+bUqWM/++qXFZO88b1CKr0Km3zI+teWzj6d54iK9atRUVjNaa8I7Vyle771DoXzrYuUU4aYVZcd/TrPj2aFpFaJoFmGDE0fWw7arvWzjq+W71ytV14OTxk7xso6rfuj9r9jz99ur4DVuJ/b7HPCa5ccWuONH6bqivTx21NtNfV4UTQ8Ve82rKwblSHF0sTeA2BoStzY9mNaY6W7VhVi74eytidu3Ckra58X1s6Ov1+6rNc7e++M4HHHf3at3xfzOq35matjfI8Mey+OUO3jdalm9dSeKFY19gCqO7bIQ20fqH1Maj1XlFGEmOdZrcekedxUFE++QA0CbLgoQwAAAAAAAAAAQEujDAECxJQiWasjQhfRV8uQugHDxhPJWGGj8Ewx2QqR6vVElCLVMsQWWIqYMsQWU4qYMiRJoxIxhYgttBixCxEjphSxCxGRuErELkSM0FKkjDLECC1E7DLEaKZCxBQhtphCxFQhSSqFSEdiFaJCHZL16xVaithlSPXrEQFB2rnCY+oQuwwxYgqRMqoQkfTVlzGVSNa5s0MLgpgyxJQgtpgyJK0y0ChDTBGSFFOHZL23i1lZnHbfxpQhdhFSvZ5mLEMSh6qyqjjltoyqQzL2mIkpRNL2UIpZ9W0XIdUxA8uQrMfyRJYhdglixBQhdg0iEleE2CWIEVqEZP3MGr8naa/NMZ+1TAliCy1D2jP2GYspQ9LGjHnezjyWJixCtGuQrOfU0Mdm1uMkpgyhBAFgUIYAAAAAAAAAAICWRhkCRAgpRFxWR/gsnM8sQ+oGdR/TyF1pE/DMYZchNcMFLIhuVBlSd70BpUhmISISVIlkFSJGSCmSVojYfIqRrDIkyacSySpDbCGlSFohYoSUIlmFiEhYJRJSiBQt1gwpQ7KqkKRmKESyyhAjpBBJK0OMoEKko/j33qcUcf1V8i1EssqQ6r8HhARpq0+NkEIkqwxJ8q1EGlmGGCGFSFYZUr0+z5IgpAzJKkKMkDIkry4IKUPSShCbbxni8n4uZIVx3n0aUoZkFSHV61MuQ4LGdfixglYX59yWQWVIRhFihJQhaUWIzWcVeFYRUjNeQB1S9FgOKURCipCsMkIkrAhJK0Gq4wUUIVkliM2nDMn7mQ2f34+812Aj5DNWVglihBQhWTWISFgRkjee4fO87XwMAc83dg2SFFKGNKoEqbucx6G6PEZCyhCKEAA2JkMARS6TI15vVsuYFBFxfkPm9SbT4ZkkbzKkbjiHvwGWMRki4jYhUnMcDpMjuZMhNofJkaLJkCSfiRGXCZEkl8kRl0kRw2VyxHVSRMR9YiRvMiSN6wRJ3qSIzWWSxGVSxOfvEb4TIi6TIcZETIoUTYIkuU6I5E2C2LwmRRwmQwyXSRGf1wvXCZGiiZCay3o8xbn8IcZwmRxxmQwxXCdFtCdDQv4I4TI5UjQZUnMMDn9Id50MKZoASXKZDAn5g7zLpIjLJIjhOhni8z7O5Y9q2vdh9bIOfxSvHkMJEyJOY3r8XnhNhnjcps6TIgUTIUkukyIukyCGyx8+XSZBquN5ToZ4/XHY4U2IyySIywSA4ToJkjfxkTqu42SI6wSIiNskiM/P7rTIznOO2+fzVdEESJLLH7pdJisMl8+pPuOJuD3Wg07L5fAteZMfNpfnhDI3RXe6rPIkiOEyGcLkB4AinCYLAAAAAAAAAAC0NMoQoCRZlUjMBnd5K3+9ypC6gdO/HLwhXcGzik8hUh0yZ2G0diHiW4YkFVUiXoWIkVOK+BQitrRixLcMSSqqRHwKESOvFPEpRGxpxYhvHZJUVIr4FCJGXimSV4iE7GVaVIj4FCG2RhYiPmWIUVSI+JQhSZmViEcRYssrRHzKEKOoEPEpQ2q+L+Npznd1alJeIeJThhhFhUgzlCFGXiHiUxVUjyWnLigqQ3yKECOvDIkpErLKEJ8aJKmoDAl5/5a3yjjkvjOy7kOfGqTmWBpdhkT8PmTeD4G3Z+FKZ48ixMgrQ3yKEFvaanCfIqRuvIJCJOQ0b3llSF4R4lNDGEVFiG8JUjN2ShXiU4DY8oqQkJ+96Pko5vU27XOVTwFiy1v171tuiBR/Pg0Z00h7zMds0J5XhPiUIEZRETJRp8JK/d6cQw05ZZqRVYZQgwDwQRkCAEAz+P5HRBZvWsrQ7Us2l54LP1HK2AAAAAAAAJMBZQjQIHYpElOIiNSvAo4qQ6qD1v5n1EqYJOtZJqQMqRnOWhzdLHuHpLFLkaAyJMmqRGLKEFuyFIkpRAy7FAkpQ9LYtUhMIWIkS5GYQsSwS5HCMuT7H5HKV/5FRrdaJKNXHi2yxfOpF7NrEbsQSVuQ2b5kc3nVB66UzkVbyytf+1dZ9fEfZB6GXYjEFCFJ2nWISG0hElKE2OxCJLQIsdUVIhFliJEsREKKkCx2KRJahlS/33q6i1mpaiQLkZAiJItdijRTGZJkVyIxdYGRrAzsMiSkBLHZZYhWhWCXIaFFiGGXIbHv02rGTqw21r7PRMKLEKOsTdTrxlb4Pai7XxRuT5GUFdABRYgtWYjEFCGGvSo8pgqpGdcqREKKkCS7DrGLkJASIo1dhsSUINUxE0VITAli2EWI1s9u/x5ovL4mP0/FlCA2uwKIKTdE6j+fxo4nUvuYV/v8K1L32TqkBkmynwPK2BdEJK4IqY5hPUZjahCR+iKEEgRADMoQAAAm2mG/l9GtFknbM1tK2/suVStEkhMhg1sulDVvv05lXAAAAAAAgMmGMgRoMFOIaK44FBEZnqI7noiItCmvjhmnUrEkmFKkmfYOyWJKkehCxBgvRTQLERGRrTdapjqeyPpSRKsQMQ6Z8bDqeKYS0ShEkqa0FTxAF28qbe+7VNqe2bKwEDFMKbJqtH6lmT0R8sIV75PhzZc4HaspRLTKEKOsQkSjDDFMIaJVhhire5Wf+GSsENEsQ4wpr+i+QJlCRGPlas24yvWGyPpCpFnLEMMUIhqVQVL7oP7rnilDtOuD2NXrdeOtM7ep6rAioltwjY039rPHFiG20vYOKeHT5qjy+9PqSmiFIsQYntqmUoTYRiJXWNtMGaL9O7V21ti4WjVEDeU/YZgiRKMGKZN5ftJ+PRXRv/9NCaBRbois/0yqNV6pxn9FY0sQ2/DUctYya5QgtqGcvZNCmDKEIgSABsoQAACawRbPy+iVR6sUIjETIQAAAAAAAK2IMgSYYHt/9FvFF3Iwap0qe6Qj/XK+zGpGzXOzG8NTlFdgVtaPq6mMQmS4Z0RGu/SXdHfOGFvO3NGps2Rs23mviIjIiPKSoX3mPiMiIlPahgou6W7vaX8TEZGZFd2iY7eusduyXWm1aBmFiLFoqE91ImThUMFeJ4E0C5Ge9gH5y4qt1cazPfiizinLhofHnqAGVuk9QbX1r3/ir/Tr/Y5WBsfG6lypdC5+6/WoY0365XyZ1yfFpxGpJMqIjn69cc1rtH3O61Dta8t5+65Zhthlaccandc8U0No1jbJ91CVtXqvzdVjLOnTVmVQ51hHOseen+y9SKLGTNz/ZRRsWmVIm7UafqRLd62g6vtc6+4ZUXpvbp5Dtd7rl1EYda4aey82OEPnBjXPdUPKK+27xo9zXU/8fkuGKQG1j9UUFlqPUVOWlHFWgY6BERlW/N0s81hFRNoVX0eGuiul7A0yMv4Q1Xp+1i5BjL9cQgkCQB9lCAAAzSSiEKEIAQAAAAAASEcZAjQRjUrELkSM0FIka7WIxuqxtIIjanVSxvfGliJllCEiY3VIkkYpYsqQJI1KxBQiRmwpYsoQm0YpYgqRpJhaxJQhSRqViHohsnhTGf77H5cyEdKMhUhPe/192syFiClDDI1CJFmGGBqFiClDRHTqELsMMWILkazXp5inkUpKGaFRiKS9NsdUIs1chmSttI0pQ9L2xtBYKZt6v0Ss6M08piYuQ0wVIqJThqTd/81YhthFiKFdhhhR728z7pbYMiTruTL2PX5MGWIKEJtGEZL2/BZTW3SlHKtGEWJKEFtsGWLvtaFRhKTtM6JRW3RYe23EViFZ+6E0Yxky1F3/s2q83o1kPDRDn5/LKkFEqEEAlI8yBACAZuRTiIxPnFCEAAAAAAAApKMMAZpYSCmSVYaIxO0jUrRqJGQVmUuxEbRqKed7QiqRRpUhWUKKkbRCxAgpRewyJE1ILZJViBihpUhaHZIUUoqkFSK2kGIkuhCx/n3x5e8tbSKkmQqRtDLEKKsQCalD7CLEFlOIpJUhRkghkixCsoSUIllliBFaiBS9LoU8faSVIbaQUiTvtTmkEGmmMsR1ZW1IGZJWhFT/LeAmyLsfjJAypPBYmqgMSZYgWUIKkbzHQRlliBFSiGRVIUlNsXeIw90QUocUPTfGlCEhVUhWDSISVoS4PI+FVBZpJUhSaBWSVYIYIcdqVyBpQh6TWYWFSFhlYRcgWULKkLxjNbTLkJAiJK0EsYW83mWVINUxI56XtasQShAAjcZkCDCJuEyOuHzQN3wmR3zeMPl8iPKdnHB64+7xftnn+id6UkTEfWIkbzLE5jM54jIpYvhMjhRNiiS5TJAUTYbYfCZHXCZFDJ/JkdxJkawJkZyJkkVDfc7X7aOsCRERt0mRvEkQWzNMihRNhiS5TozkTYLYfCZFXCZDDJ9JkaLJkCSXiRHfD/A+kyIukyGGz6SIz2uzy+RIs0yG+PwhyWUyJG/yo+6yHofqdft7/DHL+w9Uynebz2SIyySI4TMZ4vMYmOjTZblMghgTerosj8eJ72SIz/Ohz/t5l0mQvEkPm88kiM/zls/EQtHkh81lMqRo4iPJ51hdJj8Mn0kQlwkFw3li3HECRMRvEqSMY/XlMhniMvmR5PM6UzQBUjOux/Mxkx8AWg2nyQIAoNmlnTLrL3v67SkCAAAAAACwAaMMASaprErEZ/WjLa8UiVnNl7eyLGZz88KVTQHTvXnH0wxliC2vFPGpQ2xFtYhPIWLklSI+ZYgtrxTxLUSS8moRnzrEVlSLuBYiRtFEyGQrRIrqEJ8yxJiIQsSnCLEVFSI+ZYgtrxTxKUOMvELEpwix5RUiMa9HRauifcoQW14pEvLanFeITFQZErOaNq8M8SlCqt+T8y0x74WKypCojWwn4HRZPkWIkVeGxDwGJup0WT5FiK3hp8sKPNSiQiTwrKMikv8+Pq8I8SlBjKIiJORUfkZeaeFbgSTlFSE+JYgt73h9ShCj6LHnU1bY8p4XfEoQW14ZUtbxhigqQnxrkKS81xyfEqRu3JxDLmNzdGoQAM2EMgQAgMlii+dl9Jwv1nxp9JwvUoQAAAAAAAAUoAwBJrkyChEjWYporuZLrjCLKUNsdSuelKZ77WNsxkLESJYiMWWIzS5FQsqQNHYtElOIJNm1SEwhYqSVIjGFiGGXItpliDHZC5GQIiSLdimSVojElCGGXYjEFCFJdh0SUoRkSZYiMWWILVmKaLweZa2SjilDROrrEI3XYiNZijSqDNFcPZssQ0JKkCz2qtnY2zyrDIkqQowGlCEhJUgWuxDRejw0au+QmCLEaNjeIUqPDbsQiSlCkuw6xC5CQiqQNHYZElOCGGmFRUwJYthFSEwFkmQfb0gFksZ+zMWUFbbkc0NMCWKkFSEax9uovUJiShBb8rUnpgSpGzdxyGWUIAZFCIBmRBkCAMBkYG2WPvKrD9buIbLYfVNvAAAAAACADQ1lCNBiTCmiuRpVZH0lor2az6w00yxEDM1VyUkDc5u3DEnTMVdvRX11zPFSRKsQMUwpolWIGKYU0ShEkg6Yulp1vKRpla71/2FNhFRLkKyv55hshchf12xbyrhl7SMiInLfc5urjmcKEa0yxDCFiGYZIrK+DinjObhjTTmrytv7Syot9AK9Gp2ryzlelfohg9bK8TolLe1qV1jdXKfkMkSzChFZX4Zor6Yuc++QspRWiCgvyDZliFYRYpj363l7/8Qo2vMkRmzxZzNFiFYJYpgiRKsEMUwRolmCGGWMKSIyWinn8VBWGVK4F1AA83qsWYOIrH/+LasGoQQBMBlQhgAA0MzyJjy2eF5GrzyaQgQAAAAAAKAAZQjQ4vb6RPqeIqHKKkSGusdWp4zkbJcQaqSznNWugzPGBh3uKrigp5GpY+OOdiofdM+giNTv/xFro9ljpcFG3WsKLulv2xkvy5xOvXH3mFZbnExrW6sy7mu7ltf896yKzoOibclm0v3+n0nlma1kZKtnRK78cHr50QSFiFl4uWRYtxBZMzJWRTw8oFtbPNm/sYiILFs3TXVcEZEX1/TIC70z1ccdXDf2BDzSq/ykM65jpc4aGfv1oX1Ab/VhZTAxrs6v75gRM6bu8645Xu3XILN/iPbxlvFaaVbMdq3Qfe0Zrq6i1n1DYlYkd6zRO95ksVFRPF57nwyNPTJEylnlLFJyEdIm5ZQ34zexdnUj4x/By1oBb+/pEUtznx97OeZIp86xahcgxmibvV+K3thtw3o/f5K5LbTPFFBaCWJuY+2bwtQVJdzGZT1PmmNV/Z2T9fuYaI9LCQJgMqIMAQCgCdkTIf0//4fsCQ4KEQAAAAAAgFyUIcAGRKMSGck4B3zsaj9ThtRdn0IpkjaGxupXU4YkaVQipgyxRZciPYOpX44tRUwZUvd1hVJk2xkv131NoxSxCxERnUrELkQM31IkbSJkdPPn6i43zR7XsxDRqEOyFmLGFiKmCLFpFCKmCknSKEReXNNT9zWNQsQUIbZmLUSyXg80CpFKytOYSiGScswa1UXa8YrEvwZVMvYDiD1mjdfGrNWysWWIKUFsGmVI2up8jTIkrSbQKEPsIsSILUMmbRFi0/h0mzKuSh2S8dG7mQuR6JXkGTdb7Gr9skoQkfoaRESnsmhLeVrRqBaybovYYy69BLFp/BqkHLLGbVx2CWKL/b0zJYj2uCLUIAAmP8oQAACaiOtESCoKEQAAAAAAgFSUIcAGLKYUySpEROJWAGYVIjXXHVCLuH5PyKrYtELEFlKMZBUiSUG1SEYhkhRSi2QVInWX8yxG0uqQNCHFSFohYgspRrIKkaS0WiRqImTctEpXQwoR1wWZoYVIVhlixBQiaWWIEVOIpJUhRkwhklWGiJRXhxghlYjra0BIKZJVWtSMG1KKOBxzSHXhcrwhrztZZYjN95hDjsV1tWxIGZJVgySFlCEuq/BDyhCXciCkDMkqQWwhZUhZq52N0qqQvJsk5tNtzrhRZUjBR+6yypDq+AGFSNAKcoebKGSVfqP2A0m9TEBdkVaApPG9LVxvh5BjbngFkhTy8Hc43JDHWpnPiS7HE1NuZNUgseNSggBoNUyGAKjymRzJmwzJ4vKB2GUypO5YHCY6QiZQXP8o5DIZYnOZHHGZDLF5TY44TIoYPpMjrpMiIn4TI66TIiL+EyMukyJJrhMkLpMiRvuSzWXeB66UjkVbB0+EJDlvvp7gMyni83cJnwmRokkQm8+kSN4kSBaXyZG8SZAsLpMjeZMgWSb61Fkhf/j0mRRxmVyojuszKeJx3D4TDD7H6zMR4ToZkuRy3K7HEPLHIp/JEJdJEMNnMsTnD84+kyE+fyT3mQxxnQRJcp0QmXSnxCrpj6Uh43pNinh+1G6G02U5/dE04PHj8ofgRp/6KvfynhMKrhMgIn5/pPe5TXyOeUInP2wu3xJwuK63c6NPgZXH5fcvb9IjZlyDyQ8ArY7TZAEAMMG0J0JEREY3f076f/4PMrLVM1J5ZitOmQUAAAAAADZolCEAcmXVIiFliC1t9WBIGWLLq0BiNmTPWzEbUocYRZVISCEi4lCJeJQhWdKKEZ8yJEteMeJTiNjyihHfOiSpqBQpKkSmX/gJmf21/ydDWy6Ul694nwxvvkRE/DdeT5MsRNae/jUZ/MRF6487Y/y8QiRm0WZRIeJbhdiyKpGQIsSWV4iElCFGXiESUoYYE1WIxK4Kz6pEfAqL1HGzfkUVVrHnFRcxx533mhNShhh5x1tUhsSsns0rQ3xKEFteGaKxyj6rEIndTDurEAmpQZKKypANoggx8m4KhQAj8zEQ+fG6zFNm5RUimSvHIx8zRavjJ/IUWJnfm1NY+BQgtrzbQuN2SDvusgqQmusNva2Lvi3i0PNu62YqQWxpv4chJYjLuCJUIAA2TAp/zgQAADFWf/wHIiIy8PbrqhMhWkwh0nHd22omQgAAAAAAADYklCEAvNiliEYhIlK/olCjEDGSNUhMGWJLrqCNKUOy2MVIaCFiqytGFAoRkfpKRKMQEamvRGLKkCzJYiSmELElixGf/UOKaBQjaexSxC5EtBdvmlIktgix2YWIRhkiUl+HxBQhtmQhElOEZGlUKaK1OtwuRGLLkOq4diGivJrdVBdax5uUfM2JKUNsyVLELkM0V88my5CYEiSLKUS0V9XbZUhsEWLYZUhsEWLYZcikK0GqV6A4lv3apTR23WNB+WN1o/YPqVsxrvSYsVfJN2MBUjdWoqyIKUCylHWb2EVIU+0HksYepoTDTd7WzVyCGPbvoUYNkjYuJQgAsGcIAAAAAAAAAABocZQhAKLs8en0PUViDU8pZzWcKUM0C5GkoenlPaUOzixpldfcdaWMa2wyf0Up4+4zf1Ep4x4y65FSxjX2nfJCaWOXVYw8P1zuY+SJwY1KGffXy/coZdxHejcpZVzj2ZfmljZ2WYVIZ2+562s6V5XzmtDeX8qw0tlX7tvr9hLKExGR9nXlHXfeXiUayloJXdZq9raRkj+ClTR+qUVIeVtllGpEqeqxlbl3iIhMymWRmhVIK2gr+U85k/H2LuszpKFZgyQNd5Uz7p0Xn1TKuAAwmU3Ct0AAAAAAAAAAAADuKEMAqNIuRcz5y4em6q6WGbVOyW/vzxHK3kNlZIruU6xdtAx3640/Mn39yZHbpuifKHl6z4CIiMyYap+0P86sKQM1/73DzJdUxt2+u3acV3e9ojJudbyOZTX/vVm7Tn1hLxifp1yLaFYivSO1x7Z0WGcPjlfG9yIxblu5vcq4xtrh2l/0v63SKVtWr6u9PZb1zsi4ZLiRoTaRPv00rm3t+ufojn695+uy9g4x7HPCV5Qe3h0Dtc/NbYp7fIisX51fUX6qLqMMqR6rcmFhnyNfqzyx99yw91GJZZ+7vqyipZQypNJWd/tosPdLqdvDInTcor0xIpVVhNiPuZF2xetRXgppP4fav5eh2gdqE6ShbqWBx9lFhVYBYT/G7Mdg/BWM/78Sfr+Tj2fN/VLsz1zar4fD9mdErZvGGlb7931wfH9M7ddxShAAKEYZAgAAAAAAAAAAWhplCIDSaFQieSsyY2oRe5VSkkYlYhcidf8eWIwU7XUSW4ok65A0McWIKUPSaNQidiEiolOJ2IVIkkYtYhciRmwpUrSAPrYYiSlE7CIkSaMOscsQW2gpYhchtthCxC5DDI1CZGQo5/lSoRRJliGGRiFilyFJGpVI1urX2ELELkPqrjdyZWzWvg2xK0w1ypDMY4ssQ4pWnMeWIVnFg0YZYtcgSU1dhuTsWaFRiNhFSHXsyIKjaDV+6PhllSBJeY+3qEIkcglkUSkQW4TYJYihUYTk7auhUYSkPZ5UipCcIWLKkKLHcWwVkvcZSyT89a+uAKm74rBxa+RcRczvv6lA0miUIdQgAOCHMgQAAAAAAAAAALQ0yhAADRNSivisyAwpRYpWLyX5FCNFZUjNZQMqkaJCJMmnFikqQ2whpUheIWILKUbSChFbSDGSV4jYQoqRrEIkKaQW8Vk8H1KLhBQieWWIEVKIFBUhSSF1SFEZYoQUIllVSJqQUiS3DDECCpG0IiRLSCmSV4bYfEoRn5WvIZVIURlScyweq2SzqossvitOQ8oQ72PyKER8VpuHlCE+dYPP+5G8EsRWWhlihKwgzylCjJAyJKsESR0/oN5wXY0fMnbZVYjL4yuoDAlY+ujz/BhShGRVIEkhRUheAWILKUJcHjdBRYjHt4QUIb6PXa/73+PzTkgRUliD1ByMx8Aew4b87ueVILaQMoQSBADiMBkCYEK5TpCEnKbCZXLE5028zWVyxGdSpO57HSZJfCZFDJfJEd9JkSSXCRKfCRHDdWLEZTIkjesEic+kSJLrBInLpIjNZZIk5oxCLpMkLpMiLpMgNpdJEZ9JEJvrpIjrRIjNdWLEZzLEcJkUcZoEyeIwOeIzGWJzmRzxmQwxXCZFYk4D4jI54jMZYrj8och34iHJ5Q8urpMhUcfhMBkS9AdWh8mQmFM7ubwP8ZkEMZpiMsRh8iOLy23qMwlSHddxwiL0dESu4zfDJIjNaVLE4bEY8zzo8jvqMulhc50E8Zn4SHKdBAk9lZrz4zFkzsThdznm8eryeAj53OTy2uY16WFzuasihne5TX0mPwzXSRAmPgBAH6fJAgAAAAAAAAAALY0yBEBTySpFNDYwFcmuRWIKEZHsSiSmDKkbK6UUCSlDsqQVIzGFiC2tGAkpRGxpxUhoHZImrRgJrUPSZBUjIYVIUlYtorDntIhk1yJphUhIEZIlrRSJKUOMrEIktAixZRUiIUVImqxKJKoMScqoRGLKECOtEAkpQrKklSKxG8TWjJ/yqxZShtjSVtPGFBm2tFWpWWWI6vWmlCGxmy+LpJchGpt8V8dKGSqkBMnS8I3UI2qQpKzbOKQGSR0/Y4W+ygbVOeOXVYRovZ8VyShEMh6TWs95Wb+rIRVIUlYRElqApEmrQkILkNTx0+4PjX3UU36HNR+faY+N2M9FNeOnvJZFlSC2rLsw8iqybuOQCiRNVhlCCQIA5aMMAQAAAAAAAAAALY0yBEBTM6WI5kq6JFOKaK6ASjLFiGYhkmRqEc1CJMnUIpqFiMj6SkSjDEljahHNQiTJ1CKahYjt1V2vRNchaUwxolWI2EwxYgoRzSokyRQiGlVIGlOKaJUhNlOKaJUhhilE1IoQ23gholGEpDGViGYZkmQqEc0ypDr2Op0iJEvbkG6hYasMry9DSr2ewVGVEiRL+9pR1SLEMO9DNGuQpIbtHaJUhNjMba5VhFTHHV+5r1WCZI3fjHuDuKjWIeOPyzKe20TWFyGxBUiaoe521QLEZooQzQqkZnxzH5T0EDJliPZj1DxWyvoMZIoQ1QokydydJQ1vbm+tEsRmyhBKEABoPMoQAAAAAAAAAADQ0ihDAEw6e34qfV8RDcNdbVLSQnYRWV+IZO0xEjxuyYXI0PSxlYCj3eUsF65MHVs+Nm1G/f4fGuZM6x8bvzN9H41YjShFRETeOO2JUsZ9ZXi6iIjs1LVcfeyl2g/2cU+s20RERIZLWtexeN1cERF5fPUm5Yy/eraIiCwf6C5l/NUDY7d7f9+UUsYfXT32ZFYZKOf2bx8vTzrWKK/IHH8Ky9hSJ5rZP6SsQsSs5C1r9XfX6vI+FgyPvz51pOztoWF0vHjoXFXOjTPSNTZ+2p4nMcyq8va15by+mnKgUtaq+PHbPW1fg8lgtNwgpHr7lH37q45ZYgUisn5/kDJrEBGpPt9r066fbNVaqbOc6zHFQ1mPyeHx49auoUzNX2aBOTCrUmoZedeFVCAA0AwoQwAAAAAAAAAAQEujDAEw6WmWIsNd9auwNEuRtL1DNBfOm0Kk5muKtYgpRJI0axFTiCRp1iKmEKm7DqVixBQitslSjJhCxKZVjGhWIqYMSdKoREwRkkajEjFFiE2rEDFFiE2rEDFFiE2rEGnP2ItErRDJeLrSKkUqGeNorWTNKkK0ShHNMmQ447VHqwzJWhGvVYaMpLwfENErQ7L2wNAqREYyxtdaDZ51+0+GQqRRNUiS5ip8rRoka+8erSLEFCC2yVKElF2AiKTvY6JZhKTtM6L5WBxOOVbNImQoZb8RzTJkYFb9exfNMoQSBACaE2UIAAAAAAAAAABoaZQhAFpWaDGSVoekiSlG0gqR+uOIGD+lEKm7TEQxklaI2GKKkbRCxBZTjGQVIjXjR9QiWYVIUjPXIlmFSFJMLRJTiKQVIbaYQiSvDDFiCpGsMiQpphLJKkOSYiqRrDIkKaYSySpDkqIqEcenpdBSJKsMsYWubHUtQEJLkZgyJKsEsYWWIa6r4UPLkKwSxBZThmTVIEkxZUhWDZIUsyrc5T5o5jJkIooQW9m3f+b3ZlQgSTFFSFYFktTMRUij9gHJE1OEpBUgtpjHXloBYospQtIKEFtMEZJWgKQJrUIoQABgcmEyBMAGwWdixHUyJMl3YsRlMsTm8/djl8mQ1O9z/GOWy2RIFp9JEpdJEZvPJInLpEjd+B6TJC6TIrZmmiRxmRSx+UyS+EyKuEyC2HwmRVwmQWw+kyIukyA2n0kRl0mQLC6TIy6TIFl8JkdcJkNsXpMjAU9dPhMjrpMhST5/4AmZ5PD5Ht/JENcJkCSfyZCQP/76TIa4ToAk+UyGuEx+2HwmQ1wmP7K4/GE05o/vzTQp0gyTIDafP0z7jO8y6WHzmQRxmfSwNdMkSDNMeth8JkFcJj2yuD7mXCY+0vhMhrhMfth8J0NcJ0CSfCZDmAABgMmL02QBAAAAAAAAAICWRhkCYIOWV4yEFCK2vGIkpA6x5S2sD61DasYoWPUbU4gkZdUiIWVImqJaJKQQqRm/oBYJKUSSJroWCSlE0mRVI3mFSEgRkiWtFAkpQrLklSIhZYgtrxSJKUOMvEIkpgwx8gqRkCIkS2oporghal4pElKG2PJWv2pslJ43RlEZElKC2PLKEI2NofPKkJASJEtaIRJSgmTJK0RiihAjb5W4xv0wkWVIM5YgWULuh5D6I01RERJSgSRNdBHSjBVImqwyJKYCSSoqQkJLkKS8KiSkArHlvS6GFCC2vCKEAgQAWg9lCAAAAAAAAABMcltvvbW0tbUV/t/FF1880YeKCC73cVtbm9x4440TfahNR2FdMgBMXnd/r3a1T+im61myVgnHbL6elLVCebhLpDK+0jqmEKkMpn/dFCMdqysqdUhbf/rc/Ih0qNQhazJWvMdswl4z/mD6HWqKkcdXbhxVhzzRv3Hq17WKkT+t2T733005EluIPLpuTurXk8WIqUQ0ixCjfXwZacwG63l2mP6iiNQWIhpFiDFnam3BtHygW6UIMbqt34eYjdbTjEytfa6I2Wg9z9C0see8qI3Wc9ghk3ke1qhCROpX0cZsGpvGXlWeV4polCC5x6K4wt4Y7Gmv1iGaJUgezSIkjUYJkqeM+8GM2chCZDIVIYa5b83q/eR1aBUgNlOExJYfWUovQkRqqpDJUoCkGelsUytA0iSrEI0CxJYsQjQKkDwaBYgLSpDmt3r1avnLX/4id999t9x///2yaNEiefbZZ6W3t1f6+/tlYGBAuru7ZcaMGdLT0yM9PT2y9dZbyw477CA77LCD7LTTTrLXXnvJlCm673MBTB5MhgAAAAAAAABoOn19ffLTn/5UfvGLX8iNN94oa9fmL2hbvXq1rF69Wl58cWyh0j333FPz793d3XLAAQfIoYceKm9729vkda97XVmHDqAJsWcIABTY/YT/KnX8oWmlDl/dm2S4u9yn+3WzFU/Kn2K0a+z4K9MzcpVIU7rHxp3Xs7qU8Y3XbbS41PEr48v0FkxdWur17DjluVLHXzY8o9Txn1k3r9TxH+rbVEREXlwzs9TrWdw7q9Tx+1dNFRGR0TUlLVEWkcrairQPlLuitKOv/EKgY0CkTWebo0ydBXt6xOroL/9jQXs5T+FVoxWRjv5yX49E8s8xr2G0IlJZV/79kXeuf5XxSy5DzH4LbUPlXk8ZVUiNkhe9j7Y1ppIquwop+34wlUbenj0xhrobUzeMlnw1Q1PHrqDs+3toSrn3993fpwJpdi+++KKcccYZ8sMf/lD6+vpKu57dd99dPvGJT8jRRx8ts2fPLu16GmXrrbeWZ555pvByF110kRxzzDHlH9AG5Gtf+5rT5Y455hjZeuuto66rzfG1/YYbbpCDDjoo6rpaDWUIAAAAAAAAgAk3NDQkZ511lpx11lmyenW5C9VERO677z454YQT5Itf/KK89NJL0tPTU/p1ojWdfvrpTpc76KCDoidDEI7JEAAocN9/fz7161rFSNn7ilTMSuX+9JUDWsVIR1/6MrShGTqr69rWje+BIuknsY8tRtb2j437sqTvi6FVjNz7yhYisn4/EVvM3iIiIiPjJ01/amB+6r9rFSOPrd1MREQGRtPfSuw+dVHU+HPbx1Z/lVGIPNi/Rd3XetoH1K9HRGSTaStFpJxCZFn/NJk2pfZxv2ZtOZs8tE0b24OhrEJkeGrt85B2KWI/n2rt72Gzfx3USxH7ZpkEfbd9Pvz2QeU9UBqz0LpuXxDt4qFRP0fZ7H0uRtvbpKJ8n4usL0LKkroPRRmxAEVIjdILnHFZ+3RoFSGNKkDKZgoQm3YRQgGCpCeffFL+4R/+Qe66666GX/fAwIAMD+dspgagJTAZAgAAAAAAAGDC3HzzzXLEEUfIsmXLJvpQALQwJkMAIFCyGImpREy5MWI9I6etXI6pRbKupz2lGAmpRbLGTytGYmoRU4iYPUSMkdX1K+JDahFTiJg9RIyXV9UXIzG1yJrBsTvTLkQeX7lx3WVDahFTiBhmL5GsYkQkrBqZOr703S5E7hvYsu6yIbWIKUSMmFIkrQgxVg2P7Y2hUYiY/UKSTCFixJQiy/qzNxrSLEXMfiFJphAxJkMpUllX/72TsRTpXJPyvNyEpUjWimtjsLtNOiP2JpmoEsQ20hlXPDRLCTLaFrdviF2CpDEVR8ztVVSCjHa0qewbklqEGOY+i4kHGvX4LbkI0SgDJroCSYopQpqpAol5XsmqQJI07veyKxCDGmTyuf766+Xwww8v3BwdAGIxGQIAAAAAAACg4e688055z3vew0QI4GFU+ZSFGxImQwBAgca+IlllRc1lSt5fxEirRUTcihGXn0Njf5GsQiQprRYRcStGsgqRpLRaJMmlHMkqRJLSahERv2LElCKVnCXAMfuMZBUiSWm1SJJLORKyl0heEWIzhYjhU4qkFSFZNEuRPKYUKXsvEcOnFKmsdV/CmixFtPcTEZmYUkR9PxGR+lJEpNRaxGXFtYZGVBRFJYjKdXj+HCNd48/b65rvw65LERIjZE8QU3X4FCK5JUiWkEJkAy5Cyi5AYp6HfIqQZipAbD7PLS4FiAYKELhatmyZvO997wveKH2nnXaSQw45RA455BBZsGCBzJs3T+bNmyeVSkVWr14tzz//vCxcuFDuu+8+ueOOO+TGG2+UFStWKP8UACYTJkMAoERlb75u+JxSy2WyIovPKbVCridrkkQke6LEZVLE5nNKLZdJkSw+p9ZymRSxZU2SiGRPlLhMith8Tq011foLb97kiC1vssSeKEmePquMTdYNl9Nn+UyCZNlk2srCCZG802MVSZ4+q2hiJO30WK6SkyOT4RRaWZLPn0UTIx2BZ1YrfbP16sD2FYcPNVkmP8wfLTv68//QWfYESLOcCquIOati0ctC7ASI6+myYjdHd5kUCZoE8dWISbwm2SC9mU555aJoEqSZJz6Sip5jtCY+iu7/Rkx8MOnRuj796U/LokX+p9I98MAD5fTTT5cDDzww8zJdXV0yZ84c2XnnneUd73iHiIgMDw/LTTfdJD/72c/kZz/7maxatSr42AFMTpPjVR4AAAAAAABAS/i///s/+fnPf+71PVOnTpWf/vSncuONN+ZOhGRpb2+XQw45RC644AJZsmSJnHPOObLFFu4VOYDJjzIEACZAWjFiapGYciOp6JRaWtcTc0otHxqn1sqTdUotw5zBNqQQSSo+tdbY//cpRNIUnVprZLTNqw7JUnRqraltQ151SJasamT3qYsyT53lc3qsIsnTZ2lssp4m69RZMUVImqxN1mOKkDRZp9DyOT2Wi6xSJG3j9BCTcbP1XB6lyGQpQZyvR7kEsUuHsn6ORp0uyy5EyjoVln27xZYgrtRrkKzTZbXIKbGMZBXQzKe8cmGKkMlSfrgq69RXdhHCqa+g7eSTT/a6/Pz58+Waa66R17/+9SrX39PTIyeccIIce+yxcv7558vpp58eNM66devk8ccfl4ceekgefvhheeaZZ+S5556T5557TpYtWyb9/f3S398vg4OD0tXVJd3d3TJv3jzZbLPNZPvtt5fddttN9t9/f9ljjz2krUHP7TEWL15c/VmffPJJWbJkiTz33HPywgsvyJo1a2RgYED6+/ulvb1dpkyZInPmzJFNNtlEtt12W3nNa14j++23nxxwwAEyY0Z5dX/SK6+8Itdff7389a9/lQcffFCeffZZef7552XNmjWybt066e7ulhkzZsgmm2wi2223ney4446y7777yhvf+EaZPz/7DAmXXnpp8DH94Q9/kMWLFxdebpNNNpG3vOUtqf/m+li54YYb5KCDDvI5vFQjIyNy1113yS233CL33HNP9b7v7e2V/v5+aWtrkxkzZsisWbNk6623lu2220523313eeMb3yi77767tLeXfI5VD0yGAAAAAAAAAGiIG2+8Ue666y7ny1cqFbn88svVJkKSpkyZIieeeKIcffTRzn+g/93vfid/+MMf5LbbbpO77rpLBgfdFswNDAzIwMCALF++XJ544gm56aabqv+2xRZbyIc+9CE54YQTZPPNNw/6Wcrwt7/9Ta666iq59dZb5U9/+pO8/PLLTt83MjIig4OD0tfXJ88++6z89a9/rf7b1KlT5bDDDpPPfvazcsghh6gf8+DgoFx++eXygx/8QG655RYZGcleQLl69WpZvXq1vPjii3L//ffX/Ntee+0l733ve+WTn/xk3cTIhz/84eDjO+OMM5wud+CBB2ZOhjTKY489Jt/73vfkJz/5ibz0Uv6epcuXL5fly5fLwoUL5cYbb6x+ffbs2XL44YfLhz70IXn7299e8hEXaxtl+3kAaGqv/bzu/iK2yvji7XU9pV5NddXzkHIxYhvpFBnuGS6+YIwpY+N396wtuGCcSmXsttpidm+p19PVPvbzbDvD7Y1tqJcGxh5ke8zyPy+wjxVDuiVFlkX9cxpzPavmiojI6nUZGwEp6V05drsNryt31U5ZhYitY43ZN6DcFXYd/WP/vxIXjRVfz5rRatFXlrKql6TRdpHONSV//Bgfvr1gb4pYI+O/Ku0lFxtmtXzHGp0SMsvw+Ory9nXlXk+1Rmr+xa9NxTwO2kp+i1Mtdzw2og+6ngaVZ+ZxNlry1Q13tZX+XLBuxtjvaFvJv6JD3WP/v+zHGgXIhu3II4+Un/3sZ86X/+pXvypf+9rXyjsgTzvttJM89thjpYw9depUOfnkk+Vf/uVfpKPDfw371ltvLc8880zh5S666CI55phjCi931llnyamnnup9HK7e8pa3yPe+9z3ZZpttVMa77LLL5LTTTpOFCxeqjCci8stf/lLe85731HytERXPgQceWDOpEHL9oWXICy+8IF/60pfkJz/5Se5kko/dd99d7r33XpWxYrRWHwoAAAAAAACgKQ0MDMg111zjfPn58+fLKaecUuIRNZeBgQE5/fTT5c1vfvMGscH7H/7wB9lzzz1rKpkQvb298u53v1uOOuoo1YmQDdFVV10lO++8s1xyySVqEyHNhNNkAUCTe+C/6vcX0axFzMrWrpT3WZq1iDn/fUfKHiOatUhlUERWpa9sVytG1o6N3y9Tci8WW46MjIzdVouWjRUIphSxxZYj64bHfp5HV2wiIutLEVtsObLx1LEH2ZK1Yz+PKUWSNKqRWR1rav5buxT52+p5qV/vqOguoTRFiDG9a2zZvnYhYooQo71r7OfQLkRMEWKMTFn/xrrMSmS0Y/3vTZmVyEhi26GyKhF7j6eySxENZe07UX9FjbmakQb9PGmr5oemjf2eaBciw9Z+A8NdJRUi9n1UUiGSVRyUXTpoSDt2szpfa5V+1h4t5vbRup0aXX5k0S5ChrvSB9SuQkwFklRGEWIqkJrrKaEIoQJB0k033SR9fX3Ol//MZz4jU6fq7m03Gdx0003y7ne/W/7whz801X4LZejt7ZXDDz9cbrvtNtltt928v/+ZZ56Rt771rfL444+XcHQbljPPPFO+/OUvSyufSIoyBAAAAAAAAEDpbr/9dq/LH3vssSUdSfO74YYb5Oyzz57ow2iIvr4+OfLII2VoyG+1zwsvvCCHHnooEyEK/vM//1NOO+20lp4IEaEMAYBJKa0WEYkrRkba1+8fYqTVIiJxxUjb0Pr9Q4y0WsQIqUbMquzkSm0RkfaMYkQksBoZL0TMHiK2/lX15UhMLWJKEbsQWdw7u+6yMbWIKUXsQuRvfelFhEhYNWJKkWQhcs+KLXO/J6QcMaVIbCGSVYQYQ4kl4zGViF2E2EwhIlLuPiKmEBEpfx+RZCUiEleKmL1C0iQrEZG4UsTsFZLGfu7ZkEqRZipBhsdXwMfsHeJSgpiV4jErwxu2in6cXYOUxuUmUShEXG4/c5mJLER87ueY1flZ9UcajdujWSqQpJgiJKv+SBPze59Wf2SJrULSCpDU64msQihA4OLOO+90vuy2227bVJuJT4QzzzwzdQPvVvTwww/L97//ffnMZz7jdPnh4WH54Ac/KE899VTJR9b6fve738nJJ5880YfREEyGAAAAAAAAACjdk08+6XzZ/fffv8Qj0dXe3i7bbbed7LrrrrLDDjvIrFmzpKenR6ZPny4DAwOycuVKefrpp+Wuu+6Sv/71r857MfT19ckPfvCDUjcxD7HJJpvIrrvuKrvssovMmzdPZs6cKTNnzpSRkRFZs2aNLF68WB599FG56aabZMWKFc7jfuc733GeDPn2t78tN998s/exL1iwQA499FDZdtttZd68eTIwMCAvv/yyPPLII3LTTTfJCy+84D3mZLZq1Sr56Ec/6r0/SHd3txxwwAGy3377yfz582X69OnyyiuvyPPPPy9/+tOf5K677vIufRqByRAAaCFl7y9iZBUjIm7ViNk/xC5E0mRVIy7FSFYhkiarGnEqRgoKkaS0WiTJpRzJKkSS0mqRJJdyJKsQSRNTjZhCRCR9H5GkvHKkqBpJ7iXiW4kUVSE2U4lo7yNiS1YiIn6liL1XSJ5kJSLiV4rYe4W40CxF8miWInkmqhQRKbcWaVgFIrJB7AniKmTvkJASJGjvkAZHFyG340hHW6l1SMx967Mq36f+SONzGzRj+ZHFpwjxKUBsPkWITwFi8ylCXOsPLVQgCDE6OiqLFrmX3rvvvnuJRxNv7ty58q53vUve8573yFve8haZNs3t/fWSJUvk9NNPl+9///tOl7/88ssnfDKkUqnIwQcfLO9+97vl3e9+t2y5ZX7RbwwODsoll1wiX/jCF2T58uWFl3/sscfk3nvvlde97nW5l1u2bJmcfvrpTsdgvOENb5AzzzxTDjzwwNzL3XHHHXLuuefKFVdcIevWrUu9TNqppNra3F5XbrjhBjnooIOcLtsIZ511ljz//PPOl582bZp84QtfkJNOOklmzZqVebmVK1fKj370IznvvPPk0Ucf1ThUFUyGAAAAAAAAAChVX1+fDAwMOF9+7tz808faHnroIbnnnnt8D6vGggUL5A1veEPuZbbaais57rjj5BOf+ITzBEjS5ptvLhdccIFsscUW8tWvfrXw8vfdd58sXbp0Qk6VNWXKFPnEJz4hX/rSl2T77bf3/v7Ozk752Mc+Jvvtt5+8/vWvl9WrVxd+z/XXX184GfLd735XVq3KWaVp+fSnPy3//d//LR0dxX8K33fffWXfffeVr33ta3LCCSc4X8dk1NfXJ+edd57z5TfddFP59a9/LXvvvXfhZWfOnCknnHCCHH/88fK9731Pfv7zn8ccqhomQwCgxfnsL2JWxMYsZi9jn5E0PsWITyFi89pnZK11WYdSxOazz4hLIZIlrxyxqxFTiIi4VSK2vGpEpLYcSdtHxJXPfiPJSkQkuxTxLUJsQ9Yy87xSpGivEBcupYhPEZIlphQJkSxFsiqRvL1CXCVLkbIqEZH056KsWqRjTdwKds19RbRKkMFpY7dtZ9bP1ui6QOnnKto7pJH7gmjuCZJbiGjeVw57h2jdhjH7h5RxP6YVIbHlR5q8n7fR+9ZoVCAixSVITP2RJq8IiSlAfJRRgORVSRQg0NTfn7PpWoo5c+Z4Xf7qq6+OLig+8pGPFE6G/Pa3v3WuAPKcdtppcu6558rSpUsLL3v33XfL2972tujr9PVP//RPKj/rzjvvLMcee6z8138Vn7nirrvuKrzMRRdd5HzdRxxxhHz3u991vryxYMECufbaa70m8CabX/7yl9Lb2+t02c7OTvnVr37lNBGSVKlU5DOf+Yx89KMfDThCfUyGAMAGKmuSRGT9RInmGX7SJknMBInL6bJc5W7GPv6XlpBJkTR5EyUiItWbL2BSJMn11FohkyJpXCZKQiZFsricYitkcsTmcootMykSOwmSJWtyRGMiJE3MabR8pG22HnJ6LBcTdQotoxVPpSVSO0nS0NNfibTcKbCq11fyH5ft02U1ZFP0RtxXo1L9Q3nZt2HWpEjZ12v+8GwmPEZLvuvMz9fQCY+Sr8pMgmhPdmQxkyCNmvAwp8cq+9RX5rHIhAcaZe3a4lMCJ/X0KK+oU6IxOSAi0tHRIfvtt59cffXVhZd9/PHHJ2QyROtnFRE54IADnCZDHn/88dx/f+CBB5w3TZ85c6ZceOGFTpfNMnXq1Kjvb2b/+7//63zZk08+WfbZZ5/g62qW27Exr+QAAAAAAAAANlhdXX4Lc/r6+ko6kubheiqw5557ruQjKZ/Wz3rrrbc6X+cnP/lJ78JoQ+J6W06dOlU+97nPlXw0jUEZAgCok1WN7P453c3Y7VrEXv02rLxwoFqNjNfZI53rV4KWsfKuWo6sapeRqWNL/EZn6O9mnFaOtLWP/WzTZvitvipiVyPtldpV+lvNKd4Uz4ddjSzrrz3F05Y9OtdXdIqtsjzRu/68v1MUa5ssq9ZMkfaOsesZHipnmbypRIaGx3/fSio3DFOKjAyO/TxlFRVG+3glb1Ylt5W0Ut6UIsNT16/Gax8oc9Nnv82bY66nquTKwKwYN/+/Y8BjJ+IAZpW/z4bHMcz1lF2EmFJoqLvitWl7qKHu9T9PmRudJ5VWTFjDjraVW4LY45rHSFk/n3nMN+p+GjLPhw167ij6mobB6bXjln1b3nM+BQgmlu/+Gi4bbjeD0dFReeihh+S2226rVgvPPvusLFu2TFauXClr166VoaG4z4ErV65UOtp4S5culZtvvlnuueceefTRR2XRokXy0ksvSW9vrwwMDMi6detSNxh3VfSz+uwL8/73vz/4OFrdc889Jy+99JLTZQ866KAJ2bOmDEyGAAAAAAAAACjVjBkzZMqUKc6ny2r2yZCnn35a/ud//kd+9rOfyZIlS0q9Lt/9VrQNDAzIJZdcIhdffLHcfvvtUZMdRYp+1qefftppnO7ubtlzzz01Dqklud6OImOnOGsVTIYAAJzdd059MaJZi3SMv+cxlUZ7yj5lmrVIZXBsNd5I52j1um1axUhlYGy55kjBS69WOTI6vip/TV/2fiMa1cjwSO0y1GeWZyfIGtXI3O7ajc8Xrcq+Pq1qpAxPr6xPxNcO15YamqXIC73151s2hYihVYoM9VuP8SkZK8mVipGOvtrj9tmcXENy896yKhEjWYmIlFuKaMnao6Qsjdo/IG9z6+Ep4xupr9W5fxpVmhh5e8bY+5RoSJYgtpiNzhsm5yE3qnie9eqYOU+dZTxW8h7r2vfL0NSC20v5YdCo5wvDrkCSyniMU4GgGbW1tcmWW24pTzzxhNPlH3jggZKPKMzg4KCccsopcs4550QXH65GRhr8hiDhmmuukeOOO06effbZhlxf0USLa82wxRZbSGen0oahLcj1dhQR2WabbUo8ksZizxAAAAAAAAAApVuwYIHzZW+//fYSjyTMihUr5O1vf7t861vfathEyET6zne+I+9+97sbNhHiYs2aNcUXEvc9SjZUrrejSGvdlpQhAIAoabVIUkg5YhciSWm1SFJIOVIZbKvZPyTtWNKEVCPVQmRq+sqetr7sl+aQasQUImYPkaS8akQkrBwxpYi9l4hIfjUiElaOzO1eU7ePiJFXjRiNrkfSipAsGqVIWhGSpaxSJFOyGCl7XxFrQVhZpchoxqLfsooRuxQxJqIYadUCxMhbHV+GRtYgeSVIlphCJK8EyTJhhUjE3R5ahYTsJxLzeAl5bMfcD4X1R5qIu72RzxV55UeWmNuS8gOT1T777CO//e1vnS772GOPydKlS533KjjllFPklFNOSf23gw46SG666Sbn48zyvve9T/74xz9GjzMZ/OQnP5F/+qd/mujDAFRRhgAAAAAAAAAo3X777ed82dHRUbnoootKPBo/P/zhD+X666+f6MNoiKVLl8qJJ5440YeRatq09MVwtmXLlpV8JJOb6+0o0lq3JWUIAKBUZe8zYssrR/KqkeT+Ia7yqhGR/HKkqBBJk1eNiOSXI3mFSJaickQkux5J7iWSVomkKSpHRNLrEXsfkaxSJE1RPaJVjvgUIVlMKaK5l0ieZCniWonU7Rfiyt5XxKEUsfcK8RFSinT0ha8uTitGytxfJK0Y0axFJmsFMjR1vGYYKH5O0ihBfPYOaaZ9QcoSUoTY1AsRxWjApQQJqT6yuDxmtIsml9s9qPzI4nA3N9O+H2WiAkErOfjgg2XatGnOp+g577zz5J//+Z+lvX0CXrwsZ599tvNld9hhB/nEJz4hb3rTm2TBggUyc+ZM6erqqrvcMcccIz/60Y80D1PF97//fXnllVecLjtt2jT5yEc+IocffrjssssuMn/+fOnu7pY267XxxhtvlIMPPjj62FxLoSVLlsjQ0JB0dPDn7zSut6OIyMKFC8s7kAbj0QAAAAAAAACgdN3d3fKOd7xDrrzySqfLP/PMM3LeeefJCSecUPKR5bv//vvl8ccfd7rsxz/+cTn//POd/gjvs29DI7neP9tss41cf/31su222xZeVutndd3Me82aNXL33XfL61//epXrbTU+m6LfeuutJR5JYzEZAgBoONd9Rjr6w/blyJJVjSSLkZBCJIvLfiMhhUgWl/1GTCEi4leJZHHZdyRvHxFfefWIqUZiShFb7L4jGkWILbmXSFYl4rNXiIui/USCi5AsAaVIDLsUESlvXxHDrkXKLEVEwvYXaXQBYrT6fiAirVOCFO0dolGDpHEqREq+W7NKEM36I03ysdOIx27abaxaf6SxrrLRzwkijSlAkrct5Qc2NMcee6zzH9tFRL70pS/JwQcfLLvuumuJR5XvlltucbrcZpttJt/97neda4Snn3465rBKsXr1arnnnnucLvvf//3fThMhIno/6+te9zrny1555ZVMhmTYfPPNZf78+bJ06dLCy954443y8ssvy7x58xpwZOVizxAAAAAAAAAADfGWt7zFa2JjYGBAjjjiiAmdOHj++eedLrf//vtLZ2fKSpuMMe++++6YwyqF688qIl6nvfrNb34Tcjh1DjjgAOfLXnDBBdLb26tyvUW6u91Wcvb3F5xvu4H2339/p8v19/fLueeeW/LRNAZlCACg6eSVI7ucrL/fSFox0j4wtiJwsKec5dp11Uj/2PoEs6J0cJbusuHc/UZGxlc/zlmnep0i+eVIz0zdN4FFe470D4x9KNl4dp/q9brUI2VJViIiIitWK6ZUOUwpsnbFeFZVKTlrSJQilVWNefuaVouUyS5F2tO341GXLEbahku+Hy1rZ49dd0eDzw7R6BLE7B3S0d+429espK806D4dnD724tXo4qXs+iNpaMrYz6i2X4mj0fY267/Lvb7h8dPZm/vSVDhlGhr/HWn046fR+3/cd25+GQ1saM4880x55zvf6Xz5J598Uvbbbz/51a9+5bUJuxaX1fMiIuvWuX+mOv3002VkpNEvnsVcf1aRsZ/XZSPu22+/Xa677rqYw6rafffdZZtttnGaHFuxYoUce+yxcsUVVwRf35o1a5x+xpkzZzpNdDzyyCNy2GGHBR+PpiOOOEL+93//1+myZ511lrzrXe+SPffcM+i6XG/HsjEZAgCYVB46O/+DpPZkSeeqsQ/Kaae9GJqu/wcR84eAruWVzFNtaE+UVP+Qvbx+Q78aypMlq1aO/eG+0pH980yfpvcX4e6pY+c9WjUwpToxkkVrwqTdOvfRcNpO2grsSZCKNTkxMlLyH3yS45c9MWKusqv2eirryvkZzcbpWZMjjT6dlkj5p9QqxcTsOZxqpL2xEwWN0shTCWU9lZnXrbL+qF3WfWYmOjKvd2i0lEmQvImGsn7Phwte6su678yER9r1lTkJkjwVqjHSXs7vCpMdgJ/DDz9c3vGOd8i1117r/D0vvfSS7L///nL00UfL1772Na89D2K5/hH3xhtvlOXLl8ucOfkLpi6++GL53ve+p3Fo6nz+YP3LX/5SPvrRj+Ze5tlnn5UPfvCDsYdV45hjjpGvfvWrTpf9+c9/LieccIJ8+9vflvZ291UFS5YskU9/+tPy8Y9/XN7znvcUXn7u3Lny4osvFl7u+9//vhx77LEyY8YM52MpyxFHHCGf+9znZMWKFYWXXbt2rbzrXe+Sq6++WvbYYw+v67n44ovlxz/+sfzxj38MPVQ1nCYLAAAAAAAAQENdeOGFsvHGG3t9z8jIiPz4xz+WHXbYQd70pjfJv/3bv8lNN90kjz/+uCxbtkxGRkZkYGBAnn/+efnLX/4iP/jBD+Too4+WO++8M+pYN9lkE6fLrVixQt7//vfLkiVLUv991apV8qUvfUk+9rGPRR1PmVx/VhGRk046SX77299m/vvVV18t++yzjzz77LMah1Z13HHHeU0mnHvuuXLggQc67f3yyCOPyHHHHSc77LCDXHPNNc7X4Xrqt0cffVRe85rXyIknnijf/e535ZJLLpFLL7205v9ca41YPT098ulPf9r58kuWLJG/+7u/k69//euycuXK3MsODAzIj370I9lzzz3lox/9qCxbtiz2cFW0jY6OttaSKAAAMmhUIyEbo8YWJCHXqVKPhNQEkfVIXiWSRaMeKSpF0mjUI7GlSMhpsTQqkerpsXwoFCMhp8iKLUZMGeJ1nQq1SMhpsmJXknesVvhYEHBzN/o0WcZElCEap8oKKUA0ftaQp6vYFf8ax11UfaRer0IFEnJ6qdjf4aLqI/U6Fd4uZFUfZV5vWvFRRKMIof4A9P3xj3+Uww47zOv0UmX6yEc+IhdffHHd1//4xz/KoYce6jxOV1eX/P3f/73svPPOstlmm8nKlSvlnnvukWuuuSboj8JZx2Xbeuut5Zlnnim83EUXXSTHHHNM5r9vtdVWsmjRIufj23fffeXggw+WrbbaSkTGNku/7rrr5IEHHnAeI8nlz9Xf+MY35OSTT/Yee/vtt5dDDz1Utt12W9loo41k7dq18vLLL8uTTz4pN998syxcuLDm8r/85S+dypCzzz5bTjnlFO/jSbPVVlvVHUdSW5vba9oNN9wgBx10UO5lVq5cKTvuuKO88MILHkc4tkfKm970Jtl3331l4403lmnTpsmyZcvkxRdflL/85S9yxx13yMDA+nOS77777nLvvfd6XUcZOE0WAAAAAAAAgIY75JBD5JJLLpEjjzyyKffPMP7u7/5OZs2a5XQ6IZGxvTQuu+yyko+qPIcffricd955zpe/44475I477ijxiOqddNJJ8utf/1puu+02r+974okn5IknnlA/nne+851qkyGNNHPmTLnwwgvl8MMPd5qEMvr7++V3v/ud/O53vyvx6PQxGQIA2GDk7TfiWo20jfiXGh2rs1dtuFQjZvWkz/V2rsi/sFM5Ylby+5QEefuOOFQjI0PjG9R6FCKr12Rv0p6UV5CY/UQMl1Lkpd7iLLuoHknuKeJbiYRulh6zn0hQEVK9Iut6PEqRmE3T7b1FRMrbX6R6nRvK/iJNtA/IZDHU7b+ZusZeICH7pGhscTRa8S8AfI4xpPpIvU6PEqSMDcV9fk9D6o/U6/S4X0LKD43rDak/svhUIdQfQON94AMfkI6ODjn66KOdNqCeCJ2dnXLiiSfK17/+dbUxN9lkE9lzzz3VNhbXdOKJJ8oFF1wgQ0NDamN+9KMflYsuukhtvI6ODrniiitk//33z60oGmXnnXeWv/u7v3M6FVezecc73iH//u//LqeddtpEH0rp2DMEAAAAAAAAwIR573vfKzfccENDN0VPk3f6oS9+8Yuy5ZZbqlxPR0eHXHrppd57pjTKDjvsICeccILaeMccc4z84z/+o9p4xmabbSZ//OMfZbvttlMfO8S3v/1t6epSWrnQYKeeeqqcfvrpE30YpaMMAQBA8qsRkdpyJKTUyOJTjWheb1E5IpKoR5Ir+GP2m8irRozxesQUIkbIXiI2l4LE1COmFAnZSyTJpR4RGStI2q2lwVmlSGgRksWlFIkqQrKkPZYU9hVxumqrFkkrRUL2Cim83pSH00TUIiKexUiLFiAhtUTZNCqQPHk/s0YJksa8ZmUVAWnHolV8FLGLkDKqjzRZv39a1Ufm9abcB5rVh+91i+jWH2nSihDKD6B57bvvvnLffffJF7/4RfnBD34gw8PDDbvu+fPny/HHHy/HH3985mVmzJghv/nNb+SAAw5wPl1WmkqlIhdeeKG8+c1vlksvvTR4nLJ94xvfkIcffjj6NEiHHXaYXHDBBd6ns3K1zTbbyB133CEf/vCH5dprry3lOlztueeecsEFF8ixxx7bNPvg+PjKV74iO+64o3zqU5+Keow3M8oQAAAAAAAAABOup6dHzj//fLn33nvliCOOkPb29tKuq7OzU97+9rfL5ZdfLosXL5avfvWrMm/evNzv2XXXXeX//u//gguWnp4eueqqq0qpJLR1dHTIVVddJUceeWTwGB/72MfkV7/6lXR2xi0yKzJ37lz5zW9+I5dccolavRPqIx/5iNx6662y//77T+hxhPrgBz8oDz/8sBx11FFSqbTe1AFlCAAADvLKkZ1PddtvxFdeNSKyfrWty74jIfLqkZHxdxDD3crXnVGP2AtKK/MHdK93XF49Mrx67A18Z0/23iOhXAqSDoU6xkWyFOnvLXnJrs2qRSqry/vwW3O1KfuKNCqHsGuR9gYtIEutACaoAFnXM3bFXauap9Aom9k7pK1xC15rmAKirYFVjHnNGq3UPtAaVWOY163KUPJrE/N73iiD08dLoAlYmDo0bfy6PfZj0XTPd0+akOsFoGfXXXeVX/ziF7Jo0SK58MIL5Ze//KU88MAD0eNuttlmcvDBB8vb3vY2Ofzww2XOnDneY+y1115y9913y7/+67/KhRde6LTPSaVSkSOOOEK+9a1vTfgf631Mnz5dfvrTn8phhx0mX//61+XJJ590+r4dd9xRzjrrLHnPe95T7gFajj76aPnABz4gl112mfzwhz+UW2+9VUZGwj5H7bHHHvL3f//3QZMa++yzj9x6661y//33yzXXXCN//etf5eGHH5bly5fLypUrZWAg7vOsz0bnITbbbDP5yU9+Iv/yL/8i559/vlx22WWydOnSoLFmzpwphx9+uBx99NHKRxmmbbTsWw8AgBZX1mRIkbInQ/KUNhniqKzJkDxlToa4aNRkSFJ1MqSs8+cUaNRkSJquZROzCspMhkzEHy87V0/M77M5jc1ETYZM5GmyJmoyxEx8NXIyxLAnQxolbTKkYdfNZEjDMRkCtKZnn31Wbr/9dvnrX/8qjz32mCxatEief/55Wb16tfT390t7e7vMnDlTZs6cKT09PTJnzhzZfvvtZZdddpFddtlFdt55Z9lss81Uj2np0qVy1VVXyQ033CD33nuvvPzyy7JixQrp7u6W+fPny2te8xp505veJO973/tkwYIFdd+/fPlyWb16deH1TJ8+PWjiRtPIyIhce+218oc//EFuu+02ee6552TZsmUiIjJr1ixZsGCB7L333vLOd75TDj300LqqYO3atc5/UN9iiy1Ujvnll1+W66+/Xu6880558MEH5dlnn5UXXnhB1qxZI4ODgzJ16lSZMWOGbLzxxrLtttvKjjvuKPvuu6/sv//+8qpXvUrlGFrByMiI3HnnnXLLLbfIvffeK0888YQsWbJEent7ZWBgQCqVikyfPl1mzpwpW221lSxYsEB233132X///WWPPfaQjo7m6TGYDAEAoAHKnDBx2UOkrAmTEYf3NGVOmIx2FU8QtM8q569AZnIkTSMmTMqeHMmtQkqeHKmsypkEacAcRV6VVVlb7s+eV4aU/QfNRkyGpJ2/3yh7MiTv+apjbfk/e95+IB39JV9/zsO27AmRRkx+5N23ZU1+uLz+lVlbmYmOPGU9Z5iJjtzrLnEShIkOAAAQqvVO/AUAAAAAAAAAAJBAGQIAQBPQKkdcKhGbZjXitFI2Q2xB4lKJZNGoR/JKkSJaJYlGLRK1T0hkMZJbhBR+c9RV1yjaryf16pWKkZg9Q2JXgWuUIXnlRxGtMiTkeUizDMkrQAqPI7YQiXgYahQiWhVIzGuJRgkSc/2xNYhL8ZFFswRxqT/qrl+pBqH8AAAAZWEyBACAScJnwiRkUsSF68RJ1B+ScvhMmMRMjuRxmTiJmRgp4jNx4jM5Utpm6Q4TJFGTIIWDu180ZBLE6RAcJkrK2jjd54+jvpMhMRMfeVwmRcp6jvGZFImZ9Cg8DpdJkZKu3mdSxGfyo6z7TMRtAqS06/e4H2ImOvK4/p6HTHA4Xb/HJAgTHQAAYCJxmiwAAAAAAAAAANDSKEMAAGghdj1SViFSJFmQlLkaOI9dkZRViuSxK5Iyi5E0dkWSVoqUVoRksUqRUquQLNbvRVlFSO4hWLVIWWVI4XEkrtcuQ8oqP4rYZchEPIfYhUiZFUjmMdh1SIMPIa0QsUuQRt83dgEyIa8v1v1QVu1RJPm7W1bxUXgMVhFC9QEAAJodZQgAAAAAAAAAAGhplCEAAGyAXvNlnQ3bfYxaAcDgjIl7C2Ify/CM4Qk5jsrA+nUpIxN0DNI2MfdDW//6O6FtcGJWNRudfWPXbz8uGql9jVXMTMDDoXNl469TRGTECqa6Vk7gc8N4aVAZnLBDEBGRtkTE1b5uYm6PkQn6fRjqXv+7EL2hvMIxiEzsc4N9LBPx2Lzvvz/f+CsFAAAoAWUIAAAAAAAAAABoaZQhAAAgV1kVic9K27IrEp9jKasiSVYiLkovSUoqRpJFSOFlSy5GTBHioqyV4XYR4qKsaqTMMsSuP1yUVYiMeuwzUfYq/DaPrYzKKkTKLkDssqFIWTWIz3GUXYL4HEtZj0FqDwAAsCGiDAEAAAAAAAAAAC2NMgQAAETTqEe0VuJqVCRax6JRkfgWI3mia5KIWsSnCHEaL6Ia8SlCXIU+ZkLKkCKh5UhMGRJSfhQJLUN8yg9XMavzfeoPFzGFSGwF4lt55NEoQLSOR+M5X+tYNEoQqg8AAIB0lCEAAAAAAAAAAKClUYYAAICGyqtIyj5Pe5aimqSRx1VUk2iWIq4Ki5KcYkS7CCmSV4yUUYS4yHv8lFGG5MmrRorKkDLqjzx5ZUgZ9YeLvFX72gVIkbxCpKgA0Sw8XBWVII08pqLn9Im4fUTyH1/UHgAAAPGYDAEAAE1rp6+Us3l7jHWzmu+t02gHx5Sno29sAqnszbB9tPeP/bF1tIk67c6+iT6CdJ1rmuexNDr+N/KOgYk9jqThrok+gslhcMbETHDkeeBbTHAAAAA0UhN9/AIAAAAAAAAAANBHGQIAAFpKo2sSn1PjrJ3TmLddPgXEcHdj3wo2uhgxVYiLRpUjpgpx0chypFnLEJHG1SGjHvFAo+uQRhcgPqdFa9TvzuB0jzuowSEIlQcAAEDzowwBAAAAAAAAAAAtjTIEAABs8DRrEu1NlDVrkrJWb2vVJRrViE8J4kPztvMpQ1xo1SMbShniU3/40ChFtOqPsja71/w98Ko8XCgOR+UBAADQmihDAAAAAAAAAABAS6MMAQAAiJBXlWhXIqHy6pJGnes/T1FZ4lKMlFWE+Ci6LbWLkBB5FUkzlyFGUSFSVvXhw6UQKSpAyio7fOQ9ntWrjlA5h0HdAQAAANvEf2oEAAAAAAAAAAAoEWUIAADABHnNv+jtVaItWRAMTZsEbxebZKF6GrsIaYYaJ03Hmok+gmyj7bX/3dnXvI9J+1ib0dC09Y/JtqEJPJACD/wXdQcAAAD0UIYAAAAAAAAAAICWRhkCAAAwSU1UWZK374SrhtYmDa5GNPcGaWRF0ugyRLOgaHQp0sj6I1lxhJqo+oOyAwAAAM2EMgQAAAAAAAAAALQ0yhAAAABUxdQmGsVIrKjiJHIBvmYREiO0JokpQ5pln4zYQiTm59AoOGLFFCBUHAAAAGh1TIYAAACgYXb6SvNuGh+iGSaAtHT2TfQRKJv4uQlVD/4HkxUAAABAjBb6+AYAAAAAAAAAAFCPMgQAAAAtrRlrlGYsSpq2DGnCwoNKAwAAAJh8mvBjGAAAAAAAAAAAgB7KEAAAAAAAAAAA0NIoQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBL65joAwAATD4jIyOycuXKiT4MAAAAABlmzpwplQprYAEAMJgMAQB4W7lypbzrXe+a6MMAAAAAkOHXv/61zJ49e6IPAwCApsESAQAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDS2DMEAKCi866NpG2ovfrfbZU2SfxH/tdrvtaW+J+V1K9nXT759Zrvzbq8+d9Z15P4n07X73KdZlCH8UaT35ZcvpD2M9R9b8HPkXXZjOspHE9ERmuWWGT8HG11/5x5/VnXOZp1/cmvJ5nbN+04XMeLuP7q7aJ2nQ5fl/qvu92efv/b6bh8vi/j8sG3RdExxYztehmPMXyPS9pG6y8T8TOkjpdjNO17Pa8n+xjTL1PzdCoplyn6dxFpcxk78+ujia+Puh2TdZ21v/7149ljVjIvU3/9WePVPLUn/nfW2E5fl9Hcf3f531nHUpH8703+e+31jwSNl3/5+jHba65/JPX72l2uX9KPtz1zzJHx60x8LeNYs76eeZ2Jr6cde9YYyetprxnb5XZJXmfGMY5/b3vWz+b082ccY+Zl6v938q1a8vcp+b/bE5dpz7hMJfELW0n8BrRL/ddrL1tJ/77Ee89VK9vlIyfNFwAAkI3JEACAirbBirQNK0+GVDImKUazvp743rZK6tdTJw+yrifrf2f9lawt489NqeP4/qVVii+T9b9r/lBX8BfTGr6XSX454/qrkzEel807FJfLjD++3P4Y7HKdvtevfZ2B/zvieoInaXy/T9K/rj4ZovRzak+G+F//BEyGZI45AZMhaZepOW7fyRC/6yyajMj8mSXj65m3S9Zl6m/ztqzLZtwW2ddf/L/TJkN8/7f3JEXKZEjtv/tOhuRPAIxdpi3xv+snQ9L+vX68rAkISf964j6qnUhIOe6aMdocvp48Xkn9eu2xpx1T4vtqxkheZ/LrxZNE7TW3S/1lsv89fULFZTIk+zL5kyG115/4esbtWXuZ5Ncz7pfx/117Wan7d/s6K2kvPgAAoAanyQIAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALa1jog8AANAaRjtHRNqG13+h0rb+f7eN5n+95msZ35f8emUk4+vJ761kfD3lfycvW/Pvkv71zPEcrtMMmnYc1v8eTfk29+9NfkNSm/X/RUal6LKul0kYzfh6ipqxRzO+LqkXybn+lMtk3p7J/511/3tePu1Y1K7T4X9LytcjriftIex9LKHHHfO/G3U9LtflcjtnXD77uWC0/jIZl80eo2C8HKNp3+t5PdnHmH6Z2qe2lMsU/buItLmMnfn10cTXR92OybrO2l//+vHsMbMvk3L9NT9b0bNvzuUd/veo+VlrHjd+/zvxam4db9H1Z409kv71zMun/+9K4vKVxJiV8cskx2tL/nvi6yOZ463/38NSP7aISHvGmObrycdBe8bYWV/POpb2muuRxOXNZeu/NvZ96f+79vLr/6M98+ttqV+vpPx7zfUkjiZ5ndm3S/J7HW6L8f+d9fPX3BY1159x+Yyfs13qv1572Ur69yXee65ayVpXAACKMBkCAFAxuNcrE30IaFYZf99qFi5/IwcA1KqflrAmNzCJpc0M8od2AAAw+fGOBgAAAAAAAAAAtDQmQwAA3lasWDHRhwAAAAAgB+/ZAQCoxWQIAAAAAAAAAABoaewZAgDw1tPTU/e1Sy65RGbNmjUBRwMAAABs2FasWCEf/vCHa76W9p4dAIANGZMhAABvlUp9WDhr1iyZPXt24w8GAAAAQJ209+wAAGzIeGUEAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2tbXR0dHSiDwIAAAAAAAAAAKAslCEAAAAAAAAAAKClMRkCAAAAAAAAAABaGpMhAAAAAAAAAACgpTEZAgAAAAAAAAAAWhqTIQAAAAAAAAAAoKUxGQIAAAAAAAAAAFoakyEAAAAAAAAAAKClMRkCAAAAAAAAAABaGpMhAAAAAAAAAACgpTEZAgAAAAAAAAAAWhqTIQAAAAAAAAAAoKUxGQIAAAAAAAAAAFoakyEAAAAAAAAAAKClMRkCAAAAAAAAAABaWsdEHwAAtJK+vj55+OGH5ZVXXpHe3l4ZHh6W6dOny+abby477rijzJo1a6IPsWWNjo7K4sWL5cknn5SVK1fKqlWrRESkp6dHZs6cKQsWLJBXv/rV0tbWNsFHWmvFihWyZMkSeemll2T58uUyMDAg69atk+7ubpkxY4bMnz9fdthhBx47AAAAgSb6PfrIyIg88cQT8re//U16e3ur7/U23XRT2XHHHWXjjTdWv86hoSF5/vnn5cUXX5SXXnpJ+vr6ZO3atVKpVGTGjBkyY8YM2WabbWSrrbaS9vZ29etPMzw8LE899ZQsWrRIli1bJv39/dLV1SXTpk2TTTfdVLbYYgvZbLPNGnIsAIANE5MhADYIo6OjcuKJJ8q9995b92+ve93r5Jxzzgkee2hoSH73u9/J1VdfLY899pgMDw+nXq5Sqciuu+4q733ve+Xggw8O+qP8ddddJ2eeeWbwsRa5/PLLZdNNN1Ud8ze/+Y2cffbZpV3fgw8+KNdcc43cfPPN0tfXl3vZ6dOny5ve9CY5/PDD5bWvfW3U9Ybo7++XBx98UB544AF5+OGH5amnnpJXXnnF6Xu32GILectb3iKHHXaYvOpVryr5SAEAAMKcccYZ8tvf/lZlrNe//vXyn//5n0Hf28j36FmWLl0qP/vZz+T3v/+9rFixIvNy22+/vRxxxBFy2GGHBU9MPPvss3L//ffLAw88IE888YQ888wzsm7dusLvmzJliuyzzz5y2GGHyRvf+MZSJkbuvvtuufrqq+XPf/6zrF69Oveys2bNkl133VX2228/OeiggyZsQdALL7wgjz76qDz22GPV/zOLrYzYz5EAgMZjMgTABuGqq65KnQiJdc8998jZZ58tzz33XOFlR0ZG5P7775f7779ffv7zn8u//uu/Nt3KJ+1q4qWXXpL/+Z//UR3TWLZsmXznO9+RG264wfl7Vq9eLdddd51cd911cuCBB8qJJ54o8+bNK+X40vz+97+Xb37zm0Hfu3jxYrnooovkkksukX/4h3+Qf/zHf5SpU6cqHyEAAMDk1wzv0X/1q1/JeeedJ/39/YWXfeKJJ+Qb3/iG/OIXv5Cvfe1rsuWWW3pf3wknnCDLli3z/r61a9fKrbfeKrfeeqssWLBATjrpJLVFQwsXLpRvfetbXp/DVqxYIbfddpvcdttt0t3dLW9961tVjqXInXfeKffdd5889thj8uijj+ZOXgEAJi/2DAHQ8hYvXiwXXHCB+ri/+MUv5KSTTnL6kGV76KGH5JOf/KQ88sgj6scVav78+eqJ/tlnn11Ya4RYvHixfPKTn/SaCLHddNNNcuyxx8qzzz6reGTlGxoakksvvVQ++9nPSm9v70QfDgAAQFNphvfo5557rnzzm990mghJevLJJ+VTn/qUPPzww1HXH+qpp56SE044Qa655prosX7729/KJz/5yVIWpJXhu9/9rvz4xz+WO+64g4kQAGhhlCEAWtrIyIicddZZMjAwoDruH/7wB/n2t79d9/W2tjZ53eteJ/vss091YuHll1+Wv/71r3LPPffU5PmrVq2SL3zhC3LBBRfI5ptv7nS9PT09st1220Uf/zPPPCODg4M1X3vHO94hlYreHPmvf/1rufPOO9XGM1atWiUnnniiLF26tO7fenp6ZP/995cdd9xRZs+eLaOjo9Lb2yuPPfaY3HrrrXVZ/ssvvyz/9E//JBdffLH09PSoH2uRrq4u2W677WTLLbeULbbYQubOnSvd3d3S1tYma9askSVLlsgjjzwi9913X92pHR5//HH5/Oc/L9/73vekq6ur4ccOAADgoqOjQ7beeuug7/UtNCbqPXrSZZddJldccUXd17u7u+XQQw+VBQsWyKxZs+Sll16S+++/X26//XYZHR2tXm716tXyxS9+Ub7//e9HFSrz58+X7bffXrbYYgvZdNNNZfr06TJ16lRZu3atrFixQv72t7/JnXfeWfeeemRkRP7jP/5DpkyZIm95y1uCrvuKK66Qc889t+7rbW1tsv3228vee+8t8+fPl9mzZ8vw8LCsWrVKFi1aJE8++aQ8/PDDmac0AwAgFpMhAFraz3/+c7n//vur/73zzjtHr7T629/+Jt/4xjfqvr711lvLqaeeKq95zWvq/u2oo46Sp556Ss4880x5/PHHq19ftWqVfOUrX5ELLrjA6fy8BxxwgBxwwAFRx7906VL5wAc+UPO1trY2ecc73hE1btILL7wg5513XvW/Z8yYIXPnzpVFixZFj33BBRfUfWhra2uTD33oQ7mnjurv75cf/vCHcvnll9d8fenSpXL++efLF7/4xehjK9Le3i677LKL7LfffrL33nvLDjvsIJ2dnYXf9/LLL8sPfvADufbaa2u+/tRTT8nFF18sxx57bFmHDAAAEGXevHnywx/+sPTrmcj36MZjjz2WWqQfcMABcuqpp9YtvjnqqKNk4cKF8uUvf7mmVl61apX8v//3/+S8885zPo3t3LlzZZ999pF9991Xdt99d5k/f37h94yOjspNN90k5557rrz00ks1X//2t78te+21l8ydO9fp+o3rr78+9TS5Bx98sHzqU58qnOBZvXq1/PnPf5ZrrrlG/RS+IaZPny7bb7+9bLbZZnXvxQEAkw+nyQLQsp599ln5wQ9+UP3vWbNmyec+97nocS+44AJZu3Ztzde22WYbOffcc1M/ZBkLFiyQc845p+4yTzzxhPzyl7+MPi5X1157bd1qq7322ktt4/TR0VE5++yzZc2aNdWvHXfccd4fpNL09fWlfgg5/vjj5dhjj83dQ6O7u1uOP/54+dSnPlX3b9ddd13dhohlOPzww+W73/2ufOQjH5FddtnFaSJEZOyPCKecckrqsV911VXq5RMAAMBk0wzv0b/zne/Uvc8+6KCD5N/+7d8yK+Stt95azjvvvLoK5aGHHvLaiP6HP/yhfPnLX5Y3v/nNThMhImMLig466CA5//zz6yYpVq1aJb/61a+cr19k7PPXf/zHf9SULh0dHXL66afL6aef7lS6TJ8+XQ499FD5r//6L3nzm9/sdf2xuru75bWvfa28733vk3/5l3+RSy65RK699lo555xz5CMf+UhDjwUAUA4mQwC0pJGRETnjjDNqPhCdcMIJMmfOnKhxn3zySfnTn/5U87WOjg75yle+IjNnziz8/mnTpslXv/pV6e7urvn6pZdeWvfhrQyjo6Ny3XXX1X39//v//j+16/jf//1fueuuu6r/vffee8vhhx+uMvbtt99ed3qv7bffXt7//vc7j3HkkUfKggULar42NDQkf/7zn1WOsUwf+tCHZJdddqn5Wn9//6Q4dgAAgLI0w3v0u+66Sx588MGar82dO1e+8IUvFJ6KdtasWXLKKafUXe7HP/6xjIyMOF1/jHnz5snnP//5uq/feOONXuOk7ZPyla98RQ4++OCg42pkGXLGGWfItddeK//zP/8jn/vc5+Stb32rbLXVVk1RpwAA9DAZAqAl/exnP5OHHnqo+t9veMMb5K1vfWv0uDfddFPd1w466KC6P67n2WyzzeRtb3tbzdeWLVsmN998c/TxFbn77rvrNpOcNWuWvOlNb1IZ/7nnnpPzzz+/+t/d3d2qp59KO83WoYce6vUhpVKpyKGHHlr39cmykXraCrmFCxc2/kAAAACaRDO8R0+rKI488kinyRgRkd13313222+/mq8tWbJE/vrXvzp9f6x99tlHZs+eXfO1RYsWOU/G/OlPf5K777675mtve9vb5KCDDlI6wnK96lWv8jolGgBgcmIyBEDLWbhwYc15iadPny7//M//rDJ2sngwQjYWtD9oiYj8/ve/DzomH7/5zW/qvvaWt7zF+XRNeUZHR+Wss86qWQ127LHHqp1+S0Rk+fLldV/baqutvMdJ+55ly5YFHVOjpW3k+corr0zAkQAAADSHiX6P3t/fX1emdHV1yWGHHeZ1/e9617vqvnb99dd7jRGqUqnUvW8fHh6W3t5ep+//6U9/WvPfXV1dcvzxx2sdHgAAKpgMAdBShoeH5YwzzpB169ZVv3bcccfJxhtvrDL+U089Vfe1XXfd1XucHXbYQbq6umq+ds8995R6qqxVq1alrmzTOoXVVVddJffee2/1v3fbbTd573vfqzK2kTZpEzKRY9/2WV9rRsnHttHR0TEBRwIAANAcJvo9+r333lv3Hm2PPfZwrkKM17/+9XWn6vrLX/5SswdHmdLeZ7q81160aJHcf//9NV97wxveUFeaAAAw0ZgMAdBSLrvsMnn00Uer/73XXnvJO9/5TpWx165dW3cO3GnTpmVuhpins7OzbkPxdevW1ZzaS9vvf//7ug84O++8s2y77bbRYy9ZskQuuOCC6n93dXXJySefrH6O3bTK5KWXXvIeJ+170oqLZpR8fBuT5dgBAAC0NcN79Pvuu6/ua7vttpv39Xd0dNTtD7ds2TJZvHix91i+Vq9eXXfa2JkzZ8qMGTMKv/eGG26o+1raaWkBAJhoTIYAaBlPP/20XHTRRdX/1t6vYtWqVXVfmz59evB4aR8sHnvsseDxilx77bV1X9PYOH1kZETOPPNMGRgYqH7tYx/7mLz61a+OHtu255571n3tjjvu8B4nbcPxvfbaK+iYGmnlypWppzrbZ599JuBoAAAAJl4zvEd//PHH675mT2q4SitayvyMYFx55ZV1C6f23ntvp8VNafuahP78AACUifNqAGgJQ0NDcsYZZ8jg4GD1a5/85Cdls802U7uOKVOm1H0t5rRWyckD45lnngkeL89jjz0mTzzxRM3Xuru7VVZsXXnllTVZ/E477SQf/OAHo8dNs91228muu+4qDz74YPVrt9xyizzyyCPymte8xmmMBx54QG699daar+21116y9dZbax6qut7eXjnttNPq9k3Zd999g/ZNAQAAaISBgQG59NJL5f7775dFixZJb2+vDA4OSk9Pj8ycOVNe/epXy+677y577rmnbLfddt7jN8N79LR/Dy130z6/LFq0KGgsV9ddd51cfPHFNV9ra2uTD3zgA4XfOzw8LI888kjN12bNmiXz58+v/ndfX5/8/ve/lz//+c/y1FNPSW9vr3R0dMisWbNko402kt12201e//rXyx577CGVCmt2AQDlYTIEQEv4yU9+UrNiatddd1Xfr2LGjBnS3t4uw8PD1a+tXr1ahoaGgvZsSNuM8Lnnnos5xExpNcHBBx8s06ZNixr32Wefle9///vV/+7o6JCTTz5Z2tvbo8bNc9JJJ8mnPvWp6sTXyMiInHrqqXLGGWfIzjvvnPu9DzzwgJx22mk1512eOnWqfP7zny/teGMMDQ3JwoUL5cYbb5Rf/OIX0tfXV/PvPT098s///M8TdHQAAADFent7a06naixbtkyWLVsmCxculFtuuUVExt7DH3XUUXLAAQc4jz/R79EHBwfllVdeqflae3u7zJs3z/u6RUQ22WSTuq89//zzQWPlWbFihdx1111y9dVXp25A//73v7/wvbXI2OcBuyjZYostqv/717/+tZx33nmyZs2amssMDg5Kf3+/vPDCC/LQQw/JZZddJttss4187GMfkwMPPDDwpwIAIB+TIQAmvaeeekp+9KMfVf+7q6tLTjnlFPVVRW1tbTJv3jx58cUXq18bHh6Wxx9/3OmDQtLixYvr/rAtMvahUNvatWvl+uuvr/t67CmyRkZG5IwzzqhZeffhD39YFixYEDVuke22206+8pWvyOmnny5DQ0MiMna7HX/88XLwwQfLIYccIjvuuKPMmjVLRkdHpbe3Vx577DH5v//7P7nppptkZGSkOtbUqVPl3//932XLLbcs9ZjzLFy4UL7+9a/XfG14eFj6+/vllVdeqamdkubOnStnn322vOpVr2rEYQIAAJTuwQcflNNOO00OPvhg+dKXvuR0uquJfo/e29tb8/5SRGTevHnBi4M23nhjr+vP853vfKduP5O1a9fKqlWrUid9jHe+851y3HHHOV1H2kTNjBkzZN26dfKVr3xF/vSnPzkf79NPPy3/+q//Ku985zvl85//fNBkFgAAeXhlATCpmdNjmT+Ki4gcc8wxpf1x+7WvfW3NBy0Rkdtvv937g1bWh4IVK1YEH1uWG2+8se5D3VZbbSWvfe1ro8a9/PLLazaT3HbbbeXDH/5w1JiuDjzwQDnvvPPkrLPOkr/97W8iMvah9/rrr0+d+Emz2267yRe/+MUJP8XUwMCAPPnkk86X7+jokLe+9a3y6U9/WmbPnl3egQEAACgym3F3dXXJqlWrZMWKFTXv4ZNuuOEGefzxx+Xcc8+VjTbaqHDsiXyPvnLlyrqvdXd3e11v0femXYeL5557zut95pZbbimf+MQn5KCDDnL+HruKERn7Gf793/+97vZsa2uTOXPmSE9Pj/T19cny5cvrJpJERK6++mp5+eWX5cwzz+S0WQAAVUyGAJjUfvzjH9fshbHjjjvKkUceWdr17bXXXnV/bL/66qvlqKOOcv7QMzg4KL/85S9T/y3tHMWx0k6RFVuFLFy4UC688MLqf7e3t8spp5zS0NVbO+20k1x00UVy2223yXXXXVc9vUKRgw8+WP7+7/9edtttt5KPUN/f/d3fyWc/+1nZdNNNJ/pQAAAAcm277bbyxje+Ufbee29ZsGCBzJo1q+bf161bJ48++qjcfPPNcvXVV0t/f3/Nvy9ZskROPfVUOeecc2Tq1Km51zWR79HT/i1tHxNXad9bxmeEpNmzZ8unPvUpOeyww7wnH9I2sL/99ttr6vFZs2bJhz/8YTnkkENqTh/W29srt9xyi1x88cWydOnSujEuuugi+fjHP+750wAAkI0pdgCT1uOPPy6XXHJJ9b87OjrklFNOKXW/ikMOOURmzpxZ87Vly5bJOeec4zzGBRdcIEuWLEn9t6zVcaEWL15cl8Z3dnbK29/+9uAxh4eH5cwzz6w5N/AHP/hB2WmnnYLHDHXffffJddddJ3feeafz99x0001y/vnnyx//+MfUlWjN7JZbbpGPfexjcu6559ZtpA4AANAM3vCGN8gFF1wgF198sRx77LGy55571k2EiIyd2na33XaTz372s3LFFVfIG9/4xrrLPProo3L++ecXXudEvkdP+7euri7n67WlTYZof0aw9fb2ytlnny3HH3+83HrrrV7fa+8XIlK7gf32228vP/rRj+QDH/hA3T4qs2fPlne+851yySWXyB577FE3zo9//GNZuHCh1/EAAJCHMgTApDQ4OChnnHFGzUaJRx99dOn7VXR3d8v73//+mipCZKy+mDp1qhx//PGZdcTw8LD88Ic/lMsvv7zUY7SPK7lZuIjI/vvvH3V6pcsuu0weeeSR6n9vueWW8tGPfjR4vBC9vb3yH//xH5k1SE9Pj8yaNUsqlYqsWLGi5tQGIyMj8uCDD8qDDz4or33ta+XLX/6ybLbZZo069Do77bST3HzzzTVfW7dunfT19cnixYvloYcekt/97nfV04GtXr1arrjiCvnd734np512mrzhDW+YiMMGAABIdfDBB3t/z6xZs+Sss86Ss846S6699tqaf/v1r38tH/jAB3LfrzXbe/S2tja1sUSk7v28q7PPPrtunL6+Punt7ZXHH39c/vKXv8gf//jH6uTFQw89JKeddpocdNBBcuqpp0ad7ktEZM6cOfLNb36z8LPHtGnT5Oyzz5aPf/zj8uyzz9Yc709+8hP58pe/HHUcAAAYlCEAJqWLL764+sdhEZFtttmmYftVHHXUUfKa17ym7utXXXWV/OM//qNcddVVsmjRIunv75eBgQFZvHix/OpXv5KPfexjNSXL3Llz68aIWUVmGx4elt/+9rd1X485RdbTTz8tF110UfW/29ra5OSTT446FYCvF198UT7zmc/UTYRstNFG8ulPf1ouu+wy+c1vfiM//elP5dJLL5Wrr75arrzySjnppJNk8803r/meBx54QI477jh55plnGnb8Lrq6umTu3Lmy2267yZFHHikXX3yxnH766TWrKlesWCGnnXaa3HTTTRN4pAAAAHq+8IUvyI477ljztaGhIbnyyisLv3ei3qOnTbIkywhfaaWF1qlo29rapKenR1796lfLoYceKqeeeqpcccUVdXuE3HjjjfKFL3zB6efIq/J99ribOnWqnHTSSXVfv/7662XNmjVOYwAAUITJEACTzqOPPio//elPq/9t9qvo7OxsyPV3dnbK17/+dXnVq15V92+LFy+W73znO3L00UfL2972NnnrW98qRx11lHzzm9+Up59+unq5uXPnyhe/+MW6758xY4bacf75z3+u29Bwk002kX322SdoPLNZ/eDgYPVr733ve6M3YvcxODgop556at0pDPbbbz/58Y9/LEcddVTdhIeIyMYbbyzvec975OKLL5Z3vOMdNf+2bNkyOe2000o/F3Osgw8+WP77v/+7ZkLEnLLsueeem8Aj+//bu/uYqsv/j+OvA4oCBw9mIoSYgMAQNQxNzbt0lrqcdzWdjZYzV6mJNs10LWst55w3360yK8qazjSzxrwrb6ZTa0pqkngDiejyBpUbEbkTD/j7w+k6fD7IOYcjyPk9H1t/8Ibr+lzgH12f87puAAAAPKNFixZ68803DfX09PR62zbVHN3sPpOGhCFmbRu6Q+NB2rZtq48//ljjxo1zqGdmZmrlypX1tq9rbDabTcOGDXNpLElJSXryyScdatXV1crMzHSpHwAA6kIYAqBZqaqq0uLFix2Ox5owYYLpKrCHqUOHDvrqq6/cCgLCw8O1dOlSw7nG0t3dDZ5idnG6O5ci3rNu3TplZ2ff/zo0NFRvvPGG2+Nzx4YNG5STk+NQS0hI0CeffKKgoKB627dq1UrvvfeeBg4c6FC/cOGC1q1b59GxPgydO3fWO++841ArLy83HAkBAADQXCUlJRl2Z1y4cEHXrl2rt21TzNHNfr72ZfCuMGtr9gxPS0lJUVRUlENt8+bNDsdWmalrbImJiW4tVuvVq5ehdvz4cZf7AQDADGEIgGZl06ZNDqu3OnbsqClTpjTJWNq2batPP/1UCxYscOrOiRYtWmjs2LFavXq1YmJiVFpaavgZT91dUVhYqIMHDzrUfHx8DLsinHXt2jWtWbPGoTZv3ryHukqtNrvdrp9//tlQnz17tkvHi1ksFs2aNcvQJi0t7aFfTukJQ4cOVUREhENtz549unnzZhONCAAAwHMsFoueeuopQ/3q1atOtW/sOXpwcLBhsVFhYaFqamqcGm9tZqGP2dFdnubr66vk5GSHWk1NjbZs2fLAdnUFRTExMW6NIzY21lCrvdsdAAB3cYE6gGaloKDA4evy8nJNmzbN6fb/PeLpnuzsbNNAZfXq1fX25+vrq5EjR2r48OHKzs7W0aNHlZubq+LiYpWWlsrPz0+hoaFKSEjQwIED9fjjj99va3ZPRe3VWO767bffHHbPSHdX2ZkdG+CMGzduOPztWrZsqS+++MKlPmofbSXdDVRqrxibMmWKBgwYYPjZ7OxsFRUVOdQiIyMN50o7IyQkRElJSQ6B0Y0bN5SVlaVu3bq53F9j69Onj8Mqverqap04cYLL1AEAgFcw+/C/uLjY6faNOUdv2bKl2rVrp/z8/Ps1u92ugoIChYSEOD3me8xCn7CwMJf7cUefPn0MtYyMjAe2qSso+u/Rrq4w22ly48YNt/oCAKA2whAAzVpRUZHhA3JXVVRUGI5ecpWPj4/i4+NdOq7r7NmzhpqnPojfvn27oTZq1CiP9C3dDZUa+jeTzF8269rhYPb3SkhIcPvZXbt2NeyeOXv2bLMIQ8xCLe4NAQAA3sJs97HZxeL1aaw5eqdOnRzCEOnuQiB3whCzBUSdOnVyuR93BAUFyWq1OuyOqW+OGRISIn9/f8PxXu7e52i249udf3sAAMxwTBYANJFTp045fN26desGfbh/T0ZGhuFsX5vNZrrbojkpKSkx1IKDg93uz6xtczlqqlWrVoZaeXl5E4wEAADA88x2gbi708BV7szRzY52OnnypFvPP3HihFP9Pyy1w4j65pg+Pj6m4zM7bswZZu0a698eAOD9CEMAoAlkZ2cbAotnn33W9ENuV5ldnD58+HC3V2c9KsxWid26dcvt/szaeuLv3xiuX79uqPGSCAAAvIXZ7uGGLIJxlrtzdLM7Tty59Lu6utoQojz22GOG++IelpqaGsORVM7MMXv27Gmo5eXluTWGK1euGGrMcwEAnsIxWQCalZSUFKWkpLjdPi8vTxMnTnSoJSYm6tNPP23o0FxidozViy++2OB+y8rKtG/fPkO9oUdkxcTEaP/+/Q3qIyUlxXDm8I8//uj0GchmL8DuvmRJ5lv+G+Ml2xPMVho2xsWaAAAAD1tJSYlhd4afn1+jBALuztETExPl5+fncJzTX3/9pZs3byooKMjp5//555+G46Z69+4ti8XidB8NkZWVZbh30Jk5Zt++ffX999871JrrzhgAgHdjZwgANLLc3Fxt3rzZoRYTE6PevXs3uO/du3ersrLSoZaQkKDOnTs3uO+m1rFjR0Pt2LFjbu0OuXPnjtLT0w31xlp11xCFhYU6duyYQ83Hx0ddu3ZtohEBAAB4zoYNGwwfyPfs2fOh7+BtyBw9ICBA/fr1c6hVVVXp119/dWkMtZ8vScOGDXOpj4bYvXu3oebMMb5du3Y1zNWzsrJ0/vx5l55fXFxsOkd/+umnXeoHAIC6EIYAQCOqqKjQkiVLDC9406dP90j/ZkdkeWLHyaMgLi5Obdq0caiVlZXpl19+cbmvXbt2GS6ntNlszWLV2cqVKw2XSCYkJLAzBAAANHtZWVn66aefDPXBgwc/1Od6Yo4+duxYQ239+vVO30mXmZmpgwcPOtTCw8PVq1cvp8fQEOfOnVNaWpqhPmjQIKfav/TSS4bad99959IY1q5da5jnxsfHq0OHDi71AwBAXQhDAMANtV+UnFFWVqZ3331Xp0+fdqiPHDlSSUlJDR7T2bNnlZWV5VDz9/fX0KFDG9z3o8DX19f0Rfjbb781HL/1IDk5Ofrf//5nqA8ZMkQ+PvX/bzElJUWDBg1y+M+ZVX87d+7U3r17defOHafH+l81NTX6/PPPTVfsmb18AgAANKbLly9r8+bNun37tlvtT58+rfnz5xt2/UZERGjEiBFO9dGUc/SkpCTDLorCwkItX75cNTU1D2xbUlKixYsXG34uOTlZvr6+9T57xYoVys/Pd3qstZ0/f15z5syR3W53qEdFRZneB2Jm1KhRCgkJcajt3bvXNGAxc+DAAW3atMlQnzx5slPt3Z2jAwD+fyEMAQA3zJ8/XytWrNDJkyfrfbmprq7Wzp079eqrrxouUoyMjNSsWbM8MqatW7caakOHDlVAQIBH+n8UTJ482XBEQlVVlebOnav169c/8Mgsu92uzZs3a8aMGSorK3P4nr+/v1577bWHMuZ7Ll68qA8//FCTJ0/W+vXrTS+HNFNTU6PDhw/rrbfe0saNGw3ff+aZZ7wm8AIAAM1XWVmZli1bpokTJ+qbb75RTk6OU+2Ki4uVmpqqGTNmqKioyOF7Pj4+mjlzplq0cO6606aeo8+ePdsQXuzZs0cffPBBnTtEzp8/r+nTp+vixYsO9fj4eI0cOdKp56alpWnSpElatGiRDh48aAg16lJYWKjVq1dr6tSpKigocPiexWLRnDlznApjJKlVq1aaPXu2ob5ixQqlpqbWOU+32+3asGGDFi5caFg01Lt3b8PxYwAANAQXqAOAG8rLy5WWlqa0tDS1bdtW3bt3V3R0tNq3b6/AwEBVVlbq+vXrys3N1aFDh1RSUmLoIywsTMuWLfNIWFFVVaVdu3YZ6g29OP1R0759e7399ttavny5Q72qqkqrVq3SDz/8oL59+youLk7BwcGyWCwqKSnRP//8o/T0dMNL3j0pKSlq165dY/wKOnfunFatWqVVq1YpPDxcsbGxioqKks1mk9Vqla+vr8rLy3X9+nXl5OQoMzOzzpV+kZGRev/99xtl3AAAAM4oKCjQmjVrtGbNGrVv316xsbGKjo5Wu3btFBgYKD8/P928eVP5+fk6ceKEjh8/bjga6Z6ZM2eqb9++Tj+7qefocXFxev311/X111871A8cOKAjR45o2LBhio6Ols1m07Vr1/T333/r0KFDhuDGarVq4cKFTu1avqeqqko7duzQjh07FBAQoC5duigmJkZhYWGyWq0KCAhQVVWVysrKdPHiRWVnZ+vkyZOmu2ksFotmz56t7t27u/T7DxgwQBMmTDAs4Fm7dq22bdum/v37KzY2Vm3atFFpaalyc3P1+++/6+rVq4a+QkNDtXDhQpee3xAFBQWaN29end832/GUnZ2tKVOm1NmmXbt2Wrp0qUfGBwDwDMIQAGig69eva//+/dq/f7/TbeLj47V48WKP3fNw4MABw8tcZGSkUxceNjdjxozRzZs3lZqaalg9duPGjfsvgc6wWCyaNm1ak92rcunSJV26dEl79+51uW337t21aNEiBQcHe35gAAAAHpCfn6/8/Hz98ccfLrXz8/PT9OnTNX78eLef3VRz9OTkZBUVFRmOfKqoqNCWLVvqbR8QEKAlS5YoPDzc7TGUl5fr+PHjhh0vzri3w8Pd+fH06dNVWlqq7du3O9SLioqc+v0lqVOnTlq8eLFsNptbY3DH7du3nd7NdE9FRcUD25SWljZ0WAAADyMMAYBG5O/vr0mTJik5Odnp7f7O8OaL080kJycrPj5eS5Yscfq4qdrCwsK0YMECJSYmenZwdfD39/dIPzabTVOnTtXo0aNlsVg80icAAMCjokePHpo7d646d+7caM/09Bw9JSVFHTt21JdffqnKykqn20VFRemjjz5y+Xdv3bq1S8+pS79+/TRr1iw98cQTbvfh4+Oj+fPnq0uXLkpNTVVFRYXTbS0Wi4YMGaK5c+fKarW6PQYAAOpCGAIAbpg5c6b27dunI0eOKCcnp97LGiMiIvT8889r9OjRHtsNck9eXp6OHj3qUGvZsqVeeOEFjz7nUZOUlKR169Zp//792rZtmzIzMx94Z4h0d6Vbjx49NGrUKA0cONCjgVR9Jk2apMGDBys9PV0ZGRk6deqU6ZEAZtq0aaNu3bpp+PDh6t+/v/z8/B7yaAEAAFwTGRmpzz77TBkZGTp+/LjOnDmj4uJip9qGhoaqV69eGjNmjOLi4twew6M0Rx8/frwGDBig9evXa9euXaZHct3TpUsXjRs3TiNHjnRrfrp161ZlZGTo8OHDOnHihM6cOVPn0WP/5evrq4iICA0cOFAjRoxQRESEy8+uy8svv6znnntOGzdu1M6dOw33wfxXUFCQ+vTpo1deeUVdunTx2BgAAKjNcqf2GSMAAJdUVlYqNzdXeXl5KioqUkVFhSwWiwIDAxUWFqbo6GiFhIQ09TC9nt1uV25urv7991+Vlpbe35ZutVpltVrVqVMnRUVFNWoAUp/i4mJdunRJV65cUXFxsSoqKlRdXa3AwEAFBgbKZrMpKipKoaGhTT1UAAAAlxUUFCgvL0/Xrl1TcXGxKisrZbfbFRAQoKCgIAUHBys2NtbjQYT0aM3Rq6urdebMGZ07d05FRUWy2+3y9/dXaGio4uLi1KFDB48+z2636/Lly/f/9uXl5aqsrFTLli0VGBgoq9Wq0NBQRUdHq3Xr1h59tpk7d+4oNzdXubm5Kiws1K1bt2S1WmWz2dSxY0fFxsa6dD8KAADuIgwBAAAAAAAAAABejegdAAAAAAAAAAB4NcIQAAAAAAAAAADg1QhDAAAAAAAAAACAVyMMAQAAAAAAAAAAXo0wBAAAAAAAAAAAeDXCEAAAAAAAAAAA4NUIQwAAAAAAAAAAgFcjDAEAAAAAAAAAAF6NMAQAAAAAAAAAAHg1whAAAAAAAAAAAODVCEMAAAAAAAAAAIBXIwwBAAAAAAAAAABejTAEAAAAAAAAAAB4NcIQAAAAAAAAAADg1QhDAAAAAAAAAACAVyMMAQAAAAAAAAAAXo0wBAAAAAAAAAAAeDXCEAAAAAAAAAAA4NUIQwAAAAAAAAAAgFcjDAEAAAAAAAAAAF6NMAQAAAAAAAAAAHg1whAAAAAAAAAAAODVCEMAAAAAAAAAAIBXIwwBAAAAAAAAAABejTAEAAAAAAAAAAB4NcIQAAAAAAAAAADg1QhDAAAAAAAAAACAVyMMAQAAAAAAAAAAXo0wBAAAAAAAAAAAeDXCEAAAAAAAAAAA4NUIQwAAAAAAAAAAgFcjDAEAAAAAAAAAAF6NMAQAAAAAAAAAAHg1whAAAAAAAAAAAODVCEMAAAAAAAAAAIBXIwwBAAAAAAAAAABejTAEAAAAAAAAAAB4NcIQAAAAAAAAAADg1f4PypQdTya18QYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "ts.plot_ts(skycoord = coord, save_plot = True)" + ] + }, + { + "cell_type": "markdown", + "id": "0f514ed3-59d9-4d6c-9b4f-16e6dd920cae", + "metadata": {}, + "source": [ + "The image above plots the raw TS values, which is also an image of the GRB. However, for the purpose of localization, we are more interested in the confidence level of the imaged GRB. Thus, you can plot the 90% containment level of the GRB location by setting `containment` parameter to the percetage you want to plot. However, because the strength of the GRB signal is very very strong, the ts map looks the same under different containment levels." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "e8538ead-8564-42ab-bb87-0f21c70c7abc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AACwhUlEQVR4nOzdd5hU5dk/8HuWXgVFiiiCvYG9xR4BxUpU3sSoCRqNJWoSS2LU2BOMMYm+xrxqTCRRExUTuxiJxg4qKnbAghUQBGnS2fP7w8CPZc7C7O7szuzZz+e6uC7nOXOe88zu7ILnnu9z55IkSQIAAAAAACCjKkq9AAAAAAAAgPqkGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAECNDR8+PHK5XN4fAAAAKEfNS70AAKBwH374Ybz22mvxwQcfxOTJk2PevHmxYMGCaNu2bXTu3Dk6d+4c6667bmy33Xax5ZZbRkWFzz0A8JUZM2bEAw88EE899VS89tpr8dFHH8WcOXNi2bJl0aFDh+jZs2dstdVWse+++8ahhx4a66+/foOtbenSpTFq1KgYOXJkvPzyy/Huu+/G7NmzV6xtww03jL59+8bAgQPjkEMOibXWWqvB1lZMY8eOjQceeCDGjBkT48ePj5kzZ8aCBQuiffv20b179xVf/8MPPzw23HDDelnDp59+GnfddVc8+OCD8d5778Vnn30WrVq1iu7du8f2228fhx9+eAwePDhat25d1OtOnz49Nt988/jiiy9WjB177LFx6623FvU6AADVySVJkpR6EQBAukWLFsUjjzwSd999dzz22GMxZcqUgs9t37597LjjjjFw4MA45phj6u2mCk3T8OHD4/jjj88b909LKD8TJ06Myy+/PO68885YsmRJQec0a9YsDj/88Ljiiitiyy23rLe1LVu2LP7whz/EVVddFZ988klB57Rv3z5OPPHEuPjii6NTp071trZiGjlyZFx00UUxduzYgp5fUVERhx9+eAwbNiw233zzoqxh8eLFceWVV8aVV14ZCxYsWO1z+/TpE9dcc00cdthhRbl2RMT3vve9+POf/7zicYcOHWLixInRvXv3ol0DAGB1FEMAoAzNmTMnrrvuurjuuuvis88+q/N8uVwu9tlnnzjxxBPj6KOPlhipB8OHD48PPvigyth2220XgwcPLsl66ptiCE3JrFmz4pprrskbHzp0aPTu3bvB11OoysrKuPzyy+OXv/xlLF68uFZztGjRIi666KK44IILir4V3qRJk+LII4+MV155pVbnd+vWLW6//fbYf//9i7quYpo/f36cdNJJ8be//a1W57ds2TKGDRsWZ511Vp3WsWDBgjjyyCNj5MiRNTrvqquuinPPPbdO146IeP7552P33Xev8nfE1VdfHWeffXad5wYAKJRiCACUmdtuuy3OPffcmDp1ar3M37dv3/jVr34VgwYNqpf5m6p99903nnzyySpj3/3ud2P48OGlWVA9UwyhKfnggw+iT58+eeP/+c9/Yt999234BRVgwYIFcdRRR8XDDz9clPmGDBkSf/vb36J58+LstPzKK6/EgAEDYsaMGXWap3nz5vGnP/0pvvOd7xRlXcU0a9as6N+/f7z00kt1nuv73/9+3HDDDbUuSA0ePDjuu+++Wp17ww03xMknn1yrcyO+KsrtuuuuVVIxW221VYwbNy5atGhR63kBAGrKx0IBoEzMmzcvjj766DjuuOPqrRASEfH666/HQQcdFOeff369XQOA0kmSJIYMGbLaQkizZs1ixx13jEMPPTS++c1vxr777htdunSp9vkjRoyI7373u0VZ33vvvRcHHHBAtYWQXC4X/fr1i6OOOiqOPvro2GeffaJ9+/apz126dGmccMIJ8cADDxRlbcWyaNGiGDRo0GoLIb17947DDjssjjnmmBg0aNBqt4u66aab4qc//Wmt1jJ8+PC8Qkgul4vvf//78fLLL8f8+fNj+vTpcdddd8U222yTd/5ZZ50V77zzTq2uHRFx8803520Pdt111ymEAAANTgN1ACgD06dPj4EDB8a4ceNW+7xtt902DjjggNh9991jk002iZ49e0a7du0il8vFvHnzYvLkyfHOO+/E6NGj4/HHH1/t3uSTJ08u8qsAoBxcdtll8dBDD6Ue69SpU1x88cVx3HHHxTrrrFPl2LJly+Lpp5+On//85/HMM8/knfu3v/0tdt555/jRj35U67UtXrw4vvnNb8b06dPzji2/QX/++edHr169qhxbsGBB3H777XHBBRfEtGnT8tb9ne98J8aNG1c2/bHOOeecGDNmTOqx/fbbL4YNGxa77rprlfEkSWLUqFFx3nnnpW4d9utf/zr22GOPOPzwwwtex5IlS+JnP/tZ3vgtt9xSpbjVpk2bGDJkSBx66KFx0EEHxX/+858Vx+bPnx8///nP44477ij4usvNnDkz78MXQ4YMia9//es1ngsAoK5skwUAJTZjxozYa6+94u2330493qxZszj22GPj3HPPja233rpGc7/77rvxpz/9Kf7whz/EnDlzqhzL8hZOpdDUtsmCpqQxbZP1/PPPx9e+9rWorKzMO7b99tvHyJEjo1u3bqudI0mSGDZsWFxwwQV5x1q3bh1vvvlmbLTRRrVa37Bhw1KTiS1atIg77rgjjjjiiNWeP3ny5DjwwAPj9ddfzzt28MEHx4MPPlirdRXTc889F3vssUfqsXPOOSeuuuqq1W53tXjx4hg6dGj8/e9/zzvWvXv3mDhxYnTo0KGgtdxxxx1x9NFHVxkbOnRo3HLLLdWeM3369Nhkk02q/LuhRYsW8eGHH0aPHj0Kuu5yp556atxwww0rHrdt2zbGjx8fG2ywQY3mAQAoBttkAUAJLVmyJI488shqCyFbb711jBkzJoYPH17jQkhExCabbBLDhg2Ljz76KM4666yi7fUOQHm69NJLUwshm222WTz22GNrLIREfJXQOP/88+OSSy7JO7Zw4cJaN/OePn16/PKXv0w9dsMNN6yxEBIRsd5668W//vWv6Nq1a96xhx56KEaNGlWrtRXTj3/849Tx4447Ln7961+vse9Hy5Yt49Zbb4399tsv79jUqVPjyiuvLHgt//jHP/LGfv7zn6/2nHXXXTd+8IMfVBlbsmRJ3HvvvQVfNyLi5ZdfjptuuqnK2IUXXqgQAgCUjGIIAJTQhRdemJcmWO6ggw6KMWPGxE477VTn66y11lrxm9/8Jl566aXYcsst6zwfAOXn5ZdfjpEjR+aNV1RUxC233BKdO3eu0XwXXnhh3lZOERH3339/ajJjTa677rqYN29e3vhBBx0UJ5xwQsHz9OjRI37/+9+nHhs2bFiN11VMjz/+eLzwwgt54927d4/rr7++4HmaNWsWw4cPjzZt2uQdu/7662Pu3LkFzTN69Ogqj3fccceCUj3f/OY388aq2/YrTZIkcfrpp1cpzG266aZx9tlnFzwHAECxKYYAQIm88MIL8Zvf/Cb12Ne//vX45z//WW3D2Nrq169fjB07NoYMGVLUeQEovbRtlSK+2j7qa1/7Wo3na9asWVx++eV540mSxLXXXlujuZYuXRo33nhj6rGaJB2WGzJkSOywww554//5z3/irbfeqvF8xVJdkeaCCy4oeGur5Xr16hWnnnpq3vjs2bPj1ltvXeP5n3/+eXz66adVxnbZZZeCrt23b9+8QkxaH5Pq/OUvf8krxFx77bXRsmXLgucAACg2xRAAKJEf//jHsWzZsrzx9ddfP+68885o1apVvVy3bdu2ceedd8b3vve9epkfgNJ4/PHHU8dPPvnkWs/Zv3//2HjjjfPG77777li4cGHB84waNSqv8XnEV83E+/btW6u1nXHGGanjt99+e63mq6tZs2bFww8/nDfeoUOHOP7442s15+mnn566rVYhr/Hzzz/PG0v7XqapqKjI65OTNl+a2bNnx09/+tMqY4cddlgMGjSooPMBAOqLjcMBoARGjhwZzz33XOqx66+/Prp06VKv18/lcrHXXnvVaY4ZM2bE/fffH0899VS88cYb8eGHH8bcuXNj6dKl0a5du+jRo0dsuumm8bWvfS0OPvjgWt/sqotnn3027r333nj++edj4sSJMWvWrGjWrFl07do1unfvHnvttVccdNBBsffee0dFRc0+I3LllVfG+PHjVzxe+b+Xe+aZZ2Lo0KEFzbfFFlvEeeedV/D1Z86cGU8++WS89NJLMX78+Jg4cWJ8/vnnMWfOnFi8eHF06tQp1l577ejSpUvsvPPOsffee8fee+8d66yzTsHXKCfjxo2Lf/7zn/Hss8/GhAkTYubMmZEkSay77rrRtWvX2H333WPQoEHRv3//Bv3k8fPPPx/33ntvjBkzJiZMmBCzZs2KZcuWRefOnWPLLbeMvfbaK4YOHVqjZtOTJ0+OESNGxJNPPhmvvfZaTJ8+PRYsWBDrrrtu9OjRI/baa6844ogjYs8991xj74G6WLBgQTzyyCPx5JNPxiuvvBKTJk2KL774IhYsWBCtWrWKddZZJzbZZJPYdddd48ADD4y99tqrxj9HdTFv3ry47777YuTIkfHqq6/GJ598EvPmzYuOHTtG165dY6ONNooDDjggDjnkkBo3+/7888/jnHPOqXKtNFdeeWUMHz68oDlPPPHE2HPPPWu0jpqYNWtWjBs3Lm+8WbNmdWrynsvl4utf/3q89957VcZnz54do0aNikMPPbSgearrN/Htb3+71ms74ogj4pRTTolFixZVGb/nnnviF7/4Ra3nra2RI0fmrSXiq0JAu3btajVnnz59YrfddstLWYwePTo+++yz1faAmTVrVt5Yx44dC772WmutVeXxF198UdB5F110UZXCV+vWreOaa64p+LoAAPUmAQAa3IEHHphERN6fvffeu9RLW6O33347+fa3v520aNEi9TVU92f77bdP7r777jpfP23uW265pcpzRo0alWy//fYFr61fv37JqFGjarSOffbZp0avf01/9tlnnzVe8+23304uvvjiZLvttktyuVyNr9GyZcvkpJNOSt59990avdY0t9xyS+o1amLDDTfMO//iiy+u8pyXXnop2XfffQt+jX369EnuuuuuOr22tO/td7/73SrPefbZZ5NddtmloDXlcrnkhBNOSGbMmLHa63766afJCSeckDRr1qygeffee+/krbfeqtNrTfPhhx8mp512WtK+ffsavb969+6d3HjjjcmyZctqfe1C3leLFi1KLrvssqRz584FrauioiI5/vjjk8mTJxe8jkmTJhX15zvt91SxjRs3LvW6ffv2rfPcf/zjH1PnPv300wueo0+fPqlzfPLJJ3Va29e//vV6mbc2jj/++NS13HbbbXWa97LLLqvVvKNHj84758Ybbyz4urvttluVc1u3br3Gc1577bW832Gr/l4HACgV22QBQAP76KOP4tFHH0099pOf/KSBV1O4ysrKuPTSS6Nfv37xt7/9LZYsWVKj81955ZU46qij4oADDojJkyfXyxqXLVsWZ555ZgwYMKBGe5u/9tprMWDAgNS98cvFoEGDYsstt4xLL700xo0bF0mS1HiOxYsXxx//+MfYfPPN46qrrqqHVRbXsGHDYpdddoknnnii4HMmTZoU//M//xMnnXRSlca9xXTppZfGXnvtldokOU2SJPHnP/85dtttt7xP1y/38MMPR79+/eLPf/5z6vZ5aZ566qnYYYcdYtSoUQWvfXUqKytj2LBhsfnmm8cf/vCHatMQ1fnggw/i5JNPjt122y3ef//9oqxpVe+//37suOOOcdFFFxX8KfXKysq45ZZbol+/fjX6vdDYVLeF0XrrrVfnuXv27Jk6/uSTTxZ0/uTJk2PSpEl54xtvvHG1cxequtTL008/Xad5a+OZZ55JHd9nn33qNG9tX2OnTp3yxubMmVPwdVd9bufOndd4zumnn17ld1jv3r1rlHoEAKhPiiEA0MDuu+++1Ju03bp1iwMPPLAEK1qzhQsXxuGHHx6XXHJJjYsgq3r00Udj5513Tt3OpS6WLl0aRxxxRFx33XW1nuOiiy6KSy65pHiLKqJ33nmnaHMtW7YsfvrTn8Z3vvOdgm+8N7Qf/OAHcf7559d6fTfffHOccMIJRV5VxJlnnhmXXHJJrQot77zzTgwcODBmzJhRZfyOO+6Iww47LG+8EAsXLozBgwfHmDFjanzuyubMmRMHHXRQnH/++TXqA5HmxRdfjJ133rngYlGh3nzzzdh1113jjTfeqNX5n3/+eey3337x6quvFnVd5aK690/aDfGaqu4m+Ntvv13Q+6W6ItSOO+5Yp3Wtbo6GLnzNnTs33n333bzxrl27xvrrr1+nubfffvvULejW9BrTttwstFBZWVkZH3zwQZWxNW2zePvtt8dTTz1VZex3v/tdtG7duqBrAgDUNz1DAKCBpTVXjYgYPHhwNGvWrIFXs2aVlZVxxBFHxMiRI6t9TvPmzaNv377Rs2fPaNu2bXz66acxfvz4am/OTZ48OQYMGBBPP/10bLHFFkVZ58knnxz3339/3nivXr1i4403jq5du8aiRYvik08+iVdeeaXam+yXX355HHTQQbHLLrsUZV0NoWfPntG7d+9Ya621olOnTrFo0aKYPXt2jB8/Pj755JNqz7v11ltjww03LLtEzGWXXRZ/+MMf8sa7desWm2++eXTr1i2WLVsWU6dOjbFjx8bixYtT5/nLX/4Shx56aBx55JFFWdd1112XWmzr06dPbLzxxrHuuuvG3Llz45133okJEyakzvH+++/HySefHHfffXdEfJXuOO644/Lej2uvvXZsvfXW0a1bt6isrIxPPvkkXnrppdT37fz58+OEE06IV199NVq0aFHj1zVnzpwYOHBgPP/889U+Z/nPePfu3aNz584xe/bs+PTTT+O1115LLQzNnDkzDjjggHj++edjs802q/GaVjVlypQ44IAD8tIPzZo1i759+0aPHj2iU6dOMXPmzBg/fnx8+OGHqfPMnj07hg4dGi+++GI0b56t/xWqTVqsrpYuXRpvvvnmGosar7/+eur4VlttVec1VDdHddesL2+++Wbq96AYr7F9+/axwQYb5L2v11QY7NKlS/Ts2TM+/fTTFWNjx44t6JpvvfVWzJ8/v8rY9ttvX+3z586dm5duPfDAA2Pw4MEFXQ8AoEGUdpcuAGhaKisrk44dO6bu/X3HHXeUenmphg0bVu0e+J07d06uueaaZNq0aXnnLVmyJHnooYeS3Xffvdrzd9hhh2Tx4sU1Wk/aPKvuGd+yZcvkrLPOqrafwueff55cfPHFSevWrVPn22677Wr8dSqkz0RdbLzxxivm3WCDDZIzzzwzeeSRR1K/9iv79NNPk1//+tep/Tniv/0U/vOf/9R4PfXVM2TfffdNKioqqqxv6NChyUsvvZRUVlbmzTFnzpzk2muvTTp16pS6nh49eiTz58+v0brSvpe77LJL0qpVqxWPmzVrlpx22mnJm2++mTrH22+/nRx66KHVvveffPLJZPr06Um3bt2qjA8cODB54oknkqVLl+bN+fnnnydnn312tT1Frr766hq9ziRJkmXLliUHHXRQtevcY489knvuuSeZO3du6vnTpk1Lfve73yXrrLNO6vk777xzsmTJkoLXU937atWf8T59+iS33HJLMnPmzNR5Xn755WTgwIHVvq7f/e53Nfo6VddDpDY/O/Xl0UcfTV3jAQccUOe5H3744Wq/lnfeeecazz/ppJNSz61rL40kSZKlS5em9rDafPPN6zx3Tdx+++2pr/HEE08syvzV9UaZMmXKas876qijqjw/l8slH3zwwRqvd9FFF+Vd6/rrr6/2+eecc07e38MTJ06s8esEAKhPiiEA0IDeeeedam8oFXJzoqG9+uqrScuWLVPXu88++xTUkHjp0qXJpZdeWu3rvvDCC2u0purmWfkG2DvvvFPQXE8//XS1TaKfffbZGq2rvoshm266aXLwwQcnTz31VK3OnzdvXnLyySenvtbddtutxvPVVzFk5T/du3dPXnjhhYLmevvtt5Pu3bunznP77bfXaF1p38uV/3Tr1i0ZO3ZsQXOddtppqXMMHjy4SrPl5s2bJ8OHDy9ozttuuy3J5XJ5c2600UY1ep1JkiRXXXVV6vo6dOhQ0E3u5WbMmJHsvffeqXNddNFFBc9T3ftq5T+nnXZasmjRooLm+9GPfpQ6x2abbVbwmpKkcRRDxo4dm7rGfv361Xnum2++udrvx5VXXrnG8wcMGFCvX7/1118/b+5Cmn0X0y9+8YvU11is5uHHHnts6vyjR49e7XlpRZqTTjppted88cUXydprr13lnObNm1fblP6tt97KK0idd955tX6tAAD1Rc8QAGhAb731Vup4+/bto1evXg28mjU788wzU7cg2nnnnePBBx+MHj16rHGOZs2axUUXXRQ///nPU48PGzYsb1/y2tpyyy3j2WefjU022aSg5++5557x29/+NvXYLbfcUpQ1FcuoUaPiwQcfjL322qtW57dr1y5uuOGG+OEPf5h3bMyYMQVvndJQunXrFs8991zsvPPOBT1/iy22iL/+9a+px4r5vezcuXM89dRTBfc6uPbaa2PzzTfPG7///vtj+PDhKx7feeed8d3vfregOY855pgYOnRo3vj7778fzz77bEFzRER89NFHcfHFF+eNr7XWWvHcc8/F//zP/xQ819prrx2PPvpo7LnnnnnHfvOb38SsWbMKnmt1fvKTn8T1118fLVu2LOj5v/3tb1PXNHHixBp9rRqDDTbYIHU8bbujmnrxxRerPTZt2rQ1nl/dc7p161brNa0s7e+ihQsX1qhZeF2V4jWu7rrLHXXUUbHuuutWGbv55pvjzjvvTH3+4sWL49vf/nbMnDmzyvjhhx9ebbP7M844o0o/sfXXXz8uvPDC1a4LAKAUFEMAoAF9/PHHqeO9e/eOXC7XwKtZvTfeeCOefPLJvPG2bdvGP/7xj2jfvn2N5rvsssuif//+eePLli1L7Q9RU61atYo77rhjjQ1eV3XiiSem3qz+17/+Vec1FdOGG25YlHl+/etfp77eP/7xj0WZvxhyuVwMHz48+vTpU6PzBgwYEAMHDswbf/LJJ2PRokVFWdv1119fox4YzZs3j/PPPz9vvLKyckV/gVNPPTWOOOKIGq3joosuSh1fXW+fVV1xxRWxYMGCvPERI0bENttsU6P1RHz1M/j3v/89r2H3l19+GTfffHON51vVnnvuGb/85S9rdE4ul4urrroq9Vi5/YzXVdeuXVMLwUuXLk39XV4Tjz/+eLXHqusNVchzitHcPeKrAl5NrlsfyvU1tmzZMq644ooqY0mSxNFHHx2nn356vPrqq7Fw4cKYMWNG3HvvvbHbbrvl/R5p3bp1tb2lRowYEY899liVsd/85jfRrl27Nb0kAIAGpxgCAA1o8uTJqePF+uRoMV1//fWp4z/72c+q/QTymlx77bWpTYv//Oc/x8KFC2s153InnXRS9OvXr8bn5XK5OPbYY/PGP/744wa9kdZQWrRoEeecc07e+NNPP12C1aQ7+OCD48ADD6zVuccdd1ze2JIlS9bYaLgQO++8cxx99NE1Pu/www+vtrF5mzZt4he/+EWN5+zdu3fstNNOeePjxo0r6PyZM2emJmm+9a1vxYABA2q8nuXWX3/9+MEPfpA3XoyC5zXXXBPNmjWr8Xm77757apHglVdeqfOays3ee++dOn7TTTfVes7HH3883nnnnWqPF5L6qS6h0aFDh9ouq6B5Zs+eXZT5C1HOr/H73/9+DBo0qMpYkiRx/fXXx3bbbRdt2rSJLl26xDe+8Y3Un4tf/epXseWWW+aNz58/P84+++wqY1//+tdrlCoDAGhIiiEA0IDmzp2bOt65c+cGXsnqJUkSd9xxR95469at44wzzqj1vFtttVUceuiheeMzZsyo86e007Z/KtR+++2XOl7ojeXG5qCDDsobmzBhQoNuKbM6P/rRj2p9bn1+L08//fRanbfWWmul3kiMiPj2t79d65//3XffPW/s1VdfLejcO+64IzUtU13ipCbSiiGTJk2q03Z4e+65Z8Fbk6XZd99988ay+PN9+OGHp44/8MADq93qqjqVlZWpW6mtrJDUVXXPKXS7szVp1apVja5bH8r9NY4YMSL233//Gl/3sssuizPPPDP12BVXXFEl8dq8efO47rrranwNAICGohgCAA2ouvRDdTc5SuXtt99O/bTvIYccUu1WHYVK++R+RMTo0aNrPecWW2xRcJ+QNH379k0dnzp1aq3nLGfrrbdetGnTpspYZWVlWXxSvn379qk3rgvVs2fP1OJCMb6Xq36yuiaqK4bUZc6tttoqb6zQ1/nggw/mjfXt27faddZEjx49Yosttsgbf+6552o95yGHHFKXJaX+jGfx5/uQQw5J3cZt2bJlMXTo0BoXPK+66qp45plnVvuclXtF1PQ5aUnB2qhunkLWVizl/hrbtWsXDz30UFx44YXRunXrNT5/gw02iLvuuqvafl/vvvtuXs+tM844I/X30nKzZs2Km2++OQ477LDYdNNNo0OHDtG+ffvYeOON45BDDombbropr1cJAEAxKYYAQANatmxZ6nhFRXn9lTxmzJjU8YMPPrjOcw8aNCj1pk511yzEHnvsUZclRceOHaNt27Z54w25xUpD69KlS97YZ599VoKVVLXrrrvWaiuklaU1Gq7r93KTTTbJa0JcE9Wdu9tuuxV1zqVLl66xWXaSJKnboqX1W6mttBRHKX/G094ThXytGpuKior4yU9+knrsrbfeiv79+8fnn39e0FxXX311/OxnPyvm8vIUq1dWdfMs78tTSuX0Glu1ahWXX355TJw4Ma6++urYb7/9olevXtG6devo2LFjbLrppjFkyJC49dZbY/z48TFkyJBq5zrzzDOrpFK6d+8el1xySbXPv+GGG2KTTTaJk046KR544IF49913Y968efHll1/G+++/Hw899FCcfPLJsemmm8b//d//FfyaAABqojgfUwEAClLdpzEXL17cwCtZvbFjx6aOb7fddnWeu3Xr1rHFFlvk9XCo7pqF6N27dx1X9dV+7KveGC2XbaOqM23atPj3v/8dr732Wrz22msxadKkmDt3bsydOzfmzZsXlZWVNZqvkL3/61uxvperquv3sq7rat++fd5Y8+bNo2fPnkWdM+Krwk9acW+5d955J+bNm5c3XoxUyHJpxbaVt9Opqbp+/avrtzBnzpzVfq0aoxNOOCFGjBiRuvXgiy++GJtvvnlccsklccwxx8Taa69d5XhlZWU888wzcdFFF+U1XW/evHksXbo0b85CUgYtWrRI3c5p6dKl1fbTqYnq0hHF2qKqENW9jrSvWW0U8zVusMEGcfbZZ+f1+yjUfffdl9dk/aqrroqOHTvmPbeysjJOPvnkuPnmmwuae+bMmXHaaafFuHHj4oYbbihaMQkAIEIxBAAa1KpbEy335ZdfNvBKVm/KlCl5Y82bN1/t9hc1se222+YVQ7788suYO3durZrNFqPnStoNvbo2da8v//jHP+Lmm2+Of//730W70RZRHsWQcv1e1nVdaVvh1cecEWvuIVBdM+w777wzNTFSG2lbrn3xxRe1nq+uX6vqbtiX6894XeRyubjttttiu+22i08//TTv+MyZM+PMM8+Ms846K7bbbrvo2bNntGnTJqZNmxavv/56TJ8+Pe+cjh07xqmnnhq/+tWv8o4VUkxq2bJl6vty0aJFRSmGVPeBgobcgrK6okSx+paUw2uM+Opn5sc//nGVsT322KPaLTDPPvvsggshK7vpppuiQ4cOcfXVV9dqnQAAaRRDAKABde3aNXW8HLYnWlnaTfG11lqraJ+yre7rMGvWrFoVQ9q1a1fXJTUK48ePj9NOOy3+85//1Mv8CxYsqJd5a6Jcv5f1kR4oVSIh7QZ5RMSoUaPq9bp1KYaU6/uiXHXp0iUef/zxOPjgg+Pdd99Nfc7SpUtj7Nixa0zltWnTJu6999546623Uo8Xsn3cWmutFXPnzs0bnzdvXrUJp5pIm3v5dRtKdddKS2HVRjm8xoiIK6+8MiZNmrTicbNmzeL6669Pfe7jjz8e1157bd54//7947zzzouddtopcrlcvPTSS3HllVfGo48+WuV5v/3tb+Owww6Lvffeu7gvAgBossprg3IAyLj1118/dfyTTz5p4JWsXtpNy7TtL2qrups3dblZmnWjR4+OXXfdtd4KIRHlsb8+9a9UvXDKfdu5rNlss81izJgx0b9//1rPsd5668Vjjz0W++23X7XJsbR+LKtadTuu5YqVRqtunuquWx+awmucNGlSXjrolFNOiW233Tb1+eeee27e3ysnn3xyPProo7H//vvHWmutFR07doz99tsvHnnkkTj55JOrPDdJkjj33HOL+yIAgCZNMgQAGtAmm2ySOj5lypSYPXt2g3/Cszppn2Qt5iezq5uruk++NnWvv/56HHDAAWv8+rRp0yZ69uwZ66+/fnTo0CFat24drVu3joqK/M+/3H333WW3PRsNo1RbQym2Nbx11lknRo0aFQ899FD8/Oc/T92+LE3r1q3j+9//flx66aXRqVOniIhqG69vtNFGa5yvW7duqeOfffZZbLHFFgWtaXWmTp2aN9aqVauiFvHXZHWvsRjSXmNE9UnL+vCjH/2oyu+PLl26xOWXX5763DFjxsTLL79cZWyLLbaI3//+96l9QHK5XPz+97+PJ554IiZMmLBi/IUXXoixY8fGTjvtVKRXAQA0ZYohANCA+vbtG82aNYtly5blHRs3blzss88+JVhVvrRtS1ZtLl4X1d2EL8Z2KVl02mmnVVsI2WeffeK4446LPfbYo0Y3FZ944gnFkCaqWbNmpV4CDezggw+Ogw8+OF5//fV49NFH4/HHH4+PPvoopk+fHjNnzowWLVpE9+7do1+/fjFw4MAYMmRIdOnSpcocH3zwQerchfSS2nDDDVPHi5GKXLZsWWqhoHfv3g3afLs+X2NE9dvb9enTpyjzr8nIkSPj/vvvrzI2bNiwavv5/OMf/8gb+9nPfhbNm1d/C6J58+Zx3nnnxfHHH19lfMSIEYohAEBRKIYAQANq06ZNbL311vHaa6/lHXviiSfKphiSdnOjmFvcVDdXMZpnZ829994bzzzzTN54165d44477oj99tuvVvMWax97Gp/qklkPP/xwDBo0qIFXQ0Pq27dv9O3bN84+++wanztx4sS8sVatWsWWW265xnOrS49U18+kJj7++ONYsmRJ3nhDFQmWq8/XGBHx3nvv5Y21adOm2kRKMS1evDh++MMfVhnbZZdd4nvf+16154wePbrK4+bNm8fhhx++xmt94xvfiBNPPLHKh0bGjBlTwxUDAKTTMwQAGtgBBxyQOv7QQw818Eqqt3xblJXNmjUr9YZTbUybNi11XDEk34gRI/LGmjdvHg899FCtCyFJkhRtH3san+7du6eOz5w5s4FXQmPx5ZdfVtm6aLldd901WrVqtcbz+/btmzpeXVP2mqhujuquWV+23nrr1CRKMV7jvHnz4uOPP84b32abbRok/XL11VfHO++8s+JxRUVFtdtdLTdu3LgqjzfddNOCtgJda6218rYULXR7NwCANVEMAYAGduihh6aOv/jii0X7BGldpTXEXbp0abz99ttFmf/VV1/NG2vXrl106NChKPNnRWVlZYwcOTJv/JhjjqnTliFTp05N3aqNpqG6T8xPnz69gVdCY/Hss8+m/s7Yf//9Czp/++23Tx1ftadEbbz00ks1umZ96dixY2y88cZ549OmTat2i6tCvfLKK1FZWZk33hCv8eOPP45f/vKXVcZOOOGE2Hnnnas9Z+HChXnbMBbSW2a5VYshc+fOjcWLFxd8PgBAdRRDAKCB7bnnntXeFLjmmmsadjHVqO5G+6qf9KyNRYsWxfjx4wu+ZlP2+eefxxdffJE3Pnjw4DrNu+r2JTQty3sXrcpWNFRn1V4Ryw0ZMqSg83v27Bm9e/fOG3/33Xdj8uTJdVlaPPnkk6nje+21V53mrY0999wzdby6NRaqlK/xrLPOqlLY6Ny5cwwbNmy156QlD2vSzD7tgxHSjABAMSiGAEADy+Vy8f3vfz/12J/+9Kf48MMPG3hF+XbbbbfU8WJs5fXII4+kbrdV3TUbi5YtW+aNLV26tE5zfvbZZ6njaTcVa6KuN+Zo3Nq0aRM77rhj3rj3RfXSfr4j6v4z3hgsWrQo/v73v+eNb7/99gX1C1luwIABqeMPP/xwrdc2Z86c1J5KW2yxRay//vq1nre26uM1ru78/v3712neNXnsscfi7rvvrjJ2xRVXRJcuXWo8V02280p7bpIkNb4mAMCqFEMAoAROO+201JsJCxcujDPOOKNB1rDqFhYr23LLLVP7dzzwwAMxd+7cOl33tttuSx3ffffd6zRvqaV9knXBggV1mrO6r3WbNm1qPef8+fPj1ltvrfX5ZENaI+OpU6fGgw8+WILVlL/qtvCr6894Y/CnP/0ptZ/Mqg2116S65tlphZZC/fOf/4xFixbljdc1PVdbgwYNSi2c3X///av9O3d1Jk2alJra2m233art/1MMS5Ysyfv3yHbbbRennHLKGs9N6zs2Z86cgq+d9lw9xQCAYlAMAYAS6NChQ1x44YWpxx544IH47W9/W6/Xv//+++MnP/lJtcdzuVx861vfyhtfsGBB/P73v6/1dSdMmBD33Xdf3niXLl2qbSzfWKTdLK3rPvFpN5QiIj755JNaz/nHP/4xdestmpZjjz02dausK664ogSrKX/t27dP/bR6XX/Gy93MmTPjsssuyxvv1atXHH300TWa64ADDoh11103b/zxxx+PN954o1bru+6661LHjznmmFrNV1edO3eOgw46KG987ty5ccstt9Rqzt///vepqYj6fo3XXnttlT5huVwufv/730dFxZpvIbRu3TratWtXZey9994r+NqrPrd9+/bVprMAAGpCMQQASuT000+PXXfdNfXYueeeWy+f3l+2bFlcfPHF8Y1vfGONn1I97bTTUsd/+ctf1nqP9x/+8IepW2R973vfi9atW9dqznKRtnXV+PHj67SNTrdu3VLHH3300VrN9+6778YFF1xQ6/WQHb169Yojjzwyb/z5559XEEmRy+WiV69eeeO1vYnfGCRJEt/73vdSt+sbNmxYjW9ON2/evNotIs8777war2/EiBGpDdj33Xff2GabbWo01/DhwyOXy+X92XfffWu8rh/84Aep47/4xS9qnKz86KOP4v/+7//yxjt27Bjf+c53ary2Qk2ZMiWvCHbsscfGHnvsUfAc2267bZXH77zzTsyePXuN582ePTvefffdKmPbbbddwdcFAFgdxRAAKJFmzZrFrbfemvrp/8rKyvjud78bl1xySSxbtqwo13v11Vdjr732issuuywqKyvX+Pxtttkm9ttvv7zxefPmxZFHHhnz58+v0fUvvfTS+Ne//pU33rx58zj11FNrNFc5SrtZM3v27HjkkUdqPec666wTm222Wd74jTfeGNOmTavRXNOnT48jjzyy1lu1kD2//OUvU29oX3TRRbX+FHuat99+O6/vQGOU9jN+3333xcKFCxt+MfWssrIyTjnllLj33nvzjvXv37/GqZDlzjjjjLzEQMRX/aj+/Oc/FzzP1KlT4/TTT089VpvCSjH1798/dtppp7zx1a05zbJly2Lo0KGpW7GddtppNWpIXlPnnHNOlcJNx44d46qrrqrRHKtufbl06dLU99Oq7rnnnrwPETT2bTQBgPKhGAIAJbTpppvGiBEjonnz5nnHkiSJSy+9NHbbbbd46qmnan2N8ePHx9ChQ2PHHXeM0aNH1+jc//3f/41WrVrljY8ZMyYOO+ywgm7IV1ZWxi9+8Yu45JJLUo9fcMEFseGGG9ZoXeVo9913T9126JRTTolRo0bVuvnroEGD8sZmz54dhx56aMHbXb311lux1157xWuvvVarNZBNG2+8cWoKJEmSOOGEE+KUU06p0T7/K1u6dGk8+uijceihh8bWW2+diV4ke+65Z97YJ598Et/+9rfrtHVdfbj22mvjiiuuiM8//7zG537yyScxaNCguOmmm/KOrbPOOvGXv/ylRs2wV9atW7f42c9+lnrs1FNPjXvuuWeNc0yZMiUGDhyY+vfPoEGDymLLxd/97nep43/961/jpz/96Rr/Pli8eHF85zvfif/85z95x1b3NSyGp59+Ov72t79VGbvkkktq3J/kG9/4Rt7YsGHDVpuWXLp0aVx55ZV542kpNgCA2lAMAYAS69+/f4wYMaLaLUfGjh0b++yzT+yyyy7xv//7vzFx4sQ1zjl+/Pj4wx/+EHvvvXdstdVW8Ze//KVWCZNtttkmLr/88tRjjz32WGy11Vbx+9//PvWG29KlS+ORRx6Jvfbaq9r+KDvttFO1xxqbbt26xYEHHpg3/umnn8bAgQNjvfXWi4EDB8a3vvWtGDp0aN6ftBtAEV99kjqtWPbCCy/EtttuG3/9619TGwhHRLz22mtx5plnxrbbbhsTJkxYMb7DDjtEz549a/lKyZKzzz47jjjiiNRjN954Y2ywwQbx05/+NF588cXV/g5JkiTefffduOuuu+L444+Pbt26xQEHHBAPPvhgrQuB5ebYY49N/Vm85557YsMNN4xtttkmBg8eHMcdd1zqz/gzzzzTYGudMmVK/PznP4/1118/Dj300Ljlllvio48+qvb5SZLESy+9FGeccUZsttlmqVvxtWrVKu69995Yb7316rS2c845JzVls3jx4jjyyCPj1FNPjY8//jjv+MKFC+NPf/pTbL/99vH666/nHV9rrbXi+uuvr9PaimXPPfesNvF41VVXRf/+/ePFF1/MO5YkSfz73/+O3XbbLa8gsdwf/vCHekuFLFu2LG+br6233jqvkXoh9thjj7ytsiZMmBCnn3566u+EJEni9NNPr/J3VcRX/06obktRAICayv/XPADQ4AYPHhwPPfRQfOtb34oZM2akPufFF19ccfOkc+fOsckmm8R6660X7dq1i1wuF/PmzYvJkyfHO++8E7NmzVrjNQv9ZO/ZZ58dTz31VOonu2fMmBFnnHFG/PjHP45+/fpFz549o23btjF58uR4++23V/up5C5dusTtt9+eenOxsTr//PPjkUceSb1pPHXq1Jg6dWq15+6zzz6p27tsvPHGceqpp6Y2Cv7444/ju9/9bpxyyimxww47RI8ePaJZs2Yxbdq0ePfdd1NvKHbs2DFuu+221MQJTU9FRUXcfvvtMXjw4NRt7ObMmRNXXXVVXHXVVdG+ffvYeuutY5111onOnTvHwoULY9asWTFr1qyYOHFijfshNDbdu3ePk046KbWHQ2VlZbz55pvx5ptvVnv+vvvum5ouqU+LFi2KBx98cMXv73XWWSe23HLLWGeddaJDhw6xaNGimDx5crz11lurTZq1bt06RowYUZT1t2rVKu66667Yfffd8/6+S5IkbrjhhrjpppuiX79+semmm0aLFi1iypQpMXbs2GrfYxUVFTF8+PDo06dPnddXLL/97W/jpZdeihdeeCHv2OOPPx677LJL9OnTJ/r16xcdOnSImTNnxiuvvBJTpkypds6zzjqr2uJlMVx//fV5habrrruu1n9P/+pXv8r7kMCNN94Y77//fpx33nmx0047RS6Xi5deeimGDRuWV4TL5XI13p4LAGB1snP3AQAauf79+8crr7wSQ4cOjccff3y1z/3iiy9SP1VaiGbNmsUJJ5yQ1xy1OhUVFTFixIj4n//5n3jggQdSn7N06dJ4+eWXU5vZpllvvfXi4YcfTu2H0Zh97WtfiyuvvDLOPffcos579dVXxyuvvFLtJ8sXLFgQzz777BrnadOmTfzzn/+MLbfcsqjro3Fr3bp1PPDAA3HqqafGn/70p2qfN2/evHj++ecbcGXl5ze/+U2MHTu21r9/S23GjBk1Tqh079497rrrrthrr72Kto5NN900/vWvf8XAgQNj5syZeccrKytj3LhxMW7cuDXO1axZs/jjH/8YgwcPLtr6iqF169YxcuTI2H///at9HZMmTYpJkyYVNN/3vve9uPrqq4u4wqqmTZsWF110UZWxb37zm6m9wwp1wAEHxKmnnppXQBw1alSMGjVqjef/6Ec/qtP1AQBWZZssACgjG2ywQTz22GPx97//PTbZZJOizt2sWbP4xje+Ea+//nrcdNNNNdr/u3Xr1nHvvffGpZdeGi1atKjTOgYOHBgvvvhi3vYZWXHOOefEgw8+WNRCT8uWLeP++++vU5qjZ8+e8cQTT8T+++9ftHWRHS1atIibb7457r777thggw2KOnfv3r1jwIABRZ2zVNq0aRPPPPNMnHvuudG+fftSL6feHXXUUfHqq68WtRCy3I477hjPP/98nf4uWHfddePhhx+O448/vogrK5611147nnnmmfjmN79Z6zlatGgRv/rVr+Lmm2+uda+WQvz0pz+N2bNnr3jcrl27+M1vflPnea+77ro47rjjanzeiSeeWK/FHwCgaVIMAYAy9K1vfSsmTJgQ99xzTxx22GGpTcwLtfXWW8dVV10VH3/8cZ1SARUVFXHRRRfFa6+9Ft/+9rdrXBTZYYcd4u67745//etfdd5zvtwdfPDBMWHChHj66afjggsuiEMOOSQ22WSTWHfddaN169a1mrNz587x0EMPxTXXXBM9evQo+LwOHTrE2WefHW+99Vbssssutbo2TceRRx4ZEyZMiOuuu65OCaLevXvHSSedFI8//ni8//77ccwxxxRxlaXVsmXLuOqqq2LKlCnx17/+NU477bTYY489YoMNNohOnTqVxdZ/Bx98cHzjG9+oVcGmWbNmcfjhh8czzzwTI0aMiK5du9bDCr+yySabxNixY+Oaa66pUR+jdu3axQ9/+MOYMGFCDBw4sN7WVwzt2rWLO+64Ix588MHYYYcdCj6voqIiBg8eHK+++mr85Cc/qccVRowePTr+8pe/VBm78MILi9JbqlmzZvGXv/wlrr322ujcufMan7/22mvH9ddfHzfddFNUVLhdAQAUVy7JSkdDAMiwuXPnxjPPPBOjR4+ON954IyZNmhSTJ0+OL7/8MhYuXBht2rSJzp07R+fOnaNr166x/fbbxy677BK77LJL9OrVq17WNGPGjLjvvvviqaeeitdffz0++uijmDNnTixbtizatm0bPXr0iM022yx23333OOSQQ6Jfv371so6maNGiRXHvvffGY489Fs8//3x89tlnMXPmzKioqIiOHTtGnz59Ypttton+/fvHIYccEh06dMib45NPPomlS5dWGevUqVN06tSpgV4FjcGbb74Zo0aNihdeeCEmTpwYH3/8ccyZMycWL14cbdu2jQ4dOkSnTp1io402ii222CK22mqr2HvvvYuebKN2Fi9eHGPHjo0xY8bEuHHj4r333osPP/ww5syZE/Pnz4+WLVtGx44do3fv3rHVVlvFPvvsEwcccECNkoPFsmTJknj00Udj5MiR8fLLL8d7770Xs2fPjmXLlkWHDh2iV69e0bdv3xgwYEAcdthhjfZ31fPPPx8PPvhgjBkzJsaPHx8zZ86MRYsWRdu2baN79+4rvg+DBw9ukB4olZWVsfPOO1fZ5nKzzTaL119/PVq2bFnUa82cOTPuuuuuePDBB+Ptt9+Ozz77LJIkiW7dusWWW24Zhx12WAwZMiTWXnvtol4XAGA5xRAAAAAAACDT5E4BAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg05qXegEAAFCfBlQMKfUSyJhRlSNKvQQAAKCGJEMAAAAAAIBMyyVJkpR6EQAANA1SGlA70igAAFA3kiEAAAAAAECmSYYAALCC5AY0TZInAABknWIIAEAjpXABlDMFFgAAyoltsgAAAAAAgEyTDAEAKBHJDoDqSZYAAFBMkiEAAAAAAECmSYYAANSBdAdA+ZEqAQBgVZIhAAAAAABApkmGAABNnnQHAMtJlQAAZJNkCAAAAAAAkGmSIQBApkh5ANDQpEkAAMqfZAgAAAAAAJBpkiEAQNmS8gAgq6RJAAAalmQIAAAAAACQaZIhAECDkvYAgJqRIgEAqDvFEACgzhQ4AKA8KJwAAKSzTRYAAAAAAJBpkiEAwGpJfQBAtkiPAABNkWQIAAAAAACQaZIhANAESXsAAIWQIgEAskIyBAAAAAAAyDTJEADIEIkPAKAUJEgAgHInGQIAAAAAAGSaZAgANBJSHwBAYyY9AgCUkmQIAAAAAACQaZIhAFAGpD4AAKRHAID6oxgCAA1AsQMAoO4USwCA2rJNFgAAAAAAkGmSIQBQR1IfAADlQ3oEAEgjGQIAAAAAAGSaZAgAFED6AwCg8ZMaAYCmSzIEAAAAAADINMkQAAjJDwAAJEcAIMskQwAAAAAAgEyTDAGgyZD+AACgtqRGAKBxkwwBAAAAAAAyTTIEgEyR/gAAoKFJjQBA+ZMMAQAAAAAAMk0yBIBGRfIDAIDGRnIEAEpPMQSAsqPgAQBAU6FQAgANwzZZAAAAAABApkmGANDgJD8AAKAwkiMAUBySIQAAAAAAQKZJhgBQr6RAAACguKRFAKDmJEMAAAAAAIBMkwwBoE4kPwAAoLxIjgBAPskQAAAAAAAg0yRDACiYFAgAADRO0iIANHWSIQAAAAAAQKZJhgCQRwIEAACaBokRAJoKyRAAAAAAACDTJEMAmijpDwAAYHWkRgDIEsUQgIxT9AAAAIpJkQSAxsg2WQAAAAAAQKZJhgBkiBQIAABQCtIiAJQ7yRAAAAAAACDTJEMAGiEJEAAAoDGQGAGgXEiGAAAAAAAAmSYZAlDmpEAAAIAskRYBoBQkQwAAAAAAgEyTDAEoExIgAABAUyYxAkB9kgwBAAAAAAAyTTIEoASkQAAAANZMWgSAYpEMAQAAAAAAMk0yBKAeSYAAAAAUn8QIADWlGAJQBIoeAAAApadIAkB1bJMFAAAAAABkmmQIQC1JgwAAAJQvKREAViYZAgAAAAAAZJpkCMAaSIAAAABkh8QIQNMkGQIAAAAAAGSaZAjASqRAAAAAmh5pEYDskwwBAAAAAAAyTTIEaNIkQQAAAFiVpAhA9kiGAAAAAAAAmSYZAjQJEiAAAADUlcQIQOMlGQIAAAAAAGSaZAiQWdIgAAAA1BcpEYDGRTEEaPQUPQAAACgXiiQA5ck2WQAAAAAAQKZJhgCNjiQIAAAAjYWkCEB5kAwBAAAAAAAyTTIEKGtSIAAAAGSNtAhAw5MMAQAAAAAAMk0yBCgrkiAAAAA0NZIiAPVPMgQAAAAAAMg0yRCgpCRBAAAAoCpJEYDikwwBAAAAAAAyTTIEaDBSIAAAAFA70iIAdaMYAtQbxQ8AAACoH4ojADVjmywAAAAAACDTJEOAopIGAQAAgIYlJQKwZpIhAAAAAABApkmGAHUiCQIAAADlRVIEIJ9kCAAAAAAAkGmSIUCNSIIAAABA4yIpAiAZAgAAAAAAZJxkCLBakiAAAACQLZIiQFMkGQIAAAAAAGSaZAiwghQIAAAANE3SIkDWSYYAAAAAAACZJhkCTZgkCAAAAJBGUgTIGsUQaEIUPwAAAIDaUBwBGjvbZAEAAAAAAJkmGQIZJw0CAAAAFJOUCNAYSYYAAAAAAACZJhkCGSMJAgAAADQkSRGgMZAMAQAAAAAAMk0yBBo5SRAAAACgnEiKAOVIMgQAAAAAAMg0yRBopCRCAAAAgHImIQKUE8kQAAAAAAAg0yRDoBGRBgEAAAAaIykRoNQkQwAAAAAAgEyTDIEyJgkCAAAAZJGkCNDQFEOgjCh+AAAAAE2R4ghQ32yTBQAAAAAAZJpkCJSYNAgAAADA/yclAtQHyRAAAAAAACDTJEOggUmCAAAAABROUgQoBskQAAAAAAAg0yRDoIFIhAAAAADUnoQIUBeSIQAAAAAAQKZJhkA9kQQBAAAAqD+SIkBNSIYAAAAAAACZJhkCRSQNAgAAANDwpESANZEMAQAAAAAAMk0yBOpAEgQAAACg/EiKAKtSDIFaUAQBAAAAKH+KIsBytskCAAAAAAAyTTIECiAJAgAAAND4SYpA0yUZAgAAAAAAZJpkCFRDGgQAAAAgu6REoGmRDAEAAAAAADJNMgRWIRECAAAA0HRIiEDTIBkCAAAAAABkmmQITZ4kCAAAAADLSYpANkmGAAAAAAAAmSYZQpMlEQIAAABAdSREIFsUQ2hSFEAAAAAAqCmFEWj8bJMFAAAAAABkmmQITYJECAAAAAB1JSECjZdkCAAAAAAAkGmSIWSSJAgAAAAA9U1SBBoPyRAAAAAAACDTJEPIFIkQAAAAABqahAiUP8kQAAAAAAAg0yRDaPSkQQAAAAAoF1IiUJ4kQwAAAAAAgEyTDKHRkggBAAAAoFxJiEB5kQwBAAAAAAAyTTKERkMSBAAAAIDGSlIESksxhLKnCAIAAABAViiKQGnYJgsAAAAAAMg0yRDKjiQIAAAAAE2FpAg0DMkQAAAAAAAg0xRDKCtSIQAAAAA0Je6HQcNQDAEAAAAAADJNzxDKggo4AAAAAE2d/iFQfyRDAAAAAACATJMMoSQkQQAAAABg9SRFoHgkQwAAAAAAgEyTDKFBSYQAAAAAQM1IiEDdSYYAAAAAAACZJhlCg5AIAQAAAIC6kRCB2lMMod4ogAAAAABA/VAYgZqxTRYAAAAAAJBpkiEUnUQIAAAAADQMCREojGQIAAAAAACQaZIhFI1ECAAAAACUhoQIrJ5kCAAAAAAAkGmSIdSZRAgAAAAAlAcJEUgnGQIAAAAAAGSaZAg1JgkCAAAAAI2DpAh8RTIEAAAAAADINMUQakQqBAAAAAAaD/fz4CuKIQAAAAAAQKbpGUJBVJABAAAAoHHTP4SmTDGE1VIEAQAAAIBsURShKbJNFgAAAAAAkGmSIaSSCAEAAACAbJMQoSmRDAEAAAAAADJNMoQqJEIAAAAAoGmREKEpkAwBAAAAAAAyTTKkiZMEAQAAAABWJilCFkmGAAAAAAAAmaYY0oRJhQAAAAAAq3LfkCxSDAEAAAAAADJNz5AmSGUXAAAAACiE/iFkhWQIAAAAAACQaZIhTYhECAAAAABQGxIiNHaKIU2AIggAAAAAUAyKIjRWtskCAAAAAAAyTTIkwyRCAAAAAID6ICFCYyMZAgAAAAAAZJpkSAZJhAAAAAAADUFChMZCMgQAAAAAAMg0yZAMkQgBAAAAAEpBQoRyJxkCAAAAAABkmmJIRkiFAAAAAACl4v4k5U4xBAAAAAAAyDQ9Qxo5FVcAAAAAoJzoH0I5UgxppBRBAAAAAIBypihCObFNFgAAAAAAkGmSIY2MRAgAAAAA0JhIiFAOJEMAAAAAAIBMkwxpJCRCAAAAAIDGTEKEUpIMAQAAAAAAMk0ypMxJhAAAAAAAWSIhQilIhgAAAAAAAJkmGVKmJEIAAAAAgCyTEKEhSYYAAAAAAACZphhShqRCAAAAAICscx+UhqQYAgAAAAAAZJqeIWVEJRQAAAAAaIr0D6G+KYaUAUUQAAAAAABFEeqPbbIAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADIND1DSkivEAAAAACAfHqHUGySIQAAAAAAQKZJhpSARAgAAAAAwJpJiFAskiEAAAAAAECmSYY0IIkQAAAAAICakxChriRDAAAAAACATFMMaSBSIQAAAAAAteP+KnWlGAIAAAAAAGSaniH1TMUSAAAAAKB49A+hNiRDAAAAAACATFMMAQAAAAAAMs02WfXE9lgAAAAAAPXHdlnUhGQIAAAAAACQaZIhRSYRAgAAAADQcCREKIRkCAAAAAAAkGmSIUUiEQIAAAAAUDoSIqyOZAgAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZpmdIHekVAgAAAABQPvQOIY1kCAAAAAAAkGmSIbUkEQIAAAAAUL4kRFiZZEgtKIQAAAAAAJQ393FZmWIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaaBeg3YYw4AAAAAoPHRTB3JEAAAAAAAINMkQwogEQIAAAAA0PhJiDRdkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmp4hq6FXCAAAAABA9ugd0vRIhgAAAAAAAJkmGZJCIgQAAAAAIPskRJoOyRAAAAAAACDTFEMAAAAAAIBMs03WSmyPBQAAAADQ9NguK/skQwAAAAAAgEyTDAmJEAAAAAAAJESyTDIEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATGvyxRD9QgAAAAAAiHC/OMuafDEEAAAAAADINsUQAAAAAAAg03JJkiSlXkQpiDsBAAAAAFCdUZUjSr0EikgyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExrcj1D9AoBAAAAAKBQeodkg2QIAAAAAACQaYohAAAAAABApimGAAAAAAAAmdZkeoboFQIAAAAAQG3pHdK4SYYAAAAAAACZlvlkiEQIAAAAAADFIiHSOEmGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKZltoG6xukAAAAAANQXjdQbF8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMi2TxRD9QgAAAAAAqE/uQzcumSyGAAAAAAAALKcYAgAAAAAAZJpiCAAAAAAAkGm5JEmSUi+iWOzRBgAAAABAQxtVOaLUS2ANJEMAAAAAAIBMUwwBAAAAAAAyLRPbZNkeCwAAAACAUrNdVvmSDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyLZckSVLqRdTWgIohpV4CAAAAAABUMapyRKmXwCokQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMyyVJkpR6ETU1oGJIqZcAAAAAAACrNapyRKmXwH9JhgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmNaoG6hqnAwAAAADQ2GikXnqSIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm5ZIkSUq9iDUZUDGk1EsAAAAAAIA6GVU5otRLaLIkQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyreyLIQMqhpR6CQAAAAAAUGfud5dO2RdDAAAAAAAA6kIxBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMi0XJIkSakXkWZAxZBSLwEAAGiMkiR+G09E35gRERHLIuKUGBAf5NZa7Wm3Jg9H95i/4vGjsWH8Ordzfa6UBuJ7W/6uSx6LLeKLiIhYErk4JQbER7mOJV4VANSvUZUjSr2EJqV5qRcAAABQTAPiwxWFkIiIR6P3GgshTV3bZElsETOjZ8yL9rE4KiMX86JlfBztY3ysE4tzzUq9REqsvt8jN0ffuDqeioiIFpHEaTEuzou9i7F0AICIUAwBAAAypG2yJE6M11c8XhjN4i+xdQlXVN62Tz6Lo2Ji7BDTonmkbxqwKCpidLJejIjNYmJu7QZeIaXWUO+RV3Nd44Wke+wSUyMiYseYFnsmn8QzufVrvXYAgJUphgAAAJnxrRgfa8eiFY9HRp+YkWtTwhWVp7bJkjg7xsbe8ekan9sqKmPf+CT2jk/i/mTjuDG2jaU57SezrhTvkdtiyxXFkIiIE+ONeC5ZLyq93wCAIvAvCgAAIBM6JQtjcLy74vGSyMWI2KyEKypPnZKF8b/xeEE3uVdWERGD470YFk9Hq2Rp/SyOslCq98jbuXViXKy74nHPmBcHxgc1ngcAII1kCAAAkAnfjvHRJpatePxYbBjTc21LuKLy0yJZFr+IZ2PDmJt37ONoH0/G+jEl2kcuInrEvNg3PomeMa/K87aL6XFevBCXxtcaaNU0pFK/R+6MzWO7mL7i8THxdoxKNowl+tYAAHWkGAIAADR6HZJFcWBMqjL2QGxUotWUrxPijdgsvqgytiRycV1sHyOjT0QuV+XYX5KtY1BMijPilSr9IvaMyXFI8l48mNu4QdZNwyn1e2RsdIvJ0S7Wiy8jIqJrLIivx8fxr+hduxcEAPBftskCAAAavUPj/SqpkInRSbPvVfRK5lTZRmy5y2P3GJnbKO8md0REksvFw7mN4rLYPe/Y8fFGtE8W18taKY2yeI/kcvHIKoWPI+Kdms0BAJBCMQQAAGjUKpLKOCzeqzL2SPQp0WrK17difJVP7kdEPBR9YnRuvTWeOzq3Xjy8yte0YyxJvXFO41Uu75F/Re+VSpsRG8Xs2C6ZVuN5AABWphgCAAA0arvE1FgnFq54vCwino6epVtQGWqfLI594pMqY0siF8Nj64LnGB5bx9Komgw4KCZFLkmqOYPGpJzeIzNzbeLN6FJl7ACN1AGAOlIMAQAAGrUB8WGVx29Gl5iVa12i1ZSnPePTaBmVVcaei541+jp9kWsdz0XVhMC6sSD6rtTsurHrlcyJ/ZKP4qhkYnwrGR8HJpNip2RqtE6Wlnpp9a7c3iOrFjT3iE+bxPcBAKg/GqgDAACNVutkaewaU6qMjYkeJVpN+do5puaNPVWL9MzTsX7sHZ9WGdslpsZr0bXWayu15kllHBbvxuB4L3r8t2n3qhZGs3gh6R63xZYxKdepYRfYQMrtPTIm1osfxKsrHreJZfG1mByPR68arwkAIKIMiyEDKoaUegkAAEAjsX1Mi1arfJr91Vi3RKspX9vE53ljq25DVIjXU85Jm7ux6JHMi0vjuegTc1b7vNaxLPaOT+NrMTlGJJvFLbFNJCnNxBuzcnuPTM21i6lJ2+ge81eM7RpTFEMAyJTl98JHVY4o8UqaBttkAQAAjdaqn2b/MprHu9G5RKspT+skC2LtWFRl7LNoGzNybWo814xcm/gs2lYZ2yhmR0Uj7BvSPfkyron/rLEQsrLmkcTRMSHOjRcz1SulXN8jqxY2d4zPMvV1BwAaVtklQwAAAArVb5VeBO9Fp6jM2Cf266pXys3+ydGu1vNNjnbRbaVP67eJZbFuzI/P6jBnQ2sWlXFxjK5SAPg42scz0TOmRPtYEM2jcyyMvvF57BJT8tJHA+KjmBct4w+xXQOvvH6U63tkQqwdB6zUE2itWBx9Yna8H51qvTYAoOlSDAEAABqlNsmSWD/mVhl7P9Zq8HUMTD6Ic2Nsg183ImJqtI3jcget9jkr35Reri6Fi+mrfOo/IqJHfNmoiiF7xqcrChxzo0X8X2wbo3K98553T2wa6yQL4ofxcuy+Sm+aw+PdeCZZL17LrbkXhvdI7d4jaT/Pm8cXiiEAQK3YJgsAAGiUNo1Z0WyVsQ9KUAwpd2vHwryx6VHz7Y+Wm5ZybueUa5Sz5YWQL6N5nBd7pRZClpuRaxMXx9fi8digynhFRPw4Xs7Etk3l+h6ZlPLzvFnMrNWaAAAUQwAAgEap5yqpkIjI61VARIdYnDe2oA6bBCxMObdjyjUag+tju5iYW3uNz0tyufh17BwfR/sq4+vHvNhllcRIY1Su75H5uRYxN1pUGVs/5tV6XQBA02abLAAAoFHqnrK1z+d1+DR7bc2NlvFeiRIpMwp4va1jWd7Y4rxMTeEWpZzbKuUa5W5CdI5RsWHBz1+aq4gbk35xRTxXZfyQeD+ej/VWe673SO3fI59Hm+gQS1Y87hZf1npdAEDTphgCAAA0Sl1iQd7YF9G6wdcxOrdejF7DzfBSarZK8++I4t/obp5yjXI3MvpE5HI1OueF6BHTok10Xem9t31Mi2ZJZSzLVb/xgvdI7d8jM6N19Fmpwfu6KT/3AACFsE0WAADQKLVd6dPiyy2sww3cpqRuXS7yCwi5Os5YCs/WojiR5HJ5RY1WURkbx6wirap8lMt7ZNUtt5pHEi2TxpdEAgBKTzEEAABolIq9tU9WLUv53766bGvVMuXcpY3sfy2nR5uYlatdiuid6JQ3tll8UccVlVY5v0fSfqZbx9JazQUANG2N61+sAAAA/1WxyifNK+OrT+5TVVpaJu1mdaHSbpKnNcwuZ5+s0gi9Jj6ODnljnWJRXZZTcuX8HlmWkjJp1giTSABA6SmGAAAAjdKqfQkqIqJ50vh6V9S3udEyb6xNHT5Zn3bunJRrlLMvo0VRz22XsmVbY1LO75G0okxaTxIAgDVRDAEAgCauIvlqD/6KpHF92rrYn2bPqrSm8mnN5wu1bswv6BrlrC5JlrRz2zbybZvK+T2ShSQSAFAe/AsCAACamI7Jotg/Popt4vPYNL6IHivduJyStI13onO8EV3isegVc3KtSrjS1ZuVcnO1YyyO+XX41H9t7J5Mju/Gmw16zeVmRJu4ILfnap8zNdrmjXVLuVldqK4p506NdrWerxTq0nMi7dz5a/hfa++R2r9HOsTiKo/nRMuotB0eAFALiiEAANBErJvMj6HxZuwbH0fLSN9OqkfMjx4xP/aOT+PEeD2eSDaI4bF1TM/l3ywttWkpN3C7xPwGvzHfIRbHxjG7Qa+5XCHbM6X1uFgv5tX6mj3iyyqPF0az1O9FOavLtlZp565p2y3vkdq/R1ZNqHzWyN5rAED5sE0WAABkXZLEoOT9+GM8GgPjw2oLIatqGZUxMD6MP8ajMSh5P6LMttGaklL0WLcOW/tk1ee5tvFFVE34dI/5sXZS86/VOsmC6L7Kp/7fj7Ua3Sf1e9bhRv8GKefOivJNUBWiXN8juSSJtWNhlbHGlkICAMqHYggAAGRYRZLEWfFSnBUvR7tabg3ULpbGWfFynBUvlVVfkfdjrbyx9WNuCVZS/l6PLnlj28SMGs+zdXxe0NzlrmssiE7JwjU/McWm8UXe2MToXNcllVw5vkfWi3nRPKr+zkn7uQcAKIRtsgAAIKuSJH4UL8Wg+CCSiKjLZ/eTiBgUH0RExG+THSPKIAkwJdc+5iQto+NKPQX6xJwGX8ejud7xaPRu8OvWxNjoHnvHp1XG9opP4qlYv0bzrDpHRMSL0b1OayuVr8XkeDg2qtE5uSSJ3WNylbFFURHvRafVnuc9Urv3SNrWYhMyUHgCAEpDMgQAADJqUEwqSiEk/nv+8oLI8qJIORgfa1d5vFHMKs1Cytwz0TMWr/K/f3vEpzVKR3RKFsbXVrnR/Xm0jtdi3aKssaENikk1PmfnmBpdV9mK7ZXoGstyjf9/rcvxPbLqz3NlRExY5WceAKBQjf9fbAAAQJ51k/lxcrwWEXUvhCy3fJ6T49VYN5m/2uc2lLHRrcrjnvFlrfocZN3cXMu8T/i3iCS+E28VPMd3461oscqWRQ/FRpGUQUqoNraIL6J/8mHBz2+WVK74mVrZgzVMl5SrcnyP9F1ly613onPMyTXu/iwAQOkohgAAQAYNjTdr3SNkTdrF0hgab9bL3DX1Qsr2O9vG9BKspPzdEZvHslVKYwfH+7FrMrmaM/6/3ZLJcUi8X2VsbrSI+2KTgq/fL5kWo5K7q/y5NXm44PPrw+nxSmyS5PcAyZMkcXaMjV6r9KT5NNrHC9GjnlbX8Er9HllZy2RZbBEzq4yl/bwDABRKMQQAADKmY7Io9o2P6/Ua+8bH0TFZVK/XKMSnuQ7xYXSoMrZDTCvRasrbh7m14r7YuMpYRURcHKPjwGRSRJLkn5QkMSh5Py6K0XmHhsfWMTfXsp5WW78W/fd/hdvF0vhVPBX7ryYhsnayIC6J0TEgPqoyXhkRv4sdGm0yJk05vUf6xvRoGZVVxp6L9Wo1FwBAhAbqAACQOfvHR3k3EYutZVTG/vFR3BOb1ut1CvFY9IoTVkqq7B6ToyKpjMoM9HEotpujb/SLz2OTlXoxtIgkzo6XYkhMjCeT9WNKtItcRPSIL2Pf+DjWj3l584yOHnH/KjfNG5Nnomf0jjmxccyOjrEkzosX49vJ+Hg21ovJ0T4WRPNYOxbGNvF57BJTo3Usy5vjvtgkXs11LcHq61e5vEf2XKX3yKToGO/mNE8HAGpPMQQAADJmm1X22a/P65RDMeTfsWEMjTdXxN7XisWxbUyPV1bpJ0LEklyzOD/ZM66OJ/O2fOoVc+O4eHuNc7wWXeKXsWtEI05ELIuKuCS+FtfG47F2fJVw6hVzo1dMKOj8f0ev+L/Ytj6XWDLl8B7JJUnsEVW35vp3bFiruQAAlvNRKQAAyJhNo4AeCEW5zqwGuc6aTM+1jedX6duw/ypbGvH/fZFrHT+M/eKZGm45VBkRD8RGcV7sFQtzNf9cXadYnDf2QXSs8TzFMjXXLs6KffO2WVudpZGLO2Lz+HXsnKntsVZVqvfIcjvEZ9E5/v82fIujIh5VDAEA6kgyBAAAMqQiSaJHzG+Qa/WIL6MiSaKyDG4K/yM2jd1jyorHe8cn8Ydku5ifa1HCVZWvebmWcWl8LXZMpsaR8U7sENOiWaT0g4ivbkSPiR5xZ2weE3Nr1/qa26b0crk1tqr1fMXwaa5DnJr0j8Hxbhwe70W3an52FkVFvBA94rbYMt7PdWrYRZZIKd4jyx0Uk6o8fix6xaxc6zrPCwA0bYohAACQIc3ruVdI2vUWR7MGvWaaV3NdY2LSKTb7b1qlTSyLAfFh3BebFDzHcbmD6ml15eulXPd4KbpHu2RxbBkzY72YF+1iSUREzI2W8XF0iPGxdiyqw6f8l9supld5/Fz0KMqN80Ks7nu7JNcsRsTmMSI2j97J7NgoZsc6sSCaR2XMitYxPdrEm7FOLGiihbWGfI9ERHRKFsbuK22RVRlfFTsBAOpKMQQAADJkaQPvhNvQ11ud22KruCyeW/F4cLwb9ycbZ3o7o2L5Mtcyxkb3ept/7WRBlf4TlRHx19i63q5XWx/k1ooPYq1SL6Ms1fd7ZLnD471osVIC5ZnoGR/mfE8AgLorn/9zAQAA6qwyl4sp0bZBrjUl2pXFFlnLjc6tF2/H/08arB/zYq/4pIQrYrlVUyHPRM94r4lsN0XhWidL47B4d8XjZZGL4WVYNAMAGifFEAAAyJh3onMDXadTg1ynJv4U21R5fHRMiEjS+xzQcLZbqV/Isih9rxDK0yHxXnT87xZcERGjYsP4ONexhCsCALJEMQQAADLmjeiSqevUxKu5rvFU9FzxeJOYFftKh5TcysmQp2KD+MC2R6yibbIkvhUTVjz+MprHn1cpbgIA1IViCAAAZMxj0SsW1/M/9RdHRTwWver1GrV1Q2wbC1Zq6n58vBHNk4ZtLM//1zX5MnrElxHx1bZHt8aWJV4R5eibMSHWisUrHv8lto4vcq1LuCIAIGs0UAcAgIyZk2sVTyQbxMD4sN6u8URsEHNyrept/rqYnmsbw5JdY5P4YsVYt/gyPo0OJVxV0zUt1y4GxFGlXgZlbl60iL/+t1C2NCrivti4xCsCALJGMQQAADJoeGwde8Sn0S6WFn3uL6N52Tc1Hp1bL0bHeqVeBlCgEbnNS70EACDjbJMFAAAZND3XNm6MfhERUaz24cvnuTG2jem5tkWaFQAAoP4phgAAQEaNjD4xMnpHLupeEEkiIhcRI6N3jIzedV4bAABAQ1IMAQCArMrl4prYcUVBpE5TxVeFkGtix4hcXWcDAABoWHqGAABAhlXmcvHbZMd4O9aJk+PVWvUQ+TKax42x7VeJEIUQAACgEVIMAQCArMvlYmT0ibFJtxgab8a+8XG0jMo1nrY4KuKJ2CCGx9Z6hAAAAI1aLkmSYvVTLIoBFUNKvQQAAMi0jsmi2D8+im3i89g0ZkWP+HLFsSnRLt6JTvFGdIl/R6+Ym2tVwpUCAED2jaocUeolNAmSIQAA0MTMybWKe2LTuCc2jYiIiiSJ5lEZS6MiKm2DBQAAZJBiCAAANHGVuVwsjmalXgYAAEC9qSj1AgAAAAAAAOqTYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZFouSZKk1ItIM6BiSKmXAAAAAAAA9WJU5YhSL6FJkQwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTckmSJKVexOoMqBhS6iUAAAAAAEBRjKocUeolNEmSIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZVvbFkFGVI0q9BAAAAAAAqDP3u0un7IshAAAAAAAAdaEYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRaLkmSpNSLKNSAiiGlXgIAAAAAANTIqMoRpV5CkycZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRaLkmSpNSLqKkBFUNKvQQAAAAAAFitUZUjSr0E/ksyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADKtUTZQX04jdQAAAAAAyo3G6eVHMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADItFySJEmpF1FXAyqGlHoJAAAAAAA0caMqR5R6CVRDMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADItFySJEmpF1EsAyqGlHoJAAAAAAA0MaMqR5R6CayBZAgAAAAAAJBpiiEAAAAAAECmZWqbrOVslwUAAAAAQH2zPVbjIRkCAAAAAABkmmIIAAAAAACQaYohAAAAAABApmWyGGKfNgAAAAAA6pP70I1LJoshAAAAAAAAyymGAAAAAAAAmaYYAgAAAAAAZFouSZKk1IuoTwMqhpR6CQAAAAAAZIReIY2TZAgAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkWuYbqC+nkToAAAAAALWlcXrjJhkCAAAAAABkWpNJhiwnIQIAAAAAQKEkQrJBMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMa3I9Q5bTOwQAAAAAgOroFZItkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkWpPtGbKc3iEAAAAAACynV0g2SYYAAAAAAACZphgCAAAAAABkWpMvhog8AQAAAAAQ4X5xljX5YggAAAAAAJBtiiEAAAAAAECmKYYAAAAAAACZlkuSJCn1IsrFgIohpV4CAAAAAAANTK+Q7JMMAQAAAAAAMk0yJIWECAAAAABA9kmENB2SIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaniGroXcIAAAAAED26BXS9CiGFEBRBAAAAACg8VMEabpskwUAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm6RlSA3qHAAAAAAA0PnqFIBkCAAAAAABkmmRILUiIAAAAAACUP4kQlpMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQ2rBPnMAAAAAAOXNfVxWpoF6HWmmDgAAAABQPhRBSCMZAgAAAAAAZJpkSJFIiAAAAAAAlI5ECKsjGQIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm6RlSZHqHAAAAAAA0HL1CKIRkCAAAAAAAkGmSIfVEQgQAAAAAoP5IhFATkiEAAAAAAECmSYbUMwkRAAAAAIDikQihNiRDAAAAAACATFMMAQAAAAAAMs02WQ3EdlkAAAAAALVneyzqQjIEAAAAAADINMWQBqJqCQAAAABQO+6vUleKIQAAAAAAQKbpGVIC+ocAAAAAAKyZRAjFIhkCAAAAAABkmmRICUmIAAAAAADkkwih2CRDAAAAAACATJMMKQMSIgAAAAAAEiHUH8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk3PkDKidwgAAAAA0BTpFUJ9UwwpQ4oiAAAAAEBToAhCQ7FNFgAAAAAAkGmKIWVINRQAAAAAyDr3QWlIiiEAAAAAAECm6RlS5vQPAQAAAACyRCKEUpAMAQAAAAAAMk0ypJGQEAEAAAAAGjOJEEpJMgQAAAAAAMg0yZBGRkIEAAAAAGhMJEIoB5IhAAAAAABApkmGNFISIgAAAABAOZMIoZxIhgAAAAAAAJkmGdLISYgAAAAAAOVEIoRypBiSEYoiAAAAAEApKYJQzmyTBQAAAAAAZJpiSEaougIAAAAApeL+JOVOMQQAAAAAAMg0PUMySP8QAAAAAKAhSITQWEiGAAAAAAAAmSYZkmESIgAAAABAfZAIobGRDAEAAAAAADJNMqQJkBABAAAAAIpBIoTGSjIEAAAAAADINMmQJkRCBAAAAACoDYkQGjvFkCZIUQQAAAAAKIQiCFlhmywAAAAAACDTJEOaMAkRAAAAACCNRAhZIxkCAAAAAABkmmJIE6a6CwAAAACsyn1DskgxBAAAAAAAyDQ9Q6hCHxEAAAAAaFokQWgKJEMAAAAAAIBMkwwhlYQIAAAAAGSbRAhNiWQIAAAAAACQaZIhrJaECAAAAABki0QITZFkCAAAAAAAkGmSIRREQgQAAAAAGjeJEJoyxRBqRFEEAAAAABoXRRCwTRYAAAAAAJBxiiHUiCoyAAAAADQe7ufBVxRDAAAAAACATNMzhDrTRwQAAAAAyoMkCKSTDAEAAAAAADJNMoSikRABAAAAgNKQCIHVkwwBAAAAAAAyTTKEopMQAQAAAICGIREChZEMAQAAAAAAMk0yhHojIQIAAAAA9UMiBGpGMgQAAAAAAMg0yRAahJQIAAAAANSNNAjUnmIIDUpRBAAAAABqRhEE6s42WQAAAAAAQKZJhlASEiIAAAAAsHoSIVA8kiEAAAAAAECmSYZQFiRFAAAAAGjqJEGg/kiGAAAAAAAAmSYZQlmREAEAAACgqZEIgfonGQIAAAAAAGSaYghlRRUcAAAAgKbE/TBoGIohAAAAAABApukZQtnTRwQAAACArJAEgdKQDAEAAAAAADJNMoRGQ0IEAAAAgMZKIgRKSzGERktxBAAAAIBypfgB5cU2WQAAAAAAQKZJhtDoSYgAAAAAUC4kQqA8SYYAAAAAAACZJhlCpkiJAAAAANDQpEGg/EmGAAAAAAAAmSYZQiZJiAAAAABQ3yRCoPGQDAEAAAAAADJNMoQmQVIEAAAAgLqSBIHGSzIEAAAAAADINMkQmhQJEQAAAABqSiIEGj/JEAAAAAAAINMkQ2iypEQAAAAAqI40CGSLYghNnqIIAAAAAMspgkA22SYLAAAAAADINMkQWIWkCAAAAEDTIQkCTYNkCAAAAAAAkGmSIVANCREAAACA7JIIgaZFMgQAAAAAAMg0yRAogJQIAAAAQOMnDQJNl2QIAAAAAACQaZIhUAuSIgAAAADlTxIEWE4yBAAAAAAAyDTJEKgDCREAAACA8iMRAqxKMQSKSHEEAAAAoOEpfgBrYpssAAAAAAAg0yRDoJ5IiQAAAADUH2kQoCYkQwCgDHwjOSjWTbrUy9zrJl3iG8lB9TI3AAAAQGMgGQINRFIEqM43koPitDg+JsfUOCcujem5z4s297pJl7g6Lo71onv8IW6Je3IPF21uAACAhiQJAtSFZAgAlNgz8UJMjqmxXnSPq+PioiVEVi6ETI6p8Uy8UJR5AQAAABobyRBoYBIiQJpVCxd1TYgUez4AAIBSkQgBikEyBADKwPTc53FOXFqUhIhCCAAAAEBVkiFQYpIi0LT8a/K4iIg4YL3tUo/XtZChEAIAADR2kiBAfZAMAYAyUpeEiEIIAAAAQDrJECgjUiLQdCxPiKxqeWKkpoUNhRAAAKAxkwYB6ptkCACUoZokRBRCAAAAAFZPMgTKmKQIZF91CZGIr1Iiayp0KIQAAACNkSQI0NAUQ6ARURyB7FpdUSQ+6RG5o26L3Ie9Itnwozjmw2ExPfe5QggAANBoKH4ApWabLAAod+tPieTuYyPZ8KPIfdgrro6LY+tkc4UQAAAAgAJJhkAjJSUC2VRoQmS5lZMiAAAA5UQaBCgnkiHw/9q78ziry7Jx/NfMADJsAwiKiAoMSy6JiohbCpIpPbhgZT/NnszMSkPN1NDncev7LbXFb5qZQm6paS6ZQOZCCS6hKYIoyiYiuyzjsM6wzfz+KGiGcw5zzsyZ7fB+v168PNznXq5zGOE+5/pcnxugueixLCrvuKpaU+UdV0mEAAAAANRAZQg0cypEILfUpjKk8snzInosq9b1lO6H1U+AAAAANVARAjRFKkMAoDnY6RD1ime+uuMMkbwvPxyxeJ/GjhAAAACgyVIZAjlGpQjkhmoVIjslQnZUgqRq3wUVIwAAQLapBAGaA5UhANCU7Srh0WNZVD55ngoRAAAAgBqoDIEcp1IEmq+ulV3iF3FDdI9usTSWR7c3z05e+aFCBAAAaEAqQYDmSGUIADRBOydCroybUic4VIgAAAAA7JLKENiNqBKB5iFZImRl3qqEftXOFYnIuEJEdQgAAJAu1SBAc6cyBACakHQTIUmpEAEAAABISmUI7MZUikDTUqdEyL89v3S6ChEAAKDOVIIAuUYyBNhBcgQaTzYSIbuaL+Xh61VIigAAwO5L8gPIdW6TBQCNLNuJkIiIlXmr4sq4KZbG8uge3dwyCwAAANitqQwBdkm1CNS/kZVfjIvjm1lLhFRVNdFyV9wfT+c9u+O5hAPY/02FCAAA5DZVIMDuqEVjBwAAu7un856NqIx4Nf6Z1URIxL8rRCpviuPjqGqJEAAAAIDdicoQICMqRSB37VwpokIEAAByg0oQAGeGAAAAAAAAOU5lCFAnKkUAAACgaVEJApBIZQgAAAAAAJDTVIYAWaVSBAAAABqWShCAmqkMAQAAAAAAcprKEKDeqBIBAACA+qEaBCAzKkMAAAAAAICcpjIEaDAqRQAAAKB2VIIA1I1kCNCoJEgAAACgOokPgOxzmywAAAAAACCnqQwBmhSVIgAAAOxuVIIA1D+VIQAAAAAAQE5TGQI0aSpFAAAAyDUqQQAansoQAAAAAAAgp6kMAZod1SIAAAA0F6pAAJoGlSEAAAAAAEBOUxkCNHsqRQAAAGgqVIIANE0qQwAAAAAAgJymMgTIWSpGAAAAqC8qQACaF8kQYLcgMQIAAEBdSYAANF9ukwUAAAAAAOQ0lSHAbk3FCAAAADtTAQKQe1SGAAAAAAA0cz179oy8vLwafz3wwAONHSp1kM6fcV5eXkyaNKmxQ21yWjR2AACNaeerfVSKAAAA7H5UgjR9GzZsiH/+85/x9ttvx4wZM2LhwoWxaNGiKC0tjbKysigvL4/CwsJo165dtG/fPtq3bx89e/aMfv36Rb9+/eIzn/lMDBw4MPbYY4/GfilAI5EMAQAAAACanPXr18cf/vCH+NOf/hSTJk2KTZs27bL/hg0bYsOGDfHJJ59ERMS0adOqPV9YWBjHH398DBs2LE455ZQ47LDD6it0oAmSDAGoItnVQKpFAAAAcocqkKbvk08+iZ/+9Kdx3333xfr167M2b1lZWbz44ovx4osvxujRo2PAgAFx4YUXxnnnnRcdO3bM2jrsfm688ca0+p1//vnRs2fPeo2F1CRDAAAAAIBGt3Xr1rjlllvilltuiQ0bNtT7eu+8806MGjUqrrrqqlixYkW0b9++3tckN910001p9RsyZIhkSCOSDAGoQaqrhlSMAAAANF0qQJqXefPmxf/3//1/MXXq1AZfu7y8PLZt29bg6wINSzIEAAAAAGg0L7/8cowcOTJKSkoaOxQgh0mGANRS1auMVIkAAAA0PtUgzc/EiRNjxIgRNR6ODlBXkiEAAAAAQIN7880348wzz5QIgQxUVlY2dgjNlmQIQBY4VwQAAKDhqABp/kpKSuLLX/5yrQ9K/8xnPhMnnXRSnHTSSVFcXBxdunSJLl26RH5+fmzYsCGWLVsWCxYsiHfeeSfeeOONmDRpUqxZsybLrwJoTiRDAOqRJAkAAEDtSXrkru9+97uxcOHCjMedeOKJcdNNN8WJJ56Ysk+rVq2iU6dOcdBBB8UXv/jFiIjYtm1bTJ48OR577LF47LHHYt26dbWOHWie8hs7AAAAAABg9/G3v/0tnngis0RX69at4w9/+ENMmjRpl4mQVAoKCuKkk06KMWPGxJIlS+KOO+6IHj16ZDwP0HypDAFoBMmublItAgAA7M5Ugew+fvSjH2XUv2vXrjFhwoQ46qijsrJ++/btY9SoUXHRRRfF3XffHTfddFOt5tm8eXPMmTMnZs6cGe+//358/PHHsXTp0li6dGmUlJREWVlZlJWVxZYtW6JVq1ZRWFgYXbp0ie7du0ffvn3j0EMPjeOOOy4OP/zwyMvLy8prq0+LFy/e8VrnzZsXS5YsiaVLl8by5ctj48aNUV5eHmVlZVFQUBB77LFHdOrUKfbee+/o3bt3HHjggXH00UfH8ccfH+3atWuQeFevXh0TJ06Mt956K957771YtGhRLFu2LDZu3BibN2+OwsLCaNeuXey9997Rp0+f6N+/fwwePDiOPfbY6Nq1a8p5H3744VrH9OKLL8bixYtr7Lf33nvHySefnPS5dH9WXnrppRgyZEgm4SVVUVERU6dOjVdeeSWmTZu248++tLQ0ysrKIi8vL9q1axdFRUXRs2fP6NOnTwwYMCCOPfbYGDBgQBQUFNQ5hmzJq3TiCkCTIBkCAADsziRDdg+TJk2KoUOHpt0/Pz8/Jk6cmNGYTK1evTqKioqiRYuarxt//vnn48UXX4zXXnstpk6dGlu2bKnz+j169Iivfe1rMWrUqNh3331rPU/Pnj3j448/rrHf/fffH+eff36N/ebPnx9PPfVUvPrqq/GPf/wjVq1aVevYtmvdunUMHz48vv/978dJJ51U5/l2tmXLlvjjH/8Yv/vd7+KVV16JioqKWs0zcODAOOuss+Lb3/52QmKkIRJXJ554YkyaNCnpcw2VDJk9e3bcc8898cgjj8SKFStqNUfHjh1jxIgR8bWvfS1OPfXUWseSLZIhAE2cJAkAAJBLJD12b+ecc0489thjafe/4YYb4sYbb6y/gDL0mc98JmbPnl0vc7du3Tp+9KMfxf/+7/+mlZjZWbaTIbfccktcc801GceRrpNPPjnuueee6NWrV1bme/TRR+Paa6+NBQsWZGW+iIinn346zjzzzGptuZ4MWb58eVx99dXxyCOP1DqZtLMBAwbE9OnTszJXXTgzBAAAAACod+Xl5TFhwoS0+3ft2jVGjx5djxE1LeXl5XHTTTfF5z//+d3igPcXX3wxjjjiiJg8eXKd5iktLY0zzjgjzj333KwmQnZHTz31VBx00EHx0EMPZS0R0pQ4MwSgiXO+CAAA0FypAqGqyZMnx/r169Pu/73vfS9at25djxE1TZMnT44zzjgjXnzxxSZ13kJ9KC0tjREjRsRrr70Whx56aMbjP/744/jCF74Qc+bMqYfodi8333xz/M///E/k8o2kVIYAAAAAAPVuypQpGfW/6KKL6imSpu+ll16KW2+9tbHDaBDr16+Pc845J7Zu3ZrRuOXLl8ewYcMkQrLgF7/4RVx77bU5nQiJUBkC0CylurpKxQgAANAYVICQjjfffDPtvr17967TYeK54Oabb056gHcuev/992Ps2LHxve99L63+27Zti69+9avx4Ycf1nNkue/555+PH/3oR40dRoOQDAEAAAAA6t28efPS7nvcccfVYyTZVVBQEH369IlDDjkk+vXrF0VFRdG+ffto27ZtlJeXx9q1a+Ojjz6KqVOnxltvvZX2WQzr16+P3/3ud/V6iHlt7L333nHIIYfEwQcfHF26dIkOHTpEhw4doqKiIjZu3BiLFy+OWbNmxeTJk2PNmjVpz3v77bennQz51a9+FS+//HLGsRcXF8ewYcOid+/e0aVLlygvL49Vq1bFBx98EJMnT47ly5dnPGdztm7duvjmN7+Z8fkghYWFcfzxx8fRRx8dXbt2jbZt28bq1atj2bJl8Y9//COmTp2acaVPQ5AMAcghzhcBAADqmyoQaqOysjIWLlyYdv8BAwbUYzR117lz5zj99NPjzDPPjJNPPjnatGmT1rglS5bETTfdFGPHjk2r/x//+MdGT4bk5+fH0KFD44wzzogzzjgj9t9//7TGbdmyJR566KG48sor49NPP62x/+zZs2P69Olx2GGH7bJfSUlJ3HTTTWnFsN0xxxwTN998c5x44om77PfGG2/EnXfeGY8//nhs3rw5aZ9kt5LKy8tLK46XXnophgwZklbfhnDLLbfEsmXL0u7fpk2buPLKK+OKK66IoqKilP3Wrl0bDz74YNx1110xa9asbISaFZIhAAAAAEC9Wr9+fZSXl6fdv3PnzhnNP3PmzJg2bVqmYVVTXFwcxxxzzC77HHDAAXHxxRfHhRdemHYCpKp99903xowZEz169Igbbrihxv7vvPNOrFy5slFulbXHHnvEhRdeGFdffXX07ds34/EtW7aMCy64II4++ug46qijYsOGDTWOmThxYo3JkN/+9rexbt26tOP47ne/G7/+9a+jRYuavwofPHhwDB48OG688cYYNWpU2ms0R+vXr4+77ror7f777LNPjBs3Lo488sga+3bo0CFGjRoVl1xySdxzzz3xxBNNI4kuGQKQ45wvAgAA1IYKELKprKwso/6dOnXKqP/48ePrXEHxjW98o8ZkyHPPPZd2FcCuXHvttXHnnXfGypUra+z79ttvxymnnFLnNTN1+eWXZ+W1HnTQQXHRRRfF//t//6/GvlOnTq2xz/3335/22iNHjozf/va3afffrri4OJ599tmMEnjNzdNPPx2lpaVp9W3ZsmU888wzaSVCqsrPz4/vfe978c1vfrMWEWafZAjAbmpXH2wkSgAAYPcg4UFD2bRpU0b927dvX0+R1E02kgMRES1atIijjz46xo8fX2PfOXPmNEoyJFuvNSLi+OOPTysZMmfOnF0+/+6776Z9aHqHDh3i3nvvTatvKq1bt67T+Kbsz3/+c9p9f/SjH8WgQYNqvVZTeR/zGzsAAAAAACC3tWrVKqP+69evr6dImo50bwW2dOnSeo6k/mXrtb766qtpr/ntb3874wqj3Um672Xr1q3j0ksvredoGobKEAASuLUWAADkFhUgNLZMz9dI58DtpqCysjJmzpwZr7322o6qhUWLFkVJSUmsXbs2Nm3aFFu3bq3TGmvXrs1StHW3cuXKePnll2PatGkxa9asWLhwYaxYsSJKS0ujvLw8Nm/enPSA8XTV9FozORfmK1/xHUYqS5cujRUrVqTVd8iQIY1yZk19kAwBAAAAAOpVu3btYo899kj7dllNPRny0UcfxW9+85t47LHHYsmSJfW6VqbnrWRbeXl5PPTQQ/HAAw/ElClT6pTsqElNr/Wjjz5Ka57CwsI44ogjshFSTkr3fYz41y3OcoVkCABpS3Y1mWoRAABoWlSB0BTl5eXF/vvvH3Pnzk2r/7vvvlvPEdXOli1bYvTo0XHHHXfUueIjXRUVFQ2yTjITJkyIiy++OBYtWtQg69WUaEm3mqFHjx7RsmXLbISUk9J9HyMievXqVY+RNCxnhgAAAAAA9a64uDjtvlOmTKnHSGpnzZo1ceqpp8Ztt93WYImQxnT77bfHGWec0WCJkHRs3LgxrX7pnlGyu0r3fYzIrfdSZQgAdVLTVWcqRwAAILtUftBcDRo0KJ577rm0+s6ePTtWrlyZ9lkFo0ePjtGjRyd9bsiQITF58uS040zly1/+cvz973+v8zzNwSOPPBKXX355Y4cBWaUyBAAAAACod0cffXTafSsrK+P++++vx2gyc99998XEiRMbO4wGsXLlyrjssssaO4yk2rRpk1a/kpKSeo6keUv3fYzIrfdSZQgA9co5IwAAUHuqQMglQ4cOjTZt2qR9i5677rorfvjDH0ZBQUE9R1azW2+9Ne2+/fr1iwsvvDBOOOGEKC4ujg4dOkSrVq0S+p1//vnx4IMPZjPMrBg7dmysXr06rb5t2rSJb3zjGzFixIg4+OCDo2vXrlFYWBh5eXnV+k2aNCmGDh1a59jSrRRasmRJbN26NVq08PV3Mum+jxERCxYsqL9AGpifBgAAAACg3hUWFsYXv/jFePLJJ9Pq//HHH8ddd90Vo0aNqufIdm3GjBkxZ86ctPp+61vfirvvvjutL+EzObehIaX759OrV6+YOHFi9O7du8a+2Xqt6R7mvXHjxnj77bfjqKOOysq6uSaTQ9FfffXVeoykYUmGANDgnDMCAAD/ovKD3c1FF12U9pftERFXX311DB06NA455JB6jGrXXnnllbT6de/ePX7729+mXY3w0Ucf1SWserFhw4aYNm1aWn1//etfp5UIicjeaz3ssMPS7vvkk09KhqSw7777RteuXWPlypU19p00aVKsWrUqunTp0gCR1S9nhgAAAAAADeLkk0/OKLFRXl4eI0eObNTEwbJly9Lqd9xxx0XLli3TnvPtt9+uS1j1It3XGhEZ3fbqL3/5S23CSXD88cen3XfMmDFRWlqalXVrUlhYmFa/srKyeo4kfccdd1xa/crKyuLOO++s52gahsoQAJqcXV0dp2oEAIDmRvUHVHfzzTfHaaedlnb/efPmxdFHHx3PPPNMRoewZ0s6V89HRGzevDntOW+66aaoqKiobUj1Jt3XGvGv15vOQdxTpkyJv/71r3UJa4cBAwZEr1690kqOrVmzJi666KJ4/PHHa73exo0b03qNHTp0SCvR8cEHH8Tw4cNrHU82jRw5Mv785z+n1feWW26J008/PY444oharZXu+1jfVIYA0Ky8WPHELn8BAEBDs0eFzIwYMSK++MUvZjRmxYoVcdxxx8U3vvGNBq8SSfdL3EmTJsWnn35aY78HHngg7rnnnrqGVS8y+cL66aefrrHPokWL4qtf/WpdQkpw/vnnp933iSeeiFGjRsW2bdsyWmPJkiVx2mmnxQsvvJBW/86dO6fVb+zYsbF+/fqMYqkvI0eOjKKiorT6btq0KU4//fS0b6FW1QMPPBAjRozIeFx9kAwBAAAAABrUvffeG3vttVdGYyoqKuL3v/999OvXL0444YT4v//3/8bkyZNjzpw5UVJSEhUVFVFeXh7Lli2Lf/7zn/G73/0uzjvvvHjzzTfrFOvee++dVr81a9bEV77ylViyZEnS59etWxdXX311XHDBBXWKpz6l+1ojIq644op47rnnUj4/fvz4GDRoUCxatCgboe1w8cUXR7t27dLuf+edd8aJJ56Y1tkvH3zwQVx88cXRr1+/mDBhQtprpHvrt1mzZsWBBx4Yl112Wfz2t7+Nhx56KB5++OFqv9Kt1qir9u3bx3e/+920+y9ZsiQ+97nPxY9//ONYu3btLvuWl5fHgw8+GEcccUR885vfjJKSkrqGmxVukwVATnGLLQAA6oMKD8iubt26xaOPPhrDhw/P6PZSERFbt26NV155Je2Dzesqk0O4//a3v0Xv3r3jS1/6Uhx00EHRvXv3WLt2bUybNi0mTJjQZL4UTqVbt26x//77x8KFC2vsW1paGsOHD4/BgwfH0KFD44ADDoiIfx2W/te//jXefffdeomxS5cucd1118WPfvSjtMe89tprccIJJ0Tfvn1j2LBh0bt379hzzz1j06ZNsWrVqpg3b168/PLLsWDBglrFNHDgwHjiifT+nVi8eHHccccdKZ8/4IAD4swzz6xVHJm69tpr48EHH4zly5en1X/Dhg1xww03xC233BInnHBCDB48OPbaa69o06ZNlJSUxCeffBL//Oc/44033ojy8vJ6jj5zkiEAAAAAQIM76aST4qGHHopzzjmnSZ6fsd3nPve5KCoqijVr1qTVf/PmzfHoo4/Wc1T1Z8SIEXHXXXel3f+NN96IN954ox4jSnTFFVfEuHHj4rXXXsto3Ny5c2Pu3LlZj+e0006L0aNHZ33e+tahQ4e49957Y8SIEVFZWZn2uLKysnj++efj+eefr8foss9tsgDYbbiPMwAAu2K/CA3v7LPPjieeeCIKCwsbO5SUWrZsGZdddllW59x7772bzEHaO7vsssuiRYvsXkP/zW9+M6vztWjRIh5//PHo2bNnVuetrYMOOig+97nPNXYYtfLFL34xfvKTnzR2GA1CMgQAAAAAaDRnnXVWvPTSS9GrV69GjSMvLy/lc1dddVXsv//+WVmnRYsW8fDDD2d8ZkpD6devX4waNSpr851//vnx3//931mbb7vu3bvH3//+9+jTp0/W566NX/3qV9GqVavGDqNWrrnmmrjpppsaO4x65zZZABA13wPaeSMAAM2fCg9ougYPHhzvvPNOXHXVVfG73/0utm3b1mBrd+3aNS655JK45JJLUvZp165d/OUvf4njjz8+7dtlJZOfnx/33ntvfP7zn4+HH3641vPUt5/97Gfx/vvv1/k2SMOHD48xY8ZkfDurdPXq1SveeOON+PrXvx7PPvtsvayRriOOOCLGjBkTF110Ucbn4DQF119/ffTv3z++853v1OlnvClTGQIAAAAANLr27dvH3XffHdOnT4+RI0dGQUFBva3VsmXLOPXUU+OPf/xjLF68OG644Ybo0qXLLscccsgh8be//a3WFSzt27ePp556ql6qJLKtRYsW8dRTT8U555xT6zkuuOCCeOaZZ6Jly5ZZjCxR586d4y9/+Us89NBDWaveqa1vfOMb8eqrr8Zxxx3XqHHU1le/+tV4//3349xzz438/NxLHagMAYA07OoqQlUjAABNh+oPaP4OOeSQ+NOf/hQLFy6Me++9N55++ul499136zxv9+7dY+jQoXHKKafEiBEjolOnThnPMXDgwHj77bfjuuuui3vvvTfKyspqHJOfnx8jR46M2267rdG/rM9E27Zt4w9/+EMMHz48fvzjH8e8efPSGte/f/+45ZZb4swzz6zfAHdy3nnnxdlnnx2PPvpo3HffffHqq69GRUVFreY6/PDD40tf+lKtkhqDBg2KV199NWbMmBETJkyIt956K95///349NNPY+3atVFeXl6rmLbL5KDz2ujevXs88sgj8b//+79x9913x6OPPhorV66s1VwdOnSIESNGxHnnnZflKGsnr7K+3z0AyHGSIQAATYdkCOSmRYsWxZQpU+Ktt96K2bNnx8KFC2PZsmWxYcOGKCsri4KCgujQoUN06NAh2rdvH506dYq+ffvGwQcfHAcffHAcdNBB0b1796zGtHLlynjqqafipZdeiunTp8eqVatizZo1UVhYGF27do0DDzwwTjjhhPjyl78cxcXFCeM//fTT2LBhQ43rtG3btlaJm2yqqKiIZ599Nl588cV47bXXYunSpVFSUhIREUVFRVFcXBxHHnlknHbaaTFs2LCEqoJNmzal/YV6jx49shLzqlWrYuLEifHmm2/Ge++9F4sWLYrly5fHxo0bY8uWLdG6deto165d7LXXXtG7d+/o379/DB48OI477rjo1q1bVmLIBRUVFfHmm2/GK6+8EtOnT4+5c+fGkiVLorS0NMrLyyM/Pz/atm0bHTp0iAMOOCCKi4tjwIABcdxxx8Xhhx8eLVo0nXoMyRAAaAASJgAAdSfRAQDUVu7d+AsAAAAAAKAKlSEA0ASoHAEAUPkBANQfyRAAaCYkTACA5kyiAwBoTG6TBQAAAAAA5DSVIQCQQ1SPAACNQdUHANDUqQwBAAAAAABymsoQANgNqSABANKh4gMAyBUqQwAAAAAAgJymMgQA2CVVJACQW1R7AAC7I5UhAAAAAABATlMZAgDUmeoRAGgaVH0AACSnMgQAAAAAAMhpKkMAgAaligQAMqPaAwCg7iRDAIAmS+IEgFwlwQEA0LDcJgsAAAAAAMhpKkMAgJyimgSAhqbKAwCg6VMZAgAAAAAA5DSVIQDAbk81CQDbqfIAAMhNKkMAAAAAAICcpjIEAKAOVJUAND2qOwAA2JnKEAAAAAAAIKepDAEAaCSqSgBSU90BAEA2qQwBAAAAAABymsoQAIBmSmUJ0JSp7AAAoClRGQIAAAAAAOQ0lSEAAOyg2gR2T6o4AADIdZIhAAA0GMkWqB3JCgAAqBu3yQIAAAAAAHKayhAAAHKaahSyTZUGAAA0PypDAAAAAACAnKYyBAAAAAAAyGkqQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJzWorEDAKD5qaioiLVr1zZ2GAAAQAodOnSI/HzXwALAdpIhAGRs7dq1cfrppzd2GAAAQArjxo2Ljh07NnYYANBkuEQAAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcpozQwDIipZT94y8rQU7fp+XnxdVfrPr9mpteVUe5idtT9W/anu1san6b3+cap0qD9NaP501t0+axnyVVYdVvXwh2WtIGFvD60jVN8U6Nc4XEZXVLrFI8TryEp5OuX6qNStTrV+1vart72+yONKdrw7r73hfsrZmGu2R2J7e+5nZ47TiymRciv61fi9qiqkuc6fbJ4M5Mo0r8ioT+9ThNSSdbxcqk43NcJ3UMSbvU+2v00jSp6bnIyIvnblTtldWaa9ML6ad1qz+v3/ifDvPmZ+yT+L6qear9ld7lcep5k6rPSp3+Xw6j1PFkh+7Hlv1+errV9Rqvl33T5yzoNr6FUnHFaSzfiSPtyDlnBX/XrNKW4pYU7WnXLNKe7LYU81RdZ2CanOn875UXTNFjP8eW5DqtaX1+lPEmLJP4uOqW7Wq/z9VfVxQpU9Bij75Vf6Hza/yf0BBJLZX75uffFyVvee6tQXxjSu6BgCQmmQIAFmRtyU/8rZlORmSnyJJUZmqvcrYvPyk7UmTB6nWSfU41bdkeSm+bko6T6bftEbNfVI9rvZFXQ3fmFaTaZ+qzSnW35GMyaDvrkJJp8+/f77S+zI4nTUzXT/ba9bycR3WqXWSJtNxkbw968mQLL3ObCdDMl+/EZIhKedshGRIsj7V4s40GZLZmjUlI1K+5kjRnvJ9SdUn8T3PS9U3xXuRev2aHydLhmT6OOMkRZJkSPXnM02G7DoB8K8+eVUeJyZDkj2fOF+qBEQkb6/yZ1Q9kZAk7mpz5KXRXjXeSNpePfZkMVUZV22OqmtWba85SVRQ7X1J7JP6+eQJlXSSIan77DoZUn39Ku0p3s/qfaq2p/hz+ffj6n0j4fmd18xP9o8PAFCN22QBAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOS0Fo0dAAC5obJlRUTetv805Of953Fe5a7bq7WlGFe1Pb8iRXvVsfkp2pM8rtq32vORvD3lfGmsuX3SZHHs9LgyybD0x1YdUFXeTv+NqIya+qbbp4rKFO1JVJu7MkV7JO2yi/WT9En5flZ9nOrPP8P+yWLJ2pppPI4k7XVYJ9mPcMax1DbuujxuqHXSWSud9zlF/9R/F1Qm9knRN/UcNcy3C5XJxma4TuoYk/ep/ldbkj41PR8ReenMnbK9skp7ZXox7bRm9f/9E+fbec7UfZKsX+211fS37y76p/G4cvtrrfZzk9njKv+a7xRvTeunmrsieXvK/skf51fpn19lzvx/96k6X17V56u0V6Sc7z+Pt0Xi3BERBSnm3N5e9eegIMXcqdpTxVJQbZ2o0n9738S2f41L/rh6///8piBle17S9vwkz1dbp0o0VddM/b5UHZvGe/Hvx6lef7X3otr6KfqneJ0FkdhevW9+8nFV9p7r1rrWFQBqIhkCQFZsGbi6sUOgqUrx/VZTkc535ABUl5iW2Cm5QTOWLDPoi3YAoPmzowEAAAAAAHKaZAgAGVuzZk1jhwAAAOyCPTsAVCcZAgAAAAAA5DRnhgCQsfbt2ye0PfTQQ1FUVNQI0QAAwO5tzZo18fWvf71aW7I9OwDsziRDAMhYfn5iYWFRUVF07Nix4YMBAAASJNuzA8DuzL+MAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNPyKisrKxs7CAAAAAAAgPqiMgQAAAAAAMhpkiEAAAAAAEBOkwwBAAAAAABymmQIAAAAAACQ0yRDAAAAAACAnCYZAgAAAAAA5DTJEAAAAAAAIKdJhgAAAAAAADlNMgQAAAAAAMhpkiEAAAAAAEBOkwwBAAAAAABymmQIAAAAAACQ0yRDAAAAAACAnCYZAgAAAAAA5LQWjR0AQK5Zv359vP/++7F69eooLS2Nbdu2Rdu2bWPfffeN/v37R1FRUb2uX1FREXPnzo358+dHaWlpbN68OQoLC2OfffaJ/v37x1577ZX1Nbdu3RrLli2LTz75JFasWBHr16+PTZs2RX5+frRr1y7atWsXvXr1igMOOCAKCgqyvj4AAKRif9409ufbtm2LDz/8MBYuXBglJSVRVlYWrVq1ijZt2sQ+++wTPXr0iO7duzdILADsniRDgGbtpz/9aTz33HNZmeuoo46KX/ziF7Uau3Xr1nj++edj/PjxMXv27Ni2bVvSfvn5+XHIIYfEWWedFUOHDo28vLy6hFzNypUr47HHHosXXngh1qxZk7Jf3759Y+TIkTF8+PBaf/BZtGhRzJgxI959992YO3dufPzxx7F58+Yax+2xxx4xaNCgGD58eBx77LFZ++C1du3amDVrVsyePTtmzZoVc+bMiU8++SSh38svv5yV9erqhBNOyNpcN9xwQwwbNixr8wEA1IX9+X/szvvzqt5+++0YP358vP7667Fhw4Zd9i0qKopDDjkkjj766BgyZEi9J6pSWb58+Y7PF9t/rVu3rlqfww47LO64445GiQ+A2pEMAaijadOmxa233hpLly6tsW9FRUXMmDEjZsyYEU888URcd911Wbn66Zlnnom77rorysrKauw7d+7c+NnPfhZ/+tOf4sYbb4z9998/4/VGjRoVJSUlGY/btGlTvPrqq/Hqq69GcXFxXHHFFfHZz34243nmz58fU6ZMiTlz5sSsWbNi2bJlGc8BAEBusj9PX7b258ksWLAgbrvttpg+fXraY9asWROvvfZavPbaa1FYWBhf+MIXshJLTd5888145513dlxctavkFQDNlzNDAOrgT3/6U1xxxRVpfdDa2cyZM+Pb3/52fPDBB3WK4c4774xf/vKXaX3QqmrevHnxne98J95///06rV9bH374YYwaNSomTJiQ8dgJEybEPffcEy+99JJECAAAO9if115d9uc7e+655+Lb3/52RomQxvTb3/42fv/738cbb7whEQKQw1SGADmlRYsW0bNnz1qNzfQKsBdffDF+9atfJbTn5eXFYYcdFoMGDdpx/99Vq1bFW2+9FdOmTatWor9u3bq48sorY8yYMbHvvvtmHPOjjz4ajz/+eEJ7YWFhDBs2LIqLi6OoqChWrFgRM2bMiClTpkRlZeWOfhs2bIirrroqxo4dW6cr4Lp27Rp9+/aNHj16xD777BNt27aN1q1bx6ZNm2LNmjUxf/78ePPNN2PlypXVxlVUVMTPf/7z2GOPPeLkk0+u9frNXefOnaNz5861Gtu+ffssRwMAkD325/+yO+3PH3/88bjzzjsT2vPy8qJv375x5JFHRteuXaNjx46xbdu2WLduXSxcuDDmzZsX77//fspbmgFAXUmGADmlS5cucd9999X7OvPnz4+f/exnCe09e/aMa665Jg488MCE584999z48MMP4+abb445c+bsaF+3bl1cf/31MWbMmIzu0Tt79uwYM2ZMQvvxxx8f11xzTcKX5Oeee24sWLAg/ud//icWLVpUbf3/83/+T9x1111p3yO5c+fOMWjQoBg8eHAMGDAgunbtWuOYysrKmDx5ctx5552xYsWKau2/+tWvYuDAgbVOCGzXsmXL6NWrV/Tv3z9eeumlWL9+fZ3mayinn356XHDBBY0dBgBA1tmf717784kTJ8ZvfvObhPahQ4fGd77znRoTPBs2bIjXX389JkyYkNXzW2qrbdu20bdv3+jevXs8++yzjR0OAHUkGQJQC2PGjIlNmzZVa+vVq1f8+te/jg4dOqQcV1xcHHfccUf84Ac/qFZ+P3fu3Hj66afjy1/+ctox3H777QlXTQ0ZMiRuvPHGyM9PfhfEnj17xl133RXf/e53Y8mSJTvaZ86cGc8991wMHz48rbVr84E2Ly8vhgwZEoccckh8//vfr3brgnXr1sUzzzwT3/zmN9Oer6CgIHr27Bn9+/ePz3zmM9G/f//o06dPtGzZMiL+dd/f5pIMAQCgbuzPG39/vmjRovj5z39erdKlRYsWcd1118XQoUPTmqNt27YxbNiwGDZsWLV5GkJhYWH06dOn2ueL/fffP/Ly8mLZsmWSIQA5wJkhABmaN29e/OMf/6jW1qJFi7j++ut3+UFruzZt2sQNN9wQhYWF1doffvjhhA9wqUydOjXee++9am2dO3eOK6+8MuUHre2Kiopi9OjRCf1+//vfR0VFRVrr10WXLl3iBz/4QUL7pEmT0p7j3HPPjeeeey7uv//+GD16dJx55plx4IEH7kiEAACw+7A/r5ts7M8jIuk5Kddff33aiZCdNWRlyE9/+tN49tln4ze/+U1ceuml8YUvfCEOOOCAJlGdAkD2SIYAZGjy5MkJbUOGDIni4uK05+jevXuccsop1dpKSkri5ZdfTmv8M888k9B2zjnnpPVhLyJiwIABcfTRR1drW7JkSbz11ltpja+rQYMGRceOHau1LVy4MO0Pe126dIk99tijHiIDAKC5sT+vu7ruz//xj3/E22+/Xa3tlFNOiSFDhmQpwvrVrVu3jG6JBkDzJBkCkKGpU6cmtNXmcMGdP2xFRLzwwgs1jisrK0u48q1Vq1Zpl9Bvd/rppye0TZw4MaM5ais/Pz/22Wefam3btm2L0tLSBlkfAIDcYX9ed3Xdn//hD3+o9vtWrVrFJZdckq3wACArJEMAMvThhx8mtB1yyCEZz9OvX79o1apVtbZp06bVWIo/ffr02Lx5c7W2ww8/PO2rzrY76qijEm4F8M9//rPB7s2782uICLe5AgAgY/bn2VHb/fnChQtjxowZ1dqOOeaYhEoTAGhskiEAGdi0aVPCfXDbtGkT7du3z3iuli1bRufOnau1bd68OWbOnLnLce+8805C26GHHprx+i1atIiDDz64WltJSUksXrw447kytWHDhli0aFG1tg4dOkS7du3qfW0AAHKH/Xl21GV//tJLLyW0DRs2LGuxAUC2SIYAZGDdunUJbW3btq31fMk+XMyePXuXY+bMmZPQtvOHpnQlu2KupvWz4cknn0y48uzII490QCEAABmxP8+OuuzPk51rUtvXDwD1qUVjBwCQTeXl5fHwww/HjBkzYuHChVFaWhpbtmyJ9u3bR4cOHWK//faLAQMGxBFHHBF9+vTJeP5kh3bXVDZfU7w7+/jjj3c5Jtnz++67b63W7969e0LbwoULazVXuv7617/GAw88UK0tLy8vzj777HpdtymbO3du/PrXv46ZM2fGihUrYu3atdGiRYvo0KFDdOzYMfr16xcDBgxIerAlAEBTZn+emea2P9+2bVt88MEH1dqKioqia9euO36/fv36eOGFF+L111+PDz/8MEpLS6NFixZRVFQUe+65Zxx66KFx1FFHxeGHHx75+a7ZBaD+SIYAOaW0tDTGjBmT0F5SUhIlJSWxYMGCeOWVVyLiX1ddnXvuuXH88cenPX+7du2ioKAgtm3btqNtw4YNsXXr1mjRIvO/UpMdSLh06dKU/bds2RKrV6+u1lZQUBBdunTJeO2IiL333juhbdmyZbWaa1fWrFkTU6dOjfHjxyc94PIrX/lKHHTQQVlft7l47bXXEto2b94cGzdujOXLl8esWbNi3Lhx0apVqzj11FPjnHPOqfUHbACAhmR/npnmtj9ftGhRQkVJjx49djweN25c3HXXXbFx48ZqfbZs2RJlZWWxfPnymDlzZjz66KPRq1evuOCCC+LEE0+s5asCgF2TDAF2W++9915ce+21MXTo0Lj66qvTKqfPy8uLLl26xCeffLKjbdu2bTFnzpyMv8xfvHhxrF+/PqG9pKQk5ZjS0tKoqKio1talS5coKCjIaO3t9tprr4zW35Xbb7894X7JmzZtinXr1iX9ULndaaedFhdffHGt1tzdbN68OcaNGxfPP/98XHbZZTFixIjGDgkAIGvsz5vf/jxZoqZdu3axefPmuP766+Mf//hH2vF+9NFHcd1118Vpp50WP/jBD2qVzAKAXfEvC5CTth/216pVq1i3bl2sWbMmtm7dmrTvSy+9FHPmzIk777wz9txzzxrn/uxnP1vtw1ZExJQpUzL+sJXqg8GaNWtSjlm7dm1CW2FhYUbr1jQ22RrpWLp0acybNy/t/vvvv39ceOGFMWTIkFqtl2sKCgqiY8eO0bZt26ioqNjxc5vMpk2b4mc/+1nMmzcvLr/88oYNFACgFuzP09Pc9uc7V8VE/Os1/OQnP0l4P/Py8qJTp07Rvn37WL9+fXz66acJiaSIiPHjx8eqVavi5ptvdtssALJKMgTICb17945jjz02jjzyyCguLo6ioqJqz2/evDlmzZoVL7/8cowfPz7KysqqPb9kyZK45ppr4o477ojWrVvvcq2BAwfGxIkTq7WNHz8+zj333LQ/+GzZsiWefvrppM8lu0/xrp5Ldp/kdCUbu6v1s6Fjx47xne98J4YPH75bf7hp1apVDBw4MAYPHhwDBgyI/fffP1q2bFmtz6effhrvvPNOjBs3LunBlH/605+ia9eu8bWvfa2hwgYASIv9ee00t/15sgPsp0yZUu3clqKiovj6178eJ510UrXbh5WWlsYrr7wSDzzwQKxcuTJhjvvvvz++9a1vZfhqACC13fdbKCAnHHPMMTFmzJh44IEH4qKLLoojjjgi4YNWxL++eD700EPj+9//fjz++ONx7LHHJvSZNWtW3H333TWuedJJJ0WHDh2qtZWUlMQdd9yRdtxjxoyJJUuWJH0u1RVyqZ5r1apV2uvuLNmHrV2tnw2lpaVx6623xiWXXBKvvvpqva7VVH3ve9+LJ598Mm699dY466yzori4OCEREhHRqVOnGDJkSNx2221x++23J7339JgxY2LWrFkNETYAQI3sz3ev/fnO54VEVD/Avm/fvvHggw/G2WefnbCX7dixY5x22mnx0EMPxeGHH54wz+9///tYsGBBRvEAwK5IhgDN2tChQ+Mzn/lMRmOKiorilltuiS9+8YsJz40bN26XByRG/Kvs+ytf+UpC+1/+8pe4/fbbd/lhZdu2bTF27Nj44x//mFHMu5KXl5e1uSIiKisrazXu1ltvjZdffnnHr8mTJ8df/vKXeOSRR+KGG26I4cOHV/twN3PmzLj22mvj+uuvT7gSMNedc8450bFjx4zGHH744XHPPfdE165dq7VXVlbGPffck8XoAABqz/7c/ny7Tp06xS9/+cvo3LnzLvu1adMmbr311thvv/2qtVdWVsYjjzxS5zgAYDvJEGC3deWVV0b//v2rtW3dujWefPLJGseee+65ceCBBya0P/XUU/Hf//3f8dRTT8XChQujrKwsysvLY/HixfHMM8/EBRdcEA899NCO/sk+GOzqSrJkhwhWvfIqU8mu5MrWQYV5eXnRvn372G+//WLYsGFxzTXXxOOPP55wD+JJkybFlVdeWafXsbvo2rVr/PSnP024fcHUqVNj7ty5jRQVAEB22J83v/35rg6K/+53v5v2BUCtW7eOK664IqF94sSJsXHjxrTmAICaSIYAu60WLVrEd77znYT2N954o8axLVu2jB//+MfRrVu3hOcWL14ct99+e5x33nlxyimnxBe+8IU499xz45e//GV89NFHO/p17tw5rrrqqoTx7dq1S7lusvsl1+XDVrKxdTnwsSadOnWKH//4xzFy5Mhq7e+++2785je/qbd1c0n//v1j2LBhCe3p/NwCADRl9ufNb3+eKraioqL4/Oc/n1EsAwcOjAMOOKBa27Zt2+Ldd9/NaB4ASEUyBNitDRw4MOHqr0WLFsWKFStqHLv33nvHPffcE5/97GczXnffffeNn//85wn3No6I2HPPPVOOS9a/LiXsycYmWyPbLr300ujdu3e1tnHjxsWiRYvqfe1ckOyD5dSpUxshEgCA7LI/b17781SxHXbYYUnPxKvJkUcemdA2Y8aMjOcBgGQkQ4DdWl5eXgwYMCCh/ZNPPklrfKdOneKOO+6Ia665Jrp3715j/xYtWsSZZ54Z9913X/Tt2zfWr1+f0GdX83Ts2DHhFkmrV6+OioqKtOLdWbIPlTXd0zcbCgoK4rzzzqvWVlFREePHj6/3tXPBYYcdltCW7s8sAEBTZn/evPbnqRJFffv2rVUc/fr1S2hbvXp1reYCgJ1l58aTAM1Ysg8XpaWlaY8vKCiI4cOHxymnnBKzZ8+OqVOnxvz586O0tDTWr18frVq1im7dusXBBx8cn/vc56JLly47xn788ccJ8+18RVZVLVu2jD333DNWrly5o23r1q2xatWq2GuvvdKOebtkHyr32WefjOepjcGDBye0TZ8+vUHWbu4KCwujbdu2sWHDhh1tmfzMAgA0Zfbn1TXl/XmqRFFRUVGtYkhWabJmzZpazQUAO5MMAXZ7ye5zm+zgwprk5+fHgQcemPTgxlQ+/PDDhLZDDjlkl2P233//ah+2IiKWLFlSqw9bS5YsSTp/Q2jfvn20a9eu2tV3S5cubZC1c0Hr1q2rJUNq8zMLANAU2Z8nzt8QarM/32uvvaKwsDDh9l61uUVWRPLD6u1zAcgWt8kCdnvJrjKr7ZVMmXr//fer/b5169Zx8MEH73JMstLxmTNn1mr99957L63568vOH3Y2btzYYGs3dztfIddQP7MAAPXN/rzm+etLpvvz/Pz8pPElu91YOpKNs88FIFskQ4DdXrJS+I4dO9b7urNnz044kPDYY4+NPfbYY5fjkt1DuTaHCm7bti3hQ1rnzp1jv/32y3iu2qioqPCFfi0tXrw4tm7dWq2tIX5mAQAagv35fzSH/fnhhx+e0LZs2bJaxbB8+fKENp8RAMgWyRBgt7Z27dqEq79atWrVIB84nn322YS2//qv/6px3GGHHZZwxdbbb78d69aty2j9f/7znwnl7IMGDYq8vLyM5qmtWbNmxbZt26q1NcThkLng9ddfT2grLi5uhEgAALLL/rz57c+PPvrohLbmWhkDQG6TDAF2a4899ljChv/www+v8eqvupo/f36MGzeuWlvfvn1j0KBBNY5t06ZNHHPMMdXaNm/eHH/9618zimHn9SMiPv/5z2c0R11MnDgxoa2mWxAQsWXLlnj88ccT2pMdeAkA0NzYn1fXHPbnBx10UPTo0aNa26xZs2LBggUZrV9aWhpvvPFGQvsRRxyR0TwAkIpkCLDbmjVrVjzxxBMJ7SeeeGK9rltWVha33nprwoe8iy++OO05zjzzzIS2Rx99NO2rz959992YMmVKtbZ99903jjzyyLRjqIuPPvoo/vznPye0n3DCCQ2yfnM2duzYhNsHFBYWxlFHHdVIEQEAZIf9efPdn3/pS19KaLv//vsziuGhhx5KOCz9wAMPjL333jujeQAgFckQoFlaunRpjBs3LrZs2VKr8R988EGMHj06Nm3aVK19v/32i1NPPTWtOXb+sJSODRs2xFVXXRUffPBBtfbhw4fHwIED055n4MCBCVdprV69On75y19GRUXFLseuXbs2br755oR+5513XhQUFNS49m233RYrV65MO9adLViwIH74wx8mnHnRu3fvpPcbborOPvvsOOGEE6r9mjZtWo3j/v73v9f6lgGVlZXx4IMPxmOPPZbw3DnnnBPt27ev1bwAANlgf757789HjBgRe+21V7W2l156KWmCJZlXXnklnnzyyYT2888/P63xl156acL+PNPKHAByn2QI0Cxt2LAhfvGLX8RXv/rV+N3vfhfz5s1La1xpaWmMHTs2LrnkkigpKan2XH5+fowaNSpatGiR1lyjR4+O2267LWbOnFnjB5xt27bFCy+8EF//+tcTDlPs1atXXHbZZWmtWdXll1+e8OHo73//e1x33XUpr0BbsGBBXHzxxbF48eJq7QceeGAMHz48rXX//Oc/xznnnBM/+clPYsqUKQkfmlJZvXp13HfffXHhhRfGqlWrqj2Xl5cXP/zhD9P6sNecvffee/G9730vLr300pgwYUKUlpamNW7mzJlxxRVXxL333pvw3L777htf/epXsxwpAEBm7M937/35HnvsEZdffnlC+2233RZjx45NSHJtt3Xr1njsscfi+uuvj8rKymrPDRo0KOH2YwBQF3mVO/9rA9AMzJ07N771rW9Va+vatWv069cviouLY88994y2bdtGq1atYt26dbFy5cp47733YsaMGQml19tddtllScu7U7nkkkvi3XffjYiITp06xWc/+9koLi6Orl27Rtu2baO8vDw+/fTTmD9/frz++uuxdu3ahDn22WefuPPOO6Nr164ZvPr/ePjhh2PMmDEJ7YWFhfH5z38+iouLo6ioKFasWBHvvPNOvP766wkfDNu1axdjx46NfffdN601dy6Vb9OmTfTp0yf69u0b++yzT7Rr1y7atGkTmzdvjg0bNsTixYtj9uzZMXPmzKRX6+Xl5cXll18eI0eOzOCVR1x11VWxevXqlM8vWLAg4YNgnz59djnnz372s+jSpUuNa5999tkJt6q6/fbba7xy7o477qh2xVtBQUH07t07iouL44ADDogOHTpE27Zto6KiItauXRsff/xxTJ8+PT766KOk83Xq1CnuuuuutP/sAADqi/35v+zO+/OIiDvvvDPp+XadO3eO4447Lvr16xcdOnSI9evXx/z58+PVV1+NTz75JKF/t27dYuzYsVFUVJTWupdeemlMnz69Wts111yTdkJp1apVcfXVV6d8fsuWLfHxxx9XayssLNzln9Gee+4ZP//5z9NaH4CGkd7lFQDNwMqVK2PlypXx2muvZTSuVatWcfHFF8dZZ51V67U//fTTePnll+Pll19Oe8yBBx4YN998c3Tu3LnW65533nlRUlKSUFJeVlYW48ePr3F8mzZt4tZbb63Tl+kbN26MGTNmJFxRl47tV5D913/9V8ZjP/7444SERE1qukKxtrd1qK1t27bF3LlzY+7cuRmPPeCAA+Kmm26SCAEAmiz78//YHfbnEf86Z2X9+vXx7LPPVmsvKSlJ6/VHROy///5x8803p50IyYYtW7akXc20XVlZ2S7HrF+/vq5hAZBlkiHAbu3QQw+NK6+8Mnr27NlgaxYWFsY555wT5513Xtol/7ty6aWXRo8ePeLuu++O8vLytMf17t07brzxxoxfe+vWrTNaJ5VjjjkmLrvssujevXud59qdtGrVKs4888z49re/HXvssUdjhwMAkFX25817f56fnx+jR4+OPn36xNixY6OsrCztsXl5eTF06NC48soro127drWOAQBSkQwBmqVevXrFr3/965g+fXrMmDEj5s6dm/b5C926dYsjjzwyzjjjjOjfv3+tYxg1alRMnjw53nrrrZg3b16NBzbut99+cfLJJ8fpp59ep6vNkjnrrLPi+OOPj0cffTRefPHFpCX/2/Xp0ydGjhwZw4cPr9WHvQkTJsT06dPjzTffjPfeey/mzp2b8tYGVRUUFMR+++0Xn/vc5+LUU0+N/fbbL+O1m7tvfOMb8dnPfjamTZsW77//fixYsCCt965FixbRp0+fGDJkSIwYMSI6dOjQANECAKTP/ry63X1//uUvfzmGDBkSjz/+eLzwwgsJ58FU1b59+xg8eHCce+65Nd7WFgDqwpkhQM5YtWpVLFu2LFasWBGlpaVRXl4eW7dujTZt2kT79u2jY8eO0a9fv6x/0ImIKC8vj/nz58eyZcuipKQkysrKIi8vL9q2bRv77LNPFBcXx1577ZX1dZPZfuuljz76KEpKSmLr1q1RWFgY3bp1i/79+8fee++d1fW2bt0aS5cu3fHeb9y4McrLy6Nly5bRtm3baNeuXXTr1i2Ki4ujdevWWV27udv+3i1fvjxWrlwZGzZsiPLy8sjPz4927dpF+/btY6+99op+/fqpAgEAmh3783/Z3ffnlZWVMX/+/Jg/f36sXr06Nm3aFO3atYuioqLo0aNH9OvXL/Lz8+s9DgCQDAEAAAAAAHKa1DsAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGn/P3qj8rltO+RRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.plot_ts(skycoord = coord, containment = 0.9, save_plot = True)" + ] + }, + { + "cell_type": "markdown", + "id": "fb168be4-3ab9-4238-bca0-9a9b3febcab5", + "metadata": {}, + "source": [ + "As you can see, the GRB region shrinks only to a single pixel. This is caused by the fact that the GRB signal is very very strong in this case. In the next section, we will manipulate the strength of the GRB signal to see how the front source signal affects the TS values and the 90% confidence region." + ] + }, + { + "cell_type": "markdown", + "id": "e5429c31-b3ac-487a-a1f6-deb0e6618218", + "metadata": {}, + "source": [ + "## Example 2: Fit a fainter GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)" + ] + }, + { + "cell_type": "markdown", + "id": "d4174017-8367-43a6-a8a6-466bf370a8af", + "metadata": {}, + "source": [ + "This example uses exactly the same data file as example 1, so I don't repeat the downloading scripts here." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c1b1ca06-618c-4531-9b98-ef9e5980042d", + "metadata": {}, + "outputs": [], + "source": [ + "scaling_factor = 0.02" + ] + }, + { + "cell_type": "markdown", + "id": "a6202ef3-3893-49ac-b44c-4c2899f62652", + "metadata": {}, + "source": [ + "Here we will set up a scaling factor to manipulate the strength of the signal to see the affects on the final TS map. Since all the steps are exactly the same execpt the scaling factor, I will put the main codes in a single cell for simplicity.\n", + "\n", + "**If you encounter any errors, please try to restart the notebook kernel or the whole session.**" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "75dc1b55-f422-424e-951e-bd266b53e594", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "# download data\n", + "\n", + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path\n", + "\n", + "GRB_signal_path = data_dir/\"grb_binned_data.hdf5\"\n", + "# download GRB signal file ~76.90 KB\n", + "if not GRB_signal_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5\", GRB_signal_path)\n", + "\n", + "background_path = data_dir/\"bkg_binned_data_local.hdf5\"\n", + "# download background file ~255.97 MB\n", + "if not background_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/bkg_binned_data_local.hdf5\", background_path)\n", + "\n", + "orientation_path = data_dir/\"20280301_3_month.ori\"\n", + "# download orientation file ~684.38 MB\n", + "if not orientation_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", orientation_path)\n", + " \n", + "\n", + "zipped_response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\", zipped_response_path)\n", + " # unzip the response file\n", + " shutil.unpack_archive(zipped_response_path)\n", + " # delete the zipped response to save space\n", + " os.remove(zipped_response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "efea0798-053f-4294-a4fa-d4ac71875f18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have total 56 CPU cores, using 55 CPU cores for parallel computation.\n", + "The time used for the parallel TS map computation is 1.9408295631408692 minutes\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG7CAYAAADe2aHBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNE0lEQVR4nO3deVxU9f7H8fcwwIiC24CIcMtcUikVUzM1TQ23LLW0zGu5a6m5tLndNCu7WZmW1XVLo6x73bp1veWKZZo/tSzNBSU15aqBW4oMyj6/P4gpcjvgjGcGX8/Hg4fOOd855zPIqTff8z3fr8XpdDoFAACAy/IzuwAAAABfQGgCAAAwgNAEAABgAKEJAADAAEITAACAAYQmAAAAAwhNAAAABhCa3CgjI0OJiYnKyMgwuxQAAOBmhCY3SkpK0qBBg5SUlGR2KQAAwM0ITQAAAAYQmgAAAAwgNAEAABhAaAIAADDA3+wCAAC+Lzc3V9nZ2WaXAVxWQECArFZrsd9PaHKD+Ph4xcfHy+FwmF0KAFxzDodDR44ckdPpNLsU4LIsFouioqIUHBxcvPc7+Sl3m8TERA0aNEhz585VrVq1zC4HADwuNzdX+/btU+nSpRUWFiaLxWJ2ScBFOZ1OnThxQufOnVPNmjWL1eNETxMAoNiys7PldDoVFhamoKAgs8sBLissLEyHDh1SdnZ2sUITA8EBAFeNHib4gqv9OSU0AQAAGEBoAgCUKBaLRWfOnPHa43lSaGioDh06ZHYZpoqLi9PevXs9cmxCEwAAHpabm2t2CdcNT4YmBoIDANxmTqM5cqR4bvqV4MrBGrx18BXbTZ06VV988YXS09P1/PPPq1evXpKkXr16KTExUVlZWfrLX/6iefPmqXLlypKkL774QpMmTVJWVpYsFotmz56tJk2auI7pdDo1duxY7dmzRwsXLlRubq4GDhyoH3/8UWFhYYqOjlZmZqbi4uIUFxenDz74QBUrVtRPP/2kOXPm6OzZsxo3bpxycnJUoUIFzZw5U9HR0Vq3bp1GjRql7du3S5J27dqle++9V4cOHdKhQ4cUExOjkSNH6vPPP1dqaqpmzJihe+65R5K0bNkyjRkzRgEBAerQocNlvyevvvqqPvroI/n5+SkoKEhffvmlSpcurddff11xcXHy8/NTvXr19I9//EPlypXTpEmTlJCQoPPnzysxMVE333yzpkyZoqeffloHDx5Uw4YN9fHHH8vPz099+/aVn5+f9u7dq5MnT6pp06aaNWuWgoKCdPz4cT3++OPat2+fnE6nhg8frscee0ySVLVqVfXu3Vtr1qxRSkqKBgwYoOeee06SlJKSohEjRujQoUM6f/68unTposmTJ1/2fe+99562bt2qJ598UpMmTdLf//531/fKHQhNAAC3caQ4lHY0zewyZLFYtG3bNv38889q1KiRmjdvrqpVq+rNN99UWFiYJGnKlCmaNGmSZs2apZ9++kn9+vXT+vXrVbt2bWVnZ+vcuXOu42VmZqpnz56y2+369NNPZbVa9eyzzyooKEh79uyRw+FQs2bN1LBhQ9d7tmzZom3btqlWrVo6fvy46tSpo3Xr1qlu3br6+OOP1b17d+3evfuKnyU1NVX16tXTCy+8oJUrV2rkyJG65557dPz4cfXr108bNmxQdHS05syZo1OnTl30GB988IE++eQTffPNNypXrpxOnz4tm82mFStWaP78+dq0aZPKly+vwYMHa+zYsZo5c6YkaevWrfr+++9Vvnx5tWrVSgMHDtSaNWsUFBSkRo0aacWKFerUqZPr827evFmlS5dW165dNX36dI0fP17Dhw9XrVq19O9//1vHjx9Xw4YNVb9+fd1xxx2SpDNnzmjTpk06efKkqlevrn79+ikyMlJ9+vTR+PHjdddddyknJ0f33nuvlixZogcffPCS7xs4cKA++ugjjRo1Sl27di36D84VEJoAAG4TXLl4kwa6+/gDBw6UJFWrVk0tW7bU+vXrVbVqVf3zn//UggULlJGRoYyMDIWGhkqS1qxZow4dOqh27dqS8meOLleunOt4nTp1UpcuXTRhwgTXtrVr12r69OmyWCwKCQlRjx49tH//ftf+Zs2auebs27Jli+rWrau6detKyu/xGjZsmI4ePXrFz1KqVCk98MADkqSmTZvqwIEDkqTNmzerXr16io6OliQNGDBAw4cPv+gxPv/8cz3++OOuz1ShQgVJ+ZMz9+jRQ+XLl5ckDRkyxBVKJKldu3autrfddptsNptCQkIkSQ0aNNC+fftcbR966CHXvgEDBmjGjBkaP3684uPj9f3330uSKlWqpAceeEDx8fGu0PTXv/5VUv54rGrVqungwYMqX7681q5dq2PHjrmO73A4lJiY6Hp9sfdFRkZe8ft5NQhNwG+W7F6iiesmKi3T/N+SiyrEFqKXWr+k7tHdzS4F1zkjt87MYLFY9M0332jGjBnatGmTKlWqpGXLlmnixImG3t+mTRutWbNGI0eOVNmyZS95jj8yOuu0v79/oTFPGRkZhfbbbDbXsa1W6yXHR7lj2oc/H6NUqVKuv1ut1gte5+TkGD6W0XPk5OS4ZpffvHlzof1Xep+nMRAc+M3EdRO19+ReHU076nNfe0/u1YSvJlz5QwLXiffff1+SdOjQIW3YsEEtWrTQ6dOnFRISIrvdrqysLM2ePdvVvn379lq1apVrAHF2drZSU1Nd+8ePH68HHnhAsbGxrltgbdq00QcffCCn0ymHw6HFixdfsp477rhDO3fu1K5duyRJCxcuVGRkpCIjI1WtWjUlJSXpxIkTkqQFCxYY+oxNmzbVjh07XDXPnz9fWVlZF23buXNnzZo1y/WZzpw5o9zcXMXGxmrx4sU6e/asJGn27Nlq166dofP/2dKlS+VwOJSbm6v3339fsbGxkqTY2FjNnTtXknTixAn9+9//Vtu2bS97rODgYLVu3VpTpkxxbfvll1905MiRK9ZRtmzZQv927kRPE/Cbgh4mP4ufIoIjTK7GuGRHsvKceT7ZQwZ4Sm5urho0aKD09HTNmDFDVatWVWRkpD766CPVqlVLdrtdsbGxrttjNWrU0Pvvv69HHnnENVv0rFmzdPvtt7uOOWrUKJUpU0Zt2rTRqlWrNHHiRA0YMEB16tRRaGio6tev77rN9WdhYWH6+OOP1bt3b9dA8CVLlshisahKlSoaPXq0br/9doWHh6tjx46GPmNYWJjmz5+v+++/X4GBgerQoYPsdvtF2z766KP65Zdf1KxZM/n7+6tMmTKKj49Xx44dtWvXLjVt2rTQQPDiaNy4sdq3b68TJ06oadOmGjVqlCRpxowZGjJkiOrWrSun06m//e1vhQbYX8rHH3+sp556SrfeeqssFovKlCmj2bNnKyoq6rLvGzx4sJ5++mlNnz7d7QPBWXvOjVh7zrdFTYvS0bSjigyJ1JGnrvzbjLfw1bpRMmRkZOjgwYO66aabLnkbpaTKzs5Wbm6uSpUqpfT0dLVv317Dhw9Xjx49zC7tmuvbt69iYmJcQclbXe3PKz1NAAAUw+nTp9WxY0fl5uYqIyNDXbp00UMPPWR2WfAgQhM8whcHVSc7ks0uAYAPqVSpkuupsOtdXFyc2SVcE4QmeETBoGpfFGILMbsEAIAXIjTBI3x1UHXBo/sAAPwZoQkeFREcweBkAECJQGgCCpz4VTr0i5TjWwtrflf3PZ3JTtObKZeeIwYAcPUITUCBQ79I5zKu3M7LRASGKiIwVM9U+avZpQBAiUZo+k1WVpamTZumrVu3yuFwqGrVqnriiSd06623ml2aT+pUvplG1X5Q5QNCpE0/ml2OMVnZv/89MMC8OoooNzNDVotVwdYgs0sBvFZoaKi2bt2qqlWrXrLNpEmTNHbsWMPz97zzzjtyOBwaO3asJGn//v0aN26ctm7dqvLlyysvL0/t2rXT5MmTZbPZ1LdvX61Zs0ZhYWHKyMhQ48aNNXv2bJUuXVqSVLVqVdlsNgUFBSkzM1MNGjTQ3LlzVaZMGcOf02Kx6PTp0xedZPNy+y5lx44dGjNmjFasWGH4PSUZoek3ubm5qly5st59912FhYXpq6++0rhx47Ro0SLXDzSMe6ZKT9UM+kv+iz+GEV9QupTU2HfC8vE1KxURGGp2GYDPe+GFFzRq1ChDoen8+fOaNm2adu7cKUlKTk7WnXfeqZdffllLliyRJKWnp2vatGlKS0uTzWaTJD377LMaNWqUMjMz1aZNG73zzjsaPXq067iLFi1STEyM8vLydN999ykuLk7Dhg0rdO5Dhw6pb9++WrdunZs++aXVq1dPNptNX375pdq0aePx83k7QtNvgoKC1LdvX9fru+++W++8844OHz7M7N7FUNDrkevMldXmQ7ME+1ulqlXMrgLwWY3mNFKKI8Vjx68cXFlbB2+9Yrtly5ZpzJgxCggIUIcOHVzbn3nmGX399dfKzs5W2bJlXSs4PP7445KkFi1ayGq1avXq1YqPj9dbb72lrKws5eXlafLkybrvvvsk5a+z1rx5c1cv0LvvvqtWrVppwIABrnOVKVNGEyZcfE1Im82mO++8U0lJSRfdn5WVpXPnzqlChQrGvjF/MHXqVH3xxRdKT0/X888/r169ehXa73Q6NXbsWO3Zs0cLFy5Ubm6uBg4cqB9//FFhYWGKjo5WZmama+6lnj17avbs2YQm+XBoOnfunBYuXKiEhATt2bNHaWlpGjdu3EXX7MnKytK8efO0evVqpaWlqXr16ho4cKAaN258yeMfPnxYaWlpioyM9OTHKPGOZ59WRKsOV24IoERIcaToaNpRU2s4fvy4+vXrpw0bNig6Olpz5sxxLbI7ZswYTZ06VVL+orkjR47UypUrNWvWLM2ePVsbNmxw3b5q3769evbsKYvFokOHDumOO+5QUlKSbDab1q1bV2j9tB9++OGKi9D+UWpqqtatW6dXXnml0PYePXooKChIhw4dUsOGDYs1w7jFYtG2bdv0888/q1GjRmrevLnrtmRmZqZ69uwpu92uTz/9VFarVc8++6yCgoK0Z88eORwONWvWTA0bNnQdr2nTphf0dl2v/MwuoLhSU1MVFxenpKQk1ahR47JtX3nlFS1evFht27bViBEj5Ofnp9GjR2vHjh0XbZ+ZmanJkyerV69eCg4O9kT5AFAiVQ6urMiQSI99VQ6ufMUaNm/erHr16ik6OlqSNGDAAAUGBkqS1qxZo6ZNm+rWW2/Viy++qO3bt1/yOAcPHlTHjh116623qmvXrvr111918OBBSdKRI0cUHh5+yfdOnz5dMTExuuGGG7Ry5UrX9tdff1316tVTeHi4oqKi1Lp160LvW7RokbZv366TJ0+qatWqGjNmjKT8W3IxMTGKiYnRPffco61bt7pe9+7du9AxBg4cKEmqVq2aWrZsqfXr17v2derUSbfccoveffddWa1WSdLatWvVr18/WSwWhYSEXLB2XuXKlXXq1CllZPjegzLu5rM9TQUp2W63a+/evRo8ePBF2yUkJGjt2rUaMmSIevbsKSn/t4e+fftq5syZmjlzZqH2OTk5mjhxoiIjIwvdrgO8Xa4zT1HTLr/6tzcpmEi0e3R3s0uBGxm5dXatWSwWSdL//vc/PfHEE/ruu+9UvXp17dixQy1btrzk+x5++GFNmTJF3bvn/4xWrFjRFRxKly5dKEQ0aNBA3377rev1k08+qSeffFKtWrUq1K5gTNP//vc/tWjRQrNmzdKQIUMuOLe/v7+6deumZ599Vm+88YaqVq3qCnhFHdNU8PklqU2bNlqzZo1GjhypsmXLXrG9lL/IrdVqdQXP65nPhqbAwEDZ7fYrtvv6669ltVrVuXNn1zabzaZOnTppzpw5OnbsmOu3hYJ71haLRePHj7/gBwfwRhZLQYex0/TbIkWSJk34agKhCW7XtGlT9evXT3v37lXt2rU1f/58ZWVlqUKFCgoICFBERIScTqfeeeedQu8LCQlRamqq6/bc6dOnddNNN0mSPvroI50+fdrVtl69ekpMTHS9HjZsmGJiYhQXF+f6hTsvL++SvTM33HCD3n77bT322GPq27evgoIufPr1yy+/LNaY2vfff1+TJk3SoUOHtGHDBr355puufePHj1dcXJxiY2O1YsUK2e12tWnTRh988IFatmyp9PR0LV68WA0aNHC9Z8+ePbr11lvl5+ezN6fcxmdDk1H79u1TVFTUBY9s1qlTR1L+I6IFoWnq1Kk6deqUpk6dKn//K39rTp486bpPLumSA/oATyprKyvlSVaLVZEhvjEGL9mRrDxnnk8t6AzfERYWpvnz5+v+++9XYGCgOnToILvdrpCQED388MO65ZZbZLfb1bVr10Lve/rpp9W2bVuVLl1aq1ev1ltvvaXu3burfPnyatOmjW644QZX2+7du6t///6aPHmyJKlKlSrasGGDxo8fr0mTJslut8tms+muu+5SixYtLlpn586dNX36dP3jH//Q008/Len3MU05OTm68cYbNWvWrCJ//tzcXDVo0EDp6emaMWPGBdMsjBo1SmXKlFGbNm20atUqTZw4UQMGDFCdOnUUGhqq+vXrF5qWYOXKla7etuudxel0Os0u4moV3J672EDwPn36qEKFCoWStpTfvdm7d289/fTT6tKli1JSUvTQQw8pMDDQdZ9Xkl577TXVr1//ouedP3/+RVd2Lnga43qW/Ntj8MlZJxXRloHgHrXpx/xpHQIDpKYX/1n1NlHTonQ07agiQyJZZsfHZWRk6ODBg7rpppsMz29UUnTq1EmTJk267ENFviA7O1u5ubkqVaqU0tPT1b59ew0fPlw9evRQVlaWGjVqpC+//FKhob4/tcnV/ryW+J6mzMxMBQRcOFFhwb3ZzMxMSfkD3f44WM6Izp07q3nz5q7XSUlJrt86AAAl24wZM7Rnzx6zy7hqp0+fVseOHZWbm6uMjAx16dLF9dTewYMHNWXKlBIRmNyhxIcmm82m7OwLJ1fMyspy7S+u0NBQfpAA4DpVvXp1Va9e3ewyrlqlSpX0/fffX3RfrVq1rvs7J39U4kd12e32QuOOChRsI/QAAAAjSnxPU40aNbRt2zalp6cXGgyekJDg2n+14uPjFR8fL4fDcdXHAgAA3qnE9zS1atVKubm5WrZsmWtbVlaWli9frujo6MtOTmZUbGyspkyZouHDh1/1sQAAgHfy6Z6mTz75RA6Hw3WrbePGjTp+/LgkqVu3bgoODlZ0dLRat26tOXPm6MyZM4qMjNTKlSuVkpLimmkVAADgSnw6NC1atEgpKb8vDLl+/XrXE3Dt2rVzLYEyfvx4hYeHa9WqVXI4HKpWrZpeffVVxcTEmFE2AMCDsrOz9fe//13/+te/XDNZ33jjjZo0aZJiYmK0bt06dezYUbVq1VJeXp6CgoL01ltv6Y477pAkTZo0Se+++64iIyPldDoVGBiot956S82aNTNcw8CBA9WrV68Llklxl0mTJunMmTMXTKcDz/Lp0LR48WJD7Ww2m4YOHaqhQ4d6uCIAgNn69esnh8OhTZs2qUKFCpLyx54mJia6flmuVauWa1mSd955R/3793eNdZWkXr16uQJJwcK+3333neEa3nvvPbd8FngXnw5N3oKB4ADwm+8T8idb9ZTAAKlh9CV379u3T59++qkOHz7sCkxS/tjTS7n77rsvO1wjNTW10LH+6L///a/+9re/yc/PTzk5OXr55ZfVpUsXtWrVSqNGjVLXrl2VnJysPn366MiRI4qKilLFihVVu3ZtTZo0SZMmTdKePXt07tw5HThwQJUrV9bSpUtVsWJF7dy5U0OGDNG5c+eUkZGhv/71r3ruuecMfJPgKYQmN4iNjVVsbKwSExM1aNAgs8sBAPNkZXs2NF3Btm3bVKNGDVWsWNHwe5YuXaqHH3640LaPP/5Y69atU2pqqs6ePatVq1Zd9L3PPfecZs+eraZNmyovL09nz569oM2IESPUtGlTvfDCC0pJSVFMTIxq167t2r9lyxZ9//33stvtevjhhzV79myNGzdOVatW1dq1a2Wz2XT+/Hk1a9ZMsbGxrtuIuPYITQAA9wm8cAUGM49/4MABdevWzRU63n//fUly3apLSUlRTk6OtmzZUuh9f7w9t3btWj3wwANKTEy8YGHdu+++WyNHjlT37t3Vrl27i46VXbt2raZOnSopf/WJe++9t9D+grXxpPzFhnfu3ClJOn/+vIYOHart27fLz89Phw8f1vbt2wlNJiI0AQDc5zK3zq6FBg0aaP/+/Tp9+rQqVKig6tWra/v27YqLi9Nnn33malcwpik7O1tDhw5Vr169tGnTJlkslguOeffddysjI0O7du26YJ25adOmaffu3frqq6/Up08f9erVS6NHj75sjX8+xx/XQLNarcrJyZGU/xBTaGiotm3bJn9/fz3wwAPKyMgo6rcEbkRoAkqKrOz8xXt9wHd139OZ7DS9mWLsYQ7AqJo1a6pLly4aMGCA5s+fr/Lly0uS0tPTL9o+ICBAb731lm6++WZ99tlnuv/++y9o8+OPP8rhcKhq1aoX7Nu7d69uueUW3XLLLfL399fq1asvaNOmTRvFxcXp+eef17Fjx/T555/rscceu+JnOX36tOrUqSN/f38lJiZqzZo1atmy5RXfB88hNLkBA8FhKn/r72NITBxLUhQRgaGKCAzVM1X+anYpKIHi4uL08ssvq0mTJvL391eFChUUFhZ2ycHepUuX1ssvv6xJkyapa9eukn4f0+R0OmWxWLRgwQKFhYVd8N7x48crMTFRgYGBKl26tGbOnHlBm7feekt9+vRRdHS0qlSpoiZNmrjC3OU899xzevTRR/XBBx+oevXqatOmTZG+D3A/i9PpdJpdRElRMBB87ty51/0Ch8lrVioiMFTJWScV0baD2eWUbCd+lQ79IuXkml2JYbmZGbJarPx8lAAZGRk6ePCgbrrppkK3mfC78+fPKyAgQP7+/jp16pTuuOMOffTRR2rSpInZpV13rvbnlZ4mwNeFVcz/8iHHfwvVwPVg37596t27t5xOp7KysjR06FACk48iNAEA4EH16tVzTaQJ30ZoAmCaXGeeoqZFmV2GYSG2EL3U+iV1j+5udikATEBoAnDNWSx+v/3NqaNpR02tpUjSpAlfTSA0AdcpQpMb8PQcUDRlbWWlPMlqsSoyJNLscgxJdiQrz5mntMw0s0sBYBJCkxuwjApQNKX9g6SsbEUER+jIU0fMLseQqGlRvtUrBsDt/K7cBAAAAIQmAECJYrFYdObMGa89nieFhobq0KFD1+x83bt3V1xc3BXbtWrVqtAyNr6K0AQAgIfl5vrO5LO4NEITAMBtGjWSoqI899WokbE6pk6dqgYNGujmm2/Wxx9/7Nreq1cvNWrUSPXq1VOnTp2UkpLi2vfFF1+ocePGql+/vmJiYrRly5ZCx3Q6nRozZow6d+6sc+fOKS0tTT169FDt2rXVokULPfbYY+rbt6+k/KVcWrdurW7duqlu3br69ttvtWrVKt12222qV6+e7rrrLiUkJEiS1q1bp5iYGNd5du3a5Vrn7tChQypfvryef/55NWzYUDVq1NDy5ctdbZctW6Y6deqoXr16l10oOC4uTrGxserZs6eio6PVrFkzJSQk6P7771edOnXUrl0718NMDodD/fv316233qpbb71VL7zwgus4e/fuVbNmzXTLLbeoa9euOnv2rGtfWlqaBg0apNtvv1316tXT4MGDlZWVZewfzEcwEBwA4DYpKdJRLxgvb7FYtG3bNv38889q1KiRmjdvrqpVq+rNN990rSE3ZcoUTZo0SbNmzdJPP/2kfv36af369apdu7ays7N17tw51/EyMzPVs2dP2e12ffrpp7JarXr22WcVFBSkPXv2yOFwqFmzZmrYsKHrPVu2bNG2bdtUq1YtHT9+XHXq1NG6detUt25dffzxx+revbt27959xc+SmpqqevXq6YUXXtDKlSs1cuRI3XPPPTp+/Lj69eunDRs2KDo6WnPmzNGpU6cueZzvvvtOO3fu1A033KBHH31U9913n/7v//5P4eHhuvfee/XBBx9o2LBheumll5SZmakdO3bo/PnzuvPOO1W7dm316NFDjz76qB5//HENGDBAO3fuVKNGjfTXv+avIfn000+rRYsWmjt3rpxOpwYNGqS33npLzz77bHH/Gb0OoQkA4DaVK3vH8QcOHChJqlatmlq2bKn169eratWq+uc//6kFCxYoIyNDGRkZCg3NX85nzZo16tChg2rXri1JCggIULly5VzH69Spk7p06aIJEya4tq1du1bTp0+XxWJRSEiIevToof3797v2N2vWzLUO6ZYtW1S3bl3VrVtXUn6P17Bhw3TUQMIsVaqUHnjgAUlS06ZNdeDAAUnS5s2bVa9ePUVHR0uSBgwYoOHDh1/yOE2bNtUNN9wgSWrUqJGys7MVHh4uSWrcuLH27dsnKX8anTfeeEN+fn4qU6aMevfurTVr1qhjx47avn27qzetbt26uvPOO13H/+yzz7Rp0yZNmzZNUv6ae1ar9Yqfz5cQmtyAeZoAIN/WrWZXcHEWi0XffPONZsyYoU2bNqlSpUpatmyZJk6caOj9bdq00Zo1azRy5EiVLVv2kuf4o+DgYEPH9vf3LzTmKSMjo9B+m83mOrbVar3k+Kg/n//P/rhArdVqveB1Tk5OkY/7x31Op1OffPKJbr755svW4csITW7APE3A9SPZkczSLz7g/fff16RJk3To0CFt2LBBb775pnbu3KmQkBDZ7XZlZWVp9uzZrvbt27fXiy++qL179xa6PVfQ2zR+/HjXuKAVK1bIbrerTZs2+uCDD9SyZUulp6dr8eLFatCgwUXrueOOO7Rz507t2rVLt956qxYuXKjIyEhFRkbKz89PSUlJOnHihMLCwrRgwQJDn7Fp06bq16+fq+b58+e7ZQxRbGys5s2bp7vuukvnzp3TggULNGbMGJUtW1YNGjTQhx9+qH79+mn37t365ptv9Mgjj0iSunbtqldffVWzZ8+Wv7+/Tp8+rVOnTqlGjRpXXZO3IDQBgAEhthApTcpz5vnWJJfX6dIvubm5atCggdLT0zVjxgxVrVpVkZGR+uijj1SrVi3Z7XbFxsa6bo/VqFFD77//vh555BFlZ2fLarVq1qxZuv32213HHDVqlMqUKaM2bdpo1apVmjhxogYMGKA6deooNDRU9evXV/ny5S9aT1hYmD7++GP17t1bOTk5qlChgpYsWSKLxaIqVapo9OjRuv322xUeHq6OHTsa+oxhYWGaP3++7r//fgUGBqpDhw6y2+1X/b2bMGGCRowY4bqV+OCDD+qhhx6SJFdgeuONN1SzZk21bNnS9b7p06dr7NixiomJkZ+fn/z9/fXaa6+VqNBkcTqdTrOLKCkKeprmzp3ruo/tDkt2L9HEdRN9avmGzbfOUZStkpKzTiqibQezy4G32fSjlJUtBQZITeubXY0hSxOWasJXE3zqOixY+iUyJNJjM69nZGTo4MGDuummmwrd7rkeZGdnKzc3V6VKlVJ6errat2+v4cOHq0ePHmaXhku42p9Xepp8wMR1E7X35F6zyyii/Cz++8KsgG/rHt3d53prWPrFs06fPq2OHTsqNzdXGRkZ6tKli6tHBiUTockHtAyqq383flEh/mVk9ZEQUimggqTfFmYFgBKoUqVK+v77780uA9cQockHPFOlp2oG/cXsMoqldCljT4+g+JYskSZOlNJ8566RlFVHIUG5emnwMXVvanYxcAdGesAXXO3PKaHJBwRbgyRJuc5cWW0+NGbA3ypVrWJ2FSXexInSXl+7e6tASdKEuZXV/W8ml2LQ7iW7tW7iOmWmZZpdimGOng4pWMo5f/FHyd0hICBAFovF9eTXlR57B8zidDp14sQJWSwWBQQEFOsYhCYfcjz7tCJaMagahRX0MPn5SRER5tZiVHKyU3l5FqWd843bzZK0buI6ndx70uwyiiQvL0+SlHnWc0HParUqKipKR44cuaYLxQLFYbFYFBUVVexJNwlNbsDklvAGERHSEc88IOV2UZWydfREoJJPBSjKR6Y8ciT3VoAy1MayTk2qHDa7HEMsyu/1ceZ59tZZcHCwatasqezsbI+eB7haAQEBVzVLOaHJDZjcEiiakNL5PSB5eRavWKfMmBBJIVpnbaNFR65+Lpxr4cVnX7xm57JarSVuyQzgzwhNAK65lwalaMKccKWdt0qBgWaXY8gvR/PklJ8y83yjXgDuR2gCcM11aXpS3e88qbRfMzV3+BazyzHkBQ3UWTGFBnA9IzQBuOYyz2YpoEKgnLl5SjvqG3MlFIwKsvjxdBhwvSI0Ab/xyfmOJCUnm11B0f1xrpSQyBATKzHOL9ki5Ulnc8v4zOD1s6m7pVJnld30FbNLAUoEQhPwG9+c7+h3Ib6RPQqxWP301JGnzC7DkLl1pNS9Up7TlwavR0qOSGVs9JHJsAAvR2gCfuOL8x1JUs75bMmRptuPb9S0qH1ml2PIwDcbm11Ckb30kjRhgm/1RB79JVdyWuXMYmZ+wB0ITcCf+NJ8R5L0bp05OvnrSelXyYf+fy5JPjV7dPfu+V++xC8kRU5HpNllACUGoQn4Tc75bEkBciSnaVrUXLPLMcyRnD+pqsXPouAI3+hRsFjzZwK3lbWZXAkAGEdoAn6Tv9REgPLynD7zRNcf2W+2a9ieYWaXYcymH6WsbAUE8Z8gAL6D/2IBvylYasIi33miq4AtxKbWL7U2uwwAKNEITW7A2nMli8XP4jNPdAEArh1Ckxuw9hwAACUfoQkASjhnemWfmZBTyp9z7KWXfO9pRZR8hCYAKKEsgY785V+cVh+akDPfhAmEJngfQhMA82Rl5z9J5yv8rVLVKlJYRbMrMaRU85d1btM4KTNEFqdvzInlTK8sOa1KPpYmybceyEDJR2gCcO35W/MDk/T7n74gK1s69IvPhKaQGqt1ruECSb8vOOz13jgspUUpLZvQBO9DaAJw7VWtkh8+cnLNrsS4gnDnQzWPuWWMXt39qjKsGWaXYljqb386fSfm4TpCaAJw7YVV9JneGpffJuT0JU8OeFJP6kmzyygSv1lHiUvwWn5mFwAAAOALCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgNAEAABgAFMOwCOWLJEmTpTS0syuxLizeWXMLgEA4MUITfCIiROlvXvNrqKo8jtebX5ZJtcBAPBGhCY3iI+PV3x8vBwOh9mleI2CHiY/PykiwtxajHIkpykgL0Mdym6WdJ/Z5QDXNWd6ZUVFmV2FcSEh0ksvschwSUdocoPY2FjFxsYqMTFRgwYNMrscrxIRIR05YnYVxkyLmqu0o2kKCWK9K8AslkBH/ozgTquOHjW7mqIZNvyUune3m10GPIjQBADwGiFNX1fqlqelTB/65cURITmtOunINLsSeBihCQDgNZ6//xa9enNr31pkePYuKS2KRYavA4QmAIDXYJFheDPmaQIAADCAniZ4RM75bEkBciSnaVrUXLPLMcSRzNOPAIBLIzTBIzLPZkoKUF6eU2lHfWiGS0m2EJvZJQAAvBChCR7hzMu/w2+RFBLpO0/B2EJsav1Sa7PLAAB4IUITPMriZ9FTR54yuwwAAK4aA8EBAAAMIDQBAAAYQGgCAAAwgNAEAABgAAPBAQBwA2d6ZUVFmV2FcSEh0ksvSd27m12J7yA0AQBwFSyBjvxlVJxWHT1qdjVFM2ECoakoCE0AAFyFUs1f1rlN42TJKKsq5SLNLseQ5GQpL09K8625h01HaAIA4CoE1FomNVygso5yOvL6GbPLMSQqSj7XK+YNGAgOAABgAKEJAADAAG7P/cFnn32m//73v/r555/16KOPqn///maXBADwEWdLn1X5Z8ubXYYhZ1N3S4qU41yaJN9ZH9RshKY/sNvt6tevn+Lj480uBQDgI0rlllKqUuX0cyo1ONXscoyx5C+qnpZNaCoKQtMftGjRQpK0efNmkysBAPiKMbeM0au7X1WGNcPsUgwriHbO/MkSYJDPhqZz585p4cKFSkhI0J49e5SWlqZx48apY8eOF7TNysrSvHnztHr1aqWlpal69eoaOHCgGjdubELlAICS5MkBT+pJPWl2GUXiN+socakYfHYgeGpqquLi4pSUlKQaNWpctu0rr7yixYsXq23bthoxYoT8/Pw0evRo7dix4xpVCwAAfJ3Phia73a5PP/1US5Ys0ZAhQy7ZLiEhQWvXrtXgwYM1dOhQde7cWW+++aYqV66smTNnXsOKAQCAL/PZ0BQYGCi73X7Fdl9//bWsVqs6d+7s2maz2dSpUyft3r1bx44d82SZAACghPDZMU1G7du3T1FRUSpTpkyh7XXq1JEk7d+/X+Hh4ZKknJwc5ebmKi8vT7m5ucrMzJS/v7+sVutFj33y5EmdOnXK9TopKclDnwIAAJitxIemU6dOXbRHqmDbyZMnXds+/PBDxcXFuV4vWLDgkoPLJWnZsmWF2gMAgJKrxIemzMxMBQQEXLA9MDDQtb9A//79izShZefOndW8eXPX66SkJE2ePPkqqgUAAN6qxIcmm82m7OzsC7ZnZWW59hdXaGioQkNDi/1+AADgO0p8aLLb7Tpx4sQF2wvGIhF6AADXK6fF6TNLv0j5s6+PuWWMnhxgzrxYJT401ahRQ9u2bVN6enqhweAJCQmu/VcrPj5e8fHxcjgcV30sAAA8zSKLa3JLn1n6RVKqUvXq7ldNm0y0xIemVq1aaeHChVq2bJl69uwpKf/W3PLlyxUdHe16cu5qxMbGKjY2VomJiRo0aNBVHw8AAE8KCQhRqiSL06KyjnJml2PI2dJn5fRzmrpcjU+Hpk8++UQOh8N1q23jxo06fvy4JKlbt24KDg5WdHS0WrdurTlz5ujMmTOKjIzUypUrlZKSojFjxphZPgAApgguHaLU01KVcpE68voZs8sxpPyz5U3vFfPp0LRo0SKlpKS4Xq9fv17r16+XJLVr107BwcGSpPHjxys8PFyrVq2Sw+FQtWrV9OqrryomJsaMsgEAgA/y6dC0ePFiQ+1sNpuGDh2qoUOHergiAABQUvl0aPIWDAQHAPii5GQpKsrsKow5m7pbKnVW2U1fMa0GQpMbMBAcAOBLQkLy/8zLk44eNbcW4yIlR6QyNv7NtAoITQAAXGdeekmaMEFKSzO7EuOO/pIrOa1yZgWbVgOhCQCA60z37vlfvsQvJEVOR6S5NZh6dgAAAB9BaAIAADCA23NuwNNzAACUfIQmN+DpOQAASj5uzwEAABhAaAIAADCA0AQAAGAAY5p8wH/Xh2v6h7WVes4iP5vZ1RhzNq+M2SUAAOBWhCY38PTTc69/UFP7Dwd55Niek9+JafPLMrkOwM2ysqVNP5pdhXH+VqlqFSmsotmVAD6P0OQGnn56Lv18/j+Tn59TEREWtx/fExzJaQrIy1CHspsl3Wd2OcDV87fmBybp9z99QVa2dOgXQhPgBoQmHxJeMVNHjpQyuwxDpkXNVdrRNIUEhZhdCuAeVavkh4+cXLMrMa4g3PlSzYAXIzQBgBFhFX2vt2bTj77VKwZ4OZ6eAwAAMIDQBAAAYAChCQAAwIBij2k6cOCA9u7dq1atWqlMmfw5eTIzM/XOO+9o48aNstlsevjhh9WlSxe3FeutWLAXAICSr9g9TR9++KHmzZun0qVLu7bNmTNHy5Yt07lz53T8+HFNnz5d3333nVsK9WaxsbGaMmWKhg8fbnYpAADAQ4odmvbs2aMGDRrIYsmfNygnJ0crVqxQnTp19J///EeLFi1S+fLltXTpUrcVCwAAYJZih6bU1FRVqlTJ9Xrv3r1KT09Xly5dZLPZFBoaqubNm2v//v1uKRQAAMBMxQ5NVqtV2dm/z/+xfft2WSwWNWjQwLWtXLlySk1NvboKAQAAvECxQ1PlypW1bds21+uvvvpKERERqly5smvbiRMnVK5cuaurEAAAwAsU++m5du3aaebMmXrssccUEBCgAwcO6NFHHy3U5ueff1ZUVNRVFwkAAGC2Yvc0PfDAA2rVqpUSExO1c+dONWnSRI888ohr/8GDB7V//37ddtttbikUAADATMXuaQoMDNQLL7yg9PR0WSyWQlMPSFKFChU0b968QrfrAAAAfFWxQ9P27dsVERGh8PDwi+4vX768MjMztX//fsXExBT3ND6ByS0BACj5in17btSoUVqxYsVl26xatUqjRo0q7il8BpNbAgBQ8hU7NDmdTkNtCia/BAAA8GUeXbD3yJEjrnXpAAAAfFmRxjRNmTKl0OsNGzYoJSXlgna5ubk6fvy4duzYoSZNmlxdhQAAAF6gSKHpj2OYLBaL9u/ff8llUiwWi2rXrq0nnnji6ioEAADwAkUKTYsWLZKUP1bp4Ycf1oMPPqju3btf0M7Pz08hISEKCgpyT5UAAAAmK1Jo+uOcS2PHjtXNN9/MPEwAAOC6UOx5mjp27OjOOgAAALxasUNTgYSEBO3du1cOh0N5eXkX7LdYLOrTp8/VngYAAMBUxQ5NZ8+e1fjx47Vr167LztlEaAIAACVBsUPTO++8o507dyomJkYdOnRQpUqVZLVa3VkbflMQSZ1OaVrUNFNrMcqRzJIyAICSpdihadOmTapTp47efPPN637Wb4+vPfeHjry0o2meOYeH2EJsZpcAAIBbFDs0ZWZmqn79+td9YJLy156LjY1VYmKiBg0a5NFzhUSGePT47mQLsan1S63NLgMAALcodmiqUaPGRWcDh2c9deQps0sAAOC6VOy15/r27auNGzdq9+7d7qwHAADAKxW7p+nXX3/VHXfcoREjRqht27aqWbPmJRfn7dChQ7ELBAAA8AbFDk2vvPKKLBaLnE6nVqxYoRUrVlwwvsnpdMpisRCaAACAzyt2aBo7dqw76wAAAPBqLKMCAABgQLEHggMAAFxPit3TdOzYMcNtw8PDi3saAAAAr1Ds0PTQQw8ZmtjSYrHoq6++Ku5pAAAAvEKxQ1P79u0vGpocDocOHDig5ORkxcTEqHLlyldVIAAAgDcodmgaP378Jfc5nU4tXLhQ//rXvzRmzJjingIAAMBreGQguMViUc+ePXXTTTfpH//4hydOAQAAcE159Om5WrVq6YcffvDkKQAAAK4Jj4amo0ePKjc315OnAAAAuCaKPabpUvLy8nTixAmtXLlSGzdu1G233ebuUwAAAFxzxQ5Nd91112WnHHA6nQoJCdGwYcOKewqfER8fr/j4eDkcDrNLAQAAHlLs0FS/fv2LhiaLxaKQkBDVrl1b99xzjypUqHBVBfqC2NhYxcbGKjExUYMGDTK7HAAA4AHFDk0zZsxwZx0AAABejbXnAAAADHDLQPCdO3dq3759OnfunEqXLq2aNWuqbt267jg0AACAV7iq0LRz505NmTJFR48elZQ/+LtgnFNUVJTGjh2rW2+99eqrBAAAMFmxQ9PBgwf1zDPPKCMjQ40aNVKDBg1kt9v166+/atu2bfruu+/0zDPPaNasWapataobSwYAALj2ih2a4uLilJ2drddee01NmjQptK9Xr17asmWLxo0bp7i4OE2aNOlq6wQAADBVsQeCb9++Xa1atbogMBVo0qSJWrVqpW3bthW7OAAAAG9R7NCUnp6uiIiIy7aJiIhQenp6cU8BAADgNYodmux2u3bv3n3ZNgkJCbLb7cU9BQAAgNcodmhq3ry5tm/frvfee0+ZmZmF9mVmZmr+/Pnatm2b7rzzzqsuEgAAwGzFHgjep08fbdq0SR999JGWLVumOnXqqEKFCjp9+rT27t2rM2fOqEqVKurTp4876wUAADBFsUNTuXLlNHPmTM2aNUtr167V5s2bXfsCAwPVsWNHPf744ypbtqxbCgUAADDTVU1uWb58eY0dO1bPPPOMkpKSXDOC33jjjfL3d8tk4wAAAF6hyMnmww8/VEZGhvr37+8KRv7+/qpevbqrTXZ2tubOnaugoCA98sgj7qsWAADAJEUaCL5161bNnz9fZcuWvWxPUkBAgMqWLav33ntPP/zww1UXCQAAYLYihaZVq1YpJCREDzzwwBXb3n///QoJCdGKFSuKXRwAAIC3KFJo2rVrlxo2bKjAwMArtg0MDFSjRo20c+fOYhcHAADgLYoUmk6ePKkqVaoYbh8REaFTp04VuSgAAABvU6TQ5Ofnp5ycHMPtc3Jy5OdX7Pkzr7kzZ85o9OjRateunXr16qXvv//e7JIAAICXKFKisdvtOnjwoOH2Bw8eVGhoaJGLMsv06dNVsWJFLVu2TEOGDNHzzz+vs2fPml0WAADwAkUKTfXq1dMPP/yg5OTkK7ZNTk7WDz/8oPr16xe7uGvp3Llz2rBhg/r3769SpUrpzjvvVLVq1fTNN9+YXRoAAPACRQpN999/v3JycjRx4kSdOXPmku1SU1P1/PPPKzc3V126dLnaGi/q3Llzmj9/vp555hl16tRJLVu2vOSTellZWZo5c6buv/9+xcbG6rHHHtN3331XqM2RI0cUFBSkSpUqubZVq1atSD1rAACg5CpSaKpVq5YefPBB/fTTT+rdu7fmzZunH374QYcPH9bhw4e1bds2vffee+rdu7cSExP14IMPqlatWh4pPDU1VXFxcUpKSlKNGjUu2/aVV17R4sWL1bZtW40YMUJ+fn4aPXq0duzY4Wpz/vx5lSlTptD7ypQpo/Pnz3ukfgAA4FuKPCP4sGHDFBgYqH/9619asGCBFixYUGi/0+mUn5+fHnnkEQ0cONBthf6Z3W7Xp59+Krvdrr1792rw4MEXbZeQkKC1a9dqyJAh6tmzpySpffv26tu3r2bOnKmZM2dKkoKCgpSenl7ovenp6QoKCvLYZwAAAL6jyKHJYrFo8ODB6tSpk5YvX65du3bp119/lSRVrFhRdevWVceOHRUZGen2Yv8oMDBQdrv9iu2+/vprWa1Wde7c2bXNZrOpU6dOmjNnjo4dO6bw8HBFRUXp/PnzOnHihMLCwiTlD2Rv3769xz4DAADwHcVeVTcyMlKDBg1yZy0esW/fPkVFRV1w661OnTqSpP379ys8PFylS5fWnXfeqfnz52vUqFH6/vvvdeDAAd15552XPPbJkycLzUOVlJTkmQ8BAABMV+zQ5CtOnTp10R6pgm0nT550bXvqqaf08ssv695771VYWJgmTZqksmXLXvLYy5YtU1xcnNtrBgAA3qfEh6bMzEwFBARcsL1gKZjMzEzXtvLly+v11183fOzOnTurefPmrtdJSUmaPHnyVVQLAAC8VYkPTTabTdnZ2Rdsz8rKcu0vrtDQUJ+avBMAABSf76xxUkx2u/2i698VbCP0AAAAI0p8T1ONGjW0bds2paenFxoMnpCQ4Np/teLj4xUfHy+Hw3HVxwIAAN6pxPc0tWrVSrm5uVq2bJlrW1ZWlpYvX67o6GiFh4df9TliY2M1ZcoUDR8+/KqPBQAAvJNP9zR98skncjgcrlttGzdu1PHjxyVJ3bp1U3BwsKKjo9W6dWvNmTNHZ86cUWRkpFauXKmUlBSNGTPGzPIBAIAP8enQtGjRIqWkpLher1+/XuvXr5cktWvXTsHBwZKk8ePHKzw8XKtWrZLD4VC1atX06quvKiYmxoyyAQCAD/Lp0LR48WJD7Ww2m4YOHaqhQ4d6uCIAAFBS+XRo8hYMBAcAoOQjNLlBbGysYmNjlZiY6BNLywAAgKIr8U/PAQAAuAOhCQAAwABCEwAAgAGMaXIDBoIDAFDyEZrcgIHgAACUfNyeAwAAMIDQBAAAYAChCQAAwABCEwAAgAGEJgAAAAN4es4NmHIAAICSj9DkBkw5AABAycftOQAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCAp+fcgCkHAAAo+QhNbsCUAwAAlHzcngMAADCA0AQAAGAAoQkAAMAAQhMAAIABDAQHgJIuK1va9KPZVRjnb5WqVpHCKppdCVAIoQkASip/a35gkn7/0xdkZUuHfiE0wesQmgCgpKpaJT985OSaXYlxBeHOl2rGdYPQ5AZMbgnAK4VV9L3emk0/+lavGK4rhCY3YHJLAABKPp6eAwAAMIDQBAAAYAChCQAAwABCEwAAgAGEJgAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCA0AQAAGAAy6i4AWvPAQBQ8hGa3IC15wAAKPm4PQcAAGAAoQkAAMAAQhMAAIABhCYAAAADCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgNAEAABgAKEJAADAAEITAACAAYQmAAAAAwhNAAAABhCaAAAADPA3u4CSID4+XvHx8XI4HGaXAgAAPITQ5AaxsbGKjY1VYmKiBg0aZHY5AADAA7g9BwAAYAChCQAAwABCEwAAgAGEJgAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCA0AQAAGAAoQkAAMAAQhMAAIABhCYAAAADCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgNAEAABgAKEJAADAAEITAACAAYSmP/nss880YMAAtW7dWvPnzze7HAAA4CUITX9it9vVr18/3XXXXWaXAgAAvIi/2QV4mxYtWkiSNm/ebHIlAADAm3hlaDp37pwWLlyohIQE7dmzR2lpaRo3bpw6dux4QdusrCzNmzdPq1evVlpamqpXr66BAweqcePGJlQOAABKKq+8PZeamqq4uDglJSWpRo0al237yiuvaPHixWrbtq1GjBghPz8/jR49Wjt27LhG1QIAgOuBV/Y02e12ffrpp7Lb7dq7d68GDx580XYJCQlau3athgwZop49e0qS2rdvr759+2rmzJmaOXOmq+2wYcO0c+fOix7n0Ucf1aBBg9z/QQAAQInhlaEpMDBQdrv9iu2+/vprWa1Wde7c2bXNZrOpU6dOmjNnjo4dO6bw8HBJ0rvvvuuxegEAQMnnlaHJqH379ikqKkplypQptL1OnTqSpP3797tCk1E5OTnKzc1VXl6ecnNzlZmZKX9/f1mt1gvanjx5UqdOnXK9TkpKKsanAAAAvsCnQ9OpU6cu2iNVsO3kyZNFPuaHH36ouLg41+sFCxZcchD6smXLCrUFAAAll0+HpszMTAUEBFywPTAw0LW/qPr376/+/fsbatu5c2c1b97c9TopKUmTJ08u8jkBAID38+nQZLPZlJ2dfcH2rKws135PCg0NVWhoqEfPAQAAvINXTjlglN1uLzSmqEDBNgINAABwF5/uaapRo4a2bdum9PT0QoPBExISXPuvhfj4eMXHx8vhcFyT8wEAgGvPp3uaWrVqpdzcXC1btsy1LSsrS8uXL1d0dHSRn5wrrtjYWE2ZMkXDhw+/JucDAADXntf2NH3yySdyOByuW20bN27U8ePHJUndunVTcHCwoqOj1bp1a82ZM0dnzpxRZGSkVq5cqZSUFI0ZM8bM8gEAQAnjtaFp0aJFSklJcb1ev3691q9fL0lq166dgoODJUnjx49XeHi4Vq1aJYfDoWrVqunVV19VTEyMGWUDAIASymtD0+LFiw21s9lsGjp0qIYOHerhigAAwPXMa0OTL2EgOAAAJR+hyQ1iY2MVGxurxMREFv4FAKCE8umn5wAAAK4VQhMAAIABhCYAAAADGNPkBgwEBwCg5CM0uQEDwQEAKPm4PQcAAGAAoQkAAMAAQhMAAIABhCYAAAADGAjuBjw9BwBAyUdocgOengMAoOTj9hwAAIABhCYAAAADCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgCkH3IB5mgAAKPkITW7APE0AAJR83J4DAAAwgNAEAABgAKEJAADAAEITAACAAYQmAAAAAwhNAAAABjDlAADA+2RlS5t+NLsK4/ytUtUqUlhFsyuBBxGa3IDJLQHATfyt+YFJ+v1PX5CVLR36hdBUwhGa3IDJLQHATapWyQ8fOblmV2JcQbjzpZpRLIQmAID3CKvoe701m370rV4xFBsDwQEAAAwgNAEAABhAaAIAADCA0AQAAGAAoQkAAMAAQhMAAIABhCYAAAADCE0AAAAGEJoAAAAMYEZwN2DtOQAASj5Ckxuw9hwAACUft+cAAAAMIDQBAAAYwO05N8rMzJQkJSUlufW4tlJZKlMmULZSWUpMDHTrsQEAV+noYSk7RwrwlxJLmV1NiVUm6IScTocsQSeUmOiZMcQ33nijSpW69L+hxel0Oj1y5uvQ6tWrNXnyZLPLAAAAxTB37lzVqlXrkvvpaXKj22+/XTVq1NCTTz6pwEBjPUJvv/22hg8fftk2SUlJmjx5sp577jndeOON7ijV5xn5vpnpWtfnqfO567hXc5zivLco7zHaluvwQt58HXINuu84nr4Gjba/FtfglY5LaHKj8uXLq1KlSqpbt67h9wQHB1821f7RjTfeaLhtSVeU75sZrnV9njqfu457NccpznuL8p6iHp/r8HfefB1yDbrvOJ6+Bova3sxrkIHgbhYbG+vR9sjn7d+3a12fp87nruNezXGK896ivMfbf5a8mTd/77gG3XccT1+DxT2HGRjT5AMK5n+60r1WAJ7DdQiYyxuuQXqafIDdblffvn1lt9vNLgW4bnEdAubyhmuQniYAAAAD6GkCAAAwgNAEAABgAKGpBMjKytKUKVPUvXt3dejQQY8//rh27dpldlnAdef1119X165d1aFDB/Xp00cbN240uyTgurRr1y7ddddd+uCDD9x6XMY0lQDnz5/XokWL1LFjR4WFhemrr77Sm2++qUWLFql06dJmlwdcN5KSkhQREaHAwEDt2bNHTz31lBYuXKhy5cqZXRpw3cjLy9PQoUPldDrVrFkz9enTx23HpqepBAgKClLfvn0VHh4uPz8/3X333fL399fhw4fNLg24rtx4442u1QAsFouys7N18uRJk6sCri///e9/VadOHY/MGs6M4CY4d+6cFi5cqISEBO3Zs0dpaWkaN26cOnbseEHbrKwszZs3T6tXr1ZaWpqqV6+ugQMHqnHjxpc8/uHDh5WWlqbIyEhPfgzAp3nqOpw2bZqWL1+urKws3XHHHapWrdq1+DiAz/HENZiamqolS5Zo5syZevvtt91eMz1NJkhNTVVcXJySkpJUo0aNy7Z95ZVXtHjxYrVt21YjRoyQn5+fRo8erR07dly0fWZmpiZPnqxevXopODjYE+UDJYKnrsOnnnpKq1at0vTp09W4cWNZLBZPfQTAp3niGpw7d64efPBBhYSEeKZoJ665zMxM58mTJ51Op9O5Z88eZ4sWLZzLly+/oN3u3budLVq0cP7zn/90bcvIyHA+/PDDzscff/yC9tnZ2c7Ro0c7X3jhBWdeXp7nPgBQAnjqOvyjMWPGOP/v//7PvYUDJYS7r8HExETngAEDnDk5OU6n0+l8+eWXnXFxcW6tmZ4mEwQGBhqa0fTrr7+W1WpV586dXdtsNps6deqk3bt369ixY67teXl5mjx5siwWi8aPH89vt8AVeOI6/LPc3FwdPXrULfUCJY27r8Ht27fr8OHD6tatm7p27aovv/xS//znP/XKK6+4rWbGNHmxffv2KSoqSmXKlCm0vU6dOpKk/fv3Kzw8XJI0depUnTp1SlOnTpW/P/+sgLsYvQ4dDoc2bdqk5s2bKzAwUBs2bNC2bds0ePBgM8oGSgyj12Dnzp119913u/bPmDFDERER6tWrl9tq4f+uXuzUqVMXTeEF2wqeyklJSdHnn3+uwMDAQkn8tddeU/369a9NsUAJZfQ6tFgs+vzzzzV9+nQ5nU5FRkZqwoQJqlmz5jWtFyhpjF6DpUqVUqlSpVz7bTabgoKC3Dq+idDkxTIzMxUQEHDB9oJHmjMzMyVJlStX1vr1669pbcD1wuh1WKZMGb311lvXtDbgemD0Gvyz8ePHu70WxjR5MZvNpuzs7Au2Z2VlufYD8CyuQ8Bc3nQNEpq8mN1u16lTpy7YXrAtNDT0WpcEXHe4DgFzedM1SGjyYjVq1NCRI0eUnp5eaHtCQoJrPwDP4joEzOVN1yChyYu1atVKubm5WrZsmWtbVlaWli9frujoaNeTcwA8h+sQMJc3XYMMBDfJJ598IofD4epe3Lhxo44fPy5J6tatm4KDgxUdHa3WrVtrzpw5OnPmjCIjI7Vy5UqlpKRozJgxZpYPlAhch4C5fO0atDidTuc1PSMkSQ899JBSUlIuum/RokWKiIiQlP9UQMF6Ow6HQ9WqVdPAgQN1++23X8tygRKJ6xAwl69dg4QmAAAAAxjTBAAAYAChCQAAwABCEwAAgAGEJgAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCA0AQAAGAAoQkAAMAAQhMAXETLli0LfWVmZrr2rVixQi1bttSKFStMrPB3//nPfwrV+ve//93skoASyd/sAgBc35KTk9WjR4/LtqlcubIWL158jSoqfN4OHTpIkqxWq0fP9e233+qZZ55R48aN9cYbb1y27Ysvvqj4+HhNmDBBbdu2Va1atdS3b185HA4tXbrUo3UC1zNCEwCvEBkZqbZt2150X3Bw8DWuJl/lypXVv3//a3KuRo0aKTw8XN9//72OHTum8PDwi7ZzOBzasGGDgoOD1bJlS0lS7dq1Vbt2bSUnJxOaAA8iNAHwCpGRkdcsoHgjPz8/dezYUXFxcVq5cqX69Olz0Xbx8fHKzMzUPffcI5vNdo2rBK5vjGkC4HNatmypESNG6MSJE3rxxRd13333qX379ho9erR++eUXSdKhQ4c0fvx4derUSe3bt9eECRP066+/erSu48ePq0+fPoqNjdW6detc20+fPq23335bPXv21N1336377rtPzz33nH7++edC77/nnntksVi0YsUKOZ3Oi55j+fLlkqROnTp57HMAuDhCEwCflJaWpmHDhik5OVnt27dXgwYNtHnzZj311FP6+eefNXToUJ0/f1733HOPateura+//lovvPCCx+o5dOiQhg4dquPHj+v1119Xq1atJElHjx7VwIEDtWTJElWpUkUPPPCA7rjjDn377bcaMmSIEhISXMeoXLmyGjZsqF9++UXbtm274Bw///yz9u7dq5o1a+rmm2/22GcBcHHcngPgFY4ePar58+dfdN8tt9yiJk2aFNp24MABPfTQQ3riiSdc26ZNm6bPPvtMTzzxhPr166cHH3xQkuR0OjVmzBht3rxZiYmJqlWrlltr3717t8aMGSN/f3+9/fbbqlGjhmvfyy+/rF9//VVTp07V7bff7treu3dvDRo0SK+99pri4uJc2zt16qStW7dq+fLluu222wqdh14mwFz0NAHwCkePHlVcXNxFv7Zs2XJB+6CgIA0cOLDQtrvvvluSVK5cOXXv3t213WKxuPYdOHDArXVv2rRJTz75pEJCQvSPf/yjUGD66aeftGvXLrVv375QYJKkv/zlL7r33nv1888/F7pN16JFC5UrV05ff/210tPTXdtzcnK0evVqBQYGXnLAPADPoqcJgFe4/fbbNXXqVMPto6KiVKpUqULb7Ha7JKlatWqyWCwX3Xfy5MmrrPR3X331lb777jtVr15dr7/+uipUqFBof8Gtt9OnT1+0F+1///uf689q1apJkisULV26VPHx8erSpYskaePGjTpz5oxiY2MVEhLits8AwDhCEwCfVKZMmQu2FcyldLl9OTk5bqth9+7dys3NVb169S4ITJJ09uxZSfm9UZs2bbrkcc6fP1/odadOnbR06VItX77cFZq4NQeYj9AEAMU0ePBgffPNN1q6dKmsVquGDRtWaH9BeBs5cqS6detm+LjVq1dX7dq1tWfPHh08eFAhISH69ttvFRERccE4JwDXDmOaAKCYAgMD9fLLL6tp06ZatGiR3nnnnUL769SpIym/R6qoCnqUvvjiC61atUq5ubmuKQkAmIPQBABXITAwUJMnT1azZs20ePFivf3226590dHRio6O1tq1a7V27doL3puXl6ft27df9LixsbEqVaqUVq9ereXLl8vPz8+1pAsAc3B7DoBXuNyUA5LUq1cvr50BOyAgQC+99JImTpyoJUuWyOl0asSIEZKkiRMnatSoUXrhhRe0dOlS1axZUzabTcePH9euXbuUmpqq+Pj4C45ZpkwZ3XXXXVq1apXOnDmjJk2aXHJpFQDXBqEJgFcomHLgUh588EGvDU3S78Hp+eef19KlS+V0OjVy5EhVqVJF8+bN06JFi7RhwwatWLFCfn5+stvtql+/vmsSzIvp1KmTVq1aJSl/tnAA5rI4LzVXPwBcx1q2bKmYmBjNmDHD7FIMS05OVo8ePdShQweNHz/e7HKAEoeeJgC4hO3bt6tly5aSpDVr1nhtT9d//vMfvfHGG2aXAZR4hCYAuIi+ffsWel0wz5M3qlWrVqF6a9asaV4xQAnG7TkAAAADmHIAAADAAEITAACAAYQmAAAAAwhNAAAABhCaAAAADCA0AQAAGEBoAgAAMIDQBAAAYAChCQAAwID/B1STIPB9Hrc3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# define a powerlaw spectrum\n", + "index = -2.2\n", + "K = 10 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + "\n", + "# Read the GRB signal\n", + "signal = Histogram.open(GRB_signal_path)\n", + "# get the starting and ending time tag of the GRB\n", + "grb_tmin = signal.axes[\"Time\"].edges.min()\n", + "grb_tmax = signal.axes[\"Time\"].edges.max()\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "signal = signal.project(['Em', 'PsiChi', 'Phi'])*scaling_factor\n", + "\n", + "# load the background file\n", + "bkg_full = Histogram.open(background_path)\n", + "# Extract 40s background from the 3-month one\n", + "bkg_tmin_idx = np.where(bkg_full.axes['Time'].edges.value == grb_tmin.value)[0][0] # the time idx corresponding to the tima tag\n", + "bkg_tmax_idx = np.where(bkg_full.axes[\"Time\"].edges.value == grb_tmax.value)[0][0]\n", + "bkg = bkg_full.slice[bkg_tmin_idx:bkg_tmax_idx,:] # It slices the Time axis\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg = bkg.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# assemble the data\n", + "data = bkg + signal\n", + "\n", + "# calculate the duration of the background\n", + "bkg_full_duration = (bkg_full.axes['Time'].edges.max() - bkg_full.axes['Time'].edges.min())\n", + "# average the background model down to 40s\n", + "bkg_model = bkg_full/(bkg_full_duration/40)\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# plot the counts distribution\n", + "ax,plot = bkg.project(\"Em\").draw(label = \"background component\", color = \"purple\")\n", + "data.project(\"Em\").draw(ax, label = \"data(GRB+bkg)\", color = \"green\")\n", + "signal.project(\"Em\").draw(ax, label = \"GRB signal\", color = \"pink\")\n", + "bkg_model.project(\"Em\").draw(ax, label = \"background model\", color = \"blue\")\n", + "ax.legend()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "# read the full oritation but only get the interval for the GRB\n", + "ori_full = SpacecraftFile.parse_from_file(orientation_path)\n", + "grb_ori = ori_full.source_interval(Time(grb_tmin, format = \"unix\"), Time(grb_tmax, format = \"unix\"))\n", + "\n", + "# clear redundant data from RAM\n", + "del bkg_full\n", + "del ori_full\n", + "_ = gc.collect()\n", + "\n", + "# here let's create a FastTSMap object for fitting the ts map in the following cells\n", + "ts = FastTSMap(data = data, bkg_model = bkg_model, orientation = grb_ori, \n", + " response_path = response_path, cds_frame = \"local\", scheme = \"RING\")\n", + "\n", + "# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source spectrum.\n", + "# note that this nside is also the nside of the final TS map\n", + "hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)\n", + "\n", + "ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [2,3], spectrum = spectrum, ts_scheme = \"RING\", cpu_cores = 56)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "b4337b3e-d99d-4b91-b057-59eff911a5cf", + "metadata": {}, + "outputs": [], + "source": [ + "# This the true location of the GRB\n", + "coord = SkyCoord(l=93, b = -53, unit = (u.deg, u.deg), frame = \"galactic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "f2d84b3b-fd4d-4e42-aaa8-113dd5cb4618", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOz9d7xsVX34/79nTruF2wUJRYkVRKKiUsQCIvaWT4wVonl8jEb9JibxF6MmUdOMJvmkPSwfjVExCkRJYoliVAJIEREUFUvwI1JE6oXb7z1t5vfHmTVnz9pr7b3Ke8+ZM7yej0cekXPPWbPP9DNrvfZqdbvdrgAAAAAAAAAAAIyp9kofAAAAAAAAAAAAQJOYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAuI9ptVql//vYxz4W/PMf+9jHnGNg5Z166qml2+VVr3rVSh+WvPOd7ywd11FHHbXShwUPbi8AAACMIyZDAAAAAAAAAADAWGMyBAAAjJQbb7zRWR0U/++4445r5LJvvvlmmZiYqLxsVkcDAAAAALD6MBkCAABWneuuu06uueYa9XHPPvts6XQ66uMCAAAAAICVxWQIAABYlc4+++xVMSYAAAAAAFh5TIYAAIBV6dxzz5X5+Xm18S699FL5yU9+ojYeAAAAAAAYHUyGAACAVenuu++Wz3/+82rjfexjH1MbCwAAAAAAjBYmQwAAwKqwbdu20te0Tmu1b98++fSnPz3wtcnJSdm0aZPK+MCwXHzxxdLtdgf+j4k+xHrnO99Zuh/deOONK31YAAAAQBYmQwAAwKrwghe8QNatWzfwtQsuuEDuuuuu7LH/7d/+TXbv3j3wtWc961myefPm7LEBAAAAAMDKYzIEAACsChs2bJD/9b/+18DX5ufn5ZOf/GT22B/96EdLX3vVq16VPS4AAAAAABgNTIYAAIBV45WvfGXpa7mnALrpppvk4osvHvjatm3b5LnPfW7WuAAAAAAAYHQwGQIAAFaNpz71qXLkkUcOfO073/mOXHvttcljnn322dLtdge+9rKXvUymp6eTxwQAAAAAAKNlcqUPAAAAIFS73ZZf+7Vfk7/4i78Y+PrZZ58tj370o6PH63a78vGPf7z09WGdIuvWW2+Vz33uc3LZZZfJD37wA7n55ptlz5490u12Zf369XLEEUfI0UcfLaeccoo8//nPlwc96EFDOS7o+OEPfygXXHCBXHHFFXL99dfLrbfe2r99DzroIHnAAx4gxx57rDz5yU+WX/7lX5ZDDjlkpQ+50re//W05//zz5dJLL5Xrr79e7r33Xmm1WrJp0yZ58IMfLI997GPlec97njztaU+Tdnu4a67m5+flwgsvlIsuukiuueYaueGGG+Tuu++Wffv2yfT0tGzZskUe9KAHyeMe9zg544wz5IwzzpCpqamhHiOWdTodueyyy+TCCy+Uq666Sn7yk5/InXfeKXv37pXJyUnZtGmTHHXUUXL88cfLU5/6VHnOc54ja9euXenDBgAAwGrXBQAAGCE//elPuyJS+r83vvGN3W632/3xj39c+rdDDjmkOz8/H31Zl1xySWms4447rv/vD3zgA0v//sAHPjD7d7zqqqu6z3nOc7rtdtv5u/r+7ylPeUr3wgsvzL5819gf/ehHg3/+ox/9qHOMOk972tNKP/PiF784+vivv/5673X0rne9K3q8c845pzTOxMREd+fOndFjLS4uds8999zu8ccfH3XbTkxMdF/2spd1r7/++ujLLHrKU55SGvuVr3xl1pjXXHONc1zf/z30oQ/tfupTnxoY4x3veEcjj6W77rqr+9a3vrW7bdu2qOv7kEMO6b773e/u7t+/P/sYUr3kJS8pHdfU1FT3rrvuUr2cxz3ucaXLOeyww7oLCwven2nq9tq9e3f3Pe95T/fwww+Pur02btzYfctb3tK99957oy5vbm6uu27dutJ473//+6OP/UMf+pD3+K644oro8V7zmteUxnn84x8fPQ4AAADCcZosAACwqjzkIQ+RU045ZeBrd955p3zhC1+IHsu134hrXxItBw4ckP/v//v/5MQTT5QvfOEL0ul0on7+kksukdNPP11e8YpXyM6dOxs6yuacfvrppa9ddNFFpdOU1bnwwgu9//bf//3f0cflGu/xj3+8bNy4MWqc73//+/KEJzxBXvayl8m3vvWtqJ9dXFyUc889V4477jj5m7/5m6ifbdJ73vMeOfHEE+WSSy4J/pkf//jH8uIXv1jOOussmZuba+zY/vmf/1ke+tCHyl/+5V/K9u3bo372zjvvlLe85S3yqEc9Sq655pqGjrCa67lmfn5ezj33XLXL+MEPfiBXX3116etnnXWWTExMqF1OiM997nNy9NFHyx/8wR/IrbfeGvWzu3btkne/+93yiEc8Qr785S8H/9zU1JQ86UlPKn296jnEZxjPO67nSAAAAOhhMgQAAKw6rg8Rzz777Kgx9u7dK5/+9KcHvjY5OSmveMUrso7NZ/v27fKUpzxF3ve+90V/+G8755xz5KSTTpKbbrpJ6eiGw/VB31133SXf/e53o8ap+lDy8ssvl9nZ2ezxnvrUp0aN8e///u9y4oknyje+8Y2on7PNzs7K7//+78urXvWq6Mkybb/1W78lb3nLW2RhYSHp5z/xiU/IC17wguSf95mfn5dXvvKV8upXv1p27NiRNdb1118vT3rSk+Tzn/+8zsFFePrTny6/8Au/UPp67HNZFd9YTU76urztbW+TF7zgBdGTILbbbrtNnv3sZ8uHPvSh4J/xTcLGPL663a5cdNFF3n+PnVy56aab5Cc/+Unp67HPOwAAAIjDniEAAGDVeclLXiJvfOMbZf/+/f2vfeELX5Dt27fLtm3bgsY4//zzZc+ePQNfe8YzniGHHnqo6rGKLE28PP3pT6+sBdasWSPHHXecHHbYYTI5OSm33nqrfP/735fdu3c7v/9HP/qRnH766XLFFVeM/F4TxvHHHy+bNm0qVS0XXnihPOpRjwoao9vtysUXX+z99/3798sVV1whp512WtB4P/3pT+XGG28sfT1mhfY555wjv/ZrvyaLi4ve7zn00EPl6KOPlm3btsnk5KTccccdct1118ndd9/t/P6zzz5b1q9fL+973/uCj0PTX/zFX8h73/te77+3Wi059thj5cgjj5SNGzfKbbfdJv/zP/8jd9xxx8D3felLX5Lf//3fl02bNqkc1/z8vLzoRS+Sz33uc97vabfb8ohHPEIOP/xw2bp1q+zdu1duu+02ufbaa2V+fr70/fv375cXvehFcuGFF8oTn/hEleMMMTExIWeeeab89V//9cDXr7nmGvn+978vxx57bNb4i4uL8olPfKL09RNOOEGOOeaYrLFjvP71r5cPfOADld/zsIc9TB74wAfKtm3bZHZ2Vu644w759re/PfAcbywuLspv/uZvyqZNm+QlL3lJ7eW7Jhjuueceufbaa+X4448P+h2uu+46ufPOO73/fsUVV8j+/fuD9zVxlSQzMzNDvf8BAADcF1GGAACAVWfjxo3yy7/8ywNfm5ubk3POOSd4DNcpspraOP1Nb3qTdyLkyCOPlI985CNyxx13yFVXXSWf+cxn5Pzzz5evf/3rcscdd8i//uu/ytFHH+382Z/85Cfy6le/upFjbsLExISceuqppa/HrKr+zne+451ASBnP9b1r1qyRJzzhCUE/f+mll8qrXvUq50TIpk2b5A/+4A/kRz/6kdx2221y0UUXyfnnny/nnXeeXHTRRXLHHXfI5ZdfLs961rOcY7///e+Xz372s8G/i5arr75a3vGOdzj/bXp6Wv74j/9YfvrTn8r3vvc9+eIXvyjnnXeeXHLJJfLzn/9cvvrVr5Y+fP6Hf/gHufTSS1WO7bd+67e8EyG/9Eu/JB//+Mfl7rvvlu9973vypS99Sc455xz57Gc/K1dddZXcfffd8pGPfEQe8IAHlH52bm5OzjzzTNm1a5fKcYbyPed8/OMfzx77q1/9qvz85z8vfX2YVci73/1u70TIgx70IHnf+97Xn0j78pe/LOeee678+7//u1x++eWyfft2Of/88+URj3hE6We73a689rWvlZtvvrn2GB7zmMfIli1bSl/PfZ4omp2dlcsvvzxrvJNOOolN4gEAABrGZAgAAFiVXB8iuiY4XG688cbSHghbt26V5z//+QpHNuhLX/qSfPCDH3T+26/+6q/KddddJ7/+67/u3J9i7dq18uIXv1i+/e1vy2tf+1rnGJ///Ofln//5n1WPuUmu4uJrX/uac8W+S8gHmLkfcj7hCU+QNWvW1P7szp075aUvfanz2J/97GfLT37yE3n3u98tD3/4w50/32635QlPeIJ88YtflE9+8pMyPT1d+p5Xv/rVlSvStS0uLsprXvMa5+TOgx70ILn66qvlT//0T+WBD3xg6d/b7bacfvrp8tWvfnVg35Nut5u0p4Lt05/+tPOxND09Lf/4j/8o3/nOd+Sss85yfvAtsjSJ+uu//uvyox/9SF70oheV/v2mm26S3/qt38o+zhiPeMQj5HGPe1zp65/4xCcqS6MQrlNkzczMyEtf+tKscUN94xvfkD/8wz8sfb3Vaslb3/pWuf766+X1r3+9t8Zbu3at/Mqv/Ip897vflTe+8Y2lf9+5c6f82q/9Wu1xtNttZymmORkSO57r8cB+IQAAAM1jMgQAAKxKp59+uhxxxBEDX/vWt74l3/ve92p/9uyzzy7t2/Gyl73M+WF0jk6nI294wxuc//bc5z5XzjnnnKBNutesWSMf+MAHvB/8velNbyqd8mtUuU5Zs2fPHrnqqquCft7+EHFqakqe9rSnDXztm9/8ZvAKf9c+AKHn7X/b297mXHn/6le/Wv7zP/8z+JRtIiIvf/nL5d/+7d+k1WoNfP3uu++Wf/iHfwgeJ9eHPvQh+fa3v136+sEHHyxf+tKX5Ljjjqsdo9VqyZve9CZ517vepXZce/bscU5UTE9PywUXXBA1ibF27Vr51Kc+5TzF0r/8y7/I9ddfn3WssVwTu6aySbVr1y75zGc+U/r68573PNm6dWvyuKE6nY78xm/8hnNfjrPPPlve9a53BW/gPjExIX//938vv//7v1/6t0suuUS+8pWv1I7hekxfeumlMjc3V/uzi4uL8rWvfW3gayeeeGLpegydDPnhD38ot912W9AxAgAAQBeTIQAAYFVqt9ty1llnlb5et/lwt9t1noKmiVPHfPGLX5Qbbrih9PXDDjtMzj33XJmcDN++rdVqyYc//GHnuf537typclqdYTj22GOdK8FDPkicn593fihpFz2Li4ul8sfluuuuK+1xIRK2QvvGG2+Uf/qnfyp9/dRTT5UPfOADpUmNEM997nPl937v90pf/9CHPiQHDhyIHi+F75RGH/rQh+ShD31o1Fhvfetb5ZnPfKbGYck//uM/Om+r973vfUkfIrdaLfmnf/on+cVf/MWBr3e7XfnHf/zH5ONM4ZuIzdlI/VOf+pRzv41hnSLrvPPOc05M/+Ef/qHzeTvEu971LjnxxBNLXw+ZLHQ9pvft2ydXXnll7c+6JlfPOOOM0in/vvWtb8mOHTtqx3M91x100EFywgkn1P4sAAAA8jAZAgAAVi3XiupPfvKTsrCw4P2Zr33ta6UJimOPPVYe//jHax+ed/Pr97znPXLQQQdFjzc1NeX94O/9739/9HgrxfXhdchkyFVXXVUqYE4//XTnB52pp7XZsGGD87RFtve9732l02NNTEzIe9/73qhJLtsf/dEfle4bd999t3zqU59KHjPUN77xDecH2Keddpq88IUvTBrzb//2b7OuDxGRhYUF52buJ598ctaeORs2bJC3ve1tpa+fffbZsm/fvuRxY23dulWe97znlb7+mc98JnkPE9fk6P3vf3+1yak6f/d3f1f62lFHHSV//Md/nDzm5OSk/Pmf/3np61/84hflxhtvrPzZo48+Wg477LDS11OfJ1zPO4uLi3LxxRcnjfekJz1Jpqaman8WAAAAeZgMAQAAq9bDHvYwOfnkkwe+dvvtt8t//dd/eX/mox/9aOlrTayWvueee5zHcfjhh8vLX/7y5HHPOOMMecxjHlP6+ve//335zne+kzzuMLkmQ6688krZu3dv5c/5zrP/iEc8Qn7hF35h4OshH3K6xnvKU55S++F9p9ORf/mXfyl9/Vd+5Vfk2GOPrb3cKps3b5ZXvOIVpa9r7LlR55Of/KTz665aJdQxxxzj3SA+1Je//GXnaYVyPlg3zjrrrNKp6mJO26bF9Ry0f/9++fSnPx091g033CCXXXZZ6euveMUrsiemQvzgBz+Qq6++uvT1N7/5zTIzM5M19tOe9rTSHjzdbjdoEsL1vBNyKjL7sbd27Vo5+eSTkyZhO52Os1pjvxAAAIDhYDIEAACsajEbqe/Zs0fOP//8ga9NTEwkn7alypVXXlnal0Rk6ZQ47XbeWzDf8X7961/PGndYXB/8zc3NyaWXXlr5c/YHjevXr5eTTjpJRMofdPpOgWX4TqUVcsqlq6++2jm2aw+KFK7Nnq+44gqVsau4LmPr1q3yjGc8I2tc1+ROjP/8z/8sfW3r1q1yxhlnZI0rsrSh+BOe8ITS14dxfRc961nPkkMOOaT09ZRTZX384x93PvcM6xRZrttrYmLCuWl9itTHh+t556qrrpLdu3d7f+bAgQOlsZ/4xCfKzMyMPPzhD5fDDz984N/qJkO+9a1vyb333lv6OvuFAAAADAeTIQAAYFV7yUteImvWrBn42uc//3m55557St97/vnnl+qDZzzjGc49LHL5zkX/nOc8J3tse4+MusscNUcddZQ86EEPKn296oPE/fv3lyZ7iqeWcX3QWVVTXH311bJz587S10NWaPv2I9H4cF5E5LGPfWzpaz/+8Y9l+/btKuO7zM7Oyne/+93S108//fTs0/c861nPStpDxXBd36eddppa5eC6vof9WJqcnHROGl122WXy05/+NHgc355Ij3nMY+SXfumXso4xlOv2evSjHy0HH3ywyvipt5frsb2wsFDah6jo8ssvL+3XUxzHHtO3Obrheo7btm2bPPrRj/b+DAAAAPQwGQIAAFa1TZs2lfYzmJ2dlfPOO6/0va5ipKnV0q7TxIiIyodeD3rQg0qn9hFZ2uh3tYjdN+Syyy6Tubm5ga9VfShZN55rouTggw+W4447zvszxre//e3S14444gjZsGFD7c+GuN/97uf8+s9+9jOV8V2++93vlvZAERGVD9A3btwoRx11VNLP7t+/X/7nf/6n9PVjjjkm86iWua7vW265RW38UK7KzTe54XPppZc6J0+GVYWIuB8fo3B7HXnkkfKQhzyk9PXY5wnt553TTjsta7IQAAAA4Zo/aSwAAEDDXvWqV5UmPz72sY/J61//+v5///SnPy2tAN6yZYu84AUvaOSYXKuDH/CAB8jmzZuzx261WnLcccfJ5ZdfPvD122+/PXvsYTn99NPlwx/+8MDXrr32Wtm+fbts27at9P2+TYyNBzzgAfLgBz9YfvKTn1T+TNW/hX4o+eMf/7j0tdnZWeeH2SlcpzgSEefpdbT4JlpCJodCHHfccVGFg3HDDTfI4uJi6esXXnih2oSF6/Zs8rr2+aVf+iV59KMfLddee+3A1z/+8Y/L29/+9qD7puu0WlNTU9mnKgu1d+9e53Pfd77zHbXHh2v8nTt3SqfTqT0F4emnny7/7//9v4GvxTxPbNmyRY4//vj+f/smdc8888zS1+fm5px7uXCKLAAAgOFhMgQAAKx6Z5xxhhx++OFy66239r/2zW9+U37wgx/IIx7xCBFZ+pDQ/pD5pS99afaGvj47duwofU3rNDEi4txfYOfOndLtdlfFKuOnPvWp0mq1Bm6TbrcrF110kXNvAXtFtevUMqeffvrAZMiNN94oN9xwQ+mUXLOzs849BkI3MS7ez4y77roraX+HGE1+QO+6v4r4K5VYqeO4rmuRpf1xmtwjZyUmQ0SWJnZ/53d+Z+BrZkP0Jz3pSZU/69tw/dnPfrba7VjHd3t973vfk+9973uNXW6325WdO3fKli1bKr/v9NNPlw9+8IOlY7vrrrtKz8+7du0qFX6nnnrqwITLEUccIQ972MPk+uuv73/NN7ly5ZVXyr59+5zHBAAAgOHgNFkAAGDVa7fbzk3FzYfTvlPNaK1UdnF9mOo6tVWqTZs2lb62uLhYuRnwKDnkkEPk2GOPLX3d9UHijh075Fvf+tbA11wVR+gpa6644grZv39/6euhK7Rde40Mw65duxob2/c7ad1nU8cZx+u6ystf/nLnHi0hp8r6j//4D+fjf5inyFqp20sk7DZzPW90u13n6asuueSSUpXkeo6xv3bLLbc4ayPXc5GZTAEAAMBwMBkCAADGgmti4xOf+IQsLi7KxRdfXDpFzzHHHCMnnHBCY8ezZ8+e0tfWr1+vNr5vrNUyGSISPnlx8cUXB30o6fqg0zWe62sPeMADnPsJuNgbKg+L7/RZGlz3VxGRdevWqYyfet9fqet6pRx88MHy7Gc/u/T1T33qU84JvCJXmXS/+91Pnvvc56odX52VvL1CHh/3u9/9nPvghD5PhEyGxIzHKbIAAACGi8kQAAAwFh7+8IfLSSedNPC1n//85/KVr3xlqBunGwcddFDpa65TpKTau3dv8OWOKteHiD/+8Y9Le0HUbWJsHHzwwaUPOv/7v/+79CGpa7yYDyUnJiaCv3e18E1WaN1nfffXOuN4XddxPTft2rVLPvOZz3h/5tZbb5WvfvWrpa+/7GUvc5YmTVkNt1fo5IX9PHHYYYfJ0UcfXfq+0047rbRXiT3e3r175aqrrir9LJMhAAAAw8VkCAAAGBuuDxHf+973yr/9278NfG1iYsJ5Wi1NrnPXa556xzVWu91WPRVX057ylKc4Pzy1P9S1P1g88sgj5aEPfahzTPuDzrvuumtgr4Ldu3fLN7/5zdqfq+KaODjhhBOk2+02+n9NntZt8+bNzq9r3WdTx/FN0rz//e9v/PpeKc997nOde3xUnSrrE5/4hHQ6ndLXm7zPuPhurze/+c2N315HHXVU0DG6JiBuuOEGufHGG/v/feedd8p111038D2+54itW7eW9i+66KKLBu5DX/va12R+fr70s+wXAgAAMFxMhgAAgLHx0pe+VNasWTPwtS984QulVelnnHGGHHbYYY0ei+vD5bvuuktt/DvvvNN5math83Rj48aN8rjHPa709eLkx+233y4/+MEPBv696gNE1wedxfEuueQSWVhYCPo5n0MPPbT0tXvuuSf450eRbzLk7rvvVhk/dRzXdS2y+q/vKlNTU/Kyl72s9PWvfOUrcttttzl/xnWKrEc+8pFy/PHHqx9fldVwez35yU+WycnJ0teLk7CuoizmeWf79u1y7bXX9v/bVZ489KEPlSOOOCL0sAEAAKCAyRAAADA2Nm/eLC94wQtqv28Yq6V/4Rd+ofS1m2++WWWlfbfbHagdDN8HkaPM9QFj8fQ0oafIMlwfdBY/iHSNd/TRR0dNjv3iL/5i6WuaE10r4fDDD3d+3V4dn8p1fw3huq5FVv/1Xcf1HLW4uCif+MQnSl//5je/KT/84Q9LXx/mxunGIYcc4txnZpRurw0bNjj3i6p7nqh63qk79VbseAAAAGgGkyEAAGCs1E10bN68WV74whc2fhyu4qHb7Q6sFk7105/+VHbu3Fn6+uMf//jssYfNVWTcdttt/RokdtNh1wedX/va1/o1iMYmxvYpcUREdu7cKT/60Y+ixhklj3rUo5x7S3znO9/JHnv37t0DpyCKccghhzgnFq+88srMoxptxx9/vBx33HGlr7tOleWqQiYmJuTMM89s5NiqtFotedSjHlX6+je+8Y2hH0sV12O+WIPYzxMPe9jDKiuOJz3pSaXHj5kAsSuRqmMAAABAs5gMAQAAY6XuFFgvfelLZWZmpvHjsDdzN77whS9kj/35z38+6jJH2SmnnFI6tZnI8oeR9orqY445prbisFdcm31C7P1DfN9f50lPepLz6xdffHHUOKNkZmbG+eH7hRde6NzrIMYFF1yQtQeH6/q+5pprZM+ePTmHNfJcZcd1110n3/rWt/r/PTc3J+edd17p+57xjGesWCnmur1uv/32kZosdD3mzT4hN910k9xwww2131+0fv360vOv2SfE3j9EZGnS6LTTTks8egAAAKRiMgQAAIyVuhXRwzp1zEknneTcv+Pcc8/N3pzZdaocEZGTTz45a9yVsGbNGnnCE55Q+vqFF15Y2tRYJGziwnfKGteHku12O/pDyac+9aly0EEHlb7+z//8z1HjjBrX7XDPPffIl7/85axxzznnnKyfd536bmFhQT72sY9ljTvqXvGKVzj3tiiWIF/4whdk+/btpe8Z9sbpRb5TFX74wx8e8pH4nXzyybJ27drS1y+88EJnPZbyvLN37175xje+4TxF1qMe9Si53/3uF3HEAAAA0MBkCAAAGDuvfe1r5U1velPp/97+9rcPrZ7YunWrPPOZzyx9/ZZbbnGu5A713//933L11VeXvv7IRz7SeXqa1cB1upiLL77Y+SF8yIeSJ598cmnfAt+HnI9+9KNly5YtEUe7VFG89KUvLX396quvlgsuuCBqrFHyile8wvn1v//7v08e83/+53/ki1/8YvLPiyx9uO7a4P2v/uqvZG5uLmvsUXbooYfKM57xjNLXzz333H6t4zpF1pYtW+T5z39+48fnc/LJJ8vDHvaw0tf/7//9v3L33XevwBGVzczMyCmnnFL6uut5InTC1DcJq3FqPgAAAOhgMgQAAIydBz3oQfI3f/M3pf/7kz/5k6Eexxve8Abn19/85jfL3r17o8dbWFiQ3/7t3466rNXA9SHizp075W//9m8HvtZut+XUU0+tHW96elqe+MQnDnzt61//unzpS18KuuwQv/M7vyPtdvmt9Gte8xq5/fbbk8ZcaSeddJI88pGPLH39q1/9qvfUbHV+7/d+L/s0W+vXr5fXvOY1pa/fcsstq/p+H8JVst11111ywQUXyN133+2caHrJS14ylFMB+rRaLfmd3/md0tf37t0rZ555piwuLg7/oBxcj/1LLrmkNHnx6Ec/WrZu3Vo73oknnijr168f+NonP/lJuf7664MuGwAAAM1jMgQAAKAhz3rWs+TBD35w6es/+9nP5Kyzzor+UPC1r32tfP/73y99ffPmzXLWWWclH+dKe/zjHy8bN24sff3HP/7xwH8/9rGPdRYCLvbK69nZWbn55ptrvy/UscceK7/+679e+vrPfvYzecELXiB33XVX0ri2ubk5+chHPjK0FfWve93rnF9/9atfXdpHoc5f/dVfZVchxlvf+lbZtm1b6esf/vCH5U//9E9VLkNE5Oabbx6p0289//nPd5ZLZ599tpxzzjnOiaaVPEWW8Ru/8Rvy8Ic/vPT1//qv/5LXve51srCwoHI5d999t3zgAx9I+lnXhMTu3bvljjvuqP0+l6mpqdJ+KfZzmIjI5OSkPPnJT444UgAAAGhhMgQAAKAh7XZb3v/+9zv3DvmP//gPOeuss2T37t2148zOzsrrX/96+chHPuL897/7u78rrUheTSYmJoI+HIxZTR3yva4PL2P89V//tRxxxBGlr1911VXymMc8xrlXQKhbbrlF/vIv/1KOOuoo+d//+38PbbPw17zmNc7Trd15553y9Kc/3TkZZ+t2u/L3f//38pa3vEXtuDZv3uz90Psd73iHvPCFLyx9iB2q2+3K5ZdfLmeeeaY8+MEPHqnJEN8p2f7zP//TeX0cffTRcuKJJw7j0CpNTk7KRz/6UZmYmCj92z/90z/JqaeeGj25VnTttdfKG97wBnnAAx4g73nPe5LGOP7442XTpk2136f9vHPCCSc49xwCAABA85gMAQAAaNDTn/5072r7c889V4477jg5++yznZMiBw4ckPPPP1+OP/547wfBL3zhC0diJXiu1I3RfY4//vjavUBcp7WJsWXLFvn0pz/t3Ij51ltvldNPP12e+MQnynnnnSd33nln5Vi7d++WSy+9VN7znvfIiSeeKA984APlbW97m9x2223Jx5dicnJSPvShDzlPAfaTn/xEHvvYx8o73vEOueWWW0r/3ul05KKLLpIzzjhDfvd3f7e/WX2r1VLZI+FXf/VXnadfEhH57Gc/K0cddZT85m/+plx22WW1e4ncfPPN8tnPflbe8IY3yOGHHy5PfOIT5ZOf/KRasaDJ9fiem5uTH/3oR6Wvu06rtVJOPvlk+T//5/84/+3yyy+Xhz3sYfKyl71MvvKVr9SeNvD222+XCy64QN785jfLgx/8YHnMYx4j73//+2X//v3JxzcxMVF72r3p6emoCdOQ5yj2CwEAAFg5kyt9AAAAAOPur//6r+Wqq65ybnx+0003yate9Sp53eteJ8cdd5wcdthhMjk5KT//+c/luuuuk127dnnHfchDHiIf+tCHmjz0oan7ENG34bGP2V/kP/7jP5IvM8RJJ50k559/vrzoRS9yfjB7+eWXy+WXXy4iIg996EPliCOOkK1bt8rMzIzs3LlTduzYIbfffrvccMMN/cmDlXbCCSfIO97xDnnHO95R+rfZ2Vn50z/9U/mzP/szOe644+TII4+UDRs2yO233y4/+tGPnPul/PZv/7Zs3rw5q5Qx/vZv/1Z27NjhrDcOHDggH/zgB+WDH/ygrFmzRh75yEfKtm3bZOvWrbKwsCA7duyQHTt2yA033CDbt2/PPpZhOeGEE+SYY46RH/7wh5Xf12635cwzzxzSUYV54xvfKPfcc4/zVGaLi4ty3nnnyXnnnSeTk5PyyEc+Ug4++OD+/hzm9rrpppsa24fn9NNPl89+9rPefz/ppJNk3bp1weM9+tGPlm3btlXev9gvBAAAYOUwGQIAANCwdevWyX/913/Js5/9bPnGN77h/J79+/fLVVddFTzmMcccI1/60pfk4IMP1jrMFfXIRz5SDjnkEG9B8YQnPMFZYFQ5/fTTKydDtFZoP/vZz5avfOUr8qu/+quVJcePf/xj5x4Co+jtb3+73H777d4iqdvtyne/+1357ne/WznOM5/5TPmbv/kb+fM//3OV42q1WvKRj3xEjjjiCHnXu94lnU7H+X0HDhxwTj6uVq985StrTzt2+umnO0/bttL+5E/+RA499FD53d/9XZmdnXV+z8LCglx77bXDPTCpfw6InbhotVpy2mmnyfnnn+/897Vr18rJJ58cNSYAAAD0cJosAACAIdi6datccskl8oY3vMG5h0iMl7/85XLllVfKAx7wAKWjW3nmQ0SflNXUVT+zbt06Oemkk6LH9DnllFPku9/9rpx55pnZt2/R1NSUdxPtpr3//e+Xv/iLv3Du+xDiFa94hXz2s5+VyUnd9VetVkv+7M/+TC688EJ5xCMeoTr2/e9/f3n+85+vOqaGM88803nqsqJRPl3e6173OvnGN76h+pgTWdpL5sUvfnHyzx977LFy6KGHev9d+3nnlFNOkZmZmegxAQAAoIPJEAAAgCGZmZmR9773vXLllVfKc57znNoPN22nnnqqXHjhhfLJT35SNm7c2NBRrpyqDxFTKo6jjz5aDjvsMOe/PfGJT5Tp6enoMavc7373k3/5l3+Ra665Rs4880xZs2ZN0jgzMzNy2mmnyd/93d/JrbfeKp/97GeDNnpuwtve9jb5+te/HrVvwkMe8hD513/9V/nEJz6hfh0XnXrqqfKd73xHzj77bHn84x+fPM6hhx4qZ555pnzuc5+Tn/3sZ/J7v/d7ikep4/DDD5czzjjD++8bN26UX/7lXx7iEcV71KMeJVdccYV85jOfkac+9anRz3/Gli1b5Fd+5VfknHPOkdtuu03+6q/+Kuu4fM8tBx10kJxwwgnR42k/jwEAAEBPqzsqJycGAAC4j7n11lvlM5/5jFx22WXygx/8QG655RbZs2ePdLtdWb9+vRx++OFy9NFHyymnnCIveMEL5MEPfvBKHzIi7N27V7785S/L5ZdfLtdee63ceOONcuedd8r+/ful3W7Lhg0bZMOGDXLooYfKwx/+cDn66KPl+OOPlyc96UnRpwQbhmuuuUbOP/98ueyyy+T666+Xe++9V1qtlmzatEke/OAHy2Mf+1h53vOeJ2eccUbyB905fvrTn8oFF1wgV111lfzoRz+Sm2++WXbs2CGzs7OyZs0a2bhxo2zcuFGOOuooOfroo+WYY46RU045RY477rihHyuWNkX/4he/KFdeeaX84Ac/kJtuuknuvfde2b9/v8zMzMiGDRtk48aNcuSRR/ZvrxNPPFEe97jHrcj9CwAAAKsfkyEAAAAAAAAAAGCssaQGAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFibXOkDAAAAAJr0jMe8faUPoaTbHr01Se0Dcyt9CE7dmamVPoSS//rWn6z0IQAAAACINHp/hQEAAAAAAAAAAChqdbvd7kofBAAAAO4bRrHSyDGKhUeqUS1DUo1iUZKDGgUAAADIMz5/vQEAAAAAAAAAADhQhgAAAKDvmY/8w+Sf7U5NKB5Jmta+2fSf3bMv67IXD92W9fNaJnbsSfq57lTGdoITI7LG6s7tWT/eWrcu+Wc72zZmXbaG1v70uudLP/xLxSMBAAAARg+TIQAAAKtUzsRFDo1Jj5xJi+jLypzkiKU5KZI6sZEiazIkheYESuYkSKycSZNYGpMsOZMkOZhgAQAAwCgZkSVcAAAAAAAAAAAAzaAMAQAAWCErVXaEKNYfw6w4Ug27/ohhlyLDrD1iDL0MiWFXJEMuQWIMsxpJVaxNVqoaCUFZAgAAAE2UIQAAAAAAAAAAYKxRhgAAAGR4+mPf6f239uz88A6kSqvl/7e5lT/G7rqZ6n8P2KNk4ta7tQ4nWWfP3sp/b99v65COJE13eqrmG0bgz4a6Y7hnx1AOo0p3b32l1HrwA6v/fVf1fWkoJv2Pu9r7ypAsbF3v/bevXv5HQzwSAAAArAaUIQAAAAAAAAAAYKxRhgAAgPu8qrojlnoNUlV1xGqoAqkrO4LHCShA6jRViNRVHzFGtRBRXe2v/SeG5ngN1SMhRUidumIkeJymypKKWiSWdl1SVYnEoioBAAAYT5QhAAAAAAAAAABgrFGGAACAsaJZeYSIKkE0K48qEQWIVtURfHkK9UeMmFJEs/6ocp8oQ4IuMOLPkGH9yRJRjWiUIDG0qpHgy4upSxSLkSox91HNUiQENQkAAMDoowwBAAAAAAAAAABjjTIEAACMrGFXHiHacwsrfQgl3cnRW98y7AKkiqlDhlV+hBjFOmToZUgd82fKKP250itHhl2FVBl2MRKite/ASh9Cyfyhm1f6EEqoSQAAAIZr9P5yBgAAAAAAAAAAUEQZAgAAhuqZx/lXwnamJ4d4JMsm7ry38t+7mzcM6UhEZu9/UOW/T28f/or02spjseLt5MSQ9knpad94m/ffurNzQzySZa0jDvX/24HhHlPn7nu8/9betqXyZ7sz09qHU63qz5QV+hOmVbEfT+eOu4Z4JCKtTRv9/7i54t9EhrbHx4CFxcp/rrputS1uq35O76xQ2dZa7Hj/7StXvn2IRwIAADCemAwBAADZqiY4QmlNhNRNbITQmvyom9gIoTn5kX3qqqpJjzrKkyJVkx51mpgUqZrwqPy5BiZDqiY8qtRNhlRpZKIk9c+UBv68yfmgXnuSpHISpE7dJEkdzUmUmsmREFoTKHWTIyG0JlCqJkRCMXECAADgxmmyAAAAAAAAAADAWKMMAQAAlTSqD5eYEkSj9qgSU4Jo1B4usQVI4xuU51QgVSIKkZz6I0RMIZJaftSOm1CGpJYfdXLKkDpJ5UhTf6ZEjNv0qZtiqpGsIqRKbi1SJ7YmUShGXGJuS41SpEpMRaJRirhQjwAAgPsiyhAAAAAAAAAAADDWKEMAALgPaqr2qGKXIE3XHlXsEqSp2qNOsQZpvPTwaaoAqVMoRJouQOqYQqSp+iOEXYg0VX9UabIMqVKqRlbyz5PeZQ9zM2+XYjHSWBFSp+lixKdYkjRUidSxb/+mS5EqdkXSVClShYoEAACMC8oQAAAAAAAAAAAw1ihDAAAYI09//DsH/rt9YGFFjqO1f3b5PyL2ZdC0cOT9Bv973dTQj6FtreCd2Dvc1eYLGwZX3LcWym/7JvaszO1jtG+5ffgXev/B+4Z0hr/SeuAxIiKd7StTSrUKVUZrg1VIrdCfCV17j4n28NdvtfbuH/xC7L4XCrpT1r5Ku/cO9fJbU+XnzI5V1bXmh/waY98nW+F7EGnprJsZ/ELEPkia2vuXX08W1yfsyaPArlS+/M13rshxAAAAhKIMAQAAAAAAAAAAY40yBACAVcKuPqo0VYTYq9m9GqpB7Nqj8nsbKkHs2sOlyQLErj2quEoQn5UsRBqtQ+wKpEpDhUjI46apMqRl78dR9b12GVKnoT8jSmWIS0O1SKkIqdJgLVKqQlwaKkVcRYiPXYpUjttkRRJyX2yoIimVIlUaqkiKlUiVpgqSmH1MqEcAAMBKogwBAAAAAAAAAABjjTIEAIAREFN9VEkpQoJrjxAZRUhM9eH8+YwSJKT2qJNTg8TUHlViShCfVVuIxBQgdRIKEa3HUU4hElOBOH8+tgxxyfjTIqgICZFQjUQVIXUyfo+gIqRKRi0SU4T4xJQiVbIqEo0/bzMqkqhSxCWjHgktREKkVCQxhUgV6hEAANAUJkMAABgCrckOl5AJENUJj6KAyY/cSY7KsQMmQDQmOlyqJj+0JjeqaEx8VBnZSRHNSQ+fismQxh5L5qIrJkNyJzvqqEyG1Kn400NtMsSnYpJEdTLEp+L3y54EqVMxSaIxCVJFa4KkSuXkSVN/7gZMmGRPjFQJmDTRnBwpCpko0ZoYcWGyBAAApOI0WQAAAAAAAAAAYKxRhgAAkKnJ6qOKKUKaXqnu1CtCmqw+qnRmGl5B7mBKkGFUHy5NlyAuK1mHiIi05xrccLnGUEoBB1OGNF2BuAylDHHp/TnSeBnisSLPoT3dtQ2WA1V6pUjTVYjLMEoRl349sgJ//nbWrxn6ZYpIvx5pqhCpYuqRJguRKtQjAADAhTIEAAAAAAAAAACMNcoQAAACPP2EPyl/seGX0Nb8ovPr7T0HGr1cY/4XNpe+1vQKz27bfQ707tRw1m/Mrx88b//kfvdtoK3j+P2m73KXCYsHNVwMOO7XOZvDx1hc716lPnVvs5VGZ7q8X8PEvbsbvcw+z/NId+++Zi93y6bSl1pznts5YUNyDd2JIV2uY7+O1q70jciDeMof33OgNmf5NNFsmeOtYBx7b3Snh1OstPcMPs6GdbndNe7L6TZ8G7Qc+yG1FoZTbnQ9e6x0Gy49W4vl59j/+pbjPR0AALhPoAwBAAAAAAAAAABjjTIEAADxlB8+ii+dvvrDRbMIcVUfPlo1SMyK5yZKELv6qKJVhLiKDx9fCeKjVohE3J81CxFfBeKiXYa4ShAf1UIk4rpWK0McBYiPtwzxWYFiRLUWcRQhPuqlSMSeMJq1SNReOEqVQvS+KJ6CwDm2UslhFyLDuMyBMT2liPN7lW4XVyXi/V7FesRXiDi/V7EacRUiPpQjAACML8oQAAAAAAAAAAAw1ihDAAD3GVH1h0/Cy2ZM/eGSUoTElB8+KUVI7grmlCIkpvjwSSlBYqoPn9gaxJZUhyi89UspRGJKEJ+UQiSmAnFJKkMUruOkMiSiAnGJLkNcVtP+IhFliEtSLRJRhPikPM9GFSE+CUVCdBVii6gIvMeQUHLElCKalxtTiDh/PuE2iilEvGMklCMxhYjz5xOqkZg6xIdqBACA1Y0yBAAAAAAAAAAAjDXKEADAWFGpP1wcL5e5xUcdXxGiUX241JUgmuetHxi3orDQqD5c6koQjerDJbcE8aktRBp6u+cqRDQKkCq+OiS3APGpLUMaum4ry5DMAsRHpQzxGcX9RTLLEB9vMaJQhVRxPUerFCEuNQVCdhHio1CKuNRVHBqlSOzl5lYi3nFrbjuNUsQ5rqceyS1E6rgKEo1CxIVqBACA0UcZAgAAAAAAAAAAxhplCABgVWms/PBozS0M9fJMDdJU/eFiipCmyg+fuc3NrpK2mRqkqerDpakSxKdfiAzp7Z0pQ5quQYpMGdJUCeIzcc+uoV5evwxpqAJxabQMcVmp/UXWDPe5p1+KNFyGFJnn88bKEFuvNmisCPFpuCooMhVHU5WIT2fjuqFenilHmipEXEw10nQlUjI53OcgyhEAAFYekyEAgJEz7AmP9v7yB4DdiYb/ILf+4F88qNkPkLqTjtOnzDf/QcfcpsKHfw1fpVO73RNXi2vjN1mNMbt58EP5Vmf5rdVBP9nT6GXve8B659dnts81ermL6wZ/54l9zU4ath2nV2nNNnuaOvtDsok7dzR7eZ5T1yRtDB6htX92+bL2DN5fW5s2NnrZKzUZYmt6cqS1z3HKw4SNrmPYp1lrNX1de073lLKJeJTCn7LdNYOvo41P7nkem8XHVNOGPVHS1/SkhT1+wgbt2YYwUdLetfw4veD//XXjlwcAADhNFgAAAAAAAAAAGHOUIQCAoRt2+WG4ChCbahESsHJSswhx1R827RpkoPzwXqje5fnqjyLNEsSuPlyKJYiPZiHiq0FctAoRuwTx0SpEXCWITbUMCVgBrF6GBJYBWmVIyGp1uwzxjqVVjIxIGeKiWYs4yxCbUiliFyE+aqVIRPmhWokE/AlrlyIuqvVIwGN1mNWIyAqVI5rVSMhYw65GlIuRYh1ShXIEAAAdo/sXCAAAAAAAAAAAgALKEABAo0Zh/48QSUVIxurHlCIkpPzwSSlCgqoP7wXG/0hI9eGSU4KElB+2kBLEJ6cQiSlCjJwyJLQGsaXUISEliE9SIZKxsjepEMlY9Z9ShqSuPg8tQ5yXmVKLjHAZYkspRYKKEJ+E+0xoFWLLqkQSao+sQiTjT9eQUsSWVY4kVl1jX4+kvHfKqU2GWY4kvLaEliEu1CIAAMRbPX+BAAAAAAAAAAAAJKAMAQBkWS3lR5XKKkTz3NdSX4Tk1B8uVUVIVvnhvUD/P6WWH1WqqpCU6qNKThFiCylEUkoQn5BCJLUEsYWWITk1SFFQGaJ4jvfKMkRp34eiqjJEewV5ThniU1mMrKIyxBZSimSVIUWh+8skliG2oFJEcf+PoFJE8U/WlEKkSmU9orTnz8DljXM5UveeS/k92SjtN5JTiPhQjgAAULZ6/wIBAAAAAAAAAAAIQBkCAAg2DhVI0UARor3a0GKKEO3yw8cUIY3UHwMXNPifTdQfRXYJol1/2DRrEJdiIaJZgvgUCxGtEsTHFCJaBUidfiGiWIG4lMqQBmqQomIZ0vSK8CbKENtAKbKKyxAXU4uoFSF1evc9rSLEZ6AUUSxCfAZKkYb/VNWuRGylaqSBUmTg8sa5GhFZfq/W8Hu2ldxnpIlCpIhaBABwXzdef4EAAAAAAAAAAABYKEMAACVPe+Kfi4hIey7gXPwZOjNLK9Mnd+xv9HL6l7dm6fJaQ1rxt7Cht+K0ak8SBa25XgWyueEKREQ600u/y8w9zVY7xs4HrRERkan9zb5dWZhZ+r0mDyxdl60hvTtqL/QuaEiXN3Gg0/jvtjiztNZmzV3DWR2/uLb3PLJnOPfJidvvXfofU82WNd320n2ydaB+vxedC+z2V/13790xlItsbd7U+x9Nr/I21VCzFU+f+fNqWH9m9X6/7kKzZV6r1RKZaf51RkREFpeei0P2ZlFhPZ67DRdfrU7vfciw7iO9uqe1t/n3W921vRJ2quHH27DLMnNbLQ7nNmstLj2uW7MNv7b17osX3PB/mr0cAABGBGUIAAAAAAAAAAAYa5QhAHAfZeoPlyaKEFOBFDVRhJj6w0W7COmXHz5KRYgpP3y0ixBTf7g0UYSY+qOoiRLE1B8upgixaVcU/RLEpYF3ZBOO36uJMsTUIC7ahYgpQWzaZUi/APFRLkNMCWJTL0Oq3vrX7AehXYz0y5DSPyiXIgs1r2naxYjvOtb+s6vi92qiEmm5bpcmSpFF/2ueeimS8DhuohrplyIDF9TAk3VFTaFdjZhCxPvvWuXIShUiLg1UI6YQGfhaE7WI6z7YQzUCABgnTIYAwJirmvSwaUyCuCY9fHImQ6omPWw5kyC1Ex5FCpMfdRMfRTmTIFUTHrbcCRDXZIdPziRI1WSHzTf54ZM6gVA5+eGT8c7MNfnhkzMpUjX5YdOYDPFNgLjkTIrUToAUZUyG+CY+qiRPisS81Y/cHDt1csQ7CVL5QxnPr3WTIUU5EyMx17XGn2ARv1fO5IhzEsQnZ3KkYhLEJ3lypMHT3OVMljgnRbwXlHkfiphEyJkoqZsUGfhejQmSYU2OxFz/GZMkrskQ7/dqTJJE3AeZJAEArEacJgsAAAAAAAAAAIw1yhAAGCMxFYhLaBkSU3+4xBQhMQWILaYIiSpAbBFFSEz54RNShMSUHz4xRUhM/WGLqUFi6g9bbA1iiykpkooQI+JHY0oQn5DfK6YE8YkpRGJKEFtMGRJVgtgiVpanlCC2oDIk9219ZBniPISAWiSpDCkNEnGdxpQhtphSJOf6j/nZnN/HXFxAKRJVhPjElCIJZYgRVYg0WIXUialGoiqR0gXFvGDlP7+HlCMxhYh3jJhyZBQLEVtEMRJTiDh/PrQaybnfCbUIAGD0UYYAAAAAAAAAAICxRhkCAKtQbgHi4qpCcgsQF1cVklN/uPiKkKz6w6WmCNGoQIp8RYhGBVLkK0Jy6g8XVxGSU3745BYhNl9JkVWDuHiG06hBiny/j0YNUlRVhuSUID6uQiSrBPFxrDLXKEFszjJE+228Qhlic5UiKmVIaVDHda5QUJS4SpEm/pyqGlP59/JVIiplSJGvEskoQly8lcgKFiGhXOVIViHivBDfi5juc76vFtEoRAbGq6tFVkMh4uKoRnLrEBdnMaJ9nxOKEQDA6KAMAQAAAAAAAAAAY40yBABGXBMVSJEpQpqoQIpMEaJdgdhaCx39AsTWK0K0yw+bKUG0yw+bKUG0yw+bKUGaqD+KtEsQn4n5Ib2F6l2MdhFiM4WIdhFiM4VIEzVIkSlDGqlBinqrzZuoQYpaB+aaKRCKGihDbN17dzRThhSZoqGJMqTIVCJN3y5m/IZ/H1OIqBchNlOIKBchPt0N64ZyOU0z1Yh6KVK6oN79reGiwpQj2qWIrV+ODKMQafq5oFeLNFGIFPVrkYbva9QiAICVQBkCAAAAAAAAAADGGmUIAIyIM57wZwP/3dQq4+7U4Dx4S3ufg56JvUvnt+/W7KuRa27b2qXL2+c+57mWhfVLq7+ndrn309Aye7+lFZLdhpYrdKaWb4+59Q2uiSjc7K0GFzAuFhaUtq2bZmpfMysa7cfm5Gwzl2Out3bDBdLimqX7QavhxcYz22dFRKQzU3N+90yL00u/z7of3N7M+PffPPDf7R17G7kcexWz7/z7uYqrsltDWqkv+639Y9Y0tDLcLhyaKivMXhQNr6Lu9q631mTDe180vOq8z9w+jn0yVFh7oXS3bGzocqzrq3i/m2judba4v0ijtchc4cXVt+9Lpu5k73Vortn3csOqRFr7ll7vumubub76Gi5F7P1Y2rv2NXI5i9s2DPz3l7/5zkYuBwAAEcoQAAAAAAAAAAAw5ihDAGAF2BVIkVYRYhcgNq0ixBQg3uNQKkNMAeI9jswyxJQfPlpFiCk/fLSKkGIB4qJWhdTcvFpVyGLF1WYXITaNQqTqcalVhtRdV1qFiClBvMehtMDYlCA+WoWIKUF8cgsRuwSxqZUhNSuVtcqQqvPzr1gZYtMqRer2vsgtRaZqCg2l1frdmutLrRQZdhHio1WKLPjfF6hUInX3n6rfU6kY6dZcV2rFyFzNC61SMWIKER+tcsQuHkoyyxFThngvX6sYWax+L69VjNRdX1rFiF2IFFGLAAC0UIYAAAAAAAAAAICxRhkCAA2qKkB8UsqQugqkKKcIqatAilKKkLr6wyWlCKmrQIpyipC6CqQopQipqz9ckoqQiIvJKUGq6g9bXQ1SlFOGxDwecwqRmOstpRCpq0FcUgqRuhqkKLUMqStBbCllSF0N4hJdiESuPE4tQ6pKkNJljEoZYostRerKA5eUSqSuDLElrtKvK0OKkiqRUSlCinLqkIoixJZViMTcZ6J+9/T1inWlSFFSNVJXiLgkVCN1hUhRTi1SW4gUJdQidYWIS1I1UlOIFOXUIjHXV0otUlWG+FCMAABiMRkCAApSJj1sIR+6xkx6+IRMhsRMethCJkFSJj1sIZMgMZMetpBJkJjJDp+QSZCUSQ9b0CRIxsWEfJgfM9nhEzMJYguZFNE4TV3IpEjOpFHMZEjKJIgRMhkSM/nhEzIpEjsBUhQyGZIy+WELmgzJOPVKyGRIzMSH8zJGdTKkKGRiJGUyxBbyQXfsZEhRwAfRMZMgPkGTI6M4GWIL+ZA/YhLEJ2hyJOf0ahr3zYDJkphJEVvQJEnKpIgtYJIkZlLEJ2SyJGpSxBbwvJ4yKWILmiSJmBSxhUySZF1PPSGTJCmTIjYmSQAAPpwmCwAAAAAAAAAAjDXKEABIpFGDiPhXomtUIEW+IiSnAinyFSEaFUiRrwjJqUCKfEWIRgVS5CtCNCoQkYoSRGf45eE8Cwk1KhCRvBLEx1WIaBQhRXYdorWRfJGrEMkpQVzsOkSjBLG5ypCcEsTFrkM0ShCbswzJ3ITXZtchuSVIafxhlCEKtcMAVymisfreZtcAOVWIi2M1vkYZYiuVIsOoQpq4PezyQaEKKXIWIjlFiI/WdeOpRXIKERdvNaJRioh4axGNQqTIV4tolA8i4n3u1yhEiry1SEYhUuSrRdSupx5fLaJRiIhQiQAABlGGAAAAAAAAAACAsUYZAgA1tAoQn9RNhEOZIkSrAPGZPWRdo+ObIkSrALGZIkS7ALEtzjSwQragX4Q0ezHSaeZm6GuiCCmaPNDs2x9ThjRRhBSF7DmTw5QhTRQhRmdmQr0Esc1s119hb2vv2KtegpQkbsAdalWWIbY1M82UCLamL6PTaaQMMfqFSNNlSNPXkykflMsQW3fD+kbHb/p66k5PNTp+vxjRKkQ8uuvXNDq+KUa0y4e+3muEdiFia/z27j1vNHY99TQ9PsUIANw3UYYAAAAAAAAAAICxRhkCAAVPf/w7+/+7ydVIC+unpL3Q3Arcib3LK/NaDVzOgUOXV0i2Os29jHSmWt69TjR0J5dWYmrvF2F0JpfH7TZwd1pYM3jcxctrQlM1yPSe5dt4Ym7pf89uaG69xub/t7zvwp4j9FeZzuxYXqHcabB4mL53Tma3ec4XrqC4X0gTZcj++y9f95P79FenFx/Xa+7aX/GdeRbXLq3AnbpjVzMXcG9h3E0H6Y9fWEFs70nSeOnSVPkw1fudJhtcVVxcAe/Z5yBLodjoHtB//LWGUc+ISGfHTmlv2dzcBTT9p2xhT5qu9j4xBa3efiTd4t4fTT3+ehVH17XfjoLWvFXpNFEfFZ63mnq/3jUVR5P1VKslrf0NltuFx3mT918RaXSZbWuhI521zdUuxcfdV658e2OXAwAYDZQhAAAAAAAAAABgrFGGALhPK5YgNo2VZgvr/auYNMqQYgFi0yhCigWI8zKUqpDOlHuFqlYV0q0pJnLLkLoiI7cKsQuQ2MvPpVWEFAuQIlODuGgWIsUixNAsQ4pFiE2jEJm+1796VKMQaVU8ZWiUIcUSxKZZhrgez5plyGLF6lSVOuTeijE0ypCKc8mXyhDbaihFpipWD2uWIq69ETQLkYrV6BqlSNNlSGfHTu+/qZQiw/oT1lFPaK6wN0WIy0AlUqT1OKzZgyi3HCkVIrbc4qJmX4zc9/HdmutZrRjxPBbVipGax/pqKEaq/qbRKEa8jzWhFAGAcUQZAgAAAAAAAAAAxhplCID7hKoCxJaykqyqAHFJqUKqKhBbahVSV4L0x88oQnwViPNyEsqQugpk4HsTipCYCiOlCKmrQFKPJUVKEeKrP1yqihBbSiHiKkF8UgqRqhLEllKGVJUgtpwypKoIMXLKkKoixJZSiMQ8jlMKkaoSxJZUhlSVILaUMqRm9XRRbRliG8VSpKoMsaWUIq4ixCelFIlYbZ5TiKxkGWJLKkWGuFdInZSV9VVFSGn8ilXrJSmPyZpCZOBYEmqR2kKkKKW2iHiOS3mPX1eIFCXVIhGPxaxaJPByGi9FRJKW5Mb+bZNSjMQ81ihGAGD1ogwBAAAAAAAAAABjjTIEwNiKqUGKQleNxdYgRSFlSEwJYgtZPRVagTjHDyhDYgqQ0vgBRUhMAVL62YCV5DnVRUgRElOA2EahCIkpQGwxRYgtpBCJKUJsIYVITBFiCylEYooQW0ghElKC+IQUIjEliC2kDMnZ4ye0DImpQYqCy5CYGqQotAyJWCldFF2GFI1KJRJThhSFViIxZYgtpBTJ2IcgpBQZpSLEFlSIjFARYgtZUR9ThJTGjylEbCGPz4hCxBZSjEQVIraQx0Xi855I2Hv/mELEFlSMZDw2g4qRjPFHYV+RnL0QQyuR1McYlQgArC5MhgBY9VInPVxcfwzlTHrYXJMgOZMeNtcfCjmTHqXxHZMgOZMepfEdkyA5kx6lsTwfompNLvgmQXImPopWahIkZ+KjKGcSxOaaFMmZBDGqJkNyJkEM32RIzgRIkW8yJGcCpMg3GZIzAVLkmwzJmQAp8k2GpE5+2LyTIamTHzbfZEjGh4BFWZMhtpWaHEmdDLH5JkdyJkOKfBMjSpsy+yZGRnkypMg7MTLCkyGG64PjnEmQ0vg5kyJFvsdoxqRIkW+CJGtSpMj3WFF6PvRNkORMitickySKj1HnJIni+CsxSZIzKWJzTZKoPb6ESRIAGFWcJgsAAAAAAAAAAIw1yhAAq45mCWLrTk2oliA2U4Zo1iAiy6ukNCuQgfF7RYhmBTIwfq8I0axAisyq8qbKClOEaBUgtmEVIVoFSJFmDVJkyhCNGsTFFCIaNYiLKUS0ihCbKUS0ihCbKUS0ihCbKUS0ihDDlCFaJYitX4ZolSA2U4YorXy2qZYhtmGVIlpliM2UIlpliGEKEaUixGYKkdVShNj6hcgqKEJczMp5zTJkYHzFVex95rGqVIjYTDGiVojYzGOpoedJU4xoFiJF/VqkocdsvxZpaPzGapHe1a1Zhtg6a6eaeUz1UIoAwGigDAEAAAAAAAAAAGONMgTASHvqU/9SREQmd9dvCppibsvSquZWQ8+EZkX/zPbAjV8jHTh4rYg0d/wLa5fmzCfmmluF1YSmS5B2r2SZ3dTcmoLpPR05sDlwQ98IkweG87LfVBHS1xt+7Z0NPTdsXlpR6trHRsPimqX7zsx23TJkbnNvlXlDi8An9i+tWJ3f0MzKz6aKEKO9uHR7mt9DU3eiJdPfv0V93P74hx8srbmGVlKby5heul3b9+5u7jLWr5XW/mYetyIi3ckJaR3QL666M73nhKaOPXQD90TdfUvvQ1oNrXruzi5d5939unVRy1QEa5qp0LrzS6VPa4NnP55cveulqfKkX2+Y6/+gdc1cToNa+2eHc9xN3fcnl8btTjT7GG41VOq0DijXbj3dmd77hIb+hOisW3pOntjTzHNyZ/3SY7bb0PspU6B89fI/auYCAABelCEAAAAAAAAAAGCsUYYAGCmmBLFplSGmBLHllhW+AkGzCDEVSJFmEWIqkKLVUIS4VpBrFiFtRxmgWYRM73Ffx7lVyLAKENuwipAijTrElCA2rTLElCA2rTKkX4TYlB4KvpJCoxAxNUiRZhliapAizTKkO1E+Vo1CpHv4waWvDasMsWmWIt31jtcyhdqi6ygrNAsRU4YMjK9ZiTRUhpgixKZViJgipPR1pUKk5SkqtEoRU4aUxtcoRVzXjWYh4ioFfLfHiBcjvsdS48etWIuYQmTgaw3VIk1VIv3xFWuRfiFSpHj4phCx5RYjpgyxaZUivr1JKEUAoHmUIQAAAAAAAAAAYKxRhgBYUb4SxJZShvgqkKKcsiKkPsgpQ1wliC3l+F0FiG0Ui5DQleKpVYirAHFJrUJ8BYgtpQhZqQqkqLEiJGDYnDLEV4TYUgsRXxFiSylEvDVIUcYKxpB6IqcMcRUhtpRCxFWC2HLKEFcJYkspQ1wliG2lyhBbTiniKkNsKcWFqwwpjZtRirjKkNL4KaXIkPYKqZJTifjKkIHvSahEfEVI+fvSChFfEVIaP6cQCbhukkqRkCog5HYZwVok9DE0qsWIqw5xft99qBhxliG2jMP2lSFFOZWIrxApSqlFfGWIjVIEAPRRhgAAAAAAAAAAgLFGGQJgaEIrkKKYIiSkBLHFlBUxxUFMERJSgNhijjukBDFGrQhJWRUecjuFViBFMUVIaAVSFFKEjEIBYlvJIsQWU4iEFiFFoXVIaA1SFFOGBBUhtoCHUkotEVOGhJQgtpjngJAixIj5XUNKEFtMGRJShBijUoYUxVYiIWWIEVNahJQhpfEjSpGQMqQ/bkwhMgJliC2kFAkpQko/E1GIhJYhgz8T9j4wtAoZGDumEEm4boIKkZRV/ym30wgUI0l12AjUIqFlyMDPNFSJGE3WIjGlSFAhYos49JBCxIgpRULKEFtMKRJaiBRRiwBAHiZDADQmZfLDVjUZkjL5YVRNJmhsvl03GZIyASJSPwkSM/HhslKTIRqbJbtut5RJD1vVJEjKpIfNNwkyihMfRaM0CWKrmxRJmQgRqZ8MSZkEKfJNiCRNftgqHmIam4m7JkVSJj9sVc8NMZMfPr7fPWUCpKhuMiRmAsSlqUmRlMkQm29yJGYSxKXuw9GUyZCB8T0TIzGTIN6xq459yBunx6iaFEmZDCmN4ZkcSZkIGfz56veHKZMhIgETIgrXSeWkSM6H2pnHtlITJEmnnrOsxCRJyqRIaYwxPZVW0qSISO3ESMxkiE/VJEnKpIhRNTmSMhliY3IEAOJwmiwAAAAAAAAAADDWKEMAqNKoQYpMGZJTgbjYhYVGDSJSLkJSCxAf+7hzS5CiYVUhGhVIkX3badQgIuUiRKMCKbKLkFEvQYzGihARlSpEpFyGpJYgPnYhkluEGHYZolKE2Fo6JYitWIZoFCGG/XyhUYMU2ddFbhFi2GVIbgliG+UyxGZKkdwyxGavGM8tQ/rjWoWIRhkyML690n2EyxBba6KtUoTY7EIktwxZHmfwvWNqEeId3y5FtK4b+/fXXMmvfPsNqxjRKESKGjtua5W/RiEyMF6Dp9RqqhixS5HkMsTHOmyNQkSkXInklCEuphbRKEOKqEQAoB5lCAAAAAAAAAAAGGuUIQCyaJcghlapYeuv0GroqU+7eijSWn1ua7oIafI6aUK32X0sZaGh27FJjdYgImpFiK2p+3ZTz09GSz/c6Js40MzgWkWFT91+SanaDd1Hpnbor8ovWk1liNH05u8y39D4Db1faDV1vD1NlCEiIrLQ4HF3Gy5Um9qDYbqBik9EZFq3SippoPIRabYW0S5EbE0du3oNYcZdrZuvN/gRVGdNM4+bxV5xMrlXtzAzOsoVkUEpAgBlq+8TGQAAAAAAAAAAgAiUIQCiNFWCTBwYXGk4f5Deqp6B8/UqPuUVV50vrNFfmWWvtO5M6ay8bs8PXgctpetkfr21B8Z+ndVkXWvavtXAIrWBy2hogbtmETKzY3B1/+xmnfvf9G6rGrCu60XFPWpElq937RKiqft400WI0UgZ0jt07f1C5jcOrnad3KszflMlSNe6CSdmdZ9QzH1tcmcDq5cL9+PWvN7t2CnsiVFaBdzSu8+39hT2hWhgxbt5rW/t113t3tq9d/BytFaOW9dta05ptfHi4G2ovcdH98BScdKabK4iWrogvcdm17pOWkr3v+7efQP/3d6yWWXcEu3Hi/24XrCeT5Tqn9W4n0h34/rl/+g08EJk1dLdKaW9jqz9tDpalZ9VK2gVfnaF2JptoLYo3M87imXOYmFPEs1KZGH94OO8PavzOj95166B//7S9X+lMi4ArGaUIQAAAAAAAAAAYKxRhgCo1FQJIlKuQUR0ipBu1TlXM57yqvYfyClD6s61n1qE2KvjbRqr5e0aRESnCLFrkKKcMqRq3KaKEJH0KsQuQGy5RUipBDEqruOcOqTy+pf8IsJ3n9e4rw+rCinKuj4qDjenDrFLEFtuGTKsIsTQKEOq7l9ZhUjFuDllSLEEKY1bd374jFJkoAyxZax8r3rN16hE7DKkf7m5q94912V2IbJYfRvmlCKmCnFprBTJKETsIqRIow6xyxCjsULEyDn2qsewXYj0v55XAwyrELHlFCMDhYgtpxip2EdPoxKxCxERpUqkZj+L1GKkbp+qrGKk4r6eU4oUyxCbRiliFyIiOpWIXYgYlCIA7osoQwAAAAAAAAAAwFijDAHQ12QFIuIuQWwpZUhlCdL/pvinuqoSpCilCqmrQUTSipC6GqQoZrW8qwDxiSlD6kqBopgiJGbcpcEjvz9QShFSV4OIpBUh3gqkKOI6jilEom7nyMVvTd3njZUoQoykMiTgcFPKkLoixEgpQ4Zdg7jEFCIx96OoMiRi3JQypKoI6Y9bV4b0vzH+cVFZhtgiVr4HvQcwxxBRiviKEOcxxKx8j7jukiqRmjLESClEqsoQY5QKkaoyxEgpRHxFiEujlUjMscc8Zn2FyMD3xJcAK1WIGLGlSGUd4hJTjFQUIqXjiChGXGWIT1QxEvM8m1CJ1BUiIomVSOD9PqUUqSpEjJRSxFWG2FJKEV8Z4kItAmDcUYYAAAAAAAAAAICxRhkC3Ic1VYKEFCA+IWVIzCrQ5R8Ke6oLrUGKQsqQkBLEFlKGxKyKN0JWNceUIEZoERJbbYQWIdE1iMiKFiEhBYgtpAgJKkBsCadkDy1Dkm4Xqa8iUu77/bErHgMrWYL4VF4XGYcbUoiEFiFFoXXIKBQhRkgZklIWBZUhCeOGliEhNcjAuKFlyMAPhV3hUWWIEbDyPeU9QUghElOG9I8lZOV7SlUTWogEViFFIYVISBHisxKlSEgR4lNVisQUIbbGCpHQOiRlv5+QQqT0M/V/A6x0IVIUUotEFyIi4ZVIRCEiEl6JxBQiRlApkvJ8G1CKhJQhpXFDSpGE+31oJRJShthCSpGQMsSnqhiJKUNslCIAxg2TIcB9yLA3Q4/hmwRJmvgoDVJ+mkuZ9LC5JkFSJj1svkmQnA9/Rfwf5KVMfBT5JkFSPwQvck2EaIw77EmQlImPIt8kSNLER1H+w8A7KZJ7O/kmAHIfByLux8IoToIY3smQzEP2TYakTIAU+SZDRmnyw+aaDEmZ/LB5J0Myx/ZNhsROfpTGTZkMKQ3i2Rg8ZTKkyPOhr8b7BNfkSMpkiM35oW/GJvT9IXyTIxmTACL+iZGcyRCRBidERJyTIjmTIYZrUiRnMsQY+qSIwv0taVJk4OfdfyOM0qSIzTVJkjQpYnNNkkROiLj4JklSJkWKvBMkmc+7vgmSlEmR0tiuSRKFx4FrkiRlQsTmmyDJmRQR8U+M5EyKGEyOAFjtOE0WAAAAAAAAAAAYa5QhwJgbxVNhuZgyRKUEsXW7KiWIzZQhGjVIkSlDNFbAF5lVzrkliM2UISrFhqXVUR53SEVIbgli2EVIdglSpPyQMIWI9v3AVBFNPR5GuQix9QsRpUO2y5DcIsSwy5BRLkIMU4Zo1CBF/TJEeVxThuSWIKVxNcqQ0qBLN1R2GWKbbuZ9g6lENMoQY2AFvMZKfTOUXYgoFBEi5UIktwwxmi5ENIoQmylENKqQosYLEcX7mYjk1yEDYw3+DTHKhYhIuRJRKUSMTlelDLGZUiS3DLH1SxHt591eKaJRhgyMayoR7ceDLJUiGmWIzZQiuWWIzZQiGmVIEZUIgNWIMgQAAAAAAAAAAIw1yhBgzDztlD8XEZHOjO7q/25v1dLkvsBNPAMt9FbUdKb152YnKjaRyzG/vsGVjQ1YWKd/3bYXll46tFec9Ve8Kw/bnutVADO6K8MmDjT3EtrVfQj3LfYeaxMHdFfQtnv3hbmNugfe1HXc1PXbBNfeORoW1vQqNOWnSlMHTe/Sfw5eWNeWCc8+RTkmDzTzejG5Q2dFva3bbmY9UyNliBl7b0PXxbqZRsZt33mv/qAz09IN3fA6Qsgm0ElMQbdrt+64i0uPt9aM7m3XDdi8O9m87vtfo7FCZGZad7z53nXbwAp7EZHuGuXjHYYp5b8HzHWsPG6nd922AzYyjx573eq63UI2c08xv2Wt+pjtuV4BOt3M3/QzN9+jOm5nw1Lh9eVr3qk6LgA0gTIEAAAAAAAAAACMNcoQYJUzJYhNowzpFs5hq1mELBTOr6pahFhPZ1r7hJi9QfoXo7FHiGsIjWfjwrgLa/WuW1OC9C9GqwixrwelYU0JYmgUIS3HYjL7eklhlztm74JcXesc1PbeGFplSNu6L2iVIZPW6v9uU6tRFQ7Xvr+JiHSmFe5zDRchhmYZUtwzRrMMKT5ONMqQme3uSmEx9xzd1qFN7tKrITozy6uFW/N6d47Fg5ZX9moeb0nhNbq1T69k0C5DWgvu67Z1z878wQur9TULkabLEEOtEFm09hVSKES6+x170kwpVziKdUhr7eBK8taaZgontUJk3trnw6pwWlrX9aT1nnsy/0W6dWCu9LVGShStosO6rrXG7Vi/s2YpsrBxzfK4nufQGK6CQ3s/Ed/lpGiiDDFMISKiW4kU/07QqERMGWKjFAEwiihDAAAAAAAAAADAWKMMAVapJooQeyV5UU4ZUixBbFllSM3TV0oZYlcgAxeXU4RU/WjOs3DFuDllSF3xkFSGNHQduFblGzlFiKsE6V9mRhFSt4dLShlS9di1i5CBy8qoQ+wixJZaiNhFiE27EMkpQyrvexllSFNFiEi5CilKKUS6FXfnnDKk6nGSU4b4ihAjqwypOKyU4qJYgthyypBiCWIbVhliSylFmtorxFeG9P89pxCpWKWfU4qolyEVt1VWHbJY/ZyQU4g4yxBDuxAxEkoRuwgp/fsoFiJ2qVBQtU9LUi1SU4LklCKuQqQ/blN7luRUHRXXe8q4dhliyylFimVIadyMUqSq3GiiFKm7TJ9hlSG2nFKk6m+HnFKEQgTAakAZAgAAAAAAAAAAxhplCLCK+GqQopgypGpFiC2mDKkqQWzRZUjAU1ZMEVJVgpQuOqYMiVkUHvMsHDhuTBUSUzlEFSENXQdVq/GN2CKkqgIpXX7E9VVXgRTFFCEhj92qIqR02RGFSF0RYospROqqEJHR2Dsk5D5oxBQiTRQhVSWILaYMqSpCbDGFSMhjJrYMqatBiqLKkIjDiCkuqooQI6YMqSpBbCtVhhgxhchKlSED3xtbiQSszo8pRIa1V0iVqFKkpgwxYgqRyiLENgKFSF0ZItJgHSISV4hUlQmWqkLEiCpFIgqQmFqkqg4pjbvS+4pEXP8x49YVIkUxtUhVHTIwZsxzbMTlj0Ip0kQhUlWG2GJKkZjPAWJKEV8ZUkQlAmClUYYAAAAAAAAAAICxRhkCjLCQEsRWVYbErACx1ZUhMTWIEVSFJDxFVZUhMSVI/xBCipCUqzb0V0sYu6oMSdnvIqgIaeA6iFmBX1RXhsSUIP1jCbjeYkoQo6oISXnMxhQhpWOpKURiqxCRsDIkpAixrcTeISn3x7oypKn9QWKKECOkDIkpQoy6MiTlcSNSX4jEFCFGUBmScJtVFRchJYgttAyJqUJEVr4MsVWVIqNQhvR/pq4QSdyvoa4SGYUyxKgsRAKLEJe6SiSqDDFWoBAJKUJKP7NS+4fEFAmWkELEVlmMJOwRElKKxBQi/XFXal+RlNsjoBSJKUSMqlIktAwZGC/w+TZlH4+VKEWa2jskpg4x6iqRnM8FqkqRkDLERikCYNiYDAFGSMrkh803GZL6hsc3CZIy+WFzToZkPCX5JkFSJkCKvJMhuZ/F2r+qwme7rkmQnM2+jdJkiPbv3pM6+VHkmghJmfwwXNdf6oe3Rb5JkJw/TnImQkT8kyEpkyBFvgmRlEkQY9iny8q9b9qTIqM0CWIrToqkTH7YfJMhuY8j32RIyiSI4ZwMUbitXJMMKZMghm8yJHbywzZqkyGGa1JklCZD+j/rmxTJ2bxa/JMiw9w4PZRzUiRjMsSwJ0WSJkGKmpoQEXFOiqRMhvR/dtiTIhmTISJpEyKGd2IkY+N0wzVJkjIp0h9v2JMjmbeLPW7KZIjNNTmSMilSGtd6Hk6ZDCka9sSI9qRIymSIzTc5kvp3h29CJGUyxMbkCICmcZosAAAAAAAAAAAw1ihDgBWmUYOIlIuQnNXlRaYM0ShBbJ3ptsoqRMOUIbkliK1fhmguRO8qj9djyhCNGkSkUIRoH2tvWI0SxDBFSE4F4mKuS40aRGS5CNF6jBblliGGKURyixDDLkNyihBb06fL0rqPmjJklIsQw5QhGlWISLkMUXss9e5HOSWIbaAMUbytTHGRU4MU2WVIbhFijGoZUmQqkVEsQ0pjmVIkswwx7EJkFMsQY6AQUShDDFOIZJchRsOFSE4RYmu8EMktD3pyyhCffjGiUIiILFciOWWIc9wmN11Xun3scTUKEZHlSkSjDCmNvdDJrkOKmi5FRrEMsZlSROvvEbsU0ShERKhEADSDMgQAAAAAAAAAAIw1yhBgyJ71i78nIiLzh21VHXdxrf4Kl6mdB2R+k/7qns6U7kruVu9ZrBOy0XmErtIq+4ExewvaWkoLfBZnmllt3uo08NLQQA0iErjBfYRW72VxcUZ3vUB7Xv86NTVAW3mx4MLapXHX3q07sPZjX2TpdtK8T5nCbDU8n0zuW5QDW/Wf+1vKd9WJ2aUBQzapj7HuZ/t0BxSRA4csreac2q1732/P6o630CtB2oEbqYdqogxp3b5dRES699d936OtdaC3z4PSyvOBsfcqVQw93b1L9/3WGuX3aA38WdhdWJDu7j3q40pH975vqovuomIZNNEWaemvPdQuRLq9PU7qNquP1ruNusq3lYhIa63yfX9Bf+W9iH4pYp5Luuv1N+rWWslvdKeW7vvdCd3HwMQ+3ZpHRL8Uae1fekzN30/3Om2iEFlYN9lItTx1r+77iU7vs46vXvZHquMCuG+iDAEAAAAAAAAAAGONMgQYElOEGLlliL0a3pz3M8fUzsEVHE1UISL5q8PtVcuaK7jNvhMiOvWGvRI6d8zFmcHfVXMlz+S+5cEWNfYfsG4nrdX72iWIyHINIqJThNhljVYJZO8LsTg9+N9T+/KuY1OEGFpliF0vTO/Ov0KKt5PGfcsUIYbW84o97sK6/OfqyX3L159mGWIXRrklhylCtMZbGmT5f667Va8MMUWIkV2GWG+vtVZzLlh7g2iUIQPVinXu8HZvdWsOU4YYo1qI9MsQQ7MQKaw6b83mr2o2ZUh/zNxCxF65rbhKvrh/hEYh0tk3+Lu3leoYu7bQKERaxetVoxDpDh6T1n4kpgzpj5tZiHTu3THw3+1NGwcvT6kUabWt61Rjbx7tQmRq8DVaq5KwazOVUqRw/XUUSwlTiPT/ewRLkcX1y7+7ZnHZsl5DR7UUWVg3eHtr/H05tdu6XTL34+pYZ8GgEAGQgzIEAAAAAAAAAACMNcoQoCF2CWLkFCFVK+JzyhC7CDFGqQypOod9zgruzkz5Z3NW8detfE4Z265BBsbLWGRTLEH6l5VThNS8mqSs3m+iAhEZLEGMnCKkbo+VlNvdrkCK7CKkKKUOsYsQW04h4ioXcsqQqtsp5T5mlxu21OcX37g5ZUixCLGlFCJ1e82klhx2EZI73tIP+/8ppRCxSxBbchnieVuds3rTrkEGxk1YwVq5f0m7+v6eUorYZUjRKFUipTLEllKKVKwyzylE7DKkP2ZqJVG3UjthtXyxCCn9W0YhYpchRmohUrf/Rkoh0qq6PnMKkW75WHLqELsIKY2dUIjYVUiRXYgMHEtCLVIqQ2w5pUjDhUhRSilRtw9RViniuN5yShG7DBn4N+VKRCSvFCkWIkZOKWKXIUXalYhI+nsNuwwxcv7OLJUhAxeYPrBdiBiUIgBiUIYAAAAAAAAAAICxRhkCKPLVIEUxZUjMqviYMsRXgti0y5CYIqSqBOmPl7Bi21WClC47clFNyGrnmDGrSpD+eBELalwFiPeyY8uQgNspZrW+dgniKkBcYquQuhKk/30Rt3tVCWJUFSFGTBlSV4TYYgqRkFIhphAJuY1i7mt1RYgR8zwTOqZIXCFSVYQYMWVIXRFixJQcvhokd9yQ55iYMqSuCDGiypCA55mU1ZpVRUh/3IgVq5VFSP+bwu7vMYVIVRlijEIhUluGGDGFSMDq8phCxFeEOMeNKSVCV2dHrJavKkP63xNRiPiKEJeYSqSuDDFiCpHKMqT/TRHvOxxFSGm4iEKkrggpjR1RiFSVIUZVIWLElCK1hYgRW4po1yEilYWIEVNL1BUiIgmVSMT1FFOMVBUi/e9Z4f1EXGWILaUUqSpEjJXcT8RXhthi/v6sLENKBxA+sK8MKaISAVCHMgQAAAAAAAAAAIw1yhAgQ0gJYgspQ5ooQkJrkKJhliEhJUhpvMDrKaQG6R9HwCKalPPeV40bUoKUxqtZQBNTg/SPI6QKibidQlbpN7EnSGgNUlRVHYRWIAM/U3F7hxQgtpAixFZXiMRWISJhZUhMoRBShqTs5VJ334spOIyq55uU8ULKkJAixAi93kOrEKPu+S6mCAkaM+G1IKQMCS1CjKAyJOG5pmqlZkgJUhqvZoVqUA0y8APxzwt1lUhIGWJbiVIkuAwxQgqRhJXlVaVITBnSH6+ukohdiR34O4WUIf3vDShEYsoQo6oQCS1CiurqkKAipPRDAT8TUIb0hwsoRGLLEJH6OiSkCLGFFCK2qmIkuBApqqogmihDjIBCxAipJUIKkf54IaVIwn4rdZVISBlS+pkVKEVC6hAjtBIJKUNswyxFQsuQotBKRLsQCSlDbJQiAGxMhgAJUiZBDN9kSOqHwr7JkJTJD2NYG6enTIAMjOe5zmImP2yuD7FzNv31fSieMgEi4n/jmTL50T8W14fzCq8Mvg+kV+pUWC6uD9pTJj/6P+u5vVMmQETSJkFsvkmRlMkQEf+ESMoG3oZrUiRnQ3vffS9l0sJwPd/kjGcUJ0ViJj98fLdD7CSI4Xv+S5kEqRwz4znHNxkSOwFS5JwMUXjL7PowImUSpD+e54OY6EmQ/g+mP+f4JkVSJkOMYU6KRE+GFPkmRjI+THVNiqRMhvTH800MpH7Y6PndYiZBfIqTIymTIDbXpEjKZIjhmxRJmgzp/7DjZyMmQUrDeSZFUiZCRPyTISmTILaUSRER/8RI0qSI4ZoEWKHTZbn4JgdiJkO8Y7smSTI2ofdNjqRMiogMb7P1mMkQm+81OWUypGhYm62nTIoYvr9RoyZDBg7GPWDKZIjBpAgAg9NkAQAAAAAAAACAsUYZAgTIKUFspgzRWh1vypCcEsTW9OmxtIuQnBLEKK7ozylBfOOmliCl8XqLZHJKEFu/DFF6NTCr8ps4BZZIXgli2NVBTg0iUi5CUksQWxNlSGoRYthlSE4RYpvevZhVhNjMfVGj4BBZfu7RGk9kuQzRqEJElm+P1BLEZj8f5hQhvjFzn3vsMiSnCCnq1yGKb5XNSsycGmRgvN4q1OQSpDSg3vO2KUVyypCiJiuRrCqkyC5EMleU23VIThnSH9OuJLRWW/d+V40yRGS5DtEoQwxTiORUIUWmEMkqQmytdlYRUhrOKkRSy5D+eFYhspJliM0uRbIKEZFyFTFChYjNVBMahYhIoRLJKENsphRJLUNsTZciOYWIYZcio1iIiBTem2SUITbzN2tyGWLrlSI5ZYiNUgS476IMAQAAAAAAAAAAY40yBPA44wl/JiIik7fdqzru3JHbVMebyFxh4qJdhnQndQuBhXWjP4/bUf6dRUSm9uitFBTRq1WMkM3no8dUfolaWLt032kv6I67OKV/e2tUIUW5RVZpPN27o4iITNRsfB5rao/unbK1OPpvmeY26q2YE9F/rBR1lZ/K2/PK959d+q+vvn2+Uk3uUVpxaSiWIcbET29XHa+JQkStDGlIa/+siIh09+us+h4Ye73uSuPugVnV8RbvuFN1PBGRic2b1McceZO6rw3dfbr3Ra06pFETus/ffUp1yADlx2F3q+5jRqO6sKmXIg0E7hO7dG8X7VKkib9fp3fqvk/pKJVFhjk7wFeu+GPVcQGMttH/RBEAAAAAAAAAACADZQhg0S5C5g/v7RGiudqytTxW8dymqRY2Dp7/t9vKO1b7nP9thdXU3cIhLa7Nn8e1b4/cPSOmd1j7KNxvKms8kcHfWURkenfeUvy5DYPXm8Yq/IE6oIFXk9wyZMG6r2iscl+cLoyp8BJaOsbC6naNlfP23i3aK/01CpFi9dRRKGLsx7PKHjuFMbUrGxXWMc1tyl9pWtzHpDOtv34m+/5t3VXaCs9p2jWIdgkysX/wtaa1mH/f7sws31dKe48ovHdpW+9TWnfckzegtUK5O5V/HRfHaO/O34Otu2bwPUBueWLKkP74CoVIa8NBy//Ryb8faRchYu09srg9834jIhNbtiz/h8a+HFPW6vb5/Pfknf3L97/2Wt1SW0TyCxHrfU93f/7jpVX8Pa3Xb439XYp7iWTvIyLSXCFiaJQixb/lFG6j7har3Mn8W9F+3tZ4rWxZ+3N01uRdj/b759y/FUUG9xDJ3T9ERKS7dvC1ZmF93t+f7dnBonphff59sfieeWqXXiVCIQIgB2UIAAAAAAAAAAAYa5QhuM8zJYgtpwwxNUhRVhniWH2TU4TYJYiRU4TYNYhIXhFiVxH9y0msQnzXf84qH7sGEckrQny/c2oRYpcgRk4R4qwARqwIsUsLkbwaYtG1Il75+ETc+x3krJy3V7T1L2eEyhDXPjg5ZYjv8ZxVhjjGHKkyxHMsOWVIsQgxRqoM8dxFcsqQUS9CRMpViEheGVIsQoxSGdL/h/THpV2GiGTWIZ5z1+cUIq6fzSlE7DLESC1E7DKkfzkZhchAGWJkFCJNlyFGTiEyUIYYOYWIXYYYGYVIx7GKX70QyalDPO9/cgqRluv387ye55QiXcf9O6sUaboQMXJKEdffdhm3VakQqbqckPE8z9s5r6F2ISKSV4n43k+n/g3ZdhyfSF4pYhciInmViF2ILI+Zfj263jvnlCJNlSE2ShFgPFGGAAAAAAAAAACAsUYZgvssXxFipJQhriLESCpDKlbZxJYhvhqkKKYMcZUgtpgyxFdFlC43ogwJuc5jVvW4ShBbTBkS+jvHlCG+GqQopgwJWvW/wmWIr7QQSasgnCVIUcLLZuUxOoqQ0kVGLF3wrWArXe4KFiKuIsQWU4iEPo6jCpGAMVe8EKm4/JQyxFWEGCNThlTcLVLKkNVahBgxZYirBLF5y5DSN4Y/Pl1liJFUiHjKECOlEKn6mZRCxFeGiKTVIb4ypH95CYWIswwxEgoR1TLEU4UUxRQiziLEFlOI+IoQW0Qh4ipCbCtaiAS+94kpRJxFiK3itTilEnHVIQNjppQiwypEROIrkZC/7SJuM28ZEnuZZrzA5+uY11ZXGVIaL6IUCXlfHfP3pK8MKY0ZUYq4yhBbTCniK0MGx4u7L1a9Z04pRIZVhhgUIsB4YTIE9yl1EyBFIZMhVZMftqDJkIg3j6GTISGTIEbIZEjIJIgRMhkSOiHQv/yKD5VjJpxC3rSGTH4YoZMgMb9vyCRIyOSHETIJEn3KI+VXkJBJkKqJBVvoB/61EyBF2scYMBnSv+i6eZrAiRCRlZkMCZkEMUInQ2L+AA2aDIkYb8UmQyIuN2RSpGoSxDb0SZGI58yQyRDtyQ+R5jdJrxIyGRIyCWIET4b0f6D+BqqaDLEFTY7UTIYUhX7QFjOBEjI5UjUZYquaHKmbBCldbsCkSOUkiC1gUkT99FgiQZMhRsikSNBkiBEyKRI6GSISPCESMhlirMikSMRHBnUTIkGTIEbMa3LA5EjdZMjAeKETI8OcDLGFTI7EnsIq4L4YNCkScfkxz8Ghr7khkyL9MQMmR2LeY1e9Nw2dDOmPFTApEjIZYoRMioRMhiyPF/YeI+Y9c8jkyLAnQ4qYGAFWP06TBQAAAAAAAAAAxhplCO4TYooQw1WGxJQgNm+1kLjhnK8MiSlBbK4yJKYEMeqKkNgaRESvCDGqVn/EFCGGrwxJ+V37x+EoQ2JKEJuvDEnaAHuIRUhMZWHUVQ9RJYjhOMaUYzNiipD+ISiWISL6dYiI+/4UU4TYfIVI6saVIp5CJGG8oZchCZdXVYbEFCHG0MqQjOdOVyEybkWIUVeGxFQhIglliEhtHRJThhiVhUhEGWLUrTpOObWWqxCJKUJsrkIktgwZOBZPJRJVhhgVq+lXugwxqgqRqDLEcBUiMUWIzVOIxBQhtqEVIpEfF6iWIUbGa76rGIkpRPrj1JUiK1mIGFWlSMrfnJ7bMqoMCTiOlOdgw/daHFOG9MeqKERi32OL6BYiIvWVSEwhYrhKkZgypDye+zpMfc/sq0RWsgwxKESA1YsyBAAAAAAAAAAAjDXKEIyllBLEVixDcooQo1QvJBYhIoNVSE4JYthFSEoNUmSXITl1hFEsQ5I2o7fYqz9SahCjWIVo/K52EZJTg4iUi5CkEsTWcBmSVVwUaoekAsSmeGwiaUWIzV5Jn7JarUizELHvXzlViEi5DMkpQoyBMkRhvMYLkYzx7TIkpQYparwMUXgOtcuQUd0kPaUEsdllSGwJYksqQ0qDDN6IKWWIbaAUSShDDHv1cc5qZJFyHZJThhjFQiSnDDHsQiSpDCmyVtQPe+P0KnYdklSE2IqFSE4ZYliFSE4ZIqJch9hlSObHBHYhklSE2DJfs+1KJKUQKY1ZLEZGoQ4pKpYiGX979lm3aVYhIlI6ptznZJHB1+iUOqQ/jlWJ5L7XFhl8D5tShpTGs0qRlDKkyK5EcgqR5TGXr8ec98t2ITIKZYiNUgRYPShDAAAAAAAAAADAWKMMwVjRKEIMjfpgYLwJvbnHiX1zKkWIYcqQ3CLE0FhZYVtYr7PSyhxbTgliO3C/KZUipCmTBxRvj4aKkNzaokj7sbuwRmc8jSLEMCvpNVapiTS7d0huGWJ08xa8D5jc11EpQozGyhDFcTtTOveVxsoQxYetKUO0ihDtvUFEdKoQkeUyJLcIMVTKkP5gSzeqRhkiUqhDMsoQW2edwkp/WS5ENMoQo3VgXqUMMUwhkl2GmPH2ufckyZJZhhimEFEpQ4xuR6cM6ens2qUyjvq+ISLLhYjSxwSmEFEpQwyt1/BpvcesiEhrSnc8VaYS0ShEerpr9B4TIiLdab03e53piawypDRerxTReu89oVBdNMUUIhplyPKYk6rvl7XeRxman19QiACjjzIEAAAAAAAAAACMNcoQrHqnP/kvpL2gt+pjYd3SSoiJAzqrDTSLkPkNSytSJvfrrNKY27g0nn1+9RwL69oytUfj/KK6K3E7veHW3qV37vhdRy3VOVN78+5/Zk+PxWm9lVqL0y2Z2aX3uGj1ygGt1VCLSrWFiPRXz6sd25TueCJLq41aDSwA01rtb+7DizN6v3O79xQ6sD9HAvM72vvK5GgtikwoPY+KFPZJ0br6FN+ZtXvlwMIanefU/jmaNR/CSk/3pr6a2qnzPD+/0bwf0Hsu7U4uXXGTu/OOsdO7PVuaVVe3K9J73msrrrg0K3Nbi5mPud5q5tacZr2ydH+2zw2fTPkY2/fuURlHRKR70FoREWkd0Cl1+uNqFiJKZUjroPUiItLdpXf9tdbMSHdB8YW8V051duzMG6b3u0ru46ugtWap4OjOK71nNsemuZ9GqyWyqPfc3HdfKEWUf0eRXpWtOK5WIdJ/L694V9EuRCb3LD0nq+yXMtVW2YtkecBefap0e5jPbOY36hVFWoWIqYC1PgMSEWktdOTLV71DbTwAeihDAAAAAAAAAADAWKMMwap1+pP/ov+/c8oQU4LYclYFdKcK84wKizNMEWKkliGmBLHllCEL6wbnVHOrEM0ipOMYKqcMMSWIoVWEGDlliOtnc8oQe7Wxxuqn4sr+rD1CPHfXnGNcLDwNqPyu1nlni/uYaO4dYqQWIvZ9WKMMaVtPnalliO93yilEinWORhnSsn+1jKvPda7ibsZ5vdvWitncMqQzZT1mM37Xqd3l19e5zemrDu3HlEYZYqoQkbwyxJQgttQypGPdjiplSPExZT3/aRQi9jnbkwsRz+Mhq8JoL9+vVeoQ6xhzjq3l2L+lte9A8nimDOmPNUKFSGu6vEq4u29f+nimljBjKRQirTXL7wGzChHPvmaphUjb+l01ChFThhjJhYh9LBplSHHMSesxq12KNFBQZJUixedqjX0/NEsO1/06Y3zNvUNEHO/tM+4qrteKnL8dTBnSHyuzELHfr2WVIh33z6aWIvZnNhqFSHFfk5x9P3z7w+V8JtQq/L4UIsBooQwBAAAAAAAAAABjjTIEq0axBLGllCGaRUjXXjFblLAYwy5BbClliKsKSSlC7BLEFluGaO8NIqJXhNgliC2lDLFrEJG0IqTuZ1KqkKoVxikrnnwr+KOrkJq7acqxLVYsVkv6XT0rkZwr5Xo0C5GUMqTq/ptSiNhFSFFKHaJZhlTt15JSiJSKkP4/RA9VuYotpQyxixBbbCFSKkKMhN/VVYQYKWVI3WMopRApFiFGShniK0KMlDLErkJEEsuQqsdQzfNfSililyEiiXVIzeMhqcJol+/fSYVIA8fmKkP6/5ZQiNhlSH+sEShEXGXI8njxhYhdhvTHSihEikVIabyUQkSxDClVIUUJjzG7CClKqkN8x5BSiFT9PnYh0v+ZMSxFfM/fKaWI8u9T9Z439fLU9w7xSbiraBUidhlSGjOyFPG+b+tJKkUchUhKHVL3mU1KKVIsQ2wppYhmIdKq+H0pRYCVxWQIRl7VJIgROhnimwApinmhq5wEMSLeb9RNghghkyG+U2IVxUyG1E2CGCGTIU1tjl4ldDKkbgJEJG4SxDX5YYuZDAn93pDJkJAP0WLe1Id+SB00GRIwVMyxVU1+xI4X8sa69g9CWfnTZYXcj0MmRaomQYyYyZDQ3yHk/hayaX3MZIh3EqT0jSFjBdyPIj7cqJsEMWImQ+r+oBaRoN+1ahLEiJkMCX3shEyGuCY/bDGTIXWTIEbIZIhr8sMWNRkS8hwd+DwYMynimgwpfU/IB7eBj4eoiQfHZIgtaHKkgWOrmgzpf0/ApIhvEmRgHOUJEZG4SZGqyZDl8eonRXyTIKWxIiZFqiZD+uOFTIoEvC8QiZsUqZwMMQIeW1WTIEbUZEjoREzMpEjImL5JkYFxFCdIVmKz9dCPbmImR5R+j5D3vrGX1/jpslwC7yIhrw0xf6vUTYqIhE2MBL13k8hJEc/psga+JeC2Cv3MJmZSpGoyxIiZFPFNhhSFfl5UNRliMCkCrAxOkwUAAAAAAAAAAMYaZQhGTkgJYqtbZRBShBghM/1BRYhRsyAgtAYR0StCjLoyJLQGERluERJSghSFVCEhRYhRtaI+pASx1dUeMeVIVRGScjqVuhVNMacsqixCUs70UnFsISVI6FgpiXXw6jjRL0TqyoqYsqmqDAkpQmx1hUhM2VJ13wspQmx1hUhwFSJSWUsk3Z8qVniGFiFGSBkSuqpQRCp/15AixAgtQ2IeL1VlSEgRYoSWIaFViEh1GRJShBhBz+sxb/UjT/ERUoiElCH9761a/R2x0jm4wAgoQ4zKVcANHFtIGdL/3opCJKQM6Y8z5EIkpAgpj+cvRELLEJH6OiSkCCmNWVWIRLwvqKtDgooQW8VjK6QMMWoLkZRT4FUVIjHjhZQhpfFXaSkS87xe9/w07NNlRVz2ipQhRsBdI/a0ilWXH1KG9MdRLEREAiqRgDKk/62KhYhIfSUSUoYYIe/BQ8oQo+5zo5AyxEYpAgwHZQgAAAAAAAAAABhrlCEYKSlViIh/dUFMEWK4ZvijShCbZ0FATBFiuMqQmBLE5itDYooQw1WGaO4NEluDFLnKkJgSxGavrE+pQUT8xUfKhupGsQxJ2li3x7dyKWXzamOgDMl45fEdW2wN4hszZeV+f5yY1XAWrULEV1fEFCE2VyGiWYakbABvFO+TKUWI4StDooqQgR+0x8m4X3lWdcZWIYZdh0SVIDbHocUUITa7EMl5XLjKkJgixGYXIjEliM1VhsQUIbbS833qc3XC5q+GXYnEFCE2ZyGSskGw+VG7xogoQmzOlcCKxxZThJTGchQiMWVIaTylUsRXh6SUIctjDhYiMVXIwDieQiSlDOmPWSxEMt4X+AoRrTIkpgixeQsRrTIkZRwjpRDpX65SKdL0Zus5H+H4nq+GvXdIxDEMbSP1Ko67RmwZUnUsMWVIaSxHKZLy3s5biESUIaUfddx2MWWI4StEYsoQm+u9eUwZYvgKkZQyRIQ6BBgGyhAAAAAAAAAAADDWKEMwElKLEMOsLkgpQWz2zH5WFSLSX0WSUoLYimWIZhGSUoLYTBmiWYOI5BUhxtq75rNKEEOrCDFMAZJTghj2XiE5VYjI8mqlnBLEKO0VkjikvYIqpwSxx8xZtS+SuQqup6m9Q3KKEKNYhqQUITZTiOQUIYZWGWKYQiS5COkfTO//Zd63RMplSGoRYpgyJKsIMaybMKcKEVkuQzQeD8UyJKcIMUwZklOEGMUyJKcIMfrP+bnP2TmrZntMIZJThhgDhUhGfdEfwlQYGWWIMbAiWPHYcsoQkXIdklOG9MdsqBDJKUOWx1wqRFLLkP44vUIkpwjpj6VUhhimEEkqQmyFx1ROGWL0C5GckkOkXIfkjieSV4iIjOR+IqV9RDQ+yjHPXyu5d4hP75hWdO8Qn05eGeI7lpxCRGS5EtF4j1cqRZQKkZQyxGZKkZwyRKT8Pj2lDLGZz5NSyxCDQgRoDmUIAAAAAAAAAAAYa5QhWBG5JYhNYwbfyF1x26dYhPSHVFhFLSLSUVjVamspPZNolCCG2StEowoREVlzr8IqtZ65g3Tnotfco3RsiofVL0KU7hsLaxTvt8oPAZXVbz1ahUhuueSispJO9CuYdmYJVTS5V+mxpFiG9IdUGmtug/65zKf2KCRDolsXmjJEowoR0b2fec/LnUijwhARlTKkP9QunZrAaGWsSC2NpbAqVaSwKlihDDHau8v7fqQN1MB7PaVCRBb03k9plSF9c569MBJ0Fe+zIiKyoPM8W6oLFHQPKN1vNeWWIbZRLkU0P9KZyS+2RHTfG4voVG79sbRe63p3CY1CxJjYr/MctKhwxgxbO7NcXB5I7w9OrULE6E7qHVtu5WOjFAH0UIYAAAAAAAAAAICxRhmCoTr1me8REZGJffmrCuY3La12mNift0pncc3gnODUXoVjWzepsvLcnLO+eL7+HGalvsaq7DXbl1atzG7VWXWyf8vSsdl7X6SY3dT7PTNvykVrYdT6O/JXnMxuXFr1nLvCe3rP0vVk7/+SY3FtWyZm869/UzB1FFcYi+iUIaaWyH1MTVgLfTSObfLA0rHl1lFmnK7icof2Yu96m84bdLL3fK1Zp03uW5RO5nGJiLTneo8phefH4qp/jf0lzGNpQmH1f6ew4m1hrWKFkVmGHNi29FoyeUBv5a25n2Xfpr2bULNomti/qHvfOJD/+jS5a3ll98IWhX0mzGPqQP77qvbsfP886BrMys/cY2uiDDGrqSd27q/5zhoTps5UuN8WVsS35vNvz+7apWK3tXuf2lgiIq1ZhVW45v2ZRoUxPSXdA7P54/S0eqVDboXR36tF8WOA/kcKs5m/r9k7RGPPkBmrDM8c0+yx0t2bf7+VbZuX/v/uvfljiUhrXe85W6Fs6q5bIy3NCqZ33+hOZL5X09w/xKoDuzN5ry/md8v+HUWkPd/bu06pYDSvdyp7YexZenxrvR6bfUQ09hAREVnMvB1FytdTdpXde3swuTv/9Wlu69Jz0MVf+oPssYD7OsoQAAAAAAAAAAAw1ihDMBQaRYgpQYycIsSuQUTyipD5ddYKlcQFgi3Pr5Szir2/b4PkrWo1JYgtpwwxNYhIXhFiShBbahmiWYSYEsSWusrEFCFGThmyuLZ8veWUIfaeNqNUhtj7Z+Q8puwqRCTv2EzJYeSUIfZYInmFiClCjNQyZNLzfJ1SiEzuKz8ec8oQU4T0/zvjedK1D0TO6n/7MZRThnQc50AelTLEVCFFOYWIfb9Kvk09N13OfWRi//L9V/O+0R8/oxDRKkNac+7bLqfCaM8uvwfJWZHqOxd46rGVzhOfUYi4zq+fVYfYK5Rz/uRzrBLPKUSKNYdIXiFijyWSWYjY789yChHHvhAppUjLs/dFaiHSL0P6A6XfN5wfJeTUIRPW4zun5rDLkMzxTBliZBUipgwpyqhE+mWIkVGIdNetKX0tqxSx7iPJ9YRnn5WsUkSpEPH9TjmliClERPIqEd/rXk4pYgoRkbzX5I7nthuFUsR1/WRVItZLfE4pQiEC5GMyBI0xEyAiaZMg9uSHLWUyRGsSpDT5YUv4W9g1EZLyge2C4wNuI+UDHN8kiBEzGVKc/LClTIb4JkGMmMkQewKkKGUyxDcJYsS8mbInQIpSJkNckyBG7GSIPQEy8G8rOBlSt3l4ymPLNQlixByba8KiKGUypGrMmMkQe/LDljIZ4psIEYmbDHFNgvTHSTguexKk9O8Rz5dVm2GnfOBd99iJmRRxTYIYmpMhRsykiGsSxEiZDKm6PyVNYChOhhQnQWya95GUyZDiJIgtZVJEczKkOAliS/kARnMypHLD3IRJkarNhqMmReo+fEv506/ig9CYSRHXxMXAWAmTIlVjRk2K1L0vS5kUqdgkO2ZSxDcZsjRO/IRIaTKkNGj4faTyo4SUSRF7MsQWM5nhmgxJGafHngyxRU2OuCZDjIRJkdJkSFHkxIhrMqR/OSmTIhX3kajJgppN55MmRSo+dI+ZGKn7PVImRYqTIbaYyZG6DcFTJkWKkyGly0t4bXZNimhNiBSlTI6oTYrUvC1ImRwxkyIiTIwAsThNFgAAAAAAAAAAGGuUIVBXLEKM0DKkrgYRiStCXCWILaQMqS1BjIiFgL5TYhWFrF6vKkFsoatZ62oQkbAipKoEsYWWIXU1iIheEWKElCF1JYihVYQYIWVIVQliCy1DqoqQ/vesUBlSV4WIhD22qkoQW8ix1RUhRkwZEjJmSBlSV4QYMWVIVRFihJQhVUVIabzA46urQkTCni+rihBbyOr/0MdMSBlSVYTYVup0WVVliBFSiITcj6JrjoCbImTMqiLEpnofCShEqooQW0gh4itCbCEVRlURYgtZhVq3MlYkvg6pLEOMgEKkqggxVMuQ/gUHPCYiVoGHFCJ1ZUh/rIBCJHQskcBCJOT9WWgdUrOCvSikEKkqQ5bHCX8815Yh/UED3mOE3I9iCpG6MsQIKTuqypCE8erKEJGIOqSqDLEFlCKVZYgRWIhUlSGlyw15jgi5HykWIv0xQ0qRgPpAsxAJ/R6R6jLEFlKKhLwOhlYiVWVI6XIDXqN9p8sqWqlSJOQ6iSpFAt7GhVYixTLEoBABwlCGAAAAAAAAAACAsUYZAjUpRUhICVIas2K1cUgJYtQVIcE1SFHFTH9ICWKrWr0eU4SIVK9gDSlBbFVliGYRElKC2KrKkJASxFZXhoRWISLVK0dCShBbVRkSU4SIVFchISVI6WeGXIaEFCFG1WMrpggx6o4ttAoRqS5DYsYxqsqQ0CKkqK4OCSlCjKoV/TFFSH+8mmMLKUL631vxnBlThBh1q/5THi+uQiSmCDG09w6pq0NCihCjqgyJ2XPGqK05Ep62XGPGFCFGI/eRikJEqwwJLUKK6iqMmDLEcK0+DVkJW7rsmmMLKkJsFYVISBli1BYiKZv1Vv0pmLA/gKsQiak4+uPU1CFJY1YVIjEre+sKkYgyxKgqRELKkOVxqh/XwVXIwKAVez6kfJRQVYqEliEi9TVHTBkSMGZIGWLUFiIxZYhRUYgElSG2ilIkpg4RqSlEEu4jlfVETHlVVxwk1AZVpUjK3iB1P6NViKS8HlZVETF1iEh1IRJShti0S5G6SiRmb5XKUiThfWZdKUIhAsSjDAEAAAAAAAAAAGONMgTZXEWIYZchKSVIfyzPauOYGqTIV4YkFSFGYaY/pQQxfKvWY2uQouLK1ZQSxGaXITE1SJGvDEkpQgy7DEmpQUT8RUhMCWJzrRRJKUIMuwyJrUGKXGVIShHS/9mGy5CYEsTmeoylFCGGfWwpBYetWIjkjOcrQ1KqEJFyGRJTgthcK/tTipD+eJ4yJKYIKf1s4bkzpQgxfKv+cx4nWmWIoVWI+MqQmCLEVixEUooQw1uGZDxdaZUhhn1fybqPOMqQmCLE5ipEUsoQw64wUooQQ6sM6R+LpxBJKkOMQiESU4TYvIVIShkiUl65nVCEGFplSH88TyGSNWaxEIkpQmy+QiShDDFchUhMGVIeb/DxnlSGiHhX92d9lFAsRGKKEB+76kgpQ3xjSVwZYiuVIilliIi3DkkqQwxHIRJbhgwci/38kXEfcVYTOY8vX4GQWBnYlUhKGVL3szFlSJFdieS8HhrFOiK2DBk4Fk8lklKIGFqliK8QiSlDiryVSMb7TrsUcZUhBoUI4EYZAgAAAAAAAAAAxhplCKJVlSBFE/sWskqQ0ni91cepJYjNlCFZJYjRm9nPqUGKzKr1nBLE1p7vqhYhqSWIzZQhOSWIzZQhqUWIYcqQnBLEZlaH5NQgRaYMySlCjInZTlYJYmuqDMkpQgzzGMupQYrMsWkUIUZnQmc8uwxJLUIMU4bkFCE2s9I/pwoRKZchOUVIf4zeqv+cKqTIrPrXeHwUy5CcIsRoau+QnCLE0CpDjH7Nofg01Z7vZhUhhmYZIrJch+QUITZTiORUISK6ZYjRnZpQWQFrmGPMKkIMpTLE6BciGauRB5g/CzPKEKNYiORUHP3xeoWIxlgihTokpwwx7EIkY+W6yHIdklOElMdcevwnlyH9gbrWfypcf7OzOmWIYaqOnDLEMV5OGWL0C5HUMsTWK0WyyhDb3HxWGWL0CxGlj5v65UTm42tgTFMiZFYFphDJKUNKY/bGSi1DbKYU0SpEcsoQmylFcsqQIs39REwpklqG2PqliOL7z8ndc5V1SBGlCLCEMgQAAAAAAAAAAIw1yhBECa1CRPL2GhjQxD1UecyW0nizm3VX5YqIrLtdael7z44HK62yEpHOVHl/jxy+vRFSTXpOyZ1jZpfO6p7+ilLFVSXec5om0ipDTHHV0VsgObA6d1R59zaINNFbua31nNzSuQsP0Cg4RES6vftcK7N+KcqtVWyLM7pPVFqvPyL6ZYhv/6sc7QWlFaZtU4fprR6c2qX4gib695WZO93nmk+xuF7vvYCIyKRvD4xEnbV6K4f7rxfaq5sVaa7QFRGRBcXnvUnl97aaxyYirf2Kq5tnlu53rn1Tkij/riIi0lF6zuuVHN35/JpLRPz7r+RQLGtERFpTikXCmsxCx1LapyNTV/Nx2156zms59iZJoVWHDYzZ1n1e7qzTu6+0D8z79zoZAa05xcdu7268uEHnNtYsRERE5jfoPm5FRFpK7y06U+H3YeoQgDIEAAAAAAAAAACMOcoQBAkpQuYPWlpBMjGbNwNvnwtcY3W0vc/IROa57u3xNM6dr1aFWFfXujvyypCdDxpcmdFVWOjb6S2W0apCNIuQNTuWr8AFhVXNE9b9N/e+0kQRYu4zuStTFq3yQGMPneIYGmWIWUWvca52keXnO40V3PYK9W5mvWKPp1GGzGyfl7nNeqvdTMGRW3J0rQpJowyx923IXfVvVmxpPl9pVSH2a1rufa80vsJz6dRe81jTOTbVMqRwO0ztzn9hm984+GTXznxfZc4Pvubnu7PGKVrY1NszJHPVpX0u9Pa+/Jq1M1N4jtJ4vCmXIeY668zkv6jZRWf29bd9x+B/b9qQN56IdNfNqK4cNvfn1oHMVebW81xrX/6eOt2ZwdfHUSxEugcO5O8bIlLa4yO3ELH3RzF7nGSNuXbpeUqtXtmwfmncA/nPU9pliEwNXn+5x9g1+3JolUQiaoVI6brTeM9S3M9J8T2QViHS7j3faRQi9t9AuWcGUC1DjI5SHWL9ru25vOfShfWDt6fG35P232fZ70t7N6e9j6ILhQjuy5gMQaWqSRAz+WHLmQxxbYqaMhni22Q9dRLEN17OB9vqp8TyXE0pkyH2BMjAxSS85nc87wNTJ0O0T4clMjgJYuRMhtiTIEbKfcb5RivnvZfnvpI6GWJPgvTHy3gv5/rZnMkQ34fGKW9iXc9xOZMhvje9qX+M+cbLmQyZ2V7+wzVlUqRukiJlEsOeCEkdpz+eZ3Pu1MkQX7ae8zzW1CSIMUqTIWYSRGs832M+649Px+2RMiliT4IYOZMhro1ScyZFzCRIUc6EiG9j2JQP9TszjueknPcLvsdBxp9OrusqZ1LE9SFW1oSIPRliJEyKdNeV30vmfGjm2/Q3eVLEc/vmTIrYkyEiihMiRQmTI67JhaxJEc+G56kTD77N4nMmRcxkyMB4KcfXmwQpjZ8x4dD0ZIiReoxd3yblOZMjjlNRpUyMeK+7nPcujp/Vfi8kkj450vY8z6VMjlT97ZMyMdLUZIgta3LE8zunTo7YkyJGyt+Vrr/PtN+TilRPjjApgvsiTpMFAAAAAAAAAADGGmUInHxFiK8GEUkrQlwliKFZhBgxZUjdWCJxq/yHVYLYYsqQYRUhRkwZol2DuEoQW0wZ4itBbDH3mcrVJSmLlWoOMaUM8VUhInFlSMj3xpQhoSvnY1bwhDzHxRQidat+UlakVY0ZU4a4ShBbTBkSWmrEFB2uIiRrvIrXI5H4MqRuI8OU57SmixDbShYiriIkZ7y6x3rSKryK20OzDDFiChHfKvqimELEVYTYYgoRXxHS/3etMqQ/YPRw9auMI14zQ66bmEIkZPVu1HXoK0JsEYWIqwwxUlYS192nowuRmts3phBxFSGl8Va4EAkpLKJKEU8ZIpJWX/jKkP6YEYWIqwgpjRdzjJ4ypHS5ERXGsMoQkbQ6xFuGGCmFSMUm5TGFSPB1F/MeJuB7td8TxVQivjLEWMlCZFhliC2qFAn4ey+mEvGVIYZWIWJov0f1VSIUIrgvoQwBAAAAAAAAAABjjTIEA+wipKoEsYWsmq4qQWyhZUjoCleRsDIkZryqVf7qJYhIcA0iElaEVJUgpYsOvOnqapCikDJkJYoQI7QMCa1CRKrvM1GrSEK+NfLZPaQMqSpBSuMFLGKJqUdCy5CY1fMh13lM9RZShsSs7qlbhRYzVkgZElKEGKFlSEydEfK9IUVI1HgRr0uhdUhdFTJw+QHfqlWEiMS9xq1EGRJShMSMJxJZgIU8piJuj5BCpK4IKQqtQ0LKEKOqEAkpQozQMqSuChn43oC6obIIKQ0Y8D0x9/vAP6NiqpmQQiRm1W5QIRJahojU1iFVRYgtZEVxzH05uA6JuI1DCpGQMqQ/nnYhEliHRJUVIYVIRRlSuuyaCqOuChkYK6RwCShD+uOFFCKBZYhIeIUxzDLEFnKMtWWILaQUqShDbFWlSNR1F/pYj3hOWIlCpK4MKQqtRGLeG4W85qgXIpExRGUpEvG7hhQidWVIUej1HFPwa79XtUsRChHcF1CGAAAAAAAAAACAsUYZch+XU4LYXKunY0oQm68MiVnValQVISnj1e37sFL7gxRVlSExRUj/EDw3ZUwJYnOVIdoliEhcDVLkK0NiShCb676Tcl7R2jIk4RCrypCYIqQ/XsXDJKYIMerKkJTV867rPmX/I8NXhiSd61X8q89SxxNxrzyKKUJsvkIkpggJ+ZmYIiRovITXp7oyJKYI6R9HxY+sVBFSpL0CUsRddMQUISHjiSQ+t/Y4H2MJt0dVGRJThBh1ZUjMKnpDqwwx6iqImDKk/zMVdUNUGdIf0PG1nPu65/UzpgixuQqRmCLE5r0OY6qQIk8hElOGGFUrilPu07WFSMJtXVWIxJQh/fGGVIjEFCE2ZyESUYSUjsVTYcSUIQPjeX63mDKkNKbrGCPKkP4x1NQXK1mGGFXHGF2GiNTXIRFliOEqRLKuO99jP/H5v4n3SK5SJKYMsflKkZT3SFWvQStdhogE7COS8DtXlSIxhYjhu95jyhCb1nvW/rFQiuA+gDIEAAAAAAAAAACMNcqQ+7BTn/merBLEsFdR59QgIuUiJHU1a5FdhuSOaa/uH4USxGaXISk1SJFdhuQUIUaxDBmlIsSwy5CcIsQo3ndyVi2XyhCF+0yxDEkpQUrjdar/O5Zdhmismi/eBjlFiGGXITkFh0h5xVnueCKDK49yihDDLkNSipCqn08pQmrHzHydsguRlCLEVnwO1CxCjFEuQ3KqENd4Wc+tPQOPNYXbwy5EUqqQIrsQSVk9bysWIilFiM2uIlKKkIGft8qGpCKkNGjhf2vc160/q3LKEJFyHZJThhilQkSpDEkpQmzFlcUa9+lSIZJ5G9t1SEoRUhqz4UIkpwwxBgqRjDLEsOuL1DKkP571O+aUIf0xi8eYUIbY7ApjFMoQW/EYk8oQm12KJJQhRrEQUbnu7OeCzOeGpguRnDLEsAuR3PdK9uvRKJQhtlIpkvk725VIShlis2+HnEJExPG3osJ72M50mzoEY4cyBAAAAAAAAAAAjDXKkPsgs0+IRhUikr8K2KaxCrg8qO5wvvOTZ1E+xvn1use4qLyASSS/FLDlliC2JmqVidnRfcptdbsqRUh/vM7g/89lyhDNVfNmNY5GFSKyXIZoFBwiyyvNtMYTWV5xpFGFiCyXIVqvBWYczdeC/piZRYhhyhCNIsTotkerCLE1seqxvaD7Cy+s1X3S1npeGKB8NbbyYouSyb3KKztFZGK/znNNn/L7ThERUX7v2cqsYGzdKeUCWUTat9ypM1CvENEoQ4zW3IJKGdIfz6yqVnoeM4WIRhnSH7OhQkSjDBEp1CEKZYhh6ovcMqQ/Xu931ShDRAp1iEIZYpj6YhTLEKN1YE6nDGmKQv1ZHlP3/YP6e6YG/ibtrNG9jTXqlQENvAVb3LRGdTzNvwMM3/6TqbTey5p9RChEMC4oQwAAAAAAAAAAwFijDLkPOeVFf6M6npllzt0jpKgz2dJdGat87zars+c26K/Q0zrWyd7tsn+rzjF2e8N0FH/lidnemEoLUkx5MLNrdMuQqT29x4tSeWHO06pxbnxjYq4j8+sUV2L2bg6tlcuzm5aObXqP3lKhA5uXxlx3l85B7jt46YGy7m6d8cztMbNTb5Wxef5af+usynh7D1taDTy9W+l3Xr/0O+fuI1FkKhON8+2LSH+1mno5oLiQ0KxW6yo9d5s9KhbX6L0YmMpS67amDMlHGaJDqwzpmtXKmsfXu/7aP79LZbjW+nUiItLZuE5lvD57vwEFrVmd+3d37dKq/tae/SrjiYi0ZnuPE633deZ94r59KsO11vRWVGuueDf1wexc9ffF0jrGyaXXu+6k4h9B5nee03leNEWWdo0mWu+XREQmes9jizqP6daBpfev3XWKq/zNfUbrvtM1f6cprz1WHM7sabV4kE7VZ95jq+0dYq67zL23ikxlWdyPJcfC+qUiq61Y8M8fNCntef3XP633tLNbl667y8///6mMB6wUJkPuAzQnQYpPohqTIPYY2RMhTfx9XHhxG8VJkEnrhU1jEsT14VnOZMiE5zPX1MkQ32mXRmkyZMrzgX3OZIjrg9ycyRDXqZdyJkN8j9+cD+vMBEhRzmSImfywpU6GmMmP0ngZkyGu2yBnMsT3vJU6GWImP2w5kyFmAqQo5wNy3ym2sidDrEMaxckQO9nPnQyxN+rWmAxR30B9jbWBuvLpKTRuZ/sP5U7maRC0J0FERCb3Fz7AULhr24/DyT15H3i2Dgx+wKJ+6iiFCYfO9OAxTezN+51LH6RpTIpYk0m5kyJmMsS4L0yKmMmQ0rgZkyP9yZCinIkRz+td6uRIfzKk9A8Zx+g6FZP2xIhI+jF6JkGyJkdcv3PGxIjv9HQjNTky4Xi9y5gYMZMhtqzJEdd9JOe+7fmIbZQmR1qOSQaNiRH1jdXt60xhcqT4/kFjYsRMihi5kyPzB1njKU+OaLyvZVIEqx2nyQIAAAAAAAAAAGONMmSMaRQhVbPGKWVI3c8klSENnQrLZVTKELsGKUopQ6pWDjdRhPTHTliIUbUZ9yiUIb4ixEgpQ6pWs6eUIVX38ZQypO5xm7KC2VWEGClliK8IMWLLEF8R0h8voQypuu5TypC656uUMsRXhYiklSGuIsRIqQXqNl1PKkMqDmOUypC6TRxTChG7CilKKUTsIqQo5fa2ixDbKBQiVasDU+qQxosQW8JdvO5xmFKI2FXIwOWNQCFiFyGlIRMKkcoVxCmFSMXpxVLqELsIsa2GQkQkrRLxlSH9MRMKEWcZYqQUIlXvHRPqEG8Z0v+GhGOs2qR7FAqRmgIkqRCp+p0TChFfGWKMRCHiKkOMhELEV4YYSYVI1X0j5b5d8RGbeh0iol6IGCmlSNV77aRKpO76SihFqt43pJQidhlSlFKJ2GVIacwRKEVMGWJQiGC1oQwBAAAAAAAAAABjjTJkDOUUITGzwiFlSGw9ElWGDLEIMVa6DKkqQoyYMiRkpXBsGVJXg4jEFSFVJYhtpcqQuhqkKKQMiVm9HlKGhNy3jdgyJOQxG7OSuaoIMWLKkLoixIgpQ+qqEJG4MiTkOo8pQ2Kep0LrkKoixBZSiFQVIbaQYqBuJbot6DEW8dyzkoVIXRFixJQhVUWIEVOGVBUhRkwZUleEGCtZhsSsBAwtRNQ3S68qQmwBv07M4zC0DqkqQkqXv4KFSF0Z0h8yohAJWj0c89wXsPF8TCFSV4YY41SI1BUhpTEDCpHKIsQWUojEvIcMLERqq5CBb464T1ZVEsZKbq4eWH5EFSIhv3NEIVJXhog0UIcUhdzfqsoQW0ApUleGFAVXIjH3i5DvjfiIbaX3EakqQ4yYQiTkPXZUIRJ6/UQUIiHvF2IKkaoyxIh5X1hXhpTGXoFSxC5DDAoRrBaUIQAAAAAAAAAAYKxRhoyRYRUhRl31kbKnSOUq8xUoQWzDLkNCShBbVRmScs74ujIkpAQpjRmw0CKmCDGGXYbEFCFGVRmSsp9BVRmSch+vqxRS9vWpWs0cUoLY6sqQ0BqkKKQMCSlCSuNWFCIp+7PUFSKxz1F1ZUhMEWJUlSExRYhRVwzEViEiNY+1hOeelSpDQquQoqrXgZAixFZViIQUIba62zu0CikaZiGScm7oujJkRYsQW8Wvl/JYrCtEYsqQ/nEMsRAJLUIGhqupQ5JWCVdd9wFFiK2qEAktQorU65CBwXWff6sKkdgyRKS+DokqQ4yqQiTlvWRNIRJVhojUr5wPqSNsK1GIJOwJUluJpPzuFaVISBlia6QUqbrfxZQhRkUhElOGGLWFSMr7hKqfSfiIrZG9RERqlz+HlCG2qlIk5e/ZylIk5Xqp+Z1S3idUlSIhZYit6v1ibBkiol+HiFCIYLxRhgAAAAAAAAAAgLFGGTImUqqQ1JWsvuIjpQSxDaw6b+CembJSvmhYZUhKEWL4ypCUKkTEX4akFCH9MR0LCFJKEFvTZUhKCWJzlSEpK2gMXxmSel/31QopRUj/Zx0L0FKKEJtdiKQUIUV2HZJSgpTGdJQhKUWI4StDUp+bfGVIShFiuMqQlCLEZhcDKavQi0qPO4XnoGEVIilFiOF6LUgpQgxXGZJShBi+MiSlCCnSrkNEyrd3ShVS5CtERr0MyXks+sqQlCKkSL0OESnVFylVyMBwnkIka3Ww67ZIKEMMVyGSUoYYq7kQSalCBsazCpGkIsTmeg+Y857SU4hElyH9H/Q8N6TUEYZ2IWLYx5pQhRSVCpGc39lwFCIpZYihXoj47nspZYjhKERSyhBbqRTJfY9g/7zCR2zD2kskpQwR8dchOX/XOgsRjevB+h1z3yPYlUhKGWIrvodMKUNK4w1pHxFfGSJCHYLRRhkCAAAAAAAAAADGGmXIKhdThGitWDUFiEYJYvRXnTd0b8wtQowmy5CcGqTIlCGpJYjNlCE5JYh37CmdIsRoqgzRKEIMU4bkrJopMmWI1n3crhZyihCbWd2sUYWILJchuUWIYcoQjSKkP2avDMmpQYpMGaL9XGQKkZwixGYKEY0qRGS5GMgtQoz+Y1DxOUi9DDF6v3JOEVJkXh9yihCbKURyqpAic3vnFiHGaihDDFOIjFQRYuv9qlqPR1OI5BYhRiNliNH7nXPLkP5wvUJEbRWwuU0yihCbKURyqpCixgoR5TpEZLkQyS1D+uP1ChGVMkRkuQ5Rel8pslyIJBchPuZ5WKOSEGmmEjHHmFmGGP1CROt37tUhOUWIrZE9RESW75M5ZUhRrxLRKEOMfiGi9R7BjKP4EVvTe4mkliE2U4po/Y3br0Q0f//e76r1HsEUIhplSJF5P6lRiPTHbKgUqSpDDAoRjCImQ1apkEkQ8yH21D7dJ76FNfovyJofiIvofTBsHNiydGW2FT9HmO59qNlR+uDI0PwgV0Skpfg7Lw+69P/qNigPNbl/6WlsQunvyv64yo8dEb1JKqO9oPsUvveQpTddM7v1fvd991u6oScPqA0pIiId3fedjTC39/Rundtpfu3Sg2d6r/JLdwPvBLT+GDImD+iOtzi9dF1qPs4Xe6+P0zt1nzg707qvu1p/+BZpT4ZM7l86xs607mtkE5MiU7t1b+/upO7t3e39ylP79I5zft3SE/Dkft0P0aburt7IOVYTkyKdtbovPt3eB4UTNZvJB483s/Q7t2b1P+Cc2LlXdTztSRHz2KncjDdWQx9EtrfvamRcVdqTS1O9x47SdWoWBLX2N7Bia0r5cV63gXf0gEvviTSf4/rvDbQ/HlJ+3W3t3V//TZG669eqjtfatfRc2d24XmW87nTv/tjA+7eW8uO8s05n4tjoL5JQfG+02JvEaGsuEhGRuYN170eLyu//RfQnRRbWhz8HMSmCUcJpsgAAAAAAAAAAwFijDFllYooQQ6MM0a5B7CIgu7iwFpxonqrEVCEiOmXItLUBcm4ZMnfQ4JW5sDZ/9U27UFh0NRfz2HvLZd6tTBFiqJQhhadEe/wUdrmhtWp6Ye3glefatDqWqUJEdMoQU4QYuWWI/dzm21w6aezCAkCNx7ldAOWWIfPW41qjDFkonH5I475ulE6tlvk2wz4Nj2+D7RiLhdpAowxZtF4jtcqQrnU6yq5rs9xIxVNcThzIf96wN1DPfY4zRYihVYaUrjuFu7x2EWJXshpFUPE1vIkyRESnDrF/15mf78kab2Hz4Crsib35bxDmt1hjap3SyzqFTG4hYsoQQ6MQKa4cbu9WWJVtnd6oc/Dm/DGlXFWpFCLaZYi1Crt9b959vVQwzCs+LxXH1jgllX2smdet/byuUogUT2eleaqjhsqQ/n8qFCID1WgTHxEpFSL2aaPau/OLte5BhUpN4Xc3ZUh/yMxCpF+GGIqFSPG+01Y4fZ99X8y9b5ZOn6lQiCwWNkDXrEM6awZvp4UNeafHm7eqi/a8wn2zUO63FE6nGVOGGBQiGAWUIQAAAAAAAAAAYKxRhqwSdUVIacW05BUhTZcgtqyV2I5FJjllSLEEsaUcp12C2FLLELsIMXLKkLZjMUhWGVLzsyllSNUK9qwyxPFUmLNavm4vj5TV03YNUpRThhSLECOnDLGLECO1DHE9vw1IuI9W7TeS83zk2xMmtQyxi5DSuAmFyELFhtQp9/lSCWJLfJvh25g5pwxZrKgMUgoRuwgpyqlD7CKk//WMMqTjGDOnDLGLkIF/S3h+s4sQW04h4rzeMt79Nl2E2HIKEddreE4hUixCjJwypO53SylE7CqkKKcQscsQkbw6xC5CSmMnFCJ2FVKUU4i4zimfVYh4KoOcQqRqr52kQqSpTYs95+dPLkTq9rZIKUWqxkwpROqOMfG69r0mZhUiVRudJ7yfUS9C+gO7jyVnFb5zP7GmPipKqETqNhLPKUQGypD+F9N/d7sMGRg2oRIplSG2jFLEdZ/JKUR898HU+2apDLEllCLFMsSWU4rYZYhIXh1ilyG2lFKkak/HnFKEQgSrDWUIAAAAAAAAAAAYa5QhI85XhNSulJa4MkS7BDFCV/5HrcQOWEgSU4ZUlSC2mOOsK0KMmDLEV4MUxZQhrhLEllSGBP5MTBkSsmI9qgwJeOpLWSVfV4QYMSunq4oQI6YMcZUgtpQyxFeE2GIKkZDnupgypKoIMWIe574SxCW2DqmrQkTiypCqIsSIuc/XFiFFEW81fEWILaYQqSpCjJgypKoIMVLKEF8RUvq+iELEVYTYYgqRqiKk/z0NlCFGTCESdD1F3I+HXYTYYgqRkNfumELEVYTYYgqR2NolphCpKkOMmELEVYSUxosoROqKkP6YymWIEVOIuIoQW1QhElgVpBQiVWWIEVWINLxXiPdiYwqRuuKiKKYQCRk3phAJGS/y+o55HYwqRarKkP6FR7ynaXivEO+3JazCd5YhiZcffqExr+lh95GUQsRZhpS+KeI9ckUZ0h8uohCpLUOMhEIk5L4SU4qEjBdz/6wtQ4yIQqSqDLHFlCKuMsQWU4rUlSFGTCFSVYaUvjeiFEkpQwwKEawEyhAAAAAAAAAAADDWKENGlF2EBK2OtoSUIU0UISn7QFSuxE4oE0LKkJgixKhbMR5agxSFlCEhRYgRUoaEFCG22lWmCbdTyH0lZqV6UBmS8JRXdwyhNUhRyMrpkCLECClDQooQW10hElqDFIWUIVHPeQH3vZAixFb1eI8pQozQMiSkCOmPGVCGhBQhtqr7fFQRYoSuZAysQkTCypCQIsRWVYiEFCG20EIktAoRCVsRG1KE2KoKkZAipPQzgYVIaBUiElaGJO2tUnEX1S5CjCbKkJSas6oQCSlCbCGFSBNlSEgRYqsqREKKkNJ4AStYQ8sQkfA6JKQIsVUVIiFFiC2oEImoCULrkJAixFZZiAx5rxDnIYTWITFliFFViKSMF3KbxowbeP2nPM9XFiIhRUjpIOrf26xUGTLwIzWr8IOKEIXjqD6IkNf2+MdmXSUSVISUfqj+dw8pQ/rDBRQiwWVIUc3tmlIPhRQiMeOGfG9wGVJU87oQU4YYIYVISBliqypFQsuQorpKJKYM6f9MQCGSU4YYFCIYJsoQAAAAAAAAAAAw1ihDRlCxCkkpQgxfGbLS+4O4OFdgp+xV0eMrQ1JqkCLfSvGUIsRwlSExJYjNV4ak1CBF3tWmGbeT6z6Tsk+H4S1DMp/mfMeUUoQYrhXTMSWIj6sQSSlCDF8ZklKEGK4yJOe5rs9xX0wpQgzf4z2lChHxlyExJYh3bEchklKEGL77fFIVIuJ9DMaUID6uQiSlCDF8ZUhKFVLkK0RiipDSzzpWxqYUIYarDEkpQkpjeAqRmCKkyFeHJBUh/R8uf6mpIkQkvgoxfEVF0v5ePdpliOErRGKrEMNXh6QUITZXIZJShvTH86xkjalCBsbzFCIpRYjNVYiklCGGsxCJ2V/C4itEUoqQIm8dskJ7hVTxliIpJYeIvw5JHU/EfRvnjGd4bo/U53tvHZJShvQPpvwCol6EVFxW8I96VuEnlSH9QRv6KMlRiqSUIYavEEkqQwYG8LxfjihDSkM6SpGkMsTw3L4pZUiRrxLJGdf1s0lliOF5nUgpQ4p8lUhKGWK4CpGUMsSoKkRS6pD+z3oqEY0yRIQ6BMNDGQIAAAAAAAAAAMYaZcgIMUWIygppWS5DRrEEsfVXYOcvEhaRchmSW4QY5jhzShCbKUNyapAiuwzJLUKM/qpTpdtIZPA+lFOE2PqFiNLTmzm2nBLEVlwprVGEGKYMyalBiuwyJKcIKTJ1iNbznYj075s5NUiRXYakFiE2U4hoFCH9MQtlSE4RYjP3/eQixNZ7TGoUIUaxDMkpQmymEMktQgy7DMkpQgbG6a2OzSlCbKYQ0ahCRMplSGoRYjOFSFYRYivc15soQ1KLEJupK3KKEFuxEMkpQmymEEktQmx2IaJdhuQUIaVxeytaU4uQ0nhWIaJRhogs1yE5RYitX4hkVCFFdiGSW4YY/UJkBPYKqdMvRDSKC5HlQkRrPJHB21tz3N7to/V8XypEcsqQIvM+p4kyROnvGnv1fVYZMjBwAx8rFQqRnDLEZkqR7DLE6P3uOUVIachCIZJVhth6t3duGWLYhYjWuGacrDLE1nvdyC1DDLsQySlDikwlklOG2IqlSE4ZYjOliFYZYlCIoGlMhoyAU36lNwmi+BonovcHd5HmBEhRW29uQURE5tcpfjpQsGa78oGKyIFtui8c5oPQus3eYzVx20/MNvP0MzGnO+50zSbiKXYfPhm0+XUszQ/YRUQWZ1SH69OapCvqKP0da1ObCDDjNXDmHXOM2s/7U/t0f/nGXkNqNgtM0cRrqIjI1F7d15FFpQ+Yi8zEr+YEi4juH18iehNVLlO7dB+oTd2fFmdGP/JuB2y8mWKi4vReKTrTuu/HitrzuneA9rzu80gTkyFG++6dquMt/sJW1fEMtQ+Eixq4PkVE2nsc5xsdJYu9+2fAptixupO6j9PWYjO3UXdtA2+gh3hKqiwNHGdnzbS0lJ/3RERaysfa2uk5pV2mzv02qY/ZVb7dzUTAxD6dCfC+Bt5DLG5s6A9c5UPdf2gzp9vznVI+h/p78t51efm/MSmCZoz+X1AAAAAAAAAAAAAZlFsEpNAqQtZsH1whN7tF7+Y1q461JrubWiE5t35pfk9zlYf2CvZFxVMiFWmeGsdoahV3q7ewpzPZUjn11Lq7rPv+JuVTu+xWGW5pqMObedqd27B0rFrVQRNFiHYBZpjTV5nnldz77aS19+ui1qIc8zxqjlfh+tCuVgztUnF24+Dz0/QevQOfX9uSGcUypDM1eKxaBZs9robic53GqQY1TwVYtLzh+dL/nziQ+Sagd5gTvdNtab6utntl4eKaCeeG8rE6U4PHprUar78CT/Emmyz8vgtKp0gTWS6M1O5fneXbSERUbieZaEm7t0K8o3RKK5Hlcsf8/6k9eS/S2kWIzZyGRqMQMaexWjx0i0zcfm/2eEZ779LpjTrrdd+omOPVLERai13V00KaFfydDWtFxLNZfQJz6inteq9fCCisQNcuQprSP84GTkFWPP2QRiXRWTc98N/t/Tp/9JpTOvVPQaekf9okzedB81yndAoue/NzjdNmdbZtVH0sGcXnec1TkC327ldqhYh9aApP0cXnea1TLoqILK7t1TGeDdZj2X/Tqn2GZp7qmzmZio5RPjaMBcoQAAAAAAAAAAAw1tgzZAVp7hViVyEieWWIb7Vx6mbHdbPYOaubTQ0yOF76gFUlyPSu9JUovpWrqfub1JUgOXuGaBchVSvgc1aK2kWIkVOG2Bv9Fq29O/32dxUhOXuGmBLEJ7UQGXoRkrHCxbeheer91y5CbFmFiOOmzilDfM+ZuSuGfK9HM7vS76t2FSKiU4a49seZ2ZV+BfjKjdQypK4EmdmR/iTteo7LKUOqnodz9g3peDa0zypDKn7NnEKk7dhrKqc4sIuQ0tiJhYj3nMwZD6nJit8zqxDx3HWSX/drVq1nFSKO1fs5hUjVXi45dUgTZYjZL8T5bxmFiGu1bU4hYq+4tmmXIjmFiGvlukoh4lgVnlOH+DYjzy5EFj33qYxV7atmrxDfcWYUIlUr13MqCbsMMVILkbqNs3NKkc6a8rHm/O4t331UJK8S8XwGkVOIdLZt9P9jTiniONacQqRu8/DkUsT3uU7GQ7hTsYF6Timy6LgOciqRfYdV//GZ+nef9314xt2psX382DsEDaEMAQAAAAAAAAAAY40yZAWYIsRIKUNcJYgtpgwJLTNiy5DQ2eqYMsRVgpTHi79bh+wNElOGhK5QTSlDQvYHiSlDmt4bpErsClFfDVKUUoZUFSFGTBkSsjdIShlSV4QYMWVIEzWISOAeIRErWnwlSOn7Eu7PdVWISGQZEnDTppQhIc+VMauEQl9/UsoQVxFiiylEXCWILaUMCd3LI6YQCRkzpQwJeW6LKURCnn9TyhBfEWKLKkQCfq2UMsRVhNhiioO6IqQ/ZkIZErTqLuKhWlWE2KIKkYCbP6kOCVytHlWIBKzWTylEqsoQI6YQaXKvkKoypP89EYVIyKralEKkrgwR0a9DRNIKkZAV61GlSMDq75RCxFeGlC4+phSpWnHfHzD+dWXVlyG2iFIk5DGVUkn4ypCimEqkrgwxUgoRVxlSGjfiOqgsQ4yUSiLgM4jYSqSyDOkPmrCkP+BYY0qRujJEJLEOCf1cJ+bvn4oypH+xCYWIqwyxxZQidWWIEVuIBL//jrhbNV2GGBQi0EIZAgAAAAAAAAAAxhplyBDZRYgRsjI3pASxhZQhsXt1hJQhKecuDDmOkCJkebz6AUNKEFtoGZKyOrWqEAkpQWwhZUgTRUjsavfQ1aEhRYgtZBV1SBFihJQhIUWILbQQCa1CRMLKkBUtQoyA54vQImTgZwLv2yFFiBFUhiS8ooY8ZmKeq0Ofg1OqxJBCJKQIMULKkJAixBZSiIQWIUV1dUjKmCGFSErtVlWIpKzKDy1EQquQoqAVajELkwNeg0OKEFtIcRBahoiE1yFJq+0Cfj31MiRhYWrwfTFiZXpQGZKwf0NIIRJShBghZchKFyGln6koRFJW0YYUIiFFiG2lCpGU1flBhUjEqu+QQiS0CBk4hNDHYMiK+/6g9cehXYT0L7qBMiTpWAMKkZjHVsh9MKQIsYUUIqFliEh4HRJShJTGDrgOgsoQI6SOSPhILbQQCSpDBgaueVwlHGtIIRJShtgqS5GUjylD/wYKKENsIY/DkDLECClEQsuQopC/A6P37gt4yRhWGWJQiCAXZQgAAAAAAAAAABhrlCFD4qtCRKpX56YUIYavDImtQYqqypCUIqT/s45jiilB/OO6f9mUKkTEX4aklCA2VxmSUoQYVWXIKBQhRt2q0JQixHCtpo4pQWxVZUhKEWL4ypCYEsTFV4doFyFRJYiP5/kjpQoRqb+PxxQhNmchkvG8WvXYyXm+9j0npxQhRlUZElOE2FyFSEoRYvMVIikFh4i/DEkdr8hViKQUIYZ2GWL4CpGUIsSoXKGW8RhwvTanFCFGXXEQU4UMjOspRFRW2Tl+3ZgixOYsRPLv/v77ZMxeBQW1dUhCGWK4CpGYIsRWVYg0UYakFCH9n1UuQwxXIZJShNi0CxFfHZJShNichUjKPgA9VYVIShlieAuRmJX2pUH9x7Na9goRyThWTx2S85gyXPfNlDLE8BUiMVWIi68USSlD+mNWPC6jyhCbq5LI+EitrhCJLkP6A3seVxnHWlWIpJQhhrMQ0fiY0ve3UEIZIuJ/TMYUIT6uUiSlDDGqPpuLLkMGBnZ/edhliAh1CPJQhgAAAAAAAAAAgLFGGdKwqiLEsFfp5tQgRXYZkrPCuMjUITkliK14bBpFyPK4SwOnliA2uwzRKEKM+XWtrBLEZpchTdQgIulFiM2sCs0pQWzFVdU5RYjNFCI5NUiRXYbkFiGGXYY0sUeIShUiUlq5k1qE2Mz9PqcEsQ2UIYqvoOaxpPVcbT9H5xQhRXYdklOE2Kb3dFWKEMMuQzQKDpHlQkRrPJHBMiSnCLHZhUhOFSJSLkNyipCi0io1xcfW4tp2VhFis6uD1CKkNG6vEFFdXVf4tXOKENtAIaL3MFi+fyYWIbZSIZJRhNg6E+2sIsRmFyJN7ReSU4aIlOsQjdXrRrEQ0ShDjKYLEY0yxOhOtLKKEJtdiORUIUWlQiRnpf3AwEvHN/Z7hbhYhYjWY8vcP3OKEJtdiOSWIYZdiOSUIQPj9q6DrCLEVqwkFD9SM6VIchFSGtB6zCsdq12J5JQhtol9c6rXqf13ZmoZYjOPUY0yxCgWIjlliM38XZhVhQwMOPifK1GGGBQiSKH3qEUyrckPm9YHaqVxG6iLNSdAirQmQQzNyQ+b5kSIyPIHn9q3l9bkh01zEsTQnAAp0poEMebW945T+e7V1AbpIoqTID2TB5aesObX695mmpMgxsSBZq5b7edsMxGkPRGqOflh05wIERGZ3bj0y09VnDIqheYkiDG7eVL3D7+ehd51Or1b58XAfFi9sE73jmX+iJrYr/8mQ3MiRERksTcR0FpUHlfxg/W+lsjkfv0XbjOxsrBW+QNLpUkQw9xWE/MN3K8WO7Ko+MI9f9DSe4uZe2fVxizKnQQx+h+ANXB3XTx0y9LQVZvqJmjvXbpOtSZFzAdgIZtKx2otdqXrOR1his6GtUvj7j2gNqbI8qRKa175/XuD6zSbPEWWCnNdBmyqHkNroqKos3bww2TfKeRidaeXfveQDbujxp0yr9uKr4fFiWHFCUzNieClAZt5TJmJ8UXFSTZjcd20TOxVfC1salGo0v2+aHFtMx/Rqi+MZUk9VjlOkwUAAAAAAAAAAMYap8lqSMjpsSb3La1MaM/r3AQHtg3OImuu3C4e46LSKTFEllfud5ROW2BvmK5Vhqy9a3Cguc16M/Zm5bLWKWzsZFHvNFaD/91V3jBVswzZdeTgaqVJz6bHsUxlo7Z6vcHp6OLtvqi4YGfNvUvX5ZxSHTC5b/C20SpDpncPjqv5vDU521WtI2Z2NnMdTPWu27mDFH/3A8vHqlmzTRXuBwsNFF1aZYh9bJrFSfE1QOt9QZFWGTK3YfCJS7sSMzQKkU7h9rJPG5jDLi0Wp3WezNu90sS3SX2KYr0yMae3grF4GofZrXqpnDlereqmY902U3v17giLM8urrVXex1pDzNyjsyrWPi1S27FJawpzSpS2Z+PjXJp1iFlt3v9vrZXy5nS8B/Sug4Fj0zz1zv7C9dnRey5oLfSeD7WOdWHw+bW7VvP5RXcVd3fCeu7XqgOaOl3WgaW/ZzsbFE+908DK+KWBB6/LrmJ5ISLSPqDz/GKfeky1Fiv8zhr3AXsMrdvOroS0bivzeG0f0LtOFzatHfjv9mwzr18LB+n88b2wfun1QPPv2KLJfXqP3/kNg6+ruaflLeF0WVBGGQIAAAAAAAAAAMYaZYiyqiLElCA+OStB7SpERGe1puuYcmam6/ZwSF1ZZxchRk4ZYtcgRTlliClBbNlliOeqyylD7BqkKKcMca0U0ChD7CLESC1D6vZbySpEhrihfU4ZYkoQn9RCxC5CDI0qwq5CRPKet6ruPzmFiF2EGLnXwZTnus0pRIpFiC2nEHEdaxNlSP/yMkqOquPKGdf13N9EGWKkFiJ2EWLTLkS0yxAjpxCp23sjtRBpeyqInEKkqqzIKUQmKqqCnELEd7yphYhdhNhyCpFiEdK/vAbKEJG8OqRuo+zUQsS3Se4oFiJ2ETLwbzl1iO/vDoVCxHlcGX+uDxQhtoxCpLXgeT7M/WjBM25OIdLUXiGlMkREpw7x7BmSWge0albW55QiwypDRPTrkKLUUsS3Kb1KIeK6DjIKkaqfzbkd7TKkf3mZt5fvcZtTithlyMC4DVQiqYWIKUJ8tEsRjULELkNEGqhDiiqGphBBCMoQAAAAAAAAAAAw1ihDlNTtEVJXhYjErQR1lSCl8RJWaYYcQ8pMdF0RYsSsrPPVIEUpZUhVEWKklCG+IqQoqg4JvKpSypCqIsRIKUNCVgfEFCK+EsQWW4bUFSFGUhmiPAUdcvumlCF1RYiRUob4qpCimDrCVYLYUp63Qu43KWWIrwixxVwHvhrEJaYQqSpCjJQyJOR4R6UQCTmOlDIk5Pm+qUIkpg6pK0KMUdo7xFWE2GIKkboixIgtQ3xFiC2lEAkpKmIKkaoixEgpQ0LLj9hCpK4MMWIKEVcRUrrclEIk4EdSCpG6MsSIKUR8VcjAeCNUiFSVIf3viSlEAv9sTilEgo4j4c/2yjLEiChEvEWIS8zxBo6bUogMtQwpXXjEc4KnCBm4zIQyoK4MMVIKEfUyJOD6GqVCxFeGlMaNKUVCroOE+0HIz6Tcnr4ypHT5EbdbyGM2pRCpKkP6447APiJ1ZYgxSnuJuMoQ27D3EaEQQRXKEAAAAAAAAAAAMNZydymAR0gJkiKkCInR5HnJQ2uQWCFFiNHpLVQIKURCipAYISVIsoirttubpA8pCEKKkBhNnScytAgxFmZawXVIaBUSbIh7g/hM9BY5hRQioUWIMb2rG1yHhBQhUZcdUIQYE3NL3xuygiamJJrZtfS9IYVIaBESI6YIiRFShNjfG1KINHW8TYgpU0wlFlKIxBSAnamlcZt8ra4SWoWIiHR6rzXahcji2qVjCClEQoqQGKFFiDEx1wmuQ0KrEJHl19KQQiSmoDDHWlWIhBQhhqkXQgqR2NKjO9EK/pnQKkREZH790gMyZw+RInO7BhUiEXdXc52GFCKhRYjRWTuZvH+Ic7xejaFdiJgV2CGFSEgRYrTmlx7nWXuIWIoFjcY+In1mZXXA30JBRYjR7j1mMvYQcR9E+PEGD7l/6TEQUoisaBHS/+be765UM5iV+6FlQGgVIiLS3n1ARMIKkcb2CglgfxagWYp01kwH1yGhVYjIcj2hspeIlK//nL1EXOOE3L6hRYjR6naVb6vBy8/ZS2Rg3Jnea5hyITK5Z+l+lbqPiIv5+1ZEtxJZWDd4f9LYU0Rk+X2s2mdE9q+8ev7MxAigDAEAAAAAAAAAAGONPUMymb1CNEoQ18pPjRLEt0ozdaVp3axzThHiWkkXU4L4uMqQnBKkbs+Q1CqkdsVwxoS/qyTQKEFce4fkzPbX7RkSW4UYvtX+GiWIc++QEShCbHVlSGwVYvjKEI0SxLVvRkwRYqt6/ordW6bIV4bk1iC+fUM0CgvX3iExRYitqgzJOd6m9g7xVRwal+caO2pPKMuw9w6JKUJcmtg/pKoMySlCfHuHxFYhNl8hElOEuPjqkNjSokirDLH5CpGcY636+ZgixMVXh4TsFeJTWYhkPNX4CpHYKsTmK0RC9grxjjnEPURiihAfbyGS+feIrxDJKlIqjimqDLE5CpGovUJ8fMebObavEhmJMsTmWhkfsFdIHV8ZEFOGFNXVISuxV0idpvYS8ZUiMWXIwHh1dUjG7+G6H2hUI67bO7YMKaq7rVIfu3V1SMieId6xh7iXSOieIS7D3kckZK+QOk2dTcSUIuwdAhfKEAAAAAAAAAAAMNYoQxJpFiFGceWn5t4gZoWm1spSe7ZZc2+Q4go6jSLEsMsQrf1BTCGitT9IaeWw4sR+sSjQ3BvELkO0ZvZNIZJagtjsVf+ae4MMlCFNbhWj9HRjCpHUEsRmlyGae4MUy4icIsRmP4/lVCFFphDR2h/ELkM099woliE5RYjNLkS0jlm7ELHrDc3xi2PnFCG2pguR3CLEaKIMMYqFiOYeIXYhkluGGKYQyS1CDLsMya0sioqFSE4RYrMLEa1jNuPkFiGGXYbkFCG2gUJE8anMLkRyyxDDFCI5RcjAeA3VISKDhYhGGdIfyy42lP4uMYWI2h4l1nFlFSG2QiGiUoYY9nWpNLYpREayCLEVV8YrlCGGXQGkliE2U4o0tleIYtUxrEIktQwpjWtKEaXjtu8DWvuJiAze/jlliM2+zbQew6YUySlCBsZrqA4RGSxEcsoQW9OliEYZYlCIYJiYDEnwlGe9p5Fx5zbqPZEUaX7IVaT1oUlRt6EPktf/XHdzdGP3A/Q2wCrq6L236Ft316LMNnAf0/wgpihkM+YUIRscp/CdziiH1uSHbWpvM9eB5oe+Reqb2otIq6lXvqbGbebh0MhttubepTvu7Cbd55umTpfVxP1LRGSiwU3PV2pD9VhNTYq0Os39/lO7dQ+6G7KRdsq4DT0nTO9U/CDVMrepmfdM2tdxY3+Mi/80Z7mmdzR0uylfFU1OijT1Ia3mB4lF2u+fW7O9v3UamAhozTXzd5TMN3R/mG7gDylRngwxGjpWrQkmW3dtM8/jmpMhRlOTIk0tfPOdSi+X1qR2UXeiLaI0+T6gofd3ZlN0bU1Njhy4v87kTVFTkyJNvc9t6r3Y5eczIYIlnCYLAAAAAAAAAACMtYbW8Y637kRLdTXP7Jalm0FrzPLsrOYpa5qZPyuulNNc8dlUFbPrgUurYjRXlze1ynPdXc2sDFo0C5mmlg5c67rWPO1af8xCZaJZhsyva+ZGs0+x5NroOsWaHYOrBRendMadnO2dYkdx9eTa7cv32wNb9AqDmR2Dj4c5pXph/W2DpyrZe6h7M89YMzsGVxyZ1wsNa+6el32H6q1INEWItsneY9b8/wOblU6JY52+S7NGa3WWT4ujdXokkeUCbWaH0imXrOcAreKk0dNkHSicokFzlVvvV58/aOk5YWqP0mlbeisntd7b2Btya75nai12Zf6gpeeEqT16K8EX1i2Nae5f9v0uldYpoWzmPanmqsTFmeXnLc2/IcxY8xt6t9tundttYs/ga9riep3XNHNqqNa8/pNEd7KtWoesliKkxNQLioVId3JC9zRZZsW+qSKUypPugQNL/6P3/1sbN+iMO9nMKdOWxi48N2jef3vXrVbVY2+ornWspdN6KT4+FgunHZrYo1fPFSsD1TLAlFJKp01roggZvIDebaX4Wlx8T6P5Gm9Op9me0y3nFjYs3ccmd+vdv5qoQkREJgvvnxfW6L2+Tcxany/MaJ0+Xv+9WPFvCIAyBAAAAAAAAAAAjDX2DInw5Of+Vf9/56xaqFvZmzq273x9U3vzZ0BdRUjO/h5V50zOWeVYVyfM3JO2esOUID45hYirCOkqLORwFSEae4YsehaSp5YhdSVITjGzWLHSe8296Y8LZxGisHjFt+l2bhliFyFGThkyOeu//uYyCrJiEWLLKUTsIsSWWojYRYihUYbYVYhIXhmy5m7/6sCcQqSuCEndO2SypuLKKURcm7prlCGu/Uc0yhDfnkQznsd2nbqV+TmFSFNViGs1l0oZ4vlVc8uQzpT7/pnzHseuQrTGrXrfmVOImCLEJacO8a4Wber08AqrEl0rJXP+lqi8zTLqELsIsaUWIi3Pn5tNFCIiOqvWtcuQpoqQ/l4hPjmFSMf/s1mliGsvB4WCoV+G2BeXWIiUipDSN6Tfpt11/sdSzv232/bfb3MqEbsM6Y+Z+VjzPc40Hi8LG8rXcU4h0lnrfw+eU4i0d7vvt32JpUiTZYhz/xyFksN1f8opREy54ZNaipjSxCenFGmqDHG9T9QoRHzvkbQKkdDLC1H8W+Jr//lmjcPBKkYZAgAAAAAAAAAAxhplSIBiEWKkrFYIXdEbM7avBnGJKURC9gZJKUOqihAjZXVjaJWQUobUVSEiaWVISPEQU4jE7A0SU4j4ShBbShkSsj9IShlSVYQYKWVI0B4hCcfrK0JsMYWIrwZxiSlEqooQI6UMqSpCjJQypK4IMWLLEF8RYkspRFxFiC2mEKkqQmwxhUjoHiGxZUhdEWKklCGuIsSWUoi4ihBbSiHiK0KKYuuQmBX5MYXIMIsQW1IhEvCrpdQhviLElvJep6oMSRk35v1mTCFSVYQYKWVI8OrQESpEQlZGpvxNEfIzMYVIXRFSFFuH+KqQge8ZoUJkte0VUluGGDGFSEURUrr8mELEVYTYEuoFXxFSuvjIQqS2DOl/Y/xtW1WGGEn334oypD9uxHXsK0Kc40Ycb+jjLOVx4ypCbCmFSFUZYqQUIrVliEhSHdJEGeIsQnwiio6Q+05KIVJXhoik1SF1ZYiRUogMswyxxZQiMe+JmqhEUt6Tuf6moBC576IMAQAAAAAAAAAAY625EwlCRPLO714lpgiJEVKEGGYlbEghElKEGGbWv272OnWPijohJUiKnL0vqsQUIbFCqxCR5dXUIbdLSBFimOom5PoLKUJiBJUgiUJrkFgxRUiMkCLEmO5VaCGFSEgRYpgSIaQQCS1CjOmdi8F1SGgVEiqkBEkRU4REjRtYhBgzOxeD65DQKkRk+b4eUoiEFCH9Y+g9h4UUIiFFiGFW9YcUIiFFSKycPRqqrGQR0j+GuaXrNKgQiXjqnT9o6X4bWoiEViEiS+91QiuOkCKkOK5I3h4iqUKKEMNUR6H3y6gVoV1ppA4x72VDViPGrII07+lDVkDHrJKe37B0e+TsIeIysXfpNTB1/xCX7tTSY027EDGrz4NWHa+yIkQkogoRETErunP2EHEw9UTWHiJF09bziMJeIkZ31+7gOiS4ChFZLl4CCpGQImT5GCLuvwFFSP97e9dxzh4iznEjjjd4zMLrn+ZjafGgwb/3c/YSKerMLH32E1KIBBUhxnxvvIBCpMm9QqKY9yEKe4mIlN/X5OwlUmRXHqn7iLgUy5S6SmQlixBjsvfeW2MvkaKJ3ucImoVI8fNFjb3dcN9DGQIAAAAAAAAAAMYae4ZUcO0VYvhWJmiUIK6xNUoQ154hMSWIj68MialBXHyz2BpFiGvvEI0ixLV3SE4RUrVnSE4RUrdnSEwRYnPdPjEliI/retQoQVx7h6gUIZ4hcosQ374hGkWIa++QmCLEVlWGxBQhtroyJLYKMXxliEYJ4to7RKMIcb3maBQhvr1DYqsQm68QiSlCXHx1SEwRYqsqQ2KKEFtVGZJThPj2DsktQnz7hoxCEeLjLEQU3u36CpGYIsTF934npggJHVMkb3Vt1d4hMWWIzXc/zV752Vzg6VyJqLHq0XX7aKyI9hUiMfuFuPgKkZC9QnxWYg+RJsqQFd8nxMdXh0TsFeLjLERC9gqp46gYQvcKqeIrRaLKkIEfrL7NY8oQW+X9N6IMKY3ruG5j9grxjus53tzHmu9xFbJXSB1XIRKyV0gdVykSVYb4OEqRJsuQqD1DbBWv5zk1ket9QsheIXVchUjoXiFVfIXIKJQhPq5SRKPGaGIvERH/sVX9jcHeIfc9lCEAAAAAAAAAAGCsUYY4VBUhNrMyQXNvkOJqB829QewyRKMKESmXIblFiGHPYmvuETJzz0Ije4PE7G8RwxQi2vuDmEIkpwRxMbeVRhFiFK9Tzb1B7DJEbZ8QaxitPULsMkRzj5BiGZJThNhMIZJTg7iYQiS1BPExhYj23iCmDmlijxDzGqS1T4hdhuQWIYZdhuQWIYZdhuQUIbZiIZJThNjsQkRrnxBTiGjvEWIKkVEuQmz9QkT5na4pRHKLEMN+v5NThFSNrblKvViI5BQhNvt+q3VO8KYKEbP6sInVja3FbiNlgSlEcosQmylEcoqQoqbqEJHBVchN7RUiMsJliGEXIgpliEihDtEoQmy9ikGjCikyhUhyEeLTezzkFCEu5j6cU4SUxiwUIhplSH9ca9W/1mPOfnxplCEi5TpEowwxioWIShli9AqRpqqQrCLExexvpri/jMjyewaNMsTWnuuolCGGXYiMchkiUq5DNPfpaLoQifkbg0LkvmNEdldavZrYIL0z1VL9wKWv93w1f1AzTzZakyBGUxuki7BJuqE9CdIfV3ESxDATTQtrdcc+sGXp8TAxq3t/a2qD9PW3L72JXlTe2ExEZO1d8zJfcwq1FOvuWjpmtQ+1erQnQQztSRCjqY3SRfQ3S193+9J4HeU3pzM7l26zRcU/JkSWJwUXQzbQjtSf3G1gbBH9zdLnNixdt9qvofPrlsad2a3/BqWp107tSRBDaxLEMM+NTVwP3XZL2vP6t9n8Qb0NeJWHNpNu6n8Ym/uC8nWs/d53GBZ7H+xpT4ZM7Fv6YKezVufNpdlU3Tw+QjYkDh67wQkQkVUwCWKYDzjndd+f9DdVV96sXUSWN1hXngzp7tq99D+2blYdt5EJoYbGbXpjdVG+O5hFo2bTci1mc/Um7r+dmUmZvHuP+rj9x/CobJ5eR+kDepvWB/8umhMhIs1M2BSZxSVan3E0tbm6yPIG6/Pr29JWfDky79H0P93AOOA0WQAAAAAAAAAAYKxxmqyC0NNjFU/z4dowO1XxdFOaK+2m9linAVIqQxo7PZa1mmpSccV+8XQnrs2iU9m3l29T+VhT1ilkJpVOI7L3/oPz4y2NGfji/VdxwX5pE2Olm80+PY/WbTazq7mn1OLmvZplyHShWNAsQyb3WVm8Uhlib2intYJ4al9z5UbRwhrF6/jA4INtUWnF+sS8/bqhs9Jscu/g8c5u0VlBvObuwdR872F6p6OY3r18zPu3KWyi2dDpseznXa0yxH6t1CxDiiXE5H69cRfWNpPy26/1vs3lYzVWxlg0C5HJwvPlouJKVPsUS1rPl/b7dbX3absHXzfmNuslt8X3w5qlgf14mL5rr87A1kp1tULEeu+gUYgUT/miuvrbOmWR1qm+WnutCkLrVE72KZZm3Rv7xmrtt6qjacUUvXA/6+7cpTfulk3ey8lijdNdo3Nd2M8JXcVSpKnTZQ2UIYpLcu0yROuUTqXKQOljM/s5berO3SrjiijfXiLStgrCxU06p3Iy5V//cpTKv7nNg+//NT+rK1bBmu+nFtY10y3Ypx2dUDoFdpOnyyqexl+zEFmzffk5LfRzA06XNf4oQwAAAAAAAAAAwFijDJG0IsTImW2uWpWWU4bYJYgtpwypOuacMqRqxVtOGVKqCgpyypC62yd1xaFdgthyyhC7BinKKkOq7scZC+KqbrucOqRuw+bU225YRYgtpxCZrtjDIqcQsYsQW2ohYhchtpxCZFhVSFHOime7CDFyyxC7CDFyyxC7CDE0yhC7ChHJK0OKJYgtpwyxixBbaiFS9zybU4hUvU7mFCJVJUROIWIXIUU5K9fqXvNTC5FhFSG2nBWNkxXPlTmFSN2m26nPl3Xv03MKEbsKKcopRKreE+cUIlWPgaw6pGZFemohUvdeIWclcdXK8axSxLGZtUYdUipDjNxCxLf5dmYhUipDjJxCpOJ+llWI2EVI4GXWqvnZ1EKk7jkgpxCp2iskqzioekhlPAfX7RWSWojU7juR8fFZ1fNaTiGiXYQYdhlSlFOJ2GVI6XITn9/tMsSW89ld1X5xOe+rhlWGFOVUInV7huS83y6WIeVxk4cdKEMMChFQhgAAAAAAAAAAgLGmd5LfMeQqQWxmVV/MLHPIKjTzPTGFSF0RYn9fTCEScsxmFjimEAlZ4bYwszReTCFSWRVk0NzLxVZXhaSqKkKyNDSV2tRtV1eE5GiqCvn/s/fnUbdkWWEfuCPu9M1vzJcvpxqSmueJGpgLhJhMgSQLybDUCKuFheylZaBBLLttqW1J7Za6wLK0bBrUxhJg1AIhhMRUSAioolSVBVWV1JhFZWUNOWe+8RvvFNF/ROy45+4458QZ9vm++31v/9bK9fJ9795z44sbceJE7P3b22aExGAzQmLoMkJC6TJCYjgJIyQGkxGC9KZFkB1iMkKQwV61n0IMEZMVAgAwulFl6vgYIjoThLL5ZJXJ5mOI2IwQZP1atR98DJEuIwQZ7JfedoiLfYdzqo8h4mJOjrer48zHEHExIdDu8DFEbEYIgmsTn4w112s+Zt/5GCInZYUALLIbfTIZbUYI0juqXuNjiHQZIc3nH8297BDXdTl+xz6GiM0IQYY3q7nNxxBxWROXvcz5tYjLMT+5axMAPA0Rxwz0/HDqbYe4GKSYFe6TQeySKY6v8TJETIYFtDOgfUwRoxGCzOZhdohlewEAYDSs/gwwRIxWCAAAmgecPUQAIDu3AwDMPUQAFgYAYz8OJDuq9gVXD5Fm3HqbOXuIAADku9WxyG4g4GmW4L4ymxds/UOWB673LXOBlemVbQDg7SGSkt6tQwDg6yOiUoz6bH1EVEKe3bkQsq46CSMEQSvCxxDpMkKazw9Yb9uMkMW4UI/rPKzWCEHo787Vg1Q4Pcg3LgiCIAiCIAiCIAiCIAiCIAjCmeaO7xmi6xfiYoRQXKLLIXWJXbMSXa0QFRczJGSbXcyQkJrHLmZIiFXgkgEbYoS47rsQI8Sld0iIEeLUOyTkOPbIXvYb2O1lvlaI63fHbYTEmCC23iExJkhX75BQG6SzFniEDWLL7FhFE8SW7dxlgtjoMkS6bBATXXaIzQTpwmaIuBghJmyGiIsRYsJmiLgaITq6DJGYfkw2QySml5bNEImxIGyGiIsRYqIrYy3UBO2yQ07SCDFhy2R0MUJM2AwRVyNER5chEprx2XXtdzFCTNgMkZg+ILb3xtTtthoiERnnXYZIaE8xALshEpMdbjVEugwL27gWQ6TTCLHRZYqEbnOHJWI1QrqwmSIRx5vVFLH1CunCtk0x29thiYTOFV2WiK1XSBdWUyRG7Lb1Ke3oFaLDdQ7o7BfSGtjt9SFzm4shchK9Qky4GCJdvUK02+JoiHT1C9Hhsl6w9Qox4WKInKQZQnExRFzNEBXXdYiLGdIeu/s1NjPEhO45gvQNOZuIGSIIgiAIgiAIgiAIgiAIgiAIwplGeoZAmAniSohZ4UKICeJCqu2NyXrr4rT1B5HeIAtOW38Q6Q2y4LT1B1lFI6SLGCvERqgR0kWMEWIjxgixEWOEdBFjhdiIMUJsxBghNjgsCF0PkRgjBDHVNI699pv6h6yiEYLoal3HGCGIqYdIjBUCsJgbqSESWwPc1D8kxghBdD1EONbGIT1EXAjqIeJAfljtB98eIi4kqzEf0kPEZdw6Q9qnh4gTs3q8kF4iNiL6iHQymbL3EQE4fb1ETlsfEYDT00uEnr9svUToPmUsuoI9RABORx8R7CGCcPUSoSYQ5zyvrs04+4ioNolPH5GTgtoQPr1EbNCKMTHGantsdVy2YaWXyB3EHVsmC8tjcQdCcBLlDirgDRp3EARLZaUIghT9LEkQBMtlcT9Ix4dB3EEQ3LfcQRAslZUiCNKUy+I+juv7M/YgSD0cdxAEv7vTFATBclncgRAsl8UdBEFtnDsIgguX0xQEwQd73EEQLJfFHQTBclncQRAslZUiCILlsrgDIVguizsIguWyuIMgWCorRRBktFskefCPwRCOQIgK3phxX/tPUzAE4Q6GINzBEIQ7GEJp1m8MwRAVDIikWCNn85L1YQPSBEWYH6ZiUCSmPJYOfFjG3Ty5eaAaUR7LOHYdFIkqkaUDgyLc21wHRaLKY+nAoEiCB/flrdtx5bFM4LYybzMGRbjnCgyKxJTH0tEERFI8+83DymN10QQ7fctjdQ5cB6CY5zYMiqxSeawuMCgSUiLLBs7zIeWxbOBaIqQ8lg1cY61SeawuMDAQUiLLBq5TQspj2cet/gwpj2UDnytIuayzhYS5BEEQBEEQBEEQBEEQBEEQBEE409yxZbK4jZASh2POhBjdqrKEUmitk+3cuQG1D6jDcWexDA4wgixlsQASlsUCSBYmlbJYC05baazhrWpc7iyZ/mE9LnP25tpzlao930xQdmFSQDnkP0lGz9fbvDVkHbe/X2fIMm/z6FqVPWZrkhzC+tNVVmzZ59/HW1+s9vHkAu8+PvfZAwAA2H0xT0kAZOO5ap44vMg730/XsUQU67AAAHBwOYf1a/wXVG4jBME1S2/CO99jhl6WIEs/FcUgh+EtfiMLy2UVI97jGC26OfO4CLcRgqQsHVsMc8hn/OuL6aUNAAAYXD/seKUfKe5vAADmG9Ucz102Kz+ozo9iiz8rG695p0Aiq0CDg9sMSXRMAFRls5KcfbgvprzHW6q5IivS3PTi9iY5rxPdpze2F/c2JzqOsXRW75A38z0lWD5rdnmLddwUphBAOpMX76FxXVj2mU0yFNQYpw00IvJZ2Sp5FQOOZSpZGz5u9efBlWpO3niW5zzhKhsmrBZihgiCIAiCIAiCIAiCIAiCIAiCcKa543qGvOn7fxwAAAb7PL92SZLRuOwCNEKaz2HMLphsKzEwxoA0jRZzZbOgEUKJNUR6huRHzJiNGnva3maOY2Oy1d42egyGMDP8zrHnyXxk2JdM50nLCGE6njEbG+HMSB6ovQoYz7/eUaIsL3KJ4DJDeuPlfcxphgxuL7IUOc2QTOlrwmlZ9PaWJyMuMyQjfVi4tjkf67OOOQwR3dgchkg2a58fHHbI8Ib+QhJriAwMvXk4DBFdxhuHITLXlGzmNETUNQZnTwSaQUd7fYRCrYLZOo+9kLKxo7ovBrf5DBFai32+niabk8sQodd8zv5F0x3ld2e8A8NG6ir9g3hDRFdHn8MOQXOj/YFx45p6hHAYIr3ddi8PFkNEcyue3zqIH9fUQJ2rdwjZ7uzWHs+4I15z0wRrLwd1mzntkEGiIh70mGOyycqN5YVAKvOrYLyGTM4tH2/D2zyZ5JOd5fuPwS5ThvqR4fiKfKRXDPX7tH99P2pcAH4jBNGdwxxrosJwvxT7LMdknHAZIvMheRbHuMZQn+txGiK0Zwjb+p4Mw2WI3HpxNV98+Kd+iGU84WQRM0QQBEEQBEEQBEEQBEEQBEEQhDPNHdszBK2CkMx3WyZ+WYeXYiLH1AoBWGRnx2RYLBkhCP76EQFeU3S47GVRdojJCOHAZIVEj8uUUUrRGSEcmIyQWIxGCAOp+oNQG2T5M6sTOsQQWTJBKBHnXyoTBKFGCJJPq8+NMUSoFQIAkNc1e2MMEdUIaT5rv8oEiTFEqGGh/izGtqBGCP15qCGi21715zHbbLJCYkk1rs4I4cBkhMRiMkKQ9evhPURsNZCxxi53D5HDS9WxFmOI6NYYHDWGTRlz2Osj1BAx9ZnoH1bfXYwhoqtZjD+LyYbU7YvpTjX/xBgiOqsAAKB3OEtih+C1JdQQMV3jjy5X+yLGEFkyQhA8tCOWNTojhAPTdwcAML1YmW8hhojRCEEY7kt0YG159h4ie5Utwt1DpDhX9WhhMURagxdxdohhfVieq7K/gw2RYzJCEDzGowwR3TajzRFjiByXEYKgRRRhiFArBKB9L8FliuSHy/s2xBShRkjzc8Xo4LJEAACm24txuSyRJXDfMhd9mV3cBAAeQ+Q44FgTmSjzND1mOXqIUCsEgKeHiO5ZHq69YwwRaoQgRT+Ls0MMb8UeIgBhlggaIcLZQswQQRAEQRAEQRAEQRAEQRAEQRDONHdMzxDsFULxMUN8ejP4RI11JohxGzwyKrQmiAmPwK5PFNjXDPGxQUJ6hvgYIT69Q3yMEJ9jw8cI8Tk+fYwQX3vKywrx2BdeRojHJtiMEIqPGWI1Qige25vSCDHZIDp8zBCdCWIcN8AM0RkhJnwMEZNhocPHtjAZITp87ZBU2+xjbvj0DvEZ16d3iI8R4tM7xMcI8e0b0mWFqPiYITYjhBJihuh6hZjwMUR81ho+WWQ+GXK+dojJCtHhY4jojBATPtmQPvvCxxCxWQWUVekf4nN99zFEtEaICY/vw8cICekd4vMd+hginWbI0ka4vxTA3C9Eh48housVYsLLEPFYc3kZIqZeIdqBPdZcHtvrbYccsxWiw8sQ8dneEEPkuM0QHZ6WiM4MMb52BXqJmMwQHT6GCO0VYsPHEDH2CtHh+XjP1C9Eh48hcpy9Qkz4rIlMvUJ0hBgiPutxX0tEZ4aY8Fn7+TzL81m3m8wQHV6miMdLfQwRkxkivUNON2KGCIIgCIIgCIIgCIIgCIIgCIJwpjnzZojJCEFcst59Mu4ptqixjxFCsWVUeBkhlI6AbmhtwK6ockx/EJshEtMbxGaGxPQGsR0TMb1BXI7TkB4hrmZIUJ8Qh6yKqB4hlk3yMUIotgxSLyOE0rELU1khPkYIxWaI+BghrXEtGZ4+JgjFxQzxsSsQF8vCxwhBXM2QkG0G6N7umF4eNkMkZlybIRLTI6TLEAntE9JliPgYIRSbIeKTgUZxMUR8jBDExQwJWWe4ZI3F1EzuMkR8jBCVLjvExwih2LIhY/aFzRDxsQkoJ2WIhPQCQ1wMES8zBHHYjSG9QlwMkZjv0GaIeBkhlI5f1ccIUemyQ3yMEIrVEIlYc1kNER8jpDVwxz4M3GZnQ2QFzBDEKes8ZnttpsgqGCGUDkPExwhZel8iOwTAboj4GCEUmyHiY4RQXAwRLzMEcfzefcwQxMUQWQUzhGJbG/mYIRTb852Y9XiXIeJjhKh0rQNj+v7a1vE+RgjFutaPmOJcDJGuniFiiJxOxAwRBEEQBEEQBEEQBEEQBEEQBOFMc8ebIQDtzPcYE4SiRoljTBCKLpsiyghBDIHcUCOkGdYQXY4xQhCdGRJjhLTGV2yKGCOEQjMIYqwQFXr8htggOuh5EmSC6DBkUkQZIYhmE2OMEESXSRplhCCGXbqKRogKtUNijJDW2ErGZ4wRQqGGSKhZQTGZFiFWiIrJEIndbtP2xpgbiM4M4RgXUQ2RGCOEQg2RUCOEQg2RGCNEhdohMRloFJ0hEmKEUHSGSOw6A8CcNRZjQgCYzZBQI4RCDZEYI4SiZkHG7gcV1RCJsQkox22IxJghAGY7JMgIoWh2a4gRQtEZIpzfITVEoqwQFfKrhxohFGqIxBghlCVDhPGWW2uIxJghzcCGfRq57UZDZIWMEB2tDHTO7VUNkVRGCADfcUcMkVAjhHLchkiMGYLoDJEYMwQxGSJBVogOciyEGCE6qCWyikYIRV0bxRghFJ0hwrEuNxkioWYIYloXxpghiG5dH2OGUJbW/IzrW2qKdFkhAGKGnFYSXnlPH5xBEApnIARg8RBzvMO80fVEUgx4FyZ48zbc5X+oO9gvm4AIZxBEhTMIQuEKglC4giAUtiAIUl8T+56N2p2oh9x4nvf86x9WxzE+RGEJhAAsLuT1Ll71IAiFMwiiwhkEQXr71UKnGPDOoRicyCdMNy41GEzBoAhX8AbHwaAIZ7ACb97ma33WcSmcgRAVriAIsv1Y9YDw6G6eBwjI+vVq3x5c4l/EFP1FQIQjCIIcXqqONwyKcARC1HHwBonr4T+uiTAowhUEoXAGQdQxOW/0kelONRcNb/LOz73Det5gDorg9QmDIrFBEOTocrUfMCjCEgRBMmjWBRxBEGS2Ue0DDIpwBkIAAKYXq8BvfsQ87+O+sJRKDKEYVd+ZT1N1V/K9I7+m6o4U5zaq8W8d8ARBmoHrOQiDIkzrxfJc9XC0CYqseBAEwXOjXOe9bgPAIgAS0mD9JMDjzLOxehd4T5IiKJIfzpqACEcQBOEIfOiYbi+Pu/acufRgELiPme8DZxc3AcCvufpJg+stnwbrLpT1cBgU4UpQykiyz2yDZ7vp9nk1K+9AHWt8LsU9Ssa6vcjBleo89GmwLpxOpEyWIAiCIAiCIAiCIAiCIAiCIAhnmjNbJsulPFZDvQf6Y/5dgabCYJ83i2KyVUVXS+ZwFmb925pAhYCZNa7NuH2YrWWQJ0g6LhJ7U0Wd5ceZbQsAMF+rxuXe/hyD48yJO4PdOiMoQWh2/Uad9ch8fOQkK59T2wUAGN6qLQBLA+oQ8nltATBvL+6PriZvIWSTAvIp/wmOmaXcmWhZvY/xT3bqbM2COTM2r+0KzuxjJBvPoWA+lgEAevtVRvp8k3cS7R3U5x9XaZcaPCYO77U3VPclnyxfV/fuYZ43EpghdOwUawMAfqsTM+jWrjFni2GyZoLM2LKfsc/5S+NnAKMb/PZeqnJZ061qXC4bCUG7HM1RLjBr1VSqjYPBHm9men9v+fxIdb3iXiPhGmb49C7ruPPtygzhNnAAqvUcZ1mvBrQVhswZ8PUclx3yzxkAC4Mj9ficZAdHUG7w20O4nuO2Z0u0hpjP68b4YijPozK9uLxv58ymZF5vb5Fg/Yz2ArchP6stc25re75Rzck9Ziswq+8D0eLjJFW5rIZEl24uM4QyvFXN/bNNXpMDy/lzr0fx+VEvwXPcyU49h3oczlIu63QhZoggCIIgCIIgCIIgCIIgCIIgCGeaO7dnSKIobaqeFQgaIdzQPhC03mEoNAsKe3twZIHO1hbbXNS7hcMQSWWEpMgYUZmvpRk/pwmwpK9FDGiFACi1NRlCtGiEIGWPxw6hRggXaIKkIk9lKcDyPsF6phyGiNoTA/t6cBgitNY4V61iaoJgY9doQ8TUzJSJnGQMYsM8DkMkUzLO8rp/CIchgkaI+ncOOwSNEPr3WEOEHgPrT1Y1oDkMEWqFcKM2UO/Vu53DEKGN2aebWRI7ZF73+og1RGhN5aNLVbZ0tCFCxuWsna7Ow03de8aMPHWfjC9UBwWHIZLaCEGwznSsIUL7DWIvEg5DZCljlfSt4WS61We3Q1TyWcFih9DrldqXKga6Zplc3QYAHkMErRCAxfnHYYio5zJ+BoshQvtXTOo5jtkQoYZFrMlBx0tliOB4HIZIdnDU+n8OQ4Su38p+nqa3Go7JbIgAXX8ymyK9+v6CwxDJlW3jNERo/7DpzojFDkEjBCnqHlrshshaNS63IUL7OnGbInhPy2KInFIjBOnXVW24DZEU61GA9rNMTlNEXedxVxsRThYxQwRBEARBEARBEARBEARBEARBONOcyZ4h1n4hDr9tSO8QFyMkpG+IqwkSkk1PI6g6YswQW+ZTTAbozMGACDFETtoI8c22dTVBQn6vlg2iIyKgrxohlBgzhBohOkIi+i5GSEiGg6sREpL16GKDxGRl2PZJjBmSOezrEEOEGiHa1wRkY7uaH0GGiIMVEpNtS7NsVWLMkMySYRZjhlAjREeIIUKNEOPYnoaI63ceYoi4GCExvUOouaESY4bYxkVWqX8INUJMBBkiDmPHGCK2eThm7rftkxgz5LiMEBMhhgi1QnSEGCKqEWIiVQ+RGEOE9grREXLNsl2rVHzXSq5rlRBDRDVCTMQYIrZzOMoQoWaISowd4jCXhVgcrobGKvUQUY0Q47gRhoht/RZjiJQupnLA+e2yPgeAIEOE9gvRDhtgAeQO2xJjiFAzRCXGEKFmiI4QSwR7hXTha4pkjvd7IYaIy3U2yBBJ/GT1uMwQ7WcHWCLYK6SLkHWpyzOjEEMEe4XYsD1Pkr4hpwcxQwRBEARBEARBEARBEARBEARBONOc/Z4hiaOzqXqEpOoNAuBmhCA+vUN8Mpx8eoe4mCAxnLQREoJPfxDMxHX5PZ2MEMSjd4jNBKGE9A5xMUJCSNUjBMCvT4hPXWyf/iA+dTt99kVI7xAXIyQE54wzT3xNj7KXu7/Ho08IZsy6ZNu6ZtcChPUOsRkhzTYE9A5xMUJCcDVC1Ne72iE+x4dPDxGfHiFbT1X72scQcTE3QnqHuIybGt/+Ia5WCIBnDxGPcUN6iLjMuyE1m132R0jvkJM2QpB8VjrbIS5GCMLZQ0QlVQ8R3G8+hoiLEYKkumYBVGslVzvEZ33C2UNkaRsCeoi4nLNBPURsRggyId+ziyniM3d59vnwsTJOQw+RpXEDeoi4rNdaffMczjEnIwTx6CPivT7vZez9QwB4e4iohPQQsRkhyHRn+VhzMUVcjBDEp4+IqxHSvH6tx95HBGDRS2Sle4hEcpJGCJKqjwhA+l4inD1EANrrQOklcjo5+TNbEARBEARBEARBEARBEARBEAQhIWeqZ8hSrxCG38rUOyTWBunqHRJqhXRl0vsYIRSbGRJT89ZmhnAYIabeIalskGb8QCukK9PWxwih2H5nLyOEYtkkHyPEhO645jBBbBH8GCOkK6PBxwih2DIefYwQE7pt57BjbBmYMUaIrXdIjBHSlYUd1P/D5X0+2XcGdNm2vtm1Oqw1qAPqCyM2QyTGCOnqHeJrhTTjdpghoccGYrJDfIwQEzZDJMbcsF23YsY9qd4hPkaIDqMdwpDsZpubYno12a5bMfvDZoikMkIA/K0QSpch4mOGUGyGiEsNcxMn0UPExwgxYTJEYq9bXYZI6PnSZYe49AoxYbufismWtRoiLkZIFzpDJKLfUTNEh8URamOk6h8CYN8ml14hxnEthkhMjzdEZ4h4GSEmLGvxKHO7wxBx6RViHNpiAbj0CulC94zAxQjpwmaI+JghFJsh4muGqHQZIq79QihddkjMdRbAYomc4V4hJroMEdd+IZSu611Mf1kAsyXi0iukC/X5kvQOWX3EDBEEQRAEQRAEQRAEQRAEQRAE4UxzNnuGJIrMrnp/ENprIcYEoeh6h8QYIYiud0jKHiGr3h/EVIs9xghB8ln7948yQhBN7xAOI8QEV38QzOzECD5XfxBTzcsYIwTR1cPmMEJ0pOyXwtUfpBjUdW1J9lBsnxBTnf7YrP+yl+vH4ci+08BhhCC6HiIxRgii6yHC0SMEx6CGSKgRQt9PDZHYY8MEhxGC6HqIcPTy0F23OMb16S3mg6l3SKwRgnj1D/EkK8vWvBRjhDTjaq5bHPvD1ENkVfqEmMjrvlfUEIkxQpDZet6yQ2IzVQGOt4cIhxGC+PQQ8cHUay32fDH1D4kxQhBdDxGO+unaHiIcRgiCvURceoh4YOrzEdufI1X/EByTbl+MEaIbw6ePiCu4bnbpIeKFoYdIdD8/XIsSUyPGCGmGVu5R0BLhMEKQfF4m6SuKvURUQyTGCEFMPURirBCAqn8IQNsQCTVCEOwfgpz2PiKraIQgfVLtBk2RUCMEoc8YT0sfEYBqnSj9Q04PZ6JM1pv+6o93vyiCUaIHu1w33pTZerpgAt4gpiLZ5JFol6Rqkj45l2ZcDIawBEEMDPbSHCNrt9IcHD3mpqYIXrg5giDa8QeJGoOnPMcZAqg6MBiSqll6qu3OTuPVl/tGmZDNE10EGEp26OC+yULGl/kfdqgc3JUuF4bjgbGOVGWzUq1rmmBIqvVHomtAqnUNAEA/QeNUFa5gCIUzuUjFVoI2hlQlswAA1p8+TDZ2SmZbvA/qkd5+wgV1QnrX99INPop/AHucpCqb1QRdGIIhOoptfVlNnsHTDFt2lK8Lpg5WcARDdHCUItOR6p6LI2HVBAZFYoMhJvq7ae6bpztp5qVUa7FUQRCEIxhi4uBqmuttVwnTULrK1Mfykf9NymWtKlImSxAEQRAEQRAEQRAEQRAEQRCEM82ZKJNFy93EMkyUfYj0D6p0i+kmbyxqPqz16no/cGZnLkpwZazZBrSUBrctgyW3+swa3GR7eUP7B0zjYuMmTempWPJJCXmdbIHlFDhZf746SLjLnI12q3F15QNiSGWEDEk5EG5bgVsVVUmVodRSlgc8k5OtgTrL+FjCacib6p6yTFY2XmSpliPGzJxTaoTku8tZzMXOBs/AdRZiflDt72KDNwtq9HyVSZrCEOkfzCHF8q+nlPTiNFSxTCded4dMtu7iWlWPu8d7jI8vVsfE6AZv5jheA3uYnTlinJ+KEvJ6fM5sx3xal5Wos2s5S44AQLLyuLiONpXNCqV1v8K81ksxLjK+tAaja/yZ7vR4w2MmllRGCB5z83ru7x0wGyK41kuQ4Z0VJRTnN6uPubnPNm65sUivzRjP8Wxv+Sar3GK6jtcUW9V1Nt/jPa6xpGG5WRkc+T6vVYXrG05DJFPW6+WAf52QTarxyyFz6aKD6t5rVP85vv8c6/i6UrExNAZmD8v18K4/TOV+OcCyWdm8ZDVm8BkQGhyD2zyGyHyzmqNx3cFtv2IFiMk5ZvOEbibnpSADmJyvzsHhTT5D5PBKta9p6X42EjwfA2hbumzbfRorQNxhiBkiCIIgCIIgCIIgCIIgCIIgCMKZ5kyYIVyYjBBd83Bf0AZRGezzGSJohXCTrJ6xIQidlXF2iMlKmI14DBFqhHDSWCHM6BrwYj3pGEMETRBK/6hksUPQCOHmuIwQBJsRchgiS1YIZt0xZLgclxHS/Hw6j7JDTEYI175GI6T5+6T6vFhDJFWTbYBlI4T+LMoQOSNGCBuGbNfTYIhURkjFzheq+er2C+ML5fYYm7yrmDKzJttZlB1iuj5NtqoPjDVEaC+g8QU+Q0RnRrIYIppxG5sjwhAxZfcXvYzHDiFDDHaruXu6HXd7YzKrOQwRrcWeKNuRc1y1D8n4UjUfcRgipuOrGORRdkgyI8QAqyGirvUYDRHd/MFhiKhGSPOzHlYrSGC21KZIrCFCs9q5DJHC0OC8OEWGCABANq0tDg5DhJzm2WTGYofku/rvavT4LQBYfUMEmY+qHcRhiOTKvUZGWgNzmyKp9gdAZYhw2SEqXIZI/2D5XpH2CI0xRWa6Z4O4ucxTagpDBMkKHsui9V2p+yDiaywMy4RkZouwcshXLAiCIAiCIAiCIAiCIAiCIAjCmSYry/LUVjN741/7ce3PfXuHuPYICbEkdEYIJcQM8TFBQnqHuPyuIb0bTEaISogZ4msi+BgiPjZISO8QJyMkYJ/ojBBKiBliMkJ0hBgiLkZIyLGXyggBMFshOnysBa/+IAEZLsdthKiEmCE+PUJ87RBqg9gIMUScrJCA3iE6I4QSZIaccSMkqHeIR4YrtyGChBgiqhFiIsQQcTFCQnqH+GRi+RgivtejEEOEWiE6QgwRl2tekBnicS0NMURcMvuDDBGHt4TYIb7rZR9DxOveJNGaL2jcafe4IYaIz/HkY4gkN0IcD9cgQ8RlzRew/vVZM4cYIjozpLUNAec57RWi/ewAO8Qni93XEjFZIdqxmQ2RZhsCDJHMYd0eZIh4XDZ8TBGTEaKD2w5RCTEiXIyEEEMk97DPU/QSAQjbHy7PfUIMEewV4oKPJUKNkC5CDBGtGUIJuYV3+DVDDBHsFeJCiG3h9P0EHNImM4Tivc2G7+YjP/lDngMJqREzRBAEQRAEQRAEQRAEQRAEQRCEM82Z7BlS9twzsFytEAC/3iEuRgji0ztklXqDYNa6S8aRixHSbEs9nKshwtGfQkdIf5BZnaDkYoh49QjxqPvslB2Ir/XoHeJjhPgQ0hvE59gDOP4+IbF4GSEBnKQR0ry2tjxcDBEfI8QXHyOkec9k7myHePUJKerXOhgiLkYIfa2TIXLGjZDm9bcP3O2QBDXPQ/HpIeJihCA+PUR8eoT0D6vXuhgiq1abd7KVO9shLkYI4tNDxCej26t3SIjZ69FDxCeTHzP+nAwRj8327R8SYlEnI9Gaz2tcByME8ekhEmIY4Xtieoiw4LGrvXqI+Kz5GHuI6PDpIeJihDSv9egh4mKE0Ne6GiK+metcfUS0Y69ADxEXI6R5LWcPEd34k3p8hl4iKqn6hwBUx7PrMeVjH2APEYSjl4gK9hI5yR4iPpVApjuVXeFiiPgYIQhXHxEdw1sTZzvEyQhBfHqIePxa2EME4e4l4tOPw+v78FjfuBohiFfvk9W5ZRQcWLFbT0EQBEEQBEEQBEEQBEEQBEEQBF7OZM8QALMZ4mOCGMe2BOd9jBATOkOEwwjRZb2FGCHtMfT71McGsWHKHIg1Qkx9Q0KMkNbYmqQmLxPEhGUIr+xAAzpDhMMIMX1XIVaISlfW7CobIbqeFixGiCaLIpUJgvgYISZMhkisFWLqHRJihKh0mSFeRogJjSHiY4SY0BoiCY2QVDYI4muFUIyGSKQRkqpvCIDdDPExQkzoDBEfI8SEyRCJtUK6eofErhdMhoiPEaLDZIeE9MWiaA0RxmxyXYY/R+a+0RCJ3HSTIRJrhHT1DfHtY9geQP9jjjWfbmwfI8SEzRAJMUMopuMsWb+QyF1itEO4LGDDec0xj+gMER8jxITOEPExQkx0GSIhPQ1UTIaIT68Q7biJ+ocA6A0RHyOkC60pwpBuqzNEfHqFmEjVQ6Tr2Iq1Dkx2iE+vEBMn0UMkpEcsRWeKhJghFNN35dsvhGIyRLyMEBumKZ9hX+sMEZ9eISZ0638WQ8cyhK8ZosN432K57ErPkNVDzBBBEARBEARBEARBEARBEARBEM40p9IMsRkhFMzI4jBClsatg/AcJghFNUNS9AjBLDgOK0QFM5C4jBCEZg5w9whBQ4TDCFkat05wYjFCKBlTViCBmiHcfULwu4s1Qih47KUyQRDuHiFoLSTpEdLLkhshADxWiAoaItx9QnBfxxohFGqIsBghKrUdwmGEUMrR4I42QiiNIcLcI+S4DBEOI4Ry+4UjFiOEgoYId58QaohwrxfQEIk1QihoiHBkclOWDJFEZkiKXg6NIcK8S9AQ4e4RQg2RaCOEUg+fYu0HGY8RQlENEQ4jhILH3aoaIZSWIcK99qvP7xTzSH5zn8UIoaAhwmGFqFBDJNYIoaAhEmuEtMZNZIhQO4TTDEHKQT9Jmi0aIhxWiEoqQwTBY467DwUaIhxGiEoqO2TpM3oZixFCQUOEwwpRwe8u1gihUEOEzQxBPPpn+IB2CIcRQlHvB1L0bsF9wWGFqDTb7XHZFUNkdTiTDdRVuIMgSJ7wIeN8lCVtvsMdBEGwUapLM24fphvYLJt12AbuIEgzboogSM1gr4S5Wy8uL/BmeHQrzQHIHQRBBrexGXeafX4aG6X39iZQrPEvVrI6SJHiZhsgXbN0l6adQePisEWaYztFEKQZezpPcvOTYxPMFItZ4A+CNCQ6Rnp71fwx3+J/kDR6/qhp1JuCraemcHiJf6k43Kv29Zj5OonX8zzRacMdBEFm69WT+cE+/wOq3ngO84QPolMxH1bbzN04Fhur0yahseB9wXE8UOKmGGRJgiHYWN2l6W0IKR6qVePW9x3M+YJNU3XmpIyGlM3Vh2muM01jdeZxMbhSnN+qP4h3n6Rav6duqj6/vAMAiYIho15zj8AJNlbnJmVjdQAlQM58OmJz9Zw5ITdVU3WVop8luR/DBuvGMpuBcI+HDG9V18TDu3mDqQg+oOdes3Kvm1TwOd98mOY5KHcQBGkawp++pZ8AUiZLEARBEARBEARBEARBEARBEIQzzpk0QwaKDVLUGnzOmKiQomQEAMDRRcXZx+giR39EQ4YQV9buYD9NduBkc3n7mig3w8fNNtq/O6ftk80BenU2wXzEFypWj+1enWjHYYis3TQcI0yb3j9a/tK4jj1dMy8OaIbkbKvayf09vuzGYqRMv4wZa73DNCnRNNsLs+JSGSJspGoKSBu+Y7NzTkMky5ryAKyZcZrG7CzDkm3E7C+u870Zry5LkR3wlEzATExuMnIsJDFE8qzJMp6v8S3pimGiY4SsxUa3eQ0RLE3EuV4AWKwPpnV5r8Ehz7zXI9fG6Wb1HXIaIvl4Dvm42jFTznJCamY043WAzheYBcttiOD6gTvTkT27lgxT1OVzuctlzTaq/Zyk/O/OkNUOyUh5x95+te7hLpHCvc5Bm6rs1eUvuctq1mBZULqfYsHxcHwOyl61lppf3IHe9dts4zZGCILnI7Mhkh1V1/Vyjem6jkvJuqwVlwmLRghS7NTj3+Y1UHBtzGmINJb72gB6t/i2N3WZrAbGZzoAACNSraAYMdV8xJJ1ZEM5zne8jgMoNhijdZHK4MBrwHx9sU7oHcavz6gR0qxdmct34nMcLkME9wctiV8wLKOWWgMwnzMpESPkdCNmiCAIgiAIgiAIgiAIgiAIgiAIZ5pT1UC9q3H6wKE/SIwhYjNCYjK0lowQSsS345LJFJOx22WEhPZvoEYIJSbTU2eEUGIMEVvDzBhDxHZsx5ghJiNEJSbiTY2Q1tiBx1+XERLTO8SlbnaMIbJkhFAipmObERLTO8Qlu2sl7ZCOrNyYrLWWFaIjxhCxbHuUIWIxQmKymKkRoh0/4lrTlT0WaoikMkIA2laIjihDxFKvPMYQsRkhMb1DXNZeMXZIV7Pq0HVD13ogxhChVoh2/AhDBG0QHVGGiK1WfsS1wGWO4LZDVFLVwo4yRBzeGnP/UQzNH5DCEAGI6x/iYjrE2CFd31XoWqerv04qQ6QZP8IQyQ/M31dMxjgaITpiDJGWEaL98Ij7vAN7D8FgQ6RjV8YYItQK0Y4fYYgUlrVMzFrbdu8SY4ikNkJUC0JL4OFHjRBKlCHiYFbEnO+2fRJjiKQ2QmzEGCJdvUJCDZGuZzYxhojLPokxROaW9UjM89AiQY9dAB4jRBqpnzxihgiCIAiCIAiCIAiCIAiCIAiCcKY5Ez1DXIyQEFL1BkGsRggSUDMvZZa2T3+QfFp6Z+h3WSEAYbXAXYyQELqyUVV6Y/8eIi7HdkjvEBcjJJQuG0Qlm5feGeMufULQ7vA5/lyMkBisRggSUNPYpUdIflS9xscQ4az3e+w4ZOKG1DV2MkJicNnukB4iDj1CQurcuxghMbhmi5Uba952yHH1CWHHJVstoIeIS4+Q9WvVuD6GiI+NG9I/xPUaXOb+doiLJRrSQ8TFCGnGD+ghYjNCkMFedU3wMkQcjr3mNR7rUJ81QKr+IQDV2iKFHRLUQ8TjpSE9RGxGCJKqh8h0p1qscvYQUQnpH+L63ZR55n2P1WWFAKxmDxGbEYKE9BCxGSHI/GJlMnD2EFkiYK3dZYQ0rzsa+9shDruPu4dIa/yAHiI2IwQJWWu73KvMz1Xby9lDJJZOIwTJwDvTvcsKAVi+9rP1EVEIOd9d9klID5FURogP2EfExxDpMkKQbO5vh7iYCupruPqIqGAvER9DxGqEIKeoh4hwuhAzRBAEQRAEQRAEQRAEQRAEQRCEM82pNkNCjJCijrLashVDjBCXzCwnE8SEQ0Q0xAjBKHxXZp6PERKCixFCcTFEQoyQol9/l5asUB8jJISQY9vFEAkxQjBzoCvjwMcICcHFCKG4GCIhRshsq9rJtt4hTiZIBC5GCMXFEAkxQrCO6In3Dgmoze6StRZkhKCN4WIKhGy3iyHiYIS0NsUhiznECHG91qiv9aHcqLKtugyRVTJCentVpp9T7xCXrHw6voMh4mKEUFwMkZj+bC6EXINdrdKQvmEuhoiPERKCixFCcTJEAo69EEPEh1SGCK4zVsYQ8cDlPsTFCKGsgiES0vPCxRAJ+S5c1zsuRkhrwoamMAABAABJREFU7BUwRFyMEIpLxriLEULxMUSceoVQHAwRVyNk6T1H1XuC+4dYQEMEoNsScekV0hrfwRBxMUIoIYaIC2iIIDZTJFWvEGcjRCVxpjuuBzoNkYD1tsv5HrJPQgwRblz6YlBcDBFXI0QF17mh/UO6wOc6XYZIyD5xMUScjBAKfYtl21e5V4iwOogZIgiCIAiCIAiCIAiCIAiCIAjCmSYrS4+CmSfEG//ajy/9naNHiC5rkbNHCM3MirJCVAybyJWRTbN2uYwQmpkfYoKY0GV5cvYIUbNEOY0Q2juEq/eNyQzh6hNCI+JcRogpYzzECKHozBDOHiGqIcJqhGim5xAjxAQ1RLgyto7dEGHKtKW/P2uPENUcYMwM1pohAUaICZo5y9UnxHS+x2aEmcyQVTJCTGgNkZCsfNP4iiESYoSYoIYIlxVi6h3CdR2ma4cQI0QHtUM4jRBd75AQI8TEkiHCeOzpDBHffmE2UvQQAUhjiABYjASmXULvQUKMEBPchgiiM0RCjBAT1BDhMnRM650QM2Rp3ER2SDM+2bchRogJXcZ4iBliQjVFgowQE2TNHWKFaIc1GSJMl2FqiIQYIdpxiR0SYoSY0N1v+PQ17EI1RFIZIUiQGUIxLD9ceoW40DJEmOwLkx3Csk+gfU+QqldIiP1gQmeIhJghJqgpwmUqUEOEa5+Y7JAgM0QH2e5URkjzcQnMkI/85A/xDyo4cSrKZKVokK6Wy0rZKJ0tCIKg0pZYIeQui4UPno/O88tIamPUVWiU7go2VM+ZexDTclmpmqVzl8XCY3qwy7+z82nZBERSNEqfbQ2jb3y1EIWfMxCy9DHM2vqxlc1KVG4kSaP0PPdq1ulKq1wWYyAEYFHahfsYoWWzuK5ptFzWaQiCIL298SIgwvkgmsAZCAFYlM0aMz84pg3Vua/DWDaLew0Y0lTdeezNfhMQ4QyCIIO9aVO+iBVSNoszEJKSVGWzWiWzmHcHZ/CDMtvIkwREaNkszkAIwKJsFpY55YKud7jWgsdVMqt3215aMoRsVjTjcwZBECyfxX4dDmis7jQsLZvFfCuMpbPKEV8wASCsqbor5aDXrCs5gyAIls+abad9Msr10J9eA0bXeYIgiHPZLE9oySy2/VGDa4XeJG1wmBNaNoszEAKwWAv7NCl3wbVsli/0OdeU+1ndMTVXl/JYZxMpkyUIgiAIgiAIgiAIgiAIgiAIwpnmVJghKeEqi0A5upCm2xFGJUuHJt8hpMrkPririrvlCRLbp1uLUC23ZQHQ3Ww1lP5R3dy7nybUvPFcteG25uEhDG/X2SXMmYf9Q8wuqbPsmI/tVOc6AEA+maexFBJXMWwyGpnHpaXCuI2WpgkosyFX1GWEkpl3ibIOARaZdfmE2fJBcyONlLQwWea8213sbNTjMu/ren9gtiu7MVNnFZfM2XsAi4bqxZA3UxLPl7Vr1UFydIk3y3PrqWq796/wLlmpuVEw7/LJVnVsrzNblId3Vd/f5uP82bpJrBCFYlDP3cxrzdl69eX1D5mb82Kj9np9Ml/nzSHDdQn3Oq2/v7wfZpu8B/d8rc7WPeK/lmFWbX+Xr2wTAEB+UM1Pw/rPyZVN1vHZF1I1aA9lidaDxWZlK+T7zJnoN/YAAGB+mb9EUbG+uBb09nmPE4DFeqrHVCaroZfIPKnXIY1pscWbiY6GCDCbOLQ0KLcNBgAwuDWG6Tn+Rvap6B9U3yGWNcV1Gxe9g2q8OfMaE6/BqZ4jpZ4HUzA5V62nekcFzNdSVEZJU4WhwPs+5l09r28NsEIH+7qnrrgySWDG9o4AZmkKDQgnjJghgiAIgiAIgiAIgiAIgiAIgiCcaU5FA/W3/qV3s42FUUMdHAbAZNMQX4oMUprq1EVnu3dsVz+y5jUaIRQOQ0Q1QppxGRMotHXEGc6WviGTLtYQGd2yH8CxEXhTL49YQwSNEAqrGaLbRIbhtVn4HIaIZVrmsCzmG/rs33wcdwKZmsdzmSGmRn0cJoeuhn3q3kwc2YG6Bnccdoippn/OlKVm6ssSa1qYjhEWQ0R3jDCaIYWm3ncKQwSAxwCwnR8cdshgX79vYw0RUy8PLjPEdO6sPx9/7sw22sc3hyGS3AjRnTsM2YymBp9choip/nmsIWLqf8ORKUmtEBUOQ0T3vXEYIrpeG5x2CJohKhx2iClTOY+tcW84P7gyo03zN4chku0etH7GYYioRgiFwxDRrWF71/eixy03DaYG13dpWIdwGyKLgeMfmJjuFwB4DBHdPJXKEOHsk4FmCCXWEDGd77GGyHTbvtaLvc6b+nymMkQ4G6nPNf35OAwRU+Px2H3d9bvHmiJzw6ESu+4xPVebbMd/lz1LSy0OUwT7Yj/0sz8cP5gQhJghgiAIgiAIgiAIgiAIgiAIgiCcaVbeDOGyQmxGCBJjhhiNkKUP8B/XZIRQggwRh7FjzBCTFaISYojojJDWuBEJFFojhBKwW0yRa5UQO6TLCGnGDoy8m4yQ1vgBhojJClGJMkRcNilgeKfM+xBDxGE6jrEsTEaISogdYsvwUgnddmO2PyHE5DBlcceO6/bh4eO6ZC+FGCIu+yPEDjGZIDpCbAvXYyTIEHE5RiIMEZ0RQlklQ8TnfAgxRExGiEqIHWIyQigxhojL+RNiiOiMEEqIIXISRgglJJvRZf6LsUNcM31DDBGTFaISsl6zGSGUEEPE5XsKMUR0RgglxhDRGSGUEEPENTM5yBDxOCdCMqRd5vAQQ0RnhFBiDBGbGYKEGCIua9gQQ8RohLReGLYWdF13rKIh4rLPQwwRl3lqFQ0RkxGiEmKHuK7XQg2RLjOk2Y6A67zJClkadwUNEZ0R0npNgCFiMkJUYuwQl985xA4xGSGUoHWPw5ojxhCxmSFIiCGCRoiK2CEng5ghgiAIgiAIgiAIgiAIgiAIgiCcac68GeJihFBcDBEnE6Q1sPtLXY0QFWc7JGBsH0PExQihuBgiLkZIa1yHJAonE4Ti8RaXqDXFxRBxNUKWxvWMurtaIUuf4ZC54GKEUJwMkZDgv8fXE9SLwcUQCZiGfSwLFyOE4mqIuFohKi7b7pzpr+CTse6SwR0zvhce339ItpLLcRuyP1wNER8rBMDfsgg5VpwMkZBjxGPbXYwQykkaIiHHv48Z4mKEUFwNEVcrRMXHEAk5f1wMERcjhOJjiKQyQ1yMEIpLRmPI/OdjiIRk9rraIS5GCMVnzeZjhiAuhkhIpqmLIeJihFB8DBEXI4TiYoiEZCJ72yGe+9x1m0LmcBdDxMUIofgYIi5GCMXFEAlav3oYIs5myNKbHLLhA0zUZHYIgJchErLPXQyRkHkqlSGCuFxPXIwQioshEnKu+9ohrlaIisv35GKEtMZN/DjTZe3hYoS03uNgiLgYIRSf8yFkXeVqiLhaISpe656AZ2wupoiLEUJxMUR0RggiZsjJIGaIIAiCIAiCIAiCIAiCIAiCIAhnmjNrhoQYIRSTIRJkhSwNbP/nECsEwMEMCS+Z16AzREJMEIrNDAkxQlrja5IogowQimWIkGg1xWSIhFghS+N2RN1DjJBmbEsGQ4gRQtEaIgzHtu27DDJCKDpDhGH6tVkWIUYI0mWGhGR3qZi2OyjLn2DLiArJ4PYZPwrL8RBTv9Z2/HLsD5Mh4muEULqyH6OPFdP3yHGMWLY9xAihnIQhEnPcdxkiIVaIiskQCTFCVLrskNjzx2SHhBghFJshskpGCMWU0RgzBwJ0GyIx9d4BzIZIiBGi0rVeCzFCEJsZElN7HNEZIiFGCMVmiIQYIRSTIRKbfdxpiETuc9P2caxZbIZIiBmC2AyRECOEojNEYtevAHZDJMgIaQ1i+C4j+pMBnJwhwrHPdYYIxzx1EoZIiBFCsRkiMed8lyESYoSomL6zECOkNfYJGCIhRkhrDIshEmKGUHT7PHZNBdBtiISYIQAO657IZ2wmOyTECKHYDBExQ1YPMUMEQRAEQRAEQRAEQRAEQRAEQTjTnEkzhMMKAWibIdFGSOsDqj9CTRATLUOEeXy0QziMEIpqiHAYIc24JHmCxQpRIcNxWCEAbTMk1ghpjV9H3mNMEO24JIuBwwhRaewQ5mMbAJa+SxYjBKFmCPPUS02LGCtEhRoiHNldKrjdHEaICs2K4jAgbOOzohwbHJk7CD2eufcJGiKxRgiFZkJyHyuNIcJ9jJDt5jBCkFRmCKKaA5zHOjVEYo0QChoisUYIhRoi3OcOGiIcRghFNURW2QihYCYj5xwI0DZEYo0QChoisUYIhWZKxhghFNUQ4ci0pqiGCIcZglBDhMMKUUFDhDvbuGWIMO9z3F7udQq1Q2KMEIpqiHAYIRQ0RNjXsMQQYbFClgasv8tII4SSzBAhdgj3/qZ2COd8dVyGCIcVokINEe7zHk2RWCOEQr87DjME4PjtEA4zpBlLMUQ4jBBKqnUVNURCjRATuP7her6GUEOEwwwBaNshNiMEETPkZFjZYMhJBkEoU8fmiN4kCoYgeaKHdRPGIIWO+Sjd+IODNPukV98fpLiJBHCbREMY3axuHGdraR6spToGkz6IBoB8zPwU4xgoB/UDGJdG86tEPb2etn2e+hgESHdtyOa8wcnFwNUGuzS7DCLVcgUDlYnGL/N0Em7qoMhsk/mOpsalaWQIZf1dTrfSjJ/i5hQAYHCQ6JypGd5ON7+mCISwUZbwjz7wk/D6G58HAIA5ZPCff/V/DY9tX7Wu1/757/5PcM/Rzebvv3Hvm+B/et13OX0kXhvm64nWVb7NuB1xbQQfCnfSjcrwmX3n1/7TT/8juDq91fz9PedfB+9+4F3a1853qoejRaJ5Nj9Ks0/6t6snOgVTUgyl9/SNJONOH7gEAAD/+OGfhFfsPVH9LOvBf/GGvw5f3LjC8hmp1iddpWVDmW1Xx+Dgmvsx7kOqoEiBSSupnnFwJqsRUgdFUt0/9Pd5g8HI+GK1P7gfoCO9cZpzMnVQJNWzEwCAyU7atX0qCv44NgAskpi5E5GQuUfTdh9CngtKUOR4SXTICoIgCIIgCIIgnAzf/MSHm0AIAMBv3P8WeGz76slt0Clgc3oIr7zxJXhg73nYmh5BCRnsDtfhi1t3wScuvgAmvTQBUuH0sFGM4eXjp+He2U3YKsZQQAZ7+QgeH1yAR4b3wCSPe7zw0y/80/DuT/wMAAAMyjn8l5/7dfibr/nLDFsuCIIgCIJQcaqDIaPby5HkVEbBoC7xw2aIJE6iS5WNDwAw3cwaFS5F1rJaGsvWVN0X3ObZeq3ZMZXQ6JF+gpg1wWWIDPeWj/FS14Q7ADRCUtEqg8BZ6kcZO0WWSjYvmzI8nBlktLQP19hohCw+B7PzV9wQSdyxip4rnBlCZZ41xx5nyQ+kUI4VToujmZe4TQiyr1OcP0ufk2i7uWmV8+LcHb2FhcNeNgwWJTkGN+cwPc+XOYrHIJaJmG3wZL/R831QXzu5DBEsk4UZnVzZaZhFN96ptpOuazko8wzG56sPGt3ky16eKWvinLv0KEB7rez5EZvTQ/gvPv3rzd+P8gH8f1/2p6FPsvG5SlzQbN9eXY6LyxDBazr3OhOgysz98qc+A3/+S++DN9/4LPRL/XE4zvvwvnteBf/nS78WHrnwgPP42XxxrnOWiMH7kPHVqpzV6Ok02fNornIZIk2pkvrYy5hsHzRCkPygLg3FZIi88daj8J8+/X544+3PmY+RrAcfWH8Q/uX2W+BPRnc7jz29/1Jzjj98/kH44IWXwttu/AkAALz51qPw1c9/At57+dXB257KCMHr77xf7WNdw3YOppeqY5zLEJlc3V76e3+P576woOsRnKaYlls4/83XqmuarYm4L5PzCyOkqzF0CKoRy1nmEMtvzUfV9o+uj20vD4a7xFIP5z0cjmtpn9gI6dUGDv45vsS3RsZSqfmsbJVK56BUTk/aDiCGVEYIhXsNPiPPjjn3STUg+fuKP5q5EznVwRBBEARBEARBEASV7/7c78GlyaKe/799wVvh2tpOKxhyp7M5PYK/+fFfhK997hOdrx0VM/iGJ/4Y3vnEx+CXH3wH/OPX/icwi7QAhNVnY3YEP/zYv4avvvHJzteOyjl87cGfwFcf/An8263Xw09f+BqYZf5BpJ974J1NMAQA4K984T3wB5deAUXAWIIgCIIgCJRTuYI1Zc716p4hK2uIGDaLy7RIbYRQOLabs0m6DlNmx2w9i7JDqBHCDTVCEMx2CDVETEYIPhzgqH+pzZTHDMaIbBLduBxZKrbarRwZ7qas7bKfx407SKxWpESz6ZhxydE7RHd+4M9iMoZ0x1lRfw8chkgrow4Ayh424w0f35hBnGVxlkVis6Lzc7m3ndE80Z73+KOYQ0WTDYXzCIchomvSOrhZZRvHGCKmYzDWEOGyJU3QxukIR3aaLpOO0xDRzVcchshMswYu6l4qLIaIaZdm4JxVd2G8C3/u83/Q/H2a9eAX7/1KbSAEs1M5m6AujR9piJgsTw5D5PLuLXj3R/4JvOjgOa/35VDCf/q598ODt5+GH3nHfw7jvt480DWR5zBETPcd46ubLHYI9gqh5ON5lB1i+q64DRFKjCFyfroH/+BT/we88Mj3GAF4197D8MLpNfhbd30HjHN9ebXp/ZfaPywBPrX1AHx058XwhtuPAQDA/UfX4Vue+TD82tUv99qO1EYIZb45ZLFDsFcIZXppM8oOoUZI83lb1ffDZYi0YDBEdNc0DkNENUKazyIfFWOK6HqkzTbreTDCEEEjhDK+OGKxQ7BXCCX23rtnmueYDZEU9DR9WUbXqjUypyECUNkhKjGmSKk5VPBnMTZEaiOkZ1hTxq7BqRGCcOwTAMuzhlNwjN9pnMpgiCAIgiAIgiAIAuUvPfofYGO+eCD5nvveCM+tnT+5DVpBBsUM/t4f/zNtIORL65fh37/g9fDE5iXIoIT79q/B1z/+MDywf23pdW96/nPwt/7wF+C/efv3HtdmC8fIoJjB33nk57WBkC+tXYLfv/hqeHJ0EXq39uGe2S34moPPwH2zm0uve/34cfjRa78J/+Nd3+79+f+/+78a3vDJx5q/f8+Xfhfec+WNMBUbSRAEQRCESE7VasI1U643LpPZIcE4bE6IaZHSBgHQGyGUkO12MUKKOokopHeISwZHSP8QVyOkzLOgbD2TEULJytI7I9alT0iMIZKid4LruCFZKjYjhAOXLO0Q88TVCCn72er1DXHY9BhDxOWcCDFEXI6rGENEZ4Rw4DQHhdgQjnNPst4hdDu4tz3CEHGyM0IMEYfspxhDRGeEUEIMEdfrYP9g7mWHuF7/YnqHmKwQlZDsNJdMuhhDxGW+CjFEdEYIJcoQcdmFDll1O5N9+LYvPbT0s39z9a2dQ/cmRZAd4rqWCDFEXK7hIYZIb1zA93/2N+Hlu08s/Xya9eB/edm74NfueUszD07qY+WfvPJPw7d//iH4oYd/ZalfxNc89Qn4zs/9R/iVB9+x2G6Hy3eIIeJynxHTP8RkhKiE9A9x/W5CDRHaK8SEryHyfY//O3jZwZNLP5tmPfjHL/xW+I273ry4Vt5V/fGzT70Dvnn/4/DXr/8H6CsXuK84fBS+bfdh+LXt1zt9LvKhcy+BJ0cX4N7xDQAAuDK5DV//3B/Db939ps73HrcRojLfDO8fYjJCVEL6h5iMkNbnRxgiTmvZAEPE5ZqWoofI0jbUm+BjiOiMEAqHIaIDrY4QQ8RkhFCyovS2Q4xWyNLA9Z8hy4hE/UJ0RgglxhDBXiE20BTxMUR0RojpNez9MiIwGSGUbF6y9Q9RidknTsegGCIrwymusyIIgiAIgiAIglDxHV/8IKzPFw8uPrN9L3xm5/4T3KLV4wX7z8Kfffz9rZ//P17z3fBr9365NmhcZjn86ovfDv/3t/6l1r99/yd/E7YnB0m2VTgZHjh8Dr7zmQ+2fv4/vuS74DeuvMVwjGTwG1uvhb97+dta//a9t94PW4Vb0KYhy+A37n7z0o/+3JPt41YQBEEQBMGXUxEMGd0uvLPjeuOy6SHCDfYOcSID7/qYLlkH+bxM3iPExQpRycrubZ9uZd59QorBwhLh2AbKbD1rLBETvbF/n5Ayz7wyJlytEF9GN6dOVohK/2je2WQ0nxZL/zlRlIv+IR14jVuTFWVnBl42L72tkLKfO2db+7zW9z2+fULKfgZlRI1RNnLwvtoUo55z5mWZZUl6B/iewwCVIVI4fk9FP3e2Qspe3vQP6cLlPGi/KfOzJjzg6GVhxXW7fbfd4z0h573TedHLnKwQlWxWOGfFZtO5kxXiS8gx2D+YR/URsDHwuL4WPTcrRMXlulL0/esrj3fyxhLpImS+Gp/vN5aIidl67mSFqBTDrLFEOglYJ5ve0yvm8Ge/sPyw9NfveYvzsL1J4Za5ipuRaB2ezUpvs9Pn+//uL/zekt0BAPBv7/lyeP/lV7ZeO7w5g6FiEL3v3lfDr75w2bTZmR7Cn/vcH0A2d7NCVGYbvU4rrMz8+xOOr242lkgX852RkxWiko/nTgZriCVeehhKrlaIChoiNv7ik+9tHSO/fteb4QMXXmF8z/zqBZhfvQAf2Pgy+I3N1yz923YxhnftfrT5+/T+S/p+IYTfuvImmCsn+4MHz8Abbn7O+Hqf619q5pvDxhLpYrY9crJCVKaXNhtLxIarFbK0PVuON97gt5ZtcDgtQq5p87V+Y4l0MTk/0vYLsW6Tw1w0X8udrBCV2WavsUS6mI9yY78QyvjiaOk/l9f6EHS/4Ty4x0vLMokV0tufOlkhKqNrR40l0sVsI3eyQlTyWdnqJ0IpczcrJPQ9IetZV1ytEMT3uY6pX4gO3Ccu+yXoGAxZ/wqsnIpgiCAIgiAIgiAIgom3PfcIXBrvNn+fQwbvvfLqE9yi1WNregBf9+wfL/1smvXgZx78U85j/JNXfRPMsuVbyHc99hBk5Wo8hBbi2Jodwtde//jSz6ZZD/6P+7/eeYyfPf8OmJHHDN+y93Hvh0XXh9vwiZ0XLP3sm579sNcYgiAIgiAIlJXvGRJSL1kF7RDuHiJoh0xN2XKRH2fqw7EKPUKCxvW0QXTYeoj42iA++BohlK56zqFGCN5QmDLifW0QHf2jeat/CEtvENwXmowfjvF1PUQ4MjhtPRA4st9N4/saIe1x62PwuHuIMITbi1HPmH0ZY4PYeof4ZqLp0PUQ4egNgnZINtefJ9EZWqZ+GZHmzYn1D+Ewhiw9RJJZLww1cG09RGJskK7eIbHHINohpmzx0PO+q3+Irw2iQ1e/mCN7ztZDhGO+0vUQ8bVBdFh7iHAsN0nd5W96Yvkh6cfPvxBuDP2zors2LWY90TucG/uGcFyjbT3reuMCvu7Jj8OwXD7//+DyKzv3E9ohk/N9uL62De+959Xwzic/1vz7laNb8Pprj8FHL39Z0HaH9BBxoauHSDnUfxcvOHgWXrL/FFyc7MGgnMGNwRY8P9yBj++8AI56i+xpUw+R2Hmwq39IiBGiYusf8lU3Ptk6Rt5/4RVwc7DlNPb86gW48TTAB9YfhK86/Gzz88vzPXjlzi48fO7FXtv6+5deDa+7/YXF9l37FPzD2RiO+ovvIbUNEnOt7+oh4muEUEJ6iLjQ1T8kek1r6B/CcU2z9RDxtUF06HqI+NogOmw9RFxtEBumXiK+Rgilq3enj3G5PHD9p2E6TdUjhANbDxFfG0RHSA8RF2z9MlLZIAD+Rgilq4efjxGiw7RfWI7BDKR/yAmx8sEQQRAEQRAEQRAEE2uzCXzFs59a+tkHLplL+typvPX6Z1o/+70rr9G80s7v3vfapWAIAMDbn30kOBiyCvSLGXzHUw/Bdz71AbinbtpNOcoH8NCFl8LPPvBOeGzz6jFv4fHwlpufbf3svRde5T3O+zZeuhQMAQD48huf8Q6GfODCK+C/euzXm7+vFxP4iuufht+54teQXRAEQRAEAVm5YMhb/9K7ASDeCDkuWoZIorpvp8kIUa0WDiOEQg0RLisE+4b0D6sBY40QCmZLjG7zZr1RQ4TDCFHB3iEFQ6Zyi6Js7BAW48QAd11vmuWeKjs81ghpjXdchgjz7sCMS8zA5OwPohoiHNlolKZ/CPMup4YIe83eBD1YAI7BEEFSbH+WNXYI6zmPQxXAYoRQ6DzF1SOEGiLcxyA1RLjOe2qIcBghKl3ZaTGMd/JmfZxivhqf70NvzH9utgyRBKfnm699FkbFchbwRy88yPoZXGuJ3mF1bKMhwn1Npkay+p2+9tbnW6//+LkXOY89vDmDyfk+PHyp/UD7ddce89tQDaoh4tsnxEbTP+TT+n+/5/A6/A+f/nl48cGz1nHWiil8zbVPwldc/zT8i/u+Cn7mBd8AZZYbDZFYqCESa4RQdIbIa/a+2Hrdx7df0PqZjfnVC/Dw5FUA135j6eev3f2C4R1mnl67AE+PzsPV8c3mZ2+/8Qj8zl2vN1qyXHBe66khEmuEUKghEtIrRAc1RDgs5yUMhggH87V+Y4dwGCGUMktTnYIaIhxWiEqsCWKCGiLBRkhrYP3npMK3T4iN0bWjxg7hMEIoqiHi2yfEBjUhUlohnNA1eKwRQrGZM1HUm4nPwh/62R9m/gBBx8od1nma3pkwW6sfdB8lanbYUbIoFNxe1wbivuB+ScHkXObdSHEV6B+keZAx3K0fYFjK88SQqvFsigcuKv3denG9xvxE6hjAm172JqqJHkQjuKjmfuhV1DfteaIH3ai9uzQt9aUY9JLcVHOXamuNj0GRgnefpA5a4PyaLFCZKIGgHNbLpuJ0JGyopGiUDgAwuF0/2PFouOo1/q3qGjE579aI1pXRzWp/HF5Kc+3Jp2lKGGDJrOEe/zGezctme7sadIYw26y2vX/AfP7kAG97/pGlH+31RvAn2/eyDJ+V1f7gfDgPsFi3zT0aZvtA58HL41twcbK39LNnRufh2mjHb+AS4Pm1c/D0+nm4eniz+fFLbj8JeVlAkcX/PuML/aXG7Wxo1rRXj27AP/zYT8PF6Z7mDXr6ZQHf/fjvw13jW/D3X/pnoax/53yCwWfmBzCJjhFkXq9nr+zeaO2HZ4bn4PrQ8xgBgGvDHXhmeA7untxqfvbg/tNBx8hHd14M3/zcR5q/v/nmo1Cs5VBm1TW5v9fdFN6XYthL/tA1BeN7qu+K+z7z6HL1QHd4k39fAwBMzlXX+MEub1Lf0V3rAJAu6Q4DuCmOlTneGycqB9VVyjuUVPs6J8EV7nk2WbLgMXRpHu7NYbzDv55NWYoeQL1P5v2g6QbeZ7IO29AERZjHT/UsXNCzcsEQQRAEQRAEQRAEV95w7XNLf390+x6Wh/JniQf2n2v97In1i8HjPbF5aSkYsj6fwpXDm/D0RviYx02/mMPf/vT/uRQA+NLaJXjfpVfBk2sX4bA3hIvTPXjt7S/AW298pmUffeNzD8Nufx3+1we/7bg3PQkPHD7f+tmTa+Hf55NrF5eCIevFFO4a34Jn1i54jfOZrfuWgiHnZgfw4N4z8Oj2PcHbJgiCIAjCncvKBkOmdfbYYD8usjw+t3wjxG2IULOiq4GUK9j4HcGSUJyGiLrtGNUsGQLK4/OLcXE8jqiprnE6J2vXlo81rlIXaISkone4PD5mGHKoqUtZ7Ur5My76+4ubyhzLcTEYIvT8K3sZa6Y4PSa4xqdjYIYKV+YLLXXGZYgUJGMRFXouQ4Qad7RsVtTYiu7f1Zzca9zERhWlGNT7JDL7n5aEYDdESHYblyGiOyc5xl0ac6DMTXm9nzgMEXUI3F5OMzFVg8l8+VjBEhpchkhGMgsxGzXWEKHGw/o1XkOEqvNYehNLcXIxqcuQpjBEuCkGy7/7bCPnsUPqYddnY3hgb/lB/+e2+Ps5dK2DvvnJP4If+8QvsX+uC0+tX4C/8M4fA4B2Vi7aPlePbrbe5/tQenJucev4zPr51r/fu389KhgyV0paTM5Xn8VhiJjWOV91/ZNNgGO3twb/64PfCr995Y2t1/3yvV8Bl8a34b9+9FfhHTeWLaTvfOqD8AeXXgUPn1+UZTOt377pqQ/Djz7yL6N+l1CeGZyD7335f7X0s+mF9aW/XyluAeWZ4Xnvz8J14LOj9nvvGd/wPu4e1fRnefntx5tgyGyrui5wGCLFcHEt4Mycpw3U+7tVPWauclnqdgPwVSKYkfsyvAZzGSL0mj7drtYQHIYIjgWwKFvLaS1gqUMA3mOl9dxEKdPKQes+Oc+Ytpus8TWN5jnhuk+mRkgxwkoEvHZi/2j52JutxSdsqGNiKXYOQ4QaCr0pwJzxOSQ9BnFf0H3ky2Sb3McyPovUgc9WYlsa5AlEWKEbSZkSBEEQBEEQBOFU8rJbT0CPlFh4bPPuE9qa1eXiZLf1s2fXzgWP96wmGHJh3P6MVQYDIfu9EfzYq79XGwhBro124L9/5XfD71x+7dLPcyjhBz/7ryErT1/5RMqFSbtU2HMBJbKa92pKsOk+o4vHNtrn8ytuPx60TYIgCIIgCCtrhsRCjRBKrCGSstcGtUJUYgyRlNsMsGyEUGKisl1GSGzzMmqEULJ5GWSHdBkhsRk71AihxBgitqx2DkNENUIoMYaIbbs5MsVtx0HM+F3vic18oUYIJcYQoVbI0r8xGCLcfZiacS0NIGMMkdTHYBfFoBdkh3Q1CY02RDrmuZh9k+q8bMYYWOaiGEPE9hYOQ+SYjBBKf28aZYdQI4QyvDkJskO6emBwGCK2hoqrbIjozg+O3iHUCFHBRqJBhggZllohAP7Gg9fHJzBlubBlPW/ND1s/O+q5nUuqEYIc9tvvPTc9cBqPMrc0OY0xRFzXNf/4wW+DR7bv73xdmeXw91/6Z+Gle0/CA0fXmp/ff3QN3nrjM/DBi69Yen02K9nr2nNAjRBkZxZ+jCBqg+3DvP3enZn/MXLQX4Pd3hpszxcN5O8/aJf0ijFEqFmhkqq3AkBliMTYIbbtBqjW0SH3mtQIocQaIl3X8RhDRDVCKByGiGqEUGKOFetzErwfiljbWe9Rora7Y40faYjQXiGtz4+4T7b1CeEwRMZ3rRn/DS2IEEPEZlBwGiIqPXIqhpgiXZUTZmt5tB2i/dxTYogIx8uZDYYIgiAIgiAIgnC2uXp4o/Wz532bgjNwu78On92K72EQEmS5ttb9+67P2w8tx3l44HLca793bZa4pm0CHtm6D377rjc4v36W9+EnX/wt8Hc/9XNLP//2pz7UCoZQbg/W4bOakk+h+CRtXOtvd75m7RiOkVERdow8P9qB7YNFMOTqUfu8FwRBEARBcGHlgyHTzdy7b0iXFaIyW8uc7RAfsyKkd4jNCKH4GCJe2x3QO8RmhFB8orI+PUJCMg66jBAV3/4hPn1CQgyRLitExccQ8TleQzIjbUYIxccQ8dnukEzx2L4xJnyz1X0zDLuMkBhsRkjrtQGGiIsREtI7pMuAWHqthyGS+hj0wad/iM/+wNd72yEec5tP/x2f8zLovLcZIRQfQ8Rn94UYIidkhKiE9A/pMkJUfPuH+NgNIYaIzQg5LkIMEZfzIcQQsRkhlChDpObKUbvPwbPnzsFs1IP+gcf1wbPXU1Yur4Hef+VV8P4rrzK+1pe5x3U2nxadmc49TRmnSW6/FdQZIYjuQXcf/NIubUZIa1s8DBEf0/XXr74Fyn7PK7Dw0MWXwbPDHbgyud387I23HoVeMYd5vjx3qFnL//HyK+E/Xn6l8+e4MHjez7QwWSEAAP2y/f2Nh27zbKFZT0w0gZRBEZaa+/zaDrz44Nnm73eN2+c94mOIdJkVKiHZ87RXiI6Q/iFe283UP0RHiCHiY3dy9hBRCTFEbEYIxedY8cpWDzBEvO5RvLbb73jyrebRZYS0tsfjPtlmhFBCDBGbEULxMUR8rIkQQ4T2CrGBpoiLIeJzDIb0D6G9QozboeyKFJZI0cu87RDpF3JySM8QQRAEQRAEQRBOJRvTcetnR5oSTkKbktYc83qv7oenr0TEH1zWB7BslFkO77+0HNQYFTN4yf5TXJu1MsR8o/r3ho04JiW3+mUBw/npM5EEQRAEQTh5Vt4MAajsEADoNER8jBCVrv4hMb02XAwRHyOEYjNEorbbwRDxMUIoNkPExwhpjetoiPhYISpdhoiPEUJxqenqY4R4fbZnNqSKiyHiY4T4ELPdLpniIUaIawZ6qBXgWhc1xAqZj/LObEofI6T1XgdDJKRHiIsh4mtALL3XYoikPgZj6DJEQveJc/+QwIdiXfslxtRyOu99jBCKzRCJmb5dDJEVMEIoroaIjxXiQ0y/i/Vr8047JMQISdU7BHExRELmHBdDxMcIoTgZIobh14p2RjIaD7ONXj2uPQUwdC5P2T+kNyk67RCvrOasPdYQ9ItumxGCjObttd0s70FZf4zt/PAxQig2Q8S399lzwx24MdwCAEcbVFmjfHbz3tY/v3TvSWPvkdj+byamlzcAoNsQsRkhyCxrz3nDYgbzUQ96hjWWzghBsEF912fYmK9X3/e41z4m1+YTmGgMpeazLIaIj1lBccmedzFCKC6GSNR2OxoiXf1CdEzODzvtkJB+X8h0e9Bph9h6hZhwMUR8jBBKsn4zDoZI1D1Kou12fVbja4UgXfOsjxFCKUb9TjvExwih2AyRmD4aLoaIjxFCsRkiMcegiyHiaoToSNVHxLV/iBghJ4+YIYIgCIIgCIIgnEpy8jCogAxKzYP/O50jzUPjoeZhtSu63g+6puqrzJc2Lge/94sbd7V+dn66F7M5Jw5njw8AgKHmvb4N2RFdME9X+k0QBEEQBKGLU2GGICZDJNQIoVBDJMasoGRF2YqMxhghlHy6sENYt1tjiMQYIV3EWCEqpqyDUCOkixgjRMWUscNhhMyHeatvSEy0nqLLjuQwQnS9Qzi3W5cpztEjxJSBzmUBmDJfYvuEzEd1jxmSXRljhFCKft6yQ0KMkNa4GkMkxgih+PQQ8Rv3eA0Rrn1iNESYDAW6Xzh79+h6k0QZIZQ8X9ghnIeLzhBJWZYmwgpRMRkisUaIqXdIjBGiYuofwtEjpH9YJrNDAPSGCMccozNEYowQitEQsXwEbfCcQwn9YgYzpR+GyRDhWk+YDJGQXiEquG6jhoiPEYLcHmy2frY+H0PRz4LOmfVZuzzZ7eFG8/86QyTGCKFQQ8TXCgEA2O+1s3iN13qyTtnvtbP3t2ZHrZ9RjtsQcTFCkFv9jdbP1uum6vN6jYWGiM0Ioe9Vua35DB1ohCA6E0kXvOkixqyg6LLnQ4wQiskQ4dp20/1miBGiYuofEmOEqJj6h4QYIRSdIRJjhFB0xwpLRrrGEGG9TzYYIrHrCdOzmlAjhJJqnjX1D4kxQij9o8Kpf4gvOkMkxgihUEOE6zg0GSIxVojKcRsiYoSsDpI2JQiCIAiCIAh3OHldgz8/ZdnWR31NNrv0EmiB5aBU7jq6rXmlG1cO2w2sr4+2g8c7CUItBdN7N+btANFp4qbuGLE0Ku9C917dceiCzlCJ+f4EQRAEQbhzOVVmCIKGSJFo6znNChWMqHPZD5RU2w2wiJQeXeL9DIzE9roTqcLGrzd3/XneG3vMhhgcpMnIxYydrhrXvmBmIVfWrI6sBOgd8Ie80RCZb6Q58TmzznXjcmW6UDDzBY0OLnC82KxWE5hRmMKGKEa9ZJYFQJ01miAb/7gMka5a0b40hoihN0n0+InPTS77oUXK58l4jKRKaUm0T9AQwQxjLjALtas3SShoiBxd4N3u1P1DACpDZHRLfzCeG+/DN33xw/D65x+Dl994HO49uNH825MbF+CRC/fDw5dfDL/1gjfBrdGyVYCGSET/bSuNIeJgxuoeru5MD2F/0M6IR0OkF1F/28RXPPdJ+L5H/x37uC48P9qGH3vT91lf89T6hdbPrh5V3zl+n7NN92P87oOb7c/YuNj6WZnz2kMUNETWn/HPyF/TmAtIY4gYaubr3nugsUVU3nHtU/C9X/z3HlvIwGPVH9eGO/DfvOb/Yn3pU6P2MXJlfHPp75NzdR8OB/v7yqQdDHla8xkq1AhBtqfLxsut/joUjuXwsHdIPkm0TqkzoNHo4ALHm1xys2l8wftN7nsILhPEBIcJYqIY5Ow2gUqZZ5BPE6zz6+8yRf8qgMUxHmIlWsettzfE7HMhpkeIDTREpjtpnkvE9AjpYnR7DlOPa70vaIjM7JdDb9AQ0fVK5iC1IdJnrAok8HAqgyHz4fIsz9XYqSAXPu4Hxjg+BnHwJpiDw0uLRUxvwn+iHd612Dcc5SEQDAylmnzWri83sOc6Vgb43eFuYd7l3EEQpCk349i8LBQMWHAGRWbKwjfFw2L12GDVi+uhTOWnYmkp3FyN7up9gKNx7/MUZbIasoUWnWoR7NK40HvIhAGclDRlsrj3CX0gr2tKHgE+6ELY50MsIdLVaD6EREGQRUCrLqk2Yr7jqL9DLP04X+cZH8u24J/jS3zlCgAWN/8bz1Z/Hlzh2W485jCxYrrB/xSj7AEcXawOmLXr1fbffXAD/uonfgu+4UsPaxscAwDce3AD7j24Ae984mPwAx/7dfj3D7wefvrV3wTPbFyot3VxEA4YSnlS8OZxslVd44Z75nXRM5qH/Hcd3tI+mMcgJSaH0PKhMWxPD+Ele0+xjefD1uyw8zVf2mz3uLjv4BoALNb2g91qP0+3ux+U3Ld/benvR70BPLNxvvW6rFiUBuYsk9VQn0eHV4aw/qxfQGRzbs7GykmAn14zNjUWyF7fPvdszw7hJftPe2whHy4lvHQ9VO47vB78mfceLb/3KB/As6Nz2tfiujDfrb7D6fbyA/W7xssWk+6876IY9pIERMq6xNL04joMrnefi65MLpMgCPM6pXdYl5irN5ktiEFPc+7e4WQ8zgBAVpSQ1c9SOEsEI2W+mAc5S6anCoIgTSlIU4ncQHoYXMFdzbycoM9+uO7x8f4bA1vcAX86HmcAbbqhJPVx3n/XzFJc5xXw+SF3UIQmrJdMpz8+Uy7qZRVnaTIhDimTJQiCIAiCIAhnnbKEd33ug/Bz73k3fOsX/sgYCKGMihl86xf+CH7uPe+Gd33ug2n71ATwpCbocddReGmfs8pza+fgOrForh7dhIvkIbMLlw5vwT2HN5Z+9tmde5wz9VeF+w+udb/IwAOHz7V+dnMQVgJqVXh+dA5ukN4yV8c34eJk13usS5PbcJVYJZ/buBp0jGRl0dqGp9f8gyGCIAiCIAgApywYMh9mLSsEoIrwxkR5i37WskJsPw/9DMpsPYsujXB4KV+yQgDM+ylo/LuyJSsEoIqSxkZK86m+XFjJZOytXS8bK2Rp/MhjZXBYLqwQlQxYSkX0D+bJrRCVMkubSTLf6EeXtZptD5asEICqvA1X6ZysKNtN4TQ/88W0b+ejnEVHn6/39I398qyxOoIwvJ9zn1MrhA3NeVj2s6S6OwfZvDxWK6TMMhYTJ5sV+sywLIvLNMpzfZkm088DoBm+AAnnw36+sERiySHJyi2bzrVlzrIxU13PotCaPb3DKfQOwz+jN543NojK6NoRjK7F19/Mp4W2JMTGs1PYeDZu3+hMpMFByVZ+s+wtr6nyooAf+fgvwY99+JdgU9P42oXN2Rh+7MO/BD/68C9Brnyf0/Ucpus8B2bRyxorRAUNER2P7tzT+tkL9siD6gK0GafzYd5qTh5C2ctOxV3Vx86/qPWz113/Qutng915Y4noeP31z7d+9vDlB5f+nhVtm7w3LvmyoUtoZZwfXhnC4RX37PYrk1twfrK39LN8Om9ZIQDthuov3Xuy9Zo/2brX+bNXlY/tvKj1s9fc+gLM13owVxpszzb7MNs0r/Ffc7t9XP3xzgu1r9WtCwe7ExjUlsh9h9egT3oZPbrVPu9dKIY9vkbkg7yxQpDpxXWYXnRvWu8F0xqldzhrrBCV4c1Jq/m5F6b7Yab75KzUXztNP/caW3Pvl08KtjLHuucn81EWbculvpc37dsycl3bmxYLK0SFaZ1rupePvcc33X/n05LN3tBZJsUgi7ZPphv5ktULAFVyC1OCy2yUJbdCVLhaD5ieS+rWMF7jzkptpaGit7BEhJPlVJbJEgRBEARBEATBgbKE//a9vwh/5pGHoIS4Z1IlAHznZx8CAIC/+47vSlJiwZcnNy/BrcEGnFN6Cjy4e/yliH7zvrfAb973Fu2/pQp4+z4Ee+jSy+Brn/340s++9tmPwe/d/Vqvcb7uiY+1fvaBKy/z25gV4SuvfRJ+7Z63er0nKwv4imufWvrZOO/DZzftD+jfc/eb4Dcf0B8jzdiBD+q6khxcy9p86OJL4WuufWLpZ1/z/MfhPzzweq/toWMAAHzowku9xkC+THM+f3rn/qCxBEEQBEEQTkEOk7vpEJL172J+xBgiLu8NMUR0RgglxhDRGSGUEEPEFHldGpdkM/pgMkJan+F5nBiNEEpE5ktKI6TrJnwVDRGdEUKJsRU47A8drvsy1A4xGiEcOJwXMfs8nxVGKyQry/DG3g7nXTJDJMKCOG4jhBJqhxiNkNYLIw0RExGGSNnLtVbI0mtW0RA5ZiNk6TXjabghYjBCKL52iMkIocQYIi5NQkMMEZcM1hhDRLeG+jOf/iBLIATq92NA5Ds++8Glf4sxRExGiMpkq2c0RD51/oGlv3/Z7bp3h8EIoYTaIa7XRE67UsU3I/r37341TLLlffhVz32yZUcgOkPkwtEufPVTyw+6n1vbgY/WZohLNmWUIaIxQig+hsi3Pv2HAGA2QlSyeQHZvIC33vgTuDJZLi/2kXNfBvPcvD4rhnmaHgSOtmfZz52yud976VXtY+Tap4zHiM4QOT/Zg6+4/umlnz0/3IY/JtaJbV2IDHYn8LLrjy/9rIAsOhgSY4jojBBKjCEyubzR7heCRNxrmowQSpQdYiNi213mOQ5DREeMIeLyvCTEEDkpI2RpGxznFBWjEUIJnCpd7+9DngO43H/HGCIu9keIIaI1QigRhshxGyEqLs8WY9/ra4eYjBCKGCInz6kIhgiCIAiCIAiC4MfVvRvwgx/4VQBgq7DSjPODf/ircPfeDetrj4sP3bWccX7/wTW4dOTfC+OsszvYgN+9umyBDMo5/OXP/TvnMf7Kp98Dg3I5aPCrL3oblKesXwjyit0n4E898xHn1/eKOXz/Y7/Z+vm/uefLOTfrxNgdbMDv3fWapZ8Nyjl836Pux8j3ful3WsfIr939luBj5DW7yyW3PrN9L9webhpeLQiCIAiCYGflV60hZoNL1n+I7eHznpDxXQwRFyOE4mOIuBghFJeMh5CorY8h4mqELI3vaBI5GSEUj12Yqk9ISNZ56iwTF1yMEIpPxqVPJojPa0P2nW//EC8jxMd+Cugz4rPPXTL/EC9DJCDDbBUMkZM2QlR8+4e4ltlYfpPPsehxffMwRFyMkNZ7VsEQOUEjpPUeH0PE0QhRce0f4mKEUHzsEFOfEBsuhkhIxqqPIWJaM/3Ah34TtqZhPUK62JyO4a99tP1Q2McQcTFCKDpD5D9eeUXrdW987lGvcX37h4SYHinsEAC/4+sXXvB1MCcPpb/9iYfg7c9/yvCOhSHylU99Er7z88tG0O5gHX7pwa90rq/9hucfhff+6o/Ce3/1R+H9v/gj8P5f/BH4l7/297rf6GCEhPI3Pvtv4CWaHiDtbSjhhx/9FXghaZ7++NoleOiCvkyYrxHiY6+HGJ4umdy/cP/XwJxcfL798YfgHc+ZjxE0RN5+/dPw7c98aOnfdntr8CtX39783WddOCym8Iq9ZTPkg5df7vReF3wMERcjhOJjiFiNEIrHGtjVCFHx7h/icyh6vDbk2unzHp97PR9DJKSCBkcPkVhC9neIIeKE5xo4pOKDy3tCqjL4GCIhtofLe5yMEIqHIXKSRgjF51ljyHNJ1/WNixFCETvk5Fj5YIggCIIgCIIgCH6cP9qDb3rUPeM9hG/8/Efh3JG+fM5x8vjWXfD5rStLP3vztc+e0NasNp/fuhv+1f1vX/pZDiX8D3/88/CtT35I/yCkLOHbnngI/s5DP9v6p59+5TfB7tDxAe6KMc6r8k6b8zH8vz75T+EbnnvY+NqLk13424/8Anzj88uvKSCDn3jJd5xaM0bHFzbvhl+5921LP8uhhP/h4Z+Hb33Ccow8/hD8rUf+eeuffuYFfwp2B2HHyGt3vwBDYpn8weVXBY0lCIIgCIIAsMIN1EN7XSCYVUOjvaG9P+gYpqgfx/iz9Qz6xEbwtUF04D7tTdrb7muDuBJaw08FMx0zQzKorxHiSpARooK71DBMyh4hsWA2NHfdVewb0jtoZyf52iA6MONStw9i+oPge03ZerHZ42iH9Mb6lIPgHiG4vabf3dMG0VH2MuMx55r1pwPtEG3WI8N0hXZIFpDBYQW3V/OgYFVsEB24n01WTpARsjSAeb8AQHAPkOa9BgvB1wbRjpFoPmzsEN2+XeFnamiHlCPDnO1phFDQDpmvL48fYoSooB0yvrSm/XdfG0THxrNTOLiyvN0cxw3aIdON9uRnM2i/9U8+DMMizVoDGRUz+NbPfRh+4VVf0/o3tEMGh+1962uD6EA7ZLhX/Y7vue+N8P2P/Fbz71/5zCehV8ytfRx0dGXbx9odtrVKLFlpXpOoWY0/9WXfDK+/8Ri8dO+p5meDcg4/8qlfhr/whffCf7j7tfDU+kWAEuDew+vwzmcehgcOr7XGfN/VV8K/euE7vGtqtyirPiLarOiI3YR9Q9af1We4v+/iq+BFB8/Clx08DTvzQ/ixz/5L+O4nfg/+4OIr4cnRRTjsDeHidA9ec/uL8Nabn4G1on1j86+vvg0ePv+gdvzQHiGm+9jm3yP7cWEWt+naPl/rwf/nFd8Cr9v9PLx0d/kY+dFP/jL8xc+/F37nanWMZABwz8F1+PpnHoYHDtrHyPsvvBx+9WrVoD5kXfhV1z+59PfPr1+Bz2d3eY/TBdoh+aQ9Z/raIDrQDhlcP2z9m7MNoqPjftPXCKGgHTI5b+jBE3oodmw3x7XTPh+GfwDaIbrz29cG0YHzoK6vUqoKDhz7u2teceoVogP3qeHtsT1Au+7zY8inpdHg8LVBbGOE9ikxgvdrmmvNqtggOvDZY2G4RYl9NolrHXqehxghKmiH5GmX7AJhZYMhgiAIgiAIgiCE8YanHzuWz3ndc4/BL0A7GHLcvOf+N8L/9ZH3QF4/XTs/PYA3XP8c/NHll3a8885j2hvA33zD98H//OGfhhccLJd8esHBc/C9j/1O5xgfufRi+Ntv+R6/UogrxjzL4W+//D+Df/jxn4aL08pwesHh8/CCJ97r9P5/d/n18L+96JtTbuKJMekN4G++8fvgf/5D/THylz/XfYw8vPMi+Hsv+67gYyQrC/iKG8uN2H/78uuDxhIEQRAEQUBWLvfQp7+FC9gXIqSHhw06Hvf4SEiPkC7UfRzSI8QErY3JYYUsjU/qYYf0CdGOS3qHDA7LeCtEhdR0XaUeIV2kyj6Zb/QbSySkR0gXtJ9FbMaIOo46FndPAdpDJKRGqRbaEySgR4gNur99akF3sWQqBPQI6eK4eoisshWiQnuIZLMi3gpRob1VPPp+WCHjhPQI6SJZPyW1h0iiHiEqvr1CjOPQHiIBfUJsuPYQ8WV07Wiph0hIjxAbLv1DQlH7h7j0VXvl84/bX8DEK6/ZP4f2EOGwQnQ8O7rQ6h3yjU/wlQnz6ZV1ktCa76Za1zdG2/BfvuUH4L13+ZUcKiCDf/Wit8MPv/2vwjg3ZItbOD/Zb/3ssZ27AaDKhG6yoRl7hBxeGTaWCOXptQvwQ6/+K/CFdXfbYJbl8M/v/Sr4By/5M1BmOWTzArL5Yif79gkxQe9RfPt8dY5Pav3P13owX1tMLNdH2/DX3xp2jPzr+98GP/aq74Wj3jB4Xfim25+DC7PF8TLJ+vDbl98AAACDXY9+Fh6oPURCeoR0QXuIRFkhKmSNHNInxEarhwjXmpyME9Kzwjp8az507xHShdo/JKRHSBdqD5GUfT25zWc6r/SmRbgVokLWyJzfpW48rvtw2j8kpEdIF+p4Qb1CTCg9RFapR0gXtC9ISJ8QG7iuymdltBWiUvSkh8hxImaIIAiCIAiCIJwh8qKA+3avH8tn3bd3HfKigIIjsBnJv3jxV8NXPrto8vzOp/8Y/tGrvh32B24NjO809gbr8N+/7i/BW659Bv78F98Hb77xKPRK/UOrSd6H919+BfzcK98Jn77wQHBprDc9325s/7+//BvDBmPiifVL8AOv+wH4zqc+AN/x9Afh7skt7evGWR8euvAy+Ln7vw4+t3n1mLfyZNgbrMN/94bqGPmuL7wP3ny9+xj5hRd9DTxy7gHo78c9jP/WZ/9o6e///vLr4OZgK2pMQRAEQRAECYZEgtFR7vpuRxfTR11T9QmJrhvcwWB/RXuEdNDX1MzmAKPRqbJF0HjijHojk/NDyBNmzBcD7MXBe4LiPkmV7T/bqFIC2HsUJKiFqoL7m8sKacatsys5s7dbnzHIk4yPGYXZPE0R0K76vKtKOaiPcW6bjdkGaY+f8NzvZeaeKgykOkbyWwcAAFBs63txxNLfqzJR8ZjhAu2Q6Y5/ZrsL689VKWhHl3nNx9Gt6ns8umg/1geJe4XoPm/cEQyZbFb/3j/iPc4xA3KwV8BHLn0ZPLJzH7z89hMAALA+n8I3PfER+OUXfYXzeH/hnT+29PfBwQzyWQHzHu8xaKs7zzL+3NJ7i/CHl14Gf3jpZbA5PYRX3f4S3HdwDTbn1Tlyu78BX9q4DJ869wCMe0PIihKGt2Yw3Q67jXzT88uN7d979VXwyPkHln7WOzL0D4nkz33bfwsAABtPtfs2TPM+/OJ9XwW/eN9XwYsOnoEH95+GS5Nd6JdzuDnYgueGO/CJnRfAYW9kHL9gtgiQ+Qj7WaSZx3tHVdBCtUIoeIxsTQ/hlbe+BPcdXoPNWXWM7PY34Iubi2MEmZ6r/l+18Vw5P92Dt998pPl7ARn88t3vWHoNZuKnuPfsHU5hNjB/17Ec3lsFdXrM3+l0p/oOOa0QlQKffWh6kMYww3l8P80xPqn3y+gm736ZrZl7snJRDDL+HoewOPZSzVup7vGbvo+J9nkzH3JUZ1BIUUVGZZ5oLQEAMNnK2Ku+qMzrqbY3Zh74dBRmEE6IlQuG4A0SXlhiaR4Q44nANAdRfSlV0xtrE+FAJufYhloiJ2uLsmdueh7C8PbybMY1aQ4TLbqQ/gEZv6uRsCM0OIEPzjmDImo5CM6giHqxxnIZnAsm2gBtPuqxBEToIoP7wSgtv5GscTMzdH/P1qtLS5/hRgwfAAAowRbGoIU6t3KOT0tvFWs9yI/4JkRVP1f/HvvAmzZQ5w62tLab6RxKVsJKRS1VwnnuL5WC47k+qLS+u4wn6JIdLd8V5bvVwy6uoMhxlZYb3K6CLVxBkZTHolpmYe26PSgy9WwaHovt82jpkNlaxh4QAQCYblUf9E9f+g3w9/7onzU//3Of/wP4Vy98O5SZ34OCwcHyNQzXEep1iQPuoAgtG+JzL7E/WIcPXXoZfOhS99iD3Wr/+ARFLh3dhhfuLfpPFJDB//7yP714gbLpWC6LIyhCH5Yf3LOuDYggn9+4Gz6/cbfz+PM1sg+Y7jvpQ8omOYTpAToGm5HhzeqmanLeHATYG6zDhy6/DD5kGZde68eXquuCT1DkXc88BINysW5634VXwhc2rjR/n5xbzNmcQZHBrcU29m9X+2O2wxcUmZGA03yYswREptvL4x7dXW3z2jM8TxdxPKQY8gRFZuvLx8p0kzcoMj63vF/G56tzlSMoggEWAGhKkHMGRdTjuQkAMNyH0+MtnxasARF6z433ibElrej9Jvd8mE+Wt3t4o54PL8Sd//QY534uCbB8fcdncgXDk97JtvLMps7t4QyKzBPFm+nvjn+nzytD6ZGG9VylrXoJA05Cm5P32QVBEARBEARBYKPIc3hi++KxfNYTWxdXokQW8r67Xw2fUEyDBw6eh697+mMnuEUCQq2Q37/nNfDZc/ee0NYIq8rafAzveuah5u9zyOGf3v/1J7hFgiAIgiCcJVbnzoXQPyqjssaMTaYYmvHZIn8cTW9mmrLGWVm2MnZ9mZxLZ4WYcGnw2cXwdtmyQlRSRZRj6R8UbStEhTYS9sBmZ3A0nrM1CS36WbDmOR/mRoWz6GXRTVVpo8mlzx71grM5bdsN0DY6fOlqypqyaV4spv0NUBkiaIn4Yvu+ikEencFka0IaM76tIXux1oPCUoLCbfy8lXFJ/z2ErmtM1+d20bndEY2Jk58beWYsMRfVUFlpStgi4vrQDDErkpTGyo6mLStEBQ2R4PHnpdYKyaZztubvOga3J40lEoruWFx7fgprz8eletHmm0vjXy8aS4Tyqcv3R32uK5+6pP8cW0PZ2VoWbYGbmqdOt3L4qZd/y9LPvufR33U2ogYHs5YVotIbz6Ns097hHHqH7ffnkyI6w9WWectxL6FjsDtrLJEu1H4hc8gWvUIs92dLTdU9MTWPB6jskIN74nrJzNf6bStEJXB3d61DYhu09/cmLStEZXhz3Fgivtiu9eNLa40lYuM/efYPYWe+MHd++/Lr4Ut1g/vJueGSFbL02RFNrAe3jpasEJX+7XFjiYQyW+u1rBCk6z7DxnS717JCVKjR4cvR3SPrGMUwaywRH2breTtjXmG6mTeWSCjUCln6t/P9xhLxZbLTW7JCVObDrLFEQrHNW7b7jC56k8JoIeXTItqM77o22u4Zbdju7wHi58N8Mm9ZIVzYjnGO55K2+9kYJtv5khWiUgwWlkgo85H+GV7sc72ibzdiYm2Z3rRsWSEAVXWgmApBvalYISfBygZDBEEQBEEQBEEI46NXX3wsn/PHdx3P5/jwkUtfBr979TXN3192+0n4+qcePsEtEgCWgyH/4b7XwWM7d0YTcsGdjfkR/IWn3tf8fb83gp+5/xtOcIsEQRAEQThrrHwwJMQOccoSDYjE+lgfIYbIbF1vhaiEZHWlNkLyWXf9vRBDpMsIUTFFl63j7xfJ+oVYjRAKQwawdtgAQ8QnyznGELGOG2CIdGWMqPgYIj6ZWiEZ4r7vWSU7xGef+xgiPt9PiMHhk0HjM75PplaIIeJjZvi81veaEmKH+LzH93xIek5YjJAobEYIJeD64GSEhIzbYYSo5LtH3oaIyQhpvS6hHQIQZoi4HIshhojNCGmNrzFEfv2lb4JxL217wHHeh19/8E1LP/PJzg4xRExGiMp0K4efeMt3wIHSzPmvfua3oF+YF6xdRgglxA7RGSGUEEPEZZ80rw24l3AZv8sQufvgBtx7cB0AAGZZDj/zsm/0uh+LMURshBginUaIiuc9p8+6JiQb2maEUHwMEZ+1h80Q+a4n3wfnZgfN3//Zfe+EG8NtqxHS2haPOchmhFBCDBGbEULxue/oMkJUuuwOjvf42CHWbHlCiCEyPtezWiFLr/UwRGxGCCXEELEZITHYjBBKiCESa0ua8LnXBAibD12MkOGNcdM/xJUu82mJgOeSLvezLs/oKDYjhBJiiLg8swt5rtdlhIS+FjEZIZQQO0SMkJNj5RqoC4IgCIIgCIIQx821LXjPg2+Ab/+TP0z2Gb/9ojfArbWtZOPH8OzGefg7b/iL8NJbTzY/u3pwAx7fuusEt+rO5ZmNC/DV7/r7yz/kj20Ip5z9/hr87L1fBwAA07wH//rut57sBgmCIAiCcObIyjJB8dgI3vEX3238t67MseAM0Y73xfYAAbBHCbtsEBu2iHDq/iC+kWaVzLI/XG0QG72O4P1KGCE6Ok5HW6+QzqEtx3lszwsA+7aF1sEFAMgtmcKhtUdVbJksMdvdleEcu89j+8KEwrHP+4ftySO0n4uKLZOJo56qbvzQur1L4x5Z6utG9OlATJZAbO34LvsguH9J17lzHD1CArFuO8dyyzJGVH8Q27iONoiNYtteI97FCNFRDhgWaBamO/Ys5Jhj8eiyOZ3O1Qaxjn+xOv+u7t2Af/GL/wC2pnH17nXsD0bwF779R+CZrQsAEF6rX8VmhLuaDzoGe/bzw8cI0dF1DXMxQnR0ZbrG7BPEdn2MGX+6zd9LQ2U+sm13+LgbTx0a/83ZBrHRdd8Z2LOsyybyMUJ0TM7rU3U51imja2Yzw9UGsaE7HlxtEBuzHXP6sqsNYkOXze9qg9hYe8Z+PQjtM5JP7Ce2jxGiY9Bx/+5qg+gY3TRfA1xtEBs9y76Jma8yy/23qw1iwzYfxdggXdeW2PvNrvkwtEfI5IL93Ig9xgHAeo2IuZ+12RCuNoiN3HK7ENMLxPZcL7YHCED3M00XI0RH1zNkmxHyH//5Dwd9puDHypfJEgRBEARBEATBn6e3LsBPvP1dAMCXhI/j/MRb3tUEQgRBEARBEARBEE4Dp8oMQaghwpYlSsbhMEJUqB0SY4RQ1CjxKhshFGqIcFghKjSSvLJGCIWcljFGyNKw5BjnMEIo6rbGmBWtcZXMYQ47gaJmt3BuN8145t7nx2WIcO9zaodwmCGIanBwGCHW8Rn75lBDhCPbUgXNgVgjxDQuwrXdrXNnhY0QytK2p1hmKWNGGSGWcQF4rBAVaoiEGiGU4zZEuI5FaodwGCGtz7iYA5Ql/He//y/gzzzyEJTQmZhuBd//Ky95K/zdd3wXQJaxGCEUaohwGBAAbUMk1gih0GtZqBFCoYYI1/5A6LWSc/wlQyTBdKgaIpz19qkhwmKFqND7zkAjhEIzomONEAoaItxrFGqHcBghiHpccBghFNUQ4TBCEJrZz2GFqFBDJNQIoVBDhCVbXoEaIjFGCEU1RDiMEIpqiHDOV6ohwmGEUOj8xNUjhF5ruO836XwYaoRQqCHCfYzT6wPn/axqU3AYIRTVEIkxQij0uR6HFaJCn3GGGiEU+kzZpUeImCHHg/QMEQRBEARBEISzSpbB3/3qPw9ZCfCdn3kobigA+JWXvRX+n2/98wAJgs2CIAiCIAiCIAgpOZVmCDJdT3MTxh1lbI3Pl+iyxPh8+ptSTitEZXQj7WG4fv2UGCEEWw+EGArGbHYdKcwNJLkJsVpTojOp9kvK7xKAP7u1GZfJpjKOn/A4SbXtqcyQ5CQ6RhoSHeOsxobpM6Y8GW6tcQ95M4kp5QZjqpg6bmJDhDNTeXnctAvP8bk6868s4Ts/80H4wQ/+alAPkb3BCH7ibe+CX3nZ25pAiK0HHAeDROusjWfTHuOQ6PTntBH1H5Bm2OlW+vy7YpBm34xu8BpylK6+MKEMr/MbEADpzBAk5bVzeCPNPkGOrmwkGbew9MdZZYoEFQiWxk80H6a6N0FsvbGixz5Ie1FOvW9S0d9LM48f3MtY6kVDqvvwowvpuyWksIYBjmHdeZjoPtzj0iZmyPFwKoMhqYIgSIFVC5j3TKogCJIyGLJU4otxv4yuk8GYf4XNZ5ZnS64bpd7h8mzG/SCa3ghwjd9S8FOc/kqmKGdZm2K4GKw35t9udUHNGYSi3x13qZ+WtsykRtNSYVyl2hC6QOIcf7lEEduw+s9iPIeoAp0qGJozP0Av+vRY4d1uvBHgfkBS9kjZGeb5EL9P7v0NAJBNlMwEzuz8xGWyyjXSNDxPc6fEHRShQafxZZ6b35yUCTu6aG6qzvEZhxer/XJ17wb8wB/9JnzjYx+F0bw7y2Xc68N7HnwD/OSbvhmernuEqNfhFA+k6L7huu7Ta/L6c7xBkVa5Ka5ScPShIvMub5UqYZxX1Ll1ss1/jJf16c790Giwv3zedzXk9QW3N3WAizsoMrlYlTvk3t+07A7ng/T5+uKasP7kPtu4yMEDm83/54z3KIO95fl5fIn//ElB6jJZdB6fMwZC1TJWKRJkh7uLeYQzgKtea3pj/vsHeg3iukeh8yp3cJheywa7PNf8oyvLZV+510GD3eX5kDNpZryz2Mdlghyi2Ua1L3rcQT/62JD5MMekb67yWAidn/oO1wgJhhwPUiZLEARBEARBEO4Qnt66AH/ra/8z+Im3fTt8y2c/DG945jF4xbXH4f7d681rHt++CJ++dD989O4Xw6+/5M1wa23TMqIgCIIgCIIgCMLp4FSZIcdmhFAY9tBptUJo0/clGPZLywwBYMl2o0YIJTYTg5ohSKzB0ZX5HDO+tTEjxzRgySKMsSFUI4TCkSlqy+SIyXrp+q5iDZGuRpuhhkhX83gOg8OmzcaMb83ATXSl47AJbBm4qeyQauw4Y4EaIa3xI00OU9YphyFCrZCl8RN9pxyGyJIR0vpHhoun5nfnsENaRghlRQ2RrjJkMYYINR9UOAwR2/hoiLTeUxQwKOYwzXtQGL4T23WXIzPStt0x1/yua3KsIdJlUoQaIi0jpDVw0LDLQ2jKnnCYIba5lMMQ0WW0ctgK1AhR4bBDTNu46oYIGiEUjn1ua8bMYYioZgjCYYioRgglxhChRojKKtsh1AihxBoiXfN4jCHSs2w7hyGiGiGt8SO223Zt4TBEbNegmHuUrrk01hAxXcNizRBqhFA41kHUCgHgMUNUI4TCYYigEaLCYodYhuCwQ0xtAGINka75yGaIiBlyPIgZIgiCIAiCIAh3OEWewzhRYEoQBEEQBEEQBGEVOBVmyIkZIZSAPXUmjRBKwH7RGiGUgF+tywhRCcnCMBkhlBCDwyfbOWT8LpMAAMIMEY/swRAbwmaGICHZoj6ZGz6ZLz7fTdD+cPkea3ztkC4rRCXE4PBppOYzvlfG7QoZIj6Zt6vUP6TLCGl9hqfJ4ZplGmKI2IyQ1viJvtOQfW41QlovDphYHH7XEEOk0whRSfgQPsQQ8WlO72OI2MwHSogh4jO+yRDR4XOdDcmM9Nlun23xuSaH2CGu83iIGdJphSx9gPfwTo1wQwwRn7kzxBBxyWANsRVsRgglxBBx3aZVNERMVohKyD63GSGUEENEZ4RQQgwRmxFC8TFEbEYIZdUMkS4rRCXEEPGZy30MEZsRQgkxRGxGSDNuwDMJn2tKiCHicv0JuTfxmTtD7BDXa1aIIdJlhaiErIN0RgglxBCxGSGUEENEZ4RQggwRj7eEGCImI4Tia4j4Gmo6Q0TMkONB0r8EQRAEQRAEQRAEQRAEQRAEQTjTrLwZsjJWCKVjr90RRgjF4UhyMkIoDr+qjxFCccnGcDVCVFwzWELr37uO72MSNLhMCxH1pF2MCBcjhOKSLRpTy9MlAybE2nE1RIK+S3A3RHzMEMTF4PAxQnzGD63BDgAnaojE1GI/aUPE1wppxnec50IyS13mUB8jpDV+ou/UZZ97GSGtNztsU8AS0MUQ8TJCKCfcP8THCKG4GCI+BgTiYoiEjIvYDJGYPh0u19uQ7XbZppgea66GSJA14fD7ehkhrQ9weImDEUJx+V1j+i25GCIhGasu1xQfI4TikuUccl1bFTvExQihuPy+PkYIxcUQcTFCKC6GiI8RQrEZIj5GCOWkDREfI0TF1Q4JmctdMrN9jBCKiyHiYoS0xnXY7ph7HxdDJOT643pvEtpzydUQCbkmuxgiPkYIxWUd5GKEUFwMER8jhOJyvXUxQihOhkjE+q3LEHG1QSiudkho3yJqh4gZcjyIGSIIgiAIgiAIgiAIgiAIgiAIwpnmjjVDgo0QimHvpTJDUhkhSJQZgmj2SZARQjH86jFWiIopGyPEClExZbSEGiGu44daBEvopoeIrPbW8JqhQowQii5rNMYIoegyYGKyUBGTIcLyXYLZEAkxQlRM9kaMEeIyfpQZghyjIRJjhFCO2xAJNUJa4xvmvZDMWRXTfBpjhLQ+I9F3qtvnUUZIazDNNjIs/UyGSJQVonLMhkiMEaJiskNizA1EZ4hwjIuohkiMEULRXX85ttu0jRzXYwCzIRJ73puuXVFGyNIHGH4cYIRQdL97jBFC0RkiIUZIawzNNSbGCKGYMp5jr20nZYiEGCEqpt87xgih6AyRECOEojNEYowQxGSGxFghKsdtiIQaIRSTIcIxj+uytGOMEIrOEAkxQlrjarab5Z6nRmeIcFx/TPcmoUYIxWSIxF6TTXZIjBGiYnoGEWKEUHSGSIwRguiuuyEmiAmjIRJ5mJvMkFAjhGIyREKNEETMkJNBzBBBEARBEARBEARBEARBEARBEM40DhUPT4aVN0IQ3Mw6mHdHGyGIsk9YjBCEDsW8S/I60ovZGLFGCILZ/lyZil3jc1kE1aDZIoOYMau9Gb5cbD+HEYLMR/V3WEfZOa0QgMU+xgwYru8Wx2n2Ced3CQsDBA2RWCMEwf2LBgeXEWIanzM7is7hXGCWEmfGrAo9BvnG7dXjVhcFLiOkGb8eDw2R2KxZpKzHRUOE0whpPiPLmu+T0/JR9zmrEYLQOZzpmEQDBA0RNiMEKepjm9kQQQMEDREuIwQZPX8IAAtDhNPcWLs+bewQznFTg3N3M5czbTu91nOvsw7vqhb1aIhwnfeYgYvXMjYjpPmA+k9cHzIYIUhWlkmvb8Pdaj6ZbA9YjBAE9wFeczitEIBFxjJmQHNd2zJcVyUyRNAAQUMk1ghB6P7mNEJ0cBghyOG9lQWy/uQ+ixGCFPV8hYYIlxGCjK5V505qQ4TLCEH69f02GiKc83hvWjYZ25xGCJLPFnYIhxHSjEueSbDe9wDAfFTfD45xzcwzv9B7Ey4jxATXNXm6XV3r0RDhMkIoHCYIZXirmkcm5/osRgiS1ZuK12FOKwQAYL5Wn5doiDAd4vgMAg0RLiMEaeaT+hyNNUKQWX19oIaIkBYxQwRBEARBEARBEARBEARBEARBONOsnBlSMGYBLY2LxkaiYNt0K03WQXIjBEt+JwiLjW6kjWyuX0uTbdA7SjMuZvunqvXPbT80JDBCVOaYCZQgy7WpuZroUJyvVdveZ7KImnFxnyRIEgcAmG2kGZ/bCKE01laCY2U+yrU1dGPhNAi049fnfWboqxIK2gpcFgGlMTeYx2/6QTBmQi+Nn6ebU8p+Dpm+bDHP+DnOtbyZaeUwcZ3yxIZIKkbPHQAAwPSivodIKGt19u/kPP8Sfv36HCab6SbyVIYsZhQPDtKsrw4vVzcRuO/ZKInCwQynEaKST9CuSnesbHzxNuy/eId9XFPvNC4ae5D5O8X+GKmMMC4jpEXC1qT5vITpVrpHGbdfug39BPeER3VvJm4zBJnVWf995jVtY/YlMCwAFGOOeT2bwghRYTf7lgZPNzRAum1Pd+2pKxuM0jwwPLxarde4t39eV79IuVo+Op8b+2XEwF5VhzDYr/b1lNk84TZCKMmeWScaV9Czcg3Ukbd9T9VIfc5UOqdVvorpt55uGhrEMV14UwZDct09HcN9jbY0FuNRtn69PdObGiz7YHwYz7TtgwP9rDyPvJk0LmSYHsLSIAvHvkbwobwKZ1BkaVHAWbFNc6HiDIjQ/cIVtCgN94yx46da9C4+QP9jjsClrlQYa1BE3XbO6l6GSzfXTSSdV0wNyn0xPgzlWorQeY/z2NQdhwzD677L/IAvKlL22hMWS0DEdEikdo4TNVZng3yfrMEQzfHGGRRRGxLP1vjWn7p1Cud1g5YkYguKGDYxNihimk9LprKEqcozAgBkmoQezqBI/8Zh62ccQRHd2jU3NEINgZaBKphKNWI5GwpXUKRH7k3mGzzzSWlatzEGo2ZKaSzOh7pTTUCYIyhiCjRvf3EcPTYAwP69I+3PY4MipmS7PtM8O91aXqNw3memDiZgqUYAgNFNvgQL3T7nvGb2D8l8xTSHm8rhxd6bTM7pn8hzJbDONvVPoDn2+VTzrGPtGt+T+tsvbNfo5wiKzDXx8YKpJBQAwBpJauYKhvQSJpUBtI8JrpKYOO998OelcfpxsuJ3lIIgCIIgCIIgCIIgCIIgCIIgCHGsXJksSm9SRtkhxobmkU1zTUYIgtscaogcuxGCYJCWO0zG0KRYZ4QgtMEyKxlEbbfJCEF6dZadryHSmQXF0Phcl5nCsa91RghCG4uGoM2IYDgGbc08sUxHjCFi2i9odIQaHCYjhGv8pFgOXyxTFpIZZGseTxsLBqHbbvqzgGOxK+O37GdRGVimeYU2KPelszxObHNv0zyHGTsx2V22KZRhXtFRbFSLlxhDRGeE0H8LMkS6DoEC0qbaFMXq2iGa43dwvcp0jzJELMfX8GbdPDPCECk0532/bmoZY4jY1imYTReTeWnKyJtu5HF2SMcmHdUNikMMEdsciv8WY4ikskJ0Rgj9txhDRGeEcGBbq2KWa4whYsqEzufVPgk1RExGCBJbNosaIfTnMYaIyQoBWKy9QgyRmaVJOt4zxBgiOiOk+Wwsixuw3uwqPbj7glGUHWIyQmLpKr+M9yyhhgg1QujnRt3TH6MRgozPV79PjCFi2+cc10xqhCD5tIiyQ0zzIBJa0tdkhCAx94GIyQqJRWeEIEeXqvk1xhDRGSEc6IwQBK+VMYYINUKQwUFcuazjNkLoz2MMkSTPLwUnVvRuUhAEQRAEQRAEQRAEQRAEQRAEgYeV7xmi4mOIGI0QG457ossK0eFjiKSyQqxGiPFN7i/V9gox4fFSmxFiwifC6mUgeLy0ywjR4WOHeGc/eRgiIc3YXfa5zQgx4fP9eNXI9PnaA5JGfAwRn/3iY290GSGx4wMk7BcSMA36ZAbZzJDWuD6GSMj07bALQ7J9fTKwfOYTXzvEu2my7+/qY7/5HK+JvstmeI/f08cQsRkhxm3xMUR8vv5UKTerZoZ4fJdehkjA9OpjiOiMEBM+hkhIdrbPtcQnA8/LEAnY3752iM/86WOInIQRYsLHEPExQnx6h4RkWvoYIl2Z0Cq+dkiXFULxtUNMVoh2WzwMEZsRYtwWB0PEZoQYt8VjDrIZIRQfM6TLCNHhY4j4GCG+fUNC7gN9DBGTFaLD61w+ASPEhI8hErK/Xa6ZJhPEui0e87fPPAjgd1/SZYXo8LkP9DFCfNYnNiPEhI8h4mOE+DwXsRkhJnwMEZMRosPHDklphIQ84/BZn+rmNukZcrys2N2kIAiCIAiCIAiCIAiCIAiCIAgCL6fKDEG6DJEgK0SlY4+EmCEA3XZIyj4hAIFmSPNm8z95GSEUy1tDjBCKLZskpidF1zESYoWodBkiwTVxOzKoQzJTKLZ9HmKGILbvy8sIoTgcBiFmCGIzRKL2R8chFmKF+Iy/SkYIxZYZ5GOEtMa1ZdZxTN+WXRqT9WvLxIqpr92V4exthFC6fueIfkhWQ2SFv0ubIRJihFCshkjMPHtWDZGI79JqiDBMrzZDxMcIodgMkZj5BLFdW2JqMncaIpH7vMsQCe231GWHrJIRQrEZIjE9QmyGCEftbZsh4psJrdJliPgaIZQuQ8THCKHYDJEQIwSxmSEhRgjFNif5GCEUmyESYoRQbIZITI+QLkMk9j6wyw7xMUIo1nN7hYwQis0QidnftmtliBFC6TJEQufCLjskxAhR6bJDYnqE2PZ5iBFCsRkiMT1CbM9JQowQpMsM8bFBdHQZIqmskNhnHF1rVdtcJmbI8SJmiCAIgiAIgiAIgiAIgiAIgiAIZ5rI3OGTAQ0LaohEGyEIDkuCdqFGCILbSw2RlTZCEAzsKuGzKCMEob86c2YHZlzQCGyUFQJgPEa46NUZedQQic66xAxCklHNYYSoY9H9HWNAIPi7q99dlBHSDEI/SP3M+OFn69XvTg2R2H2C5odvj4/Y8VfZCEHma3krMyjGCGnGqLM2lwwRzulbM69wZP2W9flNs7Fi5xPMWA7NeO4E5ym6D2KMECTP2nYI93dJh2f4LouNaqGjGiIcRggda8kQ4fh6NWsIFop64OM2RBi+y8H1w7Ydwji9Dm9Wk7dqiMQYIUj/qNpI1RDhMEKaseqMOnqtibFCABZZmy1DJHFGcez8iO+nhsgqGyF0LNUQiTFCkM3HbgNA2xDhsEIAFtmu1BCJsUIAAPJ5tT+oIRJrhHQRY4SoY1A7JMYIQXBtphoiHEYIgvcM6hwVY4Qgs7V6bU/WmhxWCADA7gsq+4MaIjFWCADArD7WqCHCeR+oI8YIQXT3l6nm7xgThDI+X/3uqiHCsb9N10oOKwQAIK/nb2qIxM6DpnuSWCOkixgjBCnzrLW/OYwQHTEmCKWsN1F9bhJjhCB4jaSGSKwRggwOqvGpIbKqRggdh65budYoAh9ihgiCIAiCIAiCIAiCIAiCIAiCcKY5lWYIQg2LoqOXiDf1cF316nwxGSLcsBghlAJgdDPhdmcA60zRZBXMwLDW/A+BZHLH9gqhoCEyW+PLkgIAoyHCBe5v9nMSquwuWz3naLJFBgUnaIiwZp9D2+CI7RViGj9PPF9xM6+z9liy2unYo9xa5zqa+hjhtnAwG4s7k44aItG9QiiJ5inAjJ3EtlMKmwoNkSwyQ89EY4hMmcc/7YYIczb+4HqVJT+9YOkfEsnw5gyOLvFnXKIhwpFlrSPWBDHRGCL7vHM47mPsHcJtzDXjMVo4S+MzGiG6sXt75h4IoaAhcvjANvvYKrGZ0BQ0RKaWPhwhoPmFvUM4jBAVHG+2yf/4YD7MWQ0zChoikx3e+yk0RArm2zRKrBFCQUOkq8+M97j1/Iq9QziMEJWm4kPC+0BOK0QFDZHBHu9ci9fKwX6iUgE13PMg3pNMmecTvP/DCgEcRogK7m9b/7RQji5V+2KylWpdVf3JVk2nBs/H4e20zwpW3QihiAmy+ogZIgiCIAiCIAiCIAiCIAiCIAjCmSYry0RFZ5l42/e8u/M1LXODKcQzW18el6M2qkoxWP6Ti+Hu8t9nDDUBVdauYx083nEBANZuLLIlWPpB1NAMEu4IMI38cmVP0Kwx7u2mdUC5oFk13JnieOz1xvzTl7rtnJlHNOONPes/o/ucZ/w5qQPKnU2LWWODfd6MI1qPl9tswYym/gF/Zr5aP5yr9i+A5hjhzoSph8+ZrRl67WU3T45pGcS6v5WxUmZ0V+PzHYNZsbyttA8CG6fMECmH1bV+tpmgZrZy/hxd5BtfzSgeM2dbA+hr/XOOi6DhwgVa38MbvCmM/b3l8WbnGDPF1TZYc/75pFR6ZPRvxfcMQYq15eN5fBfzDU+9K7it79Q9Q/Ba02fOFO/tL5ccGF/hM9pSWiEAAONzte3IfT9CNpv73hi3N2NeavbI/Q3XdtN+rjmzrEANHM75W+17kOIZx3C3+hLpWjx63JvL14aS+d5+Pqp2ev+Q98s8urisJ3BV70g9l1AbNroPrYL6DILef3PQPHNkHnqwR5+z8Y7fnJvM8/eQWFpc1YBGt0kvKQfT54M//8Msny34carLZBkP2AKSOC+4IIkNitDgBy1nFRocoUEQpH9U/ckRFFlTmqbjRMexYFCDIIiu2RMXugZYIZj0t/mox66TApibpfmSKggCoNeL8ZzhuAlRjzf8LI6giG67TU00OeA6Bk2L6jLLogIipkUYLgJjgyJUnZ9u8gVFdI0JsWQbR1CkVMafbdQ3CQxBEd0DEWwkGhMUMR4jTMcgXVQXdUPU2KCI6VrLNp8ccy4I1/zdGreez1MFRcpBfMksGgRpfm5oDh1N6rJZeE5FHkMYBEH69cNGlqCI5vxZu16NHxMU0ZVVGd2ujg2OoAh9sMAVFDE9sMBSF7EP1Wjp28mF6kFPbFCEBkGan9+qyk5FBUU0pyUGLjiCImUvzflHgyDI6LkjnoAI+dUxMSk2KEKDIAg+BIwNitBrC5az4giK0EAIAMDo2SqwFRMUOa4gSPN5GdO9iGGzs4LnvphuY1n/GrFBERoEaT6P4Z6eBkIAAAostcvwHD1VKTLa/BmA9xkHBkGascuSJSBCgyDN+NMiKiCCwQ/KbL2eTyKDIjQIwslxB0K40D2DwHOVIyjSerZYAktAhAZBmuEjn+HpzslqQPyAsHERGgThhAZC1M9LVf5MCEe+EUEQBEEQBEEQBEEQBEEQBEEQzjSn2gyxEtGkk5bHomRlmB3ianzkU/7SWQBxhohqhFBo1JdbLY2JLtsy+mOydF0aImFmRYgh0tVUMTSjO6UR4kJMRrftuIoxRFwa5cUYIrYslZhj0CWrCF/DVTJLJcYQsTVUjDFEdEZI6zURhkhpGT/GEHHJBuUwRHRE2QoduzvUEHG9vkYZIidYITRqn1vek9oQCcFkhLReNyvSlMxaYUOEWiEqUYaIw/kTYoi4NNqNMUS6Sk1k8zIo69O1hMVsLQuyQ6gRQokxRExWyNJrOAwRDTGGiM0ImZ2rLIKQclkmI0Rl9Fx1sxNkiHT8qtONfpAdYjJCKKGGSNe1JMYQ0RkhHBy3EbL02TH3Ig6bHWMVdG1T2QuzQ0xGCAc6I4QSY4jYjJAYs8+Yfa4Q811SI2Rp3HrNEGKImIyQWExGCCXGELFZITjvhZTLOkkjBD87pFyWyzOIEJyeI+LmBmyCyQjhwOW8jDFEbFbI4KAaMKRcls4IEVYfMUMEQRAEQRAEQRAEQRAEQRAEQTjTnEozxCta52GIdBkhKq1ansyBXewj4mqImPqF6PAxRGxGiAmfLApdrxATPoaITwY/Zuki3PXcfQyRLiNExTe7OLUV4pPd4JOV5ZONQ7eBu8G6jyHik6Xi812GZBH5GCK+tUmnm7mzHWIzQtrjLl7L3VwdwM8QsRkhFB9DJKQ+uI8h4nOseM0nnodgMczZm6qreNUAP0EjhOK1zz2uS6kMEY7eITaS9Q8BqAyRlE3VPQwRmxFC8TJE0iZGeuFjiPhkU/r0DwnJ0vTNMu6yQlR8DBEXIyQKj6nBxxDx6RHiY4i4GCEUL0PEY3/49g9xtUJC8bln8TFEfIwQn94hJ2mEULzuRRJutq+h4ts/xMcK8bmHdzFCKD6GiE+PEJ+52ynzPACbCWLCxxDxMUJw/efaO8TVClGZrfed7RCfPiE+hkiq+SSkN4iPIeLzzMSnd0hQZRkPQ8TXCClz98ouyc7LgP4gPoaIjxEivUNWD/kmBEEQBEEQBEEQBEEQBEEQBEE402RluUJpkgbe9j3vBoCw+m0tLOEfHzPEhClzJLYHiOn9PkaIji47JMQMUTFllvgYISZ0keaQng7m8dtjufQK6cJkiPhYITq6ssNSmSGx9S5NGVGcvWd0hghHnU7d8caRpWL7LkPMkNb4hmnf1wqhmAwRHyPEPr7+3HHpFdKFzhDxMUJM2AyREDOkNb7GEGE5RkzHIFPijskUic2+NGZYrv5SR7/PGUzFVD1EbIaIa68QG0kMEYC0hgiA8VjzMUJMaA0RhnPS1jvEpVdIFzpDJMTcoJiutxxjA5izjH2MEB0mO4TDCLH2DmGYCnSGiI8RYkJniIQYISa0hgjD/jAZIrFGiGl9wGWvm+wQjh4hOkNklYwQE7r1A4cRYrqfCep3phvHcCmO7RNi2u4QI4RiM0N8jBATurmbI/Nct09CjBDj+Ib1e2yfEJMhEmKEqHSZIT5GiA6THbJKRogJ3TqE49mD6V49ut9wx6bF9gkxGSLR56Vhs0KMEIrt2TNHjxA0RD748z8cPZYQhpghgiAIgiAIgiAIgiAIgiAIgiCcaU5FzxAWIwShQbycxwhBMMsDM0mio7Q1vj1EXMH+IQiaIrFGCEJrj3IYIYhPD5Gw8Rf13DmMEIT2EIk1QhBT75NVNUIQn5q9ocxHWWOHcG03wHIPEc4sFVMvAY6Mf3UcNERijRAEM2pce4j4j9+rx6/OHQ4jBCmGWWOHcBghiK6HCIcR0oxPeoiwHSP0GGROwiqG1T5AQ4SrHndrPjkFRghS5tlifzP2rjruHiIcVghAwh4iuH2pDBHSP4TDCEH6+9OFHcJ4Tq5drxaZqiHCYYQgtIcIl7lBe4hwjWsi1ghBaP8Qzh4h/Vvjth3CeOqXvbyxQziMEIT2EOG0QrQw7RPaQ4SrRwhmRON6gbufIe0fwmGEIKNnDxs75DQYIQhdP3CtS+i9cMr7HYB4IwSh281hhCBFv22HcBghiNpDhLMXAd0nnFaIjlgjBKE9RGKNEGS2Xs8jtSESa4JQaP+Q02CE6OB89kB7iLA9GyS9Q2JNkC7Yzkscpt5cDiMEUXuHcJggFM5tFcIQM0QQBEEQBEEQBEEQBEEQBEEQhDPNqTBDUsJphaiUjNkNKmiIUKODi41n0CbgHTeVvQFQZWfoekKwkSipiSsrwzj+Wp1Nxpy0wpndoNJkYCXa31iXkStjSqUYZEmOcczObzKcDnm3vdknzOdPk2HDZCm0x0e7inenzzbq/cGU/bs8di9p1jLOJ6ZeHKE0hkgiw2Kx3Wmz604LjbVlKoIbAX6HXPYQgoZIPubLLD4WUhsiic53tAhm27wZmACVITI5l+7WYHSrOs/x2sMFztmcmcUAi2tvioxAAIDDuyuDY5vRDAGo7BAAgNm2pX9IBPO16hjJE/Qjml7aAABeUwEAYPRcdeM0vtTRLDEQzJDmvgajocVlKVC49zMyX0f7M926h9MKUcGMa86qAACL+ydTL6JQ8JkD97gIpxGigrYTl52ug9MKUekfJurFVq/TBrfSnJeTnWqe4r7v4zLiTKQ0zFJZIfi8gXu9g3A/q0MG+2nmEbSpUn2X3PO1Sqq5VTh5xAwRBEEQBEEQBEEQBEEQBEEQBOFMczrMEBpAZAjOzTbT1jBFaG3JWPoHhn9gDmtx9yhZv7ac9ctZ6z+pFVKj9oZgG5PuA6ahC5LBgxlD3IYIN6bsHY5Iv5p1hP/PaoiUaXqfYFZq8/f1jN0OAVhkq3GdSzTrI5UZRmvJso1bn0OchkhWlK26pjzjLv+9GOasmalNJk+98Vx9BKidUAx5DJHW+Uf6N0RDrQpOY0YZCmvxY21+TrKyZLVDsEeIqYdIKOy9Qij02ODaJ7OUKuziIOnv8hsiZZbBoO7vMd1hzLomp8lwr0iSLZnXhx6XIYLzK24rV31nmmm9+2XbAACw/eguy/jTC8v2Q8aYMZmqDx3t1TXfHLBaC5MLlSWD2ei0z14o9JpD+2GFQvcHdx8L3M7D+zcBAGD98X2egQHg4IWbyufUawfG9RT2YOsfzGH/Hr75j/PeVIVWoVD7WXCAx8S0/pwB030CvQfhRF1f0x4InBS9xXWBA3q/UfQzlvtUeuyNL1XH9egajzWI43FD57nhrap3CJdhWjR9MbBCAt/6KpUR0j8i+yTRekftZ8E5Hjem5ztczwY4n81R1Oe3nM8G9u9OWx1GcCcry9PTXfRN3//jyz+I2PJUwZDCMvdzBESMwRCAqIDI8JZ9Z4YGRWgQxDh+xAI0VTDEVhYmZuJ1+l0jfiUaDFGJCYikKo/lqjDHLDZtC+yooIjlrTFBEZcbkJigyNQy/8WcT13qa8pyeQBxQRHbeRmz8HFqehpxrNj2aczDGNv1KiYg4vIQPiYg0nnexSx5bNseM67DW2OCIrb9GRMUsTVKjwmIHFsQJPTfbVgCIeV6RHaJw/EVExSxHQdRQRGHYzvmIYHtIVdMQKTrWhUTFHEpORMTFKGBEJWYoIgtCBJTLos+9NcRExTBIIj2syMCIl3Xmqjrr8M+iQmKYCBER0xQRA2CUGKCIRj8sBETFLGt/2LuPVxLcYcGRbqOgZigSKpAiMt6OlXZrJigiO3+IuYYcX3+ERoU6QqCxNzz2ea4mGCIy3OBmKDIcQVBVFKVylIJDYp0BkFinklZvkuOZwK253ExwWbbPXDMMwEaBPnwT/1Q8FgCD1ImSxAEQRAEQRAEQRAEQRAEQRCEM83pKJNlIqDkyEkYIQiNgPqYIlYjpNmI+k+PcbuMEIS7bFZr/DqrwscQOQkjBElRNmt5I+o/PYa3GSFISMmsVEaIL3hs+GTguGQXBZXNckn2Jx/NWT4LYJFx5mOI2IwQJKRklmszNHXOS2GJhJTNcplzQtRYJyOkeXH9p89bHH7FkHIdLteloudfMsvHQAgpmeV8foWUzXLZ9pBxfV4aUDbLZf+FNFW3GSEId8ksFlx/x5CyWQ6lsbLDaiEVZYhYCCmb5fK9B5XNSuycu2T4hpTMcr0uhZTNStWEGLEZIQgaBz6GiEtZLHyNjyHiYj8g883qnPExRGxGCBJSMsv1WhN0/fXYJyFls2xGCBJSNstmhCw+279closRgmw+Vc1/PoaIy/ov5N7D1QgJwef7DimbdZJGSGrwWuBjiLjcT4QcI6lKsiGuZbFC7vlc5rSQclmpmt0jJ2GEILhWOA5DxBXnslghz6Qcvku83/R5HuDz3C2kHKHLPXDIMwEpi7W6rM4ZKQiCIAiCIAiCIAiCIAiCIAiCkIDTbYYgCZrSHgcuzdWdjBBKgCHiSq4kZXVZIq79QpbGn5Wd2RLH0TDdFRr5tkWsg7JAHI5tFyOEsipN1UOyQFya1YXUm03SWF3BpcF6SEaWiyHiYoRQuJuqU0IyQlyZj/LObK6Q8zFFY/UlHM73kP3lkqEa0tMqxBDxGt/REAmyrrKs2+II6R3B3bCd4GKIhPRccTFEXIwQio8hkrRXSMh3WZbd7wtolu5liAQcRy6GSEivGCdDJOCw98mYDKn57mqIhMytk6280w4JMUJ8Gqq7GCEUF0MkpFG6iyHiYz+E4GKEUFwNkZBrTTHMOzOpU+8TFyOE4mKIuBgh7W3pNkR8jJAQQtZ/rtn/IVbIbC3rzF6O6RHjug0pCFkvp2yo7rwNAT0IXY+RkONvfGnY2TckVZN0JKQPkoshEvIsYLZezWm23iGpTBDExQihpDREBgdlZ9+QVE3SkZDv0uV5QKpKLBz9nG2IEbL6iBkiCIIgCIIgCIIgCIIgCIIgCMKZJivLROmLCXnT9/+4/QWa3+gke4W4ootOBpkhFEPIy7VfSBfUEAkxQrTjGjInTrJXiCtqBJu1LqhmE0PMEIrJEEnVL4SrLijNvuHKIjLaIYyHnpphyJmRpRoiIUaICdN559ovpIsUhghAO7uL63w0Zbt59QrpQhmKc/+o2V2cWTEmQyQkC107PjEe2Prw0LmfaXuNWf2c84hiiIQYISbU7yzECDFhMkSSWSFc3yUdJ8AI0WG0QxjXI6ohwnUuAhBDhPGYNmVMhlghOqghwjW3UkOEq0eIyQ4JMUJMqIZIiBFiQjVEOO0HU++QECtEBzVEuK41NLOaa5+YrIEQI8SEaoiEGCEmVEOE0wgx9Q7hWgPS+w+uPiHUEOEyQkx9Q1bJCDGRyhAxXVNCrBDt+OQY4Tr2qCHCZYSY7vNCjBCKzgzh7BGiGiKraIRQUvcOoYYImxFiGIbju9StxTiNEHVu5bz31c11XUbIh3/qh/g2QIhCzBBBEARBEARBEARBEARBEARBEM40Z6NnCEUJTs46auetEmoPERYjBCGR1uEur1mBfUS6eoh4j1tnVGAmxWkwQpBikKXpYaP0FOAwQpCSBLBZbRZ1XObsHtf6rL7QLKQUPSLKLI1549JDJATaQ4TLCEFS9RCZj6qBuTK9mnFJ/xBWIwTJ0vT1cekhEjQu6SHCmYUOsOgh0hsz75RUfT7ouAkOkbKXQ+9QnyUdg0sPkRBoD5GVN0IQ/A6Z++O0+ockWI/0dycw3eHJmFdpeohs89ZEpjW1uYwQBMfjrsGP28u9XqD9QziNEBVOI4SOyb3Onm9W5wsaIlxGCIXNPqzBay/3egG3E49pTiNEhdMIQfBeZnhzxjru5lNV9jwaIqnua7iMkGa8tTT3vNN6O9EQOQ1GSDNmoh4iaAkODhKp6fg5zMdeqt4geJ832OW/8VB7h3A/CwBY9BBJ1QOCwwZRSdk7RIW9RwheYxLMp+pzgFQ9QtTP4QKfBxxdEMfgNCLfmiAIgiAIgiAIgiAIgiAIgiAIZ5qzaYYoYE+PnDfhBOZ1UD5FnXvV3CiYs68BFlm73GOv3UyTWdFkGdffZcb8XaZCNX24KUZpzBNa45r7+MasNe5su2a7ubP46uwV/HOwn9Yu4GSynSexFaYbywd0nzl7bVL3ORnuM49bZ9/Qesyx0Nq0Q+aMqlm9v/sJMtfKfgaQ4BhpsoGZjS2cS2frVTpf/5B3X6N5ota55wDPQ27LAqDKuC7WqotjfpTg4phDyy7lIJURkjXmBq4bmD8Hx2PqGYJkk+q7Q3OGd/AMBrtVlvR0my+jFLP9h7dnMNnhv50Y1tfb2Rrvd4jZwOzrm3rcVHYmGiJr1/lNsMn5AfT3+bOBcc4uITP2lIoiT5PdjrYCd3Y+roFLYlFyMduor2HM114AgKN7NtjHBEjXD+LwSjXXoQnG2eMTIF2fO8zkpr2Noql3M/YSSLX9KcD7DvZscdwn9Tqe/x4vjQlGK2dwgeONL1Qny+gG/5oyhRUCsLhHmjKbFqlMk2ltsqD9Tyt0xILPErnHbaoVJHiCnHpOSvVdHl1sFjrCKeRUNlBHbI3UJzv6yZYjKDK33EtynMgDzUNAjsCFLljBMe7QsHjIuBb5hk2MDYqkKI/VjK25p+SYhK2lsRh+HV3DT45j2tRINDYo0rlPI8c3Ldo4FsyT7fbGcwRFdItjzoW4bs7gCIhMDaUGYoMic0P5vtigSNeCniMogiW+VDiCItrjgeMYMTyY4gqKmM732KCIqTxMbFBEbW6uwhEUsV2/OIIiujJ4GUcAINF1t2u9ER0UMX1nsfvEsAZjCYpotjlFMESFJShi2tWRQRHTw8XYNU7XwwbuoAjCERSZbrW/L46giG1txhEA6B3q57jJubjje244xmKDIqaSbFzBkOmm/iDkCIro5laOMr26IMj6c/HHNAZBTMwiy9Oa1unTzbhxTeVsWIIimk1L/eCR436GJl8BMAVEDF9V7L1d2RGcjb0XM53PHEER3RgcwZCjy8w11Am6eyKOgIjpGhZbUg2DIK3PYwpamEorc4yvG5uj3HeqxukpEk1VmiAIxfKx0jh99ZAyWYIgCIIgCIIgCIIgCIIgCIIgnGnOfJksCtVkuctnxTQB1hkhSExpK1v5qlQlswCWM0uDLJGOTYopm5XSCjF+Jvka2HU9pbm6LyZzAyDumLaNC1Bly3GXzFoicJ90Zf3HKNU6IwSJKZtlywyi2Uoh2Um2OQIz7UIMEZMRgkw2syA7xGSEINg8krtsFjKpmwqHGCI6IwSJKZtl/d7xGAnJXOvIhiuVYzPEEumaK2frvSA7pKthMP57iCFiskIA0jUnR2LKZumMkObf+lj+LOBicEJGSPO6WRFmh3R9RzFlsyz7umkwH2KIWLaZo1yWbf00vF03SQ0xRLp29VERZId0ZVbHrHFcsi1Tlc06ulhd5EIMEZ0RgsxqyyDEEElVhgIxGSHI8NYkyA4xGSHNv4/Cy2aZrBCAxboqxBAx2SBL49fX3hBDxDa35vUaNcQQsZXFOryrOqZDDJEuIySWrnU53sOHGCK2JsdNma+QzG5bMYGIec+FmPsZnRGC4P1ZUOZ4x1cTem/XZYRwYDuHY8pm2d4TUy4rlRGSomSwStc1bLqRB9khJiMEiSmXZbJBuLCNj9fEEEPENvfEnOepjBCjCSKcauRbFQRBEARBEARBEARBEARBEAThTHMmzRBTvxAdRd/dDrH1CqH4ZFzYjBBKKpODZiW5jG/qFaIDs02dsjg9f7WyvzpN1X2i8z4N1r2yrzxsiC5zQyVVFhHNmnMxRbyzDzNwtkN8mrula7qXrrE6wCKLycUQ8ZlrfAyRLiNEJVVTdYAwQ8TnGPExRGxGCMXHEPEygWIMEQfQEnExRHzOc9+m6l1WiO617I3VAwwRH6vRxxCxGSGt1/oYIqe3LV23FaLiY4h47GsvQ8Rje0MMEZ9jz8sQ8dnNR+5N1X0zqcv8dDUVRnwMEZsRQvExRHzm6hAbossICaXLCGm9fpQ52yE2I4Tis09cjJAYfEx+H0PEp1G6jyHia4T0x6VX35CUdedtRgjFyxDxOPZSGyI+2IyQKDyfK0w3c+f7Oh8rxOfei6Pfjw0fi8THEFkFI2Sw599MPaXV2GWFqPgYIl7PnBKNG4LPXONjiKScq72sEI9nTsLJI2aIIAiCIAiCIAiCIAiCIAiCIAhnmqwsT3PaXsWbvv/HAcDPCNHRZYj4mCEUWxTUxwwxocvetvUKiRnXxwgxYc08ivgauwyRVL1COKLouqyEkHq87YHN/+RjhlBsx3TMuM34hu2Ozt7oOAR8sv5VurKIbL1CXNFlPYTUiKXospQ47DObIeJjhlC6DJGufiFdmCyR0GMDMdkhPkaICVvWVEiPmAaXPiMR6AwRjgwtkyHiY4To6LJDbL1CurAZIhzXLp0h4mOEmNAaIomXlkF9yGo6e4fE9nIx2SEM+9pqiERst80QiTn2rGYIw/LGZIgE1ddX6MpcDKnrjXD3DqHoDBEfI8SEzhDhmKttNkSMEdLVO8TXCqGYDBEfI8SEbp9wGCG2bPOYOdV2r+JjhJgwGSKxfUJMhkhshnFX3xAfI4RindsYjr1Uhohun3KYIJ0Z44H7pOueLrZPiGldzmGE2O4LY+4ZbWbIKhghJkyGSOz1q6t3iI8RQrGtMVieOWnG5xhX1zuEY06xnecrY4ToqDftwz/1Q/EbIyRBzBBBEARBEARBEARBEARBEARBEM40Z7JnSChFvTeoIRJjhCBq9BkjpBxGCJLPS/Y+IjguAH+PEmMPkciPKckRjaZIKiOEk6xIVLNS00OEw9yg24rHNcfYAIvsOpceIl4YeqrEZv2b+odwGCHIfJg1GRAcRgjiU8fWB1MPkRgrBMDcQyTWCEFoH5HYYwPx6R/ii66HCMv3qeshwmCEILSHCNcc6NtDxBVT/5AYI6QZoyxbdgjntUvtIcJhhCBePUQYiMlgBlhsZ8sQiTVCENo/hHFfZ9N52w5h2G5dDxGOY8/YO4RrV5MeIrFGCGKqox9jhCCz9Sy5HYJwGCGI2kOEc61q6pcR2ydkeKs6pqkhEmuEmOAwQpCilzX7g7NHCK4b1ezz2PkUQN87hMMIMRFrhCC4NsW1KleGMd7fU0MkxghB8rlmnku3q9mgvRC5+oMYewpE7hPTPV2sEWKCs0dIPiubc53zXlHXOySVEQLAY4Xo4Lp+4TGMhkiMCULJ5u31RqpeHil7hHCZZvQ8T2mDADAYIcKpQb5pQRAEQRAEQRAEQRAEQRAEQRDONGfCDIntFUIpEu+VJNn/sMiqGu7yR0txbFMt/VBodip3ZjqaIpm+3Gw03NH0xq5YS5B5ktlr0seS6rhusu24Nx0T3hmzZgAW2URolHX1IvIFs6tS1PUt84w1uxHBrDvuYwQNETzP+wxZdypoiOTM5zkaIikyW2YbOQz2EqT5JMqGQ9AQsfYoCQANEc6sO4CFIdLT9OGI4TgsxmKtD9mU/xhpDJEEYwPwZDAvjYeGiK0PRwQ4blbwTta4f8sh/2J1sDuB2RZ/pmdjiJxLs8Ae3q72ydEF3u+yuWYxT3+z2o5MYYgcXRwkzZpMtdZDQ2Swx7tgR0Pk8O411nGxNnqeaF9zGiGUop9Bb8y/iMR9getgLg7vquekRPcwqc4XXP9zj49r0hTPK0xWHBdcRgilV2eMc1UnQPBY5p6r0TDpTdLsaO57W5XxxerAS2XJcBshg71qvMlOmmOP0whRSWpsJBobe2lxVVRojZ9ork5mgpwCa+9OR8wQQRAEQRAEQRAEQRAEQRAEQRDONFlZnoJmCo685v/2E6zj0ahpwZQst/Hs8i6frfOMi6zdwJ4CvOMCLNfO5Kw5vpTxyRlFJUc3V3YwzYZo1SqNZEYyZ7iMGWqGcB4jS1kAjLuDZrfQutKxYP+KHrM9RHsNcRkidB7qjXnGBQCYbC32NWdPIzrHcW4zQLtXEJchQjPMBlyZYWSYHuP8odaSHt1K0JtEyYDqH/Jlb6lGEqsBQOdqriw8cp2KrW+PpOwZ0oyp7l9Ga2GpZwjndufkeshkniTrGYLj0++Sa1+TcVOZLZyGSEZ67Iwv89T8p1n53GZIip4h1UDLf+W0rtV5mbU3kPK79xPYh8Vo+XwcXeNZKIwvjJY/hylznK5NObOZ1W3kzL5eykJPcPc/V75DzvsL2juQbZ+Q6xTXuGgNIdzZzDNSPYDTfFUNCPp7cMJlLgzIecdthuB5wl0Zg54f9PeIQV2ns57nZNdynS/UjsmYKypQU43rOk7Pa84+SeozFc5nTOrcwX1MAyysV+6qGLR3DxdH58l9AJMmMNmu9sPH/98/yDOgkIwzUSbruMjrh6VcQRGkf7j899DgCAZBEDoRxSxMdZMQPlCJudnSPvTCHyVYg+maB7KMSy6AoRcuGgRBOBpc60pk4TESc2xoVUhDk3IO1MaSMdAm3mrz7ZjACA2CILiPYxYIurlnXt/ncwcYsPEjZ1AEmSvPJmK2mwZBkNlGFhUQMd1M4TETHBQxvA0X0JxBEQCA8blqxc8RFJlpNHD8WUxQRFeWDa8pUUERw01aMawboIcGRQzXpfl6dTByBUUQnLc5giLa/YmBhogH9drG6Xi9idnu3HA9HPSiAiKtIEjzD/W2RgZFUpaj1G1bUzaLOSjSr8sVxQRFaBAEGT0/YQuIqKzd4CmXZSoRg0lSUQ9TNKcEPqCIeTihm4c51um633W2VTdTZwiK0CAIFzQIguiafftgeoiL6/eYoIhum3DdH/PgUVuKh3GdPk/0HdIgSPPz2H1iuC5x7GtdAIE2Dw+BBkC4SVGyz4ba5DsEU/AA93FUUCTRHI2kKseuW6eznOeGXZkVJf+8BEqJ88DlNHeZPkrKMpS6Zyq0eXgIuvmD45ierRvutSKfeaQKfiCtIAgjGAgRTgdSJksQBEEQBEEQBEEQBEEQBEEQhDPNmSqThcSWy/JpKuRjidDyWDZ87RBqhdgIyUhwidCGZJ45Zf6GBFg9jmofS8QnA8I3gm+yQnSEGCIu2aohx4ZTk6yAWcYnY8jHFKFGiA0fQ8RkhJgIyZZwmW9CTAu1PJaJEEPEZx7z2W6TEaLDxxDxySQLskMc3xJiiBQOmcohhog208yAjyGiM0JMeBkiPnN0iB3iOHyIIeIyR4cYIl77z8MQ0RohJny222CEaLchwBAxmiGtwf0XH07fYYiF47Etq1A2y2SE6AgxRFyaVofYIa5Ng4PMEI9TwCdT02ve9Vin+/yOIYaIixESUirLZIS0Pj8gc9xnXepjiPhsi899iFdz5oAljYsREnJfYTJCKEFZ6R7XIp/xfUpK+WSW+xghIVUPXIyQVOWyQswQ33JSXoZIojna5xwIKZfltE4PedrncnsfcA76zEu+doiPFeJzjfM5Z0PKZbk8SwkxQ1zmjxAzxGSE6PB93nFsJbFsBOgCqhEi5bFOD2KGCIIgCIIgCIIgCIIgCIIgCIJwppGeIZGk7iPC3VwdwK9PhE90lmaf2jLQvDJV6UuZE1RS9xHhbq4OUGViuNohPvXLfY4NJyMEoS+1bHpIplBRH2vczdWxjwh3c3WAah+7Zkv4zC8+PURcjBAEe4ggNlMkZN5K1ftktlHXRGVqqo549w/x+HifHiIuRgiCPUQQmyniY4TQ99gylX2MkOY9HD1ENHj3D/HY9vl639kO8ZmjfXqIBO0vhx4iXkZI8yaGHiIa0IJwMUScjZDmDaWzkeH1Hdb72MkQCbBTTrKHiI8RgoyenwCAmyHiYoQgvv1DXK0QAM/eIYn8+5BeTS49REKsF58eIj49QsaXqoWBqyHiaoUAVMeSq5HB1ey5NW6AneLS18LLCGkGrv+0HK8hvUF87itcjZDm9T49CxIVwkhlTYT0CHG5nw3pDdIb1304mH9X3E7X84uzyfgSieboECtqWleJsP2uIetzr94hPrf3nn12guYmB1L1CUnVH8TrGQp5j+25Usi84dM7xMcI8WUljBAPpDfI2UDMEEEQBEEQBEEQBEEQBEEQBEEQzjRnsmcIQFjfEJ9eISZMGdw+/UJs0Ixrn14hNkzZC7FRWlP2GUuGr25ohmF1GTVBdWnpuIZIvk+vEBvUFPHJVLVhOjZCshpaaHYJRwaezhDx6RViwmSI+PYLoZgMES7jjNoWPkZIFzpDhMNo0xkiPr1CTJgMEa+6whqMhkjknGSyQ3yMEBsmOyQo84ygy1wOMUMo2usHxxxtyliLHNpkiHDM0TpDhNWg0dgLQWYIRbf09OgVYsJkiHhbIa2B9d9V7HdotEMYjo1UvUMQnSESYoZQTIaIjxWiw2SI+BghOowmBcNpqMvUDDFCKLq1eVAfFAM6Q8THCDFhMkR8jBAdJkODYz2q6x0SYoRQdPclLFnXhuM2xArRYbqn8LVCKMb7tMjHHKZxOSwJXdZ5SGY3RXcfG2KEmDjuHiKxRohxfZ9ojg4xQii635ljXW78nZm+Unq+cJkgpt4hHEaI7trHYYToeodwPDsxPk+KnDtMZgiXDUKfdaQyQRAWI0QzRJcRIv1CThdihgiCIAiCIAiCIAiCIAiCIAiCcKaRniHM5CRz/LT0EqE1XbmitbQ+MWvGKg6VAWu9z9Q9RBDuXiKYjeHaS8QVemywGCGI8t1x1mSmPUQ4rBCAdD1EaBaRay8RV1L14wCoeomgHcI5L6nbzGGEILSHSKwRgrR6iDCdhjSzyKWPiA/YRwQNEZbMsxq1hwiHEYK0ricMVgiApocI0zbP16sDGA0RLmsPx3LpHxJMnjd2CIsRgtAeIgxWCEC7h0i0EdIMXG9nvd1c32GrfwjjsZGqdwii9hDhMEIQ2kMk1ghBaA+RWCMEafUPYTwdZ2tZk63JYYQgdG3OaYXo4LBCANo9RGKNEASPMTQ2ONejs428sUM4jBBErdXPWoef9BbgMkJaH8N82Wr1LmC6LtJxOa0IXH/2JiWLEYLQ+1hOK+Q4SNYbBEk0R3MYIQjtHcK2Nqe9QxK1PThtvUEQzh4heL82H2Ssz05o7xCuuYP2DknVH+S09QYBkP4gZxkxQwRBEARBEARBEARBEARBEARBONOc2Z4hiEvvEI5eISZGt6rdy5WBRjHV94ulN06clcENzXTgHDrRrsCMIO7sKMwk58xuAKgMAIB0+6Mw9JfhILanhwk0FrjnENzXA0N/i+Bx614hObMhgvuBK4NXZT7K2PeDiqkObSypthltw96Yd3w8r7mNOIAq+7i/z3+hLfvL2VFcZPU+SGVc5EdpFh05p7mhUu8HUz+OKBhNCC3M32HJZLBQUpghKin7h8xHacbGtdHkHK9ijXOdqYdIKDh3ctmGCGakr1/jv1hNt6p9kCqLl3tubki1Lq+zrzlNRoBFJmyKXgvsZkgzcPUHtxmS2kLi/u4QTmu2RZl2vwx3eY+PyVa1L7hN5bLexdzPNpo5OdF0lGLdjHA/I2jGrQ+JkvmwxvOP+9jAZxscPVwpvWnJvh9Upky9YSlcvSNbJJpDR7fSXLgP7qqtfuaqHQAA0x20wbtfK71CTidihgiCIAiCIAiCIAiCIAiCIAiCcKaRniHHRJnzZtRrawczZBQOdvWZn7F1bk3ZYSw1FDPN/58i3wmjzeyGyDCNIYLZE1zHc0ojZLbR/hmHCUB7WJQ9HjsEjZDm7xtpDJGiLrPNbYjgPMFtiKTYD01GTf0nVz8VPD8mW8vf5XAvbttp/ynMMI01ROh5zNkzqVTO7dlmtaNTGCLFIEuSgYx9IbgNkWKt2hfchkhR98dgNUSU353244gitRFCPyfyO0xlhLQ/aLk3CQfZZAbZpLrwFZs8PRYAAKA+znqzAuabfPZG6kxYhPYQCYXOlbjm4jBE1CzYw0vVwoPDEEEjBJkPc1a7ALN48U+uHgBNr55687n6EM4TZv2nqo+uHhvzut8Vy3dIdilWCog1RFKZD8ZMcabrNvbwQ7tiss14rJyie1WAhRHCDc3Kp70LYliahxmfEfQ1a2+OTP1U179m/FQCcaIlHe2byAm3vWJicFCw2CHGnjTcvwZnPxll28Y71T4Y3eY7CNEK4QaNEOHsc8cHQ1KWyKLQiz37BSnBTTRCmwuyjVtfiFibcgOwLHhSl8eilFncIsi0YFA/LyQwQh/QIxzHc8pAiImmtBVzxYmyuTnnHRcgPhgw3dLvZ46giK65OUdQRFdOgiMoYrpZmSvPCEMCI12K9WQrCwqI0CAIhSso0vpcxqCICkdQpNQ0t6UNBUPIDL/rHRkUsfyuUUGR4wqC6D53BavCNuWxKAzrOQyAqOT71eQWFRTRHFe9/ao+QUxQxLT+Gd6qxg4tl5VqLQdgnx9jgiK2UiAxQREaBFHheKBuWodON/KogEhpOA8w4B4aFDEFQfBYjHnApwuC4HU6plxWijIx1cCJhk1Y/sm6LyIC4bnl1GIJimg2Ce8dUuyvyXYeVSrLFARpyjIHrrtSlibiLleI6IIgHBxXEoDp30O+C9v8GHtsqGOoZEU1Xsw8qNumVGXDODAGQVaZRMfzSQU/sjJdwE84WVbwlBcEQRAEQRAEQRAEQRAEQRAEQeDjzDdQR0yN1FOZIdg43QWfrDVteSzjwO4hTFN5LB0+dohvlq6XIRISofXYnOM2Q7Tb4LG9PiqpjyFiMkNM+Oy3VGaIrjyWCR9DRGdBGMf1mFt89rGPFWEyQkz4GCI++8LHEAnJmPTZJz4au48h4pNN5GOIdJkhFB9DxOdc9TFESo/z2scQ0RkhJnyuPSYjRPvahEumlWisHvD7eRkiJ2WGqHj8jinLYxmtEO2LPdYNGiPEhJch4nEc+RgiPuscHzvEdw3nUy7LZz70WfP5ZLv6mCE2I8SEjyHis/70MURMRogJH0PEpzSWT0aoT1ksn/WOz7HhZff43Gd4lMo6MSOk9WL3X9BmhFC8zJCAZUOq/edjiPiWxfKxAHzWzD7lsryMEI/vxccI8bnPOCkjhOLzffjMhz7HhM91xGs+THRchuBTLsvbCEl1e+JzGfbYBp9yWT5GiE8jdZ9yWKbjXhqnn27EDBEEQRAEQRAEQRAEQRAEQRAE4Uxzx5ghCDVEVsEModii+V5mSGtgc/TTxwyh2EyRmPrtnZZITIKpZbNWwQih2DJHYpqLdRkivlYI0rUPV8EIobgYIj42RDOuw6kVsp9dbAhfM0SlyxIJ2RfN2JbjLqaWtm2fxDQ2tBkiMVlEXYaIrxWCdNkhMXOcLSPaxwih2AwRHyOEYrsG+RghrfcmWjqlskMAHA2RiN/LaoisghFC6fhdU1khXkZI683m/ehjhFCshkhE7xmbIRKTEdtliITOcV12SEwPJdsaMKb+uc0QCTFCEBe7IGT96WqG+FohSJcdEtMs3ZYRHdMo3bbuiaqNb/sOY3oUdhgix94s3enN5l/YxwihWA2RiH18UmZITJN0lwz8kDWzixkSdI/t8P3E9Aix3XekbJQeev3r+m5ieibYjo2Y5xi2OSGmX0kqQ6TLDInqD3ISZkjEZ9rMkJjeIC5mSEiDdHr8ixFyNhAzRBAEQRAEQRAEQRAEQRAEQRCEM01M/PFUs4pGCFLm7ah+lBHSDFxvm5JtFWOEIJjlTQ2RGCtEfb9XHxFXMkgXQU8ARqO5M0kwk8anh4gLmFGRyrJJgWo6UEskxoKg2V3q3BNq3gAATDeW30utiBgrBACgqBOFqSESsy+asYdZyw6JMUIQ3CfqvogxQpB5vS9UQ4Qja2hSf0fUEAk1QhDcl9QQ4Tgfi34WlR1tYrZZfVE+PURcwOtH7PWIglnL3IZIsVbthxSGSNGvDlqtIZJKEl5FIwTBbSO/+0oaIUhZtvZpjBGC5PvV5LZkiEQYIUhvv0rRo4ZI7FpmeKsalxoisXPc2o3qvKOGCMech+ssNYM5KtO95vBSdVH26SHiwnxYnQc6uyAmkxczY02GSKgR0kWMEWIjxgixwXFsmAePe3tvXP3O1BBZSSME0cz3MUYIgqbFkiHCcDnFewXufYrbSQ2RGCMEmQ+yVjY+x1p5tlZ9d6ohElNtoQGHIN9XjA1i/bjEzx1S3XPHGCE2Yq4jNmKMkJMiyghBUj3bwjEzzc8iGO9UkwM1RGKsEIDFPTQ1REJsEBU8f1OdD8LJIGaIIAiCIAiCIAiCIAiCIAiCIAhnmjuuZwjy2h/8ie4XBcBhhqhglJ/FDGkNnrGYIRQ0RLgzcRtDJFFENpUtxJK9oqGIqKPfOXZkZrqJVBl/Mb1CTgrMdOIGrYhYM4SChgiHGbI0LmbLMpghKrgfOMwQSm+cpp4sGiLc5x8aItxZY5gtHdMrRAfaITG9QkzgdSmmX4iO09ZDpLFDEmx3Np2vthFiINX1icUI0Y1r69ESQTFKtAAAgGIjzdjT7TTjWvsBRDBbS5eLtn5tFtUrxAQaItzZvGiIcJ9/2DuE2wjBrNAURgiug7itkMbu4bbLazNkpY2Q1qAlixFCaeYK5n2cuncIhxGigln5qXoupKw44NKbJITTti9S3DelJk/0DCd17xAWI0Ql5VPdROYJmiGxRggFzZBYI4TysXdLr5CzhJghgiAIgiAIgiAIgiAIgiAIgiCcae7YniEYQWaPfuvq6sUMR3ovsEaoy7LJ6MUMKg6aXgA5sEaQWz1ETkviqaEm6cqOC+nq4et6L3CQqkeJrk4tF/M1gN4R+7AwvoBmFve41Z/DXeZxL9b7eJ933KN63CGzrQdQ7eMU407q7JX+Ie/YmLE4usV7gszWsaY88zyxhr0tEpx3dR38/oy7N0m9zVNu/aae6Atu07Le3gl/Ol3Zz1nXFMnR9FPjIJURgttZDqslPEfPEHXsvB6vGPLdImTz6jjr1TbyfHuNZVw8fkfXqj/Hl3jGRUY3qn0xvsB7u7R2s+5Ncp4/BXey3UtSmx4zWbmtb5yTucfNmOfMZtzUmbcJwGt139CnJZhE2zu8XZ/P5/kfU6T6/pqeQMzmlK7XEAfTzVS9sao/U2TUF70MeonO6xRM6n08YK7ugfemtFdkLCmNEDSG2PuEZGkehqQyQma1/cduhADAYL9s9RPlACtC0H6qsWAVBG4jBJ8TztdZh2V/riKsBmKGCIIgCIIgCIIgCIIgCIIgCIJwprlje4Ygr/8bP8ESCR/dNOzGyAAt1vSkcESsddnHLNmcum1jGLYwZRNE7uNkvUJMPRBS7QuGcXWZRxx2iKk/RqwhMt3S/zzWEDFtL4chMj7fHpvDEClG7Z9xZDFMDf1YYg0R03fHYYjMNcnBHCbHTJNxw2KIGObzWEPElEkYa4iY5mIOQ0R3DeIwRHT16PsH8ZO/qa9JrCGSTwzv58iK1GwyiyGiuVacCkOEbHeZ8+QJpTZDmr8ymyFICjME4TZDEC4zJJstf3ecZoi6juA0Q3TzL0cWvC6DlcPiMPVtiB3bNPfONtOkPXPYFnPNmpOjh4qp30TsNs8NPW9i703RCKFwGCI6U4jj/k93r8eR/Z4brp2xhojp/qhkSCjvj9vbzJEBX2j60vWYTTKV2Hu9icG6iTVETPemHIZIKitE9z2x2CGG+TH2fiG1EULh6Jc52G//zhyGiK5HKIcdYuqLGbvvTfemHL1O8ynAw/+L9Ao5i9yxZbJUaNMl1guCOj8xmmt0McM1edNGuGwPMujvzrmGSbSPk5FqXyQal96QcZbOmisP8DlLZ9Hzgat8Fl2IcpXPwof33GWzcMGRQu2cbFd/cpfNmm1Wf3KXzZqcS1M2K9W4AACz9Yy9ZBYAwPhcmrJZeJPOXTarqAMO3GWzZhvVxZ4jKEIpBjl/ySyAdGWzhtW+4C6blaIUJxuGaxkGMUKDIsmCIADaBwAs5bI043KUy6JBEKS3exQVEDEdp6Nr1UU0NChCgyDNuAzlsnTrBY5yWdzzLZKijAeAOQjCMnaKOTchuiAIB6mabpuCIByYAiGxpCqXxvEQU4cpCBJL0sbjmiAIB7ogyCpiCn5wYAqAxHKcwQ8WmMuYqhx3ACQWXfCDA46ggQ5T8INn7ETzsJTEumOQMlmCIAiCIAiCIAiCIAiCIAiCIJxp7vgyWQBVqSwdPlFzY5ksHR5BTFOZLB2+kW2fjGOvrE6f7fAY1iv66/DSVOWxAAIzhhz2RVAE3GHcEO3axRAJyWhxMURMJZZsuGZFhWyziyGiK4/VhYspoiuP1YVLxoOpPJYNV0vE9/tztUR05bG6cDE6dOWxOMYNSUdwmbdDzmdXSyRkDnLJXPa5xvgYIj6lRnwMEVN5LB0+2crG8lgmfLJePb46L0PEYxm5EoaIx/b62iHHVRrL+lIfQ8RjXB9DxGSE6PAxRHyOS187xGSFaMf2MER8DFIfQ8THCPEpl+VjhPiUtPI1QrzG9phjV6Fclo8R4nINCzFBXLc3xAZxuR8NMUFcymWFmCAu94Mh93Wu5YB8bRDXNV6IDeJSLivEBHGZV0JMkFQmguu8HWKFuJTLCrkXdSmXtUpGiNP5EWCEuN4jrIIR4jOv+BghPmWyfIwQ3zJZPlaIz/fhcy/q8/uZno9Iiayzi5ghgiAIgiAIgiAIgiAIgiAIgiCcaaRniAWXXiJeRgiCb7EENX2MEAQzQLoiqyE16J3qfoeE1nAfWIaNsiFOR7nRigx4e6mo4wL/2JitxtlDBGDRR4SzhwjA4rxIUTd3tpax9Q9ROW29RE5bHxGA09dLZLZejWuax0Oba3b1EYmpyzofZsYs5hBToCBWhi4LLKT5rEsPER8jBCkG1b7tyl72tkIAqh4iXZmwAV+dUw+RgLn/RHuIBGyva/+QVTBCEKceIiHZlg49RHyMEKS3W13gugwR3342rv1DfIyQZmyHHiIhawKXHiIhPUIw29tmiIT0CMHrQpfFEdInpBhk3eMG9Ajp71f7mNsQmW1Uc4TOuIjpDYJrbNM1LbQ/iG17AeL6g2SF+V5UeoMsOG39Qe703iAqqfqESI8QhUR9QlbBCEF69Tllm2dCeoSgJWQzREJ6hOB7ugyRkD4hLs8xQ+5FcVt1v6/0BhHEDBEEQRAEQRAEQRAEQRAEQRAE4UwjPUMUTL1DKGp0PcgMMaEEO0PMEBM0whpihuhoZXZyhdbIsDEZyS2UoVauZ4iOVPuCjBuaTa6iGiKcmS3UEAnpF6KDZk5xbTPNBg3pFWJCNURCeoWYUDMjQnqFmKCGCNd3Rw2RkF4hOqjFEdIrxGlsxjQEOp9znMsAbUOEa+6hWc1chgC1Q0LMEBOqKRJihlBoNnOQEaKDZsYy7YJWRj7jsvHYDBGmbaaGyCoZIcahVEOEcVzVEAkxQkxQQ8TXCDFBDZEQI0Q7LrFDOC1R1RAJMUJMUEMkxArRQU2OECPEadwAI4RyXL1DYqwQFXpNCzVCKO3t5Vmg0HtPTiNE7R3CaYTQ+0KueznaG4HLCKHrPU4jRO0dwmmEqHMNpxFyXL1DuIwQ2jeE875Z7R2Swgjh2tetniFM65PW/cAKmSAm6FwTYoPooGZIiA2ig5ohISaICfX74nwGqP7urkaI9Ao5+4gZIgiCIAiCIAiCIAiCIAiCIAjCmUbMEA2uhggAwGA3we7LeM0QBCOtXGYI0mR2MofWaF14TlLVU01VWzbVvmhlZXCNy2gtUDizD1S4MuoRzCbiNEMAFnYIpxmC5FNeMwRBQ4TLDEFS2V2paogOU1wvalLtCzXDjJP+YZpJOKXx1+MyOGowu5nNDEEwU5Z5em8y9BMsG5MZIqdtiZuoRnY2TXdilInqvZejNBf7yblhknHn6/wpuEfne6xGCIJmCJcRgqDBwWWEtMZlMEJUUtkhAOl6WKS6H0h1XzTYSzf3THbSfH+p9jF3hjret6T47sosTY8QnHO4+4SkMkNS9TPh7rep0kvU2yXVPp4P0+Rmp5qDOY0QCve1E80QLiMEQTMkxTOZMmeuClNj65lGESPkzkHMEEEQBEEQBEEQBEEQBEEQBEEQzjTMccI7D8ya4IwSr19bZNFwZqsP9pdTR8qcqTYjZnTWm80VzaU1Hzkzdcpemgxi3Kfc2QhYu9Unqu0E7lLmcTH7iTNbabq5+P45MyWnW6SW74Rn3MPLZFymbI/xxeW/D/b1rwvh8Mpiv/b3+M63w7urcfv7vJke0+1q3MEu77hoNtF+NbFMdqrtHN7mz1bi3mY8d7GOMVcdfJwbpnXdZXpdCh63zt7DOuo5Z339ej4v+lnruhQDXi/ma9VG9454LkpFPV4+5r3IzdeqJWPvMIE6VRQAOX9+Dvb44O7tUfbrcZn6TqQyQgAAYFY0/QZYs1En1XGQAUC5zmdbZEfTpT+Lczy6Yn6zvlgymyH9w+o8S2GGbDw3g/E5/nFxHuPOgEc7mmuexHsg/HN0k+88npxb3AJzzuu9cZp+W02GOm4q01c3urG8OFX3Swyp6vQDAEy20xghg93qXKZ9gGLpH1XHxHSDd6dgpQfOqgSpvrcJvddiXkZgpQMue6E1NzJeOke7i7XZZItvh6eyuxbrE+bKIjj1MMuaaBJy9VVSKZmXavQ5H9e16PDy8nHF9dyksUnrPzmfpRXMFTqQ5rxIuMwWTi9ihgiCIAiCIAiCIAiCIAiCIAiCcKaRniEWbL1D1p/Xh985DJH16+0wK4choqvRzmGHmOqop6j3B8CUyaYZgiO6PVtvxxdjLBFbT48YS6TzeIoYe7be/hlHtopqhiAcmQ7UDAHgsUNM/TFiDZGZIUmWwxAZX2jvzxhDZL5h/n5iLJGZZVyAcFPElBHHYltoNonDENHVfOfYXtM5G2uImPZxrCFi6lsQY4jY5u6Y7C1bf4wYO6Qw1F2ONURM6wQOQ0Tby4LBECk1pgWHHYJGSGvsWEMkhRli2aYoQ2Ri/t5jDBE0QSixZkhjhBCOXnghalyAhRWiMr4Yn+aaa7KbOQwRU9Y0GoChmOf1iPWvZZ06uhm+kLKZDzHzOjVCkNh7IWPPgsgpgxohCIcZojsehrfjb7K0RgjD1DnY1W9bqCGCJoiJGEPEdq8aY4jovjMOI5gaIUiq3nwcZoj2OQPD07KR5jjjMEN063XdNcR9QPtxFNM/L7NM3bOI80L3+3KYIToThOOZnGmM2D6N1AhBOJ6X6O43OZ6d6YwQDgPH+OzJMrb0CrnzkGCIA7qgiCkYQgkJjuiCIZSQidilYW1IcMTlopgiMBIUFHF4S8jErguCtMYNCIq4NDgPCYo4Hz8BY+uCIZSQ4IguGELxudjrgiCUkKCIa5PwkKCIKRCiEhIU0QVBKCFBEVswpBk3ICjSFQwBCAuIuJYH8Ao2OGxGSFDEpfFtSFDE5dwMuUF23bchQRGXBs4hQRGXOTvk4ZlLs3CfoIgpCEIJCYq4rAlCgiJODb0DgiK6IEjrswOCIqYgSGts36BI4vJYnR/vcwtgCYIgIcEQUxCE4hsUMQVBKCFBEV0QhBISFHF5gBUSFHF5QBgSEHGf192PM5f1aUgwxOUhf8h8bgqCqITcAzk3bg6YQkyBEJWQoIjL8RASFHEqi+WxH0zBD0pIMKQrEAIQFgxxuTcNCYa4fGchaz5TEEQlVUAEICwo4vRcwWNYXfCDEhIMcVmnBwVDHNcjIcEQWxAECQmGuPyeIUERl4fxIc/iut4TEgwxBUBUQoIhLveZIc/MXMphhQRDnJ8tacaWIMidi5TJEgRBEARBEARBEARBEARBEAThTCMN1BODDdYBeJusY4SXs8E6wCIT1ikb1CMzACP3nIaImsHF3Vxdhas5FN2nXE3WkzVXB6g7o7q91MUIQXwarLsYIQieD2yNwkhiJ1dzdYDljAuu5uoAANPN6k/OxuoAALOtugm6gyHiYoQ04266N1d3MUIQ3+bqPk0j5yPe5urYWB3harCeqhG8b1N1n3073cyd7RAXIwTBTCQXQ8RnbsZrj0tGsYsRgnA3VQcAKEaJGquvDwDAzRBxMkIQNDgcDBEXI6R5rUdTdVcjRH29sx2SygrhauoeQHZYXSRdDBFXIwTJbx042yGuVggAwNoXbgCAmyHiYoQgo+vVvnAxRHyyeEe36ibPDoYIVzNhSoomyz73M+Pz1QLKxRDxMRx85nMXIwTxvQdytkIAqjW648tdjJAQuI+HVA3SAdytEIBqf7naIS5GSLMNB+4N1X3uQXtj94bqx9UofZXhfHag4mKEIMO96lhwMUR8qirgXON8bUm0HnExQnyIKv9lgbsxuorPtW26Ub3WxRBxMULoNrg8H3ExQkJI0SCdowy7cGcjZoggCIIgCIIgCIIgCIIgCIIgCGca6Rnigdo7xLVniI4uQ8SlZ4gOU+TZpVdIFzpTJKaB1ok1Vw/82K7MHJeeIcaxNVnILr1COsfVnNksJpFhxvAxQ1S6ovo+ZgjFlgHh0jPEhM4Qce0VYh3XkEHj0ivEhskScekVYsJmiPiYIa1xLYaIjxlC6TJEQrPkjNYFw6mmM0RiMnZshkhMdk2XIRK6b7sMER8zhKIzRDhsPV1GsY8RYsJkiLj2C6F02SEh/cMQmyHiZYZQNIaIjxFiwmSI+FohrXFNhsYKGiHW3iEOvUJM2AwRXzNExWSI+BghOkx2iI8RYkJniMRkudrMkBgjpKt3SPh8rt8mjnWpzhDhaASum899jBBK172PlxGi0vG2GCPEth9j7AJd7xAWI8SwL3yMEJUuM8THCKHYzJCYqgQ2MyTmOzOt9WJtkOPuHRJlhFimVh8jhNJlhoSu0Y3XGIZ1iO45EIcJousdEnOt7OoZEmqFdF27Yq5tNjPExwih6J6LcJggpvkq1Abp+k6ijBBlbOkVIogZIgiCIAiCIAiCIAiCIAiCIAjCmUbMkABe/zd+IsoMoaApEmqEUGgkmsMMQdRs0RgzhJLcFGEeHiPgMUZIa0wlK5nDDGnGVc5w1h4zZOYINUMoGO2PMUIoaiZEjBFCUQ0RDjOkGZdk1sSaIQg1RGLMEBW0RGKMkNaYiiESY4RQqCHCVTe5ZV0wHWbUDuGs5dob89ZbpVmDXPuWGiIxRogKtUO4+jgBLGcUc5ghCBoioUYIhRoiMUaICrVDoowQimKIcJghCDVEYs2QZlw0NlbQCKEsGSIRRgiFGiIxVogKGiKxRghCzRAOIwRRzRDOuufUEOHqE0INEb75nL/noWqGcBghCDVDYqwQFXrPE2yEUMgwnD1CJuf6rH0mqBnC1ieE7INQI4RCDZEYI4SiGiJcfSoBFoYI1/dG13hc/UGOywxh7RGi7IoYI4SChgjX2rx1rWFch6jPgTh7g6hmCOe1Eg0R7v4geC3jvKapZkiMCUJRn4dw3k/SeYurP0jTF5ezN0gmRoiwQMwQQRAEQRAEQRAEQRAEQRAEQRDONIwxwTsHTisEAKA/5pVzbH0SYuHMnFXByD+3IYJZXdzjdtWfDBqTKSO3NS5G1bm/unrc2RrvsJyZZwirEaNQmMuhx43bTzP+dBPH5T0YZlvVeJyZG7NNZRsZN3e6XQ1m600SwnxU/dnT9JOJYbJTbWffUj82lPkIoH/INx5mEnf1EPFlupknGRczl3qMGZ7N2P2MLYtYZb5WXXy4rsXFqB5vyrut8/UBAAD0bx+xjgsAAEUBZY//IlyiccJ9DToFRghSZhlkY+ZJDACyw3pM5n2R3zpgHW/tCzcAAGB2ZYd1XACA0fVqH0y3B7zj3qpSMnV11mPA+Xa6wXytTLAeG5+vFk3c61zMJB/sM6brw+KeZ7aWJieR0whBuNfmkx1M0+YdF8cb7PF+Z7hP54wVARBOG0SF+zvDNR5nRjkAQFFPiSkMEVYbRIHTBlFhzYCHxfMPU0/KWDiNEITTBlHhNkKQFNe06UYGM+ZrLwD/uduMm+g5C/f5AAD81xzhVCNmiCAIgiAIgiAIgiAIgiAIgiAIZxrpGRLIW77vxwGA1+roKWPROrUxNBmkTENybhtlKYODs7QnyUYsmSLjuL1cVkcrYs+4q9XMBc7sObQNmrGZkmXmdQYSVyYH7enBmcE/2Vns0N4R34E73Vn+orjGnp6rUi16hzzjzTaXUzcGu3xx9un2YuzBbb5x0eRARteZ9m1tnqxdY5oTSBLx8BbfyYv1pAEARjfTzetstmI9DNt1lwzDaXKo2Uw5o3VRDJbPgd6YNzuR2xBBOA2RcqBYIZybmyg9KMPviKkHCZDeJpz7IJsrx9OM79jKpsvpo+WQyY4omPuxkHFmd23zjAsA+XixD8aXmZqsQXt+4eqZgf0MuUxomj2LvUM4UNfOPcbs8oL87qPbPOdEvzZNji7xnAd0TT+8xZeufXRxsXM57x36B8vHLVcPRrz29g94vqsp6WXCeQ88G6W56OSkTxn2oYimHpauS0OhvfY4TRZ1rJxxmUTvSdduMR1nzGbfcDfN+QWwfA7Q3nsx0GczXD3hBrvVfEj7/oQyPr+8LzntmLlSbYOzYsicVPHgqjYwW68Ne06hONHt6GCvGvgPf+aH0nyAcCqRYEgknEGRnmYMjkWXsZxG4NDHFgxBGK4FugtqTECkS7sNvYB16osRu16ncXLc2NBgCEBcQGS+1rFvA48HU4Nzjgv4ZKe9IzkCFzQYEjsuBkFMhAZHaDAE4QiKqMGQZtyIoAgNgqjEBEQwCEKJDYqYbjo5giJqMARJFRSJCogY3hp93TW8nSMoolO7Y4IiNAiiwh0QAVjNoMhSEIQSs7mpgyCU2KAIDYY0Pw8fcikIQokIitAgCBIdDDHtg9iHJ4b3xwRF1CAIJSYoYppPYoMhM811ASAuKGIrIxITFNGtmTmCITQIgsQGQ/qGclsxQRHbOj4mKKIGQVw+yxUaBEFiH9aayqnEBEVoIEQl5l74uIIgSHAwpONXjAmK0EAIAE8wRDcGRzDEdO8ZGgzhDn6o0EAIAE8wRHfMxwRDup7DhAZDMPhhIiYoQgMhADzBEBqsAIgLhujGUwkNhmDwg8ISDJEgiHACSJksQRAEQRAEQRAEQRAEQRAEQRDONGKGMIGGCBKSsaozQyg+mShODVYDvv1jN0MoAYFyl+wCH1PEZTtDIvrOja0CvgKXBl8+WV86I6Q1XkDCTJcZAhBmh5jMEIpPdoPOCGmNF2By6IwQlnE7zBCAMDvEZIZQfEwRnRHSGi/AELGZIUiIIWIyQ1R8LRGXrLsQQ0RnhFBWwhBxfGmQIeLwlhBDxKXZX4ghYjNDkLNuiFjNEMRnc4/bCKGEGCImI2LpNf7DcpshJiNEJcgOcfn9AcIMEYf3+BgiNiMECTFDXOaPEDvEZIRQfAwRl3VniBnislYOMURMRohKiB1iMkIoPoaIy3o9xAzRGSEhn00xGSEqvtnrLtfbEDPEZoQgIffC3EaIyQShBJkhDkOHmCE6I6T10SGb6/AeH0PE9T4zxAxJZYXojBCKzznmcoyHmCGuz1tCzJAuKwTAzwzRmSCUEDOky9wACHuO5DIuQJgZYrJCVLwMkcQmCCJGiGBDzBBBEARBEARBEARBEARBEARBEM40TG2kBQrNsOJq+IpGApudQYO8p8ETwm10CJj7ZBVgZJ+ruTo1czgbYUEGzt+VS2YegpkwXE0SaQYhV3N13D7XzB1XKwQAYD7kbQQ2X0vTBB3HdRnPxQhpxl2vx3U0RFytEICF7cHVYH26U4/nYIi4GCHI+GK1D1wMERcjBDm6xNtcHQBgcq4ai7OxOgDA+Hw1LrchgvMRW1N1WL7esjVXB4B5ncXpYoi4ZKgiaHm4ZHi7GCHIfFRNuJyGSDnIk9ghs50qfc3FEHEyQhDcXWmElk6crRAAgFnhboe4GhEAXvvAaoQg/Xr/OxgiLkZI89pJlbrvbIj47IOydLdDuJqv17gYIcjo+UMAcDNEfIwyNAJcDRFXK8QVn3XndLN6rYsh4mxPA8C8PqxcDBEXI8QXVxvEF5/1OX7/LoaIixESgosR4ovP9Xa20au3o/v7cDFCEJ/78ZMyQpDhXuFuh3gMndfnlosh4mKE+MDZbL01tsd0eHSu52yHpG6SzoXPM6ainutdDRGuZyyIiwkSgosRguDv5GKIuJobPqQYE8DNBAmC+VkjNUEEwQcxQwRBEARBEARBEARBEARBEARBONNIzxBmaO8Qla6MVZeeISZ0UXynniFdaIY48Z4hOgxvC6k32bzXkr0QvJ1gNkR8Mt70A+t/7JOhR7FloLn0DDGOq0micekV0oUpm8fHDFHpMkRceoYYx9YYHS69QoLG9TBDWuN1GCI+ZoiKyQ5x6RXSObbGFPExQyg2Q8THDKGYDJGQOswqJkvEpVeIiWPtIcLwUcbrbcTYNkPEJ1OVosv49jFCTHD3EEnVPwRAb4h4GSEmdJucMA3IywxRMRkiPjZE673mf3IyQkxYDBEfM4RiNERC90HX+i9ifajrHeJjhJjQGSIhPYaQLjMk1Agx9Q2JWW8iOkMkZn1sM0NijBBT7xAOI0TXOyTG2LaZITFGiGmbYm0QU1+DmOuszQzxMUIountibhNk6fM8rRCk0wyJOL50a1YOE0Rnf8QYIV09Q0L6UQKY+4acZG8QE7aeITHPd0xmSKwJYnqOE2OE2HqG+BghFJMZEmpudFUUiTFCdD1DOEwQ7XOThE+abVaI9AoRXBAzRBAEQRAEQRAEQRAEQRAEQRCEM42YIYmwGSIIZq7GGCEqNKLPYoYgylApzJAY02IJMkyMGbI0DkkiYNteWET+o82QZsDlv3Jk6gG0M8BizJBmTCWZhsMMQWh2T6gZQsGMhxgjZGk8YnFwmCG6sWPMkNa4tSkSaoRQqCHCYYYAtO2QGDOEMrqeRRkhFGqIxJohCBoiMUYI5VgMEcaPaAwRpjGpHRKTqUpRM8A5zBDktBgi1A5hN0NW0QihoCESY4RQlKGijBCKYojEGCGUxhDh2gd0HcjYI0Q1RFKYITFWiAo1RLh6hKAhwrXOBFg2Q9jWxdA2RLj6hKAhwtkjRDVDuHr4ASwbIpw9QnAbufqD0Ox1zuts/2AeZYJQ6D1xKisk1AihNIYI43Glrlk5e4NQC4SrTwgaIqEmCIWaIatohCD03OJ6pkPNEK7eIPgch7M3CDVDYmwQFWqGcPXywOdEnL1BVDOEszdIyww5gf4gYoQIPogZIgiCIAiCIAiCIAiCIAiCIAjCmUbMkMS4GCKj22myLHuTNOPm0xU2Qwhd9RZ94bQXWmMzZtYtjTvgHXe2wTpcQ8G8nQAAk3ZZbxbma2mmzWLIPN4o3fRe5rxjoyHCZYYg+ThRlp6lDnkow9tp5oBeux0DCyksES5TktI/4h23f5iuf0YqTosh0jtMcHIlgs0IoTBPW9k00XYCQHbImAoMAGWfL2t7iTzNtaDYaff5iGV6jlFlVDi4wqQd1nBmlFJSXQs4LQMAgM2nOprLBTK+yPtdAfDZMJTBfpprwTyBZWHqdxNL0UtzLnAZIchkM10eLPe5xWmGqXBvJ9JL8HyEwwbRwX3PzVqNRKG/l27tcvvFvDfdqY7X2UaCuSXR4wFOM0xFjBAhFWKGCIIgCIIgCIIgCIIgCIIgCIJwpkkUwxRWAWpFcEXt0eJI0TuEG6xZSes4Bo+XaJ+mAGuh4vfEZd+UJPspY8pawpqzrBn36qZyttBhPq6mF5czf3p7PHHqYn05oyY/ZEyJ26l/+ds8l5HpfSS7kmnc+aXqgOpd48uyLEYFFHXibp/puwIAGF+sDtLRdZ5zFc8p/HOwyzJsc16NL1T/M7rBd3JNN7OlmvGxYC8SrDXNlRE4q2tCc9VIB1ieo1mvr7UAPB9W2xxrjeJ1sBxV80nOZUfU15b5VpWt19vjy7jOZgWU/QRZxvU+YDNEEqQoZfNyYUWw9iKpz63RELJxmux4DrJ5/TvXf5YDxlsfZrk+m1TX1eFz1Z+TuxiaswFAf7+6Du48Vv15+8Vxii/OT8Pd6s/JNt+Bi9m1RZ/3WjDZrq9Xt3jvhXYfqBYD21/iS4k9uDpc7qMVCb1OcX1feb0MRIOD9tQKZb7G39cilRGCBlPBlL2d6r6Su1ICAMDgkPZL4d0H2H+Aq3LC+o3qOn10ju9gUPcBa48jxvMfIE31BYB2r6T5Ot+1YLqes5ohN1+ybILkTENjX0au5yEAiWwQAHYjBNcACNe5Ssfl6u8jCBQpk3VM2MplpSqTZXqYErXQsrw15uFNqjJZhWFSDn2IPTM0ReNYvHKXybJdOGL293TbsE8DFwFdF/yY4MhkR/PDiK9qtmV+c0xghAZDkNigyOy8fqNigiLlec0XwhG42DHswMCxyy37KjcmOFKM2t9XTFDE1mgwJjBiasQeFRSxbE5MUER3E8nxIMx0QxkcFDH8/hxBEd28HBUUsSzvYgIipocqUUERS4mRmKBINmv/nimCIs3nhe6DlM3dddfmmKCIZr3DEQzhLo/VBEFMnxcTFNGcW8W58AADBkF0xAREMAhCiQmG2OakmIfsqa4BE8OaNTQoYlo/cwRDDq62y7bEPBS1XZdivqvccLjGBEOaAIiOmMsgcxCkq3xbaPNs031kxvCURnfNnkaUuKNBECQ2GGLaBzH3xxgA0RETFNHtg5hgSNd5Hlo2MEUQhAZAVGKCIVPNe9efi8+QpEEQJDQYMjcc5xzBEPYgSKKnvDRYgcScq6YxAezPtKQ8lhCDlMkSBEEQBEEQBEEQBEEQBEEQBOFMI2bIMWKyQ47bDFHxNhocXh6SycpthpiMEJWQTH6TGdIaO8AUOU4zBAnZ7yYzBPHNjHDNgggxRLRmCMVjc21mCBJyXJnMEIqPKWKyQlRCDBGtGULxsTlMRkjoeDVdZgjiY4jojBBKiCFiM0MQH0PEZIRQggwRh83wMURcMulCsoNdsmmD7JCO3z/EEHGZh4MMEWYzxLXMRpAh4tB81scQ0RkhlFSGiJcdctxGCMXHEHFY14QYIikapndZIQCBZojDLZOPIWIzQpAQM8RkhFBCDBFuMyTVNcBkhCAhZojLXB1iiOiMEIqPIeJyHQr5rkxGCMXHELEaIUjI5e+YjRAkxAxxuWf0MURcrtUhZojJCFHxsUNc75VD7o9tRgjiY4a4/O4hZojree1rhhy3EYKEmCE6IwQJMUNMJgglxAwxWSEqPs9BTks5LAC7uYGEnKsu45qeaYkVIsQiZoggCIIgCIIgCIIgCIIgCIIgCGcaMUNOAGqInKQZgjibDJ5Hi+s2nIQZQnHJ6Hc1QwDSZry44NNsymX/dxkh/3/27jtMsqpO/P+nqtPkGYaBUWDJQcAVxUVwQUBZDCwSzAEFUVkTq4sorLu/VfiuK5hWEJUoKqhgACWJC0t2WTKIgbQSBwZmmNg907l+f3Sfmlunbjjhc6ura96v5/GR7qk+dbu6ukKf874njcvqCN9VES6FiFMRYnP4cbmUIYbL/cm1CElyrUNcyhDDpRBxKkJsLkWHSxniM564VyFJLoWISxliuBQiLkWIzaUQcS1DRDzqkICHKZdCxGclncvq4JDzqzsXIh63gcvK3JDnPafnVI+XdS6FSMjGq851iEMRUr+oQxniUoTYtAsR5zKkpOVIXnWmchlSPwaHQqSMIqR+/Q5lSP04XAqRgLdKLoWISxliuBYirlVIkksh4vOewqU6CFlF7fIcUFSEJLnWISGP1S6FiEsRYrg8t4WUia6FiGsVIuJWhjgVITaXp78pKkKSXOsQn7MIuJQhIc/VLoWISxVhuJYhZZ1BwaUIMVzKEJ/v3XB5bPN9repyP2zVJul5XMqQvBIki2sh4lqFiLiVIS4liK2Mv304afH+IGlcfkd9xjPsv2lRhEALZQgAAAAAAAAAAOholCFTyBQi7VCG2DJXbAQOWXQs7VCGGHkr+n3KkKZxM27TdihDbGk/j5AyxMhbJRGzOiKrEgkqQ4ycu6pPGWJLu1+FlCFGUSHiU4YkZVUiQWWIkVd0+JQhjuOGlCEixXWITxliSytFQsoQI6sQ8alC0mSWIhGPJ2mFSMiqYFvaKuGQMsTILEQCv/eiVboxz3upz6kRL+fyCpGQ1aZGZiHiUYQ0fWlOIRJShhgtL0SUlyP57tfVIK8QCVjBa2QVImVVIT5FiC21EIn4ncorQ3yKEFtWIRJShBh5ZUjMe4m06iDmsb+oDPGpQpKyCpGYx+i0MsSnBMmS9hwXUoQYWWWITwmSJqsOCSpCjLSnvfICs6AqRCS7DAmpIepfm/OlMc/RWWVISBEhUlyGxNwGae+XfUoQW14ZEvr9i2Q/xsW8Ps27L2oXIT4liK2oDAmpQkSyyxCfEsSWV4aEFCFG2mux0vYGEVEvQkLKDSPtdzRmPMP8TYsiBNooQwAAAAAAAAAAQEejDGkD+77966WMG7Oay1ZfyaE0pH1s7VSG2JIr+mPKkPp41qqYdixDjOTPJaYMsSVXTWislrALkagyJGnyMGOKEFvy/hRThthMKRJahNjsQiSqDDGSJUdMEZI3roSXIYZdiMQUIUl2HRJThhh2IRJbhhj1QkTp196uQzTKEKNnoBa14s7WVIgo3QZm9a7m813Dc6nCyzm7EIlZcZrUVIhElCEizXVITBFiK70QaacixJYsRCJW8NpMIdKORYjRUIYovjWyC5GYKkSkuQyJKUKS7DpE4z1EsjrQfsyfGF/n8ckuQzQfo+c+PaRShBj2c11MFZJkflaxRYhhlyFRRYhh3SXLqkJCixDDLkNiaghbshDReH62y5CYIiLJFCKa33vy/XJMEWIzhYjW924/1mm8Pk3eJ9thb5AsdhkSWoLY7DIkpggxkmVITAliM6/JSqtB2qgEsdl/09Ia+64fUISgHJQhAAAAAAAAAACgoymu00GooXkTc1Jl7R2iwaw+0VqBqF2ClElj9XbDeEorbVuhcWWg3nHXJlcFj/XpjKe1Gr5JCT8qc3/K25smxNgc3ceP8ZkTS2YqSlWEiOjWICnj1sZ1fmBjmzauQKr06yw/HJ38GXUN6q1DGFo48TuatYdIqJG5E//f068z3tAmE8fXo7gCyRiZXVEtQ2qTP568c3SHMGVhVfFYx7srUh3R+x0d6504xrw9REKM9038DlWVCo6xOROrArtXDaqMl2QqE61CpDb5vVdG9FaylqZaFRnVP852LkLqY42MlnKc1dXrRESkNlOnDuhdNiAiIuOz9GqDJM2qvHftxM9ncBPdtXdaRYgxNH/y+WlAdVgR0dknJMmsvO1bpft7qlWE2FSKEGPyx15TXsoZW4LYeiZrndEZ+m8itN9DatUQNs0iJEmzCDG0bwPN16PGWF8le1+7CBo1SBqtIsTQKEFsmjVIknoRUtI5fDSLkLLG1DjLCZCHMgQAAAAAAAAAAHQ09gxpI9p7h1Qmf7QVxUl/1XNTp4xbizyPuNF0Pk2lmeXxyePTOk4R3fMoT4zXeGxaP7Oh+ZNzp4pTqKMzN/y35oqX4fkT33N1WOfnNDK5Z4jmSvGRhRuW4VVG9W7U6oKJc7OP9evcsWYtWtfw8fq1M3TGnTexonvdGp3xRERmzp0cc/XMgku66ZrRuFRyfLlOylSbOzFu9zK9lU61rg13zt5Veven8Z7J8mSlzu+SeT7qXqf4y5Q4tBkrFCuJyVVj3YM6x2qvcNJajVp/rldc0V2bfB7pGtS5PZu+d6WapTI5TtfAcMEl3dWqid8fhV+lpv1MlF5218etKC6dK6EKERGpDE/UdrUuncemplXHGrdpYoyG/UMimXplfI7Sc1218TYcn6FzrGbF+cCWes/JpjZYt5nOz73p9a3S6nOzz6C9t1WMkcTWLjNW6b930ipDBjeZqKG0nudEGt/XVBUfUurPI8rv6Ywepf1XzJ4hqnWE5uO8iFRHrH1ylPehGFMs9pPvD3vW673GG549WcLqbLtUfw7RfK+YfO2k+rs0+ZDcs1Zn0IGXNv7AtV7fDi0wOZjKcCKy4fFe6+8O41ZQqnVGkerky1rNs1/0rknckIq/8t2TdZVWuWaq0t/98kSV8YAsTIa0Ia1JkUrGjzZmcqTsyZCkmAmHzBd1kY/R9gtnI+pYS54MMWJ/dvXJEFvEe9zRlL9Zx7w4MZMgtthJkZGMDdRjXvAmJ0Pq4ylMipjJkKSYiRF7MsSImRQxEyFJGpMiZjKkYdyIiRF7MsQInRQxkyA2jUmR5GSIETMpYiZBbKGTIlnPOyqTIimHFDMpkpXOx/6xKCv3jnnTmPY8HzMpUkt5/tCYEMn83gMnRSoZXxczKVKrpvy+lDEZUr/CsJ9T5ngxfywreRLEFjopkvnHReXJkPqnIiZFsk7hFTwpknb/FJ3JkLQ/YMRMiqSdcilmQiTzdW3kH5vHe9PHjZkUGZnd/LkyJkOM0EkRMwlii3meS3s/o/EH3MxTpQQ+5GW9l4uZDLE3TRdRmgwpeRLEaMfJkLT3gzGTIWbywxY9GZL195aIH3/afT7mdynr1HKxkyH2JIgR87q2PgGSFHFbZj3Ox06G2JMgRsxkSDXlJWzMZEjD5Ict4le+O+PUcjGTIWYCRIRJELQOp8kCAAAAAAAAAAAdjTKkTWnUIVllSMNlAhYElFGH5I0ZUl04rXAJmLzOWk1kBB1ri8qQpJCfYWYZYgRMraaVITaflRtZZUhSSCWSVYYYIat/0sqQpnE9SpG0IsQWUohklSFGSCGSVobYfEqRtCKkabyAQiSrDBEJq0OyyhCbTymSVoTYQgqRrDJEJKwOcX2u8SpFHA4jpBDJ21QxZNWs6waAPivpnJ7fAwqRtDLECClEnL93j0IkqwppGC+gEEktQ4yA57fMgqPhSv1+Rk5jhqwkVi5DsoqQJN86xGmVdchbmpyvCSlDXDZ196pD8u6XyTEDCpG8VZwhZYjLJtw+hYjL61mRsBX4WauFRcLKkLQixNYup8vKqkJEwp7jXN7H+Kxqd940V/l9XEgZklaE2Lzun8oliJFVhBjaZYjhU4i4vN8LKUOyihAjqAxxeQ3m8WN3uc+HlCFZRYgRUoZk1SBJPq9nU0sQW8BDZ95jvEhYGZJVgySFlCFpRUj9OgPKkNwiRCTosTOrBkkKKUOSRYgIVQhaizIEAAAAAAAAAAB0NMqQNhdTiLisHK1f1mNhQKvLEJtLfeG1wsXjokVlSJJrJTIVZYjhcrsXFiFpHL/EpQwxXFZwuJQhhkshUlSEpHFdCeRShtTHdChEXMoQw6UQKSpC0rhWIi5liOFSiLiUIfXxHAqRvCLE5lOIuJYhhksh4lKGGC6FSF4RYvMpRHyeY5zrEI/HbpdCJK8IsbmsnnVe3ZrguprO6/ndoRDJK0JsLoVI0PfuWIe4lCH1MR0KkdwixOZwUad6o37lJZQh9Qs7/BCmoAgxSilD6oPrViQuhYhLEWI4lyE+900ztkMh4rN606UQcSlCDNcyxOe1rOFyHylaLZzkUoi4FCHGVJcheUWIzeU5zuf9i8uqdu/njZLev7kUIi5FiOH02FVCEVJUg6SZir1DfFbou5YhRTVIGqdCxOe1l8vTkMfN7VqGFNUgaVwKEZcixHB5LetUhBiON7vP47vP/c6lCDFcypC8EqTpuh1v9sIaJMnjpncpQgyX1xZ2CWJQhGAqUIYAAAAAAAAAAICORhkyTYQUIj4rR5u+NmeBwFSXIba0AiNqZUvOl/qsLDKKCpGpLENsaT+HoDLEKPhSnzLEyFvJ4VOG2NJKkZAyxChaEeRThtTHzClEfMoQW1opElKGGFmFiE8RklRUh/iUIfUxcwoRnzLEllWK+FYhRlEd4lOGGHmFiE8ZYhQVIiF7U4nkFCIRD+95hYhPGWLkrZ4NqSOMrFV1Uc/rKYWITxFiyytEyihDfIqQprFTChGvIsSW86Ve9Ub9YAr2pQoZs/7FKT+MKSxCbEWFSMh+ELm3Z8TvUFoh4lOE2AoLEeUyJOR83kZaIeJThNiyCpGo17A59xWfFcNGXhniU4TYtAuRojrEpwgx8p7bQt63FK1qD36+zPi6kPdrRl4Z4lOEGIWPYcpVSEgRYrSyDAnZs6GoDAkpQozUMiTmNVfe01DAzVz4OxTxkiatDPEpQWxZr2G9apCkgh9DyON73v3PpwSxpZUhPiVI07EU/Bi8ihAj5+byKUFsaa8xskoQgyIEU4kyBAAAAAAAAAAAdDTKkGmm1YVIfYyx5H+3Vxki0lxfqK5sSQwVs9LIaDrWNipDjOTPI6oMsVlDhZQhSfaqjpgyxEgWIjFliGGvDAopQlLHtSqRmDLESBYiMWWIYRcioWWIYRciIUVI5tiJUiSmDDHsQiS0DDHsQiSkCLElC5GQIiSLXYqEliFGUyGi8PCeLERCihCbvYo2pgpJslfXqTyfJwqRmDLEsAuR2O/dLkRiipCGca06JKoMMawhogoOkaZVqNHjiTSuOlYuQupXEVGGGHYhElSENAxYy/84ZEirDImpQpKaCpHI+6Zdh8QUIUayDIkpQgy7DNF47SrSfL8JWTFsSxYiMUWIUXYZElKCZEk+t2m8X7FXt0c/V1pfr/E+LVmGhJQgWZoe09qoCDHKLkNCapA0diESU4QYDWWIxmst+yko8qZt+t1RfHueLENiihDDfu0aXIQY1m2p8bievC/GlCA2uwyJqUJEmsuQoBLElrj5YkoQw36NUVSDiFCEoD1QhgAAAAAAAAAAgI5GGTJN+RQiGitJk6rD7VeG2MZmKM/zTU54a6w4Mkwh0o5lSNLwHN3xRKQ+DRtbhhhmdYdGGZI0lr9dQ5DRTXTKEKNrju54pg7RKEMMU4jEliE27WevoaH41VA2U4jEliGGKUQ0ypCGcQf0f89nLNcdU2P1UpKpQzTKEMOsotUqQzaMq7ScskSmEFGrYiaLEK0yxKiu133MFBGpjOseY2VEueAwK5BLKEM0qpDGAZV/eZR/NiISXW7Y6mWI0rimDNEoQmzrFxfsc+Kp/6WKS3Jlw+p7jZXDhilDNKqQJO1CRPt5R0SkmrLXVNR4kw9BasdawvuzshTtJRhKowgxtMuQ+ri6v+aqVYTRpfz3DfPz1rqv1393Svjeh+foDqr1/r5u8rbUfFw3fzvQvm9q1U+G9nsfkfw9oUKY1xoUIZhuKEMAAAAAAAAAAEBHowyZ5pwKkclJ9OjzL1s0CxFTSVSHdafTx2ZOzvcpHWp9xYziTTk6Y2JMrRVDZgWKvTdJqOG5+t+zMaq8ys6MV6vqHOzI3IlxqkN6K1HGXjJx8tDakM5c9IyFE7XFyLBOYrTZwjUNH69Zp7cKdIsFE2M/t3qeynhbb7JSRESeXLGJynjm+B5/flOV8UREZs6c+Hn3r9JZJlWZLEKqy3SzJfO40dOvuCpwctAZL+oMZ86bq3K+3ISeAcXnssmbT3vVlXke716v8xw51jvx+NOl+Zw7OVRVqeSojpnHX52awaxc6xrQKxm0i5Cm8bUKkZHJGka5aBDRK0PMniHar1XrFH9Wte6JpaRax1rr62n4//gBJ45rbLbi88RksbN+876CC7rpGZi4b6/cUfe5zKyiHZmr91xmzn+vtcLb1Iizn9e5Tw7NM6ty9QsBreccw+zB0duv9Fw2eVvG7k3WwPyclW5OswfJ6Eydx1/zvF1TrOiazlKgNLY51hGl731ssgzQLJbMmFr3SVNZaI0nMvH7qF2uiIis33TyteCQznhDm0y+zlJ6DWzu4/Y+HDHMsY3O1LmPz1gxMV70vij2uCsnHzdmKFaOk++ftM58YZ4bXfYRowhBO2IypEPkTopkPIa24+RI8g/4GhMjY/aLr8hDbMqHFW7CtCe5mImRrDdroZMjw1lvKCOOUXsSJGvc2EkRMxliaEyKmMmQpJiJETMZYgudHLEnQ4yYSREzyZCkMSFiJkOM2EkR+zg1JkXMZEhSzMRIJeP0WKGTI1mPF1GTIimDakyIlLKJYILGpEjyW1eZEMn4McT8gcpMhCRFTYqkfGnMhEg147SZsZMi9imDNCZFyp4MqV9PzKTISMq7VOVJkZgJEXvj9PqY2pMiCj8rMwlixB5j1uRH1KRIytu6qEmRlD+KxkyImEkQm8akSPJ0IhqTIfYmwLGTIfYpGTUmQ8xESFLMpEjWaZJCn3OyNiCP+UNx2qktVSZD7GEjH4KSG7GL6EyGpD1Xx0yKZJ6qOXDMrNcSMZMhYymnRtKYDLHHjZ28sE81pTEZkvb7GDMpYiY/msYMnAwxkx9N40W8/k27P2tMhtjHFDsZYiZBDI3JEDMBIqIzCdKX8T4pdDLEfk408iZDmARBO+M0WQAAAAAAAAAAoKNRhnSQzDrEYWK5jNMShJQiefVCSCnSVIY0XJn3cMUbywWMmTfzH1KI5K1cC6lDMsuQ+qDeQ7asDEkKqUTsMsQWUoqklSFGSCGSVYaIhNUhWWWIEVKIpJUhRkghYhchtpBCJO8YjZBSJK0MMUIKkawyxPAtRIpWugYVIjmDhhQidhFia4dCJO92DCpEHG/2kNW6aWWIEVSI5HxJSCGSVYbU/z2gEMnbSDqkEGlVEVK/vpAyJK0IMUo4XZZIWCGSVYbUx2yDQsQuQpJCjq+o/AgqQ3LezgWVITkrw0PKkKwixBZSiORtMBtSiGStfhUJq0PSSoakkEIkrQgxQsqQovc3vs81WUWIEbJqPu92DCpDXH6WAQ8/dhFiCylE8p6bQ8qQzCLECBgz7xhDypC0IsQIKUPyxhMJu0/mbTweMp7LBvYhZUhWEVIfM6AMyapCRMLKkLz7cUgZUnQMIWWIXYMkhZQhyRLEFlKGZJUgRkgRkvd8aGSVIVQhaHeUIQAAAAAAAAAAoKNRhnSgdipEfOsQn3LBpRTJLUOarrz4Ii4rNnzGE/Gb+XcpRXxWrbnc3oVlSNOgxReZijLE8ClEisoQw6cQyStDDJ9CJK8MMXwKkaIyxOZSirhUF4ZLKVJUhiS5ViI+x+hSiOQVITaXQqSoCEnyqUNcHy+8ChGHQX0KkaIyRES/DhHxK0R8HnedShGf8RxX7OYVITanQsRj0aNLIVJUhDRc1rEOyStCbC6FSKuLkKbr9ylE8soQYwr3DikqQupjTuGG6nlFiM31OH2qD6fLeryNcypEPFaEuxYirlWIiFsZkleC2HzKEJcVsL5lSFEVIuJXhuQVIYZPGeL6vsanDCmqQpJcVs+73IaGUyHi8zN0vCmLapAklzLEp9J0KUMKSxCbx+OAy7H6lCFFBYeIXxniMp6IX8mRV4SEjOfz9wWXMqSoBGka06EMyStBmsZzeJ3rUzS5liE+RYpLGZJXgthcypC8EsTmW4YUVSEifmUIRQg2BpQhAAAAAAAAAACgo1GGdLCmQiTgPLetLkVC9rTIK0S8ypD6QWT/k1cZ4jCeSNg5IfMKkZDzGefd7t5lSMPA+f+sXYiEjJdXiriWIUlFlYhLGWLLK0VcyhBbXiniW4aIFNchPtWFkVeI+JQhRlEh4nuMRXWITxli5BUiPmWIUVSIhDxW5BYiAQPmFSIuRYit1YVIyG1opBYiMeMVrNz1KUOM3BWfAZFEXiHiU4bUv6agEPEpQ4y8QmSqyxARhzrEpQixtbgQca1CGsZs4d4hPkWIUXR8IfuA5H5NwNu33DIkYI+AojLEpwixpRUiPkWILa8QcVkBayt67PepGYy8QsSlCLHlFSIh72eKnmN8ihAjb/V8yG1YWIb4Dllw1/ApQoy8MiRk366iFfbeVYhI7uNByDHmlSGu5UZSURkSMmbefdGlBPEZL+T3r6gI8a1BGsbOKUN8ipD6eDmFRsgeN0VlSMgeJXlliE8RYuSVIT5FiFH09yGXEsSWV4aEPA/aZQhFCKYbyhAAAAAAAAAAANDRKEM2AvVCJGLFqVF2KRJShjSO1zjzHlSG2BKHGFSG5IwnElaGJNmVSMxK5foYKT+HMgqRdihDjLRCJKQMMbIKkZAyxEgrRELKECOtEAkpQ4ysQiSkDDHSCpGQMsTIKkRCjzGrEAkpQ4y0QiSkDDGyCpHQx4rMOiTiwSetEAkpQ4wyChGR5kpE4/G2oRDRGM9avRtShCQ1rQJViCPsQiSkCmn4eqsQCSlCbMlCpB2KEFtTIRJShNhKLkRCipCG8crYPyTxsw0pQmz2MYYUIblfr/C2rakQCVipm2QXIjFFiJEsQ2KKEMMuQ0JWwSZlPfaH1AxGWhkSUoQYWWVI6HuZrDIkpAgx0lbPx9yGmWVI6JAZd5OQIsRIK0NCagsja6V9UBFipIwZc4xpZUhIvWFklSExY6bdF0OKkLzxRMJ//7LKEO0iJKQEaRp30H6tHDemXYaElCC2ZBkSUoLY7DIkpAZJsv8+FFKC2JJlSOxzoMiGMoQiBNMVZQgAAAAAAAAAAOholCEbEc1CRKScFXrV4Vp0HdI43sSsvEohIlJfIaRSiFhjxhYihilFNFYsi2yoRKLKkKZBJ/6vncqQJFOJxJQhNlOKxJQhSaYSiSlDbCPD3VFliM2UIjFlSJKpRGLKEJspRbSO0ZQiMWVIkqlEYsoQmylFtB4j6qWI0oCmEokpQ2zapYgpRLRuQ5HJQkRzvMlVvLFliFFfFaoYSZhCJLYMMSo5e5KE6F6bcyLtNlFZp3yMynWIiIiMxZcCSWW8/tSoiRr0xCzL3qBehii+XauXIZGrdQ1ThmgUIcbKHXtVihDDlCEaq2FFNjz2x1QMNlOGxNQgSaYM0XrPYp5TYkoQm1k9r3U71ssQrR/L5N0lpgSxmTIkprRIMqvuo0oQW6WidnwiG8qQmHIjyZQhWuOJbLgvxtQgaeNp/f6ZMiSmBGkac/Llg0YNIrKh2IgtQQxThGiUIIYpQjRqEJENRUhsCZI0OqOiUoIYpgjRev6jCEGnYDJkI7TfkV8TkfhTUhnab0oLN78LUIs/80GD8W7lN80iMqr4hqoMQwv0/0AyOkt5POXJleH5+qdGqW2Sv7Gsr77ZOn90FxHZZfMX5Pl1c9TGe/nCpSIi8kT/QpXxXrFgiYiI/HnNS1TGExHZed4LIiLyx1UvVRlvfu96ERF5ePnmKuNtMmtivGeez98APkRlef4G665q3RPPAb0rdR5ozXNAz4DKcA20JkVqkw+HPf2ab1Yq0rdW7zHH/LHO3uAwVNeg/uNh96DyH8mZDInHZIgOpckQo9arO56IyNic/A3QnU2+lRydozeDXauI9G+hN1735B+BVBf2iN5CJpENf+zUeh9k/gibt5G6j7HJu0tV72Vn/Q/4PUoTX+bn0bNOZzxzf5m9VO8xbO2WE6+V5iiNObD5xHiaf4xdt3mXzF2i9OJBRAbn674Rr02Dc5t0K/3h2dB+7BIRGZ2lO2ZV++VIxunQYnSv1x2vUsKfUrsUH2NFRG0xhXmOuu3yz6mMB0y1afBUAgAAAAAAAAAAEI4yZCO235Ff06lDrHtQ9Ay5PZ7CQhc7o409JcdoX+M8osYpPpKby2mserST89g0cmR243ga2a92GTI8r/F7rI7FHePInMY7n0ZhVFuYWO4RcY6dRZs1ntZpbcbm5T522fyF+n9rFCKmDDFiCxFThhgahYgpQ0R06hBThhixhYgpQwztQkSjDjFliBFbiNirYtuxELFXJWoUIsnnKY1CxH54CS1E7JV5FYWVehVriK6huBWy9qp+e0P1ENXhDWNUh+JXyNor+yvDeqtuRZQKkWTNMKbw4st+PRi5EX0pG6gnqpWaQs2hvYG6XerUuuPXsVUGGwvV0UWBz/fWz1ejDEk+bmmUIfbq7HYsQ+yNkWPLEPv1uUYZMpaIiDTKEPuUTrFliP1z0ChDkvcVjTLEFCFGbBliihBDowxZlxhTowxZu1XjD7on4r44OnPDf6dt/O1rzHrb1BV51mH7PaLGfXDdZhse77sVThVl/20g9n2tdgkiIg2nR9Q4XW6v9fp8PPJvX91WJa1xir++VY1jjkaeitB+3T6u8PeLruEaRQg6DmUIAAAAAAAAAADoaJQhGzmzf4gRVYqk3JOiKpGMLw0pRfI2WAupOuwyRGPMkZxN3kNWQ+atVAipROwyxIgpRMouQ4zQQsQuQ4yYlTQNZUj9k/7HZ5chtpBSJFmG2EJKEbsMSQqpROwyxBZSiiTLECOmELHLECO0ELHLEKOdChG7DDFCCpG8FbHahUhIHVJ0nuqQQiTv+SmkEMl6ONEqQ4yYQsQuQ0Ti6pCs/R5iCpFkGbJhPP8bMW+vB+06RCSwEMkrIkIKkaLXfgGFiHoVkrKPSUwZknV8UWVIyv4tMWWIXYQYWmVIfbyAQiTvZVBIIVJ0vv52KETsIiQppA7Jej0eU4aMpWwrE1OGZG3yHVqGZN3uMavy0+4bIWWIXYLYQsoQuwZJCilD1uWMF1KG2CWILaQMSRYhRkwZYhch9TEDy5Cs94Qx98FkEWLElCFZfxMIeT+rXYN05/zuh5QhdgnSNGbA37rsGiQppAyxSxAjpghJe60eU4TYz09UIehElCEAAAAAAAAAAKCjUYagQVQp4nBP8ipFHC/qU4rkrcA1fKqOvELEtw7JK0MMn5WRLisVfAqRrDLE5lOKtKoMSfKpRLLKEJvPyprUMqT+j+7HVlSGiPjXIXlliOFTiOSVIYZPIVJUhhg+hUhaGWLzKUWyypAkn0okqwwxprIQySpCbD6FiMtq2KksRIrKEMOnEHF5XvIpRIoeRnwKkawqJMmnEEkrQmw+hUhWEWLzKUTSipDm8dxvxLwyxJjyQkSrDHF9jedRhrSiCLH5FCKux+dViKQUIU3jeRQiWUVIklcdUvBz9ilDXF72+JQhRUWIMZVlSF4RYviUIa6vu30KkbQixOZTiGQVIYZPGeJyW/usyne5L/iUIUVFiOFThuQVIYZPGZJXhBi+ZUhRFSLiV4akFSGGTxmSVYI0jelRhri87/O5D6aVIDafMsS1VvB5/9rKIsTwLUPyqhCfIiSvBDF8ipCsEsTmU4a4vD73KUMoQbAxogwBAAAAAAAAAAAdjTIEqexCxMgtRQLuSbmlSMh4BRPvLitwDZeyo2jvEN/xXOoQw3U1os/KhbxSxLUMSSparTYVZYjhUoi4liEi7qtrcsuQpgtnH6NLGWIrKkVcyhBbXiniUoYYLoWIaxki4l6HuJQhhksh4lKGGEWFSFEVkkarFHEpRFzLEBH3OsRnNWyrCxHXKsQoqkN8no+MvELEZ+sh1zrEZeWZ4VKIuJQhhksh4lqGiBTXIS5FSPOY2TekSxFi0yxEnMoQnz0yXAoRn7cUBXXIVBQhtqJCxOcYncoQhyKkPp5DGeJShBjOZYjHzzivEAnYKq2wEHGtQgzNOsSlVnApQgzX50KfGtulDHEpQoy8MqSoBElTVIf41Dcuq/J9fv6uZYhrFSLiVoa4FCFGXhniUoLYisoQlxLElleG5JUgNtcyxLUKEXErQ3xKCpf7oEsRYhSVISF7V+R9P9oliIhbDWK4VCFF+4M0jOdQhrgUIUbR7e1agyTllSE+r8eNvDIk6/mIIgQbE8oQAAAAAAAAAADQ0ShDkCurEBHJqUQi7lGppYhiIRKyElcku+rwKUNcxvQpQ2xZKxRDVoq0qhCZyjLEllaK+JQhtqzVNl5lSP2Lmo8tpAwxsgqRkDJEJLsO8SlDbGmliE8ZYssqRXzKECOtEPEpQmxZhUhIGSKiv4+ISHop4lOGGEWFiE8ZYrSqEPEtQ4ysQiT0+UgkvRAJWWmdVYiErEAz0goRnyLEllaI+BQhtqxCJKQM2TBm8w051WVIfcy0QsSnCLGlFSIxbyUyChG1MiSgCDGyypCYY0stRDyKkKbxUgoRnyLEllmIBPyM08qQkMcpI6sM8S1CDO19Q0TS6wWfIsQoei70KUKMtDLEpwSxZZUhIVWISHYZ4lOENI2Zsjo/5OeeVYb4lCC2tDLEpwSxZZUhIVWISHYZElKEGGlliE8RYmSVIT4lSNOYKWWITwliyypDfGqQpKwypJ2LEJ8SxJZWhviUIE3jZfzdyqcGScq63bWKkJjX4VlFSN5zEUUINkaUIQAAAAAAAAAAoKNRhsBJXiFi1EuRyHtUUx2icA+1S5GYFbkizVVHTCGSHDOmDDHsFYshK0aS7EokpAyxmRVt7VSGGMlCJKYMMezVN0FlSMMAE8cXU4bYTCkSWoYYdiESU4YYyUIkpgwxTCESUoSkMZVITBli2IVIaBlilFWIhBQhWUwpElKEJGnXISLNhUhoGWKYQiT2+Sepb+141Eprwy5EYlakiTTXITFliGEKkZgqJMkUIjFFyIaxNtyAIUWITbsQqdchMUWIzRQisW8jrDKkHfYKsZlCROvY6nVIRBFSH8sqQ2KqEJGUMkThbeLonB6VxynDFCKhRYjRijIkpApJMs+NISVIlt61tagixLDLkNAixLDLkJgipD7m5Op8rZ+1KURiihAjWYbEFCGGXYaEFiGGKUNiShCbKUNCapAkuwyJKULqYybKkJgixDD3vdASxGbKkNj39SLN35/2/iAxRYgx3hNXgtTHsYqQ0BLEsG//kBLEZpchsa/BTRni8vxDEYKNGZMh8OIyKWJo/cFC/Y2xiIx3674B0hrPTLJoTIoYLhuQeY2n+LeU8Z6K6oSIxmRI0tjMEu57m0VOhhglTIpsMUdvLBGRzWb0q4xjJkQ0JkOMMeUw8pl1C1THExF5Yd1clXHUJ0VWKT+oiEjfcoV3nlLOpEjRRui+8jadDdHbH/9GzCjaoNNXdUT/MbQ6ovP9ak6GGBqTPg3jaU+KjOh9rzKqOJaIVJTH05gEMdQnQ2Yq/CXapnz7jW46W22skbm6zxmDmyq+EJVyNlKPnQQxtN5LJWkdm3ku03pfoP34KaLzR+2kvA2JfZnJEI2JEBHdCTMREVEcTmsSpE7/10KqcfPITTQWDxrdgzWVSRCjonxGTo3JD8P83UJjIkRE/3Wo5vdqjCstkqpknNY9DZMgAKfJAgAAAAAAAAAAHY4yBN5c65Dx7krmRuZBJifNfWa984xNntpKYzxzijCt0wBonkbF0CpEzEqXvE3WvcabM3nbKa62Gpk7cWyxP4+RBRN34OqQ3s9jfNHk0iOlJXCbbjpRX1QUxtt5k2XSP6K3YnX/TR8VEZE/DzRvOB7iwAUPiYjIvf3bRI+115zHRUTkf/t3iB5LRGSHGctEROTmFTupjCcismnfgPx5ZfrG7z56uhpXDD/+7KKo8SrVyd+vFc2bqgeb/P3vez7ugcB+HOlViJ3MY2ffSqXnnsnHd+3iRKMQqU7eVbRW0pmVqt3rFF4MJF6uxp5CQESka3Dim9WsJcZ7u1I3fPdVs07rUF0fuWR18rarjGq+KJsUWyRUGr/XyojSklXFMkS69F6gNGygrnGarMn7SmVI53YbnzPxGmC8T+F0b4n72/Am8a8tzO/9usU6L2jNCt91m8f/HLrXNX48krEPvStTXYwpnCrKMGWTfVpEX3YJolE7jvVVVMvE0VnK71XMex+FYzTHpvUawLyPytpUPMToLJHu+LO/yujk6au0vlfz+6D1cxURqVV0ai7zc9U8JaA5Jq3qx5z+dWRW/HhznhuTwQV666r71kw8X2gVML1rJ8bTON1e/bFJ6243eUiaNVdlvOZ8fFQhwATKEAAAAAAAAAAA0NEoQxAtrxSx99KIKkUyJs9Dy46xjE3PY0qR5GrOmJUh7VyGGPa5UENX6ZgVTbaYUsSUIfWxAm9OU4bYYkqRehmSFFF1mDKkPlTEWDtvsqzpczGliClDbKGliClDjJhCxJQhSTGViClDDI1CZNO+DRtgxBQidhlihBYipgwxogqRlN/zmDok63EjphBJPnbG1CFZj+vtVIhUrbtKaCGStdotqhBRKkNMEWKLKUTGe5vveDGFiGoZkvIyX70QialDyipDjJhCRLEIMbTKEPs+YoQWIqYIqX8cUYak3b9iypCs3/eYQiR53veYMsQuQoyYMiSttIgpROy9bkLLkKy9QWLKkOQqcI0yZHSWznsTkfQ9H2LKEPvYQp/7s943xZQhafs3xpQho9aG5jGvc9Lu+zE/11ol4/YLLEPsn2vM+/+sYwgtCEwJYmgVIUZMGWJKEFtMGWJqEJG4IiTzsSj0bpdxKDFlSNMeZjnHRgkCpKMMAQAAAAAAAAAAHY0yBGrSChG7DLEFlSI5Q/pUHVllSMhYRtZKPZGwlSKahUjZZUiSz4qdrBVORkghYpchDeMF3KRZhYjhU4qkliFGQNVhlyENw3mOl1aGGCGFSFYZIhJWh9hliM2nFEkrQ4yQQsQuQ2w+pUiyCLGFFCJZZYhIWB1ilyE2r1Ik5/c7pBAperzwKUTyHjNDCpGix3OtQiSkDLGLkIZ/C6hDila7eRUiOS9TQwqRrDLECClEtMqQvNcQIoGFSM7tp1aIhJQhGatz6/88lXuHlF2E2DwKkaL7SEgZYlchDf8WUIholSFFv98hZUiyCGkaz6MQySpCjJAyJK+w8ClDmlYM29cT8KuVVYWIhJUheau/fQoRe1W+LaQgyH1/o3hsIc/5ee+ZQsqQtCLE8C1D7BokKeR7zbvP+/xcs0qQ+lgBRUjezzbkfWbRMfgUBHYNkhRShiRLEJtvGZJVg4iEFSHJEsQWUoYUPvb43FVyrj6kCCl6XE87NooQIB9lCAAAAAAAAAAA6GiUIVAXUogYTqWIx2S6S91RVIi4jiNSvGKv4bIOF9XeO0SzDslbOWVoFiKGSymSV4Y0jedwtUVliIh7HZJbhtgcyo68MqQ+jEchkleHJLmUInlliOFTiBSVIYZLIZJXhhg+hUhRGSLiXofklSE2l1IkrwwxXAuRoiokyakQcfh99ilEXEsyl0LE5fHSpxBxeTzX3D/EpxDJK0Pql3EsRHxWvDkVIg4vU10KkaIixOZSiKQVIU3X61GIuLyGcK5DHG63Kds7pGClrsgU7R3S6iLEcChDfF5futYheUVI/TIeZYjL/cm1EHH5nfYpQ/KKkPp4DmVIURFi+JQhLmWFSxlSuHI4eZ2Ov155RUh9LJfj91j17VqGFJUXIp7vQ1ze1zgcm8txifg937u8R3IpQ/JKkCSfKiSvCDFcvlef+sn151pUhYi4lSGuP9OJ6yy+jGuNolWEGC5lSF4JkuRTheQVIYbLY0ReCWJzLUOcHm9cflwef7Jx+bk6P55ThADBKEMAAAAAAAAAAEBHowxBaZKFiGsZklRYiQREE2mFh0sZ4jJOks8KvvrXpHxJO5chhstKKiNvJY9rGZJUtApcqxBxKUNsRaWIViHiUoY0DZcznmsZYuQVIi5liC2vFHEtQ0SK6xCXMsSWV4q4lCFGUSHiU4YYeYWISxliFBUiPmWIkVuIeCzEzitEQvYWKqpDfB4v8wqRkMfxVhUiLkVI09cUFCJqZUjAy9O81eS+ZYhIdh3iUoQ0XX9OIRLymiGzEAm43VpWiDis0m36klYVIspViFMRYsspRDTLEJcipOlrcgoRn/tPURkSsg9QXiHiUoTUxykoQ1yrkKS8QsRnr428VfM+RUj9ugt+rVyKkPpYeXudBOwDULRS22eVfu77Do/3L/XxFI8t73k+5D1RXhniWoQYeWWISwliy/teNYsQlxKkacycSkOzCAnZmyTv9ZRLCWIUFSGuNUhSXhniUoLY0h4rfEoQo6gI8dmTqC7tSwL+RFP0+jjksTx5bBQhgB/KEAAAAAAAAAAA0NEoQ9ASphIJKUSMplIkIprQKkSyxgtZ5SmSvapEqxCZ6jLEllzhE7IKyshaFe5ThjSMZx1KSBliZBUiXmVIklV1hJQh9aFSChHfMiTJrkRCyhAjrRDxKUNsdikSUoYYaYWITxlis0uRkDLESCtEfMoQm12KhJQhIjl1SMBi7LRCJKQMMexCJOZxMq0QiXn8LrsQCSlD6l9rFSI+RYgttRCJeHlqry4PqUJEdMuQ+rEkCpHQ1woiumWIoVaIKJYh9S/VKkRKLkOCihAjpQyJuY/YhUhIEVL/2pQyJOb+YhciIUWIkVaG+BQhTeNZhUhIEWKklSE+RYiRtXo+aCWxNJchPiVI01gp309IEWLYK7d9Vufb0kqCqPctiseW9vwe817ILkN8a5CktDIkpAgx7O/VpwZJyipDQoqQ+pjDOj/TrPfwIUWIkXxd5VOC2LLKkJAixEiWISEliJH1WBFShYg0lyFBJYihVIQY9uvk0MdvEakfGzUIEI7JELSUxqSIUZ8ciRzKnsiImRRJjhnzBtYwL6za+XRZMW8qkswL3Jg3Aob5w2joZEh9HMVJEcNMjgRPhhiTExkxkyFNQ1ZqUZMhhpkUiZkMSTITIzGTIYaZFImZDBFpnhCJmQwxzKRIzGSIyIYJkZhJEJuZFAmdDDHqkyKKZ6Tpe74rajLEMJMiGo+PyUkRjcfvsiZFYiZD6mNMTorETIaIJCZEFF+Wmj+whk6GGGZSJGYSxNY1NKbyOqE+KaJwu5V2uqyIP1QZpZ0uqx0mQWyTkyKx9w8zGRIzCWIkJ0M07idmMiRmEsRITobETILUx5ucDImZBDFG5oRNfmQxf0SO+iOabJgMiZkEaRpz8vuMmQgR2fDHy5iJBsP+43nse5YuxWMzz+sa73tENkyGxEyCGN3r4yY/bOZ7DZ0EMczPM2byoz6W0iSIYd4zxkx+GOb1VMwESJKZDImZ/DDMJEjMBEiSebwInfxIGp1RiZv8MOwhIu9u5ucZ+7gtIkyCAIo4TRYAAAAAAAAAAOholCGYEn/7zq+rjpezH7Q3jWpFRGR8crGhxspbYzRytZXRbqfLStI8tuH5k/+hdAcZ3kRx1exc3VWumy5aqzLOLgtfUBlHROTQTR8QEZFnRzZRGW9xz2qVcUREukR3BfSy0XlqY/1hYAuVcR5bs5nKOElPLN1UZZza6pxN1QP0LtdbsZ+3caiXyYcdjdXFhlYhMmO1cgGgqHtA70nTlJ/d63XGLNog1UdVucKortNZfq5ah4zpfo/qdYiCWtfkurJuvcegWo9SraI0TsOYXTrr6EbnKj4HTD4sDs/XyRyG5+itFRzTfaqTceXxNGms1hcR1aWamuWLiEitDZeRmjMlqL63U3pfbZ+OLXo8xcqqpnTfmPX8xA9gcKHeCwSt16F9JbzW0/od0ChojOrwxPc53tt+v6Aa5XrSbZdRhABa2u8RAwAAAAAAAAAAQBFlCNqCVimiEQBolSH18RQLEa0yxF6ppnG7mQ3LYldA2Oe6rUZurSEyWYgofJPD9p4hkT+O6sKJJU7jI/Hz0ttt1bhnxZrBuJP97rX4qYlxRuJPGmwKESO0FHnD7D83fPzH4fiCYq8ZE9/nvYNbRY2jUYbs1Le04ePLV+wZNd4us54XEZGrl748ahwRkcUzN5RHdzy+bfR4s2ZPnNx64Nm50WPVejb8XvY9F780crx34rGid3XkL7hiGWI/fHUPxD2emRWks5bHrxq090SJXe1n9iAxK/1iJPcE06hDxmZMPMFVh+LHSv5MKxoFxeS5qKuDcU+aGmVIrXdiyW1lffwy3lrPhuW71XWD8eNN7u1RGYp/cdFQSWiUIZP3g9qMyMcx60dY61M4NrOPSew+fdbDw8g8hdRBqQwx53Mfmhd/e3Un9qoYmhv/2r1v7cR46zdV2Gco8WupWZpElyElLNGMLUO61+nt61GxnjZC3y9VrN9vjSLElAix+4Q0vWdTeNuqVYNo7xEiMlGFaBQhM63XYiOz434ZNIsQ85rMiNkTqHfthl8CjT1atYqQrqHG20vj2OoFTeTdgxIEKA9lCAAAAAAAAAAA6GiUIWgr7bCXSFlliC2kFNEqQ4yscxmH3G6mDEmKqUQ0C5H63iFJEaWIViFiyhBbTCmSLERi6hBThthiSpFkIRKzj4hdiBgxpYgpRETiKpGYQsQuQ0TC6hBThNhiCpFkGWKEFCKmCLHFFCJaZYgpQmzBhYhdc0QUIlkPV6GFiL2SNKYQscsQkbg6xF6FGFOIJMsQI6YQMWWIEVOIpP1MowqRcet2CyxEYsoQU4TUx4ooQ5JFiBFThpgixIgpQ1L3zYgpQ6yfe1QZkvLjiypDqo3fa2gZkvUYFlWGWGOGliGV8fSDiylEtMoQU4TYQgqRtBX2ZexBElSIKC/PjClCTA0iEleE2CWIEfPeKFmFxBQhWXtSxJQhDe/TIt6uau4LIqJbhJj9QZJiyhDNIkSrBrFfgxlaRciG8fy/16zXgzFliF2FiIQdW+ZeKoE3G0UIUD7KEAAAAAAAAAAA0NEoQ9B2tOsQEb8IoFVliOFTiLSqDDF8bre0MsTmsxrKLkOSfCuR1DLE5vHNNpUhDeM4D1OXVYgYPqWIvXdIUkgpklWI1Mf0KEXsvUOSQkqRrEJExL8SSZYhtpBSxKcQSStCDM0yxPApRNKKEEOzDDF8CpFkEWILKUSyyhDDqxDJGSqkEMl7ePKtQ1xWk/qUImlliOFTiGStRmy6nEcpklaGGD6FiF2EZPEpRfJ+pl6FSMaq9iSfSsS3DLFrkNQxPQqRtCLE8ClD7BIki08hklqEGD5liOPP16sQyRnSqwypFr/e8K1D8u7rQWVIzng+dUhWEWKElCHJIqRpPI9CJKsIMbTKEGPK9w5RWp4ZUoQkSxCbbxmSVYOIhBUh9v4gST5lSFYJYoQUIbnvxTxuNu0SRCT/tYdPGZJWgth8yxC7BknyKUM09wURKX4N5lOGpJUgzeO5f69Fr/t8ypC0EsTmc2yZRYgR8HBIFQK0BmUIAAAAAAAAAADoaJQhaHuapYjL4v9WlyFJrpWIViFSVIYkuYYTWoVIXhlicylFnOoQEadvNLcMaRqv+CJFZUiSayWSV4gYLqVIURnSMJ5jJZJXiBgupUheGWJzKUXy6pAkl1LEpQzJK0JsroVIURWS5FKI5JUhhkshUlSEJLnWIXlliOFSiBQVIUnOdYjDkC6FiE+d51qI+KwmdSlE8soQw6UQcS1DRNzrkLwyxHApRFzLEBH3OsTlZ+tUiDiUIYZLIeJahrgUIfUxHcqQvCLEcC1DXKsQEbcyJLcIMVzLEI/qx6kMcRjOqQxxKELq4zk+DPo8fjkVIg7juZYhRVVIkkshkleE1MdxLEOKqpAkl0LEZeW99t4hznXIFOwVkleCJLlUIXkliM3lvU9eCWK4PocX1SBJLmWIU5Xv+mMveV+QPC5liEsRIuJWheSVIDaXMkSzCPF53eVShmgWIT4VsEsZ4lKEGC7HWFiEGA6/E5QgwNSgDAEAAAAAAAAAAB2NMgTThvZeIlkr1qayDDGKCpGpKEOMopV+LmVIUtFKKZ9CxEhbveRchiQVfLNehUh9zOZP+ZQhRlEh4lKG2PJKEZ9CpD5eRiniUoYkFVUiPoWIkVeKuBYiSVm1SF4h4lOGGFmFiE8RYuSVIS5FiC2vEPEpQ4ysQsSlCLHlFSI+ZYiRWYgEvKLKK0R8VlbXxysoRHzKEJHsOsSlCLHlrd70WaFY/5qClYMuZYgtrRTxKUOMokIk5GebWop4rHA38gqRojLEpwipj5lShriUILaiMsSnCDHSyhCnEsRWVIb47ANjjiOvDAl4+ZFZiHhUISLFZUjIfTu3DAkYL6sQ8SlCjLwyxKUIaRovoxDxKUKMvDIkZPV9ywqRFhUhrhVIUl4R4lOCGEXvc1xqkKSs53CfEsTIK0J892cUkcJV8FpFiE8JYhQVIa41SFJaGeJTghhFRUir9wdJk1aGuJQgzePkf68+RYiRV4b4FCFG1jE61yBJOXc7ihBgajEZgmlLa3Kk7EmRkMkQmz050uqN1PPYt5/vZIjNftMQMhliqE2KGNY3GzQZ0jBe44chkyJG2uRIyISIYU+MhEyGNI2ZmBzxnRBJypocCZkUMZKTIyGTITZ7ciQ5KRIyCWKzJ0VCJkNEmidEQiZBbPakSMhEiIjuZIiRnBQJmQSxNU2KRAyZNikS8kfF+njWpIjvJIjNnhQJmQwx0v6QEfLmvP611pvnkEkQW3JSJGQyxMiaFAn92TZNiAT8cdeWnByxJ0NCJj9s9mRIyESISPZkSMgkiJGcDAmaBLHZkyIBkyBG6mRIxMuOpskQz0mQpvGsh4CYx6vUyZCI8ezJkJBJEFtyUiRkEqQ+juJkiEjzhIjGH5y1JkWaJkNKngQJmfywJSdDQiY/jKxJEN/Jj6Tk83jI5IfNngwJmgAx0hZ7KZ4OK2QCJMmeDAmZ/DC0JkEMezKkHSY/jKzTY4VMhEyM1/i9hkx+2JKTISGTH4bqJIiRuPmY/ADaC6fJAgAAAAAAAAAAHY0yBNNeWafPaqcyxDCFSDuVIbZKLb4OEdmwoiqmDEkyq52iyhDb5J1FqxCJKUNs4yPVqDLEZkoRjUJERGT/eQ+rjCOyoRSJKUOSTCWiUYgY9w5uJQu6HHbMdmTKkNAixGYKEY0yxDCFSGgZYphCJKYIsfU916NShhj1QkRpyJ4BnXFENhQisWWIYQqRmDLE1jOg87M1Kww1yhCRDXVITBliM6VIzCp6kUQhorDi3agOjtTLEI0ixDBlSGgRYpgyJKYEsZkyRKUKEdlQhkQUIUm1Xr3vtV6GRBYh9fEmHwJi78tJI3N1XpCaMkSjCDGG5nVFFSFN400WIqFFiGHKEM1V+KWdLktxGeZ4t04JYpgiJKYGSTLvY2JKEFt1VGccU4RElSC2iv7G6CJ6RUhMCWIzZUhMDZJkyhCtIiSmBLGZMiS0BGkeb+J71ShCDK3nIHNsUSWIrUIRArQryhAAAAAAAAAAANDRKEPQUTQrkVrX1G+knjmW8ibvhlYhknV+0Rgj6dsH+I8zZ+IhrzKud4zDC8fUVoSLiFQ31V1atc3iF9XG2n+zx0RE5Pnh7I3Bfbxr4Z0iIrJ0VC/ZeVlv/J4cSbOUluL9ZWShyjgiIlt0rxYRkev7d1MZb2F3v4iI/NeLu6uMJyLS1zVxu9393F+pjNe/bLbKOCIilaGqdPcrrgeZfDjpXalUFE4+FvetVBlORESqkasrDbMCrzdyNXPDmGM16R7UG888R/as1fnd1Vz5bqqV6ohSOVCdXBU+pPO9VoeVlkWLSGVkYqzMTZQ91XomXkhVBxWfI0eVvl/lIkRERHq61W47Ef0yRNPY5LGN9+q8WDZFSNZG6iG6B8ZkaKFeqaPFFDrDORt/+zIve7Tq7K4hM57iMSo9p43OVH7Pojhc12SJpPWetDI6MZ7m+zTVukTiS5CknoGacpkz+fNQegjVKn0axlSqQroUy4268Zrq31c0X5uJiIzO1HtuvO1yahCg3bXfq2EAAAAAAAAAAABFlCHoSBqFiHYZYospRcoqQ4zYQmTMXmWlsLhkbGZiOIWFfqYQMWJKkeGFiZWlGo+o8xqXClUj90rY7iXLGz4er8Xff0whIqJTiZhCxIgpRf5u1jP1/35mNP7Osp11+z8fufJXoxAxZYgRW4iYMsSIKURMEWLEliE9XY0rt1cujb+/VYY2rAVRKUSsX6nYQsQ+X3tMIWLvFWL2EAllr8TTKESSe3xoFCL2c2RsITLe23gf6RoKfwxIfq8adYgpQ+pjRhYiGmWIKUIMjbrBVCEikWWIXUUMRy5r7rZezGmUIYm9VVRuuz7rGCPLkPHuxq+vjoZ/z2PWscWWIfYeIRplSPfAhvuzRhliP36Y89SHsl/SxRQi9kr12DKky9oyTKMMiS1C7FX9GpVE8nkrpjTpsvak0XgvamoQEZ3vtW9V4zGOzI4bs7e/cTyNsxT0JF7nxJQh1VHr56HwcrFv5YZfspG5Co9P6xu/wdi/EZRVhBgx9+mm1zsK+8MlH381fr4UIcD0QRkCAAAAAAAAAAA6GmUINgohpUjZZYgRWoiUXYcYISt0msoQW8Cik2QZ0jRcwMIauwxJCqlEGlhwZxsAAJVRSURBVOqQpJhH2HnNK3xjKhG7EDFCSpFkGWILKUXsMiQppBJJ1iFpQooRuxARiatEQgoRuwix+RYidhFiaJYhInF1iF2GGDGFSLIMMYIKkZxfnZA6xC5CbCGFiF2GJIVUIlnnaI4pRCopq/tiCpG058eQOsQuQmwhhUja92qElCL2SsmmMT1LkZAyxC5BbCF1Q7IEsQWVIUU1REghYlchInFlSE/z81JMGdJUhBgBZYhdgzQMF1CG2EVI0/UFFCJ2FZIUUogkixAjpgzJeryIKUPSXr5pliGGbyFiFyHN4/kfY0wRkrbiO6SSKHpeCqlC7BokKeS9aGU0e7yQ79kuQYyYIsSuQUTiipCejNcyIVWIXYMkhZQDyRLEFlKG2CWILeTvA+o1SMZjcejfVrJe58SUIWmPuyE/X0oQYPqiDAEAAAAAAAAAAB2NMgQbFZ9CpFVlSJJPJdKqMsTms3KnsBAR8a5EtAqRvDLE8ClEMssQm88jbkoZYvMpRbLKkCTfSiSvEDF8SpG8QsTwKUWKChHDpxRJK0RsPsWITyGiWYZkVSFJPoVIWhFi8ylEsooQm08hklaE2LwKEYdfF59CpKgMMXwKkbwyxPApRLLKkCTfSiSvlvApRFyeF30KkaIyxPApRPK+V8OnECkqQ0T86hDfMqSoChHxqxvyihDDqwxxrSB8ypC0IsTmU4ikFCGGbxmSWYMkeZQheUVIfTiPMqSoCKlfr0cZkleEGD5lSFoRYvMpRFwfH3wKEZeXaj6FSFYRkuRTh2iWIT5FiMvKbp86wvX5x6cIyStBDJ/3oHkliOFbhGTVIEk+ZUhaCWLzeX+ZVYLYfMqQvCLE8CkHNIuQohpExO/vAq0qQWw+92un1zYeZYjL46vPz5ciBJj+KEMAAAAAAAAAAEBHowzBRquoEpmKMsSWV4pMVRliuKzgcSpDDMdFKnllSNOQDgtvXAoRw6UUcS5ERNwrEYdCxHApRVwKEcOlFHGpQ5JcShGXQsTIK0Vcy5CkokrEpQyx5ZUiLmVIURGS5FqHuJQhhksh4lKGGC6FiGsZIuJeh7iUIYZTIeLxEOdSiLiWIUZeIeJShNjyChGXIsRWVIi4VBK2vJW6Ic+LeaWIaxmSVLQKPOR7zitFXFZP1sdxKERcyxCXIsTIqxtcShBbYRkSsCdGbhniUoLY8sqQnBIkS1Eh4lSE2HJuJ5cipGm4nELEtQipX79DGeJShBguZYhLEWK4liE+1ZjTymWPhziXMsSlCDFcy5CiKqRxTIdjzClDQs7xX1RJhOxXlVeGuJQghst7T5cSJMmlCnEpQQyXIsSlBDFcixDXGkTErQhxKUEMl/tZXglicy1DXIoQw+X1z1QVIUbe/dvntYyRV4aE7MVU9HOmBgE6C5Mh2OhlTYq0w2SIkTYpMtWTIba0F7NekyG2jNdrPpMhDcNlvO70mQyxpU2OeE2G2LIOxWMyJClrYsRnMsSWNjniOxmSlDUx4jMZYkubHAmZFDHSJkdCJkSMrImRtEkRn0kQW9akiM8kiC1tUsRnEsSWNiniMwliy5oU8ZkEsaVOikQ8tGVNivhOhBhZEyIhkyFG2qRIyGSIkTUpEjIxIJL9x6qY58W0SZGQyRAj64+god+zSPqkSMgfEOrjpUyOZE2G+Ex+2NL+kB8yCWJkToaETIIYaZMhIZMgRtZkSMBEiEj2ZEjQJIiRcnuFTILUh8uYDPGdCKkfS8aEiM8kiC1tUsRnEsSWNSniMwliS93YN+I5J21SxGcSxJY1KeIzCdI8ZsoxZkyChEyAGGkTAyGTH0baJIjP5Ict672n7wRIUtr37DP5YcuaDPGZAEnKmgzxmfywpU2G+Ex+2LLucz4TIElZkyE+kx+2tNc/6pMfIt4TIElp9++o1zApr6dCJkE2HEv655kEAToTp8kCAAAAAAAAAAAdjTIEsJhSpJ3KEFuyFGm3QkSkeZVPVCFiJBa3hNYhDcNZi3JiChGR5kokqhAx7EMKLEQMuxSJKUSMZCkSU4gYdikSU4iINFciMYWIkSxFYgoRwy5FkoVITBli2IVITBki0lyHxJQhRrIQiSlDDLsQiSlDjIZCROEhzS5EQssQwy5EYsoQI1mIxJQhhl2IxFQSIs0rejWeD5OFSEwZYtgrxGO/Z7sOiVlVWR8zUYjYZUhMEWLYVUNMFSKSUobEFCFGsgyJKUIMuwwJLEKMptswpggxErdbTBFSH84qQ0KLEMMuQ2KKECNZhsQUIYZdhsQUIUZyZXNMEWLYZUhMFSLSXIbEFCEbxtxwjHYRElOCGMk6IqYEMewiJKYGEWl+zxlTghjJ7zmmBDHsIiS0BDHs94oxJYhhFyExNYhI830vtARJSlYhMSWIYb/umepTYaVJ3r81XrMYpgyJqUGSzM+bEgTYOFCGAAAAAAAAAACAjkYZAmSYDoWIiMiow8Z4U214vu4xjvWpDiciIkMLdB8KRxaUcJ7WufErkpJ2+KsXVMfbb9H/qY4nInLAnIdUxzOliEYhktRT0V9b8OSo7u/NvYNbq45386pdVMcTEXnghS1Ux1v15ALV8boH9H/O3QO6P+eeuPAnZTz9l4mmEImtJGyxK55tGqu8bd3rFKrBBO3bsGfFOtXxRETGe+OqCFt1WPkHLSIyrvyz1qhVEkwZolKEWLR/Ptqvm2sK1YpNu6oena37cxmdof89j85Q/rko3xVdN9L2oVE0JpkiJLYEaVLCX2O61+uOp31bVkf0v+mujH1mQvWu1n+u0X480yjmGmiPJyLjPcrPh8qP3xQhwMaJMgQAAAAAAAAAAHQ0yhDAwWvf8w21scz5f7VW2JRRhpjVXhWlBawjs63xI1d0lFGGjCb2IRnr03tYHJ07MVatS2nM+ZPnNR/X+7m/9CUTmw3M6hkpuKSbvRY+KSIifUrLtP9u7h8aPh6pxa9ifd2MxmNbOR63hG5RV+OdfHXkeIZ2HSISX4jMqjaeIPw3K14RNZ5Nsw7p65n4OT//2CKV8WqzJx4Ue15Q2JBj0ljvxGND30rdcx73rlEZTqrW9gwaKy/t8+DPWBm3Kn90ZuNt17tWZ5V//dzbmq+UJ793jf0KRDacf9veSySUZhkyOn+GiIhU1yutrp1cUVtdN1xwQXemimjahyRQzaosKqNxPxd7FbHGqmK7Jhqbqfd4JtLmZcjkoY0rHaP5XscUS47qSE2G5+plF/a+CcNz4o6126oiRmbF35ZaVYi9j4W9z4Uvu4wcnqewL9VA48cjs9Iv50u7BDH7MWju8WD2axlXuntrlyAiIt2DGx6zqxp1qHX7xd6e3f2N79XGZimVfSUUIeZ713q8NY+zsXvBJN36a2oQYGNFGQIAAAAAAAAAADoaZQgQIKYUsVfEGqGlSJllSJJGJTLdCpEN1xP+MGnKEFtwKTI/o96IKEVMGZKkUYmYQsQWWozYhYgRU4rYhYhIXCViFyJGaClSRhlihBYidhlitFMhYooQW0whYqqQJI1CxJQhIjp1SC1jiNBSxC5DjJgVmWnPgzF1iF2GGDGFSL0KSdJ4xZzyvcdUIlmrTENLkZgyxJQgTccSU4akVAEaZUjaPhkxdYhdhBgxZUhaERFTSWTtL7NRlCEphxSzWjnre4wpRNL2UIgpRLJWT4eWIXYRYkxlGWKXIEZMEZK2T1ZMEWKXIEZoEaJdgCRVUx4jYkoGU4LYQsuQsksQI6oIybi92rII0a5BMr7H0MfarMfTmDKEEgSAQRkCAAAAAAAAAAA6GmUIECGkEMkqQ5J8KpEyyhAjrRAxQkoRuwxpuK6ASqRVZUjz9fo/bGYVIiKBlUhWIWIElCJphYjNpxjJKkOSfCqRrDLEFlKKpBUiRkgpklWIiIRVIu2yd0hWFZLUDoVIVhlihBQiaWWIEVKIJIuQLD6lSFYRYvMtRLLKECNkpWbe82BIIZJVhiT5ViKpZYgt5BV0zvceUogUrTb1LURCypCsIqR+DCFlSE4NEFKGpJUgTeN6liFZNUhSSBmSV0KEVBJZRYihXYYYbVGI5BxCyGrlou8ppAxJK0JsPoWIy6rpkDokqwwxQgqRkCIkqwYRCStC0koQI6QIySpBbD5lSFn7geQJKRmyShAjpAjRrkHSShCbVxnieDsF3Z792e+5gsqQFpUgTVfr8Vjr8hgaUoZQhACwMRkCKHKZHHGZDDGmelIkbzLE5jI5kjcZ0nTdDpMjZUyGiLhNiDQeR/EPKm8yxOY0OVI0GZLkMTHiMiGS5DI54jIpYrhMjrhOioi4T4zkTYakcZ0gyZsUsblMkmhPivhOiLhMhhhTMSlSNAmS5DohkjcJYvOZFHGZDDFcJkVcJ0NE3CdEiiZCknz+YOHzPOgyOeIyGWK4Too4TYYYLt96wK+uy+SIzx9YXCZGXCdDiiZAGq7XZTIk4A/dLpMiLpMg9fEcJ0NcJkEMl8kQnz/y+1y2aBIkqYwJkSmdDPG4atc/1Pl8P05/0HOYBDFcJkN8/kDoOxlSNBGS5DIp4jIJkjfp0XSdjpMgeRMfaVwnQ1wnQETcJkGmYvIjyed5pWgCJMllMmQqJj+SnCZCAiY2XG7TvMkPm9NkSImborvQngSpH4LDYx2THwCKcJosAAAAAAAAAADQ0ShDgJJkVSI+K2JteaXIVJchSUWViE8hUj+WnFJEuxDxLUOSiioRn0LEyC1FfAoRW0ox4luGJBVVIj6FiJFXivgUIra0YsS3DkkqKkV8ChEjrxRpdSHiU4TYWlmI+JQhRlEh4lOGJGVVIj5FiC2vEPEpQ4yiQsSnDEnKWtkZ8/yXV4j4lCFGUSHiVYYkZf14I773vEIk5NQbeYVIURniU4TUry+vDInYHDurDPGpQRrGKyhDfIoQI68MidkYPOtrfWqQpOlQhtTHzbrdAq+uaPVyyPeRt8rZpwixpRUiMZsJFxUiPkWIkVeG5BUhPiVI/boKihDfEiQprQrxKUBseUVIGZui+9YgSWnPKz4FiC2vCGnVpuiuUsuQiM3P856jfUoQo7AImaJTYaXJe2wNOaWgkfWYRw0CwAdlCAAA7eC8o0WeeWkpQ/cs2UIWff/YUsYGAAAAAACYDihDgBaxS5GYFbIizZVIO5UhNrsUCSlDkuxKpF32DkljlyIhZUhSUyUSU4bYEqVITCFi2KVISBmSxq5FYgoRI1mKxBQihl2KFJYh5x0t1X/7V6lt85TUfnGUyFbPpV7MrkVcCpGeJVvIju/5mfQ9tY0888UvyvJjv595WbsQiSlCkrTrEJHGQiSkCLHZhUhoEWKzC5GYMsRIFiIhRUgWuxQJLUMMe8Vn7POeSGMhElKEZLFLkeAyxLB/zEpP0XYlElKG2JKliF2GhJQgTePbZUhEEdEwrlWGhBYh9fGsMiSkBMmSLERiipCsMUKLEKOsTdRFWrB3iNLw9ipmjeNOrn6OKUIMuwyJqUIaxrUKkZAiJMmuQ+wiJKQCSb0eqwyJKUGMZBESU4IYdhFSRgUiEleCGMnnk5gSxGaXIVO9L0iahiJE4XnVsJ+jQ2qQpKYypIx9QURUbgP7MTWmBhFpfryjBAEQgzIEAICp9pb/kto2T0nlya2l8o6L1QqR5ETI0NZPyuo3XasyLgAAAAAAwHRDGQK0mClENFbIJo31lnRuZqU6JGk0fqFpA1OKtNPeIVlMKRJbiBj1UkSzEBGRl26+SnU8kQ2liFYhYvz9/PtVxzOViEYhktRVKVh/8MxLpfKOi6Xy5NaFhYhhSpG0QsSeCHnsknfJyJbPOh2rKUS0yhCjrEJEowwxTCGiVYYY1VV6q8yNvpVV1TLEmLFcdzyzClT7ea97UHc8kQ2FSHQZUjJTiGiUIUldg7qPeyKJMkSpCKnL2Y8jhClDNIuQspg6IrYIsU2rvUN6dO9PZhWz5vGOzaiqFCE2zSpOZEMZEluE2AYXTNyWWiVIA+UhTRGiUYMkaT/vGRoliK0rsga1mSKkHUsQm/bvqXluji1BbGMzSnhjLqJawxgjs3WP1ZQhFCEANFCGAADQDrZ6Tmq/OEqlEImZCAEAAAAAAOhElCHAFNvnvd8ovpADe3XweLfOCo/K5EOE1nhJ6oXI5KqWMeWiY9Sc71fx0XJkbk3G+/QffsfnTKzArfTqrJoqoxAREXn1oqdFRGROl155sM+cx0REZNOufrUxRUT+pm9iBXa36KxwKqMQMX4/PKg6EfLQ8OKgryuiWYjM7hqWe5ZvpTZe1dqQ6dlnF+oMPDlsdbXeqvPqcOL83uv1HqMrkwv5+1bpjDdmPdb3rFUq4yZ/lXrW5V/OR3Kl/YxVenXQWN/EwXYN6Tw226tYK0p7B2iWIWMzGu/rPWuVlh2PT96GiouDk5VBdUi/jtGivVdIfdyeiee3cc16J7HSWHV1fGWy4NB6nWudc39UeeW1ZmlSse7zI7N1fl5mpb29J0mo8RLiqhkvTjweDy7UOUZTwYzM0l0b2rNu8rZU+tmIbNi/Y1w53NIuQczzUhnFas/AuOrZCsootkSkvodH16Di64eSahDz2GTvQxpKuwQxfvfLE0sZF8DGjTIEAIB2ElGIUIQAAAAAAACkowwB2ohGJZK1Gie07KhkPERolCJllSG22FKkXoY0XWHcuCPWviEapYgpQ5I0KhHtQsSUITaNUsQUIkkxtYgpQ5I0KhH1QuSZl8rI2y8qZSKkHQuR2SlLGjUKEbsMMaILEWtYjUIkWYYYGoVIJfEwolGH2GWIEVuIZD3fxZQiaSvtNQoRU4YkxVQiWataYwsRjTLELkKMqDJkPOW2UihD0vadaMcyxC5CDI0yxFQhIkplSMprMZUypNI4SGwZYhchhnYZYsQUInYRYsSWIVl7L8QWIjFliClAbBpFSNqeKDFliKlAkjSKEFOC2GLLEO0SRCT9uUijDOkZaLxtY6uQsksQW0wZUnYJYgstQ8oqQUSoQQCUjzIEAIB25FOITE6cUIQAAAAAAACkowwB2lhIKZK3Giem5sgqRGLG1i5DjKxCRCSsEsksQxqu1H9cuwzJElKMpBUiRkgpUvbeIVlCS5G0OiQppBRJK0RsIcVIdCFi/fuffvrO0iZC2qkQSStDjJBCJKsISQqqQwqGjSlE0soQI6QQqTgsiA8pRbLKECO0EClafRpSiListA8pRdLKECOkEHFd5epbioSUIVkliC2oDEkrQur/5j9cWglia6cyJKsIMULKkGQJkiWoEMl57RVVhlTyvzikEMmqQpLaYe+QrCIkKaQOySpCjJgyJKQKyapBRMKKkLQCxBZShKSVIEmhVUhWCWKEFCFlVCAi+c89IUWIXYBkjh1wl2x1DSISVoS0ugQxYvYK0a5CKEEAtBqTIcA04jI54vNC1GcCo2gyJHTcMiZE8iZDbD6TI06TIvWDcL+o66SIiPvESN5kiM1ncmSqJkWSXCZIiiZDbD6TIy6TIobP5EjupEjWhEjORMnvhwedr9tHWRMiIm6TInmTIDafSRGXyRDDa1LE47HAdWIkbxLE5jMp4jIZYvhMihRNhiS5TIz4/sHFZ1LE54/LPpMieZMhNpfJEZ8/8vhMiPhOhrhOhIg4TobkTX40Xdb9oi6TIMZUT4YUTYAk+dxfXSZBDK/JEI/XXM6TIgUTIA1j+ryWdZgEMabydFkukyCG72RI0URIks+kiMskSN6kh81nEsRl8sPwmQQpmvywuUyGFE18JPlMgkzF5IfN9bnZdQJExG8SZComP2wukyFlTX6I+E26+kyGMPkBoNNwmiwAANpd2imz7tzTb08RAAAAAACAjRhlCDBNZVUiMZvW5RUdPmWIz7hlnSpLxK8QMfJKEa8ypOlgsv/Jpwyx5ZUiPnWIragWadWG6i7yShHfQiQprxbxqUNsRbWIayFiFE2ETLdCpKgO8SlDjLxCxKcIseUWIhGvrooKEZ8yxJZXiviUIUZeIeJThNjyCpGY57miSiRmQ+q8UsSnDDHyCpGYFbB5pUhRGeJTgthyyxCfIqT+Ndn/5FOC2KaqDPEpQmx591ufIsTILUMCXlvVj6XoSz2KkKax817DeqzstrX6dFk+VUhSUSHiU4TY8gqRvCLEpwQxiooQnwrElleF+FYgSXlFiE8JYssrQ1q1GbqrvOdlnxKkadycu0M7lCBGUREyVafCypP38reMzdGpQQC0E8oQAACmi62ek9qZn2v4VO3Mz1GEAAAAAAAAFKAMAaa5MgoRI1l0xJQheeO2WxmSxq5FogoRI+XmjClEjGQpElOG2OxSpB32Dslj1yIxhYiRVorEFCKGXYpolyHGdC9EQoqQLMlSJKYMMVILEYWHTLsQiSlCkuw6JKQIyZIsRWLKEFuyFNF4fssqRGLKEJHmOiSkCMmSLEU0V8QmSxG7DIkpQWwNZUhICZLFGiqmChFpXRkSU4LYkvfbkBIkS1MhovS6qqkQiShC6mOmlCExRYjRqr1DQosQm12IxBQhSXYdYhchIRVIGrsMiSlBjLQiJKYEMewiJKYCSbKLkHbYD6RI8nk5pgSpj5fya1dKCaLwGCHSXIa0YwliS778LaMEMShCALQjyhAAAKYDa7P08V+/u3EPkWdeOtVHCAAAAAAA0LYoQ4AOY0oRjZWzSabm0CxEkuOWUYholSG2oU1LGVZG5pTzcDy66Yj6mKYUafdCxDCliEYhkvSmWatVx0vqqySWBloTIfUSJOvzOaZbIXLL6peVMu59L25ZyrgiIs8uydlLJIApRLTKEMMUIppliMiGOkSzDDF61tbUn99ERHpz9iiJ0bO+pHH7dVZh2/L2E4nVs7qcx55aVzlru8oqRDSLEMOUIZpViEiiDFF+PVUvQxSKkAYlLvMrqxDRvg1MGaJVhBimDOldXc5jz2jBniftZLh+Gyu/J5p82TcdShCje73u/czQqLpSlTVuiTRrEJENRUhZNQglCIDpYPq86gAAYGOUN+Gx1XNS+8VRFCIAAAAAAAAFKEOADrf3+9P3FAlVX5GrvJhvtG9iQPs8uRrGeyvqK59FREbmTY6vfMxjMyYelu3zMccanTe5mq9HdxXX7IXrRURk/qz1quOKiOwwf7ks6NEb92/nNpYhs6pDGZf0s1ffCw0fL+zqUxl3/JmXysx3XiLVJ7eR8W2eFPnFB9LLjw4uRNZObtpzX/82quM+tnbRxPjDOj+rpDXrZ0j/Co3NhSyjE4+T3SuVHhysJTE9q5Ue2K1huhUfGpLn1e9SrC7MuD0Dui+LuybDvKpycWFWzXYrnPe+YdwSypDxnok7RN9y3eeI0bkTv7td63Trx/HeidWy3Wt1nh9ERMZm99b/W7M4Ge+z9hUa0bk/lLVXiEy+7Syl5ilpiZ+5LcZT9iSJol3FTErba0GF4kONvdJ9bIbObWE/zqr9zKyHRc37QnW0pr7yX6Sk/TVEpGt44o5QUQ6EyipBzHNaGUVprasSvc9YmvHJvca0n49H5kw8OGjtT2RQggCYjihDAABoQ5VntmiYCFn/8/dkT3BQiAAAAAAAAOSiDAE2IhqVSObKmshFTaYMsWlUF+O9zWNrlCKmDGm4LoXjNWVI09iRi8HrZYgtshQxZYhNoxTZYf7yps9plCJ2ISKiU4nYhYjhW4pUntlCet/504aJkNqWzzZdbla1t/ETnoVIWXWISHwhYooQm0YhYqqQhutTKETWrG/eJEOlEBlNf3yMLkQyHs+jC5GML9coRNJWNGoUImnjalQiXRnRQmwpkrWKNrYU0ViJakoQW2wZYkoQm0YZYmqQJI0yJFmEGBpliF2E1MeOLEOaipD6wJGPCRlvN1UKkZKLkMbPKazgn25FiEh0FZJVPsQWIVmPoyo/p5ShNcZNO2aNMqTsEsQWW4aUtieIpD+PaZQhaT8njTLElCBNY0c+H5sSpGlchTKEGgTAdEcZAgBAG7EnQoZ//t7UiZBUFCIAAAAAAACpKEOAjVhMKZK7wiZigVNWIZIUUl+k1SFpQoqRtEKk6foDjjmrEGkYN2BheGYhkhRQi2QVIjbfYiStDkkTUoykFSK2kGIkqxBJSqtFUidCttowETLm8JQ9q9rbEYVIVhlixBQiaWVI/XojCpG0MsSIKkQyyhCRyDrEYUlMUCXi+CUhpYjLisaQUsRl3JBSJKsMSQqpRFxX1fqWIiErUbNKEFtIGZJVgySFlCFpJYgtpAxJK0FsIWVIVgnSNHZAGZJZgzQMHPHCLud5K6oMaWERsuHfIm6HjaQIcakcQooQl8fJoJ+Pw0NeyLiuj+u+VUhZBYhIdgWSFFKElL0fSJ6QIsT1ZxJShWRVIA3jRhQhWTWISFwRQgkCoNMwGQKgzmdyJCg3dnht6TIZYnOZaHCdDElynRhxmQyxuRyzy2RI07gefxd1mhQxPCZHXCdFRPwmRlwnRUT8J0ZcJkWSXCdIXCZFjK4lW8qid/1Cup/aNnUiJMllUqSyZAu3zdcT2mFT9aJJEJvPpEjeJEgWl8mRvEmQLE6TIzmTIFmcJkcCHr+dJ0UC/hblMyni82beZ1LEZ1yfSRGXyRDDZ1Ik5I9LLhMjrn+EcZ0ASfKZDHGZBDF8JkNcJkEMn8kQl0kQw2cyxHUSpGF8xwkRp0mQpsEdfu4Bby2dJkWmYPIj+2s87v8lTYKITO1m6SGndnKZBAmZHHb+eXgO7TsJ4nPsPrdfq0+BlcZnEmQqJz9sru9XQ+7PLpMhLpMfTeM6fJ95kx6Z43q8zmHyA0Cn4zRZAABMMZ+JEFe1LZ+V9T9/j4xv86RUn9yGU2YBAAAAAICNGmUIgFxZtYjGRnRpK4hDyhBbXnURUogYeaVISB1iFFUiIYWISHEl4lWGZEkpRnzKkCx5xYhPIWLLK0Z865CkolKkqBCZfcFHZMGX/p+Mbv2ELP/ZO2RsyyUiUrzxum8hMnTKl2TkIxcmjjt9NfNUFSK+VYgtqxIJKUJseYVISBli5BYiAWWIkVuIRDx+FxYikQ/hWZVI7IafWZWIxkaieaWITxliy1tlHLPyNq8QKVqRGlKEGHlliE8JYssrQ3xKkCxZhYhPDZImqxAJqUEaxi0oQ4KKkPrgOT//iLeUuWVIGxUhzWNk3B4l1iAirS9CYjf4LipCQmoQEYdyI+KvHHljhx6vSP5t2Q4FSJaiMqSdahAj771qzH06rwgJKUGaxk/5nkNKkKZxM+4GVCAANkZxr7YBAEC0gQ+fLyIig2/+TX0iRIspRLp/86aGiRAAAAAAAICNCWUIAC92KaJSiIg0rSbWKESMZHkRU4bYkqVITBmSxS5GQguRpnGtaXCVQkSkqRLRKEREmiuRmDIkS7IYiSlEbMlixGf/kCJ2MeJSiLiwS5EyN1YX2VCKxBYhNrsQ0ShDRJrrkJgixNZQiEQUIVnqpYjyKuumUkTp0O1CRKPgEGkuRLTGNUwlElOEZEmuRtZchZssRewVqTEliC1ZhsSUIFlMIaJRgyTZZUhsEWLYZUhsEVIf1ypDNAqIxiuYvE+U8BayoRAp8WTOWrdJUz0wHTdJF2kqQmJLEMMuQmKKClvDba94V0yOq3m8hn3btnMNItJchLRjAZIl+R5V6z4t0liGaJQg9XGt20CjBhFpfp1DCQIA7BkCAAAAAAAAAAA6HGUIgCiv+UD6niKxRgvOLxzK1BaahUjSaM7p/2ONzC3n4Xp4oVIZkmH24oFSxt3zpU+XMu4hCx8sZVzjgJnlHLeIyPyMPUBiPTaqvHzectf6bUsZ9+fPvbqUcZesnl/KuEb/C7NLG7t7dTlnSO1ZU+458nvKeRiR7pz9PmLMWFXuy2utVb9N464v73e9a6jcx5FKSY9TZa2ELl1Zh13ir3qtp9x1euqVjBm3pOMuuwiplVWylHgi7nHFFf6tpF0hGmU9FxhllStllCCGZtGYZIoQzRokaXRGOeP+z88pQQDARhkCAAAAAAAAAAA6GmUIAFXapUhl8hFqZKbuKh97Pw6tUqRp3J70ywWPb622G5up9xA+MnfD6rJaj/5TQ/f8YRER6ZuhezL9svYU2X3Ocw0fb9Oru1fJ9r2Ne4j8VddQxiX9rLN+dC/t0q1FNCuRFWONKdX/DW+uNG5jWfHfL7xMZdwsWqXIyEjjMuChlXp7ktSNV6R7rf5y4+R5xbsHNM/N3fhxt/Y2NtbduXu9zmOffZzdg8qPqTWzN4nuuGWUIeZ5vKq8gnm8t3FNV9e60YxLerJWy1fGdI/brh8qI3rj16objj15Xnu18bsqpZQyZRUhydsj7ePo8bvKHX/D9SiOpVyDVKw/JWityu+yHjNHZuveR6rW74dWcdI1bI1r7ysTyfz+lbGfSZJmEWL/Xmg/F4xZpUZZNV9N+Wc5MmviuLWrIUoQAChGGQIAAAAAAAAAADoaZQiA0mhUIpWcR6iYWiSv2NCoRIqKkNBixC5DbLGlSLIOSRNTjJgyJI1GLWIXIiI6lYhdiCRp1CJ2IWLEliJ2IWKLLUZiChG7CEnSqEPsMsRWVikSW4jYZYihUoiMZz+uaZQidsEholOIpI1bH1+jEsm4G8cWIkXHFl2KZLx8jy1FNMqQrOft2NXAdgliiy5DMlbMa5QheeWDRhmSViRolCF2+dAwvsLq61YVIb7/nvl1BfVAWWXIhuuP+NrIIsQuQGyxRYhdghgaRYhdgSRpFCF2DSKiU4Tk/Y6VWYbEViFFvwehzwV2AWIre3+nmDLEVCBpNMoQahAA8EMZAgAAAAAAAAAAOhplCICWCSlF8soQW0gp4lNo+BQjXuMGVCJFhUiSTy1SVIbYQkqRvELEFlKMpBUitpBiJK8QsYUUI1mFSFJILVJUiCSF1CIhhUheGWKEFCJFRUhSmfuIhBQiWVVImqBSJKcMMUIKkbxyo2n8gFLEa3yfUsTjbhtSifgci1cl4vmy3bcUCSlDfJ6nRfxWBRfVIElBZYjHanmfQsSneAgpQ3wKhJBCpKiAEAlbhV1WCVIf3/F2CSk4XG6TmPHdjiHgawKKkKIKJCmkCMmqQJJCipC8AsQWUoSkFSBN4wbUAz6/S2XvFSLiV4b43NdDipCiGiSpnfYKyStBbCFlCCUIAMRhMgTAlHKdIPH9Y4uI2+RIzAbnLpMjUeM7fK3PpIjhMjniOymS5DJB4jMhYrhOjLhMhqRxnSDxmRRJcp0gcZkUsblMkvhMithcJklcJkVcJkFsLpMiPpMgtnbZXN1nMsRwmhRxmATJ4jI54jNZ0TS+w+RIyPhOExERp6VwmRwJOYWX06RIxMt2l4kR18mQkOdkw+UPYj6TIIbTZEjEqYJcJkNC/tjvMhkS88d1l8kQnz/0N43v8AfIMidBgk955TpxEnHbTOWkiMskiM+kh81lEsRl0sPmOgniM/GR5DoJ4jLxkTq+4x/OQ/5w3w6bpofcp10e830mPWztcHosn8kPw3UShIkPANDHabIAAAAAAAAAAEBHowwB0FaySpGYVahJWbVITMEhkl2JxI5bNFZIGZIlrRiJKURsacVISCFiSytGQuuQNGnFSGgdkiarGAkpRJKyapGYQiQpqxZJK0RCipAsaaVITBliTFUhElKEpMmsRCLKkKSsSiSmDKmPnVKIaIxbHz+t0tB7aEstRTQ2d08tRRRftqeVIllliNZzsEj6KuGQEsSWWoZEbhrdMFRKGaJZPKQVIhplQVYZElM8NIyfsSq7XU6JFTqOxu0zFRuqZxUhMRVIUlYRElKBJGUVIaEFSJq0KiS0AEkdP6Ug0KgWpqII0bzvpj3mx5QgtlafHiukAkmTVYZQggBA+ShDAAAAAAAAAABAR6MMAdDWTCmiuSo1yZQimgVHkilGSht/clzNQiTJ1CKahYjIhkpEowxJY2oRzUIkydQimoWIbZve5dF1SBpTjGgVIjZTjJhCRLMKSTKFiEYVkqZVpYhWGWLUCxGlIsRmChHNcqNh/MlKpLTxTbGh+5A2Mfb6mkoRkjn+YE21DLF1jdTqZUhZz7kiE6uENUqQLF3rRlWLEMOUIWUVD6YMKasmMIWIVhHSNP7k6uyybp/S9t+YHLes26VVdYgpQrQKEJspQmILkDQjs6uqBYjNFCGaFUjD+JMFQVmFQllliClCyrqPmiJEswJJatVeIVoliM2UIZQgANB6lCEAAAAAAAAAAKCjUYYAmHb2Pip9XxENY70VGc049b4Gs8porE933Poxl7QAcWTuxFPF2MwSllOLSG1y3O7Zzft/aJg7Z6IQmdlbzvgvWzBRcOw8+/lSxu+rThz33856tJTxnx3dRERE/rp3qfrYT4/OUx9TROSPQ1uKiMi68fS9S2ItGZq4TR5avbiU8V9cN1G0rF2n/GAwaWRoIhcb7y8nS+taN7Gepjpc1opSswpZedzJ4qSavqVOtK6hicfKnnXljG9WCKed411D3+qSkhzZsDq4a6ic5xGz+runP2XvEI3xJ2uWasq+SFHjdk+OO1TObV+bHL+ifNx1JRUVtrILi/FpssdJ07i6ceGEybtKWYWYOeas/UdiVcxDQMl3zVpJdxnzPFLKzzahrAKzftzKDznjfZOvCzL2ttIwPL+71ALz9kupQACgHVCGAAAAAAAAAACAjkYZAmDa0yxFxnqbl5FpliKmDGm4TsWF4anHqrgyzhQiSZq1SC1lLM1axBQiNq1ixBQiNq1ixBQiNq1ixBQiNq1iRLMSMWVIkkYlYoqQNBqViClCbFqFiClCbFqFiClCbFqFSNY4WoVINWMlrFYpYlb02rRKkaxzx2uVIpplSNZ54rXKkPGMIkGrDMna10SrDDFFSNP4SoVILWN8tUKkRUWIbboWIprHrVYMZNwVtIqQrOPUKkIqWb/q06gISXvOmE5FSOqxKoYbpgZJ0ixDhuenvGZS/PMYJQgAtCfKEAAAAAAAAAAA0NEoQwB0rNBiJK0OSRNTjKQVIk3HEbFQ3OnYIlbOpRUitphiJK0QscUUI1mFSFJMLZJViCTF1CJZhUhSTC2SVYgkxdQiMYVIWhFiiylE8soQI6YQySpDkmIqkawyJCmmEskqQ5JiKhGXr42pRLLKkKbLBZYiWWWILbQUySpDmi4XWIrElCFZJYgttAzJKkFsoWVIVgliiylDsmqQhvEjypCsGiQpqgyZohokabqWIUbM8UcVAw4/9pgixOXYYoqQzAqk4ULBwzuJKUJcnhvauQhxOraIh5a0AsQWU4SkFiBpAv80RgECANMLkyEANgo+EyOukyFJvhMjLpMhNp/JkeCJGsfDcpkMyeIzSeIyKWLzmSRxmRSx+UySuEyK2HwmSVwmRWw+kyQukyI2n0kSn0kRl0kQm8+kiMskiM1nUsRlEsTmMyniMgmSxWVyxGUSJIvP5EjIRIrP5IjrZEjD13hMjLhOhiT5TIy4ToY0fI3HxIjvZIjrBEiSz2SI6wRIks9kiOsESJLPZIjL5EfT+B6TIS6TH1mcJkXaYPIjy8Y0KeL1R/KAvxf7TIKE/MHeZxLEadKj6YsCvsaDzyRIyHNA2ZMghutkSPDxeNz3XCY/bL6TIc4TIEkefxpjAgQApi9OkwUAAAAAAAAAADoaZQiAjVpeMRJSiNjyCo2QOsSWV4uobPxecIgxhUhSVi0SUoakKapFQgqRpKJaJKQQSSqqRUIKkaSiWiSkEEmTVY3kFSIhRUiWtFIkpAjJkleKhJQhtrxSJKYMMfIKkZgyxMirPrQ2YBdJL0VCipAseaVIyKpgW14pElKGNI2RU4oUlSEhJYgtrwwJKUFseWVISAmSJa0QCSlBMsfPKURiihAjtwxp4yLEKLsMMaayEMlcoa+0f3RRERJbLBQVIUEVSMMAkV9foKgI0Xi8F5n602OpXH/OfTKkArHlVSFBBYgt509iFCAA0HkoQwAAAAAAAABgmtt2222lUqkU/u8HP/jBVB8qIrj8jCuVitx0001TfahtR2EaHQCmrzsu/mzDx6GbrmfpzjiXvUq1ISJdGSuUx/o2XHfUdWUtlJpc5NWztqJSh3StT5+bHxOdOmR0IH3Fe8wm7Enrh9PHN8XIQ6s2j6pDHhlILw5MMTI0PnH9oYXI/6zbKfffTTkSW4g8OPyS1M8nixFTiWgWIcas6rCIxG2wnudl8yd+HslCRKMIMebOavyFX7uuT6UIMapzGu8/MRutpxnvbXys0KxBksYmH/NiNlrPM24FOqYU0VolPDKr8ePQzdaz2Ku180oRjRIk91hKKBBG5nTX6xDNEiSPZhGSRqMEyTUNShBbZXziftuqQqQs9vfRsEpfqQBpus7JX/myigT7MSa6AEnTwh+71mN7mlZWIaVcV+I+qlGA5FEpQBxQgrS/gYEBufPOO+Xee++V3//+9/LUU0/J008/LatWrZL169fL4OCgzJw5U+bMmSNz586VuXPnyrbbbis777yz7LzzzvKyl71MXv3qV0tfn8eGnAA6CpMhAAAAAAAAANpOf3+//OQnP5HLLrtMbrrpJhkayjlnqUxMmAwMDMjzz08sVLrvvvsa/n3mzJmy3377yUEHHSRvetOb5JWvfGVZhw6gDbFnCAAU+Jtjv1nq+CNzyl1JNTa5CH50ZqlXIyPzyn06MfuKaO0jYjOVSOz+IUVetfmSUsfv65pYgrnzrPT9ObRs27u81PGXjOjt5ZHm0fXZ+3toeGztZiIi8nz/3FKvZ8VKvfIkzfhkVdU1UN7K9MpYRbrWl/s42DNQ6vAiItK9TqSisKdHnr415Y7fu7akpegJZd9Gta6KdK9X3CRmClXGyn+bVpnmbwXH+iaWu1dHyr3vlr13SBmVVIOyI6nJm79W9vdR9vCTpU7RPhuhxif3C5zuv3dF+8FoGSu57rv9ks8WXwhT6vnnn5f/+I//kO9///vS399f2vXsscce8pGPfESOOuooWbBgQWnX0yrbbrutPPnkk4WXu/DCC+WYY44p/4A2Il/60pecLnfMMcfItttuG3VdlYrbY/GNN94oBx54YNR1dRrKEAAAAAAAAABTbnR0VE477TQ57bTTZGCg/BUtDzzwgBx//PHyuc99Tl544QWZO7fcxUzoXKeccorT5Q488MDoyRCEYzIEAArc/f0TUj+vVYx0DaavDhubobPqqms4/9+1ipHudenHOzpLZ/Wb2Vcka7FebDFi9hVZm/HvWsXIfS9M7IUxpy/9B7PT/GVR4w+NTTy1P7IufX8OrWLkieFFIiKycjS9THjVrOLVSHm27FkpIuUUIn8e2KLpc93VcpaBLp4zcY8qoxDpX98nvTMaT8Y+PFjOS7ux2RO/X2UVImMzGx8ntEuRMWubmKLHxVC1bvtc+bqrf+3V49UWlAOxxqzzyHcr3yalr0SfNG79bKslFy7T1VhKQdFVQrVhipCylF2C1K9H6f6b9VigvoI/40ep9Xtoyoyyxi+6Hq0ixH68qI+vXYRk/Wop3X0pQDAVHnvsMXnPe94j99xzT8uve3BwUMbGOqMuBZCNyRAAAAAAAAAAU+aWW26RI488UlasWDHVhwKggzEZAgCBksVITCVSnVzYPW49IqcVIzG1iFkJba+Q7k4JHkJqkcrk91Gzvo+0YiSmFqkXIlYJUlnfvKospBYxhYjZQ8RY2998o8TUIv1DEz8IuxB5dPVmTZcNqUVMIWKYvUSyihGRsGpkk+6JdN0uRO5bt03TZUNqEVOIGDGlSFoRYoyOT6wy1ihEzH4hSaYQMWJKkf71fZn/plmKmP1CkkwhYkyHUqQ60vy56ViKpO170o6liF2C2EZnV6V7ILwUmKoSJO3fO6EOqVUqUavV00qQrMvEFCJFJch4T1Vl35DpsDeIy+951Ip+h5tR4/cwq86YiuuJKUKKHitElIoQl7t3xN23UyoQgxpk+rn++uvl0EMPLdwcHQBiMRkCAAAAAAAAoOXuuusuOeKII5gIATzUtE+9uBFhMgQAFGjsK5JViCSVvb+IkVaLiLgVI1mFSMP4CvuLZBUiDceSUouIuBUjWYVIUlotkuRSjmQVIklptYiIXzFiShFTiKSJ2WckqxBJSqtFklzKkZC9RPKKEJspRAyfUiStCMmiWYrkMaVI2XuJGD6lSGXM/XErWYpo7yciMjWliPZ+IiLpq87LrEWKKhAtrahBXFZ3t5r5vittUPzYXIqQqPED9gQxVYdPIdKOe4PE/M56re4PCGlCfhddyoyY6wkZv/61HkVIyGNEUBESEjh53I0pQNBuVqxYIe94xzuCN0p/2cteJm94wxvkDW94g+ywww6yaNEiWbRokVSrVRkYGJDnnntOnnjiCXnggQfkjjvukJtuuklWr16t/F0AmE6YDAGAEpW9+brhc0qtrNNlufA5pZbLpEjT+BmTJCLZEyUukyJNx+ZxSi2XSZEsPqfWcpkUsWVNkohkT5S4TIrYfE6tZSZFjLzJEVveZIk9UZI8fVYZm6wbLqfP8pkEybJ4ztrCCZG802MVSZ4+q2hiJO30WK6SkyPT4RRamdeReHwsmhjpXhd2HWVvtm5onkprukx+jM6c/L1dn/+XznacAJkKtcrkpEvBH25jJ0BcT5cVuzm6y6RIKyZB8iZAtCYpC/+wrbR3fdHvZMyExFRcT9EkSOxjQ+EkiNLPpWgSpJMmPpj06Fwf+9jH5KmnnvL+ugMOOEBOOeUUOeCAAzIv09vbK5tssonstttucsghh4iIyNjYmNx8881yySWXyCWXXCJr167N/HoAnak10/UAAAAAAAAAICL//d//LT//+c+9vmbGjBnyk5/8RG666abciZAsXV1d8oY3vEHOPfdcWbJkiZx55pmy1VZbeY8DYPqiDAGAKZBWjJhaxOV0WS6KTqkVU4gkxZxSy+t6FE6tlSfrlFr165HwQiSp6NRahk8hkqbo1FpDY91edUiWolNrbdI94FWHZMmqRl4168nMU2f5nB6rSPL0WRqbrKfJOnVWTBGSJmuT9ZgiJE3WKbR8To/ldD0ZpUjaxulB40/Dzdbz+JQi06UEcaVdgpjxyt5IvVWny7ILkbJOhWUXIrEliKupOCVWmaepa1j1r1UapEj+fmqVGVnXUdb4hilCWlaFlfhzabiaDipARKhANiYnnXSS1+U322wzueqqq+Q1r3mNyvXPnTtXjj/+eDnuuOPk7LPPllNOOSVonOHhYXnkkUfkj3/8o/zpT3+SJ598Up599ll59tlnZcWKFbJ+/XpZv369jIyMSG9vr8ycOVMWLVokW2yxhey0007yile8Qvbdd1951ateJZVK+1erzzzzTP17feyxx2TJkiXy7LPPytKlS2XdunUyODgo69evl66uLunr65NNNtlEFi9eLNtvv73suuuuss8++8h+++0nc+bMacnxvvjii3L99dfL3XffLX/4wx/k6aeflueee07WrVsnw8PDMnPmTJkzZ44sXrxYdtxxR9lll11k7733lr/927+VzTbLPgPAxRdfHHxM1113nTzzzDOFl1u8eLEcfPDBqf/mel+58cYb5cADD/Q5vFTj4+Nyzz33yK233ir33Xdf/We/atUqWb9+vVQqFZkzZ47Mnz9ftt12W9lxxx1ljz32kL/927+VPfbYQ7q6WvN6zwWTIQAAAAAAAABa4qabbpJ77rnH+fLValUuvfRStYmQpL6+Pvn0pz8tRx11lPMf6H/729/KddddJ7/73e/knnvukZERt1U4g4ODMjg4KCtXrpRHH31Ubr755vq/bbXVVvL+979fjj/+eNlyyy2Dvpcy/OUvf5Ff/vKXctttt8n//M//yPLly52+bnx8XEZGRqS/v1+efvppufvuu+v/NmPGDHnLW94in/rUp+QNb3iD+jGPjIzIpZdeKueff77ceuutMj6ePTs9MDAgAwMD8vzzz8vvf//7hn979atfLW9729vkox/9aNPEyAc+8IHg4/uP//gPp8sdcMABmZMhrfLwww/LOeecIz/+8Y/lhRdeyL3sypUrZeXKlfLEE0/ITTfdVP/8ggUL5NBDD5X3v//98uY3v7nkIy5WqbH9PAC0tT2P091fxFaZfF0wtKDcVSjjk4vOx2aUejUyNqMmo7PLXYpX65sYv3uu0tLzDNWuietZvKDcc9n2dU+UAjvNc9+QPcQz6xaIiMirFjxd6vW8ONyaVUZPDCxsyfUsWT1fREQGh3XLDdvgmskCZaTclZ/Vwcnz+Q+X+5hjarJKfABVcD0T/19WMbLhempqtUuWnvXlL2Me76pIz0C512PKhrLqGsOsZu8aKvf7Mauxi/ZAiWX2WvHZgDxEvQLgXagXn03YVZR8deb1Z63khaKtqkFqXSLV4XLv1GMzJgvLkv+EM2qup+SnBAqQjdt73/teueSSS5wv/8UvflG+9KUvlXdAnl72spfJww8/XMrYM2bMkJNOOkn+9V//Vbq7/dewb7vttvLkk08WXu7CCy+UY445pvByp512mvzzP/+z93G4Ovjgg+Wcc86R7bbbTmW8n/70p/KFL3xBnnjiCZXxREQuv/xyOeKIIxo+14qK54ADDmiYVAi5/tAyZOnSpfL5z39efvzjH+dOJvnYY4895P7771cZKwZ7hgAAAAAAAAAo3eDgoFx11VXOl99ss83k5JNPLvGI2svg4KCccsop8nd/93cbxQbv1113ney5554NlUyIVatWyeGHHy7ve9/7VCdCNka//OUvZbfddpOLLrpIbSKknXCaLABoc/ee27y/iGYtUpucFu9b1bzKTLMWyVvRrFmLdA1WJGuuX6sYqQxNjG/2EckSW46Mj01cz3MvTpQBphSxxZYjQ6MTLwf+sOKlIrKhFLHFliNbzVolIiLLhif2wjClSJJGNbJpb3/Dx9qlyF/6N039fFV5mbMpQowZvRP3J+1CpF6EGD2T9zPlQsQUIcZ474bbq8xKpJZ4tVtmJZLcW6SsSmTc+tGXXYpoaNVq9rJXShut2t8k7dz8ptzQLkTMuIbZW0O7ELFvu9rkh9qFSFYBUPbeLhpaXn8kKV91VlVgShCtIqRS8OugXYRkHbd2FWIqkKQyHudG066nhL97UYEg6eabb5b+/v7iC076+Mc/LjNmlHx6gTZ08803y+GHHy7XXXddW+23UIZVq1bJoYceKr/73e/kFa94hffXP/nkk/LGN75RHnnkkRKObuPyla98Rf7lX/5FOvlEUpQhAAAAAAAAAEp3++23e13+uOOOK+lI2t+NN94op59++lQfRkv09/fLe9/7Xhkd9Vu9tHTpUjnooIOYCFHw9a9/Xb7whS909ESICGUIAExLabWISFwxUqs2rwRLq0VE4oqR6kjz6uauwezLh1QjE3XIxP4hSd0D2WsAQqoRU4iYPUSaxlzbvII/phYxpYhdiDy/am7TZWNqEVOK2IXIo2s2S7u4iIRVI6YUSRYi9636q9yvCSlHTCkSW4hkFSHGeG3D70VMJWIXITZTiIiUvI9IT+J+VvI+IslKRCSuFDF7haSpWa98Y0oRs1dImmQlIrJxlSLtVILUus2+MeG/jy4lyFjfxO9HzN4haSVImewapCwut59GIeKy+t9cZioLkSktP7IoHJJLSaBRghRVIEkxRYjPscYUIWn1R5bYKiStAEm9nsgqhAIELu666y7ny26//fZttZn4VPjKV76SuoF3J/rTn/4k5513nnz84x93uvzY2Ji8+93vlv/7v/8r+cg6329/+1s56aSTpvowWoLJEAAAAAAAAACle+yxx5wvu++++5Z4JLq6urpkxx13lJe//OWy8847y/z582Xu3Lkye/ZsGRwclDVr1sjjjz8u99xzj9x9993OezH09/fL+eefX+om5iEWL14sL3/5y2X33XeXRYsWybx582TevHkyPj4u69atk2eeeUYeeughufnmm2X16tXO455xxhnOkyHf+ta35JZbbvE+9h122EEOOugg2X777WXRokUyODgoy5cvlz//+c9y8803y9KlS73HnM7Wrl0rH/rQh7z3B5k5c6bst99+ss8++8hmm20ms2fPlhdffFGee+45+Z//+R+55557vEufVmAyBAA6SNn7ixhZxYiIWzViVi/bq5rTZFUjLsVIViGSJqsacSlGigqRhvFSapGG43AoR7IKkaS0WiTJpRzJKkTSxFQjphARSd9HJCmvHCmqRpJ7ifhWIkVViM1UItr7iNiSlYiIXynStFdInh7rvuZRith7hbjQLEXyaJYieaaqFBEptxZp5Sr3jWFPEFche4eElCAhe4e06vYzQlb/j3dXSq1D2rL+SONxmDG1gE9l4VN+ZPG5T8TUKj5FiE8BYvN57HOtP7RQgSBErVaTp556yvnye+yxR4lHE2/hwoVy2GGHyRFHHCEHH3ywzJo1y+nrlixZIqeccoqcd955Tpe/9NJLp3wypFqtyutf/3o5/PDD5fDDD5ett97a6etGRkbkoosukhNPPFFWrlxZePmHH35Y7r//fnnlK1+Ze7kVK1bIKaec4nQMxmtf+1r5yle+IgcccEDu5e644w4566yz5Gc/+5kMD6e/cE87lVSl4vYcdOONN8qBBx7odNlWOO200+S5555zvvysWbPkxBNPlBNOOEHmz88+q8GaNWvkhz/8oXz3u9+Vhx56SONQVTAZAgAAAAAAAKBU/f39MjiYc45ky8KFC73G/+Mf/yj33Xef72E12GGHHeS1r31t7mW22WYb+cQnPiEf+chHnCdAkrbccks599xzZauttpIvfvGLhZd/4IEHZNmyZVNyqqy+vj75yEc+Ip///Odlp5128v76np4eOfbYY2WfffaR17zmNTIwMFD4Nddff33hZMj3vvc9WbvW/dTQH/vYx+Tb3/62dHcX/yl87733lr333lu+9KUvyfHHH+98HdNRf3+/fPe733W+/Etf+lK54oor5G/+5m8KLztv3jw5/vjj5ZOf/KScc8458vOf/zzmUNUwGQIAHc5nf5Ha5IKymBWAZewzksanGPEpRGw++4yYQsRwKUWaxvTYZ8SlEMmSV47Y1YgpRETcKhFbXjUi0liOpO0j4spnv5FkJSKSXYr4FiG25D4iIvmlSNFeIS5cShGvIiRLRCkSIlmKZFUieXuFuEqWImVVIiLNpYhIdi3SvS5uBbvmviJaK95HZk/cX3oG0h+7WlWBGFo1Q9HeIa3cF0RzT5C8QkSzBHHZOyRmH4i0cUIKkWlTfqTJOfTYvSJsRdWFRgUiUnyf0NirJCmvCIkpQHyUUYDk/fwpQKBp/fr1XpffZJNNvC5/5ZVXRhcURx99dOFkyLXXXutcAeT5whe+IGeddZYsW1a8/+K9994rb3rTm6Kv09dnPvMZle91t912k+OOO07+8z//s/Cy99xzT+FlLrzwQufrPvLII+V73/ue8+WNHXbYQa655hqvCbzp5vLLL5dVq1Y5Xbanp0d+/etfO02EJFWrVfn4xz8uH/rQhwKOUB+TIQCwkcqaJBHZMFGi+cY4bZLETJC4nC7LVd5m7OavACGTImnyJkpERMzfUkMmRRrGcTy1VsikSBqXiZKQSZEsLqfYCpkcsbmcYstMisROgmTJmhzRmAhJE3MaLS8pm62HnB7LxVSdQsvoxFNpiTROkrT6j72ddgoso+zJD/t0Wa3YFL0Vt2GtsmFCRGvyI0vWpMi0nvBIYyaalCc80pjJB63JjizmZ6c92ZHFTIK0asLDPC6Wfeorc59gwgOtMjQ05HX5uXPzT/07VTQmB0REuru7ZZ999pErr7yy8LKPPPLIlEyGaH2vIiL77bef02TII488kvvvDz74oPOm6fPmzZMLLrjA6bJZZsxwOEf3NPWrX/3K+bInnXSS7LXXXsHX1S63Y2tPKgkAAAAAAABgo9Pbm5LH5ujv7y++0DTneiqwZ599tuQjKZ/W93rbbbc5X+dHP/pR78JoY+J6W86YMUP+8R//seSjaQ3KEABAk6xq5NUf0d2M3a5FRmc2rjoZ8dvjupCpRsxps8YTr8VHZ+mvTK6XIwNVGeubGH98tv5SydRypHvi+nrn6C4vt6uRarXxdttq4SrV67OrkeX9sxs+/qsFOtdnVyPd1YmlkqPj5a4beXLlhhfm5jrLNDTQK5WuiZ9Zbayklc+TlYgZvzJS8sruyVJkfLJsqJZ8feZxROO0gnlMKZJcXd3lt5jSy3iPyHhJlU3SWO+G6+jtL7cIGZ3Z+Pvbva7c3zFzmixp7Vm+Si9CapMr8Me6u6Q6XP7jlDktl4hIZbzkG9MUKJ1SgljfRv3xqaSbMa2sKbMIGetr0c8pcTW1iqmKy7nu4TmNj1NdI+a2LOf6/vcnFCCYWr77a7hsuN0OarWa/PGPf5Tf/e539Wrh6aeflhUrVsiaNWtkaGhIRkfj8uI1a9YoHW28ZcuWyS233CL33XefPPTQQ/LUU0/JCy+8IKtWrZLBwUEZHh5O3WDcVdH36rMvzDvf+c7g4+h0zz77rLzwwgtOlz3wwAOnZM+aMjAZAgAAAAAAAKBUc+bMkb6+PufTZbX7ZMjjjz8u3/nOd+SSSy6RJUuWlHpdvvutaBscHJSLLrpIfvCDH8jtt98eNdlRpOh7ffzxx53GmTlzpuy5554ah9SRXG9HkYlTnHUKJkMAAM7uOb+5GNGsRbrXT54febIQ6UmpojVrkepkNDHem735slYx0jVkxs9fwatWjoxOXN9wf3aKrlGNjI833m7PrFiQeVmNamTRnIGGj59elX19GtVIstbQrETSjtseX7MUWb1ydtPnTCFiaJUilcHG+3itJ/13SKsY6R5oHGc85frKrEVqiR9b2efjH+tr/LjMUkRLsgRpBbsGKUu9Akn7t8lz/HcNtmCDhhLUcvbpGJ/cB0WzEEmWIE3HUp0szDQLkRaXO+pauAm6SP6+LSEb0OdpWflh5FxdTfEc+YZdgSRtKEL0UIGgHVUqFdl6663l0Ucfdbr8gw8+WPIRhRkZGZGTTz5ZzjzzzOjiw9X4+NS9rrjqqqvkE5/4hDz99NMtub6iiRbXmmGrrbaSnp6S9kzsAK63o4jIdtttV+KRtBZ7hgAAAAAAAAAo3Q477OB82dtvv73EIwmzevVqefOb3yzf/OY3WzYRMpXOOOMMOfzww1s2EeJi3bp1Tpdz3aNkY+V6O4p01m1JGQIAiJJWiySFlCN2IZKUVoskhZQj1eHG/UMajiWjGBEJq0ZMIWL2EGk6loHsciSoGpksRMweIkl51YhIWDliShF7LxGR/GpEJKwcWTRnoGkfESOvGjF86hGNfURcjsnQKEXSipAsZZUiWZLFSOn7ili1SFmlSC3jrlHaviJ96Z+fimKkUwsQI68Eme7ySpAsMYVIXgmSRaUQmS5FSMCvUsxjTF75kSWmCGmn+iNLaBWSV35kiSlCKD8wXe21115y7bXXOl324YcflmXLljnvVXDyySfLySefnPpvBx54oNx8883Ox5nlHe94h9xwww3R40wHP/7xj+Uzn/nMVB8GoKpzX9UDAAAAAAAAaBv77LOP82VrtZpceOGFJR6Nn+9///ty/fXXT/VhtMSyZcvk05/+9FQfRqpZs2Y5XW7FihUlH8n05no7inTWbUkZAgAoVdn7jNjyypG8aiS5f4irvGpEJL8cKSpE0uRVIyIF5UhOIZKlqBwRya5HknuJpFUiaYrKEZH0esTeRySrFElTVGqklSN2oeFSivgUIVnM9WjuJZInWYq4ViL2fiGu7H1FXEoRe68QHyGlSHdBlZYnrRgpc3+RtGJEsxaZrhXI6KzJ36F1xTe+RgnSznuHhNQgsUKKEJtXIdKOJYjize7yGBJSfeRxKUKmQ/mRxaUICak/NFCBoJO8/vWvl1mzZjmfoue73/2ufPazn5WurrDXmZpOP/1058vuvPPO8pGPfET2339/2WGHHWTevHnS29v8/uqYY46RH/7wh5qHqeK8886TF1980emys2bNkqOPPloOPfRQ2X333WWzzTaTmTNnSsV6XL3pppvk9a9/ffSxuZZCS5YskdHRUenu5s/faVxvRxGRJ554orwDaTHuDQAAAAAAAABKN3PmTDnkkEPkF7/4hdPln3zySfnud78rxx9/fMlHlu/3v/+9PPLII06X/fCHPyxnn3220x/hffZtaCXXn892220n119/vWy//faFl9X6Xl038163bp3ce++98prXvEblejuNz6bot912W4lH0lpMhgAAWs51n5Hu9bXUfUNCZVUjyWIkpBDJ4rLfSEghksVpv5HRxDF5VCJZXPYdydtHxFdePWKqkZhSxBay70iyFNEoQmzJ8bMqEZ+9QlwU7ScSWoRkCSlFYtiliEh5+4oYdi1SZikiEra/SKsLEIP9QPSVVYIU7R2iUYOkSS1E2qUEKfnXJvlYoV1+pEmrQaZz/ZEmrQhpRQGS3C+E8gMbm+OOO875j+0iIp///Ofl9a9/vbz85S8v8ajy3XrrrU6X22KLLeR73/uec43w+OOPxxxWKQYGBuS+++5zuuy3v/1tp4kQEb3v9ZWvfKXzZX/xi18wGZJhyy23lM0220yWLVtWeNmbbrpJli9fLosWLWrBkZWr81/5AwAAAAAAAGgLBx98sNfExuDgoBx55JFTOnHw3HPPOV1u3333lZ6eHucx77333pjDKoXr9yoiXqe9uvrqq0MOp8l+++3nfNlzzz1XVq1apXK9RWbOnOl0ufXr15d8JO723Xdfp8utX79ezjrrrJKPpjUoQwAAbSevHNnj+P9Uv768fUaGFqpfnYg0VyPmY7NafHi+7jLxvGqkMrkwcWzBqOp1iuSXIzPmKW5iIMV7jgwNTBzL/E0Gci/nq4z6w5W9X8m6/ozl/8pMKVJZNfFGzy45tCXH717bmrU8zbVIa0uR7hadMSFZjJRdw9jWbzrxVqTHYQ8PTa0uQcYmS5eu9a37Psd7TTnRmusz5YnLngu6V9zCq5r8HitjrU1QTAWz4eNyr69+35n8Pse6yv+ZmsKl2uLbdmhua/cfuOuH+WU0sLH5yle+Im9961udL//YY4/JPvvsI7/+9a+9NmHX4rJ6XkRkeDh9T8U0p5xyioyPt9/eYq7fq8jE9+uyEfftt98uv/nNb2IOq26PPfaQ7bbbzmlybPXq1XLcccfJz372s+DrW7dundP3OG/ePKeJjj//+c/ylre8Jfh4NB155JHyq1/9yumyp512mhx22GGy5557Bl2X6+1YNiZDAADTygPf/qfcf9eeLOlbMfH/4ynPmCPzVK9KRDb84apvZTXzDx7aEyW1yb9zdK3Kf1mgPVkyuGbyr7A5p8+akbFBe4i+2RNjDQ731CdGsmhNmIRsth7CngSpdDVeb22s3L+eJU9jVfbESP16rL9hVcbKuZ6etZN/5M349ajozyE2SPvjcqXWLucD8jAFZ9yqZVyn+VlWy/rZTc3Zxep/xG6FrA3MzX2zrEmRsiYiik4jVhmrlXLd4z3Z11vWY1rR/aSs2zjrlF7VsVqpkyAjKafdK+v0Ykx2AH4OPfRQOeSQQ+Saa65x/poXXnhB9t13XznqqKPkS1/6kteeB7Fc/4h70003ycqVK2WTTTbJvdwPfvADOeecczQOTZ3PH6wvv/xy+dCHPpR7maefflre/e53xx5Wg2OOOUa++MUvOl325z//uRx//PHyrW99S7q63CfClyxZIh/72Mfkwx/+sBxxxBGFl1+4cKE8//zzhZc777zz5LjjjpM5c+YUXrZsRx55pPzjP/6jrF69uvCyQ0NDcthhh8mVV14pr3rVq7yu5wc/+IH86Ec/khtuuCH0UNVwmiwAAAAAAAAALXXBBRfI5ptv7vU14+Pj8qMf/Uh23nln2X///eXf//3f5eabb5ZHHnlEVqxYIePj4zI4OCjPPfec3HnnnXL++efLUUcdJXfddVfUsS5evNjpcqtXr5Z3vvOdsmTJktR/X7t2rXz+85+XY489Nup4yuT6vYqInHDCCXLttddm/vuVV14pe+21lzz99NMah1b3iU98wmsy4ayzzpIDDjjAae+XP//5z/KJT3xCdt55Z7nqqqucr8P11G8PPfSQ7LrrrvLpT39avve978lFF10kF198ccP/XGuNWHPnzpWPfexjzpdfsmSJvO51r5NTTz1V1qxZk3vZwcFB+eEPfyh77rmnfOhDH5IVK1bEHq6KSq02HZeWAQDgT6MaSStEisQWJCGnxNCoRyoBrxCi65GATdY16pGiUiSNRj0SW4qEnBZLoxIxp8fyul6FYiTkFFmxq6tNGeJ1nQrFQchpsmKLkbxTBrofRMD1KpwmK6sCyRNdhgRcp8apskIKEI3TZWXVIHliCxGNSiFk83iN682rPrKvN/I6Q+4bGt9rwG0cW4OkFR9FNIoQ6g9A3w033CBvectbvE4vVaajjz5afvCDHzR9/oYbbpCDDjrIeZze3l55+9vfLrvttptsscUWsmbNGrnvvvvkqquuCvqjcNZx2bbddlt58sknCy934YUXyjHHHJP579tss4089dRTzse39957y+tf/3rZZpttRGRis/Tf/OY38uCDDzqPkeTy5+qvfvWrctJJJ3mPvdNOO8lBBx0k22+/vWy66aYyNDQky5cvl8cee0xuueUWeeKJJxouf/nllzuVIaeffrqcfPLJ3seTZptttmk6jqSK42usG2+8UQ488MDcy6xZs0Z22WUXWbp0qccRTuyRsv/++8vee+8tm2++ucyaNUtWrFghzz//vNx5551yxx13yODgYP3ye+yxh9x///1e11EGTpMFAAAAAAAAoOXe8IY3yEUXXSTvfe9723L/DON1r3udzJ8/3+l0QiITe2n89Kc/LfmoynPooYfKd7/7XefL33HHHXLHHXeUeETNTjjhBLniiivkd7/7ndfXPfroo/Loo4+qH89b3/pWtcmQVpo3b55ccMEFcuihhzpNQhnr16+X3/72t/Lb3/62xKPTx2QIAGCjkbffiGs1Uh31r0N6cupRl2rErOj1KUR6V+df2KUcMSutfQqRvH1HnKqR8ckr9ShEBnM2aU/KK0jMfiKGSymyeuXswssU1SPJPUV8K5HQzdJj9hMJKULqX2ttzu1TisRsmm7vLSJS3rn469e5sewv0kb7gJRO6XpDNlPX2AvEPH/4FCIhJUjTGLWadx3iUyqEVB+x1xlSfBRfv/tltfaG8fqeFffY8ClCQuqPLD7fA/UH0Hrvete7pLu7W4466iinDainQk9Pj3z605+WU089VW3MxYsXy5577qm2sbimT3/603LuuefK6KjeC9gPfehDcuGFF6qN193dLT/72c9k3333za0oWmW33XaT173udU6n4mo3hxxyiHz5y1+WL3zhC1N9KKVjzxAAAAAAAAAAU+Ztb3ub3HjjjS3dFD1N3umHPve5z8nWW2+tcj3d3d1y8cUXe++Z0io777yzHH/88WrjHXPMMfLBD35QbTxjiy22kBtuuEF23HFH9bFDfOtb35LeXv9TMLeDf/7nf5ZTTjllqg+jdJQhAABIfjUi0liOmPPMh+wfYvOpRkIKkSxF5YjIhnokuRI7ZB8RI68aMer1yLj1JiRgLxGbS0Fi6hFTioTsJZLkUo+ITBQkyUpEJLsUCS1CsriUIjFFSOb1jjS/0dTYV8SFXYukrcoO2Suk8HpTfgWmohYR8SxGpqjGKLsCMY/hqXuHTNH3rLXqP0teIaJRgqQx97XM+2JKKaBVfBSxr7uM6iP9etM/X/bPP+221qw+8mQVIZr1R5q074/yA2hfe++9tzzwwAPyuc99Ts4//3wZGys5503YbLPN5JOf/KR88pOfzLzMnDlz5Oqrr5b99tvP+XRZaarVqlxwwQXyd3/3d3LxxRcHj1O2r371q/KnP/0p+jRIb3nLW+Tcc8/1Pp2Vq+22207uuOMO+cAHPiDXXHNNKdfhas8995Rzzz1XjjvuuLbZB8fHv/3bv8kuu+wi//AP/xB1H29nlCEAAAAAAAAAptzcuXPl7LPPlvvvv1+OPPJI6epKOeepkp6eHnnzm98sl156qTzzzDPyxS9+URYtWpT7NS9/+cvlv//7v4MLlrlz58ovf/nLUioJbd3d3fLLX/5S3vve9waPceyxx8qvf/1r6enRX1yVtHDhQrn66qvloosuUqt3Qh199NFy2223yb777julxxHq3e9+t/zpT3+S973vfVKtdt7UAWUIAAAO8sqRv/4nt/1GfOVVIyIbVrePzC3l6nPrkfHJFfxjM3VXErvUIyIiYwtHVK/XyKtHKmsnj22e/lJ+l4LELjjKkrye2qrWJt52LdI12JoVy2n7irSKXYt0teg02amr9GPSrwhDcycea3r7p2jT1CmoQMzeIT77NqiavNpS95Sx1AuRqrV/UIvKBFMIJAsY+1jKUuuyvucWPeaMzJy43u7Bydu+Rbe1iMjIrIn7eHV08vVCi3/R7vjxZ1t6fQD0vfzlL5fLLrtMnnrqKbngggvk8ssvlwcffDB63C222EJe//rXy5ve9CY59NBDZZNNNvEe49WvfrXce++98v/9f/+fXHDBBU77nFSrVTnyyCPlm9/85pT/sd7H7Nmz5Sc/+Ym85S1vkVNPPVUee+wxp6/bZZdd5LTTTpMjjjii3AO0HHXUUfKud71LfvrTn8r3v/99ue2222R8POw15qte9Sp5+9vfHjSpsddee8ltt90mv//97+Wqq66Su+++W/70pz/JypUrZc2aNTI4OBh0TIbPRuchtthiC/nxj38s//qv/ypnn322/PSnP5Vly5YFjTVv3jw59NBD5aijjlI+yjCVWtm3HgAAHa6syZAiZU+G5ClrMsRVWZMhecqcDHG6/hZNhiSZyZDK2NScM6hVkyFpeldN0fc8+V662vq7uPT2T83v83iXuf6pmQyptu4MHE2majLEnKaplZMhRqsmIGxpkyGtYk+GtIo9GdLS67YmQ1qNyRCgMz399NNy++23y9133y0PP/ywPPXUU/Lcc8/JwMCArF+/Xrq6umTevHkyb948mTt3rmyyySay0047ye677y6777677LbbbrLFFluoHtOyZcvkl7/8pdx4441y//33y/Lly2X16tUyc+ZM2WyzzWTXXXeV/fffX97xjnfIDjvs0PT1K1eulIGBgcLrmT17dtDEjabx8XG55ppr5LrrrpPf/e538uyzz8qKFStERGT+/Pmyww47yN/8zd/IW9/6VjnooIOaqoKhoSHnP6hvtdVWKse8fPlyuf766+Wuu+6SP/zhD/L000/L0qVLZd26dTIyMiIzZsyQOXPmyOabby7bb7+97LLLLrL33nvLvvvuKy95yUtUjqETjI+Py1133SW33nqr3H///fLoo4/KkiVLZNWqVTI4OCjValVmz54t8+bNk2222UZ22GEH2WOPPWTfffeVV73qVdLd3T49BpMhAAC0QJkTJi4rTMuaMBl32OOhzAkTl/1TxheU81fl+uRImhZMmJQ9OZJXhZQ9OdKzJnv88RbEKt392defur+EorwypOwJklZMhoznPF6VPRmStzdC91D53/tYzn4U3YPlfu9Ze1SIlD8h0orJj7yfbVmTH1M1wWGYiY48ZU2CmImOPGVOgjDRAQAAQnXeib8AAAAAAAAAAAASKEMAAGgDWuVIyHnINasRl1IkS2xB4lKJZNGoR3JLkSJKJYlGLRKzT0hsMZJXhBTRLEbyypAsWsVIzJ4hseWIRhmSV34UX79OHZFXCWTRLEPyCpDC44gsRPIKkMKvVXhbqFWBhPwMDY0SZCqrD5fiI4tmCeJSf9i0ahDKDwAAUBYmQwAAmCZ8JkzK2pzVdeIkZlIkj8+ESczkSB6XiZOoiZEiHhMnPpMjZW2W7jJBEjMJUsRnkiRkEsSFy0RJWRun+0yQ+E6GxEx85B9H8f025o/leXwmRWImPQqPw2FSJGbiI3dcj7eHPpMfZf3MRNwmQKb6tFYicRMdeVwnQUImOFz4TIIw0QEAAKYSp8kCAAAAAAAAAAAdjTIEAIAOYtcjZRUiRZIFSVmVSBG7IimrFMljVySlFiNprIokrRQpqwjJYpciZVYhWexapKwiJI9di5RVhhQeR+IuapchZZUfRewypMyiIItdiJRZgWQeg1WHlFWCZEkrROwSpNU/G7sA6eTao0iyBimr+ChiFyFUHwAAoN1RhgAAAAAAAAAAgI5GGQIAwEbo5SfqbNjuY7yn8eORue3zEmR09tQcS/fAhhXFI/N0No/2NkULq7sGNqzJ6RqemmMweibLkLHWRjINutc1ftzqCkBEpHfN1Pwe2I8NvWun7rHBFGQu+7yUKbnivktxc3cf41NQw4iIjM7YcL2aG9t7HUNf4/c+FWWhMTqr8Vi6Blt/DHf98ITWXykAAEAJKEMAAAAAAAAAAEBHowwBAAC5yqpI7NXgeTaGiiRZibgovSQpaVF4sggpvGzJxUiPx14hZVUjdhHioqxqpMwyxOf33SirEPFZ5V92IWLvuZCnrEKk7AIkWXq4KKsGsWuPPGWXIHbtkaesEoTaAwAAbIwoQwAAAAAAAAAAQEejDAEAANE06pGQleNpOq0i8S1G8kTXJBGH4lOEOI0XUY34FCGuQsuRkDKkSGg5ElOGaP3+JoWWIWWs6o8pRHzqDxcxhUhsBeJbeeTRKEB8ao88GvcZn9ojj0YJQvUBAACQjjIEAAAAAAAAAAB0NMoQAADQUnkVSRmry11Mp5pEsxRxVViU5BySdhFSJK8YKaMIcZFXjZRRhuTJq0aKypBW/37mlSFl7+mQJa8Q0S5AiuQVIkUFiGbh4aqoBNGqPFwU3X+0Kg9feVUItQcAAEA8JkMAAEDb2u2fy9m8PUY7TZy0s/HuqT6CDXrWTvxhs2tkig8koTo08f+1rqk9jqSe/va6b1cmD6d7XXsdl4hI92D7HNNY79T84X66GZnTfrfTvecwwQEAANBKnCYLAAAAAAAAAAB0NMoQAADQUVpdk1Q89iQfnt+al11dg+4roMdmtPalYKuLEVOFuGhVOWKqEBetLEdaXYZUPK6OOqT1Bch4t/v1teoUYe1YdxhUHgAAAO2PMgQAAAAAAAAAAHQ0yhAAALDR06xJfEoRF5o1iU8x4kOrLtGoRnxKEB+a1YhPGeJCqx7RLEN8qg8X7ViG2DRKEa36w6fq8KFZgFB5AAAAoNUoQwAAAAAAAAAAQEejDAEAAIiQV5VoVyKh8uqSsmoRH0VliUsxUlYR4qOoHtEuQkLkVSRFZYh27RGiUwqRogKkrLLDR14F0s5Vh0HdAQAAABtlCAAAAAAAAAAA6GiUIQAAAFNk95P09iop01jfVB+BgzZ+Rds13PhxdTj9clOtp42ri3GraOld277HWqu2fzUxPHfDMXaNtO9tSd0BAAAATZQhAAAAAAAAAACgo1GGAAAATFPTpSxJ09LapMWvdu0SJEYrK5JWlyF27RGj1aVIK+uPZMURaqrqD8oOAAAAtBPKEAAAAAAAAAAA0NEoQwAAAFA3nWsTkcjiJPJVsWYREiO0JokpQzQrjxixhUhM8aFRcMSKKUCoOAAAANDpmAwBAABAy0z3yZZO1tPGm5KHmA4bmft44Kx/mupDAAAAAKY1TpMFAAAAAAAAAAA6GmUIAAAAOho1ipt2LUPasfCg0gAAAACmH8oQAAAAAAAAAADQ0ShDAAAAAAAAAABAR6MMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2te6oPAAAw/YyPj8uaNWum+jAAAAAAZJg3b55Uq6yBBQDAYDIEAOBtzZo1cthhh031YQAAAADIcMUVV8iCBQum+jAAAGgbLBEAAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY09QwAAKnru2VQqo131jyvViiQ+yP98w+cqif+spn4+6/LJzzd8bdblzX9nXU/iP52u3+U6zaAO49WSX5ZcvpD2PTR9bcH3kXXZjOspHE9Eag1LLDK+j0rTP2def9Z11rKuP/n5JHP7ph2H63gR11+/XdSu0+Hz0vx5t9vT77+djsvn6zIuH3xbFB1TzNiul/EYw/e4pFJrvkzE95A6Xo5a2td6Xk/2MaZfpuHhVFIuU/TvIlJxGTvz87XE52tux2RdZ+Ovf/N49pjVzMs0X3/WeA0P7Yn/zhrb6fNSy/13l//OOpaq5H9t8t8br388aLz8yzeP2dVw/eOpX9flcv2SfrxdmWOOT15n4nMZx5r1+czrTHw+7dizxkheT1fD2C63S/I6M45x8mu7sr43p+8/4xgzL9P838mXasnfp+R/dyUu05VxmWriF7aa+A3okubPN162mv51ideea9d0ydEnbCYAACAbkyEAABWVkapUxpQnQ6oZkxS1rM8nvrZSTf186uRB1vVk/XfWX8kqGX9uSh3H9y+tUnyZrP9u+ENdwV9MG/heJvnpjOuvT8Z4XDbvUFwuM3n/cvtjsMt1+l6/9nUG/nfE9QRP0vh+naR/Xn0yROn71J4M8b/+KZgMyRxzCiZD0i7TcNy+kyF+11k0GZH5PUvG5zNvl6zLNN/mlazLZtwW2ddf/N9pkyG+/+09SZEyGdL4776TIfkTABOXqST+u3kyJO3fm8fLmoCQ9M8nfkaNEwkpx90wRsXh88njldTPNx572jElvq5hjOR1Jj9fPEnU1XC7NF8m+9/TJ1RcJkOyL5M/GdJ4/YnPZ9yejZdJfj7j5zL5342XlaZ/t6+zmvbkAwAAGnCaLAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0bqn+gAAAJ2h1jMuUhnb8IlqZcN/V2r5n2/4XMbXJT9fHc/4fPJrqxmfT/nv5GUb/l3SP585nsN1mkHTjsP671rKl7l/bfILkirW/4vUpOiyrpdJqGV8PkXD2LWMz0vqRXKuP+Uymbdn8r+zfv6el087FrXrdPhvSfl8xPWk3YW9jyX0uGP+u1XX43JdLrdzxuWzHwtqzZfJuGz2GAXj5ailfa3n9WQfY/plGh/aUi5T9O8iUnEZO/PztcTna27HZF1n469/83j2mNmXSbn+hu+t6NE35/IO/10z32vD/cbvvxPP5tbxFl1/1tjj6Z/PvHz6f1cTl68mxqxOXiY5XiX574nPj2eOt+G/x6R5bBGRrowxzeeT94OujLGzPp91LF0N1yOJy5vLNn9u4uvS/7vx8hs+6Mr8fCX189WUf2+4nsTRJK8z+3ZJfq3DbTH531nff8Nt0XD9GZfP+D67pPnzjZetpn9d4rXn2jWsdQUAoAiTIQAAFSOvfnGqDwHtKuPvW+3C5W/kAIBGzdMS1uQGprG0mUH+0A4AAKY/XtEAAAAAAAAAAICOxmQIAMDb6tWrp/oQAAAAAOTgNTsAAI2YDAEAAAAAAAAAAB2NPUMAAN7mzp3b9LmLLrpI5s+fPwVHAwAAAGzcVq9eLR/4wAcaPpf2mh0AgI0ZkyEAAG/VanNYOH/+fFmwYEHrDwYAAABAk7TX7AAAbMx4ZgQAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHa1Sq9VqU30QAAAAAAAAAAAAZaEMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NG6p/oAAAAbDA0NySOPPCJLliyR/v5+WbdunfT19cmcOXNks802k1122UXmz59f2vWvXr1aHn74YVm2bJn09/fL0NCQzJo1S+bMmSNbbrml7LTTTjJjxozSrj9Wf3+//PnPf5ZnnnlG+vv7pVKpyNy5c2XrrbeW3XbbTfr6+qb6EAEAADYag4ODsmTJEnnhhRdk2bJlsm7dOhkaGpLe3l6ZO3euzJ8/X3baaSd5yUteMtWHCsuKFSvk8ccfl6VLl0p/f78MDw/LrFmzZO7cubLVVlvJTjvtJD09PaUew8jIiPzlL3+RJ598UtauXSsDAwPS09Mjc+fOlYULF8rOO+8sixYtKvUYAACdhckQAJi0Zs0aeeihh+Thhx+Whx56SB555BF5/vnnmy53yy23qF7v0NCQ3HDDDXL11VfLH//4RxkbG8u9/NZbby1vetOb5JBDDpFNN900+vpXrFgh11xzjVx77bXy1FNP5V62q6tLdtttN/n7v/97Oeigg9pmcuHuu++WSy+9VO6+++7M26+3t1f23Xdfee973ysve9nLWnJcQ0ND8uEPfzj1dn3zm98sX/jCF1pyHAAAAGUbGxuThx9+WP7whz/IH/7wB3nsscfk2WeflfHx8cKvnT9/vhxwwAFyyCGHyG677Vb6sa5cuVI++MEPyurVq5v+7ZhjjpFjjz221Ou/55575IQTTpBardb0b2eccYa86lWvKvX60yxdulTuuOMOuffee+WBBx6QFStW5F6+t7dXdt99d3nrW98qBxxwgNrEyOjoqNx2221y9dVXy7333isjIyO5l998883ljW98oxx66KGyxRZbeF3XfffdJ5/+9KdjDjfXVP0sAQDZmAwBsNH6y1/+Irfffrs88sgj8tBDD8lzzz3X8mO4++675etf/7o8++yzzl/z1FNPyXnnnScXX3yxfOQjH5G3v/3tUq36n/VwfHxcLr/8cjn33HNl/fr1Tl8zNjYmDz74oDz44IPygx/8QE488UR5zWte433dWvr7++X000+Xm2++ufCyw8PDcuONN8pNN90kRx55pHzyk58sfTXbeeedVzjBBAAA0AmeeeYZ+djHPhb0tatXr5YrrrhCrrjiCtl///3lH//xH2XzzTdXPsINvvGNb6ROhLTCunXr5PTTT0+dCJkKl156qdx4443ypz/9yevrhoeH5b777pP77rtPNt98c/n85z8f/b7g4Ycflq9+9avy6KOPOn/NCy+8IBdffLFccskl8r73vU8++MEPSm9vb9RxaKlUKlN9CAAAC3uGANhoXXXVVXLOOefIjTfeOCUTIZdffrl89rOf9ZoISVq/fr18+9vfllNPPbWwJrGNjY3Jv//7v8sZZ5zhPBFiW7p0qZx44onyy1/+MujrY61YsUI+/vGPO02EJNVqNbnsssvkxBNPlMHBwZKOTuT3v/+9/OIXvyhtfAAAgE50yy23yLHHHisPPfRQKeNfd9116qW3j+985zuydOnSKbt+23e+8x3viRDbCy+8ICeeeKKcffbZwWPceuut8vGPf9xrIiRpdHRUfvSjH8mJJ54Y/P5GU19fn+y4445TfRgAAAtlCABMgRtvvFH+8z//M/XfdthhB9lrr71k6623ljlz5sj69etl6dKlcv/998v999/ftIrshhtukHnz5skJJ5zgfP1nnnmmXH/99U2fr1Qq8upXv1r22GMPWbx4scyYMUP6+/vliSeekDvvvFOeeOKJpq8544wzZMGCBXLQQQc5X3+s4eFhOemkk+TJJ59s+re/+qu/kte//vWy5ZZbSq1WkyVLlsgNN9wgS5YsabjcfffdJ//v//0/+fKXv6x+fIODg/KVr3zF6bQQAAAAnahSqcg222wj2223nWy11Vay+eaby6xZs6Snp0fWr18vy5Ytk0cffVTuvPPOpj9er1mzRv7pn/5JzjnnHNl6663VjunFF1+UM844Q208X3feeadceeWVU3b9PhYvXiyveMUrZLvttpMFCxbI7Nmzpb+/Xx5//HG58847U+vnn/zkJ9LV1SUf/ehHva7rwQcflC9+8YsyOjra9G9bbrml7LPPPrL99tvLnDlzZHh4WJYtWyYPPvig3HnnnU2Lwu6//375t3/7N/na175WeL0zZ85UmbBYsmRJ0334wAMPlDlz5kSPDQDQxWQIAFh6enpku+22k1122UVuvPFG6e/vVx2/v78/9U3YokWL5POf/7zss88+mV/7l7/8RU477bSmlXK//vWv5eCDD5a//uu/Lrz+P/7xj/KrX/2q6fO77767/PM//3PuG87bbrtNvv71rzedQ/jMM8+U17zmNTJ37tzC69dw7rnnysMPP9zwue7ubvmnf/onOfTQQ5uS9A9/+MNy1VVXyX/+5382vGG69dZb5Ve/+pUcccQRqsd3zjnnNEy+7LbbbtEr7gAAANpZpVKRrbfeWvbee295zWteI7vvvrvTH4OHhobkF7/4hVx44YUyPDxc//zAwICcfvrpctZZZ6mdbujrX/+6rFmzpv5xK1+j9ff3y1e/+tX6x11dXbLDDjvII4880pLrd/GSl7xE3vzmN8sb3/hG2WqrrTIvV6vV5JZbbpFvfvObsnLlyoZ/u+iii+Rv/uZvnPfKGB0dlW984xtNEyFz5syRz3zmM3LwwQdn/vyff/55+epXvyp33XVXw+fvuOMOuf766+Xv/u7vcq/7ZS97mXz/+993Os4sQ0NDcuSRRzZ9/u///u+jxgUAlIPTZAHYqJk3IYcccoiccMIJcs4558i1114r559/vnzuc58rZTXP9ddf3zSZMG/ePDnzzDNzJ0JERLbffns544wzZJdddmn4fK1Wk5///OdO1/+zn/2sqS7Zbbfd5Fvf+lbhyrv99ttPzjjjjKbbZeXKlXLdddc5XX+sJ554IvXUXKeeeqq89a1vTX2zVK1W5bDDDpNTTz216d/OO+88Wbt2rdrx3X///XLZZZfVP95qq63kmGOOURsfAACgHW299dZy8cUXy/HHHy9777238+vovr4+ef/73y/f+MY3mvZze/DBB+WBBx5QOb5rr71Wfve739U/fsUrXiGHHXaYytguzjrrLHnhhRfqH7///e+X7bffvmXXn2fnnXeWr3zlK3LppZfKsccemzsRIjIx8XXAAQfIeeedJ4sXL276929961vO13333XfLX/7yl4bP9fT0yNe+9jV54xvfmDsRtnjxYvnqV78qr33ta5v+7Wc/+5nzMcS4+eabmxbPbbXVVvLKV76yJdcPAPDDZAiAjdb73vc+ufbaa+XCCy+Uk08+WY444gjZddddS99UO+0cxUcffXThmw5j5syZcuKJJzZ9/o477pCRkZHcrx0ZGZH//d//bfr8Zz/7Wenr63O6/m222UY++MEPNn3+tttuc/r6WD/+8Y+bcvi3vvWtst9++xV+7ete9zo59NBDGz63du1atX1P1q9fL1/5ylfqk02VSkVOOukk59sWAABgY7XHHnvIO9/5zqbP33jjjdFjL1++XM4888z6x319fXLSSSe1bIPr22+/Xa655pr6x9tuu60cffTRLbnuIl/+8pfl/PPPl3333df79th8883l1FNPbfq6xx9/3Ll4ufXWW5s+d8QRR8juu+/u9PVdXV1y4oknNm2a/tBDD8myZcucxohx9dVXN32OKgQA2heTIQA2WosWLZqSP1KnnV/Xd7+NXXbZpaniMOdezrNs2bKm89lus802stNOO3ld/8EHH9z0uaefftprjBBr166VG264oeFz3d3d8uEPf9h5jA9/+MPS1dXV8Lkrr7xSZX+P733ve/Lcc8/VPz7iiCNkjz32iB4XAABgY/DGN76x6XNpe9b5+upXv9qwev/YY4+Vv/qrv4oe18XatWsb9q+oVqty8sknl74Ay9XrXve6qK/fddddU8uM22+/3enr0/YA9H1vtNlmm6WWGGW/P1myZIncf//9DZ/r6uqSN7/5zaVeLwAgHJMhANBiq1atavh43rx5snDhQu9xttlmm6bP2efsdfn3tHGKbLrppqmnyirbzTff3FS/vO51r/O6/TbddNOmimTZsmXRp2C455575Ne//nX945e85CXyD//wD1FjAgAAbEy23HLLps+9+OKLUWNeffXVDWX0rrvuKu9617uixvRx5plnyvLly+sfv+Md75DddtutZdffCmmTIc8++6zT19rvjUQmyhlfIe+NYl199dVNpx9+7WtfK5tuummp1wsACMdkCAC0WHd3d+7HrtJWk9l5eNF1Z43jwr6uouvWcOeddzZ97oADDvAe58ADD2z6XNrpw1ytW7dOTj/99IY3Q5/73Odk1qxZwWMCAABsbJIbqBsxBcULL7wg3/nOdxrGOvnkk5sq4bLcdttt8tvf/rb+8ZZbbikf/ehHW3LdrbT55ps3fc7eIzFL2vuTkPdHIe+NYoyNjcm1117b9Hn7lLwAgPbCZAgAtNhLX/rSho9Xr14tQ0ND3uMkN2AUmUjuX/KSl+R+zUte8pKmc/ra47gYGhqS1atXN3xuiy228B7H1+9///umz73iFa/wHifta9LGdvWd73xHli5dWv/4kEMOkb322it4PAAAgI3Rn//856bPxbzGtE+P9cEPflC222674PF8rFmzRr7+9a/XP+7kveTS3su4TkTY741Ewt6fpH1Nme9P7rjjjobiR2TiNMx77713adcJAIjHZAgAtNiee+7Z8PHY2Jjcc889XmOsWrWq6c3izjvvLHPnzs39uvnz58uOO+7Y8Lk///nPsmbNGq/rv/POO5s2MX/1q1/tNYavZcuWNa0wW7x4sSxatMh7rM0220wWL17c8Ln/+7//a/qeXNx1111y5ZVX1j9etGiRfPKTn/QeBwAAYGN3ySWXNH3uNa95TdBYV155ZUNVvOOOO8r73//+4GPz9a1vfavhtevhhx+euq9FJ3jmmWeaPud6qij7vZHIxESDj5GRkab3UwsXLpTtt9/eaxwfaRunv+Utb2lZdQQACMNkCAC02OGHHy7VauPD7/e///2mvTDynH/++U1/uH/HO97h9LVHHHFEw8ejo6Py/e9/3/m6h4eH5cILL2z4XFdXlxx++OHOY4RI23g+7bzSruyVYoODg96r0AYGBuT0009v+NwJJ5xQOCkFAACADUZHR+Wb3/ym3H333Q2fX7BgQeqm6kWef/75htNjdXV1yUknnRR8elpft956q1x//fX1jxcvXiwf+9jHWnLdU+Hmm29u+tyuu+7q9LVvfvObZebMmQ2f+8lPftJQ9BS59NJLm/YHOfLII5uKeC0rVqyQ//mf/2n4XKVSkb//+78v5foAAHqYDAGAFtt6663l3e9+d8PnHnnkEfnSl74kAwMDuV87NjYm559/vlxxxRUNn3/1q18tBx98sNP1H3LIIbL77rs3fO6yyy6TH/7whzI+Pp77tWvXrpV//dd/lccee6zh88ccc0zpp8l67rnnmj5XdFqwPHYZIuK+0aPx7W9/u2EC5aCDDmranB0AAADpnnvuObnsssvk6KOPll/96lcN/1apVORzn/tc0x/Ki9RqNTn99NNl3bp19c+95z3vkV122UXjkAutXr1avvGNbzR8rpP3knv44Yfl4YcfbvhcV1dX6qbqaebOnSsf//jHGz63bNky+fznP990Gqo0v/71r+X8889v+Ny2224r73nPe5yuP8S1117btDDtla98ZUtOGwwAiNOaZREAgAbHHXecPP/883LDDTfUP3frrbfKUUcdJYcddpjstddess0228isWbNkcHBQli5dKvfff79cccUV8vjjjzeM9bKXvUxOPfVU55VPXV1d8uUvf1k+85nPyBNPPFH//AUXXCA333yzHHbYYbLHHnvI4sWLpbe3V9atWydPPvmk3HHHHXLllVc2rbp661vfKh/84AfDbwxHaZswpm3W6Crta+3vLc///u//yjXXXFP/eP78+fLpT386+HgAAAA60cc//vGGPSVqtZoMDg7KypUrGyYsknp6euSzn/2svO51r/O+vl//+tcNhcnWW28tH/rQh/wPPNA3v/nNhtetb3nLW4JP9dXuarVaQ4Fj7LfffrJgwQLncY444ghZsmSJXHrppfXP/eEPf5APfvCDcuihh8prX/ta2W677WTOnDkyPDwsy5cvl9///vdy9dVXyx//+MeGsbbcckv52te+VureLMn3AAYbpwPA9MBkCABMga6uLvniF78ou+66q1x44YX1N4IvvviiXHjhhU2noUrT29srb3vb2+QjH/mI8waFxsKFC+Xss8+Ws846S6655pp6EfLYY4/JN7/5TacxNtlkE/mHf/gHOeSQQ7yuO1Tavia+KwWLvtbeFD7L2rVr5Wtf+1rD5z7zmc94vekDAADYGPzlL3+R9evXO19+zz33lE9+8pOy0047eV/Xs88+K9/73vfqH1erVTnppJO8XyuHuummm+TGG2+sf7zpppvKpz71qZZc91T4xS9+Iffff3/D57q7u+XDH/6w91jmZ37WWWfJqlWrRESkv79fLrnkktS9ZGxdXV3ypje9ST71qU/JnDlzvK/f1QMPPNB0+t65c+fK/vvvX9p1AgD0MBkCAFOkUqnIu9/9bjnkkEPkmmuukSuvvDJ1Xwzb7Nmz5b3vfa8ccsghQZuHG7NmzZLPf/7z8t73vleuueYaueKKK2Tt2rWFX7flllvKBz7wATnooINKXXFlGxwcbPpczBvbtGNPrlrMc+aZZ8qyZcvqH++3335y0EEHBR8LAADAxm6HHXaQz3zmM7LHHnsEfb05PVZy4uVtb3ub/PVf/7XWIeZatWpV06KiTt5L7o9//KOcffbZTZ9///vfL9tuu23QmG984xtl//33l9/+9rdy9dVXy0MPPVT4Nb29vfL2t79dDjvssKj9BF2lbZx+8MEHt/R9EQAgHHuGAMAUGhoakuuuu07+67/+y2kiRGRi0+6f/OQnct555zWc5irE8uXL5eqrr5brr7/eaSJERGTJkiVywQUXyEUXXVRftdUKo6OjTZ+LedOR9rUum9j/7ne/k9/+9rf1j+fMmSMnnHBC8HEAAABA5P/+7//kM5/5jHzxi19s2p/OxWWXXSb33Xdf/eMttthCjjvuOM1DzPWNb3yj4bXxG97whqDTfE0HS5culX/5l39peu28++67y9FHHx087ujoqNxyyy3yX//1X/LII484fc3w8LD88pe/lLPPPlv+9Kc/BV+3i4GBAbnpppuaPs8psgBg+qAMAYApcs8998hpp50mzz//fNO/VatVWbhwocyZM0cGBwdl1apVDWXEunXr5De/+Y3813/9l7zvfe+TD33oQ9Ld7f6QXqvV5LLLLpOzzz47tYbo7e2VTTbZRGbNmiX9/f2yYsWKhk0Cly1bJj/60Y/k8ssvlxNOOGFaVhGue6wkrVmzRr7+9a83fO5Tn/pUVKEDAADQyZKLSEQm/uDd398vy5cvl4ceekhuvPFGufvuu6VWq8n/3969B0VV/38cfyELKC6gkJqWdBFM7eKF0Yy+qJmXLhSVY03TdNdqbIxuZplEmkpiTOk4Od0spxlz0ulCmqmUGZGpmKVpGVEpmlhIKiC6sOzvDwd+Hs4B9oJLHZ+PGf/Y99nPZYEZz2ff5/N5u91urV+/Xl999ZXuvfder+vS7d+/X6+99lrD6/ri6+3bt2/Vz9KUvLw8bdiwoeF1TEyMHn300aCMHWxHjhzRlClTTPX8YmNjNWPGDJ/WJKcqKirSrFmzTPURT+0/KipKNTU1Onz4sKHejMvl0oYNG7RhwwalpqZq8uTJAR2n25S8vDzTbvU+ffooISGh1ccCAJweJEMAoA2sXbtWWVlZhgSDJA0YMEDjx4/XwIEDDWfdut1uFRUVafXq1Vq1apVcLldD/N1339W+ffuUkZHh1eLD4/EoJydHubm5hnhoaKhGjRqlG264QX379lVYWFjDtePHj2v79u368MMPVVBQ0BCvqKjQjBkzVF5ervHjx/v1s/CW1Wfz9lgrK1ZtW/r5vfLKKzp06FDD68GDBwetZgoAAIAdOBwOderUSZ06dVJCQoJSU1NVVFSkrKyshh0hbrdbb775po4ePdpizY26ujplZWUZvqROTU1VUlLSaf0c9crLyzV//nxDLD093Za15KqqqjRlyhTt2bPHEHc6ncrOzlbXrl396nfr1q16+umnTffniYmJuu222zRkyBDDz9Pj8eiPP/5QXl6ePvzwQ1VWVjZcW7lypfbu3avs7GxFRkb6NZ+mWB2Rdf3117fqGACA04tjsgAgyHbs2GFKhISGhurxxx/XggULlJKSYir6Fxoaqj59+uixxx7T66+/bjoPd/369V4VXZekpUuXmhIhnTt31vz58/Xss8/qsssuMyRCJKl9+/YaMmSIsrKyNGvWLNNTdgsXLlRhYaFX4/vL6sm++qSQP6ySIc09PZifn6+8vLyG1x06dNCUKVP8Hh8AAAAn1RfO7tevnyH+/vvvGwqSW1mxYoW2b9/e8LpLly6aNGnSaZmnlZdeeklHjhxpeJ2cnKxRo0YFbfxgqa6u1tSpU011PDp06KC5c+eqd+/efvW7f/9+TZs2zXRvftddd+mNN97QmDFjTImlkJAQXXDBBZo4caLefvtt9e3b13B9+/btysnJ8Ws+TSkuLjZ99vbt29vydw0AdkYyBACCqK6uTnPnzjXtCHn44Yd10003edXHhRdeqJycHFMxxqVLl6qkpKTZtqWlpXrrrbcMsbCwML344ou67LLLvBp/2LBhysjIMMQ8Ho/mzZtn+lytKTo62hQ7tUCmr6zaxsTEWL73yJEjpgXVQw89pLPPPtvv8QEAAPD/IiMj9fzzz5vqui1atMiydpwklZSU6I033jDEnnzySXXs2PG0zfNUa9eu1ddff93w2ul06sknnwzK2MF04sQJPfPMM4akk3SyBt+LL74YUJH6nJwc0335rbfeqgkTJqhdu5a/surWrZuys7PVo0cPQ3zdunXaunWr3/NqzGpXyIgRI4L2twYAaB0kQwAgiDZu3GgqlN6rVy+NGzfOp3569OihO++80xBzu9364IMPmm23YsUK02LyxhtvND1N1ZKUlBQlJycbYgcOHDAsBltbbGysKfbXX3/53Z9V286dO1u+96233jKci9y/f3+vk1cAAADwztlnn60xY8YYYqWlpdqyZYvl+xcsWGDYUTBmzBhdccUVp3WO9Vwul+l4rEmTJtmulpzL5dKzzz6r7777zhAPDw/XnDlzNHDgQL/7Li4uNu0uj42N1YQJE3zqJyYmRg899JApvnz5cr/ndiqXy6V169aZ4hyRBQD/PdQMAYAg2rhxoyk2duxYv4p5jx07VosWLZLH42mIbd68udk23377rSl2zTXX+Dx2fbtvvvnGENu8ebOGDx/uV38t6d69uylmVXzeW1ZtrcaQpLKyMsPr0tJS3X///V6PZbULpaCgQPfdd58hFhcXp3nz5nndLwAAgN0MHTpUn3zyiSG2bds2yyTHqbXcJGnnzp2m+6vmHD161BTLzc01PeBz0UUXaerUqYbYiRMnVFFRYYh98MEHLT6cdCqr+9Hs7GxT8e+0tDSlpaV53W9rqamp0fTp001rjLCwMM2aNUuDBw8OqH+rtdGIESP8Knz/v//9T06n01A/ZNu2baqtrfW7qHu9/Px8w1FokhQfH6/+/fsH1C8AIPhIhgBAEBUXF5tiF198sV99de7cWT169ND+/fsbYiUlJXK5XAoPDze93+VymXalhIWF+X2+b+MznSXpt99+86svb/Ts2dMUO/Wz++rPP/80vI6IiFC3bt28anvw4MGAEjHSyeLzjRfQpy7eAAAAzkRWx5A2vm9rSiD3hvXKy8sNO4Ilmer5NaW+AHwgrD5D46RPMNTW1iojI8P0MJXD4dDMmTM1dOjQgMewWjtYrTG84XA4dNFFFxmOxqqurtaff/6p+Ph4v+coUTgdAOyEY7IAIIisnj5rXBDQF1ZtrcZoKh4dHe3XrhRfx24NXbt2NR1jVVpaatq14Y2ysjKVlpYaYgkJCQoNDQ1ojgAAAAiM1UM9x44da4OZnLlqa2uVmZlp2gXucDg0Y8YMXXnlla0yTuPdFlLw1kbeKi0tNR0R5nA4NHbs2ID6BQC0DZIhABBEVou7U8859tXx48dNsaa2lTcuRhno2FZt/dnS7gurIu87duzwuZ/GxR+b6hsAAADB9c8//5higXxBDt/U1tbq+eefV35+viEeGhqqzMxMpaSktNpYbbk28tann36quro6Q+yKK66wrGcIAPj345gsAAgiq4XcgQMHlJCQ4HNfbrfbdFRTWFhYk9v4nU6nQkND5Xa7G2JVVVWqqKhQVFSUz+NbHVcQExPjcz++uPzyy7VhwwZD7Msvv9RVV13lUz+N+6jvuylz5szxqf/Gtm3bpvT0dEPsmmuu0bRp0wLqFwAAwG527dplijX1xfPixYsDGmv16tXKysoyxO655x6v6o5ERUXpq6++Cmj8OXPm6LPPPjPE5s+fH1BR8kC43W698MILps8VGhqq5557rtVrAza1NvKX1fokkERaXV2dVq9ebYqnpqb63ScAoG2xMwQAgujcc881xayKmnvjxx9/NNWYsOq/XkhIiM455xxDzOPx+D2+VTuruh6tadiwYQoLCzPE8vPzLZ8gbEp5ebnpSbezzjpLAwYMaI0pAgAAwE8ej0eff/65Ke5vjT14r66uTrNnz9b69esN8dDQUE2fPt3nh4+80Zpro4MHD+r33383xJxOp+mYXV8UFhaaHj7r0qWLhgwZ4nefAIC2RTIEAILI6sZ5zZo1fhXjXrJkiSk2ePBgn8dfunSpYbeINyorK7VixQqv+m9N0dHRpoVYbW2tT08FLl68WLW1tYbYDTfcoHbt+C8RAACgLa1cuVJFRUWGWHh4eLM7eBG4uro6ZWVlKS8vzxBv166dnnnmGV199dWnZVyrtUNhYaHl7qCWWK2NBg0aFFBNwJUrV5pi1157LXUGAeA/jG9+ACCIkpKSFB0dbYi5XC5lZGT4VBhy8eLFKiwsNMVHjhzZbDur68XFxXrllVe8HrumpkaZmZmmgocxMTFKSkpqsf3q1as1bNgww79HHnnE6/HvuOMO0wIkNzfXVODRSkFBgXJzcw0xp9OpcePGeT0+AAAAjH755Re99957ljUbvLV+/Xq9/PLLpvh1112nyMjIQKZne4HcX3s8Hs2bN09r1qwxxOsTIWPGjDkdU5YkJSYmKj4+3hSfMWOGysrKvO7n008/tUxcBJLEOXz4sAoKCgyxkJAQXXfddX73CQBoeyRDACCIIiMjdeedd5riP//8sx544AH98MMPzbYvKyvTzJkz9c4775iuDRs2TP369Wu2/SWXXKLk5GRT/OOPP9bUqVMtz9k91e7duzVp0iRt2bLFdO2ee+457QXUJemCCy7QzTffbIh5PB5Nnz5dK1eulMfjMbXxeDz65JNPlJGRYbo2YcIEU4IKAAAA3quqqtKiRYt022236dVXX9XPP//sddvffvtNM2fOVGZmpmn3bmxsrCZOnNja08UpXn75Za1atcoQa9eunaZOnaqxY8ee9vGtfr8HDhzQxIkT9fXXX1ve29c7evSoFi5cqLlz55qu9enTRyNGjPB7XmvXrlVNTY0hNmjQIPXo0cPvPgEAbY8C6gDOaFOmTNGhQ4eavG71RFJLBRWzs7N11llnNXn9lltuUUFBgb7//ntDfO/evZo8ebISExOVlJSk+Ph4OZ1OHT9+XGVlZdqxY4e2bNliWiRKJ8+unTx5crPzqpeenq7du3ebPvfGjRu1efNmDRw4UP3791fXrl3VoUMHVVVVaf/+/dq2bZt27txp2WdSUpLS0tK8Gr81PPjgg/rhhx8MxyjU1tYqOztby5Yt08iRI9W9e3dJJwspfv7559q3b5+pn+TkZFNiBQAAAP75559/tGzZMi1btkyxsbFKTExUYmKi4uLi5HQ6FRERoerqalVUVOj333/Xrl27THUe6jmdTs2ePVtRUVFB/hRnjh07duijjz4yxcPDw7V8+XItX77c777j4uI0b968Ft83fPhwjRo1ynRE16FDhzRt2jT17NlTgwcP1oUXXqioqCjV1NSovLxcu3bt0qZNm1RdXW3qs2PHjnrqqacUEhLi9/wbJ4gkCqcDgB2QDAFwRtuzZ49KS0t9avPrr782e73xE0SNhYWFKSsrS0888YTlebhFRUWms5KbExsbq5ycHHXr1s2r93fv3l0vvfSSHn/8cVPhcbfbrcLCQssjuJpyySWXaPbs2XI4gvdfSkREhLKzs5Wenq69e/caru3du9dy50xj/fv3V2ZmZkCLJAAAAFgrLy/Xpk2btGnTJp/bdunSRbNmzVLfvn1Pw8xQz+ohK0k6fvx4i2uellRWVnr93mnTpqm6utp0LJUklZSUqKSkxOu+IiMjlZWVpYSEBK/bNLZz505Tki46OlopKSl+9wkA+HfgmCwAaAMdO3bUwoULdffddwdUgO+qq67SkiVLdP755/vUrlevXlqyZImGDx/u99gOh0P33nuvFixY0CbnOMfFxWnRokU+L0pCQkKUlpamnJwcdejQ4TTNDgAA4MwRHh7eKkWlHQ6Hxo8fr3fffZdEyBnE4XBozpw5Sk9PD+j+fNCgQXrnnXc0YMCAgOZjtStk9OjRCg8PD6hfAEDbY2cIALQRh8Oh+++/X2lpaVq1apXWrVunkpKSZs/FlU4mAVJSUpSWlqZevXr5PX6nTp30wgsvqKioSLm5ucrPz1d5eXmzbUJCQtSzZ0+NHj1aqampiouL83v81hAVFaXZs2dr8+bNev/997V161a53W7L94aHhys5OVm33347i2sAAIBWdPHFF+vjjz/Wli1bVFhYqF27dmnPnj2qq6trsW1ERIR69+6tkSNHatSoUYqJiQnCjPFvExISonHjxmn06NH67LPPtGbNGhUXF7f4NxQTE6OhQ4fqxhtv1KWXXhrwPKqrq/XFF1+Y4hyRBQD2EOJp6Vs3AEDQVFRUaPfu3fr7779VWVmpY8eOKSIiQk6nU506dVJiYqLXx2H54+DBgyoqKtLhw4dVWVmpEydOKDIyUk6nU127dlXv3r3/1ec2V1RU6KefftK+fftUVVUl6eSW9p49e6pfv35BKfAOAACAk18q79u3TwcOHFB5ebmqq6vlcrnUvn17dezYUU6nU/Hx8TrvvPNaZVcJ7OfYsWP65ZdfdPDgQVVWVqqqqkphYWFyOp2Kjo5WQkKCzjnnnLaeJgDgP4RkCAAAAAAAAAAAsDVqhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGyNZAgAAAAAAAAAALA1kiEAAAAAAAAAAMDWSIYAAAAAAAAAAABbIxkCAAAAAAAAAABsjWQIAAAAAAAAAACwNZIhAAAAAAAAAADA1kiGAAAAAAAAAAAAWyMZAgAAAAAAAAAAbI1kCAAAAAAAAAAAsDWSIQAAAAAAAAAAwNZIhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGyNZAgAAAAAAAAAALA1kiEAAAAAAAAAAMDWSIYAAAAAAAAAAABbIxkCAAAAAAAAAABsjWQIAAAAAAAAAACwNZIhAAAAAAAAAADA1kiGAAAAAAAAAAAAWyMZAgAAAAAAAAAAbI1kCAAAAAAAAAAAsDWSIQAAAAAAAAAAwNZIhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGyNZAgAAAAAAAAAALA1kiEAAAAAAAAAAMDWSIYAAAAAAAAAAABbIxkCAAAAAAAAAABsjWQIAAAAAAAAAACwNZIhAAAAAAAAAADA1kiGAAAAAAAAAAAAWyMZAgAAAAAAAAAAbI1kCAAAAAAAAAAAsDWSIQAAAAAAAAAAwNZIhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGzt/wAghLUgbfLN0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "ts.plot_ts(skycoord = coord)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "8dcd6979-4e6c-400a-a4c1-05e406b6dabd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AADAKElEQVR4nOzdeZiVZf0/8M8Z9lVQZBFFcN/Afcs9BcWVNL5lZqFpLqmVS1mZa4WZlX7NvmqWlFkqlruYpLmDioo7IIoLAoIgm+zM8/vD4MfMeQbOzJyZc+aZ1+u6uC7P/Zznfu4zc2bA53Pe9yeXJEkSAAAAAAAAGVVR6gUAAAAAAAA0JMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAam3EiBGRy+Xy/gAAAEA5alnqBQAAhXv//ffj1Vdfjffeey+mTZsWCxcujMWLF0f79u2ja9eu0bVr19hwww1jp512im233TYqKnzuAYDPzZ49O+6///548skn49VXX40PPvgg5s+fHytXroxOnTpF7969Y7vttosDDzwwjjrqqNh4440bbW0rVqyI0aNHx6hRo+Kll16KyZMnx7x581avbdNNN43+/fvHoEGD4sgjj4z11luv0dZWTOPGjYv7778/xo4dGxMmTIg5c+bE4sWLo2PHjtGzZ8/VX/9jjjkmNt100wZZw0cffRR33nlnPPDAA/HOO+/Exx9/HG3atImePXvGzjvvHMccc0wMGTIk2rZtW9Trzpo1K7beeuv49NNPV499/etfj1tvvbWo1wEAqEkuSZKk1IsAANItXbo0Hn744bjrrrvi0UcfjenTpxd8bseOHWPXXXeNQYMGxQknnNBgN1VonkaMGBEnnXRS3rh/WkL5mTRpUlxxxRVxxx13xPLlyws6p0WLFnHMMcfEz372s9h2220bbG0rV66M3//+93HVVVfF1KlTCzqnY8eOccopp8Qll1wSXbp0abC1FdOoUaPi4osvjnHjxhX0/IqKijjmmGNi+PDhsfXWWxdlDcuWLYsrr7wyrrzyyli8ePFan9uvX7+45ppr4uijjy7KtSMivvWtb8Wf/vSn1Y87deoUkyZNip49exbtGgAAa6MYAgBlaP78+XHdddfFddddFx9//HG958vlcnHAAQfEKaecEscff7zESAMYMWJEvPfee1XGdtpppxgyZEhJ1tPQFENoTubOnRvXXHNN3viwYcOib9++jb6eQlVWVsYVV1wRv/jFL2LZsmV1mqNVq1Zx8cUXx09+8pOib4U3ZcqUOO644+Lll1+u0/k9evSI2267LQ4++OCirquYFi1aFKeeemr87W9/q9P5rVu3juHDh8e5555br3UsXrw4jjvuuBg1alStzrvqqqviggsuqNe1IyKee+652Hvvvav8HXH11VfHeeedV++5AQAKpRgCAGXmr3/9a1xwwQUxY8aMBpm/f//+8ctf/jIGDx7cIPM3VwceeGA88cQTVca++c1vxogRI0qzoAamGEJz8t5770W/fv3yxv/zn//EgQce2PgLKsDixYvjy1/+cjz00ENFmW/o0KHxt7/9LVq2LM5Oyy+//HIMHDgwZs+eXa95WrZsGX/84x/jG9/4RlHWVUxz586NQw45JF588cV6z/Xtb387brjhhjoXpIYMGRL33ntvnc694YYb4rTTTqvTuRGfF+X23HPPKqmY7bbbLsaPHx+tWrWq87wAALXlY6EAUCYWLlwYxx9/fJx44okNVgiJiHjttdfi8MMPjx//+McNdg0ASidJkhg6dOhaCyEtWrSIXXfdNY466qj4yle+EgceeGB069atxuePHDkyvvnNbxZlfe+8804ceuihNRZCcrlcDBgwIL785S/H8ccfHwcccEB07Ngx9bkrVqyIk08+Oe6///6irK1Yli5dGoMHD15rIaRv375x9NFHxwknnBCDBw9e63ZRN910U/zwhz+s01pGjBiRVwjJ5XLx7W9/O1566aVYtGhRzJo1K+68887YYYcd8s4/99xz4+23367TtSMibr755rztwa677jqFEACg0WmgDgBlYNasWTFo0KAYP378Wp+34447xqGHHhp77713bLHFFtG7d+/o0KFD5HK5WLhwYUybNi3efvvtGDNmTDz22GNr3Zt82rRpRX4VAJSDyy+/PB588MHUY126dIlLLrkkTjzxxNhggw2qHFu5cmU89dRT8dOf/jSefvrpvHP/9re/xe677x7f+9736ry2ZcuWxVe+8pWYNWtW3rFVN+h//OMfR58+faocW7x4cdx2223xk5/8JGbOnJm37m984xsxfvz4sumPdf7558fYsWNTjx100EExfPjw2HPPPauMJ0kSo0ePjgsvvDB167Bf/epXsc8++8QxxxxT8DqWL18eP/rRj/LGb7nllirFrXbt2sXQoUPjqKOOisMPPzz+85//rD62aNGi+OlPfxq33357wdddZc6cOXkfvhg6dGh88YtfrPVcAAD1ZZssACix2bNnx3777RdvvfVW6vEWLVrE17/+9bjgggti++23r9XckydPjj/+8Y/x+9//PubPn1/lWJa3cCqF5rZNFjQnTWmbrOeeey6+8IUvRGVlZd6xnXfeOUaNGhU9evRY6xxJksTw4cPjJz/5Sd6xtm3bxhtvvBGbbbZZndY3fPjw1GRiq1at4vbbb49jjz12redPmzYtDjvssHjttdfyjh1xxBHxwAMP1GldxfTss8/GPvvsk3rs/PPPj6uuumqt210tW7Yshg0bFn//+9/zjvXs2TMmTZoUnTp1Kmgtt99+exx//PFVxoYNGxa33HJLjefMmjUrtthiiyr/bmjVqlW8//770atXr4Kuu8oZZ5wRN9xww+rH7du3jwkTJsQmm2xSq3kAAIrBNlkAUELLly+P4447rsZCyPbbbx9jx46NESNG1LoQEhGxxRZbxPDhw+ODDz6Ic889t2h7vQNQni677LLUQshWW20Vjz766DoLIRGfJzR+/OMfx6WXXpp3bMmSJXVu5j1r1qz4xS9+kXrshhtuWGchJCJio402in/961/RvXv3vGMPPvhgjB49uk5rK6bvf//7qeMnnnhi/OpXv1pn34/WrVvHrbfeGgcddFDesRkzZsSVV15Z8Fr+8Y9/5I399Kc/Xes5G264YXznO9+pMrZ8+fK45557Cr5uRMRLL70UN910U5Wxiy66SCEEACgZxRAAKKGLLrooL02wyuGHHx5jx46N3Xbbrd7XWW+99eLXv/51vPjii7HtttvWez4Ays9LL70Uo0aNyhuvqKiIW265Jbp27Vqr+S666KK8rZwiIu67777UZMa6XHfddbFw4cK88cMPPzxOPvnkgufp1atX/O53v0s9Nnz48Fqvq5gee+yxeP755/PGe/bsGddff33B87Ro0SJGjBgR7dq1yzt2/fXXx4IFCwqaZ8yYMVUe77rrrgWler7yla/kjdW07VeaJEnirLPOqlKY23LLLeO8884reA4AgGJTDAGAEnn++efj17/+deqxL37xi/HPf/6zxoaxdTVgwIAYN25cDB06tKjzAlB6adsqRXy+fdQXvvCFWs/XokWLuOKKK/LGkySJa6+9tlZzrVixIm688cbUY7VJOqwydOjQ2GWXXfLG//Of/8Sbb75Z6/mKpaYizU9+8pOCt7ZapU+fPnHGGWfkjc+bNy9uvfXWdZ7/ySefxEcffVRlbI899ijo2v37988rxKT1ManJn//857xCzLXXXhutW7cueA4AgGJTDAGAEvn+978fK1euzBvfeOON44477og2bdo0yHXbt28fd9xxR3zrW99qkPkBKI3HHnssdfy0006r85yHHHJIbL755nnjd911VyxZsqTgeUaPHp3X+Dzi82bi/fv3r9Pazj777NTx2267rU7z1dfcuXPjoYceyhvv1KlTnHTSSXWa86yzzkrdVquQ1/jJJ5/kjaV9L9NUVFTk9clJmy/NvHnz4oc//GGVsaOPPjoGDx5c0PkAAA3FxuEAUAKjRo2KZ599NvXY9ddfH926dWvQ6+dyudhvv/3qNcfs2bPjvvvuiyeffDJef/31eP/992PBggWxYsWK6NChQ/Tq1Su23HLL+MIXvhBHHHFEnW921cczzzwT99xzTzz33HMxadKkmDt3brRo0SK6d+8ePXv2jP322y8OP/zw2H///aOionafEbnyyitjwoQJqx+v+d+rPP300zFs2LCC5ttmm23iwgsvLPj6c+bMiSeeeCJefPHFmDBhQkyaNCk++eSTmD9/fixbtiy6dOkS66+/fnTr1i1233332H///WP//fePDTbYoOBrlJPx48fHP//5z3jmmWdi4sSJMWfOnEiSJDbccMPo3r177L333jF48OA45JBDGvWTx88991zcc889MXbs2Jg4cWLMnTs3Vq5cGV27do1tt9029ttvvxg2bFitmk1PmzYtRo4cGU888US8+uqrMWvWrFi8eHFsuOGG0atXr9hvv/3i2GOPjX333XedvQfqY/HixfHwww/HE088ES+//HJMmTIlPv3001i8eHG0adMmNthgg9hiiy1izz33jMMOOyz222+/Wv8c1cfChQvj3nvvjVGjRsUrr7wSU6dOjYULF0bnzp2je/fusdlmm8Whhx4aRx55ZK2bfX/yySdx/vnnV7lWmiuvvDJGjBhR0JynnHJK7LvvvrVaR23MnTs3xo8fnzfeokWLejV5z+Vy8cUvfjHeeeedKuPz5s2L0aNHx1FHHVXQPDX1m/ja175W57Ude+yxcfrpp8fSpUurjN99993x85//vM7z1tWoUaPy1hLxeSGgQ4cOdZqzX79+sddee+WlLMaMGRMff/zxWnvAzJ07N2+sc+fOBV97vfXWq/L4008/Lei8iy++uErhq23btnHNNdcUfF0AgAaTAACN7rDDDksiIu/P/vvvX+qlrdNbb72VfO1rX0tatWqV+hpq+rPzzjsnd911V72vnzb3LbfcUuU5o0ePTnbeeeeC1zZgwIBk9OjRtVrHAQccUKvXv64/BxxwwDqv+dZbbyWXXHJJstNOOyW5XK7W12jdunVy6qmnJpMnT67Va01zyy23pF6jNjbddNO88y+55JIqz3nxxReTAw88sODX2K9fv+TOO++s12tL+95+85vfrPKcZ555Jtljjz0KWlMul0tOPvnkZPbs2Wu97kcffZScfPLJSYsWLQqad//990/efPPNer3WNO+//35y5plnJh07dqzV+6tv377JjTfemKxcubLO1y7kfbV06dLk8ssvT7p27VrQuioqKpKTTjopmTZtWsHrmDJlSlF/vtN+TxXb+PHjU6/bv3//es/9hz/8IXXus846q+A5+vXrlzrH1KlT67W2L37xiw0yb12cdNJJqWv561//Wq95L7/88jrNO2bMmLxzbrzxxoKvu9dee1U5t23btus859VXX837HVb99zoAQKnYJgsAGtkHH3wQjzzySOqxH/zgB428msJVVlbGZZddFgMGDIi//e1vsXz58lqd//LLL8eXv/zlOPTQQ2PatGkNssaVK1fGOeecEwMHDqzV3uavvvpqDBw4MHVv/HIxePDg2HbbbeOyyy6L8ePHR5IktZ5j2bJl8Yc//CG23nrruOqqqxpglcU1fPjw2GOPPeLxxx8v+JwpU6bE//zP/8Spp55apXFvMV122WWx3377pTZJTpMkSfzpT3+KvfbaK+/T9as89NBDMWDAgPjTn/6Uun1emieffDJ22WWXGD16dMFrX5vKysoYPnx4bL311vH73/++xjRETd5777047bTTYq+99op33323KGuq7t13341dd901Lr744oI/pV5ZWRm33HJLDBgwoFa/F5qamrYw2mijjeo9d+/evVPHn3jiiYLOnzZtWkyZMiVvfPPNN69x7kLVlHp56qmn6jVvXTz99NOp4wcccEC95q3ra+zSpUve2Pz58wu+bvXndu3adZ3nnHXWWVV+h/Xt27dWqUcAgIakGAIAjezee+9NvUnbo0ePOOyww0qwonVbsmRJHHPMMXHppZfWughS3SOPPBK777576nYu9bFixYo49thj47rrrqvzHBdffHFceumlxVtUEb399ttFm2vlypXxwx/+ML7xjW8UfOO9sX3nO9+JH//4x3Ve38033xwnn3xykVcVcc4558Sll15ap0LL22+/HYMGDYrZs2dXGb/99tvj6KOPzhsvxJIlS2LIkCExduzYWp+7pvnz58fhhx8eP/7xj2vVByLNCy+8ELvvvnvBxaJCvfHGG7HnnnvG66+/XqfzP/nkkzjooIPilVdeKeq6ykVN75+0G+K1VdNN8Lfeequg90tNRahdd921Xuta2xyNXfhasGBBTJ48OW+8e/fusfHGG9dr7p133jl1C7p1vca0LTcLLVRWVlbGe++9V2VsXdss3nbbbfHkk09WGfvtb38bbdu2LeiaAAANTc8QAGhkac1VIyKGDBkSLVq0aOTVrFtlZWUce+yxMWrUqBqf07Jly+jfv3/07t072rdvHx999FFMmDChxptz06ZNi4EDB8ZTTz0V22yzTVHWedppp8V9992XN96nT5/YfPPNo3v37rF06dKYOnVqvPzyyzXeZL/iiivi8MMPjz322KMo62oMvXv3jr59+8Z6660XXbp0iaVLl8a8efNiwoQJMXXq1BrPu/XWW2PTTTctu0TM5ZdfHr///e/zxnv06BFbb7119OjRI1auXBkzZsyIcePGxbJly1Ln+fOf/xxHHXVUHHfccUVZ13XXXZdabOvXr19svvnmseGGG8aCBQvi7bffjokTJ6bO8e6778Zpp50Wd911V0R8nu448cQT896P66+/fmy//fbRo0ePqKysjKlTp8aLL76Y+r5dtGhRnHzyyfHKK69Eq1atav265s+fH4MGDYrnnnuuxues+hnv2bNndO3aNebNmxcfffRRvPrqq6mFoTlz5sShhx4azz33XGy11Va1XlN106dPj0MPPTQv/dCiRYvo379/9OrVK7p06RJz5syJCRMmxPvvv586z7x582LYsGHxwgsvRMuW2fpfobqkxeprxYoV8cYbb6yzqPHaa6+ljm+33Xb1XkNNc9R0zYbyxhtvpH4PivEaO3bsGJtsskne+3pdhcFu3bpF796946OPPlo9Nm7cuIKu+eabb8aiRYuqjO288841Pn/BggV56dbDDjsshgwZUtD1AAAaRWl36QKA5qWysjLp3Llz6t7ft99+e6mXl2r48OE17oHftWvX5JprrklmzpyZd97y5cuTBx98MNl7771rPH+XXXZJli1bVqv1pM1Tfc/41q1bJ+eee26N/RQ++eST5JJLLknatm2bOt9OO+1U669TIX0m6mPzzTdfPe8mm2ySnHPOOcnDDz+c+rVf00cffZT86le/Su3PEf/tp/Cf//yn1utpqJ4hBx54YFJRUVFlfcOGDUtefPHFpLKyMm+O+fPnJ9dee23SpUuX1PX06tUrWbRoUa3Wlfa93GOPPZI2bdqsftyiRYvkzDPPTN54443UOd56663kqKOOqvG9/8QTTySzZs1KevToUWV80KBByeOPP56sWLEib85PPvkkOe+882rsKXL11VfX6nUmSZKsXLkyOfzww2tc5z777JPcfffdyYIFC1LPnzlzZvLb3/422WCDDVLP33333ZPly5cXvJ6a3lfVf8b79euX3HLLLcmcOXNS53nppZeSQYMG1fi6fvvb39bq61RTD5G6/Ow0lEceeSR1jYceemi9537ooYdq/Frecccd6zz/1FNPTT23vr00kiRJVqxYkdrDauutt6733LVx2223pb7GU045pSjz19QbZfr06Ws978tf/nKV5+dyueS9995b5/UuvvjivGtdf/31NT7//PPPz/t7eNKkSbV+nQAADUkxBAAa0dtvv13jDaVCbk40tldeeSVp3bp16noPOOCAghoSr1ixIrnssstqfN0XXXRRrdZU0zxr3gB7++23C5rrqaeeqrFJ9DPPPFOrdTV0MWTLLbdMjjjiiOTJJ5+s0/kLFy5MTjvttNTXutdee9V6voYqhqz5p2fPnsnzzz9f0FxvvfVW0rNnz9R5brvttlqtK+17ueafHj16JOPGjStorjPPPDN1jiFDhlRpttyyZctkxIgRBc3517/+NcnlcnlzbrbZZrV6nUmSJFdddVXq+jp16lTQTe5VZs+eney///6pc1188cUFz1PT+2rNP2eeeWaydOnSgub73ve+lzrHVlttVfCakqRpFEPGjRuXusYBAwbUe+6bb765xu/HlVdeuc7zBw4c2KBfv4033jhv7kKafRfTz3/+89TXWKzm4V//+tdT5x8zZsxaz0sr0px66qlrPefTTz9N1l9//SrntGzZssam9G+++WZeQerCCy+s82sFAGgoeoYAQCN68803U8c7duwYffr0aeTVrNs555yTugXR7rvvHg888ED06tVrnXO0aNEiLr744vjpT3+aenz48OF5+5LX1bbbbhvPPPNMbLHFFgU9f999943f/OY3qcduueWWoqypWEaPHh0PPPBA7LfffnU6v0OHDnHDDTfEd7/73bxjY8eOLXjrlMbSo0ePePbZZ2P33Xcv6PnbbLNN/OUvf0k9VszvZdeuXePJJ58suNfBtddeG1tvvXXe+H333RcjRoxY/fiOO+6Ib37zmwXNecIJJ8SwYcPyxt9999145plnCpojIuKDDz6ISy65JG98vfXWi2effTb+53/+p+C51l9//XjkkUdi3333zTv261//OubOnVvwXGvzgx/8IK6//vpo3bp1Qc//zW9+k7qmSZMm1epr1RRssskmqeNp2x3V1gsvvFDjsZkzZ67z/Jqe06NHjzqvaU1pfxctWbKkVs3C66sUr3Ft113ly1/+cmy44YZVxm6++ea44447Up+/bNmy+NrXvhZz5sypMn7MMcfU2Oz+7LPPrtJPbOONN46LLrporesCACgFxRAAaEQffvhh6njfvn0jl8s18mrW7vXXX48nnngib7x9+/bxj3/8Izp27Fir+S6//PI45JBD8sZXrlyZ2h+ittq0aRO33377Ohu8VnfKKaek3qz+17/+Ve81FdOmm25alHl+9atfpb7eP/zhD0WZvxhyuVyMGDEi+vXrV6vzBg4cGIMGDcobf+KJJ2Lp0qVFWdv1119fqx4YLVu2jB//+Md545WVlav7C5xxxhlx7LHH1modF198cer42nr7VPezn/0sFi9enDc+cuTI2GGHHWq1nojPfwb//ve/5zXs/uyzz+Lmm2+u9XzV7bvvvvGLX/yiVufkcrm46qqrUo+V2894fXXv3j21ELxixYrU3+W18dhjj9V4rKbeUIU8pxjN3SM+L+DV5roNoVxfY+vWreNnP/tZlbEkSeL444+Ps846K1555ZVYsmRJzJ49O+65557Ya6+98n6PtG3btsbeUiNHjoxHH320ytivf/3r6NChw7peEgBAo1MMAYBGNG3atNTxYn1ytJiuv/761PEf/ehHNX4CeV2uvfba1KbFf/rTn2LJkiV1mnOVU089NQYMGFDr83K5XHz961/PG//www8b9UZaY2nVqlWcf/75eeNPPfVUCVaT7ogjjojDDjusTueeeOKJeWPLly9fZ6PhQuy+++5x/PHH1/q8Y445psbG5u3atYuf//zntZ6zb9++sdtuu+WNjx8/vqDz58yZk5qk+epXvxoDBw6s9XpW2XjjjeM73/lO3ngxCp7XXHNNtGjRotbn7b333qlFgpdffrneayo3+++/f+r4TTfdVOc5H3vssXj77bdrPF5I6qemhEanTp3quqyC5pk3b15R5i9EOb/Gb3/72zF48OAqY0mSxPXXXx877bRTtGvXLrp16xZf+tKXUn8ufvnLX8a2226bN75o0aI477zzqox98YtfrFWqDACgMSmGAEAjWrBgQep4165dG3kla5ckSdx+++15423bto2zzz67zvNut912cdRRR+WNz549u96f0k7b/qlQBx10UOp4oTeWm5rDDz88b2zixImNuqXM2nzve9+r87kN+b0866yz6nTeeuutl3ojMSLia1/7Wp1//vfee++8sVdeeaWgc2+//fbUtExNiZPaSCuGTJkypV7b4e27774Fb02W5sADD8wby+LP9zHHHJM6fv/99691q6uaVFZWpm6ltqZCUlc1PafQ7c7WpU2bNrW6bkMo99c4cuTIOPjgg2t93csvvzzOOeec1GM/+9nPqiReW7ZsGdddd12trwEA0FgUQwCgEdWUfqjpJkepvPXWW6mf9j3yyCNr3KqjUGmf3I+IGDNmTJ3n3GabbQruE5Kmf//+qeMzZsyo85zlbKONNop27dpVGausrCyLT8p37Ngx9cZ1oXr37p1aXCjG97L6J6tro6ZiSH3m3G677fLGCn2dDzzwQN5Y//79a1xnbfTq1Su22WabvPFnn322znMeeeSR9VlS6s94Fn++jzzyyNRt3FauXBnDhg2rdcHzqquuiqeffnqtz1mzV0Rtn5OWFKyLmuYpZG3FUu6vsUOHDvHggw/GRRddFG3btl3n8zfZZJO48847a+z3NXny5LyeW2effXbq76VV5s6dGzfffHMcffTRseWWW0anTp2iY8eOsfnmm8eRRx4ZN910U16vEgCAYlIMAYBGtHLlytTxiory+it57NixqeNHHHFEvecePHhw6k2dmq5ZiH322ac+S4rOnTtH+/bt88Ybc4uVxtatW7e8sY8//rgEK6lqzz33rNNWSGtKazRc3+/lFltskdeEuDZqOnevvfYq6pwrVqxYZ7PsJElSt0VL67dSV2kpjlL+jKe9Jwr5WjU1FRUV8YMf/CD12JtvvhmHHHJIfPLJJwXNdfXVV8ePfvSjYi4vT7F6ZdU0z6q+PKVUTq+xTZs2ccUVV8SkSZPi6quvjoMOOij69OkTbdu2jc6dO8eWW24ZQ4cOjVtvvTUmTJgQQ4cOrXGuc845p0oqpWfPnnHppZfW+Pwbbrghtthiizj11FPj/vvvj8mTJ8fChQvjs88+i3fffTcefPDBOO2002LLLbeM//u//yv4NQEA1EZxPqYCABSkpk9jLlu2rJFXsnbjxo1LHd9pp53qPXfbtm1jm222yevhUNM1C9G3b996rurz/dir3xgtl22jajJz5sz497//Ha+++mq8+uqrMWXKlFiwYEEsWLAgFi5cGJWVlbWar5C9/xtasb6X1dX3e1nfdXXs2DFvrGXLltG7d++izhnxeeEnrbi3yttvvx0LFy7MGy9GKmSVtGLbmtvp1FZ9v/419VuYP3/+Wr9WTdHJJ58cI0eOTN168IUXXoitt946Lr300jjhhBNi/fXXr3K8srIynn766bj44ovzmq63bNkyVqxYkTdnISmDVq1apW7ntGLFihr76dRGTemIYm1RVYiaXkfa16wuivkaN9lkkzjvvPPy+n0U6t57781rsn7VVVdF586d855bWVkZp512Wtx8880FzT1nzpw488wzY/z48XHDDTcUrZgEABChGAIAjar61kSrfPbZZ428krWbPn163ljLli3Xuv1Fbey44455xZDPPvssFixYUKdms8XouZJ2Q6++Td0byj/+8Y+4+eab49///nfRbrRFlEcxpFy/l/VdV9pWeA0xZ8S6ewjU1Az7jjvuSE2M1EXalmuffvppneer79eqphv25fozXh+5XC7++te/xk477RQfffRR3vE5c+bEOeecE+eee27stNNO0bt372jXrl3MnDkzXnvttZg1a1beOZ07d44zzjgjfvnLX+YdK6SY1Lp169T35dKlS4tSDKnpAwWNuQVlTUWJYvUtKYfXGPH5z8z3v//9KmP77LNPjVtgnnfeeQUXQtZ00003RadOneLqq6+u0zoBANIohgBAI+revXvqeDlsT7SmtJvi6623XtE+ZVvT12Hu3Ll1KoZ06NChvktqEiZMmBBnnnlm/Oc//2mQ+RcvXtwg89ZGuX4vGyI9UKpEQtoN8oiI0aNHN+h161MMKdf3Rbnq1q1bPPbYY3HEEUfE5MmTU5+zYsWKGDdu3DpTee3atYt77rkn3nzzzdTjhWwft95668WCBQvyxhcuXFhjwqk20uZedd3GUtO10lJYdVEOrzEi4sorr4wpU6asftyiRYu4/vrrU5/72GOPxbXXXps3fsghh8SFF14Yu+22W+RyuXjxxRfjyiuvjEceeaTK837zm9/E0UcfHfvvv39xXwQA0GyV1wblAJBxG2+8cer41KlTG3kla5d20zJt+4u6qunmTX1ulmbdmDFjYs8992ywQkhEeeyvT8MrVS+cct92Lmu22mqrGDt2bBxyyCF1nmOjjTaKRx99NA466KAak2Np/Viqq74d1yrFSqPVNE9N120IzeE1TpkyJS8ddPrpp8eOO+6Y+vwLLrgg7++V0047LR555JE4+OCDY7311ovOnTvHQQcdFA8//HCcdtppVZ6bJElccMEFxX0RAECzJhkCAI1oiy22SB2fPn16zJs3r9E/4VmTtE+yFvOT2TXNVdMnX5u71157LQ499NB1fn3atWsXvXv3jo033jg6deoUbdu2jbZt20ZFRf7nX+66666y256NxlGqraEU2xrfBhtsEKNHj44HH3wwfvrTn6ZuX5ambdu28e1vfzsuu+yy6NKlS0REjY3XN9tss3XO16NHj9Txjz/+OLbZZpuC1rQ2M2bMyBtr06ZNUYv467K211gMaa8xouakZUP43ve+V+X3R7du3eKKK65Ife7YsWPjpZdeqjK2zTbbxO9+97vUPiC5XC5+97vfxeOPPx4TJ05cPf7888/HuHHjYrfddivSqwAAmjPFEABoRP37948WLVrEypUr846NHz8+DjjggBKsKl/atiXVm4vXR0034YuxXUoWnXnmmTUWQg444IA48cQTY5999qnVTcXHH39cMaSZatGiRamXQCM74ogj4ogjjojXXnstHnnkkXjsscfigw8+iFmzZsWcOXOiVatW0bNnzxgwYEAMGjQohg4dGt26dasyx3vvvZc6dyG9pDbddNPU8WKkIleuXJlaKOjbt2+jNt9uyNcYUfP2dv369SvK/OsyatSouO+++6qMDR8+vMZ+Pv/4xz/yxn70ox9Fy5Y134Jo2bJlXHjhhXHSSSdVGR85cqRiCABQFIohANCI2rVrF9tvv328+uqreccef/zxsimGpN3cKOYWNzXNVYzm2Vlzzz33xNNPP5033r1797j99tvjoIMOqtO8xdrHnqanpmTWQw89FIMHD27k1dCY+vfvH/3794/zzjuv1udOmjQpb6xNmzax7bbbrvPcmtIjNfUzqY0PP/wwli9fnjfeWEWCVRryNUZEvPPOO3lj7dq1qzGRUkzLli2L7373u1XG9thjj/jWt75V4zljxoyp8rhly5ZxzDHHrPNaX/rSl+KUU06p8qGRsWPH1nLFAADp9AwBgEZ26KGHpo4/+OCDjbySmq3aFmVNc+fOTb3hVBczZ85MHVcMyTdy5Mi8sZYtW8aDDz5Y50JIkiRF28eepqdnz56p43PmzGnkldBUfPbZZ1W2Llplzz33jDZt2qzz/P79+6eO19SUvTZqmqOmazaU7bffPjWJUozXuHDhwvjwww/zxnfYYYdGSb9cffXV8fbbb69+XFFRUeN2V6uMHz++yuMtt9yyoK1A11tvvbwtRQvd3g0AYF0UQwCgkR111FGp4y+88ELRPkFaX2kNcVesWBFvvfVWUeZ/5ZVX8sY6dOgQnTp1Ksr8WVFZWRmjRo3KGz/hhBPqtWXIjBkzUrdqo3mo6RPzs2bNauSV0FQ888wzqb8zDj744ILO33nnnVPHq/eUqIsXX3yxVtdsKJ07d47NN988b3zmzJk1bnFVqJdffjkqKyvzxhvjNX744Yfxi1/8osrYySefHLvvvnuN5yxZsiRvG8ZCesusUr0YsmDBgli2bFnB5wMA1EQxBAAa2b777lvjTYFrrrmmcRdTg5putFf/pGddLF26NCZMmFDwNZuzTz75JD799NO88SFDhtRr3urbl9C8rOpdVJ2taKhJ9V4RqwwdOrSg83v37h19+/bNG588eXJMmzatPkuLJ554InV8v/32q9e8dbHvvvumjte0xkKV8jWee+65VQobXbt2jeHDh6/1nLTkYW2a2ad9MEKaEQAoBsUQAGhkuVwuvv3tb6ce++Mf/xjvv/9+I68o31577ZU6XoytvB5++OHU7bZqumZT0bp167yxFStW1GvOjz/+OHU87aZibdT3xhxNW7t27WLXXXfNG/e+qFnaz3dE/X/Gm4KlS5fG3//+97zxnXfeuaB+IasMHDgwdfyhhx6q89rmz5+f2lNpm222iY033rjO89ZVQ7zGtZ1/yCGH1GvedXn00UfjrrvuqjL2s5/9LLp161bruWqznVfac5MkqfU1AQCqUwwBgBI488wzU28mLFmyJM4+++xGWUP1LSzWtO2226b277j//vtjwYIF9bruX//619Txvffeu17zllraJ1kXL15crzlr+lq3a9euznMuWrQobr311jqfTzakNTKeMWNGPPDAAyVYTfmraQu/+v6MNwV//OMfU/vJVG+ovS41Nc9OK7QU6p///GcsXbo0b7y+6bm6Gjx4cGrh7L777lvr37lrM2XKlNTU1l577VVj/59iWL58ed6/R3baaac4/fTT13luWt+x+fPnF3zttOfqKQYAFINiCACUQKdOneKiiy5KPXb//ffHb37zmwa9/n333Rc/+MEPajyey+Xiq1/9at744sWL43e/+12drztx4sS4995788a7detWY2P5piLtZml994lPu6EUETF16tQ6z/mHP/whdestmpevf/3rqVtl/exnPyvBaspfx44dUz+tXt+f8XI3Z86cuPzyy/PG+/TpE8cff3yt5jr00ENjww03zBt/7LHH4vXXX6/T+q677rrU8RNOOKFO89VX165d4/DDD88bX7BgQdxyyy11mvN3v/tdaiqioV/jtddeW6VPWC6Xi9/97ndRUbHuWwht27aNDh06VBl75513Cr529ed27NixxnQWAEBtKIYAQImcddZZseeee6Yeu+CCCxrk0/srV66MSy65JL70pS+t81OqZ555Zur4L37xizrv8f7d7343dYusb33rW9G2bds6zVku0raumjBhQr220enRo0fq+COPPFKn+SZPnhw/+clP6rwesqNPnz5x3HHH5Y0/99xzCiIpcrlc9OnTJ2+8rjfxm4IkSeJb3/pW6nZ9w4cPr/XN6ZYtW9a4ReSFF15Y6/WNHDkytQH7gQceGDvssEOt5hoxYkTkcrm8PwceeGCt1/Wd73wndfznP/95rZOVH3zwQfzf//1f3njnzp3jG9/4Rq3XVqjp06fnFcG+/vWvxz777FPwHDvuuGOVx2+//XbMmzdvnefNmzcvJk+eXGVsp512Kvi6AABroxgCACXSokWLuPXWW1M//V9ZWRnf/OY349JLL42VK1cW5XqvvPJK7LfffnH55ZdHZWXlOp+/ww47xEEHHZQ3vnDhwjjuuONi0aJFtbr+ZZddFv/617/yxlu2bBlnnHFGreYqR2k3a+bNmxcPP/xwnefcYIMNYquttsobv/HGG2PmzJm1mmvWrFlx3HHH1XmrFrLnF7/4ReoN7YsvvrjOn2JP89Zbb+X1HWiK0n7G77333liyZEnjL6aBVVZWxumnnx733HNP3rFDDjmk1qmQVc4+++y8xEDE5/2o/vSnPxU8z4wZM+Kss85KPVaXwkoxHXLIIbHbbrvlja9tzWlWrlwZw4YNS92K7cwzz6xVQ/LaOv/886sUbjp37hxXXXVVreaovvXlihUrUt9P1d199915HyJo6ttoAgDlQzEEAEpoyy23jJEjR0bLli3zjiVJEpdddlnstdde8eSTT9b5GhMmTIhhw4bFrrvuGmPGjKnVuf/7v/8bbdq0yRsfO3ZsHH300QXdkK+srIyf//zncemll6Ye/8lPfhKbbrpprdZVjvbee+/UbYdOP/30GD16dJ2bvw4ePDhvbN68eXHUUUcVvN3Vm2++Gfvtt1+8+uqrdVoD2bT55punpkCSJImTTz45Tj/99Frt87+mFStWxCOPPBJHHXVUbL/99pnoRbLvvvvmjU2dOjW+9rWv1WvruoZw7bXXxs9+9rP45JNPan3u1KlTY/DgwXHTTTflHdtggw3iz3/+c62aYa+pR48e8aMf/Sj12BlnnBF33333OueYPn16DBo0KPXvn8GDB5fFlou//e1vU8f/8pe/xA9/+MN1/n2wbNmy+MY3vhH/+c9/8o6t7WtYDE899VT87W9/qzJ26aWX1ro/yZe+9KW8seHDh681LblixYq48sor88bTUmwAAHWhGAIAJXbIIYfEyJEja9xyZNy4cXHAAQfEHnvsEf/7v/8bkyZNWuecEyZMiN///vex//77x3bbbRd//vOf65Qw2WGHHeKKK65IPfboo4/GdtttF7/73e9Sb7itWLEiHn744dhvv/1q7I+y22671XisqenRo0ccdthheeMfffRRDBo0KDbaaKMYNGhQfPWrX41hw4bl/Um7ARTx+Sep04plzz//fOy4447xl7/8JbWBcETEq6++Guecc07suOOOMXHixNXju+yyS/Tu3buOr5QsOe+88+LYY49NPXbjjTfGJptsEj/84Q/jhRdeWOvvkCRJYvLkyXHnnXfGSSedFD169IhDDz00HnjggToXAsvN17/+9dSfxbvvvjs23XTT2GGHHWLIkCFx4oknpv6MP/3004221unTp8dPf/rT2HjjjeOoo46KW265JT744IMan58kSbz44otx9tlnx1ZbbZW6FV+bNm3innvuiY022qheazv//PNTUzbLli2L4447Ls4444z48MMP844vWbIk/vjHP8bOO+8cr732Wt7x9dZbL66//vp6ra1Y9t133xoTj1dddVUccsgh8cILL+QdS5Ik/v3vf8dee+2VV5BY5fe//32DpUJWrlyZt83X9ttvn9dIvRD77LNP3lZZEydOjLPOOiv1d0KSJHHWWWdV+bsq4vN/J9S0pSgAQG3l/2seAGh0Q4YMiQcffDC++tWvxuzZs1Of88ILL6y+edK1a9fYYostYqONNooOHTpELpeLhQsXxrRp0+Ltt9+OuXPnrvOahX6y97zzzosnn3wy9ZPds2fPjrPPPju+//3vx4ABA6J3797Rvn37mDZtWrz11ltr/VRyt27d4rbbbku9udhU/fjHP46HH3449abxjBkzYsaMGTWee8ABB6Ru77L55pvHGWeckdoo+MMPP4xvfvObcfrpp8cuu+wSvXr1ihYtWsTMmTNj8uTJqTcUO3fuHH/9619TEyc0PxUVFXHbbbfFkCFDUrexmz9/flx11VVx1VVXRceOHWP77bePDTbYILp27RpLliyJuXPnxty5c2PSpEm17ofQ1PTs2TNOPfXU1B4OlZWV8cYbb8Qbb7xR4/kHHnhgarqkIS1dujQeeOCB1b+/N9hgg9h2221jgw02iE6dOsXSpUtj2rRp8eabb641ada2bdsYOXJkUdbfpk2buPPOO2PvvffO+/suSZK44YYb4qabbooBAwbElltuGa1atYrp06fHuHHjanyPVVRUxIgRI6Jfv371Xl+x/OY3v4kXX3wxnn/++bxjjz32WOyxxx7Rr1+/GDBgQHTq1CnmzJkTL7/8ckyfPr3GOc8999wai5fFcP311+cVmq677ro6/z39y1/+Mu9DAjfeeGO8++67ceGFF8Zuu+0WuVwuXnzxxRg+fHheES6Xy9V6ey4AgLXJzt0HAGjiDjnkkHj55Zdj2LBh8dhjj631uZ9++mnqp0oL0aJFizj55JPzmqPWpKKiIkaOHBn/8z//E/fff3/qc1asWBEvvfRSajPbNBtttFE89NBDqf0wmrIvfOELceWVV8YFF1xQ1HmvvvrqePnll2v8ZPnixYvjmWeeWec87dq1i3/+85+x7bbbFnV9NG1t27aN+++/P84444z44x//WOPzFi5cGM8991wjrqz8/PrXv45x48bV+fdvqc2ePbvWCZWePXvGnXfeGfvtt1/R1rHlllvGv/71rxg0aFDMmTMn73hlZWWMHz8+xo8fv865WrRoEX/4wx9iyJAhRVtfMbRt2zZGjRoVBx98cI2vY8qUKTFlypSC5vvWt74VV199dRFXWNXMmTPj4osvrjL2la98JbV3WKEOPfTQOOOMM/IKiKNHj47Ro0ev8/zvfe979bo+AEB1tskCgDKyySabxKOPPhp///vfY4sttijq3C1atIgvfelL8dprr8VNN91Uq/2/27ZtG/fcc09cdtll0apVq3qtY9CgQfHCCy/kbZ+RFeeff3488MADRS30tG7dOu677756pTl69+4djz/+eBx88MFFWxfZ0apVq7j55pvjrrvuik022aSoc/ft2zcGDhxY1DlLpV27dvH000/HBRdcEB07diz1chrcl7/85XjllVeKWghZZdddd43nnnuuXn8XbLjhhvHQQw/FSSedVMSVFc/6668fTz/9dHzlK1+p8xytWrWKX/7yl3HzzTfXuVdLIX74wx/GvHnzVj/u0KFD/PrXv673vNddd12ceOKJtT7vlFNOadDiDwDQPCmGAEAZ+upXvxoTJ06Mu+++O44++ujUJuaF2n777eOqq66KDz/8sF6pgIqKirj44ovj1Vdfja997Wu1Lorssssucdddd8W//vWveu85X+6OOOKImDhxYjz11FPxk5/8JI488sjYYostYsMNN4y2bdvWac6uXbvGgw8+GNdcc0306tWr4PM6deoU5513Xrz55puxxx571OnaNB/HHXdcTJw4Ma677rp6JYj69u0bp556ajz22GPx7rvvxgknnFDEVZZW69at46qrrorp06fHX/7ylzjzzDNjn332iU022SS6dOlSFlv/HXHEEfGlL32pTgWbFi1axDHHHBNPP/10jBw5Mrp3794AK/zcFltsEePGjYtrrrmmVn2MOnToEN/97ndj4sSJMWjQoAZbXzF06NAhbr/99njggQdil112Kfi8ioqKGDJkSLzyyivxgx/8oAFXGDFmzJj485//XGXsoosuKkpvqRYtWsSf//znuPbaa6Nr167rfP76668f119/fdx0001RUeF2BQBQXLkkKx0NASDDFixYEE8//XSMGTMmXn/99ZgyZUpMmzYtPvvss1iyZEm0a9cuunbtGl27do3u3bvHzjvvHHvssUfsscce0adPnwZZ0+zZs+Pee++NJ598Ml577bX44IMPYv78+bFy5cpo37599OrVK7baaqvYe++948gjj4wBAwY0yDqao6VLl8Y999wTjz76aDz33HPx8ccfx5w5c6KioiI6d+4c/fr1ix122CEOOeSQOPLII6NTp055c0ydOjVWrFhRZaxLly7RpUuXRnoVNAVvvPFGjB49Op5//vmYNGlSfPjhhzF//vxYtmxZtG/fPjp16hRdunSJzTbbLLbZZpvYbrvtYv/99y96so26WbZsWYwbNy7Gjh0b48ePj3feeSfef//9mD9/fixatChat24dnTt3jr59+8Z2220XBxxwQBx66KG1Sg4Wy/Lly+ORRx6JUaNGxUsvvRTvvPNOzJs3L1auXBmdOnWKPn36RP/+/WPgwIFx9NFHN9nfVc8991w88MADMXbs2JgwYULMmTMnli5dGu3bt4+ePXuu/j4MGTKkUXqgVFZWxu67715lm8utttoqXnvttWjdunVRrzVnzpy4884744EHHoi33norPv7440iSJHr06BHbbrttHH300TF06NBYf/31i3pdAIBVFEMAAAAAAIBMkzsFAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATGtZ6gUAAEBDGlgxtNRLIGNGV44s9RIAAIBakgwBAAAAAAAyLZckSVLqRQAA0DxIaUDdSKMAAED9SIYAAAAAAACZJhkCAMBqkhvQPEmeAACQdYohAABNlMIFUM4UWAAAKCe2yQIAAAAAADJNMgQAoEQkOwBqJlkCAEAxSYYAAAAAAACZJhkCAFAP0h0A5UeqBACA6iRDAAAAAACATJMMAQCaPekOAFaRKgEAyCbJEAAAAAAAINMkQwCATJHyAKCxSZMAAJQ/yRAAAAAAACDTJEMAgLIl5QFAVkmTAAA0LskQAAAAAAAg0yRDAIBGJe0BALUjRQIAUH+KIQBAvSlwAEB5UDgBAEhnmywAAAAAACDTJEMAgLWS+gCAbJEeAQCaI8kQAAAAAAAg0yRDAKAZkvYAAAohRQIAZIVkCAAAAAAAkGmSIQCQIRIfAEApSJAAAOVOMgQAAAAAAMg0yRAAaCKkPgCApkx6BAAoJckQAAAAAAAg0yRDAKAMSH0AAEiPAAANRzEEABqBYgcAQP0plgAAdWWbLAAAAAAAINMkQwCgnqQ+AADKh/QIAJBGMgQAAAAAAMg0yRAAKID0BwBA0yc1AgDNl2QIAAAAAACQaZIhABCSHwAASI4AQJZJhgAAAAAAAJkmGQJAsyH9AQBAXUmNAEDTJhkCAAAAAABkmmQIAJki/QEAQGOTGgGA8icZAgAAAAAAZJpkCABNiuQHAABNjeQIAJSeYggAZUfBAwCA5kKhBAAah22yAAAAAACATJMMAaDRSX4AAEBhJEcAoDgkQwAAAAAAgEyTDAGgQUmBAABAcUmLAEDtSYYAAAAAAACZJhkCQL1IfgAAQHmRHAGAfJIhAAAAAABApkmGAFAwKRAAAGiapEUAaO4kQwAAAAAAgEyTDAEgjwQIAAA0DxIjADQXkiEAAAAAAECmSYYANFPSHwAAwNpIjQCQJYohABmn6AEAABSTIgkATZFtsgAAAAAAgEyTDAHIECkQAACgFKRFACh3kiEAAAAAAECmSYYANEESIAAAQFMgMQJAuZAMAQAAAAAAMk0yBKDMSYEAAABZIi0CQClIhgAAAAAAAJkmGQJQJiRAAACA5kxiBICGJBkCAAAAAABkmmQIQAlIgQAAAKybtAgAxSIZAgAAAAAAZJpkCEADkgABAAAoPokRAGpLMQSgCBQ9AAAASk+RBICa2CYLAAAAAADINMkQgDqSBgEAAChfUiIArEkyBAAAAAAAyDTJEIB1kAABAADIDokRgOZJMgQAAAAAAMg0yRCANUiBAAAAND/SIgDZJxkCAAAAAABkmmQI0KxJggAAAFCdpAhA9kiGAAAAAAAAmSYZAjQLEiAAAADUl8QIQNMlGQIAAAAAAGSaZAiQWdIgAAAANBQpEYCmRTEEaPIUPQAAACgXiiQA5ck2WQAAAAAAQKZJhgBNjiQIAAAATYWkCEB5kAwBAAAAAAAyTTIEKGtSIAAAAGSNtAhA45MMAQAAAAAAMk0yBCgrkiAAAAA0N5IiAA1PMgQAAAAAAMg0yRCgpCRBAAAAoCpJEYDikwwBAAAAAAAyTTIEaDRSIAAAAFA30iIA9aMYAjQYxQ8AAABoGIojALVjmywAAAAAACDTJEOAopIGAQAAgMYlJQKwbpIhAAAAAABApkmGAPUiCQIAAADlRVIEIJ9kCAAAAAAAkGmSIUCtSIIAAABA0yIpAiAZAgAAAAAAZJxkCLBWkiAAAACQLZIiQHMkGQIAAAAAAGSaZAiwmhQIAAAANE/SIkDWSYYAAAAAAACZJhkCzZgkCAAAAJBGUgTIGsUQaEYUPwAAAIC6UBwBmjrbZAEAAAAAAJkmGQIZJw0CAAAAFJOUCNAUSYYAAAAAAACZJhkCGSMJAgAAADQmSRGgKZAMAQAAAAAAMk0yBJo4SRAAAACgnEiKAOVIMgQAAAAAAMg0yRBooiRCAAAAgHImIQKUE8kQAAAAAAAg0yRDoAmRBgEAAACaIikRoNQkQwAAAAAAgEyTDIEyJgkCAAAAZJGkCNDYFEOgjCh+AAAAAM2R4gjQ0GyTBQAAAAAAZJpkCJSYNAgAAADA/yclAjQEyRAAAAAAACDTJEOgkUmCAAAAABROUgQoBskQAAAAAAAg0yRDoJFIhAAAAADUnYQIUB+SIQAAAAAAQKZJhkADkQQBAAAAaDiSIkBtSIYAAAAAAACZJhkCRSQNAgAAAND4pESAdZEMAQAAAAAAMk0yBOpBEgQAAACg/EiKANUphkAdKIIAAAAAlD9FEWAV22QBAAAAAACZJhkCBZAEAQAAAGj6JEWg+ZIMAQAAAAAAMk0yBGogDQIAAACQXVIi0LxIhgAAAAAAAJkmGQLVSIQAAAAANB8SItA8SIYAAAAAAACZJhlCsycJAgAAAMAqkiKQTZIhAAAAAABApkmG0GxJhAAAAABQEwkRyBbFEJoVBRAAAAAAakthBJo+22QBAAAAAACZJhlCsyARAgAAAEB9SYhA0yUZAgAAAAAAZJpkCJkkCQIAAABAQ5MUgaZDMgQAAAAAAMg0yRAyRSIEAAAAgMYmIQLlTzIEAAAAAADINMkQmjxpEAAAAADKhZQIlCfJEAAAAAAAINMkQ2iyJEIAAAAAKFcSIlBeJEMAAAAAAIBMkwyhyZAEAQAAAKCpkhSB0lIMoewpggAAAACQFYoiUBq2yQIAAAAAADJNMoSyIwkCAAAAQHMhKQKNQzIEAAAAAADINMUQyopUCAAAAADNifth0DgUQwAAAAAAgEzTM4SyoAIOAAAAQHOnfwg0HMkQAAAAAAAg0yRDKAlJEAAAAABYO0kRKB7JEAAAAAAAINMkQ2hUEiEAAAAAUDsSIlB/kiEAAAAAAECmSYbQKCRCAAAAAKB+JESg7hRDaDAKIAAAAADQMBRGoHZskwUAAAAAAGSaZAhFJxECAAAAAI1DQgQKIxkCAAAAAABkmmQIRSMRAgAAAAClISECaycZAgAAAAAAZJpkCPUmEQIAAAAA5UFCBNJJhgAAAAAAAJkmGUKtSYIAAAAAQNMgKQKfkwwBAAAAAAAyTTGEWpEKAQAAAICmw/08+JxiCAAAAAAAkGl6hlAQFWQAAAAAaNr0D6E5UwxhrRRBAAAAACBbFEVojmyTBQAAAAAAZJpkCKkkQgAAAAAg2yREaE4kQwAAAAAAgEyTDKEKiRAAAAAAaF4kRGgOJEMAAAAAAIBMkwxp5iRBAAAAAIA1SYqQRZIhAAAAAABApimGNGNSIQAAAABAde4bkkWKIQAAAAAAQKbpGdIMqewCAAAAAIXQP4SskAwBAAAAAAAyTTKkGZEIAQAAAADqQkKEpk4xpBlQBAEAAAAAikFRhKbKNlkAAAAAAECmSYZkmEQIAAAAANAQJERoaiRDAAAAAACATJMMySCJEAAAAACgMUiI0FRIhgAAAAAAAJkmGZIhEiEAAAAAQClIiFDuJEMAAAAAAIBMUwzJCKkQAAAAAKBU3J+k3CmGAAAAAAAAmaZnSBOn4goAAAAAlBP9QyhHiiFNlCIIAAAAAFDOFEUoJ7bJAgAAAAAAMk0ypImRCAEAAAAAmhIJEcqBZAgAAAAAAJBpkiFNhEQIAAAAANCUSYhQSpIhAAAAAABApkmGlDmJEAAAAAAgSyREKAXJEAAAAAAAINMkQ8qURAgAAAAAkGUSIjQmyRAAAAAAACDTFEPKkFQIAAAAAJB17oPSmBRDAAAAAACATNMzpIyohAIAAAAAzZH+ITQ0xZAyoAgCAAAAAKAoQsOxTRYAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZpmdICekVAgAAAACQT+8Qik0yBAAAAAAAyDTJkBKQCAEAAAAAWDcJEYpFMgQAAAAAAMg0yZBGJBECAAAAAFB7EiLUl2QIAAAAAACQaYohjUQqBAAAAACgbtxfpb4UQwAAAAAAgEzTM6SBqVgCAAAAABSP/iHUhWQIAAAAAACQaYohAAAAAABAptkmq4HYHgsAAAAAoOHYLovakAwBAAAAAAAyTTKkyCRCAAAAAAAaj4QIhZAMAQAAAAAAMk0ypEgkQgAAAAAASkdChLWRDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDT9AypJ71CAAAAAADKh94hpJEMAQAAAAAAMk0ypI4kQgAAAAAAypeECGuSDKkDhRAAAAAAgPLmPi5rUgwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0zRQrwV7zAEAAAAAND2aqSMZAgAAAAAAZJpkSAEkQgAAAAAAmj4JkeZLMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBM0zNkLfQKAQAAAADIHr1Dmh/JEAAAAAAAINMkQ1JIhAAAAAAAZJ+ESPMhGQIAAAAAAGSaYggAAAAAAJBptslag+2xAAAAAACaH9tlZZ9kCAAAAAAAkGmSISERAgAAAACAhEiWSYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQac2+GKJfCAAAAAAAEe4XZ1mzL4YAAAAAAADZphgCAAAAAABkWi5JkqTUiygFcScAAAAAAGoyunJkqZdAEUmGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGnNrmeIXiEAAAAAABRK75BskAwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg05pNzxC9QgAAAAAAqCu9Q5o2yRAAAAAAACDTMp8MkQgBAAAAAKBYJESaJskQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyLTMNlDXOB0AAAAAgIaikXrTIhkCAAAAAABkmmIIAAAAAACQaYohAAAAAABApmWyGKJfCAAAAAAADcl96KYlk8UQAAAAAACAVRRDAAAAAACATFMMAQAAAAAAMi2XJElS6kUUiz3aAAAAAABobKMrR5Z6CayDZAgAAAAAAJBpiiEAAAAAAECmZWKbLNtjAQAAAABQarbLKl+SIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm5ZIkSUq9iLoaWDG01EsAAAAAAIAqRleOLPUSqEYyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMi0XJIkSakXUVsDK4aWegkAAAAAALBWoytHlnoJ/JdkCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRak2qgrnE6AAAAAABNjUbqpScZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRaLkmSpNSLWJeBFUNLvQQAAAAAAKiX0ZUjS72EZksyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTyr4YMrBiaKmXAAAAAAAA9eZ+d+mUfTEEAAAAAACgPhRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgEzLJUmSlHoRaQZWDC31EgAAgKYoSeI38Xj0j9kREbEyIk6PgfFebr21nnZr8lD0jEWrHz8Sm8avcrs35EppJL635e+65NHYJj6NiIjlkYvTY2B8kOtc4lUBQMMaXTmy1EtoVlqWegEAAADFNDDeX10IiYh4JPqusxDS3LVPlsc2MSd6x8LoGMuiMnKxMFrHh9ExJsQGsSzXotRLpMQa+j1yc/SPq+PJiIhoFUmcGePjwti/GEsHAIgIxRAAACBD2ifL45R4bfXjJdEi/hzbl3BF5W3n5OP4ckyKXWJmtIz0TQOWRkWMSTaKkbFVTMqt38grpNQa6z3ySq57PJ/0jD1iRkRE7BozY99kajyd27jOawcAWJNiCAAAkBlfjQmxfixd/XhU9IvZuXYlXFF5ap8sj/NiXOwfH63zuW2iMg6MqbF/TI37ks3jxtgxVuS0n8y6UrxH/hrbri6GREScEq/Hs8lGUen9BgAUgX9RAAAAmdAlWRJDYvLqx8sjFyNjqxKuqDx1SZbE/8ZjBd3kXlNFRAyJd2J4PBVtkhUNszjKQqneI2/lNojxseHqx71jYRwW79V6HgCANJIhAABAJnwtJkS7WLn68aOxaczKtS/hispPq2Rl/DyeiU1jQd6xD6NjPBEbx/ToGLmI6BUL48CYGr1jYZXn7RSz4sJ4Pi6LLzTSqmlMpX6P3BFbx04xa/XjE+KtGJ1sGsv1rQEA6kkxBAAAaPI6JUvjsJhSZez+2KxEqylfJ8frsVV8WmVseeTiutg5RkW/iFyuyrE/J9vH4JgSZ8fLVfpF7BvT4sjknXggt3mjrJvGU+r3yLjoEdOiQ2wUn0VERPdYHF+MD+Nf0bduLwgA4L9skwUAADR5R8W7VVIhk6KLZt/V9EnmV9lGbJUrYu8Yldss7yZ3RESSy8VDuc3i8tg779hJ8Xp0TJY1yFopjbJ4j+Ry8XC1wsex8Xbt5gAASKEYAgAANGkVSWUcHe9UGXs4+pVoNeXrqzGhyif3IyIejH4xJrfROs8dk9soHqr2Ne0cy1NvnNN0lct75F/Rd43SZsRmMS92SmbWeh4AgDUphgAAAE3aHjEjNoglqx+vjIinonfpFlSGOibL4oCYWmVseeRiRGxf8BwjYvtYEVWTAYfHlMglSQ1n0JSU03tkTq5dvBHdqowdqpE6AFBPiiEAAECTNjDer/L4jegWc3NtS7Sa8rRvfBSto7LK2LPRu1Zfp09zbePZqJoQ2DAWR/81ml03dX2S+XFQ8kF8OZkUX00mxGHJlNgtmRFtkxWlXlqDK7f3SPWC5j7xUbP4PgAADUcDdQAAoMlqm6yIPWN6lbGx0atEqylfu8eMvLEn65CeeSo2jv3joypje8SMeDW613ltpdYyqYyjY3IMiXei13+bdle3JFrE80nP+GtsG1NyXRp3gY2k3N4jY2Oj+E68svpxu1gZX4hp8Vj0qfWaAAAiyrAYMrBiaKmXAAAANBE7x8xoU+3T7K/EhiVaTfnaIT7JG6u+DVEhXks5J23upqJXsjAui2ejX8xf6/PaxsrYPz6KL8S0GJlsFbfEDpGkNBNvysrtPTIj1yFmJO2jZyxaPbZnTFcMASBTVt0LH105ssQraR5skwUAADRZ1T/N/lm0jMnRtUSrKU8bJItj/VhaZezjaB+zc+1qPdfsXLv4ONpXGdss5kVFE+wb0jP5LK6J/6yzELKmlpHE8TExLogXMtUrpVzfI9ULm7vGx5n6ugMAjavskiEAAACFGlCtF8E70SUqM/aJ/frqk3Kzf1p0qPN806JD9Fjj0/rtYmVsGIvi43rM2dhaRGVcEmOqFAA+jI7xdPSO6dExFkfL6BpLon98EnvE9Lz00cD4IBZG6/h97NTIK28Y5foemRjrx6Fr9ARaL5ZFv5gX70aXOq8NAGi+FEMAAIAmqV2yPDaOBVXG3o31Gn0dg5L34oIY1+jXjYiYEe3jxNzha33OmjelV6lP4WJWtU/9R0T0is+aVDFk3/hodYFjQbSK/4sdY3Sub97z7o4tY4NkcXw3Xoq9q/WmOSYmx9PJRvFqbt29MLxH6vYeSft53jo+VQwBAOrENlkAAECTtGXMjRbVxt4rQTGk3K0fS/LGZkXttz9aZWbKuV1TrlHOVhVCPouWcWHsl1oIWWV2rl1cEl+Ix2KTKuMVEfH9eCkT2zaV63tkSsrP81Yxp05rAgBQDAEAAJqk3tVSIRGR16uAiE6xLG9scT02CViScm7nlGs0BdfHTjEpt/46n5fkcvGr2D0+jI5VxjeOhbFHtcRIU1Su75FFuVaxIFpVGds4FtZ5XQBA82abLAAAoEnqmbK1zyf1+DR7XS2I1vFOiRIpswt4vW1jZd7YsrxMTeGWppzbJuUa5W5idI3RsWnBz1+Rq4gbkwHxs3i2yviR8W48Fxut9Vzvkbq/Rz6JdtEplq9+3CM+q/O6AIDmTTEEAABokrrF4ryxT6Nto69jTG6jGLOOm+Gl1KJa8++I4t/obplyjXI3KvpF5HK1Ouf56BUzo110X+O9t3PMjBZJZazM1bzxgvdI3d8jc6Jt9FujwfuGKT/3AACFsE0WAADQJLVf49Piqyypxw3c5qR+XS7yCwi5es5YCs/UoTiR5HJ5RY02URmbx9wirap8lMt7pPqWWy0jidZJ00siAQClpxgCAAA0ScXe2ierVqb8b199trVqnXLuiib2v5azol3MzdUtRfR2dMkb2yo+reeKSquc3yNpP9NtY0Wd5gIAmrem9S9WAACA/6qo9knzyvj8k/tUlZaWSbtZXai0m+RpDbPL2dRqjdBr48PolDfWJZbWZzklV87vkZUpKZMWTTCJBACUnmIIAADQJFXvS1ARES2Tpte7oqEtiNZ5Y+3q8cn6tHPnp1yjnH0WrYp6boeULduaknJ+j6QVZdJ6kgAArItiCAAANHMVyed78FckTevT1sX+NHtWpTWVT2s+X6gNY1FB1yhn9UmypJ3bvolv21TO75EsJJEAgPLgXxAAANDMdE6WxsHxQewQn8SW8Wn0WuPG5fSkfbwdXeP16BaPRp+Yn2tTwpWu3dyUm6udY1ksqsen/uti72RafDPeaNRrrjI72sVPcvuu9Tkzon3eWI+Um9WF6p5y7ozoUOf5SqE+PSfSzl20jv+19h6p+3ukUyyr8nh+tI5K2+EBAHWgGAIAAM3EhsmiGBZvxIHxYbSO9O2kesWi6BWLYv/4KE6J1+LxZJMYEdvHrFz+zdJSm5lyA7dbLGr0G/OdYllsHvMa9ZqrFLI9U1qPi41iYZ2v2Ss+q/J4SbRI/V6Us/psa5V27rq23fIeqft7pHpC5eMm9l4DAMqHbbIAACDrkiQGJ+/GH+KRGBTv11gIqa51VMageD/+EI/E4OTdiDLbRmt6StFjw3ps7ZNVn+Tax6dRNeHTMxbF+kntv1YbJIujZ7VP/b8b6zW5T+r3rseN/k1Szp0b5ZugKkS5vkdySRLrx5IqY00thQQAlA/FEAAAyLCKJIlz48U4N16KDnXcGqhDrIhz46U4N14sq74i78Z6eWMbx4ISrKT8vRbd8sZ2iNm1nmf7+KSguctd91gcXZIl635iii3j07yxSdG1vksquXJ8j2wUC6NlVP2dk/ZzDwBQCNtkAQBAViVJfC9ejMHxXiQRUZ/P7icRMTjei4iI3yS7RpRBEmB6rmPMT1pH5zV6CvSL+Y2+jkdyfeOR6Nvo162NcdEz9o+PqoztF1Pjydi4VvNUnyMi4oXoWa+1lcoXYlo8FJvV6pxcksTeMa3K2NKoiHeiy1rP8x6p23skbWuxiRkoPAEApSEZAgAAGTU4phSlEBL/PX9VQWRVUaQcTIj1qzzeLOaWZiFl7unoHcuq/e/fPvFRrdIRXZIl8YVqN7o/ibbxamxYlDU2tsExpdbn7B4zonu1rdheju6xMtf0/9e6HN8j1X+eKyNiYrWfeQCAQjX9f7EBAAB5NkwWxWnxakTUvxCyyqp5TotXYsNk0Vqf21jGRY8qj3vHZ3Xqc5B1C3Kt8z7h3yqS+Ea8WfAc34w3o1W1LYsejM0iKYOUUF1sE5/GIcn7BT+/RVK5+mdqTQ/UMl1SrsrxPdK/2pZbb0fXmJ9r2v1ZAIDSUQwBAIAMGhZv1LlHyLp0iBUxLN5okLlr6/mU7Xd2jFklWEn5uz22jpXVSmNHxLuxZzKthjP+v72SaXFkvFtlbEG0intji4KvPyCZGaOTu6r8uTV5qODzG8JZ8XJskeT3AMmTJHFejIs+1XrSfBQd4/no1UCra3ylfo+sqXWyMraJOVXG0n7eAQAKpRgCAAAZ0zlZGgfGhw16jQPjw+icLG3QaxTio1yneD86VRnbJWaWaDXl7f3cenFvbF5lrCIiLokxcVgyJSJJ8k9KkhicvBsXx5i8QyNi+1iQa91Aq21YS//7v8IdYkX8Mp6Mg9eSEFk/WRyXxpgYGB9UGa+MiN/GLk02GZOmnN4j/WNWtI7KKmPPxkZ1mgsAIEIDdQAAyJyD44O8m4jF1joq4+D4IO6OLRv0OoV4NPrEyWskVfaOaVGRVEZlBvo4FNvN0T8GxCexxRq9GFpFEufFizE0JsUTycYxPTpELiJ6xWdxYHwYG8fCvHnGRK+4r9pN86bk6egdfWN+bB7zonMsjwvjhfhaMiGeiY1iWnSMxdEy1o8lsUN8EnvEjGgbK/PmuDe2iFdy3Uuw+oZVLu+Rfav1HpkSnWNyTvN0AKDuFEMAACBjdqi2z35DXqcciiH/jk1jWLyxOva+XiyLHWNWvFytnwgRy3Mt4sfJvnF1PJG35VOfWBAnxlvrnOPV6Ba/iD0jmnAiYmVUxKXxhbg2Hov14/OEU59YEH1iYkHn/zv6xP/Fjg25xJIph/dILklin6i6Nde/Y9M6zQUAsIqPSgEAQMZsGQX0QCjKdeY2ynXWZVaufTxXrW/DwdW2NOL/+zTXNr4bB8XTtdxyqDIi7o/N4sLYL5bkav+5ui6xLG/svehc63mKZUauQ5wbB+Zts7Y2KyIXt8fW8avYPVPbY1VXqvfIKrvEx9E1/v82fMuiIh5RDAEA6kkyBAAAMqQiSaJXLGqUa/WKz6IiSaKyDG4K/yO2jL1j+urH+8fU+H2yUyzKtSrhqsrXwlzruCy+ELsmM+K4eDt2iZnRIlL6QcTnN6LHRq+4I7aOSbn163zNHVN6udwa29V5vmL4KNcpzkgOiSExOY6Jd6JHDT87S6Mino9e8dfYNt7NdWncRZZIKd4jqxweU6o8fjT6xNxc23rPCwA0b4ohAACQIS0buFdI2vWWRYtGvWaaV3LdY1LSJbb6b1qlXayMgfF+3BtbFDzHibnDG2h15evFXM94MXpGh2RZbBtzYqNYGB1ieURELIjW8WF0igmxfiytx6f8V9kpZlV5/Gz0KsqN80Ks7Xu7PNciRsbWMTK2jr7JvNgs5sUGsThaRmXMjbYxK9rFG7FBLG6mhbXGfI9ERHRJlsTea2yRVRmfFzsBAOpLMQQAADJkRSPvhNvY11ubv8Z2cXk8u/rxkJgc9yWbZ3o7o2L5LNc6xkXPBpt//WRxlf4TlRHxl9i+wa5XV+/l1ov3Yr1SL6MsNfR7ZJVj4p1otUYC5enoHe/nfE8AgPorn/9zAQAA6q0yl4vp0b5RrjU9OpTFFlmrjMltFG/F/08abBwLY7+YWsIVsUr1VMjT0TveaSbbTVG4tsmKODomr368MnIxogyLZgBA06QYAgAAGfN2dG2k63RplOvUxh9jhyqPj4+JEUl6nwMaz05r9AtZGaXvFUJ5OjLeic7/3YIrImJ0bBof5jqXcEUAQJYohgAAQMa8Ht0ydZ3aeCXXPZ6M3qsfbxFz40DpkJJbMxnyZGwS79n2iGraJ8vjqzFx9ePPomX8qVpxEwCgPhRDAAAgYx6NPrGsgf+pvywq4tHo06DXqKsbYsdYvEZT95Pi9WiZNG5jef6/7sln0Ss+i4jPtz26NbYt8YooR1+JibFeLFv9+M+xfXyaa1vCFQEAWaOBOgAAZMz8XJt4PNkkBsX7DXaNx2OTmJ9r02Dz18esXPsYnuwZW8Snq8d6xGfxUXQq4aqar5m5DjEwvlzqZVDmFkar+Mt/C2UroiLujc1LvCIAIGsUQwAAIINGxPaxT3wUHWJF0ef+LFqWfVPjMbmNYkxsVOplAAUamdu61EsAADLONlkAAJBBs3Lt48YYEBERxWofvmqeG2PHmJVrX6RZAQAAGp5iCAAAZNSo6Bejom/kov4FkSQichExKvrGqOhb77UBAAA0JsUQAADIqlwuroldVxdE6jVVfF4IuSZ2jcjVdzYAAIDGpWcIAABkWGUuF79Jdo23YoM4LV6pUw+Rz6Jl3Bg7fp4IUQgBAACaIMUQAADIulwuRkW/GJf0iGHxRhwYH0brqFznacuiIh6PTWJEbK9HCAAA0KTlkiQpVj/FohhYMbTUSwAAgEzrnCyNg+OD2CE+iS1jbvSKz1Yfmx4d4u3oEq9Ht/h39IkFuTYlXCkAAGTf6MqRpV5CsyAZAgAAzcz8XJu4O7aMu2PLiIioSJJoGZWxIiqi0jZYAABABimGAABAM1eZy8WyaFHqZQAAADSYilIvAAAAAAAAoCEphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApuWSJElKvYg0AyuGlnoJAAAAAADQIEZXjiz1EpoVyRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADItlyRJUupFrM3AiqGlXgIAAAAAABTF6MqRpV5CsyQZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpZV8MGV05stRLAAAAAACAenO/u3TKvhgCAAAAAABQH4ohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKblkiRJSr2IQg2sGFrqJQAAAAAAQK2MrhxZ6iU0e5IhAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKblkiRJSr2I2hpYMbTUSwAAAAAAgLUaXTmy1EvgvyRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINOaZAP1VTRSBwAAAACg3GicXn4kQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMyyVJkpR6EfU1sGJoqZcAAAAAAEAzN7pyZKmXQA0kQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMyyVJkpR6EcUysGJoqZcAAAAAAEAzM7pyZKmXwDpIhgAAAAAAAJmmGAIAAAAAAGRaprbJWsV2WQAAAAAANDTbYzUdkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkWiaLIfZpAwAAAACgIbkP3bRkshgCAAAAAACwimIIAAAAAACQaYohAAAAAABApuWSJElKvYiGNLBiaKmXAAAAAABARugV0jRJhgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmZb6B+ioaqQMAAAAAUFcapzdtkiEAAAAAAECmNZtkyCoSIgAAAAAAFEoiJBskQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMi0ZtczZBW9QwAAAAAAqIleIdkiGQIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmNdueIavoHQIAAAAAwCp6hWSTZAgAAAAAAJBpiiEAAAAAAECmNftiiMgTAAAAAAAR7hdnWbMvhgAAAAAAANmmGAIAAAAAAGSaYggAAAAAAJBpuSRJklIvolwMrBha6iUAAAAAANDI9ArJPskQAAAAAAAg0yRDUkiIAAAAAABkn0RI8yEZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKbpGbIWeocAAAAAAGSPXiHNj2JIARRFAAAAAACaPkWQ5ss2WQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaniG1oHcIAAAAAEDTo1cIkiEAAAAAAECmSYbUgYQIAAAAAED5kwhhFckQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xpA7sMwcAAAAAUN7cx2VNGqjXk2bqAAAAAADlQxGENJIhAAAAAABApkmGFImECAAAAABA6UiEsDaSIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaniFFpncIAAAAAEDj0SuEQkiGAAAAAAAAmSYZ0kAkRAAAAAAAGo5ECLUhGQIAAAAAAGSaZEgDkxABAAAAACgeiRDqQjIEAAAAAADINMUQAAAAAAAg02yT1UhslwUAAAAAUHe2x6I+JEMAAAAAAIBMUwxpJKqWAAAAAAB14/4q9aUYAgAAAAAAZJqeISWgfwgAAAAAwLpJhFAskiEAAAAAAECmSYaUkIQIAAAAAEA+iRCKTTIEAAAAAADINMmQMiAhAgAAAAAgEULDkQwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0/QMKSN6hwAAAAAAzZFeITQ0xZAypCgCAAAAADQHiiA0FttkAQAAAAAAmaYYUoZUQwEAAACArHMflMakGAIAAAAAAGSaniFlTv8QAAAAACBLJEIoBckQAAAAAAAg0yRDmggJEQAAAACgKZMIoZQkQwAAAAAAgEyTDGliJEQAAAAAgKZEIoRyIBkCAAAAAABkmmRIEyUhAgAAAACUM4kQyolkCAAAAAAAkGmSIU2chAgAAAAAUE4kQihHiiEZoSgCAAAAAJSSIgjlzDZZAAAAAABApimGZISqKwAAAABQKu5PUu4UQwAAAAAAgEzTMySD9A8BAAAAABqDRAhNhWQIAAAAAACQaZIhGSYhAgAAAAA0BIkQmhrJEAAAAAAAINMkQ5oBCREAAAAAoBgkQmiqJEMAAAAAAIBMkwxpRiREAAAAAIC6kAihqVMMaYYURQAAAACAQiiCkBW2yQIAAAAAADJNMqQZkxABAAAAANJIhJA1kiEAAAAAAECmKYY0Y6q7AAAAAEB17huSRYohAAAAAABApukZQhX6iAAAAABA8yIJQnMgGQIAAAAAAGSaZAipJEQAAAAAINskQmhOJEMAAAAAAIBMkwxhrSREAAAAACBbJEJojiRDAAAAAACATJMMoSASIgAAAADQtEmE0JwphlAriiIAAAAA0LQogoBtsgAAAAAAgIxTDKFWVJEBAAAAoOlwPw8+pxgCAAAAAABkmp4h1Js+IgAAAABQHiRBIJ1kCAAAAAAAkGmSIRSNhAgAAAAAlIZECKydZAgAAAAAAJBpkiEUnYQIAAAAADQOiRAojGQIAAAAAACQaZIhNBgJEQAAAABoGBIhUDuSIQAAAAAAQKZJhtAopEQAAAAAoH6kQaDuFENoVIoiAAAAAFA7iiBQf7bJAgAAAAAAMk0yhJKQEAEAAACAtZMIgeKRDAEAAAAAADJNMoSyICkCAAAAQHMnCQINRzIEAAAAAADINMkQyoqECAAAAADNjUQINDzJEAAAAAAAINMUQygrquAAAAAANCfuh0HjUAwBAAAAAAAyTc8Qyp4+IgAAAABkhSQIlIZkCAAAAAAAkGmSITQZEiIAAAAANFUSIVBaiiE0WYojAAAAAJQrxQ8oL7bJAgAAAAAAMk0yhCZPQgQAAACAciERAuVJMgQAAAAAAMg0yRAyRUoEAAAAgMYmDQLlTzIEAAAAAADINMkQMklCBCiWyn13qvK44unxJVkHAAAA5UciBJoOyRAAAAAAACDTJENoFiRFgPqqnhCJkBIBAABobiRBoOmSDAEAAAAAADJNMoRmRUIEqK+0hEh1EiMAAADZIhECTZ9kCAAAAAAAkGmSITRbUiJAXRSSDKlOUgQAAKDpkQaBbFEModlTFAFqqy4FkVUURgAAAMqbIghkk22yAAAAAACATJMMgWokRYBC1SchsoqkCAAAQGlJgkDzIBkCAAAAAABkmmQI1EBCBChUMRIi1UmMAAAANCyJEGheJEMAAAAAAIBMkwyBAkiJQLZ84ZVlVR4/u2Pres330EcvVXl82FdOrtd8q0iHAAAAFJc0CDRfkiEAAAAAAECmSYZAHUiKQDZUT4hE1C8lUj0hskpdkyKSIQAAAPUjCQKsIhkCAAAAAABkmmQI1IOECGRDWkJklbokRWpKiETULSUiIQIAAFA7EiFAdYohUESKI9A0ra0YkqbQAsnaiiLVFVIkURQBAABIp/gBrIttsgAAAAAAgEyTDIEGIiUCTUtt0yFrWldSpDYJkVXWlhSREAEAAJAGAWpHMgQAykDFzcMipvZqkLk3TLrFl5LDG2RuAAAAgKZAMgQaiaQINA31SYisUj0psq5kSMXNw6LFxT+NZNP3Y8XIEyI2np76vOppkUISIhsm3eLquCQ2ip7x+7gl7s49tM5zAAAAypEkCFAfkiEAUGKVh/0rkk3fj9z7m0bLobcVLSGyZiFkWsyIp+P5oswLAAAA0NRIhkAjkxCBpqEYCZE1XdTt9bU/YWqvaDn0tsi9v+k6EyKrrEqKpCVEqhdCzo/LYlbuk7ouHwAAoGQkQoBikAwBgHKw8fRYMfKEoiREFEIAAAAAqpIMgRKTFIHyNvnWnSMi4hsDnivKfJds+GZERKxMKtOfUIeEyCqH995FIQQAAGjyJEGAhiAZAgDlpB4JEYUQAAAAgHSSIVBGpESg/KxKhqypGCmRVQmR6lYnRmqbEJnaK2btcZdCCAAA0CRJgwANTTIEAMpRbRIi/y2cKIQAAAAApJMMgTImKQLlIy0hUl1dEiM1JUQi/psSWVdCpNrxE96/UiEEAAAoe5IgQGNTDIH/196dx+lc7/8ff85iGGZhGITGvlckoeyEaEqqc7RKjpxKRRJS54iTSBSO0kLpaBcdComy59jJkjXDmLEMY2bMZszM9fujL7+5fK5r5nNts3zmcb/dzu1c877e7/frfV0z1ee6Xp/X+12CkBwBip6ZpMgVriRH8kuK6OR18nvgM/kdj5Kt9gllL3j4z4RIPomSPjVbmY4NAAAAAL5G8gNAUWObLAAAirtap2T79lHZap+Q3/GoPxMgW25x7UwRAAAAAACAUozKEKCEokoEKDquVIdcq6BqEbMVIlfYVYo4QIUIAAAAgKJCNQiA4oTKEAAASopap2Sb+ZJdk23mS1SEAAAAAAAAFIDKEKCEo0IEKDqeVIhccW2liDuVIbZvHzUkRHJsuXY/UyECAAAAoLBQEQKgOKIyBACAkuCaQ9RzF/e/eoaI3wOfSSevK+oVAgAAAAAAFFtUhgAWQ6UIUHi8URnizNHun/z/H65JhFytBHHWno9eNVr6bM0AAAAASicqQQCUBFSGAABQnOWX8Kh1SrZvH6VCBAAAAAAAoABUhgAWR6UIUPi8VTFSZ0tVfTr/AUVdqKgTlZJU66d7HFd+UCECAAAAoBBRCQKgJKIyBACAYqjGuTC7RMjjj33rPMFBhQgAAAAAAEC+qAwBShGqRICi4WqlSI1zYfrijUdU+2wlHa96QQMfXKhT4RcN/fY/8559g4sVIlSHAAAAADCLahAAJR2VIQAAFCPXJkIeHvu5w0SIQ1SIAAAAAAAAOERlCFCKUSkCFB1H1SKOEiHxVVKuPl/2YHCB8+5/5j0qRAAAAAB4jEoQAFZDMgTAVSRHgKITaauiqRqnGqruMBGSl5mkyHXJoeYOX8+DpAgAAABQepH8AGB1bJMFAEARcyURYtap8It6/LFvdaJSkqIuVGTLLAAAAAAAUKpRGQIgX1SLAL7Xz9ZHz+gJxeu0Rmq8EvzOSSr44HVXK0Qm9lyj+W13Xn3OcAD7/6FCBAAAALA2qkAAlEaBRb0AAABKu+/8lkk2aYO2XE2EeMuVCpE7DjSwS4QAAAAAAACUJlSGAHAJlSJA0bu2YsRMhYgZ11aKUCECAAAAWAOVIADAmSEAAAAAAAAAAMDiqAwB4BEqRYDiI/bV230y7/Wv/+qTeQEAAAD4BpUgAGBEZQgAAAAAAAAAALA0KkMAeBWVIkDx4u1qEapEAAAAgOKHShAAKBiVIQAAAAAAAAAAwNKoDAHgM1SJAMWXpxUjVIgAAAAARYtqEABwDZUhAAAAAAAAAADA0qgMAVBoqBQBijd3qkWoEAEAAAAKB5UgAOAZkiEAihQJEqD4M5MkISkCAAAAeA+JDwDwPrbJAgAAAAAAAAAAlkZlCIBihUoRoGRwVi1ChQgAAADgOipBAMD3qAwBAAAAAAAAAACWRmUIgGKNShGgZLlSMUKFCAAAAOAclSAAUPioDAEAAAAAAAAAAJZGZQiAEodqEQAAAABASUEVCAAUD1SGAAAAAAAAAAAAS6MyBECJR6UIAAAAAKC4oBIEAIonKkMAAAAAAAAAAIClURkCwLKoGAEAAAAA+AoVIABQspAMAVAqkBgBAAAAAHiKBAgAlFxskwUAAAAAAAAAACyNyhAApRoVIwAAAACAa1EBAgDWQ2UIAAAAAAAAAJRwderUkZ+fX4H/mzdvXlEvFR4w8zv28/PTmjVrinqpxU5gUS8AAIrStXf7UCkCAAAAAKUPlSDFX1pamrZs2aIdO3bot99+04kTJxQbG6ukpCRlZGQoMzNTwcHBCgkJUWhoqEJDQ1WnTh01atRIjRo1UpMmTXTLLbeobNmyRf1SABQRkiEAAAAAAAAAip3U1FR98cUXWrRokdasWaNLly7l2z8tLU1paWk6c+aMJGnnzp12zwcHB6tDhw7q3r27evXqpZYtW/pq6QCKIZIhAJCHo7uBqBYBAAAAAOugCqT4O3PmjN544w19/PHHSk1N9dq8GRkZWrlypVauXKkxY8aoRYsWGjx4sB599FFVrFjRa3FQ+rz22mum+g0cOFB16tTx6VrgHMkQAAAAAAAAAEUuOztbkydP1uTJk5WWlubzeLt379Zzzz2nl156SWfPnlVoaKjPY8Kaxo8fb6pfly5dSIYUIZIhAFAAZ3cNUTECAAAAAMUXFSAly5EjR/Tggw9q+/bthR47MzNTOTk5hR4XQOEiGQIAAAAAAACgyKxbt079+vVTYmJiUS8FgIWRDAEAN+W9y4gqEQAAAAAoelSDlDyrVq1SdHR0gYejA4CnSIYAAAAAAAAAKHRbt27VvffeSyIEcIHNZivqJZRYJEMAwAs4VwQAAAAACg8VICVfYmKiHnjgAbcPSm/SpIm6deumbt26qX79+qpSpYqqVKkif39/paWl6dSpU4qJidHu3bu1efNmrVmzRsnJyV5+FQBKEpIhAOBDJEkAAAAAwH0kPazrqaee0okTJ1we17lzZ40fP16dO3d22icoKEiVKlVSs2bN1KdPH0lSTk6O1q5dq6+++kpfffWVLl686PbaAZRM/kW9AAAAAAAAAAClx88//6wFC1xLdJUrV05ffPGF1qxZk28ixJmAgAB169ZNH374oeLi4jRz5kzVqlXL5XkAlFxUhgBAEXB0dxPVIgAAAABKM6pASo/Ro0e71D8yMlI//PCD2rRp45X4oaGheu655zRkyBC9//77Gj9+vFvzZGVl6dChQ9q3b5/279+v48ePKz4+XvHx8UpMTFRGRoYyMjJ0+fJlBQUFKTg4WFWqVFGNGjXUsGFD3XTTTWrfvr1uvvlm+fn5eeW1+dLJkyevvtYjR44oLi5O8fHxOn36tNLT05WZmamMjAwFBASobNmyqlSpkqpVq6Z69eqpadOmateunTp06KCQkJBCWe/58+e1atUqbdu2TXv37lVsbKxOnTql9PR0ZWVlKTg4WCEhIapWrZoaNGigxo0bq23btrr99tsVGRnpdN7PPvvM7TWtXLlSJ0+eLLBftWrV1KNHD4fPmf1bWb16tbp06eLK8hzKzc3V9u3btX79eu3cufPq7z4pKUkZGRny8/NTSEiIwsPDVadOHTVo0EAtWrTQ7bffrhYtWiggIMDjNXiLn40TVwCgWCAZAgAAAKA0IxlSOqxZs0Zdu3Y13d/f31+rVq1yaYyrzp8/r/DwcAUGFnzf+IoVK7Ry5Upt3LhR27dv1+XLlz2OX6tWLT3yyCN67rnnVLNmTbfnqVOnjo4fP15gv08++UQDBw4ssN8ff/yhhQsXasOGDfr111917tw5t9d2Rbly5dS7d289++yz6tatm8fzXevy5cv6+uuvNWfOHK1fv165ubluzXPLLbfovvvu05NPPmlIjBRG4qpz585as2aNw+cKKxly8OBBffDBB/r888919uxZt+aoWLGioqOj9cgjj+jOO+90ey3eQjIEAIo5kiQAAAAArISkR+n20EMP6auvvjLdf9y4cXrttdd8tyAXNWnSRAcPHvTJ3OXKldPo0aP16quvmkrMXMvbyZDJkyfr5ZdfdnkdZvXo0UMffPCB6tat65X5vvzyS40dO1YxMTFemU+SvvvuO9177712bVZPhpw+fVqjRo3S559/7nYy6VotWrTQrl27vDKXJzgzBAAAAAAAAIDPZWZm6ocffjDdPzIyUmPGjPHhioqXzMxMjR8/XnfccUepOOB95cqVatWqldauXevRPElJSerbt68efvhhryZCSqOFCxeqWbNmmj9/vtcSIcUJZ4YAQDHH+SIAAAAASiqqQJDX2rVrlZqaarr/008/rXLlyvlwRcXT2rVr1bdvX61cubJYnbfgC0lJSYqOjtbGjRt10003uTz++PHj6tmzpw4dOuSD1ZUukyZN0iuvvCIrbyRFZQgAAAAAAAAAn9u0aZNL/YcMGeKjlRR/q1ev1ptvvlnUyygUqampeuihh5Sdne3SuNOnT6t79+4kQrxg6tSpGjt2rKUTIRKVIQBQIjm7u4qKEQAAAABFgQoQmLF161bTfevVq+fRYeJWMGnSJIcHeFvR/v379dFHH+npp5821T8nJ0f9+/fX0aNHfbwy61uxYoVGjx5d1MsoFCRDAAAAAAAAAPjckSNHTPdt3769D1fiXQEBAWrQoIFuuOEGNWrUSOHh4QoNDVWFChWUmZmplJQUHTt2TNu3b9e2bdtMn8WQmpqqOXPm+PQQc3dUq1ZNN9xwg5o3b64qVaooLCxMYWFhys3NVXp6uk6ePKkDBw5o7dq1Sk5ONj3vjBkzTCdDpk+frnXr1rm89vr166t79+6qV6+eqlSposzMTJ07d06///671q5dq9OnT7s8Z0l28eJFPfHEEy6fDxIcHKwOHTqoXbt2ioyMVIUKFXT+/HmdOnVKv/76q7Zv3+5ypU9hIBkCABbC+SIAAAAAfI0qELjDZrPpxIkTpvu3aNHCh6vxXEREhO655x7de++96tGjh8qXL29qXFxcnMaPH6+PPvrIVP+vv/66yJMh/v7+6tq1q/r27au+ffsqKirK1LjLly9r/vz5GjlypC5cuFBg/4MHD2rXrl1q2bJlvv0SExM1fvx4U2u44rbbbtOkSZPUuXPnfPtt3rxZs2bN0jfffKOsrCyHfRxtJeXn52dqHatXr1aXLl1M9S0MkydP1qlTp0z3L1++vEaOHKkRI0YoPDzcab+UlBR9+umneu+993TgwAFvLNUrSIYAAAAAAAAA8KnU1FRlZmaa7h8REeHS/Pv27dPOnTtdXZad+vXr67bbbsu3T+3atfXMM89o8ODBphMgedWsWVMffvihatWqpXHjxhXYf/fu3UpISCiSrbLKli2rwYMHa9SoUWrYsKHL48uUKaNBgwapXbt2atOmjdLS0gocs2rVqgKTIbNnz9bFixdNr+Opp57Sv//9bwUGFvxVeNu2bdW2bVu99tpreu6550zHKIlSU1P13nvvme5/3XXXacmSJWrdunWBfcPCwvTcc89p6NCh+uCDD7RgQfFIopMMAQCL43wRAAAAAO6gAgTelJGR4VL/SpUqudT/+++/97iC4vHHHy8wGfLjjz+argLIz9ixYzVr1iwlJCQU2HfHjh3q1auXxzFdNXz4cK+81mbNmmnIkCF65513Cuy7ffv2Avt88sknpmP369dPs2fPNt3/ivr162vZsmUuJfBKmu+++05JSUmm+pYpU0aLFy82lQjJy9/fX08//bSeeOIJN1bofSRDAKCUyu+DDYkSAAAAoHQg4YHCcunSJZf6h4aG+mglnvFGckCSAgMD1a5dO33//fcF9j106FCRJEO89VolqUOHDqaSIYcOHcr3+T179pg+ND0sLExz58411deZcuXKeTS+OPvvf/9ruu/o0aN16623uh2ruLyP/kW9AAAAAAAAAADWFhQU5FL/1NRUH62k+DC7FVh8fLyPV+J73nqtGzZsMB3zySefdLnCqDQx+16WK1dOzz//vI9XUzioDAEAGLC1FgAAAGAtVICgqLl6voaZA7eLA5vNpn379mnjxo1XqxZiY2OVmJiolJQUXbp0SdnZ2R7FSElJ8dJqPZeQkKB169Zp586dOnDggE6cOKGzZ88qKSlJmZmZysrKcnjAuFkFvVZXzoX5y1/4DsOZ+Ph4nT171lTfLl26FMmZNb5AMgQAAAAAAACAT4WEhKhs2bKmt8sq7smQY8eO6d1339VXX32luLg4n8Zy9bwVb8vMzNT8+fM1b948bdq0yaNkR0EKeq3Hjh0zNU9wcLBatWrljSVZktn3UfpzizOrIBkCADDN0d1kVIsAAAAAxQtVICiO/Pz8FBUVpcOHD5vqv2fPHh+vyD2XL1/WmDFjNHPmTI8rPszKzc0tlDiO/PDDD3rmmWcUGxtbKPEKSrSYrWaoVauWypQp440lWZLZ91GS6tat68OVFC7ODAEAAAAAAADgc/Xr1zfdd9OmTT5ciXuSk5N155136u233y60REhRmjFjhvr27VtoiRAz0tPTTfUze0ZJaWX2fZSs9V5SGQIA8EhBd51ROQIAAAB4F5UfKKluvfVW/fjjj6b6Hjx4UAkJCabPKhgzZozGjBnj8LkuXbpo7dq1ptfpzAMPPKBffvnF43lKgs8//1zDhw8v6mUAXkVlCAAAAAAAAACfa9eunem+NptNn3zyiQ9X45qPP/5Yq1atKuplFIqEhAQNGzasqJfhUPny5U31S0xM9PFKSjaz76NkrfeSyhAAgE9xzggAAADgPqpAYCVdu3ZV+fLlTW/R89577+nFF19UQECAj1dWsDfffNN030aNGmnw4MHq1KmT6tevr7CwMAUFBRn6DRw4UJ9++qk3l+kVH330kc6fP2+qb/ny5fX4448rOjpazZs3V2RkpIKDg+Xn52fXb82aNeratavHazNbKRQXF6fs7GwFBvL1tyNm30dJiomJ8d1CChl/DQAAAAAAAAB8Ljg4WH369NG3335rqv/x48f13nvv6bnnnvPxyvL322+/6dChQ6b6/u1vf9P7779v6kt4V85tKExmfz9169bVqlWrVK9evQL7euu1mj3MOz09XTt27FCbNm28EtdqXDkUfcOGDT5cSeEiGQIAKHScMwIAAAD8icoPlDZDhgwx/WW7JI0aNUpdu3bVDTfc4MNV5W/9+vWm+tWoUUOzZ882XY1w7NgxT5blE2lpadq5c6epvv/+979NJUIk773Wli1bmu777bffkgxxombNmoqMjFRCQkKBfdesWaNz586pSpUqhbAy3+LMEAAAAAAAAACFokePHi4lNjIzM9WvX78iTRycOnXKVL/27durTJkypufcsWOHJ8vyCbOvVZJL214tXbrUneUYdOjQwXTfDz/8UElJSV6JW5Dg4GBT/TIyMny8EvPat29vql9GRoZmzZrl49UUDipDAADFTn53x1E1AgAAgJKG6g/A3qRJk3T33Xeb7n/kyBG1a9dOixcvdukQdm8xc/e8JGVlZZmec/z48crNzXV3ST5j9rVKf75eMwdxb9q0ScuXL/dkWVe1aNFCdevWNZUcS05O1pAhQ/TNN9+4HS89Pd3UawwLCzOV6Pj999/Vu3dvt9fjTf369dN///tfU30nT56se+65R61atXIrltn30deoDAEAlCgrcxfk+z8AAACgsHGNCrgmOjpaffr0cWnM2bNn1b59ez3++OOFXiVi9kvcNWvW6MKFCwX2mzdvnj744ANPl+UTrnxh/d133xXYJzY2Vv379/dkSQYDBw403XfBggV67rnnlJOT41KMuLg43X333frpp59M9Y+IiDDV76OPPlJqaqpLa/GVfv36KTw83FTfS5cu6Z577jG9hVpe8+bNU3R0tMvjfIFkCAAAAAAAAIBCNXfuXFWtWtWlMbm5ufrPf/6jRo0aqVOnTnr99de1du1aHTp0SImJicrNzVVmZqZOnTqlLVu2aM6cOXr00Ue1detWj9ZarVo1U/2Sk5P1l7/8RXFxcQ6fv3jxokaNGqVBgwZ5tB5fMvtaJWnEiBH68ccfnT7//fff69Zbb1VsbKw3lnbVM888o5CQENP9Z82apc6dO5s6++X333/XM888o0aNGumHH34wHcPs1m8HDhxQ06ZNNWzYMM2ePVvz58/XZ599Zvc/s9UangoNDdVTTz1lun9cXJw6duyoCRMmKCUlJd++mZmZ+vTTT9WqVSs98cQTSkxM9HS5XsE2WQAAS2GLLQAAAPgCFR6Ad1WvXl1ffvmlevfu7dL2UpKUnZ2t9evXmz7Y3FOuHML9888/q169err//vvVrFkz1ahRQykpKdq5c6d++OGHYvOlsDPVq1dXVFSUTpw4UWDfpKQk9e7dW23btlXXrl1Vu3ZtSX8elr58+XLt2bPHJ2usUqWK/vGPf2j06NGmx2zcuFGdOnVSw4YN1b17d9WrV0+VK1fWpUuXdO7cOR05ckTr1q1TTEyMW2u65ZZbtGCBuf9OnDx5UjNnznT6fO3atXXvvfe6tQ5XjR07Vp9++qlOnz5tqn9aWprGjRunyZMnq1OnTmrbtq2qVq2q8uXLKzExUWfOnNGWLVu0efNmZWZm+nj1riMZAgAAAAAAAKDQdevWTfPnz9dDDz1ULM/PuKJjx44KDw9XcnKyqf5ZWVn68ssvfbwq34mOjtZ7771nuv/mzZu1efNmH67IaMSIEVqyZIk2btzo0rjDhw/r8OHDXl/P3XffrTFjxnh9Xl8LCwvT3LlzFR0dLZvNZnpcRkaGVqxYoRUrVvhwdd7HNlkAgFKDfZwBAACQH64XgcL317/+VQsWLFBwcHBRL8WpMmXKaNiwYV6ds1q1asXmIO1rDRs2TIGB3r2H/oknnvDqfIGBgfrmm29Up04dr87rrmbNmqljx45FvQy39OnTRxMnTizqZRQKkiEAAAAAAAAAisx9992n1atXq27dukW6Dj8/P6fPvfTSS4qKivJKnMDAQH322Wcun5lSWBo1aqTnnnvOa/MNHDhQAwYM8Np8V9SoUUO//PKLGjRo4PW53TF9+nQFBQUV9TLc8vLLL2v8+PFFvQyfY5ssAABU8B7QnDcCAABQ8lHhARRfbdu21e7du/XSSy9pzpw5ysnJKbTYkZGRGjp0qIYOHeq0T0hIiJYuXaoOHTqY3i7LEX9/f82dO1d33HGHPvvsM7fn8bUpU6Zo//79Hm+D1Lt3b3344Ycub2dlVt26dbV582Y99thjWrZsmU9imNWqVSt9+OGHGjJkiMvn4BQH//znP9W4cWP9/e9/9+hvvDijMgQAAAAAAABAkQsNDdX777+vXbt2qV+/fgoICPBZrDJlyujOO+/U119/rZMnT2rcuHGqUqVKvmNuuOEG/fzzz25XsISGhmrhwoU+qZLwtsDAQC1cuFAPPfSQ23MMGjRIixcvVpkyZby4MqOIiAgtXbpU8+fP91r1jrsef/xxbdiwQe3bty/Sdbirf//+2r9/vx5++GH5+1svdUBlCAAAJuR3FyFVIwAAAMUH1R9AyXfDDTdo0aJFOnHihObOnavvvvtOe/bs8XjeGjVqqGvXrurVq5eio6NVqVIll+e45ZZbtGPHDv3jH//Q3LlzlZGRUeAYf39/9evXT2+//XaRf1nvigoVKuiLL75Q7969NWHCBB05csTUuMaNG2vy5Mm69957fbvAazz66KP661//qi+//FIff/yxNmzYoNzcXLfmuvnmm3X//fe7ldS49dZbtWHDBv3222/64YcftG3bNu3fv18XLlxQSkqKMjMz3VrTFa4cdO6OGjVq6PPPP9err76q999/X19++aUSEhLcmissLEzR0dF69NFHvbxK9/jZfP3uAQBgcSRDAAAAig+SIYA1xcbGatOmTdq2bZsOHjyoEydO6NSpU0pLS1NGRoYCAgIUFhamsLAwhYaGqlKlSmrYsKGaN2+u5s2bq1mzZqpRo4ZX15SQkKCFCxdq9erV2rVrl86dO6fk5GQFBwcrMjJSTZs2VadOnfTAAw+ofv36hvEXLlxQWlpagXEqVKjgVuLGm3Jzc7Vs2TKtXLlSGzduVHx8vBITEyVJ4eHhql+/vlq3bq27775b3bt3N1QVXLp0yfQX6rVq1fLKms+dO6dVq1Zp69at2rt3r2JjY3X69Gmlp6fr8uXLKleunEJCQlS1alXVq1dPjRs3Vtu2bdW+fXtVr17dK2uwgtzcXG3dulXr16/Xrl27dPjwYcXFxSkpKUmZmZny9/dXhQoVFBYWptq1a6t+/fpq0aKF2rdvr5tvvlmBgcWnHoNkCAAAhYCECQAAgOdIdAAAAHdZb+MvAAAAAAAAAACAPKgMAQCgGKByBAAAgMoPAADgOyRDAAAoIUiYAACAkoxEBwAAKEpskwUAAAAAAAAAACyNyhAAACyE6hEAAFAUqPoAAADFHZUhAAAAAAAAAADA0qgMAQCgFKKCBAAAmEHFBwAAsAoqQwAAAAAAAAAAgKVRGQIAAPJFFQkAANZCtQcAACiNqAwBAAAAAAAAAACWRmUIAADwGNUjAAAUD1R9AAAAOEZlCAAAAAAAAAAAsDQqQwAAQKGiigQAANdQ7QEAAOA5kiEAAKDYInECALAqEhwAAACFi22yAAAAAAAAAACApVEZAgAALIVqEgBAYaPKAwAAoPijMgQAAAAAAAAAAFgalSEAAKDUo5oEAHAFVR4AAADWRGUIAAAAAAAAAACwNCpDAAAAPEBVCQAUP1R3AAAA4FpUhgAAAAAAAAAAAEujMgQAAKCIUFUCAM5R3QEAAABvojIEAAAAAAAAAABYGpUhAAAAJRSVJQCKMyo7AAAAUJxQGQIAAAAAAAAAACyNyhAAAABcRbUJUDpRxQEAAACrIxkCAACAQkOyBXAPyQoAAADAM2yTBQAAAAAAAAAALI3KEAAAAFga1SjwNqo0AAAAgJKHyhAAAAAAAAAAAGBpVIYAAAAAAAAAAABLozIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFhaYFEvAABQ8uTm5iolJaWolwEAAADAibCwMPn7cw8sAABXkAwBALgsJSVF99xzT1EvAwAAAIATS5YsUcWKFYt6GQAAFBvcIgAAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSODMEAOAVZbZXll92wNWf/fz9lOeH/Nvt2vzyPPR32O6sf952u7HO+l957CxOnoem4puJeWVSE/PZ8g7Le/uCo9dgGFvA63DW10mcAueTZLO7xcLJ6/AzPO00vrOYNmfx87bndeX9dbQOs/N5EP/q++K1mCbaZWw393669tjUulwZ56S/2+9FQWvyZG6zfVyYw9V1yc9m7OPBa3A4Xz5sjsa6GMf5Gh33sfvXqRz0Keh5SX5m5nbabsvTbjO3pmti2v/jb5zv2jn9nfYxxnc2n92/2vM8dja3qXbZ8n3ezGNna/FX/mPzPm8fP9et+fLvb5wzwC5+rsNxAWbiy/F6A5zOmft/MfO0OVmrs3anMfO0O1q7sznyxgmwm9vM+5I3ppM1/t/YAGevzdTrd7JGp32Mj/NequX95ynv44A8fQKc9PHP8w+sf55/AgJkbLfv6+94XJ5rz4spAXp8RKQAAIBzJEMAAF7hd9lffjleTob4O0lS2Jy15xnr5++w3WHywFkcZ4+dfUvm5+TrJofzuPpNqwru4+yx3Rd1BXxjasfVPnmbncS/moxxoW9+SzHT5//+vsx9GWwmpqvxvR3TzccexHE7SePqODlu93oyxEuv09vJENfjF0EyxOmcRZAMcdTHbt2uJkNci1lQMsLpa5aTdqfvi7M+xvfcz1lfJ++F8/gFP3aUDHH1sctJCgfJEPvnXU2G5J8A+LOPX57HxmSIo+eN8zlLQMhxe57fkX0iwcG67ebwM9Ged71y2G6/dkdryjPObo68MfO2F5wkCrB7X4x9nD/vOKFiJhnivE/+yRD7+Hnanbyf9n3ytjv5vfzfY/u+Mjx/bUx/R//xAQAAdtgmCwAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApQUW9QIAANZgK5Mr+eX8/wZ/v///2M+Wf7tdm5Nxedv9c5205x3r76TdweO8fe2el+N2p/OZiHllUkfruOaxzcEw82PzDsjL75r/l2wqqK/ZPnnYnLQ7YDe3zUm7HHbJJ76DPk7fz7yPnf3+XezvaC1ei2nisRy0exDH0Z+wy2txd92ePC6sOGZimXmfnfR3/u8Cm7GPk77O5yhgvnzYHI11MY7zNTruY/+vNgd9Cnpekp+ZuZ222/K028yt6ZqY9v/4G+e7dk7nfRzEt3ttBf3bN5/+Jh7brrxWu78b1x7n+a/5NestKL6zuXMdtzvt7/ixf57+/nnm9P+/Pnnn88v7fJ72XKfz/f/HOTLOLUkBTua80p737yDAydzO2p2tJcAujvL0v9LX2PbnOMeP7fv//x8CnLb7OWz3d/C8XZw8q8kb0/n7knesiffi/x47e/1274VdfCf9nbzOABnb7fv6Ox6X59rzYgr3ugIAUBCSIQAAr7h8y/miXgKKKyffbxUXZr4jBwDYM6YlrkluoARzlBnki3YAAFDycUUDAAAAAAAAAAAsjWQIAMBlycnJRb0EAAAAAPngmh0AAHskQwAAAAAAAAAAgKVxZggAwGWhoaGGtvnz5ys8PLwIVgMAAACUbsnJyXrsscfs2hxdswMAUJqRDAEAuMzf31hYGB4erooVKxb+YgAAAAAYOLpmBwCgNOO/jAAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALM3PZrPZinoRAAAAAAAAAAAAvkJlCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNICi3oBAOBNmZmZiouL09mzZ5WQkKD09HRdunRJQUFBCg0NVXh4uBo2bKjq1at7PXZycvLV2BcuXFBmZqaysrIUHByskJAQRUZGqlGjRgoPD/d67LzOnDmjQ4cOKSkpScnJyfL391dYWJiioqLUuHFjlS1b1qfxvcVmsykmJkbHjx9XQkKCMjIyFBAQoAoVKqhatWqqVauWatWqJT8/P6/FzMnJUUxMjGJiYpSSkqK0tDT5+/srJCREFStWVMOGDXXdddd5LV7euCdPnlRMTIySkpJ08eJF+fv7KzQ0VGFhYWrYsKFq1Kjh9bgAAAC+VJTX5vBMYmKijh07ptOnTys1NVVZWVkqX768QkNDVatWLTVs2FBlypTx6RouX76sP/74Q8ePH9fFixeVlpamMmXKKDQ0VBEREWrUqJGqVKni0zUAAKyFZAiAEisnJ0cHDx7U3r17tXfvXh05ckTx8fHKzc0tcGx4eLg6d+6sPn36qFmzZi7HzsjI0N69e7Vnzx7t379fR48e1fnz502NrVWrlnr06KHevXt77YPfxYsXtWDBAv3888+KjY112q9s2bK6/fbb1b9/f7ded2E4ePCgFi9erPXr1ys5OTnfviEhIWratKnatm2rLl26qGrVqm7F3LJli5YuXapNmzYpMzMz374VK1ZUt27ddPfdd6t+/fpuxcvNzdXevXu1bds27dy5U7///ruysrIKjNu+fXv169dPjRo1cisuAACArxTltbmrLly4oAEDBji81hw4cKAGDRrk0/jbt2/XiBEjZLPZDM/NmDFDN998s0/jO3L69Glt3rxZO3bs0O7du5WYmJhv/6CgIDVv3lx33323Onfu7LXESHZ2tjZs2KClS5dqx44dunz5cr79q1atqp49eyo6Otrlm4d27typYcOGebLcfBXV7xIA4JyfzdF/fQGgBDh+/Lgee+wxj+fp1KmTnn/+eZe+SF+8eLGmTZvmUdzAwEA9+OCDGjBggMqVK+f2PAsXLtTcuXOVmprq0rjevXtr+PDhCg4Odju2NyUkJGj69Olav369W+P/9re/6fHHH3dpzMmTJ/XWW29p586dLsfz8/PT3XffraeeekohISGmxsTHx+ubb77R2rVrTSfPHOnQoYNefPFFVa5c2e05AAAAvKkor81d9eqrr2rdunUOn/N1MiQ9PV0DBw7U6dOnHT5f2F+gf/3111q9erX279/v9hxVq1bVqFGj1KZNG4/WcvDgQU2ZMkWHDx92eWxgYKAefvhhDRgwQEFBQabG+DoZMnPmTLVs2dJn8wMAXMeZIQBKvXXr1mnQoEE6cOBAocbNzs7WZ599pmeffVZJSUkuj798+bImTZqkGTNmuJwIkaTly5dr6NChbsX2ti1btmjgwIFuJ0LcsW/fPj355JNuJUKkP7fxWrJkiZ555hlduHDB1Jjdu3dr0aJFHiVCJGnDhg16/PHHtWfPHo/mAQAAKG58fW2+cuVKp4mQwvDuu+86TYQUhXfffdejRIgknT17ViNHjtT777/v9hzr16/X008/7VYiRPrzs9V//vMfjRw5UhkZGW6vw1vKli2rBg0aFPUyAADXYJssAJbh5+en2rVrq27duqpVq5aqVq2q8uXLq0yZMsrIyFBCQoIOHz6sLVu2GC6QU1JS9MILL+iDDz5QVFSUy7GDgoLUoEEDRUVFqVatWoqIiFBwcLD8/PyUnp6uuLg4/f7779q9e7dycnLsxh46dOhqbLN3MUnS9OnTtXz5ckN7uXLl1LZtW7Vo0UKVKlXSpUuXFB8fr02bNhk+XBw5ckSjRo3SrFmzXIrtTatXr9aECRMM74skRUVFqW3btqpWrZoiIiIkSampqTp58qSOHDmivXv3Fri9lCPx8fEaOXKk0tLSDM9VrlxZ7du3V4MGDRQWFqbs7GwlJiZq//79+vXXXw3xYmJi9OKLL+rDDz9UYKB7/1kNCAhQw4YNdeONN6pq1aqqVKmS/P39lZiYqN9//12bNm1Senq63ZiUlBSNGjVK77zzjpo0aeJWXAAAAF8pymtzZ86fP68ZM2Z4bT5XbdmyRd9//32RxXdFtWrVdNNNN6lu3bqqWLGiKlSooNTUVB07dkxbtmzRiRMnDGO++OILBQQE6Mknn3Qp1p49ezRu3DhlZ2cbnqtZs6batWunevXqKSQkRFlZWUpISNCePXu0ZcsWw2eIXbt26Z///KfeeuutAuMGBwd7JWERFxdn+Bvu0qWL6epxAEDhIRkCoMTy8/O7+mV5mzZt1Lx5c1MXnJcuXdK3336rTz75xO6L7bS0NL355puaNWtWgYdyBwQEqHnz5mrXrp1at26tRo0amdon99y5c5ozZ46WLVtm13706FHNmzdPQ4YMKXAOSVq6dKnDD1IdOnTQiBEjHB4kOHjwYK1fv15Tpkyx2x/5wIEDmj17tk9LxJ3ZtWuXXn/9dcOHmNatW2vo0KEFnslx6dIlbdu2TcuWLXMpEfHOO+8YEiFBQUEaMmSI7rvvPqdzJScn69///rd++uknu/YjR47oq6++0qOPPmp6DX5+frr55pvVu3dvdezYUeXLl3fa9+LFi/r000+1YMECu72l09LS9K9//Uvz5s3z+QGWAAAA+SnKa3Ozpk6dqpSUlKs/N2vWzOOqCLNSU1M1ZcqUqz8HBASofv36OnToUKHEN6N69eq688471bNnT9WqVctpP5vNpnXr1untt982VEjPnz9frVu3Nr3VV3Z2tqZNm2ZIhISEhGj48OHq0aOH09//mTNnNGXKFG3dutWuffPmzVq1apXuuOOOfGM3adJEH3/8sal1OnPp0iX169fP0H7XXXd5NC8AwDc4MwRAqbV7926NGDHCcChfYezt+vnnn+uDDz6wawsODtbixYsLPD/k0qVL6t+/v+FQw549e2rs2LHy989/B8SYmBg9++yzdh8E/f399dFHH6lhw4YuvhL3JSUladCgQTp37pxd+7PPPqu//vWvLs9ns9lMfVCOiYnRgAEDDO3/+te/1LlzZ1Oxpk2bpsWLF9u1RUREaNGiRfm+/8uXL9eUKVPUq1cvPfbYY6pZs6apeHnHT5482XDY5jPPPKMHH3zQpbkAAACKE19fm//444964403rv580003qU+fPpo8ebJdP1+dGTJ58mS7G6IGDBigs2fP6scff7TrV9hnhnTq1EmNGjXSE088odtvv92lxNPZs2c1dOhQnTlzxq69bt26+vTTT03N8b///U+jRo2yaytTpoxmzpyp5s2bFzg+JydHY8eO1aZNm+zamzRpog8//NDUGjzx008/6fXXX7drq1Wrlr744gufxwYAuI4zQwCUWi1atNBf/vIXQ/vq1at9HvuRRx4xXNxnZGTof//7X4FjlyxZYkiE1KxZUyNHjiwwESJJderU0QsvvGDXlpubq3nz5hW8cC96//33DYmQoUOHupUIkWT6g5ujc0k6duxoOhEi/Zl8uLJt1xWJiYnat29fvuMaNWqkzz77TGPGjHE5ESL9eei9ozvPVqxY4fJcAAAAxYkvr83PnTunmTNnXv25bNmyGj16tNcqTgqyadMmu0RInTp19PjjjxdK7IJMnDhRc+bMUfv27V1+P6pWraoJEyYYxh07dsx0xYuja/N7773XVCJE+rPCZuTIkYYtfw8cOKCEhARTc3hi6dKlhjaqQgCg+CIZAqBU69mzp6EtJiamUGI7Kts2E3vt2rWGtoceeqjAipK8unfvrrp169q1bdy4UWfPnjU9hyeOHj1qOO+kZcuWbidCXOFof+Pu3bu7NEdwcLA6dOhgaI+Njc13XP369d1KguQ1cOBABQQE2LUdPXrUcEceAABASeOra/MpU6YoNTX16s+DBg3S9ddf7/G8Zly8eNHu/Ap/f3+NGTOm2Gxx2rFjR4/GN23aVLfddpuh/dpKDWeOHz9uaHP12jwyMtJh9VBB1+aeiouL065du+zaAgICdOedd/o0LgDAfSRDAJRqjr6YPn/+fLGNnZGRYdjXOCAgoMD9cB3p0aOH3c+5ublatWqVy/O448svvzRs9TRs2LBCuTvv2n2NJal27douz+NozLUVO75QsWJFNW7c2NB+6tQpn8cGAADwJV9cmy9dutSu+rpp06aFcgPOFTNnzrSrhn7ggQfUrFmzQotfGBwlQ+Lj402NTUpKMrTVqVPH5TU4ujZ3dN3vTUuXLjV8prnttttUuXJln8YFALiPZAiAUi3vIY1XFNZdWo5iF3QI+IkTJwyHC9apUyffw7edueGGGwxtZu/g8kRaWprWrFlj19a4ceMCD0v3FkfvsTu/82tL8Z21+UK1atUMbYWVxAMAAPAVb1+bnz17Vu+++67dXGPGjDFU2frKhg0b7LYzrVmzpp588slCiV2Yqlatamgze5OQo2vzgj4TOeLo78SX1+Y5OTmG814kKTo62mcxAQCeIxkCoFT7/fffDW01atQolNgHDhwwtBW0hZKjO6ccfTFuhqNx+/btc/gh1Js2btxoiOFqKbwnrrvuOkObO9uDORrj6RZYZmVmZhraypYtWyixAQAAfMXb1+bXbo81YMAAw1axvpKSkqKpU6de/dnPz0+jR4+25DXbpUuXDG1mExG+vDb35ee6zZs3G84/rFKlitq2beuzmAAAz5EMAVCqffXVV4a2Nm3a+DxuSkqKw8P2br311gLHXatChQpurSEkJMTQlp2drT/++MOt+czaunWroc3sAYne0KpVK0Pb5s2bXZ7n2sPuy5Qpo5tuusntdbkiLi7O0EY5PgAAKOm8eW3+/fffa8uWLVd/btCggR555BG31+aq6dOn21VH9O3b1+G5FlZw8uRJQ5vZa1NvXJtfvnxZ27dvt2uLiIhQvXr1XJrHFY4+y/Xu3bvQqo4AAO5xvfYQACwgOztbM2fO1LZt2+zaK1as6PDgRm9KSkrS2LFjDXvYtm3btsCzKxzdSeboTiwznI07fvy4mjRp4tacZuzdu9fuZz8/P7stsi5duqRffvlFGzZs0OHDh69+iKxYsaIiIiLUvHlztW7dWm3atHFr24TbbrtN1atX1+nTp6+2LVmyRPfff7+qV69uao6ff/5Zhw8ftmvr2bOnQkNDXV6Pq44dO2Y4BL5s2bKFdpcjAACAt3n72vzMmTN222MFBARo9OjRbm2/5I7169fbncVXrVo1PfXUU4USuyisXbvW0Na0aVNTY++8807NmTNHGRkZV9u++OIL9erVy+HNW458/fXXhs9W/fr189l5hImJifr111/t2vz8/HTXXXf5JB4AwHtIhgAoVU6dOqVNmzZp4cKFio2NtXvOz89PL730koKDg70eNzs7WzExMVqzZo0WLVpkV64vSaGhoXrxxRcLnCcsLMzQ5mjrLDOcHSjoqOrAWzIzMw2HKUZERFw982T9+vWaNm2awz2Gz549q7Nnz+rAgQNauHChqlevrgEDBqhPnz7y9zdf6BgYGKgXXnhBo0ePvtqWkZGhkSNHatKkSbr++uvzHb9+/XpNnjzZ8Br+/ve/m16DJ5YsWWJoa926tcqVK1co8QEAALzFF9fmNptNb775ptLT06+2Pfjgg2rcuLFX1lyQ5ORkTZs2za7tpZdecuuMv5Lg4MGDOnjwoF1bQECAw0PVHQkNDdXTTz+tt99++2pbQkKCRo0apQkTJqhKlSr5jl+8eLHmzJlj11anTh09+OCDJl+B63788Ufl5OTYtbVs2bLQtlsGALiPZAgAy3n66aftqh5sNpsyMzN14cIFuw9FeZUpU0YvvviiOnbs6HbcmJgYTZgwwa4tJydHGRkZOn/+vC5fvuxwXEREhN58801TVQmODic8fPiwcnJyXC7JvvZDyxXOkiTecOrUKdlsNru2ChUqyGazaerUqfr+++9Nz3X69GlNmTJFGzZs0D//+U+XPmDedtttGjZsmGbOnHl1PSdOnNCgQYPUq1cvderUSQ0aNFBYWJiys7OVmJio/fv368cff7TbbkGSwsPDNXXqVFWsWNF0fHedOHHCYTLk7rvv9nlsAAAAdxT2tfnixYvtKkyioqL0xBNPuL5wN7399tt2N/b07t27ULbhLQo2m82uAueKDh06uHRtfO+99youLk5ff/311ba9e/dqwIABio6O1m233aa6desqJCREWVlZOnfunH777TctXbpU+/bts5urZs2aeuutt3x6NsuyZcsMbRycDgAlA8kQAJbzxx9/2JVZF6RVq1YaOnSoGjZs6FHczMxMHTlyxHT/wMBA9ezZU0899ZTpDws1atRQZGSkEhISrrZlZGRo165duuWWW1xa77Wl3VckJye7NI8rzp8/b2grX7683n33XYeJkPDwcFWsWFHp6elKTEw03IEl/fk6nn/+eb377rsufei5//77df3112vq1KlXt8y6dOmSlixZ4jDh4Ej79u314osvFnjHmjdkZ2fr9ddfNyTVbrrpJt1+++0+jw8AAOCOwrw2j4+P1+zZs6/+7O/vr9GjR5s+zNtTa9as0erVq6/+XLlyZT377LOFErsofPvtt9q1a5ddW2BgoP72t7+5PNeV3/msWbOuVr6npqbqq6++cniWzLUCAgLUq1cvPfvss6a313LH7t27DVvWhoaGqlOnTj6LCQDwHpIhAEqt+vXra/jw4WrRokWhx+7YsaOeffZZXXfddS6PbdWqlVasWGHXtmDBApeSIbGxsU6TIa58WHXVxYsXDW3Hjh3TgQMHrv4cHBys/v37684777QrNU9PT9emTZv0ySefGD6AHDp0SFOnTtUrr7zi0nratGmjL774Qr/88ouWLVumHTt2FDjG399fd911l/r166cGDRq4FM8T7777rt37JElBQUEaOXJkoa0BAADAVzy9Nr+yPVbea9n77rtPN954o7eWmK+kpCS7rZ4kacSIEYVyplxR2Ldvn95//31D+yOPPKI6deq4NWfPnj3VqVMnrVixQkuXLjVc+zoSFBSk+++/X/fcc49q1qzpVlxXODo4vUePHj6tRAEAeI/5TdYBwGKOHj2q4cOHa9y4cS5VdHjD+vXrNWjQIM2aNcvlbanuvfdeQ9uvv/6qn376ydT47OxsvfHGG8rNzXX6vK842ios77YJ1atX15w5czRo0CDDnrvly5dX9+7dNW/ePN1xxx2GeVasWKHNmze7tB6bzabNmzdrxYoV+u2330yNyc3N1bJlyzR79mzDllm+snjxYi1cuNDQ/vTTT7v9YRMAAKA48fTafNGiRdq5c+fVn2vUqKEhQ4Z4c4n5mjZtmt1Zft26dfNoC97i7PTp03rllVcM1/bNmzfX448/7va82dnZWrdunX766ScdOnTI1JisrCwtXLhQ77//vvbv3+92bDPS0tK0Zs0aQztbZAFAyUFlCADLubZqIjs7W6mpqTp37pwOHDig1atXa9u2bbLZbMrJydHq1au1bt06PfHEExowYIDbcZs0aaJ169bZtWVlZSk1NVUnT57Uvn37tGLFCv3xxx+S/ryY/uabb7RixQqNHTvW9CGDzZs3V6tWrQxVDJMnT5bNZlOvXr2cjr148aLGjx9v2Fs3Lz8/P1PrcMe154XkVbZsWb311lsFHmAeGBioV199VQkJCdq9e7fdc/Pnz1fbtm1NrSU+Pl5vvPGG0yRIeHi4wsPDlZOTo+TkZLtD73NycrR161Zt3bpVHTp00KhRo3x2ZsiGDRs0ffp0Q3uPHj10//33+yQmAACAtxTGtXlcXJw++OCDqz9fOXy9XLlyXn0tzqxatUpr1669+nN4eLiGDx9eKLELW3Jysl566SW7c1GkP89BHD9+vAID3fua6fDhw3r99dd17Ngxh89HREQoNDRUly9fVlJSkt15M1lZWVq7dq3Wrl2r6OhoPffccwoODnZrHflZtWqVMjMz7dqaNGlSqNXiAADPkAwBYHmBgYGqWLGiKlasqAYNGig6OlqHDx/WpEmTrt51lpOTozlz5iglJcWr+/oGBQUpIiJCERERuummm/TQQw9p9erVevvtt6+ezZGcnKyxY8fqtddeU+fOnU3NO2rUKD355JN2205lZ2dr4sSJWr58uaKjo3XjjTeqUqVKysrKUnx8vDZt2qRvv/3W7kyQiIgIwwcZX+6pnN+Ho4cffli1a9c2NY+/v79GjRqlxx57zK7C5bffftPx48cLnOfKnYfXno9Ss2ZN9e/fX+3bt1dkZKTdcydPntTatWv17bff2p19smHDBsXGxmr69OmqXLmyqfWbtX37dr322muGs1Jat26t0aNHezUWAABAYfD2tXlubq4mTZpk9yV1dHS0y+fpuSsxMVEzZsywaxs2bJjPbpQpSmlpaXrppZd0/Phxu/aQkBBNmTJFVatWdWve7du3a8yYMXYV45LUsGFD9e/fX23atLF7P202m2JiYrRq1Sp99913djct/fDDDzpx4oSmTJmi8uXLu7UeZxxtkXXXXXd5NQYAwLfYJgtAqXTlcL5mzZrZtX/zzTd2hx76QteuXfXvf/9b4eHhV9tycnI0adIkxcfHm5qjRo0aGjdunMO9aXfs2KEJEyboL3/5i+644w716dNHgwcP1ty5c+2+/G/ZsqX69+9vGO/LAwed3Z0XEBCgvn37ujTX9ddfr1tvvdXQfu0hjtdKSUnRqFGjDImQPn36aN68ebr33nsNiRBJqlWrlh555BH95z//Ubt27eyeO378uF577TWnW4+5Y8+ePRo7dqyysrLs2m+66SZNnDix0A4CBQAA8DVPrs2//fZbu0rfyMhIPfPMMz5ZpyNTp061u668/fbbHW7pWtJlZGRo9OjRhnM8goOD9eabb6pRo0ZuzRsXF6exY8caEiEDBgzQRx99pJ49exoSS35+fqpbt66efPJJffLJJ2ratKnd87/99pumTZvm1nqcOXr0qOG1lytXzpK/awCwMpIhAEqt8uXL67XXXjMkFGbPnu3TczMkqU6dOnrhhRfs2tLT0zV37lzTc7Rp00YzZ85UlSpVXI7funVrTZw40eEZHt6ubsgrLCzMYXuDBg0UERHh8nyOkiEFnf3xwQcfKCEhwa6tU6dOGj16tKmDD0NDQ/Wvf/3L8GF99+7dWr58uYlVF+z333/XqFGjDIfZN23aVG+++aZPyv4BAACKkjvX5rGxsfroo4/s2kaOHKkKFSr4bJ15/fTTT9qwYcPVn0NCQjRy5MhCiV2YLl26pJdfftlwnV22bFlNnjzZo0Pqp02bZrjm/etf/6rBgwfL37/gr6yqVaumKVOmGM4bXLlypbZv3+72uq7lqCqkS5cuhfa3BgDwDpIhAEq16tWrq2fPnnZtp0+f1tatW30eu1u3bobzMX755Re7ra8K0rRpU/3nP//RwIEDTVV0hIaGatiwYZo2bZpCQ0OVlpZm6HPtBwlvcpZoadiwoVvzORp37tw5p/2TkpIM+1YHBQVp2LBhLp2VUrZsWYf7QC9YsMD0HM4cOnRII0eONPxuGjVqpKlTp/KBCwAAWJar1+YzZ860qyjo2bOn6XP4PJWVlWXYHuuZZ55x60al4iwrK0uvvPKK4bzCoKAgvfHGG7r55pvdnvvo0aPatm2bXVtERIQGDx7s0jzh4eF66qmnDO3euDaX/nwPVq5caWhniywAKHk4MwRAqdeuXTt9//33dm07d+4slA9Sbdu2VWxs7NWfc3JytHfvXpdih4SEaNCgQXrkkUe0e/du7dixQ/Hx8UpKSlJGRobKly+vqKgotWzZUu3bt7fbqura/X4lqV69ep69qHxUrVpVAQEBhjMwnFWMFMTRuJSUFKf9t2/fbth2qnXr1g63xSpIkyZNVLduXbtDHv/44w+dO3fO7Q/BR44c0YgRIwwJsQYNGujtt99WaGioW/MCAACUFK5cm+c9x02S9u3bp0GDBpmO5ei6ccmSJXbVHpLUuHFjw3ltly5dMlyzLVq0SIsWLTId/8yZM4a2KVOmGKqA+/bt6/KWst5w+fJlvfrqq9qyZYtde5kyZfT66687rNJ2xaZNmwxtXbp0cevg+w4dOigkJMTu/JCdO3cqOzvb7UPdr1i/fr1hi92oqCi1aNHCo3kBAIWPZAiAUq969eqGNrNndxSn2GXLllWbNm3Upk0b02OOHj1q93NQUJDb+/2aERgYqFq1ahmSMO6ef+Fo3LXJjryufb2SDNtduaJZs2Z2yRDpz4SIO8mQP/74Qy+88ILhQ3m9evX09ttvu50wAgAAKEk8uT6Oi4vzOH5iYqISExPt2syeqXflAHhPOHoN1yZ9CkN2drb+8Y9/6H//+59de2BgoCZMmGA4Q88df/zxh6HN3WvzwMBANW7c2G5rrIyMDMXHxysqKsrtNUocnA4AVsI2WQBKPUdfqKenpxdKbEdnVBRW7HPnzhnuRmvevLmpczM80aRJE0Nb3ju4XOFoXH5Jg2vv6JJkOJDRFY7G5leZ4syxY8c0fPhww/rq1q2r6dOne7RGAACAkqQor83xp+zsbI0bN06//vqrXXtgYKDGjx+v9u3beyVOcb02z+v06dOGLcICAwPVq1cvj+YFABQNkiEASr0LFy4Y2grry2dHscPDwwsl9qpVqwxt3bp183lcR/sKnzp1yq25Tp8+bWjL73fn6MN13n2mXZWZmWloczWZFBMToxdeeEFJSUl27VFRUXrnnXdIhAAAgFKlKK/N8Wci5LXXXtP69evt2gMCAjRu3Dh17NjRa7EK49rcnS238lq2bJlyc3Pt2m677TZFRER4NC8AoGiwTRaAUm///v2GtsK6uN23b1+RxLbZbPrxxx/t2oKDgwslGdKmTRv5+/vbfajYv3+/bDabS4eYS9LevXsNbfkdxu7og7S7iRhnY135sB4bG6vhw4cbtmKIiorSjBkz+JAFAABKHVeuzT/++GOPYi1fvlyTJk2yaxs4cKCpc0dCQ0O1bt06j+K/8cYbhmvyGTNmeHQouSdycnL0r3/9y/C6AgIC9M9//lOdO3f2ajxvX5s72k7Nk0Rabm6uli9fbmiPjo52e04AQNGiMgRAqWaz2fTzzz8b2ps3b+7z2OfPn9fOnTvt2vz9/T06w8KsJUuWGPbojY6OLpQDuqtUqaJWrVrZtV24cMFwMGNBsrOzHf7ubrnlFqdjatWqZWjbvHmzS3GvyMzMNPz+/Pz8HMZw5OTJkxo2bJghEVKrVi1Nnz5dlStXdmtdAAAAJVVRXpuXdrm5uZo4caJWr15t1x4QEKBXX31VXbt29XpMR9fN155RYtaZM2cMZ/mFhISoUqVKbs0nSdu2bTNsKxwZGenSGY0AgOKFZAiAUu2HH37Q4cOH7dqCgoLUtm1bn8d+9913DYd9N2/e3OfVALGxsfrwww/t2kJDQzVgwACfxs3r/vvvN7TNmzdPOTk5puf47rvvDImEyMjIfD8st27dWv7+9v/pi42NNXzoM+Obb75RRkaGXVvDhg1NfeCKj4/X8OHDde7cObv2mjVrasaMGW4dwA4AAFDSFeW1eWmWm5urSZMmGbbR9ff318svv6zu3bv7JK6jpMK2bdscVgcV5NNPPzW0tWrVSgEBAW6tTfrz7/FavXv39mhOAEDRIhkCoEQ6dOiQvvzyS4f7wpq1evVqvfPOO4b2Pn36qHz58k7H/fTTT1q9erVsNptbcXNzczVr1iyHZ3Y4ShI440ri4IqYmBg9//zzunjxol37s88+69JZJcuXL1enTp3s/vf888+bHt++fXvDQer79u0zJGmc2b9/v8O+jzzyiAIDne8AGR4e7rByZNq0aYqJiTEVW5K2bt2qefPmGdrNfFA8c+aMhg8frrNnz9q116hRQ9OnT1dkZKTpdQAAABQHRXltDs+uzW02m9566y2tWLHCrv1KIqRnz56+WLKkP28kioqKMrSPHz/ecNNQfpYtW+YwceFJEicpKUkbN260a/Pz81OfPn3cnhMAUPRIhgAokdLS0jR79mz1799f7733ng4cOGB67B9//KEJEyZo3Lhxys7OtnsuIiJCTz75ZL7jT548qXHjxmngwIH68ssvHR7i7Uhubq62bt2qp556St98843h+TZt2pg+syM7O1v9+/fXp59+qpMnTxbYPz09XR9//LEGDx6s8+fP2z3Xu3dv9e7d21Rcb3rxxRcNd1V9+eWXevPNNw3JmiuunHXywgsvGA5XrFu3rqn9e4cMGWI4myQlJUVPP/20li9fbvibyCszM1OfffaZRo8ebegXGRmp++67L9/Y586d0/Dhww1/M9WrV9eMGTNUrVq1AtcPAABQ3BTltTk8884772jp0qV2bf7+/ho9erR69erl8/iOfr+nTp3Sk08+qQ0bNuR7A1pKSopmzZqlN9980/BckyZN1KVLF7fX9dNPP+ny5ct2ba1atVKNGjXcnhMAUPQ4QB1AiXbhwgV99dVX+uqrrxQREaGGDRuqYcOGqly5skJCQlS2bFllZGTo4sWLOnbsmPbv32/YS/aKkJAQTZw40fS5GceOHdPs2bM1e/Zs1axZU40aNVK9evUUHh6ukJAQBQQEKD09XRcuXNCRI0e0Z88eJSQkOJyrbt26euWVV1x67WfPntXcuXM1d+5cRUVFqWnTpqpbt64qVaqk4OBgXbx4UYmJidq7d6927txp2JJLkm677Ta99NJLLsX1lsaNG2vo0KGaOXOmXfvSpUu1du1atW/fXs2aNVN4eLgyMjJ04sQJbdy4USdOnDDMFRoaqjfeeENBQUGm4j788MP6/PPP7drT0tI0adIkzZ07V23btlWDBg0UFhYmm82mpKQk/f7779q8ebNSUlIMcwYGBmr06NEqW7ZsvrE//vhjxcXFGdpzcnL08ssvF7j2/PTt21d9+/b1aA4AAABPFOW1OVy3Z88e/fe//zW0BwUFacGCBVqwYIHbc1euXFlvvfVWgf06d+6sO+64w1A1f/78eY0dO1bXX3+9br31VtWrV0+hoaG6fPmyEhMTtX//fm3evNmwba0kVahQQaNGjTLcAOWKaxNEEgenA4AVkAwBYBmJiYnavHmzWwdiR0ZG6vXXX1fTpk3dih0XF6e4uDi3zp648cYbNXHiRFWsWNGt2JJ04sQJh0mC/Nx111168cUX891WytceeOABXbx4UZ988olde2pqqlasWGEo13ekcuXKmjhxomrWrGk67t///nelpaU5/PB39uxZff/996bnKlOmjMaOHWvqIEVnVScJCQlOE2VmXVvxAwAAUJSK8toc5ji7Ns3MzNSRI0c8mjs1NdV037FjxyojI8OwLZX05/l+sbGxpucqX768Jk2apAYNGpgec619+/YZknRhYWHq2LGj23MCAIoHkiEASqSgoCAFBAS4dW5GXoGBgerXr5/+9re/md6LODg42KOYV4SHh2vw4MG65557PLpryVVVq1bV0KFD1bVr10KLmZ8nnnhCtWvX1jvvvKPk5GSXxrZu3Vpjx45168DxESNGqEWLFpo+fbrLca9o2LChxo4dq/r167s1HgAAwAqK8tocJV9gYKDeeOMNLVq0SB9++KHDag8zWrVqpTFjxqh69eoercdRVUiPHj1MVaEDAIo3kiEASqTmzZtr8eLF2rp1q7Zt26b9+/fr+PHjys3NLXBs2bJl1ahRI3Xr1k133HGHSweHS9JDDz2kzp07a/Pmzdq1a5f279+vM2fOmBobFhamG264Qb169VL79u3dvqAODAzUxIkT9b///U87duxwuPVSXgEBAWratKn69Omjnj17FrsL+W7duunWW2/VokWLtHTp0nzPYQkODtbNN9+sBx98UC1btvQobvfu3XX77bfr559/1rJly3TgwIF8zwyR/rzb7JZbbtE999yjNm3aFGoiCwAAoDgqymtzWIOfn5/uv/9+9ejRQz/++KNWrFiho0ePFvg3FB4ernbt2umee+7RjTfe6PE6MjIy9Msvvxja2SILAKzBz5bfaVQAUIJkZGTo5MmTOnXqlBITE5WRkaGsrCyVK1dOFSpUUEhIiKKiolS7dm3Dwd2eSkpKUlxcnE6fPq2kpCRlZGQoJydHFSpUUIUKFRQeHq569ep5fJdSfvFjYmJ06tQpJScn69KlSwoMDFRYWNjV80xCQkJ8EtsXYmNjdeTIEZ09e1aZmZkKDg5WxYoVdd1116lp06Y+29orKytLhw8fVlxcnFJTU5WWliZ/f3+FhIQoNDRU9erVU1RUlPz9/X0SHwAAwCqK8toc1pCenq5Dhw7pzJkzV6/Ny5Qpo5CQEIWFhalBgwYubZULAADJEAAAAAAAAAAAYGnc2goAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALC0/wfwBdoNO4rfxwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.plot_ts(skycoord = coord, containment = 0.9)" + ] + }, + { + "cell_type": "markdown", + "id": "64eab521-9a79-41b7-8e13-50f11896d8bb", + "metadata": {}, + "source": [ + "## Example 3: Fit Crab using the Compton Data Space (CDS) in galactic coordinates" + ] + }, + { + "cell_type": "markdown", + "id": "b31e885f-cc29-49ca-b0f7-d14f99fddb10", + "metadata": {}, + "source": [ + "The Crab case is similar to the GRB one. The difference is that the Crab data (signal and background) are binned in the galactic coordiates instead of the spacecraft coordinates. Therefore, we will need to use the galatic response for Crab. In addition, the orientation file is not needed since Crab is a fixed source in galactic coordinates." + ] + }, + { + "cell_type": "markdown", + "id": "92247366-573f-46e1-8a8a-c1e5db2b5399", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "### Bin data (optional)" + ] + }, + { + "cell_type": "markdown", + "id": "2f19cae4-ac54-4b62-8ee1-99e1db7d7b56", + "metadata": {}, + "source": [ + "If you want to binned the data by yourself, you can run this **Bin data** section. Otherwise, you can skip to the next section and use the binned data downloaded from Wasabi, which is faster." + ] + }, + { + "cell_type": "markdown", + "id": "d8f76a21-b530-4685-8e08-5a0e0793aed7", + "metadata": {}, + "source": [ + "#### Download unbinned data " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "cc73d0d2-a347-4a51-95a9-d75b8405800f", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "931588ad-4c21-4fd5-9c27-2352b30ac2dc", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "crab_unbinned_path = data_dir/\"Crab_DC2_3months_unbinned_data.fits.gz\"\n", + "\n", + "# download 3-month unbinned Crab data ~619.22 MB\n", + "if not crab_unbinned_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\", crab_unbinned_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "37310a8d-6a5c-47cd-91ef-a82459d0794a", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "albedo_unbinned_path = data_dir/\"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "# download 3-month albede background data ~2.69 GB\n", + "if not albedo_unbinned_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\", albedo_unbinned_path)" + ] + }, + { + "cell_type": "markdown", + "id": "4c9917d4-278a-4003-bc06-c8957523e4ff", + "metadata": {}, + "source": [ + "#### Getting the binned Crab data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5fd8cbec-61a0-4e1f-af66-a6d44c2e4ff7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Here is the code I used to bin the Crab data if you want to generate it by yourself.\n", + "from cosipy import BinnedData\n", + "# \"Crab_bkg_galactic_inputs.yaml\" can be used for both Crab and background binning since the only useful information in the yaml file is the binning of CDS\n", + "analysis = BinnedData(\"Crab_bkg_galactic_inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data = crab_unbinned_path, \n", + " make_binning_plots=False, \n", + " output_name = \"Crab_galactic_CDS_binned\", \n", + " psichi_binning = \"galactic\")\n", + "\n", + "# After you generate the binned data files, it should be saved to the same directory of this notebook\n", + "crab_data_path = data_dir/\"Crab_galactic_CDS_binned.hdf5\"" + ] + }, + { + "cell_type": "markdown", + "id": "55891a90-167a-4b45-94cc-4815709126ef", + "metadata": {}, + "source": [ + "#### Getting the binned background data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ae1ec395-d217-4a57-8b95-384aee92d38d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Here is the code I used to bin the background data if you want to generate it by yourself.\n", + "from cosipy import BinnedData\n", + "# \"Crab_bkg_galactic_inputs.yaml\" can be used for both Crab and background binning since the only useful information in the yaml file is the binning of CDS\n", + "analysis = BinnedData(\"Crab_bkg_galactic_inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data = albedo_unbinned_path, \n", + " make_binning_plots = False,\n", + " output_name = \"Albedo_galactic_CDS_binned\",\n", + " psichi_binning = \"galactic\")\n", + "albedo_background_path = data_dir/\"Albedo_galactic_CDS_binned.hdf5\"" + ] + }, + { + "cell_type": "markdown", + "id": "993bbc9e-b056-4369-b7f7-3f59f0e26e4f", + "metadata": {}, + "source": [ + "### Read data and background" + ] + }, + { + "cell_type": "markdown", + "id": "61a4fac6-090b-4343-a1a0-7dd29c907290", + "metadata": {}, + "source": [ + "Here you can download the binned data to avioding the binning steps above." + ] + }, + { + "cell_type": "markdown", + "id": "01980340-c1e7-4ef1-a169-47c7d136852b", + "metadata": {}, + "source": [ + "#### Download the binned data" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "951ae2f4-e713-4663-9ff8-d00e8d848cbf", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "8400db09-0c32-4533-9bfc-35729ec3f514", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "crab_data_path = data_dir/\"Crab_galactic_CDS_binned.hdf5\"\n", + "\n", + "# download 3-month binned Crab data ~158 MB\n", + "if not crab_data_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/Crab_galactic_CDS_binned.hdf5\", crab_data_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "142b9b61-487b-40b5-b2e0-191f4c5f4f07", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "albedo_background_path = data_dir/\"Albedo_galactic_CDS_binned.hdf5\"\n", + "\n", + "# download 3-month binned Albedo background data ~457.50 MB\n", + "if not albedo_background_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/Albedo_galactic_CDS_binned.hdf5\", albedo_background_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "720de2f7-222e-4d29-815a-a85c07abca46", + "metadata": {}, + "outputs": [], + "source": [ + "# Read background model\n", + "bkg_model = Histogram.open(albedo_background_path) # please make sure you adjust the path to the files by yourself.\n", + "bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# Read the signal and bkg to assemble data = bkg + signal\n", + "signal = Histogram.open(crab_data_path)\n", + "signal = signal.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# Here the background is the same as the background model since they are simulations, thus we know the background very well.\n", + "bkg = Histogram.open(albedo_background_path)\n", + "bkg = bkg.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# Assemble the signal and background\n", + "data = bkg + signal" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "109c9aaf-be38-4a10-9c93-add2fdb5bfa9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHOCAYAAACGgTObAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJOElEQVR4nO3deVxU9eLG8WdYRUBFNEX05hqJC+Ce+0KuZaXklqm5ZJmZpWZamt3stqpp3TS3+KmZXu1WVm5pauauyU0xLTeuuKS44ICyz+8PY24E6oDAmQOf9+vlK+ds88zEiadzvucci81mswkAAMBEXIwOAAAAkFsUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDpuRgcoDNeuXdOyZct06NAh/fLLL7JarZowYYK6dOlyR9vdu3evFi9erF9//VUZGRmqUqWK+vbtqw4dOuRTcgAAkJNiUWDi4+MVGRmpChUqqGbNmtq/f/8db3P16tV6++231ahRIw0bNkyurq7673//q/Pnz+dDYgAAcCvFosD4+/vriy++kL+/vw4fPqwnn3zyjrZ39uxZzZgxQz169NBzzz2XTykBAICjikWB8fDwkL+/v0PL7ty5U0uWLNGvv/4qi8WikJAQPf3006pWrZp9ma+++koZGRkaMmSIpBunqLy8vGSxWAokPwAAyIpBvH+ybt06jR8/Xl5eXho+fLgGDhyokydP6plnntHZs2fty+3bt09/+9vftHPnTvXs2VOdO3fWAw88oPnz5ysjI8PATwAAQPFQLI7AOOLatWuaOXOmHnjgAY0bN84+vXPnzurfv7+WLFlinx4bGysXFxe99dZb6tu3r2rUqKEffvhBixYtUnp6uoYPH27UxwAAoFigwPxh7969SkhIUIcOHXTlyhX7dBcXF9WuXVs//fSTfdr169eVkZGh4cOH67HHHpMktW3bVlarVStXrtTjjz+ukiVLFvZHAACg2KDA/CE2NlaSNHr06Bzne3t72//u6emp69evKzw8PMsyHTp00K5du/Trr78qNDS0oKICAFDsUWD+kDl25ZVXXlHZsmWzzXd1dbX/3d/fX7GxsfLz88uyTOZrq9VagEkBAAAF5g+BgYGSpDJlyqhRo0a3XDYoKEixsbGKi4tTpUqV7NPj4uLs2wAAAAWHq5D+0KRJE3l7e2vJkiVKS0vLNv/P42Lat28vSfr222/t0zIyMrRmzRqVKlVKQUFBBZ4XAIDirNgcgfn888+VkJCgixcvSpK2bdtmv2tuz5495ePjoxdeeEFvvPGGhgwZog4dOqhMmTL6/ffftXPnTtWtW1fPP/+8JKlly5Zq2LChlixZoitXrqhmzZraunWrfv75Z40dO1YeHh6GfU4AAIoDi81msxkdojD06tVL586dy3He8uXLFRAQIEnav3+/Pv30Ux06dEgpKSkqX7686tevrx49emQ5snLt2jXNnz9f33//vaxWq6pUqaJ+/fqpY8eOhfJ5AAAozopNgQEAAEUHY2AAAIDpUGAAAIDpFNkCk5SUpCNHjigpKcnoKAAAIJ8V2QITExOjYcOGKSYmxugoAAAgnxXZAgMAAIouCgwAADAdCgwAADAdCgwAADCdYvMoAQAoDtLT05Wammp0DOC23N3d5erqmuf1KTAAUEQkJCQoNjZW3GAdZmCxWFS5cmX5+PjkaX0KDAAUAenp6YqNjVXJkiVVvnx5WSwWoyMBN2Wz2XThwgXFxsaqVq1aeToSQ4EBgCIgNTVVNptN5cuXl5eXl9FxgNsqX768Tp48qdTU1DwVGAbxAkARwpEXmMWd/qxSYAAABaZq1aoKCgpSaGioateurX79+ikxMTHP24uMjNTDDz+cfwEL0DfffKO2bdsaHcNQV65c0VtvvVUg26bAAAAK1PLlyxUVFaXo6GjFx8crMjLS0DxpaWmGvn9xQoEBAJheSkqKrl27Jj8/P0nSgQMH1LJlSzVo0EDBwcGaOnVqlmXHjRununXrKiQkRJ07d862vTNnzqhx48ZauHChJGn79u0KDQ1VvXr1NHjwYIWEhGjz5s2SpLZt22rUqFG677771LFjR6Wnp9u3X7duXT377LNKSUmRJA0aNEjvv/++/X3Gjh2rKVOmSJKmTJmi3r1768EHH1RwcLDat2+vS5cuSboxDmnEiBGqVauWmjRpok2bNt30uzh9+rQiIiJUr1491a9fX5MmTZIknT9/Xj169FC9evVUt25dffzxx/Z1qlatqldeeUXNmzdXlSpVNGfOHH3yySe67777VLVqVS1btsy+rMVi0SuvvKKwsDDdc889+vTTT+3z1q1bpwYNGqh+/fpq06aNDh06JEnavHmz6tatqxEjRigkJER16tTR3r17s6zXsmVLNWzYMMvnu9V6Tz31lKxWq0JDQ9WoUaObfh95wSBeACii5jaaq4RzCQW2fZ+KPnpy75O3Xa53797y8vLSyZMn1bBhQ/Xq1UvSjV/IGzdulKenp65fv67mzZsrPDxczZo105tvvqlff/1V+/btk6enpy5cuJBlmwcOHFCfPn00Y8YMdezYUSkpKerdu7cWLVqkdu3aadOmTfrkk0+yrPPrr7/qhx9+kLu7u2bPnq09e/Zo3759cnV1Vffu3TVjxgyNHz/+tp9n165d2rdvn/z9/dWnTx99/PHHmjBhgubOnasjR44oOjpaktSpU6ebbqN///7q2LGjVq5cKUn2z/fss88qKChI//73v3X+/Hk1bNhQISEhatasmSQpMTFR27dv19GjR1WvXj29/PLL2rFjh/bs2aOuXbuqT58+9vewWCzav3+/jh8/rkaNGqlFixYqWbKk+vXrp82bN6tevXr69NNPFRERYc98+PBhLViwQB999JHmzJmjl19+WevWrdPx48c1ZcoUrVu3TqVKldLRo0fVqlUrnTx58pbrzZkzR6GhoYqKirrt95pbHIEBgCIq4VyCrKetBfbH0XKUeQopLi5OVatWtZeE69eva+jQoapXr56aNWummJgY+y+6b775Rs8995w8PT0l3bhiJVN0dLS6d++upUuXqmPHjpJu/AJ1c3NTu3btJEnt2rVTjRo1suTo37+/3N3dJUkbNmzQoEGD5OnpKTc3Nw0bNkzfffedQ5+nc+fO8vf3lyTdd999OnbsmCRp48aNGjBggDw8POTh4aHBgwfnuH5CQoJ+/PFHjRkzxj4t8/Nt2LBBw4cPlyTddddd6tGjhzZs2GBfrnfv3pKkmjVrqkSJEoqIiJAkNWrUSJcuXdKVK1fsyw4dOlSSVL16dbVu3Vo//PCDdu3apXr16qlevXqSpMcee0xnzpzR6dOn7dtt2rRpts+2du1aHT16VK1bt1ZoaKgiIiLk4uKi//73v7dcryBxBAYAiiifinm7QVhBbd/NzU09e/bUuHHjNG3aNE2cOFHlypXT/v375ebmph49eigpKem226lUqZKSk5P1/fffKyQk5KbL/fUql1vdMO3Py7q5uSk9Pd3+OikpKcu6JUqUsP/d1dX1pmNq8uOKsL9u46/vnfnaYrHIYrHccnyPI3lu9tlsNpvuv/9+LV26NNs6p0+fdvg7yU8UGCAfrYheocmbJ8uabDU6Sq74evrq9XavKyI4wugoyEeOnN4pbN9//72CgoIkSZcvX1bt2rXl5uamI0eO6LvvvlPr1q0lSd27d9fMmTPVokUL+ymkzKMUfn5+Wrx4sR544AFZrVZNnjxZQUFBSk1N1ZYtW9SmTRtt2bJFR48evWmO8PBwLVq0SP369ZOLi4vmz59vP5pTs2ZN7d69W5J08eJFrV69WgMGDLjtZwsPD9eSJUvUr18/2Wy2bKewMvn4+Kh169aaNm2aJkyYIEn2zxceHq558+bpjTfe0IULF/Tvf/9bK1ascPDbzeqTTz7RlClTdPLkSW3dulXvv/++vL29deDAAR08eFB169bVsmXLFBgYqMDAwFt+X506ddJrr72mn3/+WfXr15ck7d69W02aNLllhlKlSun69etKSUmRh4dHnj7HzVBggHw0efNkHY47bHSM3LNKkzZNosCgQGSOgUlLS9Pdd9+tOXPmSJJeeeUVPf744/q///s/1ahRQ+3bt7evM378eL388stq0KCB3N3dValSJa1evdo+39fXV2vXrtUjjzyicePG6d1339WyZcv0zDPPKCMjQw0bNlRQUJDKlCmTY6Ynn3xSx44dU4MGDSTdGOQ7evRo+7yIiAjVrl1b1atXt48/uZ1hw4bp4MGDCg4Olp+fn1q1aqV9+/bluOzixYv17LPPqk6dOnJ3d9dDDz2k1157TbNmzdLTTz+tevXqyWaz6eWXX7afmsmt9PR0hYWFKTExUbNmzVLVqlUlSZ9++qkGDBigtLQ0+fn5acWKFbc9OlOzZk0tXbpUw4cP17Vr15SSkqKwsLAcj8j8WdmyZTVgwADVr19fPj4+WQYF3ymLrYg+NOPIkSMaNmyY5s2bZ2/7QEGrPL2yTltPy8XiogCfAKPjOORswlll2DIU6Buo2BdijY6DPEpKStKJEydUrVq1LIfzixOr1SpfX19J0p49e9S9e3cdO3ZMJUuWNDhZ4bNYLLp8+fJNC5wzuNOfWY7AAAUgwCfANGUgs3QBZvf5559rxowZstlscnNz0+LFi4tleSkuKDAAgCJh0KBBGjRokNExnEIRPbmSBZdRAwAA06HAAAAA06HAAAAA06HAAAAA06HAAAAA06HAAAAKTbly5ewPALyZKVOmOPRIgUwffvih3nrrLfvrY8eOKSIiQtWqVbM/OXn+/Pm5znry5Mk7vo9K27Zt9eWXX+Z63s0kJSWpYcOGio+Pv6NcRQEFBgDgVF577TWHC8z169c1ffp0Pfvss5Kkc+fOqWXLlurUqZNOnDihffv2ad26dTk+myc/n9eTeZfbglaiRAk9/vjjmjZtWqG8nzOjwAAACsyqVatUu3Zt1a9fXy+++KJ9+tixY9W4cWOFhoaqdevWOnLkiCTpqaeekiS1atVKoaGhOn/+vJYuXaqmTZsqLCxMISEh+vrrr+3bWblypVq0aCFvb29J0j//+U+1atVKw4YNsy/j5+dn3+6gQYM0ePBgtW7dWnXr1pV044nMjRo1Uv369dWtWzedO3cuy2cYO3as6tevrzp16mR5MrSjNm7cqMaNG6tmzZoaM2ZMjvdo+fzzzxUSEmJ/ivOrr76qmjVrqnHjxnrllVeyFKQ+ffpo3rx5xeJeL7fCjewAoIhqNLeRziWcu/2CeVTRp6L2PnnzZ9ucP39eTzzxhLZu3arg4GDNnTtXFy9elHTjWUfvvfeeJGnZsmV67rnntHbtWs2ZM0cff/yxtm7daj9906lTJ/Xt21cWi0UnT55Us2bNFBMTI09PT23evDnLs4L27dun+++//5a59+3bpx9//NH+2IH333/f/qDIt956S1OmTLE/ryk+Pl61a9fWe++9p507d9ofT5C5riMOHTqk7du3KzU1Va1bt9Znn32mfv362edPnz5dX3zxhb7//nv5+/vr22+/1eeff679+/fLx8dHgwcPzrK9ihUrysvLS9HR0fYSVhxRYACgiDqXcM7Qx0Ts3LlT9evXV3BwsCRpyJAh9lM93333nT744ANZrVZlZGTo0qVLN93OiRMn9Nhjjyk2NlZubm66dOmSTpw4oXvvvVexsbHq3LlzrnI9+uijWQrI0qVLtXjxYiUlJSkpKUnlypWzz3Nzc7Pf3bdZs2aqVKmS9u/fr9atWys8PFxxcXGSpDNnzig0NNS+3u7du+1PXx4wYIDc3d3l7u6u/v37a8OGDfYCM3XqVFWoUEHfffed/XlAGzduzJJxyJAh2rRpU5bPULFiRcXGxlJgAABFT0Wfik61/cwnHv/3v//VyJEjtWfPHtWoUUM///yzWrdufdP1+vTpo7feeksRETeell62bFn7GJmSJUtmGS/TsGFD7dixQ88///xNt+fj42P/+48//qhZs2Zpx44duuuuu7Rq1SpNnjzZoc/x59NJVatWVVRU1C3X++v6ktS0aVOtX79ex48ftxe9Wy2fKSkpSV5eXg69X1FFgQGAIupWp3cKw3333acnnnhChw8f1r333quFCxcqJSVFfn5+cnd3V0BAgGw2mz788MMs6/n6+io+Pt5+Cuny5cuqVq2aJGnJkiW6fPmyfdn69evbx89I0ogRIxQaGqpPPvlETzzxhCTpypUrWr58uYYPH54t4+XLl+Xr6yt/f3+lpKTo448/zjI/LS1Nixcv1qBBg7R79+5sR1ocsWTJEvXr109paWlaunRplnJ1//33q0+fPnrwwQe1YsUKNWjQQO3bt9fEiRM1ZswYeXt7a+HChVm2l56ermPHjqlevXq5ylHUMIgXAFAgypcvr4ULF+qRRx5RSEiIfvvtN/n7+8vX11d9+vRRnTp11LhxY/3tb3/Lst6YMWN0//332wfxzpw5UxEREQoLC9P+/fuzLB8REaF169bZXwcEBOjHH3/UN998o2rVqql+/frq0KGD3N3dc8zYuXNnBQUFKSgoyD5w+M9Kly6tgwcPKiQkRE888YSWLl2aq/EvklS7dm21aNFC9erVU6tWrdSnT58s81u1aqVly5YpIiJC27Zt0wMPPKCHHnpIoaGhaty4scqUKZPlcu4ff/xRjRs3VtmyZXOVo6ix2IroMOYjR45o2LBhmjdvnoKCgoyOg2Ki8vTKOm09rUDfQMW+EGt0HIeYMTOyS0pK0okTJ1StWjX7WIriolu3bpoyZYoaN25sdJR8Y7Va5evrK5vNpjFjxuj69euaPXu2pBun1IYMGXLbwcrO7k5/ZjmFBAAwtVmzZumXX34xOka+GjBggE6ePKmkpCTVqVPHflVUUlKS2rRpY/rykh8oMAAAU6tRo4Zq1KhhdIx89cUXX+Q4vUSJEnr66acLOY1zYgwMAAAwHY7AwGmtiF6hyZsny5psNTqKw84mnDU6AgAUCxQYOK3JmyfrcNxho2Pkia9n7q5SAADkDgUGTivzyIuLxUUBPgEGp3Gcr6evXm/3utExAKBIo8DA6QX4BHB5L2BSaWlpeuONN/TZZ5/Jzc1Nbm5uatKkid55550s9zZxRNu2bTV69Gg9/PDDecoyZ84cWa1WjRs3Lk/r387mzZs1evRoh+/IiztDgQEAFJghQ4bo0qVL2rFjh/z8/GSz2bRy5UpdunQpW4FJS0uTm1vB/VrKfCI1igauQgIAFIijR49qxYoV+uSTT+Tn5yfpxnN9Hn30UVWvXl2bN29WnTp1NGTIEIWGhuqLL77Q0qVL1bRpU4WFhSkkJERff/11lm1u3LhRjRs3Vs2aNTVmzBjldC/W3377TS1atFBISIjq1aunV155RZI0ZcoUjR49WpKUmpqqESNG6J577lGzZs00ZswYtW3bVtKNIyl169bViBEjFBISojp16mjv3huPZUhLS1OnTp3UqFEj1alTR/369VNiYmIBfYO4FY7AAEBRte+QlJJacNv3cJca5vwAQkn66aefVKtWrSxPd/6rX375RR999JEWLFggSbp48aL69u0ri8WikydPqlmzZoqJiZGnp6ck6dChQ9q+fbtSU1PVunVrffbZZ/YnO2f68MMP9cADD2jChAmSlOOTrufOnavffvtN0dHRkqSuXbtmmX/48GEtWLBAH330kebMmaOXX35Z69atk6urq5YuXSp/f3/ZbDaNGDFCH3zwgV566SUHvjDkJ47AAEBRlZJa8H/uUPXq1dWmTRv76xMnTqhLly6qW7euHn74YV26dEknTpywzx8wYIDc3d1VsmRJ9e/fP8sToTO1bt1a8+bN08svv6z169fnONZm48aN6t+/v9zd3eXu7q6BAwdmmV+zZk01bdpU0o2HUh47dkySZLPZNGPGDIWFhal+/fr69ttvGfNiEAoMABRVHu4F/+cWGjRooN9++00XL1686TI+Pj5ZXvfp00dDhw7VwYMHFRUVJR8fHyUlJd10fYvFkm1az549tW3bNgUFBdmPxtzOX7fz52fzuLq6Ki0tTZK0dOlSff/999qyZYsOHDigsWPH3jIfCg6nkACgqLrF6Z3CULNmTfXs2VNDhgxRZGSkypQpI5vNpn//+98KCwvLcZ3Lly+rWrVqkqQlS5bo8uXLWeYvWbJE/fr1U1pampYuXarnn38+2zZ+++031ahRQwMGDFCTJk3UvHnzbMu0b99eS5cutZ9+WrRokUOf6fLlyypXrpxKlSolq9WqyMjIbE/TRuHgCAwAoMAsXLhQISEhatq0qerUqaPg4GCtX79eZcuWzXH5mTNnKiIiQmFhYdq/f3+2clC7dm21aNFC9erVU6tWrdSnT59s21i5cqXq1aunsLAw9e7d2/4gxD8bPny4qlatquDgYLVo0UI1atRw6LLuAQMG6Nq1awoKClKXLl3UqlUrx74I5DuLLach3EXAkSNHNGzYMM2bN09BQUFGx0EeVJ5eWaetpxXoG8h9YAoQ33PRkJSUpBMnTqhatWpZTn/g5qxWq3x9fZWamqrHHntMDRs21Pjx442OVWzc6c8sp5AAAMVSeHi4kpOTlZSUpJYtW2rUqFFGR0IuUGAAAMXSrl27jI6AO8AYGAAAYDocgQHy0fQXTumdf3orKe3Wl5c6k6sld0klriohfJrRUQDAYRQYIB+9809v/Z6S89UVTivBV0oIVPyGMao8vbLRaRyW+dTviOAIo6MAMAAFBshHmUdeLMpQKRdzPB8l3lZSsrlKyb46bT1tdBzHWaVJmyZRYIBiigIDFIBSLom6ku5rdAyHeHte0rWUsrLYLKrkG2h0HIecTTirDFuGrMlWo6MAMAgFBijm3P84alTqWinT3Acm8941cH5Vq1aVp6envLy8lJycrLCwMM2bN0/e3t552l5kZKS+/PJLffnll/kbtAB88803eu+997R58+ZCeb+EhAT5+vrm+ITuPzt58qRCQ0N15cqVQslVULgKCQBQoJYvX66oqChFR0crPj5ekZGRhubJfK4RzI0CAwAoFCkpKbp27Zr8/PwkSQcOHFDLli3VoEEDBQcHa+rUqVmWHTdunOrWrauQkBB17tw52/bOnDmjxo0ba+HChZKk7du3KzQ0VPXq1dPgwYMVEhJiP/rRtm1bjRo1Svfdd586duyo9PR0+/br1q2rZ599VikpKZKkQYMG6f3337e/z9ixYzVlyhRJ0pQpU9S7d289+OCDCg4OVvv27XXp0iVJUmpqqkaMGKFatWqpSZMm2rRp002/i7Zt22rMmDFq3bq1/va3v2nSpElavXq1WrZsqapVq2r69On2Zffu3avmzZurfv36atKkibZt22af9/HHH6tWrVoKCwvTjBkzsrzHnj171L59ezVq1EhhYWFasWLF7f4VmQqnkACgiGrUSDp3ruC2X7GitHfv7Zfr3bu3vLy8dPLkSTVs2FC9evWSdOP00saNG+Xp6anr16+refPmCg8PV7NmzfTmm2/q119/1b59++Tp6akLFy5k2eaBAwfUp08fzZgxQx07dlRKSop69+6tRYsWqV27dtq0aZM++eSTLOv8+uuv+uGHH+Tu7q7Zs2drz5492rdvn1xdXdW9e3fNmDHDoUcJ7Nq1S/v27ZO/v7/69Omjjz/+WBMmTNDcuXN15MgRRUdHS5I6dep0y+3ExMRo06ZNunr1qqpWrarLly9r69atOnPmjIKCgjR48GCVLFlSPXr00Lx589SpUyf9+OOP6tmzp44ePaqTJ0/q1Vdf1f79+xUQEKCJEyfat33lyhU9+eSTWr16tQICAhQXF6cGDRrk+GBLs3LKAnPq1CktWLBABw4c0NWrV1WhQgWFh4erT58+POMDABx07px02gmGCi1fvlyhoaFKS0vT8OHDNX78eE2bNk3Xr1/XiBEjFBUVJRcXF506dUpRUVFq1qyZvvnmG7399tvy9PSUJJUvX96+vejoaHXv3l1ffvmlQkJCJEmHDx+Wm5ub2rVrJ0lq166datSokSVH//795e5+Y8zXhg0bNGjQIPv2hw0bpn/+858OFZjOnTvL399fknTffffpwIEDkqSNGzdqwIAB8vDwkCQNHjxYCxYsuOl2IiIi5OrqKj8/P1WvXl0PPPCALBaLAgMDVb58eZ08eVKurq5ycXGxl6GWLVuqQoUKioqK0k8//aQuXbooICBAkvT000/rzTfflHTjaNTx48fVpUuXLO955MgRVa9e/baf0QycrsD8/vvvGj58uHx8fPTII4+oVKlSio6O1sKFC3XkyBH7vxwAwK1VrOhc23dzc1PPnj01btw4TZs2TRMnTlS5cuW0f/9+ubm5qUePHkpKSrrtdipVqqTk5GR9//339gKTE4vFkuW1j4+PQ8u6ubkpPT3d/jopKSnLun/+H2lXV9ebjqn56/v/1V+3k9N2XV1dHd7un6fbbDbVqVNH27dvz7bcyZMnb5nLLJxuDMz69euVkJCgt99+W/3791f37t01YcIEderUSdu2bZPVymWTAOCIvXul2NiC++PI6aO/+v777xUUFCRJunz5sipXriw3NzcdOXJE3333nX257t27a+bMmUpOTpakLKeQ/Pz89N133+nLL7/U3//+d0lSUFCQUlNTtWXLFknSli1bdPTo0ZvmCA8P16JFi5SSkqK0tDTNnz9fHTt2lCTVrFlTu3fvliRdvHhRq1evduizhYeHa8mSJUpNTVVKSkq2U1h5ERQUpIyMDPt3s337dp07d06hoaFq37691q5dq3N/nCecM2eOfb3mzZvrxIkT2rBhg31aVFSUfZxPUeB0R2ASE2/c/CtzkFcmf39/ubi4yM3N6SIDAG4hcwxMWlqa7r77bvsv2ldeeUWPP/64/u///k81atRQ+/bt7euMHz9eL7/8sho0aCB3d3dVqlQpS5Hw9fXV2rVr9cgjj2jcuHF69913tWzZMj3zzDPKyMhQw4YNFRQUpDJlyuSY6cknn9SxY8fUoEEDSTcG1Y4ePdo+LyIiQrVr11b16tXVrFkzhz7nsGHDdPDgQQUHB8vPz0+tWrXSvn378vCN/Y+Hh4f+/e9/a9SoURozZoxKlCihlStXysfHR3Xr1tWUKVPUqlUr+fj4qEePHvb1/Pz89O2332rs2LEaM2aMUlNT9be//c0Ul587ymK73QXjhWzXrl0aN26cWrRoocGDB6tUqVI6ePCg3nvvPXXt2lXPPvusQ9s5cuSIhg0bpnnz5tnbPswl814fgb6Bprk/SRlXq+IzfFXaxWqaG9mZMbMZfzYKWlJSkk6cOKFq1aoV27GCVqtVvr43fob37Nmj7t2769ixYypZsqTByZCTO/2ZdbrDGU2bNtWQIUO0ZMmSLJeKPf744xo2bNhN14uLi9PFixftr2NiYgo0JwDAuXz++eeaMWOGbDab3NzctHjxYspLEeZ0BUaSAgICFBISojZt2qhUqVLasWOHlixZorJly6pnz545rrNq1SrDb44EADDOoEGDNGjQIKNjoJA4XYHZuHGj3n33XX366ae66667JElt2rSRzWbTxx9/rPDwcJUuXTrbet27d1eLFi3sr2NiYrLcFAkAABQdTldgvvjiC9WqVcteXjK1aNFCa9as0W+//aZGjRplW69cuXIqV65cYcUEAKfkZMMagZu6059Vpyswly9ftg/C+rPM6+z/fG0+AOAGd3d3WSwWXbhwQeXLl7/tPUgAI9lsNl24cEEWi8V+c8HccroCU6VKFe3Zs0enTp1SlSpV7NM3btwoFxeXbHdWBADcuPFZ5cqVFRsbW2RuVIaizWKxqHLlyjnerM8RTldg+vTpo127dmnkyJHq0aOHSpUqpe3bt2vXrl164IEHOE0EFJCrGd4q42qOG0VeLblLKnFVCeHTjI7iVHx8fFSrVi2lpqYaHQW4LXd39zyXF8kJC0xoaKj++c9/6pNPPtEXX3yhq1evKiAgQMOGDVPfvn2NjgcUOSXcUhWfItnkovgMc9wHRgm+UkKgrOvHGZ3E6bi6ut7RLwXALJyuwEhScHCw3n33XaNjAMXC+JGJevtDKSktb+ehjRBvKynZXGVLufmzbQAUbU5ZYAAUnuenVdHzJjsT4+J7WraEQKNjADCQ0z3MEQAA4HYoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHTcjA4AAHlls9hUeXplo2M4zNfTV6+3e10RwRFGRwFMjwIDwHQsssj2x99PW08bmiVXrNKkTZMoMEA+oMAAMJ0SKSV0TZLFZlEl30Cj4zjkbMJZZdgyZE22Gh0FKBIoMABMxz3NXZJU6lopxb4Qa3Aax1SeXtlcR4sAJ8cgXgAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDpchQTAtK5meKuMqzkuS75acpdU4qoSwqcZHQUoEigwcFoJe7pIG17QmaRSKjPOJL+kMryNjlAslHBLVXyKZJOL4jN8jY7jmARfKSFQ1vXjjE4CFAkUGDgt6/qx0qUg2STFGx0ml0q4pRodoUgbPzJRb38oJf1xPxgziLeVlGyusqX4GB0FKBIoMHBa9v/QW9JV2nLN2DC5UMItVeNHJkoqa3SUIuv5aVX0vMnOxLj4npYtwRx3DQbMgAIDp2fxPqcrVrP9h5/yAgAFiauQAACA6VBgAACA6VBgAACA6VBgAACA6TCIt5hYEb1CkzdPljXZHPdTkSSbZafREQAATooCU0xM3jxZh+MOGx0jTyyyGB0BAOBkKDDFROaRFxeLiwJ8AgxO45gzNotskkqklDA6CgDAyVBgipkAnwDFvhBrdAyHlBlnVbwkdxPdbRUAUDgYxAsAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEzHaR/meOTIEX3yySc6cOCAUlJSVKlSJT344IOKiIgwOhoAADCYUxaY3bt3a8KECapVq5YGDhwoLy8vnT59WhcuXDA6GgAAcAJOV2ASExP1j3/8Q82aNdPrr78uFxfOcgEAgKycrh1s2LBBly5d0rBhw+Ti4qLr168rIyPD6FgAAMCJON0RmL1798rb21txcXF6+eWXderUKXl5ealjx44aOXKkPD09jY4IAAAM5nQFJjY2Vunp6Zo4caK6deumJ598UlFRUfr888+VkJCgV199Ncf14uLidPHiRfvrmJiYwooMAAAKmdMVmOvXryspKUkPPfSQnnvuOUlSmzZtlJqaqlWrVmnw4MGqUqVKtvVWrVqlyMjIQk4LAACM4HQFJvMUUYcOHbJMDw8P16pVqxQdHZ1jgenevbtatGhhfx0TE6OpU6cWbFgAAGAIpysw/v7+OnHihMqWLZtlup+fnyTJarXmuF65cuVUrly5As8HAACM53RXIQUFBUlStnu+xMXFSZLKlClT2JEAAICTcboC065dO0nSt99+m2X6t99+K1dXV4WFhRkRCwAAOBGnO4V0zz33qGvXrlq9erXS09MVGhqqqKgobdq0Sf379+c0EQAAcL4CI0ljx45VhQoVtGbNGm3dulUVKlTQyJEj1atXL6OjAQAAJ+CUBcbNzU1PPPGEnnjiCaOjAAAAJ+R0Y2AAAABuhwIDAABMhwIDAABMhwIDAABMxykH8QJAUWWz2FR5emWjYzjM19NXr7d7XRHBEUZHAbKgwABAIbDIItsffz9tPW1ollyxSpM2TaLAwOlQYACgEJRIKaFrkiw2iyr5BhodxyFnE84qw5Yha3LOz6ADjESBAYBC4J7mLkkqda2UYl+INTiNYypPr2yuo0UoVvI8iPfYsWP69ttvlZiYaJ+WnJysadOmqUePHurbt6+++uqrfAkJAADwZ3k+ArNo0SIdOHBAXbt2tU+bO3euVq1aJS8vL8XHx2vGjBmqVKmSGjdunC9hAcDsrmZ4q4yrOU7JXC25SypxVQnh04yOAmST5wLzyy+/KCwsTBaLRZKUlpamNWvWqHbt2po5c6asVquGDh2qlStXUmAAFHsl3FIVnyLZ5KL4DF+j4zgmwVdKCJR1/TijkwDZ5LnAxMfH66677rK/Pnz4sBITE/XQQw/J09NTnp6eatGihXbu3JkvQQHAzMaPTNTbH0pJf4yFMYN4W0nJ5ipbio/RUYBs8lxgXF1dlZqaan8dFRUli8WisLAw+7TSpUsrPj7+zhICQBHw/LQqet5kZ2JcfE/LlmCOK6ZQ/OR5EG/FihW1f/9+++tNmzYpICBAFStWtE+7cOGCSpcufWcJAQAA/iLPR2A6duyo2bNna/jw4XJ3d9exY8f0+OOPZ1nm+PHjqlzZPHecBAAA5pDnIzA9evRQ27ZtdeTIER04cEBNmzZV//797fNPnDiho0ePqkGDBvkSFAAAIFOej8B4eHjotddeU2JioiwWi0qWLJllvp+fnxYsWJDllBIAAEB+yPMRmKioKP3+++/y9vbOVl4kqUyZMvL19dXRo0fvKCAAAMBf5bnAjB49WmvWrLnlMuvWrdPo0aPz+hYAAAA5ynOBsdlsDi2TeaM7AACA/JLnAuOI2NhYeXt7F+RbAACAYihXg3jfeuutLK+3bt2qc+fOZVsuPT1d58+f188//6ymTZveWUIAAIC/yFWB+fOYF4vFoqNHj950kK7FYtG9996rkSNH3llCAACAv8hVgVm+fLmkG2Nb+vTpo0cffVQRERHZlnNxcZGvr6+8vLzyJyUAAMCf5KrA/PmeLi+99JLuuece7vMCAAAKXZ5vZNelS5f8zAEAAOCwPBeYTIcOHdLhw4eVkJCgjIyMbPMtFosGDhx4p28DAABgl+cCc/XqVU2cOFEHDx685T1hKDAAACC/5bnAfPjhhzpw4IBCQ0PVuXNn3XXXXXJ1dc3PbAAAADnKc4HZsWOHateurffff5+77QIAgEKV5zvxJicnKyQkhPICAAAKXZ4LTM2aNXO8Cy8AAEBBy3OBGTRokLZt26bo6Oj8zAMAAHBbeR4Dc+nSJTVr1kyjRo3S/fffr1q1at30wY2dO3fOc0AAAIC/ynOBefPNN2WxWGSz2bRmzRqtWbMm23gYm80mi8VCgQEAAPkqzwXmpZdeys8cAAAADuNRAgAAwHTyPIgXAADAKHk+AvP77787vGyFChXy+jYAAADZ5LnA9OrVy6Gb2FksFm3atCmvbwMAAJBNngtMp06dciwwCQkJOnbsmM6ePavQ0FBVrFjxjgICAAD8VZ4LzMSJE286z2azadmyZfrss880fvz4vL4FAABAjgpkEK/FYlHfvn1VrVo1ffTRRwXxFgAAoBgr0KuQgoKC9NNPPxXkWwAAgGKoQAvM6dOnlZ6eXpBvAQAAiqE8j4G5mYyMDF24cEFr167Vtm3b1KBBg/x+CwAAUMzlucC0adPmlpdR22w2+fr66plnnsnrWwAAAOQozwUmJCQkxwJjsVjk6+ure++9V127dpWfn98dBQQAAPirPBeYWbNm5WcOAAAAh/EsJAAAYDr5Moj3wIED+u2333Tt2jWVLFlStWrVUr169fJj0wAAANncUYE5cOCA3nrrLZ0+fVrSjYG7meNiKleurJdeekl169a985QAAAB/kucCc+LECY0dO1ZJSUlq1KiRwsLC5O/vr0uXLmn//v3as2ePxo4dqzlz5qhq1ar5GBkAABR3eS4wkZGRSk1N1TvvvKOmTZtmmffYY49p165dmjBhgiIjIzVlypQ7zQkAAGCX50G8UVFRatu2bbbykqlp06Zq27at9u/fn+dwAAAAOclzgUlMTFRAQMAtlwkICFBiYmJe3wIAACBHeS4w/v7+io6OvuUyhw4dkr+/f17fAgAAIEd5LjAtWrRQVFSU5s+fr+Tk5CzzkpOTtXDhQu3fv18tW7a8o4CLFi1S69atNXDgwDvaDgAAKDryPIh34MCB2rFjh5YsWaJVq1apdu3a8vPz0+XLl3X48GFduXJFlSpVuqPicf78eS1ZskReXl553gYAACh68lxgSpcurdmzZ2vOnDnauHGjdu7caZ/n4eGhLl266KmnnlKpUqXyHO6jjz5ScHCwMjIyFB8fn+ftQErY00Xa8ILOJJVSmXFWo+M45GqGt9ERAABO6o5uZFemTBm99NJLGjt2rGJiYux34r377rvl5nZnN/mNiorSli1bNH/+fM2cOfOOtgXJun6sdClINklmq4Il3FKNjgAAcDK5bhmLFi1SUlKSBg8ebC8pbm5uqlGjhn2Z1NRUzZs3T15eXurfv3+uQ6Wnp2vmzJnq1q1blu0i72wpPjf+YklXacs1Y8PkQgm3VI0fmSiprNFRAABOJFcFZu/evVq4cKGeeuqpWx5hcXd3V6lSpTR79mwFBwerQYMGuQr11Vdf6ffff9eMGTMcXicuLk4XL160v46JicnVexYXFu9zumINNDpGLlFeAABZ5arArFu3Tr6+vurRo8dtl33kkUe0ZMkSrVmzJlcFJj4+XgsXLtSAAQNUpkwZh9dbtWqVIiMjHV4eAACYV64KzMGDB9WwYUN5eHjcdlkPDw81atRIBw4cyFWg+fPny9fXVz179szVet27d1eLFi3sr2NiYjR16tRcbQMAAJhDrgpMXFyc2rVr5/DyAQEB+vHHHx1e/tSpU/r666/17LPPKi4uzj49JSVFaWlpOnv2rLy9vXO8sqlcuXIqV66cw+8FAHCMzWJT5emVjY7hMF9PX73e7nVFBEcYHQUFKFcFxsXFRWlpaQ4vn5aWJhcXx++VFxcXp4yMDM2cOTPHK4969+6tiIgIjRo1yuFtAgDyxiKLbH/8/bT1tKFZcsUqTdo0iQJTxOWqwPj7++vEiRMOL3/ixIlcHRWpVq2a3njjjWzT58+fr2vXrmnUqFGqVKmSw9sDAORdiZQSuiZJCQGyvBdrdByH2Cw2ydOqs+HTpGeMToOClKsCU79+fX333Xc6e/bsbR/kePbsWf3000/q1KmTw9svU6aMWrVqlW36ihUrJCnHeQCAguEr3SgwNlfZEkx09aJVsq4fZ3QKFLBcFZhHHnlEa9as0eTJk/Xuu+/e9Cqh+Ph4vfrqq0pPT9dDDz2UHzkBAIVs/MhEvf2hlJTmbnQUh8XbSt4oXJn3vkKRlasCExQUpEcffVQrVqzQgAED9NBDDyksLEzly5eXdGMMy759+/T111/rypUr6tWrl4KCgu445KxZs+54GwCA3Hl+WhU9P83oFLnj4nvaXEeLkGe5vhPvM888Iw8PD3322WdavHixFi9enGW+zWaTi4uL+vfvr6FDh+ZbUAAAgEy5LjAWi0VPPvmkunXrptWrV+vgwYO6dOmSJKls2bKqV6+eunTposBAGjAAACgYeX7iYmBgoIYNG5afWQAAABzi+E1aAAAAnAQFBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmI6b0QEAAMhvNotNladXNjqGw3w9ffV6u9cVERxhdBTToMAAAIoMiyyySVJCgE5P2Wl0HMd5WvXMtg8VsZQC4ygKDACgyPDNsChekmyuktU8R2BkleLWjTI6halQYAAARcarT6Xp7Q8vKSnN3egoDou3lZRsrrKl+BgdxVQoMACAIuP5aVX0/DSjU+SOi+9p2RICjY5hOlyFBAAATIcCAwAATIcCAwAATIcCAwAATIcCAwAATIerkHJpRfQKTd48WdZkq9FRcsVmMdENnQAAuA0KTC5N3jxZh+MOGx0j17xcPXVdUgVPf2nHf4yO4zg3V6lqJal8WaOTAACcCAUmlzKPvLhYXBTgE2BwGseluXrruiRXi4uUkmp0HMelpEonz1BgAABZUGDyKMAnQLEvxBodw2GBbyT/74WHSe5QmVm00tKNzQEAcDoUmGLGlmGT7gsxOoZjdvzHXEeLAACFhquQAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6TjdnXh/+eUXrV27Vvv379e5c+dUqlQp1alTR0OHDlWVKlWMjgcAAJyA0x2BWbp0qbZs2aKGDRtq1KhRevDBB/Wf//xHQ4cO1fHjx42OBwAAnIDTHYHp1auXJk+eLHf3/z1wsH379nriiSf06aefatKkSQamAwAAzsDpCky9evWyTatSpYqqVq2qmJgYAxIBAABn43QFJic2m02XL19W1apVb7pMXFycLl68aH9N2QEAoOgyRYH57rvvdOHCBQ0ePPimy6xatUqRkZGFFwqFJyVV2vEfo1M4zs1VqlpJKl/W6CQAUGQ5fYGJiYnRjBkzVKdOHXXu3Pmmy3Xv3l0tWrTIst7UqVMLIyIKipvrjfIi/e+fZpCSKp08Q4EBgALk1AXm4sWLGj9+vLy9vfX666/L1dX1psuWK1dO5cqVK8R0KHBVK90oAmnpRidxXGbRMlNmADAhpy0wCQkJevHFF5WQkKAPP/yQclIclS9rvqMYO/5jrqNFAGBSTllgkpOT9dJLL+nUqVOaPn36LQfvAgCA4sfpCkx6erqmTJmi6Oho/eMf/1DdunWNjgQAAJyM0xWYf/7zn9q2bZuaN28uq9Wq9evXZ5nfsWNHg5IBAABn4XQF5ujRo5Kk7du3a/v27dnmU2AAAIDTFZhZs2YZHQEAADg5p3uYIwAAwO1QYAAAgOlQYAAAgOlQYAAAgOlQYAAAgOk43VVIAAAUR7bEinLxPW10DIe5eCSqf69fFTn7AUPenwIDAICBXDwSlS5JNlfZEgKNjuOwdElL/iVFzjbm/SkwAAAYqH+vX7XkX1JGirfRURxmS6wo2VwNzUyBAQDAQJGzHzDsKEZeufieNvxoEYN4AQCA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6XAZdS51K9Nco+99VGXcfaUd/zE6jsMsLrWNjgAAQL6hwOTS2Ep9Vcuryo0XKanGhskDm83oBAAA3DkKTC75uHpJktJt6XL1LGFwGsfZMm40l5TraZI8jQ0DAMAdosDk0fnUywpo29noGA5LvGKV5Km0lAyjowAAcMcoMLm0aksFvb/4Xl1JtOj6ZavRcRx2NcM8z9gAAOB2KDC59N6iWjp6yuuPV+Y5hZSphJv5xu0AAPBXFJhcSrh24ytzcbHJVwkGp8mdEm6pGj8yUVJZo6MAAHBHKDB5dJdfss7G+RodIw8oLwAA8+NGdgAAwHQoMAAAwHQ4hQQUhJRUU92pWW6uUtVKUnlOMQIwBwoMkJ/cXP93h2Yz3ak5JVU6eYYCA8A0KDBAfqpa6UYRSEs3OonjMouWmTIDKPYoMEB+Kl/WfEcxdvzHXEeLAEAM4gUAACZEgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKbjZnQAAE4iJVXa8R+jUzjOzVWqWkkqX9boJAAMQIEBijs31xvlRfrfP80gJVU6eYYCAxRTFBiguKta6UYRSEs3OonjMouWmTIDyFcUGKC4K1/WfEcxdvzHXEeLAOQ7BvECAADTocAAAADTocAAAADTocAAAADTocAAAADT4SokAObFzfeAYosCA8B8uPkeUOxRYACYDzffA4o9CgwA8+Hme0Cx55QFJiUlRQsWLND69etltVpVo0YNDR06VI0bNzY6GgAAcAJOWWDefPNNbd68WY8++qgqV66sNWvW6MUXX9TMmTNVv359o+MBQN4x8BjIF05XYA4dOqSNGzfq6aefVt++fSVJnTp10qBBgzR79mzNnj3b4IQAkAcMPAbyldMVmC1btsjV1VXdu3e3T/P09FS3bt00d+5c/f7776pQoYKBCQEgD8w88PhaEkeN4HScrsD89ttvqly5sry9vbNMr127tiTp6NGjFBgA5mPGgcd7Dt4oL5L5jhodOi55nDI6ieMoXbnmdAXm4sWL8vf3zzY9c1pcXFyO68XFxenixYv21zExMQUTEACKCzMfNfrr352dyUpXBc8gnUuQynv6GZbB6QpMcnKy3N3ds0338PCwz8/JqlWrFBkZWZDRAKB4MeNRowuXKF2FwNVy40lELgY+kcjpCoynp6dSU7P/C0xJSbHPz0n37t3VokUL++uYmBhNnTo13/OVLXPtT/8ske/bBwDcAUpXofD3u650W4ahvwudrsD4+/vrwoUL2aZnnh4qV65cjuuVK1fupvPyU/TRzB2D8gIAyAcmLF3/+TXzb8b9LnS6p1HXrFlTsbGxSkxMzDL90KFD9vkAAKB4c7oC07ZtW6Wnp2vVqlX2aSkpKVq9erWCg4O5AgkAADjfKaTg4GC1a9dOc+fO1ZUrVxQYGKi1a9fq3LlzGj9+vNHxAACAE3C6AiNJEydOVIUKFbRu3TolJCSoevXqevvttxUaGmp0NAAA4AScssB4enpqxIgRGjFihNFRAACAE3K6MTAAAAC3Q4EBAACmQ4EBAACmQ4EBAACmQ4EBAACmQ4EBAACmQ4EBAACmQ4EBAACm45Q3sssPycnJkqSYmBiDkwAAgNy6++67VaLEzZ92XWQLzLlz5yRJU6dONTgJAADIrXnz5ikoKOim8y02m81WiHkKzZUrV7R79259+eWXeu655xxa54MPPtCzzz57y2ViYmI0depUvfLKK7r77rvzI6rpOfK9Gamw8xXU++XXdu9kO3lZN7frsB/mjTPvh0ZkK4j3NOs+mNv1nGUfLLZHYMqUKaOOHTvq+++/v2WD+zMfHx+Hl7377rsdXraoy833ZoTCzldQ75df272T7eRl3dyuw36YN868HxqRrSDe06z7YG7XM8s+WOQH8YaHhxfIsvgfZ//eCjtfQb1ffm33TraTl3Vzu46z/zw5K2f+3ozIVhDvadZ9MLfrOfPP0p8V2VNIBeXIkSMaNmzYbc/NASg47IeAsZxhHyzyR2Dym7+/vwYNGiR/f3+jowDFFvshYCxn2Ac5AgMAAEyHIzAAAMB0KDAAAMB0KDAFICUlRW+99ZYiIiLUuXNnPfXUUzp48KDRsYBi5d1339XDDz+szp07a+DAgdq2bZvRkYBi6eDBg2rTpo3+7//+L1+3yxiYAnD9+nUtX75cXbp0Ufny5bVp0ya9//77Wr58uUqWLGl0PKBYiImJUUBAgDw8PPTLL7/ohRde0LJly1S6dGmjowHFRkZGhkaMGCGbzabmzZtr4MCB+bZtjsAUAC8vLw0aNEgVKlSQi4uLOnToIDc3N506dcroaECxcffdd8vDw0OSZLFYlJqaqri4OINTAcXL119/rdq1axfI3XqL7J14c+PatWtatmyZDh06pF9++UVWq1UTJkxQly5dsi2bkpKiBQsWaP369bJarapRo4aGDh2qxo0b33T7p06dktVqVWBgYEF+DMC0CmofnD59ulavXq2UlBQ1a9ZM1atXL4yPA5hOQeyD8fHxWrFihWbPnq0PPvgg3zNzBEY3vuTIyEjFxMSoZs2at1z2zTff1L/+9S/df//9GjVqlFxcXPTiiy/q559/znH55ORkTZ06VY899ph8fHwKIj5gegW1D77wwgtat26dZsyYocaNG8tisRTURwBMrSD2wXnz5unRRx+Vr69vwYS2wZacnGyLi4uz2Ww22y+//GJr1aqVbfXq1dmWi46OtrVq1cq2dOlS+7SkpCRbnz59bE899VS25VNTU20vvvii7bXXXrNlZGQU3AcATK6g9sE/Gz9+vG379u35GxwoIvJ7Hzxy5IhtyJAhtrS0NJvNZrO98cYbtsjIyHzNzBEYSR4eHg7dTXDLli1ydXVV9+7d7dM8PT3VrVs3RUdH6/fff7dPz8jI0NSpU2WxWDRx4kT+zw+4hYLYB/8qPT1dp0+fzpe8QFGT3/tgVFSUTp06pZ49e+rhhx/W999/r6VLl+rNN9/Mt8yMgcmF3377TZUrV5a3t3eW6bVr15YkHT16VBUqVJAkvffee7p48aLee+89ubnxNQP5wdF9MCEhQTt27FCLFi3k4eGhrVu3av/+/XryySeNiA0UGY7ug927d1eHDh3s82fNmqWAgAA99thj+ZaF36y5cPHixRwbaua0zCsczp07p2+++UYeHh5ZWuo777yjkJCQwgkLFEGO7oMWi0XffPONZsyYIZvNpsDAQE2aNEm1atUq1LxAUePoPliiRAmVKFHCPt/T01NeXl75Oh6GApMLycnJcnd3zzY981LN5ORkSVLFihX1ww8/FGo2oDhwdB/09vbWzJkzCzUbUBw4ug/+1cSJE/M9C2NgcsHT01OpqanZpqekpNjnAyg47IOAsZxpH6TA5IK/v78uXryYbXrmtHLlyhV2JKBYYR8EjOVM+yAFJhdq1qyp2NhYJSYmZpl+6NAh+3wABYd9EDCWM+2DFJhcaNu2rdLT07Vq1Sr7tJSUFK1evVrBwcH2K5AAFAz2QcBYzrQPMoj3D59//rkSEhLsh8G2bdum8+fPS5J69uwpHx8fBQcHq127dpo7d66uXLmiwMBArV27VufOndP48eONjA+YHvsgYCyz7YM8jfoPvXr10rlz53Kct3z5cgUEBEi6McI68xkQCQkJql69uoYOHaomTZoUZlygyGEfBIxltn2QAgMAAEyHMTAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAnF7r1q2z/ElOTrbPW7NmjVq3bq01a9YYmPB/vvrqqyxZ//GPfxgdCSiSeBo1ALuzZ8+qd+/et1ymYsWK+te//lVIibK+b+fOnSVJrq6uBfpeu3fv1tixY9W4cWNNmzbtlsv+/e9/14YNGzRp0iTdf//9CgoK0qBBg5SQkKCVK1cWaE6gOKPAAMgmMDBQ999/f47zfHx8CjnNDRUrVtTgwYML5b0aNWqkChUqaN++ffr9999VoUKFHJdLSEjQ1q1b5ePjo9atW0uS7r33Xt177706e/YsBQYoQBQYANkEBgYWWllwRi4uLurSpYsiIyO1du1aDRw4MMflNmzYoOTkZHXt2lWenp6FnBIo3hgDA+COtG7dWqNGjdKFCxf097//XQ8++KA6deqkF198UWfOnJEknTx5UhMnTlS3bt3UqVMnTZo0SZcuXSrQXOfPn9fAgQMVHh6uzZs326dfvnxZH3zwgfr27asOHTrowQcf1CuvvKLjx49nWb9r166yWCxas2aNbDZbju+xevVqSVK3bt0K7HMAyBkFBsAds1qteuaZZ3T27Fl16tRJYWFh2rlzp1544QUdP35cI0aM0PXr19W1a1fde++92rJli1577bUCy3Py5EmNGDFC58+f17vvvqu2bdtKkk6fPq2hQ4dqxYoVqlSpknr06KFmzZpp9+7devrpp3Xo0CH7NipWrKiGDRvqzJkz2r9/f7b3OH78uA4fPqxatWrpnnvuKbDPAiBnnEICkM3p06e1cOHCHOfVqVNHTZs2zTLt2LFj6tWrl0aOHGmfNn36dH355ZcaOXKknnjiCT366KOSJJvNpvHjx2vnzp06cuSIgoKC8jV7dHS0xo8fLzc3N33wwQeqWbOmfd4bb7yhS5cu6b333lOTJk3s0wcMGKBhw4bpnXfeUWRkpH16t27dtHfvXq1evVoNGjTI8j4cfQGMxREYANmcPn1akZGROf7ZtWtXtuW9vLw0dOjQLNM6dOggSSpdurQiIiLs0y0Wi33esWPH8jX3jh079Pzzz8vX11cfffRRlvLy66+/6uDBg+rUqVOW8iJJVapU0QMPPKDjx49nOZXUqlUrlS5dWlu2bFFiYqJ9elpamtavXy8PD4+bDnYGULA4AgMgmyZNmui9995zePnKlSurRIkSWab5+/tLkqpXry6LxZLjvLi4uDtM+j+bNm3Snj17VKNGDb377rvy8/PLMj/z9NDly5dzPLr03//+1/7P6tWrS5K9oKxcuVIbNmzQQw89JEnatm2brly5ovDwcPn6+ubbZwDgOAoMgDvm7e2dbVrmvVpuNS8tLS3fMkRHRys9PV3169fPVl4k6erVq5JuHKXZsWPHTbdz/fr1LK+7deumlStXavXq1fYCw+kjwHgUGABFwpNPPqkff/xRK1eulKurq5555pks8zOL1HPPPaeePXs6vN0aNWro3nvv1S+//KITJ07I19dXu3fvVkBAQLZxMQAKD2NgABQJHh4eeuONN3Tfffdp+fLl+vDDD7PMr127tqQbR2pyK/NIy7fffqt169YpPT3dfpk1AGNQYAAUGR4eHpo6daqaN2+uf/3rX/rggw/s84KDgxUcHKyNGzdq48aN2dbNyMhQVFRUjtsNDw9XiRIltH79eq1evVouLi72xxoAMAankABkc6vLqCXpsccec9o7z7q7u+v111/X5MmTtWLFCtlsNo0aNUqSNHnyZI0ePVqvvfaaVq5cqVq1asnT01Pnz5/XwYMHFR8frw0bNmTbpre3t9q0aaN169bpypUratq06U0fLwCgcFBgAGSTeRn1zTz66KNOW2Ck/5WYV199VStXrpTNZtNzzz2nSpUqacGCBVq+fLm2bt2qNWvWyMXFRf7+/goJCbHf8C4n3bp107p16yTduEsvAGNZbDe7RzYAOInWrVsrNDRUs2bNMjqKwzKf7N25c2dNnDjR6DhAkcMRGACmEBUVZX/i83fffee0R4C++uorTZs2zegYQJFHgQHg9AYNGpTldeZ9ZJxRUFBQlry1atUyLgxQhHEKCQAAmA6XUQMAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANP5f/ghY/XvtsDIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the counts distribution\n", + "ax,plot = bkg.project(\"Em\").draw(label = \"Background component\", color = \"purple\")\n", + "#data.project(\"Em\").draw(ax, label = \"data\", color = \"green\")\n", + "data.project(\"Em\").draw(ax, label = \"data(Crab+bkg)\", color = \"green\")\n", + "signal.project(\"Em\").draw(ax, label = \"Crab signal\", color = \"pink\")\n", + "bkg_model.project(\"Em\").draw(ax, label = \"Background model\", color = \"blue\")\n", + "\n", + "ax.legend()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_ylabel(\"Counts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "194a38f1-2070-46a3-914a-970ecd41aaeb", + "metadata": {}, + "outputs": [], + "source": [ + "# clear redundant data from RAM\n", + "del signal\n", + "del bkg\n", + "_ = gc.collect()" + ] + }, + { + "cell_type": "markdown", + "id": "e48658c5-9b31-48eb-8644-e4556f83011f", + "metadata": {}, + "source": [ + "### Start TS map fit" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "72ba732c-37d3-4a43-afbe-24292fbbd3e6", + "metadata": {}, + "outputs": [], + "source": [ + "# define a powerlaw spectrum\n", + "index = -3\n", + "K = 10**-3 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "7c39a92b-3016-4b19-b56e-7ac0bbe33f1f", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "zipped_response_path = data_dir/\"psr_gal_DC2.h5.zip\"\n", + "response_path = data_dir/\"psr_gal_DC2.h5\"\n", + "\n", + "# download the galactic point source response ~6.69 GB\n", + "if not response_path.exists():\n", + "\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip\", zipped_response_path)\n", + " \n", + " # unzip the response\n", + " shutil.unpack_archive(zipped_response_path)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(zipped_response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "de748dc4-97a9-4b44-8531-e56a7be242d5", + "metadata": {}, + "outputs": [], + "source": [ + "# here let's create a FastTSMap object\n", + "ts = FastTSMap(data = data, bkg_model = bkg_model, response_path = response_path, cds_frame = \"galactic\", scheme = \"RING\")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "73ba79d0-a686-453e-b081-46d9462d338f", + "metadata": {}, + "outputs": [], + "source": [ + "# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source\n", + "# note that this nside is also the nside of the final TS map\n", + "hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "19d55399-0ef5-41dc-9bd6-29281375ccb5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have total 56 CPU cores, using 55 CPU cores for parallel computation.\n", + "The time used for the parallel TS map computation is 1.1570752302805583 minutes\n" + ] + } + ], + "source": [ + "# Perform the parallel fit\n", + "ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [1,2], spectrum = spectrum, ts_scheme = \"RING\", \n", + " cpu_cores = 56)" + ] + }, + { + "cell_type": "markdown", + "id": "a6f94572-b73d-425f-9c81-04d508420ab8", + "metadata": {}, + "source": [ + "### Plot results" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "f967ebe1-a1ef-4b4c-a11b-840f33b0f055", + "metadata": {}, + "outputs": [], + "source": [ + "# This the true location of Crab\n", + "coord = SkyCoord(l=184.5551, b = -05.7877, unit = (u.deg, u.deg), frame = \"galactic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "887d08d5-ffd0-4f50-af84-a724ac497826", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOz9eZhsVX3o/3+qqoczcAbOAUQmERQZHVAZRUFEIw6YG+MIkfyu18R4E5P41ai5iRmNRq8ZHjU3alSMglGSOEQxCgFkFEEBERHCLPN0Docz9FBdvz+6V5/dq/au2sMaPqv6/XoeHzx1uqvXqa6urqrPfu/V6vV6PQEAAAAAAAAAABhR7dgLAAAAAAAAAAAA8IlhCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAsM61Wq+9/n//850t//uc///nc60B8J554Yt/35cwzz4y9LPmTP/mTvnXtv//+sZeFAny/AAAAMIoYhgAAAAAAAAAAgJHGMAQAAKhyxx135FYH2f8dccQRXr72XXfdJZ1OZ+DX5uhoAAAAAADSwzAEAAAk54YbbpBrrrnG+fWeddZZMjc35/x6AQAAAABAXAxDAABAks4666wkrhMAAAAAAMTHMAQAACTpnHPOkZmZGWfXd8kll8itt97q7PoAAAAAAIAeDEMAAECSHn74YfnmN7/p7Po+//nPO7suAAAAAACgC8MQAACQhI0bN/Zd5uq0Vtu2bZOvfvWrSy4bGxuTdevWObl+IJSLLrpIer3ekv8x6ENVf/Inf9J3P7rjjjtiLwsAAABohGEIAABIwmmnnSarVq1actl5550nDz30UOPr/td//VfZsmXLkste/vKXy/r16xtfNwAAAAAAiI9hCAAASMKaNWvkf/yP/7HkspmZGfnSl77U+Lo/97nP9V125plnNr5eAAAAAACgA8MQAACQjLe85S19lzU9BdCdd94pF1100ZLLNm7cKK985SsbXS8AAAAAANCDYQgAAEjGi1/8Ytl3332XXHbdddfJtddeW/s6zzrrLOn1eksue+Mb3ygTExO1rxMAAAAAAOgyFnsBAAAAZbXbbfm1X/s1+cu//Msll5911lny7Gc/u/L19Xo9+cIXvtB3eahTZN1zzz3yjW98Qy699FK58cYb5a677pInnnhCer2erF69WvbZZx85+OCD5fjjj5dXv/rVcsABBwRZF9z42c9+Juedd55cfvnlcvPNN8s999yz+P3dZZddZL/99pPDDjtMXvjCF8ov//Ivyx577BF7yQP9+Mc/lnPPPVcuueQSufnmm+Wxxx6TVqsl69atkwMPPFCe+9znyqte9Sp5yUteIu122GOuZmZm5IILLpALL7xQrrnmGrntttvk4Ycflm3btsnExITsuuuucsABB8jznvc8OeWUU+SUU06R8fHxoGvETnNzc3LppZfKBRdcIFdddZXceuut8uCDD8rWrVtlbGxM1q1bJ/vvv78ceeSR8uIXv1he8YpXyMqVK2MvGwAAAKnrAQAAKHL77bf3RKTvf+985zt7vV6vd8stt/T93R577NGbmZmp/LUuvvjivus64ogjFv/+KU95St/fP+UpT2n8b7zqqqt6r3jFK3rtdjv331r0vxe96EW9Cy64oPHXz7vuz33uc6U//3Of+1zudQzzkpe8pO9zXve611Ve/80331x4G33wgx+sfH1nn3123/V0Op3e5s2bK19Xt9vtnXPOOb0jjzyy0ve20+n03vjGN/Zuvvnmyl8z60UvelHfdb/lLW9pdJ3XXHNN7vUW/e/pT3967ytf+cqS6/jABz7g5WfpoYce6r3vfe/rbdy4sdLtvccee/Q+9KEP9bZv3954DXW9/vWv71vX+Ph476GHHnL6dZ73vOf1fZ299tqrNzs7W/g5vr5fW7Zs6X34wx/u7b333pW+X2vXru29973v7T322GOVvt709HRv1apVfdf3yU9+svLaP/WpTxWu7/LLL698fW9729v6ruf5z39+5esBAABAeZwmCwAAJOVpT3uaHH/88Usue/DBB+Vb3/pW5evK228kb18SV3bs2CH/+3//bzn66KPlW9/6lszNzVX6/IsvvlhOPvlkefOb3yybN2/2tEp/Tj755L7LLrzwwr7TlA1zwQUXFP7df/3Xf1VeV971Pf/5z5e1a9dWup6f/vSnctxxx8kb3/hG+dGPflTpc7vdrpxzzjlyxBFHyEc/+tFKn+vThz/8YTn66KPl4osvLv05t9xyi7zuda+TM844Q6anp72t7Z/+6Z/k6U9/uvzVX/2VPPLII5U+98EHH5T3vve98qxnPUuuueYaTyscLO+xZmZmRs455xxnX+PGG2+Uq6++uu/yM844QzqdjrOvU8Y3vvENOfjgg+UP/uAP5J577qn0uY8//rh86EMfkkMPPVS++93vlv688fFxOeGEE/ouH/QYUiTE407eYyQAAADcYRgCAACSk/cm4llnnVXpOrZu3Spf/epXl1w2NjYmb37zmxutrcgjjzwiL3rRi+QTn/hE5Tf/bWeffbYcc8wxcueddzpaXRh5b/Q99NBDcv3111e6nkFvSl522WUyNTXV+Ppe/OIXV7qOf/u3f5Ojjz5afvCDH1T6PNvU1JS8+93vljPPPLPysMy13/7t35b3vve9Mjs7W+vzv/jFL8ppp51W+/OLzMzMyFve8hZ561vfKps2bWp0XTfffLOccMIJ8s1vftPN4ip46UtfKk9+8pP7Lq/6WDZI0XX5HPrmef/73y+nnXZa5SGI7b777pNTTz1VPvWpT5X+nKIhbJWfr16vJxdeeGHh31cdrtx5551y66239l1e9XEHAAAA1bBnCAAASM7rX/96eec73ynbt29fvOxb3/qWPPLII7Jx48ZS13HuuefKE088seSyl73sZbLnnns6XavI/ODlpS996cBaYMWKFXLEEUfIXnvtJWNjY3LPPffIT3/6U9myZUvux990001y8skny+WXX65+rwnjyCOPlHXr1vVVLRdccIE861nPKnUdvV5PLrroosK/3759u1x++eVy0kknlbq+22+/Xe64446+y6scoX322WfLr/3ar0m32y38mD333FMOPvhg2bhxo4yNjckDDzwgN9xwgzz88MO5H3/WWWfJ6tWr5ROf+ETpdbj0l3/5l/Lxj3+88O9brZYcdthhsu+++8ratWvlvvvuk5///OfywAMPLPm473znO/Lud79b1q1b52RdMzMz8trXvla+8Y1vFH5Mu92WQw89VPbee2/ZsGGDbN26Ve677z659tprZWZmpu/jt2/fLq997WvlggsukBe84AVO1llGp9OR008/XT7ykY8sufyaa66Rn/70p3LYYYc1uv5utytf/OIX+y4/6qij5JBDDml03VX81m/9lvzDP/zDwI856KCD5ClPeYps3LhRpqam5IEHHpAf//jHSx7jjW63K7/5m78p69atk9e//vVDv37egOHRRx+Va6+9Vo488shS/4YbbrhBHnzwwcK/v/zyy2X79u2l9zXJK0kmJyeD3v8AAACWI8oQAACQnLVr18ov//IvL7lsenpazj777NLXkXeKLF8bp7/rXe8qHITsu+++8tnPflYeeOABueqqq+RrX/uanHvuuXLFFVfIAw88IP/yL/8iBx98cO7n3nrrrfLWt77Vy5p96HQ6cuKJJ/ZdXuWo6uuuu65wgFDn+vI+dsWKFXLccceV+vxLLrlEzjzzzNxByLp16+QP/uAP5KabbpL77rtPLrzwQjn33HPly1/+slx44YXywAMPyGWXXSYvf/nLc6/7k5/8pHz9618v/W9x5eqrr5YPfOADuX83MTEhf/RHfyS33367/OQnP5Fvf/vb8uUvf1kuvvhiuffee+X888/ve/P57/7u7+SSSy5xsrbf/u3fLhyEPPOZz5QvfOEL8vDDD8tPfvIT+c53viNnn322fP3rX5errrpKHn74YfnsZz8r++23X9/nTk9Py+mnny6PP/64k3WWVfSY84UvfKHxdZ9//vly77339l0esgr50Ic+VDgIOeCAA+QTn/jE4iDtu9/9rpxzzjnyb//2b3LZZZfJI488Iueee64ceuihfZ/b6/XkN37jN+Suu+4auobnPOc5suuuu/Zd3vRxImtqakouu+yyRtd3zDHHsEk8AACAZwxDAABAkvLeRMwbcOS54447+vZA2LBhg7z61a92sLKlvvOd78g//uM/5v7dr/7qr8oNN9wgv/7rv567P8XKlSvlda97nfz4xz+W3/iN38i9jm9+85vyT//0T07X7FNecfH9738/94j9PGXewGz6Judxxx0nK1asGPq5mzdvlje84Q25az/11FPl1ltvlQ996EPyjGc8I/fz2+22HHfccfLtb39bvvSlL8nExETfx7z1rW8deES6a91uV972trflDncOOOAAufrqq+XP/uzP5ClPeUrf37fbbTn55JPl/PPPX7LvSa/Xq7Wngu2rX/1q7s/SxMSE/P3f/71cd911csYZZ+S+8S0yP0T99V//dbnpppvkta99bd/f33nnnfLbv/3bjddZxaGHHirPe97z+i7/4he/OLA0KiPvFFmTk5Pyhje8odH1lvWDH/xA/vAP/7Dv8larJe973/vk5ptvlt/6rd8qrPFWrlwpv/IrvyLXX3+9vPOd7+z7+82bN8uv/dqvDV1Hu93OLcVcDkOqXl/ezwP7hQAAAPjHMAQAACTp5JNPln322WfJZT/60Y/kJz/5ydDPPeuss/r27XjjG9+Y+2Z0E3Nzc/KOd7wj9+9e+cpXytlnn11qk+4VK1bIP/zDPxS+8feud72r75RfWuWdsuaJJ56Qq666qtTn228ijo+Py0te8pIll/3whz8sfYR/3j4AZc/b//73vz/3yPu3vvWt8h//8R+lT9kmIvKmN71J/vVf/1VardaSyx9++GH5u7/7u9LX09SnPvUp+fGPf9x3+e677y7f+c535Igjjhh6Ha1WS971rnfJBz/4QWfreuKJJ3IHFRMTE3LeeedVGmKsXLlSvvKVr+SeYumf//mf5eabb2601qryBrumsqnr8ccfl6997Wt9l7/qVa+SDRs21L7esubm5uR//a//lbsvx1lnnSUf/OAHS2/g3ul05G//9m/l3e9+d9/fXXzxxfK9731v6HXk/UxfcsklMj09PfRzu92ufP/7319y2dFHH913O5YdhvzsZz+T++67r9QaAQAA4BbDEAAAkKR2uy1nnHFG3+XDNh/u9Xq5p6DxceqYb3/723Lbbbf1Xb7XXnvJOeecI2Nj5bdva7Va8pnPfCb3XP+bN292clqdEA477LDcI8HLvJE4MzOT+6akXfR0u92+8ifPDTfc0LfHhUi5I7TvuOMO+fSnP913+Yknnij/8A//0DfUKOOVr3yl/P7v/37f5Z/61Kdkx44dla+vjqJTGn3qU5+Spz/96ZWu633ve5/80i/9kotlyd///d/nfq8+8YlP1HoTudVqyac//Wl56lOfuuTyXq8nf//3f197nXUUDWKbbKT+la98JXe/jVCnyPryl7+cO5j+wz/8w9zH7TI++MEPytFHH913eZlhYd7P9LZt2+TKK68c+rl5w9VTTjml75R/P/rRj2TTpk1Dry/vsW6XXXaRo446aujnAgAAoBmGIQAAIFl5R1R/6UtfktnZ2cLP+f73v983oDjssMPk+c9/vuvlFW5+/eEPf1h22WWXytc3Pj5e+MbfJz/5ycrXF0vem9dlhiFXXXVVXwFz8skn577RWfe0NmvWrMk9bZHtE5/4RN/psTqdjnz84x+vNOSy/Z//83/67hsPP/ywfOUrX6l9nWX94Ac/yH0D+6STTpLXvOY1ta7zYx/7WKPbQ0RkdnY2dzP3Y489ttGeOWvWrJH3v//9fZefddZZsm3bttrXW9WGDRvkVa96Vd/lX/va12rvYZI3HH3Sk57kbDg1zN/8zd/0Xbb//vvLH/3RH9W+zrGxMfmLv/iLvsu//e1vyx133DHwcw8++GDZa6+9+i6v+ziR97jT7XbloosuqnV9J5xwgoyPjw/9XAAAADTDMAQAACTroIMOkmOPPXbJZffff7/853/+Z+HnfO5zn+u7zMfR0o8++mjuOvbee29505veVPt6TznlFHnOc57Td/lPf/pTue6662pfb0h5w5Arr7xStm7dOvDzis6zf+ihh8qTn/zkJZeXeZMz7/pe9KIXDX3zfm5uTv75n/+57/Jf+ZVfkcMOO2zo1x1k/fr18uY3v7nvchd7bgzzpS99KffyvFqlrEMOOaRwg/iyvvvd7+aeVqjJG+vGGWec0XequiqnbXMl7zFo+/bt8tWvfrXydd12221y6aWX9l3+5je/ufFgqowbb7xRrr766r7L3/Oe98jk5GSj637JS17StwdPr9crNYTIe9wpcyoy+2dv5cqVcuyxx9Yaws7NzeVWa+wXAgAAEAbDEAAAkLQqG6k/8cQTcu655y65rNPp1D5tyyBXXnll374kIvOnxGm3mz0FK1rvFVdc0eh6Q8l74296elouueSSgZ9nv9G4evVqOeaYY0Sk/43OolNgGUWn0ipzyqWrr74697rz9qCoI2+z58svv9zJdQ+S9zU2bNggL3vZyxpdb95wp4r/+I//6Ltsw4YNcsoppzS6XpH5DcWPO+64vstD3N5ZL3/5y2WPPfbou7zOqbK+8IUv5D72hDpFVt73q9Pp5G5aX0fdn4+8x52rrrpKtmzZUvg5O3bs6LvuF7zgBTI5OSnPeMYzZO+9917yd8OGIT/60Y/kscce67uc/UIAAADCYBgCAACS9vrXv15WrFix5LJvfvOb8uijj/Z97LnnnttXH7zsZS/L3cOiqaJz0b/iFa9ofN32HhnDvqY2+++/vxxwwAF9lw96I3H79u19w57sqWXy3ugcVFNcffXVsnnz5r7LyxyhXbQfiYs350VEnvvc5/Zddsstt8gjjzzi5PrzTE1NyfXXX993+cknn9z49D0vf/nLa+2hYuTd3ieddJKzyiHv9g79szQ2NpY7NLr00kvl9ttvL309RXsiPec5z5FnPvOZjdZYVt7369nPfrbsvvvuTq6/7vcr72d7dna2bx+irMsuu6xvv57s9djXWbQ5upH3GLdx40Z59rOfXfg5AAAAcIdhCAAASNq6dev69jOYmpqSL3/5y30fm1eM+DpaOu80MSLi5E2vAw44oO/UPiLzG/2mouq+IZdeeqlMT08vuWzQm5LDri9vULL77rvLEUccUfg5xo9//OO+y/bZZx9Zs2bN0M8tY7fddsu9/Be/+IWT689z/fXX9+2BIiJO3kBfu3at7L///rU+d/v27fLzn/+87/JDDjmk4ap2yru97777bmfXX1Ze5VY03ChyySWX5A5PQlUhIvk/Hxq+X/vuu6887WlP67u86uOE68edk046qdGwEAAAAOX5P2ksAACAZ2eeeWbf8OPzn/+8/NZv/dbin2+//fa+I4B33XVXOe2007ysKe/o4P3220/Wr1/f+LpbrZYcccQRctllly25/P7772983aGcfPLJ8pnPfGbJZddee6088sgjsnHjxr6PL9rE2Nhvv/3kwAMPlFtvvXXg5wz6u7JvSt5yyy19l01NTeW+mV1H3imORCT39DquFA1aygyHyjjiiCMqFQ7GbbfdJt1ut+/yCy64wNnAIu/76fO2LvLMZz5Tnv3sZ8u111675PIvfOEL8sd//Mel7pt5p9UaHx9vfKqysrZu3Zr72Hfdddc5+/nIu/7NmzfL3Nzc0FMQnnzyyfLf//3fSy6r8jix6667ypFHHrn456Kh7umnn953+fT0dO5eLpwiCwAAIByGIQAAIHmnnHKK7L333nLPPfcsXvbDH/5QbrzxRjn00ENFZP5NQvtN5je84Q2NN/QtsmnTpr7LXJ0mRkRy9xfYvHmz9Hq9JI4yfvGLXyytVmvJ96TX68mFF16Yu7eAfUR13qllTj755CXDkDvuuENuu+22vlNyTU1N5e4xUHYT4+z9zHjooYdq7e9Qhc836PPuryLFlUpVda8n77YWmd8fx+ceOTGGISLzg93f/d3fXXKZ2RD9hBNOGPi5RRuun3rqqc6+j8MUfb9+8pOfyE9+8hNvX7fX68nmzZtl1113HfhxJ598svzjP/5j39oeeuihvsfnxx9/vK/wO/HEE5cMXPbZZx856KCD5Oabb168rGi4cuWVV8q2bdty1wQAAIAwOE0WAABIXrvdzt1U3Lw5XXSqGVdHKufJezM179RWda1bt67vsm63O3AzYE322GMPOeyww/ouz3sjcdOmTfKjH/1oyWV5FUfZU9Zcfvnlsn379r7Lyx6hnbfXSAiPP/64t+su+je5us/WvZ5RvK0HedOb3pS7R0uZU2X9+7//e+7Pf8hTZMX6fomU+57lPW70er3c01ddfPHFfVVS3mOMfdndd9+dWxvlPRaZYQoAAADCYBgCAABGQt5g44tf/KJ0u1256KKL+k7Rc8ghh8hRRx3lbT1PPPFE32WrV692dv1F15XKMESk/PDioosuKvWmZN4bnXnXl3fZfvvtl7ufQB57Q+VQik6f5ULe/VVEZNWqVU6uv+59P9ZtHcvuu+8up556at/lX/nKV3IHeFl5ZdJuu+0mr3zlK52tb5iY368yPx+77bZb7j44ZR8nygxDqlwfp8gCAAAIi2EIAAAYCc94xjPkmGOOWXLZvffeK9/73veCbpxu7LLLLn2X5Z0ipa6tW7eW/rpa5b2JeMstt/TtBTFsE2Nj991373uj87/+67/63iTNu74qb0p2Op3SH5uKomGFq/ts0f11mFG8rYfJe2x6/PHH5Wtf+1rh59xzzz1y/vnn913+xje+Mbc08SWF71fZ4YX9OLHXXnvJwQcf3PdxJ510Ut9eJfb1bd26Va666qq+z2UYAgAAEBbDEAAAMDLy3kT8+Mc/Lv/6r/+65LJOp5N7Wi2X8s5d7/LUO3nX1W63nZ6Ky7cXvehFuW+e2m/q2m8s7rvvvvL0pz899zrtNzofeuihJXsVbNmyRX74wx8O/bxB8gYHRx11lPR6Pa//83lat/Xr1+de7uo+W/d6ioY0n/zkJ73f3rG88pWvzN3jY9Cpsr74xS/K3Nxc3+U+7zN5ir5f73nPe7x/v/bff/9Sa8wbQNx2221yxx13LP75wQcflBtuuGHJxxQ9RmzYsKFv/6ILL7xwyX3o+9//vszMzPR9LvuFAAAAhMUwBAAAjIw3vOENsmLFiiWXfetb3+o7Kv2UU06Rvfbay+ta8t5cfuihh5xd/4MPPpj7NVPYPN1Yu3atPO95z+u7PDv8uP/+++XGG29c8veD3kDMe6Mze30XX3yxzM7Olvq8InvuuWffZY8++mjpz9eoaBjy8MMPO7n+uteTd1uLpH97DzI+Pi5vfOMb+y7/3ve+J/fdd1/u5+SdIuvwww+XI4880vn6Bknh+/XCF75QxsbG+i7PDmHzirIqjzuPPPKIXHvttYt/zitPnv70p8s+++xTdtkAAABwgGEIAAAYGevXr5fTTjtt6MeFOFr6yU9+ct9ld911l5Mj7Xu93pLawSh6I1KzvDcYs6enKXuKLCPvjc7sG5F513fwwQdXGo499alP7bvM5aArhr333jv3cvvo+Lry7q9l5N3WIunf3sPkPUZ1u1354he/2Hf5D3/4Q/nZz37Wd3nIjdONPfbYI3efGU3frzVr1uTuFzXscWLQ486wU29VvT4AAAD4wTAEAACMlGGDjvXr18trXvMa7+vIKx56vd6So4Xruv3222Xz5s19lz//+c9vfN2h5RUZ991332INUnXT4bw3Or///e8v1iAuNjG2T4kjIrJ582a56aabKl2PJs961rNy95a47rrrGl/3li1blpyCqIo99tgjd7B45ZVXNlyVbkceeaQcccQRfZfnnSorrwrpdDpy+umne1nbIK1WS571rGf1Xf6DH/wg+FoGyfuZz9Yg9uPEQQcdNLDiOOGEE/p+fswAxK5EBq0BAAAAfjEMAQAAI2XYKbDe8IY3yOTkpPd12Ju5G9/61rcaX/c3v/nNSl9Ts+OPP77v1GYiO9+MtI+oPuSQQ4ZWHPYR12afEHv/kKKPH+aEE07Ivfyiiy6qdD2aTE5O5r75fsEFF+TudVDFeeed12gPjrzb+5prrpEnnniiybLUyys7brjhBvnRj360+Ofp6Wn58pe/3PdxL3vZy6KVYnnfr/vvv1/VsDDvZ97sE3LnnXfKbbfdNvTjs1avXt33+Gv2CbH3DxGZHxqddNJJNVcPAACAuhiGAACAkTLsiOhQp4455phjcvfvOOeccxpvzpx3qhwRkWOPPbbR9cawYsUKOe644/ouv+CCC/o2NRYpN7goOmVN3puS7Xa78puSL37xi2WXXXbpu/yf/umfKl2PNnnfh0cffVS++93vNrres88+u9Hn5536bnZ2Vj7/+c83ul7t3vzmN+fubZEtQb71rW/JI4880vcxoTdOzyo6VeFnPvOZwCspduyxx8rKlSv7Lr/gggty67E6jztbt26VH/zgB7mnyHrWs54lu+22W4UVAwAAwAWGIQAAYOT8xm/8hrzrXe/q+98f//EfB6snNmzYIL/0S7/Ud/ndd9+deyR3Wf/1X/8lV199dd/lhx9+eO7paVKQd7qYiy66KPdN+DJvSh577LF9+xYUvcn57Gc/W3bdddcKq52vKN7whjf0XX711VfLeeedV+m6NHnzm9+ce/nf/u3f1r7On//85/Ltb3+79ueLzL+5nrfB+1//9V/L9PR0o+vWbM8995SXvexlfZefc845i7VO3imydt11V3n1q1/tfX1Fjj32WDnooIP6Lv9//+//ycMPPxxhRf0mJyfl+OOP77s873Gi7MC0aAjr4tR8AAAAcINhCAAAGDkHHHCAfPSjH+3735/+6Z8GXcc73vGO3Mvf8573yNatWytf3+zsrPzO7/xOpa+Vgrw3ETdv3iwf+9jHllzWbrflxBNPHHp9ExMT8oIXvGDJZVdccYV85zvfKfW1y/jd3/1dabf7n0q/7W1vk/vvv7/WdcZ2zDHHyOGHH953+fnnn194arZhfv/3f7/xabZWr14tb3vb2/ouv/vuu5O+35eRV7I99NBDct5558nDDz+cO2h6/etfH+RUgEVarZb87u/+bt/lW7duldNPP1263W74ReXI+9m/+OKL+4YXz372s2XDhg1Dr+/oo4+W1atXL7nsS1/6ktx8882lvjYAAAD8YxgCAADgyctf/nI58MAD+y7/xS9+IWeccUblNwV/4zd+Q37605/2Xb5+/Xo544wzaq8ztuc///mydu3avstvueWWJX9+7nOfm1sI5LGPvJ6ampK77rpr6MeVddhhh8mv//qv913+i1/8Qk477TR56KGHal2vbXp6Wj772c8GO6L+7W9/e+7lb33rW/v2URjmr//6rxtXIcb73vc+2bhxY9/ln/nMZ+TP/uzPnHwNEZG77rpL1em3Xv3qV+eWS2eddZacffbZuYOmmKfIMv7X//pf8oxnPKPv8v/8z/+Ut7/97TI7O+vk6zz88MPyD//wD7U+N28gsWXLFnnggQeGflye8fHxvv1S7McwEZGxsTF54QtfWGGlAAAAcIVhCAAAgCftdls++clP5u4d8u///u9yxhlnyJYtW4Zez9TUlPzWb/2WfPazn839+7/5m7/pOyI5JZ1Op9Sbg1WOpi7zsXlvXlbxkY98RPbZZ5++y6+66ip5znOek7tXQFl33323/NVf/ZXsv//+8j//5/8Mtln42972ttzTrT344IPy0pe+NHcYZ+v1evK3f/u38t73vtfZutavX1/4pvcHPvABec1rXtP3JnZZvV5PLrvsMjn99NPlwAMPVDUMKTol23/8x3/k3h4HH3ywHH300SGWNtDY2Jh87nOfk06n0/d3n/70p+XEE0+sPFzLuvbaa+Ud73iH7LfffvLhD3+41nUceeSRsm7duqEf5/px56ijjsrdcwgAAAD+MQwBAADw6KUvfWnh0fbnnHOOHHHEEXLWWWflDkV27Ngh5557rhx55JGFbwS/5jWvUXEkeFN1N0YvcuSRRw7dCyTvtDZV7LrrrvLVr341dyPme+65R04++WR5wQteIF/+8pflwQcfHHhdW7ZskUsuuUQ+/OEPy9FHHy1PecpT5P3vf7/cd999tddXx9jYmHzqU5/KPQXYrbfeKs997nPlAx/4gNx99919fz83NycXXnihnHLKKfJ7v/d7i5vVt1otJ3sk/Oqv/mru6ZdERL7+9a/L/vvvL7/5m78pl1566dC9RO666y75+te/Lu94xztk7733lhe84AXypS99yVmx4FLez/f09LTcdNNNfZfnnVYrlmOPPVb+7//9v7l/d9lll8lBBx0kb3zjG+V73/ve0NMG3n///XLeeefJe97zHjnwwAPlOc95jnzyk5+U7du3115fp9MZetq9iYmJSgPTMo9R7BcCAAAQz1jsBQAAAIy6j3zkI3LVVVflbnx+5513yplnnilvf/vb5YgjjpC99tpLxsbG5N5775UbbrhBHn/88cLrfdrTniaf+tSnfC49mGFvIhZteFzE7C/y7//+77W/ZhnHHHOMnHvuufLa1742943Zyy67TC677DIREXn6058u++yzj2zYsEEmJydl8+bNsmnTJrn//vvltttuWxwexHbUUUfJBz7wAfnABz7Q93dTU1PyZ3/2Z/Lnf/7ncsQRR8i+++4ra9askfvvv19uuumm3P1Sfud3fkfWr1/fqJQxPvaxj8mmTZty640dO3bIP/7jP8o//uM/yooVK+Twww+XjRs3yoYNG2R2dlY2bdokmzZtkttuu00eeeSRxmsJ5aijjpJDDjlEfvaznw38uHa7LaeffnqgVZXzzne+Ux599NHcU5l1u1358pe/LF/+8pdlbGxMDj/8cNl9990X9+cw368777zT2z48J598snz9618v/PtjjjlGVq1aVfr6nv3sZ8vGjRsH3r/YLwQAACAehiEAAACerVq1Sv7zP/9TTj31VPnBD36Q+zHbt2+Xq666qvR1HnLIIfKd73xHdt99d1fLjOrwww+XPfbYo7CgOO6443ILjEFOPvnkgcMQV0don3rqqfK9731PfvVXf3VgyXHLLbfk7iGg0R//8R/L/fffX1gk9Xo9uf766+X6668feD2/9Eu/JB/96EflL/7iL5ysq9VqyWc/+1nZZ5995IMf/KDMzc3lftyOHTtyh4+pestb3jL0tGMnn3xy7mnbYvvTP/1T2XPPPeX3fu/3ZGpqKvdjZmdn5dprrw27MBn+GFB1cNFqteSkk06Sc889N/fvV65cKccee2yl6wQAAIA7nCYLAAAggA0bNsjFF18s73jHO3L3EKniTW96k1x55ZWy3377OVpdfOZNxCJ1jqYe9DmrVq2SY445pvJ1Fjn++OPl+uuvl9NPP73x9zdrfHy8cBNt3z75yU/KX/7lX+bu+1DGm9/8Zvn6178uY2Nuj79qtVry53/+53LBBRfIoYce6vS6n/SkJ8mrX/1qp9fpwumnn5576rIszafLe/vb3y4/+MEPnP7MiczvJfO6172u9ucfdthhsueeexb+vevHneOPP14mJycrXycAAADcYBgCAAAQyOTkpHz84x+XK6+8Ul7xilcMfXPTduKJJ8oFF1wgX/rSl2Tt2rWeVhnPoDcR61QcBx98sOy11165f/eCF7xAJiYmKl/nILvttpv88z//s1xzzTVy+umny4oVK2pdz+TkpJx00knyN3/zN3LPPffI17/+9VIbPfvw/ve/X6644opK+yY87WlPk3/5l3+RL37xi85v46wTTzxRrrvuOjnrrLPk+c9/fu3r2XPPPeX000+Xb3zjG/KLX/xCfv/3f9/hKt3Ye++95ZRTTin8+7Vr18ov//IvB1xRdc961rPk8ssvl6997Wvy4he/uPLjn7HrrrvKr/zKr8jZZ58t9913n/z1X/91o3UVPbbssssuctRRR1W+PtePYwAAAHCn1dNycmIAAIBl5p577pGvfe1rcumll8qNN94od999tzzxxBPS6/Vk9erVsvfee8vBBx8sxx9/vJx22mly4IEHxl4yKti6dat897vflcsuu0yuvfZaueOOO+TBBx+U7du3S7vdljVr1siaNWtkzz33lGc84xly8MEHy5FHHiknnHBC5VOChXDNNdfIueeeK5deeqncfPPN8thjj0mr1ZJ169bJgQceKM997nPlVa96lZxyyim13+hu4vbbb5fzzjtPrrrqKrnpppvkrrvukk2bNsnU1JSsWLFC1q5dK2vXrpX9999fDj74YDnkkEPk+OOPlyOOOCL4WjG/Kfq3v/1tufLKK+XGG2+UO++8Ux577DHZvn27TE5Oypo1a2Tt2rWy7777Ln6/jj76aHne854X5f4FAACA9DEMAQAAAAAAAAAAI41DagAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRNhZ7AQAAAIBPLznhL2MvoU97ajb2Evq1WrFXkGtuohN7CX3Ov+QPYy8BAAAAQEWUIQAAAAAAAAAAYKS1er1eL/YiAAAAsDxorDSaUFl41KW0DKlLY1HSBDUKAAAA0AxlCAAAAAAAAAAAGGmUIQAAAFg0auVGFSNVedQxYmVIHaNWk1RBeQIAAIBRxzAEAAAgUct5cFHFsh9ylMUwpLTlPDSpggELAAAANOE0WQAAAAAAAAAAYKRRhgAAAERC2eEO9YcDlCFOUI24Q1kCAAAAlyhDAAAAAAAAAADASKMMAQAAaODFL/6rwr9rz8wFXEnChjwdbU93Ay1k9LWmBxQ0Q8qQ3sSY49UsX93JwfVIi1dopQy6HS88/70BVwIAAIAUUIYAAAAAAAAAAICRRhkCAACWvUF1R1XLsgZx9HSSAqSegbVHpStyt2cIFUk9w4qRspZjWeLqthOhKgEAABhVlCEAAAAAAAAAAGCkUYYAAICR4rLyKCP5EiTwU0Hqj2qcVR+lvpi7MqQM6pFqXJYPZaRel4S+vahJAAAA9KMMAQAAAAAAAAAAI40yBAAAqBW68ihDZQmi8OkcBUg5QcuPYQKXIcNQjpQTuoAoQ2NVovF2oiYBAAAIizIEAAAAAAAAAACMNMoQAAAQlMbaY5igNUiCT82oQAZTVX8MoqwMGYRqZDCNFcQwIWuSFG8fKhIAAIDmGIYAAIDGUhxwDOJs+DFiT7MYehRLZuAxSELDkEEYlBRLcQgwiKsByqjdLgxOAAAA8nGaLAAAAAAAAAAAMNIoQwAAwECjVn3kqVSCLJOnTlQgS41E+THMiJQhw1COLDVqVUSRKhXJcrhNqEcAAMByRBkCAAAAAAAAAABGGmUIAADL0HKoPQbpK0GW8dMhCpCdlkX9McgyKUMGoRrZaTnUEUXsimQ53xYiVCQAAGB0UIYAAAAAAAAAAICRRhkCAMAIOemUDy35c6u7fH/Nt6ynOK0q+4KMCuvb356hAhGhAMlqzRb/XPTGl/HR8NZjZ2/leKSFRJTzMrFr3w7L8KVkd8XSn4vWMvzVYsyNL63JLj7vDyKtBAAAoBzKEAAAAAAAAAAAMNIoQwAASIRdfQwyqkWIXXsM/NhRLUEqfGspQahABpUfTY1kOVLhsXNka5EKj7N9pYij602JXYoMMqoViV2IDEI9AgAAYqIMAQAAAAAAAAAAI40yBAAABapUH4OkXIRUqT5yPz/lEsTRt205lyDLvQAR8VuBlJVsLeLwsTPZYsTBy8JKpcggCb9ErVKK5Em5HqlSiAxCPQIAAHxhGAIAQACuhh15tA9Amg45Bl631gFIgG/Jch18LOehh4ZhR1NqhyUBHkfVDkk8vxx0NiAZROlL2qaDkUG0D01cDUbyMCwBAAB1cZosAAAAAAAAAAAw0ihDAABoyGf1MYiGIsRn9THw68YsQiLd7MuxBKECWR6i1yIRH0uj1yIRHsODlCJ5Ir7s9VmIDKKhHvFZiAxCPQIAAPJQhgAAAAAAAAAAgJFGGQIAQAmx6o88oYqQWNVHnmAliJ5/MiXIMrGcCpCqghUjCio7I1gpoujxPVopkifQ7RKrFMkTqh6JVYjkoRoBAGD5ogwBAAAAAAAAAAAjjTIEAADRVX4UcVmEaKo+8ngpQXT/k5ddCUIFgjqc1iKKipBBnNYiyh/7RZSVInk83IaaSpE8LusRTYVIEcoRAABGF2UIAAAAAAAAAAAYaZQhAIBlI4X6I0+dIkR7+VGkVhGS5j9VRJZXDbKcShAKkPBqFSOJlCG2WqVIor8T1Fcig9S4zbUXIkXqlCMpFCJ5qEYAAEgbZQgAAAAAAAAAABhplCEAgJGSav2Rp6gISbX6KDKwBhmtf+qyKEGWUwEiQgWi2dBaJNEypEhuMTJivy+SLkXyDPj+pFqJFCmqR1ItRPJQjQAAoB9lCAAAAAAAAAAAGGmUIQCApIxS+ZHH1CCjVn/kaU2P/hH1y6EEEVkeNQgFyOjotUf/eLDFSmTEf5eMXCmSozs5+vdXU42MUiWSh3IEAID4GIYAANR50al/vfj/23U21E5Qe1TfaM38s0b1zWR7cNXKDkBao/nGTmuHNfwYwffqWlPWv7Ezgv9IEZGZzL/TflkwMaJvNM8uHVL2RvDfaT8uzY3q0CDz7+wbjIzo4+9yGI7MTSz9NxadNjR1vbGd99Hvf/M9EVcCAMDyMfrPpAAAAAAAAAAAwLJGGQIACC5bfgyyHKqQ5IuQEstPuQgpc7qyVplTYSV+hHJfCVIk0cNs+iqQPKmXITMl/o1lXxakXlLMDv+ZTbUWKXuKxeRLkRL/zlKn0Er4sXk5FiJ5Uq9GsnXIIJQjAAC4MfrPoAAAAAAAAAAAwLJGGQIA8KpsBZJnlMuQJIqQBktMpQaps1F9qRKk8JPTOQq5dA1iS+BQm1IlSJEUCpEyFUieJi8LUigpShQhRVIoReo8nokkVok0uI/W2mw9kcfsUa9EyhQiRbSXI2XLkDzUIgAAVDfaz5oAAAAAAAAAAMCyRxkCAGikSflRhCIkEA9L0VSE1D1KuvD6mhQhfVem72jj2iWITeGhNo1KEJumMqRuAVLEx8sCTUVFgzLEprEUcfWYp7IUcXjfrFWIDKLo8ZxCpBpN1UiTQqQI5QgAAP1G+9kSAAAAAAAAAABY9ihDAACl+ahAsihCPPD8ZWOXIK7rj77rd1mD5H6BeEcUOytBikQ65MZpBZInZhniugSxhXhZELOocFiG5IlVi/h+HIxainj+tzmvRGyRq5FRLUVcFyK2mMWIj0Iki1oEALDcjeazIwAAAAAAAAAAgAWUIQCAPr4LENsoFyEiAaqQCDdfqCLE9xHPfV/PdwlS+IXDHD3svQbJCnTIjfcSpIjvQsR3BZIn1ssC30WF5yKkSKhSJOTjZLBKJNJ90XspYgv02D+KhYjvOqRIqGrEdyFioxgBACwXo/esCAAAAAAAAAAAIIMyBACWqdD1Rx6KkJIU3Uw+ipDQ9UfuGmIVIUsW4f4o0KAlSBHHh95EK0FsrsuQGCWITcHPooi4L0UilSE216WIhsdOL6WIgn9X8EIkj4ffCRQifvmoRkIXInmoRgAAo4RhCACMOA1DjyKjNgxxMvxQeJM0HYBoeMPOpmL4UaTBG2Aqhh82B+9TqRmAZDUZhmgYfORR+LO6qMkgQckwJMvFYETjY2uj4YjCf4+hYjhiazgsGcXBiIiu4YjRZEiiYRhShCEJACBF+p4pAAAAAAAAAAAAOEQZAgAjRHMFkrWsi5CE/ulVihCNRyjbVNcgWRWO9lVZghSpcAiOyhLEVqUM0VqC2BL4OV5UpaxQWIbYqpQiKTzeGpVKkUT+XSorEVuF3yMUIvFUKUY0FyJZ1CIAAO30P0MAAAAAAAAAAABogDIEABKUSgGSZ5SqkKFFSKL/1KIiJKWjkbOSKUJsBUf2JlWDZA04BCeJEqRIXiGSSgliS/RnXETyS5EEipAig0qRVB+LCyuRRP89SRQieQp+t1CI6JJXjaRSh+ShGAEAaJHmMwMAAAAAAAAAAICSKEMAQLmUK5CskSxCRuSfZEqQVI82tiVbghRZOIo32SLEtnAoTtI1SJYpQ1KtQbJG5DFgsRJJuAzJMpXIqDxGLxYiI/LvMZItRWwLv3NGrRRJtRDJMrVIyoVIFrUIACCG9J8RAAAAAAAAAAAADEAZAgBKnHDaR5b8uT0zGg/PI1OELHw7RubfIyLtESsoWlPWvyfxQz76/j2Ja41COSH9/45e3p4hCVny77FeFvTGxwKvxq2WVYYM2ocjCXMLv38mJ+Kuw5WF+1vhXiKJmlux89/TG4ED+LsrOrGX4Iz5t7TmRuM5tql3OtNpPzftWtXOZf/6/0VaCQBgOUj71RsAAAAAAAAAAMAQlCEAEIFdgWSNShFiJFNSDLnZk/l3lDRKVcjQgiKRQz8oQXQa9u9IrQwZ+O8Z8rIgtVLELkNsyZQic0N+/6RWigy5n41KKZItRGypFSOjVIeIDP/3pFKODNvXJbVixC5EsqhFAACupPXqDQAAAAAAAAAAoCLKEADwaFABUmRUyhDVJUWFm1j1v6OGUSlCKlUUCRz6MSpVyHKpQfJoLUQq/VsqvizQWooMK0LyqK5EhpUhWZorkQr3r1GpQ4xBlYhNczWy3AqRLM21yLBCJEtzLTKoDClCMQIAqIphCAA4UGfoYWMI4kGDm1TVv8OBZTkEsSl6r5rhhy4u/h0ahiGN/x0OXhZoGJDUGYbYVAxHqgxBimgajjS4f43KcKTKUKSIhmHJch6K2DQNSaoMRWyahiR1hiI2hiQAgCLxX7UBAAAAAAAAAAB4RBkCADW5qEFEKEKccXQzRv93OEIJMkCEQ0EoQXTx8e+IUYY4/3d4eFkQoxRxUYbYopQiLsoQW4xSxMP9ilJkqdi1yKiUIq7+HbFrkSaFSFbsWsRFISJCJQIAWIoyBAAAAAAAAAAAjDTKEAAYwlUBUoQypCJPNxdFiC7eS4pAh4NQhOgQYv0hyhDv/44ALwtClCI+yhBbkFLERxlihCpEPN+nKETKCVWOUIgMFqoYcVWGFAlVjLgqQ4pQjADA8kQZAgAAAAAAAAAARhplCABk+K5AsihCSgh0E1GF6BG8pPBwWAg1iA6h1++rDAn67wj8ssBXJRKiDMnyUon4rEJsPiuRgPepUahEfBciWb5qEeqQanzWIr4LkSyftYjvQiSLWgQARh9lCAAAAAAAAAAAGGmUIQCWtZAliG0UyhBnRUXkmyL1MiT1IiRqSeHwsJDUi5DUSxAj5r/DRR0S9fsQ+WWBi1IkdBWS5bQQCVmG2FyUIhHvS6NQiIiErUTyNC1HUi9EYq/fVTESsg7J46IYCVmG2ChFAGD0UIYAAAAAAAAAAICRRhkCYFmIWYDkSb0KaVRSKPqnU4TEpaqkqHF4iKr1N5B6EaJp/XXKEE3rj12G2OqUIjHLEFutUiRmEWJrUogoui+lXorELkSy6tQisQuLpjStv0ktErsQyapTi8SsQ/JQjABAunT9RgEAAAAAAAAAAHCMMgTAyNJWg2QtizJE8T+RIiQu1UVFicNEVK+/BFUlQg2a11+2DFH7b1D8sqBsJaKpDLGVKkU0lSG2MqWI4vsQhYg/ZYoRTYVFHZrXX6YY0VSG2MqUItrKkCwqEQBIC8MQAMnTPPSwjeQQJKF/EkOQuJIYIgx4rZ3E+guoffO9pFTWXzQMSWX9mt/IthUNRzQPQ7IKByOahyFZRYORBO5DDEXCKBqQaB4qlJHS+vOGJJqHIra8IYnmoYiNIQkA6JTObxIAAAAAAAAAAIAaKEMAJCelEsSWahmyWFSkuXyKkIiSrSkWDhdJdv0LkikSCqS2flOGpLbuRQm/LDClSCpliLFYiKRShNhMIZLofYdKJDxTjKRUWORJdf2mFkmpEBHZWYmkVIbYKEUAQId0f5MAAAAAAAAAAACUQBkCQLXjfvWjIiLSmU77oSrVIsRol9jYUJWFow6TW3dWW6SdcJWQelHRnp4/sr/XKrErrCLJFgkLkl7/zKxIyQ3UVZqZ3VknlNnoW6vZrkjJzdZV6c7f9r3JNG97c7R5b0WJTdY1WXgpPLcqsXUvaHUXjvJftXC/Sex3lojI7Mo0Cwsj1UJkduX8faWd6K/d7uT8+jtTab7G6k7Mr//Kc94VeSUAsPwk/IoNAAAAAAAAAABgOMoQAKqYEsSWahlCERJAzkGQSazbKDgsIdUqJNUixJQgtlTKkJSLipTXLiLzRYUthUIkb91F+1akUIrk7RWSUiHS7b/tU6hETBFiS6YQKXgpnEIpYqqQrMVCpO+Ddf8uS70OEUm/EMlKqRYxhYhNezFiyhAbpQgA+JfAKzUAAAAAAAAAAID6KEMARFVUgtgoQ8JSWVaUPKhR5dpFSh9+QBESVlERYtNYiKReVCS7/jLr1liGlFl3URli01iK5JUhNo2lSE4RYtNciBSVIVkqK5GSL4E1FiJ5RYitsBBZckX6fq+lXoikWoeI5BciNo3FSFEZkqWxEikqQ2yUIgDgnsJXagAAAAAAAAAAAO5QhgAIpmwFkkUREpa6qqLGQYsq/g01DjWgCAmrbBGSpaUOSbWoSHXdpYoKm5YypOray5YhWVoqkTJliE1DKVKiDLFpKEXKFCE2NYVIjZe/GgqRMkWIrVQh0veF4v+uS7UQSbkMMcoUIoamUqRMIWJoKkXKFiJZ1CIA0AzDEADe1Bl+2BiGhBVtkODgdXeUtTt4v5MhSHh1BiEi8YYhqQ4RUl23iNQbgGTFGoY0XXedYYgt1nCkzjAkK9ZgpMYwxBZjOFJnGGKLNhyp+fI39kCkzjDEqDUUWfLF4/z+YygSXpVhSJ5YA5Iqw5AiMYYkdYYhNoYjAFCNksPWAAAAAAAAAAAA/KAMAeCUixokK7UyJNUiRCRgWeH44MJg63Z8+ABFSDh1S5AioQqRVMuKVNctIs3LCiNUGeL6tnZRhthClSJNyxAjdCHioAwxQhQiLooQW7BCxPHL3lClSJMixNa4ELEF+n1IIRJW0zokK3Qp4qIQEQlXibgoQ7KoRABgOMoQAAAAAAAAAAAw0ihDADTiugQxUitCjBTLEO9lhaeDBr2t2/NhAikWISnWICLuixDDdxmSYlmR4ppFxH1ZYfguQ3yt20cZYvguRFyVITZfpYjDIiSPr0rERxlieC9EPL3s9VWIuCxC8jivRAyPvyMpRMJyWYhk+axFXJUhRXwVI64LEYNSBAD6UYYAAAAAAAAAAICRRhkCoBJfJYgttTIkxSLEcFZYhDlttJ8iJMChARQh4fgqQmwuC5FUy4rk1h1qvT7KkBBr91mGZPmoRHyVITZXpYjnMsRwXYj4LEOynFYigV7uui5EfJchhrdCxObwdyaFSBi+yhCbj1LEdyEi4rYS8VWG2ChFAIAyBAAAAAAAAAAAjDjKEAADhSpBjNSKECPFMsRJYRGoBslqtO5IhwCkVoVQhFTTpBBJraxIbb2LYq27SSESY82hyhBbk1IkVBFia1qIBCpDbE1KkVBVSFajQiTSy9ymhUioIsQWrBCx1fwdmmIdkloZYoQqRGxNipEQZYjNRSkSqhAxKEUALEeUIQAAAAAAAAAAYKRRhgBYFLoCyZNiGZJiFSJSsbCIc0DYEpXWq2TUTxHiX6waJKtOGZJaYZHaekUkXg2SVaUM0bDeWGWIrUopEqsMyapSiUQqQmx1CpEYZYhRqxBR8DK3aiUSqwrJilaIiNSqRChE/ItVhmTVqURi1CFZdUqR0GVIHmoRAKNOydtFAAAAAAAAAAAAflCGAMuYhhLERhniX6nCIv5BSYtKFyGKxvsUIf5pKEJsgwqRJMsKSXTdmtZcpgzRtF4tZYhRphDRUIYYZQoRJWWIUaYQiVmEFBlYiih8eTusENFQhNiiFiK2EsUIhYh/GgoRo0wpErsMsZUpRTSUITZKEQCjhmEIsIxoHH4YDEH8Kxwq6HvOvSh3zYqGHjaGIP5pHIIYecOQFIcJya1Z83qLhiFa16xtGJJVNBjRNAyx5Q1HlA1DsooGIxqHIUbuUETxy9uioYjGYYihaiiSVTAgSW0oktpARETXUMSWNyTRNhTJKhqQaByKGAxHAKRO8VtKAAAAAAAAAAAAzVGGACNOcw2SRRni32JlofdAoz7t6bkkxvapFSEi6VUhmosQW6/VSq+uEIoQL0wZksJaRXSXITZTimguQ4xsIaK4DDHsQkRzGWL0VkyoLkJsphDRXIRkqa1DsqxSJJVChDLEH1OJaC5DbKYU0VyGZFGJAEhRAm8xAQAAAAAAAAAA1EcZAoyYo874vyIiMrYjjR/t3sJINpX1iiRYhMzoPwrV6E7M3yHGt6VxFDVFiH8pFSGLUjhSXRIsQUTSKSyMlEoLkfTWKyLSTujYrm5XZDyBI+wN8zKxzEb2CpTZDF6b1NacRCFimV2Vs3ePQhQi/vU66ax3ZuG2Hd+WxutOc1+4+rO/H3klADBcQq8eAAAAAAAAAAAAqqMMARJnShCb5tKilxnDal6n0bMO1OooXvPc2M4jnsa26z863ZQghuYiZK7Tf/zA2LaZCCspp2edO7u9Q+9tm6c1s/T+29L8dCWREsSgCPFo1lpnAtVCL7vmrvVzl0DF0LN+/lqaK4bs7ZvAbdu3B4fm2zbnd0RvxUSEhZRk7cPSW6l4rTm6K637guID7rsr+suQnuKH5hQLkZnVO29QzXsM2XuHtBN4ajGTqW80VyJFlRClCACNFD8NAAAAAAAAAAAAaI4yBEhUSkXIoKOvtK3XrkCyNBYh2RLEpq0MsSuQLI1FSF4JYmgrQuwKJCv1IqTv7zU9bUmsCBFJqApJZZ1ZdhWSpagQ6Q1aZ3fIz5+imsEuQrLU1iGDbl9Ft21eZbFI6207YM2qCpEhR80nX4hkKatF8goRQ2MpklIhki1DbBpLEbsQydJWi8wM2JdFYylCIQIgBQp/7QMAAAAAAAAAALhDGQIkpKgGydJQWlQ5uir2egeVIDYNZcigEiRLQxUyqASxxS5DBlUgNg1VyKASxEitCBEZXoWIKClDEipCkilBjJTWO6iwsEUsQwaWILYhZYgtZikyqAyxqSlFyty+GgqRKo+zsW/bCmtVUYiUOEo+tTpEZEghYigoRQbVIbbYtUhKZYjI4DokS0MpMqgMscUuRQaVITYNpUhRGZJFJQIgNsoQAAAAAAAAAAAw0ihDAMXKlCC2WKVFnaOnYqy1SglixC5CytYgWTHKkColiBGrCKlSghgxipAyBYhtVIuQvs+J8fSFIsSPlNYqUq0IMSKVIZWqEJHKZYhIvDqkShliRCtEatyuIhKvEqnz+Brrtq2x1iiFSI2j4Ue2ELFFKEaqFCJGrFIklUKkbBmSFbsSqVKIGDFKkSp1iBGrEilThtgoRQCExjAEUKTO8MMWasDg4gVBsLU2fA0RahhSZ+hhCzUEqTP4yAo9BKkz/DBCD0HqDECM1AYhdYYgi58b+ulLIoMQhiAe1Bl+2AINQyoPP2x137TPCDUcqTMMsQUbjjS9XUMNRVw8roa6TRuuNfhApMGbvqkNRWoNRIzAg5E6QxEj9HBklIcitlBDkjrDkKxQg5E6wxBbqOFInWGIjeEIAN84TRYAAAAAAAAAABhplCFAZC5qEBH/lYWPo598rblpCWLzVYa4KEFsvsqQpiWIzWcZ0qQCyeOrDGlSgBRJpQxpUoT0XZfvpzEUIe6lslYXRYjhuQxpXIQYDsoQw3ch4qIMMbwXIq5uV9+FiMvHU9+3qaO1ei9EHB7hnkoh0qgMKeKpGGlShuTxWYsspzLE5qsUaVqG2HyVIi7KEJvvUsRFISJCJQLAD8oQAAAAAAAAAAAw0ihDgMBclSA2H5WFr6ObXK/VdQli+ChCfNQgIu6LENclSJbrKsR1CWK4LkJ8lCDGcixCllyvy6cyiZQgIgnVIKmsU8RtDZLluAxxVoLYHJYhNteliMsyJMtLJeLrdnVdivh6WejjNvW0VqeliKej2Zd1IWI4fkrluhAxXL+WSqUOEfFTiIj4qURcFyKG61LERyEi4qcScVWG2ChFALhAGQIAAAAAAAAAAEYaZQgQiK8ixHBRW/g8z21W07X6KkFsLsoQXyWI4bII8VmDiLgrQnyVIIaLIsRnBZK13IuQxet38VSGIsS9VNYp4q8IMRyVId6KEMNjGWK4KkR8lSGG00LE9+3a9DYN9XLQxW0aaK1OChFPZYhBIWJx8NTLVyFiuHqtRSGyk4tSxFcZYmtaivgqQ2wuShFfZYhBIQKgCcoQAAAAAAAAAAAw0ihDAE98lyC2JrVFqCLEqLPWUDWISLMixHcJYmtShvguQWx1yhDfFUhWkyIkVAlipFKEiPivQpZ8rTpPaShC3Ethnb4LC1uDMsR7DZIVoAzJalKJ+C5DbLVKkcC3Z+1CJPTLwSaFSOC11ipEPBchWanUISIBCxGjwVMz34VIVp3XYZQhxZqUIqEKEZF6lUioMsRoUoj4LkNslCIAqqAMAQAAAAAAAAAAI40yBHAodA2SVaW2CF2CGJXWGPGAp6plSOgaRKRaERK6ALFVKUJCliBZVauQ0CWIQREy5GtWeUpDEeJWCmsUCV+EGDXKkKBFiBG6ZFhQpxAJXYYYlQqRSLeniFSrRGK9HKxyW0Z+yVqpEAlYhhgUIiVUfOoWsg7JqvI6jUJksKqVSMgyxFalFAldiBhVSpHQZUgWlQiAYShDAAAAAAAAAADASKMMARqIWYIYZWuLWDVI1qC1xixBsspUITFKENuwMiR2DSJSrgiJVYLYBpUhsSqQLIqQimsY9tQmkSqEIsShWEWIbUAhEqUEscUsGTIGlSKxihBbqUJEw+05rBDR8FKwzG2pYJ1D65AIRYiNQqSiAU/xYpUhtjKv4VIoRGKUIbYypUjMOiRrUCkSqwzJKluJxCxEDEoRADaGIUANGoYgRtGAQcPww2avVcsAJCtvGKJh+GEUDUE0DD9sRcMQLQMQkfwhiIbhh8EQpJ7CYYiSN1GLJDH8MFJYq4bhgi1nGKJiCGJoePM+I28oomUYklU4GNF0exYNRTS+FMzengrXVzgUUTAMMRiK1JTzFFDLUESk+PVdCsMQQ8NQxMgbjmgZhmTZgxENwxBb0XBEwzDEYCgCwNDzmwgAAAAAAAAAAMADyhCgBE0liM3UFhpLECO1IkRTCWIzZYjGEsQwRYimAsRmFyGaapCsFMoQTUWIbbEQUXgkuS2ZKiSFdWoqLWwLZYiqGiRLU8lgMZWIxjLE6CtENN6ediGi9aWguS21rk8yhYiiIsSWQiGiqgzJsp4aaipEbOZ1YAqFiKYyxJYtRShEmjGliKYyxEYpAixfen8TAQAAAAAAAAAAOEAZAhR4zm9+TERExrfq/hHpTOten4hIZ0b/GltKD9LNanV1346dqbnYSxiqOzl/DMDEpunIKxlOexWiuQgxUqgt1K9R+/qytNYWGb055Y+TGksGW0v/sVwtxWVknzG9R7uLiMi48vWJSK/MBvCRaS9E1NYhGXML1YXWmjhrdpXuQkRzHWLM6b9LSndc/32xpfvlq8ysmr8Nr/v470VeCYCQ9P8WAgAAAAAAAAAAaIAyBLCkUIRk97QY36bvKNM56ygVjWucXbF0Fjz+hL417tiw9KiulQ/pO+p5ateda1x1/8yAj4zDlCCGxiKkN7Z0jZ3tmdtRYQ3Uso8c1/ejo7+2kDTWqL4KmbEecxQerduz19hReLTudGaNPesHWmM1YBdA4wqPeJ9b+jjZsvfpUKDX3fm9bk0qvA3tl6gp1BcprFFjIZL5Xs9ZhYjGCmPO2pdD4xq7K3c+t9S4vhTKEHuvi/asvufk07ssXWNnKtJCBphdlXnfQvH7KxQiwPKi/7cQAAAAAAAAAABAA5QhWPZMCWLTdORCtgQxtNUWdg0iomuNdgliaCpC7BLE0FSEZEsQQ1sRYtcgIrqKELsEMZYUIYayMqSvChFRVYakUFuksMbkihBD0dGvfUWIoakMmc5Zo12GGJoKkaK9YTQVInP5e69oKkSyZYihqhApeomaQn2hfI3q6pCc77VdiCx+qKLHebsQEdG1PpGlhYihaY0pFiKGplLELkRE9FUi2ULE0PR+y0zO+kQoRYBRpf+3DwAAAAAAAAAAQAOUIVi2iooQQ8ORCnlFiBG7usgrQWyx11hUg2TFLEOKShBbzDIkrwSxxS5D8koQQ0sRUlSDiBQUIbbIhUhuEWKL+OOeQm2RwhrVFyEixVWIiIoypLAIMWKWIXkliK2oDLHFLEWKyhBDQyFSUIaI6KlD8soQI3ohUublqfL6QoRCZPgChn+fiwoRET2FQ14hYsReY14ZYou5xpTLkKzYlUheGWKLXYrklSGGhvddisoQg0IEGC0MQ7CsDBuAZMX4pTxo+GGLNWgoMwQxQq+xzPDDiDUEKTsAEYkzBCkz/MiKMQgZNPywxRqGDBp+2EoNQ4zAQ5FSQxAj0jBE+5BB+/pERPcQZNhwISvSGzpDByBZMYYhZYYgRtlhiBFjKDJsGJIVazAyYBhiCz0cGTQEsUUbilR5eap94KB8fSIRhiIVvr+DhiF9Vxvpd8CgYYgtxhrLDESyYqxxVIYiRujhSJlhiBFrKDJoGGKL8T7MsGFIFoMRIH36f+sAAAAAAAAAAAA0QBmCZaFKEWKEOiKhSg2SFaq6qFKCGJqLECNUGVKlBLGFKkOq1iAiYYuQKiWIEaoIqVKA2CoVIUagMqRSEWIL9OOvvbjQvj4RGZ0ixBboqNZKRYgRugypUoWIVC9DRMLXIVXKECNUIVKhCLGFKkSqlCFG8EKkzstT5QUGhUj2C1X//lYpRPq+XKDfCVUKESNkhVG1EBEJt75RK0MMzYWIEaoUqVKGZIV6T6ZKGWJQiADp0v9bBwAAAAAAAAAAoAHKEIykOiWIzfdRCHWLEBH/5UWdGiTL9/rqlCA2X2VIkxLE8F2E1ClBbL7LkDo1iOG7CmlSg4jULEJsngsRzWVICsWF6jVqXptIsyLE8Hwka60ixPBdhlQtQWx1yhCb71KkThli+C5EGpQhhu9CpE4ZkuW1Emn6sjSF+kLxGr2XIQ7edmhSiIj4Lx3q1CGG77XVKUNsvteouRCpU4bYfJcidcqQLN+VSN06RMT/ezN1yhAbpQiQDr2/bQAAAAAAAAAAABygDMFIcVGEGK6PPmhSgth8lRdNixDDx/pc1CAiuosQw3UZ4qIEMXwVIU1KEJvrMqRpCWI4KUIMT2VIoyLE5vhHTXVtsUD1GjWvTcRNEWI4PnK1UQli81WGNC1CDBdliOGrEGlShthclyIOyhDDVyHStAwxvBQirl6WKq4vjGVZiDh826FpIWK4Lh2alCE2XxWGi0LEcL1GzWWI4aIQEfFTiTQtQwxfhUiTMsTm+r0aF2WIQSEC6Kf/tw0AAAAAAAAAAEADlCFInssaJMvV0QYuixDDVXnhqgSxuVifqxLE5rIMcVmDiLgtQlzWIFmuyhCXJYjhqghxVYLYnJYhhqNCxGkRYmv4I6e6tligeo2a12a4LC9EnJUhTosQW9NCxFUJYnNZhtialiIuixCbq0LEYRki4rYOcVWE2JwWIq5fliquL4xlUYh4eLvBVRlic1U6uCxEDFdrc1mGZLmsRDQXIq7KEJuLUsRVGWJzVYq4LEMMV+/ZuCxDsqhEAJ30/pYBAAAAAAAAAABwgDIEyfJVhBhNjjLwUYNk1S0vfJUgWU2rEF9FiNGkDHFdgtialCG+ShDDRRHiowbJalKG+KpBDC9VSFbNQsRrEWLU/JFTXVssUL1G1Wvz/PPg4OhUr1WISP0yxFcRYvgsQ4y6hYjPMkTETR3iuAyxNSlFfJUhRqNCxPfLUcX1hTGShYjn76uvOsRoUjr4KEOyXFQYvgoRo8kal2MZYjQtRHzVIVl1SxEfZUhWk/dvfJUhBoUIoIve3zIAAAAAAAAAAAAOUIYgGb5LEKPOEQW+SxBbnfoiRBUiUn1tvksQo04R4rsEMeoUIb5LEFudMsR3CWLUKUJ8lyCG9yLEqFGGBKlCjBoHJGuuLjSvbVkXIbYaR6V6L0KMOmWI7ypEJEwZIlKvDvFdhhh1ChHPRYitTiHiuwwxahUioV6Oaq4vFK9NpGYdEuj76rsQMeqUDr4LEaPO2nyXIbY6a1zOhYhRtRQJUYaI1KtDfJchtjrv6/guRAxKESAuhiFQL9QQxKjySzP0EMQoM3AINfywlVlbqAFIVtlhSKgBSFaVYYjmIUio4YdRZQgSavhhBBuC2CoMRbQOQzQPGjSvjSFIjhJvvAQbftjKDENCDD9soYYhtjLDkVDDEFuZ4UjgYYhRZigSaghiqzQUCf1yVPHgQetQpNIwJNLbC6GGIkaVN/dDDUWMKmvTPBRhGLJUmcFIqGGIrcxwJPQwxKjy/k6oYYjBUASIQ+9vFwAAAAAAAAAAAAcoQ6BO6BLEVubIAYqQflqLEJFyVUiMIsQYVoaErkGyhpUhoWuQrEFlSOgSxBatDBEZWocELUJsQ34UNZcXatemdV0i8YoQY8DRp9GKEGNQGRKjCDFilSHGoEIkVhliDCpEIpUhxqBCJFYZYgwsRGK+DFVaYIjorUNEShQiEb+nocsQ26DiIXQZkjWsxAhdhmQNW5vmMkQkTh0iQiFSV5n3eUKXITZKESAM3b9dAAAAAAAAAAAAGqIMgSqxqxCR/CMGYpUgtrz6IlYJYstbW6wSxJZXhsQsQYyiIiRmCWIUFSExSxCjqAiJXYOIRC5CjIIyJGoRYhQcoKy2uhDda1NbhcSuLoycI06jFyFGXhkSswgxYpchRl4hErsMMfIKkchliJFXiMQuQ0QG1CEaXoZqrjA0r62oEFHwPY1diIgUFw8xCxGjaG0xCxGjaG1aC5FYZYgtrxSJVYbY8kqRWGWILe99n9hliAh1CBCCzt8qAAAAAAAAAAAAjlCGQAUNRYhhHyGgpQoRWVpfaClCDLM2LTVI1vgTcypKEJspQzSUIDZThmgoQQy7CNFQghgqihDbQiGiogixLTyUaa4uNK9NbREioqcKEVlShqgpQoxsGaKhCDG0lCFGthDRUoYY2UJESRki0l+HaChDjL5CRNPLUM0Vhua1mUJE0/dygYZCxLCLBw2FiGHWpqEMsZm1UYaUZyoRLWWIkS1EtJQhIv3v/WgoQwwKEcAfnb9VAAAAAAAAAAAAHKEMQRSaShBb3nkttejM6P1xbek58HCR2StEYxWSd25XDSYf03N0q238CWVHBWdoLENa03pvr9aU4rWpri40r03fz4ApQ9RVISIiio7WX0JbGaKdqUMUlSGL2vqe+xgtxaUDhUg9vRX61qapDLF1V+bsi6TE7Cqdjx3Tu+hcl4jOQmR2RewVFOt19N1ei3S+RBcRShHAJcoQAAAAAAAAAAAw0ihDENRh7/0bERGZ2KTnbtddsfTIhInNitY2Of/fiSf0rMmYWT1/u01s0be2x/efn/Ouvlff2jYdNP/fDTfqW9u23duy6836jqA2Rw9NbNaztpZ1VHd7WtFRwYr3CmktrE1m9a1N5ua/p/b3VgXzvZzT97ihsghZsFiEtBQegTg9s3TfEAV6mT05Wh1dx0v1ZmalNa7vSGqzH4fK0sE8boxPDP64iFTebobitaksRNoLJd6Enp/TXnvp41hvUs9j7tzCvne9cV2PtSIi3cmO9PTcVItmF/Y0mVNYFZh9Jloan6YtvGZffA6uyMza+bWNbY28kIyZXZb+eXxLnHXkmV1Y208/RCECNKXvty8AAAAAAAAAAIBDlCEIQlsRYtcgIjqKEFOC2DSUIeaoEpuGMsSUIDYNZYgpQWwaypBtu/ffblrKkLxzyWopQ/LKATVlSM5RXxoKkcKj0TQUInNLv5+qyhD7e6epDEmhCDE0lSHTmbVRhpTWy+yXo6kQ6VmPF6pKB/vxg0KkHsVrU1GItPsfX7XUIXYZIqKnDjFlSJaWSqSbcxtpKEVMGWLTUIqYMsSmoRQpeg2voRQxZYhNQyliFyIieioRChGgOYYh8MYMQEQYgpSRNwjRPAQxYg5DioYgRsxhSNEQxIg5DMkbghixhyGDNtSLPQwZ9CZ59GHIgBc0sYchA19sxRyGzA0eekQdigz7nsUciqQ0BMmKPRCZHrC2yEOR7BDEFnsokh2C2GIPRexBSFbUN/eHPX4wFKlH6dqiD0RyhiFG7KFI3jBk8e8iD0XyhiFG7KFI3jDEiDkUKRqGGDGHIkXDECPmUGTYa3mtQxENAxGRNIYiIgxGgKp0HH4AAAAAAAAAAADgCWUInMsWIUasMiSvBLHFKkOKTomVFasMGXYEiUi8ImRYDSISpwgZVoIYMYqQQSWILXQZMqgEsYUuQ6qUAdHKkBJHc8UqQ0odaRarDBlShYhEKkPKfq9ilCGpFiFGrDJkUBFiC1yIDCpCbKELkUFFiC1WITKoDDGilA5lH0coRKrTui6JWIgMKEOMWIXIoDKk72MDlyKDyhBb6FJkUBlii1GKDCtEjBilyLBCRCReJVLm9X2sSqTodFlZsUqRvDLEFqsUmc1ZG4UIUA5lCAAAAAAAAAAAGGmUIXBGQxFSpgQxQhchZUoQW6gypMyRIrZQZUiZEsQWugwpW4WIhC1DqhQhImGrkCpFiBGqDKlTBAQrQ2ocsRW6DKl0VFnoMqREEWIEL0PqfJ9CFCKpFyG2UIVIlSLEoAxZVKUMMUIVImWKEFuw0qHO44jSQkRtHSJCIZJVogyxhSpFqpQhi58TqBCpUoYYIQuRKnWISNhCpGwZIhK+DilThthClSJ1Xu+HKkXKlCG20KVImULECF2KUIgA1VGGAAAAAAAAAACAkUYZgsbyihAjRBlSpQbJ8l2G1ClBDN9FSJ0jQ2y+y5A6RYjhuwypUoLYfJchVWuQrFBlSJ0qRMR/GdKkBPBehjQ4Mst3GdLoqLFQZUiFIsTmvRBp8v3xXYYorUJqFSGG5jLE8FyIVClCbL4LkTpFiKG5DDG81w51H0+U1iEiFCJNeS9FapQhhu9CpE4Zsvi5nguROmWISLg6pGoZkuW7EqlShth8lyJ1yhDDdyHi4vW/71KkTiFi+C5FqpQhWSEqkbwyxKAQAfJRhgAAAAAAAAAAgJFGGYLKBpUgWb6qkLoliM1HGdKkBsnyVYZoLkKalCA212VIkxLE5qsMaVKEGL7KkLoliM1HGeLqqH9vZYiDI7B8lSFOjw7zVYg0KEIMb2WIi++LrzJEaRFiNCpDDF+FSJMixPBUhjQpQmy+CpEmZYjhqxBpUoQY3ioHV4/zFCL1aF7bAm+FSIMyxPBViDQpQ5Zcj4dKpG4ZYvNVijQpQwxfhUiTMsTmuhRpUobYfJUimguRJmVIlo9KpG4ZYvNVigyqQ7IoRYB5lCEAAAAAAAAAAGCkUYagkrJViIi7MsRVCZLlugpxVYQYLssQF0d/ZLksQ1zWICK6ixDDVRniogSxuS5DXBUhhssyxPXR/l7KEMdHXbkqRLwcDeaqDHFQgticlyGuSx2XdYjyIkTEURWS5bIQcVGFZDkuRDSXIS6KkCyXdYiLIiTLS+Hg+nGFQqQZxWt0Vog4KEKyfNQhrsqQxetzWIi4KkMM14WIizLE5qoUcVmGGJoLERG3lYjr9wZcvi5wVYYYrgsRV3VIlqtSpGwZIkIdAohQhgAAAAAAAAAAgBFHGYJSQhYhPkoQW9MyxHUJYrgoQlwf7WFzUYa4LkIMF2WIjxokq2kZ4qMIMZqWIa5LEJuLMsTX/g9OyhBP5981XJQhvs4R3LgM8VCE2Brfdzzt3eKkDFmORYjhogxxXYTYGhYiLosQW9NCxHURYnNRiLguQwwnhYOvxxWDQqQZpWt0Uoc4LkNsLkoR12XI4vU6qCZclyG2pqWIjzLEaFqI+ChDslxUIq7LEMNFIeL7vQIXrxVcFyJG01LERxlia1qKUIgA5TAMwUBVhiBGk2GI70FI3SGIr+GHrckwxPcTG6POMMTX8MPWZBjiewhi1BmG+ByAZNUdhvgeghhNhiHeNsFe0GgY4nkIYjQZhngbgtjqDEUCDEJEGtyHfL9ZadQZiiznIYityVBE8TDE5yDEaDIQ0TwM8TUEsTV6Uz/U4wtDkfoUr6/RUMTzMMRoMhTxNQxZvP4GAwPfwxCj7lDE5zAkq85gxPcwxGgyFPE1DLHVGY6Ees+gyWsHX8MQW93hiO+hSJOBSJVhiMFQBMsRp8kCAAAAAAAAAAAjjTIEuUIVISFOiZVVpQwJVYNkVSlDQh3VYWguQowqZUioEsRWpQwJVYQYdcqQUFWISLUyxHcJUqRSIRKqtlhQpQwJVoLYqpQhgYoQo/J9KtQR20aVMoQipF+dMsR3EWKrUIiEKEJsVQoR30WIrU4hEqoMMSoVDqEfXwwKkfq0r08qliKByhCjSiHiuwgp/LoVaopQZYhIvTokVBliVClEQpUhtiqlSKgyxNBciBhVXluEKkOyqlQiIU6XlVWnFKEQAQajDAEAAAAAAAAAACONMgRL1ClCjDJlSOgSxFamDIlRhIiUq0JCH8GRVbYMCV2DZJUpQ2IVIcagMiR0CWIrU4aELEFsZcuQWFWISMkyJFJ1UaYMiVaEGGXKkMBFSFbp+1aso7ZFhhciyquQ4EWIrUwhEroIySpZh2guQ0JXIVllCpHQRYitVOEQ8zGGOqSZBNZYqhAJXIYYZQqRWGWISPk6JGQZYitTioQuQ2yDSpFYZYhRphAJXYZkla1EYr6vUOb1Row6RKRcIRK6DLGVKUXqlCEGhQiWA8oQAAAAAAAAAAAw0ihDlrkmJYgtrwyJXYIYg4qQWCWIbVAZEvPIDaOoDIlZgtiKypDYNUhWXhkSuwgxBpUhMYsQY1gZErMIMQrLkNjFRUZeIRK9CDEGlSERixBj6H0s5tHaRlEZEru4GCJ6EWLLK0RiFiHGkDIkRhFiG1aIxCxDjLxCJHYRYsutHDQ8xhgUIs0ksMbcQiRSEZKnqBKJWYYsrmFIWRGzDDEGFSKxyxAjrxCJXYZkFVUiMcsQW1EpouH9hUGvP2KVIbZBpUjsQsTIK0WalCE2ShGMIj2/SQAAAAAAAAAAADygDFnGXFUhdhGipQbJsssQLTVIVrYM0XCkhs0uQzQVIYZdhmgqQoxsGaKlCDGyZYiGEsRmlyEaShBbXxmipbjIyJYhaoqQLLsOUVCE2Prue5qO1jbsQkRbeZGhrgoRWVqGaChCbFYhoqEIsdmFiIYixJYtRLSVISI5hYOmxxrFZYhBIeLGkkJEURli2IWIhjLEZpciGsoQW7YU0VKGGNlCRFMZYtiFiKYyxLALEY3vN2Rfl2gpQ7LsSkRLGZJlVyKuChHqEIwafb9JAAAAAAAAAAAAHKIMWYZc7hMiItLZ4fTqvOjs0H83LzqfpxY7Nuo7OsM2s4vyG1FEVjyk93bc9eYZlUWIYcoQjUWIsViGaCwuFpgyRGUVIrKzDFFYhBiL90FNR2nbTBmisbpYoLIIyVJYMtiSeBqv+Gd5kcIjybOG7cMSFYWIG8rXuFiHKCxDDFOIaCxDDFOIaCxDjN54W10ZkjWzi97bzphao3+NswrrlazZ1bFXMFxP900oIu7fY6IQwajQ/ygNAAAAAAAAAADQAGXIMuK6CJldOf/fycecXq1T3RXz/7X3NdHEHJUxvlXnGrfvNr8+zeXKtn3mj84e36R3vmvOdbvyfr2HkIxt78ku9+o90n1s+/zaOtv1Hq3dnlk4AnpW75HQlCHNtUwxoPkplNnnQvEaKUOaS+JpvOKf5UVajyRfuO2ye5uoYyq0SYUb8llUFyJmnyKl3+ueqZOUrk9EpLewl1JvXG/VYPblmJvQu8a5iY7MTSh9TBSR7uT8z8rcuN7XVDML+5rM6f1xkVmzZ4jSpxHT6+b/21b8VGx63fyNN/644vvi2vk1Tmx2u0YKEaSOYcgy4HIIYgYgIjqHIGb4YWgcgthJqsYhiBmAZGkahpjhh03TMKRX8BpH0zBkbHv/N1XbMMQMQLI0DUMWhx82RcOQVsGpnFQNQ+xN00VUvoHast8c1/gUyt7sW+Ea1Q9BRKSXuR1bLT2P20bfhukdhW+s2d9njWvMPj6OK3yj3HocVDkUmbMeYxiK1JP3OKPo+90rOlWbqjXmP8ZoGo5kNyk3tA1G8tajaThihiE2TcORmYJN3jUNR2bzNlDX95RxcShiaByOmKGIoXE4YoYiIm4HIwxFkCo9v9UAAAAAAAAAAAA8oAwZYS6KkGwJYtNShtg1SJaGMmTY5mQaypC8EsTQVISIFFchIjrKkKIixNBQhuQVIYaWMiSvCDE0lCGFRYihoAwpKkJ2/r2CH+68IsRQUob01SBZmp5C2UWITcFaUytCbBoKkb4ixKahvhj2fdawxkGPj1oKkQGPgSoKEbsIsSVQiIgoqkQGPb4o+H4XliGGijUOfmzRUIjklSGGlkJk0Do0FCJFZYihoRApKkNEdNUhIgWFiBH/qWNfGWLTUIrYZUiWlkokW4bYXJQiFCJITfzfZgAAAAAAAAAAAB5RhoygJkXIoBLEFrsMGVSEGDHLkGFFiBGzDBlUhBixy5BBJYgtVhkyrAbJilGGDCpBbLHLkEFFiBG7DBlahYhELUOGFSFLPzbSD/igIsQWqRAZWITYYj6VGlaEGBHXmHoRYsQuQ4ZWIVkx6osq3+fYdUiZx8nYhUiJx76ohciwMsSgEBnyhSs8rkT6fg+tQrIi3ieHlSEi8euQQWWIEbsQqfL1Y5Qiw8qQrFiVyKAyxBa7FBlYhhgxn+YOKUOMmIXIoDLEiF2IDCpDbE1KEQoRpIIyBAAAAAAAAAAAjDTKkBESqggxQpchZUoQW+gypGwNkhWyDClTgthilSFVihAjdBlSpQgxQpYhVYoQI3QZUqYEscUqQ0oVIbbAhUiVKmT+4wP/gFcpQozAZUilIsSI9VSqbBWSFXCto1KE2EIXIpWKEEN7GWKEXmfFx0gRCV+I1HjMC1qIlC1CshKpQ0QiFCJ1Hk8C1xeVyhCRCOur/jgSqxApU4bYQpcidb5eyEKkShlihC5EqpQhRqxCpFQZYgv4tLdsGZIVuhIpU4bYQpciVcoQg0IEo4wyBAAAAAAAAAAAjDTKkBFRpwqpU4OIhCtC6pQgNt9lSJ0SxBaqDKlThYiEK0PqlCA232VInRLEFqoMqVOFiIQrQ+oUITbfhUitEsQWqAypWoTs/LxAP+B1ihCb50KkVhFiC/WUqk4RYgRY46gWIbZQhUitMsQIUV40+X6HKkNqPkYuEaoQafBYF6QQqVOGGBQimS/g4PEjUIFRuQwxgq2v+eOI71KkThFiC1WI1P06oeqQOmWIzXcpUqcMsYUqRWqVISLB6pA6ZYjNdylSpwyxhSpF6hQiIvUqEeoQaEYZAgAAAAAAAAAARhplSOKqFCF1SxCbzzLERQ2S5asMcVGEGL7KkLoliM13GeKiCDF8lSEuihDDVxlStwSxhShDXFQhIv7KECdFiOGpDKlbghRfn8cfdBdViIi3MsRJEWL4fkrloGYQEa/r1F6FuChCDN9lSKMiJMtnfeHq++27EHH5mOmrEHH0GOe1DmlShWRRiLgpQ0S81he1i5AintbqogxZvC5PhYiLMkQkTB3i6mv4KkVclCGGr0LERRli+C5EapchNk9PLV2UIYavQsRFGZLlsxKpW4bYqpQiFCLQiGFIosoMQVwNP2w+hiHahyAuhx8218MQV0MQw8cwxOUAJMv1MMTlEMRwPQxxNQSxuRyKuBp+2FwPQ5wOQWyOhiKuhyA7r9fD/cjVEMRwPAxxOgSxuX5q5fANfBHxMgzRPgQxXA5DDNdDEWdDEJvLgYOv77froYiPx0zXwxBfg14fbzy7GoYYy3ko4nqY6uH77XwYYjhaq8shSN91Ox6KuBqG2FwOR3wNWlwPRVwOQwzXQxGXw5AsH4MRZ8MQw/VTYIfDEJvr4UgKQxFXwxBbmeEIQxFowmmyAAAAAAAAAADASKMMSUzMIsRwUYa4LkFsLssQn1WISPMyxHUJYnNZhvgqQgwXZYiPGiTLVRniqwgxXJQhvooQw2UZ4rUKEWlchvgqQnZev8P7k+sixObgKGqvVYiIu/LCQ8WwhIN1LucixNa0EPFWhBgplCFG07V6fswUEXeFiKcyxHBSiLguQmyJFCJO6hDPp9dzWYh4K0OMhmv1WYaIuK1DfJUhhouqw/cpuFwVIj7KkCwXlYivMsRwWYg4L0NsDX99+CxDRNzWIa7LEJuLUsRXGWJQiCAVlCEAAAAAAAAAAGCkUYYkYlgR4rsGyapThvguQWxNyhDfJYitbhniuwgxmpQhvksQW5MyxHcRYqtTiPiuQbKalCG+ixBbnULEewliq1mG+C5C+r9ejfuY7xLE1uAoau9FSFaTp1cBKgYRabTGVIoQkTBViFGnDvFehNiaHE0d+vteZ60hHzeb1CGeixBbo0LEdxliLIdCxHcZYqvxffdehNhq3jd9lyF9X69GKeK7CLE1qTtCbM6+82tVv118FyG2JoWI7zLE1qQU8V6GGDV/jfguQ2xNShHfZYitTiniuwzJGlaJUIggJsoQAAAAAAAAAAAw0ihDlCsqQkKWILYqZUjoIsSoUoaELkFsVcqQUDVIVp0yJHQRYlQpQ0KXILYqZUjIIsSoU4aELkKMKmVI8CIkq2IdEroKmf+aFe5roYsQW4WjqoMWIUadp1cBC4YlKqyVImSwKmVI8CLEVuWo6tjf9yprjfDYWakQCVyE2CoVIqGKENsoFiKhixBbhe978DJEpHIdEroKWfK1KxQiocsQo07lEbIM2fk1y98+ocsQW5VSJHQZYtQpRIKVIVkVfrWELkNsVUqR0GWIUaUQCVmG2IpKEQoRxEAZAgAAAAAAAAAARhpliFJ2ERKzBLENK0Ni1SBZZcqQ2EWIUaYMiVGE2IYVIrFqkKwyZUjsIsQoU4bEKEJswwqRWDVIVpkyJGoRYpQsQ2IUIf1rGHDfi12EGCWOro5ShNjKPs2KVYVkDVgrRUg1ZQqR6GWIMegIay3f9zJHgSt47CxViEQuQ4yBhUisIiQrkTpEpGQhErsMMQZ836MUIbaShUjMMmRxDSUKkVhlSNaw4iNGEdK/huG3U+wyxChTiMQqQ7KGVSJRihBbiV81scsQo0whEqsMyRpWicQsQ2x2KUIhgpDiP0oDAAAAAAAAAAB4RBmiULYK0VSEiAyuQjQUIUZRGaKlBsnKK0M0lCC2ojJEQxFiFJUhWmqQrLwyREMJYisqQzQUIba8QkRFEWIUlCEaShBbYRmipQrJyjnKWkURYit6uqWgYliUs0aKkGaKChE1VYhIGmWISPE6FT6GFhYiSqqQrNxCREMZYqReiGgpQrIK6gsVZYitcK16ntznFSIaihBbUQGioQyx5ZUiWsqQrKJKREMZYhQVIirKEFvOrx4tZUhWUSWioQwxBhUimuoQkaWFCHUIQtHzKA0AAAAAAAAAAOABZYgipgjRVoNkZcsQTSWIzS5DNBYhhilDNNYgWaYM0VSCFDGFiMYixMiWIRqLEMMuQzQWIYYpQ1TVIHkWChGNRYhtsRDRWIQYmSOtVRYhhv10S2HFsGhhralUIRqLEMMuQ1QVIbbskdaav/f2EeGaH0tNIaKwCMlarEM0FSG2VAsRjWWIsfB9V1mE2BbXqvjJveysRDSWIYZdgmgsQ4xsIaKxDDFMIaKpCCliShGVZUjWwq8jjWWIYRcimsoQW7YU0VaGZJlKhEIEvjEMUWD/T3xUREQmH9b7RMQY2x57BeW0p2OvoDzNw6+s7XsrfrPBMrZF/xPRzlRLVt2r/+F3/a3p/DCNP57GWltTit9ktLSmFL9xm9GaSuN7LyIiCax1cQii/Cmi5iFIH81v2Gcpf9M+WcrfwDU/662xcptXR5XSUGRyIvYSSumtSGOdIiK9FWl8/+dWFZwqT6HZXfR//+cm2qqHIcbUWuWP9RnT6/TfniIi02tjr6C82dW6nzenZGbt/PPRO97x/0VeCUaV/ncMAQAAAAAAAAAAGkjg8J/Rl0IRYqbcY9t1H0HQXThYSHMZkkoJIpJODdKe0n2/zOokstZVD80fjTG9dv7XxMTjeguB9tT8/bQ7Of9Y2plSer9dOD2WOcWD5tNktQo2e9dI9amxshJYJ6fF8sC+Tdt6j0PqZe6jLcWnzel1lz4+qV6rqasWTo+mvbzopbDOmYUn+eP6j2bvTU0nUYe0dszfpqoLkYXTjZkStKf1du3Mr7O9UNbOTer9WeqNzT92dnbMr7W7Qu9aRUQ6U/OPp5oLkc700jKgO6F3ra3ZnWvtjeldZ8/6Fd9S/BKlu/Cw1FH8XpSIyPSG+degE4/qfR9y/HG9z+0wGriHAQAAAAAAAACAkcaeIRFp3iuk6HyHKx7Wd9RAN+fUseNbwq9jGIoQ94qKkPa0vvtpXhGicc8QU4TYNJYh7YICRGUZklNaaCxDCouQrr7DsHKLEE37HQwrQRStdWARouxpYjJVyLDKRlEh0htwX9VUXdhFiE3VWgf83KirLlJZa3vIczvlpUgKhYihshDJ2YheZR3Syb+faixETBli01iIZDdSNzQWIrMrCm5ThYXIzOr+yzQWIlPr8y/XWIhM7dr/+1RjJWLKEJvGUoS9Q+CLnlcNAAAAAAAAAAAAHlCGRGCKEENDGVJUgtg0lCF5JYhNQxlCCeJHmf1BNJQhZfYG0VKGFNUgWRrKkKISxKaiDCmx54aGMqT03iAKypBSe4NoqS0SWWupPUKUPE0cmSLEUFCGDCpCbBqqi2FliKFirSV+btRUF6msdVgZIqK+DsmiFKkopwyxqShFCsoQm4ZSpKgMydJSieSVITYNpUhRGZKlpRLJK0NsGkqRojLEpqEUyStDbBpKkaIyxKahFDFliEEhAlfiv1oAAAAAAAAAAADwiDIkILsIMWKWIWWLECNmGVKmCDFilyGpVCGjVoT0fU6EQqRMEWKLVYiUKUJsMQqRskVIVrQ6pGxpkRGrECldhWRFKERKFSG2WNVFImstVYT0fVLcp4sjV4aIRK9DUipDylYhInHXWuVlVfTaosbPdJQ1lylCbBQizkWrQ0oUIbZohUjJKiQrRiFSpgixxSpEyhQhthiFSJkixBarEClThNhiFCJli5Cs2HVImTLEiFmIlC1DjJiFiF2GGBQiaIoyBAAAAAAAAAAAjDTKkECKqhCR8GVI1RokK2QZUqUEKRKqEEmlBDFGvQhZ/NyAZUidIsQIXYbUKUKM0GVInSpEJEIZUqeyWBC6DKlVhBgBy5BaRYgtVHWR0lqlZhmy+MlhH6+SKUJEqlUhWYELkSpFiC10dVGlCMkKvs4GPxfBa4tU1lqnCLFRiDgXvBCpUYYYwQuRGmWISPg6pE4ZYoQuROqUIUbIQqROGWKELkTqlCFGyEKkThliC1WKVClCioQsRaqWIVmhK5GiMkSEOgTNUIYAAAAAAAAAAICRRhni2aAixAhVhjQpQrJ81yEuihDDdxmSUhGSSg3SpATpuy7PZUiTGiQrVBnSpAix+S5E6hYhNu+FSJPKwuK7EGlUhGR5rkOcFCGG79oipbUuaFSFiAQrQ5ZFEWLzXIg0KUJsvsuLukWIzfs6Hf48BKsuGq452DpdlCEGhYhz3guRBkWIzXshUrMIsfkuRJoUIbZQhUiTMiTLdyXSpAyx+S5FmpQhWb4rERdliOG7EHFRhhi+C5EmVUhWqEJkUBliUIigjsg798EnV8OPEFwOQHxKafhhLMchiG+uhiDGtr3mr8/1UMTl8MM3V8OPYBwOQXxzNgQxzJuLHoYiTgchIjvfXHY9aHC9TpH5tXociDQeghjmDSpPQ5FlOQQxzPff8VDE5RBk8ToXfv5dDxtcDUHs64u9AXwZvdn575O3YYOjn1nv6xRxOwgREZlZeHcpgaFIb2o6iYFIa8f8bRptY/UKWlMLa1V+u7anlj5Wx9hcvazOjqVrdT0ccTUEMTpT849/MTZXr6ozvbDWSBusl9WanV9njM3Vq+pZd6fYG60P0s08TMXcZH0Ye6gSc5N1oA79rwwAAAAAAAAAAAAa4DRZnpQ5PZbh6jRZoUoQl6fJ8l2EuDpNVkpFSColiEi4GsTV6bJcFyE2l2WI7yrE1WmyQhUhTk+X5bkKcXW6LOdFiM3hEdzOixCbq+LC9zoNh4WIsyKk8As4Otp8ORchNodliI8qxOayunBdhticrtXzSyhn5UUq6xRxX4QUSaAQEUnnlFkiDgsRh6fHyuO0DnF0eqxhXBUiLk+TlcdlHeK6DLG5KkRcnh5rEBeViKvTYw3jqhRxeZqsIq4KEZenycrjshBxdZqsYVyVImVOk2VwuixUQRkCAAAAAAAAAABGGmWIY1WKEFuTQiTk/iBNypDQe4M0KUNSqkFEKEIGfr2aZYjvEsTmogwJvU9I3UIk9B4hjcqQwPuDNC1DvBchtgZHcnsvQmxNiouQa3VQhngvQvq+YP3Hr2SqkNC3aYNCJEQRYmtSXfguQmyN1hrwpVOj6iLwSzwnhUioMkQkmTpEZJkVIp7LEFujUiRQGWLULUR8FyE2F4WI7zLEVrcUCVWGGE0KkVBliNG0EAlRhmQ1qUR8lyG2JqVIqDJEpFkdUqUIsVGIoAzKEAAAAAAAAAAAMNIoQxxpUoQYVcqQkCWIrU4ZEroIMeqUIakUISmVIEboImTx61YsQ0IXIbYqhUjoEsRWpwwJXYWI1CxDQhcWliqFSPAaJKvGEd3BixBblfIi5lprFCLBi5DFL1z9eQlFSEk1CpFUypDQRYityppjvmSqVV1EWm+ttYYsQmwUIt5UqkQCFyG2WoVI4DJEpF4dEroMsVUpRUIXIbaqhUjoMsSoU4iELkNsVUqR0FVIVp1CJHQZYtQpREKWIbYqpUiTMsSgEMEglCEAAAAAAAAAAGCkOTi5K0KKWYRUFasGyZpZM//fMoVIKkWISDpVSKwSxDY30Stdh8SuQsqKXYQY02vHStchMYoQozs5fyRKqUIkchFSRdQixDBHVpc4wjt6EVKFhrWaIqBEIRKtCDHMUb0ljkanCKnIfP9LFCIxipDFr73wGFCmtohdhBhV1hxTb3b++1qquogc/Vdaa8wixJhZOLQ2gUKkNzW/1lQKkdaO+fU23kckgNbCbVuqEIlQhBjtqfmfr7KFSOwqRESks2N+zS72EvGtM9UrXYfEqkJERDrTSx/nm+wlEkprttd4H5EQegvf1jKFSKwixOhmHq6a7CMSiqlSmuwlArgS/7cjAAAAAAAAAACAR+wZ0pCLvUKMvD1DNJYgw/YM0VCE2PLKkJRKEIMipL6iMkRzCZK3d4iWIiSrqAyJWYIUGViGaKgsLEX7hqgoQmwDjvRWWYQU1RYprVUUFCF5Cp5aJlOEiOipQmwFdUjMIqRIUW2hpQqxFa5X4UulwuoipbWK6ChDbAkUIkYqhYhRWIhE3i8kz8BCJGIZUqSoFNFQhtjyCpHYe4UMUlSKxCxDiuQVIrH3CskzrBCJuWdIkbxSJHYZkmdYIRJzz5AieaWIiz1DDPYOQR59j+AAAAAAAAAAAAAOUYbU5LIIMbJliMYixLDLEI0liM0uQ1KpQlIpQbI0ViEi/WWI5iLEsMsQjVWISH8ZorEIsfUVIhpLC+kvQ1QWITbrqG+VVYhIf22hdZ1Z1ppVViEifUenJ1WEGFpvW6sM0ViE2OziIpUyJIWXSH3VhdI1961TYxFiS6QQSa0OEckpRBSWISI5dYjCIsRmFyIayxCR/jpEcxli2IWIxjJEpL8O0ViG2OxSRGMZItJfh2gsQ2x2KaKxDDGyhYjLMsSgEEEWw5AafAxCREQ623X+Qi0yvkX/E0Kjpf+9giVSGoJoHX4UGd+Szs/Zbtelcz8QEVnx0FTsJZTW2ar0jc4C7amE1js7f79tzSZy/51KYMdBS28qjZ+1XoK3rdohiEXrQGEkpPBGvaXVSWMz0tbEeOwlVJfIUMTcb1vj6dzGvZUJHFGX0VuVznq7qxO53y6YWZvOeqfWpfF4a+zYNZ3faTt2S2etIiLT69J5K7W7SyKvyxa0Zv3cFxiIwEjnXUEAAAAAAAAAAIAaBuxoh2DWLRyFuF3/0SZzE9npt/7JfW/hwI0UypA5/d/+pbrz3/+5hUeRtuLbuLNd/301a+1t8z9n02vm59UTW3QfAVy0gbpG7en5o2J64/O3bWtG921rTpNlTnOg+jRZqZQghjm9kDnt0IBNyrVI5nRTC+tsLZz6JIkIOZUiZNZ6vG3pP66pZ5/uT2vF0Ft4DDDL1brOrLn5n63e3Pz9ojWu+6WdeQxLqhCZWSjcEilEzOkTVRciC6ekay3cH3ra7w9j848Fren5n7PehO6fMxGR9tT8Wos2VtdibmL+tu3smH/g7a7Q/7g7NrXz+eLspN7fwTOr5p+DdRZi4hRObZ49pVM3gYfc3vj87+DWjP73Glqrdj5/7G3T/bggIjK+x3YREZl5MJHz2yM5eh+9AQAAAAAAAAAAHGDPkAqc7RWybvDRh5379Y3tlxYh8yYf0TdL6w05mKSt8DTreUXI1G6Kj7Du5h/5oLEMGVSEtD2dh7IJU4TYNJYhg2oQjRuomyKkiMZCxN48XURpGTKkCFG5d0jeptOKy5DCIqSncM0D6hWVTzkTKUJEcqqQLIWFiF2EZKmsQ4p+njSuda74Z0l7HZKVVCEiorMOGbLHjcpCpNP/eKWyDhkb/LOvsRAZtGG6xkrElCE2jYVId0Xxz5rGQsSUITbNhcjM2v41ayxEpnYb/PxbYykyt0f/G2EaC5GJDTsG/r2rUoS9Q6DvURsAAAAAAAAAAMAhypASQhUhhoYyJK8EsWkqQ4YVIYamMqTMHiEqCpGCEsSmqQwps0eIpjKkqAixaShEyuwPoqkMGVaEGJrKkLwipO9jNBQiJYsPVWVIXhFiU1SIlNojREsdUmKtqp5yJlSEGAPLEENBITKoCDHUlSFlfo40rXlAGWJQiHikqRAZUoYYKgqRnCLEpqoQGVKGGJoKkUFliKGhECkqQmyaCpFBZYihqRApKkNsGkqRvCLEpqkQGVaGGJoKkbwyxKahFBlWhhgUImhKz6M1AAAAAAAAAACAB/FHf6OuZA2iRZkixJjaOD8Rj1WIlK1BtChTgqhTsgoREZlbeDSJWYiUKUK0KFuDaFGmCDHmJud/OGMWImWLEKM33o5Wh5QpQVSpWHr0xjrx65AyRYjRXvidFrEQKVWEaFFhra3W/GN01EJkVIuQxQ9euN9GKETKFCH2x0YvRKqUVebfF3PNJYoQo7fwuJdCIWIe85IpRGam5/8buxApWYWIiPQWHvtUFCIDtKzfKdFKkZJViIhIa3r+Zy1mIVKmCDHaU/Pr1VCIDNPZsfP3iqZKpMjY1PzvlJiFSNkixOhM6ahDhulML/2zplKkSG985+/sWJVImSLEaK1aeCxTUIgMM77H9sX/76oSwfJCGQIAAAAAAAAAAEYae4YMUGuvEAclSMg9Q6qUIEVClyEuipCQe4c0KUKi7RlSoQixhSxDXJQgofcOaVqEhN43pEoRYotVhlStQozQZYiLIiT43iENC4/ghUiVIsQWoQxpVISE3jvEQb0S9CnoqBchNuVliC14IeLi5yXkmisUIUVSKESMZAoRI3QhUqEIyRO8DimxV8gwwQuRCmVIVqw6pEoZYgtdiJTdL6RI6EKkzF4hw4QsRaqWIVmxCpEye4YUCVmIlN0rZJDQhUiVMqRIyFKk7J4hg9QpRdg7ZPmhDAEAAAAAAAAAACONMiRHrCLECFWGuKhCRMKVIS73CPFdhrjeH8R7IdKgBMnjuw5xuTdIqDLE1R4hocqQJkWIzXchUrcEKeK7EPGxR4j3QsRR0RGsDGlShNgCFSLO9gnxXYh42M/E+1PRxKqQRkWILUAh0qQIsXkvRFz/fPher4MixJZKIZJcHSISrhBpWIYY3gsRB0WIzXshUrMIKeK7FGlShNhCFSJNyxAjVCHiogwxfBciTaqQPL5LkSZFSB7flYiLMsQIVYi4KENEwtUhLsoQg0IEg6TxbFgzDxukd/ec8jIQcTX8sPnaSD21DdJFEtwk3fEQJATXm6TPjc3/XLgeivjaIH16zfzPmY+hiMsBSJavDdVdD0F8S26jdBFnQxCjt/Amg7ehiMshiOFpQ3Vvm6SbN79dv+nrcVP3VqvlZyCynIcgi1c653Ug4nIQkr2+6Burl+VzU3UPgxCRdDZWtx8jkxiO+N5Y3dEQxEhlU/Uss8F6tI3VK/K1ubrLIYhhNlYX8TMYcTUEMbKbq4u4H464HIIYY1NzUTdXr6qz8D56Chusi+zcZD21zdVF3A9HXA1BDLO5uuFjOOJyECKyc5N1NlhHnnQeiQEAAAAAAAAAAGrgNFkZpU+P5aEGsbksQ3wVITZXZUioIsTlqbJCFSHOTpfluQhxeZos1yVIEVdliK8ixOayDPFVhNhclSGhihCXp8sKVYU4O11WoNNZOStEfBQheRzUId6KkL4v5Oi+EGi9Tp+OUoTkc1iIuC5CijgrRHyfPs5wWYh4KkNs2gsRWxKFiOGqEHFchBRxVoh4OD1WHqd1iOPTYxVxVYj4KEPyuCxEXJchRVwVIj7KkDwuSxHXp8myuSpEXJ8eq4jLQsTlKbIGcVWIuC5DirgsRFyXIXnKViKcLmv0UYYAAAAAAAAAAICRRhkiuooQo0kZEqoEsTUpQ2LsD9KkDIm1N0ijMiTC/iBNCpFQRYitbiESqgixNSlEQhUhtrqFSKw9QpoUIqH3CWlchoTa4HyBkzIkVBUi0qgMCVaE9H3hBveJCGtu9LSUIqScBoVIqCLEVrsQCVWE2JoUIoGKkKzU6hCRhAoRF3VIoDLEaFyIBCpDjEaFSKAixFa3EAlVhNiaFCKhihBb3UIkVBFia1KI+C5C8jSpREKVIbYmpUioMiSrSSUSqgyxNSlFQpQhBoUIKEMAAAAAAAAAAMBIS+8woJACliC27p7zk9wqhUisIsSY2jg/La9SiMQoQpqIVYQ0EqEIaSJWEdJErCqkrlhFSF2xipAmQhchRm+sXa8OCVyEGL2FIzIrFSIhSxBbe+H3W4VCJFoRYpgKoMoR8hHX3GrN/w6oVIgkVoSIRKxCRHbeFyoUIrGKkOzXr1SHxCpCDHN7VVlzhCLE6C08rqZUiJjHVvWFyMz00j9XKUUCFyFGb+ExtVYhErgKERFpLdwXnO4h4llrev5nztUeIr61p+bX63IPEd86O7rO9g8JYWxq/veWyz1EfOoshAeu9hEJobPwcOxyLxGfeuPzzwuqFCKxihCjtWrhsa1CIRKyCDHG99i+5M9lSxGMjjQeaQEAAAAAAAAAAGpa9nuG5O4XErEIsZUtQ2JXIVllyhBNRUiZvUO0FSGl9g5RVISU2TtEUxFSdt8QTUXIoL1DNJYgw/YN0ViDDNo7JFYJMsjQQiRSDTLIwEIkZhFSZEAhEr0IKTLoiHmFax74NJUixI0BhUjsIiTP0EIkdhWSZ9CaIxYhRVIqRAz1hYhtUCESqQgZZGglEqEIGWZgKRJpr5BBhlUisfYLGWRQKRJrr5A8ZQuRWPuF5ClTiMTYK6RImUIk1l4hRcoUIjH2CilSphCJXYZkla1DYpQhRfIKEfYNGU36fqMCAAAAAAAAAAA4lN5hPz4oKkHK0lSClKGpBClLWw0ylKISpCxNNUgZmkqQMjQWIcNoLEIG0ViEDKWwCBlIYxEyhNoqpIji9ebuIUIR4lbOHiIaixDDrK2vENFYhBh5e4goLEKMVPcQSaoOMXuJVNlDJKJG+4hEktpeIqntIyKSzl4inR1Lf6elsJeI2UNEJI19RDpWkJDCXiKdzJZOKewjYvYQMarsJRKD2T/EqLKPSCzsJbJ8LNvTZC2eHiuRQYg5XVZKQ5DJR9pJDUHM6bJSGYIsnioroSGIOV1WKkMQc7qslIYg5nRZqQxCzOmyUhqCtGbmkhqCLJ4uK5EhyOKpslIagiycLiuZIYh50ziV9UpmGJLgIERE+TDESGQYYiQ1DMky61Y8DLGlNBQRSfCUWSI7hyIKT5GVZ3EoovD0WEV6E+MqT49VxAxFNJ4eK48ZiGg6PdYwZiii6fRYg5ihiKbTYw1jhiLaTpFVxAxFNJ0ea5jWTEvV6bGGMUMRTafHGsQMRDhd1mhJ4zcrAAAAAAAAAABATWkd5uNSIkXI2Pj8kXndhIoQWRiip1SFiKRThCxKqAgxUilCjJSKEGNsezpHsYiItBI6MhaBpBisJnAU/RLdtB4nRDKny4q8jqqSKEKM3pz0EnpMXjxdViJH0i9K6DY2Ck9NplSKp/kS81iRStVi1ttJ4NwyC1rdOeklVIZId+GxIpG7cYrP6c3ps7or0riRzamzZlalcz82p89K4923pafOSkVvvCftsfmfv7lZ/c+JzOmznrzr4yIict9ja2MuZyj71FkYDZQhAAAAAAAAAABgpC27PUNeeP67RUTkrvs3RF7JYKYIMboPJLBxj3Wg6cTjumdtrYKDNXuKDwxp5RxSsWMPvUf4rrw//z4wu1r3w87a25b+uZ3Agb2rHly6yPaM3vuFiEhn+9L1Lu5roVgrc5umsGdI322awJ4hrbx9QjSvu2D/ip7m8iKvVEjg/ryksJhTfPsuSKoIWZBSFSIifXuEpFAtZG/jFNabt3+F6nW38o+IVV2ItHKeKydQh7Ts23oygUIkc9/tTeq/jXvWz1pvUvHPnoj0xpeuL4XaomttTN5dqfv9i9kV+eubWam3BpjZpX9tXcVvbe3YmP9caG5S93Ok1u5L9wxJoRDZ78mPLvmz9kLElCzff8lHIq8ELuh+tAcAAAAAAAAAAGhI/7jek/32nJ9CaixE7CpERKTzpPnz1KksRAoO0JxeO6e2DimqQrTKK0I0KypCNLNrkKy5hUdKTYWIXYLY5sbbausQuwoREemNzd9nNBYirZzb0Rytp7EQKbwNzXmyFZYWuUWIZgVFiGqDSgVz9KnC+3NuYdFe+B2jsBChCAmgl/9917yvRd5trHm9eUWIoXrdBZLbQ2R64XeMwkKkrwgxphZOtK+xEMm5r7am5m9jjYWIXYQYramu2jrErkJERDo7lv4+1FSK2EWI0cnsvai9Eska3z7/O0ZzIZLVWdiCQXMhYmtPtdTWIXYVIiKq9xCxixDjybs+rrIOMUUIRks6j/AAAAAAAAAAAAA1LJs9Q8xeITYNZUheCVJERRlS4UBMbWVIlSJEw94hVYoQLXuHVKlCNOwdMqgIsWkoQ4YVIVlaypC8EqSIpjIkrwgp/FglR9RXuv0UFCKVihAF661ShKjZN6RKqaDkfixSsbBQUoikVoWMShGSR0u1UOU21rJmERlYhtjUrLuoWMj7UA2FSN5eIUUUFCKFRUgeLXVIhfumpkKkqAzJ/VglpUheGVJEQyFSVIbkfqyCQqRor5A8WuqQvL1CimgoRIr2CsmjrRDJK0OKaChFisqQPBpKkaIyhL1D0hb/kR0AAAAAAAAAAMCjkS9DiooQI2YZUqUIsUUrRGoefBmrEGmyN0iMMqTJ3iCxy5A6+4TELEOqFCG2WIVIlSokK1YhUqUIscUsRKoUIYufE/mI+tq3V6TaotEeIbEKkZr7hEQrRJpUChHvz7XqishlCEVIABWqkKzY1UKd2zrqmisUIbZo665SLGQ/LVYdUqUIsUUqRCpVIVmxC5Ea98mYhUiVIqTvcyMVIlWKkKxYdUiVIqTvcyMWIlXKECN2IVKlDLHFKEWqlCG2WKVIlSIkK1YdUqUIscUsRIbtGUIhkibKEAAAAAAAAAAAMNLin7Axsv32fDRYHdKkBIlOx+m4S2tShNjXEaoQaVKFiIiseHB+thmqEKlTgtjGtraC1yFNipBY6hYhxtz4/PcqVCHSpAgxemPzaw5ViNSpQbLM0XyhCxFNe6yU0agIMcYWjkIMVYjULEKMVmf+vhysEHFRKZijUwPenxvVFe2F30eBCxGKkABqFiGLn75wHw5dLTS5raOsuUERYgRfd91aYUFv4fdRsEKkSRFiTC/8PlKwh0gpU9Pz/w1diDS4D7amdv7OD1WJNClCjNbU/M9fqEKkbhFidHbM//xp2D+krM72+d9HoQuROlWIiMj49qW/h0KVIk2KEKOzPVwd0qQIMdpT8/9mbXuJFGmPza9Tw/4hZdl1RqhSZFgVgnSl89snca4HIZ0nbRcRj6fLcvx+wvTa+Sv0fbosF0OQ0JoOQUJzMQTJGts6/0vY51DE9QBkbuGR0/fpspoOQUJzMQQJrekQxBZqKOJsCBJosOBkCBJawyGIzftQxMcb851OkIGIs6FCoKEIQ5D0hHqj3uVt3et2wwwWHAxCsrzf1g2HILbgQxEXAg1Fap8eyxZqKOL4PmcGI5o2Vx8m9FCkqVBDkSanx7KZoYiI38FI3SFIETMciX36rLI68293qdhcvaxQQ5G6p8eymaGI4Ws40uT0WEWevOvjKjZXR7o4TRYAAAAAAAAAABhpI7uB+rCN0/P4OF2W71NjOS9DPJ9hwkcZEqIG8XGqLN9FiOvTZbkuQmw+ypBQp8RyXYj4LkJcny7LdxHi41RQrouQvuv3dDS999NieShEvFchrtfsuAixOS9DQlUKHu7T3gsLx4VIakWISMJVSMPTYw3julrwfTt7qSwcFyFFnK/dcRnSd/WuCxEXp8caxEMd4qwIKeKrEPFdfnkoRFycImvg9TsuRJqeHmsY14WIyyJk4NfxUIi4LkNsrgsRF6fHGsRHIeLiFFnD+KhEXJUhRVwXIj7KkCwfhUid02OxkXpaKEMAAAAAAAAAAMBIS+jkqGlIdpP0QHuOutw7JLX9QVLbG8TwXYQYLvcOSW2T9NT2BskKsU+Iy83UfRchhqu9Q4JvkO5wD5Fg+4SMddzUIZ6LEMPp3iEhSwWHm6oHKywc7SFCERKQ5yJk8cs42tci1O3sdB+OQEWI4WzvE9+1wgKne4j4rkJEnO4f4r0IMcweIkbTUiTE3jridg8R30WI0ZrqJrN/iMjOPUSMVDZYd7m5uu8ixEh1DxEjlb1EXO4j4rsIMVLbYD3W5upIG2UIAAAAAAAAAAAYaSO5Z0id/UKy6uwdErsIqbV3SOADjrOalCExi5A6e4fELkLq7B0SqgbJ06QMiVmE1Nk3JHYR0mTvkBBFSJE6tUSoIqTw69c4mj54FZLVoLQIVoTkqbPuQEVIkVqFSMxSoUEZErWwqFGHpFiEGMmVIYGKkCJ1yoWYt3Gj0iJwGZJVa92haoWiL1+nEAlRhBRpUIgEK0Py1KlDAtUVReoUIqGKkNyv3aAQ8b1XyDB1CpFQ+4Xkfu0GhUioMiRPnUrE914hw9QpRELsFVKkSSESqgzJU6cS8b1XyDB1CpE6e4VksW9IOihDAAAAAAAAAADASEvjJIyKxS5Caol78J2IVNs7JLW9QYzYRYix4sH527hMIRKzCDHq7B2S2h4hIvGrEBGRufH573eZQiRmCdJE7CLE6HU6peuQqEWIUWPvkKhFSB2RixCj0h4iGkqFGnuHqCgsKu4fomLNNVCE1FNlXwsNt3GtPUQiFiFGpXVHLkIMp3uIhFBjD5GoRYhh9hEpW4hErkJE3O4hEkJraunv7TKlSOwixOjsmE1m/xCRenuIxCxCjCr7iMQuQgyzl0hqe4gYZUqRmEWIkdo+IiI7Kw/2EEGe+I+4AAAAAAAAAAAAHo3UniFN9wqxFe0dorUGGbpviI6D75YYVIZoLkKG7R2ipQrJGlSGaChCiuQVIppLkGF7h2goQorkFSKai5BBBYWWIiRrWBmioggpMqAQUVmEDCtalFQhtsI6RHOlMOB+rbKuGFKGqFxzCRpqhUqUFCF5hlULGm/rgWtWUIQUKVy3hlIhx9A6JOZeIUUGFCIqipAiwwoRBWWIbVAhEnOvkGHyChEtRUieYYVIzL1ChskrRTQUIUUGFSJaypCsYXVIzL1ChhlUiGgoQ2zDCpHY+4UUKapEmu4VYmPvEP30PvICAAAAAAAAAAA4kM6JFxXQWoQYnSfNnzBxsRDRe9Ddory9QzQXIUU0liC2FQ+2++oQzUVIEc1ViIjI3MKjql2IaC5C8mguQoze2Pz91y4qNFYhIjuPCrQLEdVFiJGzh4jKIsQo2vNEaRFSKIVKIWcPEdV1RcHeIarXPIDGSmEoxVWISPG+Fppv69w1Ky5CjFp7n0RUuH+IxiLEyNlDRHURYhTtIaL4vtKamumrQzQXIYbZS6TMHiIadHbM/xzahYjmIsTobJ+rtI9IbEV7iGisQkR27h9ipLKPiMjOvUSyhYjGIsQwe4gYphTRWoQY7CMCYyROk+X69Fi2ex9Z5/X6Xevel9CjvmXy0XSeHIiISGI/PWYYkuIQZNUDad3YZhiS2hBk/PHp2EuozAwTtA5BirSnEntjXkRa2/U+KR9o+47YK6ikN5Xez6HRm0rrPtKbTvO21vzGfCHlQ5BCmt/ozpHMRt85WmNprb01UXKzb2VaZTcp12RVWq9vzVAkhWGIbW6XtO4fZiiSwjAka2rXtB7vRHYORbQOQ4ps3Set50y9fdJ63ZK1z+6PxV6CKpwuS6+0fmMAAAAAAAAAAABUlN44OoA9Vy/dPCeVMqTXm5/Qt/ecnyTP3b8i5nJK6UyldVSB0bEOJO0W75enxuQmkclN8/PP6YSqwF3usRJM5Y9aqx9IqwTJGts+K73xhVNPJVBZ5G34ngJzmqyi03yptHBqkN5YR1rDNifXxJzKyxxtrPxUSIunauosHKtStKG6QouFRaslkkB0bE53s3jUfyLVQpJFyJz1mJHCKXqyzH0jgUKk1W7tPGVdQkekL562KZW1L5xuzzxmJ1W0dNpprdvcF4pOm6XVwnMl85ypl8K6F56XtnfMytyQTco1aXXnfy+ObZu/rWdX6X786C5smD62ff53y2xCp83qLSx1bFtPZlfp/10+tev8f8e2zq91dnUaz6HszcntU1JpdPg+9y7586apNGq+l+x505I/n3//wZFWgtDSeeQFAAAAAAAAAACoIZ2RfwB2EWIcud/dIiLyo7v2DbmcSkwVkoqiImR2dW9xcq+RXYSkYHJT/2UTC3d1zYWIXYRoV1SE9BYOTmopPph+LIHN0rMKi5CFI9pEaWlhb5yehJxN0nsLm5OrLkQ0b+5eIHcD7wQKkdT23OgV3TcSKESSq0LsIsTo9dKrQ0SSKkREJInKonAj725X9bptSZQWnf77bRLrtikvRHo5t7OISGth3UkUIjJfh4iI6kJkbjz/MSKVQsRIoRCZXt3/WD22bf45SQqFiJFCIdLds3/vPVOKpFCIGOsnt6uuQ+wixL6cQmT06X3EBQAAAAAAAAAAcKDV6yVwYucCLzz/3U6up6gIsWkqQ6qUIJr2DimzR4i2MqRKDaJp75C8IsSmsQwpU4Ro2zekyj4hmgqRMkWIpr1DKu0RoqwOKVOFqNo7pEJZoaoQKbtuRXuH5BYhRRQVIqWKEEVPMQuLkMJPUHRbp1aEGEVlSFaKhYihqBBptUvcjopKi8IiJI+idZu9QoZRVVoUlAp5dK27xPddWWVRVIXkfqymtY8NX7emQqSoCMmjrQ4x+4UMorEQyStDbJoKEbNXSBnaKpG8MsSmqRCx9woZRFMpUlSG2FwVIt9/yUecXA/c0fdICwAAAAAAAAAA4JCeEX8kZasQER17h6S2N4hRpggxzHQ+diFSZ3+Qzsz8f2MWImWKEEPD3iF19gZpLxzgG7sQqVKEaFJlj5De+PzMPGYhUqkIUabKPiG9hSPzohYiCe61ISLV1z02Fr0OqVSEGAr2EKm0R4g5+ltRIVJaqx29DhnpIsQw942UC5GIShUhhoI9RCoVIYaCdYtI6SpEJNG9OETJuqt8n5XvHzKIij1EShQhRgp7iOTRsn9ImSLEMHuIGDFLkTJFiKFhD5EqRYihZR+RMkWIkeIeIiLz+4iIxC1EyhYh2Y9n/5DRRBkCAAAAAAAAAABGWlqjfQeqlCCaNClC2nvuEJHwe4dUqUHyxCpE6hQhGlQpQmyxCpE6VYgGTYqQ3sKBSSH3DqlSghSJVYjUrkLM0W6RKosqRYgtSiHSoAjpjc3fqaPtHVJ37ebI18CFSK0iRIFKRYgtciFSeb8Qw+wJEbgQWRZFiC3FQqQ3F23fkEpFiE1LaVFVrHVXKEJsvdnZeJVFhf0rbFEKkSbf18iFSJW9QmytqenwdUiFIsRmChEjZClSZa8Qm5ZCpI6x7XPB65AqRYhNQyFSR6xCpEoRYjOFiEj4SqTKXiE2DYVIFXZNQikyGihDAAAAAAAAAADASGv1eumdyPmF57+78ue4LkJC7RviY48Q34VI0yLEFqoMcV2E+N43pEkJUiRUGeK6CAm1d4jrPUJ81yEuihBbqDLE+T4hgSqLJkVI7vX5XreHPUKCFSKu1+652PBShATYO6RREVJ4pWGeetYuQgqv0O/tvSyLkCIpFSIiwQqRRkVIkQClRa29Qobxve4GRUieYJVFg0qhiPe1u/5eBiotmhQhudcXqhBpUIYU8V2INKlC8oQqRKrsFVJGqEKkSRlSxHcpUme/kEFCFSJNypA8vguRJkVIkVCFSNX9QoapU4h8/yUfcboG1Dfyp8nydVosn5upL4dN0qvwfbqsFE+L5WMQIuL/dFm+Tovle0P1FDdK9zEIEfF/uixvm6V7Om2W6+FHUJ42S/d+2ixfm7x7Om2W19NiddpeByJeBiEi3k+b5XwI4lmyQxARP4MQkfROm2UGZZ6GIl6GIEa363Ww4GUQIuLvtFmOhyCG91NPeRiCGFFP91XHlPW7y/GQwfUQxPC+qbqHIYjR3jGb1Obqvk+b5XoIYpjN1X0NRXwMQYyxbb2kTp3l+7RZrocgRoqbq5vTZon4GYy4HoLY18tps9LEabIAAAAAAAAAAMBIS2d8X8Fy3CS9CtcbqvsqQmwuC5EQNUhnZv6/Lk+X5asIsbkuRFLbKD1UCeJjM3VfRYjNdSHirQjxJFQR4mUz9UBHzTsvRFI72j/URunmCFWHhYi3IsTmuBDxXoQ43lCdIqSEZV6IeC1CsjxUFt6KEFtiG8I7L0Q8FiFZXsqWUN+zyBusV+W8EPFYhGSZzdVdFiKuT49lM4WIkcoG664LEZ9FSJaPzdVdnx7Lln3vyUUl4qsIsbkuRHycHitPapuriywtT6hE0kEZAgAAAAAAAAAARlpSG6gP2zg9ZhHSZO+QmHuENKlDQhUhtiZlSMz9QZoUIqGKkDxN6pBYRUiTvUNi7g/SpBAJVYTkaVKHRCtCGpQWMfcJaVSIRCwrGtUhsdbdoOwIVoXkaVCIBCtCcr94/d8X0fYIaVCIJFuFhCpC8qRSh2Q1KESCVSF5GhyxH6wIydOkNPC0V8gwjUqLQFVInmbrjnj0fYPawtdeIUO/bpNCJFAVkqdJIeK7CBmkSR3ia6+QYZoUIqGqkDxNChHfRcggTQqRUGWIrUkhEqoKydOkEPG1V0gZwwoRNlKPjzIEAAAAAAAAAACMtJHYM4Q9QsKJVYNk1dk7JGYRsriGGnuIxCxC6tKwP0h74SDhKoVIzCLEqLOHSMwipInoe4SYI+UqlBYxixCj1h4iie21sSj2us1RrxUqj6hFiFFjD5GoRYhRY/+QaEWIUWMPEYqQBlLbP0Sk1h4iUYsQo8Y+HFGLEKPO/iGRihDDy14cAdRat4Z9XWrsHxKrCDGc7yESSJ09RGIWIYbZR6RKIRKrCDHMHiIi7vYRCaHOHiIxixDDvA9VpRCJVYQYZg8REXf7iISQ4h4iIjurFPYQ0SudR0oAAAAAAAAAAIAa0joExaKpCDlyv7tFZPDeIRpLkPaeO0Rk+N4hGooQW5lCREMRUoemImRi4cds2N4hGooQW5lCREMRUoemIqQ3vlArDKk9otcgeUoUIhqKEFupQiT2UfMZvbH5o+tK7R2iaN0iUqoQUVGE2EoUIiqKkBqiFyG2EoUIRYhDy6QQUaFEaaGiCLGVKUQiFyG2SqVF5FIhq9S6NRQhthKFSOwixGYKEZESlUjEvUJsdQoRDcoUIrGLkDymEhlWiMTcK8RWpxDRoEwhErsIyWMqkWGFSMy9QmymEDEGlSIx9wqxUYjope/RGwAAAAAAAAAAwKFWr1fh5MyRvPD8dy/5s6YipIhdiGisQvLYhYjGIsSWV4akUITYe4doqkEGsQsRjUWILa8MSaEIyds7RFMRUsQuRFQWIXmsykJjEWLLLUO0HTWfo7AQ0b52qwBRWYQUyRQiSRQhBU9P1VUhNqsOoQgJQGOZMEhBHaJir5BhMkf4qyxCithlgrIqxFZYWSgrFfLkrl1jGWKzSgttVUiRvkJEURFSJK8Q0bBXyDB5hYjGMsRmFyKaipBB7EpEw14hw+QVIhrLEJtdiGgqQgax6xBNRUgRuxD5/ks+EmklSKJVTGH4USSVIYgthSGIMbu6tzgQSWEIYpgN1ce2xl1HXSkMQYz27M6BSApDEMPeUD2FQYjIztNmdbalsV5bCkMQo+90WdrfKF7Qd9qsRNZtTpnV27Ej8kLqS2IQItK3obr6IYhRY1N1VVIagqTKOmVWEkMQo9tN441tm/m9Pj4++OOU6Dv1VCJvzIvMr33nuhO6r9TYWF2Dxc3VVw8+5bUm7R2ziwORFIYghn3arBQGISLlT5uljTl11ta90/kdaZ82K4VBiEj502Zpk+Lm6ikMbJaLtB4RAQAAAAAAAAAAKkqiDEnR4XvPp2U/+cXekVdSzdya+SMeOlPp3DXGtrVE0jlgYNH4loWjXVM6IlBE1tw1f3RJr5PWulc9lN7Rrp3taR5Z3JqeX/fcQrXQHrTJN9zQf8bLfKmt2zpaN63TZKX3GCgi0kt13SmeHivVKiTFDdVFMvVQOkdGi4iIuW+n9DzQFApzC7e58tNkpc6chTuhe8hO5ndOKjWOKW2n5k850JtMo35qdefvI53u/POobkKbq7cS/PWesomFk8TYp+rWrLty4XfN5nGRdTNxF1PBU/d8OPYSavn/7XepiIjcNb1b5JUgJYn8lgcAAAAAAAAAAKgniQ3UP3/zsSIi8u1Hnhl5JcNNd/OP7tJaiMxuHXz0yPjDeo/SGNuWs3F6AqdlNEWITXshMrkp/+j+FAqRFY/1H+3aUnzU7qAipN3VW1mYIsSWRBmSs8YU9g5pzeSssWhzckVaRfs/aF57TgWSRBky3X9EWgq1ReFtq/ixWySN27ZPqkVIkdQKkQWtFPZXyNn8vZXCEfR5t63iOiTlDdTzbuvCf48mY/3r7k0kUFnkrFtEdyHSG7BPiOZCpLuyf90p7MNRtEbtG6nPrMlfXwqFyNRuOc+rFBciB+7z0MC/Xz2mc7/B//Gka3IvT6EQ2W9ivsI586ArIq9k+dL/6A0AAAAAAAAAANCA+jLEVCFZGguRoiIkS1sdMqwKEdFZhuQVITaNhUhREZKlsQ4pKkJsGguRvCLEpqkQKbNHiMYypKgIsaksREqsSWMhkluE2BRVFoUlSB5F6xaR3CLEprIQySlCbBorhlK3paLH7SyNt+dAo1aEZCVah4goLURyipC+D9FYLZS5LZUVIpUqCk23eYnbWmUhUlBWZKksREqsW0RnITKoDDE0FSJ5RYhNYyFSdk0aC5GiKiRLYyGSW4TYFBYiw8oQEX11SFEVkqWxEDFFSBZ1SBz6HrUBAAAAAAAAAAAc0jNyr+DUjdeLSNxCpEwJolWZIsSY2W3+CE0NhUiZIsToTs7/V0MhUqYIMUyloKUQKVuFiIi0ugtrj1iIlClBNCpThBhzC0cBailEylYhIiJzYwtr11CIVFhDb+FoRw2FSKkixDBHDUYuLSpVIZpUqD3M0a4qCpESRYhhjkDXUDRUuu3M70glhYiG2w8WE74nWIiY+5OKQqREEWL0Fp6XqChEqtx2cwvPB5QVIqV05+LXIRVua/M4r6IQKVlWiIi0Fn6vqihEKqxbRKQ1NaOmDilThBidHfP3FU2FyCBj1mu5mKVI1a89sbWnpg4pU4QYE4/P/1dDIVKqCDE2L/w8KihEyhQhxtbZCRHRV4gMYlcYMUuRvCIEcSX4rA8AAAAAAAAAAKC8NEbtytStQo7Y5x4Ribd3SJUixBazEKlShNhiFiJVihBb7EKkShGiQZMixNzGMfYOqVKE2GIXIlWKENvcWDteHdLg68YsRCoVIUrULkJiFy0N6o6ohUiFIsQWuxCpfXtFLkSSLUJGea8QW+KFSLQ6pEIRYotaiDS5vSIXIrVrCfM8MHYhUkHUQqRiWZEVvRCpufbW1MK6IxUiVYoQW8xCpMxeIUVMKaJxL5E8E1vnf1fGKkSqFCG2mIVIpSLEFrEQqVKE2GIXImX2Cimy38TDKvcRQRxpPDoDAAAAAAAAAADU1Or1ejpOuFzg8zcfO/RjQu0d4nqfkFCFSJMiJE+oOqRJEWILXYY0qUKyQpUhrkuQUPuG+NgjJFQh0qQKyROqEGlShOQJVog4/jqh6hCnRUig0sL5HiGhChHHNUewOqRBEVIkVPHg/DYK9PhNEZKwBAsRkYD7hzQoQgqvMlSx4Po2ClSIOK8jEry9gxUiDaqQPMEKEdfrDlSINClC8oSqQ5oUIUVCFSKuv06oUqRJGZIVug5pVIbYAhUiTaqQPKEKkSZFSJ5QhUiZvULOPOiKACuBTe0wpMwQxOZrKOJ7s3RfQxHXQxDD9zDE5RDE5mso4mr4UcTXUMT36bB8DUV8b5TucyDieghi8zUUcT0EsXkbini63hDDEG+nxvI0XPC+UbqvoYjnoYXXoYiHQUiWrzf9vQ+KPD2GMwRJTK8nH5OL5Ah5REREuiLym3KK3NFaN3Ao8s9z35I9Zdvin78rT5GPtI/yvdpSvA1FPAxBlly9zzfoK9wmZ209V/bsbV3883fHDpT/u+IFgz/J01DE+wDA123u6T5obo+/feBf5BkzD4iIyIy05R1PepPcPb7BzRdxPFQwvA1FPK3X8DUUcT0EsfkcivgYhGT5Gor4Hrb4Goq4GoIU8TUccToEsXkeirgehhi+hiKuhyA2X0OROhumMxQJiz1DAAAAAIyUU+TOxUGIiMh3Zf/5QQgKrepNy8G9R2Tv3hZZLTPSE5EnZELubq2Vm1obZbrFS8flbtXclDxj5kHZu7tZVs9NSU9a8kR7Un7RWS83TTyp8X3ks+uOkw8//O8iIjIuc/Kbmy6WP9z9l10sHQAAQEQYhgzkuwjxxVcRYvjcTN1nFSLifkN130WI4XpD9VAbpLe6C+t2WIj4rkJE/Gyq7rsIMVxvrO67CPHG8+m3fG6m7n2zdMcblHsvQgzXG6sHOo2Vl03VPRchRqvTcVpDBDt1mOON1ZMtQkSWbRWyqjcjb5WfLP55h3TkLDls5wckurG6uS86LURabXnO3P3y2u7P5Dm9+2VM8n9upqQjV7T3lq+2D5Fb2hsrfQkvm6qHOnWY443Vg50SyvHG6s+ZvVf+x9br5DnTv5AxyX+ONSUduXLF/nLu6ufILeN7VLp+8/vh+hX7yg9XPEWev+NOERE5cupuOX7bf8tlq55Wf/GeC4voG6vX5Hpjdd9FiOFjU3XfRYgxtn3OacUR6vRbrjdY912EGK43V/dahBibx73UIb6KECP2xup1mYKDjdWXH4YhAAAAAEbGG+Qm2SA7j3w5T54qj7RWRlyRTqt60/Ku2R/KCb27h37spHTlxLm75IVzd8k32gfJpzrPkdlWmgeOobxVc1Pye1sulhOmbx/6sZPSlRftuFVO2HGrfHPVEfLpNcfVuo+cveaoxWGIiMivP36ZXLHyAJnzfDo3AACwPIzUMOTUjdeLSPO9Q0IXIUfsc4+INN87xHcRYnNRiPguQYp0J5vVIaGKEFvTQiRUEWJzUYiEKEJsLgqRUEWIa6GLkLmxhaLFRdERalN2cVuIeC9CbGOdRpVFsCLE5qIQCVUoZDgpRAIVIVnmCPQmdUSwIsQxipA0re/tkNfIfy/+eUZa8lU5KP+Dl3Ehsl6m5COzF8hT5PFKn9cWkdfM3Sz79zbJH42dKFMVTovkpBAJVYTY5uYa1SHBihBbg0Jk/dw2+fCmb8pTupsqfV5bRE7b9hPZf/YR+eNdXyFTrfKvUXuzs/Kzzu5y3eTe8qyp+dfIe89ulpdtvVHO2+XwSuvwXYTYWtMzbuqQ0Ot2XIiE4qIQCVWEZI0tvDZsUnWEKkJsTQuRUEWIzUUhEqQKMTZbP4sNShHfRYjNVSHie68Qm6tCpM5eIYhjpIYhAAAAAJavN8lNslJ2vmlxgTxFHmqtirgifcZ7XfmL7sW5g5C7ZY18v72f3NtaIy3pyV69J+RFc3fK3vLEko97du9Bee/s5fKn4y8MtWwENN7ryp9tPi93EPKLznr5/ooD5b7OOhHpyV7dx+WFO/5b9u5uXvJxz5q+V96z6Xz5811fXvnrf3XNcxeHISIib9xylZy/+mCZYd8aAADQ0Eg+mzh14/W16pDYe4TUKURC1yB56hQisYqQrDr7h8QqQmytuV7lOiRWFdJUjCLEhdhFyFynXWvfkNh7hDQqRAIWIbYmhUjwIiSrRmURrQix1SlEFBQKtQqRCEWIrU4hEr0IabB3SLJVyDIuQkRE1vSm5Jdk6el8vikHDP/EXi+5OkSkZiHSasuvd6+Vg3qPLrl4Rtry8c7z5Lz2gX23xVm9Z8rL526V/9394ZI9RY7v/UJe2b1F/qPz9IrrrlGIxCpCsmrsHxKtCLFVLETO3HqVHDS79AjXGWnLJ9a+UL6z8pC++8gXdjlKfmn7jfKOxy9ZsqfI8VO3yyu23SDfWlWt6ri6s7fc21kre3XnB3a7d5+QE7fdLN9bfejwTw5cVmQ12j8k4rpFmhUiofYLyeNjD5EQXBQisUxs7VWuQ2JVIVl1CpGgRUgRU4pUKERCFyE2U4iIVKtEQhchtiaFCFVIWtJ75AUAAAAAy6vktiVVyM2yXm5ubYi4In327W2W18z9vO/yPx97gZzXeVruUKjXasm3O0+TPx87oe/vzuxeJ7v00towFYPtO/uYnLb9hr7L/3L9y+Q7qw4tvI+ct+ow+Yv1L+v7uzO3/EB2mdtRbRGtlvznykOWXPTLT/y42nUAAADkGNlhyKkbr1/cQ2SQ6W5n8X9amEJkkNmt4yqqkKyZ3WYXK5EiY9taKqqQrO7kzkqkyPiWnpoqpKrJTXNqqpBWt7e4f8gwKx7rqqlCeu1W6RKns30uehVizHXaMlfhqMvYVUjW3Fh7sRIZanYuahWS1et0FiuRYVoz3bhVSNZYp9QRiWqqkKwyR1LOzqqoQrJaY2PDjxienlFRhVTVm52NX4VkVSgpe91umlXIXHfZVyHt3py8Wm5dctl35Knlr6DX27mHSGKq3G/f0P3pkrpDROTb7QPlyvY+Qz/3ivY+8u32gUsuWyvTclrOcKWMXndusRIp1OnoqEKy5uZ2ViIDqKlCskpUw6/ffu2SukNE5NsrD5UrVwz/ebpyxVPlPGuIsaY3Ja/e9pNq6xSR7608WLqy8/H7qTOPyLN23F38CSWfy4TQmp5ZrESGUrRukZ2FSBm98U7UKiSrs2N2sRIZpruyE2W/kDxj2+cWK5FhZle21ZQkE1t7i3uIpGbi8Z2VSJGp3bo6qpCszeP9+4lYDtznoehViG3r7MSSUqRI7Coka7+Jhxf/V/ZjkRYdj6QAAAAAUNNRcr9slJ1Hn3dF5BIpf+rZ5WCX3rS8aO6uJZfNSFs+3yl/euGzOs+UWVk6YDy1+9/SSnSQhKV2mZuSF+747yWXzUhbvrDLUaWv4wu7HC2z1tsML992Y+X7yKOd1XLj+J5LLjtl242VrgMAAMCm8HAVt0wdYu8hoqkEyVO0f4i2GqQsbTVIFVqLkNbCOdCLigUtNUgeU4f0Ov1r11KD5DG3dSvn/PNaapA8pg4p2kNEUxFimxtrF+8foqQGyZO3h4iaCmSQgn04VBYhWUX7h2iqE6pQXIMM2ztEVRGSNWT/kCRrEJFlX4NknSJ3LvnzT2U32dRaEWk1cfS63eL9Q1ptecHcPTJhHfF/eXsf2dRaWfprPNZaKVe09pETejuP0N9dtssRvQfl+taTaq67xh4iHu03t0kO7D4qG3rbZUzmZFNrhTzcWiU/7ewhO1qZ12IFe4ioLEKyivYP6XTk+Kk7+u4jV6x4qmzqrCp99Y91VskVk/vLCVO3LV62+9xWOWL6Xrl+stqA8tIVB8oRM/ct/vm47bfK5PR2mZrI3GcVVRW2oXuIKF37sP1DtNQgeQbtIaKlBskzaA8RLTVIHlOHFO0homGvkCITj1fbP0SNGnuIaGDqEHsPEU1FSJ6ifUSoQdKm/JkaAAAAABRb0ZuVo+W+JZddKU+OtBq9njd3b99ll7T2rXw9l7T3lRO6S09X9Py5e+X6dr1hiAZjva68auYmOW3mJnly74ncj9khHflhZx/50sQz5fbOaO5F87yp/tNQXTJ5YM5HDnbpigOXDENERJ43fVflYciVk/vL27dcuvjnlb1ZOXbqdrloosRG6gAAADnUDUM+f/OxXq9fexFSJKUixOwbMv7wWFJFiNk3pDM1/1+tRYjNLkQ0FyG2Vre3WIdoLkJsdiGiuQrJsgsRzUVIltk7ZLEQUVyE2Ewh0t6R2OayC0cqtrZPRV5ITVrrhBzmCOLe7KzqIsRmFyJqixCbVYhQhIyG58iDMmkdzX6d7B5pNXGZ+/RiIdLaeUTx4b3+84jf0K5+O/2kvYeIdRfMu+6qlhQiAfcJefLc4/InOy6U/ec2Dfy4FdKVE7p3yrHb75Jzxw+Xz088R3qtVmEhop4pRDLVwmEz/QOzn05UHyzekPM5h0/3X/cwD4ytlQfaa+RJc1sWLztq6k65cOVB0loxZNNHRfoKEaVFiM0uRDQXIbbOjtnFOkRzEWKzCxHNVUiWXYhoLkKyzN4hphBRt0/IIJlCRNs+IYMUFSLaFRUirpj3ws886Aov14+l1A1DfHnVbteJiMi/PnBk5JVUs+u6rSIi8tDW9XEXUsPceE9E0vglmNVO572oJSYSGd7YJh9P6AmHpT2T5m0u6cwSkmdOk9Ub76RxmixD+2mxiqR8zvpU157suhN9IEx13Z49X+5f8uetMib/Lbu6+wK9nkgrree0vYWBX2vhPcCNvW2yIbOniojIA7JKHm2VP/2R8UhrlTwgq+RJsm3xsgN7j0m7NydzrTTeuDOeNLdFPrb9PNnQ2zH8gxeMSU/eMPMT2a23VT46+YL5gYgkcHqsITZ2n5ANc9uXXPZAexd5tLO68nU90tlFHmjvIk+a21nZHDD7SK37yHWTe8tLt9+0+Ocjp+6W9tjY4vCs73RfirUW1txLZBiyyAz8JK11553aGMiV1q/4JSZXpfkG1om7/Tz2Emp5x64/EhGRb27dL/JK0ETaz9gAAAAALGvPlKVHRN4q62UuseGFb/v2Hu+77N7WmtrXd19rjTypt3MYskK6srtskwdkl9rXGdqYzMkf77hoySDk7tZauWxsP7mvvUa2y7hs6G2Xw7sPyPO798iklcO8ZPY22dKalP83WX5zcc32nd3Ud9m9Y+tqX999Y+vkSdM7hyErerOye/cJeWCs2kn6bx7fY8kwZF1vh+w/87DcPrE86y8AANDMyA9DOq2lRwP8ypPmp3jaC5FfbFm/5M+777VJREQeund938dq09m884iR6XXzR5FMbNZ/xM64dXrg7or5F9GdHbqPKBnfuvTP5rRTZpNyzSa27jzCtWfO5pDAwfOdqaVH5vbGWtKa1X97t2fsdc//XLaUn3aqbwP1hXVrPl1WK9VT71hFiDlysWVvTK6NXbKY06sk8H3ozWSO5hpfeFqWQJljnxZr2Mbqaljray2cNquXwtGj2SrEvNGfapnj0MrejOwjW5ZcdpvUfwO3kLmtC4YsL+3dIe/u/dD91y3hflklZ7RfMf8H66h78zO5p2y1P00eaFU/4t94sLVKxLr7Pbn3hDzQqj8MWbKBuvlZ9Xi6rONn71occGyRCfl/k8+X88ef1vdx/y6Hyoa5bfLOqSvkmO4vlvzdaTM/kytWHCDXj+819OudMnWzvGvrxW4WX9ED7V3kLevfuPRCa1PvJ3X7B2YPduoPzB5q998X9uw+XnkYctvYxr7LDpp+YOcwJIVCxLofD9ugXAv7tFiprFtEZG5i59rHts4/Z5ldrf/tL/u0WGPb55I4VZa9gbo55bj202VNW08XJh+Zv99MbVT+fFZEJp+884CEXzy6XkRE9tmwKc5iKnjFnj9Z8udHu/O/KzZ08vfr0uJVq+/K/TOFSJr0P6oCAAAAQI6ny6a+E7fc4WMYkrhdZXvfZQ9J9VNkDfrc9RVONaWBGYRslXF5/8pTcgchxqPtVfInK14sF449dcnlbRH5na2XSGsEBpO7zm3ruyxvoFHWQ53+z911rv9+OMwdBcMQAACAOvSPxmuyixCb5kLErkKyNBci2SLEprkQsYsQW3dFS2UdYhchNs2FSLYIsWkuROwiJKs3tnB7KyxE7CLEprkQ6atClBtUhJij61TuHTKkRFBdiAxau+JCZEkRYlNciAzbKL3V6eisQ4asSXUhMmifEAoR2duqQkTm98LwZkghEtWAvRjWzPUPKna06r8U3N7qPzJ8rUzVuq7WoCP6AxQin5w8Sm7uDN8QtddqyUcnj5endR9ZctqxfeYel+fP3CVXTTzF2xqdmsg/qn/NXP/3b0e7fgGQdx/Jux8Os609IVtak7Kmt3N9e+ec0iuJQsTSmppRWVkM2yhdcyGSLUJsmguRQfWHvam6JnYRYtNciNhVSJbmQiRbhNg0FyJ2EWJ7tLuLyjrELkKK/p5CJC36fgsAAAAAQAl7Sv+bAg/LyuDr2CITcmukIuWREv/eFdL/hs5Ug82Qp3M+195TIwU/b2+U88cOLP3xs62OfHryefJnO/5ryeWvmPrZ0GHIltak3NrZUGudTT3SHn5KtBW9/iH9VIO3C6Zzhm2TvXpD/oc7q2XN7M5hyJNm+0/pBQAAUMZIDkOGVSFZv/KkH6mpQwYVITZNhcigIsSmqRAZVoRkads/ZFgVkqWpEBlUhNg0FSKDihDNhhUhmpUqQhTtHVJljxBVhUjF8qA31tFTh1RZu6JCZGARYlNUiAwrQrLU7R9SYR2qCpFBRYhtGRciu+Wc/ukxWeH/C/d6S+qQK1p7yRWt4ftGeDGgCDE60n9/yhtolJU3SBnP+RqDDCxCbJ4Kke+MP71y5fPDlQfIQ9M/kN3ndj4hf/bMvdLpzUl3wPfiyomnyJWx65GCKkRkfkN520yrwX0kZxgyXnNg9lhnF3nq7KOLf96tO+CFnKZCpMT9VXNlMUyqa9dUiFSpPTQVIsOKENv4lp6aOmRQEWLTVIgMKkJsmgqRYUVIlrb9Q4ZVIfbHUoekI/6jKAAAAADUsEr6B4w7GrzJv7zUf2Mqb+zWyr1Ut8s71d+46LVacsX40qHGpHTlwO4jrpalhuvvaN173I720jetx2ROJubiHygAAADSE38U7lCVIiQr9v4hVYoQW8xCpEoRYotdiFSpQrJiFyJVihBNqhQhmtQpQrTsHVKnCumNtaPvG1Jrj5CIhUiVIsQWvRCpWRtE3z+kSSURsRCpVITYIhYiVYoQW/RCpMHXbbVb8eqQKkWIbRkWInmnf2pSPFQSe/+QEkWI0c05Bm5ibkbq3lR5p8SaKXlllYoQm8NC5KHWKtnULn9KtdbExOL//++x3cTeIuVpsw/JzWO7N16XFwOKEGM27z7Sq/84OpFzSqyZisditsbn1513yq0VvRmZHvR2RsxCpMb9U0tlMWy/kDwa9j4ZtFdIEU2FSBWaCpEqYu8fUqUIsU0+0olWh1QpQmwxC5EqRYgtdiFSpQjJ+zwKEf3SevQEAAAAgAVt69j1OZk/ch9L5dUyEw32+Mj73NSKnF+019b+3Lvb6/suW9+rvjm4JlM5G55PSv2BeN4gZUfO1ygjb5iXd+o3AACAYdIagReoW4TYQhciTYoQ2+57bQpWhzQpQmKrW4TE5qII6XVawfcNcVGExNg7xMUeIbEKkab7hPQWKovQhUitIsSmaA+RKoIXIo7qguCFiMsqotMJVoc0KkJsgQuRJlVIVvBCxNHXCb5/SJMixLaMChF774q2iIz15mS2QjXRWOhCpMa/bYtM9l22Umal1+0u/oxWsTLnqP/Hc75GVqMixOagENkqE8M/aEG2ChER2Zbzpv4uc1N9l0VXoggxHm/3f/9WzNX/HbYyZ0P2Le1y+/mYIsTI23g9b0+S6BwUS7EKkTpFSFasddcpQmwxChEXVUesQqTqfiG22IVIXZr2D6kqdCHSpArJCl2I1C1Ciq6HQkQvyhAAAABgmWv3ejLR60o7sQGK6+JhVD2WM6jYTeqfemP3nM/d1Aqwcb1DOxq8mZ5XOKzM2b8mJZvaq/ou232u/htQeZ/7WIXTkmXlnXKrbmUCAACWN4WHU5TnqggJzWUREprrKiTU3iGui5BQe4e43iOk11moFTwXIj72CAlViLioQrJCFSJNixBbqELESRFiG2t7r0Oa7BVSxHsh4qkm8F6I+KogPO8f4rQIsXkuRFwVITbvhYin6/VeiLgsQmytVmEdsrY3JSfLXXK4PCxPl8fkyZk3t+/rrZJbZFe5QXaTC2Q/ebw1+Ij/mDZJ/xvwa2VatknYN0qP7d0rb+n91PNXyT+K9hFZKX/YeeHAz7y/tUvfbthP6s1/z83PZJVCZI9e/5PU+1u75H6s0yLE1qAQWZHzBrvNLkJ2fm7/Y/z2Ife5Y6bvlDO2X11ucU1ZldIj7dXyxxteOfBT7u/0nzZsj26DYUh3S6mvkWUXIcaauaWnIHu8vULmyhZSofYOcVCFZIUqLZoWIbZQ63ZRhNjGts56r0N8VByhCpGmRYgtVCHSZK+QPKEKkSZ7hRT5xaPro+wf0lTsPUTqohDRK8lhiO8hiK/TZfkegvjcTN33qbF8DUV8nxbL11DE90bpPocivjdL73X8DERcD0FsvoYirocgNl9DES9DkCyPp8zyMQjJir6xek3OhyKhNgv3MBTxOgjJGh9zejv5GoLYnA9FAp1+y/lQxOcQJMs6ZdbuvW1ypvxUTpS7ZaLgnPtPlm3yZNkmL5R75K3yE7mot698Xg6Th1r9R47H9qD0r2k32Sb3y+qg61gj03KgbA76NY3VMj30Y+6WNX2X7SVL36yuMhR5cm/pk+wd0sn9XngdhGR1u5XfjB50uxUNQYxVOcOQJ3JOM5W1pjclB3YfLbc4x3ZpD7+P/GJsfd9le83Wv0/vNfv4kj/vkDF5qFMwMCsYghi7WUOZBzv99+ehunN+BiKOhyA2X8MF10MQm691+xiCZPk8ZZbvYcXY9jkvX8P1EMTmayjieghi8zUU8TEEyfJ5yixXp8cq4mso4ur0WMOun6GIHpwmCwAAABh1vZ68vHebfFq+Ky+VOwsHIbYJmZOXyp3yafmuvLx3m7p9SO7LGXrsLtsjrES3h1ur+k6Vtadskw296rfVhv8/e3ceJ1lZH/r/W73NPgPIsMsOKhJRjKIBFSRGMbgQTbwmeMXEGGMuMdfEJd4kinfRLL/EJF53owaNe4y7RhRQjBcVxA0VjKzDAAPD7NNr1e+P7qfn1FPnVJ3lWb7P6c/79fIl01Nd9Ux1d/Xp/p7PeXr75AjpP3Pn552Dyp+pr8Qx3V2jb1T4vjsG3pbaZcJs942vH7iM1eHd3XLIQvWztA5Z2CuHd/uHbbdMPqjW50in15ODF/p/OXj3xPDCBAAAoEhSZUjoy2K5LERCXhrLZSESerP02U1dJ3VI6I3SXRUivosQm8tCxHcRkuXyklm+ixCbq0LEdxFic1mIeK9CshwWIr6LEFtvctxNHRKqsFjSuBAJvN5lDgqRYEVIloNLZoUqQmyNC5HAX5OGk0IkVBWyZKzXkz+S6+UCuaX2fayTeXmFXC8Pk+3y5t6jpRtqs/ARfi6Dp34eI4OX54HID2SzPFHu7Hvb6XKffE0e3Pe2UYXI6d1tg/fdOazvz8GKkKyKl8za3Nsnm7r7ZWdmADCqCDFOmb9v4G0/m9hc6n01++HkkfKEmZ/3ve3hc1vl6+MnV7qfh89uHXjbD6aOyr3tqCrkqPkdMmENb2+ZrPlcu7xklucixNaZmXNSWfguQmyuChHfRYjNZSEScoNzl5fM8l2E2FwVIr6LEJvLQsR3FZLlshDxXYTYti+sd1KH+C5Cih6PQiS+pIYhAAAAACro9eSPetfJBXKL9KRo14mSdyUiF8itIiLyt71HD+xLEMPWznrZ1ZuSjZlLHp0g9c/4r+vfO8fLv8vx+X9Z93lyXFp8p3OEPLHXPwx5Qu8O+VrnwQXvke8JvTsG73ss/xfd2v3Swh3yhbFTK71Pp9eTx8/d1ve2GRmX/xx/0ND3+/KqU+XLq6o9VmlTbi5FdN2qYweGIedM/6d8fXW1YcgTZv5z4G3fmar3y58T5gYHTzdNHV7rvgAAAJJomcc7vaibpT/n8OuXK5Gq7tx9ULQN0zcftWO5EqlqfOd48CrEmN3UXd5DpKrJPeGrkKyF1Z3lSqSq0FVIVm+8s1yJVDW1txu0CsnqjR+oRKoan+kGr0KyTCFS1dhcN3gVktWbGFuuRKoam++GrUKyJsYOVCIVdRYWglchRm9yvP4ZfHPz8SoLWSxETCWSlPHxymd79ubm4lQhWZMTByqRknrz89GqkKwqmzaLyOLZ35G+JrM6Y53lSqS0Xjd4FXKB3OJkECJL728GImYoosFP5JC+P58oO+IspEivV/3yYh4uOXVN5xiZtX78O7u3RQ7qTefevrewMFBuHdTbL7/U7R+o3Cdr5PtLZUhnfCxOFZJV4TXigrmbRGSxCClbhTxm7g7Z3O0/cL9h8ihZiHGZsKlJZ4MQEZFrVp848DnyS9O3yKaF8mcrH7SwTx4/3V+h3Te2bqAM6UxOjqxCREROnOsvkbriYBiy0D1QiVRV4zjBlc7M3HJpUVWjY0oHmqw9dBWSNbF3frkSqWp+zVjQKiRrYn93uRKpanZdJ3gVkmUKkapmN4WvQrJW3T++XIlUft8j9wWtQrLu3H7QciVS1a8e8YPgVYixfWH98h4iVT1j3e3BqxBNj49EhiEAAAAAqtnc2ye/1/ueiDQfhBjmfn5Pviebe3F+cLd9R/p/MXq07K21F0bb7e6sGqhAJqUr/7X3w9L38V8XfiCT1iWLPj9+svQUVEJ1PKR7v5w/N1gxFBnvdeXF+64dePvnVj3M5bKi2TO2eqACmZSuvGDPt0vfxwv2fGvgc+QLa0+r/Tly+sxdfX/+2eRhsmt8TcGtAQAAhlN/mayYRYityh4isWqQPFX2EIlVg+QxdUiZPURi1iB5FlZ3Su8fErMIsVXZQyRWDZKnyh4iMWsQW9X9Q2IWIbYqe4hEq0HyVNhDJFYNksecyVdqD5GINUie3sR4+f1DNK3dwR4iUZTYQ0RDDWIrvX+Iwo9HqT1EAtcgxiW9H8o68fPxXifzcon8SP5aHuPl/qv4lhwhL5Pv9b3tDNkmV4qyazL3eqMvmeW5Lvhw52FyXu92GZcDn6+/2vtPubZ3lFzbyb/Ulfm6fHxnq1zY/Vnf3+2WSfnU2Kmla5BHLNwtfz17Rd/b7u6skxeuvqjKP8OpP5i9Vm5ftVl+NnHo8Bv2evLf914tx1qbp28Z2yjfnozwueawCMn66Loz5dzpm/s+R56+/0fyrVXHybdWHz/0fc+avlV+df+NfW/b3Vkln1r7C8t/LlODGFPdeXnozN19b/v2muFrqKTKHiKRapA8VfbhiFmD5Kmy90nMIsRWZQ+RWDVInip7iMSsQWxV9w+JWYTYquwhEqsGyVNlD5FYNUgeU4eU2UNEW43xjHW3s39IJHpepQEAAAA4sbE3I+fK4N4OLp0rd8jG3ozXxyhjS2eD3CYb+t52ptwbaTW63dbZJJ/q9J/5PyYir+t+Q57W/Xn+5bx6Pbmg+5/y5/PXDPzV+8bPkN2dVZ5W69eMLP7Cal1vTt64+/Py5JmbC297SHef/MWeL8svz/YPg7oi8vfrnpBsGZPntslD5NOZ4YXI4ufIn+/4ojx1342FnyNP23ej/NmOLw781T+vf6zsGVtday2nz26RSen/heI315xU674AAABEFJchmooQ23MOv76wDtFUhNiGFSKaihDbqEJEWxVimL1DigoRTUWIbVghoqkIsQ0rRDQVIbZRhYimIsTWmxgrrENUFSG2IYWIpiLENrIQ0VRWZJi9QwoLEaXrFpGhhUj0fUKGKVGIaFRYiCj+ujQ6Y53BOiRSESIicr7cJlPi9/GnpCvny+3ySTnF6+OU8RU5Vn5bfrT858fLXTLW60o3xj4Ow5hfJNu/PA+4znd3zpBH9LbJyZm9VSalK3/c+7b8eu8ncnXnWNkq66QjIkfKHjm3d7scI4MH3N/sHC2fnXyIdLQOAszrRsEZ/d+YOl6OW3hATlrYLht6M/KqvVfJf9l/g/zH1PGydXyD7JdJObi3X06fu1seM3e7rJbB16FPr3q4fH8y8ObxnoqQrH/a8Dj5hdm75OT5A5uXT0pX/vuuq+S5e2+Qq1efLHdPbJROT+SIhV3ypOmb5ZiFnQP38/9WHS+fWXu6iFQrQoyz9/UPn26deJD859Rhle9npGGFiKIixDaqENFWhRij1q2pCLENK0Q0FSG2YYWIpiLENqoQ0VSE2FbdP15Yh2gqQmzDChFNRYhtVCGirQoxzLooRMJSOwwBAAAAUM/pvftG38jF48h9KoYhV8hxcon8aDl73ySzcoZsk+9Kw42WW2iuMy6vHXui/E33SjlWdvf93bGyW17Q+1HBex7w/c5h8saJs0df9kuxBRmTN6x/ivzdrk8v7zFzbHeHHDt9Q6n3/8rUyfKOtY/3uMJ45joT8ucHXyh/tf3f5MELO/r+7sELO+Tivd8ZeR/fnzxK3rjpKbU/Rzq9njx+f/9+Ll9Z99Ba9wUAAGCoG4ZoLkKy7P1DNBchtmwhorkIsdmFiNYixGYXIpqLEFtvvLNch2guQmx2IaK5CsmyCxHNRUiWvX+I6iLElilENBchtoFCJJGz/wcKkUTWLSKLZ4YufY6oLkJsViGicb+QPKX3EFGm1P4hgZwiDwR6nB1BHmeUbZ21cm3vSHm8bF1+2/lyu/5hSKRy5YHOGnn52C/LH3e/JefIltLv1xWRz42dLO+YeozMdar/HLFJBi+rdlvnoMr3U8mQ15F7xjfKn2x8hrxu97/LcdZeIEXmpSOfWP0Ief+aXwx7eawARUjWA+Nr5b8/6Nfkv++8Us6euaX0+3VF5PNrHi7v2HiOzHXGaxUhIiKPmrldDu7uX/7zrIzLl9edVuu+SssWIoqLEJtdWmgtQmz2ujUXIbaJvfPLdYjmIsRmFyKaq5AsuxDRXIRk2fuHaC5CbNlCRHMRYrMLEa1FiC2VdbaFumEIAAAAgPrGej05UsL8wH2k7JWxXk+6CgqBT8gpfcOQJ8qd8tbeI2VfJ+wvkVOxpzMll42fI4/u3S3P6f5UzpR7+jbNzpqVMfl/cpR8dOLhctPYg6RTc4hzxsI9A2+7fPIRte7LlbvGN8l/2/Rr8qzpH8ozZm6Uw7v5Z1zNyLh8e/LB8sE1Z8otEw8KvMo49oytlv958AVy5szt8mt7vyePmr1zyOfIuFy76nj52PpHyk2TzYeQF+z5Yd+fv7ruobJzfG3j+wUAACsbw5CGjlm7Q0TSKkOMztSCiKRz9oXRi/+zdi1jaZyMO2B8Nv7ZrXXl7XmSgk7expQAouvxtYlETHjeKyTv8WYVHFN+r3OY3NQ7SE5dqlXWyII8RW6TT8nJw98x4wWdp3tanV7XdY6Q68aPkHW9WXmY3C9H9fbIOlk8Y3u3TMkdnQ3yE3mQzHQmpDPR7MfHR3bv7vvzN8eOkZvHwgwWLjn4Nwv/bq4zLh9fc4Z8fM0Zctz8djlxYbs8qLtXxqUrOztrZNvYOrlx8nDZ35kKstaszurFDep73Xjl7fWrjpXrVx0r67oz8tC5e+So+Z2ytjcrIiK7x1bJneMHy0+nDpOZzOCxM7X0XNX43nnQwl45a//Pl//cFZFPbnhUo39DJQqGu7UoqBJrSfX4KtXnW9L9nYqkuu504qEBm1cnckkWy9PW3bb0X6l+0sCnTk/ZT/bduxevOfzB3brPtrl294m5b/9/9xwfdiE13HffhoG3jW0Lf2Bf1eSu/O8gU7tz36zG5J78L7HxwasEqGMy2qzxOVUvGbnGcgY4YwWbk2tSdFmsoo3VtUhyA3UjsQ3UjdQ2UDeS3EB9Se7lpVK45FTOc5vCpbJS3EBdJOfyWJE2UB/r9eRLvY8He7ynynNUlCEiIo/v3SVvkP9Y/vOdsl5+W54a9nJGZUTcQL2uzuTgIKTK5umH9PbJh6b/dfnPXRH5g1VPl5+PHeJieYU6a9Z4vX9fzBDEFnMoUsbyEMRW4dcOL9j5TfnNXd9a/vPX15ws/+fQX226tNEmcoa6Y/q/Nns5X5siIr1Vus997U3lr6+rfN0iIvNrBj9X5tfFPylglLm1g5/Pc2uVfX/MMbexYAP1jYEXUtHM5oIN1A/Xf7msRx1158DbHntQ+UsmxvKbG/P3PZtUPhQ5eKl8HDvi5sgrWRn0f2cHAAAAUFq305GtEuZyMltlnZpBiIjINztHyY/lwC/Xj5E98gQZ/IEe4dmXyPrG2LHeByFIz+rurDxjz/eW/7wgHfnnTe3cqB4AAISnduT+WxvuFxGdhUhRFSIi8rjDbxURnYVIXhFidDcvZs4aC5GiIsSY3aCzDikqQoyFpZO9NBYieUWIsTC5tCG8wkIkrwgxukubk2ssREZtlG5vrK5JURUiItJd2pxcZSEyZE29pQ0zNRYihUWIMTmhsrIoLEIMa5NvTYZWFOZyMRpLC4XPZRmFG6abjWwVfl0auZumm7P9IxQiN8vBQfYNuVkO8v4YVb1HTpe/ka8t//n58lP5Wu8YHZe+KVqD+RxJoBDJMhcZKFOInJG5RNaCdLzvFdK2ImT575dKBY2FSGEVInLgc39EIfKre34gG7oHfkD6yrqHyZ2TnodmeUWIYZ5nhYVIURFidGbmVdYhRUWIMTazeAyjsRDJK0KMib2LxygaC5G8IsSY3Le0ObnCQqSoCDGmdi3+v8ZCpKgKERGZuWfxhBWNhUheEWJ8a8cJIqKzECkqQow56amsQw5mL6wo9H1HBwAAANDIDzuHhnkcCfM4VXyvc5h8TY5e/vPJskPOpQ6J7pHdA2XI18aPldvGDoq3GKi0tjsjv777O8t/3tuZkvdt+qWIKwIAAG2jb9Ru+a0N96upQ4YVITZNhciwIsSmqRAZVYRkzS79E7UUIqOqkCxNhciwIsSmqRAZVoTYNBUio4oQW2+io6YOGVaE2FQVIhXWoKkQGVmEZCmrLEZWIVmKypYU9tXIVeL5Mxsga/o3FhYhtvFxdXVIbhFii1CIfEWOkxfLD2TK42bqszImX5Fjvd1/E2+XM+QxcreskcXPlxfJD+Wa3tEyH7O8KFOmKCxE8vYKsY0qRA7r7pEje4ubsC5IRz444bcKSdWoKqTvtmNjauqQoUXIwI2LC5Ff33WdbOpOL//5A5seJw+Mr2u6vGLDihCbokJkVBGS1VmqLLQUIqOqkCxNhciwIsSmqRAZVoTYNBUio4oQ29QuPXXIsCJk4LaKCpFhRYhNUyEyqgjJmpPFz3EthQhVSDzxv6sAAAAAcGpXZ5Vc1Xuw/Irc5u0xrpIHy65O+V/ehrSts1be2DtLTpYHlt92uOyVLVL+JCG4c+/YennqmotjLwPK7RlbJR/YeJaIiMx3xuTT68+IvCIAANA2nV5vxEU7A+vefUrh38UqRKoUIUViFCJVipAiMQqRKkVIkViFSJUiJE+sOqRKEVIkRiFSpQgpvI9IpUXVKsQWqxCpUoQUiVKIOHjMGIVIpSKkSKTSolIRkhW5DGlUS8QsLRo8b7ELkdJViC1yIVKqCCl+Z3cLGWJzb5+8q/clWSfuP8Z7ZUJ+V35FtnU4q22kunuVRK5DyhQhhe8bcX+WVPcKEalWhmTFKkQqFSFFYvw6okoRUiRCIVKlCCm8j0iVRZUiJE+sOqRKEVJ4HxEKkSpFSPF9xHkdr1qF2GIVIlWKkCIxCpEqRUiRGIVIlSKkSKxCZFgRMnbEzQFXsnLFbzwBAAAAOLets1be0Vk8s9rVrxvN/bxDzmAQAgAAACApSZUhRqhCxEURkhWqDnFRhNhCFSIuqpCsUIVI0yLEFqoQcVGE2EIUIi6KkIH7DFRaNC1CbKEKERdFSFawOsTD44QqRJxUIVmBiovaRYgtcCHitI4IWVo4fJ5CFyK1ixBb4EKkURHSf0du7mfk4/TkFb3r5AK5RXoijc6BM+//BTle/lYeXb94WClcPT+BC5EmRcjAfQX8HFmJRYgtVCHipAjJCvUrCRdFiC1QIeKiCum7v0ClRdMixBaqEHFRhAzcZ4BCxEURMnifYV7HmxYhtlCFiIsiJCtUHeKiCLGFKkRcVCFZoQqRMnuEUIaEQRkCAAAAtFWnI2/uPFq+IMc3/lHPDELezCAEAAAAQIKSLEMMX4WI6yLE5qsQ8VGE2HwVIq6LEJuvQsR1EWLzVYj4KEKyfNYhPqqQvvv3VFq4LkJsvgoR10WIzVsh4nndPusQ50WI4bm0cFaE2Dyv21sNEaKy8PTc+C5EnBUhNs+FiLMiZPCO/dzv8v33lv//ArlVfk++V2sPkb0yIe+QM+QLcjyDkFF8PT+eCxGXRUjf/Qb4fEm1CnFVhNh8FyLOyxDD568mfFQhWZ4KEddFyMD9eyotXBchNl+FiI8ipO/+PdYhPqqQ/vv381ruugix+SpEXBchNl+FiI8ixOarEHFdhNh8FSJlihCDMiSMpIchhuuhiO9hiOF6KBJiGCLidiDiewhiczUU8T0EsbkaivgegthcDkV8D0H6HsvhYMH3EMTmaijiewhiczoUCbh2l0MRb0MQm+NfoHsbgtgcrzvYJaF8PE6gS4i5fo68DUFsjh/H2xBk8IE83Ofg2jf39skl8iM5V+6QKRn9mLMyJlfJg+V98nD2CBkl1JDI8VDE1xBk4HE8PD8MQYZzPRTxNgSxufwVhe8hSJbDgYjvIcjA4zkaLvgegthcDkV8D0L6HsvhUMT3EGTw8dy8lvsegthcDUV8D0FsLociIQYhIu6HIb6HIIbrYUiVIYjBMCSMsN+pAAAAAESzrbNW/loeI+/oPULOl9vldLlPTpEdcqTsXb7NVlknN8tB8kM5VK6QY2V3J8wvbgEAAADAp1aUIUbTQiRUEWJzUYiEqkKyXBQiocsQo2khEroMMZoUIqGrkKwmhUjIImTgsRtUFqGLEFvdQiR0EWJrVIhEWLuLMiRYEWJrWBcEK0JsDqqI0BuFi4ibQiTwpvIibp6rYEWIreHjBitCBh/YwX1UX/tYrycT0pV5GZMul8GqJtbz5aAQCVWF9D2mg+eLIqSapoVIsCLE5uJXFSHLEKNBIRK6CBl4/JqlRegixNakEAlZhAw8doNCJHQR0v/Y9V/HQxchRtMyJHQRYrgoQ0IVIVku6pBQRYitaSFSpwgxKEPCoAwBAAAAVrhupyOzEu8XQgAAAADgW6vKEKNqIRKrCLHVKURiFCG2OoVIrCIkq04dEqsIsdUpRGKWIUadQiRmGbK8hgqVRewiJKtqHRK7CsmqVIgoWHedQiRaEZJVozSIVoTYaqw9ShFiq7OGCEWIrc5zF60IsdVYR7QqpH8RNd5HwbpXEi0FTY1CJEYRMrCGGs8fRUgzdQqRaFVIVp3XthhFiK1CIRK7CMmqWofErkKyqhQiMYuQ5TXUKENiFiEH1lD99TtWEWKrU4jEqkKy6hQiMYoQW51CJFYRIiKy9t2/I9MXfFG6R2+pXIiMLELuPFLkC78i8rvvL7wJZUgY8V9FAQAAAAAAAACIYO27f0c2vv5/yiG/8TEZ23K02zu/80jpPPcDMvYXfybyrhe6vW9U1soyRKR8HaKlCskqU4hoKEJsZQoRDUWIrUwhoqUIySpbh2goQmxlChENRYitTCGiqQwxyhYimsoQY2ghonC9ZQoRFUWIrWR5oKYKySqxdhVFiK3MmhQUIbYyz6WaIiSr5JpUFCG2MoWIrsP5lUFLFZJVohDRUITYyhQiFCHulK1DVBQhtjKvdRqKENuQQkRTEWKULUM0FSFGmTJEQxFiK1OIaChCbGULES1VSFaZQkRDEWIrU4hoKEJsZQqRmEWIiMjYlqPlkN/4mEzcdrzMH3erbP/or8v40XeVet+hVcjSIKRz27HSO+526X38YpFjtuavgTIkCH2vpgAAAAAAAAAABNA9eots/+ivy/xxt8rEbccvFSJHNbvTCoMQhNPaMsQoKkQ0FiFZRXWIxiLElleIaCxCbEWFiMYqJKuoENFYhNjyChGNRYgtrxDRWITYigoRjUVIVmEdonjdeYWIyiLEVlAiqCxCsgrWrbIIseWtUWERYit6blVWIVkF61NZhNjyChFdh/Erg8YiJKugDtFYhNjyCpFUixARnVVIVlEhorIIseW99mksQoyCMkRjFZJVVIhoLEJseYWIxiLElleIaCxCbEWFiMYiJKuoDtFYhNjyChGNRYitqBCJXYVkVSlEXBUhy49NGRKE/ldVAAAAAAAAAAA8clKIUISo1voyxDCFiPYixGYKkRSKENvYtqkkihCbKUS0FyE2U4ikUIRkmTokhSLEZgqRFKqQLFOIaC9CbMuFSELrzhYiSZQhxlKZoL4IsS2tO4kixDY/n0QRYjPPtfoixLa03iSKkCxTh+g6fF8ZtBchtqVCJIUixNbpdChCAjKFSBJFiJF9DdRchNiWChHtRYjNFCIpFCFZpg5JoQixmUIkhSokyxQi2osQmylEUihCbKsO35dEEWIzhYimIsQ2rBBxXYQsPyZlSBBpvbICAAAAAAAAAOBJrUKEIiQJK2YYcsTEDjliYkfsZawsaZ0MkL7e0v8AqNEbH5fe+HhaVYiIyOTE4v+AtuqMFe6tALRBZ3xcOuPpnQ0tku4+IZ2DN0nn4E2xl1FZZ2oqrSpEZLHUmhhPqwoRkd7EuPQSWzPi6HQX/5ea3vji/5LTkWR/f5VqLHzQ+D45aHxw3xNt7IHIQb/xCTl460n5N2YQkgx1l8kyXF8u6yv7+1+RP/XAmU7v3xd7I/UULpc1dl/OBuo79f/CIdkN1Kfz3z4xrf/oiQ3Uw2ID9fCyQ5C8TdXVsi7XlMzlsqx1J3G5LDZQD6vgsljq1y3CBupaKL9cVmdiMv8vxnSvW0RkbO2QS04oNjAA2V9wcK5M7+D+nYM7u/X/UsrorTrweZ7CMUpvquDrUvnrCRuoh7eQs8bZ9fp/lzK7If9zeX6d7s/x2YL59cyh+l9Xpg4bfM0+82j9l8v6lQf1Xxbr6evyN1TX5rCtJw8fdDQchHB5rLD0v6oCAAAAAAAAABDaMVul9/GLpXfc7dK57VjpPPcDInceufh3FCHJaX0ZYhchNq2FiF2E2DQXInlliKG5ECkqQ0R01iFFRYhNYyGSV4TYNBYieUXIwG0UFiJFRcjg7fStvbAKyVK47jKXxVJZiowoEtSefTli3aoLkWFrU1iIlHkuVVYWJTdKV7n2vCJk4Db6vme2nsIzugurkCyFhUhrihCb0kLELkJsGguRbAlSROMxSmERkqXwtaSoCBm4ncJCJK8IsWksRPKKEJvGQqSoCLFpLESKqhAR3WVIXhFiaC5D7CLEprUQOWx8Xf8b7MHHP7xSOn/4140HIZQhYel7NQUAAAAAAAAAQAurEBl71kcoQhLU2jJkVBGSR0slMqoKydJUiAwrQmyaCpFhRYhNUyFStgwxNBQiZYoQm4ZCpEwRMvA+CgqRskVI//vEX7dIySLEpmDtdTZKV1GIVCgQ1J15WWHtqgqRKmtRVIhUeQ7VVBYlq5AsFWsvU4QMvE/875kripIzuksVIYaiMqS1RUiWsjpkVBWSpaEQKVOE2DQcp5QqQmxKXk/KViF976OgEClThNg0FCJlihCbhkKkbBFiaCpDhhUhNk2FyLAixKapEBlVhGRpqUMGapA83zpTxp71keU/dj/1PJHHXl/7MSlDwor/KgoAAAAAAAAAgGZ3HimdP/zrvjd1/vCvD+whAvVaWYbUqUKyYhUiVYqQPLEqkSpFiC1mIVKlCLHFLkSqViFG7DqkThlixCxE6pQhy+8bqRCpU4X0v3+cddcqQmwR1l6nCBm4jxhnojcoDqKfedlg7VELkSaPHbEQafKcRassahQhWdHWXacIGbgPlYf37RXpjO5KRYgtYiGyIooQW+RCpEoRYotRiNQpQmwxjlNqFSG2SK8ndYqQvvePVIfUKUKMmGVInSLEiF2GVK1CjNh1SJUixBazEKlShNhiFSJVapA8sQqRUkUIe4a0AmUIAAAAAAAAAAB57EHIxy8Weez1fXuIdJ77AQqRBLSqDGlahNhCFSJNixBbqEKkSRFSJFQp0qQKyQpdiNQtQmyhC5EmRYgtZCHSpAgZuK/AhUjTMuTA/YRZt5MiJCvQul0UIQP3GepsdEeVQfAzLx2tO3gd4vLxAhYiLp+n4KVFwzLECLZuF0XIwH2qPMxvn8BncjcqQmwBC5FUixCRhlVIVuBCpEkRkhWqDnFRhNhCHac4qUKyAr2uNC1Clu8ncBnSpAixhSxEmhQhttCFSN0ixBa6EGlShGSFqkOalCBFQhUiTYsQW6hCpFYRYhcgo/5+BMqQsChDAAAAAAAAAADIKjPoOGYrhUhCKENK8F2IuC5DDF+FiI8iJMtnHeKqCLH5LkRcFSE234WIyyIky3cd4rIIGbhvz4WIqyJk8H79rtt5GWJ4ul8fRcjAY/g6G91TVeD9zEtP6/ZeiPi8f8+FiK/nxntp4agIsXlbt48ipO/+VR7qt5PnM7mdFiFZnusQipAcngsRV0WIzVch4qMIsfk6TnFehBieX09cFSED9+u5EHFZhNh8FyIuq5As34WIqyLE5rsQcVWE2HwWIj6qkCxfhYjrIsTwXYY4KUKa3n4JZUhYlCEAAAAAAAAAAIjUG2xQiCRBbRlilClEfBUhNteFiK8ixOa6EPFdhhguCxFfRUgRV6WIryLE5roQ8VWE2HwUIj6rkL7HcVyI+CpCBh/H7bq9FSE2x48TogwRcVyHBNpnwvmZl4HW7byCCLUniYfnJ9R+Ks5LC09FiM35un2XIcuPo/qQv10cn9HtrQixeShEUq1CvBUhNseFiK8ixOayEAlRhYi4Pz7xVoTYHL+e+CpCBh7HcSHiswjJ8lGH+CpCbK4LEV9FiM1VIeKrBCnishDxXYQYrssQX0WIzXUh4qUIqfn+FCFxJD0MCTUEsTUdioQagthcDEVCDUKyXAxFQg9DRNwMREINQ2xNhiOhBiFZLoYioYYgfY/pYCASaggy+LjN1h5sCGJz8LihBiF9j9nkl68BN9vOavxLh0jrdjIICL05u4iT5yv4pvLmcZsOFwINQWyN1x1qCDLwuKoP/dul4S8xgw1BbA6GIgxBKmo4FAk1BLE1GYqEGoJkuRiIBBuC2Bq+noQaggw8roOhSKhBSJaLoUioIUhWk4FIqOGHzcUwJPQgRMTNMCTUECTLxUAk1BDE1nQoUmoIItJ8EFLhfhiGxMFlsgAAAAAAAAAAK5erQYgIl8xSjDKkpjp1SKwixFanEIlRhNjqFCIxihBbnUIkVhFiq1OIxChDjDqFSIwiZGANNQqRWEWIrU4hEq0KyaqxhhhFyMAa6pyJHqmwMCqfhRl5vUatSiJSWdGnxvMXqwjpW0Odz+1IRYit1tpjVSF9a9Dx/K0INc7ojlaFZNUoRChCGqpYiMQqQow6ZUiMIsRWpxCJVoRk1XgtiVWE2OoUIjGKEFudQiRGEWLUKUNiFSG2OoVIjCLEVqcQiVGE2OoUIrGKEFudQiTIpbFq3C9lSByUIQAAAAAAAACAlekLv+J+ECIyUIjIF37Fzf2itiTLkJhFSJEypYiWMsQoU4hoKEJsZQoRDUWIrUwhoqUIySpbh8QsQoqUKUU0lCFGmUJESxGSVbYOUVGE2EqsSUMRYitViCgpLEQqnoGpaN0iJasJBWXFgBLPo4YixFaqslBShNhKrV1DEWLo/hGgnUqc1a2iCLGVKEQoQhypUIbErkKyyhQiGooQW5njExVFiK1kIaKlCskqU4hoKEKMMmVIzBKkSNlCREsVklWmENFQhNjKFCIaihBbmUJESxFilClDSu8PYnvXC0Uu+Hd3g5CsO49cHIT87vuX30QZEoee7zIAAAAAAAAAAISWGVQ4d8xWv/eP0tSXISIH6hCNRYitqBDRVoUYo+oQjWWIkVeIaCxCbEWFiMYqJKuoENFYhNjyChFNRYhtWCGisQwxigoRlUWILWeNGosQW24hoqysyFN4JqbitedWFArLigE5z6nGIsRWWFkorUKMwnVrKkJs+n8UaJeCM7pVFiG2nEKEIsSDgjpEUwlSJK8Q0ViE2PKOS1QWIbaC1xONRYgxrAzRVITY8goRjUWIragQ0ViEZBXVIRqLEFteIaKxCDFGlSHaqhCjqA6pXYREQBUSD3uGAAAAAAAAAACAVkuiDPnyLQ+NvYTKTCGitQgpYkoRzUWILVuIpFCGGKYQ0V6E2EwhkkIRkmXqEM1FiM0uRDRXIVl2IZJEGSKyXIekUITYlgsRxWVFnuUzMRNZ90BRkUBhsWzpOU6hCslaLi2UFyG25XVrLkJs+n8kaJelM7qTKEKyluqQVIsQEeVVSNZSIZJCEZJl6pAUihCbOS5JogoRGShDNBchWXYdorkIsZlCJIUqJMsUItqLEJspRFIoQoxsGaK5CLGZQkRrCVLEFCIpFSEGZUg8lCEAAAAAAAAAAKDV0hnBJ2bH3JrYS6il103rTAERkblN3dz9Q7SbW7/4XI9Pp3UmZm/5etFprVvS+9SW7uTi57UpQjqJPOe9icV1j0+ndQY6MEpnYvGwqTedWNInknut/xR0xhfPvOx103o96Sw9372UQrNOhzokpE56x64iIp2pdOpxWzJFyJLZU48UEZHJbXsjr6SauWMeJCIiE9t2RV5Jdb01qxb/YyGRqm/pNbu3OpGSZYn5ebI3mVZdISLpHk8l+u09pSLE6Mwtfo5MHp3Wa/c9+4fvJ6zVt2cWv+f86toEfz5DNGkehQMAAAAAAAAAAJSURBmyrjPb9+e9vXTOSHroIfeIiMhPth8eeSXVLBwyJyIi49v1n2WSrUJml4bZKewdMrFv8fSM+bXmzxEXU8P8qsXnfWJG/5lTY5n9TbqTnYG3aWXvEdKdHBvYR0SjztLZdKZsSWHNWeYstRT2DlneK8SYnEhi/43lvUKMyaXDEeVrX95vY6kQSWrPkCWdqUnpzc7FXkZlnaXPkZ7yz5Gk9gjJY64/TyHiz1j/mdBmfxlTQWnWWb0q9hLqOeJQETnQNHdmdL8Gzj744L4/z21evA56CoXI/KYDV0eY37y410kShchkEr8WGbS07s7CUiEyrr9a6GYqFnOsnUIhMr+u/3NkfKYrC6v0n1s8t07/GvPMLe1tMrnb/DniYkqa3dR/DDi3ZV0SdcjRh+yMvYRaNk8k8L3F8v+m+38G/qVI60AiG6gb/3HriX1/1jgUef+9Zxf+neaByLZ7h2/Mp3koMuwSWRqHImYIMvw2ARZS0fjs8HVrHooMG3xoHIqU2Shd44ChM+KSAhrXvGzIJu+ahyIDw5Ashb80HhiC5FG4bpERG49rHooM+RxJcSgionggMmQQ0hv2tapZOj8mpGFs9C/8NA5Fhg1BzOUDVVoaguTROhCxByF5NA5FskMQm+phyLAhiOZLZY0Y3mgcinRLXMpL41DEHoJkaR6GjBqCzGzU9zkyV2Jzd41DEXsIkqV5GDJqCPKCY/5foJVUN2wQovFyWQNDkON/HmklMPS+egMAAAAAAAAAADiQdBliaChEhhUhRTSUIqOKEJumQqTKpumaCpEyZciB23pcSEmjihCbpkKkSvWhqRApU4YYGmqLUUVIHg3rFpGhRYhNUyEytAixKTiLvlQRYlOwbpERRYhNUyFS4XOEQqShCpfGohBZoUoUIYamMqTKZbFUFSJDihCblkKkTBFi01CIDCtCbKoKkSqXxdJSiNS4lJeGQqRMEWJoKkOGFSE2TYVI1ctiaShEyhQhB27rcSEVDStCbJoKkaqXxdJQiNS5JJaGQsQuQgzKkPj0vGoDAAAAAAAAAAB4oOgUnvrMBusaCpEqUtxc3WysLhKvEqlShBgaNlavUoQYKW6uPp85MyZWJVKn8tCwsXqVIsRIdZPy6OuuUIQYGjZWr1SEGIlsTj4g8rorFSGGho3Va3yOdKYWv5+nVohE31S9xmbp5qz/5AoRNlavp0IRYmjYUL3ORunmNTNqIVKhCDF6qxZf/2IVInWKEA2qFCHL76NhQ/U6G6WPL/1sE6sQSXRz9ypFiKFhQ/UqRYgxvvQzb6xCJPVN0qvQsKF6lSLEmNuyTkTiFSJskh5WURECPdJ81QQAAAAAAAAAACgpqT1DjKK9Q4yQhUidvUKKhC5Equ4XUiR0IVKnDLGFLETqFCHF9+Xsrkqpul9IkVCFiKuqI3QdUqcIKRK6tKizX0ieYOuuUYTkCV2H1CpCigQ+i77WfiF5Aq27VhGSJ3Qd4vBzJLVCxAhWiNQoQnLvJrU6JCu9Hx/CqlGE5Aldh9QpQgrvK3QhUqMKyROqEHFVhITeN6ROEVIkeCHiqrAIVYg4Wm/ofUPqFCFFQhcidaqQPKEKEVdFSOh9Q+oUIcX35eyuRqpThNhClyGuipDQ+4a4LEJC7h0yqghhrxA9KEMAAAAAAAAAAECrtbIMyfJdibgsQwzfhYirIsTmuxBxUYTk8VWJuCxCBu/b212LiLsixOa7EPFVdPi6X5dFiM13aeGqCLF5L0QclSGG70LEaRFi83wWvbMixOZ53c7KEMN3IeLxc4RCxL5jP69PFCIt4qgIsfkuRFwWIQP37bsQcVSEGL7LEF97hPguRFwWITbvhYjrPTd8lyGe9gjxXYi4LEJsvgoRVyWIzXcZ4muPEN+FiMsiZPC+/dyvixokj+9CxNceIb4LER97hPguQ6rsD0IZogdlCAAAAAAAAAAAaLXAF3MNb11nVkTcFyI+ihDjoYfcs/zfofcRaWLhkMUzqVwXIr6KEGN26SyCkPuINDW/1k8d4qsIMeaXzpJxXYj43uOjO9kJ8jgudSfHvFQWvooQozu5+DnifO2OixDDPlMt9F4ijUxOeKksvBUhhjlj0vHanRchhjkr2sf9ey4KOlOTSdYhnaXPkWB7iDRkzvpPshDpdKhDRLwVIYb53PBRiPisQkQWX1u91CGOixCjt2rx5xjXhYivIsSY27xORPwUIj6rEC88lRXLxpd+NnV9TOx53Z2FxddqH4WIzyrEB19FiDG+9LOu60LEVxFirNq1+DnioxDxWYX44KsIMea2LL1mOy5EfBUhPvmoQbI+t2+1iLgvRKoUIdAnyctkGVUul2W4GIr4HIQUcTEU8XV5rCKuhiK+hyE2F0MRn5fIKn7M5vfhexhiazoUiTWccPG4Pi+RZXM5WPA9DLE1XrunIcgoLoYiXi+RZXPwS2PvQ5AiDdfubQhSxMXjRfileYpDEaPxUMTT5bEKHy7FoYjIyhyKeB6CFHExFPE9BMl9TBdDEU9DkCJNhyK+hyBFXAxFQg5BnFwqy/cQpEjTY+PA63Y5DAk5BHFxqSzfQ5AiTYcivocgNhfDkBjDDxeXyvI9BLG5GoaEHoK4uFyW7yFIHhcDkTpDEC6PpQ+XyQIAAAAAAAAAAK224soQW51SJEYZYtQpREIXIXnqVCKhixBbk0IkRhly4LGrv0/oIiSrSR0S+7JVdR4/ZBFSpE5tEboIyapVh0QqQmx1CpGgRYitxhn00YqQrBrrDl6E2Jo8fsTPkVQLkVp1SOAiZODhKUR0i1SFZNUpRGIUIcuP3aQMCVyE2OoUIrGqkKw6hUjMy2LVKkRiFSG2OsfKEddepxDRcDmsOoVIrCLEaFKGhK5CsuoUIjEvh9WkDAldhNjqFCIaLolVpxCJUYQYdcoQF5fDogzRhzIEAAAAAAAAAAC0mpLTKOJZ15ktXYfELEIMs7l6Shuri1TbXD12EWLU2Vg9ZhFizK9d/P8yhUjMIsSYt86UKVOKxC5CjBQ3Vheptkl5zCLE8LapegDm7LUyhUjUIsTwtDm5dxXXHb0KEam3sbqCz5HO1OL38VQLkdIiVyEiCW+s3lk6K3SlFCIRVdlYPWYRYpjX3kqFSOQixOitmixdh2goQurQsFH6/ObFKxqUKkS0FCF1KFh7lQ3VNRQhdcQuQowqG6rHLEFsVTZU17BB+uTS722qFCKxixCjyobqGoqQOmIWIUbVzdTZJL299LzSAgAAAAAAAAAAeJD0niGGi71DREbvH6KhDCmSV4po2CukyLBCREsZkqeoEtFQhBQZVohoKEOKFBUiWiuMUevSsFdIkbziQkMRUmRkIaJkvxBbUR2ioggpMqS0ULFXSJGCdasoQooMW5viz5HUCpGRe4coKEKKJFeIpP8jRj4Fe4UUyStENBQhRYYWIkqKkDxFhYjmImTY3iEaipAihYWIgrIi16jjZ63rlvxCRHMRMmrvEC1ViK2oDtFUhNiGlSEaipAiRYWIlhokz7AyRHMRkrd3iIYSpMioMsRVEcJeIXrpfcUFAAAAAAAAAABwQOe4PJJ1nVkRGSxENBchxkMPuSepfUSK9hDRXIWI1NtHJLa8PUQ0FyGG2UukzB4iGhTtH6K5CDFS25OjcL1KixCjyv4hauTsxaG6CDFS3PtkYmKwDkmgBEhtD5HO0ufGQCGiuAgxOuPjadUhbds7RHERkkdzEWIU7iGiuArJo7kIMeY2L12PPlOIaC5CCikuK0REZHzpZ1m7ENG+bovmIsQwx9N2IaK1CCmiuQgx8vYO0VyEFNFchBhzW9YN1CGai5AimqsQkeK9Q9gjZOXQ/8oLAAAAAAAAAADQAHuGlPDWe87zev+uff0np8ReQm2rb9F/FlvW2nvS+vKZ2L/4/+Mzaa1bRGRqT1pTelOEaN3jpMj4dEJn0i/pdBef485MWp8jY9OzsZdQWWf/TOwl1NLbP/y6sOrMpPk8i6RTiBi92fS+DkUS3D9EJN1CJLEiZGzd2thLqK1zzBGxl1DJ3GHrYy+hls6s/rOjbRM7hmyCqFBvarFO6CivlvMsrBu+j6o23TWLz/XCqrReq6cPSatgERGZXbdYg8welFYVsveYtL4Oj/+Fu2IvobZXHP/vsZdQyYPGivdocYE9Q/SiDAEAAAAAAAAAAK3WijLEcF2I/PP9/XuF7JlP4yyJb91xnIiIzOxNY70iIuP3HVjr5G79ZxpM7rH+vDeNLyNThhgpFCLjVlkxnsgeIvZeISkUImOZ6xt3Etk/RORAGbL8Z+WFSMc6ozupPUQy+4V0UtiPw9rfpDenvFqwz/a39xBRrJe9PnoK1UK3/zWul9BznUUh4lFiRYiIyFh2n5DxdNbfOdzaI0T5/gq7H3pI359Xb9dfmO1+8IHPjY3/uX/ILXXpru7/PJ66W/fGjaYIMVIqQ7qrD6y9N67/nFlThBiplCHza/uf2/nV+p9rU4Qs/zmRMmTOivdmD9L/9djddOB49MRj7424kmoetHqxsHjhEd+IvJJy7ph9UN+fH7n6dqf3TxGiH8OQIexhiKF1KGKGIEU0DkeyQxCb5qGIPQwZ+HuFwxF7EJKleShiD0NEdA9ERm2YrnkoMmZv9ii6hyL2EKTv7xQOROwhyMDfax6KDNk0XeVQZMQm72qHIkWfI4p/Ud/Led1YpvEX9d3hr2kMRQLR/ONH6kMQm+KhyMAQxFA6DLGHIDaNQ5HsEMSmeShiD0FsGoci9iAkS/NQJDsEMTQPQ+whiE3zUMQehIjoHobYQ5C+v1M4ELGHHzbNw5DsEMSmcShihh9FtA5F7CGIwTBk5dH7ygsAAAAAAAAAAOBAq8oQo2khUlSE5NFSiYyqQrI0FSLDyhBDUyEyqgjpu62yOmRYGWJoKkTyipDC2yooRUYVITZNhUheEWLTVIgMK0IGbquoEBlVhizfTlMhMqKwyFJRiFRYr7o6pMznh6JqYWgRYtNULYwoQwwKkUA0/RjStiLEpqgQKSxCspTVIaOqkCwNhciwIsSmqRAZVYQYmsqQYUWITVMhkleE2DQVIqOKEJuGQiSvBCm8raJCZFgRsnwbZWXIqCokS1MhMqwIMTSVIaOKkCwtdUhRDZKnaSFCEZIOPa+4AAAAAAAAAAAAHug65SZB6ycWz/zRUoiUsWrd4ppjFiJlihBjbkP/WYOaSpFh5pbOqIhdiJQpQoyFVYtrjlmIVClCjIVVi3NdDYVIWd3JTvQ6pEwRYvQm+2fnmkqRYXpLZ4XFLkTKViEiIr3JpTXHLEQqFBZGb+ksXhWFSAmdyUkRUVCIVDmTf2LpsC1itVCpCDHMGekxq4WSRYjRmZhIsg7pLD3XyRQinaVjutiFSGJVSKUixDCfExELkVJFiGG+l0QuRKoUIRpUKUKMXSetEZG4hUjZIsSYPWJD9DqkShGiQZkSxNZZ+p4fuxCpWoXEVqUIMSamF5/rmIVImSLEmNqx+H07diFSpQjRoEwJYvv57YeJSNxCpEoRokWVIgQrD2UIAAAAAAAAAABotVbuGSJSb9+QKnuFFAldiFTZK2SY0JVIlTKkSMhCpMpeIYX3EbgQqVKEDBO6EqlThgzcR+BCpOp+IbbQhUiVImSUkIVIlb1CCu8jcCFSpQjJff9YdUiNMsQWtBBxsN7ghYiLM/cjlAu1yhBb6GqhYhViS7EQSaYMsYX+sWQlFCG2CGVIpSKkSOBCxEUREnLvkDpFiC1WGVK1CrGFLkRcFCEh9w6pU4QUCV2INC1CQu8bUqcIGbiPwGVIlRpk6P0ELkRcFCEh9w6pU4TYQpchrmqQ0HuHuChC6uwdwn4haaEMAQAAAAAAAAAArZbWxRcTYPYQMVLZSyTUPiIuihDD7CWS2h4iRuy9RMoKtY+IiyLESG0Pke5k/+dG7L1EquhNjnmvQ1wUIUaoPUSaFiGG2T9k+X59lyIOCgsj2B4ijtYcbA8Rl2fsT0wEq0OcFCFGqD1EGhYhRmdpr5aUCpHk9g4xQu0hshKLECPw3iFOqhCRYHuIuNwjZPqQKe91iIsixAi1d0jTEsQ2e8QGEfFfiLjcI6Q3sfiziu9CxGUVEkJqe4MYLooQI9TeIa6KkFBS2xvEcFGEGKH2DkltfxD2BkEdlCEAAAAAAAAAAKDVWrtniFFm7xAXe4WM4qsQcbVniM1XIeKyDMnjoxJxsV/I0Pt3XIi42iukiK9CxGUZMnDfngqRpnuFjOK6EHG5V0geH4WIyyok9/49FSKuypDC+3ddiDgsQvJ4qUM8r9lbIeLrc8NTteC0CCni+jlxVIQUSakQEUmwDsly/WPKSi5CingqRJwVITZPZYjLIiSPj0LEZRWSx3Uh4roIsfkqQ1wWIXl81CG+ixDXe4f4LkJ87R3isggZuG9PZYjvIsT13iG+ixAf+4a4rEHy+CpDfBUhvvYMCVGElNk7hL1C0kQZAgAAAAAAAAAAWi3NizImaP3ErNM6xFcRYpg9RIympYjvIsRIbR8RkQN7iazUPUR8FiGG2UNExE0l4rsIMcxeIqnsIdKbXLr+sec9RFxyvYeI7yLEMHuJNC5EPNcVRrD9QxxyvoeI78+NpX0tXBYiQaoQkcUz0108P56LECO1PUSS3T/EpcSKEJFAVYjI4teewzrEWxFiON47xHcR4oPvIsRwtYeI7yLEcL13iO8ixAf2CMk3vnSc76IQ8VmDZLneO4Q9QvzzXYQYrvYOCbU3yPvvXrwSj8tChH1C0FRa3y09CHGJLCPVzdVFwm2w7oqLoYjvy2PZ5tZ1Gg1EfF8ey2aGIkad4UiIQYgttc3VRZoPRXxfHsvmYiji+/JYtl7mh6M6g5FQQxCbs6FIIE6GIoEGOEbjoUjozw0HQ5FgQ5CsJpuqBxqC2BiKBNB0Q3WGIOU42FTd+xDE1nAoEnoIMn3I4s9QTS6XFWoI4kqoIYityVAkxgDExWbqoYcgnaXjhLqXy0pxo/RQQxDbxHS31kAk1vBjasfi9+sml8sKOQiZ2rH43Da5XFaoIYgrqW2QLhJv+HHD9LGlLpWF9HCZLAAAAAAAAAAA0Gqt30DdKNpIPWQZUqRKIeL78lhlVKlDQl0eq6wqpUjoMiR3DRVKkdBlSJEqhUiMMmRgDRUKkVCXxxqmSh0SuggpUqUQCV2EDFOlEIlVhtgqFSKBC4s8lQoRBeutVIco+ZyoUohEKUKKVHn+IpUhtlQKESOpQkSkWh1CEdJMhUIkeBFSpEIhouHSWFUKEQ1FSJVLZcUqQmxVyhBNl8SqUohouSxWlUJEQxVS5XJZsYqQvjVUKEO0XA6rShmi4ZJYVcoQbSVIlctlaahCqlwuS8PlsIrKEDZOT1v8V3YAAAAAAAAAAACP4o/lAzFTu6JCNxMJzgAAtYZJREFUJKbU9hJxvbl6SGX2EtFQhBhlNlfXUoQYC6s6I+sQDUWIkdoeIqltqi5yYA8RI5UN1stsrq6lCDF6k+Oj6xAFhYVRag8RRestvX+Ips8LDxurB1FmDxElRYjRmZhIqg5Jbg+RsvuHJFaFqCpCKlBThBhz8yPrEA1FiFFmDxENRYhRdjN1LVWISLm9QzQVIWVoKUHq0FCEVKGhCDHKbqaupQoRKbd3iIYixCizd4i2IqQMDSVIFRpKkFEoQtpBzys8AAAAAAAAAACABytmzxDDlCEa9goZxq5DNOwVMopdiGjbL8RWVIdoKkNseYWItjIkq6gQ0VSG5LErEQ17hYxilyJa9gspYtchmvYKKZItRLQVIXkGChFFhUWR3EJE8boLCxHNnx855YKqvUKKZJ9TZUVInpQKESOZQsSwf4ShCHEvZ+8QdUVIVkEZoqkIseWVIZqKkCJ2IaKpCCmSLURSKELsvUO0VyH2viEplCD23iGaapA8RWWIpiLElleGaCpCbEVliPYqxN43JIUixN47RHsVYvYOoQxpB92v9gAAAAAAAAAAAA3pH9c7ZqZ4/3z/CyKvZDizj4j2/UOyzF4iqewhYvYPMdZu1XtGhTGXOetjzX36z6RfWNX/nE7t0X82r8iBfUQm9qZzlmxqe4mYfURS2T9EpNweIpr0JpfWO2oPEUV6kxMH6hDFRYgxsIdICmfWT0ws1yFJFCGGOUN91H4tSnSW9mpJqRDpjI+nVYeYPUQ6aZ3blUQRYpjPh6WvP9VViMjiviEiy4WI5iLEsPcOSaEKyUqhCMlKoQixaS9CbCkUIcb40jH9zMGTkVdSjtk7ZN+D0vm6M3uH7D1G/+9aRA7sHTJ9XPF+TpqlUITYtBchBkVIu6T10wMAAAAAAAAAAEBF6YztHbtz30EiInLM2h1R1zGKKUQmJxfPWpib038WgClEZvdNyNi+dOZt82sW/1/zHhxZqa1XRGR+qRSZKNhLRJvu1OLn79hsQmdPp3HSzQHmzF5J43NCRBZPI0jo5OkDz3EiUluviHTGFl8rkjmr3lQWKZUhCewTkrW8Jd/yc63/c6PX7R2oLHoJPN+JFSFGb6le6BTsb6FRZ/Xq2EuoZO9JB8deQmWpFSH3P2KtiIgcfNNM5JWUN3/IOhnfk856UytCehPpvSbbe4ZoV7RniGbzivczybOwJqGfSZeMr55PqgjZObP4i6xUipDPb/sFERF52UMjLwROpfdqCgAAAAAAAAAAUEGnt3zq2sp04dcvVV2HfP3OE3PfrrkQmd22duBtmguRqR35ZytoLi4m9w5+2Wpeb9E+FloLkaL1ai5ExuYH1zw2r3e9nZz1ioh0FJ+pnrf3hub9ODpFH/85vXsYdPL2CVG83qKz/Xua97XIOezrzSper5EtQ1KoLOznOYU1d3vZP8RbSFkJliGd8QPH7ymUIZ116wbfuGl9+IWUtPehm3PfbvZV02gusbOmi9aruRDJO37XXIikWFh0Vw2+npn9ATUqKkLm1+pcc1ERMqv49SOvCJlRHO0VFSFzh+k9Rh5fPfgz0pnH3hFhJeWYIsR20ZHfDbyS8j6/7Rfks0/4x9jLgAf6j8IDMJfMMjQPRwxz2SxD83BERKS7tv8gVPNwxJjPvFZrHjQY89b3liTWnNlgXetgJMtcNsvQPBwREeku/TCleShi640vbayueCiSleIm5WZjWdVDhqzU1iuLG6urHohYOlNLG8FrHIrkXR5L8aWnCs8x0rzmbs6aNV8uK/EhiKH5clm5QxDligYhWrVlCKKZ9uN0W1uGIBqldjkskfQuiZXa5bBE0rskVt7wQ7Oi4Ydm5pJYaL+0XmEBAAAAAAAAAAAqWvGXyRJZvFRWHg2FSNFlsvJoqUPyLpNVJGYhUnR5rGFi1xZ5l8caJeaaiy43NUzsQqTOmmOeeZZ3eazR7xP3TLmiS2QV3j5yJVKn+ohZihReHmuYyNVF7uWximgoRCqc3a+mEKlwuKeiEKmyYbqS2qLSIbWCNecWIcU39reQslpShBTeVkEhUqkIUXK5rCpFiIbLZaVUWNRZa8zLZdU5Ho99uazUapA6JUjMy2XVKUJiXyqrThES83JZdYqQ2JfLqlOExLxcVpUiRMtlsqpUIRouk1VUhHCJrPZK67svAAAAAAAAAABARfFPQVIs5l4iVYoQw+wjEqsQqVKEGGYvkRT2EBE5sC9H7EKkitTWbPYRiV2IVNGdGkvqusSp7SWS2j4iIvH2EqlVhYhE25ejUhFi2GdPh1xzjbP5O5NL+3HEKkRqBMBR9xCpUoQYkffjqBVZj4/HW2+VIsSIvYdIYlVIlSLEiLmHSK09QnbuWfz/SIVInT1CTP0bshBJqQQxmqz5gVNXBa9DUjoGN1ZCERJbavuEsEeIfythj5Drb3+wiMQrROrsE/LJrY8SkbCFCHuDIK1XXAAAAAAAAAAAgIrSG/F7YK4DV7R3iGFKEQ17iQxjChFDy14iw5hCRCSNSmTeGninUF1k1+x7vXX23bCFLkSarrk7tVRbBDo7rc5eIbbQhUjVvUJsoQsRF1VHrEKktkiFSCOTE0msN3gh4mBLuM7UZLg6pE4RYgtciDTedi/0eusUIbbQhcgKKEJsoQuRWlVIVuBCpE4REktqVUhq63VxzL2wfpWIhNs7ZCUWIZ25xY9TqL1DmhYhE/sW1xtq7xAXRcjU0r6ivvcOSa0GSa0EEalXg8RUpwSJqWwRwl4h7ZfWd2MAAAAAAAAAAICKOr3Gp7W1z6hCJMtXJVJnz5BRfBcidfYMGcZnITK1w89ZDb6Ki8m9fr5Mfa3XRRlSxFcp4nrNvgsRF2XI4H36XXPTMmTg/jwVIr4qDp91SO29QkbxVFzU2iukDJ+FiOOz970XIo4P77wXIi7KEJun4sLbobOv9booQorv3M/9rsAiZOA+PZchjYsQm+cyxHUR4nPfkNQKC1/r9bl3iK/jbF+FyEosQmy+yxDXe4T4KkN87g3iqwzxVYTMHOzlbr0VIXOH+TsWdl2E+N4zxEcR4mvPkCr7g1CErBxpfVcGAAAAAAAAAACoiD1DGvKxj4iPKkTE314irosQI7uPiEhae4mksIeISHrrFVncS8RlHeKrYjF7iCw/jqMz2HwUIUY3c9aay0rEdRFihN5DpKnk9g8Rcb6HiLcixPCx54mns/XNHiKGs1LEU7XQmVra88RHIeKjChEJvidHYx7W67UKEVksOFzWIRQhy3pz817qEOdFiOF47xDfe4OY4z+XhQhFiH+h9uZzJaUixEcNkuV67xDXJYjNx94hPqsQH9gjxB/fe4Ncf/uDRcRdIRJib5BPbn2U0zqkShGClSetV2MAAAAAAAAAAICK2DNkiCp7hxguChFfZUgeF3WIrzKkiItCxNeeIXmaVBe+9goZpcmafe4XYnNRiIRcr0jzM9p8liH5j1d/vb6KkJGPW7MUCV1suHg8b3uFFGlYXHgvQ2xN1huhJmhUhwQ+nHNSiPgqQvI4+HgGP2RusGbvRUj+g9Z/38SKEBG/VcjAYzkoRLwVIUUaFCK+q5A8TQqR1AqL0Ot1sXdI6CKk7t4hKZUghu8ixNa0DPFdhNhclCEhi5Am+4bEKkGa7B0SsgZxsWeI7yLE5qIMCVGFGC7KkDpFCHuFrDwMQ0qoMxQx6gxHQg5DbHWGI6GHIUadoUjIIYitzoAh1jDEqLPm0MOFrCrDkZjrFKn3Q13oQUj/Y1dfb6xhiEi9gUisy1fVedzgQ5CsGgOG4EMQW52hSMRLK1UaikQ+jKs1FAk5BLHV+LhGP1Sus+ZUhiEMQao9do2hSPAhiK3CUCTGEMSoMwxJbQgiEnfNdYYisS6LVWcYktogJPQQJKvOQCT0EMRWZSgS83JYdYYhsS+HVWcYEvOSWHWGIqGHIEadYUjI4YetzjCkyeWwGIKsXGl9xwYAAAAAAAAAAKiIDdQ9Mxusi7jdZN0Xs8l6mUIkVhFiZDdYT2lzdSOFTcvn15RfZ+zSQmRxc3URN5fP8i27wXoKm0GazdXLFCIxixCj6ubqMTc1NxurG+o3WK+4SXn0KkSk2poVbLZtNld3tqm6R5U2Vo9ZhBgVNimPXoQYVdYcowgxTOVRphChCKmlt/QaVqYQiV6EVBCzCDGqbKhOEeKPlmPihfWrStchFCH+xK5BqtKwQfrU0pUlyhYisauQslLaHN2IVYNkVdlIPWYRUhWbo6Op+K/WAAAAAAAAAAAAHqVzWkBE5jpyTfYOETlQiaRUiBguNlr3yVQiKRQihilF8sqL2HuFZCVZtCRUiIgcqESKzoaLuVeIrUohokHVQkQDU4rkFSJR9wqxVSxEVBi2ZgVFiG1kIaKlXJCKhYgGI2oLNVVISVGLEFuVQiQBGoqQKtQVITv3FO4boqEIsQ0rRFKpK7I0rfmBU1eJSP7eIVqKkCooQurrzC1+vIv2DqEI8UdjCbLqgcX/z9s7hCLEn5RKEMNVEcJeIUjnVRsAAAAAAAAAAKCGTi+1U98UaFqI2Ewp8vU7T3R6vz5kC5HYe4aUYUqRqR36zoCwZYsLTWVIEbsQ0bBnSJFsIaJ5nYZ9dpymMiSPqUQ07BUyil2IaN+fw16fqjLEZtUWKvYKGcauQxSWIbblQkT5odtAHaJhr5BRrI+/2sNje52aipAidiGSyH4hKRQh9t4h6qoQ21IhorEIsdlliKbCogzN67XLEO1ViL13SEpFiKYaJI9dhqRQhMyvPbBmzUWIvWeIxiLEli1DUihC5g5bPN5NoQTJ7hmSQhFy0ZHfFRH3e4NQhMDQ++oNAAAAAAAAAADggO5TBVYIs5dICrJ7icxGXEdZZi8R2ZHAWSaZAf3k3njrKMusd2qX/rM2zB4iIiJTCZQhZg+RiX36z1QXObCPyLj2EkAO7CEyNp3GvgZm/5Cx/QmsN7U9RMx6pwevXa7V8h4is7q/Ay/vH5LQc2v2EOnNK//8NetM5etMJJkSxEihCDHM58HYQZsir6ScFIoQw5TEMwel9fmruQgxzN4hD/phAhsRisjC+sX1pnLsKKK/CDHM3iHz6ycjr6Q8zTVI1tTSlSb2HZbGekXSqEGyUihCjBRqkCzXRQhgS+eVEQAAAAAAAAAAoAb2DKnJ9b4hIiI3bjli+b/XrNF71ufeuzbEXkJlU/f1n+U3pvTpndzT/+eJaf1fnuPT1p9nda553CpCxmd0rjPL3t9kbE7nNZXHrH0s2DvEnaT2DDGsQqij9Qx2ex8Le58LhXr2mrVWDNY+FtpLljzqC5ElKRQinbH+M9W17nNirzOFosVUWMt/Xqt0P7/NB/f9ce+JB8VZRwXTh/T/7NBR+nk7s7H/83RsQec6s9bc1/+9bO3dOivCgWOwBf3HYKYoXv6z/bqmRNfaG6Q7qf/1dn7N2NA/azG31trvaL3Oz4Gshan+P88cqvN1rGuHo0frr9u6s/2LPuXB90RayWi3bz9wrHDKYduc3z/7hSArjX5SIfOF5GMoIiKyf//idwTNQ5GUdaf0DkSy5lf3H7ykMBxZmOqoHYhkLSxdOiuFoYjRnRxTOxDJ6k0sPrcahyJFP8j2JsfVDkSyzKadKociBZdJ601O6B2IZJlfKiocigwMQYyJCb0DkYzO1OIxTYpDEe3MBtoahyIDw4XUmI3fFQ5F7CGIatYgRERk3c93iIjOoYg9BNHMHoSIiHTHF7/uNA5F7CGIZnnHhOZSqxqHIvYQRDN7EKKd1qFHHnsQopU9/EjBwCBEKXv4kYLsEMQHhiDIk84rOwAAAAAAAAAAQA2UIQ2FKkQMShF3utYZCSmVIhoKEfvyWFkLU0vVRUKFiKGhFLEvj5VlMvKUChFDYymSZc6q01KIDFuH6kIkR2/p7HU1hUhRaSGiuhDJNbF0KKelEBlyKZmUCpHOxEQyl8oS0VWIjCpCOmMddZfKGrpmRYXIqCKkt2+fnktl5RQhmo0qQnpjHTWXysorQjQbVYTsO2KVmktlaTkGHCWlEsQYVoSYn2s0XC4rpRLEGFaETO5ZfN3ScLmslIqQVEoQI6UixHcJYlCEYJj0XukBAAAAAAAAAAAqoAxJDHuJVGNvnD6MKUVSKUQ01CGjmELEiFWK2JunD7OwqqOiDhlFSyFib54+TMy9RKpc31lbITKMikKkYK+QPOoKkWEUFCKFe4XkiV2IVDhjOpVCpLP0nFKIlHzsCnuEmNvGLkRS2dekyh4hvX37Ft8nViFSoQjRsHdI6nuEFNGwd0jqe4QUibl3SNUipNPtRd9EPaU9QqpUIRP7u9EqklT2BslKpQqpVIRsWbP4/5E2Uk+pBhEJV4QAZVCGAAAAAAAAAACAVuv0ej39p0AnpMneITduOaL2+4YsRfbetSHYYzVVpQyxhS5EJvc0e//QpciwPUNGvm/gQqRKGdL3foELkWF7hZS/j7BnqVUpQ7JC1yFNzt4LXYg0fbzglUiFMsQWvBCpUlrYAhYilYqQIqFrhgZn+GsvRIyUChHtZYgtdCHSqAgJuHdIlSJk4H1DlyEO9ggJWYg0KUJC7x3SZI+Q0GVI0xok9N4hTY65QpchdfcJCV2GuChBQu8dUrfwCF2GNClCQu8Z0rQEmTk07GtXoz1CApchTYqQUx58j8OVDNekBDnlsG2135e9QlAGZQgAAAAAAAAAAGg1yhBPqhQiTYqQrFB1yEopQ7JCVCJNyxAjVCHSpAxZvo9AhUjdMmTgfjyXIi7KkAP35fdstbpFiC1UIeLy7D3fpYir+/deiDQoQmzeCxEXpYVIsDrESRli+K4ZHJ0hnUodIkIhYnO574bvQsTpHiGeC5EmVUjf/fguRBwUIUaoMsTVPiG+C5EmRYjNdyHian8Q32WIy2O4UGVI3SJk4H48FyIu9wbxXYa4KjpClSEu9ggJVYa42hskRBnSqAbJ8lyGuNwbJFQZ4mp/kCqFCEUIqqAMAQAAAAAAAAAArUYZ4lmZQsRVGWLzVYqsxDLE8FmIuCpDbK5LERdFSO79eqhEXBUhA/frqRBxWYYs3p+/M9ZclSGGr0LE11l7PuoQX8WJt0LEYRlieCtEXJYWIt4KEadFiM11zeDpjGgKEfd81iFOSwvxV4a4Xmfmjt3fpaMiZOB+XRciDosQm69CxFURYvgqQ1wWIYavMsRVEWLzUYh4O87ydKzpqghZvj+PZYjLKkTEXxniq+Twcb8uapDc+3VciLgqQWw+yxBnRYjhqQxxWYQYvsoQVyWIrUwZQhGCOihDAAAAAAAAAABAq03EXgD82b+/f0wfak+RNutaZz6E2EukqfnVi2d/hNpLpK6FqcV1htpHpImFVUtrdVSIuC5CDPusKt/7iDTRm+g/SynUXiJ1mbP1fO8f4kJvYvHzwFkh4qEIMXqTE27rEF+lhTlz22Eh4rUKERGZWDrka1oz+N7TYWrxG20KhUhn6TnVXoh0JpfW6fBry1dpYe7XVSHirQjxwFcRYvT27Vt8nKaFiMcixFj38x1O6xDXRYhhzrR3WYj4qEJERLrji2t1VYj4KkJ8SOFYTcR9CeKT6xLEZn5mcVWIhNrbwwVfRYhrvooQH5yXIB75qEF88FWCAKFwmaxAhl0uy9dlsoo0GYqkdIksEfeXySriYiji6zJZeZoMRnxdJqvw8RoMR3xdJiv3sRoMRnwNQ4ofr/4PsK4vjzVK3aFIqE0tlx+vwQ/aoX9IbzQU8TgIsTkZivgeMBgOhiLehyFZTX5573kYYkthKGJoH4oYTYYioYcLdYciwYcgDS6X5XsIMvB4TYYhAQYhhothiK8hiM3FMMTXECRPk4FI6CFIk8tlBT++qnnsGXoI0uRyWb6HIAOP12AYEnIA0uSxQg8/mlwmK+QAxMVlsoINQRxcJivkEKTJpbJCD0GGXSaLy2OhiXRG5AAAAAAAAAAAADVwmaxAPvuEfyy1mXoI2ctntfXSWaGKECO1y2elcukskXQun+X60lk+mbOsNF82y+hNdNRfMktkhV82y5Pe0qV9ahUiISsLkUaXzQpahDQRuAgxUrtsVgp1SJ3LZsW63FSdy2ZFWWuvax689LuELkIMZ5fL8mzdz3eISL1CJFQRYjS5XFbIIqQJLovlRyqXxgpdhDSRyiWxUrkclkg6l8SKdjmsLWsW/79CIZLK5bBEdF4SiyoETaXxnQIAAAAAAAAAAKAm9gyJwC5EQu8ZkqdsIZLKniGhy5A8ZeuQkHuFFClTiITeK6RImUIk5F4hhWsoUYiE3iukSJlCJPReIXnKFiKh9wvJXUOJsxI1nLlYug4JuFdIkVKFiJbKokQhoqIIKVMxRCpCbCmUISLp7BsikkYZklW2DtGw1jKFSKwyxFaqEAm4V0iRMoVI6CKkSJlCREMRUnbvEA1VSJm9Q1QcV5U8BtVQhJTZO0RLEVJm7xANRUiZNWgpQsrsHaKhCCm7d4iKTdJLlCEaipCye4ZoKELsPUMoQuBK/O8YAAAAAAAAAAAAHrFnSARmmqllDxGR/n1ERNq7l0hIKe0jYvYQMTTvJWL2EBHRvY+I2UPE0LyXSPZsK837iPQm+p9TzXuJ2Gf8aThbMY/ZP8TQvI+I2UPEqLWXSChTk7X2DwluYuk5TaBmSGXvkM7Sc5pCIVJm7xAVlUVJqaxVSxFSioIipCwtVUgRDSVIWRpKkDK0Hlvl0VCClKWlBhlFQwlSlpYaZBQNJUhZKkqQEjSUIGVpKEGKUITAtXS+gwAAAAAAAAAAANTAniEKnPjh/x17CSOZUoQ9Q5qzCxENe4YUyRYiWvYMyWMXIhr2DCmSLUS07BmSxy5ENOwZUsQuRDTsGZLHPoNR8xmNy4WIgr1CRunMzevZK2SYpVJExV4hReyaQcl+ITbtdUhWCoWIkS1ENFcW9t4hmtdq7x2itQoZ2DdEcRFi9g7RXoKILO4dkkIRYvYO0VyE2HuGaD2Gso9BNRch9p4hmouQbMWuuQix16a5CMnuGaK5CLH3DFFdhCztGaK9BjF7hmguQYyfPucvYi8BLaX3OwkAAAAAAAAAAIAD7BmiwGlH3y0iIjduOSLySorZe4qgPnsvEc2ye4mMJ7KPiIjuMsTsJaJ5DxGRA2dgTezXf1az2UtkbEbnWYKGOTtwbJ/+s9rNXiKdBMqQ3uSEdGb0P6dizgifnhl+u5gS2UMklf1DRBLcQ2RB/9e86hLE1ls8S7yzalXkhZSkuAgxUihCjBSqEBHdRYix74jFr6F1d+yLvJLheuNLH/MEXqc6S5Xdwpo0fiWkuQgxNJcgNs01SJbqEsSivQgxUihCTjlsW+wloOX0f0cBAAAAAAAAAABogD1DFDnuHX8tIiLjm/Se6di7d/WB/57U+6kzdb815+vpPUtjatfi/3eUnzQ6uXfx4z02F3khJUwsVRdj83o/R7P7hWiuRDrWXiHjc4rPHlwwH3fFa5QDz2lnVvkXvYh0lp5TmVO81sweHB3N67SvIz6XwIvpbAJrlDQKESOFQkREdBciHfsYT+9rvimDZFz32aKdNUvH94c9KO5Chpg7pH9fk10nrom0ktF6mU9RzWeKr35g8WvH3ntPozX3LFaVY7OKX5uyFJchy/XKku6U3vNjFzL7mJi6XiNzlYLZDXqfS6O79G1pdqPe51NElk/b3r9Z7+tTx3o5WjhC8fHorgMF2Koj9RZ20/ctfm+/7fdeGXklaDuGIQqZoYiIvsFIdhgy8HeKhiMDwxBD4VDEDEOyNA5GzDDEpmk4MlEwVNA4FMnbPF3jUMQehhgqhyILg8+fpsFI0XOpcSjSyXkuRUTnUCRnQ3KVQ5GF/I+/+qFIIgMREYYiXmgaithDEEPhMGR5CGJTOBRZHoRkKRqK2EMQQ+MwpJfzKapxGGKGIDaNQxEzBLGpH4ooHIbYQxBD4zBkIWczd43DEPtSzYamoUi34NuRymFIztOmcRhiD0EMVcOQXcWXv9M2DDEDEBGGIAhHz6s0AAAAAAAAAACAB5QhSmXrEBFdhciwOkRERyFSWIZkKalE8soQm4ZSpKgMMTQUIkVlSJaWSiSvDLFpKEWKagZDRSFSVDFkaChERj2Xy7dTUIoUliEieuqQnCLEpqIQKShCbBQi7qRSiCRRh2gpQ4qqkCwFhUhhEZKlpA7JLUIMBWVIURFi01CI5BUhNi2FSFEVIqKjDCkqQWzqyxBDQSFSVIQYGsqQvBJk8Dbxn0uR4hokS0MZUlSEGCrKkBJPk5YypKgGyVJRhgwpQkR0VSHZIkSEKgRhxX+VBgAAAAAAAAAA8IgyRDm7EDFiliKjypC+20aqREqVIUbkQqRMGWLEKERGFSF5YlUiZcoQI3YhUqYMMWIUImUrhqxolUiJMsSIWYhUfU5jFCJDixBb7OqiRBliRClEShYhWerrEBEKEYeSKEOM2IVImTLEiFCIlCpCjMhlyNAixBapEClbhWTFKETKFCFG7DJkWBFii1GIlC1CDMqQ4UbVIHliFCJlipADt437NVSmCDFilSGjapA8UQqRCk9P7DKkTBFiRCtDRtQgWTHLELsEMShCEANlCAAAAAAAAAAAaDXKkEQUFSJGyFKkShmy/D6BC5FKZYgtcClSpQzJClWJ1ClDjNCFSJUyxBa6FKlShhghC5E6ZYgRvBCpUjMsCV2I1H0+Q9chlcoQI3R1UaEIsQUtRGqUIQaFiFsUIg6FLkSqFCFGwDKkUhFiC1yIVCpCbIEKkTpFiBGyDKlShNhCFyJVihAjdBlStQoxkqhDApchdYoQI2QZUqUIOfA+YZ/LKiWILXQZUqcIMYKVITWfktBlSJUSxBa8DKlQhBghy5CiEsSgCEFMlCEAAAAAAAAAAKDVKEMSM6oQEfFfidQpQwbuw3Mp0qgMsXkuReqWIYbvQqRJGWLzXYo0KUMM34VInSIkj+9KpEkZYngvROpUDAV8lyJNn0/fhUitIqSI7/qiQRlieC9EGlQhWRQi7mivQ0QoRPrUKUKyAtQhjaqQLM+FSKMixPBchjQpQrJ81yFNihDDdxlSpwQp4rsQqVuEGEmUIYbnQqRJEWL4LkPq1CD59+P3uWxShBi+y5AmJYjNexnS8KnwXYY0KUFs3suQGiWIzXcZMqoGEaEIgQ6UIQAAAAAAAAAAoNUoQxIVsxBxUYYM3KfjUsRpGSLitQ5pWobYXJciLssQw1ch4qIMyfJRibgqQwxfhYiLMsTwVoi4rBnEbx3i6vn0VYg4LUMM1/WFgyIky2sd4qgMMShE3KEQccRXGdK0CLF5KEScFSGGpzLESRFic1yIuCpCDJ9liIsqJMt1IeKyCDF8lSFNixCDMsRNEWL4KkNcFSEH7s/9c+miBsnyVYa4LEIM52WI43+6zzLEZRUi4qEMcVCC2HyVIRQhSA1lCAAAAAAAAAAAaDXKkMSVKUQMV6WIjzJk+b61FyKGw1LEdRliuCpEfJQhWS4rEddliOGyEHFdhhiuChGXRUgRZ6WIj5pB3BYivp5P14WIlzLEcFVgOC5DDKeFiOMixEYh0lwKZYixogoR10WIzWEh4rwMMRwVIl6KEMNRGeK6CLG5LERcFyGGqzLERxFiuC5DXBUhtiQKEUdliMsSpIirQsR1EXLgft39HO66CDFcliE+apAsZ2WIp09Nl2WI6xLESKEIMVyVIWVKEIMiBBoxDGmJKkMRo+5wxOcwpO9xHAxGvA1DDAdDEV/DEFvd4YjvYYjhYijiaxhiuBiK+BqG2OoOR0IMQ0QcDUR8/gJf3AxFQj2fdYcjXocgWS4GDp6GIYaToYjnYYihfiiifCAiwlDEqSYDEd9DEMPBMMTbEMTWYCjidRBiNBiI+B6CGC6GIb6GIIaLYYjPQUhW3aGIr+GHbaUMQ0IMQkTqD0N8DT8GH6f5c+lrCGK4GIb4HoIYtYchgb59uxiG+BqCGE6GIR4HIFl1hyFVhh8GQxBoxmWyAAAAAAAAAABAq1GGtEidOsSoU4mEKkSWH69GKeK9DLHVKEVClSEi9eqQUGWIrU4p4rsMsdUpRUKVISL16pBQJYNRqxAJVTNY6pQioZ/PqoVIsDLEqFNfeC5CbLUKkUBFiI1CpLkUChH1ZYhRpxAJVYYYNQqRYEWIUaMMCVKEGDXKkFBFiK1OIeK7CLHVKURCFSFG1TIkVBFiJFGGGDUKkVBFiFGnDAlVhSw+VvXn0HcJYqtThoQqQWy1ypCAn5J1yhDfJYitVhkSqAQx6hQhdWoQgyoE2lGGAAAAAAAAAACAVqMMaaFQhUjoMmTg8UuUIsHLkKySlUjIMsRWphSJVYYYVQqR0GWIUaUQCVmGGFUKkdAlg61UKRKpDDHKFCIxn8cqdUjwMsSoUl8ELkOMSoVIpDJEJIE6RIRCxBH1hUiVMiR0EWIrUYgEL0JsJQqRoEWIrWQhEqsKEalWhoQuQowqZUjoIsSoUoaErkKykihESpQhoUsQW5UyJGQRcuAxy3/NhC5CjCplSKwixChVhkT8lCxbhoSuQbJKlSGBSxBblTKEIgQrAWUIAAAAAAAAAABoNcqQFmtSiBjDSpHYZYgxrBCJWoYYIwqRmGWIMawQiV2G2IaVIrHKkKxRlUiMMsQ2rBSJXYYYQwuRyGWIyOg6RMPzOKoQiVaFZA2rLyIVIbahhUjEIsRGIeKG9kJEfR0iMroQiV2FiAwtQ6IXIcaQMiRqEWKMKENiFiG2YYVIrCLENqwQiVWEZI2qQ2IWIUbqZUjsIsQYVobEKEEG1zD8Z+tYNUjWsDIkdgliG1qGKPiUHFWGxCxCjKFlSOQixBhWhjQpQQyKEKRGwcsbAAAAAAAAAACAP5QhK4CLQsTIliJaypAsuxJRUYbYrFJEQxliyytFNBUiRXWIhjLEKCpENJQhRl4hoqFoyMotRDQUDUuKChFNz2NRIaKiDDHy6gslZUjWQCWiqAwxKETcoBBxwC5ENBQhtkwhoqYIybLqEBVFiM0qRDQVIYZdhmipQbLyyhANRYhRVIZoKEKMVMsQLUWIkVeGaChCjKIyREMRYhSVIZqqkNwiRNenoogMliEaShDbQBmipAbJypYhLkoQgyIEqVL4cgcAAAAAAAAAAOAOZcgK4rIQETlQiWgsRAxTiqgsRIylUkRjISJyoBLRVIbYTCmiqQyxmVJEUxliG5/pqSoabMuViKaiwWJKEc3PoylFVJUhWaa+UFiGGMuFiMIyxKAQaU57HSKSSCHSVfpak9FRdmb2sqUyRGURYiyVIRqLEMOUIRqLEMOUIZpqkCxThmgqQWwplSHaapCs7tSYqhLEZsoQTSWIzZQhmkoQ23IZovRT0RQhGksQY7kIUViCGKYIcVmDiFCEIH0MQ1Yg10ORsRml30EzJnfpPVgypnbqXuPUTv0vFVN79K9xYr/OH3JF9A9DzEBJ9xoTGIaYNc4p/enCDEGGbVweWWdB/xpl6fBO9S/LGYY0pvrjazAMaayzfl3sJRTqTE6KiMjsSUdEXkmx8b2LrzXbz9gYeSXFDrpp8RdWu49z+wsrVzbdvEdERBZW6/2l3/j+xY+z5kGD0ZvUO2zQPgwZtjm5FtMH61/j7EG6f/cwfYj+Y4eFtXp/3jPsy8g3xRAEbaH/VRoAAAAAAAAAAKABvad2wBszzXVViEzu7J+pzW3SNyEfm+k/86G7St+ZBp3M06Yx47fX1NH3YZaudRLTmMIT33uZjRM7Cs+W7U0sfqA1lw2s0Y3e5LjeOkREZHLpEEVzfZHAGs2m0KoKAvPaZzas1rQ2o9eVztLHt8fHt5ZOZ+n73fjSZWEUXlZOexEiS9VFb2axUuqsmoq5mj6mCNHMFCGamSJEM1OFaGWKEDSTt3G6Fj29oYqIiPTGdVcWqdB8SSwRkck9/R/nBYVXh7R/Nzd7qJsnlSIEbaP3Ox4AAAAAAAAAAIAD7BmywrncP2TVvYOhkZZKZNW24rmflkpk1QPFZ5RoKEUmd+c/T5oKkYn9+WvUVIiM52zyrqUQyVuboaFwMHuGFNGxxvw1aFibkbcWNYXIsE3TFZyd3xl1ZruCNUrBYZ2qciDvNU/T+kREeoMfa82FiKHh47xchBTQUIioL0JElquQrBTKEA17h4wqQjTsHTKsCNGyb0heEaJpz5CiIoQ9Q8oZVoJo2TMkrwiZW6vn41tUhMxs1F+KaNgzZFgJYjZQj82uQbKmD9Px85Ndg4i4K0JEqELQTnq+kwAAAAAAAAAAAHig59QORGFPeV2WIiJ69hOZ2bz4uHmFSEr7iWgoRGyp7SWiqRIxzD4iWgqRPEnsgaF4jWZtIvHWN+xxzRmKagqRPAnsz6F5jSr2lhj2Gqdl/5CcIsRgD5ERjz2iCNEg1SLE0LB3iOa9QtgjxI1he4SMTy++tsQqRNgfpDnNe4MYmvcIYX+Q5jTvDTKsBDFiFyF5JYhLlCBYCfR/JwQAAAAAAAAAAGiAPUOQq04hkrdnyCihS5Fhe4fYYhQiw/YNsYWuRIr2DBkmdCVStGdInliFyLB9OWyhS5EqazNCVg6j9gzJilVfFO0Zkif0Gqs8XrRCZNieIbbAZ+eP3C/EFroeqHA4F60OqfKaFnqNQ4qQwndRXIhoL0NC7xuSehFii1WGVKlCQu8dUrUKCb1vSJUiJNaeIcOKEFvoMqRKEcKeIf3qlCCh9wypUoLE2jOkShHCniGDqtQgMfYLKVOEGKHLkDolSJ09QyhCsJLoP1IAAAAAAAAAAABogD1DkMtMhasUIjOHLZ6FWKUQ0bKnSJ7sXiKa9xExfJcicxsWn48qhYhZk/Z9RETYS6Su3sSY+j06RPxXGFWKEEP1HifWGYsq9xJRvD+HiKheX/B9Jeq8hmnZQ2QIzXuIhPwY19krxJQavguRthUhRui9Q9gnpD7Ne4RUKUFiqbNHiCk5UyhEfNO+Pwh7g4QXqgjRvC+IUaUGCanJniAUIUA5ur87AgAAAAAAAAAANMSeISilSiFSZ++QrBB1SJW9Q/L4KkWq7BlSxHchUmfvEJuvUqTKniFFfBcidfblyPJZiTRem/f6wsHnnqc11ilDbL6fPxf3760QqbJXSJ4AZ+ZX3jPE5muNDg7jvNcDLl63fK2xxl4hA3ehsAzJ8vnxrVOFZK3oMsRBbeG7DHFRhPjaO6RpERJiz5CmVYivvUNcFCG+9wypU4TYNJchvvcMaVqE+NwzpGkN4nvPEBdFiOY9Q3yXIS6KEF97hjQtQULsFdKkChGpVoZQhGAlYxiCSkIORQwfw5GmwxCb6+GIi6GI4Xo44mIYYrgeirgYhmT5GIw0HTgYPoYirtZmuP7lvothiOF+be5fp1yv0dX9eRmINB2GGB5+Kd14CGJzvUaHh3HOf2nuY3jreo0OhiHLd7WChiJNhyA210ORtg9BbK6HIi4vi+V6GOL6slg+hiKuLo3lYxji6tJYrochLoYftpU0DHF9OSwfwxBXl8TyMQxxfUmslTQMcXk5LNdDENeXwfIxDGk6/DAYggDV6D1CAAAAAAAAAAAAcIAyBJWVrUNclSE2V6WI6zpExF0h4rIMyXJRibgsQ7JcViKaCxHX9YXhohTxtjZHRYLLMsRwtzY/l3pxcmkrX2tzWYi4KkNsDs7Ud16GGC4qAk+HcM4KAl+X9XOxPodFSN/dKq5DNJchhotCZKVVISLuyhBfG6W7qEN8bZTuogzxtUm6yzLE12bpLgoRH1WIyMooQ3xtkO6iDPG1ObrLMmQlFSGGizLE1+borsoQHxuju6pCXJUgtrJlCFUIsEjvEQIAAAAAAAAAAIADlCFobFgp4qsOyapbivgoQ7KaVCK+yhBDcyFiNClFXJchtialiK/6wmhSiPhem1G3VPBRhmQ1KSh8lSFGk7V535i9SSHiqwixNThb31sZYjQpCTwfwtUuCXwVIUaTwsFTETLwMC0tRHwVIUaTMkR1EWJ4Ki+MuoWIryLEaFKG+CpCjCZliK8ixNakEPFVhBhNyhBfRYjRxjLEVwlia1KG+CpCjCZliOsSxKa5DNFchBhNyhAfNUhW3TLEVwmSNawKoQQB8uk9QgAAAAAAAAAAAHCAMgTO5BUiIcqQrCqViO8yxFanFPFdiBh1ShHfZYhRpxDxXYbYqpQioeoLkeqVSNC11agVfJchRr21hTnbvM7afJchA49XpRQJVYYYFc7W916E2OqUBAEO4WpVBL7LEKPO2ihDllX52PouQmx1ChHVZYjn8sKoU4b4rkJE6pUhvosQW5VCJFQRYlQpQ3yXILY6ZYjvIsRoWxkSqgoRqV6G+K5BsqqUIb5LEFvbyhDfJYhRpwjxXYLYqpQhIWqQrLwyhCIEGE7vEQIAAAAAAAAAAIADlCFwTkMhYpQpRUIXIkaZUiRUGWIrU4qEKkNsZUqR0GWISPk6JGR9YVQpREKvr0q1EKoMMaqtLXBFsKTMGkOXIcuPW6YQCV2GGCXO2g9ehoiUr0MiHLqVrghCVSFZZdYWqAgZeFjFhUhbyhCKkH5l65AQRYitbCESugoRKVeGhC5CjDJlSOgixChThoQqQWxtKUNCFiEi1aqQkEWIUbYMCV2FiKRfhoQqQWxlypDQJYhRpggJXYIYFCFAfXqPEAAAAAAAAAAAAByIc7o+Ws1Mo/MKkdDsKX2VPUV8G5vpP7uhzp4ivmTri6JKZG7D4vpDFyLZ9RRVIvNrFtcWshDpWmdGFZUiC6sW1xaywOiN9X+uVd1LxKfeRP8nWKyKIY/mtRlmjSrXtnTWY6U9REKZnKi3R4dvk0uHZQrX1plYXFutPUR8W1pbrT1EPOssfUw1FiJlPqahi5Dlx106o3tYIUIRUk+MIqSsGEVIWbGqkFFiFSFlxCpCUhe6BKkiRglijCpCYpQgRspFSKwaZJRYJUgZsUqQYShCgGr0fRUDAAAAAAAAAAA4xJ4hCMJUIrH2DrHlFSKx9g7JKqpDYu0dklVUiMTaOySrqBCJsXeIragQibF3iC2vENGwLpH80iH0niFF8temo8zIW5uGaqSwDom1Z0iWdcZ+lL1Citg1gaJDtoGaQFFxNlCIRNovJI/GQsTIfkxjFSFFsoUIRUg59t4hmooQe+8QTUWIvXeIhiKkaM8QDVVI3p4hWoqQ1PYM0VKE5O0ZErMIMYrKkJhFiJFiGaKhCCnaK0RDFZK3V4iWIsTsFUINAtTHMARBaRuKiAwORjQMRQwzHNEwDLGZ4YiGYYjNDEc0DENsZjiiZeiQ1en2dK5r6Zf5WoYhIoMDBi3DEJEDa9MwBLEtD0U0DEFsS7+kVjUMMcwv0BUesi3/Al3TMMQwa1M0DDE0DkW0D0MYglRjhiGahiCGGYZoGoIYZhiiYQhiM0MRDUMQmxmKaBmEiKQxDNEyAMlaWDWuYvhhM8MQDcMPWwrDEA3DD5sZhmgYfhj2EETLAESEIQjgkp6vbAAAAAAAAAAAAA8oQxDFqf/z72IvodDYbOwVFJvUd5Lasom9+l5KJhWuyZjcp3NtE/v1nUFtjE8rPKVpyfi0vrO8xxSuyejM6Dlz1NaZVvxNYFbv89bTuDZThCjcWF1jGSIiIgt6X2dVGl86fXpM3/llY+vXxV5CoYUjHhR7CYW6a/TU67axWcVfnwp/paC5DFlYp6/YMubXKsxCRGR2g851iegsQ+Y26FuTMZ9/5T8VFgouW67Bzf/jFbGXALSG3iMEAAAAAAAAAAAAByhDoIKmUmTVjv4/z62Nsoxcq3Ye+O+ushOKzN4hRRutx6S1EJk0e5ooXN749NK+E4rWRhlS0dIeDirPJF069OjM6n3eOppKB/tQTVNVYO3/0ptX9PmW3StEYR1iqKpEtJUh45kzgTWvTVEZYu/30lmn6EDWoqkQGdu9mF/PH7ZxxC3Dm9ixX0REumunIq9kkPk+nrcheGyUISUtHWLMr1P4MVx6PZtbr/NjqbEIMXuDFG2cHstY5rB6VtHL7IR15Y2Zg/X88EsJAvij87sKAAAAAAAAAACAI5QhUEVDIWKXISJ66pBsGWJoKURMGZKlpRJRX4bYFCzXlCE2DaUIhcgI3fwPkopCpOCQQ0UhUvC8qShEig7VNBQF3cHXCjV1SC/ndYxCZDgt9cV4zhnKmtempAyxqxARypBRTBFi01CImCLEpqEQKfq+raEQoQgZoeCQQkMZ0st5DROhDBmlk/PtUUsZMpZzGK2lDLGrEBEdZQhFCOCfzu8qAAAAAAAAAAAAjlCGQJ3YdUheGWKLVYrklSG2WKVIXhlii1WKaC1DjMJCxIi4/KJCxIhZilCIFCgoHIyohciIQ46ohciI5y1qITLseYtdE+SUIUb0QiSvDDEoRPLFri/yqgtD89oilyF5Rcjy31GG5CoqQoyYZUhREWLELENGfZ+OWYZQhBQYcaweswgpKkEMrUWIEasMyStBbLHKkLwSxBarDMkrQWyxyxCqECAM3d9dAAAAAAAAAAAAGqIMgXqhS5EyZYhBITJIayGiuQ4ZWYZkBf5njCpDskJXIpQhOUbUDVlBC5EKhxrB65AKz1nwOqTKIVqsmmBIGWJEK0SGlSEGhUi/WPXFsOrC0Ly2SGXIsCJk+TaKyxAjdCEyqgrJCl2IjKpCskIWIlW+N8eqQyhDMiocPoQuQ0bVIFmay5AYVQhFSD1lihAjdBlCCQLEofe7CwAAAAAAAAAAgAOUIUhGqEKkShlihC5EypQhtlClSJkyJCtUJdKaMsRQXIgYoUoRChGpVDcYWssQI1ghUuO5C1aI1DlEC1UTlChCbMELkTJliG2llyKh6osytYVN89oClyFlipCB91FciIQqQ6oUIUaoMqRKEWJoLUOMUIUIRYjU+rlAcxFiUIaUq0GyQpUhZUoQW+gypEoRYoQqQyhCgLgYhiBZvocjdYYihu/hSJ1hiEiYgUjVYYjN93CkdUMRw/M/q84wxOZ7OLKihyI1fqEvEmggUvMww/swpOZzluV9KNLkEM33L85rDEMM70OROkMQm9KhiPeBSIiBQ51hg4j/tdVdV5bnoUidIcjy+67gYUidIYjN91CkzjBEJMxApO73Y9/DkBU9BHFwTO17GFJn+GGs5CFI1eGHLcQwpM4gRMT/MKTO8MPwPQRh+AHoove7DAAAAAAAAAAAgAOUIUier0KkSRmS5aMSqVuG2HyVIk3rEBF/hUhryxCbp3+mi0JExE8lorkMEfFUhzioG0Q8FyINDzO8FSKOnjsRD4WIy0MzXyVBgzLE5rwUcVGGiKitQ0Q8FiI+64um5YXmtRmOy5AmJcjAfSkuQwzXhYiLIsTwVYbULUIMn2WIq++/PgoRzVWIiKcyxNGhga8ipEkJYluJZUjTIkTEXxVStwSx+ShDmtQgWb7KEIoQQCe932UAAAAAAAAAAAAcoAxBq7isRFyVIYbLQsRVGWJzVYq4KENsrkoRzWWI4bQQEXFaibgqQ2wuSxGthYjTMsRh1ZDltBBxfHjhtBDx9Pw5K0R8HJq5KgkcFiFZTusQV2WIobgQMZyVIi7rC1e1hU3zGh2WIS6rkL77VVyIuCpDXBYhWS7rkKZFiM1lIeKryHRZiGgtQ5wWIZ5+ZHFZhrisQUR0FyGGqzLERQlic1WGuCpBbC7LEFdFiOGyDKEGAfTT/90GAAAAAAAAAACgAcoQtJKLQsR1GWJrUor4KkOMpoWIjzIky0UlorkQcV6G2Bzcva9CxGhSimgtQwwnhYinssFoVIh4Pqxwcsaq5+evcSHi8zlsWhB4KkMMJ4WI6zLEprgUaVyIuKgufBUhRpM1+l6bgzLEVxGyfP8tLkN8FSGGizLEdRFia1KIeNuja4mLMkRrEWI0KkM8H/67KEJclyA2zWWIiyLERw2S1bQM8VWEGE3KENcliM1FGUIRAqRD73cbAAAAAAAAAAAAByhDsCLUKUV8lyFG3ULEdx1i1KlEfJchtjqliOYyxPBeiBg1HsZ3GZJVpxLRXoeI1CxEPBcNhuYyxGh0BmuA57FWHRL6kKxOReC5DDEaFSK+yxBDcSFiVC5F6lQXvmsLm+Y1NihDfBchy4+juAwx6hQivqsQkWZliO8ixNBchhh1ChHtRYhIzSok4Lf9OmWI7xLE0FyEGHXKEN8liK1OGeK7BjHqViG+ixCjThlCCQKkS/93HQAAAAAAAAAAgAYoQ7CiVClEQpUhWVUqkVBliK1KKaK5EKEMKVDxIUMWIkaVUqR1hUigMsSoVIhEOpyodCZr4OdPpGIhEuuQrEo9EKgMMSoVIqGKEJvyQqRSHVK1ughdhYhUW2OM9YlUKkRCFSHLj9eyMiREEWKrUoiEKkJsVQqRUEWIUaUMaV0REuHbfNUiJFQNktW2MkRzERKqBLFVKUNC1SBZVcoQihAgffq/6wAAAAAAAAAAADRAGYIVa1QlEqMMsQ0rRWKVIUaZQiR0GWIrU4pQiIxQ4qFj1CFZw0qR1pQhEYqGrFKFSMTDidJntUZ8HksVIrEPyYYVBIGLkCJDS5FYZUiW4kqkVCFStrqIVVyIjF5jzLUZQ8qQ0CVIEc2FSJkyJEYRYpQtQ2JVISLlypDQRYitTCGSfBkS+dt6mSokRglitKUICV2C2MqUIbGKEGNYGRKjBLGNKkOoQYB2YRiCFa9oKKJhGGLkDUViD0NsecOR2MOQrKLBCMOQinKWEnsYYssbjiQ7FIk8BLHlDkUUHUYU/mJH0fNYOBRR9DzmDkWUDENEhgxENAxDDMVDESN3OFI0aNAwYDBSWGPBMETLIERE9zBEpHggEnMIYisaisQcgtjyhiKxhyC2vKFIskMQRd/KRfKHITGHH7aUhyGxByBZecOQ2MMPW94wRMMQxCgahjAEAdpJ/3cfAAAAAAAAAACABihDAIspRTSVIbZsKaKtEBEZrEQ0FSKGXYpQiNSUWZK2QkRksBJJrhBRVDQYA3WIwsOIgbNeFT6PA4WIwuexrxBRVIYYA4WIpjLESK0QsasLTbWFkcIarTJEUxFipFaGaCpCDLsM0VSEGHYZoq0KEekvQ5IsQhR++84WIZpKECPFIkRTCWLYRYi2GkSkvwjRVILYTBlCCQKsDPq/CwEAAAAAAAAAADRAGQIUSKEQEdF5BohtfFr/y8yExurCorIMyRjfr/CsbIspRZIoRPbp/uIem9F3dqmtM637ORQR6czMxl7CcNrXl9Gb0//x1l6KlNpkHSN1NNYqBbQXIr11a2IvYbSpIRtoK9Gb0H0OZHe1/udwuQjRfTguIiJz6ydiL2GoFMqQ2XX6ihrbfAJr7Or+VKQIAVYo/d+FAAAAAAAAAAAAGqAMAUr4hT/+u9hLKGT241hYrffMkAlrP46ewhMms3uG2PuJaDK5b2mdej/cMrFvsRDpKV7j5L7+s581Xk9ZRH8dIqK8EFk6xOmksEZ7DxEt7MNEjeu01tjTXF+Ytdr7XiihuQzpTC6eXqp6jSkUIZP9p+l2pqYKbhjZ0r4rvTWrIi+kWGdpP6reaqXPoYiIdXzTG9d3vKO1CulY+43Nr1f8cV6ivQgRUV6FZD7ks+v1fa2MWYcOsxv1rdGYWPqZVfMaf/g3/z32EgBEovg7EQAAAAAAAAAAQHOUIUANmkoRU4bYNJYiqRUihqZSZLkMsen7cC8XIjZNxYhdiIjoqkRSKEMMVYVIwaGNykIks1aVdUjRYaKmtRasUWUhkrdWRZWItuqiMzl4lrO2NYqkWYQYKsuQsQMHXhrLELsYMFQVIgXHMpQhw+V9bClC3FJVhuR8KVOE1DNR8DOqprVSggAwFH0nAgAAAAAAAAAAcI8yBGhAQyFSVIbYNJQidhmSpaUSyStDbBpKkcJCxIj/4S4sQ7K0VCJ5hYihoRShEKloxKGNikKkxOGXilJk1DpTWKMoqkSGrVVBIaKlusgrQgw1a0yhBhEpLEIMFWXI2OgDKw2FSFERYqgoQ0ocs2ipQzQUIcM+pikUIUYKZYiKIqTEj81ayhC7BsnSUFsUlSA2DWulCAFgYxgCOBRzOFJ2KCISbzAybBhiizkcKTMQyYoxHBk5DMmKfAxaZihixBqODBuG5Ik1IGEoMkKFQ5roA5Eqa401cKhyiBhzKFJhndGGInUOtyMMR2INGoYNP4pEW2tLhiBZ0QYiJYYgRuxhyKhBSFaUoUiF45LYw5BYQ5AqH0ORNIYhKQxBjCjDkIrfemMOQoYNP2yxBgxlByAicYcgDD8AjKJgPA8AAAAAAAAAAOAPZQjgSehKpEoZYgtdilQpRIyQpUjVMiQrdCVSqRCxBT5hp0ohYoQsRarWIVmhSxEKkQI1DmmCFyINDruCFyJ115rAOoMXIk0OtwMWIqFrizpFiBF8rSkUITWfz+BlSIUixBa6EKlaE4gELkMaHH+ELkRCFyF1PnaG9iqEImSIBt9uQ5YhVUoQI3RtUaUEsYVeKzUIgCooQwAAAAAAAAAAQKtRhgCB+C5FmpQhRqhCpE4ZkhWqEmlSiBi+S5FGZYjN84e/ThmSx3ct0qQQMUKVIqkUIt7rEAeHMsEKERdrDVVeNF2r73U6PIT1Xoq4WqvnSiREbdGkBsnyvdYkShCj4XMarAxpUIQYocqQJlWB4b0QcXSs4bsQCVWEuPiYaS9CDMqQDAffXkMVIXVqkKxQtUWTIsTwvVZKEABNUIYAAAAAAAAAAIBWowwBAvNViLgoQ2y+SpGmZYjNVyniogyx+SpFnBYiIl4rEVeFiOGrFHFRiGT5rEVWfCHi8FDGWyHi4XDLWyHieq2prFM8FiKu1+qpEPFZW7gqQgxfa11JRYjNWyHioAix+SpEXNQFhrcyxPHxhK8yxGcR4vLjJEIR4oO3IsTDb698lSFNSxCbr9rCRQli87VWihAALlCGAAAAAAAAAACAVqMMASJzVYr4KEOyfFQirgsRw3Up4qMQEfFTiTgvRAzHH37XdUiW61LEdSFi+ChFVmQh4vkwxlkp4nudLusL34eGrtbqeZ1OKxHfz6mjUsRlbeG6BLE5XWsqNYjn59RpGeKhBslyVYa4LgxsTusQz/uRuSpEfBQhvj5OqRQhIulUIV6KEE9fpq6LENcliOGjsvBRg2S5WjMlCAAfKEMAAAAAAAAAAECrUYYAirioRHwXIoaLUsRXGWJrWor4KkNsLkoRb2WIreGH32cZkqdJLeKrDCnSpBhJpQwxGhUigQ9fGhcigdbrpBAJ9dw2XWugdTopREI9pw0LERe1he8ixHCyVoqQPk7KEM9FiNG0DPFdhNgaFSKeixBb00KkSRkS+uNCGeKekzIk1GFIwzLEVwlic1FZ+C5BDBdrpQYB4BtlCAAAAAAAAAAAaDXKEECxOqVIqDLEVqcUCVWGZNWpREKVIUXqFCPBCpGsGicChS5EjDqlSOhCRKReJZJaHSJSsxCJcPhSqw6JdJhVqxCJdUhYtxCJtN5apUis57ZiKVKntghVgthqrTWVEsSI9NzWKkQCFSG2OoVI6PpApGYZErgIMZqUIXWqkBgfD4oQ92oVIZF/E1WnDAlVg2TVqS1ClSC2OmulBAEQGsMQICFlhiOxhiFZVQYjMQYiWVWGI7GHIiLlByNRhiG2CsfCsYYiRpXhSIyhiK3MkKS1QxEFhy2VhiKR11tpKKLguS01GNGwTqk4FIm55goDkaoDhliDEJFqa01qCBLxOTUqDUMiDUGMKsOQGL90t5UaikQagtiqDEXKDEE0PP8MQfwpPQyJ/2lQaQgSY/iRVWW4EGsAklVmvQw/AMTGZbIAAAAAAAAAAECrUYYAiSqqRDSUIbZhpUjsMsQ2rBTRUIbYhpUiKuqQrCEnCsUuQ/IMq0U01CFZw0qR1AqRkXWIosOWoYWIonVmDS1FNK05lXVmDC1FNK15SCkyqraIWYLYhq01qRLEUPTcDi1DIpcgRYYVIhqKBGNkGaKkCskaVogMK0I0Pe8iaVUhImmVIUOrEF2fBiIyvAyJXYLYhpUWGkoQW9F6qUEAaKLzaBYAAAAAAAAAAMARyhAgcSkVIka2FNFWhuSxaxGNhYiRLUXUlSF5rJOHNBYiRl4poq0QybJrkeQLEcWHK7mFiOb12tWF4rUuy65Z8XoH6hDFa12WKUXs2kJTCVJkYM2pVCEJPLcDhYjSKkQkvwzRViZkDRQiCouQLLsOsYsQzc81RYh/fWWI3k+FgSJEWwWSJ1taaCxBDIoQACnRe0QLAAAAAAAAAADgAGUI0DKmFNFchmSZSiSFQsSYmE5nrSKJrXfppCLNhUjWxH69ZUiRscTWPDadVtEiItJJZM3LhUhKh4Kzc0mttzeXxufCsiH7iail+Iz0XAkUIcZyGaK4COmzKq0CQGT4XieamDKkN5XO56+RShmSZBGyLpHXhiXza3QXWFmmtNBcg2SZ9VKCAEhBWt+9AAAAAAAAAAAAKqIMAVruzJf8bewllGL24Zhfnc4ZO1NLa+6mcnny/Yu1hb2XhGYT+xbUX0dbRGRir1VbJHCqQSqFSGfpKKUzk9AZ9t2cfTk0sg4Bk1hz1sxs7BWUlkwhklIZMrF0FnUKn7erMmf/d/U/x53J/v0gJIV9WCYn0ilYJLNnSALHOCIi3TWTo28Um/U9bX6D/uqm0+vJ7IYEntslZm+Y2Q0JvCaIyNi8WW86rw3jM4trnluXxmvD9e98RewlAEBl6XxXAAAAAAAAAAAAqIEyBFhBNFcikwV7hmguRaZy1qy5EjFliE1zKTKxL+cMWs3rtQsRQ+mpB5rrkE7B0YnqQiTnS0x1bVFwCKh6zXkSKkQMtaWI5jJkouB6+po/X1flnJmuuAwZKEIMzWVI3h4siguR5SLEpvjYRm0VUvA9THMR0slZs+YypFOwJ5PmMsTUIFmayxBTgtg0lyHUIABSp/e7AgAAAAAAAAAAgAOUIcAKprEUKSpEsrTVInmFiE1TMVJUiGRpqkVy65A8mtZcVIhkKTodQWMhUlSGLP+9xkJkyJeWytqixCGgynWPklgpoqoS0VaGFNUgWZo+R/NKEJuyMqSwBsnSWIbkFSGGwjKksAgxFB3DGKqKkBLfrzQVIXkFSB5NVUhRBZKlqQjJK0Bs2oqQogokS2MRQgkCoG0YhgBYpmE4UmYYYos9HCkzDLFpGI6UGYoYGoYjpYciImp+qVBqKGKL+HObhqHIqCHIwO01DEXKfyktizpkqHHox1DEPxVDES3DkDJDEEPD52aZIYihZBhSaghiizkUGTb8KKJgKDJyCGJTcPwSdQhS4/uTliFI2QGIiI4hSJnhh6FhCFJm+GGLPQwpM/ywaRiGMPwA0HbxjxABAAAAAAAAAAA8ogwBMFToWqROGWKLUYrUqUOMWJVIlTKkSIxipFIhYot0xmWtQkQk2ikLsQqRqlXIwPvHqkQafClFKS4aHPolWYiIJFeJiEQqRWKVIVVKEFusz8kqNUieSIVIrSLEiFGG1ClCjEhlSOUaxBbpWCVaEVLze1KsIqRKAWKLUYRUKUCKxCpD6tQgRowqpE4JYgtdhlCBAFiJKEMAAAAAAAAAAECrUYYAqCRUKeKiEDFClCJNypAioYoRF4WISLhKpFEZUiTA2mvXIXkCncoQqhBpWoQM3F+oQsTNl46IBCwuHB/2JVeKJFiIGEFKkVBlSJMSpEioz8WmRYgRqAxpVILkCVWHNClCbIEKkcZFiC3QcVWwIsTh958QVUiTAqRIqDLERQ0iEq4IaVKAFAlRhrgoQYxQRQglCABQhgAAAAAAAAAAgJajDAHQiK9SxGUZkuW7EvFRiBi+ShFXZUgRX8WIl0JExPuZmE4LEZunUxx8FyKuy5Dl+/VViPj9kvFbW3g67EuuEDESLUW8VSI+yxAfNUiWr89BVyWIzXMZ4rwIMXyWIS5rkDyeChHnRYjh+XjEWxHi8dcLvosQHzWIiL8ixFUBUsRXGeKjBDF8FyEua5AsX2UIJQgADKIMAQAAAAAAAAAArUYZAsAp16WIr0LE5qoY8VmG5HFZi/guRAzXpYi3QsTmet0+C5Esx6c9uKxEfBUhA4/juhAJ86Xip7YIcNiXbCUiklwp4rwQ8VGG+C5CDFefd75KkCIOCxFvNUiWjzLEdxFiOC5DvBUhNofHH85rkEC/SnBdhPgqQGyuixDfJYjhsgjxWYHkcVWG+CpAbK6LEEoQABiNMgQAAAAAAAAAALQaZQgAb1xUIqHKkCwXlUjoQsRoWoqEqkNsLmqRYIVIlot1hypEbA1Ph2hSiIQqQgofv24pEufLw01pEeFwj0IkvMaliIsyJFQJYmv6+Ra6CDEclCFBihCbi0IkVBFiq1mIBCtBijQ45mhchET6lYGLIiRUBZLloggJVYHYmlYhoUsQw0UREqoGyXJRhlCDAEA1lCEAAAAAAAAAAKDVKEMABFOnFIlRhhSpUozEKkPyVKlFYpUhReoUI1EKEVuddccqRLJqnCJRpxCJXYaI1KxDlHx51CouFBzuJVuKJFqJiNQoReqUIbFKEFudz69YNUhWjTIkSgliq1OGxCpBbDXKkOhViEitY4taRYiC7xd1ipAYBYitThESqwApUqUMiVWB5KlShsQoQIrUKUMoQQCgGYYhAKIqOyDRNBQxygxHNA1FjDLDEW1DEZHygxEVw5A8ZdevYShiK/HzZZmhiIYhiK30UETfl0S54YLiwzyGI2GVGoyUHYZoGYBklfl80jD8sJUYhqgYfhQpMxTRMgTJKjkQUTEEsZU4nig1BFH4/aHsEETD4CNP2WGItgGISLkhiKbhh1FmCKJp+GGUHYIw+AAA97hMFgAAAAAAAAAAaDXKEACqFJUiGsuQrKJKRGMZUiSvGNFYiNjyihG1dUiegjM8VRYiWQWnU+QVIhqLEFthIaL/S0BEhlQWCRzmJVuIGG0qRYrKEI0liC3v80hjCVIkpxBRXYQYRWWIxhokT0EhorIIseUcPxQWIcq/FxQVIVoLkDx5VYjGAsSWV4RoLECKFJUhGmuQrKIyhBIEAPyjDAEAAAAAAAAAAK1GGQJANVOKaC9DiphiJKVCJMvUIikUIlmmFkmqELF1OvrrkDxLp1mYQiSFKiTPcimS1qf+gcoi0cO7pCuRRAsRozc3d6AMSaEEKTI7l1YRYiyVIUnUIHlMIZJKEWIslSFJlCB5lo53louQBF/75zesSqoAsZkiJIUKJMsUISlVIFmmCNFegBQxZQglCACERxkCAAAAAAAAAABajTIEQHLO+q3/L/YSajOFxcJUWrPoiX2L6+4ldsKnsbz+/Mvzqpdy4TI+nWDdIrJ8dm0n0fUvn2Wbamlhnv+5xJ5/c2Zw3n4cCejNJ/Z8Z5iiojef1utlZ2rpjP6i/Vq0W51ghZPRW7O0/oL9u7Qr3CNEs6XnemFdgmvPmFuX6EHx0rep+bVp/SwyPru48Nn1aa0769oP/nHsJQAAhDIEAAAAAAAAAAC0HGUIgOSlVIrk7b2RUiViCouslGqRvPWLpFOMpFyIiCRSiQw5LEqhEim87noqhUjB+pMpRIquGZ9IKZJSGVK0t0YqZchyEWJLpRBJuAhZrkHyJFCIJFODFDyXFCEB5XxLSqkIMTVIVkplCCUIAOiUzncSAAAAAAAAAACAGihDALSW5mIkrxCxaS5GigqLLM3FSKn1Kz45lELEoxKHRZoLkcIyJEtzJVLm+ddciRSVITalpYjmMqSoBLFpLkMKa5AszWVIwjWIyIgixFBchqguQko8bxQhHpX41qO5CMkrQGyaixAKEABIC8MQACuCtsFImWGITdNwpMwwoYimIUmdf4emIQlDEYdqHA5pGoqUGoIU0TQcqfNx0DQcKTsMyVI0GNE2DCk7AMnSNAwpNfywaRqGJD78MEoNQWyKhiKqhiA1nheGIA41+FavaRhSZvhh0zYMYQACAOnS9R0FAAAAAAAAAADAMcoQACtazGKkTh1ii12LNClEsmLXIk3/HbFrEQqRBhweBsUsRRqVIUbMQsTlxyFmKVKnDLFFLEVilyF1ShBbzDKkVglSJGYhkngRUqsEKRKxEIlehDT8t1OENOTo22LsIqROBWKLWYVQgABA+1CGAAAAAAAAAEDijj/+eOl0OiP/9773vS/2UtFAmY9xp9ORq666KvZS1VF0AUwACM8+20fb3iKjjM/mFw2hipH5tWNO6pBOwcnIsYuRsjoFJ72FKkbm146LSLqFyMLqAx9oVfuIVNRb+neELEScFCGGfVa7pr1EKuhNLn0cQhciLqoQERG7jlC0p4hrLkqQgfucGA9ehzgtQmJIvAQxnBYhkQStQTxVL6kXIcF5vE5HyCrERQGiASWIfnv37pVvfetbcv3118v3v/99uf322+WOO+6QHTt2yP79+2V6elrWrFkj69evlw0bNsiGDRvk+OOPl1NPPVVOPfVUeehDHyqPfvSjZdWq9L9nAKgnkV8zAQAAAAAAAFhJ9uzZI//yL/8i//qv/ypXXXWVzMzMDL393r17Ze/evXLPPfeIiMh3v/vdvr9fs2aNnHPOOXL++efLU5/6VHnkIx/pa+kAFGLPEAAYwXct4mLvkDJ81yKu9g8ZxVctEmz9nmuRVOsQm/dCJNDhj+9KxGkZMozPSiTAvyFIJeKqDBnGcyUSYs8QHzWILUQZEqQG8blvCDVINZ73DvFehATa+6QtVYi3/UICfcv2XYSEqkB87xVCBaLfPffcI//n//wf+ad/+ifZs2ePt8c544wz5MUvfrFcfPHFctBBB3l7nFCOP/54ue2220be7r3vfa9ccskl/he0grz+9a8vdbtLLrlEjj/++EaP1Sn5vf3KK6+Uc889t9FjtQ1lCAAAAAAAAIDo5ufn5U1vepO86U1vkr1793p/vO9973ty6aWXyitf+Uq59957ZcOGDd4fE+102WWXlbrdueee23gYgvoYhgDACEVnDbG/SBy+9hcxZ9H5LkSK9hcxmpYjqe8fYph9RLwUIgGjWJ/7iASrQkQO7CeS+D4iRvD9RFxJcD+RECVICMnvC2JQhNR8wJ6XusJZERKo/ChCEWJpybU32AcEMfzsZz+T//Jf/otcd911wR97enpaFnxWmQBUYBgCAAAAAAAAIJqvfe1rctFFF8n27dtjLwVAizEMAYCasmcZNalE5tYsFgmh9g6x5RUjdWqRUGVFkbxipE4tEv3fkXMSXp1axBQiRqqliClEjEalSMRt0nrWv6NJKRK0CLHZZ8dTisSlsBShBFGGEsThIpZeextUGE5KkMgViEh7ShCjURGiKJ5osleIpgrExV4h1CDpueKKK+TCCy8cuTk6ADTFMAQAAAAAAABAcN/+9rfl2c9+NoMQoIJezBPkEscwBAAccLGvSOxCJKvJ/iKxy4qsJvuLqPp3FBznVClGVvReIgoPFF2WIlE1KUUUfVxaW4qIeK1F2lKBiCgtQcaXCr8q1y+nBPGvRiFSqQhRUH4UWdFFiJ5vWQOqFCGaChBbnSKEAiR927dvl+c+97m1N0p/6EMfKk9+8pPlyU9+spx00kly6KGHyqGHHipjY2Oyd+9e2bp1q9x6663yve99T6699lq56qqrZOfOnY7/FQBSwjAEADxqy+brRpVLamkaJtiqXFJL9b9jyM+zRYOStg1FRDxtsh5Yb/XEyIFI1MtjlZX9hXKil9AS6R+OjByMdJV/XBxeSiuV4UdnYvF1rjc//HVO5QCkjpYMQAzVg5AKhg5AFA888qy4IYjyl3Vj1BBE8+CjKoYe7fXSl75Ubr/99srv96QnPUkuu+wyedKTnlR4m6mpKTn44IPltNNOk6c//ekiIrKwsCBXX321fPjDH5YPf/jDsnv37tprB5Cm5hdjBAAAAAAAAICSvvKVr8jHPvaxSu+zevVq+Zd/+Re56qqrhg5CioyPj8uTn/xkeec73ylbtmyRf/iHf5Bjjjmm8v0ASBdlCABEkHd2k6lFNF0uq4wml9TSpOiSWobmQiTPqEtrza8dT74OMQovnZVCSZFRdOmsJIqQPEWX0Ers39OaS2gZFUqRVEqQspItQezLZVGC6FBwuay+IiSxAiRPm6qQ5SIkrW9DI6VegNiXx6ICWTle/epXV7r95s2b5bOf/aw89rGPdfL4GzZskEsvvVRe8pKXyNvf/na57LLLat3P7Oys3HTTTfKjH/1IbrzxRrntttvkrrvukrvuuku2b98u+/fvl/3798vc3JxMTU3JmjVr5NBDD5WjjjpKTjnlFHnEIx4hZ599tjzqUY+STgLfN+68887lf+vPfvYz2bJli9x1111y9913y759+2R6elr2798v4+PjsmrVKjn44IPl8MMPlxNPPFEe9rCHyeMe9zg555xzZP369UHWe//998sVV1wh3/nOd+SHP/yh3HHHHbJ161bZt2+fzM7Oypo1a2T9+vVy+OGHy8knnywPechD5KyzzpJf+qVfks2bNxfe7wc+8IHaa/ryl78sd95558jbHX744fKUpzwl9+/Kfq5ceeWVcu6551ZZXq5utyvXXXedfP3rX5fvfve7yx/7HTt2yP79+6XT6cj69etl06ZNcvzxx8vJJ58sZ5xxhvzSL/2SnHHGGTJujmcV6PTYcQUAVLAvnZXKMKSIGYakMjwYxVxGK/V/T/byWW0ZhhipD0NsyQ9DbIkOQ2wDwxDtl8kaJTMM6c33/9tSH4bYl8lKdhhiMAzRiWFIMto2DDEn6jAMQYquuuoqOe+880rffmxsTK644opK71PV/fffL5s2bZKJidHnjX/pS1+SL3/5y/KNb3xDrrvuOplzsEfbMcccI7/1W78ll156qRx99NG17+f444+X2267beTt3vve98oll1wy8nY///nP5ROf+IRcc8018h//8R9y33331V6bsXr1arngggvkv/23/yZPfvKTG9+fbW5uTj7ykY/Iu9/9bvn6178u3W69n+Ef/ehHy6/92q/J7/7u7w4MRkIMrp70pCfJVVddlft3oYYhP/3pT+Ud73iHfPCDH5R777231n0cdNBBcuGFF8pv/dZvydOe9rTaa3GFYQgAKHfOr/117CU4MT69+O2mO5H+LwYm9i/+Qqo3nv6/RURkYu/iL0B7Y+3494zvT3evilwLi187Y7OJFwmG+WEk9cJiSWdh6d8zYn+KJMy342Miq6YW/78ln2PLlVVLfmxLfvhRoLuuXf+uNg1BRETm1qZ/UYyxpeOBhVVp1ddFvv6pV8ZeAiJ6/vOfLx/+8IdL3/51r3udvP71r/e3oIoe+tCHyk9/+lMv97169Wp59atfLX/2Z39WajBjcz0MedOb3iR/+qd/WnkdZT3lKU+Rd7zjHXLCCSc4ub8PfehD8trXvlZuvfVWJ/cnIvLJT35Snv3sZ/e9re3DkLvvvlte9apXyQc/+MHawyTbGWecITfccIOT+2qiHd9FAQAAAAAAAKg2PT0tn/3sZ0vffvPmzfKa17zG44p0mZ6elssuu0x++Zd/eUVs8P7lL39ZzjzzTLn66qsb3c+OHTvkWc96lvzmb/6m00HISvSJT3xCTjvtNLn88sudDUI0Sf/0CABouWv+dfCsqRRrkYXVi2cumEIkK7VaZH7N4vUuTSFSJJVyZH5d/+GAKUVsqZQjC2v6z2ZNthRZ6P9a6U4tfpySLUTsA+nsXhxtOIN/InMd3DZUIqkxNUhb5F3Sy5wBmGgh0rYihBIkDakWIWMLg1/nKRchVCDIuvrqq2XPnj2lb//7v//7snr1ao8r0unqq6+WZz3rWfLlL39Z1X4LPuzYsUMuvPBC+cY3viGPeMQjKr//bbfdJr/yK78iN910k4fVrSxvfOMb5X/8j/8hbb6QVLrfTQEAAAAAAAAk45vf/Gal27/kJS/xtBL9rrzySvnLv/zL2MsIYs+ePfL85z9f5itetvXuu++W888/n0GIA3/zN38jr33ta1s9CBGhDAGAJOXVIiJpFCMLqzsDdcjYfPE3W83VyKhCpJNzVl8KtYgpRexCpDNko2jN1YgpRZIpRHI+b7JMISKScCVim7QOSRMoRZb3CskzYZ29RyniXpkSxHxeJfD5lFuCtEDbahARipBUpFCE5NUfRVKpQihAUMa3v/3t0rc98cQTG20m3gZvfOMbczfwbqMbb7xR3vWud8nv//7vl7r9wsKCPO95z5P//M//9Lyy9vvSl74kr371q2MvIwj9RwgAAAAAAAAAkvezn/2s9G3PPvtsjytxa3x8XE4++WQ5/fTT5dRTT5VNmzbJhg0bZN26dTI9PS27du2SW265Ra677jr5zne+U3ovhj179si73/1ur5uY13H44YfL6aefLg9/+MPl0EMPlY0bN8rGjRul2+3Kvn375M4775Sf/OQncvXVV8vOnTtL3+/f//3flx6GvPnNb5avfe1rldd+0kknyfnnny8nnniiHHrooTI9PS333Xef/PjHP5arr75a7r777sr3mbLdu3fLi170osr7g6xZs0bOOeccedzjHiebN2+WdevWyf333y9bt26V//iP/5DrrruucukTAsMQAGiRVPYXGbZ/iK2oGtFUjJTdQ0QkvxbJ0lSOFBUieVKoRrJ7iSRTiYyQrURElJYidTbdS7AUGYpSpLmVsCdIWYr3DmljCSLSvhpEhCIkpCoFiE1zEUIFgjp6vZ7cfvvtpW9/xhlneFxNc4cccog885nPlGc/+9nylKc8RdauXVvq/bZs2SKXXXaZvOtd7yp1+4985CPRhyFjY2Ny3nnnybOe9Sx51rOeJccee2yp95ubm5PLL79c/uRP/kQeeOCBkbf/6U9/KjfccIM88pGPHHq77du3y2WXXVZqDcbjH/94eeMb3yhPetKTht7u2muvlbe85S3y0Y9+VGZnZ3Nvk3cpqU6n3M+9V155pZx77rmlbhvCm970Jtm6dWvp269du1b+5E/+RF7xilfIpk2bCm+3a9cuef/73y9vfetb5Sc/+YmLpTqh70gBAAAAAAAAQKvs2bNHpqenS9/+kEMOqXT/P/rRj+S73/1u1WX1Oemkk+Txj3/80Nscd9xx8rKXvUxe/OIXlx6AZB199NHyzne+U4455hh53eteN/L23/ve92Tbtm1RLpW1atUqefGLXyyvetWr5JRTTqn8/pOTk/Lbv/3b8rjHPU4e+9jHyt69e0e+zxVXXDFyGPK2t71Ndu/eXXodL33pS+Uf//EfZWJi9K/CzzrrLDnrrLPk9a9/vVx66aWlHyNFe/bskbe+9a2lb3/kkUfKpz/9afnFX/zFkbfduHGjXHrppfIHf/AH8o53vEM+9rGPNVmqMwxDAKDlUt5fZBiNxYgpRIwypYhN4z4jphARKVeJ2IZVIyJxypFsJSKipBRpcOaokUQpUke2FEm9EhEZLEVEqEWy2laBGC3cF4QSJC1trEE0lSBNChDNKEDg0v79+yvd/uCDD650+8985jONC4oXvvCFI4chX/ziF0tXAMO89rWvlbe85S2ybdu2kbe9/vrr5alPfWrjx6zqj/7oj5z8W0877TR5yUteIn/3d3838rbXXXfdyNu8973vLf3YF110kbztbW8rfXvjpJNOks9//vOVBnip+eQnPyk7duwoddvJyUn51Kc+VWoQkjU2Nia///u/Ly960YtqrNA9PUcOAICgioYkIuEGJVUul1WWps3Yq1w+axhNl9aqcumssjRcYiv6JuuefoESdThS5/JYZbTtElrGSr6UFsOPeiJcLqutww+DIUg6Yg1BQg08Ql8ei4EHQpmZmal0+w0bNnhaSTMuhgMiIhMTE/K4xz1OPvOZz4y87U033RRlGOLq3yoics4555Qahtx0001D//4HP/hB6U3TN27cKO95z3tK3bbI6tWrG72/Zv/2b/9W+ravfvWr5TGPeUztx9LyPOq9ACUAAAAAAACAVpiaqnYCxJ49ezytRI+ylwK76667PK/EP1f/1muuuab0Y/7u7/5u5cJoJSn7XK5evVr+8A//0PNqwqAMAQAMCH1pLR+FSJ5Y1cj8mvHGdcgww8oRX9WIj0IkT+hLbAW/fFbgS2pkS5FWXkJLxHsp0lnwVLzY2noprRgViPkc8V0RtfAyWCLtrkHaWoIYbSxCRPxXITEvd+W7CKEAQWxV99cos+G2Br1eT370ox/JN77xjeVq4Y477pDt27fLrl27ZGZmRubnmx2H7Nq1y9Fqm9u2bZt87Wtfk+9+97vyk5/8RG6//Xa59957ZceOHTI9PS2zs7O5G4yXNerfWmVfmF//9V+vvY62u+uuu+Tee+8tddtzzz03yp41PjAMAQAAAAAAAODV+vXrZdWqVaUvl6V9GHLLLbfI//2//1c+/OEPy5YtW7w+VtX9Vlybnp6Wyy+/XN73vvfJN7/5zUbDjlFG/VtvueWWUvezZs0aOfPMM10sqZXKPo8ii5c4awuGIQCA0vKKEZe1SKhCJI/vDdld7R9Sle9qJLu5uoj/UsTme7+RbCnitBJRsMmqt/1EfO0VUpZdioiwr0hM7Afin+O9Q9pcgoi0uwZpawliuC5CNG147qMIoQKBRp1OR4499li5+eabS93+Bz/4gecV1TM3Nyevec1r5B/+4R8aFx9ldSMeY3/2s5+Vl73sZXLHHXcEebxRg5ayNcMxxxwjk5Pt/t7YRNnnUUTkhBNO8LiSsNgzBAAAAAAAAIB3J510UunbfvOb3/S4knp27twpT3va0+Rv//Zvgw1CYvr7v/97edaznhVsEFLGvn37St2u7B4lK1XZ51GkXc8lZQgAoJGi/UWMOuVIzELE5nqfkViFSJ5h1YhIvXIk1F4iZYzab0SkWj1iKpFGhYiis1Bt3koRDQLvKxJM3r4iInGKkbYWIIamEsSxtpcgBkVIupoUIZrqjzxNihDKD6TqMY95jHzxi18sdduf/vSnsm3bttJ7FbzmNa+R17zmNbl/d+6558rVV19dep1Fnvvc58pXv/rVxveTgg9+8IPyR3/0R7GXAThFGQIAAAAAAADAu8c97nGlb9vr9eS9732vx9VU80//9E9yxRVXxF5GENu2bZOXv/zlsZeRa+3ataVut337ds8rSVvZ51GkXc8lZQgAwCvf+4zENKwaERlejmgqRIqMKkdEiuuR7F4iGiqRIqPqkbxyJLuPiEjJUkT5mal5sqVI6Uok9n4hZdUoRToLifzbRPKLEZe1SKoViPm4lymDUixBOp3S+4ashBqkzSWISPtrEJFyRYj28sMVKhC0yXnnnSdr164tfYmet771rfLHf/zHMj5eUMQG9Jd/+Zelb3vqqafKi1/8YnniE58oJ510kmzcuFGmpgaPoS655BJ5//vf73KZTrzrXe+S+++/v9Rt165dKy984QvlwgsvlIc//OGyefNmWbNmjXQ6/T9LXXXVVXLeeec1XlvZUmjLli0yPz8vExP8+jtP2edRROTWW2/1t5DA+GwAAAAAAAAA4N2aNWvk6U9/unz84x8vdfvbbrtN3vrWt8qll17qeWXDff/735ebbrqp1G1/53d+R97+9reX+iV8lX0bQir78TnhhBPkiiuukBNPPHHkbV39W8tu5r1v3z65/vrr5bGPfayTx22bKpuiX3PNNR5XEhbDEABAcGX3GVlY3VGxb0hdZfYbSaEQGabMviOa9hGpqsy+I0NLkZacsTpyP5FUipAidiki0p59RYw6+4ukWoBUlWIFUsScgWkVIpQg7bESi5C21h/Z/UIoP7DSvOQlLyn9y3YRkVe96lVy3nnnyemnn+5xVcN9/etfL3W7o446St72treVrhFuueWWJsvyYu/evfLd73631G3/8R//sdQgRMTdv/WRj3xk6dt+/OMfZxhS4Oijj5bNmzfLtm3bRt72qquukvvuu08OPfTQACvziz1DAAAAAAAAAATxlKc8pdJgY3p6Wi666KKog4OtW7eWut3ZZ58tk5PlBtdbt26V66+/vsmyvCj7bxWRSpe9+tznPldnOQPOOeec0rd95zvfKTt27HDyuKOsWbOm1O3279/veSXlnX322aVut3//fnnLW97ieTVhUIYAANQZVo486el/FXAl/tjVSHdy8fyE8enFs7SL9uJITbYcWVjdf2a6+bemzq5Huqsye23sK7GfSIJMKdJZOvu8M5N4GZLHrkUWZuOsw7dsMTK+Qs6TalMJUqC3dvXSf7TzjHpjJdQgK6EEkaVvIQtLtWxbS5Crvvjq2EsAVHnjG98oz3jGM0rf/mc/+5k87nGPk0996lOVNmF3pczZ8yIis7Pljxkvu+wy6SosrMv+W0UW/71lNuL+5je/KV/4wheaLGvZGWecISeccEKp4djOnTvlJS95iXz0ox+t/Xj79u0r9W/cuHFjqUHHj3/8Y7ngggtqr8eliy66SP7t3/6t1G3f9KY3yTOf+Uw588wzaz1W2efRN4YhAICkXP35Vw39+9SHJdmBQdGwoC2DEvNvHd8/5HJEnbT/rd21/b/EautwpLfqwL+zM9PSf+Pq/EtGdaZbOiRpgV7RpcGWdBb0/fKhCS6F1S6tG4IUfLmZAUgbMOwAqrnwwgvl6U9/unz+858v/T733nuvnH322XLxxRfL61//+kp7HjRV9pe4V111lTzwwANy8MEHD73d+973PnnHO97hYmnOVfmF9Sc/+Ul50YteNPQ2d9xxhzzvec9ruqw+l1xyibzuda8rdduPfexjcumll8qb3/xmGR8v/31ny5Yt8tKXvlR+53d+R5797GePvP0hhxwi99xzz8jbvetd75KXvOQlsn79+tJr8eWiiy6SP/zDP5SdO3eOvO3MzIw885nPlM985jPyqEc9qtLjvO9975N//ud/lq9+9at1l+rMCjn9CwAAAAAAAIAW73nPe+Swww6r9D7dblf++Z//WU499VR54hOfKP/rf/0vufrqq+Wmm26S7du3S7fblenpadm6dat861vfkne/+91y8cUXy7e//e1Gaz388MNL3W7nzp3y67/+67Jly5bcv9+9e7e86lWvkt/+7d9utB6fyv5bRURe8YpXyBe/+MXCv//MZz4jj3nMY+SOO+5wsbRlL3vZyyoNE97ylrfIk570pFJ7v/z4xz+Wl73sZXLqqafKZz/72dKPUfbSbz/5yU/kYQ97mLz85S+Xt73tbXL55ZfLBz7wgb7/la01mtqwYYO89KUvLX37LVu2yBOe8AR5wxveILt27Rp62+npaXn/+98vZ555przoRS+S7du3N12uE51er+XtNAAAS1KtRupcTirVemRoJVIk4Xok1VKkU+Pwsa3FSJ5ka5GEfywYVYHkSbUMqVWAJPqxXUkliEjCNUiNL6VUixDqD8C9r371q3LBBRdUuryUTy984Qvlfe9738Dbv/rVr8r5559f+n6mpqbkOc95jpx22mly1FFHya5du+S73/2ufPazn631S+GiddmOP/54ue2220be7r3vfa9ccsklhX9/3HHHye233156fWeddZacd955ctxxx4nI4mbpX/jCF+QHP/hB6fvIKvPr6r/6q7+SV7+6+uvyKaecIueff76ceOKJ8qAHPUhmZmbkvvvuk5/97Gfyta99TW699da+23/yk58sVYb85V/+pbzmNa+pvJ48xx133MA6sjolfwa+8sor5dxzzx16m127dslDHvIQufvuuyuscHGPlCc+8Yly1llnyWGHHSZr166V7du3yz333CPf+ta35Nprr5Xp6enl259xxhlyww03VHoMH7hMFgAAAAAAAIDgnvzkJ8vll18uz3/+81Xun2E84QlPkE2bNpW6nJDI4l4aH/rQhzyvyp8LL7xQ3vrWt5a+/bXXXivXXnutxxUNesUrXiGf/vSn5Rvf+Eal97v55pvl5ptvdr6eZzzjGc6GISFt3LhR3vOe98iFF15Yaghl7N+/X770pS/Jl770JY+rc49hCABgxRi234jmamR5b40KhUhnxOajWsuRhTWLhyaVCpGyB2wKC5LsniIpVCJ1ihAju6+ISLtLEfYX8adOAZI6J3uBmNe/BAqRlVaDiCRQhDj83WQKRQj1BxDeb/zGb8jExIRcfPHFpTagjmFyclJe/vKXyxve8AZn93n44YfLmWee6WxjcZde/vKXyzvf+U6Zn69R7hd40YteJO9973ud3d/ExIR89KMflbPPPntoRRHKaaedJk94whNKXYpLm6c//enyv//3/5bXvva1sZfiHXuGAAAAAAAAAIjm137t1+TKK68Muil6nmGXH3rlK18pxx57rJPHmZiYkA984AOV90wJ5dRTT5VLL73U2f1dcskl8l//6391dn/GUUcdJV/96lfl5JNPdn7fdbz5zW+Wqan8E6O0+9M//VO57LLLYi/DO8oQAABkeDUioqMcqVOIFBlVjojErUdMIWLU2kvEVuaM6Ij1SLYSEdFVijQpQorYpYhIu2sRkfxihFqkmO8KpDe+eF6Ypr1DnFQgwygsRChBIgv06a+pCKH8APQ666yz5Hvf+5688pWvlHe/+92ysND8556yNm/eLH/wB38gf/AHf1B4m/Xr18vnPvc5Oeecc0pfLivP2NiYvOc975Ff/uVflg984AO178e3v/qrv5Ibb7yx8WWQLrjgAnnnO99Z+XJWZZ1wwgly7bXXygte8AL5/Oc/7+UxyjrzzDPlne98p7zkJS9Rsw9OFX/xF38hD3nIQ+T3fu/3Gn2Oa0YZAgAAAAAAACC6DRs2yNvf/na54YYb5KKLLpLxcX/D1MnJSXna054mH/nIR+TOO++U173udXLooYcOfZ/TTz9dvvKVr9QuWDZs2CCf+MQnvFQSrk1MTMgnPvEJef7zn1/7Pn77t39bPvWpT8nkpN8TAQ455BD53Oc+J5dffrmzeqeuF77whXLNNdfI2WefHXUddT3vec+TG2+8UX7zN39TxsbaNzqgDAEAoARN+424LESG0VSPeClF8iiqRzSUIj6KkGFW0r4iBvuLrMx9QAzvJUiRiIUIJUhACqKnWEUI9QeQvtNPP13+9V//VW6//XZ5z3veI5/85CflBz/4QeP7Peqoo+S8886Tpz71qXLhhRfKwQcfXPk+Hv3oR8v1118vf/7nfy7vec97Su1zMjY2JhdddJH87d/+bfRf1lexbt06+Zd/+Re54IIL5A1veIP87Gc/K/V+D3nIQ+RNb3qTPPvZz/a7QMvFF18sv/EbvyEf+tCH5J/+6Z/kmmuukW633jfERz3qUfKc5zyn1lDjMY95jFxzzTXy/e9/Xz772c/Kd77zHbnxxhvlgQcekF27dsn09HStNRlVNjqv46ijjpIPfvCD8md/9mfy9re/XT70oQ/Jtm3bat3Xxo0b5cILL5SLL77Y8Srr6fR8P3sAALRcrEto+R6GlBHrUlrehiFlRLqU1koYhgw8/goYhhSJMgyJ9PGOPQyJeZmsaMOQ5QUwDAmBYUh4DEOAdrrjjjvkm9/8pnznO9+Rn/70p3L77bfL1q1bZe/evbJ//34ZHx+XjRs3ysaNG2XDhg1y8MEHyymnnCIPf/jD5eEPf7icdtppctRRRzld07Zt2+QTn/iEXHnllXLDDTfIfffdJzt37pQ1a9bI5s2b5WEPe5g88YlPlOc+97ly0kknDbz/Aw88IHv37h35OOvWras1uHGp2+3K5z//efnyl78s3/jGN+Suu+6S7du3i4jIpk2b5KSTTpJf/MVflGc84xly/vnnD1QFMzMzpX+hfswxxzhZ83333SdXXHGFfPvb35Yf/vCHcscdd8jdd98t+/btk7m5OVm9erWsX79eDjvsMDnxxBPlIQ95iJx11lly9tlnyxFHHOFkDW3Q7Xbl29/+tnz961+XG264QW6++WbZsmWL7NixQ6anp2VsbEzWrVsnGzdulOOOO05OOukkOeOMM+Tss8+WRz3qUTIxoafHYBgCAEAAPgcmGoYiw/gcmEQdigwTYGDiezgSexBShAGJRwE+5rEHH0VCDESiDz6KeP64r8Thh+F1CKJg0DGMzyEIgw4AAFBX+y78BQAAAAAAAAAAkEEZAgCAAq7KEe2VyDBNCxK1lUgZjkoSF7WI1iJklJVcjBiNyxEHH3ut5ccoLssQtQXIKA4+/iu5AjEa1yDKi49hXNUglB8AAMAXhiEAACSiysAk5aHIMFUGJkkPR4apMDipMhxJdQgyykofklQakFT8HEh18DFMlaFIskOPUSp8HjD8qDj8SHjQMUyVIQiDDgAAEBOXyQIAAAAAAAAAAK1GGQIAQIvY9UhbC5Ey7IqktaXIMFZFkleKtLUIGWal1yJZfeWI9bnQxvKjLLsQaW0FMkzOawMlSE4J0tLaowy7CKH6AAAA2lGGAAAAAAAAAACAVqMMAQBgBXryk98YewlRjVuFRG9i5Z4fYj8XK1J38dTuztzKLalERGRuBdZTtlVTi//Pj0jSXTsVewnxWFXdwuqJSAvR4StXvzb2EgAAAJxYuT/5AwAAAAAAAACAFYEyBAAADLUSKpIqdcRKqUhWRDHSLX+x/xVRjayUMmRVheJhBfyotGIKEKv2GGYllCDUHgAAYCVaGT/NAwAAAAAAAACAFYsyBAAANNa2esRVFdG2iqQ1tUiFIqSsVpQjbSlDqpQfZbXkR6bWVSAVao9h2laCUH0AAADka9dP6AAAAAAAAAAAABbKEAAAEFSKFUnIIiLFmiSZYsRDEVJGMtVISmWIj/qjjER+dEqyAHFUeZSRYglC7QEAANAcwxAAAKCWxsGJxl/8axygqHqeIg1BylA1KNE2DIk18ChD0Y9QKgcfAQcbZWkcgDDgAAAACEvfT84AAAAAAAAAAAAOUYYAAIBWCV2TqCogaghdlQR/vhRXIWUELUdClyGay48yAv8YFbwAUVh3VBG6BKHyAAAA0I8yBAAAAAAAAAAAtBplCAAAWPFc1iSplyJ1uKpLnDx3iZcgdTirR1yWIalXH3U4+LHKWf2ReNVRh8sShMoDAACgnShDAAAAAAAAAABAq1GGAAAANDCsKlmJlUgdo8qSUs/jCixC6hhakYwqQ1Zi7VFHiR+vRhYgK7DsqGNYDULdAQAAABtlCAAAAAAAAAAAaDXKEAAAgEie8rg3xF5Ca4xNU+E01VngxwIXnO37Afn3a/8i9hIAAADQIpQhAAAAAAAAAACg1ShDAAAAEkVZUg7VSDmUIeVRf5RD2QEAAABNKEMAAAAAAAAAAECrUYYAAABg2UquTVZ6QUIZsrKLDyoOAAAAtB3DEAAAAATTtmFLmwYobRuGtG2wwbACAAAAaIbLZAEAAAAAAAAAgFajDAEAAECraaxRNBYlWssQjYUHlQYAAACQHsoQAAAAAAAAAADQapQhAAAAAAAAAACg1ShDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrTcReAAAgPd1uV3bt2hV7GQAAAAAKbNy4UcbGOAcWAACDYQgAoLJdu3bJM5/5zNjLAAAAAFDg05/+tBx00EGxlwEAgBqcIgAAAAAAAAAAAFqNYQgAAAAAAAAAAGg1hiEAAAAAAAAAAKDV2DMEAODE5HUPks78+PKfO2Mdyfxh+Nv73tbJ/OdY7tuLbp99e9/7Ft3e/HfR42T+s9Tjl3lMc6cl7q+Xfbfs6Qt5/4aB9x3x7yi6bcHjjLw/Een1nWJR8O/oDPx14eMXPWav6PGzb88yz2/eOsreX4PHX35enD1mibfL4NvLPZ/V/rvUuqq8X8Htaz8Xo9bU5L7L3qbCfVRdl3R6g7dp8G/Ivb8hennvW/FxiteYf5u+l1PJuc2ovxeRTpn7Lnx7L/P2Xrk1WY/Z/+U/eH/2fY4V3mbw8Yvur++lPfPfRfdd6u3SG/r3Zf67aC1jMvx9s3/f//jdWvc3/PaD9zne9/jd3PcbL/P4kr/e8cL77C49ZuZtBWstenvhY2benrf2ovvIPs54332XeV6yj1mwxqX3HS/6t5X69xessfA2g/+dPVTLfj1l/3s8c5vxgtuMZb5gxzJfAeMy+Pb+247lv1/m2HP3rnF54Ss2CwAAKMYwBADgRGduTDoLjochYwVDil7R2zPv2xnLfXvu8KDocYr+u+i3ZJ2CXzfl3k/V37TK6NsU/XffL+pG/Ma0T9XbZN9c8PjLw5gKtx22lDK3Wfr8KvfL4DKPWfXxXT9mzf9u8Di1hzRV30/y3+58GOLo3+l6GFL98SMMQwrvM8IwJO82feuuOgyp9pijhhGF/2YpeHvh81J0m8HnvFN024LnovjxR/933jCk6n9XHlLkDEP6/77qMGT4AGDxNp3Mfw8OQ/L+fvD+igYQkv/2zMeof5CQs+6+++iUeHt2vZL79v61560p835995F9zOzbRw+Jxvuel8HbFP99/kClzDCk+DbDhyH9j595e8Hz2X+b7NsLPi5L/91/Wxn4e/sxx/K++QAAgD5cJgsAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKtNxF4AAKAdepNdkc7CgTeMdQ78d6c3/O19byt4v+zbx7oFb8++71jB23P+O3vbvr+X/LcX3l+JxzR3mrcO6797Oe9W/n2z75DVsf5fpCejblv2Nhm9grfn6LvvXsHbJfcmQx4/5zaFz2f2v4s+/hVvn7cWZ49Z4r8l5+0NHifvU7jyWuquu8l/h3qcMo9V5nkuuH3xa0Fv8DYFty2+jxH3N0Qv730rPk7xGvNv0//SlnObUX8vIp0y91349l7m7b1ya7Ies//Lf/D+7Pssvk3O4/f920a9+g65fYn/7pl/a9/nTbX/znw3t9Y76vGL7rub//bC2+f/91jm9mOZ+xxbuk32/jrZv8+8vVt4fwf+e0EG71tEZLzgPs3bs58H4wX3XfT2orWM9z2OZG5vbjv4tsX3y//v/tsf+MN44ds7uW8fy/n7vsfJrCb7mMXPS/Z9SzwXS/9d9O/vey76Hr/g9gX/znEZfHv/bcfy3y9z7Ll7F+e6AgAwCsMQAIATc4++P/YSoFXB77e0KPM7cgBAv8GxhDXcQMLyJoP8oh0AAKSPIxoAAAAAAAAAANBqDEMAAJXt3Lkz9hIAAAAADMExOwAA/RiGAAAAAAAAAACAVmPPEABAZRs2bBh42+WXXy6bNm2KsBoAAABgZdu5c6e84AUv6Htb3jE7AAArGcMQAEBlY2ODYeGmTZvkoIMOCr8YAAAAAAPyjtkBAFjJ+M4IAAAAAAAAAABajWEIAAAAAAAAAABoNYYhAAAAAAAAAACg1RiGAAAAAAAAAACAVmMYAgAAAAAAAAAAWo1hCAAAAAAAAAAAaDWGIQAAAAAAAAAAoNUYhgAAAAAAAAAAgFZjGAIAAAAAAAAAAFqNYQgAAAAAAAAAAGg1hiEAAAAAAAAAAKDVOr1erxd7EQAAAAAAAAAAAL5QhgAAAAAAAAAAgFZjGAIAAAAAAAAAAFqNYQgAAAAAAAAAAGg1hiEAAAAAAAAAAKDVGIYAAAAAAAAAAIBWYxgCAAAAAAAAAABajWEIAAAAAAAAAABoNYYhAAAAAAAAAACg1RiGAAAAAAAAAACAVmMYAgAAAAAAAAAAWo1hCAAAAAAAAAAAaDWGIQAAAAAAAAAAoNUYhgAAAAAAAAAAgFZjGAIAAAAAAAAAAFptIvYCAAD+zc3Nye233y633Xab7Ny5U/bu3Svj4+OyYcMGOeigg+QhD3mIbN68OfYyg7rjjjvk1ltvlXvvvVf27dsnnU5H1qxZI4cddpgcffTRcuyxx8rEhNtvk3v27JEf//jHcuedd8qePXuk0+nIhg0b5Nhjj5XTTjtNVq1a5fTxAAAAqtqxY4fceOON8sADD8iOHTuk1+vJhg0b5JhjjpGHPexhsnbtWueP2e125e6775Z77rlH7r33Xtm1a5fMzMyIiMi6detk/fr1cuyxx8qJJ54ok5OTzh9fi+npafnRj34k9913n+zYsUNmZmZk3bp1cuSRR8qpp54qhx56aOwlIrJ7771XfvrTn8rWrVtl//79MjU1JQcffLCccMIJcsopp8jYWJhznnfv3i0333yzbNmyRXbv3i1zc3OyZs0a2bRpkxx11FFywgknyPr164OsBQCqYBgCACLS6/Xk5S9/udxwww0Df/fIRz5S/uEf/qHU/WzdulWe97z/v737jorySv8A/qUKAiJNiooRC6goCjbsmlji6uLaEhON/mwby2qwoUaja4LYo8Zd1Ng2McYSV4NGbAkiCIog2JAiiKgggiAiDJ3fHx5ZX94XmBlmBoLfzzl7zvLM3AKiee889z73IxXP7n+WLVuGDz/8sNr3FRcXIzIyEhEREYiMjERcXBxKSkqqbGNlZYWBAwfCw8MDzZs3V2p++/btw4EDB5RqK4/Lly/XqH1ycjL8/PwQEBCA9PT0Kt9rYGAAR0dHdO/eHQMGDFD6ZwIA4eHhOHLkCMLDwyv9c9DX10fv3r0xYcIEODk5KT0WERER1Z6XL18iJiYGsbGxiImJQVxcHNLS0kTvq+kzjaoVFBTg5MmTOHv2LBITE1FWVib5Pl1dXbi5uWHcuHHo3r270uOlpaXh5s2buHPnDmJjY/HgwQPk5+dX205PTw8uLi4YNmwY+vfvr/RGElU+s9rb2+PgwYNKty8rK8Ply5fx3//+F3fu3EFRUVGl723bti08PDzw4YcfqmzTTllZGR4/flz+OxsbG4v4+Hjk5eUJ3jds2DAsX75cJWOSYkpKSuDv748TJ04gPj6+0veZmppi6NCh+Oijj9Sy0U0mk+HcuXM4e/YsYmJiUFpaWul7tbS00Lx5c7i6usLd3R3u7u4qnw8RkTKYDCEiAnD8+HHJRMifTUJCAo4dO4agoCDk5OQo1DY9PR1Hjx7FsWPHMHz4cMydOxdGRkZqmqlm5eTkwNfXF/7+/tUmhd7Iz8/HzZs3cfPmTaSkpMDLy0vhcV+9eoX169cjMDCw2vcWFhYiICAAly5dwt/+9jfMmTOnXu98JCIiqg8SExMRGhqKuLg4xMTEIDU1tbanpLCAgABs27YNmZmZ1b63uLgY165dw7Vr1+Du7o5ly5ahcePGCo+5atUqREdHK9yuqKgI4eHhCA8Px549e+Dp6fmn/pA1ISEB3t7euH//vlzvj4uLw8aNG3HkyBGsXLkSjo6OSo0bGBiI6OhoxMTEID4+Hq9evVKqH1K/pKQkrF69GomJidW+Nzs7G0ePHsWpU6cwd+5cjBw5UmXz8Pf3x65du+T6dwJ4nWRLTk5GcnIyTp06hYCAAJXNhYioJpgMIaJ33uPHj7F79+7anoZcnJ2dq3w9MDAQZ86cqdEYZWVl+O233xAeHo4tW7bU6ESEKnXo0EGpdrGxsVi+fHm1J0FULTMzE/Pnz8fDhw8ValdWVob//ve/ePDgAdavXw8DAwM1zZCIiIhq6vTp0/jll19qexpK2717t9KnGkJDQzFjxgxs3boVTZs2VfHMqvf06VN4eXlhypQpmDp1qsbHr6nAwECsXbsWMplM4bbJycmYM2cO1qxZg169eincfv369UyA/Ancvn0bixcvFp3SqY5MJsPGjRvx+PFjzJo1q0ZzKCgogLe3Ny5dulSjfoiI6gomQ4jonVZaWop169bJdSxfHnp6emjdunWN+3lTK/ltnTp1Ujoxoa+vDycnJ3To0AGWlpYwMzNDaWkpnj9/jjt37uDatWsoLCwUtElLS8MXX3yB7777DnZ2dnKNY2FhoZLvX2p33IgRIxTu59atW1i8eLHkItPGxgY9e/aEnZ0dzM3NoaOjg9zcXKSkpCAhIQF37txBbm6uUvMvLCyEl5eXZCKkefPmGDhwIJo2bYqysjI8efIEf/zxB548eSJ4X2RkJL7++mt4e3srNQciIiKiqvz444+SiZA3pbDc3NxgaWmJ4uJipKWlISwsDLdv3xa8Ny0tDZ6envj+++9hamqq9Fze3GHXrFkz2NrawsTEBIaGhigsLEROTg6SkpIQHh4uel4CgAMHDkBfXx8TJ05UenwASj/D2traKtwmKioKq1evljyx7OTkBHd3d9jY2EBfXx/Pnz9HVFQUwsLCBM/rhYWFWLlyJbZt21bthin683n8+DG8vLwkEyFdunRBt27dYG1tjdzcXCQlJeHChQuiygA///wzLCwsMH78eKXmIJPJsGjRItHfewAwNDSEq6sr2rVrBzMzMxgbG0MmkyEzMxOJiYm4d++e5N9XIqLaxmQIEb3Tjh07hlu3bpV/3b59e6WO7L9haWmJffv21XheEydOFCVDFE0G6OjooGfPnhg+fDi6d+9eZU3ljIwM+Pr64sKFC4J4eno61q9fj23btsk1poeHBzw8PBSaZ0V3794V7WBq2LAhBg0apFA/Dx8+xNKlS0WJECcnJ8yZMwcuLi5Vti8uLsbNmzdx9uxZhetR7969G7GxsYKYrq4uPD09MWLECGhpaQlemzZtGk6fPo1vv/1WsCgOCgrCyZMnMWrUKIXGJyIiotqlp6eHli1bwtHREQEBAXVuF354eDj27t0rinfs2BFeXl6wt7cXvTZ58mTcvHkTPj4+SElJKY8/ffoUPj4+WLdundzjm5iYYMCAAejRowc6d+4s98mSiIgIbNu2DUlJSYL4/v370bt3b7Rs2VLuOVSkimd4eTx//hyrVq0SJUKsrKzg5eUleRfL+PHjkZqaio0bNyI8PLw8XlRUhFWrVuGHH35QSXlbU1NTtG3bFiYmJvjjjz9q3B8pp7S0FGvWrBH9u2Fubo6vv/4aHTt2FLX5+9//jn/961/w8/MTxHfu3Ak3Nze0atVK4TmsWrVKlAgxNjbGlClT4OHhUe0a6dGjRwgICIC/v79CYxMRqROTIUT0znr06BH27NlT/rWpqSnmzZuHzz//vBZn9fo0Q3JysiBmbGyMAQMGyNW+QYMG8PDwwIQJE2BhYSFXG0tLS6xcuRL29vaihXFkZCQuXbok9/g1dfr0aVFs0KBBMDQ0lLuPwsJCrF69WrSAGD9+PGbPng1tbe1q+3h7V2Rll4hKSUpKwvHjx0XxNWvWoE+fPpJttLW18de//hVmZmb48ssvBa99//33eP/992FiYiL3HIiIiEhzdHR08N5778HR0RFOTk5wdHRE69aty+/+un79ep1KhpSVleHf//636PJjV1dXrF+/vsoPOF1cXLBjxw7MnTtXkBAJCQlBcHBwpc86FW3cuFGpubu5ucHX1xcLFizAvXv3yuNFRUU4fPgwli1bplS/mnTw4EFkZWUJYpaWltixY0eVp0xsbW2xYcMGrFy5EleuXCmPp6enY//+/Zg7d65C8zA2NkabNm3g5ORU/nv75jR4ZGQkkyFv6devn+DrI0eOKHUiSF6//fYbYmJiBLFGjRrB19e30nENDQ2xaNEiGBgY4OjRo+Xx4uJibNu2Ddu3b1doDj/99BOuXr0qiL333nvYsmULLC0t5eqjefPm+OyzzzBp0iSFxiYiUqfqPw0iIqqHSktLsXbtWhQUFJTH/vGPf8DMzKwWZ/Xab7/9Joq9//77ct0d0aNHDxw+fBhz586VOxHytsmTJ0vWHT537pzCfSkjLy9PcuGl6KmYQ4cOISEhQRAbM2YM5s6dK1cipKKKJzmq8tNPP4l2+o0cOVKuDwf69u0r+l5zcnIkkytERERU+z755BOcPXsW+/fvx9KlSzFq1Ci0a9euPBFSFwUHB4tKkpqYmGDFihVynYa1tLTEihUrRM9H+/fvV+k8K2NkZCSZ9AgKCkJxcbFG5qCszMxMnDp1ShRfunSpXB+u6+rqYvny5aIPo0+ePInnz5/LPY89e/bgt99+w7Zt2zBr1iwMHDhQ7rK4pF4lJSWS5evmz58v1+/IzJkzRSekoqKiEBUVJfccHj16hAMHDghiTZs2xfbt2+VOhLxNkbUUEZG6MRlCRO+kw4cP4+7du+Vfu7u7Y8iQIbU4o9fy8vIkL6eTNxnQoUMHpZIgb/u///s/Uez69esoKiqqUb/yCAgIEJW1atmyJdq3by93H1lZWfjpp58EsebNm9f48kB55OTkiJI5urq6mDZtmtx9TJs2DTo6OoLYqVOnRLs3iYiIqPZZWloqXE6ztl2+fFkU8/DwUOhDTmdnZ/To0UMQi4+Pl7xbQB3enMR526tXrxRKCNSG0NBQ0T19HTp0kCyNVRkTExOMGzdOECssLMSZM2fk7sPOzo4fUNdRYWFhSE1NFcRatWqFwYMHy9VeX19fcj3366+/yj2H3bt3i9Z+ixYtQuPGjeXug4iormIyhIjeOUlJSYKawEZGRli4cGEtzuh/Ll68KEoGtG7dWrTYUydHR0eYm5sLYoWFhRpZXEqVyPrLX/6iUB/Hjx8XnPgBgFmzZkFfX79Gc5NHYGCgaOHQt29f0c+zKhYWFqJTJOnp6bh586ZK5khERETvtoiICFFMmU1BQ4cOFcUq3j+nTlInGep6MkRVP3upNufPn1dqTnVJSUkJ7t27h0uXLuHkyZP48ccfcfz4cfz++++IjY1VqHTtn9Xvv/8uiv31r39VqI8+ffqI1h/BwcHIz8+vtu2jR48QFBQkiPXt2xdubm4KzYGIqK7inSFE9E4pKSnB2rVrBTuyZs+ejSZNmtTirP5HqkSWoskAVWjSpAkyMzMFsczMTNjY2KhtzKSkJMFpHeD1ziaphXZlSktLRRf0mZubw93dXSVzrE5YWJgo1r9/f4X7GTBgAAIDAwWxq1evokuXLkrPjYiIiCg7OxsZGRmCmLGxMVq0aKFwX87OzqJYaGio0nNTVMUTFsDrE7l1WcUyrsDrkyGKsrCwgK2treAEwcOHD5GSkvKnLHcVHh4OPz8/hIeHV3m/jqmpKXr27ImJEycq9Ttb15WVleH69euiuKLrCV1dXfTp00dwmXpBQQGioqLQs2fPKtueOXNGdCK9NtajRETqwpMhRPRO+fnnnwWX0bm5uWHkyJG1OKP/SUxMFFwECbxOBtRG+a6KJysAqL0EhFQiqE+fPjA1NZW7jzt37iA9PV0QGzBggKjslLrcunVLFOvUqZPC/Ui1keqbiIiISBEvXrwQxZo0aaJUySQrKytRu7S0NMHF6upSVlaGuLg4QUxbW1utl1qrQnZ2tiim7GYja2trUUyReyHqgoSEBHzxxRdYsGABLl26VGUiBHj98zt37hymTJmCTZs2SSbE/sySk5ORlZUliDVr1kyhU+ZvKLueqFiy2cTERKEybkREdR2TIUT0znjw4IHgYkdDQ0MsXry4FmckJJUM6NevH0xMTDQ6j5KSElGdWgA1voukKsXFxZJH+xXdhRQeHi6KKXLfSE2kp6eLTtNYW1srdcmglZWVaIGbkJAgupidiIiISBEvX74UxYyMjJTqS1tbW7JtxSSFOly4cEG0AcbJyUnjz82Kkvr5N2zYUKm+jI2NRbHY2Fil+qoNV65cwezZs3Hjxg2F25aUlMDPzw/z588XJQ/+zKT+/JQ5OQRIn9yq7vcjJSUFT548EcQcHR3r/IkrIiJF8F80InonFBcXY+3atYL7HGbMmFFnjpEXFRVJJgPkvThdla5duyaqJ2tjY6PWC/OCg4NFCxkbGxt07dpVoX6kLu1s06ZN+f8vLi5GcHAwLl++jJiYGGRkZKC0tBSNGjVC48aN0a5dO3Tt2hU9evRQeGGanJwsijVt2lShPt5mZ2eHtLS08q/z8/Px7NmzOr/jkYiIiOouqZO+UieC5SV1B8HDhw+V7k8eYWFh2Lx5syg+fvz4GvV79OhR3Lp1C4mJiXjx4gXy8/NhYmICExMT2NrawsXFBZ07d5b8kFleDRo0QHFxsSBWWFio1IfNtfGzV5ULFy7A29tbVI5JT08Prq6uaNeuHZo0aQJjY2PIZDKkpqbixo0bopMNd+/exYoVK7Bt27Z68YG91HqiWbNmSvVlbW0NHR0dwWaqR48eVdnmzp07oljr1q0FXyckJOD8+fOIiorC48ePkZeXByMjIzRu3BjNmjWDm5sb3N3dlZ43EZG6/fn/a0FEJIeffvpJsBPG2dkZo0ePrsUZCQUFBYmOzTdt2rRW7oh4u7bsG71791brmFKnYoYPH65wyYbExERR7M2D+M2bN7Fu3TrRbicAyMjIQEZGBu7fv49Tp07B1NQUn3zyCcaMGSP3xetSp2lqcseKVOmDlJQUJkOIiIhIaVLlR6VKZ8kjJydH9ME+AMlnrZrKzc3FrVu3cObMGdG9asDr09SDBg2q0Rg7duwQxbKyspCVlYXk5GRcu3YNAODg4ICPP/4YgwcPVrgUa6NGjZCbmyuIvXjxQqnTIVJ/bpooUVZTDx48wMaNGwWJEB0dHYwfPx4TJkyodAPW1KlTER8fjw0bNgjWdbdv38bu3bsxe/ZsdU9d7Z4+fSqKSa0J5KGjowMrKytBn+np6SguLq40cSR1p82btdTLly+xdetWXLx4UfSely9f4uXLl0hOTkZISAj+9a9/YdCgQZg6dSqTIkRU5zAZQkT1XkJCAv7zn/+Uf62vr4+lS5dCW7vuVApUVTKgpm7cuIGQkBBBTEtLS60nVJ49eya6KFBbWxvDhw9XqB+ZTCY6XaKvrw89PT385z//wf79+0W7zyqTnZ0NX19fXL58Gd7e3nLV6a1YIgt4XYNbWVJt61MZACIiItI8MzMz6OrqCpIYz549Q1ZWFszMzBTqq7KSO8o+rxw8eBB//PGHIFZYWIhXr15JPme90atXL6xcuVKpMZWRmJiItWvXwt/fHytXrlSoJGqTJk1EG2hiYmIUPq1eUFCApKQkUbyqn1NdUFpaitWrVwtOtRgaGsLHxweurq7Vtm/Tpg3+/e9/w8vLS1Ae9/jx4xg7dmyNnr3rAnWsJ95OhpSUlODFixeV/s5Kbe4yMjJCTEwMli1bhufPn8s1bmlpKS5evIiQkBB89dVX6NWrl3LfABGRGtSdTwKJiNTgTXmstxd8U6ZMgb29fS3OSujp06eIiIgQxHR0dPDhhx9qdB6vXr3CunXrRPHBgwejVatWahvX399flKTo1q2bwg/+Ug/nDRs2xPHjx7F3717RGMbGxrC3t4eNjQ309PQk+7x79y4+//xzuRb1UjWgDQ0N5Zy9mFRbqUs3iYiIiOSlr68PJycnUbziZhh5VNZG2eeV9PR03L9/X/C/5OTkSj/gt7KywsKFC+Hj4yNZ/ksZxsbGsLW1RcuWLWFlZVXlCeHIyEhMmzZNMilRGalLrUNDQxWeZ1hYmOSpnMLCQshkMoX705TAwEA8ePBAEFu6dKlciZA39PT0sGbNGsEpp6KiIhw9elRl86wtmlhPSI3xhtR66sWLF/Dy8hK9pq+vDxsbG9jb20veXwMAeXl5WL58ueRpEiKi2sKTIURUr/3www+Ij48v/9rR0RETJkyoxRmJnTlzRvRBfY8ePZS6eFtZZWVl8Pb2Fh3NNjU1VeuR87KyMpw5c0YUV/TidOB1qYaKcnNz8d1335V/raurCw8PD4wcORIODg7l8YKCAkREROCHH35AdHS0oI+nT59i9erV2LJlS5WlEKTqNstbYkuKqmt6ExEREQGAm5ub6G6A48ePY9iwYXKXfXr58iXOnj0r+Zq6P4w3NDTElClTMHbs2Eo3tMiradOmcHd3R48ePdCqVSvR83dJSQni4+MREhKCEydOiBI9WVlZWLJkCXbu3CnXSWJXV1f8+OOPglhAQABmzpwJKysrued95MiRSl/Lz8+v0Qfo6nTo0CHB1126dMHAgQMV7sfY2Bhjx47F3r17y2OXL1/G3LlzazzH2iS1nqhJok9qLSI1xhtS66mdO3cK1iAdOnTAZ599Bjc3N0H/CQkJ8PPzg5+fn+CektLSUmzYsAEODg6C9RcRUW3hyRAiqrfi4uIEiw1dXV0sXbpU4dq+6lRaWgp/f39RXJlkQE3s2rULV65cEcS0tLSwdOlSuRZ2yrpx44boOLaZmRn69OmjcF9FRUWSsTeJJhMTE3z33XeYP3++6EG8QYMG6NWrF3x9fSWTZZGRkTh9+nSV40vtzqvJ4kWqrdT3SERERKSIESNGiO4MuH//Pg4ePChX+7KyMmzatAmvXr2SfF3qmUiVZDIZfH19MX36dPj7+6OsrEzhPpydnbF161b8/PPPmDdvXqUbkXR0dODk5ISpU6fi2LFjks/oT58+xYYNG+Qa19XVFS1atBDECgsLsW7dOrnLuR4/flx0kfjb6urzYmpqqqi0Wk3WPO7u7oKvnz59Knnnxp+J1N8dVW+uqurvp9TvztuJkIkTJ8LX1xfu7u6iebVq1Qqenp7Ytm2b6KRIfn6+3H9HiIjUjSdDiKheKioqwtq1awW7UiZOnKjWck/KCA8PR1pamiBmbm4uerhXpxMnToh2aQGvf17qvjhdKsEwdOjQSi/1q0pVC2EtLS1888036NChQ5V9aGlpYdasWXj+/DnOnz8veO3QoUMYMWKExpJpmr4vhoiIiN4N1tbWGDJkiOh07r59+6Cnp4cJEyZU+hxSUFCALVu24NKlSyqfl6enJzw9PQWx3NxcZGdn4/79+7hx4wbOnz9fnoR58OABfHx8cPbsWaxatUqhDTzdu3dXeH4GBgbw8vKCtbU19u3bJ3gtJCQEt27dkiyD9TYtLS1MnDgR3t7egvj169exevVqLFu2rMpTHSdOnBCceq5sjLooKipKFOvYsaPS/dna2opi8fHxsLGxqbTN3r17RRvAlLFkyRKFTyX17t0b06ZNU3ismvx5SrWtas1U1WvDhw/HzJkzqx2zU6dOWLNmDRYuXCjoLzo6GhEREXBzc6u2DyIidWIyhIjqpQMHDiAxMbH865YtW2LSpEm1OCNpUhenDxs2TKlkgDLOnz+Pbdu2Sc5h+vTpah375cuXCAoKEsWV3SFW1c9s2LBh6NKli9x9zZ8/H8HBwcjLyyuPpaamIjw8HD169JB7/JqUtZJqq6nfCyIiIqrf5syZg8jISMEJ3bKyMuzcuRMBAQHw8PCAq6srLCwsUFJSgmfPniEsLAy//PKLYPe9ubm56E6Pmuxkr8jIyAhGRkaws7NDv379MHPmTOzcuRMnT54sf09kZCTmzZuH7777TuFL4JUxZcoUxMbGij5UP3z4cLXJEOD1xp/Lly+LnoMvXbqE27dvY+zYsejZs2f5vXaZmZmIioqCn5+foLyZ1M8eUO3PX5UqlmYDgC+//FKlY1R3X01aWhru379f43EePnyocJvWrVtX+x5NrCeqSuJUttYwNjbGP/7xD7nH7dq1KwYPHizaXHbq1CkmQ4io1vFTFSKqd2JiYgQnHXR0dLB06dIa1xRWtezsbAQHB4vimiqRFRgYCB8fH9GR/AEDBsDLy0vtu8ouXLiAwsJCQaxjx46i0gHyMjAwqPS10aNHK9SXiYkJBg8ejF9//VUQj4yMrDQZIjV+xe9PEVKLl6q+RyIiIiJ5mZiY4JtvvoGnp6foQuXY2Fi5Stq0aNECn376KdauXSvqW10aNmyIBQsWwNbWFr6+vuXx5ORk+Pj4aKwUz6xZsxAaGip4jo6IiEBxcbFcm1eWL1+OefPmCe42BF5fYL1r1y7s2rWryvaGhoZYtWoV5s+fL4hraWnByMhIge9Ec549eyaKqSIx8bbqkiF1narvDFR0PVHZa0OHDlX492r06NGiZIjU6SAiIk3jnSFEVK8UFhbCx8dHUB5r/PjxaNeuXS3OStq5c+dEdVk7d+6M5s2bq33skJAQ/POf/xT8nIDXx7e/+uorjZSCkjoVM2LECKX7MzU1rTTu6OiocH/dunUTxW7fvl3p+xs1aiSK1eQCUam2lX2PRERERIpq06YNdu7cqdRGFEdHR2zcuBHa2uKPFCwsLFQxvSpNmDBBtEHl6tWrCA8PV/vYAGBvb4+2bdsKYjKZDNHR0XK1NzIywo4dO9C3b1+FxzY3N8fatWvRrFkz0WumpqZ19iRxxaSbOtQkcVAXSD3rq3o9IbVmqe41qXVRddq1aye6OyQzMxOPHz9WuC8iIlWqm/+VJCJS0i+//IIHDx6Uf92sWTNMnTq1FmdUOalkgCZOhYSFheGrr74SXZ7Xo0cPrFmzRiMLqJiYGNFOsIYNG2LAgAFK99m4cWPo6OiIEjxt2rRRqj+pdhkZGZW+X6pOtdQOOHlJtdVE6QciIiJ6dzRr1gx79uzBr7/+ikOHDkmWXXqbgYEBPvroI0yePBm6uroIDQ0VvUfqLgd1mDx5Mq5duyaI+fn5oWvXrhoZv0uXLoiJiRHEKt4FWBVDQ0N4e3sjKCgI+/fvr/aUhLa2Nvr37w9PT080btwYSUlJovfY2dnJPb6m5eTk1PYUsHz5cixfvlzhdv369RN8feTIEbX8nks966enpyvdX8X1hLa2Nho3blzp+ytLZCqzntLS0kLr1q1Fp0EyMjIkE3lERJrCZAgR1SsVP6zOy8vDrFmz5G5f8aQG8LpUgFRCpeLFiYqIjo4WJG2A17VYa5IMkEd4eDiWL18uKt/UtWtXfPPNNxorJSaVCHr//fervDCyOrq6urCyshLUsQaq3v1UFamdWVXtaJNaECmyIJanraY+XCAiIqJ3R4MGDTB+/HiMHj0ad+/eRUREBB4+fIjs7Gzk5ubCwMAATZs2hYuLC/r06SMogyV1d4KDg4NG5t2+fXuYmJgIPmSPjIzUyNiA9AfHL168ULifvn37om/fvkhMTER4eDji4uLw4sULvHz5Erq6umjSpAnatWuHvn37CpIdUskQTf3slSFVAurChQuS8XeV1LN+xbWNvEpLS0VrYysrqyo3vlWWTFN2PSXVThMnhIiIqsJkCBHVa5mZmdXucKuOTCZTeT1bqWTABx98oNbFwI0bN7Bs2TJRIsTV1RU+Pj4aW4gUFBTg999/F8VrUiLrjRYtWogWDMomeKQun6zqDhCp8mZPnjxRamwASElJEXzdoEEDWFtbK90fERERUVV0dXXh4uICFxcXudskJCSIYs7OzqqcVqW0tbVhbW0tSIZkZ2cjLy8PDRs2VPv4Uvcr1KRMk4ODg0LJjMTERFFMUz97ZUhtNMrJyWEy5C329vaimLLribS0NFElAKn+31ZZyTxNraeIiDSBd4YQEWmYTCaTTAaos0RWVFQUli5dKlqgde7cGevWrdPoIiQgIACvXr0SxBwcHFRyr4tUH7m5uUr1VXGOQNW7opo0aSI62v706dMqS2tVJiMjQ5TUad26tUbuciEiIiKSR2FhoegCcFtbW42WapL6sDUvL08jY0udAqmqBJGq3b17VxRzdXXV2PiKkiopq+yph/qq4j00gPSfszzu3LkjV/9vc3Jykoxraj1FRKQJTIYQEWlYQECAaJHWpk0bpS75lsfNmzfh5eWF/Px8QbxTp05Yv3695K42dVL1xelv69y5syiWmpqqVF9S7apb4Hbq1EkUq+rS9crcunVLrr6JiIiIaktISIjomXbgwIEanUNWVpYoJnUCQR2kSoRpauzMzEzcuHFDEGvfvj1sbGw0Mr4ypDYt3bx5sxZmUne1aNFCtN549OiR5O95daTWINWd+rKzs5M8ia7sekoq2aXJhCERkRSWySKiemXevHmYN2+e0u1TU1Px0UcfCWKdO3fG9u3bazq1cupMBlR0+/ZtLFmyBDKZTBDv2LEjNmzYUKM7OpTx6NEj0aJHX18fQ4YMUUn/nTp1gpGRkWD3UlJSEnJzc2FkZKRQX1K7qaq7PLBHjx4IDAwUxC5duqTwBwMV+3jTNxEREVFd4e/vL/haS0sLw4cP19j4mZmZog9bTUxMNHIHXnFxMa5fvy6Kt27dWu1jA8C5c+dQUlIiiKnzlLkqdOvWTRS7fPkyPv3001qYTd2kpaWFbt264cKFC4J4YGAgRo0aJXc/xcXFCAoKEsT09fUlN45V5O7ujpMnTwpid+7cqfZUSUU5OTmihKG+vn6lpbiIiDSFJ0OIiDQoOTlZtEunQYMG+OCDD1Q+VnR0tGQipEOHDti4caNGailXdObMGVGsb9++Kjsurauri0GDBgliJSUluHjxosJ9nTt3ThRzc3Orsk2/fv1EC/CgoCCFdnNlZmaKFi+WlpZyLV6IiIiINCEsLAyhoaGCWJ8+faq9k0CVLl68iLKyMkGsQ4cOGhn7zJkzojJZ9vb2khdgq1pmZiZ+/PFHQczc3BxDhw5V+9g18d5776FZs2aC2L179xAREVFLM6qb3n//fVHMz89PoT5CQkLw/PlzQaxPnz5yVQQYPHiwKHb+/HmFxn/TpuLfT2dnZ94RQ0S1jskQIiINOn36tCjWv39/mJiYqHSc2NhYLFq0SFTftV27dti0aVOtJEKKi4tx9uxZUVzVp2JGjx4NLS0tQezQoUMK1Y8OCgpCXFycIGZgYICePXtW2a5Ro0aiUyDFxcXYt2+f3GPv27dPdNnhyJEjoa3N/2QTERFR7cvMzMTmzZsFMV1dXfz973/X2ByeP3+OH374QRTv16+f2sdOSUnBnj17RPEBAwaofezi4mJs3LhRdBfDjBkzJO9PqWsmTZokim3YsAEvX76shdnUTd27dxeVO7t//77knZNSioqKJNce8p4s6dixo+gUSHR0tCj5WZW8vDwcPnxYFNfE3xEiourwkxUiIg0pLi6WPG2g6mTA/fv3sXDhQtEiycnJCZs3b1a4XJSqXL16VbRDydbWVuUXPbZq1Qr9+/cXxFJTU7Fp0yZROQEpjx8/xqZNm0TxUaNGyVUH+tNPPxVddO7n54eQkJBq2165ckW088vY2Bhjxoypti0RERG9W8aPH49+/foJ/hcZGSl3e3meiyrKyMjA/PnzRXcITJo0Se5TIb6+vkhOTlZ47DfS09Ph6ekp+gDd3Ny82tKkMplM4U0yb3v06BGWLFkiOhXSqFEjUandqijzsy8qKsLXX3+NK1euCOJdunTRaHmymhgyZIjo9yQ1NRVLlixBRkaGUn3m5ubi0KFDSp1eqIt0dXUlS4dt3bpVrgvnd+/ejcTEREGsU6dOCp0ynzZtmii2fv16pKSkVNu2pKQE69evR1pamiBuZWX1p/k9JaL6jckQIiINCQkJEZVLatq0qUrLHyUlJWHBggWixWHbtm2xefNmGBsbq2wsRUndlTJ8+HDRKQ5VmDt3rijpc/HiRXz55Zd49uxZpe1CQ0Mxd+5c0Z+TpaUlPvnkE7nGbtmyJf72t78JYmVlZVixYgVOnz4tOi7+5vVTp05h5cqVotemT5+usjJiRERERG/MnDkTvr6+SEhIqPa9hYWF+OWXX/DZZ5+J7gFwc3PDZ599Jve4AQEBmDx5MlasWIFLly6hoKBArnY5OTk4evQoJk+ejKSkJNHrUs9/FRUXF2Pnzp0YN24cduzYgdu3b0s+m1X0Zqf79OnTJRM5M2bMUOik96ZNm/DNN98gIiJCdCK4orKyMoSGhmLKlCkICAgQvGZpaYmVK1eq5XlaHXR0dLBmzRrRKfXo6GhMmzYNJ06ckOv3obi4GOHh4di4cSPGjRuHnTt3ijZd/ZmNGDFCdDojOzsbs2bNkrzXEADy8/OxefNmHDlyRBDX0dHBF198odD47u7uolNWmZmZmDNnDq5du1Zpu7S0NCxbtkz0ewoAn3/++Z/i9BIR1X9aZfL8l5+I6B2hzgvUlyxZgqtXrwpiM2fOxMSJE2vc9xsLFixAeHi4KG5nZ1fj0lhTp05Fnz59lGqbkZGBcePGCXbB6ejo4OjRo7CysqrRvCoTFBSEFStWiBa4DRo0QM+ePeHi4gIzMzMUFhYiNTUVoaGhiI2NFfWjp6eH7du3K1SDuqCgALNnz0Z8fLzoNXt7ewwaNKi8pnRKSgp+//13PH78WPTeXr16wcfH50+zwCUiInoXLV68uMoPYpOSkkQfeFd30faGDRtgaWlZ5XvGjx8v2im+bds2dOnSpZoZvzZmzBikp6cDAKytreHs7AwHBwdYWFigYcOGyM3NRVZWFmJiYnD9+nXRPXTA65PH3377rUInjyvOW19fH61bt0abNm3QtGlTGBsbw9jYGEVFRcjLy0NKSgri4+Nx69YtFBYWSvY5YcIEzJo1q9qxc3JyRBeNm5mZoW3btmjVqhWsrKxgbGyMBg0aIDc3F5mZmbh79y6ioqIqPU3y0UcfYc6cOXJ//wDw9ddfl1+SbWxsjE6dOqFVq1awsbGBkZERioqKkJWVheTkZISGhkr+fpmammLr1q1o1aqVQmMDQExMDDZs2FDp6zKZDE+ePBHETExMYG1tXWkbR0dHeHl5yTX+lStXsGLFCskTMsbGxujcuTPat2+Pxo0bw9jYGDKZDK9evUJaWhri4uIQHx8vKgc8a9YsTJgwQa7xFVUxMXDkyBG13w/z6NEjzJw5U/R9AoCrqyu6desGa2tr5ObmIikpCRcuXJAsNzZ79mx8/PHHCo+fk5ODGTNmSJ4GcXJygru7O2xtbaGnp4fMzExERUXh2rVrkn9Hx4wZg/nz5ys8ByIiddCt7QkQEb0L0tPTcf36dUFMR0cHH374oUrHqWxnmTxHmquTk5OjdNuzZ8+KFjvdu3dXWyIEeH0x+5IlS0TlsQoKChAYGIjAwMBq+zAyMsLKlSsVvoyzQYMG2LBhA+bPny/aPZicnIwDBw5U24eLiwtWrVrFRAgREVEd9/DhQ7nK17zt/v37Vb5eVFRUkykpLC0tDWlpaXLfSwC83j2+atWqGm+4KSwsRHR0NKKjoxVuq6OjgylTpmDy5MlKj5+VlYVr165VueO9srE/+eQTTJ8+XemxAeDVq1cICQmRq6TqG82aNcP69evRvHlzpcaUyWTV/g5WlJOTU+V6QJET6L1798a3336L1atXIzMzU/Daq1evEBwcjODgYIXmV980b94c69atw5IlS0SJyBs3buDGjRvV9jF+/HilEiHA6+TXli1b4OnpKSqLFxMTg5iYGLn6GTlypMLJQiIidWKZLCIiDfD39xclA3r27AkLC4tampFmnTlzRhSruCtPHf7yl79g8+bNVe5iq4yjoyN8fX3Rq1cvpca2sLCAr68v+vbtq1A7LS0teHh4YPPmzTA0NFRqbCIiIiJ1MTU1haenJ9atW6dUIsTAwEAl83B2dsb3339fo0SIshwcHLB9+3bMmDFDoxtXdHV1MWbMGOzdu1fpREhd0blzZ+zZswdDhgwR3benCC0tLXTp0gUuLi4qnF3d4OLiAl9fX7Rs2VKhdoaGhli4cCHmzp1bo/Ht7Oywe/duhdczwOtkyqJFi7B48WLo6nIfNhHVHfwXiYhIzcrKyiSTAaq+OL2uioqKEpWAMjc3VzrJoChXV1ccPHgQp06dwqlTp/DgwYNK36uvr4+OHTti9OjRSj30V2RiYgJvb2+EhYXh6NGjiIiIqPTCTH19ffTq1QsTJkxAu3btajw2ERERUVW+/PJLBAcHIyIiAg8fPkRpaWml79XS0kLr1q0xZMgQjBgxQqGyWBXt378fd+/exbVr13Dnzh3ExMRIluCSmoOdnR3c3d0xbNgw0Z0K8jA2NsauXbsQFRWFmzdvIj4+vrxUWHUsLCzQpUsXjBw5Uu5SZJWZNGkSmjdvjrCwMMTFxVVa/uuNJk2aYNCgQRg1ahTs7OxqNHZdYmlpiRUrVmDq1Kk4fvw4wsLCRHfSSGnYsCE6d+4MNzc39O3bFzY2NhqYbe1wcHDA3r174e/vjxMnTlR5osfU1BSDBw/Gxx9/jCZNmqhkfFNTU3h7e+PGjRs4duwYwsLCqjy5Zm9vjw8++ABjx46t1fsqiYgqwztDiIjonfKm1nBqaipkMhkMDAxgamoKKysrODs7o0GDBmobOycnB/fu3cPjx4/L6/82atQIzZs3R/v27VW2U5KIiIhIEbm5uUhMTERqaipevHgBmUwGHR0dmJiYwNbWFm3btkXjxo3VMnZpaSlSU1ORmpqKtLQ05ObmQiaTQVdXF0ZGRmjYsCGaNGmCNm3a1CgJU5ns7Gw8efIEz549Q2ZmJvLz81FUVARDQ0OYmJigUaNG5fd5qENRUREePHiAlJQUPH/+vPxuEkNDQ1hbW8PBwQFNmzZVy9h1UWZmJuLi4pCdnY3s7GzIZDIYGhqiYcOGsLKygr29PWxsbN7ZUrJpaWmIjY3F06dPy/+emJubo2XLlmjbti20tdVbAEYmkyEmJgbJycnlZdMaNWoEMzMzODk5qbUMMhGRKjAZQkRERERERERERERE9RrvDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrX/h9dxSaOY4M2VAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the raw ts values\n", + "ts.plot_ts(skycoord = coord)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "070a537c-d856-4a32-8cb0-f2e8fa7a9706", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AADB2ElEQVR4nOzdd5hcZdk/8Hs2vZJASCck9BaqNOlCAqFGIa8ioIAgRUClKCrSNYio8CK+gChBQIGgdIJEkJ4AAQIIJKGEmoQ00kjPnt8fmPyyO2eT2d3Zndmzn8915bqY58x5zjO7s5tw7vk+dy5JkiQAAAAAAAAyqqLUCwAAAAAAAGhIiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAADU2ogRIyKXy+X9AQAAgHLUstQLAAAK98EHH8Rrr70W77//fkyZMiUWLFgQixYtivbt20fXrl2ja9eusf7668f2228fW265ZVRU+NwDAF+YNWtWPPDAA/HUU0/Fa6+9Fh9++GHMmzcvVqxYEZ06dYo+ffrEVlttFfvuu28cdthh0bdv30Zb2/Lly2P06NExatSoePnll+Odd96JuXPnrlrbhhtuGAMHDozBgwfHoYceGuuss06jra2Yxo0bFw888ECMHTs2JkyYELNnz45FixZFx44do2fPnqu+/kcccURsuOGGDbKGTz75JO6666548MEH4913341PP/002rRpEz179owddtghjjjiiBg6dGi0bdu2qNedMWNGbL755vHZZ5+tGjv22GPj1ltvLep1AABqkkuSJCn1IgCAdEuWLIlHHnkk7r777njsscdi6tSpBZ/bsWPH2GmnnWLw4MFxzDHHNNhNFZqnESNGxAknnJA37p+WUH4mTZoUl112Wdx5552xbNmygs5p0aJFHHHEEXH55ZfHlltu2WBrW7FiRfzhD3+IK6+8Mj7++OOCzunYsWOcdNJJcdFFF0WXLl0abG3FNGrUqLjwwgtj3LhxBT2/oqIijjjiiBg+fHhsvvnmRVnD0qVL44orrogrrrgiFi1atMbnDhgwIK6++uo4/PDDi3LtiIjvfOc78ec//3nV406dOsWkSZOiZ8+eRbsGAMCaKIYAQBmaN29eXHvttXHttdfGp59+Wu/5crlc7LPPPnHSSSfF0UcfLTHSAEaMGBHvv/9+lbHtt98+hg4dWpL1NDTFEJqTOXPmxNVXX503fvzxx0f//v0bfT2FqqysjMsuuyx++ctfxtKlS+s0R6tWreLCCy+Mn/3sZ0XfCm/y5Mlx5JFHxiuvvFKn83v06BG333577L///kVdVzEtXLgwTj755PjrX/9ap/Nbt24dw4cPj7PPPrte61i0aFEceeSRMWrUqFqdd+WVV8Z5551Xr2tHRDz//POx++67V/k74qqrropzzjmn3nMDABRKMQQAysxtt90W5513XkybNq1B5h84cGD86le/iiFDhjTI/M3VvvvuG08++WSVsW9/+9sxYsSI0iyogSmG0Jy8//77MWDAgLzxf//737Hvvvs2/oIKsGjRojjqqKPi4YcfLsp8w4YNi7/+9a/RsmVxdlp+5ZVXYtCgQTFr1qx6zdOyZcv405/+FN/61reKsq5imjNnThxwwAHx0ksv1Xuu7373u3H99dfXuSA1dOjQuO++++p07vXXXx+nnHJKnc6N+KIot+uuu1ZJxWy11VYxfvz4aNWqVZ3nBQCoLR8LBYAysWDBgjj66KPjuOOOa7BCSETE66+/HgcffHD89Kc/bbBrAFA6SZLEsGHD1lgIadGiRey0005x2GGHxde//vXYd999o1u3bjU+f+TIkfHtb3+7KOt7991348ADD6yxEJLL5WLbbbeNo446Ko4++ujYZ599omPHjqnPXb58eZx44onxwAMPFGVtxbJkyZIYMmTIGgsh/fv3j8MPPzyOOeaYGDJkyBq3i7rxxhvjxz/+cZ3WMmLEiLxCSC6Xi+9+97vx8ssvx8KFC2PGjBlx1113xTbbbJN3/tlnnx1vv/12na4dEXHTTTflbQ927bXXKoQAAI1OA3UAKAMzZsyIwYMHx/jx49f4vO222y4OPPDA2H333WOTTTaJPn36RIcOHSKXy8WCBQtiypQp8fbbb8eYMWPi8ccfX+Pe5FOmTCnyqwCgHFx66aXx0EMPpR7r0qVLXHTRRXHcccfFeuutV+XYihUr4umnn46f//zn8cwzz+Sd+9e//jV23nnn+MEPflDntS1dujS+/vWvx4wZM/KOrbxB/9Of/jT69etX5diiRYvi9ttvj5/97Gcxffr0vHV/61vfivHjx5dNf6xzzz03xo4dm3psv/32i+HDh8euu+5aZTxJkhg9enScf/75qVuH/frXv4499tgjjjjiiILXsWzZsvjJT36SN37zzTdXKW61a9cuhg0bFocddlgcfPDB8e9//3vVsYULF8bPf/7zuOOOOwq+7kqzZ8/O+/DFsGHD4itf+Uqt5wIAqC/bZAFAic2aNSv22muveOutt1KPt2jRIo499tg477zzYuutt67V3O+880786U9/ij/84Q8xb968KseyvIVTKTS3bbKgOWlK22Q9//zz8eUvfzkqKyvzju2www4xatSo6NGjxxrnSJIkhg8fHj/72c/yjrVt2zbeeOON2Gijjeq0vuHDh6cmE1u1ahV33HFHfO1rX1vj+VOmTImDDjooXn/99bxjhxxySDz44IN1WlcxPffcc7HHHnukHjv33HPjyiuvXON2V0uXLo3jjz8+/va3v+Ud69mzZ0yaNCk6depU0FruuOOOOProo6uMHX/88XHzzTfXeM6MGTNik002qfLvhlatWsUHH3wQvXr1Kui6K5122mlx/fXXr3rcvn37mDBhQmywwQa1mgcAoBhskwUAJbRs2bI48sgjayyEbL311jF27NgYMWJErQshERGbbLJJDB8+PD788MM4++yzi7bXOwDl6ZJLLkkthGy22Wbx2GOPrbUQEvFFQuOnP/1pXHzxxXnHFi9eXOdm3jNmzIhf/vKXqceuv/76tRZCIiJ69+4d//znP6N79+55xx566KEYPXp0ndZWTD/84Q9Tx4877rj49a9/vda+H61bt45bb7019ttvv7xj06ZNiyuuuKLgtfz973/PG/v5z3++xnPWX3/9+N73vldlbNmyZXHvvfcWfN2IiJdffjluvPHGKmMXXHCBQggAUDKKIQBQQhdccEFemmClgw8+OMaOHRtf+tKX6n2dddZZJ37zm9/ESy+9FFtuuWW95wOg/Lz88ssxatSovPGKioq4+eabo2vXrrWa74ILLsjbyiki4v77709NZqzNtddeGwsWLMgbP/jgg+PEE08seJ5evXrF73//+9Rjw4cPr/W6iunxxx+PF154IW+8Z8+ecd111xU8T4sWLWLEiBHRrl27vGPXXXddzJ8/v6B5xowZU+XxTjvtVFCq5+tf/3reWE3bfqVJkiTOOOOMKoW5TTfdNM4555yC5wAAKDbFEAAokRdeeCF+85vfpB77yle+Ev/4xz9qbBhbV9tuu22MGzcuhg0bVtR5ASi9tG2VIr7YPurLX/5yredr0aJFXHbZZXnjSZLENddcU6u5li9fHjfccEPqsdokHVYaNmxY7Ljjjnnj//73v+PNN9+s9XzFUlOR5mc/+1nBW1ut1K9fvzjttNPyxufOnRu33nrrWs+fOXNmfPLJJ1XGdtlll4KuPXDgwLxCTFofk5rccssteYWYa665Jlq3bl3wHAAAxaYYAgAl8sMf/jBWrFiRN963b9+48847o02bNg1y3fbt28edd94Z3/nOdxpkfgBK4/HHH08dP+WUU+o85wEHHBAbb7xx3vjdd98dixcvLnie0aNH5zU+j/iimfjAgQPrtLYzzzwzdfz222+v03z1NWfOnHj44Yfzxjt16hQnnHBCneY844wzUrfVKuQ1zpw5M28s7XuZpqKiIq9PTtp8aebOnRs//vGPq4wdfvjhMWTIkILOBwBoKDYOB4ASGDVqVDz33HOpx6677rro1q1bg14/l8vFXnvtVa85Zs2aFffff3889dRT8Z///Cc++OCDmD9/fixfvjw6dOgQvXr1ik033TS+/OUvxyGHHFLnm1318eyzz8a9994bzz//fEyaNCnmzJkTLVq0iO7du0fPnj1jr732ioMPPjj23nvvqKio3WdErrjiipgwYcKqx6v/90rPPPNMHH/88QXNt8UWW8T5559f8PVnz54dTz75ZLz00ksxYcKEmDRpUsycOTPmzZsXS5cujS5dusS6664b3bp1i5133jn23nvv2HvvvWO99dYr+BrlZPz48fGPf/wjnn322Zg4cWLMnj07kiSJ9ddfP7p37x677757DBkyJA444IBG/eTx888/H/fee2+MHTs2Jk6cGHPmzIkVK1ZE165dY8stt4y99torjj/++Fo1m54yZUqMHDkynnzyyXjttddixowZsWjRolh//fWjV69esddee8XXvva12HPPPdfae6A+Fi1aFI888kg8+eST8corr8TkyZPjs88+i0WLFkWbNm1ivfXWi0022SR23XXXOOigg2Kvvfaq9c9RfSxYsCDuu+++GDVqVLz66qvx8ccfx4IFC6Jz587RvXv32GijjeLAAw+MQw89tNbNvmfOnBnnnntulWulueKKK2LEiBEFzXnSSSfFnnvuWat11MacOXNi/PjxeeMtWrSoV5P3XC4XX/nKV+Ldd9+tMj537twYPXp0HHbYYQXNU1O/iW9+85t1XtvXvva1OPXUU2PJkiVVxu+55574xS9+Ued562rUqFF5a4n4ohDQoUOHOs05YMCA2G233fJSFmPGjIlPP/10jT1g5syZkzfWuXPngq+9zjrrVHn82WefFXTehRdeWKXw1bZt27j66qsLvi4AQINJAIBGd9BBByURkfdn7733LvXS1uqtt95KvvnNbyatWrVKfQ01/dlhhx2Su+++u97XT5v75ptvrvKc0aNHJzvssEPBa9t2222T0aNH12od++yzT61e/9r+7LPPPmu95ltvvZVcdNFFyfbbb5/kcrlaX6N169bJySefnLzzzju1eq1pbr755tRr1MaGG26Yd/5FF11U5TkvvfRSsu+++xb8GgcMGJDcdddd9Xptad/bb3/721We8+yzzya77LJLQWvK5XLJiSeemMyaNWuN1/3kk0+SE088MWnRokVB8+69997Jm2++Wa/XmuaDDz5ITj/99KRjx461en/1798/ueGGG5IVK1bU+dqFvK+WLFmSXHrppUnXrl0LWldFRUVywgknJFOmTCl4HZMnTy7qz3fa76liGz9+fOp1Bw4cWO+5//jHP6bOfcYZZxQ8x4ABA1Ln+Pjjj+u1tq985SsNMm9dnHDCCalrue222+o176WXXlqneceMGZN3zg033FDwdXfbbbcq57Zt23at57z22mt5v8Oq/14HACgV22QBQCP78MMP49FHH0099qMf/aiRV1O4ysrKuOSSS2LbbbeNv/71r7Fs2bJanf/KK6/EUUcdFQceeGBMmTKlQda4YsWKOOuss2LQoEG12tv8tddei0GDBqXujV8uhgwZEltuuWVccsklMX78+EiSpNZzLF26NP74xz/G5ptvHldeeWUDrLK4hg8fHrvssks88cQTBZ8zefLk+J//+Z84+eSTqzTuLaZLLrkk9tprr9QmyWmSJIk///nPsdtuu+V9un6lhx9+OLbddtv485//nLp9Xpqnnnoqdtxxxxg9enTBa1+TysrKGD58eGy++ebxhz/8ocY0RE3ef//9OOWUU2K33XaL9957ryhrqu69996LnXbaKS688MKCP6VeWVkZN998c2y77ba1+r3Q1NS0hVHv3r3rPXefPn1Sx5988smCzp8yZUpMnjw5b3zjjTeuce5C1ZR6efrpp+s1b10888wzqeP77LNPveat62vs0qVL3ti8efMKvm7153bt2nWt55xxxhlVfof179+/VqlHAICGpBgCAI3svvvuS71J26NHjzjooINKsKK1W7x4cRxxxBFx8cUX17oIUt2jjz4aO++8c+p2LvWxfPny+NrXvhbXXnttnee48MIL4+KLLy7eooro7bffLtpcK1asiB//+MfxrW99q+Ab743te9/7Xvz0pz+t8/puuummOPHEE4u8qoizzjorLr744joVWt5+++0YPHhwzJo1q8r4HXfcEYcffnjeeCEWL14cQ4cOjbFjx9b63NXNmzcvDj744PjpT39aqz4QaV588cXYeeedCy4WFeqNN96IXXfdNf7zn//U6fyZM2fGfvvtF6+++mpR11Uuanr/pN0Qr62aboK/9dZbBb1faipC7bTTTvVa15rmaOzC1/z58+Odd97JG+/evXv07du3XnPvsMMOqVvQre01pm25WWihsrKyMt5///0qY2vbZvH222+Pp556qsrY7373u2jbtm1B1wQAaGh6hgBAI0trrhoRMXTo0GjRokUjr2btKisr42tf+1qMGjWqxue0bNkyBg4cGH369In27dvHJ598EhMmTKjx5tyUKVNi0KBB8fTTT8cWW2xRlHWecsopcf/99+eN9+vXLzbeeOPo3r17LFmyJD7++ON45ZVXarzJftlll8XBBx8cu+yyS1HW1Rj69OkT/fv3j3XWWSe6dOkSS5Ysiblz58aECRPi448/rvG8W2+9NTbccMOyS8Rceuml8Yc//CFvvEePHrH55ptHjx49YsWKFTFt2rQYN25cLF26NHWeW265JQ477LA48sgji7Kua6+9NrXYNmDAgNh4441j/fXXj/nz58fbb78dEydOTJ3jvffei1NOOSXuvvvuiPgi3XHcccflvR/XXXfd2HrrraNHjx5RWVkZH3/8cbz00kup79uFCxfGiSeeGK+++mq0atWq1q9r3rx5MXjw4Hj++edrfM7Kn/GePXtG165dY+7cufHJJ5/Ea6+9lloYmj17dhx44IHx/PPPx2abbVbrNVU3derUOPDAA/PSDy1atIiBAwdGr169okuXLjF79uyYMGFCfPDBB6nzzJ07N44//vh48cUXo2XLbP2vUF3SYvW1fPnyeOONN9Za1Hj99ddTx7faaqt6r6GmOWq6ZkN54403Ur8HxXiNHTt2jA022CDvfb22wmC3bt2iT58+8cknn6waGzduXEHXfPPNN2PhwoVVxnbYYYcanz9//vy8dOtBBx0UQ4cOLeh6AACNorS7dAFA81JZWZl07tw5de/vO+64o9TLSzV8+PAa98Dv2rVrcvXVVyfTp0/PO2/ZsmXJQw89lOy+++41nr/jjjsmS5curdV60uapvmd869atk7PPPrvGfgozZ85MLrrooqRt27ap822//fa1/joV0meiPjbeeONV826wwQbJWWedlTzyyCOpX/vVffLJJ8mvf/3r1P4c8d9+Cv/+979rvZ6G6hmy7777JhUVFVXWd/zxxycvvfRSUllZmTfHvHnzkmuuuSbp0qVL6np69eqVLFy4sFbrSvte7rLLLkmbNm1WPW7RokVy+umnJ2+88UbqHG+99VZy2GGH1fjef/LJJ5MZM2YkPXr0qDI+ePDg5IknnkiWL1+eN+fMmTOTc845p8aeIldddVWtXmeSJMmKFSuSgw8+uMZ17rHHHsk999yTzJ8/P/X86dOnJ7/73e+S9dZbL/X8nXfeOVm2bFnB66npfVX9Z3zAgAHJzTffnMyePTt1npdffjkZPHhwja/rd7/7Xa2+TjX1EKnLz05DefTRR1PXeOCBB9Z77ocffrjGr+Wdd9651vNPPvnk1HPr20sjSZJk+fLlqT2sNt9883rPXRu333576ms86aSTijJ/Tb1Rpk6dusbzjjrqqCrPz+Vyyfvvv7/W61144YV517ruuutqfP65556b9/fwpEmTav06AQAakmIIADSit99+u8YbSoXcnGhsr776atK6devU9e6zzz4FNSRevnx5cskll9T4ui+44IJarammeVa/Afb2228XNNfTTz9dY5PoZ599tlbrauhiyKabbpoccsghyVNPPVWn8xcsWJCccsopqa91t912q/V8DVUMWf1Pz549kxdeeKGgud56662kZ8+eqfPcfvvttVpX2vdy9T89evRIxo0bV9Bcp59+euocQ4cOrdJsuWXLlsmIESMKmvO2225Lcrlc3pwbbbRRrV5nkiTJlVdembq+Tp06FXSTe6VZs2Yle++9d+pcF154YcHz1PS+Wv3P6aefnixZsqSg+X7wgx+kzrHZZpsVvKYkaRrFkHHjxqWucdttt6333DfddFON348rrrhirecPGjSoQb9+ffv2zZu7kGbfxfSLX/wi9TUWq3n4sccemzr/mDFj1nheWpHm5JNPXuM5n332WbLuuutWOadly5Y1NqV/88038wpS559/fp1fKwBAQ9EzBAAa0Ztvvpk63rFjx+jXr18jr2btzjrrrNQtiHbeeed48MEHo1evXmudo0WLFnHhhRfGz3/+89Tjw4cPz9uXvK623HLLePbZZ2OTTTYp6Pl77rln/Pa3v009dvPNNxdlTcUyevToePDBB2Ovvfaq0/kdOnSI66+/Pr7//e/nHRs7dmzBW6c0lh49esRzzz0XO++8c0HP32KLLeIvf/lL6rFifi+7du0aTz31VMG9Dq655prYfPPN88bvv//+GDFixKrHd955Z3z7298uaM5jjjkmjj/++Lzx9957L5599tmC5oiI+PDDD+Oiiy7KG19nnXXiueeei//5n/8peK511103Hn300dhzzz3zjv3mN7+JOXPmFDzXmvzoRz+K6667Llq3bl3Q83/729+mrmnSpEm1+lo1BRtssEHqeNp2R7X14osv1nhs+vTpaz2/puf06NGjzmtaXdrfRYsXL65Vs/D6KsVrXNN1VzrqqKNi/fXXrzJ20003xZ133pn6/KVLl8Y3v/nNmD17dpXxI444osZm92eeeWaVfmJ9+/aNCy64YI3rAgAoBcUQAGhEH330Uep4//79I5fLNfJq1uw///lPPPnkk3nj7du3j7///e/RsWPHWs136aWXxgEHHJA3vmLFitT+ELXVpk2buOOOO9ba4LW6k046KfVm9T//+c96r6mYNtxww6LM8+tf/zr19f7xj38syvzFkMvlYsSIETFgwIBanTdo0KAYPHhw3viTTz4ZS5YsKcrarrvuulr1wGjZsmX89Kc/zRuvrKxc1V/gtNNOi6997Wu1WseFF16YOr6m3j7VXX755bFo0aK88ZEjR8Y222xTq/VEfPEz+Le//S2vYffnn38eN910U63nq27PPfeMX/7yl7U6J5fLxZVXXpl6rNx+xuure/fuqYXg5cuXp/4ur43HH3+8xmM19YYq5DnFaO4e8UUBrzbXbQjl+hpbt24dl19+eZWxJEni6KOPjjPOOCNeffXVWLx4ccyaNSvuvffe2G233fJ+j7Rt27bG3lIjR46Mxx57rMrYb37zm+jQocPaXhIAQKNTDAGARjRlypTU8WJ9crSYrrvuutTxn/zkJzV+AnltrrnmmtSmxX/+859j8eLFdZpzpZNPPjm23XbbWp+Xy+Xi2GOPzRv/6KOPGvVGWmNp1apVnHvuuXnjTz/9dAlWk+6QQw6Jgw46qE7nHnfccXljy5YtW2uj4ULsvPPOcfTRR9f6vCOOOKLGxubt2rWLX/ziF7Wes3///vGlL30pb3z8+PEFnT979uzUJM03vvGNGDRoUK3Xs1Lfvn3je9/7Xt54MQqeV199dbRo0aLW5+2+++6pRYJXXnml3msqN3vvvXfq+I033ljnOR9//PF4++23azxeSOqnpoRGp06d6rqsguaZO3duUeYvRDm/xu9+97sxZMiQKmNJksR1110X22+/fbRr1y66desWX/3qV1N/Ln71q1/FlltumTe+cOHCOOecc6qMfeUrX6lVqgwAoDEphgBAI5o/f37qeNeuXRt5JWuWJEnccccdeeNt27aNM888s87zbrXVVnHYYYfljc+aNaven9JO2/6pUPvtt1/qeKE3lpuagw8+OG9s4sSJjbqlzJr84Ac/qPO5Dfm9POOMM+p03jrrrJN6IzEi4pvf/Gadf/533333vLFXX321oHPvuOOO1LRMTYmT2kgrhkyePLle2+HtueeeBW9NlmbffffNG8viz/cRRxyROv7AAw+scaurmlRWVqZupba6QlJXNT2n0O3O1qZNmza1um5DKPfXOHLkyNh///1rfd1LL700zjrrrNRjl19+eZXEa8uWLePaa6+t9TUAABqLYggANKKa0g813eQolbfeeiv1076HHnpojVt1FCrtk/sREWPGjKnznFtssUXBfULSDBw4MHV82rRpdZ6znPXu3TvatWtXZayysrIsPinfsWPH1BvXherTp09qcaEY38vqn6yujZqKIfWZc6uttsobK/R1Pvjgg3ljAwcOrHGdtdGrV6/YYost8safe+65Os956KGH1mdJqT/jWfz5PvTQQ1O3cVuxYkUcf/zxtS54XnnllfHMM8+s8Tmr94qo7XPSkoJ1UdM8haytWMr9NXbo0CEeeuihuOCCC6Jt27Zrff4GG2wQd911V439vt555528nltnnnlm6u+llebMmRM33XRTHH744bHppptGp06domPHjrHxxhvHoYceGjfeeGNerxIAgGJSDAGARrRixYrU8YqK8voreezYsanjhxxySL3nHjJkSOpNnZquWYg99tijPkuKzp07R/v27fPGG3OLlcbWrVu3vLFPP/20BCupatddd63TVkirS2s0XN/v5SabbJLXhLg2ajp3t912K+qcy5cvX2uz7CRJUrdFS+u3UldpKY5S/oynvScK+Vo1NRUVFfGjH/0o9dibb74ZBxxwQMycObOgua666qr4yU9+Uszl5SlWr6ya5lnZl6eUyuk1tmnTJi677LKYNGlSXHXVVbHffvtFv379om3bttG5c+fYdNNNY9iwYXHrrbfGhAkTYtiwYTXOddZZZ1VJpfTs2TMuvvjiGp9//fXXxyabbBInn3xyPPDAA/HOO+/EggUL4vPPP4/33nsvHnrooTjllFNi0003jf/7v/8r+DUBANRGcT6mAgAUpKZPYy5durSRV7Jm48aNSx3ffvvt6z1327ZtY4sttsjr4VDTNQvRv3//eq7qi/3Yq98YLZdto2oyffr0+Ne//hWvvfZavPbaazF58uSYP39+zJ8/PxYsWBCVlZW1mq+Qvf8bWrG+l9XV93tZ33V17Ngxb6xly5bRp0+fos4Z8UXhJ624t9Lbb78dCxYsyBsvRipkpbRi2+rb6dRWfb/+NfVbmDdv3hq/Vk3RiSeeGCNHjkzdevDFF1+MzTffPC6++OI45phjYt11161yvLKyMp555pm48MIL85qut2zZMpYvX543ZyEpg1atWqVu57R8+fIa++nURk3piGJtUVWIml5H2tesLor5GjfYYIM455xz8vp9FOq+++7La7J+5ZVXRufOnfOeW1lZGaecckrcdNNNBc09e/bsOP3002P8+PFx/fXXF62YBAAQoRgCAI2q+tZEK33++eeNvJI1mzp1at5Yy5Yt17j9RW1st912ecWQzz//PObPn1+nZrPF6LmSdkOvvk3dG8rf//73uOmmm+Jf//pX0W60RZRHMaRcv5f1XVfaVngNMWfE2nsI1NQM+84770xNjNRF2pZrn332WZ3nq+/XqqYb9uX6M14fuVwubrvttth+++3jk08+yTs+e/bsOOuss+Lss8+O7bffPvr06RPt2rWL6dOnx+uvvx4zZszIO6dz585x2mmnxa9+9au8Y4UUk1q3bp36vlyyZElRiiE1faCgMbegrKkoUay+JeXwGiO++Jn54Q9/WGVsjz32qHELzHPOOafgQsjqbrzxxujUqVNcddVVdVonAEAaxRAAaETdu3dPHS+H7YlWl3ZTfJ111inap2xr+jrMmTOnTsWQDh061HdJTcKECRPi9NNPj3//+98NMv+iRYsaZN7aKNfvZUOkB0qVSEi7QR4RMXr06Aa9bn2KIeX6vihX3bp1i8cffzwOOeSQeOedd1Kfs3z58hg3btxaU3nt2rWLe++9N958883U44VsH7fOOuvE/Pnz88YXLFhQY8KpNtLmXnndxlLTtdJSWHVRDq8xIuKKK66IyZMnr3rcokWLuO6661Kf+/jjj8c111yTN37AAQfE+eefH1/60pcil8vFSy+9FFdccUU8+uijVZ7329/+Ng4//PDYe++9i/siAIBmq7w2KAeAjOvbt2/q+Mcff9zIK1mztJuWadtf1FVNN2/qc7M068aMGRO77rprgxVCIspjf30aXql64ZT7tnNZs9lmm8XYsWPjgAMOqPMcvXv3jsceeyz222+/GpNjaf1Yqqu+HddKxUqj1TRPTddtCM3hNU6ePDkvHXTqqafGdtttl/r88847L+/vlVNOOSUeffTR2H///WOdddaJzp07x3777RePPPJInHLKKVWemyRJnHfeecV9EQBAsyYZAgCNaJNNNkkdnzp1asydO7fRP+FZk7RPshbzk9k1zVXTJ1+bu9dffz0OPPDAtX592rVrF3369Im+fftGp06dom3bttG2bduoqMj//Mvdd99ddtuz0ThKtTWUYlvjW2+99WL06NHx0EMPxc9//vPU7cvStG3bNr773e/GJZdcEl26dImIqLHx+kYbbbTW+Xr06JE6/umnn8YWW2xR0JrWZNq0aXljbdq0KWoRf23W9BqLIe01RtSctGwIP/jBD6r8/ujWrVtcdtllqc8dO3ZsvPzyy1XGtthii/j973+f2gckl8vF73//+3jiiSdi4sSJq8ZfeOGFGDduXHzpS18q0qsAAJozxRAAaEQDBw6MFi1axIoVK/KOjR8/PvbZZ58SrCpf2rYl1ZuL10dNN+GLsV1KFp1++uk1FkL22WefOO6442KPPfao1U3FJ554QjGkmWrRokWpl0AjO+SQQ+KQQw6J119/PR599NF4/PHH48MPP4wZM2bE7Nmzo1WrVtGzZ8/YdtttY/DgwTFs2LDo1q1blTnef//91LkL6SW14YYbpo4XIxW5YsWK1EJB//79G7X5dkO+xoiat7cbMGBAUeZfm1GjRsX9999fZWz48OE19vP5+9//njf2k5/8JFq2rPkWRMuWLeP888+PE044ocr4yJEjFUMAgKJQDAGARtSuXbvYeuut47XXXss79sQTT5RNMSTt5kYxt7ipaa5iNM/OmnvvvTeeeeaZvPHu3bvHHXfcEfvtt1+d5i3WPvY0PTUlsx5++OEYMmRII6+GxjRw4MAYOHBgnHPOObU+d9KkSXljbdq0iS233HKt59aUHqmpn0ltfPTRR7Fs2bK88cYqEqzUkK8xIuLdd9/NG2vXrl2NiZRiWrp0aXz/+9+vMrbLLrvEd77znRrPGTNmTJXHLVu2jCOOOGKt1/rqV78aJ510UpUPjYwdO7aWKwYASKdnCAA0sgMPPDB1/KGHHmrkldRs5bYoq5szZ07qDae6mD59euq4Yki+kSNH5o21bNkyHnrooToXQpIkKdo+9jQ9PXv2TB2fPXt2I6+EpuLzzz+vsnXRSrvuumu0adNmrecPHDgwdbympuy1UdMcNV2zoWy99dapSZRivMYFCxbERx99lDe+zTbbNEr65aqrroq333571eOKiooat7taafz48VUeb7rppgVtBbrOOuvkbSla6PZuAABroxgCAI3ssMMOSx1/8cUXi/YJ0vpKa4i7fPnyeOutt4oy/6uvvpo31qFDh+jUqVNR5s+KysrKGDVqVN74McccU68tQ6ZNm5a6VRvNQ02fmJ8xY0Yjr4Sm4tlnn039nbH//vsXdP4OO+yQOl69p0RdvPTSS7W6ZkPp3LlzbLzxxnnj06dPr3GLq0K98sorUVlZmTfeGK/xo48+il/+8pdVxk488cTYeeedazxn8eLFedswFtJbZqXqxZD58+fH0qVLCz4fAKAmiiEA0Mj23HPPGm8KXH311Y27mBrUdKO9+ic962LJkiUxYcKEgq/ZnM2cOTM+++yzvPGhQ4fWa97q25fQvKzsXVSdrWioSfVeESsNGzasoPP79OkT/fv3zxt/5513YsqUKfVZWjz55JOp43vttVe95q2LPffcM3W8pjUWqpSv8eyzz65S2OjatWsMHz58jeekJQ9r08w+7YMR0owAQDEohgBAI8vlcvHd73439dif/vSn+OCDDxp5Rfl222231PFibOX1yCOPpG63VdM1m4rWrVvnjS1fvrxec3766aep42k3FWujvjfmaNratWsXO+20U96490XN0n6+I+r/M94ULFmyJP72t7/lje+www4F9QtZadCgQanjDz/8cJ3XNm/evNSeSltssUX07du3zvPWVUO8xjWdf8ABB9Rr3rV57LHH4u67764ydvnll0e3bt1qPVdttvNKe26SJLW+JgBAdYohAFACp59+eurNhMWLF8eZZ57ZKGuovoXF6rbccsvU/h0PPPBAzJ8/v17Xve2221LHd99993rNW2ppn2RdtGhRveas6Wvdrl27Os+5cOHCuPXWW+t8PtmQ1sh42rRp8eCDD5ZgNeWvpi386vsz3hT86U9/Su0nU72h9trU1Dw7rdBSqH/84x+xZMmSvPH6pufqasiQIamFs/vvv3+Nf+euyeTJk1NTW7vttluN/X+KYdmyZXn/Htl+++3j1FNPXeu5aX3H5s2bV/C1056rpxgAUAyKIQBQAp06dYoLLrgg9dgDDzwQv/3tbxv0+vfff3/86Ec/qvF4LpeLb3zjG3njixYtit///vd1vu7EiRPjvvvuyxvv1q1bjY3lm4q0m6X13Sc+7YZSRMTHH39c5zn/+Mc/pm69RfNy7LHHpm6Vdfnll5dgNeWvY8eOqZ9Wr+/PeLmbPXt2XHrppXnj/fr1i6OPPrpWcx144IGx/vrr540//vjj8Z///KdO67v22mtTx4855pg6zVdfXbt2jYMPPjhvfP78+XHzzTfXac7f//73qamIhn6N11xzTZU+YblcLn7/+99HRcXabyG0bds2OnToUGXs3XffLfja1Z/bsWPHGtNZAAC1oRgCACVyxhlnxK677pp67LzzzmuQT++vWLEiLrroovjqV7+61k+pnn766anjv/zlL+u8x/v3v//91C2yvvOd70Tbtm3rNGe5SNu6asKECfXaRqdHjx6p448++mid5nvnnXfiZz/7WZ3XQ3b069cvjjzyyLzx559/XkEkRS6Xi379+uWN1/UmflOQJEl85zvfSd2ub/jw4bW+Od2yZcsat4g8//zza72+kSNHpjZg33fffWObbbap1VwjRoyIXC6X92ffffet9bq+973vpY7/4he/qHWy8sMPP4z/+7//yxvv3LlzfOtb36r12go1derUvCLYscceG3vssUfBc2y33XZVHr/99tsxd+7ctZ43d+7ceOedd6qMbb/99gVfFwBgTRRDAKBEWrRoEbfeemvqp/8rKyvj29/+dlx88cWxYsWKolzv1Vdfjb322isuvfTSqKysXOvzt9lmm9hvv/3yxhcsWBBHHnlkLFy4sFbXv+SSS+Kf//xn3njLli3jtNNOq9Vc5SjtZs3cuXPjkUceqfOc6623Xmy22WZ54zfccENMnz69VnPNmDEjjjzyyDpv1UL2/PKXv0y9oX3hhRfW+VPsad566628vgNNUdrP+H333ReLFy9u/MU0sMrKyjj11FPj3nvvzTt2wAEH1DoVstKZZ56ZlxiI+KIf1Z///OeC55k2bVqcccYZqcfqUlgppgMOOCC+9KUv5Y2vac1pVqxYEccff3zqVmynn356rRqS19a5555bpXDTuXPnuPLKK2s1R/WtL5cvX576fqrunnvuyfsQQVPfRhMAKB+KIQBQQptuummMHDkyWrZsmXcsSZK45JJLYrfddounnnqqzteYMGFCHH/88bHTTjvFmDFjanXu//7v/0abNm3yxseOHRuHH354QTfkKysr4xe/+EVcfPHFqcd/9rOfxYYbblirdZWj3XffPXXboVNPPTVGjx5d5+avQ4YMyRubO3duHHbYYQVvd/Xmm2/GXnvtFa+99lqd1kA2bbzxxqkpkCRJ4sQTT4xTTz21Vvv8r2758uXx6KOPxmGHHRZbb711JnqR7LnnnnljH3/8cXzzm9+s19Z1DeGaa66Jyy+/PGbOnFnrcz/++OMYMmRI3HjjjXnH1ltvvbjllltq1Qx7dT169Iif/OQnqcdOO+20uOeee9Y6x9SpU2Pw4MGpf/8MGTKkLLZc/N3vfpc6/pe//CV+/OMfr/Xvg6VLl8a3vvWt+Pe//513bE1fw2J4+umn469//WuVsYsvvrjW/Um++tWv5o0NHz58jWnJ5cuXxxVXXJE3npZiAwCoC8UQACixAw44IEaOHFnjliPjxo2LffbZJ3bZZZf43//935g0adJa55wwYUL84Q9/iL333ju22mqruOWWW+qUMNlmm23isssuSz322GOPxVZbbRW///3vU2+4LV++PB555JHYa6+9auyP8qUvfanGY01Njx494qCDDsob/+STT2Lw4MHRu3fvGDx4cHzjG9+I448/Pu9P2g2giC8+SZ1WLHvhhRdiu+22i7/85S+pDYQjIl577bU466yzYrvttouJEyeuGt9xxx2jT58+dXylZMk555wTX/va11KP3XDDDbHBBhvEj3/843jxxRfX+DskSZJ455134q677ooTTjghevToEQceeGA8+OCDdS4Elptjjz029WfxnnvuiQ033DC22WabGDp0aBx33HGpP+PPPPNMo6116tSp8fOf/zz69u0bhx12WNx8883x4Ycf1vj8JEnipZdeijPPPDM222yz1K342rRpE/fee2/07t27Xms799xzU1M2S5cujSOPPDJOO+20+Oijj/KOL168OP70pz/FDjvsEK+//nre8XXWWSeuu+66eq2tWPbcc88aE49XXnllHHDAAfHiiy/mHUuSJP71r3/FbrvtlleQWOkPf/hDg6VCVqxYkbfN19Zbb53XSL0Qe+yxR95WWRMnTowzzjgj9XdCkiRxxhlnVPm7KuKLfyfUtKUoAEBt5f9rHgBodEOHDo2HHnoovvGNb8SsWbNSn/Piiy+uunnStWvX2GSTTaJ3797RoUOHyOVysWDBgpgyZUq8/fbbMWfOnLVes9BP9p5zzjnx1FNPpX6ye9asWXHmmWfGD3/4w9h2222jT58+0b59+5gyZUq89dZba/xUcrdu3eL2229PvbnYVP30pz+NRx55JPWm8bRp02LatGk1nrvPPvukbu+y8cYbx2mnnZbaKPijjz6Kb3/723HqqafGjjvuGL169YoWLVrE9OnT45133km9odi5c+e47bbbUhMnND8VFRVx++23x9ChQ1O3sZs3b15ceeWVceWVV0bHjh1j6623jvXWWy+6du0aixcvjjlz5sScOXNi0qRJte6H0NT07NkzTj755NQeDpWVlfHGG2/EG2+8UeP5++67b2q6pCEtWbIkHnzwwVW/v9dbb73YcsstY7311otOnTrFkiVLYsqUKfHmm2+uMWnWtm3bGDlyZFHW36ZNm7jrrrti9913z/v7LkmSuP766+PGG2+MbbfdNjbddNNo1apVTJ06NcaNG1fje6yioiJGjBgRAwYMqPf6iuW3v/1tvPTSS/HCCy/kHXv88cdjl112iQEDBsS2224bnTp1itmzZ8crr7wSU6dOrXHOs88+u8biZTFcd911eYWma6+9ts5/T//qV7/K+5DADTfcEO+9916cf/758aUvfSlyuVy89NJLMXz48LwiXC6Xq/X2XAAAa5Kduw8A0MQdcMAB8corr8Txxx8fjz/++Bqf+9lnn6V+qrQQLVq0iBNPPDGvOWpNKioqYuTIkfE///M/8cADD6Q+Z/ny5fHyyy+nNrNN07t373j44YdT+2E0ZV/+8pfjiiuuiPPOO6+o81511VXxyiuv1PjJ8kWLFsWzzz671nnatWsX//jHP2LLLbcs6vpo2tq2bRsPPPBAnHbaafGnP/2pxuctWLAgnn/++UZcWfn5zW9+E+PGjavz799SmzVrVq0TKj179oy77ror9tprr6KtY9NNN41//vOfMXjw4Jg9e3be8crKyhg/fnyMHz9+rXO1aNEi/vjHP8bQoUOLtr5iaNu2bYwaNSr233//Gl/H5MmTY/LkyQXN953vfCeuuuqqIq6wqunTp8eFF15YZezrX/96au+wQh144IFx2mmn5RUQR48eHaNHj17r+T/4wQ/qdX0AgOpskwUAZWSDDTaIxx57LP72t7/FJptsUtS5W7RoEV/96lfj9ddfjxtvvLFW+3+3bds27r333rjkkkuiVatW9VrH4MGD48UXX8zbPiMrzj333HjwwQeLWuhp3bp13H///fVKc/Tp0yeeeOKJ2H///Yu2LrKjVatWcdNNN8Xdd98dG2ywQVHn7t+/fwwaNKioc5ZKu3bt4plnnonzzjsvOnbsWOrlNLijjjoqXn311aIWQlbaaaed4vnnn6/X3wXrr79+PPzww3HCCScUcWXFs+6668YzzzwTX//61+s8R6tWreJXv/pV3HTTTXXu1VKIH//4xzF37txVjzt06BC/+c1v6j3vtddeG8cdd1ytzzvppJMatPgDADRPiiEAUIa+8Y1vxMSJE+Oee+6Jww8/PLWJeaG23nrruPLKK+Ojjz6qVyqgoqIiLrzwwnjttdfim9/8Zq2LIjvuuGPcfffd8c9//rPee86Xu0MOOSQmTpwYTz/9dPzsZz+LQw89NDbZZJNYf/31o23btnWas2vXrvHQQw/F1VdfHb169Sr4vE6dOsU555wTb775Zuyyyy51ujbNx5FHHhkTJ06Ma6+9tl4Jov79+8fJJ58cjz/+eLz33ntxzDHHFHGVpdW6deu48sorY+rUqfGXv/wlTj/99Nhjjz1igw02iC5dupTF1n+HHHJIfPWrX61TwaZFixZxxBFHxDPPPBMjR46M7t27N8AKv7DJJpvEuHHj4uqrr65VH6MOHTrE97///Zg4cWIMHjy4wdZXDB06dIg77rgjHnzwwdhxxx0LPq+ioiKGDh0ar776avzoRz9qwBVGjBkzJm655ZYqYxdccEFReku1aNEibrnllrjmmmuia9eua33+uuuuG9ddd13ceOONUVHhdgUAUFy5JCsdDQEgw+bPnx/PPPNMjBkzJv7zn//E5MmTY8qUKfH555/H4sWLo127dtG1a9fo2rVrdO/ePXbYYYfYZZddYpdddol+/fo1yJpmzZoV9913Xzz11FPx+uuvx4cffhjz5s2LFStWRPv27aNXr16x2Wabxe677x6HHnpobLvttg2yjuZoyZIlce+998Zjjz0Wzz//fHz66acxe/bsqKioiM6dO8eAAQNim222iQMOOCAOPfTQ6NSpU94cH3/8cSxfvrzKWJcuXaJLly6N9CpoCt54440YPXp0vPDCCzFp0qT46KOPYt68ebF06dJo3759dOrUKbp06RIbbbRRbLHFFrHVVlvF3nvvXfRkG3WzdOnSGDduXIwdOzbGjx8f7777bnzwwQcxb968WLhwYbRu3To6d+4c/fv3j6222ir22WefOPDAA2uVHCyWZcuWxaOPPhqjRo2Kl19+Od59992YO3durFixIjp16hT9+vWLgQMHxqBBg+Lwww9vsr+rnn/++XjwwQdj7NixMWHChJg9e3YsWbIk2rdvHz179lz1fRg6dGij9ECprKyMnXfeuco2l5tttlm8/vrr0bp166Jea/bs2XHXXXfFgw8+GG+99VZ8+umnkSRJ9OjRI7bccss4/PDDY9iwYbHuuusW9boAACsphgAAAAAAAJkmdwoAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZ1rLUCwAAgIY0qGJYqZdAxoyuHFnqJQAAALUkGQIAAAAAAGRaLkmSpNSLAACgeZDSgLqRRgEAgPqRDAEAAAAAADJNMgQAgFUkN6B5kjwBACDrFEMAAJoohQugnCmwAABQTmyTBQAAAAAAZJpkCABAiUh2ANRMsgQAgGKSDAEAAAAAADJNMgQAoB6kOwDKj1QJAADVSYYAAAAAAACZJhkCADR70h0ArCRVAgCQTZIhAAAAAABApkmGAACZIuUBQGOTJgEAKH+SIQAAAAAAQKZJhgAAZUvKA4CskiYBAGhckiEAAAAAAECmSYYAAI1K2gMAakeKBACg/hRDAIB6U+AAgPKgcAIAkM42WQAAAAAAQKZJhgAAayT1AQDZIj0CADRHkiEAAAAAAECmSYYAQDMk7QEAFEKKBADICskQAAAAAAAg0yRDACBDJD4AgFKQIAEAyp1kCAAAAAAAkGmSIQDQREh9AABNmfQIAFBKkiEAAAAAAECmSYYAQBmQ+gAAkB4BABqOYggANALFDgCA+lMsAQDqyjZZAAAAAABApkmGAEA9SX0AAJQP6REAII1kCAAAAAAAkGmSIQBQAOkPAICmT2oEAJovyRAAAAAAACDTJEMAICQ/AACQHAGALJMMAQAAAAAAMk0yBIBmQ/oDAIC6khoBgKZNMgQAAAAAAMg0yRAAMkX6AwCAxiY1AgDlTzIEAAAAAADINMkQAJoUyQ8AAJoayREAKD3FEADKjoIHAADNhUIJADQO22QBAAAAAACZJhkCQKOT/AAAgMJIjgBAcUiGAAAAAAAAmSYZAkCDkgIBAIDikhYBgNqTDAEAAAAAADJNMgSAepH8AACA8iI5AgD5JEMAAAAAAIBMkwwBoGBSIAAA0DRJiwDQ3EmGAAAAAAAAmSYZAkAeCRAAAGgeJEYAaC4kQwAAAAAAgEyTDAFopqQ/AACANZEaASBLFEMAMk7RAwAAKCZFEgCaIttkAQAAAAAAmSYZApAhUiAAAEApSIsAUO4kQwAAAAAAgEyTDAFogiRAAACApkBiBIByIRkCAAAAAABkmmQIQJmTAgEAALJEWgSAUpAMAQAAAAAAMk0yBKBMSIAAAADNmcQIAA1JMgQAAAAAAMg0yRCAEpACAQAAWDtpEQCKRTIEAAAAAADINMkQgAYkAQIAAFB8EiMA1JZiCEARKHoAAACUniIJADWxTRYAAAAAAJBpkiEAdSQNAgAAUL6kRABYnWQIAAAAAACQaZIhAGshAQIAAJAdEiMAzZNkCAAAAAAAkGmSIQCrkQIBAABofqRFALJPMgQAAAAAAMg0yRCgWZMEAQAAoDpJEYDskQwBAAAAAAAyTTIEaBYkQAAAAKgviRGApksyBAAAAAAAyDTJECCzpEEAAABoKFIiAE2LYgjQ5Cl6AAAAUC4USQDKk22yAAAAAACATJMMAZocSRAAAACaCkkRgPIgGQIAAAAAAGSaZAhQ1qRAAAAAyBppEYDGJxkCAAAAAABkmmQIUFYkQQAAAGhuJEUAGp5kCAAAAAAAkGmSIUBJSYIAAABAVZIiAMUnGQIAAAAAAGSaZAjQaKRAAAAAoG6kRQDqRzEEaDCKHwAAANAwFEcAasc2WQAAAAAAQKZJhgBFJQ0CAAAAjUtKBGDtJEMAAAAAAIBMkwwB6kUSBAAAAMqLpAhAPskQAAAAAAAg0yRDgFqRBAEAAICmRVIEQDIEAAAAAADIOMkQYI0kQQAAACBbJEWA5kgyBAAAAAAAyDTJEGAVKRAAAABonqRFgKyTDAEAAAAAADJNMgSaMUkQAAAAII2kCJA1iiHQjCh+AAAAAHWhOAI0dbbJAgAAAAAAMk0yBDJOGgQAAAAoJikRoCmSDAEAAAAAADJNMgQyRhIEAAAAaEySIkBTIBkCAAAAAABkmmQINHGSIAAAAEA5kRQBypFkCAAAAAAAkGmSIdBESYQAAAAA5UxCBCgnkiEAAAAAAECmSYZAEyINAgAAADRFUiJAqUmGAAAAAAAAmSYZAmVMEgQAAADIIkkRoLEphkAZUfwAAAAAmiPFEaCh2SYLAAAAAADINMkQKDFpEAAAAID/T0oEaAiSIQAAAAAAQKZJhkAjkwQBAAAAKJykCFAMkiEAAAAAAECmSYZAI5EIAQAAAKg7CRGgPiRDAAAAAACATJMMgQYiCQIAAADQcCRFgNqQDAEAAAAAADJNMgSKSBoEAAAAoPFJiQBrIxkCAAAAAABkmmQI1IMkCAAAAED5kRQBqlMMgTpQBAEAAAAof4oiwEq2yQIAAAAAADJNMgQKIAkCAAAA0PRJikDzJRkCAAAAAABkmmQI1EAaBAAAACC7pESgeZEMAQAAAAAAMk0yBKqRCAEAAABoPiREoHmQDAEAAAAAADJNMoRmTxIEAAAAgJUkRSCbJEMAAAAAAIBMkwyh2ZIIAQAAAKAmEiKQLYohNCsKIAAAAADUlsIINH22yQIAAAAAADJNMoRmQSIEAAAAgPqSEIGmSzIEAAAAAADINMkQMkkSBAAAAICGJikCTYdkCAAAAAAAkGmSIWSKRAgAAAAAjU1CBMqfZAgAAAAAAJBpkiE0edIgAAAAAJQLKREoT5IhAAAAAABApkmG0GRJhAAAAABQriREoLxIhgAAAAAAAJkmGUKTIQkCAAAAQFMlKQKlpRhC2VMEAQAAACArFEWgNGyTBQAAAAAAZJpkCGVHEgQAAACA5kJSBBqHZAgAAAAAAJBpiiGUFakQAAAAAJoT98OgcSiGAAAAAAAAmaZnCGVBBRwAAACA5k7/EGg4kiEAAAAAAECmSYZQEpIgAAAAALBmkiJQPJIhAAAAAABApkmG0KgkQgAAAACgdiREoP4kQwAAAAAAgEyTDKFRSIQAAAAAQP1IiEDdKYbQYBRAAAAAAKBhKIxA7dgmCwAAAAAAyDTJEIpOIgQAAAAAGoeECBRGMgQAAAAAAMg0yRCKRiIEAAAAAEpDQgTWTDIEAAAAAADINMkQ6k0iBAAAAADKg4QIpJMMAQAAAAAAMk0yhFqTBAEAAACApkFSBL4gGQIAAAAAAGSaYgi1IhUCAAAAAE2H+3nwBcUQAAAAAAAg0/QMoSAqyAAAAADQtOkfQnOmGMIaKYIAAAAAQLYoitAc2SYLAAAAAADINMkQUkmEAAAAAEC2SYjQnEiGAAAAAAAAmSYZQhUSIQAAAADQvEiI0BxIhgAAAAAAAJkmGdLMSYIAAAAAAKuTFCGLJEMAAAAAAIBMUwxpxqRCAAAAAIDq3DckixRDAAAAAACATNMzpBlS2QUAAAAACqF/CFkhGQIAAAAAAGSaZEgzIhECAAAAANSFhAhNnWJIM6AIAgAAAAAUg6IITZVtsgAAAAAAgEyTDMkwiRAAAAAAoCFIiNDUSIYAAAAAAACZJhmSQRIhAAAAAEBjkBChqZAMAQAAAAAAMk0yJEMkQgAAAACAUpAQodxJhgAAAAAAAJmmGJIRUiEAAAAAQKm4P0m5UwwBAAAAAAAyTc+QJk7FFQAAAAAoJ/qHUI4UQ5ooRRAAAAAAoJwpilBObJMFAAAAAABkmmRIEyMRAgAAAAA0JRIilAPJEAAAAAAAINMkQ5oIiRAAAAAAoCmTEKGUJEMAAAAAAIBMkwwpcxIhAAAAAECWSIhQCpIhAAAAAABApkmGlCmJEAAAAAAgyyREaEySIQAAAAAAQKYphpQhqRAAAAAAIOvcB6UxKYYAAAAAAACZpmdIGVEJBQAAAACaI/1DaGiKIWVAEQQAAAAAQFGEhmObLAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNz5AS0isEAAAAACCf3iEUm2QIAAAAAACQaZIhJSARAgAAAACwdhIiFItkCAAAAAAAkGmSIY1IIgQAAAAAoPYkRKgvyRAAAAAAACDTFEMaiVQIAAAAAEDduL9KfSmGAAAAAAAAmaZnSANTsQQAAAAAKB79Q6gLyRAAAAAAACDTFEMAAAAAAIBMs01WA7E9FgAAAABAw7FdFrUhGQIAAAAAAGSaZEiRSYQAAAAAADQeCREKIRkCAAAAAABkmmRIkUiEAAAAAACUjoQIayIZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKbpGVJPeoUAAAAAAJQPvUNIIxkCAAAAAABkmmRIHUmEAAAAAACULwkRVicZUgcKIQAAAAAA5c19XFanGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmaaBeC/aYAwAAAABoejRTRzIEAAAAAADINMmQAkiEAAAAAAA0fRIizZdkCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmZ8ga6BUCAAAAAJA9eoc0P5IhAAAAAABApkmGpJAIAQAAAADIPgmR5kMyBAAAAAAAyDTFEAAAAAAAINNsk7Ua22MBAAAAADQ/tsvKPskQAAAAAAAg0yRDQiIEAAAAAAAJkSyTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTmn0xRL8QAAAAAAAi3C/OsmZfDAEAAAAAALJNMQQAAAAAAMi0XJIkSakXUQriTgAAAAAA1GR05chSL4EikgwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg05pdzxC9QgAAAAAAKJTeIdkgGQIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmNZueIXqFAAAAAABQV3qHNG2SIQAAAAAAQKZlPhkiEQIAAAAAQLFIiDRNkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaZltoK5xOgAAAAAADUUj9aZFMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMy2QxRL8QAAAAAAAakvvQTUsmiyEAAAAAAAArKYYAAAAAAACZphgCAAAAAABkWi5JkqTUiygWe7QBAAAAANDYRleOLPUSWAvJEAAAAAAAINMUQwAAAAAAgEzLxDZZtscCAAAAAKDUbJdVviRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgEzLJUmSlHoRdTWoYliplwAAAAAAAFWMrhxZ6iVQjWQIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGm5JEmSUi+itgZVDCv1EgAAAAAAYI1GV44s9RL4L8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyLQm1UBd43QAAAAAAJoajdRLTzIEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyLRckiRJqRexNoMqhpV6CQAAAAAAUC+jK0eWegnNlmQIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKaVfTFkUMWwUi8BAAAAAADqzf3u0in7YggAAAAAAEB9KIYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmZZLkiQp9SLSDKoYVuolAAAATVGSxG/jiRgYsyIiYkVEnBqD4v3cOms87dbk4egZC1c9fjQ2jF/ndm7IldJIfG/L37XJY7FFfBYREcsiF6fGoPgw17nEqwKAhjW6cmSpl9CstCz1AgAAAIppUHywqhASEfFo9F9rIaS5a58siy1idvSJBdExlkZl5GJBtI6PomNMiPViaa5FqZdIiTX0e+SmGBhXxVMREdEqkjg9xsf5sXcxlg4AEBGKIQAAQIa0T5bFSfH6qseLo0XcEluXcEXlbYfk0zgqJsWOMT1aRvqmAUuiIsYkvWNkbBaTcus28goptcZ6j7ya6x4vJD1jl5gWERE7xfTYM/k4nsn1rfPaAQBWpxgCAABkxjdiQqwbS1Y9HhUDYlauXQlXVJ7aJ8vinBgXe8cna31um6iMfePj2Ds+jvuTjeOG2C6W57SfzLpSvEduiy1XFUMiIk6K/8RzSe+o9H4DAIrAvygAAIBM6JIsjqHxzqrHyyIXI2OzEq6oPHVJFsf/xuMF3eReXUVEDI13Y3g8HW2S5Q2zOMpCqd4jb+XWi/Gx/qrHfWJBHBTv13oeAIA0kiEAAEAmfDMmRLtYserxY7FhzMi1L+GKyk+rZEX8Ip6NDWN+3rGPomM8GX1janSMXET0igWxb3wcfWJBledtHzPi/HghLokvN9KqaUylfo/cGZvH9jFj1eNj4q0YnWwYy/StAQDqSTEEAABo8jolS+KgmFxl7IHYqESrKV8nxn9is/isytiyyMW1sUOMigERuVyVY7ckW8eQmBxnxitV+kXsGVPi0OTdeDC3caOsm8ZT6vfIuOgRU6JD9I7PIyKieyyKr8RH8c/oX7cXBADwX7bJAgAAmrzD4r0qqZBJ0UWz72r6JfOqbCO20mWxe4zKbZR3kzsiIsnl4uHcRnFp7J537IT4T3RMljbIWimNsniP5HLxSLXCx9fi7drNAQCQQjEEAABo0iqSyjg83q0y9kgMKNFqytc3YkKVT+5HRDwUA2JMrvdazx2T6x0PV/uado5lqTfOabrK5T3yz+i/WmkzYqOYG9sn02s9DwDA6hRDAACAJm2XmBbrxeJVj1dExNPRp3QLKkMdk6WxT3xcZWxZ5GJEbF3wHCNi61geVZMBB8fkyCVJDWfQlJTTe2R2rl28Ed2qjB2okToAUE+KIQAAQJM2KD6o8viN6BZzcm1LtJrytGd8Eq2jssrYc9GnVl+nz3Jt47momhBYPxbFwNWaXTd1/ZJ5sV/yYRyVTIpvJBPioGRyfCmZFm2T5aVeWoMrt/dI9YLmHvFJs/g+AAANRwN1AACgyWqbLI9dY2qVsbHRq0SrKV87x7S8safqkJ55OvrG3vFJlbFdYlq8Ft3rvLZSa5lUxuHxTgyNd6PXf5t2V7c4WsQLSc+4LbaMybkujbvARlJu75Gx0Tu+F6+uetwuVsSXY0o8Hv1qvSYAgIgyLIYMqhhW6iUAAABNxA4xPdpU+zT7q7F+iVZTvraJmXlj1bchKsTrKeekzd1U9EoWxCXxXAyIeWt8XttYEXvHJ/HlmBIjk83i5tgmkpRm4k1Zub1HpuU6xLSkffSMhavGdo2piiEAZMrKe+GjK0eWeCXNg22yAACAJqv6p9k/j5bxTnQt0WrK03rJolg3llQZ+zTax6xcu1rPNSvXLj6N9lXGNoq5UdEE+4b0TD6Pq+Pfay2ErK5lJHF0TIzz4sVM9Uop1/dI9cLmTvFppr7uAEDjKrtkCAAAQKG2rdaL4N3oEpUZ+8R+ffVLudk/JTrUeb4p0SF6rPZp/XaxItaPhfFpPeZsbC2iMi6KMVUKAB9Fx3gm+sTU6BiLomV0jcUxMGbGLjE1L300KD6MBdE6/hDbN/LKG0a5vkcmxrpx4Go9gdaJpTEg5sZ70aXOawMAmi/FEAAAoElqlyyLvjG/yth7sU6jr2Nw8n6cF+Ma/boREdOifRyXO3iNz1n9pvRK9SlczKj2qf+IiF7xeZMqhuwZn6wqcMyPVvF/sV2MzvXPe949sWmslyyK78fLsXu13jRHxDvxTNI7XsutvReG90jd3iNpP8+bx2eKIQBAndgmCwAAaJI2jTnRotrY+yUohpS7dWNx3tiMqP32RytNTzm3a8o1ytnKQsjn0TLOj71SCyErzcq1i4viy/F4bFBlvCIifhgvZ2LbpnJ9j0xO+XneLGbXaU0AAIohAABAk9SnWiokIvJ6FRDRKZbmjS2qxyYBi1PO7Zxyjabgutg+JuXWXevzklwufh07x0fRscp431gQu1RLjDRF5foeWZhrFfOjVZWxvrGgzusCAJo322QBAABNUs+UrX1m1uPT7HU1P1rHuyVKpMwq4PW2jRV5Y0vzMjWFW5JybpuUa5S7idE1RseGBT9/ea4ibki2jcvjuSrjh8Z78Xz0XuO53iN1f4/MjHbRKZatetwjPq/zugCA5k0xBAAAaJK6xaK8sc+ibaOvY0yud4xZy83wUmpRrfl3RPFvdLdMuUa5GxUDInK5Wp3zQvSK6dEuuq/23tshpkeLpDJW5GreeMF7pO7vkdnRNgas1uB9/ZSfewCAQtgmCwAAaJLar/Zp8ZUW1+MGbnNSvy4X+QWEXD1nLIVn61CcSHK5vKJGm6iMjWNOkVZVPsrlPVJ9y62WkUTrpOklkQCA0lMMAQAAmqRib+2TVStS/revPttatU45d3kT+1/LGdEu5uTqliJ6O7rkjW0Wn9VzRaVVzu+RtJ/ptrG8TnMBAM1b0/oXKwAAwH9VVPukeWV88cl9qkpLy6TdrC5U2k3ytIbZ5ezjao3Qa+Oj6JQ31iWW1Gc5JVfO75EVKSmTFk0wiQQAlJ5iCAAA0CRV70tQEREtk6bXu6KhzY/WeWPt6vHJ+rRz56Vco5x9Hq2Kem6HlC3bmpJyfo+kFWXSepIAAKyNYggAADRzFckXe/BXJE3r09bF/jR7VqU1lU9rPl+o9WNhQdcoZ/VJsqSd276Jb9tUzu+RLCSRAIDy4F8QAADQzHROlsT+8WFsEzNj0/gseq1243Jq0j7ejq7xn+gWj0W/mJdrU8KVrtmclJurnWNpLKzHp/7rYvdkSnw73mjUa640K9rFz3J7rvE506J93liPlJvVheqecu606FDn+UqhPj0n0s5duJb/tfYeqft7pFMsrfJ4XrSOStvhAQB1oBgCAADNxPrJwjg+3oh946NoHenbSfWKhdErFsbe8UmcFK/HE8kGMSK2jhm5/JulpTY95QZut1jY6DfmO8XS2DjmNuo1Vypke6a0Hhe9Y0Gdr9krPq/yeHG0SP1elLP6bGuVdu7att3yHqn7e6R6QuXTJvZeAwDKh22yAAAg65IkhiTvxR/j0RgcH9RYCKmudVTG4Pgg/hiPxpDkvYgy20ZrakrRY/16bO2TVTNz7eOzqJrw6RkLY92k9l+r9ZJF0bPap/7fi3Wa3Cf1+9TjRv8GKefOifJNUBWiXN8juSSJdWNxlbGmlkICAMqHYggAAGRYRZLE2fFSnB0vR4c6bg3UIZbH2fFynB0vlVVfkfdinbyxvjG/BCspf69Ht7yxbWJWrefZOmYWNHe56x6LokuyeO1PTLFpfJY3Nim61ndJJVeO75HesSBaRtXfOWk/9wAAhbBNFgAAZFWSxA/ipRgS70cSEfX57H4SEUPi/YiI+G2yU0QZJAGm5jrGvKR1dF6tp8CAmNfo63g01z8ejf6Nft3aGBc9Y+/4pMrYXvFxPBV9azVP9TkiIl6MnvVaW6l8OabEw7FRrc7JJUnsHlOqjC2Jing3uqzxPO+Rur1H0rYWm5iBwhMAUBqSIQAAkFFDYnJRCiHx3/NXFkRWFkXKwYRYt8rjjWJOaRZS5p6JPrG02v/+7RGf1Cod0SVZHF+udqN7ZrSN12L9oqyxsQ2JybU+Z+eYFt2rbcX2SnSPFbmm/7/W5fgeqf7zXBkRE6v9zAMAFKrp/4sNAADIs36yME6J1yKi/oWQlVbOc0q8GusnC9f43MYyLnpUedwnPq9Tn4Osm59rnfcJ/1aRxLfizYLn+Ha8Ga2qbVn0UGwUSRmkhOpii/gsDkg+KPj5LZLKVT9Tq3uwlumSclWO75GB1bbceju6xrxc0+7PAgCUjmIIAABk0PHxRp17hKxNh1gex8cbDTJ3bb2Qsv3OdjGjBCspf3fE5rGiWmnskHgvdk2m1HDG/7dbMiUOjfeqjM2PVnFfbFLw9bdNpsfo5O4qf25NHi74/IZwRrwSmyT5PUDyJEmcE+OiX7WeNJ9Ex3ghejXQ6hpfqd8jq2udrIgtYnaVsbSfdwCAQimGAABAxnROlsS+8VGDXmPf+Cg6J0sa9BqF+CTXKT6ITlXGdozpJVpNefsgt07cFxtXGauIiItiTByUTI5IkvyTkiSGJO/FhTEm79CI2Drm51o30Gob1pL//q9wh1gev4qnYv81JETWTRbFxTEmBsWHVcYrI+J3sWOTTcakKaf3yMCYEa2jssrYc9G7TnMBAERooA4AAJmzf3yYdxOx2FpHZewfH8Y9sWmDXqcQj0W/OHG1pMruMSUqksqozEAfh2K7KQbGtjEzNlmtF0OrSOKceCmGxaR4MukbU6ND5CKiV3we+8ZH0TcW5M0zJnrF/dVumjclz0Sf6B/zYuOYG51jWZwfL8Y3kwnxbPSOKdExFkXLWDcWxzYxM3aJadE2VuTNcV9sEq/mupdg9Q2rXN4je1brPTI5Osc7Oc3TAYC6UwwBAICM2abaPvsNeZ1yKIb8KzaM4+ONVbH3dWJpbBcz4pVq/USIWJZrET9N9oyr4sm8LZ/6xfw4Lt5a6xyvRbf4Zewa0YQTESuiIi6OL8c18XisG18knPrF/OgXEws6/1/RL/4vtmvIJZZMObxHckkSe0TVrbn+FRvWaS4AgJV8VAoAADJm0yigB0JRrjOnUa6zNjNy7eP5an0b9q+2pRH/32e5tvH92C+eqeWWQ5UR8UBsFOfHXrE4V/vP1XWJpXlj70fnWs9TLNNyHeLs2Ddvm7U1WR65uCM2j1/HzpnaHqu6Ur1HVtoxPo2u8f+34VsaFfGoYggAUE+SIQAAkCEVSRK9YmGjXKtXfB4VSRKVZXBT+O+xaeweU1c93js+jj8k28fCXKsSrqp8Lci1jkviy7FTMi2OjLdjx5geLSKlH0R8cSN6bPSKO2PzmJRbt87X3C6ll8utsVWd5yuGT3Kd4rTkgBga78QR8W70qOFnZ0lUxAvRK26LLeO9XJfGXWSJlOI9stLBMbnK48eiX8zJta33vABA86YYAgAAGdKygXuFpF1vabRo1GumeTXXPSYlXWKz/6ZV2sWKGBQfxH2xScFzHJc7uIFWV75eyvWMl6JndEiWxpYxO3rHgugQyyIiYn60jo+iU0yIdWNJPT7lv9L2MaPK4+eiV1FunBdiTd/bZbkWMTI2j5GxefRP5sZGMTfWi0XRMipjTrSNGdEu3oj1YlEzLaw15nskIqJLsjh2X22LrMr4otgJAFBfiiEAAJAhyxt5J9zGvt6a3BZbxaXx3KrHQ+OduD/ZONPbGRXL57nWMS56Ntj86yaLqvSfqIyIv8TWDXa9uno/t068H+uUehllqaHfIysdEe9Gq9USKM9En/gg53sCANRf+fyfCwAAUG+VuVxMjfaNcq2p0aEstshaaUyud7wV/z9p0DcWxF7xcQlXxErVUyHPRJ94t5lsN0Xh2ibL4/B4Z9XjFZGLEWVYNAMAmibFEAAAyJi3o2sjXadLo1ynNv4U21R5fHRMjEjS+xzQeLZfrV/Iiih9rxDK06HxbnT+7xZcERGjY8P4KNe5hCsCALJEMQQAADLmP9EtU9epjVdz3eOp6LPq8SYxJ/aVDim51ZMhT8UG8b5tj6imfbIsvhETVz3+PFrGn6sVNwEA6kMxBAAAMuax6BdLG/if+kujIh6Lfg16jbq6PraLRas1dT8h/hMtk8ZtLM//1z35PHrF5xHxxbZHt8aWJV4R5ejrMTHWiaWrHt8SW8dnubYlXBEAkDUaqAMAQMbMy7WJJ5INYnB80GDXeCI2iHm5Ng02f33MyLWP4cmusUl8tmqsR3wen0SnEq6q+Zqe6xCD4qhSL4MytyBaxV/+WyhbHhVxX2xc4hUBAFmjGAIAABk0IraOPeKT6BDLiz7359Gy7Jsaj8n1jjHRu9TLAAo0Mrd5qZcAAGScbbIAACCDZuTaxw2xbUREFKt9+Mp5bojtYkaufZFmBQAAaHiKIQAAkFGjYkCMiv6Ri/oXRJKIyEXEqOgfo6J/vdcGAADQmBRDAAAgq3K5uDp2WlUQqddU8UUh5OrYKSJX39kAAAAal54hAACQYZW5XPw22SneivXilHi1Tj1EPo+WcUNs90UiRCEEAABoghRDAAAg63K5GBUDYlzSI46PN2Lf+ChaR+VaT1saFfFEbBAjYms9QgAAgCYtlyRJsfopFsWgimGlXgIAAGRa52RJ7B8fxjYxMzaNOdErPl91bGp0iLejS/wnusW/ol/Mz7Up4UoBACD7RleOLPUSmgXJEAAAaGbm5drEPbFp3BObRkRERZJEy6iM5VERlbbBAgAAMkgxBAAAmrnKXC6WRotSLwMAAKDBVJR6AQAAAAAAUCpfTQ6O9ZNuDTL3+km3+GpycIPMTe0ohgAAAAAA0Cx9NTk4To8T4qq4qOgFkfWTbnFVXBSnxwkKImVAMQQAAAAAgGbpmXghpsS06B09i1oQWVkI6R09Y0pMi2fihaLMS90phgAAAAAA0CzNyM2Mc+OSohZEqhdCzo1LYkZuZpFWTF0phgAAAAAA0GwVsyCiEFK+FEMAAAAAAGjWilEQUQgpb4ohAAAAAAA0e/UpiCiElD/FEAAAAAAAiLoVRBRCmgbFEAAAAAAA+K/qBZHbN/xJ/POFT1OfqxDSdOSSJElKvYg0gyqGlXoJAAAAAAA0U/984dPIHXVb5D7oF8mGH8YxHwyvUuiobyFkdOXIhlg2NZAMAQAAAACA6vpOjeTuYyPZ8MPIfdCvypZZEiFNj2IIAAAAAAD81z+njI9/Thn/xYPVCiIrt8zaOtlcIaQJUgwBAAAAAICaVEuIXB2XK4Q0QS1LvQAAAAAAACilVUmQmvSdGsn/nhe5I+5cNXRl/F4hpAmRDAEAAAAAgDX5uFfkzvp1laEfxRmreohQ/hRDAAAAAABolqr0B6nJx70id9RtkfugXyQbfhiV9319VQ+R1ZuqU94UQwAAAAAAIE21Qkhy97ERu7xcpam6gkjToBgCAAAAAECzUpdESHL3sRF9p35xbLWm6goiTYNiCAAAAAAArG5NhZCVFESaFMUQAAAAAACahXonQqr7b0FkSkxTEClziiEAAAAAABBRu0LISn2nxrlxiYJImcslSZKUehFrMqhiWKmXAAAAAABAE7bWNEhE3Qoh1c6ftvNd0Tt6xpSYFufGJTEjNzPvaaMrRxY+J0UjGQIAAAAAQCYVtC1WRP0LIRERfadGzxf/Rw+RMqUYAgAAAABA81WMQshKeoiULcUQAAAAAAAyp9ESIdXpIVKWFEMAAAAAAGieRg0ubiHkv2bkZlYpiOwZuxRlXuquZakXAAAAAAAA9VVQEqS6k2+JyoiIIY8WrRCy+lqO7RWxZ+wS9+QeLtrc1I1iCAAAAAAAzdfJtzTY1DNyM+OeUAgpB7kkSZJSL2JtBlUMK/USAAAAAAAoQ3VKhDSyA3tvHxERoytHlnYhzZieIQAAAAAAQKbZJgsAAAAAgCanKSRCVmpKa80qyRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTc8QAAAAAABoAAf23r7K49GVpVkHEbkkSZJSL6JQgyqGlXoJAAAAAACUkXJsTp5fBBlZmoWwim2yAAAAAACATLNNFgAAAAAATdbKFEY5JESqJ0IoH5IhAAAAAABApkmGAAAAAABAPUiElD/JEAAAAAAAINNySZIkpV5EbQ2qGFbqJQAAAAAAUIYas3fI2hIhoytHNs5CWCvJEAAAAAAAINP0DAEAAAAAgALpD9I0SYYAAAAAAACZJhkCAAAAAEBmrExuFLt3iERI09YkG6ivpJE6AAAAAAA1KUZBpC5FEI3Ty49tsgAAAAAAgEyzTRYAAAAAAPyX7bCySTIEAAAAAADINMUQAAAAAAAy6cDe29cq6SEVkl2KIQAAAAAAQKblkiRJSr2I+hpUMazUSwAAAAAAoEz9c8r4NR4vViJkdOXIosxD8UmGAAAAAAAAmday1AsAAAAAAICGtDL5UT0hokdI8yEZAgAAAAAAZJpkCAAAAAAAzYIkSPMlGQIAAAAAAGRaLkmSpNSLKJZBFcNKvQQAAAAAAJqZ0ZUjS70E1kIyBAAAAAAAyDTFEAAAAAAAINMytU3WSrbLAgAAAACgodkeq+mQDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTMlkMsU8bAAAAAAANyX3opiWTxRAAAAAAAICVFEMAAAAAAIBMUwwBAAAAAAAyLZckSVLqRTSkQRXDSr0EAAAAAAAyQq+QpkkyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADIt8w3UV9JIHQAAAACAutI4vWmTDAEAAAAAADKt2SRDVpIQAQAAAACgUBIh2SAZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKY1u54hK+kdAgAAAABATfQKyRbJEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADKt2fYMWUnvEAAAAAAAVtIrJJskQwAAAAAAgExTDAEAAAAAADKt2RdDRJ4AAAAAAIhwvzjLmn0xBAAAAAAAyDbFEAAAAAAAINMUQwAAAAAAgEzLJUmSlHoR5WJQxbBSLwEAAAAAgEamV0j2SYYAAAAAAACZJhmSQkIEAAAAACD7JEKaD8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk3PkDXQOwQAAAAAIHv0Cml+FEMKoCgCAAAAAND0KYI0X7bJAgAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINP0DKkFvUMAAAAAAJoevUKQDAEAAAAAADJNMqQOJEQAAAAAAMqfRAgrSYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohdWCfOQAAAACA8uY+LqvTQL2eNFMHAAAAACgfiiCkkQwBAAAAAAAyTTKkSCREAAAAAABKRyKENZEMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINP0DCkyvUMAAAAAABqPXiEUQjIEAAAAAADINMmQBiIhAgAAAADQcCRCqA3JEAAAAAAAINMkQxqYhAgAAAAAQPFIhFAXkiEAAAAAAECmKYYAAAAAAACZZpusRmK7LAAAAACAurM9FvUhGQIAAAAAAGSaYkgjUbUEAAAAAKgb91epL8UQAAAAAAAg0/QMKQH9QwAAAAAA1k4ihGKRDAEAAAAAADJNMqSEJEQAAAAAAPJJhFBskiEAAAAAAECmSYaUAQkRAAAAAACJEBqOZAgAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZpmdIGdE7BAAAAABojvQKoaEphpQhRREAAAAAoDlQBKGx2CYLAAAAAADINMWQMqQaCgAAAABknfugNCbFEAAAAAAAINP0DClz+ocAAAAAAFkiEUIpSIYAAAAAAACZJhnSREiIAAAAAABNmUQIpSQZAgAAAAAAZJpkSBMjIQIAAAAANCUSIZQDyRAAAAAAACDTJEOaKAkRAAAAAKCcSYRQTiRDAAAAAACATJMMaeIkRAAAAACAciIRQjlSDMkIRREAAAAAoJQUQShntskCAAAAAAAyTTEkI1RdAQAAAIBScX+ScqcYAgAAAAAAZJqeIRmkfwgAAAAA0BgkQmgqJEMAAAAAAIBMkwzJMAkRAAAAAKAhSITQ1EiGAAAAAAAAmSYZ0gxIiAAAAAAAxSARQlMlGQIAAAAAAGSaZEgzIiECAAAAANSFRAhNnWJIM6QoAgAAAAAUQhGErLBNFgAAAAAAkGmSIc2YhAgAAAAAkEYihKyRDAEAAAAAADJNMaQZU90FAAAAAKpz35AsUgwBAAAAAAAyTc8QqtBHBAAAAACaF0kQmgPJEAAAAAAAINMkQ0glIQIAAAAA2SYRQnMiGQIAAAAAAGSaZAhrJCECAAAAANkiEUJzJBkCAAAAAABkmmQIBZEQAQAAAICmTSKE5kwxhFpRFAEAAACApkURBGyTBQAAAAAAZJxiCLWiigwAAAAATYf7efAFxRAAAAAAACDT9Ayh3vQRAQAAAIDyIAkC6SRDAAAAAACATJMMoWgkRAAAAACgNCRCYM0kQwAAAAAAgEyTDKHoJEQAAAAAoHFIhEBhJEMAAAAAAIBMkwyhwUiIAAAAAEDDkAiB2pEMAQAAAAAAMk0yhEYhJQIAAAAA9SMNAnWnGEKjUhQBAAAAgNpRBIH6s00WAAAAAACQaZIhlISECAAAAACsmUQIFI9kCAAAAAAAkGmSIZQFSREAAAAAmjtJEGg4kiEAAAAAAECmSYZQViREAAAAAGhuJEKg4UmGAAAAAAAAmaYYQllRBQcAAACgOXE/DBqHYggAAAAAAJBpeoZQ9vQRAQAAACArJEGgNCRDAAAAAACATJMMocmQEAEAAACgqZIIgdJSDKHJUhwBAAAAoFwpfkB5sU0WAAAAAACQaZIhNHkSIgAAAACUC4kQKE+SIQAAAAAAQKZJhpApUiIAAAAANDZpECh/kiEAAAAAAECmSYaQSRIiAAAAADQ0iRBoOiRDAAAAAACATJMMoVmQFAEAAACgviRBoOmSDAEAAAAAADJNMoRmRUIEAAAAgNqSCIGmTzIEAAAAAADINMkQmi0pEQAAAABqIg0C2aIYQrOnKAIAAADASoogkE22yQIAAAAAADJNMgSqkRQBAAAAaD4kQaB5kAwBAAAAAAAyTTIEaiAhAgAAAJBdEiHQvEiGAAAAAAAAmSYZAgWQEgEAAABo+qRBoPmSDAEAAAAAADJNMgTqQFIEAAAAoPxJggArSYYAAAAAAACZJhkC9SAhAgAAAFB+JEKA6hRDoIgURwAAAAAan+IHsDa2yQIAAAAAADJNMgQaiJQIAAAAQMORBgFqQzIEAAAAAADINMkQaCSSIgAAAAB1JwkC1IdkCAAAAAAAkGmSIdDIJEQAAAAACicRAhSDZAgAAAD8v/buOzzKKu3j+C8VQholITQpoRelqYAUBUXFDYINFxvYWBARsYCwIJZ1AVkLyhpAERQsgKyKWEHpsPQgCIFQQw2BkEpCEpL3D1/YDDOTPDOZyUyefD/X5eVw5rSZTOA8cz/3OQAAADA1MkMADyNTBAAAAAAA4H/IBAHgDmSGAAAAAAAAAAAAUyMzBPAiZIkAAAAAAICKiGwQAO5GZggAAAAAAAAAADA1MkMAL0amCAAAAAAAMCMyQQCUNYIhQDlCcAQAAAAAAJRHBD8AeBrbZAEAAAAAAAAAAFMjMwQop8gSAQAAAAAA3oxsEADehMwQAAAAAAAAAABgamSGAOUcGSIAAAAAAMCbkBECwBuRGQIAAAAAAAAAAEyNzBDAZMgUAQAAAAAAZYlMEADlAZkhAAAAAAAAAADA1MgMAUyOTBEAAAAAAOBKZIIAKI/IDAEAAAAAAAAAAKZGZghQgZAlAgAAAAAAnEE2CIDyjswQAAAAAAAAAABgamSGABUYmSIAAAAAAMAWMkEAmA3BEACXERwBAAAAAKBiIvgBwOzYJgsAAAAAAAAAAJgamSEAikW2CAAAAAAA5kIWCICKiMwQAAAAAAAAAABgamSGAHAImSIAAAAAAJQvZIIAAJkhAAAAAAAAAADA5MgMAVAqZIoAAAAAAOBdyAQBAGtkhgAAAAAAAAAAAFMjMwSAS5EpAgAAAABA2SITBABKRmYIAAAAAAAAAAAwNTJDALgNWSIAAAAAALgH2SAA4BgyQwAAAAAAAAAAgKmRGQKgzJApAgAAAACAc8gEAYDSIRgCwKMIkAAAAAAAYInABwC4HttkAQAAAAAAAAAAUyMzBIBXIVMEAAAAAFDRkAkCAO5HZggAAAAAAAAAADA1MkMAeDUyRQAAAAAAZkMmCACUPTJDAAAAAAAAAACAqZEZAqDcIVsEAAAAAFBekAUCAN6BzBAAAAAAAAAAAGBqZIYAKPfIFAEAAAAAeAsyQQDAO5EZAgAAAAAAAAAATI3MEACmRcYIAAAAAMBdyAABgPKFYAiACoHACAAAAACgtAiAAED5xTZZAAAAAAAAAADA1MgMAVChkTECAAAAALgSGSAAYD5khgAAAAAAAABAOdewYUP5+PiU+N/cuXM9PVWUgpGfsY+Pj1auXOnpqXodf09PAAA86cq7fcgUAQAAAICKh0wQ75eVlaVNmzZp27Zt+v3335WYmKijR48qNTVV2dnZysnJUVBQkEJCQhQaGqrQ0FA1bNhQzZo1U7NmzdSiRQt17NhRlSpV8vRLAeAhBEMAAAAAAAAAeJ3MzEx9/vnn+s9//qOVK1fqwoULxdbPyspSVlaWkpKSJEnbt2+3eD4oKEjdunXTzTffrNtuu03t2rVz19QBeCGCIQBQhK27gcgWAQAAAADzIAvE+yUlJemf//ynPv74Y2VmZrqs3+zsbC1btkzLli3TSy+9pLZt2+qJJ57QQw89pKpVq7psHFQ8r7zyiqF6gwcPVsOGDd06F9hHMAQAAAAAAACAx+Xn52vy5MmaPHmysrKy3D7ejh07NGLECL344os6ffq0QkND3T4mzOnVV181VO+mm24iGOJBBEMAoAT27hoiYwQAAAAAvBcZIOXL/v379de//lVbt24t87FzcnJ08eLFMh8XQNkiGAIAAAAAAADAY1avXq277rpLKSkpnp4KABMjGAIATip6lxFZIgAAAADgeWSDlD/Lly9XTExMiYejA0BpEQwBAAAAAAAAUOY2b96s/v37EwgBHFBYWOjpKZRbBEMAwAU4VwQAAAAAyg4ZIOVfSkqK7r33XqcPSm/RooV69eqlXr16qXHjxoqIiFBERIR8fX2VlZWlkydP6vDhw9qxY4c2btyolStXKi0tzcWvAkB5QjAEANyIIAkAAAAAOI+gh3kNHTpUiYmJDre78cYb9eqrr+rGG2+0WycwMFDVqlVTq1atdMcdd0iSLl68qFWrVunLL7/Ul19+qYyMDKfnDqB88vX0BAAAAAAAAABUHL/++qsWLXIs0FW5cmV9/vnnWrlyZbGBEHv8/PzUq1cvzZo1S8ePH9d7772nevXqOdwPgPKLzBAA8ABbdzeRLQIAAACgIiMLpOIYM2aMQ/UjIyO1dOlSXX/99S4ZPzQ0VCNGjNCQIUM0Y8YMvfrqq071k5ubq3379umPP/7Q7t27deTIEZ04cUInTpxQSkqKsrOzlZ2drby8PAUGBiooKEgRERGqU6eOmjZtqmuuuUZdu3ZV+/bt5ePj45LX5k7Hjh27/Fr379+v48eP68SJEzp16pTOnz+vnJwcZWdny8/PT5UqVVK1atUUFRWl6OhotWzZUp07d1a3bt0UEhJSJvM9e/asli9fri1btmjXrl06evSoTp48qfPnzys3N1dBQUEKCQlRVFSUmjRpoubNm6tTp0664YYbFBkZabff+fPnOz2nZcuW6dixYyXWi4qKUu/evW0+Z/SzsmLFCt10002OTM+mgoICbd26VWvWrNH27dsv/+xTU1OVnZ0tHx8fhYSEKDw8XA0bNlSTJk3Utm1b3XDDDWrbtq38/PxKPQdX8SnkxBUA8AoEQwAAAABUZARDKoaVK1eqZ8+ehuv7+vpq+fLlDrVx1NmzZxUeHi5//5LvG//555+1bNkyrVu3Tlu3blVeXl6px69Xr54efPBBjRgxQnXr1nW6n4YNG+rIkSMl1pszZ44GDx5cYr2DBw9q8eLFWrt2rdavX68zZ844PbdLKleurD59+ujpp59Wr169St3flfLy8rRgwQJ99NFHWrNmjQoKCpzqp2PHjrr77rv15JNPWgVGyiJwdeONN2rlypU2nyurYMjevXs1c+ZMffbZZzp9+rRTfVStWlUxMTF68MEHdfvttzs9F1chGAIAXo4gCQAAAAAzIehRsQ0cOFBffvml4foTJ07UK6+84r4JOahFixbau3evW/quXLmyxowZo/HjxxsKzFzJ1cGQyZMna+zYsQ7Pw6jevXtr5syZatSokUv6++KLLzRu3DgdPnzYJf1J0tdff63+/ftblJk9GHLq1CmNHj1an332mdPBpCu1bdtWcXFxLumrNDgzBAAAAAAAAIDb5eTkaOnSpYbrR0ZG6qWXXnLjjLxLTk6OXn31Vd1yyy0V4oD3ZcuWqUOHDlq1alWp+klNTVW/fv30wAMPuDQQUhEtXrxYrVq10rx581wWCPEmnBkCAF6O80UAAAAAlFdkgaCoVatWKTMz03D9YcOGqXLlym6ckXdatWqV+vXrp2XLlnnVeQvukJqaqpiYGK1bt07XXHONw+2PHDmiW2+9Vfv27XPD7CqWSZMm6e9//7vMvJEUmSEAAAAAAAAA3G7Dhg0O1R8yZIibZuL9VqxYoSlTpnh6GmUiMzNTAwcOVH5+vkPtTp06pZtvvplAiAv861//0rhx40wdCJHIDAGAcsne3VVkjAAAAADwBDJAYMTmzZsN142Oji7VYeJmMGnSJJsHeJvR7t279eGHH2rYsGGG6l+8eFH333+/Dhw44OaZmd/PP/+sMWPGeHoaZYJgCAAAAAAAAAC3279/v+G6Xbt2deNMXMvPz09NmjRRmzZt1KxZM4WHhys0NFTBwcHKyclRenq6Dh06pK1bt2rLli2Gz2LIzMzURx995NZDzJ0RFRWlNm3aqHXr1oqIiFBYWJjCwsJUUFCg8+fP69ixY4qPj9eqVauUlpZmuN9p06YZDoa8++67Wr16tcNzb9y4sW6++WZFR0crIiJCOTk5OnPmjPbs2aNVq1bp1KlTDvdZnmVkZOjRRx91+HyQoKAgdevWTZ07d1ZkZKSCg4N19uxZnTx5UuvXr9fWrVsdzvQpCwRDAMBEOF8EAAAAgLuRBQJnFBYWKjEx0XD9tm3bunE2pVe9enXdeeed6t+/v3r37q0qVaoYanf8+HG9+uqr+vDDDw3VX7BggceDIb6+vurZs6f69eunfv36qX79+oba5eXlad68eXrhhRd07ty5Euvv3btXcXFxateuXbH1UlJS9OqrrxqawyVdunTRpEmTdOONNxZbb+PGjZo+fboWLlyo3Nxcm3VsbSXl4+NjaB4rVqzQTTfdZKhuWZg8ebJOnjxpuH6VKlX0wgsv6LnnnlN4eLjdeunp6frkk0/0wQcfKD4+3hVTdQmCIQAAAAAAAADcKjMzUzk5OYbrV69e3aH+//jjD23fvt3RaVlo3LixunTpUmydBg0a6KmnntITTzxhOABSVN26dTVr1izVq1dPEydOLLH+jh07lJyc7JGtsipVqqQnnnhCo0ePVtOmTR1uHxAQoMcee0ydO3fW9ddfr6ysrBLbLF++vMRgSGxsrDIyMgzPY+jQoXr//ffl71/yV+GdOnVSp06d9Morr2jEiBGGxyiPMjMz9cEHHxiuX7t2bS1ZskTXXnttiXXDwsI0YsQIDR8+XDNnztSiRd4RRCcYAgAmx/kiAAAAAJxBBghcKTs726H61apVc6j+d999V+oMikGDBpUYDPnpp58MZwEUZ9y4cZo+fbqSk5NLrLtt2zbddtttpR7TUc8++6xLXmurVq00ZMgQvfPOOyXW3bp1a4l15syZY3jsu+66S7GxsYbrX9K4cWP98MMPDgXwypuvv/5aqamphuoGBATo22+/NRQIKcrX11fDhg3To48+6sQMXY9gCABUUMVd2BAoAQAAACoGAh4oKxcuXHCofmhoqJtmUjquCA5Ikr+/vzp37qzvvvuuxLr79u3zSDDEVa9Vkrp162YoGLJv375in9+5c6fhQ9PDwsI0e/ZsQ3XtqVy5cqnae7NvvvnGcN0xY8bouuuuc3osb3kffT09AQAAAAAAAADmFhgY6FD9zMxMN83EexjdCuzEiRNunon7ueq1rl271vCYTz75pMMZRhWJ0feycuXKeuaZZ9w8m7JBZggAwApbawEAAADmQgYIPM3R8zWMHLjtDQoLC/XHH39o3bp1l7MWjh49qpSUFKWnp+vChQvKz88v1Rjp6ekumm3pJScna/Xq1dq+fbvi4+OVmJio06dPKzU1VTk5OcrNzbV5wLhRJb1WR86Fue8+vsOw58SJEzp9+rShujfddJNHzqxxB4IhAAAAAAAAANwqJCRElSpVMrxdlrcHQw4dOqR///vf+vLLL3X8+HG3juXoeSuulpOTo3nz5mnu3LnasGFDqYIdJSnptR46dMhQP0FBQerQoYMrpmRKRt9H6c8tzsyCYAgAwDBbd5ORLQIAAAB4F7JA4I18fHxUv359JSQkGKq/c+dON8/IOXl5eXrppZf03nvvlTrjw6iCgoIyGceWpUuX6qmnntLRo0fLZLySAi1Gsxnq1aungIAAV0zJlIy+j5LUqFEjN86kbHFmCAAAAAAAAAC3a9y4seG6GzZscONMnJOWlqbbb79db7/9dpkFQjxp2rRp6tevX5kFQow4f/68oXpGzyipqIy+j5K53ksyQwAApVLSXWdkjgAAAACuReYHyqvrrrtOP/30k6G6e/fuVXJysuGzCl566SW99NJLNp+76aabtGrVKsPztOfee+/Vb7/9Vup+yoPPPvtMzz77rKenAbgUmSEAAAAAAAAA3K5z586G6xYWFmrOnDlunI1jPv74Yy1fvtzT0ygTycnJGjlypKenYVOVKlUM1UtJSXHzTMo3o++jZK73kswQAIBbcc4IAAAA4DyyQGAmPXv2VJUqVQxv0fPBBx/o+eefl5+fn5tnVrIpU6YYrtusWTM98cQT6tGjhxo3bqywsDAFBgZa1Rs8eLA++eQTV07TJT788EOdPXvWUN0qVapo0KBBiomJUevWrRUZGamgoCD5+PhY1Fu5cqV69uxZ6rkZzRQ6fvy48vPz5e/P19+2GH0fJenw4cPum0gZ49MAAAAAAAAAwO2CgoJ0xx136KuvvjJU/8iRI/rggw80YsQIN8+seL///rv27dtnqO7jjz+uGTNmGPoS3pFzG8qS0Z9Po0aNtHz5ckVHR5dY11Wv1ehh3ufPn9e2bdt0/fXXu2Rcs3HkUPS1a9e6cSZli2AIAKDMcc4IAAAA8CcyP1DRDBkyxPCX7ZI0evRo9ezZU23atHHjrIq3Zs0aQ/Xq1Kmj2NhYw9kIhw4dKs203CIrK0vbt283VPf99983FAiRXPda27VrZ7juV199RTDEjrp16yoyMlLJyckl1l25cqXOnDmjiIiIMpiZe3FmCAAAAAAAAIAy0bt3b4cCGzk5Obrrrrs8Gjg4efKkoXpdu3ZVQECA4T63bdtWmmm5hdHXKsmhba++//57Z6ZjpVu3bobrzpo1S6mpqS4ZtyRBQUGG6mVnZ7t5JsZ17drVUL3s7GxNnz7dzbMpG2SGAAC8TnF3x5E1AgAAgPKG7A/A0qRJk9S3b1/D9ffv36/OnTvr22+/degQdlcxcve8JOXm5hru89VXX1VBQYGzU3Ibo69V+vP1GjmIe8OGDfrxxx9LM63L2rZtq0aNGhkKjqWlpWnIkCFauHCh0+OdP3/e0GsMCwszFOjYs2eP+vTp4/R8XOmuu+7SN998Y6ju5MmTdeedd6pDhw5OjWX0fXQ3MkMAAOXKsoJFxf4HAAAAlDXWqIBjYmJidMcddzjU5vTp0+ratasGDRpU5lkiRr/EXblypc6dO1divblz52rmzJmlnZZbOPKF9ddff11inaNHj+r+++8vzZSsDB482HDdRYsWacSIEbp48aJDYxw/flx9+/bVL7/8Yqh+9erVDdX78MMPlZmZ6dBc3OWuu+5SeHi4oboXLlzQnXfeaXgLtaLmzp2rmJgYh9u5A8EQAAAAAAAAAGVq9uzZqlmzpkNtCgoK9Omnn6pZs2bq0aOH/vGPf2jVqlXat2+fUlJSVFBQoJycHJ08eVKbNm3SRx99pIceekibN28u1VyjoqIM1UtLS9N9992n48eP23w+IyNDo0eP1mOPPVaq+biT0dcqSc8995x++uknu89/9913uu6663T06FFXTO2yp556SiEhIYbrT58+XTfeeKOhs1/27Nmjp556Ss2aNdPSpUsNj2F067f4+Hi1bNlSI0eOVGxsrObNm6f58+db/Gc0W6O0QkNDNXToUMP1jx8/ru7du+u1115Tenp6sXVzcnL0ySefqEOHDnr00UeVkpJS2um6BNtkAQBMhS22AAAA4A5keACuVatWLX3xxRfq06ePQ9tLSVJ+fr7WrFlj+GDz0nLkEO5ff/1V0dHRuueee9SqVSvVqVNH6enp2r59u5YuXeo1XwrbU6tWLdWvX1+JiYkl1k1NTVWfPn3UqVMn9ezZUw0aNJD052HpP/74o3bu3OmWOUZERGjChAkaM2aM4Tbr1q1Tjx491LRpU918882Kjo5WjRo1dOHCBZ05c0b79+/X6tWrdfjwYafm1LFjRy1aZOzfiWPHjum9996z+3yDBg3Uv39/p+bhqHHjxumTTz7RqVOnDNXPysrSxIkTNXnyZPXo0UOdOnVSzZo1VaVKFaWkpCgpKUmbNm3Sxo0blZOT4+bZO45gCAAAAAAAAIAy16tXL82bN08DBw70yvMzLunevbvCw8OVlpZmqH5ubq6++OILN8/KfWJiYvTBBx8Yrr9x40Zt3LjRjTOy9txzz2nJkiVat26dQ+0SEhKUkJDg8vn07dtXL730ksv7dbewsDDNnj1bMTExKiwsNNwuOztbP//8s37++Wc3zs712CYLAFBhsI8zAAAAisN6ESh7AwYM0KJFixQUFOTpqdgVEBCgkSNHurTPqKgorzlI+0ojR46Uv79r76F/9NFHXdqfv7+/Fi5cqIYNG7q0X2e1atVK3bt39/Q0nHLHHXfojTfe8PQ0ygTBEAAAAAAAAAAec/fdd2vFihVq1KiRR+fh4+Nj97kXX3xR9evXd8k4/v7+mj9/vsNnppSVZs2aacSIES7rb/DgwXrkkUdc1t8lderU0W+//aYmTZq4vG9nvPvuuwoMDPT0NJwyduxYvfrqq56ehtuxTRYAACp5D2jOGwEAACj/yPAAvFenTp20Y8cOvfjii/roo4908eLFMhs7MjJSw4cP1/Dhw+3WCQkJ0ffff69u3boZ3i7LFl9fX82ePVu33HKL5s+f73Q/7vbmm29q9+7dpd4GqU+fPpo1a5bD21kZ1ahRI23cuFEPP/ywfvjhB7eMYVSHDh00a9YsDRkyxOFzcLzByy+/rObNm+tvf/tbqT7j3ozMEAAAAAAAAAAeFxoaqhkzZiguLk533XWX/Pz83DZWQECAbr/9di1YsEDHjh3TxIkTFRERUWybNm3a6Ndff3U6gyU0NFSLFy92S5aEq/n7+2vx4sUaOHCg03089thj+vbbbxUQEODCmVmrXr26vv/+e82bN89l2TvOGjRokNauXauuXbt6dB7Ouv/++7V792498MAD8vU1X+iAzBAAAAwo7i5CskYAAAC8B9kfQPnXpk0b/ec//1FiYqJmz56tr7/+Wjt37ix1v3Xq1FHPnj112223KSYmRtWqVXO4j44dO2rbtm2aMGGCZs+erezs7BLb+Pr66q677tLbb7/t8S/rHREcHKzPP/9cffr00Wuvvab9+/cbate8eXNNnjxZ/fv3d+8Er/DQQw9pwIAB+uKLL/Txxx9r7dq1KigocKqv9u3b65577nEqqHHddddp7dq1+v3337V06VJt2bJFu3fv1rlz55Senq6cnByn5nSJIwedO6NOnTr67LPPNH78eM2YMUNffPGFkpOTneorLCxMMTExeuihh1w8S+f4FLr73QMAwOQIhgAAAHgPgiGAOR09elQbNmzQli1btHfvXiUmJurkyZPKyspSdna2/Pz8FBYWprCwMIWGhqpatWpq2rSpWrdurdatW6tVq1aqU6eOS+eUnJysxYsXa8WKFYqLi9OZM2eUlpamoKAgRUZGqmXLlurRo4fuvfdeNW7c2Kr9uXPnlJWVVeI4wcHBTgVuXKmgoEA//PCDli1bpnXr1unEiRNKSUmRJIWHh6tx48a69tpr1bdvX918881WWQUXLlww/IV6vXr1XDLnM2fOaPny5dq8ebN27dqlo0eP6tSpUzp//rzy8vJUuXJlhYSEqGbNmoqOjlbz5s3VqVMnde3aVbVq1XLJHMygoKBAmzdv1po1axQXF6eEhAQdP35cqampysnJka+vr4KDgxUWFqYGDRqocePGatu2rbp27ar27dvL39978jEIhgAAUAYImAAAAJQegQ4AAOAs8238BQAAAAAAAAAAUASZIQAAeAEyRwAAAMj8AAAA7kMwBACAcoKACQAAKM8IdAAAAE9imywAAAAAAAAAAGBqZIYAAGAiZI8AAABPIOsDAAB4OzJDAAAAAAAAAACAqZEZAgBABUQGCQAAMIKMDwAAYBZkhgAAAAAAAAAAAFMjMwQAABSLLBIAAMyFbA8AAFARkRkCAAAAAAAAAABMjcwQAABQamSPAADgHcj6AAAAsI3MEAAAAAAAAAAAYGpkhgAAgDJFFgkAAI4h2wMAAKD0CIYAAACvReAEAGBWBDgAAADKFttkAQAAAAAAAAAAUyMzBAAAmArZJACAskaWBwAAgPcjMwQAAAAAAAAAAJgamSEAAKDCI5sEAHAJWR4AAADmRGYIAAAAAAAAAAAwNTJDAAAASoGsEgDwPmR3AAAA4EpkhgAAAAAAAAAAAFMjMwQAAMBDyCoBAPvI7gAAAIArkRkCAAAAAAAAAABMjcwQAACAcorMEgDejMwOAAAAeBMyQwAAAAAAAAAAgKmRGQIAAIDLyDYBKiayOAAAAGB2BEMAAABQZgi2AM4hWAEAAACUDttkAQAAAAAAAAAAUyMzBAAAAKZGNgpcjSwNAAAAoPwhMwQAAAAAAAAAAJgamSEAAAAAAAAAAMDUyAwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKbm7+kJAADKn4KCAqWnp3t6GgAAAADsCAsLk68v98ACAHAJwRAAgMPS09N15513enoaAAAAAOxYsmSJqlat6ulpAADgNbhFAAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKlxZggAwCUCttaQT77f5T/7+PqoyB+KL7co8yny0Ndmub36Rcst2tqrf+mxvXGKPDQ0vpExL3VqoL/Cos2K3r5g6zVYtS3hddira2ecEvuTVGhxi4Wd1+Fj9bTd8e2NWWhv/KLlRV16f23Nw2h/pRj/8vvisjENlMu63Nj76dhjQ/NypJ2d+k6/FyXNqTR9G63jQB+Ozks+hdZ1SvEabPZXjEJbbR0cx/4cbdex+OtUNuqU9LwkHyN92y0vLFJeaGxOV4xp+etv3d+VffrarWM9vr3+LP5qL/LYXt+GylVY7PNGHtubi6+Kb1v0ecvxC5zqr/j61n36WYxfYLOdn5HxZXu+fnb7LPj/MYuU2ZmrvXK7YxYptzV3e30UHcfPom8j70vRMe3M8f/b+tl7bYZev5052q1j/bjoUq3o71PRx35F6vjZqeNb5BfWt8hvgJ+syy3r+tpuV2TtmZHup0HPRQoAANhHMAQA4BI+eb7yuejiYIivnSBFob3yIm19fG2W2wwe2BvH3mN735L52Pm6yWY/jn7TqpLr2Hts8UVdCd+YWnC0TtFiO+NfDsY4ULe4qRip8/+fL2NfBhsZ09HxXT2mk49LMY7TQRpH28l2ucuDIS56na4Ohjg+vgeCIXb79EAwxFYdi3k7GgxxbMySghF2X7PslNt9X+zVsX7PfezVtfNe2B+/5Me2giGOPnY4SGEjGGL5vKPBkOIDAH/W8Sny2DoYYut56/7sBSBku7zIz8gykGBj3hZ9+BgoLzpf2Sy3nLutORVpZ9FH0TGLlpccJPKzeF+s69h/3nZAxUgwxH6d4oMhluMXKbfzflrWKVpu5+fy/48t68rq+SvH9LX1jw8AALDANlkAAAAAAAAAAMDUCIYAAAAAAAAAAABTIxgCAAAAAAAAAABMjWAIAAAAAAAAAAAwNYIhAAAAAAAAAADA1AiGAAAAAAAAAAAAUyMYAgAAAAAAAAAATI1gCAAAAAAAAAAAMDWCIQAAAAAAAAAAwNQIhgAAAAAAAAAAAFMjGAIAAAAAAAAAAEyNYAgAAAAAAAAAADA1giEAAAAAAAAAAMDUCIYAAAAAAAAAAABTIxgCAAAAAAAAAABMjWAIAAAAAAAAAAAwNYIhAAAAAAAAAADA1AiGAAAAAAAAAAAAUyMYAgAAAAAAAAAATI1gCAAAAAAAAAAAMDWCIQAAAAAAAAAAwNQIhgAAAAAAAAAAAFMjGAIAAAAAAAAAAEzN39MTAACYQ2FAgeRz8X8Fvj7/e+xTWHy5RZmddkXLfQvslBdt62un3MbjonUtnpftcrv9GRjzUqe25nHF40IbzYy3LdqgKJ8r/i8VqqS6RusUUWin3AaLvgvtlMtmlWLGt1HH7vtZ9LG9n7+D9W3NxWVjGngsG+WlGMfWR9jhuTg779I8LqtxjIxl5H22U9/+3wWF1nXs1LXfRwn9FaPQVlsHx7E/R9t1LP9qs1GnpOcl+Rjp2255YZHyQmNzumJMy19/6/6u7NN+HRvjW7y2kv72Laa+gceFl16rxefGscdF/jW/Yr4ljW+v7wLb5Xbr237sW6S+b5E+ff+/TtH+fIo+X6S8wG5//3t8UdZ9S5KfnT4vlRf9HPjZ6dteub25+FmMoyL1L9W1Lvuzne3HlvX/9wc/u+U+Nst9bTxvMU6R2RQd0/77UrStgffi/x/be/0W74XF+Hbq23mdfrIut6zra7tdkbVnRjr3ugIAUBKCIQAAl8jreNbTU4C3svP9lrcw8h05AMCSdVjiiuAGyjFbkUG+aAcAAOUfKxoAAAAAAAAAAGBqBEMAAA5LS0vz9BQAAAAAFIM1OwAAlgiGAAAAAAAAAAAAU+PMEACAw0JDQ63K5s2bp/DwcA/MBgAAAKjY0tLS9PDDD1uU2VqzAwBQkREMAQA4zNfXOrEwPDxcVatWLfvJAAAAALBia80OAEBFxr+MAAAAAAAAAADA1AiGAAAAAAAAAAAAUyMYAgAAAAAAAAAATI1gCAAAAAAAAAAAMDWCIQAAAAAAAAAAwNQIhgAAAAAAAAAAAFMjGAIAAAAAAAAAAEyNYAgAAAAAAAAAADA1giEAAAAAAAAAAMDUCIYAAAAAAAAAAABTIxgCAAAAAAAAAABMzaewsLDQ05MAAAAAAAAAAABwFzJDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApubv6QkAQGmkpqZq9+7dOnfunFJTU1VYWKjQ0FDVq1dPLVu2VJUqVVw+ZkFBgU6dOqWkpCSdPn1a6enpunDhgiQpODhYISEhql+/vqKjoxUQEODy8b1FTk6O/vjjD505c0apqam6cOGCgoODVbt2bTVr1kwRERGenmKFl5mZqT179ujYsWPKzMyUj4+PQkNDVb9+fbVq1UqVKlUqk3nk5uZq//79Onr0qFJTU5WTk6PAwECFhoaqdu3aatCgAZ8XAAC8BOtrz2F9jZKcPn1ae/fu1cmTJ5Wdna3AwEBVq1ZNjRo1UtOmTeXrWzb3PGdkZCghIUHHjx9XRkaG8vLyFBQUpPDwcNWpU0eNGjVSSEhImcwFABxBMASowNLT0xUfH6+9e/cqPj5e+/btU1JSklW91atXe2B29l24cEHffPONfvrpJx08eFCFhYU26/n7+6tjx4667777dP311zs9XlJSknbs2KFdu3Zp7969OnTokHJyckpsFxAQoLZt2+r222/XjTfe6PQXzx9//LHmzp3rVNsr1a9fX/Pnz3e6fWFhoVavXq3//Oc/2rVrl/Ly8uzWbdasmfr166c+ffrI359/bsrSli1btGDBAm3ZskUXL160WScwMFBdu3bVwIED1aJFC5fPobCwUGvXrtX333+vrVu3Xv5Cw56IiAhdc8016ty5s2688UYFBQW5fE4AALgb62tjWF//j6fX14WFhTp27Njlz+zevXuVkJCg8+fPW9S7/fbbNW7cOJeMCcdcvHhRP/74o77++mslJCTYrRceHq7bbrtN999/vyIjI10+j+zsbP3888/66aefFB8fr4KCArt1fXx8dNVVV6lDhw7q0qWLunTp4vL5AIAzfArtrXIAmM7Bgwe1YcMG7du3T/Hx8Tp58qShdt50sbZixQpNmzZNKSkpDrXr0qWLxo4dq6pVqzo85tChQ7V7926H2xVVq1YtjRo1yqlFoLdcrB04cEBvvPGG9u/f7/CYEyZMUPPmzZ0aF8ZlZmZqypQpWrVqleE2Pj4+uuuuuzR8+HCX3Wm5a9cuvfPOO8VerBVn+vTpuuaaa1wyFwAA3In1Nevr8ri+XrVqlXbv3q34+HglJCQoMzOzxDYEQzzj8OHDeuWVV3Tw4EHDbYKCgvT000+rb9++LpvHjz/+qJkzZzr894Qk+fn5acWKFS6bCwCUBmeGABXI0qVLNXPmTK1YscLwhZo3mTVrliZOnOjUAmzDhg168skndfz4cTfMrGSnTp3SmDFj9PHHH3tk/NJatWqVnnrqKYcv1CQpMTFRw4cP1/r1690wM1ySkpKiYcOGORQIkf68G/A///mPXnjhBUN3ZJZk/vz5GjFihNOBEAAAyhPW16yvneXJ9fWUKVP0xRdfaPv27YYCIfCMnTt3aujQoQ4FQqQ/MzimTp2q2NjYUs/hwoULevnllzVp0iSn/p4AAG/DviUAyoV58+bZvOPqUqp+x44dFRERofz8fCUlJWnTpk3auXOnRd2kpCSNGjVKH374ocLDw52eS9WqVdW8eXPVq1dPtWvXVmhoqIKCgpSbm6uMjAwdPnxYW7ZssXlhOHfuXAUGBuqhhx5yenxJatKkiVPtateu7XCbuLg4vfLKKza3W2rRooW6dOmiWrVqKTAwUGfPnlVcXJw2bdqk3Nzcy/Vyc3M1YcIETZs2TW3atHFq7rAvNzdXY8aM0ZEjR6yeu+qqq9SzZ0/VrVtXhYWFOn78uH777Terz+f27dv1+uuv64033nB6Hu+//74WLVpkVe7n56dWrVqpffv2qlGjhqpWrarc3Fylp6fr8OHDSkhI0L59+4pNtQcAAK7F+toS62t4k2PHjmnMmDFW25VJUvv27XXdddcpKipKWVlZOnz4sJYtW6aMjAyLel988YVq1KihAQMGODWH7OxsvfDCC1a/99Kf2ScdOnRQy5YtVa1aNYWEhCg7O1spKSk6ePCg9uzZ47FAKQAUh2AIAAUEBKhRo0Zq3ry5VqxY4XV3B23ZskWzZ8+2Kr/66qs1ZswY1a9f3+q5QYMGaceOHZo0aZJOnDhxufzUqVOaNGmSJk+ebHj80NBQ3XTTTerUqZPatWununXrGmq3detWTZs2TYcPH7YonzNnjrp27apGjRoZnsOVyuoOuLNnz2rixIlWF2qRkZEaM2aMzb2iBwwYoJMnT2rq1KnasmXL5fK8vDxNnDhRn376qYKDg90+94pk1qxZ2rt3r0WZv7+/Ro0apZiYGPn4+Fg89/jjj2vp0qV65513LH62a9as0TfffKP+/fs7PIf58+dbBUL8/PzUt29fPfroo6pWrVqx7VNTU7V27Vp99913VvMFAKC8YX1dPNbX3rm+Dg8PV7NmzRQaGqrffvut1P3BOQUFBXrttdes/t6oXr26Xn/9dV199dVWbf72t7/p3//+t5YsWWJRPmPGDHXs2FGNGzd2eA4TJ060CoSEhIRo8ODB6tevX4ln9hw9elQrVqzQjz/+6NDYAOBOBEOACsbPz08NGzZU8+bN1aJFCzVv3lxNmjS5fFbA5s2bvepirbCwUB988IHVHeMdOnTQlClTil2AtW3bVtOnT9fTTz9tccG2fv16rV27Vt26dTM0h6lTpzo1944dOyo2NlbPPfec9uzZc7k8Ly9PX375pcaOHetUv2Vp/vz5OnfunEVZRESEpk+fXuxdcLVr19abb76pCRMmaN26dZfLk5OTNWfOHD399NNum7OnPfPMM4qLi7v857Fjx6pPnz5uG+/w4cNavHixVflrr71m9zPu6+urO++8U9WqVdPf//53i+c+/PBD3XzzzQoNDTU8hx07dlh9oVKlShVNmTJFbdu2NdRH1apVFRMTo5iYGLuHtgIA4I1YX7O+doS3rK9DQkLUtGlTtWjR4vLntk6dOpL+zBgmGPI/PXr0sPjzggULnMoIMur7779XfHy8RVlYWJhiY2PtjhsUFKQXXnhBlStX1sKFCy+X5+fna9q0aXrvvfccmsNnn32m//73vxZlDRs21Ntvv62IiAhDfVx11VV65JFH9PDDDzs0NgC4E2eGABXIAw88oJ9++klz5szRSy+9pP79+6tly5YuOzTZHdauXWu1j25oaKjGjx9f4p0o0p8XFuPHj7e603zOnDkunac9wcHBNi/K1qxZo/z8/DKZg7NSUlL03XffWZW/9NJLhhb//v7+GjdunNVi+ZtvvtHZs2ddNs+K7rPPPrO6s7Bv376Gvozo3r27YmJiLMoyMjJsBlfsyc/P19SpUy3mEBAQoLfeestwIORKZIYAAMoL1tf/w/q6ZN6yvv7oo4/0/fffa9q0aRo2bJh69ux5ORACz7p48aLN7etGjhxp6DMyZMgQqwypuLg4i5u1SnL06FHNnTvXoqxu3bp67733DAdCimJtD8CbEAwBKpCIiAhDFzjeZPXq1VZl/fr1c2gR1qZNG3Xq1MmiLCEhwebep+5w6U7BojIzM70+ILBhwwaLfYklqXXr1jZT9+0JDQ3VfffdZ1GWm5urH374wSVzrOgyMjKs7trz9/fX448/briPxx9/XH5+fhZl3333neHzO7799lslJiZalD344INq3bq14TkAAFBesb7+H9bXJfOW9XWdOnX4gtpLbdq0SSdPnrQoa9y4sXr37m2ofWBgoB599FGr8m+//dbwHGbNmqW8vDyLshdeeEFVq1Y13AcAeCuCIQC82tatW63Kbr31Vof7ue2226zKli1b5tScnGHrTitvv1hz1Xtvq80vv/zi1JyulJiYqLVr12rp0qWaP3++Fi5cqF9++UVxcXG6cOGCS8bwZqtWrbK6UOnevbuqV69uuI8aNWpYZZEkJydrx44dJba9ePGiFixYYNVfaQ8wBQAA7sP62nPKw/raky5evKg9e/Zo5cqV+uabbzRv3jwtXrxYv/76q/bu3VshtlL99ddfrcruvPNOh/ro1q2b1fXA2rVrlZOTU2Lbo0ePas2aNRZl3bt3V8eOHR2aAwB4K84MAeC10tLSdObMGYuykJAQNWjQwOG+2rRpY1W2YcMGp+fmqCvvAJP+vIPfmx04cMCqzJm7/WvUqKHatWtb3OF05MgRnThxwql0/KNHj2rhwoXauHGjTp06ZbdeYGCg2rVrpwEDBjh0t115smnTJquyG2+80eF+brrpJq1atcqi7L///a/at29fbLutW7da/QxuueUWBQYGOjwHAADgfqyvPctb19eetmXLFi1ZskRbtmwp9nyd8PBwde7cWQ899JBTn1lvV1hYqM2bN1uVO7q+9/f3V7du3SwOU79w4YLi4uLUuXPnYtv+8MMPVhnif/nLXxwaHwC8GZkhALxWamqqVVnNmjWdSumOjIy0apeUlGRx8KO7FBYWat++fRZlvr6+bj10zxXS0tKsymrVquVUX1FRUVZljuxbe2k+U6ZM0SOPPKJvv/222ECI9OcF8qZNm/TCCy/omWee0enTpx0arzz4/fffrcquueYah/ux1cZW31dasWKFVdktt9zi8PgAAKBssL72LG9bX3vagQMH9Oyzz+q5557TypUriw2ESH++fz///LMGDx6sf/3rXzYDYuVZYmKizp07Z1FWr149h7K+L3F2fb9y5UqLP4eGhpr2xjIAFRPBEABeKz093aosODjYqb58fX1ttr3yIsodli1bpuTkZIuyFi1aKDQ01O1jl4at979KlSpO9RUSEmJVtnfvXsPtjx49qqFDh+r777+3OizciLi4OA0ZMkR79uxxuK23Sk5OVkpKikVZVFSUU4caRkZGWl1QHzhwoMT3esuWLRZ/DgwMVJMmTRweHwAAlA3W157lTetrT1u3bp2eeuopbdu2zeG2Fy9e1JIlSzRy5Eir4EF5Zuvn5+w5fLYyt0r6fJw4cULHjx+3KGvevLnXZ1wBgCP4Gw2A17J1GGVpzoGwtUfqkSNHnO7PiE2bNumtt96yKh8wYECp+l24cKF+//13HTx4UKmpqcrJyVFoaKhCQ0NVu3ZttW3bVu3atbO5CDaqUqVKys/PtyjLzc11ajFcmvf+8OHDGj58uDIyMqyea9mypa6++mpdddVVCg0NVX5+vs6ePatdu3Zp48aNFneLpaSkaPTo0froo49s3klX3lx5aLkk1a1b1+n+6tSpo6SkpMt/zsnJ0enTp+3eYXn69GmL+pIUHR1tcRj72bNn9fPPP2vz5s06dOiQ0tPTFRgYqKpVqyoyMlLt27fX9ddfX6rPKQAAMI71tX0VaX3tacuWLdMbb7xhtR1TQECAOnTooJYtW6pmzZoKCQlRdna2Tp48qW3btlllNvzxxx8aP368pk2bZoov7G2t7+vVq+dUX1FRUfLz87O4ueno0aPFttm1a5dV2ZU3Oh04cODyGY3Hjh3T+fPnFRwcrKpVq6pevXrq2LGjunTp4vS8AcDdyv+/FgBMKzw83KrMVmq/ERkZGVYXHpKs7nxxhaysLP3+++/64YcfrM5hkKQePXqoV69epRpj+vTpVmXnzp3TuXPnlJiYqI0bN0r688vpv/71r+rdu7fFl9RGhIWFKSsry6IsNTXVqbvXbP3cjGyhkJ2drZdfftkqEHLDDTdo6NChatiwod22Z8+eVWxsrMVhkmlpaXr55ZcVGxsrX9/ynRxZdI/oS5zdZkGyvdXCiRMn7AZDDh48aFV26aLn4sWL+uyzz/TJJ59YHfCen5+v8+fP68SJE9qxY4fmzp2rNm3a6MknnyzxjBIAAFA6rK/tqyjra087dOiQpk6dahEI8fPz04ABAzRw4EBVrVrVZrvHHntMCQkJevPNNy0yHHbu3KlZs2bpqaeecvfU3c7WNsDO3sTl5+enyMhIiz6Tk5OVn59vN3Bk60ybS+v79PR0vfvuu1q+fLlVnfT0dKWnpysxMVHr16/Xv//9b/Xq1UuPPfYYQREAXodgCACvVa1aNfn7+1tcZJ0+fVrnzp1TtWrVHOrLXkqws2nV8+fP12+//WZRlpubq8zMTKuti4q64YYbNGHCBKfGdMbBgwf1z3/+Uz/++KMmTJjg0BZKNWvWtPrCPT4+3uFDGS9cuKDDhw9blRf3Pl0SGxtr1Xbo0KF64IEHSmxbo0YNjR8/XnXq1NHcuXMvl+/Zs0crV64s9QWzp9l6/2rWrOl0f7baFvf7YetiOzg4WOnp6Ro9erR2795teOxdu3bp2Wef1eDBg/Xoo48abgcAABzD+rr0yvv62pMKCgr0yiuvWGS1BAUFadKkSerQoUOJ7Zs2baoPPvhAY8aMsdiudfHixbr33ntLtRb2Bu5Y3xcNhly8eFGpqal2P7O2brYKDg5WfHy8xo4dq7Nnzxoat6CgQMuXL9f69ev18ssv64YbbnDuBQCAG5Tv22IBmFpgYKBatGhhVb5+/XqH+7LXxtYhhkYkJydr//79Fv8lJibavQCJjIzU888/r0mTJtncnsAZISEhql27tho1aqTIyEgFBgbarbt9+3Y9/vjjNi+a7LF16N6GDRscnuemTZts3jWYm5ur7Oxsu+2Sk5P1/fffW5T179/fUCCkqMcee0zXXnutRdlnn33mUB/eyNae00FBQU73Z6ttcb8fti6G/P39NXbsWKtAiK+vryIiItSgQQO7X7QUFhZqzpw5Nre9AAAArsH6unhmX1972qpVq3To0CGLspdeeslQIOSSgIAAvfbaaxZZTnl5eVq4cKHL5ukpZbG+tzXGJbbW96mpqRozZozVc4GBgapVq5bq169v8/waSTp//rzGjRtnM5sEADyFzBAAXq1jx45We5cuXrxYt99+u+G09PT0dP300082n3P3xUJQUJAGDx6se++9VwEBAaXqq27duurSpYs6deqkxo0bW93Rc/HiRSUkJGj9+vX6+uuvrS5Ez507p9GjR2vGjBmqXr16ieN16NBB8+bNsyhbsWKFhgwZosjISMPzXrBggd3ncnJy7C7wFy5caLHFUnBwsIYOHWp43KIGDx5scfdYQkKCTp06VaptpTzN1j7RxV2wl8TRPcRtneGydOlSizY1a9bU4MGD1aNHD4WFhV0uT05O1vLlyzV//nyrfr799lu1bNlSd9xxhzMvAwAAlID19f9UtPW1p33++ecWf27fvr169uzpcD8hISG69957NXv27Mtlq1ev1tNPP13qOXqSrfV9aQJ9tq4NbI1xia31/YwZMyzW961bt9Yjjzyijh07WvR/4MABLVmyREuWLLE4p6SgoEBvvvmmoqOjFR0d7exLAQCXITMEgFeLiYmx2tN0//79mj9/vqH2hYWF+te//qXMzEybz9u6o8qVsrOzFRsbqyeeeEI//vijCgsLHe6jTZs2evfdd/XFF1/omWeeUadOnWymNvv5+alFixZ67LHHtGjRIv3lL3+xqnPq1Cm9+eabhsbt0KGDGjRoYFGWm5uryZMnWx12aM/ixYutDjos6srzJIq6cj/onj17OrWfsvTne3jlHUvbt293qi9vYeuzW5qLJVtti/v52Hqu6IXStddeq08//VQxMTEWgRDpzzs5Bw4cqE8++cTmRdG0adOcvqsUAAAUj/V1xV1fe9LJkyettlaz9X4a1aVLF4s/nzp1yuaZG+WJrd8dV9/sVNzvZ0nr+4ceekixsbHq0qWL1bwaN26sUaNGadq0aVbXXTk5OYZ/RwDA3cgMAeDVoqKidOutt+qHH36wKP/4448VEBCggQMHysfHx2bbCxcu6O2339bKlStdPq9Ro0Zp1KhRFmVZWVlKS0vT/v37tW3bNv3yyy+XLxIPHTqkSZMm6aefftLEiRMN3Tl2yfXXX+/w/CpXrqwxY8YoKipKH3/8scVz69ev1++//24zTb8oHx8fPfTQQ3rjjTcsyjdv3qxXXnlFY8eOLfaus6+//lrvv/9+iWPYYuti5uqrry62r+L4+vqqVq1a2r9//+WyhIQE9enTx26btWvXWr13Rlx5aOjs2bO1aNEih/qoUaOGpk6d6vDYpWHvZ2FPcV88NGjQwNCWFREREXr77bc1aNAgi+BHdna2vvrqKz3++OMOzQkAAJSM9XXFXF97WlxcnFVZadb3tWvXtipLSEgoNvN79uzZWrdundNjXjJ69GiHs5K6du3q1Nq2ND9PW22LW8MX99wdd9yhIUOGlDjmNddco9dee03PP/+8RX+7d+/W1q1b1bFjxxL7AAB3IhgCwOsNHz5c27dvtzjQrbCwUDNmzNCKFSvUr18/dejQQTVq1NDFixd1+vRpbdq0SV999ZXFF+rVq1e32nO4NHfaXCk4OFjBwcGqU6eOevTooSFDhmjGjBn65ptvLtfZvn27nnnmGb3//vsOH1LpjMGDB2vv3r1Wi/4vv/yyxIs1Sbrtttu0evVqrVmzxqJ85cqV2rlzp+6991517txZtWrVUkBAgFJSUhQXF6clS5ZYbL9g672X7L//O3futCr79NNPHQ4qFHVlkKKkzIOMjAyL4ImzTp8+rdOnTzvUxt6dlkVdeUenVPy2ViWx1dbWGEaee/755w1nqVSvXl1/+9vfrO4W++677wiGAADgJqyvnVde19eeduXWbJL097//3aVjlLS+T0pKcsn6/siRIw63adKkSYl1ymJ9X1wQx976PiQkRCNGjDA87rXXXqvevXvrl19+sSj/7rvvCIYA8DiCIQC8XmhoqP7xj39o1KhRVge+7d2711DKbYMGDfTggw/qn//8p1Xf7lKlShU999xzql27tmJjYy+XJyYmatKkSWWWKjxs2DBt2LDBIvV+69atys/PL/YL7UvGjRunZ555RgkJCRblZ8+e1cyZMzVz5sxi2wcFBWnixIkaOXKkRbmPj4+Cg4NttklOTrYquzKYUVrFHR5YHlSuXNmqLDc31+n+bF0s2RqjpOeio6PVrl07h8bu3bu3YmNjLfYpTklJ0ZEjR6y2kgAAAKXH+rp0yuP62tNs3RzkisBEUeV9m1VHz/AriavW97fddpvDn6u7777bKhhiKzsIAMoaZ4YAKBeaNm2qGTNmOPXFaPPmzTV16lT5+lr/lVejRg1XTK9YAwcOVKdOnSzK/vvf/1oc6O1O9evXV7NmzSzKsrOztXv3bkPtg4ODNX36dHXv3t3hsatXr65//vOfqlevntVz4eHhdi8Wy+JCpjQXFt7gynM4pNIdWGqrbXh4uN369p677rrrHB67UqVKNu+ktJUhBAAAXIP1tfPK4/ra08riRqTyvr63tb529fre1jVESc85s75v2bKl1dkhKSkpOnbsmMN9AYAreee/kgBgQ7169fTRRx/p22+/1eeff24zLbyoypUr6/7779egQYPk7++vDRs2WNWxtdesOwwaNEgbN260KFuyZImuvfbaMhm/ffv2io+PtyhLSkoy3D4oKEhvvPGG1qxZozlz5pR4F5evr69uvPFGjRo1SlWrVtXhw4et6tSpU8dueyPbRLlbnz59ij1TxJ5nnnnG4q6nsWPHOtVPSWzti+3odlwltS1uqwl7X3Q0bdrUqfGbNm1qtd3EmTNnnOoLAAAYw/raeeVtfe1pRTOAPWXcuHEaN26cw+169Ohh8ecFCxa45XNua+1tK2PeqCvX976+vqpatard+q5c3/v4+KhJkyZW2SBnzpyxGcgDgLJCMARAuVKpUiUNGDBAd999t/744w9t3bpVR44cUVpamrKyslS5cmXVrVtXbdu2Vbdu3SzS9G3t7RodHV0m827VqpVCQ0MtLgK2b99eJmNLthe2qampDvfTvXt3de/eXQcPHtSWLVu0b98+paamKj09Xf7+/qpZs6Zatmyp7t27W1yM2bpYK+69t7XX8dSpU63uAKzIbF2AOXIBbqRtcRd59i62i8smKY6tduV9qwMAAMoD1tfOKW/ra0+ztQXUsmXLDJ8zVxHYWnsXPaPHEQUFBVY3FkVGRhabOWRvfV9cNklxbLUr71sVAyj/CIYAKJf8/f3Vtm1btW3b1nCbAwcOWJW1adPGldOyy9fXV1FRURYXa2lpaTp//ryqVKni9vFt7f9amjTy6Ohohy62Dh48aFVW3Htv644lFs6WrrrqKquy0pyrcuLECYs/V6pUSVFRUXbr29tSo7hDGYtjKwBWmjNQAACAY1hfO6a8ra89zdaNLxkZGQRDiqhfv75VmbPr+6SkJOXn55fYf1Gs7wFUBJwZAqBCyM3NtTqgsHbt2mWaSm5rMXj+/PkyGdvWXWrFpUi72h9//GFV1qFDB7v1baWIlybrwYxq1qxp9T6dOnXKqa2lzpw5Y3XXWZMmTeTn52e3TbVq1WwGS7KyshweX7K9NZqzWSYAAMD9WF+nWpV58/ra02xt8eps1oNZXXkOjWT752zErl27DPVfVIsWLWyWu3J972yWCQC4CsEQABXC+vXrrS6MevbsWaZzOHfunFVZWX3Za2sLg7IaOyUlRdu2bbMoa9WqlWrVqmW3TatWrazKduzY4fK5lXeuOnT8999/N9T3ldq1a2dVdvLkSYfHt9euLL9QAAAAjmF9Xb7W157WsmVLqzLW95YaNGhgtf49evSozc95SWxdE5SU9VWnTh2bNzs5u763FexifQ/A0wiGAKgQfvzxR4s/+/j46I477iiz8VNSUqwWg6GhoU6nHDsiPz9fmzdvtipv0qSJ28eWpJ9//lkXL160KPvLX/5SbJvGjRtbZT3s2LGDMySuYOsMlZUrVzrcz6pVqwz1faUuXbpYldm6C80IW3e9OXsYOwAAcD/W1+Vrfe1p1113nVXZ6tWrPTAT7+Xj42PzfbK1Vi9Ofn6+1qxZY1EWGBho80amK7lqfZ+RkWEVMAwMDLS7FRcAlBWCIQBMb9OmTdqwYYNFWbdu3UrcM9WVli9frsLCQouy1q1bl8nYP/zwg1Uaf/369Ys9HNtVUlJSNG/ePIuy6tWr67bbbiu2nY+Pj7p27WpRlpOTo6+++srlcyzPevToYXXBv2bNGofuHktJSbG6WIqIiDB0sdS1a1cFBwdblG3YsMFi724jDhw4YLXNRuXKlcvsdwQAADiG9XX5W197WsOGDVWvXj2Lsj179mjr1q0empF3uvnmm63KlixZ4lAf69ev19mzZy3KunXrZvOcmyv17t3bquyXX35xaPxLba78/WzTpg1nxADwOIIhAEwtJSVFb731lkWZv7+//va3v5XZHM6ePatPP/3UqrxHjx5uH/vEiRP66KOPrMpvuukmt4+dn5+vqVOnWu0V++STT9rc3/lKDz74oNWZFZ9//rl2797t0nmWZ2FhYVbbUeTn5+vjjz823MfHH39sdbhi37595etb8hKhUqVKVnchXrhwQfPnzzc8/qU5XKlLly6GPicAAKBssb4uv+trT3v44Yetyt58802lp6d7YDbe6frrr7fa7mz//v369ddfDbXPy8uzubbu37+/ofZXX3211dkiu3fvtgp+Fuf8+fP68ssvrcrL4ncEAEpCMARAmRgwYIB69Ohh8d/27dsNt78yDdyIM2fOaOTIkVZ7nD788MOG71qLjY1VYmKiw2NfkpycrFGjRlkt8KtXr17insrZ2dn6/PPPnT4E8ujRoxo9erTVXWthYWG6//77DffjzHufl5en119/XevWrbMob9++veHtE+rWrWtVNy8vT+PGjXPqXAzpz9fy66+/6sMPP3SqvTeyFTRasmSJ1q9fX2LbdevWWd1pFhISonvuucfw+AMHDlRQUJBF2YIFCwyNL0lfffWVVWaKj4+PBg0aZHgOAABURKyvWV9Ljq2vPe3WW2+1+pycPHlSo0eP1pkzZ5zqMysrS59//rlT2QveyN/fXw8++KBV+bvvvmvowPlZs2bp4MGDFmXXXHONoazvSx5//HGrsilTpujEiRMltr148aKmTJmipKQki/LIyMhy8zkFYG4EQwCUC0OGDFFsbKwOHDhQYt3c3Fx99dVXeuSRR6z2Ke3YsaMeeeQRw+OuWLFCgwYN0vjx47Vy5UpduHDBULuMjAwtXLhQgwYN0uHDh62ef/rpp622F7pSfn6+ZsyYofvuu0/Tp0/Xzp07rVKNbbl0J84TTzxh80LzySefVGhoqKHXIUn/+te/9I9//ENbt261yiC4UmFhoTZs2KDBgwdrxYoVFs9FRERowoQJ8vHxMTz28OHDFR0dbVGWkpKikSNHKjY21ir92579+/frww8/1MCBA/Xqq69q//79hufg7Ro1aqS77rrLoqywsFDjx4/X0qVLbX5mCgsL9d1332nChAlWzz3xxBMKCwszPH6NGjU0ZMgQi7KCggKNHz9eixYtsvuZyc7OVmxsrN577z2r52JiYqx+7gAAwLVYX1fM9bUn+fn56bXXXlOVKlUsynfv3q3HH39cX3/9taHPQ35+vrZs2aKpU6fqvvvu04wZMwxfF5QHMTExVtkZaWlpGjZsmN3zO3JycvTWW29pwYIFFuV+fn569tlnHRq/S5cuVllWKSkpGj58uDZu3Gi3XVJSksaOHWv1OZWkoUOHlovsJQDm51No5F9+AKbx4osvFrtQPHz4sNWCvKSDAN98801FREQUW2fAgAFWd7JMmzZN7du3L2HGf7rnnnuUnJwsSYqKilKbNm0UHR2tGjVqqEqVKsrKytK5c+cUHx+vzZs3Kzs726qPFi1a6J133inxIqm4eQcGBqpJkyZq2rSp6tatq5CQEIWEhCgvL0/nz5/XiRMnlJCQoN9//125ubk2+xw4cKCGDRtW4tgZGRlWWxBVq1ZNzZo1U+PGjRUZGamQkBBVqlRJWVlZSklJ0R9//KG4uDi7d7vdf//9Gj58uOHXL0mvv/66li1bJunPrIFrrrlGjRs3Vq1atRQcHKy8vDydO3dOiYmJ2rBhg83PV3h4uN599101btzYobGlP+8WGzZsmFJSUqyeCwgIUOvWrXXNNdcoMjJSYWFhysvLU2ZmplJSUrR//37t3bvXak5dunTRlClTHJ6LEc8884zi4uIu/3ns2LHq06ePW8a65MKFC3rqqaeszt2Q/ty/ulevXpf3sD5x4oR+/fVXHTt2zKruDTfcoEmTJjl8QV1YWKgJEybYPASzVq1a6t69uxo1aqTg4GClp6dr3759Wrt2rc2zTVq0aKHp06dzsQQAKDdYX7O+Lm/r6/j4eL355pt2n8/Oztbx48ctykJDQxUVFWW3TfPmzTVmzBhD469bt07jx4+3mSETEhKidu3aqVWrVqpatapCQkKUnZ2tzMxMJSUlad++fUpISFBWVpZFu2HDhmngwIGGxnfUlYGBBQsWuP18mKNHj2rIkCFWr1OSOnTooOuuu05RUVHKysrS4cOHtWzZMpvbjT311FP661//6vD4GRkZevLJJ21mg7Ro0UJdunRR7dq1FRAQoJSUFMXFxWnjxo02f0fvuecejRw50uE5AIA7+Ht6AgDK1pEjRwyl1xZV0l30eXl5pZmSw5KSkpSUlGR431Tpzy+/J06caHUXkqNyc3O1e/dup86t8PPz0+DBg0u1/c+5c+e0cePGYu/IsTf2Aw88oCeeeMLpsSUpMzNT69evN7wFkiTVq1dPU6ZM0VVXXeXUmLVr19bMmTM1ceJEq/c9Ly9PcXFxFsGHiqhSpUp68803NXLkSKu7FRMTEzV37twS+2jbtq0mTpzo1J2FPj4+mjBhgsaPH2/12Tx16pQWLVpkqJ/WrVvrjTfeIBACAChXWF+zvi4NT6yvs7OzHc6UzsjIUEZGht3nQ0JCDPfVtWtXvfPOO3rllVesbnjKzMzU2rVrtXbtWofmZzZXXXWVJk+erNGjR1sFIrdt26Zt27aV2MeAAQOcCoRIfwa/3n77bY0aNcpqW7z4+HjFx8cb6qdv374OBwsBwJ3YJguAqYWHh2vUqFGaPHmyUxdqlStXdsk82rRpow8//NAj5yBER0frvffe05NPPlmmKfT+/v665557NHv2bKcv1C6JiorS+++/r0GDBjl0oWVLgwYN1KtXr1L14Y1q1Kih2NhYde/e3aF2Pj4+6tevn9566y2rsz8cUalSJU2ePFkPP/yw/P0du9fCz89Pd999t9577z1Vr17d6TkAAAD3Y31tjvW1p7Vr104fffSRbr31Vqvz7xzh4+Oj9u3bq23bti6cnXdo27atYmNj1ahRI4faBQUF6fnnn9fTTz9dqvHr1KmjWbNmOXx9If0ZTHnhhRf04osvOnxtAADuxN9IAMqFv//971q7dq22bt2qI0eOqKCgwG5dHx8fNWnSRLfeeqtiYmIcStu/0pw5c/THH39o48aN2rVrl+Lj421uEWBrDnXq1FGXLl10++23W+35akRISIhmzpypuLg47dixQwkJCZe3MihJjRo11L59e/Xt29fwVgn2PPzww7rqqqu0adMm7du3z+72BJfUrFlTvXr1Uv/+/VWnTp1SjV1UQECAHn/8cd1///369ttvtXbtWsXHx5d4AKW/v79atmypjh076oYbblCLFi1cNidvExoaqjfeeEObNm3SwoULtXXrVrvvT2BgoG644QYNHDhQLVu2dMn4fn5+evLJJ3X77bdrwYIF+u2335SZmWm3fvXq1dW1a1c9+OCDLv2sAACAkrG+Zn3taRERERo/frwee+wxLV68WJs2bbI6k8aWKlWqqF27durYsaO6d++uWrVqlcFsPSM6OlqzZ8/Wjz/+qK+//rrYjJ7w8HD17t1bf/3rX1WzZk2XjB8eHq433nhD27Zt06JFi7Rp06ZiM9fq16+vW265Rffee2+pb2IDAHfgzBAA5U5WVpYOHjyokydPKjU1VdnZ2fLz81NoaKhq166tZs2aqWrVqm4Zu6CgQCdPntTJkyeVlJSkrKwsZWdny9/fX8HBwapSpYpq1qyppk2bluoi0Z60tDQdP35cp0+fVkpKinJycpSXl6egoCCFhoYqLCzs8n7D7pCXl6dDhw7pxIkTOnv27OW9k4OCghQVFaXo6GjVrVvXLWPbkp2drfj4eJ09e1ZpaWnKzMxUYGCgqlSpomrVqql+/fqqV69ehb0bKSMjQ3v27NGxY8cu7zccFhamq666Sq1atXLZnZn2XLx4UQkJCTp06JDOnTun/Px8hYSEKDw8XI0aNeKQdAAAvATra9bX3iIlJUX79u1TWlqa0tLSlJ2draCgIFWpUkWRkZGqX7++atWqVW4OjXe1pKQk7d27V6dOnbr8e1K9enU1atRIzZo1k6+vezeAuXT9lZiYeHnbtLCwMFWrVk0tWrRQZGSkW8cHgNIiGAIAAAAAAAAAAEyNM0MAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACm9n+07beOsqj05QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the 90% confidence region\n", + "ts.plot_ts(skycoord = coord, containment = 0.9)" + ] + }, + { + "cell_type": "markdown", + "id": "ebb53a69-63be-48b3-9668-f9dae007267c", + "metadata": {}, + "source": [ + "## Improvements in progress" + ] + }, + { + "cell_type": "markdown", + "id": "9fe82127-8feb-4ca6-8fc8-881cd8657c2c", + "metadata": {}, + "source": [ + "The current method can generate the TS map for a GRB and Crab. However, the computation time needed on a personal laptop is still long and requires a massive amount of RAM (~30-40 GB). The future improvements will include:\n", + "- Optimization of the speed\n", + " - Faster algorithm for Newton-Raphson's method\n", + " - GPU computation\n", + "- Optimization of the RAM usage\n", + " - Share memories among parallel processes" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cosipy_fastts_pythonv3_10", + "language": "python", + "name": "cosipy_fastts_pythonv3_10" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 00000000..81415803 --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 00000000..f316efcb --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/cosipy_logo.png b/_static/cosipy_logo.png new file mode 100644 index 00000000..02c09d15 Binary files /dev/null and b/_static/cosipy_logo.png differ diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css new file mode 100644 index 00000000..c718cee4 --- /dev/null +++ b/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff b/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 00000000..6cb60000 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff2 b/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 00000000..7059e231 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff b/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 00000000..f815f63f Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff2 b/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 00000000..f2c76e5b Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/_static/css/fonts/fontawesome-webfont.eot b/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 00000000..e9f60ca9 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/_static/css/fonts/fontawesome-webfont.svg b/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 00000000..855c845e --- /dev/null +++ b/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/css/fonts/fontawesome-webfont.ttf b/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 00000000..35acda2f Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/_static/css/fonts/fontawesome-webfont.woff b/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 00000000..400014a4 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/_static/css/fonts/fontawesome-webfont.woff2 b/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 00000000..4d13fc60 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/_static/css/fonts/lato-bold-italic.woff b/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 00000000..88ad05b9 Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff differ diff --git a/_static/css/fonts/lato-bold-italic.woff2 b/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 00000000..c4e3d804 Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/_static/css/fonts/lato-bold.woff b/_static/css/fonts/lato-bold.woff new file mode 100644 index 00000000..c6dff51f Binary files /dev/null and b/_static/css/fonts/lato-bold.woff differ diff --git a/_static/css/fonts/lato-bold.woff2 b/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 00000000..bb195043 Binary files /dev/null and b/_static/css/fonts/lato-bold.woff2 differ diff --git a/_static/css/fonts/lato-normal-italic.woff b/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 00000000..76114bc0 Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff differ diff --git a/_static/css/fonts/lato-normal-italic.woff2 b/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 00000000..3404f37e Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/_static/css/fonts/lato-normal.woff b/_static/css/fonts/lato-normal.woff new file mode 100644 index 00000000..ae1307ff Binary files /dev/null and b/_static/css/fonts/lato-normal.woff differ diff --git a/_static/css/fonts/lato-normal.woff2 b/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 00000000..3bf98433 Binary files /dev/null and b/_static/css/fonts/lato-normal.woff2 differ diff --git a/_static/css/theme.css b/_static/css/theme.css new file mode 100644 index 00000000..19a446a0 --- /dev/null +++ b/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 00000000..4d67807d --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 00000000..078f064e --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '__version__ = "0.2.1"', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 00000000..a858a410 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/jquery.js b/_static/jquery.js new file mode 100644 index 00000000..c4c6022f --- /dev/null +++ b/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/html5shiv.min.js b/_static/js/html5shiv.min.js new file mode 100644 index 00000000..cd1c674f --- /dev/null +++ b/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/theme.js b/_static/js/theme.js new file mode 100644 index 00000000..1fddb6ee --- /dev/null +++ b/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/_static/minus.png b/_static/minus.png new file mode 100644 index 00000000..d96755fd Binary files /dev/null and b/_static/minus.png differ diff --git a/_static/nbsphinx-broken-thumbnail.svg b/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 00000000..4919ca88 --- /dev/null +++ b/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/nbsphinx-code-cells.css b/_static/nbsphinx-code-cells.css new file mode 100644 index 00000000..a3fb27c3 --- /dev/null +++ b/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/_static/nbsphinx-gallery.css b/_static/nbsphinx-gallery.css new file mode 100644 index 00000000..365c27a9 --- /dev/null +++ b/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/_static/nbsphinx-no-thumbnail.svg b/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 00000000..9dca7588 --- /dev/null +++ b/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/plus.png b/_static/plus.png new file mode 100644 index 00000000..7107cec9 Binary files /dev/null and b/_static/plus.png differ diff --git a/_static/pygments.css b/_static/pygments.css new file mode 100644 index 00000000..84ab3030 --- /dev/null +++ b/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js new file mode 100644 index 00000000..92da3f8b --- /dev/null +++ b/_static/searchtools.js @@ -0,0 +1,619 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms, anchor) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + "Search finished, found ${resultCount} page(s) matching the search query." + ).replace('${resultCount}', resultCount); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; +// Helper function used by query() to order search results. +// Each input is an array of [docname, title, anchor, descr, score, filename]. +// Order the results by score (in opposite order of appearance, since the +// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. +const _orderResultsByScoreThenName = (a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString, anchor) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + for (const removalQuery of [".headerlinks", "script", "style"]) { + htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() }); + } + if (anchor) { + const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`); + if (anchorContent) return anchorContent.textContent; + + console.warn( + `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.` + ); + } + + // if anchor not specified or not found, fall back to main content + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent) return docContent.textContent; + + console.warn( + "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + _parseQuery: (query) => { + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + return [query, searchTerms, excludedTerms, highlightTerms, objectTerms]; + }, + + /** + * execute search (requires search index to be loaded) + */ + _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // Collect multiple result groups to be sorted separately and then ordered. + // Each is an array of [docname, title, anchor, descr, score, filename]. + const normalResults = []; + const nonMainIndexResults = []; + + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase().trim(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + normalResults.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id, isMain] of foundEntries) { + const score = Math.round(100 * queryLower.length / entry.length); + const result = [ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]; + if (isMain) { + normalResults.push(result); + } else { + nonMainIndexResults.push(result); + } + } + } + } + + // lookup as object + objectTerms.forEach((term) => + normalResults.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) { + normalResults.forEach((item) => (item[4] = Scorer.score(item))); + nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item))); + } + + // Sort each group of results by score and then alphabetically by name. + normalResults.sort(_orderResultsByScoreThenName); + nonMainIndexResults.sort(_orderResultsByScoreThenName); + + // Combine the result groups in (reverse) order. + // Non-main index entries are typically arbitrary cross-references, + // so display them after other results. + let results = [...nonMainIndexResults, ...normalResults]; + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + return results.reverse(); + }, + + query: (query) => { + const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query); + const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + if (!terms.hasOwnProperty(word)) { + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + } + if (!titleTerms.hasOwnProperty(word)) { + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: titleTerms[term], score: Scorer.partialTitle }); + }); + } + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (!fileMap.has(file)) fileMap.set(file, [word]); + else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords, anchor) => { + const text = Search.htmlToText(htmlText, anchor); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/_static/sphinx_highlight.js b/_static/sphinx_highlight.js new file mode 100644 index 00000000..8a96c69a --- /dev/null +++ b/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/api/data_io.html b/api/data_io.html new file mode 100644 index 00000000..88c16533 --- /dev/null +++ b/api/data_io.html @@ -0,0 +1,555 @@ + + + + + + + Data IO — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Data IO

+
+
+class cosipy.data_io.DataIO(input_yaml, pw=None)[source]
+

Handles main inputs and outputs.

+
+ +
+
+class cosipy.data_io.UnBinnedData(input_yaml, pw=None)[source]
+

Handles unbinned data.

+
+
+read_tra(output_name=None, run_test=False, use_ori=False, event_min=None, event_max=None)[source]
+

Reads MEGAlib .tra (or .tra.gz) file and creates cosi datset.

+
+
Parameters:
+
    +
  • output_name (str, optional) – Prefix of output file (default is None, in which case no +output is written).

  • +
  • run_test (bool, optional) – This is for unit testing only! Keep False unless +comparing to MEGAlib calculations.

  • +
  • use_ori (bool, optional) – Option to get pointing information from the orientation +file, based on event time-stamps (default is False, in +which case the pointing information comes from the event +file itself). Note: this is an option for now, but will +later be the default.

  • +
  • event_min (int, optional) – Minimum event number to process (inclusive). All events +below this will be skipped.

  • +
  • event_max (int, optional) –

    Maximum event number to process (non-inclusive). All +events at and above this will be skipped.

    +

    Note: event_min and event_max correspond to the total +number of events in the file, which is not necessarily the +same as the event ID number. The purpose of this is to +allow the data to be read in chunks, in order to overcome +memory limitations, depending on the user’s system.

    +

  • +
+
+
Returns:
+

The returned dictionary contains the COSI dataset, which +has the form: +cosi_dataset = {‘Energies’:erg, ‘TimeTags’:tt, ‘Xpointings’:np.array([lonX,latX]).T, ‘Ypointings’:np.array([lonY,latY]).T, ‘Zpointings’:np.array([lonZ,latZ]).T, ‘Phi’:phi, ‘Chi local’:chi_loc, ‘Psi local’:psi_loc, ‘Distance’:dist, ‘Chi galactic’:chi_gal, ‘Psi galactic’:psi_gal} Arrays contain unbinned photon data.

+
+
Return type:
+

cosi_dataset, dict

+
+
+

Notes

+

The current code is only able to handle data with Compton +events. It will need to be modified to handle single-site +and pair events.

+

This method sets the instance attribute, cosi_dataset, +but it does not explicitly return this.

+
+ +
+
+instrument_pointing()[source]
+

Get pointing information from ori file.

+

Initializes interpolated functions for lonx, latx, lonz, latz +in radians.

+
+
Returns:
+

    +
  • xl_interp (scipy:interpolate:interp1d)

  • +
  • xb_interp (scipy:interpolate:interp1d)

  • +
  • zl_interp (scipy:interpolate:interp1d)

  • +
  • zb_interp (scipy:interpolate:interp1d)

  • +
+

+
+
+
+

Note

+

This method sets the instance attributes, +but it does not explicitly return them.

+
+
+ +
+
+construct_scy(scx_l, scx_b, scz_l, scz_b)[source]
+

Construct y-coordinate of instrument pointing given x and z directions.

+
+
Parameters:
+
    +
  • scx_l (float) – Longitude of x direction in degrees.

  • +
  • scx_b (float) – Latitude of x direction in degrees.

  • +
  • scz_l (float) – Longitude of z direction in degrees.

  • +
  • scz_b (float) – Latitude of z direction in degrees.

  • +
+
+
Returns:
+

    +
  • ra (float) – Right ascension (in degrees) for y-coordinate of instrument pointing.

  • +
  • dec (float) – Declination (in degrees) for y-coordinate of instrument pointing.

  • +
+

+
+
+
+

Note

+

Here, z is the optical axis.

+
+
+ +
+
+polar2cart(ra, dec)[source]
+

Coordinate transformation of ra/dec (lon/lat) [phi/theta] +polar/spherical coordinates into cartesian coordinates.

+
+
Parameters:
+
    +
  • ra (float) – Right ascension in degrees.

  • +
  • dec (float) – Declination in degrees.

  • +
+
+
Returns:
+

x, y, and z cartesian coordinates in radians.

+
+
Return type:
+

array

+
+
+
+ +
+
+cart2polar(vector)[source]
+

Coordinate transformation of cartesian x/y/z values into +spherical (deg).

+
+
Parameters:
+

vector (vec) – Vector of x/y/z values.

+
+
Returns:
+

    +
  • ra (float) – Right ascension in degrees.

  • +
  • dec (float) – Declination in degrees.

  • +
+

+
+
+
+ +
+
+write_unbinned_output(output_name)[source]
+

Writes unbinned data file to either fits or hdf5.

+
+
Parameters:
+

output_name (str) – Name of output file. Only include prefix (not file type).

+
+
+
+ +
+
+get_dict_from_fits(input_fits)[source]
+

Constructs dictionary from input fits file.

+
+
Parameters:
+

input_fits (str) – Name of input fits file.

+
+
Returns:
+

Dictionary constructed from input fits file.

+
+
Return type:
+

dict

+
+
+
+ +
+
+get_dict_from_hdf5(input_hdf5)[source]
+

Constructs dictionary from input hdf5 file

+
+
Parameters:
+

input_hdf5 (str) – Name of input hdf5 file.

+
+
Returns:
+

Dictionary constructed from input hdf5 file.

+
+
Return type:
+

dict

+
+
+
+ +
+
+select_data(output_name=None, unbinned_data=None)[source]
+

Applies cuts to unbinnned data dictionary.

+
+
Parameters:
+
    +
  • unbinned_data (str, optional) – Name of unbinned dictionary file.

  • +
  • output_name (str, optional) – Prefix of output file (default is None, in which case no +file is saved).

  • +
+
+
+
+

Note

+

Only cuts in time are allowed for now.

+
+
+ +
+
+combine_unbinned_data(input_files, output_name=None)[source]
+

Combines input unbinned data files.

+
+
Parameters:
+
    +
  • input_files (list) – List of file names to combine.

  • +
  • output_name (str, optional) – Prefix of output file.

  • +
+
+
+
+ +
+ +
+
+class cosipy.data_io.BinnedData(input_yaml, pw=None)[source]
+

Handles binned data.

+
+
+get_binned_data(unbinned_data=None, output_name=None, make_binning_plots=False, psichi_binning='galactic', event_range=None)[source]
+

Bin the data using histpy and mhealpy.

+
+
Parameters:
+
    +
  • unbinned_data (str, optional) – Name of unbinned data file to use. Input file is either +.fits or .hdf5 as specified in the unbinned_output +parameter in inputs.yaml.

  • +
  • output_name (str, optional) – Prefix of output file.

  • +
  • make_binning_plots (bool, optional) – Option to make basic plots of the binning (default is False).

  • +
  • psichi_binning (str, optional) – ‘galactic’ for binning psichi in Galactic coordinates, or +‘local’ for binning in local coordinates. Default is Galactic.

  • +
  • event_range (list of integers, optional) – min and max event to use for the binning.

  • +
+
+
Returns:
+

binned_data – Data is binned in four axes: time, measured energy, +Compton scattering angle (phi), and scattering direction +(PsiChi).

+
+
Return type:
+

histpy:Histogram

+
+
+
+

Note

+

This method constructs the instance attribute, binned_data, +but it does not explicitly return it.

+
+
+ +
+
+load_binned_data_from_hdf5(binned_data)[source]
+

Loads binned histogram from hdf5 file.

+
+
Parameters:
+

binned_data (str) – Name of binned data file to load.

+
+
Returns:
+

binned_data – Data is binned in four axes: time, measured energy, +Compton scattering angle (phi), and scattering direction +(PsiChi).

+
+
Return type:
+

histpy:Histogram

+
+
+
+

Note

+

This method sets the instance attribute, binned_data, +but it does not explicitly return it.

+
+
+ +
+
+get_binning_info(binned_data=None)[source]
+

Get binning information from Histpy histogram.

+
+
Parameters:
+

binned_data (str) – Name of binned data hdf5 file to use.

+
+
+
+ +
+
+plot_binned_data(binned_data=None)[source]
+

Plot binnned data for all axes.

+
+
Parameters:
+

binned_data (histpy:Histogram, optional) – Name of binned histogram to use.

+
+
+
+ +
+
+plot_psichi_map()[source]
+

Plot psichi healpix map.

+
+ +
+
+plot_psichi_map_slices(Em, phi, output, binned_data=None, coords=None)[source]
+

Plot psichi map in slices of Em and phi.

+
+
Parameters:
+
    +
  • Em (int) – Bin of energy slice.

  • +
  • phi (int) – Bin of phi slice.

  • +
  • output (str) – Prefix of output plot.

  • +
  • binned_data (histpy:Histogram, optional) – Name of binned histogram to use.

  • +
  • coords (list, optional) – Coordinates of source position. Galactic longitude and +latidude for Galactic coordinates. Azimuthal and latitude +for local coordinates.

  • +
+
+
+
+ +
+
+get_raw_spectrum(binned_data=None, time_rate=False, output_name=None)[source]
+

Calculates raw spectrum of binned data, plots, and writes to file.

+
+
Parameters:
+
    +
  • binned_data (str, optional) – Name of binnned hdf5 data file.

  • +
  • output_name (str, optional) – Prefix of output files. Writes both pdf and dat file.

  • +
  • time_rate (bool, optional) – If True, calculates ct/keV/s. The defualt is ct/keV.

  • +
+
+
+
+ +
+
+get_raw_lightcurve(binned_data=None, output_name=None)[source]
+

Calculates raw lightcurve of binned data, plots, and writes data to file.

+
+
Parameters:
+
    +
  • binned_data (str, optional) – Name of binnned hdf5 data file to use.

  • +
  • output_name (str, optional) – Prefix of output files. Writes both pdf and dat file.

  • +
+
+
+
+ +
+ +
+
+class cosipy.data_io.ReadTraTest(input_yaml, pw=None)[source]
+

Old method for reading tra file, used for unit testing.

+
+
+read_tra_old(make_plots=True)[source]
+

Reads in MEGAlib .tra (or .tra.gz) file.

+

This method uses MEGAlib to read events from the tra file. +This is used to compare to the new event reader, which is +independent of MEGAlib.

+
+
Parameters:
+

make_plots (bool, optional) – Option to make binning plot.

+
+
Returns:
+

cosi_dataset – Returns COSI dataset as a dictionary of the form: +cosi_dataset = {‘Full filename’:self.data_file, ‘Energies’:erg, ‘TimeTags’:tt, ‘Xpointings’:np.array([lonX,latX]).T, ‘Ypointings’:np.array([lonY,latY]).T, ‘Zpointings’:np.array([lonZ,latZ]).T, ‘Phi’:phi, ‘Chi local’:chi_loc, ‘Psi local’:psi_loc, ‘Distance’:dist, ‘Chi galactic’:chi_gal, ‘Psi galactic’:psi_gal}

+
+
Return type:
+

dict

+
+
+
+

Note

+

This method sets the instance attribute, cosi_dataset, +but it does not explicitly return this.

+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/api/image_deconvolution.html b/api/image_deconvolution.html new file mode 100644 index 00000000..a3d45f3a --- /dev/null +++ b/api/image_deconvolution.html @@ -0,0 +1,760 @@ + + + + + + + Image deconvolution — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Image deconvolution

+
+
+class cosipy.image_deconvolution.DataLoader[source]
+

A class to manage data for image analysis, +namely event data, background model, response, coordsys conversion matrix. +Ideally, these data should be input directly to ImageDeconvolution class, +but considering their data formats are not fixed, this class is introduced. +The purpose of this class is to check the consistency between input data and calculate intermediate files etc. +In the future, this class may be removed or hidden in ImageDeconvolution class.

+
+
+classmethod load(event_binned_data, bkg_binned_data, rsp, coordsys_conv_matrix, is_miniDC2_format=False)[source]
+

Load data

+
+
Parameters:
+
+
+
Returns:
+

DataLoader instance containing the input data set

+
+
Return type:
+

cosipy.image_deconvolution.DataLoader

+
+
+
+ +
+
+classmethod load_from_filepath(event_hdf5_filepath=None, event_yaml_filepath=None, bkg_hdf5_filepath=None, bkg_yaml_filepath=None, rsp_filepath=None, ccm_filepath=None, is_miniDC2_format=False)[source]
+

Load data from file pathes

+
+
Parameters:
+
    +
  • event_hdf5_filepath (str or None, default None) – File path of HDF5 file for event histogram.

  • +
  • event_yaml_filepath (str or None, default None) – File path of yaml file to read the HDF5 file.

  • +
  • bkg_hdf5_filepath (str or None, default None) – File path of HDF5 file for background model.

  • +
  • bkg_yaml_filepath (str or None, default None) – File path of yaml file to read the HDF5 file.

  • +
  • rsp_filepath (str or None, default None) – File path of the response matrix.

  • +
  • ccm_filepath (str or None, default None) – File path of the coordsys conversion matrix.

  • +
  • is_miniDC2_format (bool, default False) – Whether the file format is for mini-DC2. should be removed in the future.

  • +
+
+
Returns:
+

DataLoader instance containing the input data set

+
+
Return type:
+

cosipy.image_deconvolution.DataLoader

+
+
+
+ +
+
+set_event_from_filepath(hdf5_filepath, yaml_filepath)[source]
+

Load event data from file pathes

+
+
Parameters:
+
    +
  • hdf5_filepath (str) – File path of HDF5 file for event histogram.

  • +
  • yaml_filepath (str) – File path of yaml file to read the HDF5 file.

  • +
+
+
+
+ +
+
+set_bkg_from_filepath(hdf5_filepath, yaml_filepath)[source]
+

Load background model from file pathes

+
+
Parameters:
+
    +
  • hdf5_filepath (str) – File path of HDF5 file for background model.

  • +
  • yaml_filepath (str) – File path of yaml file to read the HDF5 file.

  • +
+
+
+
+ +
+
+set_rsp_from_filepath(filepath)[source]
+

Load response matrix from file pathes

+
+
Parameters:
+

filepath (str) – File path of the response matrix.

+
+
+
+ +
+
+set_ccm_from_filepath(filepath)[source]
+

Load coordsys conversion matrix from file pathes

+
+
Parameters:
+

filepath (str) – File path of the coordsys conversion matrix.

+
+
+
+ +
+
+load_full_detector_response_on_memory()[source]
+

Load a response file on the computer memory.

+
+ +
+
+calc_image_response_projected()[source]
+

Calculate image_response_dense_projected, which is an intermidiate matrix used in RL algorithm.

+
+ +
+ +
+
+class cosipy.image_deconvolution.ModelMap(*args: Any, **kwargs: Any)[source]
+

Photon flux maps in given energy bands. 2-dimensional histogram.

+
+
+nside
+

Healpix NSIDE parameter.

+
+
Type:
+

int

+
+
+
+ +
+
+energy_edges
+

Bin edges for energies. We recommend to use a Quantity array with the unit of keV.

+
+
Type:
+

np.array

+
+
+
+ +
+
+scheme
+

Healpix scheme. Either ‘ring’, ‘nested’.

+
+
Type:
+

str, default ‘ring’

+
+
+
+ +
+
+coordsys
+

Instrinsic coordinates of the map. The default is ‘galactic’.

+
+
Type:
+

str or astropy.coordinates.BaseRepresentation, default is ‘galactic’

+
+
+
+ +
+
+label_image
+

The label name of the healpix axis.

+
+
Type:
+

str, default ‘lb’

+
+
+
+ +
+
+label_energy
+

The label name of the energy axis. The default is ‘Ei’.

+
+
Type:
+

str, default ‘Ei’

+
+
+
+ +
+
+set_values_from_parameters(algorithm_name, parameter)[source]
+

Set the values of this model map accordinng to the specified algorithm.

+
+
Parameters:
+
    +
  • algorithm_name (str) – Algorithm name to fill the values.

  • +
  • parameter (py:class:cosipy.config.Configurator) – Parameters for the specified algorithm.

  • +
+
+
+

Notes

+

Currently algorithm_name can be only ‘flat’. All of the pixel values in each energy bins will set to the given value. +parameter should be {‘values’: [ flux value at 1st energy bin (without unit), flux value at 2nd energy bin, …]}.

+
+ +
+
+set_values_from_extendedmodel(extendedmodel)[source]
+

Set the values of this model map accordinng to the given astromodels.ExtendedSource.

+
+
Parameters:
+

extendedmodel (astromodels.ExtendedSource) – Extended source model

+
+
+
+ +
+ +
+
+class cosipy.image_deconvolution.ImageDeconvolution[source]
+

A class to reconstruct all-sky images from COSI data based on image deconvolution methods.

+
+
+set_data(data)[source]
+

Set COSI dataset

+
+
Parameters:
+

data (cosipy.image_deconvolution.DataLoader) – Data loader contaning an event histogram, a background model, a response matrix, and a coordsys_conversion_matrix.

+
+
+

Notes

+

cosipy.image_deconvolution.DataLoader may be removed in the future once the formats of event/background/response are fixed. +In this case, this method will be also modified in the future.

+
+ +
+
+read_parameterfile(parameter_filepath)[source]
+

Read parameters from a yaml file.

+
+
Parameters:
+

parameter_filepath (str or pathlib.Path) – Path of parameter file.

+
+
+
+ +
+
+property data
+

Return the set data.

+
+ +
+
+property parameter
+

Return the set parameter.

+
+ +
+
+override_parameter(*args)[source]
+

Override parameter

+
+
Parameters:
+

*args – new parameter

+
+
+

Examples

+
>>> image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 30")
+
+
+
+ +
+
+property initial_model_map
+

Return the initial model map.

+
+ +
+
+initialize()[source]
+

Initialize an image_deconvolution instance. It is mandatory to execute this method before running the image deconvolution.

+

This method has three steps: +1. generate a model map with properties (nside, energy bins, etc.) given in the parameter file. +2. initialize a model map following an initial condition given in the parameter file +3. load parameters for the image deconvolution

+
+ +
+
+register_deconvolution_algorithm(parameter_deconvolution)[source]
+

Register parameters for image deconvolution on a deconvolution instance.

+
+
Parameters:
+

parameter_deconvolution (cosipy.config.Configurator) – Parameters for the image deconvolution methods.

+
+
+

Notes

+

Currently only RichardsonLucy algorithm is implemented.

+

*An example of parameters for RL algorithm* +algorithm: “RL” +parameter_RL:

+
+

iteration: 10 +# number of iterations +acceleration: True +# whether the accelerated ML-EM algorithm (Knoedlseder+99) is used +alpha_max: 10.0 +# the maximum value for the acceleration alpha parameter +save_results_each_iteration: False +# whether a updated model map, detal map, likelihood etc. are save at the end of each iteration +response_weighting: True +# whether a factor $w_j = (sum_{i} R_{ij})^{eta}$ for weighting the delta image is introduced +# see Knoedlseder+05, Siegert+20 +response_weighting_index: 0.5 +# $eta$ in the above equation +smoothing: True +# whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) +smoothing_FWHM: 2.0 #deg +# the FWHM of the Gaussian in the filter +background_normalization_fitting: False +# whether the background normalization is optimized at each iteration. +# As for now, the same single background normalization factor is used in all of the time bins +background_normalization_range: [0.01, 10.0] +# the range of the normalization factor. it should be positive.

+
+
+ +
+
+run_deconvolution()[source]
+

Perform the image deconvolution. Make sure that the initialize method has been conducted.

+
+
Returns:
+

List containing results (reconstructed image, likelihood etc) at each iteration.

+
+
Return type:
+

list

+
+
+
+ +
+ +
+
+class cosipy.image_deconvolution.SpacecraftAttitudeExposureTable(*args: Any, **kwargs: Any)[source]
+

A class to analyze exposure time per each spacecraft attitude

+

Table columns are: +- scatt_binning_index: int +- healpix_index: list of tuple. Each tuple is (healpix_index_zpointing, healpix_index_xpointing). +- zpointing: np.array of [l, b] in degrees. Array of z-pointings assigned to each scatt bin. +- xpointing: np.array of [l, b] in degrees. Array of x-pointings assigned to each scatt bin. +- zpointing_averaged: [l, b] in degrees. Averaged z-pointing in each scatt bin. +- xpointing_averaged: [l, b] in degrees. Averaged x-pointing in each scatt bin. +- delta_time: np.array of float in second. Exposure times for pointings assigned to each scatt bin. +- exposure: float in second. total exposure for each scatt bin. +- num_pointings: number of pointings assigned to each scatt bin. +- bkg_group: index of the backgroud group. will be used in the data analysis.

+
+
+df
+

pandas dataframe with the above columns

+
+
Type:
+

pd.DataFrame

+
+
+
+ +
+
+nside
+

Healpix NSIDE parameter.

+
+
Type:
+

int

+
+
+
+ +
+
+scheme
+

Healpix scheme. Either ‘ring’, ‘nested’.

+
+
Type:
+

str, default ‘ring’

+
+
+
+ +
+
+classmethod from_pickle(filename, nside, scheme='ring')[source]
+

Read exposure table from pickle.

+
+
Parameters:
+
    +
  • filename (str) – Path to file

  • +
  • nside (int) – Healpix NSIDE parameter.

  • +
  • scheme (str, default 'ring') – Healpix scheme. Either ‘ring’, ‘nested’.

  • +
+
+
Return type:
+

cosipy.spacecraftfile.SpacecraftAttitudeExposureTable

+
+
+
+ +
+
+classmethod from_orientation(orientation, nside, scheme='ring', start=None, stop=None, min_exposure=None, min_num_pointings=None)[source]
+

Produce exposure table from orientation.

+
+
Parameters:
+
    +
  • orientation (cosipy.spacecraftfile.SpacecraftFile) – Orientation

  • +
  • nside (int) – Healpix NSIDE parameter.

  • +
  • scheme (str, default 'ring') – Healpix scheme. Either ‘ring’, ‘nested’.

  • +
  • start (astropy.time.Time or None, default None) – Start time to analyze the orientation

  • +
  • stop (astropy.time.Time or None, default None) – Stop time to analyze the orientation

  • +
  • min_exposure (float or None, default None) – Minimum exposure time required for each scatt bin

  • +
  • min_num_pointings (int or None, default None) – Minimum number of pointings required for each scatt bin

  • +
+
+
Return type:
+

cosipy.spacecraftfile.SpacecraftAttitudeExposureTable

+
+
+
+ +
+
+classmethod analyze_orientation(orientation, nside, scheme='ring', start=None, stop=None, min_exposure=None, min_num_pointings=None)[source]
+

Produce pd.DataFrame from orientation.

+
+
Parameters:
+
    +
  • orientation (cosipy.spacecraftfile.SpacecraftFile) – Orientation

  • +
  • nside (int) – Healpix NSIDE parameter.

  • +
  • scheme (str, default 'ring') – Healpix scheme. Either ‘ring’, ‘nested’.

  • +
  • start (astropy.time.Time or None, default None) – Start time to analyze the orientation

  • +
  • stop (astropy.time.Time or None, default None) – Stop time to analyze the orientation

  • +
  • min_exposure (float or None, default None) – Minimum exposure time required for each scatt bin

  • +
  • min_num_pointings (int or None, default None) – Minimum number of pointings required for each scatt bin

  • +
+
+
Return type:
+

pd.DataFrame

+
+
+
+ +
+
+classmethod from_fits(filename)[source]
+

Read exposure table from a fits file.

+
+
Parameters:
+

filename (str) – Path to file

+
+
Return type:
+

cosipy.image_deconvolution.SpacecraftAttitudeExposureTable

+
+
+
+ +
+
+save_as_fits(filename, overwrite=False)[source]
+

Save exposure table as a fits file.

+
+
Parameters:
+
    +
  • filename (str) – Path to file

  • +
  • overwrite (bool, default False)

  • +
+
+
+
+ +
+
+calc_pointing_trajectory_map()[source]
+

Calculate a 2-dimensional map showing exposure time for each spacecraft attitude.

+
+
Return type:
+

cosipy.spacecraft.SpacecraftAttitudeMap

+
+
+

Notes

+

The default axes in SpacecraftAttitudeMap is x- and y-pointings, +but here the spacecraft attitude is described with z- and x-pointings.

+
+ +
+ +
+
+class cosipy.image_deconvolution.CoordsysConversionMatrix(*args: Any, **kwargs: Any)[source]
+

A class for coordinate conversion matrix (ccm).

+
+
+classmethod time_binning_ccm(full_detector_response, orientation, time_intervals, nside_model=None, is_nest_model=False)[source]
+

Calculate a ccm from a given orientation.

+
+
Parameters:
+
    +
  • full_detector_response (cosipy.response.FullDetectorResponse) – Response

  • +
  • orientation (cosipy.spacecraftfile.SpacecraftFile) – Orientation

  • +
  • time_intervals (np.array) – The same format of binned_data.axes[‘Time’].edges

  • +
  • nside_model (int or None, default None) – If it is None, it will be the same as the NSIDE in the response.

  • +
  • is_nest_model (bool, default False) – If scheme of the model map is nested, it should be False while it is rare.

  • +
+
+
Returns:
+

Its axes are [ “Time”, “lb”, “NuLambda” ].

+
+
Return type:
+

cosipy.image_deconvolution.CoordsysConversionMatrix

+
+
+
+ +
+
+classmethod spacecraft_attitude_binning_ccm(full_detector_response, exposure_table, nside_model=None, use_averaged_pointing=False)[source]
+

Calculate a ccm from a given exposure_table.

+
+
Parameters:
+
    +
  • full_detector_response (cosipy.response.FullDetectorResponse) – Response

  • +
  • exposure_table (cosipy.image_deconvolution.SpacecraftAttitudeExposureTable) – Scatt exposure table

  • +
  • nside_model (int or None, default None) – If it is None, it will be the same as the NSIDE in the response.

  • +
  • use_averaged_pointing (bool, default False) – If it is True, first the averaged Z- and X-pointings are calculated. +Then the dwell time map is calculated once for ach model pixel and each scatt_binning_index. +If it is False, the dwell time map is calculated for each attitude in zpointing and xpointing in the exposure table. +Then the calculated dwell time maps are summed up. +In the former case, the computation is fast but may lose the angular resolution. +In the latter case, the conversion matrix is more accurate but it takes a long time to calculate it.

  • +
+
+
Returns:
+

Its axes are [ “ScAtt”, “lb”, “NuLambda” ].

+
+
Return type:
+

py:class:`cosipy.image_deconvolution.CoordsysConversionMatrix’

+
+
+
+ +
+
+classmethod open(filename, name='hist')[source]
+

Open a ccm from a file.

+
+
Parameters:
+
    +
  • filename (str) – Path to file.

  • +
  • name (str, default 'hist') – Name of group where the histogram was saved.

  • +
+
+
Returns:
+

Its axes are [ “lb”, “Time” or “ScAtt”, “NuLambda” ].

+
+
Return type:
+

py:class:`cosipy.image_deconvolution.CoordsysConversionMatrix’

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/api/index.html b/api/index.html new file mode 100644 index 00000000..99ed0864 --- /dev/null +++ b/api/index.html @@ -0,0 +1,176 @@ + + + + + + + API — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

API

+

This is cosipy’s Application Programming Interface (API). It is an exhaustive list of all available classes and their properties, as well as the inputs and outputs of each method.

+

If you are instead interested in an overview on how to use cosipy, see out tutorial series instead.

+
+

Warning

+

Under construction. The description of some methods is still missing. If you need the description of a particular class, please open an issue so we can prioritize it.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/api/response.html b/api/response.html new file mode 100644 index 00000000..cf7ad13d --- /dev/null +++ b/api/response.html @@ -0,0 +1,434 @@ + + + + + + + Detector response — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Detector response

+

Different matrices that charaterize the response of the instrument. These encode the effective +area and the various detector effects seens in the data, and allow to compute +the expected counts given a source hypothesis.

+
+
+class cosipy.response.PointSourceResponse(*args: Any, **kwargs: Any)[source]
+

Handles the multi-dimensional matrix that describes the expected +response of the instrument for a particular point in the sky.

+
+
Parameters:
+
    +
  • axes (histpy.Axes) –

    Binning information for each variable. The following labels are expected:

    +
      +
    • Ei: Real energy

    • +
    • Em: Measured energy. Optional

    • +
    • Phi: Compton angle. Optional.

    • +
    • PsiChi: Location in the Compton Data Space (HEALPix pixel). Optional.

    • +
    • SigmaTau: Electron recoil angle (HEALPix pixel). Optional.

    • +
    • Dist: Distance from first interaction. Optional.

    • +
    +

  • +
  • contents (array, astropy.units.Quantity or sparse.SparseArray) – Array containing the differential effective area convolved with wht source exposure.

  • +
  • unit (astropy.units.Unit, optional) – Physical units, if not specified as part of contents. Units of area*time +are expected.

  • +
+
+
+
+
+property photon_energy_axis
+

Real energy bins (Ei).

+
+
Return type:
+

histpy.Axes

+
+
+
+ +
+
+get_expectation(spectrum)[source]
+

Convolve the response with a spectral hypothesis to obtain the expected +excess counts from the source.

+
+
Parameters:
+

spectrum (threeML.Model) – Spectral hypothesis.

+
+
Returns:
+

Histogram with the expected counts on each analysis bin

+
+
Return type:
+

histpy.Histogram

+
+
+
+ +
+ +
+
+class cosipy.response.DetectorResponse(*args: Any, **kwargs: Any)[source]
+

Handles the multi-dimensional matrix that describes the +response of the instrument for a particular SpacecraftFrame coordinate +location.

+
+
Parameters:
+
    +
  • axes (histpy.Axes) –

    Binning information for each variable. The following labels are expected:

    +
      +
    • Ei: Real energy

    • +
    • Em: Measured energy

    • +
    • Phi: Compton angle. Optional.

    • +
    • PsiChi: Location in the Compton Data Space (HEALPix pixel). Optional.

    • +
    • SigmaTau: Electron recoil angle (HEALPix pixel). Optional.

    • +
    • Dist: Distance from first interaction. Optional.

    • +
    +

  • +
  • contents (array, astropy.units.Quantity or sparse.SparseArray) – Array containing the differential effective area.

  • +
  • unit (astropy.units.Unit, optional) – Physical area units, if not specified as part of contents

  • +
+
+
+
+
+get_spectral_response(copy=True)[source]
+

Reduced detector response, projected along the real and measured energy axes only. +The Compton Data Space axes are not included.

+
+
Parameters:
+

copy (bool) – If true, a copy of the cached spectral response will be returned.

+
+
Return type:
+

DetectorResponse

+
+
+
+ +
+
+get_effective_area(energy=None, copy=True)[source]
+

Compute the effective area at a given energy. If no energy is specified, the +output is a histogram for the effective area at each energy bin.

+
+
Parameters:
+
    +
  • energy (optional, astropy.units.Quantity) – Energy/energies at which to interpolate the linearly effective area

  • +
  • copy (bool) – If true, a copy of the cached effective will be returned.

  • +
+
+
Return type:
+

astropy.units.Quantity or histpy.Histogram

+
+
+
+ +
+
+get_dispersion_matrix()[source]
+

Compute the energy dispersion matrix, also known as migration matrix. This holds the +probability of an event with real energy Ei to be reconstructed with an measured +energy Em.

+
+
Return type:
+

histpy.Histogram

+
+
+
+ +
+
+property photon_energy_axis
+

Real energy bins (Ei).

+
+
Return type:
+

histpy.Axes

+
+
+
+ +
+
+property measured_energy_axis
+

Measured energy bins (Em).

+
+
Return type:
+

histpy.Axes

+
+
+
+ +
+ +
+
+class cosipy.response.FullDetectorResponse(*args: Any, **kwargs: Any)[source]
+

Handles the multi-dimensional matrix that describes the +full all-sky response of the instrument.

+

You can access the DetectorResponse at a given pixel using the [] +operator. Alternatively you can obtain the interpolated reponse using +get_interp_response().

+
+
+classmethod open(filename, Spectrumfile=None, norm='Linear', single_pixel=False, alpha=0, emin=90, emax=10000)[source]
+

Open a detector response file.

+
+
Parameters:
+
    +
  • filename (str, Path)

  • +
  • .rsp) (Path to the response file (.h5 or)

  • +
  • Spectrumfile (str,) –

    +
    path to the input spectrum file used

    for the simulation (optional).

    +
    +
    normstr,

    type of normalisation : file (then specify also SpectrumFile) +,powerlaw, Mono or Linear

    +
    +
    alphaint,

    if the normalisation is “powerlaw”, value of the spectral index.

    +
    +
    single_pixelbool,

    True if there is only one pixel and not full-sky.

    +
    +
    emin,emaxfloat

    emin/emax used in the simulation source file.

    +
    +
    +

  • +
+
+
+
+ +
+
+property is_sparse
+
+ +
+
+property ndim
+

Dimensionality of detector response matrix.

+
+
Return type:
+

int

+
+
+
+ +
+
+property axes
+

List of axes.

+
+
Return type:
+

histpy.Axes

+
+
+
+ +
+
+property unit
+

Physical unit of the contents of the detector reponse.

+
+
Return type:
+

astropy.units.Unit

+
+
+
+ +
+
+close()[source]
+

Close the HDF5 file containing the response

+
+ +
+
+property filename
+

Path to on-disk file containing DetectorResponse

+
+
Return type:
+

Path

+
+
+
+ +
+
+get_interp_response(coord)[source]
+

Get the bilinearly interpolated response at a given coordinate location.

+
+
Parameters:
+

coord (astropy.coordinates.SkyCoord) – Coordinate in the SpacecraftFrame

+
+
Return type:
+

DetectorResponse

+
+
+
+ +
+
+get_point_source_response(exposure_map=None, coord=None, scatt_map=None)[source]
+

Convolve the all-sky detector response with exposure for a source at a given +sky location.

+

Provide either a exposure map (aka dweel time map) or a combination of a +sky coordinate and a spacecraft attitude map.

+
+
Parameters:
+
    +
  • exposure_map (mhealpy.HealpixMap) – Effective time spent by the source at each pixel location in spacecraft coordinates

  • +
  • coord (astropy.coordinates.SkyCoord) – Source coordinate

  • +
  • scatt_map (SpacecraftAttitudeMap) – Spacecraft attitude map

  • +
+
+
Return type:
+

PointSourceResponse

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/api/spacecraftfile.html b/api/spacecraftfile.html new file mode 100644 index 00000000..03abaa5f --- /dev/null +++ b/api/spacecraftfile.html @@ -0,0 +1,436 @@ + + + + + + + Spacecraft File — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Spacecraft File

+
+
+class cosipy.spacecraftfile.SpacecraftFile(time, x_pointings=None, y_pointings=None, z_pointings=None, attitude=None, instrument='COSI', frame='galactic')[source]
+
+
+classmethod parse_from_file(file)[source]
+

Parses timestamps, axis positions from file and returns to __init__.

+
+
Parameters:
+

file (str) – The file path of the pointings.

+
+
Returns:
+

The SpacecraftFile object.

+
+
Return type:
+

cosipy.spacecraftfile.SpacecraftFile

+
+
+
+ +
+
+get_time(time_array=None)[source]
+

Return the arrary pf pointing times as a astropy.Time object.

+
+
Parameters:
+

time_array (numpy.ndarray, optional) – The time array (the default is None, which implies the time array will be taken from the instance).

+
+
Returns:
+

The time stamps of the orientation.

+
+
Return type:
+

astropy.time.Time

+
+
+
+ +
+
+get_time_delta(time_array=None)[source]
+

Return an array of the time period between neighbouring time points.

+
+
Parameters:
+

time_array (numpy.ndarray, optional) – The time delta array (the default is None, which implies the time array will be taken from the instance).

+
+
Returns:
+

time_delta – The time difference between the neighbouring time stamps.

+
+
Return type:
+

astropy.time.Time

+
+
+
+ +
+
+interpolate_direction(trigger, idx, direction)[source]
+

Linearly interpolates position at a given time between two timestamps.

+
+
Parameters:
+
    +
  • trigger (astropy.time.Time) – The time of the event.

  • +
  • idx (int) – The closest index in the pointing to the trigger time.

  • +
  • direction (numpy.ndarray) – The pointing axis (x,z).

  • +
+
+
Returns:
+

The interpolated positions.

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+source_interval(start, stop)[source]
+

Returns the SpacecraftFile file class object for the source interval.

+
+
Parameters:
+
+
+
Return type:
+

cosipy.spacecraft.SpacecraftFile

+
+
+
+ +
+
+get_attitude(x_pointings=None, y_pointings=None, z_pointings=None)[source]
+

Converts the x, y and z pointings to the attitude of the telescope.

+
+
Parameters:
+
    +
  • x_pointings (astropy.coordinates.SkyCoord, optional) – The pointings (galactic system) of the x axis of the local coordinate system attached to the spacecraft (the default is None, which implies that the x pointings will be taken from the instance).

  • +
  • y_pointings (astropy.coordinates.SkyCoord, optional) – The pointings (galactic system) of the y axis of the local coordinate system attached to the spacecraft (the default is None, which implies that the y pointings will be taken from the instance).

  • +
  • z_pointings (astropy.coordinates.SkyCoord, optional) – The pointings (galactic system) of the z axis of the local coordinate system attached to the spacecraft (the default is None, which implies that the z pointings will be taken from the instance).

  • +
+
+
Returns:
+

The attitude of the spacecraft.

+
+
Return type:
+

scoords.attitude.Attitude

+
+
+
+ +
+
+get_target_in_sc_frame(target_name, target_coord, attitude=None, quiet=False, save=False)[source]
+

Convert the x, y and z pointings of the spacescraft axes to the path of the source in the spacecraft frame. +Specify the pointings of at least two axes.

+
+
Parameters:
+
    +
  • target_name (str) – The name of the target object.

  • +
  • target_coord (astropy.coordinates.SkyCoord) – The coordinates of the target object.

  • +
  • attitude (cosipy.coordinates.attitude.Attitude, optional) – The attitude of the spacecraft (the default is None, which implies the attitude will be taken from the instance).

  • +
  • quiet (bool, default=False) – Setting True to stop printing the messages.

  • +
  • save (bool, default=False) – Setting True to save the target coordinates in the spacecraft frame.

  • +
+
+
Returns:
+

The target coordinates in the spacecraft frame.

+
+
Return type:
+

astropy.coordinates.SkyCoord

+
+
+
+ +
+
+get_dwell_map(response, src_path=None, save=False)[source]
+

Generates the dwell time map for the source.

+
+
Parameters:
+
    +
  • response (str or pathlib.Path) – The path to the response file.

  • +
  • src_path (astropy.coordinates.SkyCoord, optional) – The movement of source in the detector frame (the default is None, which implies that the src_path will be read from the instance).

  • +
  • save (bool, default=False) – Set True to save the dwell time map.

  • +
+
+
Returns:
+

The dwell time map.

+
+
Return type:
+

mhealpy.containers.healpix_map.HealpixMap

+
+
+
+ +
+
+get_scatt_map(nside, scheme='ring', coordsys='galactic')[source]
+

Bin the spacecraft attitude history into a 4D histogram that contains the accumulated time the axes of the spacecraft where looking at a given direction.

+
+
Parameters:
+
    +
  • nside (int) – The nside of the scatt map.

  • +
  • scheme (str, optional) – The scheme of the scatt map (the default is “ring”)

  • +
  • coordsys (str, optional) – The coordinate system used in the scatt map (the default is “galactic).

  • +
+
+
Returns:
+

h_ori – The spacecraft attitude map.

+
+
Return type:
+

cosipy.spacecraftfile.scatt_map.SpacecraftAttitudeMap

+
+
+
+ +
+
+get_psr_rsp(response=None, dwell_map=None, dts=None)[source]
+

Generates the point source response based on the response file and dwell time map. +dts is used to find the exposure time for this observation.

+
+
Parameters:
+
    +
  • response (str or pathlib.Path, optional) – The response for the observation (the defaul is None, which implies that the response will be read from the instance).

  • +
  • dwell_map (str, optional) – The time dwell map for the source, you can load saved dwell time map using this parameter if you’ve saved it before (the defaul is None, which implies that the dwell_map will be read from the instance).

  • +
  • dts (numpy.ndarray or str, optional) – The elapsed time for each pointing. It must has the same size as the pointings. If you have saved this array, you can load it using this parameter (the defaul is None, which implies that the dts will be read from the instance).

  • +
+
+
Returns:
+

    +
  • Ei_edges (numpy.ndarray) – The edges of the incident energy.

  • +
  • Ei_lo (numpy.ndarray) – The lower edges of the incident energy.

  • +
  • Ei_hi (numpy.ndarray) – The upper edges of the incident energy.

  • +
  • Em_edges (numpy.ndarray) – The edges of the measured energy.

  • +
  • Em_lo (numpy.ndarray) – The lower edges of the measured energy.

  • +
  • Em_hi (numpy.ndarray) – The upper edges of the measured energy.

  • +
  • areas (numpy.ndarray) – The effective area of each energy bin.

  • +
  • matrix (numpy.ndarray) – The energy dispersion matrix.

  • +
+

+
+
+
+ +
+
+get_arf(out_name=None)[source]
+

Converts the point source response to an arf file that can be read by XSPEC.

+
+
Parameters:
+

out_name (str, optional) – The name of the arf file to save. (the default is None, which implies that the saving name will be the target name of the instance).

+
+
+
+ +
+
+get_rmf(out_name=None)[source]
+

Converts the point source response to an rmf file that can be read by XSPEC.

+
+
Parameters:
+

out_name (str, optional) – The name of the arf file to save. (the default is None, which implies that the saving name will be the target name of the instance).

+
+
+
+ +
+
+get_pha(src_counts, errors, rmf_file=None, arf_file=None, bkg_file=None, exposure_time=None, dts=None, telescope='COSI', instrument='COSI')[source]
+

Generate the pha file that can be read by XSPEC. This file stores the counts info of the source.

+
+
Parameters:
+
    +
  • src_counts (numpy.ndarray) – The counts in each energy band. If you have src_counts with unit counts/kev/s, you must convert it to counts by multiplying it with exposure time and the energy band width.

  • +
  • errors (numpy.ndarray) – The error for counts. It has the same unit requirement as src_counts.

  • +
  • rmf_file (str, optional) – The rmf file name to be written into the pha file (the default is None, which implies that it uses the rmf file generate by function get_rmf)

  • +
  • arf_file (str, optional) – The arf file name to be written into the pha file (the default is None, which implies that it uses the arf file generate by function get_arf)

  • +
  • bkg_file (str, optional) – The background file name (the default is None, which implied the src_counts is source counts only).

  • +
  • exposure_time (float, optional) – The exposure time for this source observation (the default is None, which implied that the exposure time will be calculated by dts).

  • +
  • dts (numpy.ndarray, optional) – It’s used to calculate the exposure time. It has the same effect as exposure_time. If both exposure_time and dts are given, dts will write over the exposure_time (the default is None, which implies that the dts will be read from the instance).

  • +
  • telescope (str, optional) – The name of the telecope (the default is “COSI”).

  • +
  • instrument (str, optional) – The instrument name (the default is “COSI”).

  • +
+
+
+
+ +
+
+plot_arf(file_name=None, save_name=None, dpi=300)[source]
+

Read the arf fits file, plot and save it.

+
+
Parameters:
+
    +
  • file_name (str, optional) – The directory if the arf fits file (the default is None, which implies the file name will be read from the instance).

  • +
  • save_name (str, optional) – The name of the saved image of effective area (the default is None, which implies the file name will be read from the instance).

  • +
  • dpi (int, optional) – The dpi of the saved image (the default is 300).

  • +
+
+
+
+ +
+
+plot_rmf(file_name=None, save_name=None, dpi=300)[source]
+

Read the rmf fits file, plot and save it.

+
+
Parameters:
+
    +
  • file_name (str, optional) – The directory if the arf fits file (the default is None, which implies the file name will be read from the instance).

  • +
  • save_name (str, optional) – The name of the saved image of effective area (the default is None, which implies the file name will be read from the instance).

  • +
  • dpi (int, optional) – The dpi of the saved image (the default is 300).

  • +
+
+
+
+ +
+ +
+
+class cosipy.spacecraftfile.SpacecraftAttitudeMap(*args: Any, **kwargs: Any)[source]
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/api/threeml.html b/api/threeml.html new file mode 100644 index 00000000..05b513bd --- /dev/null +++ b/api/threeml.html @@ -0,0 +1,202 @@ + + + + + + + COSILike (3ML plugin) — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

COSILike (3ML plugin)

+

ThreeML plugin

+
+
+class cosipy.threeml.COSILike(*args: Any, **kwargs: Any)[source]
+

COSI 3ML plugin.

+
+
Parameters:
+
    +
  • name (str) – Plugin name e.g. “cosi”. Needs to have a distinct name with respect to other plugins in the same analysis

  • +
  • dr (str) – Path to full detector response

  • +
  • data (histpy.Histogram) – Binned data. Note: Eventually this should be a cosipy data class

  • +
  • bkg (histpy.Histogram) – Binned background model. Note: Eventually this should be a cosipy data class

  • +
  • sc_orientation (cosipy.spacecraftfile.SpacecraftFile) – Contains the information of the orientation: timestamps (astropy.Time) and attitudes (scoord.Attitude) that describe +the spacecraft for the duration of the data included in the analysis

  • +
  • nuisance_param (astromodels.core.parameter.Parameter, optional) – Background parameter

  • +
  • coordsys (str, optional) – Coordinate system (‘galactic’ or ‘spacecraftframe’) to perform fit in, which should match coordinate system of data +and background. This only needs to be specified if the binned data and background do not have a coordinate system +attached to them

  • +
  • precomputed_psr_file (str, optional) – Full path to precomputed point source response in Galactic coordinates

  • +
+
+
+
+
+set_model(model)[source]
+

Set the model to be used in the joint minimization.

+
+
Parameters:
+

model (astromodels.core.model.Model) – Any model supported by astromodels

+
+
+
+ +
+
+get_log_like()[source]
+

Calculate the log-likelihood.

+
+
Returns:
+

log_like – Value of the log-likelihood

+
+
Return type:
+

float

+
+
+
+ +
+
+inner_fit()[source]
+

Required for 3ML fit.

+
+ +
+
+set_inner_minimization(flag: bool)[source]
+

Turn on the minimization of the internal COSI (nuisance) parameters.

+
+
Parameters:
+

flag (bool) – Turns on and off the minimization of the internal parameters

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/api/ts_map.html b/api/ts_map.html new file mode 100644 index 00000000..587af34d --- /dev/null +++ b/api/ts_map.html @@ -0,0 +1,489 @@ + + + + + + + TS Map — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

TS Map

+
+
+class cosipy.ts_map.TSMap(*args, **kwargs)[source]
+

Compute the TS map of using threeML package.

+
+ +

Load the model and plugins

+
+
Parameters:
+
    +
  • dr (str) – Path to full detector response.

  • +
  • data (histpy.Histogram) – Binned data. Note: Eventually this should be a cosipy data class.

  • +
  • bkg (histpy.Histogram) – Binned background model. Note: Eventually this should be a cosipy data class.

  • +
  • sc_orientation (cosipy.spacecraftfile.SpacecraftFile) – Contains the information of the orientation: timestamps (astropy.Time) and attitudes (scoord.Attitude) that describe +the spacecraft for the duration of the data included in the analysis.

  • +
  • piv (float) – The pivotal energy of the spectrum.

  • +
  • index (float) – The index of the spectrum.

  • +
  • other_plugins (threeML.plugins, optional) – The plugins from other instruments.

  • +
  • norm (int, optional) – The norm of the spectrum model (the default is 1).

  • +
  • ra (float, optional) – The RA of the source model (the default is 0).

  • +
  • dec (float, optional) – The Dec of the source model (the default is 0).

  • +
+
+
+
+ +
+
+instantiate_plugin()[source]
+

Instantiate the likelihood plugin.

+
+ +
+
+gather_all_plugins()[source]
+

Gather all the plugins togather into a DataList.

+
+ +
+
+create_model()[source]
+

Create the source model.

+
+
Returns:
+

The source model.

+
+
Return type:
+

astromodels.core.model.Model

+
+
+
+ +
+
+fix_index()[source]
+

Return the index of the source spectrum.

+
+ +
+
+ts_fitting()[source]
+

Peform the ts fitting.

+
+ +
+
+ts_grid_data()[source]
+

Perform the ts fitting using the data on the different pixels.

+
+ +
+
+ts_grid_bkg()[source]
+

Perform the ts fitting using the background on the different pixels.

+
+ +
+
+calculate_ts()[source]
+

Calculate the TS by the TS of data and background.

+
+ +
+
+print_best_fit()[source]
+

Print the best fit location.

+
+ +
+
+save_ts(output_file_name)[source]
+

Save the TS map.

+
+
Parameters:
+

output_file_name (str) – The path to save the ts map.

+
+
+
+ +
+
+load_ts(input_file_name)[source]
+

Load a ts map from file.

+
+
Parameters:
+

input_file_name (str) – The path to the saved TS map file.

+
+
+
+ +
+
+refit_best_fit()[source]
+

Refit the best fit to check norm.

+
+ +
+
+plot_ts_map()[source]
+

Plot the TS map.

+
+ +
+ +
+
+class cosipy.ts_map.FastTSMap(data, bkg_model, response_path, orientation=None, cds_frame='local', scheme='RING')[source]
+
+
+static slice_energy_channel(hist, channel_start, channel_stop)[source]
+

Slice one or more bins along first axis of the histogram.

+
+
Parameters:
+
    +
  • hist (histpy.Histogram) – The histogram object to be sliced.

  • +
  • channel_start (int) – The start of the slice (inclusive).

  • +
  • channel_stop (int) – The stop of the slice (exclusive).

  • +
+
+
Returns:
+

sliced_hist – The sliced histogram.

+
+
Return type:
+

histpy.Histogram

+
+
+
+ +
+
+static get_hypothesis_coords(nside, scheme='RING', coordsys='galactic')[source]
+

Get a list of hypothesis coordinates.

+
+
Parameters:
+
    +
  • nside (int) – The nside of the map.

  • +
  • scheme (str, optional) – The scheme of the map where the hypothesis coordinates are generated (the default is “RING”, which implies the “RING” scheme is used to get the hypothesis coordinates).

  • +
  • coordsys (str, optional) – The coordinate system used in the map where the hypothesis coordinates are generated (the default is “galactic”, which implies the galactic coordinates system is used).

  • +
+
+
Returns:
+

hypothesis_coords – The list of the hypothesis coordinates at the center of each pixel.

+
+
Return type:
+

list

+
+
+
+ +
+
+static get_cds_array(hist, energy_channel)[source]
+

Get the flattened cds array from input Histogram.

+
+
Parameters:
+
    +
  • hist (histpy.Histogram) – The input Histogram.

  • +
  • energy_channel (list) – The format is [lower_channel, upper_chanel]. The lower_channel is inclusive while the upper_channel is exclusive.

  • +
+
+
Returns:
+

cds_array – The flattended Compton data space (CDS) array.

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+static get_psr_in_galactic(hypothesis_coord, response_path, spectrum)[source]
+

Get the point source response (psr) in galactic. Please be aware that you must use a galactic response! +To do: to make the weight parameter not hardcoded

+
+
Parameters:
+
    +
  • hypothesis_coord (astropy.coordinates.SkyCoord) – The hypothesis coordinate.

  • +
  • response_path (str or path.lib.Path) – The path to the response.

  • +
  • spectrum (astromodels.functions) – The spectrum of the source to be placed at the hypothesis coordinate.

  • +
+
+
Returns:
+

psr – The point source response of the spectrum at the hypothesis coordinate.

+
+
Return type:
+

histpy.Histogram

+
+
+
+ +
+
+static get_ei_cds_array(hypothesis_coord, energy_channel, response_path, spectrum, cds_frame, orientation=None)[source]
+

Get the expected counts in CDS in local or galactic frame.

+
+
Parameters:
+
    +
  • hypothesis_coord (astropy.coordinates.SkyCoord) – The hypothesis coordinate.

  • +
  • energy_channel (list) – The format is [lower_channel, upper_chanel]. The lower_channel is inclusive while the upper_channel is exclusive.

  • +
  • response_path (str or pathlib.Path) – The path to the response file.

  • +
  • spectrum (astromodels.functions) – The spectrum of the source.

  • +
  • cds_frame (str, optional) – “local” or “galactic”, it’s the Compton data space (CDS) frame of the data, bkg_model and the response. In other words, they should have the same cds frame.

  • +
  • orientation (cosipy.spacecraftfile.SpacecraftFile, optional) – The orientation of the spacecraft when data are collected (the default is None, which implies the orientation file is not needed).

  • +
+
+
Returns:
+

cds_array – The flattended Compton data space (CDS) array.

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+static fast_ts_fit(hypothesis_coord, energy_channel, data_cds_array, bkg_model_cds_array, orientation, response_path, spectrum, cds_frame, ts_nside, ts_scheme)[source]
+

Perform a TS fit on a single location at hypothesis_coord.

+
+
Parameters:
+
    +
  • hypothesis_coord (astropy.coordinates.SkyCoord) – The hypothesis coordinate.

  • +
  • energy_channel (list) – The format is [lower_channel, upper_chanel]. The lower_channel is inclusive while the upper_channel is exclusive.

  • +
  • data_cds_array (numpy.ndarray) – The flattened Compton data space (CDS) array of the data.

  • +
  • bkg_model_cds_array (numpy.ndarray) – The flattened Compton data space (CDS) array of the background model.

  • +
  • orientation (cosipy.spacecraftfile.SpacecraftFile) – The orientation of the spacecraft when data are collected.

  • +
  • response_path (str or pathlib.Path) – The path to the response file.

  • +
  • spectrum (astromodels.functions) – The spectrum of the source.

  • +
  • cds_frame (str) – “local” or “galactic”, it’s the Compton data space (CDS) frame of the data, bkg_model and the response. In other words, they should have the same cds frame .

  • +
  • ts_nside (int) – The nside of the ts map.

  • +
  • ts_scheme (str) – The scheme of the Ts map.

  • +
+
+
Returns:
+

The list of the resulting TS fit: [pix number, ts value, norm, norm_err, failed, iterations, time_ei_cds_array, time_fit, time_fast_ts_fit]

+
+
Return type:
+

list

+
+
+
+ +
+
+parallel_ts_fit(hypothesis_coords, energy_channel, spectrum, ts_scheme='RING', start_method='fork', cpu_cores=None)[source]
+

Perform parallel computation on all the hypothesis coordinates.

+
+
Parameters:
+
    +
  • hypothesis_coords (list) – A list of the hypothesis coordinates

  • +
  • energy_channel (list) – the energy channel you want to use: [lower_channel, upper_channel]. lower_channel is inclusive while upper_channel is exclusive.

  • +
  • spectrum (astromodels.functions) – The spectrum of the source.

  • +
  • ts_scheme (str, optional) – The scheme of the TS map (the default is “RING”, which implies a “RING” scheme of the TS map).

  • +
  • start_method (str, optional) – The starting method of the parallel computation (the default is “fork”, which implies using the fork method to start parallel computation).

  • +
  • cpu_cores (int, optional) – The number of cpu cores you wish to use for the parallel computation (the default is None, which implies using all the available number of cores -1 to perform the parallel computation).

  • +
+
+
Returns:
+

results – The result of the ts fit over all the hypothesis coordinates.

+
+
Return type:
+

numpy.ndarray

+
+
+
+ +
+
+plot_ts(ts_array=None, skycoord=None, containment=None, save_plot=False, save_dir='', save_name='ts_map.png', dpi=300)[source]
+

Plot the containment region of the TS map.

+
+
Parameters:
+
    +
  • skyoord (astropy.coordinates.SkyCoord, optional) – The true location of the source (the default is None, which implies that there are no coordiantes to be printed on the TS map).

  • +
  • containment (float, optional) – The containment level of the source (the default is None, which will plot raw TS values).

  • +
  • save_plot (bool, optional) – Set True to save the plot (the default is False, which means it won’t save the plot.

  • +
  • save_dir (str or pathlib.Path, optional) – The directory to save the plot.

  • +
  • save_name (str, optional) – The file name of the plot to be save.

  • +
  • dpi (int, optional) – The dpi for plotting and saving.

  • +
+
+
+
+ +
+
+static get_chi_critical_value(containment=0.9)[source]
+

Get the critical value of the chi^2 distribution based ob the confidence level.

+
+
Parameters:
+

containment (float, optional) – The confidence level of the chi^2 distribution (the default is 0.9, which implies that the 90% containment region).

+
+
Returns:
+

The critical value corresponds to the confidence level.

+
+
Return type:
+

float

+
+
+
+ +
+
+static show_memory_info(hint)[source]
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/api/util.html b/api/util.html new file mode 100644 index 00000000..306d936a --- /dev/null +++ b/api/util.html @@ -0,0 +1,147 @@ + + + + + + + Utilities — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Utilities

+
+
+cosipy.util.fetch_wasabi_file(file, output=None, override=False, bucket='cosi-pipeline-public', endpoint='https://s3.us-west-1.wasabisys.com', access_key='GBAL6XATQZNRV3GFH9Y4', secret_key='GToOczY5hGX3sketNO2fUwiq4DJoewzIgvTCHoOv')[source]
+

Download a file from COSI’s Wasabi acccount.

+
+
Parameters:
+
    +
  • file (str) – Full path to file in Wasabi

  • +
  • output (str, optional) – Full path to the downloaded file in the local system. By default it will use +the current durectory and the same file name as the input file.

  • +
  • bucket (str, optional) – Passed to aws –bucket option

  • +
  • endpoint (str, optional) – Passed to aws –endpoint-url option

  • +
  • access_key (str, optional) – AWS_ACCESS_KEY_ID

  • +
  • secret_key (str, optional) – AWS_SECRET_ACCESS_KEY

  • +
+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/genindex.html b/genindex.html new file mode 100644 index 00000000..e6cfa773 --- /dev/null +++ b/genindex.html @@ -0,0 +1,600 @@ + + + + + + Index — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Index

+ +
+ A + | B + | C + | D + | E + | F + | G + | I + | L + | M + | N + | O + | P + | R + | S + | T + | U + | W + +
+

A

+ + + +
+ +

B

+ + +
+ +

C

+ + + +
+ +

D

+ + + +
+ +

E

+ + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

I

+ + + +
+ +

L

+ + + +
+ +

M

+ + +
+ +

N

+ + + +
+ +

O

+ + + +
+ +

P

+ + + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

U

+ + + +
+ +

W

+ + +
+ + + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 00000000..ad9191f0 --- /dev/null +++ b/index.html @@ -0,0 +1,173 @@ + + + + + + + Welcome to cosipy’s documentation! — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Welcome to cosipy’s documentation!

+

The cosipy library is COSI’s high-level analysis software. It allows you to extract imaging and spectral information from the data, as well as to perform statistical model comparisons. The cosipy products are meant to be ready for interpretation.

+

The main repository is hosted at https://github.com/cositools/cosipy

+

In the following sections you will find:

+
    +
  • Installation instructions

  • +
  • A tutorial series explaining the basics of various components of cosipy

  • +
  • Further usage examples

  • +
  • The Application Programming Interface (API), describes the various available classes, their properties, and usage.

  • +
+

See also COSI’s second data challenge for the scientific description of the simulated data used in the tutorials, as well as an explanation of the statistical tools used by cosipy.

+
+

Warning

+

While many features are already available, cosipy is still actively under development. COSI is scheduled to launch in 2027. In preparation, the cosipy team will be releasing alpha versions with approximately an annual cadence. Your feedback will be greatly appreciated! Note, however, that these are not stable releases and various components can be modified or deprecated shortly.

+
+
+

Contributing

+

Cosipy is open-source and anyone can contribute. It doesn’t matter if you are part of the COSI team or an external contributor.

+

The preferred communication channel is the GitHub repository:: if you find a problem, please report it by opening an issue; if you have a question or an idea on how to collaborate, please open a discussion; if you have code to contribute, please fork the repository and open a pull request.

+ +
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/install.html b/install.html new file mode 100644 index 00000000..fd09ceec --- /dev/null +++ b/install.html @@ -0,0 +1,225 @@ + + + + + + + Installation — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Installation

+
+

Using pip

+

Optional but recommended step: install a conda environment:

+
conda create -n <cosipy_env_name> python=3.10 pip
+conda activate <cosipy_env_name>
+
+
+

Note: currently cosipy is not compatible with Python 3.11 and 3.12, mainly due to +installation issues with a dependency (astromodels, see issues #201 and #204)

+

Install with pip:

+
pip install cosipy
+
+
+
+
+

From source (for developers)

+

Optional but recommended step: install a conda environment:

+
conda create -n <cosipy_env_name> python=3.10 pip
+conda activate <cosipy_env_name>
+
+
+

Also optional but recommended: before installing cosipy, install the main +dependencies from the source (similar +procedure as for cosipy below). These are histpy, mhealpy, scoords, threeml and +astromodels. The reason is that these libraries might be changing rapidly to +accommodate new features in cosipy.

+

Do the following (preferably inside a conda environment):

+
git clone git@github.com:cositools/cosipy.git
+cd cosipy
+pip install -e .
+
+
+

The flag -e (--editable) allows you to make changes and try them without +having to run pip again.

+
+
+

Troubleshooting

+
+

ERROR:: Could not find a local HDF5 installation.

+

This error is caused by missing h5py wheels for M1 chips.

+

See https://github.com/h5py/h5py/issues/1810 and https://github.com/h5py/h5py/issues/1800

+

Currently, the best workaround for M1 users is to install h5py using conda before the cosipy installation:

+
conda install h5py
+
+
+

Example error log:

+
× Getting requirements to build wheel did not run successfully.
+│ exit code: 1
+╰─> [13 lines of output]
+    /var/folders/5p/wnc17p7s0gz1vd3krp7gly60v5n_5p/T/H5close39c45pt5.c:1:10: fatal error: 'H5public.h' file not found
+    #include "H5public.h"
+             ^~~~~~~~~~~~
+    1 error generated.
+    cpuinfo failed, assuming no CPU features: 'flags'
+    * Using Python 3.10.12 | packaged by conda-forge | (main, Jun 23 2023, 22:41:52) [Clang 15.0.7 ]
+    * Found cython 3.0.10
+    * USE_PKGCONFIG: True
+    * Found conda env: ``/Users/mjmoss/miniforge3``
+    .. ERROR:: Could not find a local HDF5 installation.
+       You may need to explicitly state where your local HDF5 headers and
+       library can be found by setting the ``HDF5_DIR`` environment
+       variable or by using the ``--hdf5`` command-line option.
+
+
+
+
+
+

Testing

+
+

Warning

+

Under construction. Unit tests are not ready.

+
+

When you make a change, check that it didn’t break something by running:

+
pytest --cov=cosipy --cov-report term --cov-report html:tests/coverage_report
+
+
+

Open tests/coverage_report/index.html in a browser and check the coverage. This +is the percentage of lines that were executed during the tests. The goal is to have +a 100% coverage!

+

You can install pytest and pytest-cov with:

+
conda install -c conda-forge pytest pytest-cov
+
+
+
+
+

Compiling the docs

+

You need pandoc, sphinx, nbsphinx, sphinx_rtd_theme and mock. Using conda:

+
conda install -c conda-forge pandoc=3.1.3 nbsphinx=0.9.3 sphinx_rtd_theme=2.0.0 mock=5.1.0
+
+
+

Other versions might work was well.

+

Once you have these requirements, run:

+
cd docs
+make html
+
+
+

To read the documentation, open docs/_build/html/index.html in a browser.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/objects.inv b/objects.inv new file mode 100644 index 00000000..329291c9 Binary files /dev/null and b/objects.inv differ diff --git a/py-modindex.html b/py-modindex.html new file mode 100644 index 00000000..825fdb27 --- /dev/null +++ b/py-modindex.html @@ -0,0 +1,158 @@ + + + + + + Python Module Index — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ c +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ c
+ cosipy +
    + cosipy.data_io +
    + cosipy.image_deconvolution +
    + cosipy.response +
    + cosipy.spacecraftfile +
    + cosipy.threeml +
    + cosipy.ts_map +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/search.html b/search.html new file mode 100644 index 00000000..29715bea --- /dev/null +++ b/search.html @@ -0,0 +1,128 @@ + + + + + + Search — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+ +
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 00000000..d3f6173b --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"alltitles": {"(View the events in Compton Data Space)": [[19, "(View-the-events-in-Compton-Data-Space)"]], "(You can change the parameters as follows)": [[11, "(You-can-change-the-parameters-as-follows)"], [13, "(You-can-change-the-parameters-as-follows)"], [15, "(You-can-change-the-parameters-as-follows)"], [17, "(You-can-change-the-parameters-as-follows)"], [19, "(You-can-change-the-parameters-as-follows)"]], "(calculate the dwell time map, not mandatory)": [[19, "(calculate-the-dwell-time-map,-not-mandatory)"]], "(you can save/load the ccm as follows)": [[19, "(you-can-save/load-the-ccm-as-follows)"]], "*****************************************": [[27, "*****************************************"]], "**********************************************************": [[27, "**********************************************************"]], "0. Data reduction": [[19, "0.-Data-reduction"]], "0. Files needed for this notebook": [[11, "0.-Files-needed-for-this-notebook"], [13, "0.-Files-needed-for-this-notebook"], [15, "0.-Files-needed-for-this-notebook"], [17, "0.-Files-needed-for-this-notebook"]], "0. Prepare the data": [[12, "0.-Prepare-the-data"], [14, "0.-Prepare-the-data"], [16, "0.-Prepare-the-data"], [18, "0.-Prepare-the-data"]], "1. Create binned event/background files in the Galactic coordinate system": [[11, "1.-Create-binned-event/background-files-in-the-Galactic-coordinate-system"], [15, "1.-Create-binned-event/background-files-in-the-Galactic-coordinate-system"]], "1. Read the response matrix": [[13, "1.-Read-the-response-matrix"], [17, "1.-Read-the-response-matrix"], [19, "1.-Read-the-response-matrix"]], "1. analyze the orientation file": [[12, "1.-analyze-the-orientation-file"], [14, "1.-analyze-the-orientation-file"], [16, "1.-analyze-the-orientation-file"], [18, "1.-analyze-the-orientation-file"]], "2. Calculate the coordinate conversion matrix": [[12, "2.-Calculate-the-coordinate-conversion-matrix"], [14, "2.-Calculate-the-coordinate-conversion-matrix"], [16, "2.-Calculate-the-coordinate-conversion-matrix"], [18, "2.-Calculate-the-coordinate-conversion-matrix"], [19, "2.-Calculate-the-coordinate-conversion-matrix"]], "2. Load the response matrix": [[11, "2.-Load-the-response-matrix"], [15, "2.-Load-the-response-matrix"]], "2. Read binned 511keV binned files (source and background)": [[13, "2.-Read-binned-511keV-binned-files-(source-and-background)"]], "2. Read binned Crab binned files (source and background)": [[17, "2.-Read-binned-Crab-binned-files-(source-and-background)"]], "2. Read binned GRB files (source and background)": [[19, "2.-Read-binned-GRB-files-(source-and-background)"]], "3. Load the binned data": [[18, "3.-Load-the-binned-data"]], "3. Load the coordsys conversion matrix": [[13, "3.-Load-the-coordsys-conversion-matrix"], [17, "3.-Load-the-coordsys-conversion-matrix"]], "3. Prepare a \u2018fake\u2019 coordsys conversion matrix": [[11, "3.-Prepare-a-'fake'-coordsys-conversion-matrix"], [15, "3.-Prepare-a-'fake'-coordsys-conversion-matrix"]], "3. produce the binned data": [[12, "3.-produce-the-binned-data"], [14, "3.-produce-the-binned-data"], [16, "3.-produce-the-binned-data"]], "4-1. Prepare DataLoader containing all neccesary datasets": [[11, "4-1.-Prepare-DataLoader-containing-all-neccesary-datasets"], [13, "4-1.-Prepare-DataLoader-containing-all-neccesary-datasets"], [14, "4-1.-Prepare-DataLoader-containing-all-neccesary-datasets"], [15, "4-1.-Prepare-DataLoader-containing-all-neccesary-datasets"], [17, "4-1.-Prepare-DataLoader-containing-all-neccesary-datasets"], [18, "4-1.-Prepare-DataLoader-containing-all-neccesary-datasets"], [19, "4-1.-Prepare-DataLoader-containing-all-neccesary-datasets"]], "4-2. Load the response file": [[13, "4-2.-Load-the-response-file"], [14, "4-2.-Load-the-response-file"], [17, "4-2.-Load-the-response-file"], [18, "4-2.-Load-the-response-file"], [19, "4-2.-Load-the-response-file"]], "4-3. Initialize the instance of the image deconvolution class": [[11, "4-3.-Initialize-the-instance-of-the-image-deconvolution-class"], [13, "4-3.-Initialize-the-instance-of-the-image-deconvolution-class"], [14, "4-3.-Initialize-the-instance-of-the-image-deconvolution-class"], [15, "4-3.-Initialize-the-instance-of-the-image-deconvolution-class"], [17, "4-3.-Initialize-the-instance-of-the-image-deconvolution-class"], [18, "4-3.-Initialize-the-instance-of-the-image-deconvolution-class"]], "4-4. Initialize the instance of the image deconvolution class": [[19, "4-4.-Initialize-the-instance-of-the-image-deconvolution-class"]], "4-4. modify the parameters": [[18, "4-4.-modify-the-parameters"]], "4-5. Start the image deconvolution": [[11, "4-5.-Start-the-image-deconvolution"], [13, "4-5.-Start-the-image-deconvolution"], [14, "4-5.-Start-the-image-deconvolution"], [15, "4-5.-Start-the-image-deconvolution"], [17, "4-5.-Start-the-image-deconvolution"], [18, "4-5.-Start-the-image-deconvolution"], [19, "4-5.-Start-the-image-deconvolution"]], "4. Imaging deconvolution": [[11, "4.-Imaging-deconvolution"], [13, "4.-Imaging-deconvolution"], [14, "4.-Imaging-deconvolution"], [15, "4.-Imaging-deconvolution"], [17, "4.-Imaging-deconvolution"], [18, "4.-Imaging-deconvolution"], [19, "4.-Imaging-deconvolution"]], "5. Analyze the results": [[11, "5.-Analyze-the-results"], [13, "5.-Analyze-the-results"], [14, "5.-Analyze-the-results"], [15, "5.-Analyze-the-results"], [17, "5.-Analyze-the-results"], [18, "5.-Analyze-the-results"], [19, "5.-Analyze-the-results"]], "API": [[2, "api"]], "Adding Bkg + Source to get Data": [[24, "Adding-Bkg-+-Source-to-get-Data"]], "Alpha (the factor used for the acceleration)": [[11, "Alpha-(the-factor-used-for-the-acceleration)"], [13, "Alpha-(the-factor-used-for-the-acceleration)"], [14, "Alpha-(the-factor-used-for-the-acceleration)"], [15, "Alpha-(the-factor-used-for-the-acceleration)"], [17, "Alpha-(the-factor-used-for-the-acceleration)"], [18, "Alpha-(the-factor-used-for-the-acceleration)"], [19, "Alpha-(the-factor-used-for-the-acceleration)"]], "Background normalization": [[11, "Background-normalization"], [13, "Background-normalization"], [14, "Background-normalization"], [15, "Background-normalization"], [17, "Background-normalization"], [18, "Background-normalization"], [19, "Background-normalization"]], "Bin data (optional)": [[28, "Bin-data-(optional)"]], "Bin the data": [[10, "Bin-the-data"], [27, "Bin-the-data"]], "Bin the selected data": [[10, "Bin-the-selected-data"]], "Brief overview of the image deconvolution": [[11, "Brief-overview-of-the-image-deconvolution"], [13, "Brief-overview-of-the-image-deconvolution"], [15, "Brief-overview-of-the-image-deconvolution"], [17, "Brief-overview-of-the-image-deconvolution"], [19, "Brief-overview-of-the-image-deconvolution"]], "COSILike (3ML plugin)": [[5, "cosilike-3ml-plugin"]], "Calculate the coordinate conversion matrix": [[19, "Calculate-the-coordinate-conversion-matrix"]], "Calculate the source movement in the SC frame": [[23, "Calculate-the-source-movement-in-the-SC-frame"]], "Check that the duration of bkg_data is 7200 sec = 2 hours": [[19, "Check-that-the-duration-of-bkg_data-is-7200-sec-=-2-hours"]], "Check that the duration of grb_data is 2 sec": [[19, "Check-that-the-duration-of-grb_data-is-2-sec"]], "Combining binned data": [[10, "Combining-binned-data"]], "Combining unbinned data": [[10, "Combining-unbinned-data"]], "Compare to the full data set": [[10, "Compare-to-the-full-data-set"]], "Compiling the docs": [[9, "compiling-the-docs"]], "Component\u2026.. Injected\u2026\u2026\u2026.. Best Fit": [[27, "Component.....-Injected...........-Best-Fit"]], "Contents:": [[2, null], [8, null]], "Contributing": [[8, "contributing"]], "Create the combined data": [[27, "Create-the-combined-data"]], "DC2 Image Analysis, 511 keV, Data Reduction": [[12, "DC2-Image-Analysis,-511-keV,-Data-Reduction"]], "DC2 Image Analysis, 511 keV, Image Deconvolution": [[13, "DC2-Image-Analysis,-511-keV,-Image-Deconvolution"]], "DC2 Image Analysis, 511 keV, Image Deconvolution using CDS in the Galactic coordinate system": [[11, "DC2-Image-Analysis,-511-keV,-Image-Deconvolution-using-CDS-in-the-Galactic-coordinate-system"]], "DC2 Image Analysis, 511keV, Upsampling": [[14, "DC2-Image-Analysis,-511keV,-Upsampling"]], "DC2 Image Analysis, Crab, Data Reduction": [[16, "DC2-Image-Analysis,-Crab,-Data-Reduction"]], "DC2 Image Analysis, Crab, Image Deconvolution": [[17, "DC2-Image-Analysis,-Crab,-Image-Deconvolution"]], "DC2 Image Analysis, Crab, Image Deconvolution using CDS in the Galactic coordinate system": [[15, "DC2-Image-Analysis,-Crab,-Image-Deconvolution-using-CDS-in-the-Galactic-coordinate-system"]], "DC2 Image Analysis, Crab, Upsampling": [[18, "DC2-Image-Analysis,-Crab,-Upsampling"]], "Data IO": [[0, "module-cosipy.data_io"]], "Data formats overview": [[10, "Data-formats-overview"]], "DataIO Examples": [[10, "DataIO-Examples"]], "Define a powerlaw spectrum": [[28, "Define-a-powerlaw-spectrum"]], "Define source": [[27, "Define-source"], [27, "id4"]], "Defne the scale factor for the background data": [[19, "Defne-the-scale-factor-for-the-background-data"]], "Delta image": [[17, "Delta-image"], [19, "Delta-image"]], "Dependencies": [[22, "Dependencies"], [23, "Dependencies"]], "Detector response": [[3, "detector-response"]], "Detector response matrix": [[22, "Detector-response-matrix"]], "Diffuse 511 Spectral Fit in Galactic Coordinates": [[27, "Diffuse-511-Spectral-Fit-in-Galactic-Coordinates"]], "Download and read in binned data": [[25, "Download-and-read-in-binned-data"], [26, "Download-and-read-in-binned-data"]], "Download data": [[28, "Download-data"]], "Download the binned data": [[28, "Download-the-binned-data"]], "Download unbinned data": [[28, "Download-unbinned-data"]], "ERROR:: Could not find a local HDF5 installation.": [[9, "error-could-not-find-a-local-hdf5-installation"]], "Error propagation and plotting": [[26, "Error-propagation-and-plotting"]], "Error propagation and plotting (Band function)": [[25, "Error-propagation-and-plotting-(Band-function)"]], "Example 1: Fit the GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)": [[28, "Example-1:-Fit-the-GRB-using-the-Compton-Data-Space-(CDS)-in-local-coordinates-(Spacecraft-frame)"]], "Example 1: Standard binned analysis": [[10, "Example-1:-Standard-binned-analysis"]], "Example 2: Fit a fainter GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)": [[28, "Example-2:-Fit-a-fainter-GRB-using-the-Compton-Data-Space-(CDS)-in-local-coordinates-(Spacecraft-frame)"]], "Example 2: Perform Analysis with Two Components": [[27, "Example-2:-Perform-Analysis-with-Two-Components"]], "Example 2: Some available options for the standard binned anlaysis": [[10, "Example-2:-Some-available-options-for-the-standard-binned-anlaysis"]], "Example 3: Combining multiple data files": [[10, "Example-3:-Combining-multiple-data-files"]], "Example 3: Fit Crab using the Compton Data Space (CDS) in galactic coordinates": [[28, "Example-3:-Fit-Crab-using-the-Compton-Data-Space-(CDS)-in-galactic-coordinates"]], "Example 3: Working With a Realistic Model": [[27, "Example-3:-Working-With-a-Realistic-Model"]], "Example 4: Making data selections": [[10, "Example-4:-Making-data-selections"]], "Example 5: Dealing with memory issues": [[10, "Example-5:-Dealing-with-memory-issues"]], "Fast flux and TS Map calculation": [[28, "Fast-flux-and-TS-Map-calculation"]], "File downloads": [[22, "File-downloads"], [23, "File-downloads"]], "Find the location with the maximum flux": [[19, "Find-the-location-with-the-maximum-flux"]], "From source (for developers)": [[9, "from-source-for-developers"]], "Full detector response": [[22, "Full-detector-response"]], "GRB Source injector": [[24, "GRB-Source-injector"]], "GRB image analysis (miniDC2)": [[19, "GRB-image-analysis-(miniDC2)"]], "Get the data": [[27, "Get-the-data"]], "Get the unbinned COSI dataset": [[10, "Get-the-unbinned-COSI-dataset"]], "Getting a fake background": [[24, "Getting-a-fake-background"]], "Getting the binned Crab data": [[28, "Getting-the-binned-Crab-data"]], "Getting the binned background data": [[28, "Getting-the-binned-background-data"]], "Image deconvolution": [[1, "module-cosipy.image_deconvolution"]], "Importing modules": [[28, "Importing-modules"]], "Improvements in progress": [[28, "Improvements-in-progress"]], "Initialize image_deconvolution": [[11, "Initialize-image_deconvolution"], [13, "Initialize-image_deconvolution"], [15, "Initialize-image_deconvolution"], [17, "Initialize-image_deconvolution"], [19, "Initialize-image_deconvolution"]], "Installation": [[9, "installation"]], "Instantiate the COSI 3ML plugin and perform the likelihood fit": [[27, "Instantiate-the-COSI-3ML-plugin-and-perform-the-likelihood-fit"]], "Integrated flux over the sky": [[15, "Integrated-flux-over-the-sky"], [17, "Integrated-flux-over-the-sky"], [19, "Integrated-flux-over-the-sky"]], "Let\u2019s take a look at the raw spectrum and lightcurve:": [[10, "Let's-take-a-look-at-the-raw-spectrum-and-lightcurve:"]], "Load in a saved TS Map": [[24, "Load-in-a-saved-TS-Map"]], "Load the response and orientation files": [[14, "Load-the-response-and-orientation-files"], [18, "Load-the-response-and-orientation-files"], [24, "Load-the-response-and-orientation-files"]], "Log-likelihood": [[11, "Log-likelihood"], [13, "Log-likelihood"], [14, "Log-likelihood"], [15, "Log-likelihood"], [17, "Log-likelihood"], [18, "Log-likelihood"], [19, "Log-likelihood"]], "Make time cut": [[10, "Make-time-cut"]], "Maximum Poisson log-likelihood ratio test statistic (TS)": [[28, "Maximum-Poisson-log-likelihood-ratio-test-statistic-(TS)"]], "Modify the axis": [[19, "Modify-the-axis"]], "Notes on the coordinate system of Compton data space in the image deconvolution": [[12, "Notes-on-the-coordinate-system-of-Compton-data-space-in-the-image-deconvolution"], [16, "Notes-on-the-coordinate-system-of-Compton-data-space-in-the-image-deconvolution"]], "Now reading in the data to make TS Map": [[24, "Now-reading-in-the-data-to-make-TS-Map"]], "Opening a full detector response": [[22, "Opening-a-full-detector-response"]], "Orientation file format and loading": [[23, "Orientation-file-format-and-loading"]], "Other examples": [[21, "other-examples"]], "Parallel Computation": [[28, "Parallel-Computation"]], "Parallel TS Map computation": [[28, "Parallel-TS-Map-computation"]], "Perform spectral fit": [[25, "Perform-spectral-fit"], [26, "Perform-spectral-fit"]], "Plot All": [[15, "Plot-All"], [17, "Plot-All"], [18, "Plot-All"]], "Plot results": [[28, "Plot-results"]], "Plot the fitted TS map": [[28, "Plot-the-fitted-TS-map"]], "Point": [[14, "Point"], [18, "Point"]], "Point source response and expected counts": [[22, "Point-source-response-and-expected-counts"]], "Point source response in inertial coordinates": [[22, "Point-source-response-in-inertial-coordinates"]], "Possion distribution": [[28, "Possion-distribution"]], "Read data and background": [[28, "Read-data-and-background"]], "Read in the binned data": [[27, "Read-in-the-binned-data"], [27, "id3"]], "Read the GRB signal, background component and assemble the data": [[28, "Read-the-GRB-signal,-background-component-and-assemble-the-data"]], "Read the background model": [[28, "Read-the-background-model"]], "Read the data": [[28, "Read-the-data"]], "Read the orientation": [[28, "Read-the-orientation"]], "Read the orientation file and extract the orientation information around the GRB event": [[19, "Read-the-orientation-file-and-extract-the-orientation-information-around-the-GRB-event"]], "Results": [[27, "Results"], [27, "id5"]], "Setup the COSI 3ML plugin and perform the likelihood fit": [[27, "Setup-the-COSI-3ML-plugin-and-perform-the-likelihood-fit"]], "Spacecraft File": [[4, "module-cosipy.spacecraftfile"]], "Spacecraft file: attitude and position": [[23, "Spacecraft-file:-attitude-and-position"]], "Spectral fitting example (Crab)": [[25, "Spectral-fitting-example-(Crab)"]], "Spectral fitting example (GRB)": [[26, "Spectral-fitting-example-(GRB)"]], "Spectrum": [[15, "Spectrum"], [17, "Spectrum"], [18, "Spectrum"], [19, "Spectrum"]], "Start TS map fit": [[28, "Start-TS-map-fit"], [28, "id1"]], "Step 1: Data Preparation": [[28, "Step-1:-Data-Preparation"]], "Step 2: Data Projection": [[28, "Step-2:-Data-Projection"]], "Steps 3: Newton-Raphson\u2019s Method": [[28, "Steps-3:-Newton-Raphson's-Method"]], "TS Map": [[6, "module-cosipy.ts_map"]], "Testing": [[9, "testing"]], "The dwell time map": [[23, "The-dwell-time-map"]], "The reconstructed images": [[11, "The-reconstructed-images"], [13, "The-reconstructed-images"], [14, "The-reconstructed-images"], [15, "The-reconstructed-images"], [17, "The-reconstructed-images"], [18, "The-reconstructed-images"], [19, "The-reconstructed-images"]], "The scatt map": [[23, "The-scatt-map"]], "The start and stop times of the GRB binned data": [[19, "The-start-and-stop-times-of-the-GRB-binned-data"]], "Troubleshooting": [[9, "troubleshooting"]], "Tutorials": [[20, "tutorials"]], "Using pip": [[9, "using-pip"]], "Utilities": [[7, "utilities"]], "Welcome to cosipy\u2019s documentation!": [[8, "welcome-to-cosipy-s-documentation"]], "XSPEC support": [[22, "XSPEC-support"]], "check the discrepancy between the model and reconstructed spectrum": [[18, "check-the-discrepancy-between-the-model-and-reconstructed-spectrum"]], "deconvolution": [[11, "deconvolution"], [13, "deconvolution"], [15, "deconvolution"], [17, "deconvolution"], [19, "deconvolution"]], "model_initialization": [[11, "model_initialization"], [13, "model_initialization"], [15, "model_initialization"], [17, "model_initialization"], [19, "model_initialization"]], "model_property": [[11, "model_property"], [13, "model_property"], [15, "model_property"], [17, "model_property"], [19, "model_property"]]}, "docnames": ["api/data_io", "api/image_deconvolution", "api/index", "api/response", "api/spacecraftfile", "api/threeml", "api/ts_map", "api/util", "index", "install", "tutorials/DataIO/DataIO_example", "tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution", "tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction", "tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution", "tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling", "tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution", "tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction", "tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution", "tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling", "tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution", "tutorials/index", "tutorials/other_examples", "tutorials/response/DetectorResponse", "tutorials/response/SpacecraftFile", "tutorials/source_injector/GRB_source_injector", "tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab", "tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB", "tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit", "tutorials/ts_map/Parallel_TS_map_computation_DC2"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.viewcode": 1}, "filenames": ["api/data_io.rst", "api/image_deconvolution.rst", "api/index.rst", "api/response.rst", "api/spacecraftfile.rst", "api/threeml.rst", "api/ts_map.rst", "api/util.rst", "index.rst", "install.rst", "tutorials/DataIO/DataIO_example.ipynb", "tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb", "tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb", "tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution.ipynb", "tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb", "tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb", "tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb", "tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution.ipynb", "tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb", "tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.ipynb", "tutorials/index.rst", "tutorials/other_examples.rst", "tutorials/response/DetectorResponse.ipynb", "tutorials/response/SpacecraftFile.ipynb", "tutorials/source_injector/GRB_source_injector.ipynb", "tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb", "tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb", "tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb", "tutorials/ts_map/Parallel_TS_map_computation_DC2.ipynb"], "indexentries": {"analyze_orientation() (cosipy.image_deconvolution.spacecraftattitudeexposuretable class method)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.analyze_orientation", false]], "axes (cosipy.response.fulldetectorresponse property)": [[3, "cosipy.response.FullDetectorResponse.axes", false]], "binneddata (class in cosipy.data_io)": [[0, "cosipy.data_io.BinnedData", false]], "calc_image_response_projected() (cosipy.image_deconvolution.dataloader method)": [[1, "cosipy.image_deconvolution.DataLoader.calc_image_response_projected", false]], "calc_pointing_trajectory_map() (cosipy.image_deconvolution.spacecraftattitudeexposuretable method)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.calc_pointing_trajectory_map", false]], "calculate_ts() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.calculate_ts", false]], "cart2polar() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.cart2polar", false]], "close() (cosipy.response.fulldetectorresponse method)": [[3, "cosipy.response.FullDetectorResponse.close", false]], "combine_unbinned_data() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.combine_unbinned_data", false]], "construct_scy() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.construct_scy", false]], "coordsys (cosipy.image_deconvolution.modelmap attribute)": [[1, "cosipy.image_deconvolution.ModelMap.coordsys", false]], "coordsysconversionmatrix (class in cosipy.image_deconvolution)": [[1, "cosipy.image_deconvolution.CoordsysConversionMatrix", false]], "cosilike (class in cosipy.threeml)": [[5, "cosipy.threeml.COSILike", false]], "cosipy.data_io": [[0, "module-cosipy.data_io", false]], "cosipy.image_deconvolution": [[1, "module-cosipy.image_deconvolution", false]], "cosipy.response": [[3, "module-cosipy.response", false]], "cosipy.spacecraftfile": [[4, "module-cosipy.spacecraftfile", false]], "cosipy.threeml": [[5, "module-cosipy.threeml", false]], "cosipy.ts_map": [[6, "module-cosipy.ts_map", false]], "create_model() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.create_model", false]], "data (cosipy.image_deconvolution.imagedeconvolution property)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.data", false]], "dataio (class in cosipy.data_io)": [[0, "cosipy.data_io.DataIO", false]], "dataloader (class in cosipy.image_deconvolution)": [[1, "cosipy.image_deconvolution.DataLoader", false]], "detectorresponse (class in cosipy.response)": [[3, "cosipy.response.DetectorResponse", false]], "df (cosipy.image_deconvolution.spacecraftattitudeexposuretable attribute)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.df", false]], "energy_edges (cosipy.image_deconvolution.modelmap attribute)": [[1, "cosipy.image_deconvolution.ModelMap.energy_edges", false]], "fast_ts_fit() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.fast_ts_fit", false]], "fasttsmap (class in cosipy.ts_map)": [[6, "cosipy.ts_map.FastTSMap", false]], "fetch_wasabi_file() (in module cosipy.util)": [[7, "cosipy.util.fetch_wasabi_file", false]], "filename (cosipy.response.fulldetectorresponse property)": [[3, "cosipy.response.FullDetectorResponse.filename", false]], "fix_index() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.fix_index", false]], "from_fits() (cosipy.image_deconvolution.spacecraftattitudeexposuretable class method)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.from_fits", false]], "from_orientation() (cosipy.image_deconvolution.spacecraftattitudeexposuretable class method)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.from_orientation", false]], "from_pickle() (cosipy.image_deconvolution.spacecraftattitudeexposuretable class method)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.from_pickle", false]], "fulldetectorresponse (class in cosipy.response)": [[3, "cosipy.response.FullDetectorResponse", false]], "gather_all_plugins() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.gather_all_plugins", false]], "get_arf() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_arf", false]], "get_attitude() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_attitude", false]], "get_binned_data() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.get_binned_data", false]], "get_binning_info() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.get_binning_info", false]], "get_cds_array() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.get_cds_array", false]], "get_chi_critical_value() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.get_chi_critical_value", false]], "get_dict_from_fits() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.get_dict_from_fits", false]], "get_dict_from_hdf5() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.get_dict_from_hdf5", false]], "get_dispersion_matrix() (cosipy.response.detectorresponse method)": [[3, "cosipy.response.DetectorResponse.get_dispersion_matrix", false]], "get_dwell_map() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_dwell_map", false]], "get_effective_area() (cosipy.response.detectorresponse method)": [[3, "cosipy.response.DetectorResponse.get_effective_area", false]], "get_ei_cds_array() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.get_ei_cds_array", false]], "get_expectation() (cosipy.response.pointsourceresponse method)": [[3, "cosipy.response.PointSourceResponse.get_expectation", false]], "get_hypothesis_coords() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.get_hypothesis_coords", false]], "get_interp_response() (cosipy.response.fulldetectorresponse method)": [[3, "cosipy.response.FullDetectorResponse.get_interp_response", false]], "get_log_like() (cosipy.threeml.cosilike method)": [[5, "cosipy.threeml.COSILike.get_log_like", false]], "get_pha() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_pha", false]], "get_point_source_response() (cosipy.response.fulldetectorresponse method)": [[3, "cosipy.response.FullDetectorResponse.get_point_source_response", false]], "get_psr_in_galactic() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.get_psr_in_galactic", false]], "get_psr_rsp() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_psr_rsp", false]], "get_raw_lightcurve() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.get_raw_lightcurve", false]], "get_raw_spectrum() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.get_raw_spectrum", false]], "get_rmf() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_rmf", false]], "get_scatt_map() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_scatt_map", false]], "get_spectral_response() (cosipy.response.detectorresponse method)": [[3, "cosipy.response.DetectorResponse.get_spectral_response", false]], "get_target_in_sc_frame() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_target_in_sc_frame", false]], "get_time() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_time", false]], "get_time_delta() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.get_time_delta", false]], "imagedeconvolution (class in cosipy.image_deconvolution)": [[1, "cosipy.image_deconvolution.ImageDeconvolution", false]], "initial_model_map (cosipy.image_deconvolution.imagedeconvolution property)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.initial_model_map", false]], "initialize() (cosipy.image_deconvolution.imagedeconvolution method)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.initialize", false]], "inner_fit() (cosipy.threeml.cosilike method)": [[5, "cosipy.threeml.COSILike.inner_fit", false]], "instantiate_plugin() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.instantiate_plugin", false]], "instrument_pointing() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.instrument_pointing", false]], "interpolate_direction() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.interpolate_direction", false]], "is_sparse (cosipy.response.fulldetectorresponse property)": [[3, "cosipy.response.FullDetectorResponse.is_sparse", false]], "label_energy (cosipy.image_deconvolution.modelmap attribute)": [[1, "cosipy.image_deconvolution.ModelMap.label_energy", false]], "label_image (cosipy.image_deconvolution.modelmap attribute)": [[1, "cosipy.image_deconvolution.ModelMap.label_image", false]], "link_model_all_plugins() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.link_model_all_plugins", false]], "load() (cosipy.image_deconvolution.dataloader class method)": [[1, "cosipy.image_deconvolution.DataLoader.load", false]], "load_binned_data_from_hdf5() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.load_binned_data_from_hdf5", false]], "load_from_filepath() (cosipy.image_deconvolution.dataloader class method)": [[1, "cosipy.image_deconvolution.DataLoader.load_from_filepath", false]], "load_full_detector_response_on_memory() (cosipy.image_deconvolution.dataloader method)": [[1, "cosipy.image_deconvolution.DataLoader.load_full_detector_response_on_memory", false]], "load_ts() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.load_ts", false]], "measured_energy_axis (cosipy.response.detectorresponse property)": [[3, "cosipy.response.DetectorResponse.measured_energy_axis", false]], "modelmap (class in cosipy.image_deconvolution)": [[1, "cosipy.image_deconvolution.ModelMap", false]], "module": [[0, "module-cosipy.data_io", false], [1, "module-cosipy.image_deconvolution", false], [3, "module-cosipy.response", false], [4, "module-cosipy.spacecraftfile", false], [5, "module-cosipy.threeml", false], [6, "module-cosipy.ts_map", false]], "ndim (cosipy.response.fulldetectorresponse property)": [[3, "cosipy.response.FullDetectorResponse.ndim", false]], "nside (cosipy.image_deconvolution.modelmap attribute)": [[1, "cosipy.image_deconvolution.ModelMap.nside", false]], "nside (cosipy.image_deconvolution.spacecraftattitudeexposuretable attribute)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.nside", false]], "open() (cosipy.image_deconvolution.coordsysconversionmatrix class method)": [[1, "cosipy.image_deconvolution.CoordsysConversionMatrix.open", false]], "open() (cosipy.response.fulldetectorresponse class method)": [[3, "cosipy.response.FullDetectorResponse.open", false]], "override_parameter() (cosipy.image_deconvolution.imagedeconvolution method)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.override_parameter", false]], "parallel_ts_fit() (cosipy.ts_map.fasttsmap method)": [[6, "cosipy.ts_map.FastTSMap.parallel_ts_fit", false]], "parameter (cosipy.image_deconvolution.imagedeconvolution property)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.parameter", false]], "parse_from_file() (cosipy.spacecraftfile.spacecraftfile class method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.parse_from_file", false]], "photon_energy_axis (cosipy.response.detectorresponse property)": [[3, "cosipy.response.DetectorResponse.photon_energy_axis", false]], "photon_energy_axis (cosipy.response.pointsourceresponse property)": [[3, "cosipy.response.PointSourceResponse.photon_energy_axis", false]], "plot_arf() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.plot_arf", false]], "plot_binned_data() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.plot_binned_data", false]], "plot_psichi_map() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.plot_psichi_map", false]], "plot_psichi_map_slices() (cosipy.data_io.binneddata method)": [[0, "cosipy.data_io.BinnedData.plot_psichi_map_slices", false]], "plot_rmf() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.plot_rmf", false]], "plot_ts() (cosipy.ts_map.fasttsmap method)": [[6, "cosipy.ts_map.FastTSMap.plot_ts", false]], "plot_ts_map() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.plot_ts_map", false]], "pointsourceresponse (class in cosipy.response)": [[3, "cosipy.response.PointSourceResponse", false]], "polar2cart() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.polar2cart", false]], "print_best_fit() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.print_best_fit", false]], "read_parameterfile() (cosipy.image_deconvolution.imagedeconvolution method)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.read_parameterfile", false]], "read_tra() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.read_tra", false]], "read_tra_old() (cosipy.data_io.readtratest method)": [[0, "cosipy.data_io.ReadTraTest.read_tra_old", false]], "readtratest (class in cosipy.data_io)": [[0, "cosipy.data_io.ReadTraTest", false]], "refit_best_fit() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.refit_best_fit", false]], "register_deconvolution_algorithm() (cosipy.image_deconvolution.imagedeconvolution method)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.register_deconvolution_algorithm", false]], "run_deconvolution() (cosipy.image_deconvolution.imagedeconvolution method)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.run_deconvolution", false]], "save_as_fits() (cosipy.image_deconvolution.spacecraftattitudeexposuretable method)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.save_as_fits", false]], "save_ts() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.save_ts", false]], "scheme (cosipy.image_deconvolution.modelmap attribute)": [[1, "cosipy.image_deconvolution.ModelMap.scheme", false]], "scheme (cosipy.image_deconvolution.spacecraftattitudeexposuretable attribute)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable.scheme", false]], "select_data() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.select_data", false]], "set_bkg_from_filepath() (cosipy.image_deconvolution.dataloader method)": [[1, "cosipy.image_deconvolution.DataLoader.set_bkg_from_filepath", false]], "set_ccm_from_filepath() (cosipy.image_deconvolution.dataloader method)": [[1, "cosipy.image_deconvolution.DataLoader.set_ccm_from_filepath", false]], "set_data() (cosipy.image_deconvolution.imagedeconvolution method)": [[1, "cosipy.image_deconvolution.ImageDeconvolution.set_data", false]], "set_event_from_filepath() (cosipy.image_deconvolution.dataloader method)": [[1, "cosipy.image_deconvolution.DataLoader.set_event_from_filepath", false]], "set_inner_minimization() (cosipy.threeml.cosilike method)": [[5, "cosipy.threeml.COSILike.set_inner_minimization", false]], "set_model() (cosipy.threeml.cosilike method)": [[5, "cosipy.threeml.COSILike.set_model", false]], "set_rsp_from_filepath() (cosipy.image_deconvolution.dataloader method)": [[1, "cosipy.image_deconvolution.DataLoader.set_rsp_from_filepath", false]], "set_values_from_extendedmodel() (cosipy.image_deconvolution.modelmap method)": [[1, "cosipy.image_deconvolution.ModelMap.set_values_from_extendedmodel", false]], "set_values_from_parameters() (cosipy.image_deconvolution.modelmap method)": [[1, "cosipy.image_deconvolution.ModelMap.set_values_from_parameters", false]], "show_memory_info() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.show_memory_info", false]], "slice_energy_channel() (cosipy.ts_map.fasttsmap static method)": [[6, "cosipy.ts_map.FastTSMap.slice_energy_channel", false]], "source_interval() (cosipy.spacecraftfile.spacecraftfile method)": [[4, "cosipy.spacecraftfile.SpacecraftFile.source_interval", false]], "spacecraft_attitude_binning_ccm() (cosipy.image_deconvolution.coordsysconversionmatrix class method)": [[1, "cosipy.image_deconvolution.CoordsysConversionMatrix.spacecraft_attitude_binning_ccm", false]], "spacecraftattitudeexposuretable (class in cosipy.image_deconvolution)": [[1, "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable", false]], "spacecraftattitudemap (class in cosipy.spacecraftfile)": [[4, "cosipy.spacecraftfile.SpacecraftAttitudeMap", false]], "spacecraftfile (class in cosipy.spacecraftfile)": [[4, "cosipy.spacecraftfile.SpacecraftFile", false]], "time_binning_ccm() (cosipy.image_deconvolution.coordsysconversionmatrix class method)": [[1, "cosipy.image_deconvolution.CoordsysConversionMatrix.time_binning_ccm", false]], "ts_fitting() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.ts_fitting", false]], "ts_grid_bkg() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.ts_grid_bkg", false]], "ts_grid_data() (cosipy.ts_map.tsmap method)": [[6, "cosipy.ts_map.TSMap.ts_grid_data", false]], "tsmap (class in cosipy.ts_map)": [[6, "cosipy.ts_map.TSMap", false]], "unbinneddata (class in cosipy.data_io)": [[0, "cosipy.data_io.UnBinnedData", false]], "unit (cosipy.response.fulldetectorresponse property)": [[3, "cosipy.response.FullDetectorResponse.unit", false]], "write_unbinned_output() (cosipy.data_io.unbinneddata method)": [[0, "cosipy.data_io.UnBinnedData.write_unbinned_output", false]]}, "objects": {"cosipy": [[0, 0, 0, "-", "data_io"], [1, 0, 0, "-", "image_deconvolution"], [3, 0, 0, "-", "response"], [4, 0, 0, "-", "spacecraftfile"], [5, 0, 0, "-", "threeml"], [6, 0, 0, "-", "ts_map"]], "cosipy.data_io": [[0, 1, 1, "", "BinnedData"], [0, 1, 1, "", "DataIO"], [0, 1, 1, "", "ReadTraTest"], [0, 1, 1, "", "UnBinnedData"]], "cosipy.data_io.BinnedData": [[0, 2, 1, "", "get_binned_data"], [0, 2, 1, "", "get_binning_info"], [0, 2, 1, "", "get_raw_lightcurve"], [0, 2, 1, "", "get_raw_spectrum"], [0, 2, 1, "", "load_binned_data_from_hdf5"], [0, 2, 1, "", "plot_binned_data"], [0, 2, 1, "", "plot_psichi_map"], [0, 2, 1, "", "plot_psichi_map_slices"]], "cosipy.data_io.ReadTraTest": [[0, 2, 1, "", "read_tra_old"]], "cosipy.data_io.UnBinnedData": [[0, 2, 1, "", "cart2polar"], [0, 2, 1, "", "combine_unbinned_data"], [0, 2, 1, "", "construct_scy"], [0, 2, 1, "", "get_dict_from_fits"], [0, 2, 1, "", "get_dict_from_hdf5"], [0, 2, 1, "", "instrument_pointing"], [0, 2, 1, "", "polar2cart"], [0, 2, 1, "", "read_tra"], [0, 2, 1, "", "select_data"], [0, 2, 1, "", "write_unbinned_output"]], "cosipy.image_deconvolution": [[1, 1, 1, "", "CoordsysConversionMatrix"], [1, 1, 1, "", "DataLoader"], [1, 1, 1, "", "ImageDeconvolution"], [1, 1, 1, "", "ModelMap"], [1, 1, 1, "", "SpacecraftAttitudeExposureTable"]], "cosipy.image_deconvolution.CoordsysConversionMatrix": [[1, 2, 1, "", "open"], [1, 2, 1, "", "spacecraft_attitude_binning_ccm"], [1, 2, 1, "", "time_binning_ccm"]], "cosipy.image_deconvolution.DataLoader": [[1, 2, 1, "", "calc_image_response_projected"], [1, 2, 1, "", "load"], [1, 2, 1, "", "load_from_filepath"], [1, 2, 1, "", "load_full_detector_response_on_memory"], [1, 2, 1, "", "set_bkg_from_filepath"], [1, 2, 1, "", "set_ccm_from_filepath"], [1, 2, 1, "", "set_event_from_filepath"], [1, 2, 1, "", "set_rsp_from_filepath"]], "cosipy.image_deconvolution.ImageDeconvolution": [[1, 3, 1, "", "data"], [1, 3, 1, "", "initial_model_map"], [1, 2, 1, "", "initialize"], [1, 2, 1, "", "override_parameter"], [1, 3, 1, "", "parameter"], [1, 2, 1, "", "read_parameterfile"], [1, 2, 1, "", "register_deconvolution_algorithm"], [1, 2, 1, "", "run_deconvolution"], [1, 2, 1, "", "set_data"]], "cosipy.image_deconvolution.ModelMap": [[1, 4, 1, "", "coordsys"], [1, 4, 1, "", "energy_edges"], [1, 4, 1, "", "label_energy"], [1, 4, 1, "", "label_image"], [1, 4, 1, "", "nside"], [1, 4, 1, "", "scheme"], [1, 2, 1, "", "set_values_from_extendedmodel"], [1, 2, 1, "", "set_values_from_parameters"]], "cosipy.image_deconvolution.SpacecraftAttitudeExposureTable": [[1, 2, 1, "", "analyze_orientation"], [1, 2, 1, "", "calc_pointing_trajectory_map"], [1, 4, 1, "", "df"], [1, 2, 1, "", "from_fits"], [1, 2, 1, "", "from_orientation"], [1, 2, 1, "", "from_pickle"], [1, 4, 1, "", "nside"], [1, 2, 1, "", "save_as_fits"], [1, 4, 1, "", "scheme"]], "cosipy.response": [[3, 1, 1, "", "DetectorResponse"], [3, 1, 1, "", "FullDetectorResponse"], [3, 1, 1, "", "PointSourceResponse"]], "cosipy.response.DetectorResponse": [[3, 2, 1, "", "get_dispersion_matrix"], [3, 2, 1, "", "get_effective_area"], [3, 2, 1, "", "get_spectral_response"], [3, 3, 1, "", "measured_energy_axis"], [3, 3, 1, "", "photon_energy_axis"]], "cosipy.response.FullDetectorResponse": [[3, 3, 1, "", "axes"], [3, 2, 1, "", "close"], [3, 3, 1, "", "filename"], [3, 2, 1, "", "get_interp_response"], [3, 2, 1, "", "get_point_source_response"], [3, 3, 1, "", "is_sparse"], [3, 3, 1, "", "ndim"], [3, 2, 1, "", "open"], [3, 3, 1, "", "unit"]], "cosipy.response.PointSourceResponse": [[3, 2, 1, "", "get_expectation"], [3, 3, 1, "", "photon_energy_axis"]], "cosipy.spacecraftfile": [[4, 1, 1, "", "SpacecraftAttitudeMap"], [4, 1, 1, "", "SpacecraftFile"]], "cosipy.spacecraftfile.SpacecraftFile": [[4, 2, 1, "", "get_arf"], [4, 2, 1, "", "get_attitude"], [4, 2, 1, "", "get_dwell_map"], [4, 2, 1, "", "get_pha"], [4, 2, 1, "", "get_psr_rsp"], [4, 2, 1, "", "get_rmf"], [4, 2, 1, "", "get_scatt_map"], [4, 2, 1, "", "get_target_in_sc_frame"], [4, 2, 1, "", "get_time"], [4, 2, 1, "", "get_time_delta"], [4, 2, 1, "", "interpolate_direction"], [4, 2, 1, "", "parse_from_file"], [4, 2, 1, "", "plot_arf"], [4, 2, 1, "", "plot_rmf"], [4, 2, 1, "", "source_interval"]], "cosipy.threeml": [[5, 1, 1, "", "COSILike"]], "cosipy.threeml.COSILike": [[5, 2, 1, "", "get_log_like"], [5, 2, 1, "", "inner_fit"], [5, 2, 1, "", "set_inner_minimization"], [5, 2, 1, "", "set_model"]], "cosipy.ts_map": [[6, 1, 1, "", "FastTSMap"], [6, 1, 1, "", "TSMap"]], "cosipy.ts_map.FastTSMap": [[6, 2, 1, "", "fast_ts_fit"], [6, 2, 1, "", "get_cds_array"], [6, 2, 1, "", "get_chi_critical_value"], [6, 2, 1, "", "get_ei_cds_array"], [6, 2, 1, "", "get_hypothesis_coords"], [6, 2, 1, "", "get_psr_in_galactic"], [6, 2, 1, "", "parallel_ts_fit"], [6, 2, 1, "", "plot_ts"], [6, 2, 1, "", "show_memory_info"], [6, 2, 1, "", "slice_energy_channel"]], "cosipy.ts_map.TSMap": [[6, 2, 1, "", "calculate_ts"], [6, 2, 1, "", "create_model"], [6, 2, 1, "", "fix_index"], [6, 2, 1, "", "gather_all_plugins"], [6, 2, 1, "", "instantiate_plugin"], [6, 2, 1, "", "link_model_all_plugins"], [6, 2, 1, "", "load_ts"], [6, 2, 1, "", "plot_ts_map"], [6, 2, 1, "", "print_best_fit"], [6, 2, 1, "", "refit_best_fit"], [6, 2, 1, "", "save_ts"], [6, 2, 1, "", "ts_fitting"], [6, 2, 1, "", "ts_grid_bkg"], [6, 2, 1, "", "ts_grid_data"]], "cosipy.util": [[7, 5, 1, "", "fetch_wasabi_file"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:attribute", "5": "py:function"}, "terms": {"": [0, 2, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27], "0": [1, 3, 6, 9, 10, 22, 23, 24, 25, 26, 27, 28], "00": [10, 24, 25, 26, 27], "000": [12, 14, 16, 18, 25, 26], "0000": [12, 16, 18], "0000000000001": 24, "000000000001755": [12, 14, 16, 18], "00000000000351": 24, "0000000000065512": [12, 14, 16, 18], "000011": 27, "000025": 27, "000029": 25, "000045": 27, "00012": 27, "00013100640643159297": 18, "00013752711756448815": 18, "00028": 27, "0003082708761435": 15, "0003255208333333333read": 11, "000372443360635917": 18, "00037509332308051504": 18, "0004": 25, "00046": 27, "0004892236020582": 13, "0005": 27, "00052012791432": 15, "0006157261333617": 15, "0006492242650211": 15, "00073": 27, "001": 26, "0010662808202762": 15, "0011": 27, "0011610943268634": 15, "0011848359144828": 15, "0013020833333333333read": [14, 15], "001496431493074": 11, "0016": 25, "00162172": 15, "001643": 27, "0017": 27, "0018420710427285": 17, "001939": 26, "0019485964391688": 15, "0020": 25, "002027": 26, "002046819706305": 11, "002108052281045": 15, "002116": 26, "0022726458324056": 11, "0023744856891161": 15, "002376744947073": 15, "0024218882576656": 14, "00247": 24, "0025": 27, "0027": 27, "0028055191196619": 11, "0028450774020168": 15, "003": 27, "00300061062126": [12, 14], "003091": 27, "003150": 27, "003209": 27, "0033923366898276": 19, "0035377514781483": 11, "0039161394431217": 15, "0040459860775908": 15, "0043049": 18, "0043049006590876": 18, "004499999999999998": 27, "0045": 27, "004667": 27, "004754": 27, "004841": 27, "0048700233481955": 13, "0048700520907765": 15, "0050135239487987": 11, "005208333333333333read": 18, "0052136331020776": 15, "0056281285483295": 11, "0058641809947886": 15, "0058657276309866": 15, "0063495429365543": 15, "0064089218442853": 11, "0068265206936726": 15, "0070105323513425": 11, "007241126899907": 11, "0081895689199645": 11, "0085830893113": 19, "0089048097": 11, "009612147376651": 11, "009811538136611": 15, "0099456346378402": 11, "0099829791967136": 11, "01": [1, 11, 13, 14, 15, 17, 18, 19, 24, 25, 27], "0102344432919617": 11, "010467249618972": 15, "01071378053145": 11, "0108113971582602": 15, "011": [25, 27], "0112793627463252": 11, "012434": 26, "012504": 26, "012573": 26, "0131337570188672": 11, "0136432733397405": 11, "01420553833427": [12, 16, 18], "01420731505038": [12, 16, 18], "0143336117743598": 11, "015325684269482": 11, "0159118239103546": 11, "016": 26, "01766713": 19, "0176671300651505": 19, "0177122": 17, "02": [11, 12, 15, 16, 18, 19, 24, 25, 26, 27, 28], "020": 26, "020903831468017": 11, "0211029605768254": 11, "021384848051889": 15, "02147618": 18, "021476183346016": 18, "022400747988371": 11, "0225631895": 14, "023": 25, "0233805": 15, "0238082643748": [12, 16, 18], "0277526558": 13, "03": [10, 15, 17, 18, 23, 24, 25, 27], "0309768887336166": 15, "030994516909178687": 26, "030995": 26, "031": 27, "0310819169451524": 11, "0311088": 15, "0314317920502": 23, "03155987": 18, "031559874472495": 18, "032": 27, "03221757046": 11, "0322312904": 14, "03234405": 18, "0328992830046098": 19, "032928348339306": 11, "0351405587937": [12, 16, 18], "035193201971055": [16, 18], "03567974667542": [12, 16, 18], "03941171474516": [16, 18], "0394215712": 11, "04": [10, 24, 25, 26, 27], "041354418": 17, "043171038622194": 19, "043498291472631": 19, "0435509903": 13, "044315278190893": 11, "046438809261912": 11, "0466035": 15, "046801422979159e": 18, "046951": 27, "046951164320587706": 27, "049336": 26, "049825": 26, "05": [1, 11, 13, 15, 17, 18, 19, 22, 24, 25, 26, 27, 28], "050010": 26, "050195": 26, "0528532374315778": 11, "05426833879696": 14, "054812": 15, "05511898": 15, "055119e": 27, "0571054446248327": 15, "0586383806179276": 11, "0595887797500194": 19, "06": [11, 13, 17, 18, 24, 25], "0601294839329405": 18, "0601311215130675": 17, "0610733818": 11, "06125861498167": 11, "0622706544": 14, "0628439330942752": 11, "064008": 27, "066440377077784": 19, "0668346317": 23, "0672547025579957": 19, "06814056434": 19, "0699614": 18, "07": [15, 16, 17, 18, 22, 24, 25, 27], "07000329743496": [12, 16, 18], "07024548561978913": 19, "070394357579": 19, "0709417721994": 19, "071670008786414": 17, "07167001": 17, "0738451636325703": 19, "0747057018207677": 15, "077260302610239": 19, "077578659034381": 15, "07966849873": 24, "0799082948115535": 19, "0799429722914526": 19, "07e": 25, "08": [18, 24, 25, 27], "080": 25, "0806318578055656": 11, "08152235": 15, "0818626699366012": 19, "0821152684078852": 11, "08252525453989": 23, "083620371401302": 19, "085994665526": 19, "0871086083508616": 14, "08710861": 14, "08916197458": 19, "09": [15, 17, 19, 24, 27], "0924953496158092": 19, "09255082757": 19, "0927078821997471": 19, "09484775503": 19, "0949290707": 13, "096013e": 27, "096275698920152": 14, "0965179439302204": 19, "09679192316": 19, "09862804289071": [16, 18], "098672": 26, "0999065008": 11, "0e": [25, 26, 27], "0kstorag": [11, 15], "0rc1": 24, "0x10367dbd0": 13, "0x10368e1d0": 13, "0x107e0f190": 23, "0x12eac1220": 22, "0x12eb2ce20": 22, "0x1324a9fd0": 23, "0x289dee910": 25, "0x29adcdf10": 26, "0x29bdaa1f0": 26, "0x2af24a160": 26, "0x2afc22bc0": 15, "0x2afdc8160": 25, "0x2b007c6d0": 25, "0x2b0edbebf520": 27, "0x2b27c3340": 18, "0x2b27c3a90": 18, "0x2b3cd01c0": 18, "0x2b606c160": 17, "0x2b607db10": 17, "0x2b61bb370": 11, "0x2b65478e0": 13, "0x2b6568820": 13, "0x2b6569780": 13, "0x2b6569b10": 13, "0x2b65790c0": 13, "0x2b6579690": 13, "0x2b657bc70": 13, "0x2b7043250": 18, "0x2b705ecb0": 18, "0x2b78a07f0": 18, "0x2b78a1b70": 18, "0x2b80904f0": 18, "0x2b80905b0": 18, "0x2babf8040": 11, "0x2babfa860": 11, "0x2c9ff00d0": 19, "0x2c9ff0100": 19, "0x2c9ff0310": 19, "0x2c9ff2920": 19, "0x2c9ff2e60": 19, "0x2c9ff2f50": 19, "0x2c9ff3220": 19, "0x2c9ff3250": 19, "0x2c9ff34f0": 19, "0x2c9ff3a30": 19, "0x2c9ff3a60": 19, "0x2c9ff3b80": 19, "0x2ca361990": 19, "0x2ca3e4940": 19, "0x2ca3e4970": 19, "0x2ca3e5000": 19, "0x2ca3e50c0": 19, "0x2ca3e52d0": 19, "0x2ca3e5360": 19, "0x2ca3e5840": 19, "0x2ca3e58d0": 19, "0x2ca3e5990": 19, "0x2ca3e5f00": 19, "0x2ca3e6140": 19, "0x2ca3e6170": 19, "0x2ca3e6260": 19, "0x2ca3e6530": 19, "0x2ca3e6560": 19, "0x2ca3e6590": 19, "0x2ca3e6620": 19, "0x2ca3e6770": 19, "0x2ca3e7040": 19, "0x2ca3e70d0": 19, "0x2ca3e7400": 19, "0x2ca3e74c0": 19, "0x2ca3e7670": 19, "0x2ca3e7730": 19, "0x2ca3e7ac0": 19, "0x2ca3e7c40": 19, "0x2ca3e7d90": 19, "0x2ca418700": 19, "0x2ca41a680": 19, "0x2ca426440": 19, "0x2ca426e60": 19, "0x2ca4a26e0": 19, "0x2ca56c0d0": 19, "0x2ca56c130": 19, "0x2ca56c670": 19, "0x2ca56c6d0": 19, "0x2ca56c970": 19, "0x2ca56c9a0": 19, "0x2ca56cac0": 19, "0x2ca56ccd0": 19, "0x2ca56cdc0": 19, "0x2ca56ce20": 19, "0x2ca56d090": 19, "0x2ca56d0c0": 19, "0x2ca56d180": 19, "0x2ca56d210": 19, "0x2ca56d4e0": 19, "0x2ca56d7e0": 19, "0x2ca56d870": 19, "0x2ca56d960": 19, "0x2ca56dbd0": 19, "0x2ca56dcc0": 19, "0x2ca56de10": 19, "0x2ca56ded0": 19, "0x2ca56e380": 19, "0x2ca56e500": 19, "0x2ca56e650": 19, "0x2ca56e680": 19, "0x2ca56e740": 19, "0x2ca56e800": 19, "0x2ca56e890": 19, "0x2ca56e9b0": 19, "0x2ca56eb60": 19, "0x2ca56ed40": 19, "0x2ca56ee30": 19, "0x2ca56eec0": 19, "0x2ca56f0d0": 19, "0x2ca56f370": 19, "0x2ca56f790": 19, "0x2ca56f7f0": 19, "0x2ca56f820": 19, "0x2ca56f9d0": 19, "0x2ca56fa60": 19, "0x2ca56fac0": 19, "0x2ca56fb20": 19, "0x2ca56fc10": 19, "0x2ca56fd30": 19, "0x2ca56fdc0": 19, "0x2ca56ffd0": 19, "0x2ca5d9bd0": 19, "0x2da0f7eb0": 15, "0x2edeed720": 11, "0x2edeee560": 11, "0x2ee501db0": 11, "0x2ee501ea0": 11, "0x2efc4df30": 11, "0x2f3d14be0": 11, "0x2f41a4b20": 11, "0x2f41a6440": 11, "0x2f41b8280": 11, "0x2fe95c4c0": 17, "0x3137d7d30": 15, "0x343707eb0": 19, "0x34597f250": 19, "0x373e05a50": 13, "0x373e05ae0": 13, "0x373e06950": 13, "0x373e07460": 13, "0x373e075e0": 13, "0x373e07670": 13, "0x373e076d0": 13, "0x373e07700": 13, "0x373e07790": 13, "0x373e07880": 13, "0x373e07b20": 13, "0x373e07bb0": 13, "0x373e07c40": 13, "0x373e07df0": 13, "0x373e07f10": 13, "0x374b000d0": 13, "0x374b00100": 13, "0x374b002b0": 13, "0x374b005e0": 13, "0x374b00c40": 13, "0x374b00c70": 13, "0x374b00f40": 13, "0x374b01030": 13, "0x374b01150": 13, "0x374b011b0": 13, "0x374b01330": 13, "0x374b013f0": 13, "0x374b016f0": 13, "0x374b018d0": 13, "0x374b01a80": 13, "0x374b020b0": 13, "0x374b021d0": 13, "0x374b02200": 13, "0x374b024d0": 13, "0x374b029b0": 13, "0x374b02ad0": 13, "0x374b02bc0": 13, "0x374b02ce0": 13, "0x374b02e90": 13, "0x374b02fe0": 13, "0x374b03490": 13, "0x374b035b0": 13, "0x374b03730": 13, "0x374b03ac0": 13, "0x374b03c10": 13, "0x374b03ca0": 13, "0x374b882b0": 13, "0x374b88340": 13, "0x374b88430": 13, "0x374b88640": 13, "0x374b88850": 13, "0x374b88880": 13, "0x374b88cd0": 13, "0x374b88d30": 13, "0x374b89540": 13, "0x374b89600": 13, "0x374b896f0": 13, "0x374b89780": 13, "0x374b89840": 13, "0x374b89990": 13, "0x374b89f00": 13, "0x374b8a2c0": 13, "0x374b8a2f0": 13, "0x374b8a380": 13, "0x374b8a410": 13, "0x374b8a4a0": 13, "0x374b8aad0": 13, "0x374b8ac50": 13, "0x374b8ace0": 13, "0x374b8ad10": 13, "0x374b8ad70": 13, "0x374b8ae30": 13, "0x374b8ae60": 13, "0x374b8afb0": 13, "0x374b8afe0": 13, "0x374b8b0a0": 13, "0x374b8b0d0": 13, "0x374b8b970": 13, "0x374b8ba00": 13, "0x374b8bc10": 13, "0x374b8bd60": 13, "0x374b8bf40": 13, "0x3e96300a0": 14, "0x3e9630220": 14, "0x3e96304f0": 14, "0x3e9630700": 14, "0x3e96308e0": 14, "0x3e9630b50": 14, "0x3e9630c40": 14, "0x3e9630df0": 14, "0x3e9631090": 14, "0x3e9631120": 14, "0x3e9631180": 14, "0x3e9631240": 14, "0x3e96313c0": 14, "0x3e96313f0": 14, "0x3e96314b0": 14, "0x3e9631540": 14, "0x3e9631750": 14, "0x3e96317b0": 14, "0x3e96317e0": 14, "0x3e9631b70": 14, "0x3e9631c60": 14, "0x3e9631c90": 14, "0x3e9631e10": 14, "0x3e96320e0": 14, "0x3e9632230": 14, "0x3e96325c0": 14, "0x3e9632890": 14, "0x3e96328c0": 14, "0x3e9632a10": 14, "0x3e9632b30": 14, "0x3e9632bc0": 14, "0x3e9632c20": 14, "0x3e9632d70": 14, "0x3e9632da0": 14, "0x3e9632ef0": 14, "0x3e9632f20": 14, "0x3e9633100": 14, "0x3e9633310": 14, "0x3e96335e0": 14, "0x3e96336d0": 14, "0x3e9633b20": 14, "0x3e9633b80": 14, "0x3e9633e50": 14, "0x3e9633f40": 14, "0x3eb3d36a0": 14, "0x3f5874700": 14, "0x3f58750c0": 14, "0x3f58769b0": 14, "0x3f5876f50": 14, "0x3f5877910": 14, "0x3f5877af0": 14, "0x3f58a4550": 14, "0x3f58a5720": 14, "0x3f58a6d70": 14, "0x3f58a6ef0": 14, "0x3f58a6f20": 14, "0x3f58a7040": 14, "0x3f58a71c0": 14, "0x3f58a7790": 14, "0x3f58a7880": 14, "0x3f8b97880": 14, "0x402d18190": 18, "0x402d18490": 18, "0x402d18520": 18, "0x402d18cd0": 18, "0x402d18fa0": 18, "0x402d193c0": 18, "0x402d19930": 18, "0x402d19de0": 18, "0x402d1a770": 18, "0x402d1add0": 18, "0x402d1b2e0": 18, "0x402d1b6a0": 18, "0x402d1bd60": 18, "0x402d1bd90": 18, "0x402d1bf10": 18, "0x402d1bfa0": 18, "0x402d740a0": 18, "0x402d74910": 18, "0x402d74970": 18, "0x402d74ac0": 18, "0x402d74b50": 18, "0x402d74be0": 18, "0x402d75180": 18, "0x402d75420": 18, "0x402d75540": 18, "0x402d755d0": 18, "0x402d75810": 18, "0x402d75d20": 18, "0x402d75d50": 18, "0x402d76800": 18, "0x402d76890": 18, "0x402d769e0": 18, "0x402d76c20": 18, "0x402d76d10": 18, "0x402d76fb0": 18, "0x402d76fe0": 18, "0x402d77700": 18, "0x402d777f0": 18, "0x402d77e50": 18, "0x402db8970": 18, "0x402dbae30": 18, "0x402dcf340": 18, "0x402dcf580": 18, "0x402dcf5b0": 18, "0x402dcf610": 18, "0x402dcf700": 18, "0x402dcfca0": 18, "0x42dcbace0": 18, "0x42e898400": 11, "0x42e898880": 11, "0x42e898a00": 11, "0x42e899030": 11, "0x42e8991b0": 11, "0x42e899360": 11, "0x42e8999c0": 11, "0x42e89a080": 11, "0x42e89a230": 11, "0x42e89a3e0": 11, "0x42e89a470": 11, "0x42e89a650": 11, "0x42e89aa10": 11, "0x42e89ac20": 11, "0x42e89b1c0": 11, "0x42e89b250": 11, "0x42e89b400": 11, "0x42e89ba90": 11, "0x42e89bc10": 11, "0x42e89bd30": 11, "0x42e89beb0": 11, "0x42e89bfd0": 11, "0x42e91c850": 11, "0x42e91c880": 11, "0x42e91c910": 11, "0x42e91c970": 11, "0x42e91cd00": 11, "0x42e91d060": 11, "0x42e91d360": 11, "0x42e91d450": 11, "0x42e91f9a0": 11, "0x42e91fe50": 11, "0x42e921db0": 11, "0x42e9941c0": 11, "0x42e994280": 11, "0x42e9943a0": 11, "0x42e9944f0": 11, "0x42e994520": 11, "0x42e994820": 11, "0x42e994880": 11, "0x42e994c40": 11, "0x42e994cd0": 11, "0x42e994df0": 11, "0x42e994e50": 11, "0x42e995000": 11, "0x42e995330": 11, "0x42e995390": 11, "0x42e995870": 11, "0x42e995cf0": 11, "0x42e995f30": 11, "0x42e995f90": 11, "0x42e996d10": 11, "0x42e996da0": 11, "0x42e996fb0": 11, "0x42e9970a0": 11, "0x42e997340": 11, "0x42e9973d0": 11, "0x42e997460": 11, "0x42e997520": 11, "0x42e997e80": 11, "0x42e9bc160": 11, "0x42e9bc190": 11, "0x42e9bc2e0": 11, "0x42e9bc520": 11, "0x42e9bc670": 11, "0x42e9bc6d0": 11, "0x42e9bc790": 11, "0x42e9bc880": 11, "0x42e9bc8b0": 11, "0x42e9bcd00": 11, "0x42e9bcf10": 11, "0x42e9bd000": 11, "0x42e9bd1b0": 11, "0x42e9bd360": 11, "0x42e9bd4b0": 11, "0x42e9bd630": 11, "0x42e9bda20": 11, "0x42e9bde40": 11, "0x42e9be0e0": 11, "0x42e9be200": 11, "0x42e9be260": 11, "0x42e9be2c0": 11, "0x42e9be320": 11, "0x42e9be3b0": 11, "0x42e9be4d0": 11, "0x42e9be800": 11, "0x42e9be980": 11, "0x42e9beb00": 11, "0x42e9bed10": 11, "0x42e9bee60": 11, "0x42e9bef20": 11, "0x42e9bf010": 11, "0x42e9bf220": 11, "0x42e9bf2b0": 11, "0x42e9bf460": 11, "0x42e9bf5e0": 11, "0x42e9bf730": 11, "0x42e9bf850": 11, "0x42e9bfa90": 11, "0x42e9bfb50": 11, "0x42e9bfc40": 11, "0x42e9bfeb0": 11, "0x42e9bff10": 11, "0x42e9bffd0": 11, "0x42ea60250": 11, "0x42ea602b0": 11, "0x42ea60460": 11, "0x42ea60490": 11, "0x42ea60550": 11, "0x42ea60640": 11, "0x42ea60760": 11, "0x42ea60c40": 11, "0x42ea60c70": 11, "0x42ea60d60": 11, "0x42ea60e80": 11, "0x42ea61180": 11, "0x42ea61240": 11, "0x42ea613c0": 11, "0x42ea614b0": 11, "0x42ea61720": 11, "0x42ea61a20": 11, "0x42ea61ab0": 11, "0x42ea61bd0": 11, "0x42ea61c00": 11, "0x42ea62020": 11, "0x42ea62350": 11, "0x42ea62380": 11, "0x42ea624a0": 11, "0x42ea62560": 11, "0x42ea62680": 11, "0x42ea62860": 11, "0x42ea62920": 11, "0x42ea62bf0": 11, "0x42ea62d10": 11, "0x42ea62ec0": 11, "0x42ea62f20": 11, "0x42ea63400": 11, "0x42ea636a0": 11, "0x42ea63c10": 11, "0x42f402590": 18, "0x42f402a10": 18, "0x42f403fd0": 18, "0x4461b8070": 15, "0x4461b80d0": 15, "0x4461b84f0": 15, "0x4461b85b0": 15, "0x4461b8730": 15, "0x4461b8940": 15, "0x4461b8f70": 15, "0x4461b8fd0": 15, "0x4461b9210": 15, "0x4461b92a0": 15, "0x4461b93c0": 15, "0x4461b9480": 15, "0x4461b96c0": 15, "0x4461b97e0": 15, "0x4461b9900": 15, "0x4461b9a80": 15, "0x4461b9d80": 15, "0x4461b9f90": 15, "0x4461b9fc0": 15, "0x4461ba050": 15, "0x4461ba080": 15, "0x4461ba1d0": 15, "0x4461ba260": 15, "0x4461ba320": 15, "0x4461ba380": 15, "0x4461ba3b0": 15, "0x4461ba410": 15, "0x4461ba560": 15, "0x4461ba5c0": 15, "0x4461ba920": 15, "0x4461ba9b0": 15, "0x4461bada0": 15, "0x4461bb220": 15, "0x4461bb460": 15, "0x4461bb5e0": 15, "0x4461bb640": 15, "0x4461bb670": 15, "0x4461bb8e0": 15, "0x4461bb940": 15, "0x4461bbb20": 15, "0x4461bbbb0": 15, "0x4461bbd90": 15, "0x4461bbdc0": 15, "0x4461c0190": 15, "0x4461c8310": 15, "0x4461c84f0": 15, "0x4461c8520": 15, "0x4461c8640": 15, "0x4461c8790": 15, "0x4461c88b0": 15, "0x4461c89a0": 15, "0x4461c8a30": 15, "0x4461c8c10": 15, "0x4461c9090": 15, "0x4461c9150": 15, "0x4461c93c0": 15, "0x4461c93f0": 15, "0x4461c9570": 15, "0x4461c97b0": 15, "0x4461c98a0": 15, "0x4461c9930": 15, "0x4461c9c90": 15, "0x4461c9d20": 15, "0x4461c9db0": 15, "0x4461ca050": 15, "0x4461ca0b0": 15, "0x4461ca140": 15, "0x4461ca290": 15, "0x4461ca2f0": 15, "0x4461ca830": 15, "0x4461ca980": 15, "0x4461caa70": 15, "0x4461cac50": 15, "0x4461cb070": 15, "0x4461cb700": 15, "0x4461cb760": 15, "0x4461cb880": 15, "0x4461cb8b0": 15, "0x4461cb910": 15, "0x4461cb940": 15, "0x4461dc490": 15, "0x4461dc610": 15, "0x4461dc640": 15, "0x4461dc790": 15, "0x4461dc8e0": 15, "0x4461dc970": 15, "0x4461dc9a0": 15, "0x4461dcc70": 15, "0x4461dceb0": 15, "0x4461dd360": 15, "0x4461dd390": 15, "0x4461dd7e0": 15, "0x4461dda50": 15, "0x4461dde40": 15, "0x4461ddfc0": 15, "0x4461de1a0": 15, "0x4461de3e0": 15, "0x4461deb00": 15, "0x4461df130": 15, "0x4461df160": 15, "0x4461dfb80": 15, "0x4461dff40": 15, "0x446201a50": 15, "0x446202200": 15, "0x446254040": 15, "0x4462545e0": 15, "0x446254880": 15, "0x4462548e0": 15, "0x446254910": 15, "0x446254970": 15, "0x4462549d0": 15, "0x446254a60": 15, "0x446254eb0": 15, "0x446254f70": 15, "0x446255000": 15, "0x446255330": 15, "0x446255420": 15, "0x446255780": 15, "0x4462557e0": 15, "0x446255b40": 15, "0x446255b70": 15, "0x446255ba0": 15, "0x446255c90": 15, "0x4462560b0": 15, "0x446256140": 15, "0x4462563e0": 15, "0x446256770": 15, "0x4462567d0": 15, "0x446256ad0": 15, "0x446256c20": 15, "0x446256ce0": 15, "0x446256f80": 15, "0x446257250": 15, "0x446257460": 15, "0x446257670": 15, "0x4462576d0": 15, "0x446257760": 15, "0x446257790": 15, "0x446257940": 15, "0x4462579a0": 15, "0x446257c70": 15, "0x446257d00": 15, "0x446257f70": 15, "0x446257fa0": 15, "0x4462f9240": 15, "0x4462fa530": 15, "0x4462fa5c0": 15, "0x4462fae60": 15, "0x4462fb370": 15, "0x446361ed0": 15, "0x44b8d7d60": 18, "0x45dfcf820": 18, "0x7fd09c7945b0": 24, "0x7fd09f741c60": 24, "0x7fd0baca3520": 24, "0x7fd0baeb2080": 24, "0x952f92b90": 17, "0x9530c4520": 17, "0x9530c4550": 17, "0x9530c6080": 17, "0x9530c6ce0": 17, "0x9530c73d0": 17, "0x9530c7a30": 17, "0x9530c7e80": 17, "0x9530c7fa0": 17, "0x9531c0670": 17, "0x9531c1bd0": 17, "0x9531c1c30": 17, "0x9531c1f00": 17, "0x9531c2230": 17, "0x9531c3730": 17, "0x9531c38b0": 17, "0x9532502b0": 17, "0x953250340": 17, "0x9532505e0": 17, "0x953250700": 17, "0x953250a60": 17, "0x953250e50": 17, "0x953250e80": 17, "0x953251480": 17, "0x953251540": 17, "0x9532515a0": 17, "0x9532517b0": 17, "0x953251870": 17, "0x9532518d0": 17, "0x953251b40": 17, "0x953251ed0": 17, "0x9532520b0": 17, "0x953252470": 17, "0x953252530": 17, "0x953252590": 17, "0x953252620": 17, "0x9532526b0": 17, "0x9532526e0": 17, "0x953252710": 17, "0x953252740": 17, "0x953252830": 17, "0x953252860": 17, "0x953252890": 17, "0x953252950": 17, "0x953252a10": 17, "0x953252b00": 17, "0x953252b90": 17, "0x953252c20": 17, "0x953253130": 17, "0x953253190": 17, "0x953253460": 17, "0x9532535b0": 17, "0x953253730": 17, "0x953253910": 17, "0x953253af0": 17, "0x953253c10": 17, "0x953253c70": 17, "0x953253cd0": 17, "0x953253dc0": 17, "0x953253df0": 17, "1": [1, 6, 7, 9, 22, 23, 24, 25, 26, 27], "10": [1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "100": [9, 10, 12, 15, 16, 17, 18, 19, 22, 24, 25, 26, 28], "1000": [10, 12, 15, 16, 17, 18, 19, 22, 24, 27], "10000": [3, 15, 16, 17, 18, 22], "10001": 27, "101k": 19, "102": [12, 13, 14], "1032397527185536": 19, "103994556": 18, "1042": [24, 25, 26, 27], "1044301502208802": 19, "105": [12, 13, 14, 16, 17, 18, 22], "1050458594984143": 19, "105715691570055": 12, "1066673898750912": 11, "10697424": 19, "1069742422022726": 19, "107": [15, 16, 17, 18, 22], "108": [12, 13, 14], "1080259897693703": 19, "109": [12, 14], "10911400197": 11, "10965943": 15, "1098973588984038": 19, "1099544": 15, "10min": 17, "11": [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "110": [16, 17, 18, 22, 24], "11037784844894": 19, "110837759570481": 19, "11083776": 19, "111": [12, 13, 14], "111115": [16, 18], "1115581160702": [12, 16, 18], "111558116070206": [12, 16, 18], "11205": 14, "11295": 12, "114": [12, 13, 14], "115": [16, 17, 18, 22], "11536622684899": 12, "1153664213486": 12, "11555": 14, "1158698854739": [12, 14], "11587008833249": [12, 14], "116": 12, "11600105920392": [12, 14], "1161733315789": [12, 14], "11617333157892": [12, 14], "11666483156788": [12, 14], "117": [12, 13, 14], "117736603001354": 12, "119m": 19, "11min": [12, 17, 27], "11th": 17, "12": [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "120": [12, 13, 14, 16, 17, 18, 22, 24, 25], "12274453361954": 12, "12288": 14, "123": [10, 12, 13, 14], "125": [16, 17, 18, 22], "1256929": 15, "1258": 18, "126": [12, 13, 14], "12720043519377": [16, 18], "128": [16, 18, 24, 25, 26, 27], "129": [12, 13, 14], "1295989219552447": 19, "12min": [14, 18], "13": [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "130": [16, 17, 18, 22, 24], "13091": [12, 14], "1319257143160566": 19, "132": [12, 13, 14], "13268": [12, 14], "133": [16, 18], "13362449598479": 23, "134": [16, 18], "1345": [10, 24, 25, 26], "135": [12, 13, 14, 16, 17, 18, 22], "1357": [10, 13, 17, 24, 25, 26], "136": [16, 18], "13650415292": 19, "1369": [10, 13, 17, 24, 25, 26], "137": [16, 18], "138": [12, 13, 14, 16, 18], "138427135287458": [16, 18], "13min": 14, "14": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "140": [16, 17, 18, 22, 24], "14057063087": 19, "140883891972013": 19, "141": [12, 13, 14], "1422262355": 13, "1429297891": 13, "144": [10, 12, 13, 14, 17, 24, 25, 26], "145": [12, 16, 17, 18, 22], "146106": 15, "147": [12, 13, 14], "148": 12, "1486781": 13, "1486794": 13, "1486810": 13, "1486824": 13, "1486848": 13, "1486864": 13, "1486964": 13, "1486986": 13, "1487009": 13, "1487034": 13, "1487060": 13, "1487215": 13, "1487253": 13, "1487583": 13, "1487652": 13, "1487798": 13, "1487888": 13, "1488012": 13, "1488124": 13, "1488249": 13, "1488431": 13, "1488593": 13, "1489058": 13, "1489307": 13, "149": 13, "1490365": 13, "1490909": 13, "1496920": 13, "14973294": 22, "1499867": 13, "15": [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "150": [12, 13, 14, 16, 17, 18, 22, 24], "1519357": 13, "15269002": 14, "1526900219311305": 14, "1526970180014": [16, 18], "15270150626816": [16, 18], "153": [12, 13, 14], "15317503922358": [12, 16, 18], "15317939441115": [12, 16, 18], "15366006": 14, "1542244490397355e": 18, "155": [16, 17, 18, 22], "1553698114239597": 19, "1558819624": 11, "156": [12, 13, 14], "1563364": 13, "157": 24, "1570752302805583": 28, "1571038593629": [12, 16, 18], "15710385936296": [12, 16, 18], "15747451": 18, "158": [15, 16, 17, 18, 22, 24, 28], "1584": [15, 16, 17, 18, 22], "159": [12, 13, 14, 24], "15917699475948": 14, "15min": 27, "16": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "160": [16, 17, 18, 22, 24, 26], "1604351059838505": 11, "161": [24, 26], "16106": 10, "161894992528104": [16, 18], "16189499252812": [16, 18], "162": [12, 13, 14, 24], "1626685151": 11, "163": 24, "164969": 26, "165": [12, 13, 14, 16, 17, 18, 22], "1664335727692": 10, "166772": 27, "1679796": 14, "1679875": 14, "1679960": 14, "168": [12, 13, 14], "1680055": 14, "1680177": 14, "1680295": 14, "1680427": 14, "1680801": 14, "1681000": 14, "1681425": 14, "1681719": 14, "1682061": 14, "1682463": 14, "1683748": 14, "1684493": 14, "168814518824405": [16, 18], "169": 12, "1691748": 14, "1695610": 14, "169799754806256": [12, 16, 18], "17": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 28], "170": [16, 17, 18, 22, 24], "17007080261746": [12, 16, 18], "1701368": 14, "171": [12, 13, 14], "1711635": 14, "17249128": 15, "174": [12, 13, 14], "175": [16, 17, 18, 22], "1756598": 14, "1765680623": 13, "177": [12, 13, 14], "17787774315": 11, "1781891738": 11, "17913641907": 19, "1797833361": 11, "17991715414": 11, "18": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "180": [12, 13, 14, 16, 17, 18, 19, 22, 24], "1800": 9, "181": 26, "1810": 9, "18125087710709": 12, "181726581": 14, "181869345669945": [12, 14], "18192897402973": 12, "182": 27, "182064711183735": [12, 14], "1820824055223498": 13, "18208241": 13, "1835478000": 10, "1835481433": [19, 24], "1835481435": [19, 24], "1835485200": 10, "1835487300": 23, "1835487301": 23, "1835487302": 23, "1835487303": 23, "1835487304": 23, "1835487305": 23, "1835487306": 23, "1835487307": 23, "1835487308": 23, "184": [15, 17, 18, 22, 25, 28], "1840233": 17, "1842597310": 26, "1842597410": 26, "1842597450": 26, "1842597550": 26, "18472949353415": 23, "1869894550339": 18, "188": [16, 18], "188380045186555": [12, 16, 18], "189": [15, 16, 17, 18, 22], "19": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26], "1900860583584663": 11, "192": 19, "19243956": 15, "194m": 19, "195517786": 17, "1964": 25, "196416": 25, "196416422107725": 25, "1976484": 18, "19828955673026": [16, 18], "199": [14, 18], "1995": 18, "19th": [17, 19], "1c": 10, "1e": [10, 11, 13, 14, 15, 17, 18, 24, 25, 26, 27], "1e2": 18, "1e3": 24, "1e6": 10, "1h": [14, 17, 18], "1k": 24, "1min": [11, 12, 14, 15, 16, 19, 22, 27], "1st": 1, "1tb": [13, 17, 19], "2": [1, 6, 9, 22, 23, 24, 25, 26], "20": [1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28], "200": [10, 19, 24, 26], "2000": [10, 19, 24], "200529306385": 19, "201": [9, 27], "201150": 26, "20146517": 14, "2014651710448034": 14, "202": [11, 12], "2023": 9, "2024": [11, 12, 13, 14, 15, 16, 17, 18, 19], "2027": 8, "20280301_3_month": [12, 14, 16, 18, 22, 23, 25, 26, 27, 28], "20280301_first_2hr": [19, 24], "203220718": 17, "204": 9, "204579435": 18, "208137": 26, "2088": 12, "20th": [13, 14, 17, 18, 19], "21": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 26, 27, 28], "210": 12, "21068821854253272": 19, "212": 12, "2122797273704515": 14, "21227973": 14, "2129": 27, "215124": 26, "2152": 12, "2154258507": 11, "21582216": 18, "216": [12, 14], "218242": 10, "22": [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 28], "22051": 14, "22154379644951": [12, 14], "2217": 12, "22300229": 13, "2230022900243092": 13, "224270e": 25, "22733567147042": 12, "22779496794004": 12, "2279229021369": 18, "2283812062183777": 13, "22838121": 13, "22859804242": 19, "23": [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 27, 28], "23017854": 18, "23020491": 17, "23389718": 18, "23569417": 15, "2358402243372": 23, "23646065": 18, "23746910": 18, "23787078": 17, "23830530": 18, "23967842": 18, "24": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 27, 28], "24019580": 18, "24062347": 17, "24100330": 18, "24100868": 17, "24101": 19, "24136588": 18, "24168974": 18, "24198023": 18, "24250030": 18, "24260105367847": 12, "24262736": 17, "24271140": 18, "24299097": 18, "24315854": 18, "24342291": 18, "24350147": 17, "24355494": 18, "24364951": 17, "24367675": 18, "24378984": 18, "24389413": 18, "24424020": 17, "24427198": 17, "24450211": 17, "24450646": 17, "24466176": 17, "24480651": 17, "24489955": 17, "24494561": 17, "24515704": 17, "24521511": 17, "24529448": 17, "24534998": 17, "24538590": 17, "247474": 10, "25": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 27, 28], "250": 24, "251": [15, 16, 17, 18, 22], "2511": [15, 16, 17, 18, 22], "253": 17, "255": [11, 26, 28], "257": 14, "2580263622": 14, "25829": 19, "25906763976249": [16, 18], "25984799916": 19, "26": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 27], "260079415": 15, "260401557": 15, "260682519": 15, "260809172": 15, "260886454": 15, "260948848": 15, "260990804": 15, "261007827": 15, "261020956": 15, "261042859": 15, "261043269": 15, "261060491": 15, "261065843": 15, "261066166": 15, "261076265": 15, "261096313": 15, "261099396": 15, "261099965": 15, "261110094": 15, "261116234": 15, "261118727": 15, "261122168": 15, "261129961": 15, "261130513": 15, "261131700": 15, "261132943": 15, "261134896": 15, "261137407": 15, "261141391": 15, "261143530": 15, "261148296": 15, "261148351": 15, "261148417": 15, "261149001": 15, "261155194": 15, "261157018": 15, "261157889": 15, "261160372": 15, "261163498": 15, "261164793": 15, "261164799": 15, "261168573": 15, "261170119": 15, "261172684": 15, "261174372": 15, "261176099": 15, "261177870": 15, "261178995": 15, "261180809": 15, "261181491": 15, "2617227070734": 18, "262": 24, "26359": [16, 18], "264261693": 18, "266": 27, "269427365755966": [12, 14, 16, 18], "26cfdeacb25335bd511a91c4f8a29bdeb36408f2": [13, 14, 17], "27": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 27, 28], "270348197761169e": 18, "2705691250781777": 13, "27056913": 13, "2710289": 15, "27262775572": 19, "272835e": 25, "273": 12, "2732": 12, "274": [12, 18], "275": 12, "275885e": 25, "276": 12, "276632": 26, "27663221293105034": 26, "27685031183828": 14, "277": 12, "277087393995096": 14, "277832831434402": 14, "278": 12, "2781": 14, "27816364520332": 14, "278935e": 25, "279229021372": 18, "28": [11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 27, 28], "2801788681745": 18, "280789592422735": 14, "283": 26, "28405398202019": 14, "2851265944": 14, "28548497": 15, "2864": 12, "286823740507035": [12, 16, 18], "28695666554313": 23, "288": 26, "289": [12, 14], "28983143": 15, "29": [11, 13, 14, 15, 16, 17, 18, 19, 24, 27, 28], "29025": 14, "29685706": 15, "29807213": 15, "29919922293719": [12, 16, 18], "2d": [23, 24, 28], "2e": [15, 17, 18], "2f": [18, 22], "2min": [11, 19, 27], "2nd": 1, "3": [1, 9, 19, 22, 23, 24, 25, 26], "30": [1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 27, 28], "300": [4, 6], "30194136772735": 19, "30229": 19, "3045336306": 13, "306": 24, "3072": [11, 12, 13, 14, 18, 28], "307958953": 18, "308": 19, "309": [14, 17], "30944805": 18, "30min": 27, "31": [11, 14, 15, 16, 18, 19, 24, 28], "3103523117": 13, "3117899313": 13, "312391542": 17, "312405290582567e": 18, "31313634": 15, "31362218": 15, "316": 18, "3162": 18, "316394483057174": [12, 16, 18], "31928090738": 24, "32": [11, 14, 15, 16, 18, 19, 24, 25, 27, 28], "3204384344": 13, "320815e": 27, "321406880638527": [16, 18], "322": 10, "32373321212394": [12, 16, 18], "32482954196": 11, "325": [12, 16, 18], "327": 17, "327946638": 11, "32798536": 17, "3279853605979435": 17, "3280178868179": 18, "329037678543799": [16, 18], "33": [11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 27, 28], "330": 27, "3302": 14, "331": 27, "3324977": 10, "33277905": 15, "333545": 27, "333547": 27, "334": 12, "334998265514": 23, "33529649": 14, "3352964931227564": 14, "337": [18, 24], "3380787943012": 23, "33899982": 17, "338999823632587": 17, "33min": 13, "34": [11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 25, 28], "340": 11, "3406481": 22, "34354151639131": 14, "3438": 14, "34431684": 15, "3451082548": 14, "34610": 19, "3486695": 15, "349": 18, "35": [10, 11, 13, 15, 16, 17, 18, 22, 24, 25, 26, 28], "350": [12, 27], "3517182083": 13, "3526": 14, "353945933": 18, "359": 27, "35902575261872": [12, 16, 18], "36": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "360": [24, 25, 26, 27], "3600": [19, 23], "3601": 23, "36053": 19, "36059": [12, 16], "36059027777777": [12, 14, 16, 18], "36162518": 17, "362": 14, "3669458839138": 24, "36776291": 17, "36816": 19, "36min": 13, "37": [10, 11, 13, 14, 15, 17, 19, 24, 25, 26, 27, 28], "370": 26, "370653963754705": 14, "37391657068838": 14, "37452108662": 14, "37471903379148": 14, "3747190421793": 14, "3748932228599": 14, "3748932372682": 14, "37662": 19, "378051295931451": 18, "3780513": 18, "3793746628449184": 19, "38": [11, 12, 13, 14, 15, 16, 19, 22, 23, 24, 25, 26, 28], "3826360004": 11, "38299": 19, "383992036768139": 17, "38399204": 17, "384611151": 13, "386050": 11, "387": [10, 13, 17, 24, 25, 26], "38920658776064": 23, "39": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "39393": 19, "395": 11, "39610815875": 19, "398": [15, 16, 17, 18, 22], "3981": [15, 16, 17, 18, 22], "39811966891759": [16, 18], "39847": 19, "39858": 19, "3d": [24, 28], "3min": [11, 13, 14, 15, 17, 18, 27], "3ml": [2, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26], "3x": 10, "3xcrab": 10, "4": [12, 16, 22, 23, 24, 25, 26, 27, 28], "40": [10, 11, 13, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "400418": 11, "401": 27, "401022931546242e": 18, "402792968": 17, "403110e": 27, "40363": 19, "40430": 19, "404988": 27, "40515625": 15, "40570": 19, "405718": 11, "41": [9, 11, 13, 14, 15, 16, 18, 19, 24, 25, 27, 28], "41080": 19, "411089": 11, "41138": 19, "411851242": 17, "412844": 11, "41313": 19, "414257": 11, "41477330541565": [12, 14, 16, 18], "415314215395": 19, "41535": 19, "41537": 19, "415656216": 18, "415983": 11, "4161653833": 11, "416671": 11, "416858": 11, "41759": 19, "417764": 11, "4179241776": 11, "417929": 11, "418085": 11, "418284489395": 19, "418530e": 27, "418586": 11, "418668": 11, "418669": 11, "418748": 11, "419053": 11, "419117": 11, "419142": 11, "419151": 11, "419331": 11, "419384": 11, "419391": 11, "419411": 11, "419487": 11, "419503": 11, "419537": 11, "419559": 11, "419612": 11, "419623": 11, "419626": 11, "419634": 11, "419636": 11, "419659": 11, "419664": 11, "419672": 11, "419685": 11, "419703": 11, "419725": 11, "419731": 11, "419738": 11, "41974": 19, "419768": 11, "419778": 11, "419781": 11, "419787": 11, "419792": 11, "419813": 11, "419820": 11, "419821": 11, "419827": 11, "42": [11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 28], "42005": 19, "420663133134687": 19, "421": 25, "42167": 19, "42195": 19, "42216": 19, "42218": 19, "42250": 19, "42256": 19, "42278": 19, "42281574": 17, "422815741504944": 17, "42639358": 19, "4263935825449847": 19, "427": 14, "42920": 26, "43": [10, 11, 12, 15, 16, 18, 19, 24, 27], "430350678106848": 14, "43289490159796": 14, "4338580138": 11, "433950e": 27, "43656476": 17, "438546576": 18, "44": [10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 24, 25, 26], "44034002307066": 23, "445937328": 18, "45": [10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 24], "450": [12, 25, 26], "451": 25, "45346624": 17, "453466242079951": 17, "457": 28, "4576823683": 13, "46": [10, 11, 12, 14, 15, 16, 18, 19, 22, 24, 27], "460371889534287": [16, 18], "46201818339": 19, "46208422736": 11, "46707609": 13, "4670760938135765": 13, "4673017936": 13, "468": [16, 18], "46808277": 18, "4680827707120705": 18, "46936882": 15, "469949806943756": 14, "46994980694376": 14, "46it": 10, "46min": 27, "47": [11, 12, 15, 16, 18, 19, 24, 25], "4702937151": 13, "47122063449069": 19, "47141729115225": 14, "471417500535573": 14, "473463779563324": 25, "473464": 25, "474": 26, "474980764": 13, "476365597600235": 17, "4763656": 17, "476488873": 14, "479120638470411": 19, "48": [10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26], "48162697469867": [12, 14], "48509694": 17, "487761884": 13, "488": 14, "489": [15, 16, 17, 18, 22], "49": [11, 14, 15, 16, 17, 18, 19, 24, 27], "49006256585185": [16, 18], "490253184": 11, "4918880393981695": 14, "49188804": 14, "49207820227362": 14, "49239873132499": 14, "4952411": 17, "4952411015155125": 17, "49705286596814": 14, "49899938347305": 14, "499": [16, 18], "4d": [4, 23, 24], "4e": 27, "4min": 15, "5": [1, 9, 12, 16, 22, 23, 24, 25, 26, 27, 28], "50": [10, 11, 15, 16, 17, 18, 19, 22, 24, 27, 28], "500": [10, 19, 24, 25, 26, 27], "5000": [10, 19, 24], "5008043531443166e": 18, "501": 18, "5011": 18, "5039460293538105": 13, "50394603": 13, "505555070939067e": 18, "507101864237928": 24, "50760146476969": 14, "50792179772638": 14, "508036": 27, "509": [11, 12, 13, 14], "50993743414816": [16, 18], "50deg": 24, "50th": [11, 15], "51": [11, 12, 13, 14, 16, 18, 19, 22, 24, 27], "511": [14, 16, 20, 22], "511_testing_3month": 27, "511_testing_3months_unbinned_data": 27, "511_thin_disk_3months_unbinned_data": [11, 12, 14], "511kev": [11, 12, 27], "511kev_dc2_galactic_bkg": 11, "511kev_dc2_galactic_ev": 11, "511kev_dc2_galactic_sign": 11, "511kev_scatt_binning_dc2_bkg": [12, 13], "511kev_scatt_binning_dc2_ev": [12, 13], "512": 12, "513": [11, 12, 13, 14], "515": 14, "518049215": 14, "51842748236865": [12, 14], "52": [9, 10, 24, 25, 27], "520": 27, "520730182": 13, "521": 25, "52335072": 15, "5256721171422285": 19, "52567212": 19, "52617227070743": 18, "527559e": 27, "528": 15, "5281347963": 14, "53": [10, 12, 15, 24, 26, 28], "531": 25, "532": [16, 18], "53238253783": 19, "53259433387": 11, "532973": 18, "53383576": 10, "54": [10, 12, 13, 14, 15, 22, 24], "54175679": 13, "541756790045432": 13, "54190445396517": [16, 18], "5426787880752837e": 18, "545668051": 14, "5462072": 13, "546207203696152": 13, "5462910559040303e": 18, "5483449631": 11, "549399237968544": [16, 18], "54992554475": 19, "55": [11, 12, 16, 17, 18, 22, 24, 27, 28], "5506138196": 13, "5509247969": 19, "552391422512448e": 18, "5551": [22, 28], "5587795917": 11, "559659976929343": 23, "56": [10, 12, 14, 18, 19, 24, 25, 26, 27, 28], "560944e": 25, "562": 14, "563": 14, "564": [14, 16, 18], "564268e": 25, "565": 14, "565033e": 25, "565798e": 25, "566": 14, "567": 14, "56710509840204": 14, "56885752": 15, "56964934798671": 14, "56e": 25, "56min": 18, "57": [12, 13, 14, 15, 16, 17, 18, 22, 24], "57322172": 17, "573221723840575": 17, "573359e": 25, "574": 12, "57631366": 19, "5763136603313757": 19, "57862391905": 11, "5786615435": 13, "57871": [16, 18], "58": [16, 18, 24], "582905e": 27, "58462270266": 19, "585226694584346": [12, 14, 16, 18], "585775e": 25, "586975046": 18, "59": [17, 24], "59320571194872": [16, 18], "5957638": 15, "5e": 27, "5min": [11, 13, 18], "5mstorag": 14, "5p": 9, "5times10": [12, 16], "6": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "60": [10, 11, 12, 13, 14, 16, 17, 18, 22, 24, 27], "600": [15, 17, 18], "6003448446": 11, "601": 27, "603714738909005": [16, 18], "6070768463": 11, "6074471278": 13, "60930462": 17, "6098920044": 11, "61": [11, 12, 16, 18, 25], "610": 25, "610793412239364": 23, "6108548996": 11, "61117227945379": 23, "612135e": 25, "6152302232": 13, "615754495215": 19, "6162618792": 14, "618448128695514": 13, "61844813": 13, "619": [15, 16, 28], "62": [12, 14, 16, 18, 22, 23, 25, 26, 28], "62048164": 17, "623492e": 27, "62369325": 17, "623693254892361": 17, "62499999999999": 19, "6261917602": 11, "62664815323754": [12, 14, 16, 18], "62664815323755": [12, 14, 16, 18], "6271944637": 13, "62948123249228": 14, "63": [12, 13, 14, 16, 18, 19], "630": [15, 16, 17, 18, 22], "6309": [15, 16, 17, 18, 22], "63272": 24, "63307131": 13, "6330713142086324": 13, "64": [11, 12, 13, 14, 15, 16, 17, 18, 19, 27], "64073008": 15, "641716609686848": 19, "64171661": 19, "64207026": 15, "642124027021296": 23, "64219748904": 11, "642813300423782": [12, 16, 18], "643": 27, "646": [12, 16, 18], "65": [12, 14, 15, 16, 17, 18, 22, 26], "650732": 26, "6507320770641": 26, "655148156368654": [16, 18], "6552417497": 14, "656262774864": 19, "65671255168847": 14, "658680215314738": 19, "65868022": 19, "66": [12, 13, 14, 16, 18], "66020516346508": [12, 14, 16, 18], "6602051634651": [12, 14, 16, 18], "66160578": 15, "661921205698793": 23, "6645188392718997": 12, "66479": 24, "6657808487": 11, "66819408": 19, "668194082009493": 19, "66833794": 15, "67": 14, "67044338": 17, "670443384185757": 17, "67309722321497": 23, "67576": [16, 18], "67626678787605": [12, 16, 18], "6780524987": 11, "67859311936147": [16, 18], "68": [12, 14, 16, 18, 23, 25, 26], "682864733": 17, "68360608975279": [12, 16, 18], "684": [12, 16, 22, 23, 25, 26, 27, 28], "68453862559674": 14, "68453900120738": 14, "68466587507": 24, "6847504409": 11, "68502160846401": 14, "686555795": 18, "6880846888173346": 19, "68808469": 19, "689": [16, 27], "69": [10, 11, 12, 13, 14, 15, 16, 17, 18, 24, 25, 26, 28], "691279e": 25, "6951": 27, "695126e": 27, "697": 27, "699487886": 14, "6995": 19, "6min": [15, 27], "7": [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "70": [16, 17, 18, 19, 22, 24], "7005234426": 14, "704": [10, 13, 17, 24, 25, 26], "70409195030112": 23, "705265246": 18, "71": [13, 14, 16, 18, 23], "7103005161": 11, "71072": [12, 16, 18], "71137": [12, 16, 18], "713043334456863": 23, "71317625949297": [12, 16, 18], "715627885915885": 14, "71562789": 14, "716": [16, 18], "71722955": 15, "71774234": 18, "7177423417891535": 18, "71796854968": 19, "72": [12, 13, 14], "720": 10, "7202159421": 11, "7207": 14, "7214813665": 13, "72183635479668": 14, "722167168565605": 14, "7229126247577": 14, "723071336746216": 10, "723149712157756": 14, "73": [16, 18, 26], "7303367079": 11, "73057263424403": [12, 14, 16, 18], "735": 11, "73510829054615": 23, "7357421": 15, "737900e": 25, "739": 27, "74": [16, 18, 19], "741156770888438": [16, 18], "7418347986463156": 19, "7425947696281046": 18, "74259477": 18, "745": 14, "74839551": 17, "748558816310641": 17, "74855882": 17, "748686e": 27, "749": 14, "75": [11, 12, 13, 14, 16, 17, 18, 19, 22, 26, 27], "754018": 27, "754331827455719": 17, "75433183": 17, "75447673": 19, "754476734122631": 19, "756965748051311": 26, "756966": 26, "75745007981912": 12, "75858964": 19, "7585896423313874": 19, "75896752": 15, "76": [16, 18, 26, 28], "76054529962": 19, "761": 12, "7616204866": 14, "7623484148658698e": 18, "764159775662804": 23, "76500124": 15, "76614632621641": 23, "7662045578": 13, "767412265132285e": 18, "768": [15, 16, 17, 18, 22], "77": 13, "7705518758": 11, "77131456": 15, "77592919492308": [12, 16, 18], "778456203550505": [12, 14], "7796358426142": [16, 18], "78": [12, 13, 14, 25], "78167623289732": 14, "781676232897325": 14, "7835588583": 11, "784522e": 25, "7877": [22, 28], "790441107": 14, "792486557202956": [12, 14], "79313907872797": [12, 14], "794": [18, 25], "7943": 18, "79590102793104": [12, 16, 18], "79720613957824": 23, "7979955": [12, 14, 16, 18], "7979956": [22, 25], "7990036565": 13, "7e": 27, "7g": 15, "7min": [18, 27], "8": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "80": [16, 17, 18, 22, 24], "800": [15, 17, 18], "801710443269755": [16, 18], "80258343": 15, "80433165385": 19, "80599907": 15, "806": 13, "80989742": 13, "8098974214440344": 13, "81": [12, 13, 14], "812242608052198": 18, "81224261": 18, "81249085104": 11, "81397406233": 11, "81527050646584": 23, "817935288816265": [12, 14], "818071025970276": 12, "818130910219594": [12, 14], "81865662": 15, "818749379017405": 12, "819": 12, "8192020113325374": 19, "82": [11, 27], "82335612555313": [16, 18], "82476469607": 11, "825139915500053e": 18, "8272": 14, "82828781289801": 23, "82828781289802": 23, "83": 14, "83036392974": 11, "83137450725276": [12, 16, 18], "8322594196359498": 14, "8325489081869999e": 18, "835478": 10, "8354781": 10, "8354782": 10, "835485": 10, "8354851": 10, "8354852": 10, "8354873": [11, 15], "8357267488": 11, "8362333952": 13, "83674837374497": [16, 18], "839": [22, 23, 25, 26, 28], "8399": 14, "84": [12, 13, 14, 22, 24], "840823005240516": 14, "840m": 16, "8434673": [11, 15], "843640238": 17, "84546317102121": 14, "845668028631366": 14, "85": [16, 17, 18, 22, 24, 27], "850": 27, "8528": 14, "85469236": 13, "854692362839457": 13, "8565585663971596e": 25, "8568107": 15, "857": 25, "85838": 26, "85840": 26, "859391428442066": 23, "85953915": 18, "85980994": 15, "8606861124748": 12, "8623891583036": [16, 18], "8656": 14, "8663755040152": 23, "86849611": 19, "8684961126184034": 19, "8698945503365": 18, "87": [12, 13, 14], "873162": 26, "8795411": 15, "88": [12, 15], "88031438": 17, "88226339699865": 12, "88431237591922": 12, "88431682515662": 12, "884611": 26, "8858903183": 11, "88843274": 15, "889833384645": 19, "89": [12, 15, 16, 17, 18, 19, 22, 25], "8924143862528": 18, "89420566417": 11, "8942464": 15, "89428628084324": 12, "8944230902": 13, "896060": 26, "8962983411": 11, "896751336256663": 28, "89892831460051": [16, 18], "8min": [17, 27], "8mstorag": 18, "9": [6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "90": [3, 6, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "901413677": 11, "90238": 24, "903": 17, "90372430107985": 14, "90542254254405": [16, 18], "906": 27, "9067139933": 14, "913074059175163": 19, "914467e": 27, "915462e": 25, "9156089682929596": 19, "917215575378705": [16, 18], "91747474546011": 23, "919": 12, "9193": 25, "92": [12, 14, 16, 18], "921": 26, "92208802371745": [16, 18], "924143862529": 18, "92439188": 17, "925941571": 11, "926456e": 25, "92679334": 15, "929678e": 27, "92999670256505": [12, 16, 18], "93": [12, 13, 14, 26, 28], "932137": 27, "93231998": 17, "93231998200381": 17, "93501914": 15, "936178": 27, "937249783176014": 14, "93724978317603": 14, "937451e": 25, "937870078": 18, "9387790803": 11, "94": [10, 13, 17, 24, 25, 26], "9408295631408692": 28, "94131658095": 19, "94251969077": 19, "94574666279381": 14, "9482232171230163e": 18, "95": [16, 17, 18, 22], "955": 13, "955010022713545": [16, 18], "9555685548": 13, "957": [15, 16, 17, 18, 22], "95764244902919": [16, 18], "958": 13, "96": [11, 12, 13, 14], "960588285254847": [16, 18], "962884413278615e": 18, "964324759952632": [12, 16, 18], "9646219744282969": 11, "964811462201155": [16, 18], "964859441206304": [12, 16, 18], "96588525": 17, "96704201": 13, "967042011343623": 13, "968568207949804": 23, "97": [18, 26, 28], "970": [12, 16, 18], "971": 26, "975791e": 27, "9775991374802415": 18, "9780686891833531": 18, "978345437696951": 18, "978454945885545": [12, 14], "9793198466237346": 18, "9794334": 15, "9799331479447816": 11, "98": 18, "9812080588835854": 17, "9812662983421157": 18, "981448524626097": 18, "9820035975": 14, "9825545993834066": 18, "9830572014967464": 11, "9840562801688233": 17, "984296483841905": 18, "9851397032430448": 18, "9853598178541682": 17, "9857849794974954": 15, "98587630869807": 18, "9865335818399789": 18, "9866072495745218": 17, "987024209017416": 17, "9876964380028733": 18, "9877974265453751": 15, "9881862047896464": 18, "9884096079114113": 17, "988470546497861": 17, "9886": 25, "9886166208617622": 25, "988617": 25, "9888006762468168": 18, "9889832567754694": 17, "989170960160712": 18, "9892543515924257": 15, "9895862691562303": 17, "9897325057623165": 18, "98it": 10, "99": [1, 10, 11, 12, 13, 14, 15, 17, 19, 24, 25, 26], "9900001865729486": 17, "9900176796661229": 18, "9901152715531214": 17, "9902093594726253": 15, "990272359532349": 18, "9905055720767687": 18, "990610": 27, "9906204498077124": 15, "9907725667489528": 17, "9907885000950185": 15, "9907927868095415": 15, "9908343850485126": 15, "9908537644843672": 15, "9908594816570173": 15, "9909347457044095": 15, "991": 27, "9912144784871131": 15, "9913375987634248": 17, "9913697621614236": 15, "9913786458527394": 15, "991932": 25, "9919747556588937": 17, "992": [16, 18], "9933618857": 13, "9936399908743172": 11, "993741326854415": 15, "9938902344364399": 17, "9941334048497183": 11, "9943973775742112": 11, "9944142064277177": 13, "994708877170725": 11, "9949613976847363": 11, "9950185424057802": 11, "9957165764734817": 11, "9966116121955169": 17, "996731360121657": 11, "997057178710705": [12, 14], "9971577453519401": 14, "9971667543280367": 17, "9974136084439371": 15, "9974653836229359": 27, "9974931": 10, "9978600300598851": 15, "99833": [16, 18], "9983550801218972": 15, "9985": 27, "9986575244367942": 17, "9989160733417498": 15, "999": [10, 12, 14, 16, 18], "9990969032872745": 11, "999275691887223": 13, "9993636106475906": 15, "999444": 27, "99944429": 27, "9995258381190871": 13, "9995616625471752": 15, "999685900356176": 14, "9997388449308033": 13, "999764145247152": 13, "9997686118565604": 13, "9997696073518008": 13, "9997697876916849": 13, "9997700189565418": 13, "9997703163980328": 13, "999770562358397": 13, "999771015377049": 13, "9997712604348642": 13, "9997727102976933": 13, "999772909371205": 13, "9997739086816684": 13, "9997741100024176": 13, "9997742950835806": 13, "9997744737637747": 13, "9997745302553334": 13, "9997746469610125": 13, "9997754874062363": 13, "9997756319817698": 13, "9997758601840663": 13, "9997759950994234": 13, "9997761488793757": 13, "9998124108372027": 13, "999853": 27, "9998689870447892": 13, "9998866": 15, "9998892961410736": 14, "9998893073627257": 14, "9998893341848446": 14, "9998893892247812": 14, "9998894604073867": 14, "9998895673515545": 14, "999889956371463": 14, "9998901905185211": 14, "999890734568304": 14, "9998911255697669": 14, "9998916199988997": 14, "9998924718443246": 14, "9998932072705006": 14, "9998941090155609": 14, "9999": [12, 14, 16, 18], "9999159811049237": 14, "9999267553231147": 14, "9999277350857754": 15, "9999373176079243": 14, "999995231628418": 19, "9999999999969589": [12, 14, 16, 18], "9min": [14, 15, 27], "A": [1, 6, 8, 10, 22, 25, 26, 27, 28], "And": 22, "As": [1, 10, 11, 12, 13, 15, 16, 17, 18, 19, 22, 23, 28], "At": 28, "But": [12, 16], "By": [7, 19, 22], "For": [10, 12, 16, 22, 24, 27], "If": [0, 1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28], "In": [1, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "It": [0, 1, 2, 4, 8, 10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 27, 28], "Its": 1, "NOT": [10, 13, 17, 24, 25, 26], "No": [10, 13, 17, 24, 25, 26], "One": [10, 28], "Or": 22, "Such": 19, "The": [0, 1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 20, 22, 24, 25, 26, 27, 28], "Then": [1, 11, 12, 13, 15, 16, 17, 19], "There": [10, 14, 18, 28], "These": [3, 9, 10, 19, 24, 25, 26], "To": [6, 9, 12, 16, 22, 24, 25, 26], "With": [11, 12, 13, 14, 15, 16, 17, 18, 19, 28], "_": [11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 27, 28], "__init__": [4, 10, 13, 17, 24, 25, 26], "_build": 9, "_expected_count": [25, 26, 27], "_modify_ax": [11, 13, 14, 15, 17, 18, 19], "_target": 24, "_z_direct": 24, "abl": [0, 10, 13, 17, 24, 25, 26], "about": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27], "abov": [0, 1, 10, 11, 13, 15, 17, 19, 20, 22, 24, 25, 26, 28], "abridg": 27, "absorpt": [10, 13, 17, 24], "acccount": 7, "acceler": 1, "access": [3, 10], "access_kei": 7, "accommod": 9, "accordinng": 1, "account": 22, "accumul": [4, 15, 17, 18, 19], "accur": [1, 11, 12, 13, 14, 15, 16, 17, 18, 19], "ach": 1, "achiev": [23, 25], "activ": [8, 9], "actual": [10, 13, 17, 19, 24, 27, 28], "ad": [10, 25, 26, 27], "add": [11, 15, 24, 25, 26, 27], "add_subplot": [15, 17, 18, 24], "addit": [10, 23, 28], "adjust": 28, "adopt": [11, 12, 13, 15, 16, 17, 19], "advanc": [14, 18], "advantag": [12, 16, 20], "advic": 24, "aeff": 22, "affect": 28, "after": [11, 12, 13, 14, 15, 16, 17, 18, 19, 27, 28], "again": [9, 10, 11, 13, 15, 17, 19, 24], "agg": 10, "aic": [24, 25, 26, 27], "aka": 3, "al": [12, 16], "albed": 28, "albedo": [11, 12, 15, 16, 25, 26, 28], "albedo_background_path": 28, "albedo_galactic_cds_bin": 28, "albedo_photons_3months_unbinned_data": [11, 12, 14, 15, 16, 28], "albedo_unbinned_path": 28, "algorihtm": 24, "algorithm": [1, 11, 13, 14, 15, 17, 18, 19, 20, 24, 28], "algorithm_nam": 1, "all": [0, 1, 2, 3, 6, 10, 12, 16, 20, 22, 24, 25, 26, 27, 28], "all_result": [11, 13, 14, 15, 17, 18, 19], "allow": [0, 3, 8, 9, 20, 22, 23, 25, 26, 27], "almost": [12, 16], "along": [3, 6], "alpha": [1, 3, 8, 24, 25, 26, 27], "alpha_": [11, 13, 15, 17, 19], "alpha_inj": [19, 25, 26], "alpha_max": [1, 11, 13, 14, 15, 17, 18, 19], "alreadi": [8, 10, 11, 12, 14, 15, 16, 18, 19, 22, 23, 25, 26, 27], "also": [1, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28], "altern": [3, 10], "although": [20, 22, 28], "altitud": 23, "alwai": [23, 28], "among": [27, 28], "amount": [22, 23, 27, 28], "amplitud": [25, 26, 27], "an": [0, 1, 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 27, 28], "analys": [10, 20], "analysi": [1, 3, 5, 6, 8, 20, 22, 25, 26, 28], "analyt": 28, "analyz": 1, "analyze_orient": 1, "ancillari": [11, 13, 15, 17, 19], "ang2pix": [12, 14, 16], "angl": [0, 3, 10, 12, 13, 14, 16, 17, 18, 22, 24, 25, 26, 28], "angular": [1, 12, 14, 16, 18], "ani": [1, 3, 4, 5, 27, 28], "annot": 24, "annual": 8, "anoth": 10, "anyon": 8, "api": [8, 20], "appear": 27, "append": [11, 13, 14, 15, 17, 18, 19, 25, 26], "appli": [0, 11, 15], "applic": [2, 8], "appreci": 8, "approach": [11, 13, 15, 17, 19], "appropi": 24, "approxim": 8, "ar": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27, 28], "arang": [12, 14, 16], "arbitrari": [25, 26], "area": [3, 4, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "arf": [4, 22], "arf_fil": 4, "arg": [1, 3, 4, 5, 6], "argmax": [19, 24], "argument": 24, "around": [22, 24, 27], "arrai": [0, 1, 3, 4, 6, 10, 11, 12, 14, 15, 16, 18, 22, 24, 25, 26], "arrari": 4, "artifact": [11, 13, 14, 15, 17, 18, 19], "artist": 24, "as_ax": [23, 24], "ascens": 0, "assign": [1, 11, 12, 15, 16], "associ": 10, "assum": [9, 11, 12, 14, 15, 16, 18, 20, 25, 26], "assumpt": [24, 25, 26], "astroh": 10, "astromodel": [1, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27], "astronom": [12, 16], "astropi": [1, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "attach": [4, 5, 22], "attitud": [1, 3, 4, 5, 6, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24], "attribut": [0, 24], "attributeerror": 24, "autonotebook": [11, 12, 13, 14, 15, 16, 17, 18], "auxiliari": [11, 13, 15, 17, 19], "avail": [2, 6, 8, 13, 17, 24, 25, 26, 27, 28], "averag": [1, 12, 14, 16, 18, 28], "aviod": 28, "avoid": [12, 16, 23, 25, 26, 27], "aw": 7, "awar": 6, "aws_access_key_id": 7, "aws_secret_access_kei": 7, "ax": [0, 1, 3, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "ax0": [15, 17, 18], "ax1": [15, 17, 18], "ax2": [15, 17, 18], "ax3": [15, 17, 18], "ax4": [15, 17, 18], "ax5": [15, 17, 18], "ax6": [15, 17, 18], "ax7": [15, 17, 18], "ax8": [15, 17, 18], "ax9": [15, 17, 18], "ax_background": [15, 17, 18], "ax_kw": [19, 22, 24, 27], "ax_likelihood": [15, 17, 18], "ax_spectrum": [15, 17, 18], "axesimag": [19, 23, 24], "axessubplot": 24, "axhlin": 24, "axi": [0, 1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 27, 28], "azimuth": 0, "b": [1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "b_i": [11, 13, 15, 17, 19, 25, 26, 28], "back": 24, "backend": 10, "backgroud": [1, 11, 15, 19], "background": [1, 4, 5, 6, 12, 16, 20, 25, 26, 27], "background_cosi": [25, 26, 27], "background_norm": [11, 13, 14, 15, 17, 18, 19], "background_normalization_fit": [1, 11, 13, 14, 15, 17, 18, 19], "background_normalization_rang": [1, 11, 13, 14, 15, 17, 18, 19], "background_path": 28, "band": [1, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 26], "band_eflux": [19, 26], "base": [0, 1, 4, 6, 11, 12, 13, 15, 16, 17, 19, 24], "baselin": [12, 16], "baserepresent": 1, "basi": 24, "basic": [0, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19], "beat": 24, "becaus": [10, 11, 12, 13, 15, 16, 17, 19, 22, 24, 25, 26, 27, 28], "becom": [12, 16, 24], "been": [1, 10, 25, 26], "befor": [1, 4, 9, 12, 16, 17, 18, 19, 25, 26, 27], "begin": [11, 13, 14, 15, 17, 18, 19, 25, 26], "behaviour": 24, "being": [10, 25], "below": [0, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 27, 28], "best": [6, 9, 20, 24, 25, 26, 28], "best_ra": 24, "beta": [11, 13, 15, 17, 19, 24, 25, 26], "beta_inj": [19, 25, 26], "better": 22, "between": [1, 4, 10, 13, 17, 19, 23, 24, 27], "bg_tot": 27, "bic": [24, 25, 26, 27], "bilinearli": 3, "bin": [0, 1, 3, 4, 5, 6, 20, 22, 23, 24], "bin_siz": [25, 26], "binari": 10, "binn": [0, 10], "binned_bkg": [11, 12, 14, 15, 16], "binned_data": [0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27], "binned_energi": [25, 26, 27], "binned_energy_edg": [25, 26, 27], "binned_ev": [12, 14, 16], "binned_sign": [11, 12, 14, 15, 16], "binneddata": [0, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28], "binnedimag": [12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "binnind": 22, "binning_method": [11, 15], "bkg": [5, 6, 11, 15, 25, 26, 27, 28], "bkg_binned_data": [1, 25], "bkg_binned_data_1s_loc": 26, "bkg_binned_data_ful": 19, "bkg_binned_data_loc": 28, "bkg_data": [17, 18], "bkg_dens": [11, 15], "bkg_file": 4, "bkg_filepath": [11, 12, 14, 15, 16], "bkg_full": 28, "bkg_full_dur": 28, "bkg_group": [1, 12, 14, 16, 18], "bkg_hdf5_filepath": 1, "bkg_index": 24, "bkg_k": 24, "bkg_max": 26, "bkg_min": 26, "bkg_model": [6, 28], "bkg_model_cds_arrai": 6, "bkg_par": [25, 26, 27], "bkg_piv": 24, "bkg_spectrum": 24, "bkg_tmax": 26, "bkg_tmax_idx": 28, "bkg_tmin": 26, "bkg_tmin_idx": 28, "bkg_yaml_filepath": 1, "black": [15, 17, 19, 25, 26, 27], "blue": 28, "blurri": 24, "bool": [0, 1, 3, 4, 5, 6, 11, 13, 15, 17, 19], "boresight": 23, "both": [0, 4, 10, 11, 12, 15, 16, 19, 20, 27, 28], "bound": [11, 13, 14, 15, 17, 18, 19], "break": 9, "broad": 27, "broadbulg": 27, "browser": 9, "bucket": 7, "build": 9, "bulg": 27, "burst": 28, "c": [9, 10, 13, 15, 17, 19, 24, 25, 26, 27], "c_icr": 27, "c_sc": 24, "cach": 3, "cadenc": 8, "calc_image_response_project": [1, 11, 13, 14, 15, 17, 18, 19], "calc_pointing_trajectory_map": [1, 12, 16], "calcul": [0, 1, 4, 5, 6, 11, 13, 15, 17, 20, 25, 26], "calculate_t": 6, "call": [10, 22, 24, 25, 26, 28], "can": [1, 2, 3, 4, 8, 9, 10, 12, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28], "cannot": [10, 13, 17, 24, 25, 26], "capabl": 23, "captur": [10, 22, 23, 28], "card": 27, "carefulli": [12, 16], "cart2polar": 0, "cartesian": 0, "cartesian_to_spher": [11, 12, 13, 14, 15, 16, 17, 18], "case": [0, 1, 10, 11, 12, 14, 15, 16, 18, 19, 22, 24, 25, 26, 28], "caus": [9, 24, 28], "ccm": [1, 11, 12, 13, 15, 16, 17], "ccm_filepath": 1, "ccm_nside": [14, 18], "cd": [6, 9, 10, 12, 14, 16, 18, 24], "cds_arrai": 6, "cds_frame": [6, 28], "cell": [11, 12, 15, 16, 17, 19, 24, 25, 26, 27, 28], "center": [6, 10, 15, 17, 18, 19, 22, 24, 27], "central": 27, "centralpoint": 27, "cfitsio": [13, 17], "challeng": [8, 20, 27], "chang": [9, 10, 12, 14, 16, 22, 23, 24, 27], "channel": [6, 8, 28], "channel_start": 6, "channel_stop": 6, "charact": 27, "characterist": 27, "charater": 3, "check": [1, 6, 9, 10, 11, 13, 14, 15, 17, 27], "chi": [0, 6, 10, 11, 12, 14, 15, 16, 28], "chi_gal": 0, "chi_loc": 0, "chip": 9, "choos": 28, "chosen": 24, "chunck": 10, "chunk": [0, 10], "circ": [24, 27], "circl": 24, "ck": 27, "ckieran": 24, "cl": [25, 26], "clang": 9, "class": [0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 20, 22, 23, 24, 27], "classmethod": [1, 3, 4], "clear": 28, "clearli": [19, 24], "click": 19, "clone": [9, 20], "close": [3, 11, 13, 14, 15, 17, 18, 19, 22, 27], "closest": 4, "cm": [11, 13, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "cm2": [18, 19, 25, 26, 27], "cmap": [11, 13, 14, 23], "code": [0, 8, 9, 11, 15, 19, 28], "coher": [25, 26], "cointain": 22, "collabor": 8, "collect": [6, 19, 22, 23, 24, 28], "color": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "colorbar": [11, 13, 14, 15, 17, 18, 19], "column": [1, 12, 14, 16, 18], "com": [7, 8, 9, 20, 27], "combin": [0, 3, 19, 20, 24, 25, 26], "combine_unbinned_data": [0, 10, 27], "combined_binned_data": [10, 27], "combined_binned_data_thin_disk": 27, "combined_data": 27, "combined_hist": 10, "combined_lc_comparison": 10, "combined_spectrum_comparison": 10, "combined_unbinned_data": 10, "come": [0, 10], "command": [9, 11, 13, 15, 17, 19, 28], "commit": [11, 12, 13, 14, 15, 16, 17, 18, 19], "common": [22, 25, 26, 27], "commun": 8, "compar": [0, 20, 24, 25, 26, 27], "comparison": 8, "compat": [9, 24], "compil": 8, "complet": [19, 22, 23, 24, 26, 27, 28], "complex": 24, "compon": [8, 11, 12, 15, 16, 20, 24], "componen": 27, "compos": 10, "composit": 27, "compton": [0, 3, 6, 10, 11, 13, 14, 15, 17, 18, 22, 24, 26], "comptonspher": [10, 19], "comput": [1, 3, 6, 11, 12, 14, 15, 16, 18, 20, 25, 26, 27], "computation": [10, 12, 16], "con": [12, 16], "concaten": 19, "concept": 10, "conda": 9, "condit": 1, "conduct": 1, "cone": 24, "confid": [6, 20, 26, 28], "config": [1, 10, 13, 17, 24, 25, 26], "configur": [1, 10, 13, 17, 24, 25, 26], "confus": 19, "consid": [1, 11, 12, 15, 16, 25, 26, 27], "consist": [1, 10, 11, 13, 14, 15, 17, 18, 19, 25, 26, 27], "consol": 27, "consolid": 10, "constant": [24, 27], "constrain": 24, "construct": [0, 2, 9, 10, 20, 21, 28], "construct_sci": 0, "contain": [0, 1, 3, 4, 5, 6, 10, 23, 24, 25, 26, 27, 28], "contan": 1, "contempl": 10, "content": [3, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 26, 27], "context": [22, 25, 26], "continu": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20], "continuum": [12, 15, 16, 17, 18, 22, 23, 25, 26, 28], "continuum_fit": 27, "contour": 20, "contradictori": 28, "contributor": 8, "convent": 23, "converg": 26, "convers": [1, 22, 23, 24, 26], "convert": [4, 10, 11, 12, 14, 15, 16, 18, 19, 22, 23, 24, 26], "convolut": [20, 22, 24], "convolv": [3, 20, 22, 23, 24, 25, 26, 27, 28], "coord": [0, 3, 12, 14, 16, 19, 22, 23, 24, 27, 28], "coordiant": 6, "coordiat": 28, "coordin": [0, 1, 3, 4, 5, 6, 10, 13, 17, 20, 23, 24, 25, 26], "coordinst": 22, "coords1": 27, "coordsi": [1, 4, 5, 6, 12, 14, 16, 19, 22, 23, 24, 27], "coordsys_conv_matrix": [1, 11, 12, 14, 15, 16, 18, 19], "coordsys_conversion_matrix": 1, "coordsysconversionmatrix": [1, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19], "copi": 3, "core": [5, 6, 24, 28], "correct": 24, "correl": [25, 26, 27], "correspond": [0, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 27, 28], "cosi": [0, 1, 4, 5, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 28], "cosi_dataset": [0, 10, 12, 14, 16], "cosi_dc": 27, "cosilik": [2, 8, 25, 26, 27], "cosimain_u2": 10, "cosipi": [0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "cosipy_env_nam": 9, "cosipy_tutori": [25, 26, 27, 28], "cositool": [8, 9, 20, 24, 27], "cosmic": 27, "cosmic_photons_3months_unbinned_data": 27, "cosmic_photons_binned_data": 27, "cost": 22, "could": [10, 12, 13, 16, 17, 19, 24, 25, 26], "count": [3, 4, 6, 11, 13, 15, 17, 19, 20, 24, 25, 26, 27, 28], "cov": 9, "cover": 20, "coverag": 9, "coverage_report": 9, "cpu": [6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28], "cpu_cor": [6, 28], "cpuinfo": 9, "crab": [8, 10, 12, 20, 22], "crab2hr": 10, "crab_binned_data": 25, "crab_bkg": 25, "crab_bkg_binned_data": 25, "crab_bkg_galactic_input": 28, "crab_data": [17, 18], "crab_data_path": 28, "crab_dc2_3months_unbinned_data": [15, 16, 28], "crab_dc2_galactic_bkg": 15, "crab_dc2_galactic_ev": 15, "crab_dc2_galactic_sign": 15, "crab_galactic_cds_bin": 28, "crab_lc": 10, "crab_lc_3x": 10, "crab_scatt_binning_dc2_bkg": [16, 17, 18], "crab_scatt_binning_dc2_ev": [16, 17, 18], "crab_spec": [10, 15, 17, 18], "crab_spec_3x": 10, "crab_spectral_fit_galactic_fram": 25, "crab_unbinned_path": 28, "creat": [0, 6, 9, 12, 13, 14, 16, 17, 19, 22, 23, 24, 25, 26, 28], "create_model": 6, "creation": 24, "criteria": [11, 13, 14, 15, 17, 18, 19], "critic": [6, 27], "ct": [0, 10], "cthreeml": [10, 13, 17, 24, 25, 26], "current": [0, 1, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 28], "curv": 10, "custom": 28, "custom_funct": 27, "cut": 0, "cutoff": 27, "cygx1": 23, "cython": 9, "d": [12, 14, 16, 18, 27], "d_i": [25, 26, 28], "dai": [12, 16], "damp": [11, 13, 15, 17, 19], "dat": [0, 10, 15, 17, 18, 27], "dat_2": 27, "data": [1, 2, 3, 5, 6, 8, 11, 13, 15, 17, 20, 22, 23], "data_511kev": 13, "data_bkg": 13, "data_cds_arrai": 6, "data_challeng": [12, 13, 14, 16, 17, 18, 19], "data_combin": 27, "data_combined_thin_disk": 27, "data_dir": [22, 23, 28], "data_fil": [0, 10], "data_io": [0, 11, 12, 13, 14, 15, 16, 17, 18], "data_load": [11, 13, 14, 15, 17, 18, 19], "data_path": [25, 26], "datafram": 1, "dataio": [0, 2, 12, 27], "datalist": [6, 19, 25, 26, 27], "dataload": [1, 2], "datareduct": [11, 12, 13, 14, 15, 16, 17, 18], "dataset": [0, 1, 12, 16, 25, 26, 27], "datset": 0, "dc2": [1, 10, 19, 22, 23, 25, 26, 27, 28], "de": [25, 26, 27], "deal": 27, "dec": [0, 6, 19, 22, 24, 27], "declin": 0, "deconvolut": [2, 8, 20], "decor": 24, "deduc": 23, "def": [11, 12, 13, 14, 15, 16, 17, 18, 19, 24], "defaul": 4, "default": [0, 1, 4, 6, 7, 10, 22, 23, 24, 28], "defin": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26], "definit": [11, 13, 15, 17, 19, 27], "defualt": 0, "deg": [0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "degeneraci": 27, "degre": [0, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 27], "del": 28, "delet": [22, 23, 28], "delim_whitespac": 10, "delta": [1, 4, 11, 13, 15, 25, 26, 27], "delta_map": [11, 13, 14, 15, 17, 18, 19], "delta_tim": [1, 12, 14, 16, 18], "demonstr": 27, "depend": [0, 9, 10, 12, 13, 16, 17, 24, 25, 26, 28], "dependeci": 24, "deprec": [8, 22, 24], "deriv": [24, 28], "desc": [25, 26, 27], "describ": [1, 3, 5, 6, 8, 11, 12, 13, 15, 16, 17, 19, 20, 22, 27, 28], "descript": [2, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 27], "detail": [22, 24], "detal": [1, 11, 13, 15, 17, 19], "detect": [10, 11, 13, 15, 17, 19, 25, 27], "detector": [2, 4, 5, 6, 8, 10, 11, 12, 14, 15, 16, 18, 19, 20, 23, 24, 25, 26, 27, 28], "detectorrespons": [2, 3, 22], "determin": 10, "dev": 10, "develop": [8, 10, 11, 15, 24], "deviat": 27, "df": [1, 10], "diagram": 23, "dict": 0, "dictionari": [0, 10], "did": [9, 24], "didn": 9, "diff": 18, "differ": [3, 4, 6, 14, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "differenti": [3, 11, 13, 15, 17, 19, 25, 26], "differential_flux": [15, 17, 18, 19], "differential_flux_truth": 19, "differnt": [14, 18], "diffus": 20, "dimens": [10, 22], "dimension": [1, 3, 10, 19], "dimensionless_unsc": [11, 15], "direct": [0, 4, 10, 11, 12, 15, 16, 22, 23, 24, 28], "directli": [1, 10, 19, 24, 27], "directori": [4, 6, 11, 15, 18, 19, 22, 23, 25, 26, 28], "disabl": [10, 13, 17, 24, 25, 26], "disadvantag": [12, 16, 20], "discret": 28, "discuss": [8, 20, 22], "disk": [3, 11, 12, 13, 24, 27], "dispatch": 24, "dispers": [3, 4, 22], "displai": [10, 25, 26, 27], "display_minor_tick": 27, "dist": [0, 3], "distanc": [0, 3, 10], "distinct": 5, "distribut": [6, 20, 22, 24, 27], "divid": [11, 12, 13, 14, 15, 16, 17, 18, 19], "dn": [25, 26, 27], "dnde": 27, "do": [5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27], "doc": [8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24], "document": [9, 10, 24], "doe": [0, 14, 18, 22, 24, 25, 26], "doesn": [8, 24], "don": [19, 22, 23, 24, 28], "done": [10, 11, 13, 14, 15, 17, 18, 19, 25, 26, 27], "dot": 10, "doubl": 19, "down": 28, "download": [7, 10, 11, 12, 15, 16, 19, 20, 27], "downscal": [14, 18], "dp": [15, 17, 18], "dpar": [12, 15, 16, 17, 18], "dpi": [4, 6, 24], "dr": [5, 6, 24, 25, 26, 27], "draw": 28, "drm": 22, "dt": [4, 19, 24], "dtype": [11, 15, 22, 24, 27], "dubiou": [12, 14, 16, 18, 22, 23, 25], "due": [9, 12, 16, 24, 25, 26, 27], "dufunc": 24, "duraion": 28, "durat": [5, 6, 12, 14, 16, 18, 24, 28], "dure": [9, 19, 24, 25, 26, 28], "durectori": 7, "dweel": [3, 23], "dwell": [1, 4, 12, 14, 16, 18, 20, 22, 24], "dwell_map": 4, "dwell_time_map": [19, 22, 23, 24], "e": [5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "e0": [19, 25], "e0_inj": [19, 25, 26], "e_": [25, 26], "e_cent": 18, "e_i": 28, "e_m": 10, "each": [1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28], "earlier": 10, "earth": 23, "easi": [12, 16, 24], "easier": 24, "ebltabl": [10, 13, 17, 24], "eccentr": 27, "edg": [1, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "edit": 9, "effect": [3, 4, 22, 24], "effici": 10, "egg": 24, "ei": [1, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22], "ei_edg": 4, "ei_hi": 4, "ei_lo": 4, "either": [0, 1, 3, 10, 24], "elaps": 4, "electron": [3, 10], "elinewidth": [25, 26, 27], "ellips": 27, "els": [12, 14, 16, 24, 26], "em": [0, 1, 3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "em_edg": 4, "em_hi": 4, "em_lo": 4, "emax": [3, 19], "emax_inj": 19, "emin": [3, 19], "emin_inj": 19, "emiss": [20, 27], "emit": 28, "en": 24, "encod": [3, 10, 22, 24], "encount": [11, 13, 14, 15, 17, 18, 19, 27, 28], "end": [1, 4, 11, 13, 15, 17, 19, 23, 25, 26, 28], "endpoint": 7, "energi": [0, 1, 3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "energy_band": [15, 17, 18, 19], "energy_bin": [10, 12, 14, 16], "energy_bin_edg": [12, 14, 16], "energy_channel": [6, 28], "energy_edg": [1, 11, 13, 14, 15, 17, 18, 19], "energy_index": [11, 13, 14, 15, 17, 18, 19], "energy_truth": [15, 17, 18], "energyband": [15, 17, 19], "engin": [25, 26, 27], "enough": [22, 24], "ensur": 28, "entir": 27, "enumer": [18, 23, 25, 26], "env": [9, 10, 13, 17, 24, 25, 26], "environ": [9, 11, 12, 13, 14, 15, 16, 17, 18, 19], "epsilon_": [11, 13, 15, 17, 19], "epsilon_i": [11, 13, 15, 17, 19], "equal": [14, 18, 27, 28], "equal_tail_interv": [25, 26], "equat": [1, 11, 13, 15, 17, 19], "equinox": [25, 26], "erfa": [12, 14, 16, 18, 22, 23, 25], "erfawarn": [12, 14, 16, 18, 22, 23, 25], "erg": 0, "err_energi": [15, 17, 18, 19], "error": [4, 10, 13, 17, 19, 20, 23, 24, 27, 28], "errorbar": [15, 17, 18, 19, 25, 26, 27], "errorbarcontain": 24, "essenti": [10, 27], "estim": [20, 25, 26, 28], "eta": 1, "etc": [1, 11, 12, 13, 15, 16, 17, 19], "euler": 28, "evalu": [25, 26], "evaluate_at": [25, 26], "event": [0, 1, 3, 4, 10, 12, 13, 14, 16, 17, 18, 24], "event_binned_data": 1, "event_dens": [11, 15], "event_hdf5_filepath": 1, "event_max": [0, 10], "event_min": [0, 10], "event_rang": [0, 10], "event_yaml_filepath": 1, "eventu": [5, 6, 12, 16, 25, 26], "everi": [12, 14, 16, 18, 27], "exact": 10, "exactli": [27, 28], "examin": 28, "exampl": [1, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23], "example_notebook": 19, "excentr": 27, "excess": [3, 11, 13, 15, 17, 19, 22, 28], "exclus": [6, 28], "execpt": 28, "execut": [1, 9, 12, 16, 20], "exhaust": 2, "exist": [22, 23, 28], "exit": 9, "exp": [12, 13, 14, 16, 17, 18, 19, 25, 26, 27], "expect": [3, 6, 8, 10, 11, 13, 14, 15, 17, 18, 19, 20, 24, 25, 26, 27, 28], "explain": [8, 14, 18, 20], "explan": [8, 10, 20], "explicitli": [0, 9], "explor": 24, "export": 20, "exposur": [1, 3, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22], "exposure_dict": [12, 14, 16], "exposure_map": [3, 22], "exposure_t": [1, 12, 14, 16, 18], "exposure_table_from_fit": [12, 14, 16, 18], "exposure_table_nsid": [14, 18], "exposure_tim": 4, "extend": [1, 8, 20, 25, 26, 27], "extended_source_spectral_fit_galactic_fram": 27, "extendedmodel": 1, "extendedsourc": [1, 27], "extens": [10, 27], "extern": 8, "extract": [8, 10, 12, 16, 28], "extrat": 22, "f": [10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "f27cd0bee26c56a93d34a06f2c0af88cb1f59f6": [11, 12, 15, 16, 18, 19], "f_1": 27, "fact": [27, 28], "factor": [1, 10, 25, 26, 28], "fail": [6, 9, 19], "fall": 24, "fals": [0, 1, 3, 4, 6, 7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 28], "fast": [1, 12, 14, 16, 18], "fast_ts_fit": 6, "faster": 28, "fasttsmap": [2, 6, 28], "fatal": 9, "featur": [8, 9], "feedback": [8, 28], "fermilatlik": [10, 13, 17, 24, 25, 26], "fermitool": [10, 13, 17, 24, 25, 26], "fetch_wasabi_fil": [2, 7, 10, 11, 12, 15, 16, 19, 22, 23, 25, 26, 27, 28], "few": [13, 14, 17, 19, 25, 26], "field": [10, 23], "fig": [15, 17, 18, 23, 24, 25, 26, 27], "fig_": [15, 17, 18], "figsiz": [15, 17, 18, 23], "figur": [15, 17, 18, 19, 24], "file": [0, 1, 2, 3, 6, 7, 8, 9, 20, 25, 26, 27, 28], "file_list": 27, "file_nam": 4, "filenam": [0, 1, 3, 12, 13, 14, 16, 17, 18, 22, 23], "filepath": 1, "fill": [1, 12, 14, 16, 24, 27], "fill_between": [25, 26], "filter": [1, 11, 13, 14, 15, 17, 18, 19], "final": [22, 24, 25, 26, 28], "find": [4, 8, 11, 12, 13, 15, 16, 17, 25, 26, 27, 28], "finer": [12, 13, 14, 16, 17, 18, 19, 23], "finit": 24, "first": [1, 3, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27], "fisbel": 24, "fit": [0, 1, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24], "fit_bkg_gaussian_error": 26, "fit_bkg_poisson_error": 26, "fit_gaussian_error": 26, "fit_poisson_error": 26, "fix": [1, 12, 16, 22, 23, 25, 26, 27, 28], "fix_index": 6, "fk4": 19, "fk5": 19, "flag": [5, 9], "flat": [1, 11, 13, 14, 15, 17, 18, 19], "flatcontinuumisotrop": [19, 24], "flatten": 6, "flattend": 6, "flexibl": [11, 12, 15, 16], "float": [0, 1, 3, 4, 5, 6, 10, 11, 13, 15, 17, 18, 19, 27], "flux": [1, 11, 13, 18, 22, 25, 26, 27], "flux_hi": [25, 26], "flux_inj": [25, 26], "flux_lo": [25, 26], "flux_median": [25, 26], "flux_truth": [15, 17, 18], "fmax": 27, "fmin": 27, "fmt": [15, 17, 18, 19], "focus": [11, 12, 13, 15, 16, 17], "folder": 9, "follow": [1, 3, 8, 9, 12, 14, 16, 18, 22, 23, 24, 25, 26, 27, 28], "followd": 23, "fontsiz": [15, 17, 18, 27], "forg": 9, "forget": [11, 13, 14, 15, 17, 18, 19], "fork": [6, 8], "form": 0, "format": [1, 6, 8, 15, 17, 19, 20, 24, 26, 28], "formatcoodata": [11, 14, 15, 18], "former": [1, 12, 14, 16, 18], "formula": 27, "found": 9, "four": [0, 10], "fov": [19, 24], "frac": [11, 13, 15, 17, 19, 25, 26, 27, 28], "frame": [4, 6, 12, 14, 16, 19, 22, 24, 26, 27], "free": [25, 26, 27, 28], "frequentist": 26, "friendli": [19, 24], "from": [0, 1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "from_fit": [1, 12, 14, 16, 18], "from_nam": 22, "from_orient": [1, 12, 14, 16, 18], "from_pickl": 1, "front": 28, "full": [0, 3, 5, 6, 7, 19, 27, 28], "full_detector_respons": [1, 11, 12, 14, 15, 16, 18], "full_detector_response_filenam": [12, 14, 16, 18], "fulldetectorrespons": [1, 2, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "fulli": 20, "function": [0, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28], "further": [8, 22], "futur": [1, 10, 11, 12, 13, 14, 15, 17, 18, 19, 22, 23, 28], "futurewarn": [11, 13, 14, 15, 17, 18, 19], "fwhm": [1, 11, 13, 15, 17, 19], "g": [5, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27], "gal_511": 27, "gal_511_binned_data": 27, "gal_coord": 22, "gal_grid": 22, "galact": [0, 1, 4, 5, 6, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26], "galacti": [19, 24], "galacticcd": [11, 12, 15, 16], "galacticscan": 10, "galat": 28, "galaxi": 27, "gamma": [10, 11, 12, 13, 15, 16, 17, 18, 19, 24], "gather": [6, 25, 26], "gather_all_plugin": 6, "gauss": [11, 13, 15, 17, 19], "gaussian": [1, 11, 13, 14, 15, 17, 18, 19, 27], "gaussian_on_spher": 27, "gb": [11, 12, 13, 14, 15, 16, 17, 18, 19, 27, 28], "gbal6xatqznrv3gfh9y4": 7, "gc": [22, 28], "gener": [1, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 27, 28], "generated_jit": 24, "geometr": 24, "geomspac": [25, 26], "get": [0, 3, 6, 9, 12, 14, 16, 19, 20, 22, 23], "get_arf": [4, 22], "get_attitud": [4, 23, 24], "get_binned_data": [0, 10, 11, 15, 27, 28], "get_binned_data_scatt": [12, 14, 16], "get_binning_info": 0, "get_cds_arrai": 6, "get_chi_critical_valu": 6, "get_cmap": 23, "get_dict_from_fit": [0, 12, 14, 16], "get_dict_from_hdf5": 0, "get_differential_flux": [15, 17, 18, 19], "get_dispersion_matrix": [3, 22], "get_dwell_map": [4, 19, 22, 23, 24], "get_effective_area": [3, 22], "get_ei_cds_arrai": 6, "get_expect": [3, 22, 24], "get_hypothesis_coord": [6, 28], "get_interp_respons": [3, 22], "get_log_lik": [5, 25, 26], "get_number_of_data_point": [24, 25, 26, 27], "get_pha": [4, 22], "get_point_source_respons": [3, 22, 24], "get_psr_in_galact": 6, "get_psr_rsp": [4, 22], "get_raw_lightcurv": [0, 10], "get_raw_spectrum": [0, 10], "get_rmf": [4, 22], "get_scatt_map": [4, 22, 23], "get_spectral_respons": [3, 22], "get_target_in_sc_fram": [4, 19, 22, 23], "get_tim": [4, 23], "get_time_delta": [4, 19, 24], "get_transform": [11, 13, 14, 15, 17, 18, 19, 22, 24], "get_vari": [25, 26], "git": [9, 20], "github": [8, 9, 20, 27], "give": [24, 27], "given": [0, 1, 3, 4, 22, 23, 24, 25, 26, 27], "glat": [12, 14, 16, 27], "global": 28, "glon": [12, 14, 16, 27], "go": [12, 16], "goal": [9, 24, 25, 26], "gone": 27, "good": [27, 28], "good_chunks_unzip": [16, 17, 18, 22, 23, 25, 26, 28], "got": 24, "gp": [10, 23], "gpu": 28, "grai": [12, 15, 16, 17, 18], "graphic": 10, "graticul": [12, 15, 16, 17, 18], "grb": [8, 20], "grb090206620": 26, "grb_binned_data": [19, 26, 28], "grb_bkg": 26, "grb_bkg_binned_data": [19, 26], "grb_dataio_config": 19, "grb_ori": 28, "grb_signal_path": 28, "grb_spectral_fit_local_fram": [26, 28], "grb_start_tim": 19, "grb_stop_tim": 19, "grb_tmax": 28, "grb_tmin": 28, "grbbkg": 24, "grbdata": 24, "grbori": [19, 24], "grbsignal": 24, "greater": 27, "greatli": 8, "green": 28, "grid": [11, 13, 14, 15, 17, 18, 19, 22, 24, 27], "gridspec": [11, 13, 14, 15, 17, 18], "group": 1, "grow": 24, "gsl": [10, 13, 17, 24, 25, 26], "gt": [11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27], "gtooczy5hgx3sketno2fuwiq4djoewzigvtchoov": 7, "gunzip": 11, "gz": [0, 10, 11, 12, 14, 15, 16, 27, 28], "gzip": 27, "h": [9, 19], "h5": [3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "h5close39c45pt5": 9, "h5public": 9, "h5py": [9, 27], "h_ori": 4, "ha": [0, 1, 4, 10, 12, 14, 16, 18, 22, 24, 27, 28], "had": [25, 26, 27], "half": 10, "hand": 23, "handl": [0, 3, 8, 10, 20, 22, 23, 25, 26, 27], "hardcod": 6, "have": [4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "hawc": [10, 13, 17, 24, 25, 26, 27], "hawclik": [10, 13, 17, 24, 25, 26], "hd5f": 28, "hdf5": [0, 1, 3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28], "hdf5_dir": 9, "hdf5_filepath": 1, "he": 24, "header": [9, 13, 17, 22, 24], "headlin": 19, "healpi": [11, 12, 13, 14, 15, 16, 17, 18, 19, 27], "healpix": [0, 1, 3, 10, 12, 13, 14, 16, 17, 18, 22, 24, 27], "healpix_index": [1, 12, 14, 16, 18], "healpix_index_xpoint": 1, "healpix_index_zpoint": 1, "healpix_map": 4, "healpixaxi": [11, 12, 13, 14, 15, 16, 17, 18, 19], "healpixbas": [19, 22, 27], "healpixmap": [3, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27, 28], "healpixo3_10bins_log_flat": [16, 17, 18, 22, 23, 25, 26, 28], "healpixo4": [12, 13, 14, 27], "heavi": [12, 16], "height": 27, "help": [23, 26], "here": [0, 1, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28], "hi_lim": 19, "hidden": 1, "hierarch": 27, "high": [8, 10, 25, 26, 27], "higher": 28, "highest": 19, "hint": 6, "hist": [1, 6], "histogram": [0, 1, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27, 28], "histori": [4, 22], "histpi": [0, 1, 3, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 27, 28], "hit": 10, "hold": [3, 15, 17, 18], "horizont": 24, "host": 8, "hot": 24, "hour": [12, 14, 16], "how": [2, 8, 12, 16, 20, 22, 23, 24, 27, 28], "howev": [8, 10, 11, 12, 15, 16, 20, 22, 23, 24, 25, 26, 28], "hp": [11, 12, 13, 14, 15, 16, 17, 18, 19, 27], "hr": [10, 23], "hspace": [15, 17, 18], "html": [9, 24], "http": [7, 8, 9, 24, 27], "huge": [12, 16], "hypothes": 28, "hypothesi": [3, 6, 24, 28], "hypothesis_coord": [6, 28], "hz": 24, "i": [0, 1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28], "i_energi": [15, 17, 18], "i_iter": [15, 17, 18], "icr": [19, 22, 24, 27], "icrc": 22, "id": 0, "id1": 10, "idea": [8, 24, 28], "ideal": [1, 10, 11, 15], "ident": [19, 23, 24], "identif": 10, "idx": [4, 18, 28], "idx_energi": 19, "idx_iter": 19, "ignor": [23, 27], "ij": [1, 11, 13, 15, 17, 19], "imag": [2, 4, 8, 20, 22, 23, 24, 27, 28], "image_deconvolut": [1, 12, 14, 16, 18], "image_respons": [11, 15], "image_response_dens": [11, 15], "image_response_dense_project": 1, "imagedeconvolut": [1, 2, 11, 12, 13, 14, 15, 16, 17, 18, 19], "imagedeconvolution_parfile_gal_511kev": 11, "imagedeconvolution_parfile_gal_crab": 15, "imagedeconvolution_parfile_grb_minidc2": 19, "imagedeconvolution_parfile_scatt_511kev": [13, 14], "imagedeconvolution_parfile_scatt_crab": [17, 18], "imagingrespons": [12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "imartin5": 22, "implement": [1, 11, 12, 13, 14, 15, 17, 18, 19, 24, 25, 26, 27, 28], "impli": [4, 6], "implicit": 24, "import": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27], "improv": [11, 13, 14, 15, 17, 18, 19], "inc1": 10, "incid": 4, "incidenct": 10, "inclin": [12, 16, 27], "includ": [0, 3, 5, 6, 9, 22, 24, 25, 26, 27, 28], "inclus": [0, 6, 28], "increas": [10, 23], "indec": [25, 26], "independ": [0, 27, 28], "index": [1, 3, 4, 6, 9, 11, 13, 15, 17, 19, 22, 24, 25, 26, 28], "indic": [12, 16], "individu": [25, 26], "inerti": 23, "inf": [25, 26, 27], "info": [4, 10, 13, 17, 24, 25, 26, 27], "inform": [0, 3, 5, 6, 8, 10, 13, 17, 22, 23, 24, 25, 26, 28], "inherit": 23, "initi": [0, 1, 10, 12, 16, 22, 24, 25, 26, 27], "initial_model_map": 1, "inj_bkg_gaussian_error": 26, "inj_bkg_poisson_error": 26, "inj_gaussian_error": 26, "inj_poisson_error": 26, "inject": [25, 26], "injector": 20, "inlin": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 27, 28], "inner_fit": 5, "input": [0, 1, 2, 3, 6, 7, 10, 11, 13, 15, 17, 19, 24, 27], "input_fil": [0, 27], "input_file_nam": [6, 24], "input_fit": 0, "input_hdf5": 0, "input_yaml": [0, 11, 12, 14, 15, 16], "inputs_511kev_dc2": [11, 12, 13, 14], "inputs_crab_dc2": [15, 16, 17, 18], "inputs_half_tim": 10, "insid": [9, 19], "inspect": 20, "instal": [8, 10, 13, 17, 24, 25, 26], "instanc": [0, 1, 4, 10, 27], "instantani": 10, "instanti": [6, 25, 26], "instantiate_plugin": 6, "instead": [2, 10, 12, 16, 20, 22, 24, 27, 28], "instrins": 1, "instruct": 8, "instrument": [0, 3, 4, 6, 10, 13, 17, 22, 23, 24, 25, 26, 27], "instrument_point": 0, "int": [0, 1, 3, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 19], "integ": 0, "integr": [24, 27], "integratd": 19, "integrated_flux": [15, 17, 19], "integrated_flux_each_band": [15, 17, 19], "integrated_flux_each_band_truth": 19, "integrated_flux_truth": 19, "integrationwarn": 25, "intens": 10, "inter": [17, 19], "interact": [3, 10, 20], "interest": [2, 20, 28], "interfac": [2, 8, 10, 13, 17, 24, 25, 26], "intermedi": 1, "intermidi": 1, "intern": [5, 23, 25, 26, 27], "interp1d": [0, 18], "interpol": [0, 3, 4, 18, 22], "interpolate_direct": 4, "interpret": 8, "interv": [4, 12, 16, 19, 23, 26, 28], "intro_cosipi": 24, "introduc": [1, 11, 12, 15, 16, 19], "introduct": [20, 27], "intuit": [12, 16], "invalid": [10, 11, 13, 14, 15, 17, 18, 19, 27], "investig": [12, 16], "io": [2, 8, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 24, 27], "ipix": [11, 15], "ipynb": [11, 12, 13, 14, 15, 16, 17, 18, 20], "is_minidc2_format": [1, 13, 14, 17, 18, 19], "is_nest": [12, 14, 16, 27], "is_nest_model": 1, "is_norm": [25, 26, 27], "is_spars": 3, "iso_map": 24, "iso_respons": 24, "isotrop": 24, "issu": [2, 8, 9, 12, 16, 20, 27], "iter": [1, 6, 11, 13, 14, 15, 17, 18, 19, 28], "iteration_idx": [11, 13, 14], "iterrow": [12, 14, 16], "its": [12, 16, 20, 23, 28], "itself": [0, 24], "j": [11, 13, 15, 17, 19], "j2000": [25, 26], "jit": 24, "joint": 5, "joint_likelihood": [24, 25, 26, 27], "jointlikelihood": [19, 25, 26, 27], "jun": 9, "jupyroot": [13, 17], "just": [23, 24, 27], "k": [10, 11, 13, 15, 17, 19, 22, 23, 24, 25, 26, 27, 28], "k_2": 27, "k_inj": [19, 25, 26], "kb": [26, 28], "ke": 28, "keep": [0, 23, 27], "kei": [12, 14, 16], "kernel": 28, "kev": [0, 1, 4, 10, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "keyword": [10, 23, 24, 27], "knoedlsed": [1, 11, 13, 15, 17, 19], "know": [12, 16, 19, 20, 23, 28], "known": [3, 11, 13, 15, 17, 19, 25, 26], "kwarg": [1, 3, 4, 5, 6], "l": [1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "label": [1, 3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "label_energi": 1, "label_imag": 1, "lambda": [19, 28], "lambda_": [11, 13, 15, 17, 19], "lambda_i": [25, 26], "lambda_j": [11, 13, 15, 17, 19], "laptop": 28, "larg": [11, 13, 14, 15, 17, 18, 19], "larger": [13, 17, 19], "last": [10, 24], "lastli": 22, "lat": [0, 12, 14, 16, 22, 23, 24, 25, 26, 27], "lat0": 27, "lat_transient_build": [10, 13, 17, 24, 25, 26], "later": 0, "lati": 0, "latidud": 0, "latitud": [0, 10, 23, 24, 25, 26, 27], "latter": [1, 12, 14, 16, 18], "latx": 0, "latz": 0, "launch": 8, "law": 20, "lazi": [13, 17, 19], "lb": [1, 11, 13, 15, 17, 18, 19], "lc": 10, "learn": 27, "least": [4, 12, 16], "left": [11, 13, 15, 17, 19, 23, 25, 26, 28], "legend": [10, 15, 17, 18, 19, 25, 26, 27, 28], "len": [12, 14, 16, 19, 25, 26], "length": [11, 13, 15, 17, 19, 22], "leq": [25, 26], "less": [12, 16], "let": [22, 23, 24, 27, 28], "level": [6, 8, 10, 25, 26, 27, 28], "lib": [6, 10, 24], "librari": [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26], "light": 10, "lightcurv": 0, "like": [10, 22, 23, 24, 25, 26, 27], "likelihood": [1, 5, 6, 20, 25, 26], "limit": 0, "limitaton": 10, "line": [9, 11, 15, 17, 18, 23, 24, 27], "linea": 22, "linear": [3, 12, 13, 14, 16, 17, 18, 22], "linearli": [3, 4], "liner": [15, 17, 18], "linestyl": [19, 24], "linewidth": [15, 17, 18, 25, 26, 27], "link": [13, 17, 20, 27], "link_model_all_plugin": [6, 24], "linspac": [12, 14, 16, 27], "list": [0, 1, 2, 3, 6, 10, 11, 13, 15, 17, 19, 20, 22, 25, 26, 27, 28], "list_of_map": 27, "list_of_nam": 27, "ll": [10, 23, 24, 25, 26, 27], "lo_lim": 19, "load": [0, 1, 4, 6, 10, 12, 16, 22, 25, 26, 27, 28], "load_binned_data_from_hdf5": [0, 10, 13, 17, 18, 19, 25, 26, 27], "load_from_filepath": 1, "load_full_detector_response_on_memori": [1, 13, 14, 17, 18, 19], "load_t": [6, 24], "loader": 1, "local": [0, 4, 6, 7, 8, 10, 11, 12, 14, 15, 16, 20, 23], "locat": [3, 6, 12, 13, 14, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28], "log": [5, 9, 12, 16, 22, 25, 26, 27], "log_lik": 5, "loglikelihood": [11, 13, 14, 15, 17, 18, 19], "loglog": 10, "lon": [0, 12, 14, 16, 22, 23, 24, 27], "lon0": 27, "long": [1, 12, 14, 16, 18, 28], "longer": [12, 16], "longitud": [0, 10, 23, 24, 25, 26, 27], "loni": 0, "lonlat": [12, 14, 15, 16, 17, 18], "lonx": 0, "lonz": 0, "look": [4, 22, 23, 24, 27, 28], "lose": [1, 12, 14, 16, 18], "lot": [17, 19, 27], "low": [22, 25, 26, 27], "lower": [4, 10, 28], "lower_channel": [6, 28], "lowr": [19, 24], "lt": [10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26, 27], "luci": [11, 13, 15, 17, 19], "m": [11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 27], "m1": [9, 11, 13, 14, 15, 17, 18, 19], "m_bkg": 24, "m_data": 24, "m_signal": 24, "macbook": [11, 13, 14, 15, 17, 18, 19], "macosx": 24, "magma": [11, 13, 14], "mai": [1, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 27], "main": [0, 8, 9, 10, 12, 16, 25, 26, 27, 28], "mainli": [9, 11, 15], "major": 27, "make": [0, 1, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28], "make_binning_plot": [0, 10, 28], "make_plot": 0, "manag": [1, 22], "mandatori": [1, 11, 13, 14, 15, 17, 18], "mani": 8, "manipul": [20, 28], "manual": [12, 25, 26], "map": [0, 1, 2, 3, 4, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 27], "map_healpxmap": [11, 13, 14, 15, 17, 18, 19], "map_pointing_zx": [12, 16], "mapbroadbulg": 27, "mapdisk": 27, "mapnarrowbulg": 27, "mapp": 23, "marker": [15, 17, 18, 22], "markers": [15, 17, 18], "mass": [10, 25, 26], "massiv": 28, "match": [5, 10, 14, 18, 27], "math": [12, 16], "mathbf": [25, 26], "mathcal": [25, 26], "mathrm": [10, 11, 12, 13, 15, 16, 17, 19, 22, 23, 24, 27], "matplotlib": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "matric": [3, 11, 15, 19, 22], "matrix": [1, 3, 4, 23, 25, 26, 27], "matter": 8, "max": [0, 10, 11, 13, 14, 15, 17, 18, 19, 23, 24, 28], "max_numb": 28, "max_valu": [25, 26, 27], "maxim": [11, 13, 15, 17, 19, 25, 26, 28], "maximum": [0, 1, 11, 13, 15, 17, 25, 26, 27], "mayb": 24, "mb": [10, 11, 12, 15, 16, 22, 23, 25, 26, 27, 28], "mbroadbulg": 27, "mbulg": 27, "mdisk": 27, "me": 28, "mean": [6, 11, 13, 15, 17, 19, 20, 25, 26, 28], "meant": [8, 22], "measur": [0, 3, 4, 10, 12, 13, 14, 16, 17, 18, 22, 24, 25, 26, 27, 28], "measured_energy_axi": 3, "mechan": 20, "median": [25, 26], "megalib": [0, 10, 23, 24, 25, 26, 27], "memori": [0, 1, 11, 13, 14, 15, 17, 18, 19, 22, 27, 28], "messag": [4, 10, 13, 17, 24, 25, 26], "method": [0, 1, 2, 6, 10, 11, 12, 13, 15, 16, 17, 19, 20, 24, 25, 26], "mev": [24, 25, 26], "mhealpi": [0, 3, 4, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27, 28], "middl": 24, "might": [9, 13, 17, 19, 20, 28], "migrat": 3, "mimim": 27, "mimrec": 10, "min": [0, 10, 11, 13, 14, 15, 17, 18, 19, 28], "min_exposur": 1, "min_num_point": 1, "min_valu": [10, 13, 17, 24, 25, 26, 27], "mini": [1, 10, 19], "miniforge3": 9, "minim": [5, 10, 13, 17, 24, 25, 26, 27], "minimum": [0, 1, 25, 26, 27], "minor": 27, "minuit": [24, 25, 26, 27], "minut": [11, 12, 13, 14, 15, 16, 17, 18, 28], "mismatch": [13, 17], "miss": [2, 9, 20], "mitig": 23, "mjmoss": 9, "mk_ccm_upsampl": 14, "mkdir": [11, 15, 18], "mkl_num_thread": [10, 13, 17, 24, 25, 26], "ml": [1, 11, 13, 15, 17, 19], "mnarrowbulg": 27, "mock": [9, 24], "mode": 24, "model": [1, 3, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 24, 25, 26], "model_map": [11, 13, 14, 15, 17, 18, 19], "model_map_itr": [11, 15, 18], "model_properti": [14, 18], "modelbroadbulg": 27, "modelcentralpoint": 27, "modeldisk": 27, "modelmap": [1, 2, 11, 13, 14, 15, 17, 18, 19], "modelnarrowbulg": 27, "modifi": [0, 1, 8, 11, 12, 13, 14, 15, 16, 17, 20, 22, 23, 28], "modul": [24, 25, 26], "mollview": [11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24], "mollviewsubplot": 23, "mollweid": 23, "monitor": [12, 16], "mono": 3, "month": [11, 12, 13, 15, 16, 17, 28], "more": [1, 6, 10, 11, 12, 14, 15, 16, 18, 19, 22, 24, 28], "morpholog": 27, "morphologi": 27, "most": [10, 12, 16, 22, 24], "move": [12, 16, 22, 23], "movement": [4, 19, 22, 24], "mpointbulg": 27, "msg": 24, "mu": 27, "mu_1": 27, "much": [12, 13, 16, 17, 19, 24], "multi": [3, 27], "multidimension": 22, "multinest": [10, 13, 17, 24, 25, 26], "multipl": [20, 22, 23, 24, 25, 26, 27, 28], "multipli": [4, 19, 27], "must": [4, 6, 11, 13, 14, 15, 17, 18, 19, 22], "n": [9, 11, 15, 18, 23, 25, 26, 27, 28], "n_scatt_bin": [12, 14, 16], "naima": [10, 13, 17, 24, 25, 26], "name": [0, 1, 4, 5, 6, 7, 11, 12, 13, 15, 16, 17, 19, 25, 26, 27], "narrow": 27, "narrowbulg": 27, "nbin": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22], "nbsphinx": [9, 12, 16], "ncol": [15, 17, 18, 23], "ndarrai": [4, 6, 22], "ndim": 3, "nebula": 25, "necessari": [19, 25, 26, 28], "necessarili": 0, "need": [0, 2, 5, 6, 9, 10, 12, 14, 16, 18, 19, 22, 23, 24, 25, 26, 27, 28], "neg": 28, "negative_error": [25, 26, 27], "neighbour": 4, "nest": [1, 12, 14, 16, 22, 27], "new": [0, 1, 9, 25, 27, 28], "next": [10, 12, 13, 16, 17, 19, 22, 27, 28], "nice": 20, "nisd": 14, "nnz1695744density0": 18, "nnz27869184density0": 14, "nnz3072density0": 11, "nnz768density0": 15, "nois": [11, 13, 15, 17, 19], "nomal": [11, 13, 14, 15, 17, 18, 19], "non": [0, 24], "none": [0, 1, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 25, 26, 27, 28], "nonsparse_nside16": [12, 13, 14, 27], "nonsparse_nside8": [16, 17, 18, 22, 23, 25, 26, 28], "nopython": 24, "norm": [3, 6, 11, 13, 14, 15, 17, 18, 27, 28], "norm_err": 6, "normal": [1, 10, 25, 26, 27], "normalis": 3, "note": [0, 1, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 27, 28], "notebook": [12, 14, 16, 18, 19, 20, 24, 25, 26, 27, 28], "now": [0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 26, 27], "np": [0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "npix": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 27], "npix_loc": [12, 14, 18], "npyufunc": 24, "nrow": [15, 17, 18], "nside": [1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28], "nside2npix": [12, 14, 16, 18], "nside8": [19, 24], "nside_loc": [12, 14, 18], "nside_model": [1, 12, 14, 18, 19, 27], "nside_scatt": [12, 14, 16], "nside_scatt_bin": [14, 18], "nu": 19, "nufnu": [25, 26], "nuisanc": 5, "nuisance_param": [5, 25, 26, 27], "nulambda": [1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22], "null": [25, 26, 27, 28], "num_point": [1, 12, 14, 16, 18], "numba": 24, "numbadeprecationwarn": 24, "number": [0, 1, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 28], "number_phi_bin": [12, 14, 16], "numexpr_num_thread": [10, 13, 17, 24, 25, 26], "numpi": [4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "o": [11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "ob": 6, "object": [4, 6, 10, 11, 13, 14, 15, 17, 18, 19, 22, 24, 25, 26, 28], "observ": [4, 12, 16, 19, 23, 24, 28], "obstim": 22, "obtain": [3, 20, 22, 24, 27, 28], "occurr": [25, 28], "off": [5, 10, 13, 17, 19, 24, 25, 26], "og": 23, "old": 0, "omp_num_thread": [13, 17, 24, 25, 26], "onc": [1, 9, 11, 13, 14, 15, 17, 18, 19, 22, 24, 27], "one": [3, 6, 11, 13, 15, 17, 19, 22, 28], "onli": [0, 1, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "onlytruesize24": 15, "onlytruesize51": 18, "onlytruesize850": 14, "onlytruesize96": 11, "onto": [10, 27], "op": 27, "open": [1, 2, 3, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 27, 28], "oper": [3, 22], "opsspectrum": 27, "optic": 0, "optim": [1, 10, 11, 13, 15, 17, 19, 24, 25, 26, 27, 28], "optimized_model": [25, 26, 27], "option": [0, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 16, 17, 24, 25, 26, 27], "orbit": [12, 16], "order": [0, 11, 12, 13, 15, 16, 17, 19, 23, 25, 26, 27, 28], "ori": [0, 10, 12, 14, 16, 18, 19, 22, 23, 24, 25, 26, 27, 28], "ori_fil": 10, "ori_filepath": [12, 14, 16, 18], "ori_ful": 28, "ori_path": [22, 23], "orient": [0, 1, 4, 5, 6, 10, 20, 22, 25, 26, 27], "orientation_fil": 24, "orientation_path": 28, "orientationsgalact": 23, "origin": [12, 16], "orit": [22, 28], "orthopositronium": 27, "orthview": [19, 24], "orthviewsubplot": 24, "other": [5, 6, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 28], "other_plugin": 6, "otherwis": 28, "our": [12, 16, 20, 22, 24, 25, 26, 27, 28], "out": [2, 22, 23], "out_nam": 4, "output": [0, 2, 3, 7, 9, 10, 13, 17, 18, 24, 25, 26, 27], "output_file_nam": 6, "output_nam": [0, 10, 27, 28], "over": [4, 6, 12, 16, 23, 24, 27], "overcom": 0, "overrid": [1, 7], "override_paramet": [1, 11, 13, 14, 15, 17, 18, 19], "overview": 2, "overwrit": [1, 11, 12, 14, 15, 16, 18, 19], "own": 27, "p": [25, 26, 28], "packag": [6, 9, 10, 13, 17, 24, 25, 26], "pair": 0, "panda": [1, 10, 22, 23], "pandoc": 9, "paper": 24, "par": [25, 26], "parallel": [6, 22], "parallel_ts_fit": [6, 28], "param": [11, 15, 18], "paramet": [0, 1, 3, 4, 5, 6, 7, 10, 14, 24, 25, 26, 27, 28], "parameter_deconvolut": 1, "parameter_filepath": [1, 11, 13, 14, 15, 17, 18, 19], "parameter_flat": [11, 13, 14, 15, 17, 18, 19], "parameter_rl": [1, 11, 13, 14, 15, 17, 18, 19], "parametr": [25, 26], "paramlist": [11, 15, 18], "parenthes": 19, "pars": 4, "parse_from_fil": [4, 12, 14, 16, 18, 19, 22, 23, 24, 25, 26, 27, 28], "part": [3, 8, 12, 16, 20, 27], "particl": 27, "particular": [2, 3, 22, 23], "pass": [7, 10, 11, 13, 14, 15, 17, 18, 19, 22, 24], "path": [1, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 26, 27, 28], "path_data": [11, 12, 13, 14, 15, 16, 17, 18, 19], "pathcollect": [19, 22, 23, 24], "pathlib": [1, 4, 6, 22, 23, 25, 26, 27, 28], "pattern": 24, "pd": [1, 10, 22, 23], "pdf": [0, 10], "peak": [25, 26], "peform": 6, "per": [1, 28], "percentag": 9, "percetag": 28, "perfectli": [11, 13, 14, 15, 17, 18, 19], "perform": [1, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 28], "perhap": [13, 17, 19], "period": 4, "person": 28, "perspect": 22, "pf": 4, "ph": [15, 17, 19, 27], "pha": [4, 22], "phi": [0, 3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "phi_bin_edg": [12, 14, 16], "phi_pix_s": [10, 12, 14, 16], "photon": [0, 1, 10, 11, 13, 15, 17, 18, 19, 22, 24, 25, 26, 27, 28], "photon_energy_axi": 3, "physic": [3, 22], "pi": [12, 14, 15, 16, 17, 18, 19, 24, 27], "pick": 28, "pickl": 1, "piec": [25, 26], "pink": 28, "pip": 8, "pipelin": [7, 11, 12, 13, 14, 15, 16, 17, 18, 19], "piv": [6, 22, 24, 25, 26, 28], "piv_inj": [25, 26], "pivot": [6, 25, 26], "pix": 6, "pix2ang": 19, "pix2skycoord": [22, 27], "pix_area": 27, "pixarea": [22, 27], "pixel": [1, 3, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27, 28], "pixelarea": [15, 17, 18, 19], "pkg_resourc": 10, "pkgresourcesdeprecationwarn": 10, "place": 6, "plai": 27, "plan": [11, 13, 15, 17, 24, 27], "pleas": [2, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28], "plenti": 10, "plot": [0, 4, 6, 10, 11, 13, 14, 19, 20, 22, 23, 24, 27], "plot_arf": [4, 22], "plot_binned_data": 0, "plot_delta_imag": [17, 19], "plot_psichi_map": 0, "plot_psichi_map_slic": 0, "plot_reconstructed_imag": [11, 13, 14, 15, 17, 18, 19], "plot_rmf": [4, 22], "plot_t": [6, 28], "plot_ts_map": [6, 24], "plt": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "plu": [25, 26], "plugin": [2, 6, 8, 10, 13, 17, 24, 25, 26], "plugin_prototyp": [24, 25, 26, 27], "ply": 22, "pm": 27, "png": [6, 15, 17, 18], "point": [0, 1, 3, 4, 5, 6, 10, 12, 16, 20, 23, 24, 25, 26, 27, 28], "point_sourc": 27, "pointsourc": [19, 24, 25, 26, 27], "pointsourcerepons": [11, 15, 27, 28], "pointsourcerespons": [2, 3, 22, 27], "poisson": [25, 26], "poisson_conf_interv": 26, "poisson_error": 26, "poit": 16, "polar": [0, 10, 25, 26, 27], "polar2cart": 0, "portion": 28, "posit": [0, 1, 4, 8, 10, 11, 13, 15, 17, 18, 19, 20, 22, 24, 25, 26, 27], "positive_error": [25, 26, 27], "possibl": [10, 25, 26], "possibli": 22, "post": [11, 13, 14, 15, 17, 18, 19], "posteriori": [25, 26], "postiv": [10, 13, 17, 24, 25, 26], "power": 20, "powerlaw": [3, 22, 24], "pprint": [11, 13, 14, 15, 17, 18, 19], "pr": 28, "practic": [11, 13, 15, 17, 19, 24], "pre": [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27], "precomput": [5, 27], "precomputed_psr_fil": [5, 27], "predict": 27, "prefer": [8, 9], "prefix": 0, "prepar": [8, 10], "present": [11, 12, 13, 14, 15, 16, 17, 18, 19, 28], "prevent": [25, 27], "previou": [10, 20, 22, 27], "previous": 27, "prework": [12, 13, 14, 16, 17, 18], "prime": 28, "principl": [14, 18], "print": [4, 6, 10, 18, 19, 22, 23, 24, 25, 26, 27], "print_best_fit": [6, 24], "priorit": [2, 20], "pro": [11, 12, 13, 14, 15, 16, 17, 18, 19], "probabl": [3, 28], "problem": 8, "procecss": 10, "procedur": [9, 19], "process": [0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 28], "processed_delta_map": [11, 13, 14, 15, 17, 18, 19], "produc": [1, 17, 18, 19, 25, 26], "product": [8, 27], "program": [2, 8], "project": [3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27], "projscatt": [15, 17, 18], "proof": 10, "proper": 10, "properti": [1, 2, 3, 8, 27], "propog": [25, 26], "provid": [3, 10, 12, 16, 22, 24, 25, 26, 27], "psi": [0, 10, 11, 12, 14, 15, 16, 28], "psi_gal": 0, "psi_loc": 0, "psichi": [0, 3, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "psichi_axi": [12, 14, 16], "psichi_bin": [0, 10, 11, 12, 14, 15, 16, 28], "psichi_slic": 22, "psr": [6, 22, 24, 27], "psr_file": 27, "psr_gal_511_dc2": [11, 27], "psr_gal_continuum_dc2": [15, 28], "psr_gal_dc2": 28, "public": [7, 11, 12, 13, 14, 15, 16, 17, 18, 19], "pull": 8, "purpl": [25, 26, 27, 28], "purpos": [0, 1, 24, 27, 28], "put": 28, "pw": 0, "py": [1, 10, 12, 13, 14, 16, 17, 24, 25, 26, 27], "py3": 24, "pygmo": [10, 13, 17, 24, 25, 26], "pygsl": [10, 13, 17, 24, 25, 26], "pyplot": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "pytest": 9, "python": [9, 14, 20, 24], "python3": [10, 24], "quad": 19, "quantiti": [1, 3, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24], "question": [8, 20], "quicker": 24, "quickli": [12, 16], "quiet": 4, "quit": 24, "r": [15, 17, 18, 19, 24, 25, 26, 28], "r_": [1, 11, 13, 15, 17, 19], "ra": [0, 6, 19, 22, 24, 27], "rad": [12, 14, 16, 23, 24], "rad2deg": [12, 14, 16], "radian": 0, "rag": 22, "rai": [10, 11, 12, 13, 15, 16, 17, 18, 19, 24], "ram": [10, 28], "random": 28, "rang": [1, 11, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "rapidli": 9, "rare": 1, "raster": 19, "rate": [10, 24], "rather": [25, 26], "ratio0": [11, 14, 15, 18], "ratio_bkg_to_grbdata": 19, "raw": [0, 6, 12, 16, 28], "re": [10, 27], "read": [0, 1, 4, 9, 10, 12, 14, 16, 18, 20, 22], "read_csv": 10, "read_parameterfil": [1, 11, 13, 14, 15, 17, 18, 19], "read_tra": [0, 10], "read_tra_old": 0, "readabl": 22, "reader": [0, 19], "readi": [8, 9], "readlin": 23, "readthedoc": 24, "readtratest": [0, 2], "real": [3, 22, 24], "realist": 24, "realli": 24, "reason": [9, 26], "rebin": 20, "receiv": 19, "recent": 24, "recoil": [3, 10], "recommend": [1, 9, 10, 23], "reconstruct": [1, 3, 10, 22], "record": 22, "recov": 27, "red": [11, 13, 14, 15, 17, 18, 19, 22, 24], "redefin": [11, 13, 14, 15, 17, 18, 19, 27], "redistribut": 22, "reduc": [3, 22], "redund": 28, "refer": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24], "refin": 10, "refit": 6, "refit_best_fit": 6, "region": [6, 28], "regist": [1, 11, 13, 14, 15, 17, 18, 19], "register_deconvolution_algorithm": 1, "rel": [10, 12, 13, 16, 17, 24, 25, 26], "relat": [23, 24], "releas": [8, 10], "relev": 10, "rememb": 23, "remov": [1, 11, 13, 14, 15, 17, 18, 19, 22, 23, 28], "render": [20, 24], "renorm": [11, 13, 15, 17, 19, 24], "repeat": 28, "replac": [11, 12, 15, 16, 24], "repons": 3, "report": [8, 9, 24], "repositori": [8, 20], "repr": 22, "repres": [23, 28], "reproduc": 14, "repurpos": 24, "request": [8, 25], "requir": [1, 4, 5, 9, 10, 11, 13, 15, 17, 19, 24, 25, 26, 28], "resolut": [1, 12, 14, 16, 18, 24, 28], "respect": [5, 22, 27], "respons": [1, 2, 4, 5, 6, 8, 10, 12, 16, 20, 23, 25, 26, 27, 28], "response_fil": 27, "response_on_memori": [11, 15], "response_path": [6, 11, 13, 15, 17, 19, 22, 23, 24, 28], "response_path_zip": [22, 23], "response_weight": [1, 11, 13, 14, 15, 17, 18, 19], "response_weighting_index": [1, 11, 13, 14, 15, 17, 18, 19], "rest": [12, 16, 24, 25, 26], "restart": 28, "result": [1, 6, 20, 22, 24, 25, 26], "result_itr": [11, 15, 18], "results_err": [25, 26], "retriev": 22, "return": [0, 1, 3, 4, 5, 6, 12, 14, 15, 16, 17, 18, 19, 25, 26, 28], "reus": 18, "revisit": 24, "richardson": [11, 13, 15, 17, 19], "richardsonluci": 1, "right": [0, 11, 13, 15, 17, 19, 22, 23, 25, 26, 28], "ring": [1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 27, 28], "rl": [1, 11, 13, 14, 15, 17, 18, 19, 20], "rmf": [4, 22], "rmf_file": 4, "root": [10, 24, 25, 26], "rot": [12, 16, 19], "rotat": [22, 23], "roundoff": 25, "row": [12, 14, 16, 18], "rsp": [1, 3], "rsp_filepath": 1, "run": [1, 9, 10, 11, 12, 13, 15, 16, 17, 19, 20, 25, 26, 27, 28], "run_deconvolut": [1, 11, 13, 14, 15, 17, 18, 19], "run_test": 0, "runtimewarn": [11, 13, 14, 15, 17, 18, 19, 27], "s3": 7, "s_i": [25, 26], "said": 28, "same": [0, 1, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27, 28], "saniti": [10, 27], "satellit": [12, 13, 16, 17, 19], "save": [0, 1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 28], "save_as_fit": [1, 12, 14, 16, 18], "save_dir": 6, "save_nam": [4, 6], "save_plot": [6, 28], "save_results_each_iter": [1, 11, 13, 14, 15, 17, 18, 19], "save_t": [6, 24], "savefig": [10, 15, 17, 18], "sc": [20, 22, 24], "sc_frame": 24, "sc_orient": [5, 6, 24, 25, 26, 27], "scale": [11, 12, 13, 14, 16, 25, 26, 27, 28], "scaling_factor": 28, "scan": 27, "scatt": [1, 4, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22], "scatt_axi": [12, 14, 16], "scatt_binning_index": [1, 12, 14, 16, 18], "scatt_data": [12, 14, 16], "scatt_map": [3, 4, 22, 23], "scattbin": [12, 13, 14, 16, 17, 18], "scatter": [0, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 28], "schedul": 8, "scheme": [1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 27, 28], "scientif": [8, 20], "scipi": [0, 18, 19], "scoord": [4, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27], "scposit": [19, 24], "script": [14, 28], "scx_b": 0, "scx_l": 0, "scz_b": 0, "scz_l": 0, "se": 22, "second": [1, 8, 10, 12, 14, 16, 18, 19, 20, 23, 24, 27, 28], "secret_kei": 7, "section": [8, 11, 13, 14, 15, 17, 18, 19, 20, 22, 28], "see": [1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 27, 28], "seen": [3, 22, 23, 27], "select": [24, 26], "select_data": [0, 10], "selected_combined_binned_data": 10, "selected_crab_lc_3x": 10, "selected_crab_spec_3x": 10, "selected_unbinned_data": 10, "self": [0, 24], "semilogi": [10, 27], "sens": 24, "sensit": 20, "sequenc": 22, "seri": [2, 8, 20, 22], "serv": 27, "session": 28, "set": [0, 1, 4, 5, 6, 9, 11, 13, 14, 15, 17, 18, 19, 24, 25, 26, 27, 28], "set_axislabel": 27, "set_bkg_from_filepath": 1, "set_ccm_from_filepath": 1, "set_data": [1, 11, 13, 14, 15, 17, 18, 19], "set_event_from_filepath": 1, "set_inner_minim": 5, "set_label": [11, 13, 14, 15, 17, 18, 19], "set_model": [5, 25, 26], "set_rsp_from_filepath": 1, "set_tick": 27, "set_ticklabel": 27, "set_ticklabel_vis": 27, "set_ticks_vis": 27, "set_titl": [23, 27], "set_values_from_extendedmodel": 1, "set_values_from_paramet": 1, "set_xlabel": [25, 26, 27], "set_xscal": [25, 26, 28], "set_ylabel": [22, 25, 26, 27, 28], "set_ylim": 27, "set_yscal": [25, 26, 27, 28], "sever": [12, 16, 19, 27, 28], "shape": [11, 14, 15, 18, 22, 24, 25, 26, 27], "share": 28, "shortli": 8, "should": [1, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 27, 28], "show": [1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27], "show_memory_info": 6, "shown": [11, 13, 14, 15, 17, 18, 19, 22, 24], "shrink": [24, 28], "shutil": [22, 23, 28], "siegert": [1, 11, 13, 15, 17, 19], "sigma": [26, 27], "sigma_1": 27, "sigmatau": 3, "signal": [8, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24], "signal_data": 19, "signal_filepath": [11, 12, 14, 15, 16], "sim": [12, 16], "similar": [9, 28], "simpl": [20, 25, 26, 27, 28], "simplest": [11, 13, 15, 17, 19], "simpli": [22, 24], "simplic": [23, 28], "simplif": 27, "simul": [3, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 28], "simultan": [25, 26], "simulten": [22, 23], "sinc": [10, 11, 12, 13, 15, 16, 17, 18, 19, 23, 24, 27, 28], "singl": [0, 1, 6, 10, 11, 13, 15, 17, 19, 25, 26, 27, 28], "single_pixel": 3, "site": [0, 10, 24], "size": [4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27], "skip": [0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28], "sky": [1, 3, 10, 12, 16, 20, 22, 23, 25, 26, 27, 28], "skycoord": [3, 4, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "skymap": 27, "skyoord": 6, "slice": [0, 6, 19, 22, 24, 26, 27, 28], "slice_energy_channel": 6, "sliced_hist": 6, "slightli": 19, "small": 27, "smaller": [12, 16], "smex": [11, 12, 13, 14, 15, 16, 17, 18, 22, 23, 25, 26, 27, 28], "smexv12": [12, 13, 14, 16, 17, 18, 22, 23, 25, 26, 27, 28], "smooth": [1, 11, 13, 14, 15, 17, 18, 19], "smoother": [14, 18], "smoothing_fwhm": [1, 11, 13, 14, 15, 17, 18, 19], "smoothing_max_sigma": [11, 13, 15, 17, 19], "so": [2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 27, 28], "softwar": [8, 10, 13, 17, 22, 24, 25, 26], "solut": [11, 13, 15, 17, 19, 28], "solv": 28, "some": [2, 12, 16, 20, 27], "someth": [9, 24, 26], "sort": 22, "sourc": [0, 1, 3, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 18, 20, 25, 26, 28], "source1": [25, 26, 27], "source2": [25, 26, 27], "source_injected_grb_tsmap": 24, "source_interv": [4, 19, 23, 24, 26, 28], "source_librari": 27, "source_posit": [11, 13, 14, 15, 17, 18, 19], "sourcespacecraft": [19, 24], "space": [3, 6, 10, 11, 13, 14, 15, 17, 18, 22, 23, 24, 26], "spacecraft": [1, 2, 3, 5, 6, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27], "spacecraft_attitude_binning_ccm": [1, 12, 14, 16, 18], "spacecraft_time_binning_ccm": 19, "spacecraftattitud": [14, 18], "spacecraftattitudeexposuret": [1, 2, 11, 12, 13, 14, 15, 16, 17, 18], "spacecraftattitudemap": [1, 2, 3, 4, 12, 16], "spacecraftfil": [1, 2, 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 25, 26, 27, 28], "spacecraftfram": [3, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27], "spacecraftpositionattitud": [19, 24], "spacefraft": 22, "spacescraft": 4, "spars": [3, 10, 11, 12, 14, 15, 16], "sparsearrai": 3, "spatial": 27, "spatial_shap": 27, "spatio": 27, "specbroadbulg": 27, "speccentralpoint": 27, "specdisk": 27, "specfromdat": 27, "specif": [22, 28], "specifi": [0, 1, 3, 4, 5, 10, 22, 23], "speclin": 27, "specnarrowbulg": 27, "specop": 27, "specrtum": 27, "spect": 22, "spectra": [24, 25, 26, 27], "spectral": [3, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24], "spectral_fit": [12, 16, 19], "spectral_shap": [25, 26, 27], "spectrum": [0, 3, 6, 8, 20, 22, 24, 25, 26, 27], "spectrum2": 27, "spectrum_inj": [19, 25, 26], "spectrumfil": 3, "speed": 28, "spent": [3, 22, 23], "spetral": 22, "sphere": [10, 24], "spheric": 0, "sphinx": 9, "sphinx_rtd_them": 9, "split": [15, 17, 18], "spot": 24, "spread": 24, "sqrt": [22, 25, 26, 27], "sr": [11, 13, 15, 17, 18, 19], "src": 27, "src1": 27, "src2": 27, "src_count": 4, "src_movement": [19, 24], "src_path": [4, 19, 22, 23, 24], "stabl": [8, 24], "stair": [25, 26, 27], "stamp": [0, 4, 23], "standard": [11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 27], "star": 4, "start": [1, 4, 6, 10, 12, 16, 24, 25, 26, 27], "start_method": 6, "start_warn": [10, 13, 17, 24, 25, 26], "stat": 26, "state": 9, "statement": 22, "static": 6, "station": 10, "statist": [8, 20, 24, 25, 26, 27], "step": [1, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 22, 23, 25, 26, 27], "still": [2, 8, 10, 12, 16, 24, 28], "stop": [1, 4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18], "store": [4, 10, 23], "str": [0, 1, 3, 4, 5, 6, 7, 10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 25, 26, 27], "straightforward": [12, 16], "stream": 10, "strength": 28, "strip": 24, "strong": 28, "subdomin": 27, "subplot": [23, 25, 26, 27], "subplot_kw": 23, "subplots_adjust": [15, 17, 18], "subset": 10, "successfulli": 9, "suit": [25, 26], "suitabl": 24, "sum": [1, 10, 12, 14, 15, 16, 17, 18, 19, 23, 24, 27, 28], "sum_": [1, 11, 13, 15, 17, 19, 28], "sum_i": [11, 13, 15, 17, 19, 25, 26], "sum_j": [11, 13, 15, 17, 19], "summari": [25, 26, 27], "suppli": 24, "support": [5, 10, 11, 13, 15, 17, 19, 25, 26], "suppos": [12, 16], "sure": [1, 11, 13, 14, 15, 17, 18, 19, 22, 23, 28], "surpris": 27, "sy": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27], "system": [0, 4, 5, 6, 7, 10, 13, 17, 19, 23, 27], "t": [0, 2, 8, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23], "tabl": [1, 11, 12, 13, 14, 15, 16, 17, 18], "tag": [10, 28], "tail": 27, "taiutc": 23, "take": [1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 27, 28], "taken": 4, "target": [4, 22, 23], "target_coord": [4, 22, 23], "target_in_sc_fram": [22, 23], "target_nam": [4, 22, 23], "team": 8, "telecop": 4, "telescop": [4, 24], "tell": [25, 26], "templat": 27, "temporari": [11, 13, 14, 15, 17, 18, 19], "term": 9, "test": [0, 8, 20, 27], "test_data": [22, 24, 25, 27], "text": [10, 14, 17, 18, 19, 22, 23, 24, 27, 28], "th": [11, 13, 14, 15, 17, 18, 19], "than": [10, 12, 14, 16, 18, 23, 25, 26, 27], "thei": [6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 26, 28], "them": [0, 5, 9, 12, 16, 19, 20, 24, 27], "themselv": 28, "theorist": 20, "therefor": [10, 22, 24, 28], "theta": [0, 15, 17, 18, 19, 27], "thi": [0, 1, 2, 3, 4, 5, 6, 9, 10, 12, 14, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "thick": 27, "thin": [11, 12, 13, 27], "thing": 10, "third": 27, "those": [10, 11, 13, 14, 15, 17, 18, 19, 24, 28], "though": [23, 24, 25, 26], "three": [1, 10, 14, 18, 19, 27, 28], "threeml": [3, 5, 6, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "through": [12, 13, 16, 17, 27, 28], "thu": [11, 12, 14, 15, 16, 18, 28], "ti": [12, 16], "tima": 28, "time": [0, 1, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 25, 26, 27, 28], "time_arrai": 4, "time_bin": 10, "time_binning_ccm": [1, 19], "time_color": 23, "time_delta": 4, "time_ei_cds_arrai": 6, "time_fast_ts_fit": 6, "time_fit": 6, "time_interv": [1, 19], "time_r": 0, "time_sec": 23, "timemax": [19, 24], "timemin": [19, 24], "timestamp": [4, 5, 6, 10], "timetag": [0, 10], "titl": [11, 12, 13, 14, 15, 16, 17, 18, 19, 27], "tmax": [10, 26], "tmin": [10, 26], "to_dens": [11, 12, 15, 16], "to_valu": [23, 25, 26], "todens": [10, 19, 24, 25, 26, 27], "todo": 20, "togath": 6, "togeth": 28, "toi": [24, 27], "toler": 25, "too": [11, 13, 14, 15, 17, 18, 19], "tool": [8, 20, 28], "top": 23, "total": [0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "total_bg_3months_unbinned_data": [11, 12, 15, 16], "total_expect": 27, "totalmodel": 27, "tqdm": [11, 12, 13, 14, 15, 16, 17, 18], "tra": [0, 10, 12, 16], "traceback": 24, "track": [10, 22, 23], "trajectori": 22, "transform": [0, 10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 24, 25, 26], "transform_to": [24, 27], "transit": 20, "tree": 27, "tremend": 28, "trigger": 4, "trivial": 22, "troubleshoot": 8, "true": [0, 1, 3, 4, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27, 28], "truth": [15, 17, 18, 19], "truth_value_interpol": 18, "try": [9, 19, 22, 24, 28], "ts_arrai": 6, "ts_fit": [6, 24], "ts_grid_bkg": 6, "ts_grid_data": 6, "ts_map": [6, 11, 12, 13, 14, 15, 16, 17, 18, 24, 28], "ts_nside": 6, "ts_result": 28, "ts_scheme": [6, 28], "tsmap": [2, 6, 11, 12, 13, 14, 15, 16, 17, 18, 24], "tsmap2": 24, "tt": 0, "tupl": [1, 22], "turn": [5, 10, 13, 17, 24, 25, 26], "tutori": [2, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 27], "tutotri": 27, "two": [4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 28], "txt": [11, 15, 18], "type": [0, 1, 3, 4, 5, 6, 12, 13, 14, 16, 17, 18, 22, 23], "typeerror": 24, "typefloat64shap": [11, 14, 15, 18], "typic": [10, 25, 26], "u": [7, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "u6": [22, 24], "u8": [11, 15], "ufunc": 24, "unbin": [0, 20, 27], "unbinn": [0, 10], "unbinned_bkg": [12, 14, 16], "unbinned_data": [0, 10, 11, 15, 27, 28], "unbinned_ev": [12, 14, 16], "unbinned_output": [0, 10], "unbinned_sign": [12, 14, 16], "unbinneddata": [0, 2, 11, 12, 13, 14, 15, 16, 17, 18], "uncompress": 19, "under": [2, 8, 9, 20, 21, 28], "underestim": 25, "understand": [19, 24], "unexpect": 24, "uniqu": [25, 26], "unit": [0, 1, 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "unix": [19, 24, 26, 28], "unless": 0, "unpack_arch": [22, 23, 28], "unrealist": [13, 17, 19, 24], "unreli": [24, 25, 26, 27], "unzip": [15, 16, 18, 19, 22, 23, 25, 26, 28], "up": [1, 12, 14, 16, 18, 23, 24, 25, 26, 27, 28], "updat": [1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19], "update_logging_level": 27, "upper": [4, 10, 28], "upper_chanel": 6, "upper_channel": [6, 28], "upsampl": [12, 16], "url": 7, "us": [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 16, 20, 22, 23, 24, 25, 26, 27], "usag": [8, 28], "use_averaged_point": [1, 12, 14, 16, 18], "use_ori": 0, "use_pkgconfig": 9, "user": [0, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 27, 28], "userwarn": [11, 13, 14, 15, 17, 18, 19], "usual": 22, "utc": 10, "utctai": [12, 14, 16, 18, 22, 23, 25], "util": [2, 8, 10, 11, 12, 15, 16, 19, 22, 23, 25, 26, 27, 28], "v": [11, 13, 14, 15, 17, 18, 19, 23], "v4": [13, 17], "valu": [0, 1, 3, 5, 6, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25, 26, 27, 28], "var": [9, 28], "vari": 27, "variabl": [3, 9, 10, 13, 17, 24, 25, 26, 27, 28], "varianc": 28, "variou": [3, 8, 20, 22], "ve": [4, 27], "vec": 0, "vector": 0, "verbos": [25, 26, 27], "veri": [10, 12, 14, 16, 18, 22, 27, 28], "verifywarn": 27, "version": [8, 9, 10, 13, 17, 23], "view": [10, 22, 23], "viridi": 23, "visibledeprecationwarn": 22, "visual": [20, 24], "vmin": 24, "w": [11, 15, 18], "w_j": [1, 11, 13, 15, 17, 19], "wa": [1, 9, 10, 11, 13, 14, 15, 17, 18, 19, 24, 25, 26], "wai": [10, 12, 16, 22, 28], "walk": 27, "wall": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27], "want": [6, 11, 12, 15, 16, 18, 19, 22, 23, 24, 25, 26, 28], "warn": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27], "wasabi": [7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 27, 28], "wasabisi": 7, "wash": [22, 23], "we": [1, 2, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28], "webpag": 20, "weight": [1, 6, 11, 13, 14, 15, 17, 18, 19, 27], "welcom": [13, 17], "well": [2, 8, 9, 20, 25, 26, 27, 28], "were": [9, 23], "west": 7, "what": [24, 28], "wheel": 9, "when": [6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 27, 28], "where": [1, 4, 6, 9, 10, 19, 23, 25, 26, 27, 28], "whether": [1, 11, 13, 15, 17, 19], "which": [0, 1, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 17, 19, 22, 23, 24, 25, 26, 27, 28], "while": [1, 6, 8, 12, 14, 16, 18, 19, 25, 26, 28], "white": 27, "whole": [20, 28], "wht": 3, "wide_asymm_gaussian_on_spher": 27, "width": [4, 15, 17, 18, 19, 24], "wiht": [13, 17, 19], "window": 26, "wish": 6, "within": [10, 12, 16, 24, 27], "without": [1, 9, 10, 12, 16, 22, 23], "wnc17p7s0gz1vd3krp7gly60v5n_5p": 9, "won": [6, 10], "word": 6, "work": [9, 10, 12, 13, 14, 16, 17, 18, 19, 24, 28], "workaround": [9, 10, 27], "world": [11, 13, 14, 15, 17, 18, 19, 22, 24], "worri": [10, 22], "would": [13, 17, 19, 24, 25, 26, 27], "wrapper": [10, 13, 17, 24, 25, 26], "write": [0, 4, 11, 12, 14, 15, 16, 18, 19, 24], "write_unbinned_output": 0, "written": [0, 4, 10, 11, 15], "wspace": [15, 17, 18], "x": [0, 1, 4, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28], "x86_64": 24, "x_": [11, 13, 15, 17, 19, 25, 26], "x_i": [11, 13, 15, 17, 19], "x_p": [25, 26], "x_point": [4, 24], "xb_interp": 0, "xerr": [15, 17, 18, 19], "xindex": [12, 14, 16], "xl_interp": 0, "xlabel": [10, 11, 13, 14, 15, 17, 18, 19, 24, 27], "xlim": [15, 17, 18, 24], "xp": [24, 25, 26], "xp_inj": [25, 26], "xpoint": [0, 1, 12, 14, 16, 18], "xpointing_averag": [1, 12, 14, 16, 18], "xscale": [15, 17, 18, 19], "xspec": [4, 20], "y": [0, 1, 4, 11, 13, 14, 15, 17, 18, 19, 23, 24], "y_point": [4, 24], "yaml": [0, 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28], "yaml_filepath": 1, "year": [12, 14, 16, 18, 22, 23, 25], "yerr": [25, 26, 27], "yet": [20, 28], "yield": [12, 14, 16, 18, 22, 23, 25], "ylabel": [10, 11, 13, 14, 15, 17, 18, 19, 24, 27], "ylim": [15, 17, 18, 24, 27], "yml": [11, 13, 14, 15, 17, 18, 19], "yoneda": [12, 13, 14, 16, 17, 18, 19], "you": [2, 3, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 23, 24, 25, 26, 27, 28], "your": [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27], "yourself": 28, "ypoint": 0, "yscale": [15, 17, 18, 19], "z": [0, 1, 4, 12, 14, 16, 18, 23, 24], "z_point": [4, 24], "zb_interp": 0, "zenith": [23, 24], "zero": [26, 27], "zeros_lik": [25, 26], "zf": 10, "zindex": [12, 14, 16], "zip": [12, 14, 15, 16, 19, 22, 23, 25, 26, 27, 28], "zipped_response_path": 28, "zl_interp": 0, "zpoint": [0, 1, 12, 14, 16, 18], "zpointing_averag": [1, 12, 14, 16, 18]}, "titles": ["Data IO", "Image deconvolution", "API", "Detector response", "Spacecraft File", "COSILike (3ML plugin)", "TS Map", "Utilities", "Welcome to cosipy\u2019s documentation!", "Installation", "DataIO Examples", "DC2 Image Analysis, 511 keV, Image Deconvolution using CDS in the Galactic coordinate system", "DC2 Image Analysis, 511 keV, Data Reduction", "DC2 Image Analysis, 511 keV, Image Deconvolution", "DC2 Image Analysis, 511keV, Upsampling", "DC2 Image Analysis, Crab, Image Deconvolution using CDS in the Galactic coordinate system", "DC2 Image Analysis, Crab, Data Reduction", "DC2 Image Analysis, Crab, Image Deconvolution", "DC2 Image Analysis, Crab, Upsampling", "GRB image analysis (miniDC2)", "Tutorials", "Other examples", "Full detector response", "Spacecraft file: attitude and position", "GRB Source injector", "Spectral fitting example (Crab)", "Spectral fitting example (GRB)", "Diffuse 511 Spectral Fit in Galactic Coordinates", "Parallel TS Map computation"], "titleterms": {"": [8, 10, 28], "0": [11, 12, 13, 14, 15, 16, 17, 18, 19], "1": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 28], "2": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 27, 28], "3": [10, 11, 12, 13, 14, 15, 16, 17, 18, 27, 28], "3ml": [5, 27], "4": [10, 11, 13, 14, 15, 17, 18, 19], "5": [10, 11, 13, 14, 15, 17, 18, 19], "511": [11, 12, 13, 27], "511kev": [13, 14], "7200": 19, "The": [11, 13, 14, 15, 17, 18, 19, 23], "With": 27, "acceler": [11, 13, 14, 15, 17, 18, 19], "ad": 24, "all": [11, 13, 14, 15, 17, 18, 19], "alpha": [11, 13, 14, 15, 17, 18, 19], "analysi": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 27], "analyz": [11, 12, 13, 14, 15, 16, 17, 18, 19], "anlaysi": 10, "api": 2, "around": 19, "assembl": 28, "attitud": 23, "avail": 10, "axi": 19, "background": [11, 13, 14, 15, 17, 18, 19, 24, 28], "band": 25, "best": 27, "between": 18, "bin": [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 25, 26, 27, 28], "bkg": 24, "bkg_data": 19, "brief": [11, 13, 15, 17, 19], "calcul": [12, 14, 16, 18, 19, 23, 28], "can": [11, 13, 15, 17, 19], "ccm": 19, "cd": [11, 15, 28], "chang": [11, 13, 15, 17, 19], "check": [18, 19], "class": [11, 13, 14, 15, 17, 18, 19], "combin": [10, 27], "compar": 10, "compil": 9, "compon": [27, 28], "compton": [12, 16, 19, 28], "comput": 28, "contain": [11, 13, 14, 15, 17, 18, 19], "content": [2, 8], "contribut": 8, "convers": [11, 12, 13, 14, 15, 16, 17, 18, 19], "coordin": [11, 12, 14, 15, 16, 18, 19, 22, 27, 28], "coordsi": [11, 13, 15, 17], "cosi": [10, 27], "cosilik": 5, "cosipi": 8, "could": 9, "count": 22, "crab": [15, 16, 17, 18, 25, 28], "creat": [11, 15, 27], "cut": 10, "data": [0, 10, 12, 14, 16, 18, 19, 24, 25, 26, 27, 28], "dataio": 10, "dataload": [11, 13, 14, 15, 17, 18, 19], "dataset": [10, 11, 13, 14, 15, 17, 18, 19], "dc2": [11, 12, 13, 14, 15, 16, 17, 18], "deal": 10, "deconvolut": [1, 11, 12, 13, 14, 15, 16, 17, 18, 19], "defin": [27, 28], "defn": 19, "delta": [17, 19], "depend": [22, 23], "detector": [3, 22], "develop": 9, "diffus": 27, "discrep": 18, "distribut": 28, "doc": 9, "document": 8, "download": [22, 23, 25, 26, 28], "durat": 19, "dwell": [19, 23], "error": [9, 25, 26], "event": [11, 15, 19], "exampl": [10, 21, 25, 26, 27, 28], "expect": 22, "extract": 19, "factor": [11, 13, 14, 15, 17, 18, 19], "fainter": 28, "fake": [11, 15, 24], "fast": 28, "file": [4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24], "find": [9, 19], "fit": [25, 26, 27, 28], "flux": [15, 17, 19, 28], "follow": [11, 13, 15, 17, 19], "format": [10, 23], "frame": [23, 28], "from": 9, "full": [10, 22], "function": 25, "galact": [11, 15, 27, 28], "get": [10, 24, 27, 28], "grb": [19, 24, 26, 28], "grb_data": 19, "hdf5": 9, "hour": 19, "i": 19, "imag": [1, 11, 12, 13, 14, 15, 16, 17, 18, 19], "image_deconvolut": [11, 13, 15, 17, 19], "import": 28, "improv": 28, "inerti": 22, "inform": 19, "initi": [11, 13, 14, 15, 17, 18, 19], "inject": 27, "injector": 24, "instal": 9, "instanc": [11, 13, 14, 15, 17, 18, 19], "instanti": 27, "integr": [15, 17, 19], "io": 0, "issu": 10, "kev": [11, 12, 13], "let": 10, "lightcurv": 10, "likelihood": [11, 13, 14, 15, 17, 18, 19, 27, 28], "load": [11, 13, 14, 15, 17, 18, 19, 23, 24], "local": [9, 28], "locat": 19, "log": [11, 13, 14, 15, 17, 18, 19, 28], "look": 10, "make": [10, 24], "mandatori": 19, "map": [6, 19, 23, 24, 28], "matrix": [11, 12, 13, 14, 15, 16, 17, 18, 19, 22], "maximum": [19, 28], "memori": 10, "method": 28, "minidc2": 19, "model": [18, 27, 28], "model_initi": [11, 13, 15, 17, 19], "model_properti": [11, 13, 15, 17, 19], "modifi": [18, 19], "modul": 28, "movement": 23, "multipl": 10, "neccesari": [11, 13, 14, 15, 17, 18, 19], "need": [11, 13, 15, 17], "newton": 28, "normal": [11, 13, 14, 15, 17, 18, 19], "note": [12, 16], "notebook": [11, 13, 15, 17], "now": 24, "open": 22, "option": [10, 28], "orient": [12, 14, 16, 18, 19, 23, 24, 28], "other": 21, "over": [15, 17, 19], "overview": [10, 11, 13, 15, 17, 19], "parallel": 28, "paramet": [11, 13, 15, 17, 18, 19], "perform": [25, 26, 27], "pip": 9, "plot": [15, 17, 18, 25, 26, 28], "plugin": [5, 27], "point": [14, 18, 22], "poisson": 28, "posit": 23, "possion": 28, "powerlaw": 28, "prepar": [11, 12, 13, 14, 15, 16, 17, 18, 19, 28], "produc": [12, 14, 16], "progress": 28, "project": 28, "propag": [25, 26], "raphson": 28, "ratio": 28, "raw": 10, "read": [13, 17, 19, 24, 25, 26, 27, 28], "realist": 27, "reconstruct": [11, 13, 14, 15, 17, 18, 19], "reduct": [12, 16, 19], "respons": [3, 11, 13, 14, 15, 17, 18, 19, 22, 24], "result": [11, 13, 14, 15, 17, 18, 19, 27, 28], "save": [19, 24], "sc": 23, "scale": 19, "scatt": 23, "sec": 19, "select": 10, "set": 10, "setup": 27, "signal": 28, "sky": [15, 17, 19], "some": 10, "sourc": [9, 13, 17, 19, 22, 23, 24, 27], "space": [12, 16, 19, 28], "spacecraft": [4, 23, 28], "spectral": [25, 26, 27], "spectrum": [10, 15, 17, 18, 19, 28], "standard": 10, "start": [11, 13, 14, 15, 17, 18, 19, 28], "statist": 28, "step": 28, "stop": 19, "support": 22, "system": [11, 12, 15, 16], "t": [6, 24, 28], "take": 10, "test": [9, 28], "thi": [11, 13, 15, 17], "time": [10, 19, 23], "troubleshoot": 9, "tutori": 20, "two": 27, "unbin": [10, 28], "upsampl": [14, 18], "us": [9, 11, 13, 14, 15, 17, 18, 19, 28], "util": 7, "view": 19, "welcom": 8, "work": 27, "xspec": 22, "you": [11, 13, 15, 17, 19]}}) \ No newline at end of file diff --git a/tutorials/DataIO/DataIO_example.html b/tutorials/DataIO/DataIO_example.html new file mode 100644 index 00000000..891b7893 --- /dev/null +++ b/tutorials/DataIO/DataIO_example.html @@ -0,0 +1,1135 @@ + + + + + + + DataIO Examples — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DataIO Examples

+

For these examples we will use 2 hrs of simulated Crab data with the Compton sphere mass model. This is an idealized mass model with a full-sky instantanious field of view, used only for development. The file can be downloaded using the cosipy utility function below.

+

wasabi path: ComptonSphere/mini-DC2/GalacticScan.inc1.id1.crab2hr.extracted.tra.gz File size: 322 MB

+
+
[ ]:
+
+
+
from cosipy.util import fetch_wasabi_file
+fetch_wasabi_file('ComptonSphere/mini-DC2/GalacticScan.inc1.id1.crab2hr.extracted.tra.gz')
+
+
+
+
+

Data formats overview

+

The COSI high-level analysis data is composed of a stream of time-tagged events. Each event has an associated timestamp (\(t\)), measured energy (\(E_m\)), and the three parameters of the Compton Data Space (CDS): scattering polar angle (\(\phi\)), and the longitude and latitude angles defining the direction of the first scattered gamma ray (\(\psi\) and \(\chi\)). See these references for an explanation of the CDS: +1,2, 3.

+

There are three formats that contain time-tagged events: * tra files. These have the extension “.tra”. They are text files generated by MEGAlib that contain track information. You can read about the format in MEGALib’s Mimrec documentation. Most users won’t need to use these files. * FITS files. These have the extension “.fits”. They are essentially tra files that have been converted into the +FITS format. This is the typical starting point for a cosipy analysis. * Unbinned HDF5 files. These have the extension “.h5” or “.hdf5”. This is another option for converting the tra files into a binary format, in this case (HDF5). Some examples use an HDF5 format instead of FITS, since it can be more computationally efficient.

+

Currently, all the analyses in cosipy use binned data. These are also HDF5 binary files and have the extension “.h5” or “.hdf5”. They contain a 4-dimensional sparse histogram corresponding to the variables \(t\), \(E_m\), \(\phi\) and \(\psi\phi\). The binned direction of the scattered gamma ray (\(\phi\) and \(\psi\phi\)) is encoded as a pixel in a HEALpix map.

+

Note: The data formats are likely to change and consolidate in future versions. In addition, we are contemplating adding more information to each event that cannot be captured by the Compton Data Space –e.g. the scattering angle and direction of the second interaction, for those events with more than 2 hits.

+
+
+

Example 1: Standard binned analysis

+

Import the BinnedData class from cosipy:

+
+
[1]:
+
+
+
from cosipy import BinnedData
+%matplotlib inline
+
+
+
+
+
+
+
+
10:44:43 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69
+                  will not be available.                                                                           
+
+
+
+
+
+
+
10:44:45 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
10:44:45 INFO      Starting 3ML!                                                                     __init__.py:35
+
+
+
+
+
+
+
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36
+
+
+
+
+
+
+
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37
+
+
+
+
+
+
+
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40
+
+
+
+
+
+
+
         WARNING   no display variable set. using backend for graphics without display (agg)         __init__.py:46
+
+
+
+
+
+
+
+/zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/pkg_resources/__init__.py:123: PkgResourcesDeprecationWarning: dev is an invalid version and will not be supported in a future release
+  warnings.warn(
+
+
+
+
+
+
+
10:44:50 WARNING   ROOT minimizer not available                                                minimization.py:1345
+
+
+
+
+
+
+
         WARNING   Multinest minimizer not available                                           minimization.py:1357
+
+
+
+
+
+
+
10:44:52 WARNING   PyGMO is not available                                                      minimization.py:1369
+
+
+
+
+
+
+
10:44:53 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94
+                  require the C/C++ interface (currently HAWC)                                                     
+
+
+
+
+
+
+
10:44:54 WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
10:44:56 WARNING   No fermitools installed                                              lat_transient_builder.py:44
+
+
+
+
+
+
+
10:44:56 WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+

Get the unbinned COSI dataset

+

Define an instance of the BinnedData object. Input parameters are passed from inputs.yaml. Note: We are still working on refining the handling of input/output parameters. This will be updated in future releases of cosipy.

+
+
[3]:
+
+
+
analysis = BinnedData("inputs.yaml")
+
+
+
+

A typical DataIO configuration yaml files looks like this:

+
data_file: "/path/to/crab/tra/file" # Full path to unbinned tra data file. Only needed when converting a tra file to fits or HDF5.
+ori_file: "/path/to/ori/file" # Full path to spacecraft orientation file. See next tutorial. Only needed when converting a tra file to fits or HDF5.
+unbinned_output: 'hdf5' # Format of converted unbinned file 'fits' or 'hdf5'. Only needed when converting a tra file to fits or HDF5.
+time_bins: 60 # time bin size in seconds. Takes int, float, or list of bin edges.
+energy_bins: [100.,  200.,  500., 1000., 2000., 5000.] # Energy  bin edges [keV]. Needs to match response binning.
+phi_pix_size: 6 # binning of Compton scattering angle [deg].
+nside: 8 # HEALPix binning of psi chi local. Needs to match response binning.
+scheme: 'ring' # HEALPix binning scheme of psi chi
+tmin: 1835478000.0 # Min time cut in GPS seconds.
+tmax: 1835485200.0 # Max time cut in GPS seconds.
+
+
+

The starting point for the high-level data analysis is the so-called Level 1c data, which is a photon list consisting of Compton event parameters, e.g. energies of the scattered gamma ray and recoil electron, interaction positions within the detector, and time-tags. The photon list comes from the event identification and reconstruction, and it is stored in a tra file. From this information we can determine the total measured energy of the incidenct photon, the Compton scattering angle, the +scattering direction, the distance between interactions, and the pointing of the instrument when the photon was detected, which is the main information needed for the high-level analysis. As a very first step, we read the data from the tra file and construct the COSI dataset. The data format for this is a dictionary containing the relevant information for all photons (i.e. an unbinned photon list). The dictionary can be stored as either a fits file or an hdf5 file.

+

Note: Most users will not need to worry about this step, as the COSI data will already be provided in fits file format. However, this function can also be used for converting simulated data from MEGAlib to the proper cosipy format.

+
+
[4]:
+
+
+
analysis.read_tra(output_name="unbinned_data")
+
+
+
+
+
+
+
+
+Preparing to read file...
+Reading file...
+
+
+
+
+
+
+
+100%|██████████| 53383576/53383576.0 [03:35<00:00, 247474.98it/s]
+
+
+
+
+
+
+
+Making COSI data set...
+total events to procecss: 3324977
+Initializing arrays...
+Making dictionary...
+Saving file...
+total processing time [s]: 720.1664335727692
+
+
+
+
+

Bin the data

+

The data is binned with four axes: time, measured energy, compton scattering angle (Phi), and scattering direction (PsiChi). The binning should match that of the response used for the analysis. Here we will bin the data in Galactic coordinates, which is the default. The data can also be binned in local coordinates by specifying the keyword psichi_binning=”local”.

+
+
[5]:
+
+
+
analysis.get_binned_data()
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+

Let’s take a look at the raw spectrum and lightcurve:

+
+
[6]:
+
+
+
analysis.get_raw_spectrum()
+
+
+
+
+
+
+
+
+getting raw spectrum...
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_16_1.png +
+
+
+
[7]:
+
+
+
# LC in plot below is normalized to initial time.
+analysis.get_raw_lightcurve()
+
+
+
+
+
+
+
+
+getting raw lightcurve...
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_17_1.png +
+
+
+
+
+

Example 2: Some available options for the standard binned anlaysis

+

In the previous step we saved the unbinned data to an hdf5 file with the read_tra method. Here we will load the unbinnned data from file instead of running read_tra again. We will also save the binned data to file, and make binning plots.

+
+
[8]:
+
+
+
analysis = BinnedData("inputs.yaml")
+analysis.get_binned_data(unbinned_data="unbinned_data.hdf5", output_name="binned_data", make_binning_plots=True)
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_19_1.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_19_2.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_19_3.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_19_4.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_19_5.png +
+
+
+
+
+
+
+plotting psichi in Galactic coordinates...
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_19_7.png +
+
+

The two healpix maps above show the projection onto the PsiChi dimension, where the upper map is in the local coordinate system, and the lower map is in the Galactic coordinate system.

+

In the last step we saved the binned data to an hdf5 file. We can load this directly to access the binned data histogram object.

+
+
[9]:
+
+
+
analysis = BinnedData("inputs.yaml")
+analysis.load_binned_data_from_hdf5("binned_data.hdf5")
+
+# For example, we can project onto the time axis:
+analysis.binned_data.axes["Time"].centers
+
+
+
+
+
[9]:
+
+
+
+
+$[1.835478 \times 10^{9},~1.8354781 \times 10^{9},~1.8354782 \times 10^{9},~\dots,~1.835485 \times 10^{9},~1.8354851 \times 10^{9},~1.8354852 \times 10^{9}] \; \mathrm{s}$
+
+

Next we will load the binnned data from file to make the raw spectrum and lightcurve. We will also save the outputs, which are written to both a pdf and dat file.

+
+
[10]:
+
+
+
analysis.get_raw_spectrum(binned_data="binned_data.hdf5", output_name="crab_spec")
+analysis.get_raw_lightcurve(binned_data="binned_data.hdf5", output_name="crab_lc")
+
+
+
+
+
+
+
+
+getting raw spectrum...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_23_1.png +
+
+
+
+
+
+
+getting raw lightcurve...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_23_3.png +
+
+
+
+

Example 3: Combining multiple data files

+
+

Combining unbinned data

+

One way to combine data files is to first combine the unbinned data, and then bin the combined data. As a proof of concept, we’ll combine the crab dataset 3 times, and as a sanity check we can then compare to 3x the actual data.

+
+
[11]:
+
+
+
analysis = BinnedData("inputs.yaml")
+analysis.combine_unbinned_data(["unbinned_data.hdf5","unbinned_data.hdf5","unbinned_data.hdf5"], output_name="combined_unbinned_data")
+
+
+
+
+
+
+
+
+
+adding unbinned_data.hdf5...
+
+
+adding unbinned_data.hdf5...
+
+
+adding unbinned_data.hdf5...
+
+
+
+

Bin the combined data file:

+
+
[12]:
+
+
+
analysis.get_binned_data(unbinned_data="combined_unbinned_data.hdf5", output_name="combined_binned_data")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+

Get raw spectrum and light curve:

+
+
[13]:
+
+
+
analysis.get_raw_spectrum(binned_data="combined_binned_data.hdf5", output_name="crab_spec_3x")
+analysis.get_raw_lightcurve(binned_data="combined_binned_data.hdf5", output_name="crab_lc_3x")
+
+
+
+
+
+
+
+
+getting raw spectrum...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_29_1.png +
+
+
+
+
+
+
+getting raw lightcurve...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_29_3.png +
+
+

Compare the combined data set to 3x the actual data. This step requires output files from earlier.

+
+
[14]:
+
+
+
# LCs:
+# The plot below is normalized to the initial time.
+import pandas as pd
+import matplotlib.pyplot as plt
+import numpy as np
+
+# LCs:
+df = pd.read_csv("crab_lc.dat", delim_whitespace=True)
+plt.semilogy(df["Time[UTC]"] - df["Time[UTC]"][0], df["Rate[ct/s]"],label="Crab")
+plt.semilogy(df["Time[UTC]"] - df["Time[UTC]"][0], 3*df["Rate[ct/s]"],label="3xCrab")
+
+df = pd.read_csv("crab_lc_3x.dat", delim_whitespace=True)
+plt.semilogy(df["Time[UTC]"] - df["Time[UTC]"][0], df["Rate[ct/s]"],ls="--",label="Combined")
+
+plt.legend()
+plt.xlabel("Time [s]")
+plt.ylabel("ct/s")
+plt.savefig("combined_lc_comparison.pdf")
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_31_0.png +
+
+
+
[15]:
+
+
+
# Spectrum
+df = pd.read_csv("crab_spec.dat", delim_whitespace=True)
+plt.loglog(df["Energy[keV]"],df["Rate[ct/keV]"],label="Crab")
+plt.loglog(df["Energy[keV]"],3*df["Rate[ct/keV]"],label="3xCrab")
+
+df = pd.read_csv("crab_spec_3x.dat", delim_whitespace=True)
+plt.loglog(df["Energy[keV]"],df["Rate[ct/keV]"],ls="--",label="Combined")
+
+plt.legend()
+plt.xlabel("Energy [keV]")
+plt.ylabel("ct/keV")
+plt.savefig("combined_spectrum_comparison.pdf")
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_32_0.png +
+
+
+
+

Combining binned data

+

An alternative way to combine the data is to sum the binned histograms. This requires that the histograms being combined have the same exact binning.

+
+
[18]:
+
+
+
analysis = BinnedData("inputs.yaml")
+analysis.get_binned_data(unbinned_data="unbinned_data.hdf5", output_name="binned_data")
+combined_hist = analysis.binned_data + analysis.binned_data + analysis.binned_data
+
+print()
+print("The total number of photons has increased by a factor of 3, as expected:")
+print("single histogram: " + str(np.sum(analysis.binned_data.contents.todense())))
+print("combined histogram: " + str(np.sum(combined_hist.contents.todense())))
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+The total number of photons has increased by a factor of 3, as expected:
+single histogram: 3324977.0
+combined histogram: 9974931.0
+
+
+
+
+
+

Example 4: Making data selections

+
+

Make time cut

+

Only time cuts are available for now. The parameters tmin and tmax are passed from the yaml file. In this example we will select the first half of the dataset.

+
+
[19]:
+
+
+
analysis = BinnedData("inputs_half_time.yaml")
+analysis.select_data(unbinned_data="combined_unbinned_data.hdf5", output_name="selected_unbinned_data")
+
+
+
+
+
+
+
+
+Making data selections...
+Saving file...
+
+
+
+
+

Bin the selected data

+
+
[20]:
+
+
+
analysis.get_binned_data(unbinned_data="selected_unbinned_data.hdf5", output_name="selected_combined_binned_data")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+

Get raw spectrum and lightcurve:

+
+
[21]:
+
+
+
analysis.get_raw_spectrum(binned_data="selected_combined_binned_data.hdf5", output_name="selected_crab_spec_3x")
+analysis.get_raw_lightcurve(binned_data="selected_combined_binned_data.hdf5", output_name="selected_crab_lc_3x")
+
+
+
+
+
+
+
+
+getting raw spectrum...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_40_1.png +
+
+
+
+
+
+
+getting raw lightcurve...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_40_3.png +
+
+
+
+

Compare to the full data set

+
+
[22]:
+
+
+
# LCs:
+# The plots below are normalized to the initial time.
+import pandas as pd
+import matplotlib.pyplot as plt
+import numpy as np
+
+df = pd.read_csv("crab_lc_3x.dat", delim_whitespace=True)
+plt.semilogy(df["Time[UTC]"] - df["Time[UTC]"][0], df["Rate[ct/s]"],ls="-",label="Combined")
+
+df = pd.read_csv("selected_crab_lc_3x.dat", delim_whitespace=True)
+plt.semilogy(df["Time[UTC]"] - df["Time[UTC]"][0], df["Rate[ct/s]"],ls="--",label="Selected Combined")
+
+plt.legend()
+plt.xlabel("Time [s]")
+plt.ylabel("ct/s")
+plt.savefig("combined_lc_comparison.pdf")
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_42_0.png +
+
+
+
[23]:
+
+
+
# Spectrum
+df = pd.read_csv("crab_spec_3x.dat", delim_whitespace=True)
+plt.loglog(df["Energy[keV]"],df["Rate[ct/keV]"],ls="-",label="Combined")
+
+df = pd.read_csv("selected_crab_spec_3x.dat", delim_whitespace=True)
+plt.loglog(df["Energy[keV]"],df["Rate[ct/keV]"],ls="--",label="Selected Combined")
+
+plt.legend()
+plt.xlabel("Energy [keV]")
+plt.ylabel("ct/keV")
+plt.savefig("combined_spectrum_comparison.pdf")
+plt.show()
+
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_43_0.png +
+
+
+
+
+

Example 5: Dealing with memory issues

+

Combining and binning data can be memory intensive. It’s therefore recommended to use a work station with plenty of RAM if possible. If you’re running into memory limitatons, a workaround is to use chunks.

+

We can read the unbinned data in chuncks by specifying event_min and event_max:

+
+
[24]:
+
+
+
analysis = BinnedData("inputs.yaml")
+analysis.read_tra(event_min=0, event_max=1000)
+print("Number of photons in COSI dataset: " + str(analysis.cosi_dataset["TimeTags"].size))
+
+
+
+
+
+
+
+
+Preparing to read file...
+Reading file...
+
+
+
+
+
+
+
+  0%|          | 16106/53383576.0 [00:00<04:04, 218242.46it/s]
+
+
+
+
+
+
+
+Stopping here: only reading a subset of events
+Making COSI data set...
+total events to procecss: 999
+Initializing arrays...
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Making dictionary...
+total processing time [s]: 10.723071336746216
+Number of photons in COSI dataset: 999
+
+
+

The same thing can be done for binning the data in chuncks by specifying the event_range keyword:

+
+
[4]:
+
+
+
analysis = BinnedData("inputs.yaml")
+analysis.get_binned_data(unbinned_data="unbinned_data.hdf5",event_range=[0,1e6],make_binning_plots=True)
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_47_1.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_47_2.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_47_3.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_47_4.png +
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_47_5.png +
+
+
+
+
+
+
+plotting psichi in Galactic coordinates...
+
+
+
+
+
+
+../../_images/tutorials_DataIO_DataIO_example_47_7.png +
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/DataIO/DataIO_example.ipynb b/tutorials/DataIO/DataIO_example.ipynb new file mode 100644 index 00000000..b1fea029 --- /dev/null +++ b/tutorials/DataIO/DataIO_example.ipynb @@ -0,0 +1,1425 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# DataIO Examples\n", + "\n", + "For these examples we will use 2 hrs of simulated Crab data with the Compton sphere mass model. This is an idealized mass model with a full-sky instantanious field of view, used only for development. The file can be downloaded using the cosipy utility function below. \n", + "\n", + "wasabi path: ComptonSphere/mini-DC2/GalacticScan.inc1.id1.crab2hr.extracted.tra.gz
\n", + "File size: 322 MB" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from cosipy.util import fetch_wasabi_file\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/GalacticScan.inc1.id1.crab2hr.extracted.tra.gz')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Data formats overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The COSI high-level analysis data is composed of a stream of time-tagged events. Each event has an associated timestamp ($t$), measured energy ($E_m$), and the three parameters of the Compton Data Space (CDS): scattering polar angle ($\\phi$), and the longitude and latitude angles defining the direction of the first scattered gamma ray ($\\psi$ and $\\chi$). See these references for an explanation of the CDS: [1](https://github.com/cositools/cosi-data-challenge-2/tree/main/cosipy-intro#the-compton-data-space),[2](https://arxiv.org/abs/2308.11436), [3](https://arxiv.org/abs/2102.13158).\n", + "\n", + "There are three formats that contain time-tagged events:\n", + "* tra files. These have the extension \".tra\". They are text files generated by MEGAlib that contain track information. You can read about the format in MEGALib's [Mimrec documentation](https://github.com/zoglauer/megalib/blob/main/doc/Mimrec.pdf). Most users won't need to use these files.\n", + "* FITS files. These have the extension \".fits\". They are essentially tra files that have been converted into the [FITS](https://fits.gsfc.nasa.gov/) format. This is the typical starting point for a cosipy analysis.\n", + "* Unbinned HDF5 files. These have the extension \".h5\" or \".hdf5\". This is another option for converting the tra files into a binary format, in this case ([HDF5](https://www.hdfgroup.org/solutions/hdf5/)). Some examples use an HDF5 format instead of FITS, since it can be more computationally efficient.\n", + "\n", + "Currently, all the analyses in cosipy use binned data. These are also HDF5 binary files and have the extension \".h5\" or \".hdf5\". They contain a 4-dimensional sparse histogram corresponding to the variables $t$, $E_m$, $\\phi$ and $\\psi\\phi$. The binned direction of the scattered gamma ray ($\\phi$ and $\\psi\\phi$) is encoded as a pixel in a [HEALpix](https://healpix.sourceforge.io/) map." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "
\n", + "Note: The data formats are likely to change and consolidate in future versions. In addition, we are contemplating adding more information to each event that cannot be captured by the Compton Data Space --e.g. the scattering angle and direction of the second interaction, for those events with more than 2 hits.\n", + "
" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "## Example 1: Standard binned analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import the BinnedData class from cosipy:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
10:44:43 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=693506;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=503482;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113949;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=603534;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:45 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=436481;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892811;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378295;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=468787;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847982;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933240;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=266236;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=82342;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=532777;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=637640;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105550;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364215;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=259140;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=552462;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:45 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=603244;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=905296;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=689267;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=873945;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=480669;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=815;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282557;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=230210;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   no display variable set. using backend for graphics without display (agg)         __init__.py:46\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m no display variable set. using backend for graphics without display \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251magg\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=269009;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577205;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#46\u001b\\\u001b[2m46\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/pkg_resources/__init__.py:123: PkgResourcesDeprecationWarning: dev is an invalid version and will not be supported in a future release\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "text/html": [ + "
10:44:50 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=966875;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265165;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72521;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605572;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:52 WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=145891;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=446981;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:53 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=19565;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389702;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:54 WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=918898;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=693090;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=263202;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=975208;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:56 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=421856;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511842;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
10:44:56 WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m10:44:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=189740;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=150136;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=297232;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=411648;file:///zfs/astrohe/Software/COSIMain_u2/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy import BinnedData\n", + "%matplotlib inline " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Get the unbinned COSI dataset\n", + " \n", + "Define an instance of the BinnedData object. Input parameters are passed from inputs.yaml.
\n", + "Note: We are still working on refining the handling of input/output parameters. This will be updated in future releases of cosipy. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A typical DataIO configuration yaml files looks like this:\n", + "\n", + "```yaml\n", + "data_file: \"/path/to/crab/tra/file\" # Full path to unbinned tra data file. Only needed when converting a tra file to fits or HDF5.\n", + "ori_file: \"/path/to/ori/file\" # Full path to spacecraft orientation file. See next tutorial. Only needed when converting a tra file to fits or HDF5.\n", + "unbinned_output: 'hdf5' # Format of converted unbinned file 'fits' or 'hdf5'. Only needed when converting a tra file to fits or HDF5.\n", + "time_bins: 60 # time bin size in seconds. Takes int, float, or list of bin edges.\n", + "energy_bins: [100., 200., 500., 1000., 2000., 5000.] # Energy bin edges [keV]. Needs to match response binning.\n", + "phi_pix_size: 6 # binning of Compton scattering angle [deg]. \n", + "nside: 8 # HEALPix binning of psi chi local. Needs to match response binning.\n", + "scheme: 'ring' # HEALPix binning scheme of psi chi\n", + "tmin: 1835478000.0 # Min time cut in GPS seconds.\n", + "tmax: 1835485200.0 # Max time cut in GPS seconds.\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The starting point for the high-level data analysis is the so-called Level 1c data, which is a photon list consisting of Compton event parameters, e.g. energies of the scattered gamma ray and recoil electron, interaction positions within the detector, and time-tags. The photon list comes from the event identification and reconstruction, and it is stored in a tra file. From this information we can determine the total measured energy of the incidenct photon, the Compton scattering angle, the scattering direction, the distance between interactions, and the pointing of the instrument when the photon was detected, which is the main information needed for the high-level analysis. As a very first step, we read the data from the tra file and construct the COSI dataset. The data format for this is a dictionary containing the relevant information for all photons (i.e. an unbinned photon list). The dictionary can be stored as either a fits file or an hdf5 file.\n", + "\n", + "**Note:** Most users will not need to worry about this step, as the COSI data will already be provided in fits file format. However, this function can also be used for converting simulated data from MEGAlib to the proper cosipy format." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preparing to read file...\n", + "Reading file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 53383576/53383576.0 [03:35<00:00, 247474.98it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Making COSI data set...\n", + "total events to procecss: 3324977\n", + "Initializing arrays...\n", + "Making dictionary...\n", + "Saving file...\n", + "total processing time [s]: 720.1664335727692\n" + ] + } + ], + "source": [ + "analysis.read_tra(output_name=\"unbinned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bin the data\n", + "The data is binned with four axes: time, measured energy, compton scattering angle (Phi), and scattering direction (PsiChi). The binning should match that of the response used for the analysis. Here we will bin the data in Galactic coordinates, which is the default. The data can also be binned in local coordinates by specifying the keyword psichi_binning=\"local\". " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "analysis.get_binned_data()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's take a look at the raw spectrum and lightcurve:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGp0lEQVR4nO3de3RU5b3/8c9kksk9gVzIDasFLBJbQRBq64GKjhcaBauCWNvKaQlVFMEUsLiqrUorBRvxcrSFQ4una1lR1Go1gAYRrdqiVmo1EMULhYSEJOQyuU4ymd8fNPNLzIWEZGc/k7xfa7GUPXv2/s7D8OWTZ98cfr/fLwAAAEiSQuwuAAAAwCSEIwAAgHYIRwAAAO0QjgAAANohHAEAALRDOAIAAGiHcAQAANAO4aiPGhsbVVhYqMbGRrtLAQAAFiAc9dHBgweVnZ2tgwcPWrL9mpoaS7YLYGigRwDWIxwZxuPx2F0CAIPRIwDrEY4MEx8fb3cJAAxGjwCsRzgCAABoZ9iGow8++EDf+ta39Nhjj9ldSgfV1dV2lwDAYPQIwHqhdhdgh9bWVj388MM644wz7C4FAGAIn8+n5uZmu8tAPzmdToWGhsrhcJz0NoZlOPrLX/6iCRMmqK6uzu5SOklJSbG7BAAGo0dYo7a2VocPH5bf77e7FAyAqKgopaWlyeVyndT7jQ5H9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1A7rVVdX66mnntKjjz6qhx56aLA+Sq9VVlYqOTnZ7jIAGIoeMfB8Pp8OHz6sqKgoJScn92vGAfby+/3yer0qKyvTZ599ptNPP10hIX0/g8jocFRdXa3NmzcrJSVF48aN03vvvdftuvfee69effVVzZ07V6NHj9a2bdu0cuVKPfDAAzrrrLMC623cuFFz585VbGzsYHyEPvN6vXaXAMBg9IiB19zcLL/fr+TkZEVGRtpdDvopMjJSYWFhOnjwoLxeryIiIvq8DaNPyE5MTNSzzz6rp556SjfeeGO36xUUFGjnzp1atGiRFi9erNmzZ2v9+vVKTU3Vo48+Gljvo48+0v79+3XZZZcNRvknJSwszO4SABiMHmGdvs4Y+Xw+vfrqq/rTn/6kV199VT6fz6LK0FcnM1vUntEzRy6XS4mJiSdcb/fu3XI6nZo9e3ZgWXh4uLKysrRhwwaVlpYqJSVFe/fu1aFDh3TVVVdJOn6M2el0qri4WKtWrbLsc/RFbz4vgOGLHmGGZ555RkuXLtXhw4cDy0aPHq0HHnhAV155pY2VYSAYHY566+OPP9bo0aMVHR3dYfmECRMkSQcOHFBKSopmz56tCy+8MPD6gw8+qLS0NF133XXdbru8vFwVFRWB31v12JA2JSUlysjIsHQfAIIXPcJ+zzzzjK6++upOJ28XFRXp6quv1tatWwlIkqqqqvTb3/5WP/3pT+0upc+GRDiqqKjo8qeptmXl5eWSpIiIiA7HHsPDwxUZGdnj+UfPP/+8Nm/e3Gl5WVmZYmJilJaWpvLycjU3Nys8PFwjRoxQaWmppON3svX7/YFnIaWmpurYsWPyer0KCwtTYmKiSkpKJElxcXFyOBw6evSopONXpFRVVampqUmhoaFKTk7WkSNHJEmxsbEKDQ1VZWWlJCk5OVkej0eNjY1yOp1KSUlRcXGxJCkmJkYul0vHjh2TJCUlJamurk4NDQ0KCQlRWlqaioqKJEnR0dGKiIgIhMHExEQ1NDSovr5eDodD6enpOnLkiFpbWxUZGano6GgVFxfrscceU2lpqb70pS9p/vz5crlcysjIUElJiXw+nyIiIhQbG6uysjJJ0siRI9XS0hJ4DEJ6erqOHj2qlpYWhYeHKz4+PjAOI0aMUGtra4cxrKioUHNzs1wul0aOHNlhvKX/fx+YlJQUVVZWdjveISEhqqqqkiSNGjVK1dXVgfEeNWpUYAxPNN6pqakdxjA8PLzH8S4uLpbf71dUVJQiIyM7jHdjY2PgKsqMjIxO4932XU5ISJDX61VtbW1gDEtLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorqMIZNTU3djndMTEyHMWxubu4w3m3f2YiICMXFxXX4zvp8vg7jPZx7RE/jbUqPqK+vl8/nC5zMKx2/HFxS4FBZaGiofD6fWlpadMstt3R5VZvf75fD4dCyZcuUlZUlh8Mhh8OhsLCwwHZDQkIUEhKilpaWwHZbW1vV2toq6fgRky+u2/b3pDfrdrfdsLAwtbS0yO/3d1r3i5+1/boOh0OhoaGBWxz0Zd2KigqtWbNGOTk5Xa7bNmbdjXdb/V/cbkhIiBwOR5frth+XlpYW1dTUyO/3B77fvf7Bwh8k9u3b558+fbo/Ly+v02vXXHONf/ny5Z2WFxUV+adPn+7fsmXLSe+3rKzMv3///sCvHTt2+KdPn+7fv3//SW+zJzU1NZZs1worVqzwO51Ov6TAL6fT6V+xYoXdpQFDVjD1iGDR0NDgLygo8Dc0NJxw3V27dnXoed392rVrV79qkuS/8847/eecc45/+fLl/vfff99/3nnn+c8++2z/hAkT/Pfcc09g3fT0dH9RUZHf7/f7586d6//GN77h9/v9/sbGRn9CQoK/sbGxw7Z9Pp//pptu8p9xxhn+s846yz958mR/Q0OD/7PPPvPHx8f7f/KTn/i/9rWv+TMzM/0vv/xy4H3bt2/3n3feef7Jkyf7p06d6n/llVcCr/3+97/3T5w40X/WWWf5p0yZ4v/ss8/8l1xyiT8kJMQ/ceJE/5QpU/x+v9//rW99y79kyRL/ueee6585c2Zgn208Ho+/fTSR5F+9erV/2rRp/lNPPdX/7LPP+n/1q1/5p0yZ4h83bly349yXP9OuDImZo/Dw8C5v3NWWqMPDw09620lJSUpKSjrp9/dVf08iGywrV67UunXrOi33+XyB5WvXrh3ssoAhL1h6xFDVNjs3UOv1xOl06u2335Z0/IHDO3fuVHh4uBoaGvTNb35Tbrdb5557ri688ELl5+fre9/7nv75z38qNDRUNTU1evvttzVlypRO/wb+85//1M6dO/Xhhx8qJCRE1dXVgfsBVVdXa8KECbrvvvv0t7/9TbNnz9Ynn3yisrIy/eIXv9COHTsUFxenAwcOaPr06fr888/11ltv6e6779abb76ptLQ01dfXS5J++9vfatKkSdq7d2+H/X/00Ud67bXXFBYWps8///yE4xATE6O///3v2rlzp+bMmaOHH35Y77zzjp566imtWLEiMEYDaUiEo8TExMB0bHttU7+DGW76q6qqqtO5U6bxer3Kzc3tcZ3c3FytXr36pG/ABaBrwdAjhrK0tLQBXa8nP/zhDwP/39DQoMWLF2vv3r0KCQnRoUOHtHfvXp177rlyu93Kz8/XmWeeqYkTJyolJUWvvvqq3nrrrQ7n2bYZM2aMWlpa9MMf/lAzZ85UVlZWIHSHhoZqwYIFkqRzzz1X6enpeu+99/TBBx/owIEDmjFjRmA7ISEh+ve//60XX3xR3//+9wOfOSoqqsfP9b3vfa9PV11ec801kqRzzjlHdXV1mj9/viRp2rRp+vjjj3u9nb4YEuGo7R5IdXV1HZpGQUFB4PVgsWHDBm3atMnuMnrk8XhOeMmqz+dTcnLyoN9PKicnJ3B8GwAG2vTp0zV69GgVFRV1ed6Rw+HQ6NGjNX369H7vKyYmJvD/t99+u5KSkvTee+8pNDRUV155pRobGyVJbrdbq1atUmZmptxut1JSUpSfn6+33nqrw+1s2sTHx+uDDz7Q7t27tWvXLq1atUqvvfaaQkO7jgQOh0N+v18XXXSRHn/88QH9XG3ncrVp+0zttZ0r3HZeUvvft503NdCGRDg6//zz9cQTT+j555/XtddeK+n47EZeXp4yMzMH5Hb7+fn5ys/PD5yQaZXW1tbAyY/BrqamJnCS5GDuExjKRo0aZXcJw5rT6dQDDzygq6++OhAa2rSdZLx+/frAP+QDpbKyUhMmTFBoaKgKCwv18ssvB2Zx0tPTFR8fr9/+9rd65ZVXlJSUpFtvvVUej0eTJ0/utK2ysjI5nU5dfPHFuuiii7R7924VFBTorLPOUktLi/74xz9qwYIF2rNnj4qLizVp0iSlpaXprrvu0vvvvx+4sfKePXs0bdo0XX755VqwYIFuvPHGDofV4uLi1NDQIK/X2+1RhNTUVPn9fhUUFCgzM1P/93//N6DjdrKMD0dPP/20amtrA4fI3njjjcBVCldddZViYmKUmZmpmTNnasOGDaqqqlJGRoa2b9+ukpIS3XbbbQNSh9vtltvtVmFhobKzswdkm11pu9LLZB6Pp1chJC4ubtBnjuLi4gZ1f8Bgq66uDqpTBYaiK6+8Ulu3bu3yPkfr16+35DL+n/3sZ/r+97+vxx57TGPHjtUFF1zQ4XW3260XXnhBY8aMkXQ8dJx99tldnqN26NAhZWdnq7m5WT6fT+edd55mzZqloqKiwKzSxIkT1dLSoscff1yxsbGKjY3V448/rh//+Meqr6+X1+vV2Wefrccff1wzZszQz3/+c11yySVyOBxyuVzaunWrTj31VP3gBz/QWWedpZiYGL3zzjudagkNDdVDDz2kyy67TImJibr66qsHfOxOhsPf1bygQebNmxe4lPWLtmzZEjjG2dTUFHi2Wm1trcaMGaOFCxdq2rRpA1pPWzjauHGjxo8fP6Dblo7fJ8P0cOT1ehUVFdXjoTWn06n6+nrOOQIGWDD0iGDT2Niozz77TF/+8pf79KgJn8+n119/XUeOHFFaWpqmT58+4DNGg+nzzz/XpEmTArfcCGYn+2faxviZoyeffLJX64WHh2vx4sVavHixxRVZq7tjviZxuVzKycnp8mq1Njk5OQQjwALB0COGC6fTqfPPP9/uMmAB/pYZJljOJ2i7TD83N7fDDJLT6VROTg6X8QMWCZYegeBz2mmnDYlZo4FAODJMcXFx0EyZr127VqtXr9YjjzyiTz75RGPHjtXixYuZMQIsFEw9ItgYfpYJ+qDtbtkni3CEfnG5XFq2bJndZQDASQsLC5PD4VBZWZmSk5MDV50h+Pj/8wiYsrIyhYSEnPQP64SjXhqsS/kH++ouAMGFHjHwnE6nRo8ercOHD/fqjs0wX1RUlL70pS+d9B3ljb9azTRWX61WX19/wruLAhi+6BHW8fl8XT6KCsHF6XQqNDS0XzOAzBwZprKyksYHoFv0COs4nc6gvhQfA4cnGAIAALRDODJMcnKy3SUAMBg9ArAe4cgwHo/H7hIAGIweAViPcGSYrp5IDABt6BGA9Tghu5cG61J+TgYE0BN6BGA9LuXvI6sv5QcAAPbisJphioqK7C4BgMHoEYD1CEcAAADtEI4MEx0dbXcJAAxGjwCsRzgyTHh4uN0lADAYPQKwHuHIMMeOHbO7BAAGo0cA1iMcAQAAtMN9jnppsO5zlJSUZOn2MTR5vV498sgj+uSTTzR27FgtXrxYLpfL7rJgAXoEYD3uc9RHVt/n6NixY0pISBjw7WLoWrlypXJzc+Xz+QLLnE6ncnJytHbtWhsrgxXoEYD1mDkyTENDg90lIIisXLlS69at67Tc5/MFlhOQhhZ6BGA9zjkyTEgIfyToHa/Xq9zc3B7Xyc3NldfrHaSKMBjoEYD1mDkyTFpamt0lBLXc3NwTBoahwuPxdDiU1hWfz6fk5GTFxsYOUlUnlpOTo5ycHLvLCFr0CMB6hCPDFBcXKz093e4yglZNTQ2PV/iCmpoa1dTU2F1GgEm1BCN6BGA9wpFhOD++f+Li4pSRkWF3GYPC4/H0KmjExcUZNXMUFxdndwlBjR4BWI9wZJioqCi7Swhqw+mQjdfrVVRUVI+H1pxOp8rKyrisfwihRwDW48w+w0RGRtpdAoKEy+U6YRDMyckhGA0x9AjAeoQjw1RUVNhdAoLI2rVrtWLFCjmdzg7LnU6nVqxYwWX8QxA9ArAeh9V6abDukA301dq1a7V69WrukA0AA4Q7ZPeR1XfIbmxsVERExIBvF8DQQI8ArMdhNcM0NjbaXQIAg9EjAOsRjgxTV1dndwkADEaPAKxHOAIAAGiHcGSY4XIDQwAnhx4BWI9wZJgjR47YXQIAg9EjAOsRjgzT2tpqdwkADEaPAKxHODIMd78F0BN6BGA9wpFhoqOj7S4BgMHoEYD1CEeGKS8vt7sEAAajRwDW4/EhvcTjQwAAGB4IR73kdrvldrsDjw+xSkJCgmXbBhD86BGA9TisZhiv12t3CQAMRo8ArEc4MgyH7QD0hB4BWI9wBAAA0A7hyDDp6el2lwDAYPQIwHqEI8OUlpbaXQIAg9EjAOsRjgzj8/nsLgGAwegRgPUIR4aJiIiwuwQABqNHANYjHBkmNjbW7hIAGIweAViPcGSYsrIyu0sAYDB6BGA9whEAAEA7hCPDjBw50u4SABiMHgFYj3BkmJaWFrtLAGAwegRgPcKRYTwej90lADAYPQKwHuEIAACgnVC7CwgW+fn5ys/Pt/yhj2lpaZZuH0Bwo0cA1mPmqJfcbrfWrFmjJUuWWLofLtMF0BN6BGA9wpFhONkSQE/oEYD1CEeGCQ8Pt7sEAAajRwDWIxwZZsSIEXaXAMBg9AjAeoQjw5SWltpdAgCD0SMA6xGOAAAA2iEcGSY+Pt7uEgAYjB4BWI9wZBi/3293CQAMRo8ArEc4MkxNTY3dJQAwGD0CsB7hCAAAoB3CkWFSU1PtLgGAwegRgPUIR4apqKiwuwQABqNHANYjHBmmubnZ7hIAGIweAViPcGQYl8tldwkADEaPAKxHODJMQkKC3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCMAAIB2CEeGiYuLs7sEAAajRwDWIxwZxuFw2F0CAIPRIwDrEY4MU11dbXcJAAxGjwCsF2p3AcEiPz9f+fn5qq2ttbsUAABgIYefRzz3SWFhobKzs7Vx40aNHz9+wLff0tKi0FAyK4Cu0SMA63FYzTBVVVV2lwDAYPQIwHqEI8M0NTXZXQIAg9EjAOsRjgwTFhZmdwkADEaPAKxHODJMUlKS3SUAMBg9ArAe4cgwR44csbsEAAajRwDWIxwBAAC0QzgyTGxsrN0lADAYPQKwHuHIME6n0+4SABiMHgFYj3BkGO5hAqAn9AjAeoQjAACAdghHhhk1apTdJQAwGD0CsB7hyDA1NTV2lwDAYPQIwHqEI8M0NjbaXQIAg9EjAOsRjgzD07YB9IQeAViPcGQYzicA0BN6BGA9wpFhiouL7S4BgMHoEYD1CEcAAADtEI4MExMTY3cJAAxGjwCsRzgyTFhYmN0lADAYPQKwHuHIMJWVlXaXAMBg9AjAeoQjAACAdghHhklOTra7BAAGo0cA1iMcGaa2ttbuEgAYjB4BWI9wZJiGhga7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGSYtLc3uEgAYjB4BWI9wZJiioiK7SwDwBV6vV+vXr9eSJUu0fv16eb1e22qhRwDWG5aPd163bp3eeOMNNTY2KiUlRYsWLdJ5551nd1kADLRy5Url5ubK5/MFli1fvlw5OTlau3atjZUBsMqwDEfz5s3T0qVL5XK5tG/fPuXk5OiJJ55QfHy83aUpOjra7hIA/MfKlSu1bt26Tst9Pl9g+WAHJHoEYL1heVjt1FNPlcvlkiQ5HA41NzervLzc5qqOCw8Pt7sEADp+KC03N7fHdXJzcwf9EBs9ArCe8TNH9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1E7r5ubmKi8vT16vV+eee67GjBkzGB/nhI4dO6aMjAy7ywAsk5ube8LQYQKPx9PhUFpXfD6fkpOTFRsbO0hVST/60Y901113Ddr+gOHI+HBUXV2tzZs3KyUlRePGjdN7773X7br33nuvXn31Vc2dO1ejR4/Wtm3btHLlSj3wwAM666yzOqybk5OjpUuXau/evfr000/lcDis/igAJNXU1Aypk4prampUU1MzaPvzeDyDti9guDI+HCUmJurZZ59VYmKi9u/fr0WLFnW5XkFBgXbu3Kkbb7xR1157rSTpkksu0YIFC/Too4/q0Ucf7fQep9OpKVOm6KmnntLo0aP1jW98w9LP0htJSUl2lwBYKi4uLihmRz0eT69CT1xc3KDOHKWmpg7avoDhyvhw5HK5lJiYeML1du/eLafTqdmzZweWhYeHKysrSxs2bFBpaalSUlK6fK/P5zPmJ9n6+nrOKcCQlpOTo5ycHLvLOCGv16uoqKgeD605nU6VlZUFzmEcDJWVlYO2L2C4GjInZH/88ccaPXp0pys5JkyYIEk6cOCApOPPJXr55ZdVX1+vlpYW7dq1S++9954mTpzY5XbLy8tVWFgY+HXw4EFLP0d9fb2l2wfQOy6X64QhLicnZ1CDkUSPAAaD8TNHvVVRUdHlDFPbsrar0RwOh1544QXdf//98vv9ysjI0B133KHTTz+9y+0+//zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDFCpaWlkqT4+Hj5/f7A1HxqaqqOHTsmr9ersLAwJSYmqqSkRNLxqXmHw6GysjJJUkpKiqqqqtTU1KTQ0FAlJyfryJEjkqTY2FiFhoYGfoJMTk6Wx+NRY2OjnE6nUlJSVFxcLEmKiYmRy+XSsWPHJB0/bFdXV6eGhgaFhIQoLS0tMGsWHR2tiIgIVVRUBMauoaFB9fX1cjgcSk9P15EjR9Ta2qrIyEhFR0cHxjUhIUFNTU2qq6uTJGVkZKikpEQ+n08RERGKjY0NfLaRI0eqpaUlcO5Eenq6jh49qpaWFoWHhys+Pl5Hjx6VJI0YMUKtra0dxrCiokLNzc1yuVwaOXJkh/GWjp+n1jaGlZWV3Y53SEiIqqqqJEmjRo1SdXV1YLxHjRoVGMMTjXdqamqHMQwPD+9xvIuLi+X3+xUVFaXIyMgO493Y2NhhDHsab6/XG3gIaXp6ukpLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorq8TvbfrxjYmK0dOlSeTwebdiwQa2trWrjdDr14x//WEuXLlVFRYXi4uI6fGd9Pl+H8aZH0CPoEWb0iN4e0nf4/X5/r9Y0QNs5R11drTZ//nydcsopne5JUlxcrPnz5+vmm2/WvHnz+rzP8vLywBdTkg4ePKjVq1dr48aNGj9+/Ml9EABBxev16pFHHtEnn3yisWPHavHixYM+YwRg8AyZmaPw8HA1Nzd3Wt52D5KTPY8nKSlpUE+SLi4uVnp6+qDtD8CJuVwuLVu2zO4yJNEjgMEwZM45SkxM7DDD06ZtWbBcBRZEE3kAbECPAKw3ZMLRuHHjdPjw4cCx2DYFBQWB14NBVFSU3SUAMBg9ArDekAlH559/vnw+n55//vnAMq/Xq7y8PGVmZnZ7GX9v5efn66c//akeeuih/pbaIxofgJ7QIwDrBcU5R08//bRqa2sDh8jeeOONwJUKV111lWJiYpSZmamZM2dqw4YNqqqqUkZGhrZv366SkhLddttt/a7B7XbL7XarsLBQ2dnZ/d5ed8rLy4PiBnkA7EGPAKwXFOFoy5YtgUsDJem1117Ta6+9Jkm6+OKLFRMTI0m6/fbblZKSoh07dqi2tlZjxozRr3/9a02aNMmOsgEAQBAKqkv5TdA2c2TVpfwNDQ2KjIwc8O0CGBroEYD1hsw5R0NFU1OT3SUAMBg9ArAe4cgwX7zaDgDao0cA1iMcAQAAtBMUJ2SbID8/X/n5+YHn1FiFq1AA9IQeAVhvQGaOPB6Ptm/fPhCbMpbb7daaNWu0ZMkSS/fT9hA+AOgKPQKw3oCEo9LSUq1Zs2YgNjXstX/yNwB8ET0CsF6vDquVlpb2+Hp5efmAFANxiS6AHtEjAOv1KhzNmzdPDoej29f9fn+Pr6P32m5oCQBdoUcA1utVOIqNjdWPfvSjbu80ffDgQf3iF78YwLKGr7KyMk64BNAtegRgvV6Fo6985SvyeDz68pe/3OXrPp9P3GgbAAAMBb0KR1dccYUaGxu7fT0lJUU//elPB6woEw3WpfwjR460dPsAghs9ArAez1brI6ufrVZdXa34+PgB3y6AoYEeAViPO2QbxuqZKQDBjR4BWO+kw9H555+vQ4cODWQtAAAAtjvpcMTROGukp6fbXQIAg9EjAOtxWM0wR48etbsEAAajRwDWIxwZpqWlxe4SABiMHgFYj3BkmIiICLtLAGAwegRgvV7d5wiDd5+juLg4S7cPILjRIwDrMXPUS263W2vWrNGSJUss3Q/nEwDoCT0CsB7hCAAAoJ2TDkff/e53md61wIgRI+wuAYDB6BGA9U76nKMf//jHA1kH/sPn89ldAgCD0SMA6/V55sjr9VpRB/7D4/HYXQIAg9EjAOv1ORx95zvf0f3336/CwkIr6gEAALBVnw+reb1e/fnPf9Zzzz2nsWPHKisrSxdddJFiY2OtqG/YSUtLs7sEAAajRwDW6/PM0XPPPaecnByNHz9eBw4c0IMPPqgrr7xSd999t959910rahxWysvL7S4BgMHoEYD1+jxzFBUVpTlz5mjOnDn6/PPP9eKLL+rll1/Wzp079corr2jUqFHKysrSpZdeqpSUFCtqHtKam5vtLgGAwegRgPUcfr/f39+N+Hw+vfnmm3rxxRe1Z88e+Xw+hYSE6JxzzlFWVpb+67/+S6GhwX0z7vZ3yH7//fe1ceNGjR8/fsD3U15erqSkpAHfLoChgR4BWG9AwlF7x44d044dO5SXl6d///vfcjgciouL0/PPPz+Qu7FNYWGhsrOzLQtHLS0tQR8kAViHHgFYb8DvkJ2QkKBrr71Wv/jFL/S1r31Nfr9fNTU1A72bIau0tNTuEgAYjB4BWG9Af/yor6/Xyy+/rBdffFEfffSR/H6/IiIiNHPmzIHcDQAAgGUGJBz94x//UF5enl5//XU1NTXJ7/crMzNTWVlZuuCCCxQVFTUQuxkW4uPj7S4BgMHoEYD1TjocHT16VNu2bdO2bdtUUlIiv9+vESNGaPbs2crKytJpp502gGUOHwN8ChiAIYYeAVivz+Fo586dysvL0z/+8Q+1trYqJCREU6dOHTJXpdmtpqaGG2oC6BY9ArBen5PM3XffLen4XVpnzZqlWbNmadSoUQNeGAAAgB36HI4uvPBCZWVlacqUKVbUM+ylpqbaXQIAg9EjAOv1ORzdeeedVtSB/zh27JiSk5PtLgOAoegRgPX6fYJQS0uLnnnmGeXn5+vf//63mpqatGvXLknSxx9/rL/85S+aO3euTjnllH4XOxx4vV67SwBgMHoEYL1+haOmpib95Cc/0QcffKD4+HhFR0ersbEx8HpaWpry8vIUGxur7Ozsfhdrp/aPD7FSWFiYpdsHENzoEYD1+nWH7D/+8Y/617/+pUWLFunPf/6zsrKyOrweExOjSZMm6e233+5XkSZwu91as2aNlixZYul+EhMTLd0+gOBGjwCs169w9Morr+jss8/Wd7/7XTkcDjkcjk7rpKenc7v7PigpKbG7BAAGo0cA1utXODp69OgJH74aGRmpurq6/uwGAABg0PQrHEVGRqqqqqrHdYqLi7ndfR/ExcXZXQIAg9EjAOv1KxydeeaZevPNN+XxeLp8vbS0VH/72980ceLE/uxmWOnq0CQAtKFHANbrVziaP3++PB6Pbr31Vv3rX/+Sz+eTJDU2Nurdd9/V8uXL5fP5dM011wxIscNBdXW13SUAMBg9ArBevy7lnzRpkpYtW6YHH3yww1Vcl156qSQpJCREOTk5JzwvCQAAwBT9vgnkFVdcoUmTJum5557Tvn37VFNTo+joaE2YMEHf+c539OUvf3kg6hw2UlJS7C4BgMHoEYD1+h2OJOm0007T0qVLu33d5/PJ6XQOxK6GvKqqKiUlJdldBgBD0SMA6/XrnKNnnnnmhOv4fD7ddddd/dnNsNLU1GR3CQAMRo8ArNevcPTggw/q1Vdf7fb11tZW3XXXXXrttdf6s5thJTR0QCbzAAxR9AjAev0KR1/72te0evVq/eMf/+j0Wlsw2r17t77zne/0ZzfDCk/bBtATegRgvX6FozVr1uiUU07Rz372M3388ceB5a2trbrnnnv06quv6oorrujxfCR0dOTIEbtLAGAwegRgvX6Fo+joaN13332KiYnRihUrVFxcLL/fr7vvvluvvPKK5syZo1tvvXWgagUAALBcv8KRdPwJ0b/5zW/U2tqqn/zkJ/r5z3+uXbt26bLLLlNOTs5A1DisxMbG2l0CAIPRIwDrDciZfaeccorWrl2rZcuW6bXXXtNll12mFStWDMSmjZGfn6/8/HzV1tZauh9OtgTQE3oEYL0+/S3bvHlzj69PmDBBBw4cUGJiYod1HQ6Hrr/++pOpzxhut1tut1uFhYXKzs62bD+VlZWKioqybPsAghs9ArBen8LRH/7wh16t99hjj3X4/VAIRwAAYHjoUzh64IEHrKoD/8FlugB6Qo8ArNencDRp0iSLykAbj8ejxMREu8sAYCh6BGC9fl+thoHV2NhodwkADEaPAKxHODIMD+gF0BN6BGA9wpFhUlJS7C4BgMHoEYD1CEeGKS4utrsEAAajRwDWIxwBAAC0QzgyTExMjN0lADAYPQKwXr/CUWlpqerq6npcp76+XqWlpf3ZzbDicrnsLgGAwegRgPX6FY6uueYabd26tcd1tm7dqmuuuaY/uxlWjh07ZncJAAxGjwCs169w5Pf75ff7T7gOAABAsLD8nKOysjIektgHSUlJdpcAwGD0CMB6fXp8iCRt3ry5w+/fe++9LtdrbW3V0aNHtXPnTmVmZp5UccNRXV2dwsPD7S4DgKHoEYD1+hyO/vCHPwT+3+FwaO/evdq7d2+36yclJemGG244qeKGo4aGBrtLAGAwegRgvT6HowceeEDS8XOJli1bplmzZunSSy/ttF5ISIji4uL0pS99SSEh3DGgtxgrAD2hRwDW63M4mjRpUuD/FyxYoLPPPrvDMvRPWlqa3SUAMFgw9giv16tHHnlEn3zyicaOHavFixdzSwIYrV8/gpxzzjn661//qoqKii5fLy8v18MPP6wPP/ywP7sZVoqKiuwuAYDBgq1HrFy5UlFRUbr11lv18MMP69Zbb1VUVJRWrlxpd2lAt/oVjrZs2aI33nhDiYmJXb6elJSkN998U08++WR/dgMACEIrV67UunXr5PP5Oiz3+Xxat24dAQnG6vNhtfb279+vKVOm9LjOxIkT9c477/RnN0bIz89Xfn6+amtrLd1PdHS0pdsHENyCpUd4vV7l5ub2uE5ubq5Wr17NITYYp1/hqKqq6oT33EhISFBlZWV/dmMEt9stt9utwsJCZWdnW7afiIgIy7YNIPj97ne/00MPPWR3GSfk8Xg6zRh9kc/nU3JysmJjYwepKiknJ0c5OTmDtj8Ep36Fo5iYGB09erTHdUpLSxUZGdmf3QwrFRUVysjIsLsMAIYqLS0NuvOOelJTU6OamppB3R9wIv0KR5mZmXrttde0cOFCpaSkdHq9tLRUr7/+uiZPntyf3QAA/iM2NjYofoDyeDy9CiJxcXGDOnMUFxc3aPtC8OpXOJo3b57efPNN3XTTTVq4cKHOOeccJSUlqby8XG+//bb+93//V16vlwfP9kF3J7cDgCStWrVKd911l91lnJDX61VUVFSPh9acTqfKyso45wjG6Vc4mjRpkm666SY98sgjWrNmjaTjd81ue9isw+HQkiVLuA9SHzQ0NHDeEYBuBUuPcLlcysnJ0bp167pdJycnh2AEI/UrHEnS3LlzNXnyZD333HPav3+/amtrFRMTowkTJmjOnDkaM2bMQNQ5bNTX12vkyJF2lwHAUMHUI9auXSvp+FVp7WeQnE6ncnJyAq8DpnH426Z50CttV6tt3LhR48ePH/DtFxcXKz09fcC3C2BoCMYewR2yEWz6PXOEgRVsTQ/A4ArGHuFyubRs2TK7ywB6jScYGubIkSN2lwDAYPQIwHqEI8O0trbaXQIAg9EjAOsRjgzDDTMB9IQeAViPcGSYYHluEgB70CMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWGamprsLgGAwegRgPUIR4apq6uzuwQABqNHANYjHAEAALRDODJMRkaG3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCPD+Hw+u0sAYDB6BGA9wpFhIiIi7C4BgMHoEYD1CEeGiY2NtbsEAAajRwDWIxwZpqyszO4SABiMHgFYj3AEAADQDuHIMCNHjrS7BAAGo0cA1iMcGaalpcXuEgAYjB4BWI9wZBiPx2N3CQAMRo8ArBdqdwGDzev1Kjc3V++8845qa2t12mmn6eabb9ZXv/pVu0sDAAAGGHYzRz6fT6mpqfqf//kf5eXlae7cuVq1apXq6+vtLk2SlJ6ebncJAAxGjwCsN+zCUWRkpBYsWKCUlBSFhITowgsvVGhoqA4dOmR3aZKko0eP2l0CAIPRIwDrGX9Yrb6+Xk888YQKCgq0b98+eTwerVq1SrNmzeq0rtfr1aZNm/TSSy/J4/Fo7NixWrhwoaZOndrt9g8dOiSPx2PMwxw52RJAT+gRgPWMnzmqrq7W5s2bdfDgQY0bN67Hde+99149+eSTuuiii3TLLbcoJCREK1eu1Pvvv9/l+k1NTVq9erWuu+46xcTEWFF+n4WHh9tdAgCD0SMA6xkfjhITE/Xss8/qqaee0o033tjtegUFBdq5c6cWLVqkxYsXa/bs2Vq/fr1SU1P16KOPdlq/paVFd955pzIyMrRgwQILP0HfxMfH210CAIPRIwDrGR+OXC6XEhMTT7je7t275XQ6NXv27MCy8PBwZWVl6cMPP1RpaWlgeWtrq1avXi2Hw6Hbb79dDofDktpPBucTAOgJPQKwnvHnHPXWxx9/rNGjRys6OrrD8gkTJkiSDhw4oJSUFEnSfffdp4qKCt13330KDe15CMrLy1VRURH4/cGDBwe4cgAAYJIhE44qKiq6nGFqW1ZeXi5JKikp0QsvvCCXy9Vhlmnt2rWaOHFip/c///zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDEiMEsVHx8vv9+vmpoaSVJqaqqOHTsmr9ersLAwJSYmqqSkRJIUFxcnh8OhhoYGFRUVKSUlRVVVVWpqalJoaKiSk5N15MgRScefyh0aGqrKykpJUnJysjwejxobG+V0OpWSkqLi4mJJUkxMjFwul44dOyZJSkpKUl1dnRoaGhQSEqK0tDQVFRVJkqKjoxUREREIg4mJiWpoaFB9fb0cDofS09N15MgRtba2KjIyUtHR0YFxTUhIUFNTk+rq6iRJGRkZKikpkc/nU0REhGJjYwMPzBw5cqRaWloCN7NLT0/X0aNH1dLSovDwcMXHxwd+Oh4xYoRaW1s7jGFFRYWam5vlcrk0cuTIDuMtHT9PTZJSUlJUWVnZ7XiHhISoqqpKkjRq1ChVV1cHxnvUqFGBMTzReKempnYYw/Dw8B7Hu7i4WH6/X1FRUYqMjOww3o2NjR3GsKfx9nq9qq2tDYxhaWlpr8Y7LS1NZWVlgfE+0Xe2/XgnJCR0+s62H++272xYWJiSkpI6fGedTmeH8a6pqVFjY2On8Y6JiVFYWFiH8a6tre32O/vF8a6vr+/wnW0/3lFRUT1+Z9uPd0xMTIcxbG5u7jDebd/ZiIgIxcXFdfjO+ny+DuNNj6BH0CPM6BG9vfjK4ff7/b1a0wD79+/XokWLurxabf78+TrllFO0bt26DsuLi4s1f/583XzzzZo3b16f99nVzNHq1au1ceNGjR8//uQ+SA88Ho9iY2MHfLsAhgZ6BGC9ITNzFB4erubm5k7LvV5v4PWTkZSUpKSkpH7V1hc1NTU0PgDdokcA1jP+hOzeSkxM7DDD06Zt2WAGHAAAELyGTDgaN26cDh8+HDgW26agoCDwejBITU21uwQABqNHANYbMuHo/PPPl8/n0/PPPx9Y5vV6lZeXp8zMzMCVaqbravYLANrQIwDrBcU5R08//bRqa2sDTeGNN94IXKlw1VVXKSYmRpmZmZo5c6Y2bNigqqoqZWRkaPv27SopKdFtt93W7xry8/OVn58fOPPfKl2dNwUAbegRgPWC4mq1efPmBS4N/KItW7YoLS1N0vHHgbQ9W622tlZjxozRwoULNW3atAGrpbCwUNnZ2ZZdrVZWVqbk5OQB3y6AoYEeAVgvKMKRSawORy0tLSe8MSWA4YseAVhvyJxzNFS0f8wJAHwRPQKwHuEIAACgHcKRYXjiNoCe0CMA63HgupcG62o1AABgL2aOesntdmvNmjVasmSJpftpe0AfAHSFHgFYj3AEAADQDuHIMMFyJ28A9qBHANYjHBmmsrLS7hIAGIweAViPcGQYr9drdwkADEaPAKxHODJMWFiY3SUAMBg9ArAel/L30mBdyp+YmGjp9gEEN3oEYD1mjnppsC7l7+4BuwAg0SOAwUA4AgAAaIdwZJi4uDi7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGaaqqsruEgAYjB4BWI9wBAAA0A7hyDCjRo2yuwQABqNHANbjPke9NFj3OaqurlZSUpKl+wAQvOgRgPUIR73kdrvldrtVWFio7Oxsy/bT1NRk2bYBBD96BGA9DqsZJjSUvAqge/QIwHqEI8NwPgGAntAjAOsRjgxTXFxsdwkADEaPAKxHOAIAAGiHcGSY2NhYu0sAYDB6BGA9wpFhONkSQE/oEYD1CEeGqaystLsEAAajRwDWIxwBAAC0w/xsLw3WHbKTk5Mt3T6A4EaPAKzHzFEvud1urVmzRkuWLLF0Px6Px9LtAwhu9AjAeoQjwzQ2NtpdAgCD0SMA6xGODON0Ou0uAYDB6BGA9QhHhklNTbW7BAAGo0cA1iMcGaaoqMjuEgAYjB4BWI9wBAAA0A7hyDDR0dF2lwDAYPQIwHqEI8OEh4fbXQIAg9EjAOsRjgxz7Ngxu0sAYDB6BGA9whEAAEA7hCPDJCUl2V0CAIPRIwDr8Wy1XhqsZ6vV1dVxTgGAbtEjAOsRjnrJ7XbL7XarsLBQ2dnZlu2noaHBsm0DCH70CMB6HFYzTEgIfyQAukePAKzH3zLDpKWl2V0CAIPRIwDrEY4MU1xcbHcJAAxGjwCsRzgyjN/vt7sEAAajRwDWIxwZJioqyu4SABiMHgFYj3BkmMjISLtLAGAwegRgPcKRYSoqKuwuAYDB6BGA9QhHAAAA7RCODJOYmGh3CQAMRo8ArEc4MkxjY6PdJQAwGD0CsB7hyDB1dXV2lwDAYPQIwHqEIwAAgHYIR4bJyMiwuwQABqNHANYLtbuAYJGfn6/8/HzV1tZaup8jR47w7CQA3aJHANYjHPWS2+2W2+1WYWGhsrOzLdtPa2urZdsGEPzoEYD1OKxmGO5+C6An9AjAeoQjw0RHR9tdAgCD0SMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWG8Xq/dJQAwGD0CsB7hyDBW30cJQHCjRwDWIxwBAAC0QzgyTHp6ut0lADAYPQKwHuHIMKWlpXaXAMBg9AjAeoQjw/h8PrtLAGAwegRgPcKRYSIiIuwuAYDB6BGA9QhHhomNjbW7BAAGo0cA1iMcGaasrMzuEgAYjB4BWI9wBAAA0A7hyDAjR460uwQABqNHANYjHBmmpaXF7hIAGIweAViPcGQYj8djdwkADEaPAKxHOAIAAGgn1O4CgkV+fr7y8/Mtf+hjWlqapdsHENzoEYD1mDnqJbfbrTVr1mjJkiWW7ofLdAH0hB4BWI9wZBhOtgTQE3oEYD3CkWHCw8PtLgGAwegRgPUIR4YZMWKE3SUAMBg9ArAe4cgwpaWldpcAwGD0CMB6hCMAAIB2uJTfMPHx8XaXAMBg9AicLK/Xq0ceeUSffPKJxo4dq8WLF8vlctldlpEIR4bx+/12lwDAYPQInIyVK1cqNzdXPp8vsGz58uXKycnR2rVrbazMTBxWM0xNTY3dJQAwGD0CfbVy5UqtW7euQzCSJJ/Pp3Xr1mnlypU2VWYuwhEAAEOU1+tVbm5uj+vk5ubK6/UOUkXBgcNqhklNTbW7BAAGo0f0T25u7gnDwlDi8Xg6zRh9kc/nU3JysmJjYwepqhPLyclRTk6ObfsnHBmmoqJCo0aNsrsMAIaiR/RPTU2NioqK7C7DODU1NUYdsrW7FsKRYZqbm+0uAYDB6BH9ExcXp4yMDLvLGDQej6dXQSMuLs6omaO4uDhb9084MgyXVQLoCT2if+w+XDPYvF6voqKiejy05nQ6VVZWxnerHU7INkxCQoLdJQAwGD0CfeFyuU4YBnNycghGX0A4MkxJSYndJQAwGD0CfbV27VqtWLFCTqezw3Kn06kVK1Zwn6MucFgNAIAhbu3atVq9ejV3yO4lwpFh7D4JDYDZ6BE4WS6XS8uWLbO7jKDAYTXDOBwOu0sAYDB6BGA9wpFhqqur7S4BgMHoEYD1CEcAAADtEI4Mk5KSYncJAAxGjwCsRzgyTFVVld0lADAYPQKwHuHIME1NTXaXAMBg9AjAeoQjw4SFhdldAgCD0SMA6xGODJOUlGR3CQAMRo8ArEc4MsyRI0fsLgGAwegRgPW4Q3YftR3vP3jwoCXbLysrU21trSXbBhD86BFA/5x66qmKiIjocR3CUR+1PfRx9erVNlcCAAD6auPGjRo/fnyP6zj8fr9/kOoZEqqqqrRnzx6lpaX16oF9Dz30kJYsWdKrbR88eFCrV6/Wz372M5166qn9LXVY6st4m8SUugejDiv2MVDb7M92Tva99IjBZcrftZNhQu2DVYOVfYKZIwuMGDFCF198ca/Xj4mJOWFC/aJTTz21z+/BcScz3iYwpe7BqMOKfQzUNvuznZN9Lz1icJnyd+1kmFD7YNVgd5/ghGyLud1uu0sYVoJ1vE2pezDqsGIfA7XN/mznZN9ryp/9cBHM421C7YNVg919gsNqBiksLFR2dnavjocCGH7oEcDgYObIIImJiVqwYIESExPtLgWAgegRwOBg5ggAAKAdZo4AAADaIRwBAAC0w6X8QcTr9So3N1fvvPOOamtrddppp+nmm2/WV7/6VbtLA2CIdevW6Y033lBjY6NSUlK0aNEinXfeeXaXBQQVzjkKIg0NDdqyZYtmzZql5ORk7dq1S+vXr9eWLVsUFRVld3kADHDw4MHATWr37dunnJwcPfHEE4qPj7e7NCBocFgtiERGRmrBggVKSUlRSEiILrzwQoWGhurQoUN2lwbAEKeeemrg7v0Oh0PNzc0qLy+3uSoguHBYzUL19fV64oknVFBQoH379snj8WjVqlWaNWtWp3W9Xq82bdqkl156SR6PR2PHjtXChQs1derUbrd/6NAheTweZWRkWPkxAFjEqh6Rm5urvLw8eb1enXvuuRozZsxgfBxgyGDmyELV1dXavHmzDh48qHHjxvW47r333qsnn3xSF110kW655RaFhIRo5cqVev/997tcv6mpSatXr9Z1112nmJgYK8oHYDGrekROTo527Nih+++/X1OnTpXD4bDqIwBDEuHIQomJiXr22Wf11FNP6cYbb+x2vYKCAu3cuVOLFi3S4sWLNXv2bK1fv16pqal69NFHO63f0tKiO++8UxkZGVqwYIGFnwCAlazqEZLkdDo1ZcoUvfvuu3rrrbes+gjAkEQ4spDL5erVnWx3794tp9Op2bNnB5aFh4crKytLH374oUpLSwPLW1tbtXr1ajkcDt1+++38RAgEMSt6xBf5fD4VFRUNSL3AcEE4MsDHH3+s0aNHKzo6usPyCRMmSJIOHDgQWHbfffepoqJCd911l0JDOWUMGA562yNqa2v18ssvq76+Xi0tLdq1a5fee+89TZw4cdBrBoIZ/7oaoKKiosufHtuWtV1pUlJSohdeeEEul6vDT5Br166l+QFDWG97hMPh0AsvvKD7779ffr9fGRkZuuOOO3T66acPar1AsCMcGaCpqUlhYWGdlrddjtvU1CRJSk1N1WuvvTaotQGwX297RHR0tB544IFBrQ0YijisZoDw8HA1Nzd3Wu71egOvAxi+6BHA4CIcGSAxMVEVFRWdlrctS0pKGuySABiEHgEMLsKRAcaNG6fDhw+rrq6uw/KCgoLA6wCGL3oEMLgIRwY4//zz5fP59PzzzweWeb1e5eXlKTMzUykpKTZWB8Bu9AhgcHFCtsWefvpp1dbWBqa/33jjDR09elSSdNVVVykmJkaZmZmaOXOmNmzYoKqqKmVkZGj79u0qKSnRbbfdZmf5ACxGjwDM4/D7/X67ixjK5s2bp5KSki5f27Jli9LS0iQdv9qk7blJtbW1GjNmjBYuXKhp06YNZrkABhk9AjAP4QgAAKAdzjkCAABoh3AEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaIdwBAAA0A7hCAAGwIwZMzr8ampqCry2bds2zZgxQ9u2bbOxwv/vueee61Drr371K7tLAowSancBAMx15MgRXXPNNT2uk5qaqieffHKQKjJbamqqLr30UkmS0+m0dF979uzR8uXLNXXqVP3mN7/pcd27775b+fn5uuOOO3TRRRdp/PjxWrBggWpra7V161ZL6wSCEeEIwAllZGTooosu6vK1mJiYQa7GXKmpqfrhD384KPs655xzlJKSonfffVelpaVKSUnpcr3a2lq9/vrriomJ0YwZMyRJZ5xxhs444wwdOXKEcAR0gXAE4IQyMjIG7R999E5ISIhmzZqlzZs3a/v27br++uu7XC8/P19NTU369re/rfDw8EGuEghOnHMEYEDNmDFDt9xyi44dO6Zf/vKXuvzyy+V2u3XDDTfovffe6/I99fX1+v3vf68f/OAHcrvd+va3v62f/OQnev/99zute8sttwTO6dm4caPmz5+vmTNn6ve//31gnd27dys7O1tut1tz5szR2rVr5fF4NG/ePM2bNy+w3j333KMZM2aooKCgy7o2bdqkGTNmKD8/v5+j0rWjR4/q+uuvl9vt1quvvhpYXllZqYceekjXXnutLrzwQl1++eX62c9+pk8//bTD+7/97W/L4XBo27Zt8vv9Xe4jLy9PkpSVlWXJZwCGIsIRgAFXW1urm266SZ9//rkuvvhizZgxQ4WFhVq+fHmnf+Bramp04403avPmzYqNjdWcOXM0Y8YMffTRR1q6dKlef/31Lvdxxx13aPv27Tr77LN19dVXKy0tTZL04osv6o477tDhw4d1ySWX6NJLL9WHH36onJwctbS0dNjG7NmzA+/5Ip/Pp7y8PMXHxwcORw2kzz//XIsXL9bRo0e1bt06nX/++ZKkoqIiLVy4UE899ZTS09N15ZVX6txzz9WePXt04403dghyqampmjJlioqLi7sMnp9++qn279+v008/XV/5ylcG/DMAQxWH1QCcUFFRUYeZmfbOPPNMff3rX++w7MCBA7riiiu0bNkyhYQc/xls8uTJWrt2rZ555hktX748sO769ev12WefaeXKlbrssssCyysrK5Wdna1169Zp2rRpnQ4JVVRU6A9/+IPi4uICyzwejx588EFFRkZqw4YNOuWUUyRJ2dnZWr58uQoLC5WamhpYf+LEiTrttNO0c+dO3XzzzYqMjAy8tmfPHpWVlWnu3LlyuVx9HbIeffjhh7rtttsUGhqqhx56SOPGjQu89stf/lLHjh3Tfffdp2nTpgWW/+AHP1B2drbWrl2rzZs3B5ZnZWXpnXfeUV5eniZPntxhP8waASeHmSMAJ1RUVKTNmzd3+evvf/97p/UjIyN1ww03BIKRJF166aVyOp3av39/YFlVVZV27dqlyZMndwhGkjRy5Ehde+21qqqq0rvvvttpH//93//dIRhJ0l//+lc1NDTo29/+diAYSVJoaKgWLlzY5WebPXu26uvrtXPnzg7LX3jhBUnS5Zdf3t2wnJS33npLt956q2JjY/XII490CEYfffSRPvjgA11yySUdgpEknXLKKbrsssv06aefdph9mz59uuLj47V7927V1dUFlre0tOill16Sy+Xq9mR6AF1j5gjACU2bNk333Xdfr9cfPXq0oqKiOiwLDQ1VQkKCamtrA8v2798vn8+n5ubmLmemDh8+LEk6ePCgvvnNb3Z4bcKECZ3W/+STTyRJZ511VqfXMjMzu7y8/pJLLtHvfvc7vfDCC4GAduzYMb355pv66le/qtNOO+0En7b3du3apbfffltjx47VunXrNHLkyA6vtx0yq6ys7HI8/v3vfwf+O2bMGEkKhJ+tW7cqPz9fc+bMkSS98cYbqqqqktvtVmxs7IB9BmA4IBwBGHDR0dFdLnc6nWptbQ38vqamRpL0r3/9S//617+63V5jY2OnZQkJCZ2Wtc2cfDF0SMev7oqPj++0PDY2VjNnztT27dv16aefasyYMdq2bZt8Pt+Azxp9+OGH8vl8Ouuss7qssW083nrrLb311lvdbqehoaHD77OysrR161bl5eUFwhGH1ICTRzgCYJu2EHXNNdfopptu6tN7HQ5Ht9urrKzs9Fpra6uqq6uVnJzc6bU5c+Zo+/bt+stf/qKlS5fqxRdfVHR0tGbOnNmnmk5k0aJF+utf/6qtW7fK6XR2+sxt9S9dulRXXXVVr7c7duxYnXHGGdq3b58+++wzxcbGas+ePUpLS+t0HhKAE+OcIwC2OeOMM+RwOPThhx8OyPbGjh0rSV3OQu3bt08+n6/L95155pkaO3asXn75Ze3Zs0eHDx/WRRddpIiIiAGpq43L5dIvf/lLfeMb39CWLVv08MMPd3i97VDhyYxH2wzRiy++qB07dsjn8wUu9QfQN4QjALZJTEzUzJkz9cEHH+hPf/pTl/fqKSgo6PKwWlf+67/+S5GRkXrxxRdVVFQUWN7S0qJNmzb1+N7Zs2erpqZGa9askaROJ4gPFJfLpdWrV+ub3/ymnnzyST300EOB1zIzM5WZmamdO3d2OkFcOj77tXfv3i6363a7FRERoZdeekl5eXkKCQkJPMoEQN9wWA3ACfV0Kb8kXXfddSd99+WcnBwdOnRIjz76qHbs2KEzzzxTMTExKisr0/79+3X48GE9++yzvZrFiY2N1c0336x169YpOztbF1xwgaKjo/W3v/1NLpdLSUlJ3c6kXHzxxfrtb3+r8vJyjR8/3tL7AoWFhemee+7RnXfeqaeeekp+v1+33HKLJOnOO+/UsmXLdNddd2nr1q06/fTTFR4erqNHj+qDDz5QdXV1lzeljI6O1re+9S3t2LFDVVVV+vrXv97tI0UA9IxwBOCE2i7l787cuXNPOhzFxcXpkUce0TPPPKNXXnlF+fn5am1tVUJCgsaNG6frr7++yxOpu3P55ZcrNjZWf/zjH7V9+3ZFR0frvPPO0w033KC5c+cqIyOjy/dFR0dr+vTpeumllyybNWqvLSD9/Oc/19atW+X3+7V06VKlp6dr06ZN2rJli15//XVt27ZNISEhSkxM1MSJEwM3i+xKVlaWduzYIen43bMBnByHv7t7zgPAEHL48GF997vf1cyZM3XXXXd1uc7111+vkpISPfPMM91ecdedGTNmaNKkSXrwwQcHotxBceTIEV1zzTW69NJLdfvtt9tdDmAMZo4ADCkej0fh4eEd7mrd1NQUOPl5+vTpXb7vb3/7mz777DNdfvnlfQ5Gbfbu3Rt41MjLL79s7INen3vuOf3mN7+xuwzAWIQjAEPK3r179etf/1pTp07VqFGjVF1drX/84x8qKSnR5MmTdcEFF3RY/89//rOOHj2qF154QS6XS9ddd91J7XfBggUdft/VDSdNMX78+A71nn766fYVAxiIw2oAhpRDhw5p06ZN+uCDD1RVVSVJysjI0AUXXKD58+d3ms2ZN2+eysrKdMopp+iGG27odCduAMMP4QgAAKAd7nMEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaOf/AThz/YdaiuJ7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAG5CAYAAAAJchUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADeP0lEQVR4nOy9e3wTVf7//0qa3mhLCwVSSkHKTSl3BUWR21IB5SviAqLganEVhQVxBUHqqlwFXS4fXAVEVFTWFZRFEQG1LIKiLiIUlQICAlsobWmhbXpNm+T3R39nODOZmcwkk8wkOc/Hw4cll5l558ycec3r/T7nmFwulwsMBoPBYDAYDIYAs94HwGAwGAwGg8EwJkwoMhgMBoPBYDBEYUKRwWAwGAwGgyEKE4oMBoPBYDAYDFGYUGQwGAwGg8FgiMKEIoPBYDAYDAZDFCYUGQwGg8FgMBiiMKHI8Ina2lqcPHkStbW1eh8Kg8FgMBgMjWFCkeET58+fx2OPPYbz589rvu2KigrNtxkssNjDl3COn8UenrDYjQ0TigzDYrPZ9D4E3WCxhy/hHD+LPTxhsRsbJhQZhiUxMVHvQ9ANFnv4Es7xs9jDExa7sWFCkcFgMBgMBoMhChOKDMNSXl6u9yHoBos9fAnn+Fns4QmL3dhY9D4ABoPBYDAY+uNwOFBfXx/w/TY0NITtzBmBiD0yMhIRERFef58JRYZhsVqteh+CbrDYw5dwjp/Frh+VlZW4cOECXC5XwPftcrlw9uzZgO/XCAQidpPJhLS0NMTHx3v1fSYUGYbl6tWraNmypd6HoQss9vCMHQjv+Fns+sTucDhw4cIFNGnSBC1btoTJZAro/uvr6xEZGRnQfRoFf8fucrlw+fJlXLhwAZ07d/bKWWRCkWFY7Ha73oegGyz28CWc42ex60N9fT1cLhdatmyJ2NjYgO/fbDYjKioq4Ps1AoGIvWXLljh37hzq6+u9EopsMAvDsITrEybAYg9nwjl+Fru+BNpJ1Hu/RiAQsfu6DyYUGYYlOTlZ70PQDRZ7+BLO8bPYwxOLJXyTm8EQOxOKDMNSWFio9yHoBos9fAnn+Fns4YkeI63bt2+P3NxcAMCjjz6KvXv3evzO/Pnz8dRTT4m+l5ubiw8//FD1cegRu1qYUGQwGAwGg2FYGhoa/Lr9DRs2YOjQoT5tw1uhKIe/41aK8T1PRtjStGlTvQ9BN1js4Us4x89iNwZ9+/b1q8OZkpKCQ4cOcf8WG2BhMpnwwgsvYOfOnRgyZAgeeughTJ06FdXV1aitrcXEiRPxt7/9DQDQpk0b/Pjjj0hNTcV9992HCxcu4LvvvkNdXR1SU1NRUFCA6OhoyeMZMmQInnrqKYwZMwaXLl3Cww8/jAsXLiAtLQ3NmzfHDTfcgPnz5wMALl26hLvvvhtnzpxBSkoKPv74YzQ0NOCFF15AeXk5evfujf79+2PdunX4/vvv8cwzz8Bms8HlcmHRokW455570L59e3zyySfo3bs3IiIi0LdvXyxfvhxDhgzBkCFD0LNnT/z444+IjY1Fx44dcf3112P27NkAgLNnz+LWW29Ffn4+AOD555/Hf/7zH9jtdnTp0gVvvPEGmjVrplVTAWBCkWFgzObwNbxZ7OFLOMfPYjcGhYWFuHjxot6HgYiICPz4448AAJvNhj179iA6Oho1NTW47bbbkJmZif79+2PYsGHIycnBgw8+iKNHj8JisaCiogI//vgjbrrpJlmRKOTJJ5/ErbfeigULFqCwsBC9e/fGDTfcwL3/3//+Fz/99BOSk5Nx//3344033sC8efOwcOFCfPLJJ/jkk08AAFeuXMGYMWPw8ccfY+DAgXA6nSgrK1N0DL/99hv279+PyMhIfPfdd5gyZQonFDdu3IhJkyYhMjISL730EuLi4nDw4EEAwKJFi/C3v/0Nr7/+uuJ4lcCEIsOwlJWVIS4uTtdjyM3NxZkzZzB69OiAjko0Qux6Ec6xA+EdP4vdGLGnpKQEdPsOh0PUVXzkkUe4v2tqajBt2jTk5ubCbDYjPz8fubm56N+/PzIzM5GTk4Nu3bqhV69esFqt+Prrr/H9999j2LBhqo5tz549WL58OXec/+///T/e+yNHjuQGHt1666345ZdfRLfz/fff4/rrr8fAgQMBND4ING/e3O1zDofD7bUHH3yQu9/cdtttaGhowI8//oi+ffvivffew2effQYA+OSTT1BeXo6tW7cCaJxiqX379qriVQITigyGBKWlpbj11ltRW1uLdevW4fHHH9f7kBgMBsPv0GlhPaFXEsnOzkaLFi1w5MgRWCwW/PGPf+SWvsvMzMS8efOQkZGBzMxMWK1W5OTk4Pvvv8fatWt9Ogbh1DIxMTHc3xEREV7VEVosFp5AFC7hJ1xBZfLkyXjnnXdQWVmJFi1aoHv37gAaJ9P+xz/+geHDh6s+BjUYx+tmMAS0atVK1/3/9ttv3AV89OjRgO5b79j1JJxjB8I7fhZ7eKJkipirV68iLS0NFosFJ0+exFdffcW9l5qaisTERKxbtw6ZmZkYOnQoduzYgXPnzuHGG29UdSx/+MMfsHHjRgBAUVERduzYoeh7TZs2RXl5Offv2267DadOncI333wDAHA6nbhy5QoAoFOnTvjvf/8LADh8+DBOnjwpu+0//elP+Oijj7Bu3TqeyzpmzBisWrUK1dXVAIDq6mocO3ZMWaAqYEKRYVjoi04P6Ke8QE9hoHfsehLOsQPhHT+LPTwRS78K+dvf/oZ33nkHPXv2xLPPPos//OEPvPczMzNhNpvRoUMHNG3aFCkpKRg0aJDq2s/Vq1fjm2++QUZGBiZNmoRbbrkFSUlJHr83bNgw1NXVoWfPnnjiiSfQrFkzbNu2Dc8++yx69uyJG2+8EQcOHAAALF68GK+//jp69eqFt99+G926dZPddmpqKm6++WZs374dDzzwAPf63Llz0a9fP9xyyy3o2bMn+vfvz035oyUmlx4rgDNChpMnT+Kxxx7Dm2++ieuvv17TbV+8eBFt2rTRdJtq2L17N+68804AwMMPP8w9ZQYCvWPXk3COHQjv+Fns+sReW1uLs2fPIj09nZdaDRR2u90wS/jV1NQgMjISFosFpaWl6N+/PzZt2oRbbrnFL/sLROy+ti+rUWQYFr1nrNfTUdQ7dj0J59iB8I6fxR6eGGkJv1OnTuGhhx6Cy+WC3W7HtGnT/CYSAWPFLkX4npkMw6N3zU5dXR33d6CFot6x60k4xw6Ed/ws9vDESCK5Z8+efknfSmGk2KVgNYoMw1JQUKDr/mlH0W63B3TfeseuJ+EcOxDe8bPY9UWvSrRgWMbOXwQidl/blQlFBkMCPR1FBoPBCBRkDsNAPxAzAgNpV7G5KpVgfM+TEbYkJCToun89axT1jl1Pwjl2ILzjZ7Hrg8ViQZMmTXD58mVERkYGfJUYh8MBp9MZ0H0aBX/H7nQ6cfnyZTRp0sTrNDcTigzY7XasXLkShw4dQmVlJdq3b4/p06dzk3rqhd61G3o6inrHrifhHDsQ3vGz2PXBZDKhdevWOHv2LM6fPx/w/TudTkMtYRhIAhG72WxGu3btvB44E75XJYPD4XAgJSUFr7/+Olq2bIm9e/di3rx52Lx5M5o0aaLbcV29elXX/evpKOodu56Ec+xAeMfPYtcv9qioKHTu3FmX9HNRURGsVmvA92sEAhF7VFSUT2KUCUUGYmNjkZWVxf172LBheO2115Cfn6/53IjBBKtRZDAY4YTZbNZlHkWLxaLLfo1AMMTOhKKA9957Dxs2bEB6ejreffddyc+99NJL2L17t+T7W7duRcuWLf1xiKiursaHH36IvLw8HD9+HDabDfPmzeMmhxZit9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fqKfz8/Ph81m033iW3/9fkrR01HUO3Y9CefYgfCOn8UenrDYjQ0TihTFxcXYtGkTYmNjPX529OjR6Nu3L+81l8uFFStWICUlxa+NX15ejo0bN8JqtaJTp044cuSI7OeXLl2Kr7/+GuPHj0daWhp27dqFOXPmYPXq1ejZsyfvs3V1dVi8eDEmTZrktjB5oLHZbEhOTtZt/3o6inrHrifhHDsQ3vGz2Fns4UYwxM6EIsWaNWuQkZEBp9Ppcd3N7t27uw32+Pnnn1FbW4s77rhD9rs2mw2HDx/G4MGDRd/PycnBgAEDJAVrcnIytm3bhuTkZJw4cQJTpkyR3FdeXh727NmDqVOncmtEjhgxAllZWVi7di3Wrl3LfbahoQEvvPAC2rRpw0tF6wXt6Om9/0ALRb1j15Nwjh0I7/hZ7OEJi93YhOcwIxFyc3Oxb98+zJgxw+tt5OTkwGQyITMzU/Zz27Ztw/z587F//36393bs2IGFCxfKprWjoqIUP4Hs27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAhA48irxYsXw2QyITs72xDLCnk755NW6Oko6h27noRz7EB4x89iD09Y7MaGCUU0jvpdvXo1Ro0ahY4dO3q1jYaGBuzduxfdu3dH69atZT87ceJE9O/fHwsXLsRPP/3Evb5v3z6sWLECw4cPx5gxY7w6DiGnTp1CWloa4uLieK937doVAHD69GkAwPLly1FaWooFCxYYZoqKlJQUXfevp6Ood+x6Es6xA+EdP4s9PGGxGxsmFAF8+umnKCoqwqOPPur1Ng4ePIjy8nKPaWegcZTT/PnzkZGRgezsbOTl5eGnn37CokWLcMstt+DZZ5/VzNErLS0VdR/JayUlJSgsLMSOHTtw/PhxjB49GiNGjMCIESNw9OhRye3m5OTg2WefxT/+8Q9NjlOMixcv+m3bSqAdxUBPGaF37HoSzrED4R0/iz08YbEbG2NYRzpSXl6Ot99+Gw899BCSkpK83k5OTg4sFguGDh2q6PPR0dFYunQpZs6ciTlz5qC+vh5du3bV3NGrq6tDZGSk2+tRUVHc+ykpKaJpcDkyMzORmZmJkydP4rHHHtPkWI2Gno4ig8FgMBhGIOwdxQ0bNiAhIQFjx471ehvV1dX49ttvcfPNNyMxMVHx9+Li4jBt2jRUVFSgpqYGM2bMQHR0tNfHIUZ0dLSoyCEOmdb70xJhujzQ6FmjqHfsehLOsQPhHT+LPTxhsRubsBaK+fn5+OyzzzBu3DiUlJTg0qVLuHTpEux2OxoaGnDp0iVUVFR43M63336raLSzkIKCAixatAjt2rVDSkoKnn/+eZSUlHgbjijJyckoLS11e5281qJFC033pyV6i1g9HUW9Y9eTcI4dCO/4WezhCYvd2IS1UCwpKYHT6cTq1asxYcIE7r+8vDzk5+djwoQJ2Lhxo8ftfPXVV4iNjcWAAQNU7fvpp5+GxWLBypUrsWLFCtTW1mLWrFmKxKlSOnXqhAsXLqCqqor3el5eHve+Ubly5Yqu+9fTUdQ7dj0J59iB8I6fxR6esNiNTVjXKKanp2PJkiVur2/YsAHV1dV48sknkZqaCqDRXSoqKkJiYiKvlrGsrAyHDh1CZmam4mV4bDYbZs+ejZqaGrz22mto1aoVgMaRxzNnzsTcuXOxcuVKRRN/e2LIkCH48MMPsX37dm4eRbvdjp07dyIjIyNs19dUAu0oOhwOuFwuQ0wbxGAwGAxGoAhroZiUlISBAwe6vf7RRx8BAO+948ePY+bMmcjKysIjjzzCvb5nzx44HA5Vaedt27ahuLgYr776Ktq2bcu93rlzZyxbtgyzZs3C7t27ce+990puY+vWraisrORSyAcOHEBxcTEAYOzYsdyqKhkZGRg6dCjWr1+PsrIytGnTBrt370ZhYSHmzp2r+Jj1QO+0OO0oAo2uIhkE5G/0jl1Pwjl2ILzjZ7GHJyx2YxPWQlELcnJy0KxZM9x0002KvzNx4kQMHDgQ6enpbu/17NkT69atQ4cOHWS3sXnzZhQWFnL/3r9/Pzdyefjw4bzl97Kzs2G1WvHFF1+gsrISHTp0wMsvv4zevXsrPmY9qKqq0rV+QzhjfiCFot6x60k4xw6Ed/yhGPvRo0fhcrk89rehGLtSWOzGjt3kcrlceh8EI3gh0+O8+eabuP766zXd9sWLF9GmTRtNt6mG5ORkXv3I1atXfZpCSQ16x64n4Rw7EN7xh1rsR48e5QTi4cOH0adPH8nPhlrsamCxGzv2sB7MwjA2ZrO+p6eYoxgo9I5dT8I5diC84w+12L///nvu7//+97+ynw212NXAYjc2xj9CRtjiaSlEfyNWoxgo9I5dT8I5diC84w+12Gtqari/hQ+eQkItdjWw2I0NE4oMw1JQUKDbvhsaGuBwOHivBXIZPz1j15twjh0I7/hDLfbq6mrub09CMdRiVwOL3dgwocgwLHqWz4p16oF0FMO5dDicYwfCO/5Qi12NoxhqsauBxW5smFBkGJYmTZrotm9h2hkIrFDUM3a9CefYgfCOP9RiV+MohlrsamCxGxsmFBmGRYsJx71Fb0dRz9j1JpxjB8I7/lCLnXYU6b/FCLXY1cBiNzZMKDIMi9ga1YFCb0dRz9j1JpxjB8I7/lCLXU3qOdRiVwOL3dgwochgiKC3o8hgMIIfNalnBsOoMKHIMCzJycm67VtvR1HP2PUmnGMHwjv+UItdjaMYarGrgcVubJhQZBgWPZ/A9XYUw9l9COfYgfCOP9RiV+MohlrsamCxGxsmFBmGpaqqSrd96+0o6hm73oRz7EB4xx9qsatxFEMtdjWw2I0NE4oMhgh6O4oMBiP4YTWKjFCACUWGYdFzoXS9HUWjLxLvT8I5diC84w+12NVMjxNqsauBxW5smFBkGJZLly7ptm+xp/9ALuGnZ+x6E86xA+Edf6jFrib1HGqxq4HFbmyYUGQYFqfTqdu+9XYU9Yxdb8I5diC84w+12NWknkMtdjWw2I0NE4oMw8JWZglPwjl2ILzjD7XY1TiKoRa7GljsxoYJRYZhiYuL023fejuKesauN+EcOxDe8YdS7C6XS5WjGEqxq4XFbmyYUGQYlpKSEt32rbejqGfsehPOsQPhHX8oxS582PQkFEMpdrWw2I0NE4oMhgh6O4oMBiO4od1EgE2PwwhemFBkGJbmzZvrtm+9HUU9Y9ebcI4dCO/4Qyl24XQ49fX1cDgckp8PpdjVwmI3NkwoMgxLIKejEaK3o6hn7EJcLldA92ek2PUgnOMPpdjF5k2UcxVDKXa1sNiNDROKDMNSWVmp2771dhT1jJ3mn//8J1q0aIHs7OyA7dMosetFOMcfSrELU8+AvFAMpdjVwmI3NkwoMhgi6O0oGoXXXnsNV65cwSuvvBKW8TMY3qLWUWQwjAoTigzDkpqaqtu+9V6ZRc/YaWw2GwDA4XDg8uXLAdmnUWLXi3COP5RiV+sohlLsamGxGxsmFBmGpaioSLd96+0o6hk7Df07FBYWBmSfRoldL8I5/lCKXa2jGEqxq4XFbmyYUGQYFrkRgv5G7xpFPWOn0UMoGiV2vQjn+EMpdrWOYijFrhYWu7FhQpFhWGJiYnTbt96Oop6x09A3tkAtXm+U2PUinOMPpdjVOoqhFLtaWOzGhglFhmFJSEjQbd96O4p6xk6jh6NolNj1IpzjD6XYxYSi2GuEUIpdLSx2Y8OEIsOwBGrwhBh6O4p6xk5DC+ZACUWjxK4X4Rx/KMWuNvUcSrGrhcVubJhQZDBE0NtRNAIul4s30jtQQpHBCAXY9DiMUMGi9wEw9Mdut2PlypU4dOgQKisr0b59e0yfPh3du3fX9biaNWum2771dhT1jJ0gnA4oUELRCLHrSTjHH0qxq3UUQyl2tbDYjQ1zFBlwOBxISUnB66+/jp07d2L8+PGYN2+eaEcXSBoaGnTbN+nQTSYT91oghaKesROEN7VACUUjxK4n4Rx/oGIvLi7GP//5T1y5csVv+1DrKLJ2D0+CIXYmFBmIjY1FVlYWrFYrzGYzhg0bBovFgvz8fF2Pi0z2rAfEUYyPj+deC6RQ1DN2gtBVDZRQNELsehLO8Qcq9vvvvx8PPvggsrKy/LYPtY4ia/fwJBhiD8rU83vvvYcNGzYgPT0d7777rqLvnDx5Eu+88w5++eUX2O12pKam4u6778a4ceO4z7z00kvYvXu35Da2bt2Kli1bAgCOHDmCmTNnin5u7dq16Natm4qI1FFdXY0PP/wQeXl5OH78OGw2G+bNm4c777zT7bN2ux1vvfUWvvzyS9hsNnTs2BGPPvoo+vXrJ7n9/Px82Gw2tGnTxm8xGB3SoSckJHAXcrjVKApvapWVlaisrOSJZwYj2HC5XPj+++8BALm5uX7bD6tRZIQKQScUi4uLsWnTJsTGxir+zsGDBzFv3jx07twZDz/8MGJjY3Hx4kW30UajR49G3759ea+5XC6sWLECKSkpnEikGTt2LLp27cp7zd8Cq7y8HBs3boTVakWnTp1w5MgRyc8uXboUX3/9NcaPH4+0tDTs2rULc+bMwerVq9GzZ0+3z9fV1WHx4sWYNGmS7oKgdevWuu1bzFEM5BJ+esZOEKvTLCwsRKdOnfy6XyPErifhHH8gYq+srOQEm9g5rhVqp8dh7R6eBEPsQScU16xZg4yMDDidTpSXl3v8fFVVFV566SX0798fixYtgtksnW3v3r272wCOn3/+GbW1tbjjjjtEv9OrVy8MGTJE8fHbbDYcPnwYgwcPFn0/JycHAwYMkBXCycnJ2LZtG5KTk3HixAlMmTJF9HN5eXnYs2cPpk6digceeAAAMGLECGRlZWHt2rVYu3Yt7/MNDQ144YUX0KZNG7+mZJRy+fJlWK1WXfZNbiR6pZ71jJ2gl1A0Qux6Es7xByL24uJi7m9/Pvx5Mz0Oa/fwIxhiD6oaxdzcXOzbtw8zZsxQ/J2cnBxcuXIFjz32GMxmM2pqauB0OlV932QyITMzU/Iz1dXVigtSt23bhvnz52P//v1u7+3YsQMLFy6UTX8DQFRUFJKTkz3ua9++fYiIiMDo0aO516KjozFq1CgcO3aMt8ak0+nE4sWLYTKZkJ2dzRvEoRd6Ffk2NDRwyyrFxsYiIiICABvMAgSmTtEIsetJOMcfiNhpoRhoR5ENZhGHxW5sgkYoOhwOrF69GqNGjULHjh0Vf+/QoUOIi4tDSUkJJk2ahBEjRuDOO+/EihUrPHYSDQ0N2Lt3L7p37y5pDy9duhQjR47EHXfcgZkzZ+LEiROy25w4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxiuOT49SpU0hLS0NcXBzvdZIqP336NPfa8uXLUVpaigULFsBiMYbRHB0drct+6fMiOjoakZGRAAIrFPWKnUbKUfQ3RohdT8I5/kDETj8g+1MoqnUUWbuHJ8EQuzEUgQI+/fRTFBUVYdWqVaq+d+HCBTgcDmRnZ2PUqFGYMmUKcnNzsXXrVlRWVuLFF1+U/O7BgwdRXl4umna2WCwYPHgw+vfvj8TERJw7dw6bN2/G9OnTsWbNGnTp0kV0mxaLBfPnz8czzzyD7OxsrFq1CjU1NVi0aBFuueUWPPvss5q5eaWlpaLOI3mtpKQEQOPNf8eOHYiKiuK5j6+88gp69eoluu2cnBzk5OSgsrJSk2MVIykpyW/bloO+ecTExCAyMhK1tbUBFYp6xU6jl6NohNj1JJzjD0TstKPodDrR0NDg08Nxbm4utm3bhsmTJ6N9+/bc62odRdbu4UkwxB4UQrG8vBxvv/02HnroIdU/ak1NDWpra3HPPfdwo5QHDx6M+vp6bN++HY888gjatm0r+t2cnBxYLBYMHTrU7b0ePXqgR48e3L9vv/12DBkyBJMnT8b69euxfPlyyWOKjo7G0qVLMXPmTMyZMwf19fXo2rWr5m5eXV0d54bRREVFce8DQEpKimgqXI7MzExkZmbi5MmTeOyxx3w/WBGKiop0GXlNd+Z6OYp6xU6jl6NohNj1JJzjD0TstFAEGs9zX/rd+++/HydPnsThw4fx2Wefca+rdRRZu7PYjUpQpJ43bNiAhIQEjB07VvV3ia07bNgw3uuk5vDYsWOi36uursa3336Lm2++GYmJiYr2lZaWhttvvx1HjhzhatykiIuLw7Rp01BRUYGamhrMmDFDcws6OjpaVNyQAu5gsLz1QOgoEmEdbtPjiAnFS5cu6XAkDIZ2CIWiLwNaXC4XfvvtNwDA8ePHee+x6XEYoYLhhWJ+fj4+++wzjBs3DiUlJbh06RIuXboEu92OhoYGXLp0CRUVFZLfJ2nW5s2b814ny+ZITXb57bffyo52lqJVq1aor6/32CEUFBRg0aJFaNeuHVJSUvD8889zqWCtSE5ORmlpqdvr5LUWLVpouj+tUSrQtcYIjqJesdPolXo2Qux6Es7xByJ2ukYR8K1O0W63w+VyAYDbLBxEKNIxyU2Pw9o9PAmG2A0vFEtKSuB0OrF69WpMmDCB+y8vLw/5+fmYMGECNm7cKPn966+/HgDc5kwkokwqlf3VV18hNjYWAwYMUHW8BQUFiIqKkp3epqSkBE8//TQsFgtWrlyJFStWoLa2FrNmzZIVvWrp1KkTLly4gKqqKt7reXl53PtGhnTAgUasRhEIrFDUK3YavVLPRohdT8I5/kDELpZ69hY6vVxWVsY7fvIebVLIGQis3cOTYIjd8EIxPT0dS5YscfsvPT0dVqsVS5YswahRowA0XoTnz59HWVkZ931SX/j555/ztvv5558jIiICffr0cdtnWVkZDh06hEGDBiEmJkb0uOh9EE6fPo0DBw6gX79+kvM12mw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp0r+9SphiFDhsDhcGD79u3ca3a7HTt37kRGRobh527SUjSrwQiOol6x04jd1IqKilRNL+UNRohdT8I5/kDErqVQpPvqhoYG7t8ul4v7m2SvAHmhyNo9PAmG2A0/mCUpKQkDBw50e/2jjz4CAN57x48fx8yZM5GVlYVHHnkEANClSxfcdddd2LlzJxwOB3r37o3c3Fzs3bsXDz74oGj6dc+ePXA4HLJp5xdffBHR0dHo3r07mjVrhnPnzuGzzz5DTEwMHn/8ccnvbdu2DcXFxXj11Vd5g2g6d+6MZcuWYdasWdi9ezfuvfde2d+FjNomaeQDBw5wHeDYsWMRHx+PjIwMDB06FOvXr0dZWRnatGmD3bt3o7CwEHPnzpXdfjhjBEfRCIjdQB0OB0pLS0VXKWIwggEtaxSFD/Xl5eVo0qQJ7HY790AVHx+PqKgo2O12VqPICEoMLxS1YPbs2bBardi1axe++eYbWK1WTJ8+Hffdd5/o53NyctCsWTPcdNNNktscOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NMnvTZw4EQMHDkR6errbez179sS6devQoUMHjzFt3ryZlwbcv38/N3J5+PDh3Ioi2dnZsFqt+OKLL1BZWYkOHTrg5ZdfRu/evT3uQ29SUlJ02a+UoxjIJfz0ip2GFopJSUmci15YWOhXoWiE2PUknOP3d+wNDQ1uddtapZ6BxkxT69ateQIyNjYWMTExHoUia/fwJBhiD1qh+Oqrr7q91qdPH9FpXiwWCyZPnozJkycr2rZwaTsxxo0bh3HjxinanvBYxEQiQelk4lu2bFH0uejoaEybNg3Tpk1T9HkjUVpailatWgV8v1KOYkNDA1wuV0BWrdErdhr6pta+fXvk5uYCaBSK9NRQWmOE2PUknOP3d+wlJSVuNWFapZ6BawNaaAFJhGJFRYWsUGTtzmI3KoavUWSEL3qleqUcRSBwyy0ZIc1N30Cvu+467m9/D2gxQux6Es7x+zt2YdoZ0FYoEtedfr1JkyZcrbucUGTtHp4EQ+xMKDIMC5m/MNBILeEHBO6i1it2GvqmRgtFf8+laITY9SSc4/d37GJC0ZeSEmHqmTiKYqlnQF4osnYPT4IhdiYUGYZFOPdloKA7czr1DAROKOoVOw0tmOmlyfztKBohdj0J5/j9Hbu/HUWx1DPtKMrNaMHaPTwJhtiZUGQYlkDM2SeG0FGkn/gCJRT1ip1Gr9SzEWLXk3CO39+xay0UxQazAPKOotS8eazdw5NgiJ0JRQZDgBEcRSMgHMxCCIaOjcEQQ7gqCxAYR5FegCGQsycwGFrAhCLDsDRt2lSX/RqhRlGv2Gno36FFixZo0qQJAP8LRSPErifhHL+/Y9e6RlFKKEo5ioB0nSJr9/AkGGJnQpFhWAIxDY0YRnAU9YqdRjj6m8z35W+haITY9SSc4/d37IFKPUvVKALSQpG1e3gSDLEzocgwLOTpPNAYwVHUK3Ya4XySrVu3BgBcvXrVp5urJ4wQu55IxX/q1CkcOHAgKNaG9RZ/t32gBrN44yiG83nPYjc2TCgyGAKM4CgaAaFgplcQYHWKgaWwsBDdunXD7bffjs8++0zvwwlaAlWj6I1QZDCMChOKDMNitVp12a+coxioQnS9YqeRSj0D/hWKRohdT8TiP3z4MPeQ8sMPPwT6kAKGP9ve5XIZIvUsNUVOOJ/3LHZjw4Qiw7CQTjfQGMFR1Ct2GnIDjYqKgslkCphQNELseiIWPy1m5ObiC3b82fZVVVXcb2c2X7v1GWUwSzif9yx2Y8OEIsOw+LMOTul+9apR1Ct2GnJDi46OBoCACUUjxK4nYvGHi1D0Z9vTbiKpt/V1n95MjyMlFMP5vGexGxsmFBmGhRZogcQIjqJesdOQDoy4IYESikaIXU/E4qdvJqFc4+bPtqeFYlpaGve3lqnniooKOJ1OrxzFcD7vWezGhglFhmFp0aKFLvs1wsosesVOQ36HQDuKRohdT8TiDxdH0Z9tTw9kadu2Lfe3lo6iy+WCzWbzanqccD7vWezGhglFhmG5dOmSLvs1gqOoV+w05HcgNzk6XedPoWiE2PVELP5wcRT92fa0o9iuXTvuby1rFIHGmjNvHMVwPu9Z7MaGCUUGQ4ARahSNgNBRbNWqFfee2DQjDP8RLo6iP6GFolaOojD1DDTWKbLpcRihBBOKDMOSkJCgy35JRx4ZGQmz2ayLUNQrdhqhoxgZGckt42ez2fy2XyPEridi8YeLUPRn2/ujRlGsLcrLy72aHiecz3sWu7FhQpFhWCIiInTZr9BJ00Mo6hU7weFwwOFwALj2OwBAXFwcAKCystJv+9Y7dr0Ri592oULZkfJn2wfKUfQ29RzO5z2L3dgwocgwLHrPo0g7aYRwmUdRmH4nxMfHA/CvUNQ7dr1h8yj6B6nBLFrXKNKOosViQWRkJJtH0QMsdmPDhCKDIcAIjqLeCAf0EAIhFBnuhMpgFqfTiYsXL+qyb+IoxsbGIjk5mXvdH6ln8jqZP1HJPIoMhlFhQpFhWOjBE4FEzlEM1BJ+esVO8OQo1tbWoqGhwS/71jt2vRGLP1QcxXvuuQdpaWlYvny56Pv+bHsiFK1WK2/KK3+mnklNrxJHMZzPexa7sWFCkWFYKioqdNmvERxFvWIneHIUgcYl0fyB3rHrjVj8oSAUa2trsWPHDgDAxx9/LPoZf7W9w+FASUkJgMYbs8lk4q5rb4ViQ0OD6MMSnXomTqISoRjO5z2L3dgwocgwLHqlaIxQo6h3esqTowj4TyjqHbveiMUfCqlnulxBqnTBX7GVlJTA5XIBuObgkPPaW6FIC/aWLVtyf4ulnpUIxWBtVy1gsRsbJhQZhsVisQR8nw6Hg3MJyI1Ej5VZ9IidRolQ9Fedot6x641Y/EJHkYieYIJ+sJB6yPBX29MjnoVC0dtyEjrtTE9GX1ZWxr2nJvUczuc9i93YMKHIMCx61G7QN2Q9HUW961aUpJ79JRT1jl1vPNUoAoGrldUSWhxKnTv+ans5oaiFo0gvb1lSUsJNLSXmKEqVDoTzec9iNzZMKDIMS0FBQcD3Keak6SEU9YidRk9HUe/Y9UYsfqGYCcY6Rfp8kXIU/dX2tFC0Wq0ArmUKtBaK9JJsahzFcD7vWezGhglFBoNCzElj0+ME1lEEGjvPm2++GaNGjQqb31wOobgIRqFIi8OamhrOdQsE/nAU6dRzfHw8d23Q66Cz6XEYoQATigzDQouSQGEUR1GP2Gn0dBTj4+PxwQcf4Mcff8TOnTuxd+9ev+zHqIi1vVDMBKPYELqIYlPL+Ou8pyfb1qpGUbj6SlJSEgDg6tWr3OtqHEW9r3k9YbEbGyYUGYaFFmiBwiiOoh6x0+gpFCMjI7mpTIDGUaThhFjbh1rqWezfgP/Oe0+OojeDg+g2aNKkCRITE90+Q5xEi8UCs7nxdislFPW+5vWExW5smFBkwG63Y9myZRg3bhxGjhyJJ554Ar/++qveh8V7Mg8URnEU9YidRs/U89WrV2Gz2USPJRwQa/tQdBTFzh9/nfeXL1/m/iZT2ZAaRZfL5dXk8bQjSjuKNEQomkwm7jqSaju9r3k9YbEbGyYUGXA4HEhJScHrr7+OnTt3Yvz48Zg3b55oaijU8eQoBuNoU2/Q01EEENZCUYxQdBT9NQ+nGPR6us2aNQPAP6+9qVMUpp7FHEWSegbgUSgyGEaFCUUGYmNjkZWVBavVCrPZjGHDhsFisSA/P1/X46InsQ0URnEU9YidRk9HsWXLljyh6MsSa8GIWNuHglBU4ij667wnq19ERUVx5zMtFL15AKQfpD2lnoFr15FU2+l9zesJi93YGH+mRx957733sGHDBqSnp+Pdd99V9J2TJ0/inXfewS+//AK73Y7U1FTcfffdGDduHPeZI0eOYObMmaLfX7t2Lbp166bJ8YtRXV2NDz/8EHl5eTh+/DhsNhvmzZuHO++8U/Tzdrsdb731Fr788kvYbDZ07NgRjz76KPr16yf6+fz8fNhsNrRp08ZvMSihsrISzZs3D+g+jVKjqEfsNHo6ipWVlWHtKIq1fSimnsUcRX+d90QoNm3alHtNa0dRLPWsxlHU+5rXE71jt9ls+P777xEdHY3BgwcHdN96x66EkBaKxcXF2LRpE++pzhMHDx7EvHnz0LlzZzz88MOIjY3FxYsXeTUuNGPHjkXXrl15r/lbYJWXl2Pjxo2wWq3o1KkTjhw5Ivv5pUuX4uuvv8b48eORlpaGXbt2Yc6cOVi9ejV69uzJ+2xdXR0WL16MSZMm6T4aSw/XREwg6bEyi96OkZ5CsaamJqyFoljbh4KjqGQwi7/iIgOiaNePvq79lXoWcxSlzudgbFOt0CP206dP480338TXX3+Nn376iZuu6d///jfuvffegB3HuXPn8OWXX2LUqFFISEgI2H7VENJCcc2aNcjIyIDT6VQ0crKqqgovvfQS+vfvj0WLFnGj1OTo1asXhgwZouq4bDYbDh8+LPnkkpOTgwEDBkgK3OTkZGzbtg3Jyck4ceIEpkyZIrmvvLw87NmzB1OnTsUDDzwAABgxYgSysrKwdu1arF27lvtsQ0MDXnjhBbRp0wZZWVmqYvIHSn5/rTGKoyiMvaGhAaWlpdxkwf5GKvUcFxfH/e0voWg2m3nbVisUHQ4HnnzySVy9ehVr164VvYEbGbHzPlwcRX9c8y6Xyy+OopLUM+0okv5cqu306O+MQqBjr6+vx4ABA3ij4Qm5ubkBFYoPP/wwfv31Vzz88MPYuHFjwParhpA9M3Nzc7Fv3z7MmDFD8XdycnJw5coVPPbYYzCbzaipqYHT6fT4verqalWj5rZt24b58+dj//79bu/t2LEDCxcuxO7duyW/HxUVheTkZEX72rdvHyIiIjB69GjutejoaIwaNQrHjh3j5hdzOp1YvHgxTCYTsrOzYTKZFMfjL+j1UwOFUWoU6dhdLhcGDBiAlJQUvPPOOwHZv56OYuvWrX1yFL/++musWbMG//rXv7B582atD8/vCM97ev1xQjC6T0ocRX9c83V1ddx1G+jUs5ij2NDQIHq/0KO/MwqBjr24uJgnElNTU7m/A3lt2e12boaRw4cPB2y/aglJoehwOLB69WqMGjUKHTt2VPy9Q4cOIS4uDiUlJZg0aRJGjBiBO++8EytWrJDsSJYuXYqRI0fijjvuwMyZM3HixAmP+5k4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxio9bjlOnTiEtLY3nBAHg0uWnT58GACxfvhylpaVYsGCBYRYpv3jxYsD3aRRHkY79/PnzOHjwIADgjTfeCMj+lQxm8deo1YsXL/o0mIVeGYOejzFYEJ73YvEHo1BUMpjFH9c8nU2iXT9fB7N4m3oGxNtULPaCggLk5uaqPrZgI9B9Pe0GT5w4Edu2beP+HUi3np4ax8hZAmMoAo359NNPUVRUhFWrVqn63oULF+BwOJCdnY1Ro0ZhypQpyM3NxdatW1FZWYkXX3yR+6zFYsHgwYPRv39/JCYm4ty5c9i8eTOmT5+ONWvWoEuXLpL7sVgsmD9/Pp555hlkZ2dj1apVqKmpwaJFi3DLLbfg2Wef1czRKy0tFXUfyWslJSUoLCzEjh07EBUVxXMeX3nlFfTq1Ut0uzk5OcjJyfHrFCl6YBRHkYae2uPw4cOoqalRVXfrDVKOYlRUFCwWCxoaGvzW9i6XyydHkb4JhMLyf2Kiwsg3FSmUpJ79AUk7A/5NPSsdzAI0tp/w4V3IlStXcMMNN8Bms+H999/Hgw8+qPoYGeIIl1+k+9NAPoRduXJFl/2qxSuhOGHCBJ93PH78eN4oYq0oLy/H22+/jYceekj0wpWjpqYGtbW1uOeee7gRzYMHD0Z9fT22b9+ORx55BG3btgUA9OjRAz169OC+e/vtt2PIkCGYPHky1q9fj+XLl8vuKzo6GkuXLsXMmTMxZ84c1NfXo2vXrpo7enV1daIzv5NC7rq6OqSkpIimweXIzMxEZmYmTp48iccee0yTYxXiqSP1B0ZxFOnYaaFYX1+Pn376Cbfffrtf90/fOOkbnMlkQnx8PMrKyvwmFCMiInjrAKsVRXSHG4xCUXjeh4qjqCT17I9rnnYUaaGo12AWQPycFsb+448/cg9MS5YswaRJkwxREuQPAt3X0w8pcXFxipZY9Ae0UDTyw59XqefCwkLYbDa4XC6v/isqKvLbTWbDhg1ISEjA2LFjVX+XPGEOGzaM93pmZiYA4NixY7LfT0tLw+23344jR44oWvA+Li4O06ZNQ0VFBWpqajBjxgzeU64WREdHi94sSapF6/1piR7HJuakmc1mrtg6UMKDjp0WigBw4MABv++f7rSE7UDSz/66hoW/cbg5isLfO5wcRX9c87SjKJV69lUoKhnMQosRMaEvjJ0uoThx4kRIr3ke6L5e6AYbwVE08jXttXV13333eT0y1l/zFOXn5+Ozzz7DjBkzeLVJdrsdDQ0NuHTpEuLi4nhPlTTJyck4e/as25xGZCZ/Oh0mRatWrVBfX68otVBQUIBFixahXbt2sNvteP755/H666+jRYsWHvejlOTkZNGpfUpLSwFA031pzZUrVwI+l6NUbV5kZCSvKN7f0LELheJ3333n9/1LpZ4B/wvFCxcuSB6LEuiOPhhX0hGe96HiKCqpURTGfv78eaSkpPgkJJSknn2dcFuqFESNoyiMnQw0JLz++uv4wx/+oPo4g4FA9/VCoaiXo0jXKBr5mg6pwSwlJSVwOp1YvXo1JkyYwP2Xl5eH/Px8TJgwQXb4+fXXXw8AbsKKiE4lqeyCggJERUV5rCErKSnB008/DYvFgpUrV2LFihWora3FrFmzeB2br3Tq1AkXLlxw66Tz8vK49xnXkBJIJP2sh/AQE4oul8uv+5QSzABfKPrjOITnarg5ikJCRSiqXcLv/fffR/v27dGnTx9FGRoppFLPei3hByg7p2lHEWisvRc+RDG8gz73hI6iXqlnsdkNjIJXQvH999/3aZ4hX78vRXp6OpYsWeL2X3p6OqxWK5YsWYJRo0YBaDwZzp8/z7sJDx06FADw+eef87b7+eefIyIiAn369OFeE968gcYRxAcOHEC/fv1k54Wy2WyYPXs2ampqsHLlSrRq1Qpt27bF8uXLcfnyZcydO1ezG8GQIUPgcDiwfft27jW73Y6dO3ciIyMjYPPyeYMebqecowgETnjQsQvPtZKSEpw6dcqv+1fiKDqdTrdO9eeff1Y08l+OiIgI3r/DrUZReN6HaupZzFGkY9+xYwcA4Pjx4zh79qzX+5VKPWtZoxgTE4O4uDi3c5cWIJ7EiLDdhULR4XAEbNaDQBPovp5+mBTWKOqVegaMe117lXpu166dTzv19ftSJCUlYeDAgW6vf/TRRwDAe+/48eOYOXMmsrKy8MgjjwAAunTpgrvuugs7d+6Ew+FA7969kZubi7179+LBBx/kncwvvvgioqOj0b17dzRr1gznzp3DZ599hpiYGDz++OOyx7lt2zYUFxfj1Vdf5QbHAEDnzp2xbNkyzJo1C7t375YV02QkNkkhHzhwgJsXauzYsdzNPCMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlj1NvqqurA167IjfaFwic8KBjF3so+e6772RH1vuKEkcRaLzZkxvgf//7X/Tv3x9AY00VcejVIpzSJtwcReF5HwqOosPhcGtHMUeRjp1uR1+cfH+Peo6NjeUGmSQmJvJu/mpSz8J2p4Wi2WyG0+nEm2++ieeff54nckOBQPf1wtRzREQEIiMjubKxQCEUijU1NbqviCZGSE6P4wuzZ8+G1WrFrl278M0338BqtWL69Om47777eJ8bOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NNl9TJw4EQMHDkR6errbez179sS6devQoUMH2W1s3ryZ15Hs37+fG7k8fPhw3smWnZ0Nq9WKL774ApWVlejQoQNefvll9O7d29PPoSvV1dVcfWigMIqjSMcuJhQPHDjg19VzyI3TbDa7jcIXCkWyqP2+ffu413/44QevhSJdt0Mfi1K0Ehh6ITzvQ8FRlFrXWQgdO92O3gg5gpLUsy/zKNJiUCgU1aSehe1OahSbNGmCu+66Cx9//DGKiorw73//G/fff7/q4zUyge7rhUIRaGyf+vp65iiKoKlQtNlsOHDgAEaOHKnlZn3m1VdfdXutT58+olPCWCwWTJ48GZMnT5bd5rhx47ye3sdisYiKRIKSScK3bNmieH/R0dGYNm0apk2bpvg7RkCPqSA81SgGSijSsUs5iv6E/A5iT/lSq7MQd5v+vjf4WqNo5NRzSUkJoqKiJAfUAe7nvVj8weYoKhWKdOz+cBS1HPVMjo8Wg/T2zWYzb2otT0JR2O7ECEhJScFf/vIXfPzxxwAaB7WEmlAMdF8vrFEEGgW/zWbT3VE0IpoOZikqKsKyZcu03CQjjKGXVQoURnEU6dhpodi9e3cAjYORhJ2MlpDfQZh2BqSFolZTPfhao6g29fx///d/6N27N6+O1x/k5eUhLS0NqampsitRCM/7UHAUxUShmHiUWkrNF6Ho73kUaUeRHvDYpEkTngDyVAdHx15XV8ddT1arFYMHD0ZGRgYA4Ntvv/U4VVuwEei+XlijCFxrH+YouqNKKBYVFcn+F4zLZTGMS0FBQcD3aRRHkY6dCMWoqCjeHJ8//PCD3/bvjaNId3q+OIpCEeVPR3Hjxo3461//iqNHj+L5559XtR+gcd3e//znP27pcjG+/PJL1NXVoaqqSnYtd+F5Hwo1ikodRTp2ozuKUqlngnDmC0+OIh07vQ5xSkoKTCYTb2WWn3/+WfXxGplA9/VSqWdAv+lxAr1vNahKPd93332yFrHL5QrZmeMZgcffU8CIYRRHkY6dCMWkpCQMGDAAq1evBtCYfr7rrrv8sn9vHEU69exLhycUEL7UKMq118GDB/HEE09w//79999V92EzZszAunXr0LdvXxw8eFD2u/RvQgsBIcLzPhSEolQ9otPp5M0QQcfuD6GYkJDA/e1LjSI94p9OPQsdRRpPQpGOna4/T0lJAQDeUqy+PIgZkUD39VKpZ0BfR9Go17UqoZiQkIA///nPkoMgzp8/j/nz52twWAyGe0cbCIziKNKx00Lx1ltv5V735wotSh1FusPVylEUftcXR1FKABQWFuKPf/wjb1+VlZUoKytTVVRP6pwPHTqEI0eO4MYbb5T8LL0v4WTKNMLzPhRSz1JzJlZXV/POJzp2rQezxMTE8NLNvjiK9O+v1FH0ND0OHTt9fhChSB9vsLW/JwLd18ulnuvq6gJiejmdztB0FLt06QKbzSY5EMPhcOjiAjFCEz2EIrlQLRYLr1aOCEWXywWHw+FWR6c1JHan08k5IklJSUhLS0O7du3wv//9DwcPHkR9fb3oWt4XL15E69atZefzlMPX1LMvHZ7wu2o7bk+Oot1ux7hx40TrBPPz81UJRbqj//e//y0rFOm4fBWKRnUepJASilVVVZJCUasaRXL9CCfE9qVGUTjZNsGX1DMdu5ijqNfqIYGAxF5dXY33338f3bt3x4ABA/y2P7HUs1DIe1o0w1fKy8vd9JJRr2tVd5ExY8ZwJ60YVqsVzz77rM8HxWAA7vPpBQIpgUSLsUC4iiT2iooKrjMhaS3SgVZXV+Po0aNu33311VeRlpaGESNGeLVvl8slm3qml6b0x6hnejvebM+TUHz55Zc5N7ZNmza8eU/z8/PVHCpPKG7btk32s0odReF5HwqOotRyj8LXSezCydy1EIrCkea+OIpiQgPwLfVMtzstFMmiCKEsFEnsr776Kp544glkZmb6tW5RrkYRCMzvKzYY0ajtqkooDho0CMOHD5d8PyEhAXfeeafPB8Vg6IWUQKKFYiDn5qNHPJOb0G233ca99t///tftO1u3bgUA5OTkKFqfXAgtrpQ6ijU1NbxOzpcOT8x9UnMj9zSY5T//+Q/399atW9G3b1/u32qEYm1tLS/OvLw8nDx5UvbzBDmhKCTUHEXayZMSkML4vL3mXC6XX4SiPxxFmnBzFAm//vorgMb49u7d67f9kPPRZDJxvyvdXoG4vkJWKDIYgaR58+YB36eUo0jf3ALhKJLYxYRi586dudfEBAc9HYg3zp7cqiyAuFAUuoC+OIpinaXSDtTlcilKPRP69u3LWx1JjVAUG+ks5yoqdRSF573Yb1lXVwen06nkMA0BLQjpZUOFDwUkduGN2tvzqbq6mlsnWph69mUwixKhKOcoigkRut3FahRDWSiS2OkHW3/OFUvPgUlKWgL9+4r1H0Z9AGRCkWFY9BjZp8RRDIRQJLGLCUXaGaFFodhr3jgxcus8A+JCUcv5wMRcUKXbs9vtvLofsfjJaxEREYiIiAiYUKRjKC0tlTyPhOc9/W+6NjaYRr7SgpAWilIj3GmxD3jvKEot3wf4P/Ws1lGkjyHcUs8kdj2EIsHTYCOtCStHcciQIarrehgMJUgVwPsTo9QoktjFhCLtWngSit6ICS2Eoi8ixhehKBQYco4iaVMtheLBgwdx4cIF0c8Lf5PLly+Lfk5uZRq67Y3qPoghJRSFsZJ/ayUUpSbbBow3mIX+LYhQTExM5L7n67yPRobETj84/Pzzz16VzihBTCh6cny1JqyEIhvlzAgljOIoEtQKRbomC/DuBqtF6lmvGkVhBy/WVuQ1IhQSEhK43/R///uf4uOkhSI9P98nn3wi+nnhbyI3lyINHTvtWBn1piKGVOrZ3zWKUpNtA9rVKNJio1u3bmjVqhUAYPDgwbzveFOjSA8eDWVHkUALQ6fTKVqDrQWkjzGao2jUhz+WemYYljZt2nj1vU8++QTPPfecqNsmR319PScihG5AoIUiiV2tUKRrsgD9HEVvO1qXyyUqHvzhKNKOEnEVL1y4oLj2jxaK9Nq7UulnYVtI1SkKz3v6e6HuKJLYhe3orYMm5yj6UqNIHx/dVzRp0gR5eXk4dOgQHn74Yd53PAkREntVVRV3DYSLUCSxCx1Etenn06dPyy6PCfDrmOkZHJijKA0TigzDcunSJdXfKS4uxvjx4/HSSy9h9uzZqr5L31SE7kOghSKJXUwoxsXFcfMj0o4J4C4c/eEo0k/hWqeea2treUJX7Jjk8FYotmvXjntPKiUshBaKgwYNQseOHQEA+/btUzTFj5RQFJ73Uo5iKAhF4UMBiT0QNYr0Na1V6hloXEHlpptucpv305PQI7GLDWRR8n0al8uFhx9+GK1atcKiRYsCmgXxBhK7L0Lxv//9L7p06YL09HScP39e8nN2u517GJRKPTNHkQ8TigzD4s2ozuPHj6OhoQEA8K9//UsytSUGLbLoGzIQeKFIYhcTiiaTibvpCYWhUDj6w1E0m83ck7jWqWepmiSl21OSshTWKALe1SnSQrFZs2a49957ATQuPPDZZ5+5fV4Yg5RQFJ73oZx6FjqKJHZ/CEXhw5/JZOIeFrRKPcvhaWUVErvYQBZAnZDZunUr3nvvPVy+fBkvvPACbr75ZuTm5io6Tj1wOp2i2YTvv/9e9MFRjP3798PlcqG+vl52ah2x5fsANj2OHEwoMgyLNzPj0zVmVVVV+PjjjxV/10iOIoldTCgC145PKBS1cBQ9CUXgWvpZa0dRSigq3Z4SR1FYowj4LhSTkpI4oQgA27dvd/u8UkdReN6HcupZKAyk1tv1x2AW4Nr57cuoZ6X9lNls5s45MUFAtiM2hyKgXCja7Xa3hS9yc3PRr18/zJ8/35DTKsXGxnJrf9NUVFQgLy9P0Tboa53+DYWILd8HGGN6HCYUGQyV0LVwShEORnjnnXcUf5cWZXoLRRK7r0LRH/Mo0senxlF0uVw4c+YM5/iKIeUAe+soqq1RBLx3FPv378+lG8VGPit1FIXnfSg5ilFRUbxrS9jeJHatahTlHEXgmlDUah5FT5DrSUzkk9ilhKLSUdpvvPEGzpw5A6BxntDu3bsDABoaGrBgwQK89957io83UMTHx0te+0rTz3S/Ile2JDW1kREcRaM+/DGhyDAsSmvFaIRCcf/+/Vyn6QkjpZ5J7J6Eot1u5wkGIzuKTz/9NDp16oQHHnhAct+0o+jNE75QYIitP++v1LPZbJYVAkodReF5H0qOYnx8PE8IC1PPJPZA1CgC2jiKatakJ+eH2PlMYpeqUfTkSAKN1//ChQu5f69duxaHDh3CjBkzuNdOnTql+HgDxeXLl3nXPqn3BcAtt+kJbxxFI9QoBnq0tTf4LBQnTpwoegEyGHogNr3Ju+++q+i7SlPPWi3h98svv+DcuXOynyFCMSoqiteR0cdH3wy1qFFU4yjW1dWhoaFB0ajnHTt2AAA+/vhjyXVc6ZtFy5YtZbcnhph4om8gpIYJ8N1RpEV8s2bNAMgLAaWOohC6Dem+NhiFYlxcnORa4TSBSj1rUaPojaModz5LOYpKvv/yyy9z6yY/8MAD6Nu3L6KjozFp0iTuM2rqtgMJfe0PGjSIE/FKHUWlQtEINYoul4vrM+lSDKNe0z4Lxccff1zU0mcwfIXcfNVAhGJkZCQ3Mvjdd99VVJcjl3rWegm/r7/+Gj179kTnzp1F05QkdnJMSUlJvFGUUlPkBNpRBBo7XiVL+NFP8kQ0CvFVKAqdKID/G9AOI92maWlp3N9K51IkjmJMTIzberGeVt4ApOdRFJ739NyeweA+iEHEiSdHkcQeiMEsgLyjWF1djY8//hgTJkxAUlISbr31Vu44vBWKcucHiV1qMAsgLxQvXLiAVatWAWg8t5csWcK9JzallZFo1qwZ79pPTk5Gv379AABnzpxR9FAVTDWK1dXV3LlE9z1Gvab9mnp2uVzIz89X/OTMYNCoFWQul4u7yaenp2PEiBEAGm/8ShaYD2Tq+euvvwbQWFfz/fffu71P9kELRRqpZfy0qFGkv+PJUQQaxZ0SR5G+uYqNCibbIrRo0UL0mOQQE4p0e9GCgxaKMTEx3ETJalPPtLCTSz0Lf5PLly+LPsAIzy96taBA11FpgcvlUuwoktj9UaOoNPVst9vxxBNPoGXLlhg/fjy2bNmC8vJy/PDDD/jmm2/cjk+r1DOJnYgck8nEe1jy9P2FCxdyr0+fPh3p6ence0YXivX19bxrPyEhAbfddhv3byWuopY1iv4WbHR/2bx5c+7+EtJCcd++fViyZAmvoS9duoSsrCz86U9/woQJEzB//nzFw9wZDEB9h1ZWVsZ9p127dpg8eTL33saNGz1+P5CjnulrRWwlksrKSjidTu5GJ3SZpBxFYerZ13kUlTiKly9fdruRO51Ot0ErtLDJyckRFXV0m9NCUavUM/170G0KXEs/FxQUyA64IcgJReHxulwut9/I4XCIzrcotf5xdHR0UE66XFtbywniuLg4WCwW7rwSnvskdn+knunVcwj0YBbiNO/ZswdvvPGG6PlJSkW0SD0La2dJ7EQotmjRwu0clROKe/bs4Y7nueee471ndKFYWVnJOy5vhCJ9ndtsNsklYJXUKPr7IYyub46Pj5d9wDQCmgjFTz/9FKdOneJdiK+99hrOnTuHPn36oGPHjvj666+xc+dOLXbHYIhCpwzbtWuH0aNHczfxrVu3elypJZCjnmlBJ9WhVVRUcDcToaOoNPXsj3kUAX7KRmpyW/pm5nK5eP+ura1FTk6O23f8kXqm24v+m3YUgWtC0el0epzs3W63c/uihaJUarGhoUF0uVMl2ZZgdxTp85sIFuFgKCFap56JQBUiVlJCr+wxcuRI/O1vf+P+Tc51X4UiIB6Ty+XizglhfSIgnyonv7PVakXz5s157ympC9UbXx1FYb8sdW0pqVEMpKOYmJgoW5JgBDQRiufOnUPXrl25f1dXV+P777/HH/7wB6xatQpvvPEGrrvuOiYUGapITU1V9XmhUIyOjsbEiRMBNHbsYnPb0QQy9UwLRTFxk5qaKjniGZAezBKIlVkAvkMhVdNH38zEOkCx9LO/B7NIpZ4BdQNahCOeCeT3cjgcvP1KHb/YzUx43ks5isEoFIlgEU7YTiCxayUUyfUgNeBSbL1n+hp65JFHcN9993H/JkLR19Qz4N5+qampKC8v545DWJ9If1/MkSTHJCZco6OjERERAUD6wVRPUlNT3YRiy5Yt0alTJwDA4cOHPdaZC/tlqYc9JTWK/r62aKHYrl07RYOc9EQToVhRUcF7gvn555/hcDgwbNgwAIDFYkHfvn09rsHIYNBIFftLIRSKAHiTIP/444+y3zdS6rm4uFixUJRLPfvLUaSFohJHUWoUtLDzlxKKvtQo0iJDSeoZ8F0oAvyYpY5fTCgKz3spR9GoNxUhtBgkN2Zy/gjPfRK71jWKaoSiMLNw3XXXcf/W0lEUtl9xcbHsiGf6+3KlHWLHYzKZPLq4elJcXMy79smxXn/99QAafytP9wPh7yE1oMUI0+PQQjEyMjI8Us9xcXG8G9SRI0dgNpvRq1cv7jWLxRI0HRvDGCipE6MRE4p9+vThXvO0hBW5QZjNZrdJjwOdem5oaJAVikoHs/g66lkrR1GsAywsLMRPP/3Ee01qMItWjqKS1DPgvVCUEnJqHEXheR+KqWciGKuqqnjOGIldixpFp9PJnU9SM3PQQpHsQ/jA2LRpU+76EwrFyMhIzqlTgpwYaWhoUCwUhd+vr6/nfjsph9PIQrGhocHNUQSu9eOA9AMpQdgvSwlFI0yPQwvFhISE8Eg9t2vXDt999x3Ky8ths9mQk5ODLl268GoWCwsLvZruhBG+SIkUKcSEYvPmzbm/c3NzZdMX5AaRmJjIm4oGCLxQjImJ8cpR1HplFiWOIv27078bvR2646V/S2H62Veh6O2oZ4AvFD1NkaPEUaRjptuBFgBiQpHeBu0cBetgFjlH0eVy8X4nEp8WqefKykpOhHrrKJLrrn379gAap6BxOBzc8alJOwPyQjEmJkZysm1P31ficBpZKMbExIgKRdrN9XRNapl6DqSj2KpVK9mSAiOgiVAcO3YsSkpKMHbsWIwfPx6lpaUYM2YM7zN5eXlcvQGDoQS1E7nTHQk9N1Xv3r0BNIoQuQmuaaEoJNCp56ZNm2qSeg7EPIr0kz5dVyXlKGZmZnJ/C4UifRPzd42iMPVMuxdap57pv+n9iKXT6PNe2Bah4ihKjcIlsSsRiqtWrcKQIUNw6NAh0f16mhoHEF8WT6wEhQiWhoYGFBQUyKZ55aCFifBabdq0qdeOolqhaDQx0rRpU7dRzwBE0/5SKHUUjbCEHy0U09LSePv2tszCn2giFIcMGYK//vWvSE9PR9u2bfH444/jzjvv5N7Pzc1FVVUVbr75Zi12xwgT1NYokpt7q1ateBceEYpAY1mEGC6XS7FQ1GJlFk+OopoaRbnBLP5emQXgu2L0QAypG1mHDh3Qt29fAI19Ay3whZPuErSaR1Eu9dy6dWtuknatU8/08dNC0VONolAohtpgFuH7JHZhbML2r6ysxJw5c7Bv3z4sWrRIdL+eJtsGPA9mIdcdLVjOnTvHHZ9aR5HM1Qm492/CGkW5wSyAeqFIfnOHw6HZ6lJaIaxR9EYo+lqjaLFYuOvf344i3X+4XC7DZwo0m3B7zJgxePPNN/Hmm2+6reXau3dv7Ny5E/fcc49Wu2MweDQ0NHCDpegbMcAXilJ1irW1tVznKRRlgLYrs7hcLo+OIiC9zjMg7ijW19drUtul1lGkUSIUY2Njcffdd3P/pldpIb9LfHy8VwM31AxmEQpFi8XCHb8/HcXU1FTuhuRpehyhaA+1wSzC9wmeHEWbzcYJg99++010v56W7wPEaxTFls0UCha5EcZyeCo78OQoiglbgH99eapRBIyZfhYbzBLIGkWTycS1ZyAdxaSkJMM/APp1ZRYGwxfEBJsUBQUFXP0hXWsGKBOKciOeAW1Tz3V1dbxtiAnFpKQkWaFI1/+SYxemssi+vDk+ghJHkYYWilLT48TExPCE4hdffMH9TW4WCQkJXj1l+zI9DnDt3CkuLpb97XypUWzSpAmXVhcTC3Rbh2rqWcpRJLF7Eor0+XD+/HnRVKqS1LOco0i3g1Aoept6pl1CoZBJSkryOvVM/16eUs+A8YRiUlISd+2bzWZOwLVu3Zrre9UKRbU1ioCytbi1gAjFyMhItG7d2vAPgEwoMmC327Fs2TKMGzcOI0eOxBNPPIFff/1V78NStZKP2EAWQvv27TnxZwShKBR0YkLR4XDICsWIiAiu4yfHLjaheCBWZqFp3bq16HaEjmLv3r25zvHkyZPce7RQ9CYVpGYwi7BGEeA/ZIitwU3wJfUcHR3NCYbi4mI3kUOf93KpZyPeUMQQSz1LiRYSuydnXHhuXb582W2/nq5pQLxGkVx39HdooXjq1CnuoVRt6pkWisKHBIfDwb1msVjcJs0GtKlRBIwnFB0OBy+bQAbFmc1m7pr0NJhFmHouKioSHbwoNwdmoB3F5s2bw+l0MkeRYXwcDgdSUlLw+uuvY+fOnRg/fjzmzZsnetMNJHQqwhNyQtFkMnGu4oULF1BSUuL2fTlRBmgrFIVxiQlFm83m8ZjIjUxroeht6rlJkya8m6tUaiw2NhYmkwkdOnQAAJw9exYOhwMul4u7gZGbhdxKFGL4Mj0OoHyKHF9SzzExMZxgsNvtvHYG+OeHsC3MZjN33Ea8oYhBixIxR5F+32azweVyic6jSAtqoUgWG6TmjaNIL5tJX3Nk1DMAnDhxgvvbF0dRKBRtNhvnKLZq1Yp7SKIJVaFos9l4D4k0RKSXlZWJZk0Iwn5ZaolMcm7R/Qsh0I5i8+bNYbPZmKPIMD6xsbHIysqC1WqF2WzGsGHDYLFYPNZpGQk5oQjw089Hjx51e99ojiLgWbyS4yTb0yr17K2jmJycrOpGRmZBsNvtuHDhAmprazlHidws1HbcvkyPAyifIseX1DPtKALydYpiot3ok/MK8eQoCs9/u90u6gTRjpHwfBBLS6odzGK327k11oXfSU5O5tyn48ePc69rKRQdDgc3wEUs7QwoE4rBWqNIjklKKALy6Wexflks/UzOtyZNmrhNgxaI+Qzr6+u5WIlrbPRMgfvil0HAe++9hw0bNiA9PR3vvvuuou+cPHkS77zzDn755RfY7Xakpqbi7rvvxrhx47jPHD9+HLt378aRI0dQWFiIpk2bolu3bnj00Ufd6t6OHDmCmTNniu5r7dq16Natm/cBeqC6uhoffvgh8vLycPz4cdhsNsybN4830pxgt9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fpLbz8/Ph81mQ5s2bfwWgxLoNKYn1AjFI0eOcKsGEQIpFJU4iq1bt+aEojDlKDzOqqoqNDQ0aO4oRkZGiroagHttD9DY6SkptiedcceOHbnXzpw5w7vpeisUxcST0pVZAOVT5BChSA94AJRNuE07ikCjYLjhhhu4f9PnvZhQjI2NRUVFhSFvKGKoGczSunVryTXZ7XY712ZKhKLawSx1dXWS/YDJZMJ1112H48eP8wSo2tRzXFwc4uLiUFVV5SYUIyIiuAclqb7PlxpFqbpQI5CSkiIpFIUDWnr06CG6DbF+ubCwED179uS9Rn4rsT6MfghzuVxuQlIL6IfM5s2bo3Xr1oZPPQedUCwuLsamTZtUPckdPHgQ8+bNQ+fOnfHwww8jNjYWFy9edKtr+eCDD/DLL79g6NCh6NixI0pLS7Ft2zY8+uijWLt2LZcqoxk7dixvnWsAfhdY5eXl2LhxI6xWKzp16iQ55QsALF26FF9//TXGjx+PtLQ07Nq1C3PmzMHq1avdLiCgsbNcvHgxJk2aJFmHFihKSkp400nIoUYoitUpBjL1rMRRLCkp4Y5JalCPcIocsRusL4NZ5CY8j4qKQlRUFE94NW/e3CtHEWgUirRz4I1QdDqdAU89N2vWjHczUbKEX3R0tOw0KfR5LyUUAWPeUMRQM5ilpKREckUmu93OfU94XnubehbWKMr1A0Qo0qh1FIFGUXTmzBk3oXjs2DHub3oeWBo1D2JCjOwo/u9//+OcXOF9R6mjKHbeiI18lpssnVy/LpcL9fX1on2Er9Ajnps3b46SkhLDp541EYpFRUWIj48XVeiE6upq2Gw20bmh1LBmzRpkZGTA6XRKPnnSVFVV4aWXXkL//v2xaNEiSYcEAO677z688MILPFHwhz/8AZMnT8Y///lPPP/8827f6dWrF4YMGaL4+G02Gw4fPozBgweLvp+Tk4MBAwbIdkDJycnYtm0bkpOTceLECUyZMkX0c3l5edizZw+mTp3KTVk0YsQIZGVlYe3atVi7di3v8w0NDXjhhRfQpk0bZGVlKY7JX6gRZEQoRkVFiYrLjIwMREZGor6+XlQo6pl6ttvtaGhogMVy7XKsr69XJRTLy8tFU8++DGaRSjsT4uPjeZ1ecnKy147i6dOneS43EYpqahSlOlg1qWf6IUMu9UzaRrjalJQz4MlRlDpeudSzEW8oYqgZzCI2xRNBahQ9oE3qWc5RBPiCheCNULRarThz5gyuXr2Kuro67hjoBxMpsyGQqefa2lrVq2N5Cy3QtUw9iwlFOvUsRDirQCCEYn19veFTz5rUKE6YMAEff/yx7Gc+/vhjTJgwwaf95ObmYt++fZgxY4bi7+Tk5ODKlSt47LHHYDabUVNTI7mMW48ePdzSUW3btkX79u1lT9Dq6mrF6xJv27YN8+fPx/79+93e27FjBxYuXIjdu3fLbiMqKoo3GbEU+/btQ0REBEaPHs29Fh0djVGjRuHYsWO8G5TT6cTixYthMpmQnZ3tF8tdLZ6ECg25qbdt21b0YSAqKgoZGRkAGovRhTcjPVPPgLurGBkZKVpUTyNc71lrR1GJUKSRcxTFJvEWpp7FJtxVI4qkBIYaodiyZUtun1LXPF1jJBSKakc9A+5CUUpsB6uj6GkwC33uR0dHSw6io9tOyWAWb1LPnhxFIWpTzwC/TpF2k+lBdlKOYiCmx2loaMDkyZORkJCAl19+WfJzWkK3rZxQlHt4U1KjSA+Ukks9A/4TbEKhGAwT6WsiFF0ul8clgXxdMsjhcGD16tUYNWoU7wbjiUOHDiEuLg4lJSWYNGkSRowYgTvvvBMrVqxQdBN1uVy4evWq5BPp0qVLMXLkSNxxxx2YOXMmb0ScGBMnTkT//v2xcOFC/PTTT9zr+/btw4oVKzB8+HC35Q+95dSpU0hLS3O7IEiq/PTp09xry5cvR2lpKRYsWMBztvRE6TyKtEgSSzsT+vTpA6DxXKLTPIC+qWfAXSiazWbumlHqKGo9PY4nN0FMKKpxFK+77jruXDt9+rSooCDHIBz1KoaUwJBKPYvVKJpMJu4ckpqfjz5X5BxFNTWKNHLzKALXfr/6+npVU0jpBTm3TSYT9/tIiZakpCTJG6WcUBRrK7Wjnu12e8AcRQLd9rSA8MVR9EUoOp1OPPbYY9i4cSMaGhrwxhtvSIWhmN9++w2rV6+WHbRFP9wLhSJdDuKro0j3I0ocRX8gFIpJSUmGTz0HbNTz5cuXvXr6Inz66acoKirCo48+qup7ZBH37Oxs3HzzzVi0aBHuuusufPrpp1i2bJnH73/11Ve4fPky/vCHP/Bet1gsGDx4MJ588km89NJL+POf/4zff/8d06dPl1wpgHxv/vz5yMjIQHZ2NvLy8vDTTz9h0aJFuOWWW/Dss89q5uaVlpaKOo/kNfIEW1hYiB07duD48eMYPXo0RowYgREjRoiODg4knlatINApGzmhKFen6MlRpN0nX5e/UuIo0iJeaY2i1hNue3IUhQ8gakc9WywW7ubryVGkj0sKqfSb0pVZCOSYqqqqeJ06QWrEs/B4vR31TP9bzIk1eppKCBElcXFxXN8mNT1OUVGRV46icDopgC8UheKDIKxRFFu+j0BPkUPQUiieOXOG+1uto6iFUHS5XHjmmWewceNG7jX6XPeWe++9F0899RSmT58u+RnaKRS2VXR0NDcKXEmNotyk5nJzKAKBdxSbNWuGoqIiwzuKXltH9MkESK+h63Q6UVxcjD179nCpP7WUl5fj7bffxkMPPaRqtQ6g8Uevra3FPffcw41SHjx4MOrr67F9+3Y88sgjbiOaCefPn8eqVavQrVs3jBw5kvdejx49eKOvbr/9dgwZMgSTJ0/G+vXrsXz5csljio6OxtKlSzFz5kzMmTMH9fX16Nq1q+ZuXl1dnahrQjpHcvNKSUkRTYXLkZOTg5ycHEMURXsayEKQW/NZzxpFwF0o0p8JtKOoZDAL4Dn1rKTYvlOnTjhz5gwqKyt5N0phjSLZntwx0TeBpk2bcv9Wk3oG3GuihA9bckJRaeqZrMwCqJ8eR+h6yNWGGwFybtPni9z0OEqEothDw7lz53jtQa6HhIQEydp0udSzEkfR19Qz3fZ0mtQfNYqeRj0vXboUK1eu5L1WUVHhNvrX5XJhzZo1qKysxKxZs2TvWbW1tcjLywMA2UUc6OMRE/XXXXcdCgsLcenSJV5dJw25zpOSklBVVYXKykq31LPU8n0EfziKFRUV+Pvf/442bdrgz3/+s5ujKNyvER/+vFYl77zzDve3yWRCbm6u5KoXANCiRQs88cQTXu1rw4YNSEhIwNixY1V/l5xQwulQMjMzsX37dhw7dkxUKJaWlmLu3LmIi4vDokWLEBER4XFfaWlpuP3227F//344HA7Z78TFxWHatGl46qmnAAAzZsxQVZOnhOjoaFFRQzpcX/aXmZmJzMxMnDx5Eo899pjX25FDKt0vRKlQ7NWrF/e38Fw1WuqZTil6IxQTEhJgs9lUO4pOp5OLT22NonAwixLHgy4jodtEzFGsra2VPSfofSQmJnJugpqVWQD3mqgbb7yR975SR1Eu9RwZGYnmzZvjypUrbkJRatJy4WAW4XaNCjm3aaEi5W4lJiZKCkW5wSxAo6gn5SXAtetMKu0MuAtF+hwSXndkOTn6fNLSUST1ivHx8YpS5VrWKG7duhXPPfcc9+/ExESUl5fD6XSiqqqK991vv/2Wcwevu+463H///aL7A8CbWURuSh563IDYbBvXXXcd/vvf/wJozCDRMyYQSLuQZfFOnTol6ygGqkZxzZo1WLx4MQDgzTff5A22bN68ORITEw1/TXstFFevXg2g8eniqaeewp133unmugGNtQdNmzZFu3btZEccS5Gfn4/PPvsMM2bM4BX7kpGily5dQlxcnOSFlZycjLNnz7oth0Q6eLE0YGVlJebMmYPKykq89tpraNGiheLjbdWqFerr61FbWyv7pF9QUIBFixahXbt2sNvteP755/H666+r2pcnkpOTRZe2IrPVa7kvf6C0rpUWilLuMNDY8bdv3x7nzp3D0aNH4XQ6uXOSiCzhvHiEQA9m8SRcAffBLLQAbdmyJWw2m2pHUcmqLAStHEUC7fJKCUU56JsALbbUTI8DuM/bJsQboSj2u1qtVk4o0q4Nfd4rcRSNDp16Jki5Wy6XixcTmXMQkE89A+4DWsg1LfdwITbhNkH4PbKc3O+//8695u30OAQiFF0uF+d+tWnTRrL8SO31RSMnFN9++23u76VLl+LgwYPYtm0bgMbfkf4uveSmsNZbCH3/kcs+iZWd0Agf3uSEosViQbNmzXDq1CmUl5ejpqaG+008pZ79cW3Rv9Hhw4d57zVv3hwul8vwqWevaxR79+6N3r17o0+fPsjKysLIkSO51+j/evbsifbt23slEoHGOjqn04nVq1djwoQJ3H95eXnIz8/HhAkT3NLgNNdffz0AuAkmIjqFN+G6ujo8++yzyM/Px7Jly0TrUuQoKChAVFSUbAdSUlKCp59+GhaLBStXrsSKFStQW1uLWbNmyS5RpJZOnTrhwoULbiKEpALELjYjofS3UOooAtfSz1VVVbxUp6ebSqAdRfpJWK2jGBsby3Xsah1FsZo4KTwNZvE06hlwnyJHuG2thaI3qWchSlPPctPjANecpZqaGl770+eHJ6FoRPeBxuFwcDHQ50tkZCT3+9MCoqKigteO9LnvSSjSbeVwOLjfVM5RVFOjCLinn7VKPZeXl3PHK1WfCPivRpG+Pz7zzDNufQsN/W+x6WdoaHNHzlGkP+dJKErVKZIaxcjISFExDuhToyj3GzVv3hwVFRWGv6Y1GcwyefJkXv2XlqSnp2PJkiVu/6Wnp8NqtWLJkiUYNWoUgMYf+Pz58zw3ZujQoQCAzz//nLfdzz//HBEREbxUhcPhwPz583Hs2DEsWLAA3bt3lzwuYeE00HijO3DgAPr16ycpjG02G2bPno2amhqsXLkSrVq1Qtu2bbF8+XJcvnwZc+fO1eyJYsiQIXA4HNi+fTv3mt1ux86dO5GRkeHznJZGQamjCIBXJ0sLRU9zFkZERHBP+YFwFNXWKNITbjdt2pS7AQbSURQOZlHieNBCkXbSpGoU5RCmngneDmYB/O8oEoSTbst9z+juA43YHIrCf8vVKHorFOlrTE3qWa5GEXAXilqlni9evMi9Jrdgg1Y1ikKhSM7pxMRERERE8H4z4YMt/Rt5GnBIC1C73S7Zd3qqUfTk8pO14gF3oUjXKaqpUdRKsJH9R0dHIzs7mytJa9myJXeOGf2a1mTkxC+//IJ9+/bhgQceEB1lW1JSgg8//BBDhw5VvbRdUlISBg4c6Pb6Rx99BAC8944fP46ZM2ciKysLjzzyCACgS5cuuOuuu7Bz5044HA707t0bubm52Lt3Lx588EFe+vX111/HgQMHcNttt8Fms+HLL7/k7XP48OHc3y+++CKio6PRvXt3NGvWDOfOncNnn32GmJgYPP7445LxbNu2DcXFxXj11Vd5oqZz585YtmwZZs2ahd27d+Pee++V/V22bt2KyspKLo184MAB7mYzduxYxMfHIyMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlt28EpNY7FUKEYvPmzT2uJiMmAlwuF9cZyqWpIiMjZTs7pfi7RjExMZG7ATqdTrfJvOWghYk3jqKUi0ZeN5lMPIEmttoR4Hvqmb7RqZkeB2i8UZvNZjidTs2EopijKBT6BPq8D/bUs9iUR/S/r169yvtMSkqKZJ0g/VtIDWYheBqcRpCbcFtMYAozTN4Ixfj4eDRp0gTV1dWc23ThwgXufW8cRSU1ihaLBTExMaitrXXrb8g5TUq0lDqKaoQi0NjPifVnYg+JNJ4e3oTXNb0EIu3oqalR1OraIvtv3bo1lixZgj/+8Y/YtGkT7rnnHpjNZqSkpPCufyM6ipoIxc2bN+PMmTOSw99btGiB7777DpcvX8aCBQu02KUqZs+eDavVil27duGbb76B1WrF9OnTcd999/E+R1Jf3333Hb777ju37dBCceDAgfjqq6+wZcsW7uQfNGgQsrKyZC/0iRMnYuDAgUhPT3d7r2fPnli3bp3kzZNm8+bNvAtg//793Mjl4cOHc51ydnY2rFYrvvjiC1RWVqJDhw54+eWX/eYAa8mVK1d4o0OlIAJZydrQYh1OZWUlV0ytRig6nU788MMP6Nixoyp3VolQpDtgJUKxrKyMJ3aF0/koFYp0J6XGUYyPj0dUVBSvwxcTirGxsbz6q9jYWLRp04bnqADeCUUpR1Ft6jkyMhKpqam4cOGC6AS/WkyPA/BviLQDRp/3wT6YRa2jeOXKFckSAjWOopI5FAH3GkXiliUkJIgORtQi9Qw0uopnz571i6Mo94AXFxeH2tpanjh3uVxuKw3JCUVvHUVAWij6mnqmr3GLxcJ72JISioFIPdvtds7MIfenm266CTfddBP3mStXrhg+9ayJUDxx4gQvcDF69eqFQ4cOabE7AMCrr77q9lqfPn1Ep3mxWCyYPHkyJk+erHqbUowbNw7jxo1T/Hn6WMREIkHpZOJbtmxR9Lno6GhMmzYN06ZNU/R5I6EkbUov+aVk6iSxDsdTXRKBOFCkU1qzZg1mzJjBLcmldJoSJalnWowoGcxSUFDAibSmTZvy3LK6ujrFNzRvHUXiRAhrvgi0UBTSqVMnTYSiVjWKQON5cuHCBVy+fBnV1dW8309OKEZGRiIiIgIOh0PSUfQkFKWmgQl2R1F4fZDzp7KykhvMY7fbVaee27Zti/z8fFy5cgU2mw0JCQmKlu8DpB1Fqe9okXoGrgnFK1euoL6+XrGj6GlWgZiYGNnxAPHx8SgtLeW1i81m4zIY5HwWDpSjEdYoCqfPoREKRakBLXR7iWWFEhMTuZHYYg9v9MpoWqWetbi2aJEqZWTY7XbDp541qVEsKyvzOIK2efPmmkzeyQgfpFKDNEqdAwKd7icdjqe6JOHxEOGxc+dOAI1P1VLziAqh09w0QqFICwcpoUiP0KY7TzFHUSneOopEKJpMJu57Uo6iEOHDkclk4jpxqRujGGodRbnzS27ZMDmhCIgvO6jGUaSPS6w9jO4+0NDntVjqGWh05kkckZGRkqlnKaFIBiwC4g9/agazeKpV1tJRJBQXF3vlKNLnFBHXnoQrLc4JwgmgAemyCIDfX9bV1ckOOhRzFMWgHw6kJkcndYr5+fluy/AKU89GcRTpfUuVUkVGRhr+mtZEKMbHx0sWYxOKioq8fvpihCdK1rNWWotEiIuL4x5qxG4qctsgNxXSKdHTRMitxkNTXV3NdXJ0R6W0oF8IOV5avNA1ioC6kc/eDmah24p8T2zeOylHkSYuLo5zRdSszKIkZalkehxAPtVFfuvIyEjZm41Y6jkyMpKLTUoo0r+lmMNrdPeBRknqmf5ccnIyrx1pIS41j6KYUPQm9VxZWcn9nlL9QFpamlvphDcIR+UqdRQjIyO5/St9EKMh12xVVRXXD4k9+CitUSTHL4VSR5FuWymhSK5Ju93uNpJYqxpFrR1F2s2UchTlVrQyCpoIxYyMDOzfv1/yhCkqKsI333wjO4qYwRDiaeoFQL2jCFzrcC5evIj6+nrVqWe73Y66ujpe8TwtGuWgBQHdcQiFIqnZES4YL0TshkaPeibHqxRfU8/096RSY0KEjiLdgWs9mEVp6llulCW5sTZr1kw05UZuNmKpZzoeKaFIn/ehlHqWchTpzxUWFioS/PTvcsMNN3B/k2vSm8EstNkh5+KnpqZy//Yl9UwoKiriHMXIyEjZumx6vWxfhCJw7XpRKxSFM37I9dNKHUWyTbPZLBmD3MMbnXq2WCxo2bIl90BmdEexsLAQUVFRXF9ixGtaE6F43333oa6uDn/5y1+we/du7iZXUlKCXbt2Ydq0abDb7ZgwYYIWu2MwOJTWItGQDsfpdOLixYtepZ7PnDnDS38odRTp46WFonA1CiWjsKXe98VR9DX1TH+P7Nflcsk6iloJxUCnnsXSzvQxi6We6d9USijShMNgFuHn1NYoijmKtPiRe4C0WCzcDZoWinLXXefOnQE0toe3yycKhSJxFFu3bu1xzmE5oegpFS62dCL9W5HrWG56HH84iuT1hIQEyXpHOaEodBQjIiI4wa1njaISRxGQfgAwCpoMZunduzf+8pe/YM2aNVi2bBmAxsBJcb3JZMKMGTOCYqQtwzgocQiV1iLR0G7R//73P8XuAy0UhcLQG0eRfsKUmkdRSozIHW+gHMUbb7wR7dq1w4ULF3jTOQk7PLrjUyIU6ZjU1ChqtTILIH1Tamho4NpQynUSSz2rcRTp8ziUHEWpwSz055o2baqqRjEyMpI3S8S5c+fQ0NDAW4RBbtEEMl1TXV2dogFkQOPUaBUVFZg0aZKiOmoxaKF47tw5bmSsXNqZILy+XC6X4hpF4VyKVqtVlaPodDoVC8X6+nq3cQmeahSl0s6AOqEINPavRUVFKCoq4lbhCvQSfkqEIrneY2JiUFNTY8hrWhOhCADjx4/HjTfeiE8//RQnTpxAZWUl4uPj0bVrV9xzzz2KpnxhMGiknixpfEk9A40djjejnoVC8fTp0x7X9xYer1Tq2eFw+CQUA+UoxsTE4OTJkygrK+OJXqGj6GnViKSkJCQnJ3M3S1pAqKlRVDvhtlJHkb4p0eeKVNvQqWcyIlSNo0if98G+MouSwSz050wmE3czN5lMkqKZxB0dHY22bdtyxsT58+fx/vvvcw9uAwcO9DgjR3R0tNu5JffAOGTIEPz000+y2/QELRTpgXByA1kIwsFi9LGrST0Tca5GKJIR6jRSQpFczzRSQpEci9w8uMIHfBrh9DhAY/969OhR1NfX48qVK2jRokXAl/BTknom13vIO4qEjh074umnn9Zyk4wwRrjGqNRnCGpTz0CjCJBb35WGFopCB7G+vh7nz5/3+EBEC0V6cXi6A6VT4Z6Eopg49mXUs5rBLEBj5ybsAIUdnpLlxTp16sTdWGhx6K8aRYvFIpvii4uL48QrLRQ9jXimj9nlcqG+vh5RUVE8YUOQEor0eU+3Bzn/QnEwC7kGy8vLee6YcJ5DAu3QkrrBixcv4syZM7y5epcsWeLxgVPsPFcy1ZYv0EKRFp3eOIpKri+CUqFIBpQ5nU5enyW2IplUjaIw7Uzvk8blcvFSz1IorVEk1wktui9cuKBIKPrLUTSZTLz+noZc72K1zUZBkxpFBkMvvHEUhQMV1KaenU4nTpw44fa+kvSzcNob0lnRN1QlYkTueJs2barJqGdPqWcphKvCKLmR0elnugPXukaR/K0kZUjOk4sXL3I3IjVCkT5m8rsqST3T0E4kETzBmnpWMpgF4NfbST3wCH9PIiJoYT9y5EjRVb2EiAlFpQ+d3kILRaVT4xBIzGKOvZoaRfKbi02PQ7u5dP8oTDsD0o4iPYk2QcxRrK6u5lxKOaFID/IRClax1DNdckAGOek1j2LLli09LnogVrJiFLwSigsXLsS+ffu83qmv32eEB0pWO/FlMAvgXqOoJPUMAMeOHXN7X8mAFvp4ExISJFenINCDRMSQSj0HYh5FKYRCyVONIsCfIoe+IXjjKJLCcFIGIOYoytUnEsh54nA4UFBQAECZUBTebBwOByc0lTiK9HkvlrIO5cEsVquV5yhKncfCmk+xOsTFixcrOkaxc8HfQjEhIUH0WlDjKNbV1fHqEwHtHEXg2m9A949ijqKUUFTqKNLnvpxQjIiI4B6WhH2aUqEYyBpFl8vFW75PCnK9h5yjuGfPHpw9e9brnfr6fUZ4INYpCfFmMEtycjL3NHn+/HnVo57p/dIdr1pHsWnTpqJC0VdHUat5FL11FIV1hUqWF6MdRfrGrSYO4TKBwnkvAe+EIiA+mlapoyj1m8bGxnLpb/q8EE5oDPB/h2B1FJUMZikrK+Nu5k2aNJFsf6FQFE6EPW7cOI+1iQQ9Us8mk0n0QViNowi4X19qhKLcqGfgWn9KP9yKOYpqUs9ijqJSoUhf03JCkTh3ckLRbDaL9gFaCkWy6g4gXZ8IXLveyb4bGhp4qXQj4HWN4qlTp7B7924tj4XB4KFE4HiTejaZTLjuuutw/Phx/O9//xPtHMUQS1eOGDECW7duBaDeUfSXUPRl1LMWjqJwpLKSG1n//v25migy/QjgnaNI9kFW+RAbzKIk9SwUigMHDvRZKNK/jclkQkJCAsrLy3k3S6lBG4RQGcwi5ijSwkcu9Sz8XWhRYDabsXDhQsXHqEfqGWh0kui5WAF1jiLgfn15Sj2L1YWSc1o4eIj8BrW1tbDb7YiKipJ0FMWW8fPGUfRUk05GqAv7NLEaRbnUc5MmTURrV+lzwdeHMKVT44iVpdTW1nr8LQKJ10Lx22+/xYEDB1R/TzhiisGQwlNNB+DdYBagsf7s+PHjqKmpwenTpwE0dqJyAkLsCfS2227D3r17ceXKFZ9Sz2TFFrPZrEooSg1mCcTKLFJ443h06dIFu3fvRkFBAYYNGya6LaVCkdwshUsu0n8rcRTFJt32JvVMH7fQURUTivR5L3YTCZXBLFI1ikQESAnFhoYGbm1i8lvQcyn+6U9/QteuXRUfox6OIiBeWkNP5i2F8JrQKvWclJTEG+AlHPncsmVLUUeRLOMn7H+1dhQB99WxCGKp59atWyMyMhL19fVujqKUoCZlK8KSGaAxTjV9olKhSK534QNg0AvFZ5991ucd064BgyGG3AoFBG8cRYDvFpEOzZPQFBORXbp0QZcuXfDDDz8gPz8fVVVVspPwSqWegcabflxcnE+OotlsRlxcXEDmUZTCG0cRAO644w4A4E1k7s1gFjmh6G3qmUzHIVb4L0SpowhcuzHS5wV93ody6pn+/cjAB/rmKFWjKHaODhw4EH/9619RVFSEFStWqDpGPWoUAXeh2KpVK0XnpbfXFyAvFIXnM92fEqFIO4oJCQnceVtYWBhQoaikRjEiIgLt2rXDmTNn3ISiXB8dGxvr9rtu3rwZDz/8MEaPHo0tW7bIHiNBydQ4wLXr3cgPgF4JxTvvvFPr42Aw3Lh06ZLHmh0iFCMjI1UJG2FNE+CdULz++utx/fXX44cffgDQOJ9ir169PB4vwHcUAXAi0xeh2LRpU5hMJq8dRfrG7u3yZL7UUAH8dlcTh1jqGdCuRvHq1at47733uNfatm0r+j25wTxSQrGyspJzlOn4xYSimknI9YYMAkpISHDLENDuGfkcXbsuVaMo5tCazWasXLnSq2M0iqMoNX2KEK1qFMk5JyUU6b6F9Fu0o3j99dfj0KFDABrTz7SrCyhPPdOveRKK9DKqNGI1ikBj+vnMmTMoLy93q3+VQmw+ww0bNqCurg4fffQRCgoKFDm/Sh1Fcr0buaSETY/DCGpIx0UEklLEhKKnm4NQKFosFrRv3x5dunThXvM0oEXOUSRP20pcK4JQKJJ/e+so0pPkJicnK/4ejVDIKBn1LIVSR9HhcPBSloB4mkrN9DgtWrTgjvf8+fOYM2cOt8zbmDFj3FaUIQgdPzmXlr4xCt0WMr0Q4F7baOSpNAhXrlzhnByxh6fk5GSuHYhQpNtYKvUsl8r3BqFQtFgsXj8kqUEoFOXEBI0vNYrCwSwVFRVcOZicUCT9LC0U6X5PbOQzEYoxMTHc7+kvR1GsRhHg1ymePXtWkVAkx0r/rrQ7KKwrlUKpo0gw8mwGTCgyDIunTgO49qSrJu0M8OvPCGodxQ4dOiAyMpL3JO2pTpEcr8lkQlxcnKhQ9MVRJP/21lHUQijK3ciU3NjpdlfaeYq5KkL3weVyqXIUTSYTd56cOnUKGzZs4I7vH//4h+T3vHEUgWs3TPKaXMrayFNpEOgVR2688Ua3981mM+fMEKFI18hJpZ61GHBFI9xGUlKSqodObxGKBymHWoiWNYpSI54B99QzwB+RT/d7ckKxZcuW3H59mR4HUJd6BvhC8cSJE5wolks9izmKdHxKhaJSR5HEbOTUMxOKDMOiZDALEV5qa4q0SD2TjlKNo0iONz4+nqsnJHiarkIMsdQz4L2jSGrFYmNjPboTUghFqtrUM93u9AoqSoWiVI0i7TooEYoAfy5FwksvvSQ7OlXp9DiAuFAk8csJxWBwFOkVR8SEInAt/Xz58mW30ax6OYqBqE8E3B1Fb4WimutLOOpZ7qFUSeqZIJwix+l0cg+dLVu2FJ3dgaB21DPgnVDMy8vj/lbjKDY0NPAmD/dGKMo5ilKDWYwEE4oMwyJcUF4ImbYBUO8opqamuq3LrDb1TARip06dOAfCk6NIOkVyvHJCMSoqymPHHxMTwxNWWjmK3rqJ5JgIam9kAL/d6XpLuTjEXBWhUJS6mcghfKC45ZZbMHXqVNnvCDt8tY4iiV+Jo2hkoXj48GHub6k5Delar8LCQi61DzTezM1ms5tw1mLAFY3woUEvoah0v75cX3KOopLUM+0o0gNShY7i1atXuYcrWihq6SjSM6jI1SgSlApF8vuSifJLSkp4+xIuHygFEc/x8fGyApi0AXMUGQw/4M2qLASLxeI2UMZbRzE2NpZLUf7222+yU0CRYyYdopxQbNasmccUmMlk4h23LzWKLpeLE4otWrRQ9B0xfHUUhYilgoSIreFK2quhoYGXdgbUO4pA4zmzfv16twcMqeMF1NUoCpfxU+IoGs15oCFCMSYmBjfccIPoZ4QDWsScYaGL5G9HMRADWQB3oaikjg1wrwH2tH4xDZmMHvBOKNI14XQ6VSgU6YEsLVq04IQSmQaMxhuhCPAzBEpqFOnVtJQ4ikDj9SuMTa2j6G3tqZFgQpFhSFwul+ioORpvVmWhEbpFaoUinXImorGsrEzyuJ1OJ/dErcRR9FSfKHbcZLveOIo2m417MtfTURROi6REFMmlnoHGG4k3QrFbt27c37Nnz0bPnj09fseb6XGAazdMEr+cE2l0R7G8vBynTp0C0DiQRaqMhH5Yu3jxIq9dSIyBFoqBchSFa7JnZGQo+p4v1xdd7uJJKNJ9KnnAJY5iYmIiWrZsyYlOYeqZ7gNpRxFwP2fVjHqWegCWyhaQuRQBcPPlAspqFIHG31coFJU4itXV1dxv5ukBgFzvLPXMYKhg3759GDRoEG666SbZVK63cygShELR29Sz8G+pY66qquLcRimhWF9fzwkGb4SiL44iPZBFT0dR6KypdRSFAgNo/A3o30Fp6vn//b//hwULFuDFF1/EggULFH1HLvWsxFEk/1eSeqbXkTYSubm53N9yS+kJHUV6xH+oO4rCZfy8ST17c30Rd6+qqkp2hgU5RzEpKQkWi4XrJ4Riiq7powezAO7pZ28dRSVCkcylCPDrjJWkngFpoehp4RBaOHtyFEn8YZF6bmhowJYtWzBlyhSMHDkSQ4cO5d47deoUVq5cifz8fK12xwhhvvvuO3z77bdwOp1YvHix5Od8ST0D6h1FupNKSEjgPSnShd1SA1qEcygC7kKRrgEKtKNId+5aOopqp8cRCkIlNYqeHMX6+nrezUSpo2ixWPDCCy9g/vz5ir8jl3pW4iiS+OVS1ka+qQD8+kSpgSyAu1CkrxGhUBSbR1GLUc961SgCQO/evQE0rnWu9OHFl+lxAPBGIMsNnBMKRbvdzu2LvEeELlnGjyDnKAoHtGghFOmHJaF7TaefCb6knsXEoxClA1nI9oT7DUlHsa6uDk899RTWrFmDoqIixMXF8U6a1q1bY+fOnWxtaIYipk+fznVa//znPyUdOl9Tz8IpctSknrt06cKrH1TiKArnUATchaKaqXHEjlsrR9EXoSjnKCpxgIQ1gN46ikKh6E3q2Rt8nR6HxK/EUQT0F4pi7oqSEc+Au1CkYyYxktjlVmbxBb0cRQB47bXXsGTJEmzbts1j7SvBl+lxAHiVei4vL+f1t+Q3IiKILONHEApFJY6i2Wz22J5qHUVAvVD05CgCntPPahxF0u5GfvjTRCi+//77+OWXXzBlyhR88sknGDVqFO/9+Ph49O7dGz/++KMWu2OEOAkJCZg9ezYAyLqKWjuKalLPwlUIlAhFJY6imqlxCHSH7suoZ61Sz77WKAqL/Mn26urqJFM+ShzFQAlFoTOgdjALiV/JYBayD70oLi5G586d0bFjR26ZQ+CaoxgVFcWr8xRCC8WLFy/yxJJeqedAOopt27ZFdnY2evToIbr2sxi+Xl9EtNXV1fEEnacaRTrbIXQUAb448sZRTEhI8Dh4j75uxSbSB5QJRU9L+BHEHEXA84AWNY4i+Q2Nck2LoYlQ/M9//oM+ffpg4sSJMJlMoo2dmprq0a5lMAjTp0/nhJuUq6jnYBZaGAKN7iS54UilngPhKPoyj6JWqWdfaxTJ5MsEYU2WGEocRW+mx/EGoTOg1lEk8QeDo/jvf/8bZ86cwe+//46FCxcCaDyPT5w4AQDo0aOHrCinVycqKChwmx4HCN0aRSHC814KX9Z6BvhT5NDlYML+JjIykmsDKUeRFor0/V1OKAodRfJvJQssKHEUfU09B9pRJO0e8qnn4uJiN4dFSGxsrOhkmwyGGAkJCXj88ccBNLqKS5YscfuMr46i2tQzPcmysEDfbDaja9euABpXABDrSMQG32ghFDt16sT9TZaVC2ZHUYiSWMSmCJEbzBLI1LM/pscxyk3l999/5/5+//33UVBQgNzcXM75lUs7A40DOujVWcTOFeHceVoLRT1rFL1BqxpF4JpQNJvNokKN9FNkrWSCmKMoJxSFSwfSCFckkoN+wJOqUfQ19Sx8CKMfXghqHEVvpscJydRzbGws7yQSo6CgwPAXIMNY/OUvf+HSr5s2beKm2yD4Ouq5SZMmPEHkyUm4++67MX/+fCxbtsytvAIAxo0bB6CxZuv99993e19t6lmpUHzkkUfw7LPPYt26dVyaT09HUWpUptlsVuTkCSenVZKSMXLqWa2jSKcGpb5nlJsKfcO02+149dVXFU20TUOEYkVFhehgFhK7y+VCQ0NDQJbw0wNPq5IQhNcXeUjy5voi4i4pKYm3fCKB3LMrKipkaxQB8dSzxWJBUlKSZOrZ5XJp7ij6mnqWchTp17VMPZP2CPnUc7du3fDdd9+5PRETioqK8MMPP4guDM9gSNGiRQvMmjULgHitoq+pZ+Da6gJNmjRRtHzUiy++iLlz54qWV/zpT3/iXt+4caNbPZ2S1LPcdBVSJCQkYOnSpZwDS46VEGhHUZgao0f1KVlDVyjilHSgagezBDL1rNZRFI7yBYzrKApvmGvXrsXXX3/N/duTowjw6xTp7Uk5w6FUo0jjzah62lFUen2JiSSpvob8Fjabjdc3KXUUW7RoAZPJJDmYhZ4yzF9CkZ5LkaDUUayuruYcxa5du3K/vdLUc0REhMe+lMRklGtaDE2E4v333w+bzYa//vWv+OWXX7j5impra/HTTz9h9uzZcDgcmDBhgha7Y4QJV65c4Y2A3rRpE69g3tfUMwAsWLAAffv2xd///nfRJ2o1tGvXDsOGDQMAnDlzBgcOHOC976/Usxj00mdGcRSVpp3pG5Jwe744it5Mj+MNvk64TeJXKhTp88pb6Dnm1CAUihUVFfj3v/8NoNFN6tGjh8dt0JNu05MiSwlFf4961ksoCs97KeSEohLEHoilBs6RfsrlcuHChQvc63I1ivRiCWQyaSlHUc06z4B3NYr0XIoEpTWKFy9e5K6NlJQUbjvnzp2TnUuROIpWq9XjfYW0u1GyBGJoIhR79+6Np556Cr///jtmzJiBTZs2AQBGjhyJWbNm4eLFi3j66ac91jEyGEKaNm2Kxx57DECjq0intbRwFO+44w78+OOPmDZtmm8H+v+TlZXF/b1x40bee/5KPUuhZP5BGuIoRkZGKk6Dye0X4N/IvL2pC7cnRrBOjxMVFcUdizAjI/c9ep3dQ4cOqTo+p9OJF154AQMGDECXLl3QrFkzWCwWDBgwQFUdeWVlJScI2rVr5+ZmdevWTVGb044iXdsmNXG6v2sU9Uo9K0Vqehwl9YmAuCDz5CgC4D2kk9fptCoRijabjbvWiFCUchTVzKEIKJtHUSxbIEw/K3UUaefQarVy26muruY9WNM4HA7OhVRanyjcr9EcRfF1lbxgzJgx6N27Nz799FMcP34cFRUViIuLQ9euXXHvvfciPT1dq10xwgRi2dMjjOmRgb7WKPqDe++9FwkJCbDZbNiyZQtWr17NiUGx1HNERASio6NRV1enuVCMiopCVVWV6nkUSbrIW3x1FIWpGiWjnuXWCAYCO5glIiICkZGRqK+v9ziYBWi8QZaWlnLnB4lfzlEcOHAg9/c333yj6vj27t2LRYsWub3+3Xff4b333sPUqVMVbYe+iQ4ePBg2mw2ffPIJ95qStDPAF4o0whpFoPE38XfqWa++RGm5h9SDmC+OolqhSMQ06StcLheXbhWu8wxIO4pqlu8DvEs9A+5CUWmNIu2YW61W3v7Pnz/vttwo0Bg/Wc9aiVAkv1HIO4qE9u3bY+bMmVi3bh0++OADvPnmm3j66aeZSAwC7HY7li1bhnHjxmHkyJF44okn8Ouvv+p6TKRDEa4HSyBCMSYmxq83fjU0adIE9913H4BGYbht2zbuPTFHEbjWaVVXV3s1j6IUUo7ioUOH8NZbb/FcOOBa6tmXtDO9X8C7G5nQ1dKqRjFQ0+MA147Z0/Q4wLVzgQhFEr+cwExLS+P61R9++EGxawzwp2+Kj4/nRsoDwBtvvOFxeTICfRNt37495syZw3vfV6GoxFHUejBLXFyc388NKZS6uf5IPUsJRVo0izmKYsv4CUc8C/fpD0dRrVBUmnqmH4ZatWrFm1JNakALPajH00AW4Fq7h/xglqKiIo8neXV1NZtH0cA4HA6kpKTg9ddfx86dOzF+/HjMmzfPTUwEEtIBSglFkno2iptIkEo/izmKwDWhSDuK0dHRXk0lQyOcfw5o/M2GDBmCRx99FKtWreJer66u5jonXwayANKDOZTGI3yaVisU9R71DPBXk1HiKALXzg8Sv5yjCFxzFUktuFJoV/7jjz/G6dOncfPNNwMAjh49qjiVLRSKt956K26//XbuNSUjngFxoRgVFcVNvh3IwSx6zsyh1EWiY66urubO60Cmnun0vHAZP+E6z4CyGkV/zaMIeJ96FjqK9HakBrSonRpHrDQnJIXihAkT8PHHH8t+5uOPP2aDWQxMbGwssrKyuOLbYcOGwWKx6Lo+NykCFi7zRSAOndGmXRowYADn0vznP//hOlipVLmYUNQiJjFH8ffff+c66u+++457XauBLAC/M6frSJUKRWHxt5IaRSNNjwNci9VTjSJw7QZZW1uLhoYGLn6lQhFQl34Wu5FNmTKFe239+vWKtnP27Fnub+Ju/uMf/0CXLl3wwAMPoH///oq2IyYU6Rt5IAez6FmfqHQwHX28dAZC6fXlzahngC/M6NfpZfzKy8tFHUV/C0UtaxTpc4p2P4VCUcpRpO9RShxF0u4Wi4UTuSGZena5XB7TFUrTGXry3nvvYdCgQXj44YcVf+fkyZN49tlnMWrUKNxxxx14+OGHPYpmX6mursbbb7+N2bNnY9SoURg0aBB27dol+Xm73Y61a9fi3nvvRWZmJh5//HGPyynm5+fDZrPx3LxAQ25izZo14y5e4ii6XC5OeBnNUTSZTJyr6HK58N577wG4JhTNZjOvU6eFIhkB56tYA8QdRbpjpjs6rdZ5BhrjJzczen5VpTcy4VN4sK3MAvBTz0odRaCxfUj8noTioEGDuL/379+v+NhooUhE2oQJE7jj+Ne//qVoJLXQUQQaBzaePHkSH3zwgeI619jYWDehQt/I/V2jSIsPPR86lQ58oAWFN0JRzahnsd8jKiqK97vTI59PnDihKvVMP0gGKvUcEREh+6Ao9TtarVZFqWdaKCq5f9LtrmRdez3QtEZRjsuXLyu2xvWguLgYmzZtUpXuO3jwIKZNm4aysjI8/PDDePLJJ3HrrbfyLhR/UF5ejo0bN+L8+fO8VTmkWLp0KbZs2YI77rgDTz75JMxmM+bMmYOff/5Z9PN1dXVYvHgxJk2a5NPoV18hotBkMnEXHHmturqam7bAaI4iADz00EPcjXLNmjWoq6vjRFrTpk15N1EiFB0OB/e0LVdsrRQxR5HupOkpHmhH0dfUM71v+kam9KZOlxcIv+fJUSQDSQD9BrMA/A6fHDM9ZRGNUCiS+D0Jxc6dO6NVq1YAgAMHDiie4obcyCIjI7mHgvj4eEyaNAlA4wPLBx984HE75EZpNpt5qxZ5g9BVlHMU/Zl61tNRFJ73cpC4tRKKSmoUCYmJibz+i556Zvjw4by6bE+OIr3qCTmX5fBmrWeAP5dikyZNZB9ipM4pq9XK245U6pluRyVCkf48aUOjOYpej3oWTv1x5MgR0c85nU4UFxdjz549yMjI8HZ3fmfNmjXIyMiA0+nkPeVIUVVVhZdeegn9+/fHokWLVM3BZ7PZcPjwYQwePFj0/ZycHAwYMEDywk9OTsa2bduQnJyMEydO8NJGQvLy8rBnzx5MnToVDzzwAABgxIgRyMrKwtq1a7F27Vre5xsaGvDCCy+gTZs2vFo7vUlNTcWZM2dQXl6OqqoqQ454pmnXrh3GjBmDbdu24dKlS9i4cSN3zMInZzFRqIX4JZ1qQ0MDnE4nzGYzz1EkUzy0bNlSU0cRaOxsKyoqePvztuZSTY0iPemw0VLPUgMvhEKRiBVPQtFkMmHgwIHYunUrysvL8euvvypa1IA4iikpKbwb5pQpU7Bu3ToAjYNaHn/8cdkbKkk9p6Wl+ezQpqam4tixY9y/6XPF34NZWrRoAYvFgoaGBrf1341KdHQ0KisredeXv2sUCUIxPXXqVPz73//GyZMnYbPZ8MMPP3DvEaEYFRXFzQRAP6zS4xZoZ1IKJalnsYexiIgIdO3aFT///LNH8SbWT5nNZiQnJ8NsNqNdu3Y4c+YM96AtvEZoR1FqoJYUIecovvPOO9x/JpMJubm5vNfIf++++y527dqFpk2b4oknntDy2DUjNzcX+/btw4wZMxR/JycnB1euXMFjjz0Gs9mMmpoabki8J7Zt24b58+eLpot27NiBhQsXYvfu3ZLfj4qKUnwz37dvHyIiIjB69GjutejoaIwaNQrHjh3jXahk9ROTyYTs7GyfpkjRAlpA0Rd3QUGBJnMo+pvs7Gzu75dfflly8I2YUNRCrNE3UdKpCufqI0/FWq3KIrZvgrc1VGpqFOmbpREGswD80fliCIUiid+TUATUp5/r6+u5jIcw1dmnTx/069cPQGOfKDdApqKigiuT0GJWC28cxaioKE36qObNm2P9+vV46KGHMHfuXJ+35y1qsghi55K/p8eReq1t27b48ccfMXHiRLfP0tPH0CU2BK2EopKykjVr1uD+++/HmjVrZPch9tu2bNmSG1xF0tg2m0106WLiEEZERCiKiW53+gHTSHjtKK5evRpAYw3WU089hTvvvBMjR450+5zZbEbTpk3Rrl07n1e+8AcOhwOrV6/GqFGjeNNEeOLQoUOIi4tDSUkJnnvuOeTn5yM2NhbDhw/H9OnTZZ90J06ciOPHj2PhwoV4+eWXudGB+/btw4oVKzB8+HCMGTPG19AAAKdOnUJaWppbJ9S1a1cAjSshkJN5+fLlKC0txfLly0WfygINfcEKB7TQnaIRU88A0LdvXwwfPhxffvklr/BfiVDUQqwJO9WYmBg3oXju3Dn07dtX08EsgG83MuF31dQoyglFPWoUgWt1mkodRTFXQeq7wgEtnh52ychUQNztmDJlCle/vH79evTt21d0O3TaTWwtXbUIXR4poVhXV8edA1qknQmTJ0/G5MmTNdueN6iJJ1BCUewhXCw9n5CQgE2bNmHIkCGYMWMG6urq0KJFC15fEh8fj7KyMklHUUnqmb5uxYSiyWTiBJ2QAQMGYMCAAR73IfY70scmHNAi/O2IUExJSZE8Fhq6LenaZiPhtRro3bs393dWVhb69OnDey1Y+PTTT1FUVMSbKkQJFy5cgMPhQHZ2NkaNGoUpU6YgNzcXW7duRWVlJV588UXJ71osFsyfPx/PPPMMsrOzsWrVKtTU1GDRokW45ZZb8Oyzz2rm5pWWlore+MlrRCAUFhZix44diIqK4rmPr7zyimg6KycnBzk5ObyLXmtKS0u5G4hwihz6SdWojiIAPPfcc/jyyy95rylJPWs9Pxy5uYoJRUDbwSzCfROU3sjodgfU1SjS+zBC6hm49psrdRRJ/EocxZ49e6Jp06aoqKjAN998I5oKo/E0dcf999+Pv/71r6isrMS//vUvrF27VvRmJzaQxReEopX+/YTOODkHtBSKRkB43svhi1D0dtSz3GtAo0h77LHHcOutt+Kdd97B6NGjeeeOnKPYtGlTRe3pyVHU4gFQ7DhoZ1A4oKVPnz684yB1l0rTznS70w+Jnq7lQKKJbaT3k5i3lJeX4+2338ZDDz2kuoiZTKR7zz33YObMmQAaVyeor6/H9u3b8cgjj6Bt27aS34+OjsbSpUsxc+ZMzJkzB/X19ejatSsWLFigqZtXV1cnevGQC47cjFJSUlSNnMzMzERmZiZOnjzJLbHnT4RC0Shzn3li0KBBuP322/Htt99yrwmFrVhtkZY1ioB06pnc8LUezOLLjUxuW55qFOVSlnqlnglKHUWCEqEYERGB2267Dbt370ZhYSFOnz7NW95PiCehGB8fj0GDBmHnzp2orKxEaWmpqNNDO+T+EIpKUs+hJhTVIBa70hrFqKgoriYTaDyHpEYcK6lRFNK9e3esWLHC7XVaKBIRRISi0j7HU42iFvdOT0JRbi7FwsJCzrH3ZsYQuo+02+2aGAZaoHku2OFw4MqVKygqKhL9z0hs2LABCQkJGDt2rOrvkgYcNmwY7/XMzEwA4BVmSxEXF4dp06ahoqICNTU1mDFjhuYnRnR0NC/lRiAXmVFORDFoZ0uYejb6YBYaulYRUOYo+jqKFAheR1G4f09Csb6+nrtRyDmKeqWe5V4D3IUiiV/pfIF0naKn+RTFpsYRQt+06fOChnYU9apRDDWhqOa68+VBzGQy8dLPzZo1k3SuYmNj3Rxlbx9iyT4bGhq4diT9uNKpgQLhKJrNZrcHSSmhKJwiR+3UOAC/3Y26jJ9m1tXJkyexfv16HD16lDcCicZkMmHv3r1a7dIn8vPz8dlnn2HGjBk8N8Vut6OhoQGXLl1CXFycpAhJTk7G2bNn3eafIha+8IYsRkFBARYtWoR27drBbrfj+eefx+uvv66Jo0Mfp9h0PfS6vkalpqaGu3CEjiJt/xtdKI4cORJ9+vThZgZQUqOoxVRSYp2qsFRA6ChGRERo4maqEUpC6HYHxAWv8PMEowxmEbtpK3UUSfx0rHI3QGGd4iOPPCL5WfpGJnVzpvsEum+k0Tr1rKZG0dMo8mBFeN7L4atjT+oFAfk15U0mExITE7mBS4D3UwgJp8ih75FKRXIghCLQ+PvS25dLPdPQU90oTT3T7U63oZEGtGjiKJ46dQrTp0/HsWPH0K9fP7hcLnTs2BH9+vVDYmIiXC4XevXqheHDh2uxO00oKSmB0+nE6tWrMWHCBO6/vLw85OfnY8KECW5TANFcf/31AOAmwkjH6uliKikpwdNPPw2LxYKVK1dixYoVqK2txaxZsxRNdquUTp064cKFC25LLObl5XHvGxV6EmX6ort48SLvNzJy6hlo7Gyfe+457t/CkgQxoaj1/HByjqLL5eIeHJo3b67JoDNfbmTCZSM9OYr0uW2UGkVfUs8kftJm0dHRsrVK/fr147btqXxEyfJi9E1bylEkqeeIiAhNJuW3Wq28GKVqFP01mMUIqFkuVexcUvNwKXQU5RD2r746ikDjAyudYfR0DARPQlGrsi1hX0ULxdTUVG4/ckJR6XVBt7tRHUVNhOK7774LAFi3bh2WLl0KoPEp9+9//zu2bNmCe+65B2fPnjXUvHzp6elYsmSJ23/p6emwWq1YsmQJRo0aBaDx5nT+/HneUPihQ4cCAD7//HPedj///HNERETwClyF2Gw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp2r2UkyZMgQOBwObN++nXvNbrdj586dyMjIUDR8Xy/oG0dMTAzn3gbL9Dg0f/zjH/H3v/8d06dPx5///Gfee2JCUYuJf5XUKFZVVaG0tJQTBFqknQHfUs9CUeRJKP7+++/c3/SSWcGaeibx00JRjujoaG6t5t9//503ibEQrVPPbdu21eTmHBkZyauFlHIUq6uruWnIQk0oqhm4oIWjSPAk0oT9q1aOIi0U6cGJcniqUdTSUaSh75MWi4VzFc+cOcNbdc6b1LPwPkcwkqOoifz+5ZdfMGDAAF4Kgvx40dHReOqpp/Drr7/izTffxAsvvKDFLn0mKSmJl7IhfPTRRwD46Zzjx49j5syZyMrK4tI6Xbp0wV133YWdO3fC4XCgd+/eyM3Nxd69e/Hggw/KpnS3bduG4uJivPrqqzx3qXPnzli2bBlmzZqF3bt3495775XcBhldTTryAwcOcDeIsWPHch1BRkYGhg4divXr16OsrAxt2rThCt/1nDNMCcIbWZs2bXDlyhU3oWh0RxFo7Axmz54t+p6YUCSOtS8ocRQB4LfffuNS0lqVIvhyIxO2u6fOk15hqGfPntzfeg5m8SX1TOJXKhQB4MYbb+TqE48dOyY51Qi5kUVEREjenOmHBbHUc1lZGffQrEV9IiE1NZUTD1JCkc4khJpQVDM5s69Cke5z9HIUCwsLuX8rzWwFKvUs/C2F11OXLl1w5swZLg7iznuTeqY/Z9TUsyZCsaqqihesxWLhOWJmsxm9e/fGnj17tNidYZg9ezasVit27dqFb775BlarFdOnT8d9990n+72JEydi4MCBop1sz549sW7dOnTo0EF2G5s3b+ZdaPv37+fSTsOHD+ddlNnZ2bBarfjiiy9QWVmJDh064OWXXzb8dEaXLl3ipcfatGmDX375BXa7neciBYOjKIeYUNSik1DiKALgTaxsBEdR2O6eahRpoUhP5WS01LNSR5HEr0YoduvWjfv72LFjXMZDCHEUrVarZImBJ0dR6zkUCampqVwdr9TKLPQDYqgJReF5L4eWjqLUOs8EoTD0h6OoVOAFskaRRph569y5M3bt2gWg8UGbtJs3jiLd7kZNPWsiFJOSkng3oObNm+PChQu8zwiXXjIqr776qttrffr0Ea39sVgsXk3UarFYZJ/ElUz8vWXLFsX7i46OxrRp0zBt2jTF3zECwpVu6IeR48ePc38Hg6Moh1AoxsTEBGweRaBx8niCERxFYbt7chSPHj3K/d29e3fub6MJRaWOIolfjVCkl0cl9cdCHA4Hd3OWEySeHEWtp8Yh0DdW2lGk46cdxVAbzKJ0ZS/At+lxAN9Sz972t3JC0ZvpccTWevZXjaKYo0j47bffuOV4iaPYpEkTxQYG3e5GTT1rUqPYvn17/O9//+P+3aNHD/z444/49ddfATTWs+zduzdo1tFkGAPhxUrfSGg3VWoOsGBBKBSbNWvm9ZyDNEpGPQOBcxSVOkDC2OU6T6fTiV9++QVAYz9E38T0rFEUaz+p+Ombts1mc1vGSyuhWFxczN2U5NJinhxFrUc8E+hjkko90w86oeYoqrnmA1mjqJWjKDeYRel0YHrUKDZv3txtu7RQPHXqFPc3EYpt2rRRXHNKtxv9t5EcRU2E4q233oqff/6Ze/qcOHEiXC4Xpk+fjrvvvhuTJ09GZWUlHnzwQS12xwgThAJKzMqPi4tTtEySkRETimrWfZVC6Ci6XC5OKNK/Je3OaiUUtVw5wmKxcGlSoVA8e/YsF5NwBaFgcRQjIiI4YSS21rMSodisWTPOJZSaw1XJiGeAn4oUcxS1nkORQFwZANyypkD41CiqueZ9Ke0A9Bn1LOcoKn3g0KNGUWzAp9BRBBqvXfIgo2YmAPp3CWlH8Z577sHWrVu5E6hTp05YtWoVbr75ZiQmJuKmm27CsmXLeBPDMhieEN6kxFyQYE87A+JCUWr+OjUIO1V6xGjnzp25mw2d+tAq9ezLjUwYu8lk4rYnrFGUGsgCyA9mMdKoZ+CaK26z2bipu4hLojTFSuoUS0pKROdOVSoUo6KiuLRZIB3FIUOG4N///jcOHTrEc0jDpUZRzTWvp6PobU24lKMYFxen2D0TW+vZ4XBwg2f94SiKCcW2bdty1yURinR9opqBSXS7G3UwiyZC0WKxuNmzPXr0wCuvvIJNmzZh+fLluPXWW7XYFSOMEXtKC/aBLIC4UNQCoaNIp+2aNm0qWgpiBEdRbnvCzlNqIAsgnXq2WCx+X0NVzahngC8UAeWrstDQ4krMVVQyNQ5BuBY8DalRtFgsqm6ISrj55pt5biIgXaMYakJRDb7WKJLBTrGxsbjttttkP0v3sQkJCV5ncKQcRTVTtIkJRbqkxB81imLHZzabuZHaZ86cgcPh8GogixCjDmbRfAk/KQoKCvDSSy8FaneMEEA4Gi+cHEVPIxGVIHTUaKGYkJAg6gYZwVEUi11KKNIDWYSOolTq2d9pZ0Bd6hngC8VmzZrx5mxV+rvRI5/F6hSVrMpCIELx6tWrcDgc3Osul4tzFNu1a6d52YdY24dL6lnNNe/rg9iwYcOQl5eH33//3aNQo/tYX+Z3pR3FK1eucOe41WpVHLvJZOKua3I90yvB+cNRlJpqiqSf7XY7/ve//3k12TbAb/eQTj3LUVRUhFdeeQV/+tOf8OWXX/p7d4wQQphmbNWqldsTYyg4ilFRUbwbbvPmzUWngVGLnKMoJRSN4CiKxe7JUWzSpInblFJGE4pKUs8NDQ2oqKjgpokB+E6hHGocRU9CkTwwOJ1OnmgtKyvjxJqW9YkEsbaXGswSaqOe1VzzWjj2Xbt25U1QLwUtFH15MKcfiOmR81arVVXs5HwQcxQDlXoG3OsUvU0907EbNfXsk0/7888/46233sLJkycRERGBnj17YurUqWjXrh1qa2uxYcMGfPLJJ6ivr0eLFi0wadIkrY6bEQZUVVXxnmDNZjNat26N/Px87rVQEIomkwlxcXHcDbhZs2ZusXuD0FGkRzwnJCSIpriNMI+iWOxiNYqVlZU4c+YMgMZSF6G7JUxTBVIoept6BhpHJ9NTFvXt21fRPj2NfPYm9Qw01imSf9NzKPpjFguxtheu9UwINUdRzTUvjF34sKkldB/rS59EC0Vy3QKNQkxN7FFRUaiqqvKrUPSUegbchaK3jiIdu1FTz14LxZMnT+Lpp5/mNdJ3332HkydP4rXXXsO8efNw7tw5tGjRAhMnTsTdd98dkA6aEdqkpqbyhGIopJ4BuAlFLZBzFOPj491u9CaTSbN9C29kZrPZp/ohMUeRTIsDuKedAfc517QeGSmHt44i0CiAvRGKzZs3R0pKCgoLC0UdReJ4mEwmyXQagS5BKCkp4W6K9Py4wjXL/YWUwA41oagG4W+ixXRaUmjlKNKpZ3rBBLXLyAodRTr1rFWNIn2sUu57586dub9/++033oOYFjWKIeEofvDBB6ivr8eUKVO4NZF37NiBN998E9OnT8fVq1fx0EMP4cEHHwy5FAEjMIhdbMLXQsFRBNyX1PK2o6FRW6OYlJSkWUcrdiNTOoBELHbSgZJpfkwmk+yIZ8B4qWeljmJcXBwnFBMTExVNwE/IyMhAYWEhLl++jMuXL/OW6SM3MrESDiFCR5FAC0UtzlEhYtuUaq9QE4pqfk9h7P4Uim3atEFkZCTq6+s9rhgmB93H0bWmVqtVVeyBSD3fd999WLduHVJSUjBs2DDRzwgdRbp/VbrCDsBv95CbR/HXX3/FjTfeiEmTJiEpKQlJSUl48MEH0adPH1y5cgVPPPEE/vznPzORyPAaelJtgrBDCSVHkdCsWTPR2NWitkZRq4EsgG83MrHY6e2R9KPciGeg0cUk8y8GWiiqmXAb4AvFgwcPcqLupptuUjVCW2pAi9Pp5H5XJTcxqUm36fSa0kmS1SDW9lI3/1ATimqu+UAKxeTkZLz77ruYOnUq5s6d6/V2aJeOxmq1qoo9EEKxa9euyM/Px+HDhyXPs1atWnFGxalTp7hro2XLlqr6GDp2euS62CpaeuG1ULx69SpPUROuv/56AMDIkSO9PyoGA+CNtiQIa6tC1VEUi10tnhzFlJQU3me0qk8EfEuNicUuthwhPeK5R48eotsiNw4jpJ6VOorffvst97fStDNBqk6xpKSES9EpKbSXWsbP2zospYi1fUREhGj9XaiZEGqueeH5pWZqHG944IEHsGbNGp/aXCqrYLVaVcVO+ixyPftrxSVP02iZTCZOA507d44r7VA7ZRQde7t27bi/6TpOvfFaKDocDtmn5lBxehj6IXazDZfUsxZuiSdH0Ww28+oUtRSKvjgeYrHThe4ffPABXC4X5yi2a9dOshCenkojWFLP33//Pfe3WqFIO4p0naKaEc+AtKNIp5794ShKnfdibRZqjqKaeALpKGoFGbQnxGq1qoo9EDWKSiF1ii6XizsOtWJauFwgufZOnjyp0VH6TsDmUWQw1CK2hnOopp7JNBURERFISUnRZP1qT44iwF9ZwyipZ7HYJ0+ezP09a9YsfPnll1w8YmlnAu0+EOchEEJR7VrXdMz02rFaOYpqhaInRzEmJkazgU80Uue9L2uHBwtqrvlgFIqA+DKFVqtVVeyBSD0rRSyrqlYoCmMnWdmCggLeTBV64pP8/vLLL91G15GO5JlnnnH7vMlkwiuvvOLLLhlhxOXLl90uulBNPc+ZMwclJSUYMWIEmjdvjosXL/qc2hM6inSnQ+qFaKFolNSzWLuPGDECU6dOxdq1a1FTU4P77ruPe09sIAuB3Diqq6u51wIhFM1mM6Kjo3nTuSh1FAnNmzdXvURecnIyrFYrioqKeH2z2jnePDmKaWlpflndRqztgfBwFKViFyOQo561RCgUY2JikJCQgIKCAsWxk3PB6XTC4XAYTiiqTT0L271Lly44cOAAgMZBMjfeeKNvB6kBPgnFixcv8mpWaA4ePOj2mr+XzWKEPqHqKHbv3h07d+7UdJtGchS1uKkvX74c//nPf3Dy5EneqEklQrGqqsrtNX8TExOjeN4/MaHYt29fr/rMjIwMFBUVobi4GCUlJWjRooUmjqLNZuN+d3/UJ8oRDkJRDYGuUdQK4YAWq9Wq+hwXzo/qjyX8lKKFoyiEOIpAY/o5qIXi5s2btTwOBsMNsdRWQkICEhISONETKo6iEC3SekJHkZ6XiwgTWmTR84JpuW9AneMhFXuTJk2wadMm3Hrrrby6JLnUs5hQDNR8rjExMSgvL+f+rdZRFK55rJRu3bph7969ABrTz4MGDVItFGNiYhAXF4eqqirOUfT3iGdAuu3DQSiqueZDJfVM5lBUE7vwAdgfS/gpRazPVCsUhbHTQvG3337z7sA0xmuhqGTpHwbDF+gOgCY1NZUr9A1VoSgVuxqEHaqYULzrrruwZMkS1NXV4Z577vF5nwRfbmRysfft2xcLFizAc889x+2nU6dOkp8nNw56m4ESisKYvXEUvUFYpygUikpTY8nJyaiqquIcRX+PeAak215MZIfaqGc113ywCkUxRxFQF7uwX9Mz9ZyYmIhWrVqhuLiYe01t6lkYO+1SGmVACxvMwjAsUvNIkTVmLRaLXwrqjYAWc2hJjXo2m83cjcVsNiM7OxsLFizQtJP1xVH0FPvcuXMxfPhwAI3TdsgtXSYmCgOZeqZR6yh6KxTFRj7TNYpKV8Ig6efS0lK4XC6/j3gGpNs+HBxFNdd8sKaepRxFNbEbSSgC7ulntQ9Rwtg7duzIzf9qFKEY2IQ+g6EB2dnZKC4uxn333Sc6io7RiFSNYkJCgt/rhf3peERERGDXrl3Iy8vjpWnEELtxBDL1TKNGKLZs2dLrJfJoR/GLL77A/v37OUexRYsWiuMnNasOhwPl5eUBcRSlCAehqIZgHcwi5SiqQU4oBrpGEWgUimTu08jISJ8HBUZHRyM9PR1nzpzBb7/9xq1EpSdMKDIMi5SFP3DgQPz0008BPprAojZ9IYbFYoHZbIbT6eSNepZaIUFLhDd2NTcyJbGbzWZ0797d4+f0FIq+pJ69HcgCNAq81NRUFBQU4NSpUxg8eDD3npqlxYTL+AXCUZRq+3AQimqueZPJhKioKG6KmGARilKOoprYjVSjCPAdxdTUVM4NVIpY7F26dMGZM2dQWVmJS5cuaXI/8AWWemYYFrruI9zQKnZ6zjHaUfQ3JpOJ53qoualr2e5iNw4jpp6bNGnCu8F4O5CF8H//93+8dZ4Jam44wilyAuEoSrV9OMyjqPa8p+MPdqGoJnajpZ7pAS3eXBdisQtHPusNE4oMw6LFgI5gRavYyQ22traWcxQDIRTpfQPaDWZRS7Cknk0mE8/p9bY+kTB+/Hjk5+dzo8QJ/fv3V7wN4RQ5xFEkk8L7A6m217PWNFCoPe/p8ytYahRDbTALwBd13jjtYrEbbeQzE4oMwxJqoxrVoFXspFO9evUqXC4XgMAJRW8dDy3bXUxg6JF6joqK8phKptvFV6EINP6OkyZNwnfffYfc3Fxs374dzz//vOLvSzmKKSkpsgOIfEGq7YVtFhMTo3vdltaoPe9DyVFUEzt9LtTX1+u6hB/QWBM8fvx4tGzZEk888YTq74vFbrSRz6xGkWFYQmUybW/QKnbSCV25coV7zeiOopbtbhRHUUmatHPnzrh48SI6deqkeU1Sr169ZOebFIN2FC9duoSioiIA/qtPBKTbXkwohhpqz/tgFIpSjqKa2I3mKJpMJmzZssXrQSdisbPUM4OhEFaj6DukU3U4HNxrgRjMAnh/IwvFGkUljsm6deswd+5cvPbaa4Zwy2hH8ZdffuH+9ueIZ6U1iqEoFMOtRjEqKgpJSUkAgrtGkeDtNSsWe2pqKvdbsdQzg8HwK2ICxeiOopYYZdSzEqF4/fXXY9myZYpGcwcC2lE8evQo97c/HUUpwsFRVEuw1yi2atXKK3FlVKGoJSaTiUs/nz17lhvdrhdMKDIMC3naDEe0il1MFBm9RlHLdg+m1DPBKOc97SgeP36c+9ufQlEqdmGbhWL9stp2N8KDmFpoR5GeQ1FN7HLT4+hRo+grUrGT9LPD4cDvv/8ewCNyhwlFhmFxOp16H4JuaBW7URxFNUJJy3Y3ysosaoSNUc572lGkb8b+TD1LxR4OjqLadg/G1DPtKNJCUU3s9PUbCo6iVOxGqlNkQpFhWCoqKvQ+BN3QKvZgdBS1bHejpJ7VCBujnPdNmjQRPW5/OopSsYdDjaLadg/G1DPtntEDttTEHmqpZ6nYjTTymQlFBiOE0dNRNILjYZTUczCmSk0mk+hyZIFevg8ID0dRLUa4vtTSrVs33H333UhNTcVjjz3m1TZCTShKYaS5FIMvoc/wC3a7HStXrsShQ4dQWVmJ9u3bY/r06boW1vtrUt9gQKvYxURRoEY9e1tDpWW7G0UoqhE2RjrvW7RowVuRBfCvUJSKPRyEotp2HzZsGD766COkp6ejffv2/jkojTGZTNi+fbvbVDJqYg+1GkWp2OkVX5ijyDAEDocDKSkpeP3117Fz506MHz8e8+bNQ3V1tW7HVFpaqtu+9Uar2PV0FGlxqCY1pmW76zk9jtpRzwQjnfdCRzE5OdmvIk0q9nAQimrb/fHHH8fRo0fx888/B51AEo52VhN7qDmKUrE3bdqUW5udCUWGIYiNjUVWVhasVivMZjOGDRsGi8WC/Px83Y6J7gDCDa1i17NGccyYMTCbzejRowfv6dgTWra7niuzeOsoGum8FwpFf0+NIxV7OIx69qbde/bsGbAMgT9RE3uoCUW52En6+fLly7h69WqgDsmN4HoMEfDee+9hw4YNSE9Px7vvviv72SNHjmDmzJmi761duxbdunUDALz00kvYvXu35Ha2bt2Kli1bKt6eP6iursaHH36IvLw8HD9+HDabDfPmzcOdd94p+nm73Y633noLX375JWw2Gzp27IhHH30U/fr1k9xHfn4+bDabLvVIhEDd0I2IVrHr6SiOGzcOFy9eRIsWLWA2K38m1bLdjZJ69naJMr2hp8gB/F+fKBV7OAxmMVK7Bxo1scsJxWBzVgH52Lt06YKvv/4aQGOd4i233BKgo+ITfL/q/09xcTE2bdqkuoh37Nix6Nq1K+81uvMbPXq02zqrLpcLK1asQEpKClq2bKlqe/6gvLwcGzduhNVqRadOnXDkyBHZzy9duhRff/01xo8fj7S0NOzatQtz5szB6tWr0bNnT7fP19XVYfHixZg0aZKuT6vNmjXTbd96o1XsejqKgHf1dlq2ezCmno103gfaUZSKPRxSz0Zq90CjJna5tZ6D0VGUi104RQ4TiipZs2YNMjIy4HQ6UV5ervh7vXr1wpAhQyTf7969u9sAjp9//hm1tbW44447VG9PDJvNhsOHD2Pw4MGi7+fk5GDAgAGSIjg5ORnbtm1DcnIyTpw4gSlTpkjuKy8vD3v27MHUqVPxwAMPAABGjBiBrKwsrF27FmvXruV9vqGhAS+88ALatGmDrKwsVXFpTVFRka6Opp5oFbuejqK3aNnuRnEU1QgbI533gXYUpWIPB6FopHYPNGpiD7XUs1zsRCiazWZdl7QNyhrF3Nxc7Nu3DzNmzPDq+9XV1bynEE/k5OTAZDIhMzNTk+1t27YN8+fPx/79+93e27FjBxYuXCib/o6KihKdtkKMffv2ISIiAqNHj+Zei46OxqhRo3Ds2DEUFRVxrzudTixevBgmkwnZ2dmGWG+W4Rt6jno2AnoKxcTERO7vpk2bBmSfWhNoR1GKcBCKDGWEmlCUY9CgQcjLy0NNTQ1mz56t23EEnaPocDiwevVqjBo1Ch07dlT9/aVLl6KmpgYRERHo2bMnpk6dihtuuEHy8w0NDdi7dy+6d+/OjUDyZXsAMHHiRBw/fhwLFy7Eyy+/jJtuuglAo6hbsWIFhg8fjjFjxqiOTYxTp04hLS2Nt3QSAC5dfvr0aW6G/OXLl6O0tBTLly83RK0HfaMNN7SKXegoms1mw8+5pmW767kyS58+fTBu3Djk5eWpcueNdN4H2lGUil14HofiYBYjtXugURN7qNUoysWekJDgVtqmB0H3q3766acoKirCqlWrVH3PYrFg8ODB6N+/PxITE3Hu3Dls3rwZ06dPx5o1a3izoNMcPHgQ5eXlbmlnb7dHvjt//nw888wzyM7OxqpVq1BTU4NFixbhlltuwbPPPquZm1daWirqPpLXSkpKAACFhYXYsWMHoqKieO7jK6+8gl69erl9PycnBzk5OaisrNTkOBn+QSiUEhISwsop1tNRNJlM+OijjwKyL3/BHEWG0ZCbRzHUHEWjEFRCsby8HG+//TYeeugh1Quo9+jRAz169OD+ffvtt2PIkCGYPHky1q9fj+XLl4t+LycnBxaLBUOHDtVke4To6GgsXboUM2fOxJw5c1BfX4+uXbtiwYIFmj4V1dXVyd4s6+rqADQOOhBLhUuRmZmJzMxMnDx50usZ9j1RXl4eVmlSGq1iFzovRq9PBLRtdz2ForcY6bwPtKMoFXs4CEUjtXugURN7qK31HAztHlQ1ihs2bEBCQgLGjh2ryfbS0tJw++2348iRI3A4HG7vV1dX49tvv8XNN9+syBr3tD0hcXFxmDZtGioqKlBTU4MZM2ZonlKJjo4WnafJbrdz7zNCFzFHMZwIRqFoJGhHMS4uTrf0aDgIRYYywqlG0SgEjVDMz8/HZ599hnHjxqGkpASXLl3CpUuXOOv50qVLqhdVB4BWrVqhvr4etbW1bu99++23kqOdvdmekIKCAixatAjt2rVDSkoKnn/+eS4VrBXJycmiM7+T14SOgZEgtZPhiFaxB6OjqGW76zk9jrcY6bxPSEjgzqG0tDS/ly1IxR4O8ygaqd0DjZrYQ20Jv2Bo96ARiiUlJXA6nVi9ejUmTJjA/ZeXl4f8/HxMmDABGzduVL3dgoICREVFiRb4f/XVV4iNjcWAAQM02R5NSUkJnn76aVgsFqxcuRIrVqxAbW0tZs2a5ZXglaJTp064cOECqqqqeK/n5eVx7xsVPWei1xutYhc6MUZPcQDatrueK7N4i5HOe5PJhKeeegqxsbF48skn/b4/qdjDYWUWI7V7oFETe6g5isHQ7kEjv9PT07FkyRK31zds2IDq6mo8+eSTSE1NBQDU1taiqKgIiYmJXC1jWVmZW13j6dOnceDAAdxyyy1uK0eUlZXh0KFDyMzMFH16Vbs9GpvNhtmzZ6OmpgavvfYaWrVqBaBx1PHMmTMxd+5crFy5UpPRqUOGDMGHH36I7du3c/Mo2u127Ny5ExkZGYZ+miHp8XBEq9iD0VHUst2DMfVstPN+2bJlWLx4cUDcGqnYwyH1bLR2DyRqYg81oRgM7R40QjEpKQkDBw50e52MKqTfO378OGbOnImsrCw88sgjAIAXX3wR0dHR6N69O5o1a4Zz587hs88+Q0xMDB5//HG37e7ZswcOh0My7ax2ezTbtm1DcXExXn31VbRt25Z7vXPnzli2bBlmzZqF3bt3495775XcxtatW1FZWcmlkA8cOMBNyDl27FjOOcrIyMDQoUOxfv16lJWVoU2bNti9ezcKCwsxd+5c2ePUm2C86LVCq9iDsUZRy3YPxtSzEY8vUCk9qdjDQSgasd0DhZrYpYSiyWRCRESE5sfmb4Kh3YNGKPrKwIED8dVXX2HLli2oqqpCUlISBg0ahKysLNEpH3JyctCsWTNujkNft0czceJEDBw4EOnp6W7v9ezZE+vWrUOHDh1kt7F582YUFhZy/96/fz83ann48OG8FGN2djasViu++OILVFZWokOHDnj55ZfRu3dv2X3ojdJJxUMRrWIPRkdRy3YPRkeRnffuhEONImt3ZUjVKAZjfSIQHO0enL8sxauvvur2Wp8+fdymehk3bhzGjRuneLvCpe2EqN0ejcViERWJBCUTiW/ZskXx/qKjozFt2jRMmzZN8XeMQGFhYdguaaVV7MHoKGrZ7sEoFNl5H55L+LF2VxY7fU3X19dzjmIwOHNiBEO7B81gFgaDoZ5gdBS1REwUBqvzEM6Eg1BkKMNsNnPXMJ16DlahGAwwocgwLMG6Pq4WaBV7MI561rLdhTePyMhIw69Mw857d8Jh1DNrd+WQ8yEUhGIwtDsTigzDIjdyPNTRKvZgdBS1bHfhzcPoaWeAnfdihEONImt35dBCMdhrFIOh3Y1/hIywpaysTO9D0A2tYg/GGkUt2z0YhSI7790RtmMoCkXW7soJJUcxGNqdCUUGI4QJRkdRS8RSz4zgIyIigjf1SSgKRYZyQkkoBgNMKDIMC5mIPBzRKvZgdBS1bHdh/MHgKLLzXhy67UJRKLJ2Vw4RhbRQDNbUczC0OxOKDMNSXl6u9yHohlaxB6OjqGW7B2PqmZ334tBtF4qDWVi7K0esRjFYHcVgaPfglOCMsKCurk7vQ9ANrWIPxlHPWrZ7MApFdt6LQ8QhPT1KKMHaXTm0UHQ4HACCVygGQ7uH3tXGCBlC8WagFK1iD0ZHUct2D8YaRXbei0PEQUxMjOGnOPIG1u7KoYWi0+kEEBzXthjB0O7GP0JG2BIMtRv+gtUoakMwOorsvBcnLi4OQHC44t7A2l055DombiIQHIJLjGBod1ajyDAsBQUFeh+CbmgVO+0oRkREBMUgAC3bPRgHs7DzXpwZM2agadOmmDlzZgCPKHCwdleO2HUcrI5iMLR7cEpwBoOhCLrzTEhICMmUnRwREREwmUxwuVwAgvdmwgD+8pe/YOrUqUExQTHDv4SSUAwG2BXHMCzBkCb1F1rFbjKZuE41WH5PrY+TvoEEg6MYLO3kDzzFHsoikbW7ckJJKAZDu4fuVccIeoK15kQLtIy9efPmAIKjFgbQvt2DTSiy8z48YbErR+w6DtbfLxiOmwlFhmG5evWq3oegG1rG/ve//x233norFi1apNk2/YnW7U4LxWBwHdh5H56w2JUTSo5iMLS78aUsg8HwiQcffBAPPvig3oehG8HmKDIYDHlCSSgGA8xRZBiWli1b6n0IusFi1w76phIMQpG1fXjCYldOKAnFYGh3JhQZhsVms+l9CLrBYteOYHMUWduHJyx25YiJwmCo9RMjGNqdCUWGYamtrdX7EHSDxa4dwVajyNo+PGGxKyeUHMVgaHcmFBmGJSIiQu9D0A0Wu3YEm6PI2j48YbErJ5SEYjC0OxOKDMOSkpKi9yHoBotdO4JNKLK2D09Y7MoJpelxgqHdmVBkGJaLFy/qfQi6wWLXDvqmEgyuA2v78ITFrpxQchSDod2ZUGQwGCFNsDmKDAZDnlASisEAE4oMwxIXF6f3IegGi107gk0osrYPT1jsygkloRgM7c6EIsOwREdH630IusFi145gE4qs7cMTFrtyQqlGMRjanQlFhmG5cuWK3oegGyx27Qi26XFY24cnLHblhJKjGAztzoQig8EIaYJtZRYGgyFPKAnFYIAJRYZhadGihd6HoBssdu0IttQza/vwhMWunFASisHQ7kwoMgxLVVWV3oegGyx27Qi21DNr+/CExa6cUKpRDIZ2Z0KRYVhqamr0PgTdYLFrR7A5iqztwxMWu3LEHviC4SFQjGBodyYUGYbFbA7f05PFrh3BJhRZ24cnLHblhFLqORjaPTi9Woam2O12rFy5EocOHUJlZSXat2+P6dOno3v37roeV+vWrXXdv56w2LUj2AazsLYPT1jsygkloRgM7W58KcvwOw6HAykpKXj99dexc+dOjB8/HvPmzUN1dbWux1VQUKDr/vWExa4dwVajyNo+PGGxKyeUahSDod2ZUGQgNjYWWVlZsFqtMJvNGDZsGCwWC/Lz83U9LpfLpev+9YTFrh3BlnpmbR+esNiVE0qOYjC0e3BKcBW899572LBhA9LT0/Huu+/KfvbIkSOYOXOm6Htr165Ft27dvPqs1lRXV+PDDz9EXl4ejh8/DpvNhnnz5uHOO+8U/bzdbsdbb72FL7/8EjabDR07dsSjjz6Kfv36iX4+Pz8fNpsNbdq08VsMSmjSpImu+9cTFrt2pKenc39fd911mm7bH7C2D09Y7MoJJaEYDO0e0kKxuLgYmzZtQmxsrKrvjR07Fl27duW9JiWa1HxWK8rLy7Fx40ZYrVZ06tQJR44ckf380qVL8fXXX2P8+PFIS0vDrl27MGfOHKxevRo9e/bkfbaurg6LFy/GpEmTEB8f788wPKK23UIJFrt2ZGVloaysDO3bt0enTp003bY/YG0fnrDYlRNKQjEY2j2kheKaNWuQkZEBp9OJ8vJyxd/r1asXhgwZovlnCTabDYcPH8bgwYNF38/JycGAAQMkT6Dk5GRs27YNycnJOHHiBKZMmSK5r7y8POzZswdTp07FAw88AAAYMWIEsrKysHbtWqxdu5b7bENDA1544QW0adMGWVlZqmLyB6Wlpbq7mnrBYtcu9ri4ODz33HOabc/fsLZnsYcbamMPpRrFYGj3kK1RzM3Nxb59+zBjxgyvvl9dXY2GhgbNPwsA27Ztw/z587F//36393bs2IGFCxdi9+7dkt+PiopCcnKyon3t27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAgA4HQ6sXjxYphMJmRnZ8NkMimOh8FgMBiMQBFKjmIwEJwS3AMOhwOrV6/GqFGj0LFjR9XfX7p0KWpqahAREYGePXti6tSpuOGGG3z+LGHixIk4fvw4Fi5ciJdffhk33XQTgEZRt2LFCgwfPhxjxoxRfdxinDp1CmlpaYiLi+O9TtLlp0+fhtVqxfLly1FaWorly5cb5slMqRgORVjs4Us4x89iD0/Uxh5KQjEY2t0YikBjPv30UxQVFWHVqlWqvmexWDB48GD0798fiYmJOHfuHDZv3ozp06djzZo16PL/tXfnUU3d6RvAHwQJCCqIggsWQawVxWVEbS0oWGpdTq0Wl7ocD1oc6wbTal2YcUWrtqjHnlqstdZhxtal1nGnSo/VkW7aYnUArdaqKGFJBCSQAAn394eH/IgJSGIwubnP5xzOKd978837cDF9ueuzz1q0rqn3WbVqFd59910kJiZiy5YtUKvVSEpKwqBBg7B06VKr7dFTKpUmfxFrxxQKBfLz83Hs2DG4uroa7Hl8//330adPH5PzpqenIz09HSqVyip1mqLRaODm5tZk89szZpdmdkDa+Zmd2RvDkQ49i2G7i/Mn24DS0lLs2rUL06dPh5eXl1mvDQ0NRWhoqP778PBwREZGYsaMGdixYweSk5MtWtcUmUyG9evXIyEhAYsXL0Z1dTV69OiB1atXW/UXvrKy0uRfWrX/0CorK9G+fXuTh8EbEh0djejoaFy7dg2zZs2ySq2PKi8vN3sbOgpm97J1GTYj5fzM7mXrMmzC3OyOtEdRDNvd4c5R3LlzJ1q2bImYmBirzOfv74/w8HBkZmZCp9NZbV3g4Un2c+fOxYMHD6BWq7FgwQLIZDKr1F1LJpOhurraaLyqqkq/nIiISCwcqVEUA4dqFHNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDggdnz+vr6orq6GhqNxqrr5uXlISkpCc888wzat2+P5cuXQ6FQmF1fQ3x8fKBUKo3Ga8fatm1r1fezJnu/EqwpMbt0STk/s0uTudlNNYVibRTFsN0dqlFUKBSoqanB1q1bMWnSJP1XdnY2cnNzMWnSJOzevdvsefPy8uDq6tqo+x01dl2FQoF33nkHLi4u2Lx5MzZt2gSNRoOFCxda1MzWJzg4GHfv3kV5ebnBeHZ2tn65vZLL5bYuwWaYXbqknJ/Zpcnc7M7OzmjWzLB9Ees5imLY7uL8ydYjMDAQ69atMxrfuXMnKioqEB8fj44dOwJ4eAJpQUEBWrdurT8/oKSkxOhcgRs3biAjIwODBg0y+MU0Z91HlZWVYdGiRVCr1fjoo4/g6+sLAEhOTkZCQgKWLFmCzZs3W+VGnJGRkdi7dy+OHDmiv49iVVUVTpw4gZCQEPj5+T3xezSVmpoaW5dgM8wuXVLOz+zSZEl2V1dXgyN3Yt2jKIbt7lCNopeXFyIiIozGDxw4AAAGy3JycpCQkIDY2FjMnDkTALBy5UrIZDL06tUL3t7euHXrFo4ePQo3NzfMnj3bYE5z1n3UoUOHUFhYiA8//BCdO3fWj3fr1g0bNmzAwoULkZaWhnHjxtU7x8GDB6FSqfSHkDMyMlBYWAjg4dNiap+qEhISgqioKOzYsQMlJSXo1KkT0tLSkJ+fjyVLljRYp62J4Y71TYXZpUvK+ZldmizJ7iiNohi2u0M1ik8qIiICp0+fxv79+/VXIg0ZMgSxsbHw9/e3eN1HTZkyBREREQbPoK3Vu3dvbN++HUFBQQ3OsW/fPuTn5+u/P3funP7K5eHDhxs8fi8xMRF+fn745ptvoFKpEBQUhI0bN6Jv376P+5HY1KP3fpQSZpcuKedndmmyJPujF7SItVEUw3Z3EgRBsHURJF61t8f59NNP0b17d6vOfe/ePVGc6NsUmF2a2QFp52d2Zm+sTp06IS8vT/+9UqlEmzZtrF1akxPDdneoi1mIiIjI8TnKHkUxYKNIdkuMfx1aC7NLl5TzM7s0WZLdURpFMWx3Nopkt2pvCi5FzC5dUs7P7NJkSXZHaRTFsN3ZKJLdasrnSNs7ZpcuKedndmmyJPujjWJDt6SzZ2LY7uL8yRIREZFk1W0UmzdvDicnJxtW49jYKJLdqr05uhQxu3RJOT+zS5Ml2R9tFMVKDNudjSLZrYKCAluXYDPMLl1Szs/s0mRJ9rrNoZgbRTFsdzaKZLd0Op2tS7AZZpcuKedndmmyJHvdPYpifc4zII7tzkaR7Jabm5utS7AZZpcuKedndmmyJLujHHoWw3Zno0h2q2XLlrYuwWaYXbqknJ/ZpcmS7I7SKIphu7NRJLtVVFRk6xJshtmlS8r5mV2aLMnuKIeexbDd2SgSERGRqDjKHkUxYKNIdsvb29vWJdgMs0uXlPMzuzRZkt1RGkUxbHc2imS3tFqtrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbpWVldm6BJthdumScn5mlyZLsjvKOYpi2O5sFImIiEhUHGWPohiwUSS71aFDB1uXYDPMLl1Szs/s0mRJdkdpFMWw3dkokt0Sw20DmgqzS5eU8zO7ND3p7XHE3CiKYbuzUSS7JYaTfJsKs0uXlPMzuzQ96cUsYj5HUQzbnY0i2S2ZTGbrEmyG2aVLyvmZXZosyV53L6KY9yiKYbuzUSS75eXlZesSbIbZpUvK+ZldmizJ7iiHnsWw3dkokt0qKCiwdQk2w+zSJeX8zC5NlmR3lEZRDNudjSIRERGJiqOcoygGbBTJbrVu3drWJdgMs0uXlPMzuzRZkt1R9iiKYbuzUSS7JQiCrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbj148MDWJdgMs0uXlPMzuzRZkt1RGkUxbHc2ikRERCQqPEfx6WGjSHarffv2ti7BZphduqScn9mlyZLsjrJHUQzbnY0i2S2lUmnrEmyG2aVLyvmZXZosyd6vXz+0atUKABAZGWnlip4eMWx37q8lu1VdXW3rEmyG2aVLyvmZXZosyd6qVSv88ccfKCwsREhISBNU9XSIYbuzUSS7VffQgtQwu3RJOT+zS5Ol2du2bYu2bdtauZqnSwzbnY0ioaqqCps3b8bFixehUqnQpUsXzJ8/H7169bJpXW3atLHp+9sSs0uXlPMzuzQxu33jOYoEnU6H9u3bY9u2bThx4gQmTJiAZcuWoaKiwqZ15efn2/T9bYnZpUvK+ZldmpjdvrFRJLi7uyM2NhZ+fn5o1qwZXnrpJbi4uCA3N9fWpREREZENifLQc2pqKnbu3InAwED885//bHDdzMxMJCQkmFyWkpKCnj176r/PyclBWloaMjMzkZ+fj1atWqFnz56Ii4tD586dLZ7X2ioqKrB3715kZ2cjJycHZWVlWLZsGUaOHGm0blVVFT777DOcOnUKZWVl6Nq1K+Li4jBgwIB658/NzUVZWRk6derUZBkao/aKNilidumScn5mlyZmt2+iaxQLCwvx73//G+7u7ma9LiYmBj169DAYe7QR+uKLL3DlyhVERUWha9euUCqVOHToEOLi4pCSkoKgoCCL5rW20tJS7N69G35+fggODkZmZma9665fvx7fffcdJkyYAH9/f5w8eRKLFy/G1q1b0bt3b6P1KysrsXbtWkydOhWenp5NGeOxnJycbPr+tsTs0iXl/MwuTcxu30TXKH788ccICQlBTU0NSktLG/26Pn36PPZeSxMnTsSKFSsMbt45bNgwzJgxA3v27MHy5cstmreusrIy/Prrrxg6dKjJ5enp6XjxxRcbbIR9fHxw6NAh+Pj44OrVq/jrX/9qcr3s7Gx8++23mDNnDiZPngwAeOWVVxAbG4uUlBSkpKQYrK/VarFixQp06tQJsbGxjc7UVEpLS23erNoKs0szOyDt/MzO7FIjhuyiOkfx0qVLOHv2LBYsWGDR6ysqKqDVautdHhoaanSH986dO6NLly64ffu2xfPWdejQIaxatQrnzp0zWnbs2DGsWbMGaWlpDc7h6uoKHx+fx77X2bNn4ezsjDFjxujHZDIZRo8ejaysLBQUFOjHa2pqsHbtWjg5OSExMVEUf+UQERFR0xLNHkWdToetW7di9OjR6Nq1q9mvX79+PdRqNZydndG7d2/MmTMHzz333GNfJwgCiouL0aVLF6vMO2XKFOTk5GDNmjXYuHEj+vfvD+BhU7dp0yYMHz4cY8eONTufKdevX4e/vz88PDwMxmsPld+4cQN+fn4AgOTkZCiVSiQnJ9vNczNra5MiZpcuKedndmlidvtmHx1BIxw+fBgFBQXYsmWLWa9zcXHB0KFD8fzzz6N169a4desW9u3bh/nz5+Pjjz/Gs88+2+DrT58+jaKiIsycOdMq87q4uGDVqlV49913kZiYiC1btkCtViMpKQmDBg3C0qVLrbY3T6lUmtzzWDumUCgAPLw8/9ixY3B1dTXY+/j++++jT58+JudOT09Heno6VCqVVWo1paSkRPQ3U7UUs0szOyDt/MzO7FIjhuyiaBRLS0uxa9cuTJ8+HV5eXma9NjQ0FKGhofrvw8PDERkZiRkzZmDHjh1ITk6u97W3b9/Gli1b0LNnT4wYMcJq88pkMqxfvx4JCQlYvHgxqqur0aNHD6xevdqqe/MqKytNPiy99k7wlZWVAB4+lNzUofCGREdHIzo6GteuXcOsWbOevFgTauuTImaXLinnZ3ZpYnb7JopzFHfu3ImWLVsiJibGKvP5+/sjPDwcmZmZ0Ol0JtdRKpVYsmQJPDw8kJSUBGdnZ6vMW8vDwwNz587FgwcPoFarsWDBAshkMovy1Ecmk5l8jmRVVZV+uT0z1eRKBbNLl5TzM7s0Mbt9s/tGMTc3F0ePHsX48eOhUCggl8shl8tRVVUFrVYLuVyOBw8emD2vr68vqqurodFojJapVCosXrwYKpUKycnJZu0WbmjeuvLy8pCUlIRnnnkG7du3x/Lly/WHgq3Fx8cHSqXSaLx2zN53d9t7fU2J2aVLyvmZXZqY3b7ZfaOoUChQU1ODrVu3YtKkSfqv7Oxs5ObmYtKkSdi9e7fZ8+bl5cHV1dXoNjSVlZVYunQpcnNzsWHDhnovYjF33kczvfPOO3BxccHmzZuxadMmaDQaLFy40KKmtz7BwcG4e/cuysvLDcazs7P1y+2ZXC63dQk2w+zSJeX8zC5NzG7f7P4cxcDAQKxbt85ofOfOnaioqEB8fDw6duwIANBoNCgoKEDr1q315zKWlJQYndd448YNZGRkYNCgQWjW7P97ZZ1Oh1WrViErKwvvvfceevXqVW9d5sxbV1lZGRYtWgS1Wo2PPvoIvr6+AB5edZyQkIAlS5Zg8+bNZt9Q3JTIyEjs3bsXR44c0d9HsaqqCidOnEBISIhVrraqPb+iodsHWaqoqKhJL5axZ8wuzeyAtPMzO7NLjT1kDwgIgJubW73L7b5R9PLyQkREhNH4gQMHAMBgWU5ODhISEhAbG6u/SnnlypWQyWTo1asXvL29cevWLRw9ehRubm6YPXu2wZzbtm1DRkYGBg8ejLKyMpw6dcpg+fDhw/X/bc68dR06dAiFhYX48MMPDR4L2K1bN2zYsAELFy5EWloaxo0b1+DP5eDBg1CpVPrDyBkZGSgsLATw8Gkxnp6eCAkJQVRUFHbs2IGSkhJ06tQJaWlpyM/Px5IlSxqcv7FqH2i+du1aq8xHRERET8+nn36K7t2717vcSRAE4SnWYzXx8fEoLS01eNZz7fOX6zaKX331FU6fPo179+6hvLwcXl5e6N+/P2JjY+Hv728056VLl+p9z7pXBpszb11arRa5ubkIDAw0ufyPP/5AUFDQY2+RM3HiRH2T9qh9+/ahQ4cOAB7u8at91rNKpUJQUBDi4uIwcODABudvrJKSEvz888/o0KGD/mpqa7h9+zbWrl2Lf/zjHwgICLDavGLA7NLMDkg7P7MzO7Pbhuj3KNbnww8/NBrr16+f0W1exo8fj/Hjx1s8Z33MmbcuFxeXeptEAI2+mfj+/fsbtZ5MJsPcuXMxd+7cRq1vLi8vL4M9rdYWEBDQ4F86jozZpZkdkHZ+Zmd2qbH37HZ/MQsRERER2QYbRSIiIiIyiY0i2SUfHx/ExsaafASho2N2aWYHpJ2f2ZldasSSXbQXsxARERFR0+IeRSIiIiIyiY0iEREREZnERpGIiIiITGKjSEREREQmifaG2+SYqqqq9E+SKSsrQ9euXREXF4cBAwbYurTHqqiowN69e5GdnY2cnByUlZVh2bJlGDlypNG6t27dwkcffYQrV67AxcUFL7zwAubPn2/0/PCamhrs3bsX//nPf3D//n34+/tj2rRpiI6OtnjOppCTk4O0tDRkZmYiPz8frVq1Qs+ePREXF2fwqEpz6hRL9j///BOff/45rl27hvv378PNzQ0BAQGYPHkyXnzxRYvqFEv2R6WmpmLnzp0IDAw0eGoWAFy5cgXbt2/H77//Dg8PD0RFRWHWrFlo0aKFwXrmfAY0ds6mUPskMFNSUlLQs2dPs+sUS/Za165dw+eff44rV66gqqoKHTt2xKuvvmrwMApHzP7ee+8hLS2t3uUHDx5Eu3btzKrVnvPzqmeyK6tXr8Z3332HCRMmwN/fHydPnsTVq1exdetW9O7d29blNUgul2PSpEnw8/NDx44dkZmZabJRLCwsxJtvvglPT0/ExMRArVZj79698PPzwyeffILmzZvr1/3kk0+wZ88evPrqq3juuedw/vx5/PDDD1i5ciVeeukli+ZsCsuXL8eVK1cQFRWFrl27QqlU4tChQ1Cr1UhJSUFQUJDDZv/hhx9w8OBB9OzZE23btoVGo8HZs2dx+fJlLFq0CGPGjHHY7HUVFhZi2rRpcHJyQvv27Q0axevXr2POnDkICAjAmDFjUFhYiH379qFfv3744IMPDOZp7GeAOXM2hdpGMSYmBj169DBYNnDgQH2j7ojZAeDnn3/GsmXL0K1bNwwbNgzu7u64d+8eBEHAnDlzHDr7//73P+Tl5RmMCYKATZs2oX379khNTTW7VrvOLxDZiaysLCEiIkL44osv9GMajUZ44403hLfeesuGlTVOZWWloFAoBEEQhJycHCEiIkI4ceKE0XqbNm0SoqOjhfz8fP3YhQsXhIiICOHw4cP6scLCQiEqKkrYvHmzfqympkaYN2+e8PrrrwtardbsOZvK5cuXhaqqKoOxO3fuCC+99JKwZs0as+sUU3ZTtFqtMGPGDGHq1Kn6MUfPvnLlSiEhIUFYsGCBMH36dINlixYtEsaOHSuoVCr92NGjR4WIiAjhp59+0o+Z8xnQ2Dmbyq+//ipEREQIZ86caXA9R8yuUqmE1157TUhMTBR0Ol296zli9vr89ttvQkREhJCamqofc5T8PEeR7MbZs2fh7Oys3wMDPHxW9ejRo5GVlYWCggIbVvd4rq6ujbpx6tmzZzF48GD4+fnpx8LCwtC5c2ecOXNGP3b+/HlotVqMGzdOP+bk5ISxY8eiqKgIWVlZZs/ZVEJDQ432XnXu3BldunTB7du3za5TTNlNcXZ2hq+vL1QqlX7MkbNfunQJZ8+exYIFC4yWlZeX4+LFixg+fDg8PDz046+88grc3d0N6mzsZ4A5cz4NFRUV0Gq1RuOOmj09PR3379/HrFmz0KxZM6jVatTU1Bis46jZ65Oeng4nJyf96SGOlJ+NItmN69evw9/f3+AfAAD9YZ0bN27YoiyrKioqQnFxsckHwPfo0QPXr1/Xf3/9+nW4u7sjICDAaL3a5ebO+TQJgoDi4mK0bt0agONnV6vVKCkpwb1797B//3789NNP+Mtf/mJ2nWLLrtPpsHXrVowePRpdu3Y1Wn7z5k3odDqjOps3b45u3boZZW/MZ4A5cza19evXY8SIEXj55ZeRkJCAq1ev6pc5avaLFy/Cw8MDCoUCU6dOxSuvvIKRI0di06ZNqKysNLtOMWU3RavV4syZM+jVqxc6dOgAwLHys1Eku6FUKk3ukasdUygUT7skq1MqlQBQb84HDx6gqqpKv663tzecnJyM1gP+/+dhzpxP0+nTp1FUVIRhw4YBcPzs27Ztw5gxYzB58mR8/PHHiIiIwNtvv212nWLLfvjwYRQUFCAuLs7k8sfVWfffdWM/A8yZs6m4uLhg6NChiI+Px3vvvYc333wTN2/exPz58/H777+bXaeYst+9exc6nQ6JiYkYOHAgkpKSMGrUKBw+fBgbNmwwu04xZTfl559/RmlpKV5++WX9mCPl51XPZDcqKytNnnzv6uqqXy52tRkel9PV1bXRPw9z5nxabt++jS1btqBnz54YMWKE2XWKMfuECRMQGRkJhUKBM2fOQKfTobq62uw6xZS9tLQUu3btwvTp0+u9yvpxddZtZq2V/Wk0yKGhoQgNDdV/Hx4ejsjISMyYMQM7duxAcnKyw2ZXq9XQaDR47bXX9Fd+Dx06FNXV1Thy5AhmzpzpsNlNSU9Ph4uLC6KiovRjjpSfexTJbshkMv3/WOuq/eWXyWRPuySrq83QmJyN/XmYM+fToFQqsWTJEnh4eCApKQnOzs5m1ynG7AEBAQgLC8OIESOwceNGqNVqLF26FIIgOGz2nTt3omXLloiJial3ncfVWbeRtVb2p/lHUV3+/v4IDw9HZmYmdDqdw2avraHuFfgA9OfnZWVlOWz2R1VUVOD8+fMYOHCg/jQbwLF+79kokt3w8fHR71qvq3asbdu2T7skq6s9ZFBfzlatWun/sfv4+OD+/fsQHrmD1aM/D3PmbGoqlQqLFy+GSqVCcnKywTZz9OyPioyMxNWrV5Gbm+uQ2XNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDgwWPrfPR3pDGfAebM+bT5+vqiuroaGo3GYbPX1tCmTRuDcW9vbwBAWVmZw2Z/1Pnz56HRaAwOOwPm1Wrv+dkokt0IDg7G3bt3UV5ebjCenZ2tXy527dq1g5eXF65du2a0LCcnxyBjcHAwNBqNwVXDgPHPw5w5m1JlZSWWLl2K3NxcbNiwAV26dDFY7sjZTak9TKRSqRwyu0KhQE1NDbZu3YpJkybpv7Kzs5Gbm4tJkyZh9+7dCAwMhLOzs1Gd1dXVuH79ulH2xnwGmDPn05aXlwdXV1e4u7s7bPbaiymKiooMxmvPkfPy8nLY7I86ffo03N3djW6u70j52SiS3YiMjIROp8ORI0f0Y1VVVThx4gRCQkIMbgEiZkOHDsX3339vcLufX375Bbm5uQbnuISHh8PFxQWHDh3SjwmCgMOHD6Ndu3bo1auX2XM2FZ1Oh1WrViErKwurV682qK0uR8xeXFxsNKbVavHNN99AJpPpG2ZHyx4YGIh169YZfQUGBsLPzw/r1q3D6NGj4enpibCwMJw6dQoVFRX613/zzTdQq9UGdTb2M8CcOZtKSUmJ0diNGzeQkZGBAQMGoFmzZg6bvfY9jh8/bjB+/PhxODs7o1+/fg6bva6SkhJcvHgRQ4YMgZubm8EyR8rPi1nIboSEhCAqKgo7duxASUkJOnXqhLS0NOTn52PJkiW2Lq9RDh48CJVKpT80kJGRgcLCQgBATEwMPD09MW3aNHz33Xf429/+hvHjx0OtVuPLL79EUFCQwVNcfH19MWHCBHz55ZfQarXo0aMH/vvf/+Ly5ctYvny5/tw/AI2es6ls27YNGRkZGDx4MMrKynDq1CmD5cOHDzerTjFlT05ORnl5Ofr06YN27dpBqVTi9OnTuHPnDubNm6d/rJajZffy8kJERITR+IEDBwDAYFlcXBzmzZuHBQsWGDxNYsCAARg0aJB+PXM+Axo7Z1NZuXIlZDIZevXqBW9vb9y6dQtHjx6Fm5sbZs+e7dDZn332WYwaNQonTpyATqdD3759cenSJZw5cwbTpk3THwJ1xOx1ffvtt9DpdEaHnc2t1d7z8xF+ZFcqKyv1z7tUqVQICgpCXFwcBg4caOvSGmXixInIz883uWzfvn36e2z9+eefRs/nnTdvntE5PzU1Nfjiiy9w5MgRKJVK+Pv7Y+rUqfrGq67GztkU4uPjcenSpXqXnzt3zuw6xZL922+/xfHjx3Hz5k2UlpaiRYsW6N69O15//XWEh4dbVKdYspsSHx+P0tJSo2c9X758Wf982hYtWiAqKgqzZ882ej6tOZ8BjZ2zKXz11Vc4ffo07t27h/Lycnh5eaF///6IjY2Fv7+/RXWKJTvwcK/5v/71L5w8eRIKhQJ+fn4YN24cJk6caFGdYspea86cOcjLy8PXX39t8AecJbXac342ikRERERkEs9RJCIiIiKT2CgSERERkUlsFImIiIjIJDaKRERERGQSG0UiIiIiMomNIhERERGZxEaRiIiIiExio0hEREREJrFRJCIiIiKT2CgSEYlMfHw8hgwZYusyHuvkyZMYMmSI/mvVqlUWzbN9+3aDeXbt2mXdQomoXi62LoCISMrMbfjqPjdbLMLDwxEcHIygoCCLXh8WFgZXV1fk5+cjLS3NytURUUPYKBIR2VBsbKzR2FdffQWVSmVyGQD8/e9/h0ajadrCrCgiIgIjR460+PVhYWEICwtDZmYmG0Wip4yNIhGRDc2cOdNoLC0tDSqVyuQyAPDz82vqsoiIALBRJCISnfj4eFy6dMngMPTJkyexfv16LFu2DK1atUJqaipu3ryJli1bYtSoUZg5cyaaNWuGkydPYv/+/cjNzYWXlxdiYmIwefJko/cQBAEnTpzA8ePHcfPmTeh0OnTp0gVjx47F6NGjrZJDoVBgz549+PHHH1FUVARXV1e0adMGffv2xVtvvQVPT0+rvA8RWY6NIhGRAzl37hwuXLiAiIgIhIaG4ocffkBqaioEQYCnpydSU1MRHh6Ovn374ty5c0hJSYG3tzdGjBihn0MQBCQlJSE9PR3+/v6Ijo5G8+bNceHCBWzcuBG3bt3CvHnznqhOjUaDefPmIT8/HwMGDMCQIUNQXV0NuVyOU6dO4Y033mCjSGQH2CgSETmQn376Cdu2bUOPHj0APDy0PXnyZBw4cAAtWrTAZ599ho4dOwIA3njjDUyZMgV79+41aBSPHTuG9PR0jBo1CosWLYKLy8P/VVRXV2P58uXYt28foqOj0b17d4vr/OWXXyCXyzFhwgQsWLDAYFlFRYX+PYnItnh7HCIiBzJ8+HB9kwgALVq0wAsvvACNRoOxY8fqm0Tg4bmOoaGhuH37NrRarX7866+/hru7O95++22Dhq158+aYNWsWACA9Pd0q9cpkMqOxFi1awNXV1SrzE9GT4Z9sREQOJDg42GjMx8enwWU6nQ7FxcVo164dNBoNbt68ibZt22LPnj1G6+t0OgDAnTt3nqjOPn36wMfHB3v27MGNGzcwePBg9O3bFwEBAXBycnqiuYnIetgoEhE5EA8PD6MxZ2fnxy6r3aNYVlYGQRBQVFSE3bt31/s+T3p7Hk9PT2zfvh2fffYZvv/+e/z4448AAF9fX0ydOhXjxo17ovmJyDrYKBIRkV5tM9m9e3d8+umnTfpefn5+SExMRE1NDf744w9cuHABBw8exJYtW9CyZUtER0c36fsT0ePxHEUiItJr0aIFAgICcPv2bZSVlT2V92zWrBm6deuGKVOmYMWKFQCAjIyMp/LeRNQwNopERGRg/Pjx0Gg0+OCDD6BWq42W5+XlQS6XP9F7/Pnnn7h//77ReHFxMQDwYhYiO8FDz0REZGDMmDHIyspCWloarly5grCwMPj4+KC4uBh37txBdnY2VqxYgQ4dOlj8HhcuXEBKSgpCQ0PRuXNntGrVCnl5ecjIyICrqyvPUSSyE2wUiYjIgJOTExITE/H888/j2LFj+P7776FWq+Ht7Q1/f3/MnTsX/fv3f6L3GDhwIPLz8/Hbb7/h3LlzUKvVaNu2LYYNG4YpU6agS5cu1glDRE/ESRAEwdZFEBGR46n7WMGRI0c+8XyZmZlISEhAbGxsvc/BJiLr4jmKRETUpNavX48hQ4Zg1apVFr1++/btGDJkCBISEqxbGBE9Fg89ExFRkwgODkZsbKz++6CgIIvmCQsLM7i4pV+/fk9aGhE1Eg89ExEREZFJPPRMRERERCaxUSQiIiIik9goEhEREZFJbBSJiIiIyCQ2ikRERERkEhtFIiIiIjKJjSIRERERmcRGkYiIiIhMYqNIRERERCb9HxoZKDQ5ADtRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# LC in plot below is normalized to initial time. \n", + "analysis.get_raw_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2: Some available options for the standard binned anlaysis\n", + "In the previous step we saved the unbinned data to an hdf5 file with the read_tra method. Here we will load the unbinnned data from file instead of running read_tra again. We will also save the binned data to file, and make binning plots." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG/CAYAAABxMSLLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfCElEQVR4nO3deVxU5f4H8M+wiiyhA+ICl1AMQSMtl1xIyC0zSUNTu9w0lbwKZHq7Wqa3MstWuxKpKJWZJtivUCxxyXCvTNMkUByvycWSHZV9YOb8/uBymsOwzGrg+bxfr3nVPOc53/PMOTP07Xme8xyFIAgCiIiIiMgsNn92A4iIiIhuB0yqiIiIiCyASRURERGRBTCpIiIiIrIAJlVEREREFsCkioiIiMgCmFQRERERWQCTKiIiIiILYFJFREREZAFMqoiIiIgswO7PboCuM2fOYOHChU1uW79+Pfr27Su+z8jIwIYNG3Dx4kU4OzsjLCwMUVFR6Nixo2Q/tVqNDz/8EPv370dZWRl69eqFuXPnYtCgQXrHMDQmERERUWNtKqlqEBERgcDAQElZjx49xH9XqVRYtGgRfH19ERMTg4KCAiQnJ+Pq1at4++23JfutXr0ahw4dwtSpU+Ht7Y20tDQsWbIEa9euRXBwsEkxiYiIiBprk0nVPffcg9DQ0Ga3b9y4Ea6uroiLi4OzszMAoFu3bnjrrbdw8uRJDB48GACQlZWFgwcPYv78+ZgxYwYAYNy4cZg1axbWr1+P9evXGx2TiIiIqCltdk5VZWUl6urq9MorKipw6tQpjB07Vkx+gPpkycnJCenp6WLZ4cOHYWtri/DwcLHM0dEREyZMQGZmJvLz842OSURERNSUNtlTtXr1alRVVcHW1hbBwcGYP38++vTpAwC4fPkyNBoNAgICJPvY29ujd+/eUKlUYplKpYK3t7ckUQIgDi1eunQJXl5eRsVsrKioCMXFxeL7mpoaVFVV4Z577kGHDh1MOwFEREQWlJ+fj+vXr5sdx93dHV5eXuY36DbVppIqOzs7jBw5Evfffz/uuOMOXLlyBcnJyYiJicG6detw1113iQmMUqnU21+pVOLnn38W3xcXFzdbD6hPiBrqGRqzsdTUVGzevFmv3P5MZ9hU2LfwaVuhaKETUdC2vk9zdUxtQ1uMd6tiN3ecW3mstn7+zT2OoefVmvVMPSe36ry2RW3hN92ezn8zbT2g/dyqh83Pz8ffIiNQXWP+4FSHDh3w6aefMrFqRptKqu6++27cfffd4vsRI0YgNDQUTz31FDZu3Ih33nkHNTU1AOp7kRpzcHCAWq0W39fU1DRbr2G77j8NidlYeHg4hg8fLr7PycnBqlWrWvycREREt8r169dRXWODF2Ovw7eH/rQaQ+X8ZofX3nfH9evXmVQ1o00lVU3x9vbGiBEjcOTIEWg0Gjg6OgIAamtr9eqq1WoxYQLq5081V69hu+4/DYnZmIeHBzw8PIz4RERERLeeT49a+PfU/++cobQQLNia21ObT6oAoEuXLqitrUV1dbU4RKc7j6lBcXGxJMFRKpUoLCxssh4Asa4xMYmIiNojraCFxowhUm1bH15tA9rs3X+6fv/9dzg4OMDJyQl+fn6wtbVFdna2pE5tbS1UKhX8/f3FMn9/f1y9ehUVFRWSullZWeJ2AEbFJCIiao+0EMx+UcvaVFLV1J0Jly5dwvHjxzFo0CDY2NjAxcUFAwcOxP79+1FZWSnW27dvH6qqqhAWFiaWhYaGQqPRIDU1VSxTq9XYs2cPgoKCxDFhY2ISERERNaVNDf+99NJLcHR0RL9+/dCpUydcuXIFu3fvRocOHTBv3jyx3ty5cxEdHY3Y2FiEh4eLq58PGjQIQ4YMEesFBQUhLCwMGzduxPXr19GjRw/s3bsXeXl5WLp0qeTYhsYkIiJqjwQI0ML0ITyBPVWtalNJVUhICA4cOIAdO3agoqIC7u7ueOCBBzBr1ix4e3uL9QICArBmzRps2LAB77//Pjp27IgJEyZIEq8Gy5Ytg5eXF/bt24fy8nL07NkTb775Jvr37y+pZ0xMIiKi9kYDARrB9MRIw6SqVW0qqZoyZQqmTJliUN3g4GCsW7eu1XqOjo5YsGABFixYYLGYRERERI21qaSKiIiIrEMwc7I5h/9ax6SKiIhIBjQQzBrC4/Bf69rU3X9ERERE7RV7qoiIiGSAw3/Wx6SKiIhIBjQCzLv7jzlVqzj8R0RERGQB7KkiIiKSAQEwY+lPcPDPAEyqiIiIZIB3/1kfkyoiIiIZ0ArmzYvSMqdqFedUEREREVkAe6qIiIhkQAvz5lSZs69cMKkiIiKSAS0U0EBh1v7UMg7/EREREVkAe6qIiIhkQCuYN9mcE9Vbx6SKiIhIBrSAmcN/1BoO/xERERFZAHuqiIiIZEBj5kR1c/aVCyZVREREMiAICmgF0xMjwYx95YLDf0REREQWwJ4qIiIiGeDwn/UxqSIiIpKB+sU/TR+g4uKfrWNSRUREJANamDeniklV6zinioiIiMgC2FNFREQkA3z2n/UxqSIiIpIBjWADjWD6AJU5+8oFzxARERGRBbCnioiISAYEKKA1oy9F4PBfq5hUERERyQDXqbI+Dv8RERERWQB7qoiIiGRAa+ZEdS0nqreKSRUREZEMaGHesghayzXltsW0k4iIiMgC2FNFREQkA1rYQAPBrP2pZUyqiIiIZKB+TpUZSRXnVLWKSRUREZEMaM1cp4qPqWkd004iIiIiC2BPFRERkQxoBQU0ghl3/5mxr1wwqSIiIpIBDWygMXN/Y1VWViIpKQlZWVk4f/48ysrK8MILL2D8+PFiHa1Wi3379uHw4cNQqVQoKytDt27d8OCDD2L69OlwdHTUi/vVV18hKSkJeXl58PT0xJQpUxAREaFXr7CwEPHx8fjxxx+h1WoxYMAAxMbGonv37ibHbAmH/4iIiMgqbty4gc2bNyMnJwf+/v5N1qmursbq1atx48YNPProo4iNjUVgYCA+/vhjLFmyBEKjyfW7du3CW2+9BT8/PyxcuBD9+vXD2rVrsW3bNkm9yspKLFy4EGfPnkVkZCRmz54NlUqF2NhY3Lhxw6SYrWFPFRERkQwIUJh1B58pD1RWKpVISUmBUqnEhQsX8PTTT+vVsbe3xwcffIC7775bLJs4cSK6du2Kjz76CKdPn8bAgQMBADU1NUhMTMTQoUPx6quvinW1Wi22bNmC8PBwuLq6AgB27tyJq1evIiEhAYGBgQCAIUOGYNasWUhOThbbYkzM1rCnioiISAbqh//MexnLwcEBSqWyxTr29vaShKpBSEgIACAnJ0cs++mnn3Djxg1MmjRJUnfy5MmoqqrCd999J5YdOnQIffr0ERMqAPD19cW9996L9PR0k2K2hkkVERERGSwnJwfZ2dniq6ioyCrHKSkpAQDccccdYplKpQIA9OnTR1I3ICAANjY2uHjxIoD6eVqXL1/WqwcAgYGB+O2331BZWWlUTENw+I+IiEgG6u/+M29/AFi1apWkfNasWZg9e7Y5TWvS9u3b4ezsjCFDhohlxcXFsLW1RadOnSR17e3t4ebmhuLiYgDAzZs3oVarm+wlaygrKirCX/7yF4NjGoJJFRERkQzUL/5p/gOVly9fDl9fX7G8teE9U3z66ac4deoUFi9eLJnPVFNTAzu7plMXBwcH1NTUiPWA+sSoqXq6dQyNaQgmVURERGQwX19fBAQEWC3+wYMHkZiYiAkTJujNc3J0dERdXV2T+6nVanH5hYZ/1tbWNllPt46hMQ3BOVVEREQyUP/sP9Nft+LZfz/++CNef/11DB06FP/4xz/0tiuVSmg0GpSWlkrKa2trcfPmTbHXzM3NDQ4ODk0O3TWUeXh4GBXTEEyqiIiIZKBh+M+clzVlZWVh+fLlCAgIwCuvvNLkkFzv3r0BABcuXJCUX7hwAVqtVtxuY2ODnj176tVrOE737t3RsWNHo2IagkkVERGRDNRPVDenp8p6SdWVK1ewdOlSdO3aFW+++WazQ2733nsv3NzcsGvXLkn5rl270KFDBwwdOlQsGzlyJC5cuCBJlv773//izJkzCA0NNSlmazinioiIiKzmiy++QHl5uTjsdvz4cRQUFAAAIiIiYGNjg+eeew5lZWWYPn263rpQ3bt3R79+/QDUz3+aM2cO3nvvPfzrX//C4MGD8fPPP2P//v2IioqCm5ubuN/kyZPx1VdfYenSpZg+fTpsbW2xY8cOdOrUCdOnTxfrGROzNUyqiIiIZKB+AU/Te5s0EPDHPYCGS05ORl5envj+yJEjOHLkCABg7NixACAmWQkJCXr7P/TQQ2JSBdQnS3Z2dkhOTsbx48fRpUsXxMTEYOrUqZL9OnbsiLVr1yI+Ph5btmwRn/0XExMDd3d3SV1DY7aGSRUREZEMCILCrCE8wcQ1rnbs2NFqnYYky1ATJ07ExIkTW63XpUsXrFy50qIxW8I5VUREREQWwJ4qIiIiGdBAYdLz+/7Y3/ihP7lhUkVERCQDAsxba8qMJ9zIBof/iIiIiCyAPVVEREQyUD/8Z87df9Zd/PN2wKSKiIhIBurv/jNj+M/U2/9khMN/RERERBbAnioiIiIZ4PCf9TGpIiIikgFBMPPuPw7/tYpJFRERkQxo/vdAZdP35zpVrWnTSdWWLVuQmJgIPz8/fPLJJ5JtGRkZ2LBhAy5evAhnZ2eEhYUhKioKHTt2lNRTq9X48MMPsX//fpSVlaFXr16YO3cuBg0apHc8Q2MSERERNdZmJ6oXFBRg69atcHJy0tumUqmwaNEiVFdXIyYmBhMmTMDu3bvx0ksv6dVdvXo1duzYgTFjxuCZZ56BjY0NlixZgnPnzpkck4iIqL0RoIDWjJfAOVWtarM9VevWrUNQUBC0Wi1u3Lgh2bZx40a4uroiLi4Ozs7OAIBu3brhrbfewsmTJzF48GAAQFZWFg4ePIj58+djxowZAIBx48Zh1qxZWL9+PdavX290TCIiovZII9iYOfzXZvth2ow2eYbOnj2Lw4cPIzY2Vm9bRUUFTp06hbFjx4rJD1CfLDk5OSE9PV0sO3z4MGxtbREeHi6WOTo6YsKECcjMzER+fr7RMYmIiIia0uaSKo1Gg7Vr12LChAno1auX3vbLly9Do9EgICBAUm5vb4/evXtDpVKJZSqVCt7e3pJECQACAwMBAJcuXTI6JhERUXskQAGtYPqLw3+ta3PDf7t27UJ+fj7ee++9JrcXFxcDAJRKpd42pVKJn3/+WVK3uXoAUFRUZHTMxoqKisT9ASAnJ6fZukRERH+W+nWqzBj+Y1LVqjaVVN24cQMfffQRnnzySbi7uzdZp6amBkB9L1JjDg4OUKvVkrrN1dONZUzMxlJTU7F58+ZmtxMREZE8tKmkKjExEa6uroiIiGi2jqOjIwCgtrZWb5tarRYTpoa6zdXTjWVMzMbCw8MxfPhw8X1OTg5WrVrVbH0iIqI/g/C/YTxz9qeWtZmkKjc3F7t370ZsbKw4LAfUJzV1dXW4du0anJ2dxSE63SG3BsXFxfDw8BDfK5VKFBYWNlkPgFjXmJiNeXh4tLidiIioLdDCBlozhv/M2Vcu2swZKioqglarxdq1azFt2jTxlZWVhdzcXEybNg2bN2+Gn58fbG1tkZ2dLdm/trYWKpUK/v7+Ypm/vz+uXr2KiooKSd2srCxxOwCjYhIRERE1pc30VPn5+eG1117TK09MTERlZSWeeeYZdO/eHS4uLhg4cCD279+PmTNniqud79u3D1VVVQgLCxP3DQ0NRVJSElJTU8V1qtRqNfbs2YOgoCB4eXkBgFExiYiI2iOtUP+oGnP2p5a1maTK3d0dISEheuWff/45AEi2zZ07F9HR0YiNjUV4eDgKCgqQnJyMQYMGYciQIWK9oKAghIWFYePGjbh+/Tp69OiBvXv3Ii8vD0uXLpUcx9CYRERE7ZHWzDlV5uwrF20mqTJGQEAA1qxZgw0bNuD9999Hx44dMWHCBMybN0+v7rJly+Dl5YV9+/ahvLwcPXv2xJtvvon+/fubHJOIiKi90Qo20JqxKro5+8pFm0+q4uLimiwPDg7GunXrWt3f0dERCxYswIIFC1qta2hMIiIiosbafFJFRERE5tNCYdYCnlou/tkqJlVEREQyoBXMmxfFieqt4wApERERkQWwp4qIiEgGBJg3UV1gP0yrmFQRERHJgBYKs+ZFcU5V65h2EhEREVkAe6qIiIhkQCsozFxRnT1VrWFSRUREJAP1K6qbs/gnk6rWcPiPiIiIyALYU0VERCQDfPaf9TGpIiIikgHBzLv/BN791yomVURERDLAnirr45wqIiIiIgtgTxUREZEMCDDv7j8O/7WOSRUREZEMcPjP+jj8R0RERGQB7KkiIiKSAT77z/qYVBEREcmAYObwn2DCvpWVlUhKSkJWVhbOnz+PsrIyvPDCCxg/frxe3StXriA+Ph4ZGRmws7PD0KFDERMTA3d3d0k9rVaLpKQk7Ny5EyUlJfD29kZkZCRGjx59S2K2hEkVERERWcWNGzewefNmeHl5wd/fH2fOnGmyXkFBAWJjY+Hi4oKoqChUVVUhKSkJly9fRkJCAuzt7cW6mzZtwrZt2zBx4kT06dMHx44dw8qVK6FQKDBq1CirxmwNkyoiIiIZ0ArmTTbXCsbvo1QqkZKSAqVSiQsXLuDpp59ust7WrVtRXV2NxMREeHl5AQACAwOxePFipKWlITw8HABQWFiI5ORkTJ48GYsWLQIAPPLII4iNjcW6desQGhoKW1tbq8VsDSeqExERyUDD8J+pL1OG/xwcHKBUKlutd/jwYQwbNkxMfgBg4MCB8PHxQXp6ulh27Ngx1NXVYfLkyWKZQqHApEmTUFhYiMzMTKvGbA2TKiIiIjJYTk4OsrOzxVdRUZFZ8QoLC1FaWoqAgAC9bYGBgVCpVOJ7lUoFJycn+Pr66tVr2G6tmIbg8B8REZEMaKGAwpzhv//d/bdq1SpJ+axZszB79myT4xYXFwNAkz1aSqUSN2/ehFqthoODA4qLi9GpUycoFAq9egDEBM8aMQ3BpIqIiEgGtFBAYYElFZYvXy7p1TFkeK8lNTU1ACCZON7AwcFBrOPg4ICamppW61krpiGYVBEREcmApZZU8PX1bXJYzVSOjo4AgNraWr1tarVaUsfR0dHgepaOaQjOqSIiIqI/TUNPV8OQna7i4mK4ubmJvUZKpRIlJSUQBEGvHgB4eHhYLaYhmFQRERHJgDl3/pn73MCWeHp6wt3dHdnZ2Xrbzp8/D39/f/G9v78/qqurkZOTI6mXlZUlbrdWTEMwqSIiIpIBQTAvsRJMWKfKUCNHjsSJEyeQn58vlp0+fRq5ubkICwsTy0aMGAE7OzukpKTofC4Bu3btgqenJ/r162fVmK3hnCoiIiKymi+++ALl5eXicNrx48dRUFAAAIiIiICLiwsiIyNx6NAhPPvss5gyZQqqqqqwfft29OzZU/JImy5dumDq1KnYvn076urqEBgYiKNHj+LcuXNYsWKFZJFOa8RsDZMqIiIiGdAK5i2pYMrinwCQnJyMvLw88f2RI0dw5MgRAMDYsWPh4uICLy8vxMXFIT4+HgkJCeJz+qKjo8W5Tw3mzZsHV1dXpKamYu/evfD29sby5csxZswYST1rxGyNQmg8M4vMkp2djaioKNif6QybCv1bNA2maGFkVtC2vk9zdUxtQ1uMd6tiN3ecW3mstn7+zT2OoefVmvVMPSe36ry2RW3hN92ezn8zbT2g/dyqh23475Li6b5QdHM2OY5wrQLCxkxs2rTJonf/3U44p4qIiIjIAjj8R0REJAMCFBDMWPwTZu0rD0yqiIiIZEArKABzlkUQFBzeagXPDxEREZEFsKeKiIhIBgQBZvZUWawpty0mVURERDJgieE/w1dskicmVURERHIgKExeawqAWWtcyQXnVBERERFZAHuqiIiIZEALM3uquKRCq5hUERERyYAgwLyHInOieqs4/EdERERkAeypIiIikgEBCmjNGMKz4fBfq5hUERERyUD98J/piZFZQ4cyweE/IiIiIgtgTxUREZEMaAVF/QKgpuI6Va1iUkVERCQD5t79x+G/1nH4j4iIiMgC2FNFREQkC+Yt/gne/dcqJlVEREQyIJj57D/zEjJ5YFJFREQkA+ZOVOcDlVvHOVVEREREFsCeKiIiIhng3X/Wx6SKiIhIDsxcUZ0PVG4dh/+IiIiILIA9VURERDIgmLmkgsAlFVrFpIqIiEgGBJg3gsfRv9Zx+I+IiIjIAthTRUREJANc/NP6mFQRERHJAcf/rI5JFRERkQywp8r6OKeKiIiIyALaVE/Vr7/+io8//hjZ2dkoKSlBhw4d4OvrixkzZmD48OGSuleuXEF8fDwyMjJgZ2eHoUOHIiYmBu7u7pJ6Wq0WSUlJ2LlzJ0pKSuDt7Y3IyEiMHj1a7/iGxiQiImp3zFxRncN/rWtTSVVeXh4qKyvx0EMPwcPDA9XV1Th8+DBeeOEFPPfccwgPDwcAFBQUIDY2Fi4uLoiKikJVVRWSkpJw+fJlJCQkwN7eXoy5adMmbNu2DRMnTkSfPn1w7NgxrFy5EgqFAqNGjRLrGROTiIioveE6VdbXppKqoUOHYujQoZKyxx57DFFRUdixY4eYVG3duhXV1dVITEyEl5cXACAwMBCLFy9GWlqaWK+wsBDJycmYPHkyFi1aBAB45JFHEBsbi3Xr1iE0NBS2trZGxSQiIiJqSpufU2Vra4suXbqgvLxcLDt8+DCGDRsmJj8AMHDgQPj4+CA9PV0sO3bsGOrq6jB58mSxTKFQYNKkSSgsLERmZqbRMYmIiNolAYCgMOP1Z3+Ats+gnqrs7GyzDvKXv/wFTk5OBtevqqpCTU0NKioqcPz4cfzwww8ICwsDUN/7VFpaioCAAL39AgMD8f3334vvVSoVnJyc4Ovrq1evYXtwcLBRMRsrKipCcXGx+D4nJ8fgz0lERHSrCGbOqTJrPpZMGJRUPf3001AoTB9Lfffdd3HfffcZXP+DDz5AamoqAMDGxgYPPPCAOHzXkMAolUq9/ZRKJW7evAm1Wg0HBwcUFxejU6dOem1v2LeoqMjomI2lpqZi8+bNBn82IiIiuj0ZPKdq4sSJCAoKMip4ZWUl3n//faMbNXXqVISGhqKoqAjp6enQaDSora0FANTU1ABAkxPHG5KempoaODg4oKamptV6xsZsLDw8XHJnYk5ODlatWmX4hyUiIroVuPin1RmcVAUHB2PMmDFGBb9x4wbi4uKMbpSvr684ZPfQQw9h8eLFeP7555GQkABHR0cAEJMsXWq1GgDEOo6OjgbXMzRmYx4eHvDw8DD8wxEREf0JuPin9Rk0UX3VqlXo37+/0cGdnZ2xatUq+Pv7G72vrtDQUFy4cAG5ubniEJ3uPKYGxcXFcHNzE3uUlEolSkpKIDQaCG7YtyEZMiYmERERUVMMSqpCQkLg6elpdHA7OzuEhITgjjvuMHpfXQ3Dc+Xl5fD09IS7u3uTk+fPnz8vSeD8/f1RXV2tN3k8KytL3A7AqJhERETtlmDGi1pl8JIKUVFR+Pzzz5vszbGU0tJSvbK6ujrs27cPjo6OuPPOOwEAI0eOxIkTJ5Cfny/WO336NHJzc8W7BAFgxIgRsLOzQ0pKilgmCAJ27doFT09P9OvXTyw3NCYREVF71DD8Z87LWLm5uXj55ZcRERGBMWPGIDIyEps3b0Z1dbWkXkZGBqKjozFmzBhMmjQJa9euRWVlpV48tVqN9evXY/LkyRg9ejTmzZuHH3/8scljGxrTkgyeU1VSUoL4+HisW7cO9957L8aMGYMHHngAHTt2tFhj3nnnHVRUVOCee+6Bp6cniouLceDAAfz3v/9FdHS0eKzIyEgcOnQIzz77LKZMmYKqqips374dPXv2xPjx48V4Xbp0wdSpU7F9+3bU1dUhMDAQR48exblz57BixQpx4U9jYhIREbVLt3iien5+PubNmwcXFxdMnjwZbm5uyMzMxEcffYTs7GysXr0aQP3yRosWLYKvry9iYmJQUFCA5ORkXL16FW+//bYk5urVq3Ho0CFMnToV3t7eSEtLw5IlS7B27VoEBweL9YyJaUkGJ1VffPEFzp49iwMHDuDIkSM4deoU1qxZg2HDhmHMmDEYMmQI7OzMW6D9wQcfxNdff41du3bhxo0b6NixIwICAvD3v/8dI0aMEOt5eXkhLi4O8fHxSEhIEJ/TFx0drTf3ad68eXB1dUVqair27t0Lb29vLF++XG/SvTExiYiIqGX79+9HeXk5PvjgA/j5+QGov2Neq9Vi3759KCsrg6urKzZu3AhXV1fExcXB2dkZANCtWze89dZbOHnyJAYPHgygfurOwYMHMX/+fMyYMQMAMG7cOMyaNQvr16/H+vXrxWMbGtPSjMqC+vfvj/79+2PRokX44Ycf8M033+DEiRM4dOgQXF1dERoaitGjR+Oee+4xqTGjRo2SPI+vJX5+fnj33XdbrWdjY4PIyEhERkZaLCYREVH7o/jfy5z9DVdRUQEA6NSpk6RcqVTCxsYGdnZ2qKiowKlTp/D444+LyQ9Qnyy9//77SE9PFxOgw4cPw9bWVvLYOEdHR0yYMAEbN25Efn4+vLy8jIppaSZ1LdnZ2WH48OEYPnw4qqurceTIEXzzzTfYs2cPdu/ejS5dumD06NF4+umnLd1eIiIiMoWFhv8a3/ylVCqbXFpowIAB+Oyzz/Dmm29i9uzZcHNzwy+//IJdu3YhIiICTk5OyMjIgEaj0Xuiib29PXr37g2VSiWWqVQqeHt7SxIl4I+npFy6dAleXl64fPmywTEtzewHKnfo0AFjx47F2LFjUVpainfeeQfHjh3DZ599xqSKiIjoNtN4getZs2Zh9uzZevWGDBmCOXPmYOvWrTh+/LhY/re//Q1RUVEAWn+iyc8//yy+Ly4ubrYeYPhTUnRjWprZSRUAZGZm4ptvvkF6ejpKS0vh4OCAYcOGWSI0ERERWYKFeqqWL18ueaZuU8lLg27duuGee+7ByJEj4ebmhu+++w5bt25F586dERER0eoTTRoW4AZgsaek6Ma0NJOTqitXruDAgQP49ttvce3aNSgUCgwYMABjxozByJEjLXpXIBEREZlJUNS/zNkf9U89aTy01pSDBw/i7bffxrZt29ClSxcA9csXCYKAhIQEjB49utUnmujeKGapp6RY8+Yzo5Kq/Px8HDx4EN988w0uX74MQRDQu3dvzJ8/H6NGjeLjWoiIiAgAkJKSgt69e4sJVYPhw4cjLS0NKpWq1Sea6OYVSqUShYWFTdYDDH9KijVzFYOTqpiYGGRmZkKr1aJr167461//ijFjxogLchIREVHbJtzCldFLS0vh6uqqV15XVwcA0Gg08PPzg62tLbKzs/Hggw+KdWpra6FSqSSLb/v7++PMmTOoqKiQTFZv/JQUY2JamsErqufk5GDixImIj49HcnIyoqKimFARERG1F+Y8osaE+Vg+Pj5QqVTIzc2VlB88eBA2Njbo1asXXFxcMHDgQOzfv1+y2vm+fftQVVUlSYBCQ0Oh0WiQmpoqlqnVauzZswdBQUHw8vICAKNiWprBPVUpKSlmL+5JRERE8jB9+nT88MMPiImJwWOPPQY3NzecOHECP/zwAx555BFxGG7u3LmIjo5GbGwswsPDxdXPBw0ahCFDhojxgoKCEBYWho0bN+L69evo0aMH9u7di7y8PCxdulRybENjWprBWVLjhKqiogIpKSk4c+YMrl+/jn/84x8ICgrCzZs3kZaWhuHDh8Pb29viDSYiIiITCDBzorpx1fv3748PPvgAH3/8MVJSUnDz5k1069YNUVFR4oroABAQEIA1a9Zgw4YNeP/999GxY0dMmDAB8+bN04u5bNkyeHl5Yd++fSgvL0fPnj3x5ptvon///pJ6xsS0JJO6ngoKCvDMM8+goKAA3t7e+O9//4uqqioAgJubG1JTU5GXl4eFCxdatLFERERkIgFQ3MJn/wH1vUuGPGsvODgY69ata7Weo6MjFixYgAULFlgspiWZlFStX78elZWV+Oijj+Du7o5HH31Usn3EiBH47rvvLNJAIiIisoBb/EBlOTJ4orquH3/8EREREbjzzjuhUOh3JXbv3h0FBQVmN46IiIiovTCpp6qmpgbu7u7NbtedbU9ERERtgZmLf5r1MGZ5MKmn6s4772zx2TnHjh1D7969TW4UERERWdgtXlJBjkxKqqZOnYpvv/0W27ZtQ0VFBQBAEARcvXoVq1atQmZmJh5//HGLNpSIiIioLTNp+G/s2LHIy8tDYmIiEhMTAQD//Oc/IQgCFAoFoqKiEBISYtGGEhERkRk4Ud3qTF7N88knn8S4ceNw+PBhXL16FYIgoHv37hg5ciS6d+9uyTYSERGRuZhUWZ1JSdXRo0cREhICLy+vZof51q9fj/nz55vVOCIiIqL2wqQ5Va+88gp++OGHZre/8847SE5ONrlRREREZGGCwvwXtcikpGrcuHFYvnw5Tp8+LSnXarVYuXIlvvrqKyxatMgiDSQiIiLzKVC/orrJrz/7A7QDJiVV//znPxEaGoply5aJSyvU1tbixRdfxKFDh7Bs2TK9VdaJiIiIbmcmT1R/4YUXUFtbi6VLl2LlypXYvn07MjIy8Morr/DOPyIioraGE9WtzqSeKgCwsbHBihUrcN9992HJkiU4f/483nzzTSZUREREJEsG9VS1NOk8MDAQp0+fxpAhQ3Dp0iVcunQJAKBQKLgAKBERURvRMDfKnP2pZQYlVevWrWu1zqFDh3Do0CHxPZMqIiIikhOze6qIiIioHTB3WQQuqdAqg5Kqrl27WrsdREREZE2cqG51Jk9UJyIiIqI/GJRUPf/88zh79qzRwSsrK/H888/jP//5j9H7EhERkYUJZryoVQYlVd999x2KioqMDl5bW4vvvvsO169fN3pfIiIishyzVlM3885BuTB48c8tW7Zg9+7dRgXXaDRQKDixjYiIiG5/BiVV99xzj0nJka2tLe655x64uroavS8RERFZECeqW51BSVVcXJy120FERETWxKTK6nj3HxEREZEFmPxAZSIiImo/+Jga62NSRUREJAtmrqgO3njWGiZVREREcsA5VVbHOVVEREREFsCeKiIiIjkwdwFP9lS1yqykqq6uDoWFhSgrK4Mg6J/tgIAAc8ITERGRpXD4z+pMSqrKysqwbt06HDhwAHV1dXrbBUGAQqHAoUOHzG0fERERUbtgUlK1evVqnDhxAg8++CCCgoLg7Oxs6XYRERGRBXFJBeszKan68ccfERERgdjYWEu3h4iIiKyFiZFVmXT3n5ubG3r06GHpthARERG1WyYlVeHh4fj222+h1Wot3R4iIiKyBsECL2qRScN/M2fOhFqtRlRUFMaNGwdPT0/Y2OjnZyNHjjS7gURERGQ+zqmyPpOSqsLCQvz000+4dOkSLl261GQd3v1HREREcmJSUvXGG29ApVIhMjISgYGBcHFxsXS7iIiIiNoVk5KqjIwMPPHEE5g9e7al20NERETWwMU/rc6kpKpz585wdXW1dFuIiIjISjinyvpMSqqmTZuGnTt3YsKECejYsaOl20RERES3iezsbHz88cfIyMiAWq1G9+7dMXHiREyZMkWsk5GRgQ0bNuDixYtwdnZGWFgYoqKi9HIMtVqNDz/8EPv370dZWRl69eqFuXPnYtCgQXrHNTSmJZmUVKnVatjZ2eGJJ55AWFgYunTponf3n0KhwOOPP26RRhIREZEF3OLeppMnT+KFF15A7969MXPmTDg5OeG3335DYWGhWEelUmHRokXw9fVFTEwMCgoKkJycjKtXr+Ltt9+WxFu9ejUOHTqEqVOnwtvbG2lpaViyZAnWrl2L4OBgk2JakklJ1bp168R///LLL5usw6SKiIioDbnFc6oqKirw+uuv4/7778err77a5NJLALBx40a4uroiLi5OfOxdt27d8NZbb+HkyZMYPHgwACArKwsHDx7E/PnzMWPGDADAuHHjMGvWLKxfvx7r1683OqalmZRUJScnW7odREREdBv55ptvUFJSgqioKNjY2KCqqgqOjo6S5KqiogKnTp3C448/LnmO8Lhx4/D+++8jPT1dTIAOHz4MW1tbhIeHi/UcHR0xYcIEbNy4Efn5+fDy8jIqpqWZlFR17drV0u0gIiIiK7rVE9VPnToFZ2dnFBUV4cUXX0Rubi6cnJwwduxYxMTEwNHREZcvX4ZGo0FAQIBkX3t7e/Tu3RsqlUosU6lU8Pb2liRKABAYGAgAuHTpEry8vIyKaWkGP6YmKysLN2/eNKju77//jr1795rcKCIiIrIwCz2mJicnB9nZ2eKrqKioycNdvXoVGo0Gy5Ytw+DBg/Hqq6/i4Ycfxq5du/DGG28AAIqLiwEASqVSb3+lUimJXVxc3Gw9AGJdY2JamsFJ1YIFC/DDDz+I72/evIkxY8bg7NmzenV/+eUX8YQRERHR7WPVqlWIiooSX6mpqU3Wq6qqQnV1NcaNG4eFCxdi5MiRWLhwIcLDw3Hw4EHk5uaipqYGQH0vUmMODg5Qq9Xi+5qammbrNWzX/achMS3N4OE/QRD03qvVamg0Gos3ioiIiCzMzOG/hp6q5cuXw9fXVyxuqkcIqJ/vBACjRo2SlI8ePRqpqanIzMxEhw4dAAC1tbV6+6vVajFhaojXXD3d4zX805CYlmbSnCoiIiJqhyywpIKvr6/efKWmKJVK/Prrr+jcubOkvFOnTgCAsrIy9OjRA8AfQ3a6iouL4eHhIYmnuxSDbj0AYt2GJM+QmJZm8PAfERERkaEaEq/GiVDDnCZ3d3f4+fnB1tYW2dnZkjq1tbVQqVTw9/cXy/z9/XH16lVUVFRI6mZlZYnbARgV09KYVBEREcmBhSaqGyosLAwA8PXXX0vKv/76a9ja2mLAgAFwcXHBwIEDsX//flRWVop19u3bh6qqKjEGAISGhkKj0UjmcKnVauzZswdBQUHw8vICAKNiWppRw395eXli5teQKV69ehUuLi6SeteuXTOpMefPn8fevXtx5swZ5OXlwc3NDX379sXcuXPh4+MjqXvlyhXEx8cjIyMDdnZ2GDp0KGJiYuDu7i6pp9VqkZSUhJ07d6KkpATe3t6IjIzE6NGj9Y5vaEwiIqL25lYvqXDXXXfh4Ycfxp49e6DRaNC/f3+cPXsW6enpiIyMFIfh5s6di+joaMTGxiI8PFxc/XzQoEEYMmSIGC8oKAhhYWHYuHEjrl+/jh49emDv3r3Iy8vD0qVLJcc2NKalKYTGM9CbMXLkSCgUCkmZIAh6Zbrlhw4dMqoxK1asQEZGBsLCwtCrVy8UFxcjJSUFVVVVWL9+PXr27AkAKCgowJw5c+Di4oKIiAhUVVUhKSkJXl5eSEhIkMz4T0hIwLZt2zBx4kT06dMHx44dw3fffYeXXnpJMnnOmJgtyc7ORlRUFOzPdIZNhWH7NEnRQieioG19n+bqmNqGthjvVsVu7ji38lht/fybexxDz6s165l6Tm7VeW2L2sJvuj2d/2baekD7uVUP2/DfpevBYdC4uJscx7b8OtzPpWPTpk0GzakCgLq6Onz66adIS0tDUVERvLy8MHnyZL0nrpw7d058Tl/Hjh0RFhaGefPm6T2nr6amRnz2X3l5OXr27Im5c+c2uZinoTEtyeCkKi0tzejg48ePN6p+RkYG+vTpI0lgcnNz8dRTT2HkyJFYsWIFAGDNmjVIS0vD1q1bxe6+U6dOYfHixXjuuefE1VYLCwsxbdo0TJw4EYsWLQJQn/DFxsbi2rVr2LFjB2xtbY2K2RomVbcw3q2K3dxxbuWx2vr5N/c4TKrap7bwm25P51+GSZXcGDz8Z2yCZIq7775br8zHxwd33nkncnJyxLLDhw9j2LBhYvIDAAMHDoSPjw/S09PFBOjYsWOoq6vD5MmTxXoKhQKTJk3CypUrkZmZKT6A0dCYRERE7dItfvafHLX5JRUEQUBpaSnuvPNOAPW9T6WlpU1myYGBgfj+++/F9yqVCk5OTpL1NBrqNWwPDg42KmZjRUVFkts2dZM/IiKitkIBM+dUWawlt682n1QdOHAAhYWFmD17NoDWl5+/efOmuLhXcXExOnXqpDfvy9gl7XVjNpaamorNmzfrldt27wbb2v89n0i3S7qlYT1D2Rjw1daa+MvRjd1SDFPq6dJdNLalc6K7f+P5exoTuvoNjddcuxt/VlPqGXq+dNvXeJTelOvbXBsafwZDY9vqDmXo7GPo5zP0O6Cr8fBOc0M//xvWN6hNzTH02hqyjzGai9/S52tO48WZDT3Phn5fDfnbZtuo3NDfrbnfV2tei5ba0NzvoqV4dNto00lVTk4O3nvvPfTt2xcPPfQQgNaXn2+o4+DgYLEl7XVjNhYeHo7hw4dL2rxq1SrDPyQREdGtwOE/q2uzSVVxcTGWLl0KZ2dnvPrqq+KE8taWn9etY6kl7XXrNObh4WHV1VmJiIgs4VYvqSBHbXLxz/LycixZsgTl5eV455139JapB5pfft7NzU3sUVIqlSgpKdF7bqGxS9rrxiQiIiJqSptLqmpqavD8888jNzcXb7zxhjhBvYGnpyfc3d31lp8H6hcPbbykfXV1td7k8cZL2hsTk4iIqF26xSuqy1GbSqo0Gg1efvllZGZm4pVXXkG/fv2arDdy5EicOHEC+fn5Ytnp06eRm5srWX5+xIgRsLOzQ0pKilgmCAJ27doFT09PSXxDYxIREbVLTKqsrk3Nqfrggw9w/PhxDBs2DGVlZdi/f79k+9ixYwEAkZGROHToEJ599llMmTIFVVVV2L59O3r27ClZT6tLly6YOnUqtm/fjrq6OgQGBuLo0aM4d+4cVqxYIc7TMiYmERERUVPaVFJ16dIlAMCJEydw4sQJve0NSZWXlxfi4uIQHx+PhIQE8Tl90dHRenOf5s2bB1dXV6SmpmLv3r3w9vbG8uXLMWbMGEk9Y2ISERG1NwqYt9YU16lqXZtKquLi4gyu6+fnh3fffbfVejY2NoiMjERkZKTFYhIREbVLHMKzqjaVVBEREZGVmLmkAhOy1rWpiepERERE7RV7qoiIiOSAK6pbHZMqIiIiOWBSZXUc/iMiIiKyAPZUERERyQCf/Wd9TKqIiIjkgMN/VsfhPyIiIiILYE8VERGRDChg5vCfxVpy+2JSRUREJAcc/rM6Dv8RERERWQB7qoiIiGSAd/9ZH5MqIiIiOeDwn9UxqSIiIpIDJlVWxzlVRERERBbAnioiIiIZ4JIK1sekioiISA44/Gd1HP4jIiIisgD2VBEREcmBIEAhmNHdZM6+MsGkioiISA44/Gd1HP4jIiIisgD2VBEREcmAwsyeKq6o3jomVURERHLBxMiqOPxHREREZAHsqSIiIpIBDv9ZH5MqIiIiOeDdf1bHpIqIiEgG2FNlfZxTRURERGQB7KkiIiKSAw7/WR2TKiIiIhlQAOYN/1mqIbcxJlVERER0S2zZsgWJiYnw8/PDJ598ItmWkZGBDRs24OLFi3B2dkZYWBiioqLQsWNHST21Wo0PP/wQ+/fvR1lZGXr16oW5c+di0KBBesczNKalcE4VERGRHAiC+S8zFBQUYOvWrXByctLbplKpsGjRIlRXVyMmJgYTJkzA7t278dJLL+nVXb16NXbs2IExY8bgmWeegY2NDZYsWYJz586ZHNNS2FNFREQkB4KZd/CZOadq3bp1CAoKglarxY0bNyTbNm7cCFdXV8TFxcHZ2RkA0K1bN7z11ls4efIkBg8eDADIysrCwYMHMX/+fMyYMQMAMG7cOMyaNQvr16/H+vXrjY5pSeypIiIiIqs6e/YsDh8+jNjYWL1tFRUVOHXqFMaOHSsmP0B9suTk5IT09HSx7PDhw7C1tUV4eLhY5ujoiAkTJiAzMxP5+flGx7Qk9lQRERHJgYXu/svJyZEUK5VKeHh4NLubRqPB2rVrMWHCBPTq1Utv++XLl6HRaBAQECApt7e3R+/evaFSqcQylUoFb29vSaIEAIGBgQCAS5cuwcvLy6iYlsSkioiISAYUAgCtGQH+l1StWrVKUjxr1izMnj272d127dqF/Px8vPfee01uLy4uBlCfnDWmVCrx888/S+o2Vw8AioqKjI5pSUyqiIiIyGDLly+Hr6+v+L6pxKXBjRs38NFHH+HJJ5+Eu7t7k3VqamoA1PciNebg4AC1Wi2p21w93VjGxLQkJlVERERyYKHhP19fX71hteYkJibC1dUVERERzdZxdHQEANTW1uptU6vVYsLUULe5erqxjIlpSUyqiIiIZMDcZ/8Zu29ubi52796N2NhYcVgOqE9q6urqcO3aNTg7O4s9XQ1DdrqKi4sl87WUSiUKCwubrAdArGtMTEvi3X9ERERycIvXqSoqKoJWq8XatWsxbdo08ZWVlYXc3FxMmzYNmzdvhp+fH2xtbZGdnS3Zv7a2FiqVCv7+/mKZv78/rl69ioqKCkndrKwscTsAo2JaEnuqiIiIyOL8/Pzw2muv6ZUnJiaisrISzzzzDLp37w4XFxcMHDgQ+/fvx8yZM8XVzvft24eqqiqEhYWJ+4aGhiIpKQmpqaniOlVqtRp79uxBUFAQvLy8AMComJbEpIqIiEgGbvXwn7u7O0JCQvTKP//8cwCQbJs7dy6io6MRGxuL8PBwFBQUIDk5GYMGDcKQIUPEekFBQQgLC8PGjRtx/fp19OjRA3v37kVeXh6WLl0qOY6hMS2JSRUREZFcmLkqurUEBARgzZo12LBhA95//3107NgREyZMwLx58/TqLlu2DF5eXti3bx/Ky8vRs2dPvPnmm+jfv7/JMS2FSRURERHdMnFxcU2WBwcHY926da3u7+joiAULFmDBggWt1jU0pqUwqSIiIpKBWz38J0dMqoiIiOTAhDv49PanFnFJBSIiIiILYE8VERGRDHD4z/qYVBEREckBkyqr4/AfERERkQWwp4qIiEgmFObMU7dcM25bTKqIiIjkQAvzsiqtxVpy22JSRUREJAecU2V1nFNFREREZAHsqSIiIpIBhWDe6B8Edla1hkkVERGRLJi5ojpTqlZx+I+IiIjIAthTRUREJAMc/rM+JlVERERywLv/rI7Df0REREQWwJ4qIiIiGVAIAhTmTFQ3a5K7PDCpIiIikgMB5q2KzpyqVW0qqaqsrERSUhKysrJw/vx5lJWV4YUXXsD48eP16l65cgXx8fHIyMiAnZ0dhg4dipiYGLi7u0vqabVaJCUlYefOnSgpKYG3tzciIyMxevRok2MSERERNdamkqobN25g8+bN8PLygr+/P86cOdNkvYKCAsTGxsLFxQVRUVGoqqpCUlISLl++jISEBNjb24t1N23ahG3btmHixIno06cPjh07hpUrV0KhUGDUqFEmxSQiImpvFIIAhTndTRz+a1WbSqqUSiVSUlKgVCpx4cIFPP30003W27p1K6qrq5GYmAgvLy8AQGBgIBYvXoy0tDSEh4cDAAoLC5GcnIzJkydj0aJFAIBHHnkEsbGxWLduHUJDQ2Fra2tUTCIionbJ3JyIOVWr2tTdfw4ODlAqla3WO3z4MIYNGyYmPwAwcOBA+Pj4ID09XSw7duwY6urqMHnyZLFMoVBg0qRJKCwsRGZmptExiYiI2iVBMP9FLWpTPVWGKCwsRGlpKQICAvS2BQYG4vvvvxffq1QqODk5wdfXV69ew/bg4GCjYjZWVFSE4uJi8X1OTo7Rn4mIiIjav3aXVDUkME31aCmVSty8eRNqtRoODg4oLi5Gp06doFAo9OoB9QmRsTEbS01NxebNm/XKb9zrCcHRHQAgGNgfqNC5K6PFfXT/Z0FhQB00WkVX598F25b3M1pz7QEg6GxTtHAHim5bDT130gM1H09SzdBzrBurcbt1PpPW1rB6Fu9CN/C86hJauE7NHqZRuw25No3bI/kOCE2Xtxyw0VuNge0x5fzr7GPod9fQeLoaf3ZJfN3japouB1r47AZ+Vr1rqxu/hc8uOa7QdD29tjUTT+88NPN3oHEbmvvdNT5uc38DdentoxOvpZXIm/1etxDPlN+g2YQW/0S3vjs7qlrV7pKqmpoaAGhy4nhD0lNTUwMHBwfU1NS0Ws/YmI2Fh4dj+PDh4vucnBysWrXKqM9ERER0SzAzsqp2l1Q5OjoCAGpra/W2qdVqSR1HR0eD6xkaszEPDw94eHgY9RmIiIjo9tOmJqobomGITnceU4Pi4mK4ubmJPUpKpRIlJSUQGmXmDfs2JEPGxCQiImqPFFrzX9SydpdUeXp6wt3dHdnZ2Xrbzp8/D39/f/G9v78/qqur9SaPZ2VliduNjUlERNQu8e4/q2t3SRUAjBw5EidOnEB+fr5Ydvr0aeTm5iIsLEwsGzFiBOzs7JCSkiKWCYKAXbt2wdPTE/369TM6JhEREVFT2tycqi+++ALl5eXiUNzx48dRUFAAAIiIiICLiwsiIyNx6NAhPPvss5gyZQqqqqqwfft29OzZU/JImy5dumDq1KnYvn076urqEBgYiKNHj+LcuXNYsWKFuPAnAINjEhERtUvsaLK6NpdUJScnIy8vT3x/5MgRHDlyBAAwduxYuLi4wMvLC3FxcYiPj0dCQoL4nL7o6Gi9uU/z5s2Dq6srUlNTsXfvXnh7e2P58uUYM2aMpJ4xMYmIiNobcx9TY9YjbmSizSVVO3bsMKien58f3n333Vbr2djYIDIyEpGRkRaLSURERNRYm0uqiIiIyBrMnGze0gqoBIBJFRERkTxoYd68qj9jFfh2hkkVERGRDCgEAQozeqo4p6p17XJJBSIiIqK2hj1VREREciCAC3haGZMqIiIiWeBEdWvj8B8RERGRBbCnioiISA60/3uR1TCpIiIikgGz7/7jfKxWMakiIiIiizt//jz27t2LM2fOIC8vD25ubujbty/mzp0LHx8fSd0rV64gPj4eGRkZ4mPiYmJi4O7uLqmn1WqRlJSEnTt3oqSkBN7e3oiMjMTo0aP1jm9oTEtiUkVERCQHgpkT1Y3c97PPPkNGRgbCwsLQq1cvFBcXIyUlBXPnzsX69evRs2dPAEBBQQFiY2Ph4uKCqKgoVFVVISkpCZcvX0ZCQgLs7e3FmJs2bcK2bdswceJE9OnTB8eOHcPKlSuhUCgwatQosZ4xMS2JSRUREZEsmJlUGbn45+OPP45//etfkgTmwQcfxFNPPYVt27ZhxYoVAICtW7eiuroaiYmJ8PLyAgAEBgZi8eLFSEtLQ3h4OACgsLAQycnJmDx5MhYtWgQAeOSRRxAbG4t169YhNDQUtra2RsW0NN79R0RERBZ399136/UI+fj44M4770ROTo5YdvjwYQwbNkxMfgBg4MCB8PHxQXp6ulh27Ngx1NXVYfLkyWKZQqHApEmTUFhYiMzMTKNjWhp7qoiIiOTA3MU//7erbkIEAEqlEh4eHoaFEASUlpbizjvvBFDf+1RaWoqAgAC9uoGBgfj+++/F9yqVCk5OTvD19dWr17A9ODjYqJiWxqSKiIhIDsxdUuF/D1RetWqVpHjWrFmYPXu2QSEOHDiAwsJCsX5xcTGA+sSsMaVSiZs3b0KtVsPBwQHFxcXo1KkTFAqFXj0AKCoqMjqmpTGpIiIikgMzl1Ro6OVavny5pLeoqeSlKTk5OXjvvffQt29fPPTQQwCAmpoaAGhy4nhD0lNTUwMHBwfU1NS0Ws/YmJbGpIqIiIgM5uvr2+TQWkuKi4uxdOlSODs749VXXxUnlDs6OgIAamtr9fZRq9WSOo6OjgbXMzSmpXGiOhERkSwIfyyrYMrLyLv/GpSXl2PJkiUoLy/HO++8I5l/1dDL1TBkp6u4uBhubm5ij5JSqURJSQmERr1tDfs2xDUmpqUxqSIiIpIDrWD+y0g1NTV4/vnnkZubizfeeEOcoN7A09MT7u7uyM7O1tv3/Pnz8Pf3F9/7+/ujurpab6J8VlaWuN3YmJbGpIqIiIgsTqPR4OWXX0ZmZiZeeeUV9OvXr8l6I0eOxIkTJ5Cfny+WnT59Grm5uQgLCxPLRowYATs7O6SkpIhlgiBg165d8PT0lMQ3NKalcU4VERGRHNziFdU/+OADHD9+HMOGDUNZWRn2798v2T527FgAQGRkJA4dOoRnn30WU6ZMQVVVFbZv346ePXti/PjxYv0uXbpg6tSp2L59O+rq6hAYGIijR4/i3LlzWLFihThPy5iYlsakioiISA4stE6VoS5dugQAOHHiBE6cOKG3vSGp8vLyQlxcHOLj45GQkCA+py86Olpv7tO8efPg6uqK1NRU7N27F97e3li+fDnGjBkjqWdMTEtiUkVEREQWFxcXZ3BdPz8/vPvuu63Ws7GxQWRkJCIjIy0W05KYVBEREcnCrX32nxwxqSIiIpIDE+/gk+xPLeLdf0REREQWwJ4qIiIiORC09S9z9qcWMakiIiKSg1t8958cMakiIiKSA8HMOVVmTXKXByZVVvJhTDJ696x/mGONUCeWa3VSfRsoJPt0tPlj7YxaQaOzj7TLVaPzxbZV/BHDSfHHAyLLtdWSfZqrVyNIHzipe1x7ha1OvTpJPXvFH9PxHBX2OvWk8Zpra6VOPBdF82uG6H52m0ZTAHWPq/t5ddvduO0uNn989huNzlEHnf3s8Me/V+l8JieF9KnnurF1j1suqCX13HTOeUvfgea+K42Pq0v3WHfYdNCJ1fy1qNU5r51sOkrj6ZwXR8UffyIafyZtM//baq9znXS/J43boHu+dL93gPS7oqul70CVUNNsPd3zqvuZdDX+nTX3vdY0+g+LblttJJ9d+j3Upft5HfW+U38cS7dNut/Jxudet16tzhBN4++Nrc710G1D4+9hHXS3/bFP43PUUpua20e3fbrHbXy+dPfTPUfXNBWSeh4633ldlY2+/7p/Z3TbqvvdaHwedOleZ93P3Thec9cMkP4tkf42Fjd7XGpfmFQRERHJwS1eUV2OmFQRERHJAZMqq+OSCkREREQWwJ4qIiIiOWBPldUxqSIiIpIDQQC05qxTxaSqNRz+IyIiIrIA9lQRERHJAYf/rI5JFRERkRwwqbI6Dv8RERERWQB7qoiIiOSAj6mxOiZVREREciAIEATe/WdNTKqIiIjkQGtmT5U5+8oE51QRERERWQB7qoiIiOSAd/9ZHZMqIiIiORC0Zq6obsa+MsHhPyIiIiILYE8VERGRHAgwc/jPYi25bTGpIiIikgFBq4VgxvCfOfvKBYf/iIiIiCyAPVVERERywLv/rI5JFRERkRzwMTVWx6TKSiYfnoraDPf6NzY6X0SN4o9/t230BdXZJJkQKCga1Wv6iy3oxFPUNRrZ1W1DnU68xqF0d9PdR9u4Dc20p1E1yedtKZ4u3WF73aY6SsfzFZLP8ce/C43Oq6SeDsG+cbw/PrzkXNa2cL5smwwt/QyA5LwKdn9sVGhaOA9CM+eucTt0Y9i18EevroXvXnPH1eiUN47d3He58fe1uTa01Fbd89fMuQMARa3uRp0NjT9fc8fVbWszv6v64+p+H1r4bemGaPS9Exx0Yuh8DKFROEUz11Zo6Xzp7l/bwjnWNv07kewDSM9fS7/VZhvRwrbmrm3j363uW932NY6te/5aOkU610n3nDf390HvWLrtbunvgKKF34LufjrxrixovgnUvjCpIiIikgNBMG+tKfZUtYpJFRERkQwIWgGCGcN/5uwrF0yqiIiIZEFr5qroXFKhNVxSgYiIiMgC2FNFREQkA4LWvCE8PvqvdUyqiIiI5EAwc/iPWVWrmFRZWE1NDQDA7kbZH4WKZm5PbnybfHNLKujdQ9zM/2no3tbb+FZ93TZoWlgiQHdAuKVbgyVvW1hSQdvMLest3XbfzJIKcGjU2LpmGtT4vDa3bEFLSwQYugSFCUsqSG5X16AFLdzuL7k128ClEpr7fC0dV7d9jWM3+1223pIKLS6VoLuppe+AbXNtbaE9un8pG9+CL/leN3NMALDX/TugU954EoYp11ZXS0tnNLdMR+PPZGPgb7U5Jiyp0OKyIbrtM3VJBd3rpLtPS8uamLKkAlr4LTSzpEJ2djZ8fX3RoUOH5ttiAULHOrNmRQkd61qvJHNMqixMpVIBADy/O/Mnt4SIiNqDqP1HsGnTJgQEBFglvru7Ozp06IDqgJtmx+rQoQPc3d3Nb9RtikmVhfn6+gIAli5dCn9//z+5NWSMnJwcrFq1CsuXLxevI7V9vG7tE6+blDXPgZeXFz799FNcv37d7Fju7u7w8vIyv1G3KSZVFubq6goA8Pf3t9r/dZB1+fr68tq1Q7xu7ROv263h5eXFZOgW4JIKRERERBbApIqIiIjIAphUWZhSqcSsWbOgVCr/7KaQkXjt2idet/aJ141uRwpB4BMSiYiIiMzFnioiIiIiC2BSRURERGQBTKqIiIiILIBJFREREZEFyHLxz9dffx179+5tdvsXX3wBT09PaLVa7N69G7t27cJvv/2GDh064K677sKTTz6Ju+++W7KPWq3Ghx9+iP3796OsrAy9evXC3LlzMWjQIL34GRkZ2LBhAy5evAhnZ2eEhYUhKioKHTt2NDmmHOTm5uLDDz9ERkYGbt68CS8vL4wePRrTp0+XPDPLGueX18w8rV276upq7NmzB8eOHcPly5dRVVUFb29vTJw4ERMnToStrfQhi1qtFklJSdi5cydKSkrg7e2NyMhIjB49Wu/YV65cQXx8PDIyMmBnZ4ehQ4ciJiZG71EbxsSUC0N/cw3Kysrw17/+FdevX8fKlSsRGhoq2c7fHN3uZHn33y+//ILff/9dUiYIAt5991107doVW7ZsAQDEx8djx44dGDt2LIKDg1FeXo7U1FTk5+fjgw8+QFBQkLj/K6+8gkOHDmHq1Knw9vZGWloaLly4gLVr1yI4OFisp1KpMH/+fPj6+iI8PBwFBQVITk7GgAED8Pbbb0vaZGhMOcjPz8dTTz0FFxcXhIeHw83NDZmZmUhLS8Pw4cOxevVqANY5v7xm5jHk2l2+fBlPPfUU7rvvPgwaNAgdO3bEyZMncfToUYwbNw4vvviiJGZCQgK2bduGiRMnok+fPjh27Bi+++47vPTSSxg1apRYr6CgAHPmzIGLiwsiIiJQVVWFpKQkeHl5ISEhAfb29kbHlAtDf3O61q5diz179qCqqqrJpIq/ObrtCSQIgiD8/PPPQkhIiLBlyxZBEAShtrZWGD16tLBixQpJvd9++00ICQkR/v3vf4tlmZmZQkhIiPDZZ5+JZdXV1cL06dOFv//975L9n3vuOWHSpElCeXm5WLZ7924hJCRE+OGHH0yKKQdbtmwRQkJChMuXL0vKV61aJYSEhAg3b94UBME655fXzDyGXLvS0lK97YIgCKtXrxZCQkKE3NxcsaygoEAICwsT1qxZI5ZptVohOjpaeOyxx4S6ujqx/N133xVGjx4t5OXliWU//vijEBISIuzatcukmHJh6G+uwX/+8x8hNDRU2Lx5sxASEiKkp6dLtvM3R3LAOVX/880330ChUIhd/RqNBjU1NejUqZOkXqdOnWBjYwNHR0ex7PDhw7C1tUV4eLhY5ujoiAkTJiAzMxP5+fkAgIqKCpw6dQpjx46Fs7OzWHfcuHFwcnJCenq60THloqKiAgD0rodSqYSNjQ3s7Oyscn55zcxnyLVzd3eHn5+f3r4hISEA6h++2+DYsWOoq6vD5MmTxTKFQoFJkyahsLAQmZmZYvnhw4cxbNgwyTPPBg4cCB8fH8m1MyamXBhy3XTFxcXhgQceaLZ3iL85kgMmVQDq6uqQnp6Ofv36oVu3bgDqf5hBQUHYu3cv9u/fj/z8fPznP//B6tWr4erqKvkRq1QqeHt7S/4AAEBgYCAA4NKlSwCAy5cvQ6PR6D081N7eHr1794ZKpTI6plwMGDAAAPDmm29CpVIhPz8fBw8exK5duxAREQEnJyernF9eM/MZcu2aU1JSAgC44447xDKVSgUnJyf4+vpK6jac54ZrUlhYiNLS0iYf1hsYGKh37QyJKSfGXLf09HT88ssv+Pvf/95sPP7mSA5kOVG9sZMnT+LGjRsYM2aMpHz58uV4+eWXsWrVKrGse/fu+OCDD9C9e3exrLi4uMlHLTSUFRUVifV0yxvX/fnnn42OKRdDhgzBnDlzsHXrVhw/flws/9vf/oaoqCgA1jm/vGbmM+TaNaW2thaff/45unXrhj59+ojlxcXF6NSpExQKhaS+sdfu5s2bUKvVcHBwMDimnBh63WpqarBu3To8/vjj6NatG/Ly8pqMx98cyQGTKtQP/dnZ2SEsLExS3rFjR/j5+aFv37647777UFJSgm3btmHZsmWIj48X7x6qqamRTHht4ODgIG7X/WdzddVqtfje0Jhy0q1bN9xzzz0YOXIk3Nzc8N1332Hr1q3o3LkzIiIirHJ+ec0so7Vr15R///vfuHLlCt58803JUJOlrl1DHQcHB167Zhhy3bZt24a6ujpERka2GIu/OZID2SdVlZWVOHbsGAYPHiwZYqirq8OiRYswYMAAPPvss2L5fffdh5kzZ2L79u2YP38+gPqhwtraWr3YDT/+hvlXDf9srm7DHwJjYsrFwYMH8fbbb2Pbtm3o0qULAGDkyJEQBAEJCQkYPXq0Vc4vr5n5DLl2ur89ANi+fTt2796NOXPmYOjQoZJtlrp2jevy2kkZct0qKyuxfft2LFq0SG+pg8b4myM5kP2cqmPHjqG6ulpv6O/nn3/Gr7/+iuHDh0vKfXx84Ovri19++UUsUyqVYpe1roYyDw8PsZ5ueeO6DfWMiSkXKSkp6N27t/jHvcHw4cNRXV0NlUpllfPLa2Y+Q66drrS0NGzYsAGPPvooZs6cqRdPqVSipKQEQqPVYIy9dm5ubuJ/oA2NKSeGXLePPvoIHh4e6N+/P65du4Zr166J8+CuX7+Oa9euQavVAuBvjuRB9knVgQMH4OTkpJc8lZaWAoD4B0FXXV0dNBqN+N7f3x9Xr14V75ZpkJWVJW4HAD8/P9ja2iI7O1tSr7a2FiqVSqxnTEy5KC0tbfZaAPV3a1rj/PKamc+Qa9fg6NGjeOutt/DAAw9g0aJFTcbz9/dHdXW15I5AQP88e3p6wt3dXe/aAcD58+f1rp0hMeXEkOuWn5+P3377DdOnT8e0adMwbdo0vPLKKwCANWvWYNq0aeLvgb85kgNZJ1XXr1/HqVOn8MADD+itDuzj4wOgvgtcV3Z2NnJzc9G7d2+xLDQ0FBqNBqmpqWKZWq3Gnj17EBQUJN7O7eLigoEDB2L//v2orKwU6+7btw9VVVWSOV2GxpQLHx8fqFQq5ObmSsoPHjwIGxsb9OrVyyrnl9fMfIZcOwA4e/YsXnnlFQQHB2PFihWwsWn6z9OIESNgZ2eHlJQUsUwQBOzatQuenp7o16+fWD5y5EicOHFCcmv96dOnkZubK7l2xsSUC0Ou29y5c/Haa69JXnPmzAEAzJgxA6+99pp4lyB/cyQHsp5TdfDgQWg0Gr2hPwAICAjAwIEDsXfvXlRUVGDw4MEoLi7GF198AUdHR0ydOlWsGxQUhLCwMGzcuBHXr19Hjx49sHfvXuTl5WHp0qWSuHPnzkV0dDRiY2MlKwUPGjQIQ4YMMSmmHEyfPh0//PADYmJi8Nhjj8HNzQ0nTpzADz/8gEceeUTs5rfG+eU1M48h1y4vLw/Lli2DQqFAaGgoDh06JInRq1cvMfnq0qULpk6diu3bt6Ourg6BgYE4evQozp07hxUrVkgeaRMZGYlDhw7h2WefxZQpU1BVVYXt27ejZ8+eGD9+vFjPmJhyYch1a2p4zcXFBUD9sgYN64wB/M2RPMjyMTUN5s+fj99//x1ffvllk380a2pqkJSUhIMHD+LatWuwt7dHcHAw5syZI+mpaqjb8Pyp8vJy9OzZE3PnzsXgwYP14p47d058plXHjh0RFhaGefPm6U30NCamHGRlZeHjjz+GSqXCzZs30a1bNzz00EOYMWOG5O4wa5xfXjPztHbtzpw5g4ULFza7/6xZszB79mzxvVarxWeffYbU1FQUFxfD29sbf/3rXzF27Fi9fX/99Ve9Z/9FR0ejc+fOknrGxJQLQ39zuhquZVOPqeFvjm53sk6qiIiIiCxF1nOqiIiIiCyFSRURERGRBTCpIiIiIrIAJlVEREREFsCkioiIiMgCmFQRERERWQCTKiIiIiILYFJFREREZAGyfkwNERFZTlFREf7v//4P58+fx4ULF1BVVYW1a9diwIABBsc4deoUPv30U1y+fBkajQbe3t6IiIjAuHHjxDo1NTV47733cP78eRQUFECr1aJ79+54+OGHMXnyZMlq72lpaVi9enWTx0pJSYFSqWxy22+//YaZM2dCrVZj48aN6NOnj8GfQdfVq1eRkJCA06dPo7a2FnfddRfmzJmDe++916R41LYxqSIiiddffx1nz57Fjh07/uymAAA++ugjbN68GQDg5OSEffv2GbxvWVkZJkyYIL6fP38+ZsyYYekm0v/k5ubis88+g7e3N3r27InMzEyj9j927BhefPFF9O3bF7NmzYJCoUB6ejpee+013LhxA48//jiA+qTqypUruP/++9G1a1fY2Njgl19+QXx8PM6fP49//etferHnzJmDbt26ScoanlPYlPfff9/sZz7m5+dj/vz5sLW1xYwZM9ChQwekpaXhH//4B9577z3079/frPjU9jCpIpKBBx54wKB6a9eutXJLTLd8+XKj/yPn5OSE5cuX4/r164iPj7dSy+TjmWeeQdeuXbFs2bImtwcEBOCrr76Cm5sbDh061GRy05Ivv/wSSqUS//73v+Hg4AAACA8Px9/+9jekpaWJSZWbmxs2bNgg2ffRRx+Fs7MzvvzyS0RHR+v1QA0ZMsTg3qaTJ0/ixx9/xIwZM7BlyxajPoOubdu2oby8HJ988gn+8pe/AAAmTpyIyMhIxMfHIzEx0eTY1DYxqSKSgeXLl0ve7927F6dOndIr9/X1xZIlS6DVam9l8wxiyoON7ezsMHbsWFy7do1J1S3Q+GHHxqqsrISrq6uYUAH11/COO+4waP+uXbsCAMrLy5sc1qusrISjo2OLyXldXR3i4uIwZcoU9OjRo9l6OTk5SExMxE8//YSamhr4+flh5syZGDFihFjn3Llz6N27t5hQAUCHDh0wfPhwpKSkIDc3Fz4+PgZ9NmofmFQRyUDjhCQzMxOnTp0yKVEhspb+/fvjs88+Q2JiIh566CEoFAp88803yM7Oxssvv6xXv7a2FhUVFaipqUF2djaSkpLQtWvXJpOhhQsXoqqqCvb29hg0aBCio6ObTGg+//xzlJWV4cknn8SRI0eabOevv/6K6OhoeHh44K9//Ss6dOiA9PR0vPjii3j11VfFnuHa2lq4urrq7d+hQwcAwMWLF5lU3WaYVBGRROM5VdeuXcO0adMwf/58ODo6Ijk5GSUlJbj77ruxdOlSdOnSBVu2bEFqaipu3LiBQYMG4YUXXoCbm5sk7vfff4+tW7fi4sWLUCgUuOeeezB//nz4+fmZ3NYLFy5g06ZNuHjxIqqqqtC5c2fce++9eP755806B/TnmDlzJq5du4ZPP/1UHHbr0KEDVq5ciZCQEL36R44cwSuvvCK+79OnD5YuXSqZqO7o6Ijx48djwIABcHZ2RnZ2Nnbs2IEFCxYgMTERXl5eYt3i4mJ88sknWLBgAZydnZttZ1xcHLp06YKNGzeKvWqTJ09GdHQ0NmzYICZVPj4+OHfuHCorKyW9eOfOnQMAFBYWmnKaqA1jUkVEBvnmm29QW1uLiIgI3Lx5E9u3b8fLL7+Me++9F2fOnMETTzyBq1ev4ssvv8S6deskic2+ffvw+uuvY/DgwZg3bx5qamqwc+dOREdH48MPP9SbQGyI0tJS/OMf/4C7uzueeOIJuLq64tq1a832LpBx6urqUF5erldWW1uL69evS8rd3NxgY2P+Cj329vbw8fFBaGgoHnjgAWg0GuzevRurVq3CmjVr0LdvX0n9AQMGYM2aNSgvL8fp06dx6dIlVFdXS+o8+OCDePDBB8X3ISEhGDx4MGJjY/Hpp5/iueeeE7dt2LAB3bt3xyOPPNJsG2/evImffvoJs2fPRmVlJSorK8VtgwcPxkcffYTCwkJ4enpi0qRJOHHiBF566SVERUXByckJKSkpyM7OBlA/4Z5uL0yqiMgghYWF+Oyzz8Q7prRaLbZu3Yqamhps3LhR7B24ceMGDhw4gMWLF8PBwQGVlZVYu3YtHnnkEfzzn/8U4z300EOIjIzE1q1bJeWG+uWXX1BWVoZ3331XMgE5KirKzE9KAJCRkYGFCxfqlf/yyy84ePCgpCw5OdmkxLixf//738jKykJiYqKYpD344IN48sknERcXh4SEBEn9zp07o3PnzgCA0NBQfPrpp1i8eDE+++yzZpdKAIDg4GAEBQXh9OnTYllmZib279+P9957r8UE8erVqxAEAR9++CE+/PDDJuuUlpbC09MT999/PxYuXIiNGzdi7ty5AIAePXogKioK69evh5OTk2EnhtoNJlVEZJDQ0FDJLeiBgYEAgDFjxkiGWwIDA/HNN9+gqKgI3bt3x6lTp1BeXo5Ro0ZJejhsbGwQGBiIn376yaT2NLTlxIkT8Pf3l7SBzOfv7481a9ZIyj744AN07txZb1mKhsTGHLW1tfj666/xxBNPSJIaOzs7DBkyBCkpKaitrYW9vX2zMUJDQ7Fp0yYcO3YMjz76aIvH69KlC/773/+K79evX4/g4GB069YN165dAwDx+1pcXIz8/Hx4eXlBEAQAwPTp0zF48OAmY3t7e4v/HhERgYcffhj/+c9/YG9vD39/f3z99dcAwPlUtyH+FSIig+jOPQH+SGq6dOnSZHlZWRmA+v+zB4Bnn322ybgtzV1pSf/+/TFy5Ehs3rwZn3/+Ofr374+QkBCMHj1acvcYmcbV1RUDBw7UK1MqlXrllnDjxg1oNBpoNBq9bRqNBlqtttW7UhuG0yoqKlo93u+//w53d3fxfUFBAfLy8jBt2jS9ui+88AJcXFywZ88edO/eHUB9smfoeXByckK/fv3E96dPn4ajoyPuvvtug/an9oNJFREZpLkhkeZuT2/4P/qG/xAuX768yR4NUxdYVCgUePXVV5GZmYkTJ07g5MmTeOONN5CcnIz169ebfXs/WVd+fj6qq6vh6+sLAOjUqRNcXFxw9OhRzJkzR+yRqqysxPHjx/GXv/wFjo6OAOp7kO644w4oFApJzK+++gpA/XpZDa5fvy5JngDgu+++Q3Z2NiIiIsSy5557Tm+O008//YQvvvgCCxYskLRzwIABSE1NxWOPPQYPDw/JPk0dT1dGRgaOHDmCRx99tMXFR6l9YlJFRFbVcHu7u7u7VXo4+vbti759+yIqKgoHDhzAq6++im+//bbFycZkPZ988gkA4MqVKwDqb1JouNtt5syZYr3XXnsNZ8+eFW8ssLW1xfTp05GYmIi///3vGDduHLRaLb7++msUFhZK1lTbv38/UlNTMWLECHTv3h2VlZU4efIkTp06hWHDhuG+++4T686fPx933XUXAgIC4OzsjIsXL2LPnj3o0qUL/va3v4n1mhrKa5io379/f8m8vUWLFiE6OhpPPfUUHnnkEXTv3h0lJSXIzMxEYWEhPv74YwBAXl4eXnrpJQwfPhydO3fGlStXsGvXLvTs2RNPP/20WeeZ2iYmVURkVYMHD4azszO2bt2Ke++9V2/uU2v/Z9+csrIyuLi4SHorevfuDQBQq9VmtZlM13jy9p49e8R/102qmvLkk0+iW7du+L//+z9s3rwZtbW16NWrF1auXInQ0FCxXnBwMDIzM3Hw4EGUlpbC1tYWPj4+iImJwWOPPSaJ+eCDD+L777/Hjz/+iOrqaiiVSkycOBGzZs0yeS7YnXfeiU2bNuHjjz9GWloabt68iU6dOqF3796Sz+js7AylUokvv/wSZWVl8PDwQEREBJ588kn2pN6mmFQRkVU5Oztj8eLFeO211zBnzhyMGjUK7u7uyM/Px/fff49+/fph0aJFRsdNS0vDzp07ERISgh49eqCyshJfffUVnJ2dcf/991vhk1BcXFyrdQxd0qK5WGPGjMGYMWNa3LdPnz6S9alaEhUVZfIdoePHj8f48eOb3Na9e3e8+OKLLe7v6uqK119/3aRjU/vEpIqIrG7MmDHw8PDAtm3bkJSUBLVaDU9PTwQHB+Phhx82KWb//v1x4cIFfPvttygtLYWzszMCAwOxYsUKcTIxEdGtpBAaZpMSEbVBH330ETZv3ozU1FQoFAqDnwMH1E+Wv3HjBgoKCjB37lzMnz9fbzkAIiJLYU8VEbUL4eHhcHJywr59+wzep7y8HOHh4VZsFRHRH9hTRURt2u+//47ff/8dQP0dYgMGDDB437q6Opw9e1Z87+Pjo7feFhGRpTCpIiIiIrIA85+ASURERERMqoiIiIgsgUkVERERkQUwqSIiIiKyACZVRERERBbApIqIiIjIAphUEREREVkAkyoiIiIiC2BSRURERGQB/w9aXswS9oCtRwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAG4CAYAAAB2CPL9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABI20lEQVR4nO3deVyU5f7/8TeCIKKEAuICmUspah4tl9wSc0lLSY9LWrYqmamldX5tR09ZVqdvqx7K3MrKBTuVih1Fy9zIyjS30AgzOWaKCKggO8zvDx/ch4EBZgbuYOT1fDx62Fz3NddcH2Z7z31fc4+bxWKxCAAAAFWqTnVPAAAA4EpEyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABISsapSdna34+HhlZ2dX91QAAEAVI2RVo8TEREVERCgxMbG6pwIAAKoYIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABM4FHdE8CV6/h3p7Xv0wTlZecbbXXreajb2GvVqmezapwZAADmI2TBNPs+TdCFPy6VaM3R3n8nELIAlIkPaLhSELJgmqIXSDc3ybuRl7LScmSxyOqF80rGGwWuNCUf084+nit6bvABDVcKQhZM593IS3dF3qJV079WZmpOdU/nT1PWG8XW+QdUv/FRSYSuP8OVEHarKtxUVunHtHPBp6IQVds/oOHKQcjCFa+63mRLvlEUD5j/+//LbywWi6psjpWp19Hr/llv/pWp6UrYK+JIuKnKx3vJsbLSLj9u3dwub3c2+Ngbopz5gGar/uJcLWDXFBX9XaU/52/rah+aCFmwUtknUvHrF70g/1nzLGtejuxRqsqwU6TojeK3709r77+t37CK3lgqCgJVUa89ocLReZR+47M/vDjyZliZmq6EvSLFa5DKDzfl/a0cfXzbHkvybeajvOx8q/vfkdeOIiVDVFZajlZN/7rM146i7c7M+X/Kf16Vpya+mVcmVFb+daUk8z+8uNqHJkIWrJ5o9n1aLPuQl60nQN16th9mZu2dKPlGUvzTd0V7lCSZ9gRu1bOZ1RjF31iyZD3HkkGgoqBY/O9WmVBR0XXLe6F1c7v85n/x9CWtmv61JOfewIvXV9Hho6LbsudxcyUctvZu5CXJVrj9n/LuQ0dDdMnnjvS/+/Tbj49ajWLvm/DW+QeMsFjk8mvE5XkWr63otaP0dsfmXMSRx3NZ83ckoDn74c2RPcT2PI8ceb0uq3/Jx1VJVfnhpby/bcn7t6Z/aCJkXYEc3RtV1pO0fuPST6SyAkrRk7LkE6DkJ1fpf59Gbb9R2A4OJTn+RnL50/fY128uc4/SxdP/u05ZT+DygmFZ4a4sxd84Ss6x5N+n4kOPpe+DyoSKsq5r64W2qP69/778d7d+o7R+wS7OkTfDkvP69992lrgtx4OwPXtFSqqqQ1GO7kGx9Vgqmn9Zt2vrPqworJb1OCl6XBZXMmRV9CZcfOyix3xRiCp6/Nh6XpXcXpk52/N4LotzAc25D2+OHB4ur4byPlDa+vBS0QdQ6X+Pq5JK/m0dCYoV7yEvrazXypqGkHUFcnS3bsknWnlPhpIBxfaT0vYLXFmfVqXLga684FBSWUHC1l6hotsuesEuuUep+Bt2yfmXfAKXtydAsvVCWvaevJJvLLYCaUm2Dj2WdR+UvF1bb8qOBsOS8yjJnsdGSfa8GZZk6023rCBcsiZbe0Xs/TJCZfYaOL7HuLT/3acln0elQ3Z5yg6r/1P0Iauix2XJQ3xlPTZKvnaU95wsqfj2qphzSWXNubiyDmlWtGenvA9vxff6lrxuUX9Jdj2+bdVQ3hIFW/Xb8wG0ImV/iHZ0j9pltj7sl/fhveTY1Y2QdQWyd7du0RO8ohfH4kq+GJZ8Ukplv8CV92m1Vc9mdgWHkmwdTihi683bFkfCTnl7AoqUFe5KquiNRSr9BmbruhXdB7bD7eUXvLKUFQzLY89jw9btOPIGbuu2Sr75lfV4sbXXpKI9s7bmIzm318CRPcZlzb/ob2VPmLXnPqzoOVnRfMo7xFeSPY93e1RmzkUqWvtlS1n1lvU6U96Ht/KCYnHF177Z+/gurqwlCmWx5wNoWfdveR+ii7PnCEjReM4/Du07IvJnIGRdwcoKTWU9wavijbUyfSsKDiWVdTih5LaqqKGsT+vlvZBWhiNvYBXNv+TfpqwXQGf3ApSlMm+qjtRf0R7Soj629prYu2e2JFv3cXl7AWzt+ajMi78zH3RsBYrK3EcVHeIzy5/1uCrJ0XrLe02yNZatuRb1c+TxXZUceV2t6O/j7BEQR+do64hIdS6KJ2TVQtX14ugIR19Iq+pTckkVvShXJtyVpyrvo4r2MNnzZu/MJ//KcKT+yuzZqMq9b+XtBajsG0l5Knrs29rL68wHKkdvtyaqzPOqKl+THB2rsnvunFXVH6KLOHIExNHbLT52TVgUT8iqhVzxxbG6VPSibNbf0sz7yJGxK/PJvzKq8sXdrNutSE35MGPWBwFX5Iqvfa4454r8Wa9vNWFRPCELKMeV+ALniJoSFFxRTXns1JR5oOb4s/dM12aELABl4g0auHJU157p2oy/LAAAtQB7pv98hCwAAGoB9kz/+epU9wQAAACuRIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwAQe1T2B4o4ePaqYmBjt379fZ86cka+vrzp27KjJkycrJCTE6Pfyyy8rJiam1PWvvvpqrVixwqqtsLBQUVFRWrdunVJTUxUcHKyJEydq0KBBpa5/4sQJRUZG6vDhw/Lw8FCvXr00ffp0+fn5OT0mAAConWpUyFq1apUOHz6sAQMGqE2bNkpJSdHatWs1efJkLVy4UK1btzb6enp66sknn7S6vo+PT6kxlyxZopUrV2rEiBFq3769YmNj9cILL8jNzU0DBw40+p09e1YzZsxQgwYNFBERoaysLEVFRen48eNatGiR6tat6/CYAACg9qpRIWvcuHH6xz/+YRVobrnlFj3wwANauXKl5syZY7S7u7tryJAh5Y6XnJysNWvWaNSoUZo1a5Ykafjw4ZoxY4beffddhYWFyd3dXZK0YsUKZWdna+nSpQoKCpIkhYaG6vHHH9emTZsUHh7u8JgAAKD2qlFrsq6//nqrgCVJISEhuuaaa5SYmFiqf0FBgS5dulTmeLGxscrPz9eoUaOMNjc3N40cOVLJycmKi4sz2nfs2KHevXsbAUuSunXrppCQEG3bts2pMQEAQO1Vo0KWLRaLRWlpabrqqqus2rOzszVs2DANGzZMt99+u958801lZmZa9UlISJC3t7datmxp1R4aGmpsly7vnUpLS1O7du1K3X5oaKjRz5ExAQBA7VajDhfa8uWXXyo5OVkPPvig0ebv768JEybouuuuk8Vi0ffff69169bp119/1fz58+XhcbmslJQUNWrUSG5ublZj+vv7S5LOnTtn9CveXrLvxYsXlZubK09PT7vHtOXcuXPGbUmyuXcOAABcGWp0yEpMTNRbb72ljh07aujQoUb7lClTrPoNHDhQISEhWrJkiXbs2GEsPs/JySl1+FG6vGi+aHvxfyvq6+npafeYtkRHR2v58uVlbgcAAFeOGhuyUlJS9NRTT8nHx0cvvvhihYvJx40bp2XLlmnv3r1GyPLy8lJeXl6pvrm5ucb24v/a29eefraEh4erT58+xuXExETNmzev3LoAAIBrqpEhKyMjQ08++aQyMjIUGRmpgICACq/j5eUlX19fXbx40Wjz9/fX/v37ZbFYrA7vFR2yKxq36FBf8UN5xfv6+voae6rsHdOWgIAAu2oBAACur8YtfM/JydHTTz+tkydP6p///KeuueYau66XmZmpCxcuWJ04tG3btsrOzi619unIkSPGdkkKDAyUn5+f4uPjS4179OhRo58jYwIAgNqtRoWsgoICPf/884qLi9PcuXPVqVOnUn1ycnJKfYtQkj788ENZLBb17NnTaOvbt688PDy0du1ao81isWj9+vUKDAy0Gr9///7avXu3kpKSjLZ9+/bp5MmTGjBggFNjAgCA2qtGHS5855139M0336h3795KT0/Xli1brLYPGTJEqampmjRpkgYNGqSrr75akrRnzx5999136tmzp/r27Wv0b9KkicaOHavVq1crPz9foaGh2rVrlw4dOqQ5c+ZYrfOaOHGitm/frpkzZ2rMmDHKysrS6tWr1bp1aw0bNsypMQEAQO1Vo0LWsWPHJEm7d+/W7t27S20fMmSIGjRooN69e+uHH35QTEyMCgsL1aJFCz300EMaP3686tSx3jk3ZcoUNWzYUNHR0YqJiVFwcLBmz56twYMHW/ULCgrSggULFBkZqUWLFhm/XTht2jRjPZajYwIAgNrLzWKxWKp7ErVVfHy8IiIitGTJEpsnQnXWqulfKzM1R/Ube+muyFuqbFwAAFxFTXgvrFFrsgAAAK4UhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABN4VPcEijt69KhiYmK0f/9+nTlzRr6+vurYsaMmT56skJAQq74nTpxQZGSkDh8+LA8PD/Xq1UvTp0+Xn5+fVb/CwkJFRUVp3bp1Sk1NVXBwsCZOnKhBgwaVun0zxgQAALVTjQpZq1at0uHDhzVgwAC1adNGKSkpWrt2rSZPnqyFCxeqdevWkqSzZ89qxowZatCggSIiIpSVlaWoqCgdP35cixYtUt26dY0xlyxZopUrV2rEiBFq3769YmNj9cILL8jNzU0DBw40+pkxJgAAqL1qVMgaN26c/vGPf1gFmltuuUUPPPCAVq5cqTlz5kiSVqxYoezsbC1dulRBQUGSpNDQUD3++OPatGmTwsPDJUnJyclas2aNRo0apVmzZkmShg8frhkzZujdd99VWFiY3N3dTRsTAADUXjVqTdb1119vFbAkKSQkRNdcc40SExONth07dqh3795GGJKkbt26KSQkRNu2bTPaYmNjlZ+fr1GjRhltbm5uGjlypJKTkxUXF2fqmAAAoPaqUSHLFovForS0NF111VWSLu9JSktLU7t27Ur1DQ0NVUJCgnE5ISFB3t7eatmyZal+RdvNGtOWc+fOKT4+3viveHAEAABXlhp1uNCWL7/8UsnJyXrwwQclSSkpKZIkf3//Un39/f118eJF5ebmytPTUykpKWrUqJHc3NxK9ZMuhx6zxrQlOjpay5cvt6dsAADg4mp0yEpMTNRbb72ljh07aujQoZKknJwcSSp1WFGSPD09jT6enp7KycmpsJ9ZY9oSHh6uPn36WNU3b968MvsDAADXVWNDVkpKip566in5+PjoxRdfNBaTe3l5SZLy8vJKXSc3N9eqj5eXl939qnpMWwICAhQQEFDmdgAAcOWokWuyMjIy9OSTTyojI0Ovv/66VTApOixXdIivuJSUFPn6+hp7lfz9/ZWamiqLxVKqnyRjXDPGBAAAtVuNC1k5OTl6+umndfLkSf3zn//UNddcY7U9MDBQfn5+io+PL3Xdo0ePqm3btsbltm3bKjs7u9QC8yNHjhjbzRoTAADUbjUqZBUUFOj5559XXFyc5s6dq06dOtns179/f+3evVtJSUlG2759+3Ty5EkNGDDAaOvbt688PDy0du1ao81isWj9+vUKDAy0Gt+MMQEAQO1Vo9ZkvfPOO/rmm2/Uu3dvpaena8uWLVbbhwwZIkmaOHGitm/frpkzZ2rMmDHKysrS6tWr1bp1aw0bNszo36RJE40dO1arV69Wfn6+QkNDtWvXLh06dEhz5syxOmmoGWMCAIDaq0aFrGPHjkmSdu/erd27d5faXhSygoKCtGDBAkVGRmrRokXG7wxOmzbNWDtVZMqUKWrYsKGio6MVExOj4OBgzZ49W4MHD7bqZ8aYAACg9nKzlFzBjT9NfHy8IiIitGTJEpsnQnXWqulfKzM1R/Ube+muyFuqbFwAAFxFTXgvrFFrsgAAAK4UhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADCB0yFr3759Wr16tVXbf/7zH40ZM0Z33HGH/vWvf6mgoKDSEwQAAHBFToesDz74QMeOHTMu//rrr3r99dfl5+enLl266LPPPlNUVFSVTBIAAMDVOB2yEhMT1a5dO+Pyli1b5OPjo8jISM2dO1fDhw/X5s2bq2SSAAAArsbpkJWVlSUfHx/j8vfff68ePXqoXr16kqT27dsrKSmp8jMEAABwQU6HrCZNmujnn3+WJP3+++/67bff1L17d2N7enq66tatW/kZAgAAuCAPZ684ePBgffjhh0pOTtaJEyfUsGFD9e3b19geHx+vkJCQKpkkAACAq3E6ZN1zzz3Kz8/Xd999p6CgID3zzDNq2LChJOnixYs6cOCAxowZU2UTBQAAcCVOhywPDw9FREQoIiKi1DZfX1+tW7euMvMCAABwaU6vyXrssce0b9++Mrf/+OOPeuyxx5wdHgAAwKU5vSfrwIEDGj58eJnb09LSdPDgQYfGzMzMVFRUlI4cOaKjR48qPT1dzzzzjIYNG2bV7+WXX1ZMTEyp61999dVasWKFVVthYaGioqK0bt06paamKjg4WBMnTtSgQYNKXf/EiROKjIzU4cOH5eHhoV69emn69Ony8/NzekwAAFA7OR2yJMnNza3MbadOnVL9+vUdGu/ChQtavny5goKC1LZtW+3fv7/Mvp6ennryySet2oqfUqLIkiVLtHLlSo0YMULt27dXbGysXnjhBbm5uWngwIFGv7Nnz2rGjBlq0KCBIiIilJWVpaioKB0/flyLFi2y+qakvWMCAIDay6GQtWnTJqs9SB999JE2bNhQql9GRoaOHz+unj17OjQZf39/rV27Vv7+/vr555/10EMPldnX3d1dQ4YMKXe85ORkrVmzRqNGjdKsWbMkScOHD9eMGTP07rvvKiwsTO7u7pKkFStWKDs7W0uXLlVQUJAkKTQ0VI8//rg2bdqk8PBwh8cEAAC1l0NrsnJycnT+/HmdP39e0uXDe0WXi/67cOGCPD09FR4erqeeesqhyXh6esrf39/u/gUFBbp06VKZ22NjY5Wfn69Ro0YZbW5ubho5cqSSk5MVFxdntO/YsUO9e/c2ApYkdevWTSEhIdq2bZtTYwIAgNrLoT1ZI0eO1MiRIyVJ48aN06OPPmp1bqw/U3Z2toYNG6bs7Gw1bNhQAwcO1MMPP2x1iDIhIUHe3t5q2bKl1XVDQ0ON7Z07d1ZycrLS0tKsfiaoeN/vvvvO4TEBAEDt5vSarE8++aQq5+EQf39/TZgwQdddd50sFou+//57rVu3Tr/++qvmz58vD4/LZaWkpKhRo0al1o4V7S07d+6c0a94e8m+Fy9eVG5urjw9Pe0e05Zz584ZtyVd/v1HAABwZarUwnfp8iHDM2fOKD09XRaLpdT2Ll26VPYmSpkyZYrV5YEDByokJERLlizRjh07jMXnOTk5Nn/ax9PT09he/N+K+np6eto9pi3R0dFavnx5ReUBAIArgNMh6/z585o/f7527NihwsLCUtstFovc3Ny0ffv2yszPbuPGjdOyZcu0d+9eI2R5eXkpLy+vVN/c3Fxje/F/7e1rTz9bwsPD1adPH+NyYmKi5s2bV3FxAADA5Tgdsl577TXt3r1bo0eP1l/+8hfjJ3Wqi5eXl3x9fXXx4kWjzd/fX/v37zcCX5GiQ3YBAQFGv+LtxaWkpMjX19fYU2XvmLYEBASUux0AAFw5nA5Ze/fu1bhx4zR16tSqnI/TMjMzdeHCBasTh7Zt21ZffPGFEhMTdc011xjtR44cMbZLUmBgoPz8/BQfH19q3KNHjxr9HBkTAADUbk7/rI6Xl5eaNm1alXOxS05OjjIzM0u1f/jhh7JYLFbn5urbt688PDy0du1ao81isWj9+vUKDAxUp06djPb+/ftr9+7dSkpKMtr27dunkydPasCAAU6NCQAAai+n92QNGTJEu3btsjpfVFX47LPPlJGRYRx+++abb3T27FlJ0ujRo5Wenq5JkyZp0KBBuvrqqyVJe/bs0XfffaeePXtanVKiSZMmGjt2rFavXq38/HyFhoZq165dOnTokObMmWN10tCJEydq+/btmjlzpsaMGaOsrCytXr1arVu3tvpZH0fGBAAAtZfTIat///46cOCA/va3v2nEiBFq0qSJ6tQpvWPM1rmnyrNmzRqdOXPGuLxz507t3LlT0uVg16BBA/Xu3Vs//PCDYmJiVFhYqBYtWuihhx7S+PHjS81hypQpatiwoaKjoxUTE6Pg4GDNnj1bgwcPtuoXFBSkBQsWKDIyUosWLTJ+u3DatGnGeixHxwQAALWXm8XWeRfs0L9///8NYuM3DP/sbxe6ovj4eEVERGjJkiUOh9HyrJr+tTJTc1S/sZfuirylysYFAMBV1IT3Qqf3ZD399NNVOQ8AAIAritMhq/g6JQAAAFhz+tuFAAAAKJvTe7L++c9/2tWPw4oAAKA2cjpk/fjjj6XaCgsLlZKSosLCQvn5+alevXqVmhwAAICrcjpkffLJJzbb8/PztX79en366ad64403nJ4YAACAK6vyNVkeHh4aPXq0unfvrrfffruqhwcAAHAJpi18b9OmjQ4ePGjW8AAAADWaaSFr7969rMkCAAC1ltNrspYvX26zPSMjQwcPHtQvv/yiu+++29nhAQAAXJrTIeuDDz6w2d6wYUM1b95cTzzxhEaMGOH0xAAAAFyZ0yFrx44dVTkPAACAKwpnfAcAADCB03uyihw4cEDffvutzpw5I0lq2rSpevXqpS5dulR2aAAAAJfldMjKy8vT3LlzFRsbK4vFogYNGki6vPB9zZo16tevn5577jl5eFQ6xwEAALicSn27cNeuXRo/frzuvPNONW7cWJKUlpamqKgoRUVFafny5Zo8eXKVTRYAAMBVOL0m68svv9TQoUM1depUI2BJUqNGjTR16lTdeuut2rJlS5VMEgAAwNU4HbJSU1PVoUOHMrd36NBBqampzg4PAADg0pwOWYGBgdq/f3+Z2w8cOKDAwEBnhwcAAHBpToesoUOHatu2bXr99df13//+VwUFBSosLNR///tfvfHGG9q+fbuGDh1alXMFAABwGU4vfJ84caJOnTqlDRs26IsvvpCbm5skyWKxyGKxaOjQobrnnnuqbKIAAACuxOmQ5e7urmeffVZ33nmnvv32WyUlJUmSgoKC1KtXL7Vp06bKJgkAAOBqHApZOTk5+te//qVWrVpp9OjRkqQ2bdqUClSffvqp1q9fr0cffZTzZAEAgFrJoTVZGzZsUExMjHr16lVuv169emnjxo364osvKjU5AAAAV+VQyNq2bZtuvvlmNW/evNx+LVq0UFhYmL766qtKTQ4AAMBVORSyjh8/rs6dO9vVt1OnTjp+/LhTkwIAAHB1DoWsvLw8u9dYeXh4KDc316lJAQAAuDqHQlZAQIB+++03u/r+9ttvCggIcGpSAAAArs6hkHXjjTdq8+bNSktLK7dfWlqaNm/erG7dulVqcgAAAK7KoZB19913Kzc3VzNnztSRI0ds9jly5Ihmzpyp3NxcTZgwoUomCQAA4GocOolV8+bNNXfuXM2dO1ePPPKImjVrptatW6t+/frKzMzUb7/9pj/++ENeXl567rnn1KJFC7PmDQAAUKM5fKbQXr166YMPPtCqVau0e/duxcbGGtsCAgI0fPhw3XXXXRWe5gEAAOBK5tTp2Js1a6YnnnhCTzzxhDIzM3Xp0iX5+Piofv36VT0/AAAAl1Tp37ypX78+4QoAAKAEhxa+AwAAwD6ELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMEGlfyC6KmVmZioqKkpHjhzR0aNHlZ6ermeeeUbDhg0r1ffEiROKjIzU4cOH5eHhoV69emn69Ony8/Oz6ldYWKioqCitW7dOqampCg4O1sSJEzVo0KA/ZUwAAFA71aiQdeHCBS1fvlxBQUFq27at9u/fb7Pf2bNnNWPGDDVo0EARERHKyspSVFSUjh8/rkWLFqlu3bpG3yVLlmjlypUaMWKE2rdvr9jYWL3wwgtyc3PTwIEDTR0TAADUXjUqZPn7+2vt2rXy9/fXzz//rIceeshmvxUrVig7O1tLly5VUFCQJCk0NFSPP/64Nm3apPDwcElScnKy1qxZo1GjRmnWrFmSpOHDh2vGjBl69913FRYWJnd3d9PGBAAAtVeNWpPl6ekpf3//Cvvt2LFDvXv3NsKQJHXr1k0hISHatm2b0RYbG6v8/HyNGjXKaHNzc9PIkSOVnJysuLg4U8cEAAC1V40KWfZITk5WWlqa2rVrV2pbaGioEhISjMsJCQny9vZWy5YtS/Ur2m7WmLacO3dO8fHxxn+JiYkVlQsAAFxUjTpcaI+UlBRJsrnHy9/fXxcvXlRubq48PT2VkpKiRo0ayc3NrVQ/6XLoMWtMW6Kjo7V8+XI7KwUAAK7M5UJWTk6OJFktRC/i6elp9PH09FROTk6F/cwa05bw8HD16dPHuJyYmKh58+aV2R8AALgulwtZXl5ekqS8vLxS23Jzc636eHl52d2vqse0JSAgQAEBAWVuBwAAVw6XW5NVdFiu6BBfcSkpKfL19TX2Kvn7+ys1NVUWi6VUP0lG4DFjTAAAULu5XMgKDAyUn5+f4uPjS207evSo2rZta1xu27atsrOzSy0wP3LkiLHdrDEBAEDt5nIhS5L69++v3bt3KykpyWjbt2+fTp48qQEDBhhtffv2lYeHh9auXWu0WSwWrV+/XoGBgerUqZOpYwIAgNqrxq3J+uyzz5SRkWEcfvvmm2909uxZSdLo0aPVoEEDTZw4Udu3b9fMmTM1ZswYZWVlafXq1WrdurXVT/A0adJEY8eO1erVq5Wfn6/Q0FDt2rVLhw4d0pw5c6xOGmrGmAAAoPaqcSFrzZo1OnPmjHF5586d2rlzpyRpyJAhatCggYKCgrRgwQJFRkZq0aJFxu8MTps2zVg7VWTKlClq2LChoqOjFRMTo+DgYM2ePVuDBw+26mfGmAAAoPZys5RcwY0/TXx8vCIiIrRkyRKbJ0J11qrpXyszNUf1G3vprshbqmxcAABcRU14L3TJNVkAAAA1HSELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADCBR3VPwBn79+/XY489ZnPbwoUL1bFjR+Py4cOH9d577+mXX36Rj4+PBgwYoIiICNWvX9/qerm5uVq2bJm2bNmi9PR0tWnTRpMnT1b37t1L3Ya9YwIAgNrLJUNWkdGjRys0NNSqrUWLFsb/JyQkaNasWWrZsqWmT5+us2fPas2aNfr999/12muvWV3vlVde0fbt2zV27FgFBwdr06ZNevLJJzV//nx17tzZqTEBAEDt5dIh6y9/+YvCwsLK3L548WI1bNhQCxYskI+PjySpWbNm+r//+z/t2bNHPXr0kCQdOXJEW7du1dSpUzVhwgRJ0q233qr7779fCxcu1MKFCx0eEwAA1G4uvyYrMzNT+fn5pdovXbqkvXv3asiQIUYYki6HJ29vb23bts1o27Fjh9zd3RUeHm60eXl56fbbb1dcXJySkpIcHhMAANRuLr0n65VXXlFWVpbc3d3VuXNnTZ06Ve3bt5ckHT9+XAUFBWrXrp3VderWratrr71WCQkJRltCQoKCg4OtgpMk41DksWPHFBQU5NCYtpw7d04pKSnG5cTERMeLBgAALsElQ5aHh4f69++vm266SVdddZVOnDihNWvWaPr06Xr33Xd13XXXGWHG39+/1PX9/f118OBB43JKSkqZ/aTL4aion71j2hIdHa3ly5fbVyQAAHBpLhmyrr/+el1//fXG5b59+yosLEwPPPCAFi9erNdff105OTmSLu9lKsnT01O5ubnG5ZycnDL7FW0v/q89Y9oSHh6uPn36GJcTExM1b968cq8DAABck0uGLFuCg4PVt29f7dy5UwUFBfLy8pIk5eXlleqbm5trBCjp8vqrsvoVbS/+rz1j2hIQEKCAgAA7KwIAAK7M5Re+F9ekSRPl5eUpOzvbOKRXfA1UkZSUFKuw4+/vX2Y/SUZfR8YEAAC12xUVsv744w95enrK29tbrVq1kru7u+Lj46365OXlKSEhQW3btjXa2rZtq99//12XLl2y6nvkyBFjuySHxgQAALWbS4as8+fPl2o7duyYvvnmG3Xv3l116tRRgwYN1K1bN23ZskWZmZlGv82bNysrK0sDBgww2sLCwlRQUKDo6GijLTc3Vxs3blSHDh0UFBQkSQ6NCQAAajeXXJP13HPPycvLS506dVKjRo104sQJbdiwQfXq1dOUKVOMfpMnT9a0adM0Y8YMhYeHG2dn7969u3r27Gn069ChgwYMGKDFixfr/PnzatGihWJiYnTmzBk99dRTVrdt75gAAKB2c8mQ1a9fP3355Zf65JNPdOnSJfn5+enmm2/W/fffr+DgYKNfu3bt9Oabb+q9997Tv/71L9WvX1+33367VRAr8uyzzyooKEibN29WRkaGWrdurVdffVVdunSx6ufImAAAoPZys1gsluqeRG0VHx+viIgILVmypNQJTitj1fSvlZmao/qNvXRX5C1VNi4AAK6iJrwXuuSaLAAAgJqOkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKP6p6Aq8rNzdWyZcu0ZcsWpaenq02bNpo8ebK6d+9e3VMDAAA1AHuynPTKK6/ok08+0eDBg/Xoo4+qTp06evLJJ3Xo0KHqnhoAAKgBCFlOOHLkiLZu3aqHHnpIjzzyiMLDw/X222+radOmWrhwYXVPDwAA1ACELCfs2LFD7u7uCg8PN9q8vLx0++23Ky4uTklJSdU4OwAAUBOwJssJCQkJCg4Olo+Pj1V7aGioJOnYsWMKCgoqdb1z584pJSXFuJyYmGjuRAEAQLUhZDkhJSVF/v7+pdqL2s6dO2fzetHR0Vq+fLmZUwMAADUEIcsJOTk5qlu3bql2T09PY7st4eHh6tOnj3E5MTFR8+bNq/L51b/Ky+pfAABqm5rwXkjIcoKXl5fy8vJKtefm5hrbbQkICFBAQICpc5OkkS/1qbgTAABXsJrwXsjCdyf4+/tbra0qUtT2ZwQpAABQsxGynNC2bVv9/vvvunTpklX7kSNHjO0AAKB2I2Q5ISwsTAUFBYqOjjbacnNztXHjRnXo0MHmNwsBAEDtwposJ3To0EEDBgzQ4sWLdf78ebVo0UIxMTE6c+aMnnrqqeqeHgAAqAEIWU569tlnFRQUpM2bNysjI0OtW7fWq6++qi5dulT31AAAQA1AyHKSl5eXHnnkET3yyCPVPRUAAFADsSYLAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzAebKqUU5OjiQpMTGxmmcCAAAc1bJlS9WrV6/M7YSsanTmzBlJ0rx586p5JgAAwFFLlixRu3btytzuZrFYLH/ifFDM+fPntWfPHjVr1kyenp5VNm5iYqLmzZun2bNnq2XLllU2riug9tpXe22tW6L22lh7ba1bqpm1syerBvPz89OQIUNMG79ly5blJuwrGbXXvtpra90StdfG2mtr3ZJr1c7CdwAAABMQsgAAAExAyLoC+fv76/7775e/v391T+VPR+21r/baWrdE7bWx9tpat+SatbPwHQAAwATsyQIAADABIQsAAMAEhCwAAAATELIAAABMwMlIq8nLL7+smJiYMrd/9tlnCgwMVGFhoTZs2KD169fr1KlTqlevnq677jrde++9uv76662uk5ubq2XLlmnLli1KT09XmzZtNHnyZHXv3r3U+IcPH9Z7772nX375RT4+PhowYIAiIiJUv359p8esyrrz8/P18ccfKyYmRufOnVNAQIBuu+023X333fLwsH7YukLdRU6ePKlly5bp8OHDunjxooKCgjRo0CCNHz/e6qzBZsyzOmu3p+49e/bo66+/1tGjR5WYmKgmTZrok08+sTleYWGhoqKitG7dOqWmpio4OFgTJ07UoEGDSvU9ceKEIiMjdfjwYXl4eKhXr16aPn26/Pz8nB6zKmvPzs7Wxo0bFRsbq+PHjysrK0vBwcEaMWKERowYIXd3d5es3Z77/OOPP9Y333yjU6dOKSsrS4GBgerVq5fuvffeSs2xpt/nJaWnp+vuu+/W+fPn9cILLygsLMxqu6s8z+2t/dFHH9WBAwdKXbdHjx56/fXXXbZ2W/h2YTX56aef9Mcff1i1WSwWvfHGG2ratKk++ugjSVJkZKQ++eQTDRkyRJ07d1ZGRoaio6OVlJSkd955Rx06dDCuP3fuXG3fvl1jx45VcHCwNm3apJ9//lnz589X586djX4JCQmaOnWqWrZsqfDwcJ09e1Zr1qxR165d9dprr1nNyd4xq7ru5557Ttu3b9dtt92m9u3bKy4uTjExMRoxYoT+3//7f07NsTrrlqSkpCQ98MADatCggcLDw+Xr66u4uDht2rRJffr00SuvvGLaPKuzdnvrfvnll/X111/ruuuuU1JSktzd3csMWYsWLdLKlSs1YsQItW/fXrGxsfr222/13HPPaeDAgUa/s2fPatKkSWrQoIFGjx6trKwsRUVFKSgoSIsWLVLdunUdHrOqaz9+/LgeeOAB3Xjjjerevbvq16+vPXv2aNeuXbr11lv197//3eVqt/c+nz17tvz8/HT11Verfv36SkxM1BdffCE/Pz+9//778vb2dqm6Ham9uPnz52vjxo3KysqyGbJc4XnuSO2PPvqoTp06pSlTplhd39/fXzfeeKNL1l4mC2qMgwcPWvr162f56KOPLBaLxZKXl2cZNGiQZc6cOVb9Tp06ZenXr5/l7bffNtri4uIs/fr1s6xatcpoy87OtowfP97y8MMPW13/b3/7m2XkyJGWjIwMo23Dhg2Wfv36Wb7//nunxqyMknUfOXLE0q9fP8vSpUut+kVGRlpuvvlmy7Fjx5yaY3XX/dFHH1n69etnOX78uFX7vHnzLP369bNcvHjRtHlWZ+321p2cnGzJy8uzWCwWy5NPPmkZO3aszfHOnj1rGTBggOXNN9802goLCy3Tpk2z/PWvf7Xk5+cb7W+88YZl0KBBljNnzhhtP/zwg6Vfv36W9evXOzVmVdeelpZWarvFYrG88sorln79+llOnjzpcrXbe5/bsm3bNku/fv0sX331lcvV7Uztv/76qyUsLMyyfPlyS79+/Szbtm2z2u4qz3NHap8xY4bl3nvvrXA8V6q9LKzJqkG++uorubm5GbuqCwoKlJOTo0aNGln1a9SokerUqSMvLy+jbceOHXJ3d1d4eLjR5uXlpdtvv11xcXFKSkqSJF26dEl79+7VkCFD5OPjY/S99dZb5e3trW3btjk8ZlXXfejQIUkq9Uly4MCBslgs+vrrr12y7kuXLklSqfvT399fderUkYeHhynzrO7a7albkgICAkodCrYlNjZW+fn5GjVqlNHm5uamkSNHKjk5WXFxcVb19O7dW0FBQUZbt27dFBISYlW3I2M6wp7a/fz81KpVq1LX7devn6TLP4rrarXbe5/b0qxZM0lSRkaGU3N0hfu8uAULFujmm28ucw+KqzzPnak9Pz9fmZmZZY7nSrWXhZBVQ+Tn52vbtm3q1KmT8SLj5eWlDh06KCYmRlu2bFFSUpJ+/fVXvfLKK2rYsKHVgyQhIUHBwcFWDzBJCg0NlSQdO3ZMknT8+HEVFBSU+nHNunXr6tprr1VCQoLDY1Z13Xl5eZIkT09Pq75Fx/Pj4+MdnmNNqLtr166SpFdffVUJCQlKSkrS1q1btX79eo0ePVre3t6mzLO6a7enbkckJCTI29tbLVu2tDnHonqSk5OVlpZm84dkQ0NDS9Vtz5iOqkztqampkqSrrrrK4XlWd+2O1G2xWHT+/HmlpKTo4MGDmj9/vtzd3dWlSxeXq9vR2rdt26affvpJDz/8cJnjucrzXHKs9pMnT+rWW2/V0KFDNXLkSC1dulT5+fkuW3tZWPheQ+zZs0cXLlzQ4MGDrdpnz56t559/XvPmzTPamjdvrnfeeUfNmzc32lJSUmz+1EBR27lz54x+xdtL9j148KDDY1aGrbpDQkIkXV6/VbzGorklJyc7PMeaUHfPnj01adIkrVixQt98843Rfs899ygiIsK0eVZ37fbU7YiUlBQ1atRIbm5u5c6xorovXryo3NxceXp62j2mo5ytPS8vT//+97/VrFkztW/f3mh3ldodqTs1NdVqb1JgYKDmzJljFX5cpW7J/tpzcnL07rvvaty4cWrWrJnOnDljczxXeZ5L9tfevHlzde3aVa1bt1Z2dra2b9+ujz76SCdPntTcuXMdnmdNqL0shKwa4quvvpKHh4cGDBhg1V6/fn21atVKHTt21I033qjU1FStXLlSzz77rCIjI41vy+Tk5Fgt6CxStDcoJyfH6t+y+ubm5hqX7R2zMmzVfdNNN6lp06Z699135eXlpXbt2unIkSNaunSp3N3dnZpjTam7WbNm+stf/qL+/fvL19dX3377rVasWKHGjRtr9OjRpsyzJtReUd2OqKq6i/p4enpW631uy9tvv60TJ07o1VdftTrE4kq121u3r6+v3nzzTeXm5iohIUE7d+5UVlaW1ViuVLdkX+0rV65Ufn6+Jk6cWO5YrvQ8l+yr/emnn7a6zq233qrXXntNGzZs0Lhx49SxY0eH5llTareFkFUDZGZmKjY2Vj169LA6NJCfn69Zs2apa9eumjlzptF+44036r777tPq1as1depUSZcPLRYdZiuu6MFVtH6r6N+y+hY/RGfvmM4qq24vLy+9+uqreu655zRnzhxJl58ADz/8sD7++GOrXc6uVPfWrVv12muvaeXKlWrSpIkkqX///rJYLFq0aJEGDRpkyjyru3Z76i5+/1ekquou2be67vOSta9evVobNmzQpEmT1KtXL6ttrlK7I3XXrVtX3bp1kyT17t1bN9xwg6ZNm6ZGjRqpd+/eLlW3vbVnZmZq9erVmjVrVqnTC5TkKs9zqXLP9TvvvFMbNmzQ3r17jZDlSrWXhTVZNUBsbKyys7NLHSo8ePCgfvvtN/Xp08eqPSQkRC1bttRPP/1ktPn7+xu7TIsragsICDD6FW8v2beonyNjOqusuiWpVatW+vDDD/Xhhx8qMjJSn3/+uUaMGKELFy4YhxMdmWNNqHvt2rW69tprjRefIn369FF2drYSEhJMmWd1125P3Y7w9/dXamqqLCXOPuNo3b6+vsaLr71jOsrR2jdt2qT33ntPd9xxh+67775S47lK7ZW5z6+//nr5+/vryy+/NNpcpW7Jvtrff/99BQQEqEuXLjp9+rROnz5trME7f/68Tp8+rcLCQmOervA8lyp3vxddJz093eF51oTay0LIqgG+/PJLeXt7lwpTaWlpkmQ82YrLz89XQUGBcblt27b6/fffjW93FDly5IixXbocXtzd3a0Wj0uXPwEkJCQY/RwZ01ll1V3Ezc1NrVq1UufOneXr66sff/xRhYWFVudRcaW609LSyrwvpcvfJjVjntVduz11O6Jt27bKzs62+tadrTkGBgbKz8+vVN2SdPTo0VJ12zOmoxypfdeuXfq///s/3XzzzZo1a5bN8Vyl9sre57m5uVbfLnSVuiX7ak9KStKpU6c0fvx43XnnnbrzzjuNtUhvvvmm7rzzTuM56CrPc3trL0vR+ROLnzDWlWovCyGrmp0/f1579+7VzTffXOpMwEV7bLZu3WrVHh8fr5MnT+raa6812sLCwlRQUKDo6GijLTc3Vxs3blSHDh2MrzM3aNBA3bp105YtW6y+Ort582ZlZWVZrY2yd8yqrtuWnJwcLVu2TP7+/lZnY3alukNCQpSQkKCTJ09atW/dulV16tRRmzZtTJlnddduT92O6Nu3rzw8PLR27VqjzWKxaP369QoMDFSnTp2M9v79+2v37t1WX8vet2+fTp48aVW3I2M6wt7aDxw4oLlz56pz586aM2eO6tSx/dLsKrXbU3dWVpays7NLXXf79u1KT0+3WvDvKnXbW/vkyZP10ksvWf03adIkSdKECRP00ksvGcsiXOV5bm/tly5dslojJV3+uxediLr4WdddqfaysCarmm3dulUFBQU2D5m1a9dO3bp1U0xMjC5duqQePXooJSVFn332mby8vDR27Fijb4cOHTRgwAAtXrxY58+fV4sWLRQTE6MzZ87oqaeeshp38uTJmjZtmmbMmGF1Ztzu3burZ8+eTo1ZlXVLl8/47u/vr2uuuUaXLl3Sxo0bdfr0ab366qtWaxhcqe7x48fr+++/1/Tp0/XXv/5Vvr6+2r17t77//nsNHz7c2E1txjyrs3Z76/71118VGxsrSTp16pQyMjL04YcfSrr86bJoj2eTJk00duxYrV69Wvn5+QoNDdWuXbt06NAhzZkzx+pnaCZOnKjt27dr5syZGjNmjLKysrR69Wq1bt1aw4YNM/o5MmZV137mzBk9++yzcnNzU1hYmLZv3241Rps2bYww5iq121N3QkKCHn/8cQ0YMEAtW7aUm5ub4uPjtWXLFjVt2lRjxoxxao6ucJ/bOiTVoEEDSZdPJVB0jjTJdZ7n9ta+f/9+zZ07V4MGDVKLFi2Uk5OjXbt26fDhwxoxYoTVaRhcqfay8LM61Wzq1Kn6448/9Pnnn9t8Uufk5CgqKkpbt27V6dOnVbduXXXu3FmTJk2y2pNV1Lfo95gyMjLUunVrTZ48WT169Cg17qFDh4zfeKpfv74GDBigKVOmlFqE6ciYVVn3qlWrtHHjRp05c0ZeXl7q3LmzHnzwwVI1u1rdR44c0QcffKCEhARdvHhRzZo109ChQzVhwgSrb5GZMc/qrN2eujdt2mTzJ0ckaejQoXr22WeNy4WFhVq1apWio6OVkpKi4OBg3X333RoyZEip6/7222+lfsdu2rRpaty4sVU/R8asytr379+vxx57rMzr33///XrwwQddrvaK6j5//ryWLFmigwcPKjk5Wfn5+QoKClKvXr10zz332PydQVeo257abSl6HNj6WR1XeZ7bU/sff/yhRYsW6ejRo0pNTVWdOnXUsmVLDR8+XOHh4aVOqeFKtdtCyAIAADABa7IAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABPwszoAANRi586d06effqqjR4/q559/VlZWlubPn6+uXbvaPcbevXv18ccf6/jx4yooKFBwcLBGjx6tW2+91eiTk5Ojt956S0ePHtXZs2dVWFio5s2b67bbbtOoUaOszoZf3i9ArF27Vv7+/ja3nTp1Svfdd59yc3O1ePFiq9/AdMTvv/+uRYsWad++fcrLy9N1112nSZMm6YYbbnBoHEIWgFrt5Zdf1oEDB/TJJ59U91QkSe+//76WL18uSfL29tbmzZvtvm56erpuv/124/LUqVM1YcKEqp4irjAnT57UqlWrFBwcrNatWysuLs6h68fGxurvf/+7OnbsqPvvv19ubm7atm2bXnrpJV24cEHjxo2TdDlknThxQjfddJOaNm2qOnXq6KefflJkZKSOHj2qf/zjH6XGnjRpkpo1a2bVVvQ7j7b861//cvp3J4skJSVp6tSpcnd314QJE1SvXj1t2rRJTzzxhN566y116dLF7rEIWQCuODfffLNd/ebPn2/yTJw3e/Zsh98svL29NXv2bJ0/f16RkZEmzQyu5tFHH1XTpk2tfv+zuHbt2umLL76Qr6+vtm/fbjPslOfzzz+Xv7+/3n77bXl6ekqSwsPDdc8992jTpk1GyPL19dV7771ndd077rhDPj4++vzzzzVt2rRSe6h69uxp996oPXv26IcfftCECRP00UcfOVRDcStXrjR+oP7qq6+WJI0YMUITJ05UZGSkli5davdYhCwAV5zZs2dbXY6JidHevXtLtbds2VJPPvmkCgsL/8zp2cWZHyn28PDQkCFDdPr0aUIW7FbyB5QdlZmZqYYNGxoBS7r8WLzqqqvsun7Tpk0lSRkZGTYPA2ZmZsrLy6vcDx35+flasGCBxowZoxYtWpTZLzExUUuXLtWPP/6onJwctWrVSvfdd5/69u1r9Dl06JCuvfZaI2BJUr169dSnTx+tXbtWJ0+eVEhIiF21EbIAXHFKBpS4uDjt3bvXqeACoHxdunTRqlWrtHTpUg0dOlRubm766quvFB8fr+eff75U/7y8PF26dEk5OTmKj49XVFSUmjZtajMcPfbYY8rKylLdunXVvXt3TZs2zWbA+fe//6309HTde++92rlzp815/vbbb5o2bZoCAgJ09913q169etq2bZv+/ve/68UXXzT2gOfl5alhw4alrl+vXj1J0i+//ELIAgB7lFyTdfr0ad15552aOnWqvLy8tGbNGqWmpur666/XU089pSZNmuijjz5SdHS0Lly4oO7du+uZZ56Rr6+v1bjfffedVqxYoV9++UVubm76y1/+oqlTp6pVq1ZOz/Xnn3/WkiVL9MsvvygrK0uNGzfWDTfcoKeffrpSfwOgMu677z6dPn1aH3/8sXGYrl69enrhhRfUr1+/Uv137typuXPnGpfbt2+vp556ymrhu5eXl4YNG6auXbvKx8dH8fHx+uSTT/TII49o6dKlCgoKMvqmpKToww8/1COPPCIfH58y57lgwQI1adJEixcvNva6jRo1StOmTdN7771nhKyQkBAdOnRImZmZVnv5Dh06JElKTk62+29DyAIAG7766ivl5eVp9OjRunjxolavXq3nn39eN9xwg/bv36+77rpLv//+uz7//HO9++67VkFn8+bNevnll9WjRw9NmTJFOTk5WrdunaZNm6Zly5aVWshrj7S0ND3xxBPy8/PTXXfdpYYNG+r06dNlfmpH7ZSfn6+MjIxSbXl5eTp//rxVu6+vr+rUqfyZnOrWrauQkBCFhYXp5ptvVkFBgTZs2KB58+bpzTffVMeOHa36d+3aVW+++aYyMjK0b98+HTt2TNnZ2VZ9brnlFt1yyy3G5X79+qlHjx6aMWOGPv74Y/3tb38ztr333ntq3ry5hg8fXuYcL168qB9//FEPPvigMjMzlZmZaWzr0aOH3n//fSUnJyswMFAjR47U7t279dxzzykiIkLe3t5au3at4uPjJV1ewG8vQhYA2JCcnKxVq1YZ32QqLCzUihUrlJOTo8WLFxufui9cuKAvv/xSjz/+uDw9PZWZman58+dr+PDh+n//7/8Z4w0dOlQTJ07UihUrrNrt9dNPPyk9PV1vvPGG1ULgiIiISlaKK8nhw4f12GOPlWr/6aeftHXrVqu2NWvWOBX4S3r77bd15MgRLV261Ahtt9xyi+69914tWLBAixYtsurfuHFjNW7cWJIUFhamjz/+WI8//rhWrVpV5qkZJKlz587q0KGD9u3bZ7TFxcVpy5Yteuutt8oNjL///rssFouWLVumZcuW2eyTlpamwMBA3XTTTXrssce0ePFiTZ48WZLUokULRUREaOHChfL29rbvDyNCFgDYFBYWZvVV8dDQUEnS4MGDrQ5rhIaG6quvvtK5c+fUvHlz7d27VxkZGRo4cKDVnoM6deooNDRUP/74o1PzKZrL7t271bZtW6s5AEXatm2rN99806rtnXfeUePGjUudzqMo6FRGXl6e/vOf/+iuu+6yCjkeHh7q2bOn1q5dq7y8PNWtW7fMMcLCwrRkyRLFxsbqjjvuKPf2mjRpov/+97/G5YULF6pz585q1qyZTp8+LUnG8y4lJUVJSUkKCgqSxWKRJI0fP149evSwOXZwcLDx/6NHj9Ztt92mX3/9VXXr1lXbtm31n//8R5LsXo8lEbIAwKbiaz6k/4WcJk2a2GxPT0+XdPkTsyTNnDnT5rjlrRkpT5cuXdS/f38tX75c//73v9WlSxf169dPgwYNsvpWF2q3hg0bqlu3bqXa/P39S7VXhQsXLqigoEAFBQWlthUUFKiwsLDCb+8WHX67dOlShbf3xx9/yM/Pz7h89uxZnTlzRnfeeWepvs8884waNGigjRs3qnnz5pIuhz97/w7e3t7q1KmTcXnfvn3y8vLS9ddfb9f1JUIWANhU1qGHsr5GXvRJuegNZfbs2Tb3FDh7okQ3Nze9+OKLiouL0+7du7Vnzx7985//1Jo1a7Rw4cJKfw0fsEdSUpKys7PVsmVLSVKjRo3UoEED7dq1S5MmTTL2WGVmZuqbb77R1VdfLS8vL0mX9zBdddVVcnNzsxrziy++kHT5fF1Fzp8/bxWmJOnbb79VfHy8Ro8ebbT97W9/K7VG6scff9Rnn32mRx55xGqeXbt2VXR0tP76178qICDA6jq2bq+4w4cPa+fOnbrjjjvKPRlqSYQsAKhCRV9D9/PzM2XPQceOHdWxY0dFREToyy+/1Isvvqivv/663EW/QEU+/PBDSdKJEyckXf7yRtG36e677z6j30svvaQDBw4YX7hwd3fX+PHjtXTpUj388MO69dZbVVhYqP/85z9KTk62Ojfdli1bFB0drb59+6p58+bKzMzUnj17tHfvXvXu3Vs33nij0Xfq1Km67rrr1K5dO/n4+OiXX37Rxo0b1aRJE91zzz1GP1uH/ooW/nfp0sVq/eKsWbM0bdo0PfDAAxo+fLiaN2+u1NRUxcXFKTk5WR988IEk6cyZM3ruuefUp08fNW7cWCdOnND69evVunVrPfTQQw79XQlZAFCFevToIR8fH61YsUI33HBDqbVTFX1iLkt6eroaNGhgtRfg2muvlSTl5uZWas5AycXgGzduNP6/eMiy5d5771WzZs306aefavny5crLy1ObNm30wgsvKCwszOjXuXNnxcXFaevWrUpLS5O7u7tCQkI0ffp0/fWvf7Ua85ZbbtF3332nH374QdnZ2fL399eIESN0//33O72W7JprrtGSJUv0wQcfaNOmTbp48aIaNWqka6+91qpGHx8f+fv76/PPP1d6eroCAgI0evRo3XvvvQ7vMSZkAUAV8vHx0eOPP66XXnpJkyZN0sCBA+Xn56ekpCR999136tSpk2bNmuXwuJs2bdK6devUr18/tWjRQpmZmfriiy/k4+Ojm266yYRKcKVYsGBBhX3sPRVIWWMNHjxYgwcPLve67du3tzo/VnkiIiKc/ubssGHDNGzYMJvbmjdvrr///e/lXr9hw4Z6+eWXnbrtkghZAFDFBg8erICAAK1cuVJRUVHKzc1VYGCgOnfurNtuu82pMbt06aKff/5ZX3/9tdLS0uTj46PQ0FDNmTPHWNQLoGZxsxSt1gQAVLv3339fy5cvV3R0tNzc3Oz+/Tfp8uL7Cxcu6OzZs5o8ebKmTp1a6mv7AP487MkCgBooPDxc3t7e2rx5s93XycjIUHh4uImzAuAI9mQBQA3yxx9/6I8//pB0+ZtbXbt2tfu6+fn5OnDggHE5JCSk1Pm+APx5CFkAAAAmqPwvQwIAAKAUQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYIL/D5abwV3Ps7uhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAHLCAYAAAA3J7d5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9wUlEQVR4nO3deVxWZf7/8TfrrYCKgpCCmSiDWJqVy5ipuJGmMhouWdY449JoLtNYmtZ3GkszW6YvTaON6UiOmZrlVu6WoKbOaGIWLjgmaQYCgqyy3r8/+nm+3d0cBWS5wdfz8fAxnuu6znV/zsVE78459zlOVqvVKgAAANhxrukCAAAAHBVBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwIRrTRdQV+Tm5mr16tWKj4/XiRMnlJWVpdmzZ2vgwIE3Ne/hw4f1r3/9S6dPn1ZJSYlatGih0aNHq2/fvpVUOQAAMENQqiRXrlxRdHS0/P391aZNGx09evSm59yyZYsWLlyoTp06acKECXJxcdH333+vS5cuVULFAADgRghKlcTHx0fr16+Xj4+PTp48qYkTJ97UfD/++KPeeustPfzww5o+fXolVQkAAMqDoFRJ3N3d5ePjU6axBw8e1MqVK3X69Gk5OTnp7rvv1qRJk9SqVStjzMaNG1VSUqJx48ZJ+unSXv369eXk5FQl9QMAAHvczF3Ntm/frlmzZql+/fp68skn9dvf/lbnzp3TU089pR9//NEYd+TIEd1+++06ePCgIiMjNWDAAA0ePFhLly5VSUlJDR4BAAC3Ds4oVaPc3FxFRUVp8ODBevbZZ432AQMGaMyYMVq5cqXRfuHCBTk7O+vVV1/V6NGj1bp1a8XGxmrFihUqLi7Wk08+WVOHAQDALYOgVI0OHz6s7Oxs9e3bVxkZGUa7s7OzQkND9dVXXxlteXl5Kikp0ZNPPqnHHntMkhQWFqasrCytW7dOjz/+uDw8PKr7EAAAuKUQlKrRhQsXJEl//OMfS+339PQ0/m6xWJSXl6d+/frZjOnbt68OHTqk06dPq2PHjlVVKgAAEEGpWl27t+iFF15QkyZN7PpdXFyMv/v4+OjChQtq3LixzZhr21lZWVVYKQAAkAhK1SogIECS5O3trU6dOl13bEhIiC5cuKDU1FQ1b97caE9NTTXmAAAAVYtvvVWjLl26yNPTUytXrlRRUZFd/8/vW+rTp48k6bPPPjPaSkpKtHXrVjVs2FAhISFVXi8AALc6zihVoo8//ljZ2dlKS0uTJO3fv994inZkZKS8vLz0pz/9SfPnz9e4cePUt29feXt7Kzk5WQcPHtRdd92lp59+WpL0wAMP6L777tPKlSuVkZGhNm3aaO/evfr666/1zDPPyN3dvcaOEwCAW4WT1Wq11nQRdcXIkSOVlJRUat+aNWvUrFkzSdLRo0f1wQcfKD4+XgUFBWratKk6dOighx9+2OZMUW5urpYuXarPP/9cWVlZatGihR599FGFh4dXy/EAAHCrIygBAACY4B4lAAAAEwQlAAAAEwSlm3D16lWdOnVKV69erelSAABAFSAo3YTExERNmDBBiYmJNV0KAACoAgQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAEwQlAAAAE641XQAq7uzBH3VkXYIKrxZV22e61XNVpxHBatW1WbV9JgAANYWgVIsdWZegKxdzqvlT83X4owSCEgDglkBQqsWunUlycpLqN7ZU+eflpefLalW1nsECAKAmEZTqgPqNLXr0nT5V/jmrpnyu3Mv5Vf45AAA4Cm7mBgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMEFQAgAAMOFa0wX8Um5urlavXq34+HidOHFCWVlZmj17tgYOHHjDfbdu3aoFCxaU2rd+/Xr5+PjYtO3bt0/Lly9XYmKivL299dBDD+mJJ56Qq6vDLQsAAKgBDpcIrly5oujoaPn7+6tNmzY6evRouecYN26cmjVrZtPm5eVls33w4EE9//zz6tixo6ZPn66zZ89qxYoVSk9P14wZM27qGAAAQN3gcEHJx8fHOPtz8uRJTZw4sdxzdO3aVW3btr3umEWLFql169Z68803jTNIHh4eWrlypYYPH66WLVtWqH4AAFB3ONw9Su7u7naXyCoiNzdXxcXFpfadO3dO586d05AhQ2wusw0bNkxWq1V79uy56c8HAAC1n8OdUaoM06dPV15entzc3NS5c2c99dRTatGihdF/+vRpSVJISIjNfr6+vmratKkSEhKqtV4AAOCY6lRQslgsGjhwoO655x55enrq1KlTWrt2rSZPnqylS5fK399fkpSWliZJpZ658vHxMfp/KTU11aYvMTGxCo4CAAA4ijoVlPr06aM+ffoY2z169FCXLl00depU/etf/9IzzzwjSSooKJD002W+X3J3d1dubm6p82/atEnR0dGVXzgAAHBIdSoolaZDhw5q166djhw5YrRdC0jXAtPPFRQUyGKxlDpXRESEunfvbmwnJiZq3rx5lVwxAABwFHU+KEmSn5+fvv/+e2P72iW3tLQ043LcNWlpaQoNDS11Hl9fX/n6+lZdoQAAwKE43LfeqsLFixfl7e1tbAcHB0uSTp06ZTMuNTVVKSkpRj8AALi11dqglJqaqsTERBUVFRltGRkZduMOHDigU6dOqUuXLkZbq1atdPvtt2vz5s02jxDYsGGDnJyc1KtXryqtHQAA1A4Oeent448/VnZ2tvENs/379+vSpUuSpMjISHl5eWnJkiXatm2b1qxZYzyFe9KkSfrVr36lkJAQeXp66vTp09qyZYv8/Pz0+OOP23zG5MmTNXv2bM2YMUN9+/bV2bNntX79eg0ePFh33HFHtR4vAABwTA4ZlNasWaOkpCRjOzY2VrGxsZKk8PBwu9eRXNOnTx8dPHhQ//nPf3T16lX5+PhoyJAhGjt2rJo0aWIz9v7779e8efMUHR2tqKgoNWrUSGPGjNHYsWOr7LgAAEDt4pBBae3atTccM2fOHM2ZM8embcKECZowYUKZP6dHjx7q0aNHuesDAAC3hlp7jxIAAEBVIygBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYICgBAACYcK3pAn4uNzdXq1evVnx8vE6cOKGsrCzNnj1bAwcOvOG+R44c0c6dO/X1118rJSVFTZo00b333qtx48bJ19fXZuy0adMUFxdnN0eXLl30xhtvVNbhAACAWs6hgtKVK1cUHR0tf39/tWnTRkePHi3zvu+++64yMzMVFhamFi1a6OLFi/rkk0904MABLVu2TD4+PjbjmzZtqieffNKm7ZdjAADArc2hgpKPj4/Wr18vHx8fnTx5UhMnTizzvk899ZQ6dOggZ+f/u5rYpUsXTZs2TZ988okmTJhgM97Ly0vh4eGVVjsAAKh7HOoeJXd39wqf1enYsaNNSLrW1rBhQyUmJpa6T1FRkXJzcyv0eQAAoO5zqDNKlS03N1d5eXlq1KiRXd/58+f14IMPqrCwUE2aNNHgwYM1duxYubrW6SUBAADlUKdTwUcffaTCwkL16dPHpr158+a65557FBQUpKtXr2rPnj1asWKFzp8/r7lz55rOl5qaqrS0NGPb7EwVAACoG+psUIqLi1N0dLR69+6t++67z6bvueees9l+8MEH9frrr2vz5s0aOXKk7rzzzlLn3LRpk6Kjo6uqZAAA4GDqZFBKTEzUCy+8oKCgIM2aNatM+4waNUqbN2/W4cOHTYNSRESEunfvbvM58+bNq5SaAQCA46lzQSk5OVkzZsyQp6enFi5cKA8PjzLt5+fnJ0nKysoyHePr62v3TCYAAFB31amgdOXKFc2YMUOFhYV66623yhVqLl68KEny9vauouoAAEBt41CPByir1NRUJSYmqqioyGjLy8vTzJkzlZqaqtdee00tWrQodd+cnBwVFBTYtFmtVq1YsUKS1Llz56orHAAA1CoOd0bp448/VnZ2tvHtsv379+vSpUuSpMjISHl5eWnJkiXatm2b1qxZo2bNmkmSXn75ZZ04cUIPPfSQEhMTbb6RVr9+ffXo0UOSdPr0ac2dO1f9+vVTQECA8vPztXfvXh0/flxDhgxRSEhINR8xAABwVA4XlNasWaOkpCRjOzY2VrGxsZKk8PBweXl5lbrfmTNnJElbtmzRli1bbPpuu+02Iyj5+/vr7rvvVmxsrC5fvixnZ2e1bNlSM2bMUERERFUcEgAAqKUcLiitXbv2hmPmzJmjOXPmlHs/6adnKF3vWUkAAADX1Mp7lAAAAKoDQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMAEQQkAAMCEa00X8Eu5ublavXq14uPjdeLECWVlZWn27NkaOHBgmfbPysrSu+++q9jYWOXn5ys0NFSTJ09WSEiI3dh9+/Zp+fLlSkxMlLe3tx566CE98cQTcnV1uGUBAAA1wOHOKF25ckXR0dFKTExUmzZtyrVvSUmJZs2apV27dunhhx/WH/7wB6Wnp2v69Ok6f/68zdiDBw/q+eefl5eXl6ZPn64ePXpoxYoVioqKqszDAQAAtZjDnTrx8fHR+vXr5ePjo5MnT2rixIll3nfPnj365ptv9NJLLyksLEyS1KdPHz366KNavny5/vznPxtjFy1apNatW+vNN980ziB5eHho5cqVGj58uFq2bFmpxwUAAGofhzuj5O7uLh8fnwrtGxMToyZNmqhnz55Gm7e3t3r37q19+/apoKBAknTu3DmdO3dOQ4YMsbnMNmzYMFmtVu3Zs+emjgEAANQNDheUbsbp06cVHBwsZ2fbwwoNDdXVq1eNy2+nT5+WJLv7lnx9fdW0aVMlJCRUT8EAAMChOdylt5tx+fJl3X333Xbt185QpaWlqXXr1kpLS7Np/+XYa/2/lJqaatOXmJhYGWUDAAAHVaeCUn5+vtzd3e3ar7Xl5+dLknEJzmxsbm5uqfNv2rRJ0dHRlVQtAABwdHUqKFksFiME/dy1NovFIun/ApLZ2GvjfikiIkLdu3c3thMTEzVv3rybrhsAADimOhWUmjRpUupls19eavv5pTh/f3+7saGhoaXO7+vrK19f38osGQAAOLA6dTN3cHCwEhISVFJSYtN+4sQJ1atXTy1atDDGSdKpU6dsxqWmpiolJcXoBwAAt7ZaG5RSU1OVmJiooqIio61Xr166fPmyYmNjjbaMjAx98cUXuv/++41Lbq1atdLtt9+uzZs3q7i42Bi7YcMGOTk5qVevXtV3IAAAwGE55KW3jz/+WNnZ2cYls/379+vSpUuSpMjISHl5eWnJkiXatm2b1qxZo2bNmkmSwsLCtG7dOi1YsEDnzp1To0aNtGHDBpWUlOj3v/+9zWdMnjxZs2fP1owZM9S3b1+dPXtW69ev1+DBg3XHHXdU6/ECAADH5JBBac2aNUpKSjK2Y2NjjbNE4eHh8vLyKnU/FxcXvfbaa1q0aJE+/vhj5efnq23btpo9e7Zuv/12m7H333+/5s2bp+joaEVFRalRo0YaM2aMxo4dW2XHBQAAahcnq9VqrekiaqtTp05pwoQJeu+990p96W5VWzXlc+VezpdHE4sefadPnfs8AABqWq29RwkAAKCqEZQAAABMEJQAAABMVDgoHTlyRB9++KFN22effabhw4frN7/5jf72t7/ZfPUeAACgtqlwUFq+fLnOnDljbP/3v//VG2+8IW9vb3Xs2FEff/yxVq9eXSlFAgAA1IQKB6XExESbb3rt2LFDnp6eeueddzR37lwNHjxY27dvr5QiAQAAakKFg1JeXp48PT2N7UOHDqlLly6qV6+eJKlt27ZKTk6++QoBAABqSIWDkp+fn06ePClJunDhgr777jt17tzZ6M/KypKbm9vNVwgAAFBDKvxk7v79++v9999XSkqKzp07pwYNGuiBBx4w+k+dOmW8hBYAAKA2qnBQevzxx1VUVKSDBw/K399fs2fPVoMGDSRJmZmZiouL0/Dhwyut0FvN2YM/6si6BBVeLTIdk5eeX40VAQBw66lwUHJ1ddWECRM0YcIEu76GDRtqw4YNN1PXLe/IugRduZhTprFu9RzylX0AANR6Fb5Hafr06Tpy5Ihp/1dffaXp06dXdPpb3rUzSU5OkkcTi+mfRs091WlEcA1XCwBA3VThUxFxcXEaPHiwaX96erqOHTtW0enx/9VvzAtoAQCoKTf1ChMnJyfTvh9++EEeHh43Mz0AAECNKtcZpa1bt2rbtm3G9ooVK7R582a7cdnZ2Tp79qy6du168xUCAADUkHIFpfz8fGVkZBjbubm5dmeVnJycVL9+fUVERGjs2LGVUSMAAECNKFdQGjp0qIYOHSpJGjlypKZNm2bz7CQAAIC6pMI3c69du7Yy6wAAAHA4N/0AntzcXCUlJSkrK0tWq9Wuv2PHjjf7EQAAADWiwkEpIyNDUVFRiomJUUlJiV2/1WqVk5OT9uzZczP1AQAA1JgKB6XXX39dX375pSIjI3X33Xcbry8BAACoKyoclA4fPqyRI0dq0qRJlVkPAACAw6jwAyctFotuu+22yqwFAADAoVQ4KIWHh2vv3r2VWQsAAIBDqfClt169eikuLk7PPPOMhgwZIj8/Pzk72+eukJCQmyoQAACgplQ4KE2ZMsX4++HDh+36+dYbAACo7SoclJ577rnKrAMAAMDhVDgoDRw4sDLrAAAAcDgVvpkbAACgrqvwGaVXX321TOO4RAcAAGqrCgelr776yq6tpKREaWlpKikpkbe3t+rVq3dTxQEAANSkCgeltWvXltpeVFSkjRs3at26dXrzzTcrXBgAAEBNq/R7lFxdXRUZGanOnTvrf//3fyt7egAAgGpTZTdzt27dWseOHauq6QEAAKpclQWlw4cPc48SAACo1Sp8j1J0dHSp7dnZ2Tp27JhOnz6txx57rKLTAwAA1LgKB6Xly5eX2t6gQQM1b95cM2bM0JAhQypcGAAAQE2rcFCKiYmpzDoMBQUFWrZsmXbs2KGsrCy1bt1a48ePV+fOna+738iRI5WUlFRqX0BAgD788ENju2fPnqWOmzhxosaMGVPx4gEAQJ1S4aBUVRYsWKA9e/ZoxIgRCgwM1NatWzVz5kxFRUWpQ4cOpvtNnTpVeXl5Nm1JSUlaunRpqSGrU6dOGjBggE1bcHBw5RwEAACoE246KMXFxenAgQPG2ZzbbrtN3bp1U8eOHcs9V3x8vHbv3q1JkyZp9OjRkqQHH3xQY8eO1eLFi7V48WLTfXv06GHX9v7770uS+vfvb9fXokULhYeHl7tGAABw66hwUCosLNTcuXO1b98+Wa1WeXl5SfrpZu41a9aoR48eevHFF+XqWvaPiImJkYuLiyIiIow2i8WiQYMGacmSJUpOTpa/v3+Z59u1a5eaNWum9u3bl9qfn59vfAYAAMAv3dS33vbu3atHHnlEo0aNUpMmTSRJ6enpWr16tVavXq3o6GiNHz++zHMmJCQoMDBQnp6eNu2hoaGSpDNnzpQ5KJ0+fVqJiYl6/PHHS+3ftm2bNmzYIKvVqpYtW+qJJ54o9cwTAAC4dVU4KO3cuVMDBgzQpEmTbNobN26sSZMmKT09XTt27ChXUEpLS5OPj49d+7W21NTUctUnlX7Z7a677lLv3r3VrFkzpaWl6ZNPPtHLL7+snJwcDR061HTO1NRUpaWlGduJiYllrgcAANQ+FQ5Kly9fVrt27Uz727Vrp88//7xcc+bn58vNzc2u3d3d3egvi5KSEn3++ecKDg7WHXfcYde/aNEim+2HHnpI48eP15IlSzRw4EDTS3GbNm0yfX4UAACoeyr8ZO6mTZvq6NGjpv1xcXFq2rRpuea0WCwqLCy0ay8oKDD6yyIuLk4pKSllvpTm5uamhx9+WNnZ2Tp16pTpuIiICL333nvGnxdeeKFM8wMAgNqpwmeUBgwYoH/+85/y8vLSyJEjFRAQICcnJ124cEEfffSR9uzZo9/97nflmtPHx0cpKSl27dcud/n6+pZpnp07d8rZ2Vn9+vUr82f7+flJkjIzM03H+Pr6lrkGAABQ+1U4KI0ZM0Y//PCDNm/erE8//VROTk6SJKvVKqvVqgEDBpjeSG2mTZs2Onr0qHJycmxu6I6Pjzf6b6SgoEAxMTHq2LFjuULNxYsXJUne3t7lqhkAANRdFQ5KLi4umjNnjkaNGqUDBw4oOTlZkuTv769u3bqpdevW5Z4zLCxMq1ev1qZNm4znKBUUFGjLli1q166d8Y235ORkXb16VS1btrSb4+DBg8rOzja97JaRkWEXhnJzc7Vu3To1atRIISEh5a4bAADUTeUKSvn5+frb3/6mVq1aKTIyUpLUunVru1C0bt06bdy4UdOmTSvXc5TatWun3r17a8mSJcrIyFBAQIC2bdumpKQkzZo1yxg3f/58xcXFKTY21m6OnTt3yt3dXb169Sr1Mz755BPt27dP999/v/z9/ZWWlqYtW7YoOTlZzz//fKk3kwMAgFtTuYLS5s2btW3bNq1YseK647p166Z3331XQUFB1/26fWnmzJkjf39/bd++XdnZ2QoKCtLChQvL9KTvnJwcHThwQL/+9a+NB2D+Uvv27fXNN9/o008/VWZmpurVq6fQ0FDNmjVL9913X7lqBQAAdVu5gtIXX3yhnj17qnnz5tcdFxAQoLCwMO3atavcQclisWjy5MmaPHmy6Zi333671HZPT0/t2rXruvN37tz5hi/YBQAAkMr5eICzZ89e98W0P3fXXXfp7NmzFSoKAADAEZQrKBUWFpb5niNXV1fj+UcAAAC1UbmCkq+vr7777rsyjf3uu+945hAAAKjVyhWU7rvvPm3fvl3p6enXHZeenq7t27erU6dON1UcAABATSpXUHrsscdUUFCgP/7xj8ZDIH8pPj5ef/zjH1VQUGA8CwkAAKA2Kte33po3b665c+dq7ty5mjx5spo1a6agoCB5eHgoNzdX3333nS5evCiLxaIXX3xRAQEBVVU3AABAlSv3k7m7deum5cuXa9WqVfryyy+1b98+o8/X11eDBw/Wo48+esNHCAAAADi6Cr3CpFmzZpoxY4ZmzJih3Nxc491sHh4elV0fAABAjanwu96u8fDwICABAIA6qVw3cwMAANxKCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmCEoAAAAmXGu6ANQ+een5WjXl85ouo1zc6rmq04hgterarKZLAQDUIgQllJlbPVdJ+bJapdzL+TVdTjnl6/BHCQQlAEC5OFxQKigo0LJly7Rjxw5lZWWpdevWGj9+vDp37nzd/f75z38qOjrart3d3V27du2ya//000+1evVqJSUlqWnTpho+fLgiIyMr6zDqpE4jgnX4owQVXi2q6VLKJS/9p3BX2+oGANQ8hwtKCxYs0J49ezRixAgFBgZq69atmjlzpqKiotShQ4cb7j9jxgzVr1/f2HZ2tr8Na+PGjXrzzTfVq1cvjRo1Sl9//bWioqJ09epVPfbYY5V6PHVJq67NauUZmVVTPq+FZ8AAAI7AoYJSfHy8du/erUmTJmn06NGSpAcffFBjx47V4sWLtXjx4hvO0atXL3l7e5v25+fna+nSperWrZtefvllSdKQIUNUUlKiFStWKCIiQg0aNKiU4wEAALWbQ33rLSYmRi4uLoqIiDDaLBaLBg0apG+//VbJycllmicnJ0dWq7XUvq+++kpXrlzR0KFDbdqHDRumvLw8HThwoML1AwCAusWhglJCQoICAwPl6elp0x4aGipJOnPmzA3nGDVqlAYOHKgBAwbo5Zdf1uXLl+0+Q5Latm1r0x4SEiJnZ2edPn36Zg4BAADUIQ516S0tLU0+Pj527dfaUlNTTfdt0KCBHn74Yd15551yc3PT119/rfXr1+vEiRN67733jPCVlpYmFxcXNW7c2GZ/Nzc3NWzYUGlpaaafkZqaatOfmJhYruMDAAC1i0MFpfz8fLm5udm1u7u7G/1mRowYYbMdFham0NBQvfzyy1q/fr3GjBljzOHqWvphu7u7X/czNm3aVOo36wAAQN3kUEHJYrGosLDQrr2goMDoL4/+/fvr73//u44cOWIEJYvFoqKi0r8mXlBQcN3PiIiIUPfu3Y3txMREzZs3r1w1AQCA2sOhgpKPj49SUlLs2q9d7vL19S33nH5+fsrMzLT5jOLiYqWnp9tcfissLFRmZmapl/6u8fX1rVANAACgdnKom7nbtGmjCxcuKCcnx6Y9Pj7e6C8Pq9WqpKQkm8cFBAcHS5JOnjxpM/bkyZMqKSkx+gEAABwqKIWFham4uFibNm0y2goKCrRlyxa1a9dO/v7+kqTk5GS7G6kzMjLs5tuwYYMyMjLUtWtXo+3ee+9Vw4YNtXHjRpuxGzduVL169dStW7dKPCIAAFCbOdSlt3bt2ql3795asmSJMjIyFBAQoG3btikpKUmzZs0yxs2fP19xcXGKjY012kaMGKE+ffooKChI7u7uOn78uHbv3q3g4GC75zKNGzdOb731lv785z+rS5cuOnbsmHbs2KEJEyaoYcOG1XrMAADAcTlUUJKkOXPmyN/fX9u3b1d2draCgoK0cOFCdezY8br79e/fX998841iYmJUUFAgf39/jR49Wk888YTq1atnM3bYsGFydXXVmjVrtH//fvn5+WnKlCl235wDAAC3NocLShaLRZMnT9bkyZNNx7z99tt2bTNnzizX5wwZMkRDhgwpd30AAODW4VD3KAEAADgSghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJghIAAIAJ15ou4JcKCgq0bNky7dixQ1lZWWrdurXGjx+vzp07X3e/mJgYff755zp58qQuX74sPz8/devWTb/97W/VoEEDm7EjR45UUlKS3RwRERF65plnKvV4AABA7eVwQWnBggXas2ePRowYocDAQG3dulUzZ85UVFSUOnToYLrfG2+8IR8fH4WHh8vf31///e9/tX79eh08eFDLli2TxWKxGR8cHKxRo0bZtAUGBlbJMQEAgNrJoYJSfHy8du/erUmTJmn06NGSpAcffFBjx47V4sWLtXjxYtN9X3rpJd1zzz02bSEhIXrllVe0c+dODR482KbP19dX4eHhlX8QAACgznCoe5RiYmLk4uKiiIgIo81isWjQoEH69ttvlZycbLrvL0OSJPXs2VOSdO7cuVL3KSwsVF5e3s0VDQAA6iyHOqOUkJCgwMBAeXp62rSHhoZKks6cOSN/f/8yz5eWliZJ8vb2tuv76quvFB4eruLiYt12220aMWKERowYUfHiAQBAneNQQSktLU0+Pj527dfaUlNTyzXfqlWr5OLiol69etm0BwUFqUOHDmrRooUyMzO1detW/e1vf1NqaqomTZpkOl9qaqoRviQpMTGxXPUAAIDaxaGCUn5+vtzc3Oza3d3djf6y2rlzpz777DONHj1aLVq0sOl79dVXbbYfeughPfvss1q7dq0iIyPl5+dX6pybNm1SdHR0mWsAAAC1m0MFJYvFosLCQrv2goICo78sjh07poULF6pLly6aMGHCDcc7OTlp5MiR+ve//624uDjTm7wjIiLUvXt3YzsxMVHz5s0rU00AAKD2caig5OPjo5SUFLv2a5e7fH19bzjHmTNnNHv2bAUFBemll16Sq2vZDvHaWaTMzEzTMb6+vmWqAQAA1A0O9a23Nm3a6MKFC8rJybFpj4+PN/qv54cfftAzzzyjxo0b67XXXpOHh0eZP/vixYuSSr/xGwAA3JocKiiFhYWpuLhYmzZtMtoKCgq0ZcsWtWvXzvjGW3Jyst2N1GlpaZoxY4acnZ31xhtvmAaezMxMFRcX27QVFRXpgw8+kJubW6mPGQAAALcmh7r01q5dO/Xu3VtLlixRRkaGAgICtG3bNiUlJWnWrFnGuPnz5ysuLk6xsbFG27PPPquLFy9q9OjROn78uI4fP270NW7c2HgFyv79+7VixQr16tVLzZo1U1ZWlnbu3KnvvvtOEydOLPVbdwAA4NbkUEFJkubMmSN/f39t375d2dnZCgoK0sKFC9WxY8fr7nfmzBlJ0ocffmjX17FjRyMoBQUFqWXLltq5c6cyMjLk6uqq4OBgzZ07V71796704wEAALWXwwUli8WiyZMna/LkyaZj3n77bbu2n59dup6QkBC7xwMAAACUxqHuUQIAAHAkBCUAAAATDnfpDagqeen5WjXl85ou45bgVs9VnUYEq1XXZjVdCgDcFIIS6jy3eq6S8mW1SrmXy/4aHNyMfB3+KIGgBKDWIyihzus0IliHP0pQ4dWimi7llpCX/lMoZb0B1AUEJdR5rbo248xGNVo15XPO3AGoM7iZGwAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwARBCQAAwIRrTRcAoG7KS8/Xqimf13QZAGo5t3qu6jQiWK26NquRzycoAahUbvVcJeXLapVyL+fXdDkAar18Hf4ogaAEoG7oNCJYhz9KUOHVopouBUAtl5f+03901eTvE4ISgErVqmuzGvsvPwB1y6opn9f4mWlu5gYAADDhcGeUCgoKtGzZMu3YsUNZWVlq3bq1xo8fr86dO99w35SUFL3zzjv6z3/+o5KSEt1zzz2aOnWqmjdvbjf2008/1erVq5WUlKSmTZtq+PDhioyMrIpDAgAAtZTDnVFasGCB1q5dq/79+2vatGlydnbWzJkz9fXXX193v9zcXE2fPl1xcXEaM2aMfv/73yshIUFTp07VlStXbMZu3LhRr732mlq1aqXp06frrrvuUlRUlD744IOqPDQAAFDLONQZpfj4eO3evVuTJk3S6NGjJUkPPvigxo4dq8WLF2vx4sWm+27YsEEXLlzQP/7xD4WGhkqSunbtqrFjx2rNmjWaOHGiJCk/P19Lly5Vt27d9PLLL0uShgwZopKSEq1YsUIRERFq0KBBFR8pAACoDRzqjFJMTIxcXFwUERFhtFksFg0aNEjffvutkpOTTffds2eP2rZta4QkSWrZsqXuvfdeffHFF0bbV199pStXrmjo0KE2+w8bNkx5eXk6cOBA5R0QAACo1RwqKCUkJCgwMFCenp427dfCz5kzZ0rdr6SkRGfPnlXbtm3t+kJDQ/XDDz8oNzfX+AxJdmNDQkLk7Oys06dP3/RxAACAusGhLr2lpaXJx8fHrv1aW2pqaqn7ZWZmqqCg4Ib73n777UpLS5OLi4saN25sM87NzU0NGzZUWlqaaX2pqak2/YmJiTc+KAAAUGs5VFDKz8+Xm5ubXbu7u7vRb7afpDLtm5+fL1fX0g/b3d3d9DMkadOmTYqOjjY/AAAAUKc4VFCyWCwqLCy0ay8oKDD6zfaTVKZ9LRaLiopKf8JnQUGB6WdIUkREhLp3725sJyYmat68eabjb4ZHI4vN/wIAcKtxhH8XOlRQ8vHxUUpKil37tctdvr6+pe7XsGFDubu7l3rZ7Jf7+vj4qLi4WOnp6TaX3woLC5WZmVnq5btrfH19TWuobEPnd7/xIAAA6jBH+HehQ93M3aZNG124cEE5OTk27fHx8UZ/aZydnRUUFKSTJ0/a9cXHx6t58+by8PCQJAUHB0uS3diTJ0+qpKTE6AcAAHCooBQWFqbi4mJt2rTJaCsoKNCWLVvUrl07+fv7S5KSk5PtbqTu1auXTp48aROAvv/+ex09elRhYWFG27333quGDRtq48aNNvtv3LhR9erVU7du3argyAAAQG3kUJfe2rVrp969e2vJkiXKyMhQQECAtm3bpqSkJM2aNcsYN3/+fMXFxSk2NtZoGzZsmD799FPNmjVLjzzyiFxcXLR27Vo1btxYjzzyiDHOYrFo3Lhxeuutt/TnP/9ZXbp00bFjx7Rjxw5NmDBBDRs2rNZjBgAAjsuhgpIkzZkzR/7+/tq+fbuys7MVFBSkhQsXqmPHjtfdz8PDQ1FRUXrnnXe0YsUK411vU6ZMkbe3t83YYcOGydXVVWvWrNH+/fvl5+enKVOmaMSIEVV3YAAAoNZxslqt1pouorY6deqUJkyYoPfee08hISE1XQ4AAKhkDnWPEgAAgCMhKAEAAJggKAEAAJggKAEAAJggKAEAAJggKAEAAJggKAEAAJggKAEAAJhwuCdz1yb5+fmSZPfeOQAA4PhatmypevXqXXcMQekmJCUlSZLmzZtXw5UAAIDyKsubNXiFyU3IyMjQv//9bzVr1kzu7u5l3i8xMVHz5s3TCy+8oJYtW1ZhhZBY7+rGelcv1rt6sd7Vq6rXmzNKVczb21vh4eEV3r9ly5a8I64asd7Vi/WuXqx39WK9q1dNrjc3cwMAAJggKAEAAJggKNUAHx8fjR07Vj4+PjVdyi2B9a5erHf1Yr2rF+tdvRxhvbmZGwAAwARnlAAAAEwQlAAAAEwQlAAAAEzwHKVqUlBQoGXLlmnHjh3KyspS69atNX78eHXu3LmmS3NIubm5Wr16teLj43XixAllZWVp9uzZGjhwoN3Yc+fO6Z133tHx48fl6uqqbt26acqUKfL29rYZV1JSotWrV2vDhg26fPmyAgMDNWbMGPXr16/Cc9YVJ06c0LZt23T06FElJSWpYcOGuvPOOzV+/Hi1aNHCZizrffO+++47LV++XKdOndLly5dVr149tWzZUqNHj1b37t1txrLelW/FihVaunSpWrVqpffff9+m7/jx43r33Xd1+vRpeXp6qnfv3powYYI8PDxsxpXnd3pZ56wrjh49qunTp5fat3jxYt15553Gdm1Yb4JSNVmwYIH27NmjESNGKDAwUFu3btXMmTMVFRWlDh061HR5DufKlSuKjo6Wv7+/2rRpo6NHj5Y67tKlS5o6daq8vLw0YcIE5eXlafXq1Tp79qz+8Y9/yM3NzRj73nvv6YMPPtCQIUPUtm1b7du3Ty+99JKcnJzUt2/fCs1ZV6xatUrHjx9X79691bp1a6WlpWn9+vUaP368Fi9erKCgIEmsd2VJSkpSbm6uBgwYIF9fX129elUxMTGaPXu2nnnmGUVEREhivavCpUuXtHLlStWvX9+uLyEhQU8//bRatmypKVOm6NKlS1qzZo0uXLig119/3WZsWX+nl2fOuiYyMlKhoaE2bQEBAcbfa816W1Hlvv32W2uPHj2sq1atMtquXr1qfeSRR6x/+MMfarAyx5Wfn29NTU21Wq1W64kTJ6w9evSwbtmyxW7cm2++ae3Xr581KSnJaPvPf/5j7dGjh3Xjxo1G26VLl6y9e/e2/vWvfzXaSkpKrE899ZT14YcfthYVFZV7zrrk66+/thYUFNi0ff/999a+fftaX3rpJaON9a46RUVF1t/97nfWxx57zGhjvSvfiy++aJ0+fbp16tSp1ieeeMKm75lnnrEOHTrUmp2dbbRt3rzZ2qNHD+uhQ4eMtvL8Ti/rnHXJV199Ze3Ro4f1iy++uO642rLe3KNUDWJiYuTi4mL8V6IkWSwWDRo0SN9++62Sk5NrsDrH5O7uXqbnZsTExOj++++Xv7+/0dapUye1aNFCX3zxhdG2b98+FRUVadiwYUabk5OThg4dqpSUFH377bflnrMuad++vd2ZhBYtWuiOO+5QYmKi0cZ6Vx0XFxf5+fkpOzvbaGO9K1dcXJxiYmI0depUu76cnBwdPnxY4eHh8vT0NNoffPBB1a9f32Ztyvo7vTxz1lW5ubkqKiqya69N601QqgYJCQkKDAy0+cFJMk5JnjlzpibKqvVSUlKUnp5e6vt/QkNDlZCQYGwnJCSofv36di9VvPYzuDa2PHPWdVarVenp6WrUqJEk1rsq5OXlKSMjQz/88IPWrl2rQ4cO6d5775XEele24uJiRUVFadCgQWrdurVd/9mzZ1VcXGy3Nm5ubgoODrZb77L8Ti/PnHXRggULNGDAAPXv31/Tp0/XyZMnjb7atN7co1QN0tLSSj07cq0tNTW1ukuqE9LS0iTJdG0zMzNVUFAgd3d3paWlqXHjxnJycrIbJ/3fz6A8c9Z1O3fuVEpKin7/+99LYr2rwt///ndt2rRJkuTs7KyePXvq6aeflsR6V7aNGzcqOTlZb731Vqn9N1qbY8eO2Ywty+/08sxZl7i6uqpXr1769a9/rUaNGuncuXNas2aNpkyZokWLFulXv/pVrVpvglI1yM/PL/UGyWu/jPLz86u7pDrh2rrdaG3d3d3L/DMoz5x1WWJiot566y3deeedGjBggCTWuyqMGDFCYWFhSk1N1RdffKHi4mIVFhZKYr0r05UrV/TPf/5TTzzxhOk3+260NgUFBTZjK2O9fz5nXdK+fXu1b9/e2H7ggQcUFham3/3ud1qyZIneeOONWrXeXHqrBhaLxfjl93PXfmgWi6W6S6oTrq1bWda2rD+D8sxZV6WlpWnWrFny9PTUyy+/LBcXF0msd1Vo2bKlOnXqpAEDBmjhwoXKy8vTc889J6vVynpXoqVLl6pBgwaKjIw0HXOjtfl5eKys9a5rgfR6AgMD9cADD+jo0aMqLi6uVetNUKoGPj4+xinBn7vW5uvrW90l1QnXTq+arW3Dhg2NfzB8fHx0+fJlWX/xasNf/gzKM2ddlJ2drZkzZyo7O1tvvPGGzf83We+qFxYWppMnT+r8+fOsdyU5f/68Nm/erOHDhys1NVU//vijfvzxRxUUFKioqEg//vijMjMzb7g2v/xnoSy/08sz563Az89PhYWFunr1aq1ab4JSNWjTpo0uXLignJwcm/b4+HijH+XXtGlTeXt769SpU3Z9J06csFnXNm3a6OrVqzbf4JLsfwblmbOuyc/P13PPPafz58/r1Vdf1R133GHTz3pXvWuXDrKzs1nvSpKamqqSkhJFRUVp1KhRxp/4+HidP39eo0aNUnR0tFq1aiUXFxe7tSksLFRCQoLdepfld3p55rwVXLx4Ue7u7qpfv36tWm+CUjUICwtTcXGxcdOm9NNpwC1btqhdu3Y2X9NF+fTq1UtffvmlzSMWjhw5ovPnz6t3795G2wMPPCBXV1etX7/eaLNardq4caOaNm2qu+66q9xz1iXFxcX6y1/+om+//VZz5861WY+fY70rR3p6ul1bUVGRtm/fLovFYoRU1vvmtWrVSvPnz7f706pVK/n7+2v+/PkaNGiQvLy81KlTJ+3YsUO5ubnG/tu3b1deXp7N2pT1d3p55qxLMjIy7NrOnDmj/fv3q3PnznJ2dq5V6+1k/eW5WlSJF198UbGxsRo5cqQCAgK0bds2nThxQm+99ZY6duxY0+U5pI8//ljZ2dlKS0vThg0b1LNnTwUHB0v66YmvXl5eSk5O1vjx4+Xl5aXhw4crLy9PH374oZo2baolS5bYXEZYvHixPvzwQw0ZMkShoaHau3evDhw4oP/5n/9R//79jXHlmbOuePvtt7Vu3Trdf//96tOnj11/eHi4pPKtDett7vnnn1dOTo7uvvtuNW3aVGlpadq5c6e+//57PfXUUxo1apQk1rsqTZs2TVeuXLF5hcmpU6f01FNPqWXLloqIiDCe6nz33XfrzTfftNm/rL/TyzNnXTF9+nRZLBbdddddaty4sc6dO6fNmzfL1dVVixYtMv5DoLasN0GpmuTn5xvvqcnOzlZQUJDGjx+vLl261HRpDmvkyJFKSkoqtW/NmjVq1qyZpJ/em/XL91Y99dRTatKkic0+JSUlWrVqlTZt2qS0tDQFBgbqscceM0LAz5V1zrpi2rRpiouLM+2PjY01/s5637zdu3frs88+09mzZ3XlyhV5eHgoJCREDz/8sB544AGbsax31SgtKEnS119/bbwnzMPDQ71799aTTz5p956w8vxOL+ucdcW6deu0c+dO/fDDD8rJyZG3t7fuu+8+jR07VoGBgTZja8N6E5QAAABMcI8SAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAACACYISAOinV1r07NlTPXv21KxZs4z2H3/8UT179tSHH35Y7TXt3bvXqKlnz546efJktdcA3Opca7oAAJCkrVu3asGCBab9ixcv1p133lmlNdx+++164okn1LRp00qfu6ioSMOGDdPtt9+uv//976WOsVqtGj58uLy9vbVs2TKFhITohRde0LFjx7R58+ZKrwnAjRGUADiUcePGGS88/rmAgIAq/+wmTZqU+hLZyuDq6qqwsDBt2rRJSUlJuu222+zGHDt2TCkpKRo5cqQkyc/PT+Hh4SouLiYoATWEoATAoXTt2lVt27at6TKqRP/+/bVx40bt2rVLY8aMsevfuXOnnJ2d1bdv3xqoDkBpuEcJQK3y83uGPvnkE40aNUr9+/fXn/70JyUnJ8tqter9999XZGSk+vXrp9mzZyszM7NSa7BarXr99dfVp08fxcTEGO07duzQ+PHj1a9fPw0aNEh/+ctflJycbPS3b99et912m3bt2mU3Z1FRkWJiYnTPPffI19e3UusFUHEEJQAOJScnRxkZGTZ/rly5Yjdu165d2rBhgyIjIzVq1CgdO3ZMf/nLX7R06VIdOnRIjz76qIYMGaIvv/xSixYtqrT6iouL9corr2j79u2aP3++evXqJUlasWKF5s+fr8DAQE2ZMkUjRozQkSNHNHXqVGVlZUmSnJyc1L9/f509e1bfffedzbyHDh1SZmam+vfvX2m1Arh5XHoD4FCefvppuzZ3d3e7szApKSlatWqVvLy8JEklJSVauXKl8vPztWTJErm6/vTr7cqVK9q5c6f+9Kc/yd3d/aZqKyoq0rx587R//3698sor6tKliyQpKSlJy5cv1/jx4/X4448b43v27Klx48Zpw4YNRnv//v31r3/9Szt37tTEiRONsbt27ZK7u7sRvAA4BoISAIfy9NNPq0WLFjZtzs72J7/DwsKMkCRJoaGhkn4KItdC0rX2Xbt2KTU1Vc2bN69wXUVFRXrxxRd1+PBhvfbaa7rnnnuMvtjYWJWUlKh3797KyMgw2ps0aaLAwEAdPXrUCEp33HGHgoODtXv3biMo5eXlaf/+/br//vvl6elZ4RoBVD6CEgCHEhoaWqabuf39/W22r4UmPz+/UtuvXf6qqJUrVyovL0+vv/66TUiSpAsXLshqterRRx8tdd+fBzfppzC3aNEiHT9+XO3bt9fevXt19epVLrsBDoigBKBWKu0skyS5uLiU2m61Wm/q87p06aJ///vfWrVqlTp27CiLxWL0lZSUyMnJSa+//nqpddWvX99mu1+/fnr33Xe1a9cutW/fXrt27VKDBg3061//+qZqBFD5CEoAUAbt2rXTb37zGz333HN68cUXNW/ePONMUUBAgKxWq5o1a2Z32bA0vr6+uueee7Rnzx799re/1eHDhzVw4EC5ublV9WEAKCe+9QYAZdSpUye9+OKLOnTokObPn6+SkhJJP9207eLiouXLl9udubJaraV+a69///5KT0/XG2+8oaKiIi67AQ6KM0oAHMqhQ4f0/fff27XfddddN3UzdmXp0aOHZs+erfnz58vDw0PPPvusAgICNG7cOC1ZskRJSUnq0aOHPDw8dPHiRe3du1dDhgzR6NGjbebp1auX/vrXv2rfvn3y8/PT3XffXUNHBOB6CEoAHMqyZctKbZ89e7ZDBCVJCg8PV25urv7617/K09NTkydP1pgxY9SiRQt99NFHio6OliQ1bdpUnTt31gMPPGA3h6enp7p3764vvvhCffv2lZOTUzUfBYCycLLe7B2OAFAHTJs2TUVFRXrllVfk5ubmEF/TLywsVE5Ojnbv3q2oqCgtWbKkzr7eBXBUnFECgP/vm2++UUREhLp166aFCxfWdDk6ePCgnn/++ZouA7ilcUYJACSdOnXKeNaSt7e32rRpU8MVSRkZGTpz5oyx3a5dO3l4eNRgRcCth6AEAABggscDAAAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmCAoAQAAmPh/8s7U2ZLkO48AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAG4CAYAAADrBft1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA8K0lEQVR4nO3de1zVVaL///eWuyKKgERgpmiKmdM5QaQpSprlSRkdw8lyOjbpNCZ2P1ZTnUanyTrZTDaWk1ZaU3gtL53jtbzkJSvM0oeaUShpipcNKtfNbf/+4Mvn13ZDwobNZ7P36/l49LC9PuuzWB8/uHmzPmuvZbHb7XYBAADANG3M7gAAAICvI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICWStQVlamw4cPq6yszOyuAAAANyCQtQK5ubmaPHmycnNzze4KAABwAwIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmMzf7A4AcJ+c3Se1Z0W2KsoqXTo/INhfiek91S05ppl7BgD4OQIZ4MX2rMjW+RPFTWjBpqzl2QQyAHAzAhng4ZoyylVaYJMkWSxSSHhQo8+12+Xy6BoAoOEIZICHa/oolxQW007ps1MadU5mxmaV5Nua9HUBAA1DIAM8XO0IlSujXNL/Pw8MAOC5CGRAKxESHqQ7595kdjcAAG5AIAPwi0oLbMrM2Nzo8/iEJgA0HIEMQJ0Cgv0l1Uzsd20uGZ/QBICGIpABqFNiek9lLXf90518QhMAGo5ABqBO3ZJjXB7d4hOaANA4bJ0EAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACbzqHXIDh06pPXr12vv3r3Ky8tTWFiYrr76ak2aNEldunRxqHv06FHNnTtX+/fvl7+/v/r376+MjAx17NjRoV51dbWWLFmiVatWKT8/X3FxcZowYYKGDRvm9PXNbBPeLWf3Se1Z4foiqwAA7+ZRgSwzM1P79+9Xamqq4uPjZbVatXLlSk2aNEnz5s1T9+7dJUmnT5/WtGnTFBoaqsmTJ6u0tFRLlixRTk6O3njjDQUEBBhtLliwQO+//75GjRql3r17a8eOHZo5c6YsFouGDh1q1DO7TXi3PSuydf5EcZPaqNnKCADgjTzqHX7cuHH67//+b4egctNNN+mee+7R+++/r2eeeUaS9N5776msrExvvvmmoqOjJUkJCQl65JFHtG7dOqWlpUmSzpw5o6VLl2rMmDF6+OGHJUkjR47UtGnT9Prrr2vIkCHy8/MzvU14v9qRMYtFCgkPavT5tRt1AwC8k0cFsmuuucaprEuXLrryyiuVm5trlG3btk0DBgwwQo4kJSYmqkuXLtqyZYsRdHbs2KHKykqNGTPGqGexWDR69GjNnDlTBw4cUL9+/UxvE74jJDxId869yexutJjSApsyMzY3+rzaAMrG5AB8hUcFsrrY7XYVFBToyiuvlFQzQlVQUKBevXo51U1ISNDu3buN19nZ2QoJCVHXrl2d6tUe79evn+ltXuzs2bOyWq3G65+HUaA1qHm8WrPBuGt7WtqUtTybQAbAZ3h8INu0aZPOnDmj3//+95JkBJWIiAinuhEREbpw4YLKy8sVGBgoq9Wq8PBwWSwWp3pSTfDxhDYvtmbNGi1atKievxHA8yWm91TWctc/xGC3y6VzAaC18uhAlpubq7///e+6+uqrdeutt0qSbLaa37brmhBfG25sNpsCAwNls9kuWc8T2rxYWlqabrzxRuN1bm6unnvuOad6gKfqlhzj8uhWZsZmF0fVAKD18thAZrVa9fjjj6tdu3b6y1/+YkyUDwqqmRBdUVHhdE55eblDnaCgoAbXM7PNi0VGRioyMrLOYwAAwPt45MKwRUVFmj59uoqKijR79myHcFL7CPDnc6xqWa1WhYWFGaNOERERys/Pl91ud6onyWjX7DYBAIBv87hAZrPZ9MQTT+jYsWN64YUXjMn8taKiotSxY0cdPnzY6dxDhw6pR48exusePXqorKzMaVL8wYMHjeOe0CYAAPBtHhXIqqqq9Oc//1kHDhzQjBkz1Ldv3zrrDR48WLt27dKpU6eMsj179ujYsWNKTU01ygYOHCh/f3+tXLnSKLPb7Vq9erWioqIc2jezTQAA4Ns8ag7Za6+9pp07d2rAgAEqLCzUxo0bHY4PHz5ckjRhwgRt3bpVDz30kG6//XaVlpZq8eLF6t69u0aMGGHU79y5s9LT07V48WJVVlYqISFB27dv1759+/TMM88Y89LMbhMAAPg2jwpk33//vSRp165d2rVrl9Px2kAWHR2tV199VXPnztUbb7xh7BE5depUp3lZ9913n9q3b681a9Zo/fr1iouL09NPP62bb77ZoZ7ZbQIAAN9lsV88Ox0e5/Dhw5o8ebIWLFhQ50Kz8Hy1Szm07eRbK/W7gr8rAL7Io+aQAQAA+CICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYzKNW6geAWqUFNmVmbG70eQHB/kpM76luyTFu6BUAuAeBDIBHCQj2l2ST3S6V5NtcaMGmrOXZBDIArQqBDIBHSUzvqazl2aooq2z0uaUFNUHOlXMBwEwEMgAepVtyjMujW7X7YAJAa8OkfgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACT8SlLoIFydp/UnhWuL8cAAEB9CGRAA+1Zka3zJ4qb1EbNoqcAADjipwPQQLUjYxaLFBIe1Ojza7f0AQDgYgQyoJFCwoN059ybzO4GAMCLMKkfAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkrNQPwOuUFtiUmbG50efVbm/VLTnGDb0CgPoRyAB4jZrN222y26WSfJsLLdiUtTybQAagxRHIAHiNxPSeylqebWwE3xilBTVBzpVzAaCpCGQAvEa35BiXR7cyMza7OKoGAE3HpH4AAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJP5m90BAPAkpQU2ZWZsbvR5AcH+SkzvqW7JMW7oFQBvRyADANUEKskmu10qybe50IJNWcuzCWQAXEIgAwBJiek9lbU8WxVllY0+t7SgJsi5ci4ASAQyAJAkdUuOcXl0KzNjs4ujagBQg0n9AAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACbjU5bwKTm7T2rPCteXNgAAwB08KpCVlJRoyZIlOnjwoA4dOqTCwkI9+eSTGjFihEO9559/XuvXr3c6/4orrtB7773nUFZdXa0lS5Zo1apVys/PV1xcnCZMmKBhw4Y5nX/06FHNnTtX+/fvl7+/v/r376+MjAx17NjR7W2iZexZka3zJ4qb1EbNAqIAADQfj/rJcv78eS1atEjR0dHq0aOH9u7dW2/dwMBATZ8+3aGsXbt2TvUWLFig999/X6NGjVLv3r21Y8cOzZw5UxaLRUOHDjXqnT59WtOmTVNoaKgmT56s0tJSLVmyRDk5OXrjjTcUEBDg1jbRMmpHxiwWKSQ8qNHn126PAwBAc/KoQBYREaGVK1cqIiJC3377rf7whz/UW9fPz0/Dhw//xfbOnDmjpUuXasyYMXr44YclSSNHjtS0adP0+uuva8iQIfLz85MkvffeeyorK9Obb76p6OhoSVJCQoIeeeQRrVu3TmlpaW5rEy0vJDxId869yexuAAAgycMm9QcGBioiIqLB9auqqlRcXP/jpx07dqiyslJjxowxyiwWi0aPHq0zZ87owIEDRvm2bds0YMAAIzhJUmJiorp06aItW7a4tU0AAODbPGqErDHKyso0YsQIlZWVqX379ho6dKj++Mc/qm3btkad7OxshYSEqGvXrg7nJiQkGMf79eunM2fOqKCgQL169XL6OgkJCdq9e7db27zY2bNnZbVajde5ubm/9FcBAABauVYZyCIiIjR+/HhdddVVstvt+vzzz7Vq1Sr98MMPmjNnjvz9ay7LarUqPDxcFovF6XypJvjU1vt5+cV1L1y4oPLycgUGBrqlzYutWbNGixYtavDfBwAAaN1aZSC77777HF4PHTpUXbp00YIFC7Rt2zZjYr3NZqtz4nxtCLLZbA5/XqpuYGCgW9q8WFpamm688UbjdW5urp577jmnegAAwDt41Byyphg3bpzatGmjrKwsoywoKEgVFRVOdcvLy43jP/+zoXWbu82LRUZGqlevXsZ/Fz8eBQAA3sVrAllQUJDCwsJ04cIFoywiIkL5+fmy2+0OdWsfJ0ZGRhr1fl5+cd2wsDBjJMsdbQIAAN/mNYGspKRE58+fd1hwtUePHiorK3OaFH/w4EHjuCRFRUWpY8eOOnz4sFO7hw4dMuq5q00AAODbWl0gs9lsKikpcSp/5513ZLfblZycbJQNHDhQ/v7+WrlypVFmt9u1evVqRUVFqW/fvkb54MGDtWvXLp06dcoo27Nnj44dO6bU1FS3tgkAAHybx03q/+CDD1RUVGQ86tu5c6dOnz4tSRo7dqwKCwt17733atiwYbriiiskSV988YV2796t5ORkDRw40Girc+fOSk9P1+LFi1VZWamEhARt375d+/bt0zPPPGMs4CpJEyZM0NatW/XQQw/p9ttvV2lpqRYvXqzu3bs7bN3kjjYBAIBvs9gvngxlsnHjxikvL6/OY0uXLlVoaKjmzJmjAwcOyGq1qrq6WrGxsbr55pt1xx13GEte1KqurlZmZqbWrFkjq9WquLg43XXXXXWu8n/kyBGnfSenTp2qTp06ub3NX3L48GFNnjxZCxYsqHNdMzRcZsZmleTb1LYTK/Wj+dR+XzV1S65uyTFu6B2A1sDjAhmcEciaD4EM7rD8sU+bvGl9h8vbKX12SjP1CEBr43GPLAGgtUlM76ms5dnG5vWNUVpgk90ul84F4D0IZADQRN2SY1x+3Fg7agvAt7W6T1kCAAB4GwIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDJ/szsAAJBKC2zKzNjc6PMCgv2VmN5T3ZJj3NArAC2FQAYAJgoI9pdkk90uleTbXGjBpqzl2QQyoJUjkAGAiRLTeyprebYqyiobfW5pQU2Qc+VcAJ6FQAYAJuqWHOPy6FZmxmYXR9UAeBom9QMAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMlc3styz549+u677zR+/Hij7P/+7/+0cOFCVVRUaNiwYbr//vvl5+fXLB0FANSttMCmzIzNjT4vINhfiek9Xd5LE0DzcTmQLVy4UNHR0cbrH374QbNnz1Z8fLxiY2P1wQcfqFOnTrrrrruapaMAAEcBwf6SbLLb5eIm4zZlLc8mkAEewOVAlpubq5SUFOP1xo0b1a5dO82dO1fBwcGaPXu2NmzYQCADADdJTO+prOXZqiirbPS5pQU1Qc6VcwE0P5cDWWlpqdq1a2e8/vzzz3X99dcrODhYktS7d29t2rSp6T0EANSpW3KMy6NbmRmbXRxVA+AOLk/q79y5s7799ltJ0vHjx3XkyBElJSUZxwsLCxUQEND0HgIAAHg5l0fIbr75Zr3zzjs6c+aMjh49qvbt22vgwIHG8cOHD6tLly7N0kkAAABv5nIg+93vfqfKykrt3r1b0dHRevLJJ9W+fXtJ0oULF/T111/r9ttvb7aOAgAAeCuXA5m/v78mT56syZMnOx0LCwvTqlWrmtIvAAAAn+HyHLIHH3xQe/bsqff4V199pQcffNDV5gEAAHyGyyNkX3/9tUaOHFnv8YKCAn3zzTeuNg/UK2f3Se1Z4fpH/QEA8DQuBzJJslgs9R776aef1LZt26Y0D9Rpz4psnT9R3KQ2ahbUBADAMzTqp9K6deu0fv164/W7776rjz76yKleUVGRcnJylJyc3PQeAhepHRmzWKSQ8KBGn1+7XQwAAJ6iUYHMZrPp3LlzxuuSkhKnUTKLxaKQkBClpaVp4sSJzdFHoE4h4UG6c+5NZncDaNXYBxPwDI0KZKNHj9bo0aMlSePGjdMDDzzgsPYYAKB1YB9MwLO4PJFm2bJlzdkPAEALYh9MwLM0eWZzSUmJ8vLyVFhYKLvd7nT82muvbeqXAAA0M/bBBDyLy4Hs3LlzmjNnjrZt26bq6mqn43a7XRaLRVu3bm1K/wAAALyey4HspZde0q5duzR27Fj96le/MrZNAgAAQOO4HMiysrI0btw4TZkypTn7AwAA4HNc3jopKChIl112WXP2BQAAwCe5HMiGDx+u7du3N2dfAAAAfJLLjywHDx6sr7/+Wo899phGjRqlzp07q00b53zXq1evJnUQAADA27kcyDIyMoz/z8rKcjrOpywBwLu5usq/xEr/wMVcDmRPPPFEc/YDANBKNH2Vf4mV/gFHLgeyESNGNGc/AACtRFNW+ZdY6R+oS5NX6gcA+JamrPIvsdI/UBeXA9kLL7zQoHo82gQAAPhlLgeyr776yqmsurpaVqtV1dXV6tixo4KDg5vUOQAAAF/gciBbtmxZneWVlZVavXq1VqxYoZdfftnljgEAAPgKlxeGrY+/v7/Gjh2rpKQkvfLKK83dPAAAgNdp9kBWKz4+Xt988427mgcAAPAabvuUZVZWVqPnkJWUlGjJkiU6ePCgDh06pMLCQj355JN1LrFx9OhRzZ07V/v375e/v7/69++vjIwMdezY0aFedXW1lixZolWrVik/P19xcXGaMGGChg0b5lFtAgAA3+VyIFu0aFGd5UVFRfrmm2/03Xff6a677mpUm+fPn9eiRYsUHR2tHj16aO/evXXWO336tKZNm6bQ0FBNnjxZpaWlWrJkiXJycvTGG28oICDAqLtgwQK9//77GjVqlHr37q0dO3Zo5syZslgsGjp0qMe0CQC+xtWV/lnlH97I5UC2cOHCOsvbt2+vyy+/XI8++qhGjRrVqDYjIiK0cuVKRURE6Ntvv9Uf/vCHOuu99957Kisr05tvvqno6GhJUkJCgh555BGtW7dOaWlpkqQzZ85o6dKlGjNmjB5++GFJ0siRIzVt2jS9/vrrGjJkiPz8/ExvEwB8SdNX+meVf3gflwPZtm3bmrMfkqTAwEBFREQ06GsPGDDACDmSlJiYqC5dumjLli1G0NmxY4cqKys1ZswYo57FYtHo0aM1c+ZMHThwQP369TO9TQDwJU1Z6Z9V/uGtWt1K/WfOnFFBQYF69erldCwhIUG7d+82XmdnZyskJERdu3Z1qld7vF+/fqa3ebGzZ8/KarUar3Nzc+utCwCtTVNW+meVf3irJgeyr7/+Wp999pny8vIkSZdddpn69++va6+9tqlN16k2qNQ1khYREaELFy6ovLxcgYGBslqtCg8Pl8Vicaon1QQfT2jzYmvWrKl3jh4AAPA+LgeyiooKzZgxQzt27JDdbldoaKikmkn9S5cu1aBBg/Tss8/K3795B+FstprfjOqaEF8bbmw2mwIDA2Wz2S5ZzxPavFhaWppuvPFG43Vubq6ee+45p3oAAMA7NOlTltu3b9cdd9yh3/72t+rUqZMkqaCgQEuWLNGSJUu0aNEiTZo0qdk6K0lBQUGSagLhxcrLyx3qBAUFNbiemW1eLDIyUpGRkXUeAwAA3sflhWE3bdqkW2+9VVOmTDHCmCSFh4drypQpuuWWW7Rx48Zm6eTP1T4C/Pkcq1pWq1VhYWHGqFNERITy8/Nlt9ud6kkyQo/ZbQIAAN/mciDLz89Xnz596j3ep08f5efnu9p8vaKiotSxY0cdPnzY6dihQ4fUo0cP43WPHj1UVlbmNCn+4MGDxnFPaBMAAPg2lwNZVFRUvQu3SjWT/aOiolxt/hcNHjxYu3bt0qlTp4yyPXv26NixY0pNTTXKBg4cKH9/f61cudIos9vtWr16taKiotS3b1+PaBMAAPg2l+eQ3XrrrXr77bcVGhqqcePGKTY2VhaLRcePH9fy5cu1detW3XPPPY1u94MPPlBRUZHxqG/nzp06ffq0JGns2LEKDQ3VhAkTtHXrVj300EO6/fbbVVpaqsWLF6t79+4O2yx17txZ6enpWrx4sSorK5WQkKDt27dr3759euaZZ4wFXCWZ2iYAoHFY5R/exmK/eDJUA1VVVenFF1/Uhg0bZLFYjGUg7Ha77Ha7br31Vj3++ONq06Zxg3Djxo0zltC42NKlSxUTU/OP6MiRI057RE6dOtVhPptUs+9kZmam1qxZI6vVqri4ON11110aPny4U/tmtvlLDh8+rMmTJ2vBggV1rmvma2rXIWrbKUh3zr3J7O4AaEHLH/tU508UN6mNDpe3U/rslGbqEdA8XA5ktX744Qd99tlnxmO56Oho9e/fX/Hx8c3SQRDILkYgA3zXkc9PNnmVf9474Ika9cjSZrPpH//4h7p166axY8dKkuLj453C14oVK7R69Wo98MADzb4OGQDAd7HKP7xVo54nfvTRR1q/fr369+//i/X69++vtWvX6n//93+b1DkAAABf0KhAtmXLFqWkpOjyyy//xXqxsbEaMmSIPv744yZ1DgAAwBc0KpDl5OSoX79+Darbt29f5eTkuNQpAAAAX9KoQFZRUdHgOWH+/v7GFkEAAACoX6MCWWRkpI4cOdKgukeOHGE/RgAAgAZoVCC77rrrtGHDBhUUFPxivYKCAm3YsEGJiYlN6hwAAIAvaFQgu+uuu1ReXq6HHnrI2LvxYgcPHtRDDz2k8vJyjR8/vlk6CQAA4M0atUjY5ZdfrhkzZmjGjBm6//77FRMTo+7du6tt27YqKSnRkSNHdOLECQUFBenZZ59VbGysu/oNAADgNRq9amv//v21cOFCZWZmateuXdqxY4dxLDIyUiNHjtSdd955yaUxAAAAUMOlZfRjYmL06KOP6tFHH1VJSYmKi4vVrl07tW3btrn7BwBAs2JjcniiJu9r1LZtW4IYAMDjBQT7S6rZz9K1LZRsylqeTSCDW7DRJADAJySm92zyxuSunAs0BIEMAOAT2JgcnqxRy14AAACg+RHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkLAwLU+TsPqk9K1xfMRsAAG9CIIMp9qzI1vkTxU1qo2ZfOgAAWj9+osEUtSNjFosUEh7U6PMDgv2VmN6zubsFAIApCGQwVUh4kO6ce5PZ3QAAwFRM6gcAADAZgQwAAMBkBDIAAACTMYcMAIAGKi2wKTNjc6PPq/0gUrfkGDf0Ct6AQAYAwCXULLNjk90uleS7shaiTVnLswlkqBeBDACAS0hM76ms5a4vZm23y6Vz4TsIZAAAXEK35BiXR7cyMza7OKoGX8KkfgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBk/mZ3AAAAX1BaYFNmxuZGnxcQ7K/E9J7qlhzjhl7BUxDIAABwo4Bgf0k22e1SSb7NhRZsylqeTSDzcgQyAADcKDG9p7KWZ6uirLLR55YW1AQ5V85F60IgAwDAjbolx7g8upWZsdnFUTW0NkzqBwAAMBmBDAAAwGQEMgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAk7XKvSz37t2rBx98sM5j8+bN09VXX2283r9/v/75z3/qu+++U7t27ZSamqrJkyerbdu2DueVl5frrbfe0saNG1VYWKj4+HhNmjRJSUlJTl/DHW0CAADf1SoDWa2xY8cqISHBoSw2Ntb4/+zsbD388MPq2rWrMjIydPr0aS1dulTHjx/XSy+95HDerFmztHXrVqWnpysuLk7r1q3T9OnTNWfOHPXr18+tbQIAAN/WqgPZr371Kw0ZMqTe4/Pnz1f79u316quvql27dpKkmJgY/c///I+++OILXX/99ZKkgwcP6pNPPtGUKVM0fvx4SdItt9yiiRMnat68eZo3b55b2wQAAL6t1c8hKykpUWVlpVN5cXGxsrKyNHz4cCM4STWhKCQkRFu2bDHKtm3bJj8/P6WlpRllQUFBuu2223TgwAGdOnXKbW0CAAC06hGyWbNmqbS0VH5+furXr5+mTJmi3r17S5JycnJUVVWlXr16OZwTEBCgnj17Kjs72yjLzs5WXFycQ8iSZDwO/f777xUdHe2WNuty9uxZWa1W43Vubm6D/j4AAEDr1CoDmb+/vwYPHqwbbrhBHTp00NGjR7V06VJlZGTo9ddf11VXXWUEmoiICKfzIyIi9M033xivrVZrvfWkmoBUW6+526zLmjVrtGjRonqPAwAA79IqA9k111yja665xng9cOBADRkyRPfcc4/mz5+v2bNny2azSaoZvbpYYGCgysvLjdc2m63eerXHf/5nc7ZZl7S0NN14443G69zcXD333HP11gcAeLfSApsyMzY3+ryAYH8lpvdUt+QYN/QKzalVBrK6xMXFaeDAgfr0009VVVWloKAgSVJFRYVT3fLyciMYSTVzu+qrV3v85382Z5t1iYyMVGRkZL3HAQC+ISDYX5JNdrtUkl//L/L1sylreTaBrBXwmkAmSZ07d1ZFRYXKysqMR4M/n4tVy2q1OgSeiIgInTlzps56koy67mgTAID6JKb3VNbybFWUOX947VJKC2qCnCvnouV5VSA7ceKEAgMDFRISom7dusnPz0+HDx/WTTfdZNSpqKhQdna2UlNTjbIePXpo7969Ki4udpiEf/DgQeO4JLe0CQBAfbolx7g8upWZsdnFUTWYoVUue3Hu3Dmnsu+//147d+5UUlKS2rRpo9DQUCUmJmrjxo0qKSkx6m3YsEGlpaUO4WnIkCGqqqrSmjVrjLLy8nKtXbtWffr0MT4N6Y42AQAAWuUI2bPPPqugoCD17dtX4eHhOnr0qD766CMFBwfrvvvuM+pNmjRJU6dO1bRp05SWlmasqp+UlKTk5GSjXp8+fZSamqr58+fr3Llzio2N1fr165WXl6fHH3/c4Wu7o00AAODbWmUgGzRokDZt2qRly5apuLhYHTt2VEpKiiZOnKi4uDijXq9evfS3v/1N//znP/WPf/xDbdu21W233eYQ2mr96U9/UnR0tDZs2KCioiJ1795dL774oq699lqHeu5oEwAA+DaL3W63m90J/LLDhw9r8uTJWrBggdOitGbK2X1Se1Y0bbJp205BunPuTZc+AQDQKLVzyHifbR1a5QgZPMOeFdk6f6K4SW3UfKQbAADfxk9DuKx2ZMxikULC619XrT61CxYCAODrCGRospBwhsMBAGiKVrnsBQAAgDchkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyVgYFgAAL1ZaYFNmxuZGn1e7m0q35Bg39AoXI5ABAOCFavYKtslul0rybS60YFPW8mwCWQshkAEA4IUS03sqa3m2se9wY5QW1AQ5V86FawhkAAB4oW7JMS6PbmVmbHZxVA2uYlI/AACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjEAGAABgMgIZAACAyQhkAAAAJiOQAQAAmMzf7A4AAADPVFpgU2bG5kafFxDsr8T0nuqWHOOGXnknAhkAAHAQEOwvySa7XSrJt7nQgk1Zy7MJZI1AIAMAAA4S03sqa3m2KsoqG31uaUFNkHPlXF9GIAMAAA66Jce4PLqVmbHZxVE138akfgAAAJMRyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgAwAAMBl7WQIAgGZXWmBTZsbmRp8XEOyvxPSeLu+l2VoRyAAAQLMJCPaXZJPdLhc3Gbcpa3k2gQwAAMBViek9lbU8WxVllY0+t7SgJsi5cm5rRyADAADNpltyjMujW5kZm10cVWv9mNQPAABgMgIZAACAyQhkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACZjHTIAAOBRfHHbJQKZj8vZfVJ7Vri+ojIAAM3Fl7ddIpD5uD0rsnX+RHGT2qj5BwQAQNP48rZL/CT1cbXfuBaLFBIe1Ojza4eHAQBoKl/edolABkk1YezOuTeZ3Q0AAHwSn7IEAAAwGYEMAADAZAQyAAAAkxHIAAAATMakfjcrLy/XW2+9pY0bN6qwsFDx8fGaNGmSkpKSzO4aAABep7UuKksgc7NZs2Zp69atSk9PV1xcnNatW6fp06drzpw56tevn9ndAwDAK7T2RWUJZG508OBBffLJJ5oyZYrGjx8vSbrllls0ceJEzZs3T/PmzTO5hwAAeIfWvqgsgcyNtm3bJj8/P6WlpRllQUFBuu222zR//nydOnVK0dHRJvYQAADv0NoXlSWQuVF2drbi4uLUrl07h/KEhARJ0vfff19nIDt79qysVqvxOjc3170dBQAApiKQuZHValVERIRTeW3Z2bNn6zxvzZo1WrRokTu7BgAAPAiBzI1sNpsCAgKcygMDA43jdUlLS9ONN95ovM7NzdVzzz3nlj627RDk8CcAAL7GE34WEsjcKCgoSBUVFU7l5eXlxvG6REZGKjIy0q19qzX6rzdeuhIAAF7ME34WsjCsG0VERDjMBatVW9ZSoQsAAHg2Apkb9ejRQ8ePH1dxcbFD+cGDB43jAAAABDI3GjJkiKqqqrRmzRqjrLy8XGvXrlWfPn1Y8gIAAEhiDplb9enTR6mpqZo/f77OnTun2NhYrV+/Xnl5eXr88cfN7h4AAPAQBDI3+9Of/qTo6Ght2LBBRUVF6t69u1588UVde+21ZncNAAB4CAKZmwUFBen+++/X/fffb3ZXAACAh2IOGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJCGQAAAAmI5ABAACYjHXIWgGbzSZJys3NNbknAACgsbp27arg4OBfrEMgawXy8vIkSc8995zJPQEAAI21YMEC9erV6xfrWOx2u72F+gMXnTt3Tl988YViYmIUGBjYrG3n5ubqueee09NPP62uXbs2a9uezlev3VevW/Lda/fV65a4dl+8dk+8bkbIvETHjh01fPhwt36Nrl27XjK9eytfvXZfvW7Jd6/dV69b4tp98dpb23UzqR8AAMBkBDIAAACTEch8XEREhCZOnKiIiAizu9LifPXaffW6Jd+9dl+9bolr98Vrb63XzaR+AAAAkzFCBgAAYDICGQAAgMkIZAAAACYjkAEAAJiMhWF9VHl5ud566y1t3LhRhYWFio+P16RJk5SUlGR215rFoUOHtH79eu3du1d5eXkKCwvT1VdfrUmTJqlLly5Gveeff17r1693Ov+KK67Qe++915JdbjZ79+7Vgw8+WOexefPm6eqrrzZe79+/X//85z/13XffqV27dkpNTdXkyZPVtm3blupus6rvftb64IMPFBUVpQceeEBff/210/Hrr79es2fPdmMPm0dJSYmWLFmigwcP6tChQyosLNSTTz6pESNGONU9evSo5s6dq/3798vf31/9+/dXRkaGOnbs6FCvurpaS5Ys0apVq5Sfn6+4uDhNmDBBw4YNa6GrurSGXHd1dbU2bNigbdu2KTs7W4WFhYqJidFNN92kO+64Q0FBQQ5tpqSk1Pm1/vCHP2jChAluvZ7GaOg9b8x7mrfcc6n++yhJiYmJ+tvf/iZJOnnypH7729/WWe/ZZ5/V0KFDm6/zjUQg81GzZs3S1q1blZ6erri4OK1bt07Tp0/XnDlz1K9fP7O712SZmZnav3+/UlNTFR8fL6vVqpUrV2rSpEmaN2+eunfvbtQNDAzU9OnTHc5v165dS3e52Y0dO1YJCQkOZbGxscb/Z2dn6+GHH1bXrl2VkZGh06dPa+nSpTp+/Lheeumllu5us0hLS1NiYqJDmd1u18svv6zLLrtMUVFRRnlUVJTuu+8+h7qt5WPy58+f16JFixQdHa0ePXpo7969ddY7ffq0pk2bptDQUE2ePFmlpaVasmSJcnJy9MYbbyggIMCou2DBAr3//vsaNWqUevfurR07dmjmzJmyWCym/pD6uYZcd1lZmWbNmqWrr75av/71rxUeHq4DBw5o4cKF+uqrr/TKK6/IYrE4nJOYmKhbb73Voaxnz55uvZbGaug9lxr+nuYt91ySnn76aaeyb7/9VitWrKhzoGHYsGG64YYbHMp+/suqKezwOQcOHLAPGjTInpmZaZSVlZXZ77jjDvsf//hHE3vWfPbt22cvLy93KPvxxx/tQ4cOtc+cOdMo++tf/2ofPnx4S3fPrb766iv7oEGD7Fu2bPnFeo899ph99OjR9qKiIqPso48+sg8aNMj++eefu7mXLeebb76xDxo0yP7uu+8aZdOmTbPffffdJvaqaWw2m/3s2bN2u91uP3TokH3QoEH2tWvXOtV7+eWX7cOGDbPn5eUZZV9++aV90KBB9tWrVxtlp0+ftqemptr/9re/GWXV1dX2qVOn2n/zm9/YKysr3Xg1DdeQ6y4vL7fv27fP6dyFCxfaBw0aZP/yyy8dygcNGuRw3Z6qofe8oe9p3nTP6/PCCy/YU1JS7KdOnTLKTpw44fTzz1Mwh8wHbdu2TX5+fkpLSzPKgoKCdNttt+nAgQM6deqUib1rHtdcc43Db/+S1KVLF1155ZXKzc11ql9VVaXi4uKW6l6LKSkpUWVlpVN5cXGxsrKyNHz4cIffnG+55RaFhIRoy5YtLdlNt/r4449lsVjqfAxTWVmpkpISE3rVNIGBgQ0azdu2bZsGDBig6OhooywxMVFdunRxuMc7duxQZWWlxowZY5RZLBaNHj1aZ86c0YEDB5r3AlzUkOsOCAjQNddc41Q+aNAgSarz378k2Ww22Wy2pnfSTRp6z2td6j3Nm+55XcrLy7Vt2zZde+216ty5c511SktLVVFR0dQuNhseWfqg7OxsxcXFOQ1h1z7e+v777x3ewL2F3W5XQUGBrrzySofysrIyjRgxQmVlZWrfvr2GDh2qP/7xj612HlWtWbNmqbS0VH5+furXr5+mTJmi3r17S5JycnJUVVXltPFuQECAevbsqezsbDO63OwqKyu1ZcsW9e3bVzExMQ7Hjh07pltuuUUVFRXq1KmTRo4cqYkTJ8rf3zveFs+cOaOCgoI6N1dOSEjQ7t27jdfZ2dkKCQlR165dnerVHm/tUxny8/MlSR06dHA6tn79eq1atUp2u11du3bV3XffrZtvvrmlu9hsGvKe5u33fPfu3SoqKqr3Pi5atEjz5s2TxWJRr169NGnSJF1//fUt3EtH3vHOg0axWq11/sZRW3b27NmW7lKL2LRpk86cOaPf//73RllERITGjx+vq666Sna7XZ9//rlWrVqlH374QXPmzGmVP5z9/f01ePBg3XDDDerQoYOOHj2qpUuXKiMjQ6+//rquuuoqWa1WSXXPmYqIiNA333zT0t12iy+++ELnz593elO+/PLL9W//9m/q3r27ysrKtHXrVr377rs6duyYZsyYYVJvm9el7vGFCxdUXl6uwMBAWa1WhYeHO82t8qb3hMWLF6tdu3ZKTk52KO/bt69SU1MVExMjq9WqDz/8UH/5y19UXFys0aNHm9PZJmjoe5q33/NNmzYpMDBQgwcPdihv06aNkpKSlJKSosjISJ04cULLli3T9OnTNWvWLPXv39+kHhPIfJLNZnN6nCfVDA3XHvc2ubm5+vvf/66rr77aYfLuxZO6hw4dqi5dumjBggXatm2bx0xsbYxrrrnG4ZHNwIEDNWTIEN1zzz2aP3++Zs+ebdzj+r4PysvLW6y/7vTxxx/L399fqampDuVPPPGEw+tbbrlFL730kj766CONGzfO/Mm9zeBS97i2TmBgoNe/J/zrX/9SVlaWHnnkEbVv397h2Ouvv+7w+j/+4z80adIkzZ8/XyNGjHD6VKana+h7mjff8+LiYn322WdKTk52ut/R0dF6+eWXHcpuueUW3X333XrttddMDWTMIfNBQUFBdT43r/0h3NregC7FarXq8ccfV7t27fSXv/xFfn5+v1h/3LhxatOmjbKyslqoh+4XFxengQMHau/evaqqqjLucX3fB7Vvyq1ZSUmJduzYoeuvv77Ox1QXq/0ovLfc90vd45/X8eb3hE8++URvvvmmbrvttgaNeAUEBOg3v/mNioqKdPjwYfd3sAXU9Z7mzfd827ZtKi8vb/Bj57CwMI0YMUI//vijTp8+7ebe1Y9A5oMiIiKMxxk/V1sWGRnZ0l1ym6KiIk2fPl1FRUWaPXt2g64tKChIYWFhunDhQgv0sOV07txZFRUVKisrMx5L1Pd94A3fAzt27FBZWVmD35RrJ/4WFha6s1st5lL3OCwszAjeERERys/Pl91ud6ontd73hC+//FLPP/+8+vfvr0cffbTB59V+L3jLe0Bd72nees+lmseVoaGhGjBgQIPP8YR//wQyH9SjRw8dP37c6RM4Bw8eNI57A5vNpieeeELHjh3TCy+84DSZvz4lJSU6f/6808KZrd2JEycUGBiokJAQdevWTX5+fk4jABUVFcrOzvaK74FNmzYpJCREN954Y4PqnzhxQpK85r5HRUWpY8eOdY7yHDp0yOEe9+jRQ2VlZU6fQGzN7wkHDx7U008/rV69emnGjBmNmg/qbd8Ldb2neeM9l2rmvu3du1cpKSmNGumvvecNGU13FwKZDxoyZIiqqqq0Zs0ao6y8vFxr165Vnz59vOITllVVVfrzn/+sAwcOaMaMGerbt69THZvNVueSB++8847sdrvT5N/W4ty5c05l33//vXbu3KmkpCS1adNGoaGhSkxM1MaNGx3+DjZs2KDS0lKnOVetzblz55SVlaWUlBQFBwc7HCsuLnaaI2e32/Xuu+9KktfsViFJgwcP1q5duxyWstmzZ4+OHTvmcI8HDhwof39/rVy50iiz2+1avXq1oqKi6vz348mOHj2qxx9/XJdddplefPHFeh+/1fVvpaSkRCtWrFCHDh3q/ISqJ2vMe5q33fNamzdvVnV1db0j43Xd8zNnzmjt2rWKj483dWSQSf0+qE+fPkpNTdX8+fN17tw5xcbGav369crLy9Pjjz9udveaxWuvvaadO3dqwIABKiws1MaNGx2ODx8+XPn5+br33ns1bNgwXXHFFZJqPpW3e/duJScna+DAgWZ0vcmeffZZBQUFqW/fvgoPD9fRo0f10UcfKTg42GHC76RJkzR16lRNmzZNaWlpxkr9SUlJrTaM1vrkk09UVVVV55vyd999pxkzZmjYsGGKjY2VzWbT9u3btX//fo0aNarV/BD+4IMPVFRUZDxi2rlzpzH/ZezYsQoNDdWECRO0detWPfTQQ7r99ttVWlqqxYsXq3v37g5bz3Tu3Fnp6elavHixKisrlZCQoO3bt2vfvn165plnLjnvsiVd6rrbtGmjxx57TIWFhbrjjjv02WefOZx/+eWXG2Hjww8/1I4dO4y12qxWq9auXatTp07pqaeeqnPSu5kude2FhYUNfk/zpnseGhpq1N20aZMiIyP1b//2b3W2NW/ePP3000+67rrrFBkZqby8PK1Zs0ZlZWV64IEH3H8xv8Biv/gBMnyCzWYz9rIsKipS9+7dPWIdluZS316FtT799FMVFhZqzpw5OnDggKxWq6qrqxUbG6ubb75Zd9xxR6tc8kKSVqxYoU2bNumnn35ScXGxOnbsqOuuu04TJ05UXFycQ919+/YZe1m2bdtWqampuu+++1r9GmxTpkzRiRMn9OGHHzr9YDlx4oTeeOMNHTp0SPn5+WrTpo26du2qkSNHKi0tzWkZAE81btw45eXl1Xls6dKlxrprR44ccdrLcurUqerUqZPDOdXV1crMzNSaNWtktVoVFxenu+66S8OHD3f7tTTGpa5bUr17FUrSrbfeqj/96U+SauaYLV68WDk5Obpw4YKCg4OVkJCgO++8U9ddd13zd76JLnXtoaGhjXpP85Z7Xvu9/uOPP2rChAkaN26cMjIy6qz/8ccfa/Xq1crNzVVhYaFCQ0PVr18/3X333ab/MkYgAwAAMBlzyAAAAExGIAMAADAZgQwAAMBkBDIAAACTEcgAAABMRiADAAAwGYEMAADAZAQyAAAAkxHIAAAATEYgA4B6rFu3TikpKfr2228vWfeBBx645F54J0+eVEpKivHf1q1bL9nu22+/rZSUlIZ22SXZ2dmN7heA5tU6N+sDgCZYt26dZs2aZbwODAxU586dlZSUpP/8z/902uexuY0aNUq/+tWvlJCQ4Nav01CXXXaZnn76aeXm5upf//qX2d0BfBKBDIDPuvfeexUTE6Py8nLt27dPq1ev1u7du/XOO+8oODi4UW29/PLLDa7bt29fj9rAuX379ho+fLj27t1LIANMQiAD4LOSk5PVu3dvSdLIkSMVFhamZcuWaceOHRo2bFij2goICHBHFwH4CAIZAPw/1113nZYtW6aTJ086lFdUVGju3LnasGGDbDabkpKS9F//9V/q2LGjUad2/tirr77q8tfft2+f5s6dq5ycHEVGRmr8+PH11t24caOWLVumo0ePKigoSElJSZoyZYqio6Md6n344YdaunSprFarunfvrqlTp+qtt95qcl8BNC8m9QPA//PTTz9JksLCwhzKX3nlFX3//feaOHGifv3rX2vXrl36+9//3qxf+4cfftCjjz6qgoICTZw4USNGjNDChQu1fft2p7rvvvuu/vrXvyouLk4ZGRlKT0/Xnj17NG3aNBUWFhr1Vq1apVdeeUVRUVGaMmWK+vXrp6eeekpnzpxp1r4DaDpGyAD4rOLiYp07d07l5eXav3+/3nnnHQUFBWnAgAEO9Tp06KCXX35ZFotFkmS32/XBBx+oqKhIoaGhzdKXt99+W3a7XXPnzjVGuQYPHqx77rnHoV5eXp4WLlyoSZMm6Xe/+51RnpKSonvvvVerVq3S7373O1VUVOitt95S79699corr8jfv+btPj4+XrNmzVJUVFSz9BtA82CEDIDPevjhh5WWlqbbb79dM2bMUEhIiP761786hZVRo0YZYUyS+vXrp6qqKp06dapZ+lFVVaUvvvhCgwYNcnjkeOWVVyopKcmh7qeffqrq6mqlpqbq3Llzxn+dOnVSXFyc9u7dK0n69ttvdf78eY0aNcoIY5J08803q3379s3SbwDNhxEyAD7r4YcfVpcuXeTn56fw8HBdccUVatPG+ffUi+dl1Qaanz8ebIpz587JZrMpLi7O6dgVV1yh3bt3G6+PHz8uu92uO++8s862asNXbViMjY11On7ZZZc1S78BNB8CGQCflZCQYHzK8pfUFdKkmkeXLa26uloWi0UvvfRSnf0KCQlp8T4BaDoCGQCYrGPHjgoKCtLx48edjv34448Or2NjY2W32xUTE6MuXbrU22btqN5PP/2kf//3fzfKKysrlZeXp/j4+GbqPYDmwBwyADCZn5+frr/+em3fvt1hXtrRo0f15ZdfOtRNSUmRn5+fFi5c6DRCZ7fbdf78eUlS79691aFDB3300UeqrKw06mzatKnZHrUCaD6MkAGAB/j973+vzz//XBkZGRo9erSqqqr04Ycf6sorr9QPP/xg1IuNjdW9996r+fPnKy8vT4MGDVLbtm114sQJbd++XaNGjdL48eMVEBCgiRMnas6cOXrooYeUmpqqvLw8rV+/XrGxsQ4fUgBgPgIZAHiA+Ph4zZ49W6+99prefvttRUVF6Z577pHVanUIZJI0YcIEdenSRcuXL9eiRYskSVFRUUpKStLAgQONemPHjpUkLV26VPPmzVN8fLyef/55vfrqqwoMDGyxawNwaRa7GbNSAcAHnTx5Ur/97W/14IMPaujQoWrXrl2Lb7lUXV2ttLQ0paSkaPr06ZJqlt0oLCzU/v379dRTT2nmzJkaMmRIi/YL8HXMIQOAFjZnzhylpaVp586dbv06NpvNaZ7Zhg0bdOHCBV177bVGWU5OjtLS0vTUU0+5tT8A6scIGQC0EJvNpv379xuv4+PjFR4e7ravt3fvXs2dO1dDhgxRWFiYvvvuO61du1ZXXHGF3nzzTWN0rqSkRAcPHmyxfgFwRiADAC918uRJzZkzR99++60uXLigsLAw3XDDDbrvvvsIXICHIZABAACYjDlkAAAAJiOQAQAAmIxABgAAYDICGQAAgMkIZAAAACYjkAEAAJiMQAYAAGAyAhkAAIDJ/j/wbgjz6dCybgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOz9eZQkV33ngX7vjYjcaq+u6l3qTVILLSBkCcxmsQgZZMxiW/YM5tmc5228YI8xZw62mRk/D3gZL8ccj+2B8bExYOwZwMZmsREYhFnFIoH2Vgt1q1u9d61ZuUbce98fkZEVGRnLvTciMrNK+T0nTldXRcSNzIyM+MT3t1wihBAYa6yxxhprrLHGGmtLiw77AMYaa6yxxhprrLHGSq8x1I011lhjjTXWWGNtA42hbqyxxhprrLHGGmsbaAx1Y4011lhjjTXWWNtAY6gba6yxxhprrLHG2gYaQ91YY4011lhjjTXWNtAY6sYaa6yxxhprrLG2gcZQN9ZYY4011lhjjbUNNIa6scYaa6yxxhprrG2gMdSNNdZYY4011lhjbQONoW6sscYaa6yxxhprG2gMdWONNdZYY4011ljbQOawD2CsscZ6ZkoIgXa7jXq9jmaziXa7jXa7jVar1f057He2bYMx1l045z3/Bn8HAIQQEEJAKe3+3/uZUtr9u2EYsCwLpmnCsqzuYpomCoVC9/fe/0ulEkqlEsrlcs+/pjm+tI411liD1/jKM9ZYY2nJtm1Uq1Wsr693//X/XKvVUK/XYxfG2LBfRi6yLKsH+MrlMiYmJjA5Odldpqamev7vX2ZmZlAqlYb9MsYaa6wtJiKEEMM+iLHGGmv4sm0bKysrWFlZwfLyMpaXl7s/e7/3w1uj0chs7EKhgBZlgEkBiwIGdX82ift/M/A7SgDS+Zdi8//E/Vl0/94ZQHQWiO7PxPezu44AeGdxBMA47DYFv2yCcA5wDiIC/zIHhDFMWwaazWamkFosFjE7O9uzzMzM9P1ufn4eO3bsQLFYzGzsscYaa2tqDHVjjbXNxRjDysoKLl261F0uXryIS5cu4fLly11oq1aryvsmhMCxTPCCBV4ogBfdf1nBgiiY4KYJbpkQ3r9W53cVij0HqkDBcBdKcnjl2anaLKL1zfn4lYQAxCbobf7r/WyDOjaIbYM4Nihz/yV25/eOjcWShWq1CsdxlI9xamoKCwsL2LFjBxYWFnp+9v9rWZbmuzDWWGONusZQN9ZYW1yNRgPnz5/HuXPncPbsWZw/f74H4C5fviztIAlCwEpFsFIBvFTs/OwuvFQEKxZcgPP+tSx5ICtyXLF/KcUrzU7VZhGN78ypbSQIaDvwuzxKzYQAYQ6o3QJpt0HtFqjdBm23QHw/U9v9W5k7aLeDBxYuQggWFhawa9cu7N69O/Tfcrmcw4saa6yxBqEx1I011ojLcRxcvHgR586d64Kb9/O5c+ewsrKSuA9KKdqlAli5DKdSAquU4FTKYOUSWLnYBThesNywZVYyBYqzTTDHSL0rw2TYObMhvb4WuCUpDOxklGefASFc56/dBG01YbSbIO0GwJswmu5yoFjA0tISbNtO3N3MzAx27dqFPXv2YN++fdi/fz/27duHffv2YWFhoVtgMtZYY42exlA31lgjICEEVlZWcPr06Z7l1KlTOHv2bGI4jlsm7MkKnMkK2ETFBTYP3ColsFIRyPJmbAqU5poJrwmZwFycPNDLBeCipAt2URoQIwkIsEITRqMBs1GHUa/DqG/+PM85NjbioblQKPSB3v79+7F//37s3LkTJMsHgrHGGktZY6gba6wBynEcnDlzBidOnMDJkyd7AK5Wq0VuVygUUCsU4Ey54OZMVuBMlLs/80Ih2wOVgLYoDQLm3HEIWD1QwM8IihfzH9s9gIzhLqgBwJ4ggD21eQsgtg2jUYdZb8Cs1WDUajBrNVxdsHDu3LnYMH65XMaBAwdw4MABHDx4sPvz3r17YRgD+kzGGusZrjHUjTVWDuKc4/z583jyySdx8uTJ7r9PPfVUZAiMEAK7XIYzOQl7ahLtuQqcqUnY0xNglXK2YVEgFbiFaRAwFwpyYRoU3OUNdmGigKCAPZntpZsIwNwgPZDXI85dl6+2AXPDhT2ztoGjxSLOnDkTCXyFQgH79+/vgt7hw4dx5MgR7N27dxzKHWusjDWGurHGSql6vY4nnngCx48fx/Hjx7sA12yGAxM3DDhTU2jPToHtLkHsKGPhIAPmiiCW/k1utVHG5VOz/X/IGN7ClCfQSYNclPIGvAGCHRGAEfgohQE0duZ3GSchuxbB5wvOXcirVmFVq7A2qjCrVUw2GpFFHOVyGYcPH8ZVV12Fq666CkeOHMHhw4dRqVSyfxFjjfUM0RjqxhpLQaurq3j88ce7APf444/jzJkzCPsaCUpgz03Cnp+EMz8Je8cksKuM3Ve2QHJo4eFwitV6Gc324FpWjDTMBZUn3A0A7MKALvJwcgS9MMgLPQYCQAgY9TqsanUT+NbXYmFv3759OHLkCK6++mpcc801uPbaazE3N6B8ybHG2uIaQ91YY0VofX0djz76KB599FE89thjOH78OC5duhS6rjNRhL0wDXtxCvaOKdjzU6CLFvbtUO/9JiOHU6w3w5vNck5zB7u8YC5zkAtqC4OdCtQFNQqQ55cQHObGBqz1dVhrayisr2E/57h8+XLo+rt27cLRo0dx7bXX4tprr8XRo0cxNTWV8sjHGmv7aQx1Y40FoN1u44knnsCjjz6KRx55BI8++iiefvrpvvUIIWjPlF2AW5hCe2Ea9uI0eLmAQsHBvrm1zI8tDuDClDfU5QF0ucNcUCFwJ4gLP2lEOGDWk13YvvClzL5TQF3f+CMGed1t260u6Flrq3gWpTh9+nSoE75v374u4F133XU4evToeFaNsZ7xGkPdWM9IXbhwAQ888AAeeeQRPPLII3jiiSdCCxjsmQrau2Zg75xBe3Ea9o4piIILH3lAnCrABZUl0JWLbbx475Pd/zvCwMXmZOr9bthFfPf8IoAhwBwAcIDWXXojHKCtbEPhsmAXpSjgyxLq+sbMCfLSAF53H7YNc30NhdUVFFZXcZUQOHv2bN96pmnimmuuwQ033NBdFhYW0h/AWGNtIY2hbqxtL845Tp48iQceeKC7XLx4sW89VrLQ3jmD9q7OsnMGouS2CskD4GxmoNrKrhWJCtBVSi28aM8JqXWzgjm/mszC2fXpnt/ZzMDG5YlMxwHQA3FhGkWwi1JeUBfUKEMeAJB2G4XVVVhrKyg0l7BvzcHy8nLfert37+4C3o033ohDhw7BNAf8EDHWWAPUGOrG2nZqt9s4duwYHnjgATz44IN48MEH++Y1NQwDjR0TaO2a7UDcLNh0b9uQrEEua4gLKgzqVOAtTFkDXZNZOFeNzoUSHZsqNeAlgFxQWwnsCPf9RwA0eZKI1MoD8rICPAAAF5h8qgFaXwIpXcRNrSKefPJJcM57VqtUKnj2s5+N5z73ubjppptw9dVXjyFvrG2lMdSNteXlOA4ef/xx3HffffjWt76FBx98sK+yjpsG2rtn0N49h9beObR3zUBYvRfzrQZxfk0UbNy0oz8HMI2yBLokmAuTMuApglyYsoa7PMCO8Jg/DgDyhAE0dwjMfFdufW4A60fi18kM8ARQOd95v5kNc2MFRn0ZlFzEjuVmX4PvMeSNtd00hrqxtpyEEDhx4kQX4r7zne/0TW/EShbae+bQ6iz2whRg9PaA24oQN1tu4o5dj/b8rsktLNnZhS0H7c7JKBLwMgC5oLIEu4FDXZhSgh7hQGk5+jYhCMAzOO09+MsE8Pxw1/2dgNFYg7FxGZRewOKlet91o1Kp4MYbb8TNN9+MW265BUeOHBk3SB5rS2kMdWNtCV28eBFf//rXcd999+G+++7ry5/hRROtvfNo7p9Ha98OOHMTfTMwFIs2ipaDladnsjmoIsfkfB0AQImAaURPoaSjMIALyhYGLraza+0wbHdORkIQtGwTzVP5tbTYdmDnlyTkJcFc6K4zArzNfREICtT2a96mwuCu+zcX8sz1yzA3LmPervZB3vz8PG655RbceuutuOWWW7Bjxw694xhrrAFpDHVjjaRs28YDDzyAe++9F/feey9OnOjNC+MmdZ24ffNo7t8Be2EaoATcoRANn3MjCJDmBuiXD+KilAbuZCDOr1EFurxgzmYGqiuB2QYYAa3mEy4bZbBLBXVBhUCeDtD17TYjwPPgrud3qqAXB3fddXyQV72EmdYaGo1GzypXXXUVbr31Vtx666248cYbxy1Uxho5jaFurJHRhQsX8LWvfQ333nsvvvWtb/VcUCmlaCxOo7lvAY2FRbQWZoGoScKzAjkJiAuTDNjNVxq4fedjukeWaci1xU0stbLZVx5AFwpzQeUEd88YsPMkAKOVHuhCd50B5IUBXvdvMqAnA3eeOIO5sQxz/SJumiY4duxYz5+LxSJuuukmvOAFL8ALX/hC7N69W26/Y42Vo8ZQN9bQxBjDgw8+iC9/+cv42te+hqeeeqr376UiGnsX0di3E809C+DFiDvCgN04GQXBLi3E+TWKQDc0mAsqB7gLgh0RALX14IwwoHS595IrKEFbIyMgF6jr7Ld0afMYabZZBQDSA14c3PWsFwV6KnDXEbFbMNcvwVq/gH2o981+cfjwYbzoRS/CC1/4Qlx77bUwoh46xxorR42hbqyBqtls4hvf+Aa+9KUv4Stf+QrW1jYLFSilqO+YcSFu706056f78uK6GrIbl6S5SgM/sPehzPc7KKArUIY9pTU8VZ9PPqaMgU4L5vzKAOwIA4rLvQnyWeWKhYFdnOKgL2uwIzzk2Hz/HTXAk4W77vpByNOAO3c7Adqowlo7j++dN/DQQw/1tE+ZnZ3tOni33norKpUU5/NYYyloDHVj5a6VlRV85StfwZe+9CV84xvf6Gk3wgoWGvt3orF/F5q7Y9w4YKRBbrLUwg3z57v/Lxtt7CuuZjqGKtAVqYMFayP0b0xQ1FNSyqpdwdcvXtnzOyEIuOYVJTXMBSUJd2EAB6AHZtwVswE7VaiLkqAEdsapi6FQ1zNo73+zhrxBAh7ggzxduOuIOC2YaxdhrZ7DjvZaT8GFZVm4+eabcdttt+HFL34xZmdntccZa6wkjaFurFx04cIF3HPPPfjiF7+IBx98sGfuRmeijPoVu1G/YhdaO+eBuJYBWYDcACDOr0ECXRy4hSkLmAPCgS5KMqCXOdB5CgG7UIiTvQqOGNhB9IKVoEBrLgWcJEFdyPieRgXwdODOv61IG73nHObGEqzVczhiNnHmzJnunyileM5znoOXvvSleMlLXjKexmyszDWGurEy06VLl3DPPffg85//PB56qDf02JqfRuOK3ajv3w17bio6rApsSZDzKw+oy0LDALow+SEvN5jzixEYq2YvyKW56o0S2IlkmFIBPWWoCxyLpywBbxhwBwBGS0AQwJlIUdwiBEhrA2b1LG4uuE3SPRFCcMMNN+C2227Dbbfdhl27dumPM9ZYHY2hbqxUunz5Mr7whS/g85//fI8jRwhBY3EO9QN7UL9iN9hEOX5HIwhyshAXVBqoK1Ibi2bvlGZNbuGyky7Olle4VVcVy8atC0/hQmsKX3zs6kz2GRShAqWJzVB/u2Wh+FDCeSi9860Fdj2rx0BeKqgLHJMnVcATCb1+BQFA3JktpPaXAu6MVqCoRRPyBAGcMkAbNRQvn8X3lgUefvjhnnWuvfZa3H777Xj5y18+dvDG0tYY6sZS1traGj7/+c/jc5/7HL7zne/0hFabi3OoH9iL+oHdYBWJG2gamBuiGxclVaALgzi/tjPQ+ZUl3PlhjvimJxCCjBzYDQPq+jb3QV5mUNczwOaPYceZBHGRuw2yVQLoZQl3/n3KQp4Hdp5oq4HipbN48STBAw880PNAfPPNN+P222/HbbfdhsnJ7GZ3GWv7awx1Y0mp3W7jq1/9Ku6++2589atfheM43b+1FmZRO7AX9QN7kh05IBrkKIBCMuFZZRv7Flbjj5cZWG+UEveVFuKCioO6JIALarsBXRjMBZUG7qJgzq8x2MntK692KX7Ay2q+1z648ysE9PKAO/++4yAvCHaeaLuJ4qWzeEGJ9aSuFAoFfO/3fi9uv/12vOAFLxg3Ox4rUWOoGytSQgg89NBDuPvuu/G5z30O1eomkLTmp1E/uA+1A3vAJiVyorwrrwS0hUkG5MIUBndZg5ynINCpQpxfz0Sg80sW7oIh1iiY82tbgl2WUNfZn6fcAM83VhaAFwt3nnyQlyfcefsPA7wosPNEGzWULj6NG1DHyZMnu7+fmJjAbbfdhle96lV4znOeAxKXlzzWM1ZjqBurT2fPnsWnP/1p3H333T2VW06lhNqhfagd2gd7bjp8Y0ZAW5vxFGEJiIre3UYX5MJUNm3sq6wlr5hCs1YdN02cSr2fUQC6YcGcX1wQXGpPhsKdjCsXp0zBbhSgDsjcrYtSXjNZdPef9m1QYR0CcFMP7mTAzi97cnOMJLBzVxIwa+soXjyNg81VXLp0qfunffv24VWvehVe9apXjQssxurRGOrGAgC0Wi38+7//Oz7xiU/g/vvv7/6emwbqV+5B7fB+NHftAGjnwhSAN79GAeQmrDYOTiz3/I6DwObZdXnfVVzHa6a/DQBoCgtnnLnU+xwDXb/8cJcW5vzadmA3IKjza9sAXmc9bro/c0se8lThzpM9SeTgDgCEgLW2hNKFU9ixfgn1uptLTAjBrbfeijvvvBMvfvGLUShk1CF7rC2rMdQ9w3XixAl8/OMfx91334319XUA7oWivnsBtcP7UL9iNwS1IgHOr2HDXBDkaOCO4wgjNdTtLa3i1VMP9I1R58XUUDcGumhdaE3hiw8dBQyBykwjeQNJpQE7YQDtuc1zjDgEE2dShsRETFK+zKmbFdhp3BXyBLxhuHfdnyUATxfsAPfYGosKB8gclC6dxfeVGb797W93fz09PY1XvvKVuPPOO3H11flUlI81+hpD3TNQjUYD99xzDz7+8Y/3JOU6lRI2jlyJ+v6DcpWrGH2Q80sH6oIQFzZGFkAHpIc6D+imjCaeU1YPA59sL+CvTrxQe3wge5gDfEDnaQhgFwS4KBGbYOJsmr5meoDQBb4huHVhyhzwMnDvtMEu+PsYyEsDd954zXkFl7CxgdL5UzjYWO4Jz1577bV4/etfj5e//OUolZILxsbaPhpD3TNIJ06cwD/+4z/iM5/5DGq1GgDAMAxUd+1E7dABNHftjG8K7JMuzGUBclOFFq6srHT/HwdyfslAnQzE+TVIoNtlreF1EydD/1YVHI+0d2iPX6EtXGfVYrvLPGZP4G2P3hW9j7zcuShlCHd+sJMFuCgNC+y64wvAaAIgAEtTLJnRnWHUAC8TuPP/PQTydD+/4FjSgCcECisX8UOLJXzxi1+EbdsAgMnJSdx555143etehyuuuELrmMbaWhpD3TYXYwxf/vKX8dGPfrQnV86ZqGDj0AHUDlwJrvAkpw1zlTb27dAvVNAFuaDCwC4qpCqjPMKue6wV/KBCwUVNcDzSngOHXsOvKdrAUUsOjoLvjAd6WQJdIsz5lRHYtVoWrMcqAAXsqXQUkjoMmxXU9f1BEfKyvDMIoLjO0Z7SbEoXs19gBODOW8cHeFm4dn7JAh5pt1A+/xSubi7j3Llz3d/fcssteP3rX48XvvCFMM20c6GNNaoaQ9021draGj75yU/iYx/7GM6fd9t3UEqxsXsXNo4cQmtxQdqVA4YDc1mBnCcuKFqdq2UakPOUFuimaAM3FS9iiujf6AYJdFF6wi7hv594HQgRKBkOrp66qL0vJaDzpAl2XZDryAMDYWQAdqPi1iWuGAN6GUNdaY33gFSmgJfCvcsc7vzrWiQz184vKcATAoXlC7hzmuCrX/1qt7nx4uIiXvva1+K1r30t5ubSRxnGGi2NoW6b6YknnsBHP/pRfOYzn0G77VYJcquAjcMHsHH4IFhFfp7N7QByfu0urOPlk49ktm8VqJuiDVxf6IUdi2BLA92TTgH/7cTrAbjhS09eVaoK4J1rzuDLj1yleIf1SRLsokAuqK0OdtJQ17dhAPKyujt0oK7nVyMGeCqVstJg15FVE3Aq6ueCzDgygEebNVTOnMTejYtYXV0F4DY2vuOOO3DXXXfh0KFDysc21mhqDHXbQEIIfO1rX8Pf/d3f9VRD2VMzqF5zCPUr9kMY8gUCg4a5vECuSB3MmZvTiC1YVdxUyiZEmAR0YRDn13YBOpFwJ5Rx7841Z/DlhzOq1ouAOz/Myd7ohw52g3LrIncAsCw6ZHRCr3Hve2aAJ4BiNfozEwSwJ+L3nyfcFTaE28ZEAfBUxkgCPOIwFC+fxfNpDY8++mj3989//vPxoz/6o7jlllvGTY23uMZQt4Vl2zY++9nP4u///u9x4sQJAG7hw8bCbqxfewjtHfNqIdaCgChnD3NNx8R6vT9vb3aigefucJsb5wVyfmUFdWFAlwRxQaWBuq0CdH4RIlAwGI5OXej5faZA56kDdrKuXJzSgt0w8+vSQh0RAqWVzeuBoAS1XRotgUJcutjVdQAvAebixgqDvLzBzj+ODOCpjgGEA173MisEzOoyXjcDfPGLX+yGZg8dOoQf+7Efw+233z7uebdFNYa6LaharYaPf/zj+PCHP9wtY+eGicb+g1i77rB0OxJP0jBnE5Cme1EXZYbKjnB4itNUuYWrZi93/08Jh0U4JsyW8r48xYGcX1lC3TovKUGcX880oPPLC81utIs48/S8frg1TgIgLYriJSN9f7NnuFsXBLvuYakAniLU9Wzaedti4U4T6OLG9EAvL7jzg11w7CjI0wE7T37ACz4/08YGymefxI6Vs2g03GvD/Pw8fuiHfghveMMbMDWVrnfmWIPVGOq2kC5fvoyPfOQj+Od//mdsbGwAAJhVRP3gEaxdexCiYCntrw/mfNAWuU2ZoTzvfvFVOvr7YS7MlVMFO1mQ87RgVfHs4mltR9AWBmq8iAnawm5DHWY9ZRF2fUizdUlaoHvCLuG3Tr5WG+j8cgRFrV3AhTMZJmoLAMx383IIShfTzyCylcEuL6gLKhHyUoAdEOPeZQx0UWO3JyW/s1sA7qIugcRpo3T+JA5tXOyaBRMTE3jDG96Au+66a1xUsUU0hrotoAsXLuBv//Zv8clPfrLbf8gpT6J26CqsX70fMBVvXETdINGBuTBXLk5JYKcKcn6punQexAWVBuqGmUc3akDnV2q4C8CcX6MCdls1DCsLdX6FAl5KqOvZlefeTdKBAF19Z//5Y9bjJsfNBuz8xxAEvDRgBwCsSKKnJ+Mcxctn8Jz2Ujetp1Ao4Ad/8AfxH/7DfxjPNTviGkPdCOvcuXP44Ac/iH/5l3+B4zgAAHt6HhuHr8bGoV2b87DGiDD3hgK4NyZeUPu408KcqjMWBLs0IOeXDNRFgZynYbp02wHogjAXlBbcxQCdp1EAO2ITzHxXI9pM3BvwVnDrwtQFvAyhrrtvX184o539bSwK6IKKBLyM4c47Jg/wUoNdgQAkZu5ZIVBYPofn8zU89thjANyc7e///u/Hm970Juzfvz/dAYyVi8ZQN4I6c+YMPvCBD+DTn/40GHMvpu2ZBdSvvBbNPQuwp/o/Mj+8BbUVYM6TRTjmC7VMQM5TVOg1CeL8GgNdvkDnSRrsJGDOr7zBzoO2xO1TvI1EAIVqdLiuPRW980G7dUEJQtCeojDsbG43fqALKivAk4W6oHogLwew8yQI0J7WP6FYIbBtFOAJAWv1El5m1bsN7D24+4mf+Ans3btX+xjGyl5jqBshnTt3Du973/tw9913b8Lc7E7UrzyK5u4dsCcF0PkexkGcp60EcwCwq1jFjZXTeDrFdFdh8rt0KiDn17DCrh7QFQjDvOL4VV7Ag83+qYHmzQ28vHw2cftBA50nLggathUOd4ow51cWYCcMgJUEpsMATubropH60N00Buqi5MHeqECdX2kALw7quvtPAXe6QBeUWd+8ZsvCnSrYtebc95Uw9dfbB3ZArHtnri/hVaUW7r33XgAu3N155534iZ/4iXFYdkQ0hroR0NLSEj74wQ/in/7pn7ph1tbcLtSvPIrWrnk4FZEIcH5pwVyFoTw3eJjbVaziJVPHen5X5WU81VrQ2l+YZsw6ri6c194+b5euJjiesKdDtnMwRdtaY0YBXZI84BsW0PnV59qlADpPWmAnANNndhIOWIpw1XsQKcCOq930/WIJEBQ7bkqwC4M6T6pwJwN0fWMoAl5WUOeX2RC5uHZ+sAPU4S4U7Lo7Cwc8c30Jr7Tq+OY3vwkAsCwLr3nNa/CmN70Ji4uLSuOPla3GUDdEVatV/N3f/R0+8pGPoNl0H6Pbs4uoHbwO9uw8uAWwosJT2wBgTrX4IUx7Sut40eTjkX/PAur2FlbwwvIJNIWB8066kvysXLooeAMAhv4Lq0UYZqmevaILde6xUKw4E2CCYoMV8cDKPq39pAE6T13X7qn51PvyJAV2AZDr2wcDLE24GrRb55cu2OUJdX7JAJ4O1HX3LwF3eQCdu2Ng+rQDQSHdDkYX7DzJAl4s2AGRcGetXcbLjI1uWLZQKOCHf/iH8aY3vWncCmVIGkPdENRsNvGRj3wEH/rQh7qtSeypOWwcvh723KIyzAHqQJcG5vIAOb90oc4DOU8GBGrCTAV1ukBHAXAAp51eiAuDtzANC+hsYWKN9V69mQ/OZCEvC6AD3MbV5y/PQDACUc9uEvJQsEsAuZ7tn2Fu3aCgzq8owEsDdT37jwC8zKGuA3ORf06APN1wbFBxgJcIdd2dRMDd6iV8H1nHAw+482lPTU3hTW96E37oh34IxaJ6ustY+hpD3QDFOcenP/1p/OVf/mW3D5AzMY2NQ9ehvWM3eIGAF4XSdIvbCeY8qUBdGMh5Sgt0gBzUUQClkGtiXQAnnRnlMUcJ6MLkQV4Y4GUNc35lCXZdqFMAub59jN06JemAHdAPd1lBXXf/7f79ZwZ1CUDXs2pGcBcHdkA03EmDXXdHAcATAoXl87ipcaHbCmXnzp34qZ/6Kdxxxx0wFKaqHEtfY6gbkO677z782Z/9GY4fPw4AYKUKNg5dh9bO/QAhuYdaBwlzOiDnVxLUxYGcX3m5dFEQ51dduC6drDPnadSBLih/iDZPoPOUFdgRTmAtUxRXU+boDQvshpRbJwx37PKSHKj0bKsJdX4Ztsgc6vyithgK0PVtGgF4WYGdpyDgKYMdEAp3xQuncGT1dNe8OHz4MH7hF34Bz3ve89T3P5aSxlCXs5566in8xV/8Bb7yla8AcKfzqh84ivq+I4BhgFtQcudGFebSgpxfYVAnC3J+pYE6P9DJQJxfukAH6EPdMIBuc3sDl9ru+9xgFk5t6DcSjgM6T2nAjnACc92XVO4gFdgNKww7LLfOS/TvXkoEULks6URlAHVEANYGB4jCvLAqEi6wCkqwekRthp6wfelCXc9uAoCXNdgBvXCnBXZAP9wxhvL572L3xae6aUYvfOEL8Yu/+Iu44gq9a9VYyRpDXU6qVqv4q7/6K3zsYx8DYwyGYaC66wBqB6+FKBSVYQ5QAzpVmJuuNHFkZgmAPMxlCXJ+eVCnA3Ke0gDdNG3isNUE0/xqDDrsOipA55cq3MnAnF+qYBeEuZ6/pQW7Z5hbF6zglAW8TKGu+4sM4U5EO5DKkJcR0PUfhwt4eYAd4MKdNtR1d7IJd8IAiN3GL+yt4B/+4R/AGINpmrjrrrvwEz/xE5iYmEg31lh9GkNdxvLy5v73//7fWFlZAQC0duzGxuEbwCbcm9+gQq0yMDdRamP/1CqowjyuJuW4auISnjch0W1VUdO0ib1mtft/FZDzSxXqPJDzlAbonglhV3fbcKDzSwbuVIHOkwzYxcFcz3pbEOzSuHVZQp1fPZeRAOTlAnU9f0wBeDFAF7p6HOTlBHRBNecMUEeumlcF7NyN0s9YAQLYk5v/NWpV3Emr3R53c3Nz+Jmf+Rm8+tWvHufbZagx1GWoY8eO4U/+5E/w8MMPAwCcyiSqVz0H9vxOABhYqLXVtMDX458qrbkWbth3VhnmJgy3b9qe0lqmUFflZZy1Z7HXWsX3KszRGiYZoAtCXFA6UPdMCrvKAJ2nOLDTBTpPUWAnC3Pd9RlQXBlSGHaLhmBlFHTx0oJdLNR1V1KEO0WgC92FH/JyhrrmXD8AJcGdLtgB6eCu28HJd3iFpfO4cfVpnD59GgBw7bXX4td+7ddw9OhR/YHG6moMdRlofX0d/+f//B/88z//M4QQEIaJjQPXorH/CEDdL1Lm7hwVEKbv7wqfojnbxo37z0gDnR/m/EoLdh7I+ZUn1CWBnKdx2DVpW3mg8ysId2mBzpMf7AgjMKt60LAl3boRCcHKyLvc6M5h6+0jEep6NkgAvAyArmd3BGjNmbBq2c5zC4TDXJiiAE8L7DiUZ8Twq68tp3donKN85knsPv8karUaKKV4/etfj5/+6Z/G5ORkcDdjKWgMdSkkhMBnP/tZ/Omf/ilWV1cBAM2d+7Fx5AbwonvDTO3OGQLCiNlaA+YASAFdFMx50oG6MJDzK2uokwU5vwbp0g0j7JpXHp2sGszC46uLmQCdJ8EIULW0gc5TGrCLcusEBVhCpQ3hgFlTP++IcGcq2PyF2vaDcOv8IhwoL7ttUQQF7Ira56UMdd0NI+AuY6gDgOa82XddturpIE8W6PwKgztlsPMftu9Ukf38I3qtd98f2mriP0zY+OxnPwsAmJ+fx1ve8ha8/OUvByH5VDhvd42hTlPnzp3DH//xH3fzA5zKFKrX3AR7drNqU8WdEwbAS7zXffMUdm4LSANd1jDnlwzYJYGcX2mhriZMNIWBg6be9Frb3aUbNtABQIuZeGx1Z3ZQJwDeMgCHwlpJl5uTJgwrCMALgLWhOXZWYBe5Yv+vhgl1fskCnjbU9eykA3g5AB3QgbqgfB+PKuDpAF1QfsBLBXaeZN07Athxl4vOYVnLF3Hj8lN4+umnAQC33HIL3vrWt2L//v3yxzkWgDHUKctxHHzkIx/BX/3VX6HZbEIQitqBo6hfeU1PqDXJnSPCdQUAgJUANtm50CVdY0cE5jzFQZ0KzAEu0N1aOqVVHGERYIYa4ELA1iyuAAbn0jFBYRCOvUY1eeWADCJQUciFXOMGvli/CsBwwq5+tZiJkxvz4IKg6Zi4uBT1KC8pD+g8ZQF2km6dIO53d3PDzj9MD+xyh7q+DUcH6vyKA7xMoM4no51tmLQ5Z8pdwztKArwsgM4vD+4yATtACu4i3Tq/BADGUDl9HPNnv4t2u41isYif/umfxo/8yI+MCykUNIY6BT3xxBP4/d//fRw75k5A355ZQPXoTWCVzRtdlDvnhzhPecGcVwQB5AdznoJQpwpyfqm6dB7IeRo1oGOCwkb4xahEbC2gKxCOIkHEXsPlv4X6r82XWAH/Un221D6yBjq/tOAuCHN+5Qh2PSAX9Z3lQEH9o3V3OWiwA0D45nZOSf5GnyfYAeFwlzXUbe5XgErMO5ukUJcuTjGAlzXQ+UUdkR3YAbFwJwV1ngRg1DdwB1vGt771LQDAddddh7e//e04ePCgwo6euRpDnYQcx8Hf/u3f4n3vex8YY+CmhY3DN6C55wDgi/v7gS4M4vzqAp3Mg7IG0OUNc572lNbwrPJZbZDzSwbqgiDn17Cg7qQzEwtwYUoDdRUNcyXsFhq8RkdBXlqg82AOQB/QeVICuzig85QS7PxhWCmQC9l+S7h1AKiv8WzYxxMFenlDnV8e4OUFdZ7Swp0y1PnlDUtSNABWHZIA9pTCWElvfRjcJYVgQ8cRKJ17CnvOPI5arQbLsvDmN78Z//E//keYZnZzQG9HjaEuQSdPnsTv/M7v4LHHHgMAtBb2oHr1TeDFzbgLtwBuCRCJ69QouHNZwBwATJgt7Cuuas0JG6YoqIsDOb/SQJ0K0J1mRXxy/SbMGA0cLZ1VHmuQLh0QDnRhCnPxsnLonqzuSFwvCewEJxBtBWchDdgJFz6MJlEuPgCg7dYNG+rC5Ac9P+ANEuq6x0LdfLjian5gB+jBnVToVUaiNwfOnshh5gxo5tnJvu0BuFNy63yijQZ+kKzhq1/9KgDg6quvxm/8xm/gyJEjejt8BmgMdRFijOHDH/4w/vIv/xLtdhvctFC9+jnduVqF4YIcAGnwknbnRhjmPJALKi3Y7TLX8L3lp7r5dLIg5ylPl86DuN71KWbMOq4rnVEeSwfqdIEOkIc6vziAVW7i0xvX40RjUWMPrqJCrlGKAjtloAP0oE70N9A1WprVsFvUrYtTz8dICNoT6u9NGqgD3KKy1pQBIkTucAfIA14ql85TB+j856D3nmcBd5n0s1N5yzvH3ppX2KZvPIHixadxxZnHsb6+Dsuy8LM/+7O46667QGk+wLuVNYa6EJ07dw7vete78MADDwAAWvO7sH7dc+FMlnpXVIU5IDOgs+ZauG7veVDCcw+1RoGcX2mhznPpVGHOU5YuXRTE+TVj1nG0eA6G4usehbCrrJa5iS/UNhuCNoWpBHiqQNcdJwB2WkDnSQbsgiAX+Jsu1G0nty5MggDcV2jhFOXep9RQR4HWTOcz7Rz2IAAvCe6ygjojYgz/10gH8GRmn/CPFQt3qm81AUorHGtHUjSebjXxOqx151G/+eab8Ru/8RvYuXOn9j63o8ZQF9C//du/4Y/+6I+wsbEBYZhYu/YGNPb35s4BGAl3bhRgzlMaqLu6eAGvrqygKfTaC6R16U46hUSIC0rHpRvVsGuYlrmJL9avBg95H2TgThfoumN0wC4V0HmKArs4mAust93duiygzq8kwEsbgu1CXc8fBgN3QDjgpYa6EJcuclUFwFOBuaixQgFP8W0urfDufVAb7oRA6exJ7Dz1GJrNJiYnJ/Frv/ZreMUrXqG3v22oMdR11Gg08O53vxuf+tSnAADt2XmsPvt7wCohEw5LvGPDdud0YU4F5PxShbqrixfwg5V1AIBBKGzBUBd68KkDdWcdE5/euAF1XgCQDHF+bXeXbo0buKd+TSjQ+RUFd2mBzlPDtnDh7GyqfXTlBztZmPM0dusiFQd2nsIALxeo667QGWPA7l0WUBfl0sVuFhOeTQt0wXH64E4H7IDUcGfUqnhx9QweffRRAMAdd9yBt771rahUKlr7204aQx2Axx9/HL/927+NU6dOgRCC9cNXY+PItd2+c10NyZ0bZZjzJAt1HswZZPO9ZYJjQ7S0x5aBurOOic/VntXzuya3ulCnou3s0skCnV9+uMsC6IQgaDHD/dc2sXopg2mDPKhTBbruQW0Nt24Uoc4vD/ByhbqelQcDd9wi6apWFVy6yF0E4C5LoAuO0wN3Cm9tF+o8pYE7zvFfDs3h/e9/PzjnuOKKK/Dbv/3bz/giimc01Akh8A//8A/48z//c9i2DVYsYfXZ34P2jpDQ0hDdubxCrWlBzq84qDtaPIcfqLh3NT/MecrLpQuCnL+XnM1NbaAblEs3rLCrP49OVk1h4rGNPZkCnadMwM6hsJaNVDdNbbDbIm7dIKBuc0OgoNmaRAnqfOPlCXc8AuakIU/TpQvdle8zUXg20xqnNUf13Tq/NOGuclagObuEZz35GC5duoRCoYBf+ZVfwWte85pn7DRjz1ioazQa+IM/+IPunHPNnXuwesNzIQohN3oVoBuSOzdjNVCkcjlpZcPGvFmTWldWQajzgxwQDnOesoS6OJDrGTMF1A3SpRvFsGvotqyMrywdBhcELaYXhgoDOk/aYOdz6Dxpg92A3bqtEIJNA3V+J8lsKiTx60Cdb1zAHbtQzQbwooAuqFjAywnqur/LCe68r2prRn6AUKjzRNTAbuKM20QZTgu3L67ga1/7GgDg9ttvx9ve9rZnZDj2GQl1p06dwn/9r/8VJ06cgCAE60evR/3Akf5iCGBoQOd355KgrmTYmLUayTvuKE+oS3LlwqQLdR7QnXYsfKF2bff3SdN16QLdlNHEs0pntqVLlxbovrZ8qMehU4W7OKDzpAx2HXcuqJFw62TBS7hwp6JRD8FubghQ74QV8oCXCuo66gKlQGq4k4W6oLqQl0Ho1VPSZ5El3IVNMWdLtrhJAjtADu4mzmy+aQICHE9g7ruPgTGGK664Au9617uecTNRPOOg7p577sHv/d7voV6vgxVLWLnpVthzIY1Rswy3JsFciaM05eaUTVWauHJ6RSrcCqgDnadJo4UZU327MD2rdEbalQtKN59ujTPc19qNJ1tuObvKvKvb1aUbRtgV2HTpgpIFOxmg8yQFdiHuXFADc+s4UFh3xzOCsCJ5DDqF5UQgsv1GnKE/NKjr+b17DFFwlynUBY5HFfB0gS4PqX4OuoAnM19wEtzFQp2nBLirnO0HYUEAWl/CgaYbji2Xy3jHO96Bl7zkJcnjbRM9Y6COMYb3vve9+Lu/+zsAQGtuB1ZvurVnZoiu8nLnfPAWFOmcndMdqJOVLtRl4dZdVbyAV1cuo0hMJZDzS8WlW+MMx+2Z7v9X2QSebKs3xtWBurQunQ2KZSYXCigRG7sM+c/UIIAFfaiLa1+SpDCXzq8ksFMBOk+xYBfhzoUpF7DrQFzoeDwE7CSlA3aR4byQX/tBb6Ah2LiTNsK9yw3qfMclC3dZQR33vZzY9yRGup+D7NdeBuaCioM7KbADIkOyfpcuKMFaeMn0edx///0AgDe/+c1485vf/IxoVvyMgLp6vY7f/u3f7jYt3Dh4FarXXNdf3QokAp20O1dkKE32wwpJuJOMOtRdVbyA2ysXAAAGCCxioEgs5f14koE6P8x5rUeqvDwwoAPkXLoz9jz+feWa7v93Fddx5+x3urNkyLqJLgjWlY6PA6jy3s/BIhwzCXeIPIGu5/hC4E4H6DyFgp2EQ+dXJlAXA3Fh4xmaYdFMoS5M/lWJ+3+zJbd9blDXs+6me5c71HXHjIe7PIAuKNn3R/sz8O8j4hKgA3N+RYGdNNQBAHFf4/rhzYOMgzoAEOD4yRstfPSjHwUAvOhFL8I73vEOTEyEtCnbRtr2UHfu3Dm8/e1vd/PnKMXqDTejuXd//4op3DniEBC795d8gqE8rwZbk+UWDs4sK20zCKgLghzF5hfLICQXqAu6csE+coOEumDFaxDePHFBwH0nx+7SOn5w9n6lsXSADgiHuqDCIE837KoCdN1j9IFdGqADgLZjYOViZ07aQA86FWmBHQeKqwRUo7ZH163T7e2dVfJ9EuRpQYUK1HW36RwDIXBK+rCh3O4jBPAGAXWekt6nLKCuuy/fpTYt0PkVBndKYAf0wF0S1Hky1k9hevkhtNttXHnllfj93/997Nu3T23cLaRtDXUPPPAA3vGOd2B1dRWsWMTKc78X9uxc/4qKQNcHcSHb80l1qFN16QB9qAOSwc6DuSDI+ZUG6oL5dEkg55cO1Om6dA1m4UJrc9qqILyFaWexitfMflspXJsn0AVlEQ4GksqlC8ujS5IHdkIQNJ10zVpbtonVc9NK7lxQSlDHgcIa6W6nBXWj7NapKAB5A4O67rbCLQYhQHNO3bXT7uHmg7tBQp1fwfcsS6DzS3baN1X54U4Z6jwRKEE9aa7gQOMRXLp0CTMzM/jd3/1d3HDDDXpjj7i2LdTdfffd+L3f+z04jgN7egbLN38veKncv6JEuJWXuAtx3jkk8Y4NAurSAB0QDnVxrlyY0kCd59KFhVfjlKdL92RtAV9/6kD3/+VyGzfuPJcIcUENyqXTATrADQXXRAFcUNREAU+2dklvq+PS9YzNKdbbRW2XzlOjbaF6ahrmRro8mViw84Fc33YcoLb6WNsC6vwSgNEW+Ydge7YT/RW+CoCXRWNeo5VNxaoq1PlFWT5QZ3jAToDWVD55aB7c6YDd1Klm9+eVoyH39TCxJm42T+DYsWMoFAr4zd/8TbzsZS9THnvUlcEMxKMlIQQ+9KEP4T3veQ8AoLFrL9ZuvBnCDHmpEV9Iwkn3AipsAWGQ2PW3g46WzuFl5UsdkEuXryKjNd7AMdtElbt5USrTdGWtHpATxJ+fDc6TXbmgdharuHPmO0rb6Lp0aUUJxxRp4sbSaQBAU1g43toduX5aoGsxE2eWZ0CpwHSlmbxB1H5sE9Uz0wAFnAkBs5axqxADc13pMAwBWIloF0yoilkkf7AjbnuO4po7t2c7JwhIlABKy0zbvVORBz3e10AX7tIAXRbbh8nwh9kFUFznucCd1enB2Jyj6mDnu0jPHWvIgZ1Rwn3satzxogV8+ctfxn//7/8dZ8+exRvf+MZt1ah4W0EdYwz/63/9r25i5MbBq1A9en1i/zk/xAX/tp11Tek8fmTqBAAMBObWeAMnbO/CQMEFHRjM+V26oBsXBLm0okQoV8nqKK1L55fXZ7BCWrixdDrWvUsLdIALy+v1khbYtWwTa0/PbH5PiYAWYXUkiO+mLANzaaW5e0H1c+sGJgEU1jfn9xwK4Hlw1zmGvAEP2IQ7IGUfRA1ZgZk52imLSEI1ALjTlhCYO+ZGrBLhjpq4++ICfvJHfgQf+chH8J73vAfnzp3Dr/7qr8Iw8j9PBqFtE35ttVp417vehXvuuQcAsHbtDagfvKp/Rc9V9oNc3DtAAFYUYCW1t2mUw69XlJZxc/kkFo0arjL1v6CyoVc/zHkVoLYwUBMFZajTDb0+trEHX3iycz5IQlyp3Mb1u85L9wwE9HLpgOGEXhP3L2iPc5fGpfMDnV+qjl0f0HliJJVbR5gezOmEYL3tBlUwMZAQLNxj6wJd3x8jAC/L8GvswfXCXdrwqyFRGSxz2cjCaQsWcHhfTx24k3ldAFLDnRXx2cm+H4QDk6dD7n2ESIdjzdXvonz5YXDO8bKXvQy/+Zu/iULYjFJbTNvCqavVavj1X/91fPvb33YrXG+8Gc09/RWuhEmCnF/bAnk3QQ5At8WGkeOLC7pyYe088nbpHqzuw5cevwqEChAKLTdOBei89bcD0AGue+c5d2ecOXz60nWZAh2g5tg12pYbcg37SAwBZwJaYEe4/vRf2gbhAKM9AwnBotet6v/jkB28AYZmu0OmDM3qyhuvsObS8qg4dz0gF3Expsx905LgLvLWoeDaObNHUDNLmL70bXz+85/HxsYG3vnOd6JclszRG1FteairVqt429vehkcffRTcNLHy3OejvcN1cgh3HTkA0lN0DUvTlSb2T61Kry/j0oWBXN7ahLlwkMtTHsR1JQgEJ+4FRBW0Oi6dinRy6QYpFaDzixKOCdrCrlIV5xrTyRsElASCnBNUG0VMlaNnFmm0LayfnYq/QSqGYd1ZHtLly7pJ6npundZ4WyEEm6Qg4E1S/SpYjbFLywxGkwGUoLGQ/y0wKjSbhUsXDL36FYQ7IB7wpF06vyThzmoIuafqzjqUEf33p7OP2ccbWL0mHtD45D6sGxbmL9+Pb3zjG3jrW9+K3//938f0tPp1blS0paFudXUVv/Zrv4bjx4+DWwUs3fJCsKlZUGdrJj2qukJR8mBu8CAH5AlzYaHXHpDzIC4jbTeXTlfLbBKfW3sWioaDg5PLaDFTGu5azMS5leR1GaORjl0X6JI+W8miiVBnjgKsCBjqM9ZtiYKJkVWnRQi1OUAI2tP5u2hEdKpWmUD5oq0Md1rw01HKgu8+yVyi/OtEuXdpXhOAWLiTBrqe/Qlp1y5KhAupIgpe3omlnbdi1/L9ePjhh/GWt7wFf/zHf4wdO0KmD90C2rJQt7S0hF/91V/FyZMnwQpFrNz8YvCJ6einWIV2JFtRw3Hl2jjrcKiCnJdPl0ZdmEsAOUIFiLHVrY300nXpPKBzxOaVtWg42FNeTwS7uLBrmMJCsdJA5ynBrUsVas1aI3IYmYkA7WkanVcXtZl3wxcChTVHDu4IgVOGWl5d6NjQhru045r1zffJrgwmHJ17aFYAxSrvgp0W0HX3tenaAZpwJ4SUYyeK87iwcCuuKHwHJ06cwH/+z/8Zf/Inf7IlwW5LFkpcvHgRv/qrv4rTp0+DFUtYufnFYBNTyRtqhmBZKf9CCZ0iiRunzqQCuUWjhkOm2jelLmwsd65FtqBoCvVvmi0MrPOQOXcTdE/1Wfj7B25x/yPpyhEqQEy90GveBRKjmkvn1zKbxN2r0U06o1w7VaDz5C+cUAY6TxFFE1JAx/XcOt2edWZdwKqrf3e5KnukKxBWGqe4pg51JKpwIQ7wVIslfOMZzfBj7DppMYCX1tUiAjBavH9qto5kAc/a4Knz9bzXy0oZQyUBGnPUde8y22dvSDayWCJiW0GQCHdwaji08R1cvHgRBw4cwLvf/W7Mz8/rH/MQtOWcuuXl5U2gK1VcoKtsr7ncCpRhwoy/sxwYcIjVgzmWdfwgQcfbu/GZS9fhcmMCZy/MQrDBPNEOIvQ6KKV16eIU5drptj3x8utMg+sBHdBXNDEQd05i94QDxdXecyTN/LOqIhF5axrPZYOTECisd1ylgYRmOz/k7d4FPz/f/y1JBy+LbB0iOvPods7f1GHYjhpz7nG3pt1/M4G7QEhWqc6uE3JPdO3MCZyYfA4Oim/jqaeewq/8yq9sObDbUlC3trbWA3TL3/MS8HJl2IfVJz7JUJoLr+YrFWzsmOh3Z6asJuYK8q6NQXjuQOd35YIwx0G0XDoZeSDnjcMFgcOpMtDphF7TFEissgk82twrtc2cWcNLK4+jrvgeUgjMUBtrA8qpcySOLwh2LWbi/Kp+orHjGGjWC3pA56kThlUGOs3curCCiUwhLkeFwd5IgV4nmOTBHTBAwBtCaFYH8FLJ9/VgnanB0sBdY77/ODODu5SFFIRLhGPNCTw59xwcxnfw1FNPdUOxWwXstgzUbWxs4G1vextOnDjRCbm+aCBAxzV61JESw/751ci/0xFP7MvTlYvLp/NgzgO5TKSxmySX7kJ9CidPbxZsTMw2sLNQzb1FC4XAFHUvigtGb6zPFggFvTxdOr88sDu5MY+zKzMp0mgImGO4LWimbKCqCa8UYBWB4tLgWmcQDpSWRx/iZERYZ37bTlhUZZ7N3OQ7qTzA42b+x9UDdwCEQWBP6kFlN/QqqxDAsys0tupVRa2InDpduAsDup7xpjMKyXZcu/reEipn1RqYJ4GdexmdxImZ5+AQvoOTJ0/ibW97G9797ndjakoizWvI2hJQV6/X8V/+y3/BsWPHwM0CVm5+EVhlciBjJ7EFr3DQyd4b7MRESwncJqwWFksbSsf1VHMHKOG4tXxCabsoxblyWcsPP35XDgCcIU4XFqYL9SmcfHqh95eCuMltHXFOhjrNGQBYpBf0oiBPRTIunV9Fw8GVkyuo2xZWquoPXB7QdZXmNBQAbWruQNGtI8J16AjXgzidNiWUqSeOa7VD6bweM1ClmyXkCUIAE9F5daEbuev6X4+g+V63up+tAApVBkGgB3cpQ+5WnYMXSCePM+VTQ8JbloVzF1Qq144QnP/enl+A8DIO/4NaE/4osPNfMkXRBbsr2X144okn8Ou//uv4oz/6IxSLRfXjHqBGvlDCcRy8/e1vx9e//nUIaqF26MVoLc7C0WE6jUIJf5FEGMARgr4reaXSwp6pqvQYOlAHAIfLl/H8yneVt/O0aNSwy+Barpxu+NUrkvDDXBLILTUquHBhVrldiWqRhOAEwqYA9TfJ7AW4oEozLbzhqu+gSB3pcebNGm6bOKYUPve7dCqqC4Lj9g5MUfmn2bCKVxm1mIknqzsgBEGLGcpg1wd1ALhD1Nw6ARiNzfOJcL2GxEkFEx7I9f3eAUqr6p+TTjqmXvhJcX0RAQ6Bt9QPebEzS0SOE1MsEaMekCMhv4sYK6pQQmpMo3//soDn9kZM71Rxq/cYdADPn0snqzi4a85RrZYtUnDng7mwyxJ1AAgow52gpAt2Uc/AtLGKnRe+gVqthhe+8IV45zvfCTNsLvkR0WjZIgEJIfCHf/iHHaAzUD/wAojSzMBCGs6EgL3LBna2gJ0tGFN2Z3aCzWWrxlfawsAqL+ISIwMrfqiJAr5YvwZ/fubl+Myl6+AIKuXMCY3+c7L5dORCEXv+sYA9/1jA7FeKLvQzsrkk7IIQoQR0gNvMdxAFLnVB8Fh7EbYwscoqWGUVVCWrjlWBDnBBX3TOpaLBMDclnyMaBnQAQE0BTEmWlQaArvOrTEUEYLRjKl1HIEo5EInexWyK7jLgWqq+YyJcgPDBXpeJAKwNBmsjuouycug1QkGgA1wXlhVJ6N+iD0h9bFYkXfeu7xg0P3fPuYtUB+iEEZ3ryU0Xyp78IbXZIDzHLk68PItLi89FoVDAV77yFfzP//k/wfloFsUBIx5+/eu//mt86lOfggBBY/+t4JV8ExWdCQFnJvClJC4gbBe1h5ABXRMFXHLcxHkuCXKZKOQiQy4Usfsrm58n4aKbNzSwrvYDFO88t3X/FRSrrAKD8FD3TjWXzlOLmThZ7f1+emCX5NhFAV1XMjeLEKADIN2QOGw7fwg2ypkbqyPfJdJsCbAScT+TDMN2qsfiB7u8Q7PA5vO9B3ahzl3Ob4cHd4CeeyerYFi2OZfumh4ZkvUBnYy4BTz5w2Ul145wgZXrBWYejz5H2MQCVnc9F1Nnv4l//dd/xY4dO/BzP/dzcgc1YI0s1H3iE5/A+973PgBAa89zwKZ2Zz5GOMRtH4DzNGyQA9yE/afaC/jy8pGBHws5X8Tur3ZycITI7EJXmmnh9UceUNpm3qzhReUnlLbRCb16Ll2YOGgs3KUJuwaVBHaJQAeAGgI8rmgiCug2/6ytQcHcoPLqBiKvJ15n1gzvdwMHPN9wHuClhbuw0GtQQbgDNHPvUsoDvDC4iyqQUJUHd1m5sz1wpwh0nrwejk/+kFyu3ZNvqEAYAqtHvXsEQgGPTe/BBn8Oymfuw9/+7d/iyiuvxKtf/Wq1gxuARhLqvvGNb+CP/uiPAACthWtgzx/MZL/OhIAzvf0hzlNeMBeXT+eHueAsE1xQ5arWpUYFFy+qNbE1L1rY9Y3NO6TfjYtSbaeBpVvUwqi6oVdrQP3seEJ2RRDubGFquXT+sGuYZB27OFEzAuwSgM7dWMOt44DZ6OTqKEgYQHOWauXVDUJDmzt2RACPcDGwWYX8txYP8GSgME5K4dWOQuEuQ+OScKBYdcPu7clsdtyapli5XqRqreOFY+PA7sk3VCCsznvSuYwIAKtHRSjcObNX4idecQPe//734w/+4A+wZ88e3HTTTfoHmYNGLqfuzJkz+K3f+i0wxmDP7Ed7p/pNpkcCbl6UdyEjonfZwnqquQPfaBzq+V1bGN1lUKqJAk7aCzhpL+CSMw0Gktn8r7L5dMaKifmvWZj/moW5RwGjLbpLEtABcL8JxuidD1m7dGHioLCFibYwsK+4qjRWWNg1TGFtYmRcuh4FTwMZoNtcVV4cMDvmpfLMDcC2yqtz++9lPWGpC3isFJ2fJb0r1dy5zurcJN1lEOrebvzLgOXPuystKz6tSIgIF+4KG9m8uD1fEdj7xXT78sAuKteuC3RBUfcBbe2a/r//2TfX8LKXvQyO4+Ad73gHnn766VTHmLVGCurq9Tp+4zd+A9VqFaw8h+be53bKSxXlB7nRu09nJiYIbG4OBeSATZjzg1xWMCcjP8jNPkZAHddZoSz/D31QoVddJbl0QbWFgQv2LCq0jQOlJYVx4l06TxblPYUTykAHNwzbLZpQADppccCsd4BuG183BiLZ968DeE7W01Qljku6y6DgjgdduiEBntFgABcoLTup4S7M9c0C7srLHNRxH8j3fjEd3HErvIjiyTckRw48sOuBO0Lwz+cncO2112J9fR1vf/vbsbGh3r0iL40M1Akh8Du/8zs4ceIEuFlC44rnAVTyou+HuCGDXLncxq6p/D/gsmFjd3EdM6ba3KFpVeqED/Nw5WTlwZwf5KKmQJJRbaeBpe9R28Goh17TqELbuKZyPhHuWszEqY056f2qVsSGikAP6Doh2EhxH8ylvH54IVjl7UbmajwEdVqCcIuCW8MBvEE6d32SOO8yd0y5yAzuwqQLd+VlDuLrtOaHuzQKgl2kSxeQV3XbA3fUxDf5QSwuLuLUqVP43d/9XYxKd7iRuYy8//3vx7//+79DEIrGFc+DsBJKk0fUjSNE5DZjhAdyu4vrmDProBAwknpuZKQS4dhtALPUPWVUYe6p9gK+unxYaUx/Pl2YKxcGckZboFBVzTgHoNDPblAaROgV2HTp/DIgEl07DgLG1S4hRYNhdrKh7NJ5ooaAmNS7AYV+KyXcuVEOwW6rim2yuTzj4S6ne5pZCzlhNOFO9vmUCCiBHYmAo6xcuyffUNGKAPrhDgCEVcLJqetgWRa++MUv4u///u+1jytLjQTU3Xffffirv/orAEBrz7MjW5c4ZYLmPIFTwkiBXJ4KA7lBTjPmhzlKCKhOOBx6rUwuLU9j7isFZVduFM2wUQ69xinKtVN16TzZnGJ5vQKimc/KGQGpmWBFje2Dbl2G7lyW4obasi0VgLuBAl4A7rYr4PUpR+dO1rUrL8dfvLMIyR78VAsQAof+qa21vd+14+U5vOUtbwEAvPe978W3v/1trX1mqaFD3crKCv7H//gfEEKgPXsA9tzBnr97INecJ3DK0H4CDq18HQGFzSYxKiCXBczpqGYX8NTKHFjVyiS8mrVKMy384JGHlLbZKqHXMIW5djouHQC3+lmz/wFnBFi3Oi0z9L4P3a348HPnBAGcIukurEBcV5AoLqoiQGGDdxf/pPEjp2G6d0PIu4uS2WAorDsorGcfJu3TEOEuyqULyg93e76k9iWmLdb9Nw3YeXD3//vX7+KVr3wlGGP4rd/6LSwtyeck56GhtjThnON3fud3sLS0BFacQmvPjQBckHP80dcsvksh03mNksqGjRnTLb0eJMD5VSK8E16lkRB3gXE82NqT+dg1u4DLGxPd/wtBBnLD1c2nq9Dei0GLm1h1ohNvOQhWufycgQYEZqjk5KMdZRV6jZIHdo/Xdmm7dEtr7mfsOXUyRRZAAOgAN8G+KGC0FGcaEW641R1cfjtuqrU3CWttIgjACtHHO6yZGAh3Ia/nWKg7cfxIqfP++MGO2gMCUkIAIbrjDTw07DtX/WDXnpa/hYeGXuPUqSz2g11z3h0v7fOpB3f+NihJLl2YvM4Ge7/o/v/sS+K/RIc/1nvd9oPdidcVlMcXBrB2FHifU8CLDx3CiRMn8K53vQt/+Id/CEqH8/0ZKtT9v//3/3DvvfdCEIqNI7eivcPXg2obtQXwVDQdTFv9XfwtwjE34IIHv2RgzhMT2RVGhILcoKWST+dQGDWKhlHEhfZ08voBMSVjnGONF1EVvcdWAMeCEd0NN8vQa5gqtI395RV8d31BedugSycLdn1A192B1+VWToQD5gYBK8TP65qZqOvEqYibRK4FT84KA704IB2ofIfBLQqzwcAKg72B+mFSBvD6Kl/TKAPAU5KvbYwHeK3ZbMby4M79Wf+8l4G7wx9rd126nm07vzv0T21tsBOGia8eOYQDZ8/im9/8Jj760Y/irrvuUt5XFhrao9jjjz+O97znPQCAjSPPRnvHTLqQQh6yBIyi/NNNsWhjz1QVi+WN0GXaaoIS3rcMQxO0hSvM+lBCrDW7gFOrs7i8MeH2oRNybTGSpFUkESWHwlgze5ca7eS4qB3rvFXD900+pnUYbsPmzaUpTJxlxe5ymSlMdh+QikvnqcpKeLS6G9PF/oeTOPldOr8IEXL5dSk5xwO6gUgAZl3AaKgf9NDmTZWQ0RI9y8hIAEabw2gP51pKbT44xzAoX97dQMKzXEBQAqvKYFUzyonpzPIjCIFIeQ+KC8uGAV3w7wf/WX/6GHt2Cr/wC78AAHjPe96DEydOaO8rjYbi1Nm2jd/93d8FYwytHXvQ3HNwdEAuqMANp1i0MV2JvqERIoYGajKaoC0sGg2UiMAUSXbmspBX+VqzC1iqVaQgrnZxAvP3q2eBa731HQeuTyH3LTbr4KXXHVPavUE4rAyTArmv4KQJirPMBb51XspsjPjxCQrUwXypBkcYWG/Fj2tzikurk1rE0nXpwiQZgu0CXZ4cIgDTD3GDZB4ymPGCTorf7UzbRDi1Oofmgd2gnTsAuYVmzabktaPzHoS5d8qh1wR1p0LrgJ09lV3Fjgd2WTp3pSU5WDOaDg7+M3DytXoPy2899V38yPOfj3vvvRfvfOc78Rd/8RcoFNTdvzQaCtR94AMfwHe/+11ws4Dq1WoNhgXBwPxFo+Rgca7a9/uw7vijLA/kghoE0DW5hRONRTy5Mq/myAn1KZpkRbgA6XzpzQbddOBkRN38xzxlgMNQuEtzQbsh8Qpx77QcFE2h7+LJiBKBAnEwXWzGgl1ScURUGDYy7NqzcXwINhToCMCK6iHY0Lw6P8xtrctCavlvusH3khXJ5hywg1QA7oDBA55qaDZRqudVSHg2q/CvMHtfT2q4EyLyOp8Z3AnAqRgoJDh1nnTBbsf9bpjxC61Z7JqZwfHjx/HXf/3X+Lmf+zmNI9fXwB9njh8/jg984AMAgI2rngNRkE8e95RLiMK78fgWAvfGFVy2iiZoCwet1VCgy1tNbuGCPYtlNgkmCDinw8mZ64hwAdrmoG0O4rjz+jV3mFi6YTAFGYMWBUeFtFAi4QCqG3p9oLovZKzoNzAq7CqtpM+m49aF/inCocvkNOyEWM2GiG078UxpKEyE6FmMloDZ5DCHVVnrC0sOOzRLhpkjKYD2jAln0uguecibBi3TsGxHqcKywu2cIAhBe07eMXPBzpYKx+64n2DH/aQb+oVRwqXCUQDA3//93+P48eN6x66pgV5yHMfB7/3e77nzuk7vRWux/wYxMAUhbpvIzZVbwxXm2sBhzgO5LswNOaYeBnL+KX8FBYSZ7wU3TT5dFvLgLg7wZMVB4IS0MTEpi8yxk21hEsytiw279m3c/xnmFXIlXA7mRlluxWG+l37PXSEcMGvcXYYMeMOCOyIErA3HXepq4Qfp0GuMPCjylpGBuxiXLnR1VbgTva2wVMHQaDpduAvKA7kemPOJV/bgpS99KRhj+IM/+AMwNrieXAMNv/7DP/wDjh8/DkELaOx7jt68rrrSSHAflNadIijh2GHVtPcxQVuYp00YQ3ASm9zCGpsYKsR5RRL+0Cow/C42WefThYmBoCbRLoWCo0TsXMKyBZochk2SB3XMoclh154Ne3PrpIBOIwRLHcBoitxBbiAVsAP8qna/g8IFPBDAGUa7FF9olnABVhxg52YvhMgAa8MBKGBXJG6/OZwGHtz4wc7cSL5GBUOvcRrVnLv2XAGFFbXedEbTwcK3Cj2uu8z381+PF7BjYgKPPfYYPvaxj+GHf/iHVQ9XSwP7Zl2+fLk7a4Qzex2ElW9St9+VGfaNXUZcI04zb9ZwbfFc15UbNND1hFiHXekiAKMZ7shlJZ0iiVGT59wVFEGzykp4qLo3dh0P7DylCr2qfnbE5wxJOHSqz3eEu86uU87/PB/RZ89MRES8ezeQtimec9di3WWgEgJg+u6ditoxrUcG4d5FOneKLl2YYp27gEvn30YlDOuJOgJGW4S6cpEyy918uve+9724ePGi8rg6GhjUvec970G9XgcvzKKx9wDaM9nuvw/igss20rxZw3Mqp3BFYQmU8G0Hc7KVr8Hoee4AP4JFEjqqiyJOthdgC0P684sKvQblBzud2SMEANHSu7nkEXIlPFBRvY2Ba5DqXquDgDfI99efd5cj3EXm1AmRO+DJhhyT4E7FpQvTQHPuIoDOv76uVLsr/M5HnsD111+PRqOBP//zP9ceV0UDgboHHngAn/70pwEA9vyzIShN/eV9JkEcsAlyXZgDB8Xg8kPqnOFpBzjLpvJ35kR05es2TIMcijxn2F85m5UK1EHJtAfn0gFuOLWQbWh0hDsTbSsFAc/aGMBUWEHlCXcyYcIg4GUAd+0Z9eyqQTl3hi1SVbWGqes80uTrmY5b50npukAI7lteBCEEn/vc5/DQQ2rTS+ood6jjnOPd7343AMCZPABRnNPaD3Xc6X0M+5kBcUA0yA0D5pa5gfNsEo809ytt/3h9N7529mCqY8gD5BoLJpZvyJcMB1EkIZtPFycuaKxrJxN6DYoSActSuzlyQcAaJkAFREHxHOcEZkM1purm1fX9OujOpdR2qYBN2xhWRi7cCVhVZ/vBnfQxCIDDzT0sG3DKenAlAzeR2/rgjhcpRNZ813mfvWrpLCWTIqEbhvWkcn0QhRnceeedAIA/+7M/g8j49QaVe6HE5z//ebc4gphwZp+ltC11gJ4pNkXg322oebOGKwqbEwInAVyVl2CAZ17pWucMy9wAsHmzZxquDhN6E78D+bpxggI858rXQRRJZCkuKED6w7+yoVdPTWbhzNqMXh2UN7Thgh1pq507rCRgNGVDTv3h+q3izoUdp9F2X0zSHLP6g2Jg114iXNfVqjrdse3JAdb1eUUVHbAbaFGFX52PMQh2ZiP+uqLj0oXJBfnOedU5hLSXtJ5G1Z33mXhjZPDgIAjQnqYorMd/mT2wUy2c8OTl2croo992MFcu4+GHH8bnPvc5vOIVr9AaU0a5PkM6joO//Mu/dH+evgow4h0Fz43zFtrGtnfjAMAgAouFqpYj54JWNh+j58p5zhxDdvO8yogQActgrlMzDq/mIi+fLkpZhWO5IO7nWZBzW7ounV+yh8EJzLqXWCl/jEGNCtBRtukWRi2h8twPDpgtEbsYbQFujf6XrNv7bljunefcNRmsDQd0SP3ueqbQ9Dl4US5eGpfOL2r333jduU4z2b1vp+hx7nTdO8+l88AucdhBOXZmCW984xsBuPUF7bYeSMooV6j75Cc/iTNnzkDQItj0kf7B7QSI2+YgV6QMRcpgEo6zrRk80tg30NCqJ3+I1QO5YcCcSfVeu9kUKC9tHUcsSoMokgCSK6394Vid0KtflMqDXd9LVwjDdi+uxHXrVCV7cRYUcCrZfTco618yOQXCUlQCiyAAt0jfMqoaKtwB3bw32mLDgztPEYDnlI3MXDogvm2IDtwlTifnOz9V4c4pkx4zQHryogSwq+0vx24ve+34s7vPY2FhAefPn8enPvUpuY00lJuf3Wq18Dd/8zcAAGfmarCyBafUoWjDhTj3P3kdQXo5VQuX6CQWZzdS78sgAmbMp88FBR9waV1YiHWQIkRog1zfvni+JxKbdfCSZz2OKbOJa0rnpbbZYW7gCkP+3LEIMEtN1AXDk/Zg5nGNkwd3qqHX06uzPb/zwM5ua1xuksKwfpeuO6BaGFZZKXdLR+j5I+zGFwZ2YY7NsBQMzdIWAysPeMbLDtyBEPAhzDPbo8DH5Z/n1Z7Sf19kP3M/2GWabaIYmg07l2XCsEn75hLgKhWKpSZ+/Md/HO9+97vxwQ9+ED/wAz8Ay8q+Z2hu34RPfOITuHz5MrhVRn3fYYCS3pNvdK4R0RIEQjMfDEgGuWGJCYJVYcCAGDjMZQlyeYtNcixesQIA2DmxgdtmH4dB5AtVLOJAZcpFAwAFxSShuKHQ2zolDPSyKJKQkUm5NNhxQdxWJgHFXY9DQ689G8ePGfoVGyHDiYjRArkkxYKeICBCjATkdWetEAJGwwW8bQF3hKTKH/TniXrgqwN3OiHQuLy7RJcucqedffqgIQhhUcURKmk8afLrADmw++1/O4HDO3bg4sWL+Jd/+Re89rWv1R4vSrl8AxzHwf/9v/8XANDaeQ1gDCnJdACymYGWvfk2bjSLsLmBw1NLMVsNXkwQ2IFo+6BDrKMMc36A80R9x1wybFhkcCEfGvisgqBXFwzH7fiwQFrVeQHHazsByIGdVyARJi+/LtKti7t/0Ai3Lsyl6w6Y7NYRDhida3inRiRbdQ4352K3gchfVCII6RZijBrgDR3ugGwAL6NL8+bMDpvXLhnAS/uZBuFOG+h6drr5ox/w7AqNhTcVty4Idkmh16AIB5pzMZ89Ad74xjfiT//0T/HBD34Qd955J0wz23M1lzP/C1/4As6fPw9uFNCevzKPIQYmzgg2mtFuSNipH+ZUDEthMDdIGV7xw4ipPUkw/6zL3f/TEYdOoBf0JgnFAbOOh9rlzt+Sjz2pSCIoJigchX4cUS6dp7AwbKJL5ykiDBsLYjJfwzx4xIO59LUbI69RA7yhwx3QA3jCGOy112iFfyHC3DsgGvCyajOSeUFFd8ebP5pNATumjYlsNay7bi/YyYRegzKbIratyjvveQqH5udx/vx5fOYzn8GrX/1q9UFilPkZJ4TAhz70IQBAe+EIQIfwpdIRFYDRvxAan288qmKCoCmMoQCdRRjmjQ3MGxuYUJlcE8DqpUnM3Z/9OVPbZeHkD5jdZeUWGwWDdZesgW7WqOM663LyiilU8IUgvHrpJOlMR+cpi/cotHBC9ovkv07GuXS+9aOKJvwuXfcw0n5VqLuk7qlIAK4Stx8RuYBHwQp06AUXXpK90XC6gDcMGU1neP3uIuRv2m9VnR7IA7LPn3RKFNwk3SVLCSo3g4zK99EDO1WXbnMHgNmIOShq4K677gIAfOQjH8m8b13md8/77rvP7UtHDbQXDmW9e22ZNQIQA8602zIj9PF5K0wSG6Nhu3IWYZiiKfvlMQKa0UxctV0WLt3S+Uwph7A6OThlB7t3rmUzSIQMwpXy6bKSB3Zpq6j9oVe/osKwcaHXoDwWlXbpPAXCsFLh0rjPIKuve8CZG8u9MXILMG33Q8qqxYaqgs4dMGD3zhvfB3ZD63kXorDwLC/mew/xwE56DtUI+c8pqxHv1gHybh3QOX81PqZumLkDdlGO3R986WksFos4fvw4vvOd7+Cmm25SHyxCmX96//iP/wgAaM8dgDDzT+JOEisJtGc57GkOVuauA0fQ+7iS+6Sh+YoLOjRXDth05lIDXQaq7d505C49j0MUO4vVk5Ax8PlyBy3u63aoo7jQa5hjlxR69aunf53qx2AozjYR4taFuXSelNy6rJy5bSp/MjvhorsMQ/7+Z0bDgbmRX5+wUHnTgAkx3NkqItS9BVIC4ojo+WoV5ZSiv1CZuncZu3WNHYZWHmDPGDGOnTALuOOOOwC4bl2WyvSR5fLly/jyl78MAGjvyMelo22vv1L/31hJhIdbiO/fAdzMl2sVnKTzODi5rLTd2dYsKARuKJ9OXJeDotl5EwpDmrUgE2cuAzV2Ulx8XudUpgGAGwscNPP+h37HTsWl80SpO40Y07kECYnQq19hq6Y4RQRBF+bGUpcf7Ibh4JEOXHlg50zqN5/VUpx7l6LyNSqfTlXdW6QP7ETGYdOgVN27sPMmS7fOe7hjRQKjleZiEe3YfejxOqYAfOlLX8Lly5exsCCf7xynTK2dT33qU2CMwanMg5ens9z1pjpPFJ4D519YyXPhAsuAJQCl3l6ebG4k9qrjoKjzImq8CAbaWQb7Ii3CMGvUhwp0jZ0Ea69oYO0VDVSf2wx35MbqioOCSdpQUaHXoDzHTsWl82TbBloXKyAtvVAUbatBnfewF+fSqWgMdNlomO4dfHA3cOfON77fvTOaztAqa0QgX6QnkKXh3sW5dFGSce8iHwQk3bqkmSYaOzavSYJkULkb4djx0jRuvPFGcM7xr//6r+nG8CkzqBNC4JOf/CSA7F06YQC8uLk4FQwM4FjTQL0+3DCyLUzUebEH5gYtAwITtNWFuWHMfAFswpz9nA0USzaKJRum4sTxoygLwAzNzzFY5yU81NiPKktuaqxa9aotDnXHzKEoXjTUDXeFHpmxLz0pCXosLQ01PDtsuPMdA4RA6VITpUtNFC83h3MsIQrCXRLg6QBdUHkUVgDxD2SNHUbf9z8rsAvTvSuuK/sv//IvmRVMZBZ+ffjhh3Hu3DkIasCejZ9WyEtw7nvzDEBEtbEigZ8H9TQjMJTHcluYsDv14MOAOE8GBCgEDCI6Pw8e5ho7Cdo3ulOQEMpRLGx9iBuGbGHAIBxVVsKUkc0Nw+GGcujVtg20L1Xc/wiAtAyIovxnSlinhYZDIEzJCyEBeFGgsDa22EZd3OwU+zgDvtZ0bqpDC8t64u7rJgBKl9zvqSBAayG/WWaCLl2Ueh6mOmA3qNAskFwcJROCBaLDsFEPdDIIkAR+YWFYe3YfykuP4fTp03jooYdw4403Jg+UoMxo4d/+7d8AAPbM3sQ2JtQRIKLXfeNFF+i8pOPg8kxRk1uo8yKawuqGV4chAwIWOCzCh1ZUEObKFcZAl0qsMx1dlGMnG3r1xEHgMI1zlPf+LBWG7bh0ngh3wU5Jkqdy6MV97NINVNykXcAbqEbBufPEOcA5COOxDl6afDpZoAsqKjSbhUsXJqMtknPuZL/fIS/ZH3YNUxK0JXJK2PXDsHDbbbcB2GSotMrk3XccB5/73OcAALy8D2ZDxC60DXgTSm9XeFuuVXByY15qXacT7nIEdds8DNmZGybMTSzWsfqKBlZ9MDcGuWwVl1unG3rlXO7L2+PS9exADuw8l677f5VTVBBkZFAOTdSJXrarPLgbOOD54M66XE9ePyDazvi6JQl4g5Yf7qgtUL6YEwhLNoe1JB+8/Ll1YWHXvuEzzK/zLx97YBWAO2kD5+nd6UzCrw8++CBWVlYgaAGssnNku/KStturTiXUo6ukYomB5CwpyB9mHYZmKw1cP3se55tTeOzSrqEcw1bShrDxYFuuGKnGi3i0sa/nd55blyYMW3cKOLG8+eDCOQGlEudP1HUrbtOAS+ffRiYMSxyC8gWvb9mIPz0KwFStuFPMxyECIMzdJo+8pbw0lNAsEyCMwVzb/K44M/mFQqUUCNH63TZnQn6SeF2XLkxEAEbdARHoAbvGzvRhbKOtcH4ruHXtaQpmEelWRh7YBStilWBPoGdaQlbZicnJSSwtLeGhhx7Cs5/9bPl9hSgTsvjKV74CAHAmdgFktGDFLyJJ+nnJ78hlqSor46yjltfkadjO3GylgRftPYHnzJ9B2WijsJVmPg9RidrYZ61gltZR47RvaWZoR9tRCagBMZBufmb3dyFhWNXQK9Dv0Mk6dqES8W5d0KXr/l7ytKVMAALSbl3P11S40//kItG7ZDVFU5IIdxfqiNBllDUU567jlIFzmGvNHsjLTDqfPecAF93FrNl9yyDkAR3QW/hSvthO5d4ZbdFz35Y5N2XdOkEUe1Mi3LFTmrEiOB6heNGLXgQAuOeee9QOJkSZOHVf/epXAQBsYncWu0uU2XDLmlllMBce1jRQJ0VUKvJTXpmUo0DZQBw51bYmtnDXLwwJ5jxXDgBMymANqc+eikzKsc9akVrXiHlyYIKgFnEFWOYMFcKwyxhMgjbrPC56jl1WVa9Rjl1k6LVn45DCiSiXzlOCW+e5dID3YKfp1mX5NRkhZopKPg/ePLN0dSKlWP3KDQpC+eCrZjtOmQd2Q3fu/Ap5L8LAThACZ0re1UtS1G3E+2y03bvgfmU+asnTwbDd89yuqJ3bWTyb+926f3pgBSUA9957b+r9poa606dP49SpUxAgbuh1EBIA4QQDuzImVMCalKNg9oMJ0YClC61pWJThmtJ55W2T5MFcd/7PAQOdB3OjDnI7K1XcsfBIz+8qtBULa2nFQcBAUBUm6k7ve5Mn6PnBTkXB0Ku0ZKJmIW9zlEvX/TsHEAN2lPl+33HrZF6yoABhGbl0IwRyMgrCHm1zkE4uNMspGV6rVQ0hLnAKuZYoxM7w2jMCcCcMic8i5H0hFDCrm7CXBvCMenJSp/+zkQU8pbBrQEmVsEbnpeveAr0wbJo8Ow/sWHkRhmHg9OnTOHv2LPbuje8gEqfUUPetb30LAMDLOwBD/qQwGwKCEjgJD+6jIko5KoVoG1sH4MLEQWDrTDoXoz6YG7BGGebCAI4StyefXyUymBAGgD7XtSpMNB33olkgHHuMAiaJhesKS3ikvSN2X+u8hMebe+LH61xZmmHTtMQoLtQadOts20DrclnOH9NocwK4F+fgt5A4BOWL/espu3WBHbuJ4fLHtdWALkzeTZkIwGxsEl+ekKckRbjLVAG4AwBezs4Fy0v+UL8HeKpw5w+7So8bBngUaCxsAl4w7OoXdURyLmjMMRmBy7lV13PrWJGkdu0EBQgsXH/99XjggQfwjW98A6973eu095ca6u6//34AACsrTnEhknvO5KHQYgmJvneECmVwq7aLoGQKu8pV9QPNQMOGuZ1mFa+YfgS2MEYK5soTLbzpStfmDgO4YYh2rkBRYXRvXl9bUDzlOKgKC0+2r8CskVyVJwNra04Zj67uBiECs8X4mUJkXbog2CW5bb0bd8DOEPGhV78iwrChOTiSbh3hQKEafnMZmemDhRj8tdQHA37IGwnAGwG4AyEgbcc9Fivbh/RMFDIrgwd4qu5d2u9B9zPim4DXnrXiH4Qkxwxz64JAB7ivQQfsjJaAU8omLeF5z3ve8KFOCIHvfOc7AABWyWbestzUCaESuMetWiJiNyyskArmpuRL23WmT0orD+Q2j2HwF9idZhVHrSUYBHjSnh460JnTbbzg0JPd/y8WNjJrvjsM2aCwhYF1XkZbGNhpZvPQ0O44xKutciLYyRZESFfEhm4MUJsqwaDfrQtz6fzrybp1aYFpGA+vA5cId/GGqmHCnSchRhvuQhTm3gHhgCcTdlUau/M5mTUGpxL/fqV16/rG1jhFSKeAShbsIpsbU+BP//UYygAeeughCCFAiB47pIK606dPY3l5GYJQ8OJcml0pK7RYIiH3LY0EJxAj3EiPCYqmMHKFuBnawsHCZZxshwO8H+Z0Aw97SmtoLph4/HK6/ExrpoXvPXjC/ZlwTJibbtykOXxnLis1RQEXnanMwA4AWsyUAjvp/bVM2Msl5dIE4hAUVlVL03rduthKuQS3jnCgsP7My6VLLR8UeJPWdyesH4YGDXeEQNDgdEkduPP+HgZ4GpWvUvl0KRQHeDphVxlxi8pVgGu4dWEuXc+6Cm6dl2erCnZRYuVZmKaJ5eVlnDt3TjuvLhXUPfbYYwAAXpwF6GC+tP78FOoQsBF5KByWDHBQwmEQnrsrZxCBAnpdNw/k3L/rw5wnSgRKht7TXxzI+bXmlHGitYhDxUvaxzlK4hG2s0w+HQBssCIeXe2tXI8Cu7pTwMkVxQc4QdyZHzSueVFTCsZuIwDEuHQ96yW4dWOXLqU6r9+DOyBbwKMthSgAIT0Vh7n2eI+dP3jruXdAP+A5UxbMWrZOHbdy+FA6h50EdIC8W2c2Rc+6mcAtNXDNNdfgkUcewUMPPaQNdanewccffxxAB+o0ZDYEzEA0k4jN/klhSxZPvbRJQBpb58sUlAEOiziwiAM6pLvGTrOKF5VP4rrCEkoEKGUAdLqan6nhJc95DC859F3MWg3MWo1IoAPcsHiwb1vWsoWJNV7MdQxPbWHiojMV+jeZfDouSDf06pcHdkExhWnBbNuAs6xeERh06ZROcwFQW66fVVTfuu3s0vkbD+cps+kDLr65GC3WA3lplOpm6h1Twjq0lVORVAfuSNvJtiI3SSH5dKpyJkwI4v7rLWkVBDqznvyeyPZTlAE6T1ZdooI6ZJWkCnmZB9Prr78eAPDoo48mrxyhVJ+EB3X27CzsKb0TRRhDeJoVRK/Jo4Z0iiWi2pp4rtwwNW808aLySVhDhDgAWJis4Y7d7onfEiZW7NEro1bpHZhWeYRhgfgpxaQkCLrmrmLBqe6pTjhg1cI7v/etG+PWbWeXbiDHFjVGzu6dspKcu0HcK4TYBDtCIIYx562k7Emr27PQn5HkBztVB6/PoRMAkXkikliF2m4zbacs954mPShEwVsWYdgPfPEJlAA8+eSTietGSRvqhBB44oknAADOxKxyV+buflLc98wGAEJgTwwG0OyGhVVaweykWrEEi5kuLHQbX1sTWZBr8gJWITBL1ecolJUFkUmINY0Wpzbwyl2PwaIOpqhrsVR5aSShLi/VuYXj7f5G33mAncNpNwyrFXoNSgLsonLpCJcMw45KCxHNYzCGPIf8wOS7rHmAN/BZIvwaRFhWRh7gjSDc+YEuqKwAL0tRu/MlVPwuRuXWBcOuQUX9TZaPeHEGgAt1usUS2lC3srKCjY0NCACsNKm7m3Qa8MVbcJJuGiRJFaiDGbMBS7YRFlxXKC9nyBryHdIDOQA9MPdMFQNBO2KKMFWw22BFHFuLn2vXC8MWDJZN6FUG7CKeY6TBDu56Mm5dsGAii9Crtss4oAjCyMnrBNIJC+c1ewVtSVxTRw3uPAUgL+8iidBDkvxcVAAvbR5dVBVsF+i8sRs8tVsnE+5P49bxwhQopVhbW8PS0hIWFtS7imhD3enTpwEAwqqkKpIgHIDG/GtpRZsEnBgQ5dHon1agDiaNwVZltkEBbqJCwy90WcDcYWsdL51+FPesP0t52zBXLkwV2sbuwjrOS05wryNbGFjllVyd0KzUFAWcbC/gckSenV9R+XRBtZiJuq04q4U/9Nr3N4SCnVbFq397jr483cRtQkKwqcOTg2KzAfWoC94g8xlk80d/zl9mgCeE3IwmnkYtfB4M0epAXYp8OntSL0YTBXiAO0tJnMx6cmsT6e9aSrdOdlaZYBhWhW0MZmDPnj04c+YMnn766cFC3dNPPw0A4IUJ3V1sahgPpwPMq4tSEOTogLuZ8p5SsE1l6cxZACaIfDxpX3EFr5h+BPdNHZR25QxwWBFgmpUYaPr8sgGqzos425rFvFXLbJ82p7DbJqxC8nutWyABJANVrFsnerdXdet4IaMCiawlBKJOcZk2HYn9vCTGz1siItSUt3uXKK/FggxEhbUzyUNCwNjoNQHYZH6FWXFhVxX5AS+xyEE2ry5EUQ8hqm6dB3ZJYdewbXXlQd25c+dw0003KW+vDXVnz54FAAhjEkZTgGXUVVlVWyGvbsMu4ELDLZYYNsjFaZhh1n3FFby0cgwW4ajyAubNjaEdy7CUNKuEihgIGszCMiYyAbs2M7C0NuFWDsuAXZxL110HWm1OgHCw03Hputv63LpYqBTJ81EKmuKiLtRdMRmnru8G6v/v6Lbf7NHQ4M4DWlm4G9SzX6CfV16QlxXQ+UUdkZuZE/v9URzTc910vs9mU32GCgDYvdvNlz5/Xm/+d22oW1pye5PBKGUwTQj0Q7Ap8up0QrCqeXUOM9ByDFQsu3tzlQG5ZWcCFtmB/YUl6bF0NSowV+rMPDGcSdXSySIOZkdgurGg4sBOJp/OExcEvFPwIw12MvKBXdrQa9TUg7JuHWFA+RJPdgqTvi4pgM5MchQ11fOaxGbuniAk/HhT3sN72plkLA/uiJN/fJTWfd9pVbgbtBIgTxQ2b/e8JH/rzwWivfoFSjJpCO3l1eWRJlCoctiT6p+1Khd5Tvw/fvm7sDAEqFteXgYACCMjy3ebhGDbjgGbbeYA+GehUHHl8u6lRjsQZSkmjrDOTThtBeyVxWW8pPJ4D8x5mjeauK50Bo8096UcJVqqDYinaANXW5fBY+52NIOTmEJkXvASBXay+XRhigM75dCrH+wUTke/W5fk0slU2RMB0JQskjpCP4DroL8YI6wwIwh6WsUbOfMWEQJGwwYIAS+m75EWKR72lDB8uJPqa+eHPNp7r6NNuQcyZ6oIo8XBitm9Rtnecp5k8+pkgU4lBGvWuTZ0mk0Oo0XQmFcrzhCGe+30GEt5XK2tfAMKswSjCQgy3BCsoARORf3N1y2YCMKbp2FOJSbT1oQSjgL40MK+HsxRIjARUd1roH/miqwVB80ewAVVIBztAeTVWeCwU8RwNlgJj9d6W56kCcV6odegIsFOJvQaUF4u3eYACW6dAKzaEFMhNF26PKa9CkKcIATC6r2uUXsEqgg4AAjQ5gDgLkzDhLu0n7ssqNMOQLc2P+80gKccdpXMq5OaB9a3TxmlATrAdf5lcwL9+bLCcAvS1tfXtcbV/hZ4AwpacDuUDzkEq/qEv3m8BJypvQC7YaHKCYqlnDqNayqurclWgLlhadao4bDZ+1RUijihhg12UT3q/GIgcEKOURfs/KHXsL9lEopV/A578raRyaWLe94imuP37H8ILl3ela+ChE/v5m9DMXTAk4Q7qXYmOvIAyWEg9SYIIeDzyZXnoy5najMK5wd9XcDLK4/Oc/6UwC5BQaCzNtRCsGZz8z0qL/NEt67nttyBurW1NenxesbW2gpAo9GZE5K6u8jErUuTi9IAAAJWHkCVlnBvZiq6WJ3Ew3QPrp85l9NRhSsJ5mxQQERDTFoxAFeY69g18SgKOd6BVNqaXFFaxp2TDwHYDJnm9frTKAzs4nrUySjL4glPfrCzbQP2SlEpgEwYgbURmJdT6QAktyMAK5DEQoexJOT7gDMBvCyek+LgTrWdia6Ya1HTZTczeCTgjmrOMRuRS6cDeHkDnariQrBhDp2KY2c2OfwZRdQRsWAXrGoXdEhOXRfqiNk5MAGrli5RkZUJHL0uCPIX9iGJi81ZImSlWyzhgZz783BuYP7om0UAi3Dk2eoqqa2JH+QswjFFBBiQ6zFlobSh2DA1mIVTzhwu1LPr6+eBHeCGUlVF2GZPJ9V5XlXmdQx107Zo6FV3rMwVADydHLyodiZaGnZYFgAc91qUB9xpzROb5fvr320E4AGbkDdqQAcg8njiQq6ybh0J+XjijrXvFk1cTmi39aaW0TrbGWPdAUWn8bDXEoCkmHHBaLgZ09pgpztunYJRE2JitMKCqsUSdV4EFxRXmKv5HVSC/OfzsBk7DOT8MgCAPDPBrs1NqSKJqHy6MHFBIFgGvaxUwK7z2XELoJrZEFs39KqRgzeAfnNGk0P4wmAkzc03REQIGDWJD9sPdxrqqXzVVR5wl0MeZRYKnltGi4MwkXrGCKC/WCIKklRCsEG3LimHTub75g+7BhXm1oX5EIK469i2rTVVmDbUdUUoCBNuUiBz81a45oMR4UhFAkbLfeJjigUTBOrj8raBJgoolYc/UWOdF7HKKuCCghIOizBcXbiY23hhFbBZw9y80cS1xXN4rLVHeVsP5sJAbqvKyKEqVkZx+XRBCU7AWwZQECBtuWMljMCqar4uEX5RjB8wEILdwi7dqEYmgjc/D/AyhTumsK/O++RBGq9IdmwIq3zVVQDugBEJzUbIn0+nK9mWM4ltTQLFEqkcusB+PckWRcS5dcGwa1Bhxx13exJCoNFooFJRm9dcC7+ov2O2ED2FEiQw3Y6qjJYAqKZbx+PfpCwlNBzlLPPqPJAD3JkhvBs+EwaaIm3DEXnl5cwZECgR+Sfs3dYavr9wDPVJI1eYoxhcsUTvuMOBOmUJ0vkSyh8rCXH3pNw6f30TkXfr/B/dVnXpBqGoIgnt/eXo3kmpA2nKcJelnM2nELpc7RZZ8B05TXGYcT7dsJUZ0AUk63pHrZcEdGGSeSBtt9uDgTq/COvttkztrenWDSIEq5NXF5TflRv2Td47h4dlGOy21nBL0W3QWCAERWJgSnDY23RSdNWegkMTBYSEW5fk0mkXTiTJc+taYsu6dLrjjYp63LsBPB/1hFJzgjtST57SsEeOA9G5VtElNyk+F7jLKZ8uVipOqqTyADqzwZW/F2FunSzQlVc4GnPutpG+A/GFhE11kErt1BHRC3Wua7f13DqdEOwgtOxMwBZ7MGm4F4w8YE6lApYDaAuKAjgsxcOgyOYt9mDOAzm/DBDYo3T3ykh1YeJ4exdYwh0wrEddUC1mYqmZnCenkk8nOAFv+j4LQ0AUIAV2sfuNAruw0GvnYVLmCdibymurunSjmk+nKmEQmNVWJuG+WIWFUrOGO6bfW1N44dmlzYrHMMDTKpIYtLIGOgI4JSO3KJzqdym4flweXVBeIWn8NWpz/+VyWeXQ3ONR3gIu1BUKBbdYQvSfZFvVrVNV3nl1q3YFF5pTWCxu4NrJwbZCCcqDOU8MRHl6MYOky/GNgzld6RRLDCIE60GcX15Y3QCPhLuoHnV+cRA4EnlyKvl0APobwUmCnZZExMMblQc7ZhE0Z/UPgXCguK53Qqc9dUYyn04AZkMdOojDYa61AJqcyyVdJKGiELjLpEgiQSJsNg9/eDYM8AZQJJEKsHMCOnQmOZEBO+liiU5fXNWwqV86YdfyCkc7poqWcPccKBaLMAz1+5x2+HViYgLtdhvUcfr2slXdOlXlkVfngRwAOJyCcQq7oHYHuORM4TjZmUmxRBDmPDHhOmKqbp2KvGKJVV7BLcXzMABUaH5Tpw1bQZCLyo00iBsySHLtRkIRYKdSINHn1iUVSCick4KmOYH1LzKk04JJ5sFXuRgkTIqHqptPp9uBn3AOcLhwB8QDXg6hPQCbcFdrgjRaEKVCPuNIKhTwiu4xCUvmxBlwPl2OQOf9P7MgjO5EBx1ZGxzC1APCxAysDtSp5tJ50oa6SqWClZUVEGYjrBfqVnTrhpVXFwZyaWRnUCwRBXN+6bh1KmKCYJY2cNRal4Y5SggskC2TVycLckGNEtj1hV6DigE76TH8YBfl0nV3LO/W6Ypwoe3S9e4o+T3g5uY4RCB6qrO4YUbx+yB8ENcR8cKkHuBJuHfZH5cAOAdptABCpOBOOZ9O9ZA6gEcK7vWB2L0ndyTkDSqfLm+gy3jf/lubMAiI4vFzi2jl+DklAhA3n5cVo5o7DwnqJicn3R9EuBW+Fd26QeXVVVtFHKtu3siTQO5ycxJPGDtxVSW/NiVeXl3eYcWkvLq2oFjj7kWcgWCKtpXdOdW8OgMAJ/kZAEHVhYnv2osA3BxJXQDPE+xU8ukAxM/BBfSA3UDamMTtXqcVStgQKa4VStv6bsxC8yEqqrlvZrCnG3qNaRvS496lgDvtUKoQbncHGbhLkU8nK1L23QgDn1sQ8gBAFNWvK1rvcQ5Ax4qDATpALwSrc4v0gA5IYBPmpnNNTem1vNGGuh07dnQOIPoJZSu6daqSyavjnICxzbOgbRhoOfJvCuMUDZZvm5IqL6ApLOw1qskrp1BUXp0Hc+78tYN3nyjU5qD359VxEFS5XKimKSycd2YyazuTF9gxTsEcA4Rm+N3xwK5BlFw6T4ICxJF8WEty61K8rMxcOlUJoTfFWVwvrCgnZ4Ch1+T9BkKzqkrbb04F7vJUnOsWAuekFZ97KAoh96Cw0CsHzLVG6D6c6YxnCugAXVpfITSvLmXI1ZM3Uwa3FGfQknRNSYepFhYWlI8NSAF1i4uLnQNoRF4zvHZViVNVxkzxNWi3zmiohWDD8uqCEOeut/mBNloFLFOB+bLELOSaks2rq/ICzjuzYCCYpmohhCzy6pJgrsoLOOs0sTejiZrTyv9aWwI9rqKMKOGYNeo478xkdky5OXbCDa3GgV234bCsDAFR0Lz5qzpsYR/JVnPpMtxWRdQWEKS3t9ywRTjvcYW08sVkxmlEwGOGcBdWJJG1hGnEFlaQdv8XwVwJhzfZRsK6EpSACJEJ0IUqAehkQ7CsSLv7UZn+3Sn1rxwVgiWOex/uGmeK0oY6jyIJjwYBVnAXIOENMBDbq4ibgKQR0i8B0LbbmDRUQZgXkHMHOXEXANwQsO3eC4yIecGcEzgsXzcqKa/OD3N2ignidfPqZJ05BtqZIkt+DJ28urAQbBis+j/lInGLOS4x+bJzAxwV2sJucy0XsEuSbDuTriTADipTA3I3BOtUBMy6xhyxKqdalFv3THLpUoxHBODv/50p5AnArKo7bz3hYpvlA3ZJ141Rce6SlOQMhQBf3vAWp2EBHSAXgvUDnYr8Ydeew4o4zV73wiP41KeODR7qdu3q5IQ50W6ToPIVVHHQZzQFhKHp1gm489GGfVEjqmkIJxCO/Kcn2hQ2MWEW8suryCqvLg7mVlkFFnFyDcEyAdSEiSov5Bpm1elXZwHwF0Mm3S4MuDNfqCovsFtjFXxn/QpYNPo8lG1n0iMZsJPeFwHhgDAFnArkwU646RTK8u/+mejSaXxkPQngvuumH/J6AC9FK5M0IkIAnb5tUXCXa2uSDtxhfQOCMRCNRrGy6smny0vG8IquCBfZA513emYUcg3bT1IINgroomS0Bc6ePQsA2LNHfYpMIAXUXXnllQAA4mxIrU+Eml3Zs21MeDaVoj4L1QuhIBAqboWG0ubVyThzDDSVa5ckJoCmoOBCLW8urxAsgxtC9UQBhLjkuSgrsFtlFXxz7SAAwBEUTceCSRmmLP2bWdMxsbQ62fvLLMCOA7Sx+bmrXmy12hQF3bqULl2hOoJVpFkrzqnq/M0DPEE6oashTTLfde6i4C7L+Vuj1KlM7Vao5gF3w5gVIkHOrHpj3DARLqQLdrqzECaIWyQzSIxz6BKZJuFzC4ZgCQdOnToFALjiiitUDrMr7bPPG5DwJsBtgPYCBysAQQZJA3ZGQ0Bo5tYRxw3JcUvuxDFaBIIaEJX8nLdm28Jyo5J7Xt194kpM0WbqMGuUZPLqPJgDXKdIeYwMQ7BBkPOLA2gKNbArEmDRaCiFYD0Z4KAalUDLziTuW3cfqjyQ88vhBqp2URvshCDgYYUMAbBTzqfruHRdUUm3Ttel89Rx5LNw6WJM0Pw06NCrrPzzfnuHlyd7xOQ8JcKdpCLz6WTUOYYkuBtIPp1MH7u0Y6Tq8ehKBejcDZB4G9AFurC8Ot2Qq7tt8vvjB1SjLQBuY3l5GcCmcaYq7U9+amoK8/PzWF5eBnGqEIX5nr8LSjKd049wwKy5lRfKYCcUn/I7zqDKJsKmcKghHYLVyatTCcG2uIXLbAot04KVY1gYiM6ri4I5i3BMoI2ayDcXxR+CjYO5dGPohWA9lagt5dYlgVxQacEuUkHHLqVDLUwBpwyYjfj9ZNJMfMhctOVCr5IyWgxECLeSVgbussinS1pHdzqtLIArAHdAOvdOK/Sq6uwNIfSqDHQSSuPQBfPqZIEuLATLikQJeo22cCOSncjn/Pz8Zts4RaXC+cOHD7tUaa8DAaiL0kiGYbPQiIRgW9xClbkXAS4ImOIZnkVenYwzpwpCOiFYBoH6AG7kad26uDCsB3MyIBdU3mCnpEDotWd3loCDZLDTFeHILGzqFDf7TA3EPRtCgYSqvNCrd4PugTsgFPDyTsgnnIOs19zXQwhEOZ8GxqIV893yvZepQrOjGHqdSRd6HTWgC0rFoQvyjDLQtUT3oZXYqwCAq666Snr7oFK9Bddee627E3tFabs0T91GQ8DMt3m3O06LgNTznZLKC8GmVYtbuGxP4bI9hSoruXN2ds60NVbGWXtWel86eXVMENiiUwTBqZs3B6IVao09LsnTtSU4zjoCFxhFU6h9hl4IVkVp3To/2AEuyH12+Tp8dvk6fH3tIDbsojLQefLALnMJQDAi30cyGHoN/tkScMoh76EAjAymVvYeCNMuIOhW0zlFErmwAukbP82xK2uIriQRort0jyXt8eg0uGXMzaljDKTeTAytaoVeZcGkU1QhWm2gbbtLThpI6FV3KjFsL6Dr31YN6IDezhyvfbGb1nb06FG9A0BKp+5Zz3oWAIC0V3t+H5ZPl5V03TrVvDqdEKyq0rY2CbpyoWMIAlu3+7Ok1ngR67yEK8y1TEFORS3BsdTJA+Og3b5xaWBLRWncOsBtQXPRmcKyM4mvrx3Uhrgw5eHYCU4gmob7mMpFJqkWUY7dyLrzcb1gyaar17eZAEyZJ4cBu3Raodd2/IcTdO+IEDA21Ck9NQR0CiZIvRnt3A1iKjXhe788sCtkfLMcQWfP0xjoAtsUOt+Nzn3q2LFjADYNMx2lutt3B3aq7iS01N2dTD7dwIsmVPPqNKSaV6ejy81JPEL2YmfRDY9GwVwayYZg13gRp5x5cEFRoS0loNPJqwsLwXow5wc5vxgImsJASWEeGJ2CCQPQ6tfnzjAx23E7TVRoC1dNXMJDa3uV9xUnD+xMmiEheedeEthxgDblrpQ9YJeFS8eBwuqQbCvf2+OXAGCX5YBvoC5ditBr4nr+1ijMDYnmBlFCuKHXMMnAnewwcaFXqR10Ply/axcAvO3UymTUgc4pUa0HGwBoT1LlIqpNoOuI2zhx4gSAdE5dqrdjcXERu3fvBoEAaS8rb68LWV7RRN5hWOUQrEZenWwI1qAcRdOBSTlsbvSEWJOURwh2jRdx0l5Ak1toCwNVXsYZZ1p6DEDdRfOHYL0Q6yXm/k52Roc8ZXXcuiQ1hYWT9iJO2os4Y8+hya3u+20Rhv2FZdwwczbz43O4gboTD9Gh7UxkJGJCsYIoza3oj5indemIGFLFaoIEDV+44QKfUySuS+eFLnPmUt2bWSoRyR5euqHXOHlh2QyqXVNL8M3FC816oDeCrptqPh3hYksAndv+SO/9Vszy6Qc6AKS9DMYY9u7di507d2odB5BB0OTmm2/uHNAl5W25AfAC6Vtk3iAdsCOOYluDARRmxIVgPZDzYE57jAxDsGu8iAfbe3DSXkDb90ExQZTnM7UIxwRRs2KawhgIzOnm1sW5dR7MeSDnhzm/sgY7DoImM9FkJlqOGXsuRbYzkVEc2KmICrCy2NouXUc6RroHeH0gLBKWNNK44SaFXkO3CQu9JsBd1jDQo06+HS6r5YVrScbVDACeqDcg6g2gIXejG6l8us7n2pNfmYG4RXIBOgBaLXlkWpcEFQQ6VgD+P99/CABw0003qR+ET6nPgJtvvhmf+tSnQFqXlbelDsAhwANJxYIQEAXylQ7lCrizS+T42Js2BGtQnghwdcfC5fYkFgpyjZ91FAzB+kOtbdXHkhipuHVcUNRFEZxQVKh8orFOCFZXnlvn5dZ54VUA3RCr3H5csMMMtEOxHARt5n5W/mnrKARMytVnlpBRMBSrEHrt2Q0AowHwFDUeo+rSJYlwoLiuQcednLXQrxTpv5F40nXpdBoOx86v6R1fGgCIC71GiTG3OrXmbkcmFKbRU5FQ/EwN2nUcBaFAfTMKQAgBwkKzw2xlEhw7h8sLbXM4E9ndf3qATkNuHp3iNiHBEkEI7r//fgCbRpmuMoE6AKD2KhhrgZWLckUSHRfM4ACCYEcUn3D9+XKq2yZIuRGxZgh2pVnG7km5NiKOMGBztRPbC8HutVal1vdCsCow54Vg95nrSseWJB741gwq1Jomty6YK6cjHbCLArmg0oBdt0gicgUf2CmGXgGA2ATli8QFspYm2G1Rl85T3NRD8YNG/77HLfFD3oBcOmn5jyuP0GuEBOu8Jgm4S51PpyrB3Wab3n8DkAd0QC/roouAuqHXMHjMOTWPtnlmefFOqXOwQwC60Icr1uwWSQwd6hYWFnD11Vfj+PHjIK0LEBMHpD9crxN5mg+KOACl7lRAABIBr2/9JA2oETHLucedagi2yS2cZAuYNerSzpx2CDaiYCIIc55sYaLOxci4dVVBcNzenHyZCYqmcMOraSULdrIw51cqxy5pDA/sNESwWSChnXf7THPpoOic+SDPC6fFumhpxupIq+qVMfeCnZeEcMOb/l/JwJ0qCGc9jVoA8kAoUCqASLRKEQngx4vRfxdm57MYcK/iLIGOFdO5c+4+MgQ6AEb9AoQQOHr0KBYWFlIdWyYB+Be/+MU4fvw4aPMcgAPK21MbEKQ/DCsjImLy3sKAkeQfgh1EI+K8QrBNbmGZuRcxLly3bsZQDGcoKhiCjYI5v4bl1gUBDnAhrh5iJ1nEyWRqtiiw84McIA9zfuUZiiU2hbVKwcL6z0VuQ1C6uPk6CAeooltH2PBdujTScem05171nTL+XCkVwJMeSmefXKCbqJkEdzqhVyBy2i4V5y55EEVQ12lSTEnyXLeEdMGPzUYURMXlzA1+4onMgS5tLl4U0DELMCKYOg7oAODl107gS18CXvSiF6U7OGT0Eb34xS8GAJDWJbe1iaIId5/M6UA6tAO03alsZehdIoY3WgQkohs+OABG+hZVqKs3i7hYk686TBOCjZIHdDY3YXMTTKgXIuhUwXoFE1xQKaDTlefWqagpDJxmk7ivvYD72gt4pL0LVVbuWcKADgAKhMEiGUw4it7iCa/woc0MCEG6i648sMtcAjCaBGZN/tj8Lp0nylywUxl32C6dzseRxqXLRGRzEQbpLkFlViARJyFA2p3vDhedhSdDi2boNfZQGHeXWs1dcmwcnLtE530UwoW3sCVCrJR/EYZftM0zD7nmBXQAIt2/JKADd/DNb34TQDZQl8mndNVVV2H37t04f/48jPoFsPI+5X14YNeXXyezrWpINcrd4xF5phyg7f4u8d6+QtUyYBPAKstdADgnsBUbEau6dVEhWL87F/x7i1tYw4S0W6cTgq0JE8tsEiUif7HUCcHKqikMVLkbDmYg4ILCgMAqU5/9o9AJ92bh2NnCxLpTwqTZwpKTbTJ3nmBH2wQmAGdC/+osnV8n3AIse0IfcgkXMJM70+SiYbl0cX8LOniZF0hEKThO9/+Szl2SQkKvsaszFyrFhnstpDOSD69Zh16DIhSklM80aD1KMYtEkpxy7/UxS5gD0odcvQrXLEOunoz6eTSbTezZsyfV9GCeMrFFCCF45StfCQAwNk7p70fTsYsNwaoqol2A0SIwalS+jYBA7iFYHbfOrya3cNae7XHngsrTrasJEyedOZx3ZrQqanVCsFFuXVMYuMTKuMTKWOVFtGGgDQMMFJRw0BS9OtI6dnVexIP1/Tje2IkWNzFhtrGjlH1InELAyBPsEhy7YOi17++ylwWByD5wcguJniZMZvit4NKpHKPfwaMETtmEU5L/vurk0sXK79x5yjj0GruN40A4DvjaOviaRFGYauhVRyozGRACPpNTha+m/LCUB9CpwFiwV53nzuUBdABw21WuCfLKV77SLXZJqcxiXR7U0fpF0KZ+ZRDhesnRqj3oCAOorfAGcgB558kphmB1tMbKONFaxAV7Jhbm0ijJrfPDXJMXYAsTtjCVZpcAPLcuXTGCB3NBkAuqQBhmjbr2ODpgV+dFPFLfi+ONnWgwC63O50QJzxzsWszE2fVprNbKMMz0NyHiEBSXfDd+CbALC732/J0nhGE7qRVpRARg1UTkw50u6MlooC6drkgHfA15uFN26YQAsSXCqMGQbA6h197xOLivX1wQ7qQAT0Y6+XSKEpbaQ/SgQq9ZAx2gDmP+Bx6dgghAHujAWvj6178OYJOh0iqzT+rgwYM4evQojh07BmvladgLR6B7v9UpnFB261JW3UqpTWEbJqyS3M087xDsulPChcY0dhRrOFKRbxatGoKNUk2YuMSmwET4jBVMqFvkOm5dTZg4zyYxQdpgIKEQFxQlHCXYmDXqWmFYQC4UW+dFnGzu6KxndEEu7HgmzDZQApaaek/dLWZiqea+FiEIHMd9H6jbZwjM6X9fEtuZdFcE+qLpMaHYJJeuu17CdzY1ZAnEt2AJGd8bk3C3YXJbMfQ70i6dX4HX7t7sXLiDEDCbGUIVk3w/ulCrDo4qodfN8fpfo3A2r+8e2HVDs+PQq5RoJ08z93uygnIHOgDGxtNgjOGaa67BgQPqRaZhyhS/X/WqV+HYsWMwNk6CTx4CQLXALk1+XZ4y2gDqFKwiG4cBhCqkNYu4aExi54RcnpxMCNaDOa9a8kJzCpQIHCrLNYxOE4L1etbVhInzzkws0HhuncosEyq5dU1hYJlNdl+LpdjehBIOmjKUEgV2HswxUDSkGj3qg50Hc36Q69t3DNilasAWAXZJLl13PY1qWFl1XTpV+biCOgKFjcA+CEkEvS3h0kUoDu60CiRkXLqASE0d0JRCrwGXLnKfHcDrwt2k4gOXbtWrrEYs9Eo6ja/JYGswEjUIoIMQuHpqHU8tA695zWvUB4tQpm/l93//9+M973kPms0qaGsJIAsASCqwo44At9ypQRK3USyY8EKw3JL8cuuEYIfk1nkgB/S3vnC4PDh40i2YSHLn+rfL3q3zw5x3DBQcdV5ERamscjMMq+vWAYBBBLx7uA7M+UUJhylZ6ikDcz37jgO7NEpZPBFaNJFB6DXRpYsREQJmS2weX2DHPaDng7yt6tKFrhKEuzrTK5CQdel6thlAuXOISxclD+7Y+uY12ZjON7VGVqMQeiXDmGtYUtQWcMoa7dU4wBUcTaN2GU9degrlcjmz0CuQcdeZycnJzdy6jROpCxgI74BXGzDrIvFpdhAhWKMNGHWFt03XrdNsb7LulHC8uhPnGjPd+T79QOdptV3GiYZ8k0NVt64pCniqvYhHWvu6eXMyyjK3zp0ndgaX2BSaoneeVa45b2zaogkAMMBhCwOP1Pfiu81FbLCiFtB5KlIWm1/n5ctd3piAbRtSQOeJGjyTHLs++XLsZEOvfoV9b/OepzlWCdceynyLI1DY4ChscFh1Dm4CTGXaEoyOSxemzWITAV4ywWWhYFAunRAQTYVJw9OIs+7C1jd6IC+1tmDolTiiD+hYMbtpv9KK2kLrOkI4lDMAXnWj+9ndfvvtmMhwarrMEfz1r389Pv7xj8NonANzGqCkDEH13DpP3ptMhfumyzp3UvsehFunKB23bsMu4ri9s8+Vi1Kebl1TFLDBSmAgoLyIKap2AU3r1oU5c1HjDNqtawoLZ9tz4CCgRGDDST/rhBeGNSsMDje6oVhVZy5y/4qOHXEICstyeXe0Tdy+kYouW08YNssCCa1tN106WXluHjcJBOnUYZT7j8loZghvObp04dsJiE5okJdM0KZEtGJALp1QGUcy9Jq8H/c4I927bRp6TXTlcrydsqLCA+wAgY42a/jCF74AwGWmLJU51F199dV47nOfi/vvvx/GxhNgszfCaAnohmH9CsIdgD7A0+pZN2IFE7Jab5Vwqbr5JS0VbCxO5Df7Q5Jb1xQF1HkB3Ldei1tYYpPYYcg/oerm1i0zE01hJcKcJw6KtgCgCHY6RRN+mLM7LVWK1MG02cS6EzIxt6Io4SgbHJwyNC0Tx5cWU8Ncz/47YOe0ZWFNcr82ULngfgHtSX23LvcCiaRtNcf3pyeKwA06DPQAAITA2lCdUFf50DYPQmMba6P3Wico6Tp2UnCXl3RdOoXQq8q+egBvfja7MSI0qNBrXuFVp6x2/DJ5cR5LDAzoHIE3vnAaH/0owy233IKrr75afeAY5ZKe+OM//uO4//77QWtPgU1dA2IUtcGOiP68bP+bH3TvMu1ZF6FBFUxcMiewWOmFtPVWCZc3XJBjjPa4J6ah9sK9EKxswUSUwmDOE/NBjIpU3Dq395wFJii4YkaBG4ZVP2FkwS4M5jwZhGcKdlW7hCfXdoBx6s4nrHjOJYkaHNQiYBk25iUC7rWBANhQAzvCAaOZrm7DO4ZBunSegv2wwhQEPQAQBtCeCv9OEQF14MtBJMQJ87t2QADuBlggAcMAIbSnanVo8gGe19QYAEApSCWM6DsatdArB4yGDV5UQwrV0KvGrSRWuu4coA90xGnhE5/4VwDAG9/4Rr3BY5QL1N16663d9ibGxpNgM8/avHhn4Nj5FebesYJbubLVCybaTidPLgbk/Gq2LFyqTUi7dWlDsHEwF9xG1a3joIluXRqY69mPZhg2rho2Dub8ygLs/DDXtDs3TCoA8EzAjjMKe92X58ix2ZA2KwnAaAt1sHOAYrDa1CduSOxvBFw66W2M3n9DDqcH+IjYnNZLucI2I5eub5UouBtUgQRxp8Mi1AK4iIe7rEKvSYdkmr0hYcaBJMgbZui1A3E90imKGWJzi6EAnQB+9vt3433va+Ho0aP4nu/5Hr0DiFEuUEcIwY//+I/jv/23/wa6cQJs6iqAWr1glzFx+z8c98mfgHXukcJA/HiaBRN5unV2y8Ty6gxW1yZQKDpS+UyCEzgS+XR+qbp1XgjWnzeXuI2GW8cEBUW4W5cVzHnSDcMC/fl1sjDnVxqwq9olHF9Z7MKcX2nBjjMKu1pwvx+B8094V7QUF2XqAOWLvi+eKthxoLAhQGNCPYQBJNATVtDN/Y+yS6cr/2lHW6LbYsH/MK3TQkVWYS5dmPxwR2z1siWtAgn/sXlwBzMB7AbgfJKQnpBRkEcpyMQE0GoDRfmiMq3Qaxi8eYfs9H7O0q08RkDDAjpwGx/96EcBuBHNLGaQCCq37jDf933fhyuvvBKnTp2CUf0u2My1ADbDLcSS7wMTFoKNXZ+71WHEc9MEYPi+l2GQN2y3zm6ZELXNj4NwAsIATkwwhbBq3m5dS5hYaVVQMdqYNOSfYLNw67KGueBYumHYGivi/voBzBgNJZjzSxXswty50OPTALs4mPNEBEkNdpsPeT4pgB0R8UDXHSMAMIL4QI+4sGPo3LeH5NKpyH98/ptuIuDl5NKFbkYJCCHglSKIECANyYRMHZcuzFk3aLhrN0CXTkZdyGMchBIIIUBacu+VmJoAretVEwXhLXT/hMhXOQ9RMvlzce1MVIHOuz55ptFPvWIHPvCBKq688kq85CUvkd+RgnL7FCil+Omf/umOW/cE2ORBwHBvVkSg07/IrfzKw4KlbfeJnBc6b6j/gxD9F3FhqF80dd26IMABmxAXFGlT2HULVkVu4vq83LqWMLHhFMFA4XADlAglqNN16wATNQAlYqPGi5nDXHA82TDsJWcaX68dBuCC8bpTRsOwMGfpTyUmA3ayMOeXCth5odYomPMrC7ALlQzYccDSrAnyQE9QwJ7ozOvoS4v0cvXi9zFYl04H6PqA2b+/OMBLYeLJunR+UbuzjUEgQIByIRHsUrt0fTuMCMkOyaWTlXQDZUIAR+21yMBcj1TCwVDMp8vAWJZ158LMpu52ikDXEwFkTXz4w58GAPzsz/4sDCOfVi65ovVtt92GZz3rWXj00UdhrB8Dm3tO92+UARzCPREIEuFO160L22kf5MH9v8HddgyxOX8U4EZn4xC3jrQpjFb0gYoahTDhJgHKiANgal+WLN26IMx5ajALa6SCGVMeYnTcuhovosknsWiu5wp0QHIYNgzk/GowNxSSF9jFhVqTlAR2Mu5cmHTBri/0GlQC2Mm4dDLymoX6oYlQ0YW8SMAbsEunI9nj6wE8E7CqDCBq7SB0XTp324CTalKIJNcuK5cuKF9IFgBQy6+bgK7oAJoYi7Jar1AtyXwPfKcGK6doyzSscKtPP/r8Mj72sSauv/763Fw6IGeoI4Tg53/+5/HLv/zLMGpPgU0eAazNE5J4D4VeTpsE3KnI79YlHmsnWVoY8fl1ggPUB3KUAdQ20O2gweO3J4yAC0AU5c+SYbl1LWFizSn3wJwnLmgXOmTBTsWtawoLq6yyWYThADvMDBt3RigIdkkgF1QeYKfjzoUpDOyYY8DZsJRhzi8dsAsNvQYVVcCQwqXr7rrj0oX+jZAu5IUB3lZ36aJEhIBZY+7DMAGMJpeDuw7QpXLpguq4dmFwl7lLFzo+BYSAMe3OysPW1xM20JNs6LVHituQiYq60aWQ65Vb6DVw0DrfnTTtSrrbZQB0cGr4+Mc/DwD4uZ/7uVxy6brj57bnjm666Sa84AUvACBgrj0cv7LwHDZkYrduunXyoo7bOytynyKwdHLxCOskZUsMR5nbdFVamm7dUl2+2snv1rWEiSV7IhLouoclqHJI1XPr4tQUFpadSbS4BVsYWuOkEQfFeWcGn1y7CV+pXoXl9gSW2xOJQOepwQpYsfWnEQNcsGuwAh5a3oPjK4uotQqpgM4TpQJGJ0eTMwqnaoHYVBvoPBGvg27GzbkpE7AC1a1ZuHSCEKkpfbz1uEHATcCpAI7i7A+evEbDectoqbsSRAiYG2zzfRVeXrKA0eQwWvE71AE6d5yEz9EgECYFrxQ33aO8XLowWSZgmTCmp7uAl6kUQ686Lp0wFduG6Lh0iqFXXoh53WGRNA15LDF0oAPwsiMNMMbw/Oc/HzfddJPeAUlqIJmN/+k//Sd8/etfB5rnQRoXIMq7AHTecCL6ezFFOHeqIVhAza3zjkn1gyQMIA4gORNW56QlSgPpuHVeSxRZXWpM4j52BfZXVmNhzi/VMCwDwUanLDkYhvW7c0GIawoLS85k7m7dOivhu61daHILVafUnX5NVWkcu6X2JB5a2QOHU9RbBfCMSYBzila1CDgkNcz5RRwCs0bd3FELIHKnaryCYdiMXDpHg7kFIQARKNTda5bwXb1l+mMOozhCRaGgLFzgi3TuUoRdI126MBkEwjsWFem4dJ3temS5F/csnbvt4NLpKqz/YhYg54lw/Qpznfw5wDVrQvPxGufx5S/fC8Mw8Iu/+Itax6R0HLmPAODQoUO46667AADm6gOA2HzSinW2MnDu3Plj1d06onCdci/oaifQKLl1NjdQbRex3i6i2i5JAx2g59YFw7BNYeG8M9PjzoWNU+UlLDn55JOssxLurx/AY429WLEraDALJmGw+mdnl5aOY7fUnsS3l/ZhrVFCreWCISUCJuWgGUx9whhFc6PgnktZwSIHzHUKc4OC2u73R1ABkVU/Sl8YdpAuXVCECxTXBah3bSCkuwjqtmniRviFfeTDrkkNi/3OXavj3KUNu6oCmncoE2WgrND6R9elC1PAuUvl3qUokJCVqkunvP8sQq8SzpxsPl0aZw7ofOc0nELKEH4+C4YrC6cAAD/6oz+KgwcP6h+c7LHkPkJHb37zm7G4uAjC6jDWj6tt7IO7QUzarTOO59ZJq+vWKYzRceukh0hw6zyYq9sWbGaAcYr1dhGn6nNKx9VgFtYUrQ8vDBsMtcYpjzBsEOY2WG+X9kGB3VJ7El+4cDW+vbSvC3NBUSK0wY4xitpaGY1qEbA7X3sqIIwUgMQ6MFfdhDm/osAusUgiRJQJFNbF0Fw6wH14C77G3hWiAW/UiiO66wfDrkkS7kNyF+50p/zSADrq9UujFMI0kuEuK5cuTB248wCPWPkXFgykQKKk8SSmEHoVlLihVw+cZE4DIvdQlJYNhKH3PfUDXfAYfvaVCzh37hwWFxfxkz/5k+kOUPZ4BjIKgEqlgre85S0AAKN6HLDdMJpS3psHd+FFrZGitvqE30m5dUFtJbcuDOY8MU5xqT6hBHY6sLXGyvhucyeWnUmlbb0wbFolwZxfeYKdH+b87lyUdMCOMYpGtQjRpptA192hJtgx9DhzUQoDO6kiib4duZC0ch2w9GyCpWcTrF6jfvlK49IVqgrH7AM8ViDdlkmyvTkH4dIpA51fAjA32gDnoG2mFEpVCrt2xxP9LTk6cBcPdvm7AMJxQAwKYhW6S5IGFXpVFpX/Tsm6dIKS7gKKzJsUZ2H2ZAF07o58P9sb+NCHPgQA+KVf+iVUKunyrGU10G6Bt912G573vOfh61//OsyV++EsvhggZLMKVlKEux+Ad4EMbVESWN/ri6cyxnbKrbO5gabjHhgXpAfkgmKcouWonRoquXUbrISzzVlwQcAFwZ7CmvQ4XhhWtxrWy5mzuRELckGZhAEUmebYeaHWJJALyoM6mVw7D+j6YK5nh27tKpF5YGDo5s3FulY+CSogCp15mTXz7JwSweq1AJvcvHo7E8DSjZuvy2gRzD4efXXP1aWLEDfQe9khvWCXVeRBpzgCiMijkxmvbm+GXYUAhABtC4AQcCupWjaFSxe2O9MAJsquOeA1C87TpQuKu+MQw/+63e+0sCPchFEskMjYpevmzaW0jlgpegdZfH8yA7qenQo8d+E8Hr7Qxq233oqXvvSlaQ5RSURIdy/MRufOncOb3/xmNBoNODPXg09d5RYyKD49C8M3t6vXTSEG7gQFWIlIF0x423ALSnPVchPgBZUneoCbQmkbUeKwpuSsR84pBAeKZRuTZfkpsAzKsauygf2VVeltKOGYNpuRYLfBSrjUnoLNDbQ6cGQRjvlCTQnsAKBCW9htyW9z0ZnGAxtXdI9TR1xQtGQnFI5Q2WiDC9othFAFut7jIZFg5+bOFd1rThzQ+dV5yIiEO8+dSzEPOuEEZh2YPK32GdgTBMvPTdiGu8cH9AOe18Ikk1w6BSWeLsGvvaaJYTYG6NIBMKsx15KOSxkGd1q5dEKAViUbnXPuwl29ET/1V8xYSqs3ml2oC/27Dyw9wCOmqQ5187NK65OJijrUVeQfcoGOU1fpvTn2FECE5ZYaioRHAHuy/3XIXMKTQrbdeZQDq8mEemOBjhCQ2hMw1x7GxMQE3ve+92HXrl3JB5yRBhZ+9bRnz55uGNZcfxSw17Vaj7jum/cfdCtlBe08CZOw9dXH0HXrpJVTbh3nFE7LBGtTcNtAc6OI9Zp8cjHjFA1H7cktLgzruXMbTqELdABgC9p1sVQkG4Zdcibx2dXr8a3qAVxuT2C5XUHNUbt4eaKEpwrDOoLicmsST9dnpUKtyccTHoqNDbfGiSA6HJsB0AGua6dqdjolgrWrJFakgDPN4UxztHYwLN24GaLNrDhCQVKvk/gWAGZT9CwyIVWjPVigM+oJdqsQoWFZ3eKIOJeuf2UKYdCBAB2AWKADXPeuu3RCs3RSvtUUMBiXTnn/ndCrP7TqhVe7Sw6SDbXKAJ3QrBWLBToAaK+j0nDrBn7pl35poEAHDAHqAOAHfuAH8PznPx8QHOby/YDgUv3deuS1PfHLd4EMAzzd3LpRrIQlDaMP7DyQ82BO8M2zVnACptjiZL1dxNP1WaVtgkUTG6yEE41FnG3O9sBccJtz7RmlcWSqYZecSXy9egiX2xNYs90ecxwEDWZpg51Ofp0jKKpOETWngDY3QAnH/IR+c2K/gmAnFW5N3GkA7DICOl4AWle0Ub+6jfMv4bh0s9w5LwyATalOWYQu3K1eQ0EdgcKG+k1bN+zqbqyxCRM9C3VEH+h5C+ACXWiD5qj9ZwB00tWuHtzZvjCtomi9rTy9VXcsbxkREYOCTpQBwwCdKPcssRpALp106JXzjhvKIUzaC3E500RWqQq64VZAAugEx7MXz6PdbuP5z38+7rzzTr2BUmjg4VdPly9fxk/+5E+iWq2CTV0DZ+5Z6UKwsSv6fiYAKxBwhXs6K8j3uQPcE4ZbQj63Dp2wbVHtrBUlDmPCAe/cwEWC60eoQKHSxvSE/JytOmFYswM9bW72hFrjpBuGpYRjijZ78uu8UKstaBfm+raDQNmwMWHKh6T9coSRmF/nCLehc1iYlAuCtXYZy7VskmfbjoFGtaQWbk2SQ2CtGUr5c1HiBcDZ04JV2twRYxTk6TIW7o++BDklgtWjGlDnE20Q7Pxm50HPcENE7ag5ZX1K7dKpXM6E69KpRCwEJaF926IS0dMCHZAQdo0RsRnAAaHS/kIl7Oofa30Dwg5x9+IS9DVug0mh1zBFApe/oTIX4J3cQDo9qQx1mJlSWx8xodeI18cmixBJuZPBXamGXuG2MgntaZc0VohTFxVuldm2+xyfcJ78f2+fwQc+8AFMTk7ib/7mb7C4uChzuJlqKE4dACwsLOCtb30rAMCoPg6jdhFUIzwq9ZTqD3EI9+nW2thckuZvHym3jgAwOgsjYHUTgpMeVy5KOm6dThj2cmsSj6/v7Au1xskWFMvtCS3Hzh/yvehMd0OtUUAH5OvY+Z05h9PQvDdKBGYKDeyZXs/EtSMEoAWWHdB1zmFu6UGNX2FABwCGwSH2N3D5uTHJ1jounU+kRTDzuLt/z3WjtkBxncc6d6MOdAAiG/ESIUIX2hbKnf/9Sgy7Rog2HRCbgTAG2rBBJNugKIVdPQkRDnSdv2Xl3GkBXSnmWmMYm4tlbjp41AC46F2ylmV2Hbi+JUKqQKcrHaAL3U8W4daEc4e0LuKDH/wgAOBtb3vbUIAOGHD1a1CveMUrcN999+HjH/84jJVvgRdeBoqSGzaVKXvuhGCVTnPSH5cnTEAErgPM2nTzvPWVKnQ1KmGp477mnqIJgj707nayF3BbnCi0pGBtA+u1kpJb54Vhk9y6VbuMM7UZME5hd2BmZ7kqPU6a/LpjzT043ZyPdeeC8sAOgJZjF6yIjXPmwkSJQMVso2S4J5+Oa+f4qpiLRRuO4c7tyjZSdP4V6M40wYsCtuGez2Zd44k5Aug8GQYH29/AhYkiaJ1i8b7Nc1k6ly5CpEUw+xhBcb33+0FE57tJXHALc+4GHnZVvVkrjkHbbnVst08YANqWhxKlsKtfHL1wwLl76M0E1y6shYmESLWWfJ32bs7ePSaHXLpQGQoP1IbhHl9YS5aYzgVksgLV4JvQyDXdKpJ156KUGG71xJpYFMewIgRe97rX4eUvf7negBloqFAHAL/8y7+Mhx9+GE8++STMpW/B3vlCEBAQCCm489w6lb5OogNKHtiFJV8GQc8kAC8Q2BNyoVjPrROSKOjOHUvctcu924i4hEMBwCGAKTeO4ATtegHrgDTYMU5xoe7mroWBnR/mmr5WKGsttzBDBey8/DrZMOxlexKPrO+BI1yInC6ohWuyADtGCNbssjTMBeW5doAa2DmcQvjGIwSwLAbTZGgBemDnAZ13OhFAdFIJHKiBXRLQeTIMDmOhAcYoLovNcGxql46jD+h6/u6Du4J3ihLArkCtJ51Pyh1vOi5drhK91zfP/ZCFuzRAR9vhnz1hDKQhIAgJhTsdly4y7BolIeJDslGbNTRCwnEunfIBxDhoBlWD1KL6QzSbVH8tWTluSmOmyJ0DFIBOCDx//2Xcd98Kjhw5gl/6pV/SHzQDDS2nzq9Tp07hZ37mZ9BoNNz8utlnuX/wHqQS4E46t84nnYaFrAA4ZSIPkMTdhkkUnXrtWNxeWgJsQvEp1RTSYAcAZsnB3Ixae/65UgNXT1/q+d2qXcap6lwPzPk1UWjjiskVpXFk8+su25P49up+1G33wkSIQNm0lcEO0MuxqzlFnKrNdfv+WQbrwpmOVPLsgkAXlBBAq2WpgV0Q6EL+TltECuxkgS4oL89u9lGkyqWLcumS5ObDElBbQLXQeVBhV12XLnJ3nfHD4C410Mk4WpT2wJ1WcYQQwPKq+nF6uWwKLpqoqadLKBcvaMAmmZzIvY0JADhzcpEQv7Ty6UpUy0VkBdItltSSooP7U6+cxfvf/36Uy2W8973vxYEDBzQHzkYjAXUAcPfdd+Od73wnAMDecSt4Ze/mH5PgjnSm5FE5n4XnpilsQjtFE5b82SIMF+oU+tyClQXsacWLGgVQkH8xOkUTlsGwWK5hf2UVq3YZ5+rTsJkRCXSAW2gxU2wquXUAMG22cLh8KfRvfnduo937xqYBuwJ1MGslQ5kHc07AmaREoGLZuYKdF26NAzpPSmCXBHQ965HYcKwu0HlijIKcLmP2GLD0PepAoQt0njy3zXvQkoE7ZaCDu2+rrjqvl9rqSUDXs+sA3GkDHeBCXVOt1YAwDIiikW1xRJwY28xR85ykBLgTzVZvUYPMsZWKaqFXQAvqMKs4D22xoAxNOgUSghKtWSScCfW2LIQL2BX9fD8i1GCQNM7CXP0mAOAd73gH7rjjDu2xs9LQw6+e7rjjDhw7dgwf/vCHYS7fB9ucgCh0kua9FAiO8LCsZm6dcg863TlhVfmsRWDUDDW3bgBhWJsZOLU2i6dW5zBVasXCnCfGaaZh2KA7F5RImC0jTg43UHOKkW5dFMx54oKgbrsApQt2caHYJHcuKELcPLvEUKws0AGJ4di0QAcArG5iz30ClQttQBSxdIvCw0pKoPPP9iA6xVXdmqc4wNMAOuWwq8YYag+tvrAsFzDTAF1E2DVOhDGQqg3iMDXHKa44Ik5+h7T7c4Jzpwh0sfuKkq5Lp7iNjgumUyCR9bRgYeq63Sksqu7kBbKHa69hsvkQmgB+7Md+bCSADhghqAOAn//5n8eJEyfwzW9+E9ble9HedRtg+JyYANwBm+5dFrl1MqIO3AaqCm4dtQGjJe/WEe7dLBXATqBz91FoiaBQDdu0TdTrRQhOQKmAZcpf3BinaDG1U82rhgWAPYU1XLYn8Vh11/+/vTcPk6SsE/w/b0SedXRVN03TjXQjRwMiIB4tOGw5gAwwIII6eIzOOrr8RmeGdXZ2FGRZlgFHcYbhGVbXcfGYnd1hkDl0UFGX4xFQjuUQBBTolqu7gb6ru7qOrDwi3t8fcVREZmRmRGRmHdnfz/PUU5kR8b7xVlRm5Ce/3/egYmeaCp1HxTbZXyl0rX9dO5kL1dEjsUsqdB6e2FUNG9uOGECRROhCFTcOouiG0AFQMxh6xfnfjbxUJjuTozqo2kbtVFkxurEzoYu6xP42NfcWC8pd2n50idOuCTGqaa+DQgG1ZXmnrUmmMUmSdq1Dlat+yiuJ2MUaHFFPMzlrIXd6Nnmf2672pWtBrycbnm9aLQ1Wj7KTRnTqyntlk9RhlVmb2cj22Vk2bNjApz71qfQN6DKLJv3qMTk5ySc/+UleeeUV7NwKqqtOo+WSKoHUrJ1RifvW9VUaVuGMhE3Qty5OGna2mmF6quDPh6dMTb5YZXgg2Xx3adKwWfcfs2N2uCHV2opO+9dlDItZK8ve8kAsmWuoowup2L3lAV56bSWGqSkUE86aHUFDOjat0DVU7P6MVDsWuspkjjV3ZXyp87CzBhNH5puKnS90E90VumZ49wyzoqkVEhRcJP3oWqJ1aGJ3ZyWIGHLXgdABqPp0rRvhaSUsqdKuANWYr9NAB/9UUrdI+9L1Q+q1WXSuOphACL17VwDdrri2eNshr/Dkk0/yute9jq9//esMDyefG7BXLNg8dc0YHh7muuuuY2hoCKMy7q440Wb0p3uDNaoao5owRZpq+oH5TcPGRuNMcVJLIJteGjZiCbHZaobxicGQ0AFoS1EuZZmcSbbs2ES5wM5Sshf/nvIgT+9Zw46pZOW0VpRqWfZX4rfRw0YxU8uxtzxAuZZJLHQwF7GbqCTvVAwwUSmyecdB6IqBNWtSmulsSTGYi9qZQ9XuCR2gqoriNpP8CwX0i8mWQGogEKULYlRtRl4ss/qnioMeC9+25lvoPJzVHOIv57UUhQ4cobZzBrVleWrDzSap7VDoyhFi5s4NppoNmkibdk2SQvXmhjNNVLGIKsZ/Py/mKN1STr0qW89F51Lev5SOFjpvX1O05tw3zvLkk08yMDDAddddt6iEDhZhpM7jkUce4fLLL8eyLGrDR2ONvjFWOT9aF4jgtWURR+tSjYZNEbELjoYNplrtFpPZZvJW4hG0cSN2U9U8r02506RUMyilyWcsBnPJIlZJI3Y122CqmkdrRcXNq3nz7qXBUJqsYcceGTtRKbJ55wonVVoK3KwVGHmL4kDnEbvZ2SzGliJagTXY+do7xqxiaIs7gMOE0iqNOjLZ6wLcKN3dGYa2tv5fBaN2CyF0ypOzusnSvQ9KrcDKR+Vxez8wAk08wYws2yh0URgVuzFql2JghEcw7dr8oMaoXceDI+KSzYQjaG5fQ11q/n6er8ERizlKB+lGvUJ0pC5OvzmrYLTtDtFM5oI08wZj8leYUy9gmibXX389b3vb21pXtAAsWqkDuOOOO/jCF74AQG30BKzho9oXUq7YmXPPPVoJXtopTiJv3q3KFKCWMCI/H6NhAZRpY2TttjI3d3zyNCy0F7upap6t+5czWw1HyLKmxbJCihRIDLGLkrkgnYgdxEvHTlSKvLR9ZVjmgnRB7CrlDPYrA06fTaWx8p2JnaooijsMMoE/S5tQWQZWIZncVfYWWP8P8f42O2swfajT1y7tnHJpI3TKbi9nDYK32KN0MYXOP08wJdulfnTxCrgXZKbU27RrkFyTQUaBgST1gpdm/dV5GfEK8zaNSdrUa/1UJkkGQbRKvSbpOxflCmrmRTITvwQWz0jXKBbVQIl6zjnnHHbv3s1NN91EZt8v0WYee+Cw1oXqLTzwODwBZ12xRTpoAno8GtYG3NUDNAZWRUMm3kXw0rBAIrFrNnBif6XI9ulhPzpXT802mK7kEkfrvFQsECl2NdtgslKIlDkP03CuSVqxazWAoml0rh4NdtlkxspjZJL3swsJHYBWmGWNsg0n8pxQ7qKEDpxuBvm9jthUZodiyV1lMseae+NfW6NqM/hahdKqnPenJBKg1EKnIRMjEuZF8RRz0yQorZONuk84551RnR+hA0eqAayhHNndM6nTrolXc/COz2QgTZQuKdkWH5GBKFQoLdticuCmzNOI1/mabBjSp149oevGiFaPONG5Vu0xZl71he5Tn/rUohU6WORSB/C7v/u77N69m+985ztk9zxOVWWxi4e0LGNYGpRqDMM2ETxwJS/pl2gbzIpTcVyxUxaYrlf0fDSs5bapXuwCIuc/nzsbYPRc7GZrGXaWhv1o3f5KkVcnRyJlzj+XVpRrJtAdsWsXnaun22IXW+aCaNBVA6sGJZ2LFbWrlDNY24ooK2LiYK0wKrh3PSO22DUTutAxdXIHLaJ3VaNt2rVle7wBcDHehh0JXUTatW0527kfeR9yqv5GE1XdfAidN9K0gw/N6kAGvWoQNOR2JBsEFdmPLg5aQ8b0RapVGtQnTdoV4stWUPAyYXFKFVFsQ6q0K8n60um8c69K1ZeugxUkui5zHdSlTYWa3U5+4gks4P3vfz8f/vCHO29YD1n0UqeU4tJLL2V8fJx77rmH7J5HqKw8BV1Y1bxQHCuv269sZ5t3w487m/x8DZpQttOmRMU04WlOgjLXrM02iVM+acTOGzgxU81Rscym0bmGc3VJ7AYylbbRuSi6JXaT5Ty79w1hzaR8C7pRu1mVaxmxK89m0a8WybZbBSJh1E7ZtBS60LGu3EFY8DyMCqx4ufO+ff6qLC2idvMtdM7M9uET1j9vkLwkdCB0ncgcgG0qMKA2YDq3mNXD8eWuWksepYNwGVdqYsldGqFrFaVrgspmwagbyFN3TIPkpVmqLM0UJi2idJ7AhbaZCjuT7j6XKkqn3AhwlzqEdRKdU9rpxkV5JwMTj1O1LM466ywuvfRS1DzMu9cJi7pPXZBarcZVV13FAw88gFYm1ZWnogsrmxeo71uXAG0QHhdst5a8xTpoQtUURlVhZzU6FxC7dhi4Ay2SfVIkHThRswxKZedGk0kw7x2QeuBEsHwnaHed16RyV6mZTJfy2LbCqppoW6Fj9F9sigKVsSPTsZ7QJVmv1amzdV+7OFG62KeyITupKUxYFHYl+1/aWcNPv0ZRL3eLQejilGm6K0pM0gyM6KLQRbUnM2O1FrtqLd1KFe0+qmpWtNh1Y3BEDKKELpJgGnjAFdL98aOcnQyOiJI3aB7Bs/Pp5r9LNEBirjeIvx5xWqqDRsfROa9NtrWH4f2PUS6XGRsb45prriGTWfRxsKUjdQCVSoUrr7yShx9+2BG7g38DnV/R9PhU89bh3vzrXssNN8E60VsMYqdqCqMS7GCq/MibndfYSQZOpBC7uAMnapbBbCWLbStsd7p+09Q9FztbK6zAp7qptB95S0vcARSezGndOOGzXetQ7AAUmAXLF7vUQufXp7GzNETtuil04ETxcvs1ZlUnTr+2kzpwPii89/JSELpWbYwSMW143TNivo57KXT+OSBTsqKjdmmFDuJF9tzpT3y5S5t2bTY4ohnKQCUtA+hlzhRASVLRupC8X5w96HzIJEm/2hkD0kx9EneAREDm/HN2IHW1opGsz2ozFFAZZ7j0c0qlEqeeeipf+MIXyGaT/38XgiUldQDlcpkrrriCxx57DK0yVA9+R3Ox6yRaZ9J2OpT6m6M2HKlL8uGRVuzsvMau6yvnS1xkYxeH2HnROctqvEi9FDtP6OzAP8dQuudi10rmQu3rktiprI2uGpjj2fRCF6pzTu7srO6u0NmQmdYYNScKlZu2E0XrYkmdAeVlyk0XJ+wLl1boSNenKNb0S/XHux+eRq3dHA2QnayFJtNNQ1uhqztnfdSuYYLhuCT9mKpZoDV6cir5uXoZpQugBwp+Cjk2hpH4y4IuZlPNS9ezKF2EzAHojJH4PQCuzOH2f0vxXq1vF5U9jJR/wfT0NG9961v50pe+RD4/P3MOdoMlJ3UAs7OzXHbZZfziF78AZVI96BTs4sHRB/dY7OrPpY3kN3QrD7WEI8Z1FmqF5NGDhRI7LzqntYoUOo9eiF2U0Hl0S+zq07FxZS5Uh03n6VhboUomZklhlrvY98Mdwpmdnhvo03GVbpTOI2m0Lo7U2SbMLneup1HTseROuSlNpUn3IdGDKF09QaFrf7AmO2VjVtz51RSp5C6R0PnndqJ2ytZkX93Xm7Rrq3KVKnp6Jn6ZeRI6mIvSJSqTdO47wB5KEdnrdpQu2A2iSbVponS1Yt30J2mlzq1ClXcxWHqC2dlZTj75ZP7yL/+SYoIJpxcDS1LqAEqlEldeeSWPPfYYYFBbvgFdOMR5UdW9NrqZhm2Le3NOJHaGI3ZWgveeF61LUgZAZzVWMeGN1dQp5rybE7tW0bnI03VJ7ILp1iih8zCUdsb8dkHuStUs+6aKiWSuntRRO1uhZg2UpZwO9DUnctsNuVMalJshMiwnytaJ3AWjdHPb4kfrdEZRXp7FavNB4M0TVxkKRGhbyF0n0bm5CMTiFTp/s1c85n0qldD5J3OueWaySnb7voRlOxlE4patWWDb8eRuvtKu8xWlK2TQKQY7dC1K1yQqF1k2gdQFo3P+qdKsARtol5rdQXHmCSqVCm9/+9v5i7/4CwqF5CsSLTRLVurAScVec8013H///YDCGn0rdvFQgLDczWe0zj3fohW7eYrWgfO5Y+QsslkrttB5dCp2raJzzegkalexTPZNF7Ftg1rVeaHpNJ24XBKLXVDogmgwKp1F7ZyIFQ2p/U7krj5K52+PKXZxonT+sYFoXZB6uetU6NKO+JtvoQsdEiNq16nQKWvummama8nErpMoXT3t5K7P0q6wQFG6GFG5hrIxU69RMueRpt+r/3D2NXKTT2BZFmNjY1x99dXkcp0vzbgQLGmpA2dU7Be/+EXuvvtuQGEtOwk9cHjoxaQNhZVLF62bS6kmK5YmDds3YqfV3Bx5gMpbZHLJZnI3DE02m3yyUE/scplaIqHzz5tC7CqWyd6pAV/mYE7oOhG72OnYZkLnV5Q+atdM6IJ4A4biCl5UlC68v73YdUPqPIyaRllQ3GsfUELnH9oiatdNofPIzNScPn7t5K6bQhckSu76MO06n1E6K2/6/+c0t7x2UbpWMucR+71bV4Wa2Ux26mls2+ass87iv/yX/7IkRrk2Y8lLHYBlWdxwww3cfvvtzvOhY9GDx/hvUmdqA4WVTT6QAeYxDQvYuRT96xaT2HlCF3xVqXRil8nYmGaCvnxKk3FlLGPaqVOpccWuYplMzBSxbRUSOo9uiB20iNrZClU23A/PGOdIGLWLI3T1tBO8dkI3d1xrseum1IEzYXlxt/OHJupLt8SFLlSsLmrXC6EL0jJq1420azs8uatUEgvdYk+7Qu+jdFZA/rShULX0XVeaSV0cmfNo+56tr0JrjKmNGNObADj//PP5zGc+g5lCoBcTfSF1AFprvvGNb3DzzTcDYBfXYS87CdTci8XKOhE7n7g31pTRuvlKw4Ingws4cCIYnYtqRtYmW0w+s3pcsfOEzpt/zlDOtk7ErlU/u6joXBRBoetq1K5ddK5pRfGidmmErp76uR0doYtOu0a2oYnYxe1PB857tjKssNpMNWRYmsJ4YOoWO4bcLUahA9CawniKNU6Za5edNXoqdB6RUbv5ELpgkSQDKVzmLe3K4orS1Yuch7J1uqljvPPWvZeTyJzfhjbv1RDaxtj/JEZpKwAf+9jH+MQnPrHoJxaOQ99Incdtt93GjTfeiG3b2LlV2KNvA8MJpWqFm4aN+Me1u9H2YxoWOhc77QiCY6+tz5MmWgdOKtYwdFO5qxc6v1yHYufU0Ri1iyt0QboatSub6YQu1KDWchccGNEtlA25/fGlzinTKHbdjtJBo9QF2xwpd4tY6NJE6ZyykJ2sOG/ljEFleYo+RQmELogftZtvoZstJ14Tdj7TrvM6OKJJlK6ZyAXpJErn9afzRA6SyZzfhqjXXFQ1do3TjtjDww8/jGEY/Of//J95z3vek/h8i5W+kzqA+++/n2uuuYZyuYzOjGAtPwVMZxRLS7HzaHLjnc807GIfEatqCmUp7CGrtcyFCqUXO4iO2jUTOg9P7ICO07GWVi3Tre3oVOzsmoL9Wefa2ykix5GNapS7bkTpolA25CbBqOhEc93Vi918St1cG8LHpl0pYrELnaq4702lsAayycQupdCB85rLb9nrPK6muD/Mk9D1a9oV5qJ0Vl20rt1nV6dRusqIG3RJIXKhdgRfd82qskocv3wzmzZtIp/P8+d//uecdtppHZ13sdGXUgfwzDPP8LnPfY59+/ahjQLW8g2QXQ5EpGGjqNvtLTk0b2lYWJQDJ4yKgTmjnPVrbUVtyMYaTnBj7JLYBfvPxVnyq9Oo3Wwly77xQbAV2YH0Iay06Vi7pmBfLrRiCIbujtiBL3dOilR1X+i0s1asqjnCmJtMOBGwK3b5vVXKo1msfLw/vFtSF2pL8LMjzks/YXQOFljoPJTCKmZB0V7uOhS63J4SquRGY207udgl/BhLJXT0Z9rVKmackauuVCX9nEobpasNehLZ+U1MK3cC7lZNr+xlFb9ifHyckZER/vIv/5Ljjz++43MvNvpW6gBeffVVrrjiCl5++WXAwBo5GV08LF60rp7AobZ5YA2c8EQOnA8xoxoQE5N5F7ts1iKfrSVevzWt2M2Uc+zfPYiaNdGGhrzdkdhBsqhdpNB5KO1/2egUZUF20sBw/7QOM8Vz9QaEznueNFoHjtiZVSgPK/IxpbAXUheUreB6rJGCt5iFTkNmquK8hOqFLki7qF03hc7Ddr+wxZG7+epHVyyGRwjX2t/z0gpdL9OuVjE8stPKGckHirikidJ5MucPWuygH5v/3vKkrgmq9ArF0i+pVCocccQRXHfddRx66KGpz7uY6WupA5ienubzn/88Dz74IAD24NHYQ2/Ayhnto3VNsDOObPnocHqmKfM4cKJTsWslcg3nmkexs6om9kwGY6DG6Oh0orKQXOyCQuehDe32KdQ9jdp56VZsFS10QTqUO1/ogp+tgVN2InjKhmzdak1pxM5Z99hJ05glHUvsei11oc31grfIhS4yOteMZlG7XghdkHZRu/nqR1csNsqZXXfNIyRvvvrRQXTatV7gwB3VHCBN/zuPuFE6T+SA0ProaZbTg7DMeURKndYYU89iTD8PwGmnncZVV13FwMBAqvMuBfpe6sCZ8uRb3/rW3MjY/CFYo2/BKuSSRes8lCNZwbIqeBlbSN58DZzwzpVE7Iya06/KzmonnN1C5BrOlVLsyNgoU7eVO6tqYk9nwXYihzqjUSOVjsQOWvezixK6IL2K2tk1BZNZsGLIXD0pUrKRQtdwkNvWpF3J6qJ09edNkobVpjOS1avXqDjzy7WSu/mUutAhliY7PbcsV20g3kjdngtd3OhcM4JRuw6EDtx+dK9MtD+wWdRuvvrRAWp4qP1BQclTCp3N9LwfnSdydtZER3yW1QtcPdpUPY3SBaNykedP+FkYJXMeDVJnVxg7aoKHHnoIgI9+9KNccsklGCkGuSwlDgip87j77rv50pe+RKVSQZsD1JZvwBoc7ZrYhXZHXVaNt4TmohA7owZmKZhKcqah0Mr5AE06WXMqsYO2UTuramJPZjEq4TdjJ2IHraN27YTOb4PhROwwuxO1s2oG7G2Sao1LgqhdLKELFZh72E7wWgmdtz9JtC4odcE6WkXtFkzqbE3em1ZEuVOEBKgXvfkSukTRuWa4YlcdznYkdG2jdPUEo3bzKXRRUbp258pmoN3C9hFYI8n62thulM0qpJtbrRdRumZRuYZzJ0i9tpK5uYOc9zEA1X2szf2abdu2kcvluOyyyzj77LNjnWupc0BJHcDGjRu56qqr2L59O2BQXX4S1eWHp/u20kbsIovURfTq62v5LS2l2Ck3clhfTlmNc4n5TetA7KrDtjMqNlEjo8WumdD558to1GiF0ZHuiN1MOcfkvgF0TbUVulA7OpQ7yzKwp7LOjanU4XQlHjHkzqgqcntTniuiWFD0otKuUU2MI3Ze6jXqvdYqarcopC7ygDnR0wZUh2K+1rQbAdTEF7pOo3P1eCsHFJxVGCojyW5IqYTOwxUlNZ2wQ2a5gq4l/9vnVeiGC9i55HJm58xU3S66GaWLK3Kh88cIbMSSuQBG1UaVtlCcfZZKpcKhhx7KtddeyzHHHBOvgj7ggJM6gP379/PFL37R72dnDa6lvOpN/nx2iUghdn5RW4dG0sVJbWlDoRM2U9lOmsTKq3BfwHbnWsCIXX26teX5MhpdsDDyVkfp2FIly9SegUQy19CWhCnZoMwpL92tnVGosVeKaEcTuUscpYt1Lve3BqMKZjle89qJXVSULqqeYNROG1AZijHSnYRSB+0/DLXGrGiykzE60xtQXhFvmgxla4q7Kn6Epn3lXYrOeVi6IQthD+RiiZ3SkB2fRWmdSuh0PuOMPNUaVXWuayy5m0ehA9CF5FOKzLfQQXeidO3Sqy3P30Lqksqc04gamb1P+RMK/8Zv/AZXXnklw8PDidu2lDkgpQ7Atm1uueUWvvnNbzoTFWeXUV69AZ1L/gKws6QedFEvdnFJ1XFdMa9ilzZih6GhbLSVuYZzdhC1K5VzlHYNYJSd/nqdECdqFylzDRX1Tu56InR1pzLLzVOvDce36F/XKkoXfV4NNmRndKwoHfRA6ogRrXNJLHXby/EXXLchsz/GgrxxiBA6/zRtxM4TOmMmhuVH4AtdaGM8uUs90jWN0KWJ0ilFdUXyjvsdCV0HUTqroPwsUxqZ89sQIXWpZA6gup/jBjfz4osvYhgGl1xyCb/7u7/b9/3nojhgpc7jiSee4JprrmF8fBytTGqjJ1Bd/vpkL/gOonUwv2JnZxVW0ilS5kvs3LVMlcaZJy1NSiGF2JXKOUo7BzBn3HRYho7FDhrlzhc5aC1zDRW58wJ2Q+xw+7rNKIx0n6+xMKpuat9uPmiovk3NonVxonRR9ZllJyVbKyxApI4eS11MnImkbYxSh8uDtBA6j2Zi1xOhCx3gyF2k2KWI0s2r0JE+Spe6H10KoQuO7K4s63xt1GB/utDnWNJbnNYY0y8zMPMclUqF5cuXc/XVV/OWt7yl4zYuVQ54qQPYvXs3X/ziF3nssccAsAurqY2ejM7l264Z6bNUxE45bdQmiytiZyu3L1mgrEHPxa5e6OrP3TW5U05fudT1dSlqpyzIlJQzCXCwKV28C/hC550zbrQuQuySROka6rMhP2E7r3ejtdwtpNShwCoYVAfjfVhmZmxy++KHWD2xA5LLndt/rp3QedjFbKifXc+Fzj8wImqXNu0aZ6Rr/emXSD86iJd2VfWjWt3ntUGzo+ic3wZDpY/KeVgV3nX0FD/72c8AOOWUU7jiiitYsWJFx+1byojUudi2zb/8y79w0003UavV0EYee+QtWAOrAEdO2gmeNpxU7KIXO1g8qVgvOmcTOXlrJ2KnCxZGwWoqd82ELlxP52KnaorMtELV3OliDLAGUi7ZkFLulAWZWSdtEjm9iPcndng3qBc6IHa0zmtHUOzSROn8umzI73NPrNz3r4qWuwWVOnobrfPLJY3axYjONcMeyFFdlpsfoQsVmpM7du5JfM5+HhgBraN0IZFrMlVJZTRFv/MARtWVw4KRXuYANbuLNWxi9+7dZLNZPvnJT/I7v/M7B2S6tR6Rujo2bdrEtddey5YtWwCwi0ehh45Dm2Zozp9mkidi16Rcvdi1kbn6dmpFV6N2cYTOr6ODqJ0ndKFVOBRYeZ1e7NxK4spdMDrXtr0dRO+8fnSR+xIETDyxM8sdROk0ZKadwQrhHdFydyBIHcQUu4TRuSi0UtRGC2R3tRn+3Kx8GqGrwx+MoTWM72t//BIYGAHdTbvGETmPTqJ0nsx59/rqUFortcjsfQaz9BJaa9atW8d/+2//7YAa3doOkboIZmdn+R//43/w/e9/HwBtDmEvOxmyc2FdbcxN7FgveB0NnNA6dlSjniUjdgN2Q6o1VvkupWOTCF3U+ePKXZTQ+XUpOo/auRW1krskQtdQNqHgRUbpPBJE67xzK0t38OUoEKWLPCAsd72QOrQmM6vJTHd3BCwkT8EGURpU1cIoR7woOojOBbEHctgZA8MddWtMxZfQToWufloof7RtC7lbCgMjoPO0a7O0ahySRuk8kYPwF3erkHCJTq++mT0cMbiZrVud0a0XXHABl156KcViwk7ifY5IXQseeOABrr/+esbHxwGwB45GDx4LKvzmDwoeOFJXHUj3woX00TqYZ7EzcPvoxTyN9iKZzh9nFVJMINpJOrZoOXJSMRILXbiu9mLXSuhCdfVQ7joRunoaXo91z1sKnUfCNKxZ0tCmL1zT8u2kzj/QkTtlQ3amy1JH7/rVdRKtgwix60J0Dub61IUmW9ZgVGqxxK7bQhckNJVKQPDme2CEPVTAyvc+7WrOum9IpbDyhjN3U8J1Wj2SROnqo3L1JInSGTUN2sKY2kim9CK2bbNy5Uouu+wyTj311Nj1HEiI1LVh//79fPnLX+bOO+8EvKjdmyG7vGkZbTgpI9t931o5Ra2YfLTRfIqdNhypSyJ23rlaRe38kazB5zjXyCroeRU7bDDdlRrsjqctoWnULq7QherrRkrWrchLaWcnja4IXRTe/9GbYNiOGWSKPWjCdqY40cp5TSYRu6ap13ZlZueOt9t95nZb6pi/FKxfhwZsjTWQIb89XZo0iD2Qa1g5wyeG2DnLavVG6OpRWqNmys6gioyZWCQXo9D5EufirfZh583UAQaPdlG6ZlG5KOJInbfklyrv5aiRrbz88ssAnHPOOXz6058+4OaeS4JIXUx+9rOfccMNN8xF7YpHoYeOBdX6xe5Ij8Kqu1fHEb2lLHZBmWv2N3Qidon72dnOurb+Qut+lLG7cpdG6Py6uhC1MyqK/LiBs+KAe42Td/mJf74aFPZoqnEHM8SI1jlTrmgMb0UoLxocM2oXO0pXd04vUqeV8jtxN5W7BZY6gOy0RXYi5VQlSlEdyjjvgZwiu98ivyO92LUUOg9X7KAxHTufQgeu1E2VUGX3+tXPmdZC8uZb6CDcj65e3jyaLdlWG+xscEOzKF0SkQvSSup8mavVUNPPkSm/jG3brFixgj/7sz9jbGws/okOUETqEjAxMcF//+//nbvvvhsAbRSxh0+C/CEty0UJVlzRWwqpWO9c2iD0bTJOuzsSO2JG7YJCF8SX0W5MW+LIhFlOJ3ShulLKnVFRFHYbZAJzrWqFvwJJtwXPsCA3oTEqzhcBK240rY3YeVG6euJG7TqVurnzzckd1AneIpC6VNG6gMxZ+bk3jtI6tdjFErogdVG7BRe6KKJWOzCMeRE6pcEMSK81mAtN1Jtkvd1uR+nSilyQeqnzRA7c+0J5B4cWXmbHjh0AnHXWWfzJn/wJIyMj6U54gCFSl4KHHnqIv/mbv3HXjwU7fyh66AQwC03LxFoCLEL0wEnlWs2rbl1nDyN2qgZm3WT1dh5qSSc3dkcMa7PLUTvbER2n032Lst2I2gXSnsoGo9bZjdStMpbcGRVFbq+BYRESuqj6dKY7cucJnff/dwbBJPibm4hdfZSunjhil1TqlAazokMfLo3nDQuesjVWLt58X4tC6prIXOgQrclN1MjtjDdxd2T/ubi4YqfK1uITuigMhT06hE6YplVao8pVdC5ZtEzNVp1zDuSwE5b16IbQeVG6dv3kkuBJnR+V896q1ixq6pcY5dcAWL16NX/2Z3/GKaec0vlJDyBE6lJSKpX4u7/7O/71X/8Vy7LQKoMefAO6+Pqm3+JTRc5wZK9ZnzUr2174uiF2UQJnWLqhj5Q2nVUr7Fw6ueta1K5ZdK4ZnUTttCOO/uAB7dyo5kPuoqJzcerrJHpXL3RePYmidRApds2idEFapWPT9qdLNEgCJ2Lhf2AqmgpeEqlLOlgCYqRgY8hc6PCYEbvE0bl6NJjTZX8N0aTSA/ModIC9fAidjy/c/jlLVVQ1RcfWDoUOOku72u7r2Uu7dkPmvPq0+/L23/tao0ovs4yXmJqawjRNLr74Yj7+8Y/LyNYUiNR1yKZNm/jrv/5rnnvuOQB0ZgR7+MTQ9CdB0opdM1oJXxArq7DyCes2nPrB+VaVpNO9NqE2qBZG7EgodB5ponb1Qhfa1wO5y2lXyjS5vc48f9nkS92G6kwieFFC59eVQuyCr6l2UbqG80VE7bqVem2HEZRGFTGXnit6iaSOLkbrEspcqGiLiF1H0TnwZQ7caJTbVi+lGVfuloLQARj7m69J27xQ50KXJkpnB76YaFNF39PStseVQ23UdcupjnPcyh38+te/BuDYY4/ls5/9rMw71wEidV3Asixuu+02vvnNbzI97dwI7cJa9OAbIlOy3Ra7OGgDakUjsdjNVUDiN3knYpc2HWtUFdn9zgWuDaZ8aSeRO28qkZbHdE/uvFGyGJDdr8jt76i6hrpbCV4rofPrSJmGTSp0wTYHxW5BpC6yUkf0lA1GZa7uYJ+kKDqWug5kLlRvhNh1LTo320SsXLlrJ3ZLRehSRenmWegaRC5Ih2YQHFzR0NfamkVNP4Mx+woAQ0ND/If/8B+46KKLMM3O15Y9kBGp6yLj4+N8/etf50c/+pGzQWWwB49BF48EFb4ZLpTY2RmFnSJq51TAvIkduGJR1I7ExMCoKPJ7FZmS06m9NtCB2IHzwWzSfE66VlG6yOPnUg5JBc+L0nltAvylv1SNrsqddz4d+FzxJLewq72UpEnDGrX2addWbfWi1comUeoVeiR19fhTwLS7forqcLIPtcyMPdd5vkOZC+KlYrP7y51F56C90PknbR61Sypz4Ard9CxqNvlEzfbIELo4j0IHYChqo+kmJoZ4QtdS5PwdKc/fROTmNtoYMy8xZL/EzIzTZ+T888/nD/7gD1i+fHm6kwohROp6wDPPPMONN944l5I1h7CH3gi5VaH+dgshdtBh1C6l2Nk5hZ3tTT87o6LITiqMGqHF4G3TEQw703nUzkt5zjUsodDVEzN6FyVzDU301nWFngie1w6UE6lre2xCsVMW5PanX0ll7sSu0LW4VpHnn0epa98Y94Mx6b1BExoh2Q2U1uT21TBna+nrjkq3xjp5WO5SC13aCN0CCV0v+tHZdf09m4pc6KBk5w2mV6Pr06jKDo5Ytt1fgvO4447jP/2n/8Txxx+f7GRCS0TqeoRt2/z4xz/mpptuYt++fc627Er00PGQHfWPW7JiF/wdt1gP0rHB6FwzuhW18+XOpDOhCxIRvfNFzj1vIkHpUfTOe52aldbpV//4BGlYVYPibjvUhzN5A8Gsaj9ipU0V67rFGfkaRc+kDtzXWvLroM3uiJ0ncwDmzNw8bonrjhuda9oQFZruJPHkwgeY0HlRulQSFyoQ83ztonIe1X1sOHySJ554AoCRkRE++clPct5552F0uL6v0IhIXY+ZnJzk5ptv5jvf+Q6VipMCsAuHYQ8dB+aAs3TWUhQ7WNB0bLPoXDNs05luxTY7kztlO/32tAm1YpffOtqZMDgz46THq0MdtLOL0TsvSufVm53qXrTOi9JlZvXcXIcpxE7ZGrMcbpc2VFspThOlg8UpdUDspZwiTxslc0EMLxoTL9LTFaELvhZcqWsnd0sx5dpxhG4466ddU38x8mjxWo0tcgDWDMbUc36/uVwux8UXX8xHPvIRhoaGOmuj0BSRunli+/btfOMb3+Cuu+5ytxjYA0diD64HI+um4tIvYJ4WJwrmrFO7VNKxKGc+NjPFKkmdyp1RU2RmgtHD7smds7SXIjPrtM/KO/3aOpE7r9600bug0DkbEkTr2ohdUOiC50sjdlFSN9eO5nLXb1KXNlrnp1qjZK6eVlG7tOlWvyGuzEFY6OqOgUa582TOOfeBJXTd6kcZ9TpNJHIAdgVj+nkKtS1+IOPss8/mkksuYfXq1d1pp9AUkbp55rnnnuNrX/uaH4rWKos9eDQUj8ComQ1vKmfutN6L3lJIxyrLmSvPiZZp54Ml5b0sTUpWWQpzNrxwfTflzqhCYU/4f90LuYP20Ts/ehzx0osbrYPWaVhVg4FdjUKVWOzqUq9ND4uQu36TOkgmdt4oV3ST6FwzosSuF9G5NseHnqaMzsHSFTqA8sq0qZYI3NdpYpED0DXUzEuMsJWpKWeewze96U388R//Mccdd1z32ii0RKRuAdBa89BDD/E//+f/9Bcq1kYOPXAMylyHYQVGJxnhG3QvJW+h0rGtonaeyMGczIXKe9cmhdwlidpFCV24HZ3JXTBK16yt3ZI773ye4EFY8hqic/VoMMs6VqS0abTOhvxEOEoXKpdA7FpF6aLbNCd3i1XqnFVSeid2qWUuiCd2nUbnILnQ1ZW1BnMY5RpojblzIlHxpSx03YzSBT9XYoscgLZQpc2szLzK3r17ATjiiCO45JJL+Hf/7t+hOngdC8kRqVtALMvi7rvv5n/9r//Fa685S6Noowj59SjjMJRqfGfVS56/vUuytxBiB41Ru/qoXNvyHUbtWsldO6ELtyO53LUTuvq2dlPuQm2Ycua9i3NDTxStqxO7qLRrZDlfblrIXcwoXXS7lCOEMV5f9fRU6qDjaB1Ei11XZK4OY7baucxBR0LnrauqtCYzGYjWtZG8eRU6QzF99HLQUNw2vbBCpyEzE7ihKSiPJmyPtlGzW1lT2MbOnTsBeN3rXsfHP/5x3vWud8l8cwuESN0ioFar8aMf/Yj//b//N7t27QJAGwOo7HrIvC5S7uqJkj2roKjlVdsPz6i6Ou5nF/wdt1gGasW5D/44Mhcq30HUDqLlLonQhdsSX+6i0q5x2ur9b7oheIYFuX0Ks0S86TQSROsgLHbN0q5Ny7aI2iWN0oXKBkYeOydypKBtuRpt55trYAGkDubErusyZyhqg44MGWWL7M7J5HV0Ep1zyweFLvKQeskL7qtaqZYngyZCZxpMHzXatIw2oLTCZHB7jdy+dGlij1RCVydyZtl5rBVUl2WpFWPWp21UaStrh3f5wYiDDz6Yj33sY5x33nlkMp3JqtAZInWLiHK5zPe+9z1uvvlmfxoUVBFyR0PmMJRK9s3HzioqQwZWPvqmaVRbR0t6HrVzpwepP6dfNu1puyR3nkwkFbpwWxy5g2jBSxKla9XetNE7w4LshHJXdHDb2S796pFC7HTGGeCS+ItGE7HrqtSFTthc8BJH6dz6EtEFqVNaoyzn2mVKVtcicxiK6lAWqzAXHctO1cDS8eWuC+lWoKXQRRbVGlV1/unK0rEk3kMrRWmNs0JQ1BdObUDpoBbt0cy/0DURudAhCkqHxLjJawtV2sKhAzvZsWMH4ExP8nu/93tceOGF5PNd7NsnpEakbhEyMzPD9773Pf7pn/6J8fFxZ6MqQPYoyK5LJHd2VlErKKy8ojIUvoEalhMlaoUnWUaN5HLnrhQQFJsQKkaqb4HkThuuKNWvVdgBUdG7NFG6ZiSN3nnROU/m/HbGlTqSpWGVdj4M00pyg9h1kHr12hNrwuM6wVvsUufJHLgRRVtjVm2MUoq+X0Hc6JxW+EJXf97sRLW12HU53ZqoqCt0qV4vCmYOLVBelj7d2Q2hgzYDI+rTqkSLXKhIO6nTNdTMZlblt7Nnzx4ADjroID784Q9zwQUXUCymmJ9K6BkidYuYcrnMD37wA7797W/7aVlUDrJHQvZwlIrfF8TOKsojRoPYxcGwnA9vbZBsbU4NhuWMUrVyTcQuQV2pi6bob2dnwPKW7XXP3W25AyeV10mUrhmtBC8qOtfQxi5H63yh814/KT022M8OReooHeCvOZusAWCWUyx9kULqkgyWCIocRKSHbU12f0qhaCNz9e1oKnbzkG5t1a5+ELqGKF0KiQs1rVXq1a5iTr7EaH4bExNOv8RVq1bxkY98hPPOO08ic4sUkbolQKVS4cc//jH/+I//yPbt292tGciug+wRKCPeN6VOxA68QQuk6liuDWeGf212IHedil1MUfGjdPWfHYHzd0Xw3PR0sK6Ol8qKICh44EhdM5kL0i2xaxA6f0eMulu0TWl6H6VrOPE8SR20jda1FbkgaaJ1CWSuvl3Z/c5I1OzOye5E5wayzu+lKHQ7auT2dknocgaZUnBOpWQS19C8iCidWZqB8ksMZbYzPT0NwKGHHspHP/pRzjnnHLLZTr6dC71GpG4JUavVuOuuu/j2t7/tT4UCCjKHQvZIlDnStg47q5x+cjlSyZ2ynaidspew3EFk5E4bYOWI7OvXrA2p5a7JYJKeCZ52U+1xUt5ekQRp2FZipzRkSk0uVAdip2wg5e2rI6mbjSjY7u/oktQlErl6kohdXb+5NHhRu8y+2QWNzkFK+V8MQqdgam2RoVdmnf9FhxLX0ERX6syyhtoElF8gY2/HspxzrFu3jt/7vd/jXe96lwyAWCKI1C1BbNvm4Ycf5tZbb/UnMQbAXOn0uzNXtp0bqBtRu07lrqOUbIev2vrIXdPoXMx2pEnjtfsb6utMKyFev0mjpv3pQeL+nZ32r2sapQsdFK/+cMPqrk/C21jXpS7yJHNlWsqXUk2XCox6XSUeeRukndiljM7Vo7QmM22htMacdl6AqppARhY6OucOiCiPzLPQKZhaF8i8aMiUbQq7Oo/0hZqnYGZNHrQmM7kTNfsCWLv9/SeffDIf+tCHOPXUU2V91iWGSN0SZ+PGjdx6663ce++9/rcrjGHIHuFOh9L8htip2MHSTsl6bcBwJj5OLHQR7Ygld02idO2ILXk6PACmfrF6b8qaOHQSrYsldB4JX4KRf3uCW1mq/nSQTOoCGO1Wu0ggdR0TJXZdljkAczZQv619GW0rdx1E57w2dCp0qWUOkgldvcQBpYMMv57h12pdETpf4vwNFpZ6jTcU9vHSSy8BYJomp59+Oh/84AdlBYgljEhdn7Bt2zb+9V//ldtvv51SyVnhXhtZdGEdButQxmBkuU7TsbAIUrIdvIKVGzFz5uUDq9OBXHHkLkaULg71qVojcO+vF7nQ6XsYrfPELjObQOg8Epyj9fVtfXFTR+ncc/dC6uYdWzuRWzct2qnMwZzQhWQu4rxN5a5L0TnoIN3aS6GLEDgISFz94bZm5VOl9E2pE7nyqIGqTJPd+xIrazvZv99ZQqZYLHLBBRfwO7/zO7I2ax8gUtdnTE5Ocvvtt3Pbbbexbds2f7tVOARr6Ah0YRVmFbLT4Q+mhY7awfymZJ1O9u5j2zs/WPnuyp13robtXX7XOYMf4leaJFoH6dKw2QTtmSsc45C4TtXk1taJ1BmVdFOoLCqpcyN1AHbGoFbsjswBrYWurg3BNLKq2QsXnYPOhU7D4E5ncufcvgpTa6PWPGwucFH1JY3SNUTjcEQOrTGnd5Ld+yLZ6Z14H/mrV6/mve99L+9+97sZHh6OfR5hcSNS16dYlsUjjzzCd7/7XR5++GF/u50dpDZyBDq/Dow5ezKrziSuiyJqlwlP+5G8khbti5C5xjZ0Ue4C7fGigt0WOkghdT2K1jkRQydCZ1ZSTjnS6jztonSRZer6+c1z6hUWidQFZM6LaHlRsdpAushYYplr0i5la+ycmThK143oXGl1Aa1S9J/TMLSthlYwuS5Dfp/3Rk8gb03qjSN0TSXOw6qQ3beZI7P7ePXVV/3NGzZs4L3vfS/veMc7ZCmvPkSk7gBg69at3Hbbbfz4xz9mamoKAK1MassOpTp6OHbxIIya8j+A7ayTDs3OaKycohqduW3JYpO7ODLX2Ibuyp2qOREsbc6tcdstkkoddD9a563T66dcdZfFLo3Qhco7hVOvELIUpS4gchCQuSBKUV6ei11l12TObV/9/9TOhUWjmeTNS3TOFbdm5PfMMnnEIDMHd2kwgYahbRbFndHzA0WlVMMHaIzSONl9mxma3UG57NQzNDTEb//2b3PRRRexdu3a7rRVWJSI1B1AlEol7rrrLr773e/y4osv+tvt3BDV0cOpjaxFZ5xRX86kuHouuhRBHOHrRko2rdzV9zNLPeFtl+TOqEBhj/ZH2gJdE7xUUpcwWueVibqODULnF+ie2HVrihfbdOTQTLoyxFKSuqioXDOUwiqYsdKwsfrNxWyfU1+MQ3ON7bKzjsyoWnqpU5ZNZUWh7XH5XU0mdTSMngtd22ici6rNkpnYyvrCJFu2bPG3H3300bz3ve/lrLPOkpUfDhBE6g5AtNY888wz3H777fzkJz+ZG1iBwhpeTXX0cKzBQ0A5i6/nJ20y040fDDqjqA40v6HZWSeN22nUDtrLXYPA4Y6+dAcMaOVMYaLjzEHXtA3p5U5ZkNuvMetWj+iG4CnbEaeo9Sjb0anYeTIHLVYb6UTscM/VaZTOxc6A7Q4O8F4bsQWvA6lz+vH1+FYbJyrXjDZi181Uq1NfB1XkTHQmYPwJpc6f583u4FtCj4SusKtMafWcxGkVLXHOThtzaifZfZvJl3b6sx8UCgXOOOMM3v3ud3PCCSe0nd5K6C9E6g5wZmZm+MlPfsIPf/hDfvWrX/nb7UyR2shaqiNrwRwmM6sxqzpS7ppRL33Kdtb9tDPOerRp0Mr5YHbqm9seFLjW5bsnd0BswfOidO3rdR8nELw0Ubr686ZJwzaNzkUWSi92vpinncDWa4JyosutztFS8DqQOuhRtK4TkavH68+m8OWu16nWRMXdiF1I6BJilK1k8+U1VGAw+foBUKpzodNQ3DP3/zIs3VriXFRliuy+LRyqxtm9e25uueOPP57zzz+fM888k8HBFH1mhL5ApE7wefHFF/nhD3/IHXfc4Q93B7AKo9RG1lIbOIxMLZdY7urRpnIjXunlzv9w0IQWW4/dhi7IHcSL3jWL0rWv133cRvA6lroU0TpIMWVJCrFzJMt5rWlD+W1NQyupC9JM8NKOfPXLd0Pq6iQOOhS5CLShKK/Mkdvn/HPnM9UaWbwLMqcqttsHr0Oh6yQ6VydxSkNuogZKMbvcpNpicJqqlcnsf4XMxCuYs3v97SMjI5xzzjmcf/75HHHEEenaJfQVInVCA5VKhZ/97GfccccdPProo35YX6OwBldRG15LRq8iM9PZN9WuyZ0/unSB5c79G2xzTvDSCF1k3cF5Q+skr1Op884RJ1qn7LlVI5Qdble8EyUTO6OmG2TINlUqsQumXuPiCZ5hQX5fLXH5UF2p+36Fyxk1u+si55xIUVmWdSJ1AwbZSYvcRAcT3/Yi1ZqCjqNzkFzo6gQOAhIX2thC6OwamcltZCZeIT+7278Pm6bJ2972Ns4//3xOO+00WYtVCCFSJ7Rk7969/OQnP+HOO+/k2Wef9bdrlcEuroH86zCrK0ClF7zFJHfO4+4Injehcru0a6r662Sq0/5m7aJ1nswp2xlA45Wx8qpnYhcldH4VCaN2caN0TdtiaQa2VyMFI67oxZG6yEhg3SalNUYX1/+sl7kgqcSuSzIHiyQ6Fyfd2iwK17aRism1gTVVtY05vYvMxFaWVff4/Z0BjjvuOM4++2zOPPNMVqxYkeavEQ4AROqE2GzdupU777yTO++8MzSxsTZy6PwaDFaDeVBqwVsMcgddjN6ZjvSYJR2aUqUX1H+ARolfO5qJnbKdaKMnc/VleiF2wbRrKzyhaid3aaJ0QTypiyKueMRK3cZ8yRpWF6J1LWQuSHbKBq3by10/yRz4QjezKvCGiIjAeeT3JU9Tl5dnqAxpzJndZPa/xsHsY9++ff7+Qw89lLPPPpvf+q3fkqlIhFiI1AmJ0Vrzy1/+kjvvvJN7772XiYmJuZ0qC5nVkDk0teAtNrlzHicXPG06cuU8CcyT12XBc0a/hv/GVunUVsIXjH55KV3DIlLogmW6LXatonRRtErJdhqlg9ZSt1CkEjtP5KCtzNXTVO46lDmtQGc7lznoUqoVwDCYOnwg8otAGnmrR2sb7D1UCztYqfeF7qEjIyOceeaZnH322Rx//PEyelVIhEid0BG1Wo1f/OIX3HPPPfz0pz9tInhrwFyZWPAWi9xB8uhdSOgadnZX8KKkrmXb2vSf08ppVyuRiyqTWuzKdQMSEgqdR7OoXb9KXew0bAciF4Uvd3vLbjs6qq4r/eaUG9U1KimESylqQ3OTLyut0Uoxc0iuKwLnobUN1m6wtjFcnGByctLfNzIywjvf+U5+8zd/k7e85S1kMpkWNQlCc0TqhK5Rq9V48sknfcELphG0ykD2EMgcgjIOdoQvJt2WO+d5b6J33vOmQtdQYeeCl1TqYtWZorpOxM6ouv32ZuyOR4nWy12nqVdla/L7bX9qj8VEy2hdzPRqUpQNaMhOOsKjNGT3Jx9Q0a1UK8SQuTpxC+8LTOFiQ7M1g9OgdRWsXWi9k+HchL+iD8Dy5ct55zvfyemnn86b3vQmETmhK4jUCT3BE7x7772Xn/70p+zduzewV6GzB6GzqyF3CJgDzlardb+jbsgd9CB6F5gQObbMRVaYTvAWi9RBB2KH8/dmSppsqTsjO23T+f9Ui50JzWKM0nk0ROu6HJXzqw3+SyIGbmSmrMDz5pLXrVRrQ7+5VtIGIXFrekiXhE7bM2h2QnUHGb3XH7UKsGLFCt75zndyxhlncNJJJ8naq0LXEakTeo5lWTz77LPcf//9PPDAA2zevDm0X2eWofOr0blDUGoEmvQh8aTPkzvobCLjTqN32m2nNsIRuk4GV8xVHl/weiF13nnTkErs3P+F0t0TO9tUlJcZvnArTaqpZRaz1IETrasOeDNy9yAqB7EHcECj5Dnb5h57S3z5aI1ZtrEK8d44qmY3TjQeQ9qa1uf/jele8HZWgbUPqtuhsgNlT4b2r1u3jtNOO43TTjuNN77xjSJyQk8RqRPmna1bt/LAAw/wwAMP8PTTT2MHluvRKofOH4zOrULnV4ExZwaO3NQNCDAVVs6d3sL7rFDJ023tone6XjTd/nWNFc21oxeC57U19HyRSR0kFLsGuXYGTyibjuTOyiqm14RHLpplnVjuFqPU1b9GawMmtQ4jkqH6U8hcQx3BNraox1uZxPui1vQ470tOF5dbSxqds3PuNbbLUN0FtZ2sGJwJZSJM0+TEE0/ktNNO4zd+4zdk1Kowr4jUCQvKxMQE/+///T/uv/9+HnnkkdC8TAA6M4LOr8LOrYLs8uaDLZQzdxk4k/92kgb1ZEZ7dTYTuLYV9UDwoCGKZ1Y0Rg+coxtz37UVuzqhqz9/2qidbSrKI0b0pK56bsRtO8FbLP3p2kWRtVKUV3TWJ6tVijVRPTFlLnZ9vZI5aCl0vsABaBtq42h7N6qyE1WbCB07MDDAKaecwmmnncapp57KsmXLutZWQUiCSJ2waKhWq/zqV7/i4Ycf5pFHHuHXv/51aL9WGXTuYPdnJZiDjanagNxBZ3LXafSvsV1zbeqW4CnbER9V5z3dmjKlp2LXQuiC508TtWuI0jVtYHhKlXrJW6goXZq+nmmidd0SOVgaMufUR0jmQvLmoTWWWXIErrKLQWOi4Qvn+vXr2bBhA29/+9s58cQTZWUHYVEgUicsWvbs2cOjjz7KI488wqOPPhqeLgXQRhGdOwidW+lK3kC4goDgdTSAgcUreMpujDQp3Sh5kHJkbRfuDpFiF0Po6tsRN2rXMkrXjnrJsyG/X1PY3Rux62SgThRxxa4b6VWIaP8iljk02DnV8N7wp7uxZlCV3e7PHpQdlriRkRFf4jZs2MBBBx3U3fYJQhcQqROWBJZlsWnTJh555BEee+wxfvWrX1Grhacx0OaAI3hZT/IKzo4uRu+gd4IHySUvSuoij2sietBe9roqdt4AxRR1+nPn6dZRu9hRujhoZ968/L7OL4KyYWBnB2upxqSZ2C2FqBx0R+asfPjvV7bz+g/NV2iV5gSuuhtlzYTKmKbJG9/4Rt7+9rdzyimnsH79egyje/0WBaEXiNQJS5LZ2VmefvppnnjiCR5//HE2btwYmjoAQJtDTiQvuxydPciJ5Blq8QqeW4cfxVOgW3WT0s6KDJ2kWlvJXvA8RoJzaAMqgxHXwXDmjDM69JpWctdRlC4KTfvrExOjplm+qdydytpQK5qg6uSmn6JyCqyotKmLHXjfKI2z6oU1g6qOOz+V3ShrOlTGNE2OPfZY3vzmN/PmN7+ZE088kWKxmKxdgrDAiNQJfcH09DRPPfUUjz/+OI8//jjPP/889S9tbeTR2RXOT24FZEfQgekFFqPg2Wb4eTCKFzdK1zEKrATdhbQJtWKTaWk0GF0a2FEvd10XOrz+V92qS1Pcoynu6l20LvSaMxRWzmi5ekgcuh2Vg5gyl0DcGtA2qjLhCpwrcnZYqJVSHHPMMb7EnXTSSQwODib4KwRh8SFSJ/Ql+/fv58knn+SXv/wlTz/9NM8991xjuhYTnV0OuRXo3HLs3HIwnY5fi07w/HrchzYY3VvBqCXaAKtARxM+B+mm2Hn1ZUoaw4Lp1V1Mj3UxSufRi2hd8LWlM+G/P7iWL7ReHi5IL6Ny4MpcG2mDNuIWOrCMquzzBa6opiiXw9c5k8lw7LHHcsIJJ3DSSSdx8sknMzw8nPCvEITFjUidcEBQLpfZuHEjTz31lC96wbUXPbQ5gM6OonPLnd/ZUXSHy/eEBA86ljxvGhNlN0byuiKPEWgDakXaziUWl65H7Eoas6qpDBpok65E67oZpfPohtTV/4/rRa4Z9YIHYcnrpsj5AqfmzlEfldNKxZe2IHYNVZ1AVfeiqvucn7r+cADLli3jhBNO4IQTTuDEE0/kuOOOI59PsdSJICwhROqEAxLbttmyZYsvec8++yxbtmxpTNmCs+JFbhSdXY4yRiAzDMpd6shwVrVIQhrJU26HfXBkI3I5NaXCkhez7rjYGags62JqU4OqOR/2aeXOE7pMYMSq06evQ7nrQZQO0kldWolrhy95weq78Wmgwu+JVOLmoW1UdX9I4Ex7OjRhucfatWt9gTvhhBNYt26dDGwQDjhE6gTBZWpqio0bN/Lss8/y3HPP8eyzz7Jr166G4zQKzCEwRiCzDDs/CpllYLRYe7IFjZLXGMFoKnLt6KLodTta5zcnRdQu2J8uKHRBPLkDEgteL6J00F7qov4v3ZI4v7766rr47/TSqekicBVX4CZQtQlUdT9ZZhq6TQAcfPDBHHfccbzhDW/gDW94A8ccc4ykUgUBkTpBaMnu3btDkrdp0yb2798feaxWRTCXgTni/h4GI2KC5HbURToaBkx0Sgeit9BiF0fmoggKHrSRvB5F6SAsdfMhcH69dZHhbhLsFxdL5rQ3EnUCVXMlrrq/YV44j+HhYY477jhf4o477jhWrlzZpdYLQn8hUicICdBas3PnTp5//nmef/55Nm3axPPPP8+2bduij8dwo3rDjuSZw85jYyC+7PVa8iBa9Fzq08s9FbuqI2z1cpdW5ppRL3kwJ3rdiNIpW1MYb6xE2Zr8Xify1CuBg95G4yCmyGkN1jSqNoWqTTo/1UmoTaGIniNnzZo1HH300axfv56jjjqK9evXc8ghh6CSfjEShAMUkTpB6AKTk5O88MIL/PrXv/aFb/PmzVQq0dNXNMieMeg+H/T76zWlXvK8bd0WPWgue24bbLO7/ezAHQgyq8lNal9OlN0dmWuF9jr1d+E0hqUp7GkMO2ql0JnwXIndoNcSBy1ETltQ8+RtClV1BA5rCkV0yDOXy3HEEUf44nb00Udz1FFHMTQ01P2GC8IBhEidIPQIy7LYtm0bL730Ei+//LL/00r2ALQqzAmeMeiscWsMudG9JtGd+RQ93EEObrClMtz9iJOyNPn9tj8vX7clqAENmZKNWe7SormtTqVU9HqjSeqYZ4lDW9jMYFSmnEl7rWn39xTKbj5ZYi6X4/DDD+f1r3996GfNmjVkOhxVLghCIyJ1gjDPBGVv8+bNvPzyy7zyyits3bo1cpoVD40Co+jInTEQeOz+VoVwSjdK9LztXZA9T+y8Ubm9pKdyp8GctcnM9l7oIHm0LnLOxC5eBm0oSssNVHWW4vgk2DNoXUJTcqYKsWYwmY0cceoxNDTEYYcd1iBwq1evxjR79M1CEIQGROoEYRExMTHhC17w9yuvvEKpFN2R3MORvjrZUwUwCu62ApABQ3VN9pTtzJk3X3Rd7uZZ6PzTKjUna+7SdU0nvE7wp2pDUVpR90/UGnQNVZtF1Uru7xmM2gyqOoNRmQG7hGqTdy4Wixx22GGsXbuWww47LPQzMjIi/d4EYREgUicISwCtNXv27OHVV19l+/btbN++nW3btrFt2za2b9/Ozp07G9a+jaxHmWizgKLgCp8re6oAZh47kwcjDyrTOJAjuKJFIP06H5G6enS9t6SRvAUQOttUlFaF11xzprRpIXXN8GTNqqCssiNs1ix2ZhZVncWolDDc38pu/zeapsmqVatYvXo1a9as4ZBDDmH16tUceuihHHbYYaxYsULETRAWOSJ1gtAH1Go19uzZExK9HTt2sGvXLnbv3s2uXbuYmpqKXZ/GQJt5MHPoTAFt5tBmHjubd7YbWSCHNrNoIwdGFkMb5Cd6NBdIu/YmkTwNZtl2+tF1WeiipK1+/+zKJm2zLZRVRdUqqFoVZVUxamVUtRz4XQk9Vzr+9R4aGmLlypWsXLmSVatWsWbNGlavXu3/HHTQQdLPTRCWOCJ1gnCAUCqV2L17ty95QeHbs2cP+/btY+/evczMNC65FAetTLSRBSPrSKD32MiAkXF+K+e3wiRbMoCMGxXMOKN+lQkYzk8HUaF6ybNNRXXQoLi7lljmmoqa1oB2Rn/aNZS2sJVFdZkFVg1l11BWDWVbKKvmHGPVfHEzrKovb6pWSSRoQYrFIiMjIxx00EEcfPDBvritXLky9LxYLKaqXxCEpYNInSAIIWZnZ33B836Pj4/7j/fu3cvU1BSTk5NMTk4yNTXVshN9WrQynNG+yox+7Iuf8gVQ+4/rthsKnXGmSnEXf3OlDPw5TLR2+5W5+7QF2gZstGE70mXbztJVtrOv28lIpRRDQ0MMDw8zNDTE6Ogoy5cvZ3R01H8cfD46OiqyJgiCj0idIAgdYds209PTIcnzHu/fv59SqUSpVGJmZqbt46V6OzJNk2Kx6P8UCoXQc+9nYGAgJG3B38PDwwwODsp6pYIgpEakThCERYHWmmq1SqVSoVKphB4Hn1erVcrlMrVaDdu2sW0brTWWZaG19rfZth3aZhgGSqnQb++nfnsmkyGXy5HNZslmsy0fez8yiEAQhIVGpE4QBEEQBKEPkDi/IAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCHyBSJwiCIAiC0AeI1AmCIAiCIPQBInWCIAiCIAh9gEidIAiCIAhCH5BZ6AYIgofWmtnZ2YVuhiAIQiIKhQJKqYVuhiCI1AmLh9nZWc4555yFboYgCEIi7rjjDorF4kI3QxAk/SoIgiAIgtAPSKROWJTkHlmF0u53DmWgDAXKAEOBUijD2+duVwoMhfKO8fcpv4z/A4FtRni/U9DfppWa++oTqMPfrubOFdymlVONv89w6nW2K3+fV0a72/z9MFeH4R7v7Sd8jlAZt/naiNgXOp5QG+e2qYZ9DWUItqNuP022N6mvWTsayrSq19+uG8sHyvj7A3VpdzuBcs4+HWiPs18F9/nHevu0X6cKHq+0v89/iXnbvercY5yXgvafe2UM97mzz3nulfP3KY1irpzhbvN/0H45QxHa7pS358rhHW9jemXc53N12X59ZqB+E2e76dXnH2tjenXitcOeO565up06bQyc8zv7nPpMd5vCxvTKB8qY4JTDOY93Pbznzrm0+xh3n8Zwr4uJwgBM959toNxtClMpDAyU+5+rVkze//+tRhAWEyJ1wuLEUu7tFUfqcAXM/bSc26fAmDMY5RiSW4n36W7Q8Kk9Z0xhk/DqbPiUp25b8BxEbKsvx5zMBaSuYVtAwoLP65sYPj6ijNFiX7M/o6EdTf7sVvuaXaq09QXqjBK+nkpd1H7qn2u/7mA7gueM2udLIIFjgsc3lNER59Khn6DUzYmi+9NsH574OVUGBdCTP/DkDF+KgvscqbPnpEgFpch5bCjlCJf7G/+x8ss59eDW6ZXFLeduj9oXKGO6Qmr67fSkTreVumB9pnc9CG8zCLYx8D8UhEWCpF8FQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ8QqRMEQRAEQegDROoEQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ+QeeqExYmp0dqZcNSZd00Ffqu6CYG934HHBLfpwOMY+wKTls1NEdts+9xvHXpMqJwG0N72uTo1CjR+2eB+v47Q5GrBtkQ816Em1V2PJj/1x8aZi67VvtjnirkveMqW5XSbOnWTNjaffDg8t1xgn39s+smH59oRmKeO9PPUaebKaaXDPzi/nX2EtttKg7Ln6sQ7lx2YT889xt2vle3XR6h+97d3Lve54R7j/QYattmBt7X32FZgMzdPne1uUzSbp075EwabzP3PvOeGW6Z+7rv4kw8r5iYfjnpfCsLCIlInLEoqb9+50E3oDd5nZkrqnUQQPIIvLXshG5KaoFVLEkkQ0iDvHEEQBEEQhD5Aaa1lrRNhUaC1ZnZ2tqt1zs7OcuGFFwLwve99j0Kh0NX6hTByvecXud7zS7PrXSgUUEpi58LCI+lXYdGglKJYLPas/kKh0NP6hTByvecXud7zi1xvYTEi6VdBEARBEIQ+QKROEARBEAShDxCpEwRBEARB6ANE6gRBEARBEPoAGf0qCIIgCILQB0ikThAEQRAEoQ8QqRMEQRAEQegDROoEQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ8QqRMEQRAEQegDROoEQRAEQRD6AJE6QRAEQRCEPkCkThAEQRAEoQ/ILHQDhAOPiYkJHnjgAX7+85+zadMmduzYgWVZjI6Ocuyxx3Luuefyzne+s2UdMzMz3Hrrrdx3331s374dwzBYu3YtZ555Ju9///vJZrMty4+Pj3PLLbfw0EMPsWPHDvL5PEcccQTnnnsu559/PkqpluVfffVVbrnlFh599FHGx8cpFoscc8wxXHDBBZx++ulJL8m8c/PNN/P1r3/df/7Tn/606bFyrdMzPT3Nbbfdxv33388rr7zCzMwMo6OjHHbYYbzpTW/i4osvZnh4uKGcXPPkPProo9x+++0888wz7N27F4CDDjqIN77xjbznPe/h5JNPblpWrrfQL8gyYcK8c8YZZ2BZlv88l8thmialUsnfdsopp/D5z3+eQqHQUH779u18+tOfZvv27QAUCgVs26ZSqQCwfv16brzxxsgPS4CNGzfymc98homJCQCKxSKVSsVv09vf/nauu+66pjfyhx56iKuvvprZ2VkABgcHKZVK2LYNwHnnncfll1/e9ka+UGzZsoVPfOIT/vWC5lIn1zo9jz/+ONdeey3j4+MAZLNZ8vk8U1NT/jHf+ta3WL9+faicXPNkaK254YYb+P73v+9vy+fzAJTLZX/bBz7wAS699NKG8nK9hb5CC8I8MzY2pv/gD/5A/9u//Zt+9dVX/e2vvfaa/tKXvqTHxsb02NiY/vznP99Qtlqt6o997GN6bGxMX3TRRfrRRx/VWmttWZa+++679TnnnKPHxsb0Zz/72chzT05O6gsvvFCPjY3pj3zkI/rZZ5/VWmtdqVT0d77zHX3GGWfosbExfcMNN0SWf/XVV/XZZ5+tx8bG9B/90R/pLVu2aK21np6e1t/61rf8tv/jP/5jR9eoV1iWpf/wD/9Qj42N6U996lN+e6OQa52ep556Sp911ll6bGxMX3nllfrZZ5/Vtm1rrbUulUr6mWee0V//+tdDr3+t5Zqn4Yc//KHfrquuuspvs9Zab968WV9xxRX+/vvuuy9UVq630G+I1Anzzs9//vOW+6+//nr/ZrZ9+/bQvh/84Af+vqeffrqh7F133eXvf+yxxxr2f+Mb39BjY2P6rLPOavhA1Vrrf/iHf9BjY2P69NNPD304eHz+85/XY2Nj+sILL9T79+9v2P9Xf/VXemxsTJ977rmR+xeaf/7nf9ZjY2P62muvDX1oRCHXOh2lUkl/8IMf1GNjY/rGG29MVFaueXI+/elP67GxMf2hD31IV6vVhv3VatX/f/z5n/95aJ9cb6HfkIESwrzzlre8peX+888/33+8cePG0L7/+3//LwBvfvObOeGEExrKvutd72LNmjWhY4Pccccd/nGHHnpow/73ve99FItFLMvirrvuCu0rlUrcd999AFx00UWR6ZiPfvSjgNOX6mc/+1nzP3IBeO211/jmN7/JyMgI//E//se2x8u1Tscdd9zBa6+9xooVK/jUpz6VqKxc8+Ts2bMHgKOPPppMprGbeCaT4eijjwYIdfEAud5C/yFSJyw6crmc/9jrVwIwOzvLL3/5SwBOPfXUyLJKKU455RTA6TgdZMuWLezYsQPAP6aegYEBTjrppMjyTz/9tN9Hp1n5NWvWcPjhh0eWX2iuv/56SqUSf/zHf8zo6GjLY+Vap8f7oD/jjDP8vl1xkGueDk+6nn/+eWq1WsP+Wq3G888/D8Cxxx7rb5frLfQjInXCouMXv/iF//jII4/0H2/evNmXvCOOOKJpeW/f+Pg4+/fv97e/+OKLDcdE4Z3z5ZdfDm0Plg+2q1n5l156qekx880PfvADfv7zn/O2t72Nc889t+3xcq3TUalU/OjyMcccw44dO7j++ut5//vfz5lnnsmFF17I5z73OR566KGGsnLN03HRRRcBzgjSa6+9lldeecXft2XLFq6++mpee+01Xve61/GBD3zA3yfXW+hHZEoTYVExOTnJzTffDMBJJ53EunXr/H27d+/2Hx988MFN61i5cmWozLJly4C5NE3c8tPT08zMzDAwMBA6//DwcMsIjFc+eL6FZNeuXXzta18jn8/zmc98JlYZudbp2L59O9VqFYBt27bxsY99jJmZGbLZLIVCgb179/Lggw/y4IMP8u53v5vPfvaz/qhGuebpOO2007j00ku56aabuPfee7n33ntDo1+Hhoa46KKLuOSSSxgcHPTLyfUW+hGJ1AmLBtu2+cIXvsCePXvI5XL86Z/+aWj/zMyM/7jVTTA4DUqwTKflvf44UdOsRJUPll1I/vqv/5qpqSk+/vGPR/b7iUKudTomJyf9x//n//wfMpkM1157LXfccQc/+tGP+Jd/+RfOOOMMAG6//Xb++Z//2T9ernl6PvCBD/AXf/EXLF++HHBkzktt1mo1SqVSaCoZkOst9CcidcKi4ctf/jIPPvggAH/6p3/KUUcdtcAtWvrceeedPPTQQ6xfvz6UehJ6Q7APqG3bXH755Zx++ul+B/5DDjmEq6++2u+4f/PNN0f2AxPiMzs7y9VXX83ll1/OIYcc4s9Z9/3vf58bbriB17/+9dxxxx188pOf5IUXXljo5gpCTxGpExYFX/3qV/nud78LwKWXXhoaAevhpS0gPKloPd4knvVlOi1fLBYb9rcqHyy7EIyPj/OVr3wF0zT57Gc/GzkyNj3WOwAABeZJREFUsBlyrdMRbMdhhx3G2NhYwzGGYfChD30IcFZX2bRpU0NZuebx+du//Vvuuece1q1bx1e+8hU2bNjA6Ogoo6OjbNiwga985SusXbuWiYkJ/uZv/sYvJ9db6EdE6oQF52tf+xr/9E//BMAf/dEfNY0oBfu27Nq1q2l9wb4ywTIHHXRQovKDg4OhG6lX1+TkZMubuFc+eL6F4KabbmJiYoILLriAdevWMTMzE/oJRoi8bV5/MLnW6Qj2rQr2B63HG9EI+CsZyDVPzszMDD/4wQ8AeO973xuZBs3n87zvfe8D4KmnnvKXEJPrLfQjInXCgvK3f/u3fPvb3wbgD//wD/0IRhSHH344huG8ZFuNBPP2rVixwu/UDOERZq3Ke6PSXv/614e2B8sHR641K99qRNx8sG3bNgBuu+02zj333IYfb0AK4G/72te+Bsi1TsuyZctadpqPwhsoIdc8OVu3bvWX42rVX/Swww7zH3vvC7neQj8iUicsGF/96le59dZbAUfoPvzhD7c8vlAo+BOEPvzww5HHaK155JFHANiwYUNo39q1aznkkENali+VSjz11FOR5U888UQ/EuCdo57t27ezefPmyPJLCbnW6fHa4rUtiuD0Ft48a3LNkxNcD9WbMy4Kb/1dmEtjyvUW+hGROmFB+OpXvxpKubYTOg9vjrUnnniCZ555pmH/Pffcw2uvvRY61kMpxTnnnAPAT37yE/8be5B/+7d/o1QqYZomv/VbvxXaVywW+c3f/E3AiX7Vj6YDuOWWWwDngyOqP9V88uUvf5mf/vSnTX9+//d/3z/W2/bpT3/a3ybXOh2//du/DTjzpkWtAmDbtv9l5uCDD+aYY47x98k1T8bhhx/ui9Htt98eOejEsiw/RTs8PMzatWv9fXK9hX5DpE6Yd4J96C699NKWKdd6zj33XI488ki01lx11VX8/Oc/B5wPynvuuYfrr78ecGZof+tb39pQ/kMf+hArVqxgdnaWyy+/3J8otlqtctttt/Gtb30LgAsuuCB08/f4xCc+QbFYZM+ePXzuc59j69atgPON/O///u/53ve+B8C///f/PnLZn6WEXOt0vOlNb+L0008H4K/+6q+49957fdnYsWMH11xzjT8K85JLLvFTgCDXPCn5fJ53v/vdAGzatIkrrriCF154Adu2sW2bF154gcsuu8xfOeLiiy/GNE2/vFxvod9QWmu90I0QDhx27NjBxRdfDDijANstV/XBD36wIYq3bds2/uRP/sTvYF4oFLBtm0qlAsD69eu58cYbm94EN27cyGc+8xkmJiYA51twpVLxP3g3bNjAddddF1quLMhDDz3E1Vdf7Y9KGxoaolQq+X17zjvvPC6//PJQamgx8nd/93f8/d//PeBE6qKQa52OUqnEZZddxpNPPgk4S9/l8/nQPHa///u/zyc+8YmGsnLNk1Eul/mv//W/hlKg3t/mXTOAs846iyuvvDIkdSDXW+gvROqEeWXbtm188IMfjH18sw++mZkZbr31Vu677z62b9+OUoq1a9fyrne9i/e///1ks9mW9Y6Pj3PLLbfw4IMPsnPnTnK5HEceeSTnnnsu5513Xih6EsWrr77KLbfcwqOPPsr4+DjFYpH169fznve8x4/SLHbiSB3ItU6Lbdv86Ec/4o477uCll15iZmaG5cuXc9JJJ/G+972PE088sWlZuebJ0Fpz3333ceedd7Jx40b27duHUorR0VHe8IY3cN555/GOd7yjaXm53kK/IFInCIIgCILQB0ifOkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEPEKkTBEEQBEHoA0TqBEEQBEEQ+gCROkEQBEEQhD5ApE4QBEEQBKEP+P8B8Evv4gc78/wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "plotting psichi in Galactic coordinates...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG2CAYAAAAZY3DTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd5glRb038G91nzA57uzO5oVlJS1hiRKXqBLFF4woAkYUQbxc8YqKYrgIKIpXUEQFkYyA5KBkUJC8hIWNbI6Tw0nd9f7Rp2r69OlQoWdmd+nv88yzs3O6q+ucOeEzv+quIpRSiiRJkiRJkiRJkiRbdYzx7kCSJEmSJEmSJEkS/SSoS5IkSZIkSZIk2QaSoC5JkiRJkiRJkmQbSIK6JEmSJEmSJEmSbSAJ6pIkSZIkSZIkSbaBJKhLkiRJkiRJkiTZBpKgLkmSJEmSJEmSZBtIgrokSZIkSZIkSZJtIAnqkiRJkiRJkiRJtoEkqEuSJEmSJEmSJNkGkqAuSZIkSZIkSZJkG0iCuiRJkiRJkiRJkm0gCeqSJEmSJEmSJEm2gSSoS5IkSZIkSZIk2QaSoC7JNpFZs2aBEIJZs2aN2TFPP/10EEJACMHy5cu12vrhD3/I23riiSdi6V9cGY/HNo5cd911/DG97rrrxrs7o55f/epXIIRg0qRJGBoaGu/uJInIT37yExBCsP322yOXy413d5JsI0lQl0Q77IPT76uxsRE77LADPvGJT+CWW25BsVgc7+7yvPrqq/jRj36Eww47DLNmzUJDQwNqamowefJkHHrooTj//PPxr3/9a7y7KRU3ZPy+0uk0JkyYgAMOOADf+c53sGjRovHucpIYsmHDBlx00UUAgAsuuAB1dXXj3KOtM9dddx1++MMf4oc//OGoH+ucc85Ba2srli1bhssuu2zUj5fkfRKaJIlmAAh/7bbbbvSdd96JvQ8zZ86kAOjMmTMjt124cCE9/vjjhfs8d+5cet9991W18/nPf55vs2zZMq3+X3TRRbytxx9/XLmdP//5z1K/j3Q6Tf/3f/83tE2Zx3ZLivux+POf/zze3RnVfOMb36AAaGdnJx0aGhrv7my1mT9/Pn/OjEUuvvhiCoA2NjbSjRs3jskxk2zbIZRSOjpcTPJ+CSGEf3/XXXdV3Nbd3Y3nnnsON954I4aHhwEAM2bMwCuvvIK2trYx7ScAPPDAA/j0pz+Nvr4+AEAmk8ERRxyB+fPnY/LkyaipqcH69euxYMECPPjgg1i9ejXf1/tSOf3003H99dcDAJYtW7ZFDE9ed911OOOMMwAAhx9+OM4555yK2/P5PFasWIG///3vePbZZ/nPf//73+PLX/7ymPY1STxZvXo1Zs+ejXw+j0suuQQXXHDBeHdpq81hhx2GJ598EkD163000tfXhylTpmBwcBAXXHABLrnkklE/ZpJtPONryiTbQuCq/ATljTfeoBMmTODbffvb3x7DHjp59tlnaTqd5n04+eST6XvvvRe4vW3b9NZbb6U77rij732Ls1IXV9zVqc9//vOh2/7oRz/i23Z2dlLLssamk0lizXe+8x0KgBqGQVetWjXe3dmqM9aVOkop/cxnPkMB0NbWVjowMDBmx02ybSY5py7JmGTXXXfFz372M/7/O+64Y0yP39vbi49//OP8nL6zzz4bt99+O2bMmBG4DyEEn/jEJ/DKK6/gtNNOG6uujlkuvPBCdHR0AADWrVuHd999d5x7lEQ2xWIR1157LQCnyjR16tRx7lES2Zx66qkAnFGNm2++eZx7k2RrT4K6JGOW4447jn+/dOnSqiv01qxZgx/84Ac44IAD0NbWhnQ6jdbWVsyZMweHHHIIvvWtb+Hpp5/2bTvqCs2rrroKa9asAQDstdde+OUvf1kxbByW2tpaPswalYcffhgnnXQSpk2bhmw2iylTpuDjH/84nn/++dD9xuPqV9M0scMOO/D/9/b2+m4X9dj69f3f//43Tj31VMycORPZbBYTJ07E8ccfj4ceeii0T3G2JXL1K7v9sMMOAwAMDg7i8ssvxz777IPW1lbU19dj1113xf/8z/+gu7s79Hgsr7zyCk4//XTMnDmTX3jz4Q9/GLfeeisAYPny5fy4p59+ulCbQXnooYewadMmACM4EMm7776Lb3/729h3333R0dGBdDqN5uZm7LXXXvj617+Of/7zn6HDjytXrsR3vvMd7LXXXmhra0M2m8XUqVNxwgkn4LrrroNlWaHH9z7uOtsedthhfBuWW265BUcffTQ6OzuRzWYxc+ZMnH766Vi4cGFoG2zo1X1c95ffBRRPPPEEPv/5z2PHHXdEQ0MDMpkMOjs7MXfuXJx44om4/PLLK07j8OZDH/oQ/+PqhhtuiHw8kiQJzXiXCpNs/YHA8CullBYKhYptV69ezW+77777aENDQ+SJ/c3Nzb5th53Mb9s27ezs5G3ceeedOneXxz38umTJEnrWWWcF9tswDHrttdcGtjUaF0pEDb9SSumcOXP49mvWrPHdJupCCW/ff/KTn1DDMAIfix/84AeB/YmzLZELJdjt8+fPp0uWLKG77LJL4LFmzpwZOcx++eWXU9M0A9v4+Mc/Tt99912p31FYzjzzTN7W0qVLI7cvFov0m9/8Zmgf2dcTTzzh28bvfvc7WltbG7rvbrvtFvpYuR/3qERt6x4yHR4epieddFJgv7LZLH3ggQdC2wj7uuiii/g+lmXRL37xi0L7nXvuuaH38WMf+xh/n9i0aVPkY5IkSVBSXuQlSTJa2bhxY8X/m5qaADgnen/qU5/CwMAAAKeid/TRR2PKlCmwbRsbNmzAa6+9hkcffTSwmhSWBQsWYN26dQCA5uZmnHjiiZr3pDrf+973cPPNN+MDH/gATjvtNOywww7o7+/HnXfeiQcffBC2beNrX/saDjroIOy0006xH18lTz31FJ/SZNddd8XkyZO127zmmmtw8803Y+rUqTj99NOx6667olAo4KGHHsKtt94KSikuvvhizJ8/H0ccccSYtRWVvr4+HHfccXjnnXfw0Y9+FB/5yEfQ1taGpUuX4uqrr8aKFSvw3nvv4bTTTsNTTz3l28b111+P888/n///hBNOwPHHH4/m5mYsWrQIf/rTn3D77bdr9dObRx99FADQ0dGB7bbbLnRbSilOPvlk3HPPPQCcSu1JJ52Eww8/HBMnTsTQ0BDefvttPPzww3j11Vd9K3W///3v8dWvfpX//4QTTsBxxx2HlpYWvPvuu/jzn/+MZcuWYcGCBTj44IPxyiuv8CrUWOTMM8/E3Xffjb333huf+tSnMGPGDGzatAk33ngjnnvuOeTzeXz2s5/FO++8gwkTJvD9fvKTn2DTpk343ve+hzfffBNA9UVfACpeu7/5zW/40HdLSws++9nPYt68eWhubsbQ0BCWL1+O559/Ho8//nhkvz/4wQ/irrvugm3b+Mc//oFPfvKTug9FkvdrxteUSbaFQLBSd8011/DtZs2axX9+2WWX8Z///Oc/D9zftm361FNP+d4WVk266qqrePtHHXWU2J0SiLtSB4CedtpptFgsVm13zjnn8G3OOuss37bGqlKXz+fp4sWL6S9/+Uva0tJCAdBMJkMffvjhwDZlKnUA6NFHH+17wvcvf/lLvs0xxxwz6m3JVOrY43DvvfdWbbNp0ya63Xbb8e2ef/55323Y42kYBr3xxhurthkaGqIf+chHKo6pU6lbs2YNb+e4446L3P7nP/85337GjBn09ddfD9z2xRdfpMuXL6/42bJly3iFzjRNeuutt1btNzQ0RI877jh+nFNOOcW3fXZ73JU6APTCCy+ktm1XbGNZVkUFL+h9RuZCiV133ZUCzuhB2DRNvb299JVXXglt64knnuDHPe+88yKPnSRJUBLUJdGOCOrefvtt2tHRwbc7//zz+W1f+cpX+M+7urqU+hAGjwsvvJC3/9WvflWpfb+4UbfTTjvRfD7vu11fXx//MNx+++19txmPeeqy2Sw99thj6XPPPRfapgzq2tvbA3+HlmXRGTNm8GP7ATjOtmRRd/HFF/s/AJTSP/zhD6Hbuf8wCXuObd68mba2tsaCukceeYS3861vfSt02/7+ftrW1sbxGga6oJx33nn8eGFXr/f29tLJkydTAJQQQt99992qbUYLdUcccURgO4sWLYrcTgZ12WyWAqAnnnhi5LZRWb9+PT/ukUceqd1ekvdvkgslksSau+++u+Lruuuuw5e//GXsvffefPh1ypQp+Pa3v833cc9+z4Y+4szmzZv59y0tLbG3DwBnnXUWMpmM722NjY3YZ599ADjz2W0pSwKZpomamhqkUvGdhXHaaaehtbXV9zbDMDB//nwAznx5S5YsGbO2omKaJs4+++zA293Du2+99VbV7X//+9/59+eee25gO21tbfjc5z6n2MvKvPfeexXthuXBBx9EV1cXAOAzn/kMdtttN+nj3XnnnQCAVCqF//qv/wrcrqmpCV/72tcAOEO+fsOYo5Wwx36HHXbA9OnTAfj/DmXD3rcWLVqkvVKO+3nu/r0mSSKbBHVJYs3HPvaxiq8zzjgDf/jDH/iVrjvvvDMeeeSRivNsjj76aP79//t//w9XXHEFVq1aNeZ918kHP/jB0NvZVBOUUvT09IxBj5zJh++6666KrzvuuAO/+93vcPrpp4NSijvvvBMHHHAArrrqqliOKfo4AIi8mjTOtqLygQ98IBCQUceybRsvv/wyAKCzszPynEmRKz5FwpAGRKPumWee4d+rnFO6YcMGjo099tgDEydODN3+Qx/6EP8+6srvOCP6nNF9vgAj71tvv/02jjrqKNx77718gnXZpNNpNDY2xta3JO/fJBdKJBnV1NfXY+LEiZg3bx4+9rGP4eMf/ziy2WzFNscccww+85nP4KabbsLGjRvxrW99C9/61rcwZ84cHHjggTj00ENx/PHHR36QBKW9vZ1/P1qgcp907Rf3fR6rSt2MGTNw0kkn+d72la98Bd/97ncxf/58rF27FmeffTZ22203HHLIIVrHjPNxGMvHVOdYvb29/I+W7bffPvJYItuIJJ/P8+8ZCILi/iNp5513lj7W2rVr+fcf+MAHIrd3b+Ped7Qj+nt0P3aq+fnPf45nnnkGa9aswVNPPYWnnnoK2WwW++yzDw466CAcccQROOKII5BOp4Xaa2pqQn9/vzIMkyQBkkpdkphDnfM0+dfAwACWLl2Kv/3tb/jsZz9bBTqWv/71r7j22mux66678p8tWrQI119/Pb7whS9gypQp+MxnPqP0ATFlyhT+/eLFi+XvlEAMY+t7Kc2ZMwf/+7//C8D5vf34xz/WbjPOx2EsH1OdYw0ODvLv3acSBKW+vl75WO64X0ts2buguG9vaGiQPlZ/fz//XqT/7mO49x3tjOVzZtasWXjllVdw9tln89M68vk8nn32WVx66aX4yEc+gmnTpuHXv/610JJj7Mr+2tra0ex2km08W98nUZJtMoQQfOELX8Abb7yBJUuW4Prrr8dXvvIVzJkzBwBgWRZuvvlm7L///li/fr1U2wcddBD//j//+U/kxKjvp3z4wx/m3z/55JPa5wa9H+NGjndCbb+4EagT95CreyjWL2z6IAB86iCZuCuBIv13HyOqihgW27aV9x2LTJw4Eb/5zW+wYcMGPPfcc7j88stx0kkn8cd7w4YN+OY3v4mvfOUroe0Ui0X+mI3HmthJtp0kqEuyxWX77bfHaaedht/97nd499138dJLL2HevHkAnJnsL7vsMqn2dt99d3R2dgJw/hpm83QlqRyaLhQKfHWCJOJpbm7mFbqlS5dGbi+yjUjcK3xEoW7atGn8+7ffflv6WO45DNnchmFxb+OulLOwi4oKhUJoO1vL8zGdTuOAAw7Af/3Xf+Guu+7Cxo0b8ac//YlXU//whz9gwYIFgfu7f38zZ84c9f4m2XaToC7JFp+99tqrYvkc90nfIiGE4Bvf+Ab//09/+lOUSqXY+rc1x31lMBDf0OD7KYZhYK+99gLgrKEbtBQVS1zLwM2dO5d//84774Ru6z5XUuWPmokTJ3JsvPrqq1UTiXvzyCOP8O/322+/qtvZcCVbui8oY3mRBVA5fCsyZBqUTCaDM844o+J959lnnw3c3g3t3XffXfm4SZIkqEuyVcRdlVAB2de//nVebXjppZdw3nnnCb9pDw8P4/Of/7z0MbeGPPzww/z7KVOmVAzTJRHPRz/6Uf79r3/968Dturq68Ne//jWWY3Z2dmLGjBkAgBdeeCF022OOOYYP6910002hVaOgnHzyyQCc19+vfvWrwO36+/v51dSEEHzsYx+r2maXXXYB4EzfEVa5vPLKK6X7qRP3uYBxDJOLvm+58br//vtrHzfJ+zcJ6pKMey6++GI8+uijoefPuKfc2GOPPaSP0dzcjNtuu43PyfZ///d/+MQnPoGVK1cG7kMpxe2334558+bhL3/5i/Qxt/QsXrwY3/3ud/n/P/3pT49jb7bunHHGGbz6dM011+Cmm26q2mZ4eBinnnpq5FCpTNi0Gps2bQrFUX19Pb7zne8AcIY8TzjhhFDYvfrqq1XzpX3jG9/gJ/Ffeuml+Nvf/la1Xy6Xw2c/+1legTv55JP5ebHufOQjH+HfX3DBBb5/YP3gBz/AP/7xj8A+jkbcS62xaWr8snbtWpx//vlYtmxZ4DZDQ0O4/vrr+f/D3rcY6gzDwFFHHSXT5SRJKpJMaZJk3PPYY4/hoosuQmdnJz784Q9jzz33RGdnJ2zbxpo1a3DPPffg6aefBuBc8fetb31L6TgHH3ww7rzzTpx66qno7+/HHXfcgXvvvRdHHHEE5s+fj8mTJyObzWLDhg1YsGABHnzwwa1uvjx3VqxYgbvvvrviZ7ZtY9OmTfjXv/6F2267rWIqjgsvvHAcerltpL29HVdccQXOOOMM2LaNU089FbfeeiuOO+44vvbrn//8ZyxduhQf//jH+RqwuldrnnTSSfjjH/8IwBnWDZsu5fzzz8czzzyDe+65B++99x6fZuiwww7DxIkTMTw8jHfeeQePPPIIXnzxRTz++OMV53fNmjULV1xxBb761a+iVCrhlFNOwUc/+lEce+yxaGlp4evbMlxOnTo1cP7DM888E5deeim6urpwxx134JBDDsGpp56KCRMmYMWKFbjlllvw4osv4lOf+hRuueUWrcdIJkceeSSvDn7hC1/Aeeedh5kzZ8I0TQDOBMY77LAD8vk8fvGLX+AXv/gF9t13XxxyyCHYeeed0dLSgt7eXrzzzju46aabsHr1agDO8PfBBx/se8xSqcRPKTn00EOTCyWS6GVc1rFIsk0FAsuEheWwww4TWtZqwoQJgWuURi1l5c5bb71FjznmGOHltObNm+d7XPcyYcuWLQs9ZtS247FMGPs68MAD6XvvvRfYpswyYVF9j9o2zrZklgmLY7kqSp3lwkzTDHysTznlFPrWW2/x/59zzjmRxw1LsVjky++FLZHFUigU6Ne+9jVqGEbk8+LJJ5/0bePqq6+mNTU1ofvOnTs38jVx//3386W2/L6OP/54OjQ0JLVMWFSiti2VSvTggw8O7NNFF11EKaV0+fLlwq+vww8/nG7atCmwTw888ADf9tprr428D0mShCUZfk0y7rnnnntw55134txzz8XBBx+Mzs5OpNNpZDIZdHZ24sgjj8Tll1+ORYsWVcxUr5qdd94ZDzzwAF566SX84Ac/wCGHHILp06ejtrYW2WwWnZ2dOOSQQ/Df//3feP755/Hyyy/HctwtIYQQNDU1YZdddsFpp52G++67D08//TQ/NyuJXs4//3y88MIL+NznPodp06Yhk8lg0qRJOProo3HLLbfg9ttvr5gzTrcqk0ql8KUvfQmAU6mLqiyn02n89re/xWuvvYZzzz0Xu+22G1paWmCaJlpaWrD33nvjG9/4Bp566ikceuihvm189atfxbvvvosLLrgAe+65J1paWpDJZDB58mQce+yx+POf/4xXX3214nwyvxx77LF47bXXcMYZZ2DGjBnIZDLo6OjA4YcfjhtuuAH33HPPmM/ZZpomHn30UVxyySU44IAD0Nrayqt07sycOROLFy/Gb3/7W77sWnNzM0zTRF1dHebMmYNPf/rTuPfee/HYY49VXGXuDTvHsrW1FZ/61KdG7b4leX+EUKpxiU+SJEmSJJHKb37zG5xzzjkAnPVU/S4kkMnatWux3XbbIZ/P42c/+xn+53/+J45uJhmD9PX1YcqUKRgcHMQFF1yASy65ZLy7lGQrT1KpS5IkSZIxSrFYxO9//3sATtXMPTG2aiZPnswnt/31r38tNAFyki0jV155JQYHB9HY2Ijzzz9/vLuTZBtIgrokSZIkiSEDAwN46aWXAm/P5/M488wz8eabbwIAPvaxjymvZ+zNhRdeiObmZqxfvx5XX311LG0mGd309fXhiiuuAAD893//d+S6tUmSiCQZfk2SJEmSGLJq1SpMnz4du+++O44++mjssssuaG5uxsDAAF5//XXceuut/GrI1tZWvP766xUrPejmV7/6Fc477zxMmjQJS5cuFVqHNsn45Sc/+Qm+//3vY7vttsNbb72Fmpqa8e5Skm0gCeqSJEmSJIYw1EVlxowZuOeee5TmW0ySJEmSsCSoS5IkSZIYYlkW7rnnHjzwwAN4+eWXsXHjRmzatAmUUrS3t2OPPfbACSecgNNPPz2pyiRJkmRUkqAuSZIkSZIkSZJkG0hyoUSSJEmSJEmSJMk2kAR1SZIkSZIkSZIk20AS1CVJkiRJkiRJkmwDSY13B5IkSZJEJZRSWJYF27Z9/2XfA87yaIQQGIbB/28YBv85+zJNE+l0GqlUCoSQ8bx7SZIkSSKdBHVJkiSJPaVSCcPDwxgcHMTQ0FDkVy6XQ6FQQKFQQD6f59/7/axYLFaAbbSSSqWQTqc58jKZDP8Z+39NTQ1qampQW1vr+y/7vra2FvX19WhoaEBDQwMaGxtRW1ubwDFJkiSxJrn6NUmSJIGhlGJgYADd3d3o7u5GX18f+vv7K/71+35wcHB8+w0AhDhf5R8Qm47cugVYyjAMjjzvV3NzM5qbm9HS0lL1lWAwSZIkQUlQlyTJ+zC5XI7Po9bV1cXRxr7v6upCV1cXenp6UCgUlI+TyWRQW1uLuro61NfXo66ujv+ffdXX1yObzeLaq58AYMKqz2DjHinANEFNA9Q0QY3yv6YBapigDGwG4d/zn7kxV056gGDm/dVrolK4oMf/tctfI9/Tip87t5XqDGze3QYpWfjBgYdgeHgYuVyu6l/2/cDAAP8qlUpaj6kbfG1tbWhvb8eECRMwYcIE/n17ezsymYzycZIkSbL1JUFdkiTbWIaGhrBhwwZs3LiRf3n/39fXJ9VmXV0dWltb0dzcjMbGRjQ1NaGpqQmNjY244U//ApAGQbriXyAFEnItVqE1gxUfMnXuqnCCUDcaKTamseKYkDNbKAWxLJBiEUaxBKNYhFEowigW8dOD56O/vx+9vb3o7e1FT09PxVc+n5fqS3NzM9rb2zn0Ojo60NnZiUmTJqGzsxMTJ05ENpvVvMdJkiTZUpKgLkmSrSz5fB7r16/H2rVrq77WrFmD/v5+oXZqa2vR0dGBtrY2tLa2orW1FX+/43UAGRBkyv9my//q4SvflsXKo8fvYvuxRJ1fIqEnGFIqwcgXYObzMPIFGPk8Ltxnf2zatAmbN2/Gpk2b+PeiFda2tjaOvEmTJvHvJ0+ejClTpiSrXyRJshUlQV2SJFtghoeHsWrVKqxYsQKrVq3CqlWrONw2btwYuX9DQwM6Ojoqvm740wsgqAFQU8ZaCiSmk8vsjInBySNDfYQCxHLeWgoNBjbvOfZvM6lhgs5/W85/KEDK3xKbItOjPqSsGpo2MDBlpCpGXca1MgRde8T4GFEKo1iEOZyDMZzDFYcchk2bNmHDhg1Yt24d1q9fj/Xr12N4eDiyqY6ODkydOpV/TZs2DdOmTcOUKVNQV1cXX5+TJEminQR1SZKMU0qlEtatW4eVK1dWfUXBrba2lldTJk+ejFv/+Q5qulIAakFQCxLjhe1esPnFjTi/jCbsKvAWFBfqgjKa2POCznebiELmqMFvcAip/mH8aP/9sX79eo6+1atXY2BgILSJtrY2jryZM2di1qxZmDlzJjo7O/n0MUmSJBm7JKhLkmSUY1kW1qxZg+XLl2Pp0qVYtmwZli1bhpUrV4aeMN/c3Izp06djxowZmDZtGq6892XQVD3sdB1gZgBCkBqmaHwvutoSFjtrYrBT7oT6KMQFJQ7cpYYIOp+PEJo3AqjzJg7kiWAucF9JE9lpov3YkhLQvMhVvS0VYBQGcclnD8Xq1auxatUq/m9vb29gO9lsFjNmzKiA3qxZszB16lSkUslMWkmSjFYS1CVJElMopdiwYUMF3JYuXYr33nsv8PymbDaLadOmYfr06Zg+fTquffRN2OkG2JkGB24BkcWcCty8UYWcNzKwUwKcXxRQ5xcZ6OmArqotzaKXLPiqcOcXqwCjMIRLPzcfK1aswPLly/Hee+9h5cqVKBaLvrukUinMmDEDs2fPxg477MD/bWtrk7k7SZIkCUiCuiRJFGJZFlatWoV3330XixYt4l9BV5VmMhnMmjUL2223He59aRXsTCPsbCNoqq5q+o2whGEuDrh5ExfkvAmDXWyQcycm1LkTBrw4QVfVdsyjmmHgE8KdN9QGKQzBzPfj3GP2wHvvvce/gs7ha2trq4De7NmzMXPmzKSqlySJZBLUJUkSkWKxiKVLl2LRokUccUuWLEEul6va1jRNzJgxA9tvvz0efHUN7Gwj7EwTaLpeCm/eMMyNBty8GS3IuVOsN7BpnnOM1CBB5wsxi8ubUUCdN27kjSbq3IkbeN7YKYLN86ga7ryhFKQ4DCPfi28cPRdLly7F4sWLsWrVKvh9DKXTacyePRs77bQTdtppJ+y4444J9JIkiUiCuiRJXKGUYvXq1Xj77bfx1ltv4e2338aiRYt8h5Nqamowe/ZszJkzB7f+aznsbAvsTCNgxDP3mpUBio0EDatGdzksO0VQaCQgNkV6EEjlRvd4AEBNglINQU3PKEurHNsksDIEmf4xuG8pINdiwsyPzVtrqZagVOv8/jJ9o3tMahAMTCOo6YrxOHYJRq4PPzxlfyxevBhLlizBkiVLfFclqampwZw5c7Djjjty7E2bNi25KCNJknIS1CV5X6e3t7cCcAsXLvQ9AbypqQlz5szBnDlzcN0Ti2HXNIOmG7SqbyxWFshNqGzHzCF2zDG8uUNsipTPiBix48cdNQkK9ZXHNyyMCuyo5/dCDaBU473viB15NAUMt1ainlCMCvC898c5mIO8ih+NAvYY7ryJDXuUghSHcNlnDsQ777zDv4aGqucarKurw84774y5c+di7ty52GWXXdDY2BhPP5Ik2cqSoC7J+yaUUqxatQqvv/46FixYgNdffx2rVq2q2i6dTmPOnDnYeeedce2i5Si2tMGqrYOZM1C/Vu/l4gc4d+LAnB/evAnCXOU2+rDzg5w7caHOi7iq231Q500cyPNDXcUxYgJe1H3xw11VKJDt1by/BsHAdNdxfO6aLvSoAQxPIgClMIcGcMUR+2PhwoVYuHAhFi1aVHUREiEEs2bN4sibO3cupk2blqyXm+R9kQR1SbbZlEolLFmyBK+99hoWLFiABQsWoKurq2q7adOmYZdddsHtK9eh2NKKYmMz4BnOMYeJNOiiAOeNCuhEAOeOCOYqt5eHXRTkvFGFXRTkKrYVQJ07KsCLAl3VMRSBJ3M/hHDnjgL0qmDn06Y3stDjsPPGtpEa7MfPDp6HN954A2+88QZWr15dtVlLSwvmzp2L3XbbDXvuuSfmzJmTnJuXZJtMgrok20xKpRLeeustvPLKK3jttdfw5ptvVl1tl06nsfPOO2O33XbDbxYuQaG5DTRk0XNRzMkCruIYgpiTBZw7spir3DcadrKQc0cGdTKQq9hPEnXuiAJPFnUVxxAEnup9kMadO4LQi8Sdp01vRKAXiDtXjHwO13zkYI68d955p6qaV1dXh9133x3z5s1LkJdkm0qCuiRbbWzbxuLFi/HSSy/h5Zdfxuuvv16FuPr6esydOxePdvWj0NqGYnMrYIp98AaBTgdwFe2HYE4HcO7oYK6yHX/Y6WDOnTDYqUKuog0N1LkTBDwd0FW0H4K7OPqvhTt3QqAnhTtPm974QU8EdhWxLaT7e/G9fXfF66+/jldffbVqpYwEeUm2lSSoS7LVhJ0T99JLL+Gll17CK6+8UjUvXHNzM+bNm4e/r+9CobUdpcYmpYsZ3KAr1RDk22O5CyPtu0AXF+DciQtzI+2NoC4uyLnjRV0ckHMnLtS54wZeXKiraN8DvFj7Hxfu3HFBTxl2Pm26w5AnDbuKNilSA724aN9d8eqrrwYib6+99sJ+++2HfffdF1OnTlU7VpIkY5wEdUm26AwMDODFF1/E888/jxdeeKFqTdTa2lrsueeeeLi7H/m2DmXEuUNswCiOzknVpARk+uBblYil/ZgxV9k4YMfrlooYlv6J+0EZDdTxEMBKb6Un4Y8G7jztF5pibM/9uiGAHceUjQLImzJlCvbdd1/st99+mDdvHhoaGmI4cJIk8SdBXZItKpRSLF68GM8//zz+/e9/480334RljVRw0uk05s6di6cGcsi3daDY3FJ1UYNsiA0YBdcHW5wFkRKQKs/CQNgEuHG94gh4X0mJIluetoISp/oXVwyLIj3otG2ngHxTfHOCERvIlNsGpTCCl8JVbL/cNnFV/whQjBEyhIL3mxKgWBdv26ncyO81bpi6Jy8mzNOjAD2bjWQSoFQXa9MjbQNAHE9NSpHq78H/7PkBvPDCC1iwYEHFe5Bpmthll1048nbaaadknrwkW0wS1CUZ9/T39+M///kPXnjhBTz//PPYvHlzxe0zZszABz/4QVy9ZBUKbe3C58QFpQpxFTdqNV2BOP4z6vxcr2H49s2NOXfigJ0bc+7owq4Ccu7EhDoOuYofBgzpxgA8N+rc0QWeG3TeduPAXdBqFMSvWBoT9GzvaWoxIa+qXZYYrEUKRfzp2IPxn//8B//5z3+wYsWKittbW1txwAEH4MADD8Q+++yDurqY1ZokiUQS1CUZl6xduxbPPPMMnnnmGbz++usVfwnX1NRgr732woPdg8hPmAirrt65QfXCvzDE8Y0U2vUBXNU2qqALQNzIsf0x544q7IIwx6KKukDMuaMBO1/M8RsjztNTxF0Q6NxRxV0Q6tztquJOZHkxX9zxG9WRFwgwd9uKLopsWxV5rsfCGB7EpQfvgRdeeAEvvvhixcoX6XQa8+bNwwEHHICDDjoInZ2digdMkkQtCeqSjEkopVi0aBGH3OLFiytunzVrFvbff39ctWQlCq3t1UttyUzNJYI4hbZFEMe3lcVcBOIq+xENOhYZ2EVhzh0Z2AlhjkUSdaGQq9hQ4uILCeCJoI5FBndRoPO2K4M7mfViQ2FXsaE88iIB5m5bAnnC7QJyyPN7LGwbN330MDz33HN47rnnqubI23777XHggQfi4IMPxs4775xMgJxk1JOgLsmopVQq4bXXXsPTTz+NZ599FuvXr+e3GYaB3XffHU8Nl5CbOHmkGucXgfdBacgJti0DOb5PFOgkAFfZF3HMsYigTgZzLCKok8IciyDqhDHHd1C4olYAdzKoYxHBnQzq3O2K4E4Gdbw/KtevCEBPCmCsTQHgSbcLiAEv7HEor3jx/b3m4Nlnn8Ubb7wB2x7ZoaOjA4ceeigOO+wwzJ07F6bmaSRJkvglQV2SWFMqlfDKK6/gsccew9NPP10x5Ug2m8V+++2He7sHkeuYBJrJijXqdyqUKuKi2lVAXMX+QaBThJzTJ3nMuRMEOxXMuRMEOyXMsYSgThpyFTtrTpMSADwV1LEE4U4FdN52g3CnAjp3lHBXTikAskoAYwlBnla7gD/yJO4/KRZw5fx5eO655/Cvf/2rYg7NtrY2HHLIIZg/fz723HPPZE68JLElQV0S7bCK3GOPPYannnoKvb29/LaWlhYceOCB+Ovazci3T5S/yMF9UWockPO0q4u4iibdoNNAXEWbmqBjccNOF3MsXtRpYc4dD+y0MMcbiWnuOxfudEDnjhd3uqhzt+vGnS7oWHRg544bedoAY/EgL7Z23Y+dyv23LPzpIwfgiSeewLPPPlsxZUpTUxMOPvhgzJ8/H/vuu28CvCRaSVCXRCmWZeH111/H448/jieffBLd3d38tubmZsyfPx9/XrO5fH6c4qcJiRlyrFkrPsgBGJmqJNapUOLBXEWbdjyLybtjp4BCgxEP5ljKqIsFcyxxoc7VXqmGxDoFCy0PV8YBOm+7cU6zwhIX7lhKdSQ+hAEceLG2CTjA07nvto0bjj8ETzzxBJ5++umKP4Kbm5tx+OGH46ijjsLcuXOTqVKSSCdBXRKpLF68GA899BD++c9/Vkw90tTUhEMPPRTXr+tCoXWC3txx5V3N4Zg+iKjzAURsZyWHOEJswCiV5w8z4+kngxwl5TapU1WLK8QCzEK8ULIyJLYPd2JRpAdtp6qYia8ia5vEqaoVqPP/mObwI5Q6lVkClGpj+vClFKlhimJDjB/m1Pm9D7fF0yarUFIC5Fud52kmrj9ACDDcUf595eNpEgQolucKjqtaCQLkJpdQs0ZTjLaNm086HE8++SSefPJJdHV18Zs6Oztx5JFH4qijjsLs2bM1O5zk/ZIEdUkis2nTJjz66KN4+OGHsXTpUv7zxsZGHHLIIbi+rxul2g5tyLlXKzAsTdTRykpCHKBzQ44fRgN03mocxxz/QTyoq0AXjQF2ZcwFHkO2uTLmWGJBXRlz/L8Mde7bNXHHUedqUwt31PM4GEQfdxRID7Glu5w+DrVrzvPoGXbmuHMdUwt5ZdhVHE8XeC7YsWgBjwC5KUVXY0QfeNTGX48/FI8++iieeuopDA2NDCdsv/32OOqoo3DUUUcl06QkCU2CuiS+GR4extNPP42HHnoIL7/8Mr+KK51O46CDDsJtdBDDUybCKKaQ6lf8cPRAjv9YFXTUHxeqoPNDXMXhFEBnFCky/f4Tyvq2pwG7QGipws4Hc5HHCmvOgzl3lGHnwRz/sRd17u0VcFcFOk+bKrgjNkVqqPrxUMadC3SV7UEZd2ETLVfAztUHJeB5YFfVBxXk+cCORQl4XtjxxjSAR4BCsw1iWfjjXvviH//4B/7973+jWBw5zrx583Dsscdi/vz5qKmpUTtOkm02CeqS8FBK8dprr+H+++/HU089VXG11u67747Ha4GhGZNhZ0cWXDRyhhzqAiDHb5YFXQDkWGRBFwU5QA5zQYiraC8IdHwDediFIksWdSGYEz6me7sQzLFIoy4Ac/zmINS595fAXSjqXG0K444KPCayuAtAHb/ZlINd1IUhgbDz9EkKeSG4432SAV4I7FikgBcEO96YJPDKqKv4UaGAK3fZDY8++iheffVVsI/suro6HHnkkTj22GOxyy67JHPgJQGQoC4JgO7ubjz00EO47777sHLlSv7zqVOn4s32BgxuNxWlxup55IRBFwE5vpko6CIgxyIKOhHI8UMLgE4EcoAA5io2FoOdcMVMBHaCmBM9tgjmWIRQFwG5ik2jUOdtNwJ4QqhztReFu6AqnV+EcBcBupG2IFS1k51kORJ35T4KAS8CdnwzUeAJwI5FCHhRsOONCQLPB3Ys5tAwvj91Oh588EGsWbOG/3zmzJk49thj8eEPfxhtbW0CnU6yrSZB3fs0tm3jxRdfxH333YdnnnkGpZLzjl1bW4sjjzwSfyh2ozChFQj56y8UdYKQ45tHgU4QcixRoJOBHO9CACBEEVfRlgzo+E7hsJMaAo1CnSTooo4vAzogAnUSmOO7yKDOfZwA3EmhrtxWGOxkUAcIwE4QdXzzkKqd6gTLQrCr2CkEeYKw45tHAU8Cdrx7YcAThR1vLAR4Iagb2Z/irsOPwv33348nnngC+bxzZ03TxAc/+EGceOKJ2G+//ZIJjt+HSVD3PsumTZvwwAMP4L777sO6dev4z3feeWc805TG4KypoOnovyZ9QScJuYpd/VAnCTmWINCpQI53xYMIFcjxtlRABwSiTvkiBT/YKWAurC+ymONd80OdAub4riqocx/Xgztp1LnaqsKdwNBrUHxxJwm6kbbgW7VTnY9PCXZ8Zx/gScKO7xYEPAXY8e55gSeLOsB5gMqpAp4I7NimxSJ+vdOueOCBB/Dmm2/yn3d2duLEE0/E8ccfj5aWFrm+Jdlqk6DufRB2rtydd96Jp59+GpZlAQAaGhpw9NFH47eFzSi2Nku1WYE6DcwBHtApQs4dN+p0IMfCAKYDOd6WKuh4A5Ww055OxA07TdC5+6OKuYquMdhpYI73Swd1vBEHd8qg87TFcCdbpfOmAnaKoKtoz1W1051gWQt2vBEX8BRhx1IBPA3UVXSPAU8FdrwR5z5x3Emgzp3HTzoZ9913Hx588EH09/cDcC5uO+yww3DSSSdh7ty5ybl323gS1G3DyefzePTRR3HnnXdi8eLF/Oe77747HmswMDRjMqjC7OVGzkBqkGhBjrdlAeZQjHOd2c7EwrqQc7enCzkgBsxVNObALpbHjAJmkWpjjsUo6mOOhRLAzhJt0AExoQ4AiIMebdS52rOyRAt1LNQgKNYb2qgDnPs43GbGNrlyLLgDHOD1Uy3YsTjPiXhgx0JNDdgBldW7tSkl2AEAsSz8dpfdcPfdd+Ptt9/mP589ezZOOukkHH300airE1hEN8lWlwR122DWrVuHu+66C/fffz9fezWbzeJDH/oQfm/3odjapNQusQhInsS3wkN5ZvZMbwztEYBYMU2CSgGzEM9STbZJQE0g22ejEMOEssSiSOVpLBPoEosi02+DmkChUV/oxKLI9lqghn7fGIKtrH5bhkWR3VSAnTFRqovnHCOjFM/vAED5uRsPOEs1hoOVYgx/iBhOe3H8DlhFuFhPUGiK5/Vup2KaTJgAuQk2Mj36jVEDyE0pOWLUbowAhMJsKIGuF1wn2ycPfuQ43H333fjHP/6BQqEAwLly9vjjj8cpp5ySzHu3jSVB3TYSSileffVV3HHHHXj22Wf5vHKdnZ14e3IbBnaYXjEViUyIRYASKX+vuWyXAdhp5yln5gnSOqAjI3/YmkUgrVNRo07VEHDuow7obJOgVFvuVwGo3ew0bKeJFuyIRZHKURDqfHjooIKBDoA26ohFke0eKenQlPp9pAR8RRFK9FBnWBQ1Gwu8XZo2eLu6uHNXgnVxR8tdIbYm7sqoA6ANO2oAVpY9XtCDHQVS5eXpKpYsI9AGnp12HUZ3MuGOclWMQgt4HHa8bb2PWLOxyN/odHBHigVcMnM27r77bqxatQoAYBgG5s+fj09+8pPYZZddtPqZZMtIgrqtPJZl4emnn8ZNN92EhQsX8p/vvffeeLDewPCUSYDpnJckEzfkRn6mCDoX5PiP8kStQkcqRigAaIDOBTnevCLo3JDj/XKBjm+nCDs36FhUYOfGHG9HEXVezPH2FFDnxtzIz9RQ58acu33eL3b6pgbu/Ib3VXFHPV1Qxp0LdcCIJWRx5wYd/5kq7Fygc7dVtRatBvDcsOPHUJ1MuMMz3KkIvCrY8WOofdyajeUhXdebnzTwCJCdPgBQiuunHYNbb70VL774Ir957ty5+MQnPoFDDjkkuWp2K06Cuq00+XweDz74IG699VasXr0aAJDJZPCRj3wEv7P6UGxudDYkkAKdH+ZGbpNEnQ/mWKSqdD6Q4+3Igs4HcvwwkqDzgxzvlw/oAHnUMcwB1Z8HsqjzAx1vSxJ2QaDj7QnCzg9zI7fJoc4Pc+7jVPVJA3dh52zK/E68oGORhh1xIOb3OpGt2vmhjt8mizsf1LF2qmDHogA8P9jxY8lOJuyFHW9IHHiBqOPHkfvY5airOIhC9Y7Brpz79/gsbr/9djz66KN81YrJkyfjlFNOwXHHHZecd7cVJkHdVpbe3l7cfffd+Nvf/oaenh4AQFNTE1bM6ET/B2bBrvG8wAVRF4Y553ZB0IVAjm8iWqULwRwgAboQyPFDCYIuDHK8XwGg420Iws6vOueNKOzCQAeIoy4Kc7w9AdSFgc65XQx1YZhzHyuwTwq4i7oQRxR2QahjEcadp0pXdbMg7MJAx7cRhV0A6NztBMKORQJ4YbDjxxSdTDgIdoAw7iJhx48n9hHsCztADnce1LEYg3l8K789/v73v6O3txeAs7b3ySefjJNPPhnNzXKzIyQZvySo20qyYcMG3Hzzzbj//vuRyznzdXR2duKtqRMwMHu6/1WsEaCLglzlthGoE8AcIAC6CMi5E4k6AcwB0aATgRwQjbmKNiNgJwI6IBp1UZiraCsCdkaJItMjdjlkGOqiMFe5bTjsREDHjhkJTSIGO5krq6NwF4U6QAB2IVW6is0EhmNFUAcIwC4CdN62InEHCAFPBHZABO6iUFfRUDjwhGEHROIuEHX8YIJDswGwAwAULfy8Zm/cdtttfHWh2tpanHjiifjkJz+JCRMmhPchybgnQd0WnnXr1uHGG2/EAw88wMvjc+bMwXMdjRiaMRkwQt6dAlAngzln+wDQCULOncBhVwnMAcGgIzbkVp4IAJ0o5Hh/JEDHjxEAO1HQsQTBTgZ0QDDqZDDH2woAlAzonO39USeKOfdxhYaEBap2stPlhMFOBHUsgbiLqNJVbR5QtRMFHd8+CHYSoHO3JQQ7lhDgicKOH9vvLsvADgjEnRTqKo4fcNpKFOz4gUOqd2GoY7Eprm6fj7/+9a9YtGgRAGe+u2OPPRaf/vSnMWXKFLF+JBnzJKjbQrNmzRr89a9/xYMPPsgnC95zzz3xcGsNcp0TELZ8F48HdbKYG9nPgzoFzAHlKl0fAdiukpBj8YJOFnJ8Pw/o7BRBqUahPwqgA/xRJws6wB91sqDjbXlgpwI63pYLUbKYG9mvEnWymHMfX+oCjhDcqc6B6P0dyYCOd8sLO8EqXVU7PrCTRR0QADsF1LG2pGDH4gM8WdjxPrjvvizseCOVwFOGHVCFO2HU8YP74E4EdXx/iuumfgQ33HADFixY4PTBNHH00Ufj9NNPT3C3BSZB3RaWVatW4a9//Ssefvhhjrm9994b97dkkJ8kUfp2gU4Vc86+LtApYg4oV+gY6BQxB1SCThVzQCXoVDEHqIOOhcEu7IIIkTDYqWKOt1NGnQ7meFspQxlzvI0y6lQxN9KO2lW5frjTndia4U4FdbxbDHeSVbqKNlzDsSqgc4fjThF07naUYAdU4U4VdoALd6qwAypwpwU7oOJNQRp2QDXuZGAHAJTiltkn4a9//SteeOEFpx+miWOOOQannXZaMtfdFpQEdVtINmzYgOuvvx4PPPAAx9x+++2He5rTyHe0yTdIAGKrY443YwFGiShjjsXIE6S9a8UqxCwA2R69vjj3CcqQc/dFB3QsHGQ60+wZzvu2DugABxqlWkMbdABgpw0t0AEOpmgKWqBz2lFEHYvrfLs4ViuxU0QLdQD7o4Yqo463Qx0g6qAuzmjBjqUMPB3YsXaGJ8WwQgcB7LoYVlohVA117o4AoBuycqhz5c6dPo4//elPHHepVArHHXccPve5z2HixInqfUsSSxLUjXN6enpw44034q677uKzfe+///64uzmNwoRWtUZrbJCUDXSrTTYMADRtAwZgDOu90VOTglgE2c3GyLCrQogNpAeB1LDe05UazvlyOh/MhMK5LxSo36CHOmoCVsbQX5+WOP3SXW6KreRg5tTvFzUJrFpDf1UDChgFG6lhzceYAFZdCqREQWy9yX2dyqERy4IB2is1lKt0caweUaohMDWswNvJEq1KHeD8vgpNBJQAho5fjPLSZLp/SxJguIMChv79shstwNL9vVN0zujCxu5GrWa2m7QZq7vVr2q9fc7/w5/+9Ce89NJLAJxz7k488UR87nOfQ1ubQiEiSSxJUDdOGRwcxG233YZbb70VQ0NDAJw1Wf81l2ATZsg3WGOjtsm5KjY3lFEGHU3bQE0ZBgVDGXXUpKBZpx1jyER2k8KEuzaQypW/t9RBRw1nmNP5j/pM+05Fg5175LRn5qgy7KgJlLJGuaqqPqxHidMnw1JHHSWAXV7/lVhQRh0DHSXOwvfK4KDO40Esqt4XApTqnavCCQWI6/FVxR01CKwa5w8UHdjFsvSWZ+hVB3elWmfoVAd2Jdd9UoUdJUChcQRi7DQNVdxx2LGoPuwMdiwKwKMEsJtKI/9RxR2hmDJzMwDApkQZdwTArEmb+f9VgXfL9h/FH//4R7z22msAnKtlP/WpT+GTn/xkMs/dOCRB3RinVCrh7rvvxvXXX8/nA5ozZw7WH5THqo6Z6F7dItegC3Ok/CkzPJiVRl0F5gBl0LkxBwDGcBl0MvOoujAHqIOuAnOAEugY5Nj+1Kz+QFaBnRt0gDrqGOhYVGDnBh2gjjo36ACooY5WPg6qqHODzulLJeoANdhx1Ln6q4K70UAdoAa7Um3la0QVdiXPfVK5AtYNOvfP3ZEFXhXsADXceWEHSOOuAnbsByq4MyimzBgBmSruZk/aNNJG+UFRwd2uk9bgf7JfwjXXXMNXNmptbcXpp5+OE044ASm/KbeSjEoS1I1RKKV45plncPXVV/N192bMmIHug21kdm0CMQiWdreje5XEC6oMOuL5VJFBXRXmWCRQ54UciyzovJjjPy+Jr/RQBTl+g9wHHsecZxc/1AFysPOCjh9TAnZezLHIos4LOt4XCdgxzDntuXAoizrqf/9lYOfF3EhfqlHHbxPEXRXo+A3ysItr6NUvsrCrQB2LJO68oGORmavOD3TsNr/I4M4Xdiyivwo/1PHOiD/mVbBz3yAKPFe1zh1Z3LlRx9sAkYbd3M61AJzPua/nP4k//OEPfKWjadOm4ctf/jLmz58PIjJrQxKtJKgbgyxcuBBXXXUVXn31VQDOXzDFw2qQ3bsVxBx5kgujzqc6x5IbyoB2Rc8sHog5QBh0QZhjERl2DYIcv10QdIGYA4RB563KVTUTADpAHHVBoON9EIBdEOhYRGEXBDpAHHXe6lxFG6KoC8DcSF+iUReEuZG+BKOObxOBu0DU8Q3EcTeaqAPEYecLOhZB2AWBjkUEduw8urDbwyICvFDYAWK4C4Md70z069cXde4NRHDnqda5I4o7AmD7ANgB4lU7hjoWWqI4ddOHcd111/GVj+bOnYtzzjkHO+20k1CbSdSSoG4Us2HDBlxzzTV45JFHADhrs5oHNaF2/gQY2epL3yJRF4I5lqgqXSjmWCJQF4U5ILpKF4U5IBp0oZCr2DD8Qy4Kc0A46FiiYBcFOiAadVGgA6JRF4Y53o8I1AVV56raiYJdBOicvoSjLgp0Tj+iUQeEwy4SdYAQ7EZr6NUvUbgLRR0gBLso1AHRy4UFVem820UlFHcEyLWJVsLCb4uEHRCKu0jYsY3CcBdQrXNHBHd+1Tq+vyDuvKjj++ctHL/sANxyyy3I5XIghOCYY47Bl770JbS3t4e2mUQtCepGIYVCAbfddhv+8pe/8CW9PvShD+E/85bDbPG/xn5pdzu6Vzf7o0IAcyxBqBPCHL8D/qijKQqaEWsjqEongjm+bQDqhDEHjKDB00wF5MrbBTYhADqWINiJgI73LQB2IqBjCYKdCOh4PwJgF1adq2ojCHUCmBvphz/qRDA30g8x1PHtfXAnhDq+cTDuRrtK500Q7CJBxxICOxHQsfjBThR07u1F4we8yGqdN36biqKOd8T/fkeizr2xH+4EUMcShrsw1PH9BXAXBDsAuHrOj3HNNdfg4YcfBuBcTPH5z38ep5xyCjIZ9VkaklQnQV3Mef755/HrX/+anze32267YcWhg0hPC19zaknXBPSsbqr8Ya2F2sY8gGjMAf5Dr1KYA3xBJ4M5oAw6zxQmMpgD/EEnhTnAF3QiVbmKJiRAB/ijTgZ0gD/qZEAH+KNOBnSAP+pkQAcEoE4CdE4/qlEnAzqnH3KoA6phJ4U63kb1z8YadYA/7IRRBwTCTgZ1QDXsooZdfbsi+fB5cScNO6D6tSsLO6AKd1KwYzt4cRcyBOsXP9wFDcH67h+CuzDUsfyo+Ru48sor8fbbbwMApk6dirPPPhsHHXSQ0PGTRCdBXUxZu3Yt/u///g9PP/00AKCtrQ2Fo2qR3bNZ6OTQCtRJYo7FXaWTxhyLC3WymGNxV+mIDZh5uRPJvaCTxhxQBTpZzAHyoGNxw04WdCxu2MmCjsUNO1nQAdWokwUd4EGdJOZG+jGCOlnMjfRDHnV83zLuVFA30sbI9+OBOqASdlKgY/HAThZ0LAx2slW6iq4o7OPGnRLsgMq+qsAO4LiTRh2LG3cS1Tp3vLgTqdZV7O+DOxHUAQC1Kb408DH8/ve/x+bNTt8PPvhgnHvuuZg0aZJUP5JUJ0GdZorFIm666SbccMMNKBQKME0T6QNaUHdkB4wa8Snjl3RNQE9XvRLmWIYHs6ADKTXMARx0qpgDRqp0xJLHHAspAWaBykPOHeq0ITrEWrW7IuiAEdSpgg4YQZ0q6IAR1KmAjvfDAoyiLXT+nO/+DHWKoHP64KCOGtXrsIr3Qx11gAM7HdQ5bTj/aqFOEXQsDHZKqAMqYKeKOsCBnUqVrqIrGg+jUZI4vy6wEUXU8f2pOuyAEdxJVuvcYbiTRR3f34U7UdTxffM2PvTOXrj11lthWRZqampwxhln4OMf/3gyBYpGEtRp5I033sBll12GZcuWAQDmzZuHZfP7kJokv/7UpuEGbOhrUMIcABQLKRSHNdfEsaE927nZb6JujcaM+9R5w9UJsSjM/Eh7St3QQB3ggDLTR5VAN9IJ8ek2/OK3aLtaQ/KYq9jdpkgN6690oRNd1DmN6K2PCihUnH36oLssmLNqiF43dJ4PAJzHMgOt14fucwKsUqgTXdgBsFr1l/KYMq1Lu42GtPpSfDYIWrNDSvteNvkC/OIXv8Drr78OANhuu+1w/vnnY7fddlPuz/s5CeoUMjg4iN///vf4+9//DkopWlpaUPpwPbJ7iA21upMybGzO1WNNT1P0xgHJpkuwbAN9XfVqDVjlv/h0pshPUZBhEw1LTaVmSjVAoZXCHCao3ajYB7tcnbOhjDk2TEtsinyL2odnapiicVURdoqg0KRYWSov2K5apSM2HEiRkQXkZWOUKMycjUKT+l/NRokiNWSBmmp9IBaFOVxCsVH9DxZCAbO81Jid1l0nlaJUqygiChgWRalWc41VTdiZBadCpFytg/MaUX1eAYBZdPpQbFCvGBILKDYSp3qoujQZAYYnkJE/AhX2z7c7x7ZVoUworLaS80e1agjQ2D6IxhrVOwJs19SFjcMNGp0AZjVuRndBfhUJSim+2HcSrrrqKj4p/wknnICzzjoLDQ16fXq/JUGdZJ5++mn86le/wsaNjjwa92lEw3GTUKyJnhvOnZRhI1Uej1k/3KiEumy6hOZa5+qDrsE6edRZBCg5b4owoIa6FIVZ65TW7K4sGpfIvbMxzAGAOUxQs0mhG7bzIcHe6FXCjkksIF2uKpWyRBp2DHQAlFGnez4dBx2gjDqjRJEaZOcFEmnYMcyxqKCOWBSpQeexpAaRhh2hgJkv98EGwN7qCFHCnWHZvC9KsKOAWXCGw2EQPdxpwI4BiBpqsHO/xlRhZxZHnt/SsGN/eFHnPvD9FXFHDSDX7rShhDsX7AA13FntrmqdIu4aJwyOfK+Au9nNm2CX32xUcTercWQYWAV3E6xubP+vvXHfffcBADo6OnD++efjgAMOUOrP+zEJ6gTT09ODK664Ao8//jgA56od+3gbdXPqkLdTyFniH3oMdEYZdWuHmqVQ58YcoAA6N+ZYZFHnwhwA2N1ZNCwRr9K5MQcogM4e+WDgUUCd+3hu0AGAlSHItaqjDpCHnd+VrzIfEhWg4z+U+/B1gw6QR50XdKwN0bgxx/eXRF0F6IBK1AFKsGOoA8rDjwRyuCujjv/XHHvYmYXKq8FVYOd9jcnCzv26VUWd+xSNCtiVb5fCXblaV9VPGRd5YAdI4o5V6yoakNgflajjP5PAHQGwfbNzbp0q7tyoA+Rh11nTBwD4ovFt/PznP+erUnz4wx/GN77xDTQ1qY9ovV+SoE4gTz/9NC6//HJ0d3fDNE00zm9E69GtMNKGFOjc1TnDdTmcKOq8mGORQp1FgKL3sniIa8qDORbRKp0XcyzCw65+mAOkQee9u17QschU67ygA+RQpzs/nS/oAGHUeTHHjy+BOj/QsTZE4gc6QBx1VZhj8aKO7yCOOzfq3P0Shp0HdUAMsAOkcOeHHRnYBb3GZGDnff1Kwc5Vpav4sRd25W1Fceeu1lX1V8RFPqhjEcVdRbWuogGx/dkQrDcysJvdXHnBhCzuvKhjEcWdQSgmZvudYxds7PrSIbj99tth2zba2tpw3nnnYf78+UJtvV+ToC4k/f39uPLKK/mEidtttx2KHy0iO21kqFUEdUGYYxFBXRDoAEHU+VXnWERQF4A5wAFd1Ll0QZgDBKt0ZfD4bkMhfB5d0DGCUAeIwc4PdCwisItaSSLqgyEQdIAQ6oJAB4ijLgh07nbCEgQ6QAx1gaADglEHCMPOD3Wsb5Gw8wEdv2kMYReEHFHYBf7hRABbAO6+f5BBEHYBoOP7B130IIi7MNgBArgzgHyb+mvYt1pX0UDE/vCv1vHbBHDnRR0/NDWEYBeEOhYR3LFqHcvXar6HSy65BMuXLwcAHHXUUTjvvPPQ2Ci+xu37KQnqAvLCCy/g5z//OTZu3AhCCJrnN6P1w051zp0o1HmHWr2JAl0Y5oAy6Lrrgi8FC8McSxjqQjDHElalC8McS2iVLgxzLBFVuiivhoEOiB6GDQMdEI063fVeQ0HHNwqGXRjo+PFDYBeFOXcbvl0LwRzfNwJ1oaADwlEHCMEuCHWAwHBsCOqc/THq59l5h16r+hABu8hKuADsglAHCMAu4sp432qdTxuBwAsYhvUmEHch1Tp3wnAXWK2raCD4pjDU8W1CcOcegq06rGDVThd2XtQBgF2imPfaEbjppptgWRYmTpyI7373u9hrr71C23o/JkGdJ4VCAb/73e9wxx13AHDOncPHgJpZ/tOUBKEuqjrHEoS6KMyxBFbpGOYANdAJYA4IrtKJYA4IqdKJYA4IrdKJjChHgY4lqFoXBTqWINiJgI634fNhIAQ6IBB1IqADglEnCjrWRlW3BEAHBKMuEnMsUajjDQbjLgx1LIFVuwjU8c1G8Tw70WpVEOxET28I+uMhDHT8+EGwC6nSVWwmArtye0FD0WHVOnd8cRdRrXPHF3dR1bqKBvz29x+C9UsQ7oKqdfywEbiLQh1LEO78UMfytZrv4cc//jFWr14NQgg++clP4otf/GKy1JgrmjX/bSvvvfcevvrVr3LQNR3UhMzXMoGgC4q7OhcGuqCIgi4w7uqcCtkFQcfifqMt1QBDk6kQ6Pz2hw0YBQqzKAA6Fu/5cTRe0AHOZKnZnsptRUEHOPjJ9FV+KsqAzi/CoAvpkwjoQvcXBJ1fREEXuL8o6GRCKYyi+mPqzMmn+ZjozOlHgVROp//O81onfs9pEdABzu80PeB/AZTQa9r22d93Q8CqIVVzUcpcK2ZlnS9vX0VjWM5X5f4SF434fXpLHL8/JzdjAz9s+XOto3ZAaX+W1oz8vHZX5X6ClnMoTjjhBFBKccstt+ArX/kKli5dqtWXbSkJ6uDMkXPffffhS1/6EhYvXozm5mZ0ntmJjo91wJCYbDRl2KgxS6HDrWHJpkuY2DSgDjqLAHkjeriVxVulS1GYDSVh0LEqHYtodY6FVemcxtQw536YRTGnmqq2NY6lArqK+yoLOlp5PFnQEYsi0zfyvNgmQceyDcLOLEj8keUDO9mryg0r3hei1OtaZlsv7ihQs1mu7xW4o0C2S+5qXi/szC6J6YMMVH2K928WnwmhP5fVwl1H7YAW7lozQ9K4M7MG3jvyFfzsZz9DS0sLlixZgi9/+cu49957kQw8JqhDf38/fvjDH+LSSy9FLpfDPvvsg5ZzW1C/i9ycb+NRnePn03kxJ/u8dmNOUkWEqlXn3PuzK1pl37jZsKsK5mSqdCxmYaRalxqmaFgjhxK/ap1M+Fx6W2mFjpQ/6HVARyiQylmjBzoWSmEULGXcVcBOcOi1Yv+4YSf7+tCt2Ll2Fa3S8WO7q3UR58tG7i+80wjuiC0PO6ASdrKpqNopLWyLkU9zheO7cbe0d4L4YcexandL3VW47rrrsP/++6NQKOCyyy7Dj3/8YwwNqa1ssa3kfX1O3aJFi/D9738fa9asgWmaaP5IM1rmt4AY4i8qGwTF8skRsphbP9SETUN1aFKcBbxrsA59GxvEK3PepCnMOnnIAU6VrnaNiUKL2tPHHCao3eAsY6VUXYs4aTosKqBjsTIEpRoiPOzqjZ0iKDaY6uug2hSGRNWlcmfnH1XQUdNZe1W1QkdsZ3UIpWMbBKWGtDrmRM+p80v5PDuRc+q8Yctpqa6oEdc5djorLiiv8Vq+cEIWdSyUAMV6ovw6Fz6/LiAFjYsrzaL4uXV+sVMS59Z5QygaW9Vh01iTjzyvzi/sXLtNuXrMbFBftiwr+QunNsVB756AP/zhD7AsC9OnT8fFF1+M2bNnK/dha877tlL34IMP4qyzzsKaNWvQ2dmJzq93ovXwVmnQWZQoVefSxEZ7zaAy6HKlFAaHsnqgqy8qgc4aTsEYNpRBR4lTCTALYw86SsBxoxKjBGT69SooOufRaa25qVD1cIfY6kOuxKYwdYZbSzYym4eV99cKpUqgAwBCKQilMBQxGkvFTnPdXeXnq+Zz3RliV94dUKnYuZLWKD5ZGWgt+0VKRP1cEkrQ3y2/mgPLQC6LbNXJftFhn4MTagYxJdurfPy8Lbd6DTEIntvpPlx55ZXo6OjAypUr8ZWvfOV9Oxz7vqvU5fN5XHnllbj33nsBAHU71WHiZybCrBOf/ntGbRf2qFuBRflJWNA/VboPaWKj1iyiq1CHtUNyM2TnSikM5jMYHsqi1JuRBp3ZXMTMSZvRl6tBd5/8C98aSsHsdq5CVHnPYSML6QGC+jWSDdjOX8CqMGPHNiwgPaRQdTEI7JRTXcz2yr/pUVJee5SoLezOMZxX/LSgZVwp7E8NAqvGUBpKBDyok/jDCXBgQwolUMOA1SR/lRspUaS6h0BTBkpNchc98ShW2tjxKQHsrPqasdQASvVqS84Bzv5U8nF3Ghi5SlN1uTlAvVJppVmlU2l3/l6hUrGjBCiV3yKl12AmQKmu/P6mUDqhAEqTCiMdkQ2hmDTJgdVQQX7dZAJgv8krAAB5hXXPZtc5lb41+WbpfU1CcXLbfwAAf++Wm7KkNGCh6b6Z+Pe//w0AOO6443Deeee9r66OfV+hbt26dfjBD36AhQsXghCCqcfWITN/knB1jmHOgI3F+U682j9N6vgMcwC0QEcpwfBwBlaP+BPVaCpiVqdzqblBKHpzNejqFT9v0BpKwexJVbzByKDO/b6UHiSoWyNZpSuDjrcl+T7Hj0+capss6hjoAHnUccyxKKDO/fgpwY6fjyePOg66cjvS54d5q3QSuGCgG+mLHOwY6Pj+KrDTAB3rAwB12LHTyxRg5x5AkIYdqZ52QxZ23kqdLO4s1+tEBXbu170s7NyoAzRhB0jhrgJ17g4JH5uis7PH2a28nyzu9i+jDtCDHSCPuzSxcUrbf2CV3+hlcEdtigMWHodrr70Wtm1j1113xY9//GNMmCB+ruDWnPfN8Ovrr7+OL3/5y1i4cCGamprwgbOakT28Uwh0M2q7cEL7q5hXtxxGuaZuSagiTWw0pfKoNYtKQ7W5UgqbB+s46GRjNjugMwiFoTLcyqpzMYDO+YFklc8FOtlQUvnGLr2/QWBlRkCncnyVxeO9beg14PrWILAkruiuAB1QBqn4/r7DrvY4/h2pNxIpHeJCDaGQH4Z1PVTEljsf0vs2Q2zn96ETneFUYORiGbV9NU4fKA/F6gzHKlz/VhmJ/QmA1HrPHy+Kw7GEUBBCUZdRP/0ha1hKQ7IsU7K9UkOydvnN2gSFCYqPtr6Mj7a+LLQvMQhe2PV+XHrppWhoaMCbb76JL37xi1iwYIFS37e2vC8qdQ8++CAuu+wylEolzJkzB/Wf7UZ/ffRfDqwyB4BjDoBwlc5dmXNDblO+AeuHG2FHfFqzyhyACswND2dgCQy9sqFW5/gjG/fmatDdWx85cutXnWMReX8JunvCQ68BmBOt1AVhTrRS567OVewvWKkLBJ1Epc7vMZSq1Pk8zKLVuirQudoUqdaFnkcn8MeUt0o30i+xap23Ssf3l6nWxVSlqzi+TMXO5/cnWrELQohwxc6nUsciWrELQqBoxc4KeJ2IVu1834MEq3beSl3FbSJ/13grde4I7O9brXN3LurwBsWkST2Vu0lU7UxCsU/nSt/bRCt37mqdOyKVO1atc0emcmcQigsmXo7vfve7WLZsGVKpFM477zyccMIJAj3ferNNV+osy8LVV1+N//3f/0WpVMKkeSZmfX0Nsm3hT0hWmWNDrYbnT6yoKp1IZU4UdJQS/+qcIOiCqnNCoPNU52SiXV3SqM5VHF+xH0Ggkzn+aFXoqAGxalvAL1mkWhcIOkCoWhd5YURExSgIdE7bNsy+gA87tk0A6JzbbKT6BKYPGgXQARIVu4CHSKRiF1ZVEqrYhYAOGN+KnbO/xs6aF1AAY1u18+9AdP/9yjUyVTsr5E1cp2oHiFXubJ83b5nKnU0J/tLzJexwzgbMnz8fpVIJl112Gf7v//4PljXKUyKNY7ZZ1A0NDeHCCy/EzTffDACYfWwa875Ygz6zAZvywWvXzajt4sOsXsyJhFXnVOeri2OodfsPrOOgk401lALW1PCLIWRTMdypEtu54m28hluBaNDZ6fC1XCNBR51qX2gfYhxyld41DHRsm5D+aV/pGgI6of1DQDeyjSDsRilKQ7Hu/SWHYv32H+2h2Kjbo2AXVKUb2T/05vDENByrhTsberjTmG2dwW48h2QBKF8l68ZdWNYWmpGqIaj95Iv4whe+AAC47bbb8IMf/AC53Pi9/kcz2yTqNm/ejG984xt47rnnkMlksMeZWXzghGzo+XPu6lxYFuc7fa949VbngsKGXr3xYk4WdGZzEbPmrA+tzkVlm6rOhfTFNoGiz9xfMufPBVbRtrBz6KR3FQAdgMBqnRToNFAhUq2LPn7IbaNUpavYJgx2Ag/N1gC7yD7EULELwl3k64jifVO1893NVbUbLdwtGYq+OCGoamdRgju69g3dN6pqx0bECCFYs8+tuOiii5BOp/H000/jnHPOQVeX+nx6W2q2OdStXLkSZ511FhYtWoTW1lbsfZ6JKfsGV522q9sUOtTqjXfoVeUiCPfQqyzm+Pl0rrCh1pRhb53VOUAKdKT8Zuztg3OjSAPV28Ux3GpljDEDXeAQrOCv328IVhh0bHtPX3UrdIBclc4PdqREkeoRm8+O2AHVOk3QyWQ0KnYyyPCFXcTQqzdxwG5LG44NO5/O9/hxwG4cq3ZBQ7Ivrpsu3M5oXEzhNwTrjcyQ7Audv8AVV1yB5uZmLFy4EF/96lexfPly5T5vidmmUPfWW2/ha1/7GtatW4epU6dit/PyaJk18u7UVarnQ68Mc3NrVykNtepe0QoInDcXlPJr11udk00F5sazOqcx3FrRh63p/DmfIditokLnjvd+qxzfBYpYhl17hv1PJgrcJ/5hWJEqXcX23s0lH8ctsWKnAr0tDXbSx9cdjgXiqdrFOCQbdl5dUMbifDu/BOFubaHyooz7ze/gqquuwrRp07Bu3Tp87WtfwxtvvKHV5y0p2wzqnnvuOZx77rno7e1F80wDO57TjfqO6rungzk29Dre580B8VTndDG3JQy3jhfo7DRBvtmMbbh1PEDHqnVKoGNtlPtNbApzSPGXaVNl0FVV61Qu5ne/hMdg2NUvOtU6YAR2qqiIC3ZxDcdGnU8XvL/GwWM4zw7YAqp2wLhOfwLEd76dyBCsN17c+V2U+Ne+r2DHc7sxd+5cDAwM4Fvf+hZeeOEFrf5uKdkmpjR59NFH8bOf/QyWZaFjVxN7frEGqZrqX2RrahATU31KF0AAwHuFDrwz1AlAfp1XAChRE8sH2rCqt1kZczXpEhqyeeXz5lZ3N6PwXgNgj90QkzeZPoLG9/SedpSUpxVQvBvEkl9o3K+N9KDOWkDOWrI6MSwKQ3VdT1c/tHa3KDLd6us5EQqtCh1vp2SroQ7laU5aa/U6oAkjSgA7o7h0AmvDAKxa9Taoof+c1A4h6uvNuqJVfTeA4Yn6fSg2arw2CVDs1DtvlBBUTWsiGkoJCKGY27ZO+fgGsXFM6wK8NjRDuQ0AmN+wUHlfCwT7ZAfwu+7dq24r5Sn6bp6L559/HqlUCt///vdx+OGH63R13LPVV+ruv/9+/OQnP4FlWZi6fwp7nRUMus5UjxLouqwGvJ2bivXFJuXqXImaWDHYqgw6g1BkUiWkTEu5Ore+vwG5tfXKoDNKQLqfwNQYrTLzQGoIKDSqv2Hqgo7NU6e6fiygDzqaAgqNhtJyYSyGRWFqrOtJbIr0QEl5PVfAqc5kN6s/IYhNYQzkQIoaf9VTCpIrKoMOcGBqDmk8ISwKc6AAI6dx1S+F8hqzvA0bWr9PYqstoedtQ6taRSkMzaFYKyM4l1xAtNedBWDVUr3KIQCUDOdLMZQ6a7mqhJQ/Y0rUQEnxwbSpgUd65kZegBiVAjVRUFwrzgTFa4VafLX19arbUlmCls++gSOOOAKlUgk/+tGPcN9992n1dbyzVaPurrvuws9//nNQSjH9kBR2Oy0LwzN8whBmKlbnuqwGrC82w1J8UpeoiWErg6Jtwla4qhVwQJcyLf69bNb3N2DxosnoX9eofN6VUQJSQ0TnlA2YeSDbTZw+KFiGlk/g1gVdathWvg/EAjJ9tjboinV6Lz3DokgNOfdDpTpEbOp8+GtAyChRZLpyDqp0hu5sCli2GuwoBcmXMaYKIkJg16QAqgg7y7lAhFCqNWxGyxP66sIOVB12xKLOMKQm7AB12Nkp5z3CsDRwV74YKg7YqeKOn5oQx5RoGrADHNip4o53QfHBtCiBARt71K2IBXeqScPEV1tfr8KdkSLInPw8TjzxRNi2jUsvvRS33367Vj/HM1st6m699VZcccUVAIBZR6Sx66crpyxRraixjFTnHNAN2Rn0leTWjCxRE0WFNfNY3NU51azvb3Awp3GehlECzGH1ipKZB2rXkxHQKaSiOjeOoNMabkU16Kghvw4sA51qvKAjFpVGgBt0AJRgR2wKY9D1iSkLTDfoWGRBxEBHCG9TBXaEPZaUKlXrqGeFhvGEHdtfBXZ+S5Pp9IHhTjkxwC6Oqp3WEmcsmrAD1Kt2vAsaVTt2DrsK7F4Yms2/16napWH64o4YBIWP/BOf+cxnAAC/+c1vcMcddygdY7yzVaLu5ptvxm9/+1sAwPYfTmOnUzIg5TfluDGnUqFzV+dU467OqaSiOqeBuXQ/gTlMtKtzxEY8oFOIUQIy/fYWBzr+c4n75Qc6mWqdb4VOElNVoFMIB5273zbVG4ZlEQWRF3RKx6qexoVYarDzZqxhV3X16ThX7Nz9iAN2wm/lBCg0VT4n4oAdEBPstuKqHQClqp3f53DcuCOEoOvgv+Nzn/scAODKK6/E3/72N6X2xzNbHer+9re/4eqrrwYA7HB8BjuelK0AnV+azWF0pPpC292SMDea1TmaorCz0e+yrDoX23CrQuIebvXeD2JTofPqRhN0Mom7Qldxm2C1LhR0gtU6X9CxiA7D+lXpVOIHOtFqnXvY1RsbwrDzVunc2Vordt6Iwi5wTVkJ2Fl+ywLLDsf6dEN3OJa3M4bDsfXNwee7bilVu7E4386mBl4pVF8548Yd4MBu4wF34rOf/SwA4Ne//vVWB7utCnX3338/fv3rXwMAZh+TxpzjnFdvVHUu6nw693lzOufO6WAO2Iaqc7ltY7gVGCPQkfAhWMOiyPRboaCLqtZFnkNHaSTsRq1C59OX0IiALgpDrEoXcgwR2PmCrvzzraliFzpHHHVeA1G4i4LbmFXswt4vtrXh2AjckYg3vy2haqc6JOtNFOysEO64q3aEEGw68C6ceuqpABzY3X333dr9G6tsNaj7xz/+gUsvvRQAMOvINOackIl9qFUlW0N1TrgfgtU5oxh8BayZA7I90cOtVib4Cljd4VZgywAdTQGFJkOoQhc0BKtbnQMkLooIuV0YdCHVOiHQAeHDsDIVuiAMiQ67hsHOZ9jV91ARsAur0rkz7hW7chvjf2Ws5lAsEA47n6FX380iYGfVCp4OEfQrIUCxXfB5vpWfaweoDcn6Ja4h2bPaFmDzQXfzc+yuuOIK/POf/9Tq21hFYyafscuzzz6Ln/70p/wq111OSUX+BRIWVpkD/MfqRbIlVOYAF+aAWC6EEH1YvduZeSDTQ3yX8ApupPK/1P1mq1md8+ujbxdsCqNUOQHxuAy3lqt17lUmZEFHKACbgrouGJK9ypVV60p1I89t6QodpSA2qvohBDoWy1kgiKZdrzGVIVfLBkzX70H2PLoy7Kw61xMkbNjVL+WhWLumchk+UdCxGJYN29T4AC/Dzv27BSKqdD5tpIfsque2LNSc50flzwKHXn36wGBne2Y78B169e3AyPGr+i7YDTfsLI+JZM6TZbCrsojM04PBLqX+vsVg11CjXoZksEspyJ1NN8ZgpzO3HYNdRqEcmoaz71ltC0BPWIChoW/h7rvvxk9/+lM0NjZiv/32U+7XWGSLr9S9+eab+OEPf8jnodvt02l+Dp1KtpWhVmBsq3NhMXMxXwwxCufPiWY8z59zfxCMaYWuohOV247ZkGtUX+I6hw6QvzDCp2InDDq2rcQ5dmHZVip2wChdGSvzq41p2pMt5iIKYIuo2gFbz5BsWNIwkSEmTvvEL/k8dt/73vfw5ptvavdrNLNFo27lypX4zne+g3w+j4m7Gdj9tHTFtCUy2ZaGWgEP6FT74gKdathwq9a6o+M83MoumBj3CyJYtU4DdOzcOp156Fi1Tgt03mFYlXns4r4aNuo8OqG2xIZdvfHOYSdbpXMnTtgpr7fqgp0Ozti+wlU6n34w2AlX6ao6oQc7IIGdbze2gSFZAKgxTHztzGux7777IpfL4YILLsDy5cu1+jSa2WJR193djW9/+9t8Ldd5X6ieWFg0XVa9dnWuGEN1LmXY2pjb1BvDxRBFon0xhFEkyHYRLdBZGef8lS3h/DmjRLeIK1ydFQH0+mGUNCcWphRG0XaW/tJZRZBSkKJdORedbCwbpFDSr9JRqjd9CXUwJzXs6hMjV9QCHYvuOq1bVMVO865w2Ok8rMQZ/hQ5ny6wiTLsRM+nC2zHBorNmr+bmKY+GcyrStnVFZ0iSIxVu5ydjt4oIHUpE9/5+t+wyy67oK+vD9/+9rfR09Oj3afRyBaJulwuh+985ztYvXo16iYQ7Pv1rO/SX1HZPrMRxzcswI7ZtcqYm5bZjPkNb2N2zQal/QGgKTWM7Wo3oSUzpNwGAJQsE6WiqTfc2lhExy4bkd8hp/5mSl3HV3WDAdiZ8vqMGm/G1HAqfTofDNQg0PQ67DRBvtGsOsdHJkaRIttVVK+eAE51y6agGv0gFDDyJT3QAc5aqEVLrUrn7k++CFLUQB2lIMN5GL0arz+LwujPwcipr8XJrohN9eqXdIjuKh5wXjdGSa+NYr2p9Vxj0V2HGYihykWBTC9FplevL0aRwCzovKnBeU8s6T2u6cY8ikXNtYQpQVt6UKsNGwT9di36bfW1lQ3YmJXuwax0j1ZfVllFrLLUToOoraH4/jcfxtSpU7Fu3Tp897vfRT4fQ3k25mxxqKOU4pJLLsHbb7+NpqYm7Ht2FlnJv54Y5nbLrkWG2DAVxwemZTbjA5n1SGu8WzSlhtGeHoRJbJiK8ihZJobzGRSKKWSyJRiN8k9Ko7GIKdtvwuSOXqQNG8RQH3bRGWoFyhBjo2CaoAMAOw0U6hXOYTMIrLQDOjtFUKpV64ydJig0GHrVxiJFtrukV7WwXcsqEYCmYnh5q1a2bIBYFmAANK0+5EkKemu6glLeBilZMHo0PqAodSqHeY1z42wbsO3YYKca/jeuTdVh53pqjCvsCGBlyhd6qU4VQgHDYqcvQBt2APRgx6IBO0IclBUKKWXcHTnjXRiEoi09qI07AFqwY9GBnUUJLEqUcdfcZOOSSy5BQ0MD3njjDVx22WWgun/8xpwtDnU33ngjHnvsMZimiVPPWYSGTrkubp/ZOII5RX2w6twHMuuVp0xh1TkGOtWULBOFYkppzVgWo7GIyR29MAlVWjsWwEh1Lk7QYWQIVqWdisie++5XnVMATBXoSPUVeVHxA510tc7WXwQdcFXpKn4o+bgw0LEowo4UXG+6lMpX61yg4/9XgZ1FYQy5EKYKO9uu+D4W2OkOwwLKsCvWV76AlGDn2UUVdt63R92qnQrsKAFKdZU/iw12mlU7SokS7FhBwyh/dsQFO13c6Vbt3LiTTXv6UFx88cUwTROPPPIIbrjhBuV+jEa2KNT9+9//xh/+8AcAwDlndGG7HcXf9NzVuTgwlyaWFuhGqnMjbcyp24Cd28WGcd3VOZ0w0CljDgiszrEhVKEmDKeiRr13R+FqV92TmoOGW20TwtU6O02QazW3vAqdO5LVOl/QSffFAzoWSdhVgI5FEXZVbchAiIHO244s7Gyf95IYYKcyDOv7+pGFXdDCDzFV7IRx56rSVd00DrDze1zMgtxwbLEt4HNnnGDnjkrVbn7LO74/j6tqp4s7lardXtM+jW9+85sAgGuvvRbPPPOMch/izhaDupUrV+Liiy8GpRQnHDWIj35I/PyXuKpzcWAurDpnEhtpI/qdJq7qHBtu9QPd5Am9yM0JXkKGJ2K4VaSLvDqn+X4ftn6jnRIbgo08f06gKlVRnfPbXLBaFwU6oWrdaFboKjYQ+OUFgU62L36gYxGFHavS+cW2xap1QaDjt2sOxZb7Mh6w8++LOOy8VTp3hGEXsZko7MLeg4RgVx569d3fBjI9+ufZAeJVOxp2aowg7NKN/s8pBjsd3MlW7cJOX4qjagfENyQrkxP2Px8nn3wyAOBnP/sZ1qxZo9yHOLNFoG54eBgXXnghBgYGMHfHAs4501mnde+MiQPrFgXuF3d1Tmd1iqDqnEzirs6FDbcahMIww7SGURlu9YvIEKxQdS5qgQCBCyKiqnVxnD8HiFfoQmEnAjqBap1whS4MdiKg0zy/jicKdt5hV7/bo4Zho0DHIoIpvyqd5/axgl3k60gAdsWGaBDEUbEDImAXUqWr2Ey3Yidwnp3f0KtfjOLYDMeGvVQpJeNWtQvK1lS1qzNGhqe+evL/Ydddd8XAwAC+//3vbxEXTmwRqLvyyiuxfPlytLe340f/1Q32vm8Sw1f5VRdCjEF1btfsKuzduLzq5+Nx7lympgTSUP2hFlWdE47ExRBBQ7CBw61+iRiCFR1uDavWSV3hGvCOKAW6kGrdqA65BvQlCHajOuTqlwjYaV3lCkSDzr1dFOxEToCmNLxaFwU613ajDTvh0xbCYCdhklDYSbQTBjvRwYxA2IVU6araiBqOFegLoU7FLgh3gUOvfolpODYId0fOeDeyjbE6125OepNwO2N5IUU6BfzoRz9Cc3MzFi1ahF/96lfKx44r4466f/zjH7j//vtBCMH3zn4X7S3hT+rxuhAiTawqYMZRnQMc0BVLcn81eZdJU7kYorPdZwhW4epW7xurynBrULVO+vy5qr6MXOEqGr9qXVxXuNZuKEqDrqpaN1ZDrr47eR4AlSHXANiRosQ0Kn7VOlHQubf3g533woioBA3DioLOtf2WPhQbNuzqF2qS0bkyVrBKV7GL6pWx7jZ8YCdapatoh/pX7UKHXv3iA7ugoVe/hFXtZGZ9iAt2gH/VTnbmiLG8kGKCfRAuuugiEEJw//3348EHH1Q+bhwZV9StWrUKl19+OQDgtJP7MG/X4Dmg5mTXaw+1AvGcOwdUgk4m7osl2HBrsWTGcnWrbHWuYgh2DIdbfeNTrVO5IMJdrdOaf86FF2XQuap17uqc0qoXDHGqoPNU67QqdOyxiekcOkASdCxu2MmCzt2GG3aiw67exHF+HTBqsFO6uMgDO5Fh16BUwE7xrc4LO9W3TG4ViSpdxf5+FTuVC38DYCcdz3CsyixEozUcG3SRRFTiGI4F9Kp2gPiQ7F7TPo0zzzwTAPCrX/0Kq1ev1jquTsYNdcViET/60Y8wNDSE3XfO43MnDwRuOye7Hrtk1itX5+akN+PDjQtiO3dOZ7iVXSzBqnPsLyXZZGpKaJg8MObDrb67l4dglUFXjpUBCs0k9IIIoRBN0GGkWrfFzEEH6FfoyrAb8yFXv7iqdUqgY/HATrkNm6qDjsUNO9kqnTsxw07rtcRgF4M9YqvYKVTpvImlYtdDke6j0lW6inZcsJMaevVLjMOxh08PPpc9LN7hWJ05XuO8iGJWugdTU31K+4tW7T5z9E+wxx57YHh4GD/5yU9QKsW0VrVkxg11N9xwA9555x00NTXhe9/oQcrnA7hILUwx89gls16rOtdvpzFIM9rVuanpbmxfu1FruHXIzmBzvl67Omfbzr5ac88BAKHQWBaPhxI90AGAUQRSgzEMK1qAWdBfvigW0FnO8mO6oKMEgOK6x1XRXmKKxnOVq22D9A2oI4qFtaMTy4K5oVu/L5YNIjN0GxRKQWJ6DseRUk08HxXKa7y6YhSpcpXOHd33PXYBRbpfvx2jSGD26z/GMkOvfmGfSYv7O7TaMQjFhMwA0kQfNjNS3dptAMCUsAsDBcJg93rBf9YI0wAuvPBC1NfX480338SNN96odTzVjAvq3n33XT5h3zfPfA8TJ1S/eRWphSFagAkog67HzmB5qRk9mtrvseqwtDARm60GmKrrc8EBXW+pFjPqujGjTf2JatsE1Far8LGs62rCupc6YS6r1f4rnFA4VSAd/BSA9ADVxo9ZAGq69cBhWM6alulBW2ttS6NEkem3y5UF9ZcaJTFdTUgBo6C73id1lv7SDCnZIF29oLYN5DQ+iCgFHRzWn9XdpqClEki/5nlB5RUjSE5jKJYQ2LVpp9qmCztCYlpZRH+iY7bGs85SegBQqjVAbAdUurH0lzYFoUBarQg00o8a570v1asnTdUFYKr6Yxt4s3eyVht71y8HAG3YGYQiR03kNBVuEIJOE+jUaMaiBEVqBMJuIg7h89ddd911WLhwofrBFDPmqCsWi7jkkktgWRYO3X8Yhx9Q+eAUqYUBO4chqr7GIuCArseuhUUN5XVfAQd0G60mWJoPFQOdTQkMYiNlyL8j2TaBVTI46Ar5FLqH5MG6rqsJZGkdjFI8l/vrpgp0Cm9MZh6oX2+hpssCoRRGkSI9LP8YGxZg5m3+oWEWnEqbdDsMdBSghCjDmYOOEGdIOa34PHSDTnJS4pE2YgadLsTKoAO1HZRp4JAWnPcbatv6sAPUYVcGHf+vIuwoIbBqRj69lGFnEBQaR9qJ5SIMDdgV64yKPx5VYede293KqOGOEqDYQAAaA+zK9ykO2OmEEIrp7T0ARmCnijv3qFgcFTsAscCO4U4nDHZ+uDtq97Nx+OGHw7Is/OxnP0OxGMO5thIZc9TdeOONWLx4MZoabXzzC30Vf1mw6pzlqszVGSbqJF7/7uqcG3M5O40cTYfs6WmnXJ3baDWJH9wnQ3YGawvNHHSqcVfnWIVO5Xw8Bjo35qhBlYZOq0AnWa0zCkC2i/pX6GSmPMg71TliU631MN2gq+iKZJNu0I00Il+tc4OO/0wFdj4VOmpIVnBGEXRK1To36JxGlGHn3UcZdt7z6HQrduXIws4LOv5zWdgx0Hleiyqw81vWTwV2fu8vcVTsADnYcdDxH4zAThZ3pdrKx1MVdulWgcnkBWK43rgs24ilagc4sIsDdypVuw7PqSuqVbsh1wdlkRq+VTtCgPM+dzNaW1uxfPly3HzzzXIH0cyYom758uW4/vrrAQDnntmLtvL0JVtTda7OyKPZFFvtwl2d84JuVn0XZrZ3CbUT23Dry51VoOORaFr1Ck533NU5nbY46HwwJ1OtCwId4Fx5Klqt8wUdytU6Qxx2fqDjt8nALmTIlYqO1YxBhU4Kdl7QjTQiDbugbaVhF3RhhAzsPFW6iptiOsdOGHYBoOP9kYBd4FuxJOyKdcF9l4GdHfK3vdZwbPkcO+mqnR9UKZDuNaVwF9fQq19kYceGXv0iA7udMmsDb5OBneHz4Ixm1a6pgeLss88GAPzlL3/BypUr9Q4ikTFDHaUUV1xxBSzLwkH75HDEgc4D4FedU4kbdMptCFTnRObLEanOiQzBeodb/SIyBMuHW4vBw62i1brIuy9QrRM+fy6inTDQySQMdMDIG3VkOwGgYxEdhg0DnVSizqETGYYdwyFXIdgFgW6kEWHYRW0jDDuBFSMiYRcCOr6JAOyCqnQV24jCLuLpN9ZDsVHvK2NVsauq0lVtIA47b5XOrx0R2MVRpSOEYmpbb+DtMsOxURckilbt0hHtxHmunU78qnZHzP0a9t13XxQKBfziF7/QP91EMGOGuscffxyvvPIKMpkMzj69DyWIV+fChmCDhltlMxrnzsU93OqXqNv9hlsDE/WmORrnzylGFHRR1boo0FW0E1KtiwIdT8QwrCjoIqt1ghdFhA7DjsM5dKGwiwLdSCORsBOt5kXCTmLFiEDYCYCObxoCOxHQ8W3DYOc5jy60PxGwE13eLwp2YVW6yv6E3x5WpXNH+wIKUdgJfESIwC6uKl0q4gGMczgW2LLOtYsajh0SqHq4q3aEAP/1X/+FbDaLl19+GY888ohWH0UzJqgbGhrCb3/7WwDAqSdtxoSOQuzVORHQBZ1Xx0AnmqAhWDfoRBI0BCs73BpUrZMCHcKrdVIIC6jWKYHOpx3ZCl0Q7ERBx7cv+cNOGHQIH4aVrdAFwk7yKldf2I3jRRG+sBMF3UgjgbCTPe8uEHYKK0ZUwU4CdHwXH9jJgI7v4we7iGFX3/4EwE7qb+wQ2Hkvjojuj//PRUHH4gc7SoBSvehpC+GwC63SeRIGu3SL/hQ6UVU6b8Jgt2f9CqljB8EubOjVL0Gw855PF5Q4h2MZ7jqN+fj85z8PAPjd736H4eFhvcYFMiaou+GGG7Bx40Z0Tizh+OM3x3LuXFzVOZWLIbxDsKoXQ3iHYEWGW/3irdat3dwcfv5cWLwnRcd0/lzgBRES4Ve4ag65silLZEAHVA/DGiWKmm5LGHQs3mFYSpz5u7SHXClg5C2laUuEz69TSGzDDqKgC9tedcgwtvswNkMwoqEpoxp3Ck8FYsewPFn5deDFncqAR5xTnnhxJ9WfsAsoJO9X0Hl2RHZpsYBEVem8CRqOVam++Q3HRg29+sVvONbvfLqwxDH1CTBStdvxgP/B5MmTsXnzZtxyyy16jQpk1FG3fv163H777QCAM0/bhFRG7ZXGhmB1L4Zg1Trd4VZWrdMdbmXVOtHh1qCwat3azc0wltWGnj8XFne1Tgtz5WpdLBdEEP0rXFm1zjtliXRXyhdNVFTnVO5XeRi2ojqnACterdOdg859fl3MVTqVVFTrWJVOJZ5qHZu6RLo/lFZW61RXjKB0pFqnUKVjcVfrKCGwsnpv5TRlSA27BvYrjlUsXFU70WHX4P44/8pW6byxMpJVOnd8LqCQqdJVteWq2o1Hlc4d73CsbJXOGwY72SqdNwx2olU6b7xVO5GhV78UqQGkDJx11lkAgJtvvhkbN25Uaks0o4666667DoVCAXN3HsZ+e4tdNeoXm1J02aZ2dQ6QH271i0kohuys9lQl7IRS3atbKSUY2FgPY1mt9txzQEznzxXjOX8OtrM8kO4FEdQgsNJ6f8ET21klwixQNcyxvpSHYe20EcsJMbqPDVAehjXIFjMXHbVtYDgnN+xa3YgDu6Gc1jx2rD+kf1BvCTDAGYbNl5RBx0IoBSnaDujiqrTqNkOBlML8kL79oGpVOm+sGv02WDta/WFVu35oP84MduNVpfPGsg283dcZyzlyTtVO/zmUo6Z0lc4bBrvlxQla7dTN+jx222035HI5XHvttVptRWVUUbdixQo8+OCDAIDPfbpL+X3HphTF8ieoDuhazCHMSvegRXBKkqAM2lmsKbagSE00mOofFMNWButyTahLFdDeorfMkW05Q3qlek34EMDOUFhZrWZglIDUEPQ/JGzAjGHuRitjIN+o/3SnJmCliRbogDLC4rh40KYwCjYoIaCmZlWjZMMcyIOU9N5QSckG6dacYh9wMJYvALprKNoW7L4+0H7NpcRsClosggzovX+AENB0Csaw3hObEgKrNhXLH2Ck5OA33R/DX4QUShN2V/WJAhnddojzOMWxPBklJJY/mIuNgJnX749VS1HcpLdaEiEU23dsRjal9xojhOLAtqVYVWjHmmKrVltTU92xXNUKAKtKzpdODEJggWjBjhDg61//OgDgoYcewtKlS/U6FZJRRd0f//hH2LaNOXvm0TpbbfjEDbo2w0JnSm2hvRZzCO1GHiYoOs1BTE9vVmpn0M6i16qFXcal6hqww1YG3QW2wgQVmirFL7ZFUBpKwc455WGq+JebMwxY/iLQKtUZJSA14MCFGhpDMQx01IFUoUHtRW5lDOSbDFCjvJ6rIu446AgBNQArq/bGzEFXfohV//pnoOPReDUz0IFSZ4hQEXYcdOUKHVH/S87BHLWdL0t9uNMeGCyDrKQOO5vyaiEtldRhRwhotnySlkWVYUcJgVWXcp47cZzPxrpnacCOAmae8u91YGcUy88fWw92JZd5dGDn9oUy7AhQaC6/H9IYYEcoYAHFjbVauGPndWdTJS3cpY0SLBAUqakFOxMUNjVgU0MbdhYckOnA7snhdt6WDuxW1/4/zJ8/H5RS/OUvf1HvUERGDXXvvvsuHn/8cRBCMP/kIViSn1w2pchTm4MOAExCpNeBZdW5dmOkomaCKq3h6gWdagZLWXQXKl+EE2oHMaFVDqy2RRzMuR5bWmOj2CT3GHHQuU/eNyFdrTNKQKZnBHRacYGOR+E90A06wLmPVkYedm7QOX1Rg50XdLx92ZOmvaADlKt1FaDTiBd0/OeysHODjkUFdi7Q8R+pwM4FOt6OCuzcoGPRgl1lH1Vh5wW8EuzcoHP9TGmJvWLlKRuqsCvVVV8ApAo7bzuqsKv46KCAmSNKuCvVuR4gGw7uJGHHqnTeyMKOEIpDJyyu+Jku7FjigB0ADjsV3LlnzGCwU8GdRQ2cfvrpAJwp3pYvXy7fGYGMGurY0hg775fDxOlyrwB3dc4bmWqduzrnTYc5LFytY8OtfqCrMwpoSolP/DhYyqK3WH2SR8qwpKp1tkVg532e7ESuWsdA5/vzlPgwrLs65wWdVLXOdi6KqAId5Kt1XtDx/gRMuRKUKtCxSMIuCHTufgm14wO6kb7KwS4QdJLVuiDQSccPdLxPErDzAR2/SQZ2PqDj7ehU7NyRhB2r0lVFAXZBv2Mp2PmBznWbzDl2XtDx/sjCjlRDjEUWdkGmIJYE7spVOv8DyFXtSnUBV50pwC5oAnxZ2KWN6u1VYDc11V31Mwa78ajasSqdXzsqsFtETsAhhxwyqtW6UUHdmjVr8PjjjwMADjjWedNbYzVivcAbchjoAPFqHQNdYDuC1Tp3dS6oQtdo5iJhN1jKYl2uyRd0LKLVOg66AAWIVuuCQOe+XWQY1iiOQnUuoCkrIwa7INDxQwkOwwaCjkWwChUFOtGEgY5FFHaRFTpB2ImATqhaFwY6mYSAjm+iMxTrbkcUdoQAmbD1qcRgVzHs6hcJ2EX9brWGYivaEYdd2NuNDOxKEbYRhZ0zghG+rfg8oGE3SsAu7EEShF1Qlc4dEdj5VencKVJT+Dy7qanuwM/2uIZjAUjBLmy9eBnY9dgjvxM2b91jjz2GFSv0rhb2y6ig7rbbboNt29hubgGTZjrPeGcKkuAnrd9wq0r8hluDElWtkxluDTu3btjKoLdYE3mVbFS1jp8/FwI6AM6UAHVWKOyiQMe3ixiGNYpAajAadJHVOr/h1qCE3HUrY2BoQioUdIDYMGwk6Nh2EdU6GdCF/lptCqMo9qEWBTvhIdcI2MlU6EJhJwq6qGqdAOj4plGwC6nSVbQTBbsy6CLnAoyAXSToWARgJ1qFjYRdWJWuop1o2LHz6ELbEYCd37CrX+xU9AUUovM3hsIurEpXcbBo2FUMuwYlAnYMdFHLVAJi59n5VekquyN2np1IsWZLGI71tiMyHOu+wHNp6iQceOCBsG2bT/cWZ2JHXU9PD+6//34AwAePrbw4IqhaF1Wd8yZoCDZsuNUvQdW6sOHWoAQNw/qdPxeWoGpdRXVOZJwuYBjWfUGESMKGYUVBx9sKgp0M6BA8DOuuzon82sIeSlHQAQgdhlWp0Pn1iYNO5m+egMdA+hy6ANipDLn6wk62QhcEOwnQ8V2CYCcIOt5OEOxEQccSADth0LGMxcUTgqAbaScYdkHDrr7thMEuZNg1KEGwk7WDL+zcF0eIJAR2gcOufom4gEIEdO74wY4QioMnLBFuIwx2fsOuQRmr4Vi/odewdoJg567SsXzyk58EADz88MPo64thpgBXYkfdvffei3w+j86ZJczaufLNya9aJws6wH8INmq4NSgd5nDFE0pkuDW4X5UvlKDz58LiV62LGm4NincY1u+CCKF2fIZhZUFX0ZY7kqBj8Q7DRg23BsVvGFYKdCw+2+oMubofJyXQAb4XToz2RRFC+7ofK9Uh1yDYqUDGO++cJOh4l7ywkwUdSyDsJDsUADuVK5urYCcJupF2/GEne7G9L+xI9LBrULywExl29e2Xn31lP2WDYCf7IPlcQCEy7BoUP9hlDbmLfIJgJ3sB5FgMx4YNvQa14wc7v2nY1jWditmzZyOXy+G+++6TOk5UYkWdbdu49957AQD7HD3s+5nIqnW6w63uap0q6ADnycQmTNS9upVV60TOnwuLu1qnCjoAFdU60eHWoLBhWKMIZHrVQDfSp/L3iqBjYbBTBR1QOQxLTaBUQ+RBx9pyVeviOIeOEnXQ8TZcw7BaoHNV6+K4KIIQon8OnRt2rEqn0oxlj1TrFEHH22KwUwUdiwt2gRdGiMQDO505CDnsFEE30k4l7ESGXX3bKcMuM2hz0Oksd8dgpwo63i8GO9FhV7/QyitjhYZdg+KBnWyVzh0GO9kqnTsMdgx3MlU6b0YLdqJVOr923MOxflU6wHl7OOWUUwAAd911FywrhgkQy4kVdS+++CLWrVuHmjobO+/njyyr/EvQPXfOJAQdRglz0t3KoGPpMIfRbg7EMl3JsJUWOn8uLCnDQkOmAMO01UFXDq2xUWimWqADnC7w6pziUl28rfJDrAM6FitLlEHH+0OcN/RSTXlmftU39PIwrJ0h2qADnD/MdUDHwpYh067QlZe4iuMqV0opYFtagHIasoFSSXrYtaoZNgyr2x+U71vK1F9P16IwciW5YVe/2A7IdSeVBsqwG4jn4on0oC017OrbTnm5v/SgHcv6xXaKxNIOsSWHXYPCqna6M0yXYadapXMnmyphp+b10lU6d4rU5LiTrdJ5Ezfsbu2fLV2l87bDcBe2WAKd/d9oamrC+vXr8dJLLykfz5tYUff3v/8dADD3wDzSGf9tNlpNeHJwRywo6C3TxWJqvv6yxFkfbq9sF/aqXa7VVpGayBoltGfVKgYs/YUa9AyXha+7To5FQGz9tQ+JDdCUMxu6Vqjzhu5ASrMt1p72FaWAUYrn/CPDAlJDtvZi4gx0sXzAWBRGrgia1n/jA6VAjd5yI5RSIKa/TKllw+rtU17TlccgINmsNlbdIbrLiRmAVZ+JvNo5sh8USA2VkBqO4TFnaw3HECuj/9xmITZQtykGtMZ0LmKhyXmf03APT77dAmJ46RqteSzbpFaBqmgHFGliYZPmh4EJigPrFqEuhgepkRSRho20wvyz7lggGLIzWF9s0e7Tzev3w7XrDg28PZUBjjrqKADAAw88oH08lthQ19vbi+eeew4AsOf86gsGNlpNeCs/FeuLzcjRlPb6rVb5zTcNIK343pAlQD0xyu0QpDXWgClSEzk7DYNQtKcHlWHXX6hB13AdbArU1RSQblSsQpYIjEETRl7/V0xsgFjOg2zVAIUmxQecogI7cazryNo1FH91xHbWlWX90XlaGiWK1JANviqD4meDt0JHFRelBhzQmUNl8GhXjsorKqRMoFbt1AIOOoYnU/3Tilo27P5+/njTkuKHg0Fg1NUB7HHWgZ1pAs2NvB1l2BmA1VjjvEYohZnXrWgCsKke7AwCK2M4V5/rPpVcFxXpvg+w/YlFtWDnjEA4r79YLjIpV+t1zJKfYIGaFJRQbdgZhMIqGXh3fQcWbehQawMUsxqcap9NiTLsTFAcXP8OasqfubqwM8urMpmEasHu6aE5ABzc6cIuZ6UxVMrg2nWHBuKuZY8/Osd9+unYLpiIDXVPPvkkLMvCxOmlqsmGN1pNWF9sRpGasMrvBm/lpypV6yxKOeh04gYdyy7pQexTt1SqnSI1MWRnkHOVwlSX/XKDDgAMw0Z9rQLsSsTBnGsIkKaoUrWOgY7fHaIIOw/oAJQXtJfvU1xxg875gTrsKkDHonIRQcCQqwrsKkCH8oUTGcXyqFV531RgVwU6FgXYUcuGPeC5alUFdl7QudqSDgOd++IUFdi5QedqRwV2hALmsOtkIVXYuUHHG5dvJiiqsPPupwO7ilUsNGBXdR6dIuwY6HgzGrAzJox8htiWAatkSMOOgc5d/NCBXY2niFJnFJVw1+w5/UoHdkXXMC6DnQrublu/L/9+qJThuPOmc6aFOXPmoFgs4rHHHlPqszexoe6f//wnAGDXAyofYAY6y/MOUKSmdLUuCHOy1To/0AGAKVmtY9U5v/vRkhqSqtZ5QcdiGLZcgcUNOk9kYVcFOn6DJHz8QIeRizdigZ1kta4KdPwGedj5go41J/G5EHUOnSjsiEWRGihUgM7pKEANQx52lv99oykTqBO73DAQdCwSsOOg82tLBnZBoHO1JRw/0LnaEYadH+hc7cjAjoPOezdsKjcc6wc6fhDh7vAEzemodFW+T1Rg53uVsALswlaNkPWKG3T8ZwqwMybkYfi8EanAzu/zURZ2rEoXFFnY+RVQVGD33NDsqp+x8+NkYZezqj/UgmDHhmCfeOIJqWMEJRbUbdq0Ca+++ioAYJf9R1AXBDqWt/JT8VZB7MkQVZ0ThV0Q6FhEq3UMdEGRGYYNAh2L8DBsCOhYaIqCRnymExswisQfdOXYGcFqXQDo+M3jALtA0PENxGBnlCgyfVYg6Jw+iQ3Dil4UEQU7YlGYw8Xg/sjCLgB0vD+mEVmxiwQdiwjsbBoMupEDRsMuCnSutiITBjpXO5GwCwOdqx0R2AWCjrcDsapdGOj4wSK7wxO1pJ7oNJxR28jAjg27+t5Gxc+zi7zSVQJ2+QnBvxcOO4GXSxDoWERh5x529Yso7LzDrkERhZ23SldxLAnYPTcUfnGEDOzcVTpv/GBHtv8pAODVV19Fd7f6lcAssaDuueeeA6UUU2cX0dxuV5w/FwQ6wIHRq7kZkcOwcQ23thlGKOgAp1q3R6YvFHZRoGOJGobtL9RgRV9rKOgAwWFYAdCxhK9aMFKdC8WIyDBsBOjc/Rmr8+siQcc3DO+T9/y58D6Fwy6uq1wjQcciCrsI0I0cWORTWPDOhcCOWjYsdg5dHMcTHdIOa0sEdKJ9IkTsdRABu0jQuSMCO5E+CWwjukYyEM/7gQjswkDHt4n5PLsor3iHXX2bIWLn2YWBjiUKdn7Drn5hsIvCXRToWKJg12zkI09zYrCLwp3I1a4isLtt/b6+VTp3vOfZtXTY2GmnnWDbNp566qnIfkQlNtQBwA57FnzPnwuLc2lz8IeLDOiCqnVR1TlvwoZhRUHHEjQMy6pzlk2EZmIIHYaVAB0QXK0LHG4NShjsBEHHE+f5dQGwEwaduymfp03YcGtwQwELlSuAzq9aJww6lijYiYIO4dU6pStdfWAXOuQa1K+gah2r0snE77gyoCsnsFpnAFaDxFXFAbCTAh1LEOxYlU40IW/3MqBjCVztRaKpMNiJgK5i+xDYSc1HFwI7EdBVNBUCO/d5dFGJgp3oaUk2JYFVu6hhV7+EwU70vPWoCyj8hl2DEgW7KNCxeM+zO/RQ599nnnlGuC9B0UZdPp/nc6y075aJrM75ZWF+clW1TvWCCC/sZEHH4h2G9bsgQiR+w7BRw61B8R2GlQQdi+05v04adHxHH/jIgg4xD8P6RAV0fsOwSqBj8cBOp0Lnhp006FiCYCcBOt4fnwsnhIdd/eKCnQroyh2ohp3osGtAexX9kwQda6MKdiLDrgFtuWGnBDoWL+xEhl394rO9CuhYvI+J0hzsAbBTuTrdD3ZFldm5AmAnAzq+jw/sjPaCUJXOHT/YRQ27BsULO9FhV7/4XUARNuwaFD/YRQ27+iXoAoqwYdegMNjZ038OwBmCzef15t3VRh3rREMbRXFSozToAAdMC3LTOeziGG4F1EEHVA7Dhl0QIRL3MKwq6ADPMKx7yhKVh4s4byB2WgN05VScX6cAOpbROr9OCXQsLthpgY73y9k3jiFXahB10LF4YacAOt4fF+y0QMdimuqg451ywU4HdK72lEHnaoPDThV0rrbMvK0HOhYGO1XQscR4VSwwAjmdIVkv7HSGUt2wKzZp9MsDu7Dz6CKbcsHOaC/AUFw1wj3lieiwa1C8sFMBnTsMdiLDrkHxwk51kmHvBRQiw65BGSpl8PfUgZgwYQLy+TwWLFig1A6LNupefvllAEDbzinYioACRoZh4wBdGkCjQZRBx2KW351kq3N+aUkNIWXYyqBjMQwbpkmdN04KvTdxog861o5VAxQbifaku7GfX1fSAB1L+XEy85qgK8ew9Jb+4t2yKYyiJpwA512AEC3QsXDY6YIOACxLD3S8UxTUsvRBBwCEgKTT6qBz9YlQCqshq/98pxRG3tJ+PgFwYDdY0odZeS47nSqdO2YuntUw6jbZ0sOuvm2VYaf/uwNISX7Y1bcpQkFTVBl0LGzKk4Jtas3dCozATnbYNSh1RlEZdCwMdjLDrkFhsFMFHcuwlcW++zqVvhdeeEGrLW3UvfbaawCA1jl6MyPm7TReHNoOLxeqF8SVSY9tYFGpAQuL9VinOYH6RpvCogZmZPWXVlmVa8F7fa3a7QznM8gPBizXIRkjT5DuI9qznhsFZz1YI1+9MLZ0WyUgPURhWPqfUMSmSOVsGD6LNcv2KTWsjzCnU04VROpcJb9m7PIHOcDXdtUJJQS0JoYSKaVAsQSS0lwuxLJg9cUAunJIOgWqOazBQUcpyFD1BOvSsctr8WqG2BTpriGk+mLoEwDYFJluzRU6KJDpKaJmcwxLKsD5o8q9XqxyOxZFbVc8zykAyOjOF0uAUgOFOWQgNRDDshFZG8VcHEv1OCB7p3+Sdjs7167xXeheJY2khHQMb8QLCpNRYxTRYg5pt3Xd0v2xsqdFu5199tkHAPhMIqrR+jQYGhrCO+84An+nfY5yO3k7jVz568XB7ZVh12MbWG818HXlbI0/NzfaFCtLTbBhYGq6Sxl2K4Zb8cS6OVjU0wHLNkAIVS4WDOczyA1knc+5jA27Vv1NzsgTpPsJXzuRKMLHKLD1YMvnqGiYzsFTeVZ3G1qwIzaFWaD8L2pV2FWAjsBZR1W5U8RBb7kdK6v28mOg4+vvGkQPduWnETVN0FqNPxgoBckV+BAlSSsikYHOjmcpMZLNghAC2DbosCZ8jPLjXLJigR0pWloYIzZFqmfYqbKW9NqqaNfSgB0FMr1FpyJWsrVhlxpynqBxwq6mW7cqNtKWLuwoG3WxoQe7rF0ewSHasJve0Q0AKFimFux2rVuNNLFQpCksLEzCwoJ6W42uDyld2OXsNAzYMGBrwe6GpfshX0zDsg1t2J21xLnyddGiRcjl1F/HWqh7++23YVkWSg21eLd/Bh7fuKPU/nk7jQGrpmJ4M+pq2KAw0LnP6dtoqVXrGOhYP0xQJditGG7Fop4OFCwTlq1XTakAHeAIShF2btAB4OfBycKOg871+qKGWrXODToWVdi5Qef+mSzsvBU6Sog67Fygc/6vBrsq0OnG8/RRhp0bdCwqsBst0LGowo5V6dwZZ9hVgM7Vp3GFnQt0QHmYUgN2qSG76j1hvGHnt4qFEuwIUGz09EEVdgx0LBqwm97RjbRr+gAd2LmHb4s0xXEnm0afDydV2L2an1Lxfx3Y5Ysj7wkMdiq4e3tlJ4rZekyYMAGWZWHhwoVK/QE0Uffuu+8CAPITmkFLBhau7BSGHavO+V188NrQDKlqnR/ogPJ4t9UgBTsv6FhkYcdA54c52WpdFeh4Q/KwqwIdi+yFkz6gc/pUvthBAnZ+oOPNScCODbd6QaeSoCFXJdh5Qcd/Lge7UNCpVOsCnjbSsPMDHYsM7EYbdCyysGOgM3we33GCnS/oXH0aF9h5QMfbUISdF3S8vThh12VL4S5sFQsp2JVB59ueCuz82lGAnRd0LCqw27Vute/PZWHnBzoWWdi9mp/ie468CuxuWLpf1c8s25Cu2r29shN20QQIwdy5cwEAb7zxhlRf3IkFdYX2ZgAALRnIW9FPIga6oBSpKTwMGwQ6FlHYbbQpXis0+IKOxQSFKTBDdRjoWERhFwg63pAY7Iw8QXaz4Q861pRgtS4QdLwhcdiFgc7dryjYVQy3BmwqWq2LOodOCnZBoOO3i8FOqEInA7uIp7Ew7MJAxyICu7ECHYso7MJAxzLGsAsFnatPYwq7ANDxNiRhlxr2Bx1vLy7Y2eJVO5FVLIRgFwY6FhnYZcOX7CnmUkK4CwIdiwzs2LBrUFQrdn5JgwrhLgh0LDKwY8OuQZGBnV0c+T3vuKNTFFu8eLHQvn6JFXUAsGzNhNBqXRToWERgFwU6Fgsk9Pw6Vp3L0XTk0G9nuie0WicCOpYo2EWCjjcUvgGvzlkIvzpVYBg2EnS8T9GwEwGdu2+Bh/IZbg3bNgx2ohdFCMEuCnR8O4RuIzXkKgI7wc/CSNiJgI4lDHZjDTqWKNiJgI5ljGAnBDpXn8YKdoRGL6UlCrvUsC10FX1csAPiOc+OtRMKOxHQsYjAzjvs6pfylAKhsCM0FHQsIrCLAh2LCOzCqnTeRMFOaBUoAdhFgY5FBHZvr+ys+P/FS53ZRJYuDV7RKirKqMvn81i1ahUAoNA2MhdN2DCsKOhYwmAnCjqWzXatb7UuaLg1KGHDsCuGW7Gkd4LU+XNBsBMGHUtAtS5wuDUoIbATBh1LCOykQAfnmH7VOhnQuffxg53sVa6hsBMFHWvL8K/WKZ1DFwY72Umhg2AnAzqW0MrZGIOOHzcAdjKgYxGBlkCCYCcFOpaxgB0F0n1iH75RsBMFHW9vjGAnu4qFL+xkQMcSBruMAOjcCYHd9Ak9ws2EwU4UdCxhsKtXuHovCHbe8+jCEga7G5eJgY4lDHZ82NWVYtlSK1euRKGgdqGSMurWrl0LSinsdAp2beXyNn6wkwUdizPxb+WHiizoWDsb7boK2MmCjsUPdgx0RUv/snRp0AG+w7DSoGPxgZ006Hi/qmEnCzrelGcYVgV07n3dsFOdtsQXdpKgc/apHobVuijCD3aqk0J7YacCOgAwjOpqHavSxRBp0LF4YacCOiC+qU5QDTsl0LGMJuwihl192wiAnSzoeHujDDvVVSwqYKcCOhY/2GVstU9vH9hFDbv6JQh2KvPa+cGunpSUceKFXdSwq1+CYDdckDeMH+z8QAcAVl0NGhoaYFkWVq5cKX0sQAN17IDFpjrfv8Dd59epgo7ljeFpeLkwAT22gaWlOmy065RXrmCwUwUdixt2uqBzV+uUQMcbGoGdMuhYXLBTBh3vFzhwVEHHmyrDTgd0PNSBne48dJRogo7vOwK7WK5ydcNOd1JoBjtV0LG4h2FjHHZVBh2LbYPm8uqgY4lpGBYYgZ0W6Fz9ih12CqDjbTDYdY3ATmfi8tGCne4qFm7YaU1U7IadKuhcHWGwUwEdixd2O9WuVe6SG3Y6oGNhsFMBHQuDHcPdjcuqL4wQjRd2fqADABCCadOmAXAKZypRfuzY0GupqT5wm+Vr2/HI+l20V2QoUhMrC+1YYzWWz3tTr4YVqYl+mkaPnVEGHYsJitWFeCp07XWDaKnNqYOOhVAY9UWUWizt1R1AAZoCrKwG6FhT5WeaDuhYiO1ALI5Z4XnfdE+nIQBNaYDO1Q6I84EQy7QlBgFNxzCpKeCAx6b6EwKbJmCY8YDOMGE2NemBjoVSgBjqoGOJE3Yl21l9JIahXWoS9G9XG0OvnAx2mvrLbRWdil1cIMu16k/EDTiVUe33T4zArmrqEpXYcN4f4riLlKCxYVgZdCwMds2pYdRozmLPYBfPbxCoI1TbHmwuu1tX7K1UpXOHwc57Hp03nZ3O7WOOug0bNgAASg11gdtQm2D5+na82DVD9TAAgEnpPnSme5Gj6uuvstSTAmqIhRpiodEY1mqrw+zHaS3P47gpb2q101Y7hA80bcCuLWsxbXKXVltG2kampoRs2zCGpustpWBngWJ9yOWkEmFNxLJsEMeYXlvUILDSgJ0CSnV6zytqEJRqDNiZmO6fAdgpzT4Rp1JHTQM0qwc7QinIsOYqAyyWBeTzMDKaK1gYJszmJiCdAqnJRm8f2pYBUlsDUBu0pLkECSEODIua7bhiN+jdP5pNoXv3FpRq9GFHTYLunWuh8bf1SEyCvllZDHXo/YFNDWBgSgp2Kh7Y5ZqdNjTNAwAo1QLpvniWSwMAFPTvX+uEfpgGRW++Rrut3ZtXwwDFGs8C9yr5QHoDcpqf8QCQJs5SuAfVLtdu6/fLD0WukEbajGFE4Z+taPpX+OuPoW7dunVKx1B+9Lq6HHxYdf5vNsS0QQwK2yZYsq5DGXaT0n2YntmMdPkEryJMZdjVkCJfFBhwKm2q6TD7McUsoNkg+HTzSzhp+utK7TDQZY0SskYJe7avwvQparAz0jYy2VJ5fVgb2QnqsOOgMyhKtUBeY4UzYgNGef1VKwOUajTe4NwTHRN12DHQsaqa1vsIKWOVlCdfTqvfP2KVF1UHAJMow44SUrHOqQ7sCKUgQ3mAUmc4N6ux6oRlgQ4Ng1IKpNMwahQ/VBjo2H00TXXYMdCxap9lqcOOECDlPM7EsvVgRwjsugzvoyrsGOis8h8cOrBjoLMyBLZJ0L2jOhBpiqB3uxrYacBOA4OT9GBnp0b+1YFdvtmo+GTUgV2xgQCG00amVw92VmP5FBEKLdi1tA8gZTplSMs2tGC3T9sK1BnOH3tFO6UFu10za5Atn5OnCzv2TldH9GB3zfJDMZQfeb/TgV3q8WakBylSOYqWl4LfQ69a7liCFc5ko486z0USxLRhpC0Qg/IPTFXYeUHHogK7GlJEo1FZaagzikrVOga6dPlDoFERdm7QsajCzg06FtO0AYVFot2gcxqnKDZQJdhx0Lm6oQw7n7uiAjsv6ACNah2prj6qwo5YFKkhz3l0CrDzgo7/XAF2btC521GCnRt0LCqw84KORQV2XtC5+yoLOwY6V1vKsGOgc/dLAXZe0LGowM4NOqePTjsqsHODjrWlCjtWpXNHFXb5ZsO3AqkCOwY6dxuqsLMabVB+vgi0YJdOVd4ZVdi5QceiCjs36FhUYed961WF3TXLD8Vgvvp9TgV2DHT8/8MO7PxwZ5Xfw3p7e6WPA2igrru72+mAC3XEoCOY8zywsrALAh1vT6LrfqBjaTQKUrDzgm6kHTnY+YGORRZ2fqDjbbXmpKp1VaDjB5GHnR/oWKRhF2JTGdj5ga6iTzKw8wHdyHHkYOcLOhYJ2AWBjt8uATs/0LnbkYKdH+hYlGAXcB9lYBcEOhaZ88V8QMdvkoWdH+hYJGAXBDoWGdhVgY73tQy7D4jDrgp0rrZkYecedvVGFnZBoGORgZ0XdO42ZGFnNbhAx6IIu5Z2/yvNZWHnBzoWWdj5gY5FFnZs2NUbFdj5gY4fRwJ2XtDxnw9Tjjt37Kzzwhhz1A0ODjodyDivJmLaIGb4vDmisIsCHeBMKCxSrasnhUDQsYjCLgh0I+2IwS4MdCyisAsDHQCpYdhA0PGDicMuDHQswrAT+GwVgV0Y6Cr6JAK7ENCNHE8MdqGgYxGAXRToKraL6lMI6Hg7orALAx2LKOxYlS4sIrCLAh0gfn5dCOj4JqKwCwMdiwTsgkDHIgK7QNCxEKBUKwa7QNC52hKFXRjoWERhFwU6FhHYBYHO3YYo7KwGGzTo/VgSdi3tA1VVuopjCcIuDHQsorALAx2LKOyCQMciA7trlh8afTwB2AWBrmIbD+ysGuf7vj6VBYU1UDc87CCIplL8/DmRq/5sm4QuJSYCOpaoYVjvOXRhiYJdFOhG2gmHnQjoWLJGCbWp4P5HgY5FBHaRoOMHjYadCOhYImEXw0VjgBjoeJ/SEbATAN3IccNhJwQ6lhDYiYIOgHNFbEi1TgR0/LhRsBMBHUsU7IKGXf0SBjsR0LFEDcMKgI5vGgU7EdCxRMCOZlPo3q0luh2Ew46aBN07hYCORQB2NEXQOysEdK62omAnAjqWSNgRSF30EQa7KNC524iCXSjoWARhFwU6fkwB2EWBjiUKdiKgY4mCXRToWERgFzTs6nvcCNhFgY7FDTtanvKJFc5ko4Q6SilyOeeSfVpDhEHHsmpjq2+1TgZ0LEGwCxtyDUoQ7ERBN9KOP+xkQMeyY/N632qdKOhYwmAnDDp+8GDYyYCOJRB20hMB+1frZEAHONsFwk4CdCPH94edFOhYfGAnBTq2T8AwrAzo3G35wk4GdCxBsJMBHYsf7GRAxxIEOwnQ8V2CYCcDOpYA2DHQyTxP/WDHQSfaTgjsOOhER+xDYCcDOpYw2OWb5D8G/WAnCjp3G0GwEwIdSwTsREHHjx0Cu33aVgi3AwTDTgZ0LEGwEwUdSxjsZEDHjx8Au9QTzVLtMNixuUWLRbUpYpRQVyqVYNtlTKQN6Xm5/IZhVUDH4oWdCuhYvLCTBd1IO5WwUwEd4D8MKws6Fj/YSYOOd6IadiqgY6mCnfJEwJWwkwYdix/sFEA30o9K2CmBjsUFOxXQ8T55YKcCOndbFbBTAR2LF3YqoGNxw04FdCxe2CmAju/qhZ0K6Fg8sFMBHYsbdtKgY/GBnTToXG15YacCOhY/2IkOu/rFDTtZ0Lnb8MJOCnQsAbCTBR3vgw/sRIZd/eKFnQroWLywkwUdix/sVEDH++GBXeqJZqQH5N/7UsMUTQuc17NlWbAs+cdJf0IYtc8T2DbB0vUT8GLXDC3QsTDY6YCOhcFOFXQj7TiwO3v240qgY3HDThV0LG7YKYOOxQU7HdCxcNjpTnRchp0y6FjcsNMAHe9XGXZaoGNhsNOdq68MOx3QudtCNqMHOhYGOx3QsZgmSG2tOuhYGOw0QMfCYacDOpYy7HRAx1KqIejdoU4NdCwu2CmDztUWg50O6FjcsNMBHe+erQ46FjfslEDH4oGdKuhY3LBTBR0Lg50O6FgY7FRBx+KGnQ7oWBjsVEHHksqNfLYPDMgvoaj0VIxl9nYAlmWgJ1eLXqtWC3QsNUYRLUY+hp4Bg3YW/XaNMuhYGg2CzlSvMuhYskYJ2VQJ1CbKoGMxTRtIU9imBuhYykPvRkEPdCwxzDvJ29ECHQsBbDP6hHOpJuNaLSKm1yElxMFcHH2Cc3qGFuhY0ml90LEYJJ7Hy7JAi8VY2iKWDTKcj6dfhgGrsSaWyb2tTAyThBNnJZpSbUoddK627JTrX81Q08FrLJMnA7Gs8GBYQCpH1EHHUoYdMagW6Fgs28DMhi4t0LEU7ZQ26FhMTdCxZAnwbm6yNuhYzCf1QAcA1PWhxUdEJaKNOp0Pp6bGYUxp6MW7gxPxxvB05XYAoNHIod0YhgGqNakwAGy06rGy2I4lhYl4p6g3+/qTw5Nx7bpDsTYnN77uzZu9k7FkVQdowUBuWO8JONRbi+zaFIwigZnTe/NODRLUrneW/opl2S4aA6DKENMGHZy/xM1iPNghNmDmbIAQWGn91SLsjAE7o/mJYlMYhRKoYThru2qEWDaQL4AQAqI6qbC7vUwaMGNSvmUBuitFuNsajmEZsJIFlCwY3fJ/jbtDSXn1EUrR9J7ehy+xgLaFw2h/S+/+EZuicZUFUIr6dZof5DZQv8ECbKBBsy1CgdQwAAKYMfz9Tywg06P//mBlAdhAZrNu6RBA1galwObuBu1+7da+FmliY0OxUbutSeleLChM1m6nvlzU0OWhBeAvPXsjb6dwwJTlut2C/Xgb0gNUb41foOKPvIYG+d+h0jumYRgcdumlarOcNzUOY7vWzciYFgp2Cm8OTFaGnRt0ALRgt9Gqx/JCB4rURJGaWJifogy7J4cn48Z1+6M3X4uufJ0y7N7snYyFKzpBCyZACeycqQy7od5aZFelYRQJCAWMvDrsUoMEdWsBowhepVOFnbPAt/M91amMxQ06dwVS472bgY6tJ0lThjLsnOW/nDtIDaIOuzLowPpkmsqwY6CD7aCVmIYW7EgmPfLmplvJsixnzjmbxgY7Wirpwa408pFE8kVl2FECfmI1KGAOl5RhRyygZdEQjFwRqf6CMuyITdG40nLWrAVgFGx12JVBR0rl9/Y8VYYdAx1br5bYVA925deNLuysLDgEjCJRh10ZdOxN2C4aWrDbrX0tak3nZP2SbWrBblK6F2lSQs5Oa8Gu3jVKZUMddgx03SVnmdN6M68FO/vxNqT7XRO0a7xl1XQ7j7lpmkil5EvTypW6ujrnwWh9O4/0Ejn0uEHHogo7L+hYVGDnBh2LKuwY6AaL5ZMebUMJdhWgY1GEnRt0LKqwqwAd79dImzJxgw5gH1QKsBtN0PHOKbblAh1vSgF2btDxn6nAzgM63pYC7CpAx3+oDrsK0LnaUwoDHcuWALtS9UeRCuwqQMd/qAY7Dro8+8uKKsHOCzoWJdh5QMfbUoCdF3Tu/irBzvO6UYWdG3QsSrDzgI53UxF2btCxqMKOgY5FFXb1PqcdqcDOCzreviLsvKBjUYFdTbcNo+Q87rW1tUqnuimPbdTX1wMAUrki2t+wpGCXMu0K0LHIwi4IdCwysPMDHQuD3VvFeqG2nhyejJvX78dBx6ICu7yVqgQdiyTshnprkVldCToWWdj5go73a6RNkXhBx5tRgB0lGF3Q8QNJtuUDOt6UBOz8QMdvk4FdAOh4WxKw8wUdv1Eedr6gc7UnFS/oWMYTdj6gY5GBnS/o+I1ysCMW0LJ4eAR0vB052BHLH3QsUrALAB1vSwJ2QaDjkbVYwOtGFnZ+oGORgl0A6FhkYecHOt6WpFS8oGORhZ0f6HifIA67INDx40jCLgh0KnFARwHq3BtWOJONNupAi0jlKNrfsJBZHA275qYhTG/qDrxdFHZRoGMRgV0Y6FiK1MSifGck7Bjo+gv+H2QysHuzdzKWrZ4QvIEg7BjozELwC1IUdqGg4/0aaTMsQaDjzcjAjsRzkUUk6HjnBNsKAR1vSgB2YaDj20jBLqJPArALBR3fSBx2oaBztSeUINCxjAfsQkDHIgK7UNDxjRxERR6PgS4X8IIWhB2xnHPogkDHIgS7CNDxtgRgFwk6OOeFC1frIh5SUdiFgY5FCHYRoGMRhV0Y6ADApoZwtS4IdCyisAsDHe8XomEXBTp+PEHYiYBO1MAcdABAncd/zFHX1FReqoc6fw2mchRtb4bDrqlxGLNaunyrdO6IwM6EHQk6ljDYiYCOhcEuaCg2CnQsIrDzHXb1SwTsREDHEgU7IdDxfo20GXQskQuehWAX07CrMOh45yLaEgAdbyoEdiKg49tGwY5V6UTaCoGdEOj4xtGwEwKdq73QRIGOZSxhJwA6ljDYCYGOtWPZaFwRXK2LBB0/aDjsREHHEgo7QdDxtkJgJwI6vq3IMKzga5lYQKY3+JgioGMJhZ0g6FiiYBcFOhaRYdgo0LFEwU4EdCxhsBMFHT9uxJPBfkK8Qhf1u64AHQDYzrHb2tqE2vdGGXUdHR3lDoy80BnsOh7KVuHO7zy6sITBrtHISU9d4gc7GdCxBJ1jJwo6ljDYCYOOJQx2FhECHUsQ7KRAx/s10qb3GDIz2ITCbrxAxzsX0JYE6HhTPrCTAR3fJwh2EcOuvm35wE4KdHynYNhJgS4qoqBjGQvYSYCOxQ92MqBzdgBSQyVf2AmDjrflDztZ0LH4wk4SdLwtH9jJgI7vEwY7ydcyKfnDTgZ0LL6wkwQdCy35P39EQccSBjtR0LEEwU4GdCx+sJMFHct+k9/zP8YTbUj3ST7uPr/zmm67GnQAQJ3X2IQJIaN0IYkBdZXLaqVyFNleG21vjpxnJws6Fj/YiQ67+sULuyJNSYFuZL9K2MmCjsUPdtKgY/GB3VBvLTLr5K+e8cJOCXS8XyNtsn9VpiT0hV2MF0Y4B9HfTxV0vCkX7FRAx9vxwk4BdLwtF+yUQMfiAztl0PntIws6ltGEnQLoWNywkwYd71A17KRBx9tyYNf2dr7cjhroWCpgpwg63pZr2iEV0PF9/WCn+Fr2wk4FdCwVsFMEHQDfqU5kQcfiBztZ0LF4YacCOhb3nhaAG3vnSYMOAJpSuSrYqYCOxf27Z5irAh3AC2Xt7e1Kx4m1UucOO88OG7NKoGNxw04HdCwMdhuteqwutiq3w2B3TfdeSqBjccNOGXQsLtjJDLv6xQ07YhE10PF+ldu01UDHm3HDbjSudNUJdT4sdUDHYxAt0PEuMdhpgI635a7YqYCOxQU77Qqde19V0LHEDDs6NKwFOhZSstRBxzs0Ajtl0PG2KNJ9eQ47VdCxGAUb9WstLdAB4HPY6YCOpQJ2mq9lBjsd0LEYJaIFOhb3MKwq6FjcsFMFHQuDnQ7oWCyMgG5TUX1aFzfsdEDHQonPcKsn8/d3ilhjXqmbMmWK8409GLjNwFQTdp2FVf0tqocB4MCuSE3UkKIW6FhqiIU0sZSqdO4UqYm0UUJzWm+iTss2sClXj7yVQk295szdlMAeTsHoSymDjoVQwBwiyPTpdQlwLmKwaogzyaZOOx7Y6XfMQZ3u04rQymqBVpcMAjsVT/mR41D/fRIwDNB0DFP6EwKSMgGFOZj82gKgBzrelt7cejymCdrRBtokdrV8eJ8I7No4llEow25VQR10vC2K1EBBeyJgAM79S8fzfDcKDsZ0QMdDy3806oYA+ZaYXn9AeQUf/fvHhmF1QAcABrExMd2PtFGKZVWo2emN2m0AzsNdpNACHUtTKoeSbWiDDgAa1pWQGgp/3axcuRIAMH262ry9yqibOXOm8401gKDlhewMAJNi08YmLO1RKyUCwA71GzGvbjmG7Cw22nUYoupvchliI0uA6eYAts9sUG4HAHI0jaKdwrTabkyr79Fqq1h+B5nYNIDa1uGIrUNiA7AI7IyNYqPek5BYzqzrlDgg0wktX51qp+OBnW0CtmYli4HOmZE/hrYojeUqXGLTcrVOrx3elklg16X12qEUKNlAygRtULsqq6pNwwBMzU9O9t6j245pgjTUA5qTJnPQpU3nSwd2KROFqa0O8rP6Kw1Q04BRsmHV6j0XYBgotGZhFCiozhJuhKBUa4AaMVy5ToBcqwlQ6PUJzh9CpTqnTVvnoSJArt1ZjkzbYQTITSo5f8gGnBcn3BQBmludYszrXVOU2zGIjc5MH9LlJTC7LD1A7ZpdgxpiYdDWn8bAos5H4cdbX9Bq54k1c/DEmjmglKDrUL0lSBrWlWAUafhzgVKsXr0aADBjxgyl4yg/ep2dnchkMiCwAXuo6vae7VMYmOX8smmJaMGuziighhRhgaBITfTbNUqwY6AzAdQQYE66Wxl2OZrGkJWFDYI0sbRgZ7tKTqZhq8PORllPAAhQarCUYUcswCiU34xIeT1IRdhR08Gc03A8sAPKSFSFHavQudtShF1VlU4DdhVVBk3YEctpixICmlKHHQMdXxIwk94yYEcrHyvldhjoGAZUYecCHVB+3FVhVwadnTGdtXkJ1GHHhm/Zc9Ik6rAzDOTbsiOnBhBFRLlAx2LVqL5oHNCx1y9V7RNGQMf7pQo7F+j4j1QLmwx0KTblBZRhx0DH1oXNlVJKsPOCDoDWyBcDHeB8HurAjoEOANqNvDLsnlgzB8OFNIYLzhOgrlEddQx0LIGjOvYwCoUC0uk0Jk2apHQs5UfONE1MmzbN+Y/VX3Fbz/Yp9O1YAjIjn5qqsNuhfiPm1q6s+JkFIg07N+hYVGHnBh0Lg92U+l6ptoDqCR1Nw8aExkE52LlBx0IAq16+YlcBOndbCrDzHSodb9h5QFfRliTsCHWGfarWQFaAne+wkSLsGOhYOOwkh/KqQMcSJ+xUzqvzGx1QgZ0XdPzn8rAjZcRVdJMQ0JTkE8EFOnc7SrDzgo5FBXZe0LmPIYMoH9AB7BQN2RdNJeh4WwqwqwKd6xhSsPMBHVC+SEwWdl7Q8c5CGnZe0LHIws4PdCwq1To36FhUYecGHYsK7BjovFGp1nlBBzjv9b6ws5xznaZPnw5T8Y9UrTrnnDlzyh0ZgYwf6FhkYbdD/UbsV78E9T7Tl8jCzkAl6FgY7OZk1wm14wc6ljSxMKO2S6piVwr45E+bljzsfJ4j1KBSsPMFHb9RDnah576NF+wCQFfRliDsAkHHN4hhWAmQhp0XdCxO5cgQhl0g6Fjigh2RxFhQfwA52AWBjt8uATvThD0h4MIrQsSrdT6gY5GGXRDoeJ8lYBcEOtexxPrkDzoWKdgFgI63JQG7QNC5jiXcJx/Q8ZtlYBcEOhYJ2AWBjiVXEvwcDQEd4FTrZGDnBzoWWdj5gY6lXWIKtCDQAU61TgZ2fqBj8YWd1QMA2GmnnYSP4Y3WR87OO+/sfFPq4T+zs/AFHYso7MJAxyIKuwyxkQ55UdYQYPtUL+bXLYqs2tnU8AUdi0zFLgh0vC1R2LEqXUAY7HId4cOxoaDjG4nBTuhihrGGXQToKtqKgF0k6PiGYrCLPLlbEHZBoGMRhV0k6Fhigp3wMGxUfwAx2EWBjm8nADvPsKs3wsOwIaBztyUEuyjQ8b4LwC4KdKxvUY9lBOhG2hGAXQToeFsCsIsEXTmR1boI0PHNRGBHgPxEKxh0LBGwIwRoaRsMBR3LG93hqztEgY5FFHZhoGMJ+6xlsWg46FhEqnVhoGOpa8yj65DoCxrDQMfifd//4B7OhMM77rhjZPtB0UId16TVA1BacR5dWKJgJwI6lijY+Q27+qWGAC2GHTocm6Np5ATq8KxiFwa7KNDxtqJg5zfs6hNqUNB0RNVO9MKqCNhJXZ0aN+xSRP8CCoTDThh0fIfwDwzhq/UiYBcFOpYo2AmDjmWsYCfaHyAcdqKg49uHwC4CdCyRsBMAnbutUNiJgo4lDHaCoOPHDXpMBUHHEgo7QdDxtgI2o4SgWC8GOnbcwLd/QdDxzcNgVwYdTYsuRxPQjKs6FwU6ABgqpgOHYUVBxxIFOxHQsYRV6xjmRB6pqGFYEdCx1DXlQit2IqBj4dtRinfeeQfAOKJuhx12QDqdBqEF9E3NBQ67+oXB7j/LZlbhrs4oCIGOJQh2oqBzJ+g8u7BhV7+EwU60Dd5WEOwEQedO0HAssSQnFw6AndJ0I3HCjgRU7QSrdBW7+MBOGnR8R/8PDunpF2K6KjYIdtKgYxlt2Mn2B/CHnSzo+H4+sBMEHUsg7CRA527LF3ayoOP7+TweMqBzH9/72EqCjsUXdpKgG2nLe87dCOak+uUHO0nQ8d38YCcLOhZPtS5quDUofufXyYKOJejCCRnQAcHDsCLVOW+CYCcDOha/Cyca1pWkQAe4hmHtAfT09CCTyWCHHXaQ6os7WqjLZDKYO3cuAKBUt14YdCy05EyW667a+V0YIRI/2AWdRxcV73l2sqBjYbDbs21VxXl23gsjhNrywk4BdCxe2AkNu/rFB3aUQA50rrbigh3ggZ0C6CraKX+AKIOOxQM75fm0fGAnWqVzxws7ZdCxjPVQrEjcsFMFHe+Yaz9J0LFUwU4BdO62KmCnCjoAMFBZrVMBHYsbdoqgY6mAnSLogMphWNHh1sC4YacIOt6U52I0JdABFcOwqqBjyZVSfChWFXQs7mrdTtm12Cm7Vgp0LF7YqYCOxXt+3ZNrd5AGHYt7GLZ+vQWjGHABRESITUHymwAAc+fORSbjv+a2SLRP495rr70AADUbNym3wap2BcsUHnb1C4PdRrsORRih59FFhZ1nNz2zWQl0LGliodHM8fPsRIddfdvywk5j7iMGu1I9VQMdSxl2xQZnKMPWedBHAXbUINorPHDYsbnodFKGnfYEqS7YqYCOpQJ2OqBj+f/tvXmUJFWd9/29NyK3yqytu6s3mm62RrZmk02hBxAFRBCQg+Crg6jzjsugHp+jMjrj4KAP+giMigojz4M6LsgwM24wvg84I4sCCrIIyr42vVQvVdXVteQSy33/iLiRkZGx3Hsju7u6uJ9z+nRVZsbNW5HbJ7+/u+wMscvbJ0qAYiGf0PntkHJZWeg4XOzcBf3KQhdui4udstBxeBk2j9BxCMCMfELHYRS5hC5oh3hf9HIJHccXuzxCFzTlAs0ljrrQcXyxyyN0nFmrkFvogHYZ9qDSJlSJjWqOBYq52OUROs6Fww/ink0H4J5NB2C2qS5QfQMNjK9tobrZgdHK16tT3+jt0nXUUUflaqd3UrdpW643X2YTjDeq2O7k+0BwQFAmFqrEzv3AlwlwUGEbDqlsyNmSt7hwxbAwXOpe00+GguGgXLSAQt7VLH2xKzE4eRfRJ95C03YVcCr522JUsnyb1BTz5alHbaVt7SIKIwRukcAp5n7pAQConX+pekaId8570yWAUqCSf2cGYpqeiOVuiIBUKkCerbY4BRNYNKwsdBxPxgiMZg92ZQBAm05PHj9mUjQWlXNvUQcC2BUKtwebYQCAVcsndBzqMBj5NgBqQ5Bb6ADAqjGQFskndD5G1cotdJwZu5RL6DhLzUlsdfqzbyjApFvqyeYcz7WW4vS9ns4ldBxmk9xCxxjDI488AmAOSN3BBx+MarUKo2mhuEl9P6kFS3bgyIXrsb61MNeerABggIHCi2jzbILiACgR4JDiZhxWWZ+rT45/qheWZnKJ3VSzhKnpCmjBAekTH8MYB7EIaJPAqTDYOWSMGYBT4OPpkEsSiQMYFlMv4/J2uISxHCVhH+oARtM7zyzPXqU+zN8aKZfYuQyG5QJu/vSQ2C6MGQvowX6zfF9YVjDziR2lYH1lsGIBpD/HSvVRocvz+FEKt78CVjDyn3PGAMZALAeFKfWtAQljMOo2qO16YpcDRgjsqgG3mPN5QAC7nD+h47gmAaPe+0IeqJ9oU4fBzPfd2kvFGHJvodgaYGAm84bAzOQzRKNmgVIXU7P5vlDtMziOfQbHYTGK52cX52pr78I4CsRBw80vT1NuES0Y2JozOfhdYxWmnDJWFMdz92lmvALYFK+elm+XlrFDpjE5OYlarYZDDjkkV1u5X3amaeKEE04AAFRfGgVa8k0uWLIDa5e/iGFzFhYzsL61EI/U91GSu37awBBtv0mqil347bGPMBxS3Iyz+/+oJHezThEztldTNAhTFrsdjTImJqtwXS/JIgYDLTpKYkcsAmOWgjB/3EpOsQueSURd7IgDGK12tp5XxsLladW2uNAFJVyiLnZc5jjKYhcSOu93dbHjQkd8Gcsldq7bsQerstj5QscFTFnskhI6lcePUrjVipdC8mZUz7kvdAByiR0XOl5+Jw5TFrtA6PiuDBTK4+miQpdH7lyzndoTV13saGSIQvR3KUKHEpspix0XuqCtHE7OhQ4AHIcoi90+g+MoGxbK/p6wdaegLHZc6Dgv22phzZRbDIQOQC6x40LHOW+/x5XamRmvBEIHAPagg1ffpCZ2m95QRGHHRgDACSecADPnntg9+S510kknAQAqm0Zh1Km02FUKNoZDX50sZmDWKUmndv20gYW02fVH5U3sAE/sFhmWdGo36xSxw650bgWmKHaOSzyhC0MgLXZhoeOoih1P6aJ9khW7qNAF7SvIWFKpVLatLqEL7kBe7KJCx5EWu6jQBZfLS0aX0AVXKIhdROg40mIXEbqgHVmxyyq5yjx+XOhidoaQPudhoeMoiF1U6ILLFcQuKnTB5bJil5LQqYhdWOiCu1AQuySBU0rrYppSEbuo0HFU0rqw0HFUxI4LXZR61xt8NlGhA4CGW5QWOy5zrciUx+jvIkSFDgBWFMelxS6QuciMY3tI3so3vaEIq9/FoU3vtX/iiSdKtxGlJ1J3/PHHwzRNFKanYU7ugFGnoFOmkNwtWLIDx4ysi72Op3aiYsfLrnE4DGgIyl3aQ8NTO1GxcxC/WDEXu5W1CSG529EoY2o6wbhkxY6R2IkRsmIXCF3cSZcVO4bE0a8yMhYuu+ZtC0iZNSshdklCx5ERO5JynmTELlHoghtIil3KxA8mOpYtQeiCdmTEjtDejKFLEbrgrmTELum2/sxjEZKELrheQuyShC64XvQUCpRcZcQuTujaDYm3k5bISZdhU+5XZrJSktB57ciJXZzQcRxH/PWbJHQc0bRueWF7rNBxZMqw4XQuDtG07neNVbFCx5Epw4bTuThE07pNbygGQmfu2IF169bBNE0cf/zxwn1JoidSV6vVcOyxxwIA+tZv8GYJOshM7cJl1yRExS5adk0iK7UTeSsUFbtZp5j6LccgDBXDykztppolbN/R153ShREUO2IRGPXkdrjYtQbT5S5V6EJ9EhE7Po4uDb7+XJqQZQlduK0ssQuPo0u+Q3+SQYrcZQkdR0jsXJY9MUJA7DKFLrihoNhltSMycYJSsEopM0ETEjtqgJQFplBnSbmA0AVNCYhd5uPCWGZalyV0we0ExC5L6ILbZT0HJMbQZe7aYJJ0oYP3OhdJ60RKrEJi54+fy7qNSFqXJnQcEbEzalaq0HFE0rosoQPEyrDLC9tRJlai0HFE0rosoQPEyrBc5pKEjiOS1s1MpAsd4KV1WWK36QRP5qx+77HrW+95xPHHH49aLcf4YZ9ezXfD6aefDgDoe/XV0HiRdLGLll2TyBK7pLJrEr0qx6aJ3axTxLRTgi0wPSqrHGs7NF3oOBliF1d2jYNRb7q+U2Gw0yYjC67CniZ2SWXXxL4lCJmo0GW1A6SUXePw24kTO1Gh46SKXVLZNfa23od6nEQIC11wQIbYJZRdo6SWYbnQUbFXcKrYcaETTemSxE5C6IKmUqQttuwaJaMMKyp0we0TxI4RAqtmCgkdkFGGVZgUkXTbQOZE3uoyyrAyY+ZSxU4iFcwqw4oIXdBWihdxmcsSOiC7DCsidJy0gIILnQhZZVgRoeOk3S4tnYuSVYadmagAltiTPK0Mu+mEIqyB0OPGGFZPek8a7lB56ZnUnXTSSahWqzDrdRTHxtpXJIhdWtk1jrQJFGll1yTixE62Ip42gcIBFRI6TpLY8dmuwiSInajQhfEW/uxO7GLH0WX0KU7sZIUuuP+kN37Jsc9x7UgJXZgcEyjCxIqdjNB1HNcpGtJCFxyYIHaCQseJFTtJoQvaihM7WaHjRB83BaELmooTaRGh4ySInazQBcdFxC6czsksERIrdj2c5ZqVzsWRJHYqkyBij1GYS5EkdjJCF/QpJq0TSeeiJImdjNBx4tI6GaHjxJVhoxMiRIlL62SEjhNXhp2ZqEgJHScuresSOgDFsXFs3rwZfX19eOMb3yh1H0n0TOpKpRJOPvlkAED1lYis+WIXHmcnmtKFiZtAIVp2jWNnTaDIKrsmERW7jtmuMvhi17HkScI4uiyi4+yEyq4JfeoSu7TxYVn9CglZnjXkwu0oCx0nJHayKV2YDrFTFbqgsYjYyQpdcGBE7CSFjtMhdopCF7QVFjtVoeNwscshdEFT4fMtI3SciNipCl2A/ziJllsTuxUWu5xCFz5OReg4UbHLM6u14+Mox+TY6OOkInReO51ipyJ0nPD4Or5kiazQAd1lWBWh44TTuqQJESJEj1EROk44rQtkTlLogM60btMJxVihA4Dqyy8DAE455RSUSr1Zdb9nUgcA55xzDgCgb8MG0FZEtELj7CpDDamULkq4HKuS0oXhYtercuy+pa3CZdc4wmIXO9tVFIL2kicEqePosuBiZ9UUhS7UJ6cIWFXv/7zrTvEdFWTKronthJZNyAUBGM25swY8sXMLJJ/QBY0B1PLXossDFztFoeMEYkeIstAFbRULIAP9+YSO0wOhC6MkdBwudjua+YQO3pceYrm5hC7oli92vUjogp1a8gbc/qnJtUwJQmXYfM0ADChMeTKnKnQc4gB01sgldJyp2TJWDkx0LFmiAg8s8ggd0C7DqqRzUbY6FTzU2DuX0AHttE4lnYuy/k2FQObihI42mxje4u0xf+655+a6r452e9YSgEMOOQSrV68GcV30RdM6DgMIYSjlXKnaYgYMwlAgLqyc7woNRrDdNTGbc6f0PsKw1NyOATPfkuUGYTCpi1qphWotX1vMJYDB4FRyChQFnBJD7jUk/VNstAC3B6uxx26KrQAjbUnM1Q71hKwXu1h4JbJezOAE3AKF25dvgUwAvtjlf+BYqQB3qDerzIMQwMy7VxMBK5jqSWYYxkCblrrQRfqVR6ABT8Jaw8XcXzTaDaotURLFaDGYWZORdjG9WjCZMKC8jeQSujB5hQ4ADMPFuh1yS4rEcWB1CwywXELHKcDJLXQAsMqs4/jyq7mEDgBeao7gyKUbcgsdANQOGY+VOU7fulfRarVw4IEH4qCDDsp9f5yeSh0hBOeffz4AoPbSS/FvassbWLN0E2bsEsasKmYVLWFVaRtWF0dhgMFiNJfYOYzAZQQNZuQSu41OCS+3RrCoMIV9K1uxoDCj1M4Oq4yJRh8M6mKo0sgtdiAMrOLA7ssTZ3lvVMxkcIpMefsfYiP4NsxM0t4YWwGvXMr87cDU2+EwA7CqFHY5X3kqEMQcn6GEMdAW88Quz84TFMG2a26RwqnliPj9ra1gUi9tU8WgcMtFsLIJVsn3LYHYTvt9RnVMoy90IARwXJBWji+cjHnHOy6IlePbBiFwi4aXjIb2+ZXujkHQXFiCU6TBPrF5oLY3Acds5JMVs+HtokBswGyovXgZAZwCCS2YnO+Pc/wvYzSnq/AStdEEKqPqr11m+P8IYI3nk5VCwQEhDA0r38K2B1a3oM8f7jRqDyq300/r6Kd1FIkDN6dJrzan0UcNLMj5ZfOl5gjqTgELijM46pCXlNsZXj6J4eWT6Cta6DtgMv5GjOGQiQkAwHnnnQfSg/HYnJ5KHQCcdtppqNVqMGdnUdm4qev6UsnCguIsXBDYzMCMXVISO76/K0dV7CwQWP5pyCt2DVbArFvyv8XYWFSYUhI7m1G0/BiLi11ftSndDnMIGJ+CTXsgdhzqyZ2K2IUFjBF1sQsLXbRdVbwNv72kTVnsSORnhWYIY6BN5u1bC6iLHe3+oMstdhyDqImdQeGWCoD/wccKhrLYdQhdXsJvqqpiFxI6MKYudoR4e8uGHzsFYQkLXXBZDrELj1slLvMmOSlgNjqHS6gk7Yy0tw/jTsCIutg5oXSdMHWxY0ZnO4biDnDMQDAT2Cufq39UFwoOKPXHVTKCp8eXKLUTFjoAaCp+I+cyV+xBiYULHeeM6jNK7XCh46zo267UztCyHZ7MFb0n0EA5/nO7snEjNm7ciIGBAZx22mlK95VEz6WuUqngggsuAAD0P/ts55uun9KFcUGkxW5FcRz7Fbd0Xa4idjylC/rji924ZDl2o1PCc82lHZcZYNJix1O6jnaoi+G+upLYdYwP8cXOGpaUOz+l67pYUuyIDRj1SBsKYhcVuqD9XiV2RF7skpZ9kF7sOCJ0nNyJXbgtFbGLfpMkRF7sIkLHURG7RKGT/cZLEv4GWbELC13oMmmx84Uu8bkk2p0YoctD3EQkasuLXVToAABMLq0LC13cdbI4McMlVMQuLHTtC4HKZsmZ3VzoIlgTcmldoeB0CB1HJa2LCh1HNq3jQhdFNq1bbU53CR0ApbQuKnQc2bRuaNkOVEvd56grrWMMJ2z3LrvgggtQqeTbyzZKz6UO8DpaLpdRnJxEaevW4HKe0kXhYidajq3SZkdKF8ZiFA1BuQundB39USjH8pQuiqzYhVO6jnZ8sRtZMCVUju1I6cJQBpiueGqXIHTB1YJix8uucdKlInZJfSLMk76epHaCYhcuuya1JbT2VoLQcaTELial62hLRuySREmmFJsgdBwZsctM6ETFLlx2jUNU7OKELnSdsNilCB0A4TJsltDJpnVpM8tlxM5oJU9oEi3DpgldcBvBtC5roWOp5Z/ihM5vw2iIi12S0BEGkBYVFjsuc1GhA+TSuv37tmH/vm2xQgfIpXVJQicLl7mo0HFE07qXmiOJQgeIp3VDy3YkCh3QndaVtm7Fc889h3K5jHe84x1C9yHDTpG6oaEhnH322QCA/mef8y6MSenC5C3HRtsSSe2iKV1XO4JiF5fSheFilzXOLi6l62iHuqgUrMxxdoHQpb0p9bAcKyJ2WSmaqNjxlC6LnpVjRcUu4yZCYseQKHQcIbHLELqgLRGxExGkLLHLEDqOsNiJlFyz+p0ldKL3lSZ04TayxC5L6DgZYiea0ImKnchSQSKf00aLZd4u63oRoeO3y3r+R0u3SYikdUlCxyHMG1+X3Q4y2yECW2/GpXNR6q1Cptjt37cN/UYD/UZ6iJCV1oXHz6UhktbFpXNRRNI6LnMqS4+F4TKXJHScyv7txQvPaHhPhrPPPhuDg+rjEpPYKVIHABdddBFM00R52zYUt40lpnRRssqxSaXXONLELiml6+qPL3aTbrzcbXRKeKKxd2xKF0ZknF1SStfVlsg4OxFXyxK7jJSu46YpYhdXdo1twxc7pxwvd0ll1yR2hdjJbHqeJnZ8YoQIqWInKHRBW0UKp5ogUjKlzKxSrOg5yhA7YsuVMpMuFxI6AHBZclonInSh2ybeTlToOAliJ1tyzRI70VCFsPS0TkTovA4lp3WiQhe+fRIy7aSVYZlBMoWufeP0tC5L6MKkpXUiQsdJK8NyoRMhLa2THT+XJHZJ5dYk3pKS1qWlc1HSSrBp6VyUwYp3Lktbt+GRRx6BYRi46KKLhI6VZadJ3ZIlS3DWWWcBAAaf/LPUgOa0cmxa6TWOpHJsVkrX0R9G/Ha6xS6p7JpEUjk2K6XraidhnF1i2TWJJLGTELrgkISZsTJyxfd4TUrtZPu0M8Uuq+ya1Fb3+J30smscsWInKXRBWyUjWexESRpjx1M6CZLETmliRMxYQGGh48SVYWWELnz30bROVug4kcdZdQxdktgRB0L72QbdSSjDCgsdv9+YMqys0AXHxbwWVNqJHU/MZU600p+Q1vEZrjLtJJVhZYQOSC7DyggdJy6t21Xl1jgWxaR1WeXWOOJKsFnl1kQYw8n+jNdzzjkHS5aoTVjJYqdJHQBceumlKJfLKI1PYPXYs1LHxpVjZVK6aFvh1E40petqpwfLngDxYiea0nW0kzTOTraiqjqBIratztRONKWLEi3HipZd49gZYqcidOG22jPk5IWO09PJE1GxU5liHxU7wbJrHFGxyzXTlf8tKkLHCYudotB1lWFVhY435x/W60kRskLHiYqdrNAF9x8SO1Wh48eGxU61HaAzrRNO57o61JnWhWe4yhAtwyZNiBAhnNbx8XOyQgd0p3W9FjoVwmldnnJrOK0TLbfGMchexJNPPolyuYz3vve90seLslOlbtGiRbjwwgsBALN3bAZTWPE7XI6VTemi8NSuwQzhlK6rP6Fy7PPWQOpYujS42K0qj8EkjlRK19FOaJxdudKSS+nCyE6gyIAvupk0OUKojYjYqWxzxtkpYpfD7QOxExhHl0YgdoopXUdbJcMbY5dnzSQuduWCstBxuNj1ZOmSPELHcVyQpqUmdJyQ2OUROgAA9Ranzit04bROVeg4/HNcVejC7eQROg5/jeZth7/3KAsdOidNyKRzSVgT5dQJESLwtE50/Fwao/ag8Pi5NFxGpcutcSwyDKV0LgpP65TSOY7LcOhj3ri6Cy+8EAsXLlTuTxY7VeoA4F3vehcGBwfR2mJj+++nldoIyrFODQ3F7bfCbZWJg1KuJ52X/BWIjSpVWGbExwBDH22h0INvNAZ1MVSto1BVfNJxKAOM3qz9xShyv3EFW4Hl3FIsoAf9cc2EDe5VutOD3TDcAoVdybeoKIeZBE7OnScYpXArBbBSzpXiGQOxXbCcu0Uw00BrxQLYIzl3sKAEbq0Mty9nqdqgaCzvR2s433qBjBI0Fpdgl3u0bInFcgkdAIAA9YU0//Pan8Xeix0e7HI+oQO8171VUxe6jv70oSftVEZmlWUuTNFwcskcZ6Ex3ZP15/ppQ7rcGkeTubknQ1DCcEjfxnxCB4A8tgXr1q3D4OAg3vWudym3I8JOl7parYZLLrkEALDt/5uAM6P2gO9dHsf+xS1oMDOX2BWIiz7CUKVuLrFrgcIBxYi5AyPmjuwDEtjUGsQrswtgUBdFqt4f5o8RHKw1UKjlELsWhTHtPS3yJFHEJjAaoTEjilCLoTDjfcvNm4wFb+x5/i7mlZnybinmbW/GAD+NVG+IBEsz2OW8EuX/V6BwKmpvhIwQsJIBRon3T3WbM8ZAG7a3z6yhvoMFMw1YSwfhlCjsigF7UU2tP5TA6S97260VTbj9iiv8mwYay/vhlA24BQJrQE0QGSVojJSCLenypVDeJB3iItc+w4wSTK0w4JQJppfney46JQIwBlNxyAXHLeZ/D2IEaA0RMBOwcywpxgjQHAbcAsu3FzcBSstnUCm1UDDyCdRApQGTurh3bHWudpYXJlCmFmZYvi88/bSBAnGxWTUJ92kyFw5jeM/C+5XboIThoMom9BsNXLzfw+qdmbWw4L4xAMAll1yCWk3xPUiQ3ny9z+D888/HbbfdhpdffhnWrzZg6TuHsbUl9625j7bQR5twQNFgJixmoEAclCXFzPA/uSiAKnVRZi4ajKKp+KovEAcj5g4MGbPY7vRhqz0gdXzTNTFrey8Eg7ooEQbGiPT4OpcRMEZgUBeDtQZaZQuNZgGtKclFXV3SUabk8iI9QcFtl1BgeB86/DKpdlhoo27it6cwiYMf3/WzbDs9WuAYaLfDKAErEBDGQASWkOjoTmhMDjMI7IrhzyKUf7MPpzR5kshwGZgRoubQLjyhCzqnWvMicEpt41Eeg0hCgkq80rByf3z5ZoQob7cHoHMvV5UhkKEZ13me04wSTO1lAARw/KEJjuKOLE6pPWYV8L/4KPxxfH5dsNsElX/v4TIHIBgCovIxwWXO65d/vhV30Sgt98Zh9/lrnxHFMSkD/mzMgr+n7Pammq0uL3gD/8v+oEOHUaXnYj/1++M/Eb3gRv5vazLX74d37HKRtWQicJkDECSYK4rj0u0AwFnL/4wnb65j/aSF/fbbL9hGdWey05M6ADBNE//jf/wPAMCL9zL0bRjDSHFKuT0HFC0Y0qldgbgohZ5wFECBQDq1a4GiwdpJRoE46KNN6dRuszWAV2YXdFxGCZNO7RgjsNz2Q2lQF5WihYGqZGrXojBmkhYsFW+Gp3ThY72JBXJvitRi3j6xXXcgn9olJhkyfxcTW7dLpB0SHV/qD+qWSu1IpAxMECyzIJ3aRf8sg0indTyl6+wj5NM6xkCjs02p/LZkzDRgLen8kuUaRD6to6RrPT9GiHxaZxpoLIvcN4F0WsdTuu7LxdsIp3NhoSMMUmldkM5VSIfIMQrptM4pxa8dJ5vWuUXEtiPz3sOFzi2gaxa+TFoXpHNFFggdRyat40LXV24GQseRTesGKg0UqBsIHUc2rePpXDk0i8QFlU7reDpXiHyzkE3reDrnhL6cGgD+nwW/E24jnM7lLUmftfzPKG0Yx4b7vPeyT3ziEzDNnZ+j7RKpA4AjjzwSZ5xxBsCAB38IrDDHcGh1g5DcrShNYHVptOtyntpNuUUhuTMSzJ+ndnnKsUA7tRMVu7pTCFK6KDJix1O6uDZkyrHEJanfIEVFKimRY0RO7DpSuq4rxfvjZg1KFmjHW6+K5U7puNAltSMsdiRlNXxf7oTFjsUPjmdF8TJsuOzadZ1MGTZcdo0iUYYNl12jSJVhDQqnv9zdfwK5Mmyo7NrRT0KkyrAdZdcogmXYjnJr7PUQErtwuTWuL3afeBmWC11sfxzxMiwXuvj+ir33hIUu9nrRl1VI6OIQ/bgJC11sOxJpHRe6OGTSOi50cTgS3y640MUhE9hwoYtjhZm9/AIfO8eFLo5z9npCqC9nLf8zzlr+Zyw3x/DcfxwGxhjOOOMMHHHEEULH52WXSR0AfPjDH0atVsPYOoLnf+2in9axspid2vUbDfQlTEhQTe2icLEbpFYuueNit19pc66xdoBfjjXsVLmLpnRxbQzWGij2Z4hdSkrXcX8ZvhFN6eKOFxG7xJSu486y+yO892rWbXpVdhVoR0TsMv8uUbFLELrgagGxSxO64DYiYpcmdBwBsUsTOo6Q2BnejhuJ/RYVuwShC/orKHapQhfqU9pnapbQiZIqdKG+iJRh04QuaEpg5YQ0oeOI7EaRJnScrLQuS+g4WWldltBxRNK6NKHjZKV1ywsTqUInSj9tpAqdKE3mpgqdCKLpnEgJ9qzlf8aK4hhWFMfw5H9RPP3006hWq/jQhz6k3D9ZdqnULViwAB/84AcBAH/4iYHJUaBAbKwsjuHgvk25S7K9ELuscmy09BpHgTjop43U1C6u9Brbp4xybFJKF8agLgaqDfQvmklM7bJSujAsRaZExs2JiF1qStdxw3SxkxpAnvQ39bLsKrh8SarYRcuuiXeYLXYisx3TxE5E6ILbpomdiNBxUsROROg4qWJnULjVFKHjZIldhtAF/c4QOyGhC/Up9mIJoUtL64SELrhtehlWROg4aWmdiNAFfUrojqjQpbXB2xEROiD5vZIRoLjXjJDQAelp3UClISR0QHpaF1dujSOrBJtUbo0jrQQbV26VJSx0eeDp3IqiNyFi+ybgsZ955/Jv/uZvduoSJlF2qdQBwNvf/nYcc8wxcCzg3u8YcB1P7AaNmdjUbkVpAvuVNgu1nVaO9Z5EYn3cFaldWuk1jryzYw3qoq9oxZdjBVO6KFGZykrposcywxuvEn2DFErpOu44XuyEU7pIW90N5U/pssquccSKXVrZNfaOU8RO4r0wVewk1seLFTsZoePEiJ2M0HFixc4XOrcgupdUgtgJCh2H8cc2ermM0AXHRLqokNDFiZ2M0HmNJJdhZYQOSE7rZIQOiL+tjNBxomkdI0BjgbjQcaJpXdr4uTTi0rqk8XOyyKZzcSVYlXQuLqSRTefixtWJlFvjiCvBhtM5wHsb+813DbRaLRx33HF429veJtx+L9jlUkcIweWXX45qtYqtL1I8cUdoZWxiY6/iREdq1280gpkxIiSVYw0wqT9WdRJFFJHUTpRoOTar9JrURlTsZFK6KGGZkp3dGjeBgi9hIpTSheFthfqjvMxD+G/qUUqnKoYdYicrdJw4scsou8b2JSJ2sRMjRNqJil10pqsoIbFTETpOh9hRIid0HILOGbGSQhduJ5zWqQhd0B8+gzRHyTUsdtJCF+pL9BhZoeNE0zpZoePw9xsvVSPSQsfb4GKXNiEii/B7pmi5NbadSFonms5FCZdge1luFU3n0lBN58Lj6vJMhgiXYKPpHOdPd1BsfZGiVqvh05/+NEieBc8V2OVSB3j7wn7sYx8DADz6CwPjr7avK5MWBo0Z7FWc6Ek5VnQSRRK9Tu1GzB3CpdfY/oTKsSKl1zi42KWVY2VgRC6lizuei51w2TUJEioP53ktkR5PjsixawQXu1x/U0TsVBeZ5WInU3aNbYeLXdxMVxm42FGqJHQct0i9hK5Wlhc6n2BGrKrQ8Tb8Mqyy0HHILh5Dl3p8uwyrKnRAe9KEW1QXOt6ftBmuwu0YcuXWJIwGySV0YWrlprLQAe0SrGi5NY5wCXYujZ1TSefiiKZznLFXgT/+wkvsP/rRj2Lx4sW57keF3SJ1AHDmmWfixBNPhGsDd33bhBU5x2XSwl5Fr/Q6QNSe5L2cRFEggAWKKVdx0VG0xW5RYQpmzjjcoC6MHG3wcqxhMBC7B98kCMu9nQ8zvCUn8uKVdXvQDpErLabRiw/V3K9WAoDmP8duyYA1XM59bhgh6ilduJ1iAa3lcutDxrZDqbLQAWiXYaslJaEL+uEnsoySfM9jBpjTTk++lFCLKQud1whgV4jwDN00XH/dy1zt+Mm5qswFzfRA6ADvb+mF0FWKFkqGk6vcSgjrSTrnMNoToZt0ndxj5wygJ0uVjBg7cObyJ7tkDgCsBvDId/aDZVl44xvfiDPPPFP5fvKw26SOEIJPf/rTWLRoESZHCe7/kdG1vWOZtNBPGxiklrLYcWaYiW1OAbM5tgJwGcGMW8KUW0ZD8d2Al2MHC3UMFNWfXNOtErZNVzFVL6HeUn9nYgxghnzJIAxxvKSOj5FT74wnZM1BAqsvp3jkFcRgr0fEjnOSaorkb8Nrh0iNg+tuwHusmOHtGaoMAZwShZNnazIGUMvx9qwtqrfDDAOtJVVv0eWcEMZgzOb4IGMAcVxvkPukejuEMRRmbOTap5YBxSkH1GGgVr4PVWq5uZJmAIAL1Dblnz7uFD3ZVVhTtg0DqIVce0kDCNb4y+k+3rhiytAYy7FdBYCCke+LPgAsKM9guDSL+6cOyNVO0KccQlf2NxfIu0Nkg3n/Tqi8mKudEWMHisTByuK2rusYA+7/oYFXX30VIyMj+MxnPrPLy66c3SZ1ADA8PIx/+Id/AKUULzxA8dx98SfBIMAgtbDUmFGWO5d55djtbjGf2IHCYiYarKAkdq9aC/FsYykMwjBYqGNJZUpJ7hxGYFkGHIeiZZm5xA4EcEsMTp+63BF/4ffcYke8lM0pq4kdo22BYjlTKdJLsaM52wiPgVN5iPjYQL8Nb2sxhckxlMAp+bsHFPOKndcXZlIlseNC5/h7n6qmbMQFzO3+Cv2WoyZ2vtAFbdpqH2aEMRSmbRBfpEoTCqVpLnS+zBFXXey40BGbYeAVxeEnvtCZda8PhuKnNBc6QG7sbgdc6Fzv59KE4vudfzq94SKKfQGfKOb1QWWyGuDJXMFwlXeX4Cwoz6BoOCgaDrY1829l5YJi1Fbbb7lMHBhgiWvLitIIHT6oaN8jxo5A6JJ4/n6CF35HYRgGrrjiCgwODirdVy/YrVIHeIsSf+ADHwAAPHCziYkN8bczCFAmLHdq5zKK7W4xf2rnL20iK3YNt4Ap2yvhGoShYli5UzvGoCR2040SmhN+OZkAzGRwS/lSO1Wxi06yYBTqYheZLOGaRE7uYv78noldIX6GY1Z/uNDlE7vIIHNJseNCF95DV0nseEoXvkhS7KJCB3+8oazYERcoTDQ6xvVJi11E6ADv9+KU3IdIWOi8dhmMhiMndhGhC9pWSNrCCR1hDMXttpzYuUB1o9shdICakIWFjiOV1jGAtkJCp9KGT1z4ZM7IvzeEhU4VLnNhoZOdPAe0ha7XZC3/FQcXunz32yl0qnCZSxO6iY3AQz/2JPj9738/Dj/88Px3nIPdLnUA8O53vxvHHnssnBbw39ebaKYsZ7G7UrtJ18CoE9lyyBe7POVYAEFqJyp2060SJmc7o3oudjLlWNumIFbMSvkSYkccgFrRZTd8CSrKyV30i6as2CWlYXyWrYzYxX3p7VUpVja1i05qkBa7lBm88mIX7Zyk2HGhi9vBQkbsDNIWulBfZMQuTugCRJO2GKHj0LotLHZdQhe0z0Bb4n2JE7qgPxJpXVzJ1euj4Ae/n84VZjuFjiOT1sUJHSAhh6F0rkvIJNO6pGqiTFrHJ2Z0CR0DxjcMCbeTlM65EmHFgvJMrNC5IPj15MHC7fSCAtxEoZMRtF7I3EJjOjOdA4DmDPDgt/dBo9HAMcccg3e/+9357zwnc0LqKKX4+7//eyxevBg7NhPc/W0DrgssNSex1Jjpun04tcsrd6KpncXiFx3OW47lyJRjHUZg290PHWPYLeXY2NQ/NKM167SkLYUiLXYpNxMSu4w/txdiF/RFpJ2E/giLXaTsGoeI2AVl19jOCIpditC170dgVxPDQGtRX2JfRMQuVejQg/F1PiJilyh0QV8FyrAZQsfbERG7tDF0QmVYF6iOxstc0I6gBCUJHSczaWPd6Zx0Gz5Zw8NE0jouc0kJnUgJdmeUW+PoRQlWlAJcFImbmNCJfB3pRTq30JjGQmMaZWIlCt1i01uVw3WAu280sGHDBixdujQYSra72f098BkeHsZVV12FUqmEDX+meOjfqDedOuWJ24uSbC/H2uVN7Xpdjk1L7abqJTS3p8zk3cXl2LT3Jy52aRMoRCVJROyy3it3mdhlrCUnLnbZj1+a2HWVXWM7Iyp2GX3JmDjRVXZN6Eua2GUJXXC7rDJsSkrX0U5K0pYldN79ZJRhBYQuuL+MMmzWpIjMMqwvdIXZ7L5kpXVZQgdkyKGA0PHbpaV1sQlfDFlp3c4qt8aRVoIdKtV3WrlVlgLcQOjy0Kt0rkwslEn6lzB+/R/+g2LDnynK5TKuuuoqDA0N5e9ED5gzUgcABx54ID772c8CAP78KwOP/kZsNlCvSrJ5x9plpXYbrWE821ia2U7eSRRAdmrnOBSkJfDwp5RjvZlfAudKsRwbho9HS0vtRB+2RLGTeGPgy6bszAkUImvJpYpdStk1jnSxE2ggTexixtElkVSGFRK6UF/St8sSG6eWKHaCQgckj68TErrg/hLKsBJCx0krz4qMvUssw0oIHZAsZE6RCAkdJzZpExW6tDaQfykiIKXcGkdKCVYmnUsqwQ6V6iib1i4TurTJElzm8ghdr9M5UZ67n+BPd3qVi8985jM44IDezBbuBXNK6gDg1FNPxaWXXgoA+MV3B/HM02LrwvU6tcsrd3Gp3YxbCiZJZLG7J1F0kFSOZRLLAiSUY6V3ocgxgSLaTpzYyVQ0+G4YO0XsJPqRLnZy73hRsUstu8Z2JkbsBMquUaJiJyV0IaJpXXimqyhdYichdJxoGVZK6Pgx0TKsgtDxdrr6J7lsCbEZ+teFXriSQseJpnVc5mTWQOx6/5AUusR2FY6PlmCzyq1xREuwvSq3cqHb1USHLfUinevVRAjRdC7My08X8LsfeIHTJZdcglNPPTV/R3rInJM6ALj00kvxF3/xF3Bsgq9esxzr10vskTpHlj/ZWWPt4iZJZKEyiaKLnViOlX2vioqd6nIhHTNjc/xJO0PsZHd86BI7yZSuoy8GP68CZdfYzoTETkHogn6ExS5uYoRAP8JlWNGyayx84oSC0HG42KkInXff3WXYPEuVhH+WnR1LGENxyrcpRaEDOoVMJp2LYjSROMNViEgJVtU3wiXYXVluTWOoVFcSOhcEd+84SPl+4+hVOpcXlXQOADavN/Dv31gJy7Kwdu1avP/978/fmR4zJ6WOT5w49NBDMTtr4JovL8f4mPhyB9GJFP1UbSuscEl2ByuptRFO7RSmdwOdqV3JtGMnSWQRLseOT1bTx9OlITk7NqmNXpRjnTJBc8CTO9XhkO39Z0muxUh7JXbMgLJgBsueuMzb/Fx1KzCCIK3Ls39uW+zUTywzKdy+YvLECIF+eDtpEHWhQ3vihKrQcWjTURM6Di/D+imdKsT12smzsDCxGQZedpSFjkPtfEIH8Fn44uPf4jCa+Y4H/NeOTLk1hbzpnO3SQOZUE7otDbV15qL0Ip2z/H95CMucrNBNjlP86NphTE9PY82aNXNmYkSUudcjn3K5jC9/+ctYuXIlxscLuPp/LcfMtOTm9b7cLaA2FihuDcJTO5dRFIjaBwJP7aq0iSEzZb2WDAzCMFisY6hWR6Wk9vRmDGCMgBRdsJLiC4wAzARYAXBU5c5//yaOujh0yFjOeQu5tx3y28jfj3wNBIldzn64pmTZNa2tco7SP6WwB0q5tu8iLlDY3gRx1CWImRSNJX1oDat9uQMAUAKnYuZ/jF1vTFuenSIYJZjeq5h7pwhqs1xCxyhQX0RznxNq59zflng72eRcHg1WP/O/tKo35BYYxrcM5BK6kuHApG6ucutgoY6hYl35eE6VNnOncyUCOMz7p4oFoiRzAFCfIfjRtUPYMW5g5cqV+NKXvoRSKcd7wU5kzkodAAwODuKaa67BwoULsWF9Cf907XK0WvIv/jIhWGJQ7FdoKMsd9adbl4mlLHcF4mBRYRorShPKcue9UG1USy1lsSPUBS24oGVbWeyC9dbyiB3zPnBzC5WLfJvd+33xxvKoH09y9oMweAkbgbclmEo3CPH+URKUUeU74h2bY7tkgAFG00uBlD+wKYVdK3hCp5j2EQcojjdAm3bwd6k1RGD3GXAqNJfYuQUK1yBwVYWZELgFCmox9ecIJdixsohWP8HUCrW/hRECu2rkmizEKDCzxIDVR2DlWD2DC53qThUgQGuAeFWDHNLQGmC523CLDKAAaai/+EqGA0JYri3DBgt1lKiNIlX7rAOAflpHP62joLz9hydzJeLt3aqKBQILBI5iOafVBP796wPYsr6AhQsX4pprrsHAQP69pncWc1rqAGDp0qW45pprUK1W8dwzFXztn5bBEplxGaEAAzVSwBKDqosdXFB4cpdH7PqNBhYVpnOldiZ1c4kdABCKXGIHwNsgPo/Y+fQkKVMUKhKa8JFH7LzEkOQTO/5Q5BA7Tj6xi/wvezhrD8hnBlFK61h4PByTm1DTboR5Qhd0TGHspUnRWFr1+0TgFhWeIH5Kx39W2r7OF7o8qRYXOruPAASwqgpthITO65dKPzyhsyvewUFbkoQTOqUgyBc6R3zYdiyB0OWAC10euNDlgQtdHrjM5RU6A/mFzmHqQme1gP+4bgAvPFNGtVrF1VdfjaVLs1ew2J3MeakDgP333x9f/vKXUS6X8afHq/j615ehqegyBRj5UzvMndSuWmrlKsdysUMth9z5Ymf3sVxyx8eU5ZG7QKhkXsORLjP/Q1e4HyzygaIgdkFK13GhnNjF3VZa7EjM3y37fsjQtfyGW6ByYkcpnGrn7b2xguJNEAcoTnRPlpI5H8ykaCyrwa6EZgQbkEvrfKGLlpCl0roEoZN6foSFLnSZTFrXJXQ+MmldVOi8diGV1lGbdZdcmURaR4DWIMktdK0Bllvo+Bi8PJ/GJcPJLXSDhXpuoZsv6RwA1Nw6fvatfjzzpwoqlQq+8pWvzKmlS5LYI6QOAI444gh86UtfQrFYxOOPVHH9N5dhxiZQSdzDqZ2q3IVTO1W5C6d2qnLXm3Is5MqxrjcouQO+vIdgakccb4B0lGDigshSZC5gtLrvixHx1C6c0nVeIZfadbXhi53MOLvYpGF3JHZxNxU9PFR2jSIsduGya7QbgmLXUXbtulLsfMQJHeA9HsJl2ASh42mdkNj1OqHraFs8rUsSOt5O5vEGMLPU6BI6jmhax2Uu7vUilNaF0rlYoRP8TOEyFyd0xBX7W9wCAIN5/yJ9GB0dEmqDy1xeoStRW1nowjKnKnRhmVMVurDMqQrdEK2jn9Xxo+sX4c+P9aFYLOLLX/4y1qxZo9irXcseI3UA8PrXvx5XXXUVCoUCHn2ohpuuX4KGQ9Fg+eVuTy/J7tLUjpHkNy3R1C6jnCYkdgyp+8fkHmeHnOPsCBFK7WJTuo4b+P1Ikbss8RMSu7iULtKPLMJl1zhExC5cdo29jwyxSxW64Ebp5yNJ6Np9FCjDJgld6PrMMqyA0Ik89rFCF7o+La1jhMCqmclC55OW1jEDmFnsjZ+LEzpRejEhIjOdE/gsyUznMtoIZDBlQgWZTV/xYS6lc/Oh1DpE6xiidZiug1tuXIhHH6qhUCjgqquuwlFHHZWjZ7uWPUrqAOC4447DlVdeCcMw8Iff9eM731qCpkXQYjRxZkyDMTRZ8pN2vpRkRVI71yVwU7aQkU7t4pBM7ZLoaTk28QYibaTITrT0GoeI2AkmDHlSu1Sx439jVvMZ51JkRmaq2MWUXWO7kSZ20XF0iY0kSE6G0AW3SyvDZgldiMS0bmcmdB33k5zWdUyIyErSEq7mQpclc1klWCGhSyvB9mD8XK/KrbHpnAQi6ZzLCLY3k9c07WU6p8quLLVOuslfXIZoHSXiwHAc3PTNJXjo/n4YhoF//Md/xHHHHZejd7uePU7qAODEE0/ElVdeCdM08fDva/j215ai1SJosPjUzgXgZHx6z8WS7E5L7QS+yfRyrF0usUsoxyaVXpPaiBtnl1h6jZJRihVrI98Eio6+RGREdlxVstiJ9yH24qzEMUSs2KWUXWOJmRGbNI4usYm4c0FIptABKWVYCaFLTOskhS5pPGWm0IVuG03rUsutgogKHSfpvmQSuq7bqYyfi3kap5VbRclK57KQTecst1uX5kI6tztKrXHrxPJ0rkQctFoE3/7q0iCh+8IXvoCTTjpJsXe7jz1S6gBg7dq1wRi7Pz1WxbeuWYZGw3twW77cqaxpkyR3BlwUBZ/AvSrJ7nFj7eLo5SSK8LM1o/TadbzEOLvkNnKUYoFYsZMRofZBPU7sVP6u6N0LpnRhomKXVXbt6kKkhC9Udu1qpPNchGe6itBVhpURuhAdaV2PErqpvcWEzrvPzrROVejCJVhZoUsiV8k1a/xcEpGXZM8mQ+zkdC6LuZLOycqc1fFzb8bNcZkrEQeNBsH11yzFn/5YRalUwpe+9KU9UuiAPVjqAOD444/HNddcg0qlgmefrOC6Ly/HjL9vnsOSkzsRouPtDDBQyXeWPSK1EyD30id7Ujk2DV+mgpmxIqXXrjZixE5xKQa+Jp0K3WKn1gevMcBoufJy6vcDgHDZtasLfhlWSeiCRvx1+QTLrlGiZVjphZLDkyZyCB1/LnChs6pybfC0LldC5x+iKnThEmzsDFfJvuQut/bPrXKrKnMtnZOFv7X0WuYAYGaG4hv/axmeebIPlUoFV1999R5Xcg2zR0sdABx55JH46le/iv7+frz0fBlf/eJyTIy1nzY8uZvNGFeXRHi83UIqv7p2OLWr0ib6Dfk2wqndYEH++HBqVy7v/qVPXDN+5qsIMrNj09rwflA42Bcyntopvc9ysYNCShfTF1W42OVLH/3/FP8OZhA4lYJc2TXaBZeBWq6a0PF+FAw0llalhQ4IlWEXlNtr0cnCxS5nQucaakIHwEvrashdcnULJFdC5xZI6gzXTJgnhLmEjvjpXI6tDIlLdnm5NY7dnc4tpPWellpVmHRLXTIHAONjBq69ci+8+FwFtVoNX/3qV3HkkUcq9nJusMdLHQAccsghuO6667BgwQJseLWEr3x+BTa82vlqnnEpxl0X00xeanhqVyaOr2jyp43CDbYocRQ+iXlqN2A2MFBqKG3/YlIXA+UmKn1NJRvh5VgUXbim4psMBZjJ4Jr5xqbwvWOVj6eeXLqKn8F8nJ368SS3lIX7okre7Zm88qO324IqbtGAo7KgbwSnprjTAyFwS2YuwWbE21khz3ZmoOq7MwT9MIia0AHec9ogmFmi/lgyAjT7qbLQEQaUJvKlc1aVwC7nS+iIm+/9ibYA2kQuoUO/lavcajkGVtYmlGWu6ZpouWaudG7cqWGQOsoyt9kpYLNTyJXOAUCZ2B0yBwDr1xXxlc+vwKYNRSxatAjf+MY3cMghhyjfx1xhXkgd4C1QfMMNN2DlypXYPmHimiv3wtN/7pz502AGxhyCTU5LSe4WUIqlxg4AUBY7wNtP1gFRlrsitdFntpTFrlywvXtW/fZHmCdmRaYsdyxUklU93ikSOBWiJnfEL+UaOcQOXjKS53hGSNCPXKh+jvPlR3J89jBK4JSomtgRgJmkI72UbsKXMVWh4tuqGU0XhSm1D0Bq+31Q3cGjR1CboTqq8AFM2im4U1Ip/QKtGoVVperJli90ZpMpJuBAq0pyTWZQTgdD0BZAHQLqKD4X+i2g34JZUB+3ZjkGGIB+U201h6br7XceN9FChHGnhnGnhoZbyCV0M6wAmnOHDABdQvfMk2Vc+4W9MDlhYp999sENN9yA/fffP/f9zAXmjdQBwLJly3D99dfj8MMPR6NO8c2vLMOD93XOkXdBMMNMJbkrERP9oVV3VVM7wBM7LncqUMLQZ7aUUztCmBcUCU8BjTYAMMOXO1Wx88XKKSm+CRNPyJyiotiF+pBb7GTfuVg7jQj2a91NYtfuk+TNCQELnTfpkp0/MSJIC3OIHeDLpWxaRwjcsv9HMAZDcrIH4Asdd2NDcQuwoLGc5XAGFKYlZSDnJCJGAKtK4RQAx38dG025J1NY6JTwhY7leB0TV2JGfAy01RY6ZfotmEUHZlFN6CzHgOUYyqlW0zUDoVOFy1xD0ax5Ojfjz1YtyMyIE+Ch+2v45ldWoVGnOPzww/Gtb30LS5Ys6el97E7mldQBwMDAAK699lqceuqpcByC796wBLf/ZBiuC9DQp5YFqix3UfLKnUxqN1yYwdLyFABP7PKkdjzazy13OVK7YIycZGrX0VUyB8TOJHAK4m0Qhi6J2tViF7tIsILYBT9TuTIsT8g6OyUndh0lUwI4JUNc7Ig3nq9jwogLqbQuLHTtC4UPT2g0/2xR4bQuRugYBerDYn9EWOjaF4qPmSUMKE+wOSN0AQwobhd/HHqWzvVA5vIIHQ8bOGsHnxE+PpzOqRCWuZmY5Ufy4rrAbf8+jO9cvwS2beOUU07Btddei/7+/p7f1+4kx8tg7lIqlXDFFVdgZGQEt956K/7zJwuwaX0Rl/z1FhTKnbe1QGExipbjYoq00E8JaiT5CcVLsKPOQNd1XOxoyjeLfqOOBayAcbudIAYvIj+6MVI+WcvExoBZxyjaT0Se2hUNBy3HQMOWe0EEYzYYASNMaB27zga81A7UW2WE2mrlGxj+8SJ+2rUtlyd2AANtCRwf6SK/f4d4b+4qw1AYJV63GANVrJwwQgBDbo/TLrzToA5DphxGUzqOU/Key+Zsxh/Ay66x15HYNei6bhY3Bs5P/0TUksXtKsEYjKYLwIbVn/72SFiM0IHPkAZonjF6NEcZMEjrMs5CUkJHAKec/RqOFToJepHOWX3+dnwxD5XZAOxy9+VdzUSFzu+bIbjcYa/SOVXyJHOAJ3MAYtO5fYrbMo8fd7zPsjiZO6S0KfP4zf4TKE7k+oXezLNpNgi+9+3FeOwhr68XXXQRPvzhD4PSeZdrzU+pAwBKKS677DLss88++Kd/+ic88mANW0YL+Ov/sRkLF9ldyVhY7mBYiWLnlWBbSPsi7IImil0BDsokYbcHCbmLQglDkdgwiZNP7phnNZ6cKMidyeBSePvDSspdIFb+B5qQ3EXu3yl6aRdxUuSOxP9p/P7BuJymdTb5Km+we4rYsfSB4HuS2MUhInaxKV3H9eplMF6GNaZTPpXDZdeuBrwybNbTL/XxoQDyPH6UACnbreWmhyXXJIwmSxyfJyJ0qd8vM9I5wgDY6U9i/hrMU24Fcghdv/cMy5POAciVzAHxMidCmsxxRjK+HYfLrHH0ovQ6ts3EP//TUqxfV0KhUMAnP/lJvPWtb83d7lxl/mlqhLPPPhtf//rXMTw8jPXrSvjKP+yF559JLs9YoHOiJKs63q6XJdndMdZOtRwbvv85Mc7OTB5nF1d67e7Dzi3Fpu3P2u5EwsUJKV2Y1IkTaSldcJv0MmzWXrmpZdi4smuUjDJsbNk1BF/PMA95xtallmAFhC6tBCuU0KWk3fNm/FzOcmvesXO9LrXK0OtxczuLF54t43/9w15Yv66E4eFhfO1rX5vXQge8BqQOANasWYMbb7wRq1evxvQOA9ddtRy/ubM/scITHm+3OUbuwrNgs4iTu36jjgXmdPaxCePtBs16MK4uibSJFCXTRrmSHmvPibF2OSdRzGWxE+vD3J08IbLocZLYZaV0AQliJ7T0SJLYiQgdEJRh48QuS+jaNxS4TerxeWaNJEyYEE3oEkqwPSm5bu9BybWX4+ckyD0Zoodj57LYd2C86zKZiRBx4+lkxs3FlV5lxs3lKb0yBvz6/w7iq/9zJaZ2mDjggANw4403Ys2aNcpt7im8JqQOAJYsWYJvfvObwQSKf/v+Inz/WyNo1JNfHBYopmLkLjoLVoSw3KWVYLuOC6V2XO76aAsDZvYixEmpnUldlMzsN5Wk1I6aLlhZIBafA6ldnmVPArGUmAARZS6KnVBK19GJSH8kzkWX2ImkdGFybIfGx9eFiR1Hl0TMbNikcXSxh8+1tG4XlFzTCBK6htqXRKtKYPWR3MuV7Cnp3NBA5y5CMukcJQwLijMdl8mmc+HxdGGZE03nwqVXlUkQqqXXRp3gpm8uwb/9cBEcx8Gb3vSmeTfDNY15O6Yujkqlgs9//vM49NBDccMNN+Dh39Xw6itFfODjW7BsRbJk8fF2DcfFDGmhSknqhIk0uNjFTZhIPS403k5mrB3Qo4kUobF2hBLAdCH8nSAy1g4uASkx0KbYm6P0JIrIfbsmAENiEkXMfQuNs0vANQkY9cbRqUygmGtj7GS3JguPsRNO6cJ3HRpfJ7tAcMf4urRxdEn4ZVg+aUL6MdidY+vCEyYUhI6XYCsTbi6h4+kcALWEzk/n8iwGnEfmALV0zur3pURx7Fy16L1ZzYWxc7JlVp7SpU2CSEM1pdu4voAbv74UmzcVYRgGLrvsMrzjHe8AyfPlcA/jNZPUcQgheOc734nrrrsOIyMj2LKpiGuvWI4Hf5stV+HkbrvrKq8xByDYE1YWntqJlGDDhFO7gVIDRVPOTno61q7IpNOncDlWqfSym8uxzN8twDXUZjXOiVIsFM89/DXsZFM6Tp716/wyrN1fEiu7RgmldcJl1/DhuzmtA6Ce0Pkl2DxCZzaYV25t5EjodqPQ5Sm3uiW2W8fOhUutskK3dvCZXEuUjFA71/IkKindg/fV8L+uWIHNm4oYGRnBN77xDVxwwQWvKaEDXoNSx1mzZg1uuukmHHPMMWg1KX74zyP40Y2L0GxkPwG43AFAHxWc9x5DixlKLxiXURSIg6rZlF5tm8vdcLmO/pr8PrLBWDtf0OQb8FI7pygvCLwc6+YtxxbVXuRBOTjPUCcDyuVYvt/s7oJRorydF1/DTnVbMkaJ0r6sALy0tmjICx2/by7UqklPzseMmeoNEAYYdaYu9HlKrgwgNtRkDt7rrDm4e4SOEcCuqJdbrZqrPHaOMQLGSK6lSpZVdyhPhBgqzGLAaChPhGgxI9ckCNmUrlEn+N4/L8Z3b1iCVpPimGOOwU033YTDDjtM6f73dAhjAgtCzWMcx8G//Mu/4F/+5V/AGMPIEguXfGQLVu0v9sQad/qwzlqAKm2hKil4DVbABmsYE3YVFAxlydriZmsAr8wugMsIXIUX/1ijis2T/XBdAteRe/G7jMBtGWBN6pVTZdemY4DRoDAaAHEIiGRZkzqhdaRkn8HMK+PyrZ1kIK5fgmVqiRthXhmV2ky+lOtLpbfci3pJTmZcWMehBkGrn4La6vfP0y7Zc8+oJxdGi8nvmAB499lSOM4gaA4X4BQIzLrK88U7RuW5Bngyywj8tfNkjwWaCwqwKgStQfn3B+IC5XEXxPVmm8o34P1X2qE2nrY5ROCUiPTuFPx4tyifbjMCNIe9bcqIqyBzVW9imbvIglmSe4EzRoJRDrVqA+WifCVnuOx9Ud+rb1L6WMATuj6jhYPLG6WPbfgSt9ScRD+VDwxG7SEAwCHFUeFjXn6hhO98awm2bimAUopLLrkE733ve2EYecsaey6veanjPPbYY/jiF7+ILVu2gBoMZ10wgTefPYmstQlH7X68bI3AgIshY1Za7EbtQTzfWAKDuCgRW0rsGm4Bo60BbGl6CxHLyt1Esw9bpmpgjHhiJyl3jkPhNgz/HRTSckcsArNOfMmSEzvCvPFN1Ap9E5d5JiuIHfGTh/D9yYodcfkHhvxWSt74QAK+uLGSWPGxaQpix6UOgJLYkdBbDbHlzj2jgFUzvL/d9s6jlNzJSp1B0BooeCX/IgUYk5Y64rLQ+ZafoMKFDpCXOi50dslLd2WljrhAecxFoe6CUSK8w0QHFMHrrCBx7sJCx/si81xTEToucwDglL0vjLLrbFo1F27RS0XNReJ7rnKZCzpCGEaGxYfWAG2Z6zO9MGK4KCdVQwVvUkaf0cJexQkMSEpZgxXg+KngQSV5IRy1hzDleitFH19+OfP2rgv86j+HcNu/L4bjOFiyZAk+97nP4fDDD5e+7/nGa7b8GuXII4/Ed7/7XZx66qlwHYLbb12Ab161FBNjYu8MDii2O30Yc2qYcSX3nwTgMIomMzHrFoUj7zK1UDHaEkgJg0ld4ZJstdDCQKUBQhgMw4VpujALDqgh9gFCKAMp+PUNgwGmXEmWl2G9WYoMbokJl2SDMW4F/2c+Zkj0fdg/Xooc61oBfkrnH8+I5Pg8Eirb+jsWSO+1GoIRIjlovrP86Zo579/kizRLQgjcgldCt2o76du4QdAcKsCuUOVyc1joAPmSfVjoALlzzSjQHDZhcyligDkr8eUlJHReg0BxRv4LCP9fuoJH0LFoscqQA9HXNpe55jCDU1YTOqvKYFW9scIAgH7xb6eB0PE3McJQ7RMPBobLdQyX6+gzW4HQ8f9FGCrMBulcn+EdJyN0DVboEDpZRu2hDqETYXzMwHVfXoaf/etCOI6DU089Fd/5zne00Pm8pma/ZtHf34/Pf/7zOP744/H1r38dzz8NfPkzK/CO94zhuLXTmasrOKCYcUtowHsXk03tHEbhMAqDuIAL6XIsh0tdVmpXpDbKpg2+4p4ndwyUEthAZmpHCfMmP/BuEgaY/gcYQ3Zq50+eAEggWYwyEEOsJMsIOr6W8D83uNeMzyFGPbEQSYx4MtjVf5ntnMJ3w1M3SJRhw09AQuD65044xYjcjBECAsHELkZCvd8l7j/aHRNwIXb+u/tDvC8ENUOtHJuEL3R8xq4KUaGTJSp0/DKRRgOhK4dfGOKzxruEDt6XEaMFQLQEG/PlyqoQobSOEaA50H0/bkHsecZTOpHbtYYYGPFEjuNtESj2d1pV/322FHoDIBAqu3alcyH6SmJSxmUuSklwij2XOVXyyBwAaZljDHjg3n782w8XoVGnqFQq+PjHP463vvWtr7nJEGloqYtACMFZZ52FNWvW4Itf/CKeeuop/OjGETz2YBUXf2AbBoezXzA8tWuwAsrEUpK7Jky4LlEaawd4wkUJyyzJ8rRuR7394iKEwTRduJRllmR5WscsvuSKl9h5+8giU+68tI4geG+RlTviyUH4NsJyF6QI6WLRVXaN3r+A2PGya9f9y4pdx/EKYhdBSuximBNi12+AOAL7zabBy60Uc07oxI+NEToJ4oROvhF0J8D+68xCutjxiRGxix7TbLETKbsmyRxHZIx+rMxxMlK6NJkTTemipdYwIilduNSqAh87lyedAyAldNsnDPzo/4zgT3+sAgAOPfRQfPazn8Xee++t1If5jB5Tl4Jt27jlllvw3e9+F5ZlodLn4IJLxnHsie3Ujo+pSyJrrF2DFfBqayE2W/Hr3RnERYE4iXIXHVeXRJrc8bF1cYiMtwvG1sU2QACHpMpdMLYu9nh/BluK3Hnj0+KvAyIyFvdszxhfF0yOSCNlfB3J2OuVTxxIvA9eek36Nio6xi7l6rQxdt7MVZpaLiaOn3Kk9IGkvNUQB6kTKIIxdUkwf9mMJLFLG1Mnks5ljKkLxsulnGOassYenxWcujWayxLPb6bQEcApAnZfwmswQ+gY8ca4pU6YyBr+wJInTaQJXZikcahpQsdFjv8cJ3MAL1Mn33+qzAGpY+lSZS7UgbSxdGkyF9wmZSydiMwtK2zHkDEbe52IzO1VmEidJCGSzoXH1DHmLVXyr99fhPqsgWKxiA984AN45zvf+ZqeDJGGljoBXnrpJVx11VV45hlv25TDjprBRe8fw+Cwkyl1gCd2ZWolpnZ8skRqGykTKbZZNbw4u0job4mTuzSp46TJncsIXIu207rYBlLkziWgrVBaF3t8stx5JRMITbRImlRBnPgPjNSULqGPXW3EpXQxxyaKHREYf5YldgL9TxK78ASJLJImUKQJXcftEiZQZEodkC52SVInWm5NkTrRdC5psoRMOhc3YUI0oUuaMMFnuRZm0xO61AkTIuNZEyZNiAod72vc84sRwKmQrsvSUrkoSWPpMmWOM2B3lV6FZA4IUrq40quIzAW3jZE6mWQuadaraKk1aZKETDrHpW5izMAt/zKCxx/x0rmDDjoIn/3sZ7HPPvtktvFaRkudILZt48c//jG++93vwrZtlMouzrloHMe8aRaj7jC22Nk7SyTJnYjUAcmpnYzUAd1i13JNjNX7OkqwSSTJXWpa19FAvNylpnUdx8fLnYzY8dvz9vj/0bROSugi/Wu3kZHSRY7tEruslK7j+BSxk/gbonInI3VAvNiJSh0QL3ZCUgfAWyyYdZdjo1InW25NkDrZcms0rZMtt4aljlGgNWR6a6oJlFzjpE5U6ICUtE5mglIkrZMRunCfw8+vaEonK3NAvNAJyxzQldIJy1xwfHdKJyNz/HbR8XSy4+aiUidbao1KnWypdXVxFENo4J7/GsAvbl2IRoPCNE28733vw7ve9S6Yph4xloWWOkleeOEFfOUrX8FTTz0FAFi1fwNvubSO2aULhNuIlmRFpS44PiJ3oiXYKGG5E0nrwkTlTiit62ggInciaV3H8W154oKXVYaNo0PuImInVHZN6ZfXhkBKFzm+Q+xEUrqO4xPETvJVHhY7WakDusVORuqA7nKssNRxoqldWOpUJkNEpE6k3BpHWOpUxs9xqVMaPxcpwcoIHacrrZMROqArrWMUmF0sPzaLp+phoVOROaCz7MpFDhCUOY6f0knLnN+BcEonK3OccEqnMm4uXHpVHTcXljrZiRAAsNeWjfjRTSN4+QXvuEMPPRSf+tSnsN9++0m181pGS50CjuPg5z//OW688UbMzs6CUIaD3kKw5hzALIm9kMOp3ZRblpK6oI2Q3E07Jam0LozLCMYaVSmp44TlzmqZYmldRwMhuWtRObEL2vDTO5vAbIindWEC8XK9Dx3DYvIpXbQ/Mild5Hhqe3ImnNJ1HB8RO8VXOGEMjGSPp0s8PjTOTlbqgjb8NemcMpVfAiWc2s04oI6bazIEtRloi+WaDEEdJjR+LgniMhCHKU+I4GmditABkbROVuiCRry0TiWl43ivdwa3SOCaajLHMZre9oOApMhxBmwYRUde5jh+Sqcqc5zhYj3XJIiDyxtzT4I4qLRRaSKE3QQegnRhvAAAQuxJREFUu43gyTu9z5JqtYoPfvCDePvb3w6atVispgMtdTnYunUrrrvuOtxzzz0AgOpC4PUXA3sdAeEp1gZcOKCYsKuYUnlHgid303YJGxpDSscDQMMuYFu9ikmBEmwcjBE4DkWrqSB2QCB3xCIo7FB8ETMvtTOagCG+9mcHhCd2LaAgsbZXVzsuQBzJlC4M83bNUCYsdjle4czwdnLIA7UBo5VjRiXLNyOVy10v2inMuLnOJ2FqMtduwHs8VGe48qVpzAaTFjoOowT1BVRN6AD/S4uXGqoIHcBTOXhLKinKHAAwk4HYRE3mAIAAdGGz3Snp4xmWL5xErdhUljkAWF6ZRInauZYo2be0NdcSJQZx0U8b0suUrHsUeOhWiult3vk7+eST8fGPfxyLFqmFFK91tNT1gPvuuw9f/epXsWXLFgDAssOA118EDCwVf5Fvs/oxZlU7FhOWwWIGtjT7MdHsQ9lUa2OsUcWmSW9sIFG0kUa9CHt70Vs/zlR4o3QI6IwBc4aoL43teuWUwrTiHrHw0rrilOJLgyGQCOUPPvhlXKaYFgLBAs3EgScjKm2YgFXJ9wFuNr10SbUNvveqt8B0HiNShMscoC504W7naMMpUbRqOT54/fTWbKhLtlMgsMtUWaQAb3Fh18jx3KbAzF6K6S8DitsJGiOuv06mGsQmcIdsGCW1b19Oi4JQhqP3W6fch9GZAVDCcOrSZ5XbmLQr2L+8Ndc+5g9P74Pj+l+Uu99R4Pc/ptj4Z+/FMTIygk984hM46aSTlPuh0evU9YQTTzwRRx11FH7wgx/gX//1X7HpTzZ++RTwujczHHY2UBD4NmoxA9utPtRdGxXakpa7AnFgEhczdhENx0TRcKS/+fUXGpiuFLFjtgz+KSQrd2bBgV12QWYNMJfKy53BwAoM1KFg/HOUMjnBo57MUJsF+zd661yJN8EMwC4DpkLix7cBA/zPb8USFfxjGdQ+/BgF7BLxj6XSYscMbzwfcf1+KJTbvEWbQ2VgpTCDgTHv72CU7VqxYwyFadcby0agtsNE3u4Sf0cJ4j2mRstb21EWw/KHA+T4Hu8UCBglMCymnLI5JdIu5ys+r5vDcscQBhQn2v0165AXOkY6x9gyKAmd0/KfQy7B4iWT0scDnswBwGyrgMNGNim1MWlX4DKCpmsqC93D0/sAADbODgKCQ7qtBvDH2wie/C8K1wEKhQIuvvhivOc970GlUlHqh6aNlroe0dfXhw9+8IM466yz8M1vfhMPPPAAnroDeOl3wFEXMOxzQnZJ1gVB3Smg6ZjKcme7FDa8nSlsl6JIHeHkrmg4qBVb2DFbDr3vy8mdaTowyjbcGQPEIYALabljBW/bncK0f9+MgLlycucWGawaQXFHe0A2cYmw3DHKS0NMTuxCg/u9vquJXcfpVhA7vlgr4MmYXSFQETvX8DvuJ4aMIp+khGRVBU8w2c5P7UKlVtl9VwN60T0+EYDy14I3Ls+RbDwQOh/XIKnr5sXBhS5osyFf9uwQOoDvjCUMFzq7T+ygsMwVZtr32Vgsc6chmXPbf78zbEFmoEkgc47fBgFW9G+XaKEtczPNotcEYdi3b0yqjUnbE6e6o1jGQETmBGEu8OLvCf7w7wT1Se8cvOENb8BHP/pRrFixQrkvmk50+XUn8cADD+C6667Dhg0bAAAL9gGOvhBYfGD8m/Gm1hBeri/suIyCoWSIy13dKeDV+jC21tsTHkzqokAdmNQVSu5ajoFNMwN+WteGf36KyJ1tG2hMlUBmQm95JCRlInJnUxhTRiB2QRtEXO6IAxSm2mIHeB8KjIrLHXEBoyEudsT1kpQoUilXUslVohTrGoAdSVIIA8w6ExY7L63sPtEyYkdcwEzaoUDCSwK57OrHThC7cDoXRiapS+uW6DtuROiCw6lfEhckKnReIywoxYoQFTrev1a/+PmPCl3QjKAzywhdnMwBbaGz+gXuNEHmAF/oKmIpXZfMAQABlizbLix1UZkDvPfiQxZtxv7Vrdl9YBTT/myQqMztV9mGRWbyosdh0mTuvCWPJh43+ow3bm7sFe8c7LXXXvjoRz+KN77xjUL3qxFHS91OpNVq4dZbb8UPfvAD1OvezKYVRwJHXtA93m7WLWJDcxjbWt0zUGXkbnNzAM/v6B5gKiN3Y40qNm6PX3dPVO7q9SLcsVJMA+JyR+oGSttivgtLyF2c2AFtueM/pwmesNixhA9QfrWg2GXtPpEldowCTtEbs9TVtqDYMcNL+uJkit+H6N+SKHXBjbLbSepHuyzcA7nLSudEpE6kGyLvuAlCB/jLeJhEqASb+Hz0Z2aLpHWxQuf30SkQobQuSei8vog9p7OELlpiDcscICF0KTIX3NGy7HJlrMwFbQCvP/DlzDbiZC5ogjCcs+pP6X1IkTnOcf0vZfYjK5k7Ymg99i11y+XkKPCHf6d49THvHPT19eE973kPLrzwQpRKMZ8Pmtzo8utOpFgs4j3veQ/OOussfPe738Xtt9+O9Y852PA4cMBfMKw5Byj7m1f30RZqRhPb0C11PSvLuhQmdaXLsmFEy7KFgoNG1elM64BghqpIWZYVGKwa60zreBvML8v6HWJedbG7DaO9XEEY4iJYa4xRvy0SL3dCpdgMoQMES7FZn7ECpVhGECt0/Dq7TMAMmjmBIlGkALFxdiw+tYy7XZ6JGD0Za5eUzskgevfeUynxuvb4ufgGRUqw1GYdYzu7GyHeOcsImxKFDgie81lj61KFDsh8TmcJXVIqF3c/iUIXHS8XJ3M+zqCTWnZ1Leq9T8bJnN+PJcu2p7SQLnMiiMicCKJl1qjQNaaAx35B8Mw93thowzBwzjnn4H3vex+GhyUHRGqk0EndLuTll1/GP//zP+P+++8HAJgl4OAzgYPe7E2miCvBxpGW3MWVYONIS+6SSrBxpCV3iWldRwP+BzIQL3hxZdiUduLkLimti8IowIz2OLSo4KUldkll19j7SREhmd0n4j4E01K6rvtKSe2SSq+xXUlI7YRSuq6D4i9OE8zwsdKpnczYuaSkTsUl454qKelc1+EpJdisLxftRtLTulSh42SkdZlCF24qps9JQpeVynW1k5TSZaVyEZwhG0Zf90KYrr/oeqrMcVJSOlGZSyq9yspcUulVdswcL7226sCTvyL4850EVsM7D2984xvxoQ99SG/vtYvQUrcbeOyxx3D99dfj6aefBgCUasAhbwX63ziEVx3xtXkoGIYKs11il1SCjYPLXTS5SyvBxhH+HOWCFzu2LrURf0YaQYfcJZZhk9qg3emdqNhxuOBF5S52qROBlK6r/Rixk16o2O9GWO7ixtKlESd2WaXX+Ia6/yYlqQO6zov0zgsicqc4EYKZkfOSI2EMt5GVznUdnlCClX0exo2tc/gEG8G+JImdjNB5d9j9RSW6dIlwKhduIyp0EqlcBzFl18xUrquN7rF0XOQA8WQuWnpVTebiSq8PT+8jNQECAM4efhRP30XwxP9H0PS/gB944IH4yEc+gqOPPlqqLU0+tNTtJlzXxV133YXvfOc7ePXVVwEA5UFgyekDIK8fARFcPZ+CoWJYKFErkDsZqeNEkzuZtC5KOL2TFjugW+5E07q4dkLpnazYAd3pHTMiaZ2C0AVthyVIYhJEd0O8BCme0oWJip1MStfVlVBqpyx1Qce8/6TksqsvMcfmKbXytC5HpdfrQ7s90XSuq4lIWqf0PIykdULpXBykc9KEtNAF/Wm/DnhK51SYVCrX0VxY6CRTuSjhlE5a5oAuoVMtsYZTurxl1rDUKc1otV0sfvJFbLhjBrPbvXOxcuVKfOADH8DJJ5+sd4PYDWip283Yto077rgD3/ve97B582YAgDlsYuj0Bagd3Q8i+IHG5Q4ALEYx0erLLMHGEU7uZuyiVFoXhX+eNhqF7DJsbAMI1pIiLgGdpfJix9vx0zviEJizkBI7TljwiM1g1tWFLmjTF7s8bXgNef2TSenCEObtp0lcb2Fa5R0L4MsUQosO54GoSx0/PkjterRMSa5dKSKoCh3QlrrM8XOZDXlpnbLQAR1pnbLQBf3x2msNAXz5NBmRC5rxhc4ph6Nstb/PGbJBCv6XHlmZ4/hl17zj5QhhOGvlk7nHzK0qj2NjcwiAN25bSuYchtYfJ9D89Ra4E97wnaVLl+LSSy/F6aefDtPUw/V3F1rq5gitVgu33347vv/972N8fBwAYC40MfSmYdRePyCc3AGe4NWdAjbNqguZSV24jGDbdBXNlgnDyLECvUPRnCqBzCpsH8YhABhgzlAY9Xwf8sQCSts715OTgVGAEeKlW/X8Lx/ZtbqS2nDNnB+m8LYmK065SovbdkD8vVIlls1Iakdl4/s4zNl8EyEYBeyq0ZO/yTXlyq2x/fHLtrm/EAAAY7n6Anjnp7FQbZ/g7sYAu09N5jh2H9AYcZVFjuNUHaDiqIlciNJAE4sGZpRlDvD26d53eBz71MZyTYDY2qhhaWVKuszKbBetRybQvHcL3AkvRFiwYAH+8i//Eueccw6KRfW/TdMbtNTNMRqNBn7605/i5ptvxuTkJADAGDIxdOoQascNgBbEUoIpq4SxRjV3f6abJWzf0QdCXVDKlOWuUS+CjYde8Irvj7QZ2RtW5Quz623ibdTbvysJHvPaMZvqLyE+Bo463n6cqvDSa175oQ5QnHa9ZV56kJAZVn6xY5S0EzfV7rhAcbJ7gLt4HwC7ZsApEOUt17yOeELH/ybl/vgJby+WcwmGAeR5mIj3/LP61PdzbXdI/UsOH9fHCGANMDiqjhEal+sOqD9vCtX2OOVqn/o2XE7oyf+G5S8rt7O14VVvZqwSKhKrH7CWi9YfxtH4zVawHd5xw8PDuPjii3HeeefpnSDmEFrq5ij1eh233XYbfvzjH2NszFsx3Og3MHjKEPpPGATNKAE1HRM7rDJmrHzfnCzHwPbZChqNAgigLHe2baA1XeweWyc7TM4hMGYJzHp7nJtSOy5AW56UgXkyE90NQogcYucagN1H4BQICGOgLSjJHU9seNkzj/xwqQPaZVQluSP+8f65Ja663AUJkv+f0r7pilLH07lgLB0TX7y5swMIFr32ZExN6sLjMNvPfcXybdxrR/Yh8suuXpnc/72YQ+wUhc4p87Ta/71PUei4zPHnfsVV2sPa7LNBCEOx5D3nDOqCKvxhLiNggLdNHmFYObQde/Vtl24nLHMAUDC8bSWzYE0HzQfH0PzNNrAZ728ZGRnBu971Lpxzzjl6rbk5iJa6OU6z2cQvf/lL/OhHP8KWLVsAALSPYuDEQQycOASjllzS7GVaN7GjL/hdVe4SxS7csABRsQMiH/Si7YTFDmjLHf9ZVPAUxc4pkK4V+QnzxurJiB1P6bouVxDdQp11/d0qqV3XMic55C5uJwNA7u+TlboumQuukJS6iMwFzQSzicSb6kjnuu5H8vEJyWHnFRKNkPiJOYwClsROE+H7lvGecCoXLvlKCx1t3ykLPdSyQmf6kyjCMgeoCV1Y5jiEMOmULipznKyUzp2x0fr9GJr3bwOre2+KS5cuxbvf/W689a1v1WXWOYyWuj0Ey7Jwxx134Ic//CE2btwIACAmQe2YfgyePITCSPeLrFdS13IMTPppXRgudwCEBa+rDBuHwOdBnNhxZASvS+yCRiQFT1LswildV58kxC6a0sVdL0o4petqRya1I0jsD58tLCN2iWO9JOROVOoSZS64gYTUhcbOxd6XYFoXm8513Zf4A525s4nIQ5MgdO3rJNM6QaFLErngelGhSxA5jozQRVO5KAVDbDsx139wozIHQDqlS5I5TpLUOduaaN63Fa1HJwD/NbpixQr85V/+Jd7ylrfoCRB7AFrq9jBs28a9996LW265JVjnDgToO7SKwZOHUN63PbahVyVYoDutiyKa3mWmdXENJ0CbBMXJ9DK0SHk2UeyCRgQFj3nr2BE3Xe7ShC7ok6DYJaV0HbcRlB6zkb0fqFBqlyZ1gFxqx0uVmbfJuImA1AXj5jK2AqMWS59wkZDOdd2fgNSlpnNd9yv4PMhqK+sTIU3oOm4jIHYxay1GyRK54HYiQhcpr8ZCALeW/lxJSuWiiKR0calcV5cEUjouckCyzAHdpVfGGJxXZtH87VZYT+8IHpPXve51uPjii3HyySdrmduD0FK3h8IYwx//+EfccsstwQ4VAFBaVcbgKUPoO7QKQslOT+uiiKR30mLHG45elJLWRclK7zLFLmhIQPBSUjsRoQv6lCF2fMYrEzyNaWKQltJ1tZOV2mVJXdBQdmonswAukPw3pkldZjrXdUBKWpeRznU0kyJ1Qulc130n31B03+H2AUn3IbEWYpbYpaRz4YWMRSZ5pgpdRioXxS27QCH+8c1K5cKkCZ0belDdjAc4K6XLSuWi8JSOOQzWk5No3rcNzquzwfVvfOMbcfHFF+OII44A6cWeyppdipa6ecDLL7+MW2+9FXfccQcsy3vBmsMm+t8wiOIxw5gp1nZJWhclLb0TKsOmNcx/lBA7TpLgCYtd0FCK4CWIXdw4ujTSJlCIpHRdXU4QWpGUrquthNQuK6HqvHF6aie9zEaCCMVJnbTMBQfGSJ1gOtfRTMK4Oql0LkrMh7C00AHdUkciEyKE+wO0BmLuPEboZEUuuG2c0EmKHCdO6ERTuShxZVcucFkiFyYppZOVOd4nWm+h9fA4Wr8fC5YlKRaLOOOMM3DhhRfq7bz2cLTUzSPGxsbw05/+FD//+c+D5VCISVA8YhDNo5eDLJdfjDiMaFoXJS69U0rrEhpXETtOVPCkxS5oKEbwImInk9JFiaZ2sildR1cjdy+T0nW1FU3tRFO6robi5S7PYrhA+28NS52yzAWdCkmdgsx1NBVK65TSuSghqVOdGd5uoH28yk4l7WMjaZ0vdIwAbshHVJZd6xA6RZHjhIVOVeQ44ZROJpWLEk3pREuscbgbZkD+sBmtx7cD/hfQwcFBnH/++TjvvPOwYMECqfY0cxMtdfOQZrOJX//61/jJT36CZ555pn3FXlXguCXAIQtATLVV8WXTuihhwWMuhV0384sdAOKqix0nLADUUhC7oKG24BGHwZz1JE9V6Dhc7IwmUxa6jm76XckjdUFbXO7M5EkbolDL2yGBWvkXxA2EhgGFKTufzHEYQ2HWzSVzQVOks43ciyz7UqeUziWgLHScsNix/CIXHNvXuVtEnuedW3FhDrSC30tl8TXcohi087UkK3JheEo31qzCZURa5Jjlwv3zBJwHt4BtaJdYV69ejfPPPx9vfvObUS7LbwWpmbtoqZvHMMbw1FNP4Sc/+QnuuuuuoDSLPhM4egQ4egRkWO4FHaR19aLYdLUUCADXIXCnCiB2/k8gLnZGg+TeoYFPeqA2QMQmryW3Y3tSl2sxXx/CGIwmerOLgA+1GQqz+d8G8qSHcRgtb3mVzIkSghDG8skcb4eniT3oFiMETpGAuL15G3YLxHu+5uwbo0CrRmA2JMutKe01Fnmvyzwix7H7GdwCy/cFggG0ReAsb8Iw3VwiBwCMecNKarVGLpHjuC7BULWOJX1T8jI30YTzh21wHtkGzHpJY6FQwCmnnILzzz8fhx56qB4vN0/RUvcaYXx8HLfffjt+/vOfY+vWre0r9h0AjhoBDh4WTu9ajoHtM77YwQ8HVC2KEThNA2jxqAe5BI+4BEaddGwlpix4zBM6arXbURY8PoYoTxvoHGPXE5i3mTu1EUxcyEM4qcub2BEXMOuu2AzYzMb8CQx5YX6KqLjFXNCML3OAN6PTaOU8734C7Bok92PIKNAcIHAqBLQJmDm2wmMUsPwxdZZ6wB+8hhkB7FpkP1epDgFGs51m2ossVBfUlfvFGNCYbQ/oowZDudJKOSIdx/FeNIQw9FeaGCw1xPtiuXCf3g7nkW1gL00F5fPFixfj3HPPxdlnn43h4WHlvmn2DLTUvcawbRv33XcfbrvtNjz00EMIHv6yARy+yEvvlmS/++5olLB9e2hWLckhd4zAaVHApt4bEd+rUVHwaIugMBVeMDbUTdnucbHjEsWHUqnKGfNkReXYngsd/MQvWFaCeWXnHFIQFqdccsfaSZ3XOf9iVbnLK3WRt0niejIs3UxE5jh5pM4tkPbfxvwkUfE5EhY6jqrYcaFTlbmO1yoDQACrX0HoQiIHeO8PAMAMhsIhO6T7FRU5t24CBDCrlrLQcZlz/fc+QoCVCyaEjnVHZ+E+sg3O4+NAvf3AH3PMMTj//PPxhje8QS9J8hpCS91rmNHRUfzyl7/EL3/5y2C3CgDA8qpXnj1sIUgpvvbScgxMTPehWY/UUvi4NEnBYw6B24i88SgKXpDWNeJn3QW3E+1eVOw4qoKnKHbEZTDFv7gLtIeuWY6Eqad2jMZPbFCRuyCl67rCb0tW7lSlLuHtUTatS5I5DnW88ZcyBOlc9O9SEDtGgVa/t3dwWOh4e8VJ+eeCitB1iVxwhaTQMcBotUWXi1y7fwytZeIpXazIdXQcqC2aEeubDxc5oC1zgPfeOVitp6Z0rG7DfWICzqPbwDa2x8qNjIzgrLPOwlvf+lYsX75cqj+a+YGWOg0cx8HDDz+M22+/Hb/97W9h2/5sL5MCBw15Cd5+AyBG56dyV1oXRUbwwmld7PWQErxUsQu3yW+f9SpIEjtOyD+EJE9S7HZG2TVtXJ5KapclTZ70ibWVKHXBDfw2ReVOVuoy3hZlpI4LXdrCuYBcWteRzsXeqfhjF5fORZFJ62SErut1F3cXokKXIXLt/okJXabIhfonmtIliVxHcwkpHXMY3Bd3wP3jONynJoIZrKZp4qSTTsLb3vY2HHPMMTCMHg1q1eyRaKnTdDAxMYE77rgDt99+O9atW9e+os8EDlsIHL4QWF4FISQ5rYtDRPCyxC64HYQET0jswm3y45JeEVliF0YkxRMcZ7ezy66p9yuR2olIk2hqlyl1wQ1DbacJnojUSbwVikhdVjoXRUTqEtO5rjvPTutS07kYssROdPxcYhoXe+MMoRMUuXYf04VOWORC/csSOhGRC5qLpHSMMbANs3AfH4Pzpwlgpr28yr777ou3ve1tOP300zE0NJTeT81rBi11mlgYY3j66adx55134r//+7+xffv29pULy8AaT/CmKoPpaV0caYInKnbB7ZEqeFJiF26THx+TJHABE5asrBQvJbXbGUKXldLF9iFD7pJKr4ldyJA7YanrOMhvM07u0qRO4S0wTepkZY6TVoIVlrmOjqQ/XlnpXGwfE8QuLZ0TSuO6DgKsGgMIuoVOUuTafWRoLbVRXTjbebmsyIX6mCR0MiLX0aSf0rGxBpzHx+E+Pg423l5baWhoCKeddhre8pa34OCDD9YzWDVdaKnTZGLbNv7whz/gzjvvxG9+8xs0m+03GXdFP2b2X4qpvfeCU1VY7yhO8GTFjpMgeEpiF24z3F3Wvlw4tYsSl+LFiN1OETqIpXSxx6XIneokhFi5i06SkO6o30z4Ay9O6nK+9UUnS6jKXJhoWqckc0GHutM6vlQJo2LpXBxRsYsTOqk0Lko0nQtLnP+7qMi1+9gpdMoiF+pjVOhURY5jzDQwtG4Dik9tAVvfHp9XKpWwdu1anH766TjmmGP0pAdNKlrqNFLMzs7i3nvvxZ133olHHnkErttOU5pLhjC731LU91sKp5ZP8JiL7okTMkQEj7aouthF2/XhEpZLusIpnhtaPsXp/cQIfh8qQtfRRkTuZFO6OMJyp5TSxXbUb9PftaE9Q7Q3b3k8reuFzHF4WpdL5sL4YkeYJ3Mg3q4medssTnqPu9Xvt1npvo0SXOhKTCmNi+2uL3R9C2bziVykn7VFM7lFjk41UH5+C8rPb0Zx02T7ckpxzDHH4PTTT8dJJ52Evr4c68FoXlNoqdMos23bNtx9992466678MQTT3Rc1xa8JXBq0Xd8MVzLAGzSMW5KCV/wiENAG57Y5fmQCLdLGEDsHqZpri8LFmDOqC9NEYtk2TULwhiI6+0JWsixllkYRhGISN612wKIJ3Z5hauzTQKrQoJt23rRNqMETgkozLLerKkXwq70QOZC0BbgFgCbu0YPHipGAWZ4O0XkFTkAAGGwK4BbZCALvOpCLpHjuAS0ZqFUttREbkfdF7ktKI5Odlx36KGH4tRTT8Vpp52GhQsX5u+r5jWHljpNT9i6dSvuuece3H333XjiiScQflo1Fw+ivu9S1PdZDHtIfPwdcwmYRQGHR3jIL3guQBpGsJ0YcXrw4cF4stZbuTMbXmpjqq+NGsAI4BYRiJ3yFmhhCOCUvB0H+C4XvZA7RrwPdy8N7JHcEeTaoq3dDkGr6n3RcIpAcaoHfy8lcMre3+2UPFHsyeMDwC7DS9LKBMi/mYb32PhelHuniSBJ9R5v5X2DO9pk7dSQMDg1t2NPWGXCS4702ShK7j5hbJ9F6QVf5Da318YjhGDNmjU4+eSTcfLJJ2Px4sX5+6p5TaOlTtNztm3bhnvuuSdI8MJPMWuoivqqxajvsxitxUNARtkuEDs+vo4P1skjeC5AWtSTOZd0iFguyfMTtp6may5QmMkndowATrldyiMMoC2WW+4YBaxq6MPOZT2RO9dof7h7JU7kl7u8UheSObvMz6M35pGndbJEZS64KwYUd+R7W+Yyx8vCXlqJXGLHhU5Z5qJDGv3XMDNyyFxY4vzfXX8sHjNZPqELi5xDwAgDqQkKnctQGJ1E6cWtKL+0FeZEe3IGIQRHHHFEIHKLFi1S76NGE0FLnWansm3bNtx7772477778Oijj7bXwAPglAtorPQEr7FiIVghvjTCHArWiPkkCY/GlpW8sNh1XJ5T8naS2KmmdlGhC5NL7vyULk6U8sidt39szN1xuQPUBE9B6hglsPraUsRlrqNZl0mndUkyF0Y1reuSuY7OqoldrnQuPL8h2iUVoUuRuDBKQhcppRKn83dGGEqLkl+ApGWjuG4M5Re3ofTyNtBGW/4Mw8CRRx6Jk08+GWvXrtWlVc1OQ0udZpcxPT2NBx98EPfddx8eeOABTE9PB9cxg6Kx10I09l6E+t4jcAbbA4O70rokZFO8JLHruE1b8oQFb2eIHaAkd66RPZZKRe6iKV1suwpylyR1Xf21/ZmdoosjS0hdIHMJItfRrITUichc0K5kWpcqcx0N+6VOAaRlLuauE/e1lxG6SEk1TuI67lNG6CJpXGKbhIFUbRQrnSmdsX0WpVfGUHppG4rrx0Hc9v3WajWccMIJOPHEE3H88cejVquJ9UmjyYGWOs1uwbZtPP7447jvvvvw29/+Fps2beq43hroQ2PvRWjsvQjN5QvgGgUxseOIpngiYhfcViLF2xnj7IJ+iJVk01K6OITlLiWli725hNyJSF1Hf0XTuwypE0nlYpsVkDoZmQsjktYJyxxHMK0TKrXGlVNF7t9vM1HoBNO4ODKFLiONi20zJHSkZaO4fgLFV8ZQWjcGc7LzRbjXXnvhxBNPxIknnog1a9bo5Uc0uxwtdZrdDmMML730Eu6//3489NBDePzxx+E4bRNilKC5dBj1FSOoL1sMqzYISO/9mSJ5LkBs6i99IllqjS52HBW93ZTayQpdmCy5E0npYtsVkDtXcXxVZnqXIHWMEtgVb902UZHrvF/vbzKacQvyqslcu+34tI75Ui0lcx0NJ4tdajqnInHR+40+vlGB8y8TlbigL6Z/+6jQKUhcR7twUWxOoDa6GcVXxlDctL0jjTMMA4cddhiOP/54nHTSSVi1apVeEFizW9FSp5lzzM7O4pFHHsGDDz6I3/3udxgdHe243q6U0FiyCI2li9Bcugh2TWENpzjJk0ntkoiIHnEA2iQ7NbWLyl0eoQsTK3eSKV1su247gQoLnkxKl9pnu30/geCFpI6LnPezmsx13GcoreMiB6jLXJhwWpdb5sJExK5L5mRKqSL3xdM5Qz2FS6IjncspcQBgTM+gvHkMpS1bUdm8FUa9c8eIZcuW4fjjj8exxx6Lo48+GtWq5I46Gs1OREudZk7DGMP69evx4IMP4ve//z0effTRjh0tAMCuVtBYusgXvYVw+hTWxQvtZkFaBNTq0bdthnZbDDCapCdLlHThy51X9m0vXtsLArnzT1FPlgbhbUcWWBYeIyfSNmu312uRi8J32OiFyHW13QyJaV6ZC0O8c8FFMZygKQtczH1YNdYxjs+t9HKxRE8Ug19VJG6mjvKWbSht3obylm0wZzpfoOVyGUcffTSOPfZYHHfccVixYoVO4zRzFi11mj2KZrOJP//5z3jkkUfwyCOP4Kmnnuoo1QKA1V/1JW8hmosXwumT3N2CAbRBYc74EmB4C5j2AuIQ0KYnesUp/+5CKUlu+Fg+f1HkXkFcwGh4qZ0nAr39UCOulzQaLdZOkXoIowSt/h73mTGY/koVzFArSae33xa6nstiOPUr9K5Zg4daBGgs8B5Lp9ojiWOAUffMkxHA7VNrl9YbKPsCV9q8DYXpzr1gDcPAQQcdhKOPPhpHH3001qxZg2KxmNCaRjO30FKn2aOZnZ3FE088gUceeQSPPvoonn322Y6tywDAqvWhOTKM5sgCNBcvgDXYnzkmjzgE5g4Kc5p0SV0vJI/YBMXtntjFSV1u0eux3BEHKG/3ziuj4VJmb2SDOgylydA55k32SPB6JXVhkSOsvUadawD1RflX9w2LnJfs+j9SoDXQgxPRQ5kzovvYM+8yRoHGIgZrKKfMhSQu+L3pC26fYNmWMRQmp1DaOo7StnGUto7DnOmUOEopDjzwQBx11FGBxOltuTR7KlrqNPOKqakp/PGPf8Sjjz6Kxx57DC+88EKX5DnFApqLhtFc7Elea8EQmNk9zS8sdmHipE5F9IhNYM4QUAtBahe01yvR64HcERcwZxnM2MkAXkkwT5LEU7q49oHeCF4eqUsSuWgfrSpRTusCmWMJM4+JN9NVWaBzylySwHVcRIHmAn9PWFmhiwocvyxyLrKEjtg2imPbA4ErbZsAtTqXISGE4IADDggk7vDDD9fLjWjmDVrqNPOamZkZPPnkk3jiiSfwxBNP4Mknn0S93jlmhlGC1vAgWguH0Fw4hOaiIdgDNYB4+8UaMxTEQZfcdbSRQ/TS5K6jvTyipyh3aULX0Txtj/eSFbxoSpd6P4qCJyt1IiIXRTatS0rlkg9QEDsFmRMRuI6rZWVOUOA6riaAU/HKuYHQMQZzxzRK49tRHJtAcWw7ihOTIJGPtEqlgoMPPhhr1qzBmjVrcMghh2iJ08xbtNRpXlPYto0XXngBjz/+OP70pz/h8ccfx9jYWNft3IKJ5sKhQPSs4WEQqw/mjPiHtqzohUuywvchK3oScicqdF13ISF4WSld6v1ICJ6I1KmIXLQ/rRpJXexZWuS6GhAUO0GZkxW4KIwCjYUM1nCCzCkIXFcTBHDKLgib9VK48e2ewI1vB7W7n8QjIyM47LDDAonbf//99XpxmtcMWuo0r2kYYxgdHcVTTz0V/Hv22WfRaDS6bmtXSrD7h+GUB2HXBmHVhuCW+zLH53VAAaeULHrEJihMExA7PbVL/ZsSpK7j8gy5UxW6rvvMEDyZlC71fsLNxkhenNSFJc77XX0fV05cWpdb5KKkiV2CzMWKmqTAdRzK0zmCttD1QOC8YxiM+izMqUmY05Mwp7ejuH0CRrO7s6VSCa973etw0EEH4aCDDsJhhx2GJUuW6NmpmtcsWuo0mgi2beOVV14JJO/pp5/Giy++2DXLFgBcw4RdG4RdG/L+rw7CrvYDVGKTzBjRozaBUfc+PFXlLkqs7DFP4FyTL13iz3LtgeB03X9E8NwClFO6zPuKSJ5rEFg1dCwnQ9yd8Df6aZ1TIb0VuSi+vHkpFvFEzpc0pxTtlLq8RWEUaA57f09rKHLuVP5O14E5PYXC1CTMqcng/7gEzjAM7LfffjjooINw8MEH4+CDD8aqVat0CqfRhNBSp9EI0Gg08Nxzz+HZZ5/Fc889h+effx4vvfQSrMggbABghMDu64dTHYDdNwC76v3slKvSqR4zAHPaW1C3uMNb76vXy4kEsse83S96kdBlYZcIplcSTyJbQG1DD9cui4FRbzHmXktcGOIyFKZdb2xZzYDd48ep+w4Bu+I9H8JS10uYAcyscAGXoDROAAK0BrO3L+tuyE/fpnfAnJny/p/yfo6OgQMA0zSx77774oADDsDq1atx0EEHYfXq1SiVosaq0WjCaKnTaBThiR6XvOeeew7PPfccpqenY2/PKPVkzxc9u28ATrVfSPaoAxSmOndj6Gq/V8LntsuFOyOxA7yZouNHeiJHLILy5nbZbmdJHulxk1ziAhhDYdpLmNwCxdTeO0FA/NIr/7kXj3cgbgm4ZW9WbnFcYDwpYzBmZ2DO7IA5PeUL3BTMmWkQN347lYGBARxwwAHBv9WrV2PlypUoFHq4gJ5G8xpBS51G00MYY9i8eTOee+45vPzyy8G/V155Ba1WfIzCKIVTqcGu1OBUqnAqNe/3vhpYodQhfFzuqM269gVNWzNOWfjCguf2plTqFAmmVhI0l8R/yBOLoDLqCQS1eid4vZA64jKYM27wM5e4KIwSNBcU0ByQKMMn3ml+kWMGMLNX/AlgBmAu71y7jbkE1kQJxCXdMscYaKsJY2Ya5uy0J3Gh/4kbfz/FYhGrVq3CqlWrsM8+++CAAw7A/vvvj8WLF+sxcBpNj9BSp9HsAhzHwaZNm/DSSy8Jyx7gjdnjkhcIX7kPrFiF0SyDOvGbvkdJFT7qjcvKpAeClyV0UcKCx1EVPVmpCwtc+LIkkYuSS+wURE5W3GJvx2XOAcqbWjDqs13SZszOgDrJ56BUKgXiFv63bNkyGEYPJFej0SSipU6j2Y04joPR0VGsX78e69evx6uvvhr8v3nz5q6Fk8MwQuCW+sDMPrhmHyirgBne78zoA4yy0Bi+zL1QSYz0hQQPyJY8p0gws4zALUBY6BK7ExE9UcnLkrqoxMkIXBKMErQGC2AG0uUuLHH+71GRS5M2fr2IuAEAXAY604Sxow5zqgG6owGyrYXC9CzMHXUYjdnYsW4cSimWLFmCFStWdPxbtWoVli5dCkrz766h0Wjk0VKn0cxRWq0WNm7c2CF7GzZswOjoKDZv3hw7GzcMAwGMMphRBjMqYEYZ8P9nRhnMrPjil56eZEpfDGHJk03nZIlL84Bu2eNSF5fA8cvzSlwSXaldROJck2Bqv3TrFJY224Ex04Qx3QSdafj/e78bM+3LiJv+1m8YBkZGRrB8+fIueVu+fLneD1WjmYNoqdNo9kAcx8G2bduwadMmjI6OBv82bdqETZs2YevWrZnSx2G06AkfLYEZJTBaBIwSGC0F/zOjBNAiQOOXj4iKX1TqpvcmaCzdOVKXiE3Qt8mTPaMJDD9t+X3befKWhFM2sPnYEqya/3ZLOpexyRI2Yjmgsy3Qeuhf8LsFo97yxa0B2hT72wzDwJIlS7B06dKuf8uWLcPChQv1ciEazR6GljqNZh5i2zbGxsawdetWbNu2Lfb/rVu3po7ni4MRw5M/WgBo0f+/EPk9cjkpwCmbmF3eKQhuAbtM9Iwpin1vq2ffsAc4ZQNbXt8589UpAs4hOzw5a1qgDQukaYM2bZCm5V9mg7S8/2nTv77eglFvgdhyAwJLpRIWLVqEkZERLFq0KPjHf1+8eDEWLVqkx7hpNPMMLXUazWsUxhimpqawdetWjI2NYfv27ZiYmMD4+HjwM/9/YmJCWgC77g/ES/qICUZMMMOEUzbBDAPMKIAZBkANuKYBewDe5ZSCGRSMGt7/BvUvMwBKvUWGCQEIASMEgLeWWvA78X6nswb2/u8GABb0hoV+bv/Pf3Y7/rHI74ALtwDMLCEgruP9c2wQxwaYDRRbnsBZDojtgLTszHJnFsViEcPDwxgeHsbQ0BCGhoY6fl64cGEgbbVaTc8o1Wheg2ip02g0mTDGMDs7Gwje9PQ0pqamgn87duwIfg5ft2PHjtwyON8ol8vo7+9HrVbr+D/6r1ardYhbpVLRoqbRaFLRUqfRaHYqtm2j0WhgdnYW9Xod9Xo99ufZ2Vm0Wq3gn2VZsb9bloVmswnbtuG6LlzXBWMMjuOAMRZcFv7HGAMhBJTSrv/jLjNNE8ViEYVCAYVCIfFn/ntfXx8qlUrwf7lcRqVS6fjX19eHcrmsF9XVaDQ7DS11Go1Go9FoNPMAvZiQRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08wNzdHdBoOIwxNBqN3d0NjUajkaJcLoMQsru7odFoqdPMHRqNBs4444zd3Q2NRqOR4o477kClUtnd3dBodPlVo9FoNBqNZj6gkzrNnKT44GIQ5n/nIBSEEoBQgBKAEBDKr/MvJwSgBITfJriOBMcE/4DQZbTzeu/A4DJGSPurT6iN4HLSvq/wZYx4zQTXUa9d73ISXMePYf5lwfVAuw3q355fj8776DjG7z6jMdd13B4dfWxfRrqu6zoG4X5ErkfC5QntJfWj65i0doPLWffxoWOC60NtMf9yhI7zrmOh/njXk/B1wW35dSxok4RvT1hwXfAU45fz5vzbeE8FFvzOj6H+79513u/8uOA6wkDQPo76lwX/wILjKEHH5d7xbvs48Nu7MPgx/u/tttygPSPUvgHvcoO3F9zWhcHbBO+H27492m17bbqg8O7fu85rz/AvI3Bh8ONDxxiAdxy8++Hng//u3Rfzf4Z/HQP1z4sBAgrA8B9sCuJfRmAQAgoK4j9yVsvABf/vUmg0cwktdZq5iUP8t1d4UgdfwPxPy/Z1BKBtgyGeIfmN8E93iq5P7bYxdZoEb7PrUx6Ry8L3gZjLosehLXMhqeu6LCRh4d+jXey8fcwxNOW6pD+jqx8Jf3badUmnSrW9UJtxwrdTpS7uekR/Z0Hb4X6E7zPuukACEbpN+PZdx7CY+2Id/8JS1xZF/1/SdeDi5zUZFkAufwCXMwRSFL7Okzq3LUUkLEXez5QQT7j8/xH8TILjvHbgt8mPhX+cf3ncdaFjDF9IjaCfXOpYptSF2zP4+UDnZRThPoYeQ41mjqDLrxqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAL1OnWZuYjAw5i046q27RkL/k8iCwPz/0M8IX8ZCPwtcF1q0rL1EbNLl7f9Zx8/oOI4BAOOXt9tkIABDcGz4+qCNjsXVwn2J+Z11dClyPhL+RW8rshZd2nXC9yV4XfguU49jGW2yhD4mLz7cubZc6LrgtuqLD7f7EVqnDurr1DG0j2OEdf6D9793HToudwkDiNtuE/y+3NB6ev5t/OsZcYP20NG+/z+/L/936t+G/w+g6zI39LLmP7sEcNFep871LyNIWqeOBAsGG2g/Zvx36h8TXftOfPFhgvbiw3GvS41m96KlTjMnaR23ZXd3YefAPzMViTqJRsMJP7Xc3dkRZcJWrYtIGo0K+pWj0Wg0Go1GMw8gjDG914lmTsAYQ6PR6GmbjUYD5557LgDg5z//Ocrlck/b13Siz/euRZ/vXUvS+S6XyyBEZ+ea3Y8uv2rmDIQQVCqVndZ+uVzeqe1rOtHne9eiz/euRZ9vzVxEl181Go1Go9Fo5gFa6jQajUaj0WjmAVrqNBqNRqPRaOYBWuo0Go1Go9Fo5gF69qtGo9FoNBrNPEAndRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wAtdRqNRqPRaDTzAC11Go1Go9FoNPMALXUajUaj0Wg08wBzd3dA89pjcnIS9913Hx5++GE8++yz2Lx5MxzHwdDQEF73utfhzDPPxF/8xV+ktjE7O4tbbrkF99xzD0ZHR0Epxd577403velNuOCCC1AoFFKPHx8fx80334wHHngAmzdvRqlUwr777oszzzwTb3vb20AIST1+w4YNuPnmm/HQQw9hfHwclUoFBx54IM455xyccsopsqdkl/PDH/4QN954Y/D7vffem3hbfa7VmZmZwc9+9jP89re/xfr16zE7O4uhoSGsWLECRxxxBC688EL09/d3HafPuTwPPfQQbr/9djz55JOYmJgAACxcuBCHHnoo3v72t+PII49MPFafb818QW8TptnlnHrqqXAcJ/i9WCzCMAzU6/XgsuOPPx5f+MIXUC6Xu44fHR3Fxz72MYyOjgIAyuUyXNdFq9UCAKxevRpf+9rXYj8sAeCZZ57BJz/5SUxOTgIAKpUKWq1W0KfjjjsOX/rSlxLfyB944AFcccUVaDQaAIBqtYp6vQ7XdQEAZ511Fi6//PLMN/Ldxbp16/D+978/OF9AstTpc63OI488giuvvBLj4+MAgEKhgFKphOnp6eA2N910E1avXt1xnD7ncjDGcO211+IXv/hFcFmpVAIANJvN4LJ3vvOduOyyy7qO1+dbM69gGs0uZu3ateyv//qv2U9/+lO2YcOG4PKNGzeyL3/5y2zt2rVs7dq17Atf+ELXsZZlsfe+971s7dq17LzzzmMPPfQQY4wxx3HYf/3Xf7EzzjiDrV27ln3qU5+Kve+pqSl27rnnsrVr17J3v/vd7KmnnmKMMdZqtdh//Md/sFNPPZWtXbuWXXvttbHHb9iwgZ1++uls7dq17CMf+Qhbt24dY4yxmZkZdtNNNwV9/9GPfpTrHO0sHMdhH/7wh9natWvZhz70oaC/cehzrc7jjz/O3vzmN7O1a9eyv/u7v2NPPfUUc12XMcZYvV5nTz75JLvxxhs7nv+M6XOuwn/+538G/frc5z4X9Jkxxl555RX2mc98Jrj+nnvu6ThWn2/NfENLnWaX8/DDD6def/XVVwdvZqOjox3X3XbbbcF1TzzxRNexv/rVr4Lr//CHP3Rd/7//9/9ma9euZW9+85u7PlAZY+wHP/gBW7t2LTvllFM6Phw4X/jCF9jatWvZueeey3bs2NF1/Ve+8hW2du1aduaZZ8Zev7u59dZb2dq1a9mVV17Z8aERhz7XatTrdXbRRRextWvXsq997WtSx+pzLs/HPvYxtnbtWnbxxRczy7K6rrcsK3g8Pv/5z3dcp8+3Zr6hJ0podjlHH3106vVve9vbgp+feeaZjuv+7//9vwCAo446CocddljXsaeddhqWLVvWcdswd9xxR3C75cuXd13/jne8A5VKBY7j4Fe/+lXHdfV6Hffccw8A4Lzzzostx7znPe8B4I2l+s1vfpP8R+4GNm7ciP/zf/4PBgcH8dGPfjTz9vpcq3HHHXdg48aNWLBgAT70oQ9JHavPuTxjY2MAgAMOOACm2T1M3DRNHHDAAQDQMcQD0OdbM//QUqeZcxSLxeBnPq4EABqNBv70pz8BAE444YTYYwkhOP744wF4A6fDrFu3Dps3bwaA4DZR+vr6cPjhh8ce/8QTTwRjdJKOX7ZsGVatWhV7/O7m6quvRr1ex9/8zd9gaGgo9bb6XKvDP+hPPfXUYGyXCPqcq8Gl6/nnn4dt213X27aN559/HgDwute9Lrhcn2/NfERLnWbO8dhjjwU/77fffsHPr7zySiB5++67b+Lx/Lrx8XHs2LEjuPzFF1/suk0c/D5ffvnljsvDx4f7lXT8Sy+9lHibXc1tt92Ghx9+GMcccwzOPPPMzNvrc61Gq9UK0uUDDzwQmzdvxtVXX40LLrgAb3rTm3Duuefib//2b/HAAw90HavPuRrnnXceAG8G6ZVXXon169cH161btw5XXHEFNm7ciL322gvvfOc7g+v0+dbMR/SSJpo5xdTUFH74wx8CAA4//HCsXLkyuG7btm3BzyMjI4ltLFq0qOOYgYEBAO0yjejxMzMzmJ2dRV9fX8f99/f3pyYw/Pjw/e1Otm7dihtuuAGlUgmf/OQnhY7R51qN0dFRWJYFANi0aRPe+973YnZ2FoVCAeVyGRMTE7j//vtx//334+yzz8anPvWpYFajPudqnHjiibjsssvw7W9/G3fffTfuvvvujtmvtVoN5513Hv7qr/4K1Wo1OE6fb818RCd1mjmD67r4n//zf2JsbAzFYhGf+MQnOq6fnZ0Nfk57EwwvgxI+Ju/xfDxO3DIrcceHj92dXHPNNZiensb73ve+2HE/cehzrcbU1FTw8/e//32Ypokrr7wSd9xxB375y1/i3/7t33DqqacCAG6//Xbceuutwe31OVfnne98J774xS9ieHgYgCdzvLRp2zbq9XrHUjKAPt+a+YmWOs2c4brrrsP9998PAPjEJz6B/ffffzf3aM/nzjvvxAMPPIDVq1d3lJ40O4fwGFDXdXH55ZfjlFNOCQbwL1myBFdccUUwcP+HP/xh7DgwjTiNRgNXXHEFLr/8cixZsiRYs+4Xv/gFrr32Wuyzzz6444478MEPfhAvvPDC7u6uRrNT0VKnmRN861vfwk9+8hMAwGWXXdYxA5bDyxZA56KiUfgintFj8h5fqVS6rk87Pnzs7mB8fBzf+MY3YBgGPvWpT8XODExCn2s1wv1YsWIF1q5d23UbSikuvvhiAN7uKs8++2zXsfqci3P99dfjrrvuwsqVK/GNb3wDxx57LIaGhjA0NIRjjz0W3/jGN7D33ntjcnISX/3qV4Pj9PnWzEe01Gl2OzfccAP+9V//FQDwkY98JDFRCo9t2bp1a2J74bEy4WMWLlwodXy1Wu14I+VtTU1Npb6J8+PD97c7+Pa3v43JyUmcc845WLlyJWZnZzv+hRMifhkfD6bPtRrhsVXh8aBR+IxGAMFOBvqcyzM7O4vbbrsNAHD++efHlkFLpRLe8Y53AAAef/zxYAsxfb418xEtdZrdyvXXX48f//jHAIAPf/jDQYIRx6pVq0Cp95RNmwnGr1uwYEEwqBnonGGWdjyflbbPPvt0XB4+PjxzLen4tBlxu4JNmzYBAH72s5/hzDPP7PrHJ6QACC674YYbAOhzrcrAwEDqoPk4+EQJfc7lefXVV4PtuNLGi65YsSL4mb8u9PnWzEe01Gl2G9/61rdwyy23APCE7l3velfq7cvlcrBA6O9///vY2zDG8OCDDwIAjj322I7r9t57byxZsiT1+Hq9jscffzz2+DVr1gRJAL+PKKOjo3jllVdij9+T0OdaHd4X3rc4wstb8HXW9DmXJ7wfKl8zLg6+/y7QLmPq862Zj2ip0+wWvvWtb3WUXLOEjsPXWHv00Ufx5JNPdl1/1113YePGjR235RBCcMYZZwAAfv3rXwff2MP89Kc/Rb1eh2EYeMtb3tJxXaVSwcknnwzAS7+is+kA4OabbwbgfXDEjafalVx33XW49957E/9deumlwW35ZR/72MeCy/S5VuOtb30rAG/dtLhdAFzXDb7MjIyM4MADDwyu0+dcjlWrVgVidPvtt8dOOnEcJyjR9vf3Y++99w6u0+dbM9/QUqfZ5YTH0F122WWpJdcoZ555Jvbbbz8wxvC5z30ODz/8MADvg/Kuu+7C1VdfDcBbof31r3991/EXX3wxFixYgEajgcsvvzxYKNayLPzsZz/DTTfdBAA455xzOt78Oe9///tRqVQwNjaGv/3bv8Wrr74KwPtG/r3vfQ8///nPAQCXXHJJ7LY/exL6XKtxxBFH4JRTTgEAfOUrX8Hdd98dyMbmzZvxj//4j8EszL/6q78KSoCAPueylEolnH322QCAZ599Fp/5zGfwwgsvwHVduK6LF154AZ/+9KeDnSMuvPBCGIYRHK/Pt2a+QRhjbHd3QvPaYfPmzbjwwgsBeLMAs7aruuiii7pSvE2bNuHjH/94MMC8XC7DdV20Wi0AwOrVq/G1r30t8U3wmWeewSc/+UlMTk4C8L4Ft1qt4IP32GOPxZe+9KWO7crCPPDAA7jiiiuCWWm1Wg31ej0Y23PWWWfh8ssv7ygNzUW+853v4Hvf+x4AL6mLQ59rNer1Oj796U/jj3/8IwBv67tSqdSxjt2ll16K97///V3H6nMuR7PZxN///d93lED538bPGQC8+c1vxt/93d91SB2gz7dmfqGlTrNL2bRpEy666CLh2yd98M3OzuKWW27BPffcg9HRURBCsPfee+O0007DBRdcgEKhkNru+Pg4br75Ztx///3YsmULisUi9ttvP5x55pk466yzOtKTODZs2ICbb74ZDz30EMbHx1GpVLB69Wq8/e1vD1KauY6I1AH6XKviui5++ctf4o477sBLL72E2dlZDA8P4/DDD8c73vEOrFmzJvFYfc7lYIzhnnvuwZ133olnnnkG27dvByEEQ0NDOPjgg3HWWWfhDW94Q+Lx+nxr5gta6jQajUaj0WjmAXpMnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPEBLnUaj0Wg0Gs08QEudRqPRaDQazTxAS51Go9FoNBrNPOD/B8+H2tDUQyQkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data=\"unbinned_data.hdf5\", output_name=\"binned_data\", make_binning_plots=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The two healpix maps above show the projection onto the PsiChi dimension, where the upper map is in the local coordinate system, and the lower map is in the Galactic coordinate system. \n", + "\n", + "In the last step we saved the binned data to an hdf5 file. We can load this directly to access the binned data histogram object. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[1.835478 \\times 10^{9},~1.8354781 \\times 10^{9},~1.8354782 \\times 10^{9},~\\dots,~1.835485 \\times 10^{9},~1.8354851 \\times 10^{9},~1.8354852 \\times 10^{9}] \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.load_binned_data_from_hdf5(\"binned_data.hdf5\")\n", + "\n", + "# For example, we can project onto the time axis:\n", + "analysis.binned_data.axes[\"Time\"].centers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we will load the binnned data from file to make the raw spectrum and lightcurve. We will also save the outputs, which are written to both a pdf and dat file. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGp0lEQVR4nO3de3RU5b3/8c9kksk9gVzIDasFLBJbQRBq64GKjhcaBauCWNvKaQlVFMEUsLiqrUorBRvxcrSFQ4una1lR1Go1gAYRrdqiVmo1EMULhYSEJOQyuU4ymd8fNPNLzIWEZGc/k7xfa7GUPXv2/s7D8OWTZ98cfr/fLwAAAEiSQuwuAAAAwCSEIwAAgHYIRwAAAO0QjgAAANohHAEAALRDOAIAAGiHcAQAANAO4aiPGhsbVVhYqMbGRrtLAQAAFiAc9dHBgweVnZ2tgwcPWrL9mpoaS7YLYGigRwDWIxwZxuPx2F0CAIPRIwDrEY4MEx8fb3cJAAxGjwCsRzgCAABoZ9iGow8++EDf+ta39Nhjj9ldSgfV1dV2lwDAYPQIwHqhdhdgh9bWVj388MM644wz7C4FAGAIn8+n5uZmu8tAPzmdToWGhsrhcJz0NoZlOPrLX/6iCRMmqK6uzu5SOklJSbG7BAAGo0dYo7a2VocPH5bf77e7FAyAqKgopaWlyeVyndT7jQ5H9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1A7rVVdX66mnntKjjz6qhx56aLA+Sq9VVlYqOTnZ7jIAGIoeMfB8Pp8OHz6sqKgoJScn92vGAfby+/3yer0qKyvTZ599ptNPP10hIX0/g8jocFRdXa3NmzcrJSVF48aN03vvvdftuvfee69effVVzZ07V6NHj9a2bdu0cuVKPfDAAzrrrLMC623cuFFz585VbGzsYHyEPvN6vXaXAMBg9IiB19zcLL/fr+TkZEVGRtpdDvopMjJSYWFhOnjwoLxeryIiIvq8DaNPyE5MTNSzzz6rp556SjfeeGO36xUUFGjnzp1atGiRFi9erNmzZ2v9+vVKTU3Vo48+Gljvo48+0v79+3XZZZcNRvknJSwszO4SABiMHmGdvs4Y+Xw+vfrqq/rTn/6kV199VT6fz6LK0FcnM1vUntEzRy6XS4mJiSdcb/fu3XI6nZo9e3ZgWXh4uLKysrRhwwaVlpYqJSVFe/fu1aFDh3TVVVdJOn6M2el0qri4WKtWrbLsc/RFbz4vgOGLHmGGZ555RkuXLtXhw4cDy0aPHq0HHnhAV155pY2VYSAYHY566+OPP9bo0aMVHR3dYfmECRMkSQcOHFBKSopmz56tCy+8MPD6gw8+qLS0NF133XXdbru8vFwVFRWB31v12JA2JSUlysjIsHQfAIIXPcJ+zzzzjK6++upOJ28XFRXp6quv1tatWwlIkqqqqvTb3/5WP/3pT+0upc+GRDiqqKjo8qeptmXl5eWSpIiIiA7HHsPDwxUZGdnj+UfPP/+8Nm/e3Gl5WVmZYmJilJaWpvLycjU3Nys8PFwjRoxQaWmppON3svX7/YFnIaWmpurYsWPyer0KCwtTYmKiSkpKJElxcXFyOBw6evSopONXpFRVVampqUmhoaFKTk7WkSNHJEmxsbEKDQ1VZWWlJCk5OVkej0eNjY1yOp1KSUlRcXGxJCkmJkYul0vHjh2TJCUlJamurk4NDQ0KCQlRWlqaioqKJEnR0dGKiIgIhMHExEQ1NDSovr5eDodD6enpOnLkiFpbWxUZGano6GgVFxfrscceU2lpqb70pS9p/vz5crlcysjIUElJiXw+nyIiIhQbG6uysjJJ0siRI9XS0hJ4DEJ6erqOHj2qlpYWhYeHKz4+PjAOI0aMUGtra4cxrKioUHNzs1wul0aOHNlhvKX/fx+YlJQUVVZWdjveISEhqqqqkiSNGjVK1dXVgfEeNWpUYAxPNN6pqakdxjA8PLzH8S4uLpbf71dUVJQiIyM7jHdjY2PgKsqMjIxO4932XU5ISJDX61VtbW1gDEtLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorqMIZNTU3djndMTEyHMWxubu4w3m3f2YiICMXFxXX4zvp8vg7jPZx7RE/jbUqPqK+vl8/nC5zMKx2/HFxS4FBZaGiofD6fWlpadMstt3R5VZvf75fD4dCyZcuUlZUlh8Mhh8OhsLCwwHZDQkIUEhKilpaWwHZbW1vV2toq6fgRky+u2/b3pDfrdrfdsLAwtbS0yO/3d1r3i5+1/boOh0OhoaGBWxz0Zd2KigqtWbNGOTk5Xa7bNmbdjXdb/V/cbkhIiBwOR5frth+XlpYW1dTUyO/3B77fvf7Bwh8k9u3b558+fbo/Ly+v02vXXHONf/ny5Z2WFxUV+adPn+7fsmXLSe+3rKzMv3///sCvHTt2+KdPn+7fv3//SW+zJzU1NZZs1worVqzwO51Ov6TAL6fT6V+xYoXdpQFDVjD1iGDR0NDgLygo8Dc0NJxw3V27dnXoed392rVrV79qkuS/8847/eecc45/+fLl/vfff99/3nnn+c8++2z/hAkT/Pfcc09g3fT0dH9RUZHf7/f7586d6//GN77h9/v9/sbGRn9CQoK/sbGxw7Z9Pp//pptu8p9xxhn+s846yz958mR/Q0OD/7PPPvPHx8f7f/KTn/i/9rWv+TMzM/0vv/xy4H3bt2/3n3feef7Jkyf7p06d6n/llVcCr/3+97/3T5w40X/WWWf5p0yZ4v/ss8/8l1xyiT8kJMQ/ceJE/5QpU/x+v9//rW99y79kyRL/ueee6585c2Zgn208Ho+/fTSR5F+9erV/2rRp/lNPPdX/7LPP+n/1q1/5p0yZ4h83bly349yXP9OuDImZo/Dw8C5v3NWWqMPDw09620lJSUpKSjrp9/dVf08iGywrV67UunXrOi33+XyB5WvXrh3ssoAhL1h6xFDVNjs3UOv1xOl06u2335Z0/IHDO3fuVHh4uBoaGvTNb35Tbrdb5557ri688ELl5+fre9/7nv75z38qNDRUNTU1evvttzVlypRO/wb+85//1M6dO/Xhhx8qJCRE1dXVgfsBVVdXa8KECbrvvvv0t7/9TbNnz9Ynn3yisrIy/eIXv9COHTsUFxenAwcOaPr06fr888/11ltv6e6779abb76ptLQ01dfXS5J++9vfatKkSdq7d2+H/X/00Ud67bXXFBYWps8///yE4xATE6O///3v2rlzp+bMmaOHH35Y77zzjp566imtWLEiMEYDaUiEo8TExMB0bHttU7+DGW76q6qqqtO5U6bxer3Kzc3tcZ3c3FytXr36pG/ABaBrwdAjhrK0tLQBXa8nP/zhDwP/39DQoMWLF2vv3r0KCQnRoUOHtHfvXp177rlyu93Kz8/XmWeeqYkTJyolJUWvvvqq3nrrrQ7n2bYZM2aMWlpa9MMf/lAzZ85UVlZWIHSHhoZqwYIFkqRzzz1X6enpeu+99/TBBx/owIEDmjFjRmA7ISEh+ve//60XX3xR3//+9wOfOSoqqsfP9b3vfa9PV11ec801kqRzzjlHdXV1mj9/viRp2rRp+vjjj3u9nb4YEuGo7R5IdXV1HZpGQUFB4PVgsWHDBm3atMnuMnrk8XhOeMmqz+dTcnLyoN9PKicnJ3B8GwAG2vTp0zV69GgVFRV1ed6Rw+HQ6NGjNX369H7vKyYmJvD/t99+u5KSkvTee+8pNDRUV155pRobGyVJbrdbq1atUmZmptxut1JSUpSfn6+33nqrw+1s2sTHx+uDDz7Q7t27tWvXLq1atUqvvfaaQkO7jgQOh0N+v18XXXSRHn/88QH9XG3ncrVp+0zttZ0r3HZeUvvft503NdCGRDg6//zz9cQTT+j555/XtddeK+n47EZeXp4yMzMH5Hb7+fn5ys/PD5yQaZXW1tbAyY/BrqamJnCS5GDuExjKRo0aZXcJw5rT6dQDDzygq6++OhAa2rSdZLx+/frAP+QDpbKyUhMmTFBoaKgKCwv18ssvB2Zx0tPTFR8fr9/+9rd65ZVXlJSUpFtvvVUej0eTJ0/utK2ysjI5nU5dfPHFuuiii7R7924VFBTorLPOUktLi/74xz9qwYIF2rNnj4qLizVp0iSlpaXprrvu0vvvvx+4sfKePXs0bdo0XX755VqwYIFuvPHGDofV4uLi1NDQIK/X2+1RhNTUVPn9fhUUFCgzM1P/93//N6DjdrKMD0dPP/20amtrA4fI3njjjcBVCldddZViYmKUmZmpmTNnasOGDaqqqlJGRoa2b9+ukpIS3XbbbQNSh9vtltvtVmFhobKzswdkm11pu9LLZB6Pp1chJC4ubtBnjuLi4gZ1f8Bgq66uDqpTBYaiK6+8Ulu3bu3yPkfr16+35DL+n/3sZ/r+97+vxx57TGPHjtUFF1zQ4XW3260XXnhBY8aMkXQ8dJx99tldnqN26NAhZWdnq7m5WT6fT+edd55mzZqloqKiwKzSxIkT1dLSoscff1yxsbGKjY3V448/rh//+Meqr6+X1+vV2Wefrccff1wzZszQz3/+c11yySVyOBxyuVzaunWrTj31VP3gBz/QWWedpZiYGL3zzjudagkNDdVDDz2kyy67TImJibr66qsHfOxOhsPf1bygQebNmxe4lPWLtmzZEjjG2dTUFHi2Wm1trcaMGaOFCxdq2rRpA1pPWzjauHGjxo8fP6Dblo7fJ8P0cOT1ehUVFdXjoTWn06n6+nrOOQIGWDD0iGDT2Niozz77TF/+8pf79KgJn8+n119/XUeOHFFaWpqmT58+4DNGg+nzzz/XpEmTArfcCGYn+2faxviZoyeffLJX64WHh2vx4sVavHixxRVZq7tjviZxuVzKycnp8mq1Njk5OQQjwALB0COGC6fTqfPPP9/uMmAB/pYZJljOJ2i7TD83N7fDDJLT6VROTg6X8QMWCZYegeBz2mmnDYlZo4FAODJMcXFx0EyZr127VqtXr9YjjzyiTz75RGPHjtXixYuZMQIsFEw9ItgYfpYJ+qDtbtkni3CEfnG5XFq2bJndZQDASQsLC5PD4VBZWZmSk5MDV50h+Pj/8wiYsrIyhYSEnPQP64SjXhqsS/kH++ouAMGFHjHwnE6nRo8ercOHD/fqjs0wX1RUlL70pS+d9B3ljb9azTRWX61WX19/wruLAhi+6BHW8fl8XT6KCsHF6XQqNDS0XzOAzBwZprKyksYHoFv0COs4nc6gvhQfA4cnGAIAALRDODJMcnKy3SUAMBg9ArAe4cgwHo/H7hIAGIweAViPcGSYrp5IDABt6BGA9Tghu5cG61J+TgYE0BN6BGA9LuXvI6sv5QcAAPbisJphioqK7C4BgMHoEYD1CEcAAADtEI4MEx0dbXcJAAxGjwCsRzgyTHh4uN0lADAYPQKwHuHIMMeOHbO7BAAGo0cA1iMcAQAAtMN9jnppsO5zlJSUZOn2MTR5vV498sgj+uSTTzR27FgtXrxYLpfL7rJgAXoEYD3uc9RHVt/n6NixY0pISBjw7WLoWrlypXJzc+Xz+QLLnE6ncnJytHbtWhsrgxXoEYD1mDkyTENDg90lIIisXLlS69at67Tc5/MFlhOQhhZ6BGA9zjkyTEgIfyToHa/Xq9zc3B7Xyc3NldfrHaSKMBjoEYD1mDkyTFpamt0lBLXc3NwTBoahwuPxdDiU1hWfz6fk5GTFxsYOUlUnlpOTo5ycHLvLCFr0CMB6hCPDFBcXKz093e4yglZNTQ2PV/iCmpoa1dTU2F1GgEm1BCN6BGA9wpFhOD++f+Li4pSRkWF3GYPC4/H0KmjExcUZNXMUFxdndwlBjR4BWI9wZJioqCi7Swhqw+mQjdfrVVRUVI+H1pxOp8rKyrisfwihRwDW48w+w0RGRtpdAoKEy+U6YRDMyckhGA0x9AjAeoQjw1RUVNhdAoLI2rVrtWLFCjmdzg7LnU6nVqxYwWX8QxA9ArAeh9V6abDukA301dq1a7V69WrukA0AA4Q7ZPeR1XfIbmxsVERExIBvF8DQQI8ArMdhNcM0NjbaXQIAg9EjAOsRjgxTV1dndwkADEaPAKxHOAIAAGiHcGSY4XIDQwAnhx4BWI9wZJgjR47YXQIAg9EjAOsRjgzT2tpqdwkADEaPAKxHODIMd78F0BN6BGA9wpFhoqOj7S4BgMHoEYD1CEeGKS8vt7sEAAajRwDW4/EhvcTjQwAAGB4IR73kdrvldrsDjw+xSkJCgmXbBhD86BGA9TisZhiv12t3CQAMRo8ArEc4MgyH7QD0hB4BWI9wBAAA0A7hyDDp6el2lwDAYPQIwHqEI8OUlpbaXQIAg9EjAOsRjgzj8/nsLgGAwegRgPUIR4aJiIiwuwQABqNHANYjHBkmNjbW7hIAGIweAViPcGSYsrIyu0sAYDB6BGA9whEAAEA7hCPDjBw50u4SABiMHgFYj3BkmJaWFrtLAGAwegRgPcKRYTwej90lADAYPQKwHuEIAACgnVC7CwgW+fn5ys/Pt/yhj2lpaZZuH0Bwo0cA1mPmqJfcbrfWrFmjJUuWWLofLtMF0BN6BGA9wpFhONkSQE/oEYD1CEeGCQ8Pt7sEAAajRwDWIxwZZsSIEXaXAMBg9AjAeoQjw5SWltpdAgCD0SMA6xGOAAAA2iEcGSY+Pt7uEgAYjB4BWI9wZBi/3293CQAMRo8ArEc4MkxNTY3dJQAwGD0CsB7hCAAAoB3CkWFSU1PtLgGAwegRgPUIR4apqKiwuwQABqNHANYjHBmmubnZ7hIAGIweAViPcGQYl8tldwkADEaPAKxHODJMQkKC3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCMAAIB2CEeGiYuLs7sEAAajRwDWIxwZxuFw2F0CAIPRIwDrEY4MU11dbXcJAAxGjwCsF2p3AcEiPz9f+fn5qq2ttbsUAABgIYefRzz3SWFhobKzs7Vx40aNHz9+wLff0tKi0FAyK4Cu0SMA63FYzTBVVVV2lwDAYPQIwHqEI8M0NTXZXQIAg9EjAOsRjgwTFhZmdwkADEaPAKxHODJMUlKS3SUAMBg9ArAe4cgwR44csbsEAAajRwDWIxwBAAC0QzgyTGxsrN0lADAYPQKwHuHIME6n0+4SABiMHgFYj3BkGO5hAqAn9AjAeoQjAACAdghHhhk1apTdJQAwGD0CsB7hyDA1NTV2lwDAYPQIwHqEI8M0NjbaXQIAg9EjAOsRjgzD07YB9IQeAViPcGQYzicA0BN6BGA9wpFhiouL7S4BgMHoEYD1CEcAAADtEI4MExMTY3cJAAxGjwCsRzgyTFhYmN0lADAYPQKwHuHIMJWVlXaXAMBg9AjAeoQjAACAdghHhklOTra7BAAGo0cA1iMcGaa2ttbuEgAYjB4BWI9wZJiGhga7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGSYtLc3uEgAYjB4BWI9wZJiioiK7SwDwBV6vV+vXr9eSJUu0fv16eb1e22qhRwDWG5aPd163bp3eeOMNNTY2KiUlRYsWLdJ5551nd1kADLRy5Url5ubK5/MFli1fvlw5OTlau3atjZUBsMqwDEfz5s3T0qVL5XK5tG/fPuXk5OiJJ55QfHy83aUpOjra7hIA/MfKlSu1bt26Tst9Pl9g+WAHJHoEYL1heVjt1FNPlcvlkiQ5HA41NzervLzc5qqOCw8Pt7sEADp+KC03N7fHdXJzcwf9EBs9ArCe8TNH9fX1euKJJ1RQUKB9+/bJ4/Fo1apVmjVrVqd1vV6vNm3apJdeekkej0djx47VwoULNXXq1E7r5ubmKi8vT16vV+eee67GjBkzGB/nhI4dO6aMjAy7ywAsk5ube8LQYQKPx9PhUFpXfD6fkpOTFRsbO0hVST/60Y901113Ddr+gOHI+HBUXV2tzZs3KyUlRePGjdN7773X7br33nuvXn31Vc2dO1ejR4/Wtm3btHLlSj3wwAM666yzOqybk5OjpUuXau/evfr000/lcDis/igAJNXU1Aypk4prampUU1MzaPvzeDyDti9guDI+HCUmJurZZ59VYmKi9u/fr0WLFnW5XkFBgXbu3Kkbb7xR1157rSTpkksu0YIFC/Too4/q0Ucf7fQep9OpKVOm6KmnntLo0aP1jW98w9LP0htJSUl2lwBYKi4uLihmRz0eT69CT1xc3KDOHKWmpg7avoDhyvhw5HK5lJiYeML1du/eLafTqdmzZweWhYeHKysrSxs2bFBpaalSUlK6fK/P5zPmJ9n6+nrOKcCQlpOTo5ycHLvLOCGv16uoqKgeD605nU6VlZUFzmEcDJWVlYO2L2C4GjInZH/88ccaPXp0pys5JkyYIEk6cOCApOPPJXr55ZdVX1+vlpYW7dq1S++9954mTpzY5XbLy8tVWFgY+HXw4EFLP0d9fb2l2wfQOy6X64QhLicnZ1CDkUSPAAaD8TNHvVVRUdHlDFPbsrar0RwOh1544QXdf//98vv9ysjI0B133KHTTz+9y+0+//zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDFCpaWlkqT4+Hj5/f7A1HxqaqqOHTsmr9ersLAwJSYmqqSkRNLxqXmHw6GysjJJUkpKiqqqqtTU1KTQ0FAlJyfryJEjkqTY2FiFhoYGfoJMTk6Wx+NRY2OjnE6nUlJSVFxcLEmKiYmRy+XSsWPHJB0/bFdXV6eGhgaFhIQoLS0tMGsWHR2tiIgIVVRUBMauoaFB9fX1cjgcSk9P15EjR9Ta2qrIyEhFR0cHxjUhIUFNTU2qq6uTJGVkZKikpEQ+n08RERGKjY0NfLaRI0eqpaUlcO5Eenq6jh49qpaWFoWHhys+Pl5Hjx6VJI0YMUKtra0dxrCiokLNzc1yuVwaOXJkh/GWjp+n1jaGlZWV3Y53SEiIqqqqJEmjRo1SdXV1YLxHjRoVGMMTjXdqamqHMQwPD+9xvIuLi+X3+xUVFaXIyMgO493Y2NhhDHsab6/XG3gIaXp6ukpLS3s13mlpaSorKwuM94m+s+3HOyEhodN3tv14t31nw8LClJSU1OE763Q6O4x3TU2NGhsbO413TEyMwsLCOox3bW1tt9/ZL453fX19h+9s+/GOiorq8TvbfrxjYmK0dOlSeTwebdiwQa2trWrjdDr14x//WEuXLlVFRYXi4uI6fGd9Pl+H8aZH0CPoEWb0iN4e0nf4/X5/r9Y0QNs5R11drTZ//nydcsopne5JUlxcrPnz5+vmm2/WvHnz+rzP8vLywBdTkg4ePKjVq1dr48aNGj9+/Ml9EABBxev16pFHHtEnn3yisWPHavHixYM+YwRg8AyZmaPw8HA1Nzd3Wt52D5KTPY8nKSlpUE+SLi4uVnp6+qDtD8CJuVwuLVu2zO4yJNEjgMEwZM45SkxM7DDD06ZtWbBcBRZEE3kAbECPAKw3ZMLRuHHjdPjw4cCx2DYFBQWB14NBVFSU3SUAMBg9ArDekAlH559/vnw+n55//vnAMq/Xq7y8PGVmZnZ7GX9v5efn66c//akeeuih/pbaIxofgJ7QIwDrBcU5R08//bRqa2sDh8jeeOONwJUKV111lWJiYpSZmamZM2dqw4YNqqqqUkZGhrZv366SkhLddttt/a7B7XbL7XarsLBQ2dnZ/d5ed8rLy4PiBnkA7EGPAKwXFOFoy5YtgUsDJem1117Ta6+9Jkm6+OKLFRMTI0m6/fbblZKSoh07dqi2tlZjxozRr3/9a02aNMmOsgEAQBAKqkv5TdA2c2TVpfwNDQ2KjIwc8O0CGBroEYD1hsw5R0NFU1OT3SUAMBg9ArAe4cgwX7zaDgDao0cA1iMcAQAAtBMUJ2SbID8/X/n5+YHn1FiFq1AA9IQeAVhvQGaOPB6Ptm/fPhCbMpbb7daaNWu0ZMkSS/fT9hA+AOgKPQKw3oCEo9LSUq1Zs2YgNjXstX/yNwB8ET0CsF6vDquVlpb2+Hp5efmAFANxiS6AHtEjAOv1KhzNmzdPDoej29f9fn+Pr6P32m5oCQBdoUcA1utVOIqNjdWPfvSjbu80ffDgQf3iF78YwLKGr7KyMk64BNAtegRgvV6Fo6985SvyeDz68pe/3OXrPp9P3GgbAAAMBb0KR1dccYUaGxu7fT0lJUU//elPB6woEw3WpfwjR460dPsAghs9ArAez1brI6ufrVZdXa34+PgB3y6AoYEeAViPO2QbxuqZKQDBjR4BWO+kw9H555+vQ4cODWQtAAAAtjvpcMTROGukp6fbXQIAg9EjAOtxWM0wR48etbsEAAajRwDWIxwZpqWlxe4SABiMHgFYj3BkmIiICLtLAGAwegRgvV7d5wiDd5+juLg4S7cPILjRIwDrMXPUS263W2vWrNGSJUss3Q/nEwDoCT0CsB7hCAAAoJ2TDkff/e53md61wIgRI+wuAYDB6BGA9U76nKMf//jHA1kH/sPn89ldAgCD0SMA6/V55sjr9VpRB/7D4/HYXQIAg9EjAOv1ORx95zvf0f3336/CwkIr6gEAALBVnw+reb1e/fnPf9Zzzz2nsWPHKisrSxdddJFiY2OtqG/YSUtLs7sEAAajRwDW6/PM0XPPPaecnByNHz9eBw4c0IMPPqgrr7xSd999t959910rahxWysvL7S4BgMHoEYD1+jxzFBUVpTlz5mjOnDn6/PPP9eKLL+rll1/Wzp079corr2jUqFHKysrSpZdeqpSUFCtqHtKam5vtLgGAwegRgPUcfr/f39+N+Hw+vfnmm3rxxRe1Z88e+Xw+hYSE6JxzzlFWVpb+67/+S6GhwX0z7vZ3yH7//fe1ceNGjR8/fsD3U15erqSkpAHfLoChgR4BWG9AwlF7x44d044dO5SXl6d///vfcjgciouL0/PPPz+Qu7FNYWGhsrOzLQtHLS0tQR8kAViHHgFYb8DvkJ2QkKBrr71Wv/jFL/S1r31Nfr9fNTU1A72bIau0tNTuEgAYjB4BWG9Af/yor6/Xyy+/rBdffFEfffSR/H6/IiIiNHPmzIHcDQAAgGUGJBz94x//UF5enl5//XU1NTXJ7/crMzNTWVlZuuCCCxQVFTUQuxkW4uPj7S4BgMHoEYD1TjocHT16VNu2bdO2bdtUUlIiv9+vESNGaPbs2crKytJpp502gGUOHwN8ChiAIYYeAVivz+Fo586dysvL0z/+8Q+1trYqJCREU6dOHTJXpdmtpqaGG2oC6BY9ArBen5PM3XffLen4XVpnzZqlWbNmadSoUQNeGAAAgB36HI4uvPBCZWVlacqUKVbUM+ylpqbaXQIAg9EjAOv1ORzdeeedVtSB/zh27JiSk5PtLgOAoegRgPX6fYJQS0uLnnnmGeXn5+vf//63mpqatGvXLknSxx9/rL/85S+aO3euTjnllH4XOxx4vV67SwBgMHoEYL1+haOmpib95Cc/0QcffKD4+HhFR0ersbEx8HpaWpry8vIUGxur7Ozsfhdrp/aPD7FSWFiYpdsHENzoEYD1+nWH7D/+8Y/617/+pUWLFunPf/6zsrKyOrweExOjSZMm6e233+5XkSZwu91as2aNlixZYul+EhMTLd0+gOBGjwCs169w9Morr+jss8/Wd7/7XTkcDjkcjk7rpKenc7v7PigpKbG7BAAGo0cA1utXODp69OgJH74aGRmpurq6/uwGAABg0PQrHEVGRqqqqqrHdYqLi7ndfR/ExcXZXQIAg9EjAOv1KxydeeaZevPNN+XxeLp8vbS0VH/72980ceLE/uxmWOnq0CQAtKFHANbrVziaP3++PB6Pbr31Vv3rX/+Sz+eTJDU2Nurdd9/V8uXL5fP5dM011wxIscNBdXW13SUAMBg9ArBevy7lnzRpkpYtW6YHH3yww1Vcl156qSQpJCREOTk5JzwvCQAAwBT9vgnkFVdcoUmTJum5557Tvn37VFNTo+joaE2YMEHf+c539OUvf3kg6hw2UlJS7C4BgMHoEYD1+h2OJOm0007T0qVLu33d5/PJ6XQOxK6GvKqqKiUlJdldBgBD0SMA6/XrnKNnnnnmhOv4fD7ddddd/dnNsNLU1GR3CQAMRo8ArNevcPTggw/q1Vdf7fb11tZW3XXXXXrttdf6s5thJTR0QCbzAAxR9AjAev0KR1/72te0evVq/eMf/+j0Wlsw2r17t77zne/0ZzfDCk/bBtATegRgvX6FozVr1uiUU07Rz372M3388ceB5a2trbrnnnv06quv6oorrujxfCR0dOTIEbtLAGAwegRgvX6Fo+joaN13332KiYnRihUrVFxcLL/fr7vvvluvvPKK5syZo1tvvXWgagUAALBcv8KRdPwJ0b/5zW/U2tqqn/zkJ/r5z3+uXbt26bLLLlNOTs5A1DisxMbG2l0CAIPRIwDrDciZfaeccorWrl2rZcuW6bXXXtNll12mFStWDMSmjZGfn6/8/HzV1tZauh9OtgTQE3oEYL0+/S3bvHlzj69PmDBBBw4cUGJiYod1HQ6Hrr/++pOpzxhut1tut1uFhYXKzs62bD+VlZWKioqybPsAghs9ArBen8LRH/7wh16t99hjj3X4/VAIRwAAYHjoUzh64IEHrKoD/8FlugB6Qo8ArNencDRp0iSLykAbj8ejxMREu8sAYCh6BGC9fl+thoHV2NhodwkADEaPAKxHODIMD+gF0BN6BGA9wpFhUlJS7C4BgMHoEYD1CEeGKS4utrsEAAajRwDWIxwBAAC0QzgyTExMjN0lADAYPQKwXr/CUWlpqerq6npcp76+XqWlpf3ZzbDicrnsLgGAwegRgPX6FY6uueYabd26tcd1tm7dqmuuuaY/uxlWjh07ZncJAAxGjwCs169w5Pf75ff7T7gOAABAsLD8nKOysjIektgHSUlJdpcAwGD0CMB6fXp8iCRt3ry5w+/fe++9LtdrbW3V0aNHtXPnTmVmZp5UccNRXV2dwsPD7S4DgKHoEYD1+hyO/vCHPwT+3+FwaO/evdq7d2+36yclJemGG244qeKGo4aGBrtLAGAwegRgvT6HowceeEDS8XOJli1bplmzZunSSy/ttF5ISIji4uL0pS99SSEh3DGgtxgrAD2hRwDW63M4mjRpUuD/FyxYoLPPPrvDMvRPWlqa3SUAMFgw9giv16tHHnlEn3zyicaOHavFixdzSwIYrV8/gpxzzjn661//qoqKii5fLy8v18MPP6wPP/ywP7sZVoqKiuwuAYDBgq1HrFy5UlFRUbr11lv18MMP69Zbb1VUVJRWrlxpd2lAt/oVjrZs2aI33nhDiYmJXb6elJSkN998U08++WR/dgMACEIrV67UunXr5PP5Oiz3+Xxat24dAQnG6vNhtfb279+vKVOm9LjOxIkT9c477/RnN0bIz89Xfn6+amtrLd1PdHS0pdsHENyCpUd4vV7l5ub2uE5ubq5Wr17NITYYp1/hqKqq6oT33EhISFBlZWV/dmMEt9stt9utwsJCZWdnW7afiIgIy7YNIPj97ne/00MPPWR3GSfk8Xg6zRh9kc/nU3JysmJjYwepKiknJ0c5OTmDtj8Ep36Fo5iYGB09erTHdUpLSxUZGdmf3QwrFRUVysjIsLsMAIYqLS0NuvOOelJTU6OamppB3R9wIv0KR5mZmXrttde0cOFCpaSkdHq9tLRUr7/+uiZPntyf3QAA/iM2NjYofoDyeDy9CiJxcXGDOnMUFxc3aPtC8OpXOJo3b57efPNN3XTTTVq4cKHOOeccJSUlqby8XG+//bb+93//V16vlwfP9kF3J7cDgCStWrVKd911l91lnJDX61VUVFSPh9acTqfKyso45wjG6Vc4mjRpkm666SY98sgjWrNmjaTjd81ue9isw+HQkiVLuA9SHzQ0NHDeEYBuBUuPcLlcysnJ0bp167pdJycnh2AEI/UrHEnS3LlzNXnyZD333HPav3+/amtrFRMTowkTJmjOnDkaM2bMQNQ5bNTX12vkyJF2lwHAUMHUI9auXSvp+FVp7WeQnE6ncnJyAq8DpnH426Z50CttV6tt3LhR48ePH/DtFxcXKz09fcC3C2BoCMYewR2yEWz6PXOEgRVsTQ/A4ArGHuFyubRs2TK7ywB6jScYGubIkSN2lwDAYPQIwHqEI8O0trbaXQIAg9EjAOsRjgzDDTMB9IQeAViPcGSYYHluEgB70CMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWGamprsLgGAwegRgPUIR4apq6uzuwQABqNHANYjHAEAALRDODJMRkaG3SUAMBg9ArAe4cgwJSUldpcAwGD0CMB6hCPD+Hw+u0sAYDB6BGA9wpFhIiIi7C4BgMHoEYD1CEeGiY2NtbsEAAajRwDWIxwZpqyszO4SABiMHgFYj3AEAADQDuHIMCNHjrS7BAAGo0cA1iMcGaalpcXuEgAYjB4BWI9wZBiPx2N3CQAMRo8ArBdqdwGDzev1Kjc3V++8845qa2t12mmn6eabb9ZXv/pVu0sDAAAGGHYzRz6fT6mpqfqf//kf5eXlae7cuVq1apXq6+vtLk2SlJ6ebncJAAxGjwCsN+zCUWRkpBYsWKCUlBSFhITowgsvVGhoqA4dOmR3aZKko0eP2l0CAIPRIwDrGX9Yrb6+Xk888YQKCgq0b98+eTwerVq1SrNmzeq0rtfr1aZNm/TSSy/J4/Fo7NixWrhwoaZOndrt9g8dOiSPx2PMwxw52RJAT+gRgPWMnzmqrq7W5s2bdfDgQY0bN67Hde+99149+eSTuuiii3TLLbcoJCREK1eu1Pvvv9/l+k1NTVq9erWuu+46xcTEWFF+n4WHh9tdAgCD0SMA6xkfjhITE/Xss8/qqaee0o033tjtegUFBdq5c6cWLVqkxYsXa/bs2Vq/fr1SU1P16KOPdlq/paVFd955pzIyMrRgwQILP0HfxMfH210CAIPRIwDrGR+OXC6XEhMTT7je7t275XQ6NXv27MCy8PBwZWVl6cMPP1RpaWlgeWtrq1avXi2Hw6Hbb79dDofDktpPBucTAOgJPQKwnvHnHPXWxx9/rNGjRys6OrrD8gkTJkiSDhw4oJSUFEnSfffdp4qKCt13330KDe15CMrLy1VRURH4/cGDBwe4cgAAYJIhE44qKiq6nGFqW1ZeXi5JKikp0QsvvCCXy9Vhlmnt2rWaOHFip/c///zz2rx5c6flZWVliomJUVpamsrLy9Xc3Kzw8HCNGDEiMEsVHx8vv9+vmpoaSVJqaqqOHTsmr9ersLAwJSYmqqSkRJIUFxcnh8OhhoYGFRUVKSUlRVVVVWpqalJoaKiSk5N15MgRScefyh0aGqrKykpJUnJysjwejxobG+V0OpWSkqLi4mJJUkxMjFwul44dOyZJSkpKUl1dnRoaGhQSEqK0tDQVFRVJkqKjoxUREREIg4mJiWpoaFB9fb0cDofS09N15MgRtba2KjIyUtHR0YFxTUhIUFNTk+rq6iRJGRkZKikpkc/nU0REhGJjYwMPzBw5cqRaWloCN7NLT0/X0aNH1dLSovDwcMXHxwd+Oh4xYoRaW1s7jGFFRYWam5vlcrk0cuTIDuMtHT9PTZJSUlJUWVnZ7XiHhISoqqpKkjRq1ChVV1cHxnvUqFGBMTzReKempnYYw/Dw8B7Hu7i4WH6/X1FRUYqMjOww3o2NjR3GsKfx9nq9qq2tDYxhaWlpr8Y7LS1NZWVlgfE+0Xe2/XgnJCR0+s62H++272xYWJiSkpI6fGedTmeH8a6pqVFjY2On8Y6JiVFYWFiH8a6tre32O/vF8a6vr+/wnW0/3lFRUT1+Z9uPd0xMTIcxbG5u7jDebd/ZiIgIxcXFdfjO+ny+DuNNj6BH0CPM6BG9vfjK4ff7/b1a0wD79+/XokWLurxabf78+TrllFO0bt26DsuLi4s1f/583XzzzZo3b16f99nVzNHq1au1ceNGjR8//uQ+SA88Ho9iY2MHfLsAhgZ6BGC9ITNzFB4erubm5k7LvV5v4PWTkZSUpKSkpH7V1hc1NTU0PgDdokcA1jP+hOzeSkxM7DDD06Zt2WAGHAAAELyGTDgaN26cDh8+HDgW26agoCDwejBITU21uwQABqNHANYbMuHo/PPPl8/n0/PPPx9Y5vV6lZeXp8zMzMCVaqbravYLANrQIwDrBcU5R08//bRqa2sDTeGNN94IXKlw1VVXKSYmRpmZmZo5c6Y2bNigqqoqZWRkaPv27SopKdFtt93W7xry8/OVn58fOPPfKl2dNwUAbegRgPWC4mq1efPmBS4N/KItW7YoLS1N0vHHgbQ9W622tlZjxozRwoULNW3atAGrpbCwUNnZ2ZZdrVZWVqbk5OQB3y6AoYEeAVgvKMKRSawORy0tLSe8MSWA4YseAVhvyJxzNFS0f8wJAHwRPQKwHuEIAACgHcKRYXjiNoCe0CMA63HgupcG62o1AABgL2aOesntdmvNmjVasmSJpftpe0AfAHSFHgFYj3AEAADQDuHIMMFyJ28A9qBHANYjHBmmsrLS7hIAGIweAViPcGQYr9drdwkADEaPAKxHODJMWFiY3SUAMBg9ArAel/L30mBdyp+YmGjp9gEEN3oEYD1mjnppsC7l7+4BuwAg0SOAwUA4AgAAaIdwZJi4uDi7SwBgMHoEYD3CkWFCQvgjAdA9egRgPf6WGaaqqsruEgAYjB4BWI9wBAAA0A7hyDCjRo2yuwQABqNHANbjPke9NFj3OaqurlZSUpKl+wAQvOgRgPUIR73kdrvldrtVWFio7Oxsy/bT1NRk2bYBBD96BGA9DqsZJjSUvAqge/QIwHqEI8NwPgGAntAjAOsRjgxTXFxsdwkADEaPAKxHOAIAAGiHcGSY2NhYu0sAYDB6BGA9wpFhONkSQE/oEYD1CEeGqaystLsEAAajRwDWIxwBAAC0w/xsLw3WHbKTk5Mt3T6A4EaPAKzHzFEvud1urVmzRkuWLLF0Px6Px9LtAwhu9AjAeoQjwzQ2NtpdAgCD0SMA6xGODON0Ou0uAYDB6BGA9QhHhklNTbW7BAAGo0cA1iMcGaaoqMjuEgAYjB4BWI9wBAAA0A7hyDDR0dF2lwDAYPQIwHqEI8OEh4fbXQIAg9EjAOsRjgxz7Ngxu0sAYDB6BGA9whEAAEA7hCPDJCUl2V0CAIPRIwDr8Wy1XhqsZ6vV1dVxTgGAbtEjAOsRjnrJ7XbL7XarsLBQ2dnZlu2noaHBsm0DCH70CMB6HFYzTEgIfyQAukePAKzH3zLDpKWl2V0CAIPRIwDrEY4MU1xcbHcJAAxGjwCsRzgyjN/vt7sEAAajRwDWIxwZJioqyu4SABiMHgFYj3BkmMjISLtLAGAwegRgPcKRYSoqKuwuAYDB6BGA9QhHAAAA7RCODJOYmGh3CQAMRo8ArEc4MkxjY6PdJQAwGD0CsB7hyDB1dXV2lwDAYPQIwHqEIwAAgHYIR4bJyMiwuwQABqNHANYLtbuAYJGfn6/8/HzV1tZaup8jR47w7CQA3aJHANYjHPWS2+2W2+1WYWGhsrOzLdtPa2urZdsGEPzoEYD1OKxmGO5+C6An9AjAeoQjw0RHR9tdAgCD0SMA6xGODFNeXm53CQAMRo8ArEc4AgAAaIdwZJiEhAS7SwBgMHoEYD3CkWG8Xq/dJQAwGD0CsB7hyDBW30cJQHCjRwDWIxwBAAC0QzgyTHp6ut0lADAYPQKwHuHIMKWlpXaXAMBg9AjAeoQjw/h8PrtLAGAwegRgPcKRYSIiIuwuAYDB6BGA9QhHhomNjbW7BAAGo0cA1iMcGaasrMzuEgAYjB4BWI9wBAAA0A7hyDAjR460uwQABqNHANYjHBmmpaXF7hIAGIweAViPcGQYj8djdwkADEaPAKxHOAIAAGgn1O4CgkV+fr7y8/Mtf+hjWlqapdsHENzoEYD1mDnqJbfbrTVr1mjJkiWW7ofLdAH0hB4BWI9wZBhOtgTQE3oEYD3CkWHCw8PtLgGAwegRgPUIR4YZMWKE3SUAMBg9ArAe4cgwpaWldpcAwGD0CMB6hCMAAIB2uJTfMPHx8XaXAMBg9AicLK/Xq0ceeUSffPKJxo4dq8WLF8vlctldlpEIR4bx+/12lwDAYPQInIyVK1cqNzdXPp8vsGz58uXKycnR2rVrbazMTBxWM0xNTY3dJQAwGD0CfbVy5UqtW7euQzCSJJ/Pp3Xr1mnlypU2VWYuwhEAAEOU1+tVbm5uj+vk5ubK6/UOUkXBgcNqhklNTbW7BAAGo0f0T25u7gnDwlDi8Xg6zRh9kc/nU3JysmJjYwepqhPLyclRTk6ObfsnHBmmoqJCo0aNsrsMAIaiR/RPTU2NioqK7C7DODU1NUYdsrW7FsKRYZqbm+0uAYDB6BH9ExcXp4yMDLvLGDQej6dXQSMuLs6omaO4uDhb9084MgyXVQLoCT2if+w+XDPYvF6voqKiejy05nQ6VVZWxnerHU7INkxCQoLdJQAwGD0CfeFyuU4YBnNycghGX0A4MkxJSYndJQAwGD0CfbV27VqtWLFCTqezw3Kn06kVK1Zwn6MucFgNAIAhbu3atVq9ejV3yO4lwpFh7D4JDYDZ6BE4WS6XS8uWLbO7jKDAYTXDOBwOu0sAYDB6BGA9wpFhqqur7S4BgMHoEYD1CEcAAADtEI4Mk5KSYncJAAxGjwCsRzgyTFVVld0lADAYPQKwHuHIME1NTXaXAMBg9AjAeoQjw4SFhdldAgCD0SMA6xGODJOUlGR3CQAMRo8ArEc4MsyRI0fsLgGAwegRgPW4Q3YftR3vP3jwoCXbLysrU21trSXbBhD86BFA/5x66qmKiIjocR3CUR+1PfRx9erVNlcCAAD6auPGjRo/fnyP6zj8fr9/kOoZEqqqqrRnzx6lpaX16oF9Dz30kJYsWdKrbR88eFCrV6/Wz372M5166qn9LXVY6st4m8SUugejDiv2MVDb7M92Tva99IjBZcrftZNhQu2DVYOVfYKZIwuMGDFCF198ca/Xj4mJOWFC/aJTTz21z+/BcScz3iYwpe7BqMOKfQzUNvuznZN9Lz1icJnyd+1kmFD7YNVgd5/ghGyLud1uu0sYVoJ1vE2pezDqsGIfA7XN/mznZN9ryp/9cBHM421C7YNVg919gsNqBiksLFR2dnavjocCGH7oEcDgYObIIImJiVqwYIESExPtLgWAgegRwOBg5ggAAKAdZo4AAADaIRwBAAC0w6X8QcTr9So3N1fvvPOOamtrddppp+nmm2/WV7/6VbtLA2CIdevW6Y033lBjY6NSUlK0aNEinXfeeXaXBQQVzjkKIg0NDdqyZYtmzZql5ORk7dq1S+vXr9eWLVsUFRVld3kADHDw4MHATWr37dunnJwcPfHEE4qPj7e7NCBocFgtiERGRmrBggVKSUlRSEiILrzwQoWGhurQoUN2lwbAEKeeemrg7v0Oh0PNzc0qLy+3uSoguHBYzUL19fV64oknVFBQoH379snj8WjVqlWaNWtWp3W9Xq82bdqkl156SR6PR2PHjtXChQs1derUbrd/6NAheTweZWRkWPkxAFjEqh6Rm5urvLw8eb1enXvuuRozZsxgfBxgyGDmyELV1dXavHmzDh48qHHjxvW47r333qsnn3xSF110kW655RaFhIRo5cqVev/997tcv6mpSatXr9Z1112nmJgYK8oHYDGrekROTo527Nih+++/X1OnTpXD4bDqIwBDEuHIQomJiXr22Wf11FNP6cYbb+x2vYKCAu3cuVOLFi3S4sWLNXv2bK1fv16pqal69NFHO63f0tKiO++8UxkZGVqwYIGFnwCAlazqEZLkdDo1ZcoUvfvuu3rrrbes+gjAkEQ4spDL5erVnWx3794tp9Op2bNnB5aFh4crKytLH374oUpLSwPLW1tbtXr1ajkcDt1+++38RAgEMSt6xBf5fD4VFRUNSL3AcEE4MsDHH3+s0aNHKzo6usPyCRMmSJIOHDgQWHbfffepoqJCd911l0JDOWUMGA562yNqa2v18ssvq76+Xi0tLdq1a5fee+89TZw4cdBrBoIZ/7oaoKKiosufHtuWtV1pUlJSohdeeEEul6vDT5Br166l+QFDWG97hMPh0AsvvKD7779ffr9fGRkZuuOOO3T66acPar1AsCMcGaCpqUlhYWGdlrddjtvU1CRJSk1N1WuvvTaotQGwX297RHR0tB544IFBrQ0YijisZoDw8HA1Nzd3Wu71egOvAxi+6BHA4CIcGSAxMVEVFRWdlrctS0pKGuySABiEHgEMLsKRAcaNG6fDhw+rrq6uw/KCgoLA6wCGL3oEMLgIRwY4//zz5fP59PzzzweWeb1e5eXlKTMzUykpKTZWB8Bu9AhgcHFCtsWefvpp1dbWBqa/33jjDR09elSSdNVVVykmJkaZmZmaOXOmNmzYoKqqKmVkZGj79u0qKSnRbbfdZmf5ACxGjwDM4/D7/X67ixjK5s2bp5KSki5f27Jli9LS0iQdv9qk7blJtbW1GjNmjBYuXKhp06YNZrkABhk9AjAP4QgAAKAdzjkCAABoh3AEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaIdwBAAA0A7hCAAGwIwZMzr8ampqCry2bds2zZgxQ9u2bbOxwv/vueee61Drr371K7tLAowSancBAMx15MgRXXPNNT2uk5qaqieffHKQKjJbamqqLr30UkmS0+m0dF979uzR8uXLNXXqVP3mN7/pcd27775b+fn5uuOOO3TRRRdp/PjxWrBggWpra7V161ZL6wSCEeEIwAllZGTooosu6vK1mJiYQa7GXKmpqfrhD384KPs655xzlJKSonfffVelpaVKSUnpcr3a2lq9/vrriomJ0YwZMyRJZ5xxhs444wwdOXKEcAR0gXAE4IQyMjIG7R999E5ISIhmzZqlzZs3a/v27br++uu7XC8/P19NTU369re/rfDw8EGuEghOnHMEYEDNmDFDt9xyi44dO6Zf/vKXuvzyy+V2u3XDDTfovffe6/I99fX1+v3vf68f/OAHcrvd+va3v62f/OQnev/99zute8sttwTO6dm4caPmz5+vmTNn6ve//31gnd27dys7O1tut1tz5szR2rVr5fF4NG/ePM2bNy+w3j333KMZM2aooKCgy7o2bdqkGTNmKD8/v5+j0rWjR4/q+uuvl9vt1quvvhpYXllZqYceekjXXnutLrzwQl1++eX62c9+pk8//bTD+7/97W/L4XBo27Zt8vv9Xe4jLy9PkpSVlWXJZwCGIsIRgAFXW1urm266SZ9//rkuvvhizZgxQ4WFhVq+fHmnf+Bramp04403avPmzYqNjdWcOXM0Y8YMffTRR1q6dKlef/31Lvdxxx13aPv27Tr77LN19dVXKy0tTZL04osv6o477tDhw4d1ySWX6NJLL9WHH36onJwctbS0dNjG7NmzA+/5Ip/Pp7y8PMXHxwcORw2kzz//XIsXL9bRo0e1bt06nX/++ZKkoqIiLVy4UE899ZTS09N15ZVX6txzz9WePXt04403dghyqampmjJlioqLi7sMnp9++qn279+v008/XV/5ylcG/DMAQxWH1QCcUFFRUYeZmfbOPPNMff3rX++w7MCBA7riiiu0bNkyhYQc/xls8uTJWrt2rZ555hktX748sO769ev12WefaeXKlbrssssCyysrK5Wdna1169Zp2rRpnQ4JVVRU6A9/+IPi4uICyzwejx588EFFRkZqw4YNOuWUUyRJ2dnZWr58uQoLC5WamhpYf+LEiTrttNO0c+dO3XzzzYqMjAy8tmfPHpWVlWnu3LlyuVx9HbIeffjhh7rtttsUGhqqhx56SOPGjQu89stf/lLHjh3Tfffdp2nTpgWW/+AHP1B2drbWrl2rzZs3B5ZnZWXpnXfeUV5eniZPntxhP8waASeHmSMAJ1RUVKTNmzd3+evvf/97p/UjIyN1ww03BIKRJF166aVyOp3av39/YFlVVZV27dqlyZMndwhGkjRy5Ehde+21qqqq0rvvvttpH//93//dIRhJ0l//+lc1NDTo29/+diAYSVJoaKgWLlzY5WebPXu26uvrtXPnzg7LX3jhBUnS5Zdf3t2wnJS33npLt956q2JjY/XII490CEYfffSRPvjgA11yySUdgpEknXLKKbrsssv06aefdph9mz59uuLj47V7927V1dUFlre0tOill16Sy+Xq9mR6AF1j5gjACU2bNk333Xdfr9cfPXq0oqKiOiwLDQ1VQkKCamtrA8v2798vn8+n5ubmLmemDh8+LEk6ePCgvvnNb3Z4bcKECZ3W/+STTyRJZ511VqfXMjMzu7y8/pJLLtHvfvc7vfDCC4GAduzYMb355pv66le/qtNOO+0En7b3du3apbfffltjx47VunXrNHLkyA6vtx0yq6ys7HI8/v3vfwf+O2bMGEkKhJ+tW7cqPz9fc+bMkSS98cYbqqqqktvtVmxs7IB9BmA4IBwBGHDR0dFdLnc6nWptbQ38vqamRpL0r3/9S//617+63V5jY2OnZQkJCZ2Wtc2cfDF0SMev7oqPj++0PDY2VjNnztT27dv16aefasyYMdq2bZt8Pt+Azxp9+OGH8vl8Ouuss7qssW083nrrLb311lvdbqehoaHD77OysrR161bl5eUFwhGH1ICTRzgCYJu2EHXNNdfopptu6tN7HQ5Ht9urrKzs9Fpra6uqq6uVnJzc6bU5c+Zo+/bt+stf/qKlS5fqxRdfVHR0tGbOnNmnmk5k0aJF+utf/6qtW7fK6XR2+sxt9S9dulRXXXVVr7c7duxYnXHGGdq3b58+++wzxcbGas+ePUpLS+t0HhKAE+OcIwC2OeOMM+RwOPThhx8OyPbGjh0rSV3OQu3bt08+n6/L95155pkaO3asXn75Ze3Zs0eHDx/WRRddpIiIiAGpq43L5dIvf/lLfeMb39CWLVv08MMPd3i97VDhyYxH2wzRiy++qB07dsjn8wUu9QfQN4QjALZJTEzUzJkz9cEHH+hPf/pTl/fqKSgo6PKwWlf+67/+S5GRkXrxxRdVVFQUWN7S0qJNmzb1+N7Zs2erpqZGa9askaROJ4gPFJfLpdWrV+ub3/ymnnzyST300EOB1zIzM5WZmamdO3d2OkFcOj77tXfv3i6363a7FRERoZdeekl5eXkKCQkJPMoEQN9wWA3ACfV0Kb8kXXfddSd99+WcnBwdOnRIjz76qHbs2KEzzzxTMTExKisr0/79+3X48GE9++yzvZrFiY2N1c0336x169YpOztbF1xwgaKjo/W3v/1NLpdLSUlJ3c6kXHzxxfrtb3+r8vJyjR8/3tL7AoWFhemee+7RnXfeqaeeekp+v1+33HKLJOnOO+/UsmXLdNddd2nr1q06/fTTFR4erqNHj+qDDz5QdXV1lzeljI6O1re+9S3t2LFDVVVV+vrXv97tI0UA9IxwBOCE2i7l787cuXNPOhzFxcXpkUce0TPPPKNXXnlF+fn5am1tVUJCgsaNG6frr7++yxOpu3P55ZcrNjZWf/zjH7V9+3ZFR0frvPPO0w033KC5c+cqIyOjy/dFR0dr+vTpeumllyybNWqvLSD9/Oc/19atW+X3+7V06VKlp6dr06ZN2rJli15//XVt27ZNISEhSkxM1MSJEwM3i+xKVlaWduzYIen43bMBnByHv7t7zgPAEHL48GF997vf1cyZM3XXXXd1uc7111+vkpISPfPMM91ecdedGTNmaNKkSXrwwQcHotxBceTIEV1zzTW69NJLdfvtt9tdDmAMZo4ADCkej0fh4eEd7mrd1NQUOPl5+vTpXb7vb3/7mz777DNdfvnlfQ5Gbfbu3Rt41MjLL79s7INen3vuOf3mN7+xuwzAWIQjAEPK3r179etf/1pTp07VqFGjVF1drX/84x8qKSnR5MmTdcEFF3RY/89//rOOHj2qF154QS6XS9ddd91J7XfBggUdft/VDSdNMX78+A71nn766fYVAxiIw2oAhpRDhw5p06ZN+uCDD1RVVSVJysjI0AUXXKD58+d3ms2ZN2+eysrKdMopp+iGG27odCduAMMP4QgAAKAd7nMEAADQDuEIAACgHcIRAABAO4QjAACAdghHAAAA7RCOAAAA2iEcAQAAtEM4AgAAaOf/AThz/YdaiuJ7AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAG5CAYAAAAJchUSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADeP0lEQVR4nOy9e3wTVf7//0qa3mhLCwVSSkHKTSl3BUWR21IB5SviAqLganEVhQVxBUHqqlwFXS4fXAVEVFTWFZRFEQG1LIKiLiIUlQICAlsobWmhbXpNm+T3R39nODOZmcwkk8wkOc/Hw4cll5l558ycec3r/T7nmFwulwsMBoPBYDAYDIYAs94HwGAwGAwGg8EwJkwoMhgMBoPBYDBEYUKRwWAwGAwGgyEKE4oMBoPBYDAYDFGYUGQwGAwGg8FgiMKEIoPBYDAYDAZDFCYUGQwGg8FgMBiiMKHI8Ina2lqcPHkStbW1eh8Kg8FgMBgMjWFCkeET58+fx2OPPYbz589rvu2KigrNtxkssNjDl3COn8UenrDYjQ0TigzDYrPZ9D4E3WCxhy/hHD+LPTxhsRsbJhQZhiUxMVHvQ9ANFnv4Es7xs9jDExa7sWFCkcFgMBgMBoMhChOKDMNSXl6u9yHoBos9fAnn+Fns4QmL3dhY9D4ABoPBYDAY+uNwOFBfXx/w/TY0NITtzBmBiD0yMhIRERFef58JRYZhsVqteh+CbrDYw5dwjp/Frh+VlZW4cOECXC5XwPftcrlw9uzZgO/XCAQidpPJhLS0NMTHx3v1fSYUGYbl6tWraNmypd6HoQss9vCMHQjv+Fns+sTucDhw4cIFNGnSBC1btoTJZAro/uvr6xEZGRnQfRoFf8fucrlw+fJlXLhwAZ07d/bKWWRCkWFY7Ha73oegGyz28CWc42ex60N9fT1cLhdatmyJ2NjYgO/fbDYjKioq4Ps1AoGIvWXLljh37hzq6+u9EopsMAvDsITrEybAYg9nwjl+Fru+BNpJ1Hu/RiAQsfu6DyYUGYYlOTlZ70PQDRZ7+BLO8bPYwxOLJXyTm8EQOxOKDMNSWFio9yHoBos9fAnn+Fns4YkeI63bt2+P3NxcAMCjjz6KvXv3evzO/Pnz8dRTT4m+l5ubiw8//FD1cegRu1qYUGQwGAwGg2FYGhoa/Lr9DRs2YOjQoT5tw1uhKIe/41aK8T1PRtjStGlTvQ9BN1js4Us4x89iNwZ9+/b1q8OZkpKCQ4cOcf8WG2BhMpnwwgsvYOfOnRgyZAgeeughTJ06FdXV1aitrcXEiRPxt7/9DQDQpk0b/Pjjj0hNTcV9992HCxcu4LvvvkNdXR1SU1NRUFCA6OhoyeMZMmQInnrqKYwZMwaXLl3Cww8/jAsXLiAtLQ3NmzfHDTfcgPnz5wMALl26hLvvvhtnzpxBSkoKPv74YzQ0NOCFF15AeXk5evfujf79+2PdunX4/vvv8cwzz8Bms8HlcmHRokW455570L59e3zyySfo3bs3IiIi0LdvXyxfvhxDhgzBkCFD0LNnT/z444+IjY1Fx44dcf3112P27NkAgLNnz+LWW29Ffn4+AOD555/Hf/7zH9jtdnTp0gVvvPEGmjVrplVTAWBCkWFgzObwNbxZ7OFLOMfPYjcGhYWFuHjxot6HgYiICPz4448AAJvNhj179iA6Oho1NTW47bbbkJmZif79+2PYsGHIycnBgw8+iKNHj8JisaCiogI//vgjbrrpJlmRKOTJJ5/ErbfeigULFqCwsBC9e/fGDTfcwL3/3//+Fz/99BOSk5Nx//3344033sC8efOwcOFCfPLJJ/jkk08AAFeuXMGYMWPw8ccfY+DAgXA6nSgrK1N0DL/99hv279+PyMhIfPfdd5gyZQonFDdu3IhJkyYhMjISL730EuLi4nDw4EEAwKJFi/C3v/0Nr7/+uuJ4lcCEIsOwlJWVIS4uTtdjyM3NxZkzZzB69OiAjko0Qux6Ec6xA+EdP4vdGLGnpKQEdPsOh0PUVXzkkUe4v2tqajBt2jTk5ubCbDYjPz8fubm56N+/PzIzM5GTk4Nu3bqhV69esFqt+Prrr/H9999j2LBhqo5tz549WL58OXec/+///T/e+yNHjuQGHt1666345ZdfRLfz/fff4/rrr8fAgQMBND4ING/e3O1zDofD7bUHH3yQu9/cdtttaGhowI8//oi+ffvivffew2effQYA+OSTT1BeXo6tW7cCaJxiqX379qriVQITigyGBKWlpbj11ltRW1uLdevW4fHHH9f7kBgMBsPv0GlhPaFXEsnOzkaLFi1w5MgRWCwW/PGPf+SWvsvMzMS8efOQkZGBzMxMWK1W5OTk4Pvvv8fatWt9Ogbh1DIxMTHc3xEREV7VEVosFp5AFC7hJ1xBZfLkyXjnnXdQWVmJFi1aoHv37gAaJ9P+xz/+geHDh6s+BjUYx+tmMAS0atVK1/3/9ttv3AV89OjRgO5b79j1JJxjB8I7fhZ7eKJkipirV68iLS0NFosFJ0+exFdffcW9l5qaisTERKxbtw6ZmZkYOnQoduzYgXPnzuHGG29UdSx/+MMfsHHjRgBAUVERduzYoeh7TZs2RXl5Offv2267DadOncI333wDAHA6nbhy5QoAoFOnTvjvf/8LADh8+DBOnjwpu+0//elP+Oijj7Bu3TqeyzpmzBisWrUK1dXVAIDq6mocO3ZMWaAqYEKRYVjoi04P6Ke8QE9hoHfsehLOsQPhHT+LPTwRS78K+dvf/oZ33nkHPXv2xLPPPos//OEPvPczMzNhNpvRoUMHNG3aFCkpKRg0aJDq2s/Vq1fjm2++QUZGBiZNmoRbbrkFSUlJHr83bNgw1NXVoWfPnnjiiSfQrFkzbNu2Dc8++yx69uyJG2+8EQcOHAAALF68GK+//jp69eqFt99+G926dZPddmpqKm6++WZs374dDzzwAPf63Llz0a9fP9xyyy3o2bMn+vfvz035oyUmlx4rgDNChpMnT+Kxxx7Dm2++ieuvv17TbV+8eBFt2rTRdJtq2L17N+68804AwMMPP8w9ZQYCvWPXk3COHQjv+Fns+sReW1uLs2fPIj09nZdaDRR2u90wS/jV1NQgMjISFosFpaWl6N+/PzZt2oRbbrnFL/sLROy+ti+rUWQYFr1nrNfTUdQ7dj0J59iB8I6fxR6eGGkJv1OnTuGhhx6Cy+WC3W7HtGnT/CYSAWPFLkX4npkMw6N3zU5dXR33d6CFot6x60k4xw6Ed/ws9vDESCK5Z8+efknfSmGk2KVgNYoMw1JQUKDr/mlH0W63B3TfeseuJ+EcOxDe8bPY9UWvSrRgWMbOXwQidl/blQlFBkMCPR1FBoPBCBRkDsNAPxAzAgNpV7G5KpVgfM+TEbYkJCToun89axT1jl1Pwjl2ILzjZ7Hrg8ViQZMmTXD58mVERkYGfJUYh8MBp9MZ0H0aBX/H7nQ6cfnyZTRp0sTrNDcTigzY7XasXLkShw4dQmVlJdq3b4/p06dzk3rqhd61G3o6inrHrifhHDsQ3vGz2PXBZDKhdevWOHv2LM6fPx/w/TudTkMtYRhIAhG72WxGu3btvB44E75XJYPD4XAgJSUFr7/+Olq2bIm9e/di3rx52Lx5M5o0aaLbcV29elXX/evpKOodu56Ec+xAeMfPYtcv9qioKHTu3FmX9HNRURGsVmvA92sEAhF7VFSUT2KUCUUGYmNjkZWVxf172LBheO2115Cfn6/53IjBBKtRZDAY4YTZbNZlHkWLxaLLfo1AMMTOhKKA9957Dxs2bEB6ejreffddyc+99NJL2L17t+T7W7duRcuWLf1xiKiursaHH36IvLw8HD9+HDabDfPmzeMmhxZit9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fqKfz8/Ph81m033iW3/9fkrR01HUO3Y9CefYgfCOn8UenrDYjQ0TihTFxcXYtGkTYmNjPX529OjR6Nu3L+81l8uFFStWICUlxa+NX15ejo0bN8JqtaJTp044cuSI7OeXLl2Kr7/+GuPHj0daWhp27dqFOXPmYPXq1ejZsyfvs3V1dVi8eDEmTZrktjB5oLHZbEhOTtZt/3o6inrHrifhHDsQ3vGz2Fns4UYwxM6EIsWaNWuQkZEBp9Ppcd3N7t27uw32+Pnnn1FbW4s77rhD9rs2mw2HDx/G4MGDRd/PycnBgAEDJAVrcnIytm3bhuTkZJw4cQJTpkyR3FdeXh727NmDqVOncmtEjhgxAllZWVi7di3Wrl3LfbahoQEvvPAC2rRpw0tF6wXt6Om9/0ALRb1j15Nwjh0I7/hZ7OEJi93YhOcwIxFyc3Oxb98+zJgxw+tt5OTkwGQyITMzU/Zz27Ztw/z587F//36393bs2IGFCxfKprWjoqIUP4Hs27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAhA48irxYsXw2QyITs72xDLCnk755NW6Oko6h27noRz7EB4x89iD09Y7MaGCUU0jvpdvXo1Ro0ahY4dO3q1jYaGBuzduxfdu3dH69atZT87ceJE9O/fHwsXLsRPP/3Evb5v3z6sWLECw4cPx5gxY7w6DiGnTp1CWloa4uLieK937doVAHD69GkAwPLly1FaWooFCxYYZoqKlJQUXfevp6Ood+x6Es6xA+EdP4s9PGGxGxsmFAF8+umnKCoqwqOPPur1Ng4ePIjy8nKPaWegcZTT/PnzkZGRgezsbOTl5eGnn37CokWLcMstt+DZZ5/VzNErLS0VdR/JayUlJSgsLMSOHTtw/PhxjB49GiNGjMCIESNw9OhRye3m5OTg2WefxT/+8Q9NjlOMixcv+m3bSqAdxUBPGaF37HoSzrED4R0/iz08YbEbG2NYRzpSXl6Ot99+Gw899BCSkpK83k5OTg4sFguGDh2q6PPR0dFYunQpZs6ciTlz5qC+vh5du3bV3NGrq6tDZGSk2+tRUVHc+ykpKaJpcDkyMzORmZmJkydP4rHHHtPkWI2Gno4ig8FgMBhGIOwdxQ0bNiAhIQFjx471ehvV1dX49ttvcfPNNyMxMVHx9+Li4jBt2jRUVFSgpqYGM2bMQHR0tNfHIUZ0dLSoyCEOmdb70xJhujzQ6FmjqHfsehLOsQPhHT+LPTxhsRubsBaK+fn5+OyzzzBu3DiUlJTg0qVLuHTpEux2OxoaGnDp0iVUVFR43M63336raLSzkIKCAixatAjt2rVDSkoKnn/+eZSUlHgbjijJyckoLS11e5281qJFC033pyV6i1g9HUW9Y9eTcI4dCO/4WezhCYvd2IS1UCwpKYHT6cTq1asxYcIE7r+8vDzk5+djwoQJ2Lhxo8ftfPXVV4iNjcWAAQNU7fvpp5+GxWLBypUrsWLFCtTW1mLWrFmKxKlSOnXqhAsXLqCqqor3el5eHve+Ubly5Yqu+9fTUdQ7dj0J59iB8I6fxR6esNiNTVjXKKanp2PJkiVur2/YsAHV1dV48sknkZqaCqDRXSoqKkJiYiKvlrGsrAyHDh1CZmam4mV4bDYbZs+ejZqaGrz22mto1aoVgMaRxzNnzsTcuXOxcuVKRRN/e2LIkCH48MMPsX37dm4eRbvdjp07dyIjIyNs19dUAu0oOhwOuFwuQ0wbxGAwGAxGoAhroZiUlISBAwe6vf7RRx8BAO+948ePY+bMmcjKysIjjzzCvb5nzx44HA5Vaedt27ahuLgYr776Ktq2bcu93rlzZyxbtgyzZs3C7t27ce+990puY+vWraisrORSyAcOHEBxcTEAYOzYsdyqKhkZGRg6dCjWr1+PsrIytGnTBrt370ZhYSHmzp2r+Jj1QO+0OO0oAo2uIhkE5G/0jl1Pwjl2ILzjZ7GHJyx2YxPWQlELcnJy0KxZM9x0002KvzNx4kQMHDgQ6enpbu/17NkT69atQ4cOHWS3sXnzZhQWFnL/3r9/Pzdyefjw4bzl97Kzs2G1WvHFF1+gsrISHTp0wMsvv4zevXsrPmY9qKqq0rV+QzhjfiCFot6x60k4xw6Ed/yhGPvRo0fhcrk89rehGLtSWOzGjt3kcrlceh8EI3gh0+O8+eabuP766zXd9sWLF9GmTRtNt6mG5ORkXv3I1atXfZpCSQ16x64n4Rw7EN7xh1rsR48e5QTi4cOH0adPH8nPhlrsamCxGzv2sB7MwjA2ZrO+p6eYoxgo9I5dT8I5diC84w+12L///nvu7//+97+ynw212NXAYjc2xj9CRtjiaSlEfyNWoxgo9I5dT8I5diC84w+12Gtqari/hQ+eQkItdjWw2I0NE4oMw1JQUKDbvhsaGuBwOHivBXIZPz1j15twjh0I7/hDLfbq6mrub09CMdRiVwOL3dgwocgwLHqWz4p16oF0FMO5dDicYwfCO/5Qi12NoxhqsauBxW5smFBkGJYmTZrotm9h2hkIrFDUM3a9CefYgfCOP9RiV+MohlrsamCxGxsmFBmGRYsJx71Fb0dRz9j1JpxjB8I7/lCLnXYU6b/FCLXY1cBiNzZMKDIMi9ga1YFCb0dRz9j1JpxjB8I7/lCLXU3qOdRiVwOL3dgwochgiKC3o8hgMIIfNalnBsOoMKHIMCzJycm67VtvR1HP2PUmnGMHwjv+UItdjaMYarGrgcVubJhQZBgWPZ/A9XYUw9l9COfYgfCOP9RiV+MohlrsamCxGxsmFBmGpaqqSrd96+0o6hm73oRz7EB4xx9qsatxFEMtdjWw2I0NE4oMhgh6O4oMBiP4YTWKjFCACUWGYdFzoXS9HUWjLxLvT8I5diC84w+12NVMjxNqsauBxW5smFBkGJZLly7ptm+xp/9ALuGnZ+x6E86xA+Edf6jFrib1HGqxq4HFbmyYUGQYFqfTqdu+9XYU9Yxdb8I5diC84w+12NWknkMtdjWw2I0NE4oMw8JWZglPwjl2ILzjD7XY1TiKoRa7GljsxoYJRYZhiYuL023fejuKesauN+EcOxDe8YdS7C6XS5WjGEqxq4XFbmyYUGQYlpKSEt32rbejqGfsehPOsQPhHX8oxS582PQkFEMpdrWw2I0NE4oMhgh6O4oMBiO4od1EgE2PwwhemFBkGJbmzZvrtm+9HUU9Y9ebcI4dCO/4Qyl24XQ49fX1cDgckp8PpdjVwmI3NkwoMgxLIKejEaK3o6hn7EJcLldA92ek2PUgnOMPpdjF5k2UcxVDKXa1sNiNDROKDMNSWVmp2771dhT1jJ3mn//8J1q0aIHs7OyA7dMosetFOMcfSrELU8+AvFAMpdjVwmI3NkwoMhgi6O0oGoXXXnsNV65cwSuvvBKW8TMY3qLWUWQwjAoTigzDkpqaqtu+9V6ZRc/YaWw2GwDA4XDg8uXLAdmnUWLXi3COP5RiV+sohlLsamGxGxsmFBmGpaioSLd96+0o6hk7Df07FBYWBmSfRoldL8I5/lCKXa2jGEqxq4XFbmyYUGQYFrkRgv5G7xpFPWOn0UMoGiV2vQjn+EMpdrWOYijFrhYWu7FhQpFhWGJiYnTbt96Oop6x09A3tkAtXm+U2PUinOMPpdjVOoqhFLtaWOzGhglFhmFJSEjQbd96O4p6xk6jh6NolNj1IpzjD6XYxYSi2GuEUIpdLSx2Y8OEIsOwBGrwhBh6O4p6xk5DC+ZACUWjxK4X4Rx/KMWuNvUcSrGrhcVubJhQZDBE0NtRNAIul4s30jtQQpHBCAXY9DiMUMGi9wEw9Mdut2PlypU4dOgQKisr0b59e0yfPh3du3fX9biaNWum2771dhT1jJ0gnA4oUELRCLHrSTjHH0qxq3UUQyl2tbDYjQ1zFBlwOBxISUnB66+/jp07d2L8+PGYN2+eaEcXSBoaGnTbN+nQTSYT91oghaKesROEN7VACUUjxK4n4Rx/oGIvLi7GP//5T1y5csVv+1DrKLJ2D0+CIXYmFBmIjY1FVlYWrFYrzGYzhg0bBovFgvz8fF2Pi0z2rAfEUYyPj+deC6RQ1DN2gtBVDZRQNELsehLO8Qcq9vvvvx8PPvggsrKy/LYPtY4ia/fwJBhiD8rU83vvvYcNGzYgPT0d7777rqLvnDx5Eu+88w5++eUX2O12pKam4u6778a4ceO4z7z00kvYvXu35Da2bt2Kli1bAgCOHDmCmTNnin5u7dq16Natm4qI1FFdXY0PP/wQeXl5OH78OGw2G+bNm4c777zT7bN2ux1vvfUWvvzyS9hsNnTs2BGPPvoo+vXrJ7n9/Px82Gw2tGnTxm8xGB3SoSckJHAXcrjVKApvapWVlaisrOSJZwYj2HC5XPj+++8BALm5uX7bD6tRZIQKQScUi4uLsWnTJsTGxir+zsGDBzFv3jx07twZDz/8MGJjY3Hx4kW30UajR49G3759ea+5XC6sWLECKSkpnEikGTt2LLp27cp7zd8Cq7y8HBs3boTVakWnTp1w5MgRyc8uXboUX3/9NcaPH4+0tDTs2rULc+bMwerVq9GzZ0+3z9fV1WHx4sWYNGmS7oKgdevWuu1bzFEM5BJ+esZOEKvTLCwsRKdOnfy6XyPErifhHH8gYq+srOQEm9g5rhVqp8dh7R6eBEPsQScU16xZg4yMDDidTpSXl3v8fFVVFV566SX0798fixYtgtksnW3v3r272wCOn3/+GbW1tbjjjjtEv9OrVy8MGTJE8fHbbDYcPnwYgwcPFn0/JycHAwYMkBXCycnJ2LZtG5KTk3HixAlMmTJF9HN5eXnYs2cPpk6digceeAAAMGLECGRlZWHt2rVYu3Yt7/MNDQ144YUX0KZNG7+mZJRy+fJlWK1WXfZNbiR6pZ71jJ2gl1A0Qux6Es7xByL24uJi7m9/Pvx5Mz0Oa/fwIxhiD6oaxdzcXOzbtw8zZsxQ/J2cnBxcuXIFjz32GMxmM2pqauB0OlV932QyITMzU/Iz1dXVigtSt23bhvnz52P//v1u7+3YsQMLFy6UTX8DQFRUFJKTkz3ua9++fYiIiMDo0aO516KjozFq1CgcO3aMt8ak0+nE4sWLYTKZkJ2dzRvEoRd6Ffk2NDRwyyrFxsYiIiICABvMAgSmTtEIsetJOMcfiNhpoRhoR5ENZhGHxW5sgkYoOhwOrF69GqNGjULHjh0Vf+/QoUOIi4tDSUkJJk2ahBEjRuDOO+/EihUrPHYSDQ0N2Lt3L7p37y5pDy9duhQjR47EHXfcgZkzZ+LEiROy25w4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxiuOT49SpU0hLS0NcXBzvdZIqP336NPfa8uXLUVpaigULFsBiMYbRHB0drct+6fMiOjoakZGRAAIrFPWKnUbKUfQ3RohdT8I5/kDETj8g+1MoqnUUWbuHJ8EQuzEUgQI+/fRTFBUVYdWqVaq+d+HCBTgcDmRnZ2PUqFGYMmUKcnNzsXXrVlRWVuLFF1+U/O7BgwdRXl4umna2WCwYPHgw+vfvj8TERJw7dw6bN2/G9OnTsWbNGnTp0kV0mxaLBfPnz8czzzyD7OxsrFq1CjU1NVi0aBFuueUWPPvss5q5eaWlpaLOI3mtpKQEQOPNf8eOHYiKiuK5j6+88gp69eoluu2cnBzk5OSgsrJSk2MVIykpyW/bloO+ecTExCAyMhK1tbUBFYp6xU6jl6NohNj1JJzjD0TstKPodDrR0NDg08Nxbm4utm3bhsmTJ6N9+/bc62odRdbu4UkwxB4UQrG8vBxvv/02HnroIdU/ak1NDWpra3HPPfdwo5QHDx6M+vp6bN++HY888gjatm0r+t2cnBxYLBYMHTrU7b0ePXqgR48e3L9vv/12DBkyBJMnT8b69euxfPlyyWOKjo7G0qVLMXPmTMyZMwf19fXo2rWr5m5eXV0d54bRREVFce8DQEpKimgqXI7MzExkZmbi5MmTeOyxx3w/WBGKiop0GXlNd+Z6OYp6xU6jl6NohNj1JJzjD0TstFAEGs9zX/rd+++/HydPnsThw4fx2Wefca+rdRRZu7PYjUpQpJ43bNiAhIQEjB07VvV3ia07bNgw3uuk5vDYsWOi36uursa3336Lm2++GYmJiYr2lZaWhttvvx1HjhzhatykiIuLw7Rp01BRUYGamhrMmDFDcws6OjpaVNyQAu5gsLz1QOgoEmEdbtPjiAnFS5cu6XAkDIZ2CIWiLwNaXC4XfvvtNwDA8ePHee+x6XEYoYLhhWJ+fj4+++wzjBs3DiUlJbh06RIuXboEu92OhoYGXLp0CRUVFZLfJ2nW5s2b814ny+ZITXb57bffyo52lqJVq1aor6/32CEUFBRg0aJFaNeuHVJSUvD8889zqWCtSE5ORmlpqdvr5LUWLVpouj+tUSrQtcYIjqJesdPolXo2Qux6Es7xByJ2ukYR8K1O0W63w+VyAYDbLBxEKNIxyU2Pw9o9PAmG2A0vFEtKSuB0OrF69WpMmDCB+y8vLw/5+fmYMGECNm7cKPn966+/HgDc5kwkokwqlf3VV18hNjYWAwYMUHW8BQUFiIqKkp3epqSkBE8//TQsFgtWrlyJFStWoLa2FrNmzZIVvWrp1KkTLly4gKqqKt7reXl53PtGhnTAgUasRhEIrFDUK3YavVLPRohdT8I5/kDELpZ69hY6vVxWVsY7fvIebVLIGQis3cOTYIjd8EIxPT0dS5YscfsvPT0dVqsVS5YswahRowA0XoTnz59HWVkZ931SX/j555/ztvv5558jIiICffr0cdtnWVkZDh06hEGDBiEmJkb0uOh9EE6fPo0DBw6gX79+kvM12mw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp0r+9SphiFDhsDhcGD79u3ca3a7HTt37kRGRobh527SUjSrwQiOol6x04jd1IqKilRNL+UNRohdT8I5/kDErqVQpPvqhoYG7t8ul4v7m2SvAHmhyNo9PAmG2A0/mCUpKQkDBw50e/2jjz4CAN57x48fx8yZM5GVlYVHHnkEANClSxfcdddd2LlzJxwOB3r37o3c3Fzs3bsXDz74oGj6dc+ePXA4HLJp5xdffBHR0dHo3r07mjVrhnPnzuGzzz5DTEwMHn/8ccnvbdu2DcXFxXj11Vd5g2g6d+6MZcuWYdasWdi9ezfuvfde2d+FjNomaeQDBw5wHeDYsWMRHx+PjIwMDB06FOvXr0dZWRnatGmD3bt3o7CwEHPnzpXdfjhjBEfRCIjdQB0OB0pLS0VXKWIwggEtaxSFD/Xl5eVo0qQJ7HY790AVHx+PqKgo2O12VqPICEoMLxS1YPbs2bBardi1axe++eYbWK1WTJ8+Hffdd5/o53NyctCsWTPcdNNNktscOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NMnvTZw4EQMHDkR6errbez179sS6devQoUMHjzFt3ryZlwbcv38/N3J5+PDh3Ioi2dnZsFqt+OKLL1BZWYkOHTrg5ZdfRu/evT3uQ29SUlJ02a+UoxjIJfz0ip2GFopJSUmci15YWOhXoWiE2PUknOP3d+wNDQ1uddtapZ6BxkxT69ateQIyNjYWMTExHoUia/fwJBhiD1qh+Oqrr7q91qdPH9FpXiwWCyZPnozJkycr2rZwaTsxxo0bh3HjxinanvBYxEQiQelk4lu2bFH0uejoaEybNg3Tpk1T9HkjUVpailatWgV8v1KOYkNDA1wuV0BWrdErdhr6pta+fXvk5uYCaBSK9NRQWmOE2PUknOP3d+wlJSVuNWFapZ6BawNaaAFJhGJFRYWsUGTtzmI3KoavUWSEL3qleqUcRSBwyy0ZIc1N30Cvu+467m9/D2gxQux6Es7x+zt2YdoZ0FYoEtedfr1JkyZcrbucUGTtHp4EQ+xMKDIMC5m/MNBILeEHBO6i1it2GvqmRgtFf8+laITY9SSc4/d37GJC0ZeSEmHqmTiKYqlnQF4osnYPT4IhdiYUGYZFOPdloKA7czr1DAROKOoVOw0tmOmlyfztKBohdj0J5/j9Hbu/HUWx1DPtKMrNaMHaPTwJhtiZUGQYlkDM2SeG0FGkn/gCJRT1ip1Gr9SzEWLXk3CO39+xay0UxQazAPKOotS8eazdw5NgiJ0JRQZDgBEcRSMgHMxCCIaOjcEQQ7gqCxAYR5FegCGQsycwGFrAhCLDsDRt2lSX/RqhRlGv2Gno36FFixZo0qQJAP8LRSPErifhHL+/Y9e6RlFKKEo5ioB0nSJr9/AkGGJnQpFhWAIxDY0YRnAU9YqdRjj6m8z35W+haITY9SSc4/d37IFKPUvVKALSQpG1e3gSDLEzocgwLOTpPNAYwVHUK3Ya4XySrVu3BgBcvXrVp5urJ4wQu55IxX/q1CkcOHAgKNaG9RZ/t32gBrN44yiG83nPYjc2TCgyGAKM4CgaAaFgplcQYHWKgaWwsBDdunXD7bffjs8++0zvwwlaAlWj6I1QZDCMChOKDMNitVp12a+coxioQnS9YqeRSj0D/hWKRohdT8TiP3z4MPeQ8sMPPwT6kAKGP9ve5XIZIvUsNUVOOJ/3LHZjw4Qiw7CQTjfQGMFR1Ct2GnIDjYqKgslkCphQNELseiIWPy1m5ObiC3b82fZVVVXcb2c2X7v1GWUwSzif9yx2Y8OEIsOw+LMOTul+9apR1Ct2GnJDi46OBoCACUUjxK4nYvGHi1D0Z9vTbiKpt/V1n95MjyMlFMP5vGexGxsmFBmGhRZogcQIjqJesdOQDoy4IYESikaIXU/E4qdvJqFc4+bPtqeFYlpaGve3lqnniooKOJ1OrxzFcD7vWezGhglFhmFp0aKFLvs1wsosesVOQ36HQDuKRohdT8TiDxdH0Z9tTw9kadu2Lfe3lo6iy+WCzWbzanqccD7vWezGhglFhmG5dOmSLvs1gqOoV+w05HcgNzk6XedPoWiE2PVELP5wcRT92fa0o9iuXTvuby1rFIHGmjNvHMVwPu9Z7MaGCUUGQ4ARahSNgNBRbNWqFfee2DQjDP8RLo6iP6GFolaOojD1DDTWKbLpcRihBBOKDMOSkJCgy35JRx4ZGQmz2ayLUNQrdhqhoxgZGckt42ez2fy2XyPEridi8YeLUPRn2/ujRlGsLcrLy72aHiecz3sWu7FhQpFhWCIiInTZr9BJ00Mo6hU7weFwwOFwALj2OwBAXFwcAKCystJv+9Y7dr0Ri592oULZkfJn2wfKUfQ29RzO5z2L3dgwocgwLHrPo0g7aYRwmUdRmH4nxMfHA/CvUNQ7dr1h8yj6B6nBLFrXKNKOosViQWRkJJtH0QMsdmPDhCKDIcAIjqLeCAf0EAIhFBnuhMpgFqfTiYsXL+qyb+IoxsbGIjk5mXvdH6ln8jqZP1HJPIoMhlFhQpFhWOjBE4FEzlEM1BJ+esVO8OQo1tbWoqGhwS/71jt2vRGLP1QcxXvuuQdpaWlYvny56Pv+bHsiFK1WK2/KK3+mnklNrxJHMZzPexa7sWFCkWFYKioqdNmvERxFvWIneHIUgcYl0fyB3rHrjVj8oSAUa2trsWPHDgDAxx9/LPoZf7W9w+FASUkJgMYbs8lk4q5rb4ViQ0OD6MMSnXomTqISoRjO5z2L3dgwocgwLHqlaIxQo6h3esqTowj4TyjqHbveiMUfCqlnulxBqnTBX7GVlJTA5XIBuObgkPPaW6FIC/aWLVtyf4ulnpUIxWBtVy1gsRsbJhQZhsVisQR8nw6Hg3MJyI1Ej5VZ9IidRolQ9Fedot6x641Y/EJHkYieYIJ+sJB6yPBX29MjnoVC0dtyEjrtTE9GX1ZWxr2nJvUczuc9i93YMKHIMCx61G7QN2Q9HUW961aUpJ79JRT1jl1vPNUoAoGrldUSWhxKnTv+ans5oaiFo0gvb1lSUsJNLSXmKEqVDoTzec9iNzZMKDIMS0FBQcD3Keak6SEU9YidRk9HUe/Y9UYsfqGYCcY6Rfp8kXIU/dX2tFC0Wq0ArmUKtBaK9JJsahzFcD7vWezGhglFBoNCzElj0+ME1lEEGjvPm2++GaNGjQqb31wOobgIRqFIi8OamhrOdQsE/nAU6dRzfHw8d23Q66Cz6XEYoQATigzDQouSQGEUR1GP2Gn0dBTj4+PxwQcf4Mcff8TOnTuxd+9ev+zHqIi1vVDMBKPYELqIYlPL+Ou8pyfb1qpGUbj6SlJSEgDg6tWr3OtqHEW9r3k9YbEbGyYUGYaFFmiBwiiOoh6x0+gpFCMjI7mpTIDGUaThhFjbh1rqWezfgP/Oe0+OojeDg+g2aNKkCRITE90+Q5xEi8UCs7nxdislFPW+5vWExW5smFBkwG63Y9myZRg3bhxGjhyJJ554Ar/++qveh8V7Mg8URnEU9YidRs/U89WrV2Gz2USPJRwQa/tQdBTFzh9/nfeXL1/m/iZT2ZAaRZfL5dXk8bQjSjuKNEQomkwm7jqSaju9r3k9YbEbGyYUGXA4HEhJScHrr7+OnTt3Yvz48Zg3b55oaijU8eQoBuNoU2/Q01EEENZCUYxQdBT9NQ+nGPR6us2aNQPAP6+9qVMUpp7FHEWSegbgUSgyGEaFCUUGYmNjkZWVBavVCrPZjGHDhsFisSA/P1/X46InsQ0URnEU9YidRk9HsWXLljyh6MsSa8GIWNuHglBU4ij667wnq19ERUVx5zMtFL15AKQfpD2lnoFr15FU2+l9zesJi93YGH+mRx957733sGHDBqSnp+Pdd99V9J2TJ0/inXfewS+//AK73Y7U1FTcfffdGDduHPeZI0eOYObMmaLfX7t2Lbp166bJ8YtRXV2NDz/8EHl5eTh+/DhsNhvmzZuHO++8U/Tzdrsdb731Fr788kvYbDZ07NgRjz76KPr16yf6+fz8fNhsNrRp08ZvMSihsrISzZs3D+g+jVKjqEfsNHo6ipWVlWHtKIq1fSimnsUcRX+d90QoNm3alHtNa0dRLPWsxlHU+5rXE71jt9ls+P777xEdHY3BgwcHdN96x66EkBaKxcXF2LRpE++pzhMHDx7EvHnz0LlzZzz88MOIjY3FxYsXeTUuNGPHjkXXrl15r/lbYJWXl2Pjxo2wWq3o1KkTjhw5Ivv5pUuX4uuvv8b48eORlpaGXbt2Yc6cOVi9ejV69uzJ+2xdXR0WL16MSZMm6T4aSw/XREwg6bEyi96OkZ5CsaamJqyFoljbh4KjqGQwi7/iIgOiaNePvq79lXoWcxSlzudgbFOt0CP206dP480338TXX3+Nn376iZuu6d///jfuvffegB3HuXPn8OWXX2LUqFFISEgI2H7VENJCcc2aNcjIyIDT6VQ0crKqqgovvfQS+vfvj0WLFnGj1OTo1asXhgwZouq4bDYbDh8+LPnkkpOTgwEDBkgK3OTkZGzbtg3Jyck4ceIEpkyZIrmvvLw87NmzB1OnTsUDDzwAABgxYgSysrKwdu1arF27lvtsQ0MDXnjhBbRp0wZZWVmqYvIHSn5/rTGKoyiMvaGhAaWlpdxkwf5GKvUcFxfH/e0voWg2m3nbVisUHQ4HnnzySVy9ehVr164VvYEbGbHzPlwcRX9c8y6Xyy+OopLUM+0okv5cqu306O+MQqBjr6+vx4ABA3ij4Qm5ubkBFYoPP/wwfv31Vzz88MPYuHFjwParhpA9M3Nzc7Fv3z7MmDFD8XdycnJw5coVPPbYYzCbzaipqYHT6fT4verqalWj5rZt24b58+dj//79bu/t2LEDCxcuxO7duyW/HxUVheTkZEX72rdvHyIiIjB69GjutejoaIwaNQrHjh3j5hdzOp1YvHgxTCYTsrOzYTKZFMfjL+j1UwOFUWoU6dhdLhcGDBiAlJQUvPPOOwHZv56OYuvWrX1yFL/++musWbMG//rXv7B582atD8/vCM97ev1xQjC6T0ocRX9c83V1ddx1G+jUs5ij2NDQIHq/0KO/MwqBjr24uJgnElNTU7m/A3lt2e12boaRw4cPB2y/aglJoehwOLB69WqMGjUKHTt2VPy9Q4cOIS4uDiUlJZg0aRJGjBiBO++8EytWrJDsSJYuXYqRI0fijjvuwMyZM3HixAmP+5k4cSL69++PhQsX4qeffuJe37dvH1asWIHhw4djzJgxio9bjlOnTiEtLY3nBAHg0uWnT58GACxfvhylpaVYsGCBYRYpv3jxYsD3aRRHkY79/PnzOHjwIADgjTfeCMj+lQxm8deo1YsXL/o0mIVeGYOejzFYEJ73YvEHo1BUMpjFH9c8nU2iXT9fB7N4m3oGxNtULPaCggLk5uaqPrZgI9B9Pe0GT5w4Edu2beP+HUi3np4ax8hZAmMoAo359NNPUVRUhFWrVqn63oULF+BwOJCdnY1Ro0ZhypQpyM3NxdatW1FZWYkXX3yR+6zFYsHgwYPRv39/JCYm4ty5c9i8eTOmT5+ONWvWoEuXLpL7sVgsmD9/Pp555hlkZ2dj1apVqKmpwaJFi3DLLbfg2Wef1czRKy0tFXUfyWslJSUoLCzEjh07EBUVxXMeX3nlFfTq1Ut0uzk5OcjJyfHrFCl6YBRHkYae2uPw4cOoqalRVXfrDVKOYlRUFCwWCxoaGvzW9i6XyydHkb4JhMLyf2Kiwsg3FSmUpJ79AUk7A/5NPSsdzAI0tp/w4V3IlStXcMMNN8Bms+H999/Hgw8+qPoYGeIIl1+k+9NAPoRduXJFl/2qxSuhOGHCBJ93PH78eN4oYq0oLy/H22+/jYceekj0wpWjpqYGtbW1uOeee7gRzYMHD0Z9fT22b9+ORx55BG3btgUA9OjRAz169OC+e/vtt2PIkCGYPHky1q9fj+XLl8vuKzo6GkuXLsXMmTMxZ84c1NfXo2vXrpo7enV1daIzv5NC7rq6OqSkpIimweXIzMxEZmYmTp48iccee0yTYxXiqSP1B0ZxFOnYaaFYX1+Pn376Cbfffrtf90/fOOkbnMlkQnx8PMrKyvwmFCMiInjrAKsVRXSHG4xCUXjeh4qjqCT17I9rnnYUaaGo12AWQPycFsb+448/cg9MS5YswaRJkwxREuQPAt3X0w8pcXFxipZY9Ae0UDTyw59XqefCwkLYbDa4XC6v/isqKvLbTWbDhg1ISEjA2LFjVX+XPGEOGzaM93pmZiYA4NixY7LfT0tLw+23344jR44oWvA+Li4O06ZNQ0VFBWpqajBjxgzeU64WREdHi94sSapF6/1piR7HJuakmc1mrtg6UMKDjp0WigBw4MABv++f7rSE7UDSz/66hoW/cbg5isLfO5wcRX9c87SjKJV69lUoKhnMQosRMaEvjJ0uoThx4kRIr3ke6L5e6AYbwVE08jXttXV13333eT0y1l/zFOXn5+Ozzz7DjBkzeLVJdrsdDQ0NuHTpEuLi4nhPlTTJyck4e/as25xGZCZ/Oh0mRatWrVBfX68otVBQUIBFixahXbt2sNvteP755/H666+jRYsWHvejlOTkZNGpfUpLSwFA031pzZUrVwI+l6NUbV5kZCSvKN7f0LELheJ3333n9/1LpZ4B/wvFCxcuSB6LEuiOPhhX0hGe96HiKCqpURTGfv78eaSkpPgkJJSknn2dcFuqFESNoyiMnQw0JLz++uv4wx/+oPo4g4FA9/VCoaiXo0jXKBr5mg6pwSwlJSVwOp1YvXo1JkyYwP2Xl5eH/Px8TJgwQXb4+fXXXw8AbsKKiE4lqeyCggJERUV5rCErKSnB008/DYvFgpUrV2LFihWora3FrFmzeB2br3Tq1AkXLlxw66Tz8vK49xnXkBJIJP2sh/AQE4oul8uv+5QSzABfKPrjOITnarg5ikJCRSiqXcLv/fffR/v27dGnTx9FGRoppFLPei3hByg7p2lHEWisvRc+RDG8gz73hI6iXqlnsdkNjIJXQvH999/3aZ4hX78vRXp6OpYsWeL2X3p6OqxWK5YsWYJRo0YBaDwZzp8/z7sJDx06FADw+eef87b7+eefIyIiAn369OFeE968gcYRxAcOHEC/fv1k54Wy2WyYPXs2ampqsHLlSrRq1Qpt27bF8uXLcfnyZcydO1ezG8GQIUPgcDiwfft27jW73Y6dO3ciIyMjYPPyeYMebqecowgETnjQsQvPtZKSEpw6dcqv+1fiKDqdTrdO9eeff1Y08l+OiIgI3r/DrUZReN6HaupZzFGkY9+xYwcA4Pjx4zh79qzX+5VKPWtZoxgTE4O4uDi3c5cWIJ7EiLDdhULR4XAEbNaDQBPovp5+mBTWKOqVegaMe117lXpu166dTzv19ftSJCUlYeDAgW6vf/TRRwDAe+/48eOYOXMmsrKy8MgjjwAAunTpgrvuugs7d+6Ew+FA7969kZubi7179+LBBx/kncwvvvgioqOj0b17dzRr1gznzp3DZ599hpiYGDz++OOyx7lt2zYUFxfj1Vdf5QbHAEDnzp2xbNkyzJo1C7t375YV02QkNkkhHzhwgJsXauzYsdzNPCMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlj1NvqqurA167IjfaFwic8KBjF3so+e6772RH1vuKEkcRaLzZkxvgf//7X/Tv3x9AY00VcejVIpzSJtwcReF5HwqOosPhcGtHMUeRjp1uR1+cfH+Peo6NjeUGmSQmJvJu/mpSz8J2p4Wi2WyG0+nEm2++ieeff54nckOBQPf1wtRzREQEIiMjubKxQCEUijU1NbqviCZGSE6P4wuzZ8+G1WrFrl278M0338BqtWL69Om47777eJ8bOHAgvvrqK2zZsgVVVVVISkrCoEGDkJWVhbS0NNl9TJw4EQMHDkR6errbez179sS6devQoUMH2W1s3ryZ15Hs37+fG7k8fPhw3smWnZ0Nq9WKL774ApWVlejQoQNefvll9O7d29PPoSvV1dVcfWigMIqjSMcuJhQPHDjg19VzyI3TbDa7jcIXCkWyqP2+ffu413/44QevhSJdt0Mfi1K0Ehh6ITzvQ8FRlFrXWQgdO92O3gg5gpLUsy/zKNJiUCgU1aSehe1OahSbNGmCu+66Cx9//DGKiorw73//G/fff7/q4zUyge7rhUIRaGyf+vp65iiKoKlQtNlsOHDgAEaOHKnlZn3m1VdfdXutT58+olPCWCwWTJ48GZMnT5bd5rhx47ye3sdisYiKRIKSScK3bNmieH/R0dGYNm0apk2bpvg7RkCPqSA81SgGSijSsUs5iv6E/A5iT/lSq7MQd5v+vjf4WqNo5NRzSUkJoqKiJAfUAe7nvVj8weYoKhWKdOz+cBS1HPVMjo8Wg/T2zWYzb2otT0JR2O7ECEhJScFf/vIXfPzxxwAaB7WEmlAMdF8vrFEEGgW/zWbT3VE0IpoOZikqKsKyZcu03CQjjKGXVQoURnEU6dhpodi9e3cAjYORhJ2MlpDfQZh2BqSFolZTPfhao6g29fx///d/6N27N6+O1x/k5eUhLS0NqampsitRCM/7UHAUxUShmHiUWkrNF6Ho73kUaUeRHvDYpEkTngDyVAdHx15XV8ddT1arFYMHD0ZGRgYA4Ntvv/U4VVuwEei+XlijCFxrH+YouqNKKBYVFcn+F4zLZTGMS0FBQcD3aRRHkY6dCMWoqCjeHJ8//PCD3/bvjaNId3q+OIpCEeVPR3Hjxo3461//iqNHj+L5559XtR+gcd3e//znP27pcjG+/PJL1NXVoaqqSnYtd+F5Hwo1ikodRTp2ozuKUqlngnDmC0+OIh07vQ5xSkoKTCYTb2WWn3/+WfXxGplA9/VSqWdAv+lxAr1vNahKPd93332yFrHL5QrZmeMZgcffU8CIYRRHkY6dCMWkpCQMGDAAq1evBtCYfr7rrrv8sn9vHEU69exLhycUEL7UKMq118GDB/HEE09w//79999V92EzZszAunXr0LdvXxw8eFD2u/RvQgsBIcLzPhSEolQ9otPp5M0QQcfuD6GYkJDA/e1LjSI94p9OPQsdRRpPQpGOna4/T0lJAQDeUqy+PIgZkUD39VKpZ0BfR9Go17UqoZiQkIA///nPkoMgzp8/j/nz52twWAyGe0cbCIziKNKx00Lx1ltv5V735wotSh1FusPVylEUftcXR1FKABQWFuKPf/wjb1+VlZUoKytTVVRP6pwPHTqEI0eO4MYbb5T8LL0v4WTKNMLzPhRSz1JzJlZXV/POJzp2rQezxMTE8NLNvjiK9O+v1FH0ND0OHTt9fhChSB9vsLW/JwLd18ulnuvq6gJiejmdztB0FLt06QKbzSY5EMPhcOjiAjFCEz2EIrlQLRYLr1aOCEWXywWHw+FWR6c1JHan08k5IklJSUhLS0O7du3wv//9DwcPHkR9fb3oWt4XL15E69atZefzlMPX1LMvHZ7wu2o7bk+Oot1ux7hx40TrBPPz81UJRbqj//e//y0rFOm4fBWKRnUepJASilVVVZJCUasaRXL9CCfE9qVGUTjZNsGX1DMdu5ijqNfqIYGAxF5dXY33338f3bt3x4ABA/y2P7HUs1DIe1o0w1fKy8vd9JJRr2tVd5ExY8ZwJ60YVqsVzz77rM8HxWAA7vPpBQIpgUSLsUC4iiT2iooKrjMhaS3SgVZXV+Po0aNu33311VeRlpaGESNGeLVvl8slm3qml6b0x6hnejvebM+TUHz55Zc5N7ZNmza8eU/z8/PVHCpPKG7btk32s0odReF5HwqOotRyj8LXSezCydy1EIrCkea+OIpiQgPwLfVMtzstFMmiCKEsFEnsr776Kp544glkZmb6tW5RrkYRCMzvKzYY0ajtqkooDho0CMOHD5d8PyEhAXfeeafPB8Vg6IWUQKKFYiDn5qNHPJOb0G233ca99t///tftO1u3bgUA5OTkKFqfXAgtrpQ6ijU1NbxOzpcOT8x9UnMj9zSY5T//+Q/399atW9G3b1/u32qEYm1tLS/OvLw8nDx5UvbzBDmhKCTUHEXayZMSkML4vL3mXC6XX4SiPxxFmnBzFAm//vorgMb49u7d67f9kPPRZDJxvyvdXoG4vkJWKDIYgaR58+YB36eUo0jf3ALhKJLYxYRi586dudfEBAc9HYg3zp7cqiyAuFAUuoC+OIpinaXSDtTlcilKPRP69u3LWx1JjVAUG+ks5yoqdRSF573Yb1lXVwen06nkMA0BLQjpZUOFDwUkduGN2tvzqbq6mlsnWph69mUwixKhKOcoigkRut3FahRDWSiS2OkHW3/OFUvPgUlKWgL9+4r1H0Z9AGRCkWFY9BjZp8RRDIRQJLGLCUXaGaFFodhr3jgxcus8A+JCUcv5wMRcUKXbs9vtvLofsfjJaxEREYiIiAiYUKRjKC0tlTyPhOc9/W+6NjaYRr7SgpAWilIj3GmxD3jvKEot3wf4P/Ws1lGkjyHcUs8kdj2EIsHTYCOtCStHcciQIarrehgMJUgVwPsTo9QoktjFhCLtWngSit6ICS2Eoi8ixhehKBQYco4iaVMtheLBgwdx4cIF0c8Lf5PLly+Lfk5uZRq67Y3qPoghJRSFsZJ/ayUUpSbbBow3mIX+LYhQTExM5L7n67yPRobETj84/Pzzz16VzihBTCh6cny1JqyEIhvlzAgljOIoEtQKRbomC/DuBqtF6lmvGkVhBy/WVuQ1IhQSEhK43/R///uf4uOkhSI9P98nn3wi+nnhbyI3lyINHTvtWBn1piKGVOrZ3zWKUpNtA9rVKNJio1u3bmjVqhUAYPDgwbzveFOjSA8eDWVHkUALQ6fTKVqDrQWkjzGao2jUhz+WemYYljZt2nj1vU8++QTPPfecqNsmR319PScihG5AoIUiiV2tUKRrsgD9HEVvO1qXyyUqHvzhKNKOEnEVL1y4oLj2jxaK9Nq7UulnYVtI1SkKz3v6e6HuKJLYhe3orYMm5yj6UqNIHx/dVzRp0gR5eXk4dOgQHn74Yd53PAkREntVVRV3DYSLUCSxCx1Etenn06dPyy6PCfDrmOkZHJijKA0TigzDcunSJdXfKS4uxvjx4/HSSy9h9uzZqr5L31SE7kOghSKJXUwoxsXFcfMj0o4J4C4c/eEo0k/hWqeea2treUJX7Jjk8FYotmvXjntPKiUshBaKgwYNQseOHQEA+/btUzTFj5RQFJ73Uo5iKAhF4UMBiT0QNYr0Na1V6hloXEHlpptucpv305PQI7GLDWRR8n0al8uFhx9+GK1atcKiRYsCmgXxBhK7L0Lxv//9L7p06YL09HScP39e8nN2u517GJRKPTNHkQ8TigzD4s2ozuPHj6OhoQEA8K9//UsytSUGLbLoGzIQeKFIYhcTiiaTibvpCYWhUDj6w1E0m83ck7jWqWepmiSl21OSshTWKALe1SnSQrFZs2a49957ATQuPPDZZ5+5fV4Yg5RQFJ73oZx6FjqKJHZ/CEXhw5/JZOIeFrRKPcvhaWUVErvYQBZAnZDZunUr3nvvPVy+fBkvvPACbr75ZuTm5io6Tj1wOp2i2YTvv/9e9MFRjP3798PlcqG+vl52ah2x5fsANj2OHEwoMgyLNzPj0zVmVVVV+PjjjxV/10iOIoldTCgC145PKBS1cBQ9CUXgWvpZa0dRSigq3Z4SR1FYowj4LhSTkpI4oQgA27dvd/u8UkdReN6HcupZKAyk1tv1x2AW4Nr57cuoZ6X9lNls5s45MUFAtiM2hyKgXCja7Xa3hS9yc3PRr18/zJ8/35DTKsXGxnJrf9NUVFQgLy9P0Tboa53+DYWILd8HGGN6HCYUGQyV0LVwShEORnjnnXcUf5cWZXoLRRK7r0LRH/Mo0senxlF0uVw4c+YM5/iKIeUAe+soqq1RBLx3FPv378+lG8VGPit1FIXnfSg5ilFRUbxrS9jeJHatahTlHEXgmlDUah5FT5DrSUzkk9ilhKLSUdpvvPEGzpw5A6BxntDu3bsDABoaGrBgwQK89957io83UMTHx0te+0rTz3S/Ile2JDW1kREcRaM+/DGhyDAsSmvFaIRCcf/+/Vyn6QkjpZ5J7J6Eot1u5wkGIzuKTz/9NDp16oQHHnhAct+0o+jNE75QYIitP++v1LPZbJYVAkodReF5H0qOYnx8PE8IC1PPJPZA1CgC2jiKatakJ+eH2PlMYpeqUfTkSAKN1//ChQu5f69duxaHDh3CjBkzuNdOnTql+HgDxeXLl3nXPqn3BcAtt+kJbxxFI9QoBnq0tTf4LBQnTpwoegEyGHogNr3Ju+++q+i7SlPPWi3h98svv+DcuXOynyFCMSoqiteR0cdH3wy1qFFU4yjW1dWhoaFB0ajnHTt2AAA+/vhjyXVc6ZtFy5YtZbcnhph4om8gpIYJ8N1RpEV8s2bNAMgLAaWOohC6Dem+NhiFYlxcnORa4TSBSj1rUaPojaModz5LOYpKvv/yyy9z6yY/8MAD6Nu3L6KjozFp0iTuM2rqtgMJfe0PGjSIE/FKHUWlQtEINYoul4vrM+lSDKNe0z4Lxccff1zU0mcwfIXcfNVAhGJkZCQ3Mvjdd99VVJcjl3rWegm/r7/+Gj179kTnzp1F05QkdnJMSUlJvFGUUlPkBNpRBBo7XiVL+NFP8kQ0CvFVKAqdKID/G9AOI92maWlp3N9K51IkjmJMTIzberGeVt4ApOdRFJ739NyeweA+iEHEiSdHkcQeiMEsgLyjWF1djY8//hgTJkxAUlISbr31Vu44vBWKcucHiV1qMAsgLxQvXLiAVatWAWg8t5csWcK9JzallZFo1qwZ79pPTk5Gv379AABnzpxR9FAVTDWK1dXV3LlE9z1Gvab9mnp2uVzIz89X/OTMYNCoFWQul4u7yaenp2PEiBEAGm/8ShaYD2Tq+euvvwbQWFfz/fffu71P9kELRRqpZfy0qFGkv+PJUQQaxZ0SR5G+uYqNCibbIrRo0UL0mOQQE4p0e9GCgxaKMTEx3ETJalPPtLCTSz0Lf5PLly+LPsAIzy96taBA11FpgcvlUuwoktj9UaOoNPVst9vxxBNPoGXLlhg/fjy2bNmC8vJy/PDDD/jmm2/cjk+r1DOJnYgck8nEe1jy9P2FCxdyr0+fPh3p6ence0YXivX19bxrPyEhAbfddhv3byWuopY1iv4WbHR/2bx5c+7+EtJCcd++fViyZAmvoS9duoSsrCz86U9/woQJEzB//nzFw9wZDEB9h1ZWVsZ9p127dpg8eTL33saNGz1+P5CjnulrRWwlksrKSjidTu5GJ3SZpBxFYerZ13kUlTiKly9fdruRO51Ot0ErtLDJyckRFXV0m9NCUavUM/170G0KXEs/FxQUyA64IcgJReHxulwut9/I4XCIzrcotf5xdHR0UE66XFtbywniuLg4WCwW7rwSnvskdn+knunVcwj0YBbiNO/ZswdvvPGG6PlJSkW0SD0La2dJ7EQotmjRwu0clROKe/bs4Y7nueee471ndKFYWVnJOy5vhCJ9ndtsNsklYJXUKPr7IYyub46Pj5d9wDQCmgjFTz/9FKdOneJdiK+99hrOnTuHPn36oGPHjvj666+xc+dOLXbHYIhCpwzbtWuH0aNHczfxrVu3elypJZCjnmlBJ9WhVVRUcDcToaOoNPXsj3kUAX7KRmpyW/pm5nK5eP+ura1FTk6O23f8kXqm24v+m3YUgWtC0el0epzs3W63c/uihaJUarGhoUF0uVMl2ZZgdxTp85sIFuFgKCFap56JQBUiVlJCr+wxcuRI/O1vf+P+Tc51X4UiIB6Ty+XizglhfSIgnyonv7PVakXz5s157ympC9UbXx1FYb8sdW0pqVEMpKOYmJgoW5JgBDQRiufOnUPXrl25f1dXV+P777/HH/7wB6xatQpvvPEGrrvuOiYUGapITU1V9XmhUIyOjsbEiRMBNHbsYnPb0QQy9UwLRTFxk5qaKjniGZAezBKIlVkAvkMhVdNH38zEOkCx9LO/B7NIpZ4BdQNahCOeCeT3cjgcvP1KHb/YzUx43ks5isEoFIlgEU7YTiCxayUUyfUgNeBSbL1n+hp65JFHcN9993H/JkLR19Qz4N5+qampKC8v545DWJ9If1/MkSTHJCZco6OjERERAUD6wVRPUlNT3YRiy5Yt0alTJwDA4cOHPdaZC/tlqYc9JTWK/r62aKHYrl07RYOc9EQToVhRUcF7gvn555/hcDgwbNgwAIDFYkHfvn09rsHIYNBIFftLIRSKAHiTIP/444+y3zdS6rm4uFixUJRLPfvLUaSFohJHUWoUtLDzlxKKvtQo0iJDSeoZ8F0oAvyYpY5fTCgKz3spR9GoNxUhtBgkN2Zy/gjPfRK71jWKaoSiMLNw3XXXcf/W0lEUtl9xcbHsiGf6+3KlHWLHYzKZPLq4elJcXMy79smxXn/99QAafytP9wPh7yE1oMUI0+PQQjEyMjI8Us9xcXG8G9SRI0dgNpvRq1cv7jWLxRI0HRvDGCipE6MRE4p9+vThXvO0hBW5QZjNZrdJjwOdem5oaJAVikoHs/g66lkrR1GsAywsLMRPP/3Ee01qMItWjqKS1DPgvVCUEnJqHEXheR+KqWciGKuqqnjOGIldixpFp9PJnU9SM3PQQpHsQ/jA2LRpU+76EwrFyMhIzqlTgpwYaWhoUCwUhd+vr6/nfjsph9PIQrGhocHNUQSu9eOA9AMpQdgvSwlFI0yPQwvFhISE8Eg9t2vXDt999x3Ky8ths9mQk5ODLl268GoWCwsLvZruhBG+SIkUKcSEYvPmzbm/c3NzZdMX5AaRmJjIm4oGCLxQjImJ8cpR1HplFiWOIv27078bvR2646V/S2H62Veh6O2oZ4AvFD1NkaPEUaRjptuBFgBiQpHeBu0cBetgFjlH0eVy8X4nEp8WqefKykpOhHrrKJLrrn379gAap6BxOBzc8alJOwPyQjEmJkZysm1P31ficBpZKMbExIgKRdrN9XRNapl6DqSj2KpVK9mSAiOgiVAcO3YsSkpKMHbsWIwfPx6lpaUYM2YM7zN5eXlcvQGDoQS1E7nTHQk9N1Xv3r0BNIoQuQmuaaEoJNCp56ZNm2qSeg7EPIr0kz5dVyXlKGZmZnJ/C4UifRPzd42iMPVMuxdap57pv+n9iKXT6PNe2Bah4ihKjcIlsSsRiqtWrcKQIUNw6NAh0f16mhoHEF8WT6wEhQiWhoYGFBQUyKZ55aCFifBabdq0qdeOolqhaDQx0rRpU7dRzwBE0/5SKHUUjbCEHy0U09LSePv2tszCn2giFIcMGYK//vWvSE9PR9u2bfH444/jzjvv5N7Pzc1FVVUVbr75Zi12xwgT1NYokpt7q1ateBceEYpAY1mEGC6XS7FQ1GJlFk+OopoaRbnBLP5emQXgu2L0QAypG1mHDh3Qt29fAI19Ay3whZPuErSaR1Eu9dy6dWtuknatU8/08dNC0VONolAohtpgFuH7JHZhbML2r6ysxJw5c7Bv3z4sWrRIdL+eJtsGPA9mIdcdLVjOnTvHHZ9aR5HM1Qm492/CGkW5wSyAeqFIfnOHw6HZ6lJaIaxR9EYo+lqjaLFYuOvf344i3X+4XC7DZwo0m3B7zJgxePPNN/Hmm2+6reXau3dv7Ny5E/fcc49Wu2MweDQ0NHCDpegbMcAXilJ1irW1tVznKRRlgLYrs7hcLo+OIiC9zjMg7ijW19drUtul1lGkUSIUY2Njcffdd3P/pldpIb9LfHy8VwM31AxmEQpFi8XCHb8/HcXU1FTuhuRpehyhaA+1wSzC9wmeHEWbzcYJg99++010v56W7wPEaxTFls0UCha5EcZyeCo78OQoiglbgH99eapRBIyZfhYbzBLIGkWTycS1ZyAdxaSkJMM/APp1ZRYGwxfEBJsUBQUFXP0hXWsGKBOKciOeAW1Tz3V1dbxtiAnFpKQkWaFI1/+SYxemssi+vDk+ghJHkYYWilLT48TExPCE4hdffMH9TW4WCQkJXj1l+zI9DnDt3CkuLpb97XypUWzSpAmXVhcTC3Rbh2rqWcpRJLF7Eor0+XD+/HnRVKqS1LOco0i3g1Aoept6pl1CoZBJSkryOvVM/16eUs+A8YRiUlISd+2bzWZOwLVu3Zrre9UKRbU1ioCytbi1gAjFyMhItG7d2vAPgEwoMmC327Fs2TKMGzcOI0eOxBNPPIFff/1V78NStZKP2EAWQvv27TnxZwShKBR0YkLR4XDICsWIiAiu4yfHLjaheCBWZqFp3bq16HaEjmLv3r25zvHkyZPce7RQ9CYVpGYwi7BGEeA/ZIitwU3wJfUcHR3NCYbi4mI3kUOf93KpZyPeUMQQSz1LiRYSuydnXHhuXb582W2/nq5pQLxGkVx39HdooXjq1CnuoVRt6pkWisKHBIfDwb1msVjcJs0GtKlRBIwnFB0OBy+bQAbFmc1m7pr0NJhFmHouKioSHbwoNwdmoB3F5s2bw+l0MkeRYXwcDgdSUlLw+uuvY+fOnRg/fjzmzZsnetMNJHQqwhNyQtFkMnGu4oULF1BSUuL2fTlRBmgrFIVxiQlFm83m8ZjIjUxroeht6rlJkya8m6tUaiw2NhYmkwkdOnQAAJw9exYOhwMul4u7gZGbhdxKFGL4Mj0OoHyKHF9SzzExMZxgsNvtvHYG+OeHsC3MZjN33Ea8oYhBixIxR5F+32azweVyic6jSAtqoUgWG6TmjaNIL5tJX3Nk1DMAnDhxgvvbF0dRKBRtNhvnKLZq1Yp7SKIJVaFos9l4D4k0RKSXlZWJZk0Iwn5ZaolMcm7R/Qsh0I5i8+bNYbPZmKPIMD6xsbHIysqC1WqF2WzGsGHDYLFYPNZpGQk5oQjw089Hjx51e99ojiLgWbyS4yTb0yr17K2jmJycrOpGRmZBsNvtuHDhAmprazlHidws1HbcvkyPAyifIseX1DPtKALydYpiot3ok/MK8eQoCs9/u90u6gTRjpHwfBBLS6odzGK327k11oXfSU5O5tyn48ePc69rKRQdDgc3wEUs7QwoE4rBWqNIjklKKALy6Wexflks/UzOtyZNmrhNgxaI+Qzr6+u5WIlrbPRMgfvil0HAe++9hw0bNiA9PR3vvvuuou+cPHkS77zzDn755RfY7Xakpqbi7rvvxrhx47jPHD9+HLt378aRI0dQWFiIpk2bolu3bnj00Ufd6t6OHDmCmTNniu5r7dq16Natm/cBeqC6uhoffvgh8vLycPz4cdhsNsybN4830pxgt9vx1ltv4csvv4TNZkPHjh3x6KOPol+/fpLbz8/Ph81mQ5s2bfwWgxLoNKYn1AjFI0eOcKsGEQIpFJU4iq1bt+aEojDlKDzOqqoqNDQ0aO4oRkZGiroagHttD9DY6SkptiedcceOHbnXzpw5w7vpeisUxcST0pVZAOVT5BChSA94AJRNuE07ikCjYLjhhhu4f9PnvZhQjI2NRUVFhSFvKGKoGczSunVryTXZ7XY712ZKhKLawSx1dXWS/YDJZMJ1112H48eP8wSo2tRzXFwc4uLiUFVV5SYUIyIiuAclqb7PlxpFqbpQI5CSkiIpFIUDWnr06CG6DbF+ubCwED179uS9Rn4rsT6MfghzuVxuQlIL6IfM5s2bo3Xr1oZPPQedUCwuLsamTZtUPckdPHgQ8+bNQ+fOnfHwww8jNjYWFy9edKtr+eCDD/DLL79g6NCh6NixI0pLS7Ft2zY8+uijWLt2LZcqoxk7dixvnWsAfhdY5eXl2LhxI6xWKzp16iQ55QsALF26FF9//TXGjx+PtLQ07Nq1C3PmzMHq1avdLiCgsbNcvHgxJk2aJFmHFihKSkp400nIoUYoitUpBjL1rMRRLCkp4Y5JalCPcIocsRusL4NZ5CY8j4qKQlRUFE94NW/e3CtHEWgUirRz4I1QdDqdAU89N2vWjHczUbKEX3R0tOw0KfR5LyUUAWPeUMRQM5ilpKREckUmu93OfU94XnubehbWKMr1A0Qo0qh1FIFGUXTmzBk3oXjs2DHub3oeWBo1D2JCjOwo/u9//+OcXOF9R6mjKHbeiI18lpssnVy/LpcL9fX1on2Er9Ajnps3b46SkhLDp541EYpFRUWIj48XVeiE6upq2Gw20bmh1LBmzRpkZGTA6XRKPnnSVFVV4aWXXkL//v2xaNEiSYcEAO677z688MILPFHwhz/8AZMnT8Y///lPPP/8827f6dWrF4YMGaL4+G02Gw4fPozBgweLvp+Tk4MBAwbIdkDJycnYtm0bkpOTceLECUyZMkX0c3l5edizZw+mTp3KTVk0YsQIZGVlYe3atVi7di3v8w0NDXjhhRfQpk0bZGVlKY7JX6gRZEQoRkVFiYrLjIwMREZGor6+XlQo6pl6ttvtaGhogMVy7XKsr69XJRTLy8tFU8++DGaRSjsT4uPjeZ1ecnKy147i6dOneS43EYpqahSlOlg1qWf6IUMu9UzaRrjalJQz4MlRlDpeudSzEW8oYqgZzCI2xRNBahQ9oE3qWc5RBPiCheCNULRarThz5gyuXr2Kuro67hjoBxMpsyGQqefa2lrVq2N5Cy3QtUw9iwlFOvUsRDirQCCEYn19veFTz5rUKE6YMAEff/yx7Gc+/vhjTJgwwaf95ObmYt++fZgxY4bi7+Tk5ODKlSt47LHHYDabUVNTI7mMW48ePdzSUW3btkX79u1lT9Dq6mrF6xJv27YN8+fPx/79+93e27FjBxYuXIjdu3fLbiMqKoo3GbEU+/btQ0REBEaPHs29Fh0djVGjRuHYsWO8G5TT6cTixYthMpmQnZ3tF8tdLZ6ECg25qbdt21b0YSAqKgoZGRkAGovRhTcjPVPPgLurGBkZKVpUTyNc71lrR1GJUKSRcxTFJvEWpp7FJtxVI4qkBIYaodiyZUtun1LXPF1jJBSKakc9A+5CUUpsB6uj6GkwC33uR0dHSw6io9tOyWAWb1LPnhxFIWpTzwC/TpF2k+lBdlKOYiCmx2loaMDkyZORkJCAl19+WfJzWkK3rZxQlHt4U1KjSA+Ukks9A/4TbEKhGAwT6WsiFF0ul8clgXxdMsjhcGD16tUYNWoU7wbjiUOHDiEuLg4lJSWYNGkSRowYgTvvvBMrVqxQdBN1uVy4evWq5BPp0qVLMXLkSNxxxx2YOXMmb0ScGBMnTkT//v2xcOFC/PTTT9zr+/btw4oVKzB8+HC35Q+95dSpU0hLS3O7IEiq/PTp09xry5cvR2lpKRYsWMBztvRE6TyKtEgSSzsT+vTpA6DxXKLTPIC+qWfAXSiazWbumlHqKGo9PY4nN0FMKKpxFK+77jruXDt9+rSooCDHIBz1KoaUwJBKPYvVKJpMJu4ckpqfjz5X5BxFNTWKNHLzKALXfr/6+npVU0jpBTm3TSYT9/tIiZakpCTJG6WcUBRrK7Wjnu12e8AcRQLd9rSA8MVR9EUoOp1OPPbYY9i4cSMaGhrwxhtvSIWhmN9++w2rV6+WHbRFP9wLhSJdDuKro0j3I0ocRX8gFIpJSUmGTz0HbNTz5cuXvXr6Inz66acoKirCo48+qup7ZBH37Oxs3HzzzVi0aBHuuusufPrpp1i2bJnH73/11Ve4fPky/vCHP/Bet1gsGDx4MJ588km89NJL+POf/4zff/8d06dPl1wpgHxv/vz5yMjIQHZ2NvLy8vDTTz9h0aJFuOWWW/Dss89q5uaVlpaKOo/kNfIEW1hYiB07duD48eMYPXo0RowYgREjRoiODg4knlatINApGzmhKFen6MlRpN0nX5e/UuIo0iJeaY2i1hNue3IUhQ8gakc9WywW7ubryVGkj0sKqfSb0pVZCOSYqqqqeJ06QWrEs/B4vR31TP9bzIk1eppKCBElcXFxXN8mNT1OUVGRV46icDopgC8UheKDIKxRFFu+j0BPkUPQUiieOXOG+1uto6iFUHS5XHjmmWewceNG7jX6XPeWe++9F0899RSmT58u+RnaKRS2VXR0NDcKXEmNotyk5nJzKAKBdxSbNWuGoqIiwzuKXltH9MkESK+h63Q6UVxcjD179nCpP7WUl5fj7bffxkMPPaRqtQ6g8Uevra3FPffcw41SHjx4MOrr67F9+3Y88sgjbiOaCefPn8eqVavQrVs3jBw5kvdejx49eKOvbr/9dgwZMgSTJ0/G+vXrsXz5csljio6OxtKlSzFz5kzMmTMH9fX16Nq1q+ZuXl1dnahrQjpHcvNKSUkRTYXLkZOTg5ycHEMURXsayEKQW/NZzxpFwF0o0p8JtKOoZDAL4Dn1rKTYvlOnTjhz5gwqKyt5N0phjSLZntwx0TeBpk2bcv9Wk3oG3GuihA9bckJRaeqZrMwCqJ8eR+h6yNWGGwFybtPni9z0OEqEothDw7lz53jtQa6HhIQEydp0udSzEkfR19Qz3fZ0mtQfNYqeRj0vXboUK1eu5L1WUVHhNvrX5XJhzZo1qKysxKxZs2TvWbW1tcjLywMA2UUc6OMRE/XXXXcdCgsLcenSJV5dJw25zpOSklBVVYXKykq31LPU8n0EfziKFRUV+Pvf/442bdrgz3/+s5ujKNyvER/+vFYl77zzDve3yWRCbm6u5KoXANCiRQs88cQTXu1rw4YNSEhIwNixY1V/l5xQwulQMjMzsX37dhw7dkxUKJaWlmLu3LmIi4vDokWLEBER4XFfaWlpuP3227F//344HA7Z78TFxWHatGl46qmnAAAzZsxQVZOnhOjoaFFRQzpcX/aXmZmJzMxMnDx5Eo899pjX25FDKt0vRKlQ7NWrF/e38Fw1WuqZTil6IxQTEhJgs9lUO4pOp5OLT22NonAwixLHgy4jodtEzFGsra2VPSfofSQmJnJugpqVWQD3mqgbb7yR975SR1Eu9RwZGYnmzZvjypUrbkJRatJy4WAW4XaNCjm3aaEi5W4lJiZKCkW5wSxAo6gn5SXAtetMKu0MuAtF+hwSXndkOTn6fNLSUST1ivHx8YpS5VrWKG7duhXPPfcc9+/ExESUl5fD6XSiqqqK991vv/2Wcwevu+463H///aL7A8CbWURuSh563IDYbBvXXXcd/vvf/wJozCDRMyYQSLuQZfFOnTol6ygGqkZxzZo1WLx4MQDgzTff5A22bN68ORITEw1/TXstFFevXg2g8eniqaeewp133unmugGNtQdNmzZFu3btZEccS5Gfn4/PPvsMM2bM4BX7kpGily5dQlxcnOSFlZycjLNnz7oth0Q6eLE0YGVlJebMmYPKykq89tpraNGiheLjbdWqFerr61FbWyv7pF9QUIBFixahXbt2sNvteP755/H666+r2pcnkpOTRZe2IrPVa7kvf6C0rpUWilLuMNDY8bdv3x7nzp3D0aNH4XQ6uXOSiCzhvHiEQA9m8SRcAffBLLQAbdmyJWw2m2pHUcmqLAStHEUC7fJKCUU56JsALbbUTI8DuM/bJsQboSj2u1qtVk4o0q4Nfd4rcRSNDp16Jki5Wy6XixcTmXMQkE89A+4DWsg1LfdwITbhNkH4PbKc3O+//8695u30OAQiFF0uF+d+tWnTRrL8SO31RSMnFN9++23u76VLl+LgwYPYtm0bgMbfkf4uveSmsNZbCH3/kcs+iZWd0Agf3uSEosViQbNmzXDq1CmUl5ejpqaG+008pZ79cW3Rv9Hhw4d57zVv3hwul8vwqWevaxR79+6N3r17o0+fPsjKysLIkSO51+j/evbsifbt23slEoHGOjqn04nVq1djwoQJ3H95eXnIz8/HhAkT3NLgNNdffz0AuAkmIjqFN+G6ujo8++yzyM/Px7Jly0TrUuQoKChAVFSUbAdSUlKCp59+GhaLBStXrsSKFStQW1uLWbNmyS5RpJZOnTrhwoULbiKEpALELjYjofS3UOooAtfSz1VVVbxUp6ebSqAdRfpJWK2jGBsby3Xsah1FsZo4KTwNZvE06hlwnyJHuG2thaI3qWchSlPPctPjANecpZqaGl770+eHJ6FoRPeBxuFwcDHQ50tkZCT3+9MCoqKigteO9LnvSSjSbeVwOLjfVM5RVFOjCLinn7VKPZeXl3PHK1WfCPivRpG+Pz7zzDNufQsN/W+x6WdoaHNHzlGkP+dJKErVKZIaxcjISFExDuhToyj3GzVv3hwVFRWGv6Y1GcwyefJkXv2XlqSnp2PJkiVu/6Wnp8NqtWLJkiUYNWoUgMYf+Pz58zw3ZujQoQCAzz//nLfdzz//HBEREbxUhcPhwPz583Hs2DEsWLAA3bt3lzwuYeE00HijO3DgAPr16ycpjG02G2bPno2amhqsXLkSrVq1Qtu2bbF8+XJcvnwZc+fO1eyJYsiQIXA4HNi+fTv3mt1ux86dO5GRkeHznJZGQamjCIBXJ0sLRU9zFkZERHBP+YFwFNXWKNITbjdt2pS7AQbSURQOZlHieNBCkXbSpGoU5RCmngneDmYB/O8oEoSTbst9z+juA43YHIrCf8vVKHorFOlrTE3qWa5GEXAXilqlni9evMi9Jrdgg1Y1ikKhSM7pxMRERERE8H4z4YMt/Rt5GnBIC1C73S7Zd3qqUfTk8pO14gF3oUjXKaqpUdRKsJH9R0dHIzs7mytJa9myJXeOGf2a1mTkxC+//IJ9+/bhgQceEB1lW1JSgg8//BBDhw5VvbRdUlISBg4c6Pb6Rx99BAC8944fP46ZM2ciKysLjzzyCACgS5cuuOuuu7Bz5044HA707t0bubm52Lt3Lx588EFe+vX111/HgQMHcNttt8Fms+HLL7/k7XP48OHc3y+++CKio6PRvXt3NGvWDOfOncNnn32GmJgYPP7445LxbNu2DcXFxXj11Vd5oqZz585YtmwZZs2ahd27d+Pee++V/V22bt2KyspKLo184MAB7mYzduxYxMfHIyMjA0OHDsX69etRVlaGNm3aYPfu3SgsLMTcuXNlt28EpNY7FUKEYvPmzT2uJiMmAlwuF9cZyqWpIiMjZTs7pfi7RjExMZG7ATqdTrfJvOWghYk3jqKUi0ZeN5lMPIEmttoR4Hvqmb7RqZkeB2i8UZvNZjidTs2EopijKBT6BPq8D/bUs9iUR/S/r169yvtMSkqKZJ0g/VtIDWYheBqcRpCbcFtMYAozTN4Ixfj4eDRp0gTV1dWc23ThwgXufW8cRSU1ihaLBTExMaitrXXrb8g5TUq0lDqKaoQi0NjPifVnYg+JNJ4e3oTXNb0EIu3oqalR1OraIvtv3bo1lixZgj/+8Y/YtGkT7rnnHpjNZqSkpPCufyM6ipoIxc2bN+PMmTOSw99btGiB7777DpcvX8aCBQu02KUqZs+eDavVil27duGbb76B1WrF9OnTcd999/E+R1Jf3333Hb777ju37dBCceDAgfjqq6+wZcsW7uQfNGgQsrKyZC/0iRMnYuDAgUhPT3d7r2fPnli3bp3kzZNm8+bNvAtg//793Mjl4cOHc51ydnY2rFYrvvjiC1RWVqJDhw54+eWX/eYAa8mVK1d4o0OlIAJZydrQYh1OZWUlV0ytRig6nU788MMP6Nixoyp3VolQpDtgJUKxrKyMJ3aF0/koFYp0J6XGUYyPj0dUVBSvwxcTirGxsbz6q9jYWLRp04bnqADeCUUpR1Ft6jkyMhKpqam4cOGC6AS/WkyPA/BviLQDRp/3wT6YRa2jeOXKFckSAjWOopI5FAH3GkXiliUkJIgORtQi9Qw0uopnz571i6Mo94AXFxeH2tpanjh3uVxuKw3JCUVvHUVAWij6mnqmr3GLxcJ72JISioFIPdvtds7MIfenm266CTfddBP3mStXrhg+9ayJUDxx4gQvcDF69eqFQ4cOabE7AMCrr77q9lqfPn1Ep3mxWCyYPHkyJk+erHqbUowbNw7jxo1T/Hn6WMREIkHpZOJbtmxR9Lno6GhMmzYN06ZNU/R5I6EkbUov+aVk6iSxDsdTXRKBOFCkU1qzZg1mzJjBLcmldJoSJalnWowoGcxSUFDAibSmTZvy3LK6ujrFNzRvHUXiRAhrvgi0UBTSqVMnTYSiVjWKQON5cuHCBVy+fBnV1dW8309OKEZGRiIiIgIOh0PSUfQkFKWmgQl2R1F4fZDzp7KykhvMY7fbVaee27Zti/z8fFy5cgU2mw0JCQmKlu8DpB1Fqe9okXoGrgnFK1euoL6+XrGj6GlWgZiYGNnxAPHx8SgtLeW1i81m4zIY5HwWDpSjEdYoCqfPoREKRakBLXR7iWWFEhMTuZHYYg9v9MpoWqWetbi2aJEqZWTY7XbDp541qVEsKyvzOIK2efPmmkzeyQgfpFKDNEqdAwKd7icdjqe6JOHxEOGxc+dOAI1P1VLziAqh09w0QqFICwcpoUiP0KY7TzFHUSneOopEKJpMJu57Uo6iEOHDkclk4jpxqRujGGodRbnzS27ZMDmhCIgvO6jGUaSPS6w9jO4+0NDntVjqGWh05kkckZGRkqlnKaFIBiwC4g9/agazeKpV1tJRJBQXF3vlKNLnFBHXnoQrLc4JwgmgAemyCIDfX9bV1ckOOhRzFMWgHw6kJkcndYr5+fluy/AKU89GcRTpfUuVUkVGRhr+mtZEKMbHx0sWYxOKioq8fvpihCdK1rNWWotEiIuL4x5qxG4qctsgNxXSKdHTRMitxkNTXV3NdXJ0R6W0oF8IOV5avNA1ioC6kc/eDmah24p8T2zeOylHkSYuLo5zRdSszKIkZalkehxAPtVFfuvIyEjZm41Y6jkyMpKLTUoo0r+lmMNrdPeBRknqmf5ccnIyrx1pIS41j6KYUPQm9VxZWcn9nlL9QFpamlvphDcIR+UqdRQjIyO5/St9EKMh12xVVRXXD4k9+CitUSTHL4VSR5FuWymhSK5Ju93uNpJYqxpFrR1F2s2UchTlVrQyCpoIxYyMDOzfv1/yhCkqKsI333wjO4qYwRDiaeoFQL2jCFzrcC5evIj6+nrVqWe73Y66ujpe8TwtGuWgBQHdcQiFIqnZES4YL0TshkaPeibHqxRfU8/096RSY0KEjiLdgWs9mEVp6llulCW5sTZr1kw05UZuNmKpZzoeKaFIn/ehlHqWchTpzxUWFioS/PTvcsMNN3B/k2vSm8EstNkh5+KnpqZy//Yl9UwoKiriHMXIyEjZumx6vWxfhCJw7XpRKxSFM37I9dNKHUWyTbPZLBmD3MMbnXq2WCxo2bIl90BmdEexsLAQUVFRXF9ixGtaE6F43333oa6uDn/5y1+we/du7iZXUlKCXbt2Ydq0abDb7ZgwYYIWu2MwOJTWItGQDsfpdOLixYtepZ7PnDnDS38odRTp46WFonA1CiWjsKXe98VR9DX1TH+P7Nflcsk6iloJxUCnnsXSzvQxi6We6d9USijShMNgFuHn1NYoijmKtPiRe4C0WCzcDZoWinLXXefOnQE0toe3yycKhSJxFFu3bu1xzmE5oegpFS62dCL9W5HrWG56HH84iuT1hIQEyXpHOaEodBQjIiI4wa1njaISRxGQfgAwCpoMZunduzf+8pe/YM2aNVi2bBmAxsBJcb3JZMKMGTOCYqQtwzgocQiV1iLR0G7R//73P8XuAy0UhcLQG0eRfsKUmkdRSozIHW+gHMUbb7wR7dq1w4ULF3jTOQk7PLrjUyIU6ZjU1ChqtTILIH1Tamho4NpQynUSSz2rcRTp8ziUHEWpwSz055o2baqqRjEyMpI3S8S5c+fQ0NDAW4RBbtEEMl1TXV2dogFkQOPUaBUVFZg0aZKiOmoxaKF47tw5bmSsXNqZILy+XC6X4hpF4VyKVqtVlaPodDoVC8X6+nq3cQmeahSl0s6AOqEINPavRUVFKCoq4lbhCvQSfkqEIrneY2JiUFNTY8hrWhOhCADjx4/HjTfeiE8//RQnTpxAZWUl4uPj0bVrV9xzzz2KpnxhMGiknixpfEk9A40djjejnoVC8fTp0x7X9xYer1Tq2eFw+CQUA+UoxsTE4OTJkygrK+OJXqGj6GnViKSkJCQnJ3M3S1pAqKlRVDvhtlJHkb4p0eeKVNvQqWcyIlSNo0if98G+MouSwSz050wmE3czN5lMkqKZxB0dHY22bdtyxsT58+fx/vvvcw9uAwcO9DgjR3R0tNu5JffAOGTIEPz000+y2/QELRTpgXByA1kIwsFi9LGrST0Tca5GKJIR6jRSQpFczzRSQpEci9w8uMIHfBrh9DhAY/969OhR1NfX48qVK2jRokXAl/BTknom13vIO4qEjh074umnn9Zyk4wwRrjGqNRnCGpTz0CjCJBb35WGFopCB7G+vh7nz5/3+EBEC0V6cXi6A6VT4Z6Eopg49mXUs5rBLEBj5ybsAIUdnpLlxTp16sTdWGhx6K8aRYvFIpvii4uL48QrLRQ9jXimj9nlcqG+vh5RUVE8YUOQEor0eU+3Bzn/QnEwC7kGy8vLee6YcJ5DAu3QkrrBixcv4syZM7y5epcsWeLxgVPsPFcy1ZYv0EKRFp3eOIpKri+CUqFIBpQ5nU5enyW2IplUjaIw7Uzvk8blcvFSz1IorVEk1wktui9cuKBIKPrLUTSZTLz+noZc72K1zUZBkxpFBkMvvHEUhQMV1KaenU4nTpw44fa+kvSzcNob0lnRN1QlYkTueJs2barJqGdPqWcphKvCKLmR0elnugPXukaR/K0kZUjOk4sXL3I3IjVCkT5m8rsqST3T0E4kETzBmnpWMpgF4NfbST3wCH9PIiJoYT9y5EjRVb2EiAlFpQ+d3kILRaVT4xBIzGKOvZoaRfKbi02PQ7u5dP8oTDsD0o4iPYk2QcxRrK6u5lxKOaFID/IRClax1DNdckAGOek1j2LLli09LnogVrJiFLwSigsXLsS+ffu83qmv32eEB0pWO/FlMAvgXqOoJPUMAMeOHXN7X8mAFvp4ExISJFenINCDRMSQSj0HYh5FKYRCyVONIsCfIoe+IXjjKJLCcFIGIOYoytUnEsh54nA4UFBQAECZUBTebBwOByc0lTiK9HkvlrIO5cEsVquV5yhKncfCmk+xOsTFixcrOkaxc8HfQjEhIUH0WlDjKNbV1fHqEwHtHEXg2m9A949ijqKUUFTqKNLnvpxQjIiI4B6WhH2aUqEYyBpFl8vFW75PCnK9h5yjuGfPHpw9e9brnfr6fUZ4INYpCfFmMEtycjL3NHn+/HnVo57p/dIdr1pHsWnTpqJC0VdHUat5FL11FIV1hUqWF6MdRfrGrSYO4TKBwnkvAe+EIiA+mlapoyj1m8bGxnLpb/q8EE5oDPB/h2B1FJUMZikrK+Nu5k2aNJFsf6FQFE6EPW7cOI+1iQQ9Us8mk0n0QViNowi4X19qhKLcqGfgWn9KP9yKOYpqUs9ijqJSoUhf03JCkTh3ckLRbDaL9gFaCkWy6g4gXZ8IXLveyb4bGhp4qXQj4HWN4qlTp7B7924tj4XB4KFE4HiTejaZTLjuuutw/Phx/O9//xPtHMUQS1eOGDECW7duBaDeUfSXUPRl1LMWjqJwpLKSG1n//v25migy/QjgnaNI9kFW+RAbzKIk9SwUigMHDvRZKNK/jclkQkJCAsrLy3k3S6lBG4RQGcwi5ijSwkcu9Sz8XWhRYDabsXDhQsXHqEfqGWh0kui5WAF1jiLgfn15Sj2L1YWSc1o4eIj8BrW1tbDb7YiKipJ0FMWW8fPGUfRUk05GqAv7NLEaRbnUc5MmTURrV+lzwdeHMKVT44iVpdTW1nr8LQKJ10Lx22+/xYEDB1R/TzhiisGQwlNNB+DdYBagsf7s+PHjqKmpwenTpwE0dqJyAkLsCfS2227D3r17ceXKFZ9Sz2TFFrPZrEooSg1mCcTKLFJ443h06dIFu3fvRkFBAYYNGya6LaVCkdwshUsu0n8rcRTFJt32JvVMH7fQURUTivR5L3YTCZXBLFI1ikQESAnFhoYGbm1i8lvQcyn+6U9/QteuXRUfox6OIiBeWkNP5i2F8JrQKvWclJTEG+AlHPncsmVLUUeRLOMn7H+1dhQB99WxCGKp59atWyMyMhL19fVujqKUoCZlK8KSGaAxTjV9olKhSK534QNg0AvFZ5991ucd064BgyGG3AoFBG8cRYDvFpEOzZPQFBORXbp0QZcuXfDDDz8gPz8fVVVVspPwSqWegcabflxcnE+OotlsRlxcXEDmUZTCG0cRAO644w4A4E1k7s1gFjmh6G3qmUzHIVb4L0SpowhcuzHS5wV93ody6pn+/cjAB/rmKFWjKHaODhw4EH/9619RVFSEFStWqDpGPWoUAXeh2KpVK0XnpbfXFyAvFIXnM92fEqFIO4oJCQnceVtYWBhQoaikRjEiIgLt2rXDmTNn3ISiXB8dGxvr9rtu3rwZDz/8MEaPHo0tW7bIHiNBydQ4wLXr3cgPgF4JxTvvvFPr42Aw3Lh06ZLHmh0iFCMjI1UJG2FNE+CdULz++utx/fXX44cffgDQOJ9ir169PB4vwHcUAXAi0xeh2LRpU5hMJq8dRfrG7u3yZL7UUAH8dlcTh1jqGdCuRvHq1at47733uNfatm0r+j25wTxSQrGyspJzlOn4xYSimknI9YYMAkpISHDLENDuGfkcXbsuVaMo5tCazWasXLnSq2M0iqMoNX2KEK1qFMk5JyUU6b6F9Fu0o3j99dfj0KFDABrTz7SrCyhPPdOveRKK9DKqNGI1ikBj+vnMmTMoLy93q3+VQmw+ww0bNqCurg4fffQRCgoKFDm/Sh1Fcr0buaSETY/DCGpIx0UEklLEhKKnm4NQKFosFrRv3x5dunThXvM0oEXOUSRP20pcK4JQKJJ/e+so0pPkJicnK/4ejVDIKBn1LIVSR9HhcPBSloB4mkrN9DgtWrTgjvf8+fOYM2cOt8zbmDFj3FaUIQgdPzmXlr4xCt0WMr0Q4F7baOSpNAhXrlzhnByxh6fk5GSuHYhQpNtYKvUsl8r3BqFQtFgsXj8kqUEoFOXEBI0vNYrCwSwVFRVcOZicUCT9LC0U6X5PbOQzEYoxMTHc7+kvR1GsRhHg1ymePXtWkVAkx0r/rrQ7KKwrlUKpo0gw8mwGTCgyDIunTgO49qSrJu0M8OvPCGodxQ4dOiAyMpL3JO2pTpEcr8lkQlxcnKhQ9MVRJP/21lHUQijK3ciU3NjpdlfaeYq5KkL3weVyqXIUTSYTd56cOnUKGzZs4I7vH//4h+T3vHEUgWs3TPKaXMrayFNpEOgVR2688Ua3981mM+fMEKFI18hJpZ61GHBFI9xGUlKSqodObxGKBymHWoiWNYpSI54B99QzwB+RT/d7ckKxZcuW3H59mR4HUJd6BvhC8cSJE5wolks9izmKdHxKhaJSR5HEbOTUMxOKDMOiZDALEV5qa4q0SD2TjlKNo0iONz4+nqsnJHiarkIMsdQz4L2jSGrFYmNjPboTUghFqtrUM93u9AoqSoWiVI0i7TooEYoAfy5FwksvvSQ7OlXp9DiAuFAk8csJxWBwFOkVR8SEInAt/Xz58mW30ax6OYqBqE8E3B1Fb4WimutLOOpZ7qFUSeqZIJwix+l0cg+dLVu2FJ3dgaB21DPgnVDMy8vj/lbjKDY0NPAmD/dGKMo5ilKDWYwEE4oMwyJcUF4ImbYBUO8opqamuq3LrDb1TARip06dOAfCk6NIOkVyvHJCMSoqymPHHxMTwxNWWjmK3rqJ5JgIam9kAL/d6XpLuTjEXBWhUJS6mcghfKC45ZZbMHXqVNnvCDt8tY4iiV+Jo2hkoXj48GHub6k5Delar8LCQi61DzTezM1ms5tw1mLAFY3woUEvoah0v75cX3KOopLUM+0o0gNShY7i1atXuYcrWihq6SjSM6jI1SgSlApF8vuSifJLSkp4+xIuHygFEc/x8fGyApi0AXMUGQw/4M2qLASLxeI2UMZbRzE2NpZLUf7222+yU0CRYyYdopxQbNasmccUmMlk4h23LzWKLpeLE4otWrRQ9B0xfHUUhYilgoSIreFK2quhoYGXdgbUO4pA4zmzfv16twcMqeMF1NUoCpfxU+IoGs15oCFCMSYmBjfccIPoZ4QDWsScYaGL5G9HMRADWQB3oaikjg1wrwH2tH4xDZmMHvBOKNI14XQ6VSgU6YEsLVq04IQSmQaMxhuhCPAzBEpqFOnVtJQ4ikDj9SuMTa2j6G3tqZFgQpFhSFwul+ioORpvVmWhEbpFaoUinXImorGsrEzyuJ1OJ/dErcRR9FSfKHbcZLveOIo2m417MtfTURROi6REFMmlnoHGG4k3QrFbt27c37Nnz0bPnj09fseb6XGAazdMEr+cE2l0R7G8vBynTp0C0DiQRaqMhH5Yu3jxIq9dSIyBFoqBchSFa7JnZGQo+p4v1xdd7uJJKNJ9KnnAJY5iYmIiWrZsyYlOYeqZ7gNpRxFwP2fVjHqWegCWyhaQuRQBcPPlAspqFIHG31coFJU4itXV1dxv5ukBgFzvLPXMYKhg3759GDRoEG666SbZVK63cygShELR29Sz8G+pY66qquLcRimhWF9fzwkGb4SiL44iPZBFT0dR6KypdRSFAgNo/A3o30Fp6vn//b//hwULFuDFF1/EggULFH1HLvWsxFEk/1eSeqbXkTYSubm53N9yS+kJHUV6xH+oO4rCZfy8ST17c30Rd6+qqkp2hgU5RzEpKQkWi4XrJ4Riiq7powezAO7pZ28dRSVCkcylCPDrjJWkngFpoehp4RBaOHtyFEn8YZF6bmhowJYtWzBlyhSMHDkSQ4cO5d47deoUVq5cifz8fK12xwhhvvvuO3z77bdwOp1YvHix5Od8ST0D6h1FupNKSEjgPSnShd1SA1qEcygC7kKRrgEKtKNId+5aOopqp8cRCkIlNYqeHMX6+nrezUSpo2ixWPDCCy9g/vz5ir8jl3pW4iiS+OVS1ka+qQD8+kSpgSyAu1CkrxGhUBSbR1GLUc961SgCQO/evQE0rnWu9OHFl+lxAPBGIMsNnBMKRbvdzu2LvEeELlnGjyDnKAoHtGghFOmHJaF7TaefCb6knsXEoxClA1nI9oT7DUlHsa6uDk899RTWrFmDoqIixMXF8U6a1q1bY+fOnWxtaIYipk+fznVa//znPyUdOl9Tz8IpctSknrt06cKrH1TiKArnUATchaKaqXHEjlsrR9EXoSjnKCpxgIQ1gN46ikKh6E3q2Rt8nR6HxK/EUQT0F4pi7oqSEc+Au1CkYyYxktjlVmbxBb0cRQB47bXXsGTJEmzbts1j7SvBl+lxAHiVei4vL+f1t+Q3IiKILONHEApFJY6i2Wz22J5qHUVAvVD05CgCntPPahxF0u5GfvjTRCi+//77+OWXXzBlyhR88sknGDVqFO/9+Ph49O7dGz/++KMWu2OEOAkJCZg9ezYAyLqKWjuKalLPwlUIlAhFJY6imqlxCHSH7suoZ61Sz77WKAqL/Mn26urqJFM+ShzFQAlFoTOgdjALiV/JYBayD70oLi5G586d0bFjR26ZQ+CaoxgVFcWr8xRCC8WLFy/yxJJeqedAOopt27ZFdnY2evToIbr2sxi+Xl9EtNXV1fEEnacaRTrbIXQUAb448sZRTEhI8Dh4j75uxSbSB5QJRU9L+BHEHEXA84AWNY4i+Q2Nck2LoYlQ/M9//oM+ffpg4sSJMJlMoo2dmprq0a5lMAjTp0/nhJuUq6jnYBZaGAKN7iS54UilngPhKPoyj6JWqWdfaxTJ5MsEYU2WGEocRW+mx/EGoTOg1lEk8QeDo/jvf/8bZ86cwe+//46FCxcCaDyPT5w4AQDo0aOHrCinVycqKChwmx4HCN0aRSHC814KX9Z6BvhT5NDlYML+JjIykmsDKUeRFor0/V1OKAodRfJvJQssKHEUfU09B9pRJO0e8qnn4uJiN4dFSGxsrOhkmwyGGAkJCXj88ccBNLqKS5YscfuMr46i2tQzPcmysEDfbDaja9euABpXABDrSMQG32ghFDt16sT9TZaVC2ZHUYiSWMSmCJEbzBLI1LM/pscxyk3l999/5/5+//33UVBQgNzcXM75lUs7A40DOujVWcTOFeHceVoLRT1rFL1BqxpF4JpQNJvNokKN9FNkrWSCmKMoJxSFSwfSCFckkoN+wJOqUfQ19Sx8CKMfXghqHEVvpscJydRzbGws7yQSo6CgwPAXIMNY/OUvf+HSr5s2beKm2yD4Ouq5SZMmPEHkyUm4++67MX/+fCxbtsytvAIAxo0bB6CxZuv99993e19t6lmpUHzkkUfw7LPPYt26dVyaT09HUWpUptlsVuTkCSenVZKSMXLqWa2jSKcGpb5nlJsKfcO02+149dVXFU20TUOEYkVFhehgFhK7y+VCQ0NDQJbw0wNPq5IQhNcXeUjy5voi4i4pKYm3fCKB3LMrKipkaxQB8dSzxWJBUlKSZOrZ5XJp7ij6mnqWchTp17VMPZP2CPnUc7du3fDdd9+5PRETioqK8MMPP4guDM9gSNGiRQvMmjULgHitoq+pZ+Da6gJNmjRRtHzUiy++iLlz54qWV/zpT3/iXt+4caNbPZ2S1LPcdBVSJCQkYOnSpZwDS46VEGhHUZgao0f1KVlDVyjilHSgagezBDL1rNZRFI7yBYzrKApvmGvXrsXXX3/N/duTowjw6xTp7Uk5w6FUo0jjzah62lFUen2JiSSpvob8Fjabjdc3KXUUW7RoAZPJJDmYhZ4yzF9CkZ5LkaDUUayuruYcxa5du3K/vdLUc0REhMe+lMRklGtaDE2E4v333w+bzYa//vWv+OWXX7j5impra/HTTz9h9uzZcDgcmDBhgha7Y4QJV65c4Y2A3rRpE69g3tfUMwAsWLAAffv2xd///nfRJ2o1tGvXDsOGDQMAnDlzBgcOHOC976/Usxj00mdGcRSVpp3pG5Jwe744it5Mj+MNvk64TeJXKhTp88pb6Dnm1CAUihUVFfj3v/8NoNFN6tGjh8dt0JNu05MiSwlFf4961ksoCs97KeSEohLEHoilBs6RfsrlcuHChQvc63I1ivRiCWQyaSlHUc06z4B3NYr0XIoEpTWKFy9e5K6NlJQUbjvnzp2TnUuROIpWq9XjfYW0u1GyBGJoIhR79+6Np556Cr///jtmzJiBTZs2AQBGjhyJWbNm4eLFi3j66ac91jEyGEKaNm2Kxx57DECjq0intbRwFO+44w78+OOPmDZtmm8H+v+TlZXF/b1x40bee/5KPUuhZP5BGuIoRkZGKk6Dye0X4N/IvL2pC7cnRrBOjxMVFcUdizAjI/c9ep3dQ4cOqTo+p9OJF154AQMGDECXLl3QrFkzWCwWDBgwQFUdeWVlJScI2rVr5+ZmdevWTVGb044iXdsmNXG6v2sU9Uo9K0Vqehwl9YmAuCDz5CgC4D2kk9fptCoRijabjbvWiFCUchTVzKEIKJtHUSxbIEw/K3UUaefQarVy26muruY9WNM4HA7OhVRanyjcr9EcRfF1lbxgzJgx6N27Nz799FMcP34cFRUViIuLQ9euXXHvvfciPT1dq10xwgRi2dMjjOmRgb7WKPqDe++9FwkJCbDZbNiyZQtWr17NiUGx1HNERASio6NRV1enuVCMiopCVVWV6nkUSbrIW3x1FIWpGiWjnuXWCAYCO5glIiICkZGRqK+v9ziYBWi8QZaWlnLnB4lfzlEcOHAg9/c333yj6vj27t2LRYsWub3+3Xff4b333sPUqVMVbYe+iQ4ePBg2mw2ffPIJ95qStDPAF4o0whpFoPE38XfqWa++RGm5h9SDmC+OolqhSMQ06StcLheXbhWu8wxIO4pqlu8DvEs9A+5CUWmNIu2YW61W3v7Pnz/vttwo0Bg/Wc9aiVAkv1HIO4qE9u3bY+bMmVi3bh0++OADvPnmm3j66aeZSAwC7HY7li1bhnHjxmHkyJF44okn8Ouvv+p6TKRDEa4HSyBCMSYmxq83fjU0adIE9913H4BGYbht2zbuPTFHEbjWaVVXV3s1j6IUUo7ioUOH8NZbb/FcOOBa6tmXtDO9X8C7G5nQ1dKqRjFQ0+MA147Z0/Q4wLVzgQhFEr+cwExLS+P61R9++EGxawzwp2+Kj4/nRsoDwBtvvOFxeTICfRNt37495syZw3vfV6GoxFHUejBLXFyc388NKZS6uf5IPUsJRVo0izmKYsv4CUc8C/fpD0dRrVBUmnqmH4ZatWrFm1JNakALPajH00AW4Fq7h/xglqKiIo8neXV1NZtH0cA4HA6kpKTg9ddfx86dOzF+/HjMmzfPTUwEEtIBSglFkno2iptIkEo/izmKwDWhSDuK0dHRXk0lQyOcfw5o/M2GDBmCRx99FKtWreJer66u5jonXwayANKDOZTGI3yaVisU9R71DPBXk1HiKALXzg8Sv5yjCFxzFUktuFJoV/7jjz/G6dOncfPNNwMAjh49qjiVLRSKt956K26//XbuNSUjngFxoRgVFcVNvh3IwSx6zsyh1EWiY66urubO60Cmnun0vHAZP+E6z4CyGkV/zaMIeJ96FjqK9HakBrSonRpHrDQnJIXihAkT8PHHH8t+5uOPP2aDWQxMbGwssrKyuOLbYcOGwWKx6Lo+NykCFi7zRSAOndGmXRowYADn0vznP//hOlipVLmYUNQiJjFH8ffff+c66u+++457XauBLAC/M6frSJUKRWHxt5IaRSNNjwNci9VTjSJw7QZZW1uLhoYGLn6lQhFQl34Wu5FNmTKFe239+vWKtnP27Fnub+Ju/uMf/0CXLl3wwAMPoH///oq2IyYU6Rt5IAez6FmfqHQwHX28dAZC6fXlzahngC/M6NfpZfzKy8tFHUV/C0UtaxTpc4p2P4VCUcpRpO9RShxF0u4Wi4UTuSGZena5XB7TFUrTGXry3nvvYdCgQXj44YcVf+fkyZN49tlnMWrUKNxxxx14+OGHPYpmX6mursbbb7+N2bNnY9SoURg0aBB27dol+Xm73Y61a9fi3nvvRWZmJh5//HGPyynm5+fDZrPx3LxAQ25izZo14y5e4ii6XC5OeBnNUTSZTJyr6HK58N577wG4JhTNZjOvU6eFIhkB56tYA8QdRbpjpjs6rdZ5BhrjJzczen5VpTcy4VN4sK3MAvBTz0odRaCxfUj8noTioEGDuL/379+v+NhooUhE2oQJE7jj+Ne//qVoJLXQUQQaBzaePHkSH3zwgeI619jYWDehQt/I/V2jSIsPPR86lQ58oAWFN0JRzahnsd8jKiqK97vTI59PnDihKvVMP0gGKvUcEREh+6Ao9TtarVZFqWdaKCq5f9LtrmRdez3QtEZRjsuXLyu2xvWguLgYmzZtUpXuO3jwIKZNm4aysjI8/PDDePLJJ3HrrbfyLhR/UF5ejo0bN+L8+fO8VTmkWLp0KbZs2YI77rgDTz75JMxmM+bMmYOff/5Z9PN1dXVYvHgxJk2a5NPoV18hotBkMnEXHHmturqam7bAaI4iADz00EPcjXLNmjWoq6vjRFrTpk15N1EiFB0OB/e0LVdsrRQxR5HupOkpHmhH0dfUM71v+kam9KZOlxcIv+fJUSQDSQD9BrMA/A6fHDM9ZRGNUCiS+D0Jxc6dO6NVq1YAgAMHDiie4obcyCIjI7mHgvj4eEyaNAlA4wPLBx984HE75EZpNpt5qxZ5g9BVlHMU/Zl61tNRFJ73cpC4tRKKSmoUCYmJibz+i556Zvjw4by6bE+OIr3qCTmX5fBmrWeAP5dikyZNZB9ipM4pq9XK245U6pluRyVCkf48aUOjOYpej3oWTv1x5MgR0c85nU4UFxdjz549yMjI8HZ3fmfNmjXIyMiA0+nkPeVIUVVVhZdeegn9+/fHokWLVM3BZ7PZcPjwYQwePFj0/ZycHAwYMEDywk9OTsa2bduQnJyMEydO8NJGQvLy8rBnzx5MnToVDzzwAABgxIgRyMrKwtq1a7F27Vre5xsaGvDCCy+gTZs2vFo7vUlNTcWZM2dQXl6OqqoqQ454pmnXrh3GjBmDbdu24dKlS9i4cSN3zMInZzFRqIX4JZ1qQ0MDnE4nzGYzz1EkUzy0bNlSU0cRaOxsKyoqePvztuZSTY0iPemw0VLPUgMvhEKRiBVPQtFkMmHgwIHYunUrysvL8euvvypa1IA4iikpKbwb5pQpU7Bu3ToAjYNaHn/8cdkbKkk9p6Wl+ezQpqam4tixY9y/6XPF34NZWrRoAYvFgoaGBrf1341KdHQ0KisredeXv2sUCUIxPXXqVPz73//GyZMnYbPZ8MMPP3DvEaEYFRXFzQRAP6zS4xZoZ1IKJalnsYexiIgIdO3aFT///LNH8SbWT5nNZiQnJ8NsNqNdu3Y4c+YM96AtvEZoR1FqoJYUIecovvPOO9x/JpMJubm5vNfIf++++y527dqFpk2b4oknntDy2DUjNzcX+/btw4wZMxR/JycnB1euXMFjjz0Gs9mMmpoabki8J7Zt24b58+eLpot27NiBhQsXYvfu3ZLfj4qKUnwz37dvHyIiIjB69GjutejoaIwaNQrHjh3jXahk9ROTyYTs7GyfpkjRAlpA0Rd3QUGBJnMo+pvs7Gzu75dfflly8I2YUNRCrNE3UdKpCufqI0/FWq3KIrZvgrc1VGpqFOmbpREGswD80fliCIUiid+TUATUp5/r6+u5jIcw1dmnTx/069cPQGOfKDdApqKigiuT0GJWC28cxaioKE36qObNm2P9+vV46KGHMHfuXJ+35y1qsghi55K/p8eReq1t27b48ccfMXHiRLfP0tPH0CU2BK2EopKykjVr1uD+++/HmjVrZPch9tu2bNmSG1xF0tg2m0106WLiEEZERCiKiW53+gHTSHjtKK5evRpAYw3WU089hTvvvBMjR450+5zZbEbTpk3Rrl07n1e+8AcOhwOrV6/GqFGjeNNEeOLQoUOIi4tDSUkJnnvuOeTn5yM2NhbDhw/H9OnTZZ90J06ciOPHj2PhwoV4+eWXudGB+/btw4oVKzB8+HCMGTPG19AAAKdOnUJaWppbJ9S1a1cAjSshkJN5+fLlKC0txfLly0WfygINfcEKB7TQnaIRU88A0LdvXwwfPhxffvklr/BfiVDUQqwJO9WYmBg3oXju3Dn07dtX08EsgG83MuF31dQoyglFPWoUgWt1mkodRTFXQeq7wgEtnh52ychUQNztmDJlCle/vH79evTt21d0O3TaTWwtXbUIXR4poVhXV8edA1qknQmTJ0/G5MmTNdueN6iJJ1BCUewhXCw9n5CQgE2bNmHIkCGYMWMG6urq0KJFC15fEh8fj7KyMklHUUnqmb5uxYSiyWTiBJ2QAQMGYMCAAR73IfY70scmHNAi/O2IUExJSZE8Fhq6LenaZiPhtRro3bs393dWVhb69OnDey1Y+PTTT1FUVMSbKkQJFy5cgMPhQHZ2NkaNGoUpU6YgNzcXW7duRWVlJV588UXJ71osFsyfPx/PPPMMsrOzsWrVKtTU1GDRokW45ZZb8Oyzz2rm5pWWlore+MlrRCAUFhZix44diIqK4rmPr7zyimg6KycnBzk5ObyLXmtKS0u5G4hwihz6SdWojiIAPPfcc/jyyy95rylJPWs9Pxy5uYoJRUDbwSzCfROU3sjodgfU1SjS+zBC6hm49psrdRRJ/EocxZ49e6Jp06aoqKjAN998I5oKo/E0dcf999+Pv/71r6isrMS//vUvrF27VvRmJzaQxReEopX+/YTOODkHtBSKRkB43svhi1D0dtSz3GtAo0h77LHHcOutt+Kdd97B6NGjeeeOnKPYtGlTRe3pyVHU4gFQ7DhoZ1A4oKVPnz684yB1l0rTznS70w+Jnq7lQKKJbaT3k5i3lJeX4+2338ZDDz2kuoiZTKR7zz33YObMmQAaVyeor6/H9u3b8cgjj6Bt27aS34+OjsbSpUsxc+ZMzJkzB/X19ejatSsWLFigqZtXV1cnevGQC47cjFJSUlSNnMzMzERmZiZOnjzJLbHnT4RC0Shzn3li0KBBuP322/Htt99yrwmFrVhtkZY1ioB06pnc8LUezOLLjUxuW55qFOVSlnqlnglKHUWCEqEYERGB2267Dbt370ZhYSFOnz7NW95PiCehGB8fj0GDBmHnzp2orKxEaWmpqNNDO+T+EIpKUs+hJhTVIBa70hrFqKgoriYTaDyHpEYcK6lRFNK9e3esWLHC7XVaKBIRRISi0j7HU42iFvdOT0JRbi7FwsJCzrH3ZsYQuo+02+2aGAZaoHku2OFw4MqVKygqKhL9z0hs2LABCQkJGDt2rOrvkgYcNmwY7/XMzEwA4BVmSxEXF4dp06ahoqICNTU1mDFjhuYnRnR0NC/lRiAXmVFORDFoZ0uYejb6YBYaulYRUOYo+jqKFAheR1G4f09Csb6+nrtRyDmKeqWe5V4D3IUiiV/pfIF0naKn+RTFpsYRQt+06fOChnYU9apRDDWhqOa68+VBzGQy8dLPzZo1k3SuYmNj3Rxlbx9iyT4bGhq4diT9uNKpgQLhKJrNZrcHSSmhKJwiR+3UOAC/3Y26jJ9m1tXJkyexfv16HD16lDcCicZkMmHv3r1a7dIn8vPz8dlnn2HGjBk8N8Vut6OhoQGXLl1CXFycpAhJTk7G2bNn3eafIha+8IYsRkFBARYtWoR27drBbrfj+eefx+uvv66Jo0Mfp9h0PfS6vkalpqaGu3CEjiJt/xtdKI4cORJ9+vThZgZQUqOoxVRSYp2qsFRA6ChGRERo4maqEUpC6HYHxAWv8PMEowxmEbtpK3UUSfx0rHI3QGGd4iOPPCL5WfpGJnVzpvsEum+k0Tr1rKZG0dMo8mBFeN7L4atjT+oFAfk15U0mExITE7mBS4D3UwgJp8ih75FKRXIghCLQ+PvS25dLPdPQU90oTT3T7U63oZEGtGjiKJ46dQrTp0/HsWPH0K9fP7hcLnTs2BH9+vVDYmIiXC4XevXqheHDh2uxO00oKSmB0+nE6tWrMWHCBO6/vLw85OfnY8KECW5TANFcf/31AOAmwkjH6uliKikpwdNPPw2LxYKVK1dixYoVqK2txaxZsxRNdquUTp064cKFC25LLObl5XHvGxV6EmX6ort48SLvNzJy6hlo7Gyfe+457t/CkgQxoaj1/HByjqLL5eIeHJo3b67JoDNfbmTCZSM9OYr0uW2UGkVfUs8kftJm0dHRsrVK/fr147btqXxEyfJi9E1bylEkqeeIiAhNJuW3Wq28GKVqFP01mMUIqFkuVexcUvNwKXQU5RD2r746ikDjAyudYfR0DARPQlGrsi1hX0ULxdTUVG4/ckJR6XVBt7tRHUVNhOK7774LAFi3bh2WLl0KoPEp9+9//zu2bNmCe+65B2fPnjXUvHzp6elYsmSJ23/p6emwWq1YsmQJRo0aBaDx5nT+/HneUPihQ4cCAD7//HPedj///HNERETwClyF2Gw2zJ49GzU1NVi5ciVatWqFtm3bYvny5bh8+TLmzp2r2UkyZMgQOBwObN++nXvNbrdj586dyMjIUDR8Xy/oG0dMTAzn3gbL9Dg0f/zjH/H3v/8d06dPx5///Gfee2JCUYuJf5XUKFZVVaG0tJQTBFqknQHfUs9CUeRJKP7+++/c3/SSWcGaeibx00JRjujoaG6t5t9//503ibEQrVPPbdu21eTmHBkZyauFlHIUq6uruWnIQk0oqhm4oIWjSPAk0oT9q1aOIi0U6cGJcniqUdTSUaSh75MWi4VzFc+cOcNbdc6b1LPwPkcwkqOoifz+5ZdfMGDAAF4Kgvx40dHReOqpp/Drr7/izTffxAsvvKDFLn0mKSmJl7IhfPTRRwD46Zzjx49j5syZyMrK4tI6Xbp0wV133YWdO3fC4XCgd+/eyM3Nxd69e/Hggw/KpnS3bduG4uJivPrqqzx3qXPnzli2bBlmzZqF3bt3495775XcBhldTTryAwcOcDeIsWPHch1BRkYGhg4divXr16OsrAxt2rThCt/1nDNMCcIbWZs2bXDlyhU3oWh0RxFo7Axmz54t+p6YUCSOtS8ocRQB4LfffuNS0lqVIvhyIxO2u6fOk15hqGfPntzfeg5m8SX1TOJXKhQB4MYbb+TqE48dOyY51Qi5kUVEREjenOmHBbHUc1lZGffQrEV9IiE1NZUTD1JCkc4khJpQVDM5s69Cke5z9HIUCwsLuX8rzWwFKvUs/C2F11OXLl1w5swZLg7iznuTeqY/Z9TUsyZCsaqqihesxWLhOWJmsxm9e/fGnj17tNidYZg9ezasVit27dqFb775BlarFdOnT8d9990n+72JEydi4MCBop1sz549sW7dOnTo0EF2G5s3b+ZdaPv37+fSTsOHD+ddlNnZ2bBarfjiiy9QWVmJDh064OWXXzb8dEaXLl3ipcfatGmDX375BXa7neciBYOjKIeYUNSik1DiKALgTaxsBEdR2O6eahRpoUhP5WS01LNSR5HEr0YoduvWjfv72LFjXMZDCHEUrVarZImBJ0dR6zkUCampqVwdr9TKLPQDYqgJReF5L4eWjqLUOs8EoTD0h6OoVOAFskaRRph569y5M3bt2gWg8UGbtJs3jiLd7kZNPWsiFJOSkng3oObNm+PChQu8zwiXXjIqr776qttrffr0Ea39sVgsXk3UarFYZJ/ElUz8vWXLFsX7i46OxrRp0zBt2jTF3zECwpVu6IeR48ePc38Hg6Moh1AoxsTEBGweRaBx8niCERxFYbt7chSPHj3K/d29e3fub6MJRaWOIolfjVCkl0cl9cdCHA4Hd3OWEySeHEWtp8Yh0DdW2lGk46cdxVAbzKJ0ZS/At+lxAN9Sz972t3JC0ZvpccTWevZXjaKYo0j47bffuOV4iaPYpEkTxQYG3e5GTT1rUqPYvn17/O9//+P+3aNHD/z444/49ddfATTWs+zduzdo1tFkGAPhxUrfSGg3VWoOsGBBKBSbNWvm9ZyDNEpGPQOBcxSVOkDC2OU6T6fTiV9++QVAYz9E38T0rFEUaz+p+Ombts1mc1vGSyuhWFxczN2U5NJinhxFrUc8E+hjkko90w86oeYoqrnmA1mjqJWjKDeYRel0YHrUKDZv3txtu7RQPHXqFPc3EYpt2rRRXHNKtxv9t5EcRU2E4q233oqff/6Ze/qcOHEiXC4Xpk+fjrvvvhuTJ09GZWUlHnzwQS12xwgThAJKzMqPi4tTtEySkRETimrWfZVC6Ci6XC5OKNK/Je3OaiUUtVw5wmKxcGlSoVA8e/YsF5NwBaFgcRQjIiI4YSS21rMSodisWTPOJZSaw1XJiGeAn4oUcxS1nkORQFwZANyypkD41CiqueZ9Ke0A9Bn1LOcoKn3g0KNGUWzAp9BRBBqvXfIgo2YmAPp3CWlH8Z577sHWrVu5E6hTp05YtWoVbr75ZiQmJuKmm27CsmXLeBPDMhieEN6kxFyQYE87A+JCUWr+OjUIO1V6xGjnzp25mw2d+tAq9ezLjUwYu8lk4rYnrFGUGsgCyA9mMdKoZ+CaK26z2bipu4hLojTFSuoUS0pKROdOVSoUo6KiuLRZIB3FIUOG4N///jcOHTrEc0jDpUZRzTWvp6PobU24lKMYFxen2D0TW+vZ4XBwg2f94SiKCcW2bdty1yURinR9opqBSXS7G3UwiyZC0WKxuNmzPXr0wCuvvIJNmzZh+fLluPXWW7XYFSOMEXtKC/aBLIC4UNQCoaNIp+2aNm0qWgpiBEdRbnvCzlNqIAsgnXq2WCx+X0NVzahngC8UAeWrstDQ4krMVVQyNQ5BuBY8DalRtFgsqm6ISrj55pt5biIgXaMYakJRDb7WKJLBTrGxsbjttttkP0v3sQkJCV5ncKQcRTVTtIkJRbqkxB81imLHZzabuZHaZ86cgcPh8GogixCjDmbRfAk/KQoKCvDSSy8FaneMEEA4Gi+cHEVPIxGVIHTUaKGYkJAg6gYZwVEUi11KKNIDWYSOolTq2d9pZ0Bd6hngC8VmzZrx5mxV+rvRI5/F6hSVrMpCIELx6tWrcDgc3Osul4tzFNu1a6d52YdY24dL6lnNNe/rg9iwYcOQl5eH33//3aNQo/tYX+Z3pR3FK1eucOe41WpVHLvJZOKua3I90yvB+cNRlJpqiqSf7XY7/ve//3k12TbAb/eQTj3LUVRUhFdeeQV/+tOf8OWXX/p7d4wQQphmbNWqldsTYyg4ilFRUbwbbvPmzUWngVGLnKMoJRSN4CiKxe7JUWzSpInblFJGE4pKUs8NDQ2oqKjgpokB+E6hHGocRU9CkTwwOJ1OnmgtKyvjxJqW9YkEsbaXGswSaqOe1VzzWjj2Xbt25U1QLwUtFH15MKcfiOmR81arVVXs5HwQcxQDlXoG3OsUvU0907EbNfXsk0/7888/46233sLJkycRERGBnj17YurUqWjXrh1qa2uxYcMGfPLJJ6ivr0eLFi0wadIkrY6bEQZUVVXxnmDNZjNat26N/Px87rVQEIomkwlxcXHcDbhZs2ZusXuD0FGkRzwnJCSIpriNMI+iWOxiNYqVlZU4c+YMgMZSF6G7JUxTBVIoept6BhpHJ9NTFvXt21fRPj2NfPYm9Qw01imSf9NzKPpjFguxtheu9UwINUdRzTUvjF34sKkldB/rS59EC0Vy3QKNQkxN7FFRUaiqqvKrUPSUegbchaK3jiIdu1FTz14LxZMnT+Lpp5/mNdJ3332HkydP4rXXXsO8efNw7tw5tGjRAhMnTsTdd98dkA6aEdqkpqbyhGIopJ4BuAlFLZBzFOPj491u9CaTSbN9C29kZrPZp/ohMUeRTIsDuKedAfc517QeGSmHt44i0CiAvRGKzZs3R0pKCgoLC0UdReJ4mEwmyXQagS5BKCkp4W6K9Py4wjXL/YWUwA41oagG4W+ixXRaUmjlKNKpZ3rBBLXLyAodRTr1rFWNIn2sUu57586dub9/++033oOYFjWKIeEofvDBB6ivr8eUKVO4NZF37NiBN998E9OnT8fVq1fx0EMP4cEHHwy5FAEjMIhdbMLXQsFRBNyX1PK2o6FRW6OYlJSkWUcrdiNTOoBELHbSgZJpfkwmk+yIZ8B4qWeljmJcXBwnFBMTExVNwE/IyMhAYWEhLl++jMuXL/OW6SM3MrESDiFCR5FAC0UtzlEhYtuUaq9QE4pqfk9h7P4Uim3atEFkZCTq6+s9rhgmB93H0bWmVqtVVeyBSD3fd999WLduHVJSUjBs2DDRzwgdRbp/VbrCDsBv95CbR/HXX3/FjTfeiEmTJiEpKQlJSUl48MEH0adPH1y5cgVPPPEE/vznPzORyPAaelJtgrBDCSVHkdCsWTPR2NWitkZRq4EsgG83MrHY6e2R9KPciGeg0cUk8y8GWiiqmXAb4AvFgwcPcqLupptuUjVCW2pAi9Pp5H5XJTcxqUm36fSa0kmS1SDW9lI3/1ATimqu+UAKxeTkZLz77ruYOnUq5s6d6/V2aJeOxmq1qoo9EEKxa9euyM/Px+HDhyXPs1atWnFGxalTp7hro2XLlqr6GDp2euS62CpaeuG1ULx69SpPUROuv/56AMDIkSO9PyoGA+CNtiQIa6tC1VEUi10tnhzFlJQU3me0qk8EfEuNicUuthwhPeK5R48eotsiNw4jpJ6VOorffvst97fStDNBqk6xpKSES9EpKbSXWsbP2zospYi1fUREhGj9XaiZEGqueeH5pWZqHG944IEHsGbNGp/aXCqrYLVaVcVO+ixyPftrxSVP02iZTCZOA507d44r7VA7ZRQde7t27bi/6TpOvfFaKDocDtmn5lBxehj6IXazDZfUsxZuiSdH0Ww28+oUtRSKvjgeYrHThe4ffPABXC4X5yi2a9dOshCenkojWFLP33//Pfe3WqFIO4p0naKaEc+AtKNIp5794ShKnfdibRZqjqKaeALpKGoFGbQnxGq1qoo9EDWKSiF1ii6XizsOtWJauFwgufZOnjyp0VH6TsDmUWQw1CK2hnOopp7JNBURERFISUnRZP1qT44iwF9ZwyipZ7HYJ0+ezP09a9YsfPnll1w8YmlnAu0+EOchEEJR7VrXdMz02rFaOYpqhaInRzEmJkazgU80Uue9L2uHBwtqrvlgFIqA+DKFVqtVVeyBSD0rRSyrqlYoCmMnWdmCggLeTBV64pP8/vLLL91G15GO5JlnnnH7vMlkwiuvvOLLLhlhxOXLl90uulBNPc+ZMwclJSUYMWIEmjdvjosXL/qc2hM6inSnQ+qFaKFolNSzWLuPGDECU6dOxdq1a1FTU4P77ruPe09sIAuB3Diqq6u51wIhFM1mM6Kjo3nTuSh1FAnNmzdXvURecnIyrFYrioqKeH2z2jnePDmKaWlpflndRqztgfBwFKViFyOQo561RCgUY2JikJCQgIKCAsWxk3PB6XTC4XAYTiiqTT0L271Lly44cOAAgMZBMjfeeKNvB6kBPgnFixcv8mpWaA4ePOj2mr+XzWKEPqHqKHbv3h07d+7UdJtGchS1uKkvX74c//nPf3Dy5EneqEklQrGqqsrtNX8TExOjeN4/MaHYt29fr/rMjIwMFBUVobi4GCUlJWjRooUmjqLNZuN+d3/UJ8oRDkJRDYGuUdQK4YAWq9Wq+hwXzo/qjyX8lKKFoyiEOIpAY/o5qIXi5s2btTwOBsMNsdRWQkICEhISONETKo6iEC3SekJHkZ6XiwgTWmTR84JpuW9AneMhFXuTJk2wadMm3Hrrrby6JLnUs5hQDNR8rjExMSgvL+f+rdZRFK55rJRu3bph7969ABrTz4MGDVItFGNiYhAXF4eqqirOUfT3iGdAuu3DQSiqueZDJfVM5lBUE7vwAdgfS/gpRazPVCsUhbHTQvG3337z7sA0xmuhqGTpHwbDF+gOgCY1NZUr9A1VoSgVuxqEHaqYULzrrruwZMkS1NXV4Z577vF5nwRfbmRysfft2xcLFizAc889x+2nU6dOkp8nNw56m4ESisKYvXEUvUFYpygUikpTY8nJyaiqquIcRX+PeAak215MZIfaqGc113ywCkUxRxFQF7uwX9Mz9ZyYmIhWrVqhuLiYe01t6lkYO+1SGmVACxvMwjAsUvNIkTVmLRaLXwrqjYAWc2hJjXo2m83cjcVsNiM7OxsLFizQtJP1xVH0FPvcuXMxfPhwAI3TdsgtXSYmCgOZeqZR6yh6KxTFRj7TNYpKV8Ig6efS0lK4XC6/j3gGpNs+HBxFNdd8sKaepRxFNbEbSSgC7ulntQ9Rwtg7duzIzf9qFKEY2IQ+g6EB2dnZKC4uxn333Sc6io7RiFSNYkJCgt/rhf3peERERGDXrl3Iy8vjpWnEELtxBDL1TKNGKLZs2dLrJfJoR/GLL77A/v37OUexRYsWiuMnNasOhwPl5eUBcRSlCAehqIZgHcwi5SiqQU4oBrpGEWgUimTu08jISJ8HBUZHRyM9PR1nzpzBb7/9xq1EpSdMKDIMi5SFP3DgQPz0008BPprAojZ9IYbFYoHZbIbT6eSNepZaIUFLhDd2NTcyJbGbzWZ0797d4+f0FIq+pJ69HcgCNAq81NRUFBQU4NSpUxg8eDD3npqlxYTL+AXCUZRq+3AQimqueZPJhKioKG6KmGARilKOoprYjVSjCPAdxdTUVM4NVIpY7F26dMGZM2dQWVmJS5cuaXI/8AWWemYYFrruI9zQKnZ6zjHaUfQ3JpOJ53qoualr2e5iNw4jpp6bNGnCu8F4O5CF8H//93+8dZ4Jam44wilyAuEoSrV9OMyjqPa8p+MPdqGoJnajpZ7pAS3eXBdisQtHPusNE4oMw6LFgI5gRavYyQ22traWcxQDIRTpfQPaDWZRS7Cknk0mE8/p9bY+kTB+/Hjk5+dzo8QJ/fv3V7wN4RQ5xFEkk8L7A6m217PWNFCoPe/p8ytYahRDbTALwBd13jjtYrEbbeQzE4oMwxJqoxrVoFXspFO9evUqXC4XgMAJRW8dDy3bXUxg6JF6joqK8phKptvFV6EINP6OkyZNwnfffYfc3Fxs374dzz//vOLvSzmKKSkpsgOIfEGq7YVtFhMTo3vdltaoPe9DyVFUEzt9LtTX1+u6hB/QWBM8fvx4tGzZEk888YTq74vFbrSRz6xGkWFYQmUybW/QKnbSCV25coV7zeiOopbtbhRHUUmatHPnzrh48SI6deqkeU1Sr169ZOebFIN2FC9duoSioiIA/qtPBKTbXkwohhpqz/tgFIpSjqKa2I3mKJpMJmzZssXrQSdisbPUM4OhEFaj6DukU3U4HNxrgRjMAnh/IwvFGkUljsm6deswd+5cvPbaa4Zwy2hH8ZdffuH+9ueIZ6U1iqEoFMOtRjEqKgpJSUkAgrtGkeDtNSsWe2pqKvdbsdQzg8HwK2ICxeiOopYYZdSzEqF4/fXXY9myZYpGcwcC2lE8evQo97c/HUUpwsFRVEuw1yi2atXKK3FlVKGoJSaTiUs/nz17lhvdrhdMKDIMC3naDEe0il1MFBm9RlHLdg+m1DPBKOc97SgeP36c+9ufQlEqdmGbhWL9stp2N8KDmFpoR5GeQ1FN7HLT4+hRo+grUrGT9LPD4cDvv/8ewCNyhwlFhmFxOp16H4JuaBW7URxFNUJJy3Y3ysosaoSNUc572lGkb8b+TD1LxR4OjqLadg/G1DPtKNJCUU3s9PUbCo6iVOxGqlNkQpFhWCoqKvQ+BN3QKvZgdBS1bHejpJ7VCBujnPdNmjQRPW5/OopSsYdDjaLadg/G1DPtntEDttTEHmqpZ6nYjTTymQlFBiOE0dNRNILjYZTUczCmSk0mk+hyZIFevg8ID0dRLUa4vtTSrVs33H333UhNTcVjjz3m1TZCTShKYaS5FIMvoc/wC3a7HStXrsShQ4dQWVmJ9u3bY/r06boW1vtrUt9gQKvYxURRoEY9e1tDpWW7G0UoqhE2RjrvW7RowVuRBfCvUJSKPRyEotp2HzZsGD766COkp6ejffv2/jkojTGZTNi+fbvbVDJqYg+1GkWp2OkVX5ijyDAEDocDKSkpeP3117Fz506MHz8e8+bNQ3V1tW7HVFpaqtu+9Uar2PV0FGlxqCY1pmW76zk9jtpRzwQjnfdCRzE5OdmvIk0q9nAQimrb/fHHH8fRo0fx888/B51AEo52VhN7qDmKUrE3bdqUW5udCUWGIYiNjUVWVhasVivMZjOGDRsGi8WC/Px83Y6J7gDCDa1i17NGccyYMTCbzejRowfv6dgTWra7niuzeOsoGum8FwpFf0+NIxV7OIx69qbde/bsGbAMgT9RE3uoCUW52En6+fLly7h69WqgDsmN4HoMEfDee+9hw4YNSE9Px7vvviv72SNHjmDmzJmi761duxbdunUDALz00kvYvXu35Ha2bt2Kli1bKt6eP6iursaHH36IvLw8HD9+HDabDfPmzcOdd94p+nm73Y633noLX375JWw2Gzp27IhHH30U/fr1k9xHfn4+bDabLvVIhEDd0I2IVrHr6SiOGzcOFy9eRIsWLWA2K38m1bLdjZJ69naJMr2hp8gB/F+fKBV7OAxmMVK7Bxo1scsJxWBzVgH52Lt06YKvv/4aQGOd4i233BKgo+ITfL/q/09xcTE2bdqkuoh37Nix6Nq1K+81uvMbPXq02zqrLpcLK1asQEpKClq2bKlqe/6gvLwcGzduhNVqRadOnXDkyBHZzy9duhRff/01xo8fj7S0NOzatQtz5szB6tWr0bNnT7fP19XVYfHixZg0aZKuT6vNmjXTbd96o1XsejqKgHf1dlq2ezCmno103gfaUZSKPRxSz0Zq90CjJna5tZ6D0VGUi104RQ4TiipZs2YNMjIy4HQ6UV5ervh7vXr1wpAhQyTf7969u9sAjp9//hm1tbW44447VG9PDJvNhsOHD2Pw4MGi7+fk5GDAgAGSIjg5ORnbtm1DcnIyTpw4gSlTpkjuKy8vD3v27MHUqVPxwAMPAABGjBiBrKwsrF27FmvXruV9vqGhAS+88ALatGmDrKwsVXFpTVFRka6Opp5oFbuejqK3aNnuRnEU1QgbI533gXYUpWIPB6FopHYPNGpiD7XUs1zsRCiazWZdl7QNyhrF3Nxc7Nu3DzNmzPDq+9XV1bynEE/k5OTAZDIhMzNTk+1t27YN8+fPx/79+93e27FjBxYuXCib/o6KihKdtkKMffv2ISIiAqNHj+Zei46OxqhRo3Ds2DEUFRVxrzudTixevBgmkwnZ2dmGWG+W4Rt6jno2AnoKxcTERO7vpk2bBmSfWhNoR1GKcBCKDGWEmlCUY9CgQcjLy0NNTQ1mz56t23EEnaPocDiwevVqjBo1Ch07dlT9/aVLl6KmpgYRERHo2bMnpk6dihtuuEHy8w0NDdi7dy+6d+/OjUDyZXsAMHHiRBw/fhwLFy7Eyy+/jJtuuglAo6hbsWIFhg8fjjFjxqiOTYxTp04hLS2Nt3QSAC5dfvr0aW6G/OXLl6O0tBTLly83RK0HfaMNN7SKXegoms1mw8+5pmW767kyS58+fTBu3Djk5eWpcueNdN4H2lGUil14HofiYBYjtXugURN7qNUoysWekJDgVtqmB0H3q3766acoKirCqlWrVH3PYrFg8ODB6N+/PxITE3Hu3Dls3rwZ06dPx5o1a3izoNMcPHgQ5eXlbmlnb7dHvjt//nw888wzyM7OxqpVq1BTU4NFixbhlltuwbPPPquZm1daWirqPpLXSkpKAACFhYXYsWMHoqKieO7jK6+8gl69erl9PycnBzk5OaisrNTkOBn+QSiUEhISwsop1tNRNJlM+OijjwKyL3/BHEWG0ZCbRzHUHEWjEFRCsby8HG+//TYeeugh1Quo9+jRAz169OD+ffvtt2PIkCGYPHky1q9fj+XLl4t+LycnBxaLBUOHDtVke4To6GgsXboUM2fOxJw5c1BfX4+uXbtiwYIFmj4V1dXVyd4s6+rqADQOOhBLhUuRmZmJzMxMnDx50usZ9j1RXl4eVmlSGq1iFzovRq9PBLRtdz2ForcY6bwPtKMoFXs4CEUjtXugURN7qK31HAztHlQ1ihs2bEBCQgLGjh2ryfbS0tJw++2348iRI3A4HG7vV1dX49tvv8XNN9+syBr3tD0hcXFxmDZtGioqKlBTU4MZM2ZonlKJjo4WnafJbrdz7zNCFzFHMZwIRqFoJGhHMS4uTrf0aDgIRYYywqlG0SgEjVDMz8/HZ599hnHjxqGkpASXLl3CpUuXOOv50qVLqhdVB4BWrVqhvr4etbW1bu99++23kqOdvdmekIKCAixatAjt2rVDSkoKnn/+eS4VrBXJycmiM7+T14SOgZEgtZPhiFaxB6OjqGW76zk9jrcY6bxPSEjgzqG0tDS/ly1IxR4O8ygaqd0DjZrYQ20Jv2Bo96ARiiUlJXA6nVi9ejUmTJjA/ZeXl4f8/HxMmDABGzduVL3dgoICREVFiRb4f/XVV4iNjcWAAQM02R5NSUkJnn76aVgsFqxcuRIrVqxAbW0tZs2a5ZXglaJTp064cOECqqqqeK/n5eVx7xsVPWei1xutYhc6MUZPcQDatrueK7N4i5HOe5PJhKeeegqxsbF48skn/b4/qdjDYWUWI7V7oFETe6g5isHQ7kEjv9PT07FkyRK31zds2IDq6mo8+eSTSE1NBQDU1taiqKgIiYmJXC1jWVmZW13j6dOnceDAAdxyyy1uK0eUlZXh0KFDyMzMFH16Vbs9GpvNhtmzZ6OmpgavvfYaWrVqBaBx1PHMmTMxd+5crFy5UpPRqUOGDMGHH36I7du3c/Mo2u127Ny5ExkZGYZ+miHp8XBEq9iD0VHUst2DMfVstPN+2bJlWLx4cUDcGqnYwyH1bLR2DyRqYg81oRgM7R40QjEpKQkDBw50e52MKqTfO378OGbOnImsrCw88sgjAIAXX3wR0dHR6N69O5o1a4Zz587hs88+Q0xMDB5//HG37e7ZswcOh0My7ax2ezTbtm1DcXExXn31VbRt25Z7vXPnzli2bBlmzZqF3bt3495775XcxtatW1FZWcmlkA8cOMBNyDl27FjOOcrIyMDQoUOxfv16lJWVoU2bNti9ezcKCwsxd+5c2ePUm2C86LVCq9iDsUZRy3YPxtSzEY8vUCk9qdjDQSgasd0DhZrYpYSiyWRCRESE5sfmb4Kh3YNGKPrKwIED8dVXX2HLli2oqqpCUlISBg0ahKysLNEpH3JyctCsWTNujkNft0czceJEDBw4EOnp6W7v9ezZE+vWrUOHDh1kt7F582YUFhZy/96/fz83ann48OG8FGN2djasViu++OILVFZWokOHDnj55ZfRu3dv2X3ojdJJxUMRrWIPRkdRy3YPRkeRnffuhEONImt3ZUjVKAZjfSIQHO0enL8sxauvvur2Wp8+fdymehk3bhzGjRuneLvCpe2EqN0ejcViERWJBCUTiW/ZskXx/qKjozFt2jRMmzZN8XeMQGFhYdguaaVV7MHoKGrZ7sEoFNl5H55L+LF2VxY7fU3X19dzjmIwOHNiBEO7B81gFgaDoZ5gdBS1REwUBqvzEM6Eg1BkKMNsNnPXMJ16DlahGAwwocgwLMG6Pq4WaBV7MI561rLdhTePyMhIw69Mw857d8Jh1DNrd+WQ8yEUhGIwtDsTigzDIjdyPNTRKvZgdBS1bHfhzcPoaWeAnfdihEONImt35dBCMdhrFIOh3Y1/hIywpaysTO9D0A2tYg/GGkUt2z0YhSI7790RtmMoCkXW7soJJUcxGNqdCUUGI4QJRkdRS8RSz4zgIyIigjf1SSgKRYZyQkkoBgNMKDIMC5mIPBzRKvZgdBS1bHdh/MHgKLLzXhy67UJRKLJ2Vw4RhbRQDNbUczC0OxOKDMNSXl6u9yHohlaxB6OjqGW7B2PqmZ334tBtF4qDWVi7K0esRjFYHcVgaPfglOCMsKCurk7vQ9ANrWIPxlHPWrZ7MApFdt6LQ8QhPT1KKMHaXTm0UHQ4HACCVygGQ7uH3tXGCBlC8WagFK1iD0ZHUct2D8YaRXbei0PEQUxMjOGnOPIG1u7KoYWi0+kEEBzXthjB0O7GP0JG2BIMtRv+gtUoakMwOorsvBcnLi4OQHC44t7A2l055DombiIQHIJLjGBod1ajyDAsBQUFeh+CbmgVO+0oRkREBMUgAC3bPRgHs7DzXpwZM2agadOmmDlzZgCPKHCwdleO2HUcrI5iMLR7cEpwBoOhCLrzTEhICMmUnRwREREwmUxwuVwAgvdmwgD+8pe/YOrUqUExQTHDv4SSUAwG2BXHMCzBkCb1F1rFbjKZuE41WH5PrY+TvoEEg6MYLO3kDzzFHsoikbW7ckJJKAZDu4fuVccIeoK15kQLtIy9efPmAIKjFgbQvt2DTSiy8z48YbErR+w6DtbfLxiOmwlFhmG5evWq3oegG1rG/ve//x233norFi1apNk2/YnW7U4LxWBwHdh5H56w2JUTSo5iMLS78aUsg8HwiQcffBAPPvig3oehG8HmKDIYDHlCSSgGA8xRZBiWli1b6n0IusFi1w76phIMQpG1fXjCYldOKAnFYGh3JhQZhsVms+l9CLrBYteOYHMUWduHJyx25YiJwmCo9RMjGNqdCUWGYamtrdX7EHSDxa4dwVajyNo+PGGxKyeUHMVgaHcmFBmGJSIiQu9D0A0Wu3YEm6PI2j48YbErJ5SEYjC0OxOKDMOSkpKi9yHoBotdO4JNKLK2D09Y7MoJpelxgqHdmVBkGJaLFy/qfQi6wWLXDvqmEgyuA2v78ITFrpxQchSDod2ZUGQwGCFNsDmKDAZDnlASisEAE4oMwxIXF6f3IegGi107gk0osrYPT1jsygkloRgM7c6EIsOwREdH630IusFi145gE4qs7cMTFrtyQqlGMRjanQlFhmG5cuWK3oegGyx27Qi26XFY24cnLHblhJKjGAztzoQig8EIaYJtZRYGgyFPKAnFYIAJRYZhadGihd6HoBssdu0IttQza/vwhMWunFASisHQ7kwoMgxLVVWV3oegGyx27Qi21DNr+/CExa6cUKpRDIZ2Z0KRYVhqamr0PgTdYLFrR7A5iqztwxMWu3LEHviC4SFQjGBodyYUGYbFbA7f05PFrh3BJhRZ24cnLHblhFLqORjaPTi9Woam2O12rFy5EocOHUJlZSXat2+P6dOno3v37roeV+vWrXXdv56w2LUj2AazsLYPT1jsygkloRgM7W58KcvwOw6HAykpKXj99dexc+dOjB8/HvPmzUN1dbWux1VQUKDr/vWExa4dwVajyNo+PGGxKyeUahSDod2ZUGQgNjYWWVlZsFqtMJvNGDZsGCwWC/Lz83U9LpfLpev+9YTFrh3BlnpmbR+esNiVE0qOYjC0e3BKcBW899572LBhA9LT0/Huu+/KfvbIkSOYOXOm6Htr165Ft27dvPqs1lRXV+PDDz9EXl4ejh8/DpvNhnnz5uHOO+8U/bzdbsdbb72FL7/8EjabDR07dsSjjz6Kfv36iX4+Pz8fNpsNbdq08VsMSmjSpImu+9cTFrt2pKenc39fd911mm7bH7C2D09Y7MoJJaEYDO0e0kKxuLgYmzZtQmxsrKrvjR07Fl27duW9JiWa1HxWK8rLy7Fx40ZYrVZ06tQJR44ckf380qVL8fXXX2P8+PFIS0vDrl27MGfOHKxevRo9e/bkfbaurg6LFy/GpEmTEB8f788wPKK23UIJFrt2ZGVloaysDO3bt0enTp003bY/YG0fnrDYlRNKQjEY2j2kheKaNWuQkZEBp9OJ8vJyxd/r1asXhgwZovlnCTabDYcPH8bgwYNF38/JycGAAQMkT6Dk5GRs27YNycnJOHHiBKZMmSK5r7y8POzZswdTp07FAw88AAAYMWIEsrKysHbtWqxdu5b7bENDA1544QW0adMGWVlZqmLyB6Wlpbq7mnrBYtcu9ri4ODz33HOabc/fsLZnsYcbamMPpRrFYGj3kK1RzM3Nxb59+zBjxgyvvl9dXY2GhgbNPwsA27Ztw/z587F//36393bs2IGFCxdi9+7dkt+PiopCcnKyon3t27cPERERGD16NPdadHQ0Ro0ahWPHjqGoqAgA4HQ6sXjxYphMJmRnZ8NkMimOh8FgMBiMQBFKjmIwEJwS3AMOhwOrV6/GqFGj0LFjR9XfX7p0KWpqahAREYGePXti6tSpuOGGG3z+LGHixIk4fvw4Fi5ciJdffhk33XQTgEZRt2LFCgwfPhxjxoxRfdxinDp1CmlpaYiLi+O9TtLlp0+fhtVqxfLly1FaWorly5cb5slMqRgORVjs4Us4x89iD0/Uxh5KQjEY2t0YikBjPv30UxQVFWHVqlWqvmexWDB48GD0798fiYmJOHfuHDZv3ozp06djzZo16PL/tXfnUU3d6RvAHwQJCCqIggsWQawVxWVEbS0oWGpdTq0Wl7ocD1oc6wbTal2YcUWrtqjHnlqstdZhxtal1nGnSo/VkW7aYnUArdaqKGFJBCSQAAn394eH/IgJSGIwubnP5xzOKd978837cDF9ueuzz1q0rqn3WbVqFd59910kJiZiy5YtUKvVSEpKwqBBg7B06VKr7dFTKpUmfxFrxxQKBfLz83Hs2DG4uroa7Hl8//330adPH5PzpqenIz09HSqVyip1mqLRaODm5tZk89szZpdmdkDa+Zmd2RvDkQ49i2G7i/Mn24DS0lLs2rUL06dPh5eXl1mvDQ0NRWhoqP778PBwREZGYsaMGdixYweSk5MtWtcUmUyG9evXIyEhAYsXL0Z1dTV69OiB1atXW/UXvrKy0uRfWrX/0CorK9G+fXuTh8EbEh0djejoaFy7dg2zZs2ySq2PKi8vN3sbOgpm97J1GTYj5fzM7mXrMmzC3OyOtEdRDNvd4c5R3LlzJ1q2bImYmBirzOfv74/w8HBkZmZCp9NZbV3g4Un2c+fOxYMHD6BWq7FgwQLIZDKr1F1LJpOhurraaLyqqkq/nIiISCwcqVEUA4dqFHNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDggdnz+vr6orq6GhqNxqrr5uXlISkpCc888wzat2+P5cuXQ6FQmF1fQ3x8fKBUKo3Ga8fatm1r1fezJnu/EqwpMbt0STk/s0uTudlNNYVibRTFsN0dqlFUKBSoqanB1q1bMWnSJP1XdnY2cnNzMWnSJOzevdvsefPy8uDq6tqo+x01dl2FQoF33nkHLi4u2Lx5MzZt2gSNRoOFCxda1MzWJzg4GHfv3kV5ebnBeHZ2tn65vZLL5bYuwWaYXbqknJ/Zpcnc7M7OzmjWzLB9Ees5imLY7uL8ydYjMDAQ69atMxrfuXMnKioqEB8fj44dOwJ4eAJpQUEBWrdurT8/oKSkxOhcgRs3biAjIwODBg0y+MU0Z91HlZWVYdGiRVCr1fjoo4/g6+sLAEhOTkZCQgKWLFmCzZs3W+VGnJGRkdi7dy+OHDmiv49iVVUVTpw4gZCQEPj5+T3xezSVmpoaW5dgM8wuXVLOz+zSZEl2V1dXgyN3Yt2jKIbt7lCNopeXFyIiIozGDxw4AAAGy3JycpCQkIDY2FjMnDkTALBy5UrIZDL06tUL3t7euHXrFo4ePQo3NzfMnj3bYE5z1n3UoUOHUFhYiA8//BCdO3fWj3fr1g0bNmzAwoULkZaWhnHjxtU7x8GDB6FSqfSHkDMyMlBYWAjg4dNiap+qEhISgqioKOzYsQMlJSXo1KkT0tLSkJ+fjyVLljRYp62J4Y71TYXZpUvK+ZldmizJ7iiNohi2u0M1ik8qIiICp0+fxv79+/VXIg0ZMgSxsbHw9/e3eN1HTZkyBREREQbPoK3Vu3dvbN++HUFBQQ3OsW/fPuTn5+u/P3funP7K5eHDhxs8fi8xMRF+fn745ptvoFKpEBQUhI0bN6Jv376P+5HY1KP3fpQSZpcuKedndmmyJPujF7SItVEUw3Z3EgRBsHURJF61t8f59NNP0b17d6vOfe/ePVGc6NsUmF2a2QFp52d2Zm+sTp06IS8vT/+9UqlEmzZtrF1akxPDdneoi1mIiIjI8TnKHkUxYKNIdkuMfx1aC7NLl5TzM7s0WZLdURpFMWx3Nopkt2pvCi5FzC5dUs7P7NJkSXZHaRTFsN3ZKJLdasrnSNs7ZpcuKedndmmyJPujjWJDt6SzZ2LY7uL8yRIREZFk1W0UmzdvDicnJxtW49jYKJLdqr05uhQxu3RJOT+zS5Ml2R9tFMVKDNudjSLZrYKCAluXYDPMLl1Szs/s0mRJ9rrNoZgbRTFsdzaKZLd0Op2tS7AZZpcuKedndmmyJHvdPYpifc4zII7tzkaR7Jabm5utS7AZZpcuKedndmmyJLujHHoWw3Zno0h2q2XLlrYuwWaYXbqknJ/ZpcmS7I7SKIphu7NRJLtVVFRk6xJshtmlS8r5mV2aLMnuKIeexbDd2SgSERGRqDjKHkUxYKNIdsvb29vWJdgMs0uXlPMzuzRZkt1RGkUxbHc2imS3tFqtrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbpWVldm6BJthdumScn5mlyZLsjvKOYpi2O5sFImIiEhUHGWPohiwUSS71aFDB1uXYDPMLl1Szs/s0mRJdkdpFMWw3dkokt0Sw20DmgqzS5eU8zO7ND3p7XHE3CiKYbuzUSS7JYaTfJsKs0uXlPMzuzQ96cUsYj5HUQzbnY0i2S2ZTGbrEmyG2aVLyvmZXZosyV53L6KY9yiKYbuzUSS75eXlZesSbIbZpUvK+ZldmizJ7iiHnsWw3dkokt0qKCiwdQk2w+zSJeX8zC5NlmR3lEZRDNudjSIRERGJiqOcoygGbBTJbrVu3drWJdgMs0uXlPMzuzRZkt1R9iiKYbuzUSS7JQiCrUuwGWaXLinnZ3ZpsiS7ozSKYtjubBTJbj148MDWJdgMs0uXlPMzuzRZkt1RGkUxbHc2ikRERCQqPEfx6WGjSHarffv2ti7BZphduqScn9mlyZLsjrJHUQzbnY0i2S2lUmnrEmyG2aVLyvmZXZosyd6vXz+0atUKABAZGWnlip4eMWx37q8lu1VdXW3rEmyG2aVLyvmZXZosyd6qVSv88ccfKCwsREhISBNU9XSIYbuzUSS7VffQgtQwu3RJOT+zS5Ol2du2bYu2bdtauZqnSwzbnY0ioaqqCps3b8bFixehUqnQpUsXzJ8/H7169bJpXW3atLHp+9sSs0uXlPMzuzQxu33jOYoEnU6H9u3bY9u2bThx4gQmTJiAZcuWoaKiwqZ15efn2/T9bYnZpUvK+ZldmpjdvrFRJLi7uyM2NhZ+fn5o1qwZXnrpJbi4uCA3N9fWpREREZENifLQc2pqKnbu3InAwED885//bHDdzMxMJCQkmFyWkpKCnj176r/PyclBWloaMjMzkZ+fj1atWqFnz56Ii4tD586dLZ7X2ioqKrB3715kZ2cjJycHZWVlWLZsGUaOHGm0blVVFT777DOcOnUKZWVl6Nq1K+Li4jBgwIB658/NzUVZWRk6derUZBkao/aKNilidumScn5mlyZmt2+iaxQLCwvx73//G+7u7ma9LiYmBj169DAYe7QR+uKLL3DlyhVERUWha9euUCqVOHToEOLi4pCSkoKgoCCL5rW20tJS7N69G35+fggODkZmZma9665fvx7fffcdJkyYAH9/f5w8eRKLFy/G1q1b0bt3b6P1KysrsXbtWkydOhWenp5NGeOxnJycbPr+tsTs0iXl/MwuTcxu30TXKH788ccICQlBTU0NSktLG/26Pn36PPZeSxMnTsSKFSsMbt45bNgwzJgxA3v27MHy5cstmreusrIy/Prrrxg6dKjJ5enp6XjxxRcbbIR9fHxw6NAh+Pj44OrVq/jrX/9qcr3s7Gx8++23mDNnDiZPngwAeOWVVxAbG4uUlBSkpKQYrK/VarFixQp06tQJsbGxjc7UVEpLS23erNoKs0szOyDt/MzO7FIjhuyiOkfx0qVLOHv2LBYsWGDR6ysqKqDVautdHhoaanSH986dO6NLly64ffu2xfPWdejQIaxatQrnzp0zWnbs2DGsWbMGaWlpDc7h6uoKHx+fx77X2bNn4ezsjDFjxujHZDIZRo8ejaysLBQUFOjHa2pqsHbtWjg5OSExMVEUf+UQERFR0xLNHkWdToetW7di9OjR6Nq1q9mvX79+PdRqNZydndG7d2/MmTMHzz333GNfJwgCiouL0aVLF6vMO2XKFOTk5GDNmjXYuHEj+vfvD+BhU7dp0yYMHz4cY8eONTufKdevX4e/vz88PDwMxmsPld+4cQN+fn4AgOTkZCiVSiQnJ9vNczNra5MiZpcuKedndmlidvtmHx1BIxw+fBgFBQXYsmWLWa9zcXHB0KFD8fzzz6N169a4desW9u3bh/nz5+Pjjz/Gs88+2+DrT58+jaKiIsycOdMq87q4uGDVqlV49913kZiYiC1btkCtViMpKQmDBg3C0qVLrbY3T6lUmtzzWDumUCgAPLw8/9ixY3B1dTXY+/j++++jT58+JudOT09Heno6VCqVVWo1paSkRPQ3U7UUs0szOyDt/MzO7FIjhuyiaBRLS0uxa9cuTJ8+HV5eXma9NjQ0FKGhofrvw8PDERkZiRkzZmDHjh1ITk6u97W3b9/Gli1b0LNnT4wYMcJq88pkMqxfvx4JCQlYvHgxqqur0aNHD6xevdqqe/MqKytNPiy99k7wlZWVAB4+lNzUofCGREdHIzo6GteuXcOsWbOevFgTauuTImaXLinnZ3ZpYnb7JopzFHfu3ImWLVsiJibGKvP5+/sjPDwcmZmZ0Ol0JtdRKpVYsmQJPDw8kJSUBGdnZ6vMW8vDwwNz587FgwcPoFarsWDBAshkMovy1Ecmk5l8jmRVVZV+uT0z1eRKBbNLl5TzM7s0Mbt9s/tGMTc3F0ePHsX48eOhUCggl8shl8tRVVUFrVYLuVyOBw8emD2vr68vqqurodFojJapVCosXrwYKpUKycnJZu0WbmjeuvLy8pCUlIRnnnkG7du3x/Lly/WHgq3Fx8cHSqXSaLx2zN53d9t7fU2J2aVLyvmZXZqY3b7ZfaOoUChQU1ODrVu3YtKkSfqv7Oxs5ObmYtKkSdi9e7fZ8+bl5cHV1dXoNjSVlZVYunQpcnNzsWHDhnovYjF33kczvfPOO3BxccHmzZuxadMmaDQaLFy40KKmtz7BwcG4e/cuysvLDcazs7P1y+2ZXC63dQk2w+zSJeX8zC5NzG7f7P4cxcDAQKxbt85ofOfOnaioqEB8fDw6duwIANBoNCgoKEDr1q315zKWlJQYndd448YNZGRkYNCgQWjW7P97ZZ1Oh1WrViErKwvvvfceevXqVW9d5sxbV1lZGRYtWgS1Wo2PPvoIvr6+AB5edZyQkIAlS5Zg8+bNZt9Q3JTIyEjs3bsXR44c0d9HsaqqCidOnEBISIhVrraqPb+iodsHWaqoqKhJL5axZ8wuzeyAtPMzO7NLjT1kDwgIgJubW73L7b5R9PLyQkREhNH4gQMHAMBgWU5ODhISEhAbG6u/SnnlypWQyWTo1asXvL29cevWLRw9ehRubm6YPXu2wZzbtm1DRkYGBg8ejLKyMpw6dcpg+fDhw/X/bc68dR06dAiFhYX48MMPDR4L2K1bN2zYsAELFy5EWloaxo0b1+DP5eDBg1CpVPrDyBkZGSgsLATw8Gkxnp6eCAkJQVRUFHbs2IGSkhJ06tQJaWlpyM/Px5IlSxqcv7FqH2i+du1aq8xHRERET8+nn36K7t2717vcSRAE4SnWYzXx8fEoLS01eNZz7fOX6zaKX331FU6fPo179+6hvLwcXl5e6N+/P2JjY+Hv728056VLl+p9z7pXBpszb11arRa5ubkIDAw0ufyPP/5AUFDQY2+RM3HiRH2T9qh9+/ahQ4cOAB7u8at91rNKpUJQUBDi4uIwcODABudvrJKSEvz888/o0KGD/mpqa7h9+zbWrl2Lf/zjHwgICLDavGLA7NLMDkg7P7MzO7Pbhuj3KNbnww8/NBrr16+f0W1exo8fj/Hjx1s8Z33MmbcuFxeXeptEAI2+mfj+/fsbtZ5MJsPcuXMxd+7cRq1vLi8vL4M9rdYWEBDQ4F86jozZpZkdkHZ+Zmd2qbH37HZ/MQsRERER2QYbRSIiIiIyiY0i2SUfHx/ExsaafASho2N2aWYHpJ2f2ZldasSSXbQXsxARERFR0+IeRSIiIiIyiY0iEREREZnERpGIiIiITGKjSEREREQmifaG2+SYqqqq9E+SKSsrQ9euXREXF4cBAwbYurTHqqiowN69e5GdnY2cnByUlZVh2bJlGDlypNG6t27dwkcffYQrV67AxcUFL7zwAubPn2/0/PCamhrs3bsX//nPf3D//n34+/tj2rRpiI6OtnjOppCTk4O0tDRkZmYiPz8frVq1Qs+ePREXF2fwqEpz6hRL9j///BOff/45rl27hvv378PNzQ0BAQGYPHkyXnzxRYvqFEv2R6WmpmLnzp0IDAw0eGoWAFy5cgXbt2/H77//Dg8PD0RFRWHWrFlo0aKFwXrmfAY0ds6mUPskMFNSUlLQs2dPs+sUS/Za165dw+eff44rV66gqqoKHTt2xKuvvmrwMApHzP7ee+8hLS2t3uUHDx5Eu3btzKrVnvPzqmeyK6tXr8Z3332HCRMmwN/fHydPnsTVq1exdetW9O7d29blNUgul2PSpEnw8/NDx44dkZmZabJRLCwsxJtvvglPT0/ExMRArVZj79698PPzwyeffILmzZvr1/3kk0+wZ88evPrqq3juuedw/vx5/PDDD1i5ciVeeukli+ZsCsuXL8eVK1cQFRWFrl27QqlU4tChQ1Cr1UhJSUFQUJDDZv/hhx9w8OBB9OzZE23btoVGo8HZs2dx+fJlLFq0CGPGjHHY7HUVFhZi2rRpcHJyQvv27Q0axevXr2POnDkICAjAmDFjUFhYiH379qFfv3744IMPDOZp7GeAOXM2hdpGMSYmBj169DBYNnDgQH2j7ojZAeDnn3/GsmXL0K1bNwwbNgzu7u64d+8eBEHAnDlzHDr7//73P+Tl5RmMCYKATZs2oX379khNTTW7VrvOLxDZiaysLCEiIkL44osv9GMajUZ44403hLfeesuGlTVOZWWloFAoBEEQhJycHCEiIkI4ceKE0XqbNm0SoqOjhfz8fP3YhQsXhIiICOHw4cP6scLCQiEqKkrYvHmzfqympkaYN2+e8PrrrwtardbsOZvK5cuXhaqqKoOxO3fuCC+99JKwZs0as+sUU3ZTtFqtMGPGDGHq1Kn6MUfPvnLlSiEhIUFYsGCBMH36dINlixYtEsaOHSuoVCr92NGjR4WIiAjhp59+0o+Z8xnQ2Dmbyq+//ipEREQIZ86caXA9R8yuUqmE1157TUhMTBR0Ol296zli9vr89ttvQkREhJCamqofc5T8PEeR7MbZs2fh7Oys3wMDPHxW9ejRo5GVlYWCggIbVvd4rq6ujbpx6tmzZzF48GD4+fnpx8LCwtC5c2ecOXNGP3b+/HlotVqMGzdOP+bk5ISxY8eiqKgIWVlZZs/ZVEJDQ432XnXu3BldunTB7du3za5TTNlNcXZ2hq+vL1QqlX7MkbNfunQJZ8+exYIFC4yWlZeX4+LFixg+fDg8PDz046+88grc3d0N6mzsZ4A5cz4NFRUV0Gq1RuOOmj09PR3379/HrFmz0KxZM6jVatTU1Bis46jZ65Oeng4nJyf96SGOlJ+NItmN69evw9/f3+AfAAD9YZ0bN27YoiyrKioqQnFxsckHwPfo0QPXr1/Xf3/9+nW4u7sjICDAaL3a5ebO+TQJgoDi4mK0bt0agONnV6vVKCkpwb1797B//3789NNP+Mtf/mJ2nWLLrtPpsHXrVowePRpdu3Y1Wn7z5k3odDqjOps3b45u3boZZW/MZ4A5cza19evXY8SIEXj55ZeRkJCAq1ev6pc5avaLFy/Cw8MDCoUCU6dOxSuvvIKRI0di06ZNqKysNLtOMWU3RavV4syZM+jVqxc6dOgAwLHys1Eku6FUKk3ukasdUygUT7skq1MqlQBQb84HDx6gqqpKv663tzecnJyM1gP+/+dhzpxP0+nTp1FUVIRhw4YBcPzs27Ztw5gxYzB58mR8/PHHiIiIwNtvv212nWLLfvjwYRQUFCAuLs7k8sfVWfffdWM/A8yZs6m4uLhg6NChiI+Px3vvvYc333wTN2/exPz58/H777+bXaeYst+9exc6nQ6JiYkYOHAgkpKSMGrUKBw+fBgbNmwwu04xZTfl559/RmlpKV5++WX9mCPl51XPZDcqKytNnnzv6uqqXy52tRkel9PV1bXRPw9z5nxabt++jS1btqBnz54YMWKE2XWKMfuECRMQGRkJhUKBM2fOQKfTobq62uw6xZS9tLQUu3btwvTp0+u9yvpxddZtZq2V/Wk0yKGhoQgNDdV/Hx4ejsjISMyYMQM7duxAcnKyw2ZXq9XQaDR47bXX9Fd+Dx06FNXV1Thy5AhmzpzpsNlNSU9Ph4uLC6KiovRjjpSfexTJbshkMv3/WOuq/eWXyWRPuySrq83QmJyN/XmYM+fToFQqsWTJEnh4eCApKQnOzs5m1ynG7AEBAQgLC8OIESOwceNGqNVqLF26FIIgOGz2nTt3omXLloiJial3ncfVWbeRtVb2p/lHUV3+/v4IDw9HZmYmdDqdw2avraHuFfgA9OfnZWVlOWz2R1VUVOD8+fMYOHCg/jQbwLF+79kokt3w8fHR71qvq3asbdu2T7skq6s9ZFBfzlatWun/sfv4+OD+/fsQHrmD1aM/D3PmbGoqlQqLFy+GSqVCcnKywTZz9OyPioyMxNWrV5Gbm+uQ2XNzc3H06FGMHz8eCoUCcrkccrkcVVVV0Gq1kMvlePDgwWPrfPR3pDGfAebM+bT5+vqiuroaGo3GYbPX1tCmTRuDcW9vbwBAWVmZw2Z/1Pnz56HRaAwOOwPm1Wrv+dkokt0IDg7G3bt3UV5ebjCenZ2tXy527dq1g5eXF65du2a0LCcnxyBjcHAwNBqNwVXDgPHPw5w5m1JlZSWWLl2K3NxcbNiwAV26dDFY7sjZTak9TKRSqRwyu0KhQE1NDbZu3YpJkybpv7Kzs5Gbm4tJkyZh9+7dCAwMhLOzs1Gd1dXVuH79ulH2xnwGmDPn05aXlwdXV1e4u7s7bPbaiymKiooMxmvPkfPy8nLY7I86ffo03N3djW6u70j52SiS3YiMjIROp8ORI0f0Y1VVVThx4gRCQkIMbgEiZkOHDsX3339vcLufX375Bbm5uQbnuISHh8PFxQWHDh3SjwmCgMOHD6Ndu3bo1auX2XM2FZ1Oh1WrViErKwurV682qK0uR8xeXFxsNKbVavHNN99AJpPpG2ZHyx4YGIh169YZfQUGBsLPzw/r1q3D6NGj4enpibCwMJw6dQoVFRX613/zzTdQq9UGdTb2M8CcOZtKSUmJ0diNGzeQkZGBAQMGoFmzZg6bvfY9jh8/bjB+/PhxODs7o1+/fg6bva6SkhJcvHgRQ4YMgZubm8EyR8rPi1nIboSEhCAqKgo7duxASUkJOnXqhLS0NOTn52PJkiW2Lq9RDh48CJVKpT80kJGRgcLCQgBATEwMPD09MW3aNHz33Xf429/+hvHjx0OtVuPLL79EUFCQwVNcfH19MWHCBHz55ZfQarXo0aMH/vvf/+Ly5ctYvny5/tw/AI2es6ls27YNGRkZGDx4MMrKynDq1CmD5cOHDzerTjFlT05ORnl5Ofr06YN27dpBqVTi9OnTuHPnDubNm6d/rJajZffy8kJERITR+IEDBwDAYFlcXBzmzZuHBQsWGDxNYsCAARg0aJB+PXM+Axo7Z1NZuXIlZDIZevXqBW9vb9y6dQtHjx6Fm5sbZs+e7dDZn332WYwaNQonTpyATqdD3759cenSJZw5cwbTpk3THwJ1xOx1ffvtt9DpdEaHnc2t1d7z8xF+ZFcqKyv1z7tUqVQICgpCXFwcBg4caOvSGmXixInIz883uWzfvn36e2z9+eefRs/nnTdvntE5PzU1Nfjiiy9w5MgRKJVK+Pv7Y+rUqfrGq67GztkU4uPjcenSpXqXnzt3zuw6xZL922+/xfHjx3Hz5k2UlpaiRYsW6N69O15//XWEh4dbVKdYspsSHx+P0tJSo2c9X758Wf982hYtWiAqKgqzZ882ej6tOZ8BjZ2zKXz11Vc4ffo07t27h/Lycnh5eaF///6IjY2Fv7+/RXWKJTvwcK/5v/71L5w8eRIKhQJ+fn4YN24cJk6caFGdYspea86cOcjLy8PXX39t8AecJbXac342ikRERERkEs9RJCIiIiKT2CgSERERkUlsFImIiIjIJDaKRERERGQSG0UiIiIiMomNIhERERGZxEaRiIiIiExio0hEREREJrFRJCIiIiKT2CgSEYlMfHw8hgwZYusyHuvkyZMYMmSI/mvVqlUWzbN9+3aDeXbt2mXdQomoXi62LoCISMrMbfjqPjdbLMLDwxEcHIygoCCLXh8WFgZXV1fk5+cjLS3NytURUUPYKBIR2VBsbKzR2FdffQWVSmVyGQD8/e9/h0ajadrCrCgiIgIjR460+PVhYWEICwtDZmYmG0Wip4yNIhGRDc2cOdNoLC0tDSqVyuQyAPDz82vqsoiIALBRJCISnfj4eFy6dMngMPTJkyexfv16LFu2DK1atUJqaipu3ryJli1bYtSoUZg5cyaaNWuGkydPYv/+/cjNzYWXlxdiYmIwefJko/cQBAEnTpzA8ePHcfPmTeh0OnTp0gVjx47F6NGjrZJDoVBgz549+PHHH1FUVARXV1e0adMGffv2xVtvvQVPT0+rvA8RWY6NIhGRAzl37hwuXLiAiIgIhIaG4ocffkBqaioEQYCnpydSU1MRHh6Ovn374ty5c0hJSYG3tzdGjBihn0MQBCQlJSE9PR3+/v6Ijo5G8+bNceHCBWzcuBG3bt3CvHnznqhOjUaDefPmIT8/HwMGDMCQIUNQXV0NuVyOU6dO4Y033mCjSGQH2CgSETmQn376Cdu2bUOPHj0APDy0PXnyZBw4cAAtWrTAZ599ho4dOwIA3njjDUyZMgV79+41aBSPHTuG9PR0jBo1CosWLYKLy8P/VVRXV2P58uXYt28foqOj0b17d4vr/OWXXyCXyzFhwgQsWLDAYFlFRYX+PYnItnh7HCIiBzJ8+HB9kwgALVq0wAsvvACNRoOxY8fqm0Tg4bmOoaGhuH37NrRarX7866+/hru7O95++22Dhq158+aYNWsWACA9Pd0q9cpkMqOxFi1awNXV1SrzE9GT4Z9sREQOJDg42GjMx8enwWU6nQ7FxcVo164dNBoNbt68ibZt22LPnj1G6+t0OgDAnTt3nqjOPn36wMfHB3v27MGNGzcwePBg9O3bFwEBAXBycnqiuYnIetgoEhE5EA8PD6MxZ2fnxy6r3aNYVlYGQRBQVFSE3bt31/s+T3p7Hk9PT2zfvh2fffYZvv/+e/z4448AAF9fX0ydOhXjxo17ovmJyDrYKBIRkV5tM9m9e3d8+umnTfpefn5+SExMRE1NDf744w9cuHABBw8exJYtW9CyZUtER0c36fsT0ePxHEUiItJr0aIFAgICcPv2bZSVlT2V92zWrBm6deuGKVOmYMWKFQCAjIyMp/LeRNQwNopERGRg/Pjx0Gg0+OCDD6BWq42W5+XlQS6XP9F7/Pnnn7h//77ReHFxMQDwYhYiO8FDz0REZGDMmDHIyspCWloarly5grCwMPj4+KC4uBh37txBdnY2VqxYgQ4dOlj8HhcuXEBKSgpCQ0PRuXNntGrVCnl5ecjIyICrqyvPUSSyE2wUiYjIgJOTExITE/H888/j2LFj+P7776FWq+Ht7Q1/f3/MnTsX/fv3f6L3GDhwIPLz8/Hbb7/h3LlzUKvVaNu2LYYNG4YpU6agS5cu1glDRE/ESRAEwdZFEBGR46n7WMGRI0c+8XyZmZlISEhAbGxsvc/BJiLr4jmKRETUpNavX48hQ4Zg1apVFr1++/btGDJkCBISEqxbGBE9Fg89ExFRkwgODkZsbKz++6CgIIvmCQsLM7i4pV+/fk9aGhE1Eg89ExEREZFJPPRMRERERCaxUSQiIiIik9goEhEREZFJbBSJiIiIyCQ2ikRERERkEhtFIiIiIjKJjSIRERERmcRGkYiIiIhMYqNIRERERCb9HxoZKDQ5ADtRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum(binned_data=\"binned_data.hdf5\", output_name=\"crab_spec\")\n", + "analysis.get_raw_lightcurve(binned_data=\"binned_data.hdf5\", output_name=\"crab_lc\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3: Combining multiple data files\n", + "\n", + "### Combining unbinned data\n", + "One way to combine data files is to first combine the unbinned data, and then bin the combined data. As a proof of concept, we'll combine the crab dataset 3 times, and as a sanity check we can then compare to 3x the actual data. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "adding unbinned_data.hdf5...\n", + "\n", + "\n", + "adding unbinned_data.hdf5...\n", + "\n", + "\n", + "adding unbinned_data.hdf5...\n", + "\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.combine_unbinned_data([\"unbinned_data.hdf5\",\"unbinned_data.hdf5\",\"unbinned_data.hdf5\"], output_name=\"combined_unbinned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bin the combined data file:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "analysis.get_binned_data(unbinned_data=\"combined_unbinned_data.hdf5\", output_name=\"combined_binned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get raw spectrum and light curve:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGIUlEQVR4nO3deXxU9b3/8fdkkpnsgSxkg2oBi8RWEIXaBQoaVBoFV6S1rfxaQpW6QIqx9FGt2vTKJTbicrWVS0tvHw+vINVqFUGDilRtUSt1QVCsUsiekGVClkkm8/uDZm7GhJDt5HwneT0fjz5qzpw55z1fhg+ffM/m8Pv9fgEAAECSFGZ3AAAAAJPQHAEAAHRBcwQAANAFzREAAEAXNEcAAABd0BwBAAB0QXMEAADQBc1RP7W0tOjAgQNqaWmxOwoAALAAzVE/HTp0SLm5uTp06JAl229oaLBkuwBGBmoEYD2aI8N4PB67IwAwGDUCsB7NkWESEhLsjgDAYNQIwHo0RwAAAF3QHBmmvr7e7ggADEaNAKwXbncAAABM4PP51NbWZncMDJLT6VR4eLgcDseAt0FzZJjU1FS7IwAwGDXCGo2NjTpy5Ij8fr/dUTAEoqOjlZ6eLpfLNaD30xwZpra2VikpKXbHAGAoasTQ8/l8OnLkiKKjo5WSkjKoGQfYy+/3y+v1qqqqSp988olOO+00hYX1/wwimiPDeL1euyMAMBg1Yui1tbXJ7/crJSVFUVFRdsfBIEVFRSkiIkKHDh2S1+tVZGRkv7dBc2SYiIgIuyMAMBg1wjr9nTHy+XzavXu3ysrKlJ6ertmzZ8vpdFqUDv0xkNmirmiODJOUlGR3BAAGo0aY4YknntDNN9+sI0eOBJaNHz9e9913ny6//HIbk2EocCm/YcrLy+2OAMBg1Aj7PfHEE7ryyiuDGiNJKikp0ZVXXqknnnjCpmRmqaur09q1a+2OMSA0R31UXFysn/zkJ3rggQfsjmIUr9er9evX68Ybb9T69es5HwLAiObz+XTzzTf3eFVb57KVK1fK5/MN2T7b29uHbFvD6WTNkcmfi+aoj7Kzs7V27VrdeOONlu4nPj7e0u0Ppfz8fEVHR2vVqlV68MEHtWrVKkVHRys/P9/uaMCIFUo1YiTavXt3txmjrvx+vw4fPqzdu3cPaj8Oh0M///nPNXPmTK1Zs0bvvvuuvv71r2vGjBnKyspSQUFBYN3MzEyVlpZKkhYvXqyvfvWrkqTW1lYlJSWptbU1aNsdHR264YYbNHXqVE2bNk1nn322Wlpa9Omnn2rMmDFavXq1zjzzTJ1xxhkqLi4OvG/Hjh36+te/rrPPPluzZs3SSy+9FHjtd7/7naZPn65p06bpnHPO0aeffqrrrrtOHo9H06dP1znnnCNJmjt3rm666SZ95Stf0QUXXBDYZ6fGxsagc78cDod++ctf6stf/rJOPfVU/elPf9Ldd9+tc845R6eddppefvnlQY3ziXDOkWEGexLZcMnPz1dhYWG35T6fL7B83bp1wx0LGPFCpUaMVGVlZUO6Xm+cTqfeeOMNSccfOLxz50653W41Nzfrq1/9qrKzs3Xuuefq/PPPV3Fxsb7zne/oH//4h8LDw9XQ0KA33nhDZ599ttxud9B2//GPf2jnzp16//33FRYWpvr6+sD9gOrr6zV16lTdc889+utf/6qFCxfq448/VlVVle644w7t2LFD8fHxOnjwoGbPnq1PP/1Ur7/+uu666y699tprSk9PV1NTkyTp17/+taZPn669e/cG7f/DDz/UK6+8ooiICH366acnHYfY2Fj97W9/086dO7Vo0SI9+OCDevPNN/X444/rlltuCYzRUKI5MkxdXZ1iYmLsjtErr9eroqKiXtcpKipSQUHBgG/ABaBnoVAjRrL09PQhXa833//+9wP/3dzcrBUrVmjv3r0KCwvT4cOHtXfvXp177rnKzs5WcXGxzjjjDE2bNk2pqal6+eWX9frrr+v888/vtt2JEyeqvb1d3//+9zVv3jzl5OQEmu7w8HAtXbpUknTuuecqIyNDb7/9tt577z0dPHhQc+bMCWwnLCxM//rXv/Tss8/qu9/9buAzR0dH9/q5vvOd7/Trqsurr75aknTOOefo2LFjWrJkiSRp1qxZ+uijj/q8nf6gOTLMI488oo0bN9odo1cej+ekx9N9Pp9SUlIUFxc3TKmOy8vLU15e3rDuE8DoMXv2bI0fP14lJSU9nnfkcDg0fvx4zZ49e9D7io2NDfz3T3/6UyUnJ+vtt99WeHi4Lr/8crW0tEg6ftrHmjVrlJWVpezsbKWmpqq4uFivv/66Hn744W7bTUhI0Hvvvaddu3bppZde0po1a/TKK68oPLznlsDhcMjv92v+/Pl69NFHh/RzhYeHB/170vmZuuq8T1HnbRK6/mzVeUs0R4bp6OhQSUmJ3TGGRENDgxoaGoZ9n8BINm7cOLsjjGpOp1P33XefrrzyykDT0KnzXJn169cP+f2OamtrNXXqVIWHh+vAgQN64YUXArM4GRkZSkhI0K9//Wu9+OKLSk5O1qpVq+TxeDRjxoxu26qqqpLT6dQFF1yg+fPna9euXdq3b5/OPPNMtbe36w9/+IOWLl2qPXv2qLS0VNOnT1d6erruvPNOvfPOOzrzzDMlSXv27NGsWbN0ySWXaOnSpbr++uuDDqvFx8erublZXq/3hEcR0tLS5Pf7tW/fPmVlZel//ud/hnTcBormyDAul0uZmZl2x+iVx+PpUxMSHx8/7DNHnKyKka6+vl7Jycl2xxjVLr/8cm3durXH+xytX7/ekvsc/exnP9N3v/td/f73v9ekSZN03nnnBb2enZ2tZ555RhMnTpR0vOk466yzejxH7fDhw8rNzVVbW5t8Pp++9rWvacGCBSopKQnMKk2bNk3t7e169NFHFRcXp7i4OD366KP64Q9/qKamJnm9Xp111ll69NFHNWfOHP385z/XhRdeKIfDIZfLpa1bt+qUU07R9773PZ155pmKjY3Vm2++2S1LeHi4HnjgAV188cVKSkrSlVdeOeRjNxAOP0/Z65cDBw4oNzdXGzZs0JQpU4Z8+yUlJcY3R16vV9HR0b0eWnM6nWpqauKcI2CIhUKNCDUtLS365JNP9PnPf75fj5oYaXfI/vTTTzV9+nTV1dXZHWXQBvpn2omZI8Oc6JivSVwul/Ly8nq8Wq1TXl4ejRFggVCoEaOF0+nU3Llz7Y4BC/C3zDChcj5B52X6RUVFQTNITqdTeXl5XMYPWCRUagRCz6mnnjoiZo2GAs2RYUpLS0NmynzdunUqKCjQQw89pI8//liTJk3SihUrmDECLBRKNSLUcJbJyNHR0TGo99McYVBcLpdWrlxpdwwAGLCIiAg5HA5VVVUpJSUl6A7NCC1+v19er1dVVVUKCwsb8C/rNEeGGe6ruwCEFmrE0HM6nRo/fryOHDnSpzs2w3zR0dH63Oc+N+A7ytMcGYaTLQH0hhphjdjYWJ122mlqa2uzOwoGyel0Kjw8fFAzgPwtM0xtbe1Jb70OYPSiRljH6XSG9KX4GDo8wRAAAKALmiPDpKSk2B0BgMGoEYD1aI4M4/F47I4AwGDUCMB6NEeG6emJxADQiRoBWI/myDCcDAigN9QIwHo0R4ZJS0uzOwIAg1EjAOtxKX8fFRcXq7i4WI2NjZbuhyduA+gNNQKwHs1RH2VnZys7O1sHDhxQbm6u3XEAAIBFOKxmmJiYGLsjADAYNQKwHs2RYdxut90RABiMGgFYj+bIMEePHrU7AgCDUSMA69EcAQAAdMEJ2YZJTk62OwJCkNfr1UMPPaSPP/5YkyZN0ooVK+RyueyOBQtQIwDrMXNkmGPHjtkdASEmPz9f0dHRWrVqlR588EGtWrVK0dHRys/PtzsaLECNAKzHzJFhmpub7Y6AEJKfn6/CwsJuy30+X2D5unXrhjsWLESNAKzHzJFhwsL4I0HfeL1eFRUV9bpOUVGRvF7vMCXCcKBGANZj5sgw6enpdkcIaUVFRSdtGEYKj8cjn8/X6zo+n08pKSmKi4sbplQnl5eXp7y8PLtjhCxqBGA9miPDlJaWKiMjw+4YIauhoUElJSV2xzBKQ0ODGhoa7I4RYFKWUESNAKxHc2QYv99vd4SQFh8fP2qeO+XxePrUaMTHxxs1cxQfH293hJBGjQCsR3NkmOjoaLsjhLTRdMjG6/UqOjq610NrTqdTVVVVXNY/glAjAOtxZp9hoqKi7I6AEOFyuU7aCObl5dEYjTDUCMB6NEeGqampsTsCQsi6det0yy23yOl0Bi13Op265ZZbuIx/BKJGANbjsBoQ4tatW6eCggLukA0AQ4TmyDBJSUl2R0AIcrlcWrlypd0xMAyoEYD1OKxmmJaWFrsjADAYNQKwHs2RYXhuEoDeUCMA69EcAQAAdEFzZJjRcgNDAANDjQCsR3NkmLKyMrsjADAYNQKwHs2RYTo6OuyOAMBg1AjAejRHhuHutwB6Q40ArEdzZJiYmBi7IwAwGDUCsB7NkWGqq6vtjgDAYNQIwHo0RwAAAF3QHBkmMTHR7ggADEaNAKw3apuj9957T9/4xjf0+9//3u4oQbxer90RABiMGgFYb1Q2Rx0dHXrwwQd1+umn2x2lm8bGRrsjADAYNQKwXrjdAezw5z//WVOnTuUZRQAAoBujZ46ampr029/+VqtXr1ZOTo7mzJmj5557rsd1vV6vHn74YV122WXKzs7WD3/4Q73xxhvd1quvr9fjjz+u73//+1bHH5CMjAy7IwAwGDUCsJ7RzVF9fb02bdqkQ4cOafLkyb2ue/fdd2vLli2aP3++brrpJoWFhSk/P1/vvPNO0HobNmzQVVddpbi4OCujD1hFRYXdEQAYjBoBWM/o5igpKUlPPvmkHn/8cV1//fUnXG/fvn3auXOnli9frhUrVmjhwoVav3690tLS9PDDDwfW+/DDD7V//35dfPHFwxF/QHw+n90RABiMGgFYz+hzjlwul5KSkk663q5du+R0OrVw4cLAMrfbrZycHD3yyCOqqKhQamqq9u7dq8OHD+uKK66QdPzERqfTqdLSUq1Zs8ayz9EfkZGRdkcAYDBqBGA9o5ujvvroo480fvz4brfVnzp1qiTp4MGDSk1N1cKFC3X++ecHXr///vuVnp6ua6655oTbrq6uVk1NTeDnQ4cODXH6YKYe7gNgBmoEYL0R0RzV1NT0OMPUuazzdvuRkZFBv3W53W5FRUX1Wmyefvppbdq0qdvyqqoqxcbGKj09XdXV1Wpra5Pb7daYMWMC5wQkJCTI7/eroaFBkpSWlqajR4/K6/UqIiJCSUlJKi8vlyTFx8fL4XDoo48+0rhx45Samqq6ujq1trYqPDxcKSkpKisrk3S8OIaHh6u2tlaSlJKSIo/Ho5aWFjmdTqWmpqq0tFSSFBsbK5fLpaNHj0qSkpOTdezYMTU3NyssLEzp6ekqKSmRdPyZTZGRkYFmMCkpSc3NzWpqapLD4VBGRobKysrU0dGhqKgoxcTEBMY2MTFRra2tgSsAMzMzVV5eLp/Pp8jISMXFxamqqkqSNHbsWLW3t8vj8Ug6foJpZWWl2tvb5Xa7lZCQoMrKSknSmDFj1NHRETSGNTU1amtrk8vl0tixY4PGWzp+rpokpaamqra29oTjHRYWprq6OknSuHHjVF9fHxjvcePGBcbwZOOdlpYWNIZut7vX8S4tLZXf71d0dLSioqKCxrulpSVoDHsbb6/XG7isOyMjQxUVFX0a7/T0dFVVVQXG+2Tf2a7jnZiY2O0723W8O7+zERERSk5ODvrOOp3OoPFuaGhQS0tLt/GOjY1VRERE0Hg3Njae8Dv72fFuamoK+s52He/o6Ohev7Ndxzs2NjZoDNva2oLGu/M7GxkZqfj4+KDvrM/nCxpvagQ1ghphRo3IzMxUXzj8fr+/T2vabP/+/Vq+fLnWrFmjBQsWBL22ZMkSTZgwQYWFhUHLS0tLtWTJEt1www1avHjxgPbb08xRQUGBNmzYoClTpgxom70pKSnp8x8egNGHGgFYb0TMHLndbrW1tXVb3nknWbfbPeBtJycnKzk5ecDv76+xY8cO274AhB5qBGA9o69W66ukpKSg2Z1OncuGs7kZrPb2drsjADAYNQKw3ohojiZPnqwjR450u+P1vn37Aq+His5jvgDQE2oEYL0R0RzNnTtXPp9PTz/9dGCZ1+vVtm3blJWVpdTUVBvTAQCAUGL8OUd//OMf1djYGDhE9uqrrwauUrjiiisUGxurrKwszZs3T4888ojq6uqUmZmp7du3q7y8XLfeeuuQ5CguLlZxcbHlD31MT0+3dPsAQhs1ArCe8VerLV68OHBZ4Gdt3rw5UChaW1u1ceNGPf/882psbNTEiRO1bNkyzZo1a0jzHDhwQLm5uZZdrdZ5w0oA6Ak1ArCe8TNHW7Zs6dN6brdbK1as0IoVKyxOZC1OtgTQG2oEYL0Rcc7RSDKY2w4AGPmoEYD1aI4MM2bMGLsjADAYNQKwHs2RYTpv0Q4APaFGANYz/pwjUwzX1WoAAMBeNEd9lJ2drezs7MDValbpfDAiAPSEGgFYj8NqhjH8zgoAbEaNAKxHc2SYhoYGuyMAMBg1ArAezREAAEAXNEeGSUtLszsCAINRIwDr0RwZpvMZcgDQE2oEYD2uVuuj4bqUv62tzdLtAwht1AjAejRHfTRcl/K7XC7Ltg0g9FEjAOtxWM0wiYmJdkcAYDBqBGA9miPDlJeX2x0BgMGoEYD1aI4AAAC6oDkyTHx8vN0RABiMGgFYj+bIMA6Hw+4IAAxGjQCsR3NkmPr6ersjADAYNQKwHpfy99Fw3ecIAADYy+HnEc/90nmfow0bNmjKlClDvv329naFh9OzAugZNQKwHofVDFNXV2d3BAAGo0YA1qM5Mkxra6vdEQAYjBoBWI/myDARERF2RwBgMGoEYD2aI8MkJyfbHQGAwagRgPVojgxTVlZmdwQABqNGANajOQIAAOiC5sgwcXFxdkcAYDBqBGA9miPDOJ1OuyMAMBg1ArAedxLro+G6Q3ZdXZ1iYmIs3QeA0EWNAKxHc9RH2dnZys7ODtwhGwAAjEwcVjPMuHHj7I4AwGDUCMB6NEeGaWhosDsCAINRIwDr0RwZpqWlxe4IAAxGjQCsR3NkGJ62DaA31AjAejRHhuF8AgC9oUYA1qM5MkxpaandEQAYjBoBWI/mCAAAoAuaI8PExsbaHQGAwagRgPVojgwTERFhdwQABqNGANajOTJMbW2t3REAGIwaAViPa0L7aLierQYAAOzl8Pv9frtDhJLOZ6tt2LBBU6ZMGfLte71euVyuId8ugJGBGgFYj8NqhmFmCkBvqBGA9WiODNPc3Gx3BAAGo0YA1qM5MkxYGH8kAE6MGgFYj79lhklPT7c7AgCDUSMA69EcGaakpMTuCAA+w+v1av369brxxhu1fv16eb1e27JQIwDrcSk/APQiPz9fRUVF8vl8gWWrV69WXl6e1q1bZ2MyAFahOTJMTEyM3REA/Ft+fr4KCwu7Lff5fIHlw90gUSMA63FYzTBut9vuCAB0/FBaUVFRr+sUFRUN+yE2agRgPWaODHP06FFlZmbaHQOwTFFR0UmbDhN4PJ6gQ2k98fl8SklJUVxc3DClkn7wgx/ozjvvHLb9AaMRzRGAYdXQ0DCiTipuaGhQQ0PDsO3P4/EM276A0YrmyDDJycl2RwAsFR8fHxKzox6Pp09NT3x8/LDOHKWlpQ3bvoDRiubIME1NTZxTgBEtLy9PeXl5dsc4Ka/Xq+jo6F4PrTmdTlVVVQ3rs85qa2uHbV/AaMUJ2YZpamqyOwIASS6X66RNXF5e3rA/BJYaAViPmaM+Ki4uVnFxseUPfXQ4HJZuH0DfdV6m/9n7HDmdTtvuc0SNAKzn8Pv9frtDhJIDBw4oNzdXGzZs0JQpU+yOA2AYeL1ePfTQQ/r44481adIkrVixYthnjAAMH2aODFNaWqqMjAy7YwDowuVyaeXKlXbHkESNAIYD5xwZhok8AL2hRgDWozkyTHR0tN0RABiMGgFYj+bIMBQ+AL2hRgDWozkyTHV1td0RABiMGgFYj+YIAACgC5ojwyQmJtodAYDBqBGA9WiODNPa2mp3BAAGo0YA1qM5MsyxY8fsjgDAYNQIwHo0RwAAAF3QHBkmMzPT7ggADEaNAKw3JM2Rx+PR9u3bh2JTo15ZWZndEQAYjBoBWG9ImqOKigqtXbt2KDY16nV0dNgdAYDBqBGA9fr04NmKiopeX+emZEMnKirK7ggADEaNAKzXp+Zo8eLFcjgcJ3zd7/f3+jr6LjY21u4IAAxGjQCs16fmKC4uTj/4wQ80ffr0Hl8/dOiQ7rjjjiGMNXpVVVVxwiWAE6JGANbrU3P0hS98QR6PR5///Od7fN3n88nv9w9pMAAAADv0qTm69NJL1dLScsLXU1NT9ZOf/GTIQo1mY8eOtTsCAINRIwDr9ak5mjNnTq+vx8XFacGCBUMSaLRra2uzOwIAg1EjAOv1qTmCVFxcrOLiYjU2Nlq6n8bGRiUkJFi6DwChixoBWG/A9zmaO3euDh8+PJRZjJadna21a9fqxhtvtDsKAACw0ICbI07AtkZGRobdEQAYjBoBWI9nqxmmsrLS7ggADEaNAKxHc2SY9vZ2uyMAMBg1ArAezZFhIiMj7Y4AwGDUCMB6NEeGiY+PtzsCAINRIwDr0RwZhvMJAPSGGgFYj+YIAACgiwE3R9/+9reZ3rXAmDFj7I4AwGDUCMB6A75D9g9/+MOhzIF/8/l8dkcAYDBqBGC9fs8ceb1eK3Lg3zwej90RABiMGgFYr9/N0WWXXaZ7771XBw4csCIPAACArfp9WM3r9epPf/qTnnrqKU2aNEk5OTmaP3++4uLirMg36qSnp9sdAYDBqBGA9fo9c/TUU08pLy9PU6ZM0cGDB3X//ffr8ssv11133aW33nrLioyjSnV1td0RABiMGgFYr98zR9HR0Vq0aJEWLVqkTz/9VM8++6xeeOEF7dy5Uy+++KLGjRunnJwcXXTRRUpNTbUi84jW1tZmdwQABqNGANZz+P1+/2A34vP59Nprr+nZZ5/Vnj175PP5FBYWpnPOOUc5OTn6+te/rvDwAV8YZ5QDBw4oNzdXGzZs0JQpU4Z8+9XV1UpOTh7y7QIYGagRgPWGpGNxOp2aPXu2Zs+eraNHj2rHjh3atm2b9uzZozfeeEPx8fF6+umnh2JXIx73MAHQG2oEYL0hv0N2YmKivvWtb+mOO+7Ql770Jfn9fjU0NAz1bkasiooKuyMAMBg1ArDekB7rampq0gsvvKBnn31WH374ofx+vyIjIzVv3ryh3A0AAIBlhqQ5+vvf/65t27Zp9+7dam1tld/vV1ZWlnJycnTeeecpOjp6KHYzKiQkJNgdAYDBqBGA9QbcHFVWVuq5557Tc889p/Lycvn9fo0ZM0YLFy5UTk6OTj311CGMOXoMwfnxAEYwagRgvX43Rzt37tS2bdv097//XR0dHQoLC9PMmTNH3FVpdmloaOCGmgBOiBoBWK/fncxdd90l6fhdWhcsWKAFCxZo3LhxQx4MAADADv1ujs4//3zl5OTo7LPPtiLPqJeWlmZ3BAAGo0YA1ut3c3T77bdbkQP/dvToUaWkpNgdA4ChqBGA9QZ9glB7e7ueeOIJFRcX61//+pdaW1v10ksvSZI++ugj/fnPf9ZVV12lCRMmDDrsaOD1eu2OAMBg1AjAeoNqjlpbW/XjH/9Y7733nhISEhQTE6OWlpbA6+np6dq2bZvi4uKUm5s76LCjQUREhN0RABiMGgFYb1B3yP7DH/6gd999V8uXL9ef/vQn5eTkBL0eGxur6dOn64033hhUyNEkKSnJ7ggADEaNAKw3qOboxRdf1FlnnaVvf/vbcjgccjgc3dbJyMgw7nb3hYWFuvTSS3XRRRfp2muv1auvvmp3pIDy8nK7IwAwGDUCsN6gDqtVVlZq9uzZva4TFRWlY8eODWY3Q27x4sW6+eab5XK59MEHHygvL0+PPfYYd54FAACDmzmKiopSXV1dr+uUlpYa13SccsopcrlckiSHw6G2tjZVV1fbnOq4+Ph4uyMAMBg1ArDeoGaOzjjjDL322mvyeDw93rG1oqJCf/3rX086u9SbpqYmPfbYY9q3b58++OADeTwerVmzRgsWLOi2rtfr1caNG/X888/L4/Fo0qRJWrZsmWbOnNlt3aKiIm3btk1er1fnnnuuJk6cOOCMQ6mnQ5MA0IkaAVhvUDNHS5Yskcfj0apVq/Tuu+/K5/NJklpaWvTWW29p9erV8vl8uvrqqwe8j/r6em3atEmHDh3S5MmTe1337rvv1pYtWzR//nzddNNNCgsLU35+vt55551u6+bl5WnHjh269957NXPmTGMKTn19vd0RABiMGgFYb1AzR9OnT9fKlSt1//3368Ybbwwsv+iiiyRJYWFhysvL05QpUwa8j6SkJD355JNKSkrS/v37tXz58h7X27dvn3bu3Knrr79e3/rWtyRJF154oZYuXaqHH35YDz/8cLf3OJ1OnX322Xr88cc1fvx4feUrXxlwTgAAMDIM+iaQl156qaZPn66nnnpKH3zwgRoaGhQTE6OpU6fqsssu0+c///lBbd/lcvXp0tVdu3bJ6XRq4cKFgWVut1s5OTl65JFHVFFRodTU1B7f6/P5VFJSMqicQ+VEGQFAokYAw2HQzZEknXrqqbr55ptP+LrP55PT6RyKXZ3QRx99pPHjxysmJiZo+dSpUyVJBw8eVGpqqhobG/X666/ra1/7mlwul3bv3q233377hDNS1dXVqqmpCfx86NAh6z6EpLq6OiUnJ1u6DwChixoBWG9QzdETTzyhyy+/vNd1fD6f7rzzTt11112D2dVJ1dTU9DjD1Lms82o0h8OhZ555Rvfee6/8fr8yMzN122236bTTTutxu08//bQ2bdrUbXlVVZViY2OVnp6u6upqtbW1ye12a8yYMYH7OiUkJMjv96uhoUHS8QdGHj16VF6vVxEREUpKSgrcsyQ+Pl4Oh0OHDx9Wa2urUlNTVVdXp9bWVoWHhyslJUVlZWWSpLi4OIWHh6u2tlaSlJKSIo/Ho5aWFjmdTqWmpqq0tFTS8RtxulwuHT16VJKUnJysY8eOqbm5WWFhYUpPTw/MmsXExCgyMjLQDCYlJam5uVlNTU1yOBzKyMhQWVmZOjo6FBUVpZiYmMC4JiYmqrW1NXDbhszMTJWXl8vn8ykyMlJxcXGqqqqSJI0dO1bt7e3yeDySjt8Lq7KyUu3t7XK73UpISFBlZaUkacyYMero6Agaw5qaGrW1tcnlcmns2LFB4y393zkZqampqq2tPeF4h4WFBa62HDdunOrr6wPjPW7cuMAYnmy809LSgsbQ7Xb3Ot6lpaXy+/2Kjo5WVFRU0Hi3tLQEjWFv4+31etXY2BgYw4qKij6Nd3p6uqqqqgLjfbLvbNfxTkxM7Pad7Trend/ZiIgIJScnB31nnU5n0Hg3NDSopaWl23jHxsYqIiIiaLwbGxtP+J397Hg3NTUFfWe7jnd0dHSv39mu4x0bGxs0hm1tbUHj3fmdjYyMVHx8fNB31ufzBY03NYIaQY0wo0ZkZmaqLxx+v9/fpzV7MHfuXN1xxx2aO3duj693dHTojjvu0CuvvKKXX355oLsJ6DznqKer1ZYsWaIJEyaosLAwaHlpaamWLFmiG264QYsXL+73PnuaOSooKNCGDRsGdS7VifR2+A8AqBGA9QY1c/SlL31JBQUFio+P14wZM4Je6+jo0J133qldu3addHZpKLjdbrW1tXVb3vmQRrfbPaDtJicnD+sUNk/bBtAbagRgvUFdyr927VpNmDBBP/vZz/TRRx8Flnd0dOgXv/iFXn75ZV166aW9no80VJKSkoJmeDp1LguVY/SdU4wA0BNqBGC9QTVHMTExuueeexQbG6tbbrklcJz0rrvu0osvvqhFixZp1apVQ5W1V5MnT9aRI0e6Papk3759gdcBAABOZlDNkXR8xuZXv/qVOjo69OMf/1g///nP9dJLL+niiy9WXl7eUGTsk7lz58rn8+npp58OLPN6vdq2bZuysrJC5hh9T3caB4BO1AjAekNyKf+ECRO0bt06rVy5Uq+88oouvvhi3XLLLUOxaUnSH//4RzU2NgYOkb366quBKxWuuOIKxcbGKisrS/PmzdMjjzyiuro6ZWZmavv27SovL9ett9466AzFxcUqLi4OnPlvlfDwIfkjATBCUSMA6/XrarWeLmnv6h//+IcOHjyoyy67TGFh/zcp5XA4dO211w445OLFiwOXBn7W5s2blZ6eLklqbW0NPFutsbFREydO1LJlyzRr1qwB7/uzDhw4oNzcXMuuVispKenzpYYARh9qBGC9fjVH3/jGNwa2E4djSC7lNwHNEQA7USMA6/Vrfva+++6zKgf+jct0AfSGGgFYr1/N0fTp0y2KgU4ej6dPz5IDMDpRIwDrDfpqNQytlpYWuyMAMBg1ArAelz300XBdrWb1A3oBhDZqBGC9QT1bbTSy+oRsv98vh8Mx5NsFMDJQIwDrcVjNMJ1PHQaAnlAjAOvRHAEAAHRBc2SY2NhYuyMAMBg1ArDeoJqjioqKbg96/aympiZVVFQMZjejisvlsjsCAINRIwDrDao5uvrqq7V169Ze19m6dauuvvrqwexmVDl69KjdEQAYjBoBWG9Ql/L7/X6d7GK3kXIx3HBdyg8AAOxl+X2OqqqqFB0dbfVuLJedna3s7OzApfxWSU5OtmzbAEIfNQKwXr+bo02bNgX9/Pbbb/e4XkdHhyorK7Vz505lZWUNKNxodOzYMbndbrtjADAUNQKwXr+bo9/97neB/3Y4HNq7d6/27t17wvWTk5N13XXXDSjcaNTc3Gx3BAAGo0YA1ut3c3TfffdJOn4u0cqVK7VgwQJddNFF3dYLCwtTfHy8Pve5zyksjDsG9BVjBaA31AjAev1ujqZPnx7476VLl+qss84KWobBSU9PtzsCAIOFYo3wer166KGH9PHHH2vSpElasWIFtySA0Qb1K8g555yjv/zlL6qpqenx9erqaj344IN6//33B7ObUaWkpMTuCAAMFmo1Ij8/X9HR0Vq1apUefPBBrVq1StHR0crPz7c7GnBCg2qONm/erFdffVVJSUk9vp6cnKzXXntNW7ZsGcxuAAAhKD8/X4WFhfL5fEHLfT6fCgsLaZBgrEFdyr9//36dffbZva4zbdo0vfnmm4PZjRGG6z5HMTExlm4fQGgLlRrh9XpVVFTU6zpFRUUqKCjgEBuMM6jmqK6u7qT33EhMTFRtbe1gdmOE4brPUWRkpGXbBhD6fvOb3+iBBx6wO8ZJeTyebjNGn+Xz+ZSSkqK4uLhhSiXl5eUpLy9v2PaH0DSo5ig2NlaVlZW9rlNRUaGoqKjB7GZUqampUWZmpt0xABiqoqIi5M476k1DQ4MaGhqGdX/AyQyqOcrKytIrr7yiZcuWKTU1tdvrFRUV2r17t2bMmDGY3QAA/i0uLi4kfoHyeDx9akTi4+OHdeYoPj5+2PaF0DWo5mjx4sV67bXX9KMf/UjLli3TOeeco+TkZFVXV+uNN97Qf//3f8vr9fLg2X440cntACBJa9as0Z133ml3jJPyer2Kjo7u9dCa0+lUVVUV5xzBOINqjqZPn64f/ehHeuihh7R27VpJx++a3fmwWYfDoRtvvJH7IPVDc3Mz5x0BOKFQqREul0t5eXkqLCw84Tp5eXk0RjDSoB88e9VVV2nGjBl66qmntH//fjU2Nio2NlZTp07VokWLNHHixKHIOWo0NTVp7NixdscAYKhQqhHr1q2TdPyqtK4zSE6nU3l5eYHXAdM4/J3TPOiTzqvVNmzYoClTpgz59ktLS5WRkTHk2wUwMoRijeAO2Qg1g545wtAKtaIHYHiFYo1wuVxauXKl3TGAPuMJhoYpKyuzOwIAg1EjAOsxc9RHw3WH7I6ODku3DyC0USMA69Ec9dFw3SGbG2YC6A01ArAeh9UMEyrPTQJgD2oEYD2aI8NUV1fbHQGAwagRgPVojgAAALqgOTJMYmKi3REAGIwaAViP5sgwra2tdkcAYDBqBGA9miPDHDt2zO4IAAxGjQCsR3MEAADQBc2RYTIzM+2OAMBg1AjAejRHhikvL7c7AgCDUSMA69EcGcbn89kdAYDBqBGA9Xh8SB8N17PVIiMjLd0+gNBGjQCsR3PUR8P1bLW4uDjLtg0g9FEjAOtxWM0wVVVVdkcAYDBqBGA9miMAAIAuaI4MM3bsWLsjADAYNQKwHs2RYdrb2+2OAMBg1AjAejRHhvF4PHZHAGAwagRgPZojAACALmiODJORkWF3BAAGo0YA1qM5MkxlZaXdEQAYjBoBWI/myDCcbAmgN9QIwHo0R4Zxu912RwBgMGoEYD2aI8MkJCTYHQGAwagRgPVojgzD+QQAekONAKxHcwQAANBFuN0BQkVxcbGKi4vV2Nho6X7GjBlj6fYBhDZqBGA9mqM+ys7OVnZ2tg4cOKDc3FzL9tPR0WHZtgGEPmoEYD0OqxmmoaHB7ggADEaNAKxHcwQAANAFzZFh0tLS7I4AwGDUCMB6NEeGqampsTsCAINRIwDr0RwZpq2tze4IAAxGjQCsR3NkGJfLZXcEAAajRgDWozkyzNixY+2OAMBg1AjAejRHhqmoqLA7AgCDUSMA69EcAQAAdEFzZBieuA2gN9QIwHo0RwAAAF3QHBmmvr7e7ggADEaNAKxHcwQAANAFzZFhUlNT7Y4AwGDUCMB6NEeGqa2ttTsCAINRIwDr0RwZxuv12h0BgMGoEYD1aI4MExERYXcEAAajRgDWozkyTFJSkt0RABiMGgFYj+bIMOXl5XZHAGAwagRgPZojAACALsLtDhAqiouLVVxcrMbGRkv3Ex8fb+n2AYQ2agRgPZqjPsrOzlZ2drYOHDig3Nxcy/YTFsZkHoATo0YA1uNvmWHq6ursjgDAYNQIwHo0RwAAAF3QHBlm3LhxdkcAYDBqBGA9miPD8MRtAL2hRgDWozkyTGtrq90RABiMGgFYj+bIMOHhXEAI4MSoEYD1aI4Mw/kEAHpDjQCsR3NkmNLSUrsjADAYNQKwHs0RAABAFzRHhomLi7M7AgCDUSMA69EcGYaTLQH0hhoBWI/myDC1tbV2RwBgMGoEYD2aIwAAgC5ojgyTkpJidwQABqNGANajOTKMx+OxOwIAg1EjAOvRHBmmpaXF7ggADEaNAKxHc2QYp9NpdwQABqNGANajOTJMWlqa3REAGIwaAViP5sgwJSUldkcAYDBqBGA9miMAAIAuaI4MExMTY3cEAAajRgDWozkyjNvttjsCAINRIwDr0RwZ5ujRo3ZHAGAwagRgPZojAACALmiODJOcnGx3BAAGo0YA1qM5MsyxY8fsjgDAYNQIwHrhdgcYbl6vV0VFRXrzzTfV2NioU089VTfccIO++MUv2h1NktTc3Gx3BAAGo0YA1ht1M0c+n09paWn6r//6L23btk1XXXWV1qxZo6amJrujSZLCwkbdHwmAfqBGANYbdX/LoqKitHTpUqWmpiosLEznn3++wsPDdfjwYbujSZLS09PtjgDAYNQIwHrGH1ZramrSY489pn379umDDz6Qx+PRmjVrtGDBgm7rer1ebdy4Uc8//7w8Ho8mTZqkZcuWaebMmSfc/uHDh+XxeJSZmWnlx+iz0tJSZWRk2B0DgKGoEYD1jJ85qq+v16ZNm3To0CFNnjy513XvvvtubdmyRfPnz9dNN92ksLAw5efn65133ulx/dbWVhUUFOiaa65RbGysFfH7ze/32x0BgMGoEYD1jG+OkpKS9OSTT+rxxx/X9ddff8L19u3bp507d2r58uVasWKFFi5cqPXr1ystLU0PP/xwt/Xb29t1++23KzMzU0uXLrXwE/RPdHS03REAGIwaAVjP+ObI5XIpKSnppOvt2rVLTqdTCxcuDCxzu93KycnR+++/r4qKisDyjo4OFRQUyOFw6Kc//akcDocl2QciKirK7ggADEaNAKxn/DlHffXRRx9p/Pjx3R7KOHXqVEnSwYMHlZqaKkm65557VFNTo3vuuUfh4b0PQXV1tWpqagI/Hzp0aIiTB6upqTHm/CcA5qFGANYbMc1RTU1NjzNMncuqq6slSeXl5XrmmWfkcrmCZpnWrVunadOmdXv/008/rU2bNnVbXlVVpdjYWKWnp6u6ulptbW1yu90aM2ZMYJYqISFBfr9fDQ0NkqS0tDQdPXpUXq9XERERSkpKUnl5uSQpPj5eDodDlZWVkqTU1FTV1dWptbVV4eHhSklJUVlZmSQpLi5O4eHhqq2tlSSlpKTI4/GopaVFTqdTqampKi0tlSTFxsbK5XIFnseUnJysY8eOqbm5WWFhYUpPT1dJSYmk40/7joyMDDSDSUlJam5uVlNTkxwOhzIyMlRWVqaOjg5FRUUpJiYmMK6JiYlqbW0N3KAuMzNT5eXl8vl8ioyMVFxcnKqqqiRJY8eOVXt7uzwejyQpIyNDlZWVam9vl9vtVkJCQmAcxowZo46OjqAxrKmpUVtbm1wul8aOHRs03tLx89Q6x7C2tvaE4x0WFqa6ujpJ0rhx41RfXx8Y73HjxgXG8GTjnZaWFjSGbre71/EuLS2V3+9XdHS0oqKigsa7paUlaAx7G2+v16vGxsbAGFZUVPRpvNPT01VVVRUY75N9Z7uOd2JiYrfvbNfx7vzORkREKDk5Oeg763Q6g8a7oaFBLS0t3cY7NjZWERERQePd2Nh4wu/sZ8e7qakp6Dvbdbyjo6N7/c52He/Y2NigMWxrawsa787vbGRkpOLj44O+sz6fL2i8qRHUCGqEGTWir79YOPwhdHbf/v37tXz58h6vVluyZIkmTJigwsLCoOWlpaVasmSJbrjhBi1evLjf++xp5qigoEAbNmzQlClTBvZBetHS0qLIyMgh3y6AkYEaAVhvxMwcud1utbW1dVvu9XoDrw9EcnLysD7LiMIHoDfUCMB6xp+Q3VdJSUlBMzydOpeFysMaeW4SgN5QIwDrjZjmaPLkyTpy5Ei3wrFv377A6wAAACczYpqjuXPnyufz6emnnw4s83q92rZtm7KysgJXqpmOq1AA9IYaAVgvJM45+uMf/6jGxsbAIbJXX301cKXCFVdcodjYWGVlZWnevHl65JFHVFdXp8zMTG3fvl3l5eW69dZbB52huLhYxcXFgTP/rVJWVsazkwCcEDUCsF5IXK22ePHiwKWBn7V58+ZAoWhtbQ08W62xsVETJ07UsmXLNGvWrCHLcuDAAeXm5lp2tVpJSQm/GQI4IWoEYL2QmDnasmVLn9Zzu91asWKFVqxYYXEi63D3WwC9oUYA1hsx5xyNFJ+9wzcAdEWNAKxHc2SYzrubAkBPqBGA9WiOAAAAugiJc45MMFxXqyUmJlq6fQChjRoBWI/mqI+ys7OVnZ0duFrNKl6vlxMuAZwQNQKwHofVDGP1zBSA0EaNAKxHcwQAANAFzZFhMjIy7I4AwGDUCMB6NEeGqaiosDsCAINRIwDr0RwZxufz2R0BgMGoEYD1uFqtj4brUv7IyEhLtw8gtFEjAOvRHPXRcF3KHxcXZ9m2AYQ+agRgPQ6rGaaqqsruCAAMRo0ArEdzBAAA0AXNkWHGjh1rdwQABqNGANajOTJMe3u73REAGIwaAViP5sgwHo/H7ggADEaNAKxHcwQAANAFl/L30XDd5yg9Pd3S7QMIbdQIwHrMHPVRdna21q5dqxtvvNHS/XCZLoDeUCMA69EcGYaTLQH0hhoBWI/myDBut9vuCAAMRo0ArEdzZJgxY8bYHQGAwagRgPVojgxTUVFhdwQABqNGANajOQIAAOiCS/kNk5CQYHcEAAajRmCgvF6vHnroIX388ceaNGmSVqxYIZfLZXcsI9EcGcbv99sdAYDBqBEYiPz8fBUVFcnn8wWWrV69Wnl5eVq3bp2NyczEYTXDNDQ02B0BgMGoEeiv/Px8FRYWBjVGkuTz+VRYWKj8/HybkpnL4efXkD7peofsd955Rxs2bNCUKVOGfD8lJSXKzMwc8u0CGBmoEegPr9er6Ojobo1RV06nU01NTRxi64LmqJ8OHDig3Nxcy5ojn88np9M55NsFMDJQIwanqKhIRUVFdscYNh6Pp0+zjfHx8YqLixuGRH2Tl5envLw82/bPOUeGqamp0bhx4+yOAcBQ1IjBaWhoUElJid0xjNPQ0GDUIVu7s9AcGaatrc3uCAAMRo0YnPj4+FF1WDJUZ47i4+Nt3T/NkWE45gugN9SIwbH7cM1w6+s5R1VVVXy3uuBqNcMkJibaHQGAwagR6A+Xy3XSZjAvL4/G6DNojgxTXl5udwQABqNGoL/WrVunW265pduJ/E6nU7fccgv3OeoBh9UAABjh1q1bp4KCAu6Q3Uc0R4ax+yQ0AGajRmCgXC6XVq5caXeMkMBhNcM4HA67IwAwGDUCsB7NkWHq6+vtjgDAYNQIwHo0RwAAAF1wzlEfdX22mpVSU1Mt3T6A0EaNAKzHzFEfZWdna+3atbrxxhst3U9dXZ2l2wcQ2qgRgPVojgzT2tpqdwQABqNGANajOTJMRESE3REAGIwaAViP5sgwycnJdkcAYDBqBGA9miPDlJWV2R0BgMGoEYD1uFqtnzqP9x86dMiS7VdVVVl+RRyA0EWNAAbnlFNOUWRkZK/r0Bz1U+dDHwsKCmxOAgAA+mvDhg2aMmVKr+s4/H6/f5jyjAh1dXXas2eP0tPT+/TAvgceeKDPl/8fOnRIBQUF+tnPfqZTTjllsFFHpf6Mt0lMyT0cOazYx1BtczDbGeh7qRHDy5S/awNhQvbhymBlnWDmyAJjxozRBRdc0Of1Y2NjT9qhftYpp5zS7/fguIGMtwlMyT0cOazYx1BtczDbGeh7qRHDy5S/awNhQvbhymB3neCEbItlZ2fbHWFUCdXxNiX3cOSwYh9Dtc3BbGeg7zXlz360COXxNiH7cGWwu05wWM0gBw4cUG5ubp+OhwIYfagRwPBg5sggSUlJWrp0qZKSkuyOAsBA1AhgeDBzBAAA0AUzRwAAAF3QHAEAAHTBpfwhxOv1qqioSG+++aYaGxt16qmn6oYbbtAXv/hFu6MBMERhYaFeffVVtbS0KDU1VcuXL9fXvvY1u2MBIYVzjkJIc3OzNm/erAULFiglJUUvvfSS1q9fr82bNys6OtrueAAMcOjQocBNaj/44APl5eXpscceU0JCgt3RgJDBYbUQEhUVpaVLlyo1NVVhYWE6//zzFR4ersOHD9sdDYAhTjnllMDd+x0Oh9ra2lRdXW1zKiC0cFjNQk1NTXrssce0b98+ffDBB/J4PFqzZo0WLFjQbV2v16uNGzfq+eefl8fj0aRJk7Rs2TLNnDnzhNs/fPiwPB6PMjMzrfwYACxiVY0oKirStm3b5PV6de6552rixInD8XGAEYOZIwvV19dr06ZNOnTokCZPntzrunfffbe2bNmi+fPn66abblJYWJjy8/P1zjvv9Lh+a2urCgoKdM011yg2NtaK+AAsZlWNyMvL044dO3Tvvfdq5syZcjgcVn0EYESiObJQUlKSnnzyST3++OO6/vrrT7jevn37tHPnTi1fvlwrVqzQwoULtX79eqWlpenhhx/utn57e7tuv/12ZWZmaunSpRZ+AgBWsqpGSJLT6dTZZ5+tt956S6+//rpVHwEYkWiOLORyufp0J9tdu3bJ6XRq4cKFgWVut1s5OTl6//33VVFREVje0dGhgoICORwO/fSnP+U3QiCEWVEjPsvn86mkpGRI8gKjBc2RAT766CONHz9eMTExQcunTp0qSTp48GBg2T333KOamhrdeeedCg/nlDFgNOhrjWhsbNQLL7ygpqYmtbe366WXXtLbb7+tadOmDXtmIJTxr6sBampqevztsXNZ55Um5eXleuaZZ+RyuYJ+g1y3bh3FDxjB+lojHA6HnnnmGd17773y+/3KzMzUbbfdptNOO21Y8wKhjubIAK2trYqIiOi2vPNy3NbWVklSWlqaXnnllWHNBsB+fa0RMTExuu+++4Y1GzAScVjNAG63W21tbd2We73ewOsARi9qBDC8aI4MkJSUpJqamm7LO5clJycPdyQABqFGAMOL5sgAkydP1pEjR3Ts2LGg5fv27Qu8DmD0okYAw4vmyABz586Vz+fT008/HVjm9Xq1bds2ZWVlKTU11cZ0AOxGjQCGFydkW+yPf/yjGhsbA9Pfr776qiorKyVJV1xxhWJjY5WVlaV58+bpkUceUV1dnTIzM7V9+3aVl5fr1ltvtTM+AItRIwDzOPx+v9/uECPZ4sWLVV5e3uNrmzdvVnp6uqTjV5t0PjepsbFREydO1LJlyzRr1qzhjAtgmFEjAPPQHAEAAHTBOUcAAABd0BwBAAB0QXMEAADQBc0RAABAFzRHAAAAXdAcAQAAdEFzBAAA0AXNEQAAQBc0RwAAAF3QHAEAAHRBcwQAQ2DOnDlB/2ttbQ289txzz2nOnDl67rnnbEz4f5566qmgrP/xH/9hdyTAKOF2BwBgrrKyMl199dW9rpOWlqYtW7YMUyKzpaWl6aKLLpIkOZ1OS/e1Z88erV69WjNnztSvfvWrXte96667VFxcrNtuu03z58/XlClTtHTpUjU2Nmrr1q2W5gRCEc0RgJPKzMzU/Pnze3wtNjZ2mNOYKy0tTd///veHZV/nnHOOUlNT9dZbb6miokKpqak9rtfY2Kjdu3crNjZWc+bMkSSdfvrpOv3001VWVkZzBPSA5gjASWVmZg7bP/rom7CwMC1YsECbNm3S9u3bde211/a4XnFxsVpbW/XNb35Tbrd7mFMCoYlzjgAMqTlz5uimm27S0aNH9ctf/lKXXHKJsrOzdd111+ntt9/u8T1NTU367W9/q+9973vKzs7WN7/5Tf34xz/WO++8023dm266KXBOz4YNG7RkyRLNmzdPv/3tbwPr7Nq1S7m5ucrOztaiRYu0bt06eTweLV68WIsXLw6s94tf/EJz5szRvn37esy1ceNGzZkzR8XFxYMclZ5VVlbq2muvVXZ2tl5++eXA8traWj3wwAP61re+pfPPP1+XXHKJfvazn+mf//xn0Pu/+c1vyuFw6LnnnpPf7+9xH9u2bZMk5eTkWPIZgJGI5gjAkGtsbNSPfvQjffrpp7rgggs0Z84cHThwQKtXr+72D3xDQ4Ouv/56bdq0SXFxcVq0aJHmzJmjDz/8UDfffLN2797d4z5uu+02bd++XWeddZauvPJKpaenS5KeffZZ3XbbbTpy5IguvPBCXXTRRXr//feVl5en9vb2oG0sXLgw8J7P8vl82rZtmxISEgKHo4bSp59+qhUrVqiyslKFhYWaO3euJKmkpETLli3T448/royMDF1++eU699xztWfPHl1//fVBjVxaWprOPvtslZaW9th4/vOf/9T+/ft12mmn6Qtf+MKQfwZgpOKwGoCTKikpCZqZ6eqMM87Ql7/85aBlBw8e1KWXXqqVK1cqLOz472AzZszQunXr9MQTT2j16tWBddevX69PPvlE+fn5uvjiiwPLa2trlZubq8LCQs2aNavbIaGamhr97ne/U3x8fGCZx+PR/fffr6ioKD3yyCOaMGGCJCk3N1erV6/WgQMHlJaWFlh/2rRpOvXUU7Vz507dcMMNioqKCry2Z88eVVVV6aqrrpLL5ervkPXq/fff16233qrw8HA98MADmjx5cuC1X/7ylzp69KjuuecezZo1K7D8e9/7nnJzc7Vu3Tpt2rQpsDwnJ0dvvvmmtm3bphkzZgTth1kjYGCYOQJwUiUlJdq0aVOP//vb3/7Wbf2oqChdd911gcZIki666CI5nU7t378/sKyurk4vvfSSZsyYEdQYSdLYsWP1rW99S3V1dXrrrbe67eP//b//F9QYSdJf/vIXNTc365vf/GagMZKk8PBwLVu2rMfPtnDhQjU1NWnnzp1By5955hlJ0iWXXHKiYRmQ119/XatWrVJcXJweeuihoMboww8/1HvvvacLL7wwqDGSpAkTJujiiy/WP//5z6DZt9mzZyshIUG7du3SsWPHAsvb29v1/PPPy+VynfBkegA9Y+YIwEnNmjVL99xzT5/XHz9+vKKjo4OWhYeHKzExUY2NjYFl+/fvl8/nU1tbW48zU0eOHJEkHTp0SF/96leDXps6dWq39T/++GNJ0plnntnttaysrB4vr7/wwgv1m9/8Rs8880ygQTt69Khee+01ffGLX9Spp556kk/bdy+99JLeeOMNTZo0SYWFhRo7dmzQ652HzGpra3scj3/961+B/584caIkBZqfrVu3qri4WIsWLZIkvfrqq6qrq1N2drbi4uKG7DMAowHNEYAhFxMT0+Nyp9Opjo6OwM8NDQ2SpHfffVfvvvvuCbfX0tLSbVliYmK3ZZ0zJ59tOqTjV3clJCR0Wx4XF6d58+Zp+/bt+uc//6mJEyfqueeek8/nG/JZo/fff18+n09nnnlmjxk7x+P111/X66+/fsLtNDc3B/2ck5OjrVu3atu2bYHmiENqwMDRHAGwTWcTdfXVV+tHP/pRv97rcDhOuL3a2tpur3V0dKi+vl4pKSndXlu0aJG2b9+uP//5z7r55pv17LPPKiYmRvPmzetXppNZvny5/vKXv2jr1q1yOp3dPnNn/ptvvllXXHFFn7c7adIknX766frggw/0ySefKC4uTnv27FF6enq385AAnBznHAGwzemnny6Hw6H3339/SLY3adIkSepxFuqDDz6Qz+fr8X1nnHGGJk2apBdeeEF79uzRkSNHNH/+fEVGRg5Jrk4ul0u//OUv9ZWvfEWbN2/Wgw8+GPR656HCgYxH5wzRs88+qx07dsjn8wUu9QfQPzRHAGyTlJSkefPm6b333tP//u//9nivnn379vV4WK0nX//61xUVFaVnn31WJSUlgeXt7e3auHFjr+9duHChGhoatHbtWknqdoL4UHG5XCooKNBXv/pVbdmyRQ888EDgtaysLGVlZWnnzp3dThCXjs9+7d27t8ftZmdnKzIyUs8//7y2bdumsLCwwKNMAPQPh9UAnFRvl/JL0jXXXDPguy/n5eXp8OHDevjhh7Vjxw6dccYZio2NVVVVlfbv368jR47oySef7NMsTlxcnG644QYVFhYqNzdX5513nmJiYvTXv/5VLpdLycnJJ5xJueCCC/TrX/9a1dXVmjJliqX3BYqIiNAvfvEL3X777Xr88cfl9/t10003SZJuv/12rVy5Unfeeae2bt2q0047TW63W5WVlXrvvfdUX1/f400pY2Ji9I1vfEM7duxQXV2dvvzlL5/wkSIAekdzBOCkOi/lP5GrrrpqwM1RfHy8HnroIT3xxBN68cUXVVxcrI6ODiUmJmry5Mm69tprezyR+kQuueQSxcXF6Q9/+IO2b9+umJgYfe1rX9N1112nq666SpmZmT2+LyYmRrNnz9bzzz9v2axRV50N0s9//nNt3bpVfr9fN998szIyMrRx40Zt3rxZu3fv1nPPPaewsDAlJSVp2rRpgZtF9iQnJ0c7duyQdPzu2QAGxuE/0T3nAWAEOXLkiL797W9r3rx5uvPOO3tc59prr1V5ebmeeOKJE15xdyJz5szR9OnTdf/99w9F3GFRVlamq6++WhdddJF++tOf2h0HMAYzRwBGFI/HI7fbHXRX69bW1sDJz7Nnz+7xfX/961/1ySef6JJLLul3Y9Rp7969gUeNvPDCC8Y+6PWpp57Sr371K7tjAMaiOQIwouzdu1f/+Z//qZkzZ2rcuHGqr6/X3//+d5WXl2vGjBk677zzgtb/05/+pMrKSj3zzDNyuVy65pprBrTfpUuXBv3c0w0nTTFlypSgvKeddpp9YQADcVgNwIhy+PBhbdy4Ue+9957q6uokSZmZmTrvvPO0ZMmSbrM5ixcvVlVVlSZMmKDrrruu2524AYw+NEcAAABdcJ8jAACALmiOAAAAuqA5AgAA6ILmCAAAoAuaIwAAgC5ojgAAALqgOQIAAOiC5ggAAKCL/w9Ryiqu/PVgtwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAG5CAYAAAAeUIXbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADKWElEQVR4nOy9eXgUVdr+f3d3ks5GCAmQkABhFQnKjsAwKGhEfBkQREBRERlhFBUUkO2nI4IjMrIMjg64go7ji6iDOohBwyAo8iIiCBJAUAhbFhLI3kk63f37I98qTlVXVVd1V9fSdT7X5WXopeo8fWq5636ec47N5/P5QKFQKBQKhUKxDHa9G0ChUCgUCoVC0RYqACkUCoVCoVAsBhWAFAqFQqFQKBaDCkAKhUKhUCgUi0EFIIVCoVAoFIrFoAKQQqFQKBQKxWJQAUihUCgUCoViMagApPhRV1eHEydOoK6uTu+mUCgUCoVCCQNUAFL8KCgowPTp01FQUBCW7VdWVoZlu2aAxm5NaOzWxcrx09iNDRWAFM2pqqrSuwm6QWO3JjR262Ll+GnsxoYKQIrmNG/eXO8m6AaN3ZrQ2K2LleOnsRsbKgApFAqFQqFQLAYVgBTNqaio0LsJukFjtyY0duti5fhp7MYmSu8GUCgUCoVCCQ8ejwdut1uXfTc2Nlp2Nolwx+5wOBAVFQWbzRb0NqgApGhOWlqa3k3QDRq7NaGxWxc946+ursb58+fh8/l02b/P58Pp06d12bfeaBF7fHw82rRpg5iYmKC+TwUgRXOuXLmCVq1a6d0MXaCx09ithpVjB/SL3+Px4Pz584iPj0erVq1CcoqCxe12Izo6WvP9GoFwxu7z+dDQ0IBLly7h9OnT6Nq1K+x25RV9VABSNKehoUHvJugGjd2a0Niti17xu91u+Hw+tGrVCnFxcbq0wW63B+1OmZ1wxx4XF4fo6GgUFBSgoaEBsbGxirdBB4FQNMeqT4QAjd2q0Niti97x6+H8GWHfeqNF7MG4fpzvq9QOCkU2qampejdBN2js1oTGbl2sHH9UlHWTjGaInQpAiuYUFRXp3QTdoLFbExq7dbFy/HqMPu7QoQMOHToEAHjooYewc+fOgN9ZsmQJnnjiCcH3Dh06hE2bNiluh14jr5VABSCFQqFQKBTNaWxsDOv233zzTQwfPjykbQQrAKUId9xyMb5HSYk4kpKS9G6CbtDYrQmN3boYKf7+/fuH1ZFMT0/HDz/8wP7b4XD4fcZms+HPf/4ztm3bhmHDhmHKlCl45JFHUFtbi7q6OkyePBlPP/00ACAzMxP79+9HRkYGJk6ciPPnz+O7775DfX09MjIycPHiRTidTtH2DBs2DE888QTGjh2LwsJCPPDAAzh//jzatm2LlJQUXHvttViyZAkAoLCwEKNHj8avv/6K9PR0fPTRR2hsbMSf//xnVFRUoHfv3hg0aBDWr1+PvXv34qmnnkJVVRV8Ph+WLVuGO+64Ax06dMAnn3yC3r17w+FwoH///li5ciWGDRuGYcOGoWfPnti/fz/i4uLQuXNndOvWDfPmzQMAnD59GoMHD8a5c+cAAM888wz++9//oqGhAddccw1ee+01tGjRQq2uAkAFIEUHQi1cNTM0dmtCY7cuRoq/qKgIFy5c0LsZcDgc2L9/PwCgqqoKO3bsgNPphMvlwu9+9zvk5ORg0KBBuOWWW5CXl4f77rsPP/30E6KiolBZWYn9+/ejX79+kuKPz6xZszB48GA899xzKCoqQu/evXHttdey7+/btw8HDhxAamoq7r77brz22mtYtGgRli5dik8++QSffPIJAODy5csYO3YsPvroIwwdOhRerxfl5eWy2vDLL79g9+7diI6OxnfffYcZM2awAnDjxo249957ER0djRdeeAEJCQn4/vvvAQDLli3D008/jVdffVV2vHKgApCiOeXl5UhISNBt/42Njfjss8/QoUMH9O3bV9N96x27ntDYaexWxEjxp6ena7p9j8cj6AJOmzaN/dvlcmHmzJk4dOgQ7HY7zp07h0OHDmHQoEHIyclBXl4eevTogV69eiEtLQ1ff/019u7di1tuuUVR23bs2IGVK1ey7fzDH/7AeX/kyJHsgJ3BgwfjyJEjgtvZu3cvunXrhqFDhwJoEvgpKSl+n/N4PH6v3Xfffeyo8N/97ndobGzE/v370b9/f7z77rv4z3/+AwD45JNPUFFRgY8//hhA01RCHTp0UBSvHKgApFiOf/7zn5g2bRpiYmJw9uxZy69UQKFQrAGZntWTxMRE9u/FixejZcuWOHjwIKKionDnnXeyS6jl5ORg0aJFyM7ORk5ODtLS0pCXl4e9e/di3bp1IbWBP00LOY+ew+EIqk4vKiqKI/z4S8GRcQPAgw8+iA0bNqC6uhotW7bEddddB6Bpoue///3vGDFihOI2KME43jTFMrRu3VrX/TMjxBoaGnDixAlN96137HpCY7cmVo4dsHb8cqZCuXLlCtq2bYuoqCicOHECX331FfteRkYGmjdvjvXr1yMnJwfDhw/H1q1bcebMGcXZm5tvvhkbN24EABQXF2Pr1q2yvpeUlISKigr237/73e9w8uRJfPPNNwAAr9eLy5cvAwC6dOmCffv2AQB+/PHHgPeX+++/Hx9++CHWr1/PcUXHjh2LNWvWoLa2FgBQW1uLo0ePygtUAVQAUjSHPJn0gHwq03qovt6x6wmN3ZpYOXbA2vELpUH5PP3009iwYQN69uyJhQsX4uabb+a8n5OTA7vdjk6dOiEpKQnp6em48cYbFddWrl27Ft988w2ys7Nx7733YuDAgUhOTg74vVtuuQX19fXo2bMnHn74YbRo0QJbtmzBwoUL0bNnT/Tt2xd79uwBADz//PN49dVX0atXL7z99tvo0aOH5LYzMjJwww034LPPPsM999zDvr5gwQIMGDAAAwcORM+ePTFo0CDWuFATm0+vVaIphuXEiROYPn063njjDXTr1k317V+4cAGZmZmqb1cuU6dOxTvvvAMA+OKLLzBy5EjN9q137HpCY6exWxG94q+rq8Pp06fRsWPHoJYJU4OGhgbDLAXncrkQHR2NqKgolJWVYdCgQXjvvfcwcODAsOxPi9hD7WNaA0jRHL1nSNfTAdQ7dj2hsVsTK8cOWDt+Iy0Fd/LkSUyZMgU+nw8NDQ2YOXNm2MQfYKzYxbDukUnRDb1rYurr69m/tRaAeseuJzR2a2Ll2AFrx28k8duzZ8+wpFHFMFLsYtAaQIrmXLx4Udf9kw5gQ0ODpvvWO3Y9obFbEyvHDugfv55VXmZYDi1caBF7qH1LBSDFcujpAFIoFIoWMPPvaf2QS9EOZpQwM7egUozvUVIijmbNmum6fz1rAPWOXU9o7NbEyrED+sUfFRWF+Ph4XLp0CdHR0bqsSOLxeOD1ejXfrxEIZ+w+nw+1tbUoKSlBcnKy4GTbcqACMIJ56aWXsGfPHtTV1SEtLQ0zZszAkCFD9G6W7rURejqAeseuJzR2a2Ll2AH94rfZbGjTpg1Onz6NgoICXdrg9XoNtRSelmgRe3Jyckiru1j7zIxwJk6ciNmzZyMmJgbHjh3DnDlzsGnTJjRv3lzXdl25cgXx8fG67V9PB1Dv2PWExk5jtyJ6xh8TE4OuXbvqlgYuLi627EpL4Y49Ojo6aOePgQrACCYrK4v922azwe12o7S0VHcBqDe0BpBCoVgFu92u2zyAUVFRuu1bb8wQuykEYG1tLTZt2oT8/HwcO3YMVVVVWLRoEW6//XbF23r33Xfx5ptvomPHjuxkwOHYj1KU7ruhoQFvvfUWvvzyS1RVVaFz58546KGHMGDAAM7nVq9ejW3btqGhoQGDBg1Cp06dwh5LIFq1aqXr/vV0APWOXU9o7NbEyrED1o6fxm5sTJGcr6iowMaNG1FQUIAuXboEvZ2SkhK89957iIuLC+t+gkHpvpcvX47Nmzfj1ltvxaxZs2C32zF//nwcPnyY87k5c+Zg+/btWLNmDQYMGGCIySmrqqp03b+eDqDesesJjd2aWDl2wNrx09iNjSkEYGpqKrZs2YIPP/wQjzzySNDb+cc//oHs7GzR5c1C2U9VVRV27dol+n5eXh5cLpfo+0r2nZ+fjx07dmDGjBmYOXMmxowZg7/97W9IT0/HunXr/D7vcDjQr18/HDhwAHv37pUfVJggHTi996+1ANQ7dj2hsVsTK8cOWDt+GruxMYUAjImJQWpqakjbOHToEHbt2oXHH388LPvZsmULlixZgt27d/u9t3XrVixduhS5ubmq7HvXrl1wOBwYM2YM+5rT6cSoUaNw9OhRFBcXC37P4/HgwoULsvYRTkItXA0VPR1AvWPXExq7NbFy7IC146exGxtTCMBQ8Xg8WLt2LUaNGoXOnTuHZR+TJ0/GoEGDsHTpUhw4cIB9fdeuXVi1ahVGjBiBsWPHqrKvkydPom3btkhISOC83r17dwDAqVOnUF1dja+++gq1tbVobGzEzp07cfDgQfTq1UuVNoRCKMPWQ8Xr9XJEn9YCUM/Y9YbGbk2sHDtg7fhp7MbGEgLw008/RXFxMR566KGw7SMqKgpLlixBdnY2Fi9ejPz8fBw4cADLli3DwIEDsXDhQtXq78rKygTdQua10tJS2Gw2bN26FXfddRdGjx6Nf/3rX3jmmWfQtWtX0e3m5eVh4cKF+Pvf/65KO8XQ04Uk3T9A+1nyjeDA6gWN3ZpYOXbA2vHT2I2NKUYBh0JFRQXefvttTJkyBcnJyWHdl9PpxPLlyzF79mzMnz8fbrcb3bt3x3PPPafqZKD19fWCS7/ExMSw7yckJGDt2rWKtpuTk4OcnBycOHEC06dPV6WtRoNfl0GngaFQKBSKFYl4B/DNN99Es2bNMH78eE32l5CQgJkzZ6KyshIulwuPP/44nE6nqvtwOp2CwoVxs9Ten9rwU9dawncAtRaAesauNzR2a2Ll2AFrx09jNzYRLQDPnTuH//znP7jrrrtQWlqKwsJCFBYWoqGhAY2NjSgsLERlZaWq+7x48SKWLVuG9u3bIz09Hc888wxKS0tV3UdqairKysr8Xmdea9mypar7Uxs9BareDqDRxXk4obFbEyvHDlg7fhq7sYloAVhaWgqv14u1a9di0qRJ7H/5+fk4d+4cJk2ahI0bN6q6vzlz5iAqKgqrV6/GqlWrUFdXh7lz56oqNLt06YLz58+jpqaG83p+fj77vpG5fPmybvvW2wHUM3a9obFbEyvHDlg7fhq7sYmoGsC6ujoUFxejefPmSE5ORseOHfGXv/zF73NvvvkmamtrMWvWLGRkZKiy76qqKsybNw8ulwuvvPIKWrduDQBYuXIlZs+ejQULFmD16tWik1ArYdiwYdi0aRM+++wz3HPPPQCa0r/btm1Ddna2ZddelIPeDiCFQqFQKEbANALw448/RnV1NZvm3LNnD0pKSgAA48ePR2JiIo4dO4bZs2dj6tSpmDZtGpKTkzF06FC/bX344YcAIPienP0IsWXLFpSUlODll19Gu3bt2Ne7du2KF198EXPnzkVubi7GjRsXUowAkJ2djeHDh+P1119HeXk5MjMzkZubi6KiIixYsEDiVzQGeqao9XYAjZ6eDyc0dmti5dgBa8dPYzc2phGAH3zwAYqKith/7969m510ecSIEaLCTKv9TJ48GUOHDkXHjh393uvZsyfWr18fcB1eJftevHgx0tLSsH37dlRXV6NTp05YsWIFevfuLTtWvaipqdGtPkJvB1DP2PWGxk5jjxTcbjd27tyJvn37BrzRR2L8cqGxGzt20wjAzZs3B/xMnz59BFfi4PPyyy+HtB8hoqKiBMUfg5wJqJXs2+l0YubMmZg5c6bs7xgFqSXxwo3eDqCesesNjd2aRGLszz77LJYvX45u3bohPz8fdrt4OX0kxi8XGruxiehBIBRjInWxDDd6O4B6xq43NHZrEomxf/fddwCAEydOoKKiQvKzkRi/XGjsxsb4LaREHG3atNFt33o7gHrGrjc0dmsSibGT7g7/oZJPJMYvFxq7saECkKI5Fy9e1G3f/Iu11kvB6Rm73tDYrUkkxl5bW8v+HUgARmL8cqGxGxsqACma4/P5dNu33ilgPWPXGxq7NYnE2JU4gJEYv1xo7MaGCkCK5sTHx+u2b71TwHrGrjc0dmsSibErcQAjMX650NiNDRWAFM1RYzLsYNHbAdQzdr2hsVuTSIyddAADjfaMxPjlQmM3NlQAUjRHaB1jrdDbAdQzdr2hsVuTSIxdSQo4EuOXC43d2FABSLEUejuAFArF3Hg8Hs6DZCABSKEYFSoAKZqTmpqq2771dgD1jF1vaOzWJNJi5wu+QAIw0uJXAo3d2FABSNEcPZ+Y9XYArewW0NitSaTFTg4AAQLHF2nxK4HGbmyoAKRoTk1NjW771tsB1DN2vaGxW5NIi50/6CPQjT7S4lcCjd3YUAFIsRR6O4AUCsXcKHUAKRSjQgUgRXMyMzN127feDqCesesNjd2aRFrsSh3ASItfCTR2Y0MFIEVzCgsLddu3kAOo5YztesauNzR2axJpsfMFYKB5ACMtfiXQ2I0NFYAUzfF6vbrtm+8AAkBjY6Nm+9czdr2hsVuTSItdaQo40uJXAo3d2FABSNEcI60EAmibBjbD7PDhgsZuTSItdqUp4EiLXwk0dmNDBSBFcxISEnTbt5ADqKUA1DN2vaGxW5NIi12pAxhp8SuBxm5sqACkaE5paalu+9bbAdQzdr2hsVuTSItdqQMYafErgcZubKgApFgKvR1ACoVibug0MJRIgQpAiuakpKTotm+9HUA9Y9cbGrs1ibTYlTqAkRa/EmjsxoYKQIrmNDQ06LZvvR1APWPno+X0N4CxYtcaGnvkoFQARlr8SqCxGxsqACmaU11drdu+9XYA9Yyd5J577kGbNm2wa9cuzfZplNj1gMYeOfBTwIHmAYy0+JVAYzc2VABSLIXeDqARKCgowKZNm1BcXIx169bp3RwKxVQodQApFKNCBSBFczIyMnTbt9DFWkurXs/YGaqqqti/L168qNl+jRC7XtDYIwelg0AiLX4l0NiNDRWAFM0pLi7WZb9er1fQ7dPSAdQrdhLSBS0qKtJsv0aIXS9o7JGDUgcw0uJXAo3d2FABSNEcj8ejy36F0r+AtgJQr9hJ9BKARohdL2jskYNSBzDS4lcCjd3YUAFI0ZzY2Fhd9msEAahX7CTkDauqqgo1NTWa7NcIsesFjT1yUOoARlr8SqCxGxsqACma06xZM132K3ah1lIA6hU7CV8Ia+UCGiF2vaCxRw5KBWCkxa8EGruxoQKQojmXLl3SZb9GcAD1ip2Ef8PSSgAaIXa9oLFHDkqngYm0+JVAYzc2VABSLIMRHEAjoJcDSKFEAkIOoNaTqlMoakAFIEVzWrRooct+jeAA6hU7iV4C0Aix6wWNPXLgO4BerxeNjY2in4+0+JVAYzc2VABSNEfqYhlOSAfQZrOxf2spAPWKnUSvFLARYtcLGrs2/Pjjj/jPf/4T1hGYQilfqTpA2vfWxAyxUwFI0RxyImItIZ2vxMRE9m8tBaBesZPo5QAaIXa9oLGHn/Pnz2PQoEEYM2YMPvjgg7Dth+8AAtICkPa9NTFD7FQAUiwDeZEmR2hZrQaQf7MqLCzUqSUUinocOHCAPZcPHToUtv0odQApFKNCBSBFc9q0aaPLfsUcQC2XgtMrdhK9HEAjxK4XNPbwU1JSwv4tVu8bKl6vV1DsSQlA2vfWxAyxUwFI0Ry9hscbwQE0wtQAeglAI8SuFzT28EMKwHA91IkJPSkBSPvempghdioAKZqjV3GsEWoAjVAYzL9ZFRcXw+v1hn2/RohdL2js4UcLB1Bszj+puQBp31sTM8ROBSBFc5xOpy77NYIDqFfsJPybY2NjIy5fvhz2/Rohdr2gsYef4uJi9u9wCUChASCAtANI+96amCF2KgApmpOcnKzLfo3gAOoVO4nQzUqLNLARYtcLGnv4UdsBfO+997B27VrO9UHM6ZMSgLTvrYkZYqcCkKI55JO6lhjBAdQrdhKhm6MWAtAIsesFjT38qCkADx06hPvvvx9PPPEENm/ezL4ejANI+96amCF2KgAplsEIDqARELo50qlgKGZHzUEgv/zyC/v3sWPH2L+DcQApFKNCBSBFc5o3b67Lfo3gAOoVO4leKWAjxK4XNPbw0tjYiNLSUvbfoTqApNCrqKgQfJ2MS0oA0r63JmaInQpAiubotXA6eVPQSwAaYdF4vVLARohdL2js4aWsrIyzn1AFIJnqLS8vF3w9JSWF/VtKANK+tyZmiJ0KQIrmVFZW6rJfIziAesVOopcDaITY9YLGHl7I9C+gjQMoVwDSvrcmZoidCkCKZaA1gE3o5QBSKOGCLwBDrQEUE4BiDqDUPIAUilGJ0rsBlPDy0ksvYc+ePairq0NaWhpmzJiBIUOG6Nqm9PR0XfYr5gBquRScXrGTMAIwOjoaUVFRcLlcmghAI8SuFzT28KK2AyiWAiaFXosWLdi/pRxA2vfWxAyxUwcwwpk4cSI2b96M3NxcLFy4EM8//zzniVYPysrKdNmvERxAvWInYW5WsbGx7HqVWghAI8SuFzT28MKfciNcKWBSGMoVgLTvrYkZYqcCMMLJyspCTEwMAMBms8HtdnNGy+mBXilXI9QAGiHdzNwcnU4n+5R6+fLlsK2ewGCE2PWCxh5ewlkDKOYAyq0BpH1vTcwQe8SlgGtra7Fp0ybk5+fj2LFjqKqqwqJFi3D77bcr3ta7776LN998Ex07dsQ777wThtZeRWm7Gxoa8NZbb+HLL79EVVUVOnfujIceeggDBgzw++zq1auxbds2NDQ0YNCgQejUqVNYYwkEI0i1xggOoF6xkzA3K1IAAk0uSvv27cO2XyPErhc09vCidg0g6fRVVlbC6/XCbrcHlQKmfW9NzBB7xDmAFRUV2LhxIwoKCtClS5egt1NSUoL33nsPcXFxKrZOHKXtXr58OTZv3oxbb70Vs2bNgt1ux/z583H48GG/z86ZMwfbt2/HmjVrMGDAANhstnCEIBvyyVlLjOAA6hU7CSOEY2NjOQIw3GlgI8SuFzT28BJOB9Dn86G6uhpAcNPA0L63JmaIPeIEYGpqKrZs2YIPP/wQjzzySNDb+cc//oHs7Gx069ZN1uerqqqwa9cu0ffz8vIkR4opaXd+fj527NiBGTNmYObMmRgzZgz+9re/IT09HevWrRP8jsPhQL9+/XDgwAHs3btXVkzhQq8Rp0ZwAI0w2lYoBQyEv21GiF0vaOzhJZyDQICraeBgUsC0762JGWKPOAEYExOD1NTUkLZx6NAh7Nq1C48//rjs72zZsgVLlizB7t27/d7bunUrli5ditzcXNHvK2n3rl274HA4MGbMGPY1p9OJUaNG4ejRo5JrEHo8Hly4cEHWfiIN5iJtt9s5zq4ZajXUhBwEoqUApFDCBf+a5/V60djYGPT2+A/rzECQYBxACsWoRJwADBWPx4O1a9di1KhR6Ny5s+zvTZ48GYMGDcLSpUtx4MAB9vVdu3Zh1apVGDFiBMaOHatKG0+ePIm2bdsiISGB83r37t0BAKdOnQIAVFdX46uvvkJtbS0aGxuxc+dOHDx4EL169VKlHcGSlJSky37J1Gd0dDT7upYCUK/YGTweD3tj1NoB1Dt2PaGxhxe+AwiEVgcoJgDFagClsju0762JGWKPuEEgofLpp5+iuLgYa9asUfS9qKgoLFmyBE899RQWL16MNWvWwOVyYdmyZRg4cCAWLlyoWu1dWVmZoFvIvMaM8rXZbNi6dSvWrFkDn8+HzMxMPPPMM+jatavgdvPy8pCXl8fWu4QLvWoQycEPdrsdDocDHo9HUwGod/0lmRrTWgDqHbue0NjDR01NjV/KFmg61uPj44PaplgKOBgHkPa9NTFD7FQAElRUVODtt9/GlClTkJycrPj7TqcTy5cvx+zZszF//ny43W50794dzz33HKKi1Pup6+vrOQ4WAzPqiLnJJyQkYO3atbK3m5OTg5ycHJw4cQLTp09Xp7ECVFRUcGrwtIJ0AIGmiZC1FoB6xc5ACkByHkAg/AJQ79j1RCx2r9eLr7/+Gl27dkW7du10aFn4CXe/C7l/QGh1gHIcQPIeISUA6XFPYzcqNAVM8Oabb6JZs2YYP3580NtISEjAzJkzUVlZCZfLhccffxxOp1PFVjYJTSHRwqQ81N5fpEA6gABYEW2lGkC+A9i6dWv234WFhXo0ydK89tpruOWWW9C7d29BF4sSGLGa53ALwPj4ePZaQmsAKWaECsD/x7lz5/Cf//wHd911F0pLS1FYWIjCwkI0NDSgsbERhYWFshZ3vnjxIpYtW4b27dsjPT0dzzzzjOoTL6empgrOMs681rJlS1X3pzZpaWm67FfIAQS0XQpOr9gZyBtVbGwsZ/BRuB1AvWPXE7HYmRH5ly9fZmt3I41w93s4HMBAKWCmjIS5lkgJQHrcWxMzxE4F4P+jtLQUXq8Xa9euxaRJk9j/8vPzce7cOUyaNAkbN24MuI05c+YgKioKq1evxqpVq1BXV4e5c+fKEo9y6dKlC86fP4+amhrO6/n5+ez7RoacWV9LjOAA6hU7A98BBK6uWVlUVASfzxe2fesdu56IxU72h9RAAjMT7n4nBaDdfvWWFs5BIMwsAnIEID3urYkZYrdsDWBdXR2Ki4vRvHlzJCcno2PHjvjLX/7i97k333wTtbW1mDVrFjIyMkS3V1VVhXnz5sHlcuGVV15hU2srV67E7NmzsWDBAqxevVqViaWHDRuGTZs24bPPPsM999wDoOlit23bNmRnZxv+ySPcS44J4fP52BsC3wHUUgDqETsJeaMiBeDRo0dRV1eHyspKNG/ePCz71jt2PRGL3QoCMNz9TgrANm3asNNcBbtfn88XcBoYZnAJcz2XEoD0uLcmZog9IgXgxx9/jOrqajYlumfPHvYiMX78eCQmJuLYsWOYPXs2pk6dimnTpiE5ORlDhw7129aHH34IAILvkWzZsgUlJSV4+eWXOcXcXbt2xYsvvoi5c+ciNzcX48aNC6ndAJCdnY3hw4fj9ddfR3l5OTIzM5Gbm4uioiIsWLBA7s+kG0IDWMKNkPOlhwDUI3YS/iAQAH4jgcMlAPWOXU/EYif7I1LryMLd76QAbNu2bcgCsL6+3s8J508ErcQBpMe9NTFD7BEpAD/44ANOPdPu3bvZCZpHjBgRlpE5kydPxtChQ9GxY0e/93r27In169cHXINXSbsXL16MtLQ0bN++HdXV1ejUqRNWrFiB3r17qxNQGNGjRlFI+OghAPWuz5RKAQNNAlDu6jdK0Tt2PRGL3QoOYLj7nRwE0q5dO+zbtw9A8AJQqB/EHEDmWiLVd/S4tyZmiD0iBeDmzZsDfqZPnz6Cq3bwefnll2XtMyoqSlD8MciZVFpOuxmcTidmzpyJmTNnyv6OUSgsLERmZqam+xRKfeohAPWInYQ/CASAZlPB6B27nojFbgUHMNz9TjqA7du3Z/8OtgZQSMyVl5dzUsN8B7ChoQFer5dTg8hAj3sau1Ghg0AolsAoDqDeCDmAZM2o1DKCFPWxggMYbhgBGBsby5kgP1gHUGg6noqKCs72+AIwlP1RKHpBBSBFc5o1a6b5PoUcQGbibC0FoB6xkwg5gGTNX1VVVdj2rXfseiIWuxUEYLj7nRGArVu35syBqnYKmBSG/BQwIO7g0uPempghdioAKZrjcDg036eUA+jz+eDxeDRphx6xkwg5gOSa0uFcBlDv2PVELHZSNERqCjic/e7xeNh5VtUSgEIOYHl5OUcYCjmAYv1Hj3trYobYqQCkaI4e8yNJ1QAC2rmAes8NJSQAycFF4RSAeseuJ3QewPBQVlYGr9cLwF8AqlkDWFtby5nLVYkDSI97a2KG2KkApFgCKQcQsE4doFAKWCsBSPEnUgRgVVWVLjc8cgBIOFPAAHeAFOMAkvO6RqqDS4lcqACkaA65/qxWBHIAtVoOTo/YSfR0APWOXU/EYo+EUcCFhYVo27YtMjIy8Msvv/i9H85+JwVgWlpa2FLAAHetbCUOID3urYkZYqcCkKI5ai6LJxejOIB6xE6ipwOod+x6IhZ7JDiAX331FSorK+FyubBt2za/98PZ73wHkBnYBWjjAJICUOx79Li3JmaInQpAiubo4XQYpQZQb5cnkAPIX19aTfSOXU+EYvf5fBHhAJIjx4UeIMIZFzltUThSwK1atWL/Jh1AJYNAzNqvakBjNzZUAFI0JypK+/nHjeIA6hE7iZAAjImJYX+LcDqAeseuJ0KxNzY2cpYcM6sDSD40CD1AhLPfpWoAgy3rIFPA5CTpwaaA6XFvTcwQOxWAFM0xYg2gVgJQ77oQoRQwcNUFpDWA4UEodr5DFQkCUOj40aoGMBwOILlMYrAOID3urYkZYqcCkKI5Fy9e1HyfRnEA9YidRMgBBLQRgHrHridCsfMFihlSRkKQx4yQAxjOfucPAlG7BlANB5Ae99bEDLFTAUixBFIrgQDWngYG0EYAAsBHH32Erl27Yu3atWHdjxngC4ZIdQDDCSkAW7ZsqfooYLF1suk0MJRIgApAiuaQgw60wigOoB6xk8hxAMm6NDVJTEzEiy++iFOnTuG5554Lyz6MilC/R6IDKCQAw3nMM4NAUlJSEB0drfpE0GQK+MqVK+zfShxAvc95PaGxGxsqACmaQwovrTBKDaAesZMEEoA+ny9sTlR0dDS7bFdFRUXYhKYREer3SKwBFEoBh/OYJ9cBBqB6DSDpAJIoqQHU+5zXExq7saECkKI55JO0VhjFAdQjdpJAKWAgfGm8K1eusFOGeL1eNDY2hmU/RkSo3yNRAAodO+E65l0uF7tvZroWNWoAxVLAJErmAdT7nNcTGruxoQKQYgmMshKI3gRyAIHw1nGRc8aZNeWpFpGYAg7nPJJ8yKXnWrRoAUA7B1BJCphCMSpUAFI0h5xcVSuM4gDqETuJng5gUlIS53cO9gZtRoT63SoOYLiOeXKlhebNmwOA6vMAtmrVCna7/21SSQpY73NeT2jsxoYKQIrmaD1SEDBODaAesZMwosNms3EmKtVCAJKjKAFrOSZCv6lVHMBwHU+kAExKSgKgvgMYHx/PiksSJQ6g3ue8nugd+9mzZ7Flyxb89ttvmu9b79jlYPypqikRhx5Oh1EcQL1dHuZ3cDqdsNls7OtaCEBmAAiDWQVPMAj1u5AD6PP5OP1iBvgOID+GcB3zFRUV7N+MSCPP6VAFoMPhQHR0NJo3b+5Xz6XEAdT7nNcTrWP3+Xz4/PPP8fHHH+Prr7/GmTNnAADJycm4cOECK9y14Ntvv0VsbCxuvfVWw57T1AGkaI5QSiXcGMUB5Md+5coVTS+SzO9A3rgAICEhgf07XAKQH6dSAXj8+HGMHj0af/vb31RslTYIHfN8geL1ek05HyUpABsbG/1Sr+E634UcQJvNxg4ECXUQCCMWpBxAOfMA6nG9Mwpax56Xl4fRo0dj48aNrPgDmupFCwoKNGvH8ePHMXbsWNx2223Yvn27ZvtVinWPTIpuiBVWhxOjOIBk7EeOHEFmZiYyMzNx4cIFTfZPOoAkWjiAfNGpVACuWrUKW7duxbx581BWVqZm08KO0DEvJFDM5or6fD6/tC//3+E634UEIHD12A7VAWTEXXJyst9nlDiAelzvjILWsR85coT92+l0IiUlhf23lg/a+/fvZ6e5+vHHHzXbr1KoAKRojlZih8QoDiAZ++effw6Xy4UrV67gww8/1GT/Yg4gKQDDNZLz9OnTnH8rvUEzNYQej4czAtQMCB3zQoLBbOlCJm1Nwn+ACNf5LpQCBq6e36FOBM2IPL4DGB0dDYfDAUDeNDBC8R88eNAUS4WFitbXenIAz4cffogHHniA/beWD1eXL1/WZb9KoQKQYgmEHEC9l4IjRcx3332nyT71dAD521V6YSQv7mZMlfKJBAdQ6FjRaiqYcDmA/BQw3wEk68iCmQbmX//6F/r27YuePXty1hemhA55jUhMTOSk6LV8uCIFoJEf6oIaBDJp0qSQdzxhwgTcddddIW+HYj7IejOtYC7O5OhXPRxAMnZSAO7Zs0eTAQDMTVHKAQyXAORP/KxU7JAXUrMJQKFjXkigGPlmIYScUb/hOt9JB5AUgKHWAAZyAElRIUcA8uPPy8sDAJSVleH111/Hs88+G1Q7zYDW13ryeExISNBtnsaIdgCLiopQVVUFn88X1H/FxcWmGCJNCQ9890kLSOHDiCw9BCAZOykAL168iLNnz4Z13z6fj70Y6eEAhjrtiZkdQKFjPlIFIP+1cJ3vQvMAkvsLRgC63W72QUVsEAjpAEZFRbHpYLHjmR8/OR3Sa6+9ZrpjWQlaX+vJa0R8fLwhHEAjC8Cgp4GZOHEipk6dGtR3b7rppmB3S4kALl++jMzMTE33KSR89BCAZOz8OrbvvvsOWVlZYdt3Y2MjW6+lhwBk1m1lUHqDJi/gZlu5ReiYj9QUMP81fuwejwenT59Gly5dQtp3oBRwMMcIeYyJDQIhRQXQ9FBZU1Mj2nf8+IuLi9m/CwsL8cknn2DChAmK22oGtL7W8wWgXg4gOW2QkR/qaA0gxRIIpT71XgqOLwD37NkT1v2JrQIC0BpAPYhUBzDQ8TN27Fh07doVS5YsCWnfgQaB1NfX+w1QCYSQAJRyAIGr55Lc45k/Ifqrr76qqI0Uccjjke8A0hSwP0EJwH/+858YN25c0DsN9fsUc9OyZUvN92kUB5CMXcgBDCdi6wAD0gLQ7XZjx44dnBtuMHg8Hs6/rVQDKHTMR6oDyBeFZOxerxdbt24FAPb/wUI6gM2aNWP/ZmoAfT6fX91pIPirgADSNYDkv8X6jozf4/H4OeG7du3Czz//rKidZkHraz35kMivAaSDQPwJSgC2b99ecHJMrb5PMTfkSaoVgRxArQQFGTtfAP70009hrY0N1gFcsGABcnJycPPNNyt2VEj48VrJARQ65q3iAJKxk30equvOCMC4uDjOuRzKcnBkW5WkgAHx45ncZllZGfsgRE6SvG7dOkXtNAtaX+v5/UcdQGloCpiiOXoIQKM4gFIC0Ov1Yt++fWHbt5QDGBcXxw6O4d/Av/76awBNE5qGctPmO4hKbs4+n8/UDqCVBCD/NTJ28u9gR+kyMMcT30wgj22lx2soKWCxviNjJuv/xo0bx46SfffddzmOZqSglwCMiYlBVFSULg6g1+vl1ABaRgBWVVUhNzdXzU1SIhCt10X0+XyGcQCZ2Ovq6gRvgOFMA0sJQLvdzt6M+AKQXHUjlJs2XxgouTDyP2u0QSBnzpyB1+sVfV/omBeK38g3CyHkDAIhYycFgVoOIDkABFDPAZSbAiYdQCGHnIyfrP/r1q0b7rvvPgBNv9k///lPRW01A1pf65lrjJKl+tSmsrKScy0w8kOdqgKwuLgYL774opqbpEQgGRkZmu6PvNHoLQCZ2En377rrrmP/DudAEKkUMHA1DSw0ilNoG0rh3/CVbIvvJATqr/LyckycOBHDhw/HpUuX5DcyCF544QV07NgRo0aNEv2M0DFvFQeQjF2tkdxer1dUAJITvIcy0lwsBSzmAHq9XsGaQzJ+UgCmpaVh5syZ7L9fe+01RW01A1pf65nrBPMwq4cDSF4vAWM/1CkSgMXFxZL/lZaWhqudlAhC6yWQxJwvPQQgEzspAPv06YO0tDQAwN69eyWdpFCQcgABYQHY0NDA+XcoDiCZFgGUXRj5F2+p/vJ4PJg8eTI+/PBDfP3113jjjTeUNRRN17rdu3fL6ovPPvsMAJCbmytawyl0zEfqIBD+a2TsajmANTU1rNsmlQJWQwDKdQAB4f4j4ycFYHp6Onr27ImePXsCaFrHNlznvl5ofa3nr+KixzQwoVzntEbRPIATJ06UtHS1WMmAYn5CGUgQDGLOlx5LwTGxkwKwRYsWGDJkCP7973+jsrIS+fn5HFdQLYJxANV8muULAyU3ZyUO4J///Gd88cUX7L9/++032fth2tWrVy8UFxdj5cqVmDt3ruTnyd+kpKSEM6CGQeiYj1QHkN/PZOxqCUCxOQCB0GoAhVLAsbGxcDqdbH+JOYBA07FAjkgGuPHzBSAApKamsq/V19f7CUwzo/W1XioFrJcDaORzWpEAbNasGf74xz+id+/egu8XFBSEPLcTJfLhX0DDjZEcQCZ2UgAmJyejffv2+Pe//w2gKQ0cDgEo1wFsaGiA2+1GdHS038VMrxpAuQ7ghx9+iBdeeIHzmtIVVk6ePMkW669fvx5z5syRfLAlf5Pi4mJ06tTJ7zNCx3ykCkD+a2Tsag0CEZsDEFDfAWT2wUzfIjYNDCB8TJPxk4NAGAFItreuri6iBKCW13qPx8P2t1AKWCsnLmJTwNdccw2qqqrQsWNHwf/atm2rueKnmA+tBaCY82UkAfi73/2O/bfYQBCPx4MLFy4EvW+5AhC4ehNX82IWigDkO4BCzs7hw4cFVyc6d+6c7P0A3BTOqVOncPToUcnPk3GQN3gSuQLQyDcLIeSkgMnY+TWAwd4vpBxAtWsAAa7IVJoCJuMXcgD1Wq1CC5jYf/vtN6xduzasKWGhORypAyiNIgE4duxY9qAVIi0tDQsXLgy5UZTIRutaUSM5gEzsfAHYt29ftm1CA0F8Ph9uvPFGtG3bNqiaNiBwCphcuJ25iZMjgIHgXZv6+nq/31jNQSA+nw+TJ09mP3f//feja9euAJoEoBKhwa/h2bJli+Tn+Q6gEELHvFUcQDJ2sh99Pp/f5OBykZsCVmMUMMAdCBIoBcyHjJ8RgLGxsWyqOJIFIBP7+PHj8cQTT2DatGlh25dY+p5BLwcwmBVptEKRALzxxhsxYsQI0febNWuG22+/PeRGUShqIscB1HpaEb4AdDqd6N+/PwDg119/9RMMRUVFrDP4ySefBLVPJQ4gIwDVcgCrqqok2xOIQCngkpIS1qnr3r07XnvtNbRv3x5AkyDhz7kohVIBKMcBFCLSHEDGeZOazFyOkysHPVLAQq8DykaaMgIwPT2dLSuIZAEINAl9ZqWT//73v2F7yOEvAwcYwwEEQp/zMlzQiaApmpOSkqLp/ozkADKx8wUgANaxAuC3XBR5wwv2YiJ3EAigvgMoJADVdABJIXHdddchLi4O7dq1Y19TkgbmC8CDBw/i9OnTop+X4wAKHfOR5AA6HA42Rr4DSMbOjy/Y4ylcg0DkCEClDiATv9vtZs8nMpMWyQIwJSUF9fX17PQ4brcbP/zwQ1j2xV8GDmi6xpNzr2oB//oBGPe8pgKQojlaPw0ZqQaQiV1IAJI3Mv6qGeS/g3VNjOYAqjkIhPxNGCdKLQEISLuuchxAoWOeec3hcLCvGfVGIQYj9hITE0XnkSRjV8sB1DMFrLQGkGkD+VAnJgCN6hQFS319vd+5H67J7oX6zmazBVyrWW2EHECjCvuQBeCwYcMUF1lTrI1Q3VA4MZIDyMQuJABJl0FKAIZSh8egtQAUSguqOQiE/DfTr2oKQGaENp/GxkbO3G1855ZB6Jhn4if73ag3CjGYfk1ISBAVgGTsWqSAjTYIhImfPwk0A38UcCRRU1PjJwDDNdm9mHgPtFSf2ggJQKM+2IUsAI1a3EihMIg5gA6Hg00PaL22rFIBSDoewd40jZYCVrMGkPy3mg4gU6i/Z88eQXePH0MwNYCku2TUG4UYjLhJSEhg025ut1v0GDW6Ayg0khQAbrnlFvY1plaXQW4KV2gEsJLvmxX+A8F3330XFt0gVAMIgDqAEtAUMEVzMjMzFX/H5XLhL3/5CzZu3Kj4u+RNh//0zrhFWglAJnZSADI3sEh2ALWsAVRTAN59990Amh50mRU/SPgxiAlAoWOe6Y/ExETY7XbB7Rkd5jghU8AA92ZMxq5WDSB5PoRrImjyWvE///M/+Omnn3Dq1CnOxM38zwn1HxO/FQVgZmam37lfVlaGkydPyt6G1+vF/v37A/42QjWAgDEcQKP2KxWAFM0pLCxU/J133nkHTz/9NB588EHs2LFD0XdJscVPF2ktAJnYmTYlJSWxNWBk20iHA1CnBjAYB1CtiaDNKgDJaSuE0sD836OiokIwLv4x7/P52O86nU7Nb1Jq4Ha72X4gHUCAKwDJ2MPhAGoxChgAevbsiTZt2vh9J5CAY+IXmgRazvdJCgoKkJ2djeuuuw55eXmSnzUChYWFgue+kjrA+fPn44YbbsBtt90m+blAKWAtRJjP57NWCphCUUow613+9NNP7N9K58EjxRN/YXdGLGglAJnYGQFItkdqEAh5w9PSAeSngM0wCIQR9UlJSaw4ULIaCCMAExMTMXDgQFZI7tixw69fhGIQqgPkH/ONjY1sGszpdLJiw6g3CiFIkcd3AMm0Hxm7FilgtWoA5U5YH0jAMfGL1QAqEYDz5s3DsWPHcPToUdx6663405/+5PewaCS8Xq/gua+kDnDnzp0AgN27d/sdPySBUsAulyvsJWsul8tU0ztRAUjRnGCWOiJv4J988olgob4YUgXjWjuATOxCAlBuCljPUcB61QAGEg5CNYDAVRfw/Pnzsh88mGMrOTkZNpsN48aNY/exfft2zmeFYhBKA/OPeX5faF2npAakyCMHgfDfk5qLTY1BIPy1d9UYBWyz2QTPESECzQPIxC8nBSzV3r179+Kjjz7ivPb666/juuuuw3//+19ZbdWauLi4kB1A8tyWqrENlAL2er3sdDThQuy+ZNQHOyoAI5iXXnoJY8eOxciRI/HAAw+EbfSVUsgbhVxIAVhfX49NmzbJ/q6RUsCJiYmoq6sTHAAQ7hpApSng+vp6Wcu31dTU4Pz585L7FhsFLPeJPJhpYICrArChoQGXLl2StS/mIt6iRQsA4CzTx08ly3UA+cc8XwCaMQVMHhtSKWAydr6QD3UewMTERM40OoA68wDGxsZKrv9MEsjBY+IPZRSwz+fDU089xf57woQJ7O997tw53H777YoeirUiMTFRUADm5+fLbi8p2qTKh8RSwFpOBi2U/gWM+2BHBWAEM3HiRGzevBm5ublYuHAhnn/+eT9hoQdyb8Qk/BSeksEgUilgrQXgpUuXBEcAA8ZzAOXMaF9fX48ePXqgXbt2+Pjjj0X3Td4EgnkiV1IDSE7vo7QOkEzhMAKQvJnwL+RyHUD+MR8JDqDcFDAZu9opYH76F1DHAVSyXnkgAcjEzxwXSUlJgjVqYt8HgE8//ZR9gL/22mvx/vvv4+eff0avXr0ANP2ORpyO7dKlS5xjoXPnzuzfe/fulbUN8lwnRTSfQDWAQPjPL/KaGWhwkBEIWQBOnjxZ8CSk6E9WVhbrhthsNrjdbs3X4VWDiooKvzqX77//Hvn5+bK/zyDmAKq1FJzb7cauXbska1XkCEB+vGrUACpxAGtqamSNZjt69CgKCgoAAC+//LLovkkB2KpVK9HtiRHMNDCAcgFIuhKMAJS6gQi1X85UMFIOoFmm1uKngMUcQBK15wHkn8+AOjWASspUlE4DQ6Z/5Xzf7XZjwYIF7L9XrFiBqKgodOjQATfffDP7utQSfHpCnvvkUrJy08ByBWCgGkBAWweQdHmN6uyHLAD/9Kc/CZ6EalJbW4u3334b8+bNw6hRo3DjjTfiiy++kPXd06dP489//jMmTZqEW2+9FaNHj8Zjjz0mmg49ceIE5s2bh5EjR+K2227DnDlzFA1ZDxalMTY0NGDdunUYN24ccnJy8Kc//Qn79+/3+9zq1auRk5ODGTNmoG/fvujUqVM4w5AFc2OVC+n+kRdLuS6g0JQrDGo7gLNmzcKwYcPwhz/8QfD9Fi1aiArA+Ph4Np0l5QB6vV54PB7FbVPqAPIHgPC3AXBv6Hv27BFNgYQqAIMZBQyoIwClnuTlOoD8Y54vxsl9mGU1CLkOIBm7GjWAHo+H3X4wDuDZs2exZs0a/O53v0NcXBxefPFFv/YpEYCBnJ4WLVqgtraWfYgjhQEQWAC++eab+OWXXwAAQ4cOxejRo9n3xH5zo9CiRQvOuT9y5Ej2b7UFYKAaQEBbB5C89kSsAyiFz+fDuXPnFE2OKkRFRQU2btyIgoICdOnSRdF3i4qKUFtbi5EjR2LWrFmYMmUKAGDRokV+83qdOHECjz76KC5evIipU6di6tSpOH/+PGbNmqVoFGEwKI1x+fLl2Lx5M2699VbMmjULdrsd8+fPx+HDhzmfmzNnDrZv3441a9ZgwIABsutawolSsUX+9g8++CAr2v75z3/KSiEy4qlZs2Z+9UJqC8Cvv/4aALBr1y5BJ8ftdosKQJvNxt7QpAQgEJxIIL8j5ACSF02xFDD/Qkbe0D0ej+hDC3kTaNmypWCbpAhmJRAAaN++Pfu3Gg6gnHnshK53/ONLLAUMGPdmwUdqEAgpDsnY1agBJPerRAAeP34cv//975GVlYU5c+Zg7969qKurw6pVq/zap2YK2O12i04BE+j7dXV1WLJkCfvvl156iXMNN7oAdLvdnHO/W7duyMrKAgDs27dP1nVXzRpALQVg69at2b8j1gEEmm52f/nLXzgdXVhYiKlTp+L+++/HpEmTsGTJkqBcCwBITU3Fli1b8OGHH+KRRx5R9N3Bgwdj5cqVePDBBzF69GhMmDABa9euRZcuXbB582bOZ9966y04nU6sW7cOd999N+655x784x//gNfrxeuvvy65n6qqKuzatUv0/by8PMmDQEmM+fn52LFjB2bMmIGZM2dizJgx+Nvf/ob09HSsW7fO7/MOhwP9+vXDgQMHZNddhBOlFypSAPbt25d9Ai4qKvIblSmEVLpIbQHInANer1fw5lZdXS0qAMk2Sk0DAwTnnJAXPyEHMDo6mn09GAEIAP/5z38E9032OTmRrlop4HA6gGqkgKXWxyVTwIBxbxZ8pAaBkPGSf6uRApYq6QDEB4EsX75cMPNTWlqKmpoazjmrZgq4urpadAQw//v8a8aRI0fYQUV33HEHBg4cyHnf6AKwurqaowuaNWvGDqqqra31MyyEULMGMNznFnn9COY6pzWqCMBPP/0UJ0+e5AzHf+WVV3DmzBn06dMHnTt3xtdff41t27YFtf2YmBi/2ddDweFwoHXr1n4nzOHDh9G/f3/ORaVly5bo3bs39u7dK1nXtWXLFixZsgS7d+/2e2/r1q1YunQpcnNzRb+vJMZdu3bB4XBgzJgx7GtOpxOjRo3C0aNHRR1Xj8eDCxcuyNqHkSAFYPv27fHggw+y/96wYUPA7zOCS0oAer3eoOYn5EMKNbE6KLkCkHQQ1XQAo6Ki2JUn+DA3cbkpYP4F9YsvvhC8qTM3gfj4eI5QUCsFLFYD2LZtW/ZvPVPAfCLBAZSbAiZRIwUsNQcgIF4DSF77/vznP3Pq0QoKCji/u9o1gFIOoNQoYPI3vvbaa/22Kya6jYSYAATkpYHVrAHU0gEk+9mo57QqAvDMmTPo3r07++/a2lrs3bsXN998M9asWYPXXnsNWVlZQQtANXC5XCgvL8eFCxewefNm7Nu3D3379uV8xu12cy4eDLGxsXC73Th9+rTo9idPnoxBgwZh6dKlOHDgAPv6rl27sGrVKowYMQJjx45VJZaTJ0+ibdu2nJMfANsHp06dQnV1Nb766ivU1taisbERO3fuxMGDB9lRY3qSkZGh6PN8AThy5Ei2juazzz6TvPC53W72psMXWwA3XRiqC8if9FTogSEjI0OWAHS73ezNi4yBIRQHUCj9y8DcxIN1ACsrK/HNN9/4fY/5XZo1axZUTU6wDmBsbCxbcyinjENpCljuNDD8Yz4SHEC5g0CY2H0+n+YOIPk7M9+z2+1YsmQJBgwYwL5XUFAg6iAFIlDfZWRkiE4Bw/8+/3iSWsYS8B+4ZTQyMjL8jpPBgwez//7hhx8CbsNMDiB5zSQFu1HPaVUEYGVlJVJSUth/Hz58GB6Ph11AOyoqCv3799fVfXr11VcxZswYNq07dOhQPPnkk5zPtGvXDvn5+ZxUtdvtZkebSk1fEhUVhSVLliA7OxuLFy9Gfn4+Dhw4gGXLlmHgwIFYuHChavV3ZWVlgm4h81ppaSlsNhu2bt2Ku+66C6NHj8a//vUvPPPMM+jatavodvPy8rBw4UL8/e9/V6WdYgjdIKUgb9zt2rVDVFQUmwZ2u92SaYRANws1BSD/Aix0QS4pKZElAIGrbRea6T8UB1BqgltSAMpxAIUEkFAamBSAwUzTEew0MMDVNPDFixcD1owqTQELtb+srMxvP/xjXsoBNOrNgg8/BSzmADKxNzQ0+LnswRzHgRxAseOLzATYbDa2Fg1oEoBSy8BJEeiBpqSkRHYKWOoBK5AANKIDWFJSwp77CQkJsNvtuOaaa9j3z5w5E3Ab5LlUVFQkmqlhrhFOp5NT663XIBCp6aOMQpQaG0lISOCclAcPHoTdbue4TVFRUbr+CBMmTMCwYcNQWlqKnTt3wuPx+N1Exo0bh1WrVmHFihWYPHkyvF4v3n33XfZGGOhp1el0Yvny5Zg9ezbmz58Pt9uN7t2747nnnkNUlCo/NYCmixr/JgdcdT7q6+uRkJCAtWvXKtpuTk4OcnJycOLECUyfPl2VtgqhdDZ2RgCmpqayLkOfPn3Y9w8dOsRJK5BITQINcN2iUAUgX6gJCcDGxkZJAchfDi4tLU1w7sZgnBPmZijHAaypqRGcMiiQAwg0CcA1a9awDzw+n091B1DuSiBAkwD88ccf4fV6UVhYyKkL5EP2jZwUsFD7fT4fLl26xFk3ln/MR0IKmBQciYmJog4gE7uQIx6OFLBYDSC/FlgtARhoIufGxkZVBKCQK2l0AdjY2Mg595n/t2jRAleuXGGnkBLD5/NxDJnGxkZcvnyZM5CMgTnm+L+THtPAREVFce43Rn2oU8UBbN++Pb777jtUVFSgqqoKeXl5uOaaazg1gUVFRYqn/1CTrKws9O/fHyNHjsSKFSvgcrmwcOFCTp3VHXfcgfvvvx95eXmYMmUKpk6diosXL+Kee+4BIO+ikJCQgJkzZ6KyshIulwuPP/647CWF5OJ0OgXFCnOxU3t/aiMlQPg0NjayzjE5opMvAMWQmgQaUNcBlCMAY2NjFTuAQgIwGOeEubnIcQB9Ph/HsWfEnFQNIPNb/vbbbzh27BinrYwISExMVCwAPR6P337lpoABZQNBhBxA8veSGgVM3tj5dYD8Yz4SUsByHUCpVU7CkQKOioryO159Pp/f8ot8ARhsCphcNk7oeI6NjQ16FLCSFLARBWBsbKyfAASu/vbnz5+XHBwqdE0WSwMzvxW/NEoPBzAlJYVzbBr1oU4VATh+/HiUlpZi/PjxmDBhAsrKyvzq3fLz8xVP4RJOhg0bhuPHj/vdEKZPn45PP/0Ur7zyCjZs2IDXX3+dFYlSzgHDxYsXsWzZMrRv3x7p6el45plnVJ98OTU1VTA9x7wm9HRkJJRMHF5YWMheIEgBeP3117MXebkCMNwpYP6SR0ICMCkpSZUUcCgOoBwBCIB9Oo+JiWHbJeVQkEX1ZBqYvDEF4wCKTa1BIpUCVjIVjJAAdDgc7DalUsDkfvgCkH/MR1oKmD8IhHyPiV2OA1hdXY0JEyZg8uTJog85gRxAm83GyYYATf3GHDPMsUz2VygOIHBVdAidq0lJSRzRQk4PAkjPW2j2FHCzZs0kBaDH48HFixdFvx+MADSCA9iiRYug5jvVGlUE4LBhw/Dkk0+iY8eOaNeuHf70pz/h9ttvZ98/dOgQampqcMMNN6ixO1VgTjShk6ZZs2bo2bMnu2zNDz/8gFatWnEuGEKUlpZizpw5iIqKwurVq7Fq1SrU1dVh7ty5gheGYOnSpQvOnz/vJzCYWkUjCW0hlNQAkjds8vdPTExk6xmPHDkimlZWIgBDXQ1EjgPIrwHk38CEVgNR2wGUkwIGroqY1NRU9jtSN6iJEyeyf5NzbPJHASqtARQSDnJHAQOhO4AARJdqI/9NOkp8ARioBlBLl0It+MX9cXFx7EOZUA2gUD/y+3/Lli346KOP8L//+7+iSwsGEoDAVVHFbF8oExAXF8cOyDhz5kzAdKsUjKgTuraRNYCpqal+DyhSDxiBBKCc1Vf05OzZs+wDvJAABCCZBha6rovNBSgmALU6t8g5D1NSUjjXPaM+1Kk2EfTYsWPxxhtv4I033mBTpgy9e/fGtm3bcMcdd6i1O0Hq6upQUFDAucEKLTjd2NiI7du3w+l0okOHDpLb3LFjB44fP44JEyaITp0BNN3k5s2bB5fLhdWrV6N169Zo164dVq5ciUuXLmHBggWqHQTDhg2Dx+Ph3GQbGhqwbds2ZGdn+40yMzP8EcAkvXv3BtDU7ydOnBD8vpTbBmjvAJJtSkpK8puYWm4KWKlY9Xq9bHxyHUCGlJQU9iIqdYPq0aMHsrOzATSt88kMmuILQKUXZDkCUO0UcHx8vN9oYkA6BSzlAPKRWgnEqDcLPvwUsM1m40wjxEdOCpjMljCrX/AJ9FAHXD3Gme2L1QIzQqSwsJDzGaUOIJPWramp8Yvd5/OJLgPHb2+k1QCS524wAlCuA0iWiejlAJLHD3nNBIz7UKfeyIQw8/HHH3NGJu7Zs4d92ho/fjwSExNx7NgxzJ49G1OnTsW0adMAACtXrkRNTQ169eqFVq1aoaysDF999RXOnj2LRx99lHOwHDp0CO+88w4GDBiApKQk5Ofn44svvsDAgQNx1113SbZvy5YtKCkpwcsvv8y54XTt2hUvvvgi5s6di9zcXIwbNy6kGAEgOzsbw4cPx+uvv47y8nJkZmYiNzcXRUVFnDUjjYqQEBMjkABkJvM+dOgQevTo4fd9LVPAchzA5ORkv1okknCNAiZvtHIdQIaUlBT2SVxqFHBsbCxGjx6N/Px8+Hw+5OXl4Z577glZAMoRDnJGAQPyBSC/XllMAJP/Jo9PvhPE7+tIGwTCXEcTEhJQXV3NOfaZ2OWkgMnfRUwYqOUAAk1C5Pvvv4fP5+MITqUCkHzoLi4u5pxHdrud7VMxARgbG4vq6mrFNYDk/cuIApA0TUgByE+/iyFXAIotAwdo5wCSI4BTUlLQqlUr2Gw2+Hw+w57TphGAH3zwAafjd+/ezU66PGLECMEbFwDcfPPN+Pzzz/Hpp5+ioqIC8fHx6NatGx5++GH8/ve/53y2VatWsNvt+N///V+4XC6kp6fjj3/8IyZNmhRwFO/kyZMxdOhQdOzY0e+9nj17Yv369QHX4VUS4+LFi5GWlobt27ejuroanTp1wooVK1hXzMgoWRFGjgMINAnAe++91+/7RhOAHo9HUgDyRwGT/ydR6gAGWgWEQeg8Sk1NZWMLlKIiR2MzrqzeDmBGRgbsdju8Xm/QAlAsBSzXAeQf85E0CCQuLo51shMTE1FcXMwRI0zscgQg+fuKCQM5DiC/BjCQAwg0LRXHoDQFzBeATPkQAMkRwAxyHHYhAWi325GQkCDoPBoBsq/Iawv5u0vNzyk3BSw1gEcrB5AvAL1eL2JjY+FyuQx7TptGAPKXbROiT58+fitx3HLLLex8hIHIzMzkrAuphKioKEHxx0BeEMSQEyOD0+nEzJkzMXPmTNnfMQpVVVWyB4JICUA5I4GNlgK+dOkSe1OS6wCqIQD5gkMMMQeQKdSur6+Hz+dja734NyjyOP/1118B+E8XorQGUOjiqaQGMCoqCm3atMGFCxckbzb19fXsvsQcQKmJoKUEIP+Yj6RBIOQxw7gv5LHPxC6nBpD8PcXmiFPbAWQgBWCoDiAJuYCAWHlOsAIQaPr9jSoASSc8nClgKQGolwNYVVWFuLg4uFwuwzqAqtUAUijhgLlhR0dH+z09p6ensxfUQ4cOcab0YTCaA0h+JpAAZD6rRgqYn6oVI1ANIMAVn/wbFOlynzp1CoD+DiBwNQ1cUlIi+tuJDQABwBkEQx5n/GlgmOMpUA1gJA0CIVNuzPFDTv3DICeVT8Z+7tw5wWwBcz6QNYd8lNYAAuBMXaSmACQXEAjkAEoNshJzJaXqLvWGPwMAQ6tWrdjfWA0BKLYMHKDdUnB8AQhIT4FkBKgApGgOOUFuIBgB2LZtW8FBOEwauLS0VHClGaNNA0O6X2ZxAFNTU0Unu+ULwLi4OGRmZgK46gCGowaQv3azVA0gwHXnzp8/L7gfUgDy+4ZsM/lbkn/HxcWxo0H5IoB/zEeSAygkAMn3mdiVpoAbGxsFpwhhzoekpCTRgXmkA+jz+USvA6QAJB+0Qk0Bk5Bxi137xBzAQDWAAHfydqNBnoukALTZbOw5WVBQIPjwDqhfAxjOc4v/ANmmTRvRfjUKVABSNEfuvIhVVVXsSSU2BQ+/DpCPlilgOQ4gmdYKRQAqdQDJz4fqAJLbYi6o5NxrTBr40qVLqKysDIsDCHD7SyoFDMgbCCLlAIoJNH5tJSMELl26xBGo/GPe7INAvF6vZAoYuOr+MLErHQQCCLtDzHkmVUbCX+FH7DpACkCSYEcBA/4CkHHCgaYHWSEYwerxeDjOqdwUMNB03ChdZSnckGKNFIDA1d++trZWcF5bQLgG8MqVK5JC2Sgp4NLSUtHaYaOgigAsLi4O+PRRW1sbMC1CsQZyhZbYHIAkgQQgI54cDodgukjrpeDIi4SQACQvkmpOBB3KIBCpKQ2YGxQ5Bxw5D+Wvv/4alnkAAe5vECgFTB4/YnWAclLAADd+vpBjBKDH4+H0Nf/YMvsgELKNYg4gIwCZ2IXiCrS2tFAdoBwByD/GxBzA5s2bC56HaqaAycwE447zCXR+AeKupNgE3EJ4vd6Q5ztVAvm78wWgnJHAYtdk/m8sNwWs5SAQt9ttjRTwpEmT8NFHH0l+5qOPPsKkSZPU2B3F5Mhdqk5qAAiDXAGYlJTEChQSrVPA5IVA6MZjt9vZC2W4HMBQU8DktoQml+YPBAlHChjg9legFLCcovNgBCDzd1RUFBwOh6gQ4P/mZk8B81cBYRCamJiJXWkKGPDvK7fbzW5HbAQwuU+g6beWygQIuYDBTgQN+KcoyeNAqQBkYrXb7YLHNSB/LsBff/0V119/PdLT0/HTTz+Jfk5NyFj41xY5I4HFrsn839iI08CQ5zXf2TUKqghAn88nmsMnP0OhAPLnAZQjALt27cperKVSwGL71DoFTN7wxNrE3NjCNQ1MqClgMQeQgXQAT5065TcKONwpYKEpm+S4DcGkgBkhx8QkJgAjbR5A/iogDEJiRMk8gIEEIPkwIdcBbGhokKwFFhKASh1Ap9PJxsl3p5h/t2jRQlRYKnHY+cgRgBcvXsStt96K/Px8XLlyBR988EGAiAKzdetW/POf/5Sc1osUPWIpYEC5AyglAKVSwFo6gMnJyYZ39jWrAbx06ZLipypKZCK3FIAUgGLrMDscDvTs2RNA0xMuKcLI4m8xt0DNpeDkOIDkAIRAAlDNUcByHUChNDnzNCu0LSEBGE4HkLyGCDmAMTExgjfKcDuAzO9DOkHkcc4/5vmC3Og3Cj78VUCE/mY+w8QejADkp4DlTAEDcMsApFLAgDoCELgq/sm+9nq97EAWsfo/QHyQkdD5xUeo7pLk8uXLuO222zjT0QitkKWEw4cPY/To0ZgyZQo++eQT0c+JTQMDyDsnSQFJPlzx5wKUEoA2m010pRU14Zf3FBcXG350f9DzAG7cuJHz74MHDwp+zuv1oqSkBDt27GCXiaJQ5CDHAQSa0sD/93//BwD46aefMHToUADCC8DzMdo0MMDVttbW1sLtdqtSAxjKIBByLWAgsAPIF4DkcnfNmjXjDI5QWgNIzicnJADF0mQtWrRAYmIiqqurVRWATPuZG4xULRgJX5CT7TbijYIP39UV+psvRpROAwP4CwM5k0AD4ing2NhYvwcgNVLAQFPfnzhxAtXV1aitrUV8fDxKS0vZGMXSv0y7GITOL6n2SNUA1tTU4A9/+AN+/vlnzutCWYWioiL87W9/w7BhwzBy5EjR/QHAjz/+yP79888/Y/z48YKfE5sGBlDuALZv3549p/gOoFQNINB0fSLn+VQDZuWwcePG4cYbb2QFYPPmzdlrntGd/aAF4IYNG9i/bTYbDh06JDoZLwC0bNkSDz/8cLC7o0QQUhduEjkOIOBfB8gIwEAjgAHtBSB5EQgkAIGm1A0jmJo1a8a6aaHMA6ikBpBJTwo5gD6fT1AAJicnIzU1FWVlZTh16hQyMjI42ydv+kodwObNm7MXf6FBIEIDQICma1RWVhaOHj2Ks2fPciazZghnCph/zPMFIFkiY2YHUEiMkA80fPjHsdAoYK/Xy073ItcBFBsEInTOqe0AAk1937FjR84AECkHUGyaJeY3k2qPlOieNm0a9u7dC4C7DKXQQ+WyZcvwj3/8A6+88goKCwv9BBsJObeh1MAT8hzlb49coUeOAGzXrh32798PQFkNICA+zU4oTJ06FT/99BP+9re/4ZFHHmF/E2YOwObNmxve2Q9aAK5duxZA003giSeewO233y741GC325GUlIT27duLztlEsRZy60EZAZicnCx5sRcbCCLHLVBLAHo8Hr8bnNCFUY4oJWMlRXDr1q1ZARiueQCZWiOmj1JSUmCz2QQdCv4ceCSdO3dGWVkZzp8/z4qyhIQE2O120ZudGOTvSvajUA2gmAAEmhyEo0ePor6+HiUlJX6rMqiRAhYTgPxjnvntHA4H6xZERUWhsbHRkDcKPnJSwIwYYWLn36RramoCOoBMXzHTrATjADY0NLDnndB31BKA/Klg+AIwFAcwGAFYWVnJri7VvHlzfPnll7jhhhsACDuAzFrINTU1KCgowHXXXSe6T3JaI6mBJ1IOYHR0NDIzM3Hu3DlZg0BIAa2kBhC4+vupdW75fD7k5+ez/163bh37NyMAfT5f5DqA5E136tSp6NOnjynWoaXoT2VlpeTTJdAkqJh6Oan0LwBcf/317JOkXgKQX/8HCAtAcr4rOQ4gORVOq1at2MmVw7USiM1mQ2JiIhtPamoqAH9HJdA2u3Tpgu+//x4+nw+//fYbgKsXZqYmp76+XjUBGMgBBPxTTmoIQCkHkKx/4h/z/NQx0HSTqqqqMuSNgo+SFDATO38EvBwBCDTVATLiKpgaQJfLxR7PchzAmJgYTtmCXITEP1nzK7cGkPkNPB4Pe4wHIwDJa81tt92GAQMGIDY2FnV1dYICkHytqKhIUgDKdQDJB14hYZaVlYVz586htLQUNTU1fu4dWQOYmZnJPpwqqQEE1HcAL1++LHq/YARgZWWl4R1AVSy5Bx98kIo/iqoUFxezJ1ggARgfH48OHToAuLr6BKBtClhIADY0NPgN/ZdzAyNFDvlk3KpVK862lSDXAQS4NxT+kkbA1Yuo1CS1ZB0g4wCRF3f+Wq1S8FPADEpqAIHANUeMAOQPygCEa3nIOdWYeFJTU9lMBykA+QgJQKPPGUaiZBAIA3OTttlsrBiWIwDJvgomBVxaWsoeg0IPguSyZEBw7h8gLABDcQDlzAEIiA8CEXqgYX4zoRQweb0MNFCPFIBSDiA5WbhQBjDQVDDkOR4XF4eWLVsCCK4GEFBPAJIC9NZbb8WwYcPYf3ft2pX92+iDQFQRgEeOHMErr7wiOpt3aWkpXnnlFRw9elSN3VFMjth6mCRyB4AwMBeSiooKwelTwu0ACl1QAfGbYFJSkqjLIOUAMoRrJRBAWAAKpW3lCkAG0lVT8kTOHwTCoDQFLFcA8t0/sr3A1bhJ8cK873A4WHFDHhP8Y17MAQSMeaPgo8QBZGJn+jE+Pl70ASCQAAwmBSxViwlcrQ9lUEMAMgIlGAeQ+U3kLAMHiA8CIQUgWZcGCKeAydeUCEApB5A5V8QyPoHOSfIcj46OZpfSKyoq4pRVyK0BdLvdktPWyIUUoP369cOOHTvwzjvvYN68eXj66acBNB33Rk8BqyIAP/jgA+zZs4dNF/Fp2bIlvvvuO7YegWJtyOHyYpDuiZy1g4UuJMEKwKqqKnz99deKXDa5ApCJXWouxHA4gHIHgQDcGwpzTgvdoKQEIDkXIAO5DSUCUMwBVDIIBAi8GohcAci0Wew3ZW52pCvMP+at5AAysZMDGph+amho4NzIhR5syKlggnEAyWuJ2HlHXj+Cna4snA5gMClgIQeQnGKKX5carAMoJQCZ/lJDAEZFRbEPE2RdJyA/BQyoI8RIB7BNmzaw2+2YMmUKXnrpJfZ+dfnyZWukgI8fP87OxSZGr169OEWTFOsiR7yQ4k3OxNGBBKDYNoSWgrv99tsxfPhwPPbYYwH3yyCUAgb8L47MBVGuAIwkB5C8MAfjANrtdo7AUDMF3NDQwO5HSAAKPcmLpdWFBKDYmrdCDqARbxR85IwCZsQIEzs5pQlz3vl8PtaR8fl87G9LjvoPNQVMCkCxB0G1HUB+DWBcXJzgcSXUXqUpYCUCkPnNvF4v57N1dXWcY5SfYuUjJwXs8/nY40RMAAZ6KCNLaKKjozlOOinC5KaAAXXOL74AFKKhocEaDmB5eTmbmxcjJSUl5MknKZGB1E2aQe6FnkHoQkI+Icp1ACsqKrBnzx4AwLZt2wLuV6i9JOSFqa6ujr3xSwlAqVHADFo5gEI1gHIcwLS0NL9UDHkTUDIxq5BwAK4KQK/Xy4oIKQewTZs27CohfAEoNQAEEE4Bi4lqJs7q6mrWZeEf8/zRw8DV37ChoYEzV6IRkZMCZo59JnYyBUz2E3MsNzY2snG3b9+e/W1IB1BuCpjcvhEcQGYAgxhCDlUwKWCyX0jXme8AAtxrFnmtJNsvRH19PefhRswBrKurY89LtVLApAAkRWqg30ptB5Dct1hJU3R0tDUcwMTERMmCZ6DpgAr2yYoSWYiVCpDIvdAzqJUCZqZCAJou3lIFziTkxZS8gZAXRzmDUvhtJYUJ+ZAVrpVAgMApYKEUKP/cttlsfi4g2e/M9urr6wNOC0SmDoVS9uRNQkoAOhwO1lkKRQDKTQGTDggZu8/n8xs9LLYPo6JkGhgmdqEaQEB4VHl8fDz7UFdQUMAeI8E4gIFqAAF1HMDY2Fh2+8XFxaiqqmLbK1X/x3yXQYsUMMC9PvJrAqUEIOn+8fdJwl8BSIhASzSK1QACwgIwNjZWsLZaDwdQagJ9o6CKAMzOzsbu3btFD5ri4mJ88803ksPKKdYhUHoBUO4ABpsC5i8FRwpAADh58mTAfQPcix15QQhVAJIkJyezDla4VgIBAqeAhRxAoW3yBSA5CpD5vNfrDbhIOikchAQg+VtICUDg6g2nvLxc1AGRKwADOYDA1eOCPOYbGxtZQSPkAJL7MCpiDiD58MN8pqioCI2NjZwpTYQcQP60QszI/pqaGnaAYTCDQJQ6gKEYFeRycHLr/4DQBKCSUcBiAlCJA8gXgGIOIHlNFFphCGhqO/NgKyQAyWsDWQMIcEUYeY0QQg8HsKioyPDntCoCcOLEiaivr8ejjz6K3NxcdpLI0tJSfPHFF5g5cyYaGhowadIkNXZHsQDkzVmOAyhUMxRMCvjEiROc9/mCUE57SQFIpibktEfqvebNmyuaPoVEzRSw3BsUfyAIeaNSckEmJ8MVWruZFICBygvEpp0I5AAKOQiBHEBAuDZUzI01erqIRMwBtNvt7E2Y/Ay/nk1IAPIFtdBDHdNPDodDUhQprQEkH1bkZCjEYARgZWUlTp06xb6uRAAKPWAFsxSc0Chg8mGavGbxHcCSkhLRMgQhB1DIxZfjAAJXz8kLFy74zcQgNwXMxC32O4XLAUxMTBQVt4Dxz2lVBGDv3r3x6KOPoqysDC+++CLuuusuDB8+HHfddRdWrFiBy5cv4/HHH6dzBVIAyHP0yAuSnM87nU724sDc2ENNAQPwE4RikBc78iIldkGWKgiXEoDk6EklKHEAx4wZA4fDgbZt22LgwIEAAjuAQjdjvgNIprCVrAYiVjumNAUMiNcckX0j5BKF6gCSx7CYAFT7JhVOxAQgcFWQMG4UuX4zIC4AxRxAoKmvfvjhB/z0008AgA4dOkjW1JHbD9S3QNND25IlSzBgwAA88cQTotsNBFkHeODAAfbvYFLAcmsAnU4nm/ZUywH0eDyS07qReL1ewQdSpQLQ6/VyXFNAeQ2g0BQwQPhGAUvNUJGUlGR4BzDolUD4TJgwAX379sWnn36K48ePo7q6GomJiejevTvuuOMOdOrUSa1dUUyO1IWbQWkKGGi6kBQVFaGwsJCz/qfT6RQVPYEEYKgOYDACUCzepKQkTRzAnJwcnD9/HsnJyezvFowDyBeA5E1AyPEQwu12s2kgsRpAJSlgOQJQrRpA4OpNkDzm5QhAI94sSBihERUV5febMzXhzLFvs9n8xEygGkCn08npqzNnzuD1119n/z1nzhzJ9okd41LO+7PPPotnn31WcruBIAXgjz/+yP4dyAFUOsqehFm9p6KiQlAAknNTyq0BBJrSwOTMAwx8BxBoOh7411ipZeBI+AP4SOHPnwaGvLYqSQGr+XBVW1vLXu+l5rTlL6FpxIc61QQg0HTBD3RiUigVFRWStjnzGQY5KWCg6ea+b98+AE3Tp0it/8kQqAZQrgMoNulvMAIwOjoacXFxnAuG3W5HYmKiKg5gIAEI+F/YgnEA+SlgoRpAQFrs8NNggQSgkhSwEgEodAMJNA0McFUAksd8JKWAExIS/B7oGBeGEQAVFRWS/SjHAXz//fdZR61Dhw546KGHJNsndozLmVIqFNR0AOUKQACSAjA5OZntI7EUMN8BBJoEoFDdvpAArKmp8ZsJRKkDCPjXAfKngUlKSmLXkWam2GlsbGSPIS1qAEnnUcoBrKiosMYgEApFbZiLU0xMjCzBAviPKGNEpFwBWFBQ4FfQ/MsvvwQcpQrIGwQiVJMjBr/NSUlJ7Bq6QHjnARQimBtUu3btOL9vMDWAcgSgkhSw2LxjwTiASlLAJJHkAAo9yDGvkdOABJMCJoUBKaaWLFkSsJ+DcQDVgBSAag4CCTQ1DV90A1engSGPZyUOoNhgPTEByEeuACRdRn47+Clgm83GPhgwo8MDTQINqOsAyhkAIrRfI57TQQnApUuXYteuXUHvNNTvU8wNeZEUgxGASi7Y/JSRnEmXSUEhtFRhZWVlwFnxmc8xiAlAoXm5xODHzfw7WAeQvPjImYeRj1CKSmoaGKAp9dSxY0f23+RAHbkCkJ86DDQIRIkADFcKmBRFzE2QPOYjzQHkw18NJC0tza8f5QjAjIwMdtQ7Q/fu3XHfffcFbJ/QcUCuQRwuhASBw+EIKBRCqQEEuHWXPp8PXq+XFVNyBKCYAyiEWAqYj5xRwAAEjwUGvgAEwArAuro6FBcXB1wGDlDXAZQzBQzQdM4b/ZwOSgDu2LEDp0+fDnqnoX6fYm6ELjZ8mIuT3Po/gCsA8/Pz2VFsch1A8oJIXrDk1AEyF7vo6GiOuxdMCliozczvEKoDGBsbK6sGk0+gUYpirqLQiiCAcEpZCKnRo8GkgGNjY1kxFqwAlDsRNHD1uCCP+UgaBCJ0w+XPS1deXu7Xj0L9z/89yXkbGZYtWya6hjaJkAOYlJTEKUMIB0IPt61btw7YZqUTrfNhfnOPx4OGhgZUVFSwmQvyeiR3FDCgTACG4gDKFYDMwwBZGnDmzBlZDmC4UsBSwr68vNzwKeCgawBPnjyJ3NxcNdtCsQiBxIvP52MvTsEKwMOHD7N/y10xgOS2227Dxx9/DKCpDvDGG2+U3DfZXqH1UIHQBCDfAXS73fD5fLLFnNDKE0oItkj997//Pb744gvExcVxLpZqOIDBDAIBmo6T4uJiFBYWoqGhATExMQH7hkm/19fXBzUIhDzmxb5n9HQRQ0NDA/vbCzk7/ONfKE1HHjtCDiDzu3To0IE1C/r164c777xTVhuFjvNwp38BYQEYyP0DQk8B80U3KeiCdQCVpIADOYDBCkB+DSDgLwDJ402LFLBcB7C+vt7wD3VBC8Bvv/2WXTJLCXLqqSiRDT+tw8flcrEnvpKLNpneY6aLAOSngElGjx7NCkA5DiC56LkaApAvfJnfgbyxNTQ0yBZ0QmvPKiEqKgp2u50z5YMcAfjEE0+gZcuWuP766zm1PsEIQDVqAIGm4+T777+Hz+fDuXPn0LlzZ7ZvYmJiRGOJjY3lCEAlDiB5zIt9z+jpIgapKWAAfzEiNA0MUxsIiKeAAaBbt27YuXMnAOD555+X/cAjdJyHewAIICwAMzIyAn5PrRQw0PSbi11rlI4CFkKuAyh3FLCQqy/0bzEBSJaZBOMA1tfXK7ouyhWAUVFRkekALly4MOQdd+3aNeRtUMyJ0NQCJMFMAQM0XeCTkpJQWVnJuUjJTQEzJCQkYNiwYey/laSA5TiATqcz4AVdLAXMf1pWKgCDGQACXHXAXC6XIgcwPj4eM2bMAADOxLLhGgUs1wFkOHv2LDp37swpmBcTGXFxcZwRrUocQPKYN/sgEPLGLiQAScFRWlqKXr16+YkZ8jeQEoBPPfUUSkpKMGDAANx2222y2yh0HGjhAMbFxaFZs2Yc90vOFGhke4MdBcwgJQATEhLYBzkhB9DpdMLr9cLtdgsKwMbGRk4tM7lPPnIdQKG6XoZAAvD06dPsXKWAeA2gmBM3efJk/Pvf/8bbb7+NyZMni7aRRG4KuFWrVhzDy4jndFAC8Pbbb1e7HRQLUVhYKDkqTukqICRZWVk4cuQI5zWpbQjV5lxzzTVo164dOxVLoKlg3G43e3LLcQADuX9CbRZyAOvr62UXtTMX6FCWuYqNjYXL5QqqRgng9rvcGkClg0DkDHDhTzuxZcsWdkoJfs0ZCSNKhBzAQAKQjN3sg0AuXrzI/i10LJOO18WLF1FYWOgn5Ml/C80DyPwWnTp1Yp14JejlAAJNLqBc8cMgVGKg5PziLwcnNuDMZrMhKSnJbylERgwyy01euHBBUAAKiT/AnDWAZWVl+N///V8AwPr162ULQMYBdDgcflPf8D+XmZmJ6OhouN1uQ57TdBoYiuFQugoICXlzZ5C68NtsNj/RcM0118But7Mu9a+//iq5Xi15oWNmf2dcJKFRwIGmgAEC1wAC8kcCNzQ0sG0MZZkrvgAKNApYzrb42+EjZxCI0hQweYwcOXIEjz32GPvvefPmBWyzUPxqTwNjxJsFAznBca9evfze5wtAQN40MKFOVUSiVw0g4J8GlkoTkvCPr2BrAGtqaiTLTZjfQcgBTE5OZtsvtBwcmVkhryXhGgUsVAOYmprKCt4zZ85wrrFKagBJJ+/MmTOi7ePDfC8tLU3WoCJ+vxoJKgApmhPoiTjYFDDArQNkCHTh5wvAbt26AWgSgkDTRUhq1Dq/vTabzW891IaGBvYmGIwDyB8FDMgfCUw+tUs9sQaCPwJZzihgErGVQLQeBEIeIy+//DIrUv7nf/4HEydOFP0ecxMJZiJo8jWzp4BJAdi3b1+/90l3/+LFi2jWrJniaWCCrVWV+r5WDiA/LSh3FSzmnGCOD7VqAPkPnMy1hBGAHo+HM+0WIwCFloMjBSDpxEk5gDabTTQ1CyifBoY/F2CgkgRA+HpDOpwXLlyQ9UDt8XjY7wUS9sw5z/SdEc9pKgApmhNoEEioKWA+SgUgI/wYIQhI1wGS7WVOeuZCxFwYlQwAEWpzKA4geRFX0wFkhJDNZpMlvMh+12slEIB7jDAOQ3x8PF599VXJQQZMm91uNzwej6hj5XQ62XYEGgRixhQwMymz3W6X5QBGRUVJOrlSNYDBwgxaItHLARR6KBVCygFUqwYQuPo71NfXo76+nuPUJScncwQsPw1MCkBy8IWUAExMTJS9brMcAQhcFZ/19fWch3MlDiAZm9frZctApLh06RLrigYa3c2c80y/GvGcpgKQojnkxUkILVPAQGAHEJBeEo6fAgZCF4ByRgHLdQDJxdtDEYBiDiCZ8paC/A3UqAEMNgWcnJzs50IvW7aM42gIwZ+rTcqxYrbPHBtk7GZ2AOvr6/Hzzz8DAK699lpBx4W8MV64cAFXrlzxSwEHWgs4VAEI+B8LeglAubGICcDo6OiA8wgGIwCBpodXcgoY0gEEpAUgea0VSgEzrwXK+CitAQS47mN+fj77t5IaQH5s/GXohJC7DBxw9ZynDiCFooBQHEA1UsBGdADFRgHLgXQAQ0kBkykqn8/HEYDBbgsIfhqYYFYCAZocS/Lm1bdvX8yaNSvg9/guglTNGl8AkpjZATx69Ch7UxZK/wJNfcCMelZSA6i2AOSLci0HgTCkpKTIPj+Y9vKngQlU/wf4DwKRKwArKio4D9xkDSDgPxdgMCngUASgUA0gf9/kCk7BOoCAvDpAuVPAkFAHkEL5f7hcLsGbIonaDqASAZiens7uk5yqKFgHsLa2Fl6vV7UUsBEcQKDpQq1UAAYzD2A4UsAA0KNHDwBNacw33ngjYFmCUJuVOIBk7HImgjbizQLgrskrJgCBq3WAhYWFSE1NDWopuFDh94keDmDbtm0DTnvFQDqASh+wlDiA/NVASAeQLwDlpoD5DqDP51NFAMpxAE+dOsX+HWwNIKDcAQyUAmb6nf/gbCSoAKRoQmNjI9auXYtOnTph8uTJkidCKINA0tPT/VygQE/+5OfJtG9KSgrrmMl1APkCEGi6mRulBlANBxBouogqFYCkUA52EEigpeDkOIAAsHz5cjz88MP46KOPJIUMCb/NchxAZlJzMnYzp4DJASD9+vUT/RxTB9jY2IgzZ87IqgFUcxQwYAwHMDMzM+ADLwMZs9IHLP4oYGbgl8Ph8BuBK+UANm/eXHYNoJQD6HK52Fo5NQRgVFQUp8yE3Dc5qXgoKWC1HUCm38n+U7qEZ7hRTQA2NjZi8+bNmDFjBkaOHInhw4ez7508eRKrV6/GuXPn1NodxWTY7XZs2LABRUVFOHjwIL744gvRz4aSArbb7X5zuQUSkaRrRKZ9yX9fvHhRsM6F315+ChjgXpCB4KaBEUoBy72YqDUIhL8cHHMhlSsAxZwvJWsBq1EDCDS5F+vWrcO4ceNkfR4IzgEEmtwR8rNmXgmEFIC9e/cW/Rw5EOTs2bOSKWChGsBQRwED+tUAXnPNNWxf9u3bV7aY59eYMseAnBSwmAOYkpLiV5/LF4DBOoDt27dnt82/NsqdAgaQlwLmO/Ri9bpiv5XD4WCvHWqlgAM5gEy/G/m8VkUA1tfX44knnsA//vEPFBcXIyEhgePwtGnTBtu2baNrB1sYu92OZ599lv33kiVLRF3AUFLAALcOMCEhIWB6jxQVpAPI/7eYCyiVAgYCz8slhJwUsFwHUK0UsJgDKNetIQvZ9ZwGJlikagClBGBVVRUndrM4gPzz0+12s0ssdu3aVfLcJAVgSUmJXz8KHceRUgOYmpqKzz//HC+99BLmz58fcAAHA18oML9ZKClgoWsN2W9CDqCcGkCn04nExER2v3wHUMlE2HJWAuGXdpBzAZJIiWX+IJtwDwJh+t1o5zWJKgLwn//8J44cOYIZM2bgk08+wahRozjvJyYmonfv3ti/f78au6OYlDvuuIOdNmL//v2iLmAoDiDArQOUc9GXEoByBoLIcQCVCkByKhFAPQdQjXkAAW7Mch1A8saiRg1gsCuBBItYClhoMnG+ACRjN8MgkI8++ghJSUm49957WSF47Ngxtu1S6V+AKwBra2tZMeN0OmG32yO6BhAAbr75ZsybNw9JSUmC6wMLQcZcWVnJ/u5KBSAp6oSuNVKjgJOTk9GiRQv2oZkvkpiHyVatWnHm9+M7gHLXAQaahBIjlsTWAuafX+RcgCRS8w2S83j6fD6UlJRw3j937pzkhP+AMgeQ6Xcjndd8VBGA//3vf9GnTx9MnjwZNptNcEqIjIwM0cWlKdZArgtIPpHKXeqMhBSAci76UilgOVPBCDmA5JNoMALQZrOxbSedr1AdQDnpZzHICxkZj1wBSC4hpqYDGEwKOBjEUsBOp9PvmscXgGTsYgKQFEZ63yheeeUVVFdX4/3330deXh6AwBNAk5CTQZ84ccIvnRnJo4D5kH0vBdlepecXKXwuXLjA/h1IAAo5gHa7nRUv5D3b5/NxBCC531AcQODqNViqBpCPkACU6wCWl5f77cvj8QTsK8YBTE5ODniMMtuSe63TA1UEYElJid+Nk09cXJzgUHGKtbjjjjvQvXt3AE0uoFBZAOMu8R0fuSgVgEzNYIsWLTgj24Cro0UB4MsvvxT8fqBBIMEIQADo0qULAKBz587sa6E4gMw6n8FC3qBI1yCYaWCCnQfQZrOxMRglBSx0I5BaDk4qdWyUOcPIyXX/+te/ApA/AhjgOoDFxcV+6UypQSBCjmowkPuIiYlRRVSGE7EHLKXTwJC19nJSwHwHEIDgcnDl5eWsQ8YIQDVSwMDVvhKrARQ6HoQEoNS1iHQA+e4fg1QdoM/nYx1AuVPA8Nuk93nNRxUBGBcXxzmIhLh48aKmFjzFmNjtdixatIj9t5ALyAiqYOr/AG4NoJyn/hdeeAGPPvooPvjgAz8B0bVrV1x//fUAgO+++04wDRyOFDAArFu3DjNnzsRbb73FvhaMA8gIwFDq/4DQHUAyTaU0BRwdHc3eBJj/hzINTDBIOYB8+AKQjF1KABphzjC3281ZFSEvLw8HDx5U5ACSArC0tNRvTjupiaCFHNVgIPehl/sHBB4EwRDK+RUdHc3GS7p2clLAfAcQgOBycOQAEL4DWF9fz0mfqiUAxVLAgL8AjIuLk1ybl3QAyd+I/N2lBGBVVRV7HAdK/wJX+z3iU8A9evTAd999Jzrcvbi4GP/3f/8nuGwQxXrceeed6NmzJwDg+++/93MBmQtSsAKQcc4A/1n5xT7/yiuv4NZbb/V7z2az4YEHHmD//c477/h9RuhiJzYKOC4uTrYT0bt3b7z66qu44YYb2NeUOoAej4e9mYRS/wdwL2TBOIBk2/kjisUQKoSXEoBapoCVOIBi/WZEB/DcuXOs68Pw4osv4tChQwCaRlAHeohp1aoVW9dVVFSkKAWsllNH/rZ6mg9yj0k1H7AY5KSApRxA4KqgFBKA/OlnGJSMAgbUEYCBnFLmd6yvr+cM5iAfZqQGgigZAAJcjSniU8B33303qqqq8OSTT+LIkSPsvDx1dXU4cOAA5s2bB4/Hg0mTJqmxO4rJKS8v59QCLl++nP3b5/NxFiYPhqysLPx//9//h8GDB+OJJ54Iqa0AcO+997I3s3fffZcz7xRw1QGMjY1lT3oxBzBYUcug1AG8cuUK67CG6gCGmgImp8Kx2Wx+Kx8IITQVBl8AalUDyE8BK3EAydjlCMCqqio/EaYUn8/nd6zKQcgF2bx5MyvG5cyb6HA42Jvk+fPnLS0Ayb6XIhwCUKjmV2wUsM1mY7chNBeglAMIcAd+qO0AyqkBDCQAyd+XFHoDBw5k/5ZyAJUMAAHAeehniEgHsHfv3njiiSfw22+/4fHHH8d7770HABg5ciTmzp2LCxcuYM6cOQHrBCnWYezYsewJ/P3337Mipbq6mv07FLH0/PPP47vvvlPFdU5PT8ftt98OoOlmtnPnTs77jAAkL3RiAjDUVJRSB1CtKWAAcQcw2Bu2HAEo5QAaZRSwHAFIIjXfHbP6jMvlwrFjxxS178yZM7j33nvRv39/ZGVlIT4+HnFxcVi6dKni7TAI1VkFGgHMwKSByVHoUjWAagtAch96poDlQsZNikY5NYCA8AjYQDWA5ChgZgAIAMGpYJQ4gEpGAQPq1ADKdQABrgAkMyxSAlCpA8gQ8Q4g0HRDf/vttzFu3Dhce+21yMjIQNeuXTFmzBi89dZb+MMf/qDWrigmp2XLlrDb7ezNrr6+nhVIoU4BEy6mTp3K/r1x40bOe8wNnrywkhfjy5cvs09+arpwchxAtaaA4e87GIeCv39yiSQxhBxA5mahZwpY6SAQMnbme3a73c/ZGDp0KPv3N998o6h9f/nLX/D+++/jwIEDOHv2LOrq6uB2u7Fs2TJFMzCQA0CWLl3qd2OVu3IKWQfIIOQA8msAI80BlHvehXp+yU0BR0dHs/1AOoDkbxQoBczEpJUDKCQA+XMBSk0BA4jX+nXr1o2NXSoFrHQdYOY3ivhBIAwdOnTA7NmzsX79erz//vt44403MGfOHL+RlRRteOmllzB27FiMHDkSDzzwAPbs2aN3kwBcfVIkp4pgpi4IZRm4cPKHP/yBTaf8+9//5hROB3IAyWkZQo1JzAFsbGzEv/71L+zYsYPzebVWAQFCT1HxRwryJ2bl4/P5ZNUA6pECrq6uZlO0chxAMnYp4XjjjTeyf+/evVtR+8hpilq3bs2mqRobG/0eWqQgb479+vXDQw89xHlfDQFIzv3GHwWsxiog/O3o6QDKnf1CqxpA4Op1iKwBJH8jNWsAgxWAZAmDkADkzwUYbAo4LS2NnTni7NmzoqUXStYBBq7+HhE/CKS4uDjgQV5bW0vnAdSYiRMnYvPmzcjNzcXChQvx/PPPc4SLXjAngZAADHUVkHDhdDoxefJkAE3t//DDDwE03bQYASLmAJICUO6IQKl2MJAXyw8++AD33XcfRowYwRECZApYTQcwmBpA/sUvkABsaGhgL8ZSNYB6OICBUuB8AUjGLiV0+vTpw8b6zTffKFo8npl3LDk5GcXFxfj222/Z99544w3ZNYWkAMzKysKTTz7JirV27dqxN/9ACAlA8lghb/o+ny9iHUC5N/1QpoEBlAlA5vcoKSlhzx/yNxKqASSvJeGqAXS73ewxTz7YiU1fpUQAksceeYy3atWK3Y7b7eY4fSRKHUChlZIi0gGcNGkSPvroI8nPfPTRR3QQiMZkZWWxJ5bNZoPb7eacxHrB1JmQNwjm5mXUFDAAzmhgxlERcyzF5uUKVw3g4cOHAQBerxf79u1jXw+XAxiMAORP0RCoBpC/CgiDEaaBIeOX4wCSsUsJwOjoaAwePBhAU72pnOWpAOE5yjp37oycnBwAwK+//upXuyoGc3Ns3bo1EhIS0KFDB7z44ovo0KEDnn/+eVnbALgPeAxCqfyGhgZOH4ZDAOrpAEpNTUKipQPIXFvJ313MAZSqAeTXOjMEOwoYuHpek9PKiJ3XwTqAjFhNSUlBdHQ0ZztidYDkJNFyHECm3408CCT4WWEJfD5fwCdVJU+yfGpra7Fp0ybk5+fj2LFjqKqqwqJFi9jCfClOnz6NDRs24MSJE7h8+TJiY2ORlZWFe+65B0OGDPH7/Llz5/DWW2/hyJEjqKysRFpaGnJycnD33XeHdSJRpTE2NDTgrbfewpdffomqqip07twZDz30EAYMGMD53OrVq7Ft2zY0NDRg0KBB6NSpU9hikAtzgzKTAwg0pcN69OiBo0ePYs+ePTh58iTn4i6WAibnVGMmnQ4WMQeQvOCSFzA1B4GE6gDyn5rJGkCfz+c39xt/EmgG/iAQPVLASh1AMvZAqc4bb7yRTeV/8803ogvfk5BzlJEPVjNmzGBX8nj99ddxyy23SG6nvr6ePRfJ/c6bNw/z5s0L2A4SqRQwcDX++vp61VcBAbjHgp4Pk3IHDGg1ChgQ/j3I15jl4BobG/Hbb7+hvr6eFYAOh4MVi2IpYKXXcf6goJiYGM55LUcABqoBFPodGaFLLh5w5swZQW1AruwhZy5Xpt8j3gGUw6VLl2Rb2XwqKiqwceNGFBQUcOZ4k0NRURFqa2sxcuRIzJo1C1OmTAEALFq0CJ999hnns8XFxfjTn/6E/Px8jBs3Do8//jh69OiBt99+G88991xQbZeL0hiXL1+OzZs349Zbb8WsWbNgt9sxf/581glimDNnDrZv3441a9ZgwIABqkywGirMDSZQDaDRHECbzcYZDPK3v/1NcBk4gHsxIsVCqL+/mANIpl9IAajmIBCxG5TcGzaZCie/5/V6BdfgFHMAmd/A4/HA5/OxQtBms7GpynCgxAEkb4xVVVWc2AMJQHIgiNw6QNKdIAXHHXfcwbo1W7ZsEV0BgeHcuXPsw7oc4SlFIAFIOoDhEIBGcQD5x70YoQpAvgAiB3vwERJl5G9kt9vZh9WTJ09iyJAhrBvNDOLj75O8BjHHWXx8vKz7fqAlHtV2ABkYAUhuR8x1J+9bcq7jzOeNPAgkaAeQX1R88OBBwc95vV6UlJRgx44dyM7ODmpfqamp2LJlC1JTU3H8+HHMmDFD9ncHDx7MplQY7rzzTkyfPh2bN2/GmDFj2Ne//PJLVFdX49VXX2UHrowZMwZerxfbt29HVVWVaD1DVVUVfvzxR9x0002C7+fl5WHIkCGiJ7OSGPPz87Fjxw488sgjuOeeewAAt912G6ZOnYp169Zh3bp1nM87HA7069cPH374Idq2bev3e+hFoBSw0RxAAHjwwQexZMkS1NTU4K233uL0t5gDSBKqqFXqAKqZAib3Te4vmKXgAP8nY/5FPpADCDTdJJjfITo6OqwPOGR7SYdDSMhFRUUhLi4OLpdLdCk4MQE4cOBAREdHw+12yx4JLFafFBMTgwcffBB//etf4Xa7sXHjRsyfP190O4GmgFGCkhpA8mFGLQFI7p90eIyK2PkVbA1gixYtRM+HQA4g0DT595QpU1BfX89ZBpCsARVzAJm6Qbn1okLTApEPhWI1gKSmECo5IFHiAPKpqalhz3mh41oKIw8CCVoAbtiwgf3bZrPh0KFD7EzxQrRs2RIPP/xwUPuKiYkJ+eZF4nA40Lp1axw/fpzzOnMA8+3d1NRUwSkbSLZs2YINGzbgueee44zkA4CtW7fir3/9K5588kmMGzdO8PtKYty1axccDgdHvDqdTowaNQqvv/46iouLBVfA8Hg8sp9GwwkjjtLS0mC32+H1ek2RAgaajoVHHnkEK1euRH19PZYtW8a+J+YAkshZmUQKMQeQvGGQT7DhmgeQJFiHgr8aCP/hKlANIMAVgOFM/wLK50Fs1qwZKwCZ2H0+X0ABGB8fj/79+2Pv3r04ceIESkpK0Lp1a8m2SRWoT58+nV3P94033sC8efNE69LIm1+osze0aNECTqeTc5zKcQDVGgU8adIkHDx4ECkpKX7XZC0JlJpkCPX8EhKAYggJQL5LOnHiRHTr1g0TJkzAyZMn2ddJUSfkALrdbnYew0DHLYOQAJTjAGZnZ2P16tU4evQoHnnkEcl9hOIAkg57IKHJwPw2Rk4BBy0A165dC6DpgvbEE0/g9ttvx8iRI/0+Z7fbkZSUhPbt28suhg0HzLxdNTU12LNnD/bt24fhw4dzPtOnTx+8//77WLFiBaZNm4akpCT8/PPP+PTTTzF+/HjJE3Hy5Mk4duwYli5dihUrVrCTpe7atQurVq3CiBEjMHbsWFViOXnyJNq2bet3YenevTsA4NSpU0hISMDevXsxZMgQxMTE4JtvvsHBgwcVuafhgjkhHA4H0tPTcfHiRVMMAmGYM2cO/v73v6O+vh4///wz+zopAB0Oh9/ND5B/QRRDjgN49uxZeDweOBwO1gFMTEwM+cYq9n25Nyj+BZj8t9BcgKQDKCUAmRtFuAWgWA2g2O/SrFkzlJSUoKqqio21sbFRcvoYhqFDh2Lv3r0AmuoAx48fL9k28gbFdyi6dOmCW265BTt27MCpU6fw9ddf4+abbxbcDjkHYKgOoM1mQ2ZmJn777Tf2NSEBGK4awMTERLzyyiuqbCsU5MajpQAUergWut726tULBw4cwIwZM7Bp0yYAwLXXXiu4T8ZAIcsM5AyWAIIXgADw5JNPytqHlAOYkpKCxMREVFdXCzqApHEiVwAy/RmRg0B69+7N/j116lT06dOH85rRePXVV9maP7vdjhtvvNHvwBk4cCD++Mc/4r333uPMmXf//fdj+vTpktuPiorCkiVL8NRTT2Hx4sVYs2YNXC4Xli1bhoEDB2LhwoWqpafKysoE3RzmtdLSUthsNmzduhVr1qyBz+dDZmYmnnnmGXbyZSHy8vKQl5fHqeUIB2VlZexJlJmZiYsXL6K4uBhut9vwDiDQ5LBMmzbNL9XOd7ASEhL8hE24agBJAdjY2IiLFy+iXbt2rAOohoMe6g2K7Hf+9oSejMmLpVgKmBxBGs4RwAC3veTvLeUAMp9lYpdaBo5k6NChrGsnRwAGmqJixowZ7MCS9957T1QAqpkCBprEKCkAyX5k4m9oaOD0dTgH2+kB/7gXw2gOIEOzZs3w/vvvY9y4cThw4ADnvinkAJLTvcl9iA9FAMpFygG02WzIysrC0aNHUVBQAK/XyzGspB6wxGD6PSIdQJIHH3xQjc2ElQkTJmDYsGEoLS3Fzp074fF4OAcYQ5s2bdCrVy/cdNNNSEpKwt69e/Hee+8hJSUl4EXY6XRi+fLlmD17NubPnw+3243u3bvjueeek0wfK6W+vl7whCCfqBMSEliXVi45OTnIycnBiRMnAgpetcjMzMT+/fvh8/lQVFRkCgcQAObPn4/XX3+ds9YqX7AmJCT4rQOqRQ0g0HQjb9u2Lbv/UAeAAKHfoKS2J3RhFHMA+VNGaJUCjomJgc1m85vRQMoBZNrICD+5AnDIkCHsvuTUAQYSgORsAlLLXfHnAAwV/s1SqB99Ph+nfizSBKBcxOIOdik4sRHAgLwaQBKbzYaJEydi4sSJovtk+pAUgHKvO8HWACpBygEEmh54jh49ivr6epSUlHDcy2AcQKH9Gk0Aqp6T9Xg8uHz5MoqLiwX/04usrCz0798fI0eOxIoVK+ByubBw4ULOxXzHjh146aWXMH/+fIwePRo33XQTFi5ciJEjR+K1116TNYlyQkICZs6cicrKSrhcLjz++OOq1bQwOJ1OQfHKnDhq709tSDeKPxDE6INAGDp06IB7772X85qQA8gn1Gl4HA4H6yKKOYBA0428oqKCFahqOIChpoD5bVAiAKUGgWiVArbZbII36UAOIMB9OAv0PaDJvbn++usBAIcOHeKcF0IEEoCJiYlsG8iBQXwYAZienh60sCeRIwABbulHpAlAueee3ingYEZKk/sUcgDlush6OYBkSY7UXIDBOIBMvxt5EIhqAvDEiROYO3cubrvtNtx5552YNGmS33933323WrsLmWHDhuH48eOcSXq3bNmCrl27+tVpDRkyBHV1dZxCWDEuXryIZcuWoX379khPT8czzzyj+uTLqampghdx5jU13J5wQp4E/KlgSJEd6qoZ4Yaf1hdyAEni4+Nlr8Yghs1m46TOgCYHhZ+2P3PmjKqrgADiNyi5N2z+xY8UlEI1gEYbBAIIxxrIAQSuDsaR6wACV6eD8Xq9+O677yQ/y9ygmjVrJnje2Gw29hgQux7V1dWx21Ej/Qv4uyVyBKDRH2CVEsxKICRapYCDyU4EcgDlikq9U8CA9EjgYBxAy6wEcvLkSTz22GM4evQoBgwYAJ/Ph86dO2PAgAFo3rw5fD4fevXqhREjRqixO1VgLsTkjfPKlSuCN2jGiibTfUKUlpZizpw5iIqKwurVq7Fq1SrU1dVh7ty5AZ/gldClSxecP3/eb/m9/Px89n0jQzo7fAFIrqsbzjnd1KB79+6csoC2bdty3ucLwBYtWnBiDxa+m1RXV+d3bJ45c0bVKWCA0B1AfuyBLozk8S13GphwE6wAZCbRDUYAAgiYBuavAiIEcwyUlZUJTsx/9uxZ9m+1BCDfLRGqAQQi2wGUe85LjQqXQ7hqAKUIJADlZnECCUCtUsAMUgJQrgPI9DtTOgJEqAP4zjvvAADWr1+P5cuXA2i6eL300kvYvHkz7rjjDpw+fZoziW44qKurQ0FBAWeEHjmhJkNjYyO2b98Op9PJ6fR27drh5MmTHFcQaEoN2+12dO7cWXTfVVVVmDdvHlwuF1avXo3WrVujXbt2WLlyJS5duoQFCxao1vnDhg2Dx+PhTGTd0NCAbdu2ITs7O+SpRsIN6ZrxU8CMA2jk9C/JunXrMGPGDPzjH//wW+VDSACqMRCI7wDy07+AvwNohEEg/NgDCUBy8ABZj8MfBKJVChgQjlVOCpi5GQQrAJkRwUJUV1ezx4DUzYlxAOvr6wVFidoDQITaY8UUsNxzXihu0vEPRDhGAQfC4XCw7RZKAas1D2A4HMCkpCTOa2R5zq+//sr5LOOMp6SkyD4+mX4nS0eM5gCqMjLhyJEjGDJkCOeiwTxhOp1OPPHEE/j555/xxhtv4M9//nNQ+/j4449RXV3Nuhp79uxhh5uPHz8eiYmJOHbsGGbPno2pU6di2rRpAICVK1eipqYGvXr1QqtWrVBWVoavvvoKZ8+exaOPPsq5IN19993Yt28fHnvsMdx5551ISkrCd999h3379uEPf/iDZBqNmWX/5Zdf5giBrl274sUXX8TcuXORm5srOg+g3BiBprmPhg8fjtdffx3l5eXIzMxEbm4uioqKsGDBgmB+Xk0hbwpiDqCRB4CQtGzZEq+99prge0ICUOkkokLwHUAhAVhQUKDqKiBA01M4M28jg91ul31x5sceSACSq9r07NmT/Zs/EppxP42cAiaXPQv0PYaMjAykpaWhuLgYR48eFf2c3EXqyYeA0tJSv+NTzTkAGagAlO8YCZ1fsbGxsgVkKA5gbGxs0Kn3xMRE1NXVCTqATB1rILRIAfMf3vhGCTlDxi+//ML+7fP5WAGoZAAI2e/MpPARKQBramo4wUZFRXHcLrvdjt69e7PTEATDBx98wC5KDTQtkcQskzRixAjRerGbb74Zn3/+OT799FNUVFQgPj4e3bp1w8MPP4zf//73nM/27t0br776KjZs2IAtW7agsrISbdq0wfTp09kVN8SYPHkyhg4dKnjh7NmzJ9avXx9wAICSGBcvXoy0tDRs374d1dXV6NSpE1asWGHoqXgYCgsLBdcDPnfuHPsUaRYHUAohAUjGHixyHMCzZ89y5uNSayL12NhYv8EZcm9Q/NilagB9Ph8rANu2bcsZ0UjeDMg0sV4pYDkOIJNeVSIAAaBHjx4oLi5GSUkJSktLBYW8XAFIfresrMxvlK+acwAySKWArSIA5Z7zjFMkNvgpEKGMAg5lqbyEhASUlpb6OYBOpxM1NTWyHub1qAHkC8CkpCT2gYsUgGVlZWyblDzAk/3O7NtoKWBVBGBycjLnJpSSkoLz589zPsOf7V0pmzdvDviZPn36+K2decsttwRcAJ0kOzsbL730kuL2RUVFST41S6WPGeTEyOB0OjFz5kzMnDlT9neMAvmEm5SUhPj4eNTW1nJWZjGLAyiF0AU51EEggDwH0O1248iRI+y/1RoY5HQ6g75B8WOXcgDPnTvHlnKQ7h/AvRmQbdErBSzHAWT6SKkAzM7Oxn//+18ATTW+QitaBOsA8glHCjgxMRHNmjVj4ycdQLEawEgbBKLknOcLQLn1f0KflXIA4+Li4HA4WPc8lOstc53jO4BpaWmCtaZCBFoLOBw1gEKlUtdccw2Ki4vZKcmSkpKCngKG7+QCxksBq1ID2KFDB04B8fXXX4/9+/ezqyScOXMGO3fuNMV6jJTwQ56IzGoBADjuZ6Q6gGpMrcF3AMUm7ibX71TTAZT6txT82KUEoFj6FxB3APVKActxAJm+UrrkWY8ePdi/mUFefOROUcF3APmQArB9+/YB2yYXsn7TiilgJec8P3Yl37Xb7ZxrjpQAtNlsHNEXigPIZKZqamrgdrvZh4u0tDTZ7dejBlBMADKcOnUKQPBzAJKxM39HpAAcPHgwDh8+zHb85MmT4fP58Nhjj2H06NF48MEHUV1djfvuu0+N3VFMDl8YCZ1UkSAAhZ7I5a4LKgXpAPp8Po4DSP6Wx44dY/9WSwDyRUsoKSopAfjTTz+xf/fq1YvzHnkzIMWvkUcBK50ImoFc7F6sDlBtBzAjI0NVEXbTTTcBaBLyZB9ZRQAqOedDOb8Abh2glAAEuK6fGg4g0FTqwLh+aWlpsmM3Qg0gIFwHGMwcgAD3dzFqClgVAXjHHXfg448/Zg+iLl26YM2aNbjhhhvQvHlz9OvXDy+++KKuC3JTjAP/5iN0UkViCrhFixaqzAnJ3CR8Ph88Hg9HAJJF12QKQq0UcCgOBT92qRpAKQeQvFkYIQUsxwFk6jGDqQFkEHMAg60BJHG5XKwDr1b6l2HBggXYsmULvvrqK87rZH+R839GmgBUcs6Hcn4BVwVgTExMwO+q7QAC3JH7aWlpsmM3Qg0gwHUAGQEYrANIxs7s2+PxcJxNvVGlBjAqKsqv4PT6669n17KkUKSIVAdQSACqAX8ULF8A5ubmcj4fGxurqJZIilAdChI5KWCn08m5KAPGSwHLcQCZdspdCYQhNTUVrVu3RklJiSwHUMqhkHIACwoK2L/VFoBxcXEYO3as3+tWmQdQCfzYlZ63N998M3799Vfk5OQEHJxFXmPVcgD5AlAuWswDGB0dzal75C/4AAgLwGAdQBLyOulyufxWjdIL1ZeCE+PixYt44YUXtNodxcDwHxas5ABKjcyTC389YDEHkEHNlWFCcSj4sYsJQJfLxV58e/To4XfxN6MAZG5m5Bylcn87xgUsLi4WrN1jblDx8fGSNxZSAPK3E44BIAxix7xVUsBKzvlQHcB169Zh7969+Pe//x3ws+FwAMn589LS0mTHrkUNIMD9fYUEaufOnVnhzKz8FawDSMZu1NVAwi4Ai4uL8de//hX3338/vvzyy3DvjmIC+Ok+KzmAQkueKUXKAWzfvr3fb6dW/R8Q2g2KH7vYRfHo0aNs+pqf/gX0nQYm2BQwk+I8ePAg+xpZ3ycF+TmhNDC5CoiU60M+CPAdwHDMAcggdsyTxzF5DEfaKGAl53yoAtDhcGDQoEGyfsNw1ADyHUC5sWuRAgYCC8DY2Fh2ANQvv/zCmQPQ4XAIuoZikLGT/RgxAvDw4cOYPXs2Ro4ciVGjRmHRokXsaOC6ujq88soruPfee/H5558jOTkZs2bNUqXRFHPDX8LOKgIwJSXFL/Zg4DuA5ECIZs2a+Tk4agrAUFLA/NjFagDJ+j/+ABDAnA4gIwB/+OEHAE0xyJ0kV0oAulwu1lUMlJ5KSkpi3VS+A0imgNWerUHsmOc/yDBEmgOo5JwPNQWsBPIaG+o8gAx8B1Bu7FoJQPJ6JZaiZtLA5eXlKC0tZR3ANm3awG6XL5nI2Ml+NdJAkKAT6ydOnMCcOXM4nfTdd9/hxIkTeOWVV7Bo0SKcOXMGLVu2xOTJkzF69GhNLtAU82GlFDB5vgSLlAOYmJiIrKwsjogKZwo4lJu1mANIjgAWcgDJ+I0gAMV+g4SEBNhsNvh8Pna5Nmauy549e8p2usiBIPw6QLkDQICmqT9SU1NRXFzs5wCS87bylzQMF2LxR5oAVIKaNbaBUMsBlBoEIpdAKWA1agCBq21NTEwUXTzimmuuYQcs/fzzz+wALiXpXz5GTQEH/au+//77cLvdmDFjBkaNGgUA2Lp1K9544w089thjuHLlCqZMmYL77rsv4ix9SmjwTyQhARiJDmCLFi1UeZKVqgE0sgPI73exi6LUCGDAeCuBiF3fbDYbEhMTUVVVhfr6ehw8eJCdIqN///6y9ynlACoRgABYAch3AEkBGMqNTgix7YkJ9kgTgEp+z1BTwEogV6YKtEqVFOR1jqzlDLUGMBwO4COPPIKFCxfiiSeeEP0MORCEXFhC6XlBfp4/CMQoBJ0C/vnnn9G3b1/ce++9SE5ORnJyMu677z706dMHly9fxsMPP4w//vGPVPxR/CAnfAaaTn7+ouGR5gAmJCQgOjraL/ZgkHIAhQSgUQaB8GMXEoDkEnAZGRmCbTfLSiDA1TRwRUUFZ2Lufv36yd5nq1at2PMjFAcQuHos1NbWcm5ETJorKSlJ9RGKYse8VQSgknNeSwE4efJkPPXUU1ixYgUGDx4c9HaEnLTo6Gi0aNFCduxaCcBZs2ahsrISy5YtE/0MORfg119/zf6tdAQwGTvZj0IrN+lF0ALwypUrftMzAEC3bt0AACNHjgy+VZSIhhmGT8I/uSLNAWSmgBGKXSliDqDNZkNCQoJhHUB+7EI1gBcuXMDly5cBCLt/gLFqAKOjoyXrghgxVV1dzdb/AcocQOCqC1hUVMT+PoDyKSqERgL7fD7WAVTb/QPEj3mh/rLb7aql+4yCknNeyxrA+Ph4/PWvf8X8+fNlr+cthNBkz61bt4bNZpMdO3ksCC0Fp6a7H+j4InXN3r172b+Vnhtk7GRdLVknqTdBC0CPxyM5Ii4SHBxKeBB6wuefXJEqANVwN8QcwMTERNhstrAKwFAcCqGbG3Nh37NnD86cORMw/QsYayWQQBkORgDW1NRg//797HfIuj45iE0IHawDCFwVgOXl5awb2LZtW0XtkoPYMS8kACPN/QOUxaSlA6gWQg4gU/8nN3by3A1nDaAcsrKy2PaQg5OUOoBk7KSoPHHiRIgtVA/N5gGkUBiEUkykAOSvaWlWmjVrxj7BMzdWNdJrYg4gs+1wpoBDcQD5scfExLDLQ1ZVVWHKlCmcaVKERgAz32PQOwUc6AbHxOz1etl5xXr16qW4rWJ1gMHUADIwA0HCWf8HiB/zQuI5EgWgknPejAJQ6FrNCEC5sWuVApZDVFQUOnfu7Pe60nODjJ3JjAJXJ5g2AiHJ6i+//NKvJoWpJXnqqaf8Pm+z2ejqIBRcunRJciBIUlJSSCkJoxAdHY2///3v+OCDD7BkyRIAwrErhe8AMi4Y8yTeokULNGvWjBWGRnEAhWJfs2YN/vvf/6KgoADffPNNwBHAgLFSwHIdQBKl6V9AfCSw0hSwkANITnQbDgdQ7Ji3igOo5JzXchSwWkgJQLmxG0kAAk11gMyIfQal120y9szMTMTHx6O2ttZQDmBIAvDChQuciwfJ999/7/daJNzUKeGBPLkiqXxg2rRpmDZtmqrb5NfO8R1AJg185MgRAOF1AEO9YTdv3hz//Oc/cdNNN8Hn87GjCGNiYjhPzSRGEoByHUCSYARgIAfQ6XTKmstNDwdQDKsIQCVoWQOoFlIpYLlosRScEoTGNwS7DBzQdE2+5pprcOjQIZw+fRoNDQ2GmBYv6F/1gw8+ULMdFAshtCYueeOJhPo/MdRYD5i8cFRUVLCrZpBio2fPnjhy5AgSExORnp4e8j4ZQnEAxWIfOnQoFi5ciOXLl7OvZWdniz71G2klkGAcQCUjgBlat26Nli1borS0lOMAyl0FhEEPB1Cs360iAJWc85GWApYbu1ZLwcmFLwATExMV35f4sXfr1g2HDh2Cx+PBb7/9hmuvvTbkdoZK0AJQzZsKxVqQJzYDPwUcqQjFrhRSdJAT+pJi4y9/+QuaN2+OkSNHqnoTCSVFJRX7kiVLsH37dvz4448AxNO/APdmQG7TDA5gbGys7CXg+GRnZ2P37t0oLCzElStXEB8fz4o4ue6EHg6gWL8LiedInDZMyTlvRgEo5QDKjd2IKWCSYNw/fuxkRuPEiROGEIB0EAhFc4TmQWrfvj07nYbS9IGZUGMOKPJiSU7oS4qNrKwsvPrqqxg9enTI+yMJ5QYlFXtMTAz+9a9/sQ7V5MmTJT+r5HU1CbUGsE+fPkGns/gjgcl5xuQMAAGEp4EJtwMo1u9WcQCVnPNmTAFLOYByYzeaAOQ7gME8GPFjN+JIYCoAKYYgJSUFzz33HPr164e5c+fq3RxDI8cBDBfhdCiuvfZaHD9+HGfOnMFtt90m+jk5qeFwEWoKOJj6PwbSOVy/fj07rQwgXwCSKWC+AxgTE6NqvWggrCIAlWBGBzAmJsbvoUbpQ7zD4WBLGIxQA5iRkcER32o440YcCUwFIEVzxOz0p59+Gj/88AN+97vfadwi7QilkJhBzAEUW9tSTUJJAcudqJicNFUIMaFnhhRwKAKQnBbnvffew4QJE9h/yxWAycnJrNPOHDvkJNDhGKgn1u9WEYBKznkzjgJmJqAnYQSg3NhtNht7PBihBpAZtMEQzHWb/x3qAFIoALu4thVRI3byJiGWAg4XSgUQiVr9biQBqNQBDGYACMOQIUMwY8YMQTdE7g3Kbrez67OWlZWhtrYWV65cARC+EcBi/W6VeQCVHPdmdAABbhrY4XCwpQZKYucLQD1TwAC3DjCYc4Mfe1JSEjt2ggpAimVRYyCEWVEjdjk1gOEiXINAlKCnAAx2ImigqZ4rlMJvu92O1157DQUFBXj22Wc5A/FuuOEG2dthbs6lpaVhr/8DxPtdqL/oIBDz1QAC3OxDq1atWJdZSexGE4BkyjaYc0Modmably5dYh+89IQKQIrmROJFXi5qxG7WGkC1+l1M6Bl5KTgA6Nu3LxwOR8htyMjIwJIlS3D27Fnk5ubihx9+UDSymKnzq6qqwunTp9nXw+UAiv1GVkkBKznuI8EBJOv/lMTOnL+M8NNrKTiGadOmISsrC/369cPIkSMVf18odqPVAUbWqtsUUxBJEz0rRY3YyRvn5cuX2b+N7gCq1e96OoBRUVGw2+3s3IuBBEvHjh3Zzw8bNkzVtkRHR0sOlhGDHAlMrr0cLgdQrN+tIgCVHPdmFYCkA0gKQCWxG80B7NixI/uAFExtrFDs/DrAgQMHBt9AFaAOIEVzaA1gaJA3To/Hw/6txSCQUG5QkVADaLPZOL9BIIcjMzMTmzdvxpNPPon58+eHu3myIEf6kkvvaV0D6HA4/BzRSBSAwdYAOhwOXYRPMIg5gGauAQSazvdgB0YJxU4dQAqFEhJiosPoDqBa6DkNDNAUc21tLQB5Ka7x48dj0KBBmvSPHEgHkBSA4XIApYiJiYHL5WL/HYkCUAlk/Gap/wPEHUAlSAlAPVLA4YA/GbTeUAeQojly1iyNVNSIXczp0roGUKlDoVa/2+12tsicRKu1NcnfQK5gMdIxTzqAx44dY/8OlwCUip3fZ5FYH6yk78n4zZL+BcQdQCWxi00DQ84RaCaEYu/YsSMrZo3gAFIBSNEcpn7KiqgRu1EcQKVujZr9LiT29BCAcgWLkY550gFkbrI2my1sy3tKxc7vs0h0AJX0PRm/mQSgmAOoJHZSAPp8PtYBNEsanI9Q7FFRUejcuTMA4OTJk7pfF6gApGhOZWWl3k3QDTViN4oDqPQGpWa/C90UtEwBM8gVLEY65oVW+0hPTw/b7ycVO19AR6IAVNL3Zk0Bk24XOSelktiZ65rP54PH4zG9ABSLnUkDu1wunDt3Tssm+UEFIIViMoziAOrpUAjdFIzsABoJ0gFkCNcAkEBYwQFUglHOL6Xce++9yMrKwk033YQbb7wxqG3w1wM2uwAUw0gDQagApGhOuFJNZkCN2IWEjs1m08QxCMUBVLPfjSIA5QoWIx3zQg5gOAeASMVuBQGopO8dDgc7XVBOTk6YWqQ+3bt3x+nTp/H1119zzk0lsfMFIFOeYNYBIGKxG2lJOCoAKZpDrl5hNdSIXch1SkxM1KRQOioqir0gKxWcava7ngKQFL5yHUAjHfNaO4BSsVtBACrt+9zcXBw4cAAvvvhimFoUHoSuP0pijzQHUCx2I40EpgKQojnk8H6roUbsQhdELacYufPOOwE0TW+iBDX7nS8cbDabKqtsyCEYB9BIx3yLFi38XgunAygVuxVGASvte6fTib59+5py5CsfJbFHmgAUi52mgCmWRiunxoioEbvdbve7KGopADdt2oTz58/j6aefVvQ9NfudH7+Wx1QwNYBGOuajoqL8RGA4HUCp2K0wCMRIfa81SmIXE4BmTQGLxd6qVSt2lRDqAFIsh5ADYRXUip1/cdFSANpstqAEg5r9rqcADCYFbLRjnp8GDqcDKBW7FVLARut7LVESO3lOu91utgbQrA6gWOw2m411Ac+ePcuZCF1rqACkaE5xcbHeTdANtWLnCw+jrDIhhZr9zr8paHmTCCYFbLRjnj8QJJwOoFTsVhCARut7LVESe6SlgKViZwRgfHw8zp8/r1WT/KACkEIxIfwbpxbrABsJPR1AcpH3pKQkzfarJnwHkE4DQ9GbSBOAUixbtgznzp1DVVUVunbtqls7zJlcp5ga8gZqNdSK3YwOoJr9zhcOWgrAqVOn4vPPP0d2djb69Okj6ztGO+ZJBzA5OZmzlJfaSMXOP44jcRCI0fpeS5TETp7D9fX18Hg8AMxbAygVe1ZWloYtEcecvyyFYnH0rAE0AnqmgLOzs3H06FHN9hcOSAcwnPV/gaAOIIWBPBZqa2vZvyPRATQKNAVM0ZyKigq9m6AbasVuRgdQzX7XMwUcDEY75kkHMNzpX6nYrSAAjdb3WqIkdvJYqKmpYf82qwA0Q79TAUihmBDqAJpLABoN6gBSjEakCUAzQAUgRXPS0tL0boJuqBW7GR1ANfvdbALQaMd869at2b/DLQClYrfCPIBG63stURK7WArYrDWAZuh3KgApmnPlyhW9m6AbasVuxlHAavY7P36juwRGO+ZvvfVWXHfddWjTpg3uu+++sO5LKnYrrARitL7XEiWxR5oDaIZ+N6e0ppiahoYGvZugG2rFbkYHUM1+N5sDaLRjPiEhAYcPH4bX6w37EnpSsZP9FhUVpdlyflpitL7XEiWxR5oANEO/UweQojlmPaHVQK3YzVgDqGa/m00AGvGY12r9ZKnYyX6LxPQvYMy+1wolsUeaADRDu6kApGgOfxJaK6FW7GZ0ANXsdz2ngQkGeswLQx7HkSoAad/LgzyHI6EG0Az9TgVgBPPSSy9h7NixGDlyJB544AHs2bNH7yYBAIqKivRugm6oFbsZHUA1+91sDiA95oWxggNI+14ekTYPoBn63ZzSmiKLiRMnYvbs2YiJicGxY8cwZ84cbNq0ydIz00cKZnQA1UTPlUAo6mEFAUiRR6SlgM0AdQAjmKysLPakstlscLvdKC0t1blV5l0/VQ3Uit2Mo4DV7HezpYDpMS8MeRxH4ghggPa9XCJNAJqh303hANbW1mLTpk3Iz8/HsWPHUFVVhUWLFuH2228P+N3Tp09jw4YNOHHiBC5fvozY2FhkZWXhnnvuwZAhQziffeGFF5Cbmyu6rY8//hitWrUKOR4hlMbY0NCAt956C19++SWqqqrQuXNnPPTQQxgwYADnc6tXr8a2bdvQ0NCAQYMGoVOnTmFpvxLsdus+d6gVuxkdQDX73WwpYHrMC2OFGkDa9/KItHkAzdDvpvhlKyoqsHHjRqSlpaFLly44ePCg7O8WFRWhtrYWI0eORMuWLVFXV4ddu3Zh0aJFmDdvHsaMGcN+dsyYMejfvz/n+z6fD6tWrUJ6enrYxB+gPMbly5fj66+/xoQJE9C2bVt88cUXmD9/PtauXYuePXuyn5szZw5mz56NQ4cO4bfffoPNZgtbDHIpLy8P6+LzRkat2MmLpd1uR3x8fMjbDDdq9rvZBCA95oVjt0IKmPa9vNgjzQE0Q7+bQgCmpqZiy5YtSE1NxfHjxzFjxgzZ3x08eDAGDx7Mee3OO+/E9OnTsXnzZo4AvO6663DddddxPnv48GHU1dXh1ltvldxPVVUVfvzxR9x0002C7+fl5WHIkCGIi4sTfF9JjPn5+dixYwceeeQR3HPPPQCA2267DVOnTsW6deuwbt06zucdDgf69euHDz/8EG3btvX7PSjmg3ROEhMTDSHstcRsApAijBUEIEUekSYAzYDxPUo0HRhqDql2OBxo3bo1qqurA342Ly8PNpsNOTk5kp/bsmULlixZgt27d/u9t3XrVixdulQyvawkxl27dsHhcHDEq9PpxKhRo3D06FEUFxcLfs/j8eDChQuy9hFOyGWorIZasZMXSzOkfwF1+91sK4HQY14YKwhA2vfyEBOAZk0Bm6HfTSEA1cDlcqG8vBwXLlzA5s2bsW/fPvTt21fyO42Njdi5cye7ZJIUkydPxqBBg7B06VIcOHCAfX3Xrl1YtWoVRowYgbFjx6oRCk6ePIm2bdv62cvdu3cHAJw6dQrV1dX46quvUFtby8Zx8OBB9OrVS5U2hEJFRYXeTdANtWInHUCzCEA1+91sDiA95oWxwiAQ2vfyiLRpYMzQ7+aU1kHw6quv4rPPPgPQVDN144034sknn5T8zvfff4+KioqA6V+g6SllyZIleOqpp7B48WKsWbMGLpcLy5Ytw8CBA7Fw4ULV0nRlZWWCbiHzWmlpKWw2G7Zu3Yo1a9bA5/MhMzMTzzzzDLp27Sq63by8POTl5clyRkOhvr4+rNs3MmrFTl4szTACGFC3380mAOkxL4wVBoHQvpdHpKWAzdDvlhGAEyZMwLBhw1BaWoqdO3fC4/HA7XZLficvLw9RUVEYPny4rH04nU4sX74cs2fPxvz58+F2u9G9e3c899xzqtrY9fX1gicFcwLV19cjISEBa9euVbTdnJwc5OTk4MSJE5g+fboqbRXCrJa+GqgVuxkdQDX73WzTwNBjXhgrpIBp38sj0gSgGfrdMingrKws9O/fHyNHjsSKFSvgcrmwcOFC+Hw+wc/X1tbi22+/xQ033KBo4uSEhATMnDkTlZWVcLlcePzxx1VPbTidTkHxyiw+bfRUihlqI8IFrQFUB7M5gPSYF4YsYzGLk60U2vfyIM9h8v5mBiElhBn63TICkM+wYcNw/PhxnDt3TvD9b7/9VtboXz4XL17EsmXL0L59e6Snp+OZZ55RffLl1NRUlJWV+b3OvNayZUtV96c2Fy9e1LsJuqFW7GZ0ANXsd7OtBEKPeWF69uyJESNGID09Hffff7+GrdIO2vfyEHP6zOoAmqHfLSsAmfy8WL3bV199hbi4OL/JoqUoLS3FnDlzEBUVhdWrV2PVqlWoq6vD3LlzUVlZqUq7AaBLly44f/48xyYHmqaHYd6nRDZmdADVxGwpYIowdrsd27dvx4ULF/zmYKVYC7GHOHpuh4+IEoB1dXUoKChAeXk5+9qVK1f8PtfY2Ijt27fD6XSiQ4cOfu+Xl5fjhx9+wI033ii7LqWqqgrz5s2Dy+XC6tWr0bp1a7Rr1w4rV67EpUuXsGDBArhcrmBD4zBs2DB4PB52UAvQlP7dtm0bsrOzkZaWpsp+woUVBQuDWrGb0QFUs51mSwGbpY/CgZzYzbBqQrDQvpdHpAlAM/S7aZLrH3/8Maqrq9k05549e1BSUgIAGD9+PBITE3Hs2DHMnj0bU6dOxbRp0wAAK1euRE1NDXr16oVWrVqhrKwMX331Fc6ePYtHH31UcAWFHTt2wOPxKEr/btmyBSUlJXj55ZfRrl079vWuXbvixRdfxNy5c5Gbm4tx48aFFCMAZGdnY/jw4Xj99ddRXl6OzMxM5ObmoqioCAsWLJDdZr0wa02HGqgVe0pKCvu3GWpNgPAOAjG6AKTHvHWxcvzBDgIJdhtGwgztNn4L/x8ffPABioqK2H/v3r2bnXR5xIgRogXEN998Mz7//HN8+umnqKioQHx8PLp164aHH34Yv//97wW/k5eXhxYtWqBfv36y2zd58mQMHToUHTt29HuvZ8+eWL9+fcB1eJXEuHjxYqSlpWH79u2orq5Gp06dsGLFCvTu3Vt2m/XiypUrpli6LByoFfvQoUPx4IMPoqioCFOmTFGhZeFHzX43mwCkx7w1YwesHb+S2COtBtAM/W4aAbh58+aAn+nTp4/fShy33HILbrnlFkX74i+lJoeoqChB8cfQuXPngNuQEyOD0+nEzJkzMXPmTNnfoUQOdrsdb7/9tt7N0A1aA0ihRBY2mw3R0dF+M1zQczt8RG7hBcWwtGrVSu8m6AaNXR3MNgqY9rt1sXL8SmMXOo/NKgDN0O9UAFI0p6qqSu8m6AaNXR3MlgKm/W5drBy/0tiFzmMz1NIJYYZ+pwKQojl1dXV6N0E3aOzqYLYUMO1362Ll+JXGHkkOoBn6nQpAiuY4HA69m6AbNHZ1MJsDSPvdulg5fqWxR5IANEO/UwFI0Zz09HS9m6AbNHZ1MJsApP1uXawcv9LYIykFbIZ+pwKQojkXLlzQuwm6QWNXB/6NwuguAe1362Ll+JXGLnQeG/3cFsMM/U4FIIVCMR1mcwApFEpgIikFbAaoAKRoTkJCgt5N0A0auzqYTQDSfrcuVo5faeyRJADN0O9UAFI0h1zH1mrQ2NXBbAKQ9rt1sXL8SmOPpBpAM/Q7FYAUzbl8+bLeTdANGrs6mG0aGNrv1sXK8SuNPZIcQDP0OxWAFArFdJhtJRAKhRKYSBKAZoAKQIrmtGzZUu8m6AaNXR3MlgKm/W5drBy/0tgjSQCaod+pAKRoTk1Njd5N0A0auzo4HA7YbDb230a/SdB+ty5Wjl9p7JFUA2iGfqcCkKI5LpdL7yboBo1dPUjRZ3QHkPa7dbFy/EpjjyQH0Az9TgUgRXPsdusedjR29WBuDHa73fDLLtF+ty5Wjl9p7JEkAM3Q78ZvISXiaNOmjd5N0A0au3owNwuju38A7XcrY+X4lcYeSQLQDP1OBSBFcy5evKh3E3SDxq4ezI3BDDcI2u/WxcrxK409kmoAzdDvVABSNMfn8+ndBN2gsasHI/zM4ADSfrcuVo5faez8hzn+YC8zYYZ+pwKQojnx8fF6N0E3aOzq0bFjR87/jQztd+ti5fiVxs5/mDODuy+GGfrdnN4qxdTExcXp3QTdoLGrx2uvvYZ33nkH9957r6rbDQe0362LleNXGnskCUAz9Dt1ACmaU1ZWpncTdIPGrh7Z2dlYsWIFevbsqep2wwHtd+ti5fiVxs4XgGat/wPM0e9UAFIoFAqFQtGdSHIAzQAVgBTNSU1N1bsJukFjtyY0duti5fiVxh5JAtAM/U4FIEVz6urq9G6CbtDYrQmN3bpYOX6lsUdSCtgM/U4FIEVzzLBGYrigsVsTGrt1sXL8oa4FbGYH0Az9TgUghUKhUCgU3YkkAWgGqACkaE5mZqbeTdANGrs1obFbFyvHrzT2SBKAZuh3KgApmlNYWKh3E3SDxm5NaOzWxcrxK409kmoAzdDvVABSNMfr9erdBN2gsVsTGrt1sXL8SmPnO35mdgDN0O9UAFI0xwwzpIcLGrs1obFbFyvHT1cCMTZUAFI0JyEhQe8m6AaN3ZrQ2K2LleNXGnskCUAz9DsVgBTNKS0t1bsJukFjtyY0duti5fiVxh5JNYBm6HcqACkUCoVCoehOJDmAZoAKQIrmpKSk6N0E3aCxWxMau3WxcvxKY48kAWiGfqcCkKI5DQ0NejdBN2js1oTGbl2sHL/S2CNJAJqh36kApGhOdXW13k3QDRq7NaGxWxcrx6809kiqATRDv1MBSKFQKBQKRXciyQE0A1QAUjQnIyND7yboBo3dmtDYrYuV41caeyQJQDP0OxWAFM0pLi7Wuwm6QWO3JjR262Ll+JXGHkkC0Az9TgUgRXM8Ho/eTdANGrs1obFbFyvHrzT2SKoBNEO/UwFI0ZzY2Fi9m6AbNHZrQmO3LlaOX2nskbQWsBn6nQpAiuY0a9ZM7yboBo3dmtDYrYuV41caeyQJQDP0OxWAFM25dOmS3k3QDRq7NaGxWxcrx680dofDAYfDwf7bzClgM/Q7FYAUCoVCoVAMAVkHaGYH0AxQAUjRnBYtWujdBN2gsVsTGrt1sXL8wcQeKQLQDP1OBSBFcxobG/Vugm7Q2K0Jjd26WDn+YGKPFAFohn6nApCiOVVVVXo3QTdo7NaExm5drBx/MLGTAtDMNYBm6Hfz/rqUgLz00kvYs2cP6urqkJaWhhkzZmDIkCF6N4tCoVAoFEEixQE0A1QARjATJ07E7NmzERMTg2PHjmHOnDnYtGkTmjdvrmu72rRpo+v+9YTGbk1o7NbFyvEHE3ukCEAz9DtNAUcwWVlZ7Mlks9ngdrtRWlqqc6vMMTw+XNDYrQmN3bpYOf5gYo8UAWiGfjeFA1hbW4tNmzYhPz8fx44dQ1VVFRYtWoTbb7894HdPnz6NDRs24MSJE7h8+TJiY2ORlZWFe+65RzQdeuLECWzYsAFHjhxBQ0MDMjIyMHr0aNx1111qh8aiNMaGhga89dZb+PLLL1FVVYXOnTvjoYcewoABAzifW716NbZt24aGhgYMGjQInTp1ClsMcjFDcWy4oLFbExq7dbFy/KEOAjFzDaAZ+t0UDmBFRQU2btyIgoICdOnSRdF3i4qKUFtbi5EjR2LWrFmYMmUKAGDRokX47LPP/D7//fffY+bMmSgvL8cDDzyAWbNmYfDgwWFX80pjXL58OTZv3oxbb70Vs2bNgt1ux/z583H48GHO5+bMmYPt27djzZo1GDBgAGw2W7hCkI3T6dS7CbpBY7cmNHbrYuX4g4mddP3M7ACaod9NIa9TU1OxZcsWpKam4vjx45gxY4bs7w4ePBiDBw/mvHbnnXdi+vTp2Lx5M8aMGcO+XlNTgxdeeAGDBg3CsmXLYLfL18dVVVX48ccfcdNNNwm+n5eXhyFDhiAuLk7wfSUx5ufnY8eOHXjkkUdwzz33AABuu+02TJ06FevWrcO6des4n3c4HOjXrx8+/PBDtG3b1u/30Jrk5GRd968nNHZrQmO3LlaOP5jYIyUFbIZ+N4UDGBMTg9TUVNW253A40Lp1a1RXV3Nez8vLw+XLlzF9+nTY7Xa4XC54vV5Z29yyZQuWLFmC3bt3+723detWLF26FLm5uaLfVxLjrl274HA4OOLV6XRi1KhROHr0KIqLiwW/5/F4cOHCBVn7CCdi7bMCNHZrQmO3LlaOP5jYI0UAmqHfTSEA1cDlcqG8vBwXLlzA5s2bsW/fPvTt25fzmR9++AEJCQkoLS3Fvffei9tuuw233347Vq1ahfr6esntT548GYMGDcLSpUtx4MAB9vVdu3Zh1apVGDFiBMaOHatKLCdPnkTbtm2RkJDAeb179+4AgFOnTqG6uhpfffUVamtr0djYiJ07d+LgwYPo1auXKm2gUCgUCkVtIqUG0AxY5td99dVX2Zo/u92OG2+8EU8++STnM+fPn4fH48HixYsxatQozJgxA4cOHcLHH3+M6upqPPvss6Lbj4qKwpIlS/DUU09h8eLFWLNmDVwuF5YtW4aBAwdi4cKFqtXflZWVCbqFzGulpaWw2WzYunUr1qxZA5/Ph8zMTDzzzDPo2rWr6Hbz8vKQl5fn54yqjd7T0OgJjd2a0Niti5XjDyb2SHEAzdDvlhGAEyZMwLBhw1BaWoqdO3fC4/HA7XZzPuNyuVBXV4c77rgDs2fPBgDcdNNNcLvd+OyzzzBt2jS0a9dOdB9OpxPLly/H7NmzMX/+fLjdbnTv3h3PPfecqk8y9fX1gicGc+LU19cjISEBa9euVbTdnJwc5OTk4MSJE5g+fboqbRXC5/OFbdtGh8ZuTWjs1sXK8QcTe6QIQDP0u2VSwFlZWejfvz9GjhyJFStWwOVyYeHChZxOYkbt3HLLLZzv5uTkAACOHj0acD8JCQmYOXMmKisr4XK58Pjjj6s+GsjpdPqJV6BpahjmfSNTWVmpdxN0g8ZuTWjs1sXK8QcTe6QIQDP0u2UEIJ9hw4bh+PHjOHfuHPsak0JNSUnhfLZFixYA5K3td/HiRSxbtgzt27dHeno6nnnmGdUnX05NTUVZWZnf68xrLVu2VHV/FAqFQqFoAa0B1A7LCkBmUAdZ79atWzcA/jN4MwIu0LDu0tJSzJkzB1FRUVi9ejVWrVqFuro6zJ07V9WngS5duuD8+fOoqanhvJ6fn8++b2TS09P1boJu0NitCY3dulg5/mBijxQH0Az9HlECsK6uDgUFBSgvL2dfu3Llit/nGhsbsX37djidTnTo0IF9ffjw4QCAzz//nPP5zz//HA6HA3369BHdd1VVFebNmweXy4XVq1ejdevWaNeuHVauXIlLly5hwYIFcLlcoQX4/xg2bBg8Hg9nIuuGhgZs27YN2dnZSEtLU2U/4ULIvbQKNHZrQmO3LlaOP5jYmftwamoqevTooXaTNMMM/W4af5UZicv8qHv27EFJSQkAYPz48UhMTMSxY8cwe/ZsTJ06FdOmTQMArFy5EjU1NejVqxdatWqFsrIyfPXVVzh79iweffRRxMfHs/u45ppr8D//8z/Ytm0bPB4PevfujUOHDmHnzp247777JFOrW7ZsQUlJCV5++WXOQJGuXbvixRdfxNy5c5Gbm4tx48aFFCMAZGdnY/jw4Xj99ddRXl6OzMxM5ObmoqioCAsWLAjm59UUofpFq0BjtyY0duti5fiDiX3ixInIzs5GRkYG5/5sNszQ76YRgB988AGKiorYf+/evZuddHnEiBGsOOJz88034/PPP8enn36KiooKxMfHo1u3bnj44Yfx+9//3u/z8+bNQ1paGr744gt88803SEtLw2OPPYaJEydKtm/y5MkYOnQoOnbs6Pdez549sX79+oDr8CqJcfHixUhLS8P27dtRXV2NTp06YcWKFejdu7fkPowAafFbDRq7NaGxWxcrxx9s7Nddd53KLdEeM/S7zWeGscoUTWGmgXnjjTfYukg18Xg8cDgcqm/XDNDYaexWw8qxA9aOn8Zu7NgjqgaQYg5Il9Nq0NitCY3dulg5fhq7saECkEKhUCgUCsViUAFI0ZykpCS9m6AbNHZrQmO3LlaOn8ZubKgApGiOWmsimxEauzWhsVsXK8dPYzc2VABSNKeiokLvJugGjd2a0Niti5Xjp7EbGyoAKRQKhUKhUCwGFYAUzTH6SiXhhMZuTWjs1sXK8dPYjQ0VgBTNIZfqsxo0dmtCY7cuVo6fxm5sqACkaE59fb3eTdANGrs1obFbFyvHT2M3NlQAUjQnOjpa7yboBo3dmtDYrYuV46exGxsqACma07JlS72boBs0dmtCY7cuVo6fxm5sqACkaE5hYaHeTdANGrs1obFbFyvHT2M3NlF6N4BiPJjahYKCgrBs/9KlS6iurg7Lto0OjZ3GbjWsHDtg7fhp7PrFnpWVhdjYWMnPUAFI8YNZxPr555/XuSUUCoVCoVCU8sYbb6Bbt26Sn7H5fD6fRu2hmITy8nJ8//33aNOmDWJiYlTddkFBAZ5//nk8/fTTyMrKUnXbRofGTmOnsVsLK8dPY9c3duoAUoIiOTkZI0aMCOs+srKyAj6dRCo0dhq71bBy7IC146exGzd2OgiEQqFQKBQKxWJQAUihUCgUCoViMagApGhKamoqpk6ditTUVL2bojk0dhq71bBy7IC146exGz92OgiEQqFQKBQKxWJQB5BCoVAoFArFYlABSKFQKBQKhWIxqACkUCgUCoVCsRhUAFIoFAqFQqFYDDoRNEUTGhoa8NZbb+HLL79EVVUVOnfujIceeggDBgzQu2kBqa2txaZNm5Cfn49jx46hqqoKixYtwu233+732TNnzuCVV17BkSNHEBUVhcGDB+Oxxx5DcnIy53NerxebNm3CJ598gsuXL6Nt27a47777kJOTE/Q21ebYsWPIzc3FwYMHUVRUhKSkJPTo0QMPPfQQ2rVrF1QbzRA3AJw+fRobNmzAiRMncPnyZcTGxiIrKwv33HMPhgwZElQ7zRK7EO+++y7efPNNdOzYEe+88w7nvSNHjmD9+vX45ZdfkJCQgOHDh2P69OmIj4/nfE7JNUDuNsPBwYMHMXv2bMH31q1bhx49eihup1liZzhx4gQ2bNiAI0eOoKGhARkZGRg9ejTuuusuxe00S+wvvPACcnNzRd//+OOP0apVK0XtNHrsdBQwRROee+45fP3115gwYQLatm2LL774AsePH8fatWvRs2dPvZsnSWFhISZNmoS0tDRkZGTg4MGDggKwpKQEf/zjH5GYmIjx48fD5XJh06ZNSEtLw2uvvYbo6Gj2s6+99hr+9a9/YfTo0bj22mvx7bffYu/evXj22Wdxyy23BLVNtXnmmWdw5MgRDB8+HJ07d0ZZWRm2bNkCl8uFdevWoVOnThEZNwDs3bsXH3/8MXr06IGWLVuirq4Ou3btwuHDhzFv3jyMGTMmYmPnU1JSgvvuuw82mw3p6ekcAXjy5Ek88sgjyMrKwpgxY1BSUoIPPvgAffr0wUsvvcTZjtxrgJJthgNGAI4fPx7du3fnvHfDDTewIjwSYweA77//HosWLULXrl1x8803Iy4uDhcuXIDP58MjjzwSsbH//PPPuHjxIuc1n8+HVatWIT09He+++27kxe6jUMLM0aNHfUOHDvW9//777Gt1dXW+u+++2/fwww/r2DJ51NfX+0pLS30+n8937Ngx39ChQ33btm3z+9yqVat8OTk5vqKiIva1/fv3+4YOHer79NNP2ddKSkp8w4cP961evZp9zev1+h599FHfnXfe6WtsbFS8zXBw+PBhX0NDA+e1s2fP+m655Rbf0qVLFbfRLHGL0djY6HvwwQd99957L/uaFWJ/9tlnfbNnz/Y9/vjjvilTpnDemzdvnm/s2LG+6upq9rX//Oc/vqFDh/r27dvHvqbkGiB3m+Hixx9/9A0dOtS3c+dOyc9FYuzV1dW+O+64w7d48WKfx+MR/Vwkxi7ETz/95Bs6dKjv3XffZV+LpNhpDSAl7OzatQsOh4N1TQDA6XRi1KhROHr0KIqLi3VsXWBiYmJkTei5a9cu/O53v0NaWhr7Wv/+/dGuXTvs3LmTfe3bb79FY2Mjxo0bx75ms9kwduxYXLp0CUePHlW8zXBw/fXX+7lN7dq1Q4cOHVBQUKC4jWaJWwyHw4HWrVujurqafS3SYz906BB27dqFxx9/3O+9mpoa/PDDDxgxYgQSEhLY12+77TbExcVx2ir3GqBkm1pQW1uLxsZGv9cjNfa8vDxcvnwZ06dPh91uh8vlgtfr5XwmUmMXIi8vDzabjS3TiLTYqQCkhJ2TJ0+ibdu2nIMbAJteOXXqlB7NUpVLly7hypUrggt/d+/eHSdPnmT/ffLkScTFxSErK8vvc8z7SrepFT6fD1euXEHz5s0BRH7cLpcL5eXluHDhAjZv3ox9+/ahb9++ittpxtg9Hg/Wrl2LUaNGoXPnzn7v//bbb/B4PH5tjY6ORteuXf3il3MNULLNcLN8+f/f3v3HRF3/cQB/8sNDjh8D+TWLxo9RTIOJ86ByxwEODXAzDVAB14hoViTk1tJoGo2ZumiuP0hm6RyNzPzRQPkh0GgkZKGDbJCVoXDGURwCcnAHx3HfPxr35TwJDu7Qu3s+Nv7g/b57f17PE48Xnx/3OYiEhASsX78eeXl5uHHjhm7OWrNfvXoVLi4ukMvlyMjIwPPPP4/ExER8/PHHGBsbM7pOS8p+v4mJCTQ0NCAsLAzLly83uk5LyM4GkMyuv7//gXvQpsbkcvlil2Ry/f39ADBjznv37mF8fFz3WE9PT9jZ2Rk8Dvj/62HMmoulrq4OfX19WLdundE1WmLu4uJibNq0CWlpafj0008RHR2N3bt3G12nJWYvLy/H33//jezs7AfOz1br9P/Xc30PMGZNc3F0dERMTAxyc3Px4Ycf4pVXXkFnZyfefPNN/P7770bXaUnZ79y5A41Gg/z8fERFRaGwsBBJSUkoLy/HoUOHjK7TkrLf76effsLQ0BDWr1+vG7O27LwKmMxubGzsgSeuCwQC3bylm8owW06BQDDn18OYNRdDV1cXjhw5gqeffhoJCQlG12iJuVNTUxEbGwu5XI6GhgZoNBqo1Wqj67S07ENDQzhx4gReeumlGa88nq3W6Y2qqfIvRvMbHh6O8PBw3fdisRixsbF4+eWXcezYMRQVFVltdqVSCZVKhRdeeEF3JXRMTAzUajUqKiqQlZVltdnvV19fD0dHR8TFxenGrC079wCS2Tk5Oel+aU439YPt5OS02CWZ3FSGueSc6+thzJrm1t/fjz179sDFxQWFhYVwcHAwukZLzB0QEACRSISEhAQcPnwYSqUSe/fuhVartersn3/+Odzc3JCcnDzjY2ardXqTaqr8i/XHzv38/f0hFovR2toKjUZjtdmnaph+VToA3Tlw7e3tVpt9utHRUVy+fBlRUVG6010A6/uZZwNIZufl5aXbzT3d1Ji3t/dil2RyU7vvZ8rp7u6u+4/s5eWFu3fvQnvfJzDd/3oYs6Y5KRQKvPPOO1AoFCgqKtL797Lm3A8SGxuLGzduQCqVWm12qVSKCxcuICUlBXK5HDKZDDKZDOPj45iYmIBMJsO9e/dmrfX+n5O5vAcYs+Zi8/X1hVqthkqlstrsUzUsW7ZMb9zT0xMAMDw8bLXZp7t8+TJUKpXe4V/AuDotITsbQDK7kJAQ3LlzByMjI3rjHR0dunlL5+PjAw8PD/z2228Gc7/++qtexpCQEKhUKr0raQHD18OYNc1lbGwMe/fuhVQqxaFDhxAYGKg3b625ZzJ1uEahUFhtdrlcjsnJSXzyySfYtm2b7qujowNSqRTbtm3DyZMnERQUBAcHB4Na1Wo1/vjjD4P8c3kPMGbNxdbT0wOBQABnZ2erzT51IUJfX5/e+NR5aB4eHlabfbq6ujo4OzsbfOi7tWVnA0hmFxsbC41Gg4qKCt3Y+Pg4qqqqsHLlSr2Pu7BkMTExaG5u1vtYm2vXrkEqleqdRyIWi+Ho6IhvvvlGN6bValFeXg4fHx+EhYUZvaY5aDQaFBQUoL29HR988IFeXdNZW24AGBgYMBibmJjApUuX4OTkpGuErTF7UFAQDhw4YPAVFBQEPz8/HDhwABs3boSrqytEIhFqa2sxOjqqe/6lS5egVCr1ap3re4Axa5rL4OCgwdjNmzfR1NSEyMhI2NvbW232qW1UVlbqjVdWVsLBwQGrV6+22uxTBgcHcfXqVUgkEixdulRvztqy8yIQMruVK1ciLi4Ox44dw+DgIB5//HHU1NSgt7cXe/bsedjlzcm5c+egUCh0u+mbmprwzz//AACSk5Ph6uqKHTt24LvvvsNbb72FlJQUKJVKnDp1CsHBwXp3DfH19UVqaipOnTqFiYkJrFixAt9//z2uX7+Offv26c6vAzDnNc2huLgYTU1NWLt2LYaHh1FbW6s3v2HDBqNqtJTcAFBUVISRkRGsWrUKPj4+6O/vR11dHbq7u5GTk6O7PZM1Zvfw8EB0dLTB+JkzZwBAby47Oxs5OTnYtWuX3h0MIiMj8cwzz+geZ8x7wFzXNJf3338fTk5OCAsLg6enJ27fvo0LFy5g6dKl2Llzp1Vnf+qpp5CUlISqqipoNBpERESgra0NDQ0N2LFjh+5wpDVmn/Ltt99Co9EYHP41tk5LyM5bwdGiGBsb090TUaFQIDg4GNnZ2YiKinrYpc3J1q1b0dvb+8C506dP6z4n6tatWwb3cM3JyTE4p2ZychJffvklKioq0N/fD39/f2RkZOiaqunmuqap5ebmoq2tbcb5xsZGo2u0hNzAv78EKisr0dnZiaGhIQiFQoSGhuLFF1+EWCyeV52Wkn0mubm5GBoaMrgX8PXr13X3MBUKhYiLi8POnTsN7mFqzHvAXNc0h7Nnz6Kurg5//fUXRkZG4OHhgTVr1iAzMxP+/v7zqtNSsgP/7un+4osvUF1dDblcDj8/P2zZsgVbt26dV52WlB0AXn/9dfT09OD8+fN6f5jNp85HPTsbQCIiIiIbw3MAiYiIiGwMG0AiIiIiG8MGkIiIiMjGsAEkIiIisjFsAImIiIhsDBtAIiIiIhvDBpCIiIjIxrABJCIiIrIxbACJiIiIbAwbQCKiR0Rubi4kEsnDLmNW1dXVkEgkuq+CgoJ5rVNSUqK3zokTJ0xbKBHNyPFhF0BEZI2MbeSm31vZUojFYoSEhCA4OHhezxeJRBAIBOjt7UVNTY2JqyOi/8IGkIjIDDIzMw3Gzp49C4VC8cA5AHjvvfegUqnMW5gJRUdHIzExcd7PF4lEEIlEaG1tZQNItMjYABIRmUFWVpbBWE1NDRQKxQPnAMDPz8/cZRERAWADSET0yMjNzUVbW5ve4eDq6mocPHgQ7777Ltzd3VFaWorOzk64ubkhKSkJWVlZsLe3R3V1Nb7++mtIpVJ4eHggOTkZaWlpBtvQarWoqqpCZWUlOjs7odFoEBgYiM2bN2Pjxo0mySGXy1FWVoYrV66gr68PAoEAy5YtQ0REBF577TW4urqaZDtENH9sAImILEBjYyNaWloQHR2N8PBw/PDDDygtLYVWq4WrqytKS0shFosRERGBxsZGHD16FJ6enkhISNCtodVqUVhYiPr6evj7+yM+Ph5LlixBS0sLDh8+jNu3byMnJ2dBdapUKuTk5KC3txeRkZGQSCRQq9WQyWSora3F9u3b2QASPQLYABIRWYAff/wRxcXFWLFiBYB/DzGnpaXhzJkzEAqFOH78OB577DEAwPbt25Geno6vvvpKrwG8ePEi6uvrkZSUhLfffhuOjv/+ClCr1di3bx9Onz6N+Ph4hIaGzrvOa9euQSaTITU1Fbt27dKbGx0d1W2TiB4ufgwMEZEF2LBhg675AwChUIjnnnsOKpUKmzdv1jV/wL/nEoaHh6OrqwsTExO68fPnz8PZ2Rm7d+/Wa8SWLFmCV199FQBQX19vknqdnJwMxoRCIQQCgUnWJ6KF4Z9iREQWICQkxGDMy8vrP+c0Gg0GBgbg4+MDlUqFzs5OeHt7o6yszODxGo0GANDd3b2gOletWgUvLy+UlZXh5s2bWLt2LSIiIhAQEAA7O7sFrU1EpsMGkIjIAri4uBiMOTg4zDo3tQdweHgYWq0WfX19OHny5IzbWejH0Li6uqKkpATHjx9Hc3Mzrly5AgDw9fVFRkYGtmzZsqD1icg02AASEdmAqSYxNDQUn332mVm35efnh/z8fExOTuLPP/9ES0sLzp07hyNHjsDNzQ3x8fFm3T4RzY7nABIR2QChUIiAgAB0dXVheHh4UbZpb2+PJ598Eunp6di/fz8AoKmpaVG2TUT/jQ0gEZGNSElJgUqlwkcffQSlUmkw39PTA5lMtqBt3Lp1C3fv3jUYHxgYAABeBEL0iOAhYCIiG7Fp0ya0t7ejpqYGv/zyC0QiEby8vDAwMIDu7m50dHRg//79WL58+by30dLSgqNHjyI8PBxPPPEE3N3d0dPTg6amJggEAp4DSPSIYANIRGQj7OzskJ+fj2effRYXL15Ec3MzlEolPD094e/vjzfeeANr1qxZ0DaioqLQ29uLn3/+GY2NjVAqlfD29sa6deuQnp6OwMBA04QhogWx02q12oddBBERWY7pt6dLTExc8Hqtra3Iy8tDZmbmjPdJJiLT4jmAREQ0LwcPHoREIkFBQcG8nl9SUgKJRIK8vDzTFkZEs+IhYCIiMkpISAgyMzN13wcHB89rHZFIpHdRyOrVqxdaGhHNEQ8BExEREdkYHgImIiIisjFsAImIiIhsDBtAIiIiIhvDBpCIiIjIxrABJCIiIrIxbACJiIiIbAwbQCIiIiIbwwaQiIiIyMawASQiIiKyMf8DijUKeHTcBN4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum(binned_data=\"combined_binned_data.hdf5\", output_name=\"crab_spec_3x\")\n", + "analysis.get_raw_lightcurve(binned_data=\"combined_binned_data.hdf5\", output_name=\"crab_lc_3x\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compare the combined data set to 3x the actual data. This step requires output files from earlier. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAG5CAYAAAApsoiqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABl0UlEQVR4nO3dd1xV5eMH8M/d7I2AogiCiIqi4h45cGWZ5cps+M3RsPTb+FratzKztG+O6ldpmWm2zDTLXClmmltxiyCIIHuvC3ff8/uDuHoFFBAOw8/79aqXPGc9zx3nfM5znnOuRBAEAUREREQkGmlDV4CIiIjoXsMARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQNYI6XVahEbGwutVtvQVSEiIqI6xgDWSCUlJWHmzJlISkpq6KoQERFRHWMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYwaxL6Y03j31w0o1WkbuipERESikzd0Beje89OJ/fjw3fWQmICoCzH49c33G7pKRNSEmAUztuWeQqGpFJM9+8FGqmzoKhHVGHvASFSHr17Esg82QGIq+zv1aCp+v3i0YSvVAE4Vx+PJmE8wL2ED9madhUbPnkBq+nZdPI5Xv1+F08nxd70urVGPXRePo0hbalVuMBvx+rXv8HbSRqxI2YaXr66HwWy86+0RiY09YCSahJx0vPz2R4DGbCkzTnDAd9IjuF/oDZnk3jgfuFKahhfj16LUrMO5EmDvrqOQ79fCv2cbzHt0KsL92tfr9o0mIwxmE2wVqnrdTlNgNpvx0obPkJScjkVPz0CXVgENXaVa0Zj1iClNRSe71lBKxd2tpxXk4pNdW/D3n1HQp5adSBz47QQ2rVkCf2fvWq0zIScdT76xCLrkUkicZXh4yjD8Z8xkFGpLMefAalz0yrDMezgtGo/uWIQfX3gLSjkPadR0SARBEBq6ElRRbGwsZs6ciTVr1iA4OLihq2OhNephI695d3+hRo0HXp4HbVIJAEDhpYLXM22RoMgBALzVZiLGe/at07reSVpBLt78/itcjUmGvYsdWrb0RECrlujXoTPua9+1wvxmsxlHr0WjfQtfeDq61GqbcdmpmJ20BpmSIkuZ/ItCSFP+OYNXSjDuXxF446HHLdNLTTrszT8HAHjAPbzWQdVsNmPR1g3YsfEAJHIJ3po/Cw906VPt5fNLi/HMJx8iP6cIK16ag9BbworZbMauiyeQlJ0Jmb0cnoHuMAlmdLZvgw62rSCRSKq9LY1Zj+NFcZBKJECeCW2cPdHGpQWk0srbfro4AQWmEvR1CoZtDS5HzVn3CY7+HAUAkLrKsWrpfHRvHVjt5RuDffFn8GHp70g3FMDfpgU+DHgKQbY+Vc6fp1VjU95h+Nm0wGi3brXebpG2FP/55nOc3nkBMNwoF+SAcZIjOocH4uv2L9Q4EF5ITcCsN5bAmKW3Kle1toNEAmhSS2F83BHKIDugwAzzulxIcs3w7euLnxe8A7ms6u0JgoALRUn44KtvkZmWC1t7FRyc7ODs5IgBoaF4rPewKj9jN9MbjZBLpdWat7FI0eWi2KRBG5UH7GU29bINo8mIl775DFGHLsFsMEMQBEAA7DzsMG/mExjduVe9bPdWCTnpWLzxG8RHX8eoUf2wYOzjd16oATCANVKNJYBpzXpEFV/F1qhDOLTuOEy5BkAlgcxBDqWTCo5u9vDz80FoQAAGBIeik0/bCjulXRePY8nn30CTWBa+JE4yfL3iTWgdTZh+5XMAgKvcHts6zYeT3O6u6nsw7jyWrv8WALD0+ecq7dFQ6zR486e1OPRblFVv3M3cu3pg9X9fQ1v7FgCAPdGn8N7n61CaoIbUVY4NKxYi2Kt1jeqWW1KEh16aB42gh3GqEzp5+eFpz6FY+fH3yDqXCdx0FcWnpw8WzZiB1bt+w+kjl6F7xhFQSjDJsx8WtB5vFWaW7fwJWzZFQqqQwt7VDkF9AxDetxNC7dsg1N4PKqkCMRnJeHH5ChRcyruxEXspPv3fPPT2D7lj3a/nZWLqG+9YArRDeyfsW/Gx1Xs9a/UynNl2AQBgDlbA+LiTZZqnwgkBsc7o6uaPyb2HwMPBudLt6MwGbM4+irUZ+5BrLAYAyD8pgDTbBKgk6D8uHB899YLVMpuzj+Ld6z8DAGy2aeCrcseUkcPxSLeBtz1AfnVoJ1Yv+QmSm/aAUlc5vlg6H2FNIISZzWa8vvFL/PnjUZgesIc5vOygaiNRYF7rcXjYvXeF9l9ITcCsN5dCO0gBc6gKH/g/gVG3hLDI6ChsPnQAXQPbYWKvwZW+V1/89Tu+/uo3mPMMVuUKdyXk3RxQOAiApOzz+kabCQCAS+mJWLRhHdISsyGYzRDM/xycXWwx+P5emNJ3GCQS4Ikl70J3svifFUoAQyWHKGcZPv38dVy6dBWff7DRMqShzYA2WDLjGbRv4Ws1e4ouF3/kn8X23FNI0GRA/mkhpFmmCqvtNjYUXz77qlXZd0f3Yu1P26DJ08KsNULQmi3fVUEGSGQSyF0UeGzqaLw4/JEK6yzUqJFWmIciTQnUOg0Es4AB7UMrPZHVG43QGLRwtnWo2OZbmAUzco1qeMgdb3tyk5yfhbf3f4sov1RLmafCCe7JKthcFTCiVy883G0A7FSVh7JL6YmY+d/3YSw2oE03X0waPgyPdBtQIegWaNV49J23kXsup/KK2EqweNFsjOzU845tq65CjRq5JcWwkSthq1QirSAX72/8FlcOXAUMAgQFYHzcCf8d/BgmiHyCXx0MYI1UfQQwrVmPeE0GTEVGuNk4wMvRrcou+2KTBqvT9mBz9hFoBQOQb4JyRcEdtyFxlKHn9B54ILwf2tv64MM/N+HU51E3DnJKCRa/d+NL+FrCt9idfwYwC+id6gdvoxMuXL6KzMQcyFUytAlqifBOIRjdtddtA49ap8HL6z7D6R0XLDtj2Esx9+XH8Hjf4QAAo2DCx/u3YtPaXTDn337MiClUCdlkVzzlNQTX4lJw4MNDVgdqhyAn/LF8ZbUveRRpSzFx4X+Rdz4XACD3t8G2lf+Dp7Ls4JZWkIvnPlmGtGNplS5vHGMHcx9bAMBLrR7ANO+hAIBFW7/Btq/+tKqbcZQdzP3L5lVK5Ohg9kHMO2eBiscbyNwV+H7FIrTzbFll3c+nJuCZW3okTANs8N7MWRjt2QMAsOP8Mby9YBUk/+RZs78cxqdvOnALAhTLCyApNEOQAY4BTggNC0K3oPZQa0pRVFqK1MxsXNBfR1Ff64OJYnEeJLobDew9vhs+nf5vAMCRoli8ELcGJpgBjRmK/+VDUt6Z6GuL/855utKz7gRNJqaeWwH9plxIYwyAjQTQlm1D6ibHmg/eaPDLkWbBDINggkqqsCpPyEnHkbiL+GH7HmSfyQJQ1uskfd4DOs9/2nBUA98sJ/z3X9MsAXtfzGnMX/gphCITBBlgfMoJDoGO2BTyKlqq3AAA288fwztvrQb0ZesRbCTo+l44Ojm2gcasR5FRg6PLjlpOpgBAkAL+/f0w86GxGNExHJdLU/BUzCfQCWVvxH9ajMWB7SdxdvdFq56ymxknOsDcRQUpJDDrzZBvKIJCLcHn77+Os4lx+GrdVhgydADK9jHvvz0bER3LPnvLd2/Cj/+3w/IdEKSAa4gbhg4MR0JqGmKvJqHwUQVwU0iRHtJA/kdphXoAwIhpA/HepBkAgN15Z/DfD1dBck5XjXcMGPBSPywd9jRUUgVOJ8dj8Yb1uH4s+cY+6R8ydwWmPf0Qnh3yIADAJJjxW+4JfLhoHQzXtHDv5I4Hhg3A9EH3VwhGyflZ2Ke5iC15x3Bdl4NejkF4338qPBVOuNXq/b/j69VbYS4xwTjTGYLvjf2V9K9SyPdpyv5QSuDewR3/nTENAwJDrdYx9u3XkX4y3apM6ipHYI+2GNozHBPCB0IrM2JO/FrEbYiB7LweggSQ2P0T/o0CUP79tZPig/fmYGhwWei/XpCFjYf/hJuDI8b3HARXO8c7vsZasx67rkdh9erNyL2UU+G1vZlpkC1MEbaQSKRY1PZRjHWvu/BXFxjAGqn6CGBXStMw8fIyyFcXQJpqKvuSqCSwaWGLrj2D8fiQEejVtgM+2P4jdmnOojDQ+pOt+KwQNnIFjFoTTGqD5YB1K/2rLoCzrOwPowDF/xVAkmeGzF2Bl16cism9hljmzdQX4MG/F8P0ewGkV6rYO1sqIIHHWwHwsHeGu9wRznI7lFwuQkmKGmcPX65wyQIABAkwYFJPDHugN75M34vkmHQovi6yTGsZ7oMFTz0Jo9mEc0lXEX3tGk7+dRG6px1utMEsQP5lIaSp1q9H2IOdsea5/wAoGxi8PnM/otQJaJntiBBlKzzQtQ/SCnKxdPP3OPtnNFDyTzpRSfDB0rmWndDNlm7/AVvW7rmxw/qnnt5DWiJ5yI2DwHzHcbh0Lg671h+8ceCRABIBME5ygDn0xvguSboRis8Ly/7tKMP4J4bj1y37YcwsW5/K1xa/rvigQk9HYl4G/jh/EmtXb4VQdKPt5etvoXDGb51eB4wCIp6fA0N62fpa9PBC954h6Nq3A3SCAUeLruD4lUvAp3m4E0EBGF52BRykiHDpAn9lC/z5zWHk5xRBfeXGZdv7pvbBIwMG4ZWsb1EqLXvfg9LckLQ23hIegLKDcbcxnfHx0y9aDmSFxhI8HvMxrutyALOArgnemH/fFPxr3rsw5fzzGbKTwtnPCV3HdEb3zsEItPFBiJ0vnOS2ldY7szgfX/25AwcOR6EoQw2bTg5wHOMJALCRKuAmd0TO9jSozDL07tIZzw19qEJ4N5vNiCtOxxndNRwrvoJTxfEoNmmh/KIIkiIz5PZyGIsNENQVe23bRwTi89kv4/8ydmHz2YOQf1VoOTApW9ogsIsfov+6YvnOCm4yGJ5yBNxkCLP3x9rg53HqWixefO3DG59TAOZABYxPWR/YFUvzICkpW499O0e8/cIMDAkOs5rnt5wTeCtpI6AXygL0LbsKQYKyW8CEsv8Mr7sCdjd66wLhjQ/aTEWgZysAZT1DH2z/AbHXruPVCY9W6KF855dv8PvXf1pOAG5lmO0Mwbvs9e7m4I/hNqHoIm+DEp0WKfnZ2HXsGM7viLbU7Ym5Y9GqW0ssvr4ZgtEM+XfFkF41QOoqh9xWDplSBsEswGwyw6Q1wZRrgLmDAsbHHNHeriWCBR/sXrAXkjvs0lw6uWHa9LHYaj6FOE06JLF6KL4rvjGDvRTu7dwgV8ggU8hg0BmRfSELhkmOEEJu9KC5wQGzhCGYEj4EZrMZv509jK9/3Y6MUzfGyknaKDHitSFI1echUZuFwo3pkJ2z3mdKHGXYsnopWruW9fzvungCb772WYX3z8ozblD52aHYpAEMAlQ/lmDWIw9hxn1jAADZxQUY/9oCqysg85ZPxxHtFRyIPQ/pP/uF8hOzzl0DMTSsO0Z26mn5zurMBhwtisXe/PPYX3ABJQYtFB/mWz6HFciBwEEBCBweiG3Gf4YYQIL3/R+/q8vudY0BrJGqjwB2qjge0698DsXKfEjyKt9TSRxlEIpNEJylMMxxgY1KidFu3THQOQTh9oFwVt64RFikLUVU0hWciLuMy9cSkZKYgUJ1CfSzrHfYdnFAX307LJ48vdJu7tlfrcSJX85alQlSVNiZCkrA8Ka7VZlsmxqykzqr5ToOb4+061kovFwAADDdZwtTxI16y78uhIvKAfOmP15pd3ihvhRfZ+3Dd1kHYRTKjmI2qUDP7DboFdIRn7z/PSTmsh31iwseQ59unfFm4o+I1ZT1Xsl+Kobsoh5QSQCTYHVpUZACz7/2KJ4eOLrCdsudSrqCV5d/gpJkNfx7t8G8KY8j3K89vkjfg89Td0G2TwPpIY3VmV/Q0AB8/e/5uJqdBrVCjwwUIEqdgKjiq0g7kAL5zlJ49fDC5y+9gjZuXriUloh/vbIIQqEJggJwmO6DlkFesJOpUHyhANc2x0MotA6cMg8FPls8D+t0B/B30WUAwDSvIYj+PQZnf78IoOxgH7nqkwoD/As0avxwZB/+OhmFpAupt+2BbPdoEBZO+Bc62LWyKn/x649xbPPpGwW2Upi9pTBOccRQn65YHvAU8kqKsSryN+z6/ZAlEAKAwscG7r4uyEstgH6yPfRlHT4Itm2F9cEvwE6mwuWM6/jXvEUw5dw4ahqmOUJod+NA17LACdL9JbC1t4FMKoVMJkVeThFyo3Os3mdTVyVME6zP5m8OLlI3OQaODscrD07GoSsX8NvffyP+dCL0/lKYHrK+/KT4Xx4kxVXspm0kePzZBzF3xHhL0UeRW/D9Z79bhfibqVrbYdU7/8G87B+Qps8D9AL6JbfF6W3nYc4ra4RtW3t4tfFArrcWuaHW75Xio3zIjFKMmzIUrz0wpcrLvAvjNmLb+j8hO1P2PghSIGhwAD54+lm0cfMCUBY6DydeQoJ9Lo4UxuBcSSJ6OARgif8TVYbdqhxLiMaXO7fh4uErFT67LSa0xiP3D8FI1zD4qtwrXf6JjxYjZk9cWV3lgPFJJwj+Zb2PDzmH479tJ1Xa4202m7Fw63rs8oqG3vbGTkv2i7qs7SoJ3ILdoFQpoFAqkJOaZ9WDaJjlBKH1P72cBgHKTwqBgtt06+BGMHaQ2kBt1kK2swTSY1r49m6FzKvZMGZbByvnEBd8/OpL6OTT1lJ2NTsNm47ux9GoC0iPzrQEb68eXtj+7v8gCAKGvTwXxbFlJ2/hD3dFa68W+PPASRTEFpTtA20kMMx3BaRlvYstlW74pN10BNlZj0FML8rDpHlvlI3fm+QAoeON/YN8VQGkaZW0Vw7YtXGAraMN8vRq6B6zt5os266GPNoI5zbOMJvMMJvKLmu3bd8K/330SQR6toIgCFiavBUbsw8BggB5pAauWTZo39EP/Tp3xv2hveFmX7HnUCwMYI1UfQSwBE0mNmYfwonvoqDOLYGuRA+92lBhHEe5oCc64MNHnkGrfy5PVIfOZMDZkms4XBSD2NI0BNu1xL+8h8JVXvWYBo1Bh2c+X4acrAIEBrbGwNCuGNGpB3JLirH73AmciI7G9avp0MMI6TQ3FJpuXDqwhB2UHVjemjsdIzqGQ2804rkvl+PslTgYpzpadhC9HIPwtNsQ9PXocMe2JGqzsDZjH2ylSkz3HgYvpQuAikHAPM8NRsd/Lm+YBSiW5kOisf5aCVLAu5sX5kyZhBEdw6v1WprNZquDmyAImP7DMlz4/qLVfB1GBOGbOQuqPBDGZF1HbnER+rfrbFW+P/YsXlv8f9A/YgehzY3LXJJrBksvYTlVa1tseO9tBHj44Lo2G49E/w8GwQR5uhmS1fllO2Mp8O7S2XccaGs2m3Es8TK2Hv0b2Xn5sLe1gb2dLRzt7NA/JLTSnsFyM1d9aAl75Ry7uWLHu/+zGnxfqtNi7tf/hzM7LlYI8oYpZQcAV7kDfgx5CT5KV8u0S+mJ+PeKj1EQlw/oBehfdgFcZZbp0igt5L+W4LaUEsi62kH5cNn3ptSsg8FkhGJh5T1BN5cJrtKyHkAALjJ7+Nu2QNzyizAUGiBoTJDYSGHv4wDv1h4I9PPFE/eNrDDeCQAuZ1zHql2/4vSxy9Al3/i+uHR0xcZ3FsHd3gln1dfw9P6PIN1UBEnujRdJ4aPC5uVL0NKlLKgk63KQpsuHo8wGTnI7yHUSeNg73XawO1A2LOCh+a+jKKYAbqHuePuZ6egX0On2r10d0BuN+P5YJA6cOQNvD3c8MXiEVfCoitFkxCPvvon0E2kQpIDpYQeYw1SY5jUE/271wB1vIonTpGNewgYkaDMBAHb5MnS84oFFjz2NVi6elvnMZjM+3PkTtny3F8Z2cpgeKds3drTzxau+D6GTbWt8e3gPft17AFnns6yCPQDARoL2/QPw7nOz4KJwwIuRn+PK/12qvFIqCUZPHYSFj0y77XjIS+mJmDZ7oaWH9NE5Y9CzV2f8+4uPIT2qhcxJjn1rP4WDqiwUX8/LxM8nDuBiViLSu+mQrs9HD4cAfBjwFNwVlV9GTCvIwbMHP0NSq0JLmYfcEV1TWyLpdDJSLqdXeWImSAHDa2W9pA5SGwxz7YIhNh3R36PjHYeBmAUz3k36Gb/98Cdkh6wf92P6lzMe6zMMr7Z+6LbrqC8MYI2UmIPwTyVdwbf7/8Dp45ehTSqBzF2Bp2c8hFn3PViv260tg9mIfGMJCk2liL56DdczMuFsZ49Hew2t8GX8M+88/i99F7yULpjpHYEeju3uevtGkxGj5r2Kwsv5AP4ZZzDcDkG2PnjJ+0FE/nUcJ89cQlZsNgAguF87/GfiY3Uypkhj0GHMf/6D4itlO7HOoztg7ezXan031pnCq1iW9jsStVkoMesgQAA0ZihXFMC+lQN8/DwR2r4dXhjxCJxsbvQifpa2C18m7oFy8Y3Lil3GdMTa2a/dXQPvwGw246lP3rf0VEhd5Pj2o3cqDSFA2SWUd1euhSG9bMcrSAGXsV4IjwjFLJ8RCLD1qnI78TlpKLLRIVmfg8ulKYguTUbsxhjghKbC/BIHKfzD/TBh6BA83K2/VTgRBAHFJg2ik5NwOuEKtuz4E0UxBRXWIUgBx3ZOmPLSAxjYohOCbVtCWgePZjmdHI8fDu6FUq7AW+OftBr8/eyXyxH163nL31IXOdaveBsh3m3uertA2etYqC2p1tiexkBj0OGht+cjK1QPob0Sc1qNwXTvYdVf3qzHD1l/QwLgEY8+cJHbVzlvjroQG9L2IxYZeNA9HPe7da/wfhdq1EjJz4HGoIfWoIPeZESPNkFWg/SNJiNeWPsJTv12zhLm7ds5YujQnnh++Lgqb3i51dLtP2DL53+U/WEnhc8rgUhS5gKFJsx2GIlZve6vdDlBEFBgKoGLzP6OIbXAWIIVKb/DIBgxyrUb+jt3gFxSdoJjNptxIjEG204ewcXoeGRezbnROWArRe/nemJSz8Ho49i+xnfWGk1GzPz8Q1w8cAUoLTvZEKSAYYEbXg4Yi6e8h9xhDfWDAayRaqi7IDOL8+Fu53jHs9t7XWJeBiY9v6BsQLOtBI/972G84D9GlGcw5ZYU4f1fvoO/jw+eH/pQnd0KLwgCtIIBOrMBTlLb265XY9Zj6JwXYUwoCzZyTyX2fvmJ5Qy5PpnNZvz7m08RH5+M/06fdsdeFY1Bh73RUbBX2aC3f8hd1VFj0CEq6QpKdFoYTCYYjAbYKFUY0iGsRo9n+TP2DD79eTPS47Pg5O2IgX274cmBIyyX5sSiNxox4qV/o+RqMWArxcoPXq4wCPteozMbsDPvNNqoPOrkhE0s284dwaFL5zGp/9BaPUvQbDZjzH/nIeds2YmjOVgB41RHdLJvg+86zK2Tk4Gais1MRmJOBga171Inzy0s733fdz4KsenJ0N6nxJttJqKrQ9u7r2wtMIA1Uo3lMRRUtUtpiVi9+zfc36uvaM+3aUy+OrADq5dtgkQmwZvvzMLYrv0aukpUC7klRVgduQ1jw/tVeLYb3VsSctLx6PMLYNaYYYqwg7mfDdZ0eB69HIMaumrNEgNYI8UARk3B2eR4qBTKOrtkRUQN66vDO/Fp4W4IXnIMdArBp0EzG7pKzRavMxFRrTWFB5YSUfXN6H8/vHNbILo0GbN8RjR0dZo1BjAiIiKyeMA9HA+4V+9ubaq9pvNDVkRERETNBAMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREIpM3dAWaqw8//BCHDx+GVquFl5cXZs2ahf79+zd0tYiIiKgRYACrJ5MmTcLcuXOhVCpx+fJlvPzyy9i4cSOcnZ0bumpERETUwHgJsp74+flBqVQCACQSCQwGA3Jychq4VkRERNQYsAcMQGlpKTZu3Ijo6GhcvnwZxcXFmD9/PkaPHl1hXr1ej7Vr12LPnj0oLi5Gu3btMGPGDPTs2bPCvCtWrMDOnTuh1+vRp08fBAQEiNEcIiIiauTYAwagsLAQ69evR1JSEgIDA28775IlS7Bp0yYMHz4cc+bMgVQqxbx583D+/PkK87788sv4448/sHLlSvTs2RMSiaS+mkBERERNCAMYAHd3d2zduhU///wznnvuuSrni46Oxr59+zBr1iw8//zzGDt2LD766CN4e3tj1apVlS4jk8nQo0cPREVF4ejRo/XVBCIiImpCGMAAKJVKuLu733G+AwcOQCaTYezYsZYylUqFMWPG4NKlS8jMzKxyWZPJhNTU1DqpLxERETVtDGA1EBcXB19fX9jb21uVh4SEAADi4+MBAGq1Gnv37kVpaSmMRiP279+PM2fOoGvXrlWuOycnB7GxsZb/kpKS6q8hRERE1KA4CL8GcnNzK+0pKy8rv8tRIpFg+/btWLlyJQRBQKtWrfDmm28iKCioynVv27YN69evr5d6ExERUePCAFYDOp0OCoWiQnn54yZ0Oh0AwN7eHh9//HGN1j127FirB7UmJSVh8eLFd1FbIiIiaqwYwGpApVLBYDBUKNfr9ZbpteXh4QEPD49aL09ERERNB8eA1YC7uztyc3MrlJeXMUARERFRdTCA1UBgYCBSUlJQUlJiVR4dHW2ZTkRERHQnDGA1MHjwYJhMJmzbts1SptfrsXPnTnTs2BFeXl4NWDsiIiJqKjgG7B9btmyBWq22XE48fPgwsrKyAADjx4+Hg4MDOnbsiCFDhuDLL79EQUEBWrVqhd27dyMjIwOvvfZaQ1afiIiImhAGsH/89NNPyMjIsPx98OBBHDx4EAAwYsQIODg4AAAWLFgALy8v/PHHH1Cr1QgICMAHH3yAsLCwhqg2ERERNUESQRCEhq4EVRQbG4uZM2dizZo1CA4ObujqEBERUR3iGDAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHI5A1dAbIWGRmJyMhIqNXqhq4KERER1RMGsEYmIiICERERiI2NxcyZMxu6OkRERFQPeAmSiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikfE5YERERE2UIAgwGo0wmUwNXZV7jkKhgEwmq/XyDGBERERNkF6vR3p6OkpLSxu6KvckiUQCX19fODg41Gp5BjAiIqImxmw249q1a5DJZGjZsiWUSiUkEklDV+ueIQgCsrOzkZKSgqCgoFr1hDGAERERNTF6vR5msxmtW7eGnZ1dQ1fnnuTp6YnExEQYDIZaBTAOwiciImqipFIexhvK3fY48p0jIiIiEhkDGBEREdUZo9GId955Bx06dEDnzp0RFhaGWbNmoaCgoEbrGTx4MH799dd6qWNjwDFgREREVGemT5+OvLw8HD16FK6urhAEAZs3b0ZeXh5cXFws8xmNRsjl924MuXdbTkRE1Iz8+sZhlBbq6m39ds4qjHuv/23niY+Px88//4zr16/D1dUVQNlYqYkTJ+Kvv/7Cgw8+iD59+iAqKgpvvPEGDAYDPv74Y8tNBYsXL8aDDz5oWd++ffvw3nvvIT8/Hw899BCWLVvWbO72ZAAjIiJqBkoLdSjNq78AVh2nT59GUFAQPDw8Kp1++fJlfP7551i7di0AIDc3F1OmTIFEIkFiYiL69OmDpKQkqFQqAEB0dDSOHDkCg8GAQYMG4ccff8Rjjz0mWnvqEwMYERFRM2DnrGr06w8ICMB9991n+fvatWuYOnUqUlJSIJfLkZeXh2vXrqFDhw4AgCeffBIKhQIKhQKPP/44IiMjGcCIiIio8bjT5UExdO/eHXFxccjNzYW7u3uF6bc+Nf7RRx/F0qVLMWHCBACAm5sbtFptletvLpcfgXq4C1IQBCQnJyMzM7OuV01ERESNWGBgIMaPH4/p06db7noUBAFbtmxBQkJChfnz8/Ph7+8PAPjuu++Qn59vNf27776DwWCARqPBDz/8gIiIiHpvg1hqHcAOHDiA9957D8XFxZay9PR0TJs2DU888QQmT56MhQsX8gdCiYiI7iFff/01unbtit69e6NTp07o2LEj9uzZAzc3twrzfvzxx5gwYQK6deuGM2fOoE2bNlbTQ0JC0L9/f4SGhmLgwIF49NFHxWpGvZMIgiDUZsGXX34ZeXl5WL9+vaXsjTfewKFDh9C9e3cUFRXh6tWreOWVV6zuaKDqiY2NxcyZM7FmzRoEBwc3dHWIiKgR0Wq1uHbtGvz9/WFjY9PQ1bkn3e17UOsesMTERISEhFj+Li0txdGjRzF06FCsXLkSX3zxBfz8/LBz587aboKIiIioWap1ACsqKrLqTjx//jxMJhOGDRsGAJDL5QgPD0dqaurd15KIiIioGal1ALO3t0dRUZHl7zNnzkAqlaJr166WMrlcftu7GYiIiIjuRbUOYG3atMGRI0dQWFiI4uJiREZGon379nB0dLTMk5GRYXkSLhERERGVqXUAGz9+PHJycjB+/HhMnDgRubm5GDdunNU80dHRCAwMvNs6EhERETUrtX4Q6+DBg/HSSy9hx44dAIChQ4di9OjRlulnz55FSUkJevXqdfe1JCIiImpG7upJ+OPGjavQ61UuLCyMd0ASERERVaJGlyBnzZqF7777DteuXauv+hAREVETNmLECHTp0gVhYWEYOHAgzpw5c8dlrl69igkTJsDf3x89evRAr1698NVXX9V424mJiXBxcalFrcVXox4wnU6HNWvW4KuvvoKPjw8GDBiAAQMGoEuXLs3q95mIiIiodjZt2mQJQVu3bsW0adNw7ty5KufPyMjAgAEDsGjRImzevBlA2U8U/fTTTxXmNRqNkMubx89Y16gV33zzDdLS0vD333/j8OHD2Lx5M37++Wc4OTmhX79+6N+/P3r16gWVqn5/kZ2IiIisTbm8AjmG4jvPWEseCkf8GPLyHee7uQeqsLAQEokEsbGxGDZsGA4ePIiAgAAsW7YMkZGR2LlzJz777DMMHDgQM2fOtCzn6uqKZ599FgAwbdo0SKVSxMfHIysrCzExMZg6dSpiY2Oh1+vRunVrrF27Ft7e3pblX331VezZswcmkwkff/xxo/wNyRrHyJYtW2Ly5MmYPHkyCgsLceTIERw6dAj79+/Hrl27oFKp0KNHDwwcOBD9+vVrMl2BRERETVmOoRhZhsKGrgYA4Mknn8T+/fsBADt37kRwcDA+/PBDTJo0CcuWLcNnn32GEydOQCqVIioqCsOHD7/t+qKionDo0CHLo64++ugjeHp6AgCWLl2KhQsXYvXq1QDKQl9ISAiWLVuGY8eOYezYsbh69arVY7Iag7vqx3N2dsbo0aMxevRo6HQ6nDx5EocOHcKxY8dw5MgRSKVSdOrUCQMGDED//v3RunXruqp3sxUZGYnIyEio1eqGrgoRETUhHor6DRg1Wf+GDRsAlF05e+2117Bz505MmTIF+/fvx8iRI7Fv3z5LgKqOiRMnWgWoH374Ad9++y20Wi20Wi08PDws0+RyOaZNmwYA6NOnD1q2bIkzZ85g0KBB1d6eGOrsQqpKpbKMCRMEARcvXrRcqly1ahVWr16Nv/76q64212xFREQgIiLC8mPcRERE1VGdy4Nie+qpp/Dss88iNzcXzs7OuHjxItzc3Kx+prBHjx44evQoXnrppSrX4+DgYPn3oUOH8Mknn+Do0aNo0aIFtm3bhrfeeuu29WiM49Rr/SDW25FIJAgNDcXzzz+P77//Ht988w3DBBERUTNXUFCAtLQ0y9+//vor3N3d4ebmhtdffx3BwcH4+++/8eqrryI+Ph4A8Pzzz+PAgQNYt26d1Xq++OKLSreRn58PR0dHuLu7Q6/XV5jPaDTi22+/BQCcOHECaWlpCAsLq+OW3r1a94BNnjwZEydOxIQJE6qc55dffsGmTZuwceNGtG3btrabIiIioiagsLAQEydOhEajgVQqhaenJ7Zv344dO3Zg9+7dOHHiBOzs7LBixQpMmjQJR44cgY+PDw4dOoTXX38dixYtgqOjIxQKBWbPnl3pNkaNGoXvvvsOwcHBcHd3R0REhFWPWnlPW9euXWE0GvHDDz80uvFfwF0EsIyMjDuOU1Kr1cjIyKjtJoiIiKgJ8fPzw4kTJyqUh4WF4YEHHrD8PXHiREycONHyd1BQELZs2VLpOtevX2/1t0KhqPCIivfeew8A0LZtWxQUFNSy9uKql0uQ5UpKSqBQKOpzE0RERERNTo16wM6ePWv1d0ZGRoUyADCbzcjKysLevXt55yMRERHRLWoUwObOnWu5k0AikWD37t3YvXt3pfMKggCJRIJnnnnm7mtJRERE1IzUKIA99dRTkEgkEAQB33zzDcLCwiq9s0AqlcLJyQndunXj4HsiIiKiW9QogD399NOWf587dw6jR4/GqFGj6rxSRERERM1ZrQfhz5gxA/Hx8cjNza10ek5ODj799FNcunSp1pUjIiIiao5qHcB++uknHD58GO7u7pVO9/DwwJEjR7Bp06ZaV46IiIiaFqPRiHfeeQcdOnRA586dERYWhlmzZtXZ4yGmTZuGjz76qNJpb731Fr7//vs62U65Tz/91PLTRnWp1s8Bi4mJQY8ePW47T9euXXHq1KnaboKIiIiamOnTpyMvLw9Hjx6Fq6srBEHA5s2bkZeXBxcXl3rd9qJFi+p1/XWp1j1gBQUFVj9+WRk3Nzfk5+fXdhNERETUhMTHx+Pnn3/GunXr4OrqCqDsqQkTJ05EQEAAPvzwQ3Tq1AmhoaGYOnUqCgsLAQALFy7EpEmT8OCDD6J9+/Z44IEHcPHiRYwcORLt27fHlClTYDabLds5f/48+vXrh/bt2+Opp56CRqMBYN07tnDhQkyePBkPPvggOnbsiKFDhyIvL8+yjmXLlqFXr17o3r07Ro0ahaSkJABAcXExJk+ejODgYAwYMAAXLlyol9eq1j1gDg4OyMrKuu08mZmZsLW1re0miIiIqAa+/2U3ftha+eOhbhYc6IcVb1v/+PXL76xEbHxSpfM/9vAoTH3kzjfdnT59GkFBQZV20OzatQtff/01jh49ChcXF8yaNQuvv/46Vq1aBQA4deoUoqKi4OLigsGDB2PGjBnYu3cvbG1tER4ejl27dmHMmDEAgOPHj+PYsWOws7PDuHHjsHLlSixYsKDCNo8fP46oqCi4u7vj0UcfxRdffIH58+fjhx9+QGxsLI4ePQqZTIZvv/0Wzz//PHbs2IFFixZBpVIhJiYGRUVF6NOnD3r37n3HttdUrQNYx44dcfDgQcyYMQNeXl4VpmdmZuLvv/9G9+7d76qCREREVD0lpRpk5d75ypOXp1uFsoLC4iqXLSnV3HXdIiMjMXnyZMtlyOeee87q54hGjBhh6TXr3r07VCqV5Tccu3Xrhri4OMu8kyZNskybPn06Pvnkk0oD2KhRoyxj1fv27Wvpzfr1119x8uRJy1Aqk8lkWWbfvn1YuXIlJBIJnJ2d8dhjj+Hq1at33f5b1TqAlf+I5uzZszFjxgyEh4fDw8MDOTk5OHnyJL766ivo9XpMnjy5LutLREREVbC3s0ULd9c7zufiXPHHqV2cHatc1t6uelezunfvjri4OOTm5lZ5k1658ge7l7OxsbH8WyaTVfjbaDRWe11VrbN8HYIgYP78+Zg1a9Zt63i7dd+tWgewsLAwzJ49G59//jmWLl0KAJaHtJb/+8UXX6z0Qa1ERERU96Y+Ur1LhZW59ZJkbQQGBmL8+PGYPn061q9fDxcXFwiCgF9++QUBAQH47LPP8PLLL8PJyQlffPEFRowYUavtbN68Ga+88gpsbW2xbt06RERE1Gj5cePGYfny5ZgwYQLc3NxgMBhw8eJFdOvWDREREVi3bh0GDRqE4uJi/Pjjj+jZs2et6nk7tQ5gQNmvmXfv3h2//fYbYmJioFar4eDggJCQEDz00EMICAioq3oSERFRE/D1119j8eLF6N27N+RyOcxmMwYNGoQPPvgApaWl6Nu3L6RSKbp06YLPP/+8Vtvo2bMnRo4ciezsbPTt2xf//ve/a7T81KlTkZubiyFDhgAoe3TG008/jW7duuHNN9/EjBkz0KFDB3h6emLAgAHQ6XS1quftSITyLitqVGJjYzFz5kysWbMGwcHBDV0dIiJqRLRaLa5duwZ/f3+ry2wknrt9D2r9GAoiIiIiqh0GMCIiIiKRMYARERERiYwBjIiIqIm6+enwJK67HUJ/V3dBEhERkfiUSiWkUinS0tLg6ekJpVJZb8+roooEQUB2djYkEgkUCkWt1sEARkRE1MRIpVL4+/sjPT0daWlpDV2de5JEIoGvry9kMlmtlmcAIyIiaoKUSiXatGkDo9Fo9VM6JA6FQlHr8AUwgBERETVZ5ZfAansZjBoOB+ETERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQi429BNjKRkZGIjIyEWq1u6KoQERFRPWEAa2QiIiIQERGB2NhYzJw5s6GrQ0RERPWAlyCJiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiUze0BVo7vR6PVasWIFTp05BrVajbdu2eOGFF9C5c+eGrhoRERE1EPaA1TOTyQRvb2989tln2LlzJyZOnIj58+ejtLS0oatGREREDYQBrJ7Z2tpi2rRp8PLyglQqxbBhwyCXy5GcnNzQVSMiIqIG0qgvQcbGxmLdunW4cOEC9Ho9WrZsiQcffBATJkyol+2VlpZi48aNiI6OxuXLl1FcXIz58+dj9OjRlc6v1+uxdu1a7NmzB8XFxWjXrh1mzJiBnj17VrmN5ORkFBcXo1WrVvXSBiIiImr8Gm0P2IkTJ/D888+joKAATz31FObMmYO+ffsiOzu73rZZWFiI9evXIykpCYGBgXecf8mSJdi0aROGDx+OOXPmQCqVYt68eTh//nyl8+t0OixevBhTp06Fg4NDXVefiIiImohG2QNWUlKC999/H3369MG7774LqbR6ObG4uBinT5/GfffdV+n0yMhI9O/fH7a2tpVOd3d3x9atW+Hu7o6YmBjMmjWrym1FR0dj3759eO655zBlyhQAwMiRIzFt2jSsWrUKq1atsprfaDTirbfeQqtWrTBt2rRqtYeIiIiap0bZAxYZGYm8vDzMnDkTUqkUGo0GZrP5jstt3boVCxcuxMGDBytM2759OxYtWoTdu3dXubxSqYS7u3u16njgwAHIZDKMHTvWUqZSqTBmzBhcunQJmZmZlnKz2YzFixdDIpFgwYIFkEgk1doGERERNU+NMoCdOnUK9vb2yMnJwdSpUzFy5EiMHj0ay5cvh06nq3K5xx57DH369MGiRYsQFRVlKT9w4ACWL1+OESNGYNy4cXVSx7i4OPj6+sLe3t6qPCQkBAAQHx9vKVu2bBlyc3PxzjvvQC5vlJ2OREREJKJGmQZSUlJgMpmwYMECjBkzBrNmzcLZs2exZcsWqNVqvP3225UuJ5fLsXDhQvznP//BggULsHLlSmg0Grz77rvo3bs3Xn/99TrrfcrNza20t6y8LCcnBwCQkZGB7du3Q6lUWvWW/e9//0PXrl0rLB8ZGYnIyEio1eo6qScRERE1Po0ygGk0Gmi1Wjz00EOYO3cuAOC+++6DwWDAtm3b8PTTT6N169aVLqtSqbBkyRLMnTsX8+bNg8FgQEhISJ33Pul0OigUigrlSqXSMh0AvL29K70kWpWIiAhEREQgNjYWM2fOrJvKEhERUaPSKC9BqlQqAMCwYcOsyiMiIgAAly5duu3y9vb2eP7551FUVASNRoMXX3zRss66rKPBYKhQrtfrLdOJiIiIKtMoA1j5ZTw3NzercldXVwBldzveTlpaGt599120adMG3t7eePPNNy2XBOuyjrm5uRXKy8s8PDzqdHtERETUfDTKABYcHAwAFZ75VR6iXFxcqlw2JycHL7/8MuRyOVasWIHly5dDq9XilVdeQVFRUZ3VMTAwECkpKSgpKbEqj46OtkwnIiIiqkyjDGBDhgwBAOzYscOqfMeOHZDJZOjWrVulyxUXF+PVV1+FRqPBihUr0KJFC7Ru3RrLli1DdnY2XnvtNWg0mjqp4+DBg2EymbBt2zZLmV6vx86dO9GxY0d4eXnVyXaIiIio+WmUg/Dbt2+P+++/Hzt37oTJZEJYWBjOnj2L/fv34/HHH6/y8t7WrVuRlZWFTz75xGqQflBQEJYuXYpXXnkFu3fvxsMPP1zltsvvtCy/lHj48GFkZWUBAMaPH295gn3Hjh0xZMgQfPnllygoKECrVq2we/duZGRk4LXXXqurl4KIiIiaIYkgCEJDV6IyRqMR3377LXbt2oWcnBx4eXnh4YcfxqRJk267THJyMvz9/SudfvXqVQQEBNz2URSTJk1CRkZGpdN++ukn+Pj4WP7W6XSW34JUq9UICAjAjBkz0KtXr2q2smrld0GuWbPGckmWiIiImodGG8DudQxgREREzVejHANGRERE1JwxgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhKZvKErQNYiIyMRGRkJtVrd0FUhIiKiesIA1shEREQgIiICsbGxmDlzZkNXh4iIiOoBL0ESERERiYwBjIiIiEhkDGBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARqITzAJObbqCne+dQF5ycUNXh4iISHQMYCS6U5uu4OyvV5F2KRd/fnIWZqO5oavUIAozSqAvNTR0NYianOKsUuxYfBy/zD+EnITChq4OUa3IG7oCdG+J2Z+Mc9sSLH8XpKoRvfc6Oo9u23CVEpkgCDj+XQwu7kqETCFFm+4tEDigJXy7ekIm5zmR2ASzALNZ4Gt/l/KSi3HlrxRkxOSh/WBfdBzud1fry04oxNXDafDt4gHfrp43tnO9GLuXnkRpgQ4AsGvpSTzwVm+4+jre1faIxMYARqJJOZ+Nw2svVSg/vSUO7fr5wNZZJXqdzGYBpXla2DgpIVfKRNnmpd2JuLgrEQBgMphx7XgGrh3PgMpBgbBx7dB5VFtIpJJ62bZgFpByLhsSmQStQj0gkdRsOwatEQadCXYN8F7VB22RHjuXnEBhegkGPN0ZQYNaNXSVaiXlXDYST2WiXb+W8AlxE227JqMZ8X+nImZ/MrLjb/RE5VyLhp2LCm17etdqvUlRmfjzk7MwGcy4uCsRvl080GtqBxg0Rvzxv1PQlxot8+rUBuxachIPvt0Hji3sqrV+s1mAXm2A0l4OqYzBuy4JZgF514th1JsgCAAEAQ6etnBwtxW1HmaTGeocDRxb2NV4PycWBjCqFrNZQHZ8AQrS1FDZK2HnooStswq2LqpqBZecxELs+/gMBLMAAOh8f1voS4248lcK9KVGnPzpCgbNCq2TuupLDRAEQGWvqHIewSzg6tF0RG26guJsDSABHDxs4extD/e2Tug8yg92rjZWyxSkqRH3dxq82rugTbcWtapbUlQmjn0XY/lb5aCATl12GVKnNuD4dzFIOZeD+57rAjsXFQSzgMRTmYjekwQAGPRMKBw9rQ8ygllAzrVCyJQy2LvZQGknr3SHU5xdir+/vIi0S7kAgB6TgtBtXGC16555JR97V5yGTm3AsLnd0Lanl9X00kIdzv16FaX5Ohj1Jhh0JggmAZ7tnNG6mye8O7hVq5dJEARcP52F+ENpgASwd7OBvasNnLzs0DrME9Jb1mHQGnHs2xjo1Hr49/aGX7hXtT6TZqMZ+z45g7yksnGIB744DwEC2g/yrfZr0tDMRjNObIzFxZ2JAICYP5PR7eFAdHskENIqQnzKuWwcWR8NJ297RPy7G+Sq2p14pF3KxeF1l1CYVlLp9AOrz8PV1xHOPvaWMpPRDHW2BmazAMEsQBAE2LvYwMZJaZkn7mAqDn55wbKvAICU8zlIvXAIUrkUJkPZkAXPds4wmwTkJhahNF+Hne+fwINv96nwvS0nCAJyrxUh7u9UXD2aDm2RHkDZfsLGSQmv9i7oNaWDVV3KleRpUZKnhb7UAH2pEQatEVKZFFK5FFKZBA4etvDwd2q0B3pNoQ6XI69DV2KAs489nL3t4exjD3t3m2rVOSehEFq1Hj4hbpApqv68FGWWYu+KKOQnq63KJRKg+4QgdHu4+vub2jIZTLhyMBXntiVAna1Bq1APDH+lu2gn2DUhEQRBuPNsJLbY2FjMnDkTa9asQXBwcIPUwaA1IvFUJlLOZiPlfI4lKNxMIgGcfOzh1sYRbm0c4dnOBd7BrpYPu67EgDNb4xH9RxLMprKPml9PL0TM7QZNsR4/v3wQBk3Z2ezYRX3RItAFZqMZ+WlqKFRyOLawrfZOzWQw4exvCTi37SokEgn6PtURHYa2rjBfyoUcnPwxFrmJRVWuS2EjQ9jDgeg8yg8mo4Czv8bj4s5ESxtGzgtH6zDPKpevTM61QmxfdBxGnQkAEDauHbo/EojUCzmI+zsNCcfSLfPaOCnRaZQf4v9OQ2H6jQOcSyt7PPh2X6gcFJY2//l/55B0KtOq7g4etvAMdIFPBzd4h7gi9UIujn93GQatyapOA2d1RvDgiq/Rra6fzsK+T87ApC87+Nm6qDBx2UAo7crqIZgF7Fh8HBkx+VWuQ2Erh2+oB3zDPODbxRP2btYHSkEQkHIuB1Gb46oc1+Ph74TRC3pZwrXZLGDv8igkn8m2zKO0kyOgrw9ChreBexunKutzeN0lXN573bpQAtz3bBcEDWz8PWHqXA3+/OQssuIKKkzz6eiGIS+Ewc7FuqfyysEU/L3mIoR/PscdhrbGgBmdLdMFQcCZX+Jx9Ug63Pwcyy7/hXrA/p/eC7PRDHWuFqc2XUHC0XSrdbv5OSJ4cGtkxObh2rEMAICrrwPGLuoLmVyK6MjrOPNLfKX7Efe2TvDt4gGpXIozv8RbyluHeSI/RQ11jsZq/lah7oh4qTtMejO2v3sMBall3xFHT1t0GuWHdv1bwtZJBUEQkJdcjKSTmUg4loGCVOtgcCvPds64/41eUNiU9U2YTWYcWReNmD+Tb7scALTt5YWBM0It300A0GuMSDyZAU2BDka92fLd9+vRAt4drHsqBUFA6oUclObr0KZ7C9g4VgyCN8+bFVeAjNh8tA33sgq5t0o4lo4j6y5BW1zxdbdzVcG3qyd8u3igZWd32DhU3GbK+Wz88cEpCELZd8u/tw8CB/jAO9jNqqc+IyYPkStPV7qdcuGT2yPsoXZVTq8JrVqP66ezoC02QCqTQCaXQqc2IHpvEkrzdVbz+nYpC2G3C48NgQGskaqPAFZaqMPZrVehspdD5aCA0l4Blb0CLi0drL7AgiAg8WQmjn17GSW52hpvR6aUomVHd7i1cUTMn8lWO1zPQGeMeaO35az74q5rOPZtWY+Qk7cd7FxUyE4otBzobZyU8ApyQYsgFzh528PW6Z+eN2clFLY3enoyYvJwaO1Fy464XPAQX/Sb1hEyhQwZMXmI2hyH9Og8q3laBLpAMAsoSC+xhMFyTt52MGpNlvEm5VQOCjyypL/lwASUhQFdsb7CpVSzWcD1qCwcWX/JsmMI6OuDIS90tQqXKRdycGDVeWhu2datvEPcMPr1cAgCsO+jM0g+m33b+W+lsldAV1L2nkikEgx/pftte/SuHPjnoG223lV0vr8t+jweAgC49EcSjn4TXaN6uLZ2hLufI4w6E/QaI0rztRXev8q0CHLB6Pk9obCR48g30Yj+I6nS+SQSIPQBf3QfH1Th7Pdy5HUc/rrscrhULoFfdy9cO5Hxz4JA/6c7wb+nN1SOihr1amiL9CjKKgUEAeV7VrlKBlsnJWwclRV676qiKzEgPToP2iIdVA4KqByUUNkroCnUIS9FjfzkYlw/nWX5bkllEvj38UHCkTTLdm2clAiJaAP/Xt5wbe2Ac78l4NSmKxW2Nezf3eDfq+xS4Zmt8Yj6Oa7CPLbOShi0JkuAuFmLQBf0eaIDPANdIJFIYNAase2to8hPKQs7LTu7oyRXa3UiUR0dR/ih75MhMBnNuLQ7EWd/uwqDxoSAPj6477lQy8G0JE+L3985BnX2jZAmkUnQqpM7CjNKUJylqbBumUIKr/auMOpM0BbrUZKntfSs+Xb1wIhXesBsFrD/U+uTmztx8LDB4NlhcPdzRPSeJJzffq3SwAkAAX180HtqMOzdbZGdUIjj3122nMBIZRK06d4CQYNaoWUnd8iUMkilZa/t1cNpiI68bum5latk6P+vThUun2uL9DiyPtrqxO52JDIJ+jzeAZ1GtrWUmc0Ctr5+yPJe3szWWYmWnT3QKtQdZoMZR76JhtlY9uFz9rFH6zBPSKQSaIv1iDuYalmu19QO6DLGH1q1HglH0nH9TDZU9nK0CvVAq1CPCidmNzPqTEiKysTVI+lIOZdtOSGuilQmsczTpnsLDPt3t0Y11pMBrJGqjwCWnVCI3/57pNJpLq3s0banN7w7uOLCjkSkXsixmq6wlcO3iwe82rvCoDVCU6SHplCHooxSFKSqLTuvqsgUUoSO8UfXsQGWs0ug7Iz6l/mH73hmWhmJTALVPyHy5p27RALc/Kn2DHCGwk6OtIu5Vsu7t3VCzynB8A31AFAWPEvztDjz69WyM95bvhlSuQTO3vaWnZFXe1eMebMXpDIpsuILcPCL8yhILYGjpy1adSnbmWgKdLi4KxFFmaWW9bRo74L7F/SqtEtcU6jDwS8uWIUq7xA3dBjii2PfxVgum7Tr5wNtscHyPsmUUvj38kZpvg4leVoUZ5VWunNqP9gXfR7vgKjNcbi0O8my7NAXw+DsbQ+FjQwSuRQFqWrkJRUhK77QqqejTfcWSL2QA5PBDIlUgoeX9IdCJcOW1w5ZDs7DX+kOr/aukKtkMOnNSLmQg+QzWUg+m13lwehWbn6O6DEhCK6+DijJ00GdrcHxH26036ejG1p39cSJH2MBlH0W+j4Zguz4Qlw7kWEVFJxb2uO+Z7vA3c8RhemlyIrLx+H10ZZeoEHPhiJoYCscXR+N6Ft6xJR2cjh528PV1wGeAc7wCHCGWxtHq/dOq9Yj6WQmrh5NR/qlXNxuj6pyUMA7xA2dR7WFdwdXS7gTzAKy4guQfDYbqRdzkHO18LbruZmDhy2GzglDi0AXZMTk4c//O1uhB8DOTYXSvBtl3h1cLQd7lb0Cjyztj+TzOTi05mL1NgrAxlGBnlOC0X6Qb4Uxi4XpJfj1v4dh0FQMbK3DPGHjpLQsk5tYVKE3utsjgeg+PtAq/OpKDFDnauDW2rFCKC7KLMWB1eeRGVt1D2x5uwMHtIJ/b2+rIQq514uwY9Fxy9iydv18oCnUWy7XS+UStL/PFzaOSijtFVCoZBDMAkxGMwxaIy7tSrI6qVHayav1WZerZPDu4IaUc3c+iZJIyv5364lQufaDy042864XI+5gKq4eSbMaK9e2pxdCItqgOFuDwvQS5CcXIz0mz3KyW76NB97uA6/2rgCA2L+S8feXZZ8JOxcV9BpjpSH8Zi07u2PYnG5WPYHnfk/AyX++q0DZ9zfzSr4lsN3M1dcB3iFu8GrvCq/2rlA5KJB8JguJJzKRfC77jtsHynoYwx4OhElvwu4PTlmW8e/ljf4zOlXa09cQGMAaqfoIYCkXcrB7yckaLePbxQNdHwqAV5BrlWfvZpMZhRmlyE0sQtqlXKScy7Y6ALTr54OejwbDwaPyQZhpl3Kxa8lJy47F0dMWLYJcoCsxIisu32oncieeAc4YMKsz8q4X49BXF612LuWcvOzQfUIQ2vX1qXKwe25iEY5uiLYcpNp0b4E+T3SA0l6BXxcchjqnrGcwdIw/pDIJzv+eUK0DpkeAM0bO6wFbp6oHsQuCgCsHUpBzrQiB/VtadoZZ8QXYsfh4hTbJVTKMnBduNfjaqDchK74AGTF5yLicD4PGiO7jA9H6n54uwSzgz0/PWi4VVUenkX7o80QIzv56FVGby3pJvEPcIJVKLAeqDsNaY8D0zpUubzaZkX21ECnnc5ByLhvZCYUVQq57WyeEjWuHtuFeFd6b3KQi7Hj3eKWfh0GzQtF+cNnYLb3GiEt/JOLML/E3dvASQFLJwSt0jD96T+1Q9poIAo6si8blyFsuS95CIgFkShkkUgmkUgn0WqMlzNWEe1snBA/2Rd71YiRFZUJTqK/ZCiT/HFCmWx9QNEU6HFp7qaznppJq9ZwSjC4P+OPPj89aev1cWtmjMK3E8hnuOSUY3sGuSL2Qg5QLOVBna6C0k1t6zd1aOyL0Af/bHsgST2YgcuUZy9/eHVzRe2oHeLZzqTBvaaEOqedzkBVXAO8OrmjXr2XNXot/5KeqEXcwFfGHUlGar4NEKoFPiBva9vSCX48WVj3Wt0q/nIfdS09WOJmUq2SIeLm75UStMupcDf767FzFS/ASoF2/lvDvVTYuUa6SIT9VjahNVyq9VOfkZQffLh64diLjjp8Hz0BnOHjYWn2HFTayCsMMVPYK9PtXRwT09akQXI16EzJi8xF3IAVXj6Rb6vDwkv6QSCTY9PIBy778gbd6w72tE5KispBwrOxk49ZtdRjWGv2e6ljpsaKq3tU7ufWEupydqwrt+rW0jAU0G80QzAJaBLlY3RGbdikXf/zvlNX76tzS/p8rK67wCXG77SXc+sQA1kjVRwDTlxpQkFYCXYkBOrUB+hIDNEVlZ3mZV/KtdtYOHjbo80QI/MK9ajywVBAE5CerkZtYBDc/R7j7VT0Op1xuYhHUuRp4BjhbDaIVzAIK0tTISShCaYEWmsKynjdNod7SDl2JHgobObo8EICOI/0sg49zE4sQufJ02SB7AI4tbNHtkUAE9m9ZrTufBEFAenQe5EopWgS5Wsqz4vLx+6LjlR507d1toCnQVeh9atnZHaH3+8O3i8dd3eGYdCoTe1eetrxXClsZRs7rCe9g19svWAmToezs8NZLsreSKaXoMSEIoWP8IZFIYNSb8Mtrh6x69YCyz8wjHwyE0rZ69/Zo1XpoCvVQ2sqhsJFBYSO/42uTFV+AXUtOWPWshI1rh/BJ7SvMm5dcjINfXKhyPFnrbp4Y/koPq8HqglnAtRMZSI/OQ2FGCYoyS1GSo6l2b1R576dMIbV8b8p7jLWFZZcny3vxbsfV1wEtO7vDtZUDdKVG6NR66NQGKO0UcG3tADdfR7i0crjtAPqSfC0ST2Ti2vF0ZMTmQyaXYsCMzpbxbTq1Ab/MP1RhmMHNl5bvVtyhVFyPykJAXx+07VnzfUltmc0CCtNLYOusrFFvR+LJTOz76LTl/VbayTFyXrjlJOi22zSZcWbrVZzdGg8BQLu+Puj2cCBcWjlUmFenNiBqSxwu70kqu2HIQYFuDwciZHgbyORSmE1mpJ7PwdWj6SjJ08JsLOttE0xmuPs7o2NEG3gEOAMA4v5OxeGvL1XoGZKrZAjo443wSe2rvDHh5rpvf+c4suILAAAdh7eBnauN5ZJ1mx4tMOKVHlbLmIxmZMcXIOV8DnKuFaFtLy8ED/a97Xsc9fMVnNl6FUDZJfLA/i0RNLAVDDoTUs9nI+XC7Xt/bZyU8OvhhXb9feDdwa3KG01ulXwuG3uXR1Xa43a7k8b6xgDWSIk9CL80X4vEU5lIvZALdz9HhI7xt7pU2FRp1XrE/pkMezcbBPTxqfYYnDu5sPMajt90N6NUJkH38UHo8qA/TAYzMmLyLb1CgQNaViuEVlf03iQc3XAZKjs5RvwnHC0CXWq9LqPOhCsHUlCQVlL2iAmtESa9GY4t7OD+T3h28XWocLk0+UwW/vgwyqps1Ovh8O1SsxsTaiMjJs9yWSGgrw+GzO5aZXAzm8y4sOMarhxIhUwphWsrB7j6OsLd3wm+odULw0a9CXnXi5FzrRA5CYXIT1bDaDBDMJthNgmQKaRoFeqBdn194BHgfNsDkNloRsLxDFzYcc3qsptMIUWrLh5o28MLrbp6wP4OB8ya0haXhb5bB3ZnxORhx7vHLQe8dv1bYvBzXertMShNQez+ZBz5Jhq2zioMf6X7bW/kqIw6RwOJBLftbStXkKpGdkIh2nRrYXXJrqbyU4rx5/+dQ35yMbw7uCJoUCv49/ap9skQUHbZ+Jf5hyw97DKlFCa9GRIJ8Mj/BsK1kiBZU+UntWajGS07uVe6P9aXGpB1tRCZsfnIvJIPTaEOPh3c0LZX2RCZ2j42JDepCFcOpCArrgC5iUWWk+RBz4Y22J3PDGCNVGO4C5KqJggCDqw6j/hDaXD3c8Sg57rUeEd9N0oLdFDZyxv0rp69y6OQFJUFoGz8SV09RqQ6ijJLkJ+iRutuLap9FtyYCIKAjJiyA4yzjz18u3g02AnPxV3XcOy7GPj39MbgF7o2qkHKDUVfaqhWj2xjIpgFGLRGy53JtVHZzTS33inbHBj1JuQkFCIrrgAB/XxEf0ZZOQawRooBrGkoydfCzkXVaJ//U59K8rU4sOo8FLZy3PdM6F3t+KlhCWahSYUNqh+CWcCuJSctvfdylQyTVgy64yVMqh2e6hDdBXvX6j3IsDmyd7XB/Qt6YfhL3Rm+mjiGLwLKPgeDng21PIy2+yOBDF/1qOkP8iEiIqI64eBui/EfDEBJrtYy0J/qBwMYERERWZQ97Lp5/N5rY8ZLkEREREQiYwAjIiIiEhkDGBEREZHIGMCIiIiIRMYARkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZAxgRERERCJjACMiIiISGQMYERERkcgYwIiIiIhExgBGREREJDJ5Q1eAKqfT6QAASUlJDVwTIiIiqik/Pz/Y2NhUOZ0BrJHKyMgAACxevLiBa0JEREQ1tWbNGgQHB1c5XSIIgiBifaiaCgoKcOLECfj4+ECpVNbZepOSkrB48WL897//hZ+fX52ttylg2+/NtgP3dvvZdradbW8Y7AFrolxcXDBixIh6W7+fn99tk3lzxrbfm20H7u32s+1s+72msbedg/CJiIiIRMYARkRERCQyBrB7jLu7O6ZNmwZ3d/eGroro2PZ7s+3Avd1+tp1tv9c0lbZzED4RERGRyNgDRkRERCQyBjAiIiIikTGAEREREYmMAYyIiIhIZHwQ6z1Cr9dj7dq12LNnD4qLi9GuXTvMmDEDPXv2bOiq3VFpaSk2btyI6OhoXL58GcXFxZg/fz5Gjx5dYd7ExER8+umnuHDhAuRyOfr27YsXXngBLi4uVvOZzWZs3LgRv/76K/Ly8uDr64vHH38cERERtV5nfbh8+TJ2796NM2fOICMjA05OTujUqRNmzJiB1q1b16qeTaXt165dw7p16xAbG4u8vDzY2NjAz88PU6ZMQf/+/WtVz6bS9sps2LABX331Ffz9/fHNN99YTbtw4QJWr16NK1euwN7eHkOGDMHMmTNhZ2dnNV9N9gPVXWddO3PmDObOnVvptFWrVqFTp041rmNTaPfNYmNjsW7dOly4cAF6vR4tW7bEgw8+iAkTJtS4nk2p7e+//z52795d5fQtW7bA09OzRnVtzO3nXZD3iHfeeQd//fUXJk6cCF9fX+zatQsxMTH4+OOP0aVLl4au3m2lp6dj8uTJ8PLyQsuWLXHmzJlKA1hWVhamT58OBwcHjB8/HhqNBhs3boSXlxe++OILKBQKy7xffPEFvv/+ezz44IPo0KEDDh06hKNHj+Ltt9/GsGHDarXO+vDmm2/iwoULGDJkCNq1a4fc3Fxs3boVGo0Gq1atQkBAQLNt+9GjR7FlyxZ06tQJHh4e0Gq1OHDgAM6fP49XX30VY8eObbZtv1VWVhYef/xxSCQSeHt7WwWwuLg4PPfcc/Dz88PYsWORlZWFn376Cd26dcOHH35otZ7q7gdqss66Vh7Axo8fj5CQEKtpvXr1sgTg5tbucidOnMD8+fMRFBSEoUOHwtbWFqmpqRAEAc8991yzbvvFixeRlpZmVSYIApYvXw5vb29s2LChxnVt1O0XqNm7dOmSMHDgQOGHH36wlGm1WuHRRx8Vnn322QasWfXodDohJydHEARBuHz5sjBw4EBh586dFeZbvny5EBERIWRkZFjKTp48KQwcOFD47bffLGVZWVnCkCFDhBUrVljKzGazMHv2bOGRRx4RjEZjjddZX86fPy/o9XqrsuvXrwvDhg0TFi1aVON6NqW2V8ZoNAr/+te/hKlTp1rK7oW2v/3228LcuXOFF198UXjyySetpr366qvCuHHjBLVabSn7/fffhYEDBwrHjx+3lNVkP1DdddaH06dPCwMHDhT2799/2/maW7sFQRDUarXw0EMPCQsWLBBMJlOV8zXHtlfl3LlzwsCBA4UNGzZYyppL+zkG7B5w4MAByGQyS48BAKhUKowZMwaXLl1CZmZmA9buzpRKZbUeqHfgwAH069cPXl5elrLw8HC0bt0a+/fvt5QdOnQIRqMRDz/8sKVMIpFg3LhxyM7OxqVLl2q8zvoSGhpaobeldevWaNu2LZKSkmpcz6bU9srIZDK0aNECarXaUtbc23727FkcOHAAL774YoVpJSUlOHXqFEaMGAF7e3tL+ciRI2Fra2tV1+ruB2qyzvpWWloKo9FYoby5tjsyMhJ5eXmYOXMmpFIpNBoNzGaz1TzNte1ViYyMhEQisQwTaE7tZwC7B8TFxcHX19fqgwXA0r0fHx/fENWqU9nZ2cjPz6/0h1dDQkIQFxdn+TsuLg62trbw8/OrMF/59JquU0yCICA/Px/Ozs4Amn/bNRoNCgoKkJqaik2bNuH48ePo3r17jevZFNtuMpnw8ccfY8yYMWjXrl2F6QkJCTCZTBXqqlAoEBQUVKH91dkP1GSd9WnJkiUYNWoUhg8fjrlz5yImJsYyrbm2+9SpU7C3t0dOTg6mTp2KkSNHYvTo0Vi+fDl0Ol2N69mU2l4Zo9GI/fv3o3PnzvDx8QHQvNrPAHYPyM3NrbQHqbwsJydH7CrVudzcXACosp1FRUXQ6/WWeV1dXSGRSCrMB9x4PWqyTjHt3bsX2dnZGDp0KIDm3/bPPvsMY8eOxZQpU/D5559j4MCBeOmll2pcz6bY9t9++w2ZmZmYMWNGpdPvVNebv9vV3Q/UZJ31QS6X47777sOcOXPw/vvvY/r06UhISMALL7yAK1eu1LiOTaXdAJCSkgKTyYQFCxagV69eePfdd3H//ffjt99+w9KlS2tcz6bU9sqcOHEChYWFGD58uKWsObWfd0HeA3Q6XaWDhpVKpWV6U1fehju1U6lUVvv1qMk6xZKUlISVK1eiU6dOGDVqVI3r2RTbPnHiRAwePBg5OTnYv38/TCYTDAZDjevZ1NpeWFiIr7/+Gk8++WSVd17eqa43B8W6an99h8/Q0FCEhoZa/h4wYAAGDx6Mf/3rX/jyyy+xbNmyZtluoKy3V6vV4qGHHrLcCXrffffBYDBg27ZtePrpp5tt2ysTGRkJuVyOIUOGWMqaU/vZA3YPUKlUlgPWzco/VCqVSuwq1bnyNlSnndV9PWqyTjHk5ubitddeg729Pd59913IZLIa17Mptt3Pzw/h4eEYNWoUPvjgA2g0Grz++usQBKFZt/2rr76Co6Mjxo8fX+U8d6rrzSGxrtov5glHOV9fXwwYMABnzpyByWRqtu0ur8PNd+QCsIx/unTpUrNt+61KS0tx6NAh9OrVyzLcAmhen3kGsHuAu7u7pYv1ZuVlHh4eYlepzpV3HVfVTicnJ8uXyN3dHXl5eRBueQLLra9HTdZZ39RqNebNmwe1Wo1ly5ZZvWfNve23Gjx4MGJiYpCcnNxs256cnIzff/8dEyZMQE5ODtLT05Geng69Xg+j0Yj09HQUFRXdsa63fk6qsx+oyTrF1KJFCxgMBmi12mbb7vI6uLm5WZW7uroCAIqLi5tt22916NAhaLVaq8uPQM3q2tjbzwB2DwgMDERKSgpKSkqsyqOjoy3TmzpPT0+4uLggNja2wrTLly9btTEwMBBardbqLkKg4utRk3XWJ51Oh9dffx3JyclYunQp2rZtazW9Obe9MuWXC9RqdbNte05ODsxmMz7++GNMnjzZ8l90dDSSk5MxefJkrF+/Hv7+/pDJZBXqajAYEBcXV6H91dkP1GSdYkpLS4NSqYStrW2zbXf5IPDs7Gyr8vIxSC4uLs227bfau3cvbG1tKzx0uTm1nwHsHjB48GCYTCZs27bNUqbX67Fz50507NjR6lb7puy+++7DkSNHrB6rERUVheTkZKsxBAMGDIBcLsfWrVstZYIg4LfffoOnpyc6d+5c43XWF5PJhIULF+LSpUt45513rOp2s+bY9vz8/AplRqMRf/zxB1QqlSWINse2+/v747333qvwn7+/P7y8vPDee+9hzJgxcHBwQHh4OPbs2YPS0lLL8n/88Qc0Go1VXau7H6jJOutDQUFBhbL4+HgcPnwYPXv2hFQqbZbtBmDZxo4dO6zKd+zYAZlMhm7dujXbtt+soKAAp06dwqBBg2BjY2M1rTm1n4Pw7wEdO3bEkCFD8OWXX6KgoACtWrXC7t27kZGRgddee62hq1ctW7ZsgVqttnQRHz58GFlZWQCA8ePHw8HBAY8//jj++usv/Pvf/8aECROg0Wjw448/IiAgwOqp+S1atMDEiRPx448/wmg0IiQkBH///TfOnz+PN9980zK2CkC111lfPvvsMxw+fBj9+vVDcXEx9uzZYzV9xIgRNapnU2r7smXLUFJSgq5du8LT0xO5ubnYu3cvrl+/jtmzZ1t+HqQ5tt3FxQUDBw6sUP7zzz8DgNW0GTNmYPbs2XjxxRetnuDds2dP9O7d2zJfTfYD1V1nfXj77behUqnQuXNnuLq6IjExEb///jtsbGzwzDPPNNt2A0D79u1x//33Y+fOnTCZTAgLC8PZs2exf/9+PP7445ZLYc2x7Tfbt28fTCZThcuPNa1rY28/f4roHqHT6Sy/h6VWqxEQEIAZM2agV69eDV21apk0aRIyMjIqnfbTTz9ZnhFz7dq1Cr/fN3v27ApjKsxmM3744Qds27YNubm58PX1xdSpUy2B5mbVXWd9mDNnDs6ePVvl9IMHD9a4nk2l7fv27cOOHTuQkJCAwsJC2NnZITg4GI888ggGDBhQq3o2lbZXZc6cOSgsLKzwW5Dnz5+3/IadnZ0dhgwZgmeeeabCb9jVZD9Q3XXWtc2bN2Pv3r1ITU1FSUkJXFxc0KNHD0ybNg2+vr7Ntt3ljEYjvv32W+zatQs5OTnw8vLCww8/jEmTJtWqnk2p7eWee+45pKWl4ZdffrE6MapNXRtz+xnAiIiIiETGMWBEREREImMAIyIiIhIZAxgRERGRyBjAiIiIiETGAEZEREQkMgYwIiIiIpExgBERERGJjAGMiIiISGQMYEREREQiYwAjIvrHnDlzMGjQoIauxh3t2rULgwYNsvy3cOHCWq1n9erVVuv5+uuv67aiRFQl/hg3ETVLNQ1SN/+uZlMxYMAABAYGIiAgoFbLh4eHQ6lUIiMjA7t3767j2hHR7TCAEVGzNG3atAplmzdvhlqtrnQaALzxxhvQarX1W7E6NHDgQIwePbrWy4eHhyM8PBxnzpxhACMSGQMYETVLTz/9dIWy3bt3Q61WVzoNALy8vOq7WkREABjAiIgs5syZg7Nnz1pdjty1axeWLFmC+fPnw8nJCRs2bEBCQgIcHR1x//334+mnn4ZUKsWuXbuwadMmJCcnw8XFBePHj8eUKVMqbEMQBOzcuRM7duxAQkICTCYT2rZti3HjxmHMmDF10o6cnBx8//33OHbsGLKzs6FUKuHm5oawsDA8++yzcHBwqJPtEFHtMYAREVXDwYMHcfLkSQwcOBChoaE4evQoNmzYAEEQ4ODggA0bNmDAgAEICwvDwYMHsWrVKri6umLUqFGWdQiCgHfffReRkZHw9fVFREQEFAoFTp48iQ8++ACJiYmYPXv2XdVTq9Vi9uzZyMjIQM+ePTFo0CAYDAakp6djz549ePTRRxnAiBoBBjAiomo4fvw4PvvsM4SEhAAou8Q5ZcoU/Pzzz7Czs8PatWvRsmVLAMCjjz6Kxx57DBs3brQKYNu3b0dkZCTuv/9+vPrqq5DLy3bBBoMBb775Jn766SdEREQgODi41vWMiopCeno6Jk6ciBdffNFqWmlpqWWbRNSw+BgKIqJqGDFihCV8AYCdnR369u0LrVaLcePGWcIXUDaWLDQ0FElJSTAajZbyX375Bba2tnjppZesgpBCocDMmTMBAJGRkXVSX5VKVaHMzs4OSqWyTtZPRHeHp0JERNUQGBhYoczd3f2200wmE/Lz8+Hp6QmtVouEhAR4eHjg+++/rzC/yWQCAFy/fv2u6tm1a1e4u7vj+++/R3x8PPr164ewsDD4+flBIpHc1bqJqO4wgBERVYO9vX2FMplMdsdp5T1gxcXFEAQB2dnZWL9+fZXbudvHYDg4OGD16tVYu3Ytjhw5gmPHjgEAWrRogalTp+Lhhx++q/UTUd1gACMiEkF5SAsODsaaNWvqdVteXl5YsGABzGYzrl69ipMnT2LLli1YuXIlHB0dERERUa/bJ6I74xgwIiIR2NnZwc/PD0lJSSguLhZlm1KpFEFBQXjsscfw1ltvAQAOHz4syraJ6PYYwIiIRDJhwgRotVp8+OGH0Gg0FaanpaUhPT39rrZx7do15OXlVSjPz88HAA7CJ2okeAmSiEgkY8eOxaVLl7B7925cuHAB4eHhcHd3R35+Pq5fv47o6Gi89dZb8PHxqfU2Tp48iVWrViE0NBStW7eGk5MT0tLScPjwYSiVSo4BI2okGMCIiEQikUiwYMEC9OnTB9u3b8eRI0eg0Wjg6uoKX19fPP/88+jRo8ddbaNXr17IyMjAuXPncPDgQWg0Gnh4eGDo0KF47LHH0LZt27ppDBHdFYkgCEJDV4KIiKrv5p9Hupsf4y535swZzJ07F9OmTavydzKJqG5xDBgRURO1ZMkSDBo0CAsXLqzV8qtXr8agQYMwd+7cuq0YEd0RL0ESETUxgYGBmDZtmuXvgICAWq0nPDzcalB+t27d7rZqRFRNvARJREREJDJegiQiIiISGQMYERERkcgYwIiIiIhExgBGREREJDIGMCIiIiKRMYARERERiYwBjIiIiEhkDGBEREREImMAIyIiIhLZ/wOTaDHvqW/6TAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# LCs: \n", + "# The plot below is normalized to the initial time.\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "# LCs:\n", + "df = pd.read_csv(\"crab_lc.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],label=\"Crab\")\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], 3*df[\"Rate[ct/s]\"],label=\"3xCrab\")\n", + "\n", + "df = pd.read_csv(\"crab_lc_3x.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],ls=\"--\",label=\"Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Time [s]\")\n", + "plt.ylabel(\"ct/s\")\n", + "plt.savefig(\"combined_lc_comparison.pdf\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB440lEQVR4nO3dZ3RU5d6G8WsmvVdq6C30Kh1BEBWkiQjWV1CBAzZEUQEFBEFRUEDsHBTLUVEERLpBkN47gdBDb+m9zMz7YWA4HHpIsjPJ/VuLpXlmz557Ekj+earJZrPZEBERESnCzEYHEBERETGaCiIREREp8lQQiYiISJGngkhERESKPBVEIiIiUuSpIBIREZEiTwWRiIiIFHkqiG5Beno6UVFRpKenGx1FRERE8oAKolsQHR1Nv379iI6ONjqKiIiI5AEVRCIiIlLkqSASERGRIk8FkYiIiBR5KohERESkyHM1OoCIiEhhYbFYyMrKMjpGkeTm5oaLi0uOn6+CSEREJBckJydz4sQJbDab0VGKJJPJRJkyZfD19c3R81UQiYiI3CGLxcKJEyfw9vamWLFimEwmoyMVKTabjfPnz3PixAmqVq2ao54iFUQiIiJ3KCsrC5vNRrFixfDy8jI6TpFUrFgxjh49SlZWVo4KIk2qFhERySXqGTLOnX7uVRCJiIhIkaeCSEREpJDKzs5m9OjRVK9endq1a1O/fn369+9PfHz8bd3nnnvuYe7cuXmSsaDQHKIbiIiIICIiguTkZKOjiIiI3LbnnnuO2NhY1q1bR1BQEDabjVmzZhEbG0tgYKDjuuzsbFxdi3ZJULTf/U20b9+e9u3bExUVRb9+/YyOIyIiTmTuW2tITcjIs/t7B3jw0LiW13384MGD/Pbbbxw7doygoCDAPs+mZ8+erFixgi5dutCsWTO2bNnCW2+9RVZWFlOmTCEzMxOr1crYsWPp0qWL437Lli1j3LhxxMXF0a1bNyZOnFio5kypIBIREckDqQkZpMbmXUF0M1u3bqVq1aqEhoZe8/G9e/fy+eefM336dABiYmJ4/PHHMZlMHD16lGbNmhEdHY2HhwcAkZGRrF27lqysLFq3bs3PP//ME088kW/vJ6+pIDLQusQofj+/nsw1idQtX4l7atanSrEwo2OJiEgu8A7wKND3r1SpEm3atHF8fOTIEZ588klOnDiBq6srsbGxHDlyhOrVqwPw9NNP4+bmhpubG0899RQREREqiCR3bEk6xF/HtuH+Sxzr2MxX/IrJz4WAsv6UrVCS2lUqc3f1OjQoWwVXF32pREScyY2Gs/JDw4YNOXDgADExMYSEhFz1+P/u6PzYY48xfvx4HnnkEQCCg4NJT0+/7v0L03AZqCAy1IG005jOZF/RZkuyEB8ZR3xkHLvYy8/MBw8T3mE+tBvYinolKlPdO4zKniVwM+vLJyIi11alShV69OjBc889x4wZMwgMDMRmszF79mwSEhKuuj4uLo6KFSsC8OOPPxIXF3fF4z/++CNPPPEE2dnZ/PTTTwwePDhf3kd+0U9UA31UuQ/bvO/mL5+N7Dl4hFPR50g+kQRp/3MOToaNlGPJzE7ZyOzoTQC4mlwovsMNjxNQtVJZ7qpanXtq1KeEX5AB70RERAqib775hrFjx9K0aVNcXV2xWq20bt2ajh07XnXtlClTeOSRRwgMDKRdu3aUK1fuisdr1KhBy5YtiY2NpVu3bjz22GP59TbyhcmmU+hu6tIqs2nTphEeHp6nr2W1Wtl58jCr9u1i58GDRB85TcLxBLJ9bWQPCLziWtf/JGLed+Wpyi4hbgSVDaRipTDqV6lKmxr1CC9RNk8zi4gUdenp6Rw5coSKFSvi6elpdJwi6U6/BuohKmDMZjP1y1ahftkqcN/l9nOp8RzJPse+tFPsSz3BvtSTHD8bd9XzLTFZXIg5z4Xt59nEdqbxG253+1P/kTqEe5emulcZwr1LU8YtWPOSRERELtJPRCdR3DuQ4gTS1L+aoy1+WhIr9u9g0/597D90jDPR50k/lQpXTksiLcjCmsR9rEncZ29IseL+cTxeYT6UKl+M6pXL0yy8JndXrYuvhw4lFBGRokcFkRML9PbjofqteKh+K0dbRnYWGw7vZe3+3ew5eJiTR8+RVc6LRC4PrZlOZ0OmjbQjyRw+kszhFUdYyApsZnAv4Umx8sFUqViWRtXCebBBUwLdfa/18iIiIoWGCqJCxsPVjdbV6tK6Wl1Hm81m42xWPPtS7cNta6J3sD8oCmvclV1JJitknU7n1OlTnFp/in/MG/hgxHzCvEOo7h1Gde8yhCR6Ud2/DDVKlMNs1lF4IiJSOKggKgJMJhMl3YMo6R7EPYG1GPDwA/AwnIw/z/K929l6YD8HD5/gwrEYMs9lYLLan2cr5gKuJk5mxnIyM5Zl8btw+SUJlz2Z4GPGr4wfZSqUoHaVyrSsXovG5WvgXsTPwhEREeekn15FWFhgMZ5qfh9PNb88ezsxLYWVB3axIWoP521JpPqYiUo7Rbo1EwDz6Yu9SilWkqIS2BuVwN4l+/mNReBuwqu0NyXLhdK8ZT3ub9iEKl4l8TC7GfH2REREbpkKIrmCv5cPnes2o3PdZo42i83K8YwLRKacYGaTJZw4eobE44mQYr3yyZk20o6mcORoCgf8LzDDew0umKnoWZwqppJkbk6kUdVw2taoT1hgsXx+ZyIiItengkhuysVkpoJncSp4FufBlxsC9v2S9p09zsp9O9h+4CDRR04Rezwea6x98ratpAsAFqwcTD/DoSPHcfslkdVsYgo/Yg5yJbBsABUqlqZulSq0rl6XWqUqaF6SiEguuv/++zlz5gxmsxk/Pz8++eQTGjRocMPnHDp0iDfffJMtW7YQHByMi4sL/fv3p2/fvrf12kePHqV+/frEx8ffwTvIPyqIJEfMZjM1S5WnZqny0PZy++mEGFbs205maRMHLWeJSj3JobQzWE9fOYHbGpdNbFwMsTtj2MouZjAHvM34lfWj0+B7qe5ThureYVTwLI6LSUWSiEhO/PrrrwQGBgIwZ84c+vTpw44dO657/ZkzZ2jVqhVjxoxh1qxZgP1Ij5kzZ151bXZ2Nq6FaN5o4XknUiCUCgjh8ab3XtGWac1mXXAkf5fewr5D0ZyOPk/ayRTI/J9N0lOtJMYm8/35f+C8vcnT5EbQSvBNcye8cnkaV6tOm2r1CPL2y6d3JCKSM4/v/ZgLWUl5dv9QNz9+rvHqDa+5VAwBJCQkYDKZiIqK4t5772XlypVUqlSJiRMnEhERwcKFC/nss8+4++676devn+N5QUFBDBgwAIA+ffpgNps5ePAg586dY9++fTz55JNERUWRmZlJ2bJlmT59OiVLlnQ8f8iQISxduhSLxcKUKVNo37597n4icokKIslz7mZX2lSsS5uKl7cCyLZkszl6P6v37WLPocMcvzgvyVLK5YrnptuyOL8tnpjzFqJXHWMpqxhrArfiHoSWC6JSxTI0qlqNe2o2oFxQ8fx+ayIi13UhK4lzWVcfoprfnn76aZYvXw7AwoULCQ8PZ8KECfTq1YuJEyfy2WefsXHjRsxmM1u2bOG+++674f22bNnC6tWr8fOz/2I6efJkihWzzwsdP34877zzDl9++SVgL8Jq1KjBxIkTWb9+PV27duXQoUOO5xYkKohuICIigoiICJKTk42OUui4urjSrFJNmlWqeUX7qZQYDmefY1/qSaLSTrI34ThnYmKuuMZkg+yzGZw5e4Yzm86wls1M5Se8u4dSv21Nwr3DqO4dRjWPUpT2CNa8JBExRKhb3v7Qv9X7f//99wB89913vPnmmyxcuJDHH3+c5cuX88ADD7Bs2TJHQXMrevbseUVB89NPP/HDDz+Qnp5Oeno6oaGhjsdcXV3p06cPAM2aNaN06dJs27aN1q1b3/Lr5RcVRDfQvn172rdv7zjcVfJeaZ8QShNCq4AajrazP8exYt92Nu+P4sDhY5yPjiHjbDomy5XPTQjKZEXCHlYk7AHAdCwLtx+T8C3jR+nyxalZuSLNq9eiReVaeLq65+fbEpEi6GbDWfmtd+/eDBgwgJiYGAICAti9ezfBwcGcPHnScU2jRo1Yt24dgwcPvu59fH0vn16wevVqPvnkE9atW0fx4sWZN28eI0eOvGEOk8l0528mD6ggkgKvhF8QjzZuy6ONL8/eTs1IZ9XBXWzYH8neQ0c5dfQcmaW9Sb3iiBILpNlIPpDI/gOJ7I84yFz+AlfwKOVFifKhVK1YjibhNehQrwneLh5GvD0RkTwRHx9PamoqpUuXBmDu3LmEhIQQHBzM66+/Tnh4ON9//z1t27alUaNGVKlSheeff5769evz7bff8swzzzjuM3PmTP71r39d9RpxcXH4+fkREhJCZmYmX3311RWPZ2dn88MPP9CnTx82btzIqVOnqF+/fp6/95xQQSROydvDkwdqNeaBWo0dbVablZOZsfbhttSTrHDbyDG/Y9iS/qcrKRsyjqdx7Phxjq0+TkTwOsYMnkt5j2IXjygJIyDWnfrFK1MptFQ+vzMRkdyRkJBAz549SUtLw2w2U6xYMebPn8+CBQtYvHgxGzduxNvbm48//phevXqxdu1aSpUqxerVqxk6dChjxozBz88PNzc3XnjhhWu+RocOHfjxxx8JDw8nJCSE9u3bX9HjdKknql69emRnZ/PTTz8VyPlDACabzWa7+WVF26Uhs2nTphEeHm50HLlNB8+fZEXkdrYfPMCRIyeJORZPdkwmpot/86213Ml+7Mp/oK6fxWM+Y8Hk70JA2QDKVShJnapVuLt6HRqUqaJ5SSJyhfT0dI4cOULFihXx9PQ0Ok6RdKdfA/UQSaFXpVgYVdqEQZvLbReSElgRtZ1N+/eRFJBJnHcWB9JOk2WzQLYN0zl7r5It0UL8nlji98Syk0j+wzzwNOET5kvp8sVo274JbarVo6JXCdxMLtdJICIiBZ0KIimSQv0CeOSuNjxy1+UqKctm4Wj6WbafP8yctn9z6ug5Uk4mQ/r/dKKm20g5lMSBQ0lElj3Pp5a/cDO5UMWrFOVSgjDtz6RxeHXuCa9PqG9APr8zERHJCRVEIhe5mVyo6lWaquVK0/O1VoD9iJJtJw6yet8udh08RPSR0yQcT8CWeLEHqaT9n1CWzcLe1BNEbT6I67wU/mYt403gGuJOcLlAatWozNsPP0WAl+91X19ERIyjgkjkBsxmM43KVaNRuWpw/+X2wxdOs2r/TmyV3NiXepJ9aSc5mn4e038dUWKygeVCJucvnGPF1nOsXrqFNwf35qH6rQx4JyIiciMqiERyoFJoqatWoKVaMljhtZ1VNXay//AxzkZfION0KlyskbLPZzL2rWnM7bCKT/u/gq+HlwHJRUTkWlQQieQSbxcPHqzZlAdrNnW0pWdnsmT3JiZ88SMZx1Mx2WDPon10s45kat+XqelT1sDEIiJyidYOi+QhT1d3utVvScRnU2j8cH1sLmALNnOhSTZP7ZvC56cWk2XNvvmNRERyIDs7m9GjR1O9enVq165N/fr16d+/P/Hx8bly/z59+jB58uRrPjZy5Ej+85//5MrrXPLpp586jgLJbeohEskHnq7ufN53MMtabeWTows46h6HBStfnV7Kivg9DC/enfqhlYyOKSKFzHPPPUdsbCzr1q0jKCgIm83GrFmziI2NJTAwME9fe8yYMXl6/9ymgkgkH91bvSGtw+vx79N/8e/TEWRjJerkMfqOGEPjDnWZ9MyLOmdNpBD5z+zF/DRn8U2vC69Sno9HXXl+2KujJxF1MPqa1z/RvQNPPtzhhvc8ePAgv/32G8eOHSMoKAiwnyPWs2dPACZMmMCMGTMwm83UrVuXzz//nICAAN555x0iIyNJS0sjKiqKatWqMX78eF577TWOHDlCo0aN+M9//uPYoHbnzp20aNGCCxcu0Lx5c7788ku8vLzo06cP9evX55VXXuGdd95h7969pKamcujQIUqWLMmsWbMIDg4GYOLEifz6669kZ2dTvHhxvvrqK8qXL09SUhJ9+/Zl+/btFCtWjFq1at30c5lTGjITyWduJhcGlu7AjzVeobJ7CVxnJ2NKs7F5zg7avzCIlQd2GB1RRHJJSmoa52LibvonPiHpqufGJyRd9/qU1LSbvvbWrVupWrXqFafPX7Jo0SK++eYb1qxZw65du/Dx8WHo0KGOxzdv3sz3339PVFSUoyiZNWsWkZGR7N27l0WLFjmu3bBhA0uWLGHv3r3ExsYyadKka+bZsGEDM2bMIDIy0lH0APz0009ERUWxbt06tm7dypNPPsnzzz8P2HuZPDw82LdvHwsWLGDlypU3fd85pR4iEYPU8C7Dj+GDeKHmJHYd24fJBhnHU3nttY9p3r0RE//vedxd9U9UxJn5eHtRPCToptcFBlx9vldggN91n+vjfWerVCMiInj00Ucdw2YDBw509BwB3H///Y5epYYNG+Lh4eE4g6xBgwYcOHDAcW2vXr0cjz333HN88sknDB8+/KrX7NChAyEhIQA0b96cXbt2AfZDZzdt2kSjRo0AsFgunz+5bNkyJk2ahMlkIiAggCeeeIJDhw7d0Xu/Hn23FTGQt7sn3740jLl3r+aDSd+RfT4TsmHdb1tov+llxg95gRaV8q6LWETy1pMP33xo63r+dwjtdjVs2JADBw4QExPjKESux2QyXfHxf58F5uLictXH2dnXXwzyv/e63j0v3cNmszFs2DD69+9/w4w3undu0JCZSAHwUP1WLP5yEuH3VcV28d972tEUBg3+kCE/fE62RSvRROT2VKlShR49evDcc885VpXZbDZ+//13KlWqxK+//kpiYiIAX331Fffff/8N7nZ9s2bNIjk5GYvFwrfffkv79u1v6/kPPfQQX375JbGxsQBkZWWxbds2ANq3b8+3336LzWYjMTGRn3/+OUcZb4UKIpECIsDLlx8Hv80bo5/BJcTN3pgF//y8gY7vvM6JjBhjA4qI0/nmm2+oV68eTZs2pVatWtSsWZOlS5fy5JNP8swzz9C8eXPq1KlDYmIi77//fo5eo3HjxjzwwAPUqFGDwMBAXnnlldt6/pNPPkmfPn1o27Yt9erVo379+vz9998AjBgxgrS0NKpXr86DDz5Iq1Z5t9O/yWaz2W5+WdEWFRVFv379mDZtGuHh4UbHkSIgJiWRFz77mEMrjgCQ1dsPz2q+vFqmCz1DW+Rpt7GI3L709HSOHDlCxYoVrxgakvxzp18D9RCJFEAhPv788sY7DBrxf3jfF4ytijtp1kzGHfudAQe+4nRmnNERRUQKFRVEIgXYU83bs/Dl93kktLmjbX1iFN3eHsqo37/FarUamE5EpPBQQSRSwPm4eDKifE++qPovSrgFYt6cgW13Ogunr+CBN14l8vS1N24TkfynWSjGudPPfZEriHbv3k2bNm347rvvjI4iclta+Ifze63XqZxweZO1+Mg4er8winF//KjeIhEDubi4AJCZmWlwkqLr0uf+0tfidhWpfYisViuffvop1atXNzqKSI74uXgx680xfNH4D7796g9sSRZItzH3q79YuXYrnw15jSrFwoyOKVLkuLq64u3tzfnz53Fzc3McayH5w2q1cv78eby9vXHN4Ya2Raog+vPPP6lRowYpKSlGRxG5IwPbdaNzg+Y8P+kjzmw+A0DsrhgeH/g2jz7bgSEPPmpwQpGixWQyUapUKY4cOUJ0tIaxjWA2mylXrlyOV+EWyIIoNTWVX375xXFmSlJSEsOGDaNjx45XXZuZmcn06dNZunQpSUlJVK5cmb59+9K4ceMrrktISOC3337jiy++YOrUqfn1VkTyTNmg4vw55gOmLP2dH6fNhxQrpFqZ+elC/l6zme9GvE0xzwCjY4oUGe7u7lStWlXDZgZxd3e/o565AlkQJSQkMGPGDEqUKEGVKlUcO1Zey/vvv8+KFSvo2bMnZcqUYdGiRbzxxhtMmTKFunXrOq6bNm0aPXv2dJy3IlJYDLq/B10atuCFjz/iwvbzAJwhgV5RHzGifE/aBdYxOKFI0WE2m7UPkZMqkIOcISEhzJkzh99++42BAwde97rIyEiWLVtG//79ef755+natSuTJ0+mZMmSfPHFF47r9u/fz759++jcuXN+xBfJd5VCS7Fw3AR6vdgRUyk3LB29ic1OZvChbxl25EcSs1ONjigiUqAVyB4id3f3mx5EB/DPP//g4uJC165dHW0eHh506tSJr7/+mrNnz1KiRAm2b9/O8ePH6dGjBwDJycm4uLhw6tQphg0blmfvQyQ/mUwmXn/wMXrf24Fxx39nRcIeABbGbmXt2h08Edaaf93TxeCUIiIFU4EsiG7VgQMHKFOmDD4+Ple016hRA4CDBw9SokQJunbtyr333ut4/JNPPqFUqVI8+eST17zvhQsXiIm5fG6UJsiJMynuEcjkys8yP3YLHxyfTVJcCim/x/Lv9FksXrWezwe9Rin/YKNjiogUKE5dEMXExFyzJ+lS24ULFwDw9PS8YkzXw8MDLy+v684nmjdvHjNmzMj9wCL5xGQy0SXkLpr4VeFfX03kZHo8ACfWneChyNcZ8EJPnmnVwdiQIiIFiFMXRBkZGbi5uV3V7u7u7nj8WoYPH37D+3bt2pWWLVs6Po6Ojmbs2LF3kFTEGCXcA5n9whhGl/6OhT/+Axk2rAnZfP7ezyy4ey1fvPQqxXwDjY4pImK4Ajmp+lZ5eHiQlZV1VfulJY8eHh45um9oaCjh4eGOP+XLl7+jnNeTnWnBkmXJk3uLXGI2mxnd4xmmffI2vtX8He3Rq6LpPOA1/rNhmYHpREQKBqcuiEJCQq6Y63PJpbbQ0NCrHitIDq45xXfP/sXsYav558ud7F58lNN7Y8lMvbrIE7lT9ctWIeKjybR/uiW42Tcus8ZmM3n09zw2YTRxqUkGJxQRMY5TD5ld2qMoJSXlionVkZGRjscLspijiVgtNmKjk4iNTuLAypOOx/yKexFSwd/+p7z9v96BHjnegVME7Gf8vP9Yf3o0v4chEz8h5ZC9CDq48QhPtZ7E2Fr/RwPfiganFBHJf05dEN1zzz388ssvzJs3j8cffxywD5ctXLiQmjVrUqJEiTu6f0REBBERESQnJ+dG3Kt4B3gQVMaX+JPJ/O8hvUnn0kg6l8bRjWcdbZ7+7o7iyF4o+RFQ0geTWUWS3J67ylcjYvJk3vzpa1b+toHsrj6ccI3nmahPebpEG14o3REP89Xz80RECiuTzfa/P4oLht9//53k5GRiYmKYO3curVu3pmrVqgD06NEDX19fAEaNGsXKlSvp1asXYWFhLF68mL179zJp0iTq16+fK1mioqLo168f06ZNIzw8PFfu+d+yMy3EHksiNjqRC0cTiYlOJPZYEpbMm59e7urhQnB5P0LL+xNcwZ/Q8v4ElvHF1T1np/1K0bPt1EEmJS5kR8pRR1u57GD6erSlW/2W13+iiEghUmALol69enHmzJlrPjZz5kxKlSoF2FeSXTrLLDk5mUqVKtG3b1+aNGmSa1nyuiC6FqvVRsLpFGIuFkgxR+1/MpJvPr/I5GIisLQvoRX8CS7v5xh28/DRb/xybRablR/OruDTU4vIsmbj+ksypr2Z1O1Yg0/6DcLXw8voiCIiearAFkQFiREF0bXYbDZSY9MdvUgx0UnEHE0k+XzaLT3ft5h9XlJoeXuhFFrBH+9gT81LEodDaWcYvOBLTn9zxNHmVsqDEYP70rF27v2SISJS0KggugUFpSC6nozkLGKOXe5FiolOss9Lst78S+vp50bwxXlJ9h4lfwJK+WDWvKQiKz0rg1e+/YzNf+7AdHFXCJsZGnauw5TnXsLLLWfbWYiIFGQqiG7gvydV79y5s8AWRNeSnWkh7kTyFcNtsceSyM64+b5Hrh4uBJf1c/QihVTwJ6isn+YlFTFLIzcz+uNpZJ5Kd7S5h3kx5rV/cW/1BgYmExHJfSqIbkFB7yG6VVarjcQzKY5epEvzk9ITM2/6XJPZRGBpH0Iu9iJdmp/k6eueD8nFKKkZ6bw8/RO2L9yD6eIcf5sLNO1Wn4/6vICnq77+IlI4qCC6BYWlILoWm81GanzGfw232f+bdO4W5yWFel7eCuDif31CNC+psFmwcz1jJ31D9tnLx+GUfq4SkzsNoKLnnW1vISJSEKggugWFuSC6nszUrCt6kWKiE4k7kYzNcvO/Lh6+bv9VJNlXuQWU8sHs4tQboxd5SelpvPj1JPYsicJWw53sx3xxN7vxYtiDPFW8NS4mfX1FxHmpILoFRbEguhZLloW4k8kXe5OSLs5LSiQr/ebzklzczASX87tiY8ngsn64emhekrOZvXUV32T+w3G3WEdbfZ+KvBbYibolKxmYTEQk55x6p2rJXy5uLoRWCCC0QoCjzWa1kXg29fLk7Yv/TUu4cl6SJcvK+UMJnD+U4GgzmSCgtI+9SPqvQsnTT/NSCrKHG97Ng9amTD25iP+cW4kNGzs27eO5WVto+2gz3nu0L64u+tYiIs5FPUQ34MyrzIzmmJf0X6vcEs+m3tJzfYI9rzieJKSCP76hXpqXVABtTTrM23t+4NxHRzCl2L+V+Fb156Mhg2hYtmCfJSgi8t9UEN0CDZnljsy0bGKjr9xUMu54EtZbmJfk7u16xcTtkPL+BJb2weyqeStGu5CcwPOffcyRf45ebnQ38cATdzPmkWcwm/U1EpGCTwXRLVBBlHcs2VbiHfOSLhdLWWnZN32ui5uZoLJ+jl6kkPL+BJfzw81TwzVG+H7NEj777Fes8Ze/dv7VA5n82iDqhGlukYgUbCqIboEKovxls9pIOp96eZXbxUIpNS7j5k82QUBJnyuG20Iq+OPlr92V88PZpDien/oRx1Yfv9zoYaLL0215u9v/qbdIRAosFUS3QAVRwZCakEGsY15SEjHRiSScSYFb+BvsHeRx1ZCbX3HNS8or/165gK8//x1b4uUViGU6lefr/kMo5uZvYDIRkWtTQXQLVBAVXFnp2cQeS7piAnfs8SSs2Tf/a+3m5XpFL1JIeX+Cwnw1LymXnIqPYeAnEzm1/hQ2TxNZLwXgH+TLsHIP0zGooYpRESlQVBDdAhVEzsWabSX+VMoVm0rGHE0kM/Xm85LMriaCyvhd0ZsUXM4Pdy/NS8qpz5fN5efTq0msYXW0tQusw1tlexDqrt4iESkYVBDdgJbdFx42m43k82n/tV+SvVcpJTb95k82gX8J7yuH3Cr44x2geUm3Kj47hfHHZrMobpu9Ic2K57fJPNrzAV7t0NPYcCIiqCC6JeohKrzSEjOIiU5yzE26cDSRhNO3Ni/JK9DjqiNK/It7YzJrKOh6IuJ2MPbYLBJ/PYvLNvsk+eINi/P5q0MoH6wz0UTEOBoHkCLNy9+DMnU8KFMn1NGWlZ5N3PEkLhxNJPZiT1Ls8SQsWdYrnpsWn8GJ+POc2HHe0ebm5UJwOXuRFFren+AKfgSV8cNF85IAaB9Ujzqe5eltfZcY7AXRua3n6DlgKE/378qL7bsbnFBEiir1EN0C9RCJ1WIl4XTKFUVSzNFEMlKybvpcs4uJ0MoBNHm8OiXDg/IhbcFntVqZsHAms75dAmmXvwWValKaL155lbDAYgamE5GiSAXRLVBBJNdis9lIiUkn5mjixULJPuyWfOE685JMUOfBijTqWRVXdx1qCxB19jgvTvyY+D2XD4o1+bvQb+DD9GvT2cBkIlLUqCC6BSqI5HakJ2USe8w+5BZzNJHzB+OvOMctoLQPbQbUpXiVQONCFiBWq5Vx835k3vd/Q/rlb0cV2lbg21eH4eviaWA6ESkqNLFBJJd5+rlTulYIdTtVpO0L9Xjko9Y0fjwcs6t9snXCqRT+HLWOTb9EYcmy3ORuhZ/ZbGbEQ08z49N38K8e6Gg/6HeeRyInsCFxv3HhRKTIUEEkksfMZhP1ulSi+3stCa0UAIDNBjvmHWbu22u5cCTB4IQFQ63SFfhr4iQ6PNMaUy1PrHd5cDozjv4HvmTcsVmkWm7h6BYRkRzSkNkNaB8iyW3WbCs7/jzMttkHsVrs//RMLibqd6tMg4cqa5fsi05mxDIq+hc2JR10tAWthAEtOvNY03YGJhORwkoF0S3QHCLJbTHRifzz5U5io5McbSEV/GkzoC7B5fwMTFZwWG1Wfj2/lkkn55OxPxm375KwmaBau8p8NnAwQd76PIlI7tGvoyIGCCnvT7d3W9Cge2XHRo4xRxOZ+9Yats89hNVivckdCj+zycxjxVvxW43XCN3lBoDJBgeWHaLjgFeZvXWVwQlFpDBRQSRiEBdXM416VqPrmOYEhvkCYLXY2Pzrfv58Zz1xJ5MNTlgwlPMsxsJ3JnD3Y00cW8laLmTy3oh/8/SUcSSmp974BiIit0AFkYjBilUK4KFxLajbpRKXDoA/fyiBucPXsHP+YaxWjWq7u7ry8dMvMOnjIXiW8wbsvUV7l+zngYGvMH/neoMTioizU0EkUgC4urvQ5PFwurzTjIBSPgBYsqxs/CmKBWM22M9XE1pVqcNfn06haY8G2C7ubZl9NoN3hn/Bc599QFrmLRzWKyJyDSqIRAqQ4lWD6P5+S2p3rAAXe4vO7o9j9rDV7FlyFJt6i/B0defT517hw4mv4F7GCwCTFbbv2c/T+6cSlXrS4IQi4oxUEIkUMK7uLjT7vxp0HtEUv+L2H/iWTCvrvtvLwvc2knROc2YA2oU3IOKzKTTsVgebp4ns7r7szzjNE3sn8dXppWTZtOmliNw6Lbu/BVp2L0bJSs9m089RRP51zNHm5ulCkyerU71dWUyXJh0VcVvOH+T983M4kHba0VbpQjAvV+hM2/D6xgUTEaehHiKRAszN05UWz9Si4/DG+Ibaz/TKSrewZvoeFo/fRHJMmsEJC4ZGxarwc/XB9CvZHhfMkGnj+PeHeH3IJF76ZgqZ2dlGRxSRAk4FkYgTCKsdysPjWxHetqyj7eSuGH5/YzX7V5xAHb3gZnblxbAH+b76y4RucMEUZ8VkgfWztnLvSy+z5tBuoyOKSAGmIbMb0NEdUhAd33GeVdN2kRp7+Wyvsg2K0apvbXyCdDI8QGJ6Ki9+OYnIv/ZjuvQdzhXufqQJHz75L1xdXA3NJyIFjwqiW6A5RFLQZKRksf77vRxYdXlFlYePG81716Byy9KaW3TRrC3/MHHKD1guZDnavCv5MnHISzSuUN3AZCJS0GjITMQJefi40WZgXe57rSFeAe6AvUha8flOIiZvIzVBJ8MDPNKoDYu+nETVdpUcbamHk3l+0HiG/vQ12RbNLRIROxVEIk6sfKMS9Pjwbio1L+Voi950ltlvrOLw+tM3eGbREeTtx09DRjF41NOYgy8OlWXZiPhlDc9umMqpjFhjA4pIgaCCSMTJefq50+6l+tw7qD6efvZDUNOTsvj7k+38/cl20hMzDU5YMDzR9F4WfPkxFVqXB8DS3psdHsd5JHICsy+s18R0kSJOc4hugeYQibNIS8hgzTd7OLrprKPNK8CdVs/VpvxdJQxMVrD8tOlvZrit4qwlwdHW3KsaLwV2oFbpCsYFExHDqIdIpBDxCvDg3lca0PbFenj42HuL0hIy+evjraz4fAcZyVk3uUPR8ETjdvxe5w26hzR1tG2cs40+L77D2LnfY7VaDUwnIkZQQSRSyJhMJiq3KE2PD1tRtkExR/vB1af4/c1VHN9+3sB0BYefixfvVHiUT6v0JeiUO+a16ZBu44+vl9Fh6GvsP3fC6Igiko9UEIkUUt5Bntw/pBGtB9TB3ds+mTg1LoMlH25m5de7yExVbxHA3QE1+c/dr1H6rssT0+N2x/LkwBF8tmyuccFEJF+pIBIpxEwmE9Val6HHB60IqxPqaN+/4gS/v7mak7suGJiu4AgLLMa80eN5evBDmHwvfltMszLjozk8M/V90rM1MV2ksFNBJFIE+IR40WHoXbTqWxs3TxcAUmLSWfT+JtZ8s4esdO3HA/DSfd359cv3Cal3uXjcvWgfHV97jUPnTxmYTETymgoikSLCZDJRvV1ZHv6gFaVqBjva90YcY/abqzm9N8bAdAVHheCSLBw3gbsfa4Lt4nfI5AOJPP7S2yzdv9nYcCKSZ1QQiRQxfsW8eXB4E5r3romrh723KOl8Ggve3ci67yPJzrAYnNB4ZrOZj59+gddH9sHkZ/8cWXxhWNwv/HxulfYsEimEtA/RDehwVynsEs6ksPKrXZyNinO0+Zf0ps2AupSoFmRgsoJj/7kTDJw4gQv3A0H24ujB4IaMKNcTbxcPY8OJSK5RQXQLtDGjFGZWq409i46y+df9WLLs+++YTFC7U0UaPVIVV3cXgxMaL8tmYerJBXx3doWjrVxSEEPLdqdl5drGBRORXKMhM5Eizmw2UadTRbq/15JiVQIAsNlg1/wjzH1rLecPJ9zkDoWfm8mFV8t05aNKvfExe0CGjVPfHuGVIROZvGSW0fFEJBeoIBIRAALDfOkyqhmNH6uG2dUEQPzJZOaNXGfvPcrW7s3tg+rxU43BhKwxYz5vgQwb/5nyJ/83aayW5os4ORVEIuJgdjFTr2tlHhrXkpAK/gDYrDa2zz3EH2+vJeZoosEJjVfBszi/PT+KkneVdLTt++sAHQa/qt2tRZyYCiIRuUpwWT+6jWlOw0eqYHKx9xbFHkti7oi1bJt9EGsR7y0K8fHnj3fep+1TzbFdnGKVciiJp14aycxNy40NJyI5ooJIRK7J7Gqm4cNV6fZuc4LK+gFgs9jYMusA80atI+5EksEJjWU2m/nwiQEMH90Xk7+9KrIlWZgwegavfv+ZDogVcTIqiETkhkIrBPDQuBbUf6gyJrO9t+jCkUTmDF/DjnmHsFqK9g/+hxvezc9Tx+Jb1T7EaLLCql820mXUmyRnpxmcTkRulQoiEbkpF1czd/WqRtfRzQgM8wHAmm1j0y/7+XP0euJPJRuc0FiVi5Vm8UcfU6tjdUfbqcAknoqawqG0MwYmE5FbpYJIRG5ZscqBPDSuJXU6VwR7ZxHnDyYwZ9gadi08gtVadLc183B1Y8ZLw+j96kOY63thbe3FkfRzPLlvMotjtxkdT0RuQgWRiNwWV3cXmj5RnS6jmuFf0hsAS5aVDT/uY8G7G0g8m2JwQmO92L47v418l2o+pQFIs2by5pEfGBLxNakZ6QanE5HrUUEkIjlSoloQD7/filoPlHe0nY2KY/bQNUQujcZWhHuLynkW4/vqg+gSfBcApqNZrJi8hg6DX2XP6aPGhhORa1JBJCI55urhQvPeNek0ogl+xbwAyM6wsHZGJIve30TS+VSDExrHy+zOuxUeZ1jp7rj+nozJCmlHU3hm0Gh+XPeX0fFE5H+oIBKRO1aqRggPf9CK6veWdbSd2hPD7DdXs+/v40X2dHiTycRjpe5m5Jv9MAe6AmBLtjJ57I+89M0ULc0XKUBUEIlIrnDzdKXVc7XpMKwxPiGeAGSlW1j9790s+WAzKTFFdwl613ot+PXT9/CvHgiAyQbrZ22l4/AhnE6MNTaciAAqiEQkl5WpE0qPD1pR7Z4yjrYTOy/w+5ur2b/yRJHtLSofXIJFH35E/S61HW2xO2Po/sIbLNu7xcBkIgIqiEQkD7h7u9G6fx0eeL0R3kEeAGSmZrPyy1389dFWUuOK5mord1dXpg18nb5vPAJe9n0LLDFZDB36CROWzDQ4nUjRpoJIRPJM2QbF6fHB3VRpVdrRdmzrOX5/czWH1p4qsr1F/7qnC19OGo57GftEdBvwn+w1jDs2i0xrtrHhRIook62ofke6BREREURERJCcnMzOnTuZNm0a4eHhRscScUpHN51l9fTdpCdmOtoqNClBy2dq4RXgYWAy4ySmp9Lno/c4UioOaz3756C2dzkmVu5NKfcgg9OJFC0qiG5BVFQU/fr1U0EkcofSEzNZM2MPR9ZfPs7C09+dls/WomKTkgYmM9acCxt479jvZNrsvUMBNm/+ZWvLk43vNTiZSNGhITMRyTee/u7c+3ID2r1cHw9fN8BeJC2bvI3ln24nPSnzJnconLqHNuX76i8T5h4MQPKC80x653sGTvuYbIuG0ETygwoiEcl3lZqVoseEuyl/VwlH26G1p/n9zdVEbzlrYDLj1PAuwy81XqXumVK4bEjHZIPNc3bQcejrnIw/b3Q8kUJPBZGIGMI7wIP2gxtwz/N1cfe2b1qYFp/BXx9t5Z8vd5KRkmVwwvzn7+rNtx0Gc1f3etguHp4bvyeWh18cyqLdG40NJ1LIqSASEcOYTCaqtAqjx4S7KVu/mKP9wMqT/P7mKo7vKHo9I64urnzR71VeGPY4eNu/RVtjsxk5/DNGz/7O4HQihZcKIhExnE+QJ/e/3ojW/evg5mXvLUqNzWDJB5tZNW03mWlFbx7NM606MH3KCDzLedsbsmH+v/+mx3tvk5hedM+IE8krKohEpEAwmUxUu6cMPT5oRVidEEd71PLjzH5zNaf2xBiYzhh1wyqxaMrHVGxd3tF2bPVxHnz5VfacjTYwmUjho4JIRAoU31AvOgxtTMvnauHq4QJA8oU0Fo7byNpv95CVXrR6i3w9vPh16Bge+td9YF+YR5o5i3+d+IrVCXuNDSdSiKggEpECx2QyUePecvT4oBUlawQ72iP/OsacYWs4s6/oHYj6VreneP/9l3Gr4EX2o34kkc6LB//N56cWY7FZjY4n4vRUEIlIgeVX3JtObzWh2dM1cHG3f7tKPJvK/Hc3sP6HvWRnWgxOmL/a12zE4k8+pm25ugDYsPHV6aU8t2YKx2KL5nYFIrlFBZGIFGgms4naHSrw8PutKF4t0N5og92LjjJn2BrOHYw3Ml6+83f1ZlKlZ3glrDNmTJBmZfeXO+n54nDm7VhrdDwRp6WCSEScQkApHzqPbEaTJ8JxcbN/60o4ncKfo9ax6ZcoLFlFp7fIZDLxTMl2fFVtAN5LMjHFWrHGZzPm7a94+9fpWK0aQhO5XSqIRMRpmM0m6nauxEPvtaRYpQAAbDbYMe8wc99ay4XDCQYnzF9N/Kry7+ffwKuCDwAmCyyZsZLuY98iLjXJ4HQizkUFkYg4naAwX7qMbsZdvaphdrFv6Rx3Ipk/Rq5jy6wDWLKLTg9JrVIVWDL5Y6q0q+RoO7X+FJ1fGsLGo/sMTCbiXFQQiYhTMruYqf9QZbqNa0FIeT8AbFYb22YfZN6ItcQcSzQ4Yf7xcvfk5yGj6PlCR3C3F4iZp9N54dXxfLZsrrHhRJyECiIRcWoh5fzp9m4LGjxcBdPF3qKY6CT+eGst2+YexGopOr1Fb3R6jAkfDsa1uLu9Id3GjI/m8NznH2hpvshNqCASEadndjXT6JGqdBvTnKCyvgBYLTa2/HqAeaPWE3ei6MynuadaPeZNnUDof50Nt9VylIEHviI2K9nAZCIFmwoiESk0QisG8NDYFtTrWgnTxdPiLxxOYO5ba9n552GsVpuxAfNJMb9AFoz9kFaPNcFa1wNrc082JB3gsb0fszP5qNHxRAokFUQiUqi4uLnQ+LFwuoxuTkAp++orS5aVjT9HMX/0ehJOpxicMH+YzWYmPf0CXw9/k1A3fwDOZsXzzP7PmLR+tpbmi/wPFUQiUigVrxJI9/dbUqdTRbjYW3TuQDyzh61m96Kj2IpIb1Ej/8rMrPkajXztq9As+9P4z7t/0PWdYcSkFJ2J5yI3o4JIRAotV3cXmj5Znc4jmuJfwhsAS6aV9T/sZcHYDSSeTTU4Yf4IdfPnq2oDedyvJa6zkjHZ4OzmM3R+cQhrDu02Op5IgaCCSEQKvZLVg+n+fktq3l/e0XZmXxyzh64m8q/oItFb5GZyYWi1HjzVrxN42LvMss9m8MqQiUxeMsvgdCLGu62C6McffyQmJiavsuSpCRMm8NBDD9GhQwd69+7NmjVrjI4kIvnIzdOVFn1q8uBbTfAt5gVAdoaFtd9Gsuj9TSRfSDM4Yf545YGeTJ44BNcSHvaGDBv/mfIn/zdpLOnZmcaGEzGQyWaz3fKvRm3atMHFxYWmTZvSqVMnmjdvjouLS17myzXR0dGUKlUKd3d39u7dy6uvvsovv/xCQEDATZ8bFRVFv379mDZtGuHh4fmQVkTyUmZaNhv/s499fx93tLl5udDsqRpUu6cMpktL1AqxC8kJ9PlgHGe3nHW0+VT24+sRQ6lWvIyByUSMcVs9RE899RTBwcGsXbuWt99+mx49evDll19y7NixvMqXa8qXL4+7u32zMpPJRFZWFhcuXDA4lYgYwd3LlVZ9a9Nh6F34BHsCkJVmYdW03Sz5cAspsekGJ8x7ob4BzBs9nrZPNcd28ffalENJPPXSSH7fttLYcCIGuK0eIgCbzcaGDRtYuHAha9euJSsrC5PJRO3atenUqRNt27bF09PzjkKlpqbyyy+/EBkZyd69e0lKSmLYsGF07NjxqmszMzOZPn06S5cuJSkpicqVK9O3b18aN2581bUff/wxCxcuJDMzk2bNmvHBBx/c0m+C6iESKbwyUrJY/8NeDqw86Whz93alee+aVGlVukj0Fs3euorxH36LLdGCzcOEdWAgg+t156nirYvE+xeBHBRE/y0xMZGlS5eyaNEiDh48iMlkwsvLi3bt2vHggw9Sq1atHN339OnTPProo5QoUYLSpUuzbdu26xZEo0ePZsWKFfTs2ZMyZcqwaNEi9u3bx5QpU6hbt+5V11ssFrZv387hw4fp2bPnLeVRQSRS+B3beo5V/95NWnyGo61yi1K06lsbN09XA5Plj0PnT9F33PvENbJhq2nvTb8/qD7vlO+Fj8ud/ZIr4gzuqCD6b/v372fBggUsW7aMpKQkTCYT5cqVo1OnTjz66KO3da/MzEySkpIICQlh37599O/f/5oFUWRkJAMGDGDgwIE8/vjjAGRkZNCnTx8CAwP54osvrvsaQ4cOpVu3bjRv3vymeVQQiRQN6cmZrJsRyaG1px1tQWV9af9KQ8cmj4VZttXC56cXM/3MMkdbBZdQXvftQqsqdQxMJpL3cm3ZfbVq1Rg8eDBz5sxh1KhRVK9enejoaL788svbvpe7uzshISE3ve6ff/7BxcWFrl27Oto8PDzo1KkTe/bs4ezZs9d9rsVi4eTJk9d9XESKHk9fd9q+WJ92L9fHzdM+sSbueDJz317DkY1nDE6X91zNLrwc1onJlZ/Fz8UTbDaOzzrK4CEfMWHhL0bHE8lTuboPkc1mY/PmzSxfvpyDBw/m5q2v6cCBA5QpUwYfnyt/c6tRowaAI0NycjJ//fUXqampZGdns3z5crZt20a9evWued8LFy4QFRXl+BMdHZ23b0RECpRKzUrR7d0WBIbZv7dkpVlYNnkbG37ah9VS+I+8aBtYm5+qDyZsvw8uWzMg08avny7iiYmjSc0o/BPOpWjKlYHxkydPsnDhQhYvXkxMTAw2m43ixYvTsWNHHnzwwdx4iWuKiYm5Zk/SpbZLq8hMJhPz589n0qRJ2Gw2wsLCGDFiBFWrVr3mfefNm8eMGTPyLLeIFHyBYb50e7cFq77ezeH19iG0XfOPcP5QAu1eqo93oIfBCfNWOc9i/OehN+mz/z1ObTwFwIG/D9Ph8Kt8MeINapWqYGxAkVyW44IoIyODv//+m4ULF7Jr1y5sNhtubm60adOGTp060bhx4zxfnZCRkYGbm9tV7ZeW12dk2CdH+vj4MGXKlFu+b9euXWnZsqXj4+joaMaOHXuHaUXE2bh5utL2pXqUCA9k/Y/7sFlsnNkby9zha2j3cn1KVg82OmKeCvL2Y87IcYyY9Q1LfliFyQJpR1N4ZtBoXh78BE81v8/oiCK55rYLot27d7Nw4UKWL19OWloaNpuNihUr0qlTJ+6///5b2ugwt3h4eJCVlXVVe2ZmpuPxnAgNDSU0NPSOsolI4WAymaj1QAVCKwawbMo2UuMySI3PYMHYjTR5IpzaHSsU6qXpZrOZcb360jS8JuM+mI41PhtbspXJY39k4yN7mdz7RcxmnQIlzu+2CqL/+7//4/jx49hsNry9venUqROdOnWiZs2aeZXvhkJCQjh//vxV7ZeOF1FRIyK5pUS1ILq/15K/p27ndGQsNquNDT/u49zBeO7uVwd3r8K9NL9rvRbU/bQSz419n8R98ZhssO63LXSMGsIPI0ZS3CfQ6Igid+S2yvpjx45Ru3Zthg4dypw5c3j99dcNK4YAqlSpwokTJ0hJSbmiPTIy0vG4iEhu8QrwoOOwxtTtUsnRdmT9Gf4YsZa4k8kGJssfFYJLsujDj6jfpbaj7UJKIs8e+pwDaacMTCZy5277cNdPP/2Ujh073vFu1LnhnnvuwWKxMG/ePEdbZmYmCxcupGbNmpQoUeKO7h8REcHQoUOZOnXqnUYVkULC7GKmyePhtB/cELeLvUIJp1L44+21jsnXhZm7qyvTBr5O3zcewVTKjeyevhzPusBTe6cwP2az0fFEcuyON2bMyspi8+bNHDt2jPT0dHr37g3YJzSnpqYSEBCQo/Hl33//neTkZGJiYpg7dy6tW7d2rArr0aMHvr6+AIwaNYqVK1fSq1cvwsLCWLx4MXv37mXSpEnUr1//Tt6agzZmFJFrSTidQsTkbcQdT3K01epQnqZPVMfsWvjn1RxLO88bR39gb+oJR1snaz2G1+2Fr4eXgclEbt8dFUSrV69m4sSJxMfHY7PZMJlMrFixArAPWz3//PO89dZb3Hff7a9E6NWrF2fOXHsjtJkzZ1KqVCnAXnhdOsssOTmZSpUq0bdvX5o0aZLTt3UVFUQicj3ZGRZWT9/NwdWXh4xKVAui3aD6+AQZ35Oe1zKsWYw/PpvZFzZAihW3zxPwCvTksxGvUzes0s1vIFJA5Lgg2rVrF4MGDSIkJITHHnuMyMhIli1b5iiIAJ588kkqVqzo9EvWVRCJyI3YbDb2Rhxj/fd7sVrs31I9/d1p93J9Ste8+a77hcGcCxt4b9y/Icq+yhdvMy+88ih9WnUwNpjILcpxn+53332Hr68v06ZNo0ePHpQpU+aqa8LDwzl06NAdBRQRKehMJhM17ytP51HN8Amx9wqlJ2ay6L1N7PzzMLl0ZGSB1j20KWOe64c5+OJqu1Qrn77/MwOnfUy2JdvYcCK3IMcFUWRkJK1atSIwMPC61xQvXpzY2NicvoThNKlaRG5H8SqBdB/XkrA69l4hm9XGxp+jiJi8jczUq/dMK2w61m7C7E/HE1jLvmGlyQab5+yg49DXORl/9RYpIgVJjguirKwsvL29b3hNcnKyU29Y1r59e8aPH89LL71kdBQRcRKe/u488GZjGnSv7GiL3nSWuW+vJfa/Jl8XVmGBxVg0fgKNHqqH7eK3//g9sTz84lAW7d5obDiRG8hxQVS6dGn27dt3w2v27NlDuXLlcvoSIiJOyWw20ahnNe5/vRHu3vYhpMQzqcwbuY6Dq08anC7vubq48mX/V3l+6GPgbf8xY43NZuTwzxgz93uD04lcW44LojZt2jiO8biWn3/+mSNHjtCuXbschxMRcWblGhSn+3stCangD9hXpK34fCdrvt2DJcticLq89+zdHZk+ZQQeZS+OJmTDnHPrGRP9KxnWwj+EKM4lx6vMUlNTGThwINHR0TRs2JDMzEx2797No48+yp49e9i9ezdVqlTh888/dxy26qy0ykxE7kR2poW1MyLZv+Lyfj3FqgRw76AG+IYU/v16kjPSeHbS+xxMPoOlu30PuZreZZhYqQ9hHoX7gFxxHne0D1FSUhKTJk1i+fLlWK3Wyzc1mWjbti2vvvoqfn5+uRLUSCqIRCQ3RC0/ztoZkViy7N8vPf3caPtifcLqFI1zF/84v5H3jv9Ous3eO+Tv4sVgj448XKOVwclEcmGnaoCEhAT27dtHYmIiPj4+VK9eneBge9VvsVhwcXG546BGiIiIICIiguTkZHbu3KmCSETu2IXDCURM2Uby+TR7gwka9axK/a6VMZmddxHKrdqfeorXDs/gWMYFTHsycJ2ZTIPOtfm832DcXAv3AblSsOW4IJo9ezYPP/zwDa+xWCyMHj2aMWPG5ChcQaEeIhHJTenJmfzz+U6Ob7+8FL1cw+K0GVAXD183A5PljyRLGm9s+5ZN4zZiyrD/CAqoEcg3bw2nXPCdnUEpklM5nlT9ySefXLEr9f+yWq2MHj2alStX5vQlREQKJU9fd+4f0ohGj1SFi51Cx7aeY+7ba4g5mmhsuHzg5+LFpw3+RfMuDRxL8xP2xtPzpeH8uXOdseGkyMpxQVSnTh3Gjh3L1q1br3rsUs/QP//8Q/fu3e8ooIhIYWQym2jwcBU6vHGXo1co6Vwa80atY/8/J27ybOfn4uLC1GcH8crbT2Hyvbg0Py6b0W99ydu/Tr9iXqpIfshxQTR+/HjKli3L22+/zYEDBxztVquVsWPHsmLFCh566CEGDRqUK0FFRAqjMvWK8dC4lhSrFACAJcvKyq92sWrabrIzC//S/Kea38e3U0bhVcEHAJMFlsxYycNj3yY+LdngdFKU5Lgg8vHxYeLEifj6+vL6669z6tQpbDYbY8aM4e+//6Zbt24MHjw4N7OKiBRKfsW86DyqKdXvLetoi1p+nPmj15N0PtXAZPmjVqkKLJ70MVXaVXK0nVx/kk4vvcbmY1EGJpOiJMcFEUBISAgfffQRVquV1157jVGjRrF8+XI6d+7Mq6++mlsZRUQKPRc3F1o9V5s2A+ri4mb/1nzhSCJz31rL8R2F/xwwbw9Pfh4yip4vdAR3+8SijPgMBh2ezor4PQank6IgV5bd79u3j1deeYX09HQ6derE66+/nhvZDKdl9yJihJjoRJZN3kbi2Yu9QyZo0L0KDR+uUiSW5q/Yv4Nh739KWgcPbFXsG/sOLPUA/yp1v1OfjykF2y0XRDNmzLjh4zt27ODgwYN0794ds/lyx5PJZKJ37953FNJoWnYvIvktIyWLf77cybEt5xxtZeqFcs/z9fD0c+7d/29FQmYK7x6fxV/xOxxtj4W05PWy3XB10X5FkvtuuSBq06ZNzl7AZLrh8nxnoIJIRIxgs9rYOf8wm2fu59J3at9QL+59pYFjEnZhZrPZmHF2OZNPzgebDZe5KZRxDWbmW6PxcvMwOp4UMrdcZk+ZMiUvc4iIyP8wmU3U61qZ0EoBLP90B+mJmSRfSOPPd9bRondNwtuVLdRDSCaTiWdKtiPEzY/RX03HvDWD05ym21tD+W30uwR4+RodUQqRXJlDVNiph0hEjJYSk8ayKds5dzDe0Va1dRgtn62Fq7tzHo90O6ZGzOG7T+ZiyrZ/7FPZj5nvvUsJvyBjg0mhcVurzPr378+PP/7IkSNH8iqPiIhcg0+IF51GNqXmA+UdbQdWnmTeqHUknk0xMFn+eKl9dwYNe8qxAi3lUBI9XhvG4QunDU4mhcVtFUQZGRlMmzaNZ555hscff5zPPvuMHTt2oE4mEZG85+JqpkXvmrR9sR6uHvZeodjoJOa+tZboLWcNTpf3/q/5fYwY3R+87T+6Mk6k8eRrI9l18rDByaQwuO0hs1OnTrFq1SrWrFnDrl27sNls+Pv706JFC1q2bEmTJk3w8Chck900ZCYiBU3ciSQiJm0j4fTl3qF63SrTqGdVzIV8af4/+3fw+sgp2BLtO3mbA1z5eOxgWlaubXAycWZ3NIcoISGBtWvXsnr1ajZv3kx6ejoeHh40atSIu+++mxYtWhAYGJiLcY2hgkhECqLM1CxWfr2Loxsv9w6Vrh1C2xfr4eVfuH4x/V/bjx9kwPDxWGKy7A0+ZsaNeYH7a9xlbDBxWrk2qTojI4NNmzaxevVq1q9fT1xcHGazmVq1atGqVStatmxJ2bJlb36jAkQbM4pIQWez2di18Cibfo7CZrV/O/cJ9uTeVxpQvEqgseHy2MHzJ+k9bAyZp9KxFXPBvV8xptbrTyO/ykZHEyeUJ6vMbDYbu3fvdgytnThxwqn3I1IPkYgUdKf3xvL31O2kxWcAYHYx0ezpGtRoX65QL80/FR/D/00Yy4V7rRDggofJlYmV+9A6oKbR0cTJ5Muy+6NHj7JmzRqefPLJvH6pPKGCSEScQWpcOss+2c7ZqDhHW+WWpWn1XC3cPAvv7s5p1kyGHJrB6sR9ALhiZlTZR+lavLHBycSZ5Phw10cffZRZs2bd8JrZs2fz2GOPUaFCBacthkREnIV3kCed3mpC7QcrONoOrTnFvFHrrph8Xdh4md2ZXPlZOgQ1ACA708LokV/y5k9fGZxMnEmOC6IzZ86QnJx8w2uSk5M5c+ZMTl9CRERuk9nVTLOnanDvoPq4edqX5scdT2bu22s4srHwfj92M7vyXsUn6RHUDNefkzAfy+bvH9cy4OuPsFqtRscTJ5DjguhWpKSk4ObmlpcvISIi11CxaSm6jW1BYJj9eIusNAvLJm9jw0/7sFoKZ4HgYjLzdoVHqFetiqNty9ydPDVpLNmWbAOTiTO4rUHl7du3X/HxmTNnrmoDsFqtnDt3jr/++svpVpaJiBQWgaV96fZuc1ZN283hdfYdnXfNP8L5Qwm0e6k+3oGFb2m+2WzmmxeH8orfp6yZuQmAA8sO0SNlBDOHj8bT1d3ghFJQ3dak6jZt2tzyagWbzYbJZGLYsGE88MADOQ5YEGhStYg4M5vNRuTSaNb/uA+bxf4t3zvQg3aDGlAyvPCeBfbO7zOY/81yTBd/ygXXCeG30WPx9/Q2NpgUSLfVQ9S7d29MJhM2m43vvvuO+vXrU79+/auuM5vN+Pv706BBAypUqJBLUUVEJCdMJhO1HqhAaMUAlk3ZRmpcBqnxGSwYu4GmT4RTq0OFQrk0/50efQj08+PHqfMwWSB2Vwzd3nyTX8e+SzG/QKPjSQGT42X3gwYNomPHjnTo0CG3MxU46iESkcIiLSGDv6du53RkrKOtYrOS3N2vDu5ehXNp/ow1S/hsws+Qaf9x51HWm58+GE25wOIGJ5OCJMeTqvv27cvBgweJiYm55uMXLlzg008/Zc+ePTkOZ7SIiAiGDh3K1KlTjY4iIpIrvAI86DisMXW7VHK0HVl/hnkj1xJ38sYrh51Vn5YP8NY7fcHL3guW5p3Fy8e+4WxmvLHBpEDJcUE0c+ZM1qxZQ0hIyDUfDw0NZe3atfz66685Dme09u3bM378eF566SWjo4iI5Bqzi5kmj4fTfnBD3C72CsWfTOGPt9dyeP1pg9PljYfqt+KD9wbhVteH7Ef9OJJ1jj5RU4lOP290NCkgclwQ7du3j7p1697wmnr16hEZGZnTlxARkTxUoXEJHhrbgqCyfgBkZ1j4+5PtrPs+Emt24Vua3y68Ab+OfpeyvqEAnMqMo0/UVCKTjxucTAqCHBdE8fHxhIaG3vCa4OBg4uLibniNiIgYJ6CUD93GNKdKq9KOtj2Lo1kwdiMpcekGJssbZTxC+Db8Jap6lQIg9kICfV58h183rzA2mBguxwWRr68v586du+E1Z8+excvLK6cvISIi+cDVw4U2A+vS8tlamF3t82zO7o9jzrA1nIq89jxRZ1bMzZ9vqr1ALWsYbjMSsZ3LZsK73zLtn/lGRxMD5bggqlmzJitXruTs2bPXfPzs2bOsWrWK2rVr5ziciIjkD5PJRI325eg8shk+IZ4ApCdmsui9Tez88zD5cA54vvJ39WZqzX4EFPO3N2TBVxN+48MFvxgbTAyT44KoV69eZGRk8MILL7B48WIuXLgA2FeXLVq0iOeff57MzEweffTRXAsrIiJ5q3iVQLqPa0lYHfuCGZvVxsafo4iYvI3M1CyD0+WuEB9//nz/A4o1sC+/N1nh188XMXzmvw1OJkbI8T5EAL/99huff/654zeHS5s2Xvr/l156iYcffjh3khpI+xCJSFFjtdrY9vsBts055GjzL+lN+8ENCb44CbuwyMzO5vEP3+HY6suTq5s8XJ+pzw7CbM7TIz+lALmjggjg0KFD/PHHH+zbt4/k5GR8fX2pUaMG3bp1o1KlSje/gRNQQSQiRdWxbedY8dkOMlPth6O6erjQ6rlaVGkVZnCy3GW1Wnnm0/FELo5ytFW/vyrfvTxcRVERcccFUVGggkhEirKkc6lETN5GzNFER1vN+8rR9P9q4OJauIqFl7/9hHW/bXF8XKZFGWYOewd3FzcDU0l+KFx/k0VEJNf5FfemyzvNqHZPGUdb5F/HmD9mPckxaQYmy32fPPMyHZ5pje3i0W7RrjEMPfojmdZsY4NJnlNBJCIiN+Xq7kLr/nW4u19tXNzsPzrOH0xg7vA1nNx1weB0uevdns/x+EudsDX3wtLei2Xxu3jp4L9JtWQYHU3ykAoiERG5ZeFty9LlnWb4FrPvMZeelMWi8ZvYNvcgNmvhmYHxWodeTHn5FTxdPABYn7Sf/ge+ID6rcJ73JppDdEMRERFERESQnJzMzp07NYdIROSi9ORM/vl8J8e3Xz4LrFzD4rQZUBcP38Iz32ZH8lFeODiNJEsapqNZeC/JZPqYt6hRspzR0SSXqSC6BZpULSJyNZvVxva5h9jy+wG4+JPEr7gX7V9pSEgFf2PD5aL9qafo/88nJH99BlOGDXOQK1PHvU6TCtWNjia5SENmIiKSIyaziQYPV6HDm3c5eoWSzqUxb9Q69v9zwuB0uaead2km1OiDi48LANa4bF584wMiIrfc5JniTFQQiYjIHSlTtxgPjWtJsUoBAFiyrKz8aherpu0mO9NicLrc0bhCdWZMHIVrCfucIluylWFvT2XWln8MTia5RQWRiIjcMb9iXnQe1ZTq95Z1tEUtP8780etJOp9qYLLcU6NkOX79eCye5bztDek2PhjzLf9eudDYYJIrVBCJiEiucHFzodVztWkzoK5jaf6FI4nMfWstx3ecv8mznUPZoOLMmTgev2r23jCybHw5YSYfLZppbDC5YyqIREQkV1VtHUbXMc3xL2HvSclIzmLJh5vZ+vuBQrE0P9Q3gHkffEBo/WIAmCzw86cLGfnbNwYnkzuhgkhERHJdSHl/uo1tQblG9pPkscHW3w+yZMJm0pMyjQ2XC3w9vJgz5j3KtLi8e/efKVv49szfBqaSO6GCSERE8oSHjxv3DW5I48eqYbp4FMaJHReY+9ZaLhxOMDZcLvB0def34e9S/f5qWLr4YK3jweST85l8Yj7a0cb5qCASEZE8YzKbqNe1Mh2HN8HT3x2A5AtpzHtnHfv+Pu70hYPZbOb7QcN5sdvDjrZvz/7Nu8d+I9taOFbYFRUqiEREJM+VrhVC9/daUrxqIADWbBur/72blV/tcvql+SaTiedKteetco9gwt4VNmfRCrqOHEpqRrrB6eRWqSASEZF84RPsSacRTan5QHlH24GVJ5k3ah2JZ1MMTJY7ehVrwfiKT+G6KxOXP1M4v/UcXYa9SUxKotHR5BaoIBIRkXzj4mqmRe+atH2xHq4e9p2fY6OTmPvWWqK3nDU43Z3rENyAARU7YHK1f5y4L57urw/lZHzh2HagMFNBJCIi+a5yi9J0e7c5AaV8AMhMzeavj7ayaeZ+rE6+NL9fm868PuIZ8LQPn6UdTaHna28Rdfa4wcnkRlQQiYiIIYLK+NHt3eZUaFLC0bbjj0MsHr+JtMQMA5PduV533cO4d1/A5Gv/MZt1OoPer41mc/R+g5PJ9aggEhERw7h7u3HvoAY0ebI6JrO9R+XU7hjmDl/LuYPxxoa7Q/fXaswn41/HHGQfP7PEZvH8G+P5O2qbwcnkWlQQiYiIoUwmE3U7VeTBt5rgFWg/PDUlNp35o9cT+Ve0Uy/Nb1apJt9MGIFrcfuWA7YkC28On8KcbasNTib/SwWRiIgUCKVqBNN9XAtKVg8CwGqxsfbbSFZ8vpOs9GyD0+VcrdIV+Pnjd/Eoaz/KxGaF8afmsD5Rw2cFicnmzKV3HouIiCAiIoLk5GR27tzJtGnTCA8PNzqWiEihZs22smnmfnYtOOJoC60UQIc37nJs7uiMzifF89joUcQ0t2Kr4IabyYXxFf+P9kF1jY4mqCC6JVFRUfTr108FkYhIPjqy4TQrv9pFVrp948bAMB86Dm2MT4iXwclyLsOaxZtHfmB5/G4AzJgYUa4nDxdrZnAy0ZCZiIgUSBWblqLrmOZ4B9nnFcWfTOHP0RtIOO28mzh6mN2YWKk3XUMaA2C1WRn72Te88t2nBicTFUQiIlJgBZXxo8uoZviXsM+/Sb6Qxp+j1xNz1Hl3f3Y1uTC6/KM8Vbw1LhFpuGzMYM3MTTz76XisVqvR8YosFUQiIlKg+RX3pvOoZgSX8wMgPTGTBWM3cGZfrMHJcs5sMjOkTDeaBFdztO1auJdHP3iHzGznnUDuzFQQiYhIgecd6EGnt5tSvFogYN/ZetH4TRzf7rxHYphMJr7s/yrtnmrhaDu6Kpru7wzXobAGUEEkIiJOwcPXjY5DG1OmbigAlkwrSz/awqG1pwxOdmc+eOJf9Bh4P7aLP5HPbT1L1+FDiUtNMjZYEaOCSEREnIabpyv3DWlExWYlAbBZbCz/bAd7I44ZnOzODO3yJH1f6wEXD4VN2BtHt9eHcio+xthgRYgKIhERcSourmbavlif6u3K2htssOabPWyfe8ipd7Ue0LYrr73VGzwuHgp7JJmeQ4Zz8PxJg5MVDSqIRETE6ZjNJlo+V4t6XSs52jb/up+NP0U5dVH0WNN2jHl3IPjYfzxnZGTy8qHpnMxw3gnkzkIFkYiIOCWTyUTjx8Jp/PjlDXN3LTjCqmm7sVqcd/l6x9pNmfLBEFzLe5LVx5+TbvH0iZrKobQzRkcr1FQQiYiIU6vXpRKt+tXGZB9pYv+KE/z9yXYsWRZjg92BFpVqMXvy+1QsWQqAc1kJPBv1GbtTnHuuVEGmgkhERJxe9bZlafdyfcwu9qro6KazLJmwxakPhS3lEcw31V6kpncZAOLTk3n27bH8sG6pwckKJxVEIiJSKFRsWor7X2+Eq4cLAKd2x7DwvY2kJ2canCzngt18mVbteRp5VcR1ZhK2qAw+ee8/TP1rttHRCh0VRCIiUmiUqVuMjsMa4+5tX79+/mACC8ZsICXOeTc69HXxZFKlZwlxs+/UjQW+m/wH78753thghYwKIhERKVRKVAui88hmeAXaD4WNO5HMn++sJ/Gs8x4KG+Dpwx/jxlOqsX1OkckG86Yt47UfPjc4WeGhgkhERAqd4HL2Q2H9inkBkHw+jT9HbyDmmPMeCuvl5sHskWOp3Laio23lzxt47vMPdChsLlBBJCIihZJ/CW86v9OMoLK+AKTFZ7BgzAbO7o8zOFnOubq48tNrI2nQpbajbef8SB6fMIZsi/NOIC8IVBCJiEih5RPkSacRTSleJRC4eCjs+5s4scN5D4U1m818PfB12jzZzNF2+J8jdB/9FmlZGQYmc24qiEREpFDz9HWn4/DGhNUJASA7w8LSiVs4vP60wcnuzMQnB/LQv+5zHAp7Kj6G1w59R7rVeVfVGUkFkYiIFHpunq7cP6QRFZqUAMBqsfH31O3s+/u4wcnuzFvdnuKZwd2hkjvZj/uxJmUfzx/4miRLmtHRnI4KIhERKRJc3Fxo93IDqt1j3+gQG6z+9252zDtkbLA79MK9D/HZe2/g4+kJwJbkw/SN+pyYrCSDkzkXFUQiIlJkmM0m7u5XmzqdL6/U2vTLfjb+vM+pD4Vt4l+Vf1d7niBXHwD2nTlG19ffZOfJwwYncx5FoiDKzMxk/PjxPPLII3To0IEBAwawe/duo2OJiIgBTCYTTZ+oTuPHqjnadv55hNX/3oPV6rxFUU2fsnwb/iLFMv1w+y6JzP0p9B0yltUHdxkdzSkUiYLIYrFQsmRJPvvsMxYuXEjPnj0ZNmwYqampRkcTERGD1OtamZbP1YKLh8JGLT/O8qnbsWQ7754+FT1L8FG5p3G12Y8vsSVYGDzsYxbsXG9wsoKvSBREXl5e9OnThxIlSmA2m7n33ntxdXXl+HHnnkwnIiJ3psa95Wj7Yn1MFw+FPbLhDEud/FDYemGV+c9Ho3EPs88pIsXKO6O+5KcNy4wNVsAVyIIoNTWVb775hiFDhtCpUydat27NokWLrnltZmYmX3zxBd27d6d9+/b861//YtOmTTe8//Hjx0lKSiIsLCwv4ouIiBOp3LwU9w9phIu7/UfiyV0XWPT+JjKSswxOlnOVi5Vm1kfv413JviklGTYmjfuez5f9YWywAqxAFkQJCQnMmDGD6OhoqlSpcsNr33//fX799Vfuu+8+Xn75ZcxmM2+88QY7d+685vUZGRmMHTuWJ598El9f37yILyIiTqZsvWJ0HNbEcSjsuQPxzH93A6lOfChsKf9g5n44nsCaQfaGbPhm0mzem/ejscEKqAJZEIWEhDBnzhx+++03Bg4ceN3rIiMjWbZsGf379+f555+na9euTJ48mZIlS/LFF19cdX12djYjR44kLCyMPn365OE7EBERZ1MyPIhOI5riFeAOQNzxJP4cvZ7Es8473zTI2495739AybtKAmCywpwv/+L1/3xpcLKCp0AWRO7u7oSEhNz0un/++QcXFxe6du3qaPPw8KBTp07s2bOHs2fPOtqtVitjx47FZDIxfPhwTCZTnmQXERHnFVLen84jm+Ebaj8UNulcGvNHryf2uPPu6ePl5sGcUeOo2KaCo23Z0W18eWqJU281kNsKZEF0qw4cOECZMmXw8fG5or1GjRoAHDx40NE2ceJEYmJiGD16NK6urje874ULF4iKinL8iY6Ozv3wIiJSIAWU8qHLO80IDLNPq0i9eCjsuQPOfSjsL6+Pom7nmlgaeWB5wJsvTi/hwxNzsdqcd1VdbrpxZVDAxcTEXLMn6VLbhQsXADhz5gzz58/H3d39it6kDz/8kHr16l31/Hnz5jFjxoy8CS0iIgWeT7AnnUc2ZckHmzl/OIGMlCwWvreJ+15tSFidUKPj5YjZbGb682/y/ZkVfHRyHgA/nVtFUnYa71R4FFeTi8EJjeXUBVFGRgZubm5Xtbu7uzseByhZsiQrV6685ft27dqVli1bOj6Ojo5m7Nixd5hWRESciaefOx3fakLEx1s5tSeG7AwLSyZspu2L9anYpKTR8XLs6ZL3EODqzTvRM7FiY/72dWyZvpWZb43G38vn5jcopJx6yMzDw4OsrKuXRWZmZjoez4nQ0FDCw8Mdf8qXL39HOUVExDm5e7ly/+uNKH/XxUNhs238PWUbUSucex+7bqFN+KhyH9zO2nD9IYkLW8/T9Y03OZvkvMOCd8qpC6KQkBBiYmKuar/UFhrqnN2aIiJScLi6u3DvoPpUbW3fu85mg1Vf72bngiMGJ7sz7QLrMCjoQUwXpxClHEqix2vDOBJz2thgBnHqgqhKlSqcOHGClJSUK9ojIyMdj4uIiNwps4uZ1v3rULtjBUfbxv/sY9PM/U69Uuv/mt/H2+/0Ay97OZBxIo0nXhvJriJ4KKxTF0T33HMPFouFefPmOdoyMzNZuHAhNWvWpESJEnd0/4iICIYOHcrUqVPvNKqIiDg5k9lE06eq06hXVUfbjj8OseYb5z4Utlv9lkx8/xVM/vZJ1dnnMuk7ZBxrD+8xOFn+MtkKaGn7+++/k5ycTExMDHPnzqV169ZUrWr/S9ijRw/HLtOjRo1i5cqV9OrVi7CwMBYvXszevXuZNGkS9evXz5UsUVFR9OvXj2nTphEeHp4r9xQREecV+Vc0a2dEwsWfoJWalaLN83VxcXXefoatxw/y/PDxWGIuzs31MTNm1EA61m5ibLB8UmALol69enHmzJlrPjZz5kxKlSoF2FeSTZ8+naVLl5KcnEylSpXo27cvTZrk3hdQBZGIiPyvg2tO8c+XO7FZ7D9Gy9QrRvtXGuDq4bzL1/efO0GfYe+SdfrikSUeJoYM682jTdoaGywfFNiCqCBRQSQiItdybNs5lk3ehiXLPjO5RLUg7n+9ER4+V28J4yxOxcfw2FsjSTuSbG94xJ+PegykdUBNY4PlMeft2xMRETFYuQbF6TisMW5e9m39zu6PY8HYDaQmZBicLOdKB4bwx4TxBNQIIruTN5n13Bh88BsWxW41OlqeUg/RDURERBAREUFycjI7d+5UD5GIiFzThaMJLB6/mfRE+z54/iW86Ti8MX7FvA1OlnMZ2ZmMOPYLS+K2A2DCxPByD9OrWMsbP9FJqSC6BRoyExGRm0k4ncKi9zeSfME+/8Y72IOOQxsTVMbP4GQ5Z7FZef/YbH67sBYA85Z0mlGFz/q+gtlcuAaZCte7ERERMUhAKR86j2pGQGn78RepsRnMH7OB84fijQ12B1xMZt4q14O+Jdtj2pOByx8pbJ67g/+bNA6LxWJ0vFylgkhERCSX+IZ40XlkU0Ir+gOQkZzFwnEbObXn6lMVnIXJZOKlsAdpSw1MF8eU9i87SI9xI0jPzjQ2XC5SQSQiIpKLvPw9ePCtJpSsEQxAVrqFxR9s4uimswYnuzOTnn6RB5+7B5vJ/vHJ9Sfp9vYwEtNTjQ2WS1QQiYiI5DJ3bzc6vHkX5RoVB+yHwi6bvJX9K08YnOzOjO7xDE+93Bnbxa2WYndeoNubb3I+Kd7QXLlBBdEN6OgOERHJKVd3F9q/0oAqrUoD9kNhV365i92LnPtQ2Fce6MkLbz4O7vauouQDiXQfMoxjsc7dA6ZVZrdAq8xERCSnbFYb637YS+SSaEdbg+6VafhIVUwmk4HJ7sycrat4b9x0SLOXEa4lPPj3e8OpVaqCscFySD1EIiIiechkNtH86Ro07FHF0bZtziHWzYjE5sSHwnZveDcfvDcIk599/CwrLoNB2//NsfTzBifLGRVEIiIiecxkMtGwR1WaPV3D0Rb51zFWfL4Da7bVwGR3pl14Az7/cCguxd3JftKf88VT6RP1KVGpJ42OdttUEImIiOST2h0q0GZgXUxm+1DZobWn+WvSVrIznXdPn7vKV2PulxOoUqscADHZSTy3/zO2JTvXXCkVRCIiIvmo6t1htB/cABc3+4/g49vOs3j8JjJTswxOlnMlPQOZXu156vqUByApO43+Uycw7Z/5Bie7dSqIRERE8ln5RiV44M27cPOyz785sy+OBWM3kubEh8IGuPrwVdUBNPcPx7w8DVal8NWE35iw8Bejo90SFUQ3oGX3IiKSV0rXDKHTW03x9HMDIOZoIvPHbCD5QprByXLO28WDyRWfoVS8/fw2kxVmfraIt3+dbnCym9Oy+1ugZfciIpJX4k8ms+j9TaTE2g+F9Qn2pOOwxgSG+RqcLOcys7N57IN3OL7muKOtSY8GfPrsoAK71YB6iERERAwUGOZLl3eaEVDKfihsSmw688es58LhBIOT5Zy7qyuzho2hxgPVHG0bf99G7ynvYbUWzFV1KohEREQM5htqPxQ2pIL9UNj0pCwWjNvAqUjnPRTWbDbz/aC3aPZIQ0fb3qX7eeS9EWRmZxuY7NpUEImIiBQAXgEedHq7CSWrBwGQlWZhyQebid7i3EdiTH12EB2eae04FPb42hN0GzmU5IyCNVdKBZGIiEgB4e7tRoehjSnboBgAliwrEZO2cWCV8210+N/e7fkcj73woONQ2PPRMby8exqploKzqk4FkYiISAHi6u7CfYMbUrlFKcB+Fto/X+xkz5Kjxga7Q0MefJQBrz8KIS5k9fFnC0f514EvSchOMToaoIJIRESkwDG7mrnn+XrUvK+co23dd3vZ+vsBnHlxeN/WD/LF1OH4FbOvoNuZEs2zUZ9xPivR4GQqiERERAokk9lE8z41adC9sqNt6+8HWf/9Xqc+FPauwCp8U+0FQlztexUdTDrNw+++xaajUYbmUkF0A9qYUUREjGQymWjUsxrN/q+6o23Pkmj++XKnUx8KW827NDPCX6SUSxCuvyWRvjmR11ZO40DaKcMyqSC6gfbt2zN+/Hheeuklo6OIiEgRVrtjRVr/qw6X9jQ8uPoUEVO2OfWhsOU8i/FJmWdwjzWT/aA3ibVsHE47Z1geFUQiIiJOoFqbMtz7SkPMrvaq6NiWcyz5cLNTHwpbLbQMcz/9gFrtw3mrXA8eCK5vWBYVRCIiIk6iQuMSdHizMW6e9vXrpyNjWThuI2mJBWf5+u0q4RPEjPCX6FmshaE5VBCJiIg4kdK1Qug4vAkevvZDYS8cuXgobEzB2ujwdriaXIyOoIJIRETE2RSvEkjnkU3xDvYAIOFUCvNHryfhdMHY08cZqSASERFxQkFl/Ogyqhn+JbwBSL6Qzp+j13PhqPMeCmskFUQiIiJOyq+YN53faUZwefuePumJmSx4dyNn9sUanMz5qCASERFxYt4BHnR6uyklql06FDabRe9v4tg245awOyMVRCIiIk7Ow8eNjsMaU6be5UNh//p4KwfXGLfRobNxNTpAQRYREUFERATJyclGRxEREbkhVw8X7nutIf98vpPD609js9hY8fkOMlOzqHlfeaPjFXgmmzOfEpdPoqKi6NevH9OmTSM8PNzoOCIiItdltdpY++0e9i077mhr1LMq9R+qjOnSVtdyFQ2ZiYiIFCJms4mWz9aiXrfLh8Ju+e0AG37c59SHwuY1FUQiIiKFjMlkovGj1WjyxOVRjd2LjrLy611YLc57KGxeUkEkIiJSSNXtXIm7+9V2HAp7YOVJlk3Z7tSHwuYVFUQiIiKFWHjbsrQb1MBxKGz05rMsnbCFzLRsg5MVLCqIRERECrmKTUrywOt34ephPzPs1J4YFo3bSHpSpsHJCg4VRCIiIkVAWJ1QHnyrCR4+9kNhzx9OYP6YDaTEphucrGBQQSQiIlJEFK8SSKeRTfEOtB8KG38ymT/f0aGwoIJIRESkSAku60fnUc3wK+4FQPKFNOaPWU9MdKLByYylgkhERKSI8S/hTZdRzQgqaz8UNi0hkwXvbuBMVJzByYyjgkhERKQI8g7ypPOIphSvGghAZmo2i97fyPEd540NZhAVRCIiIkWUh6/9UNiwOqEAWDKtLJ24hUPrThucLP/pcNcb0OGuIiJS2Ll5unL/kIas+HwnRzacwWaxsfzT7WSmZlHj3nJGx8s3Otz1FuhwVxERKeysVhtrpu8mavkJR9tdj1ajXtdKReJQWA2ZiYiICGaziVZ9a1O3S0VH2+aZ+9n4UxRFoe9EBZGIiIgA9kNhmzxencaPVXO07VpwhFXTdmO1Fu6iSAWRiIiIXKFe18q06lsbLo6U7V9xgr8/2YYlq/AeCquCSERERK5SvV1Z2r1UH7OLvSo6uvEsSyduISu9cB4Kq4JIRERErqlSs1LcP6SR41DYk7tiWPjeRtKTC9+hsCqIRERE5LrK1CtGx2GNcfe279Rz/mACC97dQEpc4ToUVgWRiIiI3FCJakF0GtkUrwB3AOKOJzP/nfUkni08h8KqIBIREZGbCinnT+dRzfAtZj8UNul8Gn+O3kDssSSDk+UOFUQiIiJySwJK+tgPhS3jC0BafAbzx6zn7H7nPxRWBZGIiIjcMp9gTzqNaEqxygHApUNhN3Fip3MfCquCSERERG6Lp587D77VhNK1QgDIzrCwdMIWjmxw3kNhVRCJiIjIbXPzdOWBNxpRoXEJAKwWG39/sp19y48bnCxnVBCJiIhIjri4udDu5fpUaxMGgM0Gq6ftZsefhw1OdvtUEImIiEiOmV3M3N2/DnU6XT4UdtPPUWz82bkOhVVBJCIiInfEZDLR5Ilw7up1+VDYnX8eZs30PU5zKKwKIhEREbljJpOJ+g9VpsUzNR2Hwu77+zjLp27Hkm01NtwtcDU6QEEWERFBREQEycnJRkcRERFxCjXvK4+HjxsrvtiJzWLjyIYzZKVlc+8rDXDzLLhlh8nmTAN8BomKiqJfv35MmzaN8PBwo+OIiIgUeMe3nSNi8jYsWfbeoeLVAnlgyF14+LoZnOzaNGQmIiIiua5sg+JXHAp7bn8889/dQGp8hsHJrk0FkYiIiOSJktWD6fR2Uzz9Lx0Km8T80etJOpdqcLKrqSASERGRPBNSwZ8uo5rhG2o/FDbxbCp/vrOeuBMF61BYFUQiIiKSpwJK+dBlVFMCw3wASI3PYP6YDZw7GG9ssP+igkhERETynE+IF51HNCO0kv1Q2IzkLBaO28jJXRcMTmangkhERETyhae//VDYUjWDAfuhsEsmbObIxjMGJ1NBJCIiIvnI3cuVB964i/KNigNgzbbx95RtRK0w9lBYFUQiIiKSr1zdXbj3lQZUbX35UNhVX+8marlxRZEKIhEREcl3ZhczrfvXoVaH8gB4B3tQunaIYXkK7h7aIiIiUqiZzCaa/V8NfII8KdugGH7FvA3LooJIREREDGMymajbpZLRMTRkJiIiIqKCSERERIo8FUQiIiJS5KkgEhERkSJPBZGIiIgUeSqIREREpMhTQSQiIiJFngoiERERKfJUEImIiEiRp4JIREREijwVRCIiIlLkqSASERGRIk8FkYiIiBR5Ou3+FmRkZAAQHR1tcBIRERG5XeXLl8fT0/OG16ggugVnzpwBYOzYsQYnERERkds1bdo0wsPDb3iNyWaz2fIpj9OKj49n48aNlCpVCnd3d6PjGGLq1Km89NJLRsfIc87wPo3OmF+vn1evk5v3zY175fQe0dHRjB07lrfffpvy5cvfUQbJHUb/28wvzvA+/zejeohySWBgIPfff7/RMQzl6+t70+q6MHCG92l0xvx6/bx6ndy8b27c607vUb58+QL/d7aoMPrfZn5xhveZk4yaVC23pH379kZHyBfO8D6Nzphfr59Xr5Ob982Nexn99ZTcU1S+ls7wPnOSUUNmIiJOKCoqin79+t3S3AgRuTn1EImIOKGQkBD69OlDSEiI0VFECgX1EImIiEiRpx4iERERKfJUEImIiEiRp2X3IiKF2IQJE1izZg3p6emUKFGC/v3707JlS6NjiRQ4mkMkIlKIRUdHOzaV3bt3L6+++iq//PILAQEBRkcTKVA0ZCYiUoiVL1/escO+yWQiKyuLCxcuGJxKpODRkJmISAGRmprKL7/8QmRkJHv37iUpKYlhw4bRsWPHq67NzMxk+vTpLF26lKSkJCpXrkzfvn1p3LjxVdd+/PHHLFy4kMzMTJo1a0alSpXy4+2IOBX1EImIFBAJCQnMmDGD6OhoqlSpcsNr33//fX799Vfuu+8+Xn75ZcxmM2+88QY7d+686tpXX32VJUuWMGnSJBo3bozJZMqrtyDitFQQiYgUECEhIcyZM4fffvuNgQMHXve6yMhIli1bRv/+/Xn++efp2rUrkydPpmTJknzxxRfXfI6LiwuNGjViy5YtrFu3Lq/egojTUkEkIlJAuLu739LO0//88w8uLi507drV0ebh4UGnTp3Ys2cPZ8+eve5zLRYLJ0+ezJW8IoWJCiIRESdz4MABypQpg4+PzxXtNWrUAODgwYMAJCcn89dff5Gamkp2djbLly9n27Zt1KtXL98zixR0mlQtIuJkYmJirtmTdKnt0ioyk8nE/PnzmTRpEjabjbCwMEaMGEHVqlXzNa+IM1BBJCLiZDIyMnBzc7uq/dLy+oyMDAB8fHyYMmVKvmYTcVYaMhMRcTIeHh5kZWVd1Z6Zmel4XERujwoiEREnExISQkxMzFXtl9pCQ0PzO5KI01NBJCLiZKpUqcKJEydISUm5oj0yMtLxuIjcHhVEIiJO5p577sFisTBv3jxHW2ZmJgsXLqRmzZqUKFHCwHQizkmTqkVECpDff/+d5ORkx/DXmjVrOHfuHAA9evTA19eXmjVr0rZtW77++mvi4+MJCwtj8eLFnDlzhjfffNPI+CJOS6fdi4gUIL169eLMmTPXfGzmzJmUKlUKsK8ku3SWWXJyMpUqVaJv3740adIkP+OKFBoqiERERKTI0xwiERERKfJUEImIiEiRp4JIREREijwVRCIiIlLkqSASERGRIk8FkYiIiBR5KohERESkyFNBJCIiIkWeCiIREREp8lQQiYiISJGngkhEJIdat259xZ+MjAzHY4sWLaJ169YsWrTIwISX/fHHH1dkfe+994yOJFKg6LR7EbnC6dOnefTRR294TcmSJfn111/zKVHBVrJkSTp06ACAi4tLnr7Wxo0bGTJkCI0bN+ajjz664bVjxowhIiKCESNGcN999xEeHk6fPn1ITk5m1qxZeZpTxBmpIBKRawoLC+O+++675mO+vr75nKbgKlmyJM8++2y+vNZdd91FiRIl2LJlC2fPnqVEiRLXvC45OZlVq1bh6+tL69atAahevTrVq1fn9OnTKohErkEFkYhcU1hYWL79oJdbYzab6dixIzNmzGDx4sX07t37mtdFRESQkZHBgw8+iIeHRz6nFHFOmkMkInesdevWvPzyy8TGxjJu3Di6dOlC+/btGTBgANu2bbvmc1JTU/nmm294+umnad++PQ8++CCvvfYaO3fuvOral19+2TFHZ9q0aTz22GO0bduWb775xnHNP//8Q79+/Wjfvj3dunXjww8/JCkpiV69etGrVy/Hde+++y6tW7cmMjLymrmmT59O69atiYiIuMPPyrWdO3eO3r170759e1asWOFoj4uLY+rUqTz++OPce++9dOnShbfffpvDhw9f8fwHH3wQk8nEokWLsNls13yNhQsXAtCpU6c8eQ8ihZEKIhHJFcnJybzwwgscPXqU+++/n9atWxMVFcWQIUOu+qGemJjIwIEDmTFjBn5+fnTr1o3WrVuzf/9+Bg0axKpVq675GiNGjGDx4sU0aNCARx55hFKlSgGwYMECRowYwYkTJ3jggQfo0KEDe/bs4dVXXyU7O/uKe3Tt2tXxnP9lsVhYuHAhAQEBjqGm3HT06FGef/55zp07x4QJE7jnnnsAOHnyJH379uW3336jdOnSPPzwwzRr1oyNGzcycODAK4q3kiVL0qhRI06dOnXNYvPw4cPs27ePqlWrUq1atVx/DyKFlYbMROSaTp48eUUPzH+rVasWTZs2vaLt4MGDPPTQQ7zyyiuYzfbftRo2bMiHH37I7NmzGTJkiOPayZMnc+TIEd544w06d+7saI+Li6Nfv35MmDCBJk2aXDXcExMTw7fffou/v7+jLSkpiU8++QQvLy++/vprypYtC0C/fv0YMmQIUVFRlCxZ0nF9vXr1qFChAsuWLePFF1/Ey8vL8djGjRs5f/48PXv2xN3d/XY/ZTe0Z88e3nzzTVxdXZk6dSpVqlRxPDZu3DhiY2OZOHEiTZo0cbQ//fTT9OvXjw8//JAZM2Y42jt16sTmzZtZuHAhDRs2vOJ11DskkjPqIRKRazp58iQzZsy45p8NGzZcdb2XlxcDBgxwFEMAHTp0wMXFhX379jna4uPjWb58OQ0bNryiGAIICgri8ccfJz4+ni1btlz1Gs8888wVxRDA6tWrSUtL48EHH3QUQwCurq707dv3mu+ta9eupKamsmzZsiva58+fD0CXLl2u92nJkXXr1jF48GD8/Pz4/PPPryiG9u/fz+7du3nggQeuKIYAypYtS+fOnTl8+PAVvWx33303AQEB/PPPP6SkpDjas7OzWbp0Ke7u7tedEC8i16YeIhG5piZNmjBx4sRbvr5MmTJ4e3tf0ebq6kpwcDDJycmOtn379mGxWMjKyrpmD9SJEycAiI6OpkWLFlc8VqNGjauuP3ToEAB169a96rGaNWtecyn8Aw88wFdffcX8+fMdRVlsbCxr166ldu3aVKhQ4Sbv9tYtX76cTZs2UblyZSZMmEBQUNAVj18aDouLi7vm5+PYsWOO/1aqVAnAUfDMmjWLiIgIunXrBsCaNWuIj4+nffv2+Pn55dp7ECkKVBCJSK7w8fG5ZruLiwtWq9XxcWJiIgC7du1i165d171fenr6VW3BwcFXtV3qIfnfQgPsq7ICAgKuavfz86Nt27YsXryYw4cPU6lSJRYtWoTFYsn13qE9e/ZgsVioW7fuNTNe+nysW7eOdevWXfc+aWlpV3zcqVMnZs2axcKFCx0FkYbLRHJOBZGI5KtLhdOjjz7KCy+8cFvPNZlM171fXFzcVY9ZrVYSEhIoVqzYVY9169aNxYsX8+effzJo0CAWLFiAj48Pbdu2va1MN9O/f39Wr17NrFmzcHFxueo9X8o/aNAgevToccv3rVy5MtWrV2fv3r0cOXIEPz8/Nm7cSKlSpa6aVyQiN6c5RCKSr6pXr47JZGLPnj25cr/KlSsDXLO3ae/evVgslms+r1atWlSuXJm//vqLjRs3cuLECe677z48PT1zJdcl7u7ujBs3jubNmzNz5kw+/fTTKx6/NAyYk8/HpZ6gBQsWsGTJEiwWi2NZvojcHhVEIpKvQkJCaNu2Lbt37+bnn3++5l46kZGR1xwyu5ZWrVrh5eXFggULOHnypKM9Ozub6dOn3/C5Xbt2JTExkfHjxwNcNck7t7i7uzN27FhatGjBr7/+ytSpUx2P1axZk5o1a7Js2bKrJnmDvZdr+/bt17xv+/bt8fT0ZOnSpSxcuBCz2ew4RkREbo+GzETkmm607B7gySefzPEuyK+++irHjx/niy++YMmSJdSqVQtfX1/Onz/Pvn37OHHiBHPmzLml3ho/Pz9efPFFJkyYQL9+/WjXrh0+Pj6sX78ed3d3QkNDr9tjcv/99/Pll19y4cIFwsPD83TfHjc3N959911GjhzJb7/9hs1m4+WXXwZg5MiRvPLKK4wePZpZs2ZRtWpVPDw8OHfuHLt37yYhIeGaG0X6+PjQpk0blixZQnx8PE2bNr3ucR4icmMqiETkmi4tu7+enj175rgg8vf35/PPP2f27Nn8/fffREREYLVaCQ4OpkqVKvTu3fuak6Gvp0uXLvj5+fHDDz+wePFifHx8aNmyJQMGDKBnz56EhYVd83k+Pj7cfffdLF26NM96h/7bpaJo1KhRzJo1C5vNxqBBgyhdujTTp09n5syZrFq1ikWLFmE2mwkJCaFevXqODRyvpVOnTixZsgSw72ItIjljsl1v73cRESd34sQJnnjiCdq2bcvo0aOveU3v3r05c+YMs2fPvu5Kuetp3bo19evX55NPPsmNuPni9OnTPProo3To0IHhw4cbHUekwFAPkYg4vaSkJDw8PK7YXTojI8Mxgfnuu+++5vPWr1/PkSNH6NKly20XQ5ds377dcczHX3/9VWAPU/3jjz/46KOPjI4hUmCpIBIRp7d9+3Y++OADGjduTPHixUlISGDr1q2cOXOGhg0b0q5duyuunzt3LufOnWP+/Pm4u7vz5JNP5uh1+/Tpc8XH19oEsqAIDw+/Im/VqlWNCyNSAGnITESc3vHjx5k+fTq7d+8mPj4egLCwMNq1a8djjz12Va9Nr169OH/+PGXLlmXAgAFX7YgtIkWPCiIREREp8rQPkYiIiBR5KohERESkyFNBJCIiIkWeCiIREREp8lQQiYiISJGngkhERESKPBVEIiIiUuSpIBIREZEi7/8BWfmj4iF/cfsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Spectrum\n", + "df = pd.read_csv(\"crab_spec.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],label=\"Crab\")\n", + "plt.loglog(df[\"Energy[keV]\"],3*df[\"Rate[ct/keV]\"],label=\"3xCrab\")\n", + "\n", + "df = pd.read_csv(\"crab_spec_3x.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],ls=\"--\",label=\"Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Energy [keV]\")\n", + "plt.ylabel(\"ct/keV\")\n", + "plt.savefig(\"combined_spectrum_comparison.pdf\")\n", + "plt.show() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Combining binned data\n", + "\n", + "An alternative way to combine the data is to sum the binned histograms. This requires that the histograms being combined have the same exact binning." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "\n", + "The total number of photons has increased by a factor of 3, as expected:\n", + "single histogram: 3324977.0\n", + "combined histogram: 9974931.0\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data=\"unbinned_data.hdf5\", output_name=\"binned_data\")\n", + "combined_hist = analysis.binned_data + analysis.binned_data + analysis.binned_data\n", + "\n", + "print()\n", + "print(\"The total number of photons has increased by a factor of 3, as expected:\")\n", + "print(\"single histogram: \" + str(np.sum(analysis.binned_data.contents.todense())))\n", + "print(\"combined histogram: \" + str(np.sum(combined_hist.contents.todense())))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4: Making data selections\n", + "### Make time cut\n", + "Only time cuts are available for now. The parameters tmin and tmax are passed from the yaml file. In this example we will select the first half of the dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Making data selections...\n", + "Saving file...\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs_half_time.yaml\")\n", + "analysis.select_data(unbinned_data=\"combined_unbinned_data.hdf5\", output_name=\"selected_unbinned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bin the selected data " + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "analysis.get_binned_data(unbinned_data=\"selected_unbinned_data.hdf5\", output_name=\"selected_combined_binned_data\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get raw spectrum and lightcurve:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw spectrum...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG7CAYAAADJ+zEIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGMElEQVR4nO3deXxU9b3/8fdkksmeQBayQbWARWIruNaqcEEHFaNgXZDWtvJrDVXcMMUoPtRWG68WbIrL1V55UOnt49FbkGq1yqJBBaq2uFEVBMWFQvaELJN1ksn8/qCZmzEL2U7Od8Lr+Xjcx5UzJ+e883X89MM53/M9Dr/f7xcAAAAkSWF2BwAAADAJzREAAEAXNEcAAABd0BwBAAB0QXMEAADQBc0RAABAFzRHAAAAXdAcDVBLS4v27dunlpYWu6MAAAAL0BwN0IEDB5Sbm6sDBw5Ycvz6+npLjgtgdKBGANajOTKMx+OxOwIAg1EjAOvRHBkmMTHR7ggADEaNAKxHcwQAANAFzZFh6urq7I4AwGDUCMB64XYHAADABD6fT21tbXbHwBA5nU6Fh4fL4XAM+hg0R4ZJS0uzOwIAg1EjrNHQ0KBDhw7J7/fbHQXDICYmRhkZGXK5XIP6eZojw9TU1Cg1NdXuGAAMRY0Yfj6fT4cOHVJMTIxSU1OHdMUB9vL7/fJ6vaqsrNQXX3yhE044QWFhA59BRHNkGK/Xa3cEAAajRgy/trY2+f1+paamKjo62u44GKLo6GhFRETowIED8nq9ioqKGvAxaI4MExERYXcEAAajRlhnoFeMfD6fduzYodLSUmVkZGjGjBlyOp0WpcNADOZqUVc0R4ZJTk62OwIAg1EjzPDss8/q1ltv1aFDhwLbxo8fr0ceeUSXX365jckwHHiU3zBlZWV2RwBgMGqE/Z599lldeeWVQY2RJBUXF+vKK6/Us88+a1Mys9TW1uqhhx6yO8ag0BxhSLxer1atWqWbb75Zq1atYj4EgFHN5/Pp1ltv7fGpts5tS5culc/nG7Zztre3D9uxRtLRmiOTfy+aI8MkJCTYHaHf8vPzFRMTo9tuu02PP/64brvtNsXExCg/P9/uaMCoFUo1YjTasWNHtytGXfn9fh08eFA7duwY0nkcDod+/vOf64wzztDy5cv14Ycf6txzz9Wpp56q7OxsFRQUBPbNyspSSUmJJGnBggU6++yzJUmtra1KTk5Wa2tr0LE7Ojp00003aerUqZo2bZpOO+00tbS06Msvv9SYMWO0bNkynXzyyTrppJNUVFQU+LktW7bo3HPP1WmnnaYzzzxTr732WuCzp59+WtOnT9e0adN0+umn68svv9T1118vj8ej6dOn6/TTT5ckzZo1S7fccou+853v6IILLgics1NDQ0PQ3C+Hw6EHHnhA3/72t3X88cfrL3/5ix588EGdfvrpOuGEE/T6668PaZx7w5wjwwx1EtlIyc/P18qVK7tt9/l8ge0rVqwY6VjAqBcqNWK0Ki0tHdb9+uJ0OvX2229LOvLC4a1btyoyMlLNzc06++yz5Xa7ddZZZ+n8889XUVGRfvCDH+if//ynwsPDVV9fr7ffflunnXaaIiMjg477z3/+U1u3btXu3bsVFhamurq6wHpAdXV1mjp1qh5++GH9/e9/17x58/TZZ5+psrJSv/jFL7RlyxYlJCRo//79mjFjhr788ku99dZbuv/++/Xmm28qIyNDTU1NkqTf/va3mj59unbt2hV0/k8++UTbt29XRESEvvzyy6OOQ1xcnP7xj39o69atmj9/vh5//HG98847euaZZ3T77bcHxmg40RwZpra2VrGxsXbH6JPX61VhYWGf+xQWFqqgoGDQC3AB6Fko1IjRLCMjY1j368uPf/zjwD83NzdryZIl2rVrl8LCwnTw4EHt2rVLZ511ltxut4qKinTSSSdp2rRpSktL0+uvv6633npL559/frfjTpw4Ue3t7frxj3+s2bNnKycnJ9B0h4eHa9GiRZKks846S5mZmXr//ff10Ucfaf/+/Zo5c2bgOGFhYfrXv/6ll156ST/84Q8Dv3NMTEyfv9cPfvCDAT11efXVV0uSTj/9dDU2NmrhwoWSpDPPPFOffvppv48zEDRHhnnqqae0Zs0au2P0yePxHPV+us/nU2pqquLj40co1RF5eXnKy8sb0XMCOHbMmDFD48ePV3FxcY/zjhwOh8aPH68ZM2YM+VxxcXGBf77rrruUkpKi999/X+Hh4br88svV0tIiSXK73Vq+fLmys7PldruVlpamoqIivfXWW3ryySe7HTcxMVEfffSRtm3bptdee03Lly/X9u3bFR7ec0vgcDjk9/s1Z84c/fGPfxzW3ys8PDzof086f6euOtcp6lwmoeufrZq3RHNkmI6ODhUXF9sdY1jU19ervr5+xM8JjGbjxo2zO8Ixzel06pFHHtGVV14ZaBo6dc6VWbVq1bCvd1RTU6OpU6cqPDxc+/bt0yuvvBK4ipOZmanExET99re/1auvvqqUlBTddttt8ng8OvXUU7sdq7KyUk6nUxdccIHmzJmjbdu2ac+ePTr55JPV3t6uP/zhD1q0aJF27typkpISTZ8+XRkZGbrvvvv0wQcf6OSTT5Yk7dy5U2eeeaYuvfRSLVq0SDfccEPQbbWEhAQ1NzfL6/X2ehchPT1dfr9fe/bsUXZ2tv7nf/5nWMdtsGiODONyuZSVlWV3jD55PJ5+NSEJCQkjfuWIyaoY7erq6pSSkmJ3jGPa5Zdfrg0bNvS4ztGqVassWefo7rvv1g9/+EP9/ve/16RJk3TeeecFfe52u/Xiiy9q4sSJko40HaecckqPc9QOHjyo3NxctbW1yefz6ZxzztHcuXNVXFwcuKo0bdo0tbe3649//KPi4+MVHx+vP/7xj/rpT3+qpqYmeb1enXLKKfrjH/+omTNn6uc//7kuvPBCORwOuVwubdiwQccdd5x+9KMf6eSTT1ZcXJzeeeedblnCw8P12GOP6ZJLLlFycrKuvPLKYR+7wXD4ecvegOzbt0+5ublavXq1pkyZMuzHLy4uNr458nq9iomJ6fPWmtPpVFNTE3OOgGEWCjUi1LS0tOiLL77Q17/+9QG9amK0rZD95Zdfavr06aqtrbU7ypAN9t9pJ64cGaa3e74mcblcysvL6/FptU55eXk0RoAFQqFGHCucTqdmzZpldwxYgP/KDBMq8wk6H9MvLCwMuoLkdDqVl5fHY/yARUKlRiD0HH/88aPiqtFwoDkyTElJSchcMl+xYoUKCgr0xBNP6LPPPtOkSZO0ZMkSrhgBFgqlGhFqmGUyenR0dAzp52mOMCQul0tLly61OwYADFpERIQcDocqKyuVmpoatEIzQovf75fX61VlZaXCwsIG/Zd1miPDjPTTXQBCCzVi+DmdTo0fP16HDh3q14rNMF9MTIy+9rWvDXpF+WO2Ofroo49044036sc//rGuvfZau+MEMNkSQF+oEdaIi4vTCSecoLa2NrujYIicTqfCw8OHdAXwmPyvrKOjQ48//rhOPPFEu6N0U1NTc9Sl1wEcu6gR1nE6nSH9KD6GzzHZHP31r3/V1KlT1djYaHcUAABgGKNf79zU1KTf/e53WrZsmXJycjRz5kxt2rSpx329Xq+efPJJffe735Xb7dZPf/rTHt/UW1dXp2eeeSbohX4mSU1NtTsCAINRIwDrGd0c1dXVae3atTpw4IAmT57c574PPvig1q9frzlz5uiWW25RWFiY8vPz9cEHHwTtt3r1al111VXGTmr0eDx2RwBgMGoEYD2jm6Pk5GQ999xzeuaZZ3TDDTf0ut+ePXu0detWLV68WEuWLNG8efO0atUqpaenB72R+JNPPtHevXt1ySWXjET8QenpjcQA0IkaAVjP6DlHLpdLycnJR91v27ZtcjqdmjdvXmBbZGSkcnJy9NRTT6m8vFxpaWnatWuXDh48qCuuuEKS1NDQIKfTqZKSEi1fvtyy32MgmAwIoC/UCMB6RjdH/fXpp59q/Pjxio2NDdo+depUSdL+/fuVlpamefPm6fzzzw98/uijjyojI0PXXHNNr8euqqpSdXV14M8HDhwY5vTB0tPTLT0+gNBGjQCsNyqao+rq6h6vMHVuq6qqkiRFRUUFvZ03MjJS0dHRfc4/euGFF7R27dpu2ysrKxUXF6eMjAxVVVWpra1NkZGRGjNmjMrLyyVJiYmJ8vv9qq+vl3SkqB0+fFher1cRERFKTk5WWVmZJCkhIUEOh0Offvqpxo0bp7S0NNXW1qq1tVXh4eFKTU1VaWmppCOLwIWHh6umpkbSkQmaHo9HLS0tcjqdSktLU0lJiaQja3e4XC4dPnxYkpSSkqLGxkY1NzcrLCxMGRkZKi4uliTFxsYqKioq0AwmJyerublZTU1NcjgcyszMVGlpqTo6OhQdHa3Y2NjA2CYlJam1tTXwBGBWVpbKysrk8/kUFRWl+Ph4VVZWSpLGjh2r9vb2wNyJzMxMVVRUqL29XZGRkUpMTFRFRYUkacyYMero6Agaw+rqarW1tcnlcmns2LFB4y0dmasmSWlpaaqpqel1vMPCwgLvERo3bpzq6uoC4z1u3LjAGB5tvNPT04PGMDIyss/xLikpkd/vV0xMjKKjo4PGu6WlJWgM+xpvr9erhoaGwBiWl5f3a7wzMjJUWVkZGO+jfWe7jndSUlK372zX8e78zkZERCglJSXoO+t0OoPGu76+Xi0tLd3GOy4uThEREUHj3dDQ0Ot39qvj3dTUFPSd7TreMTExfX5nu453XFxc0Bi2tbUFjXfndzYqKkoJCQlB31mfzxc03tQIagQ1wowa0d9X7zj8IfIymb1792rx4sVavny55s6dG/TZwoULNWHChG5viS8pKdHChQt10003acGCBYM6b09XjgoKCrR69WpNmTJlUMfsS3FxMe9NAtAragRgvVFx5SgyMrLHVU29Xm/g88FKSUlRSkrKoH9+oL56axAAuqJGANYz+mm1/kpOTg66utOpc9tINjdDNZRGDsDoR40ArDcqmqPJkyfr0KFD3Va83rNnT+DzUNF5XxQAekKNAKw3KpqjWbNmyefz6YUXXghs83q92rhxo7Kzs5WWlmZjOgAAEEqMn3P05z//WQ0NDYFbZG+88UbgKYUrrrhCcXFxys7O1uzZs/XUU0+ptrZWWVlZ2rx5s8rKynTHHXcMS46ioiIVFRUFZv5bJZRuAcIcXq9XTzzxhD777DNNmjRJS5YskcvlsjsWLECNAKxn/NNqCxYsCDwW+FXr1q1TRkaGJKm1tVVr1qzRyy+/rIaGBk2cOFHXXXedzjzzzGHNs2/fPuXm5lr2tNrhw4eVlJQ07MfF6JWfn6/CwkL5fL7ANqfTqby8PK1YscLGZLACNQKwnvFXjtavX9+v/SIjI7VkyRItWbLE4kTWam5utjsCQkh+fn63JSwkyefzBbbTII0u1AjAeqNiztFoEhbGvxL0j9frVWFhYZ/7FBYWBpa0wOhAjQCsZ/yVo2NN521CDE5hYeFRG4bRwuPxBN1K64nP51Nqamqfq8CPtLy8POXl5dkdI2RRIwDr0RwZpqSkRJmZmXbHCFn19fWBZeNxRH19fWCpfxOYlCUUUSMA69Ec9dNIPa1m+Px44yUkJBwzr1bweDz9ajQSEhKMunKUkJBgd4SQRo0ArGf802qmsfpptZqaGo0dO3bYj4vRx+v1KiYmps9ba06nU01NTTzWP4pQIwDrMbPPMNHR0XZHQIhwuVxHnbuTl5dHYzTKUCMA69EcGaand8QBvVmxYoVuv/12OZ3OoO1Op1O33347j/GPQtQIwHrMOQJC3IoVK1RQUMAK2QAwTGiODJOcnGx3BIQgl8ulpUuX2h0DI4AaAViP22qGaWlpsTsCAINRIwDrceWon0bqUf7GxkaNGTPG0nMACF3UCMB6NEf95Ha75Xa7A4/yAwCA0YnbaoY5VhYwBDA41AjAejRHhiktLbU7AgCDUSMA69EcGaajo8PuCAAMRo0ArEdzZBhWvwXQF2oEYD2aI8PExsbaHQGAwagRgPVojgxTVVVldwQABqNGANbjUf5+Gql1jgAAgL1ojvpppNY5SkpKsuzYAEIfNQKwHrfVDOP1eu2OAMBg1AjAejRHhuG2HYC+UCMA69EcAQAAdEFzZJjMzEy7IwAwGDUCsB7NkWHKy8vtjgDAYNQIwHo0R4bx+Xx2RwBgMGoEYD2aI8NERUXZHQGAwagRgPVojgwTHx9vdwQABqNGANZjEch+GqkVsisrK5WVlWXpOQCELmoEYD2ao34aqRWyAQCAvbitZpixY8faHQGAwagRgPVojgzT3t5udwQABqNGANajOTKMx+OxOwIAg1EjAOvRHAEAAHRBc2SYjIwMuyMAMBg1ArAezZFhKisr7Y4AwGDUCMB6NEeGYbIlgL5QIwDr0RwZJjIy0u4IAAxGjQCsR3NkmDFjxtgdAYDBqBGA9WiODFNeXm53BAAGo0YA1uP1If00Uu9WAwAA9qI56qeRerdaYmKiZccGEPqoEYD1uK1mGL/fb3cEAAajRgDWozkyTH19vd0RABiMGgFYj+YIAACgC5ojw6Snp9sdAYDBqBGA9WiODFNdXW13BAAGo0YA1qM5MkxbW5vdEQAYjBoBWI/myDAul8vuCAAMRo0ArEdzZJikpCS7IwAwGDUCsB7NkWHKysrsjgDAYNQIwHo0RwAAAF3QHBkmISHB7ggADEaNAKxHc2QYh8NhdwQABqNGANajOTJMXV2d3REAGIwaAVgv3O4AoaKoqEhFRUVqaGiwOwoAALCQw88rngdk3759ys3N1erVqzVlypRhP357e7vCw+lZAfSMGgFYj9tqhqmtrbU7AgCDUSMA69EcGaa1tdXuCAAMRo0ArEdzZJiIiAi7IwAwGDUCsB7NkWFSUlLsjgDAYNQIwHo0R4YpLS21OwIAg1EjAOvRHAEAAHRBc2SY+Ph4uyMAMBg1ArAezZFhnE6n3REAGIwaAViP5sgwrGECoC/UCMB6NEcAAABd0BwZZty4cXZHAGAwagRgPZojw9TX19sdAYDBqBGA9WiODNPS0mJ3BAAGo0YA1qM5Mgxv2wbQF2oEYD2aI8MwnwBAX6gRgPVojgxTUlJidwQABqNGANajOQIAAOiC5sgwcXFxdkcAYDBqBGA9miPDRERE2B0BgMGoEYD1aI4MU1NTY3cEAAajRgDW45nQfioqKlJRUZEaGhrsjgIAACzk8Pv9frtDhJJ9+/YpNzdXq1ev1pQpU4b9+F6vVy6Xa9iPC2B0oEYA1uO2mmG4MgWgL9QIwHo0R4Zpbm62OwIAg1EjAOvRHBkmLIx/JQB6R40ArMd/ZYbJyMiwOwIAg1EjAOvRHBmmuLjY7ggAvsLr9WrVqlW6+eabtWrVKnm9XtuyUCMA6/EoPwD0IT8/X4WFhfL5fIFty5YtU15enlasWGFjMgBWoTkyTGxsrN0RAPxbfn6+Vq5c2W27z+cLbB/pBokaAViP22qGiYyMtDsCAB25lVZYWNjnPoWFhSN+i40aAViPK0eGOXz4sLKysuyOAVimsLDwqE2HCTweT9CttJ74fD6lpqYqPj5+hFJJP/nJT3TfffeN2PmAYxHNEYARVV9fP6omFdfX16u+vn7EzufxeEbsXMCxiubIMCkpKXZHACyVkJAQEldHPR5Pv5qehISEEb1ylJ6ePmLnAo5VNEeGaWpqYk4BRrW8vDzl5eXZHeOovF6vYmJi+ry15nQ6VVlZOaLvOqupqRmxcwHHKiZkG6apqcnuCAAkuVyuozZxeXl5I/4SWGoEYD2uHBnG4XDYHQHAv3U+pv/VdY6cTqdt6xxRIwDrOfx+v9/uEKFk3759ys3N1erVqzVlyhS74wAYAV6vV0888YQ+++wzTZo0SUuWLBnxK0YARg5XjgxTUlKizMxMu2MA6MLlcmnp0qV2x5BEjQBGAnOODMOFPAB9oUYA1qM5MkxMTIzdEQAYjBoBWI/myDAUPgB9oUYA1qM5MkxVVZXdEQAYjBoBWI/mCAAAoAuaI8MkJSXZHQGAwagRgPVojgzT2tpqdwQABqNGANajOTJMY2Oj3REAGIwaAViP5ggAAKALmiPDZGVl2R0BgMGoEYD1hqU58ng82rx583AcakSsXLlSl112mS666CJde+21euONN+yOFFBaWmp3BAAGo0YA1huW5qi8vFwPPfTQcBxqRCxYsEDr16/X5s2bdeedd6qgoEB1dXV2x5IkdXR02B0BgMGoEYD1+vXi2fLy8j4/D7VFyY477rjAPzscDrW1tamqqkqJiYk2pjoiOjra7ggADEaNAKzXr+ZowYIFcjgcvX7u9/v7/Hwompqa9Kc//Ul79uzRxx9/LI/Ho+XLl2vu3Lnd9vV6vVqzZo1efvlleTweTZo0Sdddd53OOOOMbvsWFhZq48aN8nq9OuusszRx4kRL8g9UXFyc3REAGIwaAVivX81RfHy8fvKTn2j69Ok9fn7gwAH94he/GMZY/6eurk5r165VWlqaJk+erPfff7/XfR988EG9/vrruuqqqzR+/Hht2rRJ+fn5euSRR3TyyScH7ZuXl6dbb71Vu3bt0ueff25ZczdQlZWVTLgE0CtqBGC9fjVH3/jGN+TxePT1r3+9x899Pp/8fv+wBuuUnJys5557TsnJydq7d68WL17c43579uzR1q1bdcMNN+h73/ueJOnCCy/UokWL9OSTT+rJJ5/s9jNOp1OnnXaannnmGY0fP17f+c53LPkdAABA6OjXhOzLLrtM6enpvX6elpamO++8c9hCdeVyuZScnHzU/bZt2yan06l58+YFtkVGRionJ0e7d+/uc96Uz+dTcXHxsOQdqrFjx9odAYDBqBGA9fp15WjmzJl9fh4fH9/jHKCR9Omnn2r8+PGKjY0N2j516lRJ0v79+5WWlqaGhga99dZbOuecc+RyubRjxw69//77vV6RqqqqUnV1deDPBw4csO6XkNTW1mbp8QGENmoEYL1+NUehoLq6uscrTJ3bOp+oczgcevHFF/Wb3/xGfr9fWVlZuueee3TCCSf0eNwXXnhBa9eu7ba9srJScXFxysjIUFVVldra2hQZGakxY8YErlIlJibK7/ervr5ekpSenq7Dhw/L6/UqIiJCycnJKisrkyQlJCTI4XDo888/17hx45SWlqba2lq1trYqPDxcqampgfVN4uPjFR4erpqaGklSamqqPB6PWlpa5HQ6lZaWppKSEklHJm+6XC4dPnxYkpSSkqLGxkY1NzcrLCxMGRkZgatmsbGxioqKCjSDycnJam5uVlNTkxwOhzIzM1VaWqqOjg5FR0crNjY2MK5JSUlqbW0NvNogKytLZWVl8vl8ioqKUnx8vCorKyUd+Ztve3u7PB6PJCkzM1MVFRVqb29XZGSkEhMTVVFRIUkaM2aMOjo6gsawurpabW1tcrlcGjt2bNB4Swosy5CWlqaamppexzssLEy1tbWSpHHjxqmuri4w3uPGjQuM4dHGOz09PWgMIyMj+xzvkpIS+f1+xcTEKDo6Omi8W1pagsawr/H2er1qaGgIjGF5eXm/xjsjI0OVlZWB8T7ad7breCclJXX7znYd787vbEREhFJSUoK+s06nM2i86+vr1dLS0m284+LiFBERETTeDQ0NvX5nvzreTU1NQd/ZruMdExPT53e263jHxcUFjWFbW1vQeHd+Z6OiopSQkBD0nfX5fEHjTY2gRlAjzKgR/Z2v5/APcrLQrFmz9Ic//EETJkwYzI8PSueco56eVlu4cKEmTJiglStXBm0vKSnRwoULddNNN2nBggUDPmdPV44KCgq0evVqTZkyZXC/SB+Ki4uZbAmgV9QIwHqDvnJk1QTswYqMjOzxcrPX6w18PhgpKSlKSUkZUraByMzMHLFzAQg91AjAeqPm3WrJyclBV3g6dW4byQZnKDovFQNAT6gRgPVGTXM0efJkHTp0KHAvttOePXsCn4eC9vZ2uyMAMBg1ArDeqGmOZs2aJZ/PpxdeeCGwzev1auPGjcrOzlZaWpqN6fovKirK7ggADEaNAKwXEk+r/fnPf1ZDQ0PgFtkbb7wRuLR8xRVXKC4uTtnZ2Zo9e7aeeuop1dbWKisrS5s3b1ZZWZnuuOOOIWcoKipSUVFRYOa/VRISEiw9PoDQRo0ArBcSzdG6desCjwZK0vbt27V9+3ZJ0gUXXBB419Bdd92ltLQ0bdmyRQ0NDZo4caJ+9atf9frak4Fwu91yu93at2+fcnNzh3y83lRUVPAkCoBeUSMA64VEc7R+/fp+7RcZGaklS5ZoyZIlFicCAACj1aDnHH3/+9/n8q4FxowZY3cEAAajRgDWG/SVo5/+9KfDmQP/5vP57I4AwGDUCMB6A75y1LmoIqzRuXw7APSEGgFYb8BXjr773e/K7Xbr4osvtuT1GaYaqafVAACAvQb8brU5c+bI6/XK4XBo0qRJysnJ0Zw5cxQfH29VRqN0Pq1m1bvVOjo6FBY2apafAjDMqBGA9Qb8X9jzzz+vvLw8TZkyRfv379ejjz6qyy+/XPfff7/effddKzIeUzrfqAwAPaFGANYb8G21mJgYzZ8/X/Pnz9eXX36pl156Sa+88oq2bt2qV199VePGjVNOTo4uuuiikFmV2iQ9vTwXADpRIwDrDfi2Wk98Pp/efPNNvfTSS9q5c6d8Pp/CwsJ0+umnKycnR+eee67Cw0NiSaWjsvq2WlVVVci8JBfAyKNGANYblo7F6XRqxowZmjFjhg4fPqwtW7Zo48aN2rlzp95++20lJCQEvfMMvWMNEwB9oUYA1hv2WX1JSUn63ve+p1/84hf61re+Jb/fr/r6+uE+zahVXl5udwQABqNGANYb1ntdTU1NeuWVV/TSSy/pk08+kd/vV1RUlGbPnj2cp7EFj/IDAHBsGJbm6L333tPGjRu1Y8cOtba2yu/3Kzs7Wzk5OTrvvPMUExMzHKex1Ui9eDYxMdGyYwMIfdQIwHqDbo4qKiq0adMmbdq0SWVlZfL7/RozZozmzZunnJwcHX/88cMY89gxDPPjAYxi1AjAegNujrZu3aqNGzfqvffeCyxGdsYZZ4y6p9LsUl9ff8wsqAlg4KgRgPUG3Mncf//9kqSMjAzNnTtXc+fO1bhx44Y9GAAAgB0G3Bydf/75ysnJ0WmnnWZFnmNeenq63REAGIwaAVhvwM3Rvffea0UO/Nvhw4eVmppqdwwAhqJGANYb8gSh9vZ2PfvssyoqKtK//vUvtba26rXXXpMkffrpp/rrX/+qq666ShMmTBhy2GOB1+u1OwIAg1EjAOsNqTlqbW3Vz372M3300UdKTExUbGysWlpaAp9nZGRo48aNio+Pt/Tx95EwUuscRUREWHp8AKGNGgFYb0grZP/hD3/Qhx9+qMWLF+svf/mLcnJygj6Pi4vT9OnT9fbbbw8ppAncbrceeugh3XzzzZaeJzk52dLjAwht1AjAekNqjl599VWdcsop+v73vy+HwyGHw9Ftn8zMTJa7H4CysjK7IwAwGDUCsN6QmqOKioqjvpk+OjpajY2NQzkNAADAiBlScxQdHa3a2to+9ykpKWG5+wFISEiwOwIAg1EjAOsNqTk66aST9Oabb8rj8fT4eXl5uf7+979r2rRpQznNMaWnW5MA0IkaAVhvSM3RwoUL5fF4dNttt+nDDz+Uz+eTJLW0tOjdd9/VsmXL5PP5dPXVVw9L2GNBXV2d3REAGIwaAVhvSI/yT58+XUuXLtWjjz4a9BTXRRddJEkKCwtTXl7eUeclAQAAmGLIi0Bedtllmj59up5//nl9/PHHqq+vV2xsrKZOnarvfve7+vrXvz4cOY8ZaWlpdkcAYDBqBGC9ITdHknT88cfr1ltv7fVzn88np9M5HKca9Wpra5WSkmJ3DACGokYA1hvSnKNnn332qPv4fD7dd999QzmNEYqKinTnnXfqscces/Q8ra2tlh4fQGijRgDWG9KVo0cffVRJSUmaNWtWj593dHTovvvu0/bt24dyGiO43W653W7t27fP0lehhIcPy8U8AKMUNQKw3pCuHH3rW99SQUGB3nvvvW6fdTZG27Zt03e/+92hnOaYwtu2AfSFGgFYb0jN0UMPPaQJEybo7rvv1qeffhrY3tHRoV/+8pd6/fXXddlll/U5HwnBSktL7Y4AwGDUCMB6Q2qOYmNj9fDDDysuLk633367SkpK5Pf7df/99+vVV1/V/Pnzddtttw1XVgAAAMsNqTmSjrwh+te//rU6Ojr0s5/9TD//+c/12muv6ZJLLlFeXt5wZDymxMfH2x0BgMGoEYD1htwcSdKECRO0YsUK1dTUaPv27brkkkt0++23D8ehjzlMtgTQF2oEYL0B/Ve2du3aPj+fOnWq9u/fr+Tk5KB9HQ6Hrr322sHkO+bU1NQoJibG7hgADEWNAKw3oObo6aef7td+v//974P+THMEAABCxYCao0ceecSqHPg3HtMF0BdqBGC9ATVH06dPtygGOnk8HiUnJ9sdA4ChqBGA9YZlQjaGT0tLi90RABiMGgFYj8ce+qmoqEhFRUVqaGiw9Dy8oBdAX6gRgPUcfr/fb3eIUNL5brXVq1drypQpw358v98vh8Mx7McFMDpQIwDrcVvNMCUlJXZHAGAwagRgPZojAACALmiODBMXF2d3BAAGo0YA1htSc1ReXq7GxsY+92lqalJ5eflQTnNMcblcdkcAYDBqBGC9ITVHV199tTZs2NDnPhs2bNDVV189lNMcUw4fPmx3BAAGo0YA1htSc+T3+3W0h914GA4AAIQSy+ccVVZW8pLEAUhJSbE7AgCDUSMA6w14Eci1a9cG/fn999/vcb+Ojg5VVFRo69atys7OHlS4Y1FjY6MiIyPtjgHAUNQIwHoDbo6efvrpwD87HA7t2rVLu3bt6nX/lJQUXX/99YMKdyxqbm62OwIAg1EjAOsNuDl65JFHJB2ZS7R06VLNnTtXF110Ubf9wsLClJCQoK997WsKC2PFgP5irAD0JRRrhNfr1RNPPKHPPvtMkyZN0pIlS3jqDkYbcHM0ffr0wD8vWrRIp5xyStA2DE1GRobdEQAYLNRqRH5+vgoLC+Xz+QLbli1bpry8PK1YscLGZEDvhvRXkNNPP11/+9vfVF1d3ePnVVVVevzxx7V79+6hnOaYUlxcbHcEAAYLpRqRn5+vlStXBjVGkuTz+bRy5Url5+fblAzo25Cao3Xr1umNN95QcnJyj5+npKTozTff1Pr164dyGgBAiPF6vSosLOxzn8LCQnm93hFKBPTfgG+rdbV3716ddtppfe4zbdo0vfPOO0M5jRGKiopUVFSkhoYGS88TGxtr6fEBhLa1a9fqySeftDvGUXk8nm5XjL7K5/MpNTVV8fHxI5RKysvLU15e3oidD6FpSM1RbW3tUdfcSEpKUk1NzVBOYwS32y232619+/YpNzfXsvNERUVZdmwAoa+5uTmkbq0dTX19verr60f0fMDRDKk5iouLU0VFRZ/7lJeXKzo6eiinOaZUV1crKyvL7hgADOV0OkOiRng8nn41IgkJCSN65SghIWHEzoXQNaTmKDs7W9u3b9d1112ntLS0bp+Xl5drx44dOvXUU4dyGgDAvy1evFj33Xef3TGOyuv1KiYmps9ba06nU5WVlTzWD+MMaUL2ggUL1NraqhtvvFGbN29WVVWVpCNPqW3atElLliyR1+vlxbMD0NvkdgCQQqdGuFyuo87tycvLozGCkYZ05Wj69Om68cYb9cQTT+ihhx6SdGTV7M6XzTocDt18882sgzQAzc3NzDsC0KtQqhGd6xh9dZ0jp9PJOkcwmsPf2ckMwWeffabnn39ee/fuVUNDg+Li4jR16lTNnz9fEydOHI6cxuickL169WpNmTJl2I9fXFwcEvMJANgjFGsEK2Qj1AzpylGnSZMm8WjkMHE4HHZHAGCwUKwRLpdLS5cutTsG0G+h95KeUS4zM9PuCAAMRo0ArEdzZJjS0lK7IwAwGDUCsB7NkWE6OjrsjgDAYNQIwHo0R4ZhwUwAfaFGANajOTIM71YD0BdqBGA9miPDdC6kCQA9oUYA1qM5AgAA6ILmyDBJSUl2RwBgMGoEYD2aI8O0trbaHQGAwagRgPVojgzT2NhodwQABqNGANajOQIAAOiC5sgwofZCSQAjixoBWI/myDBlZWV2RwBgMGoEYD2aI8P4fD67IwAwGDUCsF643QFCRVFRkYqKitTQ0GDpeaKioiw9PoDQRo0ArEdz1E9ut1tut1v79u1Tbm6uZeeJj4+37NgAQh81ArAet9UMU1lZaXcEAAajRgDWozkCAADogubIMGPHjrU7AgCDUSMA69EcGaa9vd3uCAAMRo0ArEdzZBiPx2N3BAAGo0YA1qM5AgAA6ILmyDCZmZl2RwBgMGoEYD2aI8NUVFTYHQGAwagRgPVojgzDZEsAfaFGANajOTJMZGSk3REAGIwaAViP5sgwiYmJdkcAYDBqBGA9miPDMJ8AQF+oEYD1aI4AAAC6oDkyzJgxY+yOAMBg1AjAejRHhuno6LA7AgCDUSMA69EcGaa+vt7uCAAMRo0ArEdzBAAA0AXNkWHS09PtjgDAYNQIwHo0R4aprq62OwIAg1EjAOvRHBmmra3N7ggADEaNAKxHc2QYl8tldwQABqNGANajOTLM2LFj7Y4AwGDUCMB6NEeGKS8vtzsCAINRIwDr0RwBAAB0QXNkGN64DaAv1AjAejRHAAAAXdAcGaaurs7uCAAMRo0ArBdud4CR5vV6VVhYqHfeeUcNDQ06/vjjddNNN+mb3/ym3dEAAIABjrkrRz6fT+np6fqv//ovbdy4UVdddZWWL1+upqYmu6NJktLS0uyOAMBg1AjAesdccxQdHa1FixYpLS1NYWFhOv/88xUeHq6DBw/aHU2SVFNTY3cEAAajRgDWM/62WlNTk/70pz9pz549+vjjj+XxeLR8+XLNnTu3275er1dr1qzRyy+/LI/Ho0mTJum6667TGWec0evxDx48KI/Ho6ysLCt/jX7zer12RwBgMGoEYD3jrxzV1dVp7dq1OnDggCZPntznvg8++KDWr1+vOXPm6JZbblFYWJjy8/P1wQcf9Lh/a2urCgoKdM011yguLs6K+AMWERFhdwQABqNGANYzvjlKTk7Wc889p2eeeUY33HBDr/vt2bNHW7du1eLFi7VkyRLNmzdPq1atUnp6up588slu+7e3t+vee+9VVlaWFi1aZOFvMDDJycl2RwBgMGoEYD3jmyOXy9WvYrBt2zY5nU7NmzcvsC0yMlI5OTnavXt30JL7HR0dKigokMPh0F133SWHw2FJ9sEoKyuzOwIAg1EjAOsZP+eovz799FONHz9esbGxQdunTp0qSdq/f3/gKY+HH35Y1dXVevjhhxUe3vcQVFVVqbq6OvDnAwcODHNyAABgklHTHFVXV/d4halzW1VVlaQjf+t68cUX5XK5gq4yrVixQtOmTev28y+88ILWrl3bbXtlZaXi4uKUkZGhqqoqtbW1KTIyUmPGjAlcpUpMTJTf71d9fb0kKT09XYcPH5bX61VERISSk5MDfwtMSEiQw+FQY2OjiouLlZaWptraWrW2tio8PFypqakqLS2VJMXHxys8PDzw1Epqaqo8Ho9aWlrkdDqVlpamkpISSVJcXJxcLpcOHz4sSUpJSVFjY6Oam5sVFhamjIwMFRcXS5JiY2MVFRUVaAaTk5PV3NyspqYmORwOZWZmqrS0VB0dHYqOjlZsbGxgXJOSktTa2qrGxkZJUlZWlsrKyuTz+RQVFaX4+HhVVlZKOvJW8fb2dnk8HklSZmamKioq1N7ersjISCUmJqqiokKSNGbMGHV0dASNYXV1tdra2uRyuTR27Nig8Zb+b5G8tLQ01dTU9DreYWFhqq2tlSSNGzdOdXV1gfEeN25cYAyPNt7p6elBYxgZGdnneJeUlMjv9ysmJkbR0dFB493S0hI0hn2Nt9frVUNDQ2AMy8vL+zXeGRkZqqysDIz30b6zXcc7KSmp23e263h3fmcjIiKUkpIS9J11Op1B411fX6+WlpZu4x0XF6eIiIig8W5oaOj1O/vV8W5qagr6znYd75iYmD6/s13HOy4uLmgM29ragsa78zsbFRWlhISEoO+sz+cLGm9qBDWCGmFGjejvw1cOv9/v79eeBti7d68WL17c49NqCxcu1IQJE7Ry5cqg7SUlJVq4cKFuuukmLViwYMDn7OnKUUFBgVavXq0pU6YM7hfpQ2NjY7erXwDQiRoBWG/UXDmKjIxUW1tbt+2dj71GRkYO6rgpKSlKSUkZUraBqK2tpfAB6BU1ArCe8ROy+ys5OTnoCk+nzm0j2eAAAIDQNWqao8mTJ+vQoUOBe7Gd9uzZE/g8FIwbN87uCAAMRo0ArDdqmqNZs2bJ5/PphRdeCGzzer3auHGjsrOzh/w+oqKiIt1555167LHHhhq1T7xxG0BfqBGA9UJiztGf//xnNTQ0BG6RvfHGG4EnFa644grFxcUpOztbs2fP1lNPPaXa2lplZWVp8+bNKisr0x133DHkDG63W263W/v27VNubu6Qj9eb1tZWy44NIPRRIwDrhURztG7duqCFz7Zv367t27dLki644ILAqz/uuusupaWlacuWLWpoaNDEiRP1q1/9StOnT7cj9qAcbd0lAMc2agRgvZB6lN8EnVeOrHqU3+/3G7ViNwCzUCMA642aOUejReciVwDQE2oEYD2aIwAAgC64ed1PRUVFKioqCizFbpX4+HhLjw8gtFEjAOvRHPXTSD2txmRLAH2hRgDW47aaYTpfpAcAPaFGANajOQIAAOiC5sgwqampdkcAYDBqBGA9miPDeDweuyMAMBg1ArAezZFhWlpa7I4AwGDUCMB6PPbQTyP1KL/T6bT0+ABCGzUCsB6vDxkgq18fAgAA7MVtNcMUFxfbHQGAwagRgPVojgAAALqgOTJMbGys3REAGIwaAViP5sgwkZGRdkcAYDBqBGA9miPDHD582O4IAAxGjQCsR3MEAADQBc2RYVJSUuyOAMBg1AjAeiwC2U8jtQhkY2MjcwoA9IoaAViP5qif3G633G53YBFIqzQ3N1t2bAChjxoBWI/baoYJC+NfCYDeUSMA6/FfmWEyMjLsjgDAYNQIwHo0R4YpKSmxOwIAg1EjAOvRHBmG9wAD6As1ArAezZFhYmJi7I4AwGDUCMB6NEeGiY6OtjsCAINRIwDr0RwZprq62u4IAAxGjQCsxzpH/TRSi0ACAAB7OfzM7huQzkUgV69erSlTpgz78VtaWhQVFTXsxwUwOlAjAOtxW80wLS0tdkcAYDBqBGA9miPDNDY22h0BgMGoEYD1aI4AAAC6oDkyTFZWlt0RABiMGgFYj+bIMKWlpXZHAGAwagRgPZojw3R0dNgdAYDBqBGA9WiODMPqtwD6Qo0ArEdzZJjY2Fi7IwAwGDUCsB7NkWGqqqrsjgDAYNQIwHo0RwAAAF3wbrV+Gql3qyUlJVl6fAChjRoBWI/mqJ/cbrfcbnfg3WpW8Xq9TLgE0CtqBGA9bqsZxuorUwBCGzUCsB7NEQAAQBc0R4bJzMy0OwIAg1EjAOvRHBmmvLzc7ggADEaNAKxHc2QYn89ndwQABqNGANajOTJMVFSU3REAGIwaAViP5sgw8fHxdkcAYDBqBGA9miPDVFZW2h0BgMGoEYD1aI4AAAC6oDkyzNixY+2OAMBg1AjAejRHhmlvb7c7AgCDUSMA69EcGcbj8dgdAYDBqBGA9WiOAAAAugi3O0CoKCoqUlFRkeUvfczIyLD0+ABCGzUCsB5XjvrJ7XbroYce0s0332zpeXhMF0BfqBGA9WiODMNkSwB9oUYA1qM5MkxkZKTdEQAYjBoBWI/myDBjxoyxOwIAg1EjAOvRHBmmvLzc7ggADEaNAKxHcwQAANAFj/IbJjEx0e4IAAxGjcBgeb1ePfHEE/rss880adIkLVmyRC6Xy+5YRqI5Mozf77c7AgCDUSMwGPn5+SosLJTP5wtsW7ZsmfLy8rRixQobk5mJ22qGqa+vtzsCAINRIzBQ+fn5WrlyZVBjJEk+n08rV65Ufn6+TcnMRXMEAMAo5fV6VVhY2Oc+hYWF8nq9I5QoNHBbzTDp6el2RwBgMGrE0BQWFh61WRhNPB5PtytGX+Xz+ZSamqr4+PgRSnV0eXl5ysvLs+38NEeGqa6u1rhx4+yOAcBQ1Iihqa+vV3Fxsd0xjFNfX2/ULVu7s9AcGaatrc3uCAAMRo0YmoSEBGVlZdkdY8R4PJ5+NRoJCQlGXTlKSEiw9fw0R4bhsUoAfaFGDI3dt2tGmtfrVUxMTJ+31pxOpyorK/ludcGEbMMkJSXZHQGAwagRGAiXy3XUZjAvL4/G6CtojgxTVlZmdwQABqNGYKBWrFih22+/XU6nM2i70+nU7bffzjpHPeC2GgAAo9yKFStUUFDACtn9RHNkGLsnoQEwGzUCg+VyubR06VK7Y4QEbqsZxuFw2B0BgMGoEYD1aI4MU1dXZ3cEAAajRgDWozkCAADogjlH/VRUVKSioiI1NDRYep60tDRLjw8gtFEjAOtx5aif3G63HnroId18882Wnqe2ttbS4wMIbdQIwHo0R4ZpbW21OwIAg1EjAOvRHBkmIiLC7ggADEaNAKxHc2SYlJQUuyMAMBg1ArAezZFhSktL7Y4AwGDUCMB6PK02QJ33+w8cOGDJ8SsrKy1/Ig5A6KJGAENz3HHHKSoqqs99aI4GqPOljwUFBTYnAQAAA7V69WpNmTKlz30cfr/fP0J5RoXa2lrt3LlTGRkZ/Xph32OPPdbvx/8PHDiggoIC3X333TruuOOGGvWYNJDxNokpuUcihxXnGK5jDuU4g/1ZasTIMuW/tcEwIftIZbCyTnDlyAJjxozRBRdc0O/94+LijtqhftVxxx034J/BEYMZbxOYknskclhxjuE65lCOM9ifpUaMLFP+WxsME7KPVAa76wQTsi3mdrvtjnBMCdXxNiX3SOSw4hzDdcyhHGewP2vKv/tjRSiPtwnZRyqD3XWC22oG2bdvn3Jzc/t1PxTAsYcaAYwMrhwZJDk5WYsWLVJycrLdUQAYiBoBjAyuHAEAAHTBlSMAAIAuaI4AAAC64FH+EOL1elVYWKh33nlHDQ0NOv7443XTTTfpm9/8pt3RABhi5cqVeuONN9TS0qK0tDQtXrxY55xzjt2xgJDCnKMQ0tzcrHXr1mnu3LlKTU3Va6+9plWrVmndunWKiYmxOx4AAxw4cCCwSO3HH3+svLw8/elPf1JiYqLd0YCQwW21EBIdHa1FixYpLS1NYWFhOv/88xUeHq6DBw/aHQ2AIY477rjA6v0Oh0NtbW2qqqqyORUQWritZqGmpib96U9/0p49e/Txxx/L4/Fo+fLlmjt3brd9vV6v1qxZo5dfflkej0eTJk3SddddpzPOOKPX4x88eFAej0dZWVlW/hoALGJVjSgsLNTGjRvl9Xp11llnaeLEiSPx6wCjBleOLFRXV6e1a9fqwIEDmjx5cp/7Pvjgg1q/fr3mzJmjW265RWFhYcrPz9cHH3zQ4/6tra0qKCjQNddco7i4OCviA7CYVTUiLy9PW7Zs0W9+8xudccYZcjgcVv0KwKhEc2Sh5ORkPffcc3rmmWd0ww039Lrfnj17tHXrVi1evFhLlizRvHnztGrVKqWnp+vJJ5/stn97e7vuvfdeZWVladGiRRb+BgCsZFWNkCSn06nTTjtN7777rt566y2rfgVgVKI5spDL5erXSrbbtm2T0+nUvHnzAtsiIyOVk5Oj3bt3q7y8PLC9o6NDBQUFcjgcuuuuu/gbIRDCrKgRX+Xz+VRcXDwseYFjBc2RAT799FONHz9esbGxQdunTp0qSdq/f39g28MPP6zq6mrdd999Cg9nyhhwLOhvjWhoaNArr7yipqYmtbe367XXXtP777+vadOmjXhmIJTxv64GqK6u7vFvj53bOp80KSsr04svviiXyxX0N8gVK1ZQ/IBRrL81wuFw6MUXX9RvfvMb+f1+ZWVl6Z577tEJJ5wwonmBUEdzZIDW1lZFRER02975OG5ra6skKT09Xdu3bx/RbADs198aERsbq0ceeWREswGjEbfVDBAZGam2trZu271eb+BzAMcuagQwsmiODJCcnKzq6upu2zu3paSkjHQkAAahRgAji+bIAJMnT9ahQ4fU2NgYtH3Pnj2BzwEcu6gRwMiiOTLArFmz5PP59MILLwS2eb1ebdy4UdnZ2UpLS7MxHQC7USOAkcWEbIv9+c9/VkNDQ+Dy9xtvvKGKigpJ0hVXXKG4uDhlZ2dr9uzZeuqpp1RbW6usrCxt3rxZZWVluuOOO+yMD8Bi1AjAPA6/3++3O8RotmDBApWVlfX42bp165SRkSHpyNMmne9Namho0MSJE3XdddfpzDPPHMm4AEYYNQIwD80RAABAF8w5AgAA6ILmCAAAoAuaIwAAgC5ojgAAALqgOQIAAOiC5ggAAKALmiMAAIAuaI4AAAC6oDkCAADoguYIAACgC5ojABgGM2fODPq/1tbWwGebNm3SzJkztWnTJhsT/p/nn38+KOt//ud/2h0JMEq43QEAmKu0tFRXX311n/ukp6dr/fr1I5TIbOnp6broooskSU6n09Jz7dy5U8uWLdMZZ5yhX//6133ue//996uoqEj33HOP5syZoylTpmjRokVqaGjQhg0bLM0JhCKaIwBHlZWVpTlz5vT4WVxc3AinMVd6erp+/OMfj8i5Tj/9dKWlpendd99VeXm50tLSetyvoaFBO3bsUFxcnGbOnClJOvHEE3XiiSeqtLSU5gjoAc0RgKPKysoasf/RR/+EhYVp7ty5Wrt2rTZv3qxrr722x/2KiorU2tqqiy++WJGRkSOcEghNzDkCMKxmzpypW265RYcPH9YDDzygSy+9VG63W9dff73ef//9Hn+mqalJv/vd7/SjH/1IbrdbF198sX72s5/pgw8+6LbvLbfcEpjTs3r1ai1cuFCzZ8/W7373u8A+27ZtU25urtxut+bPn68VK1bI4/FowYIFWrBgQWC/X/7yl5o5c6b27NnTY641a9Zo5syZKioqGuKo9KyiokLXXnut3G63Xn/99cD2mpoaPfbYY/re976n888/X5deeqnuvvtuff7550E/f/HFF8vhcGjTpk3y+/09nmPjxo2SpJycHEt+B2A0ojkCMOwaGhp044036ssvv9QFF1ygmTNnat++fVq2bFm3/4Gvr6/XDTfcoLVr1yo+Pl7z58/XzJkz9cknn+jWW2/Vjh07ejzHPffco82bN+uUU07RlVdeqYyMDEnSSy+9pHvuuUeHDh3ShRdeqIsuuki7d+9WXl6e2tvbg44xb968wM98lc/n08aNG5WYmBi4HTWcvvzySy1ZskQVFRVauXKlZs2aJUkqLi7Wddddp2eeeUaZmZm6/PLLddZZZ2nnzp264YYbghq59PR0nXbaaSopKemx8fz888+1d+9enXDCCfrGN74x7L8DMFpxWw3AURUXFwddmenqpJNO0re//e2gbfv379dll12mpUuXKizsyN/BTj31VK1YsULPPvusli1bFth31apV+uKLL5Sfn69LLrkksL2mpka5ublauXKlzjzzzG63hKqrq/X0008rISEhsM3j8ejRRx9VdHS0nnrqKU2YMEGSlJubq2XLlmnfvn1KT08P7D9t2jQdf/zx2rp1q2666SZFR0cHPtu5c6cqKyt11VVXyeVyDXTI+rR7927dcccdCg8P12OPPabJkycHPnvggQd0+PBhPfzwwzrzzDMD23/0ox8pNzdXK1as0Nq1awPbc3Jy9M4772jjxo069dRTg87DVSNgcLhyBOCoiouLtXbt2h7/7x//+Ee3/aOjo3X99dcHGiNJuuiii+R0OrV3797AttraWr322ms69dRTgxojSRo7dqy+973vqba2Vu+++263c/y///f/ghojSfrb3/6m5uZmXXzxxYHGSJLCw8N13XXX9fi7zZs3T01NTdq6dWvQ9hdffFGSdOmll/Y2LIPy1ltv6bbbblN8fLyeeOKJoMbok08+0UcffaQLL7wwqDGSpAkTJuiSSy7R559/HnT1bcaMGUpMTNS2bdvU2NgY2N7e3q6XX35ZLper18n0AHrGlSMAR3XmmWfq4Ycf7vf+48ePV0xMTNC28PBwJSUlqaGhIbBt79698vl8amtr6/HK1KFDhyRJBw4c0Nlnnx302dSpU7vt/9lnn0mSTj755G6fZWdn9/h4/YUXXqj//u//1osvvhho0A4fPqw333xT3/zmN3X88ccf5bftv9dee01vv/22Jk2apJUrV2rs2LFBn3feMqupqelxPP71r38F/v/EiRMlKdD8bNiwQUVFRZo/f74k6Y033lBtba3cbrfi4+OH7XcAjgU0RwCGXWxsbI/bnU6nOjo6An+ur6+XJH344Yf68MMPez1eS0tLt21JSUndtnVeOflq0yEdeborMTGx2/b4+HjNnj1bmzdv1ueff66JEydq06ZN8vl8w37VaPfu3fL5fDr55JN7zNg5Hm+99ZbeeuutXo/T3Nwc9OecnBxt2LBBGzduDDRH3FIDBo/mCIBtOpuoq6++WjfeeOOAftbhcPR6vJqamm6fdXR0qK6uTqmpqd0+mz9/vjZv3qy//vWvuvXWW/XSSy8pNjZWs2fPHlCmo1m8eLH+9re/acOGDXI6nd1+5878t956q6644op+H3fSpEk68cQT9fHHH+uLL75QfHy8du7cqYyMjG7zkAAcHXOOANjmxBNPlMPh0O7du4fleJMmTZKkHq9Cffzxx/L5fD3+3EknnaRJkybplVde0c6dO3Xo0CHNmTNHUVFRw5Krk8vl0gMPPKDvfOc7WrdunR5//PGgzztvFQ5mPDqvEL300kvasmWLfD5f4FF/AANDcwTANsnJyZo9e7Y++ugj/e///m+Pa/Xs2bOnx9tqPTn33HMVHR2tl156ScXFxYHt7e3tWrNmTZ8/O2/ePNXX1+uhhx6SpG4TxIeLy+VSQUGBzj77bK1fv16PPfZY4LPs7GxlZ2dr69at3SaIS0eufu3atavH47rdbkVFRenll1/Wxo0bFRYWFniVCYCB4bYagKPq61F+SbrmmmsGvfpyXl6eDh48qCeffFJbtmzRSSedpLi4OFVWVmrv3r06dOiQnnvuuX5dxYmPj9dNN92klStXKjc3V+edd55iY2P197//XS6XSykpKb1eSbngggv029/+VlVVVZoyZYql6wJFRETol7/8pe69914988wz8vv9uuWWWyRJ9957r5YuXar77rtPGzZs0AknnKDIyEhVVFToo48+Ul1dXY+LUsbGxuo//uM/tGXLFtXW1urb3/52r68UAdA3miMAR9X5KH9vrrrqqkE3RwkJCXriiSf07LPP6tVXX1VRUZE6OjqUlJSkyZMn69prr+1xInVvLr30UsXHx+sPf/iDNm/erNjYWJ1zzjm6/vrrddVVVykrK6vHn4uNjdWMGTP08ssvW3bVqKvOBunnP/+5NmzYIL/fr1tvvVWZmZlas2aN1q1bpx07dmjTpk0KCwtTcnKypk2bFlgssic5OTnasmWLpCOrZwMYHIe/tzXnAWAUOXTokL7//e9r9uzZuu+++3rc59prr1VZWZmeffbZXp+4683MmTM1ffp0Pfroo8MRd0SUlpbq6quv1kUXXaS77rrL7jiAMbhyBGBU8Xg8ioyMDFrVurW1NTD5ecaMGT3+3N///nd98cUXuvTSSwfcGHXatWtX4FUjr7zyirEven3++ef161//2u4YgLFojgCMKrt27dKvfvUrnXHGGRo3bpzq6ur03nvvqaysTKeeeqrOO++8oP3/8pe/qKKiQi+++KJcLpeuueaaQZ130aJFQX/uacFJU0yZMiUo7wknnGBfGMBA3FYDMKocPHhQa9as0UcffaTa2lpJUlZWls477zwtXLiw29WcBQsWqLKyUhMmTND111/fbSVuAMcemiMAAIAuWOcIAACgC5ojAACALmiOAAAAuqA5AgAA6ILmCAAAoAuaIwAAgC5ojgAAALqgOQIAAOji/wNjUzOXYjZAWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "getting raw lightcurve...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAG5CAYAAAAeUIXbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC0VUlEQVR4nO2deXgUVfb+3+500tlYQxZI2DcBgcgioIIsEWEYEURAwHEQARVFFJHNwUHQQQaEQVFQQdCvC4sMLoggQQQFREAQhkAEWWTLTkI6ezr9+yO/Kqs7vVR113Kr63yeh+dpeqv75nZXvX3OueeaHA6HAwRBEARBEIRhMGs9AIIgCIIgCEJdyAASBEEQBEEYDDKABEEQBEEQBoMMIEEQBEEQhMEgA0gQBEEQBGEwyAASBEEQBEEYDDKABEEQBEEQBoMMIFGD0tJSpKeno7S0VOuhEARBEAShAGQAiRpcunQJkyZNwqVLlxR5/5s3byryvnrAyNoB0m9k/UbWDpB+0s+efjKAhOoUFhZqPQTNMLJ2gPQbWb+RtQOkn/Szp58MIKE6derU0XoImmFk7QDpN7J+I2sHSD/pZ08/GUCCIAiCIAiDQQaQUJ2CggKth6AZRtYOkH4j6zeydoD0k3729Fu0HgBBEARBEMpgt9tRUVGh9TBQWVlp6M4ScusPCQmBxWKByWTy+z3IABKqEx8fr/UQNMPI2gHSb2T9RtYOaKPfZrPhypUrcDgcqh/bFYfDgQsXLmg9DM1QQn9kZCQaNmyIsLAwv15PBpBQnRs3biA2NlbrYWiCkbUDpN/I+o2sHVBfv91ux5UrVxAZGYnY2NiAIkVyUFFRgdDQUE3HoCVy6nc4HCgvL0d2djYuXLiA1q1bw2yWXtFHBpBQnfLycq2HoBlG1g6QfiPrN7J2QH39FRUVcDgciI2NRUREhKrHdofZbPY7UhUMyK0/IiICoaGhuHTpEsrLyxEeHi59TLKNhiBEYuRfgUbWDpB+I+s3snZAO/1aR/44WBmHViih35+on9PrZRoHQYgmJiZG6yFohpG1A6TfyPqNrB0g/RaLsROOLOonA0ioTkZGhtZD0AwjawdIv5H1G1k7QPrVWoncrFkzHD9+HAAwceJE7Nmzx+dr5s+fj2effdbtY8ePH8eGDRsCHhcLK7FdIQNIEARBEITqVFZWKvr+a9asQb9+/QJ6D7kMoBCldYuFvZgkEfTUrl1b6yFohpG1A6TfyPqNrB1gQ3+3bt0UjUQmJCTgyJEjbh8LCQkBUF0L99JLL2H79u3o27cvHnnkETz55JMoLi5GaWkpxo4di3/84x8AgMTERBw+fBiNGjXCqFGjcOXKFRw4cABlZWVo1KgRrl27BqvV6nE8ffv2xbPPPothw4bh+vXr+Pvf/44rV64gKSkJ9evXxy233IL58+cDAK5fv4777rsPv//+OxISEvDZZ5+hsrISL730EgoKCpCcnIyePXti9erVOHjwIF544QUUFhbC4XBg4cKFuP/++9GsWTN8/vnnSE5OBlD99166dCn69u2Le+65B507d8bhw4cRERGBli1bom3btpgxYwYA4MKFC+jVqxcuX74MAJg3bx6+++47lJeXo02bNnjnnXdQr149OaaJhwwgoTqBFq7qGSNrB0i/kfUbWTvAhv6MjAxcvXpV62EgJCQEhw8fBgAUFhZi9+7dsFqtKCkpwR133IGUlBT07NkTAwYMQGpqKh5++GH8+uuvsFgsuHnzJg4fPoyuXbt6NX+uPPPMM+jVqxdefvllZGRkIDk5Gbfccgv/+KFDh3D06FHExMTgoYcewjvvvIM5c+ZgwYIF+Pzzz/H5558DAPLy8jBs2DB89tln6N27N6qqqpCfny9qDL/99hv27duH0NBQHDhwAJMnT+YN4Pr16zFu3DiEhobiX//6F6KiovDzzz8DABYuXIh//OMfeOutt0TrFQMZQEJ18vPzERUVpfUwNMFVe05ODrZv3457773XEI1yjTz3gLH1G1k7wIb+hIQEzd7fbrfzUcAJEybw95eUlGDKlCk4fvw4zGYzLl++jOPHj6Nnz55ISUlBamoqOnTogM6dOyM+Ph7ff/89Dh48iAEDBkga2+7du7F06VJ+nH/961+dHh80aBC/UKdXr144efKk2/c5ePAg2rZti969ewOoNvb169cXNYaHH36YXw1+xx13oLKyEocPH0a3bt3w4Ycf4quvvgIAfP755ygoKMCWLVsAVLcQatasmSS9YiADSBAa8uijj2Lbtm3o168fvvvuO62HQxBEEOMpPas20dHR/O25c+eiQYMGOHbsGCwWCx544AF+y7SUlBTMmTMH7du3R0pKCuLj45GamoqDBw9i1apVAY3BtS2LsI9eSEiIX3V6FosFdrud/7/r1m9C3UD1+X/dunWw2Wxo0KABbr31VgDVjZ7ffPNNDBw4UPIYpKB9TJowHHFxcVoPQTNctR89ehQAcOzYMS2GozpGnnvA2PqNrB0g/Z7aoNy4cQNJSUmwWCxIT0/Hrl27+McaNWqEOnXqYPXq1UhJSUG/fv2wbds2XLx4EV26dJF0/P79+2P9+vUAgMzMTGzbtk3U62rXro2CggL+/3fccQfOnj2LH374AQBQVVWFvLw8AECrVq1w6NAhAMDPP/+M9PR0/nXu+gD+7W9/w+bNm7F69WqnqOiwYcOwfPlyFBcXAwCKi4tx6tQpCWrFQQaQUB3hl8louGq/efMmgOo0iBEw8twDxtZvZO0A6RdGxoT84x//wLp169CpUyfMnj0b/fv3d3o8JSUFZrMZLVq0QO3atZGQkIA+ffpIrqlcsWIFfvjhB7Rv3x7jxo1Djx49ULduXZ+vGzBgAMrKytCpUyc88cQTqFevHrZu3YrZs2ejU6dO6NKlC/bv3w8AeOWVV/DWW2+hc+fOeP/999GhQwf+fdztx9yoUSPcfvvt+PLLLzFmzBj+/lmzZqF79+7o0aMHOnXqhJ49e/KtbeTE5GBhl2iCKdLT0zFp0iS89957aNu2rezvf/XqVSQmJsr+vnpAqL2qqoqviQGqT5AsFIoriZHnHjC2fiNrB9TXX1paigsXLqB58+Z+bRMmN+Xl5ZpuBVdSUoLQ0FBYLBbk5uaiZ8+e+Oijj9CjRw9Vjq+E/kDnmGoACdVhsSO6Wgi122w2p8dKS0sRGRmp9pBUxchzDxhbv5G1A6Rf663gzp49i0ceeQQOhwPl5eWYMmWKauYP0F6/O4z9iSQ0wci1MELthYWFTo+VlJQEvQE08twDxtZvZO0A6dfaAHfq1EmRNKpYtNbvjuDONxFMcu3aNa2HoBlC7Vz9H4cR6gCNPPeAsfUbWTugnX5WqrxY3ApNTZTQH+jckgEkCI1wFwEkCIKQA66+uLy8XOOREErBrRLmegtKhb2YJBH01KpVS+shaIZQuxENoJHnHjC2fiNrB9TXb7FYEBkZiezsbISGhmq+wMxut6OqqkrTMWiJnPodDgeKi4uRlZWFunXrOi0mlAIZQEJ1WKyFUAuhdiOmgI0894Cx9RtZO6C+fpPJhIYNG+LChQu4dOmSqsd2R1VVleYmVEuU0F+3bt2Adncx9jeS0IQbN24E/WIHTwi1GzECaOS5B4yt38jaAW30h4WFoXXr1kykgTMzMw2x3aUn5NYfGhrqd+SPgwxgELNkyRLs378fpaWliI+Px+TJk3HnnXdqPSzi/2NEA0gQhLqYzWYm+gBaLBYmxqEVLOonAxjEjBo1CtOmTUNYWBhOnz6N6dOnY8OGDahTp46m44qNjdX0+Foi1G5EA2jkuQeMrd/I2gHST/rZ02/chLwBaNq0Kd953GQyoaKiAjk5ORqPqqbxMRJC7UasATTy3APG1m9k7QDpJ/3s6ddFBLC4uBgbNmxAWloaTp8+jcLCQsyZMweDBw+W/F4ffvgh1qxZg+bNm+ODDz5Q7DhSkXrs8vJyrF27Ft9++y0KCwvRsmVLTJw4Ed27d3d63rJly7B9+3aUl5ejZ8+eaNGiheJafFFaWqr1EDRDqN2IEUAjzz1gbP1G1g6QftLPnn5dRAALCgqwfv16XLp0Ca1atfL7fbKysvDRRx8hIiJC0eP4g9RjL1q0CJs2bcI999yDZ555BmazGTNnzsSJEyecnjd9+nTs3LkTy5cvR/fu3ZnYjibQwlU9I9RuRANo5LkHjK3fyNoB0k/62dOvCwMYExODrVu3YvPmzXjyySf9fp+3334b7du3R9u2bWU/TmFhIfbu3evx8dTUVK8XeCnHTktLw+7duzF58mRMmTIFQ4cOxX/+8x8kJCRg1apVNZ4fEhKCrl274ujRozh48KB4UQoRyLJ1vSPUbkQDaOS5B4yt38jaAdJP+tnTrwsDGBYWhpiYmIDe4/jx49i7dy+mTp2qyHG2bt2K+fPnY9++fTUe27ZtGxYsWIAdO3bIcuy9e/ciJCQEQ4cO5e+zWq0YMmQITp06hczMTLevs9vtuHr1qqhjKAkLY9AKoXYj1gAaee4BY+s3snaA9JN+9vTrwgAGit1ux4oVKzBkyBC0bNlSkWOMHTsWPXv2xIIFC3D06FH+/r179+L111/HwIEDMWzYMFmOdfbsWSQlJSEqKsrp/nbt2gEAzp07B5vNhl27dqG4uBiVlZXYs2cPjh07hs6dO8syBiJwjBgBJAiCINhAF4tAAuWLL75AZmYmli9frtgxLBYL5s+fjxdeeAFz587F8uXLUVJSgoULF6JHjx6YPXu2bPV3ubm5bqOF3H05OTkwmUzYtm0bli9fDofDgcTERMybNw+tW7f2+L6pqalITU2FzWaTZZyecDWuRkKo3YgG0MhzDxhbv5G1A6Sf9LOnP+gNYEFBAd5//3088sgjqFu3rqLHslqtWLRoEaZNm4aZM2eioqIC7dq1w8svvyzrNkBlZWVuN3/mWr6UlZUhKioKK1askPS+KSkpSElJQXp6OiZNmiTLWN1htVoVe2/WEWo3ogE08twDxtZvZO0A6Sf97OkP+hTwmjVrUKtWLYwYMUKV40VFRWHKlCm4efMmSkpKMHXqVNkn3mq1oqKiosb93HY/LH7QhOTl5Wk9BM0QajdiDaCR5x4wtn4jawdIP+lnT39QG8DLly/jq6++woMPPoicnBxcv34d169fR3l5OSorK3H9+vUaF+FAuXbtGhYuXIgmTZogISEB8+bNk735ckxMDHJzc2vcz93XoEEDWY9HyI/D4TBkBJAgCIJgg6A2gDk5OaiqqsKKFSswevRo/l9aWhouX76M0aNHY/369bIeb/r06bBYLFi2bBlef/11lJaW4vnnn5fVaLZq1QpXrlxBUVGR0/1paWn84yxjZIPKaS8pKUFVVZXTY0YwgEaee8DY+o2sHSD9pJ89/UFVA1haWorMzEzUqVMHdevWRfPmzfHqq6/WeN6aNWtQXFyMZ555Bo0aNZLl2IWFhZgxYwZKSkqwcuVKxMXFAQCWLl2KadOmYdasWVi2bJnHJtRS6Nu3LzZs2IAvv/wSY8aMAVCd/t2+fTvat2+P+Pj4gI+hJEVFRcynqZWC0+5uWyAjGEAjzz1gbP1G1g6QftLPnn7dGMAtW7bAZrPxac79+/cjKysLADBixAhER0fj9OnTmDZtGsaPH48JEyagbt266N27d4332rx5MwC4fUzMcdyxdetWZGVl4Y033kDjxo35+1u3bo3XXnsNzz//PHbs2IHhw4cHpBEA2rdvj379+uHdd99Ffn4+EhMTsWPHDmRkZGDWrFle/opsYASj4wlOu7uIsBH+LkbQ6A0j6zeydoD0k3729OvGAG7cuBEZGRn8//ft28c3XR44cKBHY6bWccaOHYvevXujefPmNR7r1KkTVq9e7XMfXinHnjt3LuLj47Fz507YbDa0aNECixcvRnJysmitWmE2B3XlgVc47UaNABp57gFj6zeydoD0k3729JscDodD60EQbMG1gXnvvfc8bptHBMbevXvRt29fp/vatGmD9PR0bQZEEARBGAr2LCkR9Fy7dk3rIWgGp92oEUAjzz1gbP1G1g6QftLPnn4ygITqGDnozGk3ag2gkeceMLZ+I2sHSD/pZ08/GUBCdSIjI7UegmZw2o0aATTy3APG1m9k7QDpJ/3s6ScDSKiOHK1w9Aqn3ZMBZPFXopwYee4BY+s3snaA9JN+9vSTASRUx90uJkaB0+7OAFZVVbnd4i+YMPLcA8bWb2TtAOkn/ezpJwNIEBogrAEUtvcxQhqYIAiC0B4ygITqxMTEaD0EzeC0CyOA3K4xQPAbQCPPPWBs/UbWDpB+0s+efjKAhOqUlpZqPQTN4LQb1QAaee4BY+s3snaA9JN+9vSTASRUp6ioSOshaAanXWgAhXs3B7sBNPLcA8bWb2TtAOkn/ezpJwNIEBogrAGMjY3lbwe7ASQIgiDYgAwgoTqJiYlaD0EzOO1cBNBqtaJ27dr848FuAI0894Cx9RtZO0D6ST97+skAEqpz/fp1rYegGZx2zgDWrl3bqT9UsBtAI889YGz9RtYOkH7Sz55+MoCE6lRVVWk9BM3gtHMp4Fq1ahnKABp57gFj6zeydoD0k3729JMBJFSHxY7oauG6E4jRDKCR5x4wtn4jawdIP+lnTz8ZQEJ1oqKitB6CZkRFRaG8vBzl5eUAjGcAjTz3gLH1G1k7QPpJP3v6yQASqpOTk6P1EDQjJyfHqQWM0WoAjTz3gLH1G1k7QPpJP3v6yQAShMoIW8AYLQJIEARBsAEZQEJ16tevr/UQNKN+/fpOEUCjGUAjzz1gbP1G1g6QftLPnn4ygITqcPVvRqS8vNzQBtDIcw8YW7+RtQOkn/Szp58MIKE6NptN6yFohs1mM3QNoJHnHjC2fiNrB0g/6WdPPxlAglAZqgEkCIIgtIYMIKE6jRo10noImtGoUSNDp4CNPPeAsfUbWTtA+kk/e/rJABKqk5mZqfUQNCMzM9PQBtDIcw8YW7+RtQOkn/Szp58MIKE6drtd6yFoht1uN3QNoJHnHjC2fiNrB0g/6WdPPxlAQnXCw8O1HoJmhIeHG7oG0MhzDxhbv5G1A6Sf9LOnnwwgoTq1atXSegiaUatWLUOngI0894Bn/WVlZfjpp59QUVGh8ojUg+ae9BsZFvWTASRUJzs7W+shaEZ2dnaNFHBoaCjM5uqvYrAbQCPPPeBZ//Dhw9GrVy88+eSTKo9IPWjuSb+RYVE/GUCCUBnXCKDJZOKjgMFuAAn3fPfddwCArVu3wuFwaDwagiCMABlAQnXq1aun9RA0o169ejVqAAEYxgAaee4B9/rLy8tRVlYGAMjLy0NWVpbaw1IFmnvSb2RY1E8GkFCdyspKrYegGZWVlXwEMCQkhC8MNooBNPLcA+71CyPCAHDq1Cm1hqMqNPek38iwqJ8MIKE6rhc8I1FYWMjrr127NkwmEwDjGEAjzz3gXr9RDCDNPek3MizqJwNIECrDnQiEq8KMYgCJmrheGNLS0jQaCUEQRoIMIKE6DRs21HoImtGwYUO+BtCdASwvL2eyYahcGHnuAff6jRIBpLkn/UaGRf1kAAnVYXE5vFpkZGSguLgYgHsDCAClpaWqj0stjDz3gHv97gxgMK4Eprkn/UaGRf1kAAnVYbEYVi0KCgr427Vr1+ZvG6UZtJHnHhC3CCRYVwLT3JN+I8OifjKAhOpYrVath6AZwp0ePEUAg9kAGnnuAff63RWHB2MamOae9BsZFvWTASRUp27duloPgQmMaACNPvfu9LszgMG4EITmvq7WQ9AU0l9X6yHUgAwgoTqZmZlaD0EzLl26xN82ogE08twD7vUbJQJIc0/6jQyL+skAEoSKFBUV8beNWANI1MQoBpAgCLYgA0ioTp06dbQegmZUVVXxt40YATTy3APu9XsygMG2EpjmnvQbGRb1kwEkVCfYLmxScLcPMGAcA2jkuQfc6xd+Jpo0aQIgOFcC09yTfiPDon4ygITqCC94RiMnJ4e/bUQDaOS5B9zrF0YAe/bsyd8OtjQwzT3pNzIs6icDSBAqQjWAhCueDGAwrgQmCIIdyAASqpOQkKD1EDRDmAYQRgAjIyP528FsAI0894B7/ZwBNJlM6N69O39/sEUAae5Jv5FhUT8ZQEJ1cnNztR6CZgi3AzJiCtjIcw+4188ZwOjoaHTo0IG/P9gigDT3pN/IsKifDCChOsLdMIyG0ReBGHnuAff6OQNYq1Yt1KtXj980PthWAtPck34jw6J+MoCE6oSFhWk9BM0oLi7mbxuxBtDIcw+41y80gAD4KGBubm5QrQSmuSf9RoZF/WQACdWpX7++1kPQjNLSUv62ESOARp57oKZ+h8MBm80GoKYBBIIrDUxzT/qNDIv6yQASqpORkaH1EDQjLy+Pvx0VFcXfNooBNPLcAzX1FxcX883BOQPYvn17/vFgWghCc0/6jQyL+skAEoSKcG1goqOjYTb/+fUzigEknBG2gHEXAQwmA0gQBFuQASRUR1j7ZjS4GkDXv4FRDKCR5x6oqd/doiBhBDCYUsA096TfyLConwwgoTomk0nrIWiGa8E/h1EMoJHnHqip310EMFhXAtPck34jw6J+MoCE6hQUFGg9BE1wV/DPYRQDaNS553DVLzSAwgiBcCWwsHeknqG5J/1GhkX9ZAAJQiXcFfxzGMUAEs64iwACwbsQhCAIdiADGOQsWbIEw4YNw6BBg/D3v/8d+/fv13pIiI+P13oImuAp2gMA4eHh/O1gNoBGnXsOV/2eDGAwLgShuSf9RoZF/WQAg5xRo0Zh06ZN2LFjB2bPno1XXnlF81B0fn6+psfXCk+7gADV9SGcCQxmA2jUuedw1S/GAAbLQhCa+3yth6AppD9f6yHUgAxgkNO0aVO+A7nJZEJFRQVycnI0HVNZWZmmx9cKTxd7Di4NHMwG0Khzz+Gq30gpYJp70m9kWNRv0XoAclNcXIwNGzYgLS0Np0+fRmFhIebMmYPBgwdLfq8PP/wQa9asQfPmzfHBBx8oMNo/kTru8vJyrF27Ft9++y0KCwvRsmVLTJw4Ed27d6/x3GXLlmH79u0oLy9Hz5490aJFC0W1+CI0NFTT42uFGAN448aNoDaARp17Dlf9nj4T3Erg69ev8yuBWVxFKAWae9JvZFjUH3QRwIKCAqxfvx6XLl1Cq1at/H6frKwsfPTRR07F+UoiddyLFi3Cpk2bcM899+CZZ56B2WzGzJkzceLEiRrPnT59Onbu3Inly5eje/fuml9IGjRooOnxtcJbDSBgjAigUeeew1W/tx8FXBQwWFYC09yTfiPDov6gM4AxMTHYunUrNm/ejCeffNLv93n77bfRvn17tG3bVtTzCwsLsXfvXo+Pp6amer2wSxl3Wloadu/ejcmTJ2PKlCkYOnQo/vOf/yAhIQGrVq1y+5qQkBB07doVR48excGDB0VpUorr169renyt8FYDCBjDABp17jlc9XszgMG2EITmnvQbGRb1B50BDAsLQ0xMTEDvcfz4cezduxdTp04V/ZqtW7di/vz52LdvX43Htm3bhgULFmDHjh0eXy9l3Hv37kVISAiGDh3K32e1WjFkyBCcOnUKmZmZHl9rt9tx9epVUcch5EVKDWCwNP8lvGMkA0gQBFsEnQEMFLvdjhUrVmDIkCFo2bKl6NeNHTsWPXv2xIIFC3D06FH+/r179+L111/HwIEDMWzYMFnGePbsWSQlJSEqKsrp/nbt2gEAzp07BwCw2WzYtWsXiouLUVlZiT179uDYsWPo3LmzLOPwF3fmxwiITQE7HA6Ul5erNi41Mercc7jq9xYVDrYt4WjuSb+RYVF/0C0CCZQvvvgCmZmZWL58uaTXWSwWzJ8/Hy+88ALmzp2L5cuXo6SkBAsXLkSPHj0we/Zs2WrvcnNz3UYLufu4Vb4mkwnbtm3D8uXL4XA4kJiYiHnz5qF169Zu3zc1NRWpqan8bhVKERISouj7s4rYCCBQHQW0Wq2qjEtNjDr3HK76jRQBpLkn/UaGRf1kAAUUFBTg/fffxyOPPIK6detKfr3VasWiRYswbdo0zJw5ExUVFWjXrh1efvllWCzy/anLysrcriji2r1wy82joqKwYsUK0e+bkpKClJQUpKenY9KkSfIM1g35+fk1opdGQGwNIFBtAP35DLKOUeeew1U/ZwDDwsJqGH7hSuBgiADS3JN+0s+WfkoBC1izZg1q1aqFESNG+P0eUVFRmDJlCm7evImSkhJMnTpV9kiO1WpFRUVFjfu5tGEwRo6CAakRQCL44T4TntJDXBo4JycHWVlZqo2LIFjA4XDgscceQ+/evXHx4kWthxN0kAH8/1y+fBlfffUVHnzwQeTk5OD69eu4fv06ysvLUVlZievXrztFcDxx7do1LFy4EE2aNEFCQgLmzZsne+PlmJgY5Obm1rifu4/F5eZC4uLitB6CJoitAQSC1wAade45XPX7MoDBlAamuSf9Ujl8+DDef/99/Pjjj1izZo0Co1IPFuefDOD/JycnB1VVVVixYgVGjx7N/0tLS8Ply5cxevRorF+/3ud7TJ8+HRaLBcuWLcPrr7+O0tJSPP/886LMo1hatWqFK1euoKioyOl+Lk0USP9DNZDzb6EnKAJo3LnncNUvNgII6H8hCM096ZeKsP+lt+4WeoDF+TdsDWBpaSkyMzNRp04d1K1bF82bN8err75a43lr1qxBcXExnnnmGTRq1Mjj+xUWFmLGjBkoKSnBypUrebe/dOlSTJs2DbNmzcKyZctkaSzdt29fbNiwAV9++SXGjBkDoDr9u337drRv357JTaeFlJaWaj0ETZBaAxiMGHXuOYT6Kysr+f8bIQJIc0/6pSL80az1HvaBwuL8B6UB3LJlC2w2G58S3b9/P18/M2LECERHR+P06dOYNm0axo8fjwkTJqBu3bro3bt3jffavHkzALh9TMjWrVuRlZWFN954A40bN+bvb926NV577TU8//zz2LFjB4YPHx7QuIHqqEC/fv3w7rvvIj8/H4mJidixYwcyMjIwa9YssX8mzZBzQYye4E5m4eHhbv8GRjCARp17DqF+XxFhILj2BKa5J/1SEXak0LsBZHH+2RuRDGzcuBEZGRn8//ft28c3aB44cCBvpORk7Nix6N27N5o3b17jsU6dOmH16tU+9+CVMu65c+ciPj4eO3fuhM1mQ4sWLbB48WIkJyfLI0hBWKyFUAPugu+u/g8whgE06txzCPWLMYD169dHQkICMjIydJ8Cprkn/VIJpgggi/MflAZw06ZNPp9z2223ud21w5U33nhD1DEtFotb88chpqm0mHFzWK1WTJkyBVOmTBH9Gla4du0aEhMTtR6G6viq9zKCATTq3HMI9YsxgEB1GjgjI4NfCczihUQMNPekX6r+YDKALM4/LQIhCJXgagCNbACJPxFrAIMpDUwQUhCmgPPz87UbSJBCBpBQHSVS8KxTVlbG9240sgE04twLEer3tSiIQ7gQRM9pYJp70i+VYIoAsjj/ZAAJ1XG3i0mw46sHIGAMA2jEuRci1C82AigsH7ly5YoyA1MBmnvSLxVhBLCkpMTtBgh6gcX5JwNIqM6NGze0HoLqiLnYG8EAGnHuhQj1i/lRAACxsbH8bWFfNL1Bc0/6pSL8jgD6jgKyOP9kAAlCBcSk+4xgAIk/ERsBDBYDSBBSEUYAAX0bQBYhA0iojvCCZhQoAliNEedeiFC/WAMo3NpRzwaQ5p70S8U1AqjnhSAszj8ZQEJ1XH/VGQGqAazGiHMvRKhfrAEMCwtDnTp1AOjbANLck/5AX6PnCCCL808GkFCdYDU33qAUcDXBqkssQv1iDSDwZ/RAzwaQ5p70SyWYagBZnH8ygITqmM3G+9hRCrgaI869EKF+fwxgQUEBysvLlRmcwtDck36pBJMBZHH+2RsREfQ0bNhQ6yGoDhnAaow490KE+v0xgACQk5Mj/8BUgOae9EvB4XAEVQqYxfknA0ioztWrV7UegupQDWA1Rpx7IUL9/hpAvaaBae5JvxTKyspQWVnpdJ+eF4GwOP9kAAlCBagGkHBFaAB97RIg3P83KytLsTERBCu4WzSh5wggi1j8edHo0aMDPvDIkSPx4IMPBvw+hP6IiorSegiqIybaY7FYYLFYUFlZGbQG0IhzL0Son/tREBUV5bM+KBgigDT3pF8KrvV/gL4NIIvz71cEMCMjA4WFhXA4HH79y8zMZHJJNKEOVqtV6yGojth0HxcFDFYDaMS5FyLUz30mfKV/geAwgDT3pF8KwRYBZHH+/YoAAsCoUaMwfvx4v1579913+3tYIgjIy8tDYmKi1sNQFbHbfkVERKCwsDBoDaAR516IUD/3mfD2eeAIBgPoOve7d+/GP//5Tzz22GN49NFHNRyZOtBnX5r+YIsAsjj/VANIECogpgYQCP4IIFGNw+EwXATQlXnz5mH//v147rnntB4KwSDBFgFkEb8igP/3f//Hd6bX4vWEvhFubWUUuIu9xWLxmgoIdgNoxLkXwukvKSlBVVUVAOMYQNe5v3jxIoDqi3pZWRmTKTI5oc++NP3uIoB6XgXM4vz7FQFs0qRJQAYu0NcT+qa4uFjrIagOdzKLjo6GyWTy+LxgN4BGnHshnH4pLWCA4DCAwrmvqqpy0iGMkAcr9NmXpj/YIoAszj+lgAnVYfGLoDRCA+gNzgBWVFTAbrcrPi61MeLcC/HXAIaHh/OfnWAwgDdu3HDq8eYu2hNs0Gdfmv5gqwFkcf5lNYCFhYXYsWOHnG9JBCHeImDBChfhEGsAgeCMAhpx7oVw+qUaQED/+wEL5z4zM9PpMSNEAOmzL02/OwNYVlaGsrIyuYakKizOv6wGMDMzE6+99pqcb0kEIY0aNdJ6CKoi7OtXr149r88NdgNotLl3hdMfiAHMy8ursUOCHhDOvWszayMYQPrsS9MvTAELz4t6jQKyOP+SDGBmZqbXf3rdo5JQl2vXrmk9BFURnsjCwsK8PjfYDaDR5t4VTr8/BlC4G0hubq68A1MB4dwbMQJIn31p+oXfkaSkJP62XheCsDj/klYBjxo1ymsY0+FwMBnmJNjC4XBoPQRVkbLlV7AbQKPNvSuc/kAigEB1Gjg+Pl7ewSmMcO5dI4BGqAGkz740/cIfzomJiTh79iwA/UYAWZx/SQawVq1aeOyxx5CcnOz28UuXLmH+/PkyDIsIZiIjI7UegqoIoxu+Vr8HuwE02ty7wukX2xdSiNAA6nE/YOHcax0B/Prrr3Hu3DlMnjzZ6TunJPTZl6bfUwRQrwaQxfmXZADbtGmDwsJCNG/e3O3jdrudSZdLsAWLXwQlEZ7IjF4DKGbuFy1ahG3btuGNN95A165dVRiVenD65YgA6g1WDODFixcxdOhQVFVVwWKx4KmnnlLluEY777kiVb9rBJCDDKB8SKoBHDZsGBISEjw+Hh8fj9mzZwc8KCK4MVqtqPBib7F4/80V7AbQ19zn5OTgxRdfxIEDB/DEE0+oNCr14PSL3RpQiN4NoHDutUwBnz59mm/CnZ6ertpxjXbec0Wq/mCLALI4/5IigH369PH6eK1atTB48OCABkQQwYbwRBYVFeX1ucFuAH1x6dIlPotw5MgR/PLLL+jSpYvGo5IfI0YAhWgZAbxx4wZ/24jfMb3ARQCtVqvTLhp6XQTCItQImlCd+vXraz0EVRFe3IQrOd0R7AbQ19xfvnzZ6f/vvPOOksNRHU6/EQ2gcO6NaACNdt5zRap+4V7ZwtppvUYAWZx/MoCE6ui1kae/CC/24eHhXp8b7AbQ19xfuXLF6f+ffPJJUK0Q5fQb0QAK517LPoBaGUCjnfdckapfuHtSMBhAFuc/YAPYt2/fGr/aCcIbRUVFWg9BVYQXe6P3AfQ1964G0Gaz4ZNPPlFySKrC6TeiAeS022y2GttiqWnytTKARjvvuSJVP5cCDpYIIIvzH7ABpFW/BOEdqgEUj7sfk++8807QnWf8MYBRUVH850OPBpDDNf0LaBcBZHF/VsJ596To6GjUrVuXf0yvBpBFKAVMqI5wSb8REF7cWrRo4fW5wW4Afc29MAJ46623AgCOHTuGw4cPKzouteD0cwbQYrHAarWKfr2e9wPmtLvrYWiEFLDRznuuSNEvjJa5RgD1ugiExfknA0iozvXr17UegqoIoz2+LjjBbgB9zT1nAOvVq4dnn32Wvz9YFoNw+oUF7lJ2T+IWEeXm5vKtTPQCp91dBFDNFLDQQKj5HTPaec8VKfpdd0+KiopCSEgIAP1GAFmcfzKAhOro7cIVKJQC/hNvc+9wOHgDmJSUhIceeojvkbdhwwbdnviFcPqFBlAKXASwqqoKeXl5ol6zZMkSdOzYEd9++62kY8kNp52lFLCa3zGjnfdckaJf2ASa+5HEnQv0eh5gcf7JABKqo9bWS6wgNIDCflbuCHYD6G3us7OzUV5eDgBo3LgxoqKi8PDDDwOortX66KOPVBmjknD6OcPjrwEExKWBS0pKMHfuXPzvf//D4sWLJR1Lbjjt7lLAhYWFqtV5amUAjXbec0WKfnf7p3NpYL0aQBbnnwwgoTrcF9oocBd7k8mE+Ph4r88NdgPobe6F9X9c5//HH3+cvy8YFoNER0c7FbgHYgDF7Ad88eJFVFZWAtC+bpCbe2EEkLuvqqpKtQUZWi0CMdp5zxUp+l0jgAD4hSAFBQW6PA+wOP9kAAnV0fpCpDbCfla+tgMKdgPobe7dGcBOnTqhV69eAICTJ0/ip59+UnaACpOdne10cRO7DRyH1AjgxYsX+dta91Pkxis0rq1ateJvq5EGrqyslFSTKyd6Pu9VVFTg+++/D+gzJEW/u1XyXASwoqICpaWlfo9DK1ic/4AN4NixYyWfxAjCSHAnMzHfk2A3gN5wZwAB5yjg6tWrVR2TEvjTAoZDqgG8cOGC2+NqiTACqLYBdF1BWlpaKms06fDhw+jZsyfatWuHP/74Q7b31ZqpU6eiX79+GDJkiCrHE/5Ick0BA/pdCcwaARvAxx9/3GliCMIX9erV03oIqiIs+PelPdgNoDf9wh6AjRs35m+PGjWKT/9s2rTJKYWnN+rVq6eqAWQpAsjNPWcAo6OjnUoi1DCA7j47ckSTKisr8corr+COO+7AoUOHcObMGbz77rtOz1HjvHf58mW+jlZO9u3bBwD44Ycf/K7Bk6LfWwQQ0GcdIIvXPUVTwA6HA5cvX3a76oswLhUVFVoPQTUcDoeTAfSlPdgNoDf9niKAERER+Pvf/w6g+mL94YcfKjdAhamoqNAsAlheXq7pdlTc3HMp4Pj4eKeouBoG1Z0BDPR79vvvv6NPnz6YN28eX28JAEeOHHF6ntLnvWXLlqFJkybo27ev7McSzs2ZM2f8eg8pY/K2CATQpwFk8boniwHcu3cvXn31VadJu379OsaPH4+//e1vGD16NObPnw+73S7H4QidIwzvBztFRUV8iqlWrVo+tVutVr4vXDAaQG/6hQbQtWlqsCwGsdlsmkUAAW2jgDabDeXl5bwJi4uLczKAWkUA/f2eORwOrFu3DsnJyTh48CAAwGw28429jxw54vQ5Vfq8t3HjRgDAwYMHa0QfA0X4uTl9+rRf7yFFv7dFIIA+DSCL1z1ZDOAXX3yBs2fPOp3MVq5ciYsXL+K2225Dy5Yt8f3332P79u1yHI4gdIPwxCmmBtBkMiE8PBxAcBpAb3Ap4Dp16tQwRu3atUPv3r0BVF+AfvzxR9XHJxdaRQBdj60FwgUg8fHxTvq1MoD+rATOycnBgw8+iAkTJvAX9hYtWuCHH35Av379AFQ361azDlB4rH/+85+y1ckJsxiA/xFAKQRjBJBFZDGAFy9eRLt27fj/FxcX4+DBg+jfvz+WL1+Od955B02bNiUDSAAAGjVqpPUQVEN4UatVq5Yo7VwaOBgNoCf9wibQwvo/Ia5RQH/4+uuvsWDBAs3qCBs1ahSQAaxVqxYfYfJlAAsLC5Gbm+t0n5oNl11p1KhRDQOoxxTwDz/8gE6dOuG///0vf9+ECRNw/Phx3HHHHejWrRt/vzANrOR5r6ysDBkZGfz/c3Nz8a9//UuW9y4pKXFqYuyvAZSi310EUO+LQFi87sliAG/evIn69evz/z9x4gTsdjsGDBgAoHq/y27duuHq1atyHI7QOWL6lwULrhd7MdqD2QB60p+bm8vXpwnr/4SMGDECMTExAIDNmzf7bKnj7tgPPPAA/vnPf2LZsmWSXisXWVlZARlAk8kkej9g1/QvoG0EMCsry6keXIsUsDvjIPV79re//Y3f1ismJgZbtmzB2rVr+bns2rUr/9yjR4/yt5U877m7tq5YsQLnz58P+L1d58XfFLAU/cEYAWTxuieLAYyKinL6kBw7dgxmsxmdO3fm77NYLLrs3UPIj7BQOthxvdiL0R7MBtCTfk8LQISEh4fjkUceAVC9oOG7776TdOz09HR+heTZs2clvVYuXPvQSTWAwJ9p4JycHK+1kKwZwMrKSicD6BoB1EsN4LVr1wBUf05PnDiBBx54wOlxTxFAJc97wvQvZ5jKy8sxe/bsgN/b9TPz+++/+7XSWIp+XxFAPRpAFq97shjAJk2a4MCBAygoKEBhYSFSU1PRpk0bp5NbRkYGk8ugCfXhatyMgGsNoBjtwWwAPekXtoDxZAABoHv37vxtoWkUA3fhBqoX52hBeHh4jbIAqXAGsLKy0msqzLX+D9A2BRweHu61BlAPKeCKigp+NWezZs3cpvUSExMRFxcHoDoCyJl0Jc97QgM4a9Ys/vibN2/G/v37A3pv13mx2+04d+6c5PeRot/djyS9LwJh8boniwEcMWIEcnJyMGLECIwcORK5ubkYNmyY03PS0tKcmn4SxsVIjcNdL/ZSmkGXlJTodrWrJzzpF5o5TzWAgHMdjdDQiUH4fK1W5NWuXVu2CCDgPQ3MWgSwdu3amqeAA10EInxuZGSk2+eYTCY+CpiXl8fPg5LnPaEBvPXWW7FgwQL+/9OnT3eq4ZOKu8+MP3WAUvRz30+z2cwbJ71HAFm87sliAPv27YvnnnsOzZs3R+PGjfH4449j8ODB/OPHjx9HUVERbr/9djkOR+gcFmshlCKQGkAAmvZtUwJP+sWkgAH5DKBWEUDXGkB/Lgpi9wN2FwHUugbQ2yIQPaSAhQYwKirK4/Pc1QEqed4TGsAmTZrgscceQ4cOHQAAP//8M98ixh/kMoD+1ADWqlWLb4ul90UgLF73LHK90bBhw2pE/TiSk5NpBTBhSPyJ9rg2g2YxdSA3YlPAeo8AAoG1gQH0GwEEUKMGMDQ0lP+/3gygpwggULMO8MEHHxR9DH9wNYAWiwWvv/46Bg0aBACYPXs2hg0b5nRuEYu7z4y/C0HEwn0/uXpGQP8RQBZRdCcQgnCHsJZDTbQowhX+Uq1du7Yo7cG8G4gn/WIjgFFRUfyFQI8RwLp162pqALWsAaxbty5vAMPCwlCnTh1ERkbCbK6+DOmhBlCsAXQXAVTyvMcZwIiICH6l/L333ot7772Xf/w///mPX+8tVwRQin5hBJAjIiICFkt1zEqPBlCr6543yAASqqP2jjAOhwMPPvggatWqhQ8++EDVYwtNR8OGDUVpD2YD6Ek/ZwBr167tMy3KRQGvXr0qqUaShQig3W532+JCCmIMYH5+Pv/jQ9iiS8sIoN1u59NgcXFxMJlMMJlM/HwHUwSwUaNGSEhIAPDnQhClznsOh4M3gE2aNOFTpgCwdOlS3mD/61//8mtbVnfzcubMGcn1yWL1OxwOtxFAk8nEmyg9GkAWd0IjA0iojtoXofT0dGzZsgWlpaV44oknkJ6ertqxhf25EhMTRWkPZgPoTr+wCbS36B8HZwCLi4slmQYWIoCFhYX83yAyMhIhISGS30OMARRG/zp16uR0fK0oKCjgx8utUgX+jPIobQDtdrtb46CEATSZTHwU8MaNG7hw4YJif/sbN27wn+cmTZo4PXbrrbdi0qRJAKp/9Pzzn/+U/P7CcXPlKDabTXJfX7H6hY2nXSPkXPRfjwZQ6/ILd5ABJIKew4cP87dLS0vx6KOPqvZrjDtJRkREiE4BBLMBdEdeXh6vU4oBBMSngQsLC52ifmVlZZr15XKX3pKCGAMoXADSsWNH/raWKeAbN27w37v4+Hj+fi4CqPQFUmgahN8xuVcBc3jqByg3rvV/rrz88sv8Z+29997D//73P0nvL5yX5ORk/rZSW8J5i5ALDWCwdUjQAjKAhOo0bNhQ1eMJDSBQvVm6v/UwUuEMYGJiIkwmkyjtwWwA3ekX2wKGwx8DyO3cIESLKGDDhg0DNoDC6JmeIoDC1KQ7A1hUVKToDzNh+lf4GVIiAgjUrANU6rznywDGx8djzpw5AICqqirJ5z7hZ0bYyUPqQhCx+t01gebgDKDdbtcsiu8val/3xEAGkFAdqVt4BYrw1zd3EfrHP/6heCrYZrPxEZfExEQA4rQHswF0p1/sAhAO7m8JiDeA7p6nRR1gdnZ2wAawTp06/OpZMRHAW265hS+e98cAyhUp/e233/jbQhOr1n7AwgVZahvAI0eOKHbe82UAAed9tIXPF4MnAyg1AihWv5gIIKC/NLDa1z0xyGIAMzMzfbrx4uJivwpQCf9ZsmQJhg0bhkGDBuHvf/97wB3h5YLrpK/WsY4dOwYAaNWqFaZNmwZAnVSwsEaGMzZitAezAXSnX6oB9CcC6O55WkQQbDYbb6j8NYAmkwkNGjQAIC4C2Lx5c7/r7D7++GNERkZixIgRAafcMjIy+NvCCKDw76BkilrtCGCjRo34qM8vv/zi1/ZpYhBjAAMxTkJDJtyJR2oEUOx531sEUM+7gah53ROLLAZw9OjR+Oyzz7w+57PPPsPo0aPlOBwhklGjRmHTpk3YsWMHZs+ejVdeeYWJL43ValXtWKdOneL3oO7WrRteffVVfkeagwcPYsWKFYod23UBCCBOezAbQHf6xfYA5BBevMUWorMSARSaAH8NIPBnHWB2drZbY8ZFAMPCwtCwYUO/6+zef/99VFRU4L///a/Pc7wvhBE4dylgf8YnBbUNIPBnHWB+fr7bMgQ5EGMAQ0JC+M9bIAawWbNm/GdPagRQ7HnfW5skPUcA1bzuiUUWA+hwOHz+OqSCTfVp2rQpwsLCAFRHDSoqKpgIQ6vZD0lY/9e9e3dERkbi/fff51PBL774omKpYGFkizOAwdIHcMmSJejYsSN27twp6XXu9KtRA8hKBJBryQHIYwDLy8trmCaHw8FHAJs2bQqz2cwfS6rBysvL42+/+OKLAUUxhMf2lALWIgKo1CIQwDkNfPbsWdHHkYLQAHr7AcWZJ6l/Y+75YWFhCAsLwy233AKguq5WigkTe94X/jALphSwofsAZmdni/rCuKO4uBjvv/8+ZsyYgSFDhqBPnz745ptvRL32woULeOmllzB69Gjcc889uO+++/D00097TIemp6djxowZGDRoEO69915Mnz5dsS+uEKkay8vLsWrVKgwfPhwpKSl4/PHHayx2AIBly5YhJSUFkydPRpcuXdCiRQslZYhCzVIAVwMIAL1798YzzzwDoDoVPGHCBEVSwe4igGK0s24Ay8rK8OKLL+J///sfFi1aJOm17vRLTQFz/dUA/dUAXrp0ib8thwEEaqaBc3NzeW3Nmzd3OlZJSYmkmj7hRfbs2bNYv369v0N20q51ClhYRyrlOyb80SAlAggAP/zwg+jjSIGLoMfFxXndNYgz2v5GALl54gwgIC0KKPa8LzYCqLft4FgsgfN7KzjXEwFXZ+VKVVUVsrKysHv3brRv396vYxUUFGD9+vWIj49Hq1atPB7LHRkZGSguLsagQYPQoEEDlJaWYu/evZgzZw5mzJiBoUOH8s9NT0/HU089hbi4OIwfPx4OhwNbt27FM888g3feecdjeF0OpGpctGgRvv/+e4wcORJJSUn45ptvMHPmTKxYscJp1d/06dMxbdo0HD9+HOfPn3daiWcEOANoNpvRpUsX/v5//etf2LZtG37//XccOHAAK1aswPTp02U9tjsDKAbWDWBmZiYfCZIjrcVdwKKjo0XtjWu1WtGgQQPk5OToLgIoNJ2BbA7vuh9wy5Yt+f8L6/+aNWtW41iFhYWoV6+eqOO4XmTnz5+PcePG+fVjXph90DoFHB8fD5PJBIfDoWgKWBgBPHHihOjjiKWiooL/bPu6PnHmqbi4GBUVFU7b8HnD1QC2a9eOf+zMmTPo0aOH5HGLOR4QXBFAFvHbAK5bt46/bTKZcPz4cRw/ftzj8xs0aIAnnnjCr2PFxMRg69atiImJwZkzZzB58mTRr+3Vqxd69erldN8DDzyASZMmYdOmTU4GcO3atbBarVi1ahX/Qbvnnnswbtw4vPvuu3jllVc8HqewsBC//PIL7r77brePp6am4s477/S4F6MUjWlpadi9ezeefPJJjBkzBkD1tj/jx4/HqlWrsGrVKqfnh4SEoGvXrti8eTOSkpJq/D3URvglVpKSkhKcPHkSANC+fXunzdsjIyOxbt063H333XA4HHjxxRcxZMgQtG3bVrbjuzOAYrSzbgCFxfy5ubmSXuuq37UJtNgfKImJibwBdDgcPl/HigEUlsIoFQEUrgDmDKDwWGINoMPhqHGRvXbtGlauXImZM2dKHjNnwEwmE79dGaBNCrhevXqIiIhAcXGx3wZQeD7xREJCAhITE3H16lWcOnUKVVVVTmUAgXLt2jW+abJYAwhUfwaEO8R4w1sEUMpCELHn/WBdBKLWdU8KfhtArnje4XDg2WefxeDBg/mNp4WYzWbUrl0bTZo08fuDHxYW5nTCCJSQkBDExcXVCF+fOHECPXr0cJqoBg0aIDk5GQcPHkRxcbHHX31bt27FunXr8PLLL6NPnz5Oj23btg3//ve/8dxzz2H48OFuXy9F4969exESEuJkXq1WK4YMGYJ3330XmZmZTr+wOex2u+Tu7UqgVj3o8ePH+dSucPUaB5cKXrFiBZ8K3rdvn1+7M7iD+1ubTCY+bSlGu54MYF5eHux2u+i/mav+/Px8/qIqpv6Po1GjRvj1119RUVGB3NxcflWsp2OykgIOdB9gDm8G0HUFsOuxxEbZbDYbby6aNWuGP/74A1VVVVi0aBEmTZokOoroOs4GDRrwbWlcx6YnAyg2Ctq1a1dcvXoVBQUF+P3339G6dWvxg/aBmAUgHEKjXVBQIMoAVlZW8ovouNe7RgDFIva8H6wRQBbXQfj9UyQ5ORnJycm47bbbMH78eAwaNIi/T/ivU6dOaNasmay/evyhpKQE+fn5uHr1KjZt2oRDhw45pQSB6nA6t2hCSHh4OCoqKpx+WbsyduxY9OzZEwsWLOA3/waqzdrrr7+OgQMHYtiwYbJoOXv2LJKSkmr8AuW+mOfOnYPNZsOuXbtQXFyMyspK7NmzB8eOHUPnzp1lGUMgqLUbgbv6P1deffVVPn124MABfPHFF7IdnzOA8fHxfLpFjHY9GUCHwyGpFsdVv9T6Pw4pK4ELCgrc/h21iAAKzZpWEUCx3z/hvHbt2hWPPPIIf/+///1vSeN1OBx8DZRwAQigTQqYM4CAsquAAec6QOG1QQ6kGEB/zJO7HyxNmjThaw2lGECxnzsxjaAB/RlALXfh8YQsruzRRx912iKGRd566y0MHToUY8aMwdtvv43evXvjueeec3pO48aNkZaW5rQgoKKiAmlpaQA899wCAIvFgvnz56N9+/aYO3cu0tLScPToUSxcuBA9evTA7NmzZau/y83NdRst5O7LycmByWTCtm3b8OCDD+K+++7Dxx9/jHnz5nn99ZmamorZs2fjzTfflGWcWiPGAEZFRTl1xt+4caMsx66srOSNkpT6P0BfBhAIrMGp1BYwHFJWAgsfF0bGtYgACk1nIAbQ224g7iKA/pgs4QW2bt26ePnll/kfyCtWrBBdf8kds6ysDABqZCfUTgFzq6I5A6fkKmCgZkNoOfHXAIr9Owufx31ezWYzXypz7tw52fsbio0A6m0RCIvIYgBPnjyJlStXeqwHysnJwcqVK3Hq1Ck5DucXI0eOxLJlyzB37lz06NEDdru9RkuD4cOH4/Lly1i8eDEuXryI8+fP49VXX+V1+fqgW61WLFq0CI0bN8bMmTMxd+5ctGvXDi+//LJTyiNQysrK3BbwcifnsrIyREVFYcWKFdi+fTu++eYbrFmzxmN9IkdKSgpee+01TJ06VbaxukO4ilNJuJNtWFiY08IYV+69917ePG/btk3SBcETmZmZfPpMaADFaNebAZRSB+iqX44IoBQDKPwBpPVWUkqngCMiInij6E8KWHiBrVOnDpo0aYKnnnoKQPXncsGCBaLHm5WVxd/WygByeurUqQOz2RxwBNBTPbcrrlvCyUkgKWAxeCpZ4LJNdrsdv//+u6j3EnveD9YIoFrXPSnIYgA3btyI/fv3e6xha9CgAQ4cOIBNmzbJcTi/aNq0Kbp164ZBgwZh8eLFKCkpwezZs53y8vfffz/+9re/ITU1FY888gjGjx+Pa9eu8QstxHzho6KiMGXKFNy8eRMlJSWYOnWq7A0grVar235cnEFlseGkEGFvMaW4efMm39+vc+fOblP7HKGhoXxtZnFxsegWQ97wtAJYjPZgNoCu+qX2AOTw1wC2adOGv63VVnAcShhAYQ/AZs2a8VmHQFPAXPH9nDlz+Pdas2aN6BZZwhYYrilgtWsAudpF7ntWVlbG/1jzBWcAw8LCRP+oj4+P53/cHD16VPSxxKBFChjwrxWM2PN+sDaCVuO6JxVZDOCZM2e8RliA6oswl0plgb59++LMmTNOKSgAmDRpEr744gusXLkS69atw7vvvsubRDEXqGvXrmHhwoVo0qQJEhISMG/ePNmbL8fExLi96HL3eSuIZwGltkQScvToUX7ehDU4nhg5ciR/e/PmzQEf35MBFKNdbwZQyufbVb+/EUAp+wGzFAF0l1Lzh3r16vELb4QGMCsri//McPV/gDwpYKDaeM6YMQNAdfRn3rx5ot5LaAC9RQCVqgGsqqriDa2rAQTAL3TwBWcApbbB4c5BhYWFOHfunKTXeoMzgFar1elHgTvkNIDChSBiVwKLPe8Lf5i51rmHh4fzAQ69GUA1rntSkcUA5ufn+zQd9evXdyrC1RquHsVdFKBWrVro1KkTvzjgyJEjiI2N9fkLKycnB9OnT4fFYsGyZcvw+uuvo7S0FM8//7ysv2xbtWqFK1eu1LiAcQab2+qMVcT2nwoEMfV/Qvr168evitu2bVvAxsuTARSjXW8GUEoE0FW/GjWAwl6FWkcA5aoBNJvNfMZFaACFC0C4+j/XY/mbAuaYPn06bzY2btwoKq3pLQWsRgSwsLCQj7y5M4Biv2f+GkCl6gA5A9i4cWOfCy39qQGUMwIote9gZGSk2+4CnA69GUA1rntSkcUARkdHO33B3ZGZmSm6ZsJfSktLcenSJacTlzvTWVlZiZ07d8JqtTr9SnbH7t27cebMGYwcOdLrF6ywsBAzZsxASUkJli1bhri4ODRu3BhLly5FdnY2Zs2aJdvFvG/fvrDb7fjyyy/5+8rLy7F9+3a0b9/ebQsYlpCzpY8npBpAYRq4qKgo4DSw0AAKjY0Y7SwbQIfDEVAE0FU/FwGMjIyUtFVSXFwc/330tQqYpQigXHsBA877AXO4awLteix/DKBwbqKjo50if3PnzvX5Xt5SwFarlS/RUMoAuq4ABpxNnNi630AjgIB8dYAFBQX830vMJgWB1gAKX9+6dWu+vEBsBFDseZ/7Yea6AISDM4B6WwSixnVPKrKsTGjfvj327duHiRMnujUfmZmZ+OGHH2q0XZHCli1bYLPZ+GjD/v37edM5YsQIREdH4/Tp05g2bRrGjx+PCRMmAACWLl2KoqIidO7cGbGxscjNzcWuXbvwxx9/4KmnnnL6Ih8/fhwffPABunfvjtq1ayMtLQ3ffPMNevTogQcffNDr+LZu3YqsrCy88cYbTqni1q1b47XXXsPzzz+PHTt2eOwDKFYjUP337tevH959913k5+cjMTERO3bsQEZGBmbNmiX1T6s6GRkZklfGSoUzgFFRUU7pCm+MHDkSa9euBQBs2rQJDzzwgN/H9xQBFKM9JCQEoaGhqKioYM4AFhYW1hiTlAigUL/D4eAjgI0bN5a0Sj4kJAQJCQm4du2apBSwMDquRQRQ+LeSywCWlJSgqKgIUVFRblvAAP4ttBCaBNcmtpMnT8ayZctw8eJFfPvtt/juu+/Qv39/j+/lLQLIjS8nJ0exFLA7A6j3CKCU+j9A3hRwREQEmjdvjvPnz+PMmTOimrGLPe+7Np52RbinsdyNtZVEjeueVGQxgKNGjcKBAwfw1FNPYeLEiejWrRu/VdPhw4exZs0alJeXY/To0X4fY+PGjU6Rh3379mHfvn0AgIEDB3r8tdC/f398/fXX+OKLL1BQUIDIyEi0bdsWTzzxBO666y6n58bGxsJsNuPTTz9FSUkJEhIS8Nhjj2H06NE+C37Hjh2L3r17O6VdODp16oTVq1f73IdXisa5c+ciPj4eO3fuhM1mQ4sWLbB48WLm2/GoQXZ2Nr/vaJcuXUQ3Ke7fvz/q16+PvLw8Pg3sb9RaWNvmz5c+IiKCSQPoGv0DpO8GwlFQUMBH4aSkfzkaNWqEa9euITMzE5WVlR6/o5wBjImJQUREBCIiInjTpDbcMUNCQgLOiLguBImKinLbAgaQNwIIVEftFixYwPcGfPPNN70aQG81gMCfBlDNCKBUA1hVVcU/T6oBjI2N5XcE+eWXX2QxLoEYwEDawHDccsstOH/+PGw2G65duyabueE+n56u6dxn0eFwwGazBbSlotGRxQAmJyfjqaeewttvv43XXnsNAPh9FrnbU6dODciciFlBfNttt/GGiWPAgAEYMGCAqGMkJibi9ddf92t8FovFrfnjEO7V6Qkpq6StViumTJmCKVOmiH4NKyj9hZWa/uXg0sBr167l08D+RgG5CKDr/rZitUdERPAryVnCnQGUkgIW6vd3AQgHVwfI7TcurAvkEO4Cwj0eHR2NkpISTSKAXASpVq1aAfcFdd0PuFmzZh4jgHIbQKD6R+9zzz2H3Nxc7Nu3z6up8ZYCFo6PZQMofI4/eyF36dIFV69ehc1mw2+//eZUR+cPUg2gnG1ggOqFINu3bwdQnQb2ZQDFnPvKy8v5MglfEUCgWodeDCCL45Qtdjpy5EisWbMGQ4cORZs2bdCwYUO0adMG999/P9auXRtQOo0ILuRqiO0Jfw0gIM9qYIfDwRtA15OiWO3+9ChTg0AjgEL9gRpAMSuB8/Ly+AsKZwC5lYVaRAA50xlo+hdw3wqGiwBGR0cHvN+utxQwUB3F7N27N4Dqv7O3Pq9cCrh27dr8LhJCuPGVl5fzC/TkRA4D6E8TaCG33XYbf1uOOkAtU8CA9IUgYs59wh9lvmoAAX0tBFH6uucP8nUnRnWUa/r06XK+JRGEFBQUePxyy0EgBlCYBv7qq6/8SgPfvHmTNxeuBlCsdj0ZQCkRQKF+f3sAcrhuB+eu3Y/QGAojgIC2ewErYQCrqqr40gdhD0Cg2rCYzWZUVVVJjgCaTCaP0Yu7774bn3/+OYDqbS87duzo9nmetoHjcG0FI3cvUxYMoHAF+pEjRzBu3DjJ7yFEaADFfH+sViusVivKysoCXgUMOBtAMQtBxJz7vDWB5tDrbiBKX/f8QR/VkwQhEofDwRdZ169f32fdpSuhoaH8ns1FRUXYsWOH5DF4WgAiBT0ZwLy8PL82Ove3BQyHmFYw7gwgFwEsLi6WtSmvL6qqqpxSwIHiuh3c9evX+WinazmKyWTiLz5S+wDWrl3bY2q3T58+/O29e/e6fU5paSn/Xp46FCi9G4gcq4CFz3HtTycGYa9cOSKAwu+P2B9Q3N9ZrhQwh5Q9gf09HodeI4As4pcBXLBggccvuxqvJ/SNkm1qrly5wkcbunXr5lfYPdA0sDcDKFY7ZwArKytRWVkpeQxKITSADRs2BFA9RrEXbaF+uWoAAf8MICBtH9hAERPdkIJrBNBT/Z/rMaXuBOIu/cvRuXNn3lTs27fP7Q8BYZsaT59/pXsBuqtnVDsC2K5dOzRt2hQA8MsvvzjtOe8PXAQwJiZGtCGV2kPPUxsY7rhc/18xBlDMuU9MClhYj6onA8hieza/DODu3budTjZqv57QN0qG7YXpXzE7gLhjwIABfJTgyy+/lByF82YAxWpntReg0AB26NCBvy02DSzUr5UBFF5Y1KwDFBPdkIKrAfS0ApiDu4BLTQF7688YEhLCd1PIysrit18U4msBiHBsUsYnBRZSwPn5+fw5qaioKKComd1u578/Yur/OIQtVMRE7bm5MJlMbk0mFwW8du2aTzMm5twXzBFAFtPVftcAnj171q/0GEEoUeTNEUj9HweXBl63bh2fBvbWv9EVbwZQrHbXi5MchkEOuF01LBYL2rRpg9TUVADVC0HErHQX6udSWBEREfwuLFKQagC5iKXwQmaz2VT7Za60ARQbAbTZbD7bkJSWlvJz5S0CCFTXAXKrQfft21djdauvFjCANilgtQ1gWVkZunfvji1btgCoPlcJf0RJ4fr163wE0R8DWFVVhaKiIp81adxcREdHu82m3HLLLfjhhx8AAOnp6bj99ts9vpeYc18wLwJR8rrnL34bwB9//BH79++X/Dp/aoWI4ELsJur+IIcBBKp7W65btw5AdRpYLgMoVjvrEcD4+HgnAyJ2JbBQPxfBSEpK8itVHxMTg7CwMJSXl+siAijXPsAcMTExfLstMRFA4TGLioq8jsHdPsCecK0DnDx5stPjvppAu45NaQPIGQi1DaDFYkGPHj34/x86dAjjx4+X/D6A9BXAHK6tYHwZQF+LllwXgngzgGLOfVIjgCxG1Tyh5HXPX/wa0ezZswM+sHBLJsJY+Nq03F+qqqr4BSANGzYMqDEplwa+ceOG5NXA3gygWO0sGkC73c5fzBMSEpzajIhNAXP6b968yZ/s/Un/AtVpqUaNGuHixYset4MTGsCEhAQAzhFAPaeAQ0JCUL9+feTm5tYwgO4igK5RNm9j8NUDUEjXrl0RGRmJ4uJi7N27t8auECylgOvUqcM3hhd+x6QuAvHHAMbGxiIyMpI37T///LPk9+Dw1wC6NoP2dY70ZQClLAQRc+4L5gigUte9QPDLAA4ePFjucRAG4vr164psiXPu3Dn+hBBI9A9wTgPbbDbs3LmTXx3sC86McNuVCRGrnUUDmJOTw6+aTUhI4AvAAfERQE5/oPV/HJwBzM3NRVlZWY32IZwBjIuL4zdjF15Y1GwFI7cBBMBvbylcaFGnTh23pk1KM2hfPQCFhIaG4o477kBqaiquXr2KCxcuOK2+FxMBVCsFzKV/AWcTp0YEkPvst2/fHqdOncKJEyf83m1IDgPoyzxxO20A4iKAvgygmHOfmO+IXheBKHXdCwRqA0MEDXKlfzn8XQ3MGcCEhATR29C5wqIBFC4A8TcCyOFPCwt3COsAufpEjqqqKn7MwuexEAGUa1cALqpgs9n4HoCediSSYgClRACB6jpADtcOD2JqAJVMATscDrcGUO0UMAeXBq6srMSxY8f8eg+5UsDeELZJ8mTGmjZtyjf2FtML0BfCz2WwRQBZhAwgoTpKLWiQ2wAOGDCAv/iJXQ1cUVHBX/Dc/doTq10PBtCfCCCnX84IIIdrHWBOTg7fQkf4vGCLAHJwF2t36V9AWpRNqgEU1gG6bscpNQUstwG02Wz8ggktDSA358I6OX/TwGpEAMX8YDGbzWjbti0A4Pfff0dFRYXH9xPzmZfaCFpPBpCVhXxCyAASqqNUMawcLWCEhIWF8WlfLg3si+vXr/MLndwZQD0vAvEWAZS6CEQNA+huAQjARgRQCQPIIUcEUEoKGKg2NVz63TUCyKWArVarRyOhZA2guxXAgPTvmPCz4u8iEAA1FoL4A2cAQ0NDa5SZeMO1BtAbYj+vXBq4srIS586d8/g8uRaBhIaG8nOnJwPI4iIQMoCE6ghPyHIhTKe0aNHCyZwEgtQ0sK9dQMRqZ90ANmzY0K8UMKdfLgPobT9gTwYwmCKA7iJqniKASqaAw8PD0bNnTwDAhQsXnFL8XASwQYMGHld7KxkBlMsABhoB5MbRoUMH/tiBRgCTkpK8tvNxRUoKWOyqdbELQcSc+8QsAgH+NLJ6WgWsxHUvUMgAEkFBWloafxKXI/3LkZKSwl8Av/rqK5/d++XYBg5g3wAmJCQgKiqKj/qIjQByKFED6LoSmCKAzkgxWVLawHC4SwPb7Xb+x4GwZMAVJWsAPRnAQLaCC6QGMDQ0FF26dAEAnD9/XnL9bGFhIa9JSvoX8D8FLCYCCAS+JZzYY3KfST1FAFmEDCChOkosh5c7/csRFhaGlJQUANUnJ1+Fzr4MoJ7bwLgaQJPJxEcBpbaB4SKAVqs1oGitPyngYIoAuvs8yR0BFJMCBpwXgnAGMDc3l69NFM5BIGOTilCLlhFA4VwJ08BSo4DCH0+BGEC5U8BA9QYRnpCrDQzwp47CwsKAt9RTCxbbwJABJFRHiT5fci8AESKlaNuXARSrnXUDyK3m5KI6ubm5kraWCrQJNAfVACpvAMVGAHv27MnXOXF1gMIFIELz5UpISAg/L0pGAIVaQkND+fSpVAModu9dIcK/eSALQYQLQKRGz5WIAAq/W8JzhLf38/Wc0NDQGi2dhAh1KHE9UQIWxymbAaysrMSmTZswefJkDBo0CP369eMfO3v2LJYtW+b0y4UwLqWlpbK/pzAyd9ttt8n63lKKtn0ZQLHaWTaA0dHR/K9zLnpXVlYmKo1WWlqKwsJC/uITSP0fUH1h4i7GFAGsng9P7y1loYXURSBAtSnifnylp6cjIyNDtAEE/vybqJUCNplM/PdMjQig8LsvlwGUGgGUUgMo9vMaExPDt7sS9nx0Rcy5j/s++tqhRI8rgZW47gWKLAawrKwMzz77LN5++21kZmYiKirKKRrQsGFDbN++nfYOJgDA79543uAu9rVr15atxxpHly5d+EhBoBFAsdrFGMBff/0Vbdu2xejRo1VJg3AGULjqUOpCkJCQEKcFIIHU/wF/7gYCeDaAZrPZabGEVhFAubeCA2oaQE/RP9djSmkDI9YAAs51gD/88IOTIfDUAoaD+96qtQoYgKoGUPjdb9asGT93P//8s6QtUgMxgP6mgL2dU81mM69FaPhdEXPu87XzCIcet4NT4roXKLIYwP/7v//DyZMnMXnyZHz++ecYMmSI0+PR0dFITk52StMRxsVTM9hA4JoAe6sz8pfo6Gh+0/aTJ096jXRxBrB27dpuf8WK1S7GAL722mv47bffsGnTJnz//fei3tdfSktL+ROt0ABK7QUYHx8v2wpgDs5o37x50ymixxlA14bcWkcAw8PDZWsJ4bqwwtMCEMC/FHBERITXVJwrrg2hhYagZcuWXl/LmYybN2/Kume8GAMoZRGI2WxGWFiY5HEIv/smk4mPAubm5uL8+fOi3ycQAxgdHc2XXMgVAQT+1JaVleVx7sSc+7hj+ooA6nE3ECWue4EiiwH87rvvcNttt2Hs2LEwmUxua3oaNWrk9dcBYRxcIzWBUlhYyEdyGjZsKOt7c3BpYLvd7rF7v8Ph4A2gpxXAYrX7MoBVVVXYvXs3///U1FRR7+svwu9uIBHAa9euyW4A3dUBVlZW8mN2/UxoXQMoZ0PY0NBQp4uh2Aig2BSwlOgfANx55518tHzfvn1OnxtfppcbX1VVlShDJhZvBpCL5EmJAHL7+UrF9bvvbxo4kBX0JpOJN9pytYEB/jQ35eXlHiNyvs59VVVV/PdRSgRQLwZQ7uueHMhiALOysvhu4J6IiIhQ9WRLGAdPtV5yIjxZe6oDzM/P5y8kge756MsAnjx50mn/V6UNoOsKYA5/dgMRXsCUMoBZWVkeV5+GhobyERwtIoBylygI08DeIoDCqIrYFLDYBSActWvX5mtwT5486VSb660NDPdaseOTgtwp4EBawAjxtyE0FwGsW7euX58lzjzJtQoYcI5u+RvoEfqDYDSALCKLAYyIiPCZh7927ZrkX5NEcOIrvC8V4R6wSkUAxfxaF9b/eTI2YrX7MoDC6B8AHD16VNFGo54MoNTdQKKjo2WtAQTcG0BfPwq4KKDeI4CAswH0FgEUrrT1FgG02+3841INIOBcByjcPadp06ZeX6fUbiCeVgEDf37PysvLfdbRBmoAXb/7wm4FYiOAVVVV/A8oqelfDu46rEQKGPBsAH2d+8S2gAH0aQDlvu7JgSwGsEOHDjhw4IDHL21mZiZ++ukndO7cWY7DETrHn/oZbwgv9koZwA4dOvAnfjEG0FMEUKx2XwbQNeLncDiwZ88eUe/tD2IMoJgUcFhYmFMEMNBIKeCfAeROxmpFAMvKyvh9UuU2gMKLr7cIoPDY3gyWMDLkz492YR1gWVkZgOq6OV9blinVDJozgLVq1aqRhhZ+z3yt0gzUALp+9+vXr49WrVoBAH755Rev++hyZGZm8s/z1wByRru0tBTl5eUenyfFAAoX+HgygL7OfVKOp8dFIHJf9+RAFgP40EMPobCwEM899xxOnjzJ/5IqLS3F0aNHMWPGDNjtdowePVqOwxE6Jy8vT9b3E0YAlUoBWywWdO3aFUD1VlfC9CuHGAMoVrs3A1heXl5jv1VA2TSwXCngvLw83gBarVZZmqPqIQKoRAsYjr/97W8ICwtD3759nZryukO40MIT/vQAFNK7d+8a98XGxvqM1CidAnbXhkZsuyWHwxGwAXT33efSwGVlZThx4oTP9whkAQiH2OiZ3BFAX+c+KRFAPS4Ckfu6JweyGMDk5GQ8++yzOH/+PKZOnYqPPvoIADBo0CA8//zzuHr1KqZPn+6zTpAg/EGNCCDgOw0sTG0qWQP4008/8Rej4cOHIzQ0FICyBlBosgOJADocDly6dAlA9QVMyj6mnnC3H7CUCKCcK049oaQBHD58OHJzc/Hdd9/5XJwgjAB60u1PD0Ah9evXR8eOHZ3u89UCBlAmBexwOLwaQLHbwQlTxHLVAALSF4LIbQC9GW1uDqxWq8/olRw1gP5GAPViAFlEtkbQw4YNw/vvv4/hw4fjlltuQaNGjdC6dWsMHToUa9euxV//+le5DkXoHF/F4FJRIwII+D5Zi4kAitUeFhbGX8xdDaDQ6A0bNgy9evUCUN1wnTNXciNXBNBisfC/9P29gLkiNP3cHPj6THARwKqqKj5NqSRKGkDAub2HN4QrbT1FvAKNAALOaWCg2iBosQikpKSET5kGEgGUYx9gd/q1MIBim0FLqVkVYwB9zX+w1wDKfd2TA3maUf1/mjVrhmnTpsn5lkQQUlRUJKm3mC/UigD6WrUnxgCK1c7tUlBcXOzVAA4YMACXLl3i917dvXs3JkyY4PP9pSI0gMJoTu3atWGxWFBZWSnKAP7222/8bbkMYEREBOrVq4cbN25ITgED1XMSHh4uy1g8obQBFItrlM2dmZHDAPbp0wcrV67k/x8XF+fzs69EDaC3BSCAugbQnf7k5GSEhoaioqJC1EpgNVPA3BzIZQB9zX+wRwDlvu7JgSwRwMzMTJ+1NMXFxdQHkAAg/9ZmXLSnVq1aiq60atKkCW9+3HXv5wygxWLxmPKSot1di4qCggI+UtCuXTskJiYiJSWFf1ypNDBnABs0aMCnnIFqo1q/fn0A4lLAwoa3vlaFSkG4G4jD4eANoMVicfvLW+1m0KwYQDEmK9AUMOC8EhioNgi+PvtKRAC9tYAB1DWA7t4/PDycXxx55swZn2ZGixSwmM9rbGwsH4H2dJ33Nf9SIoDCz4peFoGwsqWnEFkM4OjRo/HZZ595fc5nn31Gi0AIAJCl7ksIZwCVjP4Bzt37b9y4gd9//93pcc4ANmzY0KNGKdrdGcC9e/fytUic8evevTt/kk5NTeX738mFw+Fwuw0cB2ewxEQAhVFSuSKAwJ8GkNuxhDOAnuZC7WbQSmwD5w9imkHLEQGMj493qvmOj4/3+dlXogaQJQPoST93TnE4HDh69KjX9+AMYEhIiN/nOzHRs4qKCr40Qszn1WKx8PXAngygr/mX8iPJYrHwJlEvEUC5r3tyIMuIHA6Hz0JqNQqtCX0gp1Gz2Wz8iUPJ+j8OT2ngsrIyfmWwtwUgUrS7M4Cu6V+g+mTYt29fAEB2djb+97//iT6GGAoKCviLgTsDyJ34i4qKfLbSEJ6slTCAAHDp0iV+D1pPnwmjRgDFmCw5DCDgXAcYFxfn87OvdArYlwH0tghE+Jjwx4MUPOmX0hCaM4CJiYl+bycopgbQn88rlwbOzMx0e733Nf/CY4rJ5IjtZ8gKSgco/EE1S5qdnS3r6ilCvwijQIGiRhNoIZ6KtoXj8GYApWh3ZwC5BtBms5k3fQAUTQN7WgDCIaUZdHp6On9bTgMo/Jv/8ssv/G1PBlDtCCArBlCtFDAAjB07FkB1tKpPnz4+P/tapICF1ySlI4Ce9ItdCFJcXMyXWQTSQF1MCjgQA1haWur2x4Wv+Rf+EBNzTL0ZQDmve3Lh9yKQ9evXO/3f0/6oVVVVyMrKwu7du9G+fXt/D0cQblFrAQiHp+79YhaASIUzgKWlpXA4HLh+/TrS0tIAVF80hCdyoQHcvXs3pk+fLssYAGcD6O5v7LoSWKwBlmMXEA6h0Tt8+LDb+4VoGQGUeys4KaiVAgaqI4AnT55EREQEWrZsKckABmMK2BNt2rRBnTp1UFBQgEOHDsHhcLhd0S1soB7IjycxKWB/Pq+uC0Gkfs6lmk5OR1FRESorK/2OiBoZv/9i69at42+bTCYcP34cx48f9/j8Bg0a4IknnvD3cEQQ4W8KxR1qtYDhqFevHtq0aYPffvsNx44dQ3l5OcLCwkQbQCnaXXcpEG7/JjR8QPWCkIYNG+L69evYu3cvPy45kBIB9LUQhDPs8fHxsq68Fc79kSNH+NuefhRQBFB5AwgAt956K3/b12df6xSw0gbQk36z2Yzu3bsjNTUV169fx9WrV91uJXnx4kX+diAGUEwK2J+aVVcD2Lp1a6fHfc2/lEUgQM1IJrcYjVXkvO7Jhd8GcMWKFQCqa/ueffZZDB48GIMGDarxPLPZjNq1a8vW9JXQP3Je+NWOAALV0bfffvuN797frVs30QZQinbXi5MwtetqAE0mE1JSUvB///d/KCoqwqFDh9zuyOAPvgyg2F6A5eXl/HvJmf4FnA2gcEcFViKAQlOlZQRQTJpVrhSwK74++1FRUTCZTHA4HEFpAL3pv/322/nv988//1zDAKanp+Pxxx/n/9+iRQu/xgAonwIG3C8E8TX/Uo8p/HGSn5/PvAFUutWUP/jtyJKTk5GcnIzbbrsN48ePx6BBg/j7hP86deqEZs2akfkjeMSsFhWL2hFAwH3NjtAAuvv1ziFFuycDGBkZiZ49e9Z4PrcoBJC3DlCuGsCrV6/yxeFytoABnOdeuL8pKzWAFy5c4G/LbX6lICUCGBISImvUwtdn32Qy8QY1GFPA3vQLzymuC0F++ukn3HnnnXyT96ZNmwbUUUNqClguA+hr/gOJAOqhDlDO655cyOLKHn30USQnJ8vxVgQhCS0igO5W7SlZAwhUL2zgtPbp08dtQ1EWDKC3FLAcPcw8kZCQ4LZuipUIINf/sFatWppGKsQYQO5iWqdOHVG7i8iJmL2KpaDEKmAlFjN6Wgiybds29O/fnzcPnTt3xoEDBwKKzCq9Chjwbzs47pgmk0nU31hvBpBFZA/L2e125OXlITMz0+0/ghAahkDRIgLYuXNnvhmyuwigNwMoRbvw4vTVV1/xt13TvxxJSUm45ZZbAFQbU7kuonKlgIXb1MltAENDQ90232YhAlhZWclrb9GiheqmSoiUNjCB1v+5Iuazz5kNuT67vuoZxa4CFn5G/DWA3vQ3bNiQXxR15MgR2O12rFmzBvfffz8/rv79+2Pv3r0Bn+dCQ0P5c4uaKWBf88/9EIuKihKVMdSbAZTzuicXsi2bSU9Px7vvvotff/0VlZWVbp9jMpmwZ88euQ5J6JSSkhLZ6iE4AxgVFaVacb3VakVycjIOHz7Md++/cuUKgOoog9C4uSJFu/B9tm3bxt/2ZAC5x86cOQO73Y69e/fivvvuE3Usb3AGMDQ01G0UhYUIIFBt9oQXnrCwMI/RNjUjgJcvX+abd8u58tkffC20cDgcihlAMZ99zqAWFRXBbrcjJCQkoGNyEcDIyEi3i6LU3gnEVx3g5cuXYbPZMHHiRKdOG6NHj8YHH3wg21ZiderUQUlJiaoRQF/6pew8AujPAMp53ZMLWSKAZ8+exdNPP41Tp06he/fucDgcaNmyJbp37446derA4XCgc+fOGDhwoByHI3SOt1SLVLi0qFrRPw7XlA03Dl/pXynahRcnzujGxsaiY8eOHl+jRD9A4S4g7qJXYiOAQgModw0gUPMz0KhRI4/RNjUjgMIdY7zVh6qBrxRwcXExb1blXADCvbcvhBFKOYw5ZwDd/XAB1DWAvvQLS0uE5u/ZZ5/FJ598Ius+sr566PnTBkYYgecasQvxpZ87ptjtPF0XgbCOnNc9uZDFAH7wwQcAgNWrV2PRokUAgN69e2PJkiXYtGkT7r//fly4cAHjx4+X43CEzpErBVZUVMRHMdTusi48WX/zzTf8Thm+DKAU7e4iif379/eaHunbty//uBwG0G638zucuEv/AtUnYk6XWAOoVATQ2/+FqBkBVGr/Y3/wZQDlbAHjipjPvtytYFgygL70C39UcixZsgTLli2TfRGlcLGNu60j/WkDExYWxv+d3UUAvel3OBz89zBYI4Baln54QpZP1cmTJ3HnnXeiWbNm/H3caj+r1Ypnn30WDRo0wHvvvSfH4Qgd43A4ZIvWaVH/xyE8WW/dupW/7csAShmnOwPoLf0LVJ8UubGlpaU5/Y38ITs7m79AeDKAISEh/InfWwqYq4OLiIhQpB5GigFUMwIoNIBdunRR9Fi+CA0N5dNQ7gyWkgZQzGdfzt1ASktL+a0JxRhApReB+NLftWtXPspnsVjw0UcfYcaMGYoYB848CY2XEH/7Vgq3g3PFm/6ysjK+dCxYDaDa1ygxyGIAi4qKnMRZLBanX1NmsxnJyck+N7omghubzYa//vWvePvtt2V5P7W3gRPSunVr/gQkbNDqywBKMWT+GEDAeTWwsHm0P/haAMLBpYE9RQAdDgcfAWzSpIkiFzVWI4DCFLCWTaBdx+AuAqhUD0BA3Gdfzt1AfK0ABtTdCs6X/ujoaKxduxb3338/du3ahXHjxvl1HDH4Mk+BGkCbzVbDUHvTL7UFDKA/Axjoj3ElkMUA1q1b1+kDU79+fb4onqO8vNznRvFE8FJYWIi7774b27dvx7PPPivLYiAtWsBwmM1mtykbXwbQXbrFE64GsGXLlk5Rdk/IWQco1gByEb2CggJUVFTUeDwvL4+/ICiVBnX923szgFarlU+rqRUBNJvNTGwI763XnpIRQDGffTlTwGIMoD8pYH97I4rRP27cOHz++edO+3wrga9WMIEaQKBmFNCbfn+OpzcDKOXcrxayGMBmzZo51fd07NgRhw8fxv/+9z8A1RGSPXv2aF7/QmhHdHQ0n/6qqKjA8OHD+c+Hv2iZAgbc1+z4MoDeVgj7eq6Y6B8A9OrVi39tamoqX47hD8K/sZgIIFBt9lxRuv4PkBYBNJlMfKRBrRrAJk2aaLoLCIe3VitCAyh3BFDMZ1/OFLAYAxgaGsqvNBZrAKV8h4X4+zol8LUbiLAnnxTD680AetPvTwRQb4tAWJp/DlkMYK9evXDixAm+/mfs2LFwOBx4+umncd999+HRRx+FzWbDww8/LMfhCB1iMpmwatUq/OUvfwFQ/Ytt8ODBPjeI94aWEUDAPwPo717AgHgDaLVa0adPHwDV/QnT09NFH9MVqRFAwH0aWMkegBxSDCDw51woGQG8ceMGf3Fq0aIFE/uBcgawoqKCX7zEIYykyB0BFKNd7RQw8Of3TIwBDA8P93tBBgtzzyE2BRwdHS2pXMObAfSm358IYK1atfix6SECyNL8c8hiAO+//35s2bKF/1C1atUKy5cvx+233446deqga9eueO211/iLEmFMLBYLNm7ciE6dOgEArly5gr/85S9+f3n1GAH0tkjCFaEBNJlM6Nevn+jXypUG9scAutOodAsYoLpFjrBvnK/PBBdpUNIACuv/WrZsKWn+lcLbSmAlU8BitKsdAQSkGcBAdgFhYe45xKaApUasvRlAb/r9iQCazWb+s6wHA8jS/HPIYgAtFgvq16/P744AVKeB//3vf+Ojjz7C0qVL0atXLzkOReic6OhofPDBB2jevDkA4MSJExgxYoTT/q1i0ToCmJCQ4BTNCg0NdUqFBorQAHbp0kXSylmhAdy+fbvfY5C6CARwHwFUIwXsWmPn6zPB/SJXMgUsXAHcokULxY4jBW9RNiVTwGKQswZQqEWMARSzCliJbeC0wFcKmLtP6qIlf7eD87fm0Fc/Q8I7sm8F54lr167hX//6l1qHIximbdu22LFjB29odu/ejYkTJ0quVeMigJGRkZrVVgmjgImJiT7TQ1L2gRUu+PjrX/8qaVydOnXiDds333yDb775RtLrOYQGUHhyd8VXBFCNFDAAPrqclJTk08BwBrC8vNztwhU5cDWAWu4DzOHNZCmZAhajXYsIIGfqlI4AsjD3HN5SwP705OPwZgC96fcnAgjoywCyNP8cihvAzMxM/Pvf/8bf/vY3fPvtt0ofjtABZWVlaNOmDb788ku+J9n//d//Yd68eZLehzOADRs21KzJpqsB9IVrzZU3mjdvjo8++ggvvfQSZs6cKWlcZrMZr7zyCv//yZMn+3WS5AxgrVq1vNaw+KoB5CKAJpNJ0d0w3njjDbzwwgvYvHmzz8+E8EKjVBpYaABbtmwpaf6VQqsUsBjtStUAetOiVgqYhbnn8GYAi4qK+B/jchpAb/r9jQBy81pSUuJXFklNWJp/joAM4IkTJzBt2jQMGjQIQ4YMwZw5c/gTfWlpKVauXIlx48bh66+/Rt26dfHMM8/IMmhC33AX2zvuuAOffPIJf6F+9dVX8c4774h6j5KSEv5ipWWDTeGOIGIMoFSjMW7cOLz88st+XXgmTJjAb7945coVzJgxQ/J7CLeB84bYFHBcXJzbPVnlomXLlvj3v/+Nnj17+nyuGs2ghTWALVq0ULzljBi8mSwl+wCK0a52GxjgTwNYUVHBb4MnxG638xfvQAwgC3PP4S3S6q8ZA5y3g3M1gN70B5oCBtiPArI0/xx+G8D09HRMnz4dx48fR0lJCWw2Gw4cOIBnn30W165dw+OPP47NmzejTp06eOaZZ/Dpp5/igQcekHPsRBAwfPhwvPHGG/z/p0yZgp07d/p8nZZNoIX07NkTycnJsFgsGDt2rGbjcIfJZMJ7773Hn1DXrFkjKQpfXFzMXxx8GUBvKeCysjLeSIoxyWqhRjNoLgJYt25dryZETbyZLGEEUIuyCi0XgQDuo4ByNIFmDW/GKRADGBERwb9GSg1goClgQB+tYFjD4u8LP/nkE1RUVGDy5MkYMmQIAGDbtm1477338PTTT+PGjRt45JFH8PDDD8u6iTWhf1xNwNNPP40//vgDS5YsQVVVFV555RXce++9Xt9D6wUgHGFhYTh69CgKCgpEXeDVNkBNmjTBkiVL8MQTTwAAJk2ahP/973+iTuzCE7ivv7G3CODly5f5261atRI1bjVQOgJYUVHBRz65BSAsGGAxKeDo6GhYLH5fHtwiRruWbWCAarPnakDkMoAszD2HUgYQqE4DFxYW1jCA3vT7e0xhOcm3336L1q1bSxhp4FRWVsJms8Fms6GwsJC/zf1r2bIlXybE0vxz+B0B/N///ocuXbpg3LhxqFu3LurWrYuHH34Yt912G/Ly8vDEE0/gscceI/NH1EC4sIDjtdde4xc9HDt2zGfXdK1bwAgxm82iozvutCvN5MmT0b9/fwDVqVix9YRiVwADzgXOrhFA4QpgOVdJB4rSEcA//viD/xy3bNkSgDbz74qYFLDc9X+AOO1Wq5XvJiFXBDA8PJyvNXaHr+3g5DKALMw9h9gUsD9RYK4OsKCgwGn3L2/6/Y0ACnsLr1y5MqCm91KZPn06wsPDUa9ePTRu3Bjt27fH7bffjv79+2Po0KEYO3YsevTogU2bNgFga/45/DaAN27cQJs2bWrc37ZtWwDAoEGD/B8VEdS4q7Mxm8247bbbAFRHY4S1U+5gJQIoFXfalcZkMmHNmjV8xGv16tX47rvvfL5OigEMDQ3lLxauEUChAWRprpSOALrW/wHazL8rYlLAShhAsdq5z5FcBtDXjzO1UsAszD1HZGQk3zPTNQIo/Lv7GwHkyMrK4m970+9vBLBjx464++67AQBnzpwJeO9zseTl5WH58uWi5vTxxx/H5cuXmZp/Dr8NoN1ud7u1CfdLS4seUoQ+8PRrvHPnzvztX3/91et7sBQBlIK3SISSNG/eHIsXL+b//9hjj/mMekkxgMCf0T1vBlDMXsZqITUCmJmZiTVr1ojevcZdD0Ct5l+IpxRweXk5b4CUOH+L1R6sBpCFuecwmUweW6jIkQLmEKaBven3NwIIVJcQcaxcuVLSa/1FuI1py5Yt8eCDD2L8+PF4+umnMXv2bLzyyiv8Arz8/Hz8/e9/V3Txm7+o1geQUJ8lS5Zg2LBhGDRoEP7+979j//79Wg8JgOeTihQDqNcIoD8nVLl48skn+V/LFy9exJw5c7w+X6oB5BaC5OXlOf3aFfYA5DIELCA1Avi3v/0NkyZNwsiRI0W9v2sLGEDb+efwlAJWsgcgIF47N75AagDLy8t54yanAQxkOy8W5l4I93dWywB6ey/hMaUawGHDhvG1gF999RUuXrwo6fX+cPLkSf4213Zq3bp1ePPNN7Fo0SK8+OKL2LBhAz+uPXv2YO3atYqPSyoBVfl+++23OHXqlNN93K/jF154ocbzTSYT/v3vfwdySEICo0aNwrRp0xAWFobTp09j+vTp2LBhg+bR2ezsbLcFsUaIAHrSrgZmsxlr165Fx44dUVJSgpUrV+LBBx/kTaEr/kYAHQ4H8vPzeUMojACytIpSagTw8OHDAICDBw8iNzfX584s7iKAWs4/h6cIoJI9AAHx2rnxlZWVoayszK86crELQAD1IoAszL0Q7jogZxsYwLMB9Kaf+/4Ja0DFYrFY8MQTT+Af//gHqqqqsGrVKqdshxIIDWDHjh3dPqdevXr48MMPMWDAADgcDrz00ksYNGgQkpOTFR2bFAKKAF69ehU///yz07+rV6/C4XDUuJ/7R6hH06ZN+bCzyWRCRUUFk/sRcjRr1oz/VSrWAIaHh2tuaPVEy5YtsWjRIv7/jz32mMfol78RQMB5IQhnAKOjo5maKykRwLKyMieDdOjQIZ/vz9UAhoSEoHHjxv4NUgE81QBqvQ0chxwrgcVuAwfUXAXsSjC2gQH+nOPy8nKnxRpKGUBvcMf0N0o6adIk/lq3Zs0ar0295UBoAG+99VaPz+vXrx/ff7WiogLjxo1TfGxS8DsCuHHjRjnH4ZXi4mJs2LABaWlpOH36NAoLCzFnzhwMHjzY52svXLiAdevWIT09HXl5eQgPD0fTpk0xZswY3HnnnTWef/nyZaxduxYnT57EzZs3ER8fj5SUFDz00EOK1nBI1VheXo61a9fi22+/RWFhIVq2bImJEyeie/fuTs9btmwZtm/fjvLycvTs2ZOJ/Ug9nZBNJhM6deqEH3/8EX/88Qfy8vI8bp/DpYAbNWqk2S4g/sBCL7ipU6di8+bN2L9/P37//Xc89thj+OSTT2psY8cZQJPJhNjYWJ/v6243EIfDwRvAJk2aMLUdkpQIYHZ2ttP/Dx48iL/85S8en+9wOPgIYNOmTfmWKizMv1YpYLHaXcfnz8pxKRFAtVYBszD3QoR/54KCAv76ppQB9Kbf363nOOLi4jBq1Ch89NFHyMvLw6effooJEyb49V6+cDgcfA1gkyZNfK6UXrhwIXbt2oXjx48jLS0Ns2bNcup9qyV+RwATEhL8+ucPBQUFWL9+PS5duiS5j1hGRgaKi4sxaNAgPPPMM3jkkUcAAHPmzMGXX37p9NzMzEw8/vjjSEtLw/DhwzF16lR06NAB77//Pl5++WW/xi4WqRoXLVqETZs24Z577sEzzzwDs9mMmTNn4sSJE07Pmz59Onbu3Inly5eje/fuTJilyspKj48J08CuWjhKS0v5E7ye6v8A79rVwmw24/333+cjYBs3bnT7+eYMYGxsrKiecO56AWZnZ/PRhSZNmjChn0NKBNA1kvHTTz95fX5eXh4fXePq/wA25l+YZlMzBSxWuxy7gYjdBg5QLwXMwtwLEUZ5hX9nudrAAM7fG2/6uWNKrf8TMnXqVP72m2++qVhLmMuXL/N/L0/pXyFWqxUff/wxb7DffPNN7NixQ5GxSUUXi0BiYmKwdetWbN68GU8++aSk1/bq1QtLly7Fo48+ivvuuw8jR47EihUr0KpVK74/D8e3334Lm82GxYsX4+GHH8bQoUMxZ84c3Hvvvdi/f7/XdERhYSH27t3r8fHU1FSvoV8pGtPS0rB7925MnjwZU6ZMwdChQ/Gf//wHCQkJWLVqVY3nh4SEoGvXrjh69CgOHjzo9b3VwNvfUUwdICu7gPhDoM1t5aJNmzb49NNP+R8ECxYswMcff8w/7nA4RG8Dx+EuBSys/2vatCkz+gFpEUBXA3jo0CGvbR3ctYAB2Jl/zmQJL/xKbgMHiNcux24gLNYAsjL3HJ6aQSvVBsaT/srKSv7vHshCmdtvv53PgB0/flyxa52Y+j9X2rdvj7lz5/L/f/TRR2tkFbRAFwYwLCzMZ8G1FEJCQhAXF1fjpM9FAVxPGDExMTCbzV6jIFu3bsX8+fOxb9++Go9t27YNCxYs8Or6pWjcu3cvQkJCMHToUP4+q9WKIUOG4NSpUx7rLux2u+gWFloh1QDqaQEIa9x3331YunQp//8JEybgwIEDAKqjQdzm6mINoLsIoNAANmnSJOAxy4mUCKDwQgZUX8xOnz7t8fnuFoCwBHehVTMCKBY5agDlNIDCz0Yw1gACzgYw0BRwdHQ0/3cSUwMo/PsGEgEEnFvCvPnmmwG9lyeELWC81f+58uijj/L9kTMyMjBp0iRVG1e7QxcGUA5KSkqQn5+Pq1evYtOmTTh06BC6dOni9ByuEfHixYtx9uxZZGZmYvfu3fjiiy8wYsQIt30POcaOHYuePXtiwYIFOHr0KH//3r178frrr2PgwIEYNmyYLFrOnj2LpKSkGi0J2rVrBwA4d+4cbDYbdu3aheLiYlRWVmLPnj04duyYk8HSCm+m7dZbb+Vr0TwZQL22gAHYM6zPPfccJk+eDKC6rnTYsGG4cOGC5AUggPsaQFcDyJL+QCKAgPc0sLsWMAA78++u1YrSi0DEapc7BczKIhBW5p7DU6Q1UAMI/BkFFH5vPOmX43gco0aN4uuVP/vsM6dggVz4EwEEqreCW7duHf9D+YsvvtC8NYxhDOBbb72FoUOHYsyYMXj77bfRu3dvPPfcc07P6dGjBx577DEcOXIEjz32GEaOHImXX34ZDzzwgFN9gTssFgvmz5/Ph3rT0tJw9OhRLFy4ED169MDs2bNlq7/z1IKCuy8nJwcmkwnbtm3Dgw8+iPvuuw8ff/wx5s2b53WvxNTUVMyePVuxX04crtEUIZGRkfwYT5065bZuRM8RQG/atcBkMmHlypUYMGAAgOqavb/+9a84c+YM/5xAUsDCHoBNmzZlSn8gNYCAeAMojACyop+70JaUlPDfMaUXgYjVHqwpYFbmnsNXBNCfliwcnAHMzc1FRUUFAM/6A2kC7Up4eDgmTZoEoDq1/O677wb0fu7gDKDFYsEtt9wi+nVZWVlISEjAmjVr+PumTZuGs2fPyj5Gsci72zfDjBw5En379kVOTg727NkDu93OfzCFNGzYEJ07d8bdd9+N2rVr4+DBg/joo49Qv359jBgxwusxrFYrFi1ahGnTpmHmzJmoqKhAu3bt8PLLL8u6sXpZWZnbLya3DL6srAxRUVFYsWKFpPdNSUlBSkoK0tPT+S+REvgqhu7cuTPS09NRVlaG9PR0dOjQwelxPUcAWSsEB6q3cdu8eTN69eqF9PR0pKWlOc2/nClglvQLL+a+IoDuLl7eaow81QCyot+1F2C9evWYWQSitgFUaxUwK3PP4csABhKNE9YBZmdno1GjRh71yxkBBIAnnngCixcvht1ux+rVqzFnzhzZduGoqKjgSz/atGkj6X05/ffffz8mTZqE9957D/Xq1UNOTo7XwIySGCYC2LRpU3Tr1g2DBg3C4sWLUVJSgtmzZzvl4Hfv3o0lS5Zg5syZuO+++3D33Xdj9uzZGDRoEN55550aHdPdERUVhSlTpuDmzZsoKSnB1KlT/Wpk6g2r1erWvHI1W3IfT258jc9XHaCeI4Cszk29evWwbds2vk2LcDs3ORaBmM1mNGrUiCn9ZrOZv6BLiQByKd20tDQn0ySEiwDWr1/f6ULLin53dXZKp4DFametBlAuA8jK3HP4SgHLZQC5744n/XJGAAGgcePGfLlVRkYG/vvf/wb8nhxnz57lr71S0r+As/5ly5bh2WefxYkTJ9CrVy/ZxicVwxhAV/r27YszZ87g8uXL/H1bt25F69atERcX5/TcO++8E6WlpaJCtdeuXcPChQvRpEkTJCQkYN68ebI3X46Jiamx3yrw50Xbn75ZauLr4iLFAOotAshSI2RXWrVqha1bt9aILos1gOHh4fwF0jUC2KhRI4SGhjKnn7vgiDWAYWFhfCE38OfuIELKy8v584qw/g9gZ/7d7QaidApYrHYtawCVNICszD2HrwigPy1gONwZQE/65Y4AAsrtD+xv/R/grD86OhrLly/XvC+qYQ1gWVkZAOdfHzdu3EBVVVWN53KhW29tH4DqqMf06dNhsViwbNkyvP766ygtLcXzzz8f8MbmQlq1aoUrV67UuGilpaXxj7OMr1oYXwaQSwFbrVbmmqv6grU6IFf69OmD9957z+k+Kf07uR8fubm5KCkp4fU2bdoUAHv6uTpAsSnguLg4p1/s7tLAly5d4jMLriuAWdHvzmRxEUCr1apI03stagDDwsK8Lt4DqAYQ+NMAlpeX89dGuSOAYmoA5TKAd999N186tH//fhw7dkyW9xW7A4g7WJt/IMgMYGlpKS5duuSUyhD+EuSorKzEzp07YbVa0axZM/7+xo0b4+zZs05RQaA6NWw2m2v8mhdSWFiIGTNmoKSkBMuWLUNcXBwaN26MpUuXIjs7G7NmzZJtC5i+ffvCbrc7NbIuLy/H9u3b0b59e6cvnx5JTEzk04neIoANGzZkorF1sPH3v/8dL7/8MkwmEzp37ow2bdqIfi03b7m5uUy3gOHgDKC3CKDdbud7dsXHxzsZQHcLQTzV/7GEtxSw1pGqQFPAlZWV/Dm8fv36Ps8RRt0KznUnEEC+aJyU7eCEx5QjBQxUL25TIgoobAEjNQLIIrpZBLJlyxbYbDY+tbR//37eUY8YMQLR0dE4ffo0pk2bhvHjx/PbwCxduhRFRUXo3LkzYmNjkZubi127duGPP/7AU0895fSFfuihh3Do0CE8/fTTeOCBB1C7dm0cOHAAhw4dwl//+levqdWtW7ciKysLb7zxhtO+n61bt8Zrr72G559/Hjt27MDw4cMD0ghUN5Xs168f3n33XeTn5yMxMRE7duxARkYGZs2a5c+fV1V8pZc44/Hdd98hIyMDWVlZfFq+rKyM//voLf0LaNtfTQovvfQSHnvsMcTHxyMkJET067jvSGVlpdPJkjOArOnnvlPFxcWoqqqqsR0eUG1mucxAXFwcmjdvjtjYWGRnZ+Onn36Cw+FwMhmeWsAA7Oj3lgJWaoxi3zfQFPCPP/7I//C/6667fD5f7CIQi8US0GICVuaew91OIEoaQE/6lUgBA8DDDz+MWbNm4ebNm/jvf/+Ld955J+DFmFwEMCoqyil4JAbW5h/QkQHcuHGjU2+yffv28U2XBw4c6PGXQ//+/fH111/jiy++QEFBASIjI9G2bVs88cQTNU4OycnJeOutt7Bu3Tps3boVN2/eRMOGDTFp0iSMGTPG6/jGjh2L3r17o3nz5jUe69SpE1avXu0zGiBF49y5cxEfH4+dO3fCZrOhRYsWWLx4MZKTk70egwXcpdld4QwgUB0FvOeeewDA6e+jtwUggDjtrJCYmCj5NcKFIL/88gt/m0sBs6Zf2AqmuLjY7XlEmLqJj4+HyWRCz5498dVXX+HGjRv47bff0LZtW/453ppAs6Lf1WRVVVXxJkCpCKBY7YEaQGHR/wMPPODz+WJTwIFG/1iZew61I4Ce9Mu9CET4XoMHD8bGjRuRn5+PAwcOoE+fPn6/n81m47/bHTp0cPtj0RuszT+gIwPoum2bO2677bYaO3EMGDCA73Emhvbt22PJkiWSx2exWNyaPw5v6WMOMRo5rFYrpkyZgilTpoh+DSvcvHnT58nFtQ6QM4B6bgEDiNOuZ4QGUFh3w0UAWdPv2gza3QVImMLiLmy9evXCV199BaA6DSzWALKi3zXNWlhYyNctKhWpEKvdYrEgMjISxcXFkg1gVVUVbwDDwsIwZMgQUcezWCxOW5IJkcsAsjL3HCEhIYiOjobNZlPFAHrSr1QEEACGDBmCjRs3AgC+/vrrgAwgV2MP+Jf+ZW3+gSCrASSCB08LQfTcAsYICMskhBFA1msAAc91gEIDyJUi9OzZk7/PtQ6QqwEMDQ1FUlKSbGOVE9cUMCvbwHG426pODEeOHOG3u0xJSRG9kpWLAippAFmE+/vInQKuXbs23/bEVw2gUhFAABg0aBBfnvH1118H9F6BrABmFTKAhOqIWVXarl07vl5DaAD1HgGUsqJWjwgjgMITP2cAWdMvZjs41xQwAHTv3p1PAQlXAjscDj4C2KxZsxr1k6zod02zKt0DEJCm3dWYiEVq+peDM4DeFoEEagBZmXsh3Fy7iwAG0gbGZDLV2A7Ok34lI4CxsbHo0aMHgOqdpYQ7E0klkBXAAJvzTwaQUB13PQxdsVqt/N7Gp0+f5lsT6D0CKEa7nnG3UKpOnTr8hYY1/VIjgNxFLTo6mo8CnDx5kjePOTk5/G13Nb+s6HeNACrdAxCQpl1oAIXN+r3hcDiwZcsWANVNvocOHSr6eJ4igA6HQzYDyMrcC+G+lzabDXa73clwB2rGuO9KTk4O7Ha7R/1KRgABOJUBBBIFDDQCyOL8kwEkVMfdLibu4NLAlZWV/PY7em4CDYjXrlfc7VEtTP+ypl9MBNBdChj4Mw1cVVWFI0eOAPBe/wewo9+1BlCNFLAU7dz4qqqqRLfPOnXqFM6dOwegup9lbGys6ONx5s71WKWlpbwBDdQAsjL3QtzVgnLIZQCrqqqQk5PjUb+SEUBAPgPIdTWIi4ursVmEGFicfzKAhOqIbaXgrg5QmALWYwRQrj0pWcWXAWRNv5gIoLsUMOBcB8ilgYU9AN0t/GJFv7caQKVSwFK0+7MS2N/0L+A5AihnD0BW5l6IazNoJQwgUP0jypN+7oeX2WxWpAF5cnIyf6347rvv3Kb5fZGVlcWfB/xJ/wJszj8ZQEJ1xO7e4c4AchHAsLAwzbfR8Qe97VwiFXcpYK4FDMCefikRQJPJ5KTPXUNoXxFAVvS7Giw1UsBStPuzG8jWrVv529xesGLhDGBlZSW/8xMgrwFkZe6FKGkAhVGyzMxMj/qFew8r0djfZDLhL3/5C4DqiO6ePXskv4ccC0BYnH8ygITq+FoVxuEtApiQkKDLXUDEatcrviKArOmXUgPYoEEDp0UdrVu35k/qXENoXwaQFf2RkZH8Iha1UsBStEvdDeT8+fM4fvw4AOD22293asYvBk+9AOU0gKzMvRBXo61kBNCd/vz8fFy4cAGAsnvYB5oGlmMHEBbnnwwgwSxxcXH8yqlff/0V5eXlyMnJAaDP9K8RiIqK4ts/cLDaAgbwHQF0OBx86sd1i0Wz2cyvMMzKysKFCxd8GkBWMJlMTq1W1EgBS0FqClgY/fO225InPG0HF6zbwHGomQJ2x2effYby8nIAwF//+teAjueNlJQUPgX79ddfi15YxBGMLWAAMoCEBki5wHBRwNzcXKe+cnpcAAKwcXFVEpPJVCMKKDSArOn3FQG8efMmvwLd3R7brmlgrgYwNjbW7QWUJf3c+NRKAUvRLjUFHEj9H+B5Ozg5DSBLc8/hagCFf+tA2sAANQ2gO/0ff/wxf/vhhx8O6HjeiI6Oxt133w0A+OOPP3Dq1ClJrxcawPbt2/s1BhbnnwwgwTTCNPA333zD36YIILu4GkBhDSBr+IoAumsBI0S4EOT777/nmxCzHP3j4C7wLEYApRjA69ev48CBAwCqt+hq06aN5OOpkQJmEdf9gNWMAF6+fBnff/89AKBNmzbo2rVrQMfzhb9p4KqqKt4wtmjRQpFWNVpBBpBQHWG0wReeDKBeI4BStOsVYS1PSEiI01yxpt9XBFC4Athd64fbb7+dv71lyxY+teTJALKkn7vA22w23Lhxg79fqQigFO2uq5S98fnnn/O3/Yn+AeIMoPCz4g8szT2H637A3N/abDYHbHiFBjArK6uG/k8//ZS//fDDDyte0y1MMW/btk306y5evMifGwJJ/7I4/2QACaYRGkCu1xpAEUCWEUYAk5KSauyGwRKBRgDr1q3Lp4Ty8vL4+8Xs/a01QpN15coVANUXfhYiHFIigIGmfwGKAALOBjA6OjpgQ1avXj1+Nyd3EcCPPvqIvz1u3LiAjiWGli1b8nt2HzhwwOn76o1AdwBhGTKAhOq4u5B6om3btvyiAmHhrl4jgFK06xWhAXRdAMKafl8RQF8GEHBOA3N4igCypF9osi5fvszfx60Olhsp2sUawLy8PL6tR/PmzZ1+MEpBjUUgLM09hycDKEdDZrPZzEfNMzMznfSfOHGCN1a9evVSrWSCSwNXVVVh586dol4j1wIQFuefDCChOsJ0ky8sFgs6dOhQ4369RgClaNcrwhSwa/0fa/qF0S5/UsCANAPIkn7hRZ6LeimV/gWkaRcawN9++83jqs1t27bBbrcDqI7++Ru1UiMCyNLcc3hqAyPXjhyc6cnKynLaCk2txR+u+FMHKEcLGIDN+ScDSKgOt+xfLO5+1es1AihVux7xFgFkTb8wAuhPChhwXgnM4ckAsqTf3UVeSQMoRbvw+71lyxaMGjXK7fzIkf4F1FkFzNLccwgjgPn5+fzfWG4DWFlZiezsbADV0bdPPvkEQPUP/FGjRslyLDHcddddvLYdO3bwPx68wUUAQ0ND0bp1a7+PzeL8kwEkVCc0NFTS810NoMVicdtwWA9I1a5HhOanXbt2To+xpt9isfAlBv6mgNu1a+d0wQwLC0NiYqLb57KkX+02NVK0JyUlYfHixXxE77PPPsMdd9zh1GfRZrPxabyEhAS3kVixeIoACj8TgRpAluaeQzjf165d4yOtgbaA4RB+Z7gI2L59+/ia00GDBinaANqVsLAwDBw4EEB1a7FDhw55fX5ZWRnS09MBVH/PA5lDFuefDCChOlLNm6sBbNiwoWJ1SkqjV+MqhSFDhuDZZ5/F008/XePXPYv6uSiguwiTMAUcGxvr9vUhISFOq4GbN2/u8fPJkn53F3klI4BStc+cORNffPEFb1RPnjyJ7t27IzU1FUB1BKe0tBRAdfPnQM4JaqSAWZp7DqvVyhsTzpQB8kcAAfD9NNVe/OGKlDRweno6HyUMtAE0i/Ovz6sooWsyMjIkPd+dAdQrUrXrEYvFguXLl+PNN9+ssQE6i/o5A+gtAlinTh2vG9UL08DeCtpZ0q92BNAf7ffddx9+/vlnvrdfXl4e7r33XixfvhxbtmzhnxdI+hdQxwCyNPccJpOJn3Phjx0lDOBvv/2G0tJSfPbZZwCq62+HDh0qy3GkMHjwYP62LwMo5wpgFuefDCDBPPXq1XOqJdPrAhCCTbiFIN5qAH2t4BOmH1u1aiXj6JRD7RpAf7nlllvw888/O63gnD59OjZs2ACg+vzA7fLgL0bdCg5wb/qVMIDZ2dn4+uuv+X54DzzwgCZ/04SEBHTr1g1A9RajwsinK8G6BRwHGUBCdfypLxFGAfUcAZSrtkavsKhfGAEUrjYtKSnhV0V6WgHMMXDgQAwYMABJSUmYOHGix+expF/tFHAg2uvUqYMvv/wSL774Yo3H7rvvvoDrq9RYBMLS3AtxNy4lDGBhYaFT+lfN1b+uCNPA27dv9/g8OQ0gi/NPBpBQHX9qdYQGUM8RQL3WLsoFi/q5CGBVVRVfUwY4p8R8RQBDQ0ORmpqKP/74A506dfL4PJb0q50CDlS72WzGK6+8gs2bNzut3g40/QuokwJmae6FqBUB/O2333izlZCQgP79+8tyDH8QWwfItYCpXbs2GjduHNAxWZx/9kZEBD3CfUfF0q9fP/72bbfdJuNo1MUf7cEEi/o9NYMWswLYFV996FjSr3YKWC7tDz74IA4ePIghQ4bg6aefxn333Rfwe6phAFmaeyFqGcDt27fzrVDGjBmj6Q5BXbt25ceWmprq9MOPo6CgAH/88QeA6vq/QHdGYXH+LVoPgCDE0L9/f3z88ccoKytzKuIliEBx3Q6Oa0shpgm0nlE7BSwnHTt2lLSfqy/EGEBvi4D0jDsDKFe6MiYmBmazGVVVVU4997RM/wLV0bjBgwdj/fr1KC4uRv/+/TFgwAD07t0bvXr1Qq1atWRrAM0yZAAJ1fH3Yjp27FiZR6I+wWgkpMCifjkjgL5gSb/aKWCWtLviaxFIREREwCk8VvUrWQMYEhKC2NhYp+/SLbfcwkQWZ+jQoVi/fj0A4ODBgzh48CCAanOYnJzs9HeRYw9gFuefUsCE6nCrwIyIkbUDbOp3jQByKGEAWdKvdgqYJe2u+IoACn8k+Aur+pVMAQM1vzsPP/xwwOlUObj//vvxwgsvoFmzZk73V1VV4ZdffsH333/P3ydHBJDF+ScDSKgO1xDUiBhZO8Cmfk8RQCVSwCzpFxpfDiUNIEvaXfG1CliOdiWs6lfbALKSyTGbzfj3v/+NCxcu4PLly/j0008xZcoUdOzY0cmg1qtXD8nJyQEfj8X5pxQwoToWi3E/dkbWDrCpX80IIEv6zWYzoqOjnTQrmQJmSbsrviKAchhAVvUrmQIGnL87d955J5o3by7be8tFUlISHnroITz00EMAqretO3DgANLS0tC3b19Zvhcszj97IyKCHhZrIdTCyNoBNvUbtQYQqL7Qq2UAWdMuJCQkBKGhoaioqHC7F7AcBpBV/UpHAIV9W7XY+s0f6tWrhyFDhji1iwkUFuefUsCE6ly7dk3rIWiGkbUDbOr3FAHkUsDh4eFu06X+wJp+4YU+MjJS0Q3rWdPuChcF5AxgRUUFKisrAchjAFnVr7QBfOihh1C/fn20a9dONwZQCVicf4oAEgRhaHxFAOPj45koWlcCYfpPLy1glCIiIgI3b97k075G2AYOUD4F3KVLF2RkZCAzM5PJ3TCMDEUACdWR8+SiN4ysHWBTv7sIYGVlJXJzcwHIl/4F2NMvHI/SBpA17a64RgDlNoCs6neNAIaHh8seCQ4NDTW8+WNx/skAEqrDYjGsWhhZO8CmfncRwJycHH5fYDlrd1jTL7woKVn/B7Cn3RXO5CllAFnV7zrvShkVVvWrBYv6yQASqnPjxg2th6AZRtYOsKlfGAHkDKASC0AA9vSrmQJmTbsrSkcAWdWvlgFkVb9asKifDCBBEIZGGAHkUsBKGUDWUDMFzDqcAbTb7aioqDBMDWB0dLRTjSuLqUpCGcgAEqoTGxur9RA0w8jaATb1u4sAKrUPMGv61UwBs6bdFdft4OQ2gKzqN5vNTp8DpQwgq/rVgkX9ZAAJ1SksLNR6CJphZO0Am/rVjACypl/NFDBr2l1xbQYttwFkWb/Q/CtlAFnWrwYs6icDSKhOaWmp1kPQDCNrB9jUr2YNIGv61YwAsqbdFdft4OQ2gCzrF/4QUMoAsqxfDVjUTwaQUJ2QkBCth6AZRtYOsKk/LCyMHxcXAVQqBcyafqG5Fe7YoASsaXfFWwRQGCX2F5b1C82/Uu1aWNavBizqZ29dMhH0JCQkaD0EzTCydoBN/SaTCVFRUbh586biEUDW9A8dOhQPPPAAKisrMWLECEWPxZp2V5ROAbOsX40UMMv61YBF/RQBJFTn6tWrWg9BM4ysHWBXP5cGdq0BDAkJQf369WU7Dmv6IyIisGXLFnzxxReybXfnCda0u6L0IhCW9auRAmZZvxqwqJ8MIEEQhodL8bmuAo6NjYXZTKdJI+AaARRuCxjMbWAAdSKABHvQmY1QHTnqafSKkbUD7OoXRgAdDgdvAOXuAciqfjVgXbvSKWCW9athAFnWrwYs6icDSKiO1WrVegiaYWTtALv6uZNzRUUFsrKyUFFRAUB+A8iqfjVgXbvSq4BZ1q+GAWRZvxqwqJ8MIKE6eXl5Wg9BM4ysHWBXv7D+7fz58/xtOVcAA+zqVwPWtSsdAWRZf79+/QBU71d75513KnIMlvWrAYv6aRUwQRCGR5ieERrAYN4GjnBGaQPIMnfccQdOnz6NyMhINGnSROvhECpBBpBQnQYNGmg9BM0wsnaAXf2eIoByG0BW9asB69qVXgXMuv5bbrlF0fdnXb/SsKifUsCE6ghX1xkNI2sH2NXvKQIodwqYVf1qwLp2pSOArOtXGtLPnn4ygITqlJSUaD0EzTCydoBd/WpFAFnVrwasa/e2CERoDv2Fdf1KQ/rZ008GkFAdI/dVM7J2gF39wgjg77//zt+W2wCyql8NWNfuKQIYGhqK0NDQgN+fdf1KQ/rZ08/eiIigR+k9R1nGyNoBdvULI4DCjv1yG0BW9asB69o9GUC5FoCwrl9pSD97+skAEqpz7do1rYegGUbWDrCr31OT1tjYWFmPw6p+NWBdu6dFIHIZQNb1Kw3pZ08/GUBCdRwOh9ZD0AwjawfY1e9uH9z69evLkvoTwqp+NWBdu6cIoFw7OLCuX2lIP3v6yQASqhPsPbW8YWTtALv63V3klegByKp+NWBdu9IpYNb1Kw3pZ08/GUBCdeRYUadXjKwdYFe/uwig3C1gAHb1qwHr2oUX6KKiIn7VplwXbtb1Kw3pZ08/GUBCdXJzc7UegmYYWTvArn61IoCs6lcD1rULL9DCbbvkMoCs61ca0s+eftoJJIhZsmQJ9u/fj9LSUsTHx2Py5MmK7fNIEHrGXQSQtoEzFmazGWFhYSgvL3e6WLOYuiMIOSADGMSMGjUK06ZNQ1hYGE6fPo3p06djw4YNqFOnjqbjiomJ0fT4WmJk7QC7+t1FAJVIAbOqXw30oD0iIgLl5eXIycnh75PLAOpBv5KQfvb0Uwo4iGnatCnCwsIAACaTCRUVFU4nNq0oLS3VegiaYWTtALv61YoAsqpfDfSgnUsDl5WV8ffJZQD1oF9JSD97+nURASwuLsaGDRuQlpaG06dPo7CwEHPmzMHgwYN9vvbChQtYt24d0tPTkZeXh/DwcDRt2hRjxoypkQ7917/+hR07dnh8ry1btsjeF4xDqsby8nKsXbsW3377LQoLC9GyZUtMnDgR3bt3d3resmXLsH37dpSXl6Nnz55o0aKFIuOXQlFREerWrav1MDTByNoBdvWrVQPIqn410IN2d4X6chlAPehXEtLPnn5dGMCCggKsX78e8fHxaNWqFY4dOyb6tRkZGSguLsagQYPQoEEDlJaWYu/evZgzZw5mzJiBoUOH8s8dOnQounXr5vR6h8OB119/HQkJCYqZP0C6xkWLFuH777/HyJEjkZSUhG+++QYzZ87EihUr0KlTJ/5506dPx7Rp03D8+HGcP38eJpNJMQ0EoVciIiJgMpmcenUpkQIm2Mad2aMaQCJY0YUBjImJwdatWxETE4MzZ85g8uTJol/bq1cv9OrVy+m+Bx54AJMmTcKmTZucDOCtt96KW2+91em5J06cQGlpKe655x6vxyksLMQvv/yCu+++2+3jqampuPPOOz0uBZeiMS0tDbt378aTTz6JMWPGAADuvfdejB8/HqtWrcKqVaucnh8SEoKuXbti8+bNSEpKqvH3UJvExERNj68lRtYOsKvfbDYjMjISRUVF/H1KRABZ1a8GetCuZARQD/qVhPSzp18XNYBhYWGyFlCGhIQgLi4ONpvN53NTU1NhMpmQkpLi9Xlbt27F/PnzsW/fvhqPbdu2DQsWLPCaXpaice/evQgJCXEyr1arFUOGDMGpU6eQmZnp9nV2u91pn1OtuH79utZD0AwjawfY1u+aBlYiAsiyfqXRg3YlDaAe9CsJ6WdPvy4MoByUlJQgPz8fV69exaZNm3Do0CF06dLF62sqKyuxZ88e3HrrrT43ch47dix69uyJBQsW4OjRo/z9e/fuxeuvv46BAwdi2LBhckjB2bNnkZSUVOOC1a5dOwDAuXPnYLPZsGvXLhQXF/M6jh07hs6dO8syhkCoqqrSegiaYWTtANv6hQtBoqKiZNsCTAjL+pVGD9qVNIB60K8kpJ89/bpIAcvBW2+9hS+//BJAdbqnT58+eO6557y+5ueff0ZBQYHP9C8AWCwWzJ8/Hy+88ALmzp2L5cuXo6SkBAsXLkSPHj0we/Zs2ervcnNz3UYLuftycnJgMpmwbds2LF++HA6HA4mJiZg3bx5at27t8X1TU1ORmpoqKjIaCCx2RFcLI2sH2NYvNHxK9QBkWb/S6EG7kgZQD/qVhPSzp98wBnDkyJHo27cvcnJysGfPHtjtdlRUVHh9TWpqKiwWC/r16yfqGFarFYsWLcK0adMwc+ZMVFRUoF27dnj55Zdhscj3py4rK3O7ST3X8qWsrAxRUVFYsWKFpPdNSUlBSkoK0tPTMWnSJFnG6g4lIit6wcjaAbb1CyOAShlAlvUrjR60uzN7co1bD/qVhPSzp98wKeCmTZuiW7duGDRoEBYvXoySkhLMnj3badWfkOLiYvz444+4/fbbJTVOjoqKwpQpU3Dz5k2UlJRg6tSpsFqtcskAUG003ZnX8vJy/nGWYaEXoVYYWTvAtn7hCVqpFcAs61caPWhXMgKoB/1KQvrZ028YA+hK3759cebMGVy+fNnt4z/++KOo1b+uXLt2DQsXLkSTJk2QkJCAefPmyT7xMTExbvcV5O5r0KCBrMcjCCOgRgSQYBslDSBBsIZhDSDX6d1TvduuXbsQEREhae/cnJwcTJ8+HRaLBcuWLcPrr7+O0tJSPP/887h586Ys4waAVq1a4cqVK04tK4Dq9jDc4yxTv359rYegGUbWDrCtX40aQJb1K40etCtpAPWgX0lIP3v6g8oAlpaW4tKlS8jPz+fvu3HjRo3nVVZWYufOnbBarWjWrFmNx/Pz83HkyBH06dMH4eHhoo5dWFiIGTNmoKSkBMuWLUNcXBwaN26MpUuXIjs7G7NmzUJJSYm/0pzo27cv7HY7v6gFqE7/bt++He3bt2c+esGlqo2IkbUDbOsXRgCVSgGzrF9p9KBdSQOoB/1KQvrZ06+bRSBbtmyBzWbj05z79+9HVlYWAGDEiBGIjo7G6dOnMW3aNIwfPx4TJkwAACxduhRFRUXo3LkzYmNjkZubi127duGPP/7AU0895fbLvXv3btjtdknp361btyIrKwtvvPEGGjduzN/funVrvPbaa3j++eexY8cODB8+PCCNANC+fXv069cP7777LvLz85GYmIgdO3YgIyMDs2bNEj1mrbDZbJLqKoMJI2sH2NavRgSQZf1KowftShpAPehXEtLPnn7dGMCNGzciIyOD//++ffv4pssDBw50u5k7APTv3x9ff/01vvjiCxQUFCAyMhJt27bFE088gbvuusvta1JTU1GvXj107dpV9PjGjh2L3r17o3nz5jUe69SpE1avXu1zH14pGufOnYv4+Hjs3LkTNpsNLVq0wOLFi5GcnCx6zARB/EmbNm342647AhHGgLaCI4yEyeFpGSxhWLg2MO+99x7atm0r+/s7HA7D7klsZO0A2/pLSkqwcuVKNGnSBKNHj1bkGCzrVxo9aH/33Xfx+OOPO92Xm5srS/2WHvQrCelnT39Q1QAS+sDTVnVGwMjaAbb1R0RE4IUXXlDM/AFs61caPWhXMgWsB/1KQvrZ008GkFAdu92u9RA0w8jaAdJvZP160O5qAE0mk2x9VfWgX0lIP3v6yQASqiN2ZXUwYmTtAOk3sn49aHc1gJGRkbKl7fSgX0lIP3v6yQASqlOrVi2th6AZRtYOkH4j69eDdtd0r5wLQPSgX0lIP3v6yQASqpOdna31EDTDyNoB0m9k/XrQ7i4CKBd60K8kpJ89/WQACYIgCALKGkCCYA0ygITq1KtXT+shaIaRtQOk38j69aDd1QAKm4MHih70KwnpZ08/GUBCdSorK7UegmYYWTtA+o2sXw/alYwA6kG/kpB+9vSTASRUp7CwUOshaIaRtQOk38j69aBdSQOoB/1KQvrZ008GkCAIgiCg7CpggmANMoCE6jRs2FDrIWiGkbUDpN/I+vWg3bVXm5wGUA/6lYT0s6efDCChOiwuh1cLI2sHSL+R9etBu9lsdtr5g9rAyAfpZ08/GUBCdVgshlULI2sHSL+R9etFu7AOkBaByAfpZ08/GUBCdeTaW1OPGFk7QPqNrF8v2pUygHrRrxSknz39ZAAJ1albt67WQ9AMI2sHSL+R9etFu1IGUC/6lYL019V6CDUgA0ioTmZmptZD0AwjawdIv5H160W70PTJaQD1ol8pSD97+skAEgRBEMT/R6kIIEGwBhlAQnXq1Kmj9RA0w8jaAdJvZP160a6UAdSLfqUg/ezpJwNIqI7D4dB6CJphZO0A6Teyfr1oV8oA6kW/UpB+9vSTASRU5+bNm1oPQTOMrB0g/UbWrxftQgMYFRUl2/vqRb9SkH729JMBJAiCIIj/j1KLQAiCNcgAEqqTkJCg9RA0w8jaAdJvZP160S6MAApvB4pe9CsF6WdPPxlAQnVyc3O1HoJmGFk7QPqNrF8v2vv37w8AiIuLw6233irb++pFv1KQfvb0W7QeAGE8KioqtB6CZhhZO0D6jaxfL9rHjh2Ljh07IikpSdYIoF70KwXpZ08/GUBCdcLCwrQegmYYWTtA+o2sX0/aO3bsKPt76km/EpB+9vRTCphQnfr162s9BM0wsnaA9BtZv5G1A6Sf9LOnnwwgoToZGRlaD0EzjKwdIP1G1m9k7QDpJ/3s6ScDSBAEQRAEYTDIABKqU7t2ba2HoBlG1g6QfiPrN7J2gPSTfvb0kwEkVMdkMmk9BM0wsnaA9BtZv5G1A6Sf9LOnnwwgoToFBQVaD0EzjKwdIP1G1m9k7QDpJ/3s6ScDSBAEQRAEYTDIABKqEx8fr/UQNMPI2gHSb2T9RtYOkH7Sz55+MoCE6uTn52s9BM0wsnaA9BtZv5G1A6Sf9OdrPYQakAEkVKesrEzrIWiGkbUDpN/I+o2sHSD9pJ89/WQACdUJDQ3VegiaYWTtAOk3sn4jawdIP+lnTz8ZQEJ1GjRooPUQNMPI2gHSb2T9RtYOkH7Sz55+MoCE6ly/fl3rIWiGkbUDpN/I+o2sHSD9pJ89/RatB0CwB1ercOnSJUXePzs7GzabTZH3Zh0jawdIv5H1G1k7QPpJv7r6mzZtivDwcK/PIQNI1IDbtPqVV17ReCQEQRAEQUjlvffeQ9u2bb0+x+RwOBwqjYfQCfn5+fj555/RsGFDhIWFyfrely5dwiuvvIJ//OMfaNq0qazvzTpG1g6QfiPrN7J2gPSTfvX1UwSQ8Iu6deti4MCBih6jadOmPn+dBCtG1g6QfiPrN7J2gPSTfrb00yIQgiAIgiAIg0EGkCAIgiAIwmCQASRUJSYmBuPHj0dMTIzWQ1EdI2sHSL+R9RtZO0D6ST+b+mkRCEEQBEEQhMGgCCBBEARBEITBIANIEARBEARhMMgAEgRBEARBGAwygARBEARBEAaDGkETqlBeXo61a9fi22+/RWFhIVq2bImJEyeie/fuWg/NL44dO4Zp06a5fWzVqlXo0KED//+TJ09i9erV+O233xAVFYV+/fph0qRJiIyMdHodq3+j4uJibNiwAWlpaTh9+jQKCwsxZ84cDB48uMZzL168iJUrV+LkyZOwWCzo1asXnn76adStW9fpeVVVVdiwYQM+//xz5OXlISkpCQ8//DBSUlL8fk+lEKv/X//6F3bs2FHj9U2aNMFHH33kdJ9e9J8+fRo7duzAsWPHkJGRgdq1a6NDhw6YOHEiGjdu7Nc4g017MM47AFy4cAHr1q1Deno68vLyEB4ejqZNm2LMmDG48847/RprMOrX8/yTASRUYdGiRfj+++8xcuRIJCUl4ZtvvsHMmTOxYsUKdOrUSevh+c2IESPQrl07p/sSExP522fPnsVzzz2Hpk2b4umnn0ZWVhY2btyIK1euYMmSJU6vY/VvVFBQgPXr1yM+Ph6tWrXCsWPH3D4vKysLU6dORXR0NCZNmoSSkhJs2LAB58+fxzvvvIPQ0FD+ue+99x4+/vhj3Hfffbjlllvw448/YsGCBTCZTBgwYIBf76m1fgAICwvDzJkzne6Lioqq8Ty96P/kk09w8uRJ9OvXDy1btkRubi62bt2KiRMnYtWqVWjRooXkcQabdiD45h2o3hO+uLgYgwYNQoMGDVBaWoq9e/dizpw5mDFjBoYOHSp5rMGoH9Dx/DsIQmFOnTrl6N27t+OTTz7h7ystLXU89NBDjieeeELDkfnPL7/84ujdu7djz549Xp83Y8YMx7Bhwxw2m42/76uvvnL07t3bcejQIf4+lv9GZWVljpycHIfD4XCcPn3a0bt3b8f27dtrPO/11193pKSkODIyMvj7Dh8+7Ojdu7fjiy++4O/Lyspy9OvXz7Fs2TL+vqqqKsdTTz3leOCBBxyVlZWS31NJxOp/9dVXHQMHDvT5fnrSf+LECUd5ebnTfX/88YdjwIABjgULFkgeZzBqD8Z590RlZaXj0UcfdYwbN46/Lxjn3hPu9Ot5/qkGkFCcvXv3IiQkxOkXk9VqxZAhQ3Dq1ClkZmZqOLrAKS4uRmVlZY37i4qKcOTIEQwcONDp1+C9996LiIgI7Nmzh7+P5b9RWFiYqAame/fuxR133IH4+Hj+vm7duqFx48ZOWn/88UdUVlZi+PDh/H0mkwnDhg1DdnY2Tp06Jfk9lUSsfg673Y6ioiKPj+tJf8eOHWtEGxo3boxmzZrh0qVLkscZjNo5gmnePRESEoK4uDjYbDb+vmCce0+408+hx/knA0goztmzZ5GUlFQjJM6lTs+dO6fFsGRh0aJFGDRoEO655x5MmzYNZ86c4R87f/487HZ7jc2/Q0ND0bp1a5w9e5a/T+9/o+zsbNy4ccPtRuft2rWroTUiIgJNmzat8TzucanvyQqlpaUYPHgwBg8ejCFDhmDZsmUoLi52eo7e9TscDty4cQN16tQBYKy5d9XOEczzXlJSgvz8fFy9ehWbNm3CoUOH0KVLF8ljDUb9HHqdf6oBJBQnNzfXbQSFuy8nJ0ftIQWMxWLB3XffjZ49e6JOnTq4ePEiNm7ciKeffhpvv/022rRpg9zcXADwqP3XX3/l/6/3v5EvrTdv3kR5eTnCwsKQm5uLevXqwWQy1Xge8KdWKe/JAjExMRgzZgzatGkDh8OBQ4cO4fPPP8fvv/+OFStWwGKpPt3qXf+uXbuQnZ2NCRMmSB5nsGnnxhPM8/7WW2/hyy+/BACYzWb06dMHzz33nOSxBqN+bkx6nX8ygITilJWVuS1a5T7AZWVlag8pYDp27IiOHTvy/7/rrrvQt29fPProo3j33XexdOlSXpcn7eXl5fz/9f438qWVe05YWJhorVLekwUef/xxp/8PGDAAjRs3xnvvvYe9e/fyRd561n/p0iUsX74cHTp0wKBBgySPM9i0A8E/7yNHjkTfvn2Rk5ODPXv2wG63o6KiQvJYg1E/oO/5pxQwoThWq9XpC8PBGSCr1ar2kBQhKSkJd911F44dOwa73c7r8qRd+AXW+9/Il1bhc8RqlfKerDJq1CiYzWYcOXKEv0+v+nNzczFr1ixERUVh4cKFCAkJkTzOYNPuiWCa96ZNm6Jbt24YNGgQFi9ejJKSEsyePRsOh8MQc+9Nvyf0Mv9kAAnFiYmJ4cPaQrj7GjRooPaQFCMuLg4VFRUoLS3lQ/ietAt16/1v5Etr7dq1ecMbExODvLy8GidQV61S3pNVrFYrateujZs3b/L36VG/zWbDzJkzYbPZsHTp0hqfXbHjDDbtngiWeXdH3759cebMGVy+fDno594dQv2e0Mv8kwEkFKdVq1a4cuVKjRVSaWlp/OPBwrVr1xAWFoaIiAg0b94cISEhSE9Pd3pORUUFzp4966Rb73+j2NhY1K1bt4ZWoLqhrqvW0tLSGispXbVKeU9WKS4uRkFBgVPzVr3pLysrw+zZs3H58mW89tpraNasmdPjwTz3vrR7Ihjm3RNcitJmswX13HtCqN8Tepl/MoCE4vTt2xd2u50vpAWqQ9nbt29H+/btnZa664X8/Pwa9507dw779+9H9+7dYTabER0djW7duuHbb791WhG2c+dOlJSUoF+/fvx9wfA3uvvuu3HgwAGnljVHjx7F5cuXnbTeddddsFgs2Lp1K3+fw+HAF198gdjYWNx6662S31NrysrKaqz6A4APPvgADocDPXr04O/Tk3673Y758+fj1KlTePnll53GJiQY516M9mCddwC4ceNGjfsqKyuxc+dOWK1W3gwH49wD4vTrff5pEQihOO3bt0e/fv3w7rvvIj8/H4mJidixYwcyMjIwa9YsrYfnF//85z9htVpx6623ol69erh48SK++uorhIeHOxUFT5w4EU899RSmTp2KoUOH8juBdO/e3enkwPrfaMuWLbDZbHxaYv/+/cjKygJQvRtKdHQ0Hn74YXz//fd49tln8eCDD6KkpASffvopWrRo4bRtWlxcHEaOHIlPP/0UlZWVaNeuHX744QecOHEC8+bNc6qvEvueWusvLCzEY489hpSUFDRp0gQA8PPPP+Onn35Cjx49cNddd+lS/1tvvYX9+/fjjjvuQGFhIb799lunxwcOHChpnMGmPS8vLyjnHQCWLl2KoqIidO7cGbGxscjNzcWuXbvwxx9/4KmnnuK3sgzGuRer//r167qef5PDWyUjQchEWVkZv8+tzWZDixYtMHHiRNx+++1aD80vPvvsM+zatQtXr15FUVER6tati65du2L8+PFISkpyeu6JEyf4vYAjIyPRr18/PP744zX2Amb5bzRq1ChkZGS4fWzjxo1o2LAhgOr9M133r3zqqadQv359p9dUVVXhk08+wZdffonc3FwkJSVh3LhxvKEQIvY9lcSX/ujoaKxYsQKnTp1Cbm4uqqqqkJiYiHvuuQcPPfQQ3wqCQy/6n3nmGRw/ftzj4/v27ZM8zmDSXlhYGJTzDgC7d+/G119/jfPnz6OgoACRkZFo27YtHnjgASdjI2WswaZf7/NPBpAgCIIgCMJgUA0gQRAEQRCEwSADSBAEQRAEYTDIABIEQRAEQRgMMoAEQRAEQRAGgwwgQRAEQRCEwSADSBAEQRAEYTDIABIEQRAEQRgMMoAEQRAEQRAGgwwgQRAEQRCEwSADSBAEwQjPPPMM+vTpo/UwfPLNN9+gT58+/L/58+f79T6rV692ep/3339f3oESBOERi++nEARBEFKRauSE++rqhbvuugutWrVCixYt/Hp9t27dEBYWhoyMDOzYsUPm0REE4Q0ygARBEAowfvz4Gvd99tlnsNlsbh8DgBdffBGlpaXKDkxGevfujcGDB/v9+m7duqFbt244duwYGUCCUBkygARBEAowYcKEGvft2LEDNpvN7WMAEB8fr/SwCIIgAJABJAiCYIZnnnkGx48fd0oHf/PNN1i0aBHmzJmD2rVr48MPP8T58+dRq1Yt/OUvf8GECRNgNpvxzTffYNOmTbh8+TLq1q2LESNGYMyYMTWO4XA4sH37dnz99dc4f/487HY7mjVrhmHDhmHIkCGy6MjJycHHH3+Mn376CdnZ2QgLC0P9+vWRnJyMJ554AtHR0bIchyAI/yEDSBAEoQP27duHw4cPo3fv3ujYsSMOHjyIDz/8EA6HA9HR0fjwww9x1113ITk5Gfv27cOqVatQr149DBo0iH8Ph8OBhQsXIjU1FUlJSUhJSUFoaCgOHz6MxYsX4+LFi3jqqacCGmdpaSmeeuopZGRkoHv37ujTpw8qKipw/fp1fPvtt3jooYfIABIEA5ABJAiC0AGHDh3CW2+9hXbt2gGoTjGPGTMGmzdvRmRkJNauXYtGjRoBAB566CGMHTsWGzZscDKA27ZtQ2pqKv7yl79gxowZsFiqLwEVFRWYN28eNm7ciJSUFLRt29bvcR49ehTXr1/HyJEjMXXqVKfHiouL+WMSBKEt1AaGIAhCBwwcOJA3fwAQGRmJXr16obS0FMOGDePNH1BdS9ixY0dcunQJlZWV/P3//e9/ERERgeeee87JiIWGhmLSpEkAgNTUVFnGa7Vaa9wXGRmJsLAwWd6fIIjAoJ9iBEEQOqBVq1Y17ouJifH6mN1ux40bNxAbG4vS0lKcP38eDRo0wMcff1zj+Xa7HQDwxx9/BDTOzp07IyYmBh9//DHOnTuHO+64A8nJyWjatClMJlNA700QhHyQASQIgtABUVFRNe4LCQnx+RgXASwsLITD4UB2djbWr1/v8TiBtqGJjo7G6tWrsXbtWhw4cAA//fQTACAuLg7jxo3D8OHDA3p/giDkgQwgQRCEAeBMYtu2bfHee+8peqz4+HjMnTsXVVVV+P3333H48GFs2bIFy5cvR61atZCSkqLo8QmC8A3VABIEQRiAyMhING3aFJcuXUJhYaEqxzSbzWjdujXGjh2Ll156CQCwf/9+VY5NEIR3yAASBEEYhAcffBClpaVYsmQJSkpKajx+7do1XL9+PaBjXLhwAXl5eTXuv3HjBgDQIhCCYARKARMEQRiEoUOH4tSpU9ixYwdOnjyJbt26ISYmBjdu3MAff/yBtLQ0vPTSS2jYsKHfxzh8+DBWrVqFjh07onHjxqhduzauXbuG/fv3IywsjGoACYIRyAASBEEYBJPJhLlz56Jnz57Ytm0bDhw4gJKSEtSrVw9JSUmYMmUKunbtGtAxbr/9dmRkZODXX3/Fvn37UFJSggYNGqB///4YO3YsmjVrJo8YgiACwuRwOBxaD4IgCILQD8Lt6QYPHhzw+x07dgzTpk3D+PHjPe6TTBCEvFANIEEQBOEXixYtQp8+fTB//ny/Xr969Wr06dMH06ZNk3dgBEH4hFLABEEQhCRatWqF8ePH8/9v0aKFX+/TrVs3p0Uht912W6BDIwhCJJQCJgiCIAiCMBiUAiYIgiAIgjAYZAAJgiAIgiAMBhlAgiAIgiAIg0EGkCAIgiAIwmCQASQIgiAIgjAYZAAJgiAIgiAMBhlAgiAIgiAIg0EGkCAIgiAIwmCQASQIgiAIgjAY/w8vfH8hOgtG7AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis.get_raw_spectrum(binned_data=\"selected_combined_binned_data.hdf5\", output_name=\"selected_crab_spec_3x\")\n", + "analysis.get_raw_lightcurve(binned_data=\"selected_combined_binned_data.hdf5\", output_name=\"selected_crab_lc_3x\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Compare to the full data set" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAG5CAYAAAD2/PK1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gc1Z39fSp1npyUcxYIISGEkIQFyALMGoMJIuxirQF5wTaywTaY94eXYK/NkgxmDcYYg3exiYvBZKQFAUJESaQZ5SxNjp0rvn9UV9Wt6uqe7snTcz/Pw8Oou6vrdqo6db6J0TRNA4VCoVAoFAqlIGEHewEUCoVCoVAolP6Dij0KhUKhUCiUAoaKPQqFQqFQKJQChoo9CoVCoVAolAKGij0KhUKhUCiUAoaKPQqFQqFQKJQChoo9CoVCoVAolAKGir0RTiKRwI4dO5BIJAZ7KRQKhUKhUPoBKvZGOAcOHMBVV12FAwcODPZSKBQKhUKh9ANU7FEoFAqFQqEUMFTsUSgUCoVCoRQwVOxRKBQKhUKhFDBU7FEoFAqFQqEUMPxgL4BCoVAolEJEURRIkjTYy6AUAIIggOO4Hm9PxR6FQqFQKH1MJBLB4cOHoWnaYC+FUgAwDINx48YhFAr1aHsq9igUCoVC6UMURcHhw4cRCARQVVUFhmEGe0mUYYymaWhubsbhw4cxffr0Hjl8VOxRKBQKhdKHSJIETdNQVVUFv98/2MuhFABVVVXYv38/JEnqkdijBRoUCoVCofQD1NGj9BW9/S5RsUehUCgUCoVSwFCxR6FQKBTKCECWZdx6662YNWsWjjnmGMyfPx9r165FR0dHnzz/mjVr8Nvf/tb1vl/84hd44okn+mQ/Bg888ADWrFnTp89ZqNCcPQqFQqFQRgBXXHEF2trasHnzZpSVlUHTNDz77LNoa2tDaWlpv+77tttu69fnp2SHij0KhUKhUPqZv/9/mxDrTPbb8wdKvDj3V0sz3r97924888wzOHjwIMrKygDoeWAXXnghAODOO+/EY489BpZlMW/ePPz+979HSUkJbrnlFtTW1iIej2PHjh2YMWMGfvOb3+D666/Hvn37sHDhQjzxxBNgWT1Q+Pnnn+Pkk09GS0sLlixZgoceegh+vx9r1qzB/Pnz8aMf/Qi33HIL6urqEIvFsGfPHowaNQrPPvssysvLAQB33XUXnn76aciyjOrqavzhD3/AxIkTEQ6HceWVV2Lbtm2oqqrC3Llz++39LDRoGJdCoVAolH4m1plErK0f/+tGSG7ZsgXTp09HZWVl2n2vvvoqHn30UWzatAlffPEFgsEgbrzxRvP+Tz75BH/5y1+wY8cOU3A9++yzqK2tRV1dHV599VXzsR9++CFef/111NXVoa2tDffee6/rej788EM89thjqK2tNQUdAPz1r3/Fjh07sHnzZmzZsgWXXXYZrrnmGgC6O+j1erF9+3a8/PLLeOedd/L+HEYq1NmjFDSqquLv2z5EkdePr8+dP9jLoVAoI5RAiXfIPv/69euxevVqM5R79dVXm44fAKxatcp0AxcsWACv14uioiIAwPHHH49du3aZj73ooovM+6644grcf//9uOmmm9L2eeaZZ6KiogIAsGTJEnzxxRcAgL///e/4+OOPsXDhQgB6z0KDDRs24N577wXDMCgpKcGll16KPXv29Ph1jySo2KMUNM9/9gFu054FEsCj+0JYOHnaYC+JQqGMQLKFWAeCBQsWYNeuXWhtbTVFViacbT58Pp/5N8dxaf+WZTnn58r0nMZzaJqGn//851i7dm3WNWZ7bko6NIxLKWjuk14x//5T84ZBXAmFQqEMHtOmTcP555+PK664wqy+1TQNzz33HKZMmYKnn34aXV1dAIA//OEPWLVqVY/28+yzzyISiUBRFPz5z3/GypUr89r+3HPPxUMPPYS2tjYAeoPqrVu3AgBWrlyJP//5z9A0DV1dXfjb3/7WozWORKizRyloNFhzKRmNXgVSKJSRy6OPPopf/vKXWLx4MXieh6qqOOWUU3DHHXcgFothyZIltgKNnrBo0SKcccYZaG5uxpIlS/CjH/0or+0vu+wytLa24tRTTwWgt4v57ne/i+OPPx4333wzrrzySsyaNQtVVVVYtmwZksn+K3opJBiNTmke0ezYsQNXXXUV/vjHP2LmzJmDvZw+Z+lHNyHCJQAAy6VZeOCk7kMDFAqF0hsSiQT27duHyZMn28KVFEpP6e13ioZxKQXNiR1Wjl61UjKIK6FQKBQKZXCgYo9S0IyPWonIIZkOJKdQKBTKyIOKPUpBwxBFYrKauWKMQqFQKJRChRZoUAqaYMKH0YdLwakMSkOBwV4OhUKhUCgDDhV7lIImFPPglE9nglNYLDhtymAvh0KhUCiUAYeKvQLizjvvxKZNm5BIJFBTU4O1a9di6dLBbeQ52Lw46VPUnXAUALD4QOFVG1MoFAqF0h1U7BUQF110EdatWwePx4O6ujpcd911ePLJJ1FSMnKrUCVYo3Y4iaaoUigUCmXkQc9+BcTEiRPh8XgA6GNkJElCS0vLIK9qcJEZS+yxMv26UyiUkcv//u//YuHChZg/fz5mzZqF0047DaqqdrsdwzDm1I2e8Nvf/hYNDQ092vYnP/kJbrnlFtf7ZFnGrbfeilmzZuGYY47B/PnzsXbt2l6t1cmaNWvw29/+1vW+X/ziF3jiiSf6bF8A8MADD2DNmjV9+pzAEHX2YrEYnnzySdTW1qKurg7hcBg///nPcdZZZ+X9XH/5y1/wyCOPYPLkyXj88cf7bT/5ku++RVHEn/70J7zxxhsIh8OYOnUqrrzySixatMj2uHvuuQevvPIKRFHESSedhClTRnae2pGSdvPvN8o+w1LMGcTVUCgUyuBQX1+PtWvX4tNPP8XEiRMBAFu2bBmQ+bK//e1vsWLFCowaNapPn/eKK65AW1sbNm/ejLKyMmiahmeffRZtbW0oLS3t0325cdttt/X7PvqKISn2Ojs78dhjj6GmpgbTpk0z5+LlS1NTE/7nf/4Hfr97f7W+2k9PyHffv/71r/H222/jwgsvxLhx4/Dqq6/iZz/7Ge677z7MmzfPfNx1112HdevWYdu2bdi7d++IHxQt8Zaz18ZFBnElFAplpPOXxrfx340bu33c7MA43D/tCttt1+7+E+pih10f/y81X8PlNSuyPmdjYyM4jkN5ebl524IFC8y/d+3ahR/96EdoampCMpnE2rVr8YMf/CDtebI9bvPmzfjpT3+KcDgMTdNw++2347PPPsPRo0exevVq+P1+PPbYY5g7dy5uvvlm/N///R9EUcSMGTPwhz/8AWVlZaivr8eaNWtw6NAhjBkzBpWVlZg1a1baOnbv3o1nnnkGBw8eRFlZGQDdgbzwwgvNx9x555147LHHbCPgSkpKcMstt6C2thbxeBw7duzAjBkz8Jvf/AbXX3899u3bh4ULF+KJJ54Ay+rRoM8//xwnn3wyWlpasGTJEjz00EPw+/1Ys2YN5s+fjx/96Ee45ZZbUFdXh1gshj179mDUqFF49tlnzff7rrvuwtNPPw1ZllFdXY0//OEPmDhxIsLhMK688kps27YNVVVVmDt3btbPsacMybhWRUUFnn/+eTzzzDO4+uqre/w8v//97zFnzpyMY8B6s59wOIyNGzP/aNevX494PJ7x/nz2XVtbiw0bNmDt2rW45pprcM455+C3v/0tRo0ahQcffDDt8RzHYeHChfj000+xefPm3F9UgSMT+XsUCoUy0ESVBJqkzm7/a5fTL0zb5UjGx0eVRLf7njdvHpYtW4aJEyfivPPOw5133okjR44AABRFwSWXXIK7774bH3/8MT744AM8/PDD+Pjjj23Pke1xbW1tOPfcc/HrX/8an332GbZt24bly5fjF7/4BcaMGYOnnnoK27Ztw/z583HnnXciGAzio48+wrZt23Dsscfi//2//wcAuPbaa3HiiSeitrYWjz/+ODZs2OD6erZs2YLp06ejsrLS9f5XX30Vjz76KDZt2oQvvvgCwWAQN954o3n/J598gr/85S/YsWOHKbieffZZM9r26quvmo/98MMP8frrr6Ourg5tbW249957Xff54Ycf4rHHHkNtba0p6ADgr3/9K3bs2IHNmzdjy5YtuOyyy3DNNdcA0N1Br9eL7du34+WXX8Y777zT7WfZE4aks+fxeFBRUdH9A7Owbds2bNy4EY888gjuu+++Pt/P888/jz//+c+49dZbccopp9jue+mll/Cf//mf+PGPf4zzzjuv1/veuHEjOI7DOeecY97m9Xpx9tln4+GHH0ZjYyNqamrStlMUxfwxUwBF6z43hUKhUPqLIOdDtdB9wVwZH3K9LdO2Qa77Waksy+K5557D9u3bsXHjRrz66qv41a9+hU8++QSiKOKrr77CxRdfbD4+HA6jtrbWliq0Y8eOjI9ramrCzJkzsXz5cnN/pItI8ve//x2dnZ147rnnAOhpSpMmTQIAbNiwAXfddRcAYOzYsbbzXj6sX78eq1evNsO5V199tc31W7VqlekILliwAF6vF0VFRQCA448/Hrt27TIfe9FFF5n3XXHFFbj//vtx0003pe3zzDPPNM/rS5YswRdffGG+3o8//hgLFy4EoJ+bDTZs2IB7770XDMOgpKQEl156Kfbs2dOj15yNISn2eouiKLjvvvtw9tlnY+rUqf2yj0svvRR1dXW47bbbcMcdd5gf4saNG3H33Xdj1apVOPfcc/tkX7t27cK4ceMQDAZtt8+ePRuAbmcHg0Fs3rwZS5cuhcfjwbvvvoutW7di7dq1fbKGQkAGFXsUCmXwuLxmRbfh1kw4w7o9ZdasWZg1axa+973v4cwzz8SLL76IM844A+Xl5di2bVvWbTVNy/i4l19+Oec1aJqG3/3ud1i1alW3j82UirRgwQLs2rULra2tORknzufx+SyBzHFc2r9lOfPEpUxryvQcmqbh5z//eU7n4/5KvRqSYdze8sILL6CxsRFXXnllv+2D53nccsstmDNnDm666SbU1tbi008/xe23347Fixfjxhtv7LMPLdOX2bitpaUFDMPgpZdewgUXXIBvfvObeOKJJ3DzzTdj+vTprs+5fv163Hjjjfjd737XJ2scDig0jEuhUEYoR44cwaZNm8x/t7e3Y9++fZg6dSpmzpyJ4uJi/PnPfzbv3717N9ra2mzPke1xJ598Mnbt2oV3330XAKCqqrl9cXExOjs7zW3OPfdc3HvvvYjFYgD0gsWvvvoKALBy5Uo8+uijAPSikhdffNH19UybNg3nn38+rrjiCrP6VtM0PPfcc9i7dy9WrlyJp59+Gl1dXQCAP/zhDzmJSzeeffZZRCIRKIqCP//5z1i5cmVe25977rl46KGHzPdDkiQzT3/lypX485//DE3T0NXVhb/97W89WmN3FJyz19nZiUcffRSXX355v1fjeL1e/PrXv8a6devws5/9DJIkYfbs2bj11lvB83331iaTSQiCkHa70WYlmUwiGAxmDFe7sXLlSqxcuRI7duzAVVdd1WdrHcpQZ49CoYxUZFnGbbfdhn379iEQCECWZXznO9/Bt771LQB6+tGPfvQj3HvvvVAUBZWVlfjrX/9qew6e5zM+buzYsXj++edx/fXXIxwOg2VZ3H777fjmN7+Ja6+9FldddRUCgQAee+wx3HDDDUgmk1i8eLFpitxwww2YO3cu7rvvPqxZswZz5szB2LFjcdppp2V8TY8++ih++ctfYvHixeB5Hqqq4pRTTsHpp5+Os846C19++SWWLFliK9DoCYsWLcIZZ5yB5uZmLFmyBD/60Y/y2v6yyy5Da2srTj31VAD6Z/Hd734Xxx9/PG6++WZceeWVmDVrFqqqqrBs2TIkk8kerTMr2hCnrq5OW758ufbKK6/k9Pi77rpLu/jiizVRFM3bfvjDH2qXX355n+6H5NNPP9WWL1+uLV++XNuxY0fe23e378svv1xbt25d2u379u3Tli9frv3973/Pe58G27dv15YvX65t3769x88xVFFVVbvzmme1eZ/8WJv3yY+11a/dOdhLolAoI4B4PK7V1tZq8Xh8sJdCKRB6+50qqDDuoUOH8I9//AMXXHABWlpaUF9fj/r6eoiiCFmWUV9fb1q6fcXRo0dx++23Y8KECRg1ahRuvvnmPm9kXFFRgdbW1rTbjdsyVSONdFRFgz9mOaIKdfYoFAqFMgIpKLHX0tICVVVx3333YfXq1eZ/tbW1OHToEFavXo3HHnusT/d33XXXged53HPPPbj77ruRSCRw/fXX96monDZtGg4fPoxoNGq7vba21ryfko4iqWAV6ytOw7gUCoVCGYkM65y9RCKBxsZGlJSUoLS0FJMnT8avfvWrtMc98sgjiMViuPbaazFmzJg+2Xc4HMZPfvITxONxPPDAA6iurgagN05ct24dbrjhBtxzzz0ZGzrnw4oVK/Dkk0/ixRdfxCWXXAJAL1V/5ZVXMGfOHNe2KxRAkRRwCoOT3psKVmUwPkgdUAqFMnBomjbYS6AUCL39Lg1Zsffcc88hEomYocpNmzahqakJAHD++ecjFAqhrq4O69atw5o1a/Dd734XpaWlZo8fkmeeeQYAXO/LZT9uPP/882hqasL999+P8ePHm7dPnz7d7MT92muvZeyzl8++58yZg1NPPRUPP/wwOjo6MHbsWLz22mtoaGjADTfckOVdHNl0JqL4+KR94BQW5S0hzG0fN9hLolAoIwBBEMAwDJqbm1FVVTXiJxlReoemaWhubgbDMK7FmrkwZMXeU089ZRuc/M4775idpVetWpVRhA3Ufi699FIsX74ckydPTrtv3rx5eOihh7qdS5vPvm+66SbU1NTg9ddfRyQSwZQpU3DHHXdg/vz5Ob/WkUarGMFHJ+8FAMysHYUT6vqn5yKFQilcNFVDfV0bSkYHESzvvnkxoPdYGzduHA4fPoz9+/f37wIpIwKGYTBu3DhwHNez7TXqM49ojNYrf/zjHzOOlRuufLp/N77bqpfaz/liDC6oOwnn37FskFdFoVCGE1+9vh+bH6+Dr9iDi+9fAd6T+8lWURRIktSPq6OMFARB6LHQA4aws0eh9JakaB1kk14ZXUJsEFdDoVCGI407OwAAiS4R4aYYysYV5bwtx3G9OkFTKH1FQVXjUigkCdkSe3tmNOHxle8O4mooFMpwRBGtyTuKRCv6KcMTKvYoBQsp9gBAYeiBmkKh5IdMxR6lAKBij1KwJGTR9m8q9igUSr7IonXcoGKPMlyhYo9SsCQVu7OnsrQWiUKh5IecJJw9wuWjUIYTVOxRCpZ0sUevyikUSn4okiXwZOrsUYYpVOxRCpakItv+rVBnj0Kh5IktjEudPcowhYo9SsESkD2ori82/02dPQqFki+2MC519ijDFCr2KAXL8bHJWP3XxahJCT6V06Cq9GBNoVByhwzjUrFHGa5QsUcpWIyDNKtaX3NJoWEYCoWSO3LSEng0Z48yXKFij1KwKLJ+YGYVawi5KMuZHk6hUCg2VFmFplq5vqTLR6EMJ+i4NErBoqQSq09dPxuyoIBVWPC/odc3FAolN2RHQYYiUmePMjyhYo9SsLxe9Bneu7gOnMzha/83E+VtITCEy0ehUCjZkB3ijubsUYYrVOxRCpYmvhP1ozoBADKvH6QVhR6sKRRKbjhbrdDWK5ThCo1pUQoWEVZ+HqfoX3VVpr32KBRKbjjDuLRAgzJcoc4epWCRNOtAvWtmIxq6OtElxVAE/yCuikKhDBdoGJdSKFCxRylYJMLZ+3jJXgDAd6TTMRYVg7UkCoUyjCAbKgO0GpcyfKFhXErBIiL9wCw65uVSKBRKJtJy9qizRxmmULFHKVhkJr2nnizTK3MKhZIbaWFc2nqFMkyhYo9SsEhM+oFZVGhTZQqFkhvpBRr0YpEyPKFij1KwSC7OnqSOzIM1nQlMoeRPeusV+juiDE+o2KMULDKbfmAeibNxr3vjUZz8/s/xxEcbB3spFMqwIm2CBs3ZowxTqNijFCwLdk7CCR9Mtt0mjbAwbiSRwIaKLxH3S/hP7oXBXg6FMqxIb70y8i4WKYUBbb1CKVjm101EpCUOXmbxwbI9AABJHVliL5pMDPYSKJRhC63GpRQK1NmjFCyKrB+YWdWahzvSwrhJUTT/nrq3ehBXQqEMP2gYl1IoUGePUrAYV+WCyMMfE8AqLFjfyLq+SchWX0FWZCAlZAg++rOnUHKBTtCgFAr0qE8pWKJcAuAZHPP5OMz7bDwAYME1k7vZqrCIE84eJ7OIdSRRMor+7CmUXEiboCEq0DQNDMNk2IJCGZrQoz6lIFFVFQ9d9RbAANX1xVj918UAAE3WBnllA0uScPY4hUW8I4mSUcFBXBGFMnxw5uxpGqAqGjieij3K8GJkxbQoIwZJloHU8ZhTrK+5qoysMExcspy9r447gk86dw/iaiiU4YXsErZ1CkAKZThAxR6lIIkR4UveJvZGrrMHADsTDYO0Egpl+KEk04UdzdujDEdoGJdSkCQIsddSFcYbZ30BhdPg4byYg4mDuLKBxTkerkXqGqSVUCjDD2c1LkDFHmV4Qp09SkGSIMKX8YCEHXMasHtmI44wbYO4qoHnWHkCLnn8JPPfbUp4EFdDofQd7Uci2PdRg9liqT9wVuMCVOxRhidU7FEKkrhsiT2PyJl/y9rIyrdRZRXBqNf8dzuig7gaCqVvEGMS/vHvm7Hht1vx1esH+m0/bvl5Mp2iQRmGULFHKUgSkpWr5pGtbAVphIk9WVLhiwtgUo2lO7nYIK+IQuk9HUejEGN6ikLr/v5LTXC2XgEAxcXto1CGOlTsUQoSMozrkQXzb1kbWQdqVVLBgEEg6gEAhD3xQV4RhdJ7El3W71vtx7CqazUudfYowxAq9igFCTk5wqtYzt5IC+N+gYPYeOp2RIuSAICoX4QywkbGUQqPeFfS/Fvpx3ZKbmFc6uxRhiNU7FEKEjKM61MJZw8jS+jsQSM+X3DI/LfGamjs7Bi8BVEofcCAOXu09QqlQKCtVygFyVSlBhc+cSIUToXvGA/2VTQDAJQRFsYVNTnttqMd7RhTXjEIq6FQ+oZ4pyX2+qsaV1VU176cbqFdCmWoQ509SkHilQWMaijB2CNlGCOXm7ePNGdPVC2Hk5dYHLttHLTIyGosTSk84p1EGLcPxNeBTxvx2Yt7ICWsiyO3tiv6/kbWMYRSGFBnj1KQkAdkr2fkFmiIRI7iN//3eIw7XI7SGYFBXBGF0nviRBi3t2Iv2pbA+nu2QNMAhmEw75tT9OfNMBaNhnEpwxEq9igFCRnaKRECmFk7CqzKYnKgahBXNfCQYVxjRnCsI5np4RTKsMCWs9fLAo1wUwxayuzuOBoxb8/o7NECDcowhIo9SkFySGnFzpkN4GUWE72jsOrFYwEAU04aPcgrG1hIsWfMCI5TsUcZ5vSls0eORDN69zlv9wR48z4axqUMR6jYoxQkW9l9eP2fvgAATGivNr/ovXUBhhsyCGdP1sVeuIs2VqYMXzRVszt7vSzQkJPW9qTYI8O43qBg3pfJ8aNQhjJU7FEKElG1Dtp+jxcSdDfLrbqukBEJsffEms0QJA7jwxX4OhYO4qoolJ6TjEjQVOt33Ftnj3TqxJhV0ES2XfGGBISb432yPwplMKDVuJSChBR7Pt4q0Bhpzp5tPBwDSB4FXTydokEZvpANlQFAlXt3AZcxjEuIOm/IOobQMC5lOEKdvQLizjvvxKZNm5BIJFBTU4O1a9di6dKlg72sQSFJtBxhvSz+ePXbUFkNU7qqcSYWDeLKBpYxXWXojMSgcipaqiJI+CVEvInBXhaF0mPIfD2g93327GFc67ihEM6eJ0iKvZF1wUgpDKjYKyAuuugirFu3Dh6PB3V1dbjuuuvw5JNPoqSkZLCXNuCQjlZQ8CER0A/iiaiUaZOCZMWuOZjxVQ0A4O/f2YJD/lYkfBJiyQQCXt8gr45CyZ+EU+z1NozrcPY0TQPDMDbHz0vFHmWYQ8O4BcTEiRPh8egD7xmGgSRJaGlpGeRVDQ6iZom6kMcSNQozsg7UpOtRqln99Y62tw3GciiUXkNOzwD0gg1V7XkoVybCsqqima1VyBYrNrFHCzQow5Bh7ezFYjE8+eSTqK2tRV1dHcLhMH7+85/jrLPOyvu5/vKXv+CRRx7B5MmT8fjjj/fDai3yXbcoivjTn/6EN954A+FwGFOnTsWVV16JRYvSw5H33HMPXnnlFYiiiJNOOglTpkzp19cyVJGISRkBrxdMGNDYESj2DBeCAcqZkHn7kY42TBs1ZpBWRaH0HHJ6hoEqq2A9XI+ejwzjAnool/dyWZw9mrNHGX4Ma2evs7MTjz32GA4cOIBp06b1+HmamprwP//zP/D7/X24uszku+5f//rXePrpp/H1r38d1157LViWxc9+9jN8/vnnaY+97rrr8Prrr+Pee+/FokWLwDBMf7yEIQ9ZherjPWBV/as+UsUeJ7Co4IvM2xsiHYO0IgqldzjDuEDvQqvOSRlWixV7Na4Bbb1CGY4Ma7FXUVGB559/Hs888wyuvvrqHj/P73//e8yZMwczZ87M6fHhcBgbN27MeP/69esRj2eueMxn3bW1tdiwYQPWrl2La665Bueccw5++9vfYtSoUXjwwQddt+E4DgsXLsSnn36KzZs35/SaCg0yZ8/nEcCquugdaWLvL6e8g//+10145vyPUO21cjeb4h2DtygKpRc4CzSA3hVpOMWbUaSRSexRZ48yHBnWYs/j8aCioqJXz7Ft2zZs3LgRP/zhD3Pe5vnnn8ctt9yCd955J+2+l156Cbfddhtee+21jNvns+6NGzeC4zicc8455m1erxdnn302vvrqKzQ2NmbcVlEUHDlyJKf9FBqcwkBIcmBlBj5eADdCnb22UBQd5TF0lMZQHbDEXnOyaxBXRaH0HGfrFQBQe+HsyRmcPTI3zxMQgFSQhBZoUIYjw1rs9RZFUXDffffh7LPPxtSpU3Pe7tJLL8VJJ52E2267DZ9++ql5+8aNG3H33Xdj1apVOPfcc/tkjbt27cK4ceMQDAZtt8+ePRsAsHv3bgBAJBLBm2++iVgsBlmW8dZbb2Hr1q047rjj+mQdw42LPl+Cf3vgNHz/vpWo9peA1fQjtcqOrAO1knq9vMpidKjMvL1ViWTahEIZ0iQ6+9bZSwvjxtPDuLyHBSekLhip2KMMQ4Z1gUZveeGFF9DY2Ih77703r+14nsctt9yCn/70p7jppptw7733Ih6P4/bbb8fixYtx44039lmuXGtrq6sLaNxmVNsyDIOXXnoJ9957LzRNw9ixY3HzzTdj+vTprs+7fv16rF+/HpFIYZ70yVALJ7Aj1tmTOf194BUOU8tHY+XTcxGIejB3/MRBXhmF0jNcnb2+DOOm2jORhRuclwMvcFBElYo9yrBkxIq9zs5OPProo7j88stRWlqa9/Zerxe//vWvsW7dOvzsZz+DJEmYPXs2br31VvB8372tyWQSgiCk3W60WEkm9QNfMBjEfffdl/Pzrly5EitXrsSOHTtw1VVX9c1ihxDklT7LW2JPZUfWuDSZSzl7Goeq0mLMrhsDaEDA5TtF6V9UVcVb279ETVEpjhk/YbCXMyyRRQVSPD1nrjcCLGMYl7hg5AWOcPZozh5l+DFiw7iPPPIIioqKcP755/f4OYLBIK655hp0dXUhHo/jhz/8Ibxebx+uUheVkpTeCFgURfN+SjpkFSrDMPj61mNwxsvH4OtvHzPIKxs4VFWFwlthXJZn4SvSLxJiHenuCKV/eWbL+7gu/hguP3ofDreOzP6XvcWtEhfo42pcI4ybdA/j0mpcynBkRIq9Q4cO4R//+AcuuOACtLS0oL6+HvX19RBFEbIso76+Hl1d3SewHz16FLfffjsmTJiAUaNG4eabb+7zJsYVFRVobW1Nu924rbKysk/3Vyi8MfdzbFj1Fd47ZScAYHb9WMzYPhpT9lQP8soGDlG22s8Imt6DzF+iXxzEO5PQtJHlcg42/8H8LwBA4TU8fuCtQV7N8MStEhfo42pcI4wr2sO4nIc6e5Thy4gM47a0tEBVVdx3332uoc/Vq1fjggsuwLXXXpv1Oa677jrwPI977rkHyWQSP/jBD3D99dfjd7/7HYqLi/tkrdOmTcPWrVsRjUZtRRq1tbXm/ZR0ascdRWdRDIGY7mSxXKpAo5dzNIcTcdE6MfIpsZcYJeIQ2hALJtEViaGkKJhpc0o/IqlUMPSEBNFQmWEA43qlN7/rTM6eLYzr4cAJXOrxI+cYQikcRoTYSyQSaGxsRElJCUpLSzF58mT86le/SnvcI488glgshmuvvRZjxmSeLhAOh/GTn/wE8XgcDzzwAKqrdbforrvuwrp163DDDTfgnnvu6ZMmzStWrMCTTz6JF198EZdccgkAPYT7yiuvYM6cOaipqen1PgoRszBB1Q/QLJfK2VM0c/ZloRMXrROjAP19eGt2LT4+ZS8A4J/bTsVxRZMHZW0jHUHp2bSHkQ45Ks1f5kWsTf+O90fOHhnG5QTWdPZURR/PxrKFfwyhFA7DXuw999xziEQiZlhz06ZNaGpqAgCcf/75CIVCqKurw7p167BmzRp897vfRWlpKZYvX572XM888wwAuN5H8vzzz6OpqQn3338/xo8fb94+ffp0/OY3v8H111+P1157Deedd16v1g0Ac+bMwamnnoqHH34YHR0dGDt2LF577TU0NDTghhtuyPVtGnGQLUcAoLUkgoZRnVBZDYqi9GkRzVAlSeR6CqmfehlnjUyr72rHcaBib6A4qWU6Pqjcpf+ddK+Sp2SHrMQNlvtMsderatykU+zZw7icR8/75QVLoKuSCtZLBTtl+DDsz3hPPfUUGhoazH+/8847ZrPjVatWmaKpL7n00kuxfPlyTJ6cfqKcN28eHnrooW5n0uaz7ptuugk1NTV4/fXXEYlEMGXKFNxxxx2YP39+37ygAsTp7L143KfYd1ozAOA6+TyERoDY8yoCVqyfBZlTMWv0WABAJW+lFzRGOwZpZSMTiRjhx0jUFeoJZM5eqNyPZnQC6GWBhmNbq6ly6hiSmrlrFGgAgCwp4KnYowwjhv0Z7+mnn+72Mccff7zrtAsn999/f0775HneVegZ5NKgOZd1G3i9XlxzzTW45pprct5mJKNpGhSi5Yj+f+tALUoS4PMNytoGEr/qwbGf6c7zjBXjAADVfmJkWqJzUNY1UpFgOUisSMVeTyCrcYOV1m9YlXtWbKSpmovYs49LcxN7tNceZbgxIqtxKYWNqMgwtJ2QcvY4WFfhkiK7bVZwkInkHK+/ITWBUvO2Vik80Esa0ZBijzp7PYPM2QtVWGKvp9W4znw9ID1nz8jVs4k9WqRBGWZQsUcpOBLJ9CpUjviqi/LIqIQkT4DGiarEFzBvi6m0195AMqdxLDhJ/xy2CvsGeTXDEyNnj+UYs2ck0HOnzU20iXHZ5vgZ4VrOY10w0vYrlOHGsA/jUihO4pIl9owqVFsYV0lvUl2IRMQEOkqj4BQOkkc/OYW8PiBl6MXh3rOM0j9UdIagCLqAOMyn986kdI8xF9dX4rGLr546e26iTdPdPVPsCS5hXOrsUYYZVOxRCo4E0V/OaCbMMdaBWhohzt7n0gH89xXvAwDa2+NYjmNQ7LPaASUwMkTvUIHM00uqIyOVoC/RVA3xsP7b9hd7zdQEoOfVuM5KXIM40c/PdPZsBRpU7FGGF1TsUQoORmYxo24UFE7FZG8VAIAncvbEEZKzl5QlM1HDw+o/9SK/FcZNUGdvQGGTltgTh7HQlkUFckKBr9jT/YP7kGRMgqbohRj+Yg/YPiiYyOTQkeMEjZw9noZxKcMYKvYoBUex6sMZrxwLAJjxNb3lCJmzJ8kjROwpbmJPd/Y4mQXo+WpAaQxa1c9JDM/voJSQ8cx17yARFvGN/+9EjJpVPmD7TpANlUvszl5fFmgAdrFHq3EphQAVe5SCw16YkF6NO2KcPdVyj7ysoP9fEPDDB74OJIHyiUXANwZrdSOPF07aYv4tDVOl3birwxRCB7Y0DajYI3vs+Yo94HjLKVV7KL4yib04FXuUAoNW41IKDlvLkdQBmidz9pTheaLNF1LUGs4eoAs+AJATI+N9GCowRCu44RrGleLWd2qgvz9kHl1aGLeHzh55rCDD0m5hXI6YoOGcp0uhDHWos0cpONxajny79URMe7IKnMpi6g0jY55wgnT2OMH8W/DxSEYkSImR4XAOGQixJzHDUyyQBQ2Zihv6C7Khsq/E0zcFGoRoC5R6zX24hnE91NmjDF+o2KMUHJ8m9+KRq98GJ3P4phTDIsxEgPHCn9Cv3Bl1ZDS0JZtH28WefvIa6JP1iIf42onM8BTa5HdmoC8WyDCuv9jbJ2FVUuz5S7ww+hLFbc6eSzUubb1CGWZQsUcpOGJKEvGABECC3KkfzFmOyO9RRsaBWtTcxd6ns/fh4MwWSIKCf1ZOB8fRGZ8DgcJa3zuZHZ7fQVLgDfTFgi2MW+IB2wcFGmQYN1DmNf+OdSTMv3lvKhXEJi7phRJleEHFHqXgSCiS+c02ctVYjgj5KD2bozncSBJiz8dbYm/7mHrsqWwEAESTSRQHAmnb9gWvfP4p7mp5ASepM/AfK/+5X/YxXFAUBSpnfe+mHRqeqQR2Z2/wwrj+YofY6wNnL1Bqib14BzGFR3CboDE8xTpl5EILNCgFBzkhwxB7e/2N+Oikvfjg5N3YLzcP1tIGFIlo3OslxJ4P1t9d8Vi/7f/n0hNoLYng5bItaIl09dt+hgMJyfpOjjlUiuWfzhzE1fQcUuDJyQEO43Y6qnEFMmevZxdw6WFcnWTU+rzcmipTsUcZblBnj1JwJJX0liO7fA34cOkeAMDXRojYW9VwHGr+XgSFUzHj2jHm7T7NqjoMJ+IDspZoMonK0IDsakiSJEb48Qo3bKs5B9PZM+biegI8OIGDRui7vg7jkrhW41KxRxlmULFHKThENT1XjWetA7WsDs8Tbb74kgJKO/QQbcjrM2/3M5azN1Bir0jxdf+gAiYuWhcgnMIM2wR/m9gbpGpcX5F+sWKrxu2zAo10jGpcW87eMBXrlJELDeNSCg6bs5cSewJjiT1phMwlJZPIyROjn7FOauFkAv1FSUSf1hGIesDKI6MCOhMJ2XL2OJkdts6QvUBj4H5HmqpBTPX48wb13zTDMmBShVc9nqBBCFbBx5mV6iRurVfobFzKcIOKPUrBYatC5dOdPWmEOHtuk0QAwM9aYdxIsv+cvSSvfw6CyPX4ZFwoVKhF+N79p2LsoTLsmd6EB7+/AUlp+DVWdoZxNW1gip2kpGL2KRQCVkDKuIjpaZ89UnTzHs723OY+zDAudfYowxcaxqUUHLYqVMPZI8O42sg4UH9WfAD75zeBk1nIHFF1SIo9qf+cPVFIiT2JzzhwfqSgKRo8Eg9WYaCxgORREE0mzWkmwwVbnp6miyXe0/+te8jJHR4/IfYEFnJS6ZNqXM7DwRsQEGtL2h5jjUujOXtDmVhHEs17OlBcE0DZuKLBXs6Qg4o9SsHhVoUqEOPCRoqzt3n0Tuw8tgEA8P9xRCI6b4Vxo3L/iL14Mmm2GmmpDqNZ7EI1SvtlX8MBQxzwsiUY4skkEBpeVSvO0K2UkAdE7IkxosKecN+M9it9EcblPayrs0dn4w5d6utasef9etTXtqGzPgoAYHkGF9+3AoGygcsTbj3YhUhzHOOPrwbLDs2UFSr2KAXHgrYpUD9SoHAqJlxQCWBoOHtGzhHpTPQnEkPM/fRabl6Itw6CMcnuYvQVnY6WLnvEeszFhJy3j7YlsPnxWpSODeGEi2b09fIGHEMccIolGGJi/7z3/YmzKGOgGiuTzp7gTw/j9lR8kY4z7+Xg8ac7rUbrFZ722RtStB0K4+XbP0q7XZU1tB+JDJjYi3cm8eLNm6FIKpavPQYzV4wfkP3mCxV7lIJjXLgc0Vq91UjVZSUA7GJPGgSxF21P4LmfvgtFUnHur04ekDCDTIzk8hPhwlFCKSburYQgcSivCPbLvuNxu5BJKPnlp23fcBD7P24EPm7EtKVjUDp2eDlgTg6Jrfjg5N3YPbPRvK2/hHZ/IjvarQxU+xUxSxgX6MVsXMkRxg1mztljyXFpdILGoNN+KGz+zXAMvEHBrNgeyLSRtkNhU/y37usCVgzYrvOCFmhQCg5bFWrqAD3Yzt6RL1ogxmQokoqd7xwZkH0azh6rMLaRaMf5JuOc54/HWS/Nw5zO/rkKLZGCWPa25cgl5fzEXoyYYJAIi1keOTw4LLXg4yX7bLclxOH3utKcvQGajyvGCGcvYF249DaMqyStcYosy9hcQwNjggbLMubYxXzERPvhMMLN/de8fKRCusonr5mDef802fz3QI6zS0asY9tQrtKmzh6l4LBXoeongyIugOrDRWBVFiV8/4wHy8aBRDMOTGqBN8mjZG8TFmNWv+9TZvUDHhk6BADBSwjffgrDSQnZtt+kkp8o2OE9gs/mHwSrMlgsz8YolPf1EgeUpCIDjlSeuDS8xJ6maWnibqB67WUr0AB602cvlUuZ+k0YbV1IeOL3wnlYqPHcC0KOfNmCV//jY/BeDt/65ckoG+YO9VCCLK4RvBw0YgzmQPaxJKetDOUqbSr2KAVHA9+B5qowOIWFlvqGzxXGY/UTJwEA5n1zyoCv6T12O148fysAYOmmDnwzuRg+r3sT177CEHu8Yk+gF3xEsUo/OTNSXAYnk2IvP2fvd3NfB+bqfx8nT8GxmNSHqxt4RGJes0FsmIk9RVLh7LTiDOv2FzZnz08WaOgKWtMAVVFtM7BzwXCAjLm3HrfWK0T4lhM4SHElZ+fo6FdtAPSLqq9e3Y9lVx6T1/oombEV13h5mwAfyJxK0tkbyrmcNIxLKTj+PvVjPHn5B3jiX9+HxOk/RPIkoCoD/4MMq1Y/u01Ld+GDvTv7fZ8ymyoKUB3OHtE4tr9yrqSkAp4Ue2rPe8qx6tCsbssHt5xFstHycMDNBR4oZ8+Ws+fSZw/o2YnWeE18Ki/PGcblBBYMUV1pCL9cw7jxTisvc/emozYXiNI77GKPNQU7YHf9+hsq9iiUQUJirB+6T9DdMyPXBgBUZWAawZJEVHuLkw8a+l/sKYaz5xB7cUHEf//rJjy69h08NnVjv+z7Y3E33jj7S/PfvRJ7yvAXe6LL1Jb4MBN7bhcG3eXsaZqGzvpor5svdxfGBfQqzHwxw7ge9zCus62MKfZyPKmTYk9OKtg1QPm6IwEyVMt7uEFrjUMK+IEUmflCxR6l4JBJsefRD95GuAfoeeVeb4jCXnn5ZfJgv+9TTvXW41X7CSvg96GjPIZoURJdfP9M0DiktNj+7SZ2coUpAGePfP3j95fjzH/MwzSxZhBXlD9u49G6c/bee+QrPHP9O3jvka96tW+xm9YrQP5FGpqmmSdnM4zrdPa89lOk0Vg512rceIf9d1+3/iA0deAvNgsRMgWF93KO1jgD6OxFqbNHoQwKhrPHySxYVv+KN6ETz67+GE9f8hFeqdo64GuKsfaD/t5gE1S1fw8MxZ1+FHf6UJLw224PeDwwWvAlWbvjJikKXv9yC462tfZq3zHZ/nrJqSb5UghNsEUijDv3i7GYvrMGpVL/tL3pL9ydveyfzcGtTQCAQ6n/93jfMfcwLtuLMK4qq+YINjOMG3A4e4L9Qsl4nJ6/2L1oi3Xafwed9VEc+ap3vy2KjrNHon2cHc3Zc0ILNCgFh+RShapwKurHdQAAmpo7B3xNTrEXDSSxs/4oZo0d1y/701QNl/5lCQCgenop8A3rPpZlIUg8RK8MkbWLsLveeR5PFr+Poi992LDk1h6P84qq9tfL9EKvSb1wBYcK5Lxm43s5kBWDfUFPcvaMbXo7G7m7PntA/o69MwwIIK3PHpchjAtNTwfh+Myus6ZqiHfqoXqGgVncUvfmQYw7tjKvtVLSsefscaYQBwavQIOGcSmUAURhjfCl9fUWOOsgLmPgT7JxPj1n7b0Ddf22P7f2MySe1NgukbOv68ni9wEA4WACXzQe6PH+Y5qVj3bR/5yIs+sX9Pi5CsLZIwSrUaU8lNs0uOEm9rrL2TNOfr0tihLj1veU92Vw9vIWe/aGykB6GJfPEMYFuv/8klHJbAcyek4FAmV6/vDBTxsRaemf9ImRBPn56Tl7g1SgEbWOdUPZ2aNij1JwyJzRcsT6enuIpsIKM/A/yIQnPRl/a3ifyyP7BjKMQeY1GXgU/aQm8pkPiqzc81y5uGY5e4LE9yqHRh5iYi/SEs/bRSoRAxh1tASlbQGEixOoH92BBrWjfxbYT7i16cnm7Kmyaoqd3p4EjQINwc/ZZo/anL0896HYxEKGMK7T2cvDPSKLM4IVPsw6TW9grmlA3YZDea2Vko7kcPby+Wz6ElsYdwhfwFGxRyk4rJYj1oHaw1sH8YF29hRFQdKjn6wqO4vMfLmd/NH+22d3zp6ivx+ikNmZkeSeh0/jhLPnEbleHXy7G28XTSRw9esP4Z/e/BW+PNS/hS873z6MJ699Gy/c/H5eifbLWmfhwr+diBXrZ+OtVXV49tKP8Vbgy+43HEK4O3uZPxvSXVFlrVcVuUafvbTWKL1y9ojfSErUCT4ODHGNk6ka17m9GzGiOMNf4sXM08aDSXUF2PHWIai0UKNXGNNPwOify2A4e7Ko2C6sqbNHoQwgRhWqQIg9gbdOEgoG9uqrKxY3e86VSgHUdJYCAJpKutAW7uqXfTYlOvDCt7fgpW9tw3sTdqTd71P190PltIxju3yqp8f7TzCk2OPzSph2isxsrVdUVcU17/0B71fuxKHyVvyx9o2819rS1YVXP/80p/Fl2z8/jNaKCLapB1Bf35bzPoyTgK33YC+KVgYDtwINyaVC18AphrRetDwynD2P3+689aZAw5bzlRJ1DMPAQ7h7pFsE2As2unOryUrcQKkHwTIfxs6tAAAkusS0Sl1KfhiCjvdwYBhmUJw9Z9/EoSz2aIEGpeBQjJYjGuHscaTYG9gfJJ/gcPX9p0NhVYxbXIXXZ36OBnTAH/Pgi70H8LXjju3zfXaJcRycrFf9VbUUp93v1awTWmc8Bp/HA0VRwKiAxgLVDcWoDqRvlysJosp346nbccTXidNxfE7bKqKKy/58MmReAaewOP30zO/P/e++hG1lVm7hfr45r3WqqorVn9yNlpIwVr59LO5e9a9ZH//6+M/w3lJdPC/vPAZjxlbktB/DdSJTC4ab2HN19rKEcZ33KbJqE2e5oqqaKTTTWqP0okCDFGtkbp4nwJsn8WzOXncn9lindfHgL9Hz9bwh63c3lIXBcMAI4xrj7HhbNe4ANft2EXuaqtkacQ8VqNijFBSqouLKB78GhVNRNaUEWKnf7iGdvQHO2RNj+gGBU1kU+/y4OHQyJj5ShuJOP0Lf9gHH9f0+yekMPLi0+32a5dqF43HUlJSiPRqFljpe+hJCr05GCaLwY/sx9VBacn8uTdJQ3ma1JcmU3P/6l1vwuN/eFDqG/NyS5q5OtJSEAQDrK75AQhTh82R2NINxa8RdUyT3qm7jveRk67MQMbymKbjl52WbwOIMpSmyip7UdksZeuwBfRjGJRw7srVLX+Xs+Uu9qf2Q2w/d/K7hgOwQe5ytz94AOXuR9N+wIqtp35uhABV7lIJCkVT4EvoppVS1BIOHaCEyWGIPADwBAXOmT0Rtp+5GNe5sd91G0zTE2hIIVvhd7++OhEjs0+VnvrR9Bsq3BiBIHPxr9PcmERUx5/OxSPglVDUVQZnU8/dp9t6xqBA6sf2YegD2qSbdkS4S0sN/uxvqcUvH01D9+n3BiAenvjEHFWIIOD33dbZEwrZ/v1G7FefMX5zx8WTRSnMid7H3wthPUHvJYcSDlgAQMcycPZcCjWzOntNd6cmEC8AxPcMxu5Zslt67MC5RuZ8ljMv1NIxbYoi9gRckA020PYF9HzRgwoIqFNf0Xy9JhQjjAvqUJKPFzUC1NXITe7KoULFHofQ3mQoTBI7TG6gyAx/GFaPEySrII1TpQ6Dci1hbEs27O1wHuG+4byv2f9SIBRdMw4JvT897n0miia+HSf+ZHytOBPeF/rcg6vd7YzxOf3OO+RjlxJ6/Tyd+NAWJiIjtc+sBJk+x5xAQbs7eDZ/9BbFK3b2c3jIKl3+4DE37dPElxuW0cF8m2qJ2sfd642c4B5nF3qtzPzP/bhHDGR/npNHfgcZKuzgUBzh3tLe4O3vZcvacYq9n36dM0zMAh1OWbxiXrMb1WidnbzZnL4/GvTZnr8TN2StMsffuw1/i8GfN2PH2YZx/x7J+2YemaWnOnp63x0FOKgPmmro6e0P0c6Vij1JQkD80ZxXqiR9NgaYCo4SSAV3TtsQ+vHV6HbxJHqOLKnE8w6Bmehn2fdgAKaGg40gU5ROKzMerqob9HzcCAA583NgjsZeQrYOQwKb/zAXi5GYcNJMRCdtnH8X7y3dD4VVwqoApGJ33vgHdjWHAgJdZyIJqNrrOheZEF95ftgvbFh5EaVsA50gSFmOWeb+qqthdob8/nMziv05ai7o9B9AEXUxFW+PwjCtyfW4n7fGI7d9bA/ugKAo4rvsr8zYl0u1jDCQXYScNO2fPeg0sz0CVtexh3KT9pNfTxspizL2hMmAP4+bbekUmjxUeMoxrOXtOsZdP495Yh34xwvIMPKlmzSNB7LUf1i+C2g+FEWmNI9TD6EQ29Akm+t/kZ8IJrC72BsjZS0RdxN4QbZZOxR6loOhIRPDx4r3gFBZipWqk7AEAln0yA1JCQenY0ICuaZfcgC/nHwYALBd15+zAlFZsKK6F6JUxo2M8TplwjPl4OSFj88m7IXpllAoBnIf8r46ThNjzujh7AtGY1nBnEhEJCq8iWqQ7ErF499WpbiiSAjVVecmlxJ7RDicXDiSb8eni/QCA1uoI9rQ02u5XVRXzt0yAwmoY4y1DzeJSHKywxnFFWxMoy1HseRMeTNtbg90z9X1EA0ls3PkVTps9z/XxnMKaBUAdiOb8mmQXZ1NihpfYIytv/SVeRFsTkJMKNE0Dw6QnpPeVs5c1jNsLZ88WxiWjAMQ+OG9mZ6+79h6Gsxco9Zrvjy3nbwj3ZOsN5OfVuLMDoSV9L/ZsDZW9xOeVen9znV3cW9ydvaH5uVKxRykomsUwPli2BwAgt9hzhPRQqdLrbv75EpatbvklXj2HpSHYjtoxRwAAhxL2WZliTMaXxx1Gwi+hLNyznJekIsKoy3AL40p+Be1lUUiCgpZEFyaiBomIaCsgSCo9EyNiTIYGTXf2FBZJAHIezl5cshdZpLXKURgsf3smAGD0nHIAAFvB4OjYdkSKEhjXcQjjUJXTviZEKnDWS/OwZ3sTjoxrx9TdVfAdxwOz3R/vFXnE/LoI7mJjOb8mWxg7lU4g5vGeDAVIcWSIPU3VoEjuCeluBRo9IWsYl+9FNW5OYdxsOXuZ96cqKhJh/XtihHCd28sF6Oxpmt3tbdrZjqlLehYdyIZia6hsfUZGa5yBcteSkfQLYursUSgDQEKyfnyC4+ttNDRVe9HvqyeEVULs+XTxFuKtq92waB+ddCDcjIRfv2JsL8rdPSJJKrIl9tj0GshPgnvwP9/VR6OVxEJYiOl4lt+MN79hNfpNqj2rFj0Ya8YD16+HIHKQPPpBOR+xF5NEWwdQWcscDjRyHfeXN+O5iz8BAHjavTgTuY1nM1psTN1djam7qwEAh8QmaJfOdnWryG9OWEjktA/AcvZYhQGnsJA8iqvbN5Qxw7gM4CuyKpblpHtCuuLMvexpgQZZ4OR3Fmj0os+eS1NlwF6gQfbVA3IPwya6RPPLYhd7PRenwwGj9YhBpgK03uI21xiwnL3B6rMHDF0RT8UepaAgxZ4zfKl6VYgeGVEu95N0XxBRrf2VB3SxV+whxJ5sF3sN8Y5e75Ms0PBy6T/zkOAz/47KupPWKdudKrGHYq8rrr8eQ+gBVu/DXEgoDrHnKKghnVmjGnN8aSWQOq80yblXyZIHa8HPQYorCDfF0XYojIoJ6X0GFc56TVFvHmLPmOqisLjyyRVQuhSUledXOTzYmH3NPBwEn3WClRIKfC5R8/4o0HCGcXtToOGcrWowJuUWMwxQM7Ms8/6yhOtiLsUZadsPUQeoNzgLdloPhCElZFvaSJ/sh0gpIF1Zy9nLnF7Qlzj77Bn7HopQsUcZcqiqhq9e3Q+GYzD3jIl5/WBjWcTeI+dtRGdRDIGYB1fgzD5bb3dEid5vZQH9rFjsCZhX/k6x15nomZtHMloqw3F14yFzKsbPqEy7Pyj4zP3HVH19XbCvQ1R7FsYNJ9OHvMt5iL24LIJsyKY4HDBFUs0wsRHGm1xRY4q9Fib3KlnyYD3lpDHY8ZY+s/TAx42uYo98HTKrIppIIOjzpT0ubbuUs8mrLEqUAKLJBPJsCTjoyKkTrOCziz05wxQNZ/uLnrotZIFG9jBufs6hYnOHrOepnFyCC+8+BSzHoKg6YNuGz7GXW7zDOg4FSi0X1JbzN0Rzu3qDFLe/Jk3V0Ly3E2Pm5NZ8XNM0tO7vQvGoYNaKerL4hxR7hrOnaXoEh+P7V+zRalwKpRcc2tqED5/YDgDwBgVMXz425207ElEzfBni7InBnJYK47IDG8aNsdZZvSKkF4eU+IIwtBXp/AGpsG5Pus8STI3X4JS39ArWY2ZPSLs/5PGZYiOm6CemCOzr6GkfuHDCLvam7agGp3BQF6lg2e4nKMQVex6M09k7kmzFA9evB6swWNg6BSuxABVFRRAkDpKgoN2Tu1h+bOxGbF97BN6EgN9POhaffrQLe6c1431lNx6FvQpaURWonP7dKWsN4rLHlkC9TwW613qEs8eZJ/zh5uwYuVi8l7MlxWeqyE1rodMXBRrZWq/kHca11sc5wtAlo91zZXOdjevWUFnfPvc+e4mwiNf/8xMkwiJOvGQmJi/u+9y3vsatFU/Tzo6cxd4Xr+zHR09sR8noIM6/cznYDJMoMrmynGOKBteDiS35kKnP3lCEzsalDDnaDljOjOG05EpYtEKRRYJd7LGp8RBKHpWhfYEh9liFMV2gUp/lGEQ1u8XTJeWe+J8JWwsalwNeiAgjx7WU2GMdYq+H47wikiX2lm6cjrNeOg6rXj0mZ+cl4Qgfy44CDTE1O1flNCB1LmBZFsUx/TV1+WNQ1dw+43Y+gkhREq1VEdSMK8WbF32FjSu349Op+7D9yGH7uohG1YGYBwwYxDtzq1g2vnO8yprCYqieFDJhiDfBxzucvQxiL4fm2LlgK9AIZJmN25sCjRyb4OY6QcOtxx7gGOnVjdjb8r+70bynE+GmODbctw0b7ttqe96hCCnMDfLJ26uv1YvVOuujiDSnRwgMyDZAdmdvYAtg3HL2hqqzR8UeZcgRaY1Dg4bD49vw35PeRe3h3AVfF1n5KthDMFxK7A20s5fg9QOCTxRMZ6skYDkHzhFfYdkuuiQlf1GQrd8gABQRoccEdMES4+3rkLSeiZGIaK1fEK2Db67OTsLh7DmbYItElTDPWK+tXNJdU1lQ0dyVW95elNX3xagMSgIBLOFmmPf9Y9fH9nURKQKcrO8315Pvoi2TsWjzFJywezK+mnIIH520B++euCNnUTrYqKmqWyDl7Nly9twvCpzOZU+r4MVszl5v+uxlCONmI9cJGrGOHHL2sqy3sz6KuvUHbbft+7ABz/3sXez7qCGntQ4Gbi5v064OW9FGNjSieC7bb0vOUEk9kDmRqqLaUgzM/Q5RsUfDuAXEnXfeiU2bNiGRSKCmpgZr167F0qVLB3tZefPA+Nex/fqj5r//WvcOfjnuspy2JcVesTeT2BvYH2Pco4sEn2S5EuVBS+zFHWIv4hB7CVGE4M+vV5UsEyEqV7FnvTeGsxfz2EWWW9PfhCjiQEsTpo8akzEkG1Gs9XtE6xAjSyoyT50l9qE5hos7xtslZULsEXN/K1GEXdBPhPtbmlBTak+udyPOpz6bpC7ET6yejmeSHwAAmkS7YBQUHqv/ezFkXoUnJWJzdfaO/2QiVFlDxcQiPHbqu9hf0ay/VklEwJtDHHiQIUel8V7OtSl32jZ91HpFivVPnz0lSxg3E7mKiYw5ezk6g588tdMUPhMWVKNxZzuSEQmJsIQN923FhXedkjHUPJi4Cf9kVEJHfRRlOfQ3JTslkILZSSaxZ8up7GfnnJyMRDJUHXsq9gqIiy66COvWrYPH40FdXR2uu+46PPnkkygpGdiJEb2l2dNl+/dGT23OUw2iRP5bic9d7GksICsK+Byer7doqoZJe6qQ8EmoYK2DXUkgaPZbi7F2wRB15PAlJQlFeYq9p8rfx//9+EtwCovp7HiMgT1npph4vgQjQVEUJLyWyPr6K8dgztjxtm1UVcV57/wGR8s68J1dX8N1X/uW676N6l4A8GrETOIcr7Q9Eo9AxINYSERJux+Tm6tt94vkdBBC7FVz1vf8YGcLFmNmt/tKpASuPyXEA0QuY9IhOlmZQXVTMcJFcWyf3YDaY48AIodZsL9PTjRNM0PYrMDCo1lrjovDROwRgk7w8eDJptyZxJ4zZ6+HjocZGmTsJ3agd332MgmGbOTqzMW7Mjh7tlYx7u9b0652073zl3iw4vvHQRYV/N/929BQ1wZoQLgpNuTFXnFNAF2NekpK4872HMWe9Z7Gs4m9ZA45e/3ssJEhXN7LmWuizh6l35k4caL5N8MwkCQJLS0tw0rsqaqKzoA9V6MrFMdrX27B2cct6nb7opgP1WIxRK+Migp7PwhD7AGAKMm9FnuaqqFxZzvKJxTZRiyRSAkZq17Vp2OMOcYSXBzHYebu0YAEjJJKbdtENUvslbUGoU7OP+wsarIualkVAp/+MyfFY5KV0BqJmPlvE/ZVYFbdaIwPlNu2OdTagqNlHQCAF7SP8WPtHNdK6ahqHaQ/Pmkv3vpaLRROxUnxOTgGE9Me72TV4XmY9La176pp9u+vpBIHesb6DEf7LCfvSNTeqNoNWVGQ9OonJ7+suy9+wXJhnAUqxkE8Gkrig+W7AQBlLd1P6lBt85o5W//HaDKJiu6fYtCRHDlSNmcvQxi3r5sqe/x82veNrLbsaZ89hgFYLreqTXtT5O7DuHrlMjHhoZsCDU3T8OETO8x/Lzh/Ojx+Hh4/jwnzq3Sxh8wCe7Ahq3HHHluJrkY9FN20sx2zTs1+UQTk4exlEHvk3/3tsJFiL1DqNYUtbb2SB7FYDE8++SRqa2tRV1eHcDiMn//85zjrrLO63Xbfvn3485//jB07dqCtrQ0+nw8TJ07EJZdc4hrS3LFjB/74xz/iyy+/hKZpmDt3Lq6++mpMn57/PNJ8yPc1iqKIP/3pT3jjjTcQDocxdepUXHnllVi0yC6A7rnnHrzyyisQRREnnXQSpkyZ0q+vo69p7uqELKT/WJ6r/zAnsbds3yyM/1g/6U97wF69xhEpqqIiIwAvesPWv+/Glmd3o2RMEBf853IwLpVjScLq9zoE4XnvnYBoW0Kv1vuudXuUsZy+855ZiMDCXIKfdsh8O5+QLkQFngcv6aPMkqyM5rAVsvQl9Mc7T84x0Tr4Vh8uRufRqOvouTgh9sAxiBjj16Tc8tucB0tnYYdI9BAkxd64okowIoNgxGvL88pEW8SabRtQ9e9CwEOIPUfOonFy9ket700uI9MkUUbcL4JTWEAAPJp12I2LQzvh3sDu7HE2JyyT8EjL2etlgYYzhAt0H8aNdSax/6MG7P+oEY272jHrtPFYcvmc1Pr0dXMeLuf2TrnOxjVcKdLVA7p3ng580mQWNJSMDmLmqeOsfeeQJznYkOsaPaccO946BFXR0LizI6ft1Vxz9kix5xskZ4+oxA2U+yyxR5293Ons7MRjjz2GmpoaTJs2DVu3bs1524aGBsRiMZx55pmorKxEIpHAxo0b8fOf/xw/+clPcM4555iP3bFjB77//e+juroaa9asgaZpeP7553HttdfiD3/4AyZMSG9Z0Vfk+xp//etf4+2338aFF16IcePG4dVXX8XPfvYz3HfffZg3z5rjed1112HdunXYtm0b9u7d2+9NJfuavcQc1EXNU/BF0SEkfBK2le1HW7gL5UXpvc9IsuX32Jw9uWcNg0nqa/Wr7M6jUSTCYtqBHQBEsvt/0L4eT4BHtC29gm1aYzVQryLpleFN8j06eJD5dqRbRfKvz54CtUNFWWkIoQk+/NP/zkfCL6EorIcVnfslxR4vszi4pclV7C07OhNF73gheRQ0LQijIeUGJqTc3vO08J8jsV8kClYEQuwtqZyBa352GliNxdSTu29T0Rqx0gVCmv6a7c6efb2tyS7smFVvK/DpZLqvnG5NRPDINRsBAHNaxqIYlqtK9oUcykjOnD3CrZIHqPWKs8ce4AyLWs8fbUvg3Ye/wJEvWqARGrP29QNYdPFM8B4r7JZrCBfILWdPFhUzcT9N7Hkyb69pGj5+ynL1TrxkpjkhBkBO7/lgQ35PfMUeVE4uQdPuDnTWR5HoEuErzn7hqhG/9Zxz9lwmaAADIfbIvEzrc6ZiLw8qKirw/PPPo6KiAtu3b8fatWtz3nbJkiVYsmSJ7bZvf/vbuOqqq/D000/bxN6f/vQneL1ePPjgg2ao8+tf/zouu+wyPPzww/jlL3+ZcT/hcBhbtmzB1772Ndf7169fj6VLl8KfIdcqn9dYW1uLDRs24Oqrr8Yll1wCADjjjDOwZs0aPPjgg3jwwQdtj+c4DgsXLsQzzzyDcePGpb0fQ5mDHS1mOHGcUIlgxIe3fbVQeBV/2/Yevr/8G1m3N8QVwzJpB3GedPbk3h8sd4bq0TEhAk+Sz5ikbhd7dofNGLguJxWosmq2kViwfTIm7rdCvj05SZKzWH28e4i5UipGJBYHwzNgYwwm79PnybaVR9BU3QXVZ79QIMUeJ3M4uLUJ876Z7hyXd4TM55KOt9aekHMTNs7+ZU5HSFJk8zsiEI2zSytDZnudaFv30y3ao5azF2RSYs9jHbQlRzPnA2Iz3jj7S9ttXXzm9hAG5OsWNM625mHp7Hlzc/b6IoyryqrV8sVN7GUYP1b7xgEc/rwl7fGaBkRbEygZHTRbc+RaiQvYCzky5dyRRTv+Uru4yVbNG2tPovOo7hRXTS3BhIX2XFVhODh7RBjX4+NRPaMUTbs7AACNu9oxcWFN1u1tzl6uYVxiNq4tzD6QYdwy67gxVAs0hmTrFY/Hg4qK3Jow5gLHcaiurkaECNsAwOeff44TTjjBltNWWVmJ+fPnY/PmzYjFMl+1P//887jlllvwzjvvpN330ksv4bbbbsNrr72Wcft8XuPGjRvBcZxNqHq9Xpx99tn46quv0NjY6Lqdoig4cuRITvsYKpC5VmP8ZVg92Qq9v5ro3uE1rqg9gfT8nrMPHI8L/rYIF/3PiSjSehfCBYC/nvQ+/n7hFjz9zx+hI+4eztsU3YE/fW8j/mfN+/iocrftPo/fEmFJQhSSAhHo2UmSzDfzuoRxAevkIScVJMPWCepvl3+Ap/7lQzw3/yPb40lnjlMYbOvah+aO9BYntqt7winLVey9PGULXv2nz/G769/EI/+2EX9a9bb9+YnJHgJL5Ot4OXhD+muNtHYv9tri1vGgmNXFXsBLij37CTWhpDuTUW/3Yo1833jw8DKC631DGckWNnP02csxZ68nFy0i8dzk78WAdL7I3wkp9ueeMRFTTrKc3kiLLtDNMK6Qu7PHcox5oZHJwSHDj4FsYVzH+0EKmNIxobTjl01gDwNnT/DzqJlh5dE27erodntbzl6uYVxbzt7ghHGDZVaRFXX2Bph4PI5kMoloNIpNmzbhww8/xKmnnmp7jCRJ8HjSbWWfzwdJkrBv3z7MnTvX9fkvvfRS1NXV4bbbbsMdd9yBhQsXAtCF2d13341Vq1bh3HPP7ZPXsmvXLowbNw7BoL36avbs2QCA3bt3IxgMYvPmzVi6dCk8Hg/effddbN26NS9XdChQn2wHUpHB8aFKnDRtJqrfKkZTaRcOlbdiV/1RTB89JuP2j5/2LhRVRU28GP+Clbb7xiTLkTiaanCs9v46RxSsA9veeCPGoyrtMW1iGLGQiFhIhBK1HwRenrMVH5+8G0mPjGXhYzGrWM/PkeIyPl20D7XHHIXKqZidnIRK5FdkQzYiJt0qEsFrOYuJsL2HnMop5ogvgziRc7fthIPYdsJBjKqtxJUnf932OPLq3k/8vpJKbm7EnopGsxAkHhQhaPbPaoY0Fuf8/XgonIoTlk+13Res8CEZkRBrS0BTNdc8SoNR8VKseuMYJH0yTpg31VxvZVMIvMyhMmmvnEi6hP4TPgkJUYTP5Tjitp3AcPAQzl5MHibOXsLp7OUwQaMPmirb0jJcnD2GZcByDFRFs1X7kjmbx507Ffs/bMDeD+oBWGKvJ2FchmHACSwUUc04QSNTQ2Uge04ZKWA4F7fRFsYdqgUa5PfEx6F6eqn575Z93fe+JC8I4p1ixt8w+d0SbH32Bq71ii1nj3D2hupknIIVe//1X/+FF198EYDeXf+UU07Bj3/8Y9tjxo8fj9pae1sPSZJQW1sLAGhubs74/DzP45ZbbsFPf/pT3HTTTbj33nsRj8dx++23Y/Hixbjxxhv7LF+utbXV1QU0bmtpaQHDMHjppZdw7733QtM0jB07FjfffHPGQpP169dj/fr1aW7nYNOkWQeESRXVYFkWi7Xp+Ac+BQB8dGhXRrGnqiqO1rRD5TRoHeknFrLijryC7AuiGcJxXWIcRh1IiWAX66pHRTygHzAMZ1BVVSRjEhJ+CR3lurMclbp3qZyQIUh/BiGya3wDdpc1QBJkFEdCODyuTS/OSL1NaWJPkcz7DN7pqsWVsIu9HcVHEZkQR0D1wssSLlaOeZKiY7+Kowl2iezHxP36vN8xp9h76dXNOYptc/cjXJTAqtaFGFeVLsANQlEvZm7XHZ+5i/T8XJ7jcNlfT4aqaKiYVAxcYD0+KcuAiy5oaG/DpJpRGfdDNmMWwMHHDkdnz5mz132fPSXpDMf3wNmL250iNziBhaooNqeMnHns8fMIVVrpNJGWOFRFNY8BbsIqG7zAQRHVzGFcsqFyqUPs8Zlz9jLloZm3+YaBs0d8XoYDLPg4SAkF4SwTMQxUovmypmhIRET4i9MvVsnZuFympsoD2HolWG45e0N15nHBir0LL7wQK1asQEtLC9566y0oigLJcWA977zzcPfdd+OOO+7ApZdeClVV8Ze//AWtrXooURSzh528Xi9+/etfY926dfjZz34GSZIwe/Zs3HrrreBd2l30lGQyCcElFGe4kslkEsFgEPfdd1/Oz7ly5UqsXLkSO3bswFVXXdVna+0traw1Km1SpZ6z8rWSOWh5txNVjUUYv7AcONF922gyac4u9SvpAoccrdTTbv4GzqkWmQRZl2ylApQ4mjwbeWKAJfZiooj7171pE1Vijo4YiWyIPQ3wZPgubpmwH19W6tNJxGYFn622d+x3ir2ELKbN7K0rOZzmbL24aAu6QnEEY15cpFr5okmXMKgbUprYc05isE4IzlFw9dUd2Fmp9yjb29qUVeyRB2svkU/JeTiocTntZJ5UJFexd7SzI7vYI0Suh+FRiWJUNxSDl1n4Rg2PQ7DscGzsIcX+a71im4vrUo0LGL9rxZbbaYhElmfAeziH2EvYp2fkEcYFLEGRSUzEbM6e/TjEsAxYnoEqa2nfL9vUGxexJ3hJZ2+I5uyRYVyvXuUcrPCj40gE0dbu3XbnRXi8I5PYI0RlhjBuv+fsDTNnb0jm7PUFEydOxAknnIAzzzwTd9xxB+LxOG688UZoRGnWt771LfzLv/wL1q9fj8svvxxr1qzB0aNHzSKITMUVJMFgENdccw26uroQj8fxwx/+EF5v7/PBSLxeb5pQBSwx2tf7G0y+tmk2vv7KXKz4cDb8qdd10qSZOOGjyZh4oBLxfZnDXu0RSygGXHLyjgbbsHt6I3bOqkeH2H3LjGx0Ru3bZwrHRYgGyaV+u7MX4iyx15Wa6dsRjaS5Zz0SeymBxClsxkkXPkK5tXDhtPudIsst5070KFhf95n9Nj6VNynz8HJEXmKuYo+zv17nxBPSIWIdYq9GKDX/PtSV2ZkHHG1xSLGXOpk7w3Rky5dgzPp+NUayz/60h3F5nKrMxeonFuP8pxZhpjg267ZDBVvOnpcHJ7DmSdvN2dOI8WoGPXL2ugnjAu7iy5huYPS/DFVav7VwS9w+FzePMG6m/ZGQBRqB0vTjkBFqdM5uteehuYVxh4GzlxJ7go8zvx+G0FYkFfFwdgPF+R2JdbhfRJM9Ekk3r7s+hn2Jvc8embM3ND+b4XFZ2QesWLECd911Fw4dOmRrqXLVVVfh4osvxr59+xAMBjF16lQ8/PDDAPQwb3ccPXoUt99+OyZMmABRFHHzzTfjv/7rv1BZWdlna6+oqHANKRsOZF/uazBRZBVluwIo0wKommrlqIUq/fAEeIgxGa0HujJu3x6zBFjQpYfe5spdeHuWHqL/prQYk5HZjemOznj+Yq/MKfZ462KiK6mHODpi6SI0V5FEcuZH89AaDYPzscBi98f4iOFlHT7LgQzGvIgGkpB5+8HSKwuoaiyCzKuYIFfgsxrdCVzf8Dn+KdUDUdM0M5fRqwjw+gixp+bYeoXPHsatV9txcGIrWIVBhLOHhsb4icbKsbas+zkoN6OpugveJA8uYJ0wjBOt82SRINY/OlyKWFsSgagXnvHZD6NJm7PHOdp3DM0TgxNnnz2GYSD4OIgx2VV4uLkqzqpqVVHx7h+/RDIi4Wv/Ns8sriHJJYxrCH5bGDdV5GS4gZ6AAG9QQDIqIdIStwn5vMO4KdElxWVompaWrpMtjAvo4kSKu+TsdTO+jczZG+rVuORaSaEdaY6nFa2QuDl7bpD5luT7z9mcvYEp0BD8vL5fBoA2dJ29ESP2kkn9B+iWo1ZUVGTrVffJJ5+gqqqq2z57LS0tuO6668DzPO655x4kk0n84Ac/wPXXX4/f/e53KC7O3hMuV4w+fNFo1FakYeQWTps2rU/2M9jE2hP6CDEAoQpLCDEMg/KJxWioa0OsLYl4V9LV2m+Pka00XA6yDNlUuXcn2c64vVI7k9iLMtbtZUF7wn+xYL3GsKSLlnaXqt6eOHtj6stQ3OJLCyORBBjrvmggtU4NKEr6EA0k05y9BdEpkJ/QD74LrpqOK5QHoXIatnj3QVVVsCyLuGiF0n0qj1nsGJz6xmxwCos5C8ehO1RVheQQmU5n70PvbrxwwRYAwExlPI6H9f0fX1RpjjtrEDuy7uvFqk/x2b8cAAB803cSaqALxZeXb0OTrwscWFyG08zHi0QV8JK2GSh9RT+JjbvYPmnESZLYzsMKjikMQ/PE4MTZZ8/4vxiTXZ09N7HnDOPW17Zh1zt6t4AdGw9j3tmT0/ebQxjXCOUb4klTNXM7spF5qNKHZFRCtDVhfz05zsU18Bd70Y4IFEmFFJfTpufYwrgufeUyXUyQIsHN2SMFxdAt0EjviVhUZc+XrJ5WmnF7TbWLvUwVuTLREJskW2ubvsZw9rwhwV64M0R/08M6jJtIJHDgwAF0dHSYt7W3p4dUZFnG66+/Dq/Xi0mTJmV9zg0bNmD79u248MILM4a/AL3P3k9+8hPE43Hcc889qK6uxvjx43HXXXehubkZN9xwA+Lx7hNSc2HFihVQFMUsOAH0EO4rr7yCOXPmoKYme++i4UKkxXLBgpX2eaHFk/xorOnEV8cexrb9+1y370xYAizEpofgyWkLUg8EFEmXQ+zFFfcrUFLsVYQcYs9DiD1Z/650JVzEnpr/Wo0DHekiOfGzLpXoScGc8KBymi03kXShKoqLMLldz6nsLIph64G9+vpj1nfep3kwTqjEMV+Mw+zaMahJdF9RLMoyNIeTp7F6GyEDW+sVzi4AJpZbOXotamYXGACijPV9qyQ+m6ayLjSM6URDtb16kPwcQiHr+0mG7dwQHTl7tvYQw9DZM8Se4d64uUxu7oYzREdWgHfVu6dVkG2IshVokM8vJWSzkbIQIB0m/femqRrCjdbvN2+xR1xAuX32hrPnDQqubV2M25yzgsnEfrc1MQxjVp4OxTCupmnmusjQuLM4JhvO70imXnuZKqn5LE2r+xJN00xnz0gBMT6zofqbHrLO3nPPPYdIJGKGKjdt2oSmpiYAwPnnn49QKIS6ujqsW7cOa9aswXe/q8+buuuuuxCNRnHcccehqqoKra2tePPNN3Hw4EF8//vfRyBgJclv27YNjz/+OBYtWoTi4mLU1tbi1VdfxeLFi3HBBRekL4rg+eefR1NTE+6//35buHf69On4zW9+g+uvvx6vvfYazjvvvF69RgCYM2cOTj31VDz88MPo6OjA2LFj8dprr6GhoQE33HBDvm/tkGVX21EcmNiCorAPngr71XLdlHo8PUfv+1bdWoYlmJW2fZcYM7/RRZwv7X6b2FN794PsSjqcPdX9hB9nU61eFAZBR25lsTcApDaLKLrw6EzE04oAeuLsGa5Bth5iAS7d/fRLHvCatU1CFCH4rZwbA87D4WTvTOyB3uPxzf2fYeHkabbwtl/z5F0dF0u65+iIsgy/UTFPjDHzOOYbT6ysBo4CYIBWLnuleYzTPxtGBUoClmNuvH6FV03HEgAYBfDGeSi8iuKiAGLQvwPZxjoBwDHiBFz05IlQOA0nnzkDe4RGPLv6Yyi8ig4hgeMwNev2QwHJFsbVf2TGidbV2XO5zenskf/OJAJEsklvJrFHhHE1TbOFfu3OniU6Oo5a3418w7hkO5V4ZxIlo+3pGYYAdDZUNjDCzs6qTXvrFfffLe/jISWUIVmgoUiq6cyRwjxYQYq9zJ0FNE1LC+NmmqJhNtr2Op098njTf6JLisvmazXSD7rL5RxshqzYe+qpp9DQ0GD++5133jEbGK9atcoUQk5OO+00vPzyy3jhhRfQ2dmJQCCAmTNn4t/+7d+wbNky22OrqqrAsiz+9re/IR6PY9SoUbjiiiuwevXqbqtpL730UixfvhyTJ6eHHubNm4eHHnqo27m0+bzGm266CTU1NXj99dcRiUQwZcoU3HHHHZg/f37WfQwn3k58hRcv0Bsnj1drsIAIz82vmQSkjJZdyXrX7TtJsSe4OXvWgaC3zl5MTNpEWSKT2OP1qz+fKKQ5xaX+oCn2opp+EAxLsTSxJ/XA2dszphEQgURJ5gOem9gLSB4IhNiLiUkUpcSerTWEwGLx6On474j+fT0g6jmlpLvqZ/IXe5FEFrGXEssyKfZY+0WBz+NBMK7nHHb4shfhxPhUgZMomK2XAECwza4VEfTpFw5fb52H6hf13+TJP56F9dBDyd05e37Zg5pG3dWs4kqwn2tG/bgOAEBzW3phzFCErMa1nL2UQ6VoUGTVVhntnrPnEHvE9yGcQexJ5ASarNW4ADS9XYdIFN64OXsA0HHU+m70ztmzixEpYYW13cYnAvpvB0iJIyLnr7swLqCLmziGprNHhtzJYpIiMmevNbOzp7l0w3K7kNI0zfx+OT878t/9mbNnq+R3iL2hOkFjyIq9p59+utvHHH/88WkTLE4//XScfvrpOe1j7NixuPvuu3u0Pp7nXYWewdSp3V+t5/IaDbxeL6655hpcc801OW8z3GiQO8y/J5bYW2YcN2Ey2G0MVE7DAU/6GCTAynsDgBJPIO1+oQ+dvQWxKbj4+ZPw5OUfAAASmvsJf8V7s9DFxeEr8QD2aw1d7KUEbFTTD2pdUhxwmJKilp/YU1UVfz9nC8AAY9vK8AP8k+vjgkL6ySio+nDJzqU49EwTOJlF6B7rMa+VbMOHF+0CL3M4kZuNmdVjgd1AIOIBUkYJKdb8jAcKr6KtPAqFU9GETufu0mBlFsduGweZVxENJjF9Zw1YhQE3gxDqhNgTXC7KShMBRANJRPxJJEUR3gx9BhOCfsD2S/b7bWI3mTTFHilO/CUe/O/Fn6ArFEeR7Mc3MvUDgj1cx/GsPn839XXJtWhlsHGOSwOcEx1kcCGP6+MNnE2VSXETaYm7Fjvk2mfP2odqC/2SVdahKndnL3+xRzp79t896URlEnumk6jpQpnjU1XN3RRoAJaIGooFGpJt2on1WfnLfGA4BpqiZQ3julVruzl7iqSaud1cVmevH8VeJP07ZoZxqbNHoWSnGVaOldFjz8Dn8aC6qxgNZZ1oLQojkkgg5LOroqnhGpz0+TSIXhlTlqbnMZJhXLkHbhmJGJdR3hrEFb//GgSJw8zF44Az7I/RVA0T6ioADaiakp6vNipUitNfmwOPyGN6jd4o2gjnAsD4/eWYursas4/Nrz2HpChm+xYyJOskyKeHuovgQwkCaE21FiErKI8K7Tg6pkO/XVBRXVKKax9ZBa1T0yvuzgfCSetgHmS9qGc78MS/vg8AOLmlDd/MVBqcIiB7sWLD7LTbOWLiiZwljAsA5UoIR9AOMMCB1mbMGJ3+/imKgoQ3JfZku9jz2Jw962RDhh05nkW4JI5wKAElnv3gbgt/Cymxl4IcazeUMZoqszxjOmn2vm+KOfkGcC88SXf2yHxQFYkuMU0g2Qs03Mf+ke13dLHnLjqKSGfviOXs9TaMS0LmmLm1XQGQVo3tLDABMgtQPhVCV2XNNk97KEBOziGrcVmWQajch3BzHJEsjZXdGt275exlGpUG5Da7uC+wO3v673moh3GHzjeFMuJpF/SrbU5mMaq0LO3+ibLu9mkssPXAnrT7x7WVY9FHk7H03emYFhyddj85gL63zp6UkMGpLAJxDwSZS5sWYDzGuAL1BNOvq4qDAcz5aiym7apBVZNeIBAlWrWc+MEUHPvZeIxNZK/2dBJLWgfIbGKv3BNCeUsQrGK5KUWMP+PVMSlMjKkcFRV6xXmkNQFFUhCXkmBU/fkCnNc2GzcXYZMpuZk8EUjEKDiyj5/BcdIkHLttHJa8Ow1qh/uBtz0aNQVxwNGA20NcFMSI6Rf2nEUWIUkXDzGfaCvCcLKPacKOWfXYPb0RXXwcAWJ8nagNE2cvYeRIWd/jbBMdFDdnz1l96vi324QF0tnrrs8eoLuotqKODGFc26SHPPvsZSvQiLZnb7uir9e9F1x3ffYAe46aNMQqcp1zcUkMV1WMyWmzvw3cGt2LMTktLJppVBpg/y70axjX5uzxqX3ra9FUrUc9Jfsb6uxRhgSqqqLDr+d7lcQCrpXQM3xj8CF2AwA+bzqA5TPtc4vFblwAnnjO3oo9cl+Ae0d7smmv23pYngXn0cv1jRmgJ9VPh+cdFqJHRlmbnvitSPmNdksSDbgFt5EPKeYHJuGyx08GAGjQIHkUHPvNyWCIpdrEHmO9noBHdwWLqwNo2dsJaPrJekFsCr7/8OlQeBVLLp8Dv8d6MimHcHSmfBfyRKAQYs9tOsiZ7HyUbdDXxy9yf/2tEctFDml2h9MDd2fv7fJafHXGQXAKi68zC1Gs+HE05SA2dnZifIV7v8uPPXvwxtlfAgBOYmfjWI/V0knE0DphZ8IQFqTAI0+0zrCta86ekl3subXlMFw6hmUyOnAsb12sOJ09skDDWySA93Jpa813ggYp4pzOXqyN6ChQnu6cA+lhZ4Ncwrjk+y8nZFuYerCRXPI6DZwTTMonpK9byzDCMt6ZRFGVlZbjVhluMFAFGq45e2SPP0mFZwi5rgAVe5QhQmskDMmj/zjLpKDrY+ZVTjR7qNXFDqfdTx7kBZdkbi/jgSByYBUGTC9H477nq8O2U/fDI/I4bssE16vs9kgYDaM64U3ymBBy36EnICAuJs21l7UHMWWPPYSd71VighAoQhZnjydCLQwYeEQe5aEQPlH34JMT90HhVJwkzkEFdPeOdOaCXt3dKB5lHYS7GmMQEzIYMOBlDkGf1x6yZLo/+JIzL6PBJOJ+ESqrIS6JKIK+L0mzHuOWs0c2cY1mSAhvJXoyhhj7SVkgxR4hnHeF6rF9sl4cpPIqSmF9T+s72zKKPVLk+njB8Z4ME2cvdTFDnlz5LE1+c2mqnCb2XJw9w4HzBPiMs8Zt82YlRxiXOA4wDINQpc8WwgV6EMYtyuLs5Sv2CPfJXqCRKWePfM+z/540TXeYslXk9yVZnb0KokijJY7yCfY2VEDmeeXxjsxiz/nZmf3uJLVfW6/YnT17GBdICc0MTvRg0eer0TQNhw8fhsfjKZj+b5T+Z19Lo/l3lebejHrhhKnALv3v/Wz6RJEWpQtxnwhvkncN+ZyuHgPhd/oBZel301u35MNXgcP4fKI+V7arJI6DUivOwRLbY+qih/HMZXq7mKa2CFZhQdrzRKoTaAp0Qk2JQePkprAqYsEkFE5FGyJp22UjTvZ1y/ITJyvmDLxBAV+xh7F5iu6gHhXbcAwm6muzOXu6u9E+KooNq75CZ2kcyQ4NJydmWM/v521hXDmHMO57Yh1+v24DeJlF0mc9/gxxIapRCsDu7Hn5dIeAdBEyDV8nJ5UUOXoyeglrM0GEccnX7/N4UM5aYq8xnLn4hCyw8fICgl7rxDccnD1N06wwLiE2sjp7LmkNaa1XXJw9J4aDnqk4A0h3ypJkBa8jfSJU6U8Te/mGcVmehTckIBmR0pr+RttJsZdDzp7k7uz1Nowb60zizbs/RcfhCL5+/UKMmVuR8bF9hS2/0pfF2ctwAZZpXrmzSEN2aQNEYoq9gSrQCNkLNIChOUWjx2Jv48aNeO+993DttdeiqEhX6fX19bjxxhtx4IDelX7FihW4+eabbW0NKBQ3DrZb4q2Gd2++W1FcjNJwAB1FMTSEOiApCgTiu/XYCe+gcWUnOJnFWs/ZaduznOUMZDqw5EqMaJa8c3YDmsPpLTQ6EjEzL6zYpckzALyw9FMcKW8HNOD/KatNV6KtImpW+i5racVZOCHntZEChaxAdkLmXxl4Qx54E9bt5DxckdUPsowKeISUIKpgUBs8CgDY1VKPExNWFbrg4xEgegtKOTh7MUWE4lGhOKZoSLK17T/XLsfST6dDZVWMui/9uxJMnViSHgkHI+6V27MSY/BvD5yGpE/CCedMt913THI8OjdHwMkcyk63BB2ZK+gTPKgQrIuSplhHxtdEVg97eQF+ryWAJXboiz29RYj+t93Zy5yz5+rspeXs2R/j1n7FdPayiT3C2VNlzUyJ0LezXwyQosMg32pcQC/SSEYkxDuTtipi0tkLlGVy9tyLCHIL43Y/Mk2MSXj9Nx+j9YB+TNr17pFei736ulZ01scwbdmYjO9XVmcvh8bKTufXIE3sdSOKeQ/nmuvXl2RrvQIMzSKNHou9F154AW1tbabQA4AHHngA+/fvx4IFC9DV1YW3334bCxcuxDe/+c0+WSylcDkcbYURFRvtTS/OMBiXrICsqahqDqFxQjvGjbVCZwmzb1o3/biQ3gYiXxKO8JvIpR94O8UojBG9bn3/ACCgpk78DNAZi2Jn0VFExyUQCxCOkpbfQYsMPfJZfuKaF3jh/C04OElv6r140xQsD8yDhyhkSRBzeeWUWONlzsypnF49BtBH5KIe7XjPux1bTt0Lj8hjuXceRvFlepEKk5vYS8gijJG9gsiZoX2yL6Iqq2A1BqzCgRfSX5+vSMCf/m0jYkERlZ1FuBQr0h4jRmUIMgchwqHSb3eS50uToLyvv+6Kr1nHN5lYv9/jQZXP2q45kXlaBxn+9gkCPLwAVtHbCJFu4VCF7LFHOks2Z88Zxs2lqXI3zp4iKeZjMvXYAxy/a2cY1+HskaO7DLJNmcmEv8SDjiO6gyMlFFOMxtpS0zNCQkZRlEkU5NRnz5az597M+o27PjWFHmAXJj0h2p7Aq//xsd5PUVIx94yJro/LVI0LOMRes3svTZUYleYv8ZghcmeonHSN3VzZgaiKdXP2bGMQh2CvvR6Lvf3792PxYquNQiwWw+bNm3Haaafh3//93yHLMq644gq88sorVOxRuiUci4P3sJAFVZ9vmoF10bPw+eP6uDRxggQQXTWMvmk+OUOLBs46gGq9dPbirP0AKvHpJ+0uMW6KvRLBPQ/RD8v5aotG8fziTxAJOq5k8wz1JYkwrpfJ/BP3CjwOTWgz//3h0r1QAqqtUXFStl6XxKbythTroDahohL8Hv1zaxa6UBs4jM8X6OHtpCCBZVnwsn5/Li4WOXbOI/GE2CPadBCiwa31BMuy8CkCYhDR6Y/ZpmAYiBEy1Gf/vpB5QOQJwxSrml4YUhUoAVJP0ypnbo7sdPYA4MQtU6CJQDVfAqzMuOmQQCKKj0g3z+YyOcSdW3K80013tmdx9trLpcce4KjGdfTZy8nZyzOMC6S3X/H4eWiqZoZxgxXurp5zvbJLGJflGNuxKtNane+5KqvYcP9WNGy3jwwlxa9BMirhy1f2oWx8EaaclN65gKT9UNjMp2s/nPl7LtqcPft7GnTk7LlBfj9CFX5T5MXanWFcaz9uDijXD2PLOuujqNtwEGPmVmDC8dVIRqzjlNVnr0Cdva6uLpSXWy0hPv/8cyiKYjY05nkeJ5xwAt58883er5JS8CzbPROj3i9C0ifjxF9Oz/i4mollAHSx17q/yzxQKYqCpEc/CDj7phkc4lqw4eu1UFkVELhejalK8k6xp6SJii7ZmiZR4k1v8gwAAULsdcaiSAqpsJXIQTSETg6OGIlICDQhi9hjWRYeiUPSaz2+qqgYXtbaJkk4exKXcvaInncsy6I8GkJTaRc6glFEiZBLcWryBq9wkAUVcg5ij5xE4pMFRFMVOaLD2TP3z7kn7ZdLIbQhCsmjoDnchZqSUtv9tjCMU+xluEKX2dQIOoUFy7IYVVwK6KYoOtTM0zpkh7MHAMu3zUKiS3R1moYabg2Vgewuk1vOnjNM5wzrSnEFyagEX6pvmZRD2xUgu7PnLNTquzCuvUijZFQQ8bBoVpQGM4RwAcfFBPn9Sv2dKYQL2B0zp5v64V+349DW5tTj9KpjTbO/jwa1bxzA1uf3gGGA6mmlru+LQaLL+k26ObbWesjvif195z2c6dZlEnsa8f0IVvjQvFfPg3VWPJMtVZytVwBikkUfCq7Nf6nD4c+a8eUr+zFlyWgzXM8JrPn9sV8kFpCzFwwG0dVlhS62bt0KlmVx3HHHWU/O80hkGH9EoZBEWhJgwMCXEFBemV6pZVAx0QqdtR6wvn+dMSs/zq+6i712NoLaeUcAANPbx/RqvUnOLvY0Vs+VCxDJ9xGiZ16p393ZCzKW2GuNWRXJwaQPokcXEPk6e3PUcfjB3SuhshqOOze7oBVk3hR7jAqUh0K23nXkhIfjP5+EKJdEyOsDTrGeo1oqRhO6oPAa6j2Wq1Ds1wWu0RDZEEvZSBD78ylE2xaiVc57E3egoaYDrMLgXzlHJ+sUVVoxdqfm9u5tbkgTe+8LO/DFyQfgTQo41T/fdh/jAURBhsKriErWicYMYyv665lYWo2lz01HIObF7PKxaU21zbUTYt3H699NwwXoyxNSf2FvqUH02cviMtnyqlLtTtLGg7m89khL3BR7NtGWh7NnFGgIfg4sa78YcBM1+VbjAvaGyYYYyaXtir5e630jL1yMMG6mEC5gF9jOPMmdbx9OPT+Lr1+/EBvu24pkRHLta9dZrx9bNA3oqI9mF3thIqUkSwVwtpw9QH/v450iYh1JKJKSViVMOnuBUi8YRl+fs7FyttYrgCXeNUWDqqgZXdJ86DhiOZp7N1vjOo0QLuC8SBx6v+sei70JEybg/fffx5VXXgmWZbF+/XrMmDHDlsPX0NCAsrLM+VcUioFRoeUr9mS90g5W+OANCkhGJVteSnvUqlgNau5VcALLw9BNcp55cE4MF5EknIhnFHtlGcReiLUefyTcZuarhSQv2qEfkKU8xZ4qqWDAgFMZ00nKhFfmzVpfX1KfEevhSGfPep0LP54ERVJRNt4uxkez5fgS+ommrdhyuEoCuthb88opiLckEfT7gK9lXzspLgOEaJcIh/GzsQdwtKwDjMqAy3AgH8Vbx50D7c1YAnv19dbgfmxdsh8A8EO//f39wLcLf7j2LX2/EWA+9BnXsuFspsLY5cUhLNw6GZqqoXyS+6xuwP75Gc2ojRNDX4aa+gt79SPp7GV2mcjX5Qny5nNoigbGGA/m4n5EmuOonKQX3dj7Zubo7MlWz0q33paBUi9YjrG1+eiRs1ecLvZsxRkZKnEBe0GJWxg3m7NnF9jW+yOLiinEqqaWYMzcCngCfErspR+ryPfWbUoFSSJM5O269BM115NhNq5BqNKP5j26WxdtS6C4xn5MJD8TzsPBV6w7gc6KZ3uBRmZnD9AvKHor9jRNcx3bBtjFni2MOwTFXo/fhfPPPx8tLS04//zzceGFF6K1tRXnnnuu7TG1tbWYNm2a+xNQKClURTWvikNZcl0AvY/SJ6ftx1OXfYjfXfwGumJ6qLSdaKURYDKIPaJyV9Z6/mNMSlJatSgAhB0uthGCBICyoLtbWcRbV9RH4q3W7ap1u8zkt1byBMJ109jTo1onUV9qRqzPxdnTNM10YpzOw3hfeqWfIHJmFX6ZGEQw6oUn1v1JNUFMlAgQop109pRUk0ROcQ/hAsBYv5VicjjamnZ/hLE+q4qQ/bPJ5GyaYdyUU8mwDPzF+nsW78p8whRkDt4ED15izVY0mk9DwiuhS8g8PmqoQDo2tmrcbM4e8W+ysbHi4mSRkCE+KdecPUcY13D23AQiwzJp+XR9EcYFcuuxB2TOCTVCf9nWYxfY1nssRtNzUI3QtxSXoWn2EDr5eGeY1AkZxs3u7BEXBRmcPYNIS3rEjxR7LMeYzavjHUnb+m199tzCuH0supJRyUxBqJpSgoknWC3likdZgnWgGjr3lB47eytWrMCPf/xjvPzyywCA0047DWeddZZ5/7Zt2xCNRnHiiZkHhFMoAHCwuRn/OGcbirp8WOCd0u3jw2VxNFXpIdy9zY2YP3EyOuKEs8e4H2gFwrHqjbNH9mgjiTjEXoy1DqJOQWEQIubTNkpWr7ZiEE1E88zZI3OhugtRkXNgvWrqJEGIHTElduyjwuwH2CnFNXCajx6ZJx6fe3VckhR7jLvYM94Pcl6uk/HFlWYD7nqxPe1+87PR9NA1iY8XzDF3SWKG8rS9NYgKSZQw1mcjBHigI+maF2VwyYcno2l3BwDA/4QuEv6y4l0cKteLY65WzwbHDt32VJmdvSw5e6SzR4g9Mm/PPYxr/YbELC1USMiTrJSQzRN8pm2KqgIIN1mismfVuG7OnvV7z5qzl6GpspHnmHMYl/hc3HJQhdT7blTRkiLS5uw5ql2dxMO55eyZvwHGPbxqr8hNv8ghw7gsxyBQ6kXbAb04JBmR4Es1s86UQ2pATkRxc4/zhXQ+S8eGcMq/HYsDnzSiYXs75qyypuFwhdpnDwDOPffcNDfPYP78+XjllVd68/SUEcLhrjbsm6YnFpe2ZA6HGdRwpebf+9t0sdeZsIohijj3/BOb2EupE1lU0LSrA9XTSnOuypPiMqbtqIboVcy2JQAQTbqLPVZhEPS6u43FHks4NMMSe0WMH4zKQGM1KHmKva/Ug3h3xQ6wCouxnirMgXurBADQOOvka8yELeEDqDgaAq+w5nspJiUkPRJ4mQPnsTtq06vGAA3257WJPaIVApmz5QbZpsQm9shq3JTDxmYRe5PLq4FUak2Tlt7wOEa06XH2AfXxglllSzp7p741G4qYCmNfot8WLxXRLIUhemXXql/AcrNYnjFfO0+I7Jgoosg3dAs1JFuOVKacPWfrFetkRzpsCnFCd5sMQzbBzrVAg3T2SBfKbR41YJ+wwgksGDbz9zETbs5erJ0M42YWe7yLA6TKKrRU65Fcw7hk6JwczWiIPfJ9F2OyXexFSbGXu7OXTewZ1biCj3P9jZPvu1tPRdLZYzgmTVCbYq+7MG4fO3tkCNdf6gXDMJi0aBQmLRpl36+tynqYO3tr167FKaecgqVLl2Ly5Mn9tSbKCKMzQYyuYrOHcQFgjM/Kxzoc0cVWlxiz8t149+cgc9EU6AeBjQ9+jn0fNmD88VU446e5NS4OiF6c9ZJeiLR1wQHsntkIXuLAzrQf4P7l5WVo64qAqWDAnuguTEq8ARj6poO1BGuQ84JTWMiskncYdy/ThG0L9eZ3y8U5WR+rEGLPaMB8rGciLv1vfRrIsf+k/86b4p14+Idv67c1T8BZsBz7KTU1mL1hDIo7/Phw6R4AgJcortg+rh4HSpsg8youEyVbU2Enp+yfjdHvl0DmFZx1zEJMeLYMrMLixO9YhSYqY4RTM5+kJ1XVgDmiF860cOntIhKCfgLzi+lr8QteS+xpLmFs4qD+9xM/wZ6KJgDAj+LfQkkwPTfT2I48GXiIMXaxZHJIiz05w8xTW0gxQ4EGwzG2bUjX2Tgh+ku9SKQqWckwbs45e8T7GifFXgaBSDpMPQnhAoDPzdlrzb9Aw/hudCdgDDKNSxNdnD3y9YsxyVZUQhZt5BfGzexgm1NWXJq1A/b33W2MoWYL47K29cbakygbp0dHuivQ4PrY2SPFHrkmJwU1QSOZTOKPf/wjHnnkEYwePRrLli3DsmXLMG/evKxX6xRKNrqScTN7NMR1L/bGhyqR0mo4ktBDYfPCE3HZi0uQ9MlY+q2ZrtvZcvagQNM0HNqmO4qHP2/JuXKLPAkdv2Uijt+iO2fjfmbPXVPDKgJxD4pl97YrAHB8cDKu+o8V8CQ57J/XgpdXdgDQ3cl/fvZkqFEVZeVFwOndLsuEbJfi5bL/xFWOaGOQarni1vQ1Sszb9cB+gPXwAr69dRHaWsKm2POpltj7ZOIe7KzUrb9YMpFV7I1qK4G6W39/qxcVIxTRvw8c0dtPZlMOiJr5pOgVBITiPoSDCXT47GF3VVWR8GZu02NUzALWqDNN0czQLikufJr12M5YNIPYS4WdCQeKHGMXF7OfbAcb0rUjw4icwJoVk5kmaPAeLq2Awvw7dUIUvBw4wYdIc9wW3su5Gpe3zj2JTtLZcw/jkqKD8/YsbZ3jWbNQzBR7KWeP93JZxanb70vOoaEykHlqSdKlbyQp9kiXVFO1vMK4iVzDuIazl4PIds/Zs4dxSWePLNKwiT2X96qvnb24w9nLREFN0Hj88cdx9OhRvPvuu9i0aROeffZZPPPMMyguLsbJJ5+MpUuX4sQTT4Q3Q8iKQnGjS4wDKY1HFixkYlJZtdnfrFHRQ3RcjEV5mx4CHkMk55N4eMLZ01TE2pM4VNGKQxPa0FEWw/L6YzFj3FjXbUnIA6fRVgKwV6qRB1SvS1WgQSjohy+h3x9XJHPaRJHgQygqIN4pIiBkFkdukLNYyfw7N07omoJ/+LcAAGbJ+mu3tbJIHbTIEWwel959xTUBtLR1YerOaogeGRNYS/iSUzziUvYTC+lwkCcNMuSnGoUSWvYLzIu3nozInhiKunyQFymmC9AZjUFLCcaAkn6s8hMVzFLKdiVFCvn++GF9Nl0J92KLV0/4DHFFRKkawD+nOiiTuZJxMft7MthkcvYYhgHv4yDFlbQqTaMal/dyaa1RzMcQjmegyINIcxzJqN4qxBMQehTGJQtlcnL2hJ45ewDgL/WkxF4qjJsq0AiW+7KaH26iQMlhVBrgdFPJMC7p7OmPEYjjDimcpYRsXrgA2Z09VVFtQlJKKq6pGJqmmZ+XWyWuvi4Bgp+HFJdde+2pTmevjHBPCcFlb+uT/hnzfdzvLldnr+AKNMaMGYPVq1dj9erV6OzsxPvvv4/33nsPb731Fl599VV4vV4sXLgQy5cvx8knn4zS0tJ+WDalkAjL1g8/01gxkinVo0yx18rqhRpi3DogORupmrcTYk+GiqNH27B9zlF8eZzee++LpgO5iT0ilBEo9aKrUQ+/krlN5AE1U+4QYBc0c78cizlfjoEkKFjx/WOwhd8FwD23KRsiUVRAulRufCt8Iib9jy7MlnxHD/m6nYxihPvkRbqALKoJwPM5j2/8Qw9vk135SSewO2GjJK0pAmRYhDwRKKbYy+7KzOXGYU+LnrgXaYmjdKx+MdASscK6IZc2PQGPdVsyJfba4mH88Zq3wSkM5nSNwzdSYWyb2IvH4Mb2SfWI+0WUhonCDkIwx6Sh7uxlHoMleHlIccXF2bNC3raZ1C4FGpzAoqjKj4Y6/fZISwLlEwRbqDHTbxpwhHHzdfZ6GMYF9CKNjiNRyEkFsfaE+R6QIsUNd2cvu1tlbsuzZusYm7PnFsYlc/YI4exsxZLoEqGqWlpPQgBIEEIPAKDpbpkzfKqI1vzkbC5sqNKP9kNhRFrj0FTNli+ZVo1rC5W7u4u8izNrC5P3sbOXaxi3oPrsAUBJSQnOOussnHXWWUgmk/j444/x3nvv4YMPPsD7778PlmUxd+5cLFu2DEuXLsX48eP7at2UAiIiW5Z+kad7sVccCMAfFxD3S2jz6iE6MuE4UwglyPswdWc1WJXBRL4SrwW2mEIPAPZ0Nbhu52SD9AUev+pdCCKHs/bNR3mjfhInD0JNXV14f9kueJMCpLLMc3ida2XAwCPxCAV8pmPhnCnaHaSz110Yl7wKN3pGdbExPH/Bp1B4BXO08fga5tkcuUzOnswr6CqOwyPytnFJnjycvb0lzYiMjSPAeNHIdWDLwv1QOQ1lTDGOwSQAhLOXpUADcISNWi2x1x61xJ5b5bafcFKNHnlxSUTCr5/4EsSFRYC1Dv5dSXdnTzEnjxDvtS2M27vZpf1Nthwp499pOXtJwtlzCeOqClGQIHCOEF8c5ROKbEUHPSrQyHAcCFX4wAksFEmFryi7850Nstdeyz6rwXu2fD3AmbOnv0/2ubjZBajg45GMSrb3PFvrFQBm70EgXexpmh6qDZSkCxny/TSfKyGnfQ9so9J82cSeTx+/JmuIdSZtVctu1bgGZPGL8boZxn1cIimW+0J0OQs0MlFQYdxseL1eM4dP0zR8+eWXZrj3wQcfxEMPPYS33367r3ZHKSCiivVDLvFlzm8jKU0EEfd3IBxIQJQlbPPux95jGuBJ8kAGvVjmCZrO0/j5VXi97HOASLE6kGzJad/tSgThYn3N+8UWbLikAZKgIMbKZuXrkUgLPl28X9+gJXtIZ8uJ+xH3ifAkeSz6UG894wkI2DGpHs2ju8AKDP4lp5XpkBWt3Tl74+dXYctzu8B7OIw9Rnf4GJ7F4Yl6LmR5i54UTYo0H5t+gtxd04AH1/0fAGDR5ik4yWc1MRaIkGWiG7H39yWfoCsURzDmxQSuBptW6O7m2M5KnA89XDTuYAUUTsUotTTrc2XKEVLiKsbvL0fSJ2M0m9703U84e8Z7aRO7xGEzSIi9sJhB7KXEKTlmzstY72F8iDt79jFY9pO8cbFAut2apmXM2TNcalsrH4FFkUPshZtjOPql/nsU/FzaSDsS8vlJh8utqbLx+BMvnYWdGw/juG/1fGQiWZHbss+q+O5e7GV39rpzG3kvh2RUsr3nNmcv5ObsWfe7TdSIdyZzFntueXvdNVQ2KHK0X7GLPXsY163iGSDyQTNU/fZ1ONUQe7yXy37RYXP2CiCMmwsMw+DYY4/Fsccei2uuuQb79+/Hpk2b+mNXlAIgquUv9iqUItSjAxqr4WBLC96prsOOOXrI7se+c123sYWTFBVHtDbb/UeZNucmrpBOpMfDo6FSP9A3t1uOUVvMqjAuYjO7lQzDYMsJBxD3iyju8Ftiz8/jvbk70VCmjwXLB7InXXcTNComFuPSB04D52HNK3KfLWdNf66ELJlFNB4XsTepwsqj7CqJ2UI5AtFDLiFld7GM+buCwukFNSlNYPRF1BQN5zx/PACgZmYZcEG2FwfsnFWPruIEEOMwC3pkYXSiFOc+txAAcMLqGWmbFfsC+PaTJ4CXWUwYVwWcYRepRtUyAASJgqKImJ50rqgKFF4/ifFEBa6HmD8cl4d2zh5ZoME7TuR86jujyhpUWQXL646ZkcLAeVj7yTeD2AsRM4LDzXFseW63efKfe8YkVweH3N6NbEUSc8+YiLlnZG5JlAtkmLFlfx7OnksBQa5hXMD6DLoN49qqcTM7e0DmIg2yOMPArbGy7YIgi7MXtLntCdQQ95EhfoZjIPh5Myc61kE6e0Y/QndR2df97owwbrYQLjD0nb0eT9BYvXo1nn322ayP+d///V9cfPHFmDRpEi677LKe7opS4MQ064BijNjqjqWxmVj21gyc9cI8sO1AjLWeo8ylIhKwOwCqoqHRY++/1uTrcm7ivl6VaJbMW82SE6q1hvaEVQFanKHvn4FPToVPS+N4d8UOfLhkDxSfCj6Vk6ZyGlQ194OHxBBhXL77MJWv2GM7QPuJAitjrmtCye7sTR9l5TrumNOAj0p3m/8mw76JboSNMZJMUDmbIJJTAtZWKNHNdJB4mYTXz/4Sm5fvxgf8TvN2txMjicfDY+yRMtQ0lqC4U//s4oRIFUhnj7feq4ic7uwlie1IsecjnL3u3pPBxt7E1pmzl97k1xaS9HJg+fScvTSxR4iAo1+2YPe7enqFJ8Dj2LOzt/nK9D3wZhF7fUEmZy+QpaEy4N6PjXzPunP2jN+qnLAmY4guffbICy4yZy/p5uxlGAfm7uyli8Xu5uIaOMP1JJpqD+MyDGPmP0bbEuZrJV1jN/qy350sKqY4zhbCBdz7Jw4levxraGhoQCQSyfqYSCSChobc8qAoI5fxbRWItMYhemRUTCvOaZvl3tnwbEkNVG9VEef0g5IgcvBkEDiks5cQJXSE7An1kWACnVH39hkkUc06MFZ7S8y/44Ro7RSjZji5RMguYA2xB8Dsj+fxCzZxkJQkmwjLhkRMBzFmseYDWY1qTKuIyyKMugyfS4VvyGc/wUkeYlxWjsJGVVVIgr6dR+F1Zy91DpFh5HrZk7izMbXKKuRpZi3X1ZYL5iL2GIYxc7oMUZKUifAgIV5DREER6fgaJIiCFIH4PJdLs4G/quBlDnMuGZf1dQw2ppPDpE9k4W1TNGR4g0JazzjnODP9/0TYUmD1EWYMAA22mdfzvjklawjX2N4NIUsVfF9gaw1CTs/oZuQjmbNnhLVz7bMHWGFSTYM5GSMZ1b9nurjW3w9PpmpcV2cvg9hzc/Z6EcY1xgsC9jxDwO7sGa+hqMqProYYpLiCZFSCL+Sx5YO60Zf97sj3pVtnr5D67OVLNBqF0E0YiUJZtHMKJu7U26WUn9f9BA0g/QoxUZ6aiCBl/r4xLIPHrnwXCqeCVzmz/QZJbf0hLJk2y2VrC1LU1QRLzVBjEtbBq0OyxF6pJ7t49Kt2QWZM3OCJatN4HmJvVLgEE6IVkDkFoYnd9y10wnEcWIWBymmWs0e4lj6uewHJCpYQ85LOnpI5jJsQJf2EDz3Pj5x4IqWKTsjK5GyhPQAoCQbhSwhI+CS0e60LU9GlTYUTU+ylDtqkQ0eKvSKPz/z8Y0r6CZN0BHmiKrmaK8Ho+lL9+cT+daB6i+HkCN70HCnS6ZPMFkT2/DOyd6WRhO8cv8fxLIJlPtt8WV+xJ6dQa6bvQbYwbl+QyekJ9mM1LuCYXJKQU2Iv1eaJEMbk6ycFnquzlymM6+bsuYRxxRzDuPZUGvvx1+1CLlQZgHHFFmmO6xcT3Yi9vgynxtpzK87o6/32B3n9GrZt22b7d0NDQ9ptgH6F3tTUhDfffJNW4FK6xbgqJK9Ku8PWjb0lgWSN/hykS+aEYRhEQ0monP0gw8ksFF7/ce5sOdq92GOsA+CYojIYU84ShNjrIkJ6pb7sAtav2cWTVxT0HmaEOBC7yXUjWbF3DqZ9Vg0AqFiZm1PqhFdYiJwCmdUPrAujU9H1YhQyr+D4c7ufnhP1EPMkmRDKW4LgZRaeysyHHHLcnEfjbbl+iqZ/Ps2JTvz3v24Cp7A4NjEBq7Aw6zpK40E0+DrQlSrk8fACng19gI8u3w1vgscJvpkYh6q07Q5MaUVYjsEf9OJC2MPYZNuU4/1T8K93L4dH5DF/ZXqyf5LM9SM+z6HebZ8k28mVd5mPS4bOeA+XU84eoP+mSbF3/HlTswoHc/uMYdz+dvbSL3oYjrFN13CD5RjTxTQ++56EcQHrszEuYEinOlMY1z1nz93Zi+fq7OUYxs3UYBtwVOOmWrIUOXI5jYp6IFex17twak+dvWFfoLFu3Trzyo5hGLz22mt47bXXXB9rNF783ve+1/tVUgoasxlnloOEk2CFFzG/iHBxHAlJNsOGASW768SqLFTO/kOc2z4On1fp4dO90cZu920Te2UVrmIvrFpir9yfXewFYT+IeFNzZcmwXz55XW4n0nzRJ1ZYYi+U8GLM0VIAQJXgLiCvSpyOP/o2ABpwzuhF5u2ny8fA/7i+jrlXZ774iyaJXn4ab8s3NGYZx2QRHeV6+L2r2b2vHUmFEkJDqpDnUEsLpo4ajUauA62VutOXqX/bmyd/ic6iGAIxD24FkFRk03X0ErmEoYAPoajunioujoct14+oSraFfIZgfg+JEcZ1E168W86eow9at9W4qftDVX407mzX/670YdZpuRkFrMt3nOGYtJBzX0OGJA0CpV7XfnUkZpqAqEJ2c/a6mdFtd/YUyKJivp+kU20Xe0Q1bjSPMK6rs+eSs5djGJdz+S6Y/yZn4xLfCYNIc9ze4DuDKO7Lfne2hsrdiXiWMXsgDntn7zvf+Q4YhoGmaXj88ccxf/58zJ8/P+1xLMuiuLgYxx9/PCZNmtRHS6UUKsaVZraydie+Ig8ev+pdyIKKQMw66DpDok44lYHzULWiaC5aDnWhtD2IKk/3TliC0w+cnMyiMmQJOZGxDqgRosK4PJhd7AUY+0HElxrhRTp7yTycPfJA43YizAWjTYgh9uQc+oCtXbwKwoc8xoTKMXusdaLONbxhc/YgOMbb6duJClEZymQ/KQJANUrwFQ4DAPa1NmLqqNGIwDqAV4aKXLczXz9vFKhI5tGSLBzxkLNK4+mizaNwmPnVaCi8isl+y0EMCzHsmtEAmVdRpZXhGAzdWePZnD3BkbMHpH9XcinQAIDS0Va6w/HfnmbLbcuG2wWNN8D3+whPTtDHopFOWXeVuAa8wEERVVPo28ReN79Z53tub7tiHf9YloHg1yec2Kpx43mEcXN09nKtxrV9F3II49qcvZZ4TrmN2Y43iqTk/L0CHGHcbsLzgJ7TqsaVIXkBl5fY++53v2v+/dlnn+Gss87CmWee2eeLoowcFFXB/d99Ax6Jw6SOalyIU3LajmVZlMQCaC2JIBawDkgBl4kItu1cGvF+a86J0H6gT7yonFLispWdZErseSUeXo/HzG9LstYBNcJYwqUylF1AhhyNfQ3BSob9EnL+Yo/hmG5dhkwYDYCNHnG5jHPy8AK+t/SMtNtzDatEJes98zI8BKIQREkVnYgyIfbQ/UF7tMfqo3ewS+/bFmUJIV7k/tkIaqriMTU7eLo4CqtePwYyr+K4k6w8Mvtg+nTHo0wNYdVrxwAAZq+cYN5+gG/Ba9/8AgDgb/fhWzip29cyGKiKVaTiJvbIHLFEWP+O2meXZijQsH2f9PtnnT4e7UciCFX6Mf2U3ItW3Ap1MvXY62v8JV672OumEtfA+E1Y70fPwrhSQsmag6qPJ1PsTZWjZMhVF4OxfKpxXXP27M+ZCTeX1/y3ralyBmeP/G5lcBAzhVM/+O861L5xACdeOhPHnJXbxVU+YVxAvwCQ4kphTdC48sorsXHjRrS2tqKioiLt/paWFjz55JM49dRTMXfu3F4tklK4dMXikLwKJK+CRCK/SQIVUgitsFeEu01EIDHmqfqjHnz76YWIj5VR+fMSFFX6EW6Oo7M+6jr7kWT55pnoYuPwFQlgljEQZA5JToZIiL3KjiKExTiSXhnl87M7eyHOvuZAKoePdK6SeYi9x09+B51fi8Gf9OAK9OxibOGeyehIROFXBWAZsJtvwO7pjeBlFqKQ3+eUq7NHVq76ICDAe1DeEgSrMihJ6q5PvmJvXNA6Nh2JteL/6j7HkbJUqDDqtbmHJEYIXeU0SIqCcjGImdv1EXCTTq62XpuPwZaF+yF5FOwvbsEZOMH2PJlC6n7eg1RkGklt6E7QIJ0No1kvCdlmxOiFZmsQ7HVvqizb3hf9vfaXeHHaD+fnvUaGYcDyjK2as7+LMwz8JR501lttlrqrxDVwir18CjRIZ09KKLbZtc7qco9fQAxJe84e4ewV1wTRur8LyXD6yDRN1UwBT9J9NW62Ao1sOXvpzl6gxGt+tuHmnjt7mqqh9s0DUBUNtW8czFns5To9w1qT/XMdSvT4F/HUU09hz549+MEPfuB6f2VlJd5//300Nzfj1ltv7fECKYVNZ8w6UAa0/NqEVKIYO2G19vHHBJQw2ducGM4eowHlbSGMqtadn5LRQYSb45DiMuKdYtaruCl1VVBlDRUT9RDgSZ9Pg5iQUYYQcJr+mNM+mIOuxknwBHhwq7KLkjF8GfwxAfGAfmANpHL4SpQAijv84BQWTHHuDl1DaQfifgkl4cxj2rpj2Z6ZaN3fBSZ10N1YXouPztkDALiAW44J2TZ2sIdvwt8v+BQKpyLqkTEPU1wfN00Zje/fsxIyr2DeNyajxluKyx4/GQAwaZHeflUkqnl5pvsQ9cTSaiDVyeOw3Ir/qH8OSJm331IXZdzOQ+ZLimLG/n6CR8Dm5buhchpGtae7wkqG6mG/4IERTSZnGQ81yDFg5RPSXVDydxJNCUOncLE5eyn3hnR1eppXSsIJLFTZ2u9AOnsk3c3FNeA8WZy9bnP2yAINGUni7XO2qTFEr5xUoCoqWI41nUjBzyNQ5kXrfveRacmYZI6084YEU1S65uzlGMblXEL6BpqL2GNYBqFKvf1KpCWWdXSfebut+EkxX4uxv0hL+lzeTBj9BxmWga+o+/OTceGiDPcCDZLt27dj4cLslXDHHXccPvnkk57ugjICaI8TYg+5HSgNRvGl5t9nvTAP03bXuE5EIOGIRsWALvKM/x/+vAWiR0bD0XZMKR3lur0iKeZBw0iAXrZjJroaY7YDrZFH012PMABYJszBoWea8cxlHwGwCjbObVuEaa/oeV7j/72y2+cBAEVRkPDq+w7K+b2fJMbJSFM0qKpm690XEPIT5QlexKHU+LXG9s6Mj5NFBaymzwYOCF7X/J58c/amVFYjdNSLoi4/tlTuh+jVtx/TXoofrfhmxu3IYopYMpE1zOaReCQ4CUk+/SSoZnL2iJFsZMueoUbrfuvzqpycLvbIHDVjfqkzjOuasyf2sdjjWXPaCzCAzp7jojDXnD1z7rVrzl5uffYA3WVTVUskpYk9R0WuL+SxcqQDvE2sOkemkSHcoiq/Kfb6qho3lzCusW+j1x5ZrZ1P6xUyJ1FVNMQ6kjl9Voaz5y/25JQS4xTxQ4ke/yI6OjpQWZn9BFReXo729vae7oIyAiCdPXLOaC6MC1ghOmNWbXcHeVZNNWJO5aIZYm/nxHr86XsbEQuJ0Fo5fB/fcN2eDIcYBzVzfFGqH5mmamYejVvoy4knwEOQOEzZVQ3RI5uvK1vlWiZaImEY7flCSi/EHrlvSUWSmMoR8OT3vD5eMJsjS1lcLMURonHrzyYRYk/IQeyNLivHlY+tQGsgjL9+5wMAAKMy+MWkizI23wbsldBxUUSz1oWm6i5wCguJs78Gr8wjAcnM5ST5UN6FP17zNjiFwflSEgsxHUDK2UshakPPBTAgnb3KSeliz28bVq+fGNMnaLj0lXM0Ve4tzkKkgQzjkuQs9lKCTpU1aKrWiz57iu134wzjktXmkin2Um1aAoJd7HUkQVr2pNgLVfnN70JvZuNmb73i3jCd7LXXfthK28n0PvEuOXvOauNwc7zbz0pVNVMk5hLCBezh+e7SgQaaHv8iQqEQmpqasj6msbERfn/2UVGUkU1n0mqfEWTzawA8oajKDIVZYq+bbvspJSR5Feyc2YAlo+cAACrKihFLtTfZH8/8vY7EEmiu7oInyWNMyJ64rsoaVEWFnFSQmuzjOqHBicfPo6I1hLNfPA4AcOIlMwFkPzBmornLcmKKtJ7/9hiBgcQrUDgVoihBItyngDc/Z49soSJqmcWeMfMSMMReuiMkEnN/c8nZYxgGoQo/Xjhxi9lL8evtx2LJouy9FD2w1hyTkvg//5d46V+2AADm8pMwA1YBgVcWAMQhCumvLSYnkfCnwl9d1usjBTNZxT3UMGa+eoOCLVnegONZ+Io9SHSJlrOXZYKGa+uVPKojM8FxTrE3OGHcnMWex/7b7nGfvYRsHmsAN2fPPkWD3Jfu7Fm/ZWdFLlmJW1RlpcdknY3LZG8dYw/jOsQe8W+G+O2TFbkdRwix10NnD0iNaptZhmwkw6IZxs41PG8LIaemmwwVeiz25syZg3feeQdXXnklampq0u5vbGzEu+++iwULFvRqgZTCpisZN7+FQS4/x2hSRQ1wVP87V2fv1O1z8NRJusPz+j99gcuqVgAAZtWMA/RxnDistWXcfm+kAU/+y4cAgKUtM/ENnAj4NcT8IiRBQTIh4UhXK/77XzfBlxCwQJysPyYLzjUbV+M9cfaaI5YTU9xN/mI2npi/CV+uPAQAOCdxEkSGCON68xPlfoEQNmmNbyy+VA7ivVN2gpc5TPSNwlRuDP5+/qdQWQ3j1HJ8Ayfqzp4xZYPN7fAVqvRjxfpZ4BQGzWMiuHnZRd1u42Hszh4pUp3zhr2q/m9ZUM3GzQZJwskk+/MFiDF22d6TwSTWnjBzliomFWd0KQJl3pTYS+oulSOvqjux112rkVwYNGfP0Wsv55w9UpCIal599pwFGuSFoDOSQL4PYkw2XT3jPmcYl8QZxjVwm41rVOMKvvQpKyQ2t96Rs0eGo8nHkRcZdmfP/X1iWKtgR8ng7EWa0+dYO7EVZ3TTY8/A+bkWhNi76KKL8P777+P73/8+rrzySpxwwgmorKxES0sLPv74YzzyyCMQRRGrV6/uy/VShhGqrCLcHDdDpW6EpZj5LSzm8xMnE6sqwRxmoLEa9k5vwhtnfYmF3hmYgOqM2xzTOB4bmr5CS3UYjMpg5qixAIDJVdXg97OQBRWNQkfG7buS1kEimOqP99T8D01hdH5sGZqjXWbj386W7g8qcY+Ipy79EKJXxpgjpTjVrzt8n4UO4KVvbYPCqaiWKzAR6RdVTlpiltgryfP9JLGFMSURUqrSmFEBD5/fYcMn5CZsdjH12LroAABguTwXAsfh0CRdeLNt+glkrFyO5e/NgMJpmDs3t6a7ZeNCCH3hw1kvHYclP5uD4kD370tA88Cb4MHJLOQi1bZu52xgn2r9uysWR2UxIfaIghJy/BspmCVmaIZxyRBuhUu+nkGwzIe2A2GoioZERLRX4wqsw6HO3GevNzifY+DCuJYI8BV78ugNaG+q7XzPssHbxJ5sE9fZcvakuGxru+IJCAiUZnb2yOkZgTIfGJaBpmquzp5kir3s7zvDMmA4BpqiZQ/j8u7OXlejFQnK6iAKHFRZNqu+na8tnIPYi3fk13bF2K+Bno85dMbF9vgXMX/+fHz/+9/H73//e/zmN78BALPhsvH3D3/4Q9emy5TCRtM07Nx4GNue3wMVGr591zJ4M8xIDksJc4ZsyJNf2NHDCyiK+dAV0n+4O+bUQ/Vnr0BleKCjTM8TLI0E4Es5LBzHoSJahMbSTrSHomkOjUEXGXZOOZFezXpcJJFAO5GHWMR2/5oCQR+aRusn1lDYZ4agWoUw9k1rBgC0iF0ZtydpS0SAlI4oE7LP5M0GmQ+XkCSIqebKvMyBZfM7Ofs91vsjZQnjxomRZH5eAMuyYFRdzMuMftCukUswf4ve527G7NE57X/eOVOgqhoqJxVjxvzc+retbl2KOX8ZAwCY+ItKu7PnsX8v/LBOmF3xGCqLLWEk2pw9azvS2ZOYoenstdiKMzL3nyTdrFh70iVnLz10Z5+N2zcFGiSDEcbtbiYuiXOEnPGecQLbbZ6XYKvGdbZecY8SAIAYk2w5x94AD39xZmcvSbRd8RV7IPg4iDE5Q85e5ikrTjiehawotoIMwDH3mszZI8SeRrh/2cUeCylOhnEdzl4OF+GxHog9Mo9wqPXa69Xlz4UXXogFCxbghRdewPbt2xGJRBAKhTB79mx861vfwpQp7i0WKIUNwzDY82E9tpTtx0dL9qDtwzi+v8y94CGiWNVVJXmKPQD43gen4+kpH+DAFL1hbmkgu8CJBJKQhZRwEO0nsFFyCRrRCZXTsKu+HnPHpzcYiYgJ82ItmOqP52OsE0s0GUd7IgIjnayY6/41FRN5rYcntuGwpxXjUWWb1EBWoWajTSTEntd9OkQueIhDQ0ISzUkavJJ/WMLHk8Ims4uVJARVgNcPrpzCQGY1KCmxR179Z5qJ6iRQ4sXJ35mT15qdeT8yUenp5+2hO3K2cVfcPsKNbBXjJZw9juPgiwuABnjEgXGh8qW1m+IMA1uvvfZkWs4eeeK2ZuMSTlaOn2M2nDO1B8rZC5R5zZzFiiyC2EmmMG53IVwgvRrXNkEjkCWMG5dtDZgFZ4GGQxDFiTCuv9gD3quLPckRxtU0zWzHksvIS+P7kNZ6hQzjEheUZK89kmwhUuM+I4zrbA6dr9jLt0ADGHpjEHv9i5g6dSquu+66vlgLpYAo/lYIr0U/BwA8FX4fV4grTReNZEHrJCQ3JSF6ZEw/LzenhmRsqAIKZ11BlQWyNzDeW20VX4xm7Am647hKfAZ9Ru725sOuYi8sxU2xF+LTxV5ETKJDjJpuZYnQfcjQ6ZQZoReb2MuxF1unbLmKFb7s70U2BFLsyZIp9gQl/xOzn3SxsoRxEypxcknl+el9EVVL7Nn61vVfpRtnu0JX7GFcR+sZP0uIvYT9JEI6gh5H+Pf7j62EGJNRMiYInN0ny+4xbpWDRhhX8HMorsn8PSadvWh7wtF6hQXYbpy9vijQGCRnj+NZnPHThTj6VStmfC33qR9pFxMpUZKLy0kKQnJcmuDj0kWv35Gz53D2PEHeFFJpBRqEQPIVeVKuXTJtggZZkJatEtfAWGNaGFd2D+OSvfZIunP2gOzOXne99noUxrX1+Btazl7/ToqmjFiWzZqDGS26eOssiuFPH613fVxFZxFm7BiFY74Yh9HB8rz3E6r0m73TGBUo6SYf6+m5H5h/VwbsbsXkgJXrt6erAW6EZetkHhJ0RednrJN9VIyjS7QOSqXe/EOphjvp4fIXe/P+//bePEyK+l77vmvpffaVYQZm2GXfEWRXRHBBEUVRY4iCcYWIxoXnmKicE/VR4DEnHozG6DExQYwhGkCW4UWIaBAVBBlAEIRhGWaf6Z7eq+v9o6erq7qrZ7pnepue7+e6vGSqqqt+v+quqru+66XemLl9MCb9qz/6p6nXCgwHudC0u53gBBa8i4VGiPz90Kjz3yjDtuz53OutpXI8rPdBYBbsMKfb0GJywM3H7mbKa5RZdfIaboFir4cnCwVVGSg5mw0moOuUwo3LKc+d9EBK8EPhwpE6/GlpOT55Yb/0ALY1OaSaZrllmW0+FI2K8iv2oA4anErXhFSJ2QOA/H5ZGDmvX9hB/ECwBcj3G2ivxh4A8CHapall/stFryvAsqdt7R/sG3dgyzRfNi7DMdCaeElcBdbZk/8drhsXQLAbV1B34wLKuD0fbYk9nzvVX3pFKWQFl0dhuVSjI25c+ffqTrJae8npPyBSgod6z8Fy69sAgPfdn2OJ6+qg2D15z8aO3KDT8/TSA1Xr4sGFaH+lRllGvuLvgTk9gVbD2BlHjepnrIL/BpDR6nY2cDKx53KgWZCJPX3kYi+7VezJs03bqk8nJ78mA8MOey0MJT8JrxCzGjrGf2yH24WfvTMNgsuD7N7+LiHhouV5jPq6Nzg3ixJNcGtFH055eRefZa+1VI7PsrdL+x3eu+8zAEC2OxNDUYpY8L3xIsqvOQI3LyBXyFZYJA0BFuprnaORv977nfV6VDk/eQ29wCxenxXAneBq+8d3VcJpdeP84Vqc+vwiBkwrRt2P4blwgcDCyg5FrBKv5RTWWMmypyg1Eots3OQJjFdDbs10Kyx7YVjGWAacloXg9MAls+ypFXAPsuzJ77et2xsydWipswe1TPNZ9vTpWjAMI1ntfMkVPtEWbo09afy8uhtXHqLBBJTSkdfa89GWGzewjmGgZQ8ALDXWNkWc/DPhu3EDEzSSB7LsETFjxuDhGFjrtS41pVvxx33B1j15n0ZtGPEegdhy3VLmq0PXviC6vKG/9O8pxYMV64YX9wZa7zdV9kZFDImPFo9M7Om9VkSjrGSM1e1Es8dv/csxhBc3V2D1P1AzW8WeTub2a6s+nRyHLINOnxZZPTw5WkbpxvVZYjpSSoBlWczYOxhXfDYAo34ILc7klj1Ta7aqZNlrFXsuWZ09DRu7sgbVmiYcHXYBJy67hPOeOrgYvzgJDEdQNKa3BVg9ZHPSB8T6JUsfzeZq/8vJoc2nIIpi2Jm4QHDMnuCz9DBtZOO6o+zGDaqzl9x2jMCYPcmypwvvkez7zdmbnZJoUivgrlGIPZey9ErrOl+tPV/LNO+/Renf+nRN69jk7mP/7zzc7hk+fGVVAstJSe3SGAR1q4jUsid/gbCZnarXmLnWHrRMjq9IuNbIh33fkydoJNpiH0hyXxFEl+fB3nPxi1br3l/de3GPa5bCundaV42GQgu0Tj4sF0AgTDYD1Ia//cqRt+DVA//E+KwB3jp9MnLSMzDv2Fjov+ZQcCkDVQMbUDRY6VpuEeViL9iyZ3U7YIH/JpJrCi9ubm3ZPXizYjtmF42UrJNajoPPe+gKs8uCLzOP07JhBXuHQivLHLU5/AKyo3WjOA0LweVpU9g4ZMWFTdoAy15rXKb8PGi52N2+5EkYdo8LblnGrCHAOq0QewF9Q8fX9wO7T4TAe1CyUGn12zvsBM6PqIeH9+CnuDqaw48Iec2xhkoLzn1bG3YmLuDN1PSV5bA22BUvBgzDhKizF90EjUS6cTuCXBTIBVi415dGx8EOpXtS3Y0bkKARwrLnw9bobZnmsgvS9+jrCSvPAnY53JK4lL/ghHMPDxmz1+rGDXThAlAt6N1e6RUf8t+37z7kXW4N+pwcqVVamFY93/59JJtlL7mvCKLLM3PwcAzc1gPf51VJ1r0HpsyV1v9t1Jeom26B1snhl+wtEe+/X0EPSexxnvYfGmX5BVg7+96Q6xf3nYldW74FAJzYcy5I7NlE/8010+C1wBk1fsuGze1Ai1zspbVtFfExrFdvvNpriWKZjtfIxF54lr3TumqI2SLy9B3PxAWUBYCtTodULaqjVhhOywFWd5s3QHkShEnvs+z53Ljet353nCx7Cquqx4279kxFzYVGeLQiuHXK42oMyrpncoqbc9By1FvCJe8nyu/kZM8qnM3xuqZcggBNBCEI0cLtFILimQ5tOiU9IHkd12adTMBrhTFkaWGtd6ClwSEJGd//5bXVYlV6RW495HXKVnvJiFwUyLNpw72+eBV3qaobN6BdmkLsSZa94IxcRXJGa+Fo+TFDW/baHz/XjhtX7bvraMweoMy8ze2TgervGwG0XWtPXr8w3Hg9INg9n0yQ2CNijty69777c/zcc42UgergW+NNXB2LsUk3GHCXeSp2ub7D8qLOpzSWjiuExsDDZXPj1L+rMOmnQxRvq7ccmoAxJ3rDqRNQ9KI3m9fEy26WHifGnuyL/Ip02PVuZI/qeK07efZmOJY9j8eD9274HB5ORI+GTPwM13T42BPE/mh63wzOzaF0eh7+d86n4N0shup7Yw7GRbw/VsPAzQkKy2ggRY1ZcFpdcPEeGEd5z+noH8tQ77BAK/LAFVA2u+diF5el57VA673aLjjB21kYbFpFsWkfZ7V1+PC2/XBqBVxiLBiJftI6Zfaw8iGm8fh/V00tLYr6fB1BHm8VLmqdBC5W+DvI5JSmh7VPU7Ye1noHbE0O6NOC3X6+2mqSG1cesxdly16yW/UA5W9BXui4vb64PuRWNh9qYo/TcFK2bVAHDcmyF1xYWd4qzdBq2VP05JUlZShi9lTGFYhv7qJHVPxm/WKvfcsewzKq2/mQ/x7kv/GCflmS2LO04cb1uXCByMQeuXGJbs3MwcPRa0cuKnPq0JDeglpzMwoyswAAjtZ+ot7+oh3jlzPm45eYH42hgtdy6DepCMf+v0q4HQKOflmJEdP6+DdoAdJa9EALYDB4b4IjdKVY+NYEaFwcxk8biJqTjci/lAadSRNRwkggBZoMDDtYAs7DoF92+90zGlss8HDeG6ZJiKylWSD5fCaKz3mtmm6bgGNDLwIAdDUdiwP8w42fojbTDJ2Dx72Yo7rNrAPDUH/WDE7Dgr/Be96mnByEuh+bvb0yHwTccjduhJ08IkHPaSSx5xT9Fkm1zFFRJ+JCSSMAoLquSbFOIWoCPluELPyASwCAf58+jutHjg97fLZmB/av/x4NZ82wmZ2wNzshOAUMmFWCaT8bHvZ+5NaNtHxDkPhrz4Xrwxu31wSIgL21GK/cyuGvraZ047I802amb7jIS3Uke3IGoMy6lVv2wg29ULPsBRZUlpYbNbA3O+G0ueFQSYiTi5m2LHvy5At5yzRFNm44MXsBbn221XXdlhs3sNYer2u7+LQ80UVu2cvulSa5ci21od24HUnOAJLbjZvctm4iZegpZMPYokX+pXTUNZgBeF1XLq33gjAIyXOD7jO1B74dfRbr7/o3fm1/X7HO57KQu4qy9CYUXspETn0adDaNdPMOdfMNlyJdDmbuHIxpuy7D8Prgmn+BVDfL+uKKkReoliPvV9ri8N/45IkbEe2v1R3r5kK/7UqFZWU3at9DXBREb/FWmdjTxDJmT97iTXRL8UWBWZ+AP3YT8Fp25VzUNqC6oBl1uf5C2z7GZfgtgPtqvo9ofBXbzuD7T8+h5lQTLDU21OnN+Gzq93ii/5/xzY8/hL0fsyxuacR1fYIebO1l4vpQ6wmrsOz5ysy0nkefiysayRmA0jrYFSx7ctd1R9y4arFxapY9wO+udVndcLVa9liekb4TVcuemhtXbtmzh7DshZGNy6l0VAHaduP6au354NuxIMrvX2aZ2DNm6iQrobnGJnX8CkRRdiWSkjqye1dKddAgkouXX34Ze/fuhd1uR2FhIe677z5Mnjw50cMCACxpugqH3j0FAEh/0mt1amrxFwA2eDqeORptigbk4Ltx51Cf0YIamPH9xfMYWOTtoeu7sclvaoo3Xru/lpWuE9mwAFQD2wGvu3b9V5+BY1ncNm6KtLzG4rcqpTOdE3vyt+8Wh9/doetgr0e+1f0p8B54PB7VlmtqhWXl50AURIUbN7BuXTSRiz2H6MIXg0/A5RKQywUn3GQY/LUdbYxS7P2j31c4cbm3ZuNS7hpI1bYBTOs7FP/v3BYAwGFPZUTje8uwCyfuvAiTRYe5e0fiwqBGfNPaV/jd7z/FmLJ+7ezBi9zqkVlkwrA5pdi/3i8828vE9aEq9hSiXZmB6ZHEXnTsDUo3bvK8OIYiVMxe2G7cMGP2AL+1zWlzw9HqMtYaNZJlTK1lmrwvrlqChrxwdsTZuIr7ml9sSWIvRLH09Hx/YeX2zlMoy54+U4f0PAOaLrRAcHpgNzsV8/eh6J4RQRs8PokteyT2UoiFCxdi+fLl0Gq1OHr0KFasWIH169cjMzP8Nj6xIi2gFhcANMp6yBrE8C+oWMOyLK70DMPfsA8A8F7FHjxXtAgA8Nmg7+Ep9aCA859T+RuvucmG+qwW6Owa8Gmde5ApS1b4xd627w7gJe4fAIDMIwbMGToWAFBrNUvbZHLtd+5oC4vGgVP9quHmPQqXkbzYciTIY93sTheM+uDvW3AEl3dhOAYC64GH9db2UrpxYxizJ7fswY0DY36ESysgryk48cWXqAMANijFnltWRFoXUIy5X2ERMo8Z0JRmw9nMWtidTtUuM2qc09ahOtdryb3jxpmwO5zYdewoBN6Dz9OOw2K3I03fvitf7sZNLzAgr28mDv7jB7jsAjgti+ye4WWTm7KCj6Um2gMTNGIj9pL/sSa34Dk74sZV2S6kZa/1fIgeEdZGu2IZECJBw9x2goZc4HU0GxcABFkhZd9vI5RbX15rr73zFCpmz5CpVcT/WWpsqmKvI90zgOTuoJH8VwURNqWl/hpmDMPA5XKhtrY2KcSeUfYwaGnw3nDkYs/IJI9lDwDuGDYNf6vcBzDAp9wReDzeC/ezCd9DZEUUNWRJ24paEd9fdhEujYDvc6qw7arDAIBRtaW4HhM7PAZlNXb/DfWdll1A6+n6nXkr5sAr9urtZml5lqbjiSEAcJ6tw+abvFnJBY1+6468NVwkyMWezelQFXvv3LIH8AA9rTlYiOneZeN24/s5XsvYQtc0RY9aLR+77FWj1j8+J9xS6RfeE3zMDKP/4WFnXYp1crGn1wafu4G2IuxPOwWB9+CLH45j5uDw4u2atd4HmM7BI11vQLregLGNffBl3g9w6NxYf+BfWDKp/XIulurWByEDmHIN4HgWkxYPwTd/O4mh15QGJZWEwpjTthvXZ60J7KARLbHHdjU3bqhs3LAte8FzVCu9AigtnT5LmnyZvGWatVHFjStZ9uQxe53IxuXUPRa+uqahMqnlGbntlaiRn0e5y9mQoVXsx1xjQ36/rKDPdzRBI7ANXjKRlFeF1WrF+vXrUVFRgaNHj8JsNuPpp5/G3Llz2/3s6dOn8fbbb+P48eOor6+HXq9HaWkpFi1apOrSrKysxFtvvYXDhw+jubkZhYWFmDVrFm6//Xbow3gz7iiRztHpdOKtt97C9u3bYTab0a9fPyxZsgTjxyuDutesWYMtW7bA6XRi4sSJ6Nu3b8zmEAkm2cPA14apye6PFzIxsTvXHaFfYREGHCzEibxLaEy3orziW1zRbzDE1rZdepnbmdGy2HbddwC8D18faejcnCyMDeuW7YTAeTCwvgjXtGbB6t1aSdSZRVmNNIdFWp6j7XhfXKA1G7X1fmfn/Td+HdtBsSe71dhcwW2KBEFAbZ7Fe+x6/7nlZGHFDpcLN5wag8s29YDAiejxH9lB+4kW6Toj+h8vBOdmUcrn4WCe10Wqlo2r5TXgXSzcGg8cAWLPV4yZFRhwKqViRpv6Yj+84Q2fXzwWltjzeDww673XUJrd/xu7vddUfGnzxut9bNmPJWHU7vPFM5my9ZL1beC0EgycFn6fV0BZWNmH/IHst+y1ltCREl5iEbPXtdy4CsteuKVXOmDZC7XM1zKtpc4Oa70dTptb3bIXwo0rL+cSnmVPHrMXvhtXbpFrz7Kndh61Rh6chlPE/sldvHJ8BglA/bcdisCe2slEUiZoNDU14Z133sGZM2fQv3//9j8go6qqClarFXPmzMGyZctw9913AwCefvppfPzxx4ptL126hJ///OeoqKjA/Pnz8cgjj2Do0KH44x//iOeeey5q81Ej0jm+8MIL2LBhA66++mosW7YMLMviiSeewKFDhxTbrVixAtu2bcPatWsxfvz4NjOW4komgx1zvsM/bvkaf8nztrtqtvsteyY2edy4Pq7L8JcY+d/zn6LRapH+Noh+QWLS6aTOG/IuHuls5+Lm9Bot3BoPRFZpISqx+Wv/2Vj/TbnB5T+fuZ2ss6eXFQ62a/0PI32HxZ7cshcs9qyyZVrR/8DgZJ9zCgLSbHrk1KchvyY9qEdtNMnRmzB30wjM3jpM0fWDVxF7AKB1e8fsKyXkw822ihpB/VY7tfcQ6d+HXGfCGltjSwvcGu9+s9x+d/3My4ZJbuYzObU40E6ihsvuliw4akVrI6G9BA15IV1RFP2Fl6Nl2ZPtR9fJxKh4ENqyF26CRuQxe3ICBWBarkEayz/+z140nPPf63yldDQKN67/fiS3Ahoy2r8mFTF7Km7csCx77blxVSykPne1QuyFqLVnbRV7vI6LyFIc2FM7mUjKqyI3NxcbN25Ebm4ujh07hvvuuy/sz06aNAmTJk1SLLv55puxdOlSbNiwAfPmzZOWb9++HRaLBa+99hr69PGW15g3bx48Hg+2bdsGs9mM9HT1h6bZbMY333yD6dOnq64vLy/H5MmTYTCo30QjmWNFRQV27tyJBx54AIsWeWPHrrnmGixevBjr1q3DunXrFNtzHIexY8figw8+QElJSdD5SASZWUYcH3wRIgsIDd6LoNlpgy/eP41PLsseANw+Zgr+sK8cFpMD3+VVYu/pY0CrdpaLPZZloXFxUmaxjwy+c3Fz8k4jbvhvHHPPjcLWjINwazzeMjCtNHn8ltJcU+dqtili1rTypIiOiT1tO5a9Frv/TVou9njZ+6jL7ZbqtAGhLQDRQP7Qtco6iKhZ9gCv2LPCCQevLKrsE3t8iILfw3r1xvC9Jcg+Z0Kfmnx4rm6/Vl5lvb9lTJbHb8FlWRZz2dH4E/YAAP70/W6MbiNRQ27VUCtaGwk6k0bRnQBQCjnpAS+2PgRbv8ZoFFQGAJPM1SZ/mCcrcrEnj3mLtF2anJClV1TFnvI6HnNLf5SvPQCXzS0lQQDeFmw+8cWHcOP64vw4DRtWggYXIhbZ43Pjhvj9Z/QwSsW5Te1Y29Qse76sY/mLjTmEZc/nxjVm6SIymHBJXGcvKS17Wq0WubmhG6ZHCsdxKCgogMViUSxvac0Gzc5WuoNyc3PBsiz4Nup4bdy4Ec8++yz27NkTtG7Tpk14/vnnsXXr1pCfj2SOu3fvBsdxCqGq0+lw3XXX4ciRI7h06ZLq5wRBwPnz58M6RqzR8hqYbN4bsi/eaHxLPzzw/67Eveum4WqMSOTwVDHodLjR43eTv9m8Q/p3YIyhxh18c8nspNjTcJz0UJRb9tx2AenN3htWo8kqxRPKXbr5IV5SwkWvURd1eq5j1jSNTMDZ1cSeU5bxG9Ky51bE+ESjGG8oWI6RhL3N6Y/f0QTWT2lF11o6yKlRij2BbY1NC2HZY1kWiy/NwMiDvZFx3oCGSrPqdnIuNPmLHueySnf9T0bPAOf2Hmuv6bhCRAeiSM7opNhjGCYotonTBbtxAaXbL9yYwPYoHpGHETf0wbC5ZSib0CMq+4wlodzXYfdgDbDsaQyhu4a058YFgOJheZj/myuQG1BqxxevF3hMeZyeT+wZMsMTRmpuXI9HlO51TIiXOEOGDlOXDEP/KT0x4oa2w5Pasuz5avYB6m5cl93facSYE5kRglNY9siNGxdsNhsaGxtx/vx5bNiwAfv27cOYMWMU24wePRoA8NJLL+HEiRO4dOkSdu7ciY8++ggLFiwIaZUDgDvuuAMTJ07E888/j6+//lpavnv3bqxevRqzZ8/GTTfdFJW5nDhxAiUlJTCZlEH3gwcPBgCcPHkSFosFO3bsgNVqhdvtxq5du3DgwAGMHDkyKmOIBpkOr/hpMTjgdLvgtgrgBQ5Gqw5Zhs4lFMSKn4+/Bgab90Fek+l/EBsD3M5aIfiGmqXr3JxYlpVEgpv1ixyXzY2MJu9NSOA9uNDgffjf8s3luPd/puPOtyehV2Z+p45t0Pjnx7lZ9D9eiD4/5KEHl9Wh/clbm9ldrqD1ylp+fqEpt+w5BTe+y6vEkeHncHTIBYBVr5EVDRjGX4csHLF3eWU/TPysHybvHgiX0z8/3/emltjho8dl/pfNqmMN7Y6tqqVR+ne+VvlwLszMwpiGMgCAXe/C+wc+C7kfS0BB5c4S+GBUq5cIKOuyRS1Bg2MxYdFlmPiTwTF9CYgWoSyaYdfZC6gzF8qFC6hb9nQqcY0ZhSbMe24ihsz2hy1k9fTfw9RKr3gED+yt/bjl9fraglVJ0FB0mmmj1d3A6SWY8eBIZBS2/SKtdh59LmZ5zT6LSq09eXKGKYKyK4CyJAzV2YsTr732mhSjx7Ispk2bhkcffVSxzeWXX457770Xf/7zn7F3715p+U9+8hMsXbq0zf3zPI9nn30Wv/zlL7Fy5UqsXbsWNpsNq1atwuWXX46nnnoqavFydXV1qlZA37La2lowDINNmzZh7dq1EEURxcXFeOaZZzBgwADVfZaXl6O8vDzI2hlLsjwmnEcDRBa4UF8Pp7wYZ5IGVWeaTJjjGI1/6PZD5+BhN3hvbIExhmpiL1vfuSQJwGsREniPwrLnsgvIaPY/nE/VXEJJbh5czW4YbVqkOXVSd4+OIrfsFVdmY+4mr+V15ONlHdrflU3DkL3TAM7NovjenKD1ckGlg9yNK7MmuN3Y0/coKsd5xW1nupOEw5/v2AuL0QEXL8sADnHLnFJ9GSoP1gAABLsInxdc4Hxu3DbE3iD/+ag6Xo+h15SG3BYALtkbpUScQn1W0Prbe03BfvspFFSlo6nKAoSI4lBa9jpnhQaC4/b4EPUS5dd9uAkJqUYokRtunb1Ay15bYk/t3qoJEYfGaThcsXgIeo3Kx/nvajHkalm8qkrMnr3ZKVnkDGEWH1YrKeVLzgDUO2hESluWPcDr6m+ussJlF+CwuBQWzI4mZwDJ3UEjZcXerbfeihkzZqC2tha7du2CIAhwqVgUioqKMHLkSEyfPh0ZGRn44osv8Oc//xk5OTlYsGBBm8fQ6XR44YUXsHz5cjzxxBNwuVwYPHgwnnvuuTZdwJHicDigUXGraVtrcjkcDphMJrz66qth73PWrFmYNWsWjh8/3q6wjRa58LsWz9bXgrfJWhyFEeuRKB4Zfy1yfqVHZU49trdm3abzSkuIRuVhnm3svLWSa431EmSWvQ8u+zfOZNUhq96Ihe9NQMn9XrFgt3jdo/p0badfNAw6/41RkHW96GiMVQlyUFPptVrp3MHfdYtLJvZCWvYEuGXZrbFudm/XuyRx7yOUZU8eQ+Wyu6UMRkGy7IUea05pOmACzmXX45CmEjM9I1WLTvuocfk7pfRIywpaf+XgEfjJk1cg67wJmUWhf4Py7hmddeMCCIqjUkvQAAIse1GK2etqhBK54dbZ0wRsF6rsCqDuxlWz7MnpNSofvUYpvQNqpVd8HTeA8C17nIobV4yy2FMTzfLxyX/vllqbQuxZ6/1iz6RSUqgtWJ71hn+IlKARN0pLS6W6c3PmzMGKFSvw1FNP4fe//730INy5cydefvllvPfeeygoKAAATJ8+HaIo4ve//z1mzZrVbo06k8mEBx98EL/4xS8AAI888gh0uuhmlup0OlWh6mzNYIz28WJFPu93OZ031+G8sQ5HJ5+D1sljtm5cG59MLLkZGZg0cTB+OLNbWmYKSCjRicE3z1xT5+LmAL/Yk7txz2bXoTnTBo2Tg86pkdr+OFp7kurSO28lNcheLgReFnQfZkxRIFw7WWpWZwixx8isCYIbgk/seWKfZS63xhVezIDAeZArqn+n8vpiztZ4JlEUce/r072f65MBzFI/Dsux2LHgCI7lXwAAHL1wDkNLQrfHG3qhBPZDDrSkOdD/+qLg/bEsSpx5sMAGhyU4PtKHz43LMIApwtgkNQJj9tQ6aADKmL1ouXG7Gmpt94BIsnE758btSC1C+ffpi9lT9JDtgGVPcuMK4blxw0XVjSu37AXU2pP3gG6R19iL0LLnC/8QnJ6kc+N2myttxowZOHbsGCor/W2JNm7ciAEDBkhCz8fkyZNht9tx4sSJdvd74cIFrFq1Cr1790aPHj3wzDPPoLa2tt3PRUJubi7q6uqClvuW5eXlRfV4sULucrpkbcSB9B/x1cTT+HzaCXj0sYu/igbD5pbB4NKioCoDWfVG5GiULlp5UoGPvLTOiz2fRcgjE3u+8h5ap/eGZqmxocVmx56Jx/HNuB9xpk/wbyVSOI6DxslB4+DAu4J7nEYK206xUZtbVteLlYs9mUVIJva4Nixl0cJnrdU4OSz8y+VY9KdJuL5xrOq2rJ6FXeeCOd0Gs9VrGfC4PdA5NDBadcj0tG3lHarpJf37sx8r2ty28FwGRn9Tiil7BqJ3nnpsps9S4bC4pGK1gfjcuKZcfVQSJYJi9hQJGiFi9rpAfF0sYFkGjIoFq6Pt0iK17HWkbzfDMtJ32hnLXlzcuCr3Kfn42qq1Z+2EGxfwW23JjZsgHK0B4PIYtYaGBtXSKm6392YkCG1/WbW1tVixYgV4nseaNWvgcDjw8MMP47HHHsN///d/IyOjc+UvfPTv3x8HDhxAS0uLIkmjoqJCWt8V6GnKhq8BwiVnI2ys/w0qGi7PWGLI1OHGXhPQ/71CAMCMVUMV6zMEI0wWLQROxNx/joDGzSHr/0YhZk/FsudsLe+hcXovX3ONDVXNjfhmwo/ev2sdiAaP/OFquGwCPr3yGP74893g3BwmsUORh8g7sjTpWnC6bw3cvAeXuevRF0qLVE9HNqZ8PhBu3oNhQ/zCZ5plCAw7ebACi7K78/3ZrXEUe26ZZTOUONladBAfP+xN1OpjK0YZChSitj1RM6lwED50eNvzfW051ea2vgByjZ4LWcTWVxtNFAGH1QV9QJ9mp80NR2tgfVoU4vWA4Jg9uXWFDRGzF64lKxXhNSxcAc+YjmbjRmzZM3Swx7WOg9shwCWJvcgte0o3brBlT00ERzxOlfMoH196ntKyJ8daL0vQiNCNC7SGJrQkX+mVLi327HY7Ll26hMzMTGRlZQHwCrjAUiputxvbtm2DTqdDWVmZtLxXr17Yv38/Kisr0auX/wGzc+dOsCyLfv1C16gym814/PHHYbPZ8Lvf/U6yDr7yyitYvnw5nnzySaxZs6bNjN5wmTFjBtavX4+PP/5YqrPndDqxZcsWDBkyBIWFhZ0+Rjwozsr1tTZErccMG+d92DAeID0K5ynWjLttIADvTSOvr1Lw3HVuKr7/9Jz0t7w+VWe49uAoNNRZvIkBV3i7J/jKezTmWPH1+NP4Nucs7jD7hWU6onMuOZ6FCwJsRida0rxv8JoOPpy/01di0/yDAIDe1gJMgVIsm6p1GP2NN+xi5Pg+0vKenmz0OutNRDIIOknsxcWN22qtFVkRHsYDVmRDxpgZOf9Dwez0PjzkNcTas4he0f8ycN8yEHgRJ7VVbW7r62/altVBJ4tBcpiDxZ4limVXfATH7KknaMQiG7crwmlYRXFiIDZuXNWiyh0sPK3Rc7A3A26fG7e5c5Y9qfSKwrIXDTdu8D70soLP6bJsXvMlq2I7RYJGBK3SAo9Nlr0w+fDDD2GxWCRX5d69e1FdXQ0AWLBgAdLS0nD06FEsX74cixcvxj333APAK7ZaWlowcuRI5Ofno66uDjt27MDZs2fx0EMPwWj0f8m333479u3bh4cffhg333wzMjIy8Pnnn2Pfvn24/vrr23SPbty4EdXV1fjtb3+rEIoDBgzAiy++iMceewxbt27F/PnzOzVHABgyZAhmzpyJN954A42NjSguLsbWrVtRVVWFJ598siOnNyGU5hRg6K5imCw6DNYV4+QA70NN6+LbDEhPFjR6HpN+OkR1XWBgdVs330gYUN8DNaebAMYbA2Z1OCHKTtXn006Cd7GYbfWXFcpko2Op8VpmXIoEDXnP2EiQF2N2eILjT+vP+sva5PT2W9sVZRoEj8yNG3uLkFZ2DDfvgdbFhrTQyYuCW1xeIdVkb8G+ST+AE1jYst2YDXUXMACY9HrkmzNQld2E+nQLbA6HIknGh9Vqx4X0BhgZHQpaX3DV8Fn2AG9T+8BEDXlyRrSKEBvCjdkjsQfAf33JCdeNy2n8iQBA2+JNo+cV2wKdsex5j6Nq2csI07Inu6YFIT7ZuLxOaQU3ZukkK2XTxRbFtj7LuT5d06F2fr7fPSVohMn777+Pqir/G+6ePXukAsazZ8+WhFAgV155JTZv3oyPPvoITU1NMBqNGDRoEO6//35MmTJFse2oUaPw2muv4e2338bGjRvR3NyMoqIiLF26VLKgheKOO+7A1KlTpc4bckaMGIHXX3+93b60kcxx5cqVKCwsxLZt22CxWNC3b1+89NJLGDVqVJvHSCZy0tNw9e5hEJweZBWb4BjsvenrXMlZdiUSArPjoiX25J0HRI+IJmtL0DZujQcnGi8ArT+XLD46LnHfg9gtKz3ScbHnv9Woir1Kb4YpyzPIkgkT+Y3fI4jwtNbW48TYiwR55u37d+1DmkUHrUmHEQi+rtNk2dktbu/Dot5lwZdXeF2yzpr2b/zF7lxUoQkiCxw+fwYT+g4M2uZUXTXW/8Tr7h1TU4Z5IeqqyLMLfe5aOYruGQXREXtaAw+NgZM6QoQSe2TZ86I293AtewzDQKP3n2tdWmirGsMy0Bp4ZQ/bDiRoAP5YQcHpgccjdjBBo203biwSNAKtjgzDILOHEXVnzDDX2OBxe8DyLESPKMXsdSRez3vs1vsmuXHDY8OGDe1uM3r06KAOFldddRWuuuqqsI8zZMgQvPzyyxGPj+d5VaHnoy0XsI9w5uhDp9PhwQcfxIMPPhj2Z5INhmFgytaj+ZIV1gYHHBrvQ0jv7vpij9dxcPECDo0+C51dg4FZ0bnQuYDEhma7VXW7o7ZzktjL0XU+VhAAPh9xApeYRlSW+Ts2mDqY+a2Tdd5wepRdJlrsdnxjOI3czDSUZRUohEGd1oLTfWvgYUUMczf6Y/bE2Ltx5W3bGnOsaMyxotmq3l7JJBPBLYL3YSEvHq1h2n+I99Hk42t4xeHR6nOqYu9Ckz/5JpsN/T3LM7LlTe19mKuj78YFvA/IJpv3hUTRQUPj/77IsuclcO4My0Rk1dLoeL/Ya8ctq5GJPY2Ba7clXygCW6b5EjRYngnbNazmxhXdsS29oiZEM4pMqDtjhugRYa6xIbPIBLvFKVkZOy72vOdI9IjwCJ6Yl4gKl6QVe0RqYszWofmSFTa7E26N98Gt98SuoX28OJp+Hhtv/RqXejYBABprbIiGLK/ObMLZ3nXwcB44XC4029TF3mlttfTvnCgUcwaAY70u4GJ2o/Q34wE0Hawfqec1QOsz3iEqxd63Z09j843fAgAmVQ/AAkz1rzP8KMX69XUUwWTRwaURkOaIfS9ltQLKoXoDp2sNQKumavF4rR0KsReiPp+cgZnF0r9PWC6qbnOxpVG6a+drQieAyS17dhXLnrwnaFpedNz+gDdur+mCV+zJLXuhY/a6b4JGoNjjtWxE9THlSRrteRK0Rh4tdb5/d/zlWlFrz+72t0rLCL+HrPy34LPoeTzRFXssx4JhGSkTXU3sZfbwexCaLrYgs8jU6eQMQOlCdjs90BpI7BHdEFOOHm5eQG2ePyvamAJir15nwaXsJulvExMdMbJ9wGEcmeRN/Pi541qYHTKLTIseZpPXiiRv5ZZr6HzJFwDQiMoHMe/mOhxbKRd7gZa9w9Vn4Msp6aNXJhtpGFmxYo+An7w9GQCQ3z8TmNuhoYTN5PrLkLXfgO9GnsPFYu93G0rsZeiMktiztoo9h9svsrRM+7faoYW9gVbN/qO7WnWbalsjfLXJ1bpn+NDJYvYcKpY9qcYey3T4oaZGj8uyceFIHYxZOkV2rty6QZY9L4FCN9LMZHkMWlulVwBljF5Hauz54GXHdNrc3g4aCD85AwhRekXeLi1K5Xh4rT8BRm188jhWX9xeZ7pn+AjqopEkDQOSYxREt2H7gMPYMumAYplB7Ppiz8grH5gZbHTEnlxwOdwuZDqMGPfvPnBp3cjJTseuPsE12fLTIy+NogYfKPaEjlthdLz/YeMKsOwdt16QxN7QnF6Kdbysp65TcEEL737iUZ9tkKsnhKMuWNId7Ys9gwFo1du2VtUnF3uaMMTeoJ7F0FbySG/Ww1SrLsCqXf4Xih6mbNVtgADLnlklZq9V7KXl6qPqZhp5Yz/klmUgtyxD8R0pYvas/vF0b7EXbNmLBE2Elj3/v6Nj2bPU2SFG2CoNCIjDVc3GjU6IhjzbWd2y57doN1V5xV5n+uL64NspIJ8oSOwRcSVbp0we6HEhE0VM6IdWVyFI7HHRcY3JO0jYXS7kOtMxaa+3rmLpjYXYhWCxVxAlsRdo2dMIHX8wGzT+8+OEUuydht+KNbqXMvlBKxN7LrcbaBV78YiD8T185dnI8kQTORl6//etJvbCsexpOA5P/vMGNJ6xgGEZCLcJQdafeo/fIl6cGdxj2IciGzegi4bT6oKjxVdjL7oljzieRenY4FJQcmFDlj0vgRmjkVr2iobkoupYA3LLMhSWXDXk5Vc6Z9nzj9Fc7Q8p6bRlT15nr4PxhIF4z6cr5PgyZJa95irvXFrqo2DZk32vyVRrj8QeEVeKDH5hd8WeARi7vwzDrw+d6NJVMGn1kGuYTG10MmLlsV5OwQWNrJ9wcV4uODcrtTPrcSETDr0LOSEy1SM/tvL2wHs6frvQa2QJGrIT5fF4cNHo7ZlrsupQnJOrPCYrcxu5/VnB8oy+WOETWvKiynpe/aGWKSvpZGe84qrRaZXusPKuIG2RW5yOxjMWb+Z1lRU5vZQu+Qb4s7F7BZwrOco6e0qxZ45Bjb32YEN10OjGRZWDLXuRnYsxC/qj9+h8ZJektxsvFwvLXvMludgL3wqmVlRZ0Rs3Ste2/PwaMoKvW32aFro0DRwWl+TGVXTP6GjMnuwFzZ1EtfZI7BFxpSgtG2i9nlpMXpO5WoX3roZJq1OIvawoiT0eSsue1u6/gekMGmRZjajLsEDj5HDLX8fDkKEDd3V0HqByy964f/dBbyYPmNmxfem1GjCe1rg/t/9mfrauBjaD9+27pzXYwquRWfaaYMX+G0+CExhcxpVgDsZ3bDBhYtU5UF3QjPO9/NnIej5EgobBgFv+Oh4aJ4figlxgNlDRXAm0Gt8GZAb3sFUjq8Qv1BvOWYLEXpPG+4DlXSyyTKFFPa/lpDpigW5cZUHl6CVntIUiQUNWSLi7tksD1GL2IjsXDMMgv19WWNsqxV50YvaiYdmLVVFlQHl+Q4nRzCITqk80oqXeDrdDCHDjdsyyx5NljyCAXtl5QGuiYUuaV/V15uaTLKRp9YAsUTZbHyXLHiO3bLlgsYtw8wI4NwuNnkdpfR60Zh4ZTXoInKddd05kx/bfLAcdLcJlOcVtbN02PXXZeHjt1QCA3mMKgOu8yw+cOy1t04ctCPqchuOkYrAW2HG6fw0AwFQT+2zcf6efwPutNe186DTq55djOfRuyIXLJkCv9W5zwuPPqJ3QO7iMihrZxTKxd94MBLSVM+u9Qi3dbmg3WUaXpoHbIcAR4MZVZuLGy7Kn3hu5W7txO2nZiwSlGzc6lj1zBy177blxoxWzJxdd7Yk9AGi61CIlaLAco4h7jQSFG5cse0R3pXduviT2LOmtPT5TwbKnU4qPHGOUXKmM3I3rxhbTN9i2/FswHgalmp6499KVOLazUtqmozcoNeSlRwTOE7HlQY78QSa/AVY0VMLXaveytGAxqWE5qZ+yXZQF9jOxFwk6FddrKMse4M2OdNkEuOxuiKKIgtPpsNkcsKe7UDY2WMiqwffkseWGb1Gf24J/Cd/jf+EXiS12Oxw6r/k4w9m+SNOna9FSZ4fd4oIoipKrTx6XZMqNvWgGQlvwOvOb6urEU+xFLxtX5saV1WqMzI0rt+zFpoMGoMxWDmV5zJAlaTRfbIG13ldQWdfh2EG5RZEse0S3xaDTwWDTwmZwoqpnEz5Y9CWKDQUYiJJED61TpAeKPVN0yp/IBZdDcMMqegWyyIpI0+lhyleKD300LXuBYq8TNdE4hdjz3wBPuvzWr+GFpcFjYHlJ7DkYv9jjw6hb11nkmbd6qwaDj/REzrzQte28DxcHXDYBzZesGLenD8ahD3qNyQfCrPNeWJiFH/vWQuA94JqUYsDT7MH9r14Jq8mBotGh4/Wk8bf+FkRBhMvmliw6VrnYy4mP2AsVh8VTnT3/3zEUvhmyLikZneiYIrfsyWMvI3PjtpeNG53zMGhmCapPNqLfFT1DWjPltfbqKy1SyENHkzMApUUxmbpokNgj4k6GwwCbwetaqurZBLHrN9BAml55A81Ni1KtO3npEbdLyvQEvOU+DHka1OdYsPnGb2GwaTBZuAxXt9GDNRJK3Xko+yEPTVk2tKQ5YDM52v9QCFiOkfpzyt92XRYBmgwOAufBiJKyoM9peB6MA2A9LNyi3yIYD7EnT8YYv68PRn1TiryFob/Xyl71OJdTC7dWwORT/h7K+X3Cz47W8DzyLOm4lNWE+jQL7E4n9FrvOFoaHNC4OWQ2GdFH176lMLD8iu+Bp8w4jF6NvbYIVTute7txA0obxdCyVzwyH6Nv7g/RI6pmS4eLrzduIOH2xQUC3LhC7Ny4/a7oiT6X92hTPMpr7VUd88fmdua6kL/YuuzuNraMLyT2iLiT5TbiEvz1wuRlK7oq6UYjBlUUQeNikVufjuwx0XLjymL2BEEp9vQG6PM1sJqc3nZeAMyyB3lnmWYdDOFTN/50715sufFbVNeYMR+TO7QvhmGwd8YJOHgXMrVG3IgrILgEzNw4GNM9g8AP4qGfEGwdGK7pLcX6uceLOJZ/AUCcxJ7MsufLyG1LnOwZcgync71lZOYfmigtz+sbWSmcYlc2LqEJHk5ExYVKjCnztl60NUYm0hTlV8xOZBR6rzNfELrWyCtcXbEklBuX7cZij4+jG5dlGYy9ZUCn9yOv7eeDYZmIYoU5rj03bvR+E+3ty3dNAJBi94COJ2cAQLosDlaesZxoSOwRcSdHTIcUuAcgyxCdZIZEouE4zC0fAcHlTZKIpO1RW1zrGI3ctQawHgYTHu6HD5i90rpMowlOzo2NC7+WlmXx0TuXnIaDm/db08KpFdcW3w+6CEurdfCLk8cwkO8J0SOCAYM++erWBrm4UhYpjpPYazU4hCP2DDITdcW5s9CCAwMGeRFY9gCgTFOAb/AjAODIpbOS2LM2+i2rxqz2H0aK8iutLdNEUZQse/GK1wNCW/YCBU93Ip5u3Ggh743rw5ChjSi+Tc2NKy+9wkTJshcOGj0PY44O1nqHIrykM5a9DJXOHMlA8v+6iJTjescYmMz+iynL2PUte4A/SDmaD1Etz4PzsGDAQHB7YPfFrYlAut6AnCylBTFbE02xxypqzHVW7E13DpX+/R9n/4pzP9RKf+f0VnePyt/MXYLfJcLHQ+zJMm/tehc8jKdtsQe/uHrj2l34wwO78em8YzBmRfbgGJjeU/r392b/S9Fe5zHsm/QDvhtxDs6s9t1D+nSlZQ/wij7fQ60z1otICZmg0Y3FXqBVM5aWvWihZgmOJF4PCCi9EkM3brjI4/Z8GDsRy5pRaITvXZ/EHtGt6ZfWA1mNfoHXVr2wrsTEn1yGnsNyMWHRoKjtU/4w9Lg8sHNesad1cWA5FhyrfEDk6KMTK+g7tiCz7OmYzgVX/mraQvRo8Fq5ajPNWHP2n9K60GLPf+N3xlnsGWRdUQ6PrsT//GJnmxYMudgDALvRBbEDzWGG9ugt/fuMrEfufu0P+PKKU9h19VE4MsIRe3LLnlfsKeL14pScAYRO0IhWH9SuSKBVs8ta9iLIxAVC9cYVVdfHA3ncno/OvAhxPIv0Au/zrbmqBaIotvOJ+EBuXCLumLL1cDq8DytWYGDUdv3euABQNr4Hysb3iOo+lTdGEU6D97xpXeqXbjTL2HxpOIm/3+Z3EXdW7Om1WrzY/y7ce2kdBN6DgyPO4NthZzD6qzIs7DVd9TMWxo7dM4/Bw4qwZ8TZjavVQNawApzAtumeN7LBD72BfHjFlOVc1rMY3EUGAi/ivLZBWi7vnlGcHX42LuDvj5uITFxA3bLHado+n6lOPBM0ooVazF7EYo9lwDCAKIbIxo1Su7RwUbXsdTJxKbPIhOZLVrjs3kLN8bzWQpH8rxJEymHM0Un1wnROvt3isN2Zc3wd9k49gT0zjuMQewZOvvW8uf0P8gnN/aR/j8gPLl/SUQReWTZAx3ZeSI4u64e77NOkv0UWODDuR2Rkq7vyXawbh8ZU4rtR51CbZcawb4sx+LueKBPyOz2W9jBqlDd8Xmj7YWxSEXsjcyJvBajlNci1eC2dvoxcAGjivcHenJtFfnroEjA+lNm4wZa9eD6A1Kw13dmFCwRb8rqC2FOz7OkjdOMC/t+DlKDhSZwbV15rz0dnSq8ASmthsrhyu/fVRiQEbZYGzVnegpy+VlmEOtV8M76Z8CO+HXsWJ9kqODWtYs/jF3vPjbwdV9YNxTLnXPQviNySFAp5NioA6NnoWGB/MfV69Gnwi7WS5tBWKg3vF5jZ9SbMLB+CWduGYpyrX8jPRIsSQy7uXTcNWrt3DJyn7duliQsWe5eXdSwDstjl7bPm4UQcveAtmm3Wea+ZNJs+rBckXZq8P673OmtRtIOKT9kVILRlrzvTFRM0WI4NGneklj3AL/bU3LhMgt24GgPX6RaeySj2yI1LxB1TevweMl0dLcdLGaEOwYlb/zIBTq2Awl6ZwCzv8p45uVg7+94YHDtA7HHRKYjIsix+O/Je3FnxKprTbLhBPy7ktnKx52Flb/9RapbeFjqtBkarDpzgffjw7Yk9XmkNyLQYUJSd06Fjz/QMRcZOPXJqTdDfrIGtp1N6McpwhVcUV5GgoRazF9ds3ODvqzNFulOBeHbQiCa8jlNkrkaaoAEAHM/Ahdh20AiX9AIjGJaB6PGOobNWPYDEHkEAADiOwz0tM7HF+Q1+njM70cNJanSy8h92pxtll7xWsN754bXf6gx6XgvI8gD0XPRiK3vnF+DjsU/jfEM9hhSH7p6i5WRij4tvELdPjAic9wtoz42bplGKsFJ7x13N0/KGwnXQK9DO7qmGzeS3gGcJ4WWv8zrOm2Tj8qjH7MUxG5fcuMF0xZg9wPu78pXyATpn2fPH7Mle5OIcs8fxLNLzDVJNvGhcF5k9SewRBABg+bQbsBw3JHoYSY+W54HW+6pTXmdOJVA62ug4Xin22ugL2xGy09KQndZ2JrZWYdnziz0uioVXQ+FreySJPbHtc56pNUrCHAAGaXqG3rgd5NnJlQdr8A/Nl0BrqGMOE172OsN4i91aGxxB2bicho2oEG5nUXXjdgG3ZSzpim5cIPje0xHLXqAbV15nLxEZ2r6ECiA6XWWMWTpo9BxcdiFpxF7X+HURRDdFJ7NsKYoKx6HzgbxdWJ+T+RjP9Y/5MQPRymrdne/VgHXLduL3D+/CF9rvY35slmNxYPwZCJpWsdeOG/dywwCM/KaX9PfI3MiTM3xk9jBh5I39JEFwcOxZaV0+335yhg9fkobD4lIWVM7RxzUTlmGZoGK5ZNnrqm5c5b2nI5Y9LjBBI4FuXECZpBGNxCWGYZDRmuVrrrZCcAntfCL2kGWPIJIYnUzs1Gkt+H5QFTRODj0y2i+90VnkRYWNLVqk6eJfPkDDcYAIb19dAG6NB4AHrDs+D4TPJ5/wj6Udy57GwKMuzyL9PaGDyRk+xt82EMOvLcORT89AL3wOa2urvLH54Ytun/VOcHlga3bCafWaauPVE1cOx7NwC4Li7+5MVxV7cssewyizvsPFF8PpE3nKosqJsez5iFaWelZPE+p+bIYoAs3VNmQXJ7aeLIk9gkhidLKkiPPZ9ThxfRUAgG/Q4HpMiOmx9Rr/TVzgPQl7GHECG1QGRhOFMjDhwICBV222349Xo+dx49/GojG7Bda+LhSOzer08fXpWoy9YQC2C8+i/MhBaDgOs4aOiujzPurPmqV/J6LuV6DFhhI0lPPvKm5cefkVXbq2QzF2PkGnZtmLZ7s0H30nFaFi+xmIHqDP5dGplZohq9/XdKGFxB5BEKGRW/Zseqf0b6NKmY9oI7fsCZwnYQ8j1sMg0AkiT9yIJXqHBi1Gb7mS60+NaXNbY5YOOh2PnPo0TBwROumkI2g4DnNHjI34c/K4vPozzdK/49k9w0dgLFZXETexoivW2QMAjcyN2xEXLiBz4woiRFFMuBtXn6bFgv87FQCiFt6QpUjSsABQ7/8dL0jsEUQSI0+KEGXPhjQ+9mIvV5eB0lO5aM60Q2RE2Dhn+x+KAX0q8+ESBZzuXyMt08RJ7GndPFrggN6mQW97Xpvb8joOsx4dgwsV9Rg6J3rFrTtDMln2ghISunnMXldslwYAvMyN25HkDEBZiscjiAl34wLRE3k+FOVXqqxR3XdHILFHEEmMSaNH8dlscB4Wlwqb4GhtlxZY5iMWpGn10Lh4NOS2oCG3BXY+MQWwb9o1FrYmJ/ZOPYFvJvwIANBy8bGCaDze47h5IahxvRrFw/NQPLxtURhP5LX26s4kWOwFWPb4bu7GDbR0dh3LnlzsdeylUz53j9ujtOzFoYZmPAh04yYaEnsEkcRk6oy4+QNv0eEvJ/6AfZNPAQDSNLF/WHNaFgLvd6AatYkphi3F98iKKgcWfI4VfrHnAavpeg8hncyy13jBnzySkJi9gId4IkpsJBNdNUGD13Xesscpen57lKVX4lxnL1ZoDTyM2TpYGxxoqkq82OveVxtBJDnyB4JT6xde8ciM5XgWblliROLEnvfmL8iKKsfLjevStJ5zBriY3hCXY0YTvaxlmvyBGs9WaT4oZk8JwzDS9c3yDJguInKUbtwOWvZkcXked3K4cWOBz5Vrb3YqClEngtQ5qwSRgshvfJLwAJCuC6+LQmdgWAa1slIiRn2CxJ4vmJuTWfb4+FhBGg3+WJs9BcficsxoInfj+mAYwJCVmNIrir+7ecwe4D8HXcWqBwA6o6wkUwdfGoLcuO7Uc+MCgW3TLG1sGXvIjUsQSQzDMmA5Bh5BhEvrb2eRoY+92AMAm8mflCHPDI4nG6b/G1WmJjRn2aRl8XLjyh878SxCHC10acFuNkOWLiHWk6AYNRJ7XVLslU3ogSPbzoDTsigd07G2jWyAG1dp2et611kolGLPioIB2QkbC4k9gkhyPlj4JexaF+rz/HEfmfrYJ2gkC81GuyT05n40Ah5OROF9mXE5drYjDVV8IwBAy3adB7IPNcteIuL1ADXLXtc7n9Gm59Bc/PD5RfQcFvsi6dHCmKXDLa9M7dTLDyfPxnV74PHI6+ylzkuAXOw1JrhtGok9gkhy6nNaYNd74z00Tg4urYAMY3wse8kAJ/ofDP1OFoABg3RtfMTu9RdG4w8DdgEA8jzhtylLFjQGHgzHKOL1ElFjDwh2z5EbF5j+wAgMv7YPcsq61m+rs1ZupRtXhOhz4zKpk6ABkBuXIIgI4Fp7sqY367H4zakQGRHpf4qP2Lmqbhh25n6HqbWXxeV4anCyzhUiI4IRmbhlcgoav0jSxqlrRzRhGAb6NA1sTX53fKIse0EJGiT2wHIs8vrGx0qdTIRy46aSCxcA0vMNUhhO08XE1trrencvguhm8K1iT2hNUNDqebBsfB6Ua2bfgx+rL6H36Py4HE8NTlZNWuBEsG6Ai5OrxyPLRtaxiYlZ7Cz6dK1S7CUgExegBA3CDxeizl4qZeIC3vmkFxrRdKEFzVUtED1iwrKuU+vMEkQK4rPsCa115jT6+L6jlRUUxk1cqsHLxN65XvWo6tEEyMqwxBKPzLKn64KWPUDZMg0gyx6ReBSlVwRRJvZSy7IHAFmtrlzB5YGlztbO1rGDrjaCSHL41sK+Ap8YsZdoONltatPNB/HBnV9CjFNs/7+y/OVWTmmr43PQKCNvmQYkLmaPC4zZ60IZqER0Ce6gkZpuXADIbO2Ry2lYtNTZEzaO7vXUIIguiM+N6dZ4sPPqCvQWc3ErpiV4VPGDR7Ao0PLxuXXlIR0/wtuTtwefFZdjRpvA8itk2SMSTWAHjVR14wLA0DllGDyrFGm5+oQWzk69M0sQKQYvM2NVjDiP4yVVCRxN/JHH7AEAKzBxcys/M2Ahihqy0K+uAPcPvSYux4w2geVXkqb0Sjdvl9adkWdmy924TApa9kzZeqTnGxLeIYUsewSR5PABYscgds1EgY7CB7yTsp74iYSy/AJsnfWruB0vFsj74+rSNAkr4EuWPcJHoBtXTGE3brJAVxtBJDl8QICaQexY8/GuyoT6/pi+01/6hfPQAyES5JY9Y3ZirHqAWm9citnrrshFXaq7cZMFOrMEkeRcfrE/BlX0kP42MN1L7A1tKcGIg72Q0eitLcjF0bKXCuhlMXuJcuECKgkaZNnrtnABRZUlsZdCfXGTDbraCCLJGd1YhqGHSqS/jUxi6qQlCp9FyFdnMJ5u3FRAn5EkYk9DblzCS8hs3BTqnpFs0NVGEEkOx7Nwat3S30a2m4m9VpePh/W+/fMk9iIir28melyWDV2aBoNmFCdsHIEuOhJ73ZfgDhrkxo01lKBBEEkOy7NwaQXpbxPXvcSeTeNCY5YVNpO3CwQr0gMhEliWwfW/mgiP4Enow5QSNAgfcpe+4PQAvta45MaNGST2CCLJcWkFNOS0SH+b+MS54hLBjrxvseXeg9LfZNnrGIm2mgTH7FGCRndFLvxdDv+LbKJ/o6kMiT2CSHL+WfI1vsw9Jf2dpuleYo9n/KJg7scjMFIsA65K3HiIjsEGWPJ4sux1WxRuXKdM7FHMXswgsZdCvPzyy9i7dy/sdjsKCwtx3333YfLkyYkeFtFJNLLLVG/ToMiYncDRxB+52OMEFqZuFrOYKsgzMBkmNQvoEuEht/K65ZY9cuPGDBJ7KcTChQuxfPlyaLVaHD16FCtWrMD69euRmZmZ6KERnUAjEztzNg3H8J+WJnA08UfD+m9TAuuhB0IXRW7N4bQcGIa+x+6K3F1Lbtz4QGc2hSgtLYVW6y2zwDAMXC4XamtrEzwqorPIxZ7AitDou1esE8/IyjRwIj0QuijyQrrUKq17I//+FZY9svbGjKS07FmtVqxfvx4VFRU4evQozGYznn76acydO7fdz54+fRpvv/02jh8/jvr6euj1epSWlmLRokVBLs3f/OY32Lp1a8h9ffjhh8jPz+/0fNSIdI5OpxNvvfUWtm/fDrPZjH79+mHJkiUYP368Yrs1a9Zgy5YtcDqdmDhxIvr27RuT8RPxQyu3bPEeaPRJednGDJ7xz/eLKSeRU5mOazEhgSMiOoI8+5Yycbs3bAixR6792JGUT42mpia88847KCwsRP/+/XHgwIGwP1tVVQWr1Yo5c+YgLy8Pdrsdu3fvxtNPP43HH38c8+bNk7adN28exo0bp/i8KIpYvXo1evToETOhB0Q+xxdeeAGffvopbr31VpSUlOCTTz7BE088gVdffRUjRoyQtluxYgWWL1+OgwcP4tSpU+QqSQE0MrHjYT3QGJLyso0ZGtb/YGjOsuGQ+2wCR0N0FIUbl8Ret4YNFbNHVvuYkZRPjdzcXGzcuBG5ubk4duwY7rvvvrA/O2nSJEyaNEmx7Oabb8bSpUuxYcMGhdgbNmwYhg0bptj20KFDsNvtuPrqq9s8jtlsxjfffIPp06erri8vL8fkyZNhMBhU10cyx4qKCuzcuRMPPPAAFi1aBAC45pprsHjxYqxbtw7r1q1TbM9xHMaOHYsPPvgAJSUlQeeD6FroZJa9rTccxjNaTwJHE3/kYhcI7hVMdA04RcwePdS7M0o3rr9gPLlxY0dSXnFarRa5ublR2x/HcSgoKIDFYml32/LycjAMg1mzZrW53caNG/Hss89iz549Qes2bdqE559/vk0XcSRz3L17NziOUwhVnU6H6667DkeOHMGlS5dUPycIAs6fPx/WMYjkRZ6gAABGfffKRtVwSnHHJ+dti2gHpWWPBHt3Ri7qXBSzFxdS9q5ps9nQ2NiI8+fPY8OGDdi3bx/GjBnT5mfcbjd27dqFYcOGoaioqM1t77jjDkycOBHPP/88vv76a2n57t27sXr1asyePRs33XRTNKaCEydOoKSkBCaTSbF88ODBAICTJ0/CYrFgx44dsFqt0jwOHDiAkSNHRmUMROLQckqxx7Ipe9mqwgeIXR4kFLoictcdJWh0bxQxe05y48aDpHTjRoPXXnsNH3/8MQDvw3HatGl49NFH2/zMl19+iaampnZduADA8zyeffZZ/PKXv8TKlSuxdu1a2Gw2rFq1CpdffjmeeuqpqMXL1dXVqVoBfctqa2vBMAw2bdqEtWvXQhRFFBcX45lnnsGAAQNU91leXo7y8vKwrJ1EYtGyKXuZhsU4pi/mfjwCn8w7BECZnUt0HciNS/hQiD07WfbiQco+RW699VbMmDEDtbW12LVrFwRBgMvlavMz5eXl4HkeM2fODOsYOp0OL7zwApYvX44nnngCLpcLgwcPxnPPPQeej96pdTgc0Gg0Qct9ZVYcDgdMJhNeffXVsPc5a9YszJo1C8ePH8fSpUujNlYi+ozl/BnVabbu5cIFgDROj/Rmf9cQsux1TThK0CBaCVl6hSy+MSNlz2xpaSnGjRuHOXPm4KWXXoLNZsNTTz0FURRVt7darfjss88wYcKEiIoQm0wmPPjgg2hubobNZsMjjzwCnS66D2SdTqcqVJ1Op7SeSF3SOYPUKDzDbkzsYBIAy7PwsP7rVt5Rg+g68Dr/96bRpaydgQgDuUvfI/ivbYbapcWMlBV7gcyYMQPHjh1DZWWl6vrPPvssrCzcQC5cuIBVq1ahd+/e6NGjB5555pmoFzLOzc1FXV1d0HLfsry8vKgej0gu3LwAtN4D9Z5gC2+qw/EsPJw/A5nEXtfEkKnDgKnF0KVpMGhmSaKHQyQQhmWke5occuPGjm4j9hwOBwCEjFHbsWMHDAZDRL1ka2trsWLFCvA8jzVr1mD16tWw2+147LHH0NzcHJVxA0D//v1x7tw5tLS0KJZXVFRI64nUxc77SxPoRW0CR5IYGpkWHBzjf0nTkBu3yzL9gRG46/WrUDIydjVMieSHYRjVJB1qhRg7urTYs9vtOHPmDBobG6VlDQ0NQdu53W5s27YNOp0OZWVlQesbGxvx1VdfYdq0adDr9UHr1TCbzXj88cdhs9mwZs0aFBQUoFevXnjllVdQU1ODJ598EjabraNTUzBjxgwIgiAlnABeF+6WLVswZMgQFBYWRuU4RHJSw/pfHC6kB/++U50aphmnBlRLf+eLGQkcDdFZyFVHAOrCjrJxY0fSBk58+OGHsFgskqty7969qK723vAXLFiAtLQ0HD16FMuXL8fixYtxzz33AABeeeUVtLS0YOTIkcjPz0ddXR127NiBs2fP4qGHHoLRGBzztHPnTgiCEJELd+PGjaiursZvf/tb9OrVS1o+YMAAvPjii3jsscewdetWzJ8/v1NzBIAhQ4Zg5syZeOONN9DY2Iji4mJs3boVVVVVePLJJ8MeM9E10Rp4oNWomyZ2v/hMjaz0zPCDJZiZPzSBoyEIIhp4hZ2gXEYvAjEjacXe+++/j6qqKunvPXv2SAWMZ8+eLQmhQK688kps3rwZH330EZqammA0GjFo0CDcf//9mDJliupnysvLkZ2djbFjx4Y9vjvuuANTp05Fnz59gtaNGDECr7/+ert9aSOZ48qVK1FYWIht27bBYrGgb9++eOmllzBq1Kiwx0x0Ta4ovQyzj4/AD6jCqiF3JHo4cUfD+922Hlakt3+CSAHIjRtfGDFUeirRLfCVXnnzzTcxaNCgRA+HIIL49sxp3F373wCAy74rwq96LMTQa0oTPCqCIDrD+mWfwlKrDHW6YvEQDJlN13YsoFdkgiCSGq2sZqWHE8HR2z9BdHnUY/bo2o4VJPYIgkhq5DF73w+uwkHdj4kbDEEQUUEtHIMhsRczSOwRBJHU6AJ6A1s5Z4JGQhBEtFCz0FM8buygM0sQRFKjDWg9qOnmvYIJIhVQa41GbtzYQWKPIIikRhMg9rQciT2C6OqQ2IsvJPYIgkhqdBplizgNSx00CKKro1p6hdy4MYPOLEEQSY1Bo8X4L/z1LMmyRxBdH8rGjS8k9giCSGoYloHA+cuBktgjiK6PmhuXUVlGRAc6swRBJDUMw8DDe6S/SewRRNeHU3HZUru02EFijyCIpEeU6TsSewTR9SE3bnwhsUcQRNLz7Yiz0r+1vKaNLQmC6AqoZuOSGzdm0JklCKJLkadJT/QQCILoJOrZuGTZixUk9giCSHrSWnTe/5t1yNGS2COIro5qggaJvZhBYo8giKSHE723KoEVVdssEQTRtVCz4lGdvdhBZ5YgiKSH83hvVR7WQ3E9BJECUAeN+EJ3TYIgkh6nxg0AcBjc5OohiBRAzUJPlr3YQWeWIIikx2JwSP92su4EjoQgiGhAlr34QmKPIIguRWCvXIIguh4k9uILiT2CIJKewpZM6d8ajkvgSAiCiAbkxo0vdGYJgkh6fjdgCebUj8Ja42KwLN22CKKro15UmSx7sYL6DhEEkfQMLCrGS0V3J3oYBEFECdU6e9QbN2bQKzJBEARBEHGFU3HZUlml2EFnliAIgiCIuBLksmUAlix7MYPEHkEQBEEQcSXQikdCL7aQ2CMIgiAIIq5wgWKPXLgxhc4uQRAEQRBxJdCNSzX2YguJPYIgCIIg4kpgTT0Se7GFxB5BEARBEHEl0G3LUEHlmEJnlyAIgiCIuBLYQYMse7GFxB5BEARBEHElKBuXxF5MIbFHEARBEERcCRZ7JEdiCZ1dgiAIgiDiCrlx4wuJPYIgCIIg4gq5ceMLiT2CIAiCIOIKuXHjC51dgiAIgiDiChcg7pjAXrlEVCGxRxAEQRBEXAnqoEG9cWMKiT2CIAiCIOJKUG9ccuPGFDq7BEEQBEHEFSYgISPQ0kdEFxJ7BEEQBEHEFYZhFBm4ZNmLLXR2CYIgCIKIO/KM3EBLHxFdSOwRBEEQBBF35HF7VGcvtpDYIwiCIAgi7sjj9MiNG1vo7BIEQRAEEXdYsuzFDRJ7BEEQBEHEHXLjxg8SewRBEARBxB1y48YPOrsEQRAEQcQdcuPGDxJ7BEEQBEHEHXl/XCq9Elv4RA+AiB4vv/wy9u7dC7vdjsLCQtx3332YPHlyoodFEARBEEEoLXtke4olJPZSiIULF2L58uXQarU4evQoVqxYgfXr1yMzMzPRQyMIgiAIBcqYPbLsxRKS0ilEaWkptFotAG8rGpfLhdra2gSPiiAIgiCCUWTjUm/cmJKUlj2r1Yr169ejoqICR48ehdlsxtNPP425c+e2+9nTp0/j7bffxvHjx1FfXw+9Xo/S0lIsWrQopEvz+PHjePvtt3H48GE4nU707NkTN9xwA2655ZZoT00i0jk6nU689dZb2L59O8xmM/r164clS5Zg/Pjxiu3WrFmDLVu2wOl0YuLEiejbt2/M5kAQBEEQHUXhxmXJ9hRLkvLsNjU14Z133sGZM2fQv3//iD5bVVUFq9WKOXPmYNmyZbj77rsBAE8//TQ+/vjjoO2//PJLPPjgg2hsbMRPf/pTLFu2DJMmTUJNTU1U5hKKSOf4wgsvYMOGDbj66quxbNkysCyLJ554AocOHVJst2LFCmzbtg1r167F+PHjwTD0tkQQBEEkH3LXLblxY0tSWvZyc3OxceNG5Obm4tixY7jvvvvC/uykSZMwadIkxbKbb74ZS5cuxYYNGzBv3jxpeUtLC37zm99g4sSJWLVqVURvFmazGd988w2mT5+uur68vByTJ0+GwWBQXR/JHCsqKrBz50488MADWLRoEQDgmmuuweLFi7Fu3TqsW7dOsT3HcRg7diw++OADlJSUBJ0PgiAIgkg0LLlx40ZSWva0Wi1yc3Ojtj+O41BQUACLxaJYXl5ejvr6eixduhQsy8Jms8Hj8YS1z40bN+LZZ5/Fnj17gtZt2rQJzz//PLZu3Rry85HMcffu3eA4TiFUdTodrrvuOhw5cgSXLl1S/ZwgCDh//nxYxyAIgiCIeMJRNm7cSNmza7PZ0NjYiPPnz2PDhg3Yt28fxowZo9jmq6++gslkQm1tLe68805cc801mDt3LlavXg2Hw9Hm/u+44w5MnDgRzz//PL7++mtp+e7du7F69WrMnj0bN910U1TmcuLECZSUlMBkMimWDx48GABw8uRJWCwW7NixA1arFW63G7t27cKBAwcwcuTIqIyBIAiCIKKJ3JpHdfZiS1K6caPBa6+9JsXosSyLadOm4dFHH1Vsc+7cOQiCgJUrV+K6667Dfffdh4MHD+LDDz+ExWLBr3/965D753kezz77LH75y19i5cqVWLt2LWw2G1atWoXLL78cTz31VNTi5erq6lStgL5ltbW1YBgGmzZtwtq1ayGKIoqLi/HMM89gwIABqvssLy9HeXl5kLWTIAiCIOIBddCIHykr9m699VbMmDEDtbW12LVrFwRBgMvlUmxjs9lgt9tx4403Yvny5QCA6dOnw+Vy4eOPP8Y999yDXr16hTyGTqfDCy+8gOXLl+OJJ56Ay+XC4MGD8dxzz4Hno3dqHQ4HNBpN0HJfmRWHwwGTyYRXX3017H3OmjULs2bNwvHjx7F06dKojZUgCIIgwoHcuPEjZc9uaWkpxo0bhzlz5uCll16CzWbDU089BVEUpW10Oh0A4KqrrlJ8dtasWQCAI0eOtHsck8mEBx98EM3NzbDZbHjkkUek/UYLnU4XJFQBbzkW33qCIAiC6EpQUeX4kbJiL5AZM2bg2LFjqKyslJb53KA5OTmKbbOzswF4M27b48KFC1i1ahV69+6NHj164Jlnnol6IePc3FzU1dUFLfcty8vLi+rxCIIgCCLWyK15JPZiS7cRe76EC3mM2qBBgwAgqKaeT6xlZWW1uc/a2lqsWLECPM9jzZo1WL16Nex2Ox577DE0NzdHbez9+/fHuXPn0NLSolheUVEhrScIgiCIrgS5ceNHlz67drsdZ86cQWNjo7SsoaEhaDu3241t27ZBp9OhrKxMWj5z5kwAwObNmxXbb968GRzHYfTo0SGPbTab8fjjj8Nms2HNmjUoKChAr1698Morr6CmpgZPPvkkbDZb5ybYyowZMyAIgqIotNPpxJYtWzBkyBAUFhZG5TgEQRAEES+Khni9apyGRX7/rMQOJsVJ2gQNX0asz1W5d+9eVFdXAwAWLFiAtLQ0HD16FMuXL8fixYtxzz33AABeeeUVtLS0YOTIkcjPz0ddXR127NiBs2fP4qGHHoLRaJSOMXDgQFx77bXYsmULBEHAqFGjcPDgQezatQt33XVXm+7RjRs3orq6Gr/97W8VSRwDBgzAiy++iMceewxbt27F/PnzOzVHABgyZAhmzpyJN954A42NjSguLsbWrVtRVVWFJ598siOnlyAIgiASSo/LcnDr6mnQGHgYsyj2PJYwojxjIYlYuHAhqqqqVNe9//77KCoqwoEDB4LE3s6dO7F582acOnUKTU1NMBqNGDRoEG6++WZMmTIlaF9utxt/+tOf8Mknn6C2thaFhYWYP38+Fi5c2Ob43G43Kisr0adPH9X1P/zwA/r27dtm+ZVw5ujD4XBIvXEtFgv69u2LJUuWYMKECW2Osz182bhvvvmm5NYmCIIgCCJ1SFqxR8QHEnsEQRAEkdp06Zg9giAIgiAIom1I7BEEQRAEQaQwJPYIgiAIgiBSGBJ7BEEQBEEQKQyJPYIgCIIgiBSGxB5BEARBEEQKQ2KPIAiCIAgihSGxRxAEQRAEkcKQ2CMIgiAIgkhhSOwRBEEQBEGkMCT2CIIgCIIgUhgSewRBEARBECkMn+gBEInF4XAAAM6cOZPgkRAEQRAEESmlpaXQ6/VtbkNir5tTVVUFAPjP//zPBI+EIAiCIIhIefPNNzFo0KA2t2FEURTjNB4iCWlsbMSXX36JoqIiaLXaqO77zJkz+M///E/8x3/8B0pLS6O672SH5k5zp7l3L7rz/GnuiZ07WfaIdsnKysLs2bNjeozS0tJ23zpSFZo7zb270Z3nDnTv+dPck3fulKBBEARBEASRwpDYIwiCIAiCSGFI7BExIzc3F4sXL0Zubm6ihxJ3aO409+5Gd5470L3nT3NP/rlTggZBEARBEEQKQ5Y9giAIgiCIFIbEHkEQBEEQRApDYo8gCIIgCCKFIbFHEARBEASRwlBRZSLqOJ1OvPXWW9i+fTvMZjP69euHJUuWYPz48YkeWrtYrVasX78eFRUVOHr0KMxmM55++mnMnTs3aNsff/wRv/vd73D48GHwPI9Jkybh4YcfRlZWlmI7j8eD9evX4x//+Afq6+tRUlKCu+66C7NmzerwPqPN0aNHsXXrVhw4cABVVVXIyMjA0KFDsWTJEvTq1atDY+wK8/Zx+vRpvP322zh+/Djq6+uh1+tRWlqKRYsWYfLkyR0aa1eav5x3330Xf/jDH9CnTx/87//+r2Ld4cOH8frrr+P777+HyWTCzJkzsXTpUhiNRsV2kdwDwt1nLDhw4ACWL1+uum7dunUYOnRoxOPsKnP3cfz4cbz99ts4fPgwnE4nevbsiRtuuAG33HJLxOPsKnP/zW9+g61bt4Zc/+GHHyI/Pz+icSb73Ckbl4g6zz33HD799FPceuutKCkpwSeffIJjx47h1VdfxYgRIxI9vDa5ePEibrvtNhQWFqJnz544cOCAqtirrq7Gvffei7S0NCxYsAA2mw3r169HYWEhfv/730Oj0Ujb/v73v8d7772HG264AZdddhk+++wzfPHFF/j1r3+Nq666qkP7jDbPPPMMDh8+jJkzZ6Jfv36oq6vDxo0bYbPZsG7dOvTt2zcl5+3jiy++wIcffoihQ4ciLy8Pdrsdu3fvxqFDh/D4449j3rx5KT1/+VjuuusuMAyDHj16KMTeiRMn8MADD6C0tBTz5s1DdXU13n//fYwePRovv/yyYj/h3gMi2Wcs8Im9BQsWYPDgwYp1EyZMkMR2Ks4dAL788ks8/fTTGDBgAK688koYDAacP38eoijigQceSNm5f/fdd7hw4YJimSiKWL16NXr06IF333039eYuEkQUOXLkiDh16lTxL3/5i7TMbreLt99+u3j//fcncGTh4XA4xNraWlEURfHo0aPi1KlTxS1btgRtt3r1anHWrFliVVWVtGz//v3i1KlTxY8++khaVl1dLc6cOVNcs2aNtMzj8YgPPfSQePPNN4tutzvifcaCQ4cOiU6nU7Hs7Nmz4lVXXSU+//zzEY+xq8y7Ldxut/izn/1MvPPOO6VlqT7/X//61+Ly5cvFRx55RLz77rsV6x5//HHxpptuEi0Wi7Tsn//8pzh16lRx37590rJI7gHh7jNWfPPNN+LUqVPFXbt2tbldKs7dYrGIN954o7hy5UpREISQ26Xi3NX49ttvxalTp4rvvvuutCyV5k4xe0RU2b17NziOkywhAKDT6XDdddfhyJEjuHTpUgJH1z5arTas4pi7d+/GFVdcgcLCQmnZuHHj0KtXL+zatUta9tlnn8HtdmP+/PnSMoZhcNNNN6GmpgZHjhyJeJ+xYPjw4UEWpF69eqGsrAxnzpyJeIxdZd5twXEcCgoKYLFYpGWpPP+DBw9i9+7deOSRR4LWtbS04KuvvsLs2bNhMpmk5ddccw0MBoNinOHeAyLZZzywWq1wu91By1N17uXl5aivr8fSpUvBsixsNhs8Ho9im1Sduxrl5eVgGEYKs0i1uZPYI6LKiRMnUFJSovghA5BcJCdPnkzEsKJKTU0NGhoaVJteDx48GCdOnJD+PnHiBAwGA0pLS4O2862PdJ/xQhRFNDQ0IDMzE0D3mLfNZkNjYyPOnz+PDRs2YN++fRgzZkzEY+1q8xcEAa+++iquu+469OvXL2j9qVOnIAhC0Dg1Gg0GDBgQNPdw7gGR7DPWvPDCC5gzZw6uvvpqLF++YwnOyAAADQhJREFUHMeOHZPWpercv/rqK5hMJtTW1uLOO+/ENddcg7lz52L16tVwOBwRj7MrzT0Qt9uNXbt2YdiwYSgqKop4nF1h7iT2iKhSV1enahnzLautrY33kKJOXV0dAIScZ3NzM5xOp7RtdnY2GIYJ2g7wn49I9hkvduzYgZqaGlx55ZURj7Grzvu1117DvHnzsGjRIvzP//wPpk6dikcffTTisXa1+X/00Ue4dOkSlixZorq+vXHKr+tw7wGR7DNW8DyP6dOnY9myZfjNb36De++9F6dOncLDDz+M77//PuJxdqW5nzt3DoIgYOXKlZgwYQJWrVqFa6+9Fh999BFefPHFiMfZleYeyJdffommpiZcffXV0rJUmztl4xJRxeFwqAaUa7VaaX1XxzeH9uap1WrDPh+R7DMenDlzBmvXrsXQoUMxZ86ciMfYVed96623YsaMGaitrcWuXbsgCAJcLlfEY+1K829qasIf//hH3H333SGzf9sbp1yQRmvu8RC5w4cPx/Dhw6W/p0yZghkzZuBnP/sZ3njjDbzyyispO3ebzQa73Y4bb7xRykiePn06XC4XPv74Y9xzzz0pO/dAysvLwfM8Zs6cKS1LtbmTZY+IKjqdTno4yvH9iHU6XbyHFHV8cwhnnuGej0j2GWvq6urw5JNPwmQyYdWqVeA4LuIxdsV5A0BpaSnGjRuHOXPm4KWXXoLNZsNTTz0FURRTdv5/+MMfkJ6ejgULFoTcpr1xysVotOYeL4EfSElJCaZMmYIDBw5AEISUnbtvDPLMcABSzNqRI0dSdu5yrFYrPvvsM0yYMEEKWQFS7zdPYo+IKrm5uZKpWo5vWV5eXryHFHV8JvhQ88zIyJAu2tzcXNTX10MMqHAUeD4i2WcssVgseOKJJ2CxWPDKK68ovq9UnncoZsyYgWPHjqGysjIl519ZWYl//vOfuOWWW1BbW4uLFy/i4sWLcDqdcLvduHjxIpqbm9sdZ+DvJJx7QCT7jDcFBQVwuVyw2+0pO3ffGHJychTLs7OzAQBmszll5y7ns88+g91uV7hwgcjG2RXmTmKPiCr9+/fHuXPn0NLSolheUVEhre/q5OfnIysrC8ePHw9ad/ToUcUc+/fvD7vdrshoBYLPRyT7jBUOhwNPPfUUKisr8eKLL6KsrEyxPlXn3RY+t4vFYknJ+dfW1sLj8eDVV1/FbbfdJv1XUVGByspK3HbbbXjnnXfQp08fcBwXNE6Xy4UTJ04EzT2ce0Ak+4w3Fy5cgFarhcFgSNm5+5IEampqFMt9cWNZWVkpO3c5O3bsgMFgCCqenmpzJ7FHRJUZM2ZAEAR8/PHH0jKn04ktW7ZgyJAhivISXZnp06fj888/V5SS+frrr1FZWamI+5gyZQp4nsfGjRulZaIo4qOPPkJ+fj6GDRsW8T5jgSAIePbZZ3HkyBE899xzinHJSbV5+2hoaAha5na7sW3bNuh0Okn4ptr8+/Tpg//6r/8K+q9Pnz4oLCzEf/3Xf+G6665DWloaxo0bh+3bt8NqtUqf37ZtG2w2m2Kc4d4DItlnrGhsbAxadvLkSezduxfjx48Hy7IpO3ffMTZv3qxYvnnzZnAch9GjR6fs3H00Njbiq6++wrRp06DX6xXrUm3ulKBBRJUhQ4Zg5syZeOONN9DY2Iji4mJs3boVVVVVePLJJxM9vLD48MMPYbFYJFP73r17UV1dDQBYsGAB0tLScNddd+HTTz/FL37xC9xyyy2w2Wz461//ir59+yq6bRQUFODWW2/FX//6V7jdbgwePBj/+te/cOjQITzzzDNSPByAsPcZC1577TXs3bsXV1xxBcxmM7Zv365YP3v27IjG2FXm7eOVV15BS0sLRo4cifz8fNTV1WHHjh04e/YsHnroIamNUarNPysrC1OnTg1a/sEHHwCAYt2SJUvw0EMP4ZFHHlFU/h8/fjwuv/xyabtI7gHh7jNW/PrXv4ZOp8OwYcOQnZ2NH3/8Ef/85z+h1+vx85//PKXnPnDgQFx77bXYsmULBEHAqFGjcPDgQezatQt33XWX5FJMxbn72LlzJwRBCHLhRjrOrjB3apdGRB2HwyH1CLRYLOjbty+WLFmCCRMmJHpoYbFw4UJUVVWprnv//felOkynT58O6mf60EMPBcXAeDwe/OUvf8HHH3+Muro6lJSU4M4775QElJxw9xltli1bhoMHD4Zcv2fPnojH2BXm7WPnzp3YvHkzTp06haamJhiNRgwaNAg333wzpkyZ0qGxdqX5B7Js2TI0NTUF9cY9dOiQ1NPTaDRi5syZ+PnPfx7U0zOSe0C4+4wFf/vb37Bjxw6cP38eLS0tyMrKwtixY7F48WKUlJR0aJxdZe6A13r9pz/9CZ988glqa2tRWFiI+fPnY+HChR0aZ1eaOwA88MADuHDhAv7+978rXsA6Ms5knzuJPYIgCIIgiBSGYvYIgiAIgiBSGBJ7BEEQBEEQKQyJPYIgCIIgiBSGxB5BEARBEEQKQ2KPIAiCIAgihSGxRxAEQRAEkcKQ2CMIgiAIgkhhSOwRBEEQBEGkMCT2CIIgCIIgUhgSewRBEAlg2bJlmDZtWqKH0S6ffPIJpk2bJv337LPPdmg/r7/+umI/f/zjH6M7UIIgQsInegAEQRBdnUhFm7zXcFdhypQp6N+/P/r27duhz48bNw5arRZVVVXYunVrlEdHEERbkNgjCILoJIsXLw5a9re//Q0Wi0V1HQD8n//zf2C322M7sCgydepUzJ07t8OfHzduHMaNG4cDBw6Q2COIOENijyAIopPcc889Qcu2bt0Ki8Wiug4ACgsLYz0sgiAIACT2CIIgEsKyZctw8OBBhUv3k08+wQsvvICnn34aGRkZePfdd3Hq1Cmkp6fj2muvxT333AOWZfHJJ59gw4YNqKysRFZWFhYsWIBFixYFHUMURWzZsgWbN2/GqVOnIAgCysrKcNNNN+G6666Lyjxqa2vx3nvv4d///jdqamqg1WqRk5ODUaNG4f7770daWlpUjkMQRMchsUcQBJFk7NmzB/v378fUqVMxfPhwfPHFF3j33XchiiLS0tLw7rvvYsqUKRg1ahT27NmDdevWITs7G3PmzJH2IYoiVq1ahfLycpSUlGDWrFnQaDTYv38/XnrpJfz444946KGHOjVOu92Ohx56CFVVVRg/fjymTZsGl8uFixcvYvv27bj99ttJ7BFEEkBijyAIIsnYt28fXnvtNQwePBiA1028aNEifPDBBzAajXjrrbfQs2dPAMDtt9+OO+64A+vXr1eIvU2bNqG8vBzXXnstHn/8cfC893bvcrnwzDPP4P3338esWbMwaNCgDo/z66+/xsWLF3HrrbfikUceUayzWq3SMQmCSCxUeoUgCCLJmD17tiT0AMBoNGLSpEmw2+246aabJKEHeGP/hg8fjjNnzsDtdkvL//73v8NgMODRRx9ViC6NRoOlS5cCAMrLy6MyXp1OF7TMaDRCq9VGZf8EQXQOeu0iCIJIMvr37x+0LDc3t811giCgoaEB+fn5sNvtOHXqFPLy8vDee+8FbS8IAgDg7NmznRrnyJEjkZubi/feew8nT57EFVdcgVGjRqG0tBQMw3Rq3wRBRA8SewRBEEmGyWQKWsZxXLvrfJY9s9kMURRRU1ODd955J+RxOlv6JS0tDa+//jreeustfP755/j3v/8NACgoKMCdd96J+fPnd2r/BEFEBxJ7BEEQKYZPEA4aNAhvvvlmTI9VWFiIlStXwuPx4IcffsD+/fvx4YcfYu3atUhPT8esWbNienyCINqHYvYIgiBSDKPRiNLSUpw5cwZmszkux2RZFgMGDMAdd9yBX/3qVwCAvXv3xuXYBEG0DYk9giCIFOSWW26B3W7Hyy+/DJvNFrT+woULuHjxYqeOcfr0adTX1wctb2hoAABK0CCIJIHcuARBECnIvHnzcOTIEWzduhWHDx/GuHHjkJubi4aGBpw9exYVFRX41a9+haKiog4fY//+/Vi3bh2GDx+OXr16ISMjAxcuXMDevXuh1WopZo8gkgQSewRBECkIwzBYuXIlJk6ciE2bNuHzzz+HzWZDdnY2SkpK8OCDD2Ls2LGdOsaECRNQVVWFb7/9Fnv27IHNZkNeXh6uvPJK3HHHHSgrK4vOZAiC6BSMKIpiogdBEARBJCfyFm5z587t9P4OHDiA5cuXY/HixSH7BhMEEV0oZo8gCIJolxdeeAHTpk3Ds88+26HPv/7665g2bRqWL18e3YERBNEu5MYlCIIgQtK/f38sXrxY+rtv374d2s+4ceMUCRujR4/u7NAIgggTcuMSBEEQBEGkMOTGJQiCIAiCSGFI7BEEQRAEQaQwJPYIgiAIgiBSGBJ7BEEQBEEQKQyJPYIgCIIgiBSGxB5BEARBEEQKQ2KPIAiCIAgihSGxRxAEQRAEkcKQ2CMIgiAIgkhh/n/O3bLWojhfPgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# LCs: \n", + "# The plots below are normalized to the initial time.\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "df = pd.read_csv(\"crab_lc_3x.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],ls=\"-\",label=\"Combined\")\n", + "\n", + "df = pd.read_csv(\"selected_crab_lc_3x.dat\", delim_whitespace=True)\n", + "plt.semilogy(df[\"Time[UTC]\"] - df[\"Time[UTC]\"][0], df[\"Rate[ct/s]\"],ls=\"--\",label=\"Selected Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Time [s]\")\n", + "plt.ylabel(\"ct/s\")\n", + "plt.savefig(\"combined_lc_comparison.pdf\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0xUlEQVR4nO3dd3hUVeLG8e/MpPcGCSQh9ITQQUBAERRURFHXFQs/V1RA0bVXXLCisuoudkQWxF0rYkMpYhBReq8JoYWQUNN7nZnfHwODMQEhJDOT5P08j4/kzJ2ZdxCTl3vPPcdgtVqtiIiIiDRhRmcHEBEREXE2FSIRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWnyVIhERESkyVMhOgulpaUkJydTWlrq7CgiIiJSD1SIzkJqairjxo0jNTXV2VFERESkHqgQiYiISJOnQiQiIiJNngqRiIiINHkqRCIiItLkuTk7gIiINF1ms5mKigpnx5BGwN3dHZPJVOvnqxCJiIhTFBYWkp6ejtVqdXYUaQQMBgNRUVH4+fnV6vkqRCIi4nBms5n09HR8fHxo1qwZBoPB2ZGkAbNarWRkZJCenk6HDh1qdaZIhUhERByuoqICq9VKs2bN8Pb2dnYcaQSaNWvGgQMHqKioqFUh0qRqERFxGp0Zkrpyvn+WVIhERESkyVMhEhEROaGyspLnn3+euLg4unTpQo8ePRg/fjy5ubl18vpjxozhjTfeqPGxZ555hk8++aRO3uekd955hzFjxtTpazZWmkN0BgkJCSQkJFBYWOjsKCIi4gB33XUX2dnZrF69muDgYKxWK/PmzSM7O5ugoKB6fe8XXnihXl9fzkyF6AyGDh3K0KFDSU5OZty4cc6OIyLSqH37j5UU55XV2+v7BHpy3UsDT/v43r17+fLLLzl48CDBwcGAbV7KjTfeCMBrr73GnDlzMBqNdOvWjffee4/AwECee+45EhMTKSkpITk5mY4dOzJ16lQeffRRUlJS6N27N5988glGo+2izLZt2xgwYACZmZn079+f999/H29vb8aMGUOPHj146KGHeO6550hKSqK4uJh9+/YRERHBvHnzCAkJAeD1119n7ty5VFZW0rx5c2bMmEFMTAwFBQWMHTuWLVu20KxZMzp37lxvv5+NjS6ZiYiISyjOK6M4ux7/+ZOytWnTJjp06EBYWFi1xxYtWsTs2bNZuXIl27dvx9fXl6eeesr++IYNG/jvf/9LcnKyvZTMmzePxMREkpKSWLRokf3YtWvX8uOPP5KUlER2djbTpk2rMc/atWuZM2cOiYmJ9tID8Omnn5KcnMzq1avZtGkTo0eP5t577wVsZ5k8PT3ZtWsXCxYs4Ndffz3n/w5Nlc4QOdGh7Zns+jmNsDYBhLUNJKx1IJ5+7s6OJSLiFD6Bni77+gkJCdx00032y2YTJkywnzkCuPzyy+1nlXr16oWnpyf+/v4A9OzZkz179tiPHTVqlP2xu+66i7feeounn3662nteeeWVhIaGAtC/f3+2b98OwLfffsv69evp3bs3YFvT6aSlS5cybdo0DAYDgYGB3Hrrrezbt6/Wn7spUSFyoiNJ2aSsPUrK2qP2sYBwH0LbBBDWJpBmbQMJbR2Ap69Kkog0fme6nOUIvXr1Ys+ePWRlZdmLyOn88RZvLy8v+69NJlO1rysrK8/6tU73midfw2q1MnHiRMaPH3/GjGd6balOl8ycKPtgQbWx/GPFpKw5yvrPkln40jr+Ny6BuQ8v5+e3trDth/0c3plFebH2/RERqWvt27fnhhtu4K677rLfVWa1Wvnqq69o27Ytc+fOJT8/H4AZM2Zw+eWX1+p95s2bR2FhIWazmQ8//JChQ4ee0/Ovu+463n//fbKzswHbIpebN28GbHNfP/zwQ6xWK/n5+Xz22We1ytgU6QyREw19uCe5h4vITMkjc38+mSl5ZB3Ix1xhqXJc/rFi8o8Vs3/NEftYQISP7QxSm0CatQ0gNCYADx+dSRIROR+zZ89mypQp9OvXDzc3NywWC4MGDeKf//wnxcXF9O/fv8qk6tro06cPV1xxBRkZGfTv35+HHnronJ4/evRosrKyGDJkCGBbKuDOO++kZ8+eTJ48mbFjxxIXF0ezZs246KKLKCurv4nqjYnBql31/tTJu8xmzpxJbGxsvb6XxWwh99DJkpRHZko+WanVS1JNAlv42uYjtQkk7MTlNg9vdV4RcT2lpaWkpKTQpk2bKpeGRGrrfP9M6aelizGajIS08ieklT8dL4kCwFJpIedwob0gZe7PI/tgQbWSlHekiLwjRexbdeJMkuFkSbKdRQprYytJ7l76zy4iIvJ7+snYABjdjIS2CiC0VQCxg21jlkoLOemFZKbkkbE/j6yUfLIO5mOp/N0JPyvkHS4i73AR+1Yeto0ZIKilrSTZzyTF+KskiYhIk6afgg2U0c1IaOsAQlsHEDskGgBzpYWc9AL7fKTMlHyyU/OxmKuWpNxDReQeKmLvCltJMhggsKXfiTlJAbZ/xwTg5nnuuwWLiIg0RCpEjYjJzUhYa9t6RvC7kpRWYL/clrE/j5y0giolyWqF3EOF5B4qZM9vhwBbSQqK8jt1JqlNgEqSiIg0WipEjZzJzWgvNSeZK8xkpxVWmbidnVaA9Q8lKSetkJy0Qvb8eqIkGQ0ERfrZ5yOFtQ0kpJU/bh4qSSIi0rCpEDVBJncTzdraFn7kMttYZbmZnLQCMk7e2ZaSR3Z6YdWSZLGSk1ZATloBu5efKknBUX62lbZP3OGmkiQiIg2NCpEA4OZholm7IJq1C7KPVZabyT5YYJ+PlLk/j5z0QqyWqiUp+2AB2QcL2P2LbcxgMhAS5XdijSRbUQpp5Y/JXSVJRERckwqRnJabh4nm7YNo3j7IPlZZbiY7Nd8+HykzJZ/c9AJ+v5qV1WwlK7WArNQCdv+SDoDRZCA42v/EpbYTZ5Ki/VSSRMSlfP3117z00kuYzWZKS0tp2bIlCQkJ9p3qT8dgMJCTk2Pf6+xcvfHGG9x8881ERESc83Mfe+wx/Pz8eO6556o9VllZyUsvvcRnn32Gm5sbbm5u9O3bl1dffbXWWf9ozJgx9OjRo8YFJp955hliY2MZPXp0nbwXwDvvvMOGDRuYM2dOnb0mqBDJOXLzMNG8QzDNOwTbxyrLzGSl5lc5k5R7qLBKSbKYrWQdyCfrQD7Jy2xjJ0vSybNIYW0DCY72x+SmHWVExPGOHDnC+PHj2bhxIzExMQBs2rTJIfuBvfHGGwwePLhWhehM7rrrLrKzs1m9ejXBwcFYrVbmzZtHdnZ2nRWiM3nhhRfq/T3qigqRnDc3TxPhHYMJ73iqJFWUVpJ9sMC+RlLG/jxyDxfCaUrSSUY3AyGtAuwFKaxNAMFRKkkiTcV/j/3C/44t/9PjOvlE8Vb7u6qMPbB3FknF6TUef1v4JfwtfPAZX/PYsWOYTCZCQkLsY7169bL/es+ePTz00EMcP36csrIyxo8fz9///vdqr3Om41avXs3jjz9OQUEBVquVF198ka1bt3L48GFuuukmvL29mTNnDp07d2by5Mn8/PPPlJeX07FjR2bMmEFwcDBHjhxhzJgxpKWl0bJlS8LCwoiLi6uWY+/evXz55ZccPHiQ4GDb92eDwcCNN95oP+a1115jzpw5VbYjCQwM5LnnniMxMZGSkhKSk5Pp2LEjU6dO5dFHHyUlJYXevXvzySef2M+cbdu2jQEDBpCZmUn//v15//338fb2rnL26LnnniMpKYni4mL27dtHREQE8+bNs/9+v/7668ydO5fKykqaN2/OjBkziImJoaCggLFjx7JlyxaaNWtG586dz/jfsbZUiKReuHu51ViSsg7YLrfZziblkXu4qGpJqrTa7nzbnwdL0wBbSQptFWBfIymsTSDBUX4YVZJEGp0icynHK/L+9LiIyqBqYzmVhad9bpG59E9fs1u3blx00UXExMRwySWXMGDAAG699VYiIyMxm83ccsstfPzxx8TFxVFcXMyFF15Iv3796NOnj/01znRcu3btuO6665g3bx4XX3wxFouF3Nxcrr32WmbPns0XX3xBjx49AHj55Zfx9fVl3bp1ALz44otMmjSJd999lwceeIC+ffvy448/cujQIXr06FFjIdq0aRMdOnQgLCysxs+7aNEiZs+ezerVqwkKCmL8+PE89dRTTJ8+HYANGzawceNGgoKCGDx4MGPHjuWnn37C29ubCy64gEWLFjFixAgA1q5dy5o1a/Dx8eG6665j2rRpPP3009Xec+3atWzcuJHQ0FBuvvlmZsyYwcSJE/n0009JTk5m9erVmEwm/ve//3HvvfeyYMECXnjhBTw9Pdm1axf5+fn238+6pkIkDuPu5UZEXAgRcaf+9lVeUkl26qn5SJn788g7Wr0kZey3rci960RJMrnbtjgJ+/3ltkg/jCaVJJGGzNfkRXP3wD89LtjNr8ax0z3X1/Tne1sZjUa++uordu3axfLly1m0aBEvvfQSGzZsoLy8nJ07d3LzzTfbjy8oKCAxMbFKIUpOTj7tccePHyc2NpaLL77Y/n6/Pxv1e99++y15eXl89dVXAJSXl9O6dWsAli5dyuuvvw5AZGQkI0eO/NPPVpOEhARuuukm+6WzCRMmVDl7dPnll9vPLPXq1QtPT0/8/f0B6NmzJ3v27LEfO2rUKPtjd911F2+99VaNhejKK68kNDQUgP79+7N9+3b7512/fj29e/cGbMXypKVLlzJt2jQMBgOBgYHceuut7Nu3r1af+UxUiM4gISGBhIQECgsLnR2l0fLwrqEkFVfY5iT9bsXtvCNFVZ5nrrCQsS+PjH2n/jZocjcSGvP7y22BBEX6qiSJNCB/Cx/8p5e2TuePl9BqKy4ujri4OO6++26uvPJK5s+fzxVXXEFISAhbtmw543OtVutpj1uwYMFZZ7Barbz99ttcfvnlf3rs6eY49erViz179pCVlWUvIefyOr/fINVkMlX7urKy8pwzne41rFYrEydOZPz48eecs67oJ8UZDB06lKlTp3L//fc7O0qT4uHjTotOoXQd0YYhf+/Bjf8axN/+M5SrJvWl7+g42vZvQUCET7XnmSssHN+bS+JPB/l1xna+fmoFH931E/OfXc2qOYns/jWd7LQCLGZLDe8qIk3doUOHWLlypf3rnJwcUlJSaNeuHbGxsQQEBPDhhx/aH9+7dy/Z2dlVXuNMxw0YMIA9e/bw22+/AWCxWOzPDwgIIC/v1F/wTl52Ki4uBqC4uJidO3cCtp9Ns2fPBmwTwefPn1/j52nfvj033HADd911F7m5uYCteHz11Vfs37+foUOHMnfuXPLzbfM4Z8yYcVYFrCbz5s2jsLAQs9nMhx9+yNChQ8/p+ddddx3vv/++/fejoqKCzZs3A7bP++GHH2K1WsnPz+ezzz6rVcY/ozNE0iB4+LjTMj6UlvGn/pZTVlRhm5N08nJbSh75x4qrPM9cbuH4nlyO78m1j7l5mgiJ8aeZfYPbAAJb+mE01v+dJCLiuiorK3nhhRdISUnBx8eHyspKbr/9dq699loAfvjhBx566CGmTZuG2WwmLCyMTz/9tMpruLm5nfa4yMhIvvnmGx599FEKCgowGo28+OKLXHPNNTzwwAOMGzcOHx8f5syZw5NPPklZWRn9+vWznxF58skn6dy5M2+++SZjxowhPj6eyMhILr300tN+ptmzZzNlyhT69euHm5sbFouFQYMGcdlllzF8+HB27NhB//79q0yqro0+ffpwxRVXkJGRQf/+/Wu8Bf9MRo8eTVZWFkOGDAFs/y3uvPNOevbsyeTJkxk7dixxcXE0a9aMiy66iLKyslrlPBOD1fr7m6OlJsnJyYwbN46ZM2cSGxvr7DhyBmWFFWQeOFWQMvfnUXC85E+f5+ZpIrR1gH217bC2gQS28FVJEqknpaWlpKSk0KZNmyqXUURq63z/TOkMkTQqnn7uRHYJI7LLqbsqSgvLybIXJNu/CzKqlqTKMjPHknM4lpxjH3PzNJ0qSCf+HdjCF4NKkohIo6NCJI2el58HkV3DiOz6u5JUUE6m/XKbrSgVZlYvSUd35XB016mS5O5tsk3cPjFpO6xNAIERKkkiIg2dCpE0SV7+HkR1DSPq9yUpv9x+V1tGSh5ZKXkUZlZdu6Si5DQlqfWpfdvC2gQSEO6jkiRyFjRrQ+rK+f5ZUiESOcErwIOo7s2I6t7MPlaSX/a7+Ui2fxdl1VCSkrI5mnTqbhN3b7cq85EiOgbhG+rtsM8i4urc3d0xGAxkZGTQrFkzh2yPIY2X1WolIyMDg8GAu7t7rV5DhUjkDLwDPInu3ozo35ekvDL7IpKZKXlkpORRnF31joeKkkqOJGZzJNFWkgwG6HZNW3r/tYNW2BbBtgZNVFQU6enpHDhwwNlxpBEwGAxERUVhMtVu03AVIpFz5B3oSXSPZkT3OFWSinPL7NuRnDyTVJxzqiRZrbB1/n4O78hi8H3dCWzh64zoIi7Fz8+PDh06UFFR4ewo0gi4u7vXugyBCpFInfAJ8qRVz+a06tncPlacU0pmSj5HkrLZsfgAVrNtC5Jvnl5J/9s70fGSKF0mkCbPZDKd1w8xkbqic/ci9cQn2ItWvZrTb3Qc1z7f335WqLLMzG8f7ODnN7dQWlju5JQiIgIqRCIOEdY2kOteGkDskCj7WMq6o3zz1EoOJ2Y5MZmIiIAKkYjDuHu5cfG4rlz2UE88fW13QRRll7LwpXWs/zwZc6X2WBMRcRYVIhEHa9M3gr9MHUjLzif2ZTsx4fr759aQd6TIueFERJooFSIRJ/AN9Wb4xD70vSUWo8k2sTrzxITr5GVpWqxORMTBVIhcwLLcHaSVZeqHYBNjMBrodk1bRv5xwvXMHSx9c7MmXIuIOJBuu3ey3MoiHto3GwB/kzfxPlF08omis2808T7RRHqE6NbsRu7khOs1/9tF8rI0AA6sO8bxvbkMntD91KU1ERGpNypETpZYnG7/dYG5hLUFe1hbsMc+FmDyJt4nmnjfKO4Iv4wAN23/0BjZJlx3IbpHGL/N3EFZYQXF2WUsfHkd3a5uQ+8bO2LSCtciIvVG32GdLNIjhAktruCSwM40cw+o9ni+uYQ1Bbv579Ff8DRW7a+bCvazNGcbR8pzdLmtkWjdJ4K/TL2oyoTrbd+n8P2zq8k9XOjccCIijZjOEDlZjFcz7ml5hf3r4+V5JBank1icZvt3URpZlQW0826Bp7HqhnWfZaxgSc4WAILd/Ij3iSLeJ/rE5bYomrsH6nJbA+Qb4sXwiX3YvjCFDV/sxmK2kpmSz7f/WMWFt3UidohWuBYRqWsqRC6muUcgzT0CGRzUGbDt4Hu8Io+cyuq3YycVp9l/nVNZyMr8XazM32UfC3XzJ94niuvD+nFZcLf6Dy91xmA00O3qtrTsHMqyd7aSd6SIyjIzK/6zg7StGVw8tgte/h7Ojiki0mjokpmLMxgMhHsEEecTWe2xR6JGMi5iKAMCYgkyVd8sNKuygN/ykzhWkVdlvMhcyvTDi1meu5OMivx6yy7nL6xNINe/PJC4y6LtY6nrj/H1Uys4tCPTiclERBoXnSFqwC4N6sqlQV0B25mkI+U59kttO4vSSCxOI99cQmef6CrPSypO5/0jS+xfN3MPoLNPdJW720Ld/R36WeT03DxNXHRXF6K6NeO3mdttE65zylj0ynq6jmjDBaM04VpE5HypEDUSBoOBlp4htPQMYWhwd8BWkg6VZ9PcPbDKsb+/sw0goyKfX/J28kveTvtYuHsQXXyjeb3t7RgN+mHrClr3CadZ+0CWT9/G4R1ZYIXtP6RweEcWQ+7rTlCkn7Mjiog0WE3uJ92OHTu45JJL+Oijj5wdpd4ZDAaiPEPx+MPdaVcG9+TVNn9jTPgQ+vp3wN/kVe25xypy2V96rFoZ+uz4b/znSAKr8pPJrWFek9Qv32Avhj/Vh76j4+wrXGcdyOebf6xk19KDuttQRKSWmtQZIovFwjvvvENcXJyzozhVc49ArgjpwRUhPQCwWC2kl2Wx8+TdbUVpJBWnE/+HS20AczNWsb/0mP3rlh4htsttvlEn7nKLItCt+nwmqTsGo4FuI9oQ2TmUn9/ZQt7hIszlFlbM2kna1kzbhOsATbgWETkXTaoQff/993Tq1ImiIp3Z+D2jwUgrr2a08mrG8JCegK0kFVuqbh1RbC7jQOnxKmOHy7M5XJ7NT7lb7WORHiE8EX0dg4O61H/4Jiy0dQDXvzSQNR8nsWup7Y7D1A3HyNibyyUTuhHZNczJCUVEGg6XvGRWXFzM7NmzeeyxxxgxYgSDBg1i0aJFNR5bXl7O9OnTuf766xk6dCh3330369evr3ZcXl4eX375JXfeeWd9x28UjAYjfn+4lOZldOer+Cd4qfWtjG5+MT392uBlrH4m4lB5Nr5/eG5y8SGe2P9fPjq6jHUFeygwl9Rr/qbi5ITrYY/0wtPPtk5Vca5twvXaT3ZhrjA7OaGISMPgkmeI8vLymDNnDuHh4bRv357Nmzef9thXXnmFX375hRtvvJGoqCgWLVrEE088wZtvvkm3bqfW3pk5cyY33ngj/v66e6q2jAYjbb3DaesdztWhFwBgtlo4UHq8ykKSySWHqy0TsLkwhR9ztvDjiYUkAVp5NqOzTxSdfKPp7BNFnE9UtRImZyfmgnBuaBfI8ve3cWh7FgDbF6RweEcmQ/7eQxOuRUT+hEsWotDQUL755htCQ0PZtWsX48ePr/G4xMREli5dyoQJE7jlllsAuOKKKxgzZgzTp09n+vTpAOzevZtdu3bx8MMPO+wzNBUmg5F23hG0847gmtA+gK0kmf4wGXtX8aFqzz1YlsHBsgwW5dgKrwED/fw7MKPjPfUfvBHyCfbiyif7sGPxAdZ/noyl0kpWagHf/GMlF97WibhLo7XCtYjIabhkIfLw8CA09M93+F6+fDkmk4mRI0faxzw9PRkxYgQffPABx44dIzw8nC1btpCWlsYNN9wAQGFhISaTicOHDzNx4sR6+xxN1R/LEMCkmL9ya/OL7duS7CxKY3fJYcqtlfZjrFhr3Lz28f0f4W5wo7NPNPG+0cR6t8TH5Fmvn6GhMhgNdL2qDS3jQ1n27hZyD9kmXK+ctZP0LRlcPK6rJlyLiNTAJQvR2dqzZw9RUVH4+la9q6lTp04A7N27l/DwcEaOHMlll11mf/ytt96iRYsWjB49usbXzczMJCsry/51ampqPaRvWtwMJjr6tKSjT0uuoy8AFVYz+0qOnrizzVaUuvm2rvK8MksFP+fuoNJqZkH2RgCMGGjjFU5n3xOLSfpE09GnJd41zGdqqkJbB3DdlIGs/XQXST8dBCB143GO71vBJRO6EaUJ1yIiVTToQpSVlVXjmaSTY5mZtq0NvLy88PI6NTfF09MTb2/v084nmj9/PnPmzKn7wFKFu8FEnE8kcT6R/OU0P5/TyrKqjVmwsq/0KPtKjzI/yzaB3oSR/3S8l17+beszcoPi5mli4B2dieoWxm8fbKe0oIKS3DIWv7KeLle1ps9NHTG5m5wdU0TEJTToQlRWVoa7u3u1cQ8PD/vjNXn66afP+LojR45k4MCB9q9TU1OZMmXKeSSV2mrvHcHqHq+wt+QIO4vT7GeT9pYcoRKL/TgzFlp7Na/y3O8y1/Hx8eXE+9i2I4n3jaKjd0s8jdX/zDRmMb3DaTY1kOXvb+fQdttfEnYsPMDhnbYVroOjdKOBiEiDLkSenp5UVFRUGy8vL7c/XhthYWGEhemSgqvwMLoR72ubP3RSmaWCPSVH7AXpeEUeIe5V76TaXnSQ3SVH2F1yhG+z1gHghpF23i3o7BtFJ59oOvtE08G7RbXVvBsb24TrC9j54wHWfWabcJ2dWsC3/1hFv/+Lo9PQVppwLSJNWoP+KRAaGkpGRka18ZPzf1RqGi9PoztdfFvRxbcVNKv5mEJzCUYMWDi1nUUlFpJLDpFccghYC8CQwC680b7q+lQ13SnX0BmMBroMb0OLzqEse3sruYcKMVdYWPVhIulbM7l4fBe8AzRZXUSapgZdiE6uUVRUVFRlYnViYqL9cWm6pra9jWctN7G7+DA7i23bkewsSiOl9FiVkvTHNZMqrWYGb32GVp5h9ktt8T7RtPOOwN3Q8OfchLYK4LqXBrDuk10knphwfXDTcb5+aiWX3NOVqG6naZgiIo1Ygy5EgwcP5vPPP2f+/Pn2dYjKy8tZuHAh8fHxhIeHn9frJyQkkJCQQGFhYV3EFSfwNnrQ3a813f1a28eKzWUklxy2X27r69+hynNSSo9RYC5hZ3EaO4vTwDbtBg+DGx29W9oLUrxPFO28I3BrgCXJzcPEgDs6E9W9Gb9+sJ3S/HLbhOupG+gyvDUX3NQRN4+G97lERGrLYHXR7bG/+uorCgsLycrK4ttvv2XQoEF06GD7wXXDDTfg52ebL/Lss8/y66+/MmrUKCIjI1m8eDFJSUlMmzaNHj161EmW5ORkxo0bx8yZM4mNja2T1xTXtbFgHy8e/JIDpRlYOfP/Hku6PkO4R5D960JzKV5G9wZVkopzy/h1xjbSt2bax0Ja+TPk75pwLSJNh8sWolGjRnH06NEaH/viiy9o0aIFYLuTbNasWSxZsoTCwkLatm3L2LFj6du3b51lUSFqmgrNpewqTrdvSZJYnE5q2ak5a6Fu/izt9lyVycivpn3DVxlriPOJtK2R5Gu7w621V3OXnpNktVjZuSSV9Z8lY66w3b1ncjfSb3QcnYZpwrWINH4uW4hciQqRnFRgLmFX8SESi9KwYOWOiEurPD4m+W02F6ZUe16wmx9PRF/LVSG9HRW1VrIPFrDsnS3kpJ+6TBzdsxmDxnfFO1ATrkWk8XLdv7KKuCB/kzd9/Ntze8SQamUIbBvWRnlUXyw0p7KQiSmf8HTKJxSYSxwRtVZCWvlz7ZQBxF8RYx9L25zB10+tIG1r9Ts6RUQaC50hOoPfT6retm2bzhDJWcurLCKp+BA7i9PYULCXVfnJ9sdaeoTwdvuxtPeOcGLCP5e2+TjLZ9gmXJ/U+coY+twcqwnXItLoqBCdBV0yk/O1MHsjL6V+RaGllJYewcyNfwx/U/WNbF1NcV4Zv76/nfTfnR0KjrZNuA6J1oRrEWk8dMlMxAGuCunN3PjH6O3XlpfajG4QZQjAJ9CTK57oTf/bO2Fyt327yEkr4LtJq9j5Yyr6+5SINBYqRCIOEukZwqyO99HLr+oGtMfKc1mYvdFJqf6cwWCg8xWtuXbKAIKjbctdmCssrP4okSWvbaQkr+Y9A0VEGhIVIhEH+uPt6xarhUkHPmNiyidMTPnYtSdcR/tz7YsD6Pz7CddbMvjqyRWkbdGEaxFp2FSIRJxoRf4u1hXsAWBh9iZGJb7OpsL9Tk51em4eJvrfHs8VT1yAV4AHAKX55fz46gZWfZRIZbnZyQlFRGpHhUjEiQYFxjO1zW34m7wAOFyew13J7/Lu4UVUWl23XET3aMYN/7yI6B6n9j1L/DGV7yavIvtggROTiYjUju4yOwPddi+Ocrgsm38c+LTK2aFuvjG83GY00Z5hTkx2ZlarlaSfDrL2k11VVrjuc0ssna+I0QrXItJgqBCdBd12L45gtlqYfXQp0w//iBlbufAxejKx1V+4JuQCly4XOekF/Pz2VnLSTp0diurejEH3dMVHK1yLSAOgS2YiLsJkMDKuxTDmxN1PtKdttetiSxmTD3zG9uKDTk53ZsFR/lz7Yn+6DG9tH0vfmsHXT67g4ObjzgsmInKWVIhEXEw33xi+6PQo14baNii+IexCuvnG/MmznM/Nw8SFt3XiiicvwDvw1ITrJa9tZNUcTbgWEdemQiTignxNXrzQ+mbebHcnj0VdW+Uxq9Xq2hOuuzfjL1MvIrrn7yZcL0nlu0mryDqY78RkIiKnp0Ik4sIGB3XBx1R1Ds732Rv42663OFjqumv/eAd6cvljvRlwR/ypFa7TC5k/eTU7Fh3AatHURRFxLSpEIg1IWlkmrxz8mp3FaYxK+hffZq5z2e0zDAYD8cNiuO6lAYS0su17Zq6wsOZ/Sfz46gaKc7XCtYi4DhWiM0hISOCpp57i7bffdnYUEQBKzOWEuQfYfm0p59nUz3ki5b/kVxY7Odnp1TjhelsmXz+1goObNOFaRFyDbrs/C7rtXlxJsbmM19K/5evMtfaxcPcgXmpzK3382zsx2Z9L35bB8ve3U/K7s0Pxw1rRd3Qcbh4mJyYTkaZOZ4hEGhgfkyfPxtzEv9reToDJG4BjFbmM2z2dNw/9QIWl0skJTy+qWzP+MnUgrXo1t48l/nSQb/+xiqxUTbgWEedRIRJpoIYGd2de/OP09e8AgBUrs4/+zO3Jb3OoLNvJ6U7PO8CTYY/2qjLhOvdQId9NXsX2hSmacC0iTqFCJNKAhXsEMaPD3TwceTVuBtslp2PlufiYPJyc7MzsE65fHkhIjG3CtaXSytqPd7H4nxsozil1ckIRaWpUiEQaOKPByJiIS/lf7AO08WrOlDa3Euzm5+xYZyU40o9rX+hP1xFt7GOHttsmXKduPObEZCLS1KgQiTQS8b7RzIt/nP4BVSf+Z1UUsK5gj5NS/TmTu4l+o+O4cmIffIJsay6VFlTw0782sXL2TirLXHcRShFpPFSIRBqRk5fNTrJarTx74HPG736faenfu/aE665h/GXqRbTqfWrCdVLCQb6dtJKsA5pwLSL1S4VIpBFbmruN3/KTsGJlzrFl3Jb8FimlrnspyivAg2GP9GLgXZ0xeZyccF3Ed8+sYvsCTbgWkfqjdYjOICEhgYSEBAoLC9m2bZvWIZIGx2K18L/jv/LWoQX2/c+8DO48Hn0dN4RdiMFgcHLC08s5VMgv72whK7XAPhbZNZRB93TDN9jLiclEpDFSIToLWphRGrqk4nQmpnxMSumplaEvDerKszGjCHLzdWKyMzNXmNkwdw/bF6TYxzz93Bl0d1dieoc7MZmINDa6ZCbSBHTyieKzTo9wY9gA+9jPudv5a+JrrMnf7cRkZ3ZywvXwiX3wCbZNuC4rtE24XjFrhyZci0idUSESaSK8jR5Mivkrb7S7kyCT7axQRkU+d+95n6TidCenO7PIExOuYy44dVZo19I0vvnHSjIP5DkxmYg0FipEIk3MkKAuzOv8OBf6dwTgqpBedPKJcnKqP+fl78HQh3ty0e8mXOcdLmL+5NVs+2G/JlyLyHlxc3YAEXG8Zu4BTO8wnnmZaxge0rPa41ar1SUnXBsMBuIua0VEXAjL3t1K1oF8LGYr6z5NJn1bJpdM0IRrEakdnSESaaKMBiOjmg3A/8QGsSctydnCQ/tmk11R6KRkfy4o0o+RL/Sn2zVt4ERvO7wji6+fXMGB9a67rICIuC4VIhGxO1qewwupX/JL3k5uTHyNVfnJzo50WiY3I31vieOqp/tWmXCdMG0TK/6zg4pS112EUkRcjwqRiNgdLs/BzWD7tpBZWcCEPTN4Le07yl14heuWnUNtE677/G7C9c9pfPuPVWSmaMK1iJwdFSIRsevl15Z58Y8z4Hf7oX18fDmjd01jX8lRJyY7My9/D4Y+1JOLxnXBzdO2fUnekSLmP7Oabd9rwrWI/DkVIhGpIsw9gHfbj+OJqOtwP7E32u6SI9yS9G++OL4SV13L1WAwEDckmuteGkBYmwAA24Trz5JZ9Mp6irJLnZxQRFyZVqo+A23dIU3d7uLDPJXyMftKT50dGhQYz/MxNxPi7ufEZGdmrrSw8cs9bPthP5z4Dufp587F47rQuk+Ec8OJiEtSIToL2rpDmrJSSznT0n/g84wVAASZfJnX+XGauQc4OdmfO7wzi1+mb6U4u8w+Fjskigtv64S7l1YdEZFTdMlMRM7Iy+jBxFZ/4Z32Ywlx8+P51jc1iDIEpyZct+57asJ18rJ024Tr/ZpwLSKnqBCJyFm5ODCeH7o8zeCgLlXG8yuL2VNyxEmp/pyXnweXPdiTi/844frZ1WzVhGsROUGFSETOmq+p6irQVquVF1K/5NakaXx6/DeXnnAdOySa618eSFjbQMA24Xr9Z8ksfHkdRVklTk4oIs6mQiQitfZT7lZ+yt1KubWSf6Z9w9/3ziSrosDZsU4rsIUv1zx3Id1HtrWvcH0kMZuvn1pJyjrXXVZAROqfCpGI1NolgZ0Z3fxi+9cr8ndxQ+Jr/JqX6MRUZ2ZyM9Ln5liu+kdffENsZ7zKiipY+sZmfv1gu1a4FmmiVIhEpNY8je48EX0977UfR6ibPwA5lYXcv/c/vHLwa0ot5U5OeHot40O5fupA2vQ9dRv+7l/S+ebplWRowrVIk6NCJCLnbWBgJ76Mf4xBgfH2sc8zVnBr0hvsKTnsxGRn5uXnwaUP9mDQ+K72Cdf5R4ttE67n78OiCdciTYYKkYjUiVB3f95qdxdPR9+Ap8G2xs++0qPcmvQGe1142w+DwUDHwVFc//JAmp2YcG01W1n/+W5++tdGyosrnJxQRBxBhUhE6ozBYOCm5gP5tNMjdPRuAcBFgZ1o5xX+J890PvuE62vb2Sdcp23OYP6zq8k7WuTccCJS71SIRKTOtfeO4JO4hxnfYhjPxozCYDA4O9JZMboZ6XNTR4Y/1QdPX3cAcg8VMX/yag5tz3RyOhGpTypEIlIvPIxu3NdyOEFuvlXGf81L5OWDX1HiwhOuI7uGMfLF/gRF2rKXFVWw+J8b2LH4gMuutSQi50eb+ZzB7zd3FZHzl1VRwDMHPienspD1BXuZ2ub/iPWJdHasGgVG+DLy+f4se3craZszsFqsrPlvEtkHCxh4Rzwmd5OzI4pIHdLmrmdBm7uK1I0VeUk8um8OpVbbRGV3g4kHI69mdPOLMRpc84S1xWJl49zdbJ2/3z4W3jGYoQ/3xDvQ04nJRKQuueZ3IBFplC4K7MRnnR4h1tt2VqjCaub19O+4d+9MMirynZyuZkajgT43xzL4vu6Y3G3fMo/tzuHbSavIOuCamUXk3KkQiYhDtfUO5+O4B7k9fLB9bHV+Mn/d+Rq/5O5wXrA/0X5gS65+ph8+wbazQkVZpXz//Br2r3HdjW1F5OypEImIw3kY3XgkaiQzOtxDM/cAAHLNRTy4bzZTUue57ITrZu2CuG7KAJq1t61XVFlm5ue3trDxy91YtYijSIOmQiQiTnNhQEe+jH+MIYFd7GOLsjeRU+G6NzL4BHsxYlI/Olx8ajL45m/2kfDGZu2DJtKAqRCJiFMFu/kxrd0dTG51I14GdybF/JWWniHOjnVGbh4mBt3TlX6j4zi5xFLqhmPMf3YNBceLnRtORGpFhUhEnM5gMPDXZv35vsvTDA/pVeWxInMpx8tdb7NVg8FA1xFtuPyJC/Dwsa1gkpNWwLeTVnE4McvJ6UTkXKkQiYjLaO4RWG1sato3/DXxNX7O3e6ERH8uunszRr7Qn8AWJxZxLKxg0SvrSUo46ORkInIuVIhExGUl5GxlftZ68szFPLzvQ15InUuxuczZsaoJaunHyOf7E9UtDLBtDrty9k5Wzt6JpdLi5HQicjZUiETEZV3g357Lgrrav/4qcw23JE0jqTjdialq5unnzuWP96bLVa3tY0kJB1k0dT2l+a5515yInKJCJCIuK8jNl3+1HcOzMaPwMnoAcKDsOP+3600+PPozFqtrnX0xmoxc+H+dGHR3V4xuttnWRxKz+XbyKrIPFjg5nYiciQqRiLg0g8HAX8Iu5ItOj9DZJxqASquZNw79wN17ZnCsPNe5AWvQ8ZIoRkzqh3egrcQVZpQw/9nVHFh/zMnJROR0VIhEpEFo7dWcj2Lv586ISzFgO/uyrmAPf018jdTSDCenqy68YzDXTRlAWBvbwpOVZWYSpm1i8zd70RaSIq5HhUhEGgx3oxsPRl7NzI4TCHcPAqCLbyuiPUOdG+w0fEO9ufrZC2k3oIV9bOOXe/j57S1axFHExagQiUiD08e/PV/GP8pfwvrxQutbMBpc91uZm4eJwfd1p8/NHTlxYouUNUf54YW1FGaWODeciNi57ncREZEzCHTz5dmYm+x7oZ20rmAPs44kYHahCdcGg4HuI9sx7JFeuHuZAMg6kM+3k1ZxNDnHyelEBFSIRKQRya0s4h8pn/LW4YWM3z2do+WuVTZieocz8oX++Df3BqA0v5yFU9aS/Euak5OJiAqRiDQaa/J3k1GRD8CGwn38NfF1luRscW6oPwiO8ufaFwfQsrNt3pPFbOW3D3aw+r+JWMyuc1ZLpKlRIRKRRuPKkJ7M6ngvEScmXBeYS3h8/3955sDnFJlLnRvud7z8PbjyyQuIvyLGPrZzcSqL/7mB0kIt4ijiDAar7v88rYSEBBISEigsLGTbtm3MnDmT2NhYZ8cSkT+RX1nMiwfnVTk7FO0Zyitt/o+uvjGnf6IT7Po5jVUf7sRitn0rDgj3YdhjvQmO9HNyMpGmRYXoLCQnJzNu3DgVIpEGxGq18n32Bl45+DXFFtv+ZyaMTGh5BXdGXIbJhe5MO7orm4RpmygtqADA3dvEkL/3oFXP5k5OJtJ0uM53BBGROmQwGBgZ2oe58Y/S1bcVAGYs/OfoUo642GTriLgQrp0ykJBW/gBUlJhZ8vpGtn6/X4s4ijiICpGINGrRnmF8GHs/41sMw4iBJ6OvI8oFF3L0b+bNNc9dSOu+4bYBK6z/LJlf3ttGZbnZueFEmgAVIhFp9NwNJu5rOZwv4x/n+tB+VR4rtZRT6CITrt293LjsgZ70+mt7+9i+lYf54YW1FGW7RkaRxkqFSESajPbeERgMhipj/07/npsS/8W2wgPOCfUHBqOBXn/pwGUP9cTN07aIY+b+PL6btIrje3OdG06kEVMhEpEma3nuTr7IWEl6eRZjkt9hxpElLrPCdZu+EVzz3IX4hdkWcSzOLWPBi2vZ89shJycTaZxUiESkyWrnHUF339aAbcL1e4cXc9fudzlUlu3cYCeExgRw7ZT+RMQFA2CusLB8+jbWfroLi0WTrUXqkgqRiDRZUZ6hzI69jwktrsB4YufVzYUpjEp8nUXZm5yczsY7wJPhT/cl7tJo+9j2H1JY8tpGyosrnJhMpHFRIRKRJs3NYOKellfwYezfaekRAkChpZSnUj5mSuo8KqzOv8PL5GZk4F2dGXBHPAajrbilb83gu8mryTtS5OR0Io2DCpGICNDDrw1z4x/lqpBe9rEvM1dxz+73yat0fukwGAzED4th+MQ+ePq5A5B3pIjvJq8ifVuGk9OJNHwqRCIiJ/ibvHmlzf/xYutb8DC4AVBurcTL6OHkZKe07BzKtS8OIDjKtrVHeXElP/5zAzsWpWgRR5HzoEIkIvIHI0P7MCv2Pjr7RPPvdnfgaXR3dqQqAsJ9uOb5/rTqbdvaw2qFNf/bxW8fbMdc4fxLfCINkQqRiEgNuvnG8EncQzRzD6gynlVRgMUFbs338HZj2MO96HFdO/vY7uWHWDBlHcW5ZU5MJtIwqRCJiJzGHxdxzK8s5o7kd3hi//8oNju/dBiMBi4Y1ZEh9/fA5GH7dn58Ty7fTVpF5v48J6cTaVhUiEREzoLVamViyseklmXwU+5WxiS/zWEXWa+oXf8WXPPMhfiGeAFQlF3K98+vYd+qw05OJtJwnFMh+vjjj8nKyqqvLCIiLstgMHBT84vwNXoCkFxymFt3vcGmgv1OTmYT1jaQa6cMoHmHIMC2iOOyd7ay/ovdWLWIo8ifOqdCNHPmTG688UYmTpzIihUrMJs1eU9Emo5BgfF8HPcQrTzDAMipLGTcnul8lbHayclsfII8GTGpLx0GRdrHtn63j5+mbaK8pNKJyURc3zkVov/7v/8jJCSEVatWMWnSJG644Qbef/99Dh48WF/5RERcSlvvcD6Oe5AL/TsCUGk188LBL3nl4NeusYiju4lBd3flwtviODkF6uDG43z/7GryjxU7N5yICzNYz3HhCqvVytq1a1m4cCGrVq2ioqICg8FAly5dGDFiBEOGDMHLy6u+8jpFcnIy48aNY+bMmcTGxjo7joi4gEqrmWnp3/Px8V/tY339O/Ba278R5ObrxGSnpG/L4Oe3tlBebDs75OnnzmUP9qRl51AnJxNxPedciH4vPz+fJUuWsGjRIvbu3YvBYMDb25tLL72Uq666is6dO9dlVqdRIRKR0/kmcy1TDs6j8sTZoaejb+Cm5gOdnOqUvCNFLHl9o32LD4PRQP/bO9FpaKtqd9GJNGXnVYh+b/fu3SxYsIClS5dSUFCAwWCgVatWjBgxgptuuqku3sJpVIhE5Ew2F6bwyL4PuTCgIy+3Hu1yRaO8uIKf395K+tZTW3zEXRZN/9vjMbnpZmMRqMNCdFJFRQW//fYbc+fOJSkpCaPRyLJly+ryLRxOhUhE/syx8lwC3XxcapuP37NYrKz/PJntP6TYxyLigrnsoZ54B3g6MZmIa6jTvxpYrVY2bNjAsmXL2Lt3b12+tIiISwv3CKpWhtbk7+bplE8osZQ7KdUpRqOBfrfGccmEbpjcbd/6j+7K4btJq8lKzXdyOhHnc6uLFzl06BALFy5k8eLFZGVlYbVaad68OcOHD+eqq66qi7cQEWlQDpZm8Pj+j8g3l5BSeow32t1JuEeQs2PR4eJIAlv4kvDvTRTnllGYWcL3z63hkgndaNM3wtnxRJym1oWorKyMn3/+mYULF7J9+3asVivu7u5ccskljBgxgj59+rjUdfTXXnuNlStXUlpaSnh4OOPHj2fgQNeZ+CgijUt6eTaVJ/Y8SyxO55akaUxrdwfd/Vo7NxjQvH0Q104ZQMK/N5GxP4/KMjNL39hMrxva0/P69hiMrvO9W8RRznkO0Y4dO1i4cCHLli2jpKQEq9VKmzZtGDFiBJdffjmBgYH1lfW8pKam0qJFCzw8PEhKSuKRRx7h888/P6u8mkMkIrWxp+QwD+6dzaFy2xYf7gYTk1vdyLVhfZ2czKay3MxvM3ewb+WpLT5a9w3nknu64e5VJxcQRBqMc/oTf9ttt5GWlobVasXHx4cRI0YwYsQI4uPj6ytfnYmJibH/2mAwUFFRQWZmpssWOBFp+Dp4t+STTg/x+P7/sr5gLxVWM8+kfs7ukiM8HHU1bgaTU/O5eZgYfG83Qlr5s/7zZLDCgXXHyD+2hmGP9Ma/mbdT84k40jkVooMHD9K1a9d6X4CxuLiYzz//nMTERJKSkigoKGDixIkMHz682rHl5eXMmjWLJUuWUFBQQLt27Rg7dix9+vSpduy///1vFi5cSHl5ORdeeCFt27atl/wiIicFu/kxvcPdvJb2LV9krATg4+PL2Vd6lFfb3EaAm49T8xkMBrpf05bgKD+WvbOFihIz2akFfDd5FUMf6klEXIhT84k4yjlv7vrOO+8wfPjwel2NOi8vjzlz5pCamkr79u3PeOwrr7zC3LlzGTZsGA888ABGo5EnnniCbdu2VTv2kUce4ccff2TatGkuN8dJRBovd4OJp1vdwKRWf8XtxLfd1fnJjNs9HcuJeUbO1qpnc0a+MICAcFtBK80vZ+FL69j1c5qTk4k4xjkVoujo6GpjFRUVrF69mi+++IKPPvrIPl5WVkZOTg4Wy7n/zx4aGso333zDl19+yYQJE057XGJiIkuXLmX8+PHce++9jBw5kjfeeIOIiAimT59e43NMJhO9e/dm48aNrF7tGhsyikjTcGOzAXzQcQLBJ7b2uLvl5RgNrrMwYnCkHyNf7E/LLratPSxmKyv+s4NVcxKxVLpGcROpL+f1f+KKFSu48cYbmThxIu+99x4ffvih/bF9+/Zx/fXXs3Tp0nN+XQ8PD0JD/3yvneXLl2MymRg5cqR9zNPTkxEjRrBz506OHTt22ueazWYOHTp0ztlERM5Hb/92fBL3MM/GjOLSoK7OjlONl58HVz55AZ2vPDXvMnFJKov/uYHSAuevpyRSX2pdiLZv384zzzyDu7s7999/P0OHDq3yeHx8PJGRkSxfvvy8Q57Onj17iIqKwte36kaKnTp1ArAvDllYWMhPP/1EcXExlZWVLFu2jM2bN9O9e/caXzczM5Pk5GT7P6mpqfX2GUSk6Yn0DOEvYRdWG5+ftZ5SV1jE0WSk/9/iuXhcF4wm29SCwzuz+G7yKnLSC5ycTqR+1Pq+yo8++gg/Pz9mzpxJUFAQ+fnVVzqNjY0lKSnpvAKeSVZWVo1nkk6OZWZmArZJgz/88APTpk3DarUSGRnJ5MmT6dChQ42vO3/+fObMmVNvuUVE/mhuxkpeOvgVnx9fwbR2d7jEIo6xQ6IJbOlHwrRNlOaXU3C8hPnPrGbwfd2J6R3u7HgidarWhSgxMZHBgwcTFBR02mOaN2/OypUra/sWf6qsrAx3d/dq4x4eHvbHAXx9fXnzzTfP+nVHjhxZZdHG1NRUpkyZcp5pRURqll9ZwluHFgCwsziN0bveYFq7O+jqG/Mnz6x/EbHBXDdlAD/9exNZB/KpKDXz0783ccGojnQf2VY3p0ijUetLZhUVFfj4nPl20cLCwnr9n8XT05OKiopq4+Xl5fbHayMsLIzY2Fj7P79fw0hEpK4FuHkzq+N9tPQIBiCjIp87k9/l+6wNTk5m4xfmzTXPXkibC09s7WGFDV/sZtk7W6ksMzs3nEgdqXUhatmyJbt27TrjMTt37qRVq1a1fYs/FRoaSlZWVrXxk2NhYWH19t4iInUp1ieST+IeprefbX20cmslkw58yrT07zG7wK35bp4mLr2/B71HnZpqsH/1EX54YQ1FWSVOTCZSN2pdiC655BL7Nh41+eyzz0hJSeHSSy+tdbg/0759e9LT0ykqKqoynpiYaH9cRKShCHH3Y0aHe7jhdxOu5xxbxgN7/0OB2fmlw2Aw0PO69gx9uBdunrZVtjNT8vl20iqO7c5xcjqR81PrQnTzzTcTExPDq6++yiOPPMLGjRsBmD59On//+9+ZMWMG7du35y9/+Uudhf2jwYMHYzabmT9/vn2svLychQsXEh8fT3j4+U36S0hI4KmnnuLtt98+36giImfF3ejG5FY38nT0DZhOfItekb+L/0t6k7SyTCens2ndJ5yRz/fH78TWHiV55SyYspbdv6Y7OZlI7Z3z5q6/V1BQwLRp01i2bFmVBRgNBgNDhgzhkUcewd/fv1av/dVXX1FYWEhWVhbffvstgwYNst8VdsMNN+Dn5wfAs88+y6+//sqoUaOIjIxk8eLFJCUlMW3aNHr06FHbj1aFNncVEWdYV7CHx/Z9RJ65mAj3ID7t9DCh7rX7nlofSvPLSXhzM0eTsu1jXa5qTd9bYjGaXGfBSZGzcV6F6KS8vDx27dpFfn4+vr6+xMXFERJi2//GbDZjMp37BoajRo3i6NGjNT72xRdf0KJFC8B2J9nJvcwKCwtp27YtY8eOpW/futtNWoVIRJwlvSyLp1L+x6RWNxLnE+nsONVYKi2s/m8SSQkH7WNR3cIYcn8PPH2r3wUs4qpqXYi+/vrrP70cZjabef7553nhhRdqFc5VqBCJiDNZrdZqd+zmV5bgaXTD0+gapSPxp1RW/zcJq9n2IyWwhS/DHu1FUEs/JycTOTu1Pqf51ltv8csvv5z2cYvFwvPPP8+vv/5a27cQERGoVoYqrGYe3T+HsbvfI6Oi+qK4zhA/LIbhE/vg6WcraHlHipj/zGrStmQ4OZnI2al1IeratStTpkxh06ZN1R47eWZo+fLlXH/99ecVUEREqnoz/QfWFexhW1EqtyZNY2eRa+xI3zI+lOumDCA42nZWqLy4kiWvbWDbghTqYHaGSL2qdSGaOnUq0dHRTJo0iT179tjHLRYLU6ZM4ZdffuG6667jwQcfrJOgzqC7zETEFY0I7U2EexAAxyvyuCP5bRZlb3ZuqBP8m/twzXP9ibnAdpev1QrrPtnFr+9vp7JciziK6zqvSdVZWVlMmDCB8vJy3nvvPVq0aMHzzz/PsmXLuPbaa3nkkUfqMqvTaA6RiLiarIoCHtn3IVuKDtjH7oq4jL+3HI7R4Pw7vKwWK5u+3svmr/fax5q1D2TYw73wCfZyYjKRmp3X/zWhoaH861//wmKx8Oijj/Lss8+ybNkyrr766kZThkREXFGouz8zO97L9aH97GOzji7loX0fUmgudWIyG4PRQO+/duDSB3pg8rD9qMnYm8e3k1aRsS/XueFEanDef42Ijo7m1VdfJScnh19//ZWrr76axx9/vC6yiYjIGXgY3Xg2ZhRPRl9vX8Rxed5ObtvlOos4tr2wBdc8dyG+obazQsU5Zfzwwlr2rjzs5GQiVZ31bvdz5sw54+OdOnVi7969hIaGVjnWYDBw++231zafiIicgcFg4NbmF9PWK5zH939EvrmE/aXH+OTYrzzVqv52CjgXYa0DuXbKAJZO28yx3TmYKyz88u5WctIK6D2qI0Zj/W0CLnK2znoO0SWXXFK7NzAYznh7fkOgOUQi0hAcLM3gwX2z8Td585+O9+JhPOu/8zqEucLMyg8T2f3LqS0+ons2Y8h93fHwcY31lKTpOutCtGXLllq/SV1toeFoCQkJJCQkUFhYyLZt21SIRMTlFZpLKbNUuNQWH79ntVpJXJLKmv/twmqx/fgJivRl2KO9CYzwdXI6acrqZOuOxk5niESkIUspPca/07/nuZibXKYoHdqeyc9vbaGsqAIAT193Ln2gB5Fdw5ycTJqqc5pUPX78eD7++GNSUlLqK4+IiNSh/MpiHtw7m1/zEhm96w12FR9ydiQAIruGMfKF/gRF2s4KlRVVsPifG9ix+IAWcRSnOKdCVFZWxsyZM7njjju45ZZbePfdd9m6dav+8IqIuKhjFXkUW8oAOFKew+3Jb/NTzlYnp7IJbOHLyOf7E92zGWBbu2jNf5P4beYOzBVaxFEc65wvmR0+fJjffvuNlStXsn37dqxWKwEBAQwYMICBAwfSt29fPD096yuvU+iSmYg0ZMfL83h434fsKD61I/3dLS7nnhaXu8QijhaLlQ1f7Gbb9/vtY+Edgxn6cE+8AxvXzxNxXec1hygvL49Vq1axYsUKNmzYQGlpKZ6envTu3ZuLL76YAQMGEBQUVIdxnUOFSEQaujJLBS+kfskP2RvsY5cGdeWl1rfiY3KN0rF35WF++2A75goLAL6hXlz+aG9CWwc4OZk0BXU2qbqsrIz169ezYsUK1qxZQ05ODkajkc6dO3PRRRcxcOBAoqOj6+KtHE6FSEQaA6vVyn+PL+eN9O+xYPvW38G7BW+2u4tIzxAnp7PJ2JfLT//eRHGO7TKfm6eJQXd3pe2FLZycTBq7ernLzGq1smPHDvultfT09Aa5HpFuuxeRxmhFXhJP7v8fhRbbFh8hbn7M7zIRf5O3k5PZFOeU8tO0TWTszbOPXXBTR3pc286JqaSxc8ht9wcOHGDlypWMHj26vt+qXugMkYg0Nimlx3hw72xSyzJ4KPJq7oi41NmRqqgsN7PiPzvYu+LUFh89/9KeXje0x2DQytZS92o9m+6mm25i3rx5Zzzm66+/5uabb6Z169YNtgyJiDRGbbzC+TjuIR6NGsmY8CHOjlONm4eJSyZ0o8/NHe1jm7/ey8Yv9+jOZqkXtS5ER48epbCw8IzHFBYWcvTo0dq+hYiI1KMAN2/+Fj642hmXhJyt5FSe+fu7IxgMBrqPbMeFt3Wyj235dh/rP9+tUiR1rl7vtywqKsLdXfvTiIg0FKvyk3l8/3+5NekNdhe7xo70XYa3ZsCYePvX277fz9pPdqkUSZ06p53//rif2dGjR2vc48xisXD8+HF++umnBntnmYhIU2O2Wngt7VssWDlcns3fkt/i5TajuTSoq7OjEX95DAaTgZWzdgKwY+EBrGYrF/6tk+YUSZ04p0L04IMP2v/gGQwGFi9ezOLFi2s81mq1YjAYuPvuu88/pYiI1DuTwcj7He7moX2zSSxOp8RSzsP7PuTellcyPmKY04tHp8taYTQa+O0/O8AKO39MxWKxMuD2eAxGlSI5P+dUiG6//XYMBgNWq5WPPvqIHj161LiTvdFoJCAggJ49e9K6des6iioiIvUt3COID2P/zvOpc1mYvQmA9w4vZm/JEZ6PudnpizjGDonGYDLw64ztYIWknw5iNVsZeGdnlSI5L+dUiO688077r7du3crw4cO58sor6zyUiIg4j5fRg5dbj6aDdwveOrQQK1aW5GwltTSTN9vfSQuPYKfm6zgoCoPRwK/Tt2G1wq6f07BYrFw8totKkdRarSdVjx07lr1795KVlVXj45mZmbzzzjvs3Lmz1uGcLSEhgaeeeoq3337b2VFERBzKYDBwZ8RlvNnuTnyNtrNCySWHuCVpGlsLDzg3HNDhokgG39fdXoB2/5LOrzO2Y7FoorXUTq0L0RdffMHKlSsJDQ2t8fGwsDBWrVrF3Llzax3O2YYOHcrUqVO5//77nR1FRMQpLgnqzP/iHiTa0/a9vsxS4fTLZie1G9CSS+/vjsFkK0V7fjvE8ve2YjFbnJxMGqJaF6Jdu3bRrVu3Mx7TvXt3EhMTa/sWIiLiAtp5R/BJ3ENc6N+Rl9vYLqW5ijb9WnDZAz0wnihF+1Yd4Zd3t2GpVCmSc1PrQpSbm0tYWNgZjwkJCSEnJ6e2byEiIi4i0M2X9zvczZCgLlXGKyyV5FUWOSmVTes+EVz2UE+MbrZStH/NEX5+Z4tKkZyTWhciPz8/jh8/fsZjjh07hre3a2wWKCIi5+ePt91brVZeSfua0bveYG+Jc3cliOkdzrCHe2Fyt/1YO7DuGEvf2oJZpUjOUq0LUXx8PL/++ivHjh2r8fFjx47x22+/0aVLlxofFxGRhu3rzDV8lbmGtLIsbtv1Jr/kOvcmmuiezRn2yKlSlLrhGEvf2Iy5wuzUXNIw1LoQjRo1irKyMu677z4WL15MZmYmYLu7bNGiRdx7772Ul5dz00031VlYERFxHQMC44jzjgSg2FLGQ/tmM+tIglO31Ijq3ozLH+uNycP24+3gpuP89O/NVJarFMmZGazn8Sf3yy+/5L333rP/4T+5aOPJX99///385S9/qZukTpScnMy4ceOYOXMmsbGxzo4jIuIySizlPHPgc5bkbLGPXRnck+da34S30cNpuQ4nZrHktY1UltmKUGTXMIY92gs3D5PTMolrO69CBLBv3z6+++47du3aRWFhIX5+fnTq1Ilrr72Wtm3b1lVOp1IhEhE5PavVyn+OJvDO4UX2sXifKN5odyfhHkFOy3V0VzaL/7nBXopadg7l8sd64+apUiTVnXchagpUiERE/tyy3B08nfIJxZYyAELd/JnW7g66+7V2WqZju3NY/M/1VJTYSlFEpxCueLw37l7ntFGDNAG1nkMkIiLye0OCuvDfuPuJ9AgBIKuygPcOL3bqnKLwjsEMn9gXd29bATqaZDtrVF5S6bRM4pp0hugMEhISSEhIoLCwkG3btukMkYjIWcipLOTx/f/lUFkWn8Q9TIi7n7MjkbEvl0WvrKe82FaEmncI4sonL8DDx93JycRVqBCdBV0yExE5NxVWM8fL84j0DHF2FLvMlDwWvbKessIKAJq1C+TKp/rg6atSJLpkJiIi9cDdYKpWhnIri5iwZwYppTWvX1ffwtoEctU/+uLpZytAGfvyWPTyOkoLy52SR1yLCpGIiNS7CquZx/Z/xKr8ZP4v6U1+y3POPpehMQGMmNQPrwDbkgCZKfksemkdpQUqRU2dCpGIiNS7/Mpi+55nhZZS7t87izlHf3bKhOuQVv6MmNQX70BbKcpKLWDhS+soyS9zeBZxHSpEIiJS70Ld/fko9gGGBnUDwIqVaYd+4B8HPqXMUuHwPMFR/oyY1A+fIE8Asg8WsHDKOorzVIqaKhUiERFxCB+TJ6+1/RsTWlxhH1uQvZE7k9/leHmew/MERfoxYnI/fEJspSgnvZAFL66lOKfU4VnE+VSIRETEYYwGI/e0vIJ/tb0drxNbe+woPsitu6axvSjV4XkCW/hy9eR++IZ6AZB3uIgFU9ZRlK1S1NSoEImIiMMNDe7Of2Pvp6VHMAAZFfncmfyuU+5ACwi3lSK/Zt4A5B0pYsGLaynMKnF4FnEeFSIREXGKWJ9IPol7mN5+tn0vh4f0orVnc6dk8W/uw4hJ/fBvbitF+ceKWfDCWgoyVIqaChUiERFxmhB3P2Z0uIeHI69mUqu/YjAYnJbFv5k3V0/uR0C4DwAFGSUseHEtBceLnZZJHEeFSEREnMrd6MaYiEvxMFbdcHVt/h5SSzMcmsU31JsRz/QjsIUvAIWZJfzw4lryjxU5NIc4ngqRiIi4nJTSYzyy70NG73qDVfnJDn1v32AvRkzqS1CkrRQVZZXyw4tryTuiUtSYqRCdQUJCAk899RRvv/22s6OIiDQpbx5aQKGllAJzCfft+YC5GSsd+v4+wV5cNakfwdG2jWmLs8tY8OJacg8VOjSHOI42dz0L2txVRMSxisylPJ3yCb/k7bSPPRZ1LbeFX+LQHCX5ZSx6eT3ZBwsA8A704Kp/9CU4yt+hOaT+6QyRiIi4HF+TF9Pa3cGY8CH2sdfTv+Ojo8scmsM7wJOr/tGX0NYBAJTklbNgyjp7QZLGQ4VIRERcktFg5KHIq6usbP3vQ98z6+hSh+bw8vfgqqf7EtY2EIDS/HIWTFlLVmq+Q3NI/VIhEhERl2UwGLin5RXc13K4feytQwuYcWSJQ3N4+rkzfGIfmrWzlaKywgoWvrSOzBTHbzki9UOFSEREXN74FsN4IHKE/ev3Di8msSjNoRk8fW2lqHmHIOBUKcrYl+vQHFI/VIhERKRBuCviMh6JGgnAP1rdQLxvtMMzePi4c+VTfQiPtW05Ul5cycKX13N8T47Ds0jdUiESEZEG4/bwwczt9Cijmg10WgYPbzeufPICWsSHAFBRUsmiqes5mqxS1JCpEImISIMS6xNZbSypOB1HriLj7uXGFY9fQMvOoQBUlJhZPHU9R5KyHZZB6pYKkYiINGhLcrYwOukNXkv/1qGlyM3TxOWP9yayaxgAlWVmfnx1A4d3Zjksg9QdFSIREWmwjpbn8HTKJ5ix8Mnx33gl7WssVovD3t/Nw8SwR3sR1b0ZcKIUvbaBQ9szHZZB6oYKkYiINFgRHsE8EzMKAwYAvshYyUsHv3J8KXqkJ9E9baXIXG5hyesbSd/q2I1p5fyoEImISIM2MrQPU1rfgvFEKZqXuZoXUr90aCkyuZsY+nAvYi4IB8BcYWHJvzaStvm4wzLI+VEhEhGRBu/q0At4uc3/YTrxY+2brLU8m/oFZkeWIjcjlz3Qg9Z9baXIUmnlp39vInXjMYdlkNpTIRIRkUZheEhPprY9VYrmZ61n8oHPHFqKjG5GLv17D9pe2AIAi9lKwhubObD+qMMySO2oEImISKNxeXAPXm37N9xO/HhbkL2RF1LnOjSD0c3I4Pu60W5gSwCsZitL39zC/jVHHJpDzo0KkYiINCpDg7vxersxuBlMeBrcuCqkl8MzGE1GLpnQjQ6DbGsmWS1Wlr2zlX2rDjs8i5wdN2cHEBERqWtDgrowrd0duBlM9Avo6JQMRqOBQeO7YjAa2P1LOlaLlV/e3YrFYqXDRdUXlxTnUiESEZFGaVBgfLUxq9WKGQtuBpNDMhiMBi4e2wWj0cCun9OwWmH59G1YzVY6XhLlkAxydnTJTEREmowZR5bw0N7ZlFkqHPaeBqOBgXd2ptOwVrYBK/z6wXZ2LUtzWAb5czpDdAYJCQkkJCRQWFjo7CgiInKeZh9dyvQjPwLw8L4P+Xe7MXgZPRzy3gajgQFj4jGaDOxcnApWWDFzB1aLlU6XtXJIBjkznSE6g6FDhzJ16lTuv/9+Z0cREZHz1M03Bu8TBWhl/i4e3DubEku5w97fYDBw4W2d6DqijX1s5aydJC5JdVgGOT0VIhERaRIu8G/Pe+3H42P0BGBNwW7u3/sfis1lDstgMBjoe2ss3a5pax9bNSeRHYtSHJZBaqZCJCIiTUYv/7ZM7zAe3xOlaH3BXv6+d6bDS1GfmzvS47p29rE1/9vFth/2OyyDVKdCJCIiTUoPvza83/Ee/E1eAGws3M+EPR9QZC51WAaDwUDvGzvQ64b29rF1nyazdf4+h2WQqlSIRESkyenmG8OMDhPwN3kDsKUohQl7PqDAXOKwDAaDgV43dKD3jR3sY+s/383mr/c6LIOcokIkIiJNUmffaGZ2nECgyQeAw+XZ5FYWOTxHz+vb0+fmU4tHbpy3h43z9mC1Wh2epSlTIRIRkSark08UMztOoL1XBP/peC/RnmFOydF9ZDv6jo6zf735671s/FKlyJG0DpGIiDRpsT6RfBn/GEaDc88RdBvRBqPRwJr/JQGw5dt9WMwW+twci8FgcGq2pkBniEREpMn7YxmqtJp589APZFc4dmHeLsNbM2DMqS1Htn2fwtpPdulMkQOoEImIiPxOpdXMP1I+ZfbRnxm7+z2yKgoc+v7xl8cw8K7O9q93LDzAmv8mqRTVMxUiERGR38mqKGBToW1NoH2lR7lr97tkVOQ7NEOny1px8bgucOJK2c4fU1n1YSJWi0pRfVEhEhER+Z1wjyBmx95HhHsQACmlx7kr+V2Olec6NEfskGgG3d3VXoqSEg6yYtZOlaJ6okIkIiLyB9GeYcyKvY+WHsEApJZlMHb3ew4vRR0HRTF4QjdOzqlOXpbGbzO3Y1EpqnMqRCIiIjWI8gxlVsf7iPQIAeBgWSZ3Jr/L4bJsh+Zof1Ekg//eA4PR1op2Lz/EbzNUiuqaCpGIiMhptPQMYXbsfbQ6sT5RenkWd+1+l/SyLIfmaNe/BZfe3x2DyVaK9vx2iOXvbcVitjg0R2OmQiQiInIGER7B/KfjvcR4NgPgcHkO/0qf7/Acbfq14LIHemA8UYr2rTrCsne3YqlUKaoLKkQiIiJ/ItwjiFmx99HGqzlx3pE8FzPKKTla94ngsod6YnSzlaKUNUf5+Z0tmFWKzpsKkYiIyFlo5h7ArI73MaPjPQS6+TotR0zvcIY93AuTu+1H+IF1x/j5zc0qRedJhUhEROQshbr7E/SHMpRfWcyB0uMOzRHdsznDHjlVilI3Hidh2ibMFWaH5mhMVIhERERqKb+yhHv2zOCO5HfYU3LEoe8d1b0Zlz/eG5OH7Ud52uYMfvr3JirLVYpqQ4VIRESklt449D07i9PIrixk3O732F182KHvH9kljCueuAA3TxMA6Vsz+elfG1WKakGFSEREpJYeiryGLj6tAMipLGLs7vdIKk53aIaW8aFc+eSpUnRoexZLXttIRWmlQ3M0dCpEIiIitRTg5s37He+mm28MAHnmYsbvnk5iUZpDc0TEhTB8Yh/cvW2l6PDOLH5UKTonKkQiIiLnwd/kzfQOd9PDtw0A+eYSxu+ZzvaiVIfmCO8YzPCJfXH3dgPgaFI2i/+5gfISlaKz0SQKUXl5OVOnTuWvf/0rV155Jffccw87duxwdiwREWkk/ExeTO8wnt5+bQEoMJdyz+4ZbCs84NAczdsHcdU/+uLhYytFx5JzWDx1PeXFFQ7N0RA1iUJkNpuJiIjg3XffZeHChdx4441MnDiR4uJiZ0cTEZFGwsfkyTvtx9HHvz0AhZZS7tkzg70lRx2ao1nbQK76R188/dwBOL4nl0WvrKesSKXoTJpEIfL29mbMmDGEh4djNBq57LLLcHNzIy3Nsdd4RUSkcfMxefJ2+7Fc6N8RgAEBcbT2aubwHGFtbKXIy99WijL25bHo5XWUFpY7PEtD4ZKFqLi4mNmzZ/PYY48xYsQIBg0axKJFi2o8try8nOnTp3P99dczdOhQ7r77btavX3/G109LS6OgoIDIyMj6iC8iIk2Yt9GDN9vfyf0tr+KVtv+Hm8HklByhMQFcNakfXgEeAGSm5LPopXWUFqgU1cQlC1FeXh5z5swhNTWV9u3bn/HYV155hblz5zJs2DAeeOABjEYjTzzxBNu2bavx+LKyMqZMmcLo0aPx8/Orj/giItLEeRk9GNtiKO5/KEMVVseuDxQS7c+ISX3xDrSVoqzUAhZMWUdJfplDczQELlmIQkND+eabb/jyyy+ZMGHCaY9LTExk6dKljB8/nnvvvZeRI0fyxhtvEBERwfTp06sdX1lZyTPPPENkZCRjxoypx08gIiJS1cHSDK7fOZWVebsc+r7BUf6MmNQPnyBPAHLSClg4ZR3FeSpFv+eShcjDw4PQ0NA/PW758uWYTCZGjhxpH/P09GTEiBHs3LmTY8eO2cctFgtTpkzBYDDw9NNPYzAY6iW7iIjIHx0rz2Xs7umklWXx4L5Z/JaX6ND3D4r0Y8TkfviEnChF6YUseHEtxTmlDs3hylyyEJ2tPXv2EBUVha9v1Y32OnXqBMDevXvtY6+//jpZWVk8//zzuLm5nfF1MzMzSU5Otv+TmurYtSRERKRxCXH3p6uvbUXrCquZh/Z9yC+5Ox2aIbCFL1dP7odfmBcAeYeLWDBlHUXZKkUAZ24GLi4rK6vGM0knxzIzMwE4evQoP/zwAx4eHlXOJr366qt079692vPnz5/PnDlz6ie0iIg0Oe4GE1Pb3sY/Uj7hx5wtVFrNPLp/Dq+2uY3Lgrs5LEdAuC8jJvdjwZR1FGaUkHekiAUvruWqSX3xC/V2WA5X1KALUVlZGe7u7tXGPTw87I8DRERE8Ouvv571644cOZKBAwfav05NTWXKlCnnmVZERJoyd4OJl9uMxmQwsjB7E5VWM0/s/y9T297GsODqfzmvL/7NfBgxqR8LX1pLwfES8o8Vs+CFtVw1qR/+zZpuKWrQl8w8PT2pqKi+0FR5ebn98doICwsjNjbW/k9MTMx55RQREQFwM5iY0vpWrgm5AIBKLDy5/38syt7s0Bz+zby5enI/AsJ9ACjIKGHBi2spON50Fyxu0IUoNDSUrKysauMnx8LCwhwdSURE5IxMBiPPt76Z60L7AmDGwtMpH7Mga6NDc/iGejPimX4EtrDNwy3MLOGHF9eSd7TIoTlcRYMuRO3btyc9PZ2ioqr/8RITE+2Pi4iIuBqTwcizMaO4IexCACxYSSvLdHgO32AvRkzuR1CkrRQVZZWyYMpa8o40vVLUoAvR4MGDMZvNzJ8/3z5WXl7OwoULiY+PJzw8/LxePyEhgaeeeoq33377fKOKiIhUYTQYmdTqr4xqNoBxEcO4u8XlTsnhE+TJiEn9CI62LVZcnF3GghfXknuo0Cl5nMVgtVqtzg5Rk6+++orCwkKysrL49ttvGTRoEB06dADghhtusK8y/eyzz/Lrr78yatQoIiMjWbx4MUlJSUybNo0ePXrUSZbk5GTGjRvHzJkziY2NrZPXFBERATj5Y9jZ6+OV5Jex6OX1ZB8sAMA70IOr/tGX4Ch/p+ZyFJctRKNGjeLo0Zp3CP7iiy9o0aIFYLuTbNasWSxZsoTCwkLatm3L2LFj6du3b51lUSESERFHWpu/h9SyDEY1G+DQ9y0tKGfRK+vJOpAPgFeAB8Of7kNoqwCH5nAGly1ErkSFSEREHGVDwV7u2zOTUmsFT0Rfx+jmgxz6/mWFFSyaup7M/XkAePq5c9XTfQlt3bhLUYOeQyQiItLYbCjYR6nVtqTMq2nf8t9jvzj0/T393Bk+sQ/N2gcCtoK08KV1ZKbkOTSHo6kQiYiIuJC7W1xeZYL1v9Ln8+HRnx2awdPXneFP9aF5xyAAyopspShjX65DcziSCtEZ6C4zERFxNIPBwL0tr2RCiyvsY28c+oH/HElwaA4PH3eufLIPEXHBAJQXV7Lw5fUc35Pj0ByOojlEZ0FziERExBn+cySBtw8vtH89ocUV3NPyijM8o+5VlFay5PWNHEnMBsDd28QVT/QhIjbYoTnqm84QiYiIuKixLYbycOTV9q+nH/mRdw8vwpHnMty93Lji8Qto2dm2cXpFiZnFU9dzJCnbYRkcQYVIRETEhY2JuJTHoq61fz3ryFL2lh5xaAY3TxOXP96byK62LbEqy8z8+OoGDu+svn1WQ6VCJCIi4uJuC7+EJ6Ovx4SRl9qMpoN3S4dncPMwMezRXkR1bwacKkXp2x2/5Uh9UCESERFpAG5tfjHfdn6S4SE9nZbBzcPEsEd60qpXcwDMFRZ+en0jaVsznJaprqgQnYHuMhMREVfSyqtZtbFNBfsdOqfI5G7isod6EnOBbb9Qc4WFn/61kYObjzssQ31QITqDoUOHMnXqVO6//35nRxEREalmXsZq7tj9Di+nfYXFanHY+5rcjFz2QA/a9I0AwFJpJeHfm0jdeMxhGeqaCpGIiEgDlF6WxcsHvwJgbsYqphyc59BSZHQzMuT+7rTtb9tb1GK2kvDGZlLW1bwPqatTIRIREWmAojxDebH1LRgxAPBV5hqeS52L2ZGlyGRk8L3daDfQNsnbarby81tb2L/GsXfB1QUVIhERkQZqRGhvXmnzf5hO/Dj/Lmsdzxz43OGl6JIJ3egwKBIAq8XKsne2sm/VYYdlqAsqRCIiIg3YlSE9+Wfb23A78SP9h+wNTDrwKZVWs8MyGI0GBo3vSsfBUYCtFP3y7lb2rDjksAznS4VIRESkgRsW3J3X2t2Om8EEwMLsTUxM+YQKB5Yig9HAxWO7EHdZNABWKyyfvo3dy9MdluF8uDk7gCtLSEggISGBwsJCZ0cRERE5o0uDuvKvtmN4bP8cKqxmluRswcfowfOtb3ZYBoPRwMA7O2M0Gkj86SBY4dcPtmOxWIkbEu2wHLWhM0RnoNvuRUSkIRkc1Jlp7e7Aw+CGn9GLG5sNcHgGg8FA/zHxdL4yxjZghRUzd5CUcNDhWc6FzhCJiIg0IhcHxvNGuzvxN3nRxbeVUzIYDAYuvK0TRpOR7QtSAFg5eycWs5XOV8Q4JdOfUSESERFpZAYGxlUbs1qtVFjNeBgd86PfYDDQ99ZYDEYD277fD8DqjxKxmC10vaqNQzKcC10yExERaeSsVitT077hgX2zKLWUO+x9DQYDfW7uSI/r2tnH1n68i20/7HdYhrOlQiQiItLIvXV4AZ9nrGB1fjIP7J1FiYNL0QWjOtLrhvb2sXWfJrPlu30Oy3A2VIhEREQauUGBnfE1egKwtmAPf98zk2JzmUMz9LqhA71HdbB/veGL3Wz+eq9DM5yJCpGIiEgj19OvDe93uBs/oxcAGwr3cd/emRSZSx2b47r29Lm5o/3rjfP2sHHeHqxWq0Nz1ESFSEREpAno5teaGR3vwd/kDcCmwv3cu+cDCh1cirqPbEff0acmfW/+ei8b5jq/FKkQnUFCQgJPPfUUb7/9trOjiIiInLcuvq34oMM9BJwoRVuKDnDPnvcpMJc4NEe3EW248LZO9q+3frePdZ8lO7UUGazOrmQNQHJyMuPGjWPmzJnExsY6O46IiMh52VV8iLt3v0+uuQiAzj7RvN/hbgLcfByaI3FJKqvmJNq/vvC2OLoMd84t+TpDJCIi0sTE+UTyn9gJBLv5AVBgLqHUUuHwHPGXx3DRXZ0BCInxp/1FkQ7PcJIWZhQREWmCOni35D8d7+XF1Lm82vZvNPcIdEqOuMta4ennTotOoXj5ezglA6gQiYiINFntvSOYE3s/BoPBqTna9Gvh1PcHXTITERFp0v5Yhkot5bx0cB6ZFflOSuQcKkQiIiICQJmlgkf2zWFuxiruSn6P4+V5zo7kMCpEIiIiAkBOZSH7S48BcKDsOHftfo9j5bnODeUgKkQiIiICQIRHMLM63kdLjxAADpZlcNfudzlanuPkZPVPhUhERETsIj1DmB17H9GeoQCklWVxZ/K7HCrLdnKy+qVCJCIiIlW0OHGmqJVnMwAOlWdz1+53SS/LcnKy+qNCdAbaukNERJqqcI8gZnW8l9aezQE4Up7DXcnvcrA0w8nJ6ocK0RkMHTqUqVOncv/99zs7ioiIiMM19whkVuy9tPUKB+BoRS7vH1ni5FT1Q4VIRERETivMPYD/dLyX9l4RXODXjskxNzo7Ur3QStUiIiJyRqHu/vwn9l48De54G523vUZ90hkiERER+VPBbn74mDyrjGVU5LOn5IiTEtUtFSIRERE5Z5kV+Yzb/R5jk98jufiQs+OcNxUiEREROWdvHlpASulxcs1FjNs9naTidGdHOi8qRCIiInLOnoy+nh6+rQHIMxczbvd0dhQddG6o86BCJCIiIufMz+TFex3G09OvDQAF5hLu3v0+2woPODdYLakQiYiISK34mrx4r/14LvBrB0ChpZR79sxgS2GKk5OdOxUiERERqTUfkydvtx9LX/8OABRZypiw5wM2Fex3crJzo0IkIiIi58XH5Mlb7e/iQv+OABRbypiw9wNSSo85OdnZUyESERGR8+Zt9OCt9ncxMCAOgBEhvYg5sTlsQ6CVqs8gISGBhIQECgsLnR1FRETE5Xka3Xmj3Z18nbmGUc0GYDQ0nPMuBqvVanV2CFeXnJzMuHHjmDlzJrGxsc6OIyIi0uCUWMpdetuPhlPdREREpEFKKk7n6u0v8UvuTmdHOS0VIhEREak3aWWZ3L37fTIrC3h0/xx+zt3u7Eg1UiESERGRetPCI5gBAbbpJpVWM4/v+4iEnK1OTlWdCpGIiIjUGzeDiZfajObqkAsAqMTCE/v/x+LszU5OVpUKkYiIiNQrk8HIC61vZmRoHwDMWJiY8jELszc6OdkpKkQiIiJS70wGI8/H3MRfwvoBYMHKP1I+5fus9U5OZqNCJCIiIg5hNBiZ3OpGbgwbANhK0eQDn/Nt5jonJ1MhEhEREQcyGoz8o9UN3NzsIgCsWCm1lDs5lVaqFhEREQczGAw8FX09bgYjLT1CuLn5Rc6OpEIkIiIijmcwGHg8+jpnx7DTJTMRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWnyVIhERESkyVMhEhERkSZPhUhERESaPC3MeAYJCQkkJCRQWFjo7CgiIiJSj1SIzmDo0KEMHTqU5ORkxo0b5+w4IiIiUk90yUxERESaPBUiERERafJUiERERKTJUyESERGRJk+FSERERJo83WV2FsrKygBITU11chIRERE5VzExMXh5eZ3xGBWis3D06FEApkyZ4uQkIiIicq5mzpxJbGzsGY8xWK1Wq4PyNFi5ubmsW7eOFi1a4OHh4ew4TvH2229z//33OztGvWsIn9PZGR31/vX1PnX5unXxWrV9jdTUVKZMmcKkSZOIiYk5rwxSN5z9/6ajNITP+ceMOkNUR4KCgrj88sudHcOp/Pz8/rRdNwYN4XM6O6Oj3r++3qcuX7cuXut8XyMmJsbl/8w2Fc7+f9NRGsLnrE1GTaqWszJ06FBnR3CIhvA5nZ3RUe9fX+9Tl69bF6/l7P+eUneayn/LhvA5a5NRl8xERBqgk1sKnc3cCBH5czpDJCLSAIWGhjJmzBhCQ0OdHUWkUdAZIhEREWnydIZIREREmjwVIhEREWnydNu9iEgj9tprr7Fy5UpKS0sJDw9n/PjxDBw40NmxRFyO5hCJiDRiqamp9kVlk5KSeOSRR/j8888JDAx0djQRl6JLZiIijVhMTIx9hX2DwUBFRQWZmZlOTiXienTJTETERRQXF/P555+TmJhIUlISBQUFTJw4keHDh1c7try8nFmzZrFkyRIKCgpo164dY8eOpU+fPtWO/fe//83ChQspLy/nwgsvpG3bto74OCINis4QiYi4iLy8PObMmUNqairt27c/47GvvPIKc+fOZdiwYTzwwAMYjUaeeOIJtm3bVu3YRx55hB9//JFp06bRp08fDAZDfX0EkQZLhUhExEWEhobyzTff8OWXXzJhwoTTHpeYmMjSpUsZP3489957LyNHjuSNN94gIiKC6dOn1/gck8lE79692bhxI6tXr66vjyDSYKkQiYi4CA8Pj7NaeXr58uWYTCZGjhxpH/P09GTEiBHs3LmTY8eOnfa5ZrOZQ4cO1UlekcZEhUhEpIHZs2cPUVFR+Pr6Vhnv1KkTAHv37gWgsLCQn376ieLiYiorK1m2bBmbN2+me/fuDs8s4uo0qVpEpIHJysqq8UzSybGTd5EZDAZ++OEHpk2bhtVqJTIyksmTJ9OhQweH5hVpCFSIREQamLKyMtzd3auNn7y9vqysDABfX1/efPNNh2YTaah0yUxEpIHx9PSkoqKi2nh5ebn9cRE5NypEIiINTGhoKFlZWdXGT46FhYU5OpJIg6dCJCLSwLRv35709HSKioqqjCcmJtofF5Fzo0IkItLADB48GLPZzPz58+1j5eXlLFy4kPj4eMLDw52YTqRh0qRqEREX8tVXX1FYWGi//LVy5UqOHz8OwA033ICfnx/x8fEMGTKEDz74gNzcXCIjI1m8eDFHjx7lySefdGZ8kQZLu92LiLiQUaNGcfTo0Rof++KLL2jRogVgu5Ps5F5mhYWFtG3blrFjx9K3b19HxhVpNFSIREREpMnTHCIRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWnyVIhERESkyVMhEhERkSZPhUhERESaPBUiERERafJUiERERKTJUyESEamlQYMGVfmnrKzM/tiiRYsYNGgQixYtcmLCU7777rsqWV9++WVnRxJxKdrtXkSqOHLkCDfddNMZj4mIiGDu3LkOSuTaIiIiuPLKKwEwmUz1+l7r1q3jscceo0+fPvzrX/8647EvvPACCQkJTJ48mWHDhhEbG8uYMWMoLCxk3rx59ZpTpCFSIRKRGkVGRjJs2LAaH/Pz83NwGtcVERHBnXfe6ZD3uuCCCwgPD2fjxo0cO3aM8PDwGo8rLCzkt99+w8/Pj0GDBgEQFxdHXFwcR44cUSESqYEKkYjUKDIy0mE/6OXsGI1Ghg8fzpw5c1i8eDG33357jcclJCRQVlbGVVddhaenp4NTijRMmkMkIudt0KBBPPDAA2RnZ/PSSy9xzTXXMHToUO655x42b95c43OKi4uZPXs2f/vb3xg6dChXXXUVjz76KNu2bat27AMPPGCfozNz5kxuvvlmhgwZwuzZs+3HLF++nHHjxjF06FCuvfZaXn31VQoKChg1ahSjRo2yH/fiiy8yaNAgEhMTa8w1a9YsBg0aREJCwnn+rtTs+PHj3H777QwdOpRffvnFPp6Tk8Pbb7/NLbfcwmWXXcY111zDpEmT2L9/f5XnX3XVVRgMBhYtWoTVaq3xPRYuXAjAiBEj6uUziDRGKkQiUicKCwu57777OHDgAJdffjmDBg0iOTmZxx57rNoP9fz8fCZMmMCcOXPw9/fn2muvZdCgQezevZsHH3yQ3377rcb3mDx5MosXL6Znz5789a9/pUWLFgAsWLCAyZMnk56ezhVXXMGVV17Jzp07eeSRR6isrKzyGiNHjrQ/54/MZjMLFy4kMDDQfqmpLh04cIB7772X48eP89prrzF48GAADh06xNixY/nyyy9p2bIlf/nLX7jwwgtZt24dEyZMqFLeIiIi6N27N4cPH66xbO7fv59du3bRoUMHOnbsWOefQaSx0iUzEanRoUOHqpyB+b3OnTvTr1+/KmN79+7luuuu46GHHsJotP1dq1evXrz66qt8/fXXPPbYY/Zj33jjDVJSUnjiiSe4+uqr7eM5OTmMGzeO1157jb59+1a73JOVlcWHH35IQECAfaygoIC33noLb29vPvjgA6KjowEYN24cjz32GMnJyURERNiP7969O61bt2bp0qX8/e9/x9vb2/7YunXryMjI4MYbb8TDw+Ncf8vOaOfOnTz55JO4ubnx9ttv0759e/tjL730EtnZ2bz++uv07dvXPv63v/2NcePG8eqrrzJnzhz7+IgRI9iwYQMLFy6kV69eVd5HZ4dEakdniESkRocOHWLOnDk1/rN27dpqx3t7e3PPPffYyxDAlVdeiclkYteuXfax3Nxcli1bRq9evaqUIYDg4GBuueUWcnNz2bhxY7X3uOOOO6qUIYAVK1ZQUlLCVVddZS9DAG5ubowdO7bGzzZy5EiKi4tZunRplfEffvgBgGuuueZ0vy21snr1ah5++GH8/f157733qpSh3bt3s2PHDq644ooqZQggOjqaq6++mv3791c5y3bxxRcTGBjI8uXLKSoqso9XVlayZMkSPDw8TjshXkRqpjNEIlKjvn378vrrr5/18VFRUfj4+FQZc3NzIyQkhMLCQvvYrl27MJvNVFRU1HgGKj09HYDU1FQGDBhQ5bFOnTpVO37fvn0AdOvWrdpj8fHxNd4Kf8UVVzBjxgx++OEHeynLzs5m1apVdOnShdatW//Jpz17y5YtY/369bRr147XXnuN4ODgKo+fvByWk5NT4+/HwYMH7f9u27YtgL3wzJs3j4SEBK699loAVq5cSW5uLkOHDsXf37/OPoNIU6BCJCJ1wtfXt8Zxk8mExWKxf52fnw/A9u3b2b59+2lfr7S0tNpYSEhItbGTZ0j+WDTAdldWYGBgtXF/f3+GDBnC4sWL2b9/P23btmXRokWYzeY6Pzu0c+dOzGYz3bp1qzHjyd+P1atXs3r16tO+TklJSZWvR4wYwbx581i4cKG9EOlymUjtqRCJiEOdLE433XQT99133zk912AwnPb1cnJyqj1msVjIy8ujWbNm1R679tprWbx4Md9//z0PPvggCxYswNfXlyFDhpxTpj8zfvx4VqxYwbx58zCZTNU+88n8Dz74IDfccMNZv267du2Ii4sjKSmJlJQU/P39WbduHS1atKg2r0hE/pzmEImIQ8XFxWEwGNi5c2edvF67du0AajzblJSUhNlsrvF5nTt3pl27dvz000+sW7eO9PR0hg0bhpeXV53kOsnDw4OXXnqJ/v3788UXX/DOO+9UefzkZcDa/H6cPBO0YMECfvzxR8xms/22fBE5NypEIuJQoaGhDBkyhB07dvDZZ5/VuJZOYmJijZfManLRRRfh7e3NggULOHTokH28srKSWbNmnfG5I0eOJD8/n6lTpwJUm+RdVzw8PJgyZQoDBgxg7ty5vP322/bH4uPjiY+PZ+nSpdUmeYPtLNeWLVtqfN2hQ4fi5eXFkiVLWLhwIUaj0b6NiIicG10yE5Eanem2e4DRo0fXehXkRx55hLS0NKZPn86PP/5I586d8fPzIyMjg127dpGens4333xzVmdr/P39+fvf/85rr73GuHHjuPTSS/H19WXNmjV4eHgQFhZ22jMml19+Oe+//z6ZmZnExsbW67o97u7uvPjiizzzzDN8+eWXWK1WHnjgAQCeeeYZHnroIZ5//nnmzZtHhw4d8PT05Pjx4+zYsYO8vLwaF4r09fXlkksu4ccffyQ3N5d+/fqddjsPETkzFSIRqdHJ2+5P58Ybb6x1IQoICOC9997j66+/5ueffyYhIQGLxUJISAjt27fn9ttvr3Ey9Olcc801+Pv787///Y/Fixfj6+vLwIEDueeee7jxxhuJjIys8Xm+vr5cfPHFLFmypN7ODv3eyVL07LPPMm/ePKxWKw8++CAtW7Zk1qxZfPHFF/z2228sWrQIo9FIaGgo3bt3ty/gWJMRI0bw448/ArZVrEWkdgzW0639LiLSwKWnp3PrrbcyZMgQnn/++RqPuf322zl69Chff/31ae+UO51BgwbRo0cP3nrrrbqI6xBHjhzhpptu4sorr+Tpp592dhwRl6EzRCLS4BUUFODp6VlldemysjL7BOaLL764xuetWbOGlJQUrrnmmnMuQydt2bLFvs3HTz/95LKbqX733Xf861//cnYMEZelQiQiDd6WLVv45z//SZ8+fWjevDl5eXls2rSJo0eP0qtXLy699NIqx3/77bccP36cH374AQ8PD0aPHl2r9x0zZkyVr2taBNJVxMbGVsnboUMH54URcUG6ZCYiDV5aWhqzZs1ix44d5ObmAhAZGcmll17KzTffXO2szahRo8jIyCA6Opp77rmn2orYItL0qBCJiIhIk6d1iERERKTJUyESERGRJk+FSERERJo8FSIRERFp8lSIREREpMlTIRIREZEmT4VIREREmjwVIhEREWny/h8iTCfCBJcjggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Spectrum\n", + "df = pd.read_csv(\"crab_spec_3x.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],ls=\"-\",label=\"Combined\")\n", + "\n", + "df = pd.read_csv(\"selected_crab_spec_3x.dat\", delim_whitespace=True)\n", + "plt.loglog(df[\"Energy[keV]\"],df[\"Rate[ct/keV]\"],ls=\"--\",label=\"Selected Combined\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Energy [keV]\")\n", + "plt.ylabel(\"ct/keV\")\n", + "plt.savefig(\"combined_spectrum_comparison.pdf\")\n", + "plt.show() " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5: Dealing with memory issues\n", + "\n", + "Combining and binning data can be memory intensive. It's therefore recommended to use a work station with plenty of RAM if possible. If you're running into memory limitatons, a workaround is to use chunks. \n", + "\n", + "We can read the unbinned data in chuncks by specifying event_min and event_max:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Preparing to read file...\n", + "Reading file...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 16106/53383576.0 [00:00<04:04, 218242.46it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Stopping here: only reading a subset of events\n", + "Making COSI data set...\n", + "total events to procecss: 999\n", + "Initializing arrays...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Making dictionary...\n", + "total processing time [s]: 10.723071336746216\n", + "Number of photons in COSI dataset: 999\n" + ] + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.read_tra(event_min=0, event_max=1000)\n", + "print(\"Number of photons in COSI dataset: \" + str(analysis.cosi_dataset[\"TimeTags\"].size))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same thing can be done for binning the data in chuncks by specifying the event_range keyword:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAG/CAYAAABxMSLLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdk0lEQVR4nO3deVxU5f4H8M+wiiyhA+KCl1AMQSMtl1xISNG8KGVoapebppBXgUxvPy3TW5pltmiSuWKZaYLdQrFcM3cr0zIJFMdrcrFkG1BZZ2Dm/P7gzolhQGaYMwWez/v1mpec53zPd87MCf32PM95jkIQBAFEREREZBW7P/sEiIiIiO4ELKqIiIiIJMCiioiIiEgCLKqIiIiIJMCiioiIiEgCLKqIiIiIJMCiioiIiEgCLKqIiIiIJMCiioiIiEgCLKqIiIiIJODwZ59AXT/++CNmz57d4L61a9eiV69e4nZGRgbWrVuHS5cuwdXVFeHh4YiLi0Pbtm2NjtNqtdi0aRMOHDiA0tJSdO/eHbGxsejfv7/Je5ibk4iIiKi+FlVUGURHRyMoKMiorUuXLuLPKpUKc+bMgZ+fHxISElBQUIDU1FRcu3YNb731ltFxy5Ytw5EjRzBhwgT4+vpi7969mDdvHlatWoWQkJBm5SQiIiKqr0UWVffddx/CwsIa3b9hwwa4u7sjKSkJrq6uAIBOnTrhzTffxOnTpzFgwAAAQFZWFg4dOoSZM2di8uTJAIBRo0Zh6tSpWLt2LdauXWtxTiIiIqKGtNg5VRUVFaipqTFpLy8vx5kzZzBy5Eix+AFqiyUXFxccPnxYbDt69Cjs7e0RFRUltjk7OyMyMhKZmZnIz8+3OCcRERFRQ1pkT9WyZctQWVkJe3t7hISEYObMmejZsycA4MqVK9DpdAgMDDQ6xtHRET169IBKpRLbVCoVfH19jQolAOLQ4uXLl+Hj42NRzvqKioqgVqvFbY1Gg8rKStx3331o06ZN874AIiIiCeXn5+PGjRtW5/H09ISPj4/1J3SHalFFlYODA4YNG4YHH3wQd911F65evYrU1FQkJCRgzZo1uOeee8QCRqlUmhyvVCrx008/idtqtbrROKC2IDLEmZuzvvT0dGzevNmk3flCZ9hVOt/m0/7BBOH3nxWKhtvr7/ujSHAOCrvfO10Fvd7aM2qUvqLCZrmJSJ4O6j+1af78/Hz8PSYaVRrrB6fatGmDjz/+mIVVI1pUUXXvvffi3nvvFbeHDh2KsLAwPP3009iwYQPefvttaDQaALW9SPU5OTlBq9WK2xqNptE4w/66f5qTs76oqCgMGTJE3M7JycHSpUtv+zmJiIj+KDdu3ECVxg4vJd6AXxfTaTXmyvnVAa+954kbN26wqGpEiyqqGuLr64uhQ4fi2LFj0Ol0cHau7f2prq42idVqtWLBBNTOn2oszrC/7p/m5KzPy8sLXl5eFnwiIiKiP17XLtUI6Gb675y59BCaDpK5Fl9UAUCHDh1QXV2NqqoqcYiu7jwmA7VabVTgKJVKFBYWNhgHQIy1JCcREVFrpBf00AnNnx6ht+JYuWixd//V9dtvv8HJyQkuLi7w9/eHvb09srOzjWKqq6uhUqkQEBAgtgUEBODatWsoLy83is3KyhL3A7AoJxERUWukh2D1i26vRRVVDd2ZcPnyZZw8eRL9+/eHnZ0d3Nzc0K9fPxw4cAAVdSYN79+/H5WVlQgPDxfbwsLCoNPpkJ6eLrZptVrs2bMHwcHB4piwJTmJiIiIGtKihv9efvllODs7o3fv3mjXrh2uXr2K3bt3o02bNpgxY4YYFxsbi/j4eCQmJiIqKkpc/bx///4YOHCgGBccHIzw8HBs2LABN27cQJcuXbBv3z7k5eVh/vz5Ru9tbk4iIqLWSIAAPZo/hCewp6pJLaqoCg0NxcGDB7Fjxw6Ul5fD09MTDz30EKZOnQpfX18xLjAwECtWrMC6devw3nvvoW3btoiMjDQqvAwWLFgAHx8f7N+/H2VlZejWrRuWL1+OPn36GMVZkpOIiKi10UGArv4SNhYeT7fXooqq8ePHY/z48WbFhoSEYM2aNU3GOTs7Y9asWZg1a5ZkOYmIiIjqa1FFFREREdmGYOVkcw7/NY1FFRERkQzoIFg1hMfhv6a1qLv/iIiIiFor9lQRERHJAIf/bI9FFRERkQzoBFh39x9rqiZx+I+IiIhIAuypIiIikgEBsGLpT3DwzwwsqoiIiGSAd//ZHosqIiIiGdAL1s2L0rOmahLnVBERERFJgD1VREREMqCHdXOqrDlWLlhUERERyYAeCuigsOp4uj0O/xERERFJgD1VREREMqAXrJtszonqTWNRRUREJAN6wMrhP2oKh/+IiIiIJMCeKiIiIhnQWTlR3Zpj5YJFFRERkQwIggJ6ofmFkWDFsXLB4T8iIiIiCbCnioiISAY4/Gd7LKqIiIhkoHbxz+YPUHHxz6axqCIiIpIBPaybU8WiqmmcU0VEREQkAfZUERERyQCf/Wd7LKqIiIhkQCfYQSc0f4DKmmPlgt8QERERkQTYU0VERCQDAhTQW9GXInD4r0ksqoiIiGSA61TZHof/iIiIiCTAnioiIiIZ0Fs5UV3PiepNYlFFREQkA3pYtyyCXrpTuWOx7CQiIiKSAHuqiIiIZEAPO+ggWHU83R6LKiIiIhmonVNlRVHFOVVNYlFFREQkA3or16niY2qaxrKTiIiISALsqSIiIpIBvaCATrDi7r9mHFtRUYGUlBRkZWXhwoULKC0txYsvvojRo0f/nlevx/79+3H06FGoVCqUlpaiU6dOePjhhzFp0iQ4Ozub5P3iiy+QkpKCvLw8eHt7Y/z48YiOjjaJKywsxOrVq/H9999Dr9ejb9++SExMROfOnZud83bYU0VERCQDOthZ/bLUzZs3sXnzZuTk5CAgIKDBmKqqKixbtgw3b97Eo48+isTERAQFBeHDDz/EvHnzINSbB7Zr1y68+eab8Pf3x+zZs9G7d2+sWrUK27ZtM4qrqKjA7Nmzce7cOcTExGDatGlQqVRITEzEzZs3m5WzKeypIiIiIptQKpVIS0uDUqnExYsX8cwzz5jEODo64v3338e9994rto0dOxYdO3bEBx98gLNnz6Jfv34AAI1Gg+TkZAwaNAivvvqqGKvX67FlyxZERUXB3d0dALBz505cu3YN69evR1BQEABg4MCBmDp1KlJTU8VzsSRnU9hTRUREJAMCFNALds1+NeeByk5OTlAqlbeNcXR0NCqoDEJDQwEAOTk5YtsPP/yAmzdv4rHHHjOKHTduHCorK/HNN9+IbUeOHEHPnj3FggoA/Pz8cP/99+Pw4cPNytkUFlVEREQyINXwX05ODrKzs8VXUVGRTc63uLgYAHDXXXeJbSqVCgDQs2dPo9jAwEDY2dnh0qVLAGrnaV25csUkDgCCgoLw66+/oqKiwqKc5uDwHxEREZlt6dKlRttTp07FtGnTJH+f7du3w9XVFQMHDhTb1Go17O3t0a5dO6NYR0dHeHh4QK1WAwBu3boFrVbbYC+Zoa2oqAh/+ctfzM5pDhZVREREMlB79591xwPAwoUL4efnJ7Y3NbzXHB9//DHOnDmDuXPnGs1n0mg0cHBouHRxcnKCRqMR44DawqihuLox5uY0B4sqIiIiGahd/NP6Byr7+fkhMDBQmpNqwKFDh5CcnIzIyEiTeU7Ozs6oqalp8DitVisuv2D4s7q6usG4ujHm5jQH51QRERFRi/D999/j9ddfx6BBg/DPf/7TZL9SqYROp0NJSYlRe3V1NW7duiX2mnl4eMDJyanBoTtDm5eXl0U5zcGiioiISAZqn/3X/Jetn/2XlZWFhQsXIjAwEIsXL25wSK5Hjx4AgIsXLxq1X7x4EXq9XtxvZ2eHbt26mcQZ3qdz585o27atRTnNwaKKiIhIBgzDf9a8bOXq1auYP38+OnbsiOXLlzc65Hb//ffDw8MDu3btMmrftWsX2rRpg0GDBoltw4YNw8WLF42Kpf/+97/48ccfERYW1qycTeGcKiIiIhmw/jE1zZvl/tlnn6GsrEwcdjt58iQKCgoAANHR0bCzs8Pzzz+P0tJSTJo0yWRdqM6dO6N3794Aauc/TZ8+HStXrsS//vUvDBgwAD/99BMOHDiAuLg4eHh4iMeNGzcOX3zxBebPn49JkybB3t4eO3bsQLt27TBp0iQxzpKcTWFRRURERDaTmpqKvLw8cfvYsWM4duwYAGDkyJEAIBZZ69evNzn+kUceEYsqoLZYcnBwQGpqKk6ePIkOHTogISEBEyZMMDqubdu2WLVqFVavXo0tW7aIz/5LSEiAp6enUay5OZvCooqIiEgGahfwbH5PlQ4Cfr8H0Hw7duxoMsZQZJlr7NixGDt2bJNxHTp0wJIlSyTNeTssqoiIiGRAEBTiWlPNO17Ck7lDcaI6ERERkQTYU0VERCQDOijE5/c173jLh/7khkUVERGRDAiwbq0pjv41jcN/RERERBJgTxUREZEM1A7/WXP3n+0W/7xTsKgiIiKSgdq7/6wY/uPtf03i8B8RERGRBNhTRUREJAMc/rM9FlVEREQyIAhW3v3H4b8msagiIiKSAZ2ggM6KokoncJ2qprToomrLli1ITk6Gv78/PvroI6N9GRkZWLduHS5dugRXV1eEh4cjLi4Obdu2NYrTarXYtGkTDhw4gNLSUnTv3h2xsbHo37+/yfuZm5OIiIiovhY7Ub2goABbt26Fi4uLyT6VSoU5c+agqqoKCQkJiIyMxO7du/Hyyy+bxC5btgw7duxAREQEnn32WdjZ2WHevHk4f/58s3MSERG1NgIU0FvxEjinqkkttqdqzZo1CA4Ohl6vx82bN432bdiwAe7u7khKSoKrqysAoFOnTnjzzTdx+vRpDBgwAACQlZWFQ4cOYebMmZg8eTIAYNSoUZg6dSrWrl2LtWvXWpyTiIioNdIJdlYO/7XYfpgWo0V+Q+fOncPRo0eRmJhosq+8vBxnzpzByJEjxeIHqC2WXFxccPjwYbHt6NGjsLe3R1RUlNjm7OyMyMhIZGZmIj8/3+KcRERERA1pcUWVTqfDqlWrEBkZie7du5vsv3LlCnQ6HQIDA43aHR0d0aNHD6hUKrFNpVLB19fXqFACgKCgIADA5cuXLc5JRETUGglQQC80/8Xhv6a1uOG/Xbt2IT8/HytXrmxwv1qtBgAolUqTfUqlEj/99JNRbGNxAFBUVGRxzvqKiorE4wEgJyen0VgiIqI/S+06VVYM/7GoalKLKqpu3ryJDz74AE899RQ8PT0bjNFoNABqe5Hqc3JyglarNYptLK5uLkty1peeno7Nmzc3up+IiIjkoUUVVcnJyXB3d0d0dHSjMc7OzgCA6upqk31arVYsmAyxjcXVzWVJzvqioqIwZMgQcTsnJwdLly5tNJ6IiOjPIPxvGM+a4+n2WkxRlZubi927dyMxMVEclgNqi5qamhpcv34drq6u4hBd3SE3A7VaDS8vL3FbqVSisLCwwTgAYqwlOevz8vK67X4iIqKWQA876K0Y/rPmWLloMd9QUVER9Ho9Vq1ahYkTJ4qvrKws5ObmYuLEidi8eTP8/f1hb2+P7Oxso+Orq6uhUqkQEBAgtgUEBODatWsoLy83is3KyhL3A7AoJxEREVFDWkxPlb+/P1577TWT9uTkZFRUVODZZ59F586d4ebmhn79+uHAgQOYMmWKuNr5/v37UVlZifDwcPHYsLAwpKSkID09XVynSqvVYs+ePQgODoaPjw8AWJSTiIioNdILtY+qseZ4ur0WU1R5enoiNDTUpP3TTz8FAKN9sbGxiI+PR2JiIqKiolBQUIDU1FT0798fAwcOFOOCg4MRHh6ODRs24MaNG+jSpQv27duHvLw8zJ8/3+h9zM1JRETUGumtnFNlzbFy0WKKKksEBgZixYoVWLduHd577z20bdsWkZGRmDFjhknsggUL4OPjg/3796OsrAzdunXD8uXL0adPn2bnJCIiam30gh30VqyKbs2xctHii6qkpKQG20NCQrBmzZomj3d2dsasWbMwa9asJmPNzUlERERUX4svqoiIiMh6eiisWsBTz8U/m8SiioiISAb0gnXzojhRvWkcICUiIiKSAHuqiIiIZECAdRPVBfbDNIlFFRERkQzoobBqXhTnVDWNZScRERGRBNhTRUREJAN6QWHliursqWoKiyoiIiIZqF1R3ZrFP1lUNYXDf0REREQSYE8VERGRDPDZf7bHooqIiEgGBCvv/hN491+TWFQRERHJAHuqbI9zqoiIiIgkwJ4qIiIiGRBg3d1/HP5rGosqIiIiGfgzhv8qKiqQkpKCrKwsXLhwAaWlpXjxxRcxevRok9irV69i9erVyMjIgIODAwYNGoSEhAR4enoan4dej5SUFOzcuRPFxcXw9fVFTEwMRowY8YfkvB0WVURERGQTN2/exObNm+Hj44OAgAD8+OOPDcYVFBQgMTERbm5uiIuLQ2VlJVJSUnDlyhWsX78ejo6OYuzGjRuxbds2jB07Fj179sSJEyewZMkSKBQKDB8+3KY5m8KiioiISAb+jGf/KZVKpKWlQalU4uLFi3jmmWcajNu6dSuqqqqQnJwMHx8fAEBQUBDmzp2LvXv3IioqCgBQWFiI1NRUjBs3DnPmzAEAjBkzBomJiVizZg3CwsJgb29vs5xN4UR1IiIiGRD+N/zX3JfQjOE/JycnKJXKJuOOHj2KwYMHi8UPAPTr1w9du3bF4cOHxbYTJ06gpqYG48aNE9sUCgUee+wxFBYWIjMz06Y5m8KiioiIiMyWk5OD7Oxs8VVUVGRVvsLCQpSUlCAwMNBkX1BQEFQqlbitUqng4uICPz8/kzjDflvlNAeH/4iIiGRAL1i31pReqP1z6dKlRu1Tp07FtGnTmp1XrVYDQIM9WkqlErdu3YJWq4WTkxPUajXatWsHhUJhEgdALPBskdMcLKqIiIhkQLDy7j/D8N/ChQuNenXMGd67HY1GAwBGE8cNnJycxBgnJydoNJom42yV0xwsqoiIiMhsfn5+DQ6rNZezszMAoLq62mSfVqs1inF2djY7Tuqc5uCcKiIiIhnQw7qJ6tbcOXg7hp4uw5BdXWq1Gh4eHmKvkVKpRHFxMQRBMIkDAC8vL5vlNAeLKiIiIhkwLKlgzcsWvL294enpiezsbJN9Fy5cQEBAgLgdEBCAqqoq5OTkGMVlZWWJ+22V0xwsqoiIiGTgz1hSwVzDhg3DqVOnkJ+fL7adPXsWubm5CA8PF9uGDh0KBwcHpKWl1flcAnbt2gVvb2/07t3bpjmbwjlVREREZDOfffYZysrKxOG0kydPoqCgAAAQHR0NNzc3xMTE4MiRI3juuecwfvx4VFZWYvv27ejWrZvRI206dOiACRMmYPv27aipqUFQUBCOHz+O8+fPY9GiRUaLdNoiZ1NYVBEREcmAXlAAf/Cz/wAgNTUVeXl54vaxY8dw7NgxAMDIkSPh5uYGHx8fJCUlYfXq1Vi/fr34nL74+Hhx7pPBjBkz4O7ujvT0dOzbtw++vr5YuHAhIiIijOJskbMpCqH+zCyySnZ2NuLi4uB8oTPsKs2/Y8Dm6l7mumtx1L/8ij/hKeQSnIPC7veRbEGvt/aMGqWvqLBZbiKSp4P6T22a3/DvksOMICg6uzY7j/BbOWrWX8DGjRslvfvvTsI5VUREREQS4PAfERGRDOgFBRQSLP5JjWNRRUREJAMCrJtTJdhoSYU7CYf/iIiIiCTAnioiIiIZEKCwsreJPVVNYVFFREQkA9YuqQBBweGtJvD7ISIiIpIAe6qIiIhkQBBgZU+VZKdyx2JRRUREJANSDP+Z/8AWeWJRRUREJAdWPhTZmjWu5IJzqoiIiIgkwJ4qIiIiGdDDyp4qLqnQJBZVREREMiAIps+vtyyBZKdyx+LwHxEREZEE2FNFREQkAwIU0FsxhGfH4b8msagiIiKSgdrhPyseqMzhvyZx+I+IiIhIAuypIiIikgG9oKhdALS5uE5Vk1hUERERyYC1d/9x+K9pHP4jIiIikgB7qoiIiGTBusU/wbv/msSiioiISAYEK5/9Z11BJg8sqoiIiGTA2onqfKBy0zinioiIiEgC7KkiIiKSAd79Z3ssqoiIiOTAyhXV+UDlpnH4j4iIiEgC7KkiIiKSAcHKJRUELqnQJBZVREREMiDAuhE8jv41jcN/RERERBJgTxUREZEMcPFP22NRRUREJAcc/7M5FlVEREQywJ4q2+OcKiIiIiIJtKieql9++QUffvghsrOzUVxcjDZt2sDPzw+TJ0/GkCFDjGKvXr2K1atXIyMjAw4ODhg0aBASEhLg6elpFKfX65GSkoKdO3eiuLgYvr6+iImJwYgRI0ze39ycRERErY6VK6pz+K9pLaqoysvLQ0VFBR555BF4eXmhqqoKR48exYsvvojnn38eUVFRAICCggIkJibCzc0NcXFxqKysREpKCq5cuYL169fD0dFRzLlx40Zs27YNY8eORc+ePXHixAksWbIECoUCw4cPF+MsyUlERNTacJ0q22tRRdWgQYMwaNAgo7bHH38ccXFx2LFjh1hUbd26FVVVVUhOToaPjw8AICgoCHPnzsXevXvFuMLCQqSmpmLcuHGYM2cOAGDMmDFITEzEmjVrEBYWBnt7e4tyEhERETWkxc+psre3R4cOHVBWVia2HT16FIMHDxaLHwDo168funbtisOHD4ttJ06cQE1NDcaNGye2KRQKPPbYYygsLERmZqbFOYmIiFolAYCgsOL1Z3+Als+snqrs7Gyr3uQvf/kLXFxczI6vrKyERqNBeXk5Tp48ie+++w7h4eEAanufSkpKEBgYaHJcUFAQvv32W3FbpVLBxcUFfn5+JnGG/SEhIRblrK+oqAhqtVrczsnJMftzEhER/VEEK+dUWTUfSybMKqqeeeYZKBTNH0t955138MADD5gd//777yM9PR0AYGdnh4ceekgcvjMUMEql0uQ4pVKJW7duQavVwsnJCWq1Gu3atTM5d8OxRUVFFuesLz09HZs3bzb7sxEREclFbm4uNm3ahIyMDNy6dQs+Pj4YMWIEJk2ahDZt2ohxGRkZWLduHS5dugRXV1eEh4cjLi4Obdu2Ncqn1WqxadMmHDhwAKWlpejevTtiY2PRv39/k/c2N6eUzJ5TNXbsWAQHB1uUvKKiAu+9957FJzVhwgSEhYWhqKgIhw8fhk6nQ3V1NQBAo9EAQIMTxw1Fj0ajgZOTEzQaTZNxluasLyoqyujOxJycHCxdutT8D0tERPRH+IMX/8zPz8eMGTPg5uaGcePGwcPDA5mZmfjggw+QnZ2NZcuWAagdNZozZw78/PyQkJCAgoICpKam4tq1a3jrrbeMci5btgxHjhzBhAkT4Ovri71792LevHlYtWoVQkJCxDhLckrJ7KIqJCQEERERFiW/efMmkpKSLD4pPz8/ccjukUcewdy5c/HCCy9g/fr1cHZ2BgCxyKpLq9UCgBjj7Oxsdpy5Oevz8vKCl5eX+R+OiIjoT/BHL/554MABlJWV4f3334e/vz+A2o4IvV6P/fv3o7S0FO7u7tiwYQPc3d2RlJQEV1dXAECnTp3w5ptv4vTp0xgwYAAAICsrC4cOHcLMmTMxefJkAMCoUaMwdepUrF27FmvXrhXf29ycUjNrovrSpUvRp08fi5O7urpi6dKlCAgIsPjYusLCwnDx4kXk5uaKQ3R15zEZqNVqeHh4iD1KSqUSxcXFEOoNBBuONRRDluQkIiKippWXlwMA2rVrZ9SuVCphZ2cHBwcHlJeX48yZMxg5cqRY/AC1xZKLi4vRjWJHjx6Fvb290d34zs7OiIyMRGZmJvLz88X3NTen1MwqqkJDQ+Ht7W1xcgcHB4SGhuKuu+6y+Ni6DMNzZWVl8Pb2hqenZ4OT5y9cuGBUwAUEBKCqqspk8nhWVpa4H4BFOYmIiFotwYrX/+Tk5CA7O1t8GeYn19e3b18AwPLly6FSqZCfn49Dhw5h165diI6OhouLC65cuQKdTmdyo5ijoyN69OgBlUoltqlUKvj6+hoVSsDvN59dvnwZACzKKTWzl1SIi4vDp59+2mBvjlRKSkpM2mpqarB//344Ozvj7rvvBgAMGzYMp06dEqtSADh79ixyc3PFuwQBYOjQoXBwcEBaWprYJggCdu3aBW9vb/Tu3VtsNzcnERFRa2QY/rPmBdSOXsXFxYkvw41l9Q0cOBDTp0/HmTNnMH36dEyYMAGLFy/G448/jsTERABN3yhWt2BTq9WNxgHm33zWWBEoBbPnVBUXF2P16tVYs2YN7r//fkREROChhx6SdBb922+/jfLyctx3333w9vaGWq3GwYMH8d///hfx8fHie8XExODIkSN47rnnMH78eFRWVmL79u3o1q0bRo8eLebr0KEDJkyYgO3bt6OmpgZBQUE4fvw4zp8/j0WLFokLf1qSk4iIqFWSaKL6woULjZYqaqh4MejUqRPuu+8+DBs2DB4eHvjmm2+wdetWtG/fHtHR0U3eKGaY1wxAspvP6uaUmtlF1WeffYZz587h4MGDOHbsGM6cOYMVK1Zg8ODBiIiIwMCBA+HgYN0C7Q8//DC+/PJL7Nq1Czdv3kTbtm0RGBiIf/zjHxg6dKgY5+Pjg6SkJKxevRrr168Xn9MXHx9vMvdpxowZcHd3R3p6Ovbt2wdfX18sXLjQZNK9JTmJiIjkys/Pr8F1Hes7dOgQ3nrrLWzbtg0dOnQAUDsqJAgC1q9fjxEjRjR5o1jdf3+luvnMlv+mW1QF9enTB3369MGcOXPw3Xff4auvvsKpU6dw5MgRuLu7IywsDCNGjMB9993XrJMZPny40fP4bsff3x/vvPNOk3F2dnaIiYlBTEyMZDmJiIhaH8X/XtYcb760tDT06NFDLKgMhgwZgr1790KlUjV5o1jdu+uVSiUKCwsbjAPMv/nMlnfsN+sxNQ4ODhgyZAhefvll7Nq1CwsWLEBQUBD27NmD2bNn44knnsCGDRukPlciIiJqLmsmqTdj6LCkpAR6vd6kvaamBgCg0+ng7+8Pe3t7kxvFqquroVKpTG4+u3btmnhXoUH9m88sySk1q5/916ZNG4wcORJvvvkm/v3vf2PIkCHIz8/HJ598IsX5ERERUSvUtWtXqFQq5ObmGrUfOnQIdnZ26N69O9zc3NCvXz8cOHAAFRUVYsz+/ftRWVlpdKNYWFgYdDqd0cR4rVaLPXv2IDg4WHx2ryU5pWbdJKj/yczMxFdffYXDhw+jpKQETk5OGDx4sBSpiYiISAp/8IrqkyZNwnfffYeEhAQ8/vjj8PDwwKlTp/Ddd99hzJgx4jBcbGws4uPjkZiYiKioKHH18/79+2PgwIFivuDgYISHh2PDhg24ceMGunTpgn379iEvLw/z5883em9zc0qt2UXV1atXcfDgQXz99de4fv06FAoF+vbti4iICAwbNsymz9YhIiIiCwmK2pc1x1ugT58+eP/99/Hhhx8iLS0Nt27dQqdOnRAXFyeuiA4AgYGBWLFiBdatW4f33nsPbdu2RWRkJGbMmGGSc8GCBfDx8cH+/ftRVlaGbt26Yfny5SYLlFuSU0oKof5y47dhWLjrq6++wpUrVyAIAnr06IGIiAgMHz6cj2sBkJ2djbi4ODhf6Ay7yoYfbfOnqHuZ6z5guv7lt+LB2c0mwTko7H4fyRYaGMOXir5OVzIRkRQO6j+1aX7Dv0vXx4ai2qv5i3E7Ft1Ep93HsXHjRrPu/pMjs3uqEhISkJmZCb1ej44dO+Jvf/sbIiIixAU5iYiIqGUzvxuFmsPsoionJwdjx45FREQE7r33XlueExEREUntD55TJUdmF1VpaWlWL+5JREREdKcyu0qqX1CVl5cjLS0NP/74I27cuIF//vOfCA4Oxq1bt7B3714MGTIEvr6+kp8wERERNYMAKyeqS3Ymd6xmdT0VFBTg2WefRUFBAXx9ffHf//4XlZWVAAAPDw+kp6cjLy8Ps2fPlvRkiYiIqJkEQMHhP5tqVlG1du1aVFRU4IMPPoCnpyceffRRo/1Dhw7FN998I8kJEhERkQQ4p8rmmrWi+vfff4/o6GjcfffdUDRw+3vnzp1RUFBg9ckRERERtRbN6qnSaDTw9PRsdH8F1/IhIiJqYaxc/NOqhzHLQ7N6qu6++2789NNPje4/ceIEevTo0eyTIiIiIon9wQ9UlqNmFVUTJkzA119/jW3btolPixYEAdeuXcPSpUuRmZmJJ554QtITJSIiImrJmjX8N3LkSOTl5SE5ORnJyckAgP/7v/+DIAhQKBSIi4tDaGiopCdKREREVuBEdZtr9mqeTz31FEaNGoWjR4/i2rVrEAQBnTt3xrBhw9C5c2cpz5GIiIisxaLK5ppVVB0/fhyhoaHw8fFpdJhv7dq1mDlzplUnR0RERNRaNGtO1eLFi/Hdd981uv/tt99Gampqs0+KiIiIJCYorH/RbTWrqBo1ahQWLlyIs2fPGrXr9XosWbIEX3zxBebMmSPJCRIREZH1FKhdUb3Zrz/7A7QCzSqq/u///g9hYWFYsGCBuLRCdXU1XnrpJRw5cgQLFiwwWWWdiIiI6E7W7InqL774IqqrqzF//nwsWbIE27dvR0ZGBhYvXsw7/4iIiFoaTlS3uWb1VAGAnZ0dFi1ahAceeADz5s3DhQsXsHz5chZUREREJEtm9VTdbtJ5UFAQzp49i4EDB+Ly5cu4fPkyAEChUHABUCIiohbCMDfKmuPp9swqqtasWdNkzJEjR3DkyBFxm0UVERERyYnVPVVERETUCli7LAKXVGiSWUVVx44dbX0eREREZEucqG5zzZ6oTkRERES/M6uoeuGFF3Du3DmLk1dUVOCFF17Af/7zH4uPJSIiIokJVryoSWYVVd988w2KioosTl5dXY1vvvkGN27csPhYIiIiko5Vq6lbeeegXJi9+OeWLVuwe/dui5LrdDooFJzYRkRERHc+s4qq++67r1nFkb29Pe677z64u7tbfCwRERFJiBPVbc6soiopKcnW50FERES2xKLK5nj3HxEREZEEmv1AZSIiImo9+Jga22NRRUREJAtWrqgO3njWFBZVREREcsA5VTbHOVVEREREEmBPFRERkRxYu4Ane6qaZFVRVVNTg8LCQpSWlkIQTL/twMBAa9ITERGRVDj8Z3PNKqpKS0uxZs0aHDx4EDU1NSb7BUGAQqHAkSNHrD0/IiIiolahWUXVsmXLcOrUKTz88MMIDg6Gq6ur1OdFREREEuKSCrbXrKLq+++/R3R0NBITE6U+HyIiIrIVFkY21ay7/zw8PNClSxepz4WIiIio1WpWURUVFYWvv/4aer1e6vMhIiIiWxAkeNFtNWv4b8qUKdBqtYiLi8OoUaPg7e0NOzvT+mzYsGFWnyARERFZ78+aU5WdnY0PP/wQGRkZ0Gq16Ny5M8aOHYvx48eLMRkZGVi3bh0uXboEV1dXhIeHIy4uDm3btjXKpdVqsWnTJhw4cAClpaXo3r07YmNj0b9/f5P3NTenlJpVVBUWFuKHH37A5cuXcfny5QZjePcfERGRvJ0+fRovvvgievTogSlTpsDFxQW//vorCgsLxRiVSoU5c+bAz88PCQkJKCgoQGpqKq5du4a33nrLKN+yZctw5MgRTJgwAb6+vti7dy/mzZuHVatWISQkpFk5pdSsouqNN96ASqVCTEwMgoKC4ObmJvV5ERERUStWXl6O119/HQ8++CBeffXVBke0AGDDhg1wd3dHUlKSuJpAp06d8Oabb+L06dMYMGAAACArKwuHDh3CzJkzMXnyZADAqFGjMHXqVKxduxZr1661OKfUmjWnKiMjA08++STi4uIwdOhQ9OnTp8EXERERtRB/8Jyqr776CsXFxYiLi4OdnR0qKytN5mKXl5fjzJkzGDlypNHyTKNGjYKLiwsOHz4sth09ehT29vaIiooS25ydnREZGYnMzEzk5+dbnFNqzeqpat++Pdzd3aU+FyIiIrIRqeZU5eTkGLUrlUp4eXmZxJ85cwaurq4oKirCSy+9hNzcXLi4uGDkyJFISEiAs7Mzrly5Ap1OZ/IEFkdHR/To0QMqlUpsU6lU8PX1NVkbMygoCABw+fJl+Pj4WJRTas0qqiZOnIidO3ciMjLSphO+iIiIqGVZunSp0fbUqVMxbdo0k7hr165Bp9NhwYIFiIyMxDPPPINz587hs88+Q1lZGV5++WWo1WoAtYVZfUqlEj/99JO4rVarG40DgKKiIjHO3JxSa1ZRpdVq4eDggCeffBLh4eHo0KGDyVipQqHAE088IclJEhERkQQkWBZh4cKF8PPzE7cbKl4AoLKyElVVVXj00Ucxe/ZsALWrAlRXVyM9PR3Tpk2DRqMBUNuLVJ+TkxO0Wq24rdFoGo0z7K/7pzk5pdasomrNmjXiz59//nmDMSyqiIiIWhCJHqjs5+dnMrTWEGdnZwDA8OHDjdpHjBiB9PR0ZGZmok2bNgCA6upqk+O1Wq1YMBnyNRZX9/0Mf5qTU2rNKqpSU1OlPg8iIiK6gyiVSvzyyy9o3769UXu7du0AAKWlpeLTWQxDdnWp1WqjuVpKpdJoKYa6cQDEWEPPmTk5pdasu/86duxo1ouIiIhaBsNEdWteljD0ZtUvhAxznzw9PeHv7w97e3tkZ2cbxVRXV0OlUiEgIEBsCwgIwLVr11BeXm4Um5WVJe4HYFFOqZldVGVlZeHWrVtmxf7222/Yt29fs0+KiIiIJPYHL6kQHh4OAPjyyy+N2r/88kvY29ujb9++cHNzQ79+/XDgwAFUVFSIMfv370dlZaWYAwDCwsKg0+mQnp4utmm1WuzZswfBwcHw8fEBAItySs3s4b9Zs2bhpZdeQkREBADg1q1biI6OxltvvWWyJtXPP/+MN954A4888oikJ0tEREStwz333IO//vWv2LNnD3Q6Hfr06YNz587h8OHDiImJEYfhYmNjER8fj8TERERFRYmrn/fv3x8DBw4U8wUHByM8PBwbNmzAjRs30KVLF+zbtw95eXmYP3++0Xubm1NqZhdVgiCYbGu1Wuh0OslPioiIiCRm5TpVzZnk/vzzz8PHxwd79+7F8ePH4ePjg4SEBKMb2QIDA7FixQqsW7cO7733Htq2bYvIyEjMmDHDJN+CBQvg4+OD/fv3o6ysDN26dcPy5ctNOncsySmlZk1UJyIiolZIgiUVLOHg4ICnn34aTz/99G3jQkJCjFYWaIyzszNmzZqFWbNmNRlrbk4pNWuiOhEREREZY08VERGRHEi0ThU1zqKiKi8vT7xF0XBL47Vr1+Dm5mYUd/369WadzIULF7Bv3z78+OOPyMvLg4eHB3r16oXY2Fh07drVKPbq1atYvXo1MjIy4ODggEGDBiEhIQGenp5GcXq9HikpKdi5cyeKi4vh6+uLmJgYjBgxwuT9zc1JRETU2kj17D9qnEVF1aZNm7Bp0yajtpUrV5rECYIAhUJh8cl88sknyMjIQHh4OLp37w61Wo20tDTExsZi7dq16NatGwCgoKAAiYmJcHNzQ1xcHCorK5GSkoIrV65g/fr1RkvTb9y4Edu2bcPYsWPRs2dPnDhxAkuWLIFCoTBa5dWSnERERK0Oe6pszuyi6oUXXrDleQAAnnjiCfzrX/8yKmAefvhhPP3009i2bRsWLVoEANi6dSuqqqqQnJwsrksRFBSEuXPnYu/evYiKigJQu+BYamoqxo0bhzlz5gAAxowZg8TERKxZswZhYWGwt7e3KCcRERFRQ8wuqkaPHm3L8wAA3HvvvSZtXbt2xd13342cnByx7ejRoxg8eLBY/ABAv3790LVrVxw+fFgsgE6cOIGamhqMGzdOjFMoFHjsscewZMkSZGZmIiQkxKKcRERErRJ7qmyuxU9UFwQBJSUluPvuuwHU9j6VlJQ0+DDHoKAgfPvtt+K2SqWCi4uL0dO0DXGG/SEhIRblrK+oqMjo+UJ1iz8iIqKWQgEr51RJdiZ3rhZfVB08eBCFhYWYNm0agN8fkGh4YGJdSqUSt27dEp9CrVar0a5dO5P5XYZjDc8fsiRnfenp6di8ebNJu6JjB9jp3EzapSCYMV9NUX+x1jrH1N/3R8UZnZ9eX2ej8c9jdHz9BUD0aJDZv/j18il0v3+ORr/ji5eNt4VGToKIiGSnRRdVOTk5WLlyJXr16iU+8kaj0QBAgxPHDUWPRqOBk5MTNBpNk3GW5qwvKioKQ4YMMTrnpUuXmv8hiYiI/ggc/rO5FltUqdVqzJ8/H66urnj11VfFCeXOzs4Aap82XZ9WqzWKcXZ2NjvO3Jz1eXl5ic8vIiIiaqm4pILttcgV1cvKyjBv3jyUlZXh7bffNipaDEN0decxGajVanh4eIg9SkqlEsXFxSbPLTQca8hrSU4iIiKihrS4okqj0eCFF15Abm4u3njjDXGCuoG3tzc8PT3FRUjrunDhAgICAsTtgIAAVFVVmUwez8rKEvdbmpOIiKhVEiR40W21qKJKp9PhlVdeQWZmJhYvXozevXs3GDds2DCcOnUK+fn5YtvZs2eRm5uL8PBwsW3o0KFwcHBAWlqa2CYIAnbt2gVvb2+j/ObmJCIiapVYVNlci5pT9f777+PkyZMYPHgwSktLceDAAaP9I0eOBADExMTgyJEjeO655zB+/HhUVlZi+/bt6Natm9F6Wh06dMCECROwfft21NTUICgoCMePH8f58+exaNEicZ6WJTmJiIiIGtKiiqrLl2tvVz916hROnTplst9QVPn4+CApKQmrV6/G+vXrxef0xcfHm8x9mjFjBtzd3ZGeno59+/bB19cXCxcuREREhFGcJTmJiIhaGwWsW2uK61Q1rUUVVUlJSWbH+vv745133mkyzs7ODjExMYiJiZEsJxERUavEITybalFFFREREdmIlUsqsCBrWouaqE5ERETUWrGnioiISA64orrNsagiIiKSAxZVNsfhPyIiIiIJsKeKiIhIBvjsP9tjUUVERCQHHP6zOQ7/EREREUmAPVVEREQyoICVw3+Sncmdi0UVERGRHHD4z+Y4/EdEREQkAfZUERERyQDv/rM9FlVERERywOE/m2NRRUREJAcsqmyOc6qIiIiIJMCeKiIiIhngkgq2x6KKiIhIDjj8Z3Mc/iMiIiKSAHuqiIiI5EAQoBCs6G6y5liZYFFFREQkBxz+szkO/xERERFJgD1VREREMqCwsqeKK6o3jUUVERGRXLAwsikWVURERPSH2LJlC5KTk+Hv74+PPvrIaF9GRgbWrVuHS5cuwdXVFeHh4YiLi0Pbtm2N4rRaLTZt2oQDBw6gtLQU3bt3R2xsLPr372/yfubmlArnVBEREcmA4YHK1rysUVBQgK1bt8LFxcVkn0qlwpw5c1BVVYWEhARERkZi9+7dePnll01ily1bhh07diAiIgLPPvss7OzsMG/ePJw/f77ZOaXCnioiIiI5+JPv/luzZg2Cg4Oh1+tx8+ZNo30bNmyAu7s7kpKS4OrqCgDo1KkT3nzzTZw+fRoDBgwAAGRlZeHQoUOYOXMmJk+eDAAYNWoUpk6dirVr12Lt2rUW55QSe6qIiIhk4M/sqTp37hyOHj2KxMREk33l5eU4c+YMRo4cKRY/QG2x5OLigsOHD4ttR48ehb29PaKiosQ2Z2dnREZGIjMzE/n5+RbnlBJ7qoiIiMhsOTk5RttKpRJeXl6Nxut0OqxatQqRkZHo3r27yf4rV65Ap9MhMDDQqN3R0RE9evSASqUS21QqFXx9fY0KJQAICgoCAFy+fBk+Pj4W5ZQSiyoiIiI5kGj4b+nSpUbNU6dOxbRp0xo9bNeuXcjPz8fKlSsb3K9WqwHUFmf1KZVK/PTTT0axjcUBQFFRkcU5pcSiioiISAYUgHXrVP3vz4ULF8LPz09sb6hwMbh58yY++OADPPXUU/D09GwwRqPRAKjtRarPyckJWq3WKLaxuLq5LMkpJRZVREREZDY/Pz+TYbXGJCcnw93dHdHR0Y3GODs7AwCqq6tN9mm1WrFgMsQ2Flc3lyU5pcSiioiISA4EwbqHIlt4bG5uLnbv3o3ExERxWA6oLWpqampw/fp1uLq6ij1dhiG7utRqtdF8LaVSicLCwgbjAIixluSUEu/+IyIikgNr7/yzsB4rKiqCXq/HqlWrMHHiRPGVlZWF3NxcTJw4EZs3b4a/vz/s7e2RnZ1tdHx1dTVUKhUCAgLEtoCAAFy7dg3l5eVGsVlZWeJ+ABbllBJ7qoiIiEhy/v7+eO2110zak5OTUVFRgWeffRadO3eGm5sb+vXrhwMHDmDKlCniauf79+9HZWUlwsPDxWPDwsKQkpKC9PR0cZ0qrVaLPXv2IDg4GD4+PgBgUU4psagiIiKSgz948U9PT0+EhoaatH/66acAYLQvNjYW8fHxSExMRFRUFAoKCpCamor+/ftj4MCBYlxwcDDCw8OxYcMG3LhxA126dMG+ffuQl5eH+fPnG72PuTmlxKKKiIhIBhQCAL0VCWz4MObAwECsWLEC69atw3vvvYe2bdsiMjISM2bMMIldsGABfHx8sH//fpSVlaFbt25Yvnw5+vTp0+ycUlEIgjWz1qi+7OxsxMXFoU1JH9jr3GzyHoJC0WSMot5lrXtM/X1/VJzR+enr/Gbf5vMYHV9/BqA1fzk0kE+h+/1zNHbeuouXjRsEa0+CiOTuoP5Tm+Y3/LtU4zUMcPRsfqLqG3AoOoqNGzeaffef3LCnioiISA7+5Gf/yQGLKiIiIhlozh18RlhUNYlFFRERkRz8wetUyRHXqSIiIiKSAHuqiIiIZIDDf7bHooqIiEguWBjZFIf/iIiIiCTAnioiIiIZ4PCf7bGoIiIikgPe/WdzHP4jIiIikgB7qoiIiGSAw3+2x6KKiIhIDlhU2RyH/4iIiIgkwJ4qIiIimVBYM09dutO4Y7GoIiIikgM9rKuq9JKdyR2LRRUREZEccE6VzXFOFREREZEE2FNFREQkAwrButE/COysagqLKiIiIlmwckV1llRN4vAfERERkQTYU0VERCQDHP6zPRZVREREcsC7/2yOw39EREREEmBPFRERkQwoBAEKayaqWzXJXR5YVBEREcmBAOtWRWdN1aQWVVRVVFQgJSUFWVlZuHDhAkpLS/Hiiy9i9OjRJrFXr17F6tWrkZGRAQcHBwwaNAgJCQnw9PQ0itPr9UhJScHOnTtRXFwMX19fxMTEYMSIEc3OSURERFRfiyqqbt68ic2bN8PHxwcBAQH48ccfG4wrKChAYmIi3NzcEBcXh8rKSqSkpODKlStYv349HB0dxdiNGzdi27ZtGDt2LHr27IkTJ05gyZIlUCgUGD58eLNyEhERtTYKQYDCmu4mDv81qUUVVUqlEmlpaVAqlbh48SKeeeaZBuO2bt2KqqoqJCcnw8fHBwAQFBSEuXPnYu/evYiKigIAFBYWIjU1FePGjcOcOXMAAGPGjEFiYiLWrFmDsLAw2NvbW5STiIioVbK2JmJN1aQWdfefk5MTlEplk3FHjx7F4MGDxeIHAPr164euXbvi8OHDYtuJEydQU1ODcePGiW0KhQKPPfYYCgsLkZmZaXFOIiKiVkkQrH/RbbWonipzFBYWoqSkBIGBgSb7goKC8O2334rbKpUKLi4u8PPzM4kz7A8JCbEoZ31FRUVQq9Xidk5OjsWfiYiIiFq/VldUGQqYhnq0lEolbt26Ba1WCycnJ6jVarRr1w4KhcIkDqgtiCzNWV96ejo2b95s0l7Spx30bTwBAIKZ/YGKOndl3O6YuiviCoqmY2oD6+77fUNvb5zAqtV2m1D3XOt+VtT/DELD+xr7rEAT593Yvnr5jM6vkWO8rvzXaFuvqbrNGxMRtSCC6V+3Fh3OjqomtbqiSqPRAECDE8cNRY9Go4GTkxM0Gk2TcZbmrC8qKgpDhgwRt3NycrB06VKLPhMREdEfgpWRTbW6osrZ2RkAUF1dbbJPq9UaxTg7O5sdZ27O+ry8vODl5WXRZyAiIqI7T4uaqG4OwxBd3XlMBmq1Gh4eHmKPklKpRHFxMYR6lbnhWEMxZElOIiKi1kiht/5Ft9fqiipvb294enoiOzvbZN+FCxcQEBAgbgcEBKCqqspk8nhWVpa439KcRERErRLv/rO5VldUAcCwYcNw6tQp5Ofni21nz55Fbm4uwsPDxbahQ4fCwcEBaWlpYpsgCNi1axe8vb3Ru3dvi3MSERERNaTFzan67LPPUFZWJg7FnTx5EgUFBQCA6OhouLm5ISYmBkeOHMFzzz2H8ePHo7KyEtu3b0e3bt2MHmnToUMHTJgwAdu3b0dNTQ2CgoJw/PhxnD9/HosWLRIX/gRgdk4iIqJWiR1NNtfiiqrU1FTk5eWJ28eOHcOxY8cAACNHjoSbmxt8fHyQlJSE1atXY/369eJz+uLj403mPs2YMQPu7u5IT0/Hvn374Ovri4ULFyIiIsIozpKcRERErY21j6mx6hE3MtHiiqodO3aYFefv74933nmnyTg7OzvExMQgJiZGspxERERE9bW4ooqIiIhswcrJ5hauDn3hwgXs27cPP/74I/Ly8uDh4YFevXohNjYWXbt2NYq9evUqVq9ejYyMDHGkKCEhAZ6enkZxer0eKSkp2LlzJ4qLi+Hr64uYmBiMGDHC5P3NzSklFlVERERyoId186osXI79k08+QUZGBsLDw9G9e3eo1WqkpaUhNjYWa9euRbdu3QAABQUFSExMhJubG+Li4lBZWYmUlBRcuXIF69evN1qYe+PGjdi2bRvGjh2Lnj174sSJE1iyZAkUCgWGDx8uxlmSU0osqoiIiGRAIQhGjymz+HgLK7InnngC//rXv4wKmIcffhhPP/00tm3bhkWLFgEAtm7diqqqKiQnJ8PHxwdA7XN3586di7179yIqKgpA7bN/U1NTMW7cOMyZMwcAMGbMGCQmJmLNmjUICwsTb0AzN6fUWuWSCkRERNSy3XvvvSY9Ql27dsXdd99ttH7k0aNHMXjwYLH4AYB+/fqha9euOHz4sNh24sQJ1NTUYNy4cWKbQqHAY489hsLCQmRmZlqcU2rsqSIiIpIDAZIs4Fl/QW2lUmn249oEQUBJSQnuvvtuALW9TyUlJQgMDDSJDQoKwrfffituq1QquLi4wM/PzyTOsD8kJMSinFJjUUVERCQL0kxUX7p0qVHz1KlTMW3aNLNSHDx4EIWFhWK8YU1Kw+Pi6lIqlbh16xa0Wi2cnJygVqvRrl07KBQKkzgAKCoqsjin1FhUERERkdkWLlxo1FvUUPHSkJycHKxcuRK9evXCI488AgDQaDQA0ODEcUPRo9Fo4OTkBI1G02ScpTmlxqKKiIhIDvT/e1nJz8+vwaG121Gr1Zg/fz5cXV3x6quvihPKnZ2dAQDV1dUmx2i1WqMYZ2dns+PMzSk1TlQnIiKSAcPdf9a8mqOsrAzz5s1DWVkZ3n77baP5V4ZeLsOQXV1qtRoeHh5ij5JSqURxcTGEeudhONaQ15KcUmNRRURERDah0WjwwgsvIDc3F2+88YY4Qd3A29sbnp6eyM7ONjn2woULCAgIELcDAgJQVVVlMlE+KytL3G9pTqmxqCIiIpIDQbD+ZQGdTodXXnkFmZmZWLx4MXr37t1g3LBhw3Dq1Cnk5+eLbWfPnkVubi7Cw8PFtqFDh8LBwQFpaWl1PpKAXbt2wdvb2yi/uTmlxjlVREREsmDl3X8WLv75/vvv4+TJkxg8eDBKS0tx4MABo/0jR44EAMTExODIkSN47rnnMH78eFRWVmL79u3o1q0bRo8eLcZ36NABEyZMwPbt21FTU4OgoCAcP34c58+fx6JFi8R5WpbklBqLKiIiIpLc5cuXAQCnTp3CqVOnTPYbiiofHx8kJSVh9erVWL9+vficvvj4eJO5TzNmzIC7uzvS09Oxb98++Pr6YuHChYiIiDCKsySnlFhUERERyYG1i39aeGhSUpLZsf7+/njnnXeajLOzs0NMTAxiYmIkyyklFlVERERyYO2SChY+UFmOWFQRERHJgZUPVJbiETd3Ot79R0RERCQB9lQRERHJwh97958csagiIiKSA71Q+7LmeLotDv8RERERSYA9VURERHLQjFXRTY6n22JRRUREJAd/8DpVcsThPyIiIiIJsKeKiIhIFnj3n62xqCIiIpID3v1ncxz+IyIiIpIAe6qIiIjkQNDXvqw5nm6LRRUREZEc8O4/m2NRRUREJAeClXOquE5Vk1hU2ciH/0hBj27VAACNUGPWMW3tnMSfqwWd+LMexl2uujr/YdsrFOLPLgpn8ecyfZXRMY3FaYRqo7i67+uosK8TZ/wZnBUOdX52FH+uFDRmnWtVnfdpW+d4S9R937qft+55A8bn7mb3+2e/We87alPnOAc0/Nkn7h5rdIw+3zgHERHJF4sqIiIiOeCK6jbHooqIiEgOWFTZHJdUICIiIpIAe6qIiIjkgD1VNseiioiISA4EAdBbs04Vi6qmcPiPiIiISALsqSIiIpIDDv/ZHIsqIiIiOWBRZXMc/iMiIiKSAHuqiIiI5ICPqbE5FlVERERyIAgQBN79Z0ssqoiIiORAb2VPlTXHygTnVBERERFJgD1VREREcsC7/2yORRUREZEcCHorV1S34liZ4PAfERERkQTYU0VERCQHAqwc/pPsTO5YLKqIiIhkQNDrIVgx/GfNsXLB4T8iIiIiCbCnioiISA5495/NsagiIiKSAz6mxuZYVNnIuBPjob3gWbuh+P0/RIVOIf4s2Nf7D1RR5+e6uwRFvbiG/8NW1Mkn6OofU+fHmnr7GokT7Oqct974GKNTqns+9d+27ue9TT4jdffVOQZOxuP5Qt3PUeeEFPW/1zpxdc9b4VA/3++j4UY56hzfszyr8fMmIiJZY1FFREQkB4Jg3VpT7KlqEosqIiIiGRD0AgQrhv+sOVYuWFQRERHJgt7KVdEtP1ar1WLTpk04cOAASktL0b17d8TGxqJ///5WnEfLxSUViIiIyCaWLVuGHTt2ICIiAs8++yzs7Owwb948nD9//s8+NZtgUUVERCQDgv73IcDmvSx7v6ysLBw6dAjPPPMMZs2ahaioKLz77rvo2LEj1q5da5sP+SdjUUVERCQHgt76lwWOHj0Ke3t7REVFiW3Ozs6IjIxEZmYm8vPzpf6EfzrOqZKYRqMBADjcLPu9se7qAbo6P9vXO7jRJRVuE1dX3eUH6i9ZUHezppHj68fVLbnr/y4pzPgZMP68t8tXl9G6B3U+k2O9L6LushF1d9X/X4W651D3/OovvVA3X90cdY7Xu2iMDtEL1SAiskZ2djb8/PzQpk0bm76P0LamGbOijI8HgJycHKN2pVIJLy8vk3iVSgVfX1+4uroatQcFBQEALl++DB8fHyvOqOVhUSUxlUoFAPA+8eOffCZkC1WBf/YZENGdJi4uDhs3bkRgoG3+gvH09ESbNm1QFXjL6lwODg5YunSpUdvUqVMxbdo0k1i1Wg2lUmnSbmgrKiqy+nxaGhZVEvPz8wMAzJ8/HwEBAX/y2ZAlcnJysHTpUixcuFC8jtTy8bq1Trxuxmz5Hfj4+ODjjz/GjRs3rM6l1+thZ2c8HNBQ4QTUjtw4OjqatDs5OYn77zQsqiTm7u4OAAgICLDZ/3WQbfn5+fHatUK8bq0Tr9sfw8fH5w8fanN2dkZ1tekUCa1WK+6/03CiOhEREUlOqVRCrVabtBvaGpqH1dqxqCIiIiLJBQQE4Nq1aygvLzdqz8rKEvffaVhUSUypVGLq1KmNjjFTy8Vr1zrxurVOvG53vrCwMOh0OqSnp4ttWq0We/bsQXBw8B135x8AKASBT0gkIiIi6b388ss4duwYnnjiCXTp0gX79u3DhQsXsHLlSvTp0+fPPj3JsagiIiIim9BoNOKz/8rKytCtWzfExsZiwIABf/ap2QSLKiIiIiIJcE4VERERkQRYVBERERFJQJaLf77++uvYt29fo/s/++wzeHt7Q6/XY/fu3di1axd+/fVXtGnTBvfccw+eeuop3HvvvUbHaLVacdy4tLQU3bt3R2xsLPr372+SPyMjA+vWrcOlS5fg6uqK8PBwxMXFoW3bts3OKQe5ubnYtGkTMjIycOvWLfj4+GDEiBGYNGmS0TOzbPH98ppZp6lrV1VVhT179uDEiRO4cuUKKisr4evri7Fjx2Ls2LGwtzd+UKZer0dKSgp27tyJ4uJi+Pr6IiYmBiNGjDB576tXr2L16tXIyMiAg4MDBg0ahISEBHh6ejY7p1yY+ztnUFpair/97W+4ceMGlixZgrCwMKP9/J2jO50s51T9/PPP+O2334zaBEHAO++8g44dO2LLli0AgNWrV2PHjh0YOXIkQkJCUFZWhvT0dOTn5+P9999HcHCwePzixYtx5MgRTJgwAb6+vti7dy8uXryIVatWISQkRIxTqVSYOXMm/Pz8EBUVhYKCAqSmpqJv37546623jM7J3JxykJ+fj6effhpubm6IioqCh4cHMjMzsXfvXgwZMgTLli0DYJvvl9fMOuZcuytXruDpp5/GAw88gP79+6Nt27Y4ffo0jh8/jlGjRuGll14yyrl+/Xps27YNY8eORc+ePXHixAl88803ePnllzF8+HAxrqCgANOnT4ebmxuio6NRWVmJlJQU+Pj4YP369UaP0DA3p1yY+ztX16pVq7Bnzx5UVlY2WFTxd47ueAIJgiAIP/30kxAaGips2bJFEARBqK6uFkaMGCEsWrTIKO7XX38VQkNDhXfffVdsy8zMFEJDQ4VPPvlEbKuqqhImTZok/OMf/zA6/vnnnxcee+wxoaysTGzbvXu3EBoaKnz33XfNyikHW7ZsEUJDQ4UrV64YtS9dulQIDQ0Vbt26JQiCbb5fXjPrmHPtSkpKTPYLgiAsW7ZMCA0NFXJzc8W2goICITw8XFixYoXYptfrhfj4eOHxxx8XampqxPZ33nlHGDFihJCXlye2ff/990JoaKiwa9euZuWUC3N/5wz+85//CGFhYcLmzZuF0NBQ4fDhw0b7+TtHcsA5Vf/z1VdfQaFQiF39Op0OGo0G7dq1M4pr164d7OzsjJ5ZdPToUdjb2yMqKkpsc3Z2RmRkJDIzM5Gfnw8AKC8vx5kzZzBy5Ei4urqKsaNGjYKLiwsOHz5scU65MKzIW/96KJVK2NnZwcHBwSbfL6+Z9cy5dp6envD39zc5NjQ0FEDtw3cNTpw4gZqaGowbN05sUygUeOyxx1BYWIjMzEyx/ejRoxg8eLDRIoP9+vVD165dja6dJTnlwpzrVldSUhIeeuihRnuH+DtHcsCiCkBNTQ0OHz6M3r17o1OnTgBqfzGDg4Oxb98+HDhwAPn5+fjPf/6DZcuWwd3d3eiXWKVSwdfX1+gvAAAICgoCAFy+fBkAcOXKFeh0OpOHhzo6OqJHjx5QqVQW55SLvn37AgCWL18OlUqF/Px8HDp0CLt27UJ0dDRcXFxs8v3ymlnPnGvXmOLiYgDAXXfdJbapVCq4uLjAz8/PKNbwPRuuSWFhIUpKShp8WG9QUJDJtTMnp5xYct0OHz6Mn3/+Gf/4xz8azcffOZIDWU5Ur+/06dO4efMmIiIijNoXLlyIV155BUuXLhXbOnfujPfffx+dO3cW29RqdYOPWjC0FRUViXF12+vH/vTTTxbnlIuBAwdi+vTp2Lp1K06ePCm2//3vf0dcXBwA23y/vGbWM+faNaS6uhqffvopOnXqhJ49e4rtarUa7dq1g0KhMIq39NrdunULWq0WTk5OZueUE3Ovm0ajwZo1a/DEE0+gU6dOyMvLazAff+dIDlhUoXboz8HBAeHh4Ubtbdu2hb+/P3r16oUHHngAxcXF2LZtGxYsWIDVq1eLdw9pNBqjCa8GTk5O4v66fzYWq9VqxW1zc8pJp06dcN9992HYsGHw8PDAN998g61bt6J9+/aIjo62yffLayaNpq5dQ959911cvXoVy5cvNxpqkuraGWKcnJx47RphznXbtm0bampqEBMTc9tc/J0jOZB9UVVRUYETJ05gwIABRkMMNTU1mDNnDvr27YvnnntObH/ggQcwZcoUbN++HTNnzgRQO1RYXV1tktvwy2+Yf2X4s7FYw18EluSUi0OHDuGtt97Ctm3b0KFDBwDAsGHDIAgC1q9fjxEjRtjk++U1s545167u7x4AbN++Hbt378b06dMxaNAgo31SXbv6sbx2xsy5bhUVFdi+fTvmzJljstRBffydIzmQ/ZyqEydOoKqqymTo76effsIvv/yCIUOGGLV37doVfn5++Pnnn8U2pVIpdlnXZWjz8vIS4+q21481xFmSUy7S0tLQo0cP8S93gyFDhqCqqgoqlcom3y+vmfXMuXZ17d27F+vWrcOjjz6KKVOmmORTKpUoLi6GUG81GEuvnYeHh/gPtLk55cSc6/bBBx/Ay8sLffr0wfXr13H9+nVxHtyNGzdw/fp16PV6APydI3mQfVF18OBBuLi4mBRPJSUlACD+hVBXTU0NdDqduB0QEIBr166Jd8sYZGVlifsBwN/fH/b29sjOzjaKq66uhkqlEuMsySkXJSUljV4LoPZuTVt8v7xm1jPn2hkcP34cb775Jh566CHMmTOnwXwBAQGoqqoyuiMQMP2evb294enpaXLtAODChQsm186cnHJiznXLz8/Hr7/+ikmTJmHixImYOHEiFi9eDABYsWIFJk6cKP4+8HeO5EDWRdWNGzdw5swZPPTQQyarA3ft2hVAbRd4XdnZ2cjNzUWPHj3EtrCwMOh0OqSnp4ttWq0We/bsQXBwsHg7t5ubG/r164cDBw6goqJCjN2/fz8qKyuN5nSZm1MuunbtCpVKhdzcXKP2Q4cOwc7ODt27d7fJ98trZj1zrh0AnDt3DosXL0ZISAgWLVoEO7uG/3oaOnQoHBwckJaWJrYJgoBdu3bB29sbvXv3FtuHDRuGU6dOGd1af/bsWeTm5hpdO0tyyoU51y02Nhavvfaa0Wv69OkAgMmTJ+O1114T7xLk7xzJgaznVB06dAg6nc5k6A8AAgMD0a9fP+zbtw/l5eUYMGAA1Go1PvvsMzg7O2PChAlibHBwMMLDw7FhwwbcuHEDXbp0wb59+5CXl4f58+cb5Y2NjUV8fDwSExONVgru378/Bg4c2KyccjBp0iR89913SEhIwOOPPw4PDw+cOnUK3333HcaMGSN289vi++U1s4451y4vLw8LFiyAQqFAWFgYjhw5YpSje/fuYvHVoUMHTJgwAdu3b0dNTQ2CgoJw/PhxnD9/HosWLTJ6pE1MTAyOHDmC5557DuPHj0dlZSW2b9+Obt26YfTo0WKcJTnlwpzr1tDwmpubG4DaZQ0M64wB/J0jeZDlY2oMZs6cid9++w2ff/55g39pajQapKSk4NChQ7h+/TocHR0REhKC6dOnG/VUGWINz58qKytDt27dEBsbiwEDBpjkPX/+vPhMq7Zt2yI8PBwzZswwmehpSU45yMrKwocffgiVSoVbt26hU6dOeOSRRzB58mSju8Ns8f3ymlmnqWv3448/Yvbs2Y0eP3XqVEybNk3c1uv1+OSTT5Ceng61Wg1fX1/87W9/w8iRI02O/eWXX0ye/RcfH4/27dsbxVmSUy7M/Z2ry3AtG3pMDX/n6E4n66KKiIiISCqynlNFREREJBUWVUREREQSYFFFREREJAEWVUREREQSYFFFREREJAEWVUREREQSYFFFREREJAEWVUREREQSkPVjaoiISDpFRUX497//jQsXLuDixYuorKzEqlWr0LdvX7NznDlzBh9//DGuXLkCnU4HX19fREdHY9SoUWKMRqPBypUrceHCBRQUFECv16Nz587461//inHjxhmt9r53714sW7aswfdKS0uDUqlscN+vv/6KKVOmQKvVYsOGDejZs6fZn6Gua9euYf369Th79iyqq6txzz33YPr06bj//vublY9aNhZVRGTk9ddfx7lz57Bjx44/+1QAAB988AE2b94MAHBxccH+/fvNPra0tBSRkZHi9syZMzF58mSpT5H+Jzc3F5988gl8fX3RrVs3ZGZmWnT8iRMn8NJLL6FXr16YOnUqFAoFDh8+jNdeew03b97EE088AaC2qLp69SoefPBBdOzYEXZ2dvj555+xevVqXLhwAf/6179Mck+fPh2dOnUyajM8p7Ah7733ntXPfMzPz8fMmTNhb2+PyZMno02bNti7dy/++c9/YuXKlejTp49V+anlYVFFJAMPPfSQWXGrVq2y8Zk038KFCy3+R87FxQULFy7EjRs3sHr1ahudmXw8++yz6NixIxYsWNDg/sDAQHzxxRfw8PDAkSNHGixubufzzz+HUqnEu+++CycnJwBAVFQU/v73v2Pv3r1iUeXh4YF169YZHfvoo4/C1dUVn3/+OeLj4016oAYOHGh2b9Pp06fx/fffY/LkydiyZYtFn6Gubdu2oaysDB999BH+8pe/AADGjh2LmJgYrF69GsnJyc3OTS0TiyoiGVi4cKHR9r59+3DmzBmTdj8/P8ybNw96vf6PPD2zNOfBxg4ODhg5ciSuX7/OouoPUP9hx5aqqKiAu7u7WFABtdfwrrvuMuv4jh07AgDKysoaHNarqKiAs7PzbYvzmpoaJCUlYfz48ejSpUujcTk5OUhOTsYPP/wAjUYDf39/TJkyBUOHDhVjzp8/jx49eogFFQC0adMGQ4YMQVpaGnJzc9G1a1ezPhu1DiyqiGSgfkGSmZmJM2fONKtQIbKVPn364JNPPkFycjIeeeQRKBQKfPXVV8jOzsYrr7xiEl9dXY3y8nJoNBpkZ2cjJSUFHTt2bLAYmj17NiorK+Ho6Ij+/fsjPj6+wYLm008/RWlpKZ566ikcO3aswfP85ZdfEB8fDy8vL/ztb39DmzZtcPjwYbz00kt49dVXxZ7h6upquLu7mxzfpk0bAMClS5dYVN1hWFQRkZH6c6quX7+OiRMnYubMmXB2dkZqaiqKi4tx7733Yv78+ejQoQO2bNmC9PR03Lx5E/3798eLL74IDw8Po7zffvsttm7dikuXLkGhUOC+++7DzJkz4e/v3+xzvXjxIjZu3IhLly6hsrIS7du3x/33348XXnjBqu+A/hxTpkzB9evX8fHHH4vDbm3atMGSJUsQGhpqEn/s2DEsXrxY3O7Zsyfmz59vNFHd2dkZo0ePRt++feHq6ors7Gzs2LEDs2bNQnJyMnx8fMRYtVqNjz76CLNmzYKrq2uj55mUlIQOHTpgw4YNYq/auHHjEB8fj3Xr1olFVdeuXXH+/HlUVFQY9eKdP38eAFBYWNicr4laMBZVRGSWr776CtXV1YiOjsatW7ewfft2vPLKK7j//vvx448/4sknn8S1a9fw+eefY82aNUaFzf79+/H6669jwIABmDFjBjQaDXbu3In4+Hhs2rTJZAKxOUpKSvDPf/4Tnp6eePLJJ+Hu7o7r16832rtAlqmpqUFZWZlJW3V1NW7cuGHU7uHhATs761focXR0RNeuXREWFoaHHnoIOp0Ou3fvxtKlS7FixQr06tXLKL5v375YsWIFysrKcPbsWVy+fBlVVVVGMQ8//DAefvhhcTs0NBQDBgxAYmIiPv74Yzz//PPivnXr1qFz584YM2ZMo+d469Yt/PDDD5g2bRoqKipQUVEh7hswYAA++OADFBYWwtvbG4899hhOnTqFl19+GXFxcXBxcUFaWhqys7MB1E64pzsLiyoiMkthYSE++eQT8Y4pvV6PrVu3QqPRYMOGDWLvwM2bN3Hw4EHMnTsXTk5OqKiowKpVqzBmzBj83//9n5jvkUceQUxMDLZu3WrUbq6ff/4ZpaWleOedd4wmIMfFxVn5SQkAMjIyMHv2bJP2n3/+GYcOHTJqS01NbVZhXN+7776LrKwsJCcni0Xaww8/jKeeegpJSUlYv369UXz79u3Rvn17AEBYWBg+/vhjzJ07F5988kmjSyUAQEhICIKDg3H27FmxLTMzEwcOHMDKlStvWyBeu3YNgiBg06ZN2LRpU4MxJSUl8Pb2xoMPPojZs2djw4YNiI2NBQB06dIFcXFxWLt2LVxcXMz7YqjVYFFFRGYJCwszugU9KCgIABAREWE03BIUFISvvvoKRUVF6Ny5M86cOYOysjIMHz7cqIfDzs4OQUFB+OGHH5p1PoZzOXXqFAICAozOgawXEBCAFStWGLW9//77aN++vcmyFIbCxhrV1dX48ssv8eSTTxoVNQ4ODhg4cCDS0tJQXV0NR0fHRnOEhYVh48aNOHHiBB599NHbvl+HDh3w3//+V9xeu3YtQkJC0KlTJ1y/fh0AxP9e1Wo18vPz4ePjA0EQAACTJk3CgAEDGszt6+sr/hwdHY2//vWv+M9//gNHR0cEBATgyy+/BADOp7oD8W8hIjJL3bknwO9FTYcOHRpsLy0tBVD7f/YA8NxzzzWY93ZzV26nT58+GDZsGDZv3oxPP/0Uffr0QWhoKEaMGGF09xg1j7u7O/r162fSplQqTdqlcPPmTeh0Ouh0OpN9Op0Oer2+ybtSDcNp5eXlTb7fb7/9Bk9PT3G7oKAAeXl5mDhxoknsiy++CDc3N+zZswedO3cGUFvsmfs9uLi4oHfv3uL22bNn4ezsjHvvvdes46n1YFFFRGZpbEiksdvTDf9Hb/iHcOHChQ32aDR3gUWFQoFXX30VmZmZOHXqFE6fPo033ngDqampWLt2rdW395Nt5efno6qqCn5+fgCAdu3awc3NDcePH8f06dPFHqmKigqcPHkSf/nLX+Ds7AygtgfprrvugkKhMMr5xRdfAKhdL8vgxo0bRsUTAHzzzTfIzs5GdHS02Pb888+bzHH64Ycf8Nlnn2HWrFlG59m3b1+kp6fj8ccfh5eXl9ExDb1fXRkZGTh27BgeffTR2y4+Sq0TiyoisinD7e2enp426eHo1asXevXqhbi4OBw8eBCvvvoqvv7669tONibb+eijjwAAV69eBVB7k4LhbrcpU6aIca+99hrOnTsn3lhgb2+PSZMmITk5Gf/4xz8watQo6PV6fPnllygsLDRaU+3AgQNIT0/H0KFD0blzZ1RUVOD06dM4c+YMBg8ejAceeECMnTlzJu655x4EBgbC1dUVly5dwp49e9ChQwf8/e9/F+MaGsozTNTv06eP0by9OXPmID4+Hk8//TTGjBmDzp07o7i4GJmZmSgsLMSHH34IAMjLy8PLL7+MIUOGoH379rh69Sp27dqFbt264ZlnnrHqe6aWiUUVEdnUgAED4Orqiq1bt+L+++83mfvU1P/ZN6a0tBRubm5GvRU9evQAAGi1WqvOmZqv/uTtPXv2iD/XLaoa8tRTT6FTp07497//jc2bN6O6uhrdu3fHkiVLEBYWJsaFhIQgMzMThw4dQklJCezt7dG1a1ckJCTg8ccfN8r58MMP49tvv8X333+PqqoqKJVKjB07FlOnTm32XLC7774bGzduxIcffoi9e/fi1q1baNeuHXr06GH0GV1dXaFUKvH555+jtLQUXl5eiI6OxlNPPcWe1DsUiyoisilXV1fMnTsXr732GqZPn47hw4fD09MT+fn5+Pbbb9G7d2/MmTPH4rx79+7Fzp07ERoaii5duqCiogJffPEFXF1d8eCDD9rgk1BSUlKTMeYuadFYroiICERERNz22J49exqtT3U7cXFxzb4jdPTo0Rg9enSD+zp37oyXXnrptse7u7vj9ddfb9Z7U+vEooqIbC4iIgJeXl7Ytm0bUlJSoNVq4e3tjZCQEPz1r39tVs4+ffrg4sWL+Prrr1FSUgJXV1cEBQVh0aJF4mRiIqI/kkIwzCYlImqBPvjgA2zevBnp6elQKBRmPwcOqJ0sf/PmTRQUFCA2NhYzZ840WQ6AiEgq7KkiolYhKioKLi4u2L9/v9nHlJWVISoqyoZnRUT0O/ZUEVGL9ttvv+G3334DUHuHWN++fc0+tqamBufOnRO3u3btarLeFhGRVFhUEREREUnA+idgEhERERGLKiIiIiIpsKgiIiIikgCLKiIiIiIJsKgiIiIikgCLKiIiIiIJsKgiIiIikgCLKiIiIiIJsKgiIiIiksD/A2z7H77gmWktAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAG4CAYAAAB2CPL9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABF40lEQVR4nO3deVzU1f7H8TeCIKKEDogLZG4pal4tl1xIzCUtJb0uadmqZKaWVr+2q7cs226rXsrcysoF21TsKlrmRlamuQVGmMk1F0RABdlhfn/44HsZZ9AB+QYjr+fj0YPmfM/3cD4MyJvzPfMdN6vVahUAAAAqVI3KngAAAMCViJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWZUoJydHCQkJysnJqeypAACACkbIqkRJSUmKiIhQUlJSZU8FAABUMEIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmMCjsieAK9ehH45r1+eJys8pMNpq1vJQ55Gt1Kxbo0qcGQAA5iNkwTS7Pk/UmWPnLmjN1c7PEglZAIArHiELpilewXJzk7zreSk7PVdWq2xWtq5krOQBQPVGyILpvOt56c7Im7Vs8rfKSsut7On8ZUpbyds4e49q1z8gidAFAFcyQhaueJW1onThSl7JgPm//z9/+dRqVYXNkRU0AKgaCFmw4egX9IUu9gu75PnZ6eatWpUlSJRlRakiw06x4pW8P348rp2f/W/skpdPL7V/rSLqZS8cAPy1CFmw+QXu3OW80i95OfoFX7OW42+zy1lxuViQuDAoFYc9Z1aUJJkWUJp1a2QzRvHl0+z0XGXLdo4X7l+7VFAs+XWr7nvhAKCqIGRdgcq6GuX4F7hUu76XXVtpAaX4l/2Fgab485SUnZ57kf1ZjoPDhS4WJEqrx7eRj0a+cVOpK0pnj//vnNICysWCYWnhrjTnw+f58S+c44Vfn0tferR/DqrrXjgAqCoIWVeg0kKGrf+tzlz4C/xi4ebCgOI4dP0vLJRUMlRc+Eu/dv2LB4cLlRYkHK0KFX/u4rB34YrSZ09s1Zlj55wKOxdbQZMcrYKVvpLXeWQrm6+lo0B6IUeXHkt7Di78vMXhtuTn4vIhAJiHkHUFujA0Xajkys2yyd/aBZaLuTCgXBi6pNLDwoWhomTfZt0aORUcLlQcJC62KnQpZQk7pa2gOVoFu9RYF34tHSkORheuipU891LPgeNwyx4tADAbIesKVlpoKrlyc7GVD2c4ExSc7Xup4HChkkGiPKtCZanhwrBT/LW92CrY5Sht1c/Rc3Sp+V/4tWGPFgD8NQhZ1dDFVpSqirKEt/L0d9alws7lhLuLqcjnqLQN9wAAcxGyqiGzAsmV6FJhx6yvJc8RALg+QhZwEYQdAEB51ajsCQAAAFyJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKPyp5ASQcOHFBMTIx2796tEydOyNfXV+3atdP48eMVHBxs9Hv55ZcVExNjd/7VV1+tJUuW2LQVFRUpKipKq1atUlpamoKCgjR27Fj169fP7vzDhw8rMjJS+/fvl4eHh7p3767JkyfLz8+v3GMCAIDqqUqFrGXLlmn//v3q06ePWrRoodTUVK1cuVLjx4/X3Llz1bx5c6Ovp6ennnzySZvzfXx87MZcsGCBli5dqiFDhqhNmzaKjY3VCy+8IDc3N/Xt29fod/LkSU2ZMkV16tRRRESEsrOzFRUVpUOHDmnevHmqWbNmmccEAADVV5UKWaNGjdI///lPm0Bz88036/7779fSpUs1Y8YMo93d3V0DBgy46HgpKSlasWKFhg0bpmnTpkmSBg8erClTpui9995TWFiY3N3dJUlLlixRTk6OFi5cqMDAQElSSEiIHnvsMa1bt07h4eFlHhMAAFRfVWpP1nXXXWcTsCQpODhY11xzjZKSkuz6FxYW6ty5c6WOFxsbq4KCAg0bNsxoc3Nz09ChQ5WSkqK4uDijfcuWLerRo4cRsCSpc+fOCg4O1qZNm8o1JgAAqL6qVMhyxGq1Kj09XVdddZVNe05OjgYNGqRBgwbptttu01tvvaWsrCybPomJifL29lbTpk1t2kNCQozj0vnVqfT0dLVu3dru84eEhBj9yjImAACo3qrU5UJHvv76a6WkpOiBBx4w2iwWi8aMGaNrr71WVqtVP/74o1atWqXff/9ds2fPlofH+bJSU1NVr149ubm52YxpsVgkSadOnTL6lWy/sO/Zs2eVl5cnT09Pp8d05NSpU8bnkuRwdQ4AAFwZqnTISkpK0ttvv6127dpp4MCBRvuECRNs+vXt21fBwcFasGCBtmzZYmw+z83Ntbv8KJ3fNF98vOTHS/X19PR0ekxHoqOjtXjx4lKPAwCAK0eVDVmpqal66qmn5OPjoxdffPGSm8lHjRqlRYsWaefOnUbI8vLyUn5+vl3fvLw843jJj872daafI+Hh4erZs6fxOCkpSbNmzbpoXQAAwDVVyZCVmZmpJ598UpmZmYqMjJS/v/8lz/Hy8pKvr6/Onj1rtFksFu3evVtWq9Xm8l7xJbvicYsv9ZW8lFeyr6+vr7FS5eyYjvj7+ztVCwAAcH1VbuN7bm6unn76aR05ckSvvvqqrrnmGqfOy8rK0pkzZ2xuHNqyZUvl5OTY7X2Kj483jktSQECA/Pz8lJCQYDfugQMHjH5lGRMAAFRvVSpkFRYW6vnnn1dcXJxmzpyp9u3b2/XJzc21exWhJH300UeyWq3q1q2b0darVy95eHho5cqVRpvVatXq1asVEBBgM37v3r21fft2JScnG227du3SkSNH1KdPn3KNCQAAqq8qdbnw3Xff1XfffacePXooIyNDGzZssDk+YMAApaWlady4cerXr5+uvvpqSdKOHTv0ww8/qFu3burVq5fRv0GDBho5cqSWL1+ugoIChYSEaNu2bdq3b59mzJhhs89r7Nix2rx5s6ZOnaoRI0YoOztby5cvV/PmzTVo0KByjQkAAKqvKhWyDh48KEnavn27tm/fbnd8wIABqlOnjnr06KGffvpJMTExKioqUpMmTfTggw9q9OjRqlHDdnFuwoQJqlu3rqKjoxUTE6OgoCBNnz5d/fv3t+kXGBioOXPmKDIyUvPmzTPeu3DSpEnGfqyyjgkAAKovN6vVaq3sSVRXCQkJioiI0IIFCxzeCLW8lk3+Vllpuapd30t3Rt5cYePiysD3BwD8NarUniwAAIArBSELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEHpU9gZIOHDigmJgY7d69WydOnJCvr6/atWun8ePHKzg42Kbv4cOHFRkZqf3798vDw0Pdu3fX5MmT5efnZ9OvqKhIUVFRWrVqldLS0hQUFKSxY8eqX79+dp/fjDEBAED1VKVC1rJly7R//3716dNHLVq0UGpqqlauXKnx48dr7ty5at68uSTp5MmTmjJliurUqaOIiAhlZ2crKipKhw4d0rx581SzZk1jzAULFmjp0qUaMmSI2rRpo9jYWL3wwgtyc3NT3759jX5mjAkAAKqvKhWyRo0apX/+8582gebmm2/W/fffr6VLl2rGjBmSpCVLlignJ0cLFy5UYGCgJCkkJESPPfaY1q1bp/DwcElSSkqKVqxYoWHDhmnatGmSpMGDB2vKlCl67733FBYWJnd3d9PGBAAA1VeV2pN13XXX2QQsSQoODtY111yjpKQko23Lli3q0aOHEYYkqXPnzgoODtamTZuMttjYWBUUFGjYsGFGm5ubm4YOHaqUlBTFxcWZOiYAAKi+qlTIcsRqtSo9PV1XXXWVpPMrSenp6WrdurVd35CQECUmJhqPExMT5e3traZNm9r1Kz5u1piOnDp1SgkJCcZ/JYMjAAC4slSpy4WOfP3110pJSdEDDzwgSUpNTZUkWSwWu74Wi0Vnz55VXl6ePD09lZqaqnr16snNzc2un3Q+9Jg1piPR0dFavHixM2UDAAAXV6VDVlJSkt5++221a9dOAwcOlCTl5uZKkt1lRUny9PQ0+nh6eio3N/eS/cwa05Hw8HD17NnTpr5Zs2aV2h8AALiuKhuyUlNT9dRTT8nHx0cvvviisZncy8tLkpSfn293Tl5enk0fLy8vp/tV9JiO+Pv7y9/fv9TjAADgylEl92RlZmbqySefVGZmpt544w2bYFJ8Wa74El9Jqamp8vX1NVaVLBaL0tLSZLVa7fpJMsY1Y0wAAFC9VbmQlZubq6efflpHjhzRq6++qmuuucbmeEBAgPz8/JSQkGB37oEDB9SyZUvjccuWLZWTk2O3wTw+Pt44btaYAACgeqtSIauwsFDPP/+84uLiNHPmTLVv395hv969e2v79u1KTk422nbt2qUjR46oT58+RluvXr3k4eGhlStXGm1Wq1WrV69WQECAzfhmjAkAAKqvKrUn691339V3332nHj16KCMjQxs2bLA5PmDAAEnS2LFjtXnzZk2dOlUjRoxQdna2li9frubNm2vQoEFG/wYNGmjkyJFavny5CgoKFBISom3btmnfvn2aMWOGzU1DzRgTAABUX1UqZB08eFCStH37dm3fvt3ueHHICgwM1Jw5cxQZGal58+YZ7zM4adIkY+9UsQkTJqhu3bqKjo5WTEyMgoKCNH36dPXv39+mnxljAgCA6svNeuEObvxlEhISFBERoQULFji8EWp5LZv8rbLSclW7vpfujLy5wsbFlYHvDwD4a1SpPVkAAABXCkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYoNwha9euXVq+fLlN23/+8x+NGDFCt99+u/7973+rsLDwsicIAADgisodsj788EMdPHjQePz777/rjTfekJ+fnzp27KgvvvhCUVFRFTJJAAAAV1PukJWUlKTWrVsbjzds2CAfHx9FRkZq5syZGjx4sNavX18hkwQAAHA15Q5Z2dnZ8vHxMR7/+OOP6tq1q2rVqiVJatOmjZKTky9/hgAAAC6o3CGrQYMG+vXXXyVJf/75p/744w916dLFOJ6RkaGaNWte/gwBAABckEd5T+zfv78++ugjpaSk6PDhw6pbt6569eplHE9ISFBwcHCFTBIAAMDVlDtk3X333SooKNAPP/ygwMBAPfPMM6pbt64k6ezZs9qzZ49GjBhRYRMFAABwJeUOWR4eHoqIiFBERITdMV9fX61atepy5gUAAODSyr0n69FHH9WuXbtKPf7zzz/r0UcfLe/wAAAALq3cK1l79uzR4MGDSz2enp6uvXv3lmnMrKwsRUVFKT4+XgcOHFBGRoaeeeYZDRo0yKbfyy+/rJiYGLvzr776ai1ZssSmraioSFFRUVq1apXS0tIUFBSksWPHql+/fnbnHz58WJGRkdq/f788PDzUvXt3TZ48WX5+fuUeEwAAVE/lDlmS5ObmVuqxo0ePqnbt2mUa78yZM1q8eLECAwPVsmVL7d69u9S+np6eevLJJ23aSt5SotiCBQu0dOlSDRkyRG3atFFsbKxeeOEFubm5qW/fvka/kydPasqUKapTp44iIiKUnZ2tqKgoHTp0SPPmzbN5paSzYwIAgOqrTCFr3bp1NitIH3/8sdasWWPXLzMzU4cOHVK3bt3KNBmLxaKVK1fKYrHo119/1YMPPlhqX3d3dw0YMOCi46WkpGjFihUaNmyYpk2bJkkaPHiwpkyZovfee09hYWFyd3eXJC1ZskQ5OTlauHChAgMDJUkhISF67LHHtG7dOoWHh5d5TAAAUH2VaU9Wbm6uTp8+rdOnT0s6f3mv+HHxf2fOnJGnp6fCw8P11FNPlWkynp6eslgsTvcvLCzUuXPnSj0eGxurgoICDRs2zGhzc3PT0KFDlZKSori4OKN9y5Yt6tGjhxGwJKlz584KDg7Wpk2byjUmAACovsq0kjV06FANHTpUkjRq1Cg98sgjNvfG+ivl5ORo0KBBysnJUd26ddW3b1899NBDNpcoExMT5e3traZNm9qcGxISYhzv0KGDUlJSlJ6ebvM2QSX7/vDDD2UeEwAAVG/l3pP16aefVuQ8ysRisWjMmDG69tprZbVa9eOPP2rVqlX6/fffNXv2bHl4nC8rNTVV9erVs9s7VrxadurUKaNfyfYL+549e1Z5eXny9PR0ekxHTp06ZXwu6fz7PwIAgCvTZW18l85fMjxx4oQyMjJktVrtjnfs2PFyP4WdCRMm2Dzu27evgoODtWDBAm3ZssXYfJ6bm+vwrX08PT2N4yU/Xqqvp6en02M6Eh0drcWLF1+qPAAAcAUod8g6ffq0Zs+erS1btqioqMjuuNVqlZubmzZv3nw583PaqFGjtGjRIu3cudMIWV5eXsrPz7frm5eXZxwv+dHZvs70cyQ8PFw9e/Y0HiclJWnWrFmXLg4AALiccoes119/Xdu3b9fw4cP1t7/9zXhLncri5eUlX19fnT171mizWCzavXu3EfiKFV+y8/f3N/qVbC8pNTVVvr6+xkqVs2M64u/vf9HjAADgylHukLVz506NGjVKEydOrMj5lFtWVpbOnDljc+PQli1b6quvvlJSUpKuueYaoz0+Pt44LkkBAQHy8/NTQkKC3bgHDhww+pVlTAAAUL2V+211vLy81LBhw4qci1Nyc3OVlZVl1/7RRx/JarXa3JurV69e8vDw0MqVK402q9Wq1atXKyAgQO3btzfae/fure3btys5Odlo27Vrl44cOaI+ffqUa0wAAFB9lXsla8CAAdq2bZvN/aIqwhdffKHMzEzj8tt3332nkydPSpKGDx+ujIwMjRs3Tv369dPVV18tSdqxY4d++OEHdevWzeaWEg0aNNDIkSO1fPlyFRQUKCQkRNu2bdO+ffs0Y8YMm5uGjh07Vps3b9bUqVM1YsQIZWdna/ny5WrevLnN2/qUZUwAAFB9lTtk9e7dW3v27NETTzyhIUOGqEGDBqpRw35hzNG9py5mxYoVOnHihPF469at2rp1q6Tzwa5OnTrq0aOHfvrpJ8XExKioqEhNmjTRgw8+qNGjR9vNYcKECapbt66io6MVExOjoKAgTZ8+Xf3797fpFxgYqDlz5igyMlLz5s0z3rtw0qRJxn6sso4JAACqLzero/suOKF3797/G8TBexj+1a8udEUJCQmKiIjQggULyhxGL2bZ5G+VlZar2vW9dGfkzRU2Lq4MfH8AwF+j3CtZTz/9dEXOAwAA4IpS7pBVcp8SAAAAbJX71YUAAAAoXblXsl599VWn+nFZEQAAVEflDlk///yzXVtRUZFSU1NVVFQkPz8/1apV67ImBwAA4KrKHbI+/fRTh+0FBQVavXq1Pv/8c7355pvlnhgAAIArq/A9WR4eHho+fLi6dOmid955p6KHBwAAcAmmbXxv0aKF9u7da9bwAAAAVZppIWvnzp3syQIAANVWufdkLV682GF7Zmam9u7dq99++0133XVXeYcHAABwaeUOWR9++KHD9rp166px48Z6/PHHNWTIkHJPDAAAwJWVO2Rt2bKlIucBAABwReGO7wAAACYo90pWsT179uj777/XiRMnJEkNGzZU9+7d1bFjx8sdGgAAwGWVO2Tl5+dr5syZio2NldVqVZ06dSSd3/i+YsUKhYaG6rnnnpOHx2XnOAAAAJdzWa8u3LZtm0aPHq077rhD9evXlySlp6crKipKUVFRWrx4scaPH19hkwUAAHAV5d6T9fXXX2vgwIGaOHGiEbAkqV69epo4caJuueUWbdiwoUImCQAA4GrKHbLS0tLUtm3bUo+3bdtWaWlp5R0eAADApZU7ZAUEBGj37t2lHt+zZ48CAgLKOzwAAIBLK3fIGjhwoDZt2qQ33nhD//3vf1VYWKiioiL997//1ZtvvqnNmzdr4MCBFTlXAAAAl1Huje9jx47V0aNHtWbNGn311Vdyc3OTJFmtVlmtVg0cOFB33313hU0UAADAlZQ7ZLm7u+vZZ5/VHXfcoe+//17JycmSpMDAQHXv3l0tWrSosEkCAAC4mjKFrNzcXP373/9Ws2bNNHz4cElSixYt7ALV559/rtWrV+uRRx7hPlkAAKBaKtOerDVr1igmJkbdu3e/aL/u3btr7dq1+uqrry5rcgAAAK6qTCFr06ZNuummm9S4ceOL9mvSpInCwsL0zTffXNbkAAAAXFWZQtahQ4fUoUMHp/q2b99ehw4dKtekAAAAXF2ZQlZ+fr7Te6w8PDyUl5dXrkkBAAC4ujKFLH9/f/3xxx9O9f3jjz/k7+9frkkBAAC4ujKFrBtuuEHr169Xenr6Rfulp6dr/fr16ty582VNDgAAwFWVKWTdddddysvL09SpUxUfH++wT3x8vKZOnaq8vDyNGTOmQiYJAADgasp0E6vGjRtr5syZmjlzph5++GE1atRIzZs3V+3atZWVlaU//vhDx44dk5eXl5577jk1adLErHkDAABUaWW+U2j37t314YcfatmyZdq+fbtiY2ONY/7+/ho8eLDuvPPOS97mAQAA4EpWrtuxN2rUSI8//rgef/xxZWVl6dy5c/Lx8VHt2rUren4AAAAu6bLf86Z27dqEKwAAgAuUaeM7AAAAnEPIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAE1z2G0RXpKysLEVFRSk+Pl4HDhxQRkaGnnnmGQ0aNMiu7+HDhxUZGan9+/fLw8ND3bt31+TJk+Xn52fTr6ioSFFRUVq1apXS0tIUFBSksWPHql+/fn/JmAAAoHqqUiHrzJkzWrx4sQIDA9WyZUvt3r3bYb+TJ09qypQpqlOnjiIiIpSdna2oqCgdOnRI8+bNU82aNY2+CxYs0NKlSzVkyBC1adNGsbGxeuGFF+Tm5qa+ffuaOiYAAKi+qlTIslgsWrlypSwWi3799Vc9+OCDDvstWbJEOTk5WrhwoQIDAyVJISEheuyxx7Ru3TqFh4dLklJSUrRixQoNGzZM06ZNkyQNHjxYU6ZM0XvvvaewsDC5u7ubNiYAAKi+qtSeLE9PT1kslkv227Jli3r06GGEIUnq3LmzgoODtWnTJqMtNjZWBQUFGjZsmNHm5uamoUOHKiUlRXFxcaaOCQAAqq8qFbKckZKSovT0dLVu3druWEhIiBITE43HiYmJ8vb2VtOmTe36FR83a0xHTp06pYSEBOO/pKSkS5ULAABcVJW6XOiM1NRUSXK44mWxWHT27Fnl5eXJ09NTqampqlevntzc3Oz6SedDj1ljOhIdHa3Fixc7WSkAAHBlLheycnNzJclmI3oxT09Po4+np6dyc3Mv2c+sMR0JDw9Xz549jcdJSUmaNWtWqf0BAIDrcrmQ5eXlJUnKz8+3O5aXl2fTx8vLy+l+FT2mI/7+/vL39y/1OAAAuHK43J6s4styxZf4SkpNTZWvr6+xqmSxWJSWliar1WrXT5IReMwYEwAAVG8uF7ICAgLk5+enhIQEu2MHDhxQy5YtjcctW7ZUTk6O3Qbz+Ph447hZYwIAgOrN5UKWJPXu3Vvbt29XcnKy0bZr1y4dOXJEffr0Mdp69eolDw8PrVy50mizWq1avXq1AgIC1L59e1PHBAAA1VeV25P1xRdfKDMz07j89t133+nkyZOSpOHDh6tOnToaO3asNm/erKlTp2rEiBHKzs7W8uXL1bx5c5u34GnQoIFGjhyp5cuXq6CgQCEhIdq2bZv27dunGTNm2Nw01IwxAQBA9VXlQtaKFSt04sQJ4/HWrVu1detWSdKAAQNUp04dBQYGas6cOYqMjNS8efOM9xmcNGmSsXeq2IQJE1S3bl1FR0crJiZGQUFBmj59uvr372/Tz4wxAQBA9eVmvXAHN/4yCQkJioiI0IIFCxzeCLW8lk3+Vllpuapd30t3Rt5cYePiysD3BwD8NVxyTxYAAEBVR8gCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzgUdkTKI/du3fr0UcfdXhs7ty5ateunfF4//79ev/99/Xbb7/Jx8dHffr0UUREhGrXrm1zXl5enhYtWqQNGzYoIyNDLVq00Pjx49WlSxe7z+HsmAAAoPpyyZBVbPjw4QoJCbFpa9KkifH/iYmJmjZtmpo2barJkyfr5MmTWrFihf7880+9/vrrNue98sor2rx5s0aOHKmgoCCtW7dOTz75pGbPnq0OHTqUa0wAAFB9uXTI+tvf/qawsLBSj8+fP19169bVnDlz5OPjI0lq1KiR/vWvf2nHjh3q2rWrJCk+Pl4bN27UxIkTNWbMGEnSLbfcovvuu09z587V3LlzyzwmAACo3lx+T1ZWVpYKCgrs2s+dO6edO3dqwIABRhiSzocnb29vbdq0yWjbsmWL3N3dFR4ebrR5eXnptttuU1xcnJKTk8s8JgAAqN5ceiXrlVdeUXZ2ttzd3dWhQwdNnDhRbdq0kSQdOnRIhYWFat26tc05NWvWVKtWrZSYmGi0JSYmKigoyCY4STIuRR48eFCBgYFlGtORU6dOKTU11XiclJRU9qIBAIBLcMmQ5eHhod69e+vGG2/UVVddpcOHD2vFihWaPHmy3nvvPV177bVGmLFYLHbnWywW7d2713icmppaaj/pfDgq7ufsmI5ER0dr8eLFzhUJAABcmkuGrOuuu07XXXed8bhXr14KCwvT/fffr/nz5+uNN95Qbm6upPOrTBfy9PRUXl6e8Tg3N7fUfsXHS350ZkxHwsPD1bNnT+NxUlKSZs2addFzAACAa3LJkOVIUFCQevXqpa1bt6qwsFBeXl6SpPz8fLu+eXl5RoCSzu+/Kq1f8fGSH50Z0xF/f3/5+/s7WREAAHBlLr/xvaQGDRooPz9fOTk5xiW9knugiqWmptqEHYvFUmo/SUbfsowJAACqtysqZB07dkyenp7y9vZWs2bN5O7uroSEBJs++fn5SkxMVMuWLY22li1b6s8//9S5c+ds+sbHxxvHJZVpTAAAUL25ZMg6ffq0XdvBgwf13XffqUuXLqpRo4bq1Kmjzp07a8OGDcrKyjL6rV+/XtnZ2erTp4/RFhYWpsLCQkVHRxtteXl5Wrt2rdq2bavAwEBJKtOYAACgenPJPVnPPfecvLy81L59e9WrV0+HDx/WmjVrVKtWLU2YMMHoN378eE2aNElTpkxReHi4cXf2Ll26qFu3bka/tm3bqk+fPpo/f75Onz6tJk2aKCYmRidOnNBTTz1l87mdHRMAAFRvLhmyQkND9fXXX+vTTz/VuXPn5Ofnp5tuukn33XefgoKCjH6tW7fWW2+9pffff1///ve/Vbt2bd122202QazYs88+q8DAQK1fv16ZmZlq3ry5XnvtNXXs2NGmX1nGBAAA1Zeb1Wq1VvYkqquEhARFRERowYIFdjc4vRzLJn+rrLRc1a7vpTsjb66wcXFl4PsDAP4aLrknCwAAoKojZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAm8KjsCQCoHNnpuVo2+VvVrOWhziNbqVm3RpU9JQC4orCSBVQzNWud/9vKapWy0nJ15tg57fwssZJnBQBXHkIWUM10HtlKVzX2Ue36XnJzO9+Wn1NQuZMCgCsQlwuBaqZZt0bGpcFlk79VVlpuJc8IAK5MrGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYwKOyJ+Cq8vLytGjRIm3YsEEZGRlq0aKFxo8fry5dulT21AAAQBXASlY5vfLKK/r000/Vv39/PfLII6pRo4aefPJJ7du3r7KnBgAAqgBCVjnEx8dr48aNevDBB/Xwww8rPDxc77zzjho2bKi5c+dW9vQAAEAVQMgqhy1btsjd3V3h4eFGm5eXl2677TbFxcUpOTm5EmcHAACqAvZklUNiYqKCgoLk4+Nj0x4SEiJJOnjwoAIDA+3OO3XqlFJTU43HSUlJ5k4UcFJ2eq6WTf62sqcBABWu9lVeGvpSz0r53ISsckhNTZXFYrFrL247deqUw/Oio6O1ePFiM6cGlEnNWh6ScmW1SllpuZU9HQC4ohCyyiE3N1c1a9a0a/f09DSOOxIeHq6ePf+XppOSkjRr1qwKn1/tq7xsPgKl6TyylXZ+lqj8nILKngoAmKIyfxcSssrBy8tL+fn5du15eXnGcUf8/f3l7+9v6twkVdqyKFxPs26N1Kxbo8qeBgBckdj4Xg4Wi8Vmb1Wx4ra/IkgBAICqjZBVDi1bttSff/6pc+fO2bTHx8cbxwEAQPVGyCqHsLAwFRYWKjo62mjLy8vT2rVr1bZtW4evLAQAANULe7LKoW3bturTp4/mz5+v06dPq0mTJoqJidGJEyf01FNPVfb0AABAFUDIKqdnn31WgYGBWr9+vTIzM9W8eXO99tpr6tixY2VPDQAAVAGErHLy8vLSww8/rIcffriypwIAAKog9mQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAm4T1Ylys3NlSQlJSVV8kwAAEBZNW3aVLVq1Sr1OCGrEp04cUKSNGvWrEqeCQAAKKsFCxaodevWpR53s1qt1r9wPijh9OnT2rFjhxo1aiRPT88KGzcpKUmzZs3S9OnT1bRp0wob1xVQe/WrvbrWLVF7day9utYtVc3aWcmqwvz8/DRgwADTxm/atOlFE/aVjNqrX+3VtW6J2qtj7dW1bsm1amfjOwAAgAkIWQAAACYgZF2BLBaL7rvvPlkslsqeyl+O2qtf7dW1bonaq2Pt1bVuyTVrZ+M7AACACVjJAgAAMAEhCwAAwASELAAAABMQsgAAAEzAzUgrycsvv6yYmJhSj3/xxRcKCAhQUVGR1qxZo9WrV+vo0aOqVauWrr32Wt1zzz267rrrbM7Jy8vTokWLtGHDBmVkZKhFixYaP368unTpYjf+/v379f777+u3336Tj4+P+vTpo4iICNWuXbvcY1Zk3QUFBfrkk08UExOjU6dOyd/fX7feeqvuuusueXjYftu6Qt3Fjhw5okWLFmn//v06e/asAgMD1a9fP40ePdrmrsFmzLMya3em7h07dujbb7/VgQMHlJSUpAYNGujTTz91OF5RUZGioqK0atUqpaWlKSgoSGPHjlW/fv3s+h4+fFiRkZHav3+/PDw81L17d02ePFl+fn7lHrMia8/JydHatWsVGxurQ4cOKTs7W0FBQRoyZIiGDBkid3d3l6zdmef8k08+0XfffaejR48qOztbAQEB6t69u+65557LmmNVf84vlJGRobvuukunT5/WCy+8oLCwMJvjrvJz7mztjzzyiPbs2WN3bteuXfXGG2+4bO2O8OrCSvLLL7/o2LFjNm1Wq1VvvvmmGjZsqI8//liSFBkZqU8//VQDBgxQhw4dlJmZqejoaCUnJ+vdd99V27ZtjfNnzpypzZs3a+TIkQoKCtK6dev066+/avbs2erQoYPRLzExURMnTlTTpk0VHh6ukydPasWKFerUqZNef/11mzk5O2ZF1/3cc89p8+bNuvXWW9WmTRvFxcUpJiZGQ4YM0f/93/+Va46VWbckJScn6/7771edOnUUHh4uX19fxcXFad26derZs6deeeUV0+ZZmbU7W/fLL7+sb7/9Vtdee62Sk5Pl7u5easiaN2+eli5dqiFDhqhNmzaKjY3V999/r+eee059+/Y1+p08eVLjxo1TnTp1NHz4cGVnZysqKkqBgYGaN2+eatasWeYxK7r2Q4cO6f7779cNN9ygLl26qHbt2tqxY4e2bdumW265Rf/4xz9crnZnn/Pp06fLz89PV199tWrXrq2kpCR99dVX8vPz0wcffCBvb2+XqrsstZc0e/ZsrV27VtnZ2Q5Dliv8nJel9kceeURHjx7VhAkTbM63WCy64YYbXLL2UllRZezdu9caGhpq/fjjj61Wq9Wan59v7devn3XGjBk2/Y4ePWoNDQ21vvPOO0ZbXFycNTQ01Lps2TKjLScnxzp69GjrQw89ZHP+E088YR06dKg1MzPTaFuzZo01NDTU+uOPP5ZrzMtxYd3x8fHW0NBQ68KFC236RUZGWm+66SbrwYMHyzXHyq77448/toaGhloPHTpk0z5r1ixraGio9ezZs6bNszJrd7bulJQUa35+vtVqtVqffPJJ68iRIx2Od/LkSWufPn2sb731ltFWVFRknTRpkvXvf/+7taCgwGh/8803rf369bOeOHHCaPvpp5+soaGh1tWrV5drzIquPT093e641Wq1vvLKK9bQ0FDrkSNHXK52Z59zRzZt2mQNDQ21fvPNNy5Xd3lq//33361hYWHWxYsXW0NDQ62bNm2yOe4qP+dlqX3KlCnWe+6555LjuVLtpWFPVhXyzTffyM3NzViqLiwsVG5ururVq2fTr169eqpRo4a8vLyMti1btsjd3V3h4eFGm5eXl2677TbFxcUpOTlZknTu3Dnt3LlTAwYMkI+Pj9H3lltukbe3tzZt2lTmMSu67n379kmS3V+Sffv2ldVq1bfffuuSdZ87d06S7J5Pi8WiGjVqyMPDw5R5VnbtztQtSf7+/naXgh2JjY1VQUGBhg0bZrS5ublp6NChSklJUVxcnE09PXr0UGBgoNHWuXNnBQcH29RdljHLwpna/fz81KxZM7tzQ0NDJZ1/U1xXq93Z59yRRo0aSZIyMzPLNUdXeM5LmjNnjm666aZSV1Bc5ee8PLUXFBQoKyur1PFcqfbSELKqiIKCAm3atEnt27c3/pHx8vJS27ZtFRMTow0bNig5OVm///67XnnlFdWtW9fmmyQxMVFBQUE232CSFBISIkk6ePCgJOnQoUMqLCy0e3PNmjVrqlWrVkpMTCzzmBVdd35+viTJ09PTpm/x9fyEhIQyz7Eq1N2pUydJ0muvvabExEQlJydr48aNWr16tYYPHy5vb29T5lnZtTtTd1kkJibK29tbTZs2dTjH4npSUlKUnp7u8I1kQ0JC7Op2Zsyyupza09LSJElXXXVVmedZ2bWXpW6r1arTp08rNTVVe/fu1ezZs+Xu7q6OHTu6XN1lrX3Tpk365Zdf9NBDD5U6nqv8nEtlq/3IkSO65ZZbNHDgQA0dOlQLFy5UQUGBy9ZeGja+VxE7duzQmTNn1L9/f5v26dOn6/nnn9esWbOMtsaNG+vdd99V48aNjbbU1FSHbzVQ3Hbq1CmjX8n2C/vu3bu3zGNeDkd1BwcHSzq/f6tkjcVzS0lJKfMcq0Ld3bp107hx47RkyRJ99913Rvvdd9+tiIgI0+ZZ2bU7U3dZpKamql69enJzc7voHC9V99mzZ5WXlydPT0+nxyyr8taen5+vzz77TI0aNVKbNm2MdlepvSx1p6Wl2awmBQQEaMaMGTbhx1XqlpyvPTc3V++9955GjRqlRo0a6cSJEw7Hc5Wfc8n52hs3bqxOnTqpefPmysnJ0ebNm/Xxxx/ryJEjmjlzZpnnWRVqLw0hq4r45ptv5OHhoT59+ti0165dW82aNVO7du10ww03KC0tTUuXLtWzzz6ryMhI49Uyubm5Nhs6ixWvBuXm5tp8LK1vXl6e8djZMS+Ho7pvvPFGNWzYUO+99568vLzUunVrxcfHa+HChXJ3dy/XHKtK3Y0aNdLf/vY39e7dW76+vvr++++1ZMkS1a9fX8OHDzdlnlWh9kvVXRYVVXdxH09Pz0p9zh155513dPjwYb322ms2l1hcqXZn6/b19dVbb72lvLw8JSYmauvWrcrOzrYZy5XqlpyrfenSpSooKNDYsWMvOpYr/ZxLztX+9NNP25xzyy236PXXX9eaNWs0atQotWvXrkzzrCq1O0LIqgKysrIUGxurrl272lwaKCgo0LRp09SpUydNnTrVaL/hhht07733avny5Zo4caKk85cWiy+zlVT8zVW8f6v4Y2l9S16ic3bM8iqtbi8vL7322mt67rnnNGPGDEnnfwAeeughffLJJzZLzq5U98aNG/X6669r6dKlatCggSSpd+/eslqtmjdvnvr162fKPCu7dmfqLvn8X0pF1X1h38p6zi+sffny5VqzZo3GjRun7t272xxzldrLUnfNmjXVuXNnSVKPHj10/fXXa9KkSapXr5569OjhUnU7W3tWVpaWL1+uadOm2d1e4EKu8nMuXd7P+h133KE1a9Zo586dRshypdpLw56sKiA2NlY5OTl2lwr37t2rP/74Qz179rRpDw4OVtOmTfXLL78YbRaLxVgyLam4zd/f3+hXsv3CvsX9yjJmeZVWtyQ1a9ZMH330kT766CNFRkbqyy+/1JAhQ3TmzBnjcmJZ5lgV6l65cqVatWpl/ONTrGfPnsrJyVFiYqIp86zs2p2puywsFovS0tJkveDuM2Wt29fX1/jH19kxy6qsta9bt07vv/++br/9dt17771247lK7ZfznF933XWyWCz6+uuvjTZXqVtyrvYPPvhA/v7+6tixo44fP67jx48be/BOnz6t48ePq6ioyJinK/ycS5f3vBefk5GRUeZ5VoXaS0PIqgK+/vpreXt724Wp9PR0STJ+2EoqKChQYWGh8bhly5b6888/jVd3FIuPjzeOS+fDi7u7u83mcen8XwCJiYlGv7KMWV6l1V3Mzc1NzZo1U4cOHeTr66uff/5ZRUVFNvdRcaW609PTS30upfOvJjVjnpVduzN1l0XLli2Vk5Nj86o7R3MMCAiQn5+fXd2SdODAAbu6nRmzrMpS+7Zt2/Svf/1LN910k6ZNm+ZwPFep/XKf87y8PJtXF7pK3ZJztScnJ+vo0aMaPXq07rjjDt1xxx3GXqS33npLd9xxh/Ez6Co/587WXpri+yeWvGGsK9VeGkJWJTt9+rR27typm266ye5OwMUrNhs3brRpT0hI0JEjR9SqVSujLSwsTIWFhYqOjjba8vLytHbtWrVt29Z4OXOdOnXUuXNnbdiwweals+vXr1d2drbN3ihnx6zouh3Jzc3VokWLZLFYbO7G7Ep1BwcHKzExUUeOHLFp37hxo2rUqKEWLVqYMs/Krt2ZusuiV69e8vDw0MqVK402q9Wq1atXKyAgQO3btzfae/fure3bt9u8LHvXrl06cuSITd1lGbMsnK19z549mjlzpjp06KAZM2aoRg3H/zS7Su3O1J2dna2cnBy7czdv3qyMjAybDf+uUreztY8fP14vvfSSzX/jxo2TJI0ZM0YvvfSSsS3CVX7Ona393LlzNnukpPNf9+IbUZe867or1V4a9mRVso0bN6qwsNDhJbPWrVurc+fOiomJ0blz59S1a1elpqbqiy++kJeXl0aOHGn0bdu2rfr06aP58+fr9OnTatKkiWJiYnTixAk99dRTNuOOHz9ekyZN0pQpU2zujNulSxd169atXGNWZN3S+Tu+WywWXXPNNTp37pzWrl2r48eP67XXXrPZw+BKdY8ePVo//vijJk+erL///e/y9fXV9u3b9eOPP2rw4MHGMrUZ86zM2p2t+/fff1dsbKwk6ejRo8rMzNRHH30k6fxfl8Urng0aNNDIkSO1fPlyFRQUKCQkRNu2bdO+ffs0Y8YMm7ehGTt2rDZv3qypU6dqxIgRys7O1vLly9W8eXMNGjTI6FeWMSu69hMnTujZZ5+Vm5ubwsLCtHnzZpsxWrRoYYQxV6ndmboTExP12GOPqU+fPmratKnc3NyUkJCgDRs2qGHDhhoxYkS55ugKz7mjS1J16tSRdP5WAsX3SJNc5+fc2dp3796tmTNnql+/fmrSpIlyc3O1bds27d+/X0OGDLG5DYMr1V4a3lankk2cOFHHjh3Tl19+6fCHOjc3V1FRUdq4caOOHz+umjVrqkOHDho3bpzNSlZx3+L3Y8rMzFTz5s01fvx4de3a1W7cffv2Ge/xVLt2bfXp00cTJkyw24RZljErsu5ly5Zp7dq1OnHihLy8vNShQwc98MADdjW7Wt3x8fH68MMPlZiYqLNnz6pRo0YaOHCgxowZY/MqMjPmWZm1O1P3unXrHL7liCQNHDhQzz77rPG4qKhIy5YtU3R0tFJTUxUUFKS77rpLAwYMsDv3jz/+sHsfu0mTJql+/fo2/coyZkXWvnv3bj366KOlnn/ffffpgQcecLnaL1X36dOntWDBAu3du1cpKSkqKChQYGCgunfvrrvvvtvh+wy6Qt3O1O5I8feBo7fVcZWfc2dqP3bsmObNm6cDBw4oLS1NNWrUUNOmTTV48GCFh4fb3VLDlWp3hJAFAABgAvZkAQAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAm4G11AACoxk6dOqXPP/9cBw4c0K+//qrs7GzNnj1bnTp1cnqMnTt36pNPPtGhQ4dUWFiooKAgDR8+XLfccovRJzc3V2+//bYOHDigkydPqqioSI0bN9att96qYcOG2dwN/2LvALFy5UpZLBaHx44ePap7771XeXl5mj9/vs17YJbFn3/+qXnz5mnXrl3Kz8/Xtddeq3Hjxun6668v0ziELADV2ssvv6w9e/bo008/reypSJI++OADLV68WJLk7e2t9evXO31uRkaGbrvtNuPxxIkTNWbMmIqeIq4wR44c0bJlyxQUFKTmzZsrLi6uTOfHxsbqH//4h9q1a6f77rtPbm5u2rRpk1566SWdOXNGo0aNknQ+ZB0+fFg33nijGjZsqBo1auiXX35RZGSkDhw4oH/+8592Y48bN06NGjWyaSt+n0dH/v3vf5f7fSeLJScna+LEiXJ3d9eYMWNUq1YtrVu3To8//rjefvttdezY0emxCFkArjg33XSTU/1mz55t8kzKb/r06WX+ZeHt7a3p06fr9OnTioyMNGlmcDWPPPKIGjZsaPP+nyW1bt1aX331lXx9fbV582aHYedivvzyS1ksFr3zzjvy9PSUJIWHh+vuu+/WunXrjJDl6+ur999/3+bc22+/XT4+Pvryyy81adIkuxWqbt26Ob0atWPHDv30008aM2aMPv744zLVUNLSpUuNN6i/+uqrJUlDhgzR2LFjFRkZqYULFzo9FiELwBVn+vTpNo9jYmK0c+dOu/amTZvqySefVFFR0V85PaeU502KPTw8NGDAAB0/fpyQBadd+AbKZZWVlaW6desaAUs6/7141VVXOXV+w4YNJUmZmZkOLwNmZWXJy8vron90FBQUaM6cORoxYoSaNGlSar+kpCQtXLhQP//8s3Jzc9WsWTPde++96tWrl9Fn3759atWqlRGwJKlWrVrq2bOnVq5cqSNHjig4ONip2ghZAK44FwaUuLg47dy5s1zBBcDFdezYUcuWLdPChQs1cOBAubm56ZtvvlFCQoKef/55u/75+fk6d+6ccnNzlZCQoKioKDVs2NBhOHr00UeVnZ2tmjVrqkuXLpo0aZLDgPPZZ58pIyND99xzj7Zu3epwnn/88YcmTZokf39/3XXXXapVq5Y2bdqkf/zjH3rxxReNFfD8/HzVrVvX7vxatWpJkn777TdCFgA448I9WcePH9cdd9yhiRMnysvLSytWrFBaWpquu+46PfXUU2rQoIE+/vhjRUdH68yZM+rSpYueeeYZ+fr62oz7ww8/aMmSJfrtt9/k5uamv/3tb5o4caKaNWtW7rn++uuvWrBggX777TdlZ2erfv36uv766/X0009f1tcAuBz33nuvjh8/rk8++cS4TFerVi298MILCg0Nteu/detWzZw503jcpk0bPfXUUzYb3728vDRo0CB16tRJPj4+SkhI0KeffqqHH35YCxcuVGBgoNE3NTVVH330kR5++GH5+PiUOs85c+aoQYMGmj9/vrHqNmzYME2aNEnvv/++EbKCg4O1b98+ZWVl2azy7du3T5KUkpLi9NeGkAUADnzzzTfKz8/X8OHDdfbsWS1fvlzPP/+8rr/+eu3evVt33nmn/vzzT3355Zd67733bILO+vXr9fLLL6tr166aMGGCcnNztWrVKk2aNEmLFi2y28jrjPT0dD3++OPy8/PTnXfeqbp16+r48eOl/tWO6qmgoECZmZl2bfn5+Tp9+rRNu6+vr2rUuPw7OdWsWVPBwcEKCwvTTTfdpMLCQq1Zs0azZs3SW2+9pXbt2tn079Spk9566y1lZmZq165dOnjwoHJycmz63Hzzzbr55puNx6GhoerataumTJmiTz75RE888YRx7P3331fjxo01ePDgUud49uxZ/fzzz3rggQeUlZWlrKws41jXrl31wQcfKCUlRQEBARo6dKi2b9+u5557ThEREfL29tbKlSuVkJAg6fwGfmcRsgDAgZSUFC1btsx4JVNRUZGWLFmi3NxczZ8/3/ir+8yZM/r666/12GOPydPTU1lZWZo9e7YGDx6s//u//zPGGzhwoMaOHaslS5bYtDvrl19+UUZGht58802bjcARERGXWSmuJPv379ejjz5q1/7LL79o48aNNm0rVqwoV+C/0DvvvKP4+HgtXLjQCG0333yz7rnnHs2ZM0fz5s2z6V+/fn3Vr19fkhQWFqZPPvlEjz32mJYtW1bqrRkkqUOHDmrbtq127dpltMXFxWnDhg16++23LxoY//zzT1mtVi1atEiLFi1y2Cc9PV0BAQG68cYb9eijj2r+/PkaP368JKlJkyaKiIjQ3Llz5e3t7dwXRoQsAHAoLCzM5qXiISEhkqT+/fvbXNYICQnRN998o1OnTqlx48bauXOnMjMz1bdvX5uVgxo1aigkJEQ///xzueZTPJft27erZcuWNnMAirVs2VJvvfWWTdu7776r+vXr293OozjoXI78/Hz95z//0Z133mkTcjw8PNStWzetXLlS+fn5qlmzZqljhIWFacGCBYqNjdXtt99+0c/XoEED/fe//zUez507Vx06dFCjRo10/PhxSTJ+7lJTU5WcnKzAwEBZrVZJ0ujRo9W1a1eHYwcFBRn/P3z4cN166636/fffVbNmTbVs2VL/+c9/JMnp/VgSIQsAHCq550P6X8hp0KCBw/aMjAxJ5/9ilqSpU6c6HPdie0YupmPHjurdu7cWL16szz77TB07dlRoaKj69etn86ouVG9169ZV586d7dosFotde0U4c+aMCgsLVVhYaHessLBQRUVFl3z1bvHlt3Pnzl3y8x07dkx+fn7G45MnT+rEiRO644477Po+88wzqlOnjtauXavGjRtLOh/+nP06eHt7q3379sbjXbt2ycvLS9ddd51T50uELABwqLRLD6W9jLz4L+XiXyjTp093uFJQ3hslurm56cUXX1RcXJy2b9+uHTt26NVXX9WKFSs0d+7cy34ZPuCM5ORk5eTkqGnTppKkevXqqU6dOtq2bZvGjRtnrFhlZWXpu+++09VXXy0vLy9J51eYrrrqKrm5udmM+dVXX0k6f7+uYqdPn7YJU5L0/fffKyEhQcOHDzfannjiCbs9Uj///LO++OILPfzwwzbz7NSpk6Kjo/X3v/9d/v7+Nuc4+nwl7d+/X1u3btXtt99+0ZuhXoiQBQAVqPhl6H5+fqasHLRr107t2rVTRESEvv76a7344ov69ttvL7rpF7iUjz76SJJ0+PBhSedfvFH8arp7773X6PfSSy9pz549xgsu3N3dNXr0aC1cuFAPPfSQbrnlFhUVFek///mPUlJSbO5Nt2HDBkVHR6tXr15q3LixsrKytGPHDu3cuVM9evTQDTfcYPSdOHGirr32WrVu3Vo+Pj767bfftHbtWjVo0EB333230c/Rpb/ijf8dO3a02b84bdo0TZo0Sffff78GDx6sxo0bKy0tTXFxcUpJSdGHH34oSTpx4oSee+459ezZU/Xr19fhw4e1evVqNW/eXA8++GCZvq6ELACoQF27dpWPj4+WLFmi66+/3m7v1KX+Yi5NRkaG6tSpY7MK0KpVK0lSXl7eZc0ZuHAz+Nq1a43/LxmyHLnnnnvUqFEjff7551q8eLHy8/PVokULvfDCCwoLCzP6dejQQXFxcdq4caPS09Pl7u6u4OBgTZ48WX//+99txrz55pv1ww8/6KefflJOTo4sFouGDBmi++67r9x7ya655hotWLBAH374odatW6ezZ8+qXr16atWqlU2NPj4+slgs+vLLL5WRkSF/f38NHz5c99xzT5lXjAlZAFCBfHx89Nhjj+mll17SuHHj1LdvX/n5+Sk5OVk//PCD2rdvr2nTppV53HXr1mnVqlUKDQ1VkyZNlJWVpa+++ko+Pj668cYbTagEV4o5c+Zcso+ztwIpbaz+/furf//+Fz23TZs2NvfHupiIiIhyv3J20KBBGjRokMNjjRs31j/+8Y+Lnl+3bl29/PLL5frcFyJkAUAF69+/v/z9/bV06VJFRUUpLy9PAQEB6tChg2699dZyjdmxY0f9+uuv+vbbb5Weni4fHx+FhIRoxowZxqZeAFWLm7V4tyYAoNJ98MEHWrx4saKjo+Xm5ub0+79J5zffnzlzRidPntT48eM1ceJEu5ftA/jrsJIFAFVQeHi4vL29tX79eqfPyczMVHh4uImzAlAWrGQBQBVy7NgxHTt2TNL5V2516tTJ6XMLCgq0Z88e43FwcLDd/b4A/HUIWQAAACa4/HeGBAAAgB1CFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABggv8H+/niVmMnuRUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAG4CAYAAADrBft1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA2SElEQVR4nO3de3hU1b3/8U/IjSRAA0mISDgRCMVwUVpByj1RQHyQFORWlVptk3qUBIR6VNp6UAulVtRiERSwRA9CQHuE0MpdiCCKB8rtEIzhABHQQDJJgNwmt/n9wZP9Y5igJCSsycz79Tx5ZK/1nTXLBY4f9l6zt4/D4XAIAAAAxrQwPQEAAABvRyADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHImoHy8nJlZWWpvLzc9FQAAEATIJA1Azk5OUpKSlJOTo7pqQAAgCZAIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADD/ExP4HL79+/X9OnT6+xbvHixevbsaR0fPnxYb775pr766iuFhIQoPj5eSUlJCg4OdnpdRUWF3n77bW3evFkXL15U165dlZiYqH79+rm8h8kxAQCA93KrQFZr/Pjxio2NdWrr2LGj9evs7GzNmDFD0dHRSk5O1rlz57R69WqdPn1aL7/8stPr5s2bpx07dmjixImKiorShg0b9PTTT2vBggW67bbb3GZMAADgvdwykN1+++2Ki4u7av+SJUvUunVrvf766woJCZEkdejQQX/+85/1xRdf6M4775QkZWZmatu2bXr88cf1wAMPSJLuuecePfLII1q8eLEWL17sFmMCAADv5rZ7yEpLS1VVVeXSXlJSor1792rkyJFWyJEuhaKgoCBt377dasvIyJCvr68SEhKstsDAQI0ePVpHjhzR2bNn3WJMAADg3dzyDNm8efNUVlYmX19f3XbbbXr88cd16623SpKOHz+u6upqde/e3ek1/v7+6tatm7Kzs6227OxsRUVFOQUiSdbl0GPHjikyMtL4mAAAwLu5VSDz8/PTsGHD9JOf/EQ/+MEPdPLkSa1evVrJyclatGiRfvjDH8pms0mSwsLCXF4fFhamgwcPWsc2m+2qdZKUn59v1Zkc80r5+fnW6yXxyCQAADycWwWy3r17q3fv3tbx4MGDFRcXp0cffVRLlizR/PnzZbfbJV0603SlgIAAVVRUWMd2u/2qdbX9l//T1JhXSk9PV2pq6lX7AQCAZ3GrQFaXqKgoDR48WJ988omqq6sVGBgoSaqsrHSpraiosIKRdGlv19Xqavsv/6epMa+UkJCgQYMGWcc5OTmaM2fOVesBAEDz5vaBTJLat2+vyspKlZeXW5cAL7+kV8tmsyk8PNw6DgsLU15eXp11kqxa02NeKTw8/Dv7AQCAZ3Hbb1le7ptvvlFAQICCgoLUuXNn+fr6Kisry6mmsrJS2dnZiomJsdpiYmJ0+vRplZSUONVmZmZa/ZKMjwkAALybW50hKyoqUmhoqFPbsWPH9Omnn6p///5q0aKFWrVqpb59+2rz5s36xS9+Yd3xftOmTSorK1N8fLz12ri4OKWlpSk9Pd26Z1hFRYU++ugj9ejRQ5GRkZJkfEx3d/zzb7Xvg2xVlrvehqSp+Lf0U9+J3dS5f4cb9p4AAJjiVoFs9uzZCgwMVK9evdS2bVudPHlS69evV8uWLfXYY49ZdYmJiZo6dapSUlKUkJBg3QG/X79+6t+/v1XXo0cPxcfHa8mSJSoqKlLHjh21ceNG5ebm6plnnnF6b5Njurt9H2Tr/Dcl31/YqOza+342gQwA4BV8HA6Hw/Qkan3wwQfasmWLzpw5o5KSEoWGhuqOO+7QI488oqioKKfaQ4cOWc+IDA4OVnx8vB577DGXZ0Ta7XbruZPFxcXq0qWLEhMT67xLvskxv0tWVpaSkpK0dOlSl/ua3Qgrkz9WaYFdPj5SUNvAJn+/skK7HA4puF2gHlx4V5O/HwAAprlVIEPd3CWQ3aiAdKPfDwAA05rFpn4AAABPRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhvmZnsB3effdd7Vs2TJ17txZ77zzjlPf4cOH9eabb+qrr75SSEiI4uPjlZSUpODgYKe6iooKvf3229q8ebMuXryorl27KjExUf369XN5P5NjAgAA7+W2Z8jOnTunFStWKCgoyKUvOztbM2bMUHl5uZKTkzV69GitX79es2fPdqmdN2+e1qxZoxEjRmjatGlq0aKFnn76aR06dMitxgQAAN7Lbc+QLVq0SD169FBNTY3Onz/v1LdkyRK1bt1ar7/+ukJCQiRJHTp00J///Gd98cUXuvPOOyVJmZmZ2rZtmx5//HE98MADkqR77rlHjzzyiBYvXqzFixe7xZgAAMC7ueUZsgMHDigjI0MpKSkufSUlJdq7d69GjhxphRzpUigKCgrS9u3brbaMjAz5+voqISHBagsMDNTo0aN15MgRnT171i3GBAAA3s3tzpBVV1drwYIFGj16tLp27erSf/z4cVVXV6t79+5O7f7+/urWrZuys7OttuzsbEVFRTkFIkmKjY2VJB07dkyRkZHGx7xSfn6+bDabdZyTk3PVWgAA0Py5XSBbt26dzp49q9dee63O/tqgEhYW5tIXFhamgwcPOtVerU66FHzcYcwrpaenKzU19ar9AADAs7hVIDt//rz+9re/6eGHH1ZoaGidNXa7XdKlM01XCggIUEVFhVPt1eouH8v0mFdKSEjQoEGDrOOcnBzNmTPnqvUAAKB5c6tAtmzZMrVu3Vrjx4+/ak1gYKAkqbKy0qWvoqLCCka1tVeru3ws02NeKTw8XOHh4VftBwAAnsVtAtmpU6e0fv16paSkWJf9pEvhpaqqSt9++61CQkKsS4CX77GqZbPZnIJMWFiY8vLy6qyTZNWaHhMAAHg3t/mWZX5+vmpqarRgwQJNnjzZ+snMzNSpU6c0efJkpaamqnPnzvL19VVWVpbT6ysrK5Wdna2YmBirLSYmRqdPn1ZJSYlTbWZmptUvyfiYAADAu7lNIOvcubPmzp3r8tO5c2dFRkZq7ty5Gj16tFq1aqW+fftq8+bNKi0ttV6/adMmlZWVKT4+3mqLi4tTdXW10tPTrbaKigp99NFH6tGjhyIjIyXJ+JgAAMC7uc0ly9DQUA0ZMsSl/f3335ckp77ExERNnTpVKSkpSkhI0Llz57R69Wr169dP/fv3t+p69Oih+Ph4LVmyREVFRerYsaM2btyo3NxcPfPMM07vY3JMAADg3dwmkNVH9+7d9eqrr+rNN9/UX//6VwUHB2v06NF67LHHXGp/+9vfKjIyUps2bVJxcbG6dOmil156SX369HGrMQEAgPfycTgcDtOTwHfLyspSUlKSli5d6nKj2RthZfLHKi2wK7hdoB5ceJfHvR8AAKa5zR4yAAAAb0UgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMP8TE/gcidOnNDy5cuVlZWlgoICtWzZUtHR0XrggQc0aNAgp9qTJ09q4cKFOnz4sPz8/DRgwAAlJycrNDTUqa6mpkZpaWlau3atCgoKFBUVpSlTpmj48OEu729yTAAA4L3cKpDl5uaqtLRUo0aNUnh4uMrLy5WRkaFZs2bpqaeeUkJCgiTp3LlzSklJUatWrZSUlKSysjKlpaXp+PHjeuutt+Tv72+NuXTpUr333nsaM2aMbr31Vu3atUsvvviifHx8dPfdd1t1pscEAADey60C2YABAzRgwACntvvvv19JSUlas2aNFchWrFih8vJyLVu2TJGRkZKk2NhYzZw5Uxs2bLDq8vLytHr1ao0bN04zZsyQJN13331KSUnRokWLFBcXJ19fX+NjAgAA7+b2e8h8fX3Vvn17FRcXW20ZGRkaOHCgFXIkqW/fvurUqZO2b99ute3atUtVVVUaN26c1ebj46OxY8cqLy9PR44ccYsxAQCAd3PLQFZWVqaioiKdOXNGa9as0Z49e/TjH/9Y0qUzVIWFherevbvL62JjY5WdnW0dZ2dnKygoSNHR0S51tf3uMOaV8vPzlZWVZf3k5ORctRYAADR/bnXJstYbb7yh9PR0SVKLFi00dOhQ6/KgzWaTJIWFhbm8LiwsTBcuXFBFRYUCAgJks9nUtm1b+fj4uNRJl4KPO4x5pfT0dKWmpta1NAAAwAO5ZSCbOHGi4uLilJ+fr+3bt6u6ulqVlZWSJLvdLkl1boivDTd2u10BAQGy2+3fW+cOY14pISHB6VulOTk5mjNnjksdAADwDG4ZyKKjo61LgqNGjdLMmTP17LPP6q233lJgYKAkWQHtchUVFZJk1QQGBl5znckxrxQeHq7w8PA6+wAAgOdxyz1kV4qLi9OXX36pU6dOWZcAay8JXs5ms6lNmzbWWaewsDAVFBTI4XC41EmyQo/pMQEAgHdrFoGs9vJfcXGxIiIiFBoaqqysLJe6o0ePKiYmxjqOiYlReXm5y6b4zMxMq1+S8TEBAIB3c6tAVlhY6NJWVVWlTZs2KTAwULfccoskadiwYdq9e7fOnj1r1e3bt0+nTp1SfHy81TZ48GD5+fnpww8/tNocDofWrVuniIgI9erVy2o3OSYAAPBubrWHbP78+SopKdHtt9+uiIgI2Ww2bdmyRV9//bWmTp2q4OBgSdKUKVO0Y8cOPfnkk5owYYLKysq0atUqdenSRffee681Xvv27TVx4kStWrVKVVVVio2N1c6dO3Xo0CE999xz1g1cTY8JAAC8m4/jys1QBm3btk3//Oc/dfz4cZ0/f17BwcHq3r277r//fg0ePNip9sSJEy7PiJw6daratWvnVFdTU6OVK1cqPT1dNptNUVFReuihhzRy5EiX9zc55nfJyspSUlKSli5dWud9zZrayuSPVVpgV3C7QD248C6Pez8AAExzq0CGuhHIAADwbG61hwwAAMAbEcgAAAAMI5ABAAAY1uBAtm/fPq1atcqp7Z///KcmTJign/70p/rrX/+q6urq654gAACAp2twIFu+fLmOHTtmHf/f//2f5s+fr9DQUPXp00d///vflZaW1iiTBAAA8GQNDmQ5OTlO3/jbvHmzQkJCtHDhQr3wwgu67777tGnTpkaZJAAAgCdrcCArKytTSEiIdbxnzx7deeedatmypSTp1ltvdbpDPQAAAOrW4EDWvn17ffnll5Kk06dP68SJE+rXr5/Vf/HiRfn7+1//DAEAADxcgx+dNGLECL3zzjvKy8vTyZMn1bp1a6e76WdlZalTp06NMkk0neOff6t9H2SrsrzqqjVlhfYbOCMAALxPgwPZz3/+c1VVVenzzz9XZGSkZs2apdatW0uSLly4oAMHDmjChAmNNlE0jX0fZOv8NyXXVOvf0q0efQoAgMdo8P9h/fz8lJSUpKSkJJe+Nm3aaO3atdczL9wgtWfGfHykoLaBV63zb+mnvhO73ahpAQDgVRocyKZPn66HH35Yd9xxR539//rXv/TOO+9owYIFDZ4cbpygtjw3EgAAUxq8qf/AgQMqKCi4an9hYaEOHjzY0OEBAAC8xnU9OsnHx+eqfWfOnFFwcPD1DA8AAOAV6nXJcsOGDdq4caN1/O6772r9+vUudcXFxTp+/Lj69+9//TMEAADwcPUKZHa7XUVFRdZxaWmpy1kyHx8fBQUFKSEhQY888khjzBEAAMCj1SuQjR07VmPHjpUkTZo0SdOmTXO69xgAAADqr8HfslyzZk1jzgMAAMBrXfedPktLS5Wbm6uLFy/K4XC49Pfp0+d63wIAAMCjNTiQFRUVacGCBcrIyFBNTY1Lv8PhkI+Pj3bs2HE98wMAAPB4DQ5kL7/8snbv3q3x48fr9ttvtx6bBAAAgPppcCDbu3evJk2apMcff7wx5wMAAOB1Gnxj2MDAQN10002NORcAAACv1OBANnLkSO3cubMx5wIAAOCVGnzJctiwYTpw4ICeeuopjRkzRu3bt1eLFq75rnv37tc1QQAAAE/X4ECWnJxs/Xrv3r0u/XzLEgAA4No0OJA9++yzjTkPAAAAr9XgQHbvvfc25jwAAAC8VoM39QMAAKBxNPgM2Z/+9KdrquPSJgAAwHdrcCD717/+5dJWU1Mjm82mmpoahYaGqmXLltc1OQAAAG/Q4EC2Zs2aOturqqq0bt06ffDBB3rllVcaPDEAAABv0eh7yPz8/DR+/Hj169dPf/nLXxp7eAAAAI/TZJv6u3btqoMHDzbV8AAAAB6jyQLZ3r172UMGAABwDRq8hyw1NbXO9uLiYh08eFBfffWVHnrooYYODwAA4DUaHMiWL19eZ3vr1q1188036ze/+Y3GjBnT4IkBAAB4iwYHsoyMjMacBwAAgNfiTv0AAACGNfgMWa0DBw7os88+U25uriTppptu0oABA9SnT5/rHRoAAMArNDiQVVZW6oUXXtCuXbvkcDjUqlUrSZc29a9evVpDhgzR7Nmz5ed33ZkPAADAo13Xtyx37typn/3sZ5o8ebLatWsnSSosLFRaWprS0tKUmpqqxMTERpssAACAJ2rwHrItW7Zo1KhRevzxx60wJklt27bV448/rnvuuUebN29ulEkCAAB4sgYHsoKCAvXo0eOq/T169FBBQUFDhwcAAPAaDQ5kERER2r9//1X7Dxw4oIiIiIYODwAA4DUaHMhGjRql7du3a/78+fr6669VXV2tmpoaff3113rllVe0Y8cOjRo1qjHnCgAA4JEavKl/ypQpOnPmjNavX69//OMf8vHxkSQ5HA45HA6NGjVKP//5zxttogAAAJ6qwYHM19dXv/3tbzV58mR99tlnOnv2rCQpMjJSAwYMUNeuXRttkgAAAJ6sXoHMbrfrr3/9qzp37qzx48dLkrp27eoSvj744AOtW7dO06ZN4z5kAAAA36Nee8jWr1+vjRs3asCAAd9ZN2DAAH300Uf6xz/+cV2TAwAA8Ab1CmTbt2/X0KFDdfPNN39nXceOHRUXF6etW7de1+QAAAC8Qb0C2fHjx3XbbbddU22vXr10/PjxBk0KAADAm9QrkFVWVl7znjA/Pz9VVFQ0aFIAAADepF6BLDw8XCdOnLim2hMnTig8PLxBkwIAAPAm9foK5B133KFNmzZpypQpatu27VXrCgsLtWnTJsXFxdVrMkePHtXGjRu1f/9+5ebmqk2bNurZs6cSExPVqVMnp9qTJ09q4cKFOnz4sPz8/DRgwAAlJycrNDTUqa6mpkZpaWlau3atCgoKFBUVpSlTpmj48OEu729yTAAA4L3qdYbsoYceUkVFhZ588kllZmbWWZOZmaknn3xSFRUVeuCBB+o1mZUrVyojI0N33HGHpk2bpjFjxujgwYNKTEx02o927tw5paSk6MyZM0pKStLPfvYzffbZZ5o5c6YqKyudxly6dKnefPNN9evXT9OnT1dkZKRefPFFbdu2zanO9JgAAMB71esM2c0336wXXnhBL7zwgp544gl16NBBXbp0UXBwsEpLS3XixAl98803CgwM1OzZs9WxY8d6TWbSpEn6z//8T/n7+1ttd911lx599FG99957eu655yRJK1asUHl5uZYtW6bIyEhJUmxsrGbOnKkNGzYoISFBkpSXl6fVq1dr3LhxmjFjhiTpvvvuU0pKihYtWqS4uDj5+voaHxMAAHi3ej/LcsCAAVq+fLnGjBmjiooK7dq1S5s3b9auXbtkt9t13333afny5Ro0aFC9J9O7d2+nMCZJnTp10i233KKcnByrLSMjQwMHDrRCjiT17dtXnTp10vbt2622Xbt2qaqqSuPGjbPafHx8NHbsWOXl5enIkSNuMSYAAPBuDbqNfocOHfSb3/xGv/nNb1RaWqqSkhKFhIQoODi4secnh8OhwsJC3XLLLZIunaEqLCxU9+7dXWpjY2P1+eefW8fZ2dkKCgpSdHS0S11t/2233WZ8zCvl5+fLZrNZx5eHUQAA4Hmu+7lGwcHBTRLEam3ZskV5eXn65S9/KUlWUAkLC3OpDQsL04ULF1RRUaGAgADZbDa1bdvWevD55XXSpeDjDmNeKT09XampqVdZEQAA4Gnc+kGTOTk5eu2119SzZ0+NGjVK0qXnaUpyubQpyQo3drtdAQEBstvt31vnDmNeKSEhwemSb05OjubMmeNSBwAAPIPbBjKbzaZnnnlGISEh+sMf/mBtlA8MDJSkOr+lWHsj2tqawMDAa64zOeaVwsPDuYcbAABepN6b+m+E4uJiPf300youLtb8+fOdwkntJcDL91jVstlsatOmjXXWKSwsTAUFBXI4HC51kqxxTY8JAAC8m9sFMrvdrmeffVanTp3Sn/70J2szf62IiAiFhoYqKyvL5bVHjx5VTEyMdRwTE6Py8nKXTfG191CrrTU9JgAA8G5uFciqq6v1/PPP68iRI3rhhRfUq1evOuuGDRum3bt36+zZs1bbvn37dOrUKcXHx1ttgwcPlp+fnz788EOrzeFwaN26dYqIiHAa3+SYAADAu7nVHrI33nhDn376qQYOHKiLFy9q8+bNTv0jR46UJE2ZMkU7duzQk08+qQkTJqisrEyrVq1Sly5ddO+991r17du318SJE7Vq1SpVVVUpNjZWO3fu1KFDh/Tcc89Z+9JMjwkAALybWwWyY8eOSZJ2796t3bt3u/TXBrLIyEi9/vrrWrhwod566y3rGZFTp0512Zf12GOPqXXr1kpPT9fGjRsVFRWl3//+9xoxYoRTnekxAQCA9/JxXLk7HW4nKytLSUlJWrp0aZ03mr0eK5M/VmmBXcHtAvXgwrsadeyGcsc5AQDQlNxqDxkAAIA3IpABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAzzMz0B4GrKCu1amfyx6WnUi39LP/Wd2E2d+3cwPRUAQDNCIIPb8W/pJ8kuh0MqLbCbnk492bX3/WwCGQCgXghkcDt9J3bT3vezVVleZXoq9VJWeClENrd5AwDMI5DB7XTu36FZnmFamfxxMzyjBwBwB2zqBwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGCYn+kJXK60tFRpaWnKzMzU0aNHdfHiRc2aNUv33nuvS+3Jkye1cOFCHT58WH5+fhowYICSk5MVGhrqVFdTU6O0tDStXbtWBQUFioqK0pQpUzR8+HC3GhMAAHgvtwpk58+fV2pqqiIjIxUTE6P9+/fXWXfu3DmlpKSoVatWSkpKUllZmdLS0nT8+HG99dZb8vf3t2qXLl2q9957T2PGjNGtt96qXbt26cUXX5SPj4/uvvtutxkTAAB4L7cKZGFhYfrwww8VFhamL7/8Ur/+9a/rrFuxYoXKy8u1bNkyRUZGSpJiY2M1c+ZMbdiwQQkJCZKkvLw8rV69WuPGjdOMGTMkSffdd59SUlK0aNEixcXFydfX1/iYAADAu7nVHrKAgACFhYV9b11GRoYGDhxohRxJ6tu3rzp16qTt27dbbbt27VJVVZXGjRtntfn4+Gjs2LHKy8vTkSNH3GJMAADg3dwqkF2LvLw8FRYWqnv37i59sbGxys7Oto6zs7MVFBSk6Ohol7rafncY80r5+fnKysqyfnJycq5aCwAAmj+3umR5LWw2myTVeSYtLCxMFy5cUEVFhQICAmSz2dS2bVv5+Pi41EmXgo87jHml9PR0paamXn0RAACAR2l2gcxut0tSnRvia8ON3W5XQECA7Hb799a5w5hXSkhI0KBBg6zjnJwczZkzx6UOAAB4hmYXyAIDAyVJlZWVLn0VFRVONYGBgddcZ3LMK4WHhys8PLzOPgAA4Hma3R6y2kuAtZcEL2ez2dSmTRvrrFNYWJgKCgrkcDhc6iRZocf0mAAAwLs1u0AWERGh0NBQZWVlufQdPXpUMTEx1nFMTIzKy8tdNsVnZmZa/e4wJgAA8G7NLpBJ0rBhw7R7926dPXvWatu3b59OnTql+Ph4q23w4MHy8/PThx9+aLU5HA6tW7dOERER6tWrl1uMCQAAvJvb7SH7+9//ruLiYutS36effqpz585JksaPH69WrVppypQp2rFjh5588klNmDBBZWVlWrVqlbp06eL0mKX27dtr4sSJWrVqlaqqqhQbG6udO3fq0KFDeu6556wbuEoyOiYAAPBuPo4rN0MZNmnSJOXm5tbZt3r1anXo0EGSdOLECZdnRE6dOlXt2rVzek1NTY1Wrlyp9PR02Ww2RUVF6aGHHtLIkSNdxjc55nfJyspSUlKSli5dWud9za7HyuSPVVpgV3C7QD248K5GHdvbsJYAgIZyu0AGVwSy5oG1BAA0VLPcQwYAAOBJCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIb5mZ4A4GnKCu1amfyx6Wl4Bf+Wfuo7sZs69+9geioAcF0IZEAj8W/pJ8kuh0MqLbCbno6XsGvv+9kEMgDNHoEMaCR9J3bT3vezVVleZXoqXqGs8FL4Zb0BeAICGdBIOvfvwJmaG2hl8seciQTgMdjUDwAAYBiBDAAAwDACGQAAgGEEMgAAAMMIZAAAAIYRyAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDCGQAAACGEcgAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwDA/0xMAgOtRVmjXyuSPTU8DQDPn39JPfSd2U+f+HYy8P4EMQLPk39JPkl0Oh1RaYDc9HQDNnl17388mkAFAffSd2E17389WZXmV6akAaObKCi/95c7k5wmBDECz1Ll/B2N/kwXgWVYmf2z8TDub+gEAAAwjkAEAABjGJcsmVlFRobffflubN2/WxYsX1bVrVyUmJqpfv36mpwYAANwEZ8ia2Lx587RmzRqNGDFC06ZNU4sWLfT000/r0KFDpqcGAADcBIGsCWVmZmrbtm369a9/rSeeeEIJCQn6y1/+optuukmLFy82PT0AAOAmCGRNKCMjQ76+vkpISLDaAgMDNXr0aB05ckRnz541ODsAAOAu2EPWhLKzsxUVFaWQkBCn9tjYWEnSsWPHFBkZ6fK6/Px82Ww26zgnJ6dpJwoAAIwikDUhm82msLAwl/batvz8/Dpfl56ertTU1KacGgAAcCMEsiZkt9vl7+/v0h4QEGD11yUhIUGDBg2yjnNycjRnzpwmmWPwDwKd/gkAgLdxh/8XEsiaUGBgoCorK13aKyoqrP66hIeHKzw8vEnnVmvs3EHfXwQAgAdzh/8Xsqm/CYWFhTntBatV23ajQhcAAHBvBLImFBMTo9OnT6ukpMSpPTMz0+oHAAAgkDWhuLg4VVdXKz093WqrqKjQRx99pB49etT5DUsAAOB92EPWhHr06KH4+HgtWbJERUVF6tixozZu3Kjc3Fw988wzpqcHAADcBIGsif32t79VZGSkNm3apOLiYnXp0kUvvfSS+vTpY3pqAADATRDImlhgYKCeeOIJPfHEE6anAgAA3BR7yAAAAAwjkAEAABhGIAMAADCMQAYAAGAYgQwAAMAwAhkAAIBhBDIAAADDuA9ZM2C32yVJOTk5hmcCAADqKzo6Wi1btvzOGgJZM5CbmytJmjNnjuGZAACA+lq6dKm6d+/+nTU+DofDcYPmgwYqKirSF198oQ4dOiggIOCaX5eTk6M5c+bo97//vaKjo5twhpBY7xuN9b6xWO8bi/W+sZp6vTlD5iFCQ0M1cuTIBr8+Ojr6e5M5Gg/rfWOx3jcW631jsd43lsn1ZlM/AACAYQQyAAAAwwhkHiwsLEyPPPKIwsLCTE/FK7DeNxbrfWOx3jcW631jucN6s6kfAADAMM6QAQAAGEYgAwAAMIxABgAAYBiBDAAAwDBuDOuBKioq9Pbbb2vz5s26ePGiunbtqsTERPXr18/01NxSaWmp0tLSlJmZqaNHj+rixYuaNWuW7r33XpfakydPauHChTp8+LD8/Pw0YMAAJScnKzQ01KmupqZGaWlpWrt2rQoKChQVFaUpU6Zo+PDhDR7TExw9elQbN27U/v37lZubqzZt2qhnz55KTExUp06dnGpZ6+t34sQJLV++XFlZWSooKFDLli0VHR2tBx54QIMGDXKqZb2bxrvvvqtly5apc+fOeuedd5z6Dh8+rDfffFNfffWVQkJCFB8fr6SkJAUHBzvV1ecz/VrH9AT79+/X9OnT6+xbvHixevbsaR03h7UmkHmgefPmaceOHZo4caKioqK0YcMGPf3001qwYIFuu+0209NzO+fPn1dqaqoiIyMVExOj/fv311l37tw5paSkqFWrVkpKSlJZWZnS0tJ0/PhxvfXWW/L397dqly5dqvfee09jxozRrbfeql27dunFF1+Uj4+P7r777gaN6QlWrlypw4cPKz4+Xl27dpXNZtOHH36oxMRELV68WF26dJHEWjeW3NxclZaWatSoUQoPD1d5ebkyMjI0a9YsPfXUU0pISJDEejeVc+fOacWKFQoKCnLpy87O1owZMxQdHa3k5GSdO3dOq1ev1unTp/Xyyy871V7rZ3p9xvQk48ePV2xsrFNbx44drV83m7V2wKMcOXLEMWTIEMfKlSuttvLycsfPfvYzx7//+78bnJn7stvtjvz8fIfD4XAcPXrUMWTIEMdHH33kUvfKK684hg8f7sjNzbXa/ud//scxZMgQx7p166y2c+fOOeLj4x2vvvqq1VZTU+OYOnWq4/7773dUVVXVe0xPcejQIUdFRYVT29dff+24++67HS+++KLVxlo3naqqKsejjz7qeOihh6w21rtpzJ492zF9+nRHSkqK4+GHH3bqe+qppxxjx451FBcXW23r1693DBkyxLFnzx6rrT6f6dc6pqf417/+5RgyZIhj+/bt31nXXNaaPWQeJiMjQ76+vtbffCUpMDBQo0eP1pEjR3T27FmDs3NPAQEB13QzwIyMDA0cOFCRkZFWW9++fdWpUydt377datu1a5eqqqo0btw4q83Hx0djx45VXl6ejhw5Uu8xPUXv3r1dzox06tRJt9xyi3Jycqw21rrp+Pr6qn379iouLrbaWO/Gd+DAAWVkZCglJcWlr6SkRHv37tXIkSMVEhJitd9zzz0KCgpyWp9r/Uyvz5ieqLS0VFVVVS7tzWmtCWQeJjs7W1FRUU5/SCRZp3OPHTtmYlrNXl5engoLC+t86GxsbKyys7Ot4+zsbAUFBSk6Otqlrra/vmN6MofDocLCQv3gBz+QxFo3hbKyMhUVFenMmTNas2aN9uzZox//+MeSWO+mUF1drQULFmj06NHq2rWrS//x48dVXV3tsj7+/v7q1q2by5pfy2d6fcb0NPPmzdOoUaM0YsQITZ8+XV9++aXV15zWmj1kHsZms9V5tqe2LT8//0ZPySPYbDZJuuraXrhwQRUVFQoICJDNZlPbtm3l4+PjUif9/9+D+ozpybZs2aK8vDz98pe/lMRaN4U33nhD6enpkqQWLVpo6NChmjFjhiTWuymsW7dOZ8+e1WuvvVZn//etz8GDB51qr+UzvT5jego/Pz8NGzZMP/nJT/SDH/xAJ0+e1OrVq5WcnKxFixbphz/8YbNaawKZh7Hb7XVulq394LPb7Td6Sh6hdt2+b20DAgKu+fegPmN6qpycHL322mvq2bOnRo0aJYm1bgoTJ05UXFyc8vPztX37dlVXV6uyslIS693Yzp8/r7/97W96+OGHr/pt0u9bn4qKCqfaxljzy8f0FL1791bv3r2t48GDBysuLk6PPvqolixZovnz5zerteaSpYcJDAy0PmgvV/sHJDAw8EZPySPUrtu1rO21/h7UZ0xPZLPZ9MwzzygkJER/+MMf5OvrK4m1bgrR0dHq27evRo0apZdeekllZWV69tln5XA4WO9GtmzZMrVu3Vrjx4+/as33rc/lQbWx1twTw29doqKiNHjwYO3fv1/V1dXNaq0JZB4mLCzMOp16udq28PDwGz0lj1B7avpqa9umTRvrP8KwsDAVFBTI4XC41En///egPmN6muLiYj399NMqLi7W/Pnznf5cstZNLy4uTl9++aVOnTrFejeiU6dOaf369ZowYYLy8/P17bff6ttvv1VFRYWqqqr07bff6sKFC9+7Plf+93Atn+n1GdPTtW/fXpWVlSovL29Wa00g8zAxMTE6ffq0SkpKnNozMzOtftRfRESEQkNDlZWV5dJ39OhRp3WNiYlReXm507cGJdffg/qM6UnsdrueffZZnTp1Sn/60590yy23OPWz1k2v9pJLcXEx692I8vPzVVNTowULFmjy5MnWT2Zmpk6dOqXJkycrNTVVnTt3lq+vr8v6VFZWKjs722XNr+UzvT5jerpvvvlGAQEBCgoKalZrTSDzMHFxcaqurrY28EqXTqF+9NFH6tGjh9NX0FE/w4YN0+7du51uHbJv3z6dOnVK8fHxVtvgwYPl5+enDz/80GpzOBxat26dIiIi1KtXr3qP6Smqq6v1/PPP68iRI3rhhRec1uJyrHXjKCwsdGmrqqrSpk2bFBgYaIVh1rtxdO7cWXPnznX56dy5syIjIzV37lyNHj1arVq1Ut++fbV582aVlpZar9+0aZPKysqc1udaP9PrM6anKCoqcmk7duyYPv30U/Xr108tWrRoVmvt47jy3DOavdmzZ+uTTz7RpEmT1LFjR23cuFFHjx7Va6+9pj59+pienlv6+9//ruLiYtlsNq1du1ZDhw5Vt27dJF26C3SrVq109uxZJSYmqlWrVpowYYLKysq0atUqRUREaMmSJU6XYBYvXqxVq1ZpzJgxio2N1c6dO/XZZ5/pueee04gRI6y6+ozpCV5//XV98MEHGjhwoO666y6X/pEjR0qq37qw1lf3u9/9TiUlJbr99tsVEREhm82mLVu26Ouvv9bUqVM1efJkSax3U5s2bZrOnz/v9OikrKwsTZ06VdHR0UpISLDu9H777bfrlVdecXr9tX6m12dMTzB9+nQFBgaqV69eatu2rU6ePKn169fLz89PixYtsv7C0VzWmkDmgex2u/UsruLiYnXp0kWJiYm68847TU/NbU2aNEm5ubl19q1evVodOnSQdOnZgFc+m2/q1Klq166d02tqamq0cuVKpaeny2azKSoqSg899JAVOC53rWN6gmnTpunAgQNX7f/kk0+sX7PW12/btm365z//qePHj+v8+fMKDg5W9+7ddf/992vw4MFOtax306krkEnSoUOHrGchBgcHKz4+Xo899pjLsxDr85l+rWN6gg8++EBbtmzRmTNnVFJSotDQUN1xxx165JFHFBUV5VTbHNaaQAYAAGAYe8gAAAAMI5ABAAAYRiADAAAwjEAGAABgGIEMAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAcANNm3aNA0dOlRDhw7VM888Y7V/++23Gjp0qFatWnXD57Rz505rTkOHDtWXX355w+cAeDM/0xMAgBttw4YNmjdv3lX7Fy9erJ49ezbpHP7t3/5NDz/8sCIiIhp97KqqKo0bN07/9m//pjfeeKPOGofDoQkTJig0NFRvv/22unfvrt///vc6ePCg1q9f3+hzAvDdCGQAvNavfvUr68Hxl+vYsWOTv3e7du3qfCB3Y/Dz81NcXJzS09OVm5urm266yaXm4MGDysvL06RJkyRJ7du318iRI1VdXU0gAwwgkAHwWv3799ett95qehpNYsSIEVq3bp22bt2qKVOmuPRv2bJFLVq00N13321gdgCuxB4yALiKy/d0/fd//7cmT56sESNGaObMmTp79qwcDofeeecdjR8/XsOHD9esWbN04cKFRp2Dw+HQyy+/rLvuuksZGRlW++bNm5WYmKjhw4dr9OjRev7553X27Fmrv3fv3rrpppu0detWlzGrqqqUkZGhH/3oRwoPD2/U+QJoGAIZAK9VUlKioqIip5/z58+71G3dulVr167V+PHjNXnyZB08eFDPP/+8li1bpj179ujBBx/UmDFjtHv3bi1atKjR5lddXa0//vGP2rRpk+bOnathw4ZJkt59913NnTtXUVFRSk5O1sSJE7Vv3z6lpKTo4sWLkiQfHx+NGDFCx48f14kTJ5zG3bNnjy5cuKARI0Y02lwBXB8uWQLwWjNmzHBpCwgIcDmrlJeXp5UrV6pVq1aSpJqaGq1YsUJ2u11LliyRn9+lj9Lz589ry5YtmjlzpgICAq5rblVVVZozZ44+/fRT/fGPf9Sdd94pScrNzdXy5cuVmJion//851b90KFD9atf/Upr16612keMGKH/+q//0pYtW/TrX//aqt26dasCAgKsgAfAPAIZAK81Y8YMderUyamtRQvXCwdxcXFWGJOk2NhYSZcCT20Yq23funWr8vPzdfPNNzd4XlVVVZo9e7b27t2rP//5z/rRj35k9X3yySeqqalRfHy8ioqKrPZ27dopKipK+/fvtwLZLbfcom7dumnbtm1WICsrK9Onn36qgQMHKiQkpMFzBNC4CGQAvFZsbOw1beqPjIx0Oq4NZ+3bt6+zvfayYUOtWLFCZWVlevnll53CmCSdPn1aDodDDz74YJ2vvTwgSpdC46JFi3T48GH17t1bO3fuVHl5OZcrATdDIAOA71HXWTNJ8vX1rbPd4XBc1/vdeeed+uKLL7Ry5Ur16dNHgYGBVl9NTY18fHz08ssv1zmvoKAgp+Phw4frzTff1NatW9W7d29t3bpVrVu31k9+8pPrmiOAxkUgAwA306NHD/30pz/Vs88+q9mzZ2vOnDnWma+OHTvK4XCoQ4cOLpdb6xIeHq4f/ehH2rFjh37xi19o7969uvfee+Xv79/U/xoA6oFvWQKAG+rbt69mz56tPXv2aO7cuaqpqZF0afO+r6+vli9f7nImzuFw1Pkt0REjRqiwsFDz589XVVUVlysBN8QZMgBea8+ePfr6669d2nv16nVdm/Iby5AhQzRr1izNnTtXwcHB+o//+A917NhRv/rVr7RkyRLl5uZqyJAhCg4O1jfffKOdO3dqzJgxeuCBB5zGGTZsmF599VXt2rVL7du31+23327o3wjA1RDIAHitt99+u872WbNmuUUgk6SRI0eqtLRUr776qkJCQvTEE09oypQp6tSpk95//32lpqZKkiIiItSvXz8NHjzYZYyQkBANGjRI27dv19133y0fH58b/G8B4Pv4OK539ykAoF6mTZumqqoq/fGPf5S/v79b3H6isrJSJSUl2rZtmxYsWKAlS5Z47GOlAHfEGTIAMOB///d/lZCQoAEDBuill14yPR19/vnn+t3vfmd6GoDX4gwZANxgWVlZ1r3KQkNDFRMTY3hGUlFRkY4dO2Yd9+jRQ8HBwQZnBHgXAhkAAIBh3PYCAADAMAIZAACAYQQyAAAAwwhkAAAAhhHIAAAADCOQAQAAGEYgAwAAMIxABgAAYBiBDAAAwLD/Bx/y691GcQYgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAG4CAYAAAB2CPL9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABD20lEQVR4nO3de3hU1aH//0/IZXLhEkxCjAQRCIUgUnpMRJRbBBEOkmIxKko92JJ6KEFFPXj/erBYakUriqKgBT3KXYVwylW5CFK0oSA8BONgJIIQLpMAuc7kMr8/8ss+jJPUZJKdTGber+fJA3vttdeszYTJJ2uvvXaA0+l0CgAAAM2qXWt3AAAAwBcRsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASGrFZWXlysnJ0fl5eWt3RUAANDMCFmtKC8vT+np6crLy2vtrgAAgGZGyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATBLV2BwA0Xu7eU9q3xqqK8kqPjg8ODVJSWm/1GBTXzD0DANQiZAFt0L41Vl04WdKEFuzKWm0lZAGAiQhZQBtUO4IVECCFdbY06tiyQrucTnk8CgYAaBhCFtCGhXW26O4FNzXqmGUZ21RaYDepRwCAWoQsoJU0ZV5VWSEhCQC8HSELaCVNn1dVM4EdAOCd+IQGWklT5lVJ/3eHIADAOxGygFbmybwqAID3YzFSAAAAEzCSBfipskK7lmVsa/RxLGQKAA1DyAL8TM1k+Zq1sjxbyoGFTAGgIQhZgJ9JSuutrNWeLx3BQqYA0DCELMDP9BgU5/EoFAuZAkDDMfEdAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwATcXQg0Qe7eU9q3xvPlEAAAvouQBTTBvjVWXThZ0qQ2ahYHBQD4Gq/8dM/JydGSJUt06NAhORwOXXHFFRo/frxuv/12o86hQ4f05ptv6ptvvlFERIRSUlKUnp6u8PBwl7YcDofeeecdbdmyRUVFRerVq5emTp2q5ORkt9c1o034ttoRrICAmgc9N1btI2oAAL7H60LWl19+qSeeeEK9e/fWf/zHfygsLEw//PCDzp49a9SxWq2aOXOmunfvroyMDJ05c0YrV67UiRMn9OKLL7q0N3fuXO3YsUNpaWmKj4/Xxo0bNWvWLM2fP18DBgwwtU34j7DOFt294KbW7kaL4bmHAPDTvCpklZSU6I9//KOuv/56/eEPf1C7dnXPy1+0aJE6dOigV199VREREZKkuLg4/fnPf9aXX36p6667TpKUnZ2tTz/9VNOmTdOkSZMkSbfccoumTJmihQsXauHChaa2CfgannsIAA3nVXcXfvLJJyooKFB6erratWunsrIyVVdXu9QpKSlRVlaWRo8ebYQhqSbohIWFafv27UbZzp07FRgYqNTUVKPMYrFo3LhxOnz4sE6fPm1am4AvSkrrrU5XRCj8MkujvwICatrguYcA/IVXjWRlZWUpIiJC586d01NPPaXjx48rLCxMo0ePVkZGhiwWi3Jzc1VVVaU+ffq4HBscHKzevXvLarUaZVarVfHx8S7BSZISExMlSUePHlVsbKwpbdbl3LlzstlsxnZeXl5D/2kAr8BzDwGg4bwqZJ04cUJVVVV68sknNW7cOP3ud7/TgQMH9OGHH6q4uFjPPvusEVKioqLcjo+KitJXX31lbNtstnrrSTWhp7Zec7dZl8zMTC1durTe/QAAwHd4VcgqKytTeXm5fvnLX+rBBx+UJA0fPlwVFRXKzMzUb37zG9ntNb8JBwcHux0fEhIih8NhbNvt9nrr1e6/9M/mbLMuqampuvHGG43tvLw8zZkzp976AACg7fKqkGWx1NwCP3LkSJfyUaNGKTMzU4cPH1ZoaKgkqaKiwu14h8NhhJ3a9uqrd+nr1f7ZnG3WJTo6WtHR0fXuBwAAvsOrJr7XXnK77LLLXMo7d+4sSSoqKjLqXDq3qZbNZnMJMVFRUfXWk2TUNaNNAADg37wqZNVOPL90TSzp/+Y5RUZGqkePHgoMDFROTo5LnYqKClmtViUkJBhlCQkJOnHihEpKXFfkzs7ONvZLMqVNAADg37wqZKWkpEiS/va3v7mU/+1vf1NgYKB+8YtfqH379kpKStKWLVtUWlpq1Nm8ebPKysqMNiRpxIgRqqqqUmZmplHmcDi0YcMG9evXz7gL0Iw2AQCAf/OqOVk/+9nP9O///u/asGGDqqqqNHDgQB04cEDbt2/X5MmTjUtxU6dO1fTp0zVjxgylpqYaq7MnJydr0KBBRnv9+vVTSkqKFi1apPPnz6tr167atGmT8vPz9dhjj7m8thltAgAA/+VVIUuSHn30UcXGxmrjxo3atWuXYmNjlZGRoTvuuMOo06dPH7388st688039dprryk8PFzjxo3T/fff79bek08+qdjYWG3evFnFxcXq2bOnXnjhBQ0cONClnhltAgAA/xXgdDqdrd0Jf5WTk6P09HQtXrzYbSFUtA21C2yGX+Zfzy70BP9WAPyNV83JAgAA8BWELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATeN06WQB8W1mhXcsytjX6uODQICWl9VaPQXEm9AoAmh8hC0CLCA4NkmSX0ymVFtg9aMGurNVWQhaANoOQBaBFJKX1VtZqqyrKKxt9bFlhTTjz5FgAaC2ELAAtosegOI9HoWpXiweAtoSJ7wAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAm4O5C+L3cvae0b43nSwsAAFAXQhb83r41Vl04WdKkNmoW2gQA4P/wkwF+r3YEKyBACutsafTxtY97AQDgUoQs4P8X1tmiuxfc1NrdAAD4CCa+AwAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACXh2IYA2o6zQrmUZ2xp9XO1DvHsMijOhVwBQN0IWAK8XHBokyS6nUyotsHvQgl1Zq62ELAAtipAFwOslpfVW1mqrKsorG31sWWFNOPPkWABoCkIWAK/XY1Ccx6NQyzK2eTj6BQBNw8R3AAAAExCyAAAATEDIAgAAMAEhCwAAwAReNfF9//79evDBB+vct3DhQl199dXG9qFDh/Tmm2/qm2++UUREhFJSUpSenq7w8HCX4xwOh9555x1t2bJFRUVF6tWrl6ZOnark5GS31zCjTQAA4J+8KmTVmjhxohITE13KunbtavzdarVq5syZ6t69uzIyMnTmzBmtXLlSJ06c0Isvvuhy3Ny5c7Vjxw6lpaUpPj5eGzdu1KxZszR//nwNGDDA1DYBAID/8sqQ9fOf/1wjRoyod/+iRYvUoUMHvfrqq4qIiJAkxcXF6c9//rO+/PJLXXfddZKk7Oxsffrpp5o2bZomTZokSbrllls0ZcoULVy4UAsXLjS1TQAA4L+8dk5WaWmpKivdFw8sKSlRVlaWRo8ebYQhqSbohIWFafv27UbZzp07FRgYqNTUVKPMYrFo3LhxOnz4sE6fPm1amwAAwL955UjW3LlzVVZWpsDAQA0YMEDTpk1T3759JUm5ubmqqqpSnz59XI4JDg5W7969ZbVajTKr1ar4+HiX4CTJuBR59OhRxcbGmtJmXc6dOyebzWZs5+XlNejfAwAAtD1eFbKCgoI0fPhwXX/99erUqZOOHTumlStXKiMjQ2+88YZ+9rOfGSElKirK7fioqCh99dVXxrbNZqu3nlQTemrrNXebdcnMzNTSpUvr3Q8AAHyHV4Wsa665Rtdcc42xPWTIEI0YMUL33XefFi1apHnz5slur3k8RnBwsNvxISEhcjgcxrbdbq+3Xu3+S/9szjbrkpqaqhtvvNHYzsvL05w5c+qtDwAA2i6vCll1iY+P15AhQ/TZZ5+pqqpKFotFklRRUeFW1+FwGGFHqpkrVV+92v2X/tmcbdYlOjpa0dHR9e4HAAC+w2snvl+qS5cuqqioUHl5uXFZ7tK5TbVsNptLiImKiqq3niSjrhltAgAA/9YmQtbJkycVEhKisLAw9ejRQ4GBgcrJyXGpU1FRIavVqoSEBKMsISFBJ06cUElJiUvd7OxsY78kU9oEAAD+zatC1vnz593Kjh49qs8//1zJyclq166d2rdvr6SkJG3ZskWlpaVGvc2bN6usrEwpKSlG2YgRI1RVVaXMzEyjzOFwaMOGDerXr59xF6AZbQIAAP/mVXOynn32WVksFvXv31+dO3fWsWPHtH79eoWGhur+++836k2dOlXTp0/XjBkzlJqaaqzOnpycrEGDBhn1+vXrp5SUFC1atEjnz59X165dtWnTJuXn5+uxxx5zeW0z2gQAAP7Lq0LW0KFDtXXrVq1atUolJSWKjIzUsGHDNGXKFMXHxxv1+vTpo5dffllvvvmmXnvtNYWHh2vcuHEuQazWk08+qdjYWG3evFnFxcXq2bOnXnjhBQ0cONClnhltAgAA/xXgdDqdrd0Jf5WTk6P09HQtXrzYbSFUtJxlGdtUWmBX+GUW3b3gptbuDpoZ7y+A1uJVI1kAYJayQruWZWxr9HHBoUFKSuutHoPiTOgVAF9GyALg04JDgyTZ5XRKpQX1LxZcP7uyVlsJWQAajZAFwKclpfVW1mqrKsrdHzj/U8oKa8KZJ8cCACELgE/rMSjO41Go2vlcAOAJr1onCwAAwFcQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMwBIO8Am5e09p3xrP10ICAKC5EbLgE/atserCyZImtVGzMjgAAM2DnyrwCbUjWAEBUlhnS6OPr30+HQAAzYWQBZ8S1tmiuxfc1NrdAACAie8AAABmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACZgxXcA+AllhXYty9jW6ONqH9fUY1CcCb0C4O0IWQBQj5qHhtvldEqlBXYPWrAra7WVkAX4KUIWANQjKa23slZbjQeQN0ZZYU048+RYAL6BkAUA9egxKM7jUahlGds8HP0C4CuY+A4AAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACbw6mcXvvfee3r77bfVo0cPvfvuuy77Dh06pDfffFPffPONIiIilJKSovT0dIWHh7vUczgceuedd7RlyxYVFRWpV69emjp1qpKTk91ez4w2AQCAf/LakawzZ87o/fffV1hYmNs+q9WqmTNnqry8XBkZGRo3bpzWr1+vZ5991q3u3LlztWrVKt1888164IEH1K5dO82aNUsHDx40vU0AAOC/vHYk64033lC/fv1UXV2tCxcuuOxbtGiROnTooFdffVURERGSpLi4OP35z3/Wl19+qeuuu06SlJ2drU8//VTTpk3TpEmTJEm33HKLpkyZooULF2rhwoWmtgkAAPyXV45kHThwQDt37tSMGTPc9pWUlCgrK0ujR482wpBUE3TCwsK0fft2o2znzp0KDAxUamqqUWaxWDRu3DgdPnxYp0+fNq1NAADg37xuJKuqqkrz58/XuHHj1KtXL7f9ubm5qqqqUp8+fVzKg4OD1bt3b1mtVqPMarUqPj7eJThJUmJioiTp6NGjio2NNaXNupw7d042m83YzsvLq/ffAQAAtG1eF7LWrVun06dP6y9/+Uud+2tDSlRUlNu+qKgoffXVVy5166sn1YQes9qsS2ZmppYuXVrvfgC+p6zQrmUZ2xp9XHBokJLSeqvHoDgTegWgJXhVyLpw4YL++te/6t5771VkZGSddex2u6SaUaYfCwkJkcPhcKlbX71L2zKjzbqkpqbqxhtvNLbz8vI0Z86ceusDaLuCQ4Mk2eV0SqUF9X8u1M+urNVWQhbQhnlVyHr77bfVoUMHTZw4sd46FotFklRRUeG2z+FwGGGntm599S5ty4w26xIdHa3o6Oh69wPwHUlpvZW12qqK8spGH1tWWBPOPDkWgPfwmpB1/PhxrV+/XjNmzHC55OZwOFRZWalTp04pIiLCuCx36dymWjabzSXEREVF6ezZs3XWk2TUNaNNAP6tx6A4j0ehlmVs83D0C4A38Zq7C8+dO6fq6mrNnz9fd955p/GVnZ2t48eP684779TSpUvVo0cPBQYGKicnx+X4iooKWa1WJSQkGGUJCQk6ceKESkpKXOpmZ2cb+yWZ0iYAAPBvXhOyevTooeeff97tq0ePHoqNjdXzzz+vcePGqX379kpKStKWLVtUWlpqHL9582aVlZUpJSXFKBsxYoSqqqqUmZlplDkcDm3YsEH9+vUz7gI0o00AAODfvOZyYWRkpIYOHepWvnr1akly2Td16lRNnz5dM2bMUGpqqs6cOaOVK1cqOTlZgwYNMur169dPKSkpWrRokc6fP6+uXbtq06ZNys/P12OPPebyOma0CQAA/JfXhKzG6NOnj15++WW9+eabeu211xQeHq5x48bp/vvvd6v75JNPKjY2Vps3b1ZxcbF69uypF154QQMHDjS9TQAA4L8CnE6ns7U74a9ycnKUnp6uxYsXuy2EisapnSgcfplFdy+4qbW7AzQJ38+Ab/CaOVkAAAC+hJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKPQ9a+ffu0fPlyl7K//e1vuv322/XLX/5Sr732mqqqqprcQQAAgLbI45C1ZMkSHT161Nj+9ttvNW/ePEVGRmrgwIH68MMPtWLFimbpJAAAQFvj8YrveXl5GjZsmLG9ZcsWRUREaMGCBQoNDdW8efO0efNm3XPPPc3SUQDwN2WFdi3L2Nbo44JDg5SU1ls9BsWZ0CsADeVxyCorK1NERISx/cUXX+i6665TaGioJKlv377aunVr03sIAH4mODRIkl1Op1RaYPegBbuyVlsJWUAr8/hyYZcuXfT1119Lkk6cOKHvvvtOycnJxv6ioiIFBwc3vYcA4GeS0nqr0xURCr/M0uivgICaNirKK1v3JAB4PpJ18803691339XZs2d17NgxdejQQUOGDDH25+TkqFu3bs3SSQDwJz0GxXk8ClX73EMArc/jkPXrX/9alZWV2rt3r2JjY/XEE0+oQ4cOkqSLFy/qwIEDuv3225utowAAAG2JxyErKChI6enpSk9Pd9vXsWNHrV27tin9AgAAaNM8npP14IMPat++ffXu/+c//6kHH3zQ0+YBAADaNI9D1oEDB1RQUFDv/sLCQn311VeeNg8AANCmNemxOgG1t7HU4YcfflB4eHhTmgcAAGizGjUna+PGjdq0aZOx/d5772n9+vVu9YqLi5Wbm6tBgwY1vYfwG7l7T2nfGqtHt56XFXI3FQDAuzQqZNntdp0/f97YLi0tdRvNCggIUFhYmFJTUzVlypTm6CP8xL41Vl04WdKkNmoWcQQAoPU16ifShAkTNGHCBEnSHXfcoQceeMBlbSygKWpHsAICpLDOlkYfX/soEQA8kgfwBh7/2r9q1arm7AdgCOts0d0LbmrtbgBtEo/kAbxHk6+tlJaWKj8/X0VFRXI6nW77Bw4c2NSXAAA0UFJab2Wt9nxuo9PJI3mA5uJxyDp//rzmz5+vnTt3qrq62m2/0+lUQECAduzY0ZT+AQAagUfyAN7D45D14osvas+ePZo4caJ+/vOfG4/UAQAAQBNCVlZWlu644w5NmzatOfsDAADgEzxejNRisejyyy9vzr4AAAD4DI9D1ujRo7Vr167m7AsAAIDP8Phy4fDhw3XgwAE9+uijGj9+vLp06aJ27dwzW58+fZrUQQAAgLbI45CVkZFh/D0rK8ttP3cXAgAAf+ZxyHr88cebsx8AAAA+xeOQNXbs2ObsBwDAS/BIHqB58DRdAIAkHskDNDePQ9af/vSnBtXjsiIAtA08kgdoXh6HrH/+859uZdXV1bLZbKqurlZkZKRCQ0Ob1DkAQMvhkTxA8/I4ZK1atarO8srKSq1bt05r1qzRSy+95HHHAAAA2jKPFyOtT1BQkCZOnKjk5GS98sorzd08AABAm9DsIatWr1699NVXX5nVPAAAgFczLWRlZWUxJwsAAPgtj+dkLV26tM7y4uJiffXVV/rmm290zz33NKrN7777TkuWLFFOTo4KCgoUGhqq7t27a9KkSbrxxhtd6h47dkwLFizQoUOHFBQUpMGDBysjI0ORkZEu9aqrq7VixQqtXbtWBQUFio+P1+TJkzVq1Ci31zejTQAA4J88DllLliyps7xDhw664oor9Mgjj2j8+PGNajM/P1+lpaUaM2aMoqOjVV5erp07d+qJJ57Qo48+qtTUVEnSmTNnNGPGDLVv317p6ekqKyvTihUrlJubq7feekvBwcFGm4sXL9YHH3yg8ePHq2/fvtq9e7eee+45BQQEaOTIkUY9M9oEAAD+y+OQtXPnzubshyRp8ODBGjx4sEvZr371K6Wnp2vVqlVGyHr//fdVXl6ut99+W7GxsZKkxMREPfzww9q4caNR7+zZs1q5cqVuu+02zZw5U5J06623asaMGXrjjTc0YsQIBQYGmtYmAPgbVosH/o9pc7KaS2BgoLp06aLi4mKjbOfOnbrhhhuMMCRJSUlJ6tatm7Zv326U7d69W5WVlbrtttuMsoCAAE2YMEFnz57V4cOHTW0TAPxFzWrxMlaLb+zXhZMlylptbeWzAJpXkx+rc+DAAf39739Xfn6+JOnyyy/X4MGDNXDgQI/bLCsrk91uV0lJiT7//HN98cUXSklJkVQzklRYWKg+ffq4HZeYmKi9e/ca21arVWFhYerevbtbvdr9AwYMMKXNupw7d042m83YzsvL+5f/DgDQVrBaPODO45BVUVGh2bNna/fu3XI6nWrfvr2kmonvK1eu1NChQ/Xss88qKKjxL/H6668rMzNTktSuXTsNGzbMuDRXG1KioqLcjouKitLFixflcDgUEhIim82mzp07KyAgwK2eVBN6zGqzLpmZmfXeMAAAbRmrxQPumnR34a5du3TXXXfpzjvv1GWXXSZJKiws1IoVK7RixQotXbpUU6dObXTbaWlpGjFihM6dO6ft27erqqpKFRUVkiS7veY/4qUT0WuFhIQYdUJCQmS323+ynllt1iU1NdXlLsm8vDzNmTOn3voAAKDt8jhkbd26VWPGjNG0adNcyjt37qxp06apsLBQW7Zs8Shkde/e3bgcN2bMGD388MN6/PHH9dZbb8lisUiSEbou5XA4JMmoY7FYGlyvudusS3R0tKKjo+vdDwAAfIfHE98LCgrUr1+/evf369dPBQUFnjbvYsSIEfr66691/Phx47LcpXObatlsNnXs2NEYVYqKilJBQYGcTqdbPUlG4DGjTQAA4N88DlkxMTHav39/vfsPHDigmJgYT5t3UXsJrri4WDExMYqMjFROTo5bvSNHjighIcHYTkhIUHl5udsE8+zsbGO/JFPaBAAA/s3jkDVmzBht375d8+bN0/fff6+qqipVV1fr+++/10svvaQdO3ZozJgxjWqzsLDQrayyslKbN2+WxWLRVVddJUkaPny49uzZo9OnTxv19u3bp+PHjxt3IUrSkCFDFBQUpI8//tgoczqdWrdunWJiYtS/f3+j3Iw2AQCA//J4TtbkyZP1ww8/aP369frf//1f4247p9Mpp9OpMWPG6Ne//nWj2pw3b55KSkr085//XDExMbLZbNq6dau+//57TZ8+XeHh4cZr79ixQw899JBuv/12lZWVafny5erZs6fGjh1rtNelSxelpaVp+fLlqqysVGJionbt2qWDBw/qmWeecVk01Iw2AQCA/wpw/nhyUSN9++23+vvf/26MAMXGxmrw4MHq1atXo9v69NNP9be//U25ubm6cOGCwsPD1adPH/3qV7/SkCFDXOp+9913bs8ZnD59unGXY63q6motW7ZMmZmZstlsio+P1z333KPRo0e7vb4Zbf4rOTk5Sk9P1+LFi+tco8vf1N7GHX6ZRXcvuKm1uwOghdT+3w8IkMI613/zUH1YLR7eqlEhy26367XXXlOPHj00ceLEeuutWbNG33//vR544AGP1snyF4QsV4QswD+tfvQzXThZ0qQ2Ol0RobR5w5qpR0DzaNScrPXr12vTpk1uzxf8scGDB2vDhg363//93yZ1DgDg+5LSeqvTFREKv8zS6K/adaFZLR7eqFHDTNu3b9ewYcN0xRVX/Mt6Xbt21YgRI/TJJ59owoQJTekfAMDHsVo8fFWjRrJyc3PrfS7fj/Xv31+5ubkedQoAAKCta1TIqqioaPAcq6CgIGMVdAAAAH/TqJAVHR2t7777rkF1v/vuO1Y/BwAAfqtRIevaa6/V5s2b61w09FKFhYXavHmzkpKSmtQ5AACAtqpRIeuee+6Rw+HQQw89ZDxG5seys7P10EMPyeFwaNKkSc3SSQAAgLamUXcXXnHFFZo9e7Zmz56t3//+94qLi1PPnj0VHh6u0tJSfffddzp58qQsFoueffZZde3a1ax+AwAAeLVGrxQ6ePBgLVmyRMuWLdOePXu0e/duY190dLRuvfVW3X333T+5zAMAAM2lrNCuZRnbGn0cq8XDTB4txx4XF6dHHnlEjzzyiEpLS1VSUqKIiAjj2YIAALSE4NAgSXY5nfJwvSy7slZbCVkwRZOfeRMeHk64AgC0iqS03spabfVoxfeywppwxmrxMAsPFgQAtFmsFg9v1qi7CwEAANAwhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzAswvRrHL3ntK+NZ4/rBUAAF9ByEKz2rfGqgsnS5rURnAo35YAgLaPn2ZoVrUjWAEBUlhnS6OPDw4NUlJa7+buFgAALY6QBVOEdbbo7gU3tXY3AABoNUx8BwAAMAEhCwAAwARcLgQA+LWyQruWZWxr9HG1c0h7DIozoVfwBYQsAIBfqrmT2S6nUyot8GQJGbuyVlsJWagXIQsA4JeS0nora7Xn6/o5nfLoWPgPQhYAwC/1GBTn8SjUsoxtHo5+wZ8w8R0AAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABF51d+GRI0e0adMm7d+/X/n5+erYsaOuvvpqTZ06Vd26dXOpe+zYMS1YsECHDh1SUFCQBg8erIyMDEVGRrrUq66u1ooVK7R27VoVFBQoPj5ekydP1qhRo9xe34w2AQCAf/KqkLVs2TIdOnRIKSkp6tWrl2w2mz7++GNNnTpVCxcuVM+ePSVJZ86c0YwZM9S+fXulp6errKxMK1asUG5urt566y0FBwcbbS5evFgffPCBxo8fr759+2r37t167rnnFBAQoJEjRxr1zGgTAAD4L68KWXfccYf+3//7fy6B5qabbtJ9992nDz74QM8884wk6f3331d5ebnefvttxcbGSpISExP18MMPa+PGjUpNTZUknT17VitXrtRtt92mmTNnSpJuvfVWzZgxQ2+88YZGjBihwMBA09oEAAD+y6vmZF1zzTUuAUuSunXrpquuukp5eXlG2c6dO3XDDTcYYUiSkpKS1K1bN23fvt0o2717tyorK3XbbbcZZQEBAZowYYLOnj2rw4cPm9omAADwX14VsuridDpVWFioTp06SaoZSSosLFSfPn3c6iYmJspqtRrbVqtVYWFh6t69u1u92v1mtVmXc+fOKScnx/i6NDgCAADf4lWXC+uydetWnT17Vr/5zW8kSTabTZIUFRXlVjcqKkoXL16Uw+FQSEiIbDabOnfurICAALd6Uk3oMavNumRmZmrp0qUNOW0AANDGeXXIysvL01/+8hddffXVGjNmjCTJbq95VtSPLytKUkhIiFEnJCREdrv9J+uZ1WZdUlNTdeONN7qc35w5c+qtDwAA2i6vDVk2m02PPfaYIiIi9Ic//MGYTG6xWCRJFRUVbsc4HA6XOhaLpcH1mrvNukRHRys6Orre/QAAwHd45Zys4uJizZo1S8XFxZo3b55LMKm9LFd7ie9SNptNHTt2NEaVoqKiVFBQIKfT6VZPktGuGW0CAAD/5nUhy2636/HHH9fx48f1pz/9SVdddZXL/piYGEVGRionJ8ft2CNHjighIcHYTkhIUHl5udsE8+zsbGO/WW0CAAD/5lUhq6qqSv/93/+tw4cPa/bs2erfv3+d9YYPH649e/bo9OnTRtm+fft0/PhxpaSkGGVDhgxRUFCQPv74Y6PM6XRq3bp1iomJcWnfjDYBAID/8qo5Wa+//ro+//xz3XDDDSoqKtKWLVtc9o8ePVqSNHnyZO3YsUMPPfSQbr/9dpWVlWn58uXq2bOnxo4da9Tv0qWL0tLStHz5clVWVioxMVG7du3SwYMH9cwzz7gsGmpGmwAA31ZWaNeyjG2NPi44NEhJab3VY1CcCb2Ct/CqkHX06FFJ0p49e7Rnzx63/bUhKzY2Vq+++qoWLFigt956y3jO4PTp0425U7Xuv/9+dejQQZmZmdq0aZPi4+P19NNP6+abb3apZ0abAADfFBwaJMkup1MqLaj/rvL62ZW12krI8nEBzh/P4EaLycnJUXp6uhYvXlznQqht0bKMbSotsCv8MovuXnBTa3cHAEzx3RenlLXaqoryykYfW1ZYE874nPR9XjWSBQBAW9BjUJzHo1C1v4zC93nVxHcAAABfQcgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAExAyAIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAEwS1dgcAAPBHZYV2LcvY1ujjgkODlJTWWz0GxZnQKzQnQhYAAC0oODRIkl1Op1RaYPegBbuyVlsJWW0AIQsAgBaUlNZbWautqiivbPSxZYU14cyTY9HyCFkAALSgHoPiPB6FWpaxzcPRL7QGJr4DAACYgJAFAABgAkIWAACACZiTBRe5e09p3xrPJmRKNZMyAQAAIQs/sm+NVRdOljS5nZpblAEA8F/8JISL2hGsgAAprLPFozZqF8oDAMCfEbJQp7DOFt294KbW7gYAAG0WE98BAABMQMgCAAAwASELAADABIQsAAAAExCyAAAATEDIAgAAMAEhCwAAwASELAAAABMQsgAAAEzAiu8AALQxZYV2LcvY1ujjah971mNQnAm9wo95VcgqLS3VihUrlJ2drSNHjqioqEhPPPGExo4d61b32LFjWrBggQ4dOqSgoCANHjxYGRkZioyMdKlXXV2tFStWaO3atSooKFB8fLwmT56sUaNGtUibAAA0l+DQIEl2OZ1SaYHdgxbsylptJWS1EK8KWRcuXNDSpUsVGxurhIQE7d+/v856Z86c0YwZM9S+fXulp6errKxMK1asUG5urt566y0FBwcbdRcvXqwPPvhA48ePV9++fbV7924999xzCggI0MiRI01tEwCA5pSU1ltZq62qKK9s9LFlhTXhzJNj4RmvCllRUVH6+OOPFRUVpa+//lq/+93v6qz3/vvvq7y8XG+//bZiY2MlSYmJiXr44Ye1ceNGpaamSpLOnj2rlStX6rbbbtPMmTMlSbfeeqtmzJihN954QyNGjFBgYKBpbQIA0Jx6DIrzeBRqWcY2D0e/4CmvmvgeEhKiqKion6y3c+dO3XDDDUYYkqSkpCR169ZN27dvN8p2796tyspK3XbbbUZZQECAJkyYoLNnz+rw4cOmtgkAAPyXV4Wshjh79qwKCwvVp08ft32JiYmyWq3GttVqVVhYmLp37+5Wr3a/WW3W5dy5c8rJyTG+8vLyfup0AQBAG+VVlwsbwmazSVKdI15RUVG6ePGiHA6HQkJCZLPZ1LlzZwUEBLjVk2pCj1lt1iUzM1NLly5t4JkCAIC2rM2FLLu95nrypRPRa4WEhBh1QkJCZLfbf7KeWW3WJTU1VTfeeKOxnZeXpzlz5tRbHwAAtF1tLmRZLBZJUkVFhds+h8PhUsdisTS4XnO3WZfo6GhFR0fXux8AAPiONjcnq/ayXO0lvkvZbDZ17NjRGFWKiopSQUGBnE6nWz1JRuAxo00AAODf2lzIiomJUWRkpHJyctz2HTlyRAkJCcZ2QkKCysvL3SaYZ2dnG/vNahMAAPi3NheyJGn48OHas2ePTp8+bZTt27dPx48fV0pKilE2ZMgQBQUF6eOPPzbKnE6n1q1bp5iYGPXv39/UNgEAgP/yujlZH374oYqLi43Lb59//rnOnDkjSZo4caLat2+vyZMna8eOHXrooYd0++23q6ysTMuXL1fPnj1dHsHTpUsXpaWlafny5aqsrFRiYqJ27dqlgwcP6plnnnFZNNSMNgEAgP/yupC1cuVK5efnG9ufffaZPvvsM0nS6NGj1b59e8XGxurVV1/VggUL9NZbbxnPGZw+fboxd6rW/fffrw4dOigzM1ObNm1SfHy8nn76ad18880u9cxoEwAA+K8A549ncKPF5OTkKD09XYsXL65zIdTWUPvYhfDLLLp7wU2t3R0AQDPh873ltck5WQAAAN6OkAUAAGACr5uTBQAAzFNWaNeyjG2NPi44NEhJab3VY1CcCb3yTYQsAAD8QHBokCS7nE6ptKD+R8DVz66s1VZCViMQsgAA8ANJab2VtdqqivLKRh9bVlgTzjw51p8RsgAA8AM9BsV5PApVe2ciGoeJ7wAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAKeXQgAABqkrNCuZRnbGn1ccGiQktJ6e/zsxLaKkAUAAP6l4NAgSXY5nfLwQdF2Za22ErIAAAAulZTWW1mrraoor2z0sWWFNeHMk2PbOkIWAAD4l3oMivN4FGpZxjYPR7/aPia+AwAAmICQBQAAYAJCFgAAgAkIWQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmYDFSAABgOn987iEhywfl7j2lfWs8f/wBAADNxZ+fe0jI8kH71lh14WRJk9qo+U8BAEDT+PNzD/lJ6oNqvxkDAqSwzpZGH187NAsAQFP583MPCVk+LKyzRXcvuKm1uwEAgF/i7kIAAAATELIAAABMQMgCAAAwASELAADABEx895DD4dA777yjLVu2qKioSL169dLUqVOVnJzc2l0DAMCntNWFTAlZHpo7d6527NihtLQ0xcfHa+PGjZo1a5bmz5+vAQMGtHb3AABo89r6QqaELA9kZ2fr008/1bRp0zRp0iRJ0i233KIpU6Zo4cKFWrhwYSv3EACAtq+tL2RKyPLAzp07FRgYqNTUVKPMYrFo3LhxWrRokU6fPq3Y2NhW7CEAAG1fW1/IlJDlAavVqvj4eEVERLiUJyYmSpKOHj1aZ8g6d+6cbDabsZ2Xl2duRwEAQKshZHnAZrMpKirKrby27Ny5c3Uel5mZqaVLl5rZNQAA4CUIWR6w2+0KDg52Kw8JCTH21yU1NVU33nijsZ2Xl6c5c+Y0e//CO1lc/gQAwN94w89CQpYHLBaLKioq3ModDoexvy7R0dGKjo42tW+SNOH5G3+6EgAAPswbfhayGKkHoqKiXOZW1aota4kgBQAAvBshywMJCQk6ceKESkpKXMqzs7ON/QAAwL8RsjwwYsQIVVVVKTMz0yhzOBzasGGD+vXrx/INAACAOVme6Nevn1JSUrRo0SKdP39eXbt21aZNm5Sfn6/HHnustbsHAAC8ACHLQ08++aRiY2O1efNmFRcXq2fPnnrhhRc0cODA1u4aAADwAoQsD1ksFv3+97/X73//+9buCgAA8ELMyQIAADABIQsAAMAEhCwAAAATELIAAABMQMgCAAAwASELAADABIQsAAAAE7BOViuy2+2SpLy8vFbuCQAAaKzu3bsrNDS03v2ErFaUn58vSZozZ04r9wQAADTW4sWL1adPn3r3BzidTmcL9geXOH/+vL788kvFxcUpJCSk2drNy8vTnDlz9PTTT6t79+7N1m5bwLn737n763lLnLs/nru/nrfknefOSJYXi4yM1OjRo01rv3v37v8yYfsyzt3/zt1fz1vi3P3x3P31vKW2de5MfAcAADABIQsAAMAEhCwfFBUVpSlTpigqKqq1u9LiOHf/O3d/PW+Jc/fHc/fX85ba5rkz8R0AAMAEjGQBAACYgJAFAABgAkIWAACACQhZAAAAJmAxUh/icDj0zjvvaMuWLSoqKlKvXr00depUJScnt3bXms2RI0e0adMm7d+/X/n5+erYsaOuvvpqTZ06Vd26dTPq/fGPf9SmTZvcjr/yyiv1/vvvt2SXm8X+/fv14IMP1rlv4cKFuvrqq43tQ4cO6c0339Q333yjiIgIpaSkKD09XeHh4S3V3WZV33tZ68MPP1RMTIweeOABHThwwG3/ddddp3nz5pnYw+ZRWlqqFStWKDs7W0eOHFFRUZGeeOIJjR071q3usWPHtGDBAh06dEhBQUEaPHiwMjIyFBkZ6VKvurpaK1as0Nq1a1VQUKD4+HhNnjxZo0aNaqGzapiGnHt1dbU2b96snTt3ymq1qqioSHFxcbrpppt01113yWKxuLQ5bNiwOl/rd7/7nSZPnmzq+TRUQ9/zxnye+dJ7LtX/PkpSUlKSXn75ZUnSqVOndOedd9ZZ79lnn9XIkSObr/ONQMjyIXPnztWOHTuUlpam+Ph4bdy4UbNmzdL8+fM1YMCA1u5es1i2bJkOHTqklJQU9erVSzabTR9//LGmTp2qhQsXqmfPnkbdkJAQzZo1y+X4iIiIlu5ys5o4caISExNdyrp27Wr83Wq1aubMmerevbsyMjJ05swZrVy5UidOnNCLL77Y0t1tFqmpqUpKSnIpczqdeumll3T55ZcrJibGKI+JidH999/vUret3O594cIFLV26VLGxsUpISND+/fvrrHfmzBnNmDFD7du3V3p6usrKyrRixQrl5ubqrbfeUnBwsFF38eLF+uCDDzR+/Hj17dtXu3fv1nPPPaeAgIBW+6FTl4ace3l5uebOnaurr75av/zlL9W5c2cdPnxYS5Ys0T//+U+98sorCggIcDkmKSlJY8aMcSnr3bu3qefSGA19z6WGf5750nsuSU8//bRb2ddff601a9bUOYAwatQoXX/99S5ll/4S2uKc8AmHDx92Dh061Lls2TKjrLy83HnXXXc5//M//7MVe9a8Dh486HQ4HC5l33//vXPkyJHO5557zih7/vnnnaNHj27p7pnmn//8p3Po0KHO7du3/8t6jz76qHPChAnO4uJio2z9+vXOoUOHOr/44guTe9lyvvrqK+fQoUOd7733nlE2Y8YM57333tuKvWoau93uPHfunNPpdDqPHDniHDp0qHPDhg1u9V566SXnqFGjnPn5+UbZP/7xD+fQoUOd69atM8rOnDnjTElJcb788stGWXV1tXP69OnOX/3qV87KykoTz6ZxGnLuDofDefDgQbdjlyxZ4hw6dKjzH//4h0v50KFDXc7dGzX0PW/o55mvvef1+dOf/uQcNmyY8/Tp00bZyZMn3X4GegPmZPmInTt3KjAwUKmpqUaZxWLRuHHjdPjwYZ0+fboVe9d8rrnmGpff1CWpW7duuuqqq5SXl+dWv6qqSiUlJS3VvRZRWlqqyspKt/KSkhJlZWVp9OjRLr/h3nLLLQoLC9P27dtbspum+uSTTxQQEFDnJZDKykqVlpa2Qq+aJiQkpEGjbjt37tQNN9yg2NhYoywpKUndunVzeY93796tyspK3XbbbUZZQECAJkyYoLNnz+rw4cPNewJN0JBzDw4O1jXXXONWPnToUEmq8/+/JNntdtnt9qZ30gQNfc9r/dTnma+953VxOBzauXOnBg4cqC5dutRZp6ysTBUVFU3tYrPgcqGPsFqtio+Pdxs+rr20dPToUZcPZV/idDpVWFioq666yqW8vLxcY8eOVXl5uTp06KCRI0fqP//zP9vs3CSp5pJwWVmZAgMDNWDAAE2bNk19+/aVJOXm5qqqqsrtwanBwcHq3bu3rFZra3S52VVWVmr79u3q37+/4uLiXPYdP35ct9xyiyoqKnTZZZfp1ltv1ZQpUxQU5BsfdWfPnlVhYWGdD8dNTEzU3r17jW2r1aqwsDB1797drV7tfl+YRlBQUCBJ6tSpk9u+TZs2ae3atXI6nerevbvuvfde3XzzzS3dxWbRkM8zf3jP9+7dq+Li4nrfx6VLl2rhwoUKCAhQnz59NHXqVF133XUt3Mv/4xufPJDNZqvzt4LasnPnzrV0l1rM1q1bdfbsWf3mN78xyqKiojRp0iT97Gc/k9Pp1BdffKG1a9fq22+/1fz589vcD92goCANHz5c119/vTp16qRjx45p5cqVysjI0BtvvKGf/exnstlskuqegxQVFaWvvvqqpbttii+//FIXLlxw+5C94oor9Itf/EI9e/ZUeXm5duzYoffee0/Hjx/X7NmzW6m3zeun3uOLFy/K4XAoJCRENptNnTt3dpun5GufCcuXL1dERIQGDRrkUt6/f3+lpKQoLi5ONptNH330kf7whz+opKREEyZMaJ3Oeqihn2f+8J5v3bpVISEhGj58uEt5u3btlJycrGHDhik6OlonT57UqlWrNGvWLM2dO1eDBw9ulf62rZ80qJfdbne7jCbVDMnW7vdFeXl5+stf/qKrr77aZYLrjyc/jxw5Ut26ddPixYu1c+dOr5oA2hDXXHONy6WSIUOGaMSIEbrvvvu0aNEizZs3z3iP6/s+cDgcLdZfM33yyScKCgpSSkqKS/njjz/usn3LLbfoxRdf1Pr163XHHXe07uTXZvJT73FtnZCQEL/4TPif//kfZWVl6eGHH1aHDh1c9r3xxhsu2//+7/+uqVOnatGiRRo7dqzb3YjerKGfZ77+npeUlOjvf/+7Bg0a5PZ+x8bG6qWXXnIpu+WWW3Tvvffq9ddfb7WQxZwsH2GxWOq8Bl37g7UtfaA0lM1m02OPPaaIiAj94Q9/UGBg4L+sf8cdd6hdu3bKyspqoR6aKz4+XkOGDNH+/ftVVVVlvMf1fR/UftC2ZaWlpdq9e7euu+66Oi8P/VjtLd2+8p7/1Ht8aR1f/0z49NNP9fbbb2vcuHENGpkKDg7Wr371KxUXFysnJ8f8Dpqsrs8zX3/Pd+7cKYfD0eBLvh07dtTYsWP1/fff68yZMyb3rm6ELB8RFRVlXEq4VG1ZdHR0S3fJVMXFxZo1a5aKi4s1b968Bp2fxWJRx44ddfHixRboYcvo0qWLKioqVF5eblwSqO/7wBe+B3bv3q3y8vIGf8jWTowtKioys1st5qfe444dOxphOioqSgUFBXI6nW71pLb9mfCPf/xDf/zjHzV48GA98sgjDT6u9vvBFz4D6vo88+X3XKq5VNi+fXvdcMMNDT6mtT8DCFk+IiEhQSdOnHC78yQ7O9vY7yvsdrsef/xxHT9+XH/605/cJrzXp7S0VBcuXHBbsLEtO3nypEJCQhQWFqYePXooMDDQ7bf0iooKWa1Wn/ge2Lp1q8LCwnTjjTc2qP7JkyclyWfe85iYGEVGRtY5EnPkyBGX9zghIUHl5eVud9219c+E7OxsPf300+rTp49mz57dqPmVvvT9UNfnma++51LNfLL9+/dr2LBhjRqVr33PGzLybQZClo8YMWKEqqqqlJmZaZQ5HA5t2LBB/fr185k7C6uqqvTf//3fOnz4sGbPnq3+/fu71bHb7XXewv/uu+/K6XS6TZBtC86fP+9WdvToUX3++edKTk5Wu3bt1L59eyUlJWnLli0u579582aVlZW5zWFqa86fP6+srCwNGzZMoaGhLvtKSkrc5pw5nU699957kuRTTz0YPny49uzZ47Isy759+3T8+HGX93jIkCEKCgrSxx9/bJQ5nU6tW7dOMTExdf7f8XbHjh3TY489pssvv1wvvPBCvZe/6vr/UlpaqjVr1qhTp0513p3prRrzeeaL73mtbdu2qbq6ut5R7Lre87Nnz2rDhg3q1atXq43iMfHdR/Tr108pKSlatGiRzp8/r65du2rTpk3Kz8/XY4891trdazavv/66Pv/8c91www0qKirSli1bXPaPHj1aBQUF+u1vf6tRo0bpyiuvlFRzR9revXs1aNAgDRkypDW63iTPPvusLBaL+vfvr86dO+vYsWNav369QkNDXSbFTp06VdOnT9eMGTOUmppqrPienJzcJsPlpT799FNVVVXV+SH7zTffaPbs2Ro1apS6du0qu92uXbt26dChQxo/fnyb+aH64Ycfqri42Li88/nnnxtzSSZOnKj27dtr8uTJ2rFjhx566CHdfvvtKisr0/Lly9WzZ0+XR5J06dJFaWlpWr58uSorK5WYmKhdu3bp4MGDeuaZZ35yDmNL+6lzb9eunR599FEVFRXprrvu0t///neX46+44gojRHz00UfavXu3sZ6YzWbThg0bdPr0aT311FN1Tg5vLT913kVFRQ3+PPO197x9+/ZG3a1btyo6Olq/+MUv6mxr4cKF+uGHH3TttdcqOjpa+fn5yszMVHl5uR544AHzT6YeAc4fX7xFm2W3241nFxYXF6tnz56tvkZIc6vv+XS1PvvsMxUVFWn+/Pk6fPiwbDabqqur1bVrV918882666672tzyDZK0Zs0abd26VT/88INKSkoUGRmpa6+9VlOmTFF8fLxL3YMHDxrPLgwPD1dKSoruv//+Nr0+mCRNmzZNJ0+e1EcffeT2w+LkyZN66623dOTIERUUFKhdu3bq3r27br31VqWmprrd0u6t7rjjDuXn59e5b+XKlca6YN99953bswunT5+uyy67zOWY6upqLVu2TJmZmbLZbIqPj9c999yj0aNHm34ujfVT5y6p3mfTSdKYMWP05JNPSqqZs7V8+XLl5ubq4sWLCg0NVWJiou6++25de+21zd/5Jvip827fvn2jPs986T2v/X7//vvvNXnyZN1xxx3KyMios/4nn3yidevWKS8vT0VFRWrfvr0GDBige++9t1V/ySJkAQAAmIA5WQAAACYgZAEAAJiAkAUAAGACQhYAAIAJCFkAAAAmIGQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAfA7Gzdu1LBhw/T111//ZN0HHnjgJ599durUKQ0bNsz42rFjx0+2+9e//lXDhg1raJc9YrVaG90vAM2n7T3EDQDqsXHjRs2dO9fYDgkJUZcuXZScnKz/+I//cHu2X3MbP368fv7znysxMdHU12moyy+/XE8//bTy8vL0P//zP63dHcDvELIA+Jzf/va3iouLk8Ph0MGDB7Vu3Trt3btX7777rkJDQxvV1ksvvdTguv379/eqB/F26NBBo0eP1v79+wlZQCsgZAHwOYMGDVLfvn0lSbfeeqs6duyoVatWaffu3Ro1alSj2goODjajiwD8ACELgM+79tprtWrVKp06dcqlvKKiQgsWLNDmzZtlt9uVnJys//qv/1JkZKRRp3Y+1quvvurx6x88eFALFixQbm6uoqOjNWnSpHrrbtmyRatWrdKxY8dksViUnJysadOmKTY21qXeRx99pJUrV8pms6lnz56aPn263nnnnSb3FUDzYeI7AJ/3ww8/SJI6duzoUv7KK6/o6NGjmjJlin75y19qz549+stf/tKsr/3tt9/qkUceUWFhoaZMmaKxY8dqyZIl2rVrl1vd9957T88//7zi4+OVkZGhtLQ07du3TzNmzFBRUZFRb+3atXrllVcUExOjadOmacCAAXrqqad09uzZZu07gKZhJAuAzykpKdH58+flcDh06NAhvfvuu7JYLLrhhhtc6nXq1EkvvfSSAgICJElOp1MffvihiouL1b59+2bpy1//+lc5nU4tWLDAGI0aPny47rvvPpd6+fn5WrJkiaZOnapf//rXRvmwYcP029/+VmvXrtWvf/1rVVRU6J133lHfvn31yiuvKCio5mO8V69emjt3rmJiYpql3wCajpEsAD5n5syZSk1N1e23367Zs2crLCxMzz//vFsAGT9+vBGwJGnAgAGqqqrS6dOnm6UfVVVV+vLLLzV06FCXy31XXXWVkpOTXep+9tlnqq6uVkpKis6fP298XXbZZYqPj9f+/fslSV9//bUuXLig8ePHGwFLkm6++WZ16NChWfoNoHkwkgXA58ycOVPdunVTYGCgOnfurCuvvFLt2rn/TvnjeU61IeXSS3NNcf78edntdsXHx7vtu/LKK7V3715j+8SJE3I6nbr77rvrbKs2UNUGwK5du7rtv/zyy5ul3wCaByELgM9JTEw07i78V+oKXlLNZcOWVl1drYCAAL344ot19issLKzF+wSgaQhZAGCSyMhIWSwWnThxwm3f999/77LdtWtXOZ1OxcXFqVu3bvW2WTv69sMPP+jf/u3fjPLKykrl5+erV69ezdR7AE3FnCwAMElgYKCuu+467dq1y2We17Fjx/SPf/zDpe6wYcMUGBioJUuWuI2kOZ1OXbhwQZLUt29fderUSevXr1dlZaVRZ+vWrc12mRNA82AkCwBM9Jvf/EZffPGFMjIyNGHCBFVVVemjjz7SVVddpW+//dao17VrV/32t7/VokWLlJ+fr6FDhyo8PFwnT57Url27NH78eE2aNEnBwcGaMmWK5s+fr4ceekgpKSnKz8/Xpk2b1LVrV5eJ/ABaFyELAEzUq1cvzZs3T6+//rr++te/KiYmRvfdd59sNptLyJKkyZMnq1u3blq9erWWLl0qSYqJiVFycrKGDBli1Js4caIkaeXKlVq4cKF69eqlP/7xj3r11VcVEhLSYucG4F8LcLbGDE8A8CGnTp3SnXfeqQcffFAjR45UREREiz+Op7q6WqmpqRo2bJhmzZolqWYJiaKiIh06dEhPPfWUnnvuOY0YMaJF+wX4M+ZkAUAzmT9/vlJTU/X555+b+jp2u91t3tbmzZt18eJFDRw40CjLzc1VamqqnnrqKVP7A6BujGQBQBPZ7XYdOnTI2O7Vq5c6d+5s2uvt379fCxYs0IgRI9SxY0d988032rBhg6688kq9/fbbxihaaWmpsrOzW6xfAFwRsgCgjTl16pTmz5+vr7/+WhcvXlTHjh11/fXX6/777ydEAV6EkAUAAGAC5mQBAACYgJAFAABgAkIWAACACQhZAAAAJiBkAQAAmICQBQAAYAJCFgAAgAkIWQAAACb4/wDe7bwVqp/E0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOz9d7QkZ33nj7+fp0KHm9NkTdRoBiWEkMisiAIEBuy17F3gYH5nWbMO4ABnD7ZZL8sah8X2MV+vvYvXx8aAsXdBNjbBBtsEgwAhFFCWRmhGM5p8c9+OVfU8vz+qq291dYXneaqqu+9Mv87pM3fu7QrdXeHV788TCOecY8SIESNGjBgxYsSWhg56B0aMGDFixIgRI0akZyR1I0aMGDFixIgRlwAjqRsxYsSIESNGjLgEGEndiBEjRowYMWLEJcBI6kaMGDFixIgRIy4BRlI3YsSIESNGjBhxCTCSuhEjRowYMWLEiEuAkdSNGDFixIgRI0ZcAoykbsSIESNGjBgx4hJgJHUjRowYMWLEiBGXACOpGzFixIgRI0aMuAQYSd2IESNGjBgxYsQlgD7oHRgxYsTlCeccrVYLtVoNjUYDrVYLrVYLzWaz83PY7yzLguM4nQdjrOvf4O8AgBACQggopZ3/ez9TSjt/1zQNhmFA13UYhtF56LoO0zQ7v/f+XywWUSwWUSqVuv7V9dGldcSIEf1ndOUZMWKEEpZloVKpYH19vfOv/+dqtYparRb7cBxn0C8jFwzD6BK+UqmEsbExjI+Pdx4TExNd//c/pqamUCwWB/0yRowYscUgnHM+6J0YMWLE4LEsCysrK1hZWcHy8jKWl5c7P3u/98tbvV7PbNumaaKlOYBOAZ2A6LTzMwza/j9xf6cRgLoPQgEQ7/8RPwMA54B3pePt/4f9zDjgcHCHAw6D1aJoLZkAYyCcgTDm/swYCHNAbAfEcTCpa2g0GplKaqFQwPT0dNdjamqq53ezs7OYm5tDoVDIbNsjRozYmoykbsSISxzHcbCysoKLFy92HhcuXMDFixexuLjYkbZKpSK9bkIIbF0HM00w0+j+19DBDR1M18F1Hcww3J8NHc4YwYErl4GCBpgUxJOvIWWtWcTyAwvxT+LcFT7HAXXstvDZII4DYtugtgViWaDtB7Ht9r+bv1swDVQqFdi2Lb2PExMTmJ+fx9zcHObn57t+9v9rGIbiuzBixIhhZyR1I0Zscer1Os6dO4ezZ8/izJkzOHfuXJfALS4uCidInBA4hQJYsQCnWOj9uWAGxM1wEzGRdRcdXHXl2TQvNTPWmkUsPjIvtQyxCYrLm6+VU6A1ncPlk3NX+Fot0Faz86/W9P7f/l3T/bfs2Gi1WmKvgRDMz89j+/bt2LFjR+i/pVIp+9c0YsSIvjCSuhEjhhzbtnHhwgWcPXu2I27ez2fPnsXKykriOiilaBVMOKUSnHIJdqno/lwqwikW4RRNsEIRzBSXNBG4wVCYr2NyrJF6XRplmDSbws9XEbckgmInQm7y19kAB7EtaI0GaKMBrdmAVm+ANhvQGu5jb9HE0tISLMtKXN3U1BS2b9+OnTt3Yvfu3dizZw92796N3bt3Y35+vtPBZMSIEcPHSOpGjBgCOOdYWVnBqVOnuh4nT57EmTNnEstxzNBhj43BHivDHivDKZVgl9vSVirBKRaADG/G3GAwZuNFjVKeiczF4YleHgIXhYrYRZG78Plh3E386nVo9Vr74f6s12uYYQwbGxuxqzBNs0f09uzZgz179mDbtm0gGX4hGDFihDwjqRsxoo/Yto3Tp0/j+PHjOHHiRJfAVavVyOVM00TVNGGPl9vitilw9lgZ3DQz3U8RaYuiHzIHABv1AnDfZGDjQGuK5b5tIFu5C9I32QtsglhWR/b0WhVarQq9WsWVBQNnz56NLeOXSiXs27cP+/btw/79+zs/79q1C5qm5fxCRowYAYykbsSIXGCM4dy5c3jqqadw4sSJzr9PP/10ZAmMEAKrWII9Pg57fByt6THYE+OwJsbhlEqZlkWBdOIWRj9kLlTkQnemP3KXp9iF4ckeB2BPZjscDOEE+npMmssYtEYdenUDWrUKvVaFXt3AVcUCTp8+HSl8pmliz549HdE7ePAgDh06hF27do1KuSNGZMxI6kaMSEmtVsOTTz6JY8eO4dixYx2BazTCBYdpGuzxCViTE2htK8NZKGHfVXXQWRPEUL/JXayN4fwTvT00uclgzOQrW3kKnbDIRZGz4PVV7DigBwJdZgDrR+R7y4pAOIFW6T0mSfCuwRj0ahX6RqXzMDYqGGvUIztxlEolHDx4EFdeeSWuvPJKHDp0CAcPHkS5XM7hlYwYcXkwkroRIyRYXV3FE0880RG4J554AqdPn0bYacQphTU9jtb0OKyZCVjTE2A7Sjh8dC2XITxajoYLG+PYqPVvvLI8Za5SK4LcP5HdCnOUO+IQFJdyFrsQoYt8qg6sHc1e9KIkL/y5ADh32+xVNkVPX1/DeIzs7d69G4cOHcLhw4dx1VVX4ejRo5iZmcnwVYwYcekykroRIyJYX1/Ho48+ikcffRSPPfYYjh07hosXL4Y+1y4X0ZqbRGt2EtbsJFozE8A2E8+64kIu+9ZyNCzXwxMN26G5i11eMpe5yAXZymInIXU9iw6B5HUt5zDo1Q0Y6+vQK2sw1tewhzMsLi6GPn/79u04cuQIjh49iqNHj+LIkSOYmMjxOBkxYosykroRIwC0Wi08+eSTePTRR/HII4/g0UcfxTPPPNPzPEIIWhPltsBNuf/OTYIVC9BLNp61+1z2+xYjcGHkLXV5CF3uMhckTO44AUnpe4QD5mqC2PGQ8qUIKaSuZ1VDJnkeWqMJvbIOY30NxvoqjmoUp06dCk3Cd+/e3RG8q6++GkeOHBnNqjHismckdSMuS86fP48HHngAjzzyCB555BE8+eSToR0YrMkxNBem0ZqfQmtuCq3ZSXDDnTI5D4mTFbggWQqdYTg4NL/U+T/jBIynT6IcRrHScAe47bvMAeAa0Jp27Y1wt01clgiJXRRxwpeh1PWsOgfJSyt4nfVYFsy1NRirKzDXVnGIcJw5c6bnebqu46qrrsK1117beczP92eYmxEjhoWR1I245GGM4cSJE3jggQc6jwsXesuiTsFwBW5hBs35KbQWpsEK7lAhRtnC0V3nM92vtAIXREboTNPBwbml5CciO5nzYzENFyrjXb+r103oD41luh2gW+LCGDqxC4MDhOUndT2bG2LJAwDSasFcW4WxugKjvow9GxaWl5d7nrdjx46O4F133XU4cOAAdF3PZB9GjBhGRlI34pKj1Wrh8ccfxwMPPIAHH3wQDz74YM+8ppqmoTYzjubCTFvkpmFPlLuGDcla5LKWuCBhUicjb2FkLXRhMhdGWsFLErkgW0Ls2jCfkxAGmKuZb6KHrCUvS8Fz18dROlOHvrEEaBfxHNvEU089Bca6j4FyuYzrr78ez3nOc3DDDTfg8OHDI8kbcUkxkroRWx7btvHEE0/g3nvvxT333IMHH3ywp2cd0zU0F6bR3D7rPhamO2VUj60mcX4MzcFcqZbpOrMUOlGZC0NU8GRFLoys5S4PsWMxDtIPyeM6sH6IYf4+sdfFdGDpxugx9TJN8AAU2p1ViG1B31iBtrEMyhYxv1rrGeB7JHkjLjVGUjdiy8E5x/HjxzsS94Mf/KBneiOnYKK5fQaNtsS15iZ7psnaihI3U6zjNdsf6frdsj2GB9Z2Z7aNQaVzIgQFLwuRC5Kl2PVb6kL3IQPRIyz6NkE4oIlPyRsJ04Hl57Bs2uFhU+46cA6ttga9sgjqXMC25WrPdaNcLuO6667DjTfeiJtuugmHDh0aDZA8YksxkroRW4ILFy7ge9/7Hu69917ce++9Pe1nHFNHc8ccGjvn0dg5B2t6vGcGBqNsYW56A+dOZzPmFTEYxqfq7s8ACka2bZDCBC7ImlPCfatXZLbNYUnnkmhZOlqnsm9/53GpiV0XHCisiD01TuZCn5+R4Hk4pjuLRmW/2vKhcufRljxjfRH6+iLmWpUeyZudncVNN92Em2++GTfddBPm5ubUdmTEiD4xkroRQ4llWXjggQdw11134a677sLx48e7/s40iub2WVfids2hNTsFUAJQDs3cTG6YQ8BbGZV2fBIX+Ryoy52IxPkZVqHLS+Y4ANvunkPUtjQ4Z0uZbwsYbrFLJXVBIiRPVuh6ls9Q8JzA1Mayohcrd52VtiVvbRHG+kVMNdZQr3ef71deeSVuvvlm3HzzzbjuuutGQ6iMGDpGUjdiaDh//jy++93v4q677sI999zTdUGllKI2N4nGnnm09s6itX0a0MJlLSuRE5G40OWQLHazpRpu3fao4p5lW3Id9nQuTOaC5CV3l43YebQFL63QhZGV5AUFz0NE9ITkzoM50CvLMNYu4DnjBI8//njXnwuFAm644Qa88IUvxIte9CLs2LFDbL0jRuTISOpGDAzHcfDggw/izjvvxHe/+108/fTT3X8vmWjsnUdj7wIae+bAi+FX80zTOJNhbMIdWJcojRDbXg+6xS6txPkZRqEblMwFyUvuqBVsn6W4HgconwmsiwCWwluXi9TBbYNXurD5AvPYThaCFyV3fqJET0ruvGWsJoy1izBWz2MPr/XMfnHw4EG8+MUvxote9CIcPXoUmiZ37I4YkQUjqRvRVxqNBu6++25861vfwre//W2sra11/kYpRX3bpCtxe+dhzU/2tIvzyCyN80kckE7k/MyW63jjrgcyWZeffgldUbOwp7yKJysLievJWuhUZM5PFmJHOKA1Nt8bTlxByIJQsYvdmWjpy1q4gkKX9/aA9IInInceQclTkTt3RRxavQJj5RxeOK3hoYce6ho+ZXp6upPg3XzzzSiX+9MLfsSIkdSNyJ2VlRV8+9vfxre+9S3cfffdXcONsIKB+r4FNPZvc9O4ghG5njxELiuJKxo2Dk5vjgc3oTfxrLGzmazbQ1boynoLzxoPn/GCgaDBot9rESp2Efctdu8P5wT1ltp608pcEFG5CwpcFFmJnbTURe0PBVpT6ffHT5LUBclcKvsoeMCm5CnLXRtiNWGsXoC5chZzzbWuDheGYeDGG2/ELbfcgpe85CWYnp5W3s6IEUmMpG5ELpw/fx5f//rX8c1vfhMPPvhg19yN9kQJ9f3b0DiwDc2dMz1DjfjJQuTySOOCEuenn0IXJ24AoAUmM3U4RY1J3vlCCBO6KEREL2uh8wgTO1GJC2PYxA7obv/GKUEzReduWanzM0yCJyt3mxsFWpMpPxfGoFeWYK6cxZW0gdOnT3f+RCnFs5/9bLzsZS/DS1/60tE0ZiMyZyR1IzLj4sWL+PrXv46vfe1reOihh7r+1pqfRP3ANjT2b4M1NxFZVgWyF7m80rgo8pA6BwQ1J7ynXVDcItcxAKELwy95ecmcH9vSwM6UlEUuyLCJXVKnBhnRSyN1frIUvIHIHQBqu591czbFZ8Q5aGMD+voZPFd3B0n3IITg2muvxS233IJbbrkF27dvV9/OiBFtRlI3IhWLi4v4xje+ga997WtdiRwhBI0d06gd2oHG/m1wJuLLYMOYyIlKXJA0UlemTRw0u+elrbASHm3sUlqfRxZCl1bm/GiEY8xoocU0nF+byGSdQWybwloudv5PHAJjPZuGcVtN7PzESV5WUudHRvAIBwqrMdsnQLOdpGmt6KcFUZU7GujEnkby7BKg1asoXDyDFxQ4Hn744a6/Hz16FK961avwile8YpTgjVBmJHUjpFlbW8PXvvY1fPWrX8UPfvCDrtJqc8c06od2oHZwB9h4MWYtLmlkLihxQHqRK5sW9k/1TgwuiqzQhUmcn0tZ6PxkKXdBmfMzbGJHGDB2ur9SF8QveXlInZ+g4CVKXBQ+ufOTJHpZyZ2fxpz452f7vtvSRh2Fi2fw0jLBAw880PWF+MYbb8SrXvUq3HLLLRgfz2cA7xGXJiOpGyFEq9XCd77zHXzlK1/Bd77zHdj25lWuuX0K9UM7UT+0Hc54csP0SJHjBBCoJNKyjR0La7HPcRhFTaDBflqJCxIndUkCF+RSE7owmQuSRu7iZM7PsIndINK6OKiVyWri4YC5kcH+RsidnzDRy0PuPJIkzw65RNJmA4WLZ/Ai0+lqumKaJl7wghfgVa96FV74wheOBjsekchI6kZEwjnHQw89hK985Sv46le/ikql0vlba34StcM7UT+0I7G0CrRFrqkJSVsYQZFLugV6B3WY3GUtch5BoZOVOD+Xo9D5EZU7UZELcimKXWYDBnMxeUm1CV8zSsIAcz3lvgvInYdf8vKUOyBa8MLErrPuehXF88/gOlbDiRMnOr8fGxvDLbfcgte+9rV49rOfDRLTLnnE5ctI6kb0cObMGXz5y1/GV77yla6eW/ZYAfXDu1C9ahfsufAbrtPQQNc2ayxc5+AFNZOjYzZ2zIuLXBjewV3UbSyUNmKfm5ZthQreMH1/6vUMg9ANSuaCRMmdqsz5yUrsLpUybIecpY7H9ItJLXgScuehtdTkTvY9CgpenNgBADiHvrGO4vlT2F9fxcWLFzt/2r17N1772tfita997aiDxYguRlI3AgDQbDbxr//6r/jCF76A++67r/N7pmuoH9yO2pHdaO6adedXRa+8+Rm0yHnotHsfCpqNmWItxRq72VFcx4/NfB8AwDhFK+5uJchI6MLx5C4LmfMzTGI3NGldjlIndYpwoLDWR8EjgF1yn6/XxLer+l55kpcodwDAOYzVJRTPncT82kXUau51jBCCm2++Gbfddhte8pKXwDTT924fsbUZSd1lzvHjx/H5z38eX/nKV7C+vg7AvVDU98yidtVu1A9sg+0UIgXOT1Yyl6XI+clC6nYXV/GmmXtD/5Z6MN+R0EVStw08c3YWnAOoZzsESiqx8x1u1CYonU93OSXcFcQwuCZ2ZqQWu2GRus5Cg5M7QEzw0rxfnADV3RL759goXjiDWwoO7r///s6vJycn8epXvxq33XYbDh8+rL5DI7Y0I6m7DKnX6/j617+Oz3/+812Ncu3xIjauvAK1HQfglMWmWRqGVC5O5PyoSF2cxPlJK3RAeqnzhK5MW9hXWExeIMB5awqfe+Z65e0D2csc0Ba6czMd2+GMAI2M5uxqIyR2Ip14bILyuXSXVJWpeP3CN6xpXaog2/eSlAQvpdj5iZO8NO9Zc9rdnsw8wFptA8VzJ3GgutxVnj169Cje/OY34xWveAWKxeyS7RHDz0jqLiOOHz+Ov/3bv8U//dM/oVqtAgA0TUNl+zZU9+9DY/u22EGB/ajKXL9Fzo+I1IlKnJ9+Cd02Yx1vHj8W+rdVBny7fkB5+0ViYb+xCCfmEzlhLeB/PvWyyL/nks6da4+1EWI6Wctdl9gpdugBBid2HoQDxHF/Vj40h03qula0+aO04GUodx5hkqf63nli5yEseJzDXL6AfztXxDe/+U1YltuFeXx8HLfddhve9KY34YorrlDbqRFbipHUXeI4joM777wTd9xxR1dbOXusjOq+fdjYvxdM4ptcFjLXT5ELEiZ2KiLnJ+uya5y8hSnMMgO+W98HFvrXZDyhEyEofZ7oZSl0STLnJyuxIzZB8aLmjqpjpLskDpPUBRE+VDOWOsKA4ipDbSHbhNUTvGGQO6Bb8LJI7fyICh5pNVE6+zSuqi3j7NnN3vg33XQT3vzmN+NFL3oRdD3jOd1GDA0jqbtEWVtbwxe/+EV87nOfw7lz7tyglFJs7NiO6oEDaGybF07lgMHJXBYi52FoDuaKbkKZVuQ80gidRhgmaAP79V4ZEr319VPoojhhzeMPj78cgJvWlXT1gc6CpVYRVMXOE7me9V3iYhck9BDOQepKy5s7xCnJVvBU07uc5M5Dr/HMUjs/QoLHOcyl83j9OMF3vvOdzuDGCwsLeOMb34g3vvGNmJlJMVHwiKFkJHWXGE8++STuuOMO/NM//RNaLVcWmGFi48A+VA/shz1WFl7XoEqsWYqcn70Ty3jn9n/NdJ2iUqcRBg3dp1qZNnEwROhEGbTQnbDm8T/bMhd2EZERvKpl4sz5afc/CjYjKnZRItezvi0udjJSF6RzSGcodkGp8zMUgicjd5JiBw4Ul7lSKTxO7DxEBI/WqyifPoHd6xewuroKwB3Y+NZbb8Xtt9+OAwfUm26MGC5GUncJwDnHd7/7XfzVX/1VV28oa2IKlcMHUNuzB1wXb9AyiFQuD5HbNbaGf7ftrs7/TeKgTBVnBg8hTujCJM7PpSJ0IhePJLnrCF2aaKpNlNyJylzXuoZA7PqV1uVJnNAFSS14HDCq0e934nvSB7kD5No6ioidR5LgEdtx555FFY8++mjn989//vPxEz/xE7jppptGgxpvcUZSt4WxLAv//M//jL/+67/G8ePHAbgdHzYWdqBy+ABac7PgNP8SqzZuY/tctMzVLR0btd52e6ZpY24su3HjAGDP+Cp+YuF7m/tGNl+PBp6Z1AWFLknigqSRurRCV6ZN7NXVZ9SQETo/YXKXpdB5eGKnInI960opdls1rXM3DGi+j8t9LxT2Q0LqujYvI3gJMhdF6HvUJ7HzEHlPZcTOI0zwOpdDzqGvL+PNE8A3v/nNTmn2wIED+Mmf/Em86lWvGo15t0UZSd0WpFqt4vOf/zw+85nPdLqxM01H7Yr9qBw5CKdckroRCMucQ0DbKQgrMxjTjc6fkr7ceUeZaTqYDRE5StQPwziR85Ol1Flck5I4P5ej0AVp2TqWltp3nQyFzoM3NJROp28MftmndQGx6/xaQvBUpa6zrSS5UxQ6j7BLD3GQn9yFiJ2fqPdVRew8/IIXvDxq9Q2UnnkKc8tnUK/XAQCzs7P4sR/7Mfzoj/4oJibU5mIeMRhGUreFWFxcxGc/+1n8/d//PTY23CmvHLOA6r5DqFy1H9w00smcT9qiCMqcKIWCjZlyPfY5MmInKnKdv6cUOsYpqtyEBo4iUe8IkEXZVXXokmEROsCVupatobIq3sZTBM58J0CLXvZil5fU9TwtQfLSil1nO0HBSyl0UQQHgbbGLh25i7pUEquF0tkTOFC50AkLxsbG8KM/+qO4/fbbR50qtggjqdsCnD9/Hn/5l3+JL37xi53xh+zyODYOXImNQ3sATcsj7OhCReZERC5InNjJipwfWanzJC5sPapSN8h2dMMmdN3/Ty93XTLXtfLhELstW4YVlLquRUIELyup62yDEtTmaS5CF6Q53Xu+UStmuxmKnUfw/Uwjdt76IiWcMRQunsYNjaVOsx7TNPEjP/Ij+Hf/7t+N5podckZSN8ScPXsWn/rUp/AP//APsG23G1prchYbhw6jtm87QEjihZ44BLR9LeUUYLrcx90vmfPjF7s0IudHROqiRM6/jkGldJeC0AVlrvfvanIXKXSdFQ9e7KhNMHaGy7W/aqM1eWf7KvQrrQtdtC14WUudB7HRLpNmPP5dmzChCxIpeDnIHbApY2nFjusJCSvnMJfO4gX2Gh577DEAbpvt17zmNXjb296GPXv2pNr+iHwYSd0Qcvr0aXzyk5/El7/8ZTiOeyFsTc+juu8oGjvm4ZR5zwXeL29BtorMeeydWMlE5DrLRwhdksQF15FW6PbrLaWWcJeD0G0+T1zsEmWua8X5ip0nbUlYZfkbsfcdhzCgfD56WJDGTPS6+53Wha2jUMlW6oh/uBXfS89S8ESkLkiX5OUkdt666/PqYscDp0Ok4HEOY+UiXqHVOgPYe3L39re/Hbt2pZuvekS2jKRuiDh79iw+/vGP4ytf+cqmzM1sQ3XfETS2z8Epb35jj5M4j60mc3vGV/HG+ftRps3UIufHL3UyIhdcR5qya1qhM4mDWW1DatkGN3DKmuv5/Rht4qh5NmSJbvotdN3LRMudlMx1rTS92HECgCBc4ATeKE4le0v6oE601EVvz5W9S17quv7g/pNW7lSELkhH8ETlTkHsPJlXmYYtKHZAfHqnry3hdWYTd93lDhWlaRpuu+02vP3tbx+VZYeEkdQNAUtLS/jUpz6Fv/u7v+uUWZuz21HddwTNbbNwikgUOD9bSeb2jK/i9fMPdP6vgYEShrEMx5NLS95lV0/cgqiInEeU0CXhCd8ghW5z2V6xUxa6zkoVxI4Dmu/jIw5gqkwq760ujdjZQPmC2vAgLX9PTtndTyt2GUtdpNB1PWnzRxXBy0Lq/FBbovwuI3c+sQPk5S5M7Dp/ixA8fW0Jt2o1fP/73wcAGIaBN7zhDXjb296GhYUFuR0YkSkjqRsglUoFf/VXf4XPfvazaDRcoWrNLGDjwNWwZmfBNA4uMS5UP2QuD5ELYhA7tdQ1mIklZxxF0sKcriZGHlmldFHyFsUgpA5wh2u50JqEA4qKXcQPltTKK2mEzk/T1lBZHstkXQDExC4gckFSiR1RK8MCammdR4/Y9TwhbuEtKHVdC7j/iMpd1kIHAODA5EkbXAPWDgicGynErrMKQcGLEzsgWu6M1UW8gmx0yrKmaeLf/tt/i7e97W2joVAGxEjqBkCj0cBnP/tZfPrTn+4MTdKanMHGldfAml2QljlAXuj6LXNJIudHVeo8kfOTVupUhW6a1jGrWfh6bb/SdgctdH4cX+FYVPKyErqGpWPj3Lh7UzYznHUkTOwSRM7PVkzrQAiaU3ID5fp/3tJS11lw88c4wctU6toyF7dPq4cizpcU5dieVcUIXpLUdZ4XJXcrF3ELX8cDD7jX+ImJCbztbW/Dj/3Yj6FQKIitfEQmjKSujzDG8OUvfxl/+qd/2hkHyBqbRPXKq9Gc3wGm47KWOQ8ZqQsTOY9+pXTTtI6rjO4LqUYIzjtNJakbJqELw5O8MMHLXOaATbmgyE7sPKmTELkgl2RaF7kghkrslKWuayXuP2Fyl5nUJQldYH8ykbsYsQOi5U5U7DrPDwoe5zCXzuE51fOdoVC2bduG//Af/gNuvfVWaFq62V1GiDGSuj5x77334o/+6I9w7NgxAIBTLGPj0NVo7NgDEJJ7qbWfMrd3YgWvm3tQaVkgWeriRM5PXildUOK0kOk0LlWhC+Iv0WYudGGHd1ZiZxEUzhkwqulWk0bstkRa54cBhXUGEAK7qCaGQyV1nZVt/ticpIMRupB96hG8DMWus8qAZ8mKHRAud8VzJ3Fo+VQnvDh48CB+9md/Fs973vPkNzBCipHU5czTTz+N//W//he+/e1vAwCYrqO6/whqVxwCNO2SkTmVRC6KMKkTFTk/aaTOL3QiEudHVegAdakbhND5l1+33bl9K1YRx1bUG0rHCp1HGrGzCMwLm3cuwkgqsRtUGXYgaZ0ndX5kBC8jqaOt9igAEvNaC0MAphOAABs7UyZLaaQusE8dwctB7IBuuVMROyBE7hwHpbM/xM5zT3eaGb3oRS/Cz/3cz+GKK65Q28iIREZSlxOVSgV/9md/hs997nNwHAeapqGycx82Dh4FNwu5t5vrh8ylTeSi8KROReQ80gjdBG3gaqOKMnE/oCSJC9LvlG5YhM5P1S7g8eVtwusJLbfGISt2AZnzM1CxS1OGHWRaF7HeWMHLSuqa3ePAZSl3fqHh/vNeVvKyErogBFg9qOcidoArd6pS11mHT+647k4/9nPbyvibv/kbOI4DXddx++234+1vfzvGxjLsADUCwEjqMsdrN/e///f/xsrKCgCgOb8DlcPXwhlzewMNUzq3ML2Bl2x/Snxn4LalAoAXTx6TWk4EhxM0FMaRCyIrdRO0gcPt5xuEYIKq7cPlUnb1lg0TOj8icieUzoUhInYxMudnkGLX97QuL6kL2U6X5OUhdV3bSyd4yT1ABSUvL6HzQ4CNXRr0mthzZcQOcAe6dkpqu+bBSfc6tGoFr2eVzhh3MzMz+I//8T/ida973ai9XYaMpC5DHn/8cfzBH/wBHn74YQDu/KyVI89Ga869qfVL5hxLA6vHX6Emtm3gNXsfi51rNUjFLuJMbQoAsKu8lqnUOZygxgpS+xOFiND5JS6IqtRdTmVXEaHziCvJKgudR5TYCcqcx1ZM64amBCuCJ3gZiF2k1HW2JS93am3JIiQvZ6nb2K21t9/eNEey3CmKHZBO7hwvsfPd98zFc7h+6RmcOnUKAHD06FG8973vxZEjR9Q3NKLDSOoyYH19Hf/n//wf/P3f/z045+Cajo2DR912c9RtdJu50LVHtgcArnNwiVLU+EIVt+1/RPj5fpnzs6e8ihdOPim8niCeyAVJK3ZRUhcnch5bKaXbCkLnwThF3TG6UrvUQufhFztJmetajUPEko8IBpLWDVsJNmmz3B2ENw2JUte1wWTBS1tu7KynLXnNKYrSYvbz3AZlLoxYwVMQO+psbk9F7pzAPa9zD2QM5VNPYceZp1CtVkEpxZvf/Ga8853vxPi4WpObES4jqUsB5xz//M//jD/8wz/E6uoqAKC+fQ82Dl8LVnTPgNQy55O3nucqyNxr9z0qLE1RMuehktZFiZyfLKVOROT89DulG0TZNa92dCJ4cveD87uyEToPCoBwZaHzSJPYRUqdyBRRHDCqCm8GB/TG5nIywtT3tK6NfwZA6si/Zimp62w0Wu6ykjrAFbvGNEXwEpZW8jZ2a7EyFyRS7iTFzj+TkX/7ooIXlLrOutq/p80G/n3Bwj//8z8DAGZnZ/Hud78br3jFK0Ak2zKPcBlJnSJnz57F7//+73faB9hjE1g/egOsmfnOc2SEjtP2ROGiHckkhE621Jokc35E0joRkfOTRuqKpIX95qKUyHlcDindIIXOo+4YeOjiTqw8I3aMJdL+4kMcAmM53XAUaaSOE8ApAIVVxY1zwNiQP/YJBzQB0ekRPtW0LkOp8yMqeEpS17UDm4KXpdABm1LXs0nfLssKnqzQhW27S/BSiJ2HaHrHCcDipiFr3x/NpQu47uLTeOaZZwAAN910E375l38Ze/bsEd7PES4jqZPEtm189rOfxZ/92Z+h0WiAE4rqgSOo7r9KvtTafue5BjBT7GNQkTlATJRkZM4jLq2TlTlAXeh26Kt4QfFie7tq6+hnSmcSBzv0NRSJBRp1l4uhKDE7e4WZuL/hTk/W77JrkLpj4Kk194tPtWli9bS6YALoSbL7KXacAHY58EvCQRyCworChhWlDuhO64QhgDU2PFLnJ07wUktdZ0cAZmbYczZC6Ho2Kyp47c4QaYQuuN2O3GUgdoCY3EWldV3rMQA4DsaePobZZ36IVquFQqGAd77znfjxH//xUUcKCUZSJ8GTTz6J3/md38Hjjz8OAGhNz2P9WTd0erUCCUIXeKe3ssx5BKVOReT8yEidX+S8S6k1REIXl8KZxEFZYSo0d/w8uW/6js96mO8OscTK+Jf1a4TWkbXQeXAANRW5i2mWkKfY9YhcyPGqLHVA7mld74K+sppImdijD2IHhMtdplLnnwkmpTyJSl3XLkQJXsZCF9ymXkNmYgfEy52I1HXWYwBabQOvaS7jnnvuAQBcffXVeP/734/9+/eLr+gyZiR1Ati2jb/8y7/Exz/+cTiOA6Yb2Dh8Leq79gG+un+P0MW8s3kK3ev2PSr03DQy57GrvIYXTDyZSuT8JEldmMj5GZTURQmcFnH30sD7JnUeTshdS0Ty0gpdmMwFkUrtYoSu85SUYueXOhGRC9v+lkjr4Db9iCRK9PokdX48wctE6oJCF/ibCipS17VZr3JDAGbGd4jIEqeQjdgB4XKXVIINXY/OUTrzNHaefALVahWGYeAd73gH/v2///fQ9Yxr5pcYI6lL4MSJE/jN3/xNPPaYm3w1FnaicvQGsMLmTa4jcwLv5DCkc1nIHADMFGo4VL6IMm0pCUoYYfvuFzkgXOY8VKROVugeanF85MxrsaO4jh+Zvg9O+64YJXBBhkXowvAkzxO8vBK6MGotI76dnYDMdT09bWJHAWL7xo2Q4JKROj9+wRuA1AHuvta2aZh6Ks0ktIiXOt9zhPcrpdB1bZYDhTXW2YfqtoymLQtQ8HfqIUBtIXk7SVLnEZQ7mbTOD3HqeKOzhu985zsAgMOHD+NXf/VXcejQIbUVXgaMpC4Cx3Hwmc98Bn/6p3+KVqsFphuoHHn25lytBndHzWbi13tRoRtmmfNEzoOCw6A2Jqj47BVR+PdfRuQ88krpftACfv/Ma7p+ZzOKXaU1vGnmXuntqUhdGqEDxKXOT4WZuLt+EI9WdypvV1ToPCLFTlLoAHWp80+ZRLjbq1WFfoudcgkWEmIX2B611LanKnVeJ4fqdgrCoC53IlIXeH4cWUmdJ3TEdy3jhGQmd10iF7oDyXInKnbAptyl6JsFrnMUzz2DK049gfX1dRiGgZ/+6Z/G7bffDkrzEd6tzEjqQjh79iw+/OEP44EH3LlMm3PbsXr9DbAn/Jmy+IUpj3Sun+3mwkTOT5ZSl1RejYJBrYNEmNBFSZyfHcUK3jhzr3A65zHMKV2QGjPwQPMK3/9NKcGTFTqPnlKsgtB1FhUUu+DE5n6o6pzsl2JaF8T3ucgIpbLUwd3Xqm+gX299UoInK3W+5UL3KUOpK66Gn+edwY4VBS9R6Lp2JF7uZMQOcOWuuMKwvi9Nk4gG3uSsdeZRv/HGG/Grv/qr2LZNfDrCy4GR1AX4l3/5F/ze7/0eNjY2wDQda9dei9pet+1cZwRvlr3Q5TVESVYyFxQ5P2mlbr+5iJcU11DjTntb8qRJ6Z6yzUSJC6KS0m01oXu4uTuwLtr+W7LcqQqdR0fsUgidR5zYxclcZ/nLIK3LQur8iOxDmhJsNWyKLi4hd6pSF1hHZ9MZSF1YSheFjOBJyVzojoULnqzYFZeZew8lUJc7zlG8cALbTjyGRqOB8fFxvPe978UrX/lKtfVdgoykrk29XsdHP/pRfOlLXwIANGdmsXLjc2GPd084LCp0eaRzk9s2cGvOpdakVC4MFanbby7i5aXNjgUO56hxtVKKSkr3lF3GJxZfjDXLTV+TJM7PpZ7ShQld9zrj5S6t0HX2o2Vg5Uz6tp9Ar9iJyJyfUVoXQ8IhFiV4mUtd5wmb6w8VvCyELrC+rKQuKqWLI648m1ro/ITInYrYAUgtd7RVwUtXT+PRR91Ogbfeeit++Zd/GeVycIyhy4+R1AF44okn8KEPfQgnT54EIQRrhw9j/cjRzrhzwGDTuX7LnIjI+ZGROr/M0bYcWNxRFjpATOqO2eP47PLNXb+rOyZWWvJz31zKKV2S0HWvv1fushA6DncKMc4JWraO6oWxxGWS8EudrNABKdM6mygNSEwYoCvMMjFsUufHL3i5SV3Xk0PkLmupA6A1GEAINnaq9cyUSemiCMpdpkLnJyB3MmLnSZ1HKrljDP/50Aw+8YlPgDGGK664Ah/60Icu+04Ul7XUcc7xN3/zN/jjP/5jWJYFu1jEynOfi+Z89+Tjw5DO5VFqVUnlwkiSumAqRwMF1rRSF1V6DYoc8921mkzHmlXsGtJDhH6mdMNSdk3eFkWNmbh3fW+mQueRidgxQK9oymIGqIvd5VqCTUKvq8unsNR1FvLJXV5SF0RC8lRTujA4IZ3P0slwcOUe2nKnmtb5UZE7woGxMxwbO5ZwzeOP4eLFizBNE7/wC7+AN7zhDZftNGOXrdTV63V85CMf6cw5V9+xEyvPeQ6Y2d1oPmuhk5G5V13xOCjhQunccquMCV1MGkpaC9vMCgB1kfMTJnVJIucnjdQFU7o4kfPTZPoopQugInQe560pfO7U9QAAU1Pb5zCh81AWOwboGz4BSJG4ASnKsCpp3VYpwapKnX8fJXZXSep82yHcTUBLy9lIVKjQBUkQvKylrru9X85yB6AxJ37ghEmdB6fiYkc4MHaau+Vv1sQrt63gu9/9LgDgVa96Fd73vvddluXYy1LqTp48if/yX/4Ljh8/Dk4I1q65BhsHDwEBsx+k0Hnp3KpVwvl6fH/wom4JCx0AjOlNbDMqws9Pwi91B80LuKXkzkUTJ3J+0kidxbmwyHmMUrpe0grd3z9zHRxGQXxfQGTkLk7oPKTFLih07Q0NS1ondBgxwKzIX6J75nkVpO9pXZh8Jux6Kqlrr1+vcXcoKo7UcickdUF8kpdF6dUjKHTdf8tW7uxiYF0EsMti608SOyBZ7jpS5y1HOCzzScw9/hgcx8EVV1yBD3/4w5fdTBSXndR9/etfx2//9m+jVqvBKRSxdPPNaM11T4zeb5kjJoNecCOAsXITV0yvCidopmZjypDveZqV2BnUxrOLJzsiB4jLHKAudDXOcXdjF76xfgRAssj5uZRTun6WXT3OWtP4u5PXd/3OkzsRsRMROg8hsQuTucAG+5XWEYeguKS+LVWpI5xHlmCZHv0+D4XUeUT8KSup8+h8D1EQPCWhC0IInKAgKRAndL3PVRe8HpkLIiB3cVLnESd3Xum1Z+pNCtD6EvY23XJsqVTCBz7wAbz0pS9N3N6lwmUjdY7j4E/+5E/wV3/1VwCA5twclm66GazYPVp+nkLnl7ce2leW8XITe6dWk3egjWxK55GF1O0yV/CK8lPYrhWkRM6PjNTVOMcZe1PGTtqz+Ne1o9LbVJG6HcUK3jBzPwwiV3/zpK7BDZyzxdo7msTBgrYutY0J2gIw2JQuiIjYyQidR6zYJQmdb8PKHR9ilg2VOO8yoXrfVhC7OKkL3YRP9AZWgo3DX6nNWOr8yKZ3mUgdAHts8/UQppiySkjd5jLicpcoc0ES5E5E7IDwkmwwpetZhjXxkulzuO+++wAA73jHO/COd7zjshis+LKYRK1Wq+FDH/pQZ9DCypVXYu1ZV3f1bgXEhE5U5ljJgTHZ6v2D5HRDw8Yecwk3F08CADTCYUAumVMhKHOAK3TfWr9Kel1e6VUWSlii0J1oLeDzF57d+f9CcQOvnnkIcCYASKSJkrbhgGCVFWDx7tPZIHZH9qJIm9B94ZlrQ4UOADgnIISj5bg3rKDcqQgdAJi6DWyr9oqdqNClhPvunbESlxV9aO/tL9dyzR2TUzm1ywPvPcj58uk12K/PaYlyl5nQlbuPWU43P3BRwVMROqDdvrDJY+VOWuY6O+XKs2hJNgrCgMmn3fdauL0dLeBblSvw9n97EHfccQc+/vGP49ixY/jABz6AsbH0vemHmUte6s6ePYv3v//9bvs5SrH8nBtR37On6zlp0zlOee+IuRqXFrjxchN7ptaklukHQZHrB2EiF0Sm5Nq9nNxFZldpDbdNP9D5/w9b2/GlC9f1rheka902p9L7WKSWVEoXh8V1LDubp7iI5ImSJHQenrB5cueJnarQefjb7inJHHHPZ6X2cRzQ6gSmF3SLnhIcfRE0wL3JOwX1acOCaWSi5PXrtZF2SnOOobojP+vskjsgk7Z3kcS8b57gqaZ3wrsQIXfKQufhS0WDcteYpcJpnXd/9uSusjf5syec4pP3O9C234iJlYdw55134l3vehd+53d+B7t3q32R3Qpc0uXXBx54AB/4wAewuroKp1DA4vNfAGtmpus5KkIXKnHB5xcdGONyN1DZ0iugXn4FkkuwnszFidwE4ZjX5NunAb2lVxGR81Apvap2kAAAm21KQ1DewlgobuBVM49Ag/i3+TRCF0zpkjCIDQ0803Z0SfjLsRxAvaU4y3eblq2jem5MPZ2TLMG6vSZJZ1lT5aMa4hKsB9eSdzJU8hRem2ovXXBArzNwSrB2UDKbiCm/xhEszeZRehXaj4DgqaZ0cXACNCczlub2PvrlTlTqgnAKMIHjtLPp1gr2Nh7BxYsXMTU1hd/6rd/Ctddeq7TtYeeSlbqvfOUr+O3f/m3Yto3W1BSWnv8COKVuYRAttzoFDlAudeL0Q+pUO0l4hEmdbCqXhdTJyBywWXqVTcFE2tIt1sdx8uxs5/9mycKV2xaltgO4UveamYekllGVOlmhA9xy8hytwwGRLsGKpnRhEMLBOQHjUE7pPGxGUbkwDn01RcEhQey6RC74NwZIN0tVfckcMNf7I3WAmNh1nusJnspraydESsvV2hdvz7NFBU9R6jy8y6JR4yisKI5x40NW6rr2hfF8pK59anMCtMbzlTsVsSsu2Z3RKqrbBc9/1sBzzON4/PHHYZomfu3Xfg0vf/nLpbc97Fxy5VfOOT796U/jYx/7GACgtmsXVp5zI7je/VJjhc5XOWU63FLqECIyILEoIqlclqyxBp60igDkL2hMoawZR1Dk4JMNFfHwUjoZsiy7yuB1sri5dAJAchu7NEIHALZDsVErgFKOclG9FGwzispKGdA57Gk7ndiFECdzHkpOuoVKsKJ4pVqt5Zbv7JLEC8zivWi/POJwTD9pqaV3kugNDk6BxqzuDkmiKHfB9nSy+NvfZYX/0ko4UKi4N8rmREbX3Pbn5Ym1TBm2ez3u8mPnbTGxo0Xc1zqMV794HnfeeSf+63/9rzhz5gze8pa3XFIDFV9SUuc4Dv7n//yfuOOOOwC0O0RcfU3y+HPyzd8uCXYXVvCG8Qc7/89b6NZYA0/Z7uDOjMt3VkiDv4NEj8QBinfoaGTKrmlQTemmA4NFa+0rrSd4cXKnKnQOI9ioFQBOwByCWsNUEruO0HmfWZqPLtC2TkTmBgIBWhNEaXiTvtG+jhrtm7W04GW1D225AyTSO1WI+zobs74x52QEL+3b0y5Dd/5LAKeUT1vDQoVlm9wF5E59PRxj5933PFHuqI5/OjuPt//4j+Ozn/0sPvaxj+Hs2bP4pV/6JWha/p2s+sElU35tNpv48Ic/jK9//esAgNVrr8XGoSu7ntMlcxIi55gAK8ndpPtRflVtT7eruIrnlo9jWqthh1aVXt5DtPTqyVwW6Zpq6fVEdRaPPO2bfF5A4vSihSu3L0oloipt6YD+ll4NYmNaYOy8YGk2TUrnFzo/VGNSYtcjdJ0/EPW0jgPUAvSa/B1WqQQLKJcq+1WClSm/bi7kpnXdO9D+U4zgKbWr85dfkyABucug/Jo0vp6o3KUpvXrb8ktd59eKcid6WU0rd4X17n32LrHCHTM4UFwOeX8JES7Haus/RGnpYTDG8PKXvxy/9mu/BjMwo9RW5JJI6qrVKn7lV34F999/v9vD9cYbUd8d0sPVuTwTOWBT5ABAIwwaeK5pUl6pnEzp9UR1Fo+cbIsch3QaR4haiXuYhY4SJtwD1l+aPdbahv9z/CWZCh0AMIcKJ3aRQgekLsMSRy0yyTjgzRzVEixxuLzYhT3dK436EjwAsFIOcyGFL73jlGDtQM63PV96l6Y0m2oX2tKbV3LnlWVl5M4vclGXVU+WRQY4DkUitXMmD6GmFTGxdD++9rWvYWNjA7/xG7+BUkmtjfiwsOWlrlKp4H3vex8effRRMF3H0vOej+bCAoDN3krez8MsdLLDmZianZjS7Smu4DnlEwA2RS5vVlgDJ2yz7+VVICBxgJLIeehFC4ckO0iotKXrJ17ZVfY40MAxrVVx5fQiHl/eprbxmM9BROxihc5D9qPmgKbWcbxrm9aEYlqnsK2hL8HG4dvtLsErEbXOEgrbJw7H9A+tTtvGuPlYU5NQmk3bni4qpevaBV+imSR4KoUUUbkrrDOp+6/e4CnGxxNva8fGdmNdMzC7fB/uvvtu/PIv/zJ+53d+B5OT8VNzDjNbuvy6urqK9773vTh27Bgc08TiC18Ee2o6dNwo1Tkbgf6UX7MsvXoylyRyE7SOBa0uvM2e5dvlV0/kAPWx40QIK72mTeOiMEoWDm+/KLXMsPd4FS27BrnojOFvVp4Lm2twOEHVLgjLXVxKFySqFCskdJ0nC5RhI2SOMAKlYfz6ObzJkJdgVTtleIMfOwXx8ptw+TUETzC88ehE5S6x9JqEb9HUIisgdaGLhchdVpftMLmTFbogUXJXXBJIQAXLsaS1jG2r96FSqeDAgQP4/d//fcwFpg/dKgzTmOFSLC0t4T3veY8rdIUCFl/4EtiT05EDgfJ2g+hLlT3FFfzI7H34kdn7cNPYUzCJk3syt8w03NdieMoqZt4jNQz/Nk5UZ/GlR69x28kx4j6GvRY2QGTKrn78Qge4nWkmjQaOzF5IXFZG6IDNxM6PlNAByaIUk86NDp/0KE8Y366qaE1BASWAXU5/vSHcbZozfsbG+Nk+lEnbEgmg85r7UEDp3oW2EGsKQiiybnNjc71phQ5wJVp9PMPNcmzs08xZnJ+5GXNzczh+/Dh+8Rd/EUtLaSZtHhxbMqm7cOECfumXfgmnTp2CUyxi8YUvhj0+kbicalo3rEnds8bPpSqvqiR1Da6hwjZvvP0o6Xp8uXId/uIHL3D/k2EqF6RfHSS2Qkp3zhnHHcs3h/4tLrWTFToPQjnGSu5+SgudR1RaJ1BuVU3rlMesY72NxhNROOUIB6g1vGldz775NhuZ3qVI66JO7c6hFpHepU7qAHe/49Yh8pYrpnShqyKAPZbtF3JOgOoODROns52Foyu1i+osEYbomHZOFftrP8CFCxewb98+fPSjH8Xs7Gz8MkPGlmtTt7y83BE6u1TC4gtfAucSm8tNpw5MGn8y7C8v4aaxp/omVX6Zc9oBbz+G7XigeQU+d+4GrDRKuLA46SZyOdOvDhL9Ik1K93crN0b+3Z/ahZZjFaSbM3eoE9O01YQO6O00IdF2TvV7gtByYTfzfiY1UWNxDeP3et8ueZIoXJpNQee05256l3u7uzD8H0cf0uOaT3T8KVsaqjs0gACV3RoIB8bPZCN3XR0pZN4b0XZ22hhOlJ6NfQv34+mnn8Yv/MIvbDmx21JSt7a21i10L3opnHJ50LvVAy8wGGNW6N+mxhs4NNPbAJ8GruxJUkEJz13ogqmc46vWa8iv44UncoA7T6vDKWxHA3fyby2QpoPEqlPGQ9U9yQsAWDAreM3Eg8lPDEAJwxixsMrEe2ipflYOSKfsGkdQ7DopnSLMoahVi+mSWF+JS6ozBOFgpkJaF9ZhIkriho0w2Rsm0Wvvij8B7JvgDVLugL4Inv8089rDpZG7jZ3a5r62W8XkIXdKHSna5dhYsdPHcKrwbFyx8AM8/fTT+MVf/EX8wR/8wZYRuy0jdRsbG3jf+96H48ePt0uuL+mL0DEDYEW5A9ycbOI5e54J/RsFz3QmiDwIS+X6gSdznsgNApGUbrE2hvMnN09wfbKFscOuBTDBK6/o8/y4QueWGxYC4wtanIaKXl4pXRBP7B5Z3K5UdvXDOAEIh1Zw4DQVG8JqHPaUjcJ5+UtcGpfU61tA4kRoix5xOEBIZg3pUxFM7/r03nbJHQDqcNTn1cdETDPfrbtD2ZVeqzu6X4d37KvKXZfQ+WnL3cYuLVuxK2vQa5LrSxA7zeIAHcMz+vXYs/AATpw4gfe973346Ec/iomJ5GZeg2ZLSF2tVsN//s//GY8//jiYbmLxBS/uW8nV6x0V+feSAzPQdm5mogY9aVLZlJyozUEjV+KFY09msr64VC5PwlK5YSIocB18Hy/nREnSssQgrEv0PMnLO6XzM2k0cPX8eTy+vA1rFbWxnlhW7SQdAn1F8fImmdYRBphrXLmUygyi1N5NBk7cKQ+pSl8AzrvbIucgedLvQXtIEqfoqx408r3met/1iMNRumABlKjLXRo4YI1TgANGNd1rjjrdlOUu4fTl1BU7QD21W7o6cF3iGrZ/X/KLa4TYaf5j0BjHaVyPHbP34cknn8Sv/Mqv4Pd+7/dQKKhXIfrB0HeUsG0b73//+/G9730PnBpobX8xqntnUN8mv9sqHSX8nSTCBI4Q3lO9mB6v4dBU/j1n9peX8JLxJ5SXn6B1TNCWUiqXtvwqk8qtNYpYXJzIvXsidwjQor0XppjrGZ208IrDT8BIaAPpZ8Gs4JUTD8OE+DL+lE6GCjPxQ2sbbiiEJ8dhBHu8ilJ3DBxbXQAH0LJ1JbHrkTpO5NI6h0Bf3mxLRwDFYUpIbNm2I3Kd57d/z9W21zMTQw4Qri518SsOSB5Xez3SYksApvdeE0TkLk2xhFrd03K5vxQUvCw6WiBkJAcFwavu0MU7lbd3OU7uIlO6qHW2VyUqd57Mhd0uvPu6tNz5hjzRIo4/0lrDTOVuVKtVvOhFL8Jv/MZvQNeHNw8b3j0DwDnH7/7u77pCRzRYCy8AjCnkHIJ1YAbgzFgwJ9wDJUzgtiItrqHBDTjtM7Bfqdw6K+LO6lW4e3mfVCrHeX7DldCLJrZ93z2ZG7MEK9c5UmkLIZASOg8ZoVOlwkzc39gLALizfggAMEnruK5wJnY5lZTOw3vrTN3G1ERdSuxCUzqZMqwndDn6UZfMDfXX4T7iT/KGoFTrpXd5J3eATw5F0ru8hA5w23RKpncyl1Sh5E7yEu0dJyIl2aWrtdjjyntPzt9kyomdQBs7bk5hZewGjFt349vf/jb+x//4H3j/+98PSoerquQx1FL353/+5/jSl74EgMCevwm8kG9DRWYATnDoEgJQemlcvT2Z83A47YvQrbIyTlszcEDhcAqLDW7AQL/EAQBhDJ6TqU4VNcx4n6/TfsmrThl31g9hjDZD0zvZtnQeXkrnR0bsUpddI4SOA2CmQnoWKMGOZE4QzkEYgTVGXMFIO1l7CvpZmgXagjfo0qwnd0Am5dkgUXJX3aF+TU8qySYJXde6NFfsAInUjnNUdxFMPh19rPLiPKqTN6C4cg/+8R//EXNzc3jXu94ltv4+M7RS94UvfAEf//jHAQDW7PVgpR2ZbyNK4i4lgiLXLzyRAzbF4mRzDt9f3tv3fdEumFi4xz1h/RKXFjpp4eVXypW/vdKr1HYUSq8VZuKB5hU9v3fFGqg4xVC5U0np/GXXICJilyh0hIOaDlgrYr9ySug46Z/M9aNdXd8hcOUOGBrBSyt3/tJrFF1yBwxe8ELkTnTS+yiCcpc2nfWndsCm3MkIXWddkqndhRtNcAqs79vc0OTTvZ8zK+9Eg10PY/k+/OVf/iX27t2L173udXI71weGUuruvvtu/N7v/R4AwJ68Cmx8fybrdUwObkQPcnkpkafMxbWn86dyYch2hFitl7C0NC63fz6JA8RErj5HsXKd3AVfpfRKwftSegUAK0bOwuRut76ilNIB8b6jUooNQmiE2AkInUpaRxiBvgEYVblelpyoJYP9mM0iVWeJtAyJ4Hlyl1Xv0TjCSrPWWLoqhVKriBC5y3JasLELNkqL7me7djClLPrkrjmdbj+91C5O7Dyh828b2BS8oNyx8b14+xuuwyc+8Ql85CMfwc6dO3HDDTeo72QODF1R+PTp0/jgBz8Ix3HglPfAmTqaan20BRjrBMY6gdYgm9O0JPRq3QqcqM3hO9UrO/9vcQ3rrIh1VuxrOrfKyni4uRsPN3fjpDWXfUlX4I5Hlg3M3mli9k4TMw+7jV69h4h3udPIDV9SkmVKF4YDCotrqDhFPNzcjTmjmryQj7CyaxgkomW6TNm1pz1rTgkdYQR6Fe5UVKUtfpHIgqwbErcFzxojsMop1s0354yV3v44dR8Zz6QQuUkOgHFoLdZ59B3vdY/RbKdE4wBhHIRxTD1lY+qp9OvmFNj+fQvb7w4f71V4PW2x80qyYduJ+n0wvfP4P19bxctf/nLYto0PfOADeOYZ8U5o/WCopK5Wq+FXf/VXUalUwMwZ2HM3KF1Q/CKn14nb63X47teZ0GDGQEQO2JS5Tnu5Ph9OXSL3CAGx4T76cL3UpizccuiY1DILZgUvn3gkpz3qJi6lC8MBRY2ZKGtNbJecnV7k1DI0B1MT3VPSSbeja3eaAJCL0BFGYGy0ha7zy+zWf9nAOTTRpNITvDRyp4DX94pT9E3uWKF7G4MSPLPigDCO8TNWarkbu9C9fFZyN/N4C8RmoBbD9rvTyR3XutvaeVx8TrjodS3bFrsuuSME/3isjKNHj2J9fR3vf//7sbGxobx/WTM0Usc5x2/+5m/i+PHj4FoB1vzNABG7MfklbtAiNzVWx4HJ5dy3U9Is7C6tYl56wsl0LNAadmi1oZC5LpFLUdFUKb2CcBQ0uYtWP0uvsjDfV9ay1sS+4lKi3ImmdB5eGTY1CkLnlWCj6KRzGVwzvBKsLMy4jA2SAM0pCrtE4KjMFJCCfshd0vcXEblT7JAeCWknbKnkLuJ8SSN3M4+33EGv21BrU+7SEBQ70f56/tSuI3dUxw8q+7CwsICTJ0/it37rtzAso8MNjdR94hOfwL/+678ChMKafx6gx7e/iUrjBp3IEZLfjBGeyO0urWLWlCuTpWWB1vDiAsNVRhEUkJY5lU4Sa41ipz1daCoX4kfUBgzJSb4v19KrnwbvbgtDCRNK7WTfNU/slHu7Eg5iyg07E7s6L52rhf+dU8DuU4rUj3Z1Q43X5K5d9r4U5S6JvNM7c733oqkqd8GULgy/3IniFzo/WaV2528yYZflDbmnJKsVcZo+C4Zh4Jvf/Cb++q//Wnm/smQopO7ee+/Fn/3ZnwEArJnrI4cuqS1QLF1L0JrCJV9W9RikyAHdMqcRCo2oHTIqs0UsLY9j9lsF6VRuGI+JYS69spjPJSq1qzsGfrg2L79vjobVdfXp/bhDgIoBpyT/IQfTOsLaMpc0E8TlLlsDwpO7fgtel9xdwoIXRFruZMbzFEztZp6IFzZ/aqcqdzNPOABp/6uAP7XjhRm8+93vBgD8yZ/8Ce6//36ldWbJwKVuZWUF//2//3dwzuGM7QUb39f199oCxfI1BMvXENR38LYty1/Q7TEOe2IAjVMVGBaRy0LmVGjaOpaqZbCankl5NWu0KQu3HJSbnm2YS69JRKV2jkK0xDlxB5NWgDsEfM3MJKXrErpB4ZMWu0Tg9GH2oc0esLzrMewMIr0bRLu7KPQ6g7HhPvImk7Js2HoFSrLEFnt9aeTO6zhHnXRi58ndb33mSbz61a+G4zj44Ac/iKWl/GeTimOgQ5owxvCbv/mbWFpaAtPHYc9cB8AVuUZ7GjBOeSZliaQ5XAdNSbMGInB+dmhVHNJLAIqREnfS3sA36gcz33bT1rHRdGOUzk2/D/WorNrTNR0da1YxchGHE1woi08GbRIHs5pc49usSq9ReGJ3oj6XPqXjRCpS7RE6yuGUAK0ueYwwwNjYHFpDaNvtEqwuMQxH6NAmBLDjpKSf1yf/SyHhvUjDpuAaNJ7cAe7hozX7I6S8PXCC0+7soDX7HBD42mv5xa4z0LAAYaXXOAh3tzt+pi1NhGBjp3utECm9Rq6Xua/FEztvGJSklC4Mb9xAT+zO3xzfWXD20e73wC92K1eplWTX92v4dLWI5x04gOPHj+PDH/4wfvd3f3dgM04MVOr+3//7f7jrrrvACUXlquehts/9QLISuWGDRnTLHNdbmNAbfd6bTTZlrpSYyDkcaAlKQBKhItdnZNrTEU4A252L9EKje+w8kTZiTCIYb3CKc/ZUz++LxMJuPbqdW5al1zDKWhPbChU8wcU7SHj0pHSCYpdVQkc4YFTcaaykk1+Fw5NTuSFROCFoTQBmpc/JWdjmQkRvgBPBhMIJ4BQIjIqj1EYqDY6vJ6uI4DEzwxt8BoInQ+cU9Qke19Jfr4NyJ5rShSEid7OPOqHDW3m/m3nCURY7UB33zB7CzjNn8P3vfx933HEHbr/9dul1ZcHA8uQnnngCH/vYxwAA61dfh+qBSTDNvXAMi9DxkoPCRMys3gE0jaGo26CEhT4AQCO85zEoduhreHGB4ZBe6muJ1SuvVhqFVOW4ICqdJKIgnIBYtOsBm7S/vRKwwCOOuUINr5yWb0/HQHseNV7AD625zuO0Pan4Cl1EUzqPFWsMd13cL+04kW3pRD/7LIRunUhtMg1aS2FqMmB4qgm896E3eNdjWCAcMKoO9Npgmjc4BdoleUFyrRJx3nn0ozxLHA5j3YK50oK5onKAh6yTcTgFgtaUjtZUusAgriybNF5pmnIsANjjE/jZn/1ZAMDHPvYxHD9+XHldaRiI1FmWhd/6rd+C4zio79iJjf37h0bkggSHydM0hqJphT4MzT0gwsRt0ALnRwPHfmMRzzW1vsjcyeYc7l25okfm4lg9P4G5e+S/Nam8xXECF3ywCRvXHDwttX5KGMwMGwWGSd4xawFPtLbLrUdhuHYHFDZzlxO9V1mOhpW1MSV576R0YVAu1GHCL3R5orU2H5fk/LAxkjcMDLvcqUJE2zwG5M4veLKl19j94bzzyEzufBMC5CF3wbJr5HIpxe5X7jmO5z//+Wi1WviN3/gNtFrZiK8MA5G6T37yk/jhD38IxzCxet0NUgMMay24M0P0AaLxSHHbamjgnUfn/31I5mrMxOnGNC5sjAvJXAfm9nbNA8I4tDpzH01EClz4woA5kHmWomGgcLgreWO0iTHaRJGkG9NJhqRPNDGNjfhbFmXXKKGTHfMrbmiTLpFL6kl7KRGX4skMQJwxntwNSvA8uctD8ITIK71jHHo1MNhwBnJnlwLvk0/urMls5E5qGUWxK5/nKF8AvnZxBlNTUzh27Bj+/M//XHo9aen7UXfs2DF88pOfBACsXXc9WKEPXb5EaLet8j+ItjV6y8bhF7l+UmMmzramsWKPwcmwxKqKX+Rok4NwoD6vY/k6PpRDoKRFIyxR7lRLrzKkHcIk8dCNSeviEjqlwzGY2gdlLmT7/WrIP3BCUjyj6mDiafHmK3kwDOldpu3pZOEcTpHALtPOIw0kYoDdVHIXdS62ex6nTe5a0+6yMm1CPbETkbvyeY7yeQ7C3NmMuF7E+bEjAIC//uu/xrFjcjMPpaWvR5tt2/jt3/5tOI6D5uwu1Hfu7ufmuwlKnMIwKcNKMJXrF57IeTLHBtxAKEzkulI4AmTU5yMS1fZ0WeHJXVDw0pZeg0R90sJtJgPPiS27CpBnyTVJ5joM6SWFJ/XCzWQj7j/UcjB5vIHJ442BCt6g5U6vOu5DcvvCpdcYOCFdjyzkLgpZuetJ6UJXCuXkrjWtKzftok50aueJnF/m/Djju/Cyl70MjuPgIx/5CBynf8ddX6Xub/7mb3Ds2DFwzUT1wLOlyq6pGWKJqzsGKnb0cBiiDEMqx0AGInNeJ4lEkev3fmXcni4Mh1NUBeal0gjLtSyb+lNvX32ly66BtE5U6KRKsByglqDMpcDtAduH86efl16HgTisI3gDl7sNB4W1/spdpx0a40pylyVBuRMSvJDSaxzCcidzHPqSO1G5CwqdSg9u6gATp3ioyMXNM/6lkwWMjY3hsccew+c+9zn5DSvSN6lbXFzszBrRmr8a3EwvMXFw6g6y6T0Ugomhp0gtTNDG0MjcwGhvWq/lK3IqnST6hehwKV5yV6BycidaevUfBalKr4qfnUxCJ/wNnrtfGjjp05RhQ9ppLAv8chcmeI7Zp/bSDkdhxXYfgxA8T+5yFjwnJgmTTe+iSq9Jy0TJnVBKF7pSMbnzyq5BVMSOMLetaJLI+eF6Ce9617sAuLNNXLhwQX7DCvRNdT72sY+hVqvBKc5gY/9+NGezveNeDhLnUaQWZvUqxrXBjG2Xt8ytnp/A7L0JZx4BmNF+tM/d3BO5IewkoYLDKWrMlPoyEFd6DeIdESrD1XCHgFXjBxCN3G7WJdd2OkdtdCRzWHvpbzWC6V1H8PqZIHpf/hyOwlp+6V2UtPWkdzkIHheshsXKnWRKF0ao3KX9rGPkLk3ZNQ6tJXeD+e+f/yGuueYa1Ot1/PEf/3H2OxRCX9TngQcewJe//GUAQGvb9QAlqd/wy0nigE2R82QuaiDjvFhjdTzcquNxay7/ZI4RhAZJISI3Qg1/m7o8Ut6+p3SUwylk+Dq4T+aGp6XGJUlQ8MoX+t9tljg8N7kTSbjyKM/GpXRRRMmdSkoXhvc6G7Nadu06Ax0qWlPJQpdmIG0psSME39/YBkIIvvrVr+Khhx5S37AguasQYwwf/ehHAQDW1D6w4ozSerSWOxo8tchlIXFAuMgNSuaetglO2DO4q3pIavln6jN4eHGH+g7kJHL1eQ1L1+d7t54r1PDyqcdy3YZoe7ok4lI7lV6vGmUoFOVKvJzBTekIwHW5z4Y4BOa6wk0seHEPSefScCn1gGVG/jEacRiIzVE+10LpYv+G5dncfn5yJ7wPnAMccEwKp0SV5AwQT+milvXkrjFvYGNvih7scesvkkzlDgSwBDuB9EvsWGEKt912GwDgj/7oj8AzEuQocs87vva1r7mdI6iO1vzVUstqLYA2Nz9w0h5+51Juc1KkFsrtoehFBK7CiqAOx5zkPKFJrLE6nrEBB5szJrhjocm9+RanYIJluy5Ivmkcp0RaHGShhKEo2XZNBZnpx5LQwOEEPmOZ0ivgznNba5ogaWrhbbEjttzxxgyEp7wReHN6uv/JTuY2N4Bcrlc90zRxwPTGIyOAJTE92TDiTf5ePudeC7lGUF9QK8srbd9xDwJP7JpTg5kjzROzoNhp9fh7g6oIhm3fnUoRqOwrg3Bg/GQt1TrXD24Kovf6vH6CmQxkTQC7SKE3BKZv05JnmohCa3HhNqCfedTBXKmEhx9+GF/96lfxyle+Um2jAuSad9m2jT/90z8FAFgzhwEtfkw6L43zHrRJcmv0PkxY7a8MqomcyLyjInipnJfMWZxmtm4RHE7Qst33YlRezQeHU1RYfCelrMqxlHAUS2KltE5KpwBxCIy19qVM9XDNQ+gUIJxDr7sSE/sg6Hp4y3olPKMW/9AbPP9hTTLAkztqsYGkd53kbsXG2DN1FJYH03M3OCyJl+BFyVualM6PU9hcD6euBFX2lVMldyxk3thgcqd6bFqlzeuAXRyexI7rRbzlLW8B4PYvyHOmiVxvnV/84hdx+vRpcK0Aa6a3bBdM4oBLW978WExDq300MU7QYmOg4NhXWuz7voSlcv3E4QSO4zsBJY8BvQGUlrZ+B4Z+ITJGnSd2i9a4dOm1az2UoVhqoVFXKBFLpHX+sQdl0zoZoeMUsMcI9Gr6C5UncGH7k/Y0TGoDxUHc1xJM9HhGaUkO+NO7vid33JfetcWuOTu4gfP90pZVKhe+nZDfUfdUUUnu/Cld+PY2Nyib3lkl2v2lTuIcikvsklJv0cTu//vGeeybn8e5c+fwpS99CW9+85vFd1CC3KSu2WziL/7iLwAArdmrwA29Y8TEcRM5YLgljlUNrBNgciLsyiuHX+KA3nSN8f6P7zZ0MqcKF+9mrgqbsPGsA2cwZTbw7IlTQsvMahs4Yoh3Y9cIR5lwVBjF49Y21V3NHJXSq588xa4rpfOgkmJHIfVFIs2p0iNyA77+9bwWMvyi11WapYBT6G9pdJjkDuhN5bQmg3dgpZmqzJ/ShW7XJ3cAhAQvLKWLXL9saTZk1aJlWNn1BhESO6rjrW99Kz760Y/iU5/6FF7/+tfDMLL/YpKb1H3hC1/A4uIimFFCc2G/e+H0veZhlrkOKXu+NR0ddjsVGYQ0RTGnbWCCWnja1vq+X5mJXB9gYw527FkGAMyVanjVwqPQwGEITkprEgeaxIFugMMkBNOU4abCua6/hYleVp0k4ihrLWwrV3ChNpFqPXHt69KUXoGIa8nwnG4gDDBqvp0c8mtfpOhxwLSGZ+cJ48i5zXn89nOSO05I5BhrsriCpyZ3orcGL/jnQKcsGyZ3SSld9H50yx3QK3hWVFqZUVongojY/fd/egoH5uZw4cIF/MM//APe+MY3qm8wglykzrZt/N//+38BAM2Fw4A2mEam/cBmFLa9+frOWzoato4rJlaHTuSu0NcBuH7N0F/RHHaZ8wucByUcpuae5UXNynU2Bj8aIQieMUHRqzCKR1o7Mu0kEaTGTPywtoCybgmJXVhK5+G1r8syrQtN6XzLiKR1hLk3L2YCNMtmLu3tAwA4oA12CtTUdHUoGdFFUO6A9IKXVZs4D0/uADHBS0rpovCKUUG5Wz9YlkrpwggrzXZ+H7NqmbQuKHayHY60FkdrPGYZouEtb3kL/vAP/xCf+tSncNttt0HXs9WwXKTuG9/4Bs6dOwemmbBm9uaxib7BHYpGKzpFCH5T5JzAYf3tYBCHJ3MUgP+cYn36hss47XR+GCZa4wTbjmyWRv0CN4wERW+aMlxtnsMjrR1wQFBjyTcRkU4SQbxOPDpNX98OK8MKp3RRYhd3HMucglmdrj6Z63RgyGjVI4YbT+6ATcFziv3t8eWXN5HnRAle2ttXUO7SCl0Qv+CZVYbWeIyoSvSGBQJip7DbRg2wxqL//uGvnsD+2VmcO3cO//RP/4TXve518huJIfOv+ZxzfPrTnwYAtOYOAnSLdGPUOFBgPQ+iM/D2UCphj2FlTtvADYUz2KevwyDdQpc3BWJjp7GKncYqpg259oi1xTKmH8r+mKlu1/H067TOY/W5LRR1u/PIWuimtRquK5zJdJ1+NEJgthsSauCYoA2UaXIcJNJJIgyTOthWrigt68cTu7QQhyTPHuFPy8L+7LvGe2md+g65yzOju0fqiMsTr9essdqAvja8Ma3WZD0iqJrShcE0dyQDrx0kyThNMKtMrDmD5EtiWophgThgVGP+TjXcfvvtAIDPfvazmY9bl/nd8957722PS6fBmjuY9eqV0esEIBrsCccVuLAxyrZEQ79ogiXWfooc4MrcrO6Ol0fb76X0YMmMgGbUbqe6XcfSc9x1cY2BG+7PpGRj9/bVTLYRh9HngaI9uRNN7uLwSq9+4sqwDiexibYfr32ddFu6QFpHmMABnndaF5LMjXDhhKA5VwAYUFgZXrHJFeZeA/xiZ08NtmNFGB2xI4BdzL6y0nVrbYsdp+lOGLPKOpJobiSkdVDoNJFm99piF5XYfeRfT2GhUMCxY8fwgx/8ADfccEOKjXWTeVL3t3/7twAAa3ovuJ5vI24RmMlhTXBYYxxOuZ3A6b7B7y6BgfBm9e5UblDJ3Ky+AUp4R+gGQXW7jpOv1XDytRoWb2JgRffhCR0AgADGEJda0+LJnWh6F4UVMoCTJ3ZhiDY5kBm/rgciOdtERFoX5ttSad0omROCE3dcveZcwX3MDIHQMA6j3+kZY52HvtYc2vSOWhzFZRvF5YyGiAo5Lzq33JTpXddyGad1dpEqtWvsWiYusdNN3HrrrQDctC5LMk3qFhcXceeddwIAWnMHslx1B+9iHFZFYgUOJ+yi7EkGQV/krVIr4jSdwu7xNanlFpviY9VZTEeTux+fxXX0YQafHsKSuUFQ30aw+FxXQPyJ3AhX8Mq0mTq58xNM7GRSus5+UQazaKOh0OtVqPTatYDMysWe48ncCDE6NzsNbnoHDDbBczbFzup3chaT3qXp+SrSni5533jnFPCLXWM2+yYxadI7s9r9WgnnuaR1nJB0897GJHZ/9VgV4wC+9a1vYXFxEfPz8+rb8ZFpUvelL30JjuPALs+CFSezXHUPrNBO4HwPx8RQJHCcA47C1FgiY9VZTMeGU+wIHeDeVPvJMCRzjTmCtVsaWLulgY3rG+GJ3AgAm8md6JRlYaXXIMHETrZjUMvS0TxXBmmpHbtCpdfOk7vTuiyq4iOhU6czM4KX4A0qvXN4R+76ntwBoemdvtbMvOerKNTuvnZ67QKJo5jeyZyiEumdv+zahWBalzTTRPDvqT+PiMSOFSdx3XXXgTGGf/zHf0y3DR+Z6TfnHF/84hcBANbs/qxWC8AdrNh/P7LHsClwOcMsCpvo0I3BzVjgT+UGBSUc01oNO43Vzv8HQWOOoHltHYRwmKb7mbSIDif9+NADRQNHnrM2VZmJHza3AwCmtOQ3K6z0GiRtj1jiEHAqdxwRm8BcVptLWISk4U0IB6jEZN4j4uGEdKd3HDDX+jsVGNq9VgeW3AGd9I4QgrFn3GFAOAFqu9Wn45Lfh+jj2uvZK5zeKV7LRNK71J0tEoY/CSOLxC6M7y3rKAH4h3/4B7z1rW8FyUDoMzOFhx9+GGfPnnU7SEztin2u1gBAACdw7gTlrfP74LAhfSqjdrY3gGv4MIgc4MqbAQaNcGhgA0vlmte6IuKXuUsJt2NLvt/QPVFbQ0lI7JIwqYP5UhVPr85ILddJ6QCAE5AWwE3x40oqpess5KZ1QuPFjVK4vtNJQwhgj+kA49DrfW736pc7QmBNDqBNOOeA3RY8oG+CF0zpovAP21JctgFC0JjJZ8iqzq3GJ3FGPUY8BUuwQEYzTUgSVoa1pnZhdvkxnDp1Cg899BCuu+661NvJrPz6L//yLwAAa3Jn4jAmWpPD2ODQGuh+tIaiejowdMpAwXvKq4OAEo4CcVCUnBUhSxrzbom1dV0NZsGCWbBgXIJC128spmHNKYX+TaT0GkRlHELitHuwcrTFLtmklFM6SaI6TIxSuv7ACcA1AntMh10awBiXjitWAyvL+rEZYDMQi2HsmRrGnqmhfLp3toY07emozZUGLiUOB7FZb2k24y9FngeYGyx5ZATRlxGyj0ll2aQybGKZNqwMqxm45ZZbAGw6VFoyMQfbtvHVr34VAMALe2BsxD+fcA5LI5e0sIl2ltApQ0nrc7khBn8yNwgKc3Ws3eIelpdqKjfsiJRe/XBOYDsUupZ8Y2lZOprny93zbnN3gnmRxE4ppessC5hrHK2pjIdC6ROEu1+IowibKolw9D2RyApOALTlDkD/0zsvuVttgG40wSbDvwhFQVoZX7vySvBSljODpdnCUgNrV42n26fQ7Qg8RzGtSxI6j6w6Tvjl8+/uW0UB7qQN73nPe0Bpui+umUjdgw8+iJWVFXBqghcX0r3oHKENAodoQCn/C0NcZ4lhEzlg8DI3WW7g2tlzON+YwJMXs+kFdClTYRwPt7YlPxHd7ek8LKalLsPWbANPLrmflYzYBWeFANpiFze7TsqUjthA6QIfSlkLwnTA3Ag/D+NOz7D3j5No2TOrDJwQWOXhflM6r8sTvH7LHQOIZYOubsYsbDpmygCPPO+DAcHzf/bNefFZY0TLriIQh8NcaoAwhqknNpOdLATPqEp8MZFI60Rlrmv1GYidYwJ6+wsaLy5gfHwcS0tLeOihh3D99derrxsZSd23v/1tAAArbQfI8M7vCQ4QTgYyn3aeIne8uQ1FauEFxdPSyw6LzFHCUKA2TLq1k7kybWKvsQxKGBq8N/HSwDMblNiSKNGHpW9BsZMtvTJOwXzJmYzYhZLQvi5NSucu7/4rktYFO0zkWXrtKfVm3ewkTPY62+Ewq70bG1bZ60rvGIfW6J/cEWfzuPYET0juJOAq86TbDMQ3MGlhsdHzlEjRy3CGB0/oAIBYm5+LJ3iqcmdUWVdKRxwg5NK6+XeJtA4E4hLoIyh2Mj1k3U6e/n2gePGLX4wvf/nL+PrXvz4cUved73wHAOCUd2SxukSMDQCEwproT1lBpQespjGMmS1MGPm3yWAgaMTNhxRglek4ZU9jjLSwS08/9ZMsnsgB6MjcsFPUbBwtnBV6LiUMJpzQYT4YCJyQu2wDwJpNYBCGBVUpUiAodrKl1yBxYhdWevUTVYYlNoGxkkFK59uO2ILKm0zEL3LBw6Tv369Ctkc4hxFoumWrTpskgWhy5MmdU9Sg1R04fW575wleXnKXhrDeoWGi18p4KBlP6Hp+3xa8TnpHCNYOi79fPWVXkUNE8BzySsdpZ7eQor0pu0A6ad3n712GCeCuu+5KvfrUUnfq1CmcPHkSHASsJNfAWhW3cXVfNtUhLm3VNAZT7/3GqNJTtO4YWLHKmAleUTPAkzmHUzBQgKSfg1OGYCo3rEyYTVw72T1v67yxIT/lWQRRY7o5IHC4hjN2t8DkLXqe2BkijVba1GwDP1yek95WWOm16+8RZVjqpLjo8u6x6Ygjl9ZpzWxSujiRG0aCclBYY4A3+HteU9bIlrUoATiH1i7HJsod4zBXs/uiPRRyJxJIRSRy/s/R37NVFnOpVxp79iEkvQPiEzypsqt/WwJpXZrXC2RQhiWbYsdKC9A0DadOncKZM2ewa1f8CCJxpJa6e+65BwDAinMAFU+L9DoAwmEPYcQfBqUchYhG+1kO88FAlCddj6JH5vrMZLmBq2fOQ6fO0MlcmMBRwnsER0Z40hJM8vyi5wlemQBXm+fwSCs+HQ9rTxeGxTTUuPgQDoxTOE7EmE4haV1SSte9AvlhTqIgNlBa7F1P2rSOMMAIKVuGwSmBU9waIhdLlxh3v/bcJE+U9s1VSO5S3szDCModAPBSn4ZEURgKqTXdm9J5n6Gs7PjLrqKECl4gwQuWXbuWTyjBAogNfoKvkTCulNalHpi4I3YGrrnmGjzwwAO4++678aY3vUl5laml7r777gMAsKJc43bCE1pG50RoZwlGEpM/Dnl5W60XQck09oytSu9nFgxa5nYby9g/fRFNpg+VzBkFGy+cPw4gXOAGhQYeWpoFNkXPE7x1XsBjzV2Y0xK6mkOspLrhFPDE+jZQwjFbiE+JRVK6MLFLSuk6z/OVYUGRqvQKHt5rTjStIw5QXGYRJUrBfWA891kC2ICHtPTfJAcqeDJylwOe3PW1nKdA3Gckm97JCl3P8iGCV9tdju/tKnDuRaV1Ua9JReycYnvc3TS0N/m85z1v8FLHOccPfvADAO2kbtjxxrdkBFyynOPUdWygiPEx8U+QMSo9fVJaPJEDMFCZu7mwBArgSas4cKEzppp4+aEnOv8vUHvg+5QGBwQWd8eas7iGHbrcHMNhME5hMQ2UcCw3y7FiF5fS+UnTccIvdqql16iUrvN3wd1KU3XnpD9t0YaJoRC8AcvdpUKS4ImUXWXwBE+vMzhm/DUmbVqXFU5BcFBzIHxuerhp3R994TEUADz00EPgnCvPLpFK6k6dOoXl5WVwQsFNuVHl0xLZWSKvawjvezM+KdacMTzYms9V5GZpA1eZ5/BERMnPL3NFonYR3VbcQGN+CU8tpvuS4Bc5gzBM6ptDdwxqirOsYZyixkycs6cyETt3nQQW0xLFThTOCep1E/ZSUfrUpDZgrFH1IdIjUjqPpHHraKCDhSoZt6bYMhAOaDX3A7DLA5KqoNwV+jB4NSXgRflOCEo9X/t4bAUFT6XsKoI1WxLrlauQ1iUljzJpneN1KCYSYhfZSwywJmYwtqhjeXkZZ8+eVW5Xl0rqHnvsMQAAN6cB2p+TlmmAN5ID17bGuFN5Mq41sKBXYBBHaogLFTTCYZDuhMsTOQCpZM5DJw6KikO/xImcH8YJLGhDU3ZNA+M0sg2maHu6DaeAJyubzSfixE6lgwTnBMQiSucqceB+oZI8rJJSus7zEu5JNEX7q8sxpQviNdDXa5vnWpaCp4mOV+fJXcMBL7jbJ80cz/9+yVZG7elk4RpBbd8Yxo5nO3qCNVsCyzrdbZ/CaTtG+HGCI8RkscuahquuugqPPPIIHnroocFI3RNPuDdQZk6pbTyks4Rf2qJIW9EkLQIQDbywNW/qnsgBAPXNy9pPskjlsmJ+egPPvvJ0rMj1GwcEDa6jSPIv8za4HpnWibSn80qv3b8LFzvR0quHbWlwFgvS1zzitFM6wB38FQpiJzICfURad0mndBww6vleL9zZLzY/AH/vSz2j9M4dBUH+M+q0bxSUO7oxHNeUrMiiJG6NawABqgcmOr9LK3hBodNaGZVgISd0qp0mktK6qNKrn2uuuQaPPPIIHn30Udx6663S+wBkJHXNuRm05tWuXkzvlbi8m6ERnu9g335UOktEDWviyRwd4GDBu7QaDo8fG7jMzU9U8SO7HwAAWEzHhpPtmEtpcUChoT9fGvIow7rrJanbhHJOOvO8gkPqG22XlMkc7sxtvGyNEaEeqlFp3SWd0vXj8hGxjbzTO1FE5c4/6HCe0Opm+zQ2Jj4rRL/xhA4AmL55jKcRvNCELqMSLADoDQ67mM35GHmrSSrDCmz+k998EkUATz31lOLepZA6zjmefPJJAIA9Pi39LboDVZc4rU7AKeCU+iM4Tl1HlRQwVhYf54gxCjtiurDIZXzDmoSlcqH7BooW12DmVFJ0OAEDgUEclAcoc9smN/D6XQ/CIA6mNVd6K05p6KQuTyqsiAcbV3T9Li+xczjtpHWqY9N1ISB2XSmdbznRb+VAO8UZcEqmktIRFj1F2KVGWHrHjP6LsGxyl9+ObL4fnuANm9z5hS5IGsHLvOTaxvtsZTOQqLTOKSD++hXxN5GUDgBY0a16PvXUU8qdJZSlbmVlBRsbG+AAnFL2k/eKktF4sGLw6IFjs6SkWdhVWMUuc0UqlWOcitWcJPBkbpB4IgegS+YuVxwQNENmEFERu2B7ut51bpZhTepkU3oVFLvenZErw3IqltYRBpjrHK1Jd6fSll7TpnR9vaYNCZ30ruoAhOSW3MWV4QYpd6QRaEfcFjx/egcEJE/hS0Pq9nSCh7WM4FmzpXS7FPFlr2sYIZ5RWieweGhaJ/q+mROglGJtbQ1LS0uYn5efB11Z6k6dOgUA4EY5XScJ5h6bKWcnkmbY2tWVNAsT+uYJbFA794b866wI6jDs0Ko9f8tK5q40GnjD9P34wuoN0suGpXJhlGkT28x1XGhNptjTeNacEh5r7sLRwpnkJw8QT+yeai1go6c1b/jzk9rdeWJXs+QGU+0qvfb8EaEXutCULrhcHKzdVtdD8MYXPNXSlF6B/ral68cYdXnNe+uH2KzTTk6vttui5ih4UXTJXYZzo8ZvNGI7gd93lWgn5WUoTXs6a1ztc4gSPAAw1+zYlE6kXZ3wlGAp0zrhYlCgDCua0gGAZmnYuXMnTp8+jWeeeaa/UvfMM88AAJiZbloUMqChQvrZri6KoMj1u7MDQ2/PyayTuSLRMEnFxzLaX1zCj83cg7tnDginchph0HI+ihxOQ9OxYYRxiopTxFPVeewvL2W0TgKbUVfUBK6Oqh0kgISwWaAM60+6ZNM6u0wy6SCROZxDsyIGTU0ax48AjjnE7fva+A+rzs+e4A1I7ggFeKkAcA7SSJ5WUXU4E/Gd8pVoK4EUbyK/Um1c2VUGv+DpVZZcdlWU6tDBvhXSOk/sEsuuPQtG/Jy0GOcdqTt79ixuuOEGiY26KEvdmTPtxEIbh14b3HRfW6Fd3XqjgDN0CrvG1gYuclEMusy6v7iEN0w8CAMcFa532hFebsTNKiHLhl3AidpcJmJnORqWN8rte0qy2MWmdJ0nQe1GEVWGDaZ0HpJpXVxKx0n3jalnHRwwagxaimQrSt4iOx4kbYoDWjMwLZJPnJXbQ/eJrvRuUMkdIYCo3PUrpQ2MEZeX5GUldH70KoucjzYtcbO3qPQvlBY6/3IK29uxwx0H9ty5c/ILI4XULS25NwpOC+mjtpQlWNU2KEolWMl2dQ4naLUM2CWKbQVXVEREbs0uQwPHdiO7Ru+h+wcCa4DjLvhlbowSAASV4aiISxH2mXrDmoRBCYPZB6GPE7uk9nR+GCdgzD3uRcVOCJ/YJZZeg8uFEHYtkErrVjmcpMb6cX/m7kPlrSE827G0guv2CJZSw5LRNKIXHM4kK8JKs3lDa5sCJy13/SZB8kAJig33vWvslmgHn8Pb7Akd10gmx7yX3ucxHV9pmaE+p9LrSe7pXrn2b7/1JAwMQOqWl5fbe5L+28ClVIJ1OOlqTM59AiiTyjFOMktswigSCxO0Lt1ur8EplpmNWZquIc/B0kXcNv5wl8x5LFAb1xWewYPNPam2EYfsAMTzRgU3l56CJXm3i5zLlWuRM39k3ZYySuxE2tNFESd20qXXgNiJLtNVho1K6TxErskcoA6Ub2KEuSndpUDqQzDHC7ond9p6A6CAPZlP2ZFwjrBL9tDLnUfPbA8UhLlSVzydPGc0ADiTBehVG/Ud2ZWU9arcOSLark5I6CRLsGY1fN5nEcbOuSdRdbvYNZZ4MtJ2qo5jSZJa6rhWgFEDgoMI95M0JVjVDhNBefPgfegdG4XIsCaezHlt0GTbojEQpPliFSdzHhohMAbYBXDeqOAFpR92/c5ot9tbzbBWFSntPN1sFxWniMcq3TNJpCnFeqXXnt2MEDuh0msAYgPGuuS34cBxGHfIJKZ1ntClRfHcUE3p+jW3quWbFJ1w+RtzHhDGXJlfzVfuoshK7np6vvYBYokNik6YCcI4ymfdGIkTpBI8pbKrwPNlLsuiKXoaoQMAYosv7O8tyzW3Z8X6+rrSdpWlztsg19wPPfWIwX0swRKbwD+fu6VzEFN8BdwhaDQM6PrgL2xBooY1CcpcvxGRuUERlDiDMBQjpGqCtlBhcr1AZXFAIsUubIy6MFohXSJVxc5feg2SWSmWE/l0yEvrSEJK55FjK4NLKaULYpdI95hdfFPyhkHwROUur9J2R+6KJsh6FcSywaYkOhAOusdeBP7etd4AzARQFry82tF5Qqc6E0QYQaErLcmVYL2UDgDGzjuJaR3xHQOcuveXtTW1plfKUlevt6+ixF1F2rQuTQmWWoBeJ9AaBPaY4FqC3/Ilb0qcUYRm8xGcX5/A/doe3DD9jNR20pIkc16burySMQcc+/Q6to8/lKvMyQxrMm9s4MbSCRjERpHY0MBRpmLfXPslxVFiFzVGnShZdp7w8IudSq9X4rgzQHADILKhBQMoF/tSJ9q2TpnhvDeng6DnRskJNtuzZSR4xE5//Rl0cgdC3JPBdkBXNgBK5OQuT6j8N5qoFNgveKVzmxFTnODlLXRyC8WXYMMSOpkvBGPnnK6Ujtg8Vux6xrSjA0rqPKnj7bZVxOHQ6yTVB8c0kjjvayTehX1IL6yMETQduRen2lnCEzkgWUIYp3AIR9aDdTjgYO1vH0VCYRCea7eApGFNPJED0JG5uERuGIhL7NKwYRfwWGU7anZ2iaMndiqlVwAgjLiyoCJ2MoTd27IqvSqSZweJIFmPNxcmeIQBWkPuDc1y1sOByx3gtmdjGD65yxjqk3G/4AGbkjdUQtcm6niLK7mKpnVhZde4UiwJJLW8Pe5vq6VWzldSKMdxNjfonzKKp2tgqzEOxuOHDMgDfYPCpibI1HA1eJXtLNFgBgxiY5oObsYFv8wNmjCR8+P1+r0cxa7FdKFOElHt6cLgGXR4UhE7Tt0BPrUBnb6DKr32qz2dKJwABARak8EubR5bej3j84tzaOvJQ0oF5c4Zk2sL5u/5qsxlIndAt+ABruRZk0YmQhfsLBEldMIl2JC0LqkNncgXL3/ZtedvIWld+Dyx7uu0LEtpqjBlqetAaCcl0ywOEKI+wnl7OABV9JrbvkG4BNuGMACS6QJjBLalQTcGLwQNZmDN2bzxmsTBfmMxv+2F9IDNWuYWqI2rC6fxSHO39LLB8upWJw+xY5yAcQKaEJHEtacLwjkBdwjYhA1aEbsIEMft6KQMCfybQE8Jdot2kBhmCONdn4dd0txhTiTTu/htiEs0Ycxts9m+Pon0kozq+aqMX+6AjuANopOECCqzVQSxx3Sh80JoWBOfGGbVV81/6RPtFBGX1gXLrj3bC0vwwu6ZXvDNOer1OsplsS/VHkr6Rf31ed9wBGmlDPCGFOBqaR3PNsZP2pZsT9cLlfHM2tUFRc6f6LVyHk3U3wM2r2ROI0QqQZvWarihcAqrxVKuMmcQ1pfOEv1CROxE4d45Idl8hwSkMfe0LsMOE5dyBwkA6efKBNx2eQSd9C5rwROmLQak/fnnMaZZ8j60jxUG0LUquNmHWWoybE8ntY6MOi10rTOvW5vgJTBKPpOELozwlK6bVqvVH6nrgvOuRspbNa3TqwS2lm8J1nGodLu6IH6Zy3McuyQYAIsP9mY2rdVwxLgAANAIh9Hu8FDJeTqvQfQg9tK6PMhS7ACA6EworYtL6ZTa18mmdRv8skrppNvThXSSSIWXQJDu9C6LThJJsLLvS1gOckc4B1nvnUM7FtsBjPY5MgjBzJHWVPZfejO//LVLsLJ9BMPSOlGh85dgQ1M6AP5vnbou7wvpk7rgFW2LpnUqJdh+sGaXYTEdRbp5d8ta5mR6wDa4hlVWwhytYVbijqi5EztlUtHwZE4jHMXAhx01w9JWxwFFg2uosvh2QWFj1AVhvLfTTpjYWY6GlapYGYZzAsfavOoSU1DsYkq7iWIXWLTfad0gU7pha08nTTu9c4oazFUbXMtzvBkSPuJW1nInURLuwbvBXwJy15oyM0/pmJHP8UEd+YbAwS9ice3oepZty198Sre5/lJJvgyuLHWmabqdJbjTc3HdqmmdLHm3qzvbnMIP1+axa3wNz516OpdtAGI9YD2ZA9zJ7QeREsbJnCoqnSX6UYJ1QHtmr3A4hUkc7DMX8XQrenqvsDHq/Hjt6cJ+7xc7FjHAdhid0qsPUbHLEq6JiR2ngDVJ0g0u6gDUVvvimWZu2GGFcECXlFxOADAOwhyAkmS5E+wkIUWI3GXSSSKJQsj1w5/eDEjw0rSny03oCEAtDpY0hR/EO0tEJ2XiqJRdx847aE5FH+ferB+FQgGaJh9PKl9tx8bG0Gq1QG0bPHhsbtG0TmU7Wber80QOcGetsBwNLUfug120JzPrLBGUOY9VVsIpp4ortPySCq+zxBl7JnOZ88PcbntS5FGCDYqcEzInLwXDtFYDEsROlcxLsRFiJ9pBIjKti1tUogybFqUx1wngmKQ93VX8Ctx5VNOfYypDmai0p0vV09GTOyBW8GQ6SchuHwAIOOh6DWxcri2TLIniESZ4puH+XnBGiH62p8tT6LImrdCVlhioxaWFDgBa40lfXNzPVrYtnYey1JXLZaysrAA8vDayFdO6QbWrCxO5VNsASd1ZIkrmOtvgtJ1y5Sd1jfZHd7V5XljmDHBMUCv3dnVZISJyQTyxo4ULON7clvk+yYpdsPQaJFLsRHvVSrav68cQJ4QBxWX1C1Tn1Em6rwPgxe4pusw1yU5AhMh/Oc66PV0YHDBXIz4kmfQuYwiHO4Bwpeq+dwlyp9SeThbON8WOEFfu/H8Tlbyc2NJC57YMklsHUxO65rTmnvv+DqZB2ICkbnx8HABAmBX+fmzBtK5f7eqWq2V8mx3s/N9iNFbkztcmcJ+2F8+ZOpnbPnnt6hyQWJlLg0i7uirjOOPr1WsQRyqd04h8uzoHBA2u9W28OhWRC0LBMEkbiaVYVZq2LtGeLjmx9otdZsOYpH1OGlJ2cpBpnN11eDD56xoHh13qPcbcjgrZpLIqpVcAndkJIslA7ro6ScjQ3jchucsrPfQgZLNTRdjfgr1oFUVPpfRqTW5hoesjrSlNqDpAmPtFZ2JiQmk7ylI3Nzfn/uA0Ip+zFdM6WUTa1RHCQWn3PtQs8STJcjQ0UvaaTaLCilh1xjCtVTOXORH8Mmf5phXJetDdKGRLsP52dQZxMCY4hIrFKZZYOZP3OM9SrM0oGjUTRiG7BMATO21VF07pPIYprUub0qXZbmFN7nzgBLAmtNCbLgfAA/dwT/T6XnpNwl+alSGqk4QMMnKXJzJt7Nqix/WYtlshY+RFTg1mhb/3rbkSWMaddrIQurB2dZkJXXu1zCRSzRpE57UntutU8/Nq13RlU1hYWHB3wImZSXsLpnXSJdiwBuIhEufH4QTEodBzbI8m2q6uyk2cs6fhcAKTOFKykUW7uirjOO+U2klh7+FYYwVcBMfCoKYLCOD4PmsNHNO0CQoOTfBAo+CYpnUsOdmMLJ+n2DGbwoIeK3acEzi2eKmfmAzOhAO9qiC13O015ojO+pRXWtfHlK53Wfntxt10e+Z1BYAiYGwwgACtiXzHvJSBcIA0rU25ySF1IRzQFiPm3MxS7sI6SWQM12msCPJib7AQJW9RZCV03gDEA0voREuwJOLnBFpTIedRRAmWtIOyTnAmibLUeRZJYpI6ZhB0Ogiqnn8csCYImrNqK/DuwaH3XNZ7gRUtwXJGwNtpA9EcaBJiwzmR7mAhS1K7unVWxEVn0m3D15YpUzIVS9OuLknmurYjeZartKsLK8E6gc+IheyHjNAB7nh6ZdiAVs1F7B6q74l9bthwJrHPTxA7ztE5D0TgDgFpaHBKXKkEK/MlLY+0jjCgsLI1UjpVONmUR3PdP3tQhpIX154uDrY59AgBchG7xLJlQO74mHzJMvf2ikBysjdkw6cMfclVcd9aU5pwSgcAb3zxlfjSl57ov9Rt3+6OhUXs6HlGOW1fIFK+p8Y6h2MQtGbVvuISh4Se+4RG9IAjHMxO6qGy+Qk7TQ0NmCiW8kuTsmpXFyZzHg1uYJWVc507do1x/NCawRhtJsqcKirt6oDuuXbDBC4r8hK7dVbCXUv7UdKja5RRw5nEIZLYCcMJiAMwnQMl8bZ1hAHGhvuv1gQc0Wk8s/4YOUAVGkh79DOl80qvUtvg7ZQuYpsdyfMJXm7t6RLghGx+vBE3buX2dCK09z/3ThJx7ekyZCAzbLQhDs987MVM289F7FpSCVZW6AgDzpw5AwDYuXOnzB52UD5S9u7d6+6EvZH43E5zJcX3mNoZzc8YIHZ3ZG58fUje0rar85dZo2TK4RQsx/Z0y4zh4ZbbW9Pk4h9oniXYrg4LhMHIsTevn6zE7pQ1h8+cfS4A9/OrNAuwHA2ThegEPYmGrePiUncj3SzEjjsExNcDltO4LmC9eEJE27sgInZZpnWDSunSIF0e4zxWHv1/M9fdMUqtcS3f9nQxdKV2QM8wIDlfll3y7iQB9CdVk7z0t+bSzw8LyDVlEB2rjmsku2MyxfBJiUIXvARy4ORJN7i54oorBHauF2VL8DZInAbALIB2l7qYQeCvfqUVO3OVg2lUKa3jlIOACFcJtTqFQwFezq/c0a92dQ1uYow2Y2UuDSLt6pYZwzFrDi2uweI6DIV5WbMswQYH9fVgnKIBuV6wDMRt66UQR7tTm8l//mEi56dh6wCKymLHOQlNqoNiJ9uezkvpOv+lECrDeild8HfCZHU/TJnSqdLP0qsM3k3TqDjuyPyAWttnkW157ekiiJU7iW1EtqfLkn61p8uZLNrT5TFNHtfIpm9I7Qx6/STFSwxtRxe3eQaAWVheXgawGZzJonyXn5iYwOzsLJaXl0GsCnhhtuvvXuk1K6gNFJc4AAWxk90PDulmYk6LokHES7Aq7epkSrCMUzTb8qLlmD7FtavzZM4BQcM3+4LFdVS5iTGSX7k6WIJ1QIRSyH7PlGGAYU4grUsSuSBNR8N6U13sovCLnWx7utD1CZZhw9q+SpVhh4CtVnoVhVqby3gpaqzcccBcU2tPl4Rf7pTKiX0Y702qPZ1q6VXytQ+i9Jqn0AHu+5wqrRN8S8JKsCplV3CAWO6319nZ2c6wcbKkim4OHjzYlrr1HqkLY1jLsJkwJCVYxnunl5Ihi3Z1UTLnx+FyjWJVS7Bp3gtR0qZ1cWVYT+ZERM4P5yR3sdMkpscLll671ifZvs5DtAxLmPeFMD3eDZlwnrpnvwiEBTorSJB16VVso+7y1OdGYYJH7PxLlnRtA3TD7QFqL0zms5F+jHt2CZZe8xY6AGppnYfMgoHnygqdf5QQYq0CAK688kqJFXSTSuqOHj2K73//+6CtFTDsF1pmkGVYGbZSCTZO5GrMBCUME1Tsxq7Srs4rwY4RO1Hm0iCaolWYhnPOOBxOoREmlQiqlGDTEhS7U9Yc7jh3IwDAYpqUzPnJW+yYTQGbghQE3qtA6bVnfRFiRxigx7RDF02/siib+tMMTuLvGEHpS5PSUckboEpKlzk+ORRK72JIKr1G7wPrtHfTL6zFyl3fSq8ASMO9HvFiPmXYYS+99kPoUpGy5ColdOi+Nrz5RVfgi198AEeOHFHeh1RS96xnPcvdqdZq1++D7emyRDWtk21Xp1KClSXt0CaiqVyenR8AVwTP2ROwoOUicyJ4Iuftj4X2+yLXFt9dXuGsTpPWAUCN63istRPPtGbxzxeOKotckNzEjhHAco8r3tTExC5plRFiF3e+96sMK1ueCkqf7Qs2CAP0evJx0s+UTrX0KnSD9qd3jEOvKZQ4016L22XVWLnr11Rb7XQvN7kbsqFK/IyELrC5wHH9+OOPA3ADM1VS3e29DROr0pmvDEhuT8cJUr155iqHuSy56304zp0WRaOer9Scr03gnrV9aDIjt9KiV4IVRSMMDFRK6Lx2dTLUWAEXne5lKkzDMWsKp+1JNLiBBjc2hQ6ABU16O4xTNPpQtgWACjNwb2MPHmvtRIMZmNJquGb6bKbb8ItdLjgEvBn9fsWVXoMwncMptW96CSmdR1wKRhygdH6APVaJO1gyp5sPpgPWGAl92KWg0PYppcui9JpEe/1co2CF/IboiJ2L1bKBlgX9whr0iymTubSlV3d+PZBGq/Po4hIbymTYhc4uqOtQazK90IFZOH78OAAMLqlbWFjAjh07cO7cOZDmMnhJfHLxNGXYVJ0mJJAuwSokb6IlWEo4NOo+pxUzT2wYeZVgNd9RScFQpC0psZNtVwdspmj+Eqtf4rLejgyiaV2FGTjW2t7eDkXDF2sbxMHh0nlgO/Dd8/ul9yEKT+xsVoShRR/PYcOZCNEWu9DELqH02vN0b6gTLpbKx6V1hLenK0xB2pte2CUh6vTi1BU+woDiKuuas9V9ncnXu36ldKp445F5Ykeb0QlZqtJrHF5yd3E9v/Z2ovjksCN2hLgJ3jC2p5uR+3KYh8wB2Qsdp+6/usA51rsvcs8P+yJKm8twHAe7du3Ctm3iLtWzHuUl29x4443tHboovaxjuN9Mgw+R0q0ndjKJHadc7hUPuARLCYehOTA0Bxp1h8Ml7d/LknWqpwWOSo0waJKGrpLWVVixK5lLEjpV8kjr/KlclRVQZYUuofMoEgtHS2fxgu0nMtmuRhmmi3VMFRqYLDRQ0OKn/UoceDuKhMROFE4BVuDQJfrqhF0khyKlUygLe4keYRydk564Nw67RCMfjmrSoJjSqdys/ckj1wi4RsAKenxyl+c1uJ3aaWeWctyIBO30DoyB1Jsg61X3sSF2MvSlPZ0htg2tyYS+hMjiHTdZCx0Q/WUrdvliNu/52199AABwww03pFpP6mz3xhtvxJe+9CXQxiJkW3/odQ6uA1a5+9NhBgET3DOtCWg1AqcscIHpVwlWYmiTIP5EDgjf5cX6OB7TduDo+DnFvUwmqhdsUObSIpqiVbmJ05bbw7pIWpjTkwe99vBKsLJDqGSR1sWlcnFkkdhplGHCbIISDt13TLkzSthS04UJE0jsZEqvfjjcc1t0aMWwtC6LlC4tKjceL6UL/2PMtjT3hmeEzO7AafjNp98pXdj3PpnkLonY0msUlg3eaAC0PUNGH8aRE8ITPMCd0tL/uigBD5t7doBDmQQFzvuikOWUaNTmsDO8j/uFTmn5ovzyUbfQ++67D8BmUKZKJlIHtLviOk2wYlEoadNagNbknYuUX+xk2ty5U9QQ6O3G1XaJiwmeIP0qwVJGUDTci1nS0jaj0rNLNJmBCikql2BFZE6lBJvEOivinD0N5hs82S+9oqiUYNP0hPVkTkbkghSJJS12nsgB6JE5j83fK4qdr5NEKH6xkyy9AgC1CMrniTu9oC0ndp2fM0rplG96xJ3JQhXl3rokfEw7wtAlex3J62NKl0RQ7rSGnU/pNXK59heRpvvlL1bu+jGUSRD/6wpKHuCK3oxk0wnF0mtYAhd2HGU59Re1eVev6jR47eeGRejgNDqdJAYudfPz8zh8+DCOHTsG2jgPp7xP7Nsp973ANINyOgC1Nmvaeo1Aa7g74BR7Ba8fvWBF0joSUkLNO0iUKcHWWAE1VsCCLt6YWCNMuqdt1EDEYTLn0eAGluzxoUnrGlzDRWci8DsDVZa+S6ao2EWlclGkFrskvFKspnAR5u45Dbhf2kTX4E/rhiKlU7hhxKZ0ScsmBFz+m25H8vr4Fol2+vBEwCloMFar4DknZ7zZ7P6FjNwNkqC86gZINflLOx9LaBNHow9cr12n6BeBrEqkWQtd2gEhMhU6ALR+HpxzHDlyBPPz86n2LZOr+Ute8hJX6upnAeyTXt6ou23dgmVYIXj3hZ+wzTeP+ATPwylyZHCvTdin7rQuTODSklcJtsYKWLTdDggAYJAdOFzIr8wLdKdocTLn4Q7lIn/oZpHWhQmcg/B9HaPNXMVOJJWLI2+xI00KY5XClkjOvZSuaz2SaR1xgNKFAaZ0qTaqltIRG9ITmBPGpVPUVMi+LEJAHAY0mm7HgQS5Uiq9AtGp21aROw/v/UqiLX5sOnwWmzgRG8Qcv2mELjirRJ5CR3j0e5dU6Hr5NeP41reAF7/4xel2DhlK3Z//+Z+DNi62hzaRWy1xAKPqvvFKYhe1Xtb7ZpIaAeoAMwG7KHagxJZgGQCnd5+5ISdztqOhSYCCLtaeJI8SbI0VcN6a7Er0apJSolKCtbiOc/YU1lkpVubSopLWOSCoslJnn6IELoxiO27KWuzuvrhXKpWLI1exY25yThwCa0JwP30pnYdMGdYdAw7QWgNM6RRLr4QBxTXFlE61HKgyR2rKDhJC2+AcxoWK+zNrD7kvIneqpdc4gnJn5jQIa5/wxE82RWMluetD2tJr58tNCpH0zyoxjAkdAIDZ+P73vw9giKTuyiuv7AxtolXPwynull5HGrEjjts+VKS62HmDZY4TDhCbgFthYxOE7yur66jRIspjYm3YOOSPXZW0LqwE60/ngn9ftsdwrCme1qmUYB0QNLiBpkTbM5USLCCW1kWJW4PLX8yzFDvGKWym4YqJVdTs7FIDv9jVrYxvWNwtiQJUXOxCkG1f15xOcfVmgFlJOQyKyuZTpHQqDHVKxwASGAxYSu5EdytYeo3dJ/cNY6tu5zE6PZV6+5nRB9GUH4Bb/LnBHrVZlluBbDpEAPLntUi/Qlo/h0ajgZ07d6aaHqyzvtRrAEAIwatf/WoAgF5Jnmw+cj1tsTNqkh9muwSbJ7RFQBqae6T6H1EwAhaS4GWJSlrnp8YKONmaw3lrEo2IwYwtrimndUl4MmdxvVPuFUW1BBs1GLG3L97++NHAQVM0/CxSC2NU4uYRoMKKeLC2B8fq22Bxigm9iUkj22m/PLEzY8awU6YtdkYl/jOmFkHpQvQ5I3OOM139wXWAGSEPkcNti6R0xIF6Y39K3Ifo0zPuVOGWjRlIc/MaQzgXHvajC4X3gNs2uG2Dra6Bra7JbzMPJIXLmQkvvQ4M3+4PWuiCgxB76VweQgcA/+aIe8F49atfDZJBk4/MBrXxpE6rXYBeVb+BEQdKHSeII/fNk7YArSnzVUL8Q1LFdjQ07XxHEG8yA2et6USZS0PSmHXdMkfgcAKD2CgE624JeGmdLH6B9O9LHBphKBKFnnhtVMSuxgp4sLYHT9UXUHcMNNtWQQlDSbMyFbuWo2GlUULL0VCeTL9eYhEUFn3HlYjYcbdXfOx6857JibeHWiK93984FRO9rZDSpem92fk+Kyp3kpvyl15jn+cwkEZzU+7s/KNHXt0Ux6DcDY3gCcA1yS/RkqVXVbIUOq3JoTW59Pnof75KuRWQcAWnie9973sANh0qLZl9Uvv378eRI0fw+OOPw1w5BWhXwlaclUip40Sgw0QSYe3tsoY3NNS04SnBnmtO4dj6AmaKNewrLwtvQ7YEG4W/rOmEpJyapM2rpnUNbsBimlTbOs2twXeWV0GkFFthRZxouL2fGCcdkQviiR0ArFtqJ1rL0VBpFTrbcph79SoXLGASqK2HrDdpOBOPkLZxcaXYpJTOI/Ecz+J+EHMY9hy2BJtDOHGvLZ9k85FBpHQZ4L0XxBO7rNKVkNJrFF5JljdbgK5JiZ1U6dVbJuT95vbmvnpi19fS7BBOJSbbni6L9nN+tGb6ae9yFzoAWu0ZOI6Dq666Cvv2yXcyDSPTo+G1r30tHn/8cdDq09DLB8CJpjSiel4dJ9JCLQJOKXhB8FNTKMHm0WHiXHMKT1bmYTENDVtH09HBOMGBMbFR1NOUYL0OE57Qhcmch5vW0dza1jk+CWRggOTwJho4nJTD20eJXYUVcaoxC4trkSIXRFXsPJnzi5wfQni82KUhSuwEUrrO/km0rZPdN+mmH/DJDdpDhVSDwygR2KX47W6VlC50dTFyp9RBYlGunSzQbvxPiCt2gJjcSb4P/pQu8jltweur3MUMQRJGP0qvou3pjPUWQAms8ezaBG4VoQPnODRVwdOrwBve8Ab5jUWQ6aXxNa95DT72sY+h0aiANJdgkHkQTpUSO0/siA3YZbEZJmQ6TADtEiwlcAqCB0A73ZPqYzGgtM4TOQAdmfOwGEXDkTuJVDtMJKVzPcvlkNb5Za4z7hynSuPWaYShCEs5rQNcGfNQkbngugyRCVKRLHN+BiJ2gsh2mpBar6KzE94eTB0hPe4Zh+EbacMveVs1pQsjVO5UOkioDDjsvRdeoiQjd8KbEH8xntw5FxY7v9O2pRt/LCuGofRqrLd7EjsM7lRU2UhdFkJHbQ5myIdJ1OJguvhyWm0RTy8/jVKplFnpFciwTR0AjI+Pd3aO1k60S5zqbzBx3DletRaHXue95Zwgkh0mVEqw1CIgTYm3TTWtk2hb50/rzjSn8a3FQ3h0bTsqrQIqrUKX0HmsN4s4Xp0T3oZsWnfOnsa/Vo7gycaOTrs5EbJsW+dwigYz3YQQpGsgYZmhSfyk7TQBAGb7zvpIbReeqi9gwykoCZ2HTlhs+7qWo2GpXsZaswjL0RKFzsMTuyza2PXga2MnWnrt2rew83yAo5gA8dcS71pDmHvTMKruQ69zMI3AMeUuxcOS0oVuwvOqqg2t4T5EUE3pQl8TId3JXXARhdKrLLzVArc2H86FxS7Jy4QtVno11lsw1ltue8j20Cr2ZPqRAbz2c1kInUqzLGpx6c6at97gfll+1atehbGx7NLTzI+IN7/5zfj85z8P2jwL5tShNUvuN9M0X/bbsqZZHNSWmxs2iX6kdbKopnXfsg71pHJR5JnWnbOncX91L+qOCarQLTltWheazIXgDCCtW3eKON7cBgYCBzSVzHl4ZViDOrCY1inFyiRzUagkdsQiKCwJxOVtsdOaRLj02rWdLNO6dgcJFfwpnfAy/sozdbcf7HVHOKC1ws+FYUvpwqD25r5rDRtOMeHDSpvShRFVks2h9NoF4z3b4JZ7kGea3smWXqf6X3r1UjkAoYMjs5Tj2cXJnDUu3gmwn0Kn1av4xje+AcB1pizJXOoOHz6M5zznObjvvvtAaz8Em7gWep0BUCvDUpuDU+I2RvbkrrWZ2jGddM01K1uCHcYOE6LUWgY2apvfckzTwVS5nuk2/CSldefsaTxa34Um01Fvj+uwbhdxsjWPvab4N1TVtnUX7cnOwMoi03s5IG6bP4rcO034Za7Wfm8M4gAaUJeU6zAoYTAJg04YbE5xqjKdSub8dIndalzjsDbc/bIktG4G6FW4ZU/ZIQP81b2U37LSlF6B9NeQ0PmuQ0TP3RYHlZwCLdUQJpIQDuiVbjkjDu8kdolyl/kOdZdkpQUNcqXXxHVZmydHv8uz3OhP6TVJ5FSxA5KWlM4xAQ/w2rP2Tegsjp+8ZQp33OHgpptuwuHDh+U3HEMuZ9db3/pW3HfffSD1p4GxwyAoQK8zcEKlO06ESpevzNqT3kn2glVhkB0m/CLHGQVjvpKi5DybXglWtMNEFGEy58G42oT2MmmdQWxMaOIy56dThlXoNCEidlVWwJON7V0y5ydLsVtqjuGhszs7x8T0RHaC74kdm6RoLAmInSjclyCpiF0WaR0HtEb/UjpRQkXP3SqscvgbRTjaX6KDK+tvbdqf0nl4M1GEyV2mpdco2nJHCu3rZyOHZgVtuC2WOPoFL7g/pJiQggxZ6ZVaDMRyoFHB6cogX3r1p3qDLLcC6kIHp4kvfOHLAIC3vOUtahuPIZej4uabb+4Mb0Jrx8HGj25OIA15sYslLL0zCHjp0ukwESdyfixLw3q9iMmS2DbSlmDjZM7Pul3EM6057DHF5VEkrfPLnJFiADPlMmxMb9iwZC6KtGLXkTmHwm62T2nCsYpSJmJn2Ro2qu4NhgMgRQecEaCVaZNcF0mxIwzQqjFnIgHsUvyNifjFUoG8k/6ubbVfKo8YH44DXcJHePvmQwiolf+OhqV0Pc8Jk7s8Sq9RtEuWnjQlyR2vS8pfSOk1cZcmJnra3CRK3oBLryQo7pz7Oj6IoVJ63eyQtAWFjgPvfP1OfPzjTRw5cgTPfe5z1XYghlykjhCCt771rfj1X/91kNpxoHwIoEZH7AinUlOIdJVgo/Cndy0OrhE47XMgaVveJOAy5J3WNeomKhsmiOlAM1ikyPnhjMC25QYSlk3rvBKsv91cEoxT1CTmgvWISuuykjkP1TIs0Nu+Tkbm/KiK3VJzDA88s3tT5jw4gd3UU4mdJ3McAPcdu0RjACXul5oUYkc4oIdVwkTFjrXHhUu4uOrBYUr8ojekKV0kApvzCx9tz4HLNYAR2llHnoIXltKF4Zc72cb4ANSEzp8g+eQuTuy4I3dzEE3p/BA95FYcJXmEgIyV3XluJcROuvRacPepR97apJUqFbJI54DBCR2YhTvuuAOAW9HMYgaJILnlt//m3/wb7N27FydPnnTb1o0fBdBuQ1Nnkd80w5Bu98a7nx/8AMIkj1pug+1BpXWNugmr4pMARtz5ZjnAJMqqead1NqM40ZjD6ea0VJu3LNrWZS1zftKUYZdYEfdUD6BMW9Iy50dG7ELTuSCKYhclc34I4YDO0oldXEImKnYCp0bYNjqi1xY8Y0NR7AaQ0kkt47sB+sfdykPwRFK60OUcDq4TOLPjAOfQVqrJCwHZlZQpjUzt+pbSia7b3avNdoJM7LPjYyXQlpycMlMDscUlqi9JcAbpnLue6Oc4ZrSbyAqd5rV9bf/z/3vtPD75yQr27t2Ll770peIrkiA3qaOU4p3vfGc7rfshUNoPaO6JQ5g7CrtdJK5MtZLfJaG0zv/8FgfVCMLa9Yd+KH1M6+q1AuwNo+dvxA45mGwC1tBAi2I7l1daZzOKOjPhcALGKZqEwZC4o6m2rSuSFkDdGQ8mtEbmMudHpgx7wZnA3RsHAbjpZdUuoEoLKKl04/SRJHZCMudHUuwsW0OlWoyUOT+ZiF0ccWLHxK4bURDHXbc1RsA0wJr0vV6GRMnrd0pHOKQbCse9P7kIHuPCKV3XYrq7fWa0r1szY8lilzalCxJRkpVN6VQITekyhutU+j2TFihBwfTIYigTGYTTudDQpy2DskLnf77TwGc+8xUAwE//9E9D07KdntMj16PplltuwbOe9Sw8+uijoNUnwCav7/yNWhxUJ3AKbhu4JLmTTesIA6gj3qHNbZcHEEZiR5JmBt8Uy5C0jjQp9Hr0DZGva2AmB9HFjg7CiNt+SYIs07qgzHkwTmEBUmKn0rZOIxxjxB1TKk+hA5LLsBecCdxTPQAAaDIdlcAsDt7wJHmJ3VJzDA+c3gW7ISnHAmInks6FoSp2kaXXIHFil4FTeSPKdI0sw32SFyN4/UzpVF6r6E25S/BAlcSOcHdcuixgpg4kpXZ5dfzwy52C0KmUXmUhY+Xct8FK2c3wELkNyfZ0TLJ87Gdg5VYfP/6SMj73uQauueaa3FI6IGepI4TgZ37mZ/Ce97wHtP40WPkgoLuDxHYGJiYEXAMcKiZ3MsSldaH7207r4gcRJd2DINcJWJVs9sBLSPwIAHACR1DqAAwsrbMZxYZT6JI5P7JiJ9O2TiNcery6LAiKXZLI+fHP1Zql2Pl7tUoLnUeE2KnKnB8lsUvTOSFlSgfATenGI14v8UleiOANJKWTRPX9IZLTegGbZdc0KV3P773ULkzusk7pwmjLHZ2eAhgHW19PXibP0qufiAGVo+Bj8r3VZZpHAf0pvUoObAAg3XAlQHZCB7uKz3/+6wCAd73rXbm0pfPIoWbSzQ033IAXvvCFADjoxiPRT2yPLecU3JJIWF2b2gKzSvhX2U7rZCAMsd+K3RHhfQ8LoC0CYsF9CGyP2gBtyLQpJO5E6hJ4aZ3w831pnc0oKnYxVuhU8dK6OAYldB4OCM5Z0/iH9evx7cphLDbHsdgcjxU6D0/sRDqQJLFmlXDnMwfxwOldaNVMdaHz8MSu4l7kvVIrc4iy0HkQwkF05vaMNTMWnrBDIcOULpa24DHdbTJiTRLYZQKz2sfjU6HsqtL2iCoup1p2FVq1oYGZOpzZ8c05S/s4PAvRdRDTAJ2eAp2cjH1uZh0k4p6vkNLxCHGOQimlky29TuRfeuUaSTUObWZCB+CWow04joPnP//5uOGGG9R2SJC+jAL5n/7Tf8L3vvc9oHkOvHkevLAdgPttl1PSPcSJJ3chyZ3StF6yaV1yZ7reZRyAEgImmr4xgDgEUlvqU1r3w415zBWqwjKnktada7kXx2AZNknmGKdd86bmwUV7Eveu74PFKVpMx5hC4pY2sVtsjePec3vgMIpGw0gtXF1wAqtm4uJ6Adq4lem6eYvCPGu4X0KyxivD5p3SxdE+ZcfOOaAWh8FZ19+sUvbfkdN2jsh7uTRl16iULvS5hgbCObihgzQlzymVwW8DkuLJV2RydxmndCrIzJGqAteI0vytgFr7OcAtJ3vJoB/SPIc77/weNE3Dz/3czyntkwy5J3UAcODAAdx+++3uBisPAtwVk9i5YQWSOxHySOt6nq/QiHmY0joCV6gYJ6jZZubpXJBgGVYjHCZxhNK5vPbtoj2JLy9fh++sHsLF5jhWW2U0bANVxcRNNbFbbI3j7jN7Ua0V0Ggnc0Rrp2BaeqHlDgGp6KBVDc5q+jQRAFhTg36iiMJpE3qNQMtvTFeXfqV0AagFTDzjdAb3pTbffFgcRo25j7DBfxXIunNEHFRhuTzKrnFwQgCNghdM8EI2x64sXcmdL73rR0qngmxKp0I/Sq+i7em4RtwHTR7KLGp5wtWELrQ8zB3sKZ0CAPzET/wE9u/fL79TkvRF6gDgHe94BxYWFkCcGmj1mPiCAbkDgVQJVgWlb8cOQMN6r0bRSeskaKd1oiSldZ7MUd+jbhu42BiX2i137lW5Q8krww661BqUuXVfiZWB9E3sFlvj+MrJo7j7zN6OzPkhlLtypyh23CHAug6yoYPa7S87TQpWUS/pqsqccCeJ4HIOH1xKB8CdHzb6/c9c8PqU0imXXfuMVm22f6DicpdBShcG0fVNwZucBB2Xu2aqMLQdJCRKr6xoqJVeBU7ZjsypjrCkOAetX+iCCeQ7b1vA2bNnsbCwgJ/6qZ9S2zFJ+jYJX7lcxrvf/W78+q//Omj1SbDiHkAfDy/BhuEry0qnYpIlWKDdq5VCuHEmkU/fQW2ANwhYsb89YQkA2jZXGjBYzgnWWq7YLBQVpu0RpMl0rDklJaHLogzrlVmbTO8SuZ5ttcUOQC6l2GCpNQmicQAM3JEYdNQhHZnrWpcndjBAJ+S+KbGmhsJpUy2VU+wkwXSChq85JnGA0gV5GVFO6U6L77RXhlEaVBf96xyhKnSEA1rdAShxUxQuPuiwSkoHoHcQXM1dDy+Y8iXZLOEMRNe7yqmsUold5FIpvYqkdKy4eV3jOsm89OrJWJoiThZCB6D7Z3sDn/70PwIAfv7nfx7lcv5SDvRR6gB3iJPnPe95+N73vgdt/X44My8GYaR9URG1J3TatogiO7wJsFn6kIlwh7ltnV/kgF6Z61qGE7REZkL2IdO2zmuvttwaw+N0J44Uz0pty9ueitiJylzXtnISO6/UKiJzfmTELkroOuuSFDvW1GCec2eHyb3M6oNrQHMWYP5OGAyo7fTNdJEkeTmmdKGLEAI7Yo5Wke3JoNo5Io3QdZYl7o1NVu5k6KR0oX+kncSuS+5ySul6aG/HX071pC1K7i6HDhKezPGUEhdXevXSuTRkJnRdK+V49o7zeHiphZtvvhkve9nLlPdPFsJ5f2d6Pnv2LN7xjnegXq/DGb8afOxK2CWSOD9jKBJ7zqk7crxMWseJXFoHeL3kJHaMAk6BC6d1AMBNBloWbJzc9uVSuYX5ccGR2uH2ZpwyG9JpHY0ZlNiTOQBw2rZcoA72FFeUxE5G6s5YM/je6gHYXH6+Ww+T2pgy1E2GEo4CtVF1TKl0LgrukEix4w4BqWoAJ5FC1/V8CnCdg2s8Uu5YU0PhjAEtZhxGEQgDjPggo3f/dKC+PeEcYe6sMECI4LWFLou2dKJwQtCakL/jqLSl0xvyMpImpYvtHMF5pNyppnT6muCMKJ5gNVt9kTrebMZuh9ub75MneHRiQl7qpuSSPT5WkpY6Z0y+mQltdh8HwVQuCNPlpggFAGb2vg6RdC4pEYySOZFzIl7oAG3tGLSNRzA2NoaPf/zj2L59e+I6s6Jvbeo8du7ciXe/+90AAG3jMcCuQGtyaDFfxLJAqcOEQoPJoWlbx92UjnO3ZFuvmViqin/bU0nr4vCEzuGkI3QA0GQaNhJr7+GIdJo4Y83gcxdvxLeWr8TFxjjWmiXYTO2wt5mm3L7OT9U2uzpCqBLVxq6TzlliQge0z48WiWxnl5XQqcA1oDkj8EQKOCUOp8RhlzlqOwnq2zb3V1Xoxk+rCZ1KSkfb42R61x6R689Ayq6xTyKdsqxf4lSFLjal63my294OKuXYFCldFJ22d+3yLJ2YAJVM3fqR0qlALQZWNLoeXCedR+h+pbx8dHWEiHmJSembajoHJAgdANgVlFpPAnDLrv0UOmAAUgcAr3/96/H85z8fAIO2dh+Iw9Qa6kp+LrTFQWXlUfJbc996wrZor9h5IteWua4/KQxxkkWnCYtT1B2jI3RhrFplPN7YKbUd//aiOGPNbMpcy21fwkDgMKokdqodJyjhKGkWCtQGJQwzZg0HtovPqhFHUOySyq2J6wvpQJGV0HEdqO9gqO1iqBxiqO4VPFFIoOwqQlvw7DJHc45g7JyDiZMKN20OGDW1cqLSdyLOex5+wQvKnkrZNa3QCS/ryV0KwdCqzcgJ5ePgtgNYlvsYEohpuEJHCEjB7HrE0oe2dKKlV1q3Ow9mal0Sl7bMmoRMR4g4ecxV6DjDs2fPotVq4fnPfz5uu+025W2p0vfyq8fi4iJ+6qd+CpVKBc74VbDmn5V7CRZQLMNK9qjhxL2BCbetA8BMwBmTTANMBlqyewQuCkI5ymNNzI2Jdz1ULcMCblsyBhIpc37SlGGB7lKsV2ptMa0jcz3PB4dGGXSqULYCR1G3EtvXeeXW4P4BbkeRpyrzOH4+fiBmUVhLA9Z14XJrEl6zA33DHcAzC6FrbHPATd/7wAmMFQ1jp6LXHdqWThKtRrDjria4RmCPaXAMgsre5BPaS+lkpc5L6WSljjqQ621FSOjzCd8ca6tnGyl6uiqPSce5O5k8kRc84bKrD7K2Ad7alDnS7lABI0ZcFFK6pNJrD5R05pbt2Xbgc+TtpJGMlaWljk2NST0fiC690nr3503aU6c54wVwyWm7lEqvBu3Iosw9OKz0KipzYedHZ0qzhFX8h5dP4pOf/CTGx8fxF3/xF1hYWBDaZpYMTOoA4F/+5V/w3/7bfwMAtBZeCHtqO6TnfFfYe66ha945ZiBW8oa2bR3lgMlATPELS6FkYfuUXIOmstHC7vKa8PPXrCLWW0VsK8ltJ4v2dV46FyVzXcvkJHZxMuenyXQsNcew1iqlkjtKOHTDQaNmgl7MZvwurgGswKDVKAqL6QJ9ZgDNhYDQdTYUL3ZCbelioE2CuUccmKubNycRuRt6oQNcqYvcke51eaJHHLVxxaRTOt9+UIu54kJIZ59F5E41pcPFldBfx8pdxm3peqAExDAAkUncfZLHQ5JGMhFfPZGWOs7BI/aLRMx/a8/Ip4GOwtytTklT6ggRlDqZdC54jCemc95yjQswl74Lzjk++MEP4hWveIXwNrOkr71fg7zyla/Evffei89//vMwlu4FM18G4pTAdGzOpZqEZOdRwG33pvk+OOoAzOr+1Pyi16+esF4jb6khTiTb47WaOpaqZam0zivDJqV1a1YRF2oTsBiF0y5vyohdmvZ1IulcEAYCtPdTVuzCesSKypxHgdrYVVrDXMHtwCIrdpRwmAUbpD3GoDbRQNNwYFtaKrnjGsCKDNA4nHEHdYODWkRJ7mKFDgAIhzXjoGJS0BbpkjvhtnQRhAkd4I53Z6zb0DUCzYqQu0GUXWVIGiol8HfiDbGiAazd6kZU7pSFzsMTJq+kTAiozRLFTkXoyNpG5O2Ae50o0BYlT+5yaEsXiojQAe68s4yBN5pdHS0AgBACXom5Dm+flz+WEC1vA4UOrmerh6jQwWlgm/MYVjjHm970poEJHTBgqQOA97znPXj44Yfx1FNPwVy8B9a2F7myYhM5uUsBYd2SB4SIHnFvUHYJYtYuOW4d4QBsAqIBUpbqEPCmBlIQH+KkVnXFSVTsvLHrKGGYK/Qu48mczSia9uYHttpw5UpG7Lz2daJp3SlrFt9ZPogW07HRKsDQ5C5OWYgdBces6b4vKsOsFKiNgxOLAMTFzhM6zbfPlHCUSi2wIkEVUBI7v9C5KwV4icEpAE1ASuy4niB0HsSVR4cTVOFL7VTa0vlX66BH6Lr/vil3tN3elOkE1Z0U42fkb3JpOkfkjV/IeNstROQuldB5KV3I74HN3rFhcifVOaJNsOwauVt+uYsryUYt35TcNy+lk92O3Xvscs6BiNdICAGnVHzsLkVhcsblv3hLld0zmqYsrRAKCx3neMHOi7j33hUcOnQIP//zP59uwykZSEcJP4VCAR/60IdQKpVAm4vQ1h5zSwXt0eO1BkCSmnGoHAMJ1yjC3Ml5O48Wdzs0SDy0JqA1SHssPoEHB7QWQOviHwthBLBcsRN+6QqdJjgnoUOBrFlFnNmYQrVldgkdADiMounIWXmTaXimMSPUceKUNYuvXTyC87UJrDTcXq2WIx+TpOk8AQANR8diawyrlnxJwsMTO5EOFJRwFIpWl9AF/z420QBbkOsB2CN0XSsFnHEHzXmxO0ZoG7ok2qld9QqeSUo3+7iYLRGHw1yz3UfFgVHl0gOkDk3ZNWwbEe3ruNb+zA0aOhZYJkIXlYJx3ikzUpt1DX+i3DlCQOi6nu8wwLJC5SmWPFM6oJPSyUAIcVO6PiDblg4QrHJR0iV0TshQJiIwo53wKQ78zTQiLnQA3vnKadx7770olUr44Ac/iEJBrdqUFQOXOgDYu3cv3vve9wIA9PUnQGtnAEBe7nKGWu2hV7jYwxVDgLbCe6+FDVtAGFGYq5bIjayMzTKsDHXbwFLTXWbNKuLY2gLObEz1yFzXMpaBC3W5MZaSyrCnrFn8v/M34WsXj2CtudnwmAOpxI5J1NcpOGj7mwHjFA3bQM02sNySb6Ts4Yndvm3L4dskHMWiBbNgxw4e7T1XRuxiha6zUlfs6jvj5U5J6DzaYlffwTF2Wi2l0xoEs4/2ll2F4O51xikQNKY1NCeTjyVVoXMXzl/okqQsTO5Sl1wBsbKmJ3dsU+xUy64qcIcBjIPbtpDcDTKlS1xGZj7cfqZ0WsLGAjLnwRXOJ06JOyuGotABQGeCA5Gn1k7jE5/4BADgve99L/bt26e+3YwYCqkDgFtvvRW33347AEBfuhektdkwX0juckjrejbB3IfsNmSXoZJpHYBOGVZ4t9plWNmx685sTOGe83si07me3WIUq42StNhFDXPiT+f8QtfZR0BKzrqW5SQxrfPLXBDGaSZid+XkxZ7Ezl9ujUroevZVUOyEhK6z0nY5NiK1Y0YKofM20aCYegIoLTFMHJdbVmsQzDzmoLCicFPUKRqz7jnECeCYpCN3SYKnInTSZVeFG5WMlHXLHVEXuqiyaxKMub1dbYXSt2RK17ttLiZ3o5ROfpmoRSJkToVNmctkdUKQ1homag8BAH7yJ38St956a/82HsPA29T5+Zmf+RkcP34c3//+92FcvAutHbcA2uY3A8LdUglhALe9XlT9aXfnQS0OTWSuWv8yzv+/vTcPl+QqD/PfU1W93WXu7Js0I7SPVlYtRhEGhCVZsjCLMWDjGBN+ASd6jBcFgQkRMgHhYGzFCbHBS5wnIKQEE2ELYQ16BBiErAUkIYE0IyFpNJLmzn7nbr1V1fn9UV3V1d3V3VXV1Xeb732e+9y+VXVOndtd3fX2d875Dug66Jhf2JSrsMoaGwO3FHMws6vQCT+Etauo1+N94MzV8kzPFXEdA2W4mEb8cw3SDQtwZnEfe+truf/oyczb+UiZC+NqRd0xMx1f103kOs/tiR2MsjYffwWPMH7EztWKPQfWRo6fi4svdt0mUCQSupaK6ZhE4eagun4woQNvLFzpiPfalQ67mFUDpwAzJ/cuN6jQldeZOPm2WXMNuQPv86ey2kS5UJh2GvsHGEc35MQD3bpd+6FNUDWwS6YXsaskeB/163btgTFbBX/Avk3sVB5qei5NEoRoGp+hvtiFV35YMVG6xSSmxLm5+Ha20DIHgFNlm/Ekk5UKF1xwAR/84AcXuAHdWdSUJlHMzMzwgQ98gBdeeAG3sJb6xktA9Vj7TXkvaiB3af6bhBeENrzumUQTNRU4ufhiB+AUNfZY/A9HbWjI6diTJiBe7rq5Wp6p6RHcxkxbZUC+UGe0GH/Mlmm4rC6WU6U5MZTL3rk1fWUujMITs6RiB57A+TNK8ylHsRvKZcSqpxY7gBfmV/PwUyehci7jq5Ln62rH1Yq5mWIgdqmFrqNiUFV/cfXBhM4om6x7RFE63Pq8u5aivM7oKnbDELpuBOlBtJf810lwA4KFG0eXNtJm1HTrkBDbjSd3AwgdgHGs7TPIaHzu95A7NT0X5HQbCmEJSRoN7JaXrhtdZrz2wo/SLVTXa5JInVMwUY72xtMljMjZpRjrWvt1tlWddDxsZ739DnC4YP1eHn30UU444QS++MUvMj6erCdqmCyZ7lef8fFxbrrpJsbGxjCqR7AOP9zzA7Cja9YhubWvkG7YtJMmunXDztXy7Du6qkXovDJQq+aYq8T/IEnbDXuwMsaDk9uZnEm49iGDja+zDJf1xVnGcunWrxu0K/ZAdZwfv3AC2N7rOTub4ObQhXB3bGZCB+AoCodNCodN8gcHC5srhw6hAzBsTemwy+on6eiSXUihA++LpJtTXpojQyX6PFhuQgfec+TmDOySiVPs8n4aVOhmI95njbF2XbtjtR6u0EEQuVOlImrVGGos5vt5BUbp4gidUzCDH214S3pl1cUatCPc1TqMCF2vt47W/OKOMo8++igjIyPcdNNNS0roYAlG6nweeOABrr/+ehzHwR4/DWfNObHKeeNg8CTKn7QQhyUardOGxi4RuxvWL5M0Ypcv1tm82ouihbta3R558Mycw8RYsgXu40bspmslXpyZwHYMqnULpTSFnE0pn+zbctKIXcG0WVuYw1SavGHjNpY5m62nm9FkKJe86WApN1bU7kB1nIdfOBHHMXDCa7AaYJRsxhI+31GUKzn0c6O4BY07Nng+DVU1GN3TGItmQH1cU9uQ/ObULUrXTjhql8UYOruQ7M2vNJhV3TEmLjyUs9u3fcMertABmNWUYhUhdJHH1d3OqJ3WHYu7xz5vuNu160GdUbuhR+nAk7NSsXl+8NrqavRsl/dzkkTDPss4SucUmv+nbhO4tF8uoiJ13SJzYVyTwSZJBOeK3m4cexxr5meYpslnP/tZXvOa1wx8rqxZslIHcNddd/GpT30KAHv1uTirTu1bRhue2AUrUzT+u1iCl/BacArKy1uXANfqvXpF5HkSdsMC6JyLKiUZC+N1xVp5p6/M+aTphoX+YjddK7Fnag3VemvUx7Icxosp8lfRX+zaZS7MoGIH8bpjD1THeWjP9laZa6lkcLGr1izqL456y375q5gMInZ1RWmfhRlqkjbAKXorqiSRO3PW5ITvxLvOXUtRXWWAgrEXkt/Y0wodeFG5XLnPjNIIwVvKUbq4QufT0iWb1Ti6WAUM0BpVrg5f6MATtNEuk8n8drcLXtJuVwDXxe0miV1QSqG3b012npRS176CRC+R80krdG5OtXShxpG5oGxG689GSZ0x+zOsKW9ixH/8j/9xyUyMaGdJTZRo54orruDQoUN84QtfwJp6HG0WcEdP7Fmmoyuk8Rrr0MoTiSJ4PViISRPQ7IZNEq2Lm5RY2wbUDK8rSUMtb2LETmTsdcMCicSu28SJ9uhcRznHoFzLJY7W+V2xQKTYFUybDcXZDpnzMZRLyfTOmVbsek2g6Bqd66gE3LLFjD2CkXMZHU0md9WaRf2l0eY6ro1VTJRjet2xSeUuQujAe/9Z896HsVHPxZI7o2yy5vEEKWVsTfGYg10wqE1YnmjNxBPIgYSuMY4uznHBYwfMmutdiIr4Y/CWqNCB9xz6RXLTtdTdromEDprnyedgoaJ03fAjcSaoVY2lu1wNEUt79WShZrwOmMYkjshlgRus9Rpf5oaJVmDMvxgI3Qc/+MElK3SwxKUO4Nd+7dc4dOgQf//3f0/u8I+oGznc0qaeZQxbe5Mn2u+PEYIHIcnTJLqAlOt1w0ACsdNe7jqHBZgNWwdNp9gFItdoj3JD34pqBi4MXez8/HV+tK5bdK7lXFoF+7MQu4JpszpfJmc4XYXOZxhiF1vmWioBXTVw6gazuhgraletWdQmR1CuwpxvH1UMRk01PvDN+GLXRejCtMsddI/eKRtGDqWIGIbGtzFu9RW7gYUuotu19wn9xOWhD5ywQHWTvAUQOqOum8NUUuJaCnssBxqsmWRiEjmOLg6mic4pMMZQrkbPpJ+M1BcjpgmFBC+N4A692zUFbtF7z9pj3u8kIjdIfsOlInPQELrKJMWph3GAt7/97bz73e9e7Gb1ZMlLnVKKa6+9liNHjvDtb3+b3KEHqG24CF3c2L1MnIHL4e6RkOT53xLMmOkABpk0keSy95IS60Q5htvTnISjcmGRaymjk68nm0bs/IkTs7UCVdvqGp3rOFdGYjeWr/aMzkWRpdgdqmzk6ckN8WWuoyIvajenij0jdn50zmqXuYj6kkTtlKt6Cl3rsZ7cQavg+Rh1GNk3YOi8kXpE94jaLQmhI2JcXbvkJcykn0roUkTnOmh0JQftVYXYcmfM15JH6cCTJ/+mn7O8p24YctcvSteNesJxhSmidJBickSfS8oXuJZzmAbOiDXUqFzL+RQ4RWNJyJw3CQpU5QAjUz+i7ji86U1v4tprr/WkegmzpMfUhbFtm49//OPce++9aGVS33Axutg9/Nwxti4m2gBtti4krOzekrdUJ00oW2FUFU5Re6kmeshcy3mUhrwbO1rnk3TiRNU2mZstogxNPp/swzDtxAnwUnuM5Oqctupg4rJeeQNbG9RdM7HcHasVefHwBK5j4pTNxlTKVM3wMEDlHQxLd8hd0N3aT+gi6uw51i5GlC72qWwoHNXk5lysSsI8iybYxYi7lfbEKSx3S0Xo+hZTKjLvplaqa+6upBMjshS6bu3pJXbGfC25/ECr0EWgqvVsxC5qckQc6nbiKJ2eGAPbQe87EOv4QSdHRMkbeAIXRX0iXTQwUdLr0Etqj6ZZlqVJFmPq/La77mHGjz1EtVrl0ksv5cYbb8SylnwcbPlIHUCtVuNjH/sY999/vyd2G1+LLqztenwwEzYhbk7hhK7lqGhcu+gtBbFTtsKoNC9qL1mz1za3oHGLSd5oycUu7sSJqm0yP1dEu+DWTZShMfLO0MXO1Qq7keJEKc36kTm2jR5NdM7W+uJPoOiQuTCDih2AAeaIHYhdaqEL1edaujNql6HQgRelKx10MRzIzSW8IXaTuuAAL92Rk/PSHywHoeveEDqWTdJK4eS9CH7cRMPDFjoffwxhu9wlnhgRJhfjhlq3B4/a9Zoc0YukY/yUwl0/4T2cjxmtUwrdRcx64Ra8566bvEXhjFiRawL3I67QRS38M4jUOXmVvNcsRNBuDdSOMF75IeVymYsvvphPfepT5FKkqFkMlpXUAVSrVT760Y/y0EMPoZVFfePPdRW7QaJ13gyc7sdEiZ42vNmticLHKcXOzXW+KXyJiy6zNMSuapvMzRRx21ayGLbY+ULnhCKVlukOXewCmXMNnPkeF1RGYqfyDto2MGas9ELXVmcgdwWX4qSFNXgeZK9qG/JTngD5CX2TROv6Sh1eioPqhIHSOrGIphI6AK3JzacYV5WkW0eBXVRB11i/G6nSYM27A930gMSzd9ujdh0JhmNX1DtK10FauVuoKJ1S6FWj6HzCyE+K27VbsBLJnM+wonTdVnF0ioaX1y4hfo5JbXifKWlQrm4Og6gdZqL2CHNzc7z61a/mM5/5DIVC+swHC82ykzqASqXChz/8YR555BFQJvV1F+GObIg8dphiF4nqftF2PZfZ+S28H64Fbj5hJGARxa49OhddbjhiFyV0PlmJXXt3bGyZa2dQuXMV5qzpfbhl/M5WDljzKvUHZzt+lC74O2G0Lq7UVdY1Fqm3iSV3vsz5bUrEMKJ07bQJXd/DG0KXOEdeOylvFX7ULr9/Zijdrl2xHVStjp6PafML2O0ajtIlIsVr4Iwkl7Oso3Rx7olponROvnWoVNLPppboHKCqBxmtPEylUuEVr3gFf/zHf0yplDBv2SKzLKUOoFwu87GPfYyHHnoIMLDXXIAubmpksW49Nqtu2NgklToFGPRfnqStjJtLLnZuDpykOe8sF2MkoWiFxK5bdC66XHZiF+5ujRI6H8t0GcnVGcnVBpa7feVV7J7ckFzmwqQVu7DQtdSXrhlhlAtmWbWkAxpE7sJRuuAcCaJ1/pe1ft/sdUOA6uOhYQk95G6Q6Jz/v4jQRbTD0VhzNtbB6WQFBxA6v82q8biv3C1gt+vxEqVLEuBIInXh6Fzz3MkmLbZE5wBV3U9p/mFqtRoXXngh//k//2eKSfMNLgGWrdSB1xV744038v3vfx9QOBOvRpe2BuvB+nK34NE6WLJit1DROgDtemFLZbqxhM4nC7HrFZ3rxiBRu6O1EZ46vIG6Y1Key6Ndha4PsApfUrHrJnRBfembojQYVdXStT+o3LVH6VrOFUPs4kTpfMLRupZztcndoEKXRpyOF6Hzx/GZ8wnFLs44unZCQtfSjl5ytwK7XWFxonRJe6ogftdrlMz5xP0cao/OAajKS+RnH8ZxHC699FJuuOEG8vmFWX4ta5a11IE3K/bTn/40d999N6BwVp2PLp3U0g2qDYVdShetE7HzzxNf7FzbgKrpLfTuKnTOhVzClAs5h0Ip+cxWpTR5y8Ey3URC55NG7I7WRnji4CbK5dCHgFa4dgZiB/3lrp/QtdSZrAlRQte+P1xnnDZERek6ztlH7LKQuuB8tvdBXzgmQtdBhkLnY5ZtbxJFP7lLG6Xr08XbIXeGQhULyZb18s+zhLtdFzJK51rKW1UkJf2idL1kzqffZ0+UzAGo+T3k5h7DdV3e9KY38Yd/+IfLYpZrN5a91AE4jsPnPvc57rjjDu/v0TPRo2cQJPBU4JqemDmF5BG7heqGBRopVRKWWUJi59oGlE1UONedIrHYpYnW+cuI+WkHy7V0s5Xiip0fnbNdo1XofLIQu0Y9kWLnKsw5A3TCcW4xX4Z+Qhd1fD/B6yd0LefuIXZZSh144wVHDjT+0biyJULXux0RQhemZ9Qug27Xvu0LH5tU6GBJd7vC8KN0LelDFBi17KUujsz59PoMbO9q9SrVGHO7MOZ2A3D11Vdz3XXXYaa5FpYQK0LqALTW/NVf/RVf+tKXAHCL23FXne8N7vKPMZU307QR5nUtYgneUo/Wgfe/OAkEDbIVu5boXETyYm1pKCR70ycRO8tyWF2qULC8Y12tqNjWQGLXa5xdZHQuCq3QLtl0x0JT7pJE57rW2X1XUqGLKh9Vv1WO7nbt2oYIsYs7ns4/tjrRPcdbcK6w1AUbe5RZokIH3vOWnx5gPV8YutD5REbtFkDofJSr0dPNNajVqvF4BReq2xWWVJSuXeSCh3a6Jep82qUuicz5RH0WdovOoV2M6UcxKnsB+M3f/E3e9773LfnEwnFYMVLnc/vtt3PzzTfjui5ufiPuxGvAaLyRGhE7/0LxEw1Df8Fb6mKXduLEoGLXT+YCUkTrwBM7Zboos3uC4nah8xlU7CA6ahdb6MJkGbWzMxC6ljo7N/kTI7JEuVA8osnNJojYRohd1lE66CJ1wc6252GJC13qKJ3WLYmMnUK6azWu0IUJonaLIHQ6FHFThTwoAzU+2r3gCu127Ral6yZyYQaJ0vnj6XyRg+RBDWiVuq4yB+DaXHLKYe6//34Mw+D3f//3efOb35z8hEuUFSd1AN///ve58cYbqVaraGsCZ/VFYDZmsbSJnU8cwVvQbtglPiPWW7zWGy/XU+bCpBQ76B616yZ0Pq5WOK5B3TUG7o4dy1V5+sh6bzJEEqHzGVTsHIUxZ6JcMGw10OSHSBr1DRql64bhQPGw9hJ39+l+DdMudgsudW0MPWUJLIrQWRUHZTcHu2vLSCx2aYTOOyEU9k17Ap3mlpQwVUqU0LXsD63Y0BG9W4HdrtCM0nWsytDnEhw0Sldd00iMPOD3XcPuI3MATpmz1+5h9+7dFAoFPvGJT3DJJZcMduIlxoqUOoCf/vSnfOQjH2FqagptFHFWXwC5NYAnb26PbvOw4EFT8hYyWgcDiF0e3ATilChaZyvMSjO1hZvTuIUEl1BGYuePnzOV7ip0YQaN2tUdk7ljJXTNwBxLPoEjIG13rNOIztXbo0bpmxKFcocjdMqF/LS/TilY5YRRlYbYmTUdu+sVhiN1ftoEb7Zs/y9DaYTOKSjcBIlYs4jQtQ9098UO4kXtBhG63LEKRsUO2pNIaBJG6foJXcfxYcErlVZct6s9aqEtoylzCS/XtFE6N2eAgtr4gDZH43Oly5CPgPpRNvITjhw5wsTEBH/8x3/M2WefPfC5lxorVuoAXnzxRT760Y/y3HPPAQbOqlegSyd2jdZ1Iyx5WoFdAnskhaUt14kTDZEDOlat8ER3YcUuV6qzafVMLJkLk1bsKrUc5UMjGBUDbWh00R1M7CBZ1K6b0LXUN1hzwJsFmp9WwdJyaWaLR9YbEjpoXEMJo3VBOddb7suqxis7DKkLd8cqp/k/RQnekha6UHdrr5mLcaJ2mQldqG0tv7uRstvVPXg4URkAY2IVWKEP437RwSUqdM5Isz1agVM0U92bIF2Uzu/i1RbYBSPx/S1M8JnSxytV+QVKlcep1WqcfPLJ3HTTTWzdujX9iZcwK1rqAObm5vjkJz/JD37wAwDckdNwx87yvpmkvJjsopcixUeb8SZcAAs2cWJgseshcpHlFkrsGoeXJiqcsOZYsrIkF7uw0AVNMDQ6p8HUw43a+d2tmt5C11JnuqYoG/LHFKa/opMiiEgPKniGA4UjrQ1LJXYKnJwKlgOKI3bDlrrWOloFbzkIXdw0FL2idpkLXVs7uwpORuPo4mBMrIJ822dGe8SuXfIWcBwdRHe7hgUO/PtC6+un27tbExA3Shc+pw41qT6SLkoXV+bQGmP2CYz5pwG45JJL+PjHP87ISIok08uEFS914KU8+Zu/+ZvmzNj8JtzVr8LN5VP143s3uWZqFD/ZcbC/n+QtpNgl6Yr1vxw32p6kCy612JkaDN1f7jRgN544rcDUlNaUU4td3TFxtOopd1FC19KkYUXt0shcS33JDu8Quo4DPMFLI3fKhfyMt5B81L5E3bCNcWYA6MYSXrq33C2k1IUxbI1Zbt5x+nYXL5TQxYzOdS3eFrVLLXTgjaPbPxvjuIio3QIKHYCxYV3/g9okTxfy6IKVLKFxwv/JFzm3aEaOv3Tyvc+tTTXUKF04KhdFUqmLLXMAbo1LTzvGfffdB8B73vMe3v/+92MkTTC9zDgupM7n7rvv5jOf+Qy1Wg1tjuCsvgC3uDoTsWvZ1yZ5wXZf9hZofJ1frqvYaTDaJzlor33a0Mm7fdOIHfSP2vlC156qfACxg95Ru35CFzQt46idWzcxj1rpZK6jzv6H9BW6loOTRe96CR2kiNaFpc5H947aLZbUoXVLWpHoz4PmGKaFFLpBksRCU+xcSw0kdH2jdB1lGlG7hRa6qChdH3Qxj/blIcnQ2dFk35r86Gl9LF2y3GFE6bpF5dpJ0vWaSOYA6lNsKzzFvn37yOfzfPjDH+byyy+PWXh5c1xJHcCuXbv4+Mc/zuTkJGBgT5yPM7493gd1G73ELvJ4X/YUoOn4lqOt3qtepBU75TbGTkStS9zt1V8qYtdN6HwyFrtKLUf5aMmLlvURupZmGhqdb8jdaHK5047CLVvgKoyygVnNMJ1Ij5fCqCmKh1LUGRK84DRtohfV7dpRTVyx87teo67HHlG7pSJ1kYc0RE+biplt3qzmwlT/58squw2ZjRuBHyw6F1mlAoJsAUm/aaYQugZu0fKig7Pl2GUWVegS4IwXAklLVK5kJvpC4JNllC6uyIWJE6VLLHNao8rPU6o+Qa1WY+vWrfzRH/0RZ5xxRswKlj/HndQBTE9P8+lPfzoYZ+eMbMNec34zn10CkopdsyAdCxBro/NGGVk0wSQPaJxDgz0KdpKhBIspdhpwGmk7+i0maGrMEZt8oT5Qd+xMpcDUvlWJZK4dbWh0yY0tdoHM+f8voBq56JTLUOUuUZQuDm2ipzRYc/2vgVhiFxWla6ctaqcNqK5SuPn+z2HmUgeYNbelC7Ybbs5g6nTvGjD7jBM0bFj9dBWnEPNNmVF0rmv1DbmLJXYactNVb5xTQqHTSqGLViA9quqgdH+5W2ihA3BHki8Cv9BCB9lE6fp1r/ail9QlljkAbWNMPxYkFH7ta1/Lxz72McbHYyaUXiEcl1IH4Lout9xyC3/913/tJSq2VmGvfw06l/wCcPIKJ/n7OFLsYhVLGbFzTYU95s3ejc1iiJ2lvTt90pWhB4jaTZVLHHphNebcYLOxIF7UTjsKt2J5K0R0yfM3TLnLXOiiUGD2WL+15dBe4+t6RenaCUXtDFvHitJBQqmDzKJ1EJK6GBh1WP/IfCIBGJbQ+cQSuwGic+1CF8avr5vcDTTTNYXQpYrSGWBPJPlQ9hhI6AaI0mmjOd46jcz5REmdn0DYn3QUG3uGMyb28Mwzz2AYBu9///v5tV/7tRU/fi6K41bqfB5++GFuvPFGjhw5AsrEnjgXZ+ykRN2xqaN1sOBiZ5cUtaQTshZI7JQ/41Z55ZzRFDejFGI3VS5xaO9qrGkzmLwxqNhBp9wFIgc9Za4dpRWqprITOw1mRVE4kk11kafwhxPZzW/dvegZrYsTpetogPeecgpkH6mDRZe6pKQe+xaTnmI3JKELY1TsDrHLdKZrnLYucLdr6nF0KYQunK7HTjljNUx4PF3LShBJZU5rVHkPpeqT1Go11qxZww033MCrXvWqgdu4XDnupQ7g0KFDfPrTn+ahhx4CwC1sxln9crRVTJTLbjmInWsqb+JEfmlF7JStsOYVqjHDVRsaZ2T4YtcidEFjvPN7gpf89O1oQ6MtjbKVF4VMQWZRO+0JjHIURuNep1zIxZiEGPsUBsFNQ7kJonVRYpckShfZGO811EZvuVtMqdOGorraZH5zvC7M4mHNqmfjjykLM0y5ixxntwBC5xOO2g19pmsby2UcHcTrdm3PuehHe+0Rs+86ynGojxjpo3I+bo037Jjje9/7HgAXXXQRH/3oR1m7du3A7VvOiNQ1cF2X//t//y9f+MIXsG0bbRRwV70Kt7QB8D54+8nTchE7WDpdsX50TrkEQtcsN5jY9RtnFyl0LY3LKGrngllTTcEwNU4pXZdYIHdOo8646ObYyo6xda4neFnIXVjo/PPGjdZBhNilidKF62s8zVr1lrvFlDpYmGidz4JF7UyD3HQVo5xi4lBCoQsTCOTP9iYvm2ZiRCGHNpN/SCyK0PWI0oVFrluXfW1igP5WCD57nIKRXuYAVTvEJnM3hw4dIpfL8YEPfIBf+ZVfOS67W9sRqWtj9+7d/NEf/RHPP/88AG7pVPTYDrRhtohTN8kTsYumXex6yVxrOe0t0ZZxd2xfofMZNGrXELqOVTjy6cUOEkbuGtG5filOfLnzHqcTvKjnKEm0DkJiV9cDR+naBaab3B1PUgfDFzsAo1JfkAhdVHmlNeZ0pbFBo1+Y7FtuOUyMwID6SHbdrnFEzmegKF3b9daxvmzsehyM2Scwy8+itWb79u38p//0n46r2a39EKmLoFKp8N//+3/nH/7hHwDQ5hjuqldArhnW9dKTNB63CV7qiRM0pC7FupvLSey0SUtXa7yy2XXHxha6MGnkLkLofIKZzkZGctctchdT6DrqTSF4HVG6UBuSROuAYBWTQRb57vXlqF3uhiJ1pJgBGwcNpUMu489V4h3fhWGKnTlXQ9XCg6XiPV9ZCF07geD1kLvU4+jSROlSToyAwbtdu3WrxiFxlK7L9aVNlXgOnNeAI5w8toe9e70I7DXXXMO1115LqZTuuVypiNT14N577+Wzn/2sN4kCb4kxPXomqNY3cVjwwPsWYpcWNlrnt2NBxU4BKoHcuV6yY200xpcllsIBu2P9yQqzuWRCFyZul2wPoQuTudyFI3cpha6j7pDgeX93Sl5XoQsOSN4NG3QVp82lFePp9OVOuVA4lmyh9lgkGVe3xmR+U8zxYxlE6yB7sTPnvAulReiCk/V+zoYhdC2n7xK9W1ChA9yxPG4uRXdtQqGzKq3Jr7WpUs+EThSl63NNJY7SaQdjdhdW5Rlc12X9+vV8+MMf5uKLL05Wz3GCSF0fpqen+fM//3N27twJ+FG7V0JuTdcyWnkXrjYbj3O9kwp3VrAIYmcpL49d0i89/aJ2Lhh2m2QE5ZJ3aQ4idqqmyE95T8xAi9X3i9q5XlJfI+kyawN2yUJr5M6aVwMLXeQ5QpJnOJCf0jgxxr0lnTRB+KlIKnYRXa89z+dCbm7xpA4WvgvWxxmxsOaSd5O20xGdi6LL8zZsoetohtaYx8pwaApVLEAuWRRqwYWuYHSs2dpOWOIAVCM59SDpS3z6RukSvNeSSJ2qHeXUib0899xzAFxxxRX8zu/8znGXey4JInUx+d73vsfnPve5ZtSudCp67ExQ3S92P8TsWqojqXBf0VvuYufLXFjkIsulE7uk4+xUTVE4YmJUvfO6FmhLZy93KYTOJ4uonVEzKBwyUK5343ctsEeG9xY3q4qR/Zr6aJwxZvGidS1Ruo6d8dqV9H2z3KRu4C5YpbBHTFAK11KYNXcgsYsldG3n91looYOG1B2aQc01ZhG3C1qPyN1CC137OLp2efNRXVYYGSTJMIBdMqNnjqedtBqjPcqxUXNPYlWfw3Vd1q5dyx/8wR9w6aWXpjvpcYRIXQKOHTvGf/2v/5W7774bAG2UcMfPh8KmrmWCsQNt17FrRoie1TYWb7l0xULz/9PN37HGBqYUO4gftWsRurZzO8UBxa5Rjza8ZMnKIZXQhUkrd0bNoLjfIDcXqkt56Wsge8EzbEXxMJhljZv3Jgj1JYbYdUTpOg7of5oVL3WkjNaFZS7cnaZJLXaJhS7UliUhdFFESVs+t2BCZ843xzs4I/kWMesmb1FkHqXL4OOjl9QpDVT3s7X4HPv37wfgTW96Ex/60IeYmEiaYPX4RKQuBffddx9/9md/1lg/FtzCVvTYuWBGz47oJnbtRIme0o3tKcbnDTtiZ9TBavtcdM0UXZuKYIxeqqhdvhF1a5M7VVPkpg0MW3UKXejcbs4bJzeI3CkNZrnR3dmYEDIoceUuiM45tAhdR30K3IL3Gg0qd77QWfN+Fw/xonXQU+x6RulaDuyzO9HyQmBVdOy1VJX2lvOyS3Hyyi0Rqesmc2ESil3P8XMx2+SWcktP6KIwDJyNayBFW1W5jo67rJtfpupdM6mje2QjdEGULkNLaJe6YJiEU0HNPo5RfQmAzZs38wd/8AdcdNFF2Z38OECkLiXlcpm//du/5atf/SqO46CVhR49C116WeS3+LhiF4U2PNmLmjGkI0Sw47wZiF2UwCmn88asDU9AXSud3GUVtesanetx7rRRO6XBnFcYdb8tjf9hAeQuKjrXt76G3EE6wWsXuqDOuNE66Cp2faN07XSZbTvM8XTeRBGnOcZJ0V3wEkhd0skSsbpg48hcW51xxC51dK7lXBqdMwO5S1R0IYUOcDeuwRnNJy5nlG1UPV3ofhChg8G6Xe2Sd94sEg2HcfIq+MIVvEe1RpWfYxXPMjs7i2mavOMd7+C3fuu3ZGZrCkTqBmT37t38yZ/8CU8++SQA2prAHT+vJf2JzyBiB40ZTKp9WwxhU2AXFPZIshNry4tieQuNJ0tJoQ2FXVocsXNzOpnQhc6dNGrXLnSt7Rme3GmTWNG5vnUmFLwooWupK4HYtU+ciB2l66ios95ExVNKXZiOQey+6CWQOr+eTKJ1SWUuTA+xGzg6BxBxy0kid8tF6ADM6XSLKw8sdCmidL7IAZlH55zGmDzXUljVUMX1I+xYv5+nnnoKgDPPPJP/8B/+g+SdGwCRugxwHIfbb7+dv/7rv2ZuzrvDusVt6NGzOrpkBxY7RWMsSrJyrgX1seRi553Ui6okzQA+iNil7Y5FaW925iAL1SeQO+VAbqZPqoYM5S4QO6XJTxnkpweqrrXuPoLXS+iCOlJ2w6YWOp/QKRdD6qLwRU/5H7G6/3toYKkbRObCRIhdVtG5nrvzVlexSyNzsHhClzZKt5BC1yFyLRWlbgLQFDlo7XK1qtrrap37KUblBQDGxsb4N//m3/CWt7wFM8WYRaGJSF2GHDlyhC9+8Yvceeed3gZl4Y6egS6dAqr5TX5QsYPoqF0/XMt7o7l5ksvdQosdJI7a+TM+M/uG2adLtleULoqW/yWh4AURWX9SBqAcb1UOo06mcgetggee5GkTRl/qc1NO2Q1r1nSybtceJM29Niyp89GmlyPMK9tP6hTHTk6QXsOF0mGX0kF/Ic0BZS6MBrPiUDjkydCwhS44LCJqN5DQHZ5FzSZP/7IYQgdgr0nf5RhH6HqKXFBRuvN3E7lmvS65qWcYc59lft57Ta6++mr+7b/9t6xZsybdSYUWROqGwE9/+lNuvvnmZpesOYY7dg7kNwbj7RZL7GCAqN0AYjfMcXbeUmOh7rss6RK1Syp07cSN3kXJXEcTG3IHDEXwwGurk4fSwf5PcOJuWAdyczpdlvlwPa4XBdAqgVQyfKlLIlra9BY7t8rxL2SlNbkZx4vQZYkGw9bkpmtYU8mjXM160r0pfblzRtKJ1XIUumGMowtLHPQQuZaKkp033L0aXZ/GqOzn1JF9wRKcO3bs4Hd/93c5++yzk51M6IlI3ZBwXZdvfvObfOELX2Bqasrbll+PHj0bcquB5St2fpqVpdAdm3l0rkcbfLlz84MJXZio6F3LOMkeMhfZzCFE73xJ04Y3WSY3G0PsEnTDKgfy0zre+NBudbihGaxK4eTip1hJMvPVP9ewpM6rX5OfSnZxeZFVMxuxC3UTG43f1mw9ndgNeHvReQud9yKXboKZp8el0DWidKkkrqWieIf1jco1ULUpLto6zcMPPwzAxMQEH/jAB7jqqqswjAHWARQiEakbMjMzM3zpS1/i7//+76nVvEHGbulEnPGzwCw1x/8sJ7GDRe+OHWp0rlcTGvn3lOtFrrJEG4ABuJ5E2WmWQ2uQVfTOFzp/hrVRh+KR7KJ1yvXG6LXMHE7xOa9cyM+Gni/VnDHeqw2J89OxNKUOvPdWbXWatQn9CjplLow1Z4PW8eUuC6ELi1xDAPrJ3fEmdMrV1FblgntIYolrp8fLFlfkALDnsY49gTnvjZvL5/O84x3v4Nd//dcZGxsbrI1CV0TqFojJyUn+6q/+im9961sAaGXgjp6CO3YG2sxh2BrD0cnXxWswiNgtxji7Qbpj/fMOsth7WgwbrHmakTsjW7kzHMD1xNWXqUHkDtJH79qFDnwJ87pL45bvJlXtQheUSyF2HVIX7OgtdytK6gaJ1jWELkrm2ukbtctA5oDu+eu6yJ0vc8CKFjrltH55qY9ZOHFyJsYh4qVLJHIAbg1z+mlGqnuCQMbll1/O+9//fjZv3pxNO4WuiNQtME8++SR/8Rd/EYSitZHDGT8NXToFwzE7uoG0GfONRHqxg+XRHet3tfrRMtdPubJAeCk4PLFrbsxW7joEJ2O5s8qNAft2d8HTjf/JX04tqo1xonXQuxvW73aNLJdA7Fq6XrseFC13K0nqIIXY9YnOdaOr2GUdnetFqOtOmyp1dA7A3bAaZyxd9vFhCl2LwPm0PcWVTYMuidNZd2KRA3BtzNlnWO3sZXbWk+uXv/zl/Pt//+/ZsWNHdm0UeiJStwhorbnvvvv4y7/8y2ChYm0UcMdOR1nbMeqhDzVFMHMO+kte2pQnsHjdsb2idsGYORoy1yZU2gxJyBCJFLqWAwaXOz9KF0WWcgetggdNyYuKznWUzSBa1y1K11I2pth1jdJFHtwqd0tR6gZZsgtiil1KmQvTInYZ3EYSCV0YpXBGc5hzddAa86XDiYovFaGLI3Dt1FflMovSObkUIgegHczZ59igXuTo0aMAnHzyybz//e/nX/2rf4VKOXNZSIdI3SLiOA533303//N//k9eeslbGkWbJXTxdAx1IuE0KAFtkufTLnvLaZwddEbtWqJy/e5tarhRu75C196WFHLXS+jCZC13PspR5GYUudl46/4mita1iV0coWs2rDFBpst9y5/xmiQxtlfQkzvDJrGQDF3qGCxaBz3ELgOZC2PN1rGOpouOBU3q193aC6VwSjncfKOshlw44a+jMSe7S96CCp0B89tXAVCanMfNd742SRhU6Kz51s+P8roEqXQAtIsxt5cTci9x4MABAE444QR+67d+i8suu0zyzS0SInVLANu2ufPOO/lf/+t/cfDgQQC0MYLKnw7WCdFy106E7NlFhVNIPktz0HF2g3THunk/2hhD5sIMKWqXSOja2pNE7pK+Rr7cQUZds7aiMKUwK/GkLkm0DlrFrle3a9fyXaJ2hpM80uajtJf4WBuNa1x5+fj6lbHKbqJF1RdD6qBN7DKWOa3w0mdoyM3Z5A7MpqsnbXQOOoUu8gRtkhds1xjlOvbqdDnhIoUuJG3R7YXKGpORAza5Y7VU5/VJK3RhkTNqzce11Rb1uPU1ZO6k0oEgGLFhwwZ+8zd/k6uuugrLSiiHQqaI1C0hqtUqX//61/nSl74UpEFBlSB/GuROBJXsm482FfUxo2V8RBjl9o6WLFrUTilP0NJ81mcod4YDRjWF0LW1x29HN8GLG6XriuFFONPInbIV+WPKk5V5/2YdT0TTiJ22aKwZnKiZXvkIsctC6lrP0VvwEkfpYNGkDppi5+SNTGTOr1NbKugZ8J4TG+XqRHI3UHdrIzFxT6Hrgln23tBGzWm+3nEwFPNbS95nW1RkWEF5bY/xcZpFEbpuIhdmbkuMN7x2MGaf58TCfvbv3w946Ul+4zd+g1/+5V+mUMhwbJ+QGpG6Jcj8/Dxf//rXue222zhy5Ii3URUhfyrktieSO20qnKLCySnqbXKm3IZQ9MC1/GWpkkftjCoUjrm4ORUr+tPSbuXlXEqdu2xAufMnYxi1AaWurU1R0bss8t1B8uidH52z2nrPtBEvWgfJumHRBOs+OilXPQhfD6m7XhtESV3ruToFb7lIXcvQC6U8CWtfnzZFnX5y26gxV8qF/HS9r9hl2t2aELNsY9RSjIFTivkTSlQmUqYdyUjooM/EiEYkOUw3kQvTU+pcG3NuD5vMfRw+7HVlr1u3jne/+91cc801lErpV8AQskekbglTrVb5x3/8R77yla8E3bKoPOROgfxJoOLbijYVtXGjQ+zioFwCSTITrKlq2BqronFNqI8aicUOspG7NOPt/C5kdDOSNgy5c3MJu5njYjTHJ7YLnmErcqHoXDtDidY1hM5/Dl0rvdj54+yUHixK5+UbjBllbAie0hqznPCcaZbuSjFZoucYWqVwSumEpJ/MtZymj9gNvbu1BytB6DqidCklLky3rlfl1LGmnmFNbh/Hjh0DYOPGjfz6r/86V111lUTmligidcuAWq3GN7/5Tb785S8zOTnZ2Gp5Ubv8yWDEs6VBxA4IUkf40ZYkuGZjnF6KqB1k1CVr9J7VGRyum0LXbEAoqpmR4HnpPmhZgF6lm0jXG6N1ZrFRj5a5lrZlKXZtQuczkNjhfWkwa8OJ0nUt5ya/aaZdjzVOtC72ZKgU0bokMtdyKhdyM7a3fFlD7rKIzkG67lZYQUJXNAaWuHbCUTqlwZqbQ1WeZcyYZG5uDoCtW7fynve8hyuuuIJcbgHzSAmJEalbRti2zbe+9S2+8pWvBKlQQIG1FfKngDnRt45e3bFxUC6YdY1yWHC5G3aXbCBz0HsmWgbRO22AU+yUzGEJnj/hw38O4pCkG7aX2CkXcvPRT2hasVMaT+i0f46EM1iXsdSlXiM3gdi1j5tLdbpG1M6aqixqdA5Y1kJX2VSgcKiGM+J9WAwqce3Mb85jVVywj6HKP8OyJ3Ec7/navn07v/Ebv8Fll10mEyCWCSJ1yxDXdbn//vu59dZbgyTGAJjrvXF35nrokxsoi6jdoHK3mF2y7ZG7yOhc34aklzs/StezmW2f3WkkT7lel3kwKSboju7/uieJ1kGX8XVdonRhkoqd0l6UruX50cnEbkGlrm+l0dKnXE3uWEYDLkPn6iV2aaNzUVhlF1yNNd8Qq2qCN4lSOEXLe24WIzq3tQSKRRG68uZiy99GXZObzX6MhlM00Vrjmocw5n4GzqFg3yte8Qre9a53cfHFF8v6rMsMkbplzq5du7j11lv5zne+E3y7whiH3MmQO6HnpIpBxQ6WcZcstETuMEgmdC0NSSZ33aJ0/Ygreb7IeY+jl+FyivFe84GidTGEzieJ2AVRuo7G+u3o/UImHU/XUjaF1KlQOpFudBMos+qi7Owlsl3sMpc5wKy2XqCq7m3vK3cDRudg8bpbIbnQtUtcdVXz/y4ddjITOqfY/J+0dtD6JU7ZNM2zzz4LgGmavP71r+ed73ynrACxjBGpWyHs27ePr371q9xxxx2Uy40s7yoHuW2QOwmM6LDQoN2xsLy7ZP0InZ/g1k2QMLizMfHkLk6ULg7tXbWW/7L3SVUzzGhdIHazOrbQ+cQRu8goXUej/bZEX4tpo3RencORuq7olF2H/WiIXTg58aAyB57Qtctcx6m7yV1G0TlYnO5W6C907QIHrRLXXtf48wlmpkUQFjk3p8CZh+pzTBQOMj3trRNYKpW45ppr+JVf+RVZm3UFIFK3wpiZmeGOO+7g9ttvZ9++fc0d1kbIvwysDXgW1FpOm4raKoN6aXGidpBBl6zRlLN++NGacLedNpqRv0zkDjoEL22Urh9GHQpT8Z/3RNG6FN2wpUO66zi6XvQTu65Ruii6yN0gXa/K1qnG7w0idcrVQ4nWATglEzuDZaa6Red6NqEezp/mLF50DjIZP1c66L3R81O1yLQjWqmuAhdFmihdWOKgIXJag30Aqs9h2Afxb/mbN2/mrW99K7/0S7/E+Ph4ovMISxeRuhWK4zg88MADfO1rX+P+++8PtmtjFPInofLbaEmJoj2pWc5RO+gvd1Ey11FHVnIHHdG7rKJ07SSVuiTROojfDWs4kJvRmBVPvswUQ8K6iZ0vR/1yK3YQkruF7nqFAaUOshW79rG2BjiF9GKXRubC+JF2VXdxC+mEyqw4oPWCj59TGnKNxL71EYPCtHf+pPIWRVyhi5S44I8a1PZy4tpjvPjii8HmCy64gLe+9a383M/9nCzltQIRqTsO2Lt3L7fffjvf/OY3mZ3180eZ6PwWyG8Hay2gUI1Lwc0p6iMGTk6l79bMQu4K3uy7LOQujsx11GEodGPx9yzkzqyCWdU4RZW52CWWOpJH69xc73x/YaHzyUrsUgtdGN2I9FVT5rZbLKmDwbph+y2obkB1dbI0FYPKHISGTrS3L8H3yYGjc1tLVFb3XgUiN9/9NbfKLrUxEzvm+ygOpSMOuZnuQtfRpRpGa3COQvV5iuoA1arXfTs2NsYv/uIv8pa3vIVt27Zl1lZh6SFSdxxRLpf51re+xde+9jWeeeaZYLs2RqGwHfLbwPC6DbTpjbFxLYVdiP7AiiN8WXTJppY7f7zcgL1LWcmdUYPCMe1FvRo3AW1lE7lLI3WJo3U9umGjhM5nELEDT+4Sdbv2wH/ulQPFqWQysNhSlzha10/mfBJG6+KMm+uFL3PB435EHdJ4Oo2ag1lJMZFAKerjeapr+4+DaM8LF2YhhK5nNC7YWIXaXk7aMMfzzz8fbD7ttNN461vfypve9CZZ+eE4QaTuOERrzU9/+lPuuOMO7rnnnubEChQ6t8kTPGujN5jaBLtgREZotFK9hamxvNKgUTuIIXfhcWyhbf6Aen+Ga9wxd1EEcmekWKHC8SYPmG3jp71uzYbgpeyaNRyw5rwoYGJSiF04YuefW7nRQueTVuzAa59W/Ze064c2oDausEuqsdyX93zFFbxBpI5G1+9AxInWxRW5dmKIXVZdrcHjjEgaqXPzniQlWT81imEJXSyJA9Au1A9C7Xks92CQ/aBYLPKGN7yBX/qlX+Lcc89FZfhcC0sfkbrjnPn5ee655x6+8Y1v8JOf/CTYrlURCtsgfyI6P+ZF7UyVSGbapc+XO50gAW47rqWCSFHLTTIkcL3bRGZy59cXJ3rnR+l615tO8FJF6drOG7cb1j/eLvWOzkWRSuy0J0Pa6PMFIgauBeX1EcshxRS8QXLUDTVal9VNuyF2QIvcDbWrdYFx80bqzx6f2ljjOcpA6IzQNVE65D2/fb9gObNQ28uGsSkOHWrmljv77LO5+uqreeMb38jo6BAG7grLApE6IeCZZ57hG9/4BnfddVcw3R1Am6shfwK6dAJuvphY7toJ8ssNIHfNykgVAclC7iBe12y3KF3veuML3qBSlyZahwFmJb7Q+SQWO91MX6INvOhxyterm9SF6SZ4aWe+BvVmIXXgRevq6cQy9ilMxfymPMWjXjfggna1Dgk3p4Keh0EYNDpntF0D/rVtVvsseedWofYi1F5EOVPB5omJCa644gquvvpqTj755NTtElYOInVCB7Vaje9973vcddddPPjgg82kxii0tQFdOhF7bAtuYbC8HJnJnT+7cQnInV+nL3hphK6z7qbgQafkDSx1xI/WKRfMsm7ki/O6xZMSW+waUbqo9DtJX6tw12tcvDVMvZMbjpeyYjGkrn1ZMMPRKDv7j21tKqprc2jlpRbKz7gUj6S7cJeKzEE20TlILnTtAgfRvQldhU7bUJuE2otY+nDwOWyaJq95zWu4+uqrueSSS2QtVqEFkTqhJ0ePHuWee+5h586dPPHEE8F2rUx0YQvO6DacsfWg0hvRUpI7/3FW0Tvo3+2avP5WyeubbDgOfaJ1yvEic8ptjov0Xi81HLHrInTB7oRRuzhRul4YdVi1J0LqYs6mjit1keu6Gm0bXZ16Bm/kOUMyVxtrPkdKk1jslpTMZRidg/7drd2icP3Iz4QO1C7Yh6D2AiPmkdB4Z9ixYweXX345b3zjG1m7dm28yoXjDpE6ITZ79+5l586d7Ny5syWxsVZ53NIWnPGtuMX0grcU5M5rB9lF70zvm7hKsT5sonO132/StL2L2CkHrPnoGcxDEzvdZ9UI/7AYcpcmSteOL3VRxIrexe02bRe4ru1xB47WaVNRXZPznp+x6CdQacjPuqDpKXcrUeYgOjoXFYGD+BIXxqxqr3vbPgy1l1gzMs3U1FSwf+vWrVx++eX8wi/8gqQiEWIhUickRmvN448/zs6dO/nOd77DsWPHmvuMPM7IFtzR9IK31OTOf5xIklTrjQ7tLW8FDEfwonpvurW31//SEDttKMxKs729Zi1nLnZ9onSRbejRJTtolA56S10clNaplybrRhqx80UO6Clz7XSTu6Ukc5BdVyt4Qhc1djiNvHWgXVTlELljL7K6dKzlM3RiYoI3vvGNXH755Zx99tkye1VIhEidMBC2bfPII4/w7W9/m3/+53+OELzNuKMnpBK8pSJ3XluIH71rF7qI9mQueAn/t36paNDJ0s9kJnYphC5oQ5eo3UqVurjdsGGRQ0F1PP1zEZa7wpT3oi0JmRswOheOTvtr4NpFlY3A+WgXo3IQY/4lVhtHmZmZCXZNTEzwute9jp//+Z/nVa96FZaV8TqCwnGDSJ2QGbZt8+ijjwaCF+5G0MrCLW3yJK+0Ccz4g3uzljsYUvQunLIh7n0uK8HL8F2sQm1K1IRBxK6umyI5aOaPkNxl0fWqHCgddslPp7/DD0Xq6B2ti9O9mhSlvRQnSkNuNrx263Bn5HYjicz1mt3tmt4+18qm27ZZcR2jfACjPMmEMRVa0QfWrFnD6173Ol7/+tfz8pe/XEROyASROmEo+IL3ne98h3/+53/m6NGjwT6Nwi2uwy1twR3ZjLZGmgV73HuzToUC2UXv/G/3SZY4impTasHL+F1sOPHGtHU0I63YNV5Ts9J7WaZEbTG812V+0+JG6Xy8Zc6GG61L273aC1/kfKxy5//Q/iVg2JIXJXP9UvL44tZ1f1ZCZ89hlicx5ifJ2UdD2QNg7dq1vO51r+MNb3gD559/vqy9KmSOSJ0wdBzH4YknnuD73/8+9957L3v27GnZ7+ZW4ZY2ez+F1b2Tqaqm3MEiRu90I7pEa3tcM1ki3171JxK8jN/FaaN1kELs/HF8JqAhN5eN2HlROoP6aFO400x8yUzqhhSt04ZqJgsesHs1TFjmokSuF+3XTr/3qFl2E63wECVw/aSta11WMx9kKrRG1Y5ilCe9n/pMy+7t27dzySWXcMkll3DOOeeIyAlDRaROWHD27t3Lvffey7333stjjz2G64YiDUYet7gRt7QRt7gRzEJL2ahZnsGHuWoek+oDulv0LiRwwWldr1uuowrDW84MhiN4/rk7JG8JSR0kELuw0AWFwSo38sQNIHeupShvaBUFrUgsd0tR6oLIMJ7g2EUjsyWrBpG51opCwtTn+TarOnjfLCSpo3NOFaNyAKN8gPWFuZaeCNM0Oe+887jkkkt47WtfK7NWhQVFpE5YVI4dO8a//Mu/8P3vf58HHnigJS8TgJufwC1uwi1uRBfW9Jxs0bxhD7ikVEjulKsbUpWimmEIXqN9QRTPAauiW27yWZG2C9anr9hFCV1LBemjdn6Uzh6Jfl7C10eva0U5UDziUjg2eORwEKlrf3212f43VCbSR4DidLHGr4zGMInBl3YbFomjc9pFVY8EImfUj7XsHhkZ4aKLLuKSSy7h4osvZtWqVRm3WBDiIVInLBnq9To/+clPuP/++3nggQd46qmnWvZrZeEWN3hRvMJ6sEYju2qDaF544kIKVDhXmh4slcGwBM+oa4pTGjc0xrpljN8ADBqt89sSKXb9hC6oIF3ULipK1/UURve/s4rSQTKp6ydx7WiDxNG6TEUOloXMQczonNZgz3sSVznAGMc6vnCefvrpXHDBBVx44YWcd955srKDsCQQqROWLIcPH+bBBx/kgQce4MEHH2xJlwKgzRJucT1uYb2XMiU84cI/xo/eDZh2YakKnlHXFI92LvDutk2kSyt6g0br/HO3iF1coWupJH7Url+ULk55H+VAYWp4kbpur0k/iYssE1PsMutehUDkYHnIHPS47ux5jMohjOohjMohlNMqcRMTE4HEXXDBBaxbt27ILRaE5IjUCcsCx3HYvXs3DzzwAA899BA/+clPsO3WCIq2RgPBc4vrwSw292UUvYPhCR4kl7xIqYsiQvSgv+xlEa0Ln8dpDJFMO+YxTtQuSZQuFi7kZwd/DpSjKR5tHYiZRt560U3sjqeonNJQPFANbVDMbS10XnN2ORA4T+LmW3abpsk555zDhRdeyEUXXcTpp5+OYSyxf1YQ2hCpE5YllUqFxx57jIcffpgf/ehH7Nq1qyV1AIBrjaEL63ALa3EL67xInlJLVvAgWRRPOZrcHFiVAU7aRfaaDfJukklu3K6pqI1HtLsRoYtcvDwJPeRu0CjdMFG2ZvzFiNk1GeNdQ34yxeZzvZKich3i1rbPOtTIB2caVE5cRXmd6UXiqocxakdQlUMY9lxLOdM0OfPMM3nlK1/JK1/5Ss477zxKpdKw/xVByBSROmFFMDc3x49//GN+9KMf8aMf/Yinn36a9ktbGwXcwtpA9HR+Au1/817iggedkhc7SjcgrqWoro7/3GhTUR+N3qc0GNUMxA465G4pCx0ALhSms+nKTcSgT/UiReVii1sE2oTqJo3mKLY1hVE9gnJb61JKccYZZwQSd/755zM62uXCFYRlgkidsCKZnp7m0Ucf5fHHH+exxx7jySef7OyuVSY6v6YhemtxCqu9FCpLUPCgTfIaqy+orJPZRuBLXW1VdikzMhM7CMbbmTWdbbfrEFioaF1X4j7lCxCVUy4UD0ZLG/QXtzBa1XFzMzjWDG5umtx4lWq1tW7LsjjzzDM599xzOf/883nFK17B+Pj4QP+DICw1ROqE44JqtcquXbv48Y9/HIheeO3FJiWwVlMfX4ubX40urEYnWNIsihbBg4ElT7kas+YNug8nYdVGn67UAVjKYqdcyM1prIqmPmLgmmCPLs1o3aJLXTvhpz9DkfPHaSpXMzJZizxGuTq2tIXROLi5WVxrFteawc3Nos1OOVy1ahXnnnsu5557Lueddx47duygUChE1CgIKweROuG4xHVdnn/++UDynnjiCZ5//vmOLlsA1DhKTaDza6iuWYvOj4NqjrpOGtVLI3nK1c0EyBqMKBlSnZn2sxQ9p6CYPSG7kI3SYNTwkjunlDtf6HLzzfLaYMnK3ZKTOtq7+DNIheNqSofqwePcZNSXp3hoXFxrriFws7i5WVS+0pKw3Gfbtm2BwJ177rls375dJjYIxx0idYLQYHZ2ll27dvHEE0/w5JNP8sQTT3Dw4MGIIxUYYzilCdz8BDrv/cbMpz53eHUK5YJVbbtpdRO5vhVnJ3pZR+t80kTtlOuPp2sVujDagNqoETxeCoK32FKnjdbrQUdcH2lRLozsr4GG/L7p5G1T9YbANX/MYq1j2ATAhg0b2LFjB2eddRZnnXUWZ5xxhnSlCgIidYLQk0OHDrVI3u7du5mejr5habMUkrxV6PwqdJcEyb1QrrdsUsvfg8xw7ThBetFbbLGLI3NRhAXP/3sxJG8xpC4scllKHIREDmLLnEajjQquNY9rzaIbAqfN6G7a8fFxduzYEUjcjh07WL9+fWb/gyCsJETqBCEBWmsOHDjA008/zdNPP83u3bt5+umn2bdvX/TxykDnxtG5cdzcODrvPU4ie0OXPIgUPYiWvaGKXZfu2LQy1412yfO3ZSV6ytGMHIh+jTKbINKFYUbjIL7IheVNm+WGxJXR1jwQ/dxs2bKF0047jdNPP51TTz2V008/nU2bNqEGnLgkCMcLInWCkAEzMzP87Gc/46mnngqEb8+ePdRq0dGHDtnLjXk/1igYvTPztktesC1r0QNP9vKdN1QnpyivN3qmL0l9Sg1mBXKzOlhzNyuZ64XO0BsMR1PcHzGzU4E9YuGU0q/T2s6wJQ6866t0oDlOLixyGgdtVnDNCjpXpj5WBz0Deo5u8pbP5zn55JMDcTvttNM49dRTGRsby7TdgnC8IVInCEPCcRz27dvHs88+y3PPPRf89JI9aHTj5kbR1hg6N9oQvtFGdC964PeCih5AYzJCfcTA7lydbWD8CRCGjRe5i7lmamo05KdtzPls1nntiaGork0//nKhJQ4AxyZ3+DDVDYCeQ+s50PPgzgGVrvXk83lOOukkXvayl7X8bNmyBcsa0lRtQTiOEakThAUmLHt79uzhueee44UXXmDv3r1d0qx4aBTaKqGtkcgfzGJLl26U6AXbs5C9htjZxeHOMFR6yHKnITdjY80tgNBBomhdu8BB9hKnFdTGQdUr5KfmUPY8Rn2e3OwcWs+DnscwqpEzTn3GxsY48cQTOwRu8+bNmGZ2UUlBEHojUicIS4hjx44Fghf+/cILL1Aul3uW9aQvLHolMIueCDZ+oyyUVpnJnrYUldULc9MeitwttND5KHBKXqRKK7BHzegxjQkFTis6xzpqDa6NUa+g7LL3u+aJm1Gbx6iWUc48qs+toFQqceKJJ7Jt2zZOPPHElp+JiQkZ9yYISwCROkFYBmitOXz4MC+++CKTk5NMTk6yb98+9u3bx+TkJAcOHOhY+zayHsP0JM8oesIXkj6MAoadB6MAyuqYyNEifY2F4/0F5BeSQO580kreIgidtgxmt7UmwNUK7JLCTZrjuiFryq5h2FWUXUbZVbQqY9QqGDXvt1kto9z+14ZpmmzcuJHNmzezZcsWNm3axObNm9m6dSsnnngia9euFXEThCWOSJ0grABs2+bw4cMtord//34OHjzIoUOHOHjwILOz8bP3a2WgrQLaKuA2fmszDxTALOBaOZxiAW3m0GYebeZQGOTm+ladOYklT0NuzgFXZy50UdIWxjUVcyd0ESPXQdl1DLuGsuve43oVo15FNX4b9RpGrYqyq95vHT+yOjY2xvr161m/fj0bN25ky5YtbN68OfhZt26djHMThGWOSJ0gHCeUy2UOHToUSF5Y+A4fPszU1BRHjx5lfn4+Vf3aMNFGrkX0tJXzthkWmBbasNCGCcrCrFlgmGhlgWE1fpuNySBG4vx+Ph2SRyNdSUEx/mI9scx1FTWtAQ3a8SJm2sE1HCprHZRjN3/ctr/D4ubUm3/3GLPWi1KpxMTEBOvWrWPDhg2BuK1fv77l71KplKp+QRCWDyJ1giC0UKlUAsHzfx85ciR4fPToUWZnZ5mZmWFmZobZ2dmeg+jTopUBymhIoOH9bZjBdm+bAlRDABUogr9123ZtgFX2Razx2ztT46FGEdqvHdAu4KJNF7TriZfrorTj/c74f1ZKMTY2xvj4OGNjY6xevZo1a9awevXq4HH479WrV4usCYIQIFInCMJAuK7L3Nxci+T5j6enpymXy5TLZebn5/s+Xq4fR6ZpUiqVgp9isdjyt/8zMjLSIm3h3+Pj44yOjsp6pYIgpEakThCEJYHWmnq9Tq1Wo1artTwO/12v16lWq9i2jeu6uK6L1hrHcdBaB9tc123ZZhgGSqmW3/5P+3bLssjn8+RyOXK5XM/H/o9MIhAEYbERqRMEQRAEQVgBSJxfEARBEARhBSBSJwiCIAiCsAIQqRMEQRAEQVgBiNQJgiAIgiCsAETqBEEQBEEQVgAidYIgCIIgCCsAkTpBEARBEIQVgEidIAiCIAjCCkCkThAEQRAEYQUgUicIgiAIgrACEKkTBEEQBEFYAYjUCYIgCIIgrABE6gRBEARBEFYAInWCIAiCIAgrAJE6QRAEQRCEFYBInSAIgiAIwgpApE4QBEEQBGEFIFInCIIgCIKwAhCpEwRBEARBWAGI1AmCIAiCIKwAROoEQRAEQRBWACJ1giAIgiAIKwCROkEQBEEQhBWASJ0gCIIgCMIKQKROEARBEARhBWAtdgMEwUdrTaVSWexmCIIgJKJYLKKUWuxmCIJInbB0qFQqXHHFFYvdDEEQhETcddddlEqlxW6GIEj3qyAIgiAIwkpAInXCkiT/wEaUbnznUAbKUKAMMBQohTL8fY3tSoGhUP4xwT4VlAl+ILTNaN3vFQy2aaWaX31CdQTbVfNc4W1aedUE+wyvXm+7Cvb5ZXRjW7AfmnUYjeP9/bSeo6VMo/naiNjXcjwtbWxuUx37OsoQbkfbfrps71Jft3Z0lOlVb7Bdd5YPlQn2h+rSje2Eynn7dKg93n4V3hcc6+/TQZ0qfLzSwb7gEvO3+9U1jvEuBR387ZcxGn97+7y//XLBPqVRNMsZjW3BDzooZyhatnvl3WY5/ONdTL9M4+9mXW5Qnxmq38Tbbvr1Bce6mH6d+O1wm8fTrNur08XAO7+3z6vPbGxTuJh++VAZE7xyeOfxnw//b+9cuvGYxj6N0XheTBQGYDZebAPV2KYwlcLAQDVeuXrN5O3/32YEYSkhUicsTRzV+HjFkzoaAta4Wzb3KTCaBqM8Q2pU4t/dDTru2k1jajUJv86Ouzxt28LnIGJbezmaMheSuo5tIQkL/93exNbjI8oYPfZ1+zc62tHl3+61r9tTlba+UJ1RwjdUqYvaT/vfOqg73I7wOaP2BRJI6Jjw8R1ldMS5dMtPWOqaotj46bYPX/y8KsMC6Msf+HJGIEXhfZ7UuU0pUmEp8h4bSnnC1fhN8FgF5bx6aNTpl6VRrrE9al+ojNkQUjNopy91uq/Uhesz/eeD1m0G4TaGXkNBWCJI96sgCIIgCMIKQKROEARBEARhBSBSJwiCIAiCsAIQqRMEQRAEQVgBiNQJgiAIgiCsAETqBEEQBEEQVgAidYIgCIIgCCsAyVMnLE1MjdZewlEv75oK/VZtCYH936HHhLfp0OMY+0JJy5opYrttb/7WLY9pKacBtL+9WadGgSYoG94f1NGSXC3cloi/dUuT2p6PLj/tx8bJRddrX+xzxdwXPmXPcrpPnbpLG7snH27NLRfaFxybPvlwsx2hPHWkz1OnaZbTSrf+4P329tGy3VUalNusE/9cbiifXuOYxn6t3KA+Wupv/PbP1fjbaBzj/wY6trmht7X/2FXg0sxT5za2KbrlqVNBwmCT5mvm/200yrTnvouffFjRTD4c9b4UhMVFpE5YktQuPLDYTRgO/j0zJe1OIgg+4UvLXcyGpCZs1dKJJAhpkHeOIAiCIAjCCkBprWWtE2FJoLWmUqksdjNWDJVKhV/+5V8G4Otf/zrFYnGRWyQsV+Ra6k2xWEQpiZ0Li490vwpLBqUUpVJpsZuxIikWi/LcCpkg15IgLF2k+1UQBEEQBGEFIFInCIIgCIKwAhCpEwRBEARBWAGI1AmCIAiCIKwAZParIAiCIAjCCkAidYIgCIIgCCsAkTpBEARBEIQVgEidIAiCIAjCCkCkThAEQRAEYQUgUicIgiAIgrACEKkTBEEQBEFYAYjUCYIgCIIgrABE6gRBEARBEFYAInWCIAiCIAgrAGuxGyAIxxOVSoVHHnmEXbt2sXv3bnbv3s3+/fsBeO9738v73ve+vnUcOXKEW265hfvuu4/9+/dTKBQ4+eSTufLKK7n66qtRSvUs/+KLL3LLLbfw4IMPcuTIEUqlEmeccQbXXHMNr3/96/uef9euXfyf//N/eOSRR5iammJ8fJxzzjmHt73tbbz61a+O9TwIg3Ps2DHuvfdefvjDHwbXkeM4rF69mjPPPJMrr7yS173udT3rmJ+f59Zbb+W73/0uk5OTGIbBtm3beOMb38jb3/52crlcz/KLfS0KgtCKLBMmCAvIww8/zIc+9KHIfXGkbteuXVx33XUcO3YMgFKpRK1Ww3EcAC688EJuuummrjfj++67jxtuuIFKpQLA6Ogo5XIZ13UBuOqqq7j++uu73ozvuOMOPve5zwXnGxsbY25uDv9jJK6YCoPzhje8IXgdAPL5PKZpUi6Xg20XXXQRn/zkJykWix3lJycn+Z3f+R0mJycBKBaLuK5LrVYD4PTTT+fmm29mfHw88vyLfS0KgtCJdL8KwgIzPj7Oq1/9at797ndzww03sHbt2ljlZmdnuf766zl27Bjbt2/ni1/8InfddRc7d+7kd3/3d7EsiwceeID/9t/+W2T5l156iU984hNUKhXOO+88vvzlL/PNb36TO++8k/e+970A3HnnnXzlK1+JLP/4448HQnfppZfy1a9+lTvvvJN/+Id/4M1vfjMAf/d3f8c999yT/EkREuM4DmeddRa///u/z6233srdd9/NXXfdxW233cbVV18NwP3338+f/MmfdJS1bZuPfOQjTE5Osm7dOv70T/+UnTt3snPnTm644QZGRkZ46qmn+OQnPxl57sW+FgVBiEakThAWkPPPP59vfOMb/Nmf/Rm//du/zWWXXUY+n49V9tZbb+XIkSMUCgX+y3/5L+zYsQOAXC7H2972tiBC9o//+I/s3bu3o/zf/u3fUi6XWbt2LZ/5zGfYtm0bACMjI7zvfe/jmmuuAeB//+//zczMTEf5v/zLv8RxHE455RRuvPFGNm7cCMDExATXXXcdF154YctxwnC5+eab+cIXvsBb3vIWtm7dGmzfsmUL119/fSDaO3fuDLr4ff7pn/6JZ555BoBPfvKTvOY1rwHAMAwuu+wyrrvuOgD+5V/+hR/+8Icd517sa1EQhGhE6gRhATFNM3XZu+66C4DLLrus5Sbu87a3vY1SqYTjOHzrW99q2Vcul/nud78LwFve8pbILrX3vOc9AMzNzfG9732vZd9LL73Ej3/8YwDe9a53YVmdw3H98pOTkzz66KNJ/z0hIa961at67vejdeB1lYb5p3/6JwBe+cpXcu6553aUveyyy9iyZUvLsWEW81oUBKE7InWCsAx4/vnng2jLRRddFHnMyMgI559/PgAPPvhgy77HHnuMarXas/yWLVs46aSTIsuH/+5W/rzzzmNkZCSyvLDwhCPA/jg18CbrPP744wBcfPHFkWWVUsHr3P5aLva1KAhCd0TqBGEZ4HeVAZx88sldjzvllFMAeO6557qW94/pVf7ZZ59t2e7/vWbNGtasWRNZ1jRNtm/fHlleWHgeeeSR4HH4Nd+zZ08geb2uJX/fkSNHmJ6eDrYv9rUoCEJ3ROoEYRlw+PDh4PGGDRu6Hrd+/XrA67aan58Pth86dAjwJmkUCoW+5cPnC5f393fDb1t7eWFhmZmZ4Utf+hLgjeP0ZRuaryXEu5bayyz2tSgIQndE6gRhGRC+Kfa6EYZTV4TL+GkuolJbRJUPlw3/3a+837b28sLC4boun/rUpzh8+DD5fJ7f+73fa9k/6LW02NeiIAjdEakTBEFYQfz5n/85P/jBDwD4vd/7PU499dRFbpEgCAuFSJ0gLAP8CQhAMMg8Cj+Ra3uZUqnUsb9X+XDZ8N/9yvttay8vLAyf//zn+drXvgbAtdde2zID1mfQa2mxr0VBELojUicIy4B169YFjw8ePNj1OH+80ujoaMvN0B+fNDMz0/NG7JcPny9cPjy2Kgq/be3lheHzF3/xF9x2220A/Lt/9+/41V/91cjjwmPl4lxL7WUW+1oUBKE7InWCsAwIzxLsNRvQn1n4spe9rGv58OzDbuXbZzX6fx89epSpqanIso7j8Pzzz0eWF4bL//gf/yNYfeG3f/u3ede73tX12JNOOgnD8D76e11L/r61a9eyatWqYPtiX4uCIHRHpE4QlgHbtm1j06ZNgLf0UxTlcjlIEHzBBRe07DvvvPOCQe0PPPBAZPnJyUn27NkTWT78d7fzP/bYY8Gg9vbywvD4/Oc/z6233gp4Qvfud7+75/HFYjFIONzttdRaB9dJ+2u52NeiIAjdEakThGWAUoorrrgCgHvuuYd9+/Z1HPP//t//o1wuY5omv/ALv9Cyr1Qq8fM///MA3H777czOznaUv+WWWwBvDNOll17asm/r1q1BMtnbbrsN27Y7yn/5y18GYPPmzbz85S9P+i8KKfj85z/f0uXaT+h8rrzySgAefvhhfvrTn3bs//a3v81LL73UcqzPYl+LgiB0R6ROEBaYmZkZpqamgh8/EWy1Wm3Z3p7K4V3vehdr166lUqlw/fXXB0s/1et1br/9dv7mb/4GgGuuuSZYSzPM+973PkqlEocPH+YjH/lIsCZnuVzm7/7u7/j6178OwL/+1/86cummD3zgA5imydNPP80nPvGJYDzV9PQ0f/qnfxpEbT74wQ8OtByaEI/wGLprr722Z5drO1deeSWnnHIKWms+/vGP9NsBQgAAAjpJREFUB+u7uq7Lt7/9bT772c8C3ooPr371qzvKL/a1KAhCNEprrRe7EYJwPPGrv/qrTE5O9j3uyiuv5A//8A9btu3atYvrrruOY8eOAV4ko1arBZGzCy64gJtuuqlliagw9913HzfccEMws3BsbIxyuYzjOABcddVVXH/99SilIsvfcccdfO5znwuOHxsbY25uDv9j5L3vfW+wmLswPPbv38873vEOAAzDYPXq1T2Pf+c739kRxdu3bx8f+tCHgmuxWCziui61Wg2A008/nZtvvrmrVC32tSgIQicidYKwwAwideAt23TLLbfwgx/8gAMHDpDP5znllFO48sorueqqq4JB8N148cUXueWWW3jwwQc5cuQIpVKJ008/nTe/+c28/vWv79uuXbt2cdttt/Hoo48yNTXF+Pg455xzDm9729siozpC9uzbt493vvOdsY/vJtvz8/PceuutfPe732VychKlFNu2beOyyy7j7W9/O7lcrme9i30tCoLQikidIAiCIAjCCkDG1AmCIAiCIKwAROoEQRAEQRBWACJ1giAIgiAIKwCROkEQBEEQhBWASJ0gCIIgCMIKQKROEARBEARhBSBSJwiCIAiCsAIQqRMEQRAEQVgBiNQJgiAIgiCsAETqBEEQBEEQVgAidYIgCIIgCCsAkTpBEARBEIQVgEidIAiCIAjCCkCkThAEQRAEYQUgUicIgiAIgrACEKkTBEEQBEFYAYjUCYIgCIIgrABE6gRBEARBEFYA/z9UtAwEG3mpXwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "plotting psichi in Galactic coordinates...\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG2CAYAAAAZY3DTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd7gdVbn/v2tmt9NLcpKTHggRCAkQeg9VpIqCFUXQewVUUJSfekVF0asIeFG8VlBBpAkC0kKTFuAK0kMgkE56z+m7zazfH7PXnLVnT1llzjlJmM/znCcne8+8s/Y+s2c++31XIZRSioSEhISEhISEhB0aY6QbkJCQkJCQkJCQoE8idQkJCQkJCQkJOwGJ1CUkJCQkJCQk7AQkUpeQkJCQkJCQsBOQSF1CQkJCQkJCwk5AInUJCQkJCQkJCTsBidQlJCQkJCQkJOwEJFKXkJCQkJCQkLATkEhdQkJCQkJCQsJOQCJ1CQkJCQkJCQk7AYnUJSQkJCQkJCTsBCRSl5CQkJCQkJCwE5BIXUJCQkJCQkLCTkAidQkJCQkJCQkJOwGJ1CXsFEydOhWEEEydOnXYjnnuueeCEAJCCJYvX64V6wc/+IEb66mnnoqlfXExEu9tHNx4443ue3rjjTeOdHOGnF/84hcghGDs2LHo7+8f6eYkRPDjH/8YhBDsuuuuyOfzI92chJ2EROoStGE3Tr+fpqYm7Lbbbvj4xz+O22+/HaVSaaSb6/Laa6/hhz/8IY4++mhMnToVjY2NyOVyGDduHI466ihceuml+L//+7+RbqYUvMj4/aTTaYwePRqHHnoovv3tb2PRokUj3eSEGNiwYQMuv/xyAMC3vvUt1NfXj3CLdkxuvPFG/OAHP8APfvCDIT/WxRdfjLa2NixbtgxXX331kB8v4X0CTUjQBIDwz6xZs+g777wTexumTJlCAdApU6ZEbrtw4UJ66qmnCrd55syZ9IEHHqiJ87nPfc7dZtmyZVrtv/zyy91YTz75pHKcP//5z1J/j3Q6TX/605+GxpR5b7cn+Pfiz3/+80g3Z0i56KKLKADa2dlJ+/v7R7o5Oyxz5sxxz5nh4IorrqAAaFNTE924ceOwHDNh54ZQSunQ6GLC+wVCiPv7PffcU/Xc1q1b8fzzz+OWW27BwMAAAGDy5Ml49dVX0d7ePqztBICHHnoIn/rUp9Dd3Q0AyGQyOPbYYzFnzhyMGzcOuVwO69evx/z58zF37lysXr3a3df7UTn33HNx0003AQCWLVu2XZQnb7zxRpx33nkAgGOOOQYXX3xx1fOFQgHvvfce/vGPf+C5555zH//973+PL37xi8Pa1oR4WL16NaZNm4ZCoYArr7wS3/rWt0a6STssRx99NJ5++mkAtZ/3oaC7uxvjx49HX18fvvWtb+HKK68c8mMm7OSMrFMm7AyAy/wE8eabb9LRo0e7233zm98cxhY6PPfcczSdTrttOPPMM+mKFSsCt7dtm95xxx109913931tcWbq4oLPTn3uc58L3faHP/yhu21nZye1LGt4GpkQK9/+9rcpAGoYBl21atVIN2eHZrgzdZRS+ulPf5oCoG1tbbS3t3fYjpuwc5L0qUsYFvbaay/85Cc/cf9/1113Devxu7q68LGPfczt0/eVr3wFd955JyZPnhy4DyEEH//4x/Hqq6/inHPOGa6mDhuXXXYZOjo6AADr1q3Du+++O8ItSpClVCrhhhtuAOBkmSZMmDDCLUqQ5eyzzwbgVDVuu+22EW5Nwo5OInUJw8Ypp5zi/r506dKaEXpr1qzB97//fRx66KFob29HOp1GW1sbpk+fjiOPPBJf//rXMW/ePN/YUSM0f/Ob32DNmjUAgP322w//8z//U1U2DqOurs4ts0bxyCOP4IwzzsDEiRORzWYxfvx4fOxjH8MLL7wQut9IjH41TRO77bab+/+uri7f7aLeW7+2/+tf/8LZZ5+NKVOmIJvNYsyYMTj11FPx8MMPh7Ypzlgio1/Z80cffTQAoK+vD9dccw0OOOAAtLW1oaGhAXvttRf+67/+C1u3bg09HuPVV1/FueeeiylTprgDb0488UTccccdAIDly5e7xz333HOFYgbx8MMPY9OmTQAG5UCEd999F9/85jdx4IEHoqOjA+l0Gi0tLdhvv/3w5S9/Gf/85z9Dy48rV67Et7/9bey3335ob29HNpvFhAkTcNppp+HGG2+EZVmhx/e+7zrbHn300e42jNtvvx0nnHACOjs7kc1mMWXKFJx77rlYuHBhaAxWeuWPy//4DaB46qmn8LnPfQ677747Ghsbkclk0NnZiZkzZ+L000/HNddcU9WNw8sHP/hB98vVzTffHPl+JCSEMtKpwoQdHwiUXymltFgsVm27evVq97kHHniANjY2Rnbsb2lp8Y0d1pnftm3a2dnpxrj77rt1Xq4LX35dsmQJvfDCCwPbbRgGveGGGwJjDcVAiajyK6WUTp8+3d1+zZo1vttEDZTwtv3HP/4xNQwj8L34/ve/H9ieOGOJDJRgz8+ZM4cuWbKEzpgxI/BYU6ZMiSyzX3PNNdQ0zcAYH/vYx+i7774r9TcK4/Of/7wba+nSpZHbl0ol+rWvfS20jeznqaee8o3xu9/9jtbV1YXuO2vWrND3in/fo4jali+ZDgwM0DPOOCOwXdlslj700EOhMcJ+Lr/8cncfy7Lof/zHfwjt99WvfjX0NX7kIx9xrxObNm2KfE8SEoJIeSUvIWGo2LhxY9X/m5ubATgdvT/5yU+it7cXgJPRO+GEEzB+/HjYto0NGzbg9ddfx2OPPRaYTQpj/vz5WLduHQCgpaUFp59+uuYrqeW73/0ubrvtNnzgAx/AOeecg9122w09PT24++67MXfuXNi2jS996Us4/PDDsccee8R+fBWeeeYZd0qTvfbaC+PGjdOO+Yc//AG33XYbJkyYgHPPPRd77bUXisUiHn74Ydxxxx2glOKKK67AnDlzcOyxxw5brCi6u7txyimn4J133sGHP/xhfOhDH0J7ezuWLl2K3/72t3jvvfewYsUKnHPOOXjmmWd8Y9x000249NJL3f+fdtppOPXUU9HS0oJFixbhT3/6E+68806tdnp57LHHAAAdHR3YZZddQrellOLMM8/EfffdB8DJ1J5xxhk45phjMGbMGPT39+Ptt9/GI488gtdee803U/f73/8eF1xwgfv/0047DaeccgpaW1vx7rvv4s9//jOWLVuG+fPn44gjjsCrr77qZqGGg89//vO49957sf/+++OTn/wkJk+ejE2bNuGWW27B888/j0KhgM985jN45513MHr0aHe/H//4x9i0aRO++93vYsGCBQBqB30BqPrs/upXv3JL362trfjMZz6D2bNno6WlBf39/Vi+fDleeOEFPPnkk5HtPuSQQ3DPPffAtm08/vjj+MQnPqH7ViS8XxlZp0zYGYBgpu4Pf/iDu93UqVPdx6+++mr38Z/97GeB+9u2TZ955hnf58KySb/5zW/c+Mcff7zYixKAz9QBoOeccw4tlUo121188cXuNhdeeKFvrOHK1BUKBbp48WL6P//zP7S1tZUCoJlMhj7yyCOBMWUydQDoCSec4Nvh+3/+53/cbU466aQhjyWTqWPvw/3331+zzaZNm+guu+zibvfCCy/4bsPeT8Mw6C233FKzTX9/P/3Qhz5UdUydTN2aNWvcOKecckrk9j/72c/c7SdPnkzfeOONwG1feuklunz58qrHli1b5mboTNOkd9xxR81+/f399JRTTnGPc9ZZZ/nGZ8/HnakDQC+77DJq23bVNpZlVWXwgq4zMgMl9tprLwo41YOwaZq6urroq6++Ghrrqaeeco97ySWXRB47ISGIROoStBGRurfffpt2dHS421166aXuc+eff777+JYtW5TaECYel112mRv/ggsuUIrvBy91e+yxBy0UCr7bdXd3uzfDXXfd1XebkZinLpvN0pNPPpk+//zzoTFlpG7UqFGBf0PLsujkyZPdY/sJcJyxZKXuiiuu8H8DKKXXX3996Hb8F5Owc2zz5s20ra0tFql79NFH3Thf//rXQ7ft6emh7e3trryGCV0Ql1xyiXu8sNHrXV1ddNy4cRQAJYTQd999t2aboZK6Y489NjDOokWLIreTkbpsNksB0NNPPz1y2yjWr1/vHve4447Tjpfw/iUZKJEQK/fee2/Vz4033ogvfvGL2H///d3y6/jx4/HNb37T3Yef/Z6VPuJk8+bN7u+tra2xxweACy+8EJlMxve5pqYmHHDAAQCc+ey2lyWBTNNELpdDKhVfL4xzzjkHbW1tvs8ZhoE5c+YAcObLW7JkybDFisI0TXzlK18JfJ4v77711ls1z//jH/9wf//qV78aGKe9vR2f/exnFVtZzYoVK6rihjF37lxs2bIFAPDpT38as2bNkj7e3XffDQBIpVL4xje+Ebhdc3MzvvSlLwFwSr5+ZcyhIuy932233TBp0iQA/n9DWdh1a9GiRdor5fDnOf93TUiQJZG6hFj5yEc+UvVz3nnn4frrr3dHuu6555549NFHq/rZnHDCCe7vH/3oR3Httddi1apVw952HQ455JDQ59lUE5RSbNu2bRha5Ew+fM8991T93HXXXfjd736Hc889F5RS3H333Tj00EPxm9/8JpZjir4PACJHk8YZK4oPfOADgQIZdSzbtvHKK68AADo7OyP7TIqM+BSBSRoQLXXPPvus+7tKn9INGza4srHPPvtgzJgxodt/8IMfdH+PGvkdJ6LnjO75Agxet95++20cf/zxuP/++90J1mVJp9NoamqKrW0J71+SgRIJQ0pDQwPGjBmD2bNn4yMf+Qg+9rGPIZvNVm1z0kkn4dOf/jRuvfVWbNy4EV//+tfx9a9/HdOnT8dhhx2Go446CqeeemrkjSSIUaNGub8PlVDxna794F/zcGXqJk+ejDPOOMP3ufPPPx/f+c53MGfOHKxduxZf+cpXMGvWLBx55JFax4zzfRjO91TnWF1dXe6Xll133TXyWCLbiFAoFNzfmRAEwX9J2nPPPaWPtXbtWvf3D3zgA5Hb89vw+w41on9H/r1T5Wc/+xmeffZZrFmzBs888wyeeeYZZLNZHHDAATj88MNx7LHH4thjj0U6nRaK19zcjJ6eHmUxTEgAkkxdQsxQp5+m+9Pb24ulS5fi73//Oz7zmc/UCB3jr3/9K2644Qbstdde7mOLFi3CTTfdhC984QsYP348Pv3pTyvdIMaPH+/+vnjxYvkXJYBh7HgfpenTp+OnP/0pAOfv9qMf/Ug7Zpzvw3C+pzrH6uvrc3/nuxIE0dDQoHwsHv6zxJa9C4J/vrGxUfpYPT097u8i7eePwe871AznOTN16lS8+uqr+MpXvuJ26ygUCnjuuedw1VVX4UMf+hAmTpyIX/7yl0JLjrGR/XV1dUPZ7ISdnB3vTpSwU0IIwRe+8AW8+eabWLJkCW666Sacf/75mD59OgDAsizcdtttOPjgg7F+/Xqp2Icffrj7+7///e/IiVHfT5x44onu708//bR236D3I7zkeCfU9oOXQB34kitfivWDTR8EwJ06SAY+EyjSfv4YUVnEMGzbVt53OBgzZgx+9atfYcOGDXj++edxzTXX4IwzznDf7w0bNuBrX/sazj///NA4pVLJfc9GYk3shJ2HROoStjt23XVXnHPOOfjd736Hd999Fy+//DJmz54NwJnJ/uqrr5aKt/fee6OzsxOA822YzdOVUF2aLhaL7uoECeK0tLS4GbqlS5dGbi+yjQj8Ch9RUjdx4kT397ffflv6WPwchmxuwzD4bfhMOYMNKioWi6FxdpTzMZ1O49BDD8U3vvEN3HPPPdi4cSP+9Kc/udnU66+/HvPnzw/cn//7TZkyZcjbm7DzkkhdwnbPfvvtV7V8Dt/pWwRCCC666CL3///93/+NcrkcW/t2ZPiRwUB8pcH3E4ZhYL/99gPgrKEbtBQVI65l4GbOnOn+/s4774Ruy/eVVPlSM2bMGFc2XnvttZqJxL08+uij7u8HHXRQzfOsXMmW7gtiOAdZANXlW5GSaRCZTAbnnXde1XXnueeeC9yeF+29995b+bgJCYnUJewQ8FkJFSH78pe/7GYbXn75ZVxyySXCF+2BgQF87nOfkz7mjsAjjzzi/j5+/PiqMl2COB/+8Ifd33/5y18Gbrdlyxb89a9/jeWYnZ2dmDx5MgDgxRdfDN32pJNOcst6t956a2jWKIgzzzwTgPP5+8UvfhG4XU9PjzuamhCCj3zkIzXbzJgxA4AzfUdY5vK6666TbqcOfF/AOMrkotctXl4PPvhg7eMmvH9JpC5hxLniiivw2GOPhfaf4afc2GeffaSP0dLSgr/97W/unGz/+7//i49//ONYuXJl4D6UUtx5552YPXs2/vKXv0gfc3tn8eLF+M53vuP+/1Of+tQItmbH5rzzznOzT3/4wx9w66231mwzMDCAs88+O7JUKgObVmPTpk2hctTQ0IBvf/vbAJyS52mnnRYqdq+99lrNfGkXXXSR24n/qquuwt///vea/fL5PD7zmc+4GbgzzzzT7RfL86EPfcj9/Vvf+pbvF6zvf//7ePzxxwPbOBTwS62xaWr8WLt2LS699FIsW7YscJv+/n7cdNNN7v/DrltM6gzDwPHHHy/T5ISEKpIpTRJGnCeeeAKXX345Ojs7ceKJJ2LfffdFZ2cnbNvGmjVrcN9992HevHkAnBF/X//615WOc8QRR+Duu+/G2WefjZ6eHtx11124//77ceyxx2LOnDkYN24cstksNmzYgPnz52Pu3Lk73Hx5PO+99x7uvffeqsds28amTZvwf//3f/jb3/5WNRXHZZddNgKt3DkYNWoUrr32Wpx33nmwbRtnn3027rjjDpxyyinu2q9//vOfsXTpUnzsYx9z14DVHa15xhln4I9//CMAp6wbNl3KpZdeimeffRb33XcfVqxY4U4zdPTRR2PMmDEYGBjAO++8g0cffRQvvfQSnnzyyar+XVOnTsW1116LCy64AOVyGWeddRY+/OEP4+STT0Zra6u7vi2TywkTJgTOf/j5z38eV111FbZs2YK77roLRx55JM4++2yMHj0a7733Hm6//Xa89NJL+OQnP4nbb79d6z2S4bjjjnOzg1/4whdwySWXYMqUKTBNE4AzgfFuu+2GQqGAn//85/j5z3+OAw88EEceeST23HNPtLa2oqurC++88w5uvfVWrF69GoBT/j7iiCN8j1kul90uJUcddVQyUCJBjxFZxyJhpwICy4SFcfTRRwstazV69OjANUqjlrLieeutt+hJJ50kvJzW7NmzfY/LLxO2bNmy0GNGbTsSy4Sxn8MOO4yuWLEiMKbMMmFRbY/aNs5YMsuExbFcFaXOcmGmaQa+12eddRZ966233P9ffPHFkccNo1QqucvvhS2RxSgWi/RLX/oSNQwj8rx4+umnfWP89re/pblcLnTfmTNnRn4mHnzwQXepLb+fU089lfb390stExZF1LblcpkeccQRgW26/PLLKaWULl++XPjzdcwxx9BNmzYFtumhhx5yt73hhhsiX0NCQhhJ+TVhxLnvvvtw991346tf/SqOOOIIdHZ2Ip1OI5PJoLOzE8cddxyuueYaLFq0qGqmelX23HNPPPTQQ3j55Zfx/e9/H0ceeSQmTZqEuro6ZLNZdHZ24sgjj8T/+3//Dy+88AJeeeWVWI67PUAIQXNzM2bMmIFzzjkHDzzwAObNm+f2zUrQ49JLL8WLL76Iz372s5g4cSIymQzGjh2LE044AbfffjvuvPPOqjnjdLMyqVQK//mf/wnAydRFZZbT6TR+/etf4/XXX8dXv/pVzJo1C62trTBNE62trdh///1x0UUX4ZlnnsFRRx3lG+OCCy7Au+++i29961vYd9990draikwmg3HjxuHkk0/Gn//8Z7z22mtV/cn8OPnkk/H666/jvPPOw+TJk5HJZNDR0YFjjjkGN998M+67775hn7PNNE089thjuPLKK3HooYeira3NzdLxTJkyBYsXL8avf/1rd9m1lpYWmKaJ+vp6TJ8+HZ/61Kdw//3344knnqgaZe6F9bFsa2vDJz/5ySF7bQnvDwilGkN8EhISEhKk+NWvfoWLL74YgLOeqt9AAhnWrl2LXXbZBYVCAT/5yU/wX//1X3E0M2EY6O7uxvjx49HX14dvfetbuPLKK0e6SQk7OEmmLiEhIWGYKJVK+P3vfw/AyZrxE2OrMm7cOHdy21/+8pdCEyAnbB9cd9116OvrQ1NTEy699NKRbk7CTkAidQkJCQkx0Nvbi5dffjnw+UKhgM9//vNYsGABAOAjH/mI8nrGXi677DK0tLRg/fr1+O1vfxtLzIShpbu7G9deey0A4P/9v/8XuW5tQoIISfk1ISEhIQZWrVqFSZMmYe+998YJJ5yAGTNmoKWlBb29vXjjjTdwxx13uKMh29ra8MYbb1St9KDLL37xC1xyySUYO3Ysli5dKrQObcLI8eMf/xjf+973sMsuu+Ctt95CLpcb6SYl7AQkUpeQkJAQA0zqopg8eTLuu+8+pfkWExISEsJIpC4hISEhBizLwn333YeHHnoIr7zyCjZu3IhNmzaBUopRo0Zhn332wWmnnYZzzz03ycokJCQMCYnUJSQkJCQkJCTsBCQDJRISEhISEhISdgISqUtISEhISEhI2AlIpC4hISEhISEhYScgNdINSEhISFCBUgrLsmDbtu+/7HfAWR6NEALDMNz/G4bhPs5+TNNEOp1GKpUCIWQkX15CQkKCNInUJSQkxE65XMbAwAD6+vrQ398f+ZPP51EsFlEsFlEoFNzf/R4rlUpVwjZUpFIppNNpV/IymYz7GPt/LpdDLpdDXV2d77/s97q6OjQ0NKCxsRGNjY1oampCXV1dIo4JCQmxkox+TUhICIRSit7eXmzduhVbt25Fd3c3enp6qv71+72vr29k2w0AhDg/7AH3UkexPaiUYRiu5Hl/Wlpa0NLSgtbW1pqfRAYTEhKCSKQuIeF9SD6fd+dR27Jliytt7PctW7Zgy5Yt2LZtG4rFovJxMpkM6urqUF9fj4aGBtTX17v/Zz8NDQ3IZrP4/Z/nATBhZ1PonpIGNQzAMEENA9QwQQ0TMAzncWKAMmkjxPkdg/+HR3rMItD2rlXbQE703H+pDcCu/rfmMQrbtNE/xgaxyvjOiUdgYGAA+Xy+5l/2e29vr/tTLpe13lNe+Nrb2zFq1CiMHj0ao0ePdn8fNWoUMpmM8nESEhJ2PBKpS0jYyejv78eGDRuwceNG98f7/+7ubqmY9fX1aGtrQ0tLC5qamtDc3Izm5mY0NTXhxltfBEgaQMb5l6QBkgGQAiHBY7HKDSY2zTT1XqwggVI3BFhpgm27hYxBoxSwLRjlEkjlxyiXQKwSfnjSUejp6UFXVxe6urqwbdu2qp9CoSDVlpaWFowaNcoVvY6ODnR2dmLs2LHo7OzEmDFjkM1mNV9xQkLC9kIidQkJOxiFQgHr16/H2rVra37WrFmDnp4eoTh1dXXo6OhAe3s72tra0NbWhrvvfxMg2cpPxv2dED35Gk6B82M4pc6PSNETDlSGUSrAKBadf0sFfPOYg7Bp0yZs3rwZmzZtcn8XzbC2t7e7kjd27Fj393HjxmH8+PHJ6hcJCTsQidQlJGyHDAwMYNWqVXjvvfewatUqrFq1yhW3jRs3Ru7f2NiIjo6Oqp8bb30ZIHWAkQNIDk4mLZ6+WdQkKLRy0kaBVMG5tJRzMQmNJKk80PFKwW1fsXmwfcYI+B0lQLmOVH4nsNPccybQPybGfnKUOhnAYh5mYQA/O3UONm3ahA0bNmDdunVYv3491q9fj4GBgchQHR0dmDBhgvszceJETJw4EePHj0d9fX18bU5ISNAmkbqEhBGiXC5j3bp1WLlyZc1PlLjV1dW52ZRx48bhjn++g9RADjDqAFIPQuIb2F4jbL4bDUqcH0Mpdry8BeGVuiCGSvZ4ofN/vlryfLcxgP6x8Yufme+HOdCP7x5/ENavX+9K3+rVq9Hb2xsaor293ZW8KVOmYOrUqZgyZQo6Ozvd6WMSEhKGj0TqEhKGGMuysGbNGixfvhxLly7FsmXLsGzZMqxcuTK0w3xLSwsmTZqEyZMnY+LEifjVP14BTTXATtcDRgYgBGaJIrdZvdM9ANAUQaFFsjQaIXFBxCF3IhLnRVTqvOhKXpTMBe8XLXk1+8QgfcQGmldwU8VYRZByH370xTlYvXo1Vq1a5f7b1dUVGCebzWLy5MlVojd16lRMmDABqVQyk1ZCwlCRSF1CQkxQSrFhw4YqcVu6dClWrFgR2L8pm81i4sSJmDRpEiZNmoQbHlkAmm6EnW4EzOCRi7IypyRuNUHURM6LjNipCJwfqlLnh6joqQpdbRx5wauJISl8NXLnh10CKffhv88/Gu+99x6WL1+OFStWYOXKlSiVSr67pFIpTJ48GdOmTcNuu+3m/tve3i7zchISEgJIpC4hQQHLsrBq1Sq8++67WLRokfsTNKo0k8lg6tSp2GWXXXD/v1fBzjSBZppAU/U102+EESZzsYhbTdB4RM5LmNilBoCOV/VFjidOqeMJEry4hK42rr7g1cQMET4huasJaIOU+0FKPfjyR/fFihUr3J+gPnzt7e1Vojdt2jRMmTIlyeolJEiSSF1CQgSlUglLly7FokWLXIlbsmQJ8vl8zbamaWLy5MnYddddMffVNaCZJtiZZtBUg5S81cQtUuS2lIdG3LwMkcjx8FI3FBLnZaikzguTvKGSOp6hELyaY1SET0nuaoJRwBqAUezGBR+eiaVLl2Lx4sVYtWoV/G5D6XQa06ZNwx577IE99tgDu+++eyJ6CQkRJFKXkMBBKcXq1avx9ttv46233sLbb7+NRYsW+ZaTcrkcpk2bhunTp+OO55bDzraCZpoAzek/GFYWKDYTNK4Z2uWw7BRBsZkANpDppcj0Du3xAGeKj0IrQcsS9YmNRWFCV84ZSOWH/rWBEJSzBGSYLq3UICg1AKDO1C1DeiwT6JkKtC+I8bXZZZBSNy475xAsXrwYS5YswZIlS3xXJcnlcpg+fTp23313V/YmTpyYDMpISKiQSF3C+5qurq4qgVu4cKFvB/Dm5mZMnz4d06dPx01PLIadbQFNN2pl3xhWFhjo8KyAUEDsMufKW9WDQGqg9hJgWIhd7qw0Qf/Y6puvWaCxix01CUpN1WLtZM48N36K+CWvInQ1Dw/BZZb6nXsEjuBVbRi/7FET6JpW/ZhhxSh7lALlfvzki4fjnXfecX/6+/trNq2vr8eee+6JmTNnYubMmZgxYwaampriaUdCwg5GInUJ7xsopVi1ahXeeOMNzJ8/H2+88QZWrVpVs106ncb06dOx55574g/Ll6PY1g6rvh7pPgNNy/U+Ln4CxxOHzPnKW81G/jLHE4fY+YkcTxxS5ydxNdv4SV3NRjFIXoDUVW0SwyXXV+iqDuIjdzVB9GXPT+544hA92yTYMhMApUj19uK6ww/BwoULsXDhQixatKhmEBIhBFOnTnUlb+bMmZg4cWKyXm7C+4JE6hJ2WsrlMpYsWYLXX38d8+fPx/z587Fly5aa7SZOnIgZM2bgjrXrUGxrQ6mlBfCUc9K9RFroogTOi4rQWWmCUpPEzUpA5nhUxC5K5LyoiJ2IyFVtLyJ1VTsoCJ6A0NXsonD5jRS6qgMIyF1VcHnRixI7Lyqi54pdzRM2Uj09uOrA/fDmm2/izTffxOrVq2s2a21txcyZMzFr1izsu+++mD59etI3L2GnJJG6hJ2GcrmMt956C6+++ipef/11LFiwoGa0XTqdxp577olZs2bhl0uWoNDWDhqy6LmozFk5YGC0WiZAVOakBY5HUuZ4RMROVuR4RKVOVuSq9pWVuqqdBQVPQeqqdhe4FEsJXVVwSbmrOqiY6MnKHY+o6AXKHR+rkMef5hzpSt4777xTk82rr6/H3nvvjdmzZyeSl7BTkUhdwg6LbdtYvHgxXn75Zbzyyit44403aiSuoaEBM2fOxKPdPSiMakextQ0wxcQgSOh0BI4nlQca1vrLgpbA8WjIHE+Q2OnIHE+Q2OmIXFUcHamrChQgeJpCVxUq4JKsLHRVwTXkjidE9HTkjidI9ETErgrLQrq7Cz/YeybeeOMNvPbaazUrZSSSl7CzkEhdwg4D6xP38ssv4+WXX8arr75aMy9cS0sLZs+ejXs2b0Fx1CiUmpuVBjPwQheXxPHwQhebwPHEJHMMXuriEjkeXuriEjme2KSuKigneDFKHQ8veLFInRs4Jrnj4UQvLrHjITYw6k3n/ZAWOx5Kke7uwhV7z8Rrr70WKHn77bcfDjroIBx44IGYMGGCZusTEoaHROoStmt6e3vx0ksv4YUXXsCLL75YsyZqXV0d9t13X8zt6UFhdIeyxPEYZSDVOzSdqg0LSIcvp6lHzDLHQ02gXD90nc2NEkX9xqGZcmRIpK7qAEMXekgZCrnjoAZB76QhfHPiOB0FJG/8+PE48MADcdBBB2H27NlobGyM4cAJCfGTSF3CdgWlFIsXL8YLL7yAf/3rX1iwYAEsa3Da/nQ6jZkzZ+KpgTwKHR0otrbWDGqQxbAAM1+5O9gAiXFRd2Jzqw7YToYuLihxJocFAKME5LayrBFizRoZFpDuH8zSDXTEJ0dGkaL5vcoKGTGLFyVAOefEIzZFut+51FEDKDXEK3jE4jJqRrwZNSvLAjv9L+OEj80mnKaEoBSjs1BCUGxlvwOlpvhuOQRAupsMxm6OITalSHd14bt7fgAvvvgi5s+fX3UNMk0TM2bMcCVvjz32SObJS9huSKQuYcTp6enBv//9b7z44ot44YUXsHnz5qrnJ0+ejEMOOQS/Xb4K+VGjQDN6pbkqieOJQeiqJI6LqytzvMDxVMlcVUP0xY6XOR5dsasSOZ4YpI4XuarQNkWmz+a2q4hATILHS11Ve3QEjxe6qqDxyF1QbL/VROIQPV7uBh/Tlzxe7GpixyB5Zr6EG487Ev/+97/x73//G++9917V821tbTj00ENx2GGH4YADDkB9fb32MRMSVEmkLmFEWLt2LZ599lk8++yzeOONN6q+CedyOey33354qLsPhY4xsOqd+hAlTglQlkCJYyjKnK/A+cRWEbogiWMEyhyPotgFyRxDVeoCZY5HUeyCZM4N65G66n2JltwFCV3VMVTkLkjqOEzFLwtRcaOWilOVPD+xq91GTfSC5K4qrqLkGdxpa/b34eqD9sWLL76Il156qWrli3Q6jdmzZ+PQQw/F4Ycfjs7OTqXjJSSokkhdwrBAKcWiRYtckVu8eHHV81OnTsXBBx+MXy9fiWLbqJoRqjJCFylxPBJCJyRxXFwZmYuSOB4hoWNIiF2UzPHIiJ1ZoGhaGSFzDAmpixK5qrAhUjcYj7htKDaKC56I1LnHEJU7AaHjkZE74bgSawDLSp6I3A1uKy55UWJXE1dC8gy/U9i2cfuHjsHzzz+P559/vmaOvF133RWHHXYYjjjiCOy5557JBMgJQ04idQlDRrlcxuuvv4558+bhueeew/r1693nDMPA3nvvjacLZeQ7x7nZOD9EhE5K5BgCQiclclzcMKGTETgeKZljCEidjMwxRKROSuYYAlInI3NuWAGpqz4GEZY7Galz40fJnaTUMUTkTjquhNxV7RYhejJiN7hPtODJiF1VXAHB8xU7NwiF2deLy2d+AM899xzefPNN2PbgOdfR0YGjjjoKRx99NGbOnAlTcGqlhAQZEqlLiJVyuYxXX30VTzzxBObNm1c15Ug2m8VBBx2E+7r7UBgzFnZG7O7iJ3VKEscTIHRKEueJ6yd0qiIHKMocT4DYqcgcT5DYKckcI0DqVESuKqyk1A0eNzp7pyJ1bnw/uVMUOp4gudOKqyh3QLDgqYhd9f7+kqcidjVxfSQvVOq8bSgW8b+H7ofnn38e//d//1c1h2Z7ezuOPPJIzJkzB/vuu28yJ15CbCRSl6ANy8g98cQTeOaZZ9DV1eU+19raisMOOww3b9iMwugxwhP/Mnih0xY5Bid02hLnicuETkfieLSFjsGJna7MMbxSpyVzPJzY6cqcG1JR6nj8snc6QlcVm5e7GKSOwctdLDE1xK4qDCd5umJXHXdQ8nTFjqfYMviaZcTOxbJw4zGH4amnnsJzzz1XNWVKc3MzjjjiCMyZMwcHHnhgIngJWiRSl6CEZVl444038OSTT+Lpp5/G1q1b3edaWlowZ84c/Gn9ZhTbRylPOUKde2g8IsewHVGKTeQqMc1CPBLHiE3mOAgFjHK8H3crTVBsJvHIHIMApXojFplzQ8YgdQxe7uKSOje2SWITuurA8ceLQ+7ccISg2BSf3DkxgXITjU3sGMUWqiZ2DNvGLScchaeeegrz5s2r+hLc0tKCY445BscffzxmzpyZTJWSIE0idQlSLF68GA8//DD++c9/Vk090tzcjKOOOgo3btyCYvto7bnjnNnpY7oY205GjtiK37L9oE62j1AnfhwYZSDTTZ1JfnPO/9N98Xw8nddO45mstQI1nFUU6jbH86YSiyLTVYSdNdE9ORdLTAAwLApiA+leG1AcQe0HkzsnmxjPG0uoM3n0wOgYb+Y20LDeQl9nXC/cETpqEAx0EBAbqItp0mhKCPKjCShxVnKJC7uS/Irr808JkO+0kO7W/DvZNu446Vg8/fTTePrpp7Flyxb3qc7OThx33HE4/vjjMW1azMtzJOy0JFKXEMmmTZvw2GOP4ZFHHsHSpUvdx5uamnDkkUfipm1bUWrp0Bc5/r5oa0pdReLc0HEIHa3uh6crdEzi3PAVmeOf15U6YgNmiV9qCtpiRw2CYsNgELNEkduinvpkMseIS+oMLovmSp37gL7cVS3bFYPcEQqk+bn0DKIvdzbQuGbwxKcm0Zc7T5aOyR1DV/KY2A3+Px7Bsz1VTZ3rASVAfpxVlQGNQ/Bu/eAcPPbYY3jmmWfQ39/vPrXrrrvi+OOPx/HHH59Mk5IQSiJ1Cb4MDAxg3rx5ePjhh/HKK6+4o7jS6TQOP/xw3FnsR75zLAg1YOjIl9+uqkLnETn3EKpC55G4qpiKQucVOfdQHqHjt1cRO6/MVR1LUey8MscwylDK1nlljkdH7AyfkmiN1LlPqMld4DqsGnLnlTr3WKpy5xG6qpiqchc0ObFH7BiqgucVu+rn1CXPK3YMleuDK3buA4O/6gheqcUGKVv406yD8Pjjj+Nf//oXSqWS+/zs2bNx8sknY86cOcjlYkxnJuwUJFKX4EIpxeuvv44HH3wQzzzzTNVorb333htPpQj6J44HzWTcx4kFeakL21xW6AJEzj2UrNCFiBwgL3NBEld1yACh42PIiF2Y0AHyUhckczwy2bowmWOoSJ2fzLnHDJI6dwM5uQuUOj6ehNwFCV3VMWXlLkTqAAWxi5qQOEDseGQlL0zunOflBS9I7Bgy14sasXOfGPxVVvBKLdXvDykW8avd9sZjjz2G1157DeyWXV9fj+OOOw4nn3wyZsyYkcyBlwAgkboEAFu3bsXDDz+MBx54ACtXrnQfnzBhAt5qaULf5ImwGmvnkZMSOpHNRIUuQuTcQ4oKXYTIufEEhc4oAZkegVUGImSuKqaA2EXJXNWxBcROROb49kVl60RkjiEqdWEiV3XsKKmr2jha8CKljo8lIHciUuceW0TuIoSuKp6I3MlMRCwgdyxm/Ybo1xwldoPbiQtelNgxRK4fgWLnbjD4q6jgecWOYfYN4PtjJmPu3LlYs2aN+/iUKVNw8skn48QTT0R7e7vQMRJ2ThKpe59i2zZeeuklPPDAA3j22WdRLjtXr7q6Ohx33HH4Y18Xiu1tQMjNK1LqZL44RgmdoMi5h44SOkGRc+OFCJ2oxFUdXkLo3OOEiJ2M0AHRUicjdKxtYVInI3RAtNSJypx7fBmpc3cKljthqWPbG+FiJyN1TrwIsZOQOiBC7BRGugqLnec4QZInKnY85brw50XFjhF2PYkUO3fDwV/DBC9I6gbjUNx7+Al48MEH8dRTT6FQcBYDNk0ThxxyCE4//XQcdNBByQTH70MSqXufsWnTJjz00EN44IEHsG7dOvfxPffcE8/VZ53yajodGcdX6HSy/35SJylybjOChE5S5Nx4PkKnInJuMxSEDvCXOlmZq2qHj9jJyhyPXwlWVuYYQVInK3NuO1Skzt25Vu5kpc6N45O1kxW6qnb4yZ2k0FXF85M71RUlVMSOO6ZX8FTEjhEkeLJix/BeX4SlrmqnwV/9BC9S7CqQUgnX7ToTDz30EBYsWOA+3tnZidNPPx2nnnoqWltb5dqWsMOSSN37ANZX7u6778a8efNgWc7Fp7GxESeccAJ+27MVpdYWqZhVUqfblYMXOkWR46mSOkWRc2NxQqcjcgxVoWPwYqcjdG57OLHTETrWNpatU5U5Hl7sVGWOoSV1bhDn76ckdN44nNzpSB3gETsNoXPj8WKnOR+dlti5QQYFT0fsGLzgqUodD7vWKIkdo/IW83InKnU8T518Fh544AHMnTsXPT09Tsx0GkcffTTOOOMMzJw5M+l7t5OTSN1OTKFQwGOPPYa7774bixcvdh/fe++98WTWxMCE8aAKs5cTCzBK8c0hZ+aJtsgxSGVyYR2Rc2NRwCjoixygL3M8Rtlpk67QAais2KEnc3y76jeUtGWOwaROV+iAmKQOAAhgp2I69ytyZ2WJltQxqEEw0G5oSx1QEbuxZmwTDMcidwBAgbqNVFvsGOW6eMSOQSwNsQOqsnepHgPlZrXzgpQt/Gb63rj33nvx9ttvu49PmzYNZ5xxBk444QTU19ertzNhuyWRup2QdevW4Z577sGDDz7orr2azWbxwQ9+ENfne1FqaVYLXMl6GeV4LqiUVCZb7Y1p4lZbbEHzKFhGLg4xtNPOT91mG/0xTChrlIC6LXYskwgTm8LMU9hpgv7R+n1vzBJFw5oSUv2l6I0jsNMmeidmY3mdZpGicVkviqPqYGVimNSXOH3kfNdtVQlHadXNXC8YAAoYxRgCGkC+1YxtwmpiA8VGglKTfkBKAJpyVnKJI1b/OIp0TxwfKiDfWQax4hFYECAzph/FDeoC9vCxp+Lee+/F448/jmLR+cJVX1+PU089FWeddVYy791ORiJ1OwmUUrz22mu466678Nxzz7nzynV2duLtce3onzQFNjcViVxwuDcdp7SpfsFyLsZOMKNEtIWOLc1llPWEzihVlzV1hM5OA8Vm53WlBigaVzvBrBzREjsmdIRSdzUDVZjQOe3VkzqzRFG/oVJ2LVMtqXNlzm2ociiYRYqmRc6XGmoYKI6qpEoNoid3BFVLwunKHeEvwbpXY9YUXbFjQueNq4j7eSJAqZIVdtZp1buW2JXuv4TqCR41gP5xthtYS/AMID92MFuqK3jZsf1gp4iO3JFiET8bvxvuvfderFq1ymmqYWDOnDn4xCc+gRkzZmi1M2H7IJG6HRzLsjBv3jzceuutWLhwofv4/vvvj7nNBAMTxgLUgFGQvIlxIsdQFTpe5Ghld7OoLnTeNVZVhY4XOYaq0PEix+CFjqEqdmbRWQuWFwAVseNljqEqdbzMufEVpa5G5tyA0qGqZI5RJXUMVbkjteegcwy185n4XYJVr8reJqjInVfogmKLNsn7eSJAqb763FUVPF7s3PCKglcldtwBlATPI3Zu21QEjwDZMc7qEvypoiJ4qdEDAKW4ZeqJuOOOO/DSSy+5z82cORMf//jHceSRRyajZndgEqnbQSkUCpg7dy7uuOMOrF69GgCQyWTwoQ99CL9DF0qtTc6GFpETOh+ZY8hKHZM56rOLrNT53UQBeaHzEzmGrND5iRzDT+gAealjMgfU3vxlpc5P6BiyYucndE4gZ51VUbELlDmGxOvzkzmGr9QxZOUuQOoGjyXeaF+hcwOJN8kJFhxHSuyCpC7qOEGb+32mmNj5xJQVPD+xc8NKCp6v2HEHEha8Shk28GlJucuO7a95TDV7lxo9OKn8I/t/GnfeeScee+wxd9WKcePG4ayzzsIpp5yS9LvbAUmkbgejq6sL9957L/7+979j27ZtAIDm5ma8N3UsenafCrvOc4MUlboQmQPEhc4vK+dFRujCbp6iQhcmcgxRoQsTOUaQ0DFExc4vO+dFVOzChA4Ql7pAmeOPJZitixQ6QOi1hckcI1TqGKJyFyF1zvHEzu9QqXODCYUKf69ExS5K6ESOxW8W9pnyip1PbFHBCxM7N6yg4IWKXeVgQnIXkK2raZeI4HHZuprmSModL3UMo6+Ab1pT8Y9//ANdXV0AnLW9zzzzTJx55ploaZGbHSFh5Eikbgdhw4YNuO222/Dggw8in3dMprOzE29NGoXe3SaBpn2GcEUJXYTI8URJXVhWjkdE6KJumIwoqROROSBa6EREDoiWOZ4osRMROiBa6qJkjidK7ESEDoiWOiGZqwoY/JSI0AGCUgdEi52A0FUfN/y8EZI6IPpzKpr4iZI7UakTOKZw1jtI7jzHiBI8EbEDouWOEqB/vOCo0yjBExQ7IFru/LJ1VU2RKM36iR0AkJKFaxpn429/+5u7ulBdXR1OP/10fOITn8Do0aND4yaMPInUbeesW7cOt9xyCx566CE3PT59+nQ839mI/injACPkDhMkdRIyBwQLHZ+VY/+PIkzqZG6WQUInKnKMIKETFTmGjNAxgsROVOgYQWInI3RAsNSJypx73BCpkxY6wPe1icocQ1jqGEFyJyl1zrGDzyNhqXODBQWSi+ErdjJCF3Fc6X6pYWLnc6wgwRMVOzdkgOBFZut8DuwrdxFl2MB2+QleSLaupjkR2bsgqXOxKa4feyT++te/YtGiRQCc+e5OPvlkfOpTn8L48eOF2pEw/CRSt52yZs0a/PWvf8XcuXPdyYL33XdfPDI6i/y40QhbvsvFK3WSMsfwSp1IidUPP6GTvUECtUInK3IMr9DJihxDRegAZ36y/o7qN0BW6AB/qZMVOoZX7GSFzglS269OSeYY3GuTlTmGtNQxvHKnIHWDbaj+I0kLnRvI83+VAQx+YqcidQHHVxo9LiJ2Psf0Cp6s2PGkuOuKtNhxDagSPIlsnRev3EVl62qaEiB3kVLHBfjrlA/i5ptvxvz58wE4S5GdcMIJOPfccxO52w5JpG47Y9WqVfjrX/+KRx55xJW5/fffHw+OyqDQOUo8EC90ijIHVAudqswBtUKnemPkhU5V5oBqoVOVOUBd6BgsWxc2IEIEJnaqMsdgUmcWKeo3qk9iy7J1dtZE73hFmXODqcscQ1nqGEzuNKRusC3OuaYsdW6gyr+Ko1JZDKNI1YWOp9IOrfkdZcTOc1xe7nTEDhiUO2WxqzTClTsNsQM4uZPI1lU1xSt3BEiNEhS7SoC7dj8df/3rX/Hiiy8CcOTupJNOwjnnnJPMdbcdkUjddsKGDRtw00034aGHHnJl7qCDDsJ97SkUxrTLB7QIjLyhPe+VIz9EWeYYRpEg1a9z93FI5YHcJv0lo6ihLnJuWzSFbrBBzioFOjd5Spz9dYQOcKSu0GxoCR3gSJ1h2fpCBydbqCN0QAxSBzhilzW0pc5pj97fezAQ9KSuEsMoU32pA+JZGUZF7Cr7MShxPt86YscojIpnuRurQT8OsYh0to6HlzvhbJ2H+2aeiT/96U+u3KVSKZxyyin47Gc/izFjxii3LSEeEqkbYbZt24ZbbrkF99xzjzvb98EHH4x721ModrQpxSQZG5QCxlb1KxpNUdAUhZE3QKi6zNk5GzCA3Bq9tXiIBaR7Y1h7lQB2xil9KrfFdrIbRgloWK8ndXaGoNhgINujFycuqaMGYOUMpHvV20MJUG4wUdZ4jwHAsIC6jUWkt6jdfNz2ZFLom1SPVJ8FEsOSY3bGgJ3W/4Jip4jWEmiUEFhZglReTxYoISjXEeXPOE9cUlds1Fw6sPJaynUEpQb9JhVG29pfkEEAq60MyM4Z6hOndVw38kU9Y509fhVeWjlJef979jwDf/rTn/Dyyy8DcPrcnX766fjsZz+L9naFRERCLCRSN0L09fXhb3/7G+644w709zvfvPbee28sOKCApeXp0vFIxkYq5/RhKg2klYWOpihotnI1Zdk+BeycDbPFaY/Vk1aSOmI5fcwAwCiqC52zvmnld1Nd6JxlyKizRJTpxDDzVFns7AxBvsV5f40ylMUujtIrNYByvdMWZ51UxbYYBOU6w41pZdTea8MCstvKMEq2stTRTAq9U5xyE7GBVN/ga9KRO7vSx05H7Pj1Y1XFjhKCco6VcqEsd0zqnN+VQjhtiFHoYotJ4L5HzmoW6qEKo7nGqPzJCGC1lwbfZFW5q0gdQ1XuCKHYd9xq9/+qgnfXB07DH//4R7z++usAnNGyn/zkJ/GJT3wimeduBEikbpgpl8u49957cdNNN7nzAU2fPh3G8RuxZOw0LFk2Tm5kKidzDBWpq5I5QFnoeJkDKkK3NiX3mjiZA9SFjpc5QE3omMgNPlC7oLuK2PFCB6hLnXeQhIrY8ULnxFCTOl7oWFxZqWMyBwCwKQyLKkkdL3RArdQB6mJne0bFqsid9xxSETte6gA1seOFbvAx6aY4x49BwHihizMu/z7pyF2V2AHycsfEDtCTO4/YAWpyt/+Ele7vdqU9snJHCLDH2HW4vP48/OEPf3BXNmpra8O5556L0047DamUXqUmQZxE6oYJSimeffZZ/Pa3v3XX3Zs8eTIyx3ehfZ8siEHwypZJWLxEvMOpn9ABclJXI3MMCanzipwbQlLovDLHkJE6r8i5j0sKXY3MuU/U3pABObHzCh1DRuzimsbEK3RuHAtI9wm2xSNzfGwZqXOFzqaex8XFzitzDD+pc5+TECqv0LmPS4qd3zkEiMudV+gYsmLnJ3WDzwmHGTKhiyV2Jb7f+yUreDVSx5C5i/JiB1S/0aKC5yN1DBm546WOYVMiLXYzxq0H4NznLimfieuvv95d6WjixIn44he/iDlz5oCIzNqQoEUidcPAwoUL8Zvf/AavvfYaAOcbTOuJZXQcUgdiDp7kolIXJHOAuNAFyhwgLHRBMueGESi7BokcQ1TogmQOEBe6QJFzNwi+GYtKXZDQMUTELq4Jh4OEzokhlq0LEjoWX0TqvNm52uejpS5I5hhhUuduIyBUQVLnPi8od0HnESAmdkFSB4iLXZjQDW4TGWZIyq5DdYyg9wwASo1iYQLFjiEwUXSV1FXtK5G9CxE7QEzuCKHYb/yqmsdls3ZM6hi0bOO8rcfjxhtvdFc+mjlzJi6++GLsscceQjET1EikbgjZsGED/vCHP+DRRx8F4KzNOvqYNMYfXw8zV/uhjZK6MJljREldqMwxIqQuSuaA6CxdlMwB0UIXJnJV20VIXaTMAaFCx4gSuyihA6KlTmRZsCipC5O5wRjhUhcmc95jhYldUHaueptwqYsSOkBM6oBosYuSOiBa7KLOI0aY3IVJHSNK7kSkztku/PmhzNLFfZyo94wRJXiRYgeEy12Y2AFichchdYwoufPL1jFE5c4rdQxasPCR9w7E7bffjnw+D0IITjrpJPznf/4nRo2SmKIrQZhE6oaAYrGIv/3tb/jLX/7iLun1wQ9+EBuOeAXZNn8LeWXLJCxe2ul7IRCROUaQ1AnJHCNA6kRkzg0RkKUTkTlGkNSJyhwQLHTEAsyCaF1Y/EYcJHYiQscIEjvRdV6BYLETETo3RkAJVlTo2PH8pC4qO1e9rb/UicgcQ1Tq3O0DhEpE6txtA+RO9FwC/MVOROgYQWInKnSD2wfEHyahi/N4ou8dECx3QlLH8DuVoqTO3TdE7gSljhEkd2FSx4iSO0KAPTv9xQ4A/rjH5fjDH/6ARx55BIAzmOJzn/sczjrrLGQymcjjJ4iTSF3MvPDCC/jlL3/p9pubNWsW7A+tRuPk8G9LL22ejKVLx1Y9JiNzgL/QSckc4Ct0MjIH+GfpZGQO8Bc6GZkD/IVOSuYAKaED/KVORugAf6mTETrAX+pkhM6JUZutkxE6dkyv1Ilk56q3r5U6GaED5KUO8Bc7GakD/MVO5nwCasVORuoAf7GTlTpnH5/Ywyx1cR1T5v0D/OVOSuyAWrkTFTsgWO4kxQ6olbugEqwfYXIXlK3j+Wn7hbjuuuvw9ttvAwAmTJiAr3zlKzj88MOFjp8QTSJ1MbF27Vr87//+L+bNmwcAaG9vR9upZYw6ICfUOZSXOlmZY/BSJy1zDE7q7JwNo7kktCJZVQguSycrc0Ct0MnKHFArdNIyB0gLHYMXO1mhY/BiJyt0DF7sZIXO2b9a6mSFjh2XSZ1Mdo6HlzpZmWOoSJ27LydVslLn7sfJnco5xYudrNQB1WKnInSDx+ZijoDQxXls2fcQqJU7abEDwK8EIix17r4euVOQOgYvdyLZOh4/uROROgCgNsWXB07D73//e2zevBkAcMQRR+CrX/0qxo4dG7F3QhSJ1GlSKpVw66234uabb0axWIRpmug4KosJJzUgJXEDfGnzZCxb1aEkc25bBtIgPSk1mQNcoVOVOWAwS0fK8jLHMIpAupdKixwPNZ2bp7TIMRSFDhiUOlWhAwalTlXogEGpUxE6N4YFpAZsaZljMKmTzc7xMKlTFTpAT+qAQbFTlTpgUOxUzyvAeR0qMgIMip2O1AGDXjGSUqd9fEWp4yk1Kkodo7IaiLTYAdVypyF2gCN3slLH4OVOVOoYtGDhlMX74I477oBlWcjlcjjvvPPwsY99LJkCRYNE6jR48803cfXVV2PZsmUAgNmzZ6N80nuoHyd/Qr7d3YmFa9WXWLFKJux+zQ9CisLIWkoyx7C3ZdCwXN3GjBKQ6h/5U5KfYFgFYlGYBb02GGUg06e5WkAMS1ppreUJRy5TA7aS0AHO36HUaCrLrdMGPalzghC995MAZZ8BUrIxrBhWs4hjaTHd4+sIHTBy2ToeagB9k9UbQglgt6l/kQclAKFobe9TjwGnBDtjtJyU8diUoL+s1jfulxO/gZ///Od44403AAC77LILLr30UsyaNUu5Pe9nEqlToK+vD7///e/xj3/8A5RStLa2YtSHbYzaX6zUyrM234wFmzrR25+D6l8imy3Dtgn6NynO3k0ApG2YGfWLk20RkC0Z1K9RW2/WygClJopUP0H9OrU3gtjOj63otkYZSPdR52KfJSgp3nTMAkXdZht2Cig2qt3EzSJFbosFSzFDBsDNBKiKCLEBc8CGpSEihFIYBQqjpHhuGQS2SVBuUG+DUabIbSyi2JwGURRLBqEamTbqCG6pUf1LD6HOEnXFJvX3wyw574Hqah+Ac36qyiWhgFFyMsj5NsUMMnWy+f1jnP3TfapfGIDuaUDDStV0ODAwpvJ+1qmveGM3lwFT79zMNhRRl1UTREIoZnasha35LVBV7iil+FLfqfjNb37jTsp/2mmn4cILL0Rjo+BcMwkAEqmTZt68efjFL36BjRs3AgAy+7Wh88OtGNcut8jy2nwz3utx1sfrKWTQ0ye/2Hg2W0ZznTO6dltfnbzUEQBG5c9vUiWpsy0CWqosddWdcqROAiZzAJSFjtiOkFFDTehcmQNcCaKV8qus2DGhI9S56alInVmkqNvk9D2jBlETO67fjsp1ms9sUYNIix2hFEaRum1RkjpjcD1SasiLnVGmqFuXd/cvtgzebFTkzu1bZxA1sePeBzf7KHN8CpisX5xBlMXOLA6e6ypi5+4PtawhkzoASmJHaKXPLXX2Z2IHKMgdAWwT6N6NgthETe44sQPU5M5qKQ/+R1Husg2D/V1k5Y4Qin3GrIFV+cDpyB0ryarIXbvVhRkvzsIDDzwAAOjo6MCll16KQw89VLk97zcSqRNk27ZtuPbaa/Hkk08CcEbtbDsxi/S0RrRl+zEm2yMciwkdO/n7imkpqeNljgDY2leH/s314hkyXuYYklLHyxwAGD0pqSwdL3OAvNAxkeORlboqmQOqhA5Ql7r6TYNlPlmx44UOUJQ6n1F2Mtdob6lSVuqqhK7SHimpM2oXl5eVOl7o2P681AHyYlczGlZW7jzvg6zY8VIHqIkdL2ROUHmx88aQETte6NjxB9oVpK6bGzjiETtATu6oCXR9YPALCAB5wfOIHSAnd262jkdS7nipY8jIHRM7ALHJnazYdeR6AQAXpb+Gn/3sZ+6qFCeeeCIuuugiNDc3K7fn/UIidQLMmzcP11xzDbZu3QrTNJE6vB25Y8eCpA00ZwYwLifWSZXPztncXUtU6rwyx9gqk6XTFDqvzDFEs3RemWOISp2fzAFyQlcjc0CN0DFkxI7P0vH7FwRvvF6hY0iJXcCcWCLX5qB+ZzJSVyN0lTYJS52P0LE2iEidV+b4/b1SxxCVO9+562TEzud9kBE7r9S5MSTkrkbqACmx890f4mJXI3WQy9bxWTpvDK/YAYJyx7J102vPW2G585E6hqjcVWXreCTkTkfseKlz26QpdypZOyZ2dtHGAa8djDvvvBO2baO9vR2XXHIJ5syZo9SW9wuJ1IXQ09OD6667zp0wcZdddsHGk0ykJgwKlEiWLkjmGCJSx4TO7/IiJHV+MscQkLogmQMqQrc2PEsXJHOAmNAFyRwgLnS+MucewLmw+yEidn5CxxDJ1gUJHSAhdUFvoYDUhQ0kEJU6X6Hj2hYpdgFCx9oQJXVBQsf2D5I6QEzsAlebEBG7kNcvKnZBUgeIi12QlImKXeD+iBY7P6FjiIhdkNCx/f2kjhEpd0FiB4jLXYjYAdFy55ut4xGQOz+pY0TJnZ/UMSxKhq0ky6SO8Y2Gb+LKK6/E8uXLAQDHH388LrnkEjQ1NSm3Z2cmkboAXnzxRfzsZz/Dxo0bQQhB5ojRyB3nZOd4oqTOW2r10ldMhw6SCMrOMSJLr2EyxwiRujCZY4Rl6cJkjhEmdWEyxwiTulCRcw/in6VjREldmNCx/cOydWFCx4gUu6hPcYjYiYwMDRO7UJnj2hcodSEyxx8/TOrChI7tHyZ1QLTYRa4NGyZ3AlIbJndhQufuHyF2ZslfiAYPEi52YULHCBO7MKkDosXOW3b12z9M7BhB14OqMqzvBhFyFyF1jDC5C8zW8YTIXZjUMcLkLkrsgKEvyXqlDgDsMsVhbx6BW2+9FZZlYcyYMfjOd76D/fbbT7ktOyuJ1HkoFov43e9+h7vuuguA03eu65QcUlMafLcPkrqo7BwjKEsXJXOMwCydiMwBgUInInNAcJZOROaAYKETkTkgWOiEZA6IFDpGkNhFCR0jKFsnInRAhNSJfIIDpE50qo8gqRMSukobfaVGQOjY8f2kzihT5NYXIt9/EaljBMldpNQBwWInWIIOEjsRqQPCxU5EysLETmh/+ItdlNAxgsQuLEvn3V9E7AD/LhiB2bqqg4TInaDYAf5yF5mt4wmQOxGxA/zlLkzqGENdkvWTOsY3Gr6JH/3oR1i9ejUIIfjEJz6B//iP/0iWGuOIYRarnYcVK1bgggsucIUuc8go9P5HW6DQBcFn58KELgi+1Ko00F5U6AIQFToX7lBWBsiPokJC5wexnUmLRYTOD6MMZLtorELnxKVI91bHFBU6wMmSZHqrb8qiQheKxlcy7Ql5RYUuCEGhC9y9kp0Tef9loIZGo2wKo6zeHmLRmqXZpPa3KTI9ehPiispbEKZH3kSFDnDOydzW6vaLCh3bv36D2OsvNRCUGri/NXWOFX0QgJoUvVNs9E1Sf6/MAQJzoPpcEzo+w9KbY2+gEL50ZRAmoTAJhaE4UaBBKAxCUZ+Sn53+531XIfflNE477TRQSnH77bfj/PPPx9KlS5XasjOSSB2cOXIeeOAB/Od//icWL16MlpYWNHx2KupPmwAiMYP82nwzXtg4NbTcGkY2W0ZHa29g37lICJxvb6JC58nS2RaBlTeFhc7N0lUQzc4xUv0E9eud7VVkjs/SSckcH0PvuiglFPwFW1boiE1hDnguojIvlaJqslbpBe5tWpUp2l6EbqjYnsRONEvnbu8jdl7RCsVH7GRFT+p4HnzFZgjrSbzcERtoXiT4t2dyN5kOyh0F6jZIjib2iJ3RLTGE3yI1clfoE89aDRTSWnJnEFtL7upTRWm5M7IGFh69AD/5yU/Q2tqKJUuW4Itf/CLuv/9+JIXHROrQ09ODH/zgB7jqqquQz+dxwAEHgF4wHuk95IZOj0R2zu1PJytzHmRlrgqqnp0jFK5syGbmmNCpypzK/G18to5l6WT392brlNnRMnQEsFl/VA2hM8oU9avzQyp0DGoQdbnjxU6w9MoTe8ZO9nyJIWMHyGXp+GOzbJ2bpZM5pkS2jqfUQFCqd5a0ExY7ADAoqEljy9pJZesYPnInA5M7Sgne2DhOeL+RzNr9OXsDbrzxRhx88MEoFou4+uqr8aMf/Qj9/XJzxu5svK/71C1atAjf+973sGbNGpimifTxHcge0QEicSHPWynky843HVmZ6yumUSynhPrO+eFKnUapVXW5IKM7hexmA6VGtWOn+gka1lIYiivkEEvjpiNRdvVipwjsNITLrn77l7NEueyqMhGwS+X1qgodNQjsLFHP0FHx6UOCjq0qczJ96vwgNhXrUxcz1CQoN5hSmbqq/St97HQ+KzrYKSIvdRWoARRajdDBEVH7i/avq8EA+iYqvOc2AaFAwyoi3LfOj3I9Fe9b50O2WX2NwvpcMbJfnR9x9bVrkBQ8alMcv+REXH/99bAsC5MmTcIVV1yBadOmKbVjR+d9m6mbO3cuLrzwQqxZswadnZ2o+89dkDtqjLTQ9Zcyytm5hkxJue9c0TJRKpkjInQoGDALRFnoaJrCzo6M0NkpoNignilK5SnqN1rK/bjMgno/OpoiKDZrLDHlKaFK70+hLHRGmSK7Vf1GYxZsNC7qUt5fB0IBs6jxvtlAuls+EwHEk7FL9+uuH6xudlpl6EomX2f/tOo60jZQv1rh9ljJ2vVOoqAaS3GnBgiMrPrfvdCTVd53oJBBT0l+f5a1SxsWJtRtk96fZe0GLLlyMDEI/jn9UVx33XXo6OjAypUrcf75579vy7Hvu0xdoVDAddddh/vvvx8AkPpAE+o/NglGvfgncGrjZuzXsByv903GvzdNUWqHQaiSDBYtE/lSCvl8GqVe+cxDpqmI6WM3Yn1vEzatV5idu2Ag3e2IhcqJQ9MUVp2NzFYTLYsk9zWcUq9RAjK9Klkyp8RCLEfOZDHKcG+QVNWtqCOlsuU4miIoNJuOYBTk204odTImVHAUp/f4lQyhal86o0yR2ZIHTRnSGTOjRJFd2w0QAqtZfjk92BTEskFNA4VR8vs7fdqsyuhIuc+rI3QFgOhlCpWXJgNgV0ajKu1PBqVOJcvKjqmUrSOVkbAKJVi2f7GRAAQo1au9divnZPQLoyXFmAKkTJwv7Crf4QhQnuxkpe2C2sWmtcMZRarSZ84wKGaMXQcAaErLfxljM0KsHmiV3hcAPjXmX7Cogfu3zJbaz+q1MGbuOPzrX/8CAJxyyim45JJL3lejY99XUrdu3Tp8//vfx8KFC0EIQceHmlE4bLJwdo7JnEkoXqsInayUGZUOEzpCB0Ba6pjMseOv7WmWkzpO5tyF4sX3dmUOANLbHKGT6TvChA5QkzomdCDORVZW6lyhY69d9jrLHU5W6pjQscyqbKbSFbpKO2Slji/5qkgdEzoA0lLnCh0TCtOQE7uK0DFkxc6RaGvw7ycpdsQG0l2VkrEhL7RVKIqdzU0xIrU/qc3SyYqd93hScke46U1UxI5JXeV3abEjgFVJWFFDT+wASbnjpI4hK3dM6hgyckcIsFfnWvf/OmIHyMudQWx8uuMFFCsXWhm5ozbFsYtOwA033ADbtrHXXnvhRz/6EUaPHi3Vhh2V90359Y033sAXv/hFLFy4EM3NzZj8xdEoHjFFSOimNm7GR8e+jAMbl8HkTERGylhqWYWiZaI7n3WFTpZscwG7d25QPr4rdKwcoiF0gHOjVBU6WewUUGghrtDJYpSBbLc9KHQqaHxt8godAKnXUSV0lX2phJR4+/BRQmBLrBXKCx0AkLKNTJdkKVKxH54fSh8B1e5oLEvHsBVeO4/CqFrbM2ecTjkU0BwVjNr2CEOAYjNBsUlxf+rMS6dajiU2kN2kdrtkl02pciwFzJXVXz50yrGA3DqwXnpKWaWSLGNC3Tapkizrl5chFjLEwmntr+K09leF9iUGwZO7P46rrroKjY2NWLBgAf7jP/4D8+fPV2n6Dsf7IlM3d+5cXH311SiXy5g+fTrIJ/uwIRdt7XxmjkcmS+cnUqJZOj4zxyOapcs2F7DbmE017VjX24SN61uib1be7BxDUOq8MscQLb0GyZxopo7PzvGIZuqqsnNVASQydT6HEc3U+QodKtO/CJRga4SOa5NItk53wmGv0LlxBbN1NVk6hmi2zpOlc48vmK2rydK5T4hl66qydJ7jl5qHJ2MXJFFC+/tk6tynBEU76DhCGTsSsMKEaNaOz9R5HhfK2nGZOv4x4XJsJVPn2d35VyRr55OtYwhl7QjQOtp/Il+RrB1fgvUimrkLWm1JJHPHsnU8Mpk7g9j4wbif4jvf+Q6WLVuGVCqFSy65BKeddlp0w3dgdupMnWVZ+O1vf4uf/vSnKJfLGDM7hUlfWodMe/hXpqDMHE+UlOlk5oBgoROFCZ1fOygVsDJvdk6SIKET3l8jOwcEC50ogUInQ9wZOvacEb1OZ6DQAULZurBRtiLZuiChA8SydYFCBwCWDbM7YhRsgNABALFsZDeH7x8odIAzRUmEFNdk6TzHVx04AUA4YxeWFYvcP0TogBHM2AGOrKlm7AAna6c6gIKOQNbOB6GsXchLFMna0ZB7nE7WDhDL3PmNopXJ3NnUwJ+3no9dLtqEOXPmoFwu4+qrr8b//u//wrL0sp7bMzut1PX39+Oyyy7DbbfdBgDY9aQM9vlCHTagDav6WwP3m9q4OVTmRNCVOd1S6167rXaFTpqCgfTG9KDQSULTFOVmS1noqAGUcyNXbgUEhK4y2CGUkPeOmtycbX7PhwidS8hzoUIngNa0KQgXOqH9w4ROhBChY4iIXej5LyB2gQs6Y/jELoyhLsVGZQNDxS4oS8c9ry12muXY3EZDT+5SenJnZC2tkmxdtjSiJVkASqNkgWq5C2NFvh2pHEHm46/gC1/4AgDgb3/7G77//e8jnx/6uS5Hgp1S6jZv3oyLLroIzz//PDKZDGZ9vg67nZYL7T/HZ+fCeKN/UuCIV5HsXFDpNW6ZUxE6kjd3nuxcyPWemkA5V7tBLP3ngCHL0IkwXEIXlK0TFbrIbF2U0Fk2zB71KVKA4P51bpZONW5Ilq5qu/eB2EWhnbEL6mdHnKmLItkJsnbEZ+1uGYZS7jYUmiL3D8va3brx4NB9o7J2LNtHCMHK/e/E5ZdfjnQ6jXnz5uHiiy/Gli1bItu3o7HTSd3KlStx4YUXYtGiRWhra8Psr6Ux7oDg/gMipVYePykbzkEQfv3pwkqtIpC8ifTGNFI9xohk5wA5obPTqF6zkX9M5B7hs01Vdk5nQMQwCZ1fCVZK6HxKsCOdoQO4LJ0IZatW7ASydIPb1mbrQsuuXsKydYJdlYdK7GRkqWb/iNKrlzjEbkjKsaIh/cTOrz9d0OE1xK5yeK2sHSEURtaKRe6q2kWBt9Z3Cu8/FIMpRCYylinJ/t/Ya3HttdeipaUFCxcuxAUXXIDly5crt3l7ZKeSurfeegtf+tKXsG7dOkyYMAF7fa2ElqmDHUrXFFrd0quszPmxPfSbi6PU6srcCGXnVMqtvFfb6UrH5x2o/5y3BKuUoeO2HYmSq+xIWC/ebJ1S2ZWXJxmhY23wK8PKvI0esRPN0lW1QXeo2naYsdOdekWakexnh5jKsdDL2sUhd96sXVi/uiCGo7+dH0FytyLfXrXdfcZ38Jvf/AYTJ07EunXr8KUvfQlvvvmmVpu3J3YaqXv++efx1a9+FV1dXWieYmC3i7tQ31H78qY1blSWOb70OpL95oCYsnOapdbhzM75Yacr/edGQuj4fnWa2bl8e2pkSq6VbJ1uhg5Qz9IxsVPuRycyaCKqDXTwX6Wya0XsXKGTnVDA1szWAVVipypHcYhdLOXYqP50QYxwPzvdcmwlhHZfO0Jo7Fk7WeLsbxdVgvXilTu/bN9NXRdit4u3YebMmejt7cXXv/51vPjii1rt3V7YKaY0eeyxx/CTn/wElmVh9F4p7P2FOqQ8faZyRgktZj9yqmtTYXAqE1VyqRJKtomNvQ3KMeozJYyu7wOgJpZLN49C4d1mxx9U+6GnKax69YtGustE4wrl3QFgcAkhxWu4WQDqNldu4KqfAOKIqSrUIE7fPo37kFEG0opruQKVbJtOhgTOElq59QPqASwKI1/Um4/ONGDXyc+c72IYKDemtQSdUAqzV13OtKc6AQCDoFyncVISwMrof9fX+lwQoOQ3FYl0II19CZBv18scUgIUW/Rur/YEzc78BGhu0vhsApjWvkl5X4NQHNi6HJtK0X3rwjim6W3lfYvUxPT0JtzTXTsNSrlA0Xf7DLzwwgtIpVL43ve+h2OOOUanqSPODp+pe/DBB/HjH/8YlmVh3MFp7HtB/EKXIyU0GQPIGuoLLOdSJVjUUBY6k1Dk0mXkUmXl7NzKba0YWNGkvaaiDqluEw2r9ESGVL4R6whdtst2bjw6N3ENCbHTBPk2A1ZW/Y0wShTZbernJGwg3VtGpls9hlm0kVvXr94Gi8LoywOSZdMqDAKa0extbtswBzTeSwCkTGFrtIPYFKbk8nF+6KzvC6qfsWNxdEhplELjOD6gXxYvaQodANglE3ZJfb1nUKCgUREihKIpXVBaUQJw+qD/e9tUtKf6lNtgwka3nUO3rbBEIJzM3YpyGz7SXNvfLpUlaDr7LRx77LEol8v44Q9/iAceeEC5rdsDO7TU3XPPPfjZz34GSikmHpnGzM/mYHCdv3NGCe2pXtQbBZhE7UKXIyXkjKL6/qkSxtT3oDWr/m3JJBTplHo2ZuW2Vrw5fwq63muB4ssYREPGUt0mGlcKzJEXdGjqZKYipxMJgQkd0UhQE5s6Qmer3QDtNEGh2QAl1X0DZTBKFNmtZRBLsfRqA6kBS+t9cIXOBqCwnqwLpYM/shgENOtk6FTWtHWbYBqATWHm1cTOKNlO+1U/H4TAqmQadcXOWatWcUqhyvVTV+y0vjgSZ/90H9WXO01kV7/hibPlWmIHR+x05A5QWyoMcMTOIDZGp3swOu0/GbEoqmIHOPfRjzS/WiN3RorA/Oi/cfrpp8O2bVx11VW48847tdo5kuywUnfHHXfg2muvBQBMPjaDPT85OGUJL3OqsOxcznDKKS/2TcNzG3eVi5EqoTU7oNz/jmXndIWu670WwCKArVnSUNw91W2i9a2UttDpyBwQn9DpjHLlhQ7wH8UahSt0qi/DI3TEotLZuiqhY8hKFcvSqcIJHUNF7KjJXQZVxY47p6SzdUzouGaMpNgxRkLsvF9yCI0haxcD2oNZYkBX7AC9rB0ArawdQzZrZ8HAG/2T3f/rZO1MQn3ljhgEAyc+iU9/+tMAgF/96le46667lI4x0uyQUnfbbbfh17/+NQBglxMz2P3MLAghscscn52zqCE8Emh7y85pyxygJXSNK4lz849T6FgJVgCzANRvsOMTOkW8QseQydb5CZ1Uts4nQyf7nvgKnSxM6Phjq2brPMiIXZXQKVKz5BtREDufZkiLnWeQgqzY+a0yMqIZOy7GcItdoa32vdhexG5HztoBcLN2MnLnN7dr3HJHCMHGw+/HZz/7WQDAddddh7///e9K8UeSHU7q/v73v+O3v/0tAGDaqVlM/3DOFbogmcsZJaQj0jxBMicDk7nmTH5Es3MrtrYFZufsFGBnJNoWMZFvGNtbubVGXgiE13ANFDrBEmyQ0MkQd4aORzRbFyl0IkLlJ3QMUbHzydLFhkS2zi27ehEVO67s6sf7LmMX8PmQEjtd+QpdrWX7kTsRMrng83iks3YqcueHqNwtLbXXPMbLHeCI3bpD7sVnPvMZAMAvf/nLHU7sdiipe/DBB/HLX/4SgLPs17STs7Fl53RkDnCEjsmcjtDpytyb86egZ2XziGbn0jtRuRUYugwdI6oEa5Qo6jaUQoUuMlsX0YeOUBopdkOWoZNFQOhEsnWhWTpRsQt7HaJiF3EVFhK7kKlERMQuai1go6w3F56I2EV94dleSrHA9iN2UXJHIho60lk7wJE7XbED4utvRwjB+kP/gbPPPhuAI3b33nuvdvuGix1G6h5//HFcddVVAIApx2Ww1+lG7P3mlGJsR9m5npXN8fWdCwlhlAnMfv9TJ91tokGg3EpJ8AhYYaELKcFuD0JnpwkGRplCGbqg5/ns3FBk6HjCnpcSuiChEhW6sGydRIYuTOyEyq4RYldTdvVtRIjYRWTpeELFTmBuuDgydoBe1s4dta7xkRwOsSu0il0/Az+PBCi26rex3CE2W8PO0NduuLN2fvBZu4+2vIYNh93n9rG79tpr8c9//lOrbcOF5jwAw8Nzzz2H//7v/walFFOOMnHIx0sgRF1ccqSENCnHkpkD1Cci1s3MARWZW9XsXChHODvXsIpoDSKIMzvnxBNoSKUE6z2uO12JyGuplGD5WfRly60sW2cWBw8oW24lFoUBz+SzkqNcWbau2Dx4aVDK0FkU4LM/shk6th3/OVcouRKL1i6HJtOPriJ2Vq76UhlYdvVthCN2RpETRJ/BEVGYJRtWWv17OBM770TTUVk6L95zXaUdFKi91giG5MWuXO/toKrcrME2SLw09tms6Ser2Qy3LYIwsTPS6hdQJnbZtPrUPkzsVCceZnJnUwNbyurzuTKxazbkB2KxRQk+2vIa6Emvob//G7j33nvx3//932hqasJBBx2k3K7hYLvP1C1YsAA/+MEPYFkWJh5i4pBP29pCtzOUWoHhzc6FIZqdCz18zOXW7WmEqyj89tr95wClaUu82+5IJdchwy9jJ/ta/DJ2Clffmoyd5AoO20PGjrWD/3zJflZY5jopx1azPWTtgJ2nJJsyKE746M/deey++93vYsGCBdrtGkq2a6lbuXIlvv3tb6NQKGD8LOCwz9nutCWysFJrmuhNILw9lFoBTuhGMDsHcEKnWVIZ0f5z3IAJ5XIry9ZpDIhg2TodoXP71mnMQ8eyddpCx5c/Vf4uQzAadkhGuwo3hP0rXnb1I87BE7JZOp64xI5qfKGsErsRFqtE7KqJoyTbnuob0ZIsAKRNio+ccz0OPPBA5PN5fOtb38Ly5cu12jSUbLdSt3XrVnzzm99EV1cX2qcAh/4nqZpYWIY0sdxyq2qGrsnMx5Cds7Vlbs2W5u1iMESqn6BxaUpL6Ggl46oldBRIDYx8/zkgphGuZf0MHbGo1sTChFIYBQt1q/v0MnQASMnSm4uu8hq0s3S2ptBVsnVSZVe/MNmUdNnVCyUENGVIZ+l4tqeMne6E6HFm7ET704Wh3Z+OAOVWvfvE9jL1CaA//YlBbLSlRzZrl01TfPaC2zFjxgx0d3fjm9/8JrZt26bdpqFgu5S6fD6Pb3/721i9ejUaRgNHXUSQzql92JiAqcpcGhaajDyyRklZ5kZn+rB/ywpMqO9S2p9RKKVQzqf1yq2tRUyctQ7YpU9Z6IwikOojWp2e7QxQaItpjUfIz7VWs79mB+5yvYGeiSlnLVdFzCKQ22xpZU+oSWBlDVg5jQu6RZHqUViY3gOxbZB+zTiEACkTKGvc+W0bZlcfzG3qy5kRChgDJZh96oOqAAAUWuvDVoXSkDqGOaBnVOUcga153zfKtKovqSqi0xOFkemiyHTptSXVQ5DujeG6VtS7PTe0DsA09cV9XFbvvmWAotfKoddSlyoAMEFhaqZjN1p12GjVKe2by1F84eIHMGHCBKxbtw7f+c53UCjolZmHgu1O6iiluPLKK/H222+jubkZcy4myDXLf0B0MmqMNCx3vVjVk2l0pg9T6jbBhHp7CqUUunrrMJBPI5UtgzYplJBbi5gyYy12mbAJWbMMw1Bri1EgjtDpZLQyQKkRWv34eKw0UGjSu6JTE6CKnb/L9Qb6xpnOWrKKr8csAnWb9DJ01CRuB3ZqAOU6tbutUxZzSp/EVrspuEKnAyFAWn9NV6PXyRSSsqUldgAASmH2q60hDQqY/UUQy4LZrS52WsLOmlI5T4lNlcWOz0jrih0olMWOksEvh9TUkDsyWBLWETuWfRxpsWPTmZimrSR3hFCcvMtbAByx05U7ANpiB6jfiwFndQoLhrLcNTXZuPLKK9HY2Ig333wTV199NWgMXUTiZLuTultuuQVPPPEETNPEZy9+F82dakKnA8vOMaFTgWXnmNCpUiilMJBPDyY7VOa2aC1ilwmbkDEspBQzlkaBILOVINWv13fEFboKVjaGkkdMcqhCldDBuaFYWbnG1AgdIdKjC3mh08KiMHs5GVMQu6EQOkKpfLaOEzo3joLYEQoQfuSqithVhI59kFXFzivqcWTrVMSOktrzXEXsqqad0RA7LzpZO1Wxo57JzGMVO82sHQAlsfNO2h+X2I101o6XO1kGjENxxRVXwDRNPProo7j55puV2zEUbFdS969//QvXX389AODL523CrrvL3Rh0s3NxyBxQnZ3jT7wPNKzDXqPWCcXgs3NaVIROVeaASnauv9YnaQqwBUeuD5ZbfZ4cISHzIpOtK9cb6No1XSV0LhKvJ+4MXdXjstm6GMquQ5mhUxI7P6RGA3uEjoshLHYeoXNjS4odDRj1Lyt2fn0+dTJ2PLFk7Ari5VhKgFJDwPsyAmJXE8cG0jLlWAKUWwL6042Q2HmRydoZoBiX8982rqydrtypZO1mTfg4vva1rwEAbrjhBjz77LPKbYib7UbqVq5ciSuuuAKUUpxyXC9OO0GuY2ScpVZVRmf6MLt5ZWB2zgQVkqua7JwKXLnV75gT2ruAqdHvMS90fogMCqgqtw4RcZRgRXGzcyZqhQ7i2bpQoRPM1sWZoQsUOsFs3XCUXIXFzidL58awbKFsXaDQMaTEzv8DJCN2YWXX4czY+WXpeETFLnTVD5msXchLFxY7P9HlxG5HK8c2tAavO65ajvUiKnZh/dnjyNoB8ZVkZfjQQZfgzDPPBAD85Cc/wZo1a5TbECfbhdQNDAzgsssuQ29vL/bavYAvf34bAGBmhmC/uuWh+25v2bk0sZRPsLizc2Hl1hSxQ/vVDVW51Y/tqQQbla3zlltD2xOCUIYuQuxEhE4oWyeSoYsQu1iETpBIsQsROjdGRBk2UuhEYVm6sLYIiJ1IxlVE7CKX4ooQuyihY2hn7IBIsQvL0lVtp5mxY4OowsTOW3r1jTWM5dio5cGA4c/ahbEjZe2mpDLu71/46C+x1157obe3F9/73ve2i4ET24XUXXfddVi+fDlGjRqF7399s/tF3YAR+EeKeyBEFLNyK3FQy/Kax6Oyc6LIZOfSuYDBEq1FTN5z3ZCVW/0IKsGGllv92E4GTIQhLHQIz9YNZcnVd9swsdteSq5A7AMjIg831AMnAsquvm0JEbugsqvvtiFiJzrVznCUYkXW5gUQnbETfE2hwiUQY1jKsWGlVz9iKsf6yR0/SEKEoe5rNyWzSTjOUA+kMDhtSqeAH/7wh2hpacGiRYvwi1/8QvnYcTHiUvf444/jwQcfBCEE//XlhWhvjb6YjMRACIPYNZ1G48jOAYNCJ4yfbVWyc1mzLCx0fiXYqHKrH96bhUq5dXvP1skIXVV7OMwi0Li2LCd0Ptm6YSm5+uGTrRspofPN1kkInRvHR+yks3R+YichdO5xfcSOEiI92nWoSrGiWToeOzU0I2NFs3RV++iMjEWw2Ilk6bxxhrIcG1Z6DcJP7Lz3uyjGZHukj+uHn9jJ3l+HcyBFi3UILr/8chBC8OCDD2Lu3LnKx42DEZW6VatW4ZprrgEAnP3RLuyzV/jNYbizc2HwgyFk4AdLjPRgCL4EO5zl1kC202ydktDByZCxm6CbnbMV3l9O7FSFriZbp5qh48RupDN0VWKnIHRuHE7slMuuvmIn/0HixU5F6NxDe8ROZUJsXuxUhI6HFzvhLB2PX8ZOsTlVAiYZI66MHTB05ViR0qsfuuVYEzbGZbtcuQsbJBFFHOVYp016fyfRkuysCR/H5z//eQDAL37xC6xevVrruDqMmNSVSiX88Ic/RH9/P2btUcBnzuwO3V5H5vrsLPJ2Jra+czrlVjZYQncwRDpXRsPk7mEvt/rBSrBaQoftM1unKnR8W+Iotzpt0svQuWK3E5Vc4xwRq92PjomdQD+6MHTnsXObUxE7nRVO4irFAvFl7FSydDWhYsrYZbqoXiwmdrKlVz9iKsemUhY+NPVt9RiwXbHTWWM9zkEUJig6U2qCKZq1+9jxP8Q+++yDgYEB/PjHP0a5HEOfXAVGTOpuvvlmvPPOO2hubsa3L9oC0+eDUaAl5GlKOzvXYBTQZMinpL3MyK3CQU1LtMqtqwuteHvrWO3sXDpTRnNdXqrc6odhUFCT6vXvIkA5B5Qa1GMAgFEC0r3634DtFFCq0z+1SzpCV8EsUtRtjkHoUgSlxhgykLSyOL3O0GpKq9d1HWGIZcHY2qsZw4a5OYbykW3D7ItnNQ7lNWYrUAJYGf3PQRxLebmxdM8blrHT/OLGT1isAj+AQrfww/rZZTbrf75VSq9eKCX418apWjFM2Bib7ca07Hrt9ny06XXtGABweFbvJGZi92rRP45pAJdddhkaGhqwYMEC3HLLLVrHU2VEpO7dd991J+y76LxlGDO69huKI3R631wajAI6U9u0hc6mBkrUhEUNZDQWKl1daMWS3g605gbQ3qzeQTudtlCfLWld11Zta8HiNyai8J5Gag1wF+PWvfAbJSDdo1f6BZw2GGVoXfQpIbBNAsOiyG5Tf1GpAYrGNWXoLjROTaAcg6QSiyKzNabRWQaAjGa3gcqqFShpfKO1bZCefm2JAqVOCbdH41oR18zyhMCqzwA2RbpH1xgAOx2H2FGk8nqvL66Jhe0UQaaHan8BpIZ+xo+hI3aUAHaGAja0xc4wbBBClUuwjJJl4un1u6m3g1DsUbcGJqHaYpcmwH7ZNdgvqzdliEkMHJ61teTOggGbGoFi10YPc+evu/HGG7Fw4ULlY6ky7FJXKpVw5ZVXwrIsHHlwP+YcWn0RLdASeu1CLELXZAzAJLZWCtimBooVodOBCZ0NAkPxQ5dOW2hpzDtCRyiKlom+UiZ6Rw+rtrUgv6IJxNITMRpTqXNQ6CiooVYaIbZT5jQqfmCniFK2jhIymJmjQCpPkdsi/ya5QmezuNIhnP0qQkdJpY9eTu08ZEJHKABCQNMxLDVlEnWxYwKkI0K80FEKFFWX76KD7dAVOxvu31wJJnRuPDWxo4Qb7KMjdoS4femIrSl2MTidlSFuLKd0KR+UEsCqq5SmDSdjpyJ3lABFbglLXbEDEIvYMVTFLpd2LqJM7FTlznTXXdcXO5M4P3GIHZM7HZjY+cndnFkX4phjjoFlWfjJT36CUkm/D78Mwy51t9xyCxYvXozmJgsXfX4b+NH6LDtncZ/+6ekB7CHxh+Szc7zMlWCiJGELLDtX1FwlenWhFc9umeYKnSpudk7zW5grdNy5aGWBYpNcTD+hIxSQSWQaJSC7ZVDo3NiSYudm52qeEI8BeITOfRDSNyOv0KnCC53TPjWxqxI6hmHEInZKeEVOJVvnl6FTETte6LjY0mJXE0Nu91Akxa5K6BgqYseEjgulKnZxZem86Igd/7ts1s4VOs8uRklO7igB7GztuaMidg1jaieTV7lX8PuULFM7awcMil0ccqeStTu9YasnjlrWLoPBG5xN/bN2hABf+cxf0dbWhuXLl+O2226TOoYuwyp1y5cvx0033QQA+Mp529BWmb4kLDtnwKnPixCVnRPNtoVl59rNXoxNi3W4ZNm5MjVrhG5UXb9wCZYXOlVWbWvB4vkTa4QOQMXGxOKwC6Buho7PzhGtDvsBQge5bJ2v0FVIFcSzdWFCJ5Ot8wodH0NG7HyFzn1SP80qna0LWLFCSuzCSq4yYucndNwxhMXOzfJ5Y4jt7uLN0lXFokj1DmMp1kfo3Kckxc4s0nizdDXtERc7PktX85xsOTZkU1mxq6EidjJyZxj+J9xwl2MNQvGB3Nqax01CpbN2Z7e+6BPH+dlXQuzSpPZ9HMqsXXMjxVe+8hUAwF/+8hesXLlS6xgyDJvUUUpx7bXXwrIsHHrAAI4+zLlg+mXnVOCFThXR7FyUZIpk50RKsN5yqx8iJVg3O1cOLreKZOtEyq0i2Tpe6AKPJZCtCxO6wY0inke40DkbQOimJJKhExG7IKGTiQFECB0w/GXYiBUrhMROpA+diNiFCR13rEixCxI6N0b47i5hQsc2saLFzjdLVxVERuxCnpIRu2EYUyMrdoHPCYidt+waRJTY+WbpeCqlfBGx88vSeRERO1Z69UOmHGuGHEsma5cLicP62snInX974hE7b9buyL3Ox4EHHohisYif//znoHH1uY1g2KTuySefxKuvvopMJoMvfW4bihDvOxdWgg0qt8oSd985v+ycDENZbvUlIls3FP3ndBASOkRn6yKFrkJUtm6oSq6B20Vk6yKFjhFTGTZS7ET+3lFiJzMoIkzsRISOO2ag2EUJnRsj4nkBoXM3DRG7SKFzg0SIHdePLjSMgNjFVXYNytJVtydc7MKydFXbiWTsBK+FImIXiYDYBWXpvETdS6Kej7McG1dfu7Rk1s4/TnQ5li+9BsFn7QgBvvGNbyCbzeKVV17Bo48+qtVGUYZF6vr7+/HrX/8aAPDJD29EW0deKjsXVIKVHQwR1K+OCZ0oQSVYfjCECEElWNlya1C2TljoKgRl62SFLihbJyt0Qdk6UaFj2Gl/sRMVOmfj4EETskIXmIETFDoWI0jshIWOMdRiJyPwQWKnMsrVT+xkhI47do3YiQqdGyPgcQmhc3fxETthoXODBIhdSNnVN0yI2A112dW/Pf5ix4RONMsdJHaiWToeP7GLzNJ5CRE7kSwdT9B9JSxL5yVI7IJKr0GEiZ1f6TWIMLHz9qcLbotTjj00qzdIk8/ajSJH4HOf+xwA4He/+x0GBvSnnIkijmWXI7n55puxceNGjB1Twsmnbkae6qUz+HnnZLNzFjXc5U9sasACUcrO8ZK5utCKZX2jnD+mhP14S7BM5gD1kUtAReZWNgG25OhWQqv6WbkXwDj6z/XCGbGm2X+OWIrTnlR1jJaQOR5PGTY1QNGw1nJek+QpTcng6+CnLJHqd+eRbX7KEpVVK7Ybgs6RYSpfCB9b9jJmI7av0bpT/zhBADtjwJlrza56XCqMTZEacPYr5/gPWgxtVIDYQKaH1sxFJzsCnY2MBQXSfdyLUfioMLGzue880iPiObErjhoUD9EsHQ+7v1CuEbL3HF7s5oxd7D4eVnr1gxe7JYWx7uNhpVc/WDnWBvBaYTz3uNwX1jQx3YzdcwX1DywTu6mHfBfj7j8Ya9euxe23347zzjtPOaYIQ56pW79+Pe68804AwLmf3YhURk3oWAlWd6oSlq3TLbeybJ1uuZVl63TLrSxbJ9J/LgyWrXOFQfFez7J1bnbOVhsQwbJ1LDunejNjZVhloavAyrAsO0cseaHjqZqyROW9Jk62js/OqUnvEPWv0xExlq1jWTqlBnHZOpUsHRfHzdbFPR+dCtzACeksXU07Klk7wbKrbwhKq7J2w1l29YUOZu1Ey66+YbiRsSpZOi9GWSFLx+PpZyebpfPC7jUyWToevhwrm6Xj8ZZjZbJ01XGqs3aiWbraONVZO5HSqx82NWCkDFx44YUAgNtuuw0bN25UiiXKkEvdjTfeiGKxiBl7DuCA/dUn3AWAZqI/GAIASjSlPVUJAKwpyZVb/TAIRUOmqD26FQA2bG2SKrf6QqhzVsSQuDGL8fSfiwvVOfCqg3BlWN3+cwZgZcXKrYExiNMms2jrZ2/iLsPqrlpBKVAo6k8uzMRO9zzky7Cqf3u2n47QsRCVMqyW0HEYJVv7c09sinS/PWJZOi/sS47OZwzgsna6bzUFzJJ+e2AD6S2mUpbOS1yjY59aN106S+eFiZ1sls4Ly9rJZulq45g4NGthQWGCXpwpn8esWbOQz+dxww03aMWKYkil7r333sPcuXMBAGd/crNyhccGYFUuyDpCZ4KigRSRJnprsm20mvFS/64o2GmMrQtfszYMmxKUbQNZs4zGrN5M/5s2N8Fc2KC/QDQlsFNAuV5zIEMZMONYGtSWm/suOA6NJ3tAWDz9OFZW/+NnlIF0TxnUICg3aK7wULZhdPWD5PWmziBlG6SrF6SgGceyQQb0l9yCbYP29YP26mU1YNmgW7aCrInnm7aR11wb0iAoN6b1l94CkOq3HCHrieHDRgEjhjYRGl/GL9Ufz2c/juXSynWAYemLeLnJRs/aJu04TbkC0qb+3/2EcQuxvtSC9aUWrTjNZh7zi6MxvzhaK45JgAXFASwo6vVjSxMTFgwtsSME+PKXvwwAePjhh7F06VKtNoUxpFL3xz/+EbZtY8/ZA+jYLa8Ugxe60WYJnaaaRJmgyJGS+7uqHG60mrGiMNrNzqUV49iUwNb+ugZs2tSEnn93ILs4B1KG+ldASkBsMtjPS6eaUwZSeTjf1onTh00pDid01FBfEJzYFGah0odEZxQv313IBGzFUpVX6AzF6ykTulj6V5VtGD39Tpm8bCmLHSnbIN19YMtuqYodsZ0snTa2DZqvfLuwbHWxs2zQrm5QywaKJZB1imJnwO2/SGxbXewMglJT2s3Uaokd19dVW+zo4L86YsfOaS2xI0Cx0qeOUE2x4/uuaohduX4wlrbYEYBYBD1rm7Tkjl0S06alLHcGoag3C04fdRBtsSvRFEo0pSV22+wUStRAiRpaYveXbqcNumK3rf5UzJkzB5RS/OUvf1GOE8WQSd27776LJ598EoQQnHhW7UjRKGwAJUpdoQMAE46QycCyc0zodPAKnSp+QleXKqEhI3cT27SpCdklOZDSoPwYRSDVL9sjuCJz3EAAOyOfrSNlZ0CEK3QaxJqhK1Q3RknsfLa3U0Re7LwZukrTZMXOT+ioqZit44RuMJj8H7BK6BgKYjckQsdQETsmdJR1LqdqYscJHUNH7KouIapiR50sXXWbFMXOe3gKGGWF84jW/l9a7JjQ8TKmK3Z8eFWx81wuDIsoyV2pdbABxCKu3MnSlBv8fPByJ4NBKE6a8FbVY3GIHQAtsePvsUzsVOQuTwe7STCxU5W7c889F4Azxdvy5cuVYkQxZFLHlsbY++A+dE6Su2jx2TkvMtk6Pjvn95xotm6j1YxXB6b6Cl1Hpgfj6sSlNc4MXXZJzl98JIdQEk7meKysuNhVZee8u0hk64jtDK7we12y2To/oVMipOm2KSF2QSVXSbELy9BJi52f0KFS+pTI1vkKnQJDKnQMGbHzCB3DFbv1mzUbqiB2lSxdDbJiVxE6vz6v0mIXcliZjF1Q1llV7PziSItdwMebSM4uUK4Pfk5G7Eot/n0fVcTO76gqYlfv09dGRewajNo4TOxk5G6bz41CJWvHsnQ8FgzlrN168wQceeSRQ5qtGxKpW7NmDZ588kkAwJxTegAAW6wcRFZaChM6QDxbFyZ0MrDsXClgdKtJbIzPdkWKHes/FyZ0otm6UKGDRLYuROjcTQTOkCqh00AkOycqdlFCJ5yti9pGVFij+tAJvnciJVdhsQsQOoZoGTZS6ASzdcMidAwJsQuaCZ5SChQKYmLnk6XjERY7vuzq2yhBsQsRusE27aB97Liya1AcYbET+WgLrxoS/rSQ2BGE3rVlxI7P0vkdRkTs/LJ0PEzsROTOT+gYsuXYsPusjNjxWTovqmLH5q174okn8N5770nvH8WQSN3f/vY32LaN6TPzGD9FTKz8yq0qyJRbo7J1ouVWk9ihfeti7z8XInQMo0DCxU5A6ABnXqWwbJ2w0EXIT5zl1lReLEMXKXaCfzJqRPSvkxgUEZatk+lDFyl2EULHiBI74QxdhNgNq9AxosTOskF7ekJDCIldhNAxIsUuSujcRkWInYDQDbZJQOxELtkCYidyXkeKnU/ZNShOqp8OWzk2LEvHEyV2peZogyQWQc+6cLFryhVEvq8K9bPzy9LxxNXPDhArx/pl6WrjqJdjeVTKsZsyH8Jhhx0G27bd6d7iJHap27ZtGx588EEAg1k6RlC2Lio75yWoBJuGFVt2LqjcGkRQGVZW6IKydX795yLxOy4/IELwLQ8qw0pn6ALETlbogrJ1bnYujilUZBychJRhZUa5hpRhlQZFBL0GQaFzwwSInXTJNUDsRkToGEFiVxE6akXfREPFTlDoGIFiJyp0bqPCxU5mmqFQsZM5H0PETua8FhE70TihWTvZ7rIBpwo/OEKEILErtdjCd2xSrgygCJA70eaE9bOLytJ5CRO7sCydl6hyrOj9Nqoce0vPKKE4KuXYT3ziEwCARx55BN3d6jNo+BG71N1///0oFAqYMLWIaTOi/1CyQgf4l2BNUGQUUj3ebF1UuTUwjk+2blj6z4VQU4b1GRAhircMO5wl16D28GJHLLX+c77ZOpU/mZ+wqkxb4iN2qqNcfac5kRS6wWCePneqfeg8YkdsGrxG63DhfQ0SQjcYwkfsJIWOESR20pcSP7GjtQMjxNrkI3Yqn/2hLMVGlF3DYtWInerAdr9TRiFWjdhFlF1922IRR+48YhdWdg2MBX+xi8rSeYkzY+eXtRPJ0tXG8he7PjsrFceCgYXFcULb9reeiWnTpiGfz+OBBx6QOk4UsUqdbdu4//77AQCHndDrez1j2TrdciufrYu7/5zq6FaWrRPpPxdG1iy72TpVoXNhbRAstwbByrDaI1w5+dEtuTKxI5beHHRVq2doOHhVGVZF6NxAzj+GpT9tSVUZVlXoUD1wQntQREXsXKGLI7OqkqVz96WD2ToFoWNUiZ2i0DGqxC5oYIRQozixkyi7+reJEzudP5lH7FTPbSZ2ZpEKl13DYrlip/k9nBc70bKrH/zIWJGya2B7PGKn+vJ4sZPN0vF4+9nJZOm8eMVO9Z7rFTvRLJ2XIk1hQWFCpNwRApx11lkAgHvuuQeWFUPfowqxSt1LL72EdevWIVdvY++Dg1ePsCiJoe8cMCVVwvT0Zm2hM0GxxWrUnq7EWbqMamfnDEJh2QY2rm/REzoMZut0hI5BLBI8wlUqEIun1x4WI44JSm2TwErrXs0rceoM/YmFKzfjOOahoyaBlTWVhY5ByhaM3nwso1xh29uH0DEsG7SrR1noGJRSwLYAQ//SSmwbRrEsV3b1bRRAylRL6AbbFOPgiTLVPrdZCdUoQ1/GZAZQREHly65BEJto36mZ2Klk6ariAMiYFo4d9650lo5nKPrZqWTpquM4Ynf1lmnSWToeCwaKNBUpdo3TL0JzczPWr1+Pl19+Wfl4XmKVun/84x8AgP0O70M6YNDIgsIE/GnL4Xg+P95/A0FyxEA9SSOtaSrtZj92T3fjiLqV2K9+uVasEjXRYBYwti68c3UU/aUMevJZwCLa4mNngHIDBTX0L1ZWHUWhVTMIyxxQsZG1UdhpoFSvF4gaxFloO44LMAWMEtWSJ6Ay4GMghunrUclkDpRA69UvVABATQO0LgvaUBdLu+IQOlouo7xuPawuzX4pBgHJZYGs3ntUhUamju1v1aVh5vUuAoQC6f4yDA1ZZVBCUGo0Y/mslOsM9bVdPRCbIrtN/3wySkCmK4bzMuV8odZIQrkU2+LJ4pD6MjZsaY4lVr1ZRMHWXMEGwAH1S9GhuKAAz9TUVuSIhazmDbNEDfRaOawttmq36a51++PKlScHPp/OAMcffzwA4KGHHtI+HiM2qevq6sLzzz8PADjo6NqOxwsKE3Dn1gPxet8kDFgZ5Kn6CZEjBrIkBZMQjDUzmJRSOynazX50mhbShCBHiNbyYSVqIm+nYRCK0ZleZbHrL2XQNZCDTQkaRvVjQHKOP4adAYptNsqNtv46g4AjYQDKjRSFNvUYVbKj265KuVRH7FyhgyOZOtk6Z449WhFXKItdldAZRG91D4si1VNw+jtoSAY1DSCTdkrnKRO0UaOuFBO0XIa1YaMjh7alLnYGAclkAMMAMQyQenVpJZk06IQx3AOq9UCCcmMGIMT5Gw7ofrtzfnS+bFBCUGrihE7jvCzXOWseUwJtsWNfDg1LT+yMUiXzZ8cjdm4WUUPsCu1WPHdpAhCDwrYJ1m1pxnoNuTtq7OLB9mmI3cH1S5CBBRNUW+xYf3aTUC2xe6hnbwCADaItdgUrhb5yBleuPDlQ7ibs+1sAwLx582IbMBGb1D399NOwLAvjJhdrJhteUJiA1/smoWCnYVc+gf/u3UU6W5cjBlqMjCt0AGASovQimNDx+85Id+GA+mVScUrURL+VQZ47uQ1CYShkEHmhAwDTsNEwpk9a7OwsdWTO4LrUGQA1VTtmVf+qJHZeoYPTNuVsHfH8rnBf4IXOfcxUEzte6PjH5ONQmHnPjopi5yz4XnQXkaeGAbsxJx2nSuiA7ULsqoSOYVuwI6YgqYETOuf/6mLnCp239CordpzQuQ8pih2hQGqAu34oih0lBOUGnwyd8qAiPra62HmvH7pix9ARO+81RVXsYhM6AGga7KJEbQLbJkpid9TYxag3q0eqq4pdBoPnMxM7Fbmbnq5e2UVH7Ap0sITLxE5F7u5bv4/7e18548qdlwlTS5g+fTpKpRKeeOIJpTZ7iU3q/vnPfwIA9j20ui8dEzrb8+kr26ZUto7Pzpmei6Rsts5P6AAgLZmtY9m52khAe6ZPKlvnFTqGadiAhIzZWeqUW/1mM1ERO5/NKRz5kYkRdCOhhoLY+bw2OyWXrfMTOvc5SbHzEzonkNwNlAmdbz8jCbEjFkW6q+AInWekITVNKbHzCp37+AiKna/Qcc8Ji51X6NzH5cUuUOjcDUT/eLVC5z4lKXau0Hm/XNhOHzvRc5MJXeBnXtLHyrna90hF7IKuGypiZ/h0y1YRu6BriqzYUYXRroE0l0B8ut+oiJ1X6BiyYndw/ZKax0xQpayd3xyxKmLHsnQ8NohS1q5g1fbvCxI7VoJ96qmnpI4RRCynzaZNm/Daa68BAPY5eHAEyYLCBMzvn1gjdAzRbB0vdH6YhGCcmcH4VPTFPEjoGKLZOiZ0QciUYYOEjiFahnX7z4VcG4XFLmIwhFUnmK0TEBthsQvLyEmUYcOEzt1GQOyIDZgF6i90bBvBMmyo0DEExM7Nzlm0RugYomIXJHTu8yMgdmFCx28TKXZBQuc+Ly52kULnbhj1xwsWOncTQbELFDoegaxdpNC5B4xsEoDBsqv/sRyxE5G7qOuFjNj5CR2DiV2mOzpW1DVFRuzi6kcXJHQMGbHjy65+iIodK7sGISN23ixdVRwJsXuoZ++qLJ0XGbHjs3Re/MSuabfvAwBee+01bN26VegYYcQidc8//zwopZg8rYDW0RYWFCbg79sOwPz+iSjbwVeDsm1iXs8HQsUuSugYJiGhgybYgIgwoQOcbN0+mc2hYhcldIyoMmx/KYN1PU2hQgeIlWHtDGLtPyeySWQZViZTFdVukdclIHYiQidyzKrsXMRLjBI7IaEToEroIogSuyihc7cjBDDi6ewehYjQuduKTBEQJWECYicsdKKIrDwRIXZCQscQETvRrHxE08OEzj1WTP3sADGxCxM6Bpt6SUTsImMJiF3c/eiiEBE7v7KrHwU7HSl3YULHEBG76emNoSs5AYNiFyV3YULHEBG7+9bv45ul4/H2s2vvsLDHHnvAtm0888wzke2IIjapA4A9Z+fd7NyAlQkVOkZYGVZU6BhBZVh+QITICw4rw4oKnXvsgDIsy85ZgvPZhZVhZYUuNFsncd0KFTvJ0mNo/zqZ63uI2EkJHYIHTgSWW8OaFSB20kIXkK2TETpGkNiJCt1gm4whz9bJCJ2zAw3O1rEsnQghYqckdEHvKcvSiYYJEDspoWMEiJ3bj06GgJcnInTVxw4WO5nuGmFiJyJ0PGFiJ3NdCRO7oepHF0WU2IkIHU+Q2PmVXYOIErsooXPjEBqatfMruwYRJXZRQsfw9rM76qijAADPPvuscFuC0D59CoWCO8dKeq/myOycH94yrN+ACBFYGZYXu6hyaxDeMqzfgAgR/MqwUeXWIPzKsO6gCMkvtr5ip/BF1Ld/naTQVbXJ+4dS7Ijt3U9W6Nz9PGVYFaFz9/WInXKGziN2KkLH8IqdtNBh6Muw0kLH7VcjdlFlVz98xE4rQ1ez8kh02dU3jEfslISO4RE74bKrb8Oq/ysrdINtqBU7lYFVcQ2eAPzFTuW64id2w9GPLowgsYsquwbhFbuosqsfQQMowsqugbF8xC6q7OpH0ACKsLJrEEzs6qdcAcApwRYKevPgaJ9CrBH17cDKtgnSQgdUl2HDBkSIwI+GVRU6oLoMGzYgQgS+DKsqdEB1GdbOUmfKkog+dGFUiZ3GNa+qf52i0FW1ib3NGhUYfuCEqtC5baqInY7QMdiXS+2Sa0XsdISOwcRORejcGEMkdqpCx+/vip2K0DE4sYul5MreY0Whc8NUxE5L6BgVsdMSOrdhg//qdAnhxU5nXkuv2Mlm6Xh4sdO5rnjFbrj60YXBxI7JnWjZNQhe7GSFjuEdQCFSdg2M5RE7WaFjeAdQiJRdg+grZ/BnegJGjx6NQqGA+fPnK8VhaEvdK6+8AgDIfaAeluIbBMCVQdnsnB9jzQxmZnqUhY7hlGtt6eycH+2ZPtSnispCxzANG/UdfShMKFVNWaKF5pdYtwzbqid0LopTlHhj2Gmg2GhoXXirQtp6QgcAoIBZtGPpQweDOO9TDGtpwlAXOkbsYmdZsLd1KQud266K2CkLHYOJXV1dLH3oqGFoCR3DETtNoWPYgFmw9ISOQfxHuqpQM82PAkzsNKYjdYm7j91w96MLw7YJaOXGoiN0jIKdliq7BsHETlXo3DgVsZMpuwbBxE5V6Bj9VhYHHnggAODFF1/UiqV9Gr3++usAgLpd9WaZ77My+MfmffFAf4dWnMWlMub2j8YTA+OxtCQ/JxfPqnIKG61mjE7rrRABAOsLTVjX14yUqXdC2tT5wJGU/kWOWARGkWjLRWqAoGElQVZ/4A6MEpDdRmNZrofYgFmKJ06qEE/5hpqVmfTr4rnZ2SZBuUVzFQQDsHMp2PXifboCoRSkP68tKq7QASApvQsmCIHR2ABa0l8fGoYBUApjW692KGJZTpZVF0qR2pZ3JpnWbVPZBmyK7CbNdlEg01VGblMM73klXqo/nhVW0jEtBUYNIK05XywlTqUj1Wsg1a27FhiAhjKoHc/AJQrgyQ0f0I4zJt2N5dz6rDo0GUWUYliK6N/5yWhP9WJcept2rAdX7YXNffpfZA844AAAcGcSUUXr3env78c777wDAFg5erJynD7L6TTYX87gvk2z8Y8+tRNgcamM+YXx6LOdvm9FqH/dXFVOYUFxPErUREeqR1ns1uab8cLGqVjaNRoWJUiZFjIptTS0TQksy/mTZetLsFvVv3ISi1TNoK4qdqkBgtxGZx1HQzNjZJSAbI8zf5ZZ1BM7d01YgdGpoXFsIJV34lBCoJGMBjUBO+2UTa00QVlzeTMAgEFgpzTEzgBo2gQlBHbKAK1TT2sS2wbp6R/MrKmKXUXoqBtHr8xptjQ7MSwbVLO/ikuprCd2ZdvJrJVtPRmjFKnuvJOt1YxFyoPSRCyK7GZFIaNAprsMtr5r3UZ1sSMUyHRbblwdsbNN53wkNpAa0MxmVT4mhkX1xc6oXINtqItdRehQydLpit3oNud+ly+ntMRuTLobJmyUaArvFsfi3eJY5Vj1Rglm5WKuK3Z5mnG6RRGqJXZzV81AqWyCUqItdhcudUa+Llq0CPl8XjmO1jvz9ttvw7IslBvrsLowFm9skVshos/KYFOxAX3ljFuSzFsp9CsspsuErsjVDVaWRmGxQraOFzqGititzTdjaddoFCwTlmadlBc6ACCEItdUUBI7XujcxxTEzhU6TuZU5ZAJHV9qUxW7KqFjqAxs4ITODaModrzQMeIUO6VyNSd0DFWxqxE69wnJhnmFDnD6wqlk63ihc+NvB2JXtmv+ryRjTOj4cLqSyEHKtrzYcULHUBU7V+g8n2MVsWNC58bWEDtvdw5VsWNZupp2yYqdR+jc+Ipi19He48y2UEFH7Ezu5CzRlCt3svBCNxhP7dr5r4EpVf/XEbtSedARmNipyN3StaNRztVj9OjRsCwLCxcuVGoPoCl17777LgCg2NECahlYvaFVWOxYdq7sM6XH41tmSGXr/IQOACxKsKQ0Rkrs/ISOISN2TOj8ZE42W+cVOoYrdm3iF0w/oVPBT+jcY0jG9hM6hozYEcu5UNcIHUNmChIfoXPDSIqdn9Ax4hI76TKsj9C5sSTFLlDo3A0Eby5+QscwTTmx8xM69zgjKHZeoeMel5IxP6FTjYXqLJ33cWGx8xE6hqzY+Qodd5w4SrFM7GTkLqh/rqzYMaHz8xIlsQvoRycrdl6hY6iI3ZiAN0RW7PyEbjCW3Pv0r4EpyNPabiYqYjd31Yyax2ile5SM2C1dOxq0bACEYObMmQCAN998U6otPPFI3ShnpAy1DJTs6JBM6IIGDOStlHAZNkjoGKJit6qcwhMD4wOFjhF0cvGECR1DVOyChI5BCEWusRgpdsQiMPPhQiearQsTOjeW4HUyTOgYImIXV7kVCBc6hqjYhQkdIxaxkynDhggdQ1TsIoXO3TDi5hImdAxRsQsTOvd4IyB2QULHPS8kY2FCJxsLwULHPx8pdiFCxxAVu1Ch444nKnbeLF3VsWwIZ+2iBlyJil2Y0PHtEhI7lqULO55NhOQuSOgYMmLHyq5BiIqdQezIe26JGkJyFyR0g8cSF7tHVu9ZlaXzIiN2tDzY9t133x0AsHix2jQyQFxSN7rFfWzDpubQbF2U0DFExC5K6BgWJaH961h2rt/OhgodALSnekOzdSJCx4gSuyihYxBCQ0c8VfWfi7r3RoidiNC5sSI2MYvRQicSy7fcGoTA648SOjdUhNiJCJ27bRyrMoiInYDQMaLETljo3B0CjikidIwosRMROve4wyh2UULHbRcqYyJCJxoL0ULHbycidlFEiZ2Q0HHHixK7MKGrOm4M/eyAaLETEbqqNoWJXUDZNfDYIWJHCEKFjiEidlFCxxARu5zE+q1RYhcmdAwRsXtk9Z4olKK/XIqI3dK11X7zo+XOnL9Lly6NjB+EstQVCgWsWrUKAFBsH5ywMKwMKyp0jDCxExU6RlD/ulXlFBYWOyNljieoDCsjdIwgsRMVOkamzn/ghEq5NUjsZITOjRWwqVkE0n1iQgcARhm+2TopoWOEZCpFhc4NFSB2MkIHALaJoR84ISF0brsCxE5a6EKglIoJHSNI7GSEjhGn2FnxjM4MlDFKncdlDhMidqJCx2/vK3YsSydIkNhJCR137CCxExU69/ghYiczLVKQ2MkIXVWb/MROUujcNgSIXXureBeCMLETFTpGmNiFlV2D4/m/ud5+dGGEiZ2o0DHCxM4tu3KU2psAACtXrkSxqDYCXfkusnbtWlBKYadTsOuqDdhP7GSFjuE3cEJW6AD/MiwTuqBlysLwip2K0AUhK3QAYBgU2cbqgRM6/ee8YqcidG4szy5M6KTmtKMUZqla7JSEzo3naaOC0LmhPGInK3SMIR0RqyB0DK/YaQmd9/iWBdql0MvcK3YqQue2ISaxs23/bJ2kPLF9qmSMCZ3KCHMfsZMVOn6/KrETKLv64RU7JaHj2uAVO1mhc9vhI3Yq81x6xU5F6KraxIudotC5bfGI3ai2XqRNuRkZgsRORugYfmKnInSD8arf5Kiyqx9BYicjdAw/sfMTOgCw6nNobGyEZVlYuXKl9LEADaljByw31/uWVfj+dapCx3hi6x74R99oLC6V8UDfKGmhY/BipyN0DCZ2a/PNWN49Slno+GyditAxeLGLY0AEEzsdoatpY0lB6Bic2GkJnRvP+UdH6GpCKgodI26xs5ozWkLHYGJHbBukb0AvQ8faIVN29YOJnY7QMeISO28ZVlGe2L6pnoKe0HljQV3oGK7YKQodoyZjp/lZZmKnKnQMXux0Ji6vETudmXlsINVjaAud25aK2KkIHcMrdkEDI0RgYmcQW0voBuM5b7aK0DGY2DG5e2T1nsrt8Yqdn9ABAAjBxIkTATiJMxWUTzNWei21NARus2FTM17aOElL6ACgv5zB4nwnlpfb0GdnlISOYVGCdVYL3iu3aQkdY12hBcu7RwkNEAmjLl1CXaakLHQMw6AwMhZoiuqvWADnYmIU9YWOUCdDl+lVFDoGpTDKgFmIR8KI7WT8tFfVIAR2hmgJHY9ZiGHJIMOZe87OprSEjkFNAppJxVNmtG09oatAMhmYYzr0hI4nE8PyI0zsNOUJAGDbIBaNZdUQSgj6JmhOVF2B2BTFRkP7c2OUKeo3lAbnotOk0BTPeUAoUGzS/8wYFkW6p3bqEqU2sbdIU+gYY0Z1Kwsdg4ldv5VRytLxlGgKCwvjtIWO0WEQZaFjsLns7l8xUylLx8PEztuPzktnZyeAEZC6DRs2AADKjcErSVDLwIZNzVi2bZTqYQAAezStxz71K5CGhQZDb6bznFFCjpSQIRaaDPUJ/gCg1ezHiS3zceiYZVpx0oaNulQJTdkCmuv12lQspGH3pkEzFGXdCwlFPEsPwfmWWmog+hdKQgYn69Qd5cpGyhInu6YDNYFSHalZgFy5bWWqLXbEojCKtjMII46BGJV1QbWhFLRUAsnpCQYxTRjNTSCpFEhWczUM0wBpanSyiLpiR4izpFghhtUiAOf8bNR7fTRtomuPJlgZgt7Jeqv/wCDonpqLZ3APACtn6MciQP+YlHOdqY8jlgEYQDmneV0gQKENIDGt8gAAtE9zhRUAYzu6kDUtmJoXUQJgr9a1sGBgWUFvNSgAGJXqxTqrUTvOeJMiTQyc1vCudqzfLz4ChVIKJUt/7Tz66Cg0Px/++WNSt27dOqVjKEvdli1bAAB2fcSF2SbYvKUR73W3hW8XwB5N63Fo4yLkSAkmsdFkDCiLXc4oodnIw4ANAzZMjTXkWs1+dJjdaDby+GDzfBzVqba2HRM6ADBAtcSuWEjD6kkDNkAJBc1qiB03NYiVAwqtGmuCGpWSpAGU6wgKLaqzphPY/OdKYDRvYCiqtz8PNYFy1pkAmL1WVcwSRXarcz7oiB0TOlYmpQRaYkcq2TmaNmCPao7YOgRKnTInpYBpwqhTW8qPCR3MyglhmupixwsdoCd2hABp56ZLLFtP7AzAanCur9QgsOvV2sQLHSWAldUQu4rQ2Snn89w3Tk82yw2mI3TEyQTrwK4NWmJXETq3GKQhdpQA+dHEiUUBo6z3+krNzmeQ2ERL7JjQAU4mSlXsCID9Rq9Enelcr0rU1BK7zvQ2pGHBooa22KUrmfsmI6UldtcvOQL5ovO5oxRaYkcfb0eqz5kXseXFYG/6zYo3AAwmzmTRljqrTuDbtk2waXOTtNjxQsdQFTte6NzHSEkpW8eEjqWJG0hRSex4oWOoih0vdAxKKJRWGuCEDgCoQVGuVxM7V+jI4P+VxM4rdFxbZa9JfkKnKmO80OnGYkJHytxgEAWx8wqd2y5FsSOecqudTamJHS90DAWxqxE6Lpa02HmFzj2IgtgxoeNiKYsdEzr+vEoZ0mLHC537mKrYcULHsDJEWexcoWOoil0lS8ejJHZeoWMoiF2V0LkPqotdqdkGPyuXjthlPSVXFbHzCp3bTkWxY0LH0BG78Wb1a1EVu+uXHIH+QvXnTVXs6OPtSPcOtouJnZ/c2Tnn89TV1SV9HEBD6rZu3QpAUOoAabHbo2k9DmpYUiV0DJPIZdn8hA4ADNhoMApSYucVOoas2PkJ3WC7HLFrrBPruO0ndAzpMqxH6NyHFcTOK3T841JiFyR0bkBxsQvL0MnKmJ/QqcbyEzoXS1zsgoTObZek2HmFjiEtdn5Cx1DJ2HmFjntcWOyChI4hU2r2ETr3KVmx8xE6hozY+Qmd+5ys2PkIHUNF7GqEjiErdhWh87s+SIkdAfo7fISOISF2lAD5UcQ/loLYeYWOoSJ2Yzv8RUFG7IKEjiErdl6hY6iIHSu7elERO6/QMWTFzit0DLaaiVfs7Kxz3GGXur6+vqoGCFERuxVd7aGbMaFrMIKlpp4UhLJ1QULHkBG7IKFjiIpdmNANtouiJZePzNiFCR0gWYYNEDr3aQmxCxI6/nkhsYsSOjdgtNiJlFxFZSxM6GRjhQodKu0VELsooZMlSOgYwmIXJnQMQbFzs3RhiIhdlNAxRLJ1IULnbiIqdiFCx5ARu7A+nsJiFyJ0/HFExS5Q6BiiYhcidAwhsWNCF+VHAmLnCl1YLAmxCxI6hozY8WVXP0TELkroGKJiFyR0DBmxCxI6hozYXb/kiNDnRcUuSOh4vGJnVTJ13d1qo4mVpW5gYAAAQFOSqUiboBwywlNE6ACxMmyU0DFExC5K6BhRYpc2bGRTYhN1GqAgIR+yKKFjCIldhNC5mwmIXZTQ8duFip2o0Akg04cuSsZEhE40VpTQMaLETkboRLJ1UULHiBQ7EaFjRIhdYNk1IFag2IkKHRBdhhUQOnfTKLETEDpGlNixLF1knCixMwh6poQLHUNE7CKFjhEldgJCx4gSO0ogvpZziNgJCZ27cbTYRQkdQ0TsooSOISJ2UULHiBK7KKFjiIhdlNAxRMTOr+zqh4jYRQkdIzVA0fJvR+zsyvWGJc5kUZI6SinyeUeA7LT8Xberq963DCsqdIwwsRMVOkaY2IkKHSNI7JjQGRJDthszRd9snajQMULFTlDo3M1DxE5U6PjtfcVORegCpE1lUESQjMkIXVQsUaFjBImdSoYuTOxEhY4RKHYyQscIEDspoeNi1YidjNC5Bw8QOwmhc3cJEjsJoWMEiV1Y2dU3TpDYVYTOkuhGECZ2wkLHCBI7CaFjBIodAQZGS94GfcROSujcnYLFTlToGGFiJyp0jCCxY1k6GYLETlToGGFiJyp0jDCxExU6RpjY0cfDK5JeUv0VsTOd11IqicmzFyWpK5fLsO3KaDiZiyzDp3+drNAx/MROVugYfmInK3QMr9ipCJ3TptqBE7JCx/AVO0mhc3fzETtZoeP3qxI7nQydR950Rrl6ZUxF6IJiyQodwyt2OiVXP7GTFTpGjdipCB3DI3ZKQsfFcsVORejcRnjETkHo3F29YqcgdAyv2MkKnbufV+wUhI7hJ3bSQsfwip2C0DFqxE607OoHJ3ZKQuc2qlbsZIWO4Sd2skLH8IqdaNnVD6/YyQodw0/sZIWO4Sd2skLH8BM7kbKrH6l+iqbXnWufZVmwLIW/nfQeXhQ+pwCqpjpRFToGL3aqQsfgxU5V6BhM7D44fqGS0A22aXDghKrQMarETlHo3Fic2KkK3WCsiti1Gvol14rExTFtifu6NITOG0tV6Biu2A1Y2n3oeLEjmn3xXLHTETpGRey0hI6LRerr1IWOwcROQ+jcUEzsNISOwcROVejcOBWx69mlTlnoGLzYKQsdg4kdAfo71ISO4YqdjtAxKtcsZaFzGzUodqpCx+DFTlXoGEzsCIB9R61WEjoGEztVoWPwYqcqdAxe7FSFjsGLHf2nmtAxUgODN/feXvE1eRlK7wjhL2Y6N0zLQKGUgklsZaFjmMTGKLMXY8weZaFjGLBhgcCihvbs1g2kiBZzQFnoBttEYdkEVt7UnhCYEme1Cd15kwBH7KgBgEJ7JQVqIL4+dDZglPWEjkFJZekh/bcLRokiu6moLHQMQuGszBHHoAibwuwvAjorfVSghgHYMQ3WSKVgtDTrCR2DED2hY1AK2tcfSyxStmB098dyXlHTAM2a2pNfU+IsVacjdAwrQzAwJhPLJMXUBAqtJmz9eXcB4qxkoSViFagh0R8vNBCc8yCOU90mIIRqCR3DIBS7tmxCQ0p/Cb0SNbWEjmFRAx2mrSV0jCYjhUUDY7WEjkEpYD3djnSP3rWPchcEVhGVQVvqdL7d1zfn0dnUgwXd4/BC327KcQAgTSzkiLNaRM5Q/0YBAD12HbaUG7Gx3IR1VotWrH8NTMPc9XuhqGkrWwbqsW1bA4hJgbSmIOYNpHsMEAswLL0LbmqAILeFwmBrseq0q+wsJaa7ugOhTlkSlEJjfunBeLaztJkhNr4lELNAUb+2AKNsawsUNQjKDSnYWb3zilgUZk8BpGTByOt9bohlw9zS7aymkNZflYHkckBKLyPGoKUSMKC3WgtsG3RbF2i5DNqlvs6l0yAKFEtAoYj02m16sQAYZWc5sZbleq+R2EBum4VcVwxCUKawU0BJcy1jZzUaA9QANJJFAJxrQ7bbBrGBhrX6FwczD2S3aIeBXbmmp3piWOas0XmTVm9q1Q41uWkLsoaFbSXNVUgAHN74rtaE/4xZma1Ig6BE9WP9fPN+KNgpHDThPe1Y5nMtSPfG8GWBu941NsrP1ad0BhmG4YpddoXaxbu+OY8JLV1ImxbyVhqvdE1SFrs0sZCBBYPYMIiNDCxlseux67Cx3AQLBiwYWFdqURa7fw1Mw4PrZqG/lEbJMpXFbstAPbZsbQCtjBomaVtZ7Iy8gUy34a4jqCN2qQGC3Gbqrp3qSJliu8qAmXdKwrapLnau0DE0xY6PRSx1sasSOlS+DCmKHTUIrDrTySCmiLLYuUJX+TZIyray2BHLhrmpGyhXTizTVBc7JnT8Cg8aYkfLZWeJM9tWFzsmdGxljWJJXeyY0LFv4fmCltgZpUpmlFKY/WVlsSM2kO22YJQpjBLVEjujPLj2NDXVxY4XOqeNVFnseKEDnGuVjtgZBedzbJSpltjZaepma4mlKXaNJZDK2rC2RbTEjgkdANjU0BK7wxvfdatxOmI3K7MVOS5DpyN2P9+8HzaXnLXrm1J5LbFjQgdIjqb2IdvjnOCmaSKVkg+knKmrr68HALS8W0R2udwajrzQMVTFjhc6hqrY8ULHUBU7XugAJ7uuInZeoWOoiJ1X6NxYCmJXJXQMRbFjQsd/1lXErkbo3HapiZ1fLBWx8wqdG0tB7HihY6iInVfo3McVxK5G6BgqYucVOu5xFbFjQgdAXew8QufGVhE7r9AxFMXOFTouvorY8UI3GFtN7Hihc5ulIHZeoRtsq7zYeYWOoSp2TOjc/yuKHS90bltVxY4TOje+otjxQufGUhQ7XugYKmLnFTqGitjxQsdQFTte6BiqYpftsUEs5wZTV1dX3dVNEOWvBA0NzhtiFotofceWEjvDsKuEjiErdn5C5x5DUuz8hI4hK3ZeoWOoiJ1lkxqhY8iIXZDQubEkxM5X6BiSYucndAydjF1tu+TEzlcOuedExS5I6NxYEmLnJ3QMGbELEjr3eQmxCxQ6hozYBQkd97yM2FUJHUNW7AKEzj2GjNgFCR1DUuxqhI47jtlfRvMKsX5QfkI3eAw5sfMTOrdZEmIXJHQMGbELEjqGUZL8EuoROvdxSbHzEzqGtNj5CJ17HEmx8xM6N1bQHySAQxsXB/aXlxG7IKFjyIidn9AxZMXOT+gYsn3Msz2Vc5Q6NxeWOJNFW+pAy0gVqLDY1TfnMa6pJ/B5UbELEzqGqNiFCR1DVOye75/uK3QMGbHbMlCPru7wP6yI2EUJnRtLQOxChY4hKHZhQscQFbvALF1Vu8TELjIOxMQuSujcWAJiFyZ0DCmxi+iAKyJ2kULHEBG7KKHjthMRO1+hY4iKXYTQuccSEbsooWMIil2g0HHHMwSWlgsTusFjiYldmNC5zRIQuyihY4iIXZTQsW1Es3VBQuc+Lyh2YULntktU7EKEzj2eoNiFCR1DNFt3aONiNBkDoduIiF2U0DFExC5M6BiiYhcmdAzRbJ0rdMDISV1zszMnFbEdCxcRO7+yqx+iYhcmdPw2YWInInSMKLFjgyKChI4hInZbBuqxZVsDaDm6XWFiJyp0bqwQsUsNEGS3RAgdI0LsRISOESV2QkLntiv8mMJxEC52okLnxgoROxGhY0SJHcvSCbUpROyEhY4RJnaiQidIqNAxBMUuSujc7cLETlToGBFiFyl0bLuyHZqtExG6wWOGi52I0DHCxE5U6BhhYkcokOkJFzqGSBk2Sujc7SLETkToGJFi11COFDr3uBbBms3BSQkRoQPEyrAiQscIE7sZgkLHCBM7EaFjNKXCrwsiQgeIlWEzvdXnKLGdY7e3y01ezFCWuo6OymSC9uCLZ2I3+slMjdyJCh0jTOxYlk6UILGTETpGkNgFlVyDCBM7GaFjBIkdsSEsdO4+PmLHhE6qP1mA2MkIHSNI7KSEzm2X/7Gl48Bf7GSFzo3lI3YyQscIEruosqtvm3zETlroGH5ipyJ0Idk6IaFjhIldJUsng6/YyQodI0DsRIWOHTvVV/IVOxmhGzy2v9jJCJ3bNB+xkxU6hp/YMaETcBSXMLETFTp3+wCxkxE6RqDYNZRBTLnzygq4p4gKHSNM7GSEjuEndjMyW9GgMG2Jn9jJCB0jKFsnKnSMILHL9NrI9Pqco5bzeR09erTwMXj0pc6qviCmChTZHrsqaycrdAw/sRMpu/rhJ3YWiJTQDe5XLXayQsfwEzsVoWN4xc7IG0j3qv2JebFTEjqGR+xUhI7hFTsloXPb5WmDYhigWuxUhc6NxYmditAxvGKnInTuvpzYKQsdgxc7nQydj9hJCR3DT+wEy65+VImdqtAx8gWk1w2KpZTQuQ2qFTsVoRtsA0W2mxuUpiB0btM4sVMVusFgg7+qCB3DT+xkhc7dr0yR3Tr4fxWhY9SInYLQMbzZOlmhY/iJnYrQMXixUxU6P36xZV9poQOcbN3+46uXRTOflxM6hlfsmMz5vu2VRNmoUaOkjwPEIHXE9v8Dsqwd2ZJWEjoGL3aqQsfgxY7NRacKE7v7umYrCR2DFzsdoWMwsZMtu/rGYmJXETNlKvun+6my0DGY2GkJnduuwbboTlJMLIp0n57QVTVNQ+gYTOx0hI7hip0NdaFjmCZIJqNfcuXETknoGLzYaQgdgxZLoFu79ISOUXI+eEpC5zZoUOx0hI5hFm1X7HQ/N9R0ZE5L6OBIl1nSEzoGL3aqQscwSo7Y6Qgdw72Wawgd4GTrmNipCh2DFzsdoWOYxI5F6ErUhgWKX2zZFxuKTcpxWtMDrtiZz7doTSzMxM43O8dx9IETAYxApm78+PHOL1Zf4Db9YwzQDMWa7mbVwwBwxG5ruR55O60sdAyD2GggReSMolKWjseCgXqziLZsv1YcCiBfdjQ+ndGc4RYAUjaoKV929YOUgIjuBUJQw1mCyPZf61s6ls4NoDpYRew0V0AgtnMBt3L6U8JTk6DUmNJeoQNwLiSEUi2hYxCLwihozv4KOCKWzbgLV+uiJXQMbnUOHaEDAJJKwZ46HnZHq16bKthZU/v8dEbEllC/sawldAyjRJHu1z+ngMrnOY7ulNSJoyN0DKNEtYUOACghKDUAZiGuUfzQEjqGVTaQL6e0hI5hEooBK60tdIDTJSquDF2J2lpCx2hND4BSor1SBAA0rLOQ7gv/+61c6UjkpEmTlI6h/O5NmTLF+aXcG3jBsTMANSh6NzRgxdY21UNh18ZN2Kt+NbbZ9VhTbsM2S21UCACYoEgTGxPMLkxKb1aOAwD9dgZ5O40p9VswoVGu/w2PTQnKlXXj6nNFZOqLEXsEQykASkDrLRTaNG9OlpNhs1NAuV7/osTWPrVy0dsGtok6AmWbBHYqhgslP8FtDNhZA6VG9dUU7JSBUnMa1CTVC5krQCwKM2+BmgbsBrm5JIODEtAGjdnlCQFS5uDvOktIUeqsFBHD8mbENIC6HGAYMFrDR7iHxkmlYO86HnYuBasuDXusWmdnAEAqheLUDmf1kEbNb0OEwKpPwyjaMAr6UmBniPtFJg60M36EwMoAIEChWXMFCwLk241YhK7YAncZRV3KDRSggN2jv6RVc/MALNvA21vHasVJGxYMUNjUwKPds7Ri9dh1sKiBFwrqrsCwQGEDOH/0M1px5q2ehnmrpwEAth6mfl8GgMa1FoxSRKWKUqxevRoAMHnyZKXjKJ/9nZ2dyGQyILABuzZT1T3JRP+ESustoiV2WaOMHCnBpgbydhrb7HolsWNCx/6dnNqqLHb9dgZd5XrYlCBNLG2xc9toUGWxY0LnBKKwm9TFjliVHwqAAFZWXeyoiao1KVXFjgkdu0DaKU2x85vgViWMPdhnkBKiLHau0FVEhxrqYseEjt0s7YypJ3aEgFZ+kE6piR0vdPxjKmI3BEJHTcN579MpJbFzhS4z2HlGWewqQmdnKn3OTA2xIwTlhsHzitjQEjsra7iXmTjFTlV8eKEDnC+hqmLHhE53jdkqoQMACph59WtVuYGCms4bRCyiJXbNzQNIVbJ9hXJKWeyY0DH6yurXFyZ0ANBnZ7XEjgkdAHSYtrLYzVs9DYVSCoWSczLkGtXXv2VCxzDzAZ8/ewDFYhHpdBpjx6r9XZSlzjRNTJzo1H5Rrp53rnuSid5dbNgZruEVsXtvW6vUcaY2bMFe9aurHrOpIS12vNAxVMWOF7rBWBYm1W2VFjs+S+e2VVXsvDUMVbGzOaFjMLGrk7swuULn2U1W7LxC58ZRFbuwCW5lwjCh49qlInZeoXNjKYidV+jcY6iKHZM51iYdsQuIL8UQCZ0bXlXsDFIldG68tGRJ3iN0bhwVsfMInfuwotjxQlcVKwaxIxTSYucVOoaK2A2Z0LmNUhM7XugYqmLHCx1DRey8Qsf4Z/de0m3ihY6hKna80DFUxO7ZNbu6Msez5VD5ZItX6IDKfcNP7MrOIKtJkybBNNW68mjlqadPnw4AIKVt7mO+QsewCHrWNwpn7KY2bMEBTcuQI7X9eFTFzous2PkJHSNrlKXEzk/o3LZKil1gpUBW7Gyn5OpbDiGAlRPP2AUJnXso2YxdwGuUFjuRCW5FwvgIHUNa7AipufG6sSTELkjoGNJi5xE6t02yYueXpeMRzdYNsdC5h5EUO6cf3Tjf5+yUIZ6tCxA6t10yYhcgdO7TkmLnJ3R8rDiQEbsgoWPIiN2QC53bKDmx8xM6hqzY+QkdoxhwH/IjSOgAoLtcJyV2fkLHkBU7P6FjdEj0Q3x2za7IF/3f17qmgpTY+Qkdw0/smEvtsccewsfwoiV1e+65p9OQ8jb3MTsDf6FjCJZiw4TOPZag2LEsXRBM7PbPLY+UO5savkLHEBW7MKFz2y0jdmE9jStiNzChHCp3rA9daP8WwVJslNAxRMTOzdKFxREVO9GsUMR2YULHEBU7O2Wg1BR+NxERuyihc48nKnYBQue2SVTsooSObRMldsMkdO7hBMXOr+zqxc6losUuQujcdomIXYTQuZsJil2Y0DFi7V8XESpK6BgiYjdsQuc2SkzswoSOISJ2zc0DoUIHAJQSoWxdmND9//b+PNyyqr7zx99r7X3mOw81MRUFBcVQIMigDALSKoKo4BeFn8YQ7N9PTZvY5rFj4tNpTEyr7SwGp3wdEhXBTmuIhBZMNKiAgswyFjM1V9353jPtYf3+2Hvts88+e1hr7VN1qy7r9Tz3qbrnnL32umd8nfdnDRxRsUsTOs6Sm/0+5YClCh3nP0/8KrOtNKHjiIpdmtBxop9rr97sedGxxx6b2X4SuaQusElrFmCsexxdGhlit2Fgb6bQcbLELq7sGkeBuBik7dTUru4WsSAQLWWJnYjQcbLEjjGAuQKiYjCg6GamdkIDljPETlToOGlil1R2jW3HJN4M235MoAASxU5E6DhZYpdUdo1tK0XsRIUuOG+W2GUIXdCnLLETEbrwbZPuh/0sdMFpM8ROROgAX0LSxtcJCl3QXprYCQpdcPMMsRMRuqCd/SB2okLHSdq4hxGgMU73r9AFnUoXOxGh45CUrR25zKUJHSerDCsidJwssRMROk5aWsdlTiSHW2M4qWInInScLLETETpOkNYxhieffBLAMkrd0UcfjUKhAMLaWFzVSC67xuGL3aPPHtIjd3xihChJYicqdGGSyrFpZdc4ZEuxaSSJXdfECOHG4suxfGKEMAliJyt0nDixkxG64PyEJKd2qovchn+VELquPsWInYzQBW2liZ3k52mi2AkKXdCnJLGTEbrwMdH7Y5mELjh9gtiJCl2YWLGTFLqgX3FiJyl0wWEJd62o0AXt7GOxkxU6r6HetC6czu13oeMkiJ2M0AVNxaR1WelcHEliJyN0nHk7/ouejNAByWVYkXQuSpLYyQgdpzLYO3FiYIcjJXRAqAzrLGJ2dhbFYhFHH52+RWoauaSuWCzixBNPBAA4xd3iQsdxCNCkXald3MQIEdLETpao2MkKHYeL3Snj2wK5k0npwkTFTknogsa6xa5rpqsMBHCK3ZMnGIG00HHCYqcidF1tRcUu7yK3UBM6TlTsVIQuaCsidsRhMBRnM/aInaTQBX2Kip2K0IX60CN2yyR0HEZJ17p6wVp0EkLH6SrFmibaR0xIC13Qr7DYKQqd11BvWicrdJx9JXZKQucTLsP2q9zK+6QkdEED3b+qCB3QW4ZVETpOVOxUhI4TTusW3Iq00HGiYqcidJw1kY0QVISOE07rars8mVN57hMXMOp7AAAnnngiikX1JYxyr/J36qmnAgBKU3vUG/FTu5ZjCpdd4+Bit90eRd0tpY6jy4KL3bixqCR0nBK1MWQ2cFhlBqurC0pCx8mz3ElvY57YtYddNaHjUC+xaw8RWAMkdn9WGdyCt0BxHqEL2jL9/vRjDTreRo4+cbFrjZaUhS5oyxc7LnQkh/QEYqcodEGfuNgNVNWFjsPFjqd0OckjdAH+GnaB0JXVrIAR4q1jd8iEJ3Qx+/RKtWcQ2INFdaHzCZdhVYWuq60+il0eoeO4JtAc7k+5FeiD0AG+TBPYNaYsdBziELiLhVxCx+ETJ/IIHdApw3KZUxE6Dhe7PELH+c8Tv8Kvt2/IJXRApwxb2+XAaOV7vl/wam+XrlNOOSVXO32TuvLOqZQpmAI4BNP1fFt3AZ7YUbigxIWVc9uBAnGxsbgLR5d35WqHM16qY7K2mKsNgzIwRgCrD6tuGwxuicHNu5YlF7thwMr38AHwyrdOH9bKJYyBkeQxNVJE94pVbYZ4MpbnwzcMtVkuoeO4BaosKT04Tn9EmlKwSil3SkcMCjZYAyvme6IzSsDKxVxCF7Tl3z/92FKOt9eP5xRh+YUO8KRuaMsChrck7zgk32j+Jvq1EDAAuIWcQgd4fxMFzCWSS+gCimLj50SwGc0ldJzDS1NCEx5EoHBzCx0AbGmvwluOeCSX0AXYNLfQMcZw//33AzgApO64445DrVaD0W6jtGdWuZ3KqjqOG9+NF1tj2G6JT2OOwyAuDLiwmIEmU/9Ed0BQIC6OL23DMZWdufoEeFuUra3M5xK7xUYJ7dmSV7puU8DK8U7XpDAXKNwi874FK+IagFsCmMHglgCFvZO7IMwXu1w7T4TKpHnFjrFg6yHWJ+/JC3FZMMCW5Z0YwhiI7XoSlSM1IowBrbYnmSRnQko8gULBBIbVvylwoYNpeMmf4tpPAABK4Q5XwUpG7t0GqOV497vlwFzKmUT2SVJAAGsw337DgCd0A88tgDTaoPX8VQUuTjRvYMs6wzrytsUrEmaenbGI937CCEBsgsJ8zp0wKg5AgOmZfG/AR45MYf3wNBxGsJTngwHAibWtqNIWnD7sAzdIGygSB89aOT4YAPyqsRYLbhmHFqdz96kxUwEcgq0X5Ptg2HvCPObm5jAwMIDjjz8+V1u5pc40TbzqVa8CAFRe2gkiMhMzQmVVHaeu24qhQhNt18SLrTHct7ReSe6qtIVB6m1W6oAoi50T+lpYJg6OL23D64d+j02V7dJttVwTDX/TU5M6ymK32CihOV32hI7Bm/LjEjWxa1IUZg0Qx3tTySt2jLLg3zxiF6RhJL/YBX3zx/kpiR0XutC4nuUWOy50PKHz+qT4psmFDv79pCh2XUIXXKgodlzo+LHFgpLYdQkdR1XsCIE7VAEzQ+PqFMWOC13QTh6x67PQuXm3pgsJHQDAdXOldd6+sJ0xrcoyxiJDTHLcb26BdHbUcBTFLiR0wUV2jqEPFSf4NHctQ1nsjhyZQtmwUDa8OzqP2HGh4zSZWio2SBuB0PF2VMWOCx3ghT/v2Hi/UjuN2TIas/5nMQB72MHW89U+GLafbaI4uwMA8KpXvQqmme8Dpi87555zzjkAgOr2nYBDpMWuVLAxVOjsGt92TSw5JenUrkpbGDHqMEIBbR6xC1MmDsaMOjaVdkiJHRe68DcVVbFzHBI8iQIY5MUuJHRBM4pix1O6ri4pil1PeVNR7LpSOt4nFbGLCF2nreUTu6jQdfdJ8kMhJHSddiAtdrFCF1wpKXZRoeNIil2s0HFkxY4QL6Eze98uZcUuKnRBOypid4AJHXVYt9ABgMtAF5tKYhcWuqCrKmIXFTp4v6sIYljogrZkxS5G6DgqaV1Y6IJ+KogdF7ooKilbVOh4O7Jix2WuGFmaQUUQw0LHOaK0V1rsGrNlwKbeTwh7RGb5CI/tZ5uwBxlObHqvmbPPPlu6jSh9kbozzzwTpmmisLCIwty8J3YWFZK7yqo6TpiML23y1E5U7HjZNQoXuwW3KCR3TsrgjTJxpMUu7kXBxe7Ysd1CcrfYKMGaSxiXICl2xCWxy5fIil1QdqW9ny55E7tOZ+XELk7ogj4piV1SW8srdnFIiV2M0HXagZzYsYxxfRILPscKHUdG7PLMvg3DS64xQhecSlDsvOdm8m2JI7NOjvhNU+mj0NWeX+wWOo6C2MUJHUdqbGuM0IXbkRG7OKGT7lOK0AHyZdg4oeO4tng7SULHEU3rTqxtjRU6jowghtO5OETTul811sYKHeeI0l7hPgVCl4BoWrf9bDMQOnNuHi+++CJM08SZZ54p3Jck+iJ1AwMDOP300wEA1Re3eeMWGDJTu3DZNQlRsQuXXeNwQIRSuzSh43CxyxpnFy67xmFSBzWzlZnadZVdkxAVO38cXWIzvtjZVaTKXZrQBW1JiF3qm6IvdtYAUuUuTeiCPomKXWgcXXJb3uza/SV34XF0aX3KFLsUoeu0AyGxI4wBbYFPRoGt2VKFjiMgdsSg3gzcNETSOkp7Sq6J5xQQu6z7HK4rltYdTELH8cVu6Ol0sWM0XeiCc4rIWIrQcUTEzi2QVKHj58pM6zKELriZgNixipMqdN6NCKZns998s4QOECvDcplLEjqOSMqWJXS8nSyxu6u5GgtuOVHoOCJpXZbQAV5alyV2XObsQe/JWXtxKwAvHBsYyD/TsC9SBwCvf/3rAQC1F18Kvo1miV207JpEltjFlV2T6Gc59vjStsTELq7smkRWOTa27BpHltg1KQpzBoid0QwBXINlpnZpQhe+TZbYCX3LJd7SDUmpnYjQBX3KEruEsmtye/te7JLKrsn9SZA7AaHrtINUsSOum1x27blxShlWVOg4KWKXWnaNkiZ2EkIXnDtF7JLKrj1tZJVh+yF0BLCGjP0ndByXwVhIFjsucyLL6mTKmIDQibTFZU5oR420Mqyg0AU3TxlfF8icwFPTbRupYicidJy0z7K0dC6unTSxExE6Tlo7v2qsFd4bPqsMKyJ0nLQyLBe6AMawcXYeQMeh8tI3qTvnnHNQq9Vg1hso7e3sxpAkdmll1zjSJlAklV2TSBI7kZQuDE/skiZQyETNSWKXWnaNI0nsBIWuq6mEcmzcOLrUdlLETnqZkD5NoEgUO0mh67S378RORui6+hNN7SSErtMOYsWOJ3RSy6nEiZ2s0HFixE5K6DhxYqcgdEEfYsRNVOiCNpLErl9C58tcPyZFCAsdx2UwlnpvL5LOxZ0/VsYkhC58TJTMdC6uT3FiJyl0nLi0LjOdiyFO7AhhOGJ4WljoOHFpnYzQceI+G6MTIkSJS+t4QidDXBk2mBAhUcoG4suwO86KCB2A4t5p7Nq1C9VqFWeddZbUOZLom9SVSiWcd955AIDa8y92XReInd2RO9GULkzcBIqssmsS+3ICRVbZNYmo2AmVXePgYhda8oS4RErogqYiYidSdo1tp19j7IAesZNJ6br6FBU7RaHrtNd/sVMRut4+5fvwjopd6sSILMJipyp0nJDYKQkdJyx2OYSOExY7WaEL2oiKXZ+FLi+xkyJEcd2utE5F6Dg9YqcidOidOKEidOE+dX5REzqgtwyrInQc11/XlMvc4UMzqJryj120DKsidJxwypY0IUK2HcATOtGELsoVGx8I/p80IUKEcFq34ywTO84yYQ31PjEHnnseAHD++eejVOrXWn595NJLLwUAVLduA211P2G89YG8MmJxvCmV0kUJl2NlU7owshMo0uCp3fryXuGyaxxhsRMuu8YRWvKELBqp4+gym+Lj7CpqQhe044tde9iTu1yL+YbFLscHXq/Y5egT+it2eYWuq0+USKd03W0AoBQwqbrQcbjY5V3LDvDEbnRIXeg4/v6ueYWuq0lFoeMEYneACZ1SQhcmVIbNI3Th/gBQFrpwO9TKJ3S8H2YDYAV1oQv65ItdHqHz+uSNr+MypyJ0HP7ZlkfoeDtNVlBK56I8a5VxV3N1LqEDgCNL3s5YKulclG3nd2QuTuhoq4XRnbsBAG95y1tynaur3b61BOD444/Hxo0bQRy3J63jEAZQylDIGoWeQds1QYmLEVrP1Y4DgjYMLLH+iN3hhSlMFhdytWNSB1WzjZHBBsyRPizeWfDGx+VqgwBugcE1c7ZDvVTNzPeweRDkX9EdHbHrx4r8jAJ2mXbth6sMQf6FheH9XXbNhD2YbyFRvs+oO5p/MC8zDTij/YhtkUucuqAUxMr3vgTAl5ZW/n4RArdg5N8xhABOmfZNDl0T6kLHoRRLh6l/+HZ1iTEU6iyX0AHe+wAz8kkYxy0AtN2ftqwhN/8nNWEwCw6enRnP1YxBGM4afgYnDbyUS+g4C045t9ABwJjRxIbC3lxCBwAvtCbw6kOfzy10ADB4wlSszHFqz7+EdruNY445Bps2bcp9Pk5fpY4QgssuuwwAMPDsc7FvamSyhcPHZrBglbC3VUPDUVuQ8MjKHmwuvwQDDEYf3q1cRlF3S7nEbtqpYrc9iLWFWRxX24E1pXmlduasCqaaNRQNB+Mji/nFjgBO1YVTzfM1NjQzzVCXKdomKCwA1EbuDxlis/7IITpv6HbZm4yh1Ab10kPX8L7t5xE7whjgekKmutm71yfibftEve2flMWOeoLBTAqnasIZH1Tvk0HhjtTgFk241XyiCcv23mcYA+wcHw7UL0/ZLmgjx3YD/pgx4jigTYXxDhxC4FQKwTu0stj5QseIt4wRtfO9BzgFAtckWDpmTL0d08D8ppHg9aG6iDNhDIbFQG1/LFtT/W9joTJp3t0mnDKC7ciMHN7THnPQHnPACizfzkGEoVi1YBguWpZ6GcEgDGcOPYsRo46hnOnaglvBgluBxUw8016l3A4ArDMXUCYMIzTH6w2e0LVcE6tL83j15i3K7YwdMouxQ2YxVG5heMNM/I0Yw/FT3nVvfetbQfqxraJPX6UOAC688EIMDAzAXKqjsm1Hz/VmwUat0ILLCGyXYsEqKYldmdiokY7sqIqdAwo3ZChNVlAWuzYzYDETBeJgkDaxtjCrJHa2S2H5Gyqb1FUXOz+B4v/PLXY+LCR40l1yfaELGlPrA7EZCks5PuxiCP4uA2piF0oOvWRTTey40HX6pCZ2XOjC83/yiB3zS3eMEGWxC4TOL3G6BUNd7LjQ9RllseOTAFz/wXNdNbEjBE7Z7Aid6t8YErrgIlWx84WOv6e0B6ia2EWEThXCWOeLof/nqIpdWOgA7z1FVewCoQsaV2uHyxwrsE4nVQgJHQAwRvD7PWulmwkLXV4W3Apc1vncrefYF5YLHefUcnyFMAsudJz11amUWyfDZW6o7Nn8cCV+vH9l63Zs374dQ0NDuPDCC5XOlUTfpa5SqeBtb3sbAGDoiae63nTJZAtHjHebq8uItNgdWdmD48tbey7vV2LXZAXMumUpuZt2qthpD3ddViCOtNjxlC5MLrEL44udNSopdwllTlmxo20CM241A8mHbV8IXVd3iLzYMep/6EXakRW7sNB19Uc1sYs5tbTY+Sldd5/kxS4qdBwlsYsTOtW0jsbsFCErdlGhCy6XFDsudDFj3+RmGvcKXacd8WaCtrjQhS6TFrsUoZMR1y6hi14n+fBHhS5oR0HseoTORzatC9K5KDJpHWEo1tpdQseRTevShE42reNCF0U2rVtnLvQIHQCltC4qdBzZtI4LXZShI2e7L2AMr56eAwC87W1vQ6VSkTpPFn2XOsDraLlcRnF2DqVde4LLeUoXhYudaDk2mtKFkSnHRlO6Tn9oIHeiYsdTuiiyYhdO6cJwsRs5ZF5M7sIpXeRyZjLx1C5j3Jqo2HWVXWMbym4j6BLbd0LHkRE7XnaNFV8JsYsTuq7+SIhdkNIlICx2vOwaIxkyYpckdBwpsUtL6GTFLkboOMJilyR0wfWCYpcmdHztT6E1Ab3HN3ECApNI6+KELnRde4BiaaOA2AkkdEILOKcIXXAqgbTOe12mT2SQEU1vAlnSycTFLlHoAK+jImIXSueiQgd4ad2je9dkNmMQhjOHn8NpQ8/3NaGLQyat4zIXFTqOaFr3QmsiUegA8bQuXG6NY6TavcZNafcebNmyBeVyGZdffrnQOWTYJ1I3MjKCN73pTQCAoSc92yWTLRw2Ppt4TN5ybJR+pnZZYheX0oXhYpc1zi4upQtjUhe1Ujs7tUsSusht+laOFRC7nrJrbEPZ5+rnOLoshMUuS3xzlGJ7+iMgdnFl1zgyxS5F6Dp9yhY7ZhqpQscRFrusD1tRsUsROuFzZQldcLsMsUsRuuAmImLHhS5j0o9QGTZN6EK3sasZ9+O+KLmm3S6jDBtO57J2iRBJ69ySyA412e2kCl3QTtZ7EYtN56I0WsVUsTMIw2lDz2PcWMS4kb6NZVZax8fPJQkdRySti0vnooikdVzmkoROlGi5NYlwWnfRknfbN73pTRgeTvYGVfaJ1AHAO97xDpimifKevSjumYJZsDEosC5dVjk2qfQaR5rYJaV0vf1JL8dOO1W8aI3FpnRhRMbZJaV0Ufpdjk0UO4nZpWlil1h2jW0o+SpiMxTq+z6l6+pOhtjFlV2T2kkTu7SUrqc/KWInKnQcp0RhD8SIlIDQdfqULXZZQhfcLkvsLMHySpbYiQgdAOKw5LROVOjCfYo9SbbQBTdNEztBoQtuniZ2IkLn4xpITutMAwvHigtdUjomKnTB7RMe+qRya2I7KWVYtyQodD5paZ2Q0HGS0jpBoeM02/GfsWGhy0t0/FwadbeUKHZJ5dYk0tK6tHQuypmbn068Li2di8LTutLuvbj//vthGAbe8Y53CB0ryz6TutWrV+Piiy8GAIw88qjUgOa0cmxa6TWOfsyOTSvHJpVdk0gqx2aldFESxU4kpYvcPlbsJISOkzQzViil62oI8eNlGOQ2Pe8TSWKXVnZNaidO7ESFrqs/MWInK3Qcpxyf2IkIXadP8WLHDAp3WG6ZgUSxk50YkSR2gkLHiS3Dygqd35+etE5C6IJD4u4DSaELDosTOwmh47dvD8aUYX2hs6qSfYr8fbJCF5w+ktbJCl1Sf4COzIkKndeB3ou6ZrgKtxNThpUUOiC+DKsqdHFpnUg6FyWuDJtVbo0jLq3LKrfGsaHau8tEVrk1EcZw/l5vTsGll16K1atXyx0vyD6TOgC4+uqrUS6XUZqewSF7npc6Nq4cK5PSRQmLnWhK19snuXF2ScSJnWhKF4aL3dC6hXypHZ9AMZK/HBudGSuV0vU0FuqizbI3zN6HRMVOVujC7YTFTlbouvoTl9gpVri6SrExEyPE+tQtdlnj6NLoETvVma5RsZMUOk6X2KkIHSdchlUQuq4+8bROUeg67YR/kRS60HFdYqcodEFzwf7hakIHdJdhVYXOOziy24REOhclnNb1zHCV6pP/h6RMiBCBp3Xh8XP9TOjyIpPORQmndXnKreG0TrTcGseY/Qwee+wxlMtl/OEf/qH08aLsU6mbmJjAFVdcAQBg//YSmELKEi7HyqZ0UfqV2jVZAQtuEdvt4dSxdGmEx9mVqC2V0oUxqYvBcgvjI4sojLaUP9RBAFbwJlDYNZZ7UV9G4a2GnjY5Qqghv3vLlNJ1dSUsdgpJZridfo+xy5oYIYJTorCGisJl1/g+eWJnrxpSFjqOWzDgVgr5ly5hDHBcZaHjENsFrbfVhY7juiAtJ5/QhaQnj9AB6EycIIBrKghd0CnAqtHcQhc0l0PogjacnEIX6guQT+gAePd1W7LcmoRFUidECHXHT+tEx8+lUSQO6m4JdbeUS+ieaa+SLrfGMUhspXQuCk/rlNI5H+YyHPeAtynBFVdcgfHxfItAp7FPpQ4ArrrqKgwPD8Pd20brvpnsA2LgYjdt17DEci5WCqBMLJSJ+gqTLqOwmIkqbWHcVH8R8HF2ANC08w3YNKmL4cEGjMGcK2f6cteXnRoM9GXLLOIw0Pwba/QFvvtE/u3EvPJm3i2SuCBaQ4b6h3EYSuAW+vO20I/V9EEIWCXna94wYK0egj2Sf+kAYrv5hA4AMww0DxmANZRvQhijBPXVRbSG81UOAD5EIv/r3jWBXWeP5RY6MKC44OZ+nYEAbrE/z0W3kFPoeJdc5Bc6ABOHzCnLXJiC4fYlnQMAi5lSw5HiGDHq0uXWOBaY2ZfJEAXq5BI6AMADe/Diiy9ieHgYV111Va7+ZLHPpW5gYADvfve7AQCtn+2EW1eLbQ6tzuLI0m4suaVcYlcgDsrEQZXmE7sCsTFCmzjEmMOawqxyO0811+Dh6UPguFR5v1jA20fPZUCt1swldsQhoC0CKC4u3GnHK1k4RW/9JuV23I7QqaZH/YS4gNFmwb+52mkxT3zz/F0UsCsUTpF6W0HlgNoMcJlfPldPkGjLAXGYn66qf+jwvVNZwQCrKi5QahiwVg3CLVI4ZSOf2PG0MIeIc6FzytST8ZraB45rUNRXF2CXvB1Q2oP9+BaWc1cGCjRWUbRGCRrjOfrDgNK8C9pmKNRzSAsBWkPevse5kkwCL1UnQM7dLQNKu/KJxuRhMxipNDA2kG8pgIFKCwZ1cePOM3K1AwCUuBjLEXIAwLrCDMq0jWetoVztzLomLEbxmsEnc7VToA4oGM5d96xyG6xuYfhXXqD17ne/GwMD+bdZTGOfSx0AXHbZZVi/fj2cJRcDdzyDdRX5XRaqtI0howkXFEtuCVOuemrHy7BVamGENpTkjrdRIC4OMeZwQmmbktwt2SUstYtgjMBxKWxFuWOMgDECg7qo1ZqoTi6pyZ0LENc/f44twby15OCN0SkC1oCi3PF2gGD7reWUO75GHi8NmU2mJHfhtfa8RFPt72KEwDW8Dchdk8CuKsodAxCeUal6F7v9KZMTvvUXR7V0Ghl32K8UUlnsKLoeH+XnMumeuOOq7hEcmlhFFB87RoH6KorGJIVTQpCOyTcElOZclOZdEH/yhtJziQCtYYLWEIHLZ6ar3D0EsKveMIlgGHWfRoAY2QtBxDJ52AwmD5vBcNlroFJQ+wI/UGlhoNJCwfAsdW8j3z7M1H+TLhC10GZdYSYQOgDKn+2zrhkIHQBMGmr7sBeoEwgdAIwqrqN1/qotWHf3o5ibm8OGDRuCbVT3JftF6kzTxJ/92Z8BALb+2sLozl1YU1Hf9N6FV/6UTe0KxEEhNCqYS5lsalcgNqqhkbMF4mKQtqVTu6eaa/D7mc6WLVzsZFM7hxFYTuehNKiLUsGWTu2ClK7rQkindsTxJkiE2/DGosmJXdxyAox4crccYhdN5whjoI4ndzJix1O6MMHMYZm/iwJOuXN7777x9uaUFTsa+fDk4/VkIIx56VrXZWppHbG7j2EGkU/rDAPWRPe3YmYQtbSuD9uRMcNAc22kPxTSaZ1rUNRXRUq3/kQFKRIeXpm0jlF4MleGJ3Thy2XSOj+dIzYLhI5fLpvWcZlzozu8yDyf/XTOe012X7VcaR2XOS50HNm0jsscFzrAc9Uf7jpNqh3Akzka2aJk2JCbGcdlrhwZYyOb1nGZsyIfVrJpHZc5mtPgX7PqaZjbZrHjTu9D7EMf+hBMsw/jkTLYL1IHAK94xSvwhje8AWDA73/QwlGlXTht5EUhuTu8NoNNle09l6ukdnETJXhqJyp2SRMueGonKnY8pYsSyJ2g2PGUrqeffmonLHbhlC6KhNiRULrWfYWk2CW1g/0vdsQFzBaLXR+Mp3YiYkf9GXlJa+0Ji51fdnVjd3qAlNjxsmtPOxJl2HDZtfc6ObHjZdee/siUYUNl1yjSZdiU9eWEmwiVXaPIlGF52bVneR0/uRMWu4Su87ROaFcGLnRxDwnxXudCYhcSutg+2YJlWD+hi8pc+Hqh53NI6JL62w9k0rpwOhdFJq0Lp3NRdtfl9nKOyhynLLG/WjidiyIT2ITTuSiiaV00nYty8tg2oXZes+ppvGbV01htzOClHx0Lxhje8IY34OSTTxY6Pi/7TeoA4P3vfz8GBgYw8yKw9T9aGDMXcXRld2Y5lpde41BN7aLkLcdy8pZjOaLl2GhKF0VU7GJTuigiO0dEU7qeG4iJncjei/tT7LK2JpMRu6zFk0XEjpddk68XE7skoQvaERC7NKHr3EZM7JKELuiPiNilCB1HWOyyEjoBsUsTOo6I2CUJXRghscvoskgZNlXoQufJLMNmCF3QVFYZlqC73Jpyu6zrU4XOZ3+mdWlCxxFJ69KEDpBL65KETpRouVWVaLlVFZF0TqQE+5pVT2NtYRZrC7N46t+BJ554ArVaDe973/ty9U+G/Sp1Y2NjeO973wsAePjHDPM7Gaq0hQ2VPTh15CWlsXYcntrlFbuscmy09Bp/m+xy7FPNNXh0Nn3/PZFybFJKF4aLXWWinix3aSldmIxxdokpXdeNBMROpB3sH7ETnRSRJXbU6S27JpEqdpGya2IbWWIXHUeX1E6K2IkIXee26WKXJXRBf9LETkDoOJliJ1pyTRE7EaHjpImda1A0VqULXXDbtPF1Ei+VpLROSOjCt01K6wSFjt82Ma0TFbqgT8lJnojQ8f70g7S0buLQWUwcOpspdEB6WhcdP5dGVloXV26NI60Eu7owG1tujSOtBJtUbpUlLZ0Thadza/3P+/kdDI/d7A2R+C//5b/s0yVMouxXqQOAN7/5zTjttNPgWMBvv8PgOp7YTZgL2FDZ0yN2SaXXONLKsdHxdGmkpXYya93x1G5TaXuP3C3ZJSy2xEpJsuXYOAzqoly0YlM7oZSu6wDEpnaZKV2kjaQJFCIpXZh9LXZZKV33bePFjgudzBZnsWKXUnaNbSNF7KLj6FLbSRI7ycH1SWInKnRBf+LETkLoOIliJzuGLkbsZISuc0xvO1zo7JKotCSMr5N5iSeUYWWEjp8ztgwrI3S8qbjnmaTQ8WPiLhMWOp99mdZNHDqLkUoDIxXxFdfj0rq48XOqyKRzcSXY1YVZrC7MokbFlwaJC2lU0rm4cXVZ5dY44kqw4XQOAFyX4bffYWi32zjjjDNwySWXCLffD/a71BFC8JGPfAS1Wg1TzwJP3N65Li61Syu9xpFWjpVZeFh1EkWUAnExQlu5lz6JK8dmlV7jiC3HiqZ0UUi32AmldNHjIxMo+BImsun+vpoZq7J0SZLYqexZ2yV2kkIXtBEjdlll19h2ImIXNzFChKjY9cx0Fe1PWOwUhI7TI3aqkyJCYqcidEDvxAlZoQuOK0TKsCov74jYSQtd6NxdZVgFoePHdaV1KkLHm+LP47gZrhL96YfYRT/euNDJEk3rRNO5MEkl2LzlVi5zMkIXh2o6Fx1XpzoZIlyCjaZznCdvB6ae85Zz+/M//3OQnGuRyrLfpQ7w9oX90z/9UwDA73/CMLu1c8empXYy9GPpE6D/Y+3WFGaFSq9xRMuxIqXXOITKsSL4yyEwKpnSxbQTiJ2sGIbo98zYtMkRmceGxE6m7BoHF7uscXSpbYTFTrDsGtuOL3YyZdc4wmIXnekq1R8udnFbpkkQLHXSr1muCkLX6YtXhlUVOqDzeANQW87Dh4udstDx/vAyrKrQ8f7YDGbT7V2yRLohpM5wFaZPZVie1qkKXRiZcmsc4RKsaLk1Dl6ClU3n4ujn2Ll+lVvD6Rxn5iWGx37iPZZ/8id/glWrVuU6jwrLInUAcNFFF+Hss8+GawN3fYPBisT8PLU7qfoSRqjaGjHh1K6ZY5Vrnto1WQGzrtzm5GG42B1Z2oOKqS5TYblThZdjC0UbzMjxBOdip7ieXbgdT+zyC5lTAOw+tMP3d1WFMBYIqooYdjeGXB/OAIJ9efP2hVEvQerbtm05RYqVCrBW5VvQk1HSvdesajuGAWuymnshaP7FREXouujD9xviApU9trLQ8X7wtE5V6Dh8uRJloQPAt+vKuY1333CLrC9CVyrYy1JujaNMrb4I3R6n2Nexc3mE7pTq87HpHABYTYbHvnMoLMvCWWedhYsuuihHb9VZNqkjhODP//zPMTExgfmdwH03MDDWK3YjRh2TxpKy2AGe3M26VWyzhzDrqr8ztZmBbdYoHmwdim222orXBeJixKhjbWUekzX11bdblonFRgn1ZhHtnFuMoejCqeZ4ATMvqWOGt02QKtTfhcItIt/2Yv4HSF6xY4a3Wr+d9wM6pxzyNsDy7WJBHQaTl6/yrLAPgJkEdk19mytvP04KUAJWyPHJSr39au1y/k9nt2jAram/PzBKYU1U4RQpaM7dRgqLdrDfqFIbDCgu5d9CCgwozlowm/kkgbhAaTr/lwC76u1zW5rL937lLSuUoyPMK5saTUBxXdoAa9DbWWbv1pFc7cw1yyA5t9YqmzZKpo1bpvqz/EYeoRukTQzSJqyc5l0lNqrExoWDj+Zq55Tq895nd4zQMcbwu+8zvPTSS5icnMRf/uVf7veyK2fZpA4ARkdH8T/+x/8ApRTP/wZ47q742xWIi0ljCevNKWW5s5iJOith1q3mErsmK2DWqeIla1xJ7J6xxvFw/TCUDBtrK/PYOLpHSe4YAMemcB2KdtvIJ3YUYGUH9rCtJHcE3ocICMsndswv9fAyqkI7jHp7NDJC8okd8cXDX/9LRewY7aQJboHkS/38z1Rqqe1gwYWOp2uMQF3sqL+DRZHmEjs+Bo0ZVE3sfKHjZcY8ZXdqec97VbHjQucWqdTEmiiB0Nle2b+6R36FfsKA4qILauWUKAYU5ywQ2wWxXIw9rrZbAHGB0hSD0QZAgPaQ2oe0J3QAmNxEqi5CQkcYUJxTuI8YYLT80rQLULW7BUBH6MAAY0HtfplrljHXLMOWHF8dpWzaoISBEoY9jf5sZdVU2lrEE7oiHBSR78tEldgwCINBGNZILorMOaX6fCB0STx3N/DCbwHDMHDttddieHhYtcu5WVapA7xFid/znvcAAO77AcPc9vgXmTdpwc6d2lnM7Etq12QFJbGruyXM2l4Jt2TYGCk2cqd2YERJ7Nq2iVbD/1CmAAoMrOzkS+0UxY7agBmpPCiJHfGEDuiInVUj0nIXnhCgKna83MlxC14bsnJHIu9rSmLHemcPKomdL3T8eBWxC1K68GWyYhcRuqBdBbGjbbdLwmTFLix03e1KTrBxAXPJ6ZQnXaCwZEuJXV+FbsHqjHdkQHlPS0rsiAuU97KO0MF/TSp8WQuEjrfNIJfWMcBosp6ETloOQ0IXRiWtC4QuB1zmwkKn8gWfC12/cRTq/1zo8sDTOSPn38RlLk3o5rYzPHyj935xzTXX4KSTTsp1zrwsu9QBwDvf+U6cfvrpcNrAr7/K0K4nPxDLldpNuRVst0e7LuNi90hrnXI5FkCQ2omKXds20GpFPkh9sZMpxzoOBbMjTwE/tRMWOxfo2e6Pi11RQu5Y/FgbGbHjKV3XZcTbNksqtfMTuu525MQunNJ1XW7kT+0AObGjDoPZiH88ZcUu7n6REbtA6GKXABEXu66JANH2JcQuKnQc1xR9nOOFjqd1omLHhY4nhp2OAGZD7AOu70LXdnsuL82KWVCQzrUQCF3nSrm0Lip0Xl8k0jo/naNOr4xJpXUJQgfIpXXWIIsVOsKAp7esjT8ohqR0zpFYyaBs2rFC54LgX/aeItxOP+Dl1jihkynBhtM5VUTSOQBoLzE8/Pfr0Gw2cdppp+Gd73yn8jn7xQEhdZRS/Pf//t+xatUqLOwC7vp7BtdlWFOYwzpzruf24dQur9yJpnZNt4ClmNs0WQFTzoByOZYjU45lAFjcC5eR/pZjh7LljiBhtiphYFQstYtL6cIIi10opYsiU45NWpxURuyiKV0UUbGLpnRhRMQuWnaNQ1jsUu4XEbFLE7rgNkL9oLAHkss6omKXJHTelUQsraNInHUrKnaJQhdcn12G3edCx89juRh7IqMv4XJr3Ckk0jqnEiN0/DwiaR3j60Mm30RIDlOEjiOS1nGZi3UUwRLsQqvU93JrHP0qwYrQj3JrP9K5sMwlCd364l4AgOsw3PX3DNu2bcOaNWuCoWTLzfL3wGd0dBSf+MQnUCqVsPNR4KH/w1AmFsopn2r9KMn2c6xd3tSu3+XYtNSuq/QaBwVQdPdPOTYhpQvjGukTKOJSup7biIhdTErX3Ua22CWldFGyxC5N6DiZYhdTdo29WZbYhcquSccLJXZZg4dJxsQJSmENFjPv3yyxSxU6n6wyLKMU1lj6bPjM7eUyhM7rSHoZdn8JHb9NeXcrUeyyhK5zw+y0zqlQuGk3yUrrfKHLWksuNa3jEyIyhA7ITuv6VW5t20am0KV9qU9K55aDtHROhn6lc1mlVsCbwAkAD/2IYedjQLlcxic+8QmMjIwon7ufHDBSBwDHHHMMPvrRjwIAnvwZ8PCvxAZZ9qskm3esXVZqxydJZJF3EgWAzNQutvQaR1o5Nq70GodKOTaG1AkUKSlddxvpYieSFAWbp9dorNxlpXRh9mUpNq3sGkea2Iksh5gmdnHj6BLbSSrDCgpd+JzxV4hPZEgSu6SyaxJxaZ2Q0AUdiS/D7lehC922NNNrU8JCh/S0zqnQbKHj50xK6wSFjhMrh5EJEarYAwz2gJjQEQY8/XT8GqYLrZJwOpdUgs1K5/YFSZMlDsR0TpTn7mZ48mfe///yL/8SRx99tPL5+80BJXUAcMEFF+Dqq68GANz2DzVseSJj53effqd2eeUuLrULT5LIYrknUXSRUI5NLL3GkVCOJU566TUO1ZmxnESxy0jputvwF/ONpHaiKV2YOLETSenCxIqdYErXdUic2EmOuYuKnUjZtaedqNhJCl2nnd7bC0lUiKjYyQpdXBlWSuiCY7rLsMsidPzckTKsjNB1DupN67jMiQgdgPi0TlLo4tsVS+eiREuw1iCDa8qNLTbmu2+80CphoVVC284X8y1XOhedLNGPdC4sc/sjnQvz3BNF3P897zF697vfjQsuuED5/PuCA07qAODqq6/Ga17zGjg2wfWfW4vtW8WnRR8oy5/sq7F2bdtAuy1pNL7YNVo51rTbR+VY4qotRhoWO5HSa5S4mbFC47l62ukux8qkdGH6ndjJpnTJjaaXXeMIi52K0AXthMSOEahtBxUpw4qUXePgEydkhY4TFjsVofM6ESnDMiyL0PHjeFqnJHToTetE07koQVrnz3BVEbquEqyi0AHdJdh+lFu5zOUROtVyqwvSt/XqOP1K5/bXRIgou7aa+N/XHQHLsnDuuefimmuuUe7DvoKw6Iq/BwjNZhMf+tCH8Oijj2J0zMJffGwrRsflngh8FepZt6K8E0SB2CjAwaxbxR5FOSsTCzXawnZrFE831LcNaTkmnpmfwPapHGvg+C8Eu22KlV/jcAHSNGAuUlDJN/IARkAYQFtAaUb9KUhcJG82L9qG/21fee0reHcrtVnQH1WoxWA28r0kmeG1k2fHB8IAuCzX2m+EeRIlLS9RGINTNnPtIEAcBqOlJnSdNlyvHzm2IwO8LzF57hNmEiwcVsqf0qkKHYcAzckS6pMGDMU1Zvlrz7CYktB1GiJoDZLce7G2B73nmHK5lQD1td5jojrUhFHgyFO35k7nDMowVG7mSucoGN5z2K+Uj+es8Sc85pG5YX8sWx6Ze6y9GgAwZshXv+amKf7+byYwP21g8+bN+PznP49SKc82K/uGAzKpA7zBh5/61Kdw+OGHY2a6gC99eh2WluS6y0uy68wFrDF6Z9GKwFM7l1EUZGtiPjy1A4BBs5lx62RKho2x8hIGBxoolRUNhBEwl4JQBmIqvnNRgBnMm4Wr+p5DGPiG2G6ehIp4345pjq2HGFHYzLunDSjvy9rVjkHy7aYB7wMp130K8RmkWW24RQqnpH7nMgLY1XwiRRhgWPmEjlGC1mgJdjXfE8VoOaDtvLszMJRnnFxCxwygMWGoC13QFygLHeDdr/XVagldpxMEThG5hI4RoDlG4JRzjp+rentgK48dJgAzGZ5+YbWy0BHCcPTYXhw5MpVL6EqGt7tEXkZoPX86R63c6dysW8SYsagkdI0lgu9+dgzz0wYOP/xwfPKTnzwghQ44gKUOAIaHh/HZz34W4+Pj2L61hOs/txZthU3jy4RhndnA8cVdynJHiYsisVEmlrLcFYiDYaOB1cV5ZbkzqYtywUat1FYXOwCEMlAjh9j55NkMm7gAmLfnq7KEMG/8WR6x88piaqfvtOGlDbkGVftpH6M5xI54YwWdojfYfLlRLUfzY52yITzBIg7CPJHKu98oqJeQMYPEro8nhMsAnp6qFkioVwo2WuopHTOA+oQBq0Ywv6Gi1g8CtMZKcIoEZkvxbwmJVH216puIJ3SuQaC6pScjQGuUwCnlm8hl17xhIcqJPwFckwEEIAtqHSGE4ajRKYwW6xgtqi/SXzL8CRU59kkdoXVP6BQ/LwFP5qrUgpGjH7NuEbNuUXm7sXYLuOmLI9i9tYDx8XF89rOfxdCQ+pCqfc3yv+tnsGbNGnz2s59FrVbD009W8JUvrIWl8KIpE4IRCqwzG8piBwCGL3fKYkdtVI0Who1GrtTOoG5usQPJL3Y8rcuVdJGcYud3RFXsvPFO6qf22uishaUqduF+qIodL0V7Y/0ODLEDJWppHSHdQqe4l2JeoWOUwKqaXb+rYOQtQ/tCFySoCmLIhc4pE4AA1oDC3+ILnVv0hlAolfm50JX8NFZsPlykjZDQKRIWujxwoVOGC12Ol2tY6PLAhS4PXObyCp0BllvoLGYoC53VBn74pRE8+2QZtVoNn/nMZ7BmTfzs5AOFA+AdP5ujjjoKn/rUp1Aul/HYw1V89Utr0bLUXshlQrDObODYwu5ccpc7taN27tSOi12ucqwvdrToKMsdFzu3kKcc64mdUyG5Ujtqe5vei8pdv1K66BpV0mLHeoVUWuwikwkOFLHzJkvIiR0jgFOK6beE2PGULg+MElgDJlg4nSPxu1mkYbScTkqnQlTo4I9ZlEjruoTOxzUl0zoCtEeLPa9RqbQuJHQBFKivEnx+EAKnlCB0gt3g5da8QmfXcgodAdwCyyV0vNyaV+hKhp1b6FZKOgcAJaeN//N3w3jq9xVUKhV8+tOfPqCWLknioJA6ADj55JPxyU9+EsViEb9/oIb/9/o1WLINOLJT8+CJ3bjBcsudkbMkG07tVOXO6Ec5ljC5cqxFYETGNzLwcVhiYkcc0lumIF75QzS1Iyxm6Q/Jcmy/U7quy12vLyLtJ/VDRuwY7f2QOxjFLrPsKiB2/Si7xgodv06iDJsodKJJW4zQybYRJ3QAPEkbFHwP9YUuKtvCaZ0vUj1CBz+tE3HLUDqnmtCF07k4oRNcdSqQuTihM+sCfQunc5GnOmHAzK7sEl/fy62KQheWOVWhC8ucqtCFZU5V6GqkjbLbxg1fmcBjD1ZRLBbxqU99Cps3b1Zqb39z0EgdALzyla/EJz7xCRQKBTx0bw3/+NVJtFyKJssvdwd7SXa/pnYuAbHj72/R1I4LT/yVgmKXJmQ5yrH9hMtaqtjFpHRdV/tr36XKXcqSHwed2EXLrgm3SbxqHwtd+DZZZCZ0WVKWJnQQS+sShS64PiOtI0B7rBgrdGFS07rQ+DnlZGw/lVtFxtWlpnMsY1ydYDpH6smvkwMtnVsJpdYaaaNG2oDDcNPXx/HQvTUUCgV84hOfwCmnnKLcr/3NQSV1AHDGGWfgb/7mb2AYBh74zQC+c/0qtC0CCzRR7CwGtFPePFdKSXZZUrsYZFO7+H70rxybJEz7qvSadLsksRNKC0l6aheX0nVdf5CIXWLZNY40sdvHQuedJL0Muy9KrrHdcFni35sldF4DKWldKJ1Le1xS07q4cmscaSVYGaFL6EY/xs/1pdyakM4JNyGRzq2uLCRelzedG6LNFVNqrZE2DDAwm+Efr5/EfXcPwDAM/PVf/zXOOOMM5XaXg4NO6gDg7LPPxt/8zd/ANE08+NsavvWlVWi2KCzEp3YOCLI+Mw/Ekuy+SO0YI2Ivnz6Otcsjdknl2NjSa0InksbZ7cvSa+xtc243BCSIXUpK13XsAS52/Zztmgt/pqsISWVYKaGL+8IpKHScuOVahIQuuG1MWpdQbpVCVOiQUoLNmdCpjJ+L60dauVWInJMhVNK5mtm73ky/0rkysQ6qUqsTc8fzdM4AQ7tN8K0vrgoSuo9//OM455xzlPq2nByUUgcA5557bjDG7rEHq/j7z65Co0HhMpIodyIkyZ0BhjIRT7/6UZJdMaldnyZRdImdjJD1YdmTftEjdhml1ziiYpeV0nUdeyCLnUjZNUooretb2bUqN+04WobdXwldGMK600kZofMaiKR1ikLXVYIlQDPvzNI+CF3a+LkkojvUHAiTIQ6EsXNDtIkh2tzvpdbw0ir9GjfHZc4AQ6tJ8PefW4XHHqqiVCrhk5/85EEpdMBBLHUAcOaZZ+Kzn/0sKpUKtjxewVf+12rUlzyx66fcrTHmYBAXVCFmOZBTO2FyLn1ysJRjpbskWHqNOy5Y/kQxLQzETjCl6zr2QBI7GuqTaiJEyH4bRxd//lAZNrwWndTJ/WMUhC7ohp/WSQsd74JBsHBkRVnoukqwXOhklyrhJdi0Ga6CrMRyqyr9SOeGaBNlYkmFG2HylFr5osP9ljkAqC9RfO3Tq7HlMW+W62c+85mDruQa5qCWOgB4xStegS984QsYHBzEC0+X8eX/uQaz094DHpa7JZemjqtLIjzebpWRPD4hDZ7alai63HVSO/nl2/uV2vFyLAy1Nwae2gGKC3RKzo5N6kRQjs07nk6i9NpzrMvTw3wS4hbUZgEeKGIHSuCUjdxlV2A/jaNLOt4vw+Zdi05V6AD+BYEpCZ3XANAaJrlLrobF1IQOfgm2itwzXIH+CF2ecqtZJ/nWniMMG0an+iJ0/UjnVGWuQOy+llpVicocAMxMGbju42vw3JYyBgYG8IUvfAGveMUrlM9xIHDQSx0AHH/88bjuuuswNjaGHS8V8YWPrcX2lzr5ORe7OdfAksJWQTy1G6ENVGlLuaTKUzsVeGpnUgeqb3MGdTFQbqGcsxwLk4EVcoid/wco75HKUzvVN2w/HWNmvhXkXYPAVvnw9KGO+Hp6cRCXwWi6KNQVE1Q/Ycqzby4IgVug6jJEALdA4eYZt4XOeDz1BhiMHFtmEZfBbOQouxKifB+GcU2iJnQ+jBIsrc7xoiBAe0BN6ADvdVmaZvlmuBr+l78cQkedfOmcU2ZgRg6hA4AhG+OlJWWhm2lXMdOuqstcoYmhYiNXOrfEihikbWWZo/B2tciTzgFAmdg9fdj+YgFf/Ou12LmtiImJCXz5y1/G8ccfr3yOA4UVIXWAt0DxV7/6VRx++OGYmzFx3cfX4qlHO+8sLiOwGMWcW8AehyrJ3Zhh4RBzJtcMV0pYrm8sPIbOI3YFI+dAcsK8MSJlRbkjndJbHrFziwR2Ve3buLdXaw6xI964G6eIXGIHP11R3ZeU2gy0rSZ2xGXechhUbHmOJLwPUUUpIV7C5Zo5998lJPdetbTlwKzLvzaIy2AuOaCqUugLXS65hvcYEBcoT+VIC4maDDEKNEcomsMUjmKK7vWdodBgoIpyzAz/PUXxrqSOv4es6netQOjUvzC6wxbcYQtGUf19eqZdRdsx0XQK2TeOYajQRInaKCluqLvEilhiRVjMzCV0BmFYYGp/Q5hoH7Y8VsZ1f7sWczMm1q9fj69+9as46qijcp/nQGDFSB0ArF27Fl/5yldw0kknodmg+PpnVuN3d9a6buOAoMkMJbkrE4Ka/42lTKxcqR3Q+0SThUBd7qAwzjB6cmZ4cqea2gG+2Blqcsf8cqxbVC+zeAP25d+Aw1KqJHYslNIxBHKnAmFQEjsSnqShInaEdO9goXJ8SObyih3zS7nSx4W6TW3J+5ALnV92VR2yFL7vVLbdChJXBhQaOadYS8IoPJkrAW7Ru8xsyLXBEzqzGXpNyPZD8X2EQx0Arv8jCwGcCguEThV32IJRcmCU1D5XeDrXdtSMcqjQDIROFS5zluIG1jyd4wFGnoQO8FK6MPfdXcPXP3Momg2Kk046Cddffz1Wr16d6xwHEitK6gBgaGgIn/vc53DBBRfAcQi+97VJ/PRHw3D9FyoXqTxyx+EzYvPInWxqN1lcwKGDs12X5RK7PshdrtQOkE/tIsuZMLI8Yhcc74tduyZejiW+yHU3JC52Xum1c1tZsQtSujAKYhd+zJjEUiDBMZH367xi5xaolNj1PP0dJpzWRYUuuFzmZdCHsmu0hE6cfGkdowTNEbEXIxc6LnOAP9ZU0AmIC5T3MpSmvYROlb4JXdCgf5kIoXRO9bkbpHN9kLk8Quelc96DRwnD2cNbhI8Pp3MqhGXOyDGhIwr/fHVd4Nb/M4LvfmUStm3j/PPPx+c+9zkMDg727VwHAjkGTxy4lEolXHvttZicnMQPf/hD/PTHo9ixtYj/z/9vL0rl7ieLAwKHGbAYRZ25qBIHtZQPtjHDwhKbxU57JLjMAINBLBSI7X9DSX5l8wkTrcic+bBspjFgNDFWrGMrRrou50cpvRT4J5vqC8lP7Rj1viUQxX15+Zty1uSDOCHiYgcwGBlzSXg6GD0eJuBSAAqzWrmUeu2STuIgiy92mXIVI4CB2AGwqumfcF0pXRgKMJBsuYykdBzXJN5zIGusIEneZotRorZJPD++H2VYAHY1+xM6KnRSpJRdicOE/o7YMZF+WtdUnm4pVoKNEzqp0/jpXF6Z433pvgIoLgBtgc/rHqELtZFJSOhUySNzAHIlc4AncwBi07n1hb2Zxy8x7wkQJ3PrzJnM4/lyJXEiN6v65IrQahJ8/+sTePh3XuXuHe94B97//veD0hWXa61MqQMASik+8IEPYP369fj85z+Ph+6tYc+uAv7zh3ZheKL3FRyWO8BKFLtwCTYKlzsgPTIuEActxI8TEJW7JHLLXZ5vSH5qRwwvLVCRu2A8jMJSH1zsmOF9KKbJXdy3er7sCqHee3yi2JHkb+Q8tUsVO8bSF04WFbu4rkmIXSKCYpeUjIiKXdp9yAyILS4dd7w/acJopjeQFlJ7ZdiUbZrc9ESPsIwQvA/j6HJPcsmBiNCZjeT9XLOEjjBvIlHqLikZ6ZzRYkDKvrZBEqdabi13lpCRhRGADXmfFapCN2dV4DKSK5kD4mVOhDSZ49QyIttwmTWOfpRep/ca+H+/sBrbXyyiUCjgwx/+MN74xjfmavdAZuVpaoQ3velN+NKXvoTR0VFsf7GIz/+PdXjhyeR3IgckV0kWOHDG2ymRtyTbh7F2eSZR7I9xduH11WKvzxhnx5eeSO9E8m2Iy7wPrASySrGxpdcoaaXYhJQuTOrEiZSUrut45dmHJLMMm/kUTynDcqHb1xMj0tLKLKHblyVYEaFLK8EKJ3QpVy/7+Lkc5VYudHnHzjXtQt9KrbL0e9zcvuKFp4r4/LXrsP3FIkZHR/HFL35xRQsd8DKQOgDYvHkzvvGNb2Djxo1YXDBw/SfX4Nc/G0zcSztrvN2YYWGNOZt6zrTxdrwEm0XSeLu4cXVxJE2kKBVslMoZi7T1a6xdKYfc5Z1EcQCMs+vHzFjhy0OkiV1i6TVKitiJPCZpYifyYdiX8XUxe8yKPrXjZsPKCF3s59X+SujyTphIKMEeKCXXvo6fEyXnZAhGAHfIDoROhTmrIlxudWPe/UUnQiSNp5MZNxdXepUZN5en9MoYcM/tFVz/iUOxOG/g6KOPxje+8Q1s3rxZuc2DhZeF1AHA6tWr8Xd/93fBBIof/+MYvveVCTQbyW+OSXKXVoKNkiR3MileVO74uDpRon+hQV0UTYHzJ6R2tOCClQXeFQnAzGVO7XIue8JMb0afitztU7ETIE7shFK6MFGxE0jpwvSInUBKFyZveTHvJIS42bD7c+mSaFonU3LNm9ZFWW6h48mYqtAFy5UsZzpXtoWEjgA4dt2ursv2dzoXHk8XljnRdC5celWZBKFaem01CP73V0Zw8/fG4DgOXvva1664Ga5prNgxdXFUKhV87GMfwwknnICvfvWrePA3NWx7oYir/3QP1hyaLGlxkyniJkykEZ1MASB2wkRWGwfCWDtvAWIXwt8J+Fg76r2xM0bglgAqsTmG6CSKnuN8MSOG2CSK2ONFxtklHe+LHaPeGmJKEyhCY+yIy0Db4m1Ex9gJp3RhImPsZD9Uo2PsZN6r+zK+rmR4+7FCIYD2y7B21cgcRxdHMLZuOcbQ5ZwwwUuw5VkXjAKtITWhIy5QmmF+f3II3XKkc4DSZAjvCyXz3j8GbYAw6XTukOosAC+dA7CsY+dky6w8pUubBJGGakq3a6uJG748hr07CjAMAx/4wAdw+eWXg5B8X+4OJl42SR2HEIK3v/3tuO666zA5OYk9Owr40rVr8Ltf1zKPDSd3C4rLjfPkrkAcpTF3PLVbXZwXKsFGSSrJZtKPsXZ+aucW/c2tZbtwkJZjudg5RcAuETVB4YmdP4BcBtV17LqgCLbCUoFRIp3ScfKPryNwSoby05fabv5xdMiROrpseSZF+CVYLnQqrx2z7qdz9ZwJ3TIJnVNWn93qFuTSuTjmrAqadgFNW34B3nCpVUboeOk1zxIlNWLnWp5EJaV78K4KvvqxVdi7o4DJyUl8+ctfxtve9raXldABL0Op42zevBnf/OY3cdppp6HdpvjB1ydw49+Po9XMfgJwuTPAMEglV9n0KRMLLiNoSiR1YQaNJg6rzGCgKL8XLOCNqytXFDY/9T8ZCYHas4ePtSvkKGMY3humyrGe2CmKiW/Eiousxy6lIteAfFLJIQygVsas26zTG+pbUDGaT87cAoGtuk9tzrXgXIOiPmnmE7o8ZWCaT+jyCBGjRFnoCGMwc8gc4M2eXa7xc3bN+yIq+5xlBLBrDGxQXeYciwZCp8JAoaU8EaJmtjBpzitPhJh3yrkmQSxIvrm3GgT/9PVR/O+vjcFqE5x22mn45je/iRNPPFHp/Ac7hDGFXe5XEI7j4B/+4R/wD//wD2CMYWK1hXf+8V4cvkFMeHY6Q3i+PYkabWGQNqXObTEDO+1hzNlVFIiDsuQu93utATxbn8Bsq4LFtvy7bss2UW8V4DgUtiX34mUMcFsG0KIgjMi/cboEZoPAXCKILiYsAmEAsTv/Sh/rpM8uTILagNlgXvqjUCGgFlCec9XGyhHAKRAYFoOpkLp5Oy54SaHKOD1GCawq9faslRmXxyGe2EGlBEwAp0hBLQZTYQIAcRmMuvwHHCtQzG4owSkRTD4ktwcnowR2zUTX7iGy5zdIsD+u/LFAfZUBq0rUvoi4QGnOBQjQTlkaJAlqea8zM2WmdhLMP6dbIDAVpdCqEfkvfwRoD7Pg/zIwAjhVr+SKYQtUYZsvt+0Z5KpVc1hTW5A+fry0JH1MmEE/2Xv1wNPSx877G/4eVdyNSUM+7NjjJKx/k8LWZwu46StjmN5tglKKd7/73fjDP/xDGEa+pVAOZl5WY+riMAwD11xzDU499VT87d/+LXbv2o0v/80aXHT5LC540zyy1ia0mIlFp+yNjTMhJXYF4qBMLOx2TVjEexLKiN2w2cCa8rx3nGGj6ZhScmdQF6bhglIGw3Cl5I4QgPgLDjPGAAI5uaM8rSPBQD8ZseOLBcPtDPkTlTtG4C9BJrfILXUAo9VJvQA5saM2UKh7b/oquQsLttXyjlYRO4CnhQILDCfA1w6TEjvSPSbMG58od35PbghsQgEGJbkTPleBYv6IElwDsIaI1PhPoCN03qQSAkYZDMmkjwudCoHQ1TqvLylcoDzrwmh5r/G09d6S4K9n/kVElEDoil7fnSKBITGOFFAQupDMOSXvtS77fuRUGdyi9xjL7tvKZY7ZBKCQFjouczXTe6Iu2XJf8gdD4+6OKu+WOhbwhI6neqpCt+R6fa4JvNhcF/j1rQP4t//jTYZYvXo1/uqv/gonnXSS9LlXGi/b8muUV7ziFfj2t7+NCy64AK5DcOv/HsXXPrkaM1Nixm8xA9P2AHbaw1hwy9LndxlB3S1iwSkLl2QLxEGVtmESFwOFFkZKDUxUloRLsnwWLCUMpuGiUHBQKrdhFsTsiJguUPC+yXuzJJnUM8o1AbvMwBfzZabkIHo+M9bolGRFqwVZa83FH9QZz8bTPunjQyIjVVLzhQbwyztlClticWEWOh7g45QkZqGS7rK1a8jNgmWku4SoOj6P+WllrnJs1jkKFHNHltAaJbCGFPrYJXT+ZZK7XESFTubLR5fQAd7rS+au8hM6vhYiYUBxQU6qwt9NpV9nhO8Og+C9Qfp4UaEjQHuEoT3sLVUiK3S81BoWOlKVFzpmE0/oCLB6zazwseOlJYyXllAzW4HQtSQG/tbMFgYLza4x3qvMeeHj551yl9DJssepdAmdCLNTBr796XHc9sNhOI6DCy64AN/61re00Pm87JO6MIODg/jYxz6GM888E1/60pfwzBPAZz+6Dm955zROP3cJWeMtLWbAcgyl1A7wxK7F1FI7AIHclU3vuKzUjsATO75yPiUM1GCg1HsDz0rtgrSOd5P4Yiea2lEGVgDQJJ03b+Z3TFCaeEoXpG9MIrkj3oenyAcmT+m6DncZjLZYWsdTuq5+g8+KzT4/IwThuTlc7ADBxI70jmeTSuwIelb3V0rsus5PlBI7IJTagfY1seNC1x5WnxASFTrpNmISOuKKbRvWI3T8ctF02Be6rlnaLHt3hjC87BpGNK1jBD19B+TSOqsq0M9wMhfZOlL0fcepesdxmeOIll270rlQv0RTOi5zUWzBSXxc5lTJI3MApGWOMeD+X1Xxr98fRqtBUalU8MEPfhBvfOMbX3aTIdLQUheBEIKLL74Ymzdvxt/+7d/i8ccfx01/P4GH763iimumMTya/SLgqd0SLSmNteOpncUMpbF2JnExUmoIlWR5Wte2O28ElDAUCo5QSZaYLliBABZfc8T7ES3J8rTO5BNUVOTOvx0gJ3eiZVjqAEazd9apaBmWC11UXmTFLq7/UmIX18ZylGK7zt8HsetDOZaXWxnFASd04sfGC50wcUInSZzQAV5alyV2jADWQMxEJv89QUTsMsuuKTIHlj32ME3mALGULlbm/L6JpHTRUmsYkZSOH6cqdHzsXJ50DoCU0M3PUPz4W6N46iHv3CeccAI++tGP4rDDDlPqw0rmZT9RIg3btnHjjTfi29/+NizLQqXq4q1/MI1Xnt1J7V6yx/Bkc21iGwXiYMxcTBS7JitglzWMvdZA7PWUsCAaj5O7plvAbmsQe1vxx9uMelPiU+TOdika7fh3QpcRuC5JlTvXomDNpI08vZ80uaNtgsJCQo2Gz/jMkLukWaGEIThvkuBlTZyIpmw9XfTlIknsqAWU5pOFg/D7KEmsiDdJIOkLOGGA2XQTxc6b9UtTy1hpkycY8SZYpO3DSVwWktyYNmh6uTZYriVJ7ghgl5LrePzcSWKXNlFCJJ2jLSROlAgmRADJfyMDzEbyE5incGlCxyhJTOtEhI64KbOns4SOeItop02YSBK6MEmTJhKFrutGSJ00kSh0IZEDYmQu1AkjYX5clsxxjJHkCXaJMsehwMlHvZR4fJrMcdLG0vHjkmbEUsJwVHl3YvlVROY2lbanjqkTSefCY+oYAx66q4KffHcEzTpFsVjEe97zHrz97W9/WU+GSEMndSmYpol3vetdOPvss/GJT3wCTz75JH7w9Qk8dE8V/88f9Se147tNAPFSllWSLVMLVZr8RhIuyapMpgiXZCllcF3SI3c9aV3XlchM7nrSusjxQsldKK0L00njkJjeMX9MYFy7cWXXnlOnJHbEyV5wNSuxi5Ze445PTexiSq89baQldjGl157jKQnu/h6xExgXlWcCBaBejt1v5VZfzOMmS4imc0klWNGELrEEK5LQZZRgRYQOiE/rhISOH5+U1sWNo0tL5aIkpHSiMgckp3SZMuf3NSmlE5G5NLJkLkya0Ikkc0lCp5LOzU1T/Ms/jOCJB7xjN23ahI9+9KNYv369cBsvR3RSJ4ht2/jBD36Ab3/727BtG6Wyi4vfPoOTX9vGi/YEdlijmW0UiIMStXrkbo89iBdb45nHJ6V2e60BvNgYE/s7GO1ZAoUBaNtmVwk2CZd5qV1U7lybgDUEviMkJHepaV3k+KTkjideWfD0Lix3cWldUtk1sWsxiV1WShfX/y6xykjposfHJXZ8KRMhGE90uid0WBKTMqJLnmSldFGIE7MESEZSF9yMp32Rcmw0qXOLBhYOK4IZYuXWuKROutwak9bJllvDS5swA6hPGACNH4cWd/4ecZEpuSakdaJCxwmndTJC5x3gnSsqdl0pnYzM+Z2ITo6QkTlONKUTkjlOTEonK3Mt1+wZT1czW8Jr1VHCepYykS21nlt9put3WZkrUwvEdfHbf6vhZ/80hFaTwjRN/NEf/RGuuuoqmKbOobLQUifJM888g09/+tN4/PHHAQCHH9XCuX9oY3pSfF+5aElWVOo4UbnLKsFGiSvJppVg44jKXbBuXVxaF0dU7lwCo0Hi07qE44NSUkjwZBbnjcpdVOyyyq5xuAaB7S+3FIylkxhvFhU7RonU3rFRsRMpvca243T3QUbqgG6xk5U6IKYcKyh1wfGRcmxY6tyigfn1Ral0Lix1jBLYVQOy++BGpU5l/ByXOtXxc10lWIUxdIwCjYnO4yArdLwPRvDcAJpjktNjI2XYQOhkZS5ozyu7hkUOEJc5wEvp+AQJKZkDvJRu7WwwQUI1mQuXXmXSOaC39Ko6bi4sdbITIQBgYauDH39rFFuf9b4Zn3DCCfhv/+2/YcOGDVLtvJzRUqeA4zi4+eab8Y1vfAP1eh2EMqz/T0VsvKQIoyj2Qg6ndk23ICV1nLDcLTol4bSOE5a72WZFSuo4sLsdLwAAQItJREFUYblrNwpiaV2YsNzZkmIXaoO4AFw/iZB8Rofljn9IGW0mldIFXQmldTIpXU9/GEAYE07posdzsZNK6aLt+Pdl1ni6xOP9cXbESRlrltkHBuowOAX5XRXCqV1hyQG1XMwfXhJO57pwgeoeFwMvtdQnQ/hSJzJ+LrEJ6q3fpjwhgqd1qpMiQmmditBxzBaTT+k4PK2zGKwqgVsE2kPe8A4pmQMA5i3G7ZblUrkwXOikZY7jp3R5y6xLdkla5oIu+Cld3kkQ51afUSq1Wi3g1zdX8dufVuC6BLVaDe9973vx5je/GTRrsVhNF1rqcrBnzx5cd911uOOOOwAAlXGC464oYdVJhvAUaz4Dac6pwFLcT5YShoZTwK7WkNLxNqOo20XMt8qYqcuv6g14cmfbBlqNAlhdZYNU74e2KIpzii9iXjqUXDiUE5Y7owmUZxRnlBLvw9ewFHde8PvCiDeGSPV4o+WVMXNtTQa5hCy2Ly5D5npAGcerSGVwvJ98toao8tg5wJP0kact9dmtDDDabq4tlJlBsHiIqT7DFV6CXJrJMcuVAM0RmmvLOeL6+6rm2LKvPextOagkcz5ukYG4REnmOHwsnbTMAQAFjjliJw6tzSrLHOB9jljMUNoWDPA+Q06obM21RMm4uYhJY156mZKn7i/i335Qw9xe743qvPPOwwc/+EFMTEwo9+XljJa6PnDnnXfiC1/4Anbv9lbinjjewHFXlDCwRvzDcNquYdaqYLygts2LxQzsbQ9grl1G1ZRbAoWzt1nD1tkREMJAFfftq9dLcKZK/gbw8m0Qh8BYojDreT75vMkNZh1BKVQWo+klM0qn96WO2kx6JfwAwndggHTyGG2DOAzFJcW/hRJPLHO8Syg+lUKdYKA2wLdJU8E1gcYqNTklDlDd5XoJaI5lU4jNlJeO4TgVirn1ah+8xAUKCwzEBYqLOZZ/od6XDdUvHIwC1iCBayJxtqlIG0uHKv4NjKA0Q9BY44CZql+6CGiTwBl0AKr4mPqzti59xUNKh7uM4p7dh4MShnPXPJN9QAIt18T68hSGDblt8DgOKH4+vQnXrP6V1HFTOwzc/v0anvu9V2qdnJzEhz70IZxzzjlK/dB46FGHfeDss8/GKaecgu9+97u46aabsPcxG7/+2zrWv7aAoy8uwhQof7VcE1OtWhChy8pdgTigYFiySmi7JorUlpa7gUILw9UGZharYJQpyV2xZKFeM0EWTK8kKil3zGBwiwzII3X+oUaTgTh+qcuQEzy34G1VJLuSPocZgOOXC1XEjhEEZVcCKEkVo4BdBojrTe+VFbtgW7LwrEmVu4N/b8yR1lGLBZ1QFTsViAPUdjgozjvyY+jC7eQUOhbafaM8xdAclx9LV5xnudagA7znFAgBtaG09zGj3rZrdtmXfQWpYwRojcmXWUvTnfvMbEBa6AgjoI1OG8QmakLHSDCbf8N6+S25uMwxRjA7X8UJh+yQ7wOAhv8AWowqCZ0Din+bOg4A8NLCCCA4rLzVILjzXyq45/YKXIegUCjgyiuvxLve9S5UKorfwjUBWur6RLVaxXvf+15cfPHF+Lu/+zvcfffdeO5nFrb/1saxlxex7gwzsyTbdk20XRNNx1SWO5tR2DaFRQxpuSsbNgYKbcygCtclgL9npYzcmYYLo2yDzZuAQ8D4wGwJuWMFBrvKcqV1bgGwawSFhc6AbOIQYbljRmcTcxmxYwSdZSdC5VMpsfMTtnCbsmLH0xT+f7uiIHYhsWSdP0k9tWP5yrDwJz/wD8R9KXdBOucyT+hU2/EneuQVuuD5wIDikovmuHhNPU7oRHdS6eqHL3SAX95vM6m0Lix0HKcol9Z5QgfYVcG+h2SOv5UyAjTWykxe8lI5b+KO/5oC4AxKJoVc5vipCXDCiLiQcZkDgOm5Gm8CGwflxDAscyqEZe7F+VGvHwKfD8wFHv1NCT//YRWLs97z99WvfjX+5E/+BIceeqhSXzS9aKnrM4cddhj+1//6X7j77rtx3XXXYdu2bXj4Oy288AsLm95WwtjG7DdjVbkbLDQxXl7CVLOmLHeDxSaGaw3MLXnmoyJ3pZKF+pAJOm9638Yl5Y4ZDE7Nu7Gq2DED8NZzJkHJiW9OLip3ymIXfq9UELu4fWmlxY54Jcdwn5TELqZvucUOUJc7tu9Tu650Lk87fSi3dgmdSh8SEjqWsC5jYj9CQseRSevihI4ReJ9AglIXCF1N4PkbI3O8jcZaBmso+4+PkzmgI3SsJLFBbFjmAIACG47cJXR4nMwB3kvguEN2ivUByTK3obJX6Pg4mRPlhSdM/PuNNex83puMd8ghh+BP/uRPcNZZZ0m1o8lGj6nbh7Tbbfzwhz/Ed7/7XTQa3qKMq042cOxbe8fb1d0itjZGsSdmWZIitVE2bCG529UawvOLvbNgTeKiYDhCcrenMYCXZkZir6OCcrdUL4HtLvdc7i30y4TkjjYpirM5B+k7QGERQWIX9IN2ZmRmCR5xPKnLEjue0sV+AfaTjUyx8xOopC/RImvxMeoNQI/bMYi43nIQWWLH/FJj2i4WomKXvFOGoKwwFr+TAE80BVI7kTF1memcYPm1H+kckCJ0BGgNGpkl2KySqzepSCBhiRE6jlPInswTJ3RBHxhA7Oy0TkToiEtQnOn0JfpWKSp0STIXtAPAnhCofsTJHIcCl57yYOrhSTIX9BPAWzdlj8fLSubOGHwu9fgsmSOE4ZJDHsUZ1d5xfVM7DPz8h1VsecCbPFGtVvGud70LV1xxBUolueVONGLopG4fUiwW8a53vQsXX3wxvv3tb+OWW27B7occ7HmkjsPOMXH0JUWUhrwXWpW2MVhoxkrdcpdlw4gmd+G0LoxMctePMiwzAKcEFCJ7ZPPkDsguzYokdqlCBwgndnEpXfT6zKQsktJ1He8ndsww0idQhEqvqf3I6Euq+x9Aqd2Bls4BSE7oMkqwwYQIhtQxdCJpXZrQAdlpHZ8UESd0QCetc5AsdllCF5a51LdFgkShC0QOSJQ5/6rssisfq5B0s4yULkvmROlHmfXn05vgMpKZzEWFbmme4Nc3V3H/L8pgLoFhGLj00kvxR3/0RxgdlUv5NHLopG4/8vzzz+NrX/sa7rrrLgCAUQI2vL6I9a8twCwT7GgP49nF7Gncacld3S1ie2MYU830N4O05K7pmNi2OByUYNNIS+6S0rowQXIHxApeP2bDJqV1PX3JSO/SEju+Pl0maYldRkrXddOEBCAtpetpIyW1Y5TAFlxuIi21ExacNLFLSuq6jk9P7ZKSOuIA1d2uJ7hZQpeS1O3zdC56O4Ng/vBeqZOdEJGW1mUJHScprQuETmAMK2HebPWeNhKELiuVi2snLqXLSuW62kBK2ZV1hDAzwU5I6WRkjpdejx3slUMZmdtQ2YsJs/sbr4zMAV5S99cb/wWANwnintvK+O1Pq2j7knzWWWfhfe97n97eaz+hk7r9yPr16/GpT30KDz74IL7yla/giSeewJaftPH8L9o46g1FFF8l9kYcTu4AdIldlbYxaLYwhfQ3hbTkrmzYGCq2hKQunNwB6BK8YtFGY8juSevC8OQOQGx614/ZsMH4OkZQWEy+j7PSO2Z4C69Gpa5rckQWSYmdhNDxc8YmZSkpXU8bCePs+KxXUXLPjgWSUzvGevYKjT8+lNoJTKQIZM4FinOCa3sxBuL0Ptb7JZ2LQFyG8jRDc4yELpOf4RqX1gXPQcEE1bAAoHvShIzQcWInTZBuoRNO5UIwAjTWdIRONJWLbSsqdFmpXBQKrA/NeHUZxe/2HOb/n0glc1GhU0nmkoTu+Tm5heytNnDfv1dw979W0Fj0zn/MMcfgj//4j3HqqadKtaXJh07qlgnXdfGLX/wC3/rWt/DSS96ef8VhgqHXjqP1irUgptgLMy61SxpXl0Y0uZNJ66KE0zvLNtCYL6eKXZTouLu+rF0H8cSuqy+R9M4pdqd1mWXXxIa7E7vwbFVZeFImk9J1HR9J7GRSuqS+dNpWeHsJy4RIShfbhr+zR4HLUiepIw5Q2+mKy1ykb/z5sL/TuZ7jQmldniVLwmmdaDrX0xcCWFUStCErdEDv+Dqe0jkVJpXKRfvVWMNgDTtSqVxPO4ikdLIyBwRCt3l0eyBzsiIH9KZ0ecqsfDwdlzkAUkJHXAebn3sY229bCGa0Hn744XjPe96D8847T+8GsQxoqVtmbNvGbbfdhu985zvYtct7kZLRIkqvXY3CyaMgggmQJ2Odr7lNp5BZgo0jLHdLVilxwoQIXO4ajWJmGTaOrtIsA4xmn8RuAamJXWJ/QoJHbYbCIlMTuqBBX+wsBtdMnpQgAvGljn+wSh/veh+mxGEoNJiy1PG+eNucoZPAKTVE1KUO6CrJWhWC5jiVT+di+uQWSF/SOUBd6ABP6hYONYTGz2VBLaYsdByn4CXZKkLH4WJHLaA96u25C8iJHIcLnVvs3C/UUhBW+EIX3nVCZQI5BS55xcPKMsfhEyTyjpk7ojyNhxcOCX6XSuccF8aje2D++iWQWe9BWrNmDa6++mq8/vWvh2nqIuByoaXuAKHdbuOWW27BP/7jP2J6ehoAQMaKKL1mFQqnjAond4AneC4jmGurL+RoEhcuCKaWqmi0ikLrECXhOBTt+RLokrq1+Iuvw2gQGK18YkfbQHFWbVFgwJMnRgGzmasbfmOhTevzNmUkD0gXhThAaYHlEkwgJHY5xcfbsi3n/eOndq5J1GUOAIi3jy5t5RQ64u13Sm2Wa7kSEKA5bMBs9UEuqTfpIW8bS2uostBx+Pg6q6Ymc5z2INAec5VEjsMAODUXrOyqiRyHAKTsYGJ8IdfkB+YQHL1uDzYO7VGWOQCYs7wHSbbMCtuF8fBuGHdvBZ3zZG5sbAx/8Ad/gEsvvRTFosKK1Jq+oqXuAKPZbOLHP/4xbrjhBszNzQEAyHDBk7tXjoEUxF7IbcdAyzGVt/viLLWLmF2sBF/gVeWu1SgAe/0p7Dk+x2iboLDgl3m84WDyMH8bMf8DgziKguenUSTHm71rwBMFi6GwlLOMZ3ilV9nyaxjiAIV6/94SiJtP7PjWXCzPosU+1MrxQBECu0rBKFBYyLPpqSeGrkmU9wXm8G3khMdzxsBCaWbe3SasipfStQfV2yDM+9KlKpiWv3gAI4BdY2rvD9E2R1VTXaAw2KmeuDk2/XVt/w9hwOuOe1y5nZl2FQBQt4vYW5eQS8uB8eAumL/ZBrLg/U2jo6O48sor8da3vlXvBHEAoaXuAKXRaOAnP/kJfvCDH2BqagoAQAZMFM9dheIZYyDF9CjFZQSWY6DtRy6qcmc5BhaaJTRa3qKRqnJn2xRWNK1TeY9zAbNBYNT90flEUe78Dw+j7YuHrSh3OcTONbxdL9yCdzxt+WVdFbkj3gSHYCkSiQkTXc30WeqAfKldeL/VvGKnJHWEwK54Ty63QEBcpiZ1vswB3gQOwid2KMDTPR7UqEidNxbUu095O9Rm/qQHOewSCZ5vjABORU3s8gidNeCfu8wnWCGf0PmTbexapOwqApc5wlApe3dos1WA48h3KJA51ytVHLFuCscMy28tNmdV4DKCpuO9j8+3ymjaAm8QbQfG/Ttg/mY7SN37WyYnJ3HVVVfh0ksv1WvNHYBoqTvAabVauPXWW/H9738fu3d7L2ZSNVB41QSKr5oArSW/MHlaF0ZF7nhaF0ZF7mLFLmhQokNhsePH8slsMoIXEjugI3eApOApip1bANpDkZmULmAuyYsdo5E70P+QlRE7b/Zv/8rBPe0ryF1Y6jiqcicldVzmCLpKpNJSF5G54GLWPUFBFJ7ORc8hU4nj6Vz0GJVxeXa5d2IOo0BjUu4xUhG6cCrHZQ7IKXS8GVmhC6dyIZkD1ISuS+aCczDplC4qc4D3hT8zpatbMO7bAfN3O0Aa3oOyZs0avPOd78Qb3/hGXWY9gNFSd5BgWRZuu+02fO9738P27du9C02CwiljKJ4zCWOi9xtTnNRxZOQumtaFCX++igheVxk2DtHPgqjYhY+XEbyI2AXNyAqepNiFU7oo0mJHEkRHUuz2RUoXex6Jkmyc1HFk5U5I6iLJXM/VMlLnC13S0ioyaR0zSOrC1KJpHU/o3ITby6R1cULHzyGT1skInRVam92u9N53SkIXbUZG6EIyV6n0rp7MANTrYmlWIHJAt8wB0ikdHzNXt3vlK03qyFQDxj3bYTyyG8T2/v5DDz0Uf/AHf4DXve51egLEQYCWuoMM27bxy1/+EjfeeCOeeOIJ70ICmJuGUDx3FcwjOi/WaAk2DlG5i0vrooikd6lpXU+D6VfTNkFhLuVGouXZBLELmhEVPD7jE+lylyZ04XOKil1PStfVkFg5dl+ndD3nE0jtuPRk9UlU7jKlzhe6rEWkjZYLo5nSlj8RInOtPEGpi03nYs6ZtRMJ819ySULH+ySS1iUJXfh8WWLHZQ5IF7oskQvOKSN0aX8iyRhHFxkrFydznFbbhG1nDJWJS+V6zpmd0nGRA+JljtNTemUMZOsCzN9ug/HUdHDxscceiyuvvBLnnXeelrmDCC11BymMMTz00EO48cYbgx0qAMA4vIriOZMwjxsGoSQ1rYuSJnhpaV2UrPROSuyAZLlzAbNOYDQyPtRF0rsMseu6nZ9kJApeSmrnGoBdJXAFqhdCYpeU0sXcLi21218pXc95U1K7tJQuish9kCh1Gelcz83T0rqMdK7rphlSl5XOxd0+9vKMdC5KVlqXJXTh8yaJXVY6JypywblEhS6rqbSULiOVi5ImdKmpXM95GQ5fO41jR+K3FktL5XrOG07pXAb65BTM324D3b4Y3Oass87ClVdeiZNPPhmkDxOUNPsXLXUrgOeffx4//OEPcdttt8GyvHdjMlJA8cwJmKeOwy6XUtO6KElyJ5LWRUlK7zLLsIkNRn4XFbvw8UmCJyp24dsnCV6C2MWNo0vtrust6UEcxMpdakrX01i82O3vlK6nWwmpnYzUcdLkrkfqJGUuOCxO6gTTua5DUsbVCaVzPQ32HiMrdLxfcWldeEKEKHHj65KETlbkgnNkCZ1oU3FCJ5HKRU8ZV3YVSuV6+hWf0snIHGe+VUZznsF4eBeM+3YGy5IUi0W84Q1vwBVXXKG38zrI0VK3gpiamsKPf/xj3HzzzcFyKDAJjM2jcE5bA7JuIL2BCFG5k0nrokTTO+m0LrZR/19ZsQsfHxU8WbHjxAleROxEyq6JXY1L7URTuq6Gesuxy5XSRYnKnYrUceLul0DqFGUu6GdY6hRkrqutSFonm85F4WmdaLk1iWhaJ5rO9fQnktZFhU5V5IL2k4ROtqmw0CmKXJhwSieVyvX0qzulEy2xxmFtbWDhzlkYj+0NxssNDw/jsssuw1vf+laMjUmuWac5INFStwJptVr4+c9/jh/96Ed48sknO1ccUgPOWA0cPya1mDHQETyVtC4K/7x1bAproZhP7Hibrr8wsazYBQ2gKwUMb1ckTUTwzCbz1s0SLLsmdjEsdipC19VYJ7U7UKSOw+WOOkxZ6jjh+4jaDE6ZeHvbKghY0D+XobDo5pK5oC1f6vLKHCdoRzKdi4OLnarQBX3yn/t2zXtdOKEAS0XkgnajQqfalC905kRnNXEVkeO02ibazdA3N1mR6+qbl9KppHIAwCwX1u9n0f7NFNyt9eDyjRs34rLLLsN/+k//CeVyzhXLNQcUWupWMIwxPP744/jRj36EX/ziF0FpFlUTOHUSOHUSZFTuBe24FDP1ChqNIkwzxyKsPrZtwJkrgjbzrxLqlSoJaIv0bFIu15D/j+O1mWulfebJISPIJXRB13yxMxv52wqndspbcYWbc31xUtzDNq49b3/cfGIHIBC5PDLXaczb2i2PzIVxC/kXIgbgJZBlby29vEIHAthloFDPt5g1hxnA0loCaucTOcIAc4nAGmKe1OW92whgr2nDLNm5RA5+Vxb21kCKbj6R8ykPtFArt3HU6F5pmXNn2mjfMwXrd1Ngde/NsFAo4Pzzz8dll12GE044QY+XW6FoqXuZMD09jVtuuQU333wz9uzZ07niyCHglEngOPGtyNqOgemFGtot792eUKYseIwR2G0DbsP/5HBILsHzFvENbSXGkEvwwhvU5xa8PkAcb99aL/3rw5sy6aR1XMpUoQ5g1l24BW9sVz/kjjpekpVX7BjtlFxz04+3TEKC/XVdEygu5tztIjTeLdcXGsATnYr3+FEr304TjAKtMS89tAbU2iEMKCx2yspuwd8tIi++0A2O1LNvmwAXuQCbgpTVH4DygDfGjRCGNcMLqBXERZNZLuzH59D+3TScZxeD961Vq1bhLW95C970pjdhdHRUuW+agwMtdS8zbNvGnXfeiZ/85Ce49957ETz8ZQM4acJL71ZXM9uZrVcwO+29mRECENNVljvGCByHemNPXALW9j98FQWPWt1l2GCygqrg8aZC4+OWQ/DCQsfJXYI1OiU/4peNVcWOOkBhyQn6lVfuiItgiRhqMz/1VBxj1y+py/t2GZY5XqFjOaTOT+dCa8v6M4pV++cLXanzpUhV7BgFmuNESebCIgcARsPrW3uoD0LHOv2rbppVOjwscsac6clm1VUWOi5zA5VWcNmagQWhY50dDVj3TaP94AzQ6Jz/tNNOw2WXXYZXv/rVekmSlxFa6l7G7Ny5E7feeituvfXWYLcKAMC6mleePXEcpBQ/3q1pm5ier6Fd73yacLkD5NM716Gwrci5XALW6swWExU84npr2NF2r0woC160qWUQPGoB5en+LMQbFbrgYqaW2hEXMFtuTxkxj9zRmMdHVe5yS10fZM4p8vuj92qjzWC0JM4RkkMnpjInLXa+zAEhoeMwoLgg9/erCB0vrfL/G+EhBnmFLnoYBazVbQyNiqV0cSLXdT0B2JjcHmtc5IBumQOAwVIrNaVjDQfWwzNo/24a7vbOHTU5OYmLL74Yb3zjG7Fu3Tqp/mhWBlrqNHAcB/fddx9uueUW/PrXv4Zt+4ZiUmDTiJfgbRgCMbo/FMNpXRRZwetK6+KQFLw0sQvfxju5oOAlNRVZumRfSF5cStfTDRmxI+hKd3qulkztwildUt+cEpESuzipC66TlDtlqetjqTV11rNMWue3FydzwU1kvrRE07mYvnnSKdacqNCFJY7/bsSNFVUVuqSbCwpdlsgFt5NI6dJELkxcSsccBvvpBVgPzcB+dA7wX5umaeKcc87BJZdcgtNOOw2GkX/imebgRUudpouZmRncdtttuOWWW/Diiy92rqiawInjwEnjwLoaCCGxaV0cooKXKXYcQcETEbvwbb1OZHwYijhJn1M8EaHrOn2W3CWkdD03k0jtsqSO90smtUuTuuA2vF8ZgictdX2SubR0rvt8AlIXGjuXJuTBzbPSurR0LqZ/WWInMn4uNY1L6KOU0GXdjKaPoxMVueD2AkInKnKccErHGIO7tQHroRlYD8+CLXXeTI488khccskleP3rX4+RkZHMdjUvD7TUaWJhjOGJJ57A7bffjn//93/H7Oxs58rxMrDZE7y50mhiWhdHluAJix0nQ/BkxC58jNeZBMGTqSLmTPFkhS44bZrYCUpBcPMMuUsqvab1zS16H/5pcicidV23T0nvhKSuX2+FMjIXIrEEm1FqTexG2heUrHQujhSxS0rnhNO4mP61B/1+Zgmd6MOWkNAxAAtTteCXLJELjksROlmRC7NmYAHuVAvWgzOwHpqBO9Upw46MjODCCy/E6173Ohx33HF6BqumBy11mkxs28bvfvc73H777fjVr36FVqvzJuUeOoiFI9dh4ZBD4NTklkdJEjxpsQs6Ey94KmIX9DHsB9EPSZX3U4kUT1Xouk4XfdMXTOli+5MgdyIpXVLfkuQuPElClji5S5W6ZZa5Tj8iaZ2izHV1KZrWyaRzCX2Mil1U6KTTuJ5OC6Rzsg9ZROhURS44fYzQ5RE5ACALLVSf3gX66F44L3XEs1Qq4dxzz8XrX/96nHbaaXrSgyYVLXUaKer1On75y1/i9ttvx/333w/X7XxiNFeNon7kGtSPXAOnJr+dWFjwKGG9EydkiAieUafKYtfVz2iKl6e5jBQvbWKE9KkIySV0YQjz++l/wMukdEl9i8qdbEoXR1juYqXuQJG5EN66fMgtc13d8wXZLsNLaVVkLow/cYJRoDXqLzUSumuVRC44OEHo8jxUvtANjtZziVxXd/yJEblFbr4F44m9MJ6cgrF1vtNlSnHaaafh9a9/Pc455xxUq9krEmg0gJY6TQ727t2L//iP/8AvfvELPPLII13XNVeNoH7kWtTXr4EzoCB4husldYwEsqcMFzxGQFoUZj2/3AGhxM3xJCf3Iq0hyaMWUJrNl9L1NE+JVNk1iyC5Y0BlKv/MkLDc2WWSuqm8DDxVdE2+TEf++5RRAqtGYLRZX2QuDLX6I3Nh3GIfZI7jT6IhjKE9RPJJXAin4v3dgdDlfZgIYFcZaJvAGbNyixzgJ3Q1B7Rmo1S21ERurulJ3ON7YWzvnhBxwgkn4IILLsCFF16I8fHxXH3VvDzRUqfpC3v27MEdd9yB//iP/8AjjzyC8NOqNTmC+vo1qB+xCvawxP6zjABhn6Poi+BhyYSx4JdmGfqS3hEbAOlsLcZoPskjDlBY8totzedP61yDwK54MkIYA823eL4HBewKATOA4hwDtfsjd65J0Bw1Oklbn+SuXzLXHiDe314m3Xvx5mmXPwUJ8stMGOL9OMX+iWc4rc6Dw0dr+GM83RLL/8WIeFt+hX/P+/rmIsfbq47XUSvLvYDIdAPGU1NeKrdjsXM5Idi8eTPOO+88nHfeeVi1alWuvmo0Wuo0fWfv3r244447ggQv/BSzhmuoH74ajSNWoTU5CtCsWXcEsIknY4QBht9WHsFzCVjdAG1SX8i6B3KrfggQFzBa3g8jAAt9QKlKHnGA4lw+sXMNArvau6BsXrljBtAe7txX1M4vd540Udjlzpisvsldjre6LpmrhP5mv1yq3G5Y5rquUG8z3F64LOptk5azWRfKfXPCQ25Dk3VyyVxU4gCwiuul3i2q/FruEjkAtOo9n8vVtpjQuQx02zyMLdMwnp4GnepEmYQQnHzyyYHITUxMKPVRo4lDS51mn7J371788pe/xJ133okHHnigswYeAKdcROOwSdQPX43mIRNghYR3docA0UkTYcED5CUvJHZdzeaUvLDYhQlLnqzg5UnteoSuq1M55M6Xm/Dm7MFVOeTONQkaY71jKQO58/utJHiSb3WByAE9Mte5EZTSukSZC7WrRIzMhVEVO9V0LprG9fRHVuiSJK7rAnmhi0oc0BG58LnHRxeRSMuG8dysJ3LPTIM0OscbhoFXvOIVOO+883Duuefq0qpmn6GlTrPfWFxcxD333IM777wTd999NxYXO2+QzKBorB1H47BJNA+dhD0UWiYlnNYloZLiJYhdV7MhyRMVvCSx40RTPEBM9FTkzimQrjQtvkPychdN6eJQkbskqQujnN4JvtUlpXLxN5aTukyZi7QtTIbMhW+X+TeFby4hc0508nvG0jnCQhcRuR6JC8MA0qagrey/MSmNSyIupSMzDRjPzsDYMg364hyI07mjBgYG8KpXvQpnn302zjzzTAwMSAw90WgU0VKnWRZs28bDDz+MO++8E7/+9a+xY8eOruutwSoah06ieegEmmvHwcxCtthxZFI8AbELmpVI8Yjri5KbLHdhZMq1oiXZ1JQuthOCcpeS0sXeXELuRKSOI53epbzVCaVysQeKSZ2UzIXazkRU5kKIpnWppVaC7sdfYu1DtwiApAidSBoXR4bQCaVxCQRC13ZgvDAL+uwsjGdnQGebXbc75JBDcPbZZ+Pss8/G5s2b9fIjmv2OljrNssMYw3PPPYe77roL9957Lx5++GE4TufNl1GK5upRNA+dRGPNKlhDQ94UWVGyJI/PjnXE95cFeiWPnyoselmpXRJZkpeV2kkLXdfJ0+VOJKWLI0vuouPpZBBK72Le6qRSuQTSxtUpyVxXAwmXK8hcmDSxS0rnksbESZ03ms7FCBwgKHHBjT2ZA9AldHwtuc65mLDEdRphqC1NY2DbbhjPzoJunQdxO3eMYRg48cQTceaZZ+Kcc87BEUccoRcE1iwrWuo0Bxz1eh33338/7rnnHvzmN7/Bzp07u663KyU0V0+guWYCrTUTsAcU1nAKSx2XPInULom4NM9oEtC2/3/5FRAAJJdsGemVu1xC13WCGLmTTOni4HLH/88FTyalSyI1vfPf6pRTuSQiaR0LN5f38z367pxT5sJExS68ZmLP46soccG5eDpXUEzhkgilc32ROADGfB3l7dMobZ9GZdte0Hq3sa9duxZnnnkmTj/9dJx66qmo1cR31NFo9jVa6jQHNIwxbN26Fffccw9++9vf4oEHHuja0QIA7FoFzTUTvuiNw6nKrYsHoCN5jreWXTSBUyU6Js9cIigs9aXpLtHju08A3gd+39YkAwK5A/FSujxCFyUsePxc/SIseMxfINi7ArCr/b1/zHqo4/0Oahj6KnNh3AKBzZ2E/wk5Ba4LArRH3I48EpZP4qKYLtAygraVJG6xgdL2aZS3TaO0fQrmYndJtVwu49RTT8Xpp5+OM844A4ceeqhO4zQHLFrqNAcVrVYLjz76KO6//37cf//9ePzxx7tKtQBgDdZ8yRtHa9U4nKrc9mVgAG1SmIveGzczAKfcn5cJtQmMBgG1gKK/gDwjAPr8Ye013N+2jDYDo8STRsm7NAtqAdXdLoyWt1NBe6C/dwijgF3r8wdxKKGjdv8XDAYL7TBC+tw+Aawa8QS3j48l3wmEEaA17nr9HurD9iCAJ8/T/rcYCtiTbVCFZY3oUhPlHdMobfPSuMJ8916whmFg06ZNOPXUU3Hqqadi8+bNKBb7/eBqNPsGLXWag5p6vY5HHnkE999/Px544AE89dRTXVuXAYA1UEVrchStyTG0Vo3BGh7MHJNHbILCnCd2XjoVKq/1QfKoTVCcISj6C8pHE5i+il4fXuHEBUxeYiSdJLBfgmc2gNEnvASWGQTWgBG03w/B65vUhUutDCg0eBLoS1If2uci5+3Y0bnPrX6ki32Uubit3PjWec0JBns050LUYYnzmkVhzut7Y7ULMiYyA4mhML2I4q4ZlHbOorRzBuZC9/YXlFIcc8wxOOWUUwKJ09tyaQ5WtNRpVhQLCwt46KGH8MADD+DBBx/EM8880yN5TrGA1sQoWqs8yWuPjYCZMWujhcQuTFTygsskRY/aBOain9ot9F7fd9FTfaUzwGgxrwQbxRe8PHJHLaC200V5b+8J+iV4uaQuQeS6bkK8UqZymubLXJfIRcjVvl9yZgSwFUYnJApc5BzNceadS1boXMCcjQ4aBYpzkceMAM1VLjAeL3TEclDcM4uiL3ClXbOg7e6+EEJw9NFHBxJ30kkn6eVGNCsGLXWaFc3S0hIee+wxPPLII3jkkUfw2GOPodHo/qbOKEF7dBjt8RG0xkfQmhiBPTQAEAJiExhLFNRGj9x1tZFD9LLkrruvkd9VRE/mFZ8mdGFypHfhlC61KzkET1rqBESu5xDZtC4plUtBWuwUZE5I4CLnkJI5UYGLnmPSK+cGQscYzNklFPfMobjb/5nqnp0KAJVKBccddxw2b96MzZs34/jjj9cSp1mxaKnTvKywbRvPPPMMHn74Yfz+97/Hww8/jKmpqZ7buQUTrfGRQPSskVHQdhXmkoRISIpetCQrfB5V0ct65YsKXRQJwUtL6VK7Jil4QlIXmvBAXDGR6zpcJK1TELkoQmInKHPSAhdzntRSq4rAxZ1j0oFRmusI3B7vh1q9nZ2cnMSJJ54YSNxRRx2l14vTvGzQUqd5WcMYw86dO/H4448HP0899RSazWbPbe1yCfbQKJzSMOyBYdi1EbjlqtSaeVmiJ5PapZ4nxnESZS/uHUBV6KJkCJ5oSpdGWPD4eaKSFyt1kVmrKiLX05e4tK4PIhclUewSZC5O3gBJgQvBKNAaZd6EBS50/RA4AGAMtFWHuTgHc2kOtD2D4twMjEbvYoClUgnHHnssNm3ahE2bNuHEE0/E6tWr9exUzcsWLXUaTQTbtvHCCy8EkvfEE0/g2Wef7ZllCwCuYcKuDcMeGIFdG4YzMAy7OghQ8fXWGAWcSvfLkFoEZgNwjXxyF3eunsvCsud6s1yDZUz6SUTwmAFUd7mo7OnvieIkrzVEYVdJ3yWu59w8rSuEZq4itHZeH3EL3n3plEJLtLiAE5PMqcpbFEaB9ghDYZ6gPRL5m1QEznVg1hdgLs7CWJqHuTgLc2ke1Ol9ThiGgQ0bNmDTpk047rjjcNxxx+GII47QKZxGE0JLnUYjQLPZxJYtW/DUU09hy5YtePrpp/Hcc8/BsmIG9xMCpzoIuzoEpzoEu+b93y3X5FI96q1DV1j0tx1rwRtTtA9CiED2/ISuXxKQeD4TaI4RlKe9hY0HXxLcdFblXAZBe8hAe4D2XeK6T+TLG/H23O33mnI9EKA9SOAUSSBy/X7cGAXao57kF2e9v6k9zNTSt+YSzPoCjPoCzPo8zMU5GI0FkJiPINM0ceSRR+Loo4/Gxo0bsWnTJmzcuBGlUh8XSdRoViBa6jQaRXiixyVvy5Yt2LJlCxYXF2NvzyiFXRkMRM+pDsGuDgrJnrf9mC93Sf7TL+GL7MqwLwTPLQJLh3r/p22C6s7O2xC1gMEX+yt5zKRojeTbraK30e4EjjCAWv4SJwbQru0DqyPo7IZBAGsg/wMeiFvS9QgtJ5LZGIPRXPJSN1/gjPo8zMYiiBv/RBoaGsLRRx8d/GzcuBGHH344CoV+rYCs0bx80FKn0fQRxhh27dqFLVu24Pnnnw9+XnjhBbTb8aLCKIVTHoBTGYBTqfn/DsCuDIAVSl3Clyl3aZ+7Kp//+0DwmAG0xgiswYQJIyHJ61eK1zepC90fYYnruRmFl6AV+7O2XF6RSxM3RgB7xO650Jw14mWOMVCrBaOxGPpZCv5PWPyCwMViEUcccQSOOOIIrF+/HkcffTSOOuoorFq1So+B02j6hJY6jWY/4DgOduzYgeeee05Y9gBvzB6XPKfsCZ9brsIt1QCUQRhJTu6i5BW+PgheltBFoRZBdUdkvKGC6ClJHesdC5cmcj2H5xE7BZGTFreEG5qzBghjKO1pgTbrMJrd0mY0l0Cd5LZKpVIgbuGftWvXwjD6nJZqNJoutNRpNMuI4zjYuXMntm7diq1bt+Kll14K/t21a1fPwslhGCFwS1W4Re+HGbXg/26xCmaWxcfwZd0sen1UeDIkjxlAe4iAmRAWuiSoRVDdHinXZkiekNSllFNVYdSb0MAI0uUuLHH+71GRyyyTioobALgMRqMJc7EOc6kBc7GBwkwTZr0Oc7EO2qrHjnXjUEqxevVqHHrooV0/RxxxBNasWQNK9/WAQo1GE4eWOo3mAKXdbmP79u1dsrdt2zbs3LkTu3btip2NG4YRAmaW4RYqcAsVsIL3f34Z/11opm6W9DGAOvGSJ5vOyRKVvM7lHdnrkrqYBA7oj8Ql0ZPaRSSOmQRLh6afW1TaiO3AaDRh1L0fs97s/b3eTJU2wJttOjk5iXXr1vXI27p16/R+qBrNAYiWOo3mIMRxHOzduxc7duzAzp07g58dO3Zgx44d2LNnT6b0cVyj6AmeWQIL/bgx/wdNWT4iLH4hcWIG0BohsAf271tNWPaIA5RnvdRzX8pbEk6RYO4oA65/93nr5nX6wGi6sBHLhtFsgzZb3r8t71+j2QJttr3/c3Friy0RYxgGVq9ejTVr1vT8rF27FuPj43q5EI3mIENLnUazArFtG1NTU9izZw/27t0b+++ePXtSx/PFwajhiZ5RhGsUwIwimFHwf4q9/5oFgJpgpglrqDsRZAT7TfSMBsHkQzk3mBfEKRLMbej+W10TqB/eArVs0Lbl/bQsUMv/tx3/w0WOOsll+DhKpRImJiYwOTmJiYmJ4If/vmrVKkxMTOgxbhrNCkNLnUbzMoUxhoWFBezZswdTU1OYnZ3FzMwMpqeng//zf2dmZqQFsOd8hIBR05M8aoIZJtyCCWYYvgQaADXAqAGnTMCoAVDqiSSlYJQCRud3UApG/HVcCPH/D28cIem+jLYoxh+30dk+g3k/LPT/rstdAG7vv6H/u9RFa4SBuA6I44A4NohrA64NZlogtgNq2d6/tgOSMj5ShGKxiNHRUYyOjmJkZAQjIyNd/x8fHw+kbWBgQM8o1Whehmip02g0mTDGUK/XA8FbXFzEwsJC8DM/Px/8P3zd/Px8bhlcaZTLZQwODmJgYKDr3+jPwMBAl7hVKhUtahqNJhUtdRqNZp9i2zaazSbq9ToajQYajUbs/+v1OtrtdvBjWVbs75ZlodVqwbZtuK4L13XBGIPjOGCMBZeFfxhjIISAUtrzb9xlpmmiWCyiUCigUCgk/p//Xq1WUalUgn/L5TIqlUrXT7VaRblc1ovqajSafYaWOo1Go9FoNJoVgF5MSKPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgpU6j0Wg0Go1mBWAudwc0Gg5jDM1mc7m7odFoNFKUy2UQQpa7GxqNljrNgUOz2cQb3vCG5e6GRqPRSHHbbbehUqksdzc0Gl1+1Wg0Go1Go1kJ6KROc0BSvGcVCPO/cxAKQglAKEAJQAgI5df5lxMCUALCbxNcR4Jjgh8gdBntvt47MLiMEdL56hNqI7icdM4VvowRr5ngOuq1611Oguv4Mcy/LLge6LRB/dvz69F9jq5j/O4zGnNd1+3R1cfOZaTnup5jEO5H5HokXJ7QXlI/eo5Jaze4nPUeHzomuD7UFvMvR+g47zoW6o93PQlfF9yWX8eCNkn49oQF1wVPMX45b86/jfdUYMHv/Bjq/+5d5/3OjwuuIwwEneOof1nwAxYcRwm6LveOdzvHgd/ehcGP8X/vtOUG7Rmh9g14lxu8veC2LgzeJng/3M7t0Wnba9MFhXd+7zqvPcO/jMCFwY8PHWMA3nHwzsPvD/67dy7m/x/+dQzUv18MEFAAhv9gUxD/MgKDEFBQEP+Rs9oG3vb/XQON5kBCS53mwMQh/tsrPKmDL2D+p2XnOgLQjsEQz5D8RvinO0XPp3bHmLpNgrfZ8ymPyGXhcyDmsuhx6MhcSOp6LgtJWPj3aBe7bx9zDE25LunP6OlHwp+ddl3SXaXaXqjNOOHbp1IXdz2iv7Og7XA/wueMuy6QQIRuE759zzEs5lys6ycsdR1R9H+SrgMXP6/JsABy+QO4nCGQovB1ntS5HSkiYSny/k8J8YTL/xfB/0lwnNcO/Db5sfCP8y+Puy50jOELqRH0k0sdy5S6cHsGvz/QfRlFuI+hx1CjOUDQ5VeNRqPRaDSaFYCWOo1Go9FoNJoVgJY6jUaj0Wg0mhWAljqNRqPRaDSaFYCWOo1Go9FoNJoVgJY6jUaj0Wg0mhWAljqNRqPRaDSaFYBep05zYGIwMOYtOOqtu0ZC/5LIgsD839D/Eb6Mhf4vcF1o0bLOErFJl3f+ZV3/R9dxDAAYv7zTJgMBGIJjw9cHbXQtrhbuS8zvrKtLkfsj4Sd6W5G16NKuEz6X4HXhU6YexzLaZAl9TF58uHttudB1wW3VFx/u9CO0Th3U16lj6BzHCOv+gfevdx26LncJA4jbaRP8XG5oPT3/Nv71jLhBe+hq3/+Xn8v/nfq34f8C6LnMDb2s+f9dArjorFPn+pcRJK1TR4IFgw10HjP+O/WPia59J774MEFn8eG416VGs7xoqdMckLTP2L3cXdg38M9MRaJOotFwwk8tdzk7okzYqnURSaNRQb9yNBqNRqPRaFYAhDGm9zrRHBAwxtBsNpe7GyuGZrOJt7zlLQCAm2++GeVyeZl7pDlY0c+ldMrlMgjR2blm+dHlV80BAyEElUplubuxIimXy/q+1fQF/VzSaA5cdPlVo9FoNBqNZgWgpU6j0Wg0Go1mBaClTqPRaDQajWYFoKVOo9FoNBqNZgWgZ79qNBqNRqPRrAB0UqfRaDQajUazAtBSp9FoNBqNRrMC0FKn0Wg0Go1GswLQUqfRaDQajUazAtBSp9FoNBqNRrMC0FKn0Wg0Go1GswLQUqfRaDQajUazAtBSp9FoNBqNRrMC0FKn0Wg0Go1GswIwl7sDGs3LiWaziQcffBBPPvkknnrqKTz11FPYtWsXAODqq6/GNddck9nG9PQ0brjhBtx9993YtWsXSqUSjjzySFx00UW45JJLQAhJPX7btm244YYbcO+992J6ehqVSgXHHHMMLr30Upx//vmZ53/yySfxwx/+EA8++CBmZ2cxODiIE044AZdffjle+cpXCt0PmvzMzc3hzjvvxH333Rc8jxzHwcjICI499lhcdNFFeM1rXpPaRr1ex4033og77rgDO3fuBKUUhx12GF772tfibW97GwqFQurxy/1c1Gg03ehtwjSa/cgDDzyAD37wg7HXiUjdk08+iQ9/+MOYm5sDAFQqFbTbbTiOAwA444wz8MlPfjLxw/juu+/Gtddei2azCQCo1WpoNBpwXRcAcPHFF+MjH/lI4ofxLbfcgs997nPB+QYGBrC0tAT+NiIqppr8XHDBBcHjAADFYhGGYaDRaASXnXnmmfj4xz+Ocrncc/zOnTvxp3/6p9i5cycAoFwuw3VdtNttAMDGjRvxxS9+EYODg7HnX+7nokaj6UWXXzWa/czg4CBe+cpX4qqrrsK1116LsbExoeMWFxfxkY98BHNzczj88MPxjW98A7fddhtuv/12/Nf/+l9hmibuuecefPnLX449fvv27fjYxz6GZrOJzZs34/vf/z7+7//9v7j11ltx9dVXAwBuvfVW/OAHP4g9/ve//30gdOeeey7+6Z/+Cbfeeiv+5V/+BW9+85sBAN/5znfw85//XP5O0UjjOA6OO+44/Nmf/RluvPFG/Nu//Rtuu+023HTTTbjkkksAAL/97W/x2c9+tudY27bxF3/xF9i5cyfGx8fx+c9/Hrfffjtuv/12XHvttahWq9iyZQs+/vGPx557uZ+LGo0mHi11Gs1+5KSTTsK//uu/4gtf+ALe//7348ILL0SxWBQ69sYbb8T09DRKpRI+/elPY9OmTQCAQqGAyy+/PEjIfvKTn+Cll17qOf5b3/oWGo0GxsbG8KlPfQqHHXYYAKBareKaa67BpZdeCgD47ne/i4WFhZ7jv/a1r8FxHGzYsAF//dd/jVWrVgEAhoeH8eEPfxhnnHFG1+00+5YvfvGL+PrXv463vvWtWLduXXD52rVr8ZGPfCQQ7dtvvz0o8XN++tOf4tlnnwUAfPzjH8dpp50GAKCU4sILL8SHP/xhAMBvfvMb3HfffT3nXu7nokajiUdLnUazHzEMQ/nY2267DQBw4YUXdn2Icy6//HJUKhU4joOf/exnXdc1Gg3ccccdAIC3vvWtsSW1d73rXQCApaUl/OpXv+q6bvv27Xj44YcBAFdeeSVMs3c4Lj9+586deOihh2T/PI0kp556aur1PK0DvFJpmJ/+9KcAgFNOOQUnnnhiz7EXXngh1q5d23XbMMv5XNRoNMloqdNoDgJefPHFIG0588wzY29TrVZx0kknAQDuvfferuseeeQRtFqt1OPXrl2LI444Ivb48O9Jx2/evBnVajX2eM3+J5wA83FqgDdZ5/e//z0A4FWvelXssYSQ4HGOPpbL/VzUaDTJaKnTaA4CeKkMAI488sjE223YsAEA8Pzzzycez2+Tdvxzzz3XdTn/fXR0FKOjo7HHGoaBww8/PPZ4zf7nwQcfDP4ffsxfeOGFQPLSnkv8uunpaczPzweXL/dzUaPRJKOlTqM5CJiamgr+Pzk5mXi7iYkJAF7Zql6vB5fv3bsXgDdJo1QqZR4fPl/4eH59Erxv0eM1+5eFhQV873vfA+CN4+SyDXQeS0DsuRQ9ZrmfixqNJhktdRrNQUD4QzHtgzC8dEX4GL7MRdzSFnHHh48N/551PO9b9HjN/sN1XfzP//k/MTU1hWKxiA996ENd1+d9Li33c1Gj0SSjpU6j0WhWENdddx3uuusuAMCHPvQhHHXUUcvcI41Gs7/QUqfRHATwCQgAgkHmcfCFXKPHVCqVnuvTjg8fG/4963jet+jxmv3D9ddfjx/96EcAgA984ANdM2A5eZ9Ly/1c1Gg0yWip02gOAsbHx4P/79mzJ/F2fLxSrVbr+jDk45MWFhZSP4j58eHzhY8Pj62Kg/cterxm3/PVr34VN910EwDgj//4j/H2t7899nbhsXIiz6XoMcv9XNRoNMloqdNoDgLCswTTZgPymYXr169PPD48+zDp+OisRv77zMwMZmdnY491HAcvvvhi7PGafctXvvKVYPeF97///bjyyisTb3vEEUeAUu+tP+25xK8bGxvD0NBQcPlyPxc1Gk0yWuo0moOAww47DKtXrwbgbf0UR6PRCBYIPv3007uu27x5czCo/Z577ok9fufOnXjhhRdijw//nnT+Rx55JBjUHj1es++4/vrrceONNwLwhO6qq65KvX25XA4WHE56LBljwfMk+lgu93NRo9Eko6VOozkIIITgDW94AwDg5z//OXbs2NFzmx//+MdoNBowDAOve93ruq6rVCo477zzAAD//M//jMXFxZ7jb7jhBgDeGKZzzz2367p169YFi8nedNNNsG275/jvf//7AIA1a9bg5JNPlv0TNQpcf/31XSXXLKHjXHTRRQCABx54AI899ljP9b/4xS+wffv2rttylvu5qNFoktFSp9HsZxYWFjA7Oxv88IVgW61W1+XRpRyuvPJKjI2Nodls4iMf+Uiw9ZNlWfjnf/5nfPOb3wQAXHrppcFemmGuueYaVCoVTE1N4S/+4i+CPTkbjQa+853v4OabbwYAvPvd747duum9730vDMPA008/jY997GPBeKr5+Xl8/vOfD1Kb973vfbm2Q9OIER5D94EPfCC15BrloosuwoYNG8AYw1/91V8F+7u6rotf/OIX+MxnPgPA2/Hhla98Zc/xy/1c1Gg08RDGGFvuTmg0Lyfe/va3Y+fOnZm3u+iii/DRj36067Inn3wSH/7whzE3NwfASzLa7XaQnJ1++un45Cc/2bVFVJi7774b1157bTCzcGBgAI1GA47jAAAuvvhifOQjHwEhJPb4W265BZ/73OeC2w8MDGBpaQn8beTqq68ONnPX7Dt27dqFK664AgBAKcXIyEjq7d/xjnf0pHg7duzABz/4weC5WC6X4bou2u02AGDjxo344he/mChVy/1c1Gg0vWip02j2M3mkDvC2bbrhhhtw1113Yffu3SgWi9iwYQMuuugiXHzxxcEg+CS2bduGG264Affeey+mp6dRqVSwceNGvPnNb8b555+f2a8nn3wSN910Ex566CHMzs5icHAQJ5xwAi6//PLYVEfTf3bs2IF3vOMdwrdPku16vY4bb7wRd9xxB3bu3AlCCA477DBceOGFeNvb3oZCoZDa7nI/FzUaTTda6jQajUaj0WhWAHpMnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCkBLnUaj0Wg0Gs0KQEudRqPRaDQazQpAS51Go9FoNBrNCuD/D8xH6UUumgcaAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "analysis = BinnedData(\"inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data=\"unbinned_data.hdf5\",event_range=[0,1e6],make_binning_plots=True)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cosi_nomegalib]", + "language": "python", + "name": "conda-env-cosi_nomegalib-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.html b/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.html new file mode 100644 index 00000000..f8063882 --- /dev/null +++ b/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.html @@ -0,0 +1,2194 @@ + + + + + + + DC2 Image Analysis, 511 keV, Image Deconvolution using CDS in the Galactic coordinate system — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • + View page source +
  • +
+
+
+
+
+ +
+

DC2 Image Analysis, 511 keV, Image Deconvolution using CDS in the Galactic coordinate system

+

updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)

+

This notebook focuses on the image deconvolution with the Compton data space (CDS) in the Galactic coordinate system. An example of the image analysis will be presented using the 511keV thin disk 3-month simulation data created for DC2.

+

In DC2, we have two options on the coordinate system to describe the Compton scattering direction (\(\chi\psi\)) in the image deconvolution. Please also check the notes written in 511keV-DC2-ScAtt-DataReduction.ipynb.

+
+
[2]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution
+from cosipy.util import fetch_wasabi_file
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import os
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
+

0. Files needed for this notebook

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz (please gunzip it) - a pre-computed 511 keV line response file converted into the Galactic coordinate system - cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz - cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz - In this notebook, only the albedo gamma-ray background is considered for a tutorial. - If you +want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.

+

From docs/tutorials/image_deconvolution/511keV/GalacticCDS - inputs_511keV_DC2.yaml - imagedeconvolution_parfile_gal_511keV.yml

+

You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files.

+
+
[ ]:
+
+
+
# Response file:
+# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz
+# File size: 3.82 GB
+fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz')
+os.system('gunzip psr_gal_511_DC2.h5.gz')
+
+
+
+
+
[ ]:
+
+
+
# Source file (511 keV thin disk model):
+# wasabi path: COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz
+# File size: 202.45 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# Background file (albedo gamma):
+# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz
+# File size: 2.69 GB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')
+
+
+
+
+
+

1. Create binned event/background files in the Galactic coordinate system

+

please modify “path_data” corresponding to your environment.

+
+
[3]:
+
+
+
path_data = "path/to/data/"
+
+
+
+

Source

+
+
[4]:
+
+
+
%%time
+
+signal_filepath = path_data + "511_thin_disk_3months_unbinned_data.fits.gz"
+
+binned_signal = BinnedData(input_yaml = "inputs_511keV_DC2.yaml")
+
+binned_signal.get_binned_data(unbinned_data = signal_filepath, psichi_binning="galactic")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+CPU times: user 7.75 s, sys: 255 ms, total: 8 s
+Wall time: 8.06 s
+
+
+

Background

+
+
[5]:
+
+
+
%%time
+
+bkg_filepath = path_data + "albedo_photons_3months_unbinned_data.fits.gz"
+
+binned_bkg = BinnedData(input_yaml = "inputs_511keV_DC2.yaml")
+
+binned_bkg.get_binned_data(unbinned_data = bkg_filepath, psichi_binning="galactic")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+CPU times: user 1min 51s, sys: 3.96 s, total: 1min 55s
+Wall time: 1min 55s
+
+
+

Convert the data into sparse matrices & add the signal to the background

+
+
[7]:
+
+
+
signal = binned_signal.binned_data.to_dense()
+bkg = binned_bkg.binned_data.to_dense()
+event = signal + bkg
+
+
+
+

Save the binned histograms

+
+
[8]:
+
+
+
signal.write("511keV_dc2_galactic_signal.hdf5", overwrite = True)
+bkg.write("511keV_dc2_galactic_bkg.hdf5", overwrite = True)
+event.write("511keV_dc2_galactic_event.hdf5", overwrite = True)
+
+
+
+

Load the saved files

+
+
[9]:
+
+
+
signal = Histogram.open("511keV_dc2_galactic_signal.hdf5")
+bkg = Histogram.open("511keV_dc2_galactic_bkg.hdf5")
+event = Histogram.open("511keV_dc2_galactic_event.hdf5")
+
+
+
+

In DC2, the number of time bins should be 1 when you perform the image deconvolution using the galactic CDS. It is because the pre-computed response files in the galactic coordinate have no time axis, and all of the events are assumed to be projected into a single galactic CDS. In the future, we plan to introduce more flexible binning.

+
+
[10]:
+
+
+
bkg.axes['Time'].edges
+
+
+
+
+
[10]:
+
+
+
+
+$[1.8354873 \times 10^{9},~1.8434673 \times 10^{9}] \; \mathrm{s}$
+
+
+
+

2. Load the response matrix

+
+
[11]:
+
+
+
%%time
+
+response_path = path_data + "psr_gal_511_DC2.h5"
+
+image_response = Histogram.open(response_path)
+
+
+
+
+
+
+
+
+CPU times: user 3.61 s, sys: 25.7 s, total: 29.3 s
+Wall time: 47.9 s
+
+
+
+
[12]:
+
+
+
image_response.axes.labels
+
+
+
+
+
[12]:
+
+
+
+
+array(['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi'], dtype='<U8')
+
+
+
+
[13]:
+
+
+
image_response.contents.shape
+
+
+
+
+
[13]:
+
+
+
+
+(3072, 1, 1, 60, 3072)
+
+
+
+
+

3. Prepare a ‘fake’ coordsys conversion matrix

+

The coordsys conversion matrix was initially introduced to convert a model map in the Galactic coordinates into the local coordinates. In the case of this notebook, the CDS is in the Galactic coordinates; thus, ideally, we do not have to convert the coordinates of the model map. However, as for now, the code for the image deconvolution was mainly developed for the CDS in the local coordinates and requires the conversion matrix, so here, we generate a ‘fake’ coordinate conversion matrix, which is +an unit matrix. Then, the same code can be applied for both methods. We will consider removing this fake coordinate conversion matrix in the future.

+
+
[17]:
+
+
+
nside = image_response.axes['NuLambda'].nside
+nside
+
+
+
+
+
[17]:
+
+
+
+
+16
+
+
+
+
[18]:
+
+
+
axes = [event.axes['Time'],
+        HealpixAxis(nside = nside, coordsys = "galactic", label = "lb"),
+        HealpixAxis(nside = nside, coordsys = "galactic", label = "NuLambda")]
+
+ccm = CoordsysConversionMatrix(axes, binning_method = 'Time', unit = u.dimensionless_unscaled, sparse = True)
+
+for ipix in range(axes[1].npix):
+    ccm[:,ipix,ipix] = 1 * u.dimensionless_unscaled
+
+
+
+
+
[19]:
+
+
+
ccm.contents
+
+
+
+
+
[19]:
+
+
+
+
Formatcoo
Data Typefloat64
Shape(1, 3072, 3072)
nnz3072
Density0.0003255208333333333
Read-onlyTrue
Size96.0K
Storage ratio0.0
+
+
+
+

4. Imaging deconvolution

+
+

Brief overview of the image deconvolution

+

Basically, we have to maximize the following likelihood function

+
+\[\log L = \sum_i X_i \log \epsilon_i - \sum_i \epsilon_i\]
+

\(X_i\): detected counts at \(i\)-th bin ( \(i\) : index of the Compton Data Space)

+

\(\epsilon_i = \sum_j R_{ij} \lambda_j + b_i\) : expected counts ( \(j\) : index of the model space)

+

\(\lambda_j\) : the model map (basically gamma-ray flux at \(j\)-th pixel)

+

\(b_i\) : the background at \(i\)-th bin

+

\(R_{ij}\) : the response matrix

+

Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.

+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \delta \lambda_{j}^{k}\]
+
+\[\delta \lambda_{j}^{k} = \frac{\lambda_{j}^{k}}{\sum_{i} R_{ij}} \sum_{i} \left(\frac{ X_{i} }{\epsilon_{i}} - 1 \right) R_{ij}\]
+

We refer to \(\delta \lambda_{j}^{k}\) as the delta map.

+

As for now, the two improved algorithms are implemented in COSIpy.

+
    +
  • Accelerated ML-EM algorithm (Knoedlseder+99)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \delta \lambda_{j}^{k}\]
+
+\[\alpha^{k} < \mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k})\]
+

Practically, in order not to accelerate the algorithm excessively, we set the maximum value of \(\alpha\) (\(\alpha_{\mathrm{max}}\)). Then, \(\alpha\) is calculated as:

+
+\[\alpha^{k} = \mathrm{min}(\mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k}), \alpha_{\mathrm{max}})\]
+
    +
  • Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \left[ w_j \delta \lambda_{j}^{k} \right]_{\mathrm{gauss}}\]
+
+\[w_j = \left(\sum_{i} R_{ij}\right)^\beta\]
+

\(\left[ ... \right]_{\mathrm{gauss}}\) means that the differential image is smoothed by a gaussian filter.

+
+
+

4-1. Prepare DataLoader containing all neccesary datasets

+
+
[20]:
+
+
+
dataloader = DataLoader()
+
+dataloader.event_dense = event
+dataloader.bkg_dense = bkg
+
+# the loaded response matrix should be assigned to both full_detector_response/image_response_dense in the Galactic CDS method.
+dataloader.full_detector_response = image_response
+dataloader.image_response_dense = image_response
+
+dataloader.response_on_memory = True
+dataloader.coordsys_conv_matrix = ccm
+
+
+
+
+
[21]:
+
+
+
dataloader._modify_axes()
+
+
+
+
+
+
+
+
+... checking the axis Time of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Em of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Phi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis PsiChi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+...checking the axis Em of the event and response files...
+    --> pass (edges)
+...checking the axis Phi of the event and response files...
+    --> pass (edges)
+...checking the axis PsiChi of the event and response files...
+    --> pass (edges)
+The axes in the event and background files are redefined. Now they are consistent with those of the response file.
+
+
+
+
+
+
+
+
+WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.
+
+
+WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.
+
+
+
+

(In the future, we plan to remove the method “_modify_axes.”)

+

Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space (\(\sum_{i} R_{ij}\)). Currently, it is mandatory to run this command for the image deconvolution.

+
+
[22]:
+
+
+
%%time
+
+dataloader.calc_image_response_projected()
+
+
+
+
+
+
+
+
+... (DataLoader) calculating a projected image response ...
+CPU times: user 395 ms, sys: 340 ms, total: 735 ms
+Wall time: 735 ms
+
+
+
+
+

4-3. Initialize the instance of the image deconvolution class

+

First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation.

+

please modify this parameter_filepath corresponding to your environment.

+
+
[23]:
+
+
+
parameter_filepath = "imagedeconvolution_parfile_gal_511keV.yml"
+
+
+
+
+
[24]:
+
+
+
image_deconvolution = ImageDeconvolution()
+
+# set dataloader to image_deconvolution
+image_deconvolution.set_data(dataloader)
+
+# set a parameter file for the image deconvolution
+image_deconvolution.read_parameterfile(parameter_filepath)
+
+
+
+
+
+
+
+
+data for image deconvolution was set ->  <cosipy.image_deconvolution.data_loader.DataLoader object at 0x2f41b8280>
+parameter file for image deconvolution was set ->  imagedeconvolution_parfile_gal_511keV.yml
+
+
+
+

Initialize image_deconvolution

+

In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.

+

I describe parameters in the parameter file.

+
+

model_property

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

coordinate

str

the coordinate system of the model map

As for now, it must be ‘galactic’

nside

int

NSIDE of the model map

it must be the same as NSIDE of ‘lb’ axis of the coordinate conversion matrix

scheme

str

SCHEME of the model map

As for now, it must be ‘ring’

energy_edges

list of float [keV]

The definition of the energy bins of the model map

As for now, it must be the same as that of the response matrix

+
+
+

model_initialization

+ + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the method name to initialize the model map

As for now, only ‘flat’ can be used

parameter_flat:values

list of float [cm-2 s-1 sr-1]

the list of photon fluxes for each energy band

the length of the list should be the same as the length of “energy_edges” - 1

+
+
+

deconvolution

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the name of the image deconvolution algorithm

As for now, only ‘RL’ is supported

parameter_RL:iteration

int

The maximum number of the iteration

parameter_RL:acceleration

bool

whether the accelerated ML-EM algorithm (Knoedlseder+99) is used

parameter_RL:alpha_max

float

the maximum value for the acceleration parameter

parameter_RL:save_results_each_iteration

bool

whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration

parameter_RL:response_weighting

bool

whether a delta map is renormalized based on the exposure time on each pixel, namely +\(w_j = (\sum_{i} R_{ij})^{\beta}\) (see Knoedlseder+05, Siegert+20)

parameter_RL:response_weighting_index

float

\(\beta\) in the above equation

parameter_RL:smoothing

bool

whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20)

parameter_RL:smoothing_FWHM

float, degree

the FWHM of the Gaussian in the filter

parameter_RL:background_normalization_fitting

bool

whether the background normalization factor is optimized at each iteration

As for now, the single background normalization factor is used in all of the bins

parameter_RL:background_normalization_range

list of float

the range of the normalization factor

should be positive

+
+
[25]:
+
+
+
image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 509.0
+- 513.0
+nside: 16
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10.0
+  background_normalization_fitting: false
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 10
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 2.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

(You can change the parameters as follows)

+

Note that when you modify the parameters, do not forget to run “initialize” again!

+
+
[26]:
+
+
+
image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 50")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:background_normalization_fitting = True")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:alpha_max = 5.0")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:smoothing_FWHM = 3.0")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:response_weighting = False")
+
+image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 509.0
+- 513.0
+nside: 16
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 5.0
+  background_normalization_fitting: true
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 50
+  response_weighting: false
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 3.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

4-5. Start the image deconvolution

+

With MacBook Pro with M1 Max and 64 GB memory, it takes about 1.5 minutes for 50 iterations.

+
+
[27]:
+
+
+
%%time
+
+all_results = image_deconvolution.run_deconvolution()
+
+
+
+
+
+
+
+
+#### Deconvolution Starts ####
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Iteration 1/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+
+
+
+
+
+
+
+
+WARNING RuntimeWarning: invalid value encountered in divide
+
+
+
+
+
+
+
+
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 386050.327946638
+    background_normalization: 1.1900860583584663
+  Iteration 2/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 400418.0610733818
+    background_normalization: 1.1604351059838505
+  Iteration 3/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 411089.6070768463
+    background_normalization: 1.0528532374315778
+  Iteration 4/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 412844.82476469607
+    background_normalization: 1.0586383806179276
+  Iteration 5/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 405718.57862391905
+    background_normalization: 0.9646219744282969
+  Iteration 6/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 415983.925941571
+    background_normalization: 1.1066673898750912
+  Iteration 7/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 416858.4161653833
+    background_normalization: 1.0806318578055656
+  Iteration 8/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 414257.0394215712
+    background_normalization: 1.0102344432919617
+  Iteration 9/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 417764.7103005161
+    background_normalization: 1.0821152684078852
+  Iteration 10/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 418085.83036392974
+    background_normalization: 1.0628439330942752
+  Iteration 11/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 416671.5483449631
+    background_normalization: 1.01071378053145
+  Iteration 12/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 418586.7202159421
+    background_normalization: 1.06125861498167
+  Iteration 13/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 418748.2154258507
+    background_normalization: 1.046438809261912
+  Iteration 14/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 417929.9387790803
+    background_normalization: 1.0064089218442853
+  Iteration 15/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419053.901413677
+    background_normalization: 1.044315278190893
+  Iteration 16/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419142.6261917602
+    background_normalization: 1.032928348339306
+  Iteration 17/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 418668.7303367079
+    background_normalization: 1.0022726458324056
+  Iteration 18/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419331.81249085104
+    background_normalization: 1.0310819169451524
+  Iteration 19/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419384.6657808487
+    background_normalization: 1.022400747988371
+  Iteration 20/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419117.17787774315
+    background_normalization: 0.9990969032872745
+  Iteration 21/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419503.1781891738
+    background_normalization: 1.020903831468017
+  Iteration 22/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419537.4338580138
+    background_normalization: 1.0143336117743598
+  Iteration 23/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419391.0999065008
+    background_normalization: 0.996731360121657
+  Iteration 24/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419612.81397406233
+    background_normalization: 1.0131337570188672
+  Iteration 25/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419636.6847504409
+    background_normalization: 1.0081895689199645
+  Iteration 26/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419559.4179241776
+    background_normalization: 0.9949613976847363
+  Iteration 27/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419685.6098920044
+    background_normalization: 1.007241126899907
+  Iteration 28/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419703.1797833361
+    background_normalization: 1.0035377514781483
+  Iteration 29/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419664.32482954196
+    background_normalization: 0.9936399908743172
+  Iteration 30/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419487.46208422736
+    background_normalization: 1.0028055191196619
+  Iteration 31/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 418669.1558819624
+    background_normalization: 0.9799331479447816
+  Iteration 32/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419634.10911400197
+    background_normalization: 1.0211029605768254
+  Iteration 33/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419659.03221757046
+    background_normalization: 1.0136432733397405
+  Iteration 34/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419411.490253184
+    background_normalization: 0.9943973775742112
+  Iteration 35/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419725.5587795917
+    background_normalization: 1.015325684269482
+  Iteration 36/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419738.1626685151
+    background_normalization: 1.0099456346378402
+  Iteration 37/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419626.3826360004
+    background_normalization: 0.9957165764734817
+  Iteration 38/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419778.6108548996
+    background_normalization: 1.009612147376651
+  Iteration 39/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419787.8858903183
+    background_normalization: 1.0056281285483295
+  Iteration 40/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419731.6003448446
+    background_normalization: 0.9950185424057802
+  Iteration 41/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419813.53259433387
+    background_normalization: 1.0050135239487987
+  Iteration 42/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419820.6780524987
+    background_normalization: 1.002046819706305
+  Iteration 43/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419792.0089048097
+    background_normalization: 0.9941334048497183
+  Iteration 44/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419672.64219748904
+    background_normalization: 1.001496431493074
+  Iteration 45/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419151.89420566417
+    background_normalization: 0.9830572014967464
+  Iteration 46/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419768.8962983411
+    background_normalization: 1.0159118239103546
+  Iteration 47/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419781.17991715414
+    background_normalization: 1.0099829791967136
+  Iteration 48/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419623.7705518758
+    background_normalization: 0.994708877170725
+  Iteration 49/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 419821.7835588583
+    background_normalization: 1.0112793627463252
+  Iteration 50/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> stop
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 419827.8357267488
+    background_normalization: 1.0070105323513425
+#### Done ####
+
+CPU times: user 3min 26s, sys: 2min 3s, total: 5min 30s
+Wall time: 1min 25s
+
+
+
+
[28]:
+
+
+
import pprint
+
+pprint.pprint(all_results)
+
+
+
+
+
+
+
+
+[{'alpha': 1.0,
+  'background_normalization': 1.1900860583584663,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2babfa860>,
+  'iteration': 1,
+  'loglikelihood': 386050.327946638,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2babf8040>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2edeee560>},
+ {'alpha': 5.0,
+  'background_normalization': 1.1604351059838505,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ee501db0>,
+  'iteration': 2,
+  'loglikelihood': 400418.0610733818,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62560>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ee501ea0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0528532374315778,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2f41a6440>,
+  'iteration': 3,
+  'loglikelihood': 411089.6070768463,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea61180>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2f41a4b20>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0586383806179276,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2efc4df30>,
+  'iteration': 4,
+  'loglikelihood': 412844.82476469607,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60d60>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2edeed720>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9646219744282969,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b61bb370>,
+  'iteration': 5,
+  'loglikelihood': 405718.57862391905,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea602b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60250>},
+ {'alpha': 1.0,
+  'background_normalization': 1.1066673898750912,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60640>,
+  'iteration': 6,
+  'loglikelihood': 415983.925941571,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60490>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60760>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0806318578055656,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea61240>,
+  'iteration': 7,
+  'loglikelihood': 416858.4161653833,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea614b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea613c0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0102344432919617,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62380>,
+  'iteration': 8,
+  'loglikelihood': 414257.0394215712,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62680>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea61ab0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0821152684078852,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62f20>,
+  'iteration': 9,
+  'loglikelihood': 417764.7103005161,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62ec0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62d10>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0628439330942752,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60c70>,
+  'iteration': 10,
+  'loglikelihood': 418085.83036392974,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91f9a0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60c40>},
+ {'alpha': 5.0,
+  'background_normalization': 1.01071378053145,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60550>,
+  'iteration': 11,
+  'loglikelihood': 416671.5483449631,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91d060>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea61bd0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.06125861498167,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91d450>,
+  'iteration': 12,
+  'loglikelihood': 418586.7202159421,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91d360>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91cd00>},
+ {'alpha': 5.0,
+  'background_normalization': 1.046438809261912,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62920>,
+  'iteration': 13,
+  'loglikelihood': 418748.2154258507,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc8b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea636a0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0064089218442853,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea61720>,
+  'iteration': 14,
+  'loglikelihood': 417929.9387790803,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bd1b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60e80>},
+ {'alpha': 1.0,
+  'background_normalization': 1.044315278190893,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91fe50>,
+  'iteration': 15,
+  'loglikelihood': 419053.901413677,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bff10>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91c850>},
+ {'alpha': 5.0,
+  'background_normalization': 1.032928348339306,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62860>,
+  'iteration': 16,
+  'loglikelihood': 419142.6261917602,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9beb00>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea60460>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0022726458324056,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91c880>,
+  'iteration': 17,
+  'loglikelihood': 418668.7303367079,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bfa90>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91c970>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0310819169451524,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62bf0>,
+  'iteration': 18,
+  'loglikelihood': 419331.81249085104,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bde40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea63c10>},
+ {'alpha': 5.0,
+  'background_normalization': 1.022400747988371,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62020>,
+  'iteration': 19,
+  'loglikelihood': 419384.6657808487,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bd630>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea61c00>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9990969032872745,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e91c910>,
+  'iteration': 20,
+  'loglikelihood': 419117.17787774315,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bee60>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2f3d14be0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.020903831468017,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea63400>,
+  'iteration': 21,
+  'loglikelihood': 419503.1781891738,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be200>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea62350>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0143336117743598,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea61a20>,
+  'iteration': 22,
+  'loglikelihood': 419537.4338580138,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bd360>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42ea624a0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.996731360121657,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc520>,
+  'iteration': 23,
+  'loglikelihood': 419391.0999065008,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be4d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc670>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0131337570188672,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc190>,
+  'iteration': 24,
+  'loglikelihood': 419612.81397406233,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc790>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc6d0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0081895689199645,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bfb50>,
+  'iteration': 25,
+  'loglikelihood': 419636.6847504409,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bef20>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bf2b0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9949613976847363,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be2c0>,
+  'iteration': 26,
+  'loglikelihood': 419559.4179241776,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be320>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc2e0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.007241126899907,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bf730>,
+  'iteration': 27,
+  'loglikelihood': 419685.6098920044,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e996fb0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bed10>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0035377514781483,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bd4b0>,
+  'iteration': 28,
+  'loglikelihood': 419703.1797833361,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e996da0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be3b0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9936399908743172,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bda20>,
+  'iteration': 29,
+  'loglikelihood': 419664.32482954196,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e997e80>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bcf10>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0028055191196619,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bffd0>,
+  'iteration': 30,
+  'loglikelihood': 419487.46208422736,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e997460>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc160>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9799331479447816,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bc880>,
+  'iteration': 31,
+  'loglikelihood': 418669.1558819624,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994880>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bcd00>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0211029605768254,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be0e0>,
+  'iteration': 32,
+  'loglikelihood': 419634.10911400197,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9944f0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be260>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0136432733397405,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bf460>,
+  'iteration': 33,
+  'loglikelihood': 419659.03221757046,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994c40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bf850>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9943973775742112,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bf5e0>,
+  'iteration': 34,
+  'loglikelihood': 419411.490253184,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e995870>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bd000>},
+ {'alpha': 1.0,
+  'background_normalization': 1.015325684269482,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bfeb0>,
+  'iteration': 35,
+  'loglikelihood': 419725.5587795917,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e997520>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bf220>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0099456346378402,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994cd0>,
+  'iteration': 36,
+  'loglikelihood': 419738.1626685151,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e898400>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e996d10>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9957165764734817,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be800>,
+  'iteration': 37,
+  'loglikelihood': 419626.3826360004,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89beb0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bf010>},
+ {'alpha': 1.0,
+  'background_normalization': 1.009612147376651,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e995390>,
+  'iteration': 38,
+  'loglikelihood': 419778.6108548996,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e8991b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9973d0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0056281285483295,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994e50>,
+  'iteration': 39,
+  'loglikelihood': 419787.8858903183,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e899360>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e995f90>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9950185424057802,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9943a0>,
+  'iteration': 40,
+  'loglikelihood': 419731.6003448446,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e898880>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e997340>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0050135239487987,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994820>,
+  'iteration': 41,
+  'loglikelihood': 419813.53259433387,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e898a00>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e995000>},
+ {'alpha': 5.0,
+  'background_normalization': 1.002046819706305,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e995330>,
+  'iteration': 42,
+  'loglikelihood': 419820.6780524987,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89bd30>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e995cf0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9941334048497183,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9970a0>,
+  'iteration': 43,
+  'loglikelihood': 419792.0089048097,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89a080>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994520>},
+ {'alpha': 5.0,
+  'background_normalization': 1.001496431493074,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e995f30>,
+  'iteration': 44,
+  'loglikelihood': 419672.64219748904,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89a230>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994df0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9830572014967464,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9941c0>,
+  'iteration': 45,
+  'loglikelihood': 419151.89420566417,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89bc10>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e994280>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0159118239103546,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9bfc40>,
+  'iteration': 46,
+  'loglikelihood': 419768.8962983411,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89b250>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e9be980>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0099829791967136,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89b1c0>,
+  'iteration': 47,
+  'loglikelihood': 419781.17991715414,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89ac20>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89aa10>},
+ {'alpha': 5.0,
+  'background_normalization': 0.994708877170725,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89a3e0>,
+  'iteration': 48,
+  'loglikelihood': 419623.7705518758,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89a470>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89bfd0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0112793627463252,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e8999c0>,
+  'iteration': 49,
+  'loglikelihood': 419821.7835588583,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89a650>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89b400>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0070105323513425,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e89ba90>,
+  'iteration': 50,
+  'loglikelihood': 419827.8357267488,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e921db0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42e899030>}]
+
+
+

(If you want, you can save the results in the directory “./results” as follows)

+
+
[29]:
+
+
+
import os
+
+os.mkdir("./results")
+
+for result in all_results:
+    iteration = result['iteration']
+    result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')
+
+    with open(f'./results/result_itr{iteration}.txt', 'w') as f:
+        paramlist = ['alpha', 'loglikelihood', 'background_normalization']
+
+        for param in paramlist:
+            value = result[param]
+            f.write(f'{param}: {value}\n')
+
+
+
+
+
+
+

5. Analyze the results

+

Examples to see/analyze the results are shown below.

+
+

Log-likelihood

+

Plotting the log-likelihood vs the number of iterations

+
+
[30]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['loglikelihood'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("loglikelihood")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_52_0.png +
+
+
+
+

Alpha (the factor used for the acceleration)

+

Plotting \(\alpha\) vs the number of iterations. \(\alpha\) is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts.

+
+
[31]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['alpha'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("alpha")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_54_0.png +
+
+
+
+

Background normalization

+

Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1.

+
+
[32]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['background_normalization'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("background_normalization")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_56_0.png +
+
+
+
+

The reconstructed images

+
+
[33]:
+
+
+
def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['model_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the reconstructed images in all of the energy bands at the 50th iteration

+
+
[34]:
+
+
+
iteration = 49
+
+plot_reconstructed_image(all_results[iteration])
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_60_0.png +
+
+

An example to plot the image in the log scale

+
+
[35]:
+
+
+
iteration_idx = 49
+
+result = all_results[iteration_idx]
+
+iteration = result['iteration']
+image = result['model_map']
+
+data = image[:,0]
+data[data <= 0 * data.unit] = 1e-12 * data.unit
+
+hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')
+
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_GalacticCDS_511keV-DC2-Galactic-ImageDeconvolution_62_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb b/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb new file mode 100644 index 00000000..774c718b --- /dev/null +++ b/tutorials/image_deconvolution/511keV/GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb @@ -0,0 +1,2381 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# DC2 Image Analysis, 511 keV, Image Deconvolution using CDS in the Galactic coordinate system\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on the image deconvolution with the Compton data space (CDS) in the Galactic coordinate system.\n", + "An example of the image analysis will be presented using the 511keV thin disk 3-month simulation data created for DC2.\n", + "\n", + "In DC2, we have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) in the image deconvolution. Please also check the notes written in 511keV-DC2-ScAtt-DataReduction.ipynb." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e751bbd5", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import os\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz (please gunzip it)\n", + " - a pre-computed 511 keV line response file converted into the Galactic coordinate system\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/GalacticCDS\n", + "- inputs_511keV_DC2.yaml\n", + "- imagedeconvolution_parfile_gal_511keV.yml" + ] + }, + { + "cell_type": "markdown", + "id": "cbb84ad7-5fcb-4a56-abc3-6acac81c0879", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cafd42c7-7f7f-4e6e-acd7-8e76eb5160dc", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz\n", + "# File size: 3.82 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz')\n", + "os.system('gunzip psr_gal_511_DC2.h5.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ae368f5f-2d30-4ba6-a152-c5bbb4187471", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (511 keV thin disk model):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "# File size: 202.45 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dddb7361-a523-42b4-93fe-da0b3ce75deb", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 1. Create binned event/background files in the Galactic coordinate system\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "markdown", + "id": "90fec91e-8209-4f03-bbe3-b9acb78682b8", + "metadata": {}, + "source": [ + "**Source**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9cae1835-e54b-4720-b3a6-196c42cbd1ce", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 7.75 s, sys: 255 ms, total: 8 s\n", + "Wall time: 8.06 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "signal_filepath = path_data + \"511_thin_disk_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_signal = BinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "binned_signal.get_binned_data(unbinned_data = signal_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "3544076d-3475-48d6-9aec-55dab18567c2", + "metadata": {}, + "source": [ + "**Background**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "801ba251-96e0-4243-8f55-1678823f1d58", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 1min 51s, sys: 3.96 s, total: 1min 55s\n", + "Wall time: 1min 55s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "bkg_filepath = path_data + \"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_bkg = BinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "binned_bkg.get_binned_data(unbinned_data = bkg_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "4eb8577f-d394-49b9-a13f-a527d4512f77", + "metadata": {}, + "source": [ + "Convert the data into sparse matrices & add the signal to the background" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f224b957-d0df-4b4b-98dd-90d3a5bda3fb", + "metadata": {}, + "outputs": [], + "source": [ + "signal = binned_signal.binned_data.to_dense()\n", + "bkg = binned_bkg.binned_data.to_dense()\n", + "event = signal + bkg" + ] + }, + { + "cell_type": "markdown", + "id": "217e40dd-5587-4c43-bb77-44ddba2a8dbb", + "metadata": {}, + "source": [ + "Save the binned histograms" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "24289425-380b-4d26-a7c0-cbbd5c58e7b2", + "metadata": {}, + "outputs": [], + "source": [ + "signal.write(\"511keV_dc2_galactic_signal.hdf5\", overwrite = True)\n", + "bkg.write(\"511keV_dc2_galactic_bkg.hdf5\", overwrite = True)\n", + "event.write(\"511keV_dc2_galactic_event.hdf5\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "badfd194-59f0-46d4-90b3-73cce60207c8", + "metadata": {}, + "source": [ + "Load the saved files" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e0f3dcae-5d3c-45af-931d-057d5681859c", + "metadata": {}, + "outputs": [], + "source": [ + "signal = Histogram.open(\"511keV_dc2_galactic_signal.hdf5\")\n", + "bkg = Histogram.open(\"511keV_dc2_galactic_bkg.hdf5\")\n", + "event = Histogram.open(\"511keV_dc2_galactic_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "0e7bb933-0ec0-47af-a18c-ac241abfea82", + "metadata": {}, + "source": [ + "In DC2, the number of time bins should be 1 when you perform the image deconvolution using the galactic CDS.\n", + "It is because the pre-computed response files in the galactic coordinate have no time axis, and all of the events are assumed to be projected into a single galactic CDS.\n", + "In the future, we plan to introduce more flexible binning." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "88efdbfa-aa5e-40b3-bdd6-2635946318e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[1.8354873 \\times 10^{9},~1.8434673 \\times 10^{9}] \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bkg.axes['Time'].edges" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 2. Load the response matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b5b295cf-0a96-4501-aa4e-4182a21dfe63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 3.61 s, sys: 25.7 s, total: 29.3 s\n", + "Wall time: 47.9 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "response_path = path_data + \"psr_gal_511_DC2.h5\"\n", + "\n", + "image_response = Histogram.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "fbdbd818-8a58-4d25-a657-d43fc7f88ea4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi'], dtype='FormatcooData Typefloat64Shape(1, 3072, 3072)nnz3072Density0.0003255208333333333Read-onlyTrueSize96.0KStorage ratio0.0" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ccm.contents" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader()\n", + "\n", + "dataloader.event_dense = event\n", + "dataloader.bkg_dense = bkg\n", + "\n", + "# the loaded response matrix should be assigned to both full_detector_response/image_response_dense in the Galactic CDS method.\n", + "dataloader.full_detector_response = image_response\n", + "dataloader.image_response_dense = image_response \n", + "\n", + "dataloader.response_on_memory = True\n", + "dataloader.coordsys_conv_matrix = ccm" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis Time of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 395 ms, sys: 340 ms, total: 735 ms\n", + "Wall time: 735 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_gal_511keV.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_gal_511keV.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 509.0\n", + "- 513.0\n", + "nside: 16\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f867026503df4ec38a7742788ff48203", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3072 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 386050.327946638\n", + " background_normalization: 1.1900860583584663\n", + " Iteration 2/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 400418.0610733818\n", + " background_normalization: 1.1604351059838505\n", + " Iteration 3/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 411089.6070768463\n", + " background_normalization: 1.0528532374315778\n", + " Iteration 4/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 412844.82476469607\n", + " background_normalization: 1.0586383806179276\n", + " Iteration 5/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 405718.57862391905\n", + " background_normalization: 0.9646219744282969\n", + " Iteration 6/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 415983.925941571\n", + " background_normalization: 1.1066673898750912\n", + " Iteration 7/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 416858.4161653833\n", + " background_normalization: 1.0806318578055656\n", + " Iteration 8/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 414257.0394215712\n", + " background_normalization: 1.0102344432919617\n", + " Iteration 9/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 417764.7103005161\n", + " background_normalization: 1.0821152684078852\n", + " Iteration 10/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418085.83036392974\n", + " background_normalization: 1.0628439330942752\n", + " Iteration 11/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 416671.5483449631\n", + " background_normalization: 1.01071378053145\n", + " Iteration 12/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 418586.7202159421\n", + " background_normalization: 1.06125861498167\n", + " Iteration 13/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418748.2154258507\n", + " background_normalization: 1.046438809261912\n", + " Iteration 14/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 417929.9387790803\n", + " background_normalization: 1.0064089218442853\n", + " Iteration 15/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419053.901413677\n", + " background_normalization: 1.044315278190893\n", + " Iteration 16/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419142.6261917602\n", + " background_normalization: 1.032928348339306\n", + " Iteration 17/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418668.7303367079\n", + " background_normalization: 1.0022726458324056\n", + " Iteration 18/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419331.81249085104\n", + " background_normalization: 1.0310819169451524\n", + " Iteration 19/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419384.6657808487\n", + " background_normalization: 1.022400747988371\n", + " Iteration 20/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419117.17787774315\n", + " background_normalization: 0.9990969032872745\n", + " Iteration 21/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419503.1781891738\n", + " background_normalization: 1.020903831468017\n", + " Iteration 22/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419537.4338580138\n", + " background_normalization: 1.0143336117743598\n", + " Iteration 23/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419391.0999065008\n", + " background_normalization: 0.996731360121657\n", + " Iteration 24/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419612.81397406233\n", + " background_normalization: 1.0131337570188672\n", + " Iteration 25/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419636.6847504409\n", + " background_normalization: 1.0081895689199645\n", + " Iteration 26/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419559.4179241776\n", + " background_normalization: 0.9949613976847363\n", + " Iteration 27/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419685.6098920044\n", + " background_normalization: 1.007241126899907\n", + " Iteration 28/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419703.1797833361\n", + " background_normalization: 1.0035377514781483\n", + " Iteration 29/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419664.32482954196\n", + " background_normalization: 0.9936399908743172\n", + " Iteration 30/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419487.46208422736\n", + " background_normalization: 1.0028055191196619\n", + " Iteration 31/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 418669.1558819624\n", + " background_normalization: 0.9799331479447816\n", + " Iteration 32/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419634.10911400197\n", + " background_normalization: 1.0211029605768254\n", + " Iteration 33/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419659.03221757046\n", + " background_normalization: 1.0136432733397405\n", + " Iteration 34/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419411.490253184\n", + " background_normalization: 0.9943973775742112\n", + " Iteration 35/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419725.5587795917\n", + " background_normalization: 1.015325684269482\n", + " Iteration 36/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419738.1626685151\n", + " background_normalization: 1.0099456346378402\n", + " Iteration 37/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419626.3826360004\n", + " background_normalization: 0.9957165764734817\n", + " Iteration 38/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419778.6108548996\n", + " background_normalization: 1.009612147376651\n", + " Iteration 39/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419787.8858903183\n", + " background_normalization: 1.0056281285483295\n", + " Iteration 40/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419731.6003448446\n", + " background_normalization: 0.9950185424057802\n", + " Iteration 41/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419813.53259433387\n", + " background_normalization: 1.0050135239487987\n", + " Iteration 42/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419820.6780524987\n", + " background_normalization: 1.002046819706305\n", + " Iteration 43/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419792.0089048097\n", + " background_normalization: 0.9941334048497183\n", + " Iteration 44/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419672.64219748904\n", + " background_normalization: 1.001496431493074\n", + " Iteration 45/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419151.89420566417\n", + " background_normalization: 0.9830572014967464\n", + " Iteration 46/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419768.8962983411\n", + " background_normalization: 1.0159118239103546\n", + " Iteration 47/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419781.17991715414\n", + " background_normalization: 1.0099829791967136\n", + " Iteration 48/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419623.7705518758\n", + " background_normalization: 0.994708877170725\n", + " Iteration 49/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 419821.7835588583\n", + " background_normalization: 1.0112793627463252\n", + " Iteration 50/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 419827.8357267488\n", + " background_normalization: 1.0070105323513425\n", + "#### Done ####\n", + "\n", + "CPU times: user 3min 26s, sys: 2min 3s, total: 5min 30s\n", + "Wall time: 1min 25s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': 1.0,\n", + " 'background_normalization': 1.1900860583584663,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 386050.327946638,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.1604351059838505,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 400418.0610733818,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0528532374315778,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 411089.6070768463,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0586383806179276,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 412844.82476469607,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9646219744282969,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 405718.57862391905,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.1066673898750912,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 415983.925941571,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0806318578055656,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 416858.4161653833,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0102344432919617,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 414257.0394215712,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0821152684078852,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 417764.7103005161,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0628439330942752,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 418085.83036392974,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.01071378053145,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 416671.5483449631,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.06125861498167,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 418586.7202159421,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.046438809261912,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 418748.2154258507,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0064089218442853,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 417929.9387790803,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.044315278190893,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 419053.901413677,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.032928348339306,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 419142.6261917602,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0022726458324056,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 418668.7303367079,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0310819169451524,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 419331.81249085104,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.022400747988371,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 419384.6657808487,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9990969032872745,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 419117.17787774315,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.020903831468017,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': 419503.1781891738,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0143336117743598,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': 419537.4338580138,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.996731360121657,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': 419391.0999065008,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0131337570188672,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': 419612.81397406233,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0081895689199645,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': 419636.6847504409,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9949613976847363,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': 419559.4179241776,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.007241126899907,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': 419685.6098920044,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0035377514781483,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': 419703.1797833361,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9936399908743172,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': 419664.32482954196,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0028055191196619,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': 419487.46208422736,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9799331479447816,\n", + " 'delta_map': ,\n", + " 'iteration': 31,\n", + " 'loglikelihood': 418669.1558819624,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0211029605768254,\n", + " 'delta_map': ,\n", + " 'iteration': 32,\n", + " 'loglikelihood': 419634.10911400197,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0136432733397405,\n", + " 'delta_map': ,\n", + " 'iteration': 33,\n", + " 'loglikelihood': 419659.03221757046,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9943973775742112,\n", + " 'delta_map': ,\n", + " 'iteration': 34,\n", + " 'loglikelihood': 419411.490253184,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.015325684269482,\n", + " 'delta_map': ,\n", + " 'iteration': 35,\n", + " 'loglikelihood': 419725.5587795917,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0099456346378402,\n", + " 'delta_map': ,\n", + " 'iteration': 36,\n", + " 'loglikelihood': 419738.1626685151,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9957165764734817,\n", + " 'delta_map': ,\n", + " 'iteration': 37,\n", + " 'loglikelihood': 419626.3826360004,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.009612147376651,\n", + " 'delta_map': ,\n", + " 'iteration': 38,\n", + " 'loglikelihood': 419778.6108548996,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0056281285483295,\n", + " 'delta_map': ,\n", + " 'iteration': 39,\n", + " 'loglikelihood': 419787.8858903183,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9950185424057802,\n", + " 'delta_map': ,\n", + " 'iteration': 40,\n", + " 'loglikelihood': 419731.6003448446,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0050135239487987,\n", + " 'delta_map': ,\n", + " 'iteration': 41,\n", + " 'loglikelihood': 419813.53259433387,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.002046819706305,\n", + " 'delta_map': ,\n", + " 'iteration': 42,\n", + " 'loglikelihood': 419820.6780524987,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9941334048497183,\n", + " 'delta_map': ,\n", + " 'iteration': 43,\n", + " 'loglikelihood': 419792.0089048097,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.001496431493074,\n", + " 'delta_map': ,\n", + " 'iteration': 44,\n", + " 'loglikelihood': 419672.64219748904,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9830572014967464,\n", + " 'delta_map': ,\n", + " 'iteration': 45,\n", + " 'loglikelihood': 419151.89420566417,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0159118239103546,\n", + " 'delta_map': ,\n", + " 'iteration': 46,\n", + " 'loglikelihood': 419768.8962983411,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0099829791967136,\n", + " 'delta_map': ,\n", + " 'iteration': 47,\n", + " 'loglikelihood': 419781.17991715414,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.994708877170725,\n", + " 'delta_map': ,\n", + " 'iteration': 48,\n", + " 'loglikelihood': 419623.7705518758,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0112793627463252,\n", + " 'delta_map': ,\n", + " 'iteration': 49,\n", + " 'loglikelihood': 419821.7835588583,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0070105323513425,\n", + " 'delta_map': ,\n", + " 'iteration': 50,\n", + " 'loglikelihood': 419827.8357267488,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "1a69308c-c13b-4162-820a-7ac3a514e0ba", + "metadata": {}, + "source": [ + "**(If you want, you can save the results in the directory \"./results\" as follows)**" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "44d94156-fc95-43f0-ac56-3e784bbad1eb", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.mkdir(\"./results\")\n", + "\n", + "for result in all_results:\n", + " iteration = result['iteration']\n", + " result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')\n", + "\n", + " with open(f'./results/result_itr{iteration}.txt', 'w') as f:\n", + " paramlist = ['alpha', 'loglikelihood', 'background_normalization']\n", + "\n", + " for param in paramlist:\n", + " value = result[param]\n", + " f.write(f'{param}: {value}\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmUAAAG5CAYAAADPm0PuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxw0lEQVR4nO3dd3xUVeI28GdKMukZSKMkhhQICVWlEyAUKaJRFGR1WcCC5YVgWRfL6trwZ1nUDVJEoqKLUtRFwkpREVBwEUECmEAIkIQA6b1Mn3n/GOaSYUKYydQkz/ezfJK598y5N4fIPHvOueeIDAaDAURERETkVmJ33wARERERMZQREREReQSGMiIiIiIPwFBGRERE5AEYyoiIiIg8AEMZERERkQdgKCMiIiLyAAxl7YRSqURubi6USqW7b4WIiIicgKGsnSgsLMSCBQtQWFho83vPnj3rhDuia2F7uxbb27XY3q7F9nYtd7c3Q1knoFKp3H0LnQrb27XY3q7F9nYttrdrubu9GcqIiIiIPABDGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyAMwlBERERF5AIYyIiIiIg/AUEZERETkAaTuvoHr+eyzz5CRkYGYmBh8+umnAIxbDm3fvh379+/HuXPnoFAoEBkZidtvvx233347JBKJWR16vR4bN27EN998g6qqKkRGRmLOnDmYNGmSxfUKCgqwYsUKnDhxAlKpFCNHjsSiRYsgl8udXicRERF1Xh4dysrKyrB+/Xr4+vqaHb906RLS09Nx8803Y/bs2fDz88OhQ4fw7rvvIjs7G3//+9/Nyq9duxaff/45br/9dvTt2xf79+/Hq6++CpFIhIkTJ5pdLy0tDQEBAViwYAEUCgU2btyIc+fOYc2aNfDy8nJqnURERNR5eXQoW7VqFZKSkqDX61FbWysc79q1K9atW4eYmBjh2B133IE333wT27dvx7x58xAZGQkAKC8vx6ZNmzBjxgw8+eSTAIDbbrsNaWlpWLVqFVJSUoSetfXr10OpVCIjIwMREREAgMTERDz11FPYsWMHUlNTnVYnERERdW4eO6csKysL+/btQ1pamsU5uVxuFshMxowZAwBmm3bv378fWq0WM2bMEI6JRCLceeedKC8vR3Z2tnB83759GDVqlBCeAGDIkCGIiorCnj17nFonERERdW4eGcp0Oh3S09Mxffp0xMXFWf2+qqoqAEBwcLBwLC8vD76+voiOjjYrm5iYKJwHjL1f1dXVSEhIsKg3MTFRKOesOq9WUVGB3Nxc4U/zoElEREQdj0cOX27duhWlpaV47733rH6PRqPBl19+ie7du6Nv377C8crKSnTp0gUikcisfEhICABj+DGVa3786rJ1dXVQq9Xw9vZ2Sp1Xy8zMxLp16yyO5+fnQ6fTtdwI19DQ0ICcnByb3kNtx/Z2Lba3a7G9rWcwGAADYDDA+FXf/LUBYm8xxBJRq3W01N56nQGaRt3lP3ro1PrLF7xSt3DNy68BQCwVQSQVQSwVQSy5/LXZMYmXCF7+EojErd+Tqxgu3/fVn7W20OsMaCpTo7FUA732coMY/2fePpe/V6vUUNUehyzYsfEoKSnJqnIeF8pqa2vx8ccfY+7cuTY9nfivf/0LBQUFeOuttyCVXvmxVCpVi5PpTUFIpVKZfb1eWW9vb6fUebXU1FSMHj1aeF1YWIilS5ciJiamxZ631uTk5Fj9C0H2Y3u7Vmdub4PeAI1SC73WAL1OD73u8let4cr3OuOnjcRbAqm3BFIfCbxkEkhlEogltg+WtLf2bqpRoSirDMp6DQw6Awx6A/T6y18vvzYdk3pLEBDqg8BQXwSE+SIg1BdePtf+mNSqdai91Ijqiw2oudhg/HqhAfXlTZfb/fr3J/EWQ+bnBS8/KWR+XvD2k8Lbzwve/lJ4+0lRVqxGvUQFRa0Kilo1lHVqqBo1Dmwhc2KJCAGXf/7AMD8EhvsiMMwXgeF+CAzzhU+Qt10hCQCqL9Tj0Be5qDpfL/xdGHRX/l6a/91IvMQI7uGPLj0D0CUqEF0iA9AlMhCBYb4W4dFgMKChQoGyM7UoP1uD8jO1qCiovRJarXTzxAHontjVrp+xrTwulGVkZCAwMBB333231e/ZsGEDtm3bhgcffBAjR440OyeTyaDRWP4Cq9Vq4Xzzr9aWdXSdVwsNDUVoaGiL54jIMzVWKVFxrhYapRY6rTEc6TT6y9/rodPohdAklUngE+QN3yBv+Fz+4xvoDZ9Ab4ilV8KSTqNDfbkC9aVNqCtrQl2p8U99WRPqyxTQaWz7wGlOLBFBKjMFNSmCuvkhtFcQQi7/CQj1tfsDuCUlp6pQeKQMOrUOOlO7aA3Nvjd+hQgIiwtGz/6h6Na3S6sBqTllnRr5v5Xg3P+KUXKyytRR1CYyfy8EhPoYg0qoLyTeYtRcajSGr7Imu+oGAJ1ajya1CqhRtVKq3r6L2ECvMwi/Y0ClxXkvHwmih0Tg5ll9EBjma1lBq3XrceLbfBz5Ks/Ya2UFnUaPqsJ6VBXWAygWjktlEsh7BqBLZAD8u/qg6nw9ys7UQFmntumeWmKw9y/VDh4VyoqKirBt2zakpaUJQ4CAMcBotVoUFxfD398fQUFBwrkdO3bggw8+wB133IF58+ZZ1BkSEoKjR4/CYDCY/eNiGlo0BR/TEKPpeHOVlZUICgoSerScUScROUd9uTG8aFU6aNXGPzq13vhao4NWpYdOrYNILEJwd3/Ie/hD3jMAPoGt/7dpMBhQV9KEklNVKDlVjZJTVagvVzjknmX+XvAJ8oZWrUNjldKqHpe20OsMUDdpoW7SAlChtrgRRUfLze6ja3SgENJCewXZ/YGVu7cIP3/4h9XlS3Or8cf2AoilIkT06YIe/UPQs38oQmODIW7WU6Jq0KDgcAnO/a8El7IrjUOFDqBq1EDVqEFloXXBSOIlRlA3P0i9JIAYEIlFxvsUGb+KxJeH40SARqm73P4aqJs00Chan5ri5SOBb7AMPsHe8A2SwTfYGOq9fKUQiUUQiczrF46JjENzOo0eOs3lIKzWX359+ZhGD7VCi4ZyBerLm655LxqlDmf2X0L+ryXoP60XBt0RB2/f60eJ6gv1+GnNCZSfvbKSgqlXUGRqJ4nIeM9iU1uJoFZoUVfSZPH3qVXpUHGuFhXnaq++lJnAcF+Ex8sRGhts/G9aBKFNcPmrsZ0AQIQLF4vQNTLwuj+Ps3hUKKuoqIBer0d6ejrS09Mtzs+ePRszZ87E4sWLAQA///wz3n77bYwdO1ZYmuJq8fHx+O9//4vCwkL06tVLOG4ao4+PjwcAhIWFQS6XIzc316KOkydPCuWcVScRXWHQG3tNpN6S6xdugV6nx/nfy5Dz3Xlcyrb8P0XW8An0grxnAIK7B0De0x/yHgGQBXih7EwNSk9VoyS3Copa+/9feUtMQaA1Ei8xAsP94N9VBrFUbPwjMX6YCd9LLs9ZEhl7ZDQqnTGMCn+0wjF1kxZalfkHsapRg+KcKhTnVAnH/MK8EPlcLwR387f55zr7yyX8vNb6QNacXmsQ7uXI5jx4+0nRo18IwuKCUXKqGhdPVBiHDK8SFOGH2JHdEdIrSGgfkVgEkcT8w98UABoqFGgoVxi/VijQUKFEY5XSIhQIPTU9L/9+XO61CQjzMwuLNv2MegM0QkjTQtWkQdHF80ganADfIBmksrb992Arg8EAVYPG2ENb1iR8bShXoPxsLVSNGug0ehzLPIfcvRcw5J4+6JMS2eLPbeod+/3rM0KvrkgE9L81BjfP6m3Vf+M6jQ61xU2ovlCPqqIG1FyoR/WFBtSVNZn9HxaZvxfC4oIRFi9HeFwwQuOC4RvU8mjUtTT5V8InyH2dJR4VymJiYvD6669bHM/IyEBTUxMWL16MHj16ADAumfHKK69g4MCBePHFFyEWtzw3Ijk5GStWrMCWLVuE4GYwGLB161aEhYWhf//+Qtlx48Zh586dKC0tFZawOHLkCIqKinDPPfc4tU6izqL8XC3yfy2BqkEDtUIDjcLYU2P6ajxmDAdB3fwQNTgMUYPD0K1v1+v+A95Uq0Luj0U4tbvI2MNkB2W95nIPWLVV5SVeYoTFyxHRpwv85N6QXA5KEq/LX6Xiy5OpxRBLxNAotFDUG+cIKevUUNSpoaxXQ1lr/KqoU0EsESMo3A+BEX4IivAz+95PLnPohGyD3oD68iZUFtajsqBO+NN01bBaU7kG214+iMlP34zweLnV9Rf8Voq9q44LH6JJk6PRe2xPs3aRSMUQX/4q8RJD3aRFcU4lLp6oxMU/KlBfdqUnUt2kRcFvpSj4rdTiWgFhvogd0R2xI7ohpFeQ3UOwep0eTdUqNFQooFXrENw9AAEhPg6fEC8WiyAL8IIs4Mo85BqUIjDMz6HXuR6RSASfy0PpYbHBZudUjRpkbT2L7J0F0GsNUNapsT/jD2TvKsTwOX0ROeDKtJvqiw346YPjZr1jwd39MfaRAYjo08Xq+5F4SdD1hkB0vSEQzddj0Kp0qLnYgMZqJeQ9AhDUzc8pw+2u5FGhTC6XC2uNNffll18CuLIOWUlJCZ5//nmIRCKkpKRg7969ZuXj4uKEpTTCw8Mxa9YsbNiwAVqtFomJifj5559x/PhxvPjii2ZbMs2ZMwd79+7FE088gZkzZ0KhUGDDhg2IjY3FtGnThHLOqJOoo9Pr9Di65Syytpyxeh5OXUkTsncWIntnIaQyCbondb0c0sKF+SwGgwElp6pw8ofzyP+1xKK3JCjCD9FDIuDtJ7082V1snPAuk0DiJTbOqfKWGP+Bv9SI2ksNxjlDlxrQVH3teT5evlJE9OmC7oldEJHQFWGxQZB4uaYnwxlEYhGCIvwRFOGPmGHdhONNtSohoJ3ZfxE1FxuhrFPj26W/YkLaYETfHNFKrUZFx8rx4/tHhd6mvhOjMHJe4nU/QH0CvREzvDtihncHANSVNuHSHxW4eKISl7IrzXoT/bv6IGZEN8SO6I6wuGCHfjiLJWJhTllnJ/P3wvD7+iJxYhR+23Aa+YdKAADVRfXY+cZviBochqH3JqAoqxy/f5XX5t4xa0hlEoTGBiMUwdcv3E6IDO6c0WalxYsXo7a2Vtj78ujRo3j88cevWX7+/Pl44IEHhNd6vR5ffPEFMjMzUVlZicjISPz5z3/G5MmTLd6bn59vsU/lwoUL0bWr+ZMYzqizNbm5uViwYAHWrl3Lpy89XHtvb61Kh6YaFZpqVFDUKNFUozZ+X6tCQIgP+k66AX7Btg0J1Jc1Yc/KYyjLq7lmGalMAm9fKbz8jE+dwQBU5Nddc26QvGcAevQLQUHWJTSVXTXUJwJuuDEcibfcgMgBoW3u0VA3aYSAVnupEYpaFbpGB6Fb3y7oekNQm4ep2itVowZbl/6MukJjWBWJgFEP9EPixBuu+Z5LOZXY9dZh4cM5PrkHxj060O5eJr3eYAyLhXWQ9whARG+5xyzl4Eie/u9Jyakq/Lr+FMpbmdvVlt4xd3F3e7eLUEYMZe1Je2vv+rImHNqYi6rCejTVqKBRaFstL5VJkDT5Bgy8Lfa6k+EB4Mz+izjwSbYwJCkSi3DTXfG44eZw40RfXy94+ba8PIOqUYNLf1SgKKscRccqoGj1CTVAFuCFhPFRSJwU5fIhn87ij+PZKNunwbn/XXkSbvCdcbh5Vm+L3qmyvGps/7/fhLlqMcO6YXzaoDYtxdFZtYd/Twx6A87+cgm/bTxtPm1ABAxwcO+Ys7m7vT1q+JKIXEvZoMaON367/Pi7dbQqHY5vy8fJ78+j/7Re6H9rDGT+lmvxqZs0+GVdDs7svyQcCwz3xfiFgxDe27r/xyzz9xKGrwx6AyoL64wBLascZWdqhPlJYfHBSLolGjHDu7Wbf/zbK7FUhPELB8E/xAcn/psPAMj65iwaK5VIXtAfksvLeVTk12LnW4eFQBZ1YxhSFjGQdUQisQjxyT3Ra2g3nNiRjz++LYB/iA9GP9CvXfSOeRKGMqJOSq/T48flWUIgk3iL4d/VB35yGXzlMvhd/uMrl8EvWAZZgBfOHLiEkz+ch15rgEapw9EtZ5G9qxADpseg39RewqPxpaersXflMbMlIuKTe2DU/CR4+1kGOGuIxCKExgQjNCYYN86Ih7JOjbKzNSituYSh4wfb3R5kPZFYhOH39UVAiA/+99lJwADk/XwRTTVKTHz8RjRWKbHjjd8uL7UB9OgXgomP3ygENuqYpDIJbrwzHoNT4zrkULIrMJQRtSPKejWqiupRXVSP6qIGKBvUGDg9xuqep+YOrj+FS38Yl4vwCfLGHa+Nuu5ikGFxcgycHoOj35zF6b0XhHWujnyZhz92FGDg7bHQaXQ4+p+zwlwwL18pkh/sh7hRPWz/gVvhE+SNG24MR0NOxfULk1P0m9ILfl18sHflMeg0elw8UYn/vvorFHVqqBqM8/wi+nTBLX+9iT2YnQgDWdsxlBF5IL1Wj8rz9ag+X4+qC8YQVlXU0OKcqqKj5UhZOMjsibnrOfVjEXJ2GTe5F0tEmPTkTVavzu0f4ovkB/tjUGosjm45i7yfLsKgN65r9NsG8zX5wvvIMX7hIM7v6sBihnWDb7AM379zBKoGDarOX1lkNTQ2GFOW3Gz1SvxEnR3/SyHyMOomDb554RfUlVg3z0un0WN3+lGM+Esi+k/tdd3yxSercOCTbOH16Af7oVuC7T1tgWF+GPvwAAy6PRZHt5zBmQOXhDleIhFw413xGHxnHOcQdQLdErrg9pdGYOfbh9Fweci6S1Qgpj47pM3D1USdEUMZkYfJ3lXYYiCTBXihS1QgukYFomuUcXPeUz8WIe+ni4ABOPjZSTRWKjHs3oRrDh/Ulzdh979+h+HyWl79pkYjISXKrvsN7u6PlP83CIPuiMOxrWfRVK3CTTN7tynoUfsl7xmA1FdG4tAXp2DQGzD8L4nwCeA2ckS2YCgj8iAapRZ/7CgAYOxtGvKnBIREG4OYr1xmseRAeG85/Lv6IOubswCAE9/mo7FKiXGPDrBYyFSj1OL7d36Hst4416fngBAM/3Nfh917l54BSPl/gxxWH7U/fnIZfweI7MBQRuRBTu4uEiZIx43ugUG3x7ZaXiQSYcg9fRAQ4oMDH2fDYADO/a8YTTUq3PLUTcJSFQa9AXtXHxfm+wR398eEtBs5tEhE5EH4LzKRA6kV2hY3RbaGVq3DiW+N6z5BBAxKbT2QNdd34g245a83CxsWl5yswn9fOYiGSuP8nt+/zkPh5T0Cvf2kuOWvN5ntr0dERO7HnjIiOzVWK5F/sBhnfylG+dla+Ed4oc/rfWye4Hx67wXh6cpeQyPQJTLQpvffcFM4bv37MHy37AiUdWpUX2hA5j/+h6RbonF0i3F4UyQCxqcNhrxHgE11ExGR8zGUEbWBskGNgkOlOPvLJRSfrBKeOgSAxlINDm3IRfKD/a2uT6fV4/h/zwmvB98Z16b7Co+XI/WVEdj55mHUlTahqVqFw5tPC+eH3dcXUYPC2lQ3ERE5F0MZkZU0Si0KD5fi7P+KceF4hfAEY3MiEWAwAKd2FyF2ZHf0SAqxqu4z+y+iocK4Z1zUjWEI7RXc5vsMivDH7a+MwHfLjqD8zJVNgnuP7Yn+t/Zqc71ERORcnFNGZIW8ny/i88d+xN5Vx1F0tNwskAVF+OHGGXG4+59jMGLulY1s96/9Q9j3rzV6vQHHtjbrJbujbb1kzfkGyTD978PRa1gEACByYCiSH+xn8fQmERF5DvaUEV2HwWDA4U2nzQKWX1cZYkd0R9yoHgiNCRLCjry7P/748Szqi1SoK23C4S9PY8ScxFbrzz9YLOw/2aNfiMM28JXKJJj0xE1Q1KrgE+TNQEZE5OEYyoiuo7a4EY1VxqHFLlGBGDU/Cd0SurS4QKtILEL8bSE4nlECnUaPP3YUIHZ4t2vuTWnQG4Q1xoC2zyVrjW+wzOF1EhGR43H4kug6LmVXCt/3Tu6B7oldW91w1zfECzfN7G18YQB++vAEdJqWhzELj5Sh+kIDAONCsN2TujruxomIqF1hKCO6jot/XAllPfpbN3F/wK29EBprnKxfc7FRWJKiOYPBgKxvzgivb7wzjkOMRESdGEMZUSv0egOKL/eUyQK8EBIdZNX7xBIxxj48AGKJMWQdyzyHioJaszIXjlegIr8OABDSKwiRg7lUBRFRZ8ZQRtSKyvxaqJu0AIAeSSGtDlteresNgcIcMYPegJ/XnIBeqze+NhiQtcV8Lhl7yYiIOjeGMqJWNJ9P1mOAdUOXzQ26Iw5doowr81cW1uP4f43bKJWcqkLp6WoAgLynP3oNiXDA3RIRUXvGUEbUiosnmoWyfraHMolUjLGPDICpE+z3/+Sh+kK92RyzwXfE2dQDR0REHRNDGXVYygY1fnjvd2x5/gBqSxptfr9WrRN6swJCfREU4dem+wiLDcaA22IAAHqtAd+/8zsuXX54IDDcF7Eju7epXiIi6lgYyqhDaqpV4dvXDqHgt1JUFtTh96/ybK6j9HQ1dBrjHLAe/UPsmvN10929EdTNGOpMC8UCxuFNsYT/GRIREUMZdUANFQr895WDqC6qF44VHimDRqm1qZ5LzZbC6GnlUhjXIvWWYOzDA4Bmuc6/qw96j+lpV71ERNRxMJRRh1Jb3IhtrxxEXUmT2XGtSoeCw6U21dU8lHVvw3yyq3Xr2xVJt0QLrwfeHgOJlP8JEhGREbdZog6j8nwddr7xGxS1agBAUDc/3HR3b+xdeQwAcPbAJfROtq5nStWgQUW+cV2xLlGB8HPQVkXD7kuAl48EEm8xEpsFNCIiIoYy6hDKztRg11uHoWrUADAGqWnPD4VvoDcObzqNhgoFLp6ohKJWZdVekMUnK2EwGL+3d+iyOam3BEP/lOCw+oiIqOPg2Am1e5dyKrHj/w4JgSwsPhjTXxwGv2AZRGIR4kYZn2406A04d7DYujrbsLUSERGRPRjKqF07f7QMu946DI3SuOF396SumPbcMPgEeAtl4pN7CN+fOXDJqnpN+12KJCJ068tNwomIyPkYyqjdOnewGN+/+7uwbEXUjWGYsmQIvH3NR+W7RAaia7RxVf3yM7XXXbOssVKB2mJjmfA4uUV9REREzsBQRu1S1fl67Hk/CwadceJXzIhumPTkTZB6S1osHz/qSm/Z2V9a7y27mM2hSyIicj2GMmqXzh8tEybi9x7TE+MXDW51eYm4Ud2FNcLO7L8Eg+nNLXDk+mRERETWYiijdklRqxK+TxgfCfF19o70D/FF90Tj3LC6kiZUnKttsZzBYBBCmVQmQVi83DE3TEREdB0MZdQumdYiA2DVEhcAEDf6+hP+ay41oqnGGPi69e3KxV2JiMhl+IlD7VLznjLfYO9WSl4RM6wbxFJjj9q5/xVDr9NblLn0R4XwPeeTERGRKzGUUbtk6imTeInhZeXTkTJ/L0TdGC68/1KzCf0mnE9GRETu4vHP+n/22WfIyMhATEwMPv30U+H4oUOH8OOPP+LkyZMoLCxEeHg4Nm/ebPH+4uJizJ49u8W6X3rpJUycONHsWEFBAVasWIETJ05AKpVi5MiRWLRoEeRyuVk5vV6PjRs34ptvvkFVVRUiIyMxZ84cTJo0yeI61tZJ1jP1lPkGyyAStT6frLn40T1Q+JtxD8yzB4oROTBMOKfX6XEppwoA4BPoha5RgQ68YyIiotZ5dCgrKyvD+vXr4evra3Huhx9+wI8//og+ffogJOT6PRqTJk3CiBEjzI7169fP4nppaWkICAjAggULoFAosHHjRpw7dw5r1qyBl5eXUHbt2rX4/PPPcfvtt6Nv377Yv38/Xn31VYhEIrOgZ0udZB29Vg9Vg3H1fmuHLk2iBofB208KdZMWBb+VYPQD/SCVGZfRqDhXC41CCwDo0S8Uous8PEBERORIHh3KVq1ahaSkJOj1etTWmj8t9/DDD2PJkiWQSqV45plnkJ+f32pdvXv3xuTJk1sts379eiiVSmRkZCAiIgIAkJiYiKeeego7duxAamoqAKC8vBybNm3CjBkz8OSTTwIAbrvtNqSlpWHVqlVISUmBRCKxqU6ynqLe9kn+JlJvCXoN64bTey9Ao9Sh8PcyxI00bsPE9cmIiMidPHZOWVZWFvbt24e0tLQWz4eGhkIqtS1TKhQKaDSaa57ft28fRo0aJYQnABgyZAiioqKwZ88e4dj+/fuh1WoxY8YM4ZhIJMKdd96J8vJyZGdn21wnWc98kr9toQwwDmGanG32FCbnkxERkTt5ZCjT6XRIT0/H9OnTERcX55A6161bhylTpmDSpEl4+OGHcejQIbPz5eXlqK6uRkJCgsV7ExMTkZeXJ7zOy8uDr68voqOjLcqZztta59UqKiqQm5sr/CksLLT+h+3gzJfDsG34EgC6JXaFXxdjmCs6Vg5lvRpalQ6lp6sBAIFhvggM93PMzRIREVnJI4cvt27ditLSUrz33nt21yUWizF06FCMHTsWoaGhuHTpEjZv3owlS5bgjTfewMiRIwEAlZXGXpKW5qeFhISgrq4OarUa3t7eqKysRJcuXSwmmJveW1FRYXOdV8vMzMS6dessjufn50On09nQAkBDQwNycnJseo8nK8tpEL6vVVS16WeTJ8jQdFAFg86AX745Ch+5FHqtcZV/v0iJXe3V0drb07G9XYvt7Vpsb9dyVnsnJSVZVc7jQlltbS0+/vhjzJ071yFPJ0ZEROCdd94xOzZlyhTMnTsXK1euFEKZSmUcEmtp4r0pNKlUKnh7e0OlUl23nK11Xi01NRWjR48WXhcWFmLp0qWIiYlpseetNTk5OVb/QrQHmrPnABgDb0xCNGKTuttcR7hfLb45+AsAoPGcAQF9/IVzScnxiGtDnSYdrb09HdvbtdjersX2di13t7fHhbKMjAwEBgbi7rvvdto1goKCMG3aNHz++ecoKytDeHg4ZDLjcFZLc87UauNwmamMTCazupy1dV4tNDQUoaGhNv1cnYW9c8oAICQ6CPKe/qi52IjS3Go0VCiEcz36dbX7HomIiGzlUXPKioqKsG3bNsycORMVFRUoLi5GcXEx1Go1tFotiouLUVdX55BrhYcbFxGtr68HcGWI0TTk2FxlZSWCgoKEHq2QkBBUVVVZbGpteq8pTNlSJ1lPUWP7av5XE4lEZtsuNVYqAQBdowPhG9S2oEdERGQPjwplFRUV0Ov1SE9Px+zZs4U/OTk5KCoqwuzZs1ucZ9UWly4Zn7oLDg4GAISFhUEulyM3N9ei7MmTJxEfHy+8jo+Ph1KptJh8bxqHNpW1pU6yXlv2vWxJ/KgeFsd69mfvJBERuYdHDV/GxMTg9ddftziekZGBpqYmLF68GD16WH6QtqampsZiblp5eTm2b9+OuLg4syHCcePGYefOnSgtLRWWsDhy5AiKiopwzz33COWSk5OxYsUKbNmyRVinzGAwYOvWrQgLC0P//v1trpOsp6gz9pSJpSJ4+7X9Vzgw3A/hfeQoO10jHOvRj0thEBGRe3hUKJPL5RgzZozF8S+//BIAzM6dPXsW+/fvBwBcvHgRDQ0NwjZM8fHxwiT51atX4+LFi7j55psRGhqKkpISZGZmQqlUYvHixWbXmTNnDvbu3YsnnngCM2fOhEKhwIYNGxAbG4tp06YJ5cLDwzFr1ixs2LABWq0WiYmJ+Pnnn3H8+HG8+OKLwsKxttRJ1jP1lNm6xVJL4kf3EEKZWCJCt75d7L09IiKiNvGoUGaL06dP46OPPjI7Zno9depUIZQNHToUly5dwpYtW1BfX4+AgAAMHDgQc+fOtXiKMSIiAsuXL8eKFSuwZs0aYZ/KhQsXWsz9euSRRxAYGIjMzEzs3LkTkZGReOGFF3DLLbe0uU66Pr1OD2X9lVBmr9jh3XHw3yeh1xrQrW9XePm02/8kiIionWsXn0DLly+3ODZt2jSrepomTZrU4ibh1xITE2OxhEZLxGIx5syZgzlz5jisTro+Zb0GuPx8RVsn+TfnE+SN8YsGo/BwKQalxtpdHxERUVu1i1BGZOKI5TCuFjOsG2KGdXNIXURERG3lUU9fEl2PWSgL4vAvERF1HAxl1K44ajkMIiIiT8NQRu2KWU+ZnKGMiIg6DoYyalfMe8o4fElERB0HQxm1K86Y6E9EROQJGMqoXWFPGRERdVQMZdSuCFssSUSQ+Xu5+W6IiIgch6GM2hVTT5lPsLfdWywRERF5EoYyajf0egOUdZe3WArifDIiIupYGMqo3VDVq2HQG/dY4iR/IiLqaBjKyKVyvi/Evxf8gKP/OWPzeznJn4iIOjKGMnKZhkoFfl1/CqpGDbIyzwq9XtbichhERNSRMZSRyxz9zxnoNHoAgE6tR1OzkGUN81DGnjIiIupYGMrIJWqLG3F630WzY/VlCpvq4L6XRETUkTGUkUsc/vK0xXBlfXmTTXWY1igD2FNGREQdD0MZOV1FQS3yD5ZYHK8vszGUsaeMiIg6MIYycrrDm/KE7/ukRArf2z58eaWnzI+hjIiIOhiGMnKqklNVuHCsHAAQEOqLoX/qI5yrL2/bnDKRWARZALdYIiKijoWhjJzGYDDgt42nhdc33R0P3yCZEKgabJ1TdrmnzDfIGyIxt1giIqKOhaGMnKYoqxylp6sBAPKe/ogf0xMAEBjuBwBorFRCp9VbVZdBb4DCtMUSJ/kTEVEHxFBGTmHQG3B485Vesptn9YH4cu9WYJivsYwBaKiwbghT1aiBQcctloiIqONiKCOnOHewGFWF9QCAsNhg9BoaIZwLDPcVvrd2XhlX8ycioo6OoYwcTq/V48iXV564HDK7D0SiK3PAAsP8hO8brFwWo/lyGD4cviQiog6IoYwcLnffBdSVGsNWj34h6Dkg1Oy8afgSYE8ZERGRCUMZOZRWrcPR/5wRXg+Z3ceijGmiPwDUWd1TxtX8iYioY2MoI4fK2VWIpmpjgIoeEoHweLlFmYBQH+DyaGaDlQvIcjV/IiLq6BjKyGHUTRoc23bO+EIE3Dyrd4vlJF4S+HfxAWD9/pfsKSMioo6OoYwc5vh/86Fq0AAA4kf3QNeowGuWNT2BqazXQKPUXrdu9pQREVFHx1BGDqHX6ZG9qxAAIJaIcPPMlnvJTJrPK7NmD0xTT5lIBPgEsqeMiIg6HoYycghFnRoahbHHq+fAULPQ1RKzJzCtmOxv6inzCfIWFqElIiLqSBjKyCGUzYYX/eQ+1y3ffK2y680rMxgMUNRd3veSQ5dERNRBMZSRQ5hCE2DdRHyzVf2vM3ypbtRCrzVtscShSyIi6pgYysghTJuFA1aGMhsWkOXCsURE1BkwlJFDmG2DFHT94OTXxQdiqXFu2PXmlJn3wjGUERFRx8RQRg6hbB6cgq7fUyYSi4R5ZfXlChgMhmuWNVsOw4q6iYiI2iOpu2/gej777DNkZGQgJiYGn376qXD80KFD+PHHH3Hy5EkUFhYiPDwcmzdvbrEOvV6PjRs34ptvvkFVVRUiIyMxZ84cTJo0yaJsQUEBVqxYgRMnTkAqlWLkyJFYtGgR5HK50+tsz8zXEbMuOAWG+aK2uBFalQ7KOvU1e8E4fElERJ2BR4eysrIyrF+/Hr6+vhbnfvjhB/z444/o06cPQkJCWq1n7dq1+Pzzz3H77bejb9++2L9/P1599VWIRCJMnDjR7HppaWkICAjAggULoFAosHHjRpw7dw5r1qyBl5eXU+tsz5R1zYcvrQtlAVfNK7t2KLM98BEREbU3Hh3KVq1ahaSkJOj1etTW1pqde/jhh7FkyRJIpVI888wzyM/Pb7GO8vJybNq0CTNmzMCTTz4JALjtttuQlpaGVatWISUlBRKJBACwfv16KJVKZGRkICIiAgCQmJiIp556Cjt27EBqaqrT6mzvTBP9RSLAJ8C64BRktoBsU4v7ZALsKSMios7BY+eUZWVlYd++fUhLS2vxfGhoKKTS62fK/fv3Q6vVYsaMGcIxkUiEO++8E+Xl5cjOzhaO79u3D6NGjRLCEwAMGTIEUVFR2LNnj1PrbO9Mc8p8grwhsnJxV2uXxWBPGRERdQYeGcp0Oh3S09Mxffp0xMXF2VVXXl4efH19ER0dbXY8MTFROA8Ye7+qq6uRkJBgUUdiYqJQzll1Xq2iogK5ubnCn8LCQmt+XLcwGAzNVty3vifL2gVkhZ4ykfVDo0RERO2NRw5fbt26FaWlpXjvvffsrquyshJdunSBSGTee2Oah1ZRUSGUa3786rJ1dXVQq9Xw9vZ2Sp1Xy8zMxLp16yyO5+fnQ6fTtfozX62hoQE5OTk2vccWWpUeOo0eAKCXaKy+lkZx5ecoya+45vtqyxsAAFJfMU7lnrLzbp3P2e1N5tjersX2di22t2s5q72TkpKsKudxoay2thYff/wx5s6d65CnE1UqVYuT6U1BSKVSmX29Xllvb2+n1Hm11NRUjB49WnhdWFiIpUuXIiYmpsWet9bk5ORY/QvRFrUljTiEIgBAaI8uVl/LYDAgy7cEGoUW+iZRi+8zGAz4VWGsO7Crn1N/DkdxdnuTOba3a7G9XYvt7Vrubm+PC2UZGRkIDAzE3Xff7ZD6ZDIZNBqNxXG1Wi2cb/7V2rKOrvNqoaGhCA0NvdaP5VGUZqv5Wz98KRKJEBTui8rCejRUKKHX6SGWmI+oaxRaoReOk/yJiKgj86g5ZUVFRdi2bRtmzpyJiooKFBcXo7i4GGq1GlqtFsXFxairq7OpzpCQEFRVVVksTmoaWjQFH9MQo+n41WWDgoKEHi1n1Nmema/mb9vPE3D5CUyD3oDGKmWrdXOSPxERdWQeFcoqKiqg1+uRnp6O2bNnC39ycnJQVFSE2bNntzjPqjXx8fFQKpUWE+VNY8bx8fEAgLCwMMjlcuTm5lrUcfLkSaGcs+pszxQ2rubfnNkemC08gcnlMIiIqLPwqFAWExOD119/3eJPTEwMIiIi8Prrr2P69Ok21ZmcnAypVIotW7YIxwwGA7Zu3YqwsDD0799fOD5u3Dj88ssvKC0tFY4dOXIERUVFGD9+vFPrbM+UdvSUXe8JTPNQxp4yIiLquDxqTplcLseYMWMsjn/55ZcAYHbu7Nmz2L9/PwDg4sWLaGhoELZhio+PFybJh4eHY9asWdiwYQO0Wi0SExPx888/4/jx43jxxReFRV4BYM6cOdi7dy+eeOIJzJw5EwqFAhs2bEBsbCymTZsmlHNGne2Zoo1zygAg6DprlZkPX7KnjIiIOi6PCmW2OH36ND766COzY6bXU6dONXty8ZFHHkFgYCAyMzOxc+dOREZG4oUXXsAtt9xi9v6IiAgsX74cK1aswJo1a4R9KhcuXGgx98sZdbZX9gxfBly1qr9F3Ry+JCKiTqJdhLLly5dbHJs2bZrVPU1isRhz5szBnDlzrls2JiYG77zzjlvqbK/asu+lSeBV+19ejRP9iYios/CoOWXUPpl6s6QyCbx8bMv5Um8JfOXGHrCWQxl7yoiIqHNgKCO7mXqzbB26NDH1lilqVNCqzHcrMOsp4xZLRETUgTGUkV30Oj1UDcbFcX3aOLwYGH7tJzBNPWWyAC+Ipfx1JSKijoufcmQXZf2V3Qp8bdiMvLnW5pWZnuzkfDIiIurobJoAlJWV1eYLDR48uM3vJc9l9uRlm3vKWl4WQ6PUCsOZnE9GREQdnU2h7PHHH4dIJGrThfbu3dum95FnM99iqa09ZS0PX5pN8m9j3URERO2FTaFs3rx5FqEsJycHhw4dQmRkJAYMGIAuXbqguroaf/zxB4qKijBs2DDucN+BKWvbvkaZidmcsmY9ZU01XA6DiIg6D5tC2QMPPGD2+tixY/j888/xt7/9DdOnTzcLbAaDAdu2bcPy5cvxl7/8xTF3Sx7HfDX/tgUn/xAfiCQiGHSGa/eUcfiSiIg6OLsm+n/00UcYMWIEbrvtNoseNJFIhNTUVAwfPtxi5X3qOOxZONZELBYhIMQHgLGnzGAwALgqlMnZU0ZERB2bXaEsNzcX0dHRrZbp1asXTp06Zc9lyIPZs+9lc6Z5ZRqFFqpG4xOd3PeSiIg6E7tCmZeXF/Ly8lotc/r0aXh5edlzGfJgCgfMKQPM55U1XJ5XxuFLIiLqTOwKZUOHDsWhQ4ewfv16aDQas3MajQbr16/Hb7/9hmHDhtl1k+S5lKbeLBEgC7QnlF1ZFqPu8sbkjpivRkRE1F7YtSH5Y489huPHjyMjIwNfffUV+vbtC7lcjpqaGpw6dQo1NTUICQnBo48+6qj7JQ9jCk4+gd4Qi9u2XArQ8gKyjuqFIyIiag/sCmXh4eH48MMPsWbNGuzZswf/+9//hHPe3t6YPHkyHnnkEYSEhNh9o+R5DAaDsHisvaHJfFkMY0+ZqRfO208KiZfErvqJiIg8nV2hDABCQkLw/PPPY8mSJTh//jwaGxvh7++PqKgoziXr4LQqHXRqPYC2P3lp0rynrOGqnjLOJyMios7A7lAmVCSVIjY21lHVUTvgyKcjfYK8IZVJoFXpUFfWBK1KB43StMUShy6JiKjjc1goO3HiBPLy8tDU1AQ/Pz/07t0bAwYMcFT15IEcOedLJBIhMNwX1UUNaKhQoKlGeaVu9pQREVEnYHcoO3HiBN58801cvHgRgHGekWkh2cjISDz77LPo37+/vZchD2S2cKwDerMCw/xQXdQAvdaAysJ64ThDGRERdQZ2hbL8/Hw8/fTTUCqVGDJkCG688UaEhISgqqoKR48exW+//Yann34aH3zwAXr16uWgWyZPYbZkhQM2DG8+r6wsr+ZK3Ry+JCKiTsCuULZu3TpoNBq8/fbbGD58uNm5P//5z/j111/x3HPPYd26dXj55ZftuRR5INOTl4Bjlqxo/gSmeShjTxkREXV8di0em5WVhZSUFItAZjJ8+HCkpKTg6NGj9lyGPJSy1rGLuzZfQLYiv9ahdRMREXk6u0JZY2Mjunfv3mqZ7t27o7Gx0Z7LkIdq/vSlj0OGL6/0lOk0euF79pQREVFnYFcoCwkJQXZ2dqtlcnJyuHhsB2U2fOngnrLmGMqIiKgzsCuUjR49GllZWcjIyIBKpTI7p1Kp8PHHH+Po0aNITk626ybJM5mevpR4iyGV2b/ivpePFD6BlgsOc/iSiIg6A7sm+s+bNw//+9//sH79emRmZiIxMRFdunRBdXW1sPdljx49MG/ePEfdL3kQ09OXvkEyYRkUewWG+0FZf2U+mZevFFJvbrFEREQdn12hLDg4GKtXr8YHH3yA3bt34+DBg8I5b29vTJs2DY8++iiCgoLsvlHyLHq9Acr6y6HMgT1ZgWF+KD/LSf5ERNT52L14rFwux7PPPounn34ahYWFwor+0dHRkEodtmEAeRhlvRowGL+3d9/L5q6eV8b5ZERE1Fk4dO/LuLg4R1VHHk7pwH0vm2u+gKyxbvaUERFR58C9L6lNHL1wrEnzBWQB9pQREVHnwb0vqU3M9r106vAle8qIiKhz4N6X1CYKJw1fBoT4QiQCDAbH101EROTJuPcltYmi1jnDl2KpGP4hPmioUF6um6GMiIg6B+59SW2iaD586eAhxoBm2y1x+JKIiDoL7n1JbdJ8Tpmje7NCexnXtRNLRAiK8LtOaSIioo7BruFL7n3ZeTV/+rKlrZHsMeiOWIgkIoTHyzmnjIiIOg27Qtno0aPxn//8BxkZGfjLX/4CmezKB6hKpcLnn3+Oo0eP4u67727zNT777DNkZGQgJiYGn376qdm5EydO4IMPPsDp06fh7++P8ePHY8GCBfDzu9K7cvToUTz++OMt1r169Wr069fP5joBQK1W46OPPsJ3332H+vp6xMXF4aGHHsLQoUMtrmNtne2JaZ0yWYAXxBK7Olwt+AbJMPy+vg6tk4iIyNN59N6XZWVlWL9+PXx9fS3O5eXl4cknn0R0dDQWLVqEsrIybNq0CRcuXMA///lPi/J33303EhMTzY717NmzzXW+8cYb2Lt3L2bNmoXIyEjs2LEDS5YsQXp6OgYOHNjm+2wvhH0v2ZNFRETkEB699+WqVauQlJQEvV6P2tpas3MffvghAgMDsXz5cvj7+wMwzl97++23cejQIQwbNsys/KBBg5CSktLq9aytMycnB7t378Zjjz2Ge++9FwAwZcoUzJ8/H6tXr8bq1avbfJ/tgUaphValA8CJ+ERERI5i97iTae/LHTt24OOPP8aKFSvw8ccfY8eOHXj22Wchl8vbVG9WVhb27duHtLQ0i3ONjY04fPgwJk+eLAQdwBiMfH19sWfPnhbrbGpqglarbfGcLXXu27cPEokEqampwjGZTIbp06cjOzsbpaWldt2np3PWwrFERESdmUfufanT6ZCeno7p06e3WOe5c+eg0+mQkJBgdtzLywu9e/dGXl6exXveeOMNKBQKSCQSDBw4EI899hj69r0yb8mWOvPy8hAZGWkWtAAIw6NnzpxBREREm+7TpKKiApWVlcLrwsLCa5Z1NYUTn7wkIiLqrBwWyhxp69atKC0txXvvvdfieVNYaempzpCQEBw7dkx4LZVKMW7cOIwYMQLBwcEoKCjApk2bsGjRIqxatQp9+vSxuc7KysprlgOMgcrWOq+WmZmJdevWWRzPz8+HTqe75vta0tDQgJycHJve05qq003C9/WqGofW3RE4ur2pdWxv12J7uxbb27Wc1d5JSUlWlbM7lB0+fBibNm3CqVOn0NDQAINpf5xmRCKR1UN1tbW1+PjjjzF37txrDn2qVMblGLy8LJdi8Pb2hlp9pSdnwIABZhujJycnIyUlBffffz8+/PBDLFu2zOY6VSrVNcs1r8uWOq+WmpqK0aNHC68LCwuxdOlSxMTEWPS8XU9OTo7VvxDWyC0twimUAwCi4yPRN+kGh9XdETi6val1bG/XYnu7Ftvbtdzd3naFsr179+KVV16BXq9HREQEoqOjIZFI7LqhjIwMBAYGtrqMhmnpDY1GY3FOrVYL4ehaIiMjkZycjJ9++gk6nQ4SicSmOmUy2TXLNb8/e+4zNDQUoaGhrf4c7tJ830sfDl8SERE5hF2h7NNPP4W3tzf+7//+DzfffLPdN1NUVIRt27YhLS1NGAIEjAFGq9WiuLgY/v7+wnBg8zlXJpWVlVaFmfDwcGg0GiiVSpvrDAkJQXl5eYvlAAhlHXGfnqj5wrF8+pKIiMgx7Hr6sqioCBMnTnRIIAOMc7H0ej3S09Mxe/Zs4U9OTg6Kioowe/ZsrFu3DjExMZBIJMjNzTV7v0ajQV5eHuLj4697rUuXLsHb21tYA82WOuPj43HhwgWL7aNM49Cmso64T0/Epy+JiIgcz66esqCgILNV/O0VExOD119/3eJ4RkYGmpqasHjxYvTo0QMBAQEYMmQIvvvuO8ybN09YGX/Xrl1QKBQYP3688N6amhqLuWlnzpzBgQMHMHz4cIjFxlxqS50pKSnYuHEjMjMzhXXK1Go1tm/fjqSkJERERNhcZ3vSfPjSl6GMiIjIIewKZePGjcORI0eg1Wohldr/IKdcLseYMWMsjn/55ZcAYHbuoYcewsKFC5GWlobU1FRhpfyhQ4di+PDhQrmXXnoJMpkM/fv3R5cuXVBQUIBt27bBx8cHjzzyiNl1rK0zKSkJ48ePx4cffoiamhr07NkTO3fuRElJCZ555pk21dmemJbEkHiJ4eXrkQ/wEhERtTt2faI+/PDD+Otf/4qXX34ZaWlpQg+RKyQkJODdd9/FBx98gPfffx9+fn6YPn26RdAaM2YMvv/+e2zevBmNjY2Qy+UYO3Ys5s+fj8jIyDbVCQDPP/88IiIisGvXLjQ0NCA2NhZvvfUWBg8e3OY62wtFrXFOmW+wN0QikZvvhoiIqGMQGVpaw+IaZs+ebXFMq9UKE9kDAgIsFlQFjEtibNy40Y7bpNzcXCxYsABr165165IYer0Bn/xlJwwGIDQ2GHcuHeWQejsSdz9S3dmwvV2L7e1abG/Xcnd729RT1lJ+k0gkCA8Pb7WMDbmPPJyqQQ3TXyfnkxERETmOTaFs8+bNzroPaif45CUREZFz2L0hOXUuZk9eBnPhWCIiIkdhKCObmCb5Axy+JCIiciSbhi/XrVsHkUiEGTNmICgoqMUNs1siEokwb968ttwfeRhF8+FLruZPRETkMDaFsk8++QQikQgTJkxAUFAQPvnkE6vex1DWcTSfU8aeMiIiIsexKZSlp6cDgPC0pek1dR7mq/lzThkREZGj2BTKrl4Y9erX1PEpm21GzuFLIiIix+FEf7JJ8zllvoEMZURERI7CUEY2MT19KQvwgljKXx8iIiJHsWn4cty4cW3a61AkEmHPnj02v488j2miPxeOJSIiciybQtmgQYO4AXUnplXpoFHqAPDJSyIiIkezKZQtX77cWfdB7YDZfDI+eUlERORQnBREVmv+5KUvn7wkIiJyKJt6ylpTUFCAwsJCKJVKTJkyxVHVkgdpvkYZl8MgIiJyLLtD2cmTJ/HPf/4T586dE46ZQllWVhb+9re/4aWXXkJycrK9lyI3UzTvKePwJRERkUPZNXyZn5+PJ554AsXFxZg1axaGDx9udn7QoEEIDg7G3r177bkMeYjmWyzx6UsiIiLHsiuUffzxxwCAtWvXYuHChejbt6/ZeZFIhH79+uHUqVP2XIY8hPkWSwxlREREjmRXKMvKysK4ceMQGRl5zTIRERGorKy05zLkIcyevgzm8CUREZEj2RXKFAoFunTp0moZlUoFvV5vz2XIQ5hW8wf49CUREZGj2RXKwsLCzCb4t+T06dPo0aOHPZchD2GaUyaWiuDl67AHd4mIiAh2hrJRo0bht99+w+HDh1s8/+OPPyInJwdjxoyx5zLkIUzDl75BMu7sQERE5GB2dXf85S9/wd69e7FkyRJMnToVVVVVAIAtW7YgOzsbu3fvRrdu3XDPPfc45GbJfQx6A/e9JCIiciK7QplcLsf777+PpUuX4ttvvxWO/+tf/wIAJCUl4R//+AcCAgLsuklyP1WjBga9AQAn+RMRETmD3RODevTogVWrViEvLw85OTmoq6uDn58fkpKSkJiY6Ih7JA/ASf5ERETOZVco++mnnzB27FgAQO/evdG7d+8Wy73//vtIS0uz51LkZgouHEtERORUdk30f+2113Ds2LFWy7z//vv4+uuv7bkMeYDmq/lz4VgiIiLHsyuU9ejRA88999w1l8VYsWIFvvrqK+572QGYr+bPOWVERESOZlco++c//wk/Pz/87W9/Q2lpqdm5VatW4csvv0RycjJeeeUVu26S3E/ZbDNyH84pIyIicji7Qll4eDiWLVsGlUqFv/71r6itrQVgDGSbNm3CqFGj8Morr0AikTjkZsl9zHrKGMqIiIgczq5QBgC9evXCW2+9hfLycvztb3/DihUrsGnTJowcORKvvfYapFKu/N4RmO17yeFLIiIih7M7lAFAv3798PLLL+PMmTP46quvMGLECCxdupSBrANRNB++5ER/IiIih7MpNe3cubPV80OHDkVOTg5Gjx6NH374wezc1KlTbb878hjKy8OX3n5SSKQOyfJERETUjE2h7I033mhxz0ODwQCRSASDwbji+7vvvmt2TCQSMZS1c8K+l1zNn4iIyClsCmXPPvuss+6DPJhWrYNGoQXASf5ERETOYlMomzZtmrPugzyYkqv5ExEROZ3Hz8T/7LPPkJGRgZiYGHz66adm506cOIEPPvgAp0+fhr+/P8aPH48FCxbAz8/PrJxarcZHH32E7777DvX19YiLi8NDDz2EoUOHWlzPnXV6Kj55SURE5HwePWO7rKwM69evh6+vr8W5vLw8PPnkk1AqlVi0aBGmT5+Obdu24aWXXrIo+8Ybb2Dz5s245ZZbsHjxYojFYixZsgTHjx/3qDo9lar+SiiTBXi58U6IiIg6Lpt6ysaNGwexWIzPPvsMUVFRGDduXIsT/68mEomwZ88em29u1apVSEpKgl6vFxamNfnwww8RGBiI5cuXw9/fHwDQvXt3vP322zh06BCGDRsGAMjJycHu3bvx2GOP4d577wUATJkyBfPnz8fq1auxevVqj6jTk6matML3Mn+GMiIiImewqads0KBBGDhwIGQymfDamj8DBw60+caysrKwb98+pKWlWZxrbGzE4cOHMXnyZCHoAMZg5OvraxYA9+3bB4lEgtTUVOGYTCbD9OnTkZ2dLWwP5e46PZm6USN8z1BGRETkHDb1lC1fvrzV146i0+mQnp6O6dOnIy4uzuL8uXPnoNPpkJCQYHbcy8sLvXv3Rl5ennAsLy8PkZGRZqEIABITEwEAZ86cQUREhNvrvFpFRQUqKyuF14WFhdcs62zqpiuhzNvf46chEhERtUse+Qm7detWlJaW4r333mvxvCmshISEWJwLCQnBsWPHzMpeqxxgDD+eUOfVMjMzsW7dOovj+fn50Ol013xfSxoaGpCTk2PTe5q7WFgtfF9cfglNOVVtrqszsLe9yTZsb9die7sW29u1nNXeSUlJVpXzuFBWW1uLjz/+GHPnzoVcLm+xjEpl3PLHy8tyKM3b2xtqtdqs7LXKNa/L3XVeLTU1FaNHjxZeFxYWYunSpYiJibHoebuenJwcq38hWlL1yx+4hDoAQJ+keIT0CmpzXZ2Bve1NtmF7uxbb27XY3q7l7va2KZS11HNjDZFIhHnz5llVNiMjA4GBgbj77ruvWcY0p02j0VicU6vVQjgylb1WueZ1ubvOq4WGhiI0NPSa511J1dh8+JJzyoiIiJzBplD2ySeftOki1oayoqIibNu2DWlpacIQIGAMMFqtFsXFxfD39xeGA5vPuTKprKw0CzMhISEoLy9vsRwAoay76/RkzeeUyTinjIiIyCls+oRNT0931n0AMM7F0uv1SE9Pb/Fas2fPxsyZM/HAAw9AIpEgNzcXEyZMEM5rNBrk5eVh/PjxwrH4+HgcPXoUjY2NZhPzTWPG8fHxAICYmBi31unJVI3GJTFEIsDLh6GMiIjIGWz6hB08eLCTbsMoJiYGr7/+usXxjIwMNDU1YfHixejRowcCAgIwZMgQfPfdd5g3b56wMv6uXbugUCjMwk5KSgo2btyIzMxMYU0xtVqN7du3IykpCREREQDg9jo9mWlJDG8/L4jE11+XjoiIiGznUd0ecrkcY8aMsTj+5ZdfAoDZuYceeggLFy5EWloaUlNTUVZWhk2bNmHo0KEYPny4UC4pKQnjx4/Hhx9+iJqaGvTs2RM7d+5ESUkJnnnmGbPruLNOT2aaU8blMIiIiJzHrk9Z0yKprRGJRPD397dY08teCQkJePfdd/HBBx/g/fffh5+fH6ZPn45HHnnEouzzzz+PiIgI7Nq1Cw0NDYiNjcVbb71l0fPn7jo9kcFggPryiv7efpzkT0RE5Cwig8FgaOubrd1mCTD2go0dOxbz589H165d23rJTis3NxcLFizA2rVrXbokhlqhxWcPfg8A6NEvBLf+3fO3hXI3dz9S3dmwvV2L7e1abG/Xcnd727Uh+ZQpUzBw4EAYDAYEBARg8ODBmDBhAgYPHozAwEAYDAYMGjQII0aMgLe3N7Zu3YoFCxaYPVlJno2r+RMREbmGXZ+y9957LxYuXIh58+bhvvvug4+Pj3BOpVLhiy++wFdffYWVK1fihhtuwPr16/HRRx/hs88+w1NPPWX3zZPzqRuvbEbO4UsiIiLnsaunbPXq1UhKSsIDDzxgFsgA48Kp999/P5KSkvDBBx9ALBZj7ty56Nu3Lw4ePGjXTZPrqLgZORERkUvYFcr++OOP685v6tOnD44fPy68TkpKQlUV905sLzh8SURE5Bp2hTK9Xo+LFy+2WubChQto/iyBRCJpdXsh8izsKSMiInINu0LZgAEDsG/fPuzevbvF83v27MFPP/2E/v37C8cuXLggbD9Eno9zyoiIiFzDrvGoRx99FAsXLsRrr72GL774AgMGDECXLl1QXV2NP/74A2fOnIGPjw8effRRAEBtbS0OHz6M6dOnO+TmyfnYU0ZEROQadoWyuLg4rFixAv/6179w4sQJnDlzxuz8gAED8PjjjyMuLg6Acduhb775xuKhAPJcZnPK/DinjIiIyFns/pSNj4/HihUrUFpaijNnzgibdMfHxwt7QJpIJBIEBATYe0lyoebDl+wpIyIich6HdX1ERERYhDBq/1RmT18ylBERETmLw0JZeXm5RU9ZWFiYo6onN1E3cviSiIjIFez+lL1w4QLeffdd/P777xbnbrrpJjz11FOIjIy09zLkJqrLw5cSLzGk3hI33w0REVHHZVcoKy0txaJFi1BdXY0bbrgBgwYNQkhICKqqqnDs2DEcOXIEixYtwpo1azi02U6Zeso4n4yIiMi57Apl69atQ3V1NZ566imkpqZCJBKZnd+6dSveffddfPrpp1iyZIldN0ruYXr6kqv5ExEROZddn7SHDh3CqFGjcMcdd7R4/o477sDBgwfx66+/2nMZchO9Vg+NUgeAk/yJiIicza4V/WtqahAbG9tqmdjYWNTU1NhzGXITdVOz5TC4mj8REZFT2RXK5HI5CgoKWi1TUFAAuVxuz2XITZqv5s+eMiIiIueyK5QNHToUBw4cwH//+98Wz3/77bf45ZdfMGzYMHsuQ27SfDV/GZfDICIiciq7Pmnvv/9+/PLLL1i2bBm+/PJLDB48GF27dhWeviwoKEBwcDDmz5/voNslV2JPGRERkevYFcoiIiKwcuVKLFu2DFlZWRZDmTfeeCP++te/cjmMdqr5nDKGMiIiIueye0wqKioK6enpVu19Se1L854yGZfEICIicirufUnXZL7FEnvKiIiInMmmUPbmm2+2+ULPPvtsm99L7mHaYgngiv5ERETOZlMo27FjR5suIhKJGMraoeZPX3JFfyIiIuey6ZN206ZNzroP8kDmc8rYU0ZERORMNoWybt26Oes+yAOpmw1fck4ZERGRc9m1eCx1bMJEfxHg7cvhSyIiImdiKKNrUl2eU+btK4VILHLz3RAREXVsDGV0TaaeMi4cS0RE5HwMZdQig8EA1eUV/TnJn4iIyPkYyqhFWpUOBp0BAODNzciJiIicjqGMWqTmchhEREQuxVBGLVJxM3IiIiKXYiijFrGnjIiIyLUYyqhFKrPNyDmnjIiIyNkYyqhFam5GTkRE5FIe1wWSn5+PTz75BLm5uaiqqoKPjw+io6Nx7733YvTo0WZlv/76a2zZsgXFxcUIDg7GhAkT8OCDD8LX11coU1xcjNmzZ7d4rZdeegkTJ040O1ZQUIAVK1bgxIkTkEqlGDlyJBYtWgS5XG5WTq/XY+PGjfjmm29QVVWFyMhIzJkzB5MmTbK4jrV1ehJVE3vKiIiIXMnjPm1LSkrQ1NSEqVOnIjQ0FEqlEvv27cNzzz2Hp59+GqmpqQCA1atXY8OGDUhJScGsWbNQUFCAr7/+Gvn5+XjnnXcs6p00aRJGjBhhdqxfv35mr8vKypCWloaAgAAsWLAACoUCGzduxLlz57BmzRp4eV3pMVq7di0+//xz3H777ejbty/279+PV199FSKRyCzo2VKnJ+GcMiIiItfyuFA2cuRIjBw50uzYXXfdhQULFmDz5s1ITU1FRUUFNm/ejClTpuDvf/+7UC4yMhLp6ek4cOCARa9a7969MXny5FavvX79eiiVSmRkZCAiIgIAkJiYiKeeego7duwQAmF5eTk2bdqEGTNm4MknnwQA3HbbbUhLS8OqVauQkpICiURiU52eRs2nL4mIiFyqXcwpk0gkCA8PR0NDAwAgOzsbOp0OEyZMMCtn6qHavXt3i/UoFApoNJoWzwHAvn37MGrUKCE8AcCQIUMQFRWFPXv2CMf2798PrVaLGTNmCMdEIhHuvPNOlJeXIzs72+Y6PY3ZRH+GMiIiIqfzuJ4yE4VCAZVKhcbGRhw4cAC//vorxo8fDwBCsJLJZGbv8fHxAQCcPn3aor5169Zh9erVEIlESEhIwEMPPYRhw4YJ58vLy1FdXY2EhASL9yYmJuLgwYPC67y8PPj6+iI6OtqinOn8wIEDbarzahUVFaisrBReFxYWXrOsM5gNX3JOGRERkdN57KftypUrkZmZCQAQi8UYO3asMFQYFRUFADhx4gRuuukm4T3Hjx8HYAxYJmKxGEOHDsXYsWMRGhqKS5cuYfPmzViyZAneeOMNYajUFIBCQkIs7iUkJAR1dXVQq9Xw9vZGZWUlunTpApFIZFEOMAYqW+u8WmZmJtatW2dxPD8/HzqdzuJ4axoaGpCTk2PTe6rLa4XvzxWdhbhY1Eppaq4t7U1tx/Z2Lba3a7G9XctZ7Z2UlGRVOY8NZbNmzUJKSgoqKiqwZ88e6HQ6oYcsISEBSUlJ+OKLLxAWFoYbb7wRhYWFePfddyGVSqFWq4V6IiIiLCb+T5kyBXPnzsXKlSuFUKZSqQCgxYn3ptCkUqng7e0NlUp13XK21nm11NRUs3lxhYWFWLp0KWJiYlrseWtNTk6O1b8QJqdQBUAFiZcY/Qf2u255uqIt7U1tx/Z2Lba3a7G9Xcvd7e2xoSw6OloYHpw6dSqeeuopPPvss1izZg1EIhFee+01vPzyy3jzzTcBGOed3XPPPcjKykJRUVGrdQcFBWHatGn4/PPPUVZWhvDwcGEotKU5Z6aQZyojk8msLmdtnVcLDQ1FaGhoqz+HM5nmlHE+GRERkWt4bCi7WkpKCpYtW4aioiLccMMNCAsLw8qVK1FUVCSsExYSEoIZM2YgMjLyuvWFh4cDAOrr6xEeHi4MMTafx2VSWVmJoKAgoUcrJCQER48ehcFgMBvCNL3XFKZsqdPTqC+vU8Y1yoiIiFyjXTx9CVwZCjQ9gWkSFRWFQYMGISQkBAUFBaisrMSQIUOuW9+lS5cAAMHBwQCAsLAwyOVy5ObmWpQ9efIk4uPjhdfx8fFQKpUWk+9N49CmsrbU6Un0Oj00CuO8Na5RRkRE5BoeF8qqq6stjmm1WuzatQsymQy9evVq8X16vR6rV6+Gj48P7rjjDuF4TU2NRdny8nJs374dcXFxZkOE48aNwy+//ILS0lLh2JEjR1BUVCQ8+QkAycnJkEql2LJli3DMYDBg69atCAsLQ//+/W2u05OYrVHmx1BGRETkCh43NrVs2TI0NjZi0KBBCAsLQ2VlJb7//nucP38eCxcuhJ+fHwAgPT0darUavXv3hlarxQ8//ICTJ0/i+eefN1sTbPXq1bh48SJuvvlmhIaGoqSkBJmZmVAqlVi8eLHZtefMmYO9e/fiiSeewMyZM6FQKLBhwwbExsZi2rRpQrnw8HDMmjULGzZsgFarRWJiIn7++WccP34cL774orBwrC11ehKV2Wr+HvcrQkRE1CF53CfuhAkT8O2332Lr1q2ora2Fn58fEhIS8OijjyI5OVko16dPH3z55Zf44YcfIBKJkJiYiPfee89siQwAGDp0KC5duoQtW7agvr4eAQEBGDhwIObOnWvxFGNERASWL1+OFStWYM2aNcI+lQsXLrSY+/XII48gMDAQmZmZ2LlzJyIjI/HCCy/glltuaXOdnoKr+RMREbmex4WyiRMnWmwS3pJp06ZZ1dM0adKkFjcJv5aYmJgW9868mlgsxpw5czBnzhyH1ekpVNz3koiIyOU8bk4ZuV/z1fz59CUREZFrMJSRBTV7yoiIiFyOoYwsqDinjIiIyOUYysgChy+JiIhcj6GMLHCiPxERkesxlJEFdSMXjyUiInI1hjKyYNr3EmBPGRERkaswlJGF5sOXXpxTRkRE5BIMZWTBtKK/t58UYrHIzXdDRETUOTCUkQVTTxnnkxEREbkOQxmZMRgMwpIY3IyciIjIdRjKyIxWpYNeZwDAhWOJiIhciaGMzKi5mj8REZFbMJSRGbPlMPjkJRERkcswlJEZVUOzLZbYU0ZEROQyDGVkpvnwpYxPXxIREbkMQxmZab5wLHvKiIiIXIehjMw0n1PmzSUxiIiIXIahjMw07ynjvpdERESuw1BGZtSNzZbE4JwyIiIil2EoIzPmPWUcviQiInIVhjIyw8VjiYiI3IOhjMxwThkREZF7MJSRGdPTl2KpCBIv/noQERG5Cj91yYz6ck+ZzN8LIpHIzXdDRETUeTCUkRnV5acv+eQlERGRazGUkUCvN0CjMIYyzicjIiJyLYYyEnA1fyIiIvdhKCOBuvm+lxy+JCIicimGMhI0X82fw5dERESuxVBGApVZTxmHL4mIiFyJoYwEzeeUsaeMiIjItRjKSKBq5BZLRERE7sJQRgI1NyMnIiJyG4YyEqj49CUREZHbMJSRQN3Epy+JiIjcxePGqPLz8/HJJ58gNzcXVVVV8PHxQXR0NO69916MHj3arOzXX3+NLVu2oLi4GMHBwZgwYQIefPBB+Pr6mpXT6/XYuHEjvvnmG1RVVSEyMhJz5szBpEmTLK5fUFCAFStW4MSJE5BKpRg5ciQWLVoEuVzu9DrdzaynjMOXRERELuVxn7wlJSVoamrC1KlTERoaCqVSiX379uG5557D008/jdTUVADA6tWrsWHDBqSkpGDWrFkoKCjA119/jfz8fLzzzjtmda5duxaff/45br/9dvTt2xf79+/Hq6++CpFIhIkTJwrlysrKkJaWhoCAACxYsAAKhQIbN27EuXPnsGbNGnh5eTm1TnczX9Hfc+6LiIioM/C4UDZy5EiMHDnS7Nhdd92FBQsWYPPmzUhNTUVFRQU2b96MKVOm4O9//7tQLjIyEunp6Thw4IDQq1ZeXo5NmzZhxowZePLJJwEAt912G9LS0rBq1SqkpKRAIpEAANavXw+lUomMjAxEREQAABITE/HUU09hx44dQiB0Rp2egHPKiIiI3KddzCmTSCQIDw9HQ0MDACA7Oxs6nQ4TJkwwK2fqodq9e7dwbP/+/dBqtZgxY4ZwTCQS4c4770R5eTmys7OF4/v27cOoUaOE8AQAQ4YMQVRUFPbs2ePUOj2BaUV/L18pxGKRm++GiIioc/G4njIThUIBlUqFxsZGHDhwAL/++ivGjx8PANBojD06MpnM7D0+Pj4AgNOnTwvH8vLy4Ovri+joaLOyiYmJwvmBAweivLwc1dXVSEhIsLiXxMREHDx40Kl1Xq2iogKVlZXC68LCwmuWdRRTTxmXwyAiInI9j/30XblyJTIzMwEAYrEYY8eOFYYKo6KiAAAnTpzATTfdJLzn+PHjAIzDiyaVlZXo0qULRCLznp+QkBAAxvBjKtf8+NVl6+rqoFar4e3t7ZQ6r5aZmYl169ZZHM/Pz4dOp7M43pqGhgbk5OS0WsZgMEDVqAYA6CW665ana7Omvclx2N6uxfZ2Lba3azmrvZOSkqwq57GhbNasWUhJSUFFRQX27NkDnU4n9JAlJCQgKSkJX3zxBcLCwnDjjTeisLAQ7777LqRSKdRqtVCPSqVqcTK9KQipVCqzr9cr6+3t7ZQ6r5aammr2tGlhYSGWLl2KmJiYFnveWpOTk3PdXwitSof/6c4DAIK6Blr9C0SWrGlvchy2t2uxvV2L7e1a7m5vjw1l0dHRwvDg1KlT8dRTT+HZZ5/FmjVrIBKJ8Nprr+Hll1/Gm2++CcA47+yee+5BVlYWioqKhHpkMpkQ5pozBTfTEKjpq7VlHV3n1UJDQxEaGtriOWdQcd9LIiIit/LYUHa1lJQULFu2DEVFRbjhhhsQFhaGlStXoqioSFgnLCQkBDNmzEBkZKTwvpCQEBw9ehQGg8FsuNE0tGgKPqYhxubzuJqXDQoKEnq0nFGnu6nNnrxsN78WREREHUa7ePoSuDIUaHoC0yQqKgqDBg1CSEgICgoKUFlZiSFDhgjn4+PjoVQqLSbKm8aM4+PjAQBhYWGQy+XIzc21uPbJkyeFcs6q092ab0bOnjIiIiLX87hQVl1dbXFMq9Vi165dkMlk6NWrV4vv0+v1WL16NXx8fHDHHXcIx5OTkyGVSrFlyxbhmMFgwNatWxEWFob+/fsLx8eNG4dffvkFpaWlwrEjR46gqKhIePLTWXW6m/nCsewpIyIicjWP+/RdtmwZGhsbMWjQIISFhaGyshLff/89zp8/j4ULF8LPzw8AkJ6eDrVajd69e0Or1eKHH37AyZMn8fzzz5utCRYeHo5Zs2Zhw4YN0Gq1SExMxM8//4zjx4/jxRdfFBZ5BYA5c+Zg7969eOKJJzBz5kwoFAps2LABsbGxmDZtmlPrdLfmC8eyp4yIiMj1PC6UTZgwAd9++y22bt2K2tpa+Pn5ISEhAY8++iiSk5OFcn369MGXX36JH374ASKRCImJiXjvvffMlsgweeSRRxAYGIjMzEzs3LkTkZGReOGFF3DLLbeYlYuIiMDy5cuxYsUKrFmzRtincuHChRZzv5xRpzupmw1fcjV/IiIi1/O4UDZx4kSzvSOvZdq0aVb3NInFYsyZMwdz5sy5btmYmBiLvTNdVac7qdlTRkRE5FYeN6eM3KP5khh8+pKIiMj1GMoIwFU9ZQHsKSMiInI1hjICAKiaOKeMiIjInRjKCAAXjyUiInI3hjICcCWUiSUiSGWS65QmIiIiR2MoIwBXVvT39vcy2zqKiIiIXIOhjABcWdGfy2EQERG5B0MZQa83QH15oj/nkxEREbkHQxlB08TNyImIiNyNoYzM9r3kchhERETuwVBGwnwyAPD25/AlERGROzCUkVlPGYcviYiI3IOhjIRJ/oBxSQwiIiJyPYYyMu8p49OXREREbsFQRuZbLLGnjIiIyC0YykhYzR9gKCMiInIXhjIye/qSE/2JiIjcg6GMzIcvOaeMiIjILRjKyGz4kj1lRERE7sFQRuwpIyIi8gAMZQTV5TllXr4SiCX8lSAiInIHfgKT0FPGfS+JiIjch6GMhBX9OZ+MiIjIfRjKOjmtWgedRg+A88mIiIjciaGsk1NzM3IiIiKPwFDWyam4GTkREZFHYCjr5NhTRkRE5BkYyjo5rlFGRETkGRjKOjmVWShjTxkREZG7MJR1cuombrFERETkCRjKOjmznjJ/Dl8SERG5Cz+FO7n45B4IjQmGukmD0Nhgd98OERFRp8VQ1skFhvkhMMzP3bdBRETU6XH4koiIiMgDMJQREREReQCPG77Mz8/HJ598gtzcXFRVVcHHxwfR0dG49957MXr0aLOyP/74IzZv3ozz589DLBYjJiYG9913H0aOHCmUKS4uxuzZs1u81ksvvYSJEyeaHSsoKMCKFStw4sQJSKVSjBw5EosWLYJcLjcrp9frsXHjRnzzzTeoqqpCZGQk5syZg0mTJllcx9o6iYiIqPPyuFBWUlKCpqYmTJ06FaGhoVAqldi3bx+ee+45PP3000hNTQUAfP3110hPT8fIkSPxyCOPQKVSYefOnXjmmWfw2muvYdy4cWb1Tpo0CSNGjDA71q9fP7PXZWVlSEtLQ0BAABYsWACFQoGNGzfi3LlzWLNmDby8riwZsXbtWnz++ee4/fbb0bdvX+zfvx+vvvoqRCKRWdCzpU4iIiLqvDwulI0cOdKspwsA7rrrLixYsACbN282C2V9+/bFm2++CZFIBACYPn067rrrLuzcudMilPXu3RuTJ09u9drr16+HUqlERkYGIiIiAACJiYl46qmnsGPHDuHa5eXl2LRpE2bMmIEnn3wSAHDbbbchLS0Nq1atQkpKCiQSiU11EhERUefWLuaUSSQShIeHo6GhQTjW1NSELl26CIEMAPz9/eHr6wuZTNZiPQqFAhqNpsVzALBv3z6MGjVKCE8AMGTIEERFRWHPnj3Csf3790Or1WLGjBnCMZFIhDvvvBPl5eXIzs62uU4iIiLq3Dyup8xEoVBApVKhsbERBw4cwK+//orx48cL5wcPHox9+/bh66+/xqhRo6BWq/H111+jsbERM2fOtKhv3bp1WL16NUQiERISEvDQQw9h2LBhwvny8nJUV1cjISHB4r2JiYk4ePCg8DovLw++vr6Ijo62KGc6P3DgQJvqvFpFRQUqKyuF14WFhdcsS0RERO2fx4aylStXIjMzEwAgFosxduxYYagQAB5//HHU1tYiPT0d6enpAIDg4GC899576N+/v1BOLBZj6NChGDt2LEJDQ3Hp0iVs3rwZS5YswRtvvCEMlZoCUEhIiMW9hISEoK6uDmq1Gt7e3qisrLTopWv+3oqKCpvrvFpmZibWrVtncTw/Px86ne4ardayhoYG5OTk2PQeaju2t2uxvV2L7e1abG/XclZ7JyUlWVXOY0PZrFmzkJKSgoqKCuzZswc6nc5s6FEmkyEqKgphYWEYNWoUmpqasHnzZrzwwgtYsWIFIiMjAQARERF45513zOqeMmUK5s6di5UrVwqhTKVSAUCLE+9NoUmlUsHb2xsqleq65Wyt82qpqalmT5sWFhZi6dKliImJabHnrTU5OTlW/0KQ/djersX2di22t2uxvV3L3e3tsXPKoqOjMWTIEEydOhVvvfUWFAoFnn32WRgMBgDG5SzKysrw/PPPIyUlBbfeeiuWL18OrVaLtWvXtlp3UFAQpk2bhvPnz6OsrAwAhHloLc05U6vVZmVkMpnV5ayt82qhoaFISEgQ/lw9VEpEREQdi8eGsqulpKTg1KlTKCoqwqVLl/Drr79arFsWFBSEAQMG4I8//rhufeHh4QCA+vp6AFeGGJvP4zKprKxEUFCQ0KMVEhKCqqoqISA2LwcYA5WtdRIREVHn1m5CmWkosKGhAVVVVQCMC7heTavVWjXn6tKlSwCM89AAICwsDHK5HLm5uRZlT548ifj4eOF1fHw8lEqlxeR70zi0qawtdRIREVHn5nGhrLq62uKYVqvFrl27IJPJ0KtXL0RGRkIsFuPHH380660qKyvD8ePH0bt3b+FYTU2NRX3l5eXYvn074uLihF4tABg3bhx++eUXlJaWCseOHDmCoqIisyc/k5OTIZVKsWXLFuGYwWDA1q1bERYWZvaggbV1EhERUefmcRP9ly1bhsbGRgwaNAhhYWGorKzE999/j/Pnz2PhwoXw8/ODn58fbr31Vvz3v//FE088gbFjx0KhUGDLli1Qq9X485//LNS3evVqXLx4ETfffDNCQ0NRUlKCzMxMKJVKLF682Ozac+bMwd69e/HEE09g5syZUCgU2LBhA2JjYzFt2jShXHh4OGbNmoUNGzZAq9UiMTERP//8M44fP44XX3xRWDjWljqvx9RT2JalMc6fP292T+RcbG/XYnu7FtvbtdjeruXM9o6OjoaPj0+rZUSGqydGudnu3bvx7bff4ty5c6itrYWfnx8SEhJw1113ITk5WSin1WqxdetWbN++HRcuXAAA9O3bF/PmzcNNN90klPvhhx+wdetWFBYWor6+HgEBARg4cCDmzp3b4lOM+fn5FvtULly4EF27djUrp9fr8cUXXyAzMxOVlZWIjIzEn//85xZ3DbC2ztZ89913WLp0qdXliYiIyHOsXbv2uqsneFwoo5bV1NTg0KFD6N69u00PB5iW0njhhRf4BKcLsL1di+3tWmxv12J7u5az29uanjKPG76klsnl8uvu3dma6Ohom9c3o7Zje7sW29u12N6uxfZ2LXe2t8dN9CciIiLqjBjKiIiIiDwAQ1kHFxISgvnz57e4/yY5HtvbtdjersX2di22t2t5Qntzoj8RERGRB2BPGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyANw8dgOSq1W46OPPsJ3332H+vp6xMXF4aGHHsLQoUPdfWvtWlNTEzZu3IicnBycPHkS9fX1eO6551rcx7SgoMBie61FixZBLpe7/sbboZMnT2Lnzp04evQoSkpKEBQUhH79+uGhhx5CVFSUWVm2tWPk5+fjk08+QW5uLqqqquDj44Po6Gjce++9GD16tFlZtrnjffbZZ8jIyEBMTAw+/fRTs3MnTpzABx98gNOnT8Pf3x/jx4/HggUL4Ofn56a7bX+OHj2Kxx9/vMVzq1evRr9+/YTX7mpvhrIO6o033sDevXsxa9YsREZGYseOHViyZAnS09MxcOBAd99eu1VbW4t169YhIiIC8fHxOHr0aIvlysrKkJaWhoCAACxYsAAKhQIbN27EuXPnsGbNGnh5ebn4ztufL774AidOnMD48eMRFxeHyspKbNmyBQ899BBWr16N2NhYAGxrRyopKUFTUxOmTp2K0NBQKJVK7Nu3D8899xyefvpppKamAmCbO0NZWRnWr18PX19fi3N5eXl48sknER0djUWLFqGsrAybNm3ChQsX8M9//tMNd9u+3X333UhMTDQ71rNnT+F7t7a3gTqc7Oxsw5gxYwxffPGFcEypVBr+9Kc/GR599FE33ln7p1KpDBUVFQaDwWA4efKkYcyYMYbt27dblHvnnXcMkyZNMpSUlAjHfvvtN8OYMWMMW7duddn9tmfHjx83qNVqs2Pnz583TJw40fDqq68Kx9jWzqXVag3333+/4c9//rNwjG3ueC+99JLh8ccfN6SlpRnmzp1rdu7pp5823HnnnYaGhgbh2LZt2wxjxowx/Prrr66+1Xbr999/N4wZM8awZ8+eVsu5s705p6wD2rdvHyQSifD/agFAJpNh+vTpyM7ORmlpqRvvrn3z9va2amHBffv2YdSoUYiIiBCODRkyBFFRUdizZ48zb7HDGDBggEWPS1RUFHr16oXCwkLhGNvauSQSCcLDw9HQ0CAcY5s7VlZWFvbt24e0tDSLc42NjTh8+DAmT54Mf39/4fiUKVPg6+vL9m6jpqYmaLVai+Pubm8OX3ZAeXl5iIyMNPuFAiB01545c8bsH1NyrPLyclRXV7e4oW1iYiIOHjzohrvqGAwGA6qrq9GrVy8AbGtnUSgUUKlUaGxsxIEDB/Drr79i/PjxANjmjqbT6ZCeno7p06cjLi7O4vy5c+eg0+ks2tvLywu9e/dGXl6eq261w3jjjTegUCggkUgwcOBAPPbYY+jbty8A97c3Q1kHVFlZ2WJvjulYRUWFq2+pU6msrASAa/4d1NXVQa1Ww9vb29W31u59//33KC8vxwMPPACAbe0sK1euRGZmJgBALBZj7NixePLJJwGwzR1t69atKC0txXvvvdfi+eu197Fjx5x6fx2JVCrFuHHjMGLECAQHB6OgoACbNm3CokWLsGrVKvTp08ft7c1Q1gGpVKoWJ9qa/pFUqVSuvqVOxdS+1/s74IeWbQoLC/Hee++hX79+mDp1KgC2tbPMmjULKSkpqKiowJ49e6DT6aDRaACwzR2ptrYWH3/8MebOnXvNp1av195qtdqZt9ihDBgwAAMGDBBeJycnIyUlBffffz8+/PBDLFu2zO3tzTllHZBMJhP+AW3O9Mskk8lcfUudiql9+XfgOJWVlXjmmWfg7++P1157DRKJBADb2lmio6MxZMgQTJ06FW+99RYUCgWeffZZGAwGtrkDZWRkIDAwEHffffc1y1yvvRl+7RMZGYnk5GQcPXoUOp3O7e3NUNYBhYSECF2wzZmOhYaGuvqWOhVTt/e1/g6CgoL4D6kNGhoasGTJEjQ0NGDZsmVmv79sa9dISUnBqVOnUFRUxDZ3kKKiImzbtg0zZ85ERUUFiouLUVxcDLVaDa1Wi+LiYtTV1V23vfnvuf3Cw8Oh0WigVCrd3t4MZR1QfHw8Lly4gMbGRrPjOTk5wnlynrCwMMjlcuTm5lqcO3nyJNvfBiqVCs8++yyKiorw5ptvChP8TdjWrmEa0mloaGCbO0hFRQX0ej3S09Mxe/Zs4U9OTg6Kioowe/ZsrFu3DjExMZBIJBbtrdFokJeXx/Z2gEuXLsHb2xu+vr5ub2+Gsg4oJSUFOp1OmKgLGLtdt2/fjqSkJD556QLjxo3DL7/8Yrb8yJEjR1BUVCQ8xUat0+l0ePnll5GdnY1XXnkF/fv3b7Ec29pxqqurLY5ptVrs2rULMplMCMVsc/vFxMTg9ddft/gTExODiIgIvP7665g+fToCAgIwZMgQfPfdd2hqahLev2vXLigUCra3DWpqaiyOnTlzBgcOHMDQoUMhFovd3t4ig8FgcOoVyC1eeukl/PTTT7jnnnvQs2dP7Ny5EydPnsR7772HwYMHu/v22rWvv/4aDQ0NqKysxDfffIOxY8eid+/eAIwrRQcEBKC0tBQPPfQQAgICMHPmTCgUCmzYsAFhYWH48MMPObxjheXLl+Orr77CqFGjMGHCBIvzkydPBgC2tQP9/e9/R2NjIwYNGoSwsDBUVlbi+++/x/nz57Fw4ULMnj0bANvcmRYvXoza2lqzbZZyc3OxcOFCREdHIzU1VVhhftCgQXjnnXfceLfty+OPPw6ZTIb+/fujS5cuKCgowLZt2yCVSrFq1Srh/3S4s70ZyjoolUol7H3Z0NCA2NhYPPTQQxg2bJi7b63du+eee1BSUtLiuU2bNqF79+4AjPsIXr034MKFC9G1a1dX3m67tXjxYmRlZV3z/E8//SR8z7Z2jN27d+Pbb7/FuXPnUFtbCz8/PyQkJOCuu+5CcnKyWVm2uXO0FMoA4Pjx48JejH5+fhg/fjweeeQR7n1pg6+++grff/89Ll68iMbGRsjlctx8882YP38+IiMjzcq6q70ZyoiIiIg8AOeUEREREXkAhjIiIiIiD8BQRkREROQBGMqIiIiIPABDGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyAMwlBERERF5AIYyIuo0iouLMXbsWPzf//2fu2/FIXbs2IGxY8dix44d7r4VInIAhjIi6tQWL16MsWPHuvs2WtTRQiQRtU7q7hsgInKVsLAw/Pvf/4a/v7+7b8UhxowZg6SkJISEhLj7VojIARjKiKjTkEqliI6OdvdtOExAQAACAgLcfRtE5CAig8FgcPdNEBG5QnFxMWbPno2pU6fi+eefv+awpem8ydmzZ/Hvf/8bWVlZqKurQ0hICEaPHo37778fwcHBLdZ/3333Ye3atTh27Bjq6uqwadMmdO/eHT/99BP27NmDU6dOoaKiAlKpFHFxcZg5cyZSUlKEunbs2IE33nijxftLT0/HjTfeKJR57rnnMG3aNLMyJ06cwL///W9kZ2dDpVKhW7dumDBhAu677z74+PiYlR07diwGDx6Ml19+GatXr8bBgwehUCgQHx+PRx55BDfeeKOtTU1EbcCeMiLqtObPn4+dO3eipKQE8+fPF4737t1b+H7//v14+eWXIRKJkJycjPDwcBQUFOA///kPDh06hDVr1iAwMNCs3osXL+Kxxx5DbGwspk6dirq6Onh5eQEAPvzwQ0ilUgwYMAAhISGoqanBgQMH8I9//AOPP/447r77bgBAfHw8Zs6cia+++grx8fFITk4W6u/WrVurP9eePXvw6quvwsvLCxMmTIBcLsdvv/2GdevW4dChQ0hPT4dMJjN7T0NDAxYuXIiAgABMnjwZ1dXV2LNnD55++mmsXbsWsbGxbWpjIrIeQxkRdVoPPPAAsrKyUFJSggceeMDifG1tLV5//XUEBwdj5cqVZmFo9+7deOWVV/DRRx/hiSeeMHvfiRMnMH/+/BbrfPvtt9GjRw+zY01NTfh//+//4aOPPsL06dPh4+OD3r17IyAgQAhlLdXVksbGRvzzn/+ERCLB6tWrERcXBwB4+OGH8eqrr+LHH3/Exo0bMW/ePLP3nTlzBnfeeSeeeOIJiMXGZ8BuuukmvP322/jPf/6Dp59+2qrrE1Hb8elLIqJr2LVrFxobG/Hwww9b9E5NnDgRffr0we7duy3e17VrV/zlL39psc6rAxkA+Pn5Ydq0aWhoaMCpU6fsuuf9+/ejoaEBt956qxDIAEAsFuOxxx6DRCJpcQkNX19fPProo0IgA4zDuBKJxO57IiLrsKeMiOgasrOzAQA5OTm4ePGixXm1Wo3a2lrU1NRALpcLx+Pj44XhyqtVV1fj888/x8GDB1FaWgqVSmV2vqKiwq57zsvLAwAMHjzY4lxERAR69OiBoqIiNDU1wc/PTzgXGRlp9howPhjRtWtXNDQ02HVPRGQdhjIiomuor68HAGzZsqXVckql0ux1ly5dWixXV1eHhx9+GKWlpRgwYACGDBmCgIAAiMVinDlzBvv374dGo7HrnhsbGwEYe+taEhISgqKiIjQ2NpqFsGstEyKRSKDX6+26JyKyDkMZEdE1mELLunXrbJroLhKJWjz+7bfforS0FA8++KDFnK7169dj//79bb/Zy0zhqqqqqsXzpuMdZa02oo6Ec8qIqFMzzaHS6XQW55KSkgBcGca0l2kItPmTlCbHjx+/5r3Z0lNlenI0KyvL4lxpaSkuXryIHj16WAxVEpH7MZQRUacWFBQEACgrK7M4d+utt8LPzw9r165Ffn6+xXmlUmlTYDM9LHDixAmz499//z0OHjxoUT4wMBAikajFe7uW5ORkBAQEYPv27Wb3bDAYsGbNGuh0Oos1zYjIM3D4kog6tZtuugl79+7Fiy++iOHDh8Pb2xvx8fEYPXo05HI5XnrpJfzjH//AAw88gGHDhuGGG26ARqNBSUkJsrKy0L9/fyxbtsyqa02ePBlffPEF0tPTcfToUURERODMmTP4/fffMXbsWPz0009m5f38/NC3b18cO3YMS5cuRWRkJEQiEaZMmXLNtcr8/f3xt7/9Da+++ioeffRRjB8/HnK5HEeOHEFubi4SExPxpz/9ye52IyLHYygjok7ttttuQ3FxMX788Ud88cUX0Ol0mDp1KkaPHg0AGDlyJD766CNs2LABR44cweHDh+Hj44OwsDBMmzYNkydPtvpa4eHhWL58OVavXo3Dhw9Dp9OhT58+eOedd1BWVmYRygDghRdewPvvv49ffvkFjY2NMBgMGDhwYKsLyI4fPx5du3bF+vXr8dNPPwkr+s+bNw/33XefxcKxROQZuM0SERERkQfgnDIiIiIiD8BQRkREROQBGMqIiIiIPABDGREREZEHYCgjIiIi8gAMZUREREQegKGMiIiIyAMwlBERERF5AIYyIiIiIg/AUEZERETkARjKiIiIiDwAQxkRERGRB/j/L4ecM76I4oMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACqa0lEQVR4nO19eZhU1Zn371b1RncDTXfTCALdrA2FuCRRowgCzjgYJ8zEJRq/RNFo4oYkM35B+GayGP2cz5jPByfuRknMOGJ0VJyoiTEInxoVERQoaLamaZbupve9uqvu/f4oqurWfpdz3ntu9fk9Dw/Vt+69572nzj3nXX7vexRN0zRISEhISEhISIwgeJwWQEJCQkJCQkKCGlIBkpCQkJCQkBhxkAqQhISEhISExIiDVIAkJCQkJCQkRhykAiQhISEhISEx4iAVIAkJCQkJCYkRB6kASUhISEhISIw4SAUoDQYHB1FXV4fBwUGnRZGQkJCQkJBgDKkApUFDQwNuueUWNDQ0mLru4MGDnCSSSAXZ37SQ/U0L2d+0kP1NC6f7WypAjBEIBJwWYURB9jctZH/TQvY3LWR/08Lp/pYKkISEhISEhMSIg1SAJCQkJCQkJEYcpAIkISEhISEhMeIgFSAJCQkJCQmJEQepAElISEhISEiMOEgFSEJCQkJCQmLEQSpAEhISEhISEiMOUgGSkJCQkJCQGHGQCpCEhISEhITEiINUgCQkJCQkJCRGHPKcFiAR27dvx6pVq1J+9/jjj2PevHkZrz958iR+9atfYevWrVBVFeeccw5WrlyJSZMm8RBXQkJCQkJCwoUQTgGK4Morr8TcuXPjjp1++ukZr+nv78eqVavQ19eHb3/728jLy8NLL72ElStX4tlnn8XYsWN5iiwhISEhISHhEgirAJ111llYvHixqWtee+01HD16FE8++WRUeTr//POxYsUKbNiwAd/73vc4SCohISEhISHhNgirAAFhj05BQQHy8oyJ+d5772HOnDlxnqPq6mp86UtfwqZNm1yjAPW1DaD+k2aEhkNkbVZMG4vTz6iAoiiW72FUbm++BzXnnobSylGW2wKA47vbcPSvXRg+cDDjeaWVo1Bz3mnw5lmnvA31D6P+4yYM9gxlPlFRcPr8ClTW2PM2dhztQeP2k9A0LeN5BSX5mH7+RBSW5ltuSw2paNjWgu6mvqzn9ioD0OZqtsZJf8cg6j9pQjCQeZx48jyoOXcCRo8vttwWAJzY046W/R1ZzyspL0LNeachr8Brua3hwSDqP2rCQDebXa6bW7KP7+LyIkwjlHvSvAqMn1FmuS0A6DzeiyOftUBTM4/v/FF5mP7ViSgaXWC5LVXV0PhZCzqP92Y9t0fthzZHg+KxPr4HugKo/7gJw4NBy/cwi7LTSzH1nCp7cncHUP9RdrkVrwfVX6rC2IklltvqaenHgfePo7W9C+Wedpw2p9zyvexAWAXogQcewMDAALxeL84880zcdtttmDNnTtrzVVXFoUOH8LWvfS3pu7lz52Lr1q3o7+9HcXHqybS1tRVtbW3RvxsaGuw/hEW8/eA2dDT2kLf79Z9+FRNmj7N8/Z8e2oa2BmNy7/3LUVz54EWWF9KTh7rw5v2fAACOoDPr+V/9TgBnXDbNUlsA8Ml/1mHvu42Gzv3sZQ++9e9LUDTG2qQ9NBDExp98hOEBYxPoCX87lq4821JbALD//x3D/3tql+Hzp01vx6R5FZbb+/PD29FyoNPQuXveOYKrf7nI8sTe3tiDP/z8Y8Pnf6VtEGf/wwxLbQHApy/tw+632c4dRsZ378kBnPONmZbb2Pbyfux687ChcxWPgmvXXYySCmsGTHAohP/+2UcY7Bk2dP7Rz1tx6d1fttQWABz+pAl/eWSH4fOnTGlB9ZcnWG5v06Of4/iutuwnMsbf/PAc1Jx7muXrNz/2BY5+0Wro3J1/qMe1jyy2bFR2NfVh28v7AQDlY1ulAhRBXl4eLr74Ynz1q1/F2LFjcfjwYWzYsAF33nknHnvsMcyePTvldd3d3RgaGkJFRfLEHDnW2tqKqVOnprx+48aNWL9+fdLx+vp6hELGPTG9vb3w+/2Gz0+EpmmOKD8AsPvjfWgLjrZ0raZphpUfAOg81ovdu/zweK0tbM3bzfXRwc8b4akesNQWABzd22z43NCwih1/3YUxU4ostdXXMmRY+QGAE/tbbY25Q9vbTZ3v/3g/OhXj/ZGI1sNdhs/tbu7Hrs93w1tobaI9uTO71a9H/c6jKJhl3XvT6G+yfK0dHN51DIW1WbyTGdDoN/57aqqGHR/6MW6GNQVosGPYsPIDAE0H2myN74ZPs3v/9Nj76UH0jbKuwLQcMtceK+z99BD6S8y9y3o0HzR+7UBnAF98uguFY6ypEO2H+qOf2zrs/b7p4PP5sp4jnAI0f/58zJ8/P/r3RRddhMWLF+PGG2/EU089hYceeijldYFAeNLKz08OBRQUFMSdkwrLly/HggULon83NDTgvvvuw7Rp01BbW2tYfr/fb6jj0yE4FMJfcQQAMG5KKb58VWqFjxWa93Vg5x/qAQBVlVXw+ax5SUJBNSp32eml+Mo3U8v92Sv70X4krLzUzqpFfpHFIXi0AQcRfmHnLavGxLnJiu9gdwDv/3o3AGB0yRhbv0tdXjt6MQTFq+CSu85Jec7BD46j/pPwAjh1cjUm+ax5SU4WdeFznAAATDl7PGqXTEl53uYnvsDwQBB5njxbz9b+4S40IfybfPU7c1BamewlPXmwE59vPAQAqKwYD5/PmpdE0zR8GAp7SMZMKMZ516X26u54/SBaD4UVpVkzZlv2ptW1NGI/wovZ3L+ZitPnVyadM9Q/jC1P7gQAlBaPttWXBwq60I3wPPM3PzwHgPWQBAA0Hm3ElMmpf//hgSA2P/EFAKBkVKktuQ8WdKMLgwCAS35wTkrPbP0nTTj4wXEAwORJk1Hts+Yl6TjWi88Qvs+keRXwXVqd8rwPnt2Fga4heOC19Wzdn+3BMXQDAM69djbGTixNOqe9sRufvXwAAFAxrhI+n/V5d6t2FEA4pHrBDdblNoKOoz3Y9vuwJ6ViXAV8PuNrVSI+1Y4BUFE8rhAXrkidbb3rrXo07Q0reDOmzcSYCdbC0/U9J7AXJwEAp02aAJ9vuqX72IVwClAqTJ48GRdddBG2bNmCUCgErzc51l1YWAgAGB5OtiyGhobizkmFyspKVFYmT47UCA2r0c8l44pQc651V6wxaNj5h+S2zUJ/bfG4wrRy7/1LY1QBCg2ryLfmJIlrr2rWuJTt9bUPAggrQKGg9WfTX59X4En7bO1HulH/SbJ8ptvSXTt2Ukna9j78jRfDA0FmzwYAp585HuNOT14gvPmeqAJk59m0kAacon2MGpt+nBx4/1hUAbLzfHpZx88cm7K9wd6hlOdbau+UrB6vYiscEUF/SRtq0igaQ/2xuY6V3IoCTDsvtdzdzX04+IH99lTdtWMmFKcdA1tfrMNA1xBUm+Nb396kMyoxfnoyP69odD4+Q1gBst2Xp64vGp3Pff4eNbYgqgCxGgOFpQVp5W7Y1hxVgFi9l95858oRuqYQYlVVFYaHhzE4OJjy+zFjxqCgoCCOxxNB5JgICk426AeVh2Bg6GO4dga0anBA67+z9QLprk0Xh9YfVxlNapli3nHPZmeBMPBs+u9YPVum9vTPZmdBivvdjI4Tzn0ZN07sKpORcULw7noYvbtATO5Mcw6Pd9dIe6wWdiD9GGDVl5qmQQ2GNXw3zd9AbB4x+l7amXeM/CYUcI0CdPz4cRQUFGDUqNRxZ4/Hg+nTp2Pv3r1J3/n9fkyaNCktAVokqAYWI5bwxC00mTMyMsHogGallBixIDyMFlFAZ9lnmBxYTaJGraPoAsHQA5S2L/PY9KX+Wk+GcULZl6yULSCmQGV6NlZgqeBH5CZ/dw20FwqqWbMhDbdnYAzYeTajxgsrsJrj1JCKSBcbHQOs3ksKRTEdhFOAOjs7k44dOHAAH3zwAc4991x4PGGRm5ubkzK1Lr74YuzduzdOCTpy5Ai2b99uuqaQU6B2DbKyfs0u2onXmIVqYNFmZbECOuvIoAeIt3Knl8X2om3SA8TMcyeIpenxehChvLDypFC8u4pHiSYRUMjtIR4D0fa0U6FTBu2lU0x5LOy5OH8zU7gE8QAJxwH6yU9+gsLCQpxxxhkYN24cDh8+jDfeeANFRUX4/ve/Hz3v/vvvx44dO7Bly5bosW984xv47//+b6xevRrXXnstvF4vXnrpJYwbNw7XXnutE49jGkZeVpZgpZAYlZuHZZ+uPX2Gme0wUTD7AsFsEjXal6dkUYMaNM16bR4j1piXkQfIqIeT3YIUWzgzeu/yPQgNqcw8hVSTujffAzUUYie30fHtwBiwOh8aCc9Tz4OsQC23WxXFdBBOAVq4cCHeeecdvPTSS+jr60NZWRkWLVqEFStWYPLkyRmvLS4uxrp16/CrX/0Kv/3tb6N7gd15550oKyujeQCbMMqlYQVmGj2xB8iIFakoCrz5HoSGVXYWsgGFRH++FRjuywTrz5tvrRCekb5kxgES1NL05oUVIFYcICq3fnixCjEjCmdc/DjwwAxzjuwkTBjxAjLybjk6fxNzOHOBAyScAnTVVVfhqquuynreI488kvJ4VVUV7r33XtZikYF6YDBzoRpdaHgspFk8TqFhe5a9UWIjDw+QGdK1VQVIP5Glq8vEjAMkqKXJinCrGvCksARrojCFB8jwu8sq5GbEA8SK3+Tk/E0gN7VnljeE4wCNdJDHkFl5ZAyS2lgtpEY4QPrvbFlHVpQ76r5koHB58z1pw2jMOEDUlqbBvmQxTjRNM+QpZAk9UdgOhPdwslK6eYfAnJy/c9AzyxtSARIM5DFkcq9FbIHlzQHSy0JJSgboPUAsns+oR4ZZlgxBXxqdaD0MxomqI+pSeYA8DDxAqqpF9+QS2cNpFZHfVPEo8KTZUoWav8cKzLxyRj2zxIkevCEVIMGQ8xwgDi8sbw+QWVIy4EBfMvIApW2Lg6VJ0ZeUJQWMPhtLROS2E042TEqm9soRjm/Fq0SLdttSgonnb8WjhGWHy+YcmQYvkQqSA2QMRiftyELkBCnZKpyykCnCH/GKa/qsNWqyJYuSAtSLHxAvt9VaOZbCH5Rp8GCjBGf6/RVFYRJONPpsLBH1cru1jIkMgUlEIDlABttzyANEoZA4yQFK25ZHie7ITkGApbY0I99pqgY1ZK09JzJb4hRFi7VyLBFgidPgbRlLBoqYAmwI5UbHN0swkdvBMiYyBCYRBfVWGHFF4IaN73qfCPKtMEy60bVQjOdgpy3j1pGNvrSicA3x5QDp22OxGOnvl6ktvXxWoP8deC/uTkzqcQvSkLUxZ5YoDjAMKROMgeBQdg8QwMZb7ERoh4nnKm7sGvPM2pnjREmDlwqQYKDeCgPQESkpvCSMU2kVD9ISGwHAW2B/0ra0fQMhbwXg7wHSf++qrTCsKFxWxwkxARZgI7dxhTtWZoEVByiPkAhveHwTkO5ZggUR3pJn1s7WSZIDJJEKTliRLPgP1OnNkYlGSVO3JtoeoWVPvl0Eg8wsTdWi2wxkXSAIORLMxklEUVbC3s607THoSyc5QIntm4GTWY6URPisHk7CjFGWYMEBsuKZZdae9ABJROAkj4BZdVfCGLInL7MCxIK4aUUhIfGSED6bvj1XcYAM8j+Y96WLPEBOke4T75nUHgMOkKZp5j2cBJ5wlnDMM+syRTEVpAIkGByxIJi8QDquBQm3w4IHyCJPxlKasC3lzmBfsvBuDRmfsJ3yFPLOAEr83rqnMPa70W6FEWnf6hgwJjeX0gScOW5aSAMM7HIO5AAHyE4mIDU3L9JeFs8sb0gFSDA48gKdiu3be/GNFYHT8whYvECeLLs/sFBK4ieH9A1SV5ON60sWvBWDFjKz8gUEfRnlfxRkHihM+tIgt4UlmHuAMvwmXDIBCXlZWT1Ap/iCmqpBZZIwYW1rGrPQ8xwtZwJaeC9ZpN2n23qHClIBEgyOkOgYcDssZS5RhMAYc4Ao0tIpt94wk7bL2tKk9DZkfTbGfUlnvLDmLmXxqLIOl3P2NpjxqDPhgTk4fwPW+4l6M+sohzPL/M0bUgESDE6GwKi3iyAhQRNyJBRFiSpkbtl6wyj5EYhfrJhYmgQ1YKIKkEHvlv4as3Bi8aMc3/rvKUJgLAwKKx5OgEbhYgUmyruVLF4mHiDLt2ACqQAJBicriWoarBeBM1lwDrD+Auk3nczmAWLB7TCT3eO2rTfMbN/AhCfjENcg27MxWWwdzgKjWLRZlMywlHHE4t01M77dOgZYlPqg8MwaNGB5QypAgsHMgsQKlNYvE4VE530w4wFiwgEisJBVnXKXbnf2RFnY8Jv4h4msVAG2tdga9gDF+pm3Fc0STJRgE/WLKD1A1AoJdV+yAhPPlYX5mwUXMJsByxtSARIMTtQSobR+mbjs9UpiFgWIkgOk/56yMCHAyPrP5iVhXSyQs6WphlRoBjOAKK1olmCxIFnxcDLhACmZDRjKhT3xe4q+ZAUW8zc1ByiWxCIVIAkdnK4lQhlDZuFFyEaio+Z2sCymZoa4y+TZTJBEeStcTLxbFhb2xOvMwHEOEIGSwDJV3JvnyejhZG2YkXCAcnz+jts6iQEHSJKgJeIgY8gG2tJ7EbKlwRO70VlygLJ6m1j/bmYULt5FJYnDETnBASIe31YzAc1uTQHQZGVJDlAYhr3cVn8TNbYvo/QAScTBrTFkyjR4MyEw5qniBr0kLDhA1KnbJGnCRjOAGFiaVkI7ideZwUjiAEFDdAsV0+1F+R9iKSRu5QAxCRdb8XIzeC8VmQUmoYcjm6ESTjR6hYXFQpPNhcqct2KQJ6MGNdu1ckyFpAgI3kz6ktDStMr/sP5ssd871zlAgP0xR8JxGwEcIMe8gEwyT6UHSEIHPTlMybDLOUuwtH6zbTqpKIrtMJFqxgNEnQbPkLtCwgGy+Gy80+D17UkOUHowVxLMhF1tjjnRFG7JATp1P4PzDhODUobAJPQwWriNJVhmExmxfO0SKc14gMgLxdnsS03ToAZPxccpOEBWC8VRKK8MPUCSA5QepqqBU3qAiCszu7YQIjUHyGaih74tSYKWiEPkhaWKHye2ZbeisBGrx7YFYdEDRMGTsduXVidsyq0wbLWnW/wyZQBFztFfYxbkHCAH0uDj+R/2q3NnVYIZvk+mSPcueHcTr3NmDDBQFDkneqjSAySRDs54gBjwckzIbTdV3EwWGDUHyO5CapWUTLFZJMuQhBEFn6WlScFtcSQExoK3Qugl0WcAicZxY1noU/Eo8LiJwmDBqGShlMpK0BJxCJnwpLACy4nGkALE0LLPGgJzkANk5fmsKltMns0MUZiBBygbmHINKJ7NifCHy7wkZt4lxasASvJ1ZmDVu0UxD7ICa7mzeWYj/aipGlTVvNcx/r2UCpCEDma4NKzAciE1Y9mzqQMk2FYYdi1kq2m7xBwguxayoVCpzXFiZpdz1inQbk2D5z2+zYRcFUWJjQGCMCjLvfVIDViWHE4T7yVg38st0+Al4mC0SBhLsIx9k1j2xB4gSgvZVFq6J5YpSM0BohgnLC1NihRot26FYTVTykp7ZjkyLInwFOM7yuF02fxtdM+8xHMsGXmSAySRCvpdzp2yIGxzgExYEFooxgcwAzOZRG7zkpgNo7AkJFJayNSWpkyDTw8zcttNgzejcOvbo06Dp5gHWYFlGryZ+Vt/nam2BKoDlOdo6wbw29/+Fs888wymTZuG3/zmNxnPffbZZ7F+/fqk4wUFBfjzn//MSUJ20O9y7qYYclxpcxOWfaS9vAJzftC4NHjCOkBGiI12ybRmK8l68zwIBkLc9+YCaFOgk9obVpFXaH2ciFZ1mBXoi+DFxr/tLEcTY4Ckvg3DvnTT/A2Yk9uuISQSCVpoBailpQW/+93vMGrUKFPX/fM//3PcNR6POxxdZvZlYgmmvBWzFsSwBQXIhAXB1DoykeEG8OcAAfrK0wTeLZseGU3VotsnUFia5PwPg8VAWcKxrTAstmd2jnMdB8iBMiYsvYCmPbO2jTypAKXFY489Bp/PB1VV0dXVZfi6iy++GGVlZfwE4wQnyqgDDHgrFsM2ltujToM34da2bR2ZtZAZpqTyrsxrlv/BtC8JOUCkCQwMt2/w5CmGazNZbc/0+HaIA2S3L900fwPmPEAsDWanPUDCukZ27NiBzZs3Y+XKlZau7+vrs7wXk1NwIosEYMBbMSm3XU8CeRq8CWKjbevIrDfN5gJBuRWG6Wdj2ZeEHCDXZQCZIaaPEA6QpYU9pCKy5Lhp/tZULUq/IOEAmTBgeUNID1AoFMK6detw+eWXY8aMGaavv+aaazAwMIBRo0bhoosuwh133IHy8vKM17S2tqKtrS36d0NDg+l27cIJDkFiW7ZJbcSWvZk0eAoPEMs0YVPbihATvG1nuBFYmk5thUFq/Xs9UBRA0xwY34QcoEjChNn9ES0XeSTwhLMCU4WEmAMkQ2Ap8Prrr6O5uRkPP/ywqetGjx6NK664AvPmzUN+fj6++OILvPrqq9izZw+efvpplJSUpL1248aNKQnU9fX1CIVChmXo7e2F3+83JXcE/a3D0c/dvd2W72MWPUcD0c8nm1tNtzvQFpO7t68n6/U9vbFw5r66/SjpKDDVXktTR/Tz4NBgxvb0XsDebmu/zVAgCAAIqsNZr28+2RP93HjkGIb8xkO3ANB6uC/2ue0k/P6hzLIFw79daFi19Gzdnd3RzwcO7kdeUfoJsK8pJktbS5vp9gJdwdi9BrL/Fl09sb47sO8ASnsLTbXXfLwz+vnY8aPoG9WW/mSEa5JoIaC/p99SXwYGw/0T0kLM3l0j84niVaAFNfT3WpR7ICy3iuxj6GRzb/Tz8cbj0Py9Gc5ORsfBgejnto7sY2hwKHb+rp27TSsWHe2xMXSw/gAK29IveQPtsXmsvbXDdF8OD8TWif7BPrL5e7AjJneHBbmDgzGFZDCQfQx1dMbm3/oDh9AeMsfRPX409psEhgPc+snn82U9RzgFqKurC88++yyuv/560zyeq6++Ou7vxYsXY+7cufj5z3+OV199Fd/+9rfTXrt8+XIsWLAg+ndDQwPuu+8+TJs2DbW1tYZl8Pv9hjo+FdoOd2MHjgMAKsaXW76PWbQWd2EnmgAAY0eXmW63/UgPtp+Su7xyXNbrOz7ajRaEF/ppU6ehcvpYU+11bvXjOMILd8no4qztfeRthBbSUJhfZKlPP1YbAQCjSkZlvT6v9SgOoR0AMGH8BPh81abaOtB+DPvQCgCYNHkifL6ajOcfHN2NvhNDgAbMqZ1jmnx7qLAHwCAAwHfG3IyE9I6xvfgcJwAAY0aPNd2XXSf6sA3HAABl5dnHWfdne9CEsEI5dUoNTqsdZ6q93s/34ijCk+20mTWYOLci4/lbC45ieCCE/LwCS+Nkm3YcQAhFxYXM3l0j88mnBccwFAwi32tN7s8QlrtwVPbr63tOYD/CiuT4iir4fNNNtXW4rxl70AIAOG3SBPh8mT38R8b2oRthJX/2zFoUluSbaq9x1KdoRz8AYK5vDorGpDe2etsGovPY6OLRpvuyv2MQW3EUADB2nPn3wyr6OgZP/YZASYl5uQe6AvgE4TluTNmYrNcP7tmPY6fm38mnT8UU33hT7QX2HUADOgEAxaXZ51SeEI4D9Mwzz2D06NG48sormdzvb//2b1FeXo5t27ZlPK+yshK1tbXRf9XV5hYuFnCMA8SQ1U/iRjdRB0gvk12ejNksMPK+5JzBZ5sDZJHgDRDxqRhVKKcMf+jbI+cAEYxv28R7Mxwg4mdjBdv1shycc5wmQQvlAWpsbMQbb7yBlStXorW1NXp8aGgIwWAQJ06cQElJCcaMGWPqvlVVVeju7s5+osNwopIs4BxvxXJ7+jpABmLI3vxwrRwri6hZYqOjfRlUYc4+1qVue5Ws/AqWiquQfcmoQjnl4gfoFCAXcNzMZrraTpgwoXQz3eZjpMzftknQUgGKorW1FaqqYt26dVi3bl3S99dccw2uuuoq3HXXXYbvqWkampqaMGvWLJaicoEIFoRtYiOBByh+5+Ls59ux7E2n+DvYl3aqJVNk71GToE335alzLC20JouBsoTHhtyapkENGpebaQkLCiK8CW8x04XdrfO3yd/EboV2SYLWYdq0abj//vuTjj/zzDPo7+/HXXfdhUmTJgEAmpubMTg4GBeq6uzsTOINvfbaa+js7MT555/PVXYWcKwOELHlw3IhNeJCtWPZm53U4vvSwv5VDilc1BVgzWyaC9Bk5djxpJj1brGELbmJS1hYTYMH7L2/RnY5Z1meg3L+VrwKoADQaH4TllthOL0ZqlAKUFlZGRYuXJh0/Pe//z0AxH13//33Y8eOHdiyZUv02NVXX42lS5di+vTpKCgowM6dO/Huu+9i1qxZWL58Of8HsAkRPEC8660A9uP6qkkLwo4HyJbL3gUcIMoUaDseIMr6VG4KfwC0crMshknpbTCicCseBYoH0FR3pcErigJvngehYZVEbruGUNxmqNIDxA5/+7d/i127dmHz5s0YGhrChAkT8K1vfQvXX389ioqKnBYvK1zLAbKwf5Wt9sySoG1sF0GvkMS8RpTxeENt6fratoVMvemiiYldDWrQNC2rxyCuLYeMFyAmt6ZqUFUt6351elC/u9RjwGxlZiVPgTakkcyDLOHNP6UAUc/ftj1AUgHKikceecTQsR/96EcU4nCDW7fCMO0lYWhFGiJB6yxk0wubg9aRaBwgRVGitXLcUHDNVngnqMKbb9w/75TxAiSHbjwmNo218+7a3geKsBimUaXU41WgQrOWMBHXl7QLu52CqLbGAOdCtrxB+6ZKZIRTVqSiKFFXpOu2wjDQTfqJNlLy3SjsWEcU4URWRGGjCndknFBvhUG+R53J5zOrbLGEHbntvLuUW2EA9sYAyfgWYAxQz9+2PUAOh8CkAiQQHOUR2CEKWww1JF5ruD0TxEbA3qRty7sleEqqpmmmPEBAzGXtCv6HWQK7jb4UgQME8JfbNn+PeAyY2eUcsDm+BRgDbpi/VekBkkgFR2PIdoiUDlkQRvvIziQqfhq8dV6O3htmNGwTmbDcwAEys8s5YHOcCMABAux5gKj5e5RzhWEPkDf+OlNtOcwBAujnb7tebqdJ0FIBEghOcYAAe6ni5F4Ss2EbG1arvTR4grANK+vfKEcij42FTO0pNAJWfekoB8ik3LnMATK7yzkQC8nY5wARz98OcYBsF7J1OA1eKkACwdEYso1ianYypexMNEb7iF0IzFy4TfSsMysTdjRE4CJL0/A4GekcILMhVwoOECvjxaSHM5IwYbU9p8aAFooV5DQKp7Yy8niNeWZ5QipAAmHEcIDsTqJmLXtGk6iQ2zfY8VpYWSAYeYAoLU3jzzbCOUAGMwHtjAHKrTCsKKVxpR7MJkwIMH8D/L2X1PM3TzgvgUQUbuUAObUVhmEOkI1J1DRJ1OtBxKgRfSsMKyGwiMvaiqVphwBrqwaMgFwxlrDFAbIQumPFN+EdArPym+izknjzqVjClpfbodIb1H2UCs5LIBGFCBygSBE4M7DFW8kxDpC+PeE5QCYVEiDeQrZlaZrNynKRp9DJxc80B8iCl8RWuJyQBG0lJGWn2KcI8zfA33tpm5guPUASqSACBwgwP4naSm82m7qtatBMEhsp0+D17dnhAClK2JuUtS1WHCCTJGgr7Tm1DYKo44QVqL0krPbW411Y1Ip3K84DRGBQsAKll9t27TGT7yVPOC+BRBTCxJDtTDScLXsrvBVKDpC+PTseIBLeioW+VBh5gHhb/2Z3OU88j3dBQZagLISoP496Kwxb3i2TafCATWXSpWOAZJNik9w8nnBeAokorCxIrGBnUFNuhWFlkqG0jvTn2eEAkfNWLHiAbJFSOVuadkI7idcbgZNp8KzI22YNClseTq8CxcCeZcy8WyYLIQI0fckKpPO3zUr+Zmsz8YTzEkhEYSUkwQqUReBsKSRWrDpqDhADjgR5hpsVDxClp5AgK4vak8IKdt5dO4qiHQ+npbAkwRhgpuC7aAyYHbuKR4mVC7DhmZUhMIk45EQqLWcPkBUlkZwDxIAjYal4HwUHSB8i4M0VY6QoW8kW5G1FswS5khDxANnIBLRkvBCMAVYk/1wfA1bD/FbCkjzhvAQSUYhiRXKPITuUtgvQeJxYcCTMZpxZac8SB8iOhWy25owNS9OKQuJWDhC13CwWW4qwpKVCn6xI/jk8f+vPsxUqlh4gCT2iL6wSH2qgALMYshEFyBOL//POJEqUiWS7iFNyaaoG1WJVVivPZmcyspImTBFys2pp2l3Y3cQBsje+ze8HZyeL0ywBljosyazMQw5zgPTnUczfPOG8BBJRRBe/PGO7nLMECy+JxyCxUd+eLauOwktixePEgHRNsn2DTY4ERV+ysDQpOEBu5X9YqpZsJ4vT5PhmVd/GeJZj7LPkAGVoL+LlJpi/ecJ5CSSicJIdzyIzy4zcVsNEdrwIidcbgSWSqMWFVFVjnAoryhZFij+LLBnFo8BjUlGmcOtT8yhYwSn+h5X2zHKAmCVMWKlzJcdAWlgt9io9QBJpEfWkOKAZsyilbkZuq8XUrMSQydPgLU5GbvBu2aqUa6ECLBNL0xIHyMaGktThDwc9nGba0zTNnoeTYgzYyXK0oHSzAjMOEOdSCJIDJJEWqoMeIBaTqKgeIFZp8LyVErvKFu8K3oDNSrkmFz+A1tJkxgFyURV3ux5OM+3pNxflrWwB9j2cVkn+njz6Xc7tzHERuU15ZnXzt5mtk6QHSCIt9BwgarBYSM3ITckBsjWJ2uUAmXg+O1WnAZscICtp8Fa5YmYUZQaWpqh8KlYg3wrD4vtkqTChR4kqJTScM/skf0coDAxChaYMWL0SHDKuAEkOkERaCMMBsjjRmFnYPAw8QBRbYVBygOyQhAF73i0rITAKD5BlS9NKX7o0Dd6prV4Akxw3i0qi1b31rLy7LAp9OmLAsvDgm/HMWlWCLcw5POG8BBJRCMMB4kxs1J8bClpf2ITdCsMqB8jKhK0oUauVYisMW3WAKC1NB9PgyTlA1B5OiwqX1cXPMhHebpYj5xR/lmAxf1v5TQBz84CT+6WlgvMSSABI2OXcRRwgK8TGuHM1RJ/bCFyxFQYhB0h/LkVdHlsk0ShHgsDSJE6DF4UAS7kVhtn2rC5+VonwVsaArTR4Bz1ATDicVuZvmFSCHTQUUsF5CSQAOE8Os2r96q1yq5Y970wpFttFmCE2UnKA9OdScICskqA1TbPPNbDoaqeocOzoPn4OpUCbbc/qHMeCCE+yFYYoHCCKMiZWw6AOhopTwXkJJAA47xpkwlshtuwpOEB2F23ez6Y/l5wDZMZTGNKAU7oytaVJyQEyUwyUFVh4rhQF8Hj5GhRWlUTLHCC7IbCRwgGyUsaE8L3kCeclkADgPDmMSe0aAg+Q7S0OKNzDxNZRdIEg4ADps8Ase7cEtTSprWhWsEWEt5DA4BoOEGGhT/0u526avwFr5VeYeGalAiQRgdPpgVaLwNkN2wA2eASUlr2FDDf99YbacgEHyOpmkUw8hZz7ksVWGE4nMFgmplO/uxY5QJYTJix4gMw8m9OhHatznBpSoTnkmZUKkEQUTg8My7wVFh4gqxMNRRq8TQ8Qb+UOoOUAWeVIsPAA8eYAebweRGheFNvBsILiUaK/C4XcTnGA7CRMGFVMrXqARtr8bVnhkhwgc/jtb3+LRYsW4YYbbjB0/smTJ/GTn/wEX/va17Bs2TKsWbMGx48f5yylfTiZRQLY4K1YlJtJDNnCok1SJMzqs1nty2ixQI17rRyrHiC7/A/A7DgxX3VYf65VT6FTk7rdMJHl8S3wGLC2FUbsM8U8yArU87f0ABGgpaUFv/vd7zBq1ChD5/f392PVqlXYsWMHvv3tb+Omm27C/v37sXLlSnR1dXGW1h6crCQL2NDoiT1AlsI2imI9TGSlSJhDheIA/rycOGUyBy1Nq4RbK1walvBYlDuW5WjRK0fIAQJszBVGjSWLWY5Czd/EHE7enlmeyHNagEx47LHH4PP5oKqqIQXmtddew9GjR/Hkk09i7ty5AIDzzz8fK1aswIYNG/C9732Pt8iW4fTAIE/dtjqJWrQiPXkehIZV0zWOrBAbWXiA7JCuvfneDGfHoJ+49IpNJlitlOsWS9OqJ8VKkUeWcIMHyPK7azXkZqkOkDVvsVDzN4Hc1J5ZXnBegjTYsWMHNm/ejJUrVxq+5r333sOcOXOiyg8AVFdX40tf+hI2bdrEQ0xmcNo1SJ66bdWNbpNLwrsyc6JcVjlAJKRr3eJntMaRVQuZBVeMoi+tjBOrxUBZwm6xQNd4OK0q3ZzT4IWav3PQM8sLQnqAQqEQ1q1bh8svvxwzZswwdI2qqjh06BC+9rWvJX03d+5cbN26Ff39/SguLk55fWtrK9ra2qJ/NzQ0WBPeIhyPIZN7LewvpFY8CZSkZIDeA2Tl+UzxjSxWyrWsuFrlf1jsS4+FcWK1GChLWOEuqaoGTXWfh9MorOxybpkELdL8TeGZZZXoETB8KRcIqQC9/vrraG5uxsMPP2z4mu7ubgwNDaGioiLpu8ix1tZWTJ06NeX1GzduxPr165OO19fXIxQKGZajt7cXfr/f8PkRtB/qj35u62iF3z9s+h52MDwQe8auji7Dz5Asd9DQda3tsZBmQ/0R9Ba2GrqusyN23cH6AxjCgCFZQ1pYrqHAsOFnG+6L9Un/YL/h67qODUY/tzS1GP4tm47Fnu140zEM+jsMXdfb1xP9XLdnH4rK8w1dN9gfllNTVMPP1j8Y+727u3oMX9d5aCD6ub2zzfB1J9u6o5+PHG7EQGm7oeva22J9d+jwIRR1GpvqgqHwbzU8FDQsYygQm9QHAsbGo1EYnU+GQ0MAgKAZuXWL0aAJuXuOx1at1hbjv+Xxo7Hf8kTLCQT93RnOjqG7J/Ze7N93ACVdBYau6+8NjznFC8My9vX3xj739Bnvk6OxPunq6WQ6BoxC8QCaCvT1GJ+r9L+lGblbWmL9dLTxmOHfsu1kzMlw+MhhaCVD3PrK5/NlPUc4BairqwvPPvssrr/+epSVlRm+LhAI/5D5+cmTf0FBQdw5qbB8+XIsWLAg+ndDQwPuu+8+TJs2DbW1tYbl8Pv9hjo+EYe6T2AvTgIAJk46DT7fNNP3sIPhwSC24igAoLioxPAz1Pc2Jcg93dB1akM9jqATADDptEmY4Ztk6LojRX3oQHhim+ubg4NH9huS1V/chsGOXkBVDD9bX9tAtE/Gjhtj+LrmvA7sRjMAYNzYcvh8c7NcEcaAf3+0T2qmVWOyb7yh61r/3xdoRVgxmVYzHeMmjzZ03Q6lCUAIhUUFhp9t967dAMJKSFHBKMPXHQm0wI8WAMCEiVXw+WYZuk45cQT1CCszE6smYrZvsqHrjr39GdpO9cmcubNRPK7I0HX7SjvQf3IYWsjYBAoAg91D+BiNAIAxZaMtvf/pYHQ+2V/aif7mLmihsMfbSEgz0DtsSe620m7sRBMAYOzosYavGz54CIdP/ZZTa6Zgmu80Q9d1bvWjGeEFt3pKDapmlhm6bpf3JIBh5BfkGZbR7/fDm9+J0LCKgrxCw9edUNqifTJ+QiV8vjmGrmOJT/KPIhgIoSDP+Pvc5Gm3JHdh53EcQFiZqaqcAJ+vxtB1Jzd/Ef0tZ9XOxPHOI0zfF7MQTgF65plnMHr0aFx55ZWmrissLAQADA8nW9tDQ0Nx56RCZWUlKisrTbXJEkLFkAXmANmtJyOyy95JDpBRKJ7wVg+aqlnnSAi6FYb+XE3VoKqaodCJ0wRYICEkEdLgzeMnt5Np8Kb2KbRQxBQI96XZhAmntzICwnIHAyHXlDERIQ1eKAWosbERb7zxBlauXInW1lhIZGhoCMFgECdOnEBJSQnGjBmTdO2YMWNQUFAQx+OJIHLMSQUnG5zeCiNSBE7T6NMoKRa2yKSkhcK8ByP7NTEp8ugC0rVZzkJkorWyGEWuN9NWBJRp8EC4Lz2F2TPqRJjUEw0KI89slygO2ODJUKTBWySmR/rSbXtcWSHCx8/fxvewk2nwHNDa2gpVVbFu3TqsW7cu6ftrrrkGV111Fe66666k7zweD6ZPn469e/cmfef3+zFp0qS0BGgR4PRWGED4xQ0NqQgNG+c8UVuRkXPNEBuB5FTavAJzC5tl62jIRF8yULiCFiYjs4u2N8+CpcmiL01M7EHdGLbelyHkGVGAHCbAAolKQggYlX1qZ6UkGoVTXkDT49sKoVyAhd0KET7I4DcxNecIoCjqIZQCNG3aNNx///1Jx5955hn09/fjrrvuwqRJYa5Ic3MzBgcHUV1dHT3v4osvxpNPPom9e/dizpxwLPPIkSPYvn07rrnmGpqHsAgRrEhvXkQBIsiUsmhBWK23kqhwmVWAyDd65ZwmrKladFsB0xay3XAixTiJKMomdjkHrPWl00XwAGtyM0mBptwKA9aMJdMeTsKMUZawUsSThWfWcnvSAxSPsrIyLFy4MOn473//ewCI++7+++/Hjh07sGXLluixb3zjG/jv//5vrF69Gtdeey28Xi9eeukljBs3Dtdeey3/B7ABEVyDkUFtuborYQzZtAJUYL49FgoJiZfEwoIU92wFJvvSgqVJbv1b5H/Y7ksRPECc5c7TFdoUtdK5pmnWPZyEfEGWsPteWp6/XaYo6iGUAmQXxcXFWLduHX71q1/ht7/9LVRVxTnnnIM777zTVEaZExDBNWjJ9cvCS2IlbGPRqgMsWvYEVa5ZLBBG+9IOadOSpUk9TizyP+z2pdNbYQD85WbiAeKcVKCFNMDCLueAjgPkstCOngOkaZqhTEAWnlkr87dZzywvuEIBeuSRRwwdA4Cqqirce++9vEViDhFcg5ZefBaTmgUPkJXMjsR7ZG3LImmTSYYb5760Q7q3ZGkSewoth0pHkAfIcrFIXSagqIVFrS7s+vPNZAIKMX9HnlMLK4CKkUxA4sw8p/fMS4QYUkgI4Rq05PolLm+vWvQAWVlInUzd5t2Xdkj3iZamETi1FYYdrpjkAGVoz2aYyLLHyYp3y0KWYwQUfckKVuYdas+s1fmbF8SQQkIMK9IK+c+qZW/TA2THsjc8qVm0IhWPEt1cVNS+tDNhJ1qahtoj3grDKgHW0mIrwLtLPQa8FrzFTELKnN9dwGIYVIAxYNvLLfD8zQtiSCEhRAw5WgROA9QQZwvCwiQTR2y0w+2wYh1ZtCIt1+TgXFLATuo2ZV/a5orZWfwsKBJO8z8AmjEQeU4r4Q+AvxJs5921pkw6v8s5pRJsd+8xqQBJxEGEGDKl5WOFKKwnNorMAQLs8ak8XsVQocYIrPSlnbANKZ/KoqUZeT6riqv+HkbbSryeElZ+E1tjgJAvaDcERuEBEm3+5u0ps5vo4VS9rESIIYWEGDFkwS0IO25mSg4QYI9PJbrL3ralybnonhpSobFQlN1EgrZASrUjt62MUSV+1/WsbdkkQdviABGEE1nBthJMUchWeoAkUsHprTAA+xYEb8ueBWkTMLGQMuARWCF4k/BWGFnIvPvSkrfJTvjDbkkBEcIfBOn7lraL0IWvjaRoR0BNSqYsKcASthVFMzxHrwIo5toCdEae9ABJ6CHKVhgRcOd22OUsEHM7SKols/AAEVvIvJUSp1KgrbYnxFYYhB4g6sw8Syn+BGNAhBCYbUPIhNyKopgOg6pqeB9GQKbBSyTAzqTNCrYL6nGOIbMgJQM0Vp2dWjmi81acsjQpU/wtt+eid5fFGDCTMBFyyMNpi+TvIi+glTAoC0WRYv7mBTGkkLDlbWAFSiuSOtRAvcVBrFqyZrpWjujbNzhmaRIUecyFrTAoOUCAeYXLVsjVkhfQeLgtfD5tX7KCU+FiNymJiRBDCono4FBMZgCxhC3r1ySxUVEUeE5VKqVUSAAiL4kVDxeL1G1qDhChpUm5zYfl9pziABHzViwlFTDwcLqBBzYSOECA+UQPEZTERIghhYQQFTLtFIEzS2wE7C1sbkmDN9qepmnW96+yy1uh6EsbIQmzhFvJAeLPW7FDTHYVB8hFafCUnln9+VaI6ZIDJBEHESpk2iEKW5Hb7Atka8J2KA3eaHuqrqIy+fYNFH0Z5X8olhVlyQFKj3jPFd/tSZLaMz0GXMQBclMavFOeWRcRxRMhhhQSlt3DLGGn5LwVy9dsphQzDhDnImGA+YXUloeEuKSAnQXJjqJMUZl5xHKAOHtJNFWLbptCEU5m9Wxm50Endzl3zDProlBxIsSQQsIyAZYlLLnRWSxsVhQSO5Y9ddaZEQ8QK2tc8L60oiCYDpWy8hS6aGK3zVuxw5MxMAbsKCQeHbeQhANkw6BwdP52yDOrqRpUNbvXUQRDIRFiSCFhmQDLEpYmURueK7NplLnMAWKWkSN4X1pZIMxygNyyzQdLkG+FYdJLYkchURTFfLiF2KBwLYfTjgFrYwxIDpBEHITgANlYSCk8QLnMAbIVkvJ6oJitleNQX9pRlLVQrJBaxrZYhT9cVN/Eqa0wAPMKvi0l2IpSSmhQiDJ/m+WvWXovTSqKkgMkkRJ2djlnCTtbYdjhAKlGF7Zc5gDZzCQSnU9lx8NpR5m0FdpxUQjMdqo45zR4u0qiWSI8szIPZj3hbg2BWVFKCY08XhBDihEO/S7njobATA5oO8RGwPwL6xRvxQqx0Wxf2s0kIuVT2UmBJrA0nUyDFyIFmiB9X19c0HQIjIIIb4dzZIML6eQu57ZCYBTvpVSAJFJBhDoiAO1Ck3iNEaXETbwVW30pOp/KpOKqqVo0zZ/C0mSW4m+WS2OyGChL2N4Kg3MY1O4cZ5YITz0G3OoBYuWZNTR/C7LO6SGGFCMcomjGtngrVsI2ZmPIrMI2hLwV/X2MtAVYVLjMLhA2FC6zlqZt5c5OOJEw5dpKMVBWsCO3x0L1ebPj266HMzJXWOE3kYwBG3MFK1B7Zinnb14QQ4oRDhFc6Ilt815oAAsKF6sQGAVvxWTIze4YoKzJYdbStFNsLfEa0652Qg6QMNY/gdy20uApSiEQeoBE2eWc2jNLOX/zghhSjHCIohlThhoSr+HtJaHO7DDrJbHNATJLgmZlIZv93exampxrzlBWOGYJxasASrw82aDakNtWGrwNg8JowoQdpZt6HmQFJz2zFF5uHhBDihEOuwsEK1CT2uzEkCkL3NldIEgs5MgCITj/g6LeiJ1nUzxKtPCe6VRiByd1RVHME+EZlLAAaDhAtjKOOM8VwlAYTHqdWXpmKbzcPCCGFCMcdhcIVvAW2LAgLL1AXlPt2fGSKB4lSlA1T2z0ZjkzGbbCNgXW+1LTADXE97czbWnG/W42+9LsRGulLwusedOc5jWYJsKzKk1A4OHMs7PYmhxz+jFjlgpgZXyzgun5m+V7KTlAElZhl0zMCqYtCEa1PQBal63p7RsIOEDkfcnIQiaxNO1Y5DbGiZs4QPr2c5EDZEfp5p3lKOL8TcnLAmjmbx4QQ4oRDv0CIcxeYAQkaNOTKGGmlBpSoUVqMxFPDpR9qRBkANlWSOwUQrTB3zLtAXJ4Uje9XYQNuZ3iAAH8ifemPRuiePCJM0+p528eEEOKEQ7XWhAu8lroryHhN5nuy1DKaw23Z3FBckMBtLhxMmRyQeLMp1J1xUCdntQ9JuTWNC3GcbP5mwQJyzwAxsZAXHsmazOZXdiDunfXTRxOphwgs+1JD5BEBKJwgOxxO2yGiQg4R2Yse6akzWG+23wA1i1kigw38iwwwow6UTKAAJNyU9dmstlPVkNu3nzztZnMPpso3BZ9JiDFb2LLYBbEA5TntACJqK+vx3PPPYe6ujq0t7ejqKgI1dXV+Na3voUFCxZkvPatt97CAw88kPK7V199FRUVFTxEtg0RPUBmKzPbXkgJ0+5J0tKJ6wBZ9aaRhKSILU1WXDE3ZQABtHKbzsqiHgM2MjgjmYBqSHPVwh7JBAwNqyRy20q7lwpQajQ1NaG/vx/Lli1DZWUlBgcHsXnzZqxZswZ33303li9fnvUe3/3udzFx4sS4Y6WlpbxEtg1RYqO2eCsuqCNhJkuGXiGJeYlI4vGRGjBW2vKa2weKab0oQg6QGtSgaVpGD4JIxM6I3JqqQVU1eDJwu6jfXeoxYLc0gTffAzUUIpkHWcKbf0oBop6/zb6XgoTAhFOALrjgAlxwwQVxx6644grccssteOmllwwpQOeffz7mzJnDS0TmEMWFamuHZ7txfQorUmchZ13YiK0j2yEJQg6QoiixidZsONENfZngvcuUIiyK8QIkh248henlZvnumt4HiiDt3i4xPTwXhsxncOY7sxVKBNGK8MTzt5tChXqIIUUWeL1eVFVVobe31/A1/f39CIVC2U8UAKJYkYqiwJNnvAgc9R5P+nPMEhuB+Ik3UgI+HVhaRxThRKuZK1YnIjNbb7iNa2CmL0UidpqR28kqwCQcIAYeIP19MrYl4Bignr/duhWGcB6gCAYGBhAIBNDX14cPPvgAH3/8MZYsWWLo2lWrVmFgYAD5+fk499xzcccdd2DKlCkZr2ltbUVbW1v074aGBlvym4EoMeRI+2owRBpqSLxX2vZsEBuB5Ek700vI1LslWEqqPgPI6kTkzfdgeEBQ/oddAruJvhTq3SWU2zR/z6GMI6uhFq8JT4qIY0DI+VugfopAWAXo0UcfxcaNGwEAHo8HixYtwg9/+MOM1xQWFuKyyy7DOeecg5KSEtTV1eGll17C7bffjmeeeQYTJkxIe+3GjRuxfv36pOP19fWmPEm9vb3w+/2GzweAE8e6op+PNx1HwN9p6nqW0JSwZ2SgL5D1OY4f645+PtF0HMP+rgxnJ6OtqT92/fEmeP0DGc8f6Dv1vUeLymamv/sDsfb27N6D/OL0IYLuI4PRz53dHaZ/06GeYOz6js6s17e3tkc/H26oR3Nvvqn22js6Y9cfakCXpyXtuXrv1+DwoKlni/S3qoXficDAUNbrTzT2RD83tZyA6u/JcHYyOo7HxkXTiWb4/YGM5/f3hH9nxQvs2bPHVFsA0DfQF/2811+HwjHpp8ne4zFZunq6TI+TbDAzvnsHYh7yvf46FJVlkLtpKPrZitzBQGwx6+7syXr9yRadcdl4GG3BE6baa22LzTUNh4+gr7gtw9lAcCg8PodD2cenHpH+DqrD4esDw1mvb2mI9XtLawv8WeYxnhiOyh3M/pvo5D7Z2mxa7p6jsbF/svkk/P7M62RPV+y933dgHzx5iqX10ih8Pl/Wc4RVgK6++mosXrwYra2t2LRpE0KhEIaHhzNes3TpUixdujT698KFC3Heeedh5cqVeP7553H33XenvXb58uVxWWYNDQ247777MG3aNNTW1hqW2+/3G+p4PQJ7D6ABnQCA6mlTMdVXZep6lthR1IRgfwBejzfrcwztO4gGdAAIy13tS69gpkLj0EnU4SQAoGJcJXy+WRnP/8LTAiCI/ML8qGxm+vvYuEF0IvySz5w+CyXlRenPVVuxC80AgPETxsPnm22ojQgGe4fwKY4BAIqLSrPK2PTnHTiJ8MI7e84sjB5fbKq94QMH0YiwAnr6xNNR4zst7blDA0F8hCMAgNFjssumR6S/dxWfxFBPPzzwZL0+VF+PeoQVvCnVUzDDNzHj+Yk4jjbsQVihKy+rgM+X+X3057UCGEZeQfYxnArN5TvQjrASNWPaDIyZUJL23CZvB75AEwCgsqoCPt9c0+1lgpnx3fLe52jTyT12Ynq5W/I78AXCSkhYbnP9FBoO4RM0AgBGFY7Ken3r+zvRjPCCO3P2TJRPGW2qPRxtwOFTc83ECZMwy3d62lM1VcOHatiDX1JabGl87y1tx0BbD6AqWa/3nDiCAwgrZKdPmYRaX+ZoA0/UlXRg4OQwNDW7AlDX3Ij9UblPxxyTcreO6sLOU2O/bMy4rO0dKOhCN8JK07wzfFA8iqX1kiWEVYCqq6tRXV0NAFi2bBn+6Z/+Cffccw+efPJJU+GPM888Ez6fD9u2bct4XmVlJSorK23JbBUixUbNFIFjmSllhmxoOWxjgrdgl9gocho8CzKiKQ4QY1Jy1vYYhPcS75UOOcEBshtypeAAmQi52SVcAyYTJgQcA1pIg6ZqGau8M51zzGSeWqg+zwtiBOIMYPHixdi7dy8aGxtNX1tVVYXu7u7sJzoEkWKjZoqpMeWtmOQAWYGZF9apujwAfw4QkwXC4jgh4VPZSPEHRiAHyGImYCRhgiTjyETCBAulNM44y5YwIdIYMDPHUc/fNonpPCCOJFkQCIRdZ2YywSI4fvw4ysrKGEvEDkLVkTBTLJDagrBR3AwwN4naJol6PYgYjSSVeU2QRFkU3oxcF7E0M4ElAdZUDRgWix/nccISZkipLNL3rWZK8U6DZ/GbmFncRZy/Af7eS2piOg+II8kpdHR0JB0LBoP44x//iMLCQtTU1AAIZ201NDQgGNSRTTs7k67961//irq6Opx33nm8RLYNkeojJBaBywSm2zcQeIAsu9Gt1hIxs0Cw7Esz3i2KvrRZAM0tnkKnJ3YzoUImXhIz4XLCUggsQlJmFncR52+Av/fSankKp/tID+E4QA899BD6+vpw1llnYfz48Whra8M777yDI0eO4I477kBxcZgc+tRTT+Htt9/Ghg0bolWfb7vtNsyePRu1tbUoKSnBvn378Oabb6Kqqgrf+c53nHysjBAqhmymCBzL1NZsqdu6TSfpOUDW2wsNqaY4QIoS9h6ZbssqB4hRX+YVEI0TzkUeE6+jGCesQO4lMRMGtcs5ovZuERsUrEDp5aYuTskDwilAS5cuxR/+8Ae8/vrr6OrqQnFxMWpra3HrrbfioosuynrtRx99hK1bt2JwcBAVFRX4+te/jhUrVqC8vJzoCcxDJDd64qA2XAWXs2XPkreSeL9s7dm1Is14gEh4K9R9SWj9a5oGNWhvd3ZTi61Ixgux3Jb31uNMhLcbck28zpQy6dIxQLlJsdMV0/UQTgG65JJLcMkll2Q9b+3atVi7dm3csVtuuQW33HILL9G4gcWCxApmBjXlVhgseSsADbfDyu7c5LwVgr5kygGiIMCaWGxF2grDKnnbrhJsysNpMQOIWiGh7ktWIJ2/TVbyDw2HLLfFC+JIMoLBIiTBCqYWUsKtMMh5Kyw4QBY4EuQZbhReEpaeQoKsLGpPCiuY4q0Qe4CYhiWJxwBFX7IC5fyteJTolkRmPLNO95Ee4kgygiFUCIxwojGzaPPgrRhujyJV3C5x1+qzsaiVw1nhsqoos8gW5G1FswS1khBNmDCRCUiicBOPgZE6f+uvM+WZlR4gCT1EtSK5x5AdStsFaDxOVjgSdjPOjLTHslAcYDJLhrOlyaTIo0s9QNRyW1lsKcKSI3kMUM7f+utMhYqlB0hCj+gLq4Rj5E7CcgzZigLkifEBeFeuBWxYRzaVEk3VoGaxkFl6gMxMRm7wAOmvo17Y3cQBMje+Y+ORiUFhcAwwId0LqtwBzo8BSg6Q/jqK+ZsHxJFkBEOfHmhll3OWsOIlsVPa3CiRkkXYxslUWqPEZJLtG6gLxTHoSyuWJgUHyK38DxZyWxkDTN5dQoI3IDlAGduLeLkJ5m8eEEeSEQyRCkRZycyyI7fRMBFLL0Li/VKBdTn9TM+nqjEOBXndEgoP0KlnVzwKPDYVZcn/SA8nicJG3ycmHk6BPUAjbQwYLfYqPUASaRH1pAigGVsppW5HbqPF1FjEkMnT4A1ORrnu3bK7+Onbo+cAGQtd2mmPFRwtFpihPU3T2Ho4BeYAOT2HW+YAcS6FIDlAEmmhCuQBsjKJusUDZDUNnrdSwlrZMsrHsNOelZCEHdc3paVpmQPk9OJntVggi9pTmRT8EAO+kcWiqZRbYXjyFMcpDGbey4jctjyzuvk709ZJIhkKeogjyQiGSCXCrSykduSm5ACZmkRZe0kyPB/zkBRFGryFBckOQdSKpekWPhUrkG+FYXAMsPhNFI8STRARdSsMp39/wFqo0JYBq1cUQ+kVIMkBkkgLYTlABicaOwubx4IHiGL7BkoOEEuSMGDOu0W5FYYtRdmopcmiL3MhBZqaB5aJ48ZISYzISe3d4k3wZglquQ0rwQzmHB4QR5IRDGE5QJyJjfprQ0HjC5trtsIwygFiMGErigJPXthCFnUrDBJL08E0eKcNGOrMPKMKF6vFzzARnrV3i3OKP0tYmb9Z/CZA5nlApP3S9GCyF1goFEJXVxeGh4dTfj9hwgQWzeQk4nY5F+AFMmr9siA2xl2rAVpIg5KXOhbtyq0wCDlAkWvVYEjYrTBskeUTFvd0Y87JrTCcNmCc2gojW3usFj+jRHjyrTAE8gBZ4nCymL+RRQkWyFDQw5YCVFdXh6eeegqff/45gsFgynMURcGmTZvsNJPTEI0cZtT61VvhrCz7UFBNu4g4tRWGHWIjJQcocu0wQvQcoAzPpmkae67BsAqMSn0edQq0SNwGp1Kgs7XHao6zQoQnKYUgKgeIooyJ0TCoQKFiPSwrQPv378edd94Jr9eLc889Fx9++CFmzpyJ8vJy7Nu3D52dnTj77LNx2mmnsZQ35yCaa9ASb4WhZZ9fZKA9Ct4K40WbNwdIfy05ByiTpzCkAad0ZWpLk5IDZKcYKCtY8VwpCuDx8jUoWCmJhjlA1F5AgTxAVsYAs/mb83vJA5YVoN/85jcAgCeeeAI1NTW4+OKLsXDhQqxYsQKBQACPPvoo3nvvPdxzzz3MhM1FiEYOs1S7hqEHKB2Yb3FA4R4mto6iCwQFB8hgCjQr65+yL6mtaFYwxVthkMAgLAeIRQkLEx7OyC7nbpq/ATblVwxzgASLdERgWZKdO3diwYIFqKmpiR6LkFgLCwvxgx/8AJWVlXj66adtC5nLEMmFDhgvAscybBOBYR4BpWXPIMNNf7+UbTFWJkk4QBZSoKktTcqtMJzm/wAWienU7y4jDpDhhAnOHCDRQjtG5zg1pEJzyDMrQj9FYFmSvr4+TJo0Kfp3Xl4eBgYGYjf2eHD22Wdj27Zt9iTMcYhGDjPMW+HhATI60VCkwTP2APFW7gDdAkHBASLmf1iyNK1a/14PIrQviu1gWEHxKPBEauUQyO0UByiSMGGkPd4coJE+fxtWuHLNA1RWVoaenp7o3+Xl5Th69GjcOUNDQxgcHLQu3QiASFkkgAneCiO5LcWQLS9sMY4GSZEwo8/Gqi/zIxwJjXutHKf4H0C2cWK/6rD+WqOeQlGsWrNhImbjW6AxQMkBGunztyVungD9FIFlSWpqanDkyJHo3/Pnz8fWrVuxa9cuAMDhw4exadMmVFdX25cyhyFSJVnAhEZP7AFiYUUqimI8TMSiSJhDheIA/rwcwxwgJy1NAsItCy4NS3gMyh3LcmTklSPkAAEm5goWJSwIuJCsQC232zlAlknQF1xwAX71q1+htbUVlZWVuO6667BlyxbceeedGD16NHp7e6GqKr797W+zlDfnIFIl2UQZSFK3rSykNj1OoWE1a40jFsRGKx4glqRrb7435Xn6iUrvFTMDSxVgXVRvxKgnhUWRR5YQ0QPE7N01GnJj4QEyym8Sef4mkNuKZ1aEforAsgL0D//wD1iyZAlGjx4NAJg5cyYefvhhPP/88zh+/Dhqa2tx5ZVX4oILLmAmbC5CuBgydeq2UTc6Qy7J8EAW64iHckfdlwYULm++x3qNI8LFKPFair404ilkVQyUJcwWC3Sth9Oo0s07BCby/C2qZ1aAforAsgKUl5eH8vLyuGPz58/Hgw8+aFuokQThYsjkXovYAkwRQzaSKs6alAzQe4CMPB8rj4zhLBmCvmSlvHoMjBNWxUBZwgh3SVU1aKr7PZzpwHKXc4CGv8cKhr1yrDyzxIkerCGOJCMUQseQia063hwg/bWUpGTAgb406AGy3JYFS5OiLylLCohI7IzInbGKOytSMrVXjnB8K14FOKU7ZVSCBZu/FY8Slh2CzTmMxgBr2N4LrK2tDfv27UNPTw9UNXUHLFu2zG4zOQuhY8gCcYBYTdpGdp93lJRMaCFThD/iFVfrlZIp0+D111KME5bQy61pWsoQJ5fwB2UaPIwpwXZ+f0VR4I3wBQmejSW8eR4EQyFxy5gIsM5FYFkBCgQC+MUvfoF33303bcpt5AWUClB6iOYaFJUD5JQHiEIhcZIDZLktT3jrB03VjHtkqNNtGSy2mqpBVbWUoRTRjBcgQVEMafCm2FyYCwGWOA0+o7HEoIgpEO7LbAkTIhb48+Z7EAxk3hPQyTImIqxzEVhWgJ588km88847mDJlCi655BKMHz8eXm/qrBOJ9BBtK4xIEThNo0+jpFjYIpOUFgrzIFLt38TFOhKQdG03bBOZaI0sRonyWWkrAso0eCDcl57C5LlNxEk90aBI1QesieKAiZAyRRo8I2J61FvsstCOESJ8/PztHs8sa1hWgDZt2oSamho8/fTTKCgoYCnTiIJoW2EA4Rc5NJTF8iG2IiPf2SE2Aslu+7yCFAsbD+uIkLcC8PcAAadc7dksTVYcIIfS4CP3zEulAAlGgAVSLEijks/hpSSmg1NeQNvjO8KnclloxwgRnj4NXjxFEbBBgu7t7cV5550nlR+bENGKjPEIQmnPoU5vZlVvxYjCFRrisYhm6EsemVJDqZ9NU7XoNgK2LWSz4USSNPhwP9vZ5RxIHCepfzuROUBAerlHCgfItofTAA9M5PlbcoCyw7IHaOrUqejo6GApCwCgvr4ezz33HOrq6tDe3o6ioiJUV1fjW9/6FhYsWJD1+p6eHjzxxBPYsmULAoEA5s6di9tvvx21tbXMZWUBEV2DRjJJnIoh2+0jI14SLgoJhZfE5LPZ5kiYXSAoLE1G/A+zfSnauwvwl1tEDpCmaew8nIR8QZYwUgyTi2fWZYoiYMMDdO211+L9999P2v/LLpqamtDf349ly5bhrrvuwvXXXw8AWLNmDTZu3JjxWlVVsXr1avz5z3/GFVdcgVtvvRUdHR1YtWoVGhsbmcrJCiK6Bo28QE5thcFq0QbSexK4pAlT8KmMeLcYhlxNp1y7iP9hti9FeXeNLEi5zAHSQhrAYJdzwFjGqIhjQM8BSpegxMMza2T+tuuZZQ3DHqAdO3bE/T1+/Hicd955+P73v4+rr74as2fPRnFxccprzz77bMMCXXDBBUnVo6+44grccssteOmll7B8+fK017733nvYtWsX7r33XixevBgAsHTpUlx33XV47rnn8OMf/9iwHFQQ0TVo6MXnkSlFEdcvMLBAMJqwLWW4ce7LuLYK2ChAImWbMAuV5rAHiFmxSK8nmglolAOUx7nmDMu09Mj1mTIBhZy/I8+thRVCJVUmIHFmXjQsKYiSGIFhBWjVqlUpa0pomobnnnsuY0n99957z5JwEXi9XlRVVWHv3r0Zz9u8eTPKy8uxaNGi6LGysjIsWbIE77zzDoaGhoTjLInoGjRbBI6ivH10YWNk1QEZJlEHU7d59yVL0n2ipcmz5ozZDDeWXDFDfSnKu2tAbpZzTjTlmsADZIQDxLI4ZeKYc0smYOK8k6ofqD2zrOZv1jCsAN1www2W9w2ygoGBAQQCAfT19eGDDz7Axx9/jCVLlmS8Zt++fZg1axY8nvhOnjt3Lt544w00NjZixowZKa9tbW1FW1tb9O+Ghgb7D2EAQlqRERIdhWVP7QEysJCysiIVjwKPV4EaymIhE/YlywnbkKXJg09lxNJkRPDW3zOpLQHfXeoxYCQTkLLyNFMPUIIHN1smoChjIFEpyS9KPset8zdrGFaAbrrpJp5yJOHRRx+Ncn48Hg8WLVqEH/7whxmvaW9vx1lnnZV0vKKiAkC4anU6BWjjxo1Yv3590vH6+nqEQukzeBLR29sLv99v+Py2k+2xto7Uo2XQeQ9VYDgAIFwLaPeu3Slr5bS16JTFxsNoHbImd//Jodg9T7an7Dv9ppNDwUDcOWb7u7M7Rtw/sP8gWgaTZ4fmhp7Y55PNUPz9hu+fBC+AENDfN5hWzt7u3ujnuv17LRsarc190c/Hj54A/H1J5/S1xPq7u7fbVN8B8f09GBiIHt+9y58ypNbaHBvfRxqPoENrNtVeBIMdw9HPHa0daeUODoXf1WBo2PSz6dHRGRsnhw7Wo11tSjrn5OFY/55sa4HfP2i5vXQwO747Ojujn+sPHE7Z361xcp+E3x+wLJ+qhN/Lwf5AWjm7O2Pv0/6D+yyHXttPxN7DE8ebkJeiv/XjpLe/x9b47huM9dMe/14UlCYrQM0nYuOk8XgjegpbTbXHA30Dsflkr38vCkYnL/PNJzqjn48dP4q+UW1J5xjBcH9sbezq6Erb34HB8LwT0kK25m8z8Pl8Wc+xvRUGL1x99dVYvHgxWltbsWnTJoRCIQwPD2e8JhAIpAxxRY4FAulf9OXLl8dlmTU0NOC+++7DtGnTTGWQ+f1+Qx0fQct7n6MF4QE7u3YWxk4sMXwtL9SP6UEPwn01e2Yt8ouSh8nJLV+g+ZTcs2bPRNnppZba6m7uww6cAACMKR2Tsu/UoIq/4ggAoGR0Sdw5Zvu774s6nEB4Qp46uRqTfBXJJx1rwEGEF+7JU0/HbN9kw/dPxLaC4wgMDSPPk5dWzrr8DvRiCB6vgnnz5llu63BfE/YhPAGPrxgPny9Z2W8t6sLnp/q7Yny5qb4D4vu7sawfXQgvQrNmzEbR6OR3r/2vu6L9PWP2dFTWjDXVXgR9HYP4DMcBACUlo9PK/ddQ2HNbXDrK9LPpMbhnP46hGwAwZdIUTPFVJZ2zr+Uo9p/q70lTJmGub6rl9tLB7PgO1B3AUXQBAE6fNBnVvglJ5+xvPRYdJ5MmT4TPV21Zvi+KWjDcOwCv4k0r58HC7ug4mXeGz7LH4WioFXtxEgBQMa4SPt/spHM6j/VGx0l5xThb4/vEuAA6EFbyZ0ybidHjk4sq9WzfGx0n02dMw2lzyk21xwNN5UNo18tdlczN7dmxNzpOps2swcS5KeZBAxgeDGIrwolQxUUlaft7m3YcQAhFxYW25m/WsK0Atba24i9/+Qv279+P3t5elJaWYtasWVi6dCkqKyst37e6uhrV1eEXc9myZfinf/on3HPPPXjyySfTWsiFhYUYGhpKOh45VlhYmLa9yspKW/JahZAx5AS3Zn6Kc3jwVihCDZQcIMAcn4qkxhHLvjQbbuFcdE8NqYgkvbDYBiECV5GgDZBSWcptKmNUQXSjTkttmSRBM+UAEYQTWcEIL4dHaQIjyRCi9FEEthSg//qv/8Ljjz+O4eHhuHS7P/3pT3j66adx++234xvf+IZtIQFg8eLFeOihh9DY2IipU1NbWuXl5XE8nggixyKhMJEg2lYYgEEiJQ9iIwVnwQCPgNX2DYAxPlV07yIK3gpj/kcEvPvSyKTOUnE1m04uysRumihslwdmZLsIHQHWDo/UEAeIJcfNpaUQTCuKdniOXgVQAGTZOolVeQrWsKwAvfvuu1i3bh3Gjh2L73znOzjzzDNRXl6O9vZ2fP7553j55Zej3y9dutS2oJHwVW9vb9pzZs2ahS+++AKqqsYRoffs2YOioiJMmTLFthysIepWGBGkTaUltCB4FO9LvG9ceywXUqc8QMQWMm+lxKkUaKPtibgVBoXnysh2EZTjm6nxQlhSgCVMG0I25FYUBd68zJvGqmp438VE2USAZWleeOEFjB07Fs8++yyuv/56nH322Zg6dSrOPvts3HDDDfj1r3+N0aNH44UXXjB131TVpYPBIP74xz+isLAQNTU1AMKht4aGBgSDweh5F198Mdrb27Fly5bosc7OTmzatAkXXnihcCnwANtJmxVMF9Rjld7MWdlKbI/CqjNTK4fls1GkbjtiaYI2xd9wey56d3mMAU0LhyBTIeSQh5PVVhhG2xNxDKSdUzkoihTzN2tY9gA1NDTg8ssvT8ubqaqqwpIlS/DWW2+Zuu9DDz2Evr4+nHXWWRg/fjza2trwzjvv4MiRI7jjjjuixRafeuopvP3229iwYQMmTpwIIBwme/nll/HAAw/g8OHDGDt2LF577TWoqkqexWYULL0NrEBpRVKHGqi3OIjty6NlrZXjtu0bHLM0Cbb5yIWtMCg5QED4t05V5Vfl4AEy9Gw2djkPX0/bl6zgVLjYTUpiBJYVoNLSUhQVpSgwoMOoUaNQWmouO2jp0qX4wx/+gNdffx1dXV0oLi5GbW0tbr31Vlx00UUZr/V6vXjwwQfx2GOP4ZVXXkEgEMCcOXOwZs2atLwhpxEZHIpXSZlu7gRMWb82iY2KosCTp0ANaqQKCUDkJUmYRL35yam0pBu98uIAEVmamVztTMnrLrX+qXkriUkFKRMmOHg4ReSBiRLeofTMAtkTPURUEiOwrAAtWLAAH374IW655Rbk5SXfJhgM4oMPPsiqtCTikksuwSWXXJL1vLVr12Lt2rVJx0ePHo3Vq1dj9erVptp1CiJWyDRTBM4usREIv0BqMH0xNR4hqcT7xrXH0pOQMIkmKkD6GkfUG72S9CXDkEQ2wq3kANHzVswQk13NATJC8hdkDFB6ZvXXGyGmi6IkRmBZmttuuw2jRo3CP//zP2P37t1x3+3atQv//M//jOLiYnz/+9+3LWQuQ8QKmWaIwizkzvYCMZ2wHUqDT9eeGtJSnmupLYe2wgCyKwmePIWJogxIDlAmxHuu0myE6RAPzNUcIDelwTvEAXITUTwCyx6g7373uwgGg2hra8Mdd9wBr9eLsWPHoqurK1o5uaKiAt/97nfjrlMUBS+++KI9qXMIrNzDLGGm5DwLyzdbphQ3DpCRWjmclRKmHhLikgJmFiSWirKRZ5McIKM8Gb5eEk3Vwju0M26L+tmyzYMi7XLumGfWRaHiCCwrQJqmRTcp1SOx1o6+PlCqv0c6RNwl15AbncfCZkQhYWnZU2edpfIA8bLGBetLFgpCtow6Xs/mpondNG+FJU8mxRhgqZB4dFxDEg6QCYNCqPnbIc+spmpQVQ2eBC6riIZCBJYVoJdeeomlHCMWQnKATCykLBc2I9VW3c4BytQWCQfIob5ksUBk4wDxIq9TjBNWMF0FmLOXhKVCoihKjAhPMQaMlBQQcf6m9swmjAFPwqaxOckBkmADITlAJhZSCg9QLnOAmIakvB4o2WrlONSXLBVlLRQrrBbXFq/wh4vqmzi1FQaQXcFnqgQbUUoJDQpR5+9s/DUm72UWRVFkDpBY0owwaJrG1JPCCma2wmDJAVLTLWy5zAFinEkkGp+KVYp/4j2yKZNMQzsuCoGZThVnnAafCNZKYjYiPLcyD9k84YL8/oDJEBgLpZTQyGMNwyGw9evXW2pAURTccMMNlq7NdWghDWC0eSNLZBvQLImNQPILm1eQ4EJ1iLfCgtiYrS9ZZxJ58zwIDWWoleNUCjQHSzPjOCFOgxfFgDFL3rbvJYnxPbKGwCiI8Cw5Rya4kKKUQQBMhsAIPEA5oQA999xzlhqQClB6iDiBAgYGNMNJJvEealAFEhc2F/NWTPWl2/hUWSxNTdWiaf4Ulia3FP9sXBqbxUBZwvRWGJzDoKw9nNmI8NRjwK0eIF6e2VTzjoj1siIwrACtW7eOpxwjEqJqxqZ4KyzCNtliyLzCNoS8Ff19U7WVKJvd9ij4VNksTebKnZlwImHKNYtioKxgRm4Pg+rz2cY3aw9nZK4wwm8iGQMM5wpWoPbMUs7frGFYATr77LM5ijEyIWIWCUC70AAGFC5eITAK3kqWkBtrJYGyJkc2S5NlsbXEe2R1tRNygESa1M2k77NUSAD+7y6QXcGn3A5F1F3OqT2zlPM3a1hOg9cjFAqhq6sLw8PDKb+fMGECi2ZyDiJmkQC0oYbEe/D2klBndmTzkjDnAGUjQfOykLP9bqwtTc41ZygrHLOE4lUABYCWPfzBMiQF0HKAIgkTiR4slko39TzICk56Zim83CxhSwGqq6vDU089hc8//xzBYDDlOYqiYNOmTXaayVkIGwIjJrWZiSFTFrhjvUCQWMiRBUIw/gePeiOJYPlsikeBx6tADWnZU4kFencVRQkT4YezbxrLI4EhqS1OWY6ReycR4Qk9QG6Yv1PNpzw9sxRebpawrADt378fd955J7xeL84991x8+OGHmDlzJsrLy7Fv3z50dnbi7LPPxmmnncZS3pyCqAPDVG0Pl8WQFY8CxatAC2npFwhOITAK6yhyD00D1JCalMXGLUuGc0gq8R5ZF1tGE7saCmX1AIn07gKIFgs0wl1i0Vb0vhQezsTFPUMmIHcPp1vnb56e2VzlACXiN7/5DQDgiSeeQE1NDS6++GIsXLgQK1asQCAQwKOPPor33nsP99xzDzNhcw2iugazafS8wjYAncs2GAqRbt8AEPVlwmSUpABxspCpLU0KhSs8sYdcxQECjPPAWBYmBGg5QAABD8xM3SmBxoCTnlmK+ZslLEuzc+dOLFiwADU1NdFjkX2+CgsL8YMf/ACVlZV4+umnbQuZqxC1Qibl9g2Auawz3plSakiFxrA2k6h9qRBkAJFzgBziU4nEAQKyy80tBZqQAwTwJ967tcKxcJ5ZQRVFwIYC1NfXh0mTJkX/zsvLw8DAQOzGHg/OPvtsbNu2zZ6EOQxhY8hm0uBZu7UJJppMxdSYTw6C9iX1xEfCAWJt2WbgU7EuBsoSGeXWYqFfkvHNOCxpZnHnvRWGG+Zvcg6QixRFwIYCVFZWhp6enujf5eXlOHr0aNw5Q0NDGBwctC5djkNU16CZ4n08iI1J7bGuJZLBA8TcPRzXl5n3r6LsS4oMN659mc3SZNiXFGEElsjkAYqkP+vPs9WWGf4HQUg55pVjsMu5iXIgIs3fHl1RThLPrEsVRcCGAlRTU4MjR45E/54/fz62bt2KXbt2AQAOHz6MTZs2obq62r6UOQpRXYNO81YSwS1TiiLFX9C+JH82Cv4HJ8uWIozAEpk4QFwXP+oQWIb2WLQVSZgA3BXaURQloxJM/psIbCxYJkFfcMEF+NWvfoXW1lZUVlbiuuuuw5YtW3DnnXdi9OjR6O3thaqq+Pa3v81S3pyCqK5BUXkrAH8OEHOXvaB9yeTZslmaPMMfFOHLqKKsQdO0OI+CqEVMgdgY0FQNqqrB40m9X5cbC30azTpjNZ9GEibcxAECwvNOulIIXEnQBJ5ZlrCsAP3DP/wDlixZgtGjRwMAZs6ciYcffhjPP/88jh8/jtraWlx55ZW44IILmAmbaxDVNUjO7TDDAWLYXiioJi9s1F4LF3OAIpZmaFglVUgAonGS4OHy5sdSrkUtggckczI8hTG5nczKosw6Y6WUevM9CAZSZ4yKOn8DYXmGB/jXy0q8R9b2BOsnywpQXl4eysvL447Nnz8fDz74oG2hRgpEdQ1mKwLnpGXvYbDpZLQ9DdBCGpS81JY9tYVMGZJgNd4cszQdqG+iV4CEXvwS5M4r5Ce3qaws1mHXTOOboQdIf99UbSXKJQIyJnpQz98ie8qcFmAkQ+gXKBORkmcaZSbeSj6bTSczTdrUvBWuHKCEZ9M0jXnxvojM1JYmec2ZhPZYK64skWlBckrhBmgVLmYKvkEivGhjgJK/5taK2YBUgByFythiZQmjREqSUuoR3grjRVt/71R/u9E6ymQhayENYFjjCHDQ0sygcLHY5RzI7NoX2a2faUFyOwfIsIeTwAMk8hiIzJVZfxOK+VtgRVEsaUYYRA2BAZk9QNSb6bHec8mohexG68io14K1B4ja0sw00bIaJ9R9yQqZFiS3c4AyejgZ73IO6DycLgvtZCz2SuwBEpkvJ5Y0Iwwip9JmKqbG1UvCOXU78T68LXtT1hHnrDMeruhMlqZTW2GwsjKp+5IVjMpNQUqm5ABxUfB1HqDITgfR9gRNgwd083dIg6YmyO0QB4iVZ5YlxPrVRhhE9gBlin3zqsycrj3WxN2MITCuhRAJrDGj/A/GfSlEyX2HPECiufUpPVeKosBzKonA6a0wWCvcQPx7oi8imdi+aAZsRi+3Qxwg0dY4QCpAjkJkDpDhhY21lyRDejMzDlCGSZR1JpHiVQAldVuJ7fFOg+fhis5oaRJ7CnnUgEm8d6q/RZvYKTlA+vs4zQPjUW+Gui9ZIVO42KmtMERb4wCpADkKkT1AiUXg9OBKbCTwAGWcRBn/JoqiZE6lJexLLiEwh/hUGbdBcOGzsQQlB0h/H2q+ScZn4+AFpAi5sYLRRA83zt8sYbkOEC/s2bMHb7/9NrZv346mpiaMGTMG8+bNw80334wpU6ZkvPatt97CAw88kPK7V199FRUVFTxEtgyhOUAZisBxJTYmZi7piI1cLHvOafAAosUCM24XoSBadt9WW5n4HxwXP+BUXxakKRZIyAFitvhJDpCx9owmTHAeAzzmU6MGhagcIIC/3JTb77CGcArQCy+8gJ07d2LJkiWYMWMG2tra8Oqrr+Lmm2/G448/junTp2e9x3e/+11MnDgx7lhpaSkvkS2DR8yaFTIVgeNJbKTkrQCZlQRmC4QBD5A3j1GNI+IJm7IvMy1GmqZBDTJWlInHCStkkptLCMxgwgTvrDMe82nGEJjAHiDDXm7O87e+fdHeE0BABeib3/wmfvzjHyM/Pz96bOnSpbjxxhvxH//xH/jXf/3XrPc4//zzMWfOHJ5iMoHQFgRhKCUj14Kz14I3QRDIwpHg6LXItb40/Gw8+pLAU8gKGX8TnqUQMoxvhVEGUKasMy4cIOKQMitkCoNyrQWVgQMkWh8BAnKA5s+fH6f8AMCUKVNQU1ODhoYGw/fp7+9HKBRiLR5TCB1DzjCoKS177rwVzhwgIIuFzJggmMt9adi7xaMvXRQCy8hb4egBSskBYl3CwqFnS9mewB58o6FwFvO34lGi4fuU1ecZJyewhHAeoFTQNA0dHR2oqakxdP6qVaswMDCA/Px8nHvuubjjjjuy8odaW1vR1tYW/duMsmUVbplEuW8X4TRvRQdeHCAgtYXMusgjeV8atTQpxwlxGrxoEzvlVhj69iIJE6k2F+YyvglI0IY5QIKNAWqulDfPg2AolBwm1JUOEG2NA1yiAL3zzjs4efIkbrrppoznFRYW4rLLLsM555yDkpIS1NXV4aWXXsLtt9+OZ555BhMmTEh77caNG7F+/fqk4/X19aY8Sb29vfD7/cbO7eqNfq7bX8dko09W6O7tjn7et3c/itsKYt919cS+O1Bne2Dr06d7u/vi+m+gfTj6uae/J6lvzfR3BC2tMfkbG44iUNYZ/bu5qSP23bFGdOefNHXvVBgKDgEAgkOhJFmHAuHnC6lB08+RCr0nAtHPrS1tcfdsq++Pfdd+En7/kPn7J/R3V09n9PP+ugMo7S6MfdcZG0P7D+1H/qgYj8wqFA+gqUBfT3+cHIHuYPRz30Afk75saYm9n8cajyPkj42bpuOd0c9HTxxFn78NPGBpfDfr5T4GNY3cx04cxYC/3baMgaHB6OfdO/3RukAAMDgQHo8qVCa/yUBbbD5ob+2Iu2fHwYHYdx3tltpL7O/Orth8cHD/IbQOFcW+a++Mfj5UfxCF7eIspx06uQ8dqEdb8ETsO73chw+hqJOB3J7wHD7YPxjXf6FATCEaCAwwmb+NwufzZT1HnF8sDRoaGvDwww9j3rx5WLZsWcZzly5diqVLl0b/XrhwIc477zysXLkSzz//PO6+++601y5fvhwLFiyIa/e+++7DtGnTUFtba1hev99vqOMBYH9BJ4AAoADzzvAxIcGyQvtfd+Ek+gAANdXTUFkzNvrdgYIudCM8sZ0xfx6T2P5HyhFoGlCYXxjXfx1He7AdxwEA5ZXjkvrWTH9HkNdyFIcQnvgnVJ2Gub6p0e+6PvXjOMIL9/SZ0zBh9jhLz6PHgdFd6GsaAjRgzpy58Oj66xP1KABgVEmR6edIhY4xPfgCTQCAsaPHxt3zYOdx1CGs0E08fSJ8vhrT90/s7+5te9CM8IJbPaUmrr/qC3vQifDi6Js3F/lF9qebT/KPIhgIoSCvIF6O5j5swzEAwLjysUz6srDzOA4grNhUVVbB55sW/a7vizocRRcAYNr0Gkzy8ckwtTK+i7pPROUeXzkhTu7+XfvQqJP7dF+lbRkbxvZG54PZM2ejoDhGYfgMJwCEUDiqgMlv0nNyIDoflJaMjrtnw0Az9qAFADBhUhV8vpmm75/Y3/279kXngymTp2Kyrr+OvrkNbQgbFXN8tRg1thCiYMC/H8cicp8+BZN946PfHXtLJ/fc2SgeV5TyHmawo7AJwYEAvEpeXP8Ndg/hYzQCAMaUjWYyf7OE0ApQW1sbVq9ejZKSEvz85z+H12vegjzzzDPh8/mwbdu2jOdVVlaistL+ZGAGrDOAWMJIrJ1laXNvgRfBQIiElGyY21HAh7fgKdSVFOBZvZiAI5GRlMopLBUMJLvaufA/JAfIEDKNAeYcoAKjz2bf2xi+D21fsoLh8C3jfnJTqBgQkAQdQW9vL370ox+ht7cXDz30kC3lpKqqCt3d3dlPJIbIBaIycoA4sPrTESl5L2wkmVJpFlJN1cI7tIP97uwAbQYQkL5asuJR4PHy5VPx4LZQ801YgVpuI0oCOQdIjoHoZxJDKJ9u/mYJIT1AgUAA99xzDxobG/F//+//NUx+Tofjx4+jrKyMiWwsEZksRCPQAcZeIJZyx4iUDi9snDNJ9O3xmLANbxVAuCBRKMo86tvE92X6bT5Em9gzjQGVcAxomsZ+I2PiGkeG+1KwOdyp2moU8zdLCCdRKBTCT3/6U+zevRs/+9nPcMYZZ6Q8r7W1FQ0NDQgGY+THzs7OpPP++te/oq6uDueddx4vkS2DxwLBCkbSm3NjYeNvRaZrj3vaLuf6H4AxhYul69uIokzSlwJP7Ia3i+Dt4QxpwCm9MRc9nLESFopwFAZPBrnjPLOsKAy6+Vu/dZLI+6UBAnqAHn30UXzwwQe48MIL0dPTgz/96U9x31966aUAgKeeegpvv/02NmzYEK36fNttt2H27Nmora1FSUkJ9u3bhzfffBNVVVX4zne+Q/4s2SByfYSMkygHudNtvkru1uZsIaucPUBGqxdT9GV0E0SWirIRVztFXwo8sYvCA+Mx3iI1Z7SQlpGTQ6JwiUxhoPbM6hWukAZvXnJdIBHXOeEUoAMHDgAAPvzwQ3z44YdJ30cUoFRYunQpPvroI2zduhWDg4OoqKjA17/+daxYsQLl5eXcZLYKkStkGik5z3Jhi24XQbx9g5McIB7hCMOVcin5HywVZd040dec4bnHVeL9I+0nyiQKqOsXpRsDvJTEaM2ZDF45kpAb4/AeSxhRgpl6ZhO3Tkrh0RdttwNAQAXokUceMXTe2rVrsXbt2rhjt9xyC2655RYeYnEBDy4NK1BbPtEY8nDCwubk9g28OUAcvBaKosCTp0ANprCQHepLLpamFg6xKKcsTd7bfFCEE1kh02aoXDhAaRQuXvulUWYCGjEoRFzYjYRveXhmgVNjbFT4s8iGAiAgB2ikIG6XcwFfoHTWL6/S5pF7aacWtlRtU3OAeG+pwM1CTpcpxbsvh9IsEJwszSBvPlWGcaJvWzQDxnDqNg8lWDcG9J+5eAEdzhgNDYfi5BEJ+vcymOa95PGbAPHzjsiGAiAVIMcgcgolkN6C4FXaPJ0VyWVrCgMWMktiIyUHSH+vjIRyzh6guAwgnpZmirZJ+E0c+pIVqD2c6baL4DXHpU25dqgUgpvmb4CzZxbxv4v0AEmkBA+XPUukHdCcLN90bnvevBVqgiDvZ9PfizL9FUifAURhaTrFAWJZDJQVjBDhFQXsajOleXd5KYnRzYUJwpLUXBpWMDIGuM3fnN9LlhBPohEC0QcGtUvTCI+AC7eDgribjgTN2QNEEv7Qe2QIrH/KvqS2olmBmrfiBAcIoCGmp+tLTdOgBtkWMWUJI95LCs+sDIFJpITwrsG4hUbHyeG8aAP8M0kMWfYcMtz0909sm4QDxEEpMeS5I7Y0Kax/lYMVzQqZFHwemUuG3l2OmYAp2+PMARLdg59ujlNDKjRKz6zo/eS0ACMVItcRATLwVig8QOkmGoIQmMrZA0SVJpx4/8S2uaQJE3uAeHOAPF4PIjQwN9WACW89kpxFCfCR2ykOEBITJgg5QHL+jgd1ogcriCfRCIHIlWQBY6Q28hgys4UtxtlIlyrOQyHR3z/xM59tRbS0FjKXQnGE/A8gcZzEnpMLnyrdOBHw3QWyh4m4jW8HxwAlB0j0LR6o5U7/Xoa4tMcK4kk0QhCXIiqiZpzOI0PsAeJhRSqKkjVVnMf2Dfr7Axz70kjWGY8QgYOWJnc+lYtqwACxxSYdUZjp4meAB8aNc8TbC2gkO1XAMUAttyHPrIj95LQAIxWix0bJU7eNLKQcPE6JNY54EBup4+OGKk972WQupeUAkVuanPlU6bg0Ak7qgBgeIG7vbrqQGw8PUDp+k5vmbwK5jXhmRewn8SQaIRA9Nkqeup3Ojc6ZSxJnHVEod9R9mULh8uZ72NU4IlyMEu9F0ZepxgmvYqAsoScK65FzHs50SjfvEJib5m9RPLMC9pN4Eo0QCB9DJvdaxBZk3hwgQBfaICQlA/QeoFTPx8sjkzZLhqAveSmvnhTjhFcxUJZIxV1SVQ2amvseTh67nAM0/D1WSOuV4+WZNWKYCNhP4kk0QuCqGDKxVcebA6S/FyUpGXCgL9N4gJi1ZcDSpOhLypICok/qQEzuuCruvEjJ1F45wvGteBXglC7lpvo2ikcJyw6H5xzB+0k8iUYIXBVDdpADxGvSTsUBcpSUTGghU4Q/4hVXdpWSKdPg9feiGCcsoZc7kglIEv6gTINHaiWY5e+vKErKcKLo5F4gNYHf0TImAq5z4kk0QiC6ZiwKB8gpDxCFQuIkB4hZW57YVhAUBFjKrTD099JUDeqp8JHoxguQoCiG+MrtZBp8nLHEoYgpkJpQzmt8s0RKuR0sYyLiOieeRCMEvFJEWSFdETjyrTA4u9G1UIwXQWIdCUC6Zh22SRluISiESJkGD8T6UvRJHUhtUPAmigMZQsoUafCciOmeVB4gTn3JEqk8V/HzN61nVsR+Ek+iEQKRd5OOIBWRktqKjHxmSWwEUrvtSawjQt4KwN8DBKQOE+XCVhiJ94oqEoITYIHUCxKlkgg45wVkPr4jCr6LQjuAg/M3QRkTVhBPohECN1iRTsWQU000vBZtIPZMuVIkLNWzaaoW3TaAuYWcLZxI2JcsdzkHUk/sbuIAAToFP9c5QJEQGGsPZxYPkOhjQBgOkID9JJ5EIwRu4hGIEENm3UepvCQkColDmVI8XdHZPECUlibrZ8vWl6K/uwB/uUXgAGmaxmWXc/39KDwpLCHS/K2XRySIJ9EIgStiyNEXKLafi1NbYfBatAEdt2OI04Qd92wEfZmF/8FLmUybvUfC/wj3K/Nny0v+7dzw7noI5RaBA6SFNC67nAOpM0bdMAb0nivemYBxv8lQ8hhg7ZllBfEkGiFwRQw51YtPkSlF4AGi9JIYynDj3Jc803azjRMKS5NbqDRbXwr67qaSm1uxSF3ChFMcIJ7jO3I/fSagK+bvSD9oiIa/KX6TVCE3UZVEMaUaARDdNQjoPEAUMeQsFYVJFjYHU7d59yVP0r1+nFBamqkWW55csZR9Keq7S5y9RskDS2m8cAonA6nHnCvmb0L+WjYOkLBKotMCjFS4woqMkOgoLPtsHiCOCpCawgPEtJqsR4luPupUX8ZN2AWc+lJvaTrEp2K9+LmVA5R1DDB+n/LyvUltUCYVcPUApQopu2AMUGYwUs/frCCmVCMAboghR4vAaYAa4mxBpMpc0rRY6jZPbkcq64ijlyQCCpIoReo2ZV9m44pxXfxSKBKivrvUYyDSDyQZR8TvbmplUkv5vUigVIKzbWUkFSCJOLghhkxp+aTaCkMLacCpeYZXdVeAJlMqE0/G441VU2aBVH3JM2xD2ZfpLE0e23wAqb0NrgiBpfhNuI4BQr5gthAYSckMl83fvD1lqeYcfbui1ssSU6oRAFfEkB22IHi6mVORaSkypUjCe9R96RCfKqqQhNRoBhBXRdlNJOgUpFSecqdKuY4qXAqiG3MyaSsLCZorB4ggnMgKWZVgikK20gMkkQqilwgHslsQvC17rlZdKsuegEeQiuBNwlshspB592VKbxPP8Ee2kgKCvrtZicK8PJwpSNDePA8Uhe+2C1wJ3lnGgBvm75SKIkueo1cBUmydxCuLlxXElGoEwE1bYQAE3I5snAVibgdJtWQKDxCxhcxbKXEqBTpde6K69qk9V6m2i6Ac31yNF8KSAiyR1RBiKLeiKElhUFWN7bMoqpIoplQjADwnbVbIWlCPcwyZgpQM0Fh1maqyup234pSlSZLinwNp8JQcIH3CBK+tKcjT4F3qBUwVBqVQFCnmb1bIc1qAROzZswdvv/02tm/fjqamJowZMwbz5s3DzTffjClTpmS9vqenB0888QS2bNmCQCCAuXPn4vbbb0dtbS2B9MYh+iZxAK0VSR1qyLYZKq+FVA1q0DQNiqLQbN9A8GxOWJqhYZW7spV4P1dxgFLxVgg8QED4t/d4Pfy2psjGb2K4y3n4frR9yQpOhYvdpCQKJ9ULL7yAzZs348tf/jLuuusufP3rX8fnn3+Om2++GYcOHcp4raqqWL16Nf785z/jiiuuwK233oqOjg6sWrUKjY2NRE9gDJHBoTDOAGKJjNYvY2Kjoijw5IXvR6mQAEReklQeLorUbWoOEKGlSbLNh0utf2reSsqkAgIPpwg8MFHDO5SeWSA50cMNSqJwUn3zm9/E73//e6xatQp///d/jxtuuAH//u//jlAohP/4j//IeO17772HXbt2Yc2aNbjxxhtxxRVX4JFHHoHH48Fzzz1H9ATGIHqFTCBzETjWxEYg88KWK2nwkfY0TeNGEMzKW6HoS44hiUTCreQAJYOat5KJmJxTHCAXpcFTemb190tFTBdVSRROqvnz5yM/Pz/u2JQpU1BTU4OGhoaM127evBnl5eVYtGhR9FhZWRmWLFmC999/H0NDQ1xktgLRK2QCmYnCPOROfIG4TtgOpcFH2lNDWsrvmLSVzbtF0ZdR/ofCTVGWHKD0iPdc8d2eJKm9pDGQQxwgN6XBO+WZdRNR3GkBjEDTNHR0dGDs2LEZz9u3bx9mzZoFjyf+sebOnYvBwcGMYbDW1lbU1dVF/2VTtuyCl3uYJTKVnOdh+SZmSpFxgDgXCQOSF1KuHhLikgKZFiSeijJFZeac5QBx9pJoqhbdFoUinEz1bInzoKi7nAMOemZdFCoWjgSdCu+88w5OnjyJm266KeN57e3tOOuss5KOV1RUAADa2towY8aMlNdu3LgR69evTzpeX1+PUChkWNbe3l74/f6s5w0Nhr1RIS1o6Hwn0NreFf18uP4IegpbERgIy60ixFzukBru56HBYfj9frQf6o9+19bRCr8/mHSN0f5ORNexwejnlqYW+P3D6NI978FDB1Bwkt3r0dvfE/1ct2cfvEWxCWFgsJ9pX4aGYhNPd2cP/H4/ThyPPdvxE8cw6O+wdO9U/X2yrTv6+cjhRgyUtmOwPwAA0BSN+TgZVofD/wfC705n/UD0u47Odqbt9RwNRD+fbG6F3+9HR2us7w4dPoiirvxUlzKB1fHdcyxZ7vY4uQ9hVDc7ubt7Y+Nrf90BFOnencGhAaa/SWTDXQDo7e4Lj+/G2Bhsaj6BkL8n1aVZkaq/m0/G7nX0yFEM+7vQ3xuemxSvIuz83dzSG/189MgxBP3d6IvKHU44Yomh4Kl3XtWwe9du9DXFIi5dPV0p+8nq+DYCn8+X9RzhFaCGhgY8/PDDmDdvHpYtW5bx3EAggIKCgqTjkWOBQCDpuwiWL1+OBQsWxLV73333Ydq0aaYyyPx+v6GO/1Q7BkBFUXGRofOdQOhwPY6gEwAw6bRJmOGbhG04DiCEolGFzOX2l7Qi0BmEoinw+Xyo723CXpwEAJw26TT4fNOTrzHY34lozuvAbjQDAMaNLYfPNxdHRvWhHeHFdM68OSgqTR5LVnFyyxdoRXjymVYzHQXF+diKowCAsePGMO1LNaTiY4S9nUWFo+Dz+TDg3x/9LaunV2OKb7yle6fqb+X4ERxGeHGdOGEiZvsmY4fSBCCIgqJ85uOkrqQDAyeHoanhSa4x0AI/WgAAEyZWweebxayt1lFd2IkmAMDY0WXw+Xw49sfPor9lra8WJeOKmLWXCKvju62kO0nuE3/ajlb0AQBq585GacUoZnJ2fuJHM8ILbs3UGow5rSQ6BseMHc18DHySfxShYRUF+eF5KHjwEOpPjcGpNVMwzTfR0n1T9Xd+2zEcRDsAoGr8afD5qrHb2wpgGHkFXmHn74KO4ziINgBA1fgJ8PlquMpdP6YHPQivsbWz5qA1vxtfnBqDlVUV8PnmJl1jdXyzgtAKUFtbG1avXo2SkhL8/Oc/h9frzXh+YWFhSp5P5FhhYWHaaysrK1FZWWlPYBNwBQcoQyiFa2hjBHCAuIakvB4oyqmaLA73JY8QUaS/tFC40BpZ+MNF9U2c2goDQFyJAoAPAdYTKYWQKoGBIqnAZfN3In+Ny3uZkOghOUA20Nvbix/96Efo7e3FQw89ZEg5KS8vR1tbW9LxyLFIKMxp8NzlnCUybYXBkwOkRha2XOYAcc4kcppPxSvFP/GeicokL14D4C5uQ9ZUcc5p8LyVxEQiPPVWL6LvcQVkIabzUEoJjTxWEFKqQCCAe+65B42Njfi3f/s31NTUGLpu1qxZ2L9/P1RVjTu+Z88eFBUVGSqkSAGeu5yzROKA5klsBJJfWLI6QAmWPQ9iY2Jf8s4kSvSmUVn/SSnQBJamk2nwohow2cjb7L0ksUy/RJI/CRGe4xjItCWQqGUQgCzJCRTvpVSAzCMUCuGnP/0pdu/ejZ/97Gc444wzUp7X2tqKhoYGBIMxYuzFF1+M9vZ2bNmyJXqss7MTmzZtwoUXXpiSH+QE3DCBArQLTeI91UTLnrAOEA+lNGNf8rSQCTKlEhVXTdWiaf4UliZZij/nYqAskXUrDM5hUN4ezsSaYdRjwK0eICrPrEowBlhAOA7Qo48+ig8++AAXXnghenp68Kc//Snu+0svvRQA8NRTT+Htt9/Ghg0bMHFimPC2ePFivPzyy3jggQdw+PBhjB07Fq+99hpUVc2aQUYJN2jGQBbeCo+wTWIMmSpsQ8hbibTDu0hY0gJBuBUGd+UuUziRMOWaRzFQVsgkt4dD9fnE8c3bwxmZK1Lxm0jGAMe5ghWoPbOU8zcrCKcAHThwAADw4Ycf4sMPP0z6PqIApYLX68WDDz6Ixx57DK+88goCgQDmzJmDNWvWYOrUqdxkNgveBEFWoFxogBQKF/VWGDyto4SQG28lgbImR6KlybPYWuI9k1zthBwgUSd1II3XgqPciRwgKg+nE9uhuGGXc4DeM0s5f7OCcArQI488Yui8tWvXYu3atUnHR48ejdWrV2P16tWsRWMGN2SRALShhsR78vaSUGd2JHpJvLw5EokkaCoLmXORx8R7Jk20Lq5wzBKKVwEUAFpy+INnSAqg5QBFEiZ4Kt3U8yArOOmZpfBys4CYUuU4XBMCIya1ZYohU25yyXuBILGQE7cVcYj/wX2cJLraGT+b4lHgOcXzSUolFvjdVRQlmQhPUMICoOEAZcw44jxXuHH+Vok9sxRebhYQU6ochxsGBpAi1MB7UiOMISseJUpgpSA2UltHkXtqWrgwIlmWDOeQVOI9kxZbQm+ayO8ukIIIz1Fuag5QppAydw+nW+dvSs+sSzhAYkqV43CDaxBI1ui5T2oOuWwT0+B5LxAkfZnJauVcUiCXOEBAej6VqJN6BOnk5lWYMAJKDhBAwAPLVHdK4DHgpGeWYv5mATGlynG4oUImkKzRk05qBBONnkiphlRoHGszidKXCkEGEDkHyCE+lcgcICBZbrIUaEIOEMCfeO/GCseAAJ5ZFyiKYkqV43BNDDlTnJ23W5tgotEXU+M+OQjSl9QTHwkHiLdlq+NT8S4GyhJxcmuxyuok45tzWDLT4s57Kww3zt/kHCCXKIpiSpXjcINrEEgRRnGS2MhxEiUp8hjXl5pjfUmR4Ubal4mWJse+pAgjsITeAxRJf9YfZ9pWJv4HQUg55pVTmNdmylQOROT526Mr0knimXWhoiimVDkON7gGAQF4K4QcIOoJ26m+JH82Cv4HkWVLEUZgCT0HiHTxow6BDfNV8OMSJlwS2gFOZQLqlXcn529B+0lMqXIcbnANAuLwVgD+HCDuLntB+pLLsyVampThD4rwZVRR1lyz+AGxMaCpGoJDoaTjTNsiLvSZLuuM13yqLynglvkbSFCCKUnQBJ5ZFhBTqhyHG1yDgAPcjkwcII7tkXOAiC1k3hygjJYmZ84RyTjR3XN4MLb3oOiLX5zcA3zlpt7qJV3WGS+lVF9SwC3zN6CTmyIsmfheuqCfxJQqx+GWGHJiETgnLXsPh00no+1pQDDgnIVMGZLgNRE5ZmkSZ53FKRKCTuoReAnlzpiVxTvsqh/fBB4gVylAeiOPev52wTonplQ5Dje60R3ZCkOXtstj00l9e0PEFjIpB0g3GXFbIByyNKlrzujHiahu/Qg8hHI7ygHSKVzcFPw0RHjRxwAlf82NFbPFlCrH4QbXYATpiJQkpdQjvBXOizYQbyHngnWkf7ZgIARwrHEEOGhp6hQuHrucA7SeFJZwygNEstlvOg8nBQfIhfN30m9CMX+7QFEUU6ochxtcgxF401g+FBYE7z2X0lnIuWAdpfNa8PYAUVua+omW1zih7ktWoJSbmgOUNFdw3OUcSOAAuXH+pvbMErTHAmJKleNwVQhMV0yNav8qgH/qduJ9uVvImawjziRRCq+F3tJ0aisMXlamWzlA6eSmICVTcoAoiOnpOECumb9D/DMY03m5eXlmWUDsXy9H4SYLQh/7pqrMHGmPN3E3bZZMjhWK47346dtzpOQ+oQdo2EUcIMosMEVR4MnTJUwQcoBIFPy4kLJ7vIAeQkWRsjYTK4grWQ7DTTHktAsbby+JLr2ZGwdIT4Lu57uwKV4FOGUEUZcU0D8bbwuZ3NIkrAEDJPSl6O8usdzpwuW8xwDvdxeQY8BQW8TzNwuIK1kOw00eoHRF4LgTGwk8QB5CD5CiKPFudEKSKLWFzL3mTBoOEC/vFuWzsQSlB0h/X2q+CcX4pu5LVqCUm3r+ZgFxJcthuCqGnMaFSklsJLHsCYnCcdtFKIiW2WfaFvWzpWuPkAPEbfEjfDaW8KSRm7eiSLFnGjUxPW1JAcHHQLqxSzF/8+ZwsoC4kuUw3FhKHaCtJkvJW6FqL1WxQG8epxpHOdyXSSGwIGdFmbgvWYGS4wakT5ignCsolGA3eYBIPbNpPEAivyfiSpbDcEOBqAjSWlq8eStOei14p4pTELxzuC/jFqNB2sXPVWnwAoxvhVMGUFrvFoES7CYvoFPzd9z2OwL3kbiS5TDcyAECaC17R3krFBYyZ4JgLvcldVYWdV+yglNeEv2GodReOXIPkOhjgHD+VjxKNJwfZ+QJvMaJK1kOw60cIErLPte8FkC8hcy7yKNTz0bRHjUnx62FECm3wtC3p0+YyBVeFnVfsgJ5QdRT96XwzLKAuJLlMHgXimMJyiJwucxbAdJzgHiAvC8dsjQps5sS2xPeeKHOlEoRmiT3AOVA0VSWoC7iGbmvW+pliStZDoP3LucsQWlBeLweRPjAJJa9Q14STdWiu8/nitfCKUtTeoDSQ4QxwNuY0LfFsz05Bgy2R/hesoC4kuUweO9yzhJxqY1DfImNgC6Vdog/Tyoum2iIv1cuMX0boNm+geLZqNvzphgnudKXrJDq3QVoxwCFskUxV1D3JSukk5t7KQSC34QFxJUsh+GGAlERpHpReA7oVPemUEhI2hPh2QgWpAgUJezV49JeDvclK6Rb5CgypTIdY9JWmmeg4ADFHXfpGKBQFKPHBF7nxJUsh6Fytv5ZgnpAp7o3RXl7ivZSKpPECwQFB4h3W+nuTTmpp5NBJFArCSnnCkJli2t76fpS8DmcfAwQzt8sIK5kOQzemzeyREqrjqcHiFBJSGsd5fICQdiX1J5CCv5HNhlEggheQIrtSSjaS/lsAu9yHkEue2ZZIM9pARLR39+PF198EX6/H3v27EFPTw/WrFmDyy67LOu1b731Fh544IGU37366quoqKhgLa4luKE+QgTklj2lkkBs1ZEuENTPJoCnkBtXjNiKZgXyMBHhu+vxhJUPTdVI2nPbwh5BLntmWUA4Bairqwvr16/HhAkTMHPmTGzfvt30Pb773e9i4sSJccdKS0tZiWgbbqiQGQG5ZU+oJJB7SQRQ7ij7kqsCJAAHSPQQmAheEt5KcCSbknd7qfpM5NBOBLnsmWUB4RSgioqKqLdm7969+N73vmf6Hueffz7mzJnDQTo24J0BxBJCLGw5wgGi7EvFo8DjVaIbykbbI+xLnuNbBA6QyJYtkNseTiD8HEkKUA68uyyRy55ZFhBOsoKCAiahqv7+foRCoewnEkNTtdgu5259gagXNmoOUI4oCU7zqagV5VzxFLKCEFmOxHMFJclf5IU9AmrFjXoesAvhPEAssGrVKgwMDCA/Px/nnnsu7rjjDkyZMiXjNa2trWhra4v+3dDQwEW2kIuqQAPOWHVGjvFqiyexkXwyyvMAILKQiRcIp5U7QPwFkFpuEZRgymcTObQTAXVWltsUxZxSgAoLC3HZZZfhnHPOQUlJCerq6vDSSy/h9ttvxzPPPIMJEyakvXbjxo1Yv3590vH6+npTnqTe3l74/f603wcHYwrQwGB/xnNFQFtTf9KxwcAAN7kHAsntnWg+jmF/V8rzs/V3JgS6g8kHveD2bG0dnUnHOrs7uLWnKWrSsfoj9Wjuz7d8z3T93XFiIOlYYDjA7dn6BnqTjjW3NEHzJx+3i+H+5Pdf8QB79u5h3lYi7Ixv/Vyjx566PVwKsLa2Jb+j3T1d3MZAUB1OOtZwtAHtapPle6br766jg0nHhkNDws/f3SnkDoaGucnd09eddOxkWwv8/mQ5AHvjOxt8Pl/Wc3JKAVq6dCmWLl0a/XvhwoU477zzsHLlSjz//PO4++670167fPlyLFiwIPp3Q0MD7rvvPkybNg21tbWGZfD7/Rk7fqArgE/QCAAYM26MoR/JSRwJtKAOJ+OOjSkbzU3uY2UD6ET8yzK1ZipqfKmV12z9nQmD3UPYhmNxx/IL8rg929D+gziK+EWiasJ4+HzGx5cZ7CxqwVBPvGIyu3YWxkwotnzPdP19XGvDHrTEHSsdU8KtL5vKh9CO+GebUj0ZM3yTmLc1PBjEVhyNO+bN95K8u3bGd3AoFJ1rIvDmezBv3jwWoiVBazyMBnTGHauoquDWT3tK2jHY3hN3bObsGaiYOsbyPdP1d0tBJ3ajOe5YSWmx8PP3yaIu7EqQu7h0FDe52z/chZPoizs2acokzPVNTXm+nfHNAjmlAKXCmWeeCZ/Ph23btmU8r7KyEpWVldzliQuBCewajECINMpc5q3kCp9KALIlZcFMV4SvqX8TEcKgcgzEQYj5W+B1TlzJGKKqqgrd3cmuOSeg3wjVFS+QAGmUlOnNucJbSdseZZZMjowTxasACREjkSf1CBSPEpZdh1xRuAHaMeDWNPhcfi9ZQFzJGOL48eMoKytzWgwAsRpAgDteoFy27D3eZB5ELllHpJlSOWxpKoqSdG83EGCB5D6RHiCLbblsYY8gl+dvFhBXsixobW1FQ0MDgsEYkbWzszPpvL/+9a+oq6vDeeedRyhdekgPUJb2KC17RUm6d65YrOnunTPeNIf70g0eIIBWbuqM0VQLK2mRRxeMgVx/L+1CSA7QK6+8gt7e3mha+gcffICWljDB8sorr0RpaSmeeuopvP3229iwYUO06vNtt92G2bNno7a2FiUlJdi3bx/efPNNVFVV4Tvf+Y5jz6NHnALkhhcohy17IDyJUv0mQiwQKbxevNrKJUsz8d4iT+p6SA8Qo7ZctrBHkOvzt10IqQBt2LABTU2xVMYtW7Zgy5YtAIBLL7007bYWS5cuxUcffYStW7dicHAQFRUV+PrXv44VK1agvLycRPZsyIU6QLlkQXjzPRgeiP+bW1sOLxDefA+X9OdUbQG5N06ytS8iEhckyQGyBskBMtieyxRFIRWgl156Kes5a9euxdq1a+OO3XLLLbjlllt4icUE6rDLOEACEHcpC3fl8gJBXQAtlyxNyQEy31a6Y8zaS3gWrrucu6zCcQS5Pn/bhbiS5Shc5wESwa1Nadnn8AKRKxln6e4tPUDJcHoMUIZ4ubaVInTshjHg8SRXts+l99IuxJUsR+E6DpAAvBXeHCCqtpzuy1zZwy3dvUn7UuBJXY8kD1AOjwGez5YqYcI1XkBCud3GARJXshyF9ABlac/pSVR6gCwhpaWZw33plsUviQOUw78J7/mU0qBgCUol2G2hQnEly1HEcYAEHhgRpCwCRzyJUk7akgNko71cJty6NQQ2kjycnOdTaoWLFRJ/g1yav+1CXMlyFG7bCiNVEThKN7riUeDhtDt7qvZyyWtB+WwAMeHWYc6RWxa/3PZw0lW5BmiVSZagHLsyBCaREW4rhAjQuv+pF5pctpCpJ+wkhYuSbKkgadsHlqB8NpYYSWnw1B4gkT0belB6ZiUJWiIjVJd5gABnM0l491FSewW5Ex9PfBbeE7aTHiCeNY7StecG5CXImfg3S9B7gLwZ/2bfHl1fsoTTmYAir3PiSpajCLmMAwQ4+wKRL9o5RBCk9gDltKLs0jpAlKni5B5O4jFA2Zcs4WhomrNn1i7c8QvmENyWBg84mypOHbbJpRR/p7NkcmlrCteSoAnl9ng9SHTC5RIvy61jwMnQtDePr2fWLtzxC+YQ3JYGDzhLpMylSY28eN9I8gDlUHiPJajlpiTeU/KbAPeGQZ0OTYsMsaXLQagu9AA5mSpOntnB8YVVPEpSRVnSvswhJYE6xT9XSNC5nFSQS8/GEk6WpxB5GwxAKkDk0HuA3BJDdjJVPJc8QNTt5XJfOr34ueXddbwWVA55OKkNClZwcv7O45hUwgJiS5eDcCMHKKetOuJJTb8AebzJ1ZNZIpf7ktoj4zbXfgT0YyA+E4tnplQue7dYwskQmPQAScRBcoCytEVt1TnIk8m1CdtJsiX38J5LQ2CO8sA4ZwA57d1y7fydQ15nuxBbuhyE27bCAGgXG3KrzkErkpy3kkscIIdToEWf2COgDtvo+4l3BpDjWY4uGQOU83fi1kmiGwpiS5eDcNtWGECOW/YOeknIeSuS32S9PZe59iNwkuOWSwp3qvvL+TsZiVsnia4kii1dDsKVW2HksGVPXnhRv0DkmMs+ly1Nt7n2I3ByaxlqD2cuZYyyhJOKouhKotjS5SDc6AEiLabmdN0SwkmUeziCOkyUw5amW9PgR5YHiG/BPbd6gJwMF4uuJIotXQ4iwgFSOGcAsUTcC8OZ2KgoCjx5sfvnmmWf0yGCHLY03Wr9U/NWEjlAPOE0D0z08E4ETiYMiK4kii1dDiLiARJ9YOjhSRjQvEub618g6uyeXF4gyPsyhyxNyQEy314uK9yp2hcVuezltguxpctBRDhAbrEggfgBTSG3l1JJkGnwXNrz5CmkirL0AKWG5ACxgxwDBtuTHiCJdFBd6AGK88gQyE2ZKeVkqniupcFT/m5AbvOpWMHJYpg5V8JCd39FCW/+6gbksmfWLsSWLgcR8QCJ7hrUg3JSA6QHiFlbDnqAKBQE6QHKjiTeSg4tfon76lGS/F01f+ewZ9YuxJYuBxENgQk+MPSg5K0AkgPECk5ygCgWCEc5QC5ZAB31AHEe34qiOGZQuGr+pjZgXaQoii1dDiJKghZ8YOghPUAM26MM73k9UByqlUPuAZIE2JRwcnxTK8GUhT5dO39TvJcuUhTFli7HoGlaNA1e9IGhByVvBZAcIJZwqi/JLU3iFGi3LIBObheRc0qwi7gtelBnZVHPA3YgtnQ5Bi2kQdPCn0V3DerhJLmV0mtBQWzM6b500tKUHqCUIM+U0hUjJB/fhAq+W8ogAMllTHjDTYqi2NLlGNxYBRqgH9BOcYAolFInw0SU+6qRW5qUoVLOxUBZwtlSCMQeIMoQr+ALux6Ozt+Cr3N5TguQiP7+frz44ovw+/3Ys2cPenp6sGbNGlx22WWGru/p6cETTzyBLVu2IBAIYO7cubj99ttRW1vLWfLscOM+YAC9ZU+aSUJtHVErXITP56SlSV3dlncmDSvEjTeC6vPUPBmPg2PALcjl+dsuhJOuq6sL69evR0NDA2bOnGnqWlVVsXr1avz5z3/GFVdcgVtvvRUdHR1YtWoVGhsbOUlsHHoPkJtCYNSWfS5bddQeINJMKQctTbm/UWpQ/yaOcoAovVsuHQO5Nn/bhXDSVVRU4NVXX8Xvf/973Hbbbaaufe+997Br1y6sWbMGN954I6644go88sgj8Hg8eO655zhJbBzqsDtDYCPGss9BgqBj4cQcVu5Ed+vroXgV4JTThzwklcMcIDl/p4ebFEXhpCsoKEBFRYWlazdv3ozy8nIsWrQoeqysrAxLlizB+++/j6GhIVZiWoJrQ2A5bNnnMmchsY2c86ZR1pzxKNHCe256dxVFifYNeXVu6izHHBvfrJDL76VdiC2dSezbtw+zZs2CxxP/WHPnzsXg4GDGMFhrayvq6uqi/xoaGpjL51oSdA5b9opHiRJac237hsQ2cs1Cdsq176Z3F6CV20kPkOQApUYuz992IRwJ2g7a29tx1llnJR2PeJTa2towY8aMlNdu3LgR69evTzpeX1+PUChkWIbe3l74/f6U3/UcC0Q/d/Z0pj1PNKhBDfklHgz3qdDGDnCXWx07AADIG+VBc99RtPqPpz03U38bxZipheiqH0ThaQr3Zxv0DodDEhowUMh/DBRUacA+oPT0AtTt32ubvJupv9WQhoLRXgz1hIBxAe7PFhzTDwDwFipoDZxAp7+Za3ulUwvQsW8AoyZ5yN5dFuO7dEo+2uuCJHIPIQjFC2ghIDCqm3t73sogAKB4fD4ONR7gOr41VUNReR4G24NQKoZdM39rmoZRFXkYaAvCWxHkPwZKBgGEt93oCLWgz9+W9lwW4zsdfD5f1nNySgEKBAIoKChIOh45FggEkr6LYPny5ViwYEH074aGBtx3332YNm2aqQwyv9+ftuMD1cOYWHk6QsMqxlQVo6JmjOH7Oo1ZD89Gb/sAKqYSyOwDzji/B8XjClFUmvx76pGpv42i9qe1aGvowfjpY7lnyQDA7LmzoYU0jK4q5t7W3LkaWpd1Y9zkUuQVeG3fL1t/z354NnpODqCimmaczPtyD0aNKUTRmMzjhAXm/MsctB7uRuX0sfAQjBOAzfie879o5Z41ezaCgyGMnVjCva25czW0XdKNsZNKkF9kfznLOr4fqkVXUx8qqse4JhMQAGb/ohZdJ/pQUUMgtw/wnd2H/FF5KC4rzHgqi/FtBzmlABUWFqbk+USOFRam/zEqKytRWVnJTTYAKCzJx9Rzqri2wQuFpfkoLM0na698ymiytrz5XlTNLCNrr7RiFFlbiqJg/PSxZO0VFOejoppunIybTDdOPHke0nHCCtRyl4wrImtLURRUEo7v/KI8VNbQtccK+UV5qJxGJzeF8ssCYgfoTKK8vBxtbcnutsgxq+RqCQkJCQkJidxCTilAs2bNwv79+6GqatzxPXv2oKioCFOmTHFIMgkJCQkJCQmR4FoFqLW1FQ0NDQgGg9FjF198Mdrb27Fly5bosc7OTmzatAkXXnhhSn6QhISEhISExMiDkBygV155Bb29vdHQ1QcffICWlhYAwJVXXonS0lI89dRTePvtt7FhwwZMnDgRALB48WK8/PLLeOCBB3D48GGMHTsWr732GlRVxU033eTY80hISEhISEiIBSEVoA0bNqCpqSn695YtW6JenUsvvRSlpaUpr/N6vXjwwQfx2GOP4ZVXXkEgEMCcOXOwZs0aTJ06lUR2CQkJCQkJCfEhpAL00ksvZT1n7dq1WLt2bdLx0aNHY/Xq1Vi9ejUP0SQkJCQkJCRyAK7lAElISEhISEhIWIVUgCQkJCQkJCRGHKQCJCEhISEhITHiIBUgCQkJCQkJiREHqQBJSEhISEhIjDhIBUhCQkJCQkJixEEqQBISEhISEhIjDkLWARIBgUAAANDQ0GDquiNHjsDr9fIQSSIFZH/TQvY3LWR/00L2Ny1493d1dTWKiorSfi8VoDSIVKK+7777HJZEQkJCQkJCwiyefvpp1NbWpv1e0TRNI5THNejs7MQnn3yCiRMnGt5EtaGhAffddx/+5V/+BdXV1ZwllJD9TQvZ37SQ/U0L2d+0oOhv6QGyiLKyMlx66aWWrq2urs6odUqwhexvWsj+poXsb1rI/qaFk/0tSdASEhISEhISIw5SAZKQkJCQkJAYcZAKEENUVFRgxYoVqKiocFqUEQHZ37SQ/U0L2d+0kP1NCxH6W5KgJSQkJCQkJEYcpAdIQkJCQkJCYsRBKkASEhISEhISIw5SAZKQkJCQkJAYcZAKkISEhISEhMSIgyyEyABDQ0P49a9/jT/96U/o6enBjBkzcPPNN+Pcc891WjRXo7+/Hy+++CL8fj/27NmDnp4erFmzBpdddlnSuYcPH8avfvUr7Ny5E3l5ebjgggtw5513oqysjF5wl2LPnj14++23sX37djQ1NWHMmDGYN28ebr75ZkyZMiXuXNnf9lFfX4/nnnsOdXV1aG9vR1FREaqrq/Gtb30LCxYsiDtX9jd7/Pa3v8UzzzyDadOm4Te/+U3cdzt37sQTTzyBffv2oaSkBEuWLMEtt9yC4uJih6R1H7Zv345Vq1al/O7xxx/HvHnzon871d9SAWKABx54AO+99x6uvvpqTJ48GW+99RZ+9KMfYd26dTjzzDOdFs+16Orqwvr16zFhwgTMnDkT27dvT3leS0sLVq5cidLSUtxyyy0YGBjAiy++iEOHDuHJJ59Efn4+seTuxAsvvICdO3diyZIlmDFjBtra2vDqq6/i5ptvxuOPP47p06cDkP3NCk1NTejv78eyZctQWVmJwcFBbN68GWvWrMHdd9+N5cuXA5D9zQMtLS343e9+h1GjRiV9t3//fvzwhz9EdXU17rzzTrS0tGDDhg04evQofvGLXzggrbtx5ZVXYu7cuXHHTj/99OhnR/tbk7CF3bt3awsXLtReeOGF6LHBwUHt2muv1W699VYHJXM/AoGA1traqmmapu3Zs0dbuHCh9uabbyad98tf/lL7m7/5G62pqSl6bOvWrdrChQu1119/nUxet+OLL77QhoaG4o4dOXJEu+SSS7R77703ekz2Nz8Eg0Htxhtv1P7H//gf0WOyv9njJz/5ibZq1Spt5cqV2vXXXx/33d1336394z/+o9bb2xs99sYbb2gLFy7UPv74Y2pRXYvPPvtMW7hwobZp06aM5znZ35IDZBObN2+G1+uNWmsAUFhYiMsvvxy7d+9Gc3Ozg9K5GwUFBYaKZG3evBkXXnghJkyYED32la98BVOmTMGmTZt4iphTmD9/fpI3YcqUKaipqUFDQ0P0mOxvfvB6vaiqqkJvb2/0mOxvttixYwc2b96MlStXJn3X19eHTz/9FJdeeilKSkqix//u7/4Oo0aNkv1tEf39/QgGg0nHne5vGQKzif3792Py5MlxPx6AqMvvwIEDcROXBFucPHkSHR0dKTfTmzt3Lj766CMHpModaJqGjo4O1NTUAJD9zQMDAwMIBALo6+vDBx98gI8//hhLliwBIPubNUKhENatW4fLL78cM2bMSPr+0KFDCIVCSf2dn5+PWbNmYf/+/VSi5gweeOABDAwMwOv14swzz8Rtt92GOXPmAHC+v6UCZBNtbW0pvRSRY62trdQijSi0tbUBQNrfoLu7G0NDQygoKKAWLSfwzjvv4OTJk7jpppsAyP7mgUcffRQbN24EAHg8HixatAg//OEPAcj+Zo3XX38dzc3NePjhh1N+n62/P//8c67y5RLy8vJw8cUX46tf/SrGjh2Lw4cPY8OGDbjzzjvx2GOPYfbs2Y73t1SAbCIQCKQkIUYmpEAgQC3SiEKkf7P9BnKBMI+GhgY8/PDDmDdvHpYtWwZA9jcPXH311Vi8eDFaW1uxadMmhEIhDA8PA5D9zRJdXV149tlncf3116fNnsvW30NDQzxFzCnMnz8f8+fPj/590UUXYfHixbjxxhvx1FNP4aGHHnK8vyUHyCYKCwujk5UekR+usLCQWqQRhUj/yt+ALdra2rB69WqUlJTg5z//ObxeLwDZ3zxQXV2Nr3zlK1i2bBn+z//5PxgYGMA999wDTdNkfzPEM888g9GjR+PKK69Me062/paKpj1MnjwZF110EbZv345QKOR4f0sFyCYqKiqibjw9IscqKyupRRpRiLhO0/0GY8aMkZOWSfT29uJHP/oRent78dBDD8WNYdnf/LF48WLs3bsXjY2Nsr8ZobGxEW+88QauuuoqtLa24sSJEzhx4gSGhoYQDAZx4sQJdHd3Z+1vOZ/bR1VVFYaHhzE4OOh4f0sFyCZmzpyJo0ePoq+vL+643++Pfi/BD+PHj0dZWRnq6uqSvtuzZ4/sf5MIBAK455570NjYiH/7t3+Lkp8jkP3NH5GwQG9vr+xvRmhtbYWqqli3bh2uueaa6D+/34/GxkZcc801WL9+PaZNmwav15vU38PDw9i/f7/sbwY4fvw4CgoKMGrUKMf7WypANrF48WKEQqEoiREIu+7efPNN+Hw+mQFGgIsvvhgffvhhXMmBbdu2obGxMZpNI5EdoVAIP/3pT7F792787Gc/wxlnnJHyPNnfbNDR0ZF0LBgM4o9//CMKCwujyqfsb/uYNm0a7r///qR/06ZNw4QJE3D//ffj8ssvR2lpKb7yla/gT3/6E/r7+6PX//GPf8TAwIDsbxPo7OxMOnbgwAF88MEHOPfcc+HxeBzvb0XTNI1rCyMAP/nJT7BlyxZ885vfxOmnn463334be/bswcMPP4yzzz7bafFcjVdeeQW9vb1oa2vDa6+9hkWLFmHWrFkAwhVGS0tL0dzcjJtvvhmlpaW46qqrMDAwgP/8z//E+PHj8dRTT8kQgUE88sgjePnll3HhhRdi6dKlSd9feumlACD7mxH+1//6X+jr68NZZ52F8ePHo62tDe+88w6OHDmCO+64A9dccw0A2d88cdddd6GrqytuK4y6ujrccccdqK6uxvLly6OVic866yz88pe/dFBad2HVqlUoLCzEGWecgXHjxuHw4cN44403kJeXh8ceeyyq4DvZ31IBYoBAIBDdC6y3txfTp0/HzTffjPPOO89p0VyPb37zm2hqakr53YYNGzBx4kQA4X2VEvdKuuOOO1BeXk4prqtx1113YceOHWm/37JlS/Sz7G/7ePfdd/GHP/wBhw4dQldXF4qLi1FbW4srrrgCF110Udy5sr/5IJUCBABffPFFdG+q4uJiLFmyBN///vflXmAm8PLLL+Odd97BsWPH0NfXh7KyMnz5y1/GihUrMHny5LhznepvqQBJSEhISEhIjDhIDpCEhISEhITEiINUgCQkJCQkJCRGHKQCJCEhISEhITHiIBUgCQkJCQkJiREHqQBJSEhISEhIjDhIBUhCQkJCQkJixEEqQBISEhISEhIjDlIBkpCQkJCQkBhxkAqQhISEhISExIiDVIAkJCS44MSJE1i0aBH+9//+306LwgRvvfUWFi1ahLfeestpUSQkJBhAKkASEhJkuOuuu7Bo0SKnxUiJXFPYJCQkMiPPaQEkJCRyE+PHj8fzzz+PkpISp0VhgoULF8Ln86GiosJpUSQkJBhAKkASEhJckJeXh+rqaqfFYIbS0lKUlpY6LYaEhAQjyN3gJSQkuODEiRO45pprsGzZMqxduzZt6CvyfQQHDx7E888/jx07dqC7uxsVFRVYsGABbrzxRowdOzbl/a+77jo8/fTT+Pzzz9Hd3Y0NGzZg4sSJ2LJlCzZt2oS9e/eitbUVeXl5mDFjBq666iosXrw4eq+33noLDzzwQEr51q1bh3POOSd6zpo1a3DZZZfFnbNz5048//zz2L17NwKBAE477TQsXboU1113HYqKiuLOXbRoEc4++2z89Kc/xeOPP46PPvoIAwMDmDlzJr7//e/jnHPOMdvVEhISFiA9QBISEiRYsWIF3n77bTQ1NWHFihXR47NmzYp+fv/99/HTn/4UiqLgoosuQlVVFQ4fPoz/+q//wieffIInn3wSo0ePjrvvsWPHcNttt2H69OlYtmwZuru7kZ+fDwB46qmnkJeXh/nz56OiogKdnZ344IMP8OMf/xirVq3ClVdeCQCYOXMmrrrqKrz88suYOXMmLrroouj9TzvttIzPtWnTJtx7773Iz8/H0qVLUVZWhq1bt2L9+vX45JNPsG7dOhQWFsZd09vbizvuuAOlpaW49NJL0dHRgU2bNuHuu+/G008/jenTp1vqYwkJCeOQCpCEhAQJbrrpJuzYsQNNTU246aabkr7v6urC/fffj7Fjx+LRRx+NUzzeffdd/OxnP8Ovf/1r/OAHP4i7bufOnVixYkXKez744IOYNGlS3LH+/n7cfvvt+PWvf43LL78cRUVFmDVrFkpLS6MKUKp7pUJfXx9+8YtfwOv14vHHH8eMGTMAAN/73vdw77334i9/+QtefPFF3HDDDXHXHThwAP/4j/+IH/zgB/B4wrkoX/rSl/Dggw/iv/7rv3D33Xcbal9CQsI6ZBaYhISEEPjjH/+Ivr4+fO9730vyulxyySWYPXs23n333aTrysvL8Z3vfCflPROVHwAoLi7GZZddht7eXuzdu9eWzO+//z56e3vxta99Lar8AIDH48Ftt90Gr9ebMm1+1KhRuPXWW6PKDxAOBXq9XtsySUhIGIP0AElISAiB3bt3AwD8fj+OHTuW9P3Q0BC6urrQ2dmJsrKy6PGZM2dGQ16J6OjowH/8x3/go48+QnNzMwKBQNz3ra2ttmTev38/AODss89O+m7ChAmYNGkSGhsb0d/fj+Li4uh3kydPjvsbCJPGy8vL0dvba0smCQkJY5AKkISEhBDo6ekBALz66qsZzxscHIz7e9y4cSnP6+7uxve+9z00Nzdj/vz5+MpXvoLS0lJ4PB4cOHAA77//PoaHh23J3NfXByDshUqFiooKNDY2oq+vL07hSVcawOv1QlVVWzJJSEgYg1SAJCQkhEBEQVi/fr0pErCiKCmP/+EPf0BzczO++93vJnFwfve73+H999+3LuwpRBSZ9vb2lN9HjudKLSQJiVyC5ABJSEiQIcJ5CYVCSd/5fD4AsVCYXUTCaPqMrgi++OKLtLKZ8cBEMth27NiR9F1zczOOHTuGSZMmJYW7JCQknIdUgCQkJMgwZswYAEBLS0vSd1/72tdQXFyMp59+GvX19UnfDw4OmlKOIkTqnTt3xh1/55138NFHHyWdP3r0aCiKklK2dLjoootQWlqKN998M05mTdPw5JNPIhQKJdUMkpCQEAMyBCYhIUGGL33pS3jvvffwr//6rzj//PNRUFCAmTNnYsGCBSgrK8NPfvIT/PjHP8ZNN92E8847D1OnTsXw8DCampqwY8cOnHHGGXjooYcMtXXppZfihRdewLp167B9+3ZMmDABBw4cwGeffYZFixZhy5YtcecXFxdjzpw5+Pzzz3Hfffdh8uTJUBQFf/d3f5e2FlBJSQn+5//8n7j33ntx6623YsmSJSgrK8O2bdtQV1eHuXPn4tprr7XdbxISEuwhFSAJCQky/P3f/z1OnDiBv/zlL3jhhRcQCoWwbNkyLFiwAABwwQUX4Ne//jX+8z//E9u2bcOnn36KoqIijB8/HpdddhkuvfRSw21VVVXhkUceweOPP45PP/0UoVAIs2fPxi9/+Uu0tLQkKUAA8C//8i/493//d3z44Yfo6+uDpmk488wzMxZDXLJkCcrLy/G73/0OW7ZsiVaCvuGGG3DdddclFUGUkJAQA3IrDAkJCQkJCYkRB8kBkpCQkJCQkBhxkAqQhISEhISExIiDVIAkJCQkJCQkRhykAiQhISEhISEx4iAVIAkJCQkJCYkRB6kASUhISEhISIw4SAVIQkJCQkJCYsRBKkASEhISEhISIw5SAZKQkJCQkJAYcZAKkISEhISEhMSIg1SAJCQkJCQkJEYcpAIkISEhISEhMeLw/wEafYCr5WWvbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG+CAYAAABh1ltMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLxklEQVR4nO3dd3hUZdo/8O/0Se+FQICEhF6CFFG6KEWUdVcXfVd3RdeKurqrq8Lr2pb92dfF3VXU9RV11wV7BRQRiPReQwmQhBDSeyaZfn5/DHMyJ5lkypmZFL6f6+K6MjNnznk4aXfu537uRyEIggAiIiIi6pCyqwdARERE1N0xYCIiIiLygAETERERkQcMmIiIiIg8YMBERERE5AEDJiIiIiIPGDARERERecCAiYiIiMgDBkxEREREHjBgIiIiIvJA3dUDcKe5uRmrVq1CXl4ejh07hsbGRixZsgTz5s3z+N69e/di/fr1OHToECorKxEfH49LLrkEv/3tb5GYmNju+MOHD2PFihU4efIkIiIiMHPmTNx5550IDw8Pxn+NiIiIeqBuGTDV19dj5cqVSElJQVZWFvbv3+/1e1esWIGGhgbMmDED6enpOH/+PD777DNs374d77zzDhISEsRj8/Pz8fvf/x4DBgzA/fffj4qKCqxevRrnzp3DSy+9FIz/GhEREfVA3TJgSkhIwOeff46EhAQcP34cd911l9fvve+++zB69Ggola2zjRMnTsTvfvc7fPbZZ7jzzjvF59966y1ERUXhtddeQ0REBACgT58+ePHFF7Fr1y5MnDjRq2sajUYUFRVhwIAB0Ov1Xo+ViIiIeoZuWcOk1WolmSBf5OTkSIIl53PR0dEoKioSnzMYDNizZw9mz54tBksAMGfOHISFhWHjxo1eX7OoqAh33nmn5PzeOn36tM/vIf/xfocW73do8X6HFu93aHX1/e6WGaZAa25uRktLC2JiYsTnzpw5A5vNhiFDhkiO1Wg0yM7ORn5+fofnq6qqQnV1tfjYn0DJyWQy+f1e8h3vd2jxfocW73do8X6HVlff74siYPr4449hsVhwxRVXiM85Ax53mayEhAQcPHiww/N99dVXWLlyZbvnCwoKYLPZfBpbU1MT8vLyfHoP+Y/3O7R4v0OL9zu0eL9DK1j3e/jw4V4d1+sDpgMHDmDlypWYOXMmxo0bJz7vjFQ1Gk2792i1WpjN5g7PuWDBAkyePFl8XFRUhGXLliEjI6NdxsqTvLw8rz9ZJB/vd2jxfocW73do8X6HVlff714dMBUVFeGJJ55AZmYmHnvsMclrOp0OAGCxWNq9z2w2Q6vVdnjexMREty0KiIiIqHfqlkXfgVBeXo6HH34YEREReOGFF9r1VXJOxbnWIjlVV1czICIiIiJRrwyY6uvr8fDDD8NiseDll192G/xkZGRApVLhxIkTkuctFgvy8/ORlZUVquESERFRN9ejA6aqqioUFRXBarWKz7W0tODRRx9FVVUVXnzxRaSnp7t9b2RkJMaPH4/vv/8ezc3N4vPfffcdWlpaMHPmzKCPn4iIiHqGblvD9Omnn6KpqUmcMtu6dSsqKioAANdffz0iIyPx1ltvYd26dVi9ejX69OkDAPjzn/+MY8eO4eqrr0ZRUZFkyX9YWBimTp0qPr7jjjtw33334YEHHsCCBQvETt8TJkzApZdeGsL/LREREXVn3TZgWr16NcrKysTHubm5yM3NBQDMnj0bkZGRbt936tQpAMCaNWuwZs0ayWupqamSgGnIkCH461//ihUrVuDvf/87wsPDMX/+fNx9992B/u8QERFRD9ZtA6aPPvrI4zFLly7F0qVLfX6fq9GjR+P111/36T1ERER0cenRNUxEREREocCAiYiIiMgDBkxEREREHjBgIiIiIvKg2xZ9E1B1ph5lJ2pRU9yIqXeMhEKp6OohERERXZQYMHVj+z8/haK9jt5To6/JQGya+1YKREREFFyckuvGEgfFiB9XnqnvwpEQERFd3BgwdWNJg2LFj6tOM2AiIiLqKgyYurGkDJcMEwMmIiKiLsOAqRvTRWoQnRIOAKguaoDdau/iEREREV2cGDB1c0kX6phsFjtqzjV28WiIiIguTgyYurmkQZyWIyIi6moMmLq5xMxY8WMGTERERF2DAVM3lzgwWmxYWcXWAkRERF2CAVM3p9apEJfuaFhZW9wIi9HaxSMiIiK6+DBg6gGSMh11TIIAVBc2dPFoiIiILj4MmHoA1waW7PhNREQUegyYegBnhglg4TcREVFXYMDUA8T1i4RK4/hUsfCbiIgo9Bgw9QBKtRIJGdEAgIbyZhibzF08IiIioosLA6YewnVajhvxEhERhRYDph5CUsfEaTkiIqKQYsDUQ3ClHBERUddhwNRDRKeEQxuuBuBYKScIQhePiIiI6OLBgKmHUCgVSLwwLddSZ0JzjbGLR0RERHTxYMDUg7COiYiIqGswYOpBJHVMXClHREQUMgyYepCkQez4TURE1BUYMPUgEfF6hMfqAABVBfUQ7Cz8JiIiCgUGTD2MM8tkbraivszQxaMhIiK6ODBg6mESB7Hwm4iIKNQYMPUw3CKFiIgo9Bgw9TCJmSz8JiIiCjUGTD2MPlKL6JRwAEB1UQPsVnsXj4iIiKj3Y8DUAzkLv20WO2rONXbxaIiIiHo/Bkw9EPsxERERhRYDph4oMTNW/JgBExERUfAxYOqBEgdGQ6FUAACq2FqAiIgo6Bgw9UBqnQpx/SIBALXFjbAYrV08IiIiot6NAVMP5axjEgSgurChi0dDRETUuzFg6qFcG1iy4zcREVFwMWDqoRK5Uo6IiChkGDD1UPH9oqDSOD59LPwmIiIKLgZMPZRSrUTCwGgAQEN5M4xN5i4eERERUe/FgKkH40a8REREocGAqQeTdPzmtBwREVHQMGDqwZIGxYofM2AiIiIKHgZMPVh0Sji04WoAjpVygiB08YiIiIh6JwZMPZhCqUDihTqmljoTmmuMXTwiIiKi3okBUw/HBpZERETBp5Z7gsLCQnz22Wc4fvw4GhsbYbfb2x2jUCiwatUquZciN+LSo8SPm6paunAkREREvZesgOnAgQN45JFHYLFYoFKpEBcXB5VK1e441tYEjy689VNobuEmvERERMEgK2B68803YbPZ8Oijj2Lu3LlugyUKLk24RvzY3MyAiYiIKBhkBUynTp3CrFmzMH/+/ECNh3ykDXPJMDFgIiIiCgpZRd96vR6xsbEBGgr5Q+syJWdhwERERBQUsgKmSZMm4dChQ4EaC/lByxomIiKioJMVMC1evBhNTU1Yvnw5jEb2AOoKar1rwGTpwpEQERH1XrJqmJ5++mmEhYXh888/x9q1a5Geno7w8PB2xykUCvztb3+TcynqgFKpgCZMBUuLjTVMREREQSK7rYBTS0sLTp486fY4hUIh5zLkgTZMA0uLDRZOyREREQWFrIBp8+bNgRoHyaC5sFKOGSYiIqLg4NYovYCz8NtqssFua99pnYiIiOSRvTWKq5aWFhgMBkRERCAsLMzv8zQ3N2PVqlXIy8vDsWPH0NjYiCVLlmDevHke31tVVYVPPvkEx44dw/Hjx9HS0oLly5dj7Nix7Y793e9+J5lWdJo4cSJefvllv8cfapLWAi026CIZBxMREQWS7IDJYrHgv//9L9auXYvS0lLx+T59+uDqq6/GTTfdBI1G08kZ2quvr8fKlSuRkpKCrKws7N+/3+v3FhcX48MPP0S/fv2QmZmJo0ePdnp8UlIS7r77bslzCQkJPo23q2nDXLp9t1igi/TtfhMREVHnZAVMJpMJDz30EI4dOwalUol+/fohISEB1dXVOH/+PN555x1s27YNf/vb36DT6bw+b0JCAj7//HMkJCTg+PHjuOuuu7x+75AhQ/DNN98gOjoamzZtwpNPPtnp8ZGRkZg9e7bX5++ONOz2TUREFFSyAqb//Oc/yMvLwxVXXIF77rkHKSkp4msVFRVYsWIFNmzYgA8//BC33Xab1+fVarV+Z3nctTXwxGq1wmw2+/Xe7kDSvJIBExERUcDJCph+/PFHDB48GE899VS715KTk/Hkk0/i3Llz2LBhg08BUygVFxdjzpw5sFgsiI+PxzXXXINFixZBre741lRVVaG6ulp8XFRUFIqhdkhaw8SAiYiIKNBkBUxlZWVYuHBhp8eMGzcOH3/8sZzLBE1aWhrGjh2LzMxMGI1GbNq0Ce+//z6Ki4vxzDPPdPi+r776CitXrmz3fEFBAWw2m09jaGpqQl5enq9Dl6ipb2gdQ34hmvRVss7XmwXifpP3eL9Di/c7tHi/QytY93v48OFeHScrYNLr9airq+v0mLq6Ouj1ejmXCZrHH39c8njOnDl46aWX8PXXX2PhwoUYMWKE2/ctWLAAkydPFh8XFRVh2bJlyMjIwJAhQ3waQ15entefrI6oq86hALUAgKT4FAwfPkDW+XqzQNxv8h7vd2jxfocW73dodfX9lrX+fPjw4diwYQMKCgrcvl5YWIgff/yxw8CjO7rxxhsBAHv27OnwmMTERAwZMkT8N2BA1wYorqvkOCVHREQUeLIyTL/+9a+xe/du3HXXXZg/fz5ycnIQFxeH2tpa7N+/H2vXroXVasUtt9wSqPEGXXJyMgCgsbGxi0fiPRZ9ExERBZesgGnUqFF48skn8dJLL+Hzzz/HF198Ib4mCAIiIiKwdOlSjBo1Su44Q+b8+fMAgNjY2K4diA+0bCtAREQUVLIbV86cOROXXnoptmzZgpMnT6K5uRnh4eEYPHgwpkyZEtSl+lVVVTAYDOjbt2+nq9rcMRgM0Gg00Gq14nOCIOD9998HAEyYMCGgYw0mjWuGiVNyREREAReQrVHCw8Mxe/bsgDaA/PTTT9HU1CQu39+6dSsqKioAANdffz0iIyPx1ltvYd26dVi9ejX69Okjvve9994D4KihAoDvvvsOhw4dAgDceuutAICTJ0/imWeewZVXXom+ffvCZDLhp59+wuHDh3Httdf6XLzdlaQZJksXjoSIiKh3CuhecoG0evVqlJWViY9zc3ORm5sLAJg9ezYiIyM7fO8777wjebxmzRrxY2fAlJKSgjFjxiA3Nxc1NTVQKpUYMGAAHn74YSxYsCCQ/5WgYx8mIiKi4PIpYFq3bh0AYNq0aQgPDxcfe2Pu3Lk+Deyjjz7yeMzSpUuxdOnSds87A6vOpKWlddprqSdRaVRQaZSwWeysYSIiIgoCnwKm5557DgqFAiNGjEB4eLj4uDOCIEChUPgcMJFvNGFq2Cxm1jAREREFgU8Bk7PRo3Oft7aNH6nraMPUMDaYYWGGiYiIKOB8CpjmzZvX6WPqOs46JnOLVczqERERUWDI6vR94MABlJeXd3pMeXk5Dhw4IOcy5AVtuKPbt2AXYDX5tp8dERERdU5WwPTQQw9h7dq1nR7z3Xff4aGHHpJzGfKCJoy9mIiIiIJFVsAkCIJXx3B6KPi4PQoREVHwyAqYvHHu3DlEREQE+zIXPdfmlezFREREFFg+N658/vnnJY9/+uknSYNJJ5vNhoqKChw6dAiXXnqp/yMkr2jY7ZuIiChofA6YXGuWFAoFTp06hVOnTrk9VqFQYOjQobj//vv9HyF5hVNyREREweNzwLR69WoAjtqkm266Cb/85S9xww03tDtOqVQiKioKYWFh8kdJHjlXyQEs+iYiIgo0nwOm1NRU8ePHH38cgwcPljxHXcN1So7NK4mIiAJL1ua7bFzZfUim5JhhIiIiCihZAZOTyWTC8ePHUVVVBYvFfcEx95ILLi2LvomIiIJGdsD02Wef4Z133oHBYHD7OjffDQ3XDBPbChAREQWWrD5MmzdvxvLly5GcnIzFixdDEARMnjwZd955JyZOnAhBEDB9+nQ89thjgRovdUCaYWLAREREFEiyAqaPP/4YcXFxeOONN7Bw4UIAQHZ2Nm6++Wa8+OKLeOKJJ/DTTz+xKDwENK6r5BgwERERBZSsgOnMmTOYPHky9Hq9+Jzdbhc/vuqqq3DJJZdg5cqVci5DXtDoVcCFHWg4JUdERBRYsgImq9WK2NhY8bFOp0NjY6PkmKysLOTn58u5DHlBoVCI03JcJUdERBRYsgKmhIQEVFdXi49TUlLaBUdlZWVQqVRyLkNechZ+c5UcERFRYMkKmIYNG4aTJ0+Kjy+99FIcOXIE//73v1FQUIAvv/wSubm5GDp0qOyBkmeaMEcdEzNMREREgSUrYJoxYwbMZjNKS0sBALfccguSkpLwr3/9C7fddhv++te/IiwsDPfcc09ABkudc07J2cx22K12D0cTERGRt2T1YZo2bRqmTZsmPo6NjcX//d//4ZtvvsH58+eRkpKCOXPmICkpSfZAybO2G/Dqo7VdOBoiIqLeIyCdvl1FRUXhf/7nfwJ9WvKCdHsUCwMmIiKiAJE1Jbdu3Tps2rSp02NOnz6NdevWybkMecl1A17WMREREQWOrAzTc889B4VCgSlTpuBPf/oTdDpdu2Nyc3Px3nvvcWuUEGg7JUdERESBISvDBDjqln766Sc88MADqKmpCcSYyE/asNZu3xYGTERERAEjO2C67rrrcNddd+HkyZO4++67cfr06UCMi/zAKTkiIqLgkB0wAcDNN9+MZ555Bg0NDbjvvvuwffv2QJyWfMQpOSIiouAISMAEANOnT8fy5cuh1+uxdOlSfPzxx4E6NXmp7So5IiIiCoyABUwAMHToULz55psYOHAg/vnPf+Kvf/0rbDZbIC9BnXANmLgBLxERUeAEvA9TSkoK/vnPf+Lpp5/Gl19+Cb1eH+hLUAckNUyckiMiIgqYgGaYnMLDw/H888/j5z//OYxGYzAuQW64rpJjwERERBQ4sjJMmzdv7vA1pVKJhx56CHPmzIHJZJJzGfISi76JiIiCI+BTcm0NGzYs2JegC7RhrGEiIiIKhqBMyVHXUKqVUGkdn1KukiMiIgocnzJM06dPh1KpxPvvv4/09HRMnz4dCoXC4/sUCgU2btzo9yDJe9pwDVrMJk7JERERBZBPAdOYMWOgUCjEPeOcj6n70Iap0VJn4pQcERFRAPkUML322mudPqau56xjMrdYIdgFKJQMaImIiORiDVMvo3GulBMAi5FZJiIiokBgwNTLcKUcERFR4Pk0Jbdy5Uq/LqJQKHDrrbf69V7yjXQ/OSsiunAsREREvYVPAdO7777r10UYMIWONpzdvomIiALNp4Bp+fLlwRoHBQj3kyMiIgo8nwKmnJycIA2DAsW1hsnMGiYiIqKAYNF3L+Naw2RpZrdvIiKiQAjYXnI2mw319fWwWNz/kk5JSQnUpagT3ICXiIgo8GQHTCdOnMBbb72FgwcPwmp1/wuaW6OEjoZTckRERAEnK2DKz8/H/fffD5VKhQkTJmDbtm3IyspCfHw8Tp48ibq6OuTk5CA1NTVQ4yUPJKvkGDAREREFhKyA6b333gMArFixAgMHDsT06dMxdepULFq0CCaTCf/85z+xadMmPP744wEZLHkmaVzJKTkiIqKAkFX0ffjwYUyePBkDBw4UnxMEAQCg0+nw0EMPITExEW+//basQZL3NOGckiMiIgo0WQGTwWBAWlqa+FitVqOlpaX15EolcnJysHfvXjmXIR9I2gpwlRwREVFAyAqYYmNj0djYKD6Oj4/HuXPnJMeYzWYYjUY5lyEfqHUqKJQKAFwlR0REFCiyAqaBAwfi7Nmz4uNRo0Zh9+7dOHLkCACgsLAQGzduxIABA+SNkrymUCjELBM33yUiIgoMWUXfl112Gf7xj3+gqqoKiYmJ+NWvfoXc3Fzcf//9iIqKQlNTE+x2O2655ZZAjZe8oAlXw2SwdGkNk7nZArVeDeWFbBcREVFPJitg+tnPfoaZM2ciKioKAJCVlYVXX30VH3zwAc6fP48hQ4bg+uuvx2WXXRaQwZJ3nM0ru6qGqfRYDda9sBuRCWG47i+XQ6MPWH9UIiKiLiHrN5larUZ8fLzkuVGjRuHFF1+UNSiSxzklZ7cKsJptUGtVIb1+4a4y2Mx21JcacO5QFTImsg8XERH1bNxLrhdy7fbdFXVMFmPrNcuO14T8+kRERIEWkLmSuro6FBYWoqqqqsPtUebOnRuIS5EXJN2+m60Ii9GF9PoWk038uOx4bUivTUREFAyyAiaTyYS//e1v+P7772Gz2dweIwgCFAoFA6YQ0nZx80qrS8BUU9QAc4tV0h+KiIiop5H1W2z58uVYs2YNBg0ahOnTpyMhIQEqVWjrZag9bRdPybkGTIIAVOTXot/opJCPg4iIKFBkBUybN2/GkCFD8MYbbwQ0UGpubsaqVauQl5eHY8eOobGxEUuWLMG8efM8vreqqgqffPIJjh07huPHj6OlpQXLly/H2LFj3R5/+PBhrFixAidPnkRERARmzpyJO++8E+Hh4QH7/4SaJMPUBSvlrEZptrHsOAMmIiLq2WQVfdvtdowdOzbgWaX6+nqsXLkSRUVFyMrK8um9xcXF+PDDD1FZWYnMzMxOj83Pz8fvf/97GI1G3H///Zg/fz6+/vprPPXUU3KG3+U0ku1RuqDo2yQNmMpPso6JiIh6NlkZpqFDh7bbCiUQEhIS8PnnnyMhIQHHjx/HXXfd5fV7hwwZgm+++QbR0dHYtGkTnnzyyQ6PfeuttxAVFYXXXnsNERERAIA+ffrgxRdfxK5duzBx4kTZ/5euoO3igMnaJmCqyK+DzWqHSs1FmURE1DPJ+g3229/+Frt378a2bdsCNR4AgFarRUJCgl/vDQ8PR3R0tMfjDAYD9uzZg9mzZ4vBEgDMmTMHYWFh2Lhxo1/X7w5cV8l1dVsBALBZ7Kg6Ux/ycRAREQWKrAzTyJEj8corr2DJkiUYPHgwBg0aJAk+nBQKBW699VY5lwq4M2fOwGazYciQIZLnNRoNsrOzkZ+f3+F7q6qqUF1dLT4uKioK2jj90Z1WyTmVn6hFyuC4kI+FiIgoEGQFTPX19XjzzTfR2NiIvXv3Yu/evW6P644BkzPgcZfJSkhIwMGDBzt871dffYWVK1e2e76goKDD9godaWpqQl5enk/v8cRQbhY/Li+pRF6ePaDn74xgF2CzOK6n1ithNTo+zt9zFupBxpCNoyPBuN/UMd7v0OL9Di3e79AK1v0ePny4V8fJbitw+PBhTJo0CbNmzepRbQVMJhMAR0apLa1WC7PZ3O55pwULFmDy5Mni46KiIixbtgwZGRntMlae5OXlef3J8lZjUjMOohQAEKGPDPj5O2NusWI7zgIAkgfFobqoAaYmC5rPWzFs6DAoungz3mDcb+oY73do8X6HFu93aHX1/ZYVMO3cuRM5OTl44YUXAjWekNHpHN2vLZb2y+7NZjO0Wm2H701MTERiYmLQxiaXNsylhinERd+u03FqvQqpQ+JQtLcCJoMFtSVNiE+PCul4iIiIAkFW0bcgCBg6dGigxhJSzqk411okp+rq6m4dEHmiCe+6VXJWU+v1NDoVUoa2bs5cfoLtBYiIqGeSFTCNGjUKp06dCtRYQiojIwMqlQonTpyQPG+xWJCfn+9z/6fuRKlUQK1zTI2GuujbtQeTWufIMDlxI14iIuqpZAVMixcvxvHjx/Hpp58Gajw+qaqqQlFRUYcb/nYmMjIS48ePx/fff4/m5mbx+e+++w4tLS2YOXNmIIcacs6VcuaW0Hb6du3yrdapkDgwWgzeyphhIiKiHkpWDdN///tfDBo0CH//+9/x6aefdthWAAAef/xxn8796aefoqmpSZwy27p1KyoqKgAA119/PSIjI/HWW29h3bp1WL16Nfr06SO+97333gMAFBYWAnAEQYcOHQIAyWq9O+64A/fddx8eeOABLFiwABUVFVi9ejUmTJiASy+91KfxdjfacDWaa00hr2GSZpjUUKqVSM6Kxfmj1TBUG9FU1YLIxLCQjomIiEguWQHT2rVrxY9LSkpQUlLi9jiFQuFzwLR69WqUlZWJj3Nzc5GbmwsAmD17NiIjIzt87zvvvCN5vGbNGvFj14BpyJAh+Otf/4oVK1bg73//O8LDwzF//nzcfffdPo21O3Juj2Ix2mC3C1CGaHWaa4ZJcyGzlDIkDuePOgLfsuM1yJrSNyRjISIiChRZAdPq1asDNY52PvroI4/HLF26FEuXLm33vDOw8sbo0aPx+uuv+zS2nkCyUq7FCl1E+/YJweBa9K3WOwImSR3TiVoGTERE1OPICpgOHDiA+Pj4HrvnWm+mbbNSLnQBU/sMU3J2LBRKBQS7wJVyRETUI8kq+n7hhRewc+fOQI2FAkjjugFvCAu/266SAwCNXo3EgY79/WrPNcHY2HFTUCIiou5IVsCUkJDg81YgFBquGaZQFn5b3QRMgKOOyan8JLNMRETUs8gKmCZPnow9e/Z0uo0IdY2u2oBXMiWnbx1D6lBpHRMREVFPIitguvPOO6HX6/HEE0+goKAgUGOiANCGdU23b3dTckCbDNNxBkxERNSzyCr6/u1vfwuLxYJTp05h165d0Gq1iI2NhUIhXcKuUCiwatUqWQMl37RdJRcqVqPLKjmXgCksWoeYPhGoLzWgsqAeVpNN8joREVF3JnsvObVajeTkZCQnJyM2NlZ83vWf3W4PxFjJB9L95Lqm6FvTJiByTssJNgEVp+pCNiYiIiK5ZGWYvOmVRF2jbVuBUJEUfevbBExD4nFi4zkAjo1400YkhGxcREREcsjKMFH3Jalh6qqib500Hk+RNLDkRrxERNRzyMowubJarSguLobBYEBERATS09OhVgfs9OQjbXhX1TBdCJgUgEorjcejksMQHqdDc60JFfl1sNvsUKoYsxMRUfcnO6JpaGjAihUr8MMPP0jaC+h0Olx55ZW46667EBMTI/cy5CNNF03JOWuY1FqV2+L/1CHxOLOjFBajDTVFjUjM5NcGERF1f7L+vG9oaMA999yDb7/9FjqdDuPHj8ecOXMwYcIEaLVafPPNN1i8eDEaGhoCNV7ykrStQOiKvp1Tch2tgJP2Y+K0HBER9QyyMkzvvfceSkpKcNNNN2HRokUICwsTXzMajXjvvffw4Ycf4v3338f9998ve7DkPZVGCaVKAbtNCO2U3IXNd9uukHOS1DEdr8XIeRkhGRcREZEcsjJMW7ZsQU5ODu69915JsAQAer0ed999N3JycvDTTz/JGiT5TqFQiCvlQjold6GGqe0KOae49ChxXGUnaiEIQsjGRkRE5C9ZAVN1dTVGjhzZ6TEjR45EdXW1nMuQn5wb8IZqlZzdLsBmcfTcartCzkmpVCBlsCPLZGwwo6GsOSRjIyIikkNWwBQREYGysrJOjykrK0NERIScy5CfnCvlzC3WkGRyOtp4ty3ptBzrmIiIqPuTFTDl5ORg06ZN2LNnj9vX9+7di02bNiEnJ0fOZchPzqkvwSbAZg5+t/XOmla6Sh0S2I14a0uacOCL02iqapF9LiIiIndkFX0vWrQI27dvxyOPPIJJkyZhzJgxiI+PR01NDQ4cOICdO3dCp9Nh0aJFARou+ULTZqVcsPducxZ8Ax0XfQNA0qAYqDRK2Cx2lAcgYNrwt32oKzGg+GAlrn1qkuzzERERtSUrYMrIyMDLL7+M5557Dtu3b8f27duhUCjE6Z+0tDQsXboUGRlcCdUVpK0FrAiP6+TgALB4OSWn0qiQmBmD8hO1aChvRnOtEeFxer+uabfaUVdiAODYbqWxsgVRSWEe3kVEROQb2Y0rR48ejQ8//BCHDx9Gfn6+2Ok7Ozsbo0aNate8kELHtdt3KAq/xS7f6DxgAhzTcs7sUtmJWmRO6uPXNY2NZsnjoj1lbFVAREQBF5C9SxQKBUaPHo3Ro0cH4nQUIJINeEMRMEkyTJ1/aSVmRIsfN5T7v1KupUEaMBXuLmfAREREAceNvHox1xomSwi6fVuMrhvvdp5hCovRiR8b2wQ9vmgbMJWdqEVzvcnv8xEREbkjO8NUV1eHNWvW4Pjx42hqaoLNZmt3jEKhwN/+9je5lyIfhT7D1HqNzlbJAdKAqUVGgGNs+14BOLunHENn9ff7nERERG3JCphOnz6Nhx56CI2NjZ32+WEdU9doW/QdbK5Tcp4zTFrx45b6wGWYAMe0HAMmIiIKJFkB0z//+U80NDTgN7/5DebPn4+kpCSoVMFduk7eC3XA5O0qOcAxXehsLdDSICPD5CZgKjlaDZPBAl2Exs07iIiIfCerhuno0aOYMmUKfvvb3yI1NZXBUjejcVklF4oNeL3t9A04so76aEeWKVAZprQRCQAcjTrP7q/w+5xERERtyQqY1Go1+vbtG6ixUIB15So5jd5z8jLsQsBkajTDbvdv6xbX+qdhV6aLHxfuLvfrfERERO7I3hrlxIkTgRoLBZi2TafvYPNlSg5oLfwWBEfQ5A9xSk4B9B+XImatzh2shMUYmk2HiYio95MVMC1evBhnzpzBf//730CNhwLINcPU3abkAIjBDeC+eNsbzvfpo7RQqZUYMC4FAGAz23HuUJVf5yQiImpLVtH3Bx98gMzMTLz55pv46quvkJWVhYiICLfHPv7443IuRX5wnRYLSdG30bu95JzatRZIj/L5ms4Mk3N6b+DEFJzYWAzAMS2XMTHV53MSERG1JStgWrt2rfjx+fPncf78ebfHKRQKBkxdQKFUQBOmgqXFFvK2Ap76MAGtQQ7gX/NKi9EqXtOZrUobkQBNmBqWFivO7quAzWqHSs3+rEREJI+sgGn16tWBGgcFiTZM4wiYQl307WFrFKBtLybfWwu4Bllh0Y5slUqtRP9LknF663lYWqw4f7Qa6WOSfD43ERGRK1kBU2qqf9Md5eXlKC0tRU5OjpzLkxe04WoYakJUw+TcGkUBqLSeszp6yZSc7xkm17onvUvwNXBCCk5vdWQ7C3eVM2AiIiLZumSuYs2aNXjooYe64tIXHc2Fwm+ryQa71R7UazlXyam1Kq+6u0syTH5MyblmpVyn9/qNThQDtqK95X63LCAiInJicUcvJ2ktEOQsk3NKzpsVckDrNBoQiCm51oBJo1eLWSVjgxnlJ2p9PjcREZErBky9nDYsdN2+nZvverNCDgD0URrgQiLKn6JvyZScS/AFOKblnAp3l/l8biIiIlcMmHo5SbfvIK+UE6fkvFghBwBKlRL6SEdA508NkyTD5DK9BwDpY5OhVDmiscLd5Z1uDk1EROQJA6ZeTiOZkgtet2+7XYDN7KiR8maFnJOzF1NLg8nnoMZ1Gs+1CSYA6CI0SBvp2FvOUG1EVUGDT+cmIiJyxYCplwtVhsnXLt9OzkDHZrbDYrR5OFqqpYMaJqeBE1pXcRbu4rQcERH5jwFTLxeqDXh9bVrp5Fr4bWzwrfDbOSWn0iglmTSnAeOSxRopTssREZEcDJh6OddAwhLUDJNv26I4SZtX+lbHJO4jF61128YgLEaH1CFxAID6UgPqSpp8Oj8REZETA6ZeznWVXDCn5Cz+Tsn5GTAJdqHdPnLuSKbldpd7fX4iIiJXXRIwRUREIDk5uSsufdEJ2ZSc0b+ASbIBrw9TciaDBcKFhpRtWwq4krYXYMBERET+6ZKAaeHChfjoo4+64tIXHUnjyubgrZKTFn37sErOdQNeHzJMLZ20FHAVmRiGxMwYAEB1YQOMtcG7B0RE1Hv5tJfcypUr/bqIQqHArbfe6td7SR6NS4YpmI0rpRvv+pth8j5gci0Qb9tSoK2BE1JQdaYeAFBzogWY7PVliIiIAPgYML377rvtnnMttnVdheR8XhAEBkxdKFRTchZj67l9WyXnWsPk/ZSca71TZzVMgCNg2rP6JACg+niz19cgIiJy8ilgWr58ebvnVq1ahT179mD27NkYPXo04uPjUVNTg4MHD2L9+vWYMGECbrzxxoANmHwjnZLrfhkm1+yQbxkm14Cp4xomAIhNi0Rs3wjUlRjQeM4Eq8nmU50VERGRTwFTTk6O5PE333yDAwcO4O2330ZGRobktblz5+KGG27A4sWLMWXKlHbvpdBQaVRQaZSwWezdcpWcRq+GWqeC1WTzLcPkuo9cJzVMTgkDolFXYgAANFW1ILZvpNfXaqv4YCVsZrukoJyIiHo3WUXfH3/8MWbNmtUuWHIaNGgQZs2axQLvLubsxRSqGiZfszfOom1fNuB1Da48TckBjuJvp6bqFh9GJ1V5ug7fvbAHP7y6D6e3nff7PERE1LPICphKSkoQHR3d6THR0dE4f56/WLqSs44pVKvkNHqfEpfilJqpyQK71e7Ve4wetkVpSxowGX0an6vy/Drx48PfFrB7OBHRRUJWwBQbG4udO3d2+EvDbrdj586diImJkXMZkknrkmEK1i94f6fkgDbNKxu9yzJJpuS8CZgS9OLHTZX+Z5iaqlrfW1XQgMrT9X6fi4iIeg5ZAdOVV16J06dP4/HHH8epU6ckr+Xn5+Pxxx9HQUEBrrrqKlmDJHm04Y5u34KATje4rT7bgANfnJYEBd6SNSXnUrTtbR2TM8OkDVdDpfF8vQiXDJNBRoap7b05tv6s3+ciIqKew7e5kzZuu+02nDx5Ejt27MDOnTuh1+sRGxuLuro6GI1GCIKAcePGYdGiRQEaLvmjbS8mrZuNaov2luPH1w7AZrGj4lQdZj8yzqdruHb69mWVHCBtPOlt80pnYOVNdglok2GSUcPUVCUNts7sKMWlNw/1ehxERNQzyQqYdDodXnnlFaxbtw7r1q3DmTNnUF5ejsjISAwdOhRz5szB3Llz3W6MSqHTttt3RLxe8nr+lhLkrjgsbjVSW9zo8zUsJv/6MAG+b8Brs7au+PPUUsBJG66BNlwNc7PVrwyaU1OltI+TzWLHiU3FGLNgkN/nJCKi7k9WwAQ4GlTOmzcP8+bNC8R4KAg668WUt74I297NkzxnMvheHC7tw+Tbl5XrXnDe7Cdn9LGlgFNkYhhqzjbCUG2EYBegUPoWyFuMVhgbLRfOpRezTcc2FGPUNZlQ+ng+IiLqObpkLzkKLa2b7VEEQcCBL09LgiVnItDcYhWzTd4Sp+QUgErr25eVJMPkRWsB16DKmxVyTs6VcnabgGYfej45ua6uSxkSj35jEh3PV7bg3IFKn89HREQ9h+wMEwBYrVYUFxejqakJNpv7omI2ruw6mjDp9iiCIGD3qhM49HWB+PyYBZmoKmhAyeEqQHAcp4vQeH0N5yo5tVbl8xSsrxvwGn3YFsWVax2ToaoFEXH6To5uz3V1XWRiGAZd1gfnDlYBcGTq+l+S7NP5iIio55AVMAmCgHfeeQefffYZmps736Nr06ZNci5FMjhXyQGO6bat7xzF8R+Lxecm3DQYYxYMwo+vHRCfMxssPgVMzik5f7YckW7A6znzI20p4F0NEyBdKddYZURyttdvBSBdIReVqEe/nCREJoU5MkwHq9BQbkB0SoRvJyUioh5BVsD03nvv4YMPPkBkZCTmzJmDpKQkqFTco6u7cZ2S2/vRSbEOBwpg8u0jMGxWf8dxEa3HmQwWRPlwDeuFom9fV8gBgC5CA4VSAcEueFX07RowhflYw+Rk8KPw2zVgikwKg1KpwLBZ6di9yrGx77EfinHpzUN9Pi8REXV/sgKmNWvWICUlBW+//TabU3ZjrkXfzmBJoVJgxr2jMejyNPE114ySr4Xf4pScjyvkAEChVCAsWovmOpOXRd+tx/iynF/aWsD3XkySgOlC8DVkRjr2fXoKNosdJzedw7gbsrmxLxFRLySr6LumpgZTp05lsNTNadr0XVJplLjqD5dIgiVAGjCZfQiYBLsAm9mxpYmvK+ScnKvdjPVmj93IW/ytYXLdHsWPDFNjZfuASR+tReakPgAcQeaZ7aU+n5eIiLo/WRmm1NRUGAyGQI1Form5GatWrUJeXh6OHTuGxsZGLFmyxOv2BY2NjVixYgVyc3NhMpkwbNgwLF68GEOGDJEct3DhQpSVlbV7/4IFC/DII48E5P/S1cJdips1YSrMfmQc+gxLaHecVpJh8n6jXqvZ/y7fTo5+So2w2wSYDVboIjuun5LuI+d9DVN4rA4KJSDY/Wte6Qyy9NFaqLWt/89hV/VH/k8lABzF39nT+7L3GBFRLyMrYLruuuvwwQcfoLa2FnFxcYEaEwCgvr4eK1euREpKCrKysrB//36v32u32/HYY4/h9OnTuOmmmxATE4MvvvgCDz74IN5++22kp6dLjs/OzsaNN94oea5fv34B+X90B1FJYRi/cDAqTtXhkuuzkJjhPiOoc6lh8iXD5Lrdij9TckDb5pWmTgMmZw2TQoFOj2tLoVRAG62Gqc4KQ5VvU3I2qx3NdY6pwKikMMlrSYNikJgRjaqCBnF/ueSsWJ/OT0RE3ZusgGnKlCk4dOgQFi9ejFtvvRWDBw9GRIT7VUIpKSk+nTshIQGff/45EhIScPz4cdx1111ev3fTpk04cuQInn32WcyYMQMAcMUVV+BXv/oV3n33XTz55JOS4xMTEzF79myfxtfT5FznuRO11s8aJqtLl29/ir4BaS1SS4MZsX07PtZZw6SP1vrcfFIXrYKpzgqTwQJzB9vEuGOobgEuzBS6Tu0Bjuatw68agNy3DgNw7C/HgImIqHeRFTDdeOONUCgUEAQBzz//fIfHKRQKbNy40adza7VaJCS0nzbyxubNmxEfH49p06aJz8XGxmLmzJlYv349zGYztFpp7YvFYoHVakVYWFjb0100/C36tsjYeNfJtbWAsZPCb0FoXUnnS0sBJ12MGoDj/IbqFmj7ebcW0F39kqvMy/pg53+OO+qYuL8cEVGvIytgmjNnTres1Th58iSys7OhVEpr2ocNG4avv/4axcXFGDSoNeOyb98+zJ49GzabDampqfjlL3+JX/7ylx2ev6qqCtXV1eLjoqKiwP8nuoC06NuHGiZjIGqYvNtPzmK0wWaxt3uPtxwBk0NTlRFxXgZMkh5MSe0DJrVOhcEz+uHwtwXcX46IqBeSFTAtXbo0UOMIqJqaGowZM6bd886MVXV1tRgwZWZmYvTo0UhPT0dDQwPWrl2Lv//976iqqsK9997r9vxfffUVVq5c2e75goKCDjudd6SpqQl5eXmeDwwBa0vr2Gsqar0eV92Z1mCirtH797mqrW89x9nTJUCe+8UExprWzJcZLT5fS9C1BoL5h8+gUevdliZnj9WJH9e0VCLPzfg0A1rHdmjtaagzjT5PGfY23enr+2LA+x1avN+hFaz7PXz4cK+OC8jWKN2NyWRqN+UGQHzOZGqd8mk7lXj11Vfjj3/8Iz766CNcf/31SE5uv93FggULMHnyZPFxUVERli1bhoyMjHar8DzJy8vz+pMVbIJdwC7FOUAANAqd1+Mqai5HHioAAH36pmL4cN8zK1X6ehy7cI5IbXSH1y4/WYt9OA8ASElP8vne1Z3eixI4gp0oTSyGD/fu81W5+RCAegDA8LFDEN/ffWaqYqsZ5w5WwVRvQ5Q56aLfLqU7fX1fDHi/Q4v3O7S6+n73ys13dTodzOb20zrO53S6jmtfFAoFFi5cCJvNhgMHDrg9JjExEUOGDBH/DRgwICDj7moKpUIsgva7hikQq+Q62YDXKNkWxfcpOa3rlJwPzSsbJU0rO96DbvhVrV8Leet7x1QtEREFoOjbGwqFAqtWrZJzKZ/Ex8dLaoycnM95KiZ3ZpUaGhoCP7huThehgbnZ6lNbAatLwBSQVXL1HRd9t/jZg8lJF906Pl+aVzqP1UVoJHvztcX95YiIeidZGSZBENz+a2pqQllZGcrKymCxWGC32wM1Xq9kZ2cjPz+/3XWPHTsGvV7frg9TW+fPO6Z8YmNjgzXEbsvZWsBksHrsuO1kMbbWBflb9K3SqMQ974ydFH27bp3iT9G3SqsUezcZvGxeabfZYahxZKM6yy4BEPeXczqx8ZzPYyQiou5HVobpo48+6vC10tJS/OMf/0BtbS3++te/yrlMp6qqqmAwGNC3b1+o1Y7/zvTp07Fp0ybk5uaKfZjq6uqwceNGXH755WItU0NDAyIiIiQbBlutVvznP/+BRqPB2LFjgzbu7sq5Uk6wC7AYbV71KbIGoK0A4GgtYG62drqfnGsw5e+y/cjEMJiaLDDUmGC32aFUdf53Q3OtCYJNEN/rSfbUvuKGvJVn6v0aIxERdS9BK/ru06cPnnnmGdx22214++238cADD/h8jk8//RRNTU3iVNrWrVtRUeEoDL7++usRGRmJt956C+vWrcPq1avRp49jT68ZM2bgk08+wXPPPYfCwkKx07fdbsftt98unn/r1q14//33MX36dPTp0weNjY1Yv349CgoKcNddd/ndB6on07p2+262+BwwafT+f0mFxWhRX2qApcUGq9km2X7ESTIlF+N/wFRd2ADBLqC51uQxCJJsuuumpUBbYbE66CI1MDVZUH9e/tZB9aUGRCTo3d4PIiIKjaCuklOr1Rg/fjw2btzoV8C0evVqyT5vubm5yM3NBQDMnj0bkZGRbt+nUqnw4osv4vXXX8enn34Kk8mEoUOHYsmSJejfv794XGZmJgYMGID169ejrq4OarUa2dnZeOaZZzBz5kyfx9sbtG1eGZngOUAIRONKQJoxMjaY3QYy0qJv32uYACAyoXVaramqxWPAJC349nw/FAoFYvpEoCK/DoYaIyxGq9+B5IEvT2PP6pNIzIjGtc9cBpW6V67TICLq9oLeVsBkMvldPN3ZlJ/T0qVL3faDioqKwmOPPYbHHnusw/cOGTKk0w7lFyOtpHmld4XfgZySc2qpd5/5cU7XqTRKaPxcked6Xm9WyjX5GDABQGyaI2ACHBmijvbv86RgRykAoKqgASd+LMbw2b1jRSYRUU8T1D9XDx48iA0bNkiyOtS9STJMTd51+3bt9O3vKjmgTbfvDloLOLuAh8Vo/e4y71q47c1KuSaXbVGivAyYYvq0royrL/VvWs5uF1DnMqW377NTMLd434GdiIgCR1aG6cEHH3T7vM1mQ1VVlTidduutt8q5DIWQc6Ua4H2GyeKy+a6/fZgAz60F7HYBpkb/95FzinCZZvQqYPKxhgkAYtNap4vr/KxjaqpsFreBARzTkYe/LcC4G7L9Oh8REflPVsDUUWNHhUKBqKgoTJgwAQsXLsSECRPkXIZCyJ8NeKV9mOQUfbtuwNs+w2RqMsPZ6cCflgJOrkGPwaspOccxap1KbEngiSTD5GfAVFfS/n2Hvy3AsCv7IzzW/4CRiIh8Jytg2rx5c6DGQd2EZAPeZi8DJueUnMLR58hfnjbgldvlW7xOlBYqjRI2i91jhkkQBPGYyMQwr6cBo1PCoVApINgE1JU2+TXO2pLW9zmbYVpNNuz7NB9TfjvSr3MSEZF/uOSGJLSSDJN39TLOVXJqrcrvuiKgfdF3W65BlL8tBQDHFjAR8Y46pqaqlk4bdLbUm8VpsSgvp+MAQKlWIjo5HICjhkmwe9cE1FWdS8A05bcjxCL3ExvPoe68f0EYERH5J2ABk9VqRUFBAY4cOYKCggJYrSxO7YnkTMnJWSEHtNlPzk2GqSUALQWcnKvdLEYbzM0df636s0LOKSbNMS1nM9t92rfOqe7chaBIAaQOiceoazIAOJqK7vnopM/nIyIi/8luK9DQ0IAVK1bghx9+kGx4q9PpcOWVV+Kuu+5CTIx/S6op9HR+tRVwBBxyVsgBgCZMLU6VuVslZ5S5LYoryUq56hbJ/9tVk5eb7rojXSnX5FOGShAEMYsUlRQGtU6FUVdn4Nj6s2ipN6NwVzkq8muRnB3n05iIiMg/sjJMDQ0NuOeee/Dtt99Cp9Nh/PjxmDNnDiZMmACtVotvvvkGixcvvig3se2pXFfJeZthEqfkZKyQAxyLBZy1SUY326NIpuRkBkySlXKVHdcxNVb6n2GKTWsNmHxdKedoeOm4r7F9HSvuNHo1Lrm+dYXcrv+e8Hq/PyIikkdWhum9995DSUkJbrrpJixatAhhYa2/UIxGI9577z18+OGHeP/993H//ffLHiwFn1LtaAjpmKryHDAJdgE2s6PGR84KOaewGB0M1UYYG8yw2wUola01UZKibxk1TIC0n1JnK+VcM0y+ZIgAIKZPa2sBX3sxidNxaA2YAGDIjH44srYQ9aUGlB2vxdl9FRgwLsWncxMRke9kZZi2bNmCnJwc3HvvvZJgCQD0ej3uvvtu5OTk4KeffpI1SAotZ+G3N0XfVnNgunw7OTNHguBoI+BKso+czBqmiDZTch2RU8PkmmHytbWAa1F3nEvApFQrMf7GweLj3atOwm6zg4iIgktWwFRdXY2RIztf3jxy5Ehx81zqGZz1PN7UMEn2kZM5JQd0Xvjd4jJNJ6etAADJHnlNlZ4zTEq1QrKKzxv6KK3Yt8nX1gK151oDLNcMEwAMnJCC5KxYx3lLmpCfW+LTuYmIyHeyAqaIiAjJ5rjulJWVISIiotNjqHtxZphsFrskg+SO1diahZJb9A1IV7+1bV5pvBBAacPVsjehjUjwnGESBEGsb4pMDINC6XvLBGfH7+Yak0/bmri2FHDNVAGOWq+JvxoiPt77ab6keSgREQWerN86OTk52LRpE/bs2eP29b1792LTpk3IycmRcxkKMZ0Phd+WAG286xTWyfYozik5XzM97qi1KjGb1VHAZDJYxMJrX6fjnGJcgp0GL+uYBEEQA6aIeD204e1X8KUOjUf/S5IBOIKxo98V+jU+IiLyjqwq3UWLFmH79u145JFHMGnSJIwZMwbx8fGoqanBgQMHsHPnTuh0OixatChAw6VQ0LZpLRAR1/FyeteNdwMSMHUwJWc122C5kKGROx3nFJkQhpZ6M5prTbBZ7e2yVnLql5xiXVoL1JUakJjpucVGS4NZDFTbTse5mnDTYBTvr4AgAAe/OoMhM9OhjwrMvSEiIilZAVNGRgZefvllPPfcc9i+fTu2b98OhUIhLnVOS0vD0qVLkZGREZDBUmjofOj2bZVkmOSvktN30O3b2Bi4lgJOEYl6VJ6pBwSgucaIqAuduZ1ca5uiApBhqveyO7d0hVzH09lx/aKQPb0fTm46B3OzFQe+OI1Jvx7m1ziJiKhzsn/DjR49Gh9++CEOHz6M/Px8GAwGREREIDs7G6NGjZK1VQZ1DV+aV0o33g1whsmlhslYH5h95Fy5Zo2aqlvaB0xVza3H+thSwMlZwwQ4MkzecK1fiuskwwQA427Ixumt52Gz2JG3vgijr8lAeCcZQSIi8o+sgOn5559HZmYmFi5ciNGjR2P06NGBGhd1Ia0P26MEfJVcB0XfkpYCAahhAtyslGuTnGmqas0w+TslF5UUJm7C621rAUnBt4eAKSJej2FX9ceRNYWwWwWUHqvBoMvT/BorERF1TFbR9w8//IDa2tpAjYW6CW2E90Xfgc4w6aM0wIWkpOuUXEsAt0Vxars9SluNAahhUqqViE7xbRPeWh8CJgDoOyJB/LjyTL0fo2xVVVCPExuLYbNw1R0RkStZAVNaWhp7LPVCvk3JtdY4BaLoW6lSQn+hd1FIp+Sq2vdicrYUUCgViIj3P6vlLPy2WeydNsl0cmaY9NFar4q4E1wKyasK/N+GyNRkwZq/7MJPbx/BhuUHuO0KEZELWQHT1Vdfje3bt6OysjJQ46FuQBIwNXde9G0J8Co5oHXKraXeJP7Slk7JBW6VnJPriri2z0XE66FU+f+tEuNSx+RpWs7YZBZXB8b185xdAoDwGJ3YV6q6sN6rLJY75Sdrxc/32X0VOL6h2K/zEBH1RrICpunTp2P48OFYvHgxPvvsM+Tl5aGsrAzl5eXt/lHP4UsNk2RKTi9/lRzQmkGyme3i+SX7yMncFsVJF6WBSuv4Fmib+bEYrTA1Of7vrlN3/pC0FvAQMNWVdNzhuzOJGY4sk6XFhvoy37Zhcao4VSd5vOPfxyTTg0REFzNZv+FuuukmsY3Aa6+91uFxCoUCGzdulHMpCiGdv0XfAc4wAY4sk0avDkoNk0KhQGRiGOrPG2CoNkIQBHFVZyB6MDlJWgt4WCkn7fDtQ8CUGY2iPY4/TKrO1Pv0XqfK03WSxzazHZv+cQALnr0MKk1gPrdERD2VrIBpzpw5bBvQC2ldOn370lYgYAFTtLR5ZXRKhDhNpVAqJAGdXJEJjoDJarLB1GgRs1uNla0BU5SfLQWcXAOmOg+9mCQtBbyckgNaM0yAo44pa0pfH0YICHYBlacdBeOO2ikN6koMqC5qxJ6P83Hpr4b6dD4iot5GVsC0dOnSQI2DuhG1VgWVRgmbxe55Ss4Y2FVyQNsMkyNQck7J6aO1fu3p1pG2K+WcAVMgM0z6SEcAYmy0+JZh8mlKLlr8uKrA95Vy9WUGsX4pOTsW467Pxpd/2ga7TcDhbwrQb3Qi+o5M9Pm8RES9hbwdTKnXcmZxPE/JuaySC0AfJgDQuxR1Gxschd/OKblATcc5dbRSLpABE9Ba+N1ca4K5ueN76qwZ0oarfSpuD4vWieOsLmyA3cfC78pTrUFW8qBYJAyMxvibWjf43bzikKTbOhHRxYYBE7nlLPw2+7A1iiYAW6MAbabkGsywtFhhtzoCgEC1FHDqaKWc67YoAQmYXAq/68ua3R5jbrbAUO24bmy/SJ+nu51ZJovR5jGT1VaFS/1SUpZjem/UvIFIu9DjqbnGhC3vHGGrASK6aMn6DXfjjTd6PEapVCI8PBz9+/fH1KlTccUVV8i5JIWIM8NkNdlgt9qhVLuPrcWASQFxxZlcbafkXDfhDXSGKaKD5pWNrtuiyFwlBwCxbeqYktxswuu6gs7TlijuJGbGoHB3a+G3L+eodK6QU0Acm0KpwPR7R+Ozx7fA1GRB4a5ynNx8DkNmpPs8NiKink7WbzhBEGC1WlFWVoaysjJUVlbCbDajsrJSfM5sNqOkpAQ//vgjnn32WfzhD3+AxdL5NA91PW+7fTv7MKm1qoAtAJBmmExB2RbFyXVTXYNkSs7xcXisLiArxCQZpg5aC7gWhPuzys3fOiar2Ybqs43idbXhrUX1EfF6TL1zpPh4+3vHfM5eERH1BrICpnfeeQcJCQm45JJL8Prrr2PDhg34/PPPsWHDBrz++usYN24cEhIS8PHHH+M///kPJk2ahH379mH16tWBGj8FibetBZwZpkCtkAOk024t9WYYXVoKBHpKLjxeL27F4pySs5ptaKlzXDMQ03GANADqMGByLfj2YYWck2Sl3BnvO35XFzZAsDmm2pKz2me+Bk5IxZCZ/QA4Pt+b/nkQdqvd5/EREfVksgKmFStWwGw245VXXsGIESPEDINCocCIESPw0ksvwWw2480330S/fv3wzDPPICUlBRs2bAjI4Cl4tF5uj+LcGiVQK+QARwNMZwBmbJthCnDApFIrER7ryFo5p+ScdUQAECmzpYBTVHIYlCrH90ddBxma2nMuLQX8mJLTR2nF8VYXeV/47dqwMikr1u0xk349DNGpjj3xKs/UY99np3weHxFRTyYrYNq6dSsmTZoEpdL9aVQqFSZNmoQtW7YAAHQ6HS655BKUlJTIuSyFgCTD1Mn2KM7GlYFaIefkXCHWUm8Oyj5yrpyF3y31ZljNtoBsutuWUqUUA46GMoPbYMaZedLoVeJWJ75KupBlsppsqPfQ88nJ2X8JAJIGtc8wOcakxsz7xkBxIeg78OVplB6r8WuMREQ9kayAyWAwoLnZ/Yof12MMhta/qGNi3P9Apu5FF+G5eaVgF2AzO6ZmAjklBziWyQOODWENta0Zn0DXMAHSoMhQbWzTUkB+wbdTTB9H1shmscPQZu86q9mGhgrH91JMmu8r5JwSM13qmLyclnMWfKu0SsSnR3V4XNKgWIy7IdvxQAB2/ue4X2MkIuqJZAVMAwcOxA8//IDz58+7ff38+fPYsGEDBg4cKD5XUVGB2NhYOZelEPBmPzmrOfAtBZxcexC5TlUFekoOaL9Srsm1y3eAMkxA25Vy0mm5+vMG4ELSyZ/pOCfXOqZKLwq/WxpMYlfzxIwYj5sMj742U+xAXnWmHi31pk6P96TyTL2kqzp1vRObinHwq9OSliFEJLOtwC233IInn3wSt99+O6655hqMHDkScXFxqK2txZEjR/Dtt9+ipaUFt9xyCwDAYrFg9+7dmDBhQkAGT8GjC/ccMEn2kQvwlJzrBru1xY0uzwdvSg5wrJSTZJgCVMMEtFkpV9qE9Jwk8XGtpMN3BPwlLfz2HDBJGlZ2UL/kSqlUIH1sshjEnj9ajUGXp/k+UAAFu8qw4W/7oVQrcNXD45A+JsnzmyioKk7V4ae3jlz4uB5XPjQ2oJ31iXoyWQHT9OnT8eijj+Lvf/87Pv74Y3zyySfia4IgICwsDI888gimT58OADAajXj00UeRkZEhb9QUdNKib/c1TMHYFsXJNcPk3LJDrVNBow9sJgtovz1KoLt8O3WWYfJ3S5S2dJEaRCWHobGixVH4bbN3mjWSFHx3UL/UVt+RCTj09RkAQMkR/wOmk5vOAQDsVgE/vLoP8x6fgNSh8X6diwLDdQPmoj3l2PtJPsYvHNx1AyLqRmT/9pk/fz6mT5+OLVu24NSpU2hubkZ4eDiysrIwZcoUREa2/vCPiorC1KlT5V6SQsCbtgKSbVGCGDA5BSO7BLTdHqU1YNJFagIaoDlrmAC062UUqIAJcDSwbKxogc1sR12JAfH9O65Lcv0F6U2GCQBShsSJew2eP1IFQRB8rrmymm04n1ctPraZ7fjupb2Y/8RESZaMQqtty4sDX5xGXL9Iv4Niot4kIL8NIiMjMXfu3A5ft9lsUKkC+wuVgsubom/XDFOgAybXKTmnYNQvAdIpuYaKFhhqHHU5UQGcjgMcAZg+Wgtjg7ldhsk5JafSKBGVHC7rOkkZMSjYUQbA0cCyo4BJsAviCrmwWJ3XK/PUWhVSBsfh/NFqNFUZ0VDejJhU36YRy47XiAsGlGoF7FYBlhYr1j2/G/OfnCSrjov8V1/WvuVF7puHEZ0SjqRBsaEfEFE3Iqvo+7PPPvN4jM1mwzPPPCPnMtQFvCr6dq1hCmLRt1OwMkzaCDU0YY6Ar+pMPYQLS/4DOR3n5JyWa6lr3YTXZrWjofzCCrk+EVDKrBlJzPSujqm+zCBOdyYNivEpS5Q2MkH8+PzR6k6OdO/cwSrx4yl3jETq0DgAgLHRgrX/bxcaKzpffUvB4cx8asPVGDzD0azUZrFj/Sv7YKgxdvZWol5PVsD02muvYdOmTR2+brfb8cwzzyA3N1fOZagLqHUqsedOhxkmUxBrmNwER8FoKQA4Gq06s0yu/6dgBEyu03LOLFNDmUHstC13Og4AEga6bpHScWsBScG3j9mDvq4B02HfA6big5UAHPvVDRiXgtmPjBPH3VxrwtrndqO5lr+gQ8lqtolbAsWkRWDy7SPEQLa5zoT1f90nWRlLdLGRFTCNGjUKy5Ytw759+9q95gyWNm/ejJ///OdyLkNdQKFQiHVMpg6KvoO5Ss5dcBSsKTkAiEhoHxwFJWBKc10p5wiYXOuXAjEVpYvQIDrFMa1XXdTQ4TYmFS71S0lutkTpTEJGDLThjqzi+bxqr7uKA0BjZbNYK5OcFQtdhAbacA3mPj5evD8N5c1Y+9xuGBvNnZ2KAqihrDWrF5MaAZVaiVkPjRW/D6rO1CP3zcMQBO8/10S9iayA6fnnn0d6ejqeeOIJ5Ofni8/b7Xb8+c9/xqZNm3DdddfhwQcflD1QCr3WgCn0GSZdhKbdcuZgTckB7htUBrqGCXC/Ui5QLQVcOaflbBa75PyunA0roQCSMn0LmJRKBdJGOLJMpiYLagq937vOdTquX06i+HFYtA5XL50otnKoPdeE717YA3NLx53mKXDqS1u/TpwtMMKidZj9yDhoLvxBdGZ7KQ58eTqg12UA1r0YG8z4dtlOrH91H5pl9lnrbWQFTBEREXj55ZcRGRmJP/7xjzh//jwEQcCzzz6LH3/8ET/72c/w+9//PlBjpRDTXij8trRY3WYQrEFcJadQKtpllIKZYXKXTQrOlJy0FxMA1JW0FtoGYkoOABIzXKfl2tcxWc02VJ919LeKTYuE1qXvlrdc65hKjlR1cqTUuQvTcQCQPlraeykiXo+rl05A2IX9/SrP1GP9K3s5FRQC9aUuGSaXr9P4/lGYcd8YcZPqvR/lo3B3WUCueXZfBf591wZ899IeGJuYTewOjm04i9K8GhTtLse3f97J2jUXsgImAEhISMArr7wCu92Ohx9+GE899RQ2btyIa665Bn/4wx8CMUbqIq6tBZwFyq4kU3IBDpgAQN+m8FsfpBomAIh0s0IsGAFTVFIYlGrHbx7ntJRzSk6hUiDax9VmHZEWfrfP/lQXNoh1U8k+Tsc59R3Zmh0qOeJdHZPNaheLxPXRWkm9lVN0SgTmLZkAXaTj6680rwYblu/vcGqRAsO11YVrwAQAA8alYMKNrf2YNr1+CNU+ZBU7su+zUzAZLCjeX4mvn9ohLn6gruNa91h/3oBvnt2Bxkp+XoAABEwAkJ6ejhdffBG1tbXIzc3FNddcgz/+8Y+BODV1IUnA5GZaTtK4MggNJcPatBYIZYZJE6YWM2yBpFQpEZ3i+GVUX2aAzWoXf1HFpIZDpQ7ItyQSB3aeYZI2rIz16xrRqeFiK4LyE7VeZYHKT9TCcuHrpt/oxA67SMenR2HOo+PFqaDi/ZU4sfmcX+Mk70gCJjeB++hrMzFosqMfk9Vkw/ev7JU1ZdNcZ5Ks4qwvNeCrp7ZLvjYp9KqLpIFwY0ULvnl2Z7vecRcjn34jrFy5stPXhw0bhlOnTiEhIUFyrEKhwK233urP+KgLaSXbo7SvIwl2hqlta4FQBkyRiWF+b4DrSWxaBOpKmmC3Cig9Wg2bxX7h+cD1HtKGaxDTJwL1pQbUnG2E3WqH0iUYc/ZfAnwv+HZSKBToOzIBJzeXwGaxoyK/Tqxr6kix63RcTudboSRnxWLW7y/Buud2AwDyfyrBsFn9/Rqr89rHNxQje2pfDJyQ4vd5eitnD6aIBL3b72eFQoGpd45EQ5kBlafrYag2Ys/qk5h21yi/rld8oKL13CoFBJsg1s9ccX8OBozn5yjUTAaLuJdmbN9ICHYB9aUGGKqN+ObPO3H10gmI69dxI9zezqeA6d133/XquPfee0/ymAFTz+SpF5M16AGTNMOkjwpewBQep4NCATjrT90VgQeK63RH4Z5y8eNA1S85JWZEo77U4Cj8Ptckmf5yFnyrtErEp/v/AzBtZCJObi4BAJQcrvIYMIkF3wrplF5H+o1KRFx6FGqLG1Fxsg6NFc1+Nfa0mm3Y9I+DMBksKNpTjtHXZmL8jYNl97zqLYwNZpiaHN/jnTUhVWtVuOoPl+DjR36CpcWKwl1lmHz7CL8yo8X7W4Pn2Q+Pw8Gvz6DsmKOh6fpX92HSr4dh5NyBPp+X/FdztjW7lDY8Hjm/yMLa/7cbtcWNaKkz4Ztnd2Le0glIHHhxduP3KWBavnx5sMZB3ZCnbt/B3EsOkK6K00VqJBmSQFOqlAiP18NQ7ShwjApC/ZKTayapyCVgiusX6IApBqe3lQIAKgvqxYCppcGExgt/RSZmxHS615wnkgaWHuqYDNUt4kbKSYNivF71OOjyPtiz2vG+09tLkfOzQT6Ps2hvhSToP/T1GdQUNWDG/WOgjwxeIN5TuHb4dm194U54nB79L0nG6a3nYW62ojSvGv1Gd54tbMtmsaHksCN41kdr0Xd0ItJGxCP3rSM4vfU8IAA73j+GpsoWXHrzUG4AHCLVha0bnccPjEZ4jA7zn5iIdS/sQdWZepiaLFizbBfmPjYeydlxXTjSruFTwJSTkxOkYVB35KmGSbKXXID7MAHSKblgthRwikwMEwOmyCC0FHBy/YXUUt+6MiiQU3KAm47fM9MBtGlY6eX+cR0Jj9GJGaDKAscPVGexdlvnDrm0E/DhF+ygy/pgz+qTAIDT2877FTDlu6l/OneoCl8+sQ1X/WFcp/vtXQxc95DzZpubgRNSHIENgMJd5T4HTKXHW2vZ0sckOTJ9ShVmLB6NqKQwHPjC0brgyNpCNFW1YMZ9Y6DWcnutYHOtX0oY4PgDSx+lxdVLJ+C7F/ei/GQtzM1WrH1uN2b/cRz6DOs8o+yNo98VYt+npzBgfAom3TLUrxW7oRK8P9mpx/NlSk4T4K1RAGnRdzDrl5xcV8oFY4WcU9sVSAAAhee/7H2VMDBaXAruuvJFWvAtP7Uudv0WINlQty1f6pdcRSWHI3lwLACgtrgJNWcbO39DG4Yao5jNiEwKw9X/O1EMwBsrWvDVU9txZkepT+fsbXzJMAGOgn2V1vHro3BPuU+NSwGgeH9r/VL62NavBYVCgfELB2PqnSPFrFLh7nKsWbYLLQ3sCRRsNRcCJoVSIcl4OxvLOqfcLUYb1r2wB+cOVbo9j7csRit2rzoJU5MFJzedw2ePb/Frq6VQkRUwrV27FnfccQeqqtz3YKmqqsIdd9yB9evXy7kMdRFdROdF32LApID4wzOQXIOktivmgkGs8VG0/nUVDLoITbuC9ujk8ID/Ba0NU4vBWc3ZBtguLMuvdOnwLTfDBLTZJqWDaTm71Y6SC1uo6CI1kuyXN7IuTxM/Pr3tvE/vPbWlRKxNy57aF2kjEnDdssvFXlVWkw0/vnYAu1ed8PkXf2/haYVcWxq9Gv3GOAIdY4MZFSdrvb6WIAhi/ZJCpUC/0e1r2YbMTMecP7Y2zKw4VYevn97htr2JL6rO1OPI2kK0sCFjOzaro9YRcCxMafvzSKNXY/Yfx4l/7NjMdnz/8l5ZqxoLd5VL/vBuqjJizV92YccHx7pl7zVZv+XWrVsHjUaDxET3xZuJiYnQ6XT49ttv5VyGuojWUw3ThS90tVYVlBVlsf0ixQaGfUbEB/z8bQ27sj/GLczGzPtz3GeBAiimzfRboLNLTs4O3nargNriRgh2QVwhFxajFdsCyJE6LF7cd7Cjvw4rTtXBcqFjd99RiT4XW2dcmipmHE5vK/W6O7QgCGJROgAMntYXgCODeM1Tk5A9ta/42sGvzuD7Fy/OBorOgEmpVng9He260rBwd3knR7a/lrPfUuqQuA6nYPqNScI1T01CeLzjZ0BDWTOO/XDW6+u01VJvwrfLdmLHB8fwyR9/Qn5uCbuMu6graYL9Qm+2+A7+YFRrVbjyD5eIn3u7VRCnT/2R/1Pr96brtPiRtYX44n+3uW2J0pVkBUyFhYXIzs7u9JisrCwUFhbKuQx1EZ2HKTlnDUIwVsgBjm/O65+fggXPXoZhV/q/nNxbGr0aY6/LwqDL+gT9WrFtArJAF3w7STp+n6lHfakB5mZH4JKUFRuQQFejV4uZqvpSA5qqWtodU+yyHUr6GN/qXQDHiklnJqupqgUV+XVeva8iv04MBvoMj5essFNrVZh2zyhM+s0wMRhz1jXVFPs27deT2e2CGMBEp0R4Hcz2H5sMpco5bVbmdfBx1mV1XPrY5E6PTRgQjauXThSnlvO+P+t3A9NjP5wVf2aZmizYvOIQvnthj7gA4mLn2og0YUDHNX0qtRJXPJCDiHjHH1vF+yvQVO37PWysbBH/wIpODcd1/28yLr1lKFQaR1hSV9KEL5/cjv1fnILd1j2a1soKmAwGA6KiOi+WjIiIQFOT+72sqHvz1OnbuTVKMFbIOemjtUgO0C/27qRtRinQLQWcEjNcCr8LGiT9l5L9bFjpjqdpOdftUPqO8dxOwJ1BrtNyW72blnPNLmVP69vudYVCgZFzB2Le0gnQRzm+3hsrWrD2/+26aPawM1S1iL3AfMms6iI04irJpiojqgu86/ztWr/Uf6zn4Dk2LRL9LwRWhhqjpBWHt6xmG/LWt89OnTtUhU8f/QlH1hVetNOxTu4KvjuiVCsxZGY/AI5WLCc2+t5U9tQW6femUqnAqKszcN1fLhfLIwSbgL0f5eObZ3ZK6uy6iqyAKSEhQbLprjunTp1CXNzFt/ywN9Do1XDGKZ01rgzGCrnerm2GKdAr5JxcC78rz9SjwqV+yd+Gle6kSbZJkdY0NteZxL9eEy4sVfbHgPHJ4l+fZ3aWefyr02qyicXcGr0KGRNTOx7/8ARc95fJra0X6s04sbHYr3ECjozsV09vx0e/34z8n7r31E9nW6J4MnBC6z0t8GJaztxsQdkJR71TdEq419cbMXeA+PGRdYU+jRFw1L0ZGxxTrZmT+uCqhy8Rp/qsJht2vH8M3zy9A7XnLp7MYlvVRa3/d29qOIfMTBczsyc2FvuUBRIEAfm5FwImBZA9pfWPmbh+UVjw7GXIuW6Q+Pun4lQdPl+yFWV7G7v0e0lWwDR+/Hjs3r0bu3fvdvv6rl27sGvXLkycOFHOZaiLKJQKsb6gbQ2TYBdgMzu+QYI1Jdebta1hClaGSaNXi8FYbXEjyo7XOF5QtNY3BULyoBixQLfkSLXkh5rrSpp+fkzHOWnDNeh/iSPTYGwwe+z7VLinXKybyrg01eP2PZGJYZixeLT4+PCaArFQ3leHvj6DipN1aChvxuY3DuHbP+9E9Vn5e68Fg2SFXB/fmoIOGJcsBuSFuzxPy507VCXuYZg+NsnrzHHaiATEpTu+jitO1qHyjPe1LYIg4MiaQvHxyKsHYsC4FNzw4lQMnZUuPu/8pbzv03y/P+89lSAI4gq5iHi9V21cIuL1YoawudaEs/u8XzFXfuF7A3D8sdJ2VbJKrcT4hYNxzVOTEJ3i+Jq0mmw4s7YGed8XeX2dQJMVMN18883Q6/V49NFH8fzzz+OHH37AgQMH8MMPP+C5557DY489hvDwcNx8882BGi+FmLPwu20Nk+sKhmC0FOjtIpPCxGxJRIIe2rDg3UOx8NsmoLbYuQomMqD9TpRqJVKHOQrzjQ1m8TqAS3dvAOl+Tsc5SabltnXeCuCkS++l7Gn9vDp/XL8o9B/nCMqaa0w4vcW3FXmA4//f9od62fFafLF0G7a/nyd7pVeg+dqDyVVYjA6pQxwzCPWlBnEj6Y4U+1C/5EqhUGDEnIHi46M+ZJlKDleJq79SBseJ9XbacA2m/HYk5v9pIqJTHb+U7TYB+z49hS+WbvW5fUVP1lTVItY2xndSv9TWUJfa0uM/el+Qn5/r8r05vf1UuVPK4Dj8/LnJYmCrj1Nj8HTvvpeDQVbAlJaWhhdeeAHx8fFYu3Ytli1bhoceegjLli3DunXrkJCQgJdeeglpaWmeT0bdkrOOyWywQHCZ45fsI8cpOZ8plQqMWZAJTZgaYxZkBvVaCRnt0+vJAZyOc+rrZlpOsAtiDyRtuBrJ2bGyrpGekwhtuCO4LNxd1uHS46aq1oLSqOQwpA71vixgzLWtn4+D35yRfN174/CaAskGw86/kAW7gKPrivDxw7nI39J9pul87cHUluu0XGer5ex2QezFpdGr0MeHzwkAZE1JE5uintleiuZao1fva5tdaqvPsAT84vkpGLMgU5xiqj3XhHUv7obF6H8dm9Vsw77P8rH/i1OyNikOBdcO3760VOk3KlFcVXnuUBUaK5o9vsdqtuHMjjIAjq+DgR72DNTo1Zjy25GY8+h4ZP8sMSgbvXtLdvOc0aNHY9WqVXj66aexcOFCzJ8/HzfeeCOeeeYZ/Pe//8WIESMCMU7qIs7mlYIAyQ+PYG+LcjG45Pps/ObtKzH8qgGeD5bB3dRbUgALvp0k26RcCFaazrfuUdZ3ZKKsbVgAQKVRYeCFWiSL0Yaz+yrcHpf/UwlwIR4ZPK2fT4sGUgbHiQFW/XkDiva6v4Y7LQ0mHP3OkV1Sqh2b1f7ihSkYtzBb7FXWUm/G5te7zzSds4ZJG672a79Gb9sLVJ2uE+uI0kYlQqXx7eeGWqvC0CscmQa7TcCxDZ5rzGrPNYod5qOSwjrc0FetVWHCTUPws2WXIe7C3orNNSYc/OqMT2N0tfM/x7Hvk1PY+1E+Vv9uE7atzHO7grQ7kBR8D/Q+YFIoFeLnBAJw/EfPn5MiH6fKndJzkhDVL/j9+DoTkG6DGo0GM2fOxOLFi/HHP/4R9957L2bMmAGNpvu2OCfvdNS8Mtgb714sQrFHVsKAaLSNFwJZ8O0U1y9SbMhZmlcDu9WO2tOtvyD6yZyOcxp0eWvbh9Pb20/LtSsodbM6zhNJlunr015ngw5/WyB+bwydmY6IhDCotSqMvS4LN7w0DQNcggvXabquatJnNdvQVOXI1MSkRfi1GjUyMUxsRFpd2NBhlsG1nYA3q+PcGX5Vf/F75tgPZz3etyNrC8WPR8wd6LFlQuLAGFz50FixXcLhbwvEWhtfVJyqk/SMslnsyPu+CB/9fjNy3zrcLVZ8uaop8q6lgDuDp/cT+7Cd2HTOY/2XdOVq102v+YNbo1CnXOtcXAu/XbNNDJi6N7VOhViXPk8qrRLx6YHfO02hUIir5awmGypO1aFOEjD5X/Dtqs/wBLGhafH+inb1deUnajstKPVGv5wkMdNQeaq+tVi+Ey31JuR97/glqdIoMabNnndRSWG46veXYM5j49tN0/301mGfx+hKsAs4f7Qa5kbfppAaylqDAV/rl1xlTPScZZJsh5Ljff2Sq4iEMHG1o7HBjDNuAmanlnoTTl2oQdOEqTF4hne/nGP6RGDEvIEAHIHOzg+P+zRGu82Orf93VMxwpo1IEH9G2m0CTm46h08ezsXGfxzoNv2+nCvkNGEqRCX5VvgfHqsTp9WMDWbJhuJtGWqMOH+kNePnrH/rKQIyGVhRUYH9+/ejqqoKFkv7gkaFQoFbb73Vp3M2Nzdj1apVyMvLw7Fjx9DY2IglS5Zg3rx5Xr2/sbERK1asQG5uLkwmE4YNG4bFixdjyJAh7Y7dsmUL3n33XRQVFSE2NhZXX301fvOb30CtZjGzLrL1Hrj+YpJmmHifurvEjBixEDsxI0b21FhH+o5MEHsknd5eiqbzjimYuPQosdGdXEqlAoMu64Mjawthtwoo3F2GITNaVzudzG39C3ZwJwWlnVEoFBhzbQY2vX4IAHDwqwKPG40ecskuDbkivcP/b/qYJKS9OAWHvy3E/i9OwWa24/S2UmRP7et3UPnT24dxcnMJ9HFqjLrE5vV0V31pa5G2nO72AyekYvcqxwbJhbvLMWp+huR1Q3WL+Es5MTMG4bH+T62MmDtAbBdxdF0hsqf1dZsZO/bDWbG/1NAr0n1aWDH2ukE49VMJWurNKNpdjpIjVZIavc7kfX9WbKMRPyAKcx8fD7PBiiPrCpH3fRHMzVYIgmPRwultpRgwLhk5P88K6KpVXxibzOJUYXz/aL+y3kNnpaNgp6Mu6fiGYmROct/8V7JN0bS+IcmwB5Lsn5qvv/46brrpJjz33HN4++23sXLlSrz77rtYuXKl+PG7777r83nr6+uxcuVKFBUVISsry6f32u12PPbYY/jhhx/wi1/8Avfccw9qa2vx4IMPorhYOse6Y8cO/O///i8iIyPx4IMPYurUqXj//fexfPlyn8fcG3XU7Vu68S4zTN2dawPLQOwf1xHXOibXeob0nMBMxzllunRjP721NctgMVpR4Oy9FKaSFCT7cw1ndurcwUpJnUdbLfUmHFvvkl3yUMiv0qiQc90gTL6ttcZz6/8dlXxfeatwd5k4zWGstaL8ZJ3X760vdckwyQiYYvpEiN3qy/Nr2xVkFx+QPx3nlJwdKwYX1UWNKDvefh8710aVCqUCw2f7VieoDddgwk2tf1zveP+YV32GDDVG7P3YEThCAUy5fQSUKiX00VqMXzgYN702A+NvHCw2SQWAor0V+PJP25Dv0sjRH+YWK87sKBXrxLxV42P/JXfShieIKw3PH62W9PZyEgRB8seM67ZEPYWsgOnrr7/G6tWrMXbsWDz77LMQBAFz587Fk08+iQULFkClUmHGjBn429/+5vO5ExIS8Pnnn+Pjjz/Gvffe69N7N23ahCNHjmDJkiW47bbb8Itf/AKvvfYalEplu+Dt9ddfx6BBg/DKK6/g2muvxYMPPoibb74ZX331FYqKuq7fQ3ehjehgSo6r5HqUgRNSoA1XQ6lWIGty8FatRiaEib94nf12AKDf6MBMxzklDYoRp7XO51WLv6ALd5WLK9QyJ/WRNV2sVCklmZJDX3dcAHzoG5fapSvSERHnXTYte1pfsR1DY2UL9n9+yqcxtjSYsOWdo5LnnKsSvSGnaWVbYvG3gHbduH3ZDsUThUIhaWTprsWAa6PKjImpiPJyfzxX2VP7ImmQIzCrPdfk1T5229/PE7/+hl6RjuRs6ZSTNlyDnJ8Nwo3LZ2DSr4ciPO5Cpk0Atrx9RLI9iS9MBgu+/NM2/PjaAax/dZ9P762WUb/kJCn+hvvi78rT9WILi9ShcZJtinoK2QFTamoqXnrpJUybNg0AkJqailmzZuEPf/gDXnnlFfz000+oq6vz+dxarRYJCZ2nwDuyefNmxMfHi2MCgNjYWMycORNbtmyB2ez4RiosLERhYSGuvfZayfTbz3/+cwiCgE2bNvl1/d5EkmFqdl/0zQxT9xcRr8dNf5+JX71+hU+rYPzhuk0K4Fg6nBLgWgWFQtFa/C1AXKZ80qW/SyD6tQyZ0U/MBpzZXuq2oLm53oS89Y4/rrzJLrlSKBQXshCOqYlD3xb4VNeybWVeu4xCiYeGnq4kAZOMGiag4/YCVrNNXDUZFqtDYgC+/jIm9RGn9Yr2lKOxsvXz4q5RpT8USgUuu3W4+Hjvx/mdZm/O7q9A4S7H/1sfrcWEG9uXfzhp9GqMnJeBG/82XZw2tlns+OHVfeKqUm/ZbXb8+Np+MRgpP1HrU8dySYZJxudm8LR+UKodX8cnN59rV5Cf7zpV3sOKvZ1kBUxFRUW49NJLoVS2nsZma71JOTk5uOyyy7Bq1So5l/HZyZMnkZ2dLRkXAAwbNgxGo1Gcljt50pE6bVvXlJiYiKSkpA63famqqsKJEyfEf705E9VRhsm5jxzAou+eQhumhj7S92XjvkprEzCljUiASh34mqlMSRPL82isbEZpnqM4O6ZPhOyeT4Dja9vZMFEQHKum2jr09Rmx6/3QWekI9zK75BTbN1IsEBdsAra8c8Sr3k9ndpSi4EKgqIvUiBm3qoJ6GBu9m5ZxrtaKSNDL/j6OHxAlZnJK82pgbDKLHzv/wErPSQpI3YpKrRQ35BYEiMX2gLRRZfLgWFlT0MlZseLUkbnZij3O6bY2rCYbtq3MEx9festQsWdUZ1QaFSbfPkKcYmysbMGmNw761Ptr+/vHUHJYGiQ764m84cwwKVQKWTsO6KO1YkG+qcnSLmh2FuirdSoMvNT/qfKuJLtaNzKy9Qbr9XrU10tb1qenp2PPnj1yL+OTmpoajBkzpt3zzoxVdXU1Bg0ahOrqasnzbY91vt7WV199hZUrV7Z7vqCgQBIweqOpqQl5eXmeD+wijeWtDdfKisuRl+cIlM4Xt36eSyvOw5RXF+qh+aW73+/ewKq0ObbLuPAzX5VsDdo9j0jVwlBmRuXpevz4duvPmZihGhw7diwg11AOsEGpUcBuEXB8YzHCR9qhjXAEF+YmG/K+d/zlrFQrEDbEv/+rbrAAfbwaxhorKk7WYdOHu5ByScfTI+YmGw683dqFfMBVMWgqNaOhHIAA7PruIBKHd54xsjTbxGyGOgoB+RxFDdKgsbIFgl3Ajq8PIHlMJM782LrCUJFoCtjXgiLdBoUKEGxA3oYihI+wQqVVIu+j1l/UcaPUsq8Xcwmg3KmA3Szg+I/F0GVaEZHi+MPD+fOk6MdaNFU6CqdjBuphjqtDXp7327f0nx+J2n81wtpiR/H+Snz/9nakT431+L7SPY0oWO+4vwolIFwoszqWWwT9MM+ZKrtVELNRYQlqnDx1wusxuxOWZQe2OT7e99VxmOPqAABVeQaxBjYuW49TBe4DT0+C9fN7+PDhng+CzIApKSkJlZUuu5D37dvuh1RBQQHCwnyfP5bDZDJBq23/l7TzOZPJEQQ4p+Y6Ora52X3/jQULFmDy5Mni46KiIixbtgwZGRluV+F1Ji8vz+tPVleojzfgMBx/rUToosSxGg6dwFnUAQAyszOQNty/6dNQ6+73u7coyGxE5WnHL4wJc0f5vFTZW9aZeuz6r+OHfOWRC9NLCmDyL3IQkRC4nzstV6rFVXnWAh1yFg4GAOz44BjsVkdkOPyqAci5dJjf14i/NxVr/rILAFC8qQGXXpvjdqNiQRDww6v7YW1x/HbMmJiKqTfkoORwFc7vcASNilq9x6/z8pO1ABxTmGnZyQH5vkhQ1+L8jh0AAPN5FYbdNAyHVmwGAChVClw6Lyeg2wDVT3b03LIZ7VBVRqHPsHhsO+PI+EclhWHyz8d77L3kDUV5hGMVoACU/2TE/D+NgUKhQF5eHvpEp2P7TkeGS6lW4Kr7J/i1mXZSZBrWPb8bEIDi3HoMn5SN9E5WTZ47VIntLpm1qXeNwokfz6H8ZC1aKi3oE52OuH6d1yRVFdZDsDvOkTY4SfbXgDBMwLkNP6GuxICGYpM4hu++bf1jZvyC4eg73L9FIF3981tWnnzkyJE4erS14HDKlCnIz8/HSy+9hO3bt+PNN9/Ezp073WZ7gkmn04nBkCvnczqd44eQM1Dq6FjncW0lJiZiyJAh4r8BA4LbqbkrdbRKzsLGldSJ8QsHIyYtAv0mRwctWAKAzMvbL1/uOzIxoMESAIy6eqBYZ5T3fRHMLVY01xrFQmCVVonR13pfu+RO2ogEZE1xTDOam63Y+YH7DNnprefFXjf6aC0uv304FAoFUofGQ3HhW7HkcLXHZpty9pDrSHJWrFhbVHKoCpWn68Ul632Gxwd8z8SRcweKHx/9rgiHXWqXvGlU6fV15g0UpzzLjteKU16CIGDr/x0VFziMWTDIr2AJcGwzMv6XjkAcArDpHwc7bAJaW9KEDcsPiFN3o6/NxOBp/ZDhMtXlrOvrTI2fW6J0RKFQYOgVLvvLbShGc51J3E8yIkHfY/64dkdWwDRnzhz07dsXZWWOT8xNN92ErKwsfPPNN1iyZAk+/PBDpKSk+LzKTa74+Hi302ltp+Bcp+jcHetv0XlvIq1hYqdv8k7fUYn45cvT0H9mcBvTRSa03yfO395LnYlICMOgya3BzIkfi3Hw6zNin59hV/aX1VvIybX25fS2Upw7JN0B3lBrlNTKTL59BMKiHddVa1WITnfUTzVVtUiaUrojdw85dxRKhdjN3GaxY7vLWP1tVtmZhIHRkm1sTm5yZMx8aVTpDZVGhUtvGSo+3vmf447mrAcNYluD6JRw2ftCjlmQKW7+bDJY8MPf9rcrnjY2mvH9S3vE7UUGjE/BhBsdgZZrwFSws/PNqQH/t0TpTPbUvuLG4vk/leDEj8ViYJc9tef1XnIlK2AaO3YsXnrpJaSmOj5J4eHhWLFiBZ555hnceeedePLJJ7Fy5Urx9VDJzs5Gfn4+7HZp34xjx45Br9cjPT1dPA4ATpyQzttWVVWhsrJSfP1iplQqoLnwV6GkDxP3kqNuYpBLmwRtuLrD/cLkcs0gHfq2AMcv7GUWiOySU1i0DhN/1Tqtv+3d1m1TBEHAln8dEXeVH3R5H7HI1ikms7Xg3LkBckcCuULOlevecpVnWut4+l8S2NYSTiNcskxOvjaq9Eb/S5LRb7RjKslQbcSuVSdQtKG1B9Tltw2HWivvZ6FCqcD0e0aL2azqwgZJgGyzOlbSNVZcaDQ5IAozFo8Wg5CIeL24IrWuxOBxtZxrwBTfPzDd/3WRGrFPmrnZKmmV0RN7L7kK2NKV+vp67N27F9u2bUNUVBSuueYazJo1K+j1S1VVVSgqKoLV2pr9mD59OmpqapCbmys+V1dXh40bN+Lyyy8Xp+IyMjLQv39/fP3115Ji7S+++AIKhQLTp08P6th7Cl1E+4DJ4rpKjn2YqAtlTEwVl/4PnZUu+5dWR+L6RmLAhb/+W+pMYnZp+FUD3NYa+Wvw9H5i1qShvBkHvjgNAMjfXILiC/2MwmJ1kiXvTrEZLgHT4c7bCzgDJqVaIe44Hwh9hsa3WyEW0ycC0SmBC8pcDRifItn+xp9Gld5QKBSY9Oth4r5ped8ViXVkmZf1CVivMV2EBlf+/hJxs+aTm87h+MZicfrPmdEKi9Fi9iPj2m1emznJu2k5wS6IAVNEgt6vjZc7MmxWa08m+4XpyuTsWNm9vrqa7BC8tLQUr732Gnbs2CGZM1coFLjsssvwwAMPoE8f923SPfn000/R1NQkTplt3boVFRWO/Yiuv/56REZG4q233sK6deuwevVq8TozZszAJ598gueeew6FhYWIiYnBF198Abvdjttvv11yjcWLF2PJkiV4+OGHMWvWLJw5cwaff/45rrnmGgwcONCvcfc22ggNUGWE2WCBIAhQKBRt+jBxaxTqOvooLa55chJqzzVigIzO3t4YsyATRXtb90RT61QYfU1GJ+/wnUKhwOTbR+DzJVthtwk49PUZpA6Jw3aXmqYpvx3h9hdcRKoW+igNjI0WnD9aDbvN7nYbHLtdEPfbi06JCFitDwAo1Ur0vyRZ0nen/yWBn44Tr6dUYPjs/tj1oWOmwN9Gld6I7RuJEbMHSDb11YarMenX/hf7uxPfPwpT7xgpbs2z7d2jqDpdL045qjRKXPXwOES6qdUbODEV298/dqE/WSkuuT7L7dYxjZUtsLQ4fo4Hon7JVVJWLOL7R6HmbGuGa7Afm2B3N7J+05WUlOC+++5DbW0t+vXrh1GjRiEuLg61tbU4cuQItm7diry8PLz++utIS/O9u/Dq1avF+igAyM3NFbNGs2fPlrQ0cKVSqfDiiy/i9ddfx6effgqTyYShQ4diyZIl6N+/v+TYyy+/HMuWLcPKlSuxfPlyxMTE4JZbbsGiRYt8Hm9v5Sz8ttsEWE02aPTq1oBJAfEvIaKuEts3UlYPGW8lZ8chdWic+Ff+sKv6IyyA2SWnuH5RGH1tJg58cRp2m4B1L+4R2zRkT+uLAePcTzs6N0A+s70UlhYrKk/XI2Vw+zoyQ1WLmCELxl/9AyekSAKm9JzgTMc5DbuyP0rzatBcZ8KEmwYH9Vpjf5GFU1tbO4mPv3FwQOrX2sqa0hcVp+qR930R7FZB0j172t2jOuwvFRGnR+oQx9do/XkDaoub3E63BaN+yUmhUGDorHRse9cxnajSKJHRwf5yPYmsgGnFihWoq6vDww8/jGuvvVYSxQqCgK+++gqvvvoqVqxYgWeffdbn83/00Ucej1m6dCmWLl3a7vmoqCg89thjeOyxxzyeY+rUqZg6darP47tYtG1e6RowqbUqt3+9EPVWl94yDGv+sguRiXqMCVDtkjs51w3Cme2ljkzQhWApPF7nMZvRd1SC2CSw5HCV24ApkFuiuB9DIjR6FSxGGzRh6qDvSq/RqzHn0fFBvYaTLkKDaXePQu6bhxHZT42hs/p7fpOfLr1lKKoK6lGRXyc+N/YXWRh0eecJiIxL+4hBfcHOUrcBU00AtkTpTNbkNOz/7BRa6s3ImpImWXHdU8lKDezduxeTJ0/GggUL2v3SVCgU+NnPfobLLrss5I0rKbDcbY/ibCvAFXJ0sUnKjMGt71yFXzw/JaB1H22ptY4u0K6m3jnK4y+evqNae9x0VMckWSHXJ/BtH9RaFS69ZRiiU8Jx6S1DoQxCp/eu1H9sMm5ZMQuDf5EU0OnMtlRqJWY9OFbccy7zsj645BeeN6PPmJjiaB4LRx2TuxYT1QHYdLcz2nANrnlyEmYsHo3LF/WO3neyMkx2u91jnU9mZib2798v5zLUxbThrV8mzu1RrEZH4MQVcnSxCkVmte+oRIy+NgOHvilAzs8GddrI0Mm5AXJ9qQEVp+pgbrZAGy4NsoLRg6mtoVekSzZkJf9ExOvx8+cmo67EgNQhcV4tyw93nZYrNaCmuBEJ/aVBkXNKThOmDmjRv6uYPhE9vtDblayAafDgwSgsLOz0mIKCAp+7X1P34q55pZhh4go5oqCa+D9DMfF/hno+0EXfUYmoLzVAsAsoPVbTruYpGD2YKHjConVivy1vZU5ymZbbUSYJmIyNZhiqjQAc03Esq/COrDzpnXfeiZ07d+Kbb75x+/pXX32FXbt24Y477pBzGepibQMmwS6Im41ySo6o++k7qrXprrtpOWcNkzZcHdRpReo6AyemitNyBTul03Kuq9eCMR3XW/mUYXK34ezYsWPx8ssvY9WqVRg1ahTi4+NRU1ODw4cP49y5c5gwYQL27duHUaNGBWrMFGJti75dO8+ypQBR99NnWDwUSgUEu4CSw9IGllazDU1VjuxCTFoEswu9VHisDqlD41F2rMYxLXe2UQyOqgtdC74ZMHnLp9927777boevFRcXo7i4uN3zu3btwu7du3Hrrbf6PjrqFqQZJqt0HzlOyRF1O9pwDZKzY1F+wlHD0lTdIvbscd0yJVj1S9Q9ZE5KRdmxGgCO4m8xYHLt8D0w8CvkeiufAqbly5cHaxzUjTk7fQMXMkzcFoWo2+s7KgHlJxw1LCWHqzBkhqMAu760STymNxXkUnsDJ6Ri+8o8CAJQsKMU4xdmQ6FQiAGTQqVAXAj6l/UWPgVMOTk5QRoGdWeuK2xMBgs33iXqAfqOTMS+Txz7eJUcrnYJmFwyTAyYerXwWB1Sh8WjNK8GDeXNqClqRExaBOpKHDVscf0iodLwZ7i3eldzDAoKbWTbgMllHzkGTETdUtKgGLElyPkjVeKO8cFuWkndS8alrnvLlaLuXJP4tcD6Jd8wYCKPdJKibyssRtcME4u+ibojpUqJPsMdq+WMjRZxGkYSMLGGqdcbODEVCpfVclVB7vDdmzFgIo9UaqWYSTI3W9psvMsME1F3JW0v4Fgt5+zBFJGgZ4b4IhAeoxMD54byZuRvbt3jL54ZJp8wYCKvaC8UfpsMFq6SI+oh+o6UbpNibDDD1ORoPsvs0sXDdVqu/GSt+HHb7t/UOQZM5BXdhcLvtkXfzDARdV/RqeGITHS0Eyg/WYvqs63TMezwffEYOCEFbdttRSaGQRfZ8zfEDSUGTOQVZ/NKm9kOU5NZfJ4pfaLuS6FQiJvx2ix2nNx0TnyNGaaLR5jLtJwT65d8x4CJvOJa+G2oNYkfM2Ai6t5c65gKdpaJHzPDdHHJmJQqecz6Jd8xYCKvSAKmGqP4sUbPVXJE3VnaiARxTzG7rXU/MWaYLi5tp+XYUsB3DJjIK1qXbt/N1a0BEzNMRN2bPkqLxIwYyXNKtQKRSWFdNCLqCmHROvQZ0ZptTMxgwOQrBkzkFddu364ZJgZMRN1f35HS+pXolAgoldx092Iz6dfDkDYiARNuGiwuBiDvcT6FvOI6Jddc31rDxFVyRN1f31GJOPjVGfExO3xfnOLTo3D1/07s6mH0WMwwkVdcAya0lkGwDxNRD5AyOFaSDWbAROQ7BkzkFdcaJlcabo1C1O2pNCqkDo0TH8f0Ce/C0RD1TAyYyCuSDJOTAlBp+SVE1BOI3Z4VQEp2XOcHE1E7TA+QV7RuAia1VgVF2/axRNQtDZ7WDyqNCuGxOsT2jezq4RD1OAyYyCvuMkxcIUfUcyiUCmRNTuvqYRD1WJxPIa+4C5i4Qo6IiC4WDJjIKyqtEkq1dPqNK+SIiOhiwYCJvKJQKNplmTglR0REFwsGTOS1toXfbClAREQXCwZM5DVdeJsME6fkiIjoIsGAibzWPsPEgImIiC4ODJjIa7o23b5Zw0RERBcLBkzkNRZ9ExHRxYoBE3mt7ZScmkXfRER0kWDARF5jDRMREV2sGDCR19rVMHGVHBERXSQYMJHX2tYwMcNEREQXCwZM5LX2NUwMmIiI6OLAgIm8xlVyRER0sWLARF7Ttun0rdFzlRwREV0cGDCR19i4koiILlYMmMhrmjA1FEqF+JgBExERXSwYMJHXFAoFtOGtWSaukiMioosFAybyiWvhN/swERHRxYIBE/nEtbWAhlujEBHRRYIBE/mk76hEAEBSVgxUWn75EBHRxYEpAvLJ+F9mY+D4ZMSlR0GhUHh+AxERUS/AgIl8olAqkDQotquHQUREFFKcUyEiIiLygAETERERkQcMmIiIiIg8YMBERERE5AEDJiIiIiIPGDARERERecCAiYiIiMgDBkxEREREHjBgIiIiIvKAARMRERGRBwyYiIiIiDxgwERERETkAQMmIiIiIg/UXT2A3sBkMgEAioqKfH7v2bNnoVKpAj0k6gDvd2jxfocW73do8X6HVjDv94ABA6DX6zs9hgFTAJSVlQEAli1b1sUjISIiIl+9/fbbGDJkSKfHKARBEEI0nl6rrq4Ou3btQp8+faDVar1+X1FREZYtW4YnnngCAwYMCOIICeD9DjXe79Di/Q4t3u/QCvb9ZoYpRGJjYzF79my/3z9gwACPkS0FDu93aPF+hxbvd2jxfodWV95vFn0TERERecCAiYiIiMgDBkxdKCEhAYsWLUJCQkJXD+WiwPsdWrzfocX7HVq836HVHe43i76JiIiIPGCGiYiIiMgDBkxEREREHjBgIiIiIvKAARMRERGRB2xcGWJmsxnvvPMOvv/+ezQ2NmLQoEG44447MGHChK4eWo/X3NyMVatWIS8vD8eOHUNjYyOWLFmCefPmtTu2sLAQ//jHP3D48GGo1WpcdtlluP/++xEbGxv6gfdAx44dw7p167B//36UlZUhOjoaI0aMwB133IH09HTJsbzX8hUUFODdd9/FiRMnUFNTA71ejwEDBuB//ud/MHnyZMmxvN/B8f777+Nf//oXMjIy8N5770leO3z4MFasWIGTJ08iIiICM2fOxJ133onw8PAuGm3Psn//fjz44INuX3vjjTcwYsQI8XFX3msGTCH23HPPYdOmTfjlL3+Jfv36Ye3atXj00UexfPlyjB49uquH16PV19dj5cqVSElJQVZWFvbv3+/2uIqKCjzwwAOIjIzEnXfeiZaWFqxatQpnzpzBm2++CY1GE+KR9zwffvghDh8+jJkzZ2LQoEGorq7G559/jjvuuANvvPEGMjMzAfBeB0pZWRmam5sxd+5cJCYmwmg0YvPmzViyZAkeeeQRLFiwAADvd7BUVFTg3//+N8LCwtq9lp+fj9///vcYMGAA7r//flRUVGD16tU4d+4cXnrppS4Ybc91/fXXY9iwYZLn+vbtK37c5fdaoJA5evSoMHXqVOHDDz8UnzMajcJNN90k3HPPPV04st7BZDIJVVVVgiAIwrFjx4SpU6cKa9asaXfcK6+8Ilx55ZVCWVmZ+Nzu3buFqVOnCl9++WXIxtuTHTp0SDCbzZLnzp49K8yaNUt49tlnxed4r4PHarUKt912m3DzzTeLz/F+B8dTTz0lPPjgg8IDDzwg/OY3v5G89sgjjwjXXXed0NTUJD739ddfC1OnThV27twZ6qH2SPv27ROmTp0qbNy4sdPjuvpes4YphDZv3gyVSiX+NQgAOp0O8+fPx9GjR1FeXt6Fo+v5tFqtV03NNm/ejMsvvxwpKSnic+PHj0d6ejo2btwYzCH2GqNGjWqXrUhPT8fAgQNRVFQkPsd7HTwqlQrJycloamoSn+P9DrwDBw5g8+bNeOCBB9q9ZjAYsGfPHsyePRsRERHi83PmzEFYWBjvuR+am5thtVrbPd8d7jWn5EIoPz8f/fr1k3yyAYgpyFOnTkl+0FHgVVZWora21u3mjcOGDcOOHTu6YFS9gyAIqK2txcCBAwHwXgdDS0sLTCYTDAYDtm7dip07d2LmzJkAeL+DwWazYfny5Zg/fz4GDRrU7vUzZ87AZrO1u+cajQbZ2dnIz88P1VB7heeeew4tLS1QqVQYPXo07r33XgwdOhRA97jXDJhCqLq62m0GxPlcVVVVqId00amurgaADj8PDQ0NMJvN0Gq1oR5aj7d+/XpUVlbi9ttvB8B7HQz//Oc/8dVXXwEAlEolpk2bht///vcAeL+D4csvv0R5eTleffVVt697uucHDx4M6vh6C7VajenTp2PSpEmIiYlBYWEhVq9ejfvvvx+vv/46Bg8e3C3uNQOmEDKZTG6LLp0/wEwmU6iHdNFx3mNPnwf+UvFNUVERXn31VYwYMQJz584FwHsdDL/85S8xY8YMVFVVYePGjbDZbLBYLAB4vwOtvr4e//d//4ff/OY3Ha4w9HTPzWZzMIfYa4waNQqjRo0SH0+ZMgUzZszAbbfdhrfeegsvv/xyt7jXrGEKIZ1OJ/5wc+X8ROt0ulAP6aLjvMf8PAROdXU1HnvsMURERODPf/4zVCoVAN7rYBgwYADGjx+PuXPn4oUXXkBLSwsef/xxCILA+x1g//rXvxAVFYXrr7++w2M83XMGp/7r168fpkyZgv3798Nms3WLe82AKYQSEhLEtKIr53OJiYmhHtJFx5nO7ejzEB0dzR9yPmhqasKjjz6KpqYmvPzyy5KvYd7r4JsxYwaOHz+O4uJi3u8AKi4uxtdff40bbrgBVVVVKC0tRWlpKcxmM6xWK0pLS9HQ0ODxnvNnujzJycmwWCwwGo3d4l4zYAqhrKwsnDt3DgaDQfJ8Xl6e+DoFV1JSEmJjY3HixIl2rx07doyfAx+YTCY8/vjjKC4uxvPPPy8WezvxXgefc5qiqamJ9zuAqqqqYLfbsXz5ctx4443iv7y8PBQXF+PGG2/EypUrkZGRAZVK1e6eWywW5Ofn857LdP78eWi1WoSFhXWLe82AKYRmzJgBm80mFm0CjlTimjVrMHz4cK6QC5Hp06dj27ZtkjYOe/fuRXFxsbjiiDpns9nw9NNP4+jRo3jmmWcwcuRIt8fxXgdGbW1tu+esViu+++476HQ6MVjl/Q6MjIwM/OUvf2n3LyMjAykpKfjLX/6C+fPnIzIyEuPHj8f333+P5uZm8f3fffcdWlpaeM+9VFdX1+65U6dOYevWrZgwYQKUSmW3uNcKQRCEoF+FRE899RRyc3OxcOFC9O3bF+vWrcOxY8fw6quvIicnp6uH1+N9+umnaGpqQnV1Nb744gtMmzYN2dnZABxdZCMjI1FeXo477rgDkZGRuOGGG9DS0oL//ve/SEpKwltvvcVpCy+89tpr+OSTT3D55ZfjiiuuaPf67NmzAYD3OkD+93//FwaDAWPGjEFSUhKqq6uxfv16nD17Fvfddx9uvPFGALzfwfa73/0O9fX1kq1RTpw4gfvuuw8DBgzAggULxO7TY8aMwSuvvNKFo+05HnzwQeh0OowcORJxcXEoLCzE119/DbVajddff138g6Cr7zUDphAzmUziXnJNTU3IzMzEHXfcgYkTJ3b10HqFhQsXoqyszO1rq1evRp8+fQA49uZqu9/Wfffdh/j4+FAOt8f63e9+hwMHDnT4em5urvgx77V8GzZswLfffoszZ86gvr4e4eHhGDJkCH7xi19gypQpkmN5v4PHXcAEAIcOHRL3NwsPD8fMmTNx9913cy85L33yySdYv349SkpKYDAYEBsbi3HjxmHRokXo16+f5NiuvNcMmIiIiIg8YA0TERERkQcMmIiIiIg8YMBERERE5AEDJiIiIiIPGDARERERecCAiYiIiMgDBkxEREREHjBgIiIiIvKAARMRERGRBwyYiKhbKC0txbRp0/D//t//6+qhBMTatWsxbdo0rF27tquHQkQBwICJiLqt3/3ud5g2bVpXD8Ot3hbgEVHn1F09ACIiAEhKSsIHH3yAiIiIrh5KQEydOhXDhw9HQkJCVw+FiAKAARMRdQtqtRoDBgzo6mEETGRkJCIjI7t6GEQUIApBEISuHgQRUWlpKW688UbMnTsXS5cu7XAqzvm60+nTp/HBBx/gwIEDaGhoQEJCAiZPnozbbrsNMTExbs//q1/9Cm+//TYOHjyIhoYGrF69Gn369EFubi42btyI48ePo6qqCmq1GoMGDcINN9yAGTNmiOdau3YtnnvuObfjW758OcaOHSses2TJEsybN09yzOHDh/HBBx/g6NGjMJlMSE1NxRVXXIFf/epX0Ov1kmOnTZuGnJwcPP3003jjjTewY8cOtLS0ICsrC3fffTfGjh3r660mIj8ww0RE3dKiRYuwbt06lJWVYdGiReLz2dnZ4sdbtmzB008/DYVCgSlTpiA5ORmFhYX47LPPsGvXLrz55puIioqSnLekpAT33nsvMjMzMXfuXDQ0NECj0QAA3nrrLajVaowaNQoJCQmoq6vD1q1b8eSTT+LBBx/E9ddfDwDIysrCDTfcgE8++QRZWVmYMmWKeP7U1NRO/18bN27Es88+C41GgyuuuAKxsbHYvXs3Vq5ciV27dmH58uXQ6XSS9zQ1NeG+++5DZGQkZs+ejdraWmzcuBGPPPII3n77bWRmZvp1j4nIewyYiKhbuv3223HgwAGUlZXh9ttvb/d6fX09/vKXvyAmJgb//Oc/JYHKhg0b8Mwzz+Cdd97BQw89JHnf4cOHsWjRIrfnfPHFF5GWliZ5rrm5GYsXL8Y777yD+fPnQ6/XIzs7G5GRkWLA5O5c7hgMBrz00ktQqVR44403MGjQIADAXXfdhWeffRY//vgjVq1ahVtvvVXyvlOnTuG6667DQw89BKXSsVbnkksuwYsvvojPPvsMjzzyiFfXJyL/cZUcEfVI3333HQwGA+666652WZ1Zs2Zh8ODB2LBhQ7v3xcfH49e//rXbc7YNlgAgPDwc8+bNQ1NTE44fPy5rzFu2bEFTUxOuvvpqMVgCAKVSiXvvvRcqlcptG4KwsDDcc889YrAEOKYmVSqV7DERkXeYYSKiHuno0aMAgLy8PJSUlLR73Ww2o76+HnV1dYiNjRWfz8rKEqfg2qqtrcV//vMf7NixA+Xl5TCZTJLXq6qqZI05Pz8fAJCTk9PutZSUFKSlpaG4uBjNzc0IDw8XX+vXr5/kMeAoko+Pj0dTU5OsMRGRdxgwEVGP1NjYCAD4/PPPOz3OaDRKHsfFxbk9rqGhAXfddRfKy8sxatQojB8/HpGRkVAqlTh16hS2bNkCi8Uia8wGgwGAI8vlTkJCAoqLi2EwGCQBUketFlQqFex2u6wxEZF3GDARUY/kDChWrlzpU9GzQqFw+/y3336L8vJy/Pa3v21XQ/Tvf/8bW7Zs8X+wFzgDn5qaGrevO5/vLb2oiHoT1jARUbflrNmx2WztXhs+fDiA1qk5uZzTeq4r3pwOHTrU4dh8yfA4V/gdOHCg3Wvl5eUoKSlBWlpau+k3Iup6DJiIqNuKjo4GAFRUVLR77eqrr0Z4eDjefvttFBQUtHvdaDT6FEw5C8cPHz4seX79+vXYsWNHu+OjoqKgUCjcjq0jU6ZMQWRkJNasWSMZsyAIePPNN2Gz2dr1bCKi7oFTckTUbV1yySXYtGkT/vSnP+HSSy+FVqtFVlYWJk+ejNjYWDz11FN48skncfvtt2PixIno378/LBYLysrKcODAAYwcORIvv/yyV9eaPXs2PvzwQyxfvhz79+9HSkoKTp06hX379mHatGnIzc2VHB8eHo6hQ4fi4MGDWLZsGfr16weFQoE5c+Z02IspIiICf/zjH/Hss8/innvuwcyZMxEbG4u9e/fixIkTGDZsGG666SbZ942IAo8BExF1W9dccw1KS0vx448/4sMPP4TNZsPcuXMxefJkAMBll12Gd955B//973+xd+9e7NmzB3q9HklJSZg3bx5mz57t9bWSk5Px2muv4Y033sCePXtgs9kwePBgvPLKK6ioqGgXMAHAE088gb///e/Ytm0bDAYDBEHA6NGjO21eOXPmTMTHx+Pf//43cnNzxU7ft956K371q1+1a1pJRN0Dt0YhIiIi8oA1TEREREQeMGAiIiIi8oABExEREZEHDJiIiIiIPGDAREREROQBAyYiIiIiDxgwEREREXnAgImIiIjIAwZMRERERB4wYCIiIiLygAETERERkQcMmIiIiIg8+P++5649NqwYhQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 50th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "2769b6e5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADCcElEQVR4nOzdd5wTZeIG8GdStjd671UBFQUUQUEFGxY8CyoK2MtZz+7Z23nq+bOc/VBsJ6gcdkRAkSoIiPTeO8vC9t1sMu/vj2yGlClvktlNdvf5fj772d3kzcybZDKZZ94yihBCgIiIiIiIiGqdI9EVICIiIiIiaqgYyIiIiIiIiBKEgYyIiIiIiChBGMiIiIiIiIgShIGMiIiIiIgoQRjIiIiIiIiIEoSBjIiIiIiIKEEYyIiIiIiIiBKEgYyIiIiIiChBGMiIiIiIiIgShIGMiIiIiIgoQRjIiIiIiIiIEoSBjIiIiIiIKEEYyIiIiIiIiBLElkC2detWKIoCRVEwbtw4OxbZIA0dOlR7HYmIjIwbN07bV2zdujXR1dFMmDBBq9eECRMSXR2ymaqqOOGEE6AoCm6//fZEV4fC8PNHiTRr1ixt+3viiScSXR1bFRUVoXHjxlAUBe+8806NrKPWWsgmTJiAJ554ot69SWa++uor7TkfPnw40dWhak888YS205D5kT3gXblyJW6//Xb07NkTWVlZyM3NRZ8+ffDggw9i27ZtNfukiKhBqaqqwnvvvYczzjgDrVq1QmpqKtq2bYvzzz8fkyZNghDC9nW+++67WLp0KdLS0vDQQw/plkn2/WtFRQXeeustnH322WjZsiVSU1PRrFkznHjiiXjuuedw8OBB6WVFY8GCBbj22mvRpUsXZGRkoHHjxjjhhBPwzDPPID8/v0bWmQh9+vTR3tuZM2dG/fi5c+dqjz/66KOjfnxwKJX5mTVrlunyDh48iJ9++gnPPfccLr74YnTo0CHk8bIOHTqEr7/+Go888gjOPvtsHH300WjevDncbjdyc3PRq1cvjBs3Dj/++GPUz1lGQzk+Of/887X3Zvz48VE/fvv27XA6nVAUBY0bN0ZFRQUAICcnB3fffTcA4O9//zsOHTpka70BAMIGW7ZsEQAEADF27FjdMkOGDNHKNBRjx47VnvOWLVssyzfE1ygRHn/8ce11lvmRee9efPFF4Xa7DZeRnZ0tPvvss5p/ctQgRLtvqS0ffPCBVq8PPvgg0dWpt7Zs2SL69u1rut8aNmyYOHTokG3rLC0tFS1bthQAxB133GFYLpn3r4sXLxYdO3Y0rU/z5s3Fjz/+GM1LY0pVVXH33XcLRVEM19miRQsxc+bMuNeVDJ+/f/3rX1odrrrqqqgff+2112qPf+GFF6J+fPBrIPPzyy+/GC5r+fLllo+X9dZbb0nX6dRTTxV79uyJ+rkbqa3jk19++UVb5uOPPx5/xWMwefJkrQ6DBw+O+vFPPfWU9vhbb7015L7CwkLRqFEjAUA8+OCDdlVZ44INOnbsWCNn4xoaqzM1ZL+nn34avXv3Ni3TvHlz0/vffvtt3HfffQAAt9uNq6++GkOGDEFVVRWmTZuGL7/8EsXFxbj66quRl5eHs88+27b6U8M0YcIEdklqoA4fPoxzzjkHa9euBQAcddRRuPbaa9G2bVts3LgR7777Lnbs2IEZM2bgL3/5C3766Se4XPF/1b/55pvYu3cvnE4n7r//fqnHJNP+ddWqVTj99NNRVFQEAOjVqxeuvvpqdOrUCYcPH8bUqVPx9ddfY//+/bjoooswY8YMnHzyyVLP08xDDz2E//u//wMAZGZm4rrrrsOAAQNQUlKCyZMnY/r06di3bx8uvPBCzJkzB8cdd1zc60ykq666Cg888AC8Xi/+97//4c0330R2drbUY8vKyvDFF18AAJxOJ66++uq46nL77bfj9NNPNy1jtn36fL6Q/51OJ3r27InNmzejvLw86vo4HA4ce+yx6N+/P3r06IGWLVsiJSUF+fn5WLRoESZNmoSysjLMnj0bp512GpYsWYKMjIyo1xOsoR2fnH/++WjatCny8/Mxd+5cbNq0CV26dJF+/Icffqj9fc0114Tcl5OTg7/+9a945pln8Prrr+Pee+9FkyZNbKt7rTXFNMTWn2Q9i93QBZ/BNTs7JmP37t0iIyNDABAul0tMnz49okzwGbt27dqJ8vLyuNZJlKyS4Qx9fXfXXXdpr/HZZ58dsT85ePBgSOvZv//977jXWVVVJdq1aycAiDPPPNO0bLLuX0888cSQlpuqqqqIMl9++aVwOBwCgOjRo4dumWgsXbpUaxnLzc0Vf/75Z0SZ4Nerf//+QlXVmNeXLJ+/Cy+8UKvH+PHjpR/30UcfaY8777zzYlq3na/Bxo0bxZgxY8Srr74q5s2bJ0pLS4UQQnTo0CHq49ldu3aJgwcPmpbZtm2b6Nq1q7bs559/Pq761/bxSTK0kAkhxJ133qnV49FHH5V+3OzZs7XH9e7dW7fM+vXrtTLPPvusXVUWQgjBWRaJ4vDCCy+grKwMAHD33Xdj2LBhEWXGjRuHSy+9FACwY8eOmPo1ExHt378fb775JgB/a8uHH36ItLS0kDKNGzfGRx99pI1veeaZZyLO9Efru+++w44dOwD4W0Bqi13714ULF2LhwoUAgDZt2uC9997TbTW8+OKLcfPNNwMA1q1bF3K2PBZPPfWU1nvoueeewzHHHBNR5vHHH8eAAQMAAL///jt++OGHuNaZDIJbFqJpyQ8uG946kQhdunTBhx9+iDvuuAMnn3xyXK1VrVu3RuPGjU3LtG/fHi+88IL2//fffx/z+oCGe3wSvO189NFH0j34ZLa/bt26oX///gD8rY+yy5ZR47MsBmYO/PXXX7Xb9AZWGk32oaoqPv/8c4waNQqdOnVCRkYGsrOz0bNnT9xyyy1YsWKFad2CBxgHugTOnDkTV1xxBTp16oS0tLSIgcVerxfTpk3DPffcg8GDB6N58+ZISUlBdnY2unfvjnHjxmH27NmG6wzMgBa8M+/UqVPEczZ6rWQGii5cuBA33ngjevTogezsbGRmZqJLly4YO3Ysfv75Z8vHB9YzdOhQAEBpaSleeukl9OvXD40aNUJmZiZ69eqFhx56qGYGL9YDQgite4XVrGN33HGH9vekSZNqvG7BFixYgFtuuQVHH3008vLykJaWhvbt22PUqFGWO3y9WZO2b9+Oe+65Bz179kRmZiby8vJw8skn480334TX65WqU0lJCV555RUMHz4crVu3RmpqKho3boz+/fvjsccew4EDB0wfH/5Z8fl8mDBhAoYPH442bdrA5XKhY8eOEY/bt28f7r//fhx99NHIzMxE48aNMWDAAPzrX//Svrg6duwIRVEiHv/jjz9q6wx+P83ccccd2mOmTp0q9RgZVrMs1tT79t133+H8889Hy5YtkZaWho4dO2L06NFYsGBB1M/B4/Fg/PjxuOCCC9CuXTukpaUhLy8PxxxzDO655x7DyR7WrVuHzMxMKIqC3NxcbNmyxXAdhw4dQvv27aEoCpxOp+l+uy746quv4PF4AABXXHGFYXe/3r17a1219u7dG/L9G4uPP/4YAJCeno6LLroormXJsnP/GvydeOmll0aE2GBjxozR/v7vf/8bVZ2DFRcXa5/5nJwcwxmow59bbXw//P7772jWrBkURUFqaio+//zziDLxHHuNGDFC2zbnzp2LzZs3W9Zp+/bt+OWXXwAATZs2xfnnnx/js6vbgicy2bt3b8zLSebjk0A3QkVR4HA4tC694X788UeMGzcO3bp1Q3Z2NjIyMtClSxeMGzcOc+fONVz+sccei759+wIAtm3bpm1XZoK7y7pcLtMTT6NHjwbgD7C2DjWyo5nNbFKP4K6KZj96zZsbN24Uxx13nOnjHA6HaZNkcHeAn3/+Wfz1r3/VXU5wl8KhQ4dK1Xns2LGisrIyYp3BXRWtHm/0WhmpqqoSN9xwg+WyL7vsMlFWVma4nEC5IUOGiE2bNomjjz7acFkdOnSoV10u7epSs2LFCsvm7QCfzydycnK0bbaoqCjm9coqKSkRo0aNstxWRowYYVif8C4IU6dOFXl5eYbLGj58uKioqDCt1w8//CCaN29uWqfs7Gzx9ddfGy4j+LNy8OBBMXjwYN3tNtjPP/+sDcjV++nTp4/Yvn271h0l/PE+n0906tRJABCNGjWy7NpRXl6ura99+/bC5/OZlo+GVXdou983r9drul9zOBzin//8p3R3od9//117LY1+UlJSxNtvv637+HfffVcrN3DgQOH1enXLXXLJJVq5v//976avaV1w8cUXa8/nyy+/NC374osvamXvu+++mNdZUVGhdXs69dRTLcsn4/711ltv1Zb11ltvmS6roKBAK+t0OrVuatH69ttvteVYdb/bv3+/VrZZs2YxrU8Iue5606ZNE1lZWQKAyMrK0u3GZsex19/+9jet7GOPPWZZ9+DJFO68807ZpxyhNrptxtJlUdb333+vLfuUU06JeTmJOD6R6bK4dOlS0aJFCwH4u1F+/PHHEWX2798vTj/9dMtjl+uuu054PB7d9bz22mtauTFjxljWPbi77IUXXmha9s8//7RlWw1ny6QeZgJTuj7yyCNYtWoVAGDKlCkR5Xr27Bny/6ZNm3DSSSdp08EOHjwY5513Hjp06ACfz4clS5ZgwoQJOHToEJ5++mk4HA7LKfVffPFFTJ06FS1btsS4cePQu3dveL1eLFq0CKmpqVq58vJyZGVl4YwzzsAJJ5yAjh07Ii0tDXv27MGqVavw6aeforS0FB9++CHy8vLwyiuvhKznjjvuwMiRI/Haa69pyfydd96JOJvZvn17qdcw2NVXX42JEycCANLS0jB27FicfPLJcDqdWLx4McaPH4/i4mJ8/vnnKCwsxNSpU01b3IqKijBixAisW7cOF154Ic4++2w0btwYmzdvxltvvYXt27dj27ZtGDNmTJ0/u6znsccew65du7Br1y6kpKSgRYsWOOmkk3DZZZfhvPPOM33tVq5cqf19wgknmK7H4XCgb9+++PXXX6GqKtasWaN1U6kJlZWVGDZsGH777TcA/q4Xo0aNwlFHHQW3242NGzfio48+wvr16/H9999j5MiRmD59OhwO40bzZcuW4cUXX4QQAjfddBMGDhyI1NRULF68GG+//TZKS0sxffp0PPvss3jqqad0lzF58mSMGjUKPp8PbrcbF1xwAYYOHYoWLVqgqKgIv/zyCz7//HMUFxfjoosuwvTp0y0HZV911VWYO3cujj32WFxxxRXo2LEjioqKsHz5cq3M6tWrcd5552mtYH379sVVV12Ftm3bYt++fZg0aRLmzZuHUaNGGbYWORwO3HDDDXj44Ydx6NAhTJ48WTtTpufLL7/UWpevu+4609e2Jtnxvt1xxx1ai39KSgrGjh2LwYMHw+FwYNGiRRg/fjweeOABjBw50rI+CxYswLBhw1BWVgZFUXDWWWfhzDPPRJs2bVBeXo4FCxbg448/RllZGW6++WakpqZGtC7ccMMNmDZtGiZPnowFCxbgySefjKj7+PHj8eWXXwIATjrppHpxyZVo9jn9+vXTfVy05s2bp31uot1nJcv+VcTYrcjn82H16tUhr6WsaOrfrFkzdOjQAdu2bcOBAwewf/9+y8lOYvHZZ59h7NixqKqqQrNmzfDDDz9EPDe7jr2uueYavPzyywD83cYCvZWMmE2mEKs333wTzz//vNbdtlmzZujfvz9GjhyJUaNG2TLZjZ0OHDiABx98UPv/L3/5S8zLSsbjk19++QUjR45EUVERMjIy8OWXX+Kcc84JKVNQUICBAwdi06ZNAPytXX/5y1/QtWtXOBwOrFy5EhMmTMCuXbswfvx4eL1e3W6xV155Je699154PB5MnjwZb7zxBrKysgzrFk132d69eyMrKwslJSWYNm2a/AtgxY5UZ/e09z6fTxx//PECgEhNTRWff/65brm9e/dqZ3EcDodYuXJlRJnwKXgHDx4sCgsLTdc/Y8YM09al/Px87Yy8w+EQmzdv1i1n97T3EydO1O5v0aKFWLVqVUSZrVu3hpx5NhrQHfyapKSkiG+//Vb3eQYva+HChZbPwUhpaamYMmWKLT9LliyJuR5CyE/LfOKJJ4qtW7caLufJJ5+0PBsUbMyYMVp5vbNCdgoe+H/ffffpDk73eDwhddI7cxx8xgvwt/SsX78+otzChQuFy+USgL/1SK+1Zfv27dpZuPbt24vly5fr1n3hwoUiNzdXABBt27bVPQMW3vJ+1113mbZABbeg3Xrrrbplw7eL8BYyIfz7nMD0wUOGDDFcnxBCnHrqqdpZ9h07dpiWjVY0LWTxvm/BA53z8vLE4sWLI8qsXbtWmxI98KN3drqoqEibHCIvL0/MmjVL9/lt2LBBtG/fXgAQmZmZ4sCBAxFlCgoKRNu2bbXXeM6cOdp969atE5mZmQKAyMnJEZs2bdJdj6w1a9bYtv/Sey4yfD6f9l45nU7LCSc2b96svRddunSJaZ1CCPHcc89py/niiy8syyfj/jV4WXfffbfpcn777beQen7yySeW69ZzzTXXRNVSE9hfAAjZlqNh1jr02muvaROMdOjQQaxbty7i8XYeewkhRL9+/bT6/Pzzz4b1/vXXX7Vyffv2lX/COmSnve/Ro4fuJCsy4m0h27dvn7Y/mDx5svjPf/4jbrnllpBeDGeeeaZh64+MRByfmLWQffnllyI1NVUAEI0bNxbz58/XXcbIkSMFAKEoinjllVd0yxQXF4szzzxTW9fUqVN1ywX3kHj//fcN671161bts9G8eXOpyXwCPekURRGHDx+2LC8jKQNZ8HUEXnvtNdOy69atE06nUwAQN9xwQ8T9wV8OmZmZYteuXVLPycqmTZu05T799NO6ZewOZMEzZ/3www+Gy1m4cGHIjlevO0/wjumpp54yXNZ7770nVc5K8DYS74/RNibr8ccfF2lpaeKcc84RTz31lPj444/FpEmTxKuvvir+8pe/aNsTANG6dWuxc+dO3eXcfffdWrnXX3/dcr3Rlo/V7t27RUpKigAg/vKXv5iW9Xg8onPnzgKA6NatW8T94Qf2s2fPNlzW6NGjTcvdfvvt2sHkH3/8YVqv8ePHa8v69NNPI+4P/qyccMIJpmHs999/18r27t3bsHtb+HL1ApkQQlx66aVaGb2QI4R/vxQoM2LECNPnGotoA1k871vwjGkTJkwwXM53330Xsk69g9DgaxR98803ps9x5syZWlmj2axmzZqlzYrXoUMHcejQIeHxeMQJJ5wQ98FFsGivrWX2E2s3vsLCQm0ZTZo0sb28kSuvvFJbjtFJlGDJuH+dMWOGdl+bNm1Mu+eGD2uIdZbKiy66SFuG3gnPeMvrMQpkf//737Xbe/XqZfia23nsJYQQb7zxhrY8s25jweHVar1WPvjgA+FyucSQIUPEo48+Kj788EPxxRdfiDfffFNcddVVIi0tTVtXdnZ2TKEs3kA2depUw/1DmzZtxFNPPWX6PSUjEccnRoHs7bff1vbTbdq00W1MEEKIJUuWaI//29/+ZrqugoIC7cTt8OHDdcsEd/80624dHF6t1htwyy23aI+J9QRKuKQMZIGEnJOTIzUF58CBAw0PoIK/SGX6kUYjcEbYqH+4nYEs+DXu06eP5bLOOOMMrbxey1bgPqfTKQoKCgyXExw8L7/8csv1GkmmQLZixQrT6WdXrlwZMvXssGHDdMsFj+V77733LNf78MMPa+Wfe+65mOtv5ZVXXtHWY3QWKthDDz1kuJ0G72CtzlwGh6jwsT+qqorGjRsLwHrabCH8498CrQF673fwZ8XszJcQQjzyyCNaWavxI//73/+0skaBLDgo3H///bpl7rvvPq2M2Vi4WEUTyOJ53yoqKrRw36JFC8uDhKOOOkr3gDAgcFa9e/fuls9RCCFat24tAPPWyODP1ahRo8T999+v/T969Gip9VhJhkC2a9eukIM2Kx6PRyufkpIS0zqFEGLQoEHacowO5IMl4/7V6/WGrHPs2LG62/JXX30VEhjj2VcPHz5cW4beOK1wwcH3v//9b0zrDA9kXq9XXH/99dptJ598sun3vZ3HXkL4D5oDASgzM1MUFxdHlCktLRXZ2dnadpqfny/9fPVs2LDB9MT79u3bRf/+/bXXpGfPnlGHn5oKZIqiiNGjR5u2JspKxPGJXiALDjs9evQQ27ZtM3x8oGePoihSjSdXXHGFAPytuXonWbxer/YdoiiKbm82VVVFly5dtDquWLFC6rkGv16xtqKHS64OtNXmzJkDAGjVqhV+/PFHy/JOpxOAfzaV8vJypKen65Y75ZRTpOtQVFSETz/9FD/88ANWrFiB/Px8lJaW6pbduXOn9HJjtWjRIu3vM88807L8mWeeiZkzZwLwz8ho1B+4e/fuaNSokeFy2rRpo/0dz2yLyXTxcKsLlfbq1Qs//vgjevfujYqKCsyYMQMLFy7EiSeeWEs1jE/g8wP4t82vvvrKtHzw+7pmzRrd2QkB/zgcM2bbyqpVq1BQUAAAyM7OtqwTAGRlZeHw4cNYs2aNaTmrz/XixYu1v0877TTTsoFZR82cdtpp6N69O9avX48PP/wQzzzzDNxut3Z/VVWVNh6idevWGDFihOUya1I879uff/6pzeo3ZMgQbV9r5IwzzjB8vwoLC7VxfS1atJDeBgCYbgNPPvkkZs6ciYULF4bMENapUydtivh4PfHEE/ViDFosAp9bAJbTdgPJuX91Op146623cPbZZ8Pn8+HDDz/EkiVLQi4M/eOPP2LKlCnaDKuBWT4TNfYzXhUVFbj00ku1MfvnnnsuvvjiC9Op2+0+9mrUqBFGjhyJiRMnorS0FF9++WXEeNDAhYkB4IILLoj7Qrtdu3Y1vb9du3aYOnUqevfujb1792Lt2rX48ssvMWrUqLjWG42zzz5bOx7yer3Yv38/5s6di5dffhmffvopPv30U9x22234v//7v6Qb5yZLVVXcdttteOONNwAA/fv3xw8//ICmTZsaPiaw/eXl5YUc8xqprKzUfm/evBlHHXVUyP1OpxNjxozB888/DyEEPvzww4j9+Jw5c7Txav369bPcfwUEb6d2zUSedO90SUkJDh48CMA/vXG0U+weOnTIMJAFH3iY+eWXX3DllVdKTzlaVFQkXb9Y7dmzR/u7e/fuluWDywQ/NpzZhwNAyGQnFRUVluutLwKXEHjnnXcA+K8HEn7AEDxAVOa1KS8v1/7Ozs62qaaRgqcLv+yyy6J6rNmOJZ5tJbhOkydPxuTJk22pE2D9ud69e7f2d+fOnU3LNmrUCHl5eTh8+LBhGUVRcOONN+Lee+/Fvn378O2334YMvv7mm2+wf/9+AP7BwVYhpqbF874Fv3ZWBzpWZXbs2AFVVQH4vwSDTxxYMdsGXC4X/vvf/+K4447TDuwCt+Xk5EivI9klan8TOOhxOp2G363RSsT+ddiwYZg0aRLGjRuHkpISrFy5Eg888EBImZSUFLz++uv48ccftX2W2QlLM4n+fnjwwQdRWFgIwD/x0QcffGB6cF9Tx17XXHONNhHZhAkTIgJZ8GQK1157bcTjzU7cZGRkSJ2gDtekSRPceeedeOihhwD4t7/aDGTBXC4XWrdujcsuuwyXXHIJrrnmGnz00Uf497//jfT09JDrkkUj0dvfa6+9pm1/w4YNw5QpU0wn1QCOHCccOnQopu1Pz7hx4/D8888D8E8u8/jjj4dMLmO1/RkJ/m4Jfu3ikXSnfgJvYKwCZ3P1yHyZbNiwASNGjNDCWI8ePXDXXXfhjTfewGeffYYpU6ZoP82aNQOAuC+6KSNwoAH4LwhqJXjDD35suLp69q82BLeWrF27NuL+vLw87e/AjFRmAl924Y+1WzyfIbPPTzzbSk3VCbD+XAdatl0uV0hLlhGZz9e4ceO0IPPee++F3Bf4X1EUXHfddZbLqmnxvG8lJSXa3zIXRTV77eLZBqqqqkzvb9q0aUjrTefOnS1nFqtrsrKytAPqw4cPW147zq79TWA79/l82myLdkjE/vXiiy/Gxo0b8eijj6Jfv37Iy8tDSkoKOnTogGuvvRaLFy/GjTfeGLKsli1bWj8ZHYn+fgjePkpLSy17qNTUsdewYcPQtm1bAMDs2bNDTs5t27ZNu45T69atdcPVRRddZPhz4403xlxfq+0vERwOB9544w3k5uYC8IeaWFtf6tr2B9TMcUKPHj1w8sknAwC2bNkSMlt4WVmZNhNvWloarrjiCun1BdfVrhNVSddCFhwkTj311LgvaBmtf/zjH1ra/fvf/46nn37acKrWG264odbqFXzGwqjrZLDgA6mabI2RVVZWhp9++smWZbVv3x7HH3+8LcsyE9wkrddiEtwKaXQR22Dbtm3TfazdAp8hRVHg9XqTInQHf64fe+wxPPnkk7W27kBI8Hq9qKqqsgxlMp+vJk2a4JJLLsGnn36Kn376Cdu3b0f79u2xbds2TJ8+HYD/QKRTp07xP4EECn7fZA7GzV674GWNGTMmZJrreN16660hn6/169fjkUcewT//+U9blr927VrbDtoGDx5s2Wqpx+FwoEuXLli3bh18Ph927txp2L0YsG9/Exx0CwoKpIK5jETtX1u0aIGnnnrK8BIPgP8yGQH9+/e3XLeeRH8//OMf/8DEiRMxf/58TJkyBaNGjcKkSZMM9381dezlcDgwduxYPPvss1q3sccffxyAf6r7wIH6mDFjarU3gdX2lyhZWVkYPHgwvv/+e1RWVuK3336LmBpeRqK3vzvvvBNr1qzBlClTsGDBApx11lmYNm2a6fFoYJhC4LvULtdccw3mz58PwN8iNmTIEACh3WVHjhwZVRCNtiu3jKQLZLm5udr8/rUxNivcjBkzAADNmzfHU089ZRjGiouLQ96QmtaqVSvt7w0bNliWDy7TunXrGqlTNPbv3x91E7SRsWPH6l53wm5WZ4yC+xovWbLEdFmqquKPP/4A4P+CCu/rbKc2bdpg2bJlEEJg165daNeuXY2tK5o6BdT257p169ba2KXNmzejR48ehmUPHTok/eV8880349NPP4Wqqnj//ffxxBNP4P3339e65cVz9jZZBO87Nm7caFnerExNbQOBMReA/3o7+fn52LZtG1566SWcddZZltexkzFx4kTbTiL88ssvUmMV9fTu3Rvr1q0D4N/nmAWy4LGTsuMi9HTs2BHz5s0D4D8ICbR2xCtZ96+rV6/WWhS6dOkS8t0bjWjqf+DAAe0AtFmzZrZcgyw7Oxs//vgjzj77bKlQVpPHXuPGjcOzzz4LwN9t7LHHHgMQeu2x8K6MATU19ry2eqzEIji0xBoWE3184na7MWnSJFx++eX43//+JxXK2rRpg8OHD2P//v1SJ09lXXbZZbjzzju1FrF///vfyMzMxAcffKCVifbad8HH/x06dLClnrV26jz4LL3VB+zUU08F4D94kjkIsNO+ffsA+AeEm7UszJgxQzvwMhLNc7YSPClH4Ay8meDWqJq8AHF9FnyGUO+MUa9evbSDk1WrVpl+ic2fP18bazho0KAabbUMnP0BYFurZLz69u2r9bmeOXOm5WfHTsEXPg1cqN1IoPuMjMGDB6NXr14AgPfffx9VVVV4//33AfhP6Fx44YXRVzbJHHvssUhJSQHg/zxYdc8OTCSkp2nTpjj66KMBAL/99pstY2+3bNmCW2+9FYC/JfSzzz7DJ598AqfTCVVVMWbMmJADr7rurLPO0v62uiBp8KQMZ599dszrDD6wC4RBOyTr/jX4IC2eLsdDhw7VunvOnj3bdJxJ8HsZz3sVLhDKBg0aBACYMmUKLrvsMsMuwDV17NW1a1dt8qXNmzdjzpw5mD17NjZv3gwAOPnkk01PlNUEq+0vkYJf+1ha04HkOD4JhLKLL74YALRQZrTvDxy7VFRUhHQtjFdOTo5Wh5KSEkyePBlbt27VtoG2bdti2LBhUS0zMNGUoijo06ePLfWstUAW3Bxu1SVo7Nix2t+BMym1JdAdY/PmzYYhyufz4bnnnrNcVjTP2UrHjh21bnp//vmnaShbvHgxfv75ZwD+5J4MYykCsyza8VMbrWObNm0KOXt37rnnRpRRFAWXXnopAH/gfv311w2X99prr2l/1/Tg4csvv1w7iP7nP/8Z97ZnB6fTidGjRwPwd434z3/+U2vrDg5Gb7zxhmmoePXVV6Na9k033QTAP2HFXXfdpX3pjR071raze4mUmpqqbfv79u3Df//7X8OyU6dOtZwRM7BvLysr0wZax8rn82H06NHal/trr72Gbt26YfDgwXj44YcBALt27cL1118f13oA/yyLdu2/Ym0dA/zdagKf7c8++0ybPCbcypUrte+Ali1bhpykiVbwZBsLFy6MeTnBknX/unbtWm09eXl5cW07WVlZ2vMqKioy/N4SQuDf//639r/d3w+BUDZ48GAA/kkyjEJZTR57BbdATJgwIeT1iLZ1Il4FBQUh+3q97S9Rli5dqrVoud3umLvMJsvxicvlwsSJE3HJJZcA8Ieys88+WzeUjRkzRvv7ySeftHV+hvDtL7i77NixY6Ma2uHz+bQeCD179rRv8ig75s6XuQ7ZHXfcoZX59ddfTZfn8/lCrhNx5513isrKSsPyZWVl4oMPPhCfffZZxH3B14+Ruf5L8LVDXn755Yj7PR5PyEUMYXINjpdfflkr8+GHH1qu2+pabZMmTdLub9WqlVizZk1EmW3btoVcU8HoopaB+82u7xNL2WT3zTffiC+++ML0uiPh18kZOnSoYdldu3aJjIwMAUC4XC4xY8aMiDLB14Zp166d1PVd4nXPPfdo6zzttNPEnj17DMv6fD4xffp03QucG13oUY9V2R07doi8vDztuiFWn4l9+/aJp556SvfCndFc11AIIQYPHqyVv/XWW3UvJB1+rSmjz3Www4cPa+9/8I/RBaPtEs11yOJ93+bMmaPd36hRI92Leq9fv160atUq5DXQuw5ZSUmJdg0fRVHECy+8YHpR78OHD4tXX31V9zpOjz76qLauSy65JOS+qqoq7RpJAMQ777xj+hrUJYFr9QAQ55xzTsT+pKCgQPTt29fyO0BWRUWFyMzMFADEKaecYlo2mfev+/btE6tXrzZc15IlS0S7du20ZZldBD38uppGli5dKhRFEQBEbm6u7r7siSee0JbTv39/w2XJMLowtBBCFBcXh+wHL7zwQuHxeELK2HnsFa64uFjbjrKyskRWVpYAIDIyMkRhYWFMzzfc/PnzxXvvvWd64e8dO3aIAQMGaM+xW7duoqqqKqr1RHsdsuLiYvHQQw+J/fv3m5ZbsmSJaN++veXxtBAiZPszus5tbR+fmH2XVFVViUsuuUS7/6STTtJ93y+++GKtzKhRo0y3jaqqKjF58mSpfZyqqqJjx47ad0+LFi209WzYsCGq5/nnn39qj73rrruieqyZWhtDdsYZZ2gp/LrrrsPdd9+NDh06aIM4u3btqk2Z7HA4MHnyZAwcOBC7du3Cq6++is8//xyXXnopjj32WOTm5qKkpATbt2/H4sWLMXPmTJSWluLpp5+Ou56333671vr0t7/9DbNmzcJZZ52FJk2aYMOGDfjoo4+wYcMGnHbaadiwYYNpM/AZZ5yh/X3//ffjwIED6NGjhzZTVps2baJq6rzsssswZcoUTJw4EXv27MHxxx+PcePGYeDAgXA6nVi8eDHGjx+vnXk488wzte485Ldp0ybcfffdaNasGc4++2wcd9xxaNmyJdxuN/bt24dZs2bh66+/1mYIat26tenkA61bt8a//vUv3HLLLfB6vTjnnHMwZswYDBkyBF6vF1OnTtVm8XG5XHj33XeRlpZmuLzgMYtbtmwxHSNi5h//+AeWLVuGmTNn4pdffkHnzp1x8cUXY+DAgWjWrBk8Hg/27t2rtbbu3bsXZ5xxBh555JGY1iejbdu2mDhxIi644AJUVlZi7NixePnll3HBBRegW7duSE9PR2FhIdavX4/ffvsN8+bNg8/ns7x2mIx33nkH/fv3R1lZGd58800sWLAAV111Fdq2bYt9+/Zh0qRJmDdvHgYOHIjt27dj165dUmfMcnNzMWrUqJBuTkOHDkW3bt3irnOyGDx4MG699Va8+eabOHToEE466SSMHTsWgwcPhsPhwKJFizB+/HiUlpZi5MiRptNUZ2Zm4quvvsKQIUNQVFSE+++/H++88w4uvvhiHH300cjKykJRURE2b96MRYsWYdasWfB4PPj4449DljN37lytl0Lbtm3x7rvvhtzvcrnw6aef4rjjjkNRURHuvvtuDBkypNa7RdWExx9/HD/++CPWrl2LqVOn4vjjj8f111+PNm3aYOPGjXjnnXewY8cOAP5tMd6xjKmpqTj77LMxefJkLF68GCUlJYbTVyfz/nX79u3o378/BgwYgDPOOAM9e/ZEeno69u7dixkzZuD777/Xzsjff//9Ia1Fserbty/uv/9+/POf/0RhYSFOPvlkXH/99RgwYIDWdSrQrTwrKytiO7ZTVlYWpk6dinPPPRdz5szB119/jUsvvRRffPGF1ppfk8deWVlZuPTSSzFhwoSQSccuvvhi21oY9u3bhxtuuAH33HMPzjrrLJxwwglo06YN0tLScPDgQcybNw9ffvml1n00OzsbkyZNMr0cwPjx47Fly5aQ24LHdYV/ZzZq1Aj33HNPyG1erxf/+Mc/8OKLL+LUU0/FiSeeiK5duyInJweVlZXYvn07Zs2aFTIUpmfPnnjppZfieTlsPz6Jh8vlwmeffQZFUfDFF1/gt99+08aUBb//77//PtavX48VK1Zg0qRJmDZtGi677DL069cPjRo1Qnl5OXbt2oU//vgD06dPx6FDh6S6FiuKgnHjxmm9HQLDk0455RSpS7oECx76MHLkyKgea8qOVCfTQub1ekPOzoT/6J2Z3b17tzjjjDMMHxP843Q6da9GHm0LmRBCPPTQQ6brGjRokNi/f792lsTsTHrgSuJ6P+GvlcxZ/6qqKnH99ddbvh6XXHKJKCsrM1xOoFxDayH7v//7P6ntCdVng7du3Sq13BdffFG43W7DZWVnZ0udRQx+jNFZL1mVlZXitttuE06nU+r5jhkzJmIZdra0BCxYsEB07txZqk5ZWVli+fLlEcuItoVMCCF+/vlnrYVO76d3795i+/btok2bNgKAOOaYY6SWu3DhwpDlfPrpp9J1ilVttpAJ4d9/X3311YavncPhEC+88ILpGfpga9euDWnFMftJTU0VU6dO1R576NAhbd/rcDhM9+uffPKJtpy+ffuanu2vS7Zs2WL5+g0bNkwcOnTIlvV99dVX2nI/+ugjw3LJvH/9/fffLeuUnZ0tXnvtNcv6yLaQCeE/M3/XXXdpLWV6P82bNxczZ86Uei3MyHz+SkpKxKmnnqqVu+CCCyJayuw49tLz66+/Rjz+559/jvdpa6ZMmSK9/fXu3Vu3xTJc8HeNzI/e8eChQ4eiWsbFF18s9u3bZ1qv4PJWxwp2HZ9YkfkuqaqqEpdddplW7sQTT4xoBSssLBSjRo2Sfr0effRRqfpt2bIl4nP4/vvvR/08Ay2s7du3F6qqRv14I7UWyIQQory8XDz//PNi4MCBolGjRiEHimYHDbNmzRI33XST6NWrl8jLyxNOp1Pk5OSIo48+WowaNUq89dZbYvfu3bqPjSWQCSHE1KlTxYgRI0TTpk2F2+0WrVq1Eqeffrp47733tOZtmUDm9XrFW2+9JYYOHSqaNm0qXC6X4WsVzUHmggULxHXXXSe6du0qMjMzRXp6uujUqZO46qqrpHbsgfU0tECWn58vPv/8c3H33XeLU045RXTp0kXk5uYKl8slGjduLI499lhx0003RbWtBKxYsUL89a9/Fd27dxeZmZkiOztb9O7dWzzwwANSBx6lpaXaa52SkiIOHjwYwzOMtGHDBvHggw+KE088UTRr1ky4XC6RkZEhOnXqJM4991zx3HPP6YYeIWomkAnh3yl/8skn4rLLLhOdOnUSWVlZ2nvQr18/ccMNN4hJkyaJkpIS3cfHEsiEEGLv3r3i3nvvFT169BDp6ekiLy9P9OvXT7z00kuitLRUqKoq0tPTBWDelSqYqqoiNzdXABCNGzc27S5jl9oOZAHffvutGDFihGjWrJlITU0V7du3F1dccYWYP3++EELugDBAVVXx9ddfi7Fjx4ru3buLnJwc4XQ6RV5enjj22GPFmDFjxIQJE0RBQUHI44K/qB988EHTdQghxOjRo7Xy99xzj2X5usLj8Yh3331XnH766aJFixYiJSVFtG7dWowYMUJMnDjR1gMFr9erdaUaPny4Yblk3r+WlJSICRMmiLFjx4revXtr3+0tW7YUgwYNEs8//7xp1+5g0QSygPnz54tx48aJzp07i7S0NJGXlyeOP/548dRTT4kDBw5ILcOK7OdPL5TpnayI59hLj6qqIUMqOnbsaOt2WlxcLL7++mvx4IMPitNPP110795dNG7cWLhcLpGXlyeOOuooMXbsWPHNN9+YdpUOZkcgE0KI1atXi1deeUVcfvnlok+fPtrrmZaWJlq2bCmGDBkiHnjgAamQKET0J2/j/fzIkP0u8Xq9IftxvVAmhL/L71133SX69u0rmjRpIlwul8jKyhLdunUTI0eOFC+//LLYtGlTVHU8/fTTtfVmZmaK4uLiqB6/fv167fHPPvtsVI+1oghRQ3OKElFUpk2bps2wdccdd0Q9wQTFb8WKFTjmmGMAyL8HM2bMwPDhwwH4r73yyiuv1GQViRLi//7v//C3v/0NTqcTW7dutW36eyKiuuKxxx7D008/jczMTGzbti3kenbxSvwVY4kIwJFr4GVnZ9foWC4yFjzbmezYtbfeekv7uz5ce4xIz80334yWLVvC5/PhhRdeSHR1iIhqVVFREd544w0A/vkm7AxjAAMZUdIIBLK//e1vaNasWYJrU//MmTPH9Ppnb7zxhjaovk2bNjjvvPMsl7ls2TJtEothw4Zp19kiqm/S09PxxBNPAADeffdd7N69O7EVIiKqRa+99hoKCgrQpEkT3H///bYvn10WiZJAfn4+mjdvjqZNm2LTpk01euHohqpr166oqKjAOeecg759+6JZs2aoqqrCpk2bMGXKFPzxxx9a2W+//dYwkP34449QVRXr16/HCy+8gD179gDwz/wXuAArUX2kqir69++PpUuX4rbbbjO9thERUX1RVFSETp06oaCgAG+//bZ2DVI7MZARUYPQtWtXbNq0ybRMeno63nvvPe0i1nqCL00QIDve7KeffkJZWZl1ZXU0bdpUu7grERER1R8MZETUIPz222+YPHkyfvvtN+zatQsHDx5EWVkZGjVqhO7du2PYsGG45ZZb0KJFC9PlBAJZVlYWunfvjltuuQXXXnut1HXLOnbsiG3btsVU/yFDhmDWrFkxPZaIiIiSV61dGJqIKJFOOukknHTSSXEvh+ewiIiIyE5sISMiIiIiIkoQzrJIRERERESUIAxkRERERERECcJARkRERERElCCc1IOIiGLi8/lQXl6OsrIy7Sf4/9LSUlRWVsLj8cDj8YT8rfe/x+OBz+eDqqohvwM/qqqG3Af4Z700+gnMfOlwOOB0OuFyueB2u7Ufo/9TUlKQmpqK9PR0pKWlIS0tDRkZGdrfwbenp6cjKysLGRkZcLn4lUpERNHjtwcRUQMmhEBxcTGKiopQVFQU8XdhYaF2W+B3aWkpysrKUFFRkejqJ5WMjAxkZWWF/GRnZ4f8n5OTg7y8POTm5iIvLw95eXlIT0/Xvb4dERE1DJxlkYionlFVFYWFhSgoKMChQ4cifof/7fP54lqf0+lERkZGyE96ejoyMzORlpaG6RNmQxEAfAogFEBVABVQ1MDfQf8LAKj+LeAvH/iWEkduVwK3Bd2N4EyjoLpg0P+K8HfUVwSEI/C/CLlPOKoX7vT/nH3D6aioqEB5eTnKy8tRUVGh/R/4XVlZGdfrl5KSooWz4J9GjRqhadOmaNq0KZo0aYKmTZsiMzOT4Y2IqJ5hICMiqkN8Ph8OHTqE/fv348CBAzhw4EDE3/n5+fB6vVEtNyMjAzk5OcjOzkZOTg5ycnLw639/g+JVAK8DitcBVCn+3z4Fik8BfP6/oQIKGm5IENUBTrhUwCUApwrhEoCr+rdT4II7z9RaHA8fPqz99ng8Ua0rLS1NC2eBoNakSRM0b94czZs3R8uWLdGkSROpC5UTEVFyYCAjIkoiPp8P+fn52LNnT8TP3r17cfDgQekWrdzcXDRu3BiNGjXCsh9XQ6lyAFUOKJ4jv7XbRMMNVIkiUN1C5xYQbhXCrQJBv4dddwoOHjyI/Px85Ofno6SkRGq5LpcLzZs3R4sWLdCyZcuI382bN4fb7a7hZ0dERLIYyIiIalllZSV27dqF7du3Y+fOnSGha9++fZatW06nE02aNEGzZs3QvHlzzP5kIVDpgOJxQqn+DQ9DVn0jHAJI8UGkqNU/Plz29/O1ltF9+/YhPz/fMrA7HA60aNECbdq0Qdu2bdG2bVu0adMGbdq0QatWrZCamlpLz4iIiAAGMiKiGqGqKvbt24cdO3ZE/Ozbtw9mu16n04mWLVuiVatWWPrdKigVziM/Hoc/bDXgLoJkTEAAqSpEqk/7Off207F3717s27cPe/fuNe0mqSgKmjdvroW0du3aoUOHDujYsSOaN2/OrpBERDWAgYyIKA4+nw+7d+/Gli1bQn527dpleuCblZWF9u3bo23btpj5n3lHAlel09/axcBFNUBA+LtFpvsg0ny44ukLsXPnTuzatQs7d+5EWVmZ4WPT0tLQvn17dOzYUQtpHTp0QOvWrTnlPxFRHBjIiIgkBFq8tm7dis2bN2vBa9u2bYbBy+12a60M8/+7BEqFC0qZE0q5C/AqDF2UVPxhTUCkeSHSfbjymZHYsWMHtm7dih07dhh2pXW5XGjXrh06d+6MLl26oEuXLujatSuaNm3KGSGJiCQwkBERhfF6vdi6dSs2bNiA9evXY8OGDdi4caNh60Fqaio6duyIDbO3QSlzQSlzwVHmBCqdDF1ULwgIiDQfRIYXIsOHM248Gdu2bcP27dtRXl6u+5jc3NyQgNalSxd07NgRKSkptVx7IqLkxkBGRA1aeXk5Nm7ciA0bNmg/W7ZsQVVVVURZl8uF9u3bY+tvu/0tXWUuOMpcQAWDFzVMgTFraoYXIsOL0244CRs3bsSOHTt0JxdxOp1o3749evTogZ49e6Jnz57o0qULJxIhogaNgYyIGgyv14stW7Zg9erVWLNmDdasWYOtW7fqTrCRlZWFrl27YsX366GUuqCUuKCUuzhzIZEEoQh/a1qmFyMfPhObNm3Cxo0bUVxcHFHW6XSic+fOWkDr0aMHOnfuzHFpRNRgMJARUb0khMD+/fuxevVqLYCtW7cOlZWVEWUbN26M7t274/fPV0ApdcFR4mJ3QyKbCQggRYWaVYXR/xyJtWvXYu3atSgsLIwom5KSgq5du+Koo45C79690bt3b7Ro0SIBtSYiqnkMZERUL3i9Xqxfvx7Lly/HihUrsGrVKhQUFESUy8zMRM+ePbHsq7VQil1wFLuhVDkTUGMi0ro8ZlXhsqdHYN26dVi3bp3uRbCbNWuG3r17o0+fPujduze6du3KVjQiqhcYyIioTiorK8OqVauwYsUK/Pnnn1i9enVE61egK9Sm2Tv9wavYDaWcLV9EyUybQCS7Chc+PBwrVqzApk2bIsakpaamai1offr0QZ8+fZCVlZWgWhMRxY6BjIjqhMLCQixbtgzLly/H8uXLsXHjxogDtOzsbPTp0wcLP13uD2AlbigqwxdRXSccKkS2F2NfvRgrV67EqlWrIsajORwOdO/eHccddxz69u3LgEZEdQYDGRElpbKyMixfvhxLlizB0qVLsXHjxojJN1q0aIEDKwrhKHJDKUrxz3zI1i+iek9A+C9unVOFM+8cjD///BO7du0KKcOARkR1BQMZESUFj8eD1atXY+nSpViyZAlWr14d0QLWoUMH7PhtPxxFbjiKUqBUcuwXEfmJFB/UXA/OvudU/PHHH4YBrX///ujfvz969eoFt9udoNoSER3BQEZECSGEwLZt27Bw4UIsWrQIy5cvjxgD1rJlS+xfdhiOwhQ4Dqdw8g0ikmYV0NLT09G3b1/0798fAwYMQNu2baEobGEnotrHQEZEtaasrAxLlizRQtjevXtD7m/UqBEK15fBcbg6gFVyBjUisodI8UHN82DorQOwePFiHD58OOT+li1baq1nJ5xwArKzsxNTUSJqcBjIiKjGCCGwZcsWLFy4EAsXLsTy5cvh9Xq1+91uN4499lj88flaOA6ncgwYEdUKAQGR6cW1b1+K33//HStWrEBVVZV2v9PpRO/evXHyySdj0KBBaNeuHVvPiKjGMJARka28Xi+WLVuGOXPmYN68edi/f3/I/a1bt8bexYfgOJQKR2EKZ0EkooQTDgE114ORjw/DokWLsH379pD727Rpg0GDBmHgwIE49thjef0zIrIVAxkRxa20tBQLFy7E3Llz8dtvv4Vc1DUlJQV9+/bF4s9Ww1GQAqWCrWBElNxEqg+3fDIa8+bNw7Jly0Ja9jMzMzFgwAAMGjQIJ510EnJychJYUyKqDxjIiCgm+fn5mDdvHubOnYulS5eGdPdp1KgRCteUw1GQ5h8LxlYwIqqjhFOFmufB8L+djAULFoSMPXM6nejbty+GDh2KU045BY0aNUpcRYmozmIgIyJp+/fvx6xZs/DLL79g1apVIfe1a9cOuxcchONgKpRiN1vBiKjeERAQ2VW4/KXzMG/ePGzevFm7z+Fw4JhjjsGQIUNw6qmnolmzZgmsKRHVJQxkRGQqPz9fC2ErVqwIua9Xr15Y+/02OA6mwlHOMRVE1LCoaV5c8+7FmD17NtauXRtyX69evTB06FAMGTIELVu2TFANiaguYCAjoggHDx7Er7/+il9++QXLly9HYDehKAr69OmD1VO2+FvCPLwuGBER4B93dsOEUfj111+xcuXKkPt69eqF4cOH47TTTmO3RiKKwEBGRAD8E3PMmjULP/30E/7880+oqqrd17t3b6z5Zhuc+QxhRERWRIoPt3w6GrNnz8ayZcu0k1pOpxP9+vXD8OHDMXjwYGRkZCS4pkSUDBjIiBowr9eL33//HT/99BPmzJkDj8ej3Xf00Udj3Xfb4cxPYwgjIoqRcPtw48eXY8aMGSHdGlNTUzF48GAMGzYMAwYMgNvtTmAtiSiRGMiIGhghBNavX4+ffvoJM2fOREFBgXZfhw4dsPPXg3AeSINSyRBGRGQnNc2L0f8+HzNmzMDOnTu123NycnDGGWfg3HPPRffu3XkRaqIGhoGMqIHIz8/HtGnTMG3aNGzdulW7PS8vD8WrK+HYnw6lxMXZEYmIapiAgMjyYuSzZ0ScGOvSpQvOPfdcDB8+HHl5eYmrJBHVGgYyonrM5/Nh0aJF+O677zB//nz4fD4A/os1e3cpcOxP918nTDCEERElgoCAyPPg1DtPCOk67nK5MGjQIJx77rno378/XC7OZEtUXzGQEdVD+/btw/fff48ffvgB+/fv127v1asX1n21HY78NCg+RwJrSERE4YRLxa0TR2Pq1KlYt26ddnvTpk1x1lln4bzzzkObNm0SWEMiqgkMZET1hNfrxfz58/Htt99i0aJF2qxeOTk5KF3jhWNfOhxlPMNKRFQXqJlVuPDZ0zF9+nQUFhZqt5944okYOXIkTjrpJDidHOtLVB8wkBHVcfn5+fjmm2/wzTffhIxD6Nu3L1ZM3ORvDWOXRCKiOkkoAo/MvA3fffcdFi1apN3eokULXHDBBRgxYgQaN26cwBoSUbwYyIjqICEEVq9ejcmTJ2PWrFnwer0AgEaNGqFoeaW/NayCrWFERPWJSPPiLy8Nxw8//ICioiIA/rFmQ4cOxciRI9GnTx/O0EhUBzGQEdUhHo8HP//8M/73v/+FXM+mT58+WPPFdjgOprI1jIionhMOgXu/ux5fffUVVq9erd3euXNnXHLJJRg+fDhSU1MTWEMiigYDGVEdcODAAXz11Vf49ttvcfjwYQDVMyXucMC5OwOOUl5QlIioIVIzq3DWoydj+vTpqKysBODvLXHRRRdh5MiRnDqfqA5gICNKYlu2bMHEiRMxffp0rVtis2bNUPB7OZx706F4OVMiEREBwqni+o8vxZdffqnNrpuSkoKzzjoLl156KTp27JjYChKRIQYyoiQjhMCff/6Jzz77DAsWLNBuP/bYY7Fq4lZ/t0RevJmIiHQIReChn27BpEmTQrq2n3jiiRg1ahROOOEEjjMjSjIMZERJwufzYe7cufjss8+0MQGKokA5kALnzkw4StgtkYiI5AgIiJwqnPTX3pg7d652KZRu3bph9OjRGDJkCKfNJ0oSDGRECebxeDB16lRMnDgRu3btAlA9PmybE85dGZwtkYiI4iLSvDj/H0Pxww8/oLy8HADQrl07jB49GsOHD4fbzRN+RInEQEaUIJWVlfjuu+/w3//+FwcOHAAAZGdno2yVCueeDChVHB9GRET2ES4Vo985D19++SWKi4sBAM2bN8cVV1yB8847jzMzEiUIAxlRLauoqMA333yDzz77DAcPHgRQPVHHwgo496ZBURnEiIio5ginius+ugSTJk1CQUEBAP/MjJdffjkuuugipKWlJbiGRA0LAxlRLSkvL8fXX3+NiRMnal+ALVq0wMF5ZXDsS+f1w4iIqFYJReD2/12NTz/9FHv37gUANG7cGFdeeSUuvPBCtpgR1RIGMqIa5vF48M033+Djjz/GoUOHAAAtW7ZE/pxSOPYziBERUWIJReCe767Dhx9+iN27dwMAmjRpgquuugrnn38+UlJSElxDovqNgYyohni9XkybNg0TJkzAvn37AACtW7fG/lklcBxIYxAjIqKkIhSBu74ehw8//FD73mrWrBnGjBmDESNGwOXiJFNENYGBjMhmqqri119/xfjx47F9+3YA/i+0Q/Mr2CJGRERJL9CV8aOPPtImnWrbti1uvPFGDBkyhNcxI7IZAxmRjRYvXoy3334b69evBwDk5uaiZJnPP2uiyi8wIiKqO4QicPOky/HRRx/h8OHDAICjjz4aN998M4477riE1o2oPmEgI7LB1q1b8eabb+K3334DAGRkZKByjQLn7gwoPs6aSEREdZdwqrjynRGYNGmSdh2zgQMH4qabbkLnzp0TXDuiuo+BjCgOhw4dwgcffIBvv/0WPp8PTqcT2JEC5/YsKF4GMSIiqj+E24dz/zFY+85zOBw499xzccMNN6BRo0aJrh5RncVARhSDyspKfPHFF/jkk09QVlYGAHAcTIVzSxYcFRz0TERE9Zea5sWge/tg1qxZAIDMzEyMHTsWF198Mdxud2IrR1QHMZARRUEIgXnz5uH111/Hnj17AADdu3fHli8PwFHEaYGJiKjhePnPx/D6669j7dq1APwTf9x2220YOHAgJ/4gigIDGZGknTt34tVXX8XChQsBVM+cOLfSP4U9+MVDREQNj4DAPd9fh3feeQcFBQUAgP79++P2229Hx44dE1s5ojqCgYzIQnl5OT755BNMnDgRVVVVcLlcEFtS4NyRCUXlODEiIiLhVHHJ68PxxRdfaN+Vl19+OcaMGYO0tLREV48oqTGQEZmYPXs2XnvtNezfvx8AoBxKgWtzNhzlHCdGREQUTqR50e+OHpg/fz4AoGXLlrj77rsxcODABNeMKHkxkBHpOHDgAF555RXMmTMHgP8LJf+XcjgOprJ7IhERkYXHfr0Dr776qnZC89RTT8Udd9yB5s2bJ7hmRMmHgYwoiKqq+Prrr/HOO++grKzMP4391rTq7okMYkRERLKEQ8XFrw/D559/Dp/Ph/T0dFx33XW4+OKL/d+vRASAgYxIs2XLFrz44otYuXIlAEApcsO1MRuOMk7hS0REFCs1owo9x7bBihUrAAC9evXCgw8+iA4dOiS4ZkTJgYGMGjyv14uPP/4YH3/8MbxeL9LT01G10gXHnnR2TyQiIrKBgMDtU67GW2+9hbKyMqSkpGDcuHG4/PLL4XJxXDY1bAxk1KBt2bIFzz77LNavXw8AcBxMgWtTDhQPu1IQERHZTaT40Pf2LtolZHr06IEHH3wQXbp0SXDNiBKHgYwaJJ/Ph4kTJ+L9999HVVUVsrOzUb5Y4TXFiIiIapiAwL0/XI/XXnsNJSUlcDqduOaaazB69GiOLaMGiYGMGpwdO3bgueeew6pVqwAAjoIUuDayVYyIiKg2CbcPJ957lDajce/evfHII4+gdevWCa4ZUe1iIKMGQwiBb7/9Fq+//joqKyuRkZEBzzIXHPvZKkZERJQIgdayV155BWVlZUhPT8edd96Jc845B4rC72ZqGBjIqEEoKirCCy+8gNmzZwMAlMMpcG/IgVLJVjEiIqJEE6k+9LyuNZYvXw7Af92ye++9F3l5eYmtGFEtYCCjeu/PP//E008/jf379/v7pm9Mh3NXBlvFiIiIkoiAwLiPRmL8+PHw+Xxo0qQJHn/8cRx33HGJrhpRjWIgo3rL6/Xio48+wkcffQRVVdGmTRvs/74cjhJeV4yIiChZ/XvNM3j66aexfft2OBwOXHvttbjqqqvgcDgSXTWiGsFARvVSQUEBnnzySfzxxx8AAMe+NLg2Z0PxcWdORESU7IRDxWlPHo9p06YBAPr3749HHnkEjRo1SnDNiOzHQEb1zooVK/D4448jPz/ff5HnZW44D6QnulpEREQUBQGBv313Lf7v//4PlZWVaNq0KR577DF2YaR6h4GM6g0hBCZPnow33ngDPp8PSpkTrjV5cJS7El01IiIiipGa4UXri7Kwbds2OBwO3Hrrrbj00ks5CyPVGwxkVC+UlZXhxRdfxMyZMwEAjgOpcG3IgaKyiyIREVFdJxwCpz3ZV+vCeOaZZ+K+++5DampqgmtGFD8GMqrz9uzZg4ceegibN2/2z6K4IQPO3emcRZGIiKgeERC4+fPLtZ4w3bt3x7PPPosWLVokumpEcWHzAdVpy5cvx0033YTNmzejcePGcCzNgWs3p7QnIiKqbxQoeOeySXj55ZeRm5uL9evX44YbbsCyZcsSXTWiuLCFjOqsqVOn4sUXX4TX64VS4oJ7dR4UDy/0TEREVN+JVB86XNkIGzZsgNPpxD333IPzzjsv0dUiigkDGdU5Pp8P77zzDiZOnAgAcOSnwrU+F4rKVjEiIqKGQjgETn3sGMyYMQMAcNVVV+H666/n9cqozmEgozqlsrISTz31FObMmQMAcG7PhHN7JrsoEhERNUACAle8dw4+/PBDAMDpp5+Ohx56iJN9UJ3CQEZ1RlFRER566CGsWLECbrcbYkU6nPm8vhgREVFD97fvr8ULL7wAn8+HPn364Nlnn0VeXl6iq0UkhYGM6oR9+/bh3nvvxbZt25CVlYXK+W44ilISXS0iIiJKEs///iAeffRRlJSUoG3btnj55ZfRsmXLRFeLyBIDGSW9TZs24b777kN+fj5Q6YB7VSM4ynixZyIiIgqlpnvRZIQbe/fuRbNmzfCvf/0LHTt2THS1iExx1CMltRUrVuD2229Hfn4+lFInUv5szDBGREREuhzlLhR840XHjh1x4MAB3H777VizZk2iq0VkioGMktYff/yBe++9FyUlJVAK3XAvb8xp7YmIiMiU4nFi98RSHHXUUSgsLMRdd92FpUuXJrpaRIYYyCgpLVq0CPfddx/Ky8uhHEqBe1UjKD5urkRERGRN8Tqw6f18HH/88SgvL8d9992HBQsWJLpaRLp4hEtJZ968eXjooYfg8XjgKEjxX/CZ1xgjIiKiKCg+B1a+vhOnnHIKqqqq8MgjjzCUUVJiIKOkMnv2bDzyyCOoqqryX/B5TR4UwTBGRERE0VOEgoXPr8OQIUMYyihpcZZFShq//fYbHn74YXi9Xjj2p8G1PocXfCYiIqK4CUVg4MNH4ddff4Xb7cazzz6Lk046KdHVIgLAQEZJYunSpbj//vv93RQPpMK1LpdhjIiIiGwjFIGTHuqJ2bNnIyUlBc899xwGDBiQ6GoRMZBR4q1YsQL33nsvysvL4TiYAtdadlMkIiIi+wlF4MQHe2DOnDlIS0vDyy+/jN69eye6WtTAMZBRQq1fvx533XWXf2r7Q9UTeDCMERERUQ0RikDfv3XCwoULkZ2djX//+9/o1KlToqtFDRgDGSXMnj17cMstt6CgoMB/nbFVjTibIhEREdU44RDodkMzrFq1Ck2bNsUbb7yBVq1aJbpa1EAxkFFCFBUV4dZbb8X27duhlLrgXs7rjBEREVHtES4Vba7IwpYtW9C2bVu88cYbaNSoUaKrRQ0Qj4Cp1lVWVuKhhx7C9u3bgQoH3KvyGMaIiIioVileB3ZNKkbLli2xc+dOPPzww6isrEx0tagB4lEw1SpVVfHss89ixYoVgFeBe3UjKB5noqtFREREDZDiceLgd1XIzs7GqlWr8Pzzz4Odx6i2MZBRrfrPf/6DWbNmwe12w70mD44yV6KrRERERA2Yo8KFZ555Bk6nEzNnzsSECRMSXSVqYBjIqNb8/PPP+OSTTwAAYmU6HIUpCa4REREREXD/Cc/hnnvuAQB88MEHmDFjRoJrRA0JJ/WgWrFx40bceuutqKiogHNnBlxbsxNdJSIiIqIQF/37NEycOBEpKSl444030KNHj0RXiRoABjKqcYcPH8aNN96IvXv3+q81tioPCji9PRERESUXAYF+93fF/Pnz0bJlS/znP/9BTk5OoqtF9Ry7LFKN8vl8ePLJJ7F3716g3An32lyGMSIiIkpKChQs/tcGtG7dGnv37sUzzzwDVVUTXS2q5xjIqEZ98sknWLJkCdLT0+Few+ntiYiIKLkpPgeefvpppKSk4LffftPGvxPVFB4dU435888/8cEHHwAAqpa5OaMiERER1Qm39ngYd999NwBg/PjxWLJkSYJrRPUZx5BRjSgsLMS1116LAwcOwLEvDe4NuYmuEhEREVFUhv2jH77//ns0adIEEyZMQG4uj2fIfmwhI9sJIfCPf/wDBw4cgFLuhGsTZ1QkIiKiumf6339H+/btcfDgQfzrX//iRaOpRjCQke2+//57zJ8/H263G661uVBUbmZERERU9yiqgkcffRROpxOzZs3CtGnTEl0lqod4pEy22rdvH/79738DANT1qXCUuhNcIyIiIqLY3XbUI7j22msBAK+88gr27NmT4BpRfcNARrYRQuDFF19EWVkZlCI3nLsyEl0lIiIiorh9OPZr9OnTB2VlZXj++efZdZFsxUBGtvnhhx+waNEiQAVcG3J4vTEiIiKqFxQoWPf+bqSmpuKPP/7Ajz/+mOgqUT3CQEa2yM/P17oqOrdlwVHOKe6JiIio/lAqXVrXxTfeeAOHDx9ObIWo3mAgI1u89dZbKC0thVLsYldFIqo5ikTLu11liIjCjL9qMrp27YqioiK88cYbia4O1RMMZBS3ZcuWYfr06VAUBa6N7KpIRDUkEKLMwpRdZYiIdChCwb333gtFUTBt2jQsXrw40VWieoCBjOLi9XrxyiuvAACU3WmcVZGIakZ4eNILU3aVISIycWfvx/GXv/wFAPD666/D6/UmuEZU1zGQUVy++uorbN68GahS4NqWlejqEBEREdW4b++djdzcXGzZsgXff/99oqtDdRwDGcWsuLgY77//PgDAtS0LipebExHVAKNWrODb7SpDRCRB8Tkwbtw4AMD48eNRWlqa2ApRncYjaIrZZ599hpKSEiilTjj2pie6OkRUH1mFJUWxrwwRURTeuuwztG/fHocPH8Ynn3yS6OpQHcZARjE5ePAgvvzySwD+ae45kQcRaewISYoCOJyAYv41pTity0BxSJZhaCMieYpQcMsttwAAvvjiC+zfvz/BNaK6ioGMYvLRRx+hoqICSpEbjoLURFeHiJKFHd0IFSU0QBmEKcXprL5bMQ5cEsvRbjcLZbU9M6NMqCWihHv8lP/DscceC4/Hg//+97+Jrg7VUQxkFLU9e/bg22+/BVA9doytY0QE2DPzYXgY024PvS0Qxo7crfM4ieXo/m9V55oOSjKhloiSggJFG0v23XffIT8/P7EVojqJgYyiNmnSJHi9XiiHU+AoTEl0dYgoGcR7MeZAi5BZ18Lq+8LD2JG7gx4vsRzTFrNk6r7IUEaU1B7o/w/06dOHrWQUMwYyisrhw4e16V1dOzISXBsiSgp2TKoBWI/zAqC4zK91qDgUKCkSJ4pkx5TJXGDaTpwJkqjOCW4l++abb3Dw4MHEVojqHAYyisqUKVNQWVkJpcQFha1jRGRTUDBq9Qop43bJL8+krOJQoDid/hY104XITAZi4yyPdgVbIqp1D534T/Tq1Qsejwf/+9//El0dqmMYyEhaRUWFtpNx7szk2DGihs7mMGYWkLSAZTaBBwAEBTu9UBberdEylFWXsy5Ti9dBYygjSjoKFFx++eUA/K1klZWVCa4R1SUMZCRt2rRpKCwsBMqdcORzZkWiBq2GWsakApJRKLNoZTOa+KPGQpnMJCexYigjSjpPn/Y6WrZsicLCQkyfPj3R1aE6hIGMpAgh8M033wAAnHvS2TpG1JDVcDfF8ICk2/0wPFwZLav6sVZT49seymTHnsXzWjKUESUVBQouuugiAMCXX34JIUSCa0R1BQMZSVmzZg02bNgAqIBzf3qiq0MUHR642seOyTkUh+WYMcWh+H/Mxo05FH8Qs1qW22VLnQLlrMtIzjhpx3bJbZsoqYwf8yVSU1OxefNmrFmzJtHVoTqCgYykBFrHHPlpULzcbChOdnbbsmN6cm3K9SSa6ry2ycwoaNNMidJVcrmgWKxTSUmB4jKZwEOpnsDDakIQh+L/kapYku0D6/N2SVTHKD4HhgwZAgD44YcfElwbqiuS7FuFklFFRQV++eUXAIBzL1vHKE4yXbqiWY7ZsuycUMGueicjq9dJ+jVy6P8dVkame6DicgEOB+BwGIYybXp7h0M3lCmK4l9GdZg0DGVB9ZFqJQMYyojI0C//+h0AMHPmTFRUVCS4NlQXJNk3CiWjefPmoby8HKhwQCkyvwYQkSE7p+yWCQ12lTG6rb6wer6xhDGj26INYwE6oSziWmNhoSwkjB25UaqljKGMiOKhFLrRqlUrlJaWYs6cOYmuDtUBSfZtQslo5syZAADnAU7mQTGy82K3sl0Qre6LZ9KF+nLga0cXRcA8mEQ5xXxEGAsICmWGF36uDmW6YUxbQVgo06tTXQ9l9WX7JKqjFCgYPnw4AGDWrFmJrQzVCUn2TULJpri4GAsXLgQAOA6kJbg2VCfZebFbu5Zlx6QLdrf42VXvaNZpWcb6K0J2IgyZizAbhrEApxOOrEzL+ihZmZbvneJ2mY8ZiyKU2TYZiJ1qe3uSUVfrlIzqar0bkM/u+g4AsHDhQpSVlSW4NpTsGMjI1MKFC1FVVQWl1AlHmUVXn0Sy64A+mmXV1nKSld2TYNRa+LF5tydTb9nWOJn12BFK7Zqco7qMVdhSnE7LVjQlxW0+W6KiQElPk6q74nJBycgwL+R0mk4GAgCK02HZxVF2unzTafery2g/FsuSZsf+TnZ7kt3m6mqdrNhVp2jXWVvY8ho1pcyFdu3awePxYP78+YmuDiU5BjIyFdiJOAqS+ELQsl3QoumqZteEE/X1C8zOyTKiWVfcy3KE/jYrF0UgqdExbWa3m5WLZ1kyk3MgNIwYBRPF6Twyg6HBODMlJWhsqlE3w/Q07X0JKR9STAHS06rX6zAOZYFWOIPJQLRlVf82CmVKlJOBGIYynbF2Bgswv1/3MRLbQU2Xqct1kllGTdUpnvXZqbbXV08oUDB06FAA4DgyssRARoa8Xu+R7orJGshiOeg1Wk5NBYj69gUWT7CIdtk1EcaM/re63aicXiiz62DSqFyst8XaMqZzm1QACYSxgPBAYhSuwl4nLYxpy3FGPC4QxoIn/9ANZeFdInVCWcQEIiahLKSc3msS1l0zIpTJboey26/usmw6OVDb26ad+/d4b4vmBEdNfufEur5Y1fb66pmJ9/q7LS5evBg+ny/BtaFkxkBGhlatWoXi4mKgSoFSnISzK8bT9aWmWnhqurUo0eJ5zaNZh+1de2w+6DUrZ0e3pWhac2XLxRrGdO4zCmMRLUYGE2ZYtXT5F6DohzFtOUdCmV4YO1KPoFBmND4tKJQZTrEfFspMWwSPFNItpwS9BqasWsRiCWXxbivR7gPsWl+8n4Xgz12sy4pmnxTtaxDtMuNZTrKurx5Sit3IyspCcXEx1q5dm+jqUBJjICNDf/zxBwDAcTgl+WZXtPqikD3otaOMTJ1k7o92fXaw+/nZUXfZ7oLRLM/iftMxTtG0TEi/lhLPzyEzUYTka2753jnkJ+ewKKcEJsOwmjAjTaLV3WGxLTicUFJTDMNY8PpMJwupXpcj1bxOgVAmO2bOrJwiO2mInWPKZLYpu7Y7qTLGXUYjlmVHnexYlmzQsrtOMuzal9u9vgZMgYJ+/foBgNbjiEgPAxkZ0gJZocEU03aT/XJLxJeATAC0Yzmyy7Bap2wZO9allZUccyXZChP3BAiSIUN6Ugan03x5VsEuqJzM+qTKyrayWL1O1a+BZYBwuywm3nBASUmxnggj6ILOhmWcTjgyM6A4zco4gOZNgLwc8/W5XHBkGk/yoSiKf1kOxXhK/aB6WYYImW0vMCGKSTnFoWg/lsuKt7UteJ0S27llMJcoE1zWolK181mQFc0+UbpedpzQk1iO7PJqO9zVY/379wdw5JiKSA8DGenyeDxYtWoVAECpjUBm1ZUkGXf6sYZDvcfIdI3RW188y4q2jBmZgz2rsBXl2C3tQNVoogjJkKH3dyzlQtZn0tpmWu/qMqb/690eaxmdVhzDLnbBB81GY6XcLm07NezWaBF4gOqD+Yz0oGXpjWFzQDTOhXA4INwuiNxs/YU5nf7lVAc8S2ahTGIykFjGh+m9VjLvi9VyDW83KBdcD6nxcEbvceDEhFkwlVyWLdu5WflYRRvu4glliiJ1YiVkOfG08EX7vZaoE6V1xCuXvw8AWLt2Lbxeb4JrQ8mKgYx0rV+/Hh6PB/AoUMolL5AaK6twkCw7+mi6qtixrFjWZ9eXcCxhzOh/mduiPJC0miRBOmRY3GbUOmG1fN3AFX4AalBGisxrLPGaS12oOTyMBYSPlQqEMe22yFCmG3TCWslCwljIsoLHsB0JYwG6oSwQxqqXoRfK/BeRDnsd9EKZxGQg8ZxoCAlDFqHffEGxbUO6oVBmPFz4exzeSqzXoia5LFu282geJyuWfZfMbXqhTIncv0nVz2hZEWVt/L5Nlu/qJKOUO5GTk4PKykps3Lgx0dWhJMVARrrWrVsHAHCUuGt2/JhVOEi2HbzdZwJtGYcRxWtl9ziweM9YR9PNSCeM6ZWVOZiVaQ2TOvg1KRcSuIwOQMPKmKxE/2+jchKvufRrYNadLDBWKjyMaQs6EspMW8YcR7rvRYSxkGU5dMNYQEgoCw5jQcsIDmW6YUyrk2LdtTI4lNnw/ilOp+V2F3Uok6iXabdJmfFwYWFLdz2KI7plyb6eZmWsPg+xhLJ4w55MT4GQkxFxrC94WXZ0l5eRbN/ZSUCBgl69egEAVqxYkeDaULJiICNdGzZsAAAoJTU0u2I0QaMukjpgqOUvQelWtugCkmU50yLW42MCY1rMygaCjeyyrOotNcW5bN1dbsvwo7gkPmeyr6fVGKjAWDCr1Tmd5mEM/kDjyDQIUAFOJxxWF2kG/JNlGIWxgPQ0eHq01g1jASI9BZU925if7AmEMqtw43RCserm6HBIdcOU+sxUr9NyUbKTgUisT2bbk91eZD5bDrOZNaOok/Tzs2N8mgyrLprBRV1uiZMmFt+REmE6UE564hS7xgrLTAwjy87vtgQ66qijABw5tiIKx0BGutavXw8AUEokduTRqgM7z7jItFLI3B/N+mTPGMdbRgkaA2W5KPNyMlN/ay00ZmOuAmVlJtSwmv1P8bfAKIpFy1DgIMfqYMhqfUFlrCZ3cKS4TQ+M/cHOYjKN6jJSz8/tMq+TokBJT/eHFqN6OaqntneaT3GvOB1QMjMBs/qnpaKic1N4012oaqYfkoTbifJWmfBmOlHZrYXxshQFcLv96zQs4wCcDv9MjtUXmzZclqKYT+HvONK6Zyaw7ckcQNsxqYYi+dkCYB3OXS7r7c/pMB9/F143i/ulWhMlu+bK7F+kXk+LUKa1Ptvx/lUHO6n9sV0TpwT/NmMVypK994fNPrpvMgBg8+bNCasDJTcGMorg9XqxdetWAICj1OYWsoYSxoz+D7893lBmd1c2s2WFffHLhi3LrnoGy4roLmc1EYZDMS8jMylF8Dglo9ASVM402Fh14wovYxDKtKDlqD5Y1wk/wWFMpoxp3YO7IBpMzqGFscD7ZrpdHTmo0gstWhgLlNOrU3UYU93+9ahO421POBUIRYE3w4nKrgahLNBV0eHQD2WBMKZ9bkz2Ww7HkS6XeqHMoSD8YtW6VQq/XWKSC9NJNWTKBN6/eD43QOh2Zfb8opwUxfL5WXVRtugybLZu3fUFlmtRRu9/vXVIXc9PZjyhbFdtuyZOkS1nFMpimVgkEeOjbeQo9W/vW7du5cQepIuBjCLs3bvXv8PwAai0cRNpaGFMtlysoczO9VndZhas9G4zeaz0hBd6Bw9GE2EE10OvjMykFHoz+YWHFp1yusEm/H/ZOoWFsuAw5r8/MpTptYwZhbJwus/PYnKOiDAWqHf4+hw6rWJhoSwijAUE1yksjAGAcDkiWsmE24mKlkduE4ribykLD2XB48b0Qll4GKu+TbeVLLjeeqEsLIwFP2+z//2L1htHp1NOIgjoltGZyCTqzw2gG6x0n1+Mk6JYPj+dfZPMPsaQEl53iRkwJYKx4bLCy0juZ2Wen20TpxiR+W4JD2UyE4sYrk8ipMVSpjZUOJGWlgaPx4Pdu3fX/vop6TGQUYSdO3cCAJQKl30TejTkMBbL2cdY1xfLWUzLsQxyE0Bof5u0rklPCS8zRiZQP726Ba9HZlIKi65kWv2Mzv4HBxuj9cnWKXjMXHAY0+4/EsrMuikGhzKrcrKTc+iGsYDgrouBMGa0rBS3cRgLWp5eGAvwpTq1UBYIYyKs5SwilBnMqKiFMr0wppUL67qoKLrvDVAdygzCmPbwQCur2bYn08qKIwfZlpNzBH6bTGQi/bmBfhg7sr7glhKDuktOimL5/ML3URb7GEtK4L2x7npouaho3pto9rP6hbT7bJ04Jd7eF4FQZjWxSDQTkNhRphaPSxQoaNu2LQAwkJEuBjKKoAUyu6a7T7YwFm83wfBlySwvmv75dixHspzlGIVox4tZfXFLjLmyHF8SPPbMrG4yE1xItCQFxvRYj/9xQklNtSgjOQGEURjT7vcfyFpNlqEo1WPPLMf2OKGkpZp/VgMTXJi95k6n/8LQRmFMq78TSlaWeRm3C562jXXDWIAv1YnK1lm6YSwgEMoqerQ0DyIuJ5SsTMsDSyU9TT+MaWUc0hN9mI47w5FtT2bfIDVZhsyYRonPDQDLbd2/PomTHTKvVfUYSvOVSY5vldjvAZCb7MRi7KdWTnYSHZn1Sexn7Vqf9GslsyzZiT5kysmUibXVLZ5lWWjZsiUAfy8konAMZBRh3759AAClwoZAlogwFu/ZPDvWE1JMPtRYftFGs6w4y4RMuiEbAs2KBCbLMDkoDrQomLUsAKiecMI6IBmNgdLWUV3G8OAa8N/ndlu0alWHTZkJCyxCp6IocKSmmh+kKtUHzdUByLLubrMJJySCslmLV3i90qzq7vCHP6fDeHluFzxtGkG4FDg8quGiKvOc2D7Oi20XmtdLdSmoynKiomtz40IOhz+UZZhM4AEALpf5JB+oDlLVE4eYrk/2tbc6aSDT2oagz6BZGZdBK2l4Gau6y2x7gNZSYRhOA/sFh8SkKBITi2hlJVqsLPd7sgHXbL8XVE5qkiDL7UU5UtaMRGuhVGubRJngdUrdX1vf4doyayeUBQLZnj174l4W1T8MZBTh4MGD/j+q4gxkyRrGZMrGs56QYhLdTBD2pWbS5S/qZcVYL6MxGAYLM1yPViR8soxwQQddWrcvg+1HCQpRlmWM6hMxdsoglAUfdBodgIbfbhDKQtZpUkZJS9UmKNE9uAyEseoyhqGsul6m4SC8jMFrEBLGTAbOK6mpR1qI9NYXCGNmB2+BMFbdMqYIAUdVZCirzHMi/8Jy5GaXIadlMbafp7844QSg+H8sQxngr7tRKAs62FVS9UNnyAQeZqEsUM4s2DgcRwKLQSiTGY+m3R54b4w+NyGTc5hM4BE0ptHsM6FtV4ZdDUPrYRzKjqxPZlIUqS7IkG8l0hU+4ZCe8JNMZi20esuNYX2GjwkWFGqkJg3R+V/mMabrtrpdtseIXeKdEMSqC6SiYMqL0wAcOelNFIyBjCIUFBQAAJQqkzPYVhIdxmwME7E+JqpJMML/N5kUI+plRfk4q3Fepv/rPUTv4Ch8QojwMGAQykKClkEoiwhjOpNS6M8uqFOHiMk5IsOX0QGp7oyGYcsPL6OkhXUDCw9lwWEsqExEKAs6IA6pQ3A4MCoTXke9ljGd/yO6sIWHMr0w5gg7iAkLY9pD1dBQFghj2VnlAACX06cbyrQwpi3IIJTpjdMLD2U6B7vhoUx3Ag+9UKazLehua+HbcVgok52xMWJSDb3PTcQEG5Gty0ZjGvU+ExHbVcRkEgZBwGpSFJ1QpjspSoyhTDekSU7IE/5/xGtsNIYxnNUkQUaP02M1iYfkZCB6t0tPQBJZyPz/aMrVZCgzGANrepvZicAqf10LCwtjqR3VcwxkFEELZJ4YN49Eh7Hw2+wYuxVl2XgHZ1tNGx/NOqNpWbPsNhn6AOsiZpNgBFqBzFqnAmWhE7T8d4YcXBq2jClHJqUwv/5WUCudWatF4IBaZnyFXhgLWlbgumCG3fwCoUwvjAWV0UKZzgFxSF3cbusy2jgok26KQcHYcDxRIJSZtYwFhzJFiQhj2uqqQ1llnhMHLqjQwlhAeCiLCGPaggBfSmT41617IJQZfW6CQpnpBB7BocxkWwhpjTXajgMTtUh0T9R+G217gc+N4RT0R0KZ4ec0uO5W25XWFdB8nxYyKYpR3SW6aUYbykxbzCQn5NGKGwXO4FBmMR4zmvVJLUtishM7uzFaLMi8TtGUq4lQZtUapvd38G06ZRjIyAwDGUUoLS31/+EN7AijCFjJEsZk7oulnNSirF8DmbFg0ZSxY1ky48CkyzkU6wPGwMGe1fitQEuSWTAIjMuy+hK1Gs8StDxTsmN/AhePtniOlt34ApNumJUJjEExOCAO0CYpkShj+XlWFP2uibHUPcUNT+s800V5cl3Ye64HOdlluve7nD60aF8A7235+mGsmpqi+FvJzN4XoDpsWkw44XRaTs7hX5RyJDAbCYy7stiOZSZtAOAvZ7XtWY25CmwLktu71HYlwXRSm8D6pCavkAxlMq+p1OQVOq1g4esy675YA+vzr9Q6+MR78i/aMtInOOPpWhoLmeMYqy6KemW8DGRkjIGMIpSXV595VuWa4RNOGA/6t3UZMi1Cst1IZNg9g6NZucCMhTJf7lZlZF8Dq4PhAKtAE1iWTBmZ9UrUKzA2xnKCBKfTeibLwCx6Zu+N0wE4zMfFAQCcOtf+CifzPgfq7DP/XCiB1jbDAtUHJJbblANqVhqcFcYXTK1s5MbO871Iy/Cgskr/Oaa7vTiv7Upc0GYFfDfnG1fLBzjLvfDlZZnXSwj/a2oWOlXhf29kQ5LMvlQiKEpNACExrkVqe5fZjp0OuX2DQ25mQq1+ZvfJ1F8muMm0WOl1n9StlnU5IYT0ciz3MRJlpMl+50gvLv562TppSIIpXv9zKCkpSXBNKBkl99ZLCREIZIpPp3uYFYkvmhoRTyhL1jAms26Zclb98PWmj5cZNG7U/QwSB53RhDGrx+iMPdMTcuAisyyT5Zj9r3e7zCQK/ht03pvg62IpBl3Z/Cs58tvoAFT2fQ5mEMpsDWOZ6f6WmCofXMWeiCKBMJaeXQkAUFUlIpSlu704u/Vq5DrLkeHwGIYyxQukFlRCUQWE22EcytSg520VyoCoQpkUmc+IzAQQgHG3KomTFBHjL3XLhD3eZN8Q+Ns0lFmdYAnvDibxeTYMZTKfifDJOQyrZf15kg1jMsuV2ccA8J80iEYthTKrnhuxTCyS1KGs+iR3VVVVgitCySiJt1xKBK/XC5/P5/8nPJAByR3KYpHsYSze22RazmTCl97/4bfVZBgzeqzJ2DOj2wxDWQxhzOh2wzE0wf8bjtsJCl96FynWC2V6/4cfgMq+z3qve1gosz2MBV1DLDyUhYexgOBQFhzGAvRCWXAY869f0Q9lqs5+QS+UhR/oSoYy6RaNWEKZzIyGeiFGZ116oSlyEh2jMGTd0q4bysLrYbWtB26TeT6xfCaMJueIqII9YcxIzHWINoxpC6vZUCY106/ksnQKyVeuNlW/FV6vN65tgeqnJN1qKVGkdhLJGsqibSWrK2FM7754r9MS6Joi0z0x+LdRmdoIY+HLsBqLE/S34cGMbDdGWD+3aM6gy1yrTDeMaQsKCmVmLWaBA1DZ99nsda8OZTUZxrRFVIeyyjz9MBagVp9xDg9jAYFQVnXTwcgwptUjLJTphbGA4FBmdKCbyFBmee0pi25+wScuzK7TFdiOLS/6bLH/CA9lRqFKdqIFqRa/QBmJz4RJN0Xp1qlqsgfgUvsP2Va6WMOYtrCaCWWxBDSjsiaF5CuXAMXFxYmuAiWZ5N5iqdbZ1hcdSN5QJlTbwpit7BovJrssWbIDvW0bx2DTcgymzj+ymijWY3aQHiXp9dr1Htp5wgCwDgg+n9w6FUU3jAXzZDkMw1gwvTAWkOHw4OhG+1CZ54gMYwGO6rrIDuaXKSPzGshuVzL7UtmTHTaMoQTkt2PLIOKwmNxH9nn5K2VdRmfafOPFyZ2EsSIsxmJq4g1QwcuRWZYd46+jFPfsjHWZOPL8tJ5IRNUYyChEyBeM0b4xmqCVbKEsmi+g2v6ySsCXo20HADA/8BJC+O+XOQCVLWelehlG9ZKuT2A5Fl+gwucDVFXudbD6Mq7yAl7jCS4gVH+LlSqMP2My6wlQJerlUAAhIDwm4x98Pv96vRbrVfzLUsr0w5ZwO1HRIh0ppSpSf8kxXExuZjm+POZ9XJi9yrDMurKWWPS/Y+BNU1DUKUO/Oj4BR1F1qDMLAKoAAuM/jA4eA++NWRlE0X0t8J7YtS+12uYtPjehZS3KBO43K1d9n2G4UdUjz92qToHXyuw5Vt9nR6uWzGukhTHJ10o6vFmtz7KgGvrbrIzlogSE5HeJWbnAfVbLklpXIr5PrQRVOyNDf19EDRcDGYVwBB+MKDo7vVgOCpIllMWyg5Z4jOwXkV3rs10Nh7Lg22wJZYHbJQ66An+H1yuiHmbLEkdCj1EoC7ndIJRFvA5G4Ucbw+nTD2XBB/yAfiiLJYyZ1Ss4WKg+/VAW/DifzziUBQ6EhYDi9UWEskAYU90KFFUga49PN5TlZpZjUq8P0cmdhTbODN1Qtq6sJX794gSkHhKAAlRlRoYyxSfgKCzzv28Oky591WEs5L0ND1yB9yb4c6wTykK2P7NtL/y9MAvfZveHs/psVf8dVygL364kHhsRkoLDWIDRssJfK73nGHZbPKEs4vOsVyY8HJm8VjKsXs+ow5jR/0a36S5K6P4dbbnw24yWVWfDGAA4jpx8SDG67iQ1WAxkFEJRFKSnp/v/cUp+EcpIdCir4VkYGcqOsDpQiSuUWf1vdJvM+q1uMwhluiEt7GDW8HUIf6ze/8GhLDyMaesLCmUxhjFDeq08RqEsmF4oCz8ADgtlwWFMe4hOKAuEsfYu/7gvp+KICGUhYUxbWGgoCw5jWpX0QpleGAunF8YCwl9Dme3Y6D20CiixhjKD7T+mUKa3XemU0SPVDTB82UavlcRJl1hCmdUJF8AkHEm8DnqPtapDzGFM7/YYwlg8t8mGrzodxgCI6mOqjIwMe4eHUL3AQEYRMjMzARzZefj/seGAPVGhrJauU8ZQdoTWNc/k/qhDmeRZfaMyUt0mw5dlcLAbCGGm3RiD12kgJJSZtZh5vcZhTFuf8N8fZxgLqZPZmI7gUGb0mgaHMqMDkEAoq/JFhLEALZTNykFuZjn+e/SRMBYQHMrWlbXErC/Dwpi2MH8oK+6QERHGtCoFhzKrMOZQzMNYcDmYtRYFPdbqPbRqEYs2lFl8JqIKZWbblUwXRlSHJL3PX+gC/b9ltneLfU00oUymS7JlOJJ4HYKXYdVKF3cYi7YM4msNC75PtntiXQ9jALST3OyuSHoYyChCIJDBFehjbmfQSEAos4tkKJP54pD+crFaZ6CMXV+0MvWSGTAuUcZ/4CJxMCXT4qOqR8b2mJWRWZ/P51+W2cGuEBCeyOtlhZcTHo9lvYTMsnw+iEqLMgAgVIgqk7FngP+Aucp82mUhBITZGDZtWT6Iigrzz7XPB1FhPTEHqrxI211meLeiCmTs8+HAyubo5Na/dphTcWCvLxU/f30C0gqM6+T0ALnrikzrLQIBqqLSOpAEArMF4fVanxCQuUaRVVgB5FtKZdbn80ltD1LblXR4kNiPytQpihMU1suSqLvPJ7evlaiX8FmHYSG57Ultn5Kvlex3nF0nKWs9jMkcp8geywSXc/rrqPVCIgrCQEYRsrOzAQDCJeR3OtGo56HMX8z67KHMmUGhCrkuJlZ1kxnAHSD7JWo2HiIQEq0G86sWoUxVIXw+fxmzcj6f9aQU1ZNumJapDolWLWlCZn3aIoXxQW/gANzkgFcLRz6feXATqr/FSgjjUKZWL8uqpbD69TbtlqiKI+VMDuoDdYdRKFMUiOpZ75Qq49dTdSqoaORA1g4Fnb65UbfMkkoPrv70DqQUAb5Uk1YPAX83ycA08HrV8qkQJWXW23FlpdwJiMBraRZYqq9PZPaZkNk+ARy53+ozYVVGcn8tAhO6WAXO6s+06bICwdXsM1jlrd5/mH1OVcsyWjnAen9lVUY2/AnVfN+ut16r9Vns/60Ckq0TatS2mghjMq2zMidFgn6LFH89GzVqFE8NqZ5iIKMIzZo1AwCIlBqclrWBhrJYBi5Lf3Eb1S2a4BYgO/hc7//wsQh6ywq+zSiU6Y3D0isXOECVKKMtT69M4EA4EBQNDi6D62q4vrCDat1QFh4OVTUilGnLDxycGrWmBcJY8PrDQ5ka1upldPAcNjmHbigLf58NQlnw+oTXGxnKAmEscH0lTxUytpVGrs6poLyJA6pLgeIFcle7IkLZkkoPrvz0TqTvr27ZcuiHMmcl0HhFYUgdwkNZSBgDjLfjQBjTKmrweQ5/DfW69IW/9zrbVcQ2JdONFzD8TFiWiRinZDKpTfDBp8QYTcNlhbci6n0Gq8JfK73Pafj69F8rqYk3ZMa/RUzAYnwiLST8xLo/jjb8af/a872UNGqyZUzvOEW2jN5nvDqQNWnSJNYaUj3GQEYRAoEMNRnIgAYXyuIZuBzxxS07VbFs65oeyUH4IWeOjQKhRBdH6ZkKwwOD3mD3kDPHIjLYVT82pEwgjAXXKezgUvcgWW99VuWMWuqCQllIGAu6PyKUhYex4HoEDlzDw1hQGcuxS+GhzOh9DgtleuszCmXB9XGUViBjx5FQFhzGtIeEhbIllR5c+d8jYUxbXFgoc1YCjZcXRk63H3yRX58KUVaufyIjePsID2NahcO2R6NWxuBt0qh1NDiAGW1TMpNzAJGzYFqVMTjQ1J3URu8gVWJsZ8SyrLp0IjKMHVll0OspGb6kuiDKnJwynIAlchvS3d9Huz+OY33aOnX+NipjVi6haqObYvDt8ZapPqZq2rRpDBWk+s6V6ApQ8gnsLERqLVy4UAj7LgRc24QqdfFeu8aUCVVAcdg8eNuq/qrwT0YgM2bMKiSqDvNlqQICPiiKYjkORQlMqmEy2F3x+QCnU/8MuxD+gfw+H+BwRIax4Do5YHk2WltfYFlGVNW/vVt10wwcoBu1NDgcEB4PFLfLvFuhsLhuWHWZwDIN+XwQHkBxuczfZ5/Pvy2bXHhXeL1QKgCkp2ldFcPr4yiuQMYOoKRjVkQYCwiEsh4HbwEApO/T348EQllKkdAPY9oCFShenz+MmR3w+uAfM2bVvc2hWL/2MA5j2v0y217g/bPqxig7htLpNFshhM8HxenUD2NB5WQm7tGWZRbGAtu82fhIVUBAYj/qU6E4HeZhzK79HnBkP2sQjvxFBBSTl9zu9QXWacX/naM03DAWTRmJZQwdMxAzZ85kCxnpYgsZRWjVqhUAQKTVQiADDJv364RouhLa8AUiOyuV9IBqmS93yxnfqsd5Wa1PZlkS4z0CrT2WB7LVYcQstIlAK5LVwbXVGDb4D/SsJtQQMgEJ/oNU84NP/2uplleYL0j118lysL7V+LRAmUqLyTlUAVFZaTkBifB6/cHHZOZFR3EFMneU6YaxAFepQLvplWg11/x1d3gEGi87ZBzGqtcpikusxxiWV1hPnAJYT2SiGrRshpPZ9szGDYaVk2E5WUagldZqeWaBLXhxHk/MLWOhheT2s1IT1khNuiGx35MsJzOhhp3rkz1pJzfxkj2TikiVk57ESvKYws4JPCzs2LEDANC2bVtblkf1CwMZRejQoQMAQKT7pM442sYsmAXuS8bgJvMFIlM2ilkVLbuZVC9Hasphi7EO0Yxhi2t9gXpLdHHUlmV0sBC4z2pZgQlDLJ6fzPosJx9RhRaOzA4Ita6KQrWesMAsuKnVj68OwoYHVoFyRmP5tPX5l2EYIoK7RfpMZoUUwj9FvKcKKCoxXB9UFc5DpWj2p/7Mi06PQKONFXCWVSHlsAd5G/Tr5awQaL7wMBwlFeYtMIeL/C1fRq+5EP6QVb0fMnut1MpK88k5gt8b2UkbTFtV/csw3V6EONIN14RWTmJiEcvW4ODfRnS6HUesLzCToGxXbdOFSUyoIVEmqhkJZfefFq95yDKt1hfvJE/RdpG3o4xVOen3WIT+NipTi8cTAkILZO3atau19VLdwUBGEdq0aQOn0wm4BJBiY7cAWVaDZutSKJOZZCP8NpllmXVHCftSkxpDYDH2wPCgwmhMRLTrC1qWdr/R+Jygx+qGpOoylssKOotsdtAUcSCks75YyuiOsYoYj6YfyrSD+UCZiAk81NAy1XWIEFxOGIey8LFMEaFM7/nohbLqg32NUSgTAooqoPhUuPYXRYQyp0eg0YYKOMr961R8qm4o08JYcbm/nKrTjS44jAHVATb88xAUxoJv03mt1LBWxIgy4e+NzBjLAN1xh2GfP6OLCgeN9TS9rlVwOYttQe9//2MjXz9dvrAJefTqFL5dyexT45lQQ6JMxGtgdoJMJoyYLNvoNsv1Ga1T5rWKtTWrJtcXbRgz+t/otpqWoqK8vBxOpxNt2rSp/fVT0mMgowhutxutW7cGAIgMia4dNcHqDFddCmVWZeP4ErMcnK0TyiwnDTEIe3pf9tKzREa5LN0gFRS0IpalTZYRWUZ3WTpdevQOvnQPjsLWF0+ZkFkIDWdsDA1lEUErUKbqyLgzwzLhE6eEl9MJZUYHiFLd7YIPzMPDWEB4KKsOYwF6oUxRoYWxkHLlR+oaHsaOPDYolIWHMa0O+qEsQviEMgbdPrXX0OS9iXhtZCbeMPr8hV9UOLycTigzLGexLUTcbjTuMfz102kZi/jfsLUyyhNY1f9bfuYlyhi+BhL7k1hCWVzrC1+n5Mk+yzJ2LiueMhGPkTheSNCxQ+BYqlWrVnC73QmpAyU3BjLS1bVrVwCAmpWgQAZY7ziTPZRZfYnY0QUnuCXI6DFBoUyqq4vp6o50h5EdyyazPtPQpgrDMBZSNtDNz2pZBuuLqJNZ96Hq9cmUMRMIZZbXNBP+iT50D+aDy1QFtfLoCdTZKBgEHhvUvdKwSoFQZtDa5y8k/K1kRmEsIBDKwsJYQHAoc3oEcjfrj89yVPqQt6HKMIxpy1MFlCqvfhjT6l4dygKtYwYCr5HweMwno/H5LN8/7TWSaRGx+vwFLipsVC4olJmW05ZnNYbSpx/GtPUFhTKTbopancxeK8B6/xkoU/1bppu31X7B8jWQaHGPJpTZsj7Z9Ub5elqya33xhrHg+xN4zBA4lurRo0fC6kDJjYGMdPXs2RMAILIkzoInUjQDd2trhx3Nl4gdywqUkTl4kQhcUkFLYtyV9PosQo02dknigNFyDJvVZBkSdQpeX7zPTysjUyeZeonIa5lFCIxhs9heLC/GDf9rEN5FT3d9VhNcCBUor/AHJAOKT4VrXyGazz8IZ5n+fknxqUjLr0CLXw8YhjEA/kB66LDl5CPw+SBKy8z3C9WTq5iOgwo6YWAqOFSbFbMqE/jsyUyiIzFjpNSEGiZdIY+UUY+cgDBhuX1Cbl8FWO8Xoikj9f7J7hutSO777Vuf7HekxLJUmYlAJL5r7ZyYI8EGjTkeAAMZGWMgI11HHXUUAEBN9kAGyH2JWJWV7dJg51m2RJ2xize4RduVxOxMcbSBs7bOAkd1ZtaG11PmDL7B/+H3SQVTmdbLwG+zg/rq0CYzI6ThDI2BFjkhAE8VRFGxQTkBpaQMSkEhXAf0g5viU+HcU+APdkYzUKoqxOHC6tk1TSZOUYXW6mU6OUcgPJhNMBPekm0g5HW3KmO0vqB1yUxeEfLbqIxVuAvU1+r5yezvqrdfmdfA7H6p5+8vbF+AioYNvSNsE004svrekp1QI5oyMuWS3Nq1awEcOdlNFI6BjHR1794dDocDSFMhavoC0XaIJtzEOujXzn7oiQiAIcu1GGsgWybWZcmsK9b1ySxLdn1GB2uxvFYS9ZY54+8vatIt02RZ0YS7kDJ6B+Phk4/ohbLqC3wHLmAcEcqCwxhgHMqEAKpboUT13+GhTPGpcO47rF2cWqhqZCgLDmPBt4WHsqAwplVBb3IOnYlMwpcT/l7EE7wjyoSvT+d9N3yPY9mGZSYV0dlfae+blbCTCbFswyHdt60CZ6z7BKsysuzcD8fKzkkwYllWrOtLcBfEaIhUH/bv3w+n04nu3bsnujqUpBjISFdGRoa241BzLbr1JBPZGRmjOUNnVC7WL4NEBEDdesRwMGLHsuJdl8z67ApMsuuzq4zkwXv4fUYTCNgaBKymYA8PZdVhTLvbIJTpTuwQHMqCwlhImaBQFh7GjlRJBQLdEvXCmB6dMKYtL3xyDj0mE8wYiXVynJA6RdPiEs82bDWpSFjXRdlrn+lNtOOvhvw2LDOW1vB/2TLht8cbjuzat8S0bovvx2jKxNMF0c5eLEkocAzVo0cPZGRkJLg2lKwYyMjQ8cf7+zyreXUokAFHvhzsmBTE7nFn8QZAu7+I7OzCZ1eXwmjK2tFdUFYtvgbS42OsumXZ3VXOalxZIJSFhTHt7uBQVt06pruYQCgrLIoIYyFlyivg2nNIN4xp5bxeoKzcPIwFX4st3sk5ANMJZgC5kBF8v9T4JpNlhbeeWrIq4/NZjzvz6W8DRsuT6WZrxjSMRRa2vs+Oz3o0an19Nny3RfM9W1vrS0LD7jgZANC3b98E14SSGQMZGTrhhBMA+M/u1OoFopONXd0n7FxObX952bk+y+VIHnjY9fzsPNCRfg1sCnZ2hURAeiITy6AozCcW0UJZRaV58BHCuoxPhXq40HjcWaCc12s9sYiqahd0Ni5jPfskIB8gpLqoSgYMqTrJTlZjuTqTkwDBZJ6f5DYlUSn7Qo1d+x+79gey7NoH260Ohii7CAgsXboUAAMZmWMgI0N9+vRBSkqKfxxZRh0YR5YMZLpb1Pb6zMrIhLtou4rILMuqjFW9ZOtkd5CMdSxFzMuxoXuntk6TZcm0CgSVMWuJ0YKG6ZT51S1SBq1aAKpbmQREmcFsiaqAqKiobt3yGU/i4fMdWYZZnTxV5i0/YYFGtguo8QqjaMGNtzutZP2imlREJkSZtIIC8Idb2TBmV0u3HaLdD8ru76yWF+9+uo62MNVlIsOL/fv3IyUlBcccc0yiq0NJjIGMDKWlpR1pJWtscLBDkcK/8Gr6C1BmfbJlYg1cdtZB5rZoH2dHsItmWfHUKeIxUYx1M6uXXiiTGUdjUAepLmQWk0AYhrLANa0CMzSGh7KgMHZkWTqhLPDY4Otj6V3o2lMVeuAf/txkW5eiCWNm/8daxui2iCKR9YxlUhGpEwYGoUxqKv1YX4OaFOt+TK+M7HeF1X4jGVvFCACgNvG3zPfr1w9paWkJrg0lMwYyMjV48GAAR3YqJEm233xtri+W1p14W+CiKVPTdbIzENbmgRQQ+0GnXj3tanWRmDQkIpTplQkPZeEXGA4PZTph7MiygkKZXhgLXkfgMcFhLOi5BU/lbhTGohkLFrJsq9trYXKHaCd8sZzZM4p6xRTG9G5PdBjTuz3ekz8y66zJ9ZGtup3VDsCRYykiIwxkZOrkk0+GoigQ2d66Mf19MknGfvp2ds+TLSOzLpmydnfriadMcLnaqBOAqMe6mXZbsmscjVr9y/g5aKHMrIxPhfB4IsNYQEQoM66bEMI8jAX4fPph7EjF/WUkxmZJs3PsYDzrCSlq3dJp+f5ahfyggBtXGAu+P1nCWPD9du8z492/sotiQolUn3b9sZNOOinBtaFkx0BGppo0aYI+ffoAAHzN2G2RYpBs3WmiOXCyI3DaVSc7lyUdzG2aDERmEgiZC0xXVUGUlpovR1UhSkotQ5t2QWcT0teFk3gNaj9A2PPeyYQfmQlDhNX7G7w+GbUVkGTWZbfa3PdQjfE19R8zHXfccWjatGmCa0PJjoGMLA0fPhwAoDZnICOqUVYtaVZBMdqDNJn1SS1HctySVTc0YXJ9L1QHqSqv8SyO1UFLmzTEYBmBmf2kWn5kW6Nqa9IJu96XGqi3LROdSJWzoZVJtiWKwYdi1OGM5gCAM888M8E1obqAgYwsnX766XC73RCZXqgZJrOiEVH87B7HFu/6aiuUBS1HL0z5p8sPGtcVHspEdStN8LinsLoHh7GQOlnVU3a2y5qedMKu98WuSUWkVp/AMBZvGYYxipGaUYXNmzfD7XZjyJAhia4O1QEMZGQpOzsbAwcOBACoLdhKRlTjavvsfS1OPiIVdsJCWUgYCwgOZTphTCtTXXe9MCZVP6N61vakE/G813ZNGBLlDI41HsbsmlxHtgyRJLWlf7zrwIEDkZ2dneDaUF3AQEZSRowYAQDwtSiHcPDLiqjGRTO5iB0HkDKTj9g17ixwoG7RXU74VP0wFqAGuihaXT9MNQ1jIbfH280vcH9thLGou6jWzoQhUV30Ot6WsWjGe3ISDKoFwiGQ3t0JALjgggsSXBuqKxjISMqAAQPQqlUrwCWgcnIPotqRjAeHtTkZiM9nejFnAP77ZSaUkJlNMNkm56jlCVqkWYVWO2eCZEiiOkZtVoGSkhK0bt0a/fr1S3R1qI5gICMpTqcTF154IQDA16oMAvyCJGqwZLpRShy0W06qEfgdRzc7qZBl8vgaY9flEGTL18ZsgrF06zSrC4MY1TECAl3OawXA3zrmcPAwm+RwSyFp5557LlJSUiCyvBA5nNyDqEGLNZSFhSjDSTVM/pdadjQSeU2reMbsyT5Oez9k3rMYx31Jt3hJhjGiOkjkVmHdunVITU3Fueeem+jqUB3CQEbS8vLycM455wAAvO0srgVERPWf2aQKeqHMaAIPmYkgZCfLCLov6bogAva0ZMWzPjtn7Ix26nyGMarnjr2mCwD/uPu8vLzEVobqFAYyisoVV1wBp9MJ0cgDNZOtZEQNnlnLSnAos5rAQ/a6YLLVqkthTHZiimjXEU83RRtn1pSevINhjOowNbMKixcvhtPpxKhRoxJdHapjGMgoKq1bt8bpp58OAPCxlYyIAOuucLKTTlgctMtOvGFbGLNjUg07w5Ysu+pk5zW97ChDlMQG/+1YAP5rt7Zq1SrBtaG6hoGMojZ69GgAgNqkEmq616I0ERHsaXGJYjKQmNehlbEhRNSHkBHvuLNoyhDVUWqGF7/++isA4Morr0xwbaguYiCjqHXu3BmnnHIKoAC+jiWJrg4R1RXxhLIYJgORXnZEGRvGXdWnkBHruLNYyhDVQQNu7wlVVTFkyBB06dIl0dWhOoiBjGJyww03wOFw+FvJsj2Jrg4R1RWxhLJ4JgMxWqZhGYkxVfHMZlhXRfP84y1DVIeo2R7MmzcPDocD119/faKrQ3UUAxnFpGPHjtqUrt6OJbwuGRHJiyaUxTkZSMiy4q2XXeOu6jKOGSPSCAgcdXU7AP5LA3Xo0CHBNaK6ioGMYnbNNdcgNTUVIrcKauPKRFeHiOoS2yaVsA5tnOHPJgxjRCHUxpVYvnw5UlJScM011yS6OlSHMZBRzJo1a4ZLL70UAODrVAKh8EuWiKJkV/e/eC4UzYBARFESDoFmZ2QAAC655BI0a9YswTWiuoyBjOIyevRoNGnSBCLdB19bToNPRDWAgYmIkoyvTSn27NmDZs2aYcyYMYmuDtVxDGQUl8zMTNx2220A/NclE2mcBp+IomTXDIVWE4HIrJuIyIJI9cLZrQoA8Ne//hUZGRkJrhHVdQxkFLfTTz8d/fr1AxyAt3MxJ/ggouhZdVG0ayKQWJZJRBSk35094PF40K9fP5x22mmJrg7VAwxkFDdFUXD33XfD7XZDbeyB2oQTfBBRDOyY5dCudRER6fA1qcD8+fPhcrlw5513QlGURFeJ6gEGMrJFu3bttKvTe7sUQ7glz1ATEUXLLEwFQptVGSKiKAm3D5kn+f++6qqrOM092YaBjGxz9dVX+69Qn6LC26WIXReJqObohSqZsWgMY0QUAwEBb5diFBYWomvXrrj66qsTXSWqRxjIyDYpKSl4+OGH4XQ6oTathNqsItFVIqL6LDhcyYw9YxgjohipzSqgNq2E0+nEww8/DLfbnegqUT3CQEa26tatG8aNGweguutiii+xFSKi+k12XBnDGBHFSKT4kN7Pvw8ZN24cunbtmuAaUX3DQEa2Gz16NHr27Am4BKq6F7LrIhElFsMYEcVIQKDn9a1RXFyMHj16YPTo0YmuEtVDihD8piL7bd++HTfccAPKy8vh3J4J1/asRFeJiIiIKCre9iXwtS9FRkYG/vOf/6Bt27aJrhLVQ2whoxrRvn173HPPPQD8F4xWczkVPhEREdUdam4l1A5lAID77ruPYYxqDAMZ1ZgzzzwT559/PqAAVT2KINwcT0ZERETJT7h9yB7igBAC559/Ps4444xEV4nqMQYyqlF33HEHOnfuDKSoqOpZCKGwhywRERElL6EI9Li+FQoKCtCpUyfcfvvtia4S1XMcQ0Y1btu2bbjppptQVlYGx550uDflJLpKRERERBEEBLxdi6G2LEdWVhbefvtttG/fPtHVonqOLWRU4zp06IDHHnsMiqJAbVUOX8uyRFeJiIiIKILashxqy3IoioLHHnuMYYxqBQMZ1YqTTz4ZN954IwD/9cnUXE+Ca0RERER0hJrrgejhP2l800034aSTTkpwjaihYCCjWnPllVdi+PDh/kk+eh6GSPMmukpEREREUNO8yBiswufzYdiwYbjiiisSXSVqQBjIqNYoioL777/ff9Fot4Cn12EIt5roahEREVEDJtw+ND0/BYWFhejZsyceeOABKIqS6GpRA8JJPajWHTx4ELfeeiv27NkDpdgF94pGUFSeGyAiIqLaJZwqqvocgsjyok2bNnjzzTfRqFGjRFeLGhgeBVOta9KkCV566SXk5uZCZHtRdRSnwyciIqLaJRThvyRPlhd5eXl48cUXGcYoIRjIKCHatWuHf/7zn0hLS4No5IG3WxEEGMqIiIio5gkI/7FHIw/S0tLw/PPPo23btomuFjVQDGSUMEcffTSeeuopOJ1OqM0r4O1czFBGRERENUpA+Gd8bl4Bp9OJJ598EkcffXSiq0UNGAMZJdRJJ52EBx980H+Nstbl8HUqYSgjIiKiGiEg4OtUArWV/1pjDz/8MAYOHJjoalEDx0BGCXfWWWfhvvvuAwD42pTB14GhjIiIiOwlIODrUAJfG/+1xh544AH/5XiIEoyBjJLCeeedh7vvvhsA4GtXBl/70gTXiIiIiOoTX7tS+Nr5w9jf/vY3nHvuuQmuEZEfAxkljYsuugi33XYbAMDXvhTe9mwpIyIiovgICHg7FMPXwX+y97bbbsPIkSMTWymiIAxklFQuu+wy3HzzzQD8oYxjyoiIiChWAgK+zsVay9itt96Kyy67LMG1IgrFC0NTUpo8eTJeffVVAIBjbzpcG7OhQElwrYiIiKiuEBDwdi2G2rIcAHD33XfjoosuSnCtiCIxkFHS+uGHH/DCCy9AVVU49qfBtSEHimAoIyIiInNC8V9nTG1eAYfDgQceeADnnHNOoqtFpIuBjJLaL7/8gqeeego+nw+OghS41uZBURnKiIiISJ9wqPD2LITa2AOn04lHHnkEZ5xxRqKrRWSIgYyS3oIFC/Doo4/C4/FAKXbBvboRlCoOfyQiIqJQwu1D1dGHIbK9SE1NxZNPPomTTz450dUiMsVARnXCypUr8dBDD6GwsBAod8K9Kg+OCleiq0VERERJQk3zoqrXYSDdh9zcXDz//PPo1atXoqtFZImBjOqMHTt24N5778WePXuAKgXu1XlwFKckulpERESUYGpWFTKG+FBYWIhWrVrhpZdeQrt27RJdLSIpDGRUpxQUFODBBx/E2rVrARVwrcuF82BaoqtFRERECeJrWg7HMRXweDzo0aMH/vnPf6Jx48aJrhaRNAYyqnPKy8vxxBNPYMGCBQAA5/ZMOLdnclp8IiKiBkRA+K9Z2t5/weeBAwfi8ccfR0ZGRoJrRhQdBjKqk7xeL95++218/vnnAABHfipc63OgqJzsg4iIqL4TDhXeHkVQm1QCAK644grceOONcDqdCa4ZUfQYyKhOmzp1Kl566SVUVVVBKXXBvToPSiV3xkRERPWVSK2eSTHTC7fbjfvuuw9nn312oqtFFDMGMqrzVq5ciUceeQQFBQX+yT7W5sJRmJroahEREZHN1LxKZAwSKCwsROPGjfHMM8+gd+/eia4WUVwYyKhe2L9/P/7+979j3bp1gKgeV7aD48qIiIjqAwEBX7tSqB3LIIRAjx498Mwzz6BFixaJrhpR3BjIqN6orKzEa6+9hm+//RYAoBxKgXtdLhQvx5URERHVVcKloqpHIUQjDwDgggsuwO23347UVPaGofqBgYzqnalTp+Lll19GZWUlUOGAe10ur1dGRERUB6lZVajqeRhIU5Gamop77rmH48Wo3mEgo3pp06ZNePTRR7Fz505ABZzbsuDclcEujERERHWAgICvTRnQtRw+nw9t27bF008/jS5duiS6akS2YyCjequ0tBQvvPACfvnlFwDVXRg35EDxcBZGIiKiZCVSfKjqXgSR5++iOHToUNx///3IyspKcM2IagYDGdVrQgh8++23eP311/1dGKsUuDbkwFmQluiqERERURhf4wpkDgQKCwuRlpaGO+64AyNGjICisIcL1V8MZNQgbNu2DU899RQ2bNgAAHDsSYdrSzYUlTt4IiKiRBMOAW/HYqitywEA3bp1w+OPP4727dsnuGZENY+BjBoMj8eD//znP5g4cSIAQClzwrUhhxN+EBERJZCa7YG3exFEug8AMGrUKNxwww1ISeH3MzUMDGTU4CxevBjPPvssDh486L9m2a4MOLdlQRFsLSMiIqotQhHwdSiB2q4cQgg0a9YMDzzwAAYMGJDoqhHVKgYyapCKi4vx2muvYdq0aQCqW8vW58JR4k5wzYiIiOo/NasK3u6FEBn+VrGzzz4bt99+O7KzsxNcM6Lax0BGDdrcuXPx0ksvoaCgwN9atjMDzu1sLSMiIqoJwiHga1cC0aECqqqicePGuPfeezF48OBEV40oYRjIqMErKirCq6++iunTpwOobi3blANHIfuuExER2UXNrURV12KgeqzYsGHDcOeddyI3NzfBNSNKLAYyompz5szByy+/7B9bBsCxL80/E6PXkeCaERER1V3CpcLbqRhqiwoAQNOmTXHXXXfh1FNPTXDNiJIDAxlRkJKSErz77rv4+uuvIYTwX7dsSzYc+9OggN0YiYiIZAkIqM0q4O1cDLgFFEXByJEjceONNyIzMzPR1SNKGgxkRDpWrlyJF198EVu2bAEAKIdT4NqUDUe5K8E1IyIiSn5quhfeLsUQeR4AQKdOnXD//fejV69eCa4ZUfJhICMy4PV6MXHiREyYMAEej+fIFPk7MqH42I2RiIgonHCq8LUvBdpXwufzISUlBePGjcPll18Ol4snNYn0MJARWdi9ezdee+01zJ8/33+DxwHX1ix2YyQiIqomIKA2r4C3YwmQogIATjnlFPz1r39F69atE1w7ouTGQEYk6bfffsNrr72GnTt3AgCUIjdcm7N57TIiImrQ1Mwqf/fEnCoAQLt27XDnnXfyAs9EkhjIiKJQVVWFL774Ah9++CHKy8sBATj2p8G1LQuKx5no6hEREdUakeKDt2MJ1Ob+2RPT09Mxbtw4XHLJJXC7ebKSSBYDGVEM8vPz8fbbb+Onn37y36ACzl2ZcO7M4PgyIiKq14RTha9tKZxdvP4x1gDOPPNM3HTTTWjWrFmCa0dU9zCQEcVh9erVePPNN7F8+XL/DR4Frh1ZcOxNhyI4voyIiOoPoQioLcrhbV8CpPgPH4877jj89a9/RY8ePRJcO6K6i4GMKE5CCMydOxdvv/02duzYAQBQypxwbsuC42AqJ/4gIqI6TUBAbVIJX4cSiAwfAKB9+/a4+eabMWjQICgKv+eI4sFARmQTr9eLb7/9Fh988AEOHz4MAFCKXf7xZYdTGMyIiKhOERBQG3n8QSzLCwDIzc3Ftddei/PPP5/T2BPZhIGMyGalpaX47LPP8MUXX/gn/gCgFLrh2pYFR1FKgmtHRERkTc3xwNuhBCLXP3NiRkYGLrvsMowaNQqZmZkJrh1R/cJARlRDDh8+jE8//RRTpkzRBj0rh1L8wYxT5RMRURJSs6r8QayR/3srJSUFf/nLX3DllVciLy8vsZUjqqcYyIhq2IEDB/Dxxx/ju+++g9fr7/LhKEiBc0cmHMVsMSMiosRTczzwtivVgpjT6cR5552HMWPGcOZEohrGQEZUS3bv3o0PP/wQP/30E3w+/6Bo5XAKXDsyoRS6OcaMiIhqlYCAyPXA275U65rodDoxfPhwjBs3Dq1bt05wDYkaBgYyolq2a9cufPrpp5g6deqRYFbo9gczTv5BREQ1TJuso10pRI4/iLlcLpxzzjkYPXo0gxhRLWMgI0qQffv24dNPP8X333+Pqir/F6JS7IJzVyYc+Zwun4iI7KVNX9+uVJs1MSUlBeeffz4uv/xytGjRIsE1JGqYGMiIEiw/Px8TJ07E119/jcrKSv+NFU64dmXAsS8NiupIbAWJiKhOE47qCzq3LgPS/T0z0tLSMHLkSIwaNQpNmjRJcA2JGjYGMqIkcejQIUyZMgVTpkxBYWGh/8YqBc69GXDuTodS5UxsBYmIqE4Rbh98rcvha1kGuP2Hezk5ORg5ciQuueQSzppIlCQYyIiSTEVFBX788UdMmjQJu3bt8t+oAo79af7ujOW8ECcRERlTM7zwtS6F2rwCqO5k0aZNG1x66aU455xzkJ6entgKElEIBjKiJOXz+TB37lxMnDgRq1at0m5XDqXAuTsDjkOcAISIiPy0iTpalUE09mi39+7dG5dffjkGDRoEp5M9LYiSEQMZUR2wYsUKTJw4EXPnzoX2ka1wwLknA8596VC8HGdGRNQQCZcKX4ty+FqWa+PDFEXBqaeeilGjRqF3794JriERWWEgI6pDdu/eja+++grff/89iouL/TcGujPuyYCj1J3YChIRUa1QM6vga10GtdmRbolZWVk499xzcdFFF6FNmzaJrSARSWMgI6qDKioqMHPmTPzvf//Dhg0btNuVIjece9LhyE+DItidkYioPhGKgNq0Ar7WZRDZXu32bt264aKLLsKwYcOQlpaWwBoSUSwYyIjqMCEEVq5ciSlTpmDWrFnwequ/oKsUOA+kwbE3HY4ytpoREdVlakYV1Jbl8DWr0GZLdLlcOO200zBy5Ej07t0bisKTcER1FQMZUT1x8OBBfPfdd/juu++wb98+7Xal2AXnvnQ4DqRB8XGsGRFRXSCcKtRmFfC1KA9pDWvevDkuuOACnHfeeWjcuHECa0hEdmEgI6pnfD4flixZgu+//x5z5sw50mrmU+DIT4VzbzqUYjdnaCQiSjICAiKnCr4W5VCbVgDVkyK6XC4MGjQII0aMQP/+/TlbIlE9w0BGVI8dPnwY06ZNw3fffYdt27ZptytlTjgOpMG5Px1KJb/YiYgSSaT64GtWAbVFOUT1TIkA0LFjR4wYMQJnnXUWL+JMVI8xkBE1AEIIrFq1Ct999x1+/vlnVFRUaPcphW7/eLP8NE6fT0RUS4RL9U/Q0awCIrdKuz09PR2nn346zjvvPBx99NEcG0bUADCQETUwZWVl+PXXXzF9+nQsWbLkyHXNVMBxKBWO/WlwFKRylkYiIpsJRUBtXAm1eQXURpXadPWKoqBv374488wzMXToUGRkZCS2okRUqxjIiBqwAwcOYMaMGZg+fTo2btx45A6vAkd+Gpz5qVAOp3C8GRFRjAQERK7H3yWxaSXgOnLY1bVrVwwfPhxnnHEGmjdvnsBaElEiMZAREQBg06ZN+OmnnzBjxgwcOHDgyB1VChwHq8NZYQpbzoiILAgIiDwPfE0qoTapAFKOHGq1aNECw4YNw/Dhw9G5c+cE1pKIkgUDGRGF8Pl8WLZsGX7++WfMnj0bhYWFR+6sUuA4mApnfhrDGRFREKFUt4Q1rYDapFK7XhgA5Obm4tRTT8Xw4cNxzDHHwOHgeF0iOoKBjIgMeb1eLFu2DL/88othOHMcTIPjMMMZETU8QhFQ8zxQm1ZAbRwawvLy8nDqqadi6NChOO644+ByuRJYUyJKZgxkRCTF6/Xizz//1MLZ4cOHj9zpq54QpMD/w9kaiai+Ei7VPzFH40qoeZ6QMWGNGzfWQtgxxxzDEEZEUhjIiChqgXD266+/Yt68eaFjzgSgFLm1cOYo5wEJEdVdAgIi3aeFMJFTheB5jpo2baqFsD59+vCizUQUNQYyIoqLEALr16/HvHnzMG/ePGzYsCHkfqXM6Q9mh1KhFLnZtZGIkp5QBERO1ZEQFnSxZgDo1q0bBg0ahEGDBqF79+68VhgRxYWBjIhstW/fPi2c/fHHH/B6vUfu9ClwHHb7uzceSoFSydYzIkoOItULtZHH/5Mb2hXR7Xajb9++GDRoEE4++WS0aNEigTUlovqGgYyIakxJSQkWLVqEBQsWYNGiRTh06FDI/Uq5E8qhFH9AK0yBovIsMxHVDuFQoeZVQc2rhGjkiWgFy8vLw4knnohBgwZhwIABvFgzEdUYBjIiqhWqqmLjxo1YtGgRFi5ciJUrV8LnCzoAUgGlKAWOwylwFLqhFLt5QWoiso2AgMjy+mdFzKseCxY0/5DT6UTv3r0xYMAADBgwAN26deP09ERUKxjIiCghSktLsXTpUixcuBCLFi3C3r17Qwt4FTiK3FAK/SFNKXUxoBGRNAEBkekPYCLXAzWnKqQbIgC0atVKC2DHH388MjMzE1RbImrIGMiIKOGEENi+fTsWL16MpUuXYtmyZSguLg4t5FX83RoDLWhlDGhEdISAgMgIBLCqiHFgAJCVlYXjjjsOJ5xwAgYMGIC2bdtyQg4iSjgGMiJKOoHujX/88QeWLl2KP//8E2VlZaGFAi1oRSn+3yVujkEjakCEIiCyq6DmVEHkeKBmV4VcmBkAMjIycOyxx6Jv377o27cvunbtymnpiSjpMJARUdLzer1Yv349li5diqVLl2LlypWoqKgILaQCSom7OqS54ShK4QWqieoR4VahZnv809HnVEFkhY4BA4D09HQcc8wx6Nu3L4477jh0796dF2cmoqTHQEZEdY7X68XGjRuxfPlyrFy5EsuXL0dBQUFEOaXMCaXYDUdxdQtaqYvXQSOqA4Ti734osqugZldB5FRFzIIIAI0bN0afPn3Qp08f9O7dmwGMiOokBjIiqvOEENizZw+WL1+OFStWYMWKFdi6dWtkQRX+UBYc0sqdHItGlEACAiLd5w9fWVUQ2VUQmd6I1i8A6NSpE3r37q2FsNatW3MMGBHVeQxkRFQvFRYWYvXq1VizZo32U1RUFFnQq/gDWokLSml1KxpDGlGNEBAQaT6ILC9EVnUAy/JGTL4BANnZ2ejZsyd69uyJ3r17o3fv3sjOzk5ArYmIahYDGRE1CEII7N69G2vWrMHatWuxZs0arFu3Dh6PJ7KwD1o404JamYuThhBFQTiqux1mVUHN9EJU/8AZediRmpqKHj16aAHsqKOOYusXETUYDGRE1GB5vV5s2bIFa9aswfr167Fx40Zs2rQJlZWVkYUF/C1nJdXhrMwJR5kLqGBrGjVsAgJI80HN8PkDWKa/y6FI90Hvo5GSkoIuXbqgW7duWvjq0KEDx34RUYPFQEZEFMTn82Hnzp3YuHEjNmzYoP0+dOiQwQMApdxVHdIY1Kj+0robZnghAuErwwuR7gUMZpJv3Lgxunbtiq5du6Jbt27o2rUr2rZty6nniYiCMJAREVkQQuDgwYPYuHEjNm7ciC1btmDr1q3Ytm2bfpdH4EhQK3f6f1c4j/zN6fgpiQmXCpHu9YevdJ//73R/ANObaAPwt3q1b98eHTt21Fq/unTpgiZNmtRu5YmI6iAGMiKiGPl8PuzZswdbtmzBtm3b5IIaAFQpkSGtwgmlwumfZIQta1TDhFP1h6y06rAVCF5pvoiLKwdLSUlBh/9v786DoygT/49/eoaETAwQjiwEgwhyiCssNyKE5TIgYomALiy7nvw8SsWStTzyFVFQUVhXLNliXWoRL9RFS5D1yAoCitzKJch9yZFsDhIIOSfTvz8m05kh95CkM/H9qprqnn76efrJQ8T50D3P0769rrzySnXo0MHaj42N5ZFDAAgSgQwAapgvqB07dkwnT57UyZMn9csvv+jkyZNKTU2tuLLbkJHvlJHnkJHv9D76mO+0AptRxN01VMyUKTmLHy+MKJLZuEiKKJLZ2COzsfdYWbMa+ouJiVFcXJz1uuKKK9ShQwe1bt2axw0BoIYRyACgDuXm5ur06dNWQPNtT506Vebi1qX4Alu+Qyrwbo0C/33usjVkpkypkSkz3BuwFO7x7od7pMYloauywCV5v9/lH7ri4uLUrl07tW3bVi6Xqw5+GgCARCADgHojPz9fycnJSk5O1pkzZ3TmzJmA95mZmVVrqEjegFbgKH45pUKHjEKjeFsc4gqdTOVfD5gyJYcphXlkhpnecBXmkRlWvC0OXN4AVlTu97gu1qJFC7Vp08Z6xcbGqnXr1tb7iIiI2v3BAABVQiADgBCRm5urlJQUJScnKy0tTampqaW2WVlZ1Wu0SCUhrdAhuR0y3N7gZu2XtTUJcmUxHabUyCPTWbxt5N2qkSnTf1scuHyhq7xZCsvTrFkzxcTEqGXLloqJiVGrVq0UExOjmJgYK3gRuAAgNBDIAKAByc/PV3p6uhXS0tLSlJmZqbNnz1rbs2fPKiMjo+KJRypTJKnIIRUZMooMqfhleIyLjjm8+x5JHsP7Mg0ZAe+9+4an+Dyz+Jgu3vduKnsc0yw50W9rereGvHejDFOmw7dfvHWYMv325ZA3WDk83u9kOb3fzZLT9AYv//fFAayqd6/KEh4erhYtWig6OlrR0dFq3ry5oqOj1bJlSytw+fbDw8ODvxAAoF4hkAHAr5BpmsrNzQ0IaZmZmTp//rz1OnfunM6fP6/s7GzrfXZ2tmz/34apwJAWELxU5mLEdcnhcCgqKkpRUVFq0qSJ9fK9j4qKsgKXL3RFR0fL5XLJMLjzCAC/NgQyAECVeTweXbhwQefPn1dubq5ycnLK3F68n5+fr4KCAhUWFgZsyzrm8Xhq9WdwOp0KDw9XWFiY9fJ/79sPDw9XZGSkXC6X9YqIiJDL5Sp13OVyWYErMjJSDgezYQIAqoZABgCoV4qKimSapoqKiuTxeMrc998ahiGHw2Ftfa+LjxuGoUaNGjFtOwCgXiGQAQAAAIBNeKYCAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGzSyO4OAGj4TNNUXl6e3d0AgGqJiIiQYRh2dwNAA0cgA1Dr8vLyNGrUKLu7AQDVkpSUJJfLZXc3ADRwPLIIAAAAADbhDhmAOhW+5TcyzOJ/CzIcMhyGZDgkhyEZhgyHr6z4uGFIDkOG7xyrzLDqWC/J75gjsNxb0TpmGkbJP0n5tWEdN0qu5X/MNLzNWGUOb7ve44ZV5qtjFh+zyqWSNhzF5/vKFXiNgDrF3TcdZZQFnK+APpYcM0qVlaoj/35cVK5yjpfTXnn9KFWnonat42bp+n51rHK/tszi4/Kr5y0z/frjLTf8y6xzfWWm1abhf75hWmXWr5jvuK+54nO8vwqm9d5Xx1H83lvmfe+rZ5UZpgyV1HMUH7NeMq16DkMBx731PSX15DvfI6evTvH7krY8VntOv/ad8h53+tqzzvXI6WtTvn54Ss5XSdveNj1yyHt9b5m3PWfxMUMeOX31/eo4JW89ea/jGw/fe++1zOJ9FZeZchSPi1OGHJKcxX/YDhnFxww5DUMOOWQU/8kVFjg14f+1EQDUFQIZgLpVZBR/NJI3kKk4PBV/0i0pMyRHSfowvOmmuBHfJ3OHSn3iLkk7gSnA12apT+i66Jj/NVTGsYvrqSSI+QWyUsf8ApT/+4u7GHh+GXUcFZSV92OU6kc5P3ZFZeUNVbDt+bVZVlir1UBWVrkufm9abfv3w/+aZZVZAU5+5/ifX6qOWca1zICXfyArCXnFr/LK5Att3ib9w5svuEm+YCUr0PiXeQOZpyTQGP6BxrvvMAxvWCreyto3rHredlTcpq+uiusVHy+rzK+OszhMOq1++gKZWWkg82/P6RsPBR5zyL+Pfn+GAFAHeGQRAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJqxDBqBuOU2ZpncxWO+6Wobf1rhosWbf1m9f/sdMv/0qlPktSlWyfG95x0u2ZsC+AuqZkmT6jpe0acqQTFl1/cutNgIWz/LvSxnvzYAuXTQe5bwuPrcqa41VVFbla1WxzP+SFdYzK2nTLKeP5S8MHbh2mF+ZdW7wC0OX9MNvHTIFvw6ZqZJ6pmEGvuTdessUcNxjmJLhKWlTvmt5/NZLKz6nuNw0PFZ7Cmi/eOu7VvF7R/E5vq2kUsc8fv9Z+/Y9huRRyTpknuJjhspbh8ywFnN2quTPzPfeUVzn4rXNqr4wtKGShaHL+u8SAGoPgQxAnSro/z+7u1A7fJ93g3RxngB8/H+1PHZ2JGj+iZgHcwDgYvzNCAAAAAA2MUzTvIR/0wWAypmmqby8PLu70eDk5eXplltukSStWLFCERERNveoYWBca0cojmtERIQMg3vWAGoXjywCqHWGYcjlctndjQYtIiKCMa4FjGvtYFwBoASPLAIAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2YZZFAAAAALAJd8gAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJs0srsDAPBrkJOTow8//FDr1q1TcnKyHA6H2rVrp+HDh2vChAkKCwsLuu2MjAwtXbpUGzduVEpKiho3bqwOHTpo9OjRuummm2QYRpn10tPTtXPnTh04cMB6nTt3TpL0+uuvq1evXkH3qa7Ux3E9efKk1q9frx07dujw4cPKyMiQ0+lUq1at1KNHD916663q2rVr0P2qC/VxXL///nvt2LFDBw4cUEpKijIzM1VQUKBmzZqpU6dOGjZsmBISEtSoER9tAIQWwzRN0+5OAEBDlpycrGnTpik5OVmSFBERIY/Ho4KCAklS586dNX/+fDVp0qTabe/fv1+PP/64srKyJEkul0sFBQUqKiqSJPXv319z5swp8wP04sWLtWTJkjLbDYVAVh/Hdffu3XrooYcCjkVGRqqwsFCFhYWSJIfDoT//+c+69957q92vulAfx1WS7rzzTh09etR6HxkZKbfbbfVLkrp06aK5c+eqRYsW1e4bANiFQAYAtcjtdmvq1Kk6cuSIWrZsqf/7v/9T37595fF4tGbNGs2bN085OTm67rrrNHfu3Gq1nZ2drT/96U/KyMjQFVdcoWeeeUZXX321CgsLtXLlSi1YsEBut1vjxo3T9OnTS9V/66239Pnnn6tLly7q2rWrWrZsafWhvgey+jqu27dv1/Tp03X99dfrhhtuUK9evdSsWTMVFRXpwIED+vvf/65du3ZJkp544gmNHTu2xsakJtTXcZW8/4AQExOj7t27KzY2Vo0bN5YkpaWl6T//+Y+WLFkij8ej/v37669//WuNjAcA1AkTAFBrVq5cacbHx5vx8fHm7t27S5V//fXXVvm2bduq1faiRYvM+Ph4c+TIkeapU6dKlb/77rtmfHy8OXToUPPEiROlyt1ud8D706dPW3358ccfq9WXulZfxzUlJaXMsfYpKCgw77rrLjM+Pt6cNGlStfpVF+rruFbFm2++afUtJSWl2vUBwC5M6gEAteirr76SJPXq1UvXXnttqfIRI0YoNjY24NyqSkpKstpo27ZtqfLx48fL5XKpqKhIX3/9dalyp9NZrevVJ/V1XH/zm9+oXbt25bYdFhamhIQESdKpU6d0/vz5avWtttXXca2Ka665xtpPS0urdn0AsAuBDABqSV5enn766SdJ0nXXXVfmOYZhaMCAAZKkrVu3VrntEydOKCUlRZKs+heLjIxUjx49qt12fRfq4xoeHm7t+747VR+E+rj6HgU1DKPMwAcA9RWBDABqyfHjx+XxeCRJHTp0KPc8X1lGRoY1y2Fljhw5Uqp+WTp27ChJOnbsWJXaDQWhPq7bt2+XJLVs2VLNmjWrdv3aEorjmpOToyNHjmjhwoX66KOPJEkJCQmKjo6uUn0AqA+YGxYAaon/Y1MxMTHlnteqVauAOk2bNq207fT09Gq1feHCBeXk5CgyMrLStuu7UB7Xn376SevXr5ckjR07ttwp3u0QKuO6Z88ePfjgg6WOO51OjRo1So899lil/QGA+oQ7ZABQS3Jycqx934xwZYmIiCizjl1t13ehOq6ZmZmaNWuWPB6P4uLiNHny5CrVqyuhMq6NGjVSixYt1KJFi4Dp8W+++WbdfffdFbYPAPURd8gAAKhlOTk5evrpp5WcnKzIyEjNmjWrQdyttEPXrl21fPlySZLH49Hp06e1bNkyrVixQklJSZoxY4YGDx5sbycBoBq4QwYAtcT/A3d+fn655+Xl5ZVZx66267tQG9fc3Fw9+eST2rNnj1wul+bOnatOnTpVqT91KdTGVfIush0XF6fHHntMDz74oHJzczV79mxmWQQQUghkAFBL/L9rk5qaWu55/h8e/etUpGXLltVq+7LLLmswgSyUxtUXxnbu3CmXy6VXXnnFmkmwvgmlcS3LuHHjFB4ertzcXK1evbpadQHATgQyAKgl7du3l8Ph/Wv26NGj5Z7nK2vRokWVJkiQSmajq6xt3+x2V155ZZXaDQWhMq6+MLZjxw5FRETolVdeUc+ePavUDzuEyriWp3HjxmrSpIkk7xpvABAqCGQAUEsiIiKsxXU3b95c5jmmaWrLli2SpH79+lW57Xbt2ql169YVtp2bm2utzVSdtuu7UBjX3NxcPfHEE9qxY4f1mGJ9DmNSaIxrRXJycpSZmSlJcrlc1a4PAHYhkAFALRo9erQk79pTe/fuLVW+Zs0anT59OuDcqjAMQ6NGjZIkffPNNzpz5kypcz799FPl5ubK6XTqhhtuCKb79VZ9HldfGPN/TLG+hzGf+jqubre70mt88MEH1kLbvXr1qnLfAMBuBDIAqEWjR49Wx44dZZqmZsyYoR9++EGSd3a4NWvWaN68eZKkAQMGqE+fPgF1Fy9erCFDhmjIkCFlfoCdNGmSWrRooby8PD355JPav3+/JKmwsFDLly/Xv/71L0ne6cDbtWtXqr7H41FmZqb1On/+vFWWnZ0dUFZQUFAzA1JD6uu45uXl6amnnrLCWCjcGfNXX8f166+/1lNPPaV169bp7Nmz1nGPx6PDhw9r3rx5evvttyVJ3bt314ABA2poRACg9hmmaZp2dwIAGrIzZ87o0UcfVXJysiTvo2Eej8cKOZ07d9b8+fOt77/4LF68WEuWLJEkffTRR4qNjS3V9v79+/X4448rKytLkndmuoKCAuuOQr9+/TRnzhyFh4eX2a8//OEPVfoZnn76ad14441V+4HrSH0c16+++kovvfSSJCk8PFxRUVEV/gyzZ89W9+7dq/mT1676OK5ffvml5syZY713uVwKDw9XTk6OCgsLreO9e/fWrFmzqvzdNgCoD1iHDABqWWxsrJYsWaIPP/xQ69atU3Jysho1aqQOHTpoxIgRmjBhQsACt9XRtWtXvf3221q6dKk2bNig//3vf4qIiFDHjh01evRojRkzxpqooaGpj+Pq/2+cBQUFysjIqPA6VXkUr67Vx3EdOHCgnnjiCW3fvl2HDh1SRkaGsrOzFR4ertjYWHXr1k3Dhw/XwIEDL/XHB4A6xx0yAAAAALBJw/xnUwAAAAAIAQQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAECA119/XUOGDNEjjzxid1dgs+zsbN10000aMmSIvv32W7u7AwANUiO7OwAADcWFCxd08OBB7du3T/v379f+/ft16tQpmaYpSfroo48UGxtbK9c2TVMTJ05UamqqpkyZovvvvz+odg4ePKjly5dLku67774a7KG9jhw5oi1btmj37t06cuSI0tPTVVRUpCZNmuiqq67SwIEDNXr0aEVFRdnd1XolKipKkyZN0qJFi/TGG29owIABaty4sd3dAoAGhUAGADVk2rRpOnjwoC3X3rdvn1JTUyVJ8fHxQbezcOFCFRUVacCAAerevXtNdc9W06ZN044dO8osy8jIUEZGhrZu3ar33ntPiYmJ6t+/f912sJ6bOHGili1bppSUFH388ceaMmWK3V0CgAaFRxYBoIb47oRJ3jsLvXr1UosWLerk2t99950kKSYmRt26dQuqjV27dmnbtm2S1KA+dPuCapMmTTRmzBglJiZqwYIFWrRokWbNmqWBAwdK8oazxMRE7dy5087u1jsul0sTJkyQJC1dulQ5OTk29wgAGhbukAFADRkzZoyio6PVtWtXxcXFyTAMTZs2TRkZGbV+bV8gGzRokAzDCKqNDz74QJIUGxur3/3udzXWN7vFxcXpjjvu0IgRIxQeHh5Q1rVrVw0dOlTvv/++3nzzTRUUFOjVV1/VO++8Y1Nv66eEhAQtXrxY58+f1+eff67bbrvN7i4BQIPBHTIAqCETJ07UyJEj1a5du6BDUTB++eUXHT9+XFLwjyumpqZq48aNkqRRo0bVaf9r27x583TjjTeWCmP+pkyZos6dO0uSjh07psOHD9dV90JCbGysevToIUn67LPPbO4NADQs3CEDgBDnm/3O95hkMFatWiWPxyNJGj58eJXquN1uffPNN1q/fr327dunzMxMFRUVKTo6Wh07dlTfvn01cuRItWzZMqDekCFDJEmjR49WYmKiTpw4oY8//lhbt25VWlqaLrvsMnXp0kV//OMf1bNnT6tefn6+vvzySyUlJenkyZPKy8tT27ZtdcMNN+i222675MkmevfubX0H8JdfftFVV10VdFvHjh3TihUrtHPnTp05c0Z5eXmKiopSkyZNFBsbqz59+mjw4MG64oorgmrf7Xbrv//9r9asWaMjR44oKytLhmGoadOmio6OVrdu3dS3b18NGjRIYWFhAXUvHv9jx47p008/1bZt25SWlqbc3Fy9+OKLpcL98OHDtXPnTh0/flz79u3T1VdfHdzgAAACEMgAIMT5HlccOHCgGjUK7q/1DRs2SPJ+z6p9+/aVnn/o0CE9++yzOnnyZKmy1NRUpaamavPmzTp8+LASExPLbWft2rV66aWXlJeXZx3Lz8/Xpk2btHnzZj3++OO6+eablZaWpsTERO3bty+g/tGjR/XPf/5TmzZt0quvvnpJocztdlv7DkfwD5CsWLFC8+fPV1FRUcDxrKwsZWVl6eTJk9q6dasOHz6sGTNmVLv9zMxM/eUvfylzAhnf2B88eFCfffaZli5dqri4uHLb+vLLL/Xqq6+qoKCg0uv6T/KyYcMGAhkA1BACGQCEsLS0NP3888+Sgn9csaCgQHv27JEkdevWrdLHFQ8ePKiHH35Yubm5kqRevXopISFB7du3V1hYmNLT07V3795K1606fPiwvvnmGzVv3lz33Xefde0ffvhB7777rvLy8vTaa6+pZ8+eeuGFF3To0CGNGzdOgwcPVnR0tE6dOqV33nlHhw8f1q5du7R06VLdfffdQY2BJP3444/WfocOHYJq48iRI1YYa9q0qW6++Wb17NlT0dHRKioqUnp6uvbv369NmzYF/Vjo/PnzrTDWp08fJSQkKDY2VpdddpkuXLig48ePa+fOndYjqOXZv3+/Vq1apaZNm+q2225T9+7dFRYWpmPHjqlNmzalzu/QoYNcLpdyc3P1448/6p577gmq/wCAQAQyAAhh69evl2maCg8P14ABA4Jq4/Dhw9bdoa5du1Z4rtvt1rPPPmuFsUcffdSagc/f9ddfr6lTpyolJaXctg4ePKjOnTtr/vz5atKkiXX8mmuuUVxcnGbOnCm3262HH35Y586d07x589S3b1/rvC5duqhfv3664447lJaWpuXLl+uOO+6Q0+ms1s8veR/7PHr0qCRvKG3Xrl2125CkNWvWWHfGXnvtNet7af7i4+M1depUZWVlVbv9/Px8K+jGx8frhRdeKBXsevbsqVtuuUW5ubkV3uk7evSo4uLitGDBgoDZQMubpdPpdKpLly7auXOnDhw4II/Hc0l3EgEAXvxNCgAhzPe4Yt++feVyuYJqw/+xw8qm6V+1apVOnTolyTurZFlhzF/r1q0rLH/qqacCwpjP0KFDFRMTI0k6e/asxo8fHxDGfKKionTjjTda5x07dqzC65UlLS1Nf/vb3yRJhmHowQcfrHYbPr4ZNaOiosoMY/6aNWtW7fbPnz9vheeePXtWeJfN5XJV+gjn9OnTq7U0g+/cvLw8paWlVbkeAKB8BDIACFHZ2dnavn27pEtbDDo9Pd3ab9q0aYXn+gKgJE2ePDnoa0reR+DKCy2GYQSUJSQklNuO/3mnT5+uVh/y8vKUmJhoBamLJxKpLl+IzM7O1po1a4JupzzNmjWzZotcvXr1Ja0JFhMTU2bIrYj/74f/7w0AIHgEMgAIURs3bpTb7ZbT6dSgQYOCbic/P9/aL+tulb8DBw5I8t4pqcrkHxWprL5/XyqajdD/vOoElMLCQj3zzDPWRCGDBw/W1KlTq1y/LAkJCdZdqZkzZ+qhhx7S+++/r127dlmPeV6KsLAwjR49WpK0d+9e3X777Zo3b55Wr15d7TAazCyS/oHMfyIWAEDw+A4ZAIQo392qa6+9VtHR0UG34/+dq8pm28vMzJRUcifoUkRERFRY7v84XkWPY/p/j8k3dX9l3G63ZsyYoS1btkiS+vfvr+eeey6o75/5a9u2rV5++WW99NJLSk1N1e7du7V7925J3nG++uqrNWTIEI0dO7bS8FueRx55RAUFBUpKStK5c+e0cuVKrVy5UpI3KPfv319jxoyp9E5fZXdDy+If3oOd0RMAEIg7ZAAQggoKCrR582ZJl/a4ouT9vpPPuXPnLqmtUOB2uzVz5kxrqv++ffvqxRdfrHDh6Oro06ePPvjgAz3//PMaM2aMNe18UVGR9uzZo4ULF2ry5MlWGKyuxo0bKzExUe+9957uvfde9e7d2wqsGRkZ+uqrrzRt2jQ988wzAQHqYsFMyOE/EYn/7w0AIHj88xYAhKBt27ZZj8BdaiDzn+K8skAWHR2tlJSUkJ3QwRfGfHcXe/furTlz5lzyotIXCw8P17BhwzRs2DBJ3juLP/zwg5KSkrRp0yadO3dOM2bM0NKlS0stnF1V7dq105133qk777xTRUVFOnjwoDZs2KAVK1bo7Nmz+vbbb7Vo0SI9/PDDNfZznT9/3tqvbMIWAEDVcIcMAEKQL1B07txZsbGxl9SW/5pbJ06cqPBc37T46enplZ5b31wcxnr16qWXX365xsNYWaKjozVixAjNnTtX48aNkyTl5uZq/fr1NdK+73HIe+65R//4xz+sx0FXrVpVI+37HD9+XJIUGxuryMjIGm0bAH6tCGQAEGI8Ho++//57Sd6JKC5V69at1apVK0myFpkuz5AhQ6z9pUuXXvK164rb7dZzzz1nhbGePXvqlVdeqfR7bLWhf//+1r7vO3k1KTY21lpHLZi1zsqTmZlpLXnw29/+tsbaBYBfOwIZAISY3bt3Wx/k/QPSpfCFhOPHj+vChQvlnjd8+HDrw/4XX3yhTz75pMJ2K1oYuq643W7NmjXLWlC5NsPYunXrKg1Zvu/+SdLll19erfZPnz6tbdu2VXjOmTNnrDtZbdu2rVb7Fdm7d6+1f91119VYuwDwa8d3yACghpw8edKaUc/Ht76VJK1duzZgNkSXy6WhQ4dW+zq+uzxt27YNaurysgwbNkxffPGFPB6Ptm3bpt///vdlnteoUSM9//zzeuihh5Sbm6vXX39d3377rUaNGqX27dsrLCxM6enp2rdvn9auXauuXbsqMTGxRvoYrNmzZ2vt2rWSvAHogQce0JkzZyqs07x5czVv3rza1/rkk080e/Zs9enTR3369NGVV16pZs2aqbCwUCkpKVq1apV1d7NNmzbVXq4gJSVF06dPV9u2bTVo0CB169ZNrVu3VuPGjZWVlaW9e/dq+fLl1myZlS3cXR1bt26V5P1+3MCBA2usXQD4tSOQAUAN2b17t+bMmVNu+cKFCwPet2nT5pICWU08rujTt29fxcTEKDU1VUlJSeUGMknq1KmT3njjDT377LM6ffq0tm/fbi1QfTHfd87s5L9A86lTp/TAAw9UWueuu+7SPffcE9T1CgoKtHHjRm3cuLHccy6//HLNmTOnwun8K3L69GktW7as3HKHw6HJkyfr1ltvDar9i7ndbq1evVqS965ssFP2AwBKI5ABQAg5dOiQdXfnUmdX9Od0OjV+/Hi9+eab2rRpkzIzMytc26xLly567733lJSUpO+++04HDx60vq/UvHlzXXXVVerXr59GjhxZY30MBTNnztSWLVu0c+dOHTlyRBkZGdYjjM2aNVOnTp0UHx+vhISEoKbZ79GjhxYsWKBt27Zp7969SklJ0dmzZ3XhwgVFRESobdu26tGjh8aOHVtjd08lWb8TkjRx4sQaaxcAIBmmaZp2dwIAUDVvvfWW3nrrLTVv3lyffvppUGtJlSc7O1uTJk3SuXPndP/992vKlCk11jZC25NPPqmNGzeqT58+eu211+zuDgA0KEzqAQAhxPe44vXXX1+jYUzyLvTrC2EffvihcnJyarR9hKa9e/dq48aNMgxD9913n93dAYAGh0AGACGisLBQ8fHxuuuuuzR+/PhaucaECRMUFxenrKws/fvf/66VayC0LFq0SJI0atQodevWzebeAEDDwyOLAIAAP//8szZu3KioqCjdfvvtdncHNsrOztayZctkmqbGjx9f4fcKAQDBIZABAAAAgE14ZBEAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCb/HwVVv4UvUCQOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 49\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "9955eb5c-5c49-4c20-bbe5-32d2d547527a", + "metadata": {}, + "source": [ + "An example to plot the image in the log scale" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "2e91030b-0ae0-4d77-8bf8-e51bb636536c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZTkWVnnj79j33JfKitrr+rqhe6GbhBB6aahaUC7FVFBRNQjMoLOMB5xDi7jFwdQPIj+YNzmDI4LMOIAygyiyDIu7M3SjGzd9Fbdte9VWZmVe0ZkfH5/RD4RN27e5XkiI7Myq54Xpw/dGTciPhHxWe7r837uvakkSRIoiqIoiqIoiqJcg6Sv9AYoiqIoiqIoiqJcKVSIFEVRFEVRFEW5ZlEhUhRFURRFURTlmkWFSFEURVEURVGUaxYVIkVRFEVRFEVRrllUiBRFURRFURRFuWZRIVIURVEURVEU5ZpFhUhRFEVRFEVRlGsWFSJFURRFURRFUa5ZVIgURdmyvOUtb0EqlcJnPvOZK70pUT7zmc8glUrhLW95y5XeFOUKceTIEaRSKbz61a/uyuulUik8//nP78prbSZe/epXI5VK4ciRI1d6UxRFuUZQIVIUpcm+ffuQSqWc/2zfvn1V+2q1ij/8wz/Ez/7sz+L2229HPp9HKpXCn//5n3vf48SJE/id3/kd/NiP/RgOHjyIdDqNVCqFQ4cOredHE3HHHXcglUrh4x//eLTtjTfeiFQqha9//esbsGXKvn37sG/fPvHz3vve93r37VQqhXe/+93O583Pz+PNb34zbrzxRhSLRWzbtg2veMUr8PDDDzvbX2lJ2Qo3CbbCNiqKcm2RvdIboCjK5qK/vx9veMMbVv29p6dn1d9mZ2ebbcfGxrB9+3YcP348+Ppf+9rX8KY3vQmpVAr79+9Hf38/Jicnu7Dl3eO1r30t7r//fvz5n/857rvvPm+7z372s3jsscfwzGc+E09/+tODr/msZz0LDz/8MEZGRrq9uYqAl770pbj99ttX/f2Zz3zmqr8tLi7iRS96Eb74xS/imc98Jn7pl34Jx48fx9/+7d/iH//xH/Gv//qvePazn70BW+3m4YcfRrlcvmLvv168/e1vx6//+q9j586dV3pTFEW5RlAhUhSljYGBAXZZV7lcxsc//nHcfvvtGB8fx1ve8ha89a1vDT7nmc98Jj73uc/htttuQ19fH57//Ofjs5/9bBe2vHv8+I//ON7whjfgYx/7GM6ePYuxsTFnO0rCXve610Vfs1wu46abburqdipyfviHf5hdsvaud70LX/ziF/Hyl78cH/rQh5BON4oqfvzHfxw//MM/jNe85jX49re/3fz7RnO17k/j4+MYHx+/0puhKMo1hJbMKYrSMfl8Hvfee6+o87Jr1y4897nPRV9f37pt17Fjx3DLLbcgn8/jr/7qr5p/n5ubw9vf/nbcfvvtqFQq6Onpwfd+7/fiAx/4QNvzS6USfuqnfgrVahXvfe97ne8xOTmJD3/4w+jp6cFP/MRPRLfJN4bo+c9/PlKpFKrVKn7rt34L1113HYrFIm688Ub82Z/9WbPdu9/9bjz1qU9FqVTCrl278OY3vxn1en3V+7z3ve/Fy172Mhw4cAClUgl9fX2444478P73v9+7bQ888ABe/OIXo7e3F319fXjhC1+IL33pS8HSpkceeQSvfvWrsXv3buTzeYyNjeFVr3oVHn300eh3QSwtLeFP/uRPcN9992Hv3r0oFAoYGhrCC1/4QnziE59wfn9Hjx7F0aNH28rdujUmxyRJkmYZ3e/93u+1Sc9LX/pSPPe5z8V3vvOdpsxTSR7QSA7N7XPdYDhy5Ahe+cpXYmRkBMViEc985jPxsY99TLSNdnnevn37mjck7r777rZtMOEeB0D7fvvVr34VP/ADP4ChoaG2MT6f/vSn8brXvQ4333wz+vr6UCqVcOutt+Ktb30rFhYW2l6Ps42hMUR/8zd/g7vuugv9/f0olUp46lOfire//e1YXFxc1ZbKK2dnZ/Erv/Ir2LNnDwqFAg4ePIh3vOMdSJKE9T0rinL1owmRoihtLC4u4v3vfz+OHTuGSqWCpz3tabjrrruQyWSu9Kax+OY3v4n77rsP09PT+PjHP44XvvCFABoC84IXvABf//rX8YxnPAOvec1rUK/X8alPfQqvetWr8NBDD+Ftb3tb83Ve+9rX4r/9t/+Gv/iLv8Cv/dqvrXqf97///VhYWMBrX/taZzmhlFe+8pX4yle+gvvuuw+5XA4f/vCH8brXvQ65XA7f+ta38L73vQ8/+IM/iHvuuQd///d/j9/6rd9CuVxetW3//t//e9xyyy246667MD4+josXL+LjH/84fvqnfxqPPvoofvu3f7ut/ec+9zm8+MUvxvLyMn70R38U1113Hb797W/j7rvvxgte8ALntn7yk5/Ej/7oj6JareIlL3kJDh48iBMnTuD//J//g3/8x3/Epz/9aTzjGc+IfuaJiQn80i/9Ep7znOfgRS96EUZHR3H69Gn8wz/8A+677z782Z/9GX7u534OQKNz++Y3vxl/8Ad/AABtZZ2uEjgf3/jGN/AHf/AHWFhYwM6dO3H33Xdj165dq9o98cQTOHbsGG644Qbs379/1eP33nsvPv/5z+Nf//Vfcffdd+P222/Hm9/8Zrz1rW/F3r172yTNHlN09OhRPOtZz8KBAwfw0z/905iYmMCHPvQhvPSlL8U///M/4+6772Z/HpM3vOEN+Lu/+zt89rOfxc/8zM84x1pJjwPiS1/6Et7+9rfjzjvvxGte8xpcuHAB+XweAPCOd7wDjzzyCJ7znOfgB37gB7CwsIAvfvGLeMtb3oLPfOYz+Od//ufm+YOzjT5+4zd+A29/+9sxMjKCV73qVejp6cEnPvEJ/MZv/AY+9alP4f/+3//b3CaiWq3i+77v+3Dq1Cnce++9yGaz+Lu/+zv8+q//OhYWFvDmN7+Z/wUrinL1kiiKoqywd+/eBMCqf/bv35985jOfiT7/zW9+cwIg+bM/+zP2ez7vec9LACSPP/64eHvp/T796U8nSZIk//RP/5T09fUl4+PjyTe+8Y22tj/zMz+TAEje8Y53tP19fn4++b7v+74klUolX//619see9azntX2+ia33XZbAiB54IEHWNv66U9/OgGQvPnNb277O33+Zz7zmcmlS5eaf3/iiSeSXC6XDAwMJPv27UtOnDjRfOzSpUvJ8PBwMjIyklSr1bbXO3To0Kr3XlxcTF7wghck2Wy27XWWl5eTgwcPJgCSj3/8423P+e///b83f3/z809MTCQDAwPJ8PBw8tBDD7U959vf/nZSqVSSpz/96azvZGFhITl+/Piqv09OTia33HJLMjg4mMzNzbU9tnfv3mTv3r2s1zd5z3ve49y3M5lM8vM///PJ/Px8W/uPfexjCYDkB3/wB52v97d/+7cJgOQVr3hF298BJM973vOczzl8+HDzfd/ylre0PfbJT34yAZDce++97M/kei/7mLCRHge03wJI3v3udztf84knnkjq9fqqv7/pTW9KACQf/OAHO9rGw4cPN/92//33JwCS3bt3J6dPn27+vVqtJj/4gz+YAEh+53d+p+116Hx27733tu1HZ8+eTfr7+5P+/v5kaWnJuQ2KolxbaMmcoihNfvZnfxb/8i//gjNnzmB2dhbf/va38fM///M4cuQI7r33Xnzzm9+80pvo5f3vfz/uu+8+7Ny5E1/+8pdx2223NR+7ePEi3v/+9+OZz3wmfvVXf7XtecVisVk+87/+1/9qe4zGBtmz5j3wwAP45je/iac//enOwfid8Lu/+7sYGBho/veBAwdw5513YnJyEr/5m7/ZNsB8YGAAL3nJS3DhwgWcPHmy7XWuu+66Va+dz+fx+te/HrVaDf/yL//S/Pv999+PQ4cO4e6778a9997b9pzXve51uOGGG1a91v/8n/8Tk5OTeOtb34qbb7657bFbb70Vr33ta/H1r38d3/nOd6KfuVAoONOZ/v5+vOY1r8GlS5fwwAMPRF+Hw/79+/HHf/zHePTRRzE7O4tTp07hb/7mb7Bv3z786Z/+KV7zmte0tZ+ammpuiwv6eycTguzduxdvetOb2v72fd/3fdizZw+++tWvil+PS6fHAdBI4X7+53/e+boHDhxYVZYHAL/8y78MAPjUpz615m3/y7/8SwDAm970prYZL7PZLN75zncinU57Z7f8oz/6I5RKpeZ/b9u2DS996UsxNTUlKvFUFOXqRUvmFEVpYpeP3HrrrXj3u9+Nnp4evPOd78Rb3vIWfOQjH7lCW+fnD//wD/HRj34Ud9xxB/7+7/8eg4ODbY8/8MADWF5e9o7nqFarALBqKuVXvvKV+OVf/mX87//9v/HHf/zHzdelsT2vfe1ru/YZXGK1Y8cOAMB3fdd3rXqMBOnEiRPYu3dv8+/Hjh3DO97xDvzLv/wLjh07hvn5+bbnmQJFU4Xfeeedq14/nU7jOc95Dh577LG2v3/pS18C0ChNdH2X1P7hhx9eJUwuHnroIfz+7/8+Pve5z+H06dOrxpzYwtcpz3ve8/C85z2v+d/lchk/9mM/hu/5nu/Bbbfdhg984AP4tV/7tTaRXi9uv/12Zwnq7t27m9/vetDpcQA0Zkn0MTs7iz/8wz/ERz7yETz22GOYnp5uG5/Tjd/w3/7t3wDAWcZ5ww03YNeuXTh8+DCmpqbaJLa/vx8HDx5c9Zzdu3cDAC5durTmbVMUZeujQqQoSpRf+IVfwDvf+U587nOfu9Kb4uRzn/sckiTBPffcs0qGgMadcaDRIQwlDjMzM23/XalU8KpXvQp/+qd/ive///34xV/8RczOzuKDH/wgKpUKfvInf7Jrn8GVRGSz2ehj1IkFgCeffBLPetazcOnSJTz3uc/Fi1/8YvT39yOTyeDIkSN43/ve1zb4nFIQ3yx6rr/Td2lO+ODC/i5dfPnLX8YLXvAC1Go13HPPPfihH/oh9PX1IZ1O4xvf+AY++tGPOgfLd5Pdu3fjvvvuw1//9V83Zz8EWt85fUc29Hcz1ePie042m3VOlNEtOj0OADjXIQMa+98LXvACfPWrX8Wtt96KH//xH8fo6ChyuRwA4K1vfWtXfkP6vn0TuIyPj+PYsWOYnJxsO15C3zUALC8vr3nbFEXZ+qgQKYoSZXR0FEDjTvBm5C/+4i/wu7/7u3jrW9+Ker2O3/qt32p7nDpIv/zLv4x3vetdotd+3etehz/90z/Fn//5n+MXf/EX8cEPfhDT09N4zWtes64z5XXCu971Lly8eBHvec97Vs289oEPfADve9/72v5G23/27Fnn67n+Tt/lN7/5TTztaU9b0/a+7W1vw/z8PD796U+vmnjg7W9/Oz760Y+u6fW5uPbvG2+8EQBWJWTE448/DgDOssLNylqOA1dJHAB89KMfxVe/+lW8+tWvxnve8562x06fPh2dhp8LbfuZM2ecZaGnT59ua6coiiJBxxApihLly1/+MoDGWIHNyMDAAP7pn/4Jz33uc/Hbv/3bq8ZHPOtZz0I6ncbnP/958Ws/4xnPwHd913fhW9/6Fr761a+K1h7aaA4dOgQAeNnLXrbqMddaT7SY7Be+8IVVj9Xrddx///2r/v493/M9ANDRd2lz6NAhDA0NrZIhwL29AJDJZLp+V/8rX/kKgPb9+7rrrsOePXvw2GOP4fDhw6ueQ9OC2yVc6XT6iqYOVIrn2oa1HAc+aJ/70R/90VWPhX5D3zb6oH3VNQX8oUOHcOLECezfv7+jxE5RFEWFSFEUAI1xA64E6MiRI/iP//E/AgB+6qd+aqM3i01vby8++clP4p577sHv//7v45d+6Zeaj23btg0/+ZM/ia997Wv47d/+bWdH7IknnnB2fIHWWKE3vvGN+PKXv4ynPe1pePazn70+H2QN0BTGdqfxU5/6lHPA+R133IHrrrsOn/70p1et+/M//sf/cKYjP/uzP4uBgQG89a1vdU4AUK/XnZ1W3/ZOTEzgW9/6Vtvf/+Iv/sI7EH94eBjnz59fNTYqxte+9jXntr797W/Hl770JYyMjOD7v//7m4+lUin8wi/8AgDgV3/1V9tK2T760Y/i85//PG6++ea2cUm0fcePHxdtWzcZHh4G0BhLZrPW48CFb5978sknndPVx7bRB0168ba3vQ3nz59v/n15eRlvfOMbUa/X8e/+3b9jv56iKIqJlswpigIA+NCHPoR3vvOduOuuu7B371709vbiiSeewD/+4z9iYWEB9913H974xjeuet7v/u7v4pFHHgHQWOMFAN7znvc0U4c777yzuZYMYZZz0XN/7dd+Db29vQCAn/u5n3MO9I9RLpfxsY99DC972cvwR3/0R1hYWMC73/1upFIp/Mmf/Akef/xx/Jf/8l/wV3/1V7jzzjsxNjaGU6dO4eGHH8YDDzyAD3zgA841Z171qlfhjW98Y/POejcnU+gm/+E//Ae85z3vwY/92I/h5S9/OXbs2IEHH3wQn/zkJ/GKV7wCH/rQh9ra08xc3//9348f+qEfwste9jJcd911+Na3voV/+qd/wr333otPfOITbYuSDg8P48Mf/jB+5Ed+BN/zPd+De+65B7fccgtSqRSOHz+OL33pS7h48eKqyRFcvOENb8CnPvUp3HnnnXjFK16B/v5+fO1rX8MXvvAFvPzlL8eHP/zhVc+555578MADD+D7v//7cdddd6FQKOC2227DS17ykuB7ffd3fzduvfVW3Hbbbdi5cyempqbwxS9+EQ8++CDK5TL++q//elUJ5H/6T/8JH/vYx/DhD38Yz372s3HPPffg2LFj+Nu//VuUy2X85V/+Zdt3Q9v3wQ9+EC95yUvwjGc8A7lcDnfddRfuuuuu6PfRDe6++26k02n85//8n/Hggw82x9TRrHZrOQ5c0DpU73rXu/Dtb38bT3/603Hs2DF87GMfww/8wA84pSe2jS6e85zn4Fd/9Vfxe7/3e7j11lvx8pe/HJVKBZ/4xCfw4IMP4s4778Sv/MqvSL8uRVGUBld21m9FUTYLn/nMZ5JXvvKVyY033pj09/cn2Ww2GRkZSV74whcm73vf+5zrjCRJax0d3z8/8zM/s+o5ofYAkve85z2sbfatZ7K4uJj8yI/8SPP9l5eXm3//4z/+4+R7v/d7k76+viSfzye7d+9OXvCCFyT/9b/+1+TChQve9/q5n/u5BEBSKpXa1gviEluHyIVrPRbC99m/+MUvJnfffXcyMDCQ9PT0JHfccUfykY98xPv+SZIkX/7yl5MXvvCFSU9PT9LT05Pcc889yf3335+8/vWvTwCsWp8pSRpr6rz+9a9PDh48mBQKhaS3tze58cYbk5/6qZ9KPvKRj/C+lCRJ/uEf/iF59rOfnfT09CT9/f3Ji170ouSzn/1sc90ge1+YmZlJfuEXfiHZuXNnkslkvPuYzRvf+MbkrrvuSsbHx5NCoZCUSqXkxhtvTF7/+tcnTzzxhPd5s7OzyW/+5m8mBw8eTPL5fDIyMpK8/OUvX7UGE3H27NnkJ37iJ5Jt27Yl6XS67TundYh82xvaF1zAs+bRX/3VXyW33XZbUiwWm8eUieQ4CO03xLFjx5JXvepVyY4dO5JisZjcfPPNyTve8Y6kWq12tI2h/f4DH/hAcscddyQ9PT1JoVBIbr755uRtb3vbqnWkkiS8ZlVsLSRFUa4tUklizI2pKIqiKCvccccd+MpXvoKpqSlUKpUrvTmKoiiKsi7oGCJFUZRrmLm5Oefiou9973tx//3348UvfrHKkKIoinJVowmRoijKNcwjjzyCpz/96XjRi16EgwcPolar4etf/zq+8IUvYGBgAPfffz+e8pSnXOnNVBRFUZR1Q4VIURTlGubSpUv4lV/5FXz2s5/FmTNnsLi4iO3bt+OFL3wh/r//7/9zrvmiKIqiKFcTKkSKoiiKoiiKolyz6BgiRVEURVEURVGuWVSIFEVRFEVRFEW5ZlEhUhRFURRFURTlmkWFSFEURVEURVGUaxYVIkVRFEVRFEVRrllUiBRFURRFURRFuWbJXukNUBRFUdaPVEpP890gSWpXehMURVGUdULXIVIURdnEqNBcHahQKYqibF5UiBRFUTYIlRtFgkqUoijKxqBCpCiKsgZUcpTNgMqToihK56gQKYqieFDZUa4mVJoURVHcqBApinLNosKjKC1UmBRFuVZRIVIU5apEZUdRuo9Kk6IoVyMqRIqibFlUehRl86CypCjKVkWFSFGUTY1Kj6JsfVSWFEXZzKgQKYqyKVDxUZRrDxUlRVE2AypEiqJsKCo+iqLEUFFSFGUjUSFSFGXdUPlRFKVbqCQpirJeqBApirJmVHwURblSqCgpirJWVIgURRGh8qMoymZHJUlRFAkqRIqieFH5URTlakElSVEUHypEiqIAUPlRFOXaQyVJURRAhUhRrllUgBRFUdpRQVKUaxMVIkW5BlD5URRF6QyVJEW5+lEhUpSrDJUfRVGU9UUlSVGuLlSIFGWLowKkKIpyZVFBUpStjQqRomwxVIAURVE2NypIirK1UCFSlE2OCpCiKMrWRgVJUTY3KkSKsslQAVIURbm6UUFSlM2FCpGiXGFUgBRFUa5tVJAU5cqiQqQoG4wKkKIoihJCBUlRNhYVIkXZAFSCFEVRlE5QOVKU9UeFSFHWARUgRVEUZT1QQVKU7qNCpChdQiVIURRF2UhUjhSlO6gQKcoaUAlSFEVRNgMqR4rSOSpEiiJABUhRFEXZCqggKQofFSJFiaASpCiKomxlVI4UJYwKkaI4UAlSFEVRrkZUjhRlNSpEirKCSpCiKIpyLaFypCgN0ld6AxRFURRFURRFUa4UmhAp1zSaCimKoiiKpkXKtY0KkXLNoRKkKIqiKH5UjpRrDRUi5ZpAJUhRFEVR5KgcKdcCKkTKVYtKkKIoiqJ0D5Uj5WpFhUi5alABUhRFUZSNQwVJuVpQIVK2PCpCiqIoinLlUDFStjoqRMqWRCVIURRFUTYfKkfKVkSFSNkyqAQpiqIoytZB5UjZKqgQKZseFSFFURRF2bqoGCmbHRUiZVOiEqQoiqIoVx8qR8pmRIVI2VSoCCmKoijK1Y+KkbKZUCFSrjgqQYqiKIpy7aJypFxpVIiUK4aKkKIoiqIohIqRcqVQIVI2FJUgRVEURVFiqBwpG4kKkbIhqAgpiqIoiiJFxUjZCFSIlHVFRUhRFEVRlLWiYqSsJypEStdRCVIURVEUZb1QOVK6jQqR0jVUhBRFURRF2ShUjJRuoUKkrBkVIUVRFEVRrhQqRspaUSFSOkZFSFEURVGUzYKKkdIpKkSKGBUhRVEURVE2KypGihQVIoWNipCiKIqiKFsFFSOFiwqREkQlSFEURVGUrY7KkRJChUhxoiKkKIqiKMrVhoqR4kKFSGlDRUhRFEVRlKsdFSPFRIVIAaAipCiKoijKtYeKkQKoEF3zqAgpiqIoinKto2J0baNCdI2iIqQoiqIoitKOitG1SfpKb4Cy8agMKYqiKIqirEb7SNcmmhBdQ+hBriiKoiiKwkPTomsHFaJrABUhRVEURVGUzlAxuvpRIbqKURFSFEVRFEXpDipGVy8qRFchKkKKoiiKoijrg4rR1YcK0VWEipCiKIqiKMrGoGJ09aBCdBWgIqQoiqIoirLxqBRdHagQbWFUhBRFURRFUTYHKkdbFxWiLYiKkKIoiqIoyuZExWjroUK0hVARUhRFURRF2RqoGG0d0ld6AxQeKkOKoiiKoihbB+27bR00Idrk6MGkKIqiKIqytdG0aHOjQrRJURFSFEVRFEW5ulAx2pxoydwmRGVIURRFURTl6kP7eJsTTYg2EXqQKIqiKIqiXBtoWrR50IRok6AypCiKoiiKcu2gfb/NgyZEVxg9GBRFURRFUa5tNC26smhCdAVRGVIURVEURVG0T3hl0YToCqA7vaIoiqIoiuJC06KNRxOiDUZlSFEURVEURfGhfcWNR4Vog0ilsrqDbwJSkPwGKX7LVFG+MYqibAqkx2863bNOW6IoynqSyfSx2xZy29dxS+Jov3FjUSHaAHSH3hzwZSgFrgylUkWkUkUkyUK0bSbTJzoZK4qycdCxzIUjRalUvvmPoiibA8m1+EpLEaB9yI1CxxCtI7oTbw5MEUoQqsu1Jch/aNgdp5AQmSfe5eXLgfdXFOVKIDmebRGq12cCr9suQkmy1MHWKYrSTbjXZFuGFqtn1m2buOjYovVDE6J1QmXoypNCVpgKMVo57iL7Ok+aCCnK1kSSFknK5zQpUpTNhaZFCqEJUZfRnfXKEhOg1QmRT4TaD4tQ58gWIt/JVdMhRdmcSI5vnwC5kiKfAGlSpChXDsk12idBmhZdfWhC1EVUhq4cnDSoXYZ444Rid4rNzpImQoqy9YglQZKkyJSlUBqkSZGibD40Lbq2USHqErpjXjnkM8fFRKiRDnE7QpyTqKZDirJ16fZkC43XVClSlCtB7HoskaIrLUba9+weWjK3RnRnvHJIRCjBMv91UwVWu3Sa16FRGVKUzYtEdpJkgS083LI4LZ9TlI2HKz3ZdJn9mle6jE5L6NaGJkRrQGWo2/AmNijmd6CY38F+1d7ydax25cIetgxVijtZ7bbWPsKdWIJ/Z5t/t1yyDgx/fShl82OXmoXJdP39sxn+pAi95evZbcsF3jkimx1iviJ/OQBFuXbhnSN6mNfwWn0OA+X9rLaF3HZhxUp32Vr9jc2HClGH6I7XTfgXehKhxaVz0ba95etEMsShUtypMgSeFEllKC5F2iG8tslY/792ctkRADIpqhTHo21K+VEA6yFFgB4DihIjg9h5Ymr2YfQUd7LFaKC8nyVG+dyIcIbb7rK1+h2bCxUiIbpycLe58qmQRIY4bK19RLIILS8Zktzx5ydD2gm8GjH3E8n01VeCntLu5r9zpIgISVHGEDGVIkXpNvy0KCRGF2Yeav47Ny0CpEt/dI+t1QfZPOg3JkB3sG7iuqC7h7NxRcgnQZfnHnP+vdsiBGy1fYTfqZLIEP811yJDKYQWzlU2P659JZ3u8Sx0andsMoBgXKALSocISolqy/6FVk0qxXHMLpxe9XdKhzohmx1CrTbheESPAUXhsYz280XG+HsYkqKZhZPBdiRFk3OHnY/ncyNYql5o/jdJUXhh+O6TSmV1XJEATYiYbK2O7mZGVh63Vhly0Y1UaH7pfNt/b707MvxUaK0y5Pq7JkMKH99d3s5L52wZMnGVz5npkAk3KXKlRBlPmZ4mRYqyHqwuo5uafdjZsttldMSVSIy2Vr/kyqJCxEB3qG7RHREyxw9JxgkBOlYoLqStx9Zr8gSVISW0v8hK57o/yQLQ+ZiiUDrEHU8E2FKkx4GidI/4+CJgdRmdWTZnQ2LElSOVos2JfksBdCfqFvwL+nokQgBfhICrdQY5YD1K5IDuziSXShVXFrvVTuDVCmd/aZXOdV94QumQSTbTg9ryjDcd6oRyYSfmFk9606G29/eWz9lo6ZyitGOXzbngld1yy+iIVjkd2srmbDa6jI76K1pC50fXIfKw9Tq7m49G53aR1baY5w9Szmd7RdtRW15gtSvk+lFdnmW1Xahe4r8/q1NjysB6IJGhHLNdFtyQWXIS5u4z6XQJ9foc+3WVtY+76QZcga7X5wWvyv9cXCECgFJ+GAnqrLb1On8fX6xNsdvWatxzzWa4lG+OfUxRJDdT+is3sNqN5W/BVJ0nRgBwbuoBdtuNHF+kUuRGS+YcqAytHYkM9ZV5J6Pe4k70CiY4yKQLyKR56wpJZCjDXJC1Xl9Cvc5bdFGyDg93QbnG60rGAJWQTpeYr7s+x0gmw1sEj7udDdZzuu7uv66kzlyyL6wXkn0smxlgv242w7vxkUrl2MdPNjvEFhwp3PNCktSRZ342AMhmB1ntNkOpoeS104IFLxVFzjK4cp5KZZBKxffbs0sPoT/N74P0lPejRzDGaKPQPq4bFSIL3VHWhmSMSF/5BpEMSZCIUCHXz3zNvEiGuHQiQ7GOsKSTCsgEo5NjJPacTKbclKFYB1AuQ+tFyvr/brwi/7vl7gsrra3/7w6SfYxkKM3Yf6gNV4oa2xI+jmSTFTTSIQBIMS6T1IZ7fgDQVSlKpysr/8+RovXZF9zv4YZkKJ0uqxgp64xMjDj0p3eyxKica6TRHDHScUVXHhUiRVEURVEURVGuWVSIDNSY18Z6JUPcdIhK5CTpEBfJnV9JmRz3O8tk+tjlUa679qFxQeudDsXglskBq7c1fHd5I9Khbr5iNvjfJva+EN431jMJaBFKi+xSuVBKZD8WSom4491spGVzoZTIfix0rkiS9ve9ukrnXGtF8dCUSFl/uls+B/CTImKzldBpn7cdFaIVdMfoHGmZHBfpeCEu61kmtxnGDElwyZDrWFivdZbWIkNhfAtZdoPuv3YnpXLM1sy/yXGLt6BM07E/ccrpWu+1WoZ8x5WrXC4kRVQu1/bagsvlRpbOUblc+998UrR++wP//dyoFCnrj7t8bnJm9XpEPjE6u7R6+m0SI64cqRRtTq55Idp6C2puHtZzvJA0FeJypVMhYH1kqJMxQ92ZQIF/p91+nY2VoW6x/slQ6LHQ/rD6sVBndG2d4E7GDq2Fbo4lMnFJkUuGmq9tXTJDkmSfP+x0yOTqSoo6f22VImVj4M+EyE2LCFuKaByRjSst2uhxRM331X4wgGtciHQH6BxJp2MzpEIAX4bWMxXaqBK5EFe6RA6Iy5DZ6Yttb3snKiYsa5lxjvPa0lfcyGSoO8T2N/PxmAyZiVAsHTKlKFYqZx5nsckUulk+Z7NeSRHhSofaHzeliLMuS6fwXzsmPSpFysbQ/VnoCGlatFkSo2u9T3zNfvpr/YfvlKtZhHKZCupJlf26VzoVarzu1SdDJtdqMmS3SzO/s0ymD8vM6eNbnVTJ3VLe/pZK5ZFhdmwlZXLZTC+W67y1ulKpIntfS1BHOT/K3g6pFHHXQstnerG0PB1tl80Ostcnai1yy2E91xHiv3Y6XdY1xpQNYv3Tojn4F2glSIqm5x4XvUe3SaWy1+w6RddkQrTVZEi61oi0k8x/XX6nXrK6e29+B7vtskBYAIgEJyPYL0JlNTaShSDLhb3sttJphLMZfrngeh0juSx/Xy4X9ghel/8dA7JyIslrS47VXI7/+5ULY+y2yuaiLuhcSM5XksWsS4Vd7LbShEbSXnR8CI67K1VqZLNe115l/anWuDeS5AwVrmO37UaJ8VrZan3kbnHNfeqt9EPTxWN5+TKrPZ2Mk4SfXPBeV0Wo9br8zk0mzf/eSnl+h1eyD3Pv0ncG/35KVpAKSUqHpJ8vVmJkI5Mh/nbnc9vYbSXlFLlMD3KZHiwsnY22zWZbglyrTUTbF1eO18Vq/G5nYaVuvrYcv8ufX9mOpdpUtG0u24McerCwFN+GYr6xDVXGNlQM4QyN9SHymcZ+tMRM49LpLOp13rkjmy6ixkzB8tk+LNV414dSYRzzi6dZbaUJTXolta/X44tx0/mLcxeajr9qLf57kxQluLJ3t9frOqysL7MLh1EpNs61uWz4OnGu+gi25W5iv3YBPU0pmlh8Iti2VBjF/MphVFueZL9Ht7kWk6JrKiHaKjIkHT8iHVDPRTLmBdgcMlRPqipDzW1QGSLS6cqGyVDs2DVlKJYSmTIUS4lymVbqVYzsU6YMNf47vB1F43gteAYJux6P/fZ5Yzvy2XCCmcuany+8Debjucg2VKzvNZUK79skQ/a/uzDPGel0+Ng1z1vZyPnDfDwvSF1LBX6qRIumShKgtKCcWXIu07RI2Uiqtdl1S4yGCtexE6NsZuCKJkZbpc/cLa4ZIdoqP+x6jh+RIBUhW4Z8Nfa9+R1sGVpOqmwZ6kSEuDJUT2oqQ22sTYZ8Y0ZcMlTMucd1uD5fLusuY/SJUKhszu6A+V4b2DzJEBdbhmIUHcerT4pcf/dJkUuAfFJkylBru9zb4Pp7TIpsYlJkEpMik5gUmcSkqG0bAlJUyA20/XdIinxC45Mi1999r5FxfE++c5r7+Hb/3i4BUilSuoGW0W2dvnM3uCaEaCv8oJ2kQuuBJBVyiVCI9UyFJKxnKsSVoVJ+jC1D0ikxQzKUXvN+s/WSIQm57EhXyuRcx7JPhlwpkU+GXCmRT4ZcKVFIhlwpkUuGfMSSI5NQGhRLikxiSZGJS4rsdMjEJUU++XH93XfucEmR7xzmkiKfKEmTIklaBMjGCmlS1GI9r9fK+qNp0dboQ3eDq16INvsPuVlEqPH661cetxlSIWBrlMgVjCmnY/tvxugMZ9LlTZ0M+YjJkJkSxT6fmeRwZMhMiWKdLTsl2grJkClFnGTIlKKYDEkESLI/2LjSIR8xQTKlKCRDhClFsSRoMyZFdjpkY0oRR2JMKYpPn916PVc6ZHI1SJFkOnpl67HeadFmF6PN3pfuBle1EG32H3Azlcd1OxWitT02Uyp0JUvksisd161bItddGaKyuc2UDPHaNaSII0N0fHNkiFIijgxRSrSeZXJcSIo4ckT7BScBojYcGSIJkqRFEjopn+OcP0iKOOcykiKOHJEUxWSI2GxJEec4p+OVIzwpZDdVWqRsXdYzLQLkZXQbLUabvU+9VlJJkiRXeiPWg838w0lEqJgbxtziSXb7bKaPNSMPsX6p0DhSzIX+EixjgTmTHgAsM2YyMskJ1rJZZKwBQtTrNSzVeO1L+WH2WiQAWGuRNGHMimWSSmWxzJxBKpMus9d9AWRJQFbwu1TZa+s0ZKu6zF13pSEWsqmR+bNHSZLD/tJeLNQmWW1zmQrmFs+xX5s7axkhSSUklAvbsLDEWz+nUtiGGeasaFLyWdkiqJJzyHJSY++vqVR63TpYEpHLpAuYE3zX6XQRdcE+JbkeS8p6a8zjBQCy2QH2tbGTdZAksqMz0G1OaJY5DsPF61FMCaaRRwEzuMhuf/Lyl9ltN3o2uqt19rmrMiHarDIknbGnmOOvdQM0ZIi/LT3stViymZ5mwsGhV7A+RiJYFK26PCvqGGfSBdEirnXUkWOWvXCn0AVkaxalUmlRR6ZeXxJ15tcrdcpmyiIZyqTz7N8+mymyv0PJIp+ALGUBGh1p7nFZKYyjmBuMN0RDhrhw91GilB9Bb5G/Ds1w5Ub29vSX9rLblgv8skGih5le9Bf3ob+4j/2aecHvXsmNitoDst8oNsUvITmfFXL9Yukri5MirjSnWVOZA/IxjvncCPKC0k1JuZ0sCSuLzq1XevawTrgWxkIt1xdFN1wXEv6NXADoAb8vUCmOo1LkHZPSvuVa2ax97LVy1QnRZv2hpCLE7XRlM33Nf/jbIii1EYoQV4YSLItlSILZcagjfDGur/yPy3rKEFGIlBXV60uo12V3GTuVoVjKIRWhTJp/Uc1m+EmFKUMc0THbcERK0sGsCDqXplAUswPBtmZHmyMYJWEZ2XDlRud2uTAflwhdMR+XxIpAnkwRikmRKVhSyeG0XzZuTsSkyDzeuVIEQHSTh7PPmq/HkSJThPhSxFvfSYJ5zMakKGscV+slRQBvAhzz3LpVpMgUoatdigBZFcpCcrn5D4ceDIvFiMtGitFm7WuvhatKiDbjDyTZQSUiBMgSoca2aCpkIxWhtchQqHMvTYW40AXaPjZC6Y80GeLiEqHQvmB/XyG53IhkyCR0nNoyFEqJJCLhIiRFtgzFUiJThmK4tjv0WeztDEmRLUOhlMglQNykCIhLTsWa9j3UfnmNZSQhKbLPaaFzXCHXfjPlyiZF7ee1kBStdQbMbiVF9vW6k/WYpGnRVkPTIjeSxEgiRpK0CJCLfKdsxj73WrhqhGiz/TDrWR4nTYQa27P2VMhV+y9JhQC5DLlwlYhJRQiQy5ALV2ejlB/uOBmKb4dbhlzfSSfHxEbKUPi1O0uGTFzSk8v0eGXIuz5SF5IhlxT5BMKXEknKsHzJkE+KfDK0VmED/NLmkiJfMsQtnQvhew2f5NgyFGvvwveb+Y55lxT5zmvdSIp8r+GTIp/8bHRS5D1W16l8rvm+znWX3OfBq12KgGtHjCRI0iJg65fRbba+91q4KoRos/0g61UeB2ztVIgrQ52kQhJiJXJ2J+ZKjReyy+akyZCE2JTddtnceslQNlMMypD9/UqSIU4qZL9eSIbs47bTMjnna1tSFJIhWzjWUibnwt7W0Lbbj3UybsiHLTShJMh+LCZUay2fC6VD9m8XuwGylvI5Ox0ysffl2HmzXBgXpUWrpcj/OZOk3vUSOsKWomygDFW67hggu75LkvmtOK6IuBakaLOkRYC8jG692Wx98E7Z8kK0mX6IzZQKSUSo8frrM1YI4KVCxZXPtp7lccDGlsi5oM6+eOKEdZAhujhLp+zutgzR/iFJhQCeDJEESUvkAF4yRMcwR4YoJZKmLpxkiMSDI0OSCRZsONtObTgyZKZEnHFDJDacsjhJ6ZyNLx0yISnilMpJJ8IgKeKc36hNSIYIafkc0EqLOCmQJCkCWmmRpFyONd5PkBQBrbSIe/2WSpGmRVcHnUy6cK2kRZupL94pW3ra7c30A0h2NslaNADYUzsTkmmS0+k8UgIvHu25WbQtEqaX+NO+SjsYaaRFMrRYnWK3lZaDLQvkZn7pvOi1JdM8Synlh7FQ5U2Z3NgW/vci/T0lv08nZDP8aZYln7MvvwuLdcEU84L1tqR33CULiXZCtT7PbptJ5QRtZTdBlpP1m6YfAOYFUz/XBN9JMTuAuSX+EgqSGwqScxAhOfalE75IzluSVLhUGMHswhl2e+5yBJ0imlJ8g6dS9pHNDmFZsIwBsDWnFc9k+kQ3zraVbxW9fm8qfpPF5MTSv7HbTs8fFb22dEp5CVt5Su4tnxBx2EwLs+Ujs0i1t+0V3dGTtk8LOnKFXD/rDmTztZFDGrxOTq2+iJrgrksnMiRBklJlM0V22iNNtJZq0+yOQiZdFMtQMT/ImvELkJUCArLfKJMuiKYOT6f5nedspiSSG4A3CxqRz/ayf9O+vCyZyad7UMrwtiWf7kFBkCCP5A6iLz2OvjTvDuNI+gBG0gfYr19J8+/QD2cPYCDDX+NsOM1P2PrS2zGY4bXvzWxHb2Y7iinZIrYl5jk9my5EZxG0KTPLH8v5EVHZX19hp2g7cpmKKFmkxWE5pFJp0dpetKAtl0pxO6tdIdcvnlBCUmaezfSIrrnSKo/1JCNM2CVrLW4mJOvXLdSnsFDn35hLUG8uWM+hN8df1L6UHxMu+n51J3mdsiWFSBJBbyYR4srQRoiQVIbYry0QIQBiEVpPGTLHLnEuupI7smanmfNbSVLBTlIhSae/UxlKM+76S0seSYZKhXhHsRMRou+F89tKjjlThgrpeGchL+gImW05UjSSO8h+bQBtIsSRIpKhgWxccoazrdfjSNG2zA2N5zGkqC/d6ghzpYhYLykC4lOr2224UgTwxkJROWBfYadYjDhSRIv6SqQI4C14TMflekkRwJ9lzxQhSck559pr3iDaalJEZZOZTN+WFKPq8oxYjCRIxKg3t2PdxGi9ShylJaKbiS0nRBIR2gwyJBGhRvv1EyFg/VMhLhuRCklliEts4L+NNBVaTxmSpELAahkKTSEtFVb7ewmlROl0TpwMhf7bRvKdALIB6p0kQyahlEgiToBbhkIpkSQVAlYnQyEpMmWo2T4gRSRDzecLkiIgLEW9mdUd5m5KUdbaP7qZFNmPSSeIiEmRfUxLk6KQGNnpujQpComRfdNEKkWdpEVcpDclN5MUaVq0GkqLpIkRl07EiMt6itFWY0sJEecL3iwiBKx/eZyPUn51rWq3UqHLiydXv3aXUqFSdsj5d0knOyRCvr9LZciFr2xOKkPu13C/ZycyJPm7JBny/Ua+lEjyvfhEyJcS+eTH93ff5/f91pIpjH0y5EuJfILDLZ0D/ClRKBnils4BfknylclxkqIYtgwRPiky06EYLhkipFLkwpah5mt7rg++v7ukyCdK0qnEXVIUusHhk6Ks55wkSYt8UuQ7HiVpkU+KfNe7bkmR7++bXYqynmuyVIy2shS5xKiv6D+naRmd+Zqboy/OZcsIEVeGNgOxVMiepWQzpUKAvEROwnqWyHUyVigkQ/aFVpoKhTr99m8onTijWzLkIyRDdkokTe9C34udEsVSIVuKuj1eyP7NO5mly4ctRdK0J9TeliJpmRwQTofsx2JjhmwpcqVDzbZWSuSToeZrWVIUkiFp6RwgkyJJ6RywWn6kyVEIW4piM+ettXzOJ0PN7bGkKDT2UpIUAavP1aGSWklSBLilKJQGSZIiYPX1OZyUb55xRYBsbNFWLaEDZGkR0Nn4IpOpxD8RyFZLi7aSFG0JIYp9oZoKuekkFeq2DFGb9SyRk5bHAbJUCODJEF3gpeNiODJEAiSdPIFbIkdtpIvKcn4nMyXifDfUIZCUyAE8GTInWVhrmZwL8/NJSuU4MmSmRJz2JEVcGTJTIk6pHLWRTKAAhGWIkEyyALSkiJMMmVIUSodMOpUiXzrU9tqCa4aZCHHGFnVaPsc9/0qncCcp4kxEY0oR5/wrTYpIjDjXPGkJnTnZAkeQpDctN5sUkRhxpl3fylLUiRhx2ai0iDML3LUqRVti2m3flymVoATrNx1gMc/fOQHZ4onS9AAAFmuygX6hsSE2A4V9otdeqvNPIjXhFLlSEQKAxWX+9ymZ4rXRnt+JrydVzC3KptWWIO3wS6ZfB+RT90rWXpImPdVa9wXXRPK7AkAly59iVXIRBGRTcfem5Quj5iGcdhr8acQzwkRZsi1VyM4dNWF7AFhI+OdVybTj6816TiUOAPOC6cEB2R136eQMhdyAqH1tWfY7dXI95pJJ57FYnWS3rwuurVJ85XIhpFMuLy/zzx3riVTShitPEb/HSIY/HvNyck702pcWnmS3nXMMewjRrSnUt8J03Js+IXLLUGrlHx7Z7EBwteq1IrlbUy5sE63eXs4OY0C4wKAkSSrmBkUy1F/Yw+7AFVI9KKT43816y1AtWUJNcHBn0gWkUhl2e8m0x3VBp7axLXnRejflgmzNg978OHoE0bqkrTR5LOdGkE/zE8Ks4G5WKTeIUm5Q1EEsZgdEa/b05/h3zUupfpRT/OOvmOpDJc1L8HakbkJvIuvUjNV3YbDOTwjLdf7xPVrfhaE6f7/ZV9+PHXV+edOBZL9gW7ZjvC4rn6skAxgG7zkpZEQlkMOZ/RjOCLY/wy+B7MvsQEmwj1VSI+ISy4GSbPINyXov0gWyCxn+9a8nOya+wSe5fkuvr4BM6DZLZQzhGr/sI5MuIp/jf5eSkjvpQqTSmdGW6rIbcKXMIGbBX8erlOpHSZBKS2ai7CntRY9gcfBUqohUau3rG26FlGhTC9HqL7BdhGiF+xDrLUIkQ0u1+J0OqQiVs7LpjqUleFIR6i/sYbeXiBAgk6FOSuQkIgTIyt4Kmb6mDHE62p3IEJdyYbQpQ9x0qzcvGzhMMtQfGFhKmCLE2TfLwhXmSYZKjH3ZbsP5raRjOkiGsozFQ80LHkeKiqnOSk24UjRWb4kcR4pIhobr8XR81HhtjhTtq7fkgCNFu5PGNnCkaNR4Pa4UVZIBVjsbjhSZIsSRIpIhiRQBYElRJdU6/kZyB1liROe+9ZCirNGp5UgRDXaXSBHAr3qg5Fp6Y3M9pChZWYB9swwZoM9Yyo+KxEgiRYAszelEjLgs1WfFYjSLS2IxikELfZfzI2IxknAtSNGmFSK3DPHZ6qmQBJcIhWq7O0mFJNgyFKrTryWLYhmSYstQSHaki6dKUiFgtQyFkpz1ToWA1TIUSn568mOrHg9JkSQVAlbLUCwlspOhkBRxhMnGlqFYSmQnQyEpktz9A1bLUCwl2pG6qe2/Y1JkyhAHOxniSJFJSIpMGeJAMkRIkiIgLkW2DMVSohTaU2XpZBkhKbIlKCZFfZn270aSFBEhKbLPf+uZFAFhKbJn/ipkeoNi1JNt3welSRHQ3bTIPtdLS/+6KUWdlMvZSKUoJEa2BElL3LqZFvWW2vtDUikCcE2nRZtZijatELWQlccBG5cKcfCdMH3jKSQy1MmMc9I7VdJUaKuXyLnwlc35ZMiXPEiSIZ8I+f7uk6F0KutNiiTJkKREDvDLkG9/lSRD2VReXCbnw/db+ZIhnxRJy+Rc+FIiXzLkkyJbhmL4ZMiXEvnK5HxSNOp5fZcU+WTIlxLZMkT4pGjU8zrS8jmfFNkyRPikyCc/3Sifs2WI8EmRmQ7ZSEroBkoHRGLkk6KspxMrKZ8DZGmRT4rMyVhsfNd437VWcg32SRGlQzabISky8UmRb2Kg9SqhA/xS5JO/TtIiiRz5pMg3FlIqRestRlcjm1KIGjtiZyIUkqFcVlaOY7PeqZBUhqR0s0TOHke01UrkbPmRzgwnHS8UkiFbZiSpkOv5MXrz40EZsuUnJkN2SrTWZMjEToliImTLDycZsqWo0zI5F3ZKFLuo2VIkLZMLyZCdEo3Vd0WTIVuKYmOGbCnyyVAn2FLkkyHCliKfDBHj9b2rxChUKscdT0TYUhSTHvvxUBq01vK5kAwRthTFzoHdkCIfthSF1oUBVkuRnQ6ZDBT2reu4ImD1tTh0zi/kBjZ0XFEn6VCob7HRJXShNGg9S+gIqRRtlrQIcJXR+ftda0mLNmtKtOmEqCVDMrZCKuRtzxAhmlih01RoI0vkXFDZ3HqXyElTIYAnQ5QSmeOFOKzHeCGzDVeGKCXqdLwQF44MmfsvJxkiKZKkQkB3yuSc22OkRJxkiKRorWVyLsyUiJMMSSdZAFpSJJlAAeDJkJkScUrlJJMsAC0pismQC864IVOKfOmQSaflcxzhMdv40iGTbpfPuehUinzpkMl6JkVAKy3iznhpXvc519v1nmxhq6RFLswSOk4KdCVL6FyYaRFnUW2JFAFXR1q0GaVoU027nRJObQsAOeF4m2pNNj2oRIQGKsK7dILV5wFgrnZR1B6QrbdTyW9DVrBzS+9eX6odFbVf74kTpEhmPgOAReGUootV/pS+0hQGiC/MuFYWBJ+3N7sd88v8i4BULDtBmhKW0vzjNwfZRaPOmDDGpD+R/bblhN8hAIBF4RTV0mO3D7LtyQimcAeA6UQ2tfLllGzZggmcELXvTcl+rzRDtohFzK3baxPTddm0wJPz/GmBM+mCaCrsgbJszFguJdvXZmpnRe0BoF7nn6+ka+ItLPoX7XQhXW5EmhBJxU46bfmypzzQh2R651J+TLRESU9RNlYSkJVTA0BeeC6cXD7ObrsgnE5/Zp7/2gCQJLLfqvGczTMd96ZKiFKMmZlMysIkQ4I0DpTK0EhW1p4za1Vb+3SBtSggUcnLUq0h7EI54QuRZK2VYqYPxXVevC2frogEp5IdRU5wV6mcEZQ/ZnpECyj2FneKF1zsz+1GVtAp70ltQ0+Kv09wSm6I3qzsbn02XRB9Xun3CQCFTL/oZkCPYH2f/mQU5USwADNKKIK//bvr+9GXCNqnRjAs2JcBYFRwR3JHehDb0/z2TykNY2eJPw36vkoZu8v832pbQXbu7E2VsBP8fTSHAsZwHbv9OA6iJ+F/P3vre7C7vpP/+oLxUL3JsHgGvWJSwWiKLyHZVAEjZdm6LZJ1yJKEf23ZljqIQfA7tWlk0JeVdYILmV6UcnypqOS3ia6/vWX+vpZKF0U3ddPpHtSF68tJq1b6irvQJ1jQt1wQLPGQHURReOOvkBUsRh8Yk+tjbll+I5tLFQuoZPifty+/S7Rg+EjvUzHS+1R2e2lSt9nGIm0aIeIetOXCnuY/AH9FbQlSEZLI0Ej2YFOGKql4pzmbKjRlqI+5MrFEhIDOZIiLufryQDY+TbMpQtJOLRdp0iNZZLOcGW7K0GA+3mkwP2NvMd7pMdtwvp/+3G705+Lfu4lUhEiGhrPx8hhThjgJqbkvcz5vJ/tMISNL20iGOIuMmskNR4rMhUg5UrRbOiObQFyJvpXzIUeKdhipGUeKnlJqnQM5UrSv0hI5jhSRDF1XHIi2tZFIEQCWFI2jda3gSNHeeuumH0eKhuqN/a2TNZakcKTIvJHHkSIzpeVIUf9KaU+S1EViJJEiAOjL7mCJkVmWx5Eis/yWcx2m/k5v+TqRGEmkCIBYigDeuOaiIR8cKaJKiHJhTCRG6ylFAH9JCxqfOrd8kSVG0nSIqGRGxWIkgSNF6ZVSfprsgr9m1Pr08zphUwiRRIbWSmhiha2eCgGrZSh0UnbdmaoFIs8h7BLLkIS1pkKcMSa2DIXkqJIdXSVDoZRIkgoB8s47R5hMXCIUS4lsGQrJkSsVCklRJ8mQBPv75Hy/tgzFUiI7GQpJkauMLSRFpgxxsGUolhLZMjScLkeToj7r+5AkRUBYikwZIkJSZMoQBzsZiklRb6qE3lT7+8ekKIf295AkRUBYikwZIkJSRDJExKSoN2n//jlSVEzaz5eSpAjgSZFJSIr6HeMcQlK0LdV+/Y1JkauUUJoWSZIiQH5zMiRFKWsmt9hYaPsxjhT1WVNQS8c3S5IiQJYWFXOjQTEqWeNjC9n+oBjZn1WaFAHrmxYB6GpaZI+nlaZFAD8x2ixStCmEKIaZCK0XPhHy1Td2mgpxMFMhVvuV8rj1LpFz4Sub88mQLyXajCVyEnwy5EuJfJ11n/T4/u57nU5SofUqkQP8MuRLiXz7su/zSv8O+JMhnxRJy+Qk+GTIlxL5kiGfFIWSIZ8U2TJE+KRoh2dMlaR8zodPhnwpka9MzidFtgiZ+KTIliHCJ0VmOmQiKZ8DeElR8z09UmTLEBGSIluGCJ8U+a5hPinyjeGTlM8BshK6QezoKC1y4Zu0wSdFvin8fddmXzWMJCkCZJ3Pen1pQ0roXPjGyfqkqJD1TXO++UrouiFGVbhvXvukyDehy3qkRSbS6dGvJFdciEIH50aJ0HqXyIWwy+ZiImSXzUnvogMbVyLHITZeSJqiuNaoiYmQ/XhMhuyUaDMlQ5wSOTsliomQ/XhMhuyUKJYM2VIU26c7SYJsOi2Tc2GnRDEZslOiWDJkS1GsTM6WIk6ZnC1FPhkibCnyyZAPVzpESMYTAaulKDZmyJaikAw1t8mSIp8MEbYU+WSIsKXIlQ6Z2FJkp0Nt730Fyudi1zFbimITmthS5EqHTGwpstMhG1uKYhNNcEvoiI1Oiux0yMbud8UkyZaivtKeVYmJjS1FxVD60sG4os1WQmeLkW+NO8KWok7L5Vx0UkK3nmOLgLgYbYaU6IoKkesLoIkV1luEGu8lG9C1niVynaZCHOhkzB28SWVz3BI5Sok2ukSOw3qOFwJ4MkQpEXewPwlQb3EnS4boNSWpEEkRNxWidt1KhrzbtcYyuVibQqafJUNmSsRJhkiKuMkQSRG3TI6kiDtmiKRIMmaIpCgmQzYcGTJTopAMEaYUcUrlJJMsAC0p4shQc5tWpCgmQwRJUUyGCJKimAwRJEUhGSJMKfKlQya2FPnSIZMrWT7ngqQoJkMESZFk1j2SIs6U3qXcUPNa7EuHTMzrNWes9HomRcD6jSsy6bSEzpcOmZgldHa5nAuzhC4mf4Q0MepWWuRDIkXA+qdFQKuMztX/vtJSdEWn3fZ9eM7OalIpbMPk3GF2+1ymgvkl/lSagz2yld+lY4UWMSNq38kBJI11uRcRYjY1KWq/kMimtV1aln1H5cwIFur89+jNbMdCwp82eiC1Q7R2QH8yilP177DbS5FMAU1Ip02XCu+ScPrfaiJrL4WzToxJJTWMZfCnzx2qb8dSij/taDnpweX0JLv99voYlgW/QX/kLrGLqqDcCABywumvBwuy81AuLVuTbnFZdjk7tyibThwAzgmO+8GkD1Mp/jTD+zOjuFzjdzyH8wUcW+K/fh4ZTAinFJccAwBwCadk7Rf4U3ID8vRkLH2DqP0U5NNsLybSqaT5+11PdjsmFp/gt8+P4czlf2O3L+aGsVDl9yn6yweQEh730mn4F5eF3+eyTNak29/JMhcZ4TIyAxlZmbuvZM5FBYOYTPjH5UBqB84tP8Zun0uXcHb6G+z2gF+w63VZX6+bXLGEyCVDvaW96BUsCAU0ZEiCdFY6qQztyTxDNB11TzKA4UR4V0RYopVJFUSdwcH0blRTvBN2BjnWbFtECX0oQfD9CMe2lDMjKGeEKUZGlmIMpGQ159LxJH2ZHayFFYnBzF6x3EinTS8nfaJSmkoygMGE/xkK6Ol4djsOPaltrFkdW68vO8aGhAt/lgXTZAMNGZKwp9iD/rxMPoYKWYwV+Yvf7ioXMFbiH/s3DeQxVuJfcvb3prGrwhei3ZUUDvbxX7+SS2F/j0way+ks9qVlx3O/YMp1AOjLyhYg3pOXvf4Qc8xSFhlkkUFBMF1/DgVsAz8pqqOK/iK/I1jOj4huzOxI3yK6PhWTMsYSWdIFAIUU/zeopEfQl5VNkDNUkKU/2/ueIWpfzMnOd9JZ/bjJPDFcuB7DhevZ7QdKezHA7DsWcv2i5KoTGcqlS6Kb0Pl0D+YS/o2WPEqoQHYTVNpv2ZaR3UgY671d1L6YH0HRsWDslUyJrogQ+WSIS6WwrfkPl1ymIpKhwZ6bRDK0J/MM7MnwT0I9yQB6OqjVlpBJFZARlOENpndjMM2/OJkXmj5Gp98UocFU/H3MDvIQY0pnW4SKjMHcpgxxpMI8qXBOSKYM7UjfHG1vihBHigYzreOGK0VmGSRHiiTiBMjHIBQEa+4AsrI9qVA3Xr/VOeB0pkwZyifxzqMpQ331gWh7U4YyjFP2nmLr9blSNGQkNxwp2lVunVc4UnTTQOs1OVK0v7fVhiNFu402HCmq5FrtuVJUTre+I44UDRrHDUeK9hvlLRwpGs63fgOOFOWNm2JcKSIKKIrESCJFAERSBMjTas5xXDQWK14vKaqkW+cujhT1GCXHHCnqMaprOFJkihBHivrL7ddhjhSZY0Q5UmR+Zo4U9ebHm//OlSJAPvlDJ4hL6JJLIjGqYFAkRgOpHSIx2pa5QSRGY723N//hspmk6IpPquBKhbIZ/4nXJ0Gh1apdIhQqy+skFbIJdSLXW4QAiEQIgEiEAN4FxkSSCgGytXCA1TLEYTMmQxJMGeIimSADWL0fx2THfjyWEtkyFJvm25ahkBy5XquSGg6mP67HQvu6KxkKSZErGQpJkSsZCkmRKUNETIqGHGVsISkyZajZPiBFpgy12vs/gylDzfcMSNFux2MhKTJlqPmeESkyZYgISdGg4/wfkqL9jlr/kBSZMkSEpCjvqBAISVHWU1EQkiJ7bNU27A+KUd0qxYtJUdnqOMWkaEf6lrb/ll6z1jspAnhSZLLZkiJANqsfIJ/QRpIUATIpAuTjnDpBPBNdQIpc405DUuR6LNSXcT0WkiLf5BEhKcpn28+PvrRoo9nwMUSm+YVSodry6vrIWCLkGkcUSoVc44i6IUPEXGr1mJSQDF1MnRC9t28sUUiGEiyv+ltIhnLJ6tcKXVgup86v+ltIhi4lx1f9LdQpnqitrjePyZA9ligmQvZYopgI2WOJYiJkjyWKidDl5fba35gIucZCxUTI3ldjqZA9ZiwmSpdS7Z8hlgrNJOfaXz+SCs0mF9r+myPUs0n78RMrk7PHUsTK5OzxRLEyOXs8UaxMzh5P5JIhk6ml9iUEXCJkc3ahvc7bJUNt7efbvyOXDLW3b/8MLhkyOTHbfrlyyZDJocvtr++SIZvDM9bv5pAhkyP19nOeS4ZM7DFFLhkysccUuWTIxB5T5JIhE3tMkU+GTBat8QuxiSbOof3abMuQzdRC+3XBliGblHWTwJYhG/tYNtMhF2dT/DHKhD2uyEyHXFyunWz7757IhDT2uKKeyNhre1xRTH7scUV2OmTjGpcTWnx7cXn1WLbQZ764+Piqv5npkM3k/NFVfwuVvy3VVo9b6rRczkfdsYyLbzpsACinVn9/oYl4XOOaQ7LkGlcU6u+4xhXFZtNzjS2yhchkYal1Ld/o8URXJCGSjhWSlscBWiLHoZMSOR0vFGazpULSxXSBrV0iB8jTxcZ7bL0xQ2ZSFJMhoD0p4sgQ0J4UxWQIaE+KYjLUaN/6DDEZAtqTopgMAe1JEUeGgPa0KCZDQHtSFJMhYOuOKTKRlM8BW7OEzmQs2S9OjK61tGgrjysCtISOg7SEDkBHJXRXKi3aUCFKp3vYIkRlcxIRorI5rghR2Vw3UyET6lhyRajTyRUkIkSTK3BFiCZX4F5AaCwRV4RoLBG3E0tjiSQiRGOJuDJEY3G4Jwo6AXFliMYScWWI2nFliLZfIkK0r3JliCSIK0NUOseVIek039RONjHDcNv/x6BjgCtDVDrHlSEqnetkAgUJXBm6lpFOttDpRAuxdIggKYqlQwRJUSwdIkiKOOkQQVLEnYacpCiWDhEkRbF0iCApiqVDBB3PsXTIpFMpiqVDBElRLB0iSIpi6RBBUsSVHWoXS4dMSIpC6ZAJSRH3M5MUhdIhE5IibtpDUtTtdMiEpCiUDpmQFHGXaaA+CVeOqK/D7fOQFHE/L9AqoQulQybF/MiGjyXa0JK5/grvRAUAA/m9mK/zzRgACuk+TMwfYrcfLB3A/DL/PSSJEAAMJwO45CibCyEtm1vsIFIcSMtSiaLw7jZ3hrpme8jaS6bHJnKC9UYAYKS+AzNp/vuM1bfhYmqC//rJMI6k+VOpDibbcDnF31d31HdhUrjv7U6N4niyuuTRx3YM4wz407UOJf04kV5dIuljtL4d59L8qUJ31vfgVFp2/AzXx3AxzZ9md7S+HUuCaYh7UcY8+FPCDqUqWHCUVYTYWZQt6JeRzWQNQD799WBB1r4sdDTpRzg9L7/MnZ2T/Q5Ty7Lz2J5SGTNV/h31sXIGEwuyJOTMEn8q+xrqmEvJpr4vJiXxc86AP51vPtWD2WX+OWlb5gZnmbePoaQf08LlAdJI43SKf+7uTY1iHoIlHZIxTKT4573+ZBTnwS/pG0ztxuG5L7DbA53JQTkrS5ik1+ilRNb3ma9NitpLp+YGZIIAtK93x6GSGmbfgAAaN9kkSzuU6z2YS/O/11xSwDnw+9xA46b8xPzq8kcfcwtHRK+/FjYsIRrq5cvEQF4+WLyQlpX5DJb4dzyAzmQI4JVQAEAmySCTZLCNuap4HmXkUUYvY9FIoi+9HX3p7agzywt6kn70JP3su4aVpIxKUsZAXRDZ1gcxKig/Gq1vx+5EGNkm+0UlTiN1mTCO1WUlWiOMhRFNBhPZ6++oy5JGoCFDErZDWGK2cgd6V52XTNI+sY35W+xcWcxS8tmHV5KYYWYiQ9uUZ6alvSsrj5fAK3kaSjWS7aKgpGJfuYyc4Cy+vZzGqGDqawAYL6cxUuQryNMGgd1lvoDcNlDD9T18+dhXXsbe8uqxkD76cwluEq4BnUkBOyr836GUTWN7gd8Z2lNq7Bs9zB9vrNw4Bw8VZb/d9jxPlmsr14SyIC0pJiXxcwBgO3jn73yqcSNOurik9IYcHacSxhNZuZp0UqEhwZIFADAqLEncX76T/9rlp6AvJ9ye3A2iMuQxXCf6zCPJTuzAjdiBG1ntS6lBDOX2YyjH+57ymQpy6RJbcPLpHuTTPUghw17iZLm+iMXlKedYKhf0fUpvIHNmMjUp12U3wLcxF542GSrxSx8l7rBWNrRkLhNZhX4gv7dNhriLTZoyNFSK/zimDHFi3U5liEsmkS0Yme/gBN6Xlo156BHWlVeEF8WB+qBInEbr29vEiSNFdt13TIpG6jvaZKinHr+ImTI0nAxF25sytK8ev6iaMtSXxL8vUwgGmDJuyhBHjEwZ4oiRdIyCRJCBlgxJ4EoQYW9TTIrsThZXigiOFO0rt96D06/eXm414krRuPEcjhQ9zdhFOVJ020BLhDhStM8QIY4U9eda28CVIjNB40hRKdv6jjhSRDLEhWSIWC8pIqSC08lzuFJEcKTIHNvAkSLzvMSVInOBUY4U9RrnU44UDSSt8xJHEMwybY4Umctd7C/fGRWj0fJTmv/el9vBEqPRXOt3iM3qaTOU7BDLIFeKmu/BlCJCmvoA8kXAuVJEcKTIFCGOFJkixJEiM4nlSpH5vQyVro+KUTEX71N1kw0RIo7hdZoKSZKhwdIBUTIknThhOBnoigyFUiKXDPWmtwWTIpcMhVIilwyFUiKXDIVkx/VYqBMs7SAD8lrvTlIhSTI0kgx3JRkKSZErHRlI+oJi5BKgkBS5BCgkRS4ZCqVErt86lBK5ZCiUEg3Xx5wyFBIk6f7XyR1nSodMQlJkyhARkiJThojRUjgtGnc8JyRFT3PsmiEpMmWICEnRPocAhaTIlCEiJEWZlLucMCRFpgwRISlyyRA3JTLpphTVHNeCmOBQOiR5zqptCkgRpUMmISlyDfQOSZHrvBQ6btMr/7MJSVGv4zzaSVIkEYRR7F/XtAiAOC0CwuM0x7D6Owx95pFk9eQTISkqOWZqC0lR3jEGPSRFvnFAISlarq/eNzuRIkla1FcfEKVF5XqPKC3ahoPrlhZtVEq07kK0VhlypUQxEXKlRCERcqVE3UyFXGVzVCLHhUrkJFCJnISNSIZ8uDqeoc6oKyWKzQbkSolCMuRKiUIi5EqJQiLkSokGk21brkzO9VgoGXJJUei3dklRKBlyfR+xVMj1eGibXClRqFPlS4lcMhTCJUMhXDJk4pIilwwRLilyyRDhkiKXDBEuKXLJEOGSIpcMES4pio2rkpTPAbykyMQnRXY6ZNINKXLJEFFOyk7JccmQ+RzRNjmkyCVDhEuKQrNebdbyOZcYmemQjUsQQpP4uKQotBi6S4rMdMjGlxaZ6ZCNS4pcMkRsxqRImhZJSugAeEvoQkLpkqKQ+LgeC4mP67HQOD2fGIW+h80iRRs+7bZZNmeXyMWQJkLERo0X4sIRITMl4oqQmRJxRMhMiWi8UAgzJaLxQiFs+ZGUyAHyO/OdLKTHSYZMKeKkQqYUcVIhU4o4ImSmRDvqu1gyZKdEMRmyH+90zBAXzm9tShGnTM78XrglcmY7zjaZUsTpTNlSFJMhOyWKyZDdr47JkIuQDBGmFIVkiDClKCRDhClFIRkiTCkKyRAhHVMErJYiVzpkYktRrFTOlqKQDBFrkaKQDJmYkhOSIVd71jatQ/mciS1FsXOTfRy7kiGb8eS6NjFypUM2phSFZIgwBYEzo6kpRSEZIqRJESBPi8TLG1hS5EqHTOxxRa50qO31rXFFrnTIxpQi7ixxpgy40iGb9SihM1nvcUWAPDGyS+g2ulwO2IBZ5lxWt1xfFInQfP1SRyIkXZtAGjVLRehS6rIoFTqXPipOhabr50SpUBppUSpUw7I4FVpvjqceE8vQRPqMqExuJn1ZVCJ3MTUhKpE7kn5CnAr1JLJkAQB6I+P4bI4n50UydAYXRTJ0In1cJL7n0qdEY4ZOpU+IxwsBQFo4j1lBuK7JPJZEydBCUhMlQ9W6XIbOz9dZMkRcWEhYMmQylOdPhgAA1brsdzg6l2EJEfHIZfmse6dma1EZMjmzOC8aNzRTrbNkyEQ6+9yJJfnspHOpOZYQme0lnMFjwXTIZnb5vGhNlFxSEN+ombUWoOUgmZ0UAOZxmSVExETqlGi9u/M4zBIi4vDcF4LpkIvL1VPBdMiFdF1G6Tn5FB6NCpHJRPUwS4iIan2eLUREgmWWEBGFTL9YIqXXuxpks2lWU/xZVolzOCRKyibmH3cK0cT0vzlad491TYh8EddYgT/9NgDsS8mjsmHhYpR7kptF7fcKF3/sSedFMjSEXtxUv1X0HgBwA75L1H5EmMLsgGzBrP6UTJ6G0rJO/ki6B0/vYP+4MZHF67vqvDUPiFtysv3vGcy1M4jxlPzuyb6S/C7P04uyO4BPK8ja35aWXURvT8vWDLs1xZ/NhpCWsPWnyiimZEI0npHd4Lm+R7ZNe3rkp/ZbB2UdjuePyeTm1v5ZUXsAONgr61Q/c1DWgb19UH4/8GC/7Le+fUB23N04ICvPy6RSGC3JBGosK7+ZMiyUiT3MtXeIGxLZefyW1B2i9tIbmACwPS2fblq6jtj+uuwcta8uO2felMj6BHcUXy5qDwA3ZO7AYF2W3A0IFyjmzthLSPeng5nvFbUfzsoqj4BGUpRN8/tEi8tTmFzmL1XRCRXm2kaEZK0yYhjCBeU9JXTrXTa3oSVzI7mDGMnxI7ROVocGOpehEvPuF8lQT5o3cxS128GcNW8IshPFeH138x8J3CmNm+1pAVKm5FA7bnuSIa4UjXSwaNdoqh+jKdlFbgCyzgOVpYzlefvTULaxFgF3kUaSIUnaQzI0XOB15kYKOYww2xLbCo3t2VXkfV/D2cb3s4O5UBu1G80y96dM4/Ul8kEyNCDcxyUMrCw6XUjzLiy7K43vlbsWEKU8ecHZfazYEIPhAk8Qbu1v3FXkJj4kQztKfGHZW5kHwJei0ULjzuX1Pbw7sMVM47M+dYAvReVs4zfYWeH9dttXRGWowPsxdlYa7Qby8sWiuFJUrTc+r0SKSisJaIU5W+JIpnFccKWob2WtO25nn9qNCjvhqZX/caDzq0SKelY6l1wponbczj59T4OMGUdNpEtD3FC/BTfUZTfpALCliMaQcqWIZJz7PVH1xO66rP+4B08TtY9NaOWDK0XplRttXCmSpkOF5nG9/lI0hF2yxeKzw+K1rNbKugmRbXK2CBUi0bgtQuNJXKSGsatNhkYQLq3Zk9y8IcmQSUyKbBk6UA/fhXBJ0PZ6uM52W31HmwzFyiC2YbApQ1zWmgzFpMiWIY5s2iI0nAqfjAdQaZOhHOMkIJ3ilmSIiEmRnQzFpGhfqWdVMhSTIluExotx8SIZ4kIyxMWWppgUkQwRHCmyk6GYFNn7OCclIhniQjJExKTILnnjSBHJEBGTIpIhQloGx5EikiEuJENETIpIhgiOFJEMETEp2m4JCleKCI4UZVLtbWJSRDJEcKSoZJWDxqSIZIiQJkXSBIQjRbagxKTIPq9uT/dHxajH6lTGpMh+XJqAcKTIHM/KmRl1h1UxwpGi7ZZ0xKTInlBnvZOi3fX9UTEyJ1vag6dFxagv3V4x0okYxaQobV1PNiIpiolRkmqV5maRYYnRsrWQuUSKgNUL/K5nSrTuCZE0FQI6GxzfrRI5X0q0N7XNKUO+lKgnnWcnSEQnyZAUXyrkkyKfCPmEpz9Vdj4WEqROyuSk+FIhnxT5UiGfFG3Pl50yFEqJbBmKIS2TC5XI+aTIlwr5pGhboeCUoVBK5JKhUErETZAIW4aIkBT5yuR8UuTbn0NS5JKhUEpky1AM3/gfnxSNFZNVMkT4pMiWISIkRa5SuZAUuWQolBLZMkT4pMiWIeKpA4lXjGwZIrhJERGSIkqHTEJSZMsQ4ZMiW4YInxSVkFslQwQ3KSJCUkSph0lIilyPjdZHvWLkExOfFIVuMklL6KTlc6HOvut7GkwGvWLkWxfPJ0W2DBHrmRQRISlylWoOJn3e78o3ttYnRb71CaVpEYCuS5HN5PJxrxh1mg7ZbFRaJGGj0qJ1ESIyuJgI2SlRrETOlxKFZMiVEm10KmRjpxlD6A3KkCslismQKyXqtESOSywVsh8fSleCMuR6LCRDvpSo2yVythTFUiGXFIVkyJUShWTIdQHvZLxQrETOlqJYKuSSolAy5BKfkAy5UiKfDIWIjRmypSi2n7ukKJQMuaQoJEOulEgyGQKwOhVyYUuRT4YIlxSFxg25pCiUDLmkyCdDhC1FPhkykZTQAW4pstMhE5cUuWSIcEmRT4YIW4p8MkR0MqbIJUV2OmTikiJXJ59wiU8sPbKlKCYk3PK5ttd0SJGdDsW2IbRdro5+6HtqPKf92hdbJLyTEjoXdjrUtk0OKQqtQTeQ9K4So9i4tU7SIgkuKbLTIZtOpMgWIzsdsrkS44rMdMjGJ0V2OmQiLaEDWmnReqVE65YQbVQqxEmGSIq4JXJmSsSRIVOANiIV4iZDphRxZMhMiTgyZHYM12vyBGo3ku5hJUM70oNtYsSRITMl6nS8EJehbJGVDJlSxEmGTCniypCZEnU6XiiGKUWcMjlTgDjJkClFHBkaz/S1JUWdTKDAwZQiTpmcKUWcZMiUIo4MmSkRR4YI7pgiwpQiziQKphRxyuRMKYrJkA1HhghTinzpkIkpRSEZIkwpCskQYUpRTIaItUy04EuGbEwpCskQYUpRrJMPtAsQt5Suk3FFBHdcpilFIRlqtjcEiJMahRIQ/3M6H1fkS4dMTCnaXt8flKHmNtVHm2IUkiGTtZTQcWZeNaXIlw6ZmFIUkyFiPUrobEwp6lY6ZGKW0IVkiOCW0NmstYSum3R92u0bhl4hfs6A8AS2lJJPhVlmnHxNtqVlB2UnLNRl0x3OB2zbRx2yn3chNS9OhqRwL+iEdLpNADhVvyROhpYT2dS1w3lZSVPsLq3N4eXz4jI57qQJJtJvd1l4xpivyb7XTlju4DS2WJeNfenkRFlkTpxAbCvJZhhzLZIaYjAv/xQXF1PRdMhGMnkCAOTSsu2aWpLt54/PFERCRDwxI7tnuCzc1YU/N6bllwCcmpX9dpdrS+L3KGVkH2RyWX4Nl5IR3u+V3swEgJm67Ls6kz4rLqNbFi4fIr1eSr+nx9IPsWTIpgJZibh0u6qQnc+Ppw+zhMhkMn1e1B5oLIUioZ7IDvLrUs8UtQfky0TMpOQzhC4Kp6yfwAnxe5y49E/i54ToekKUA7+TuLu+F7uNBUg5DKfk6xHtxBgGBXeCDxYH0Jfnd2T68hlRewAYKsguIAO5PMZzsrvZ47kKdub4Irgr34uDOdldjYGc7MAayOXQm+V/9sF8Dv15fvueXAY9uQxuKMgG8kq2CQDGS0XkBQuYjJcz2NPDf4/hYgbPrMhO1jf0yQQNaKQLkvVqtpfTrDvaxGAhvWpByxjbhHe2h4sZsUgMF7PYUeZ/X6PFPLYVZR2mkYKs/fX9OfQLZhfbUU6JZpLbU66jNyuXgmcNyTp9N/VPoy/Pv6jv6pvBWA//gttfWMSeXtk6Ok8fkF/Q8+kET+njd7JGCsCYoGJzRzkRC+pO4aSG6RSwS3De6cmlsaMk67jurZSwrSi7DtzUI7vh6JocJsTuYgU7ivwfY3uhhJ6c/O72bsH6UgBwe27fqgV7Q4zlS9iR51/3+9NF8VpzO0uyMuNnpZ+BPdlB7Mnyb5zuzAyIJpQZzpYwkJV9DumENbelbsbuDP+G4/b0AG6CbIr0ctKLsdR18YYGWeHvdzF9FhfTZ9ntpctE1FAXrT9GFIXrVY5gT3QiNJP+lKx/xGFDp902MUWIs8L7cKqvKUPj2IZx8DruOyG7G3OwOCBqb4oQR4qGCtmmDHEvPAM5+Z0rqTztyrcuUH0MyRnI5ZoyxJUiqTwN5lvtOVJkX9DM54cgGeJ+z+PCDsO4scgiR4qGi632O8u8bSIZGhbMZCUdd2KKE0eKBo1t4UoRyRBXiszvitc+i+Fia1s4UjRqiBBXikiGuJ2s64Vr2+wot8SJI0V7yq27zBIpuq7SEJtyhneX+qb+6ea/c6RoV19LbDhS1F9ojQniSlFPtpGQPEWwplHeSKw4UjRi7EYSKQL4qV3fyi7ClSJzqBlHinpyxvEqPMcBYEvR9lKjHVeKTBHiSNFuo0xXIkUA/3gFgMGV6zhXikwR4kiROfZUIkUAv/RvT6nxulwpsiWFI0U7MwOt5wulhStFlUyu+fqc9zDLqyVSBEAsRQDYUpRONY7BbLrAEqOBTKsMUSJFAG9W1Lb2TClKJWmkkvTKc8osMUobKiKRom7TVSG6ZeinAcRToo1KhWwZiqVEtgzFBKcbqVDowjOQy6/qpHNEx24TS4lMGeLgEpuY7NiPxxIZrswQvgtZ6HV6s9lV2xGTIluGYinRuHDFeVcHPyRFN/QVViVDHCmyZSiWEklSJKBdhoiYFNkSFJMi+7uKpUSmCLVtV0CKRh0CFJMiOxmKdbJsGYqlRKYMESEpMmWI4EgRyRARkyJThjiYMkRIkiIgLkUkQwRHivKO8r2QFI04dp+YFO0ot79HTIr6rNNYTIpcs7OHpMiUIWJHqRgVo72V9g8akyKSISImRS4Bkk4YE5MiW044UjRoXct3l8pBMXIJkCQpAuJS1J9u/61iUkQyROwslYJi5JMTSVIExKXIHmsakyKSIcl72MSkaHt6oO2/OVJUtsZCjaWuC4oRyZBJJ2lRCOlSETWrXLOYlDYsLQpB6RA5R7dYt4TIJ0U+GfKlRCEZ8qVEnaRCvmTIJz3Sv3dSIucjJEW+x3xS5JMhX0rUSYmc7zk+KfJJjC8l6qTUQVoiB/iTIZ8U+WTIlxJJ045QiVxIinzJkE96fH/3pUQuGYrhkx/f333flU+KfDIUwiVDzffxPOYrk/Pto75kyCdFLhnqlN5s4hUjW4YInxT5ZMiXErlkiPBJkZkOmfikyJYhwidF+XTilKFO8UmRLUOET4psGSJ8UhRaqkpSPkf4pMiWIcInRbYMEdLyOcAvRbs90/37pMgnJaFrii1Dbe8vLKHzvb9vuQafFNkyREjL5wB5CR3glyIzHTLxCYtv4p2BbKFrJXS+yXd8UmTLEBGSIluGTLpVQmemQyY+KQotFdGttIiSIfdz3O+f9miIT4rWo1SutS0bxHqNF7KlKCZDdkrUSYmcNDmKyZB9wZGWyI3nKs1/JMSSIVuKpCmQVJ6AeDJkSxHrbl5elk6tSuVKxWiZnC1FsWTIlqKYDNkpUSfjhRrbJUuCYsmQLUUxGbJTom2lTDQJsh+PfVe2FHFkyE6JQjLkIzZmyN5XY2VythTFZMiVErnSIRtbinwyRNhSFEuGbCkKyRBhS5FPhghbinwyRNhSxBEhV0rkSodMbCnyyRBhS5FPhgjpmCJgtRS50iEb+xrlkyHCliKfDBE39fSuEqNYEmQ/7pMhwpaiWELTyY02YLUUxd7Hfjy0dh2wWop8MkT0pgurxMhOh2xsKeLIiC1FPhlqvqYwxXFthysdCr1HbCbSTsrnulFC50qHTGwp8skQIR1XBKxOi+x0aFV7S4pCMtR6zvqOK1orXRMiV3RFKRFXhCglMscLSeAmQyRFXBkiwZGWyAH8ZIguOOxxLCvyI5EgSol25Xu7UiYXasdtT3IymM91rUzOBb02Nxmi30E6Xgjgl8mRFHGTIZIirgzZKRF3zBBJELdMjqSImwyRFEknTwD43xVJkSQZIiniypCZEnEnUKB9ljtmiKSImwyZUsSRIYKkKCZDBEkRt0xOMsmCTUyGCJKimAwRJEWSVMiUopgMESRFMRkiSIpiMkSYUhRKh0xIijgyRNA1KiZDhHSiBaCVFnHL4qhdTIYIkiJuudqqcanM6zlJEfd9qF1MhgjpmCKglRbFZIggKZIkM52Uz5G0cJZlMLcnJkPme0jYnRlqipEvHbIxxSiUDpmQFMVkiJCWzwGttEi6XERMhprtOyyfIzHypUM2JEWudKibZXNXbFIFRVEURVEURVGUK03X1iHyWdp24Tzvo7kSpmqyu4nD+TwuLQmfI1yvZaSYwYUF/hSsY6UMLi7I1g+Y24D1WnZVsjg5J5uvf72tub+QxmxVtht2su5MTbgO0O6eLC4IfsO9PWnMCG+Ez9Zk27S3J4ULgun9x1fuSl9c7N7YExcjhQTHZvnvsaeS4EnZGHzx+ke7KykcmZE9abycwrEZ2XEo3K3wlIE0JgUzWR/oqePsgnBGwKL8XLKtIFuv5sbBScxXZefRviIv7SEWqrIxL6V8FSenZOn3E7Pyu5znF2Xp5nhxGecW+b/hSL6Os8L3OB1f17aNvhzE+/rOShrn5mU7PDe1InZXUnj8Mn+7njqYwjcm1veY3bWy8O7Zef77jJfTODYjXOtMuF1DxTSOCy461/fnRdc0AJitys8l0uvzgb4cjk7Lzj9V4bqB0vWZ9vbmcOiy7HwFAMeSM6L253FY1H4Ye7GY4h/su+t7kEvJziUziexz55HBNPizeAJACUVMpSZFz6mm3BfOhyb+SvQ6Ptatr7sv2Y19yW7RYK3RnPzCNJxvlKpwy632VArYUymgkhVcnISD3cdWSoGGi7z3GCikMSBcr2WomMGQcLt2rbz+TmZJ12AhjcFCGv2CQfL9HbSXUMmlUMml0CdZgAVAXz4t+r52Cwcf7+1pbE+PoH84VgIO9PJP0nt7ZCf0caNEZ7jAv0BtLybYXuS3HxG8NtCQIQA4IOi3jpdT2FXhf/7dgrbmewDAnh7+vrWrkha1f8qAbL890NO46I8JBOfW/iWMCOXmYM88+nL8jtWNg5MAgJLgOft2TmBomD+L3Oj4NHbvucRuX1opy9spmO0un1nGUxhjmkzKmTr2lvmfe7zY6BRvK8g6cGMFfme6kE6wr8I/DqkcT7LvEttK/GPrhn7goKD6nY7b6/tk23X7kOSYzWBPD/9aQDIEAGMl2XZJ3mdnJYNdgvZDK/2L3ZKLDoARZr8EaOwfTxkULhZdymCsnMVYWXgN7eW3HyllMF4W9C2LuVVLLoS3pfHaB4VjdQfyWTytsIvdvpiUsTu5BbuTW1jth9EYflIQlqpVE/65pJLJYixbwViWV1qZR2Of5SyfY9OfDLDb9ib9GKqPYqg+Kn4fLl0RIjsd2pe0D/jiSJEpQ/1Z3o5OMsRlT8UakMeQIlOGOGI0JhwXMWAJAUeKzI49t5O/S7g4pj0ehCMuZhtp+0oufpG123ClyGzH+b5MGeJcPPZanQrO9ckcbM2RIlOGRhgl0eOO8QocKTJFiCNFpgztYXTI7DYcKRo3xs9wpMiUoX1MiRy3xuhwOoq7jAklOO1NGRpgnLpIhgiOFN3a37qDxpWigz2tu40cKSIZIjhStG/nRPPfOVI0Ot6SGo4UlawxShwpymdanQSuFJkTSnCkiGSI4EjRSL7VhiNFBWMMFEeK7LFJXCkyJ1DhSNEN/a1/50iRfRODI0VPHWw9hyNFptxwZMVsT3CkyByvyXmfncb7cKRoyLoucaTo+n5jzCPjumbuF1wpGrH6PxwpOmDskBwpMt+DI0Wj1lg26YyjHCkayGcxYEz4xJEie4IBrhQRHCnaXW9NSMCRokqm/bvhShHBlaISWp0YjhT1Jv1t/21LUbfGEXU9IbJlKMZoriROhobzeacMhVIiW4ZijBQzTgEKSZFLhkIpkS1DMXypUCwtcslQKCWSTpvsS4VCUuR6LCRFHGFy4ZKm0HflSoZCFw9bhji4puMNSZErGQpJkUuGOLgEKCRFrmQoJEUcYbKxRQUIS5ErGYpJkes9YuxyTDke6li6kqGQFNkyRISkyJQhIiRFB3vm22SICEmRLUNESIpMGSJCUmTKEBGSIluGiJAUmTJEPKVvJihGrinHQ1JkyxARkiJThoiQFBUcE0JIkiIiJkWuKfZDUnRD/+q/SZIiIiRFpgwRISlyyY0kwTEJSZFr8prQ++x0bJckKSJCUmTKEBG6rrn2B2lSRISk6IBj5pCQFNnCBTSkSJIWAWEponTIJCRFA57lQJ5W2CVKi4CwFFE6ZBKSIlOGiGqyLEqLgLAUUTpk0ouyOC3qTwZEaRGwWoq6QVeFKCRDrpQoJEKulMgnQiYuKQrJkCslkpbIAeFkyCVFIRlypUTS8jgilAy5pCgkQ1LpkbwO4RKfkAz5UqK+fFpcVhcqk3NdPEIy5Lo2jZXkq9iHyuRcUhSTIV9KFBIf12OhMjmX+IRkyJcShUTFJUWhMjmfFIXew9dJdMlQ6DmhMjmXFPlkKIRLhgiXFLlEyMQlRT4ZCuGSIcIlRS4ZIiTlc4RLilwyZOKSotCitJLyOcIlRS4ZIlxS5JIhwidFoZnrfPu7b70xwC1FLhkifFIUOnZdUuSSIcIlRS4ZInyyEnoO4Jai0EyeUvna1eMuobPTIROXFLlkiJCUzwENKfKJkUtWCJcUuWSIkJTPES4pstMhE5cUuWSIkJbPES4pCk0/7ZIilwwR0vI5wJ0W2emQiUuKXDJk4hMjMx2ycUmRnQ6ZdFuK1ixEFFV1kgzFMKVIWh5HcJIhU4o4MmS2GStl1lwm58KUIq4Mme12VbJrLpNzsZayOO5zTDjJkCk+XBGyv1POmCHz4sFJhsxrE0eE7JSIM2bIlCJuMmRKkXS8EMAbM2QKECcZsqVImtpwxgzZUsR5D7uTGJIh13M4Y4ZMKeLIkJ0ShWSIMKUoJkOEKUUcGbJTopAMEaYUhWSIsKXIlw6ZmFIUkyHClKKQDBG2FPnSIRNTikIyRJhSFJIhwpYizjTe5r67s5IOyhAhGVMErJYizrFrSlFIhgjJmCKgISumsMRkiDCliLOsgS1FrnTIxpSikAwRphSFZIiwpYhV/muJUUiGiLWOKeK8hylFIRkiOimfM8XIlw7ZmFLEWYunk/I5U4xc6ZCNKUUhGSKk5XOEKUUhGSI6TYq6UTa35lnmfmDwN0TtF5KqqERuqlbtSIZ6BesrAMBsrS5OhjLCSpuLC3VRmdyp2VpHyVBZuGEn55ZFZXJTi/WOkiEJs9Wk4zI5CRMLy6IJFC4s1MVlckIvxZPTiWgChQsLnZXJSb/eMwsp8QQKUp6clsnQidmkowkUFoUhzLGZOkuGzPbSCRSGGJ1ik7MLaZYMmQwIJkEgLldzonRovppjyZBJRvjZjx8bZMkQcXKqly1DJkdnZaUfR+dyLBkykc54dnYxwxIi4shsir2mESGd0REAzs0nwXTI5tBl+eQnxYxsw74xUWfLDSH9PYDG7HPcdd4A4NjMMkuGTOaEM5Ien6myhIi4sFDvaJKN8wuy7To7VwumQy6ks7GenquyhIi4uFALpkMuJLMOE99aPCFanPR46qFgOuRiWyJLTXKpDEuITC7VBFPdrjCNOZYQEVOpyWA65OLzk++SblYbG74O0XhBdoHZWZLHlCPFDApCKdjfKzs5SS8wg3ngoHDmnOv7O4iNhXfrAOC2Idln3yf8rgbzKQzmZdsl6XzSe0i5rhf47lHZZ/nuEeHd0J5lcQfpjlFZ5/D2QfmJeXthGcN52fO+a1DW+e6klOiubbLZ0e4clX2GPeVl7Ckv4/oe2fOeNya7IN+zXdb+5r5FbC/Kvq+7t8nmLb9pYArbK7KpUQHgadsuiNpff+N5Ufvep2ZQvlF2Qt1/o0y4rtsmaw8AlVwVNw9MiZ7z9AHZ9ztaWMJYUXZc3dAja/+0Adm+vrtcx76KvGzz7jHZ+9yzXXasA8BB4Wf/oV2yz7Gnw88uvS48a0R2fRspAHuE8viCcdkxdfdYgusq8mvJDcKxYc/dLuvX7C4nuEn4Hk8flt1Ev31Yvojwjf3ym9XfW4knNyZ3ZO7ETRlZ9VVPWvbZpX3sSjaDXcyFkNveJyNbtHePYxHW9WbNQlTKMKdwzuea43uyzIUJaBXtokBupCnPtlKqGflzbxCQDHHv/A92UO1Hrz1c4H92kiHuTaGRYqvkinuyJfHgCkgnotLpe0je6zqjRGt7idd53d/TaLeNWWJ2UNjpBlqlNrtKvOdSuzHBlL7bjdIbrhTtLDU661zJoXYSKdpVanSQru/hPWdfubbyHryO1Z6y/PcAgP0rnYTrmL8nydYOpgjf3Nda84ErRTf3NUrNRgu89SJuEnbsiX2DjecVcrzveNeBSQBAjvld9T61db7mSlF25Xjdvp8nhMVC4zvdPdzZd8CVoqGVxGo7c62l0UKrc8+Vov5c43vlHld9ucZ5YV8HHd19Fb4c3NLX2D92Mvd5OmZv6OWfH27tb3yvXCnas/IezxjkvceecuuzSqSISoJ3MVN6KlHeybzutL8X7xp3/cr1bTdzm57a3/rdJFI0mG+8PleKqN3ODioauFK0faUfxF2mgVLKwTy/rza84hASKaKhGU/vGWE/h+BK0YHUTgB8KdpXbgQUA/kMBvLCMW4CKerLNL6woQyvOqw/3eiYDqZLGEzzntNpSZ/JmoTo5SO/CSAuRdw1gkx6rJI3jhTZMhRLiaS1z8DqZCgmRfYBNsKQcfs1Y1I0XkqtSoZiUsSZutnGFo6YgEjbd+s9Ys8xZYgLyRARkyJbhjgpkd0mJkX24xwp2i5Y24QgGSJinTH78Vj7XaVaU4aImBTtsyQoJkUuGeKkRPutzkFMiuzXjEmRKUNETIpIhoiYFNkyxE2JSIaImBSRDBExKTJliIhJUdbqRMakiGSI4EpRxSotjEnRkFW+F5MiU4aImBSRDBGx44pkiOBI0e7y6nNITA5IhoiYFNnH6g291agYkQwRMSnaY70HV4pMOFJkj4+MSZE9XpMjRXafISZF11vXN64UmcSkaDCfNGWIiEmR/ThHiuxtj0nRdqsfJFm7johJ0bD1e3CkyJ68iyNFe7LtiUpMikiGCGlSBCAqRZVs++McKSIZIrhSZBKTIpIhcpJO6VrJnE+KfDLkS4l6culVMsTBlwz5pMgnQ6GUyFcm55Mi34Hlk6JKVj7eJFQi55MinwyFTrQ+yejm36VpUqi97zGfDIVSIluGCJ8U+ZIhnxSNF+VldT5ZCkmRT4ZCKZEtQ4SvMyb9uy1CHGwZar2H+++hZCgkRbYMET4p8r2WT4pcMhTDliHCJ0W+ZCgmRbYMET4psmWI4CZFHGwZInxSZMsQEZMiW4YInxTZMtTcLmZSZOKTIluGCN9xZcsQEZIilwy1nud+zJYhgpsUmfikyJYhwidFtgwRISna4/nsISnyTRbDTYqInaXEK0a+voLvWm3LEBGSIjMdMvFJkS1CJtLyuZ3lxCtGvm32SZEtQ4R0mQbA33ezZYi4sT8jLqF7es+IV4xsGSJ8UmTLEBGSIkqHbHxSZMsQ0Un53FCm5BUjSodsfFLUjWSIWNcxRLFkyJaimAj5UqJOyuRC2FLUl+tszFAI+0QXEyFXSsQZL2RLUSwZcp1ouykqrsel7bnbZLeJJUMuKfLJkI9YmZwtPjERcolPLDlySVEsGXJJkU+GfEiTo5gMuVIinwy13qP9cU6ZnEtkfDJE2FIUS5u45XOEKyXyyRBhS1GsTG57Zc4pRj4ZImwp8skQ4ZIiVzpEuFIinwwRthT5ZIhwSVElV/XKEGFLkU+GmtvlkCJXOhTCJ0OEfVz5ZIhwSVFIhlrPa2/jkyHCJUWxJNeWIp8MEdIxRS4p8skQ4ZKi2MyZLimKzeZpS1GsmkQ6psglGD4ZImwpCskQ4ZKimCjZUhRLtaRjiqTLNACr+3A+GTJxSZFraRcTW4p8MkR0MqbIFiOfDBHdKp+z0yEbW4p8MkRwy+c6patCZKZE0jI5bipkSpFv8VQbMyXilsmRFHFFyBQa6ZghbipkSlEnkydwy+T2NGtqeamN2Wa9xv108h4m3DI5U4o4MmSmRNwxQyRB3FTIFCDu2CKSou2FZXaZnClFHBkyO2LSsUXcZMiUopgMtd6j0U4yZsgUmpgMhZ4bwpQiTjpkSlFMhgiSIsmYIVOKYjJEkBTFZIgwpSgkQ4QpRTEZIkiKYjJEmFIUEyETkqKYDDW3y5AijgyZKVFMhgjpBCamFHFkqPW8RtuYDBGmFHHH+pEUxWSIMKXIlw6ZmFIUkyHCHE/FXWDalCLu0gYkRZzS+sa2tK6FvnTIxBSNmAwRa51ogZsakRRxS/xMKfKlQya7KqmmGHFnN+xk/LcpRTEZIqTjikwp8qVDNiRFMRkiTCnypUMmu4qVNjGKyRAhLaEzpaib6RCwhmm3Q7V6xYzMsySTJgCt9XKqwslgBDNQAgA6mfRZuBYo5oXnmkpW/rkBQFqF2JdLcHJu/ae93giGhFNF7y7VcGFJVrvYl5X9KNsKSzi32NnaWlxS6GyK7CJj3ZW1sL9nFoeme0TPqdaFs0b2zOPJGdmMlgAgnN21oztKA3lZmeBQXnYX/Prxi5iYlF8oioJprAFgdPfqBUyj77Ffts8vHZN9dgCYPCUbIDlxWb6fFHI1HJ2S3aZeTmT78MKyfBarS1XZc6TbBAAHKvM4uyCbmSormCYcAA70zODEnOx3WarLjsYLi50tdl4X9gxqwtPpQK6Os8Jtk0zDDgAHexZxYVF203qiujGTEkvfZbIq+z3Gi3WcWZC9C3MesDYGcgkenJQ956JwKu+luvxaPSJce0na3+xdWc/j5JzserIsVJF82v8bfvjCb4tei+jqHj5UyGKoIPuyc+mUaM0DyXo5JqNFmaxUsoBwHTH05RLROgm5tKwUj5IkqdxsL9YxLFjnoy8n70gPFRKReIRqh32MFROMCRcRvb53WfTZd68kFyOCTuue0hIGmLNwAQ0ZkrK7PI/dZd6CmgCws7SAHSX5GIb9PfMYFzxvT2Ueeyr87drf00g6DvbyO9O7ygvYz1xMtPEe/LYmtwxcxm2Dl9ntb+2fxs394UH9Njf3T2NHib991/dfxnCJv+bD9eMXAQBDA7xEiRgbnUZ/P/99xvbNIC3sT1aetw2ZPQPs9pkDwyg9f1z0HqksMLiH/zlKlSp2jstmn6N0bG8/f18ZyC9hmDkjIAAMFxaxsyybwruUWcYOwRTe48Ul7OrgHAEAY4LxUbvK89he5P8mB3pmVp7H//x7e2ZxfR//WBzIVXGwR76Wyp7yEvaVBZ+9tIR9Ffn5fkww+c3+ShU7BGMxD/Y0tn+EmaQCjdTyKb2y72tHsYYdRdnNnxt6Fpvbx3qPUg0398knzNhe5PcJdpTqovZAQ4YA4NYB/nO2lVJti93GONifxc3CCOumgfyqhXhDjJfTHa1NBQA7y/zObV8uK64q681l0Jvr7KaGj64JkSlCZWZMmDO0myNFtgxxxWDUuGHIkSKzhI0jRX25RCwR5rZzpEg62QJhHsgcMTA/B1dYTBHiSJH5upz3sEWIK0XX95rTS8c/++4OBvjvKbUudhwpMmWIK0amCHGkaKfRgd5RWmSLkSkSHCkyRYgjRSRDEnaVW5+FIzpmmwM9/A7VLQOtzi1Him41RIgrRWY7jhRdb3S4OVJEMiRlbLS1XRwpGtvXklmuFFWet6357xwpyhwYbv47V4pSZtkyQ4pKlVZHSipFBEeKBoyEjyNFZhuuFJWMRWc5UjRutJFI0QHjOOdI0S7jfCWRotbz459/r3Fe4UiRuTgxV4r2lJewp9z6zjhStMu4NnClaMAY/8WRov3GPiyRIoIjRWYJJ1eKTBHiitENhghxpMj8vFwpGjf6QxzJ2VGStXfBkSJzKIdEigDg5sE8S4xuGmi14UiRudAwV4p6rdXeOVLUl2t9Xq4UDRda7bopRV0RIlcqFJOinDCD9CVDISkaLbbLEAeXeISkyCVCsZTItc0hKXJtE0cGXQdwSAxcnyUmLNJyNNfrhd5DmggRpgwRoc/ukqFYSmTKEBGSIpcAxaTIJUAhKdrp6TjHpEiaqrgEKCRFLhmKpUSmDLVeJ/Qeqx/jSJEpQ0RIim51CFBMilyPh6ToekdHOyRFLhmKpURjo9NtMkSEpMiUISImRaYMESEpMmWIiElRynGODEmRKUPEzvGpqBi5ZtkLSdGAo9wxJEWux2JSZMoQEZKiccdjHCk64Di+Q1K0y3GeikkRpUPtr+P//Hsd5xVJUgTEpcgUIZOQFO1yXBtiUjTgmAwjJEX7HftwTIpcohGSItesh9KkiAhJ0Q2O7ZIkRUBcisYd/aGQ5JgyxGlPDDj6USEpco1rj0nRwf7Vj4ekyJQhQpIUAQ0pComRLUOEJCkC4lJkylDrvbsjRWsWolCJnEuKcumUV4Z8KVGsTM4lByER8qVEoRTGJUWhVMgnRSGRcUlRaJtCryW9mxH6LC5hCZXI+f4eEh/XYyEZ8j12fe+yU4YIlxSFkiGfFLlkiHBJUUh8fI9JSuQAvwwRPinySYYvJQqJj+uxUDLkkyKXDLVez/Ue/m0KSZFLhgiXFLlkiPBJkbSsziVDhKR8DvBLkUuETFxS5JIhwidFLhkiXFLkkiHCJ0UuGSJcUuSSIROfFHEXpyVcMkRIyucAvxS5ZIhwSZFLhoiQFLlkiHBJkUuGCJ8UuWSo9XqrP79LhgifFA14Js/wSZFPhghJ+RzglyKXDBEuKXLJEOGTopBguKQotC7WU3oXvGIUEh/XYy4ZInzb7PuMN/dVnWLkkiFC2lcKtXfJEOGSotAkXz4pcskQ4ZIilwwRPiky0yEblxT5ZIjwSZGZDpkM5nNOMXLJUGsb1i5FaxIiznghU4o4qZAtRdwxQ6YccFIhW4qkJWmcEjlbiqRjfzjb5HrN2AFuSwHns5jCwkmF7Dac0jizDScZstuERMjE/PycMjlbikIy5IJTGme3icmQ/XhMhghTivb3zEeTIVuKOKVxZhtOmZwtRSEZar3uvPPffbikKCRDLkIyRNjyE5MhOyUKyRBhS1GsVM6WopgMEaYUhWSIsKUoJEOEKUUhGSJsKQrJEGFKUUyGCFuKYjJkp0QhGSJsKYpJki1FIRkiJGOKALcUhWSIMKUoJEOELUUhGWq9buvzh2SIsKXIJ0PEwZ6FNjGKyRBhS5ErHWprb0lRSIYIyZgiYLUwcNIWU4piiwQTthRxSuPMNiEZIuxt55QGmlIUkiHC7jO50qFQ+4FcEpQhQjKmCFgtRSEZIqTjimwpCskQYUpRTIYIW4p8MmRiSlFIhlrbsjYp6miWuZeP/KZo8oS5Wl1cIpdJySdQqNblJXJLdZkMzdXkkw4sLKdEMnS52tmYIcnkAQBwcSkt/izSWfEmFlOiyRNOzqXEZXJnF1JsGSIuLqXFY4YuLGVFMjRZzYonUDi3mBclQ8fnSmwZMikIZ5I7PV8QTZ4AAJmU7D0OTfewZIg4PFMSl/rRzHMSGfrmpT6WDJl8Z6pXlAydmi+xZMjk4nxRNG5oYrLCliGTqakiS4iI+jJPhtpgTOtqMv+Z0ywZIi4dK7JlyOTk6X5RMnR0qo8lQyYXFwuixOjkXJklQyanFvLBdMjmxHyBJUI2ZxcKLCEiziwUWTJkkhHOqPb45d6oDNlIZ6wDgCNzhagMtbWfzbNkyOTsYiaYDtmcms+KS88uLObYQkQ8PF0UT6BwaiHLEiLi0ExBPE7q0pLsvHJmIR2VIZuFZfkUdA9O8peAAYCHL9VYMmTynUtLwXTI5sJCnSVDJsdm6mwhIk7OVVkyZHJpqcoSImK6utzRTHMdCdEb9/0WLlf5T0sBWKrL3qY/nxYnKsMF3uQMJsVMIpp6NJuSj2nJpoBF4bTBks9h3j2qCT5LOVPHVI1/whjMLePUguwEs7dcw7lF/s4/Vqji5Lys5nR3uYop4XSzO4pLmKzKDsqBXE10odxemsfEomx62tHSAi4v8T//SGkB5+Zk8/hvW+mwTAm2bag0j2lB++HKHCbnZHcn+kuLODvDny56tDKL87Oy6aX3Dk0CAM5d5k/7vWNkCsfPDYjeZ7R3FuenBZ+ldxZzwmnYt41Mo1bj7489I0tYnJLfaSmN1ZAI+kfF7x5ESnDxqj/vuwEA6S/+G/9NsmksfOYku3m6kMLcKXknN51LcO40f1/JZ5dFvzsA9JcWMDXPP1ZKuRpOCo4TABgpLuD8Av89tpfnMSGcWhtorGl1UfBZxnpmMS18n+GeOUwKznmlXBXHLjMXogMwvJJ2nRaeV7eX5kVThZczyzg1L7w+FKqYFUzHPlZYxHRNdswPFxYxuSQ7FxUzy+Kp2MeLsm3ry1VxRrAPA0AxXcfpBf65qDdbx+wy/zxRXrmxOCEUr2ImwbE5wWxvxbqoPdBY0+q4YOmU0WKCySV5cHFhQdYnLmZSOL8gHNKRT2FG4BzDhTT+f0f+i+g9gDWUzPUxrZBa5QUJUX9evs4QrSIsWdKIStoyTMmRylA21finE7ifQxqlE3Qg92d5zx9cWSBwB3MxUaC1EN+2Au+uzthKZM9ZFJTYvbIgIXcBQ6BVRiKZKpva5tO8nXL7SinUkODO7+hK0tPHXA9mZKX9NsEdWUlbYmjls/QyP8vwykKfA4K0p3+lVGeMORPdaGW27f85kAwBwLY+3l3pHSON0qnd2ybDDc1t651t+39u+7IgTdw20kh6ssz1r3pGGq9d6JfdYS2NNdqnmP2j4nc3VllPFuVpDJuVMuzi83kLEqZXFrQu75BdhNMr6fm2cd6+kl85l3J/d6AhQ+b/xyitnId2CmZsHFkpTxtlzvK2feUcMVRcxJBgem1a4Jc7zo2O9V7Bewz30LmFdx4rrSRDe4QTLQDAuOBcSed77lTh5ZWET7I0wujK9bHCTAfHVs7XvVn+MU9JpSTlLK5sj2Qq9vGibNv6Vn5HyUyFxZVr9XiRdy7qXTmXVjpYh28ov4yhPO93oX4nd1FgYk+5zn4OLfDLXeR2dKUqZyDP7+NSH3WkyO/k0pqjo4IJHfryjef0MJ1juMOleYAur0NkY28+R4r6pSuboiVDREwmihnZekFAZzJkIl04DYh/DpcMcbazbB3wMSkatGSDI0X2quQxKRqzBnVypGi3tTo7R4rsmnqOFNltYlK03RoXwpGiUWHZ24jVniM6dpt+xnYNWZ8lJkUkQwRHivqtTkFMimwJ4kiRKUNETIpIhgiOFNmd4Vjn2H6cI0UkQ0RMikiGCK4UkQwRMSkiGSI4UkTpEADU73hGfKOsiXpiUkQyRHClKG2VEsekKG+dQzlSZEtQTIpK1nmII0UjVgcyJkXbHecRjhRtt477mBTZxzhHioZ77HNL+JxXssrkOFI0bG0HR4rs871k/SSAJ0Wj1vUxJkVj1nmaIx522SZHiorWdnCkaLwo27Y+63fkSFHRukbHpKjXOodypMjuRwGISpHd7+QIjj0GKvYckiGCK0XEQD6JipHdN5VIEcGRIpIhgitFnbImIQqlRL5HfFLUn087ZSiWEtkyRPhkwidCoZRorTJEdFOKQslQaHtdBzHglyJbhoiQFNkyRPikyJYhIiRFtgxx8A0wDkmRJEUCVl8ciZAUuWQolBLZMkSEpMj3WEiKbBkifFJkyxARkiJbhgifFPnkJyRFLhkifFJkyxARkiJfJ1j695AU2TJE+KTIliEiJkW2DMWwZYgISZEpQ82/haTIs5QDNykiYlJkyxDhkyJbhoiQFPnkx/d3W4aIkBTZMtTcLs/fXTJEhKTIliHCJ0W+YzskRbYMET4psmWICEmRLUNESIp85/uQFJVd06QHpMiWIYKbFBEh8fCNYZOOhwPCUmTLEOHbNluGiJAU2TLUem/3a9kyRISkyNePAvxS5Ot7hgTHNyGE7zm2DBEhKRr1jNn2SZGvTxqToqLjiaPFtFeMbBkiQlK0lnQI6EJC5JKimMPZUhRLhXxS5JMhwv7+Y6mQS4q6JUNEN6SIUybn2u7QQezCJ0OES4p8MuTDJ0OES4pCMtSfW3YmRbHZllziE5IhV0rkuzgSLikKJUMuKfLJEGGLz7byfDQ9ckmRT4YIW4p8MkS4pMgnQ4TdcYolQa7HQzJE2FLkkyHCJUXSJCjW3iVFPhny4ZMhotBfc4pRSIZcKZFPhgiXFLlkqPmYS4oi69q5pMhOh0xcUpTOJV4ZIrjlc4Trd44lQfbjPhkiXFLkk6HmdlmPh2SIcEmRT4YIW4pi6a9LinwyRNhS5JMhwiVFPhkixsvzq8Qodr53SZFLhgiXFPlkiHBJkZ0OmbjEIzahh0uKipnlVelQ2zY4vk+fDIW2LYRLinwy1NoG2Y1UlxRx+lG2FMX6ni7Bic2OZz/HJ0OES4p8MkTYUhSrWvJJkUuG2rej/fzukyHCJUVrlSGgSyVzphRxAy2SIm6JnClFw4W4DBH0O3BL5Ewp6rYMEZ1IESEZM2RuP+cgNlOimAwRphRxZMhMiWIyRJhSxE2GTCniTj1rChAnGTKlKHZxJEwp4pTJmVIUkyGik3FCphTFZIggKYrJEGFKUUyGCOpAcccKme04MkSQFMVkiDClSDJmRNLelCKODJkpUUyGTEwp4iRDphTFZIgwpSgkQ802phRFZKi5LYYUhWSIMKUoJkImphT50iET8/fmjhXitiNMKYrJUHO7VtpxZIgwpSgmQwRJEXd8oClFMRkiSIpiMkSYUhSTIRfc870pRSEZIkwpiskQYUpRSIYIUzy4sxuaUhQSIRNTimIy5No2XzpkYkpRTIZa29J6XV86ZGJKkeSmMndMEWEKDmeqcPs5HEwpiskQQVLEHdc+Uky1iVFMhlrb0zjPx2SIMKWoGzIErGGWORfTglkgAKDUwYwD22UTvwAAch0IiHTLOpk8QTrz3IjwACPyws8vnCEdgPw7TkH+m3SyXdKygk6QTJxASKeOzW/A5wCADPOiQhRyNSSCmQ0BiNsLJ6gEAJSZnQmTbAfH14JwRsRO6OmV7V/FAdmdViItXLKgcBtPhkySFz9H1D79lW+I32PpS6dE7RfOd1aXPnledjFaEszo2XqObIawxQ7eQ3ouAjo7H2WFz+HIpkk6nWB+UXY8zgpnUwMAeY8J4tlGqx1M+90jTFg6+Q0XBDPcEZ10VVPCm9HSWfEAYEZ4rHR6G3tOMGsdIJtMjJDMlAwAwkneAADTVfl5cqaDuXUWhRf8gqdjuKGzzNnUAVQEA54yaflU3AN5YEF4DKdT8p1F+rOnU43PL6GW8Ge3A4ByJhEfWABQydZFslLM1NkzqREDuZpIPIbyVQzmZSfvcqbOvgNEjOSXxOt1lDLLouf05qrii1c+uywSj/7SAkrMmeeIYq6GonD8U7mwJFpzpROymTpygo5OLruMgmAGQQDo610Qy025dwl54YyN2WxdJCu53DJyws+Sz9ewtMi/cBf6ax112KQylNtRQP28bPB48sLvldltXz/qL3qe7D1OTyG3jz8ldb2aID8g7x3Uqyn0DfBTnFQK4v04nYLoGM6k6ygLzxPlfBUFYUe6nF8Sy025sCQSnEppSXysdEJFOEYmn1lGQShq2UxdlNoX0nWx3Azkl5AVXFOK2WXxDcal5Yy4w1jMLIvFq5hdFq2Tt1TPoCz8TQCgR/CcdCoR9deIXDoRzYBbTNdZqZXJUH4Zo8yZfIFGv7MinFSsWk+hKHTh5QQoCVd5yGf4C70CQCWb4hYQsOjKS5k/H0eKMsa7cqXIXF9qYZknRuYBz5WiTmSI4O7GNeMjcw6ysrHzSqSoYhxYHCkqGichrhSZpWUcKRoyLthcKTJjaq4UjRgXOq7gmO04z+k1In2uFEnvepqlM1wpkooQ0F6exZUiase9m5c1fkeOFJltuJ3JPmPldK4UlXtbn50rRW3laQwpMjt33I5e3jg+OFJklr5JpKgTGSK4UpS88Htb/8E55/f1t5ozpSg53Sp35EhR3ahokEhR3bhTypGilHGN4O7H5nWFczybN1i4UmS240pR2TivcqXIPLdwzn8VY3FT7rGSXrm+lTpIhqVSBIAtReY5T1rKzJUis5yNI0VFY9u5UrRkJEPcHohZWseVInPbOFK0VG9t13pJUdq4vkmkyOxzcaTI7Ntwpcgsy+NIkbn9XCmqGpVMHClaTtrX0eRKUd54bY4UVYyyrG5J0ZpfxvWzhaQo43jHmBT5FtsNSZHrQI9J0VpkiIjtxjXHRw0dZGXHTsuRoorjgApJUdFx8olJkWucTUiKhhwX6pgUSSeCGMkvtckQERMcaZLU66hvjkmR3RmIpUSucQQxKbI7T5ykyDWAPyZF9uMxKco6fkdJUtR4z3B7U4aa7xuRIlOGiJgUuWZ0C0mRq1MX6+jlHcdFSIpckyPEpChdXJsMETEpapOh5pMCG2fIULN5RIpMGSJCUlR3lHfnB+pRMao7ykZCUpRyXCNi+7HruhI6hl3nkZgUuR6PSVHZcV6NSZFkbS2gXYaI2LGStq5r6yFFeUfSEZMi1zkvJkUF67eMSZFrwgNJUgTEpWjJUSaXhrzzGJOiouP7DEmRKUNEt6Uo7biucaTI1dcKSZHrRm9MilxjlEJS5NrumBRVHcM6QlK07Hm5mBTlHa8ZkqKKY4xKN6RoTS8R+rlcUuSSIcInRT4ZIlxSFDrAfVLUDRkifN+LS4YI187qkiEiJEUuGQrhkiHCJ0XS6ahdMkT4pMgnQ76UyCVCJj7pkf7dJUOET4p8d0Z9UhQaVO2TolCnyfdYqMPikyLf331S5OoYED4p8v3d15l0yVDz/TsYG+STotCaPy4pCnXmfI+5ZIhwSVFoCm2fFElFCHDLEOGTIqcMNZ/k2DiHDDWbe6TIJUOES4pcMmTikyKXDBEuKXLJEOHbj0PXFdcxHLqp4pMiaVld4zn+84RPinznFt+50CVDhO9YsWWI6KYUhTryPikKnfN8UmTLEOGTotCU2D4pckkH4N/vXDLU9jzP330TL/i+S992AbykyGS9y+eAsBSFbjy7pChU9eKTotCEDS4pCm2vT4pcMkS4pMgnQ4RPilwyRLikyCVDxFqlqOOnc3ZRU4pCMkTYUhSTIcKUIk4EbEtRN2WIsL+fkAy5CMkQ4ZKimAzZB2tIhghbimIyZKdEIRkibCmKJUP2SSQmQ4QtOdLkKCRDhC1FsTIRu1PDmWHKliJOWY3dhnP31pafWHJkS1GoY0DY8hNLjuzOZEiGmtvhuIC40iETW4piC6AC8gkQ7I5eSIYIU4o4i6zaUtRtGSJsKQrKUPNJxsYFZKjZ3JKikAwRphTFZIiwpSgkQ4QpRSEZIuz9WDqmgzMO0ZafmAy5UqKQDBG2FMXOLfY5MSRDhH2s+GSI6IYUcUq9bCninPNsKfLJEGFLEWd9IFuKQtIBrN7/YjLUfJ7137FZ6OzvNLZdwGopcqVDJt2QIlc6ZOKSDM7QBMmYImC1FHFmr5OMKQJWS1FIhghTimIyRNhSFJIhwpSikAwRa5Gijp4q8fVKLsWSIYKkiCtDJpILCknResgQQd8TV4boAOPIEGFKETcZooOWI0MESRE3GSIp4sgQQVLELZMjKeLKEEGSIx1bxJEhgqSIO2aIOjeS6XZJiiRjhqitpJSFJIg7toikiNMxIEiCuGV01JnkyBBhSlFMhgiSIo4MESRF3PEP1I4jQ4RkogWgJUWdyJAEkiKWDDWflLBkqNl8RYo4MtT2POEsqCRFHBky4cgQQfsx97pCx69kUhaSIG4yRFJUzi+xZIggKeKeW+jcyJEhgo6VmAwRa5EiyWQAJEWScx5JUUyGCJIiyWKpJEUc6QBa+yFXhprPW/l/7pTc9N1ytwtoSVFMhoi1SFFMhgjqs+XSiWjyKpIi7phokiLJVN4kRdxxTyRFHBkipBMtAC0p4sgQ0ZtLsWSI6FSKujg/Q/dY5OqmwXQH0/vN1YTTBcvfAjPC99goErEKysfzSGeFA+TRNWdtB+fzhLP45Dr4LPPCKXO5J2GTXAefXzq1difML8mno64KZ1HsZLrg2nIaNeH7JMLp8QF+h41Y7mCa3VpN9hxpx55IcRegoPb95Y7eR8RAr6h5SjjbUad0MjOadBr6Wgf7inRmNOnMc4T03CKdZAaQHyudzJzZybm4LvwdAdlNNkA+tTYgP09eFE4RTkin5JaOdQKAy1XZdaXawW8i7X5KBMIkJ9zHuGtpruU50j4xAMx30AVb/x5IZ3SWEAm+48nFOhYE9WJ0J/PsvPzHnxIEBYsrP+IscwegrZEcLLRzLSzz3oNSqzlme6BdUmaZHaSllQvKvOAERnK+xLwYNT+LYK5/OrFwL0bUbk54IqYEgzs7Wi2h35H/PtRpmVrgXVyoUzTNbA+g2bFfFpyQSToWq/weIrXlPmdusRHvTs/zP8vcyvohc8x1ROizz87y38NcM+jyJC8qWZxvfObqEv+3n5ttfP5lpngtrHzm+QV+LJ4WXuiSlXNRbVooN0IZyhwcAQCkH/gm+znJ+A4kJb5EpR/4t8a2PWWXbNtKss+yNNn4/SSLtgJAVtDJX1hq7F/cY3hm5dhaFNxsIYGQisRyPS16Dp3DJOcWAKhW+ccWHStV5nWlvvK9SqRofqXTLRHP+ZXPLFlrip4jnZZasl1045M7C+r5levPtPBmHl2DuesBkTzWBNcu2rYF5nl1auX7lUjR1Mq+yJUc2pa5WhpzghtU1JY7+3G12Tfkv8f0yr6YYz7l/GKjoWQdpEvyCRoxu3IoSpbQqdZlfW/p8jxE52OIGBs3udj6ZjlSZNe6c6XI/AE5UrRofVlcKSI4P4xt2lwpaj6f0d6V2MSkyBYajhTZSWVMiuyDnCNF9gkoJkX241wpsiUoJkW1xP4d4+9jX7BiUmTfIeZIkZ1ycDpUdgLD6bjYbWLPIRkiOFJkS1BMiuzPzpEi1wKqMSkiGSI4UkQyxGXB+qwcKTJlaPZivH1inYu4UmTKUO1s/MRKMkRwpCgZ39H6d4YUkQwRHCmqnZht/jtXikiGmu/LkKL52dZvyZEikiFCcmMD4EmRLTSdJJGc59jnsPWQIvtYiUlR3fo+OVI0byUQHPmYtz4rR4rs56yHFNlVIDEpOm9dd7hSZF97Y1JkJ2kcKbK3LSZFU9b3y5GiKWsfjEmRaxs4UiQRJ2D1tnOkaFq46CzJUPM9GVJkytASU6JmrUOQIy7mtnD63p3KELDWWeYCG2fKEBGSIt9sSDEpcv1wISmyZYgISZFrC0I/jC92DEmR605BSIpC5WvcpIgISZGvbJObFBEhKfKdeHxS5Pt7TIp88uP7uy1DREiKfBcqnxT5ymVCUuQr+Qp1qHzlaKGOi+8x399tGSJCUuSTH9/ffZ89JEUuGYphyxARkiKXDIVSIruDR4SkyJUMhaTIliEiJkWuZCgkRbYMESEpMmWo+beAFNkyRISkyJQhIiZFtgw13z8gRaYMESEpsmWICB3DM47jKyRFPpHpthT5zmHdlCLfseKTIluGiJAU2TJEhOTDFhsiJEW+53RTinwl8T4psoWDiEmR75rrkyJfWWFIinzb5sOWISIkRbYMxQgJWUh4XI+FUiLfNoekyCVDoZTIlqHmewckx5UMxaTIliEiJDCubQj1vdciQ0A31iFybJxLhgiXFMXWy/BJUegHc0mRT4YIlxSFNs31w8RqMF1SFDogXFLEGcvjkqKQxLikKDaGzfV6wc/iOFBjd2GktdxzyxnnSTqWBHHL5wiXFMXu2tlSFBs74JKi2PgXu0NVXU5Hx+a4Oi6xzoz9uE+GCJcUccvjiNhnd0lRTIZcKZFPhgiXFIWSIZcU+Tp4hEuKQmVyLinyyRBRm045xShUJueSIp8MES4pcslQ8zGHFPlkiHBJkUuGCJcULU2mvTLU3A6HFLlkiHBJkU+GCJcUuWSIcElRTHq6JUWxc1g3pCh2rNhS5JMhwiVFPhkiavX0qvO7T2wIlxTFntMNKZKOD44Jh0uKfNfZELExVi4pCm2bS0p8MkS4BCMkQ67+CadkzyU+IVFy9ZtiqZZLikLJkEuKfDLU3AZHVzNUJueTIp8MES6RCfXvXX3vtcoQ0KVJFUwpCskQYUoRd0V1U4qqdV6kZ0pRTIYIU4o4m2b+MNwBaaYUcWpITSmSTGxgShEn0TGliDuhh/m6rM9iHLDcOl1TiriCZJ6subJjtvOlQyamFHHrurljighTiriTAUhLb4D2jgu3E0PtYjJEmFLEkSGzDfezm1LETYZMKYrJEGFKEadMzpSiWAePMKWIM2bIlKKYDJmYUsQZM2RKUUyGCFOKQjLUbGNIUUyGCFOKQjJEmFIUEyETU4pCMkSYUhSTIcI8hkMyRJhSxJWdtUoRdzKItUgR91ghKYrJEGFKUUyGXMTEhjCliPscKea1hyNDZkrETV9MKeKKkJkScSecMKWIs22mnMRkiDBFg5MMmf0U7vgloF2AOGVyZv+JO+7JlCJOmZwpRTEZam6L0eXkjBlaqreLUUyGCFNoOP17s+/dDRkCgFSScJWkxRv2/pbz75e5hYQrFIQDdgFgqCB/TidTA5azsq9lUThGCOAPdiNGOlhgspP36e1g5h/u1I5EJ7O2dUKlg1l5uANQiWwHMxL1CVdwLwlnIwI6m/VISiFXYwsRsREzUXUyk15BuHYDIBsQDvAHg5tUKrK1jcr9HUy5CSA3IGtfuCMuNjbLP3SvqH3mc18Qv0f1nx4VtZ8/3dlxMjsp2+9n5uSzd0k7653M3NXJsdLJLGzS2d6kwpbLLrOFiJicK4naA/LZMAH+4HlCOu01IJ9NbrKDmUCl13kA6Ovg2nWJOTkDsdiB3EvH8kh/w07ppGck3bZT8/Lva6aDiSclEzQQUi3wvccfHP0v4vfu2rTbZ+ZqmKvJPv3pOdmBMl2t4+iMvHN0QdafwHICTAumqJ2uptiDyojZGjAp6BOnUwkmqvKfa76exmXBgT9TS+H0guxO1qVqBheYdz4BYLKaxXlhJ3q6lhXPfLNYT2NCeGKdWMqL3ufiUh5nhdOUzi1ncEZwIZ5eyuHcrGwq43OzZVwQXuwn5kuYmJc95/ClAVH7s3NlnJrpET3n5JRsiuXzM2WcuSx7DwA4dbFP1P7spV5MzPB/l4mZsmgWQaCRDpyd4H/+pcUsJs/JO3lLsxnMnuR3wtLFFKr/77TsTYb6kfnC/ezmmS9/BcgLyyo/+zhSecFMTIczqC3Iz6tTF0qoCeT27GQvZoXnotMzFUwKzpOXF/OYmJctNDXXQToytVDAJeH7SMVuer4gLqmdFczSCAAXZ8riNP3MXEk8LfXFxQJ79jUAmFgsYEZ4rZuq5jAh2FdOzBUxI7w5c2Exh7PC73g5SYnl5uhsGZcFadrZhRwmBbOANp6TxbSgX3R+KdNR/2uqlsaU4H0mqmlMCt9nYimNKUF/9cmZtDhRkfahAeDcfB2XGBVjJpwKM5NLi3XMdGJdHroiRGfmWurIlaKJxcZzuFI0bXzoozPLbDEiq+X+oGYMJ5EioLOZNiRSBEB0UM4bd004UmSumcSVokvGHXKOFE0aJzquFJmCwpUV844RV4rMdpz3uWi050qRWW7AkaJp4y4eV4qk8gSgTYS4UkRic3aO935mO64UnV/5LFwpOm8IikSKLq48jytFZy+1tkciRQB/anWzVIojRUuLrX1WIkVLs619kiNF6aJR2sGVoqHWwqscKcp8+Sut/2BKUe2zjzf/nSNF04eNkleBFE1daH23HCk6O9n67bhSdHqmwt4eoCFDBFeKSIamBR18s+SXK0UkQ9w0RlpaC7RK07jrn100jtlOSoy5UmS240jRhNGeK0VThmxypOjEXOt340rRBeN34EqRmVpwpeioce3iSNHZhdZ2caXo7ILZn4gf9+eN15X0vyQiZL82V4omlmTv8eSMUbrNlCLqO3Pbn5uv49x8qzPMlSKSoYsLvPbm63ZLitYsRKYMETEpIhkiYlI07fmwMSmyI76YFLkGasWkyH68k5k2YlJklydwDsp5R4QsSYqAuBRdcpQLSZIiIC5FLjEJycpiPe2Mz2NS5Ho89D4XHe1jUuSqvQ5J0bTj4h6THfvxC3OlaFLkEqCYFNlCE5Mi1+MxKTpvfZaYFJ13iAlHii5az4tJkSlDREyK7MdjUuQaNyJJioC4FC3NZtpkiAhJkSlDRFSKDBkiQlLUJkNERIpMGSJCUmTKUPM1FtJRMTJliIMpQ0RMimwZiqVElx2Px6TIToY4UuQa/xiTIjsZiklRJ5Ov2JMXxKTIPt6BuBSdmSutOlfHpMj1eEiKJhztY1I05UjeQlJkylDrPcIiccHx/Z9dyAfFyFXCFZOio8IbeaYMETEpOiusfjnveD1O/8uWoZgcuV4zJkW2DMVSIlOGiJjk2H3mWHtThExiUmQnQzEpcr1eN6RoTULkkiHCJ0W2DBGn56pOMfLJEOGTIl+9o0+KQlP5+aTI9/dOZtrwSZGvVjt0ULpkiPBJ0YxnELZPilwyRPikaNJzx8cnRSEhkZbPAX4pCsmS9H18UhQaiOqSIpcMET4pCsmST4pC4uN7zCcyPikKyZLvtWwZInxS5JIhIiRFrs4R4JcilwwRPiny/d0nRaFB9D4pMtMhE58UuUTIRFI+BwSkyCFDhEuKnDJEeKTIJUMhXDLU9noeKfLJkC8lcskQ4ZMiXzLkkyKXDBE+KfKVyYWkKDQZjE+KfGVyPinqZHp+3/TWPinyHe+AX4pCN618UhSSJZcUuWSI8EmRS4ZCuGSo9R7u79ElQzFC41l8UuSTIV9K5JIhwidFPhnypUQuGSJC/S+f/Pj+HnotnxT5kiGfFLlkiPBJjq+v7GvvkyHCJTGTi3VvmZxPikJytVYp6toYIhe2FPlkyEQ6rghYLUWxwV8XFuU1kbb8xJIjW4o4M23YUhQbuOo6kEIyRNhS5JMhwpaikAwRthT5ZIiwpYgjInYbzsBKW3445XT2+7jSIRNbijiz8kjGFAGr5YdTJmdLEac0zm4TS3Vs+eGU09mv6ZMhwpaikAwRLikKdY6A1VIUkiHClp9YcmRLEWdGMVuKfDJE2FIUkyHCliJXOmSySooCMkSYUhSUIcKSopgM2SlRTIaar2tJUSwZsqUoJEOELUWxMjlbikIyRNhSFBsz5JIizsyYthTFxgzZUtTJAs6xBVBtKYod78BqKeKcl235kY4xCskQYUtRTIbslCgkQ633aP8+OTJkp0Scwf22FMWSIVuKQjJE2FIUS4ZsKQrJEOHqf8WSIPtxTtpkS1GsTM6WopAMueD0j20pismQC854IVuKpGOSpHQsRKF0yISkiCNDBElRLB0yISmSzIRBPzpn9dvG9qTa/j+GPf0gB5Ii7iw+nQz0A1pSFJMhgqSII0MESVFMhgiSIkkqQ20ls8yQBEkmXKD3ickQQVIkWauBLr6hdMiEJEgyZkg60QLQkiLuuB+SIO7YIvO1YzJEkBRxZIgwpYjTOQJaUsSRIYIkiDu2iKSII0MESVFMhgiSIq4MESRFMRkimlLEkKGOWZEibjJEUsSVIYKkiFsmR1LEkSGCpIg7ZoikiCNDBEkRdwIFkqKphYJomQCSIu4ECiRFHBkiSIpiMkSQFHGPdxPJTSqSIK4MUUrEkSGCpIibDJEUcWSo9R6N71WSDJEUSWY6IynilsmRFHFkiCAp4pbJkRRxZMhGMnkCtZP23SaW0uwxQyRFXBkiwZEEBfQciQyR0EgmTyAp4srQWlKijnrT356aFrX/5sIZ8Xt8c2ZC/JyHOJOkWxyflU0jeX5BPgDztGdhWR8n52SvP1FNY6KaZqVDJo/PyA586exzAPDgZdndsgcvy2YvAoDDjgU5Yzx8WTZoGQAenZbJxLem5O/x7UuyjuT9Z3nrwJhcmJPPJvflc8Oi9hIZIr4o/Cz/fGJM/B6fP7kdnz+5XfScLx4dF7/P105vE7V/8MKQ+D0eOSX7vg49Id9XAODSk7JZoqoPnBK1z3zhfl46ZLD0KdnU2ucfkp9XAODIUdnv8uhZ2XECAA9PDIraf2dSNhsiADxxWTb+7JiwfafPOyI83wF8GSJOTsm+r+V6SpzYA8Ajws/+cAczYR6elW3X1y/J3+Phafn19NCM/Pj6uuDGAQB8a0r+HtIxQ4/NyNpPVGWzyBEPXZbtw9+4JJe0x6dl23V0Ri4Shy/L5+L+5qTMHwDg65dmRO2ljkJ0JET/Mvn7OF+dFz3neHKB3fZcvfFhnlycFL0HAByd5kvR/MoCsafmeMJCRiyZsvDiYuO1L1d570Gldcdn+eJVradQradwudr4h8PZFbE7LZhd6eJSGifnBYnHQqPtCcFzAODoHP+kdGGx8dqnmItwmkjuNtHr0/vFX7vxGSQXCkrIjjDvmh1auet5SHj388mZMg5N85/z2ErbY4J1VA7PFnF4lv/Zqe1jws/yTcFF9fHpVufgO8xO0uGVO/eHBJ2XJ1fe58lp3nOOrrzHEWZ7ALi0cuf+yYsDrPYXphvvceyMrPO9xNzfm6ys0l391MPspyQPHUPyzcP8bfqHBxtvxZyNiFiYE465ODsAALjE7IQ+sfJbSKbKPrby23OnZT61ksKcEEx7fWklUTjNfM6lle2fWspjSpKiC8e00Pd0cYH/WeZrOdGseHTjZ2GZf005NN3DXuSToHM3d+bU0yupyllBEnN+pe0Ec+Kio3O0TfzPcpy5MLUJJSuSG5NHhGtyHVnpE5wVnI+Oz2dwjrn4KNDqC11aYlbNzKdwej6FE3Oym+TU/vQ873lHZhrtjgn6hOdW+nfc6qezKynPrCBdOc1dcdXg2Hxjweyj8/GFs1vPkSUEh+dm8S+Tvy96DrGmMUQcKXq8dq757xwpIhkiuFI0U21ZCkeKSIYIrhQRHCkiGSK4UkRwpKjqGAgak6KzVsrFkaKLRlTLkSKSIYIjRWeNkxdHimw54UqRKUIcKbJflytFBEeK7AtpTIpsCeJK0ZNGu0PTcTF6zHqcI0WmCHGkyG7DkaKHje3iSNHjDtngShHBkSJbgmJSdNQqleJI0SWrjCkmRSRDBFeKTBm6+B3GsVVvP79xpCh56Fjr3xlSRDLUfEuGFJ37euvY4koRyRARk6InrN+AI0XH7NnkIvJxyhIajhRdEkrKJcd2c6TIlKHzjO2yvx+OFM3XWu/BkSI7BY9J0aHpHhwyjj+uFNnn7pgUnbbG3XCk6LxwcgOSodbz45/FlKHzzNIse+wNR4pMGZpglOAfsfoCHCk6bvQ3OFJk94FiUmTLzIk5nhhJ5YlkiOBI0TlhFdNZq+SNI0WmDHEl6pglQRwpMmXoyFxcjA7P8UXLxZonVQhJkSlDxPHkgleMbBkiYlJkyhARkiJbhoiQFLkEKCRFtgwRISlyCXdIilwy1Hof2UERkqKLjpPjyfmMV4xsGSJCUnTWcdIKSZFPSk7N54Ji5BKgkBT5XiskRa6YPiRFvgsoNylqvUe4/ZOex31SZMsQEZIilwCFpMj3WEiKHnZsV0iKXDJEhKTosGNcR0iKfPLDTYqIkBTZMhTDliEiJkWuZCgoRXX3eS0kRaYMNf8WkCJbhppvHZAiU4aImBTZMkRwkyIiJEW2DMWwZYgISZFLhkIpkUuGiJAUuZKhkBT5vpeQFJky1HzfgBT5SoJ9UnTIc8zFpEi6wLgtQ0RIilwyFEqJbBlqvY7/Oa5kKCRF07W0d3a2kBS5kqGQFNkyRPik6Ph8pk2GiJAUSapkgHCyExIe12Oh17JliAhJkUuGQimRLUNESHJcyVBMimwZInxSdGx+zpkMhaRorTIEdGmWOZcUuWTIRFJCB/ilyCVDxNHpJVEJHeCWopD4uB7zyRDhkqJQ+uiSopAMtd5ndRs7HTJxnRhcMmQiKaED3FLkkiFCUj5n4hKZkPi4HoslTi4pCtUsu6QodkF1SVFIfHyP+WSo+TxBCR3gliKp+MTSI5cUuWSIcElRSIYIlxS5ZIhwSVFMelyP2+mQiUuKQjLkSol8MkQcOzPoFKNQmZxTijwyRLikyCVDzcccUuSToeYmOKTIJUOES4pOnB3wyhDhkiI7HTJxdf5DMuRKiXwyRLikKJQMuaQoJEOES4pCZXIuKYolZy4pcslQ8/0dUiQdH+mTIcInRaFzt+sxnwwRLikKJUMuKfLJUOv1Vj8nVCbnkiLOYqYuQmVyLinyyZAPlwiZuKQoJEOulIhT5uYSn5AouV7TJ0OES4pCyZBLinwy5OP0bC1YJueTIp8M+YiVyLmkqBsyBHRx2m1TimIyRJhS5EuHTGwpCsmQiSlFvnTIxJQiTmncwrJsXBHQLkWcUkzJmKL292k9LyRDhHmCiMkQYUqRLx0yMaUoJEPE0blsmxhxS9ZMoeGUxknGFLm2hTOA05Qi7t1FU4o4pXFmmydnylEZaj7PkA1fOmRiSlEnpXEcTCkKyRBhShFHhghTikIyRJhSxE2AzHYhGSJMKeIkQ9zxRDamFHHGDLVJUUSGCFOKQjLUbGNIUUyGmptiSFFIhghTimIi5CMkQ4QpAZxkyJSimAwRphRxyuRMKeLIEGFKEWfMkClFkrFVREiGmtthSBFHhsyUKCZDxFQ12yZGnHO32SYmQ4QpRZwyOVOKYjLkgjNmyJQirgyZKdGRuQJrzJApRRwZMlOimAwRphRxkiFTirhjfmw4ZXLma8dkyObcQopVJmdKEUeGTMHhjheypYgjQ2ZKxB0vZEpRt2QIAFJJksgGtqxwz8CveB+bTMlmeCgksjKQA4UBAHwhIraVZB3eoYL8AJhlCJdJJiV7j92VhJUO2cwLhW28WGcLEZERblYuLd/1Khn5c6TbNVasiidpkEw5CgAHexbE5RbCXavjux3SuWakn31/ZUEsR9zBocRtA9MiISJKGdmBku7gGplhTqlP9Odka7MdGJ6MpkMutg9eFrUfvkk+q2d2l2y7qsfkF7sLD8v2rU6+q8HKPEuGTC4Lx/PMLcuP4EpWtv8W0/KZpfrzS+IJFHLC9xkuLrBkyKQqnGVVMh21yZLwfaTn7bFCVTxmSJrajBZq4gkUih1cUITdGwDycn/p0ibbCnVxmZz0hjcA7Con4jFDi8L3Kconn8MF4WQ0l4VfcCXX+G6lyVAKsu8qgf/A6nRShY6FCHBL0WOpbwEAtmE/6zUuoHG3cGdyPft951KNKfj2pfjT4S7UG4a7p8KP02v1BNtK/APn0kqpXJ65k55fsZTtZf6JaW7l7Hqgl7/znFxJvCSCd24+wa4Kv/3plfcQPWce2FPh736Ukt3Uxz9Aj8w2fr/revjPObzynD1l3nNa7fmf5dhcCk/t55/9Hpxq7FQ39fGf89h0Bjf1ys6wT6ysU7O/wnvesblG+50l/vd7bC7N/m6B1vShBwS/4an5NA72yD77hZUbALtLPAF5YrYhtNf38MXg6EoqcaDCe86ZldTyxl7+TDsXFvM40Cu7GC2sTGW8b/QS+znzC3nsup0/Hercycbx2/ds5tojX2l85tI4/7g6/G/96C3xF9N47HxjWu2homyl7kenejFakPzujc73YI5Z1bCyn4wW+Pvw+ZU75vuY+xalCzuKMrGdWMphRPDZJ6v0Wfjf8cJyBkOC95hb2X+5N9kevdzYBytZWWfvzEIWQ3n+c6gCYljwnHOLGWwX/O50zt5W4H32Yyud9G1F/nF1cbHxnJ0l/nPOL8rf5+hsCoOC+4RnVgqThgT31I/N1LGzwu/XHVuZjlrSFzw52/j9dlb4xnJsZS3NsRLvObTezojAVKUydGnF0CQ37p9YblSIDST8GWCPpA8BAPbXeR5wMn0CALCjvnPVY53KENDFkjmgJUMAcA78aVQB4GSKt8geyRAAHElO40hyOtC6AckQAByb5U0XXlspBeEuOnXJGDe0JLR8/iK3rfd4clrusRORsU3EuZV1k07MJjjBWKfptFFiyGkPNGQI4E8laZYMPnJZvts+wVygjOQGaHTcZe15n4XafXuKd+J70Gj3CHP9gsemG+0emc7gkWnec54wFu08zFjAk2QIAE7O875f+k453y3QvpYCd5G5UyvbckiwztYFIw09LkwHH5/hXcGPGiVaT87Gn3PGKOF8lDnG68JK6vikIPVYMNZ1OXKeNwPd/EoJ0Ilv8FI4kiGgJTohzDbzp3nH1eF/a6xpw13ok2QIACYEk1U8SosCMxPeo3NmOVt8nzT3k/PM8mBuO8IstTrFLOdqPI+WH+A9Z9KcfY45XfbCymLWE8z3mDP2X071BMkQAMwyk5UzC1mcWSmJ5i6OaZaDc6stzq38jmeYv6d5zj63GP/s5jWKOxvZRcbr2pxflL/P0ZVrPHc5yTNGV26C4drHZupNuTk5y5wZrYO1eUiG7H8Pv4+s02guPsqVnE5lCACWGbnJE8vnmjIE8CvFSIa4kAwBwKn0SdFzY3RViGxiUkTpEBGTIlOGTDhSZBKToppVF39uvi5ajReIS9F5q4YtJkVzjtydI0UnrUkiYlJ0zrGILFdyuO1PW19/TIpc46c4UnRktr1NTIoOz65+nNtxb7WPDIa0Ho9J0YOOx2NS9JhDgGJS9IRDgDhSZBKTIvu7jH23roXlYlJ0ytoGjhRdcHRWYlL0hCU0MSk6KlwD54xjPFtMiuxOakyKFmqZNhkiYlI0b3WgY1JkyhARkiLXYzEpIhkiYlJkyhAxsVCIihHJEBGToqOOsiyOFLW/R7i9/fiRiGy7BuNzpIhkiIhJ0aRr9rmIFJEMNd8z8h5zwkVaTRkiYlJ0xjE2NCZFrrGxMSk6Z/2OMSlynbNDuK5NMVmxZegkYxzNeYdAxd7nqHWNj0nRGd597SYusYlJkf0cTh/QJUAxKbJl6GxkfMOMYK0goCFCa5EhDqYImcSkyJahw+mwA5gytB50TYjMdMjEJ0W2DBEnU4+z0yITnxSZ6ZCJT4psGTLxHRCXPJLhkyJbhogzczV2WkSEpMiWIcInRS4ZInySc9rzHt72nhPZsdmUaOExICxFtgwRPilyyVBz2zwdd99zfFLk+/u3pzLstIjwSZFLhprP8TwWurD6pMhMh0x8UuT7DqXCCfilyJYhIiRFLhkifFJkyxDhkyKfDHFSIhufFPk6pz4pcomQiU+KbBkifFLkkqFO8UmRLUOET4pcMmTikyJbhgifFLlkKIZvX/FJke/vPikKTdcckiJbhgjffueSoRi2DDXf2/MePhnypUQuGSJ8UuSSoeZ2ec4dnImCTM4tZlbJUPP9PX/3nbN9KVHoRp1PVnzJUEiKXDIU4uhsapUMET4p8smQLyUKpTw+KfI9x9cHPDm7zE6DWu+x7E2GfFLkkyGf8EhFCPDLkC8l8slQiCPpQ95kyCdFPhnqZkq0JiGiWj2fDBHS8jlgdVrkS4dMbCnyyRDBLZ8zsQ8InwwRthT5ZMjEliJXOmTy5HSySox8MkRwy+dMbMnxyZC3PePrtqUoNrueLUVHZtNeGSK45XNt22V13EMC1WifCv63C1uKXOmQiS1FIRlqPodZPmdiS5FPhghbimLSc2wuvaqNKx0ysaXIJ0OES4pCMkTYUuSTIcKWolgy5JIiVzpkYktR7E69LUUxGSJsKfLJEGFLUUyGXElQrJzOliKfDBG2FMVkiLClyCdDhC1FMRlypUSxfcWWn1hyZEtRSIYIlxT5ZIiw97+YDNkp0cJyxitDzW2w3iOWDNlSFJIhHyEZam6XdQ6JyZCdEvlEqG07rDaxZMiWIm4pt0msTO7kfGqVGMVkyBYvnwiZ2FIUS4ZsKeqk5C32HLsPyBEhuw2nRM6WolgyZMtPN2WIsKWII0N2SiQtkQPiyRBJ0VrGDwFdSIhiMkScw+GmGPnSIRuSIo4MEZ2Uz5EYhdIhEzogYjJESMcUAS0pismQCUlRTIaIicWkKUahdMiEJCcmQ3Z7CSRF3KnGSYpiImRiSlFMbprbtdJp57eXX4hIimIyRJAUcWSo+RyjLbfsgqQoJkMESZEkAaK2MRkiSIpiMkRIxhSZkBTFZIggKeKWyZlSFJMhgqSIO5ZDMqbIhKQoJkMESRE3GTIFiDO2CGhJUUyGCJIirgzZxGSIICniJkOmFHH3FZIg7pghkiKODNlMLOWiMkTQfshNhkiKYiLUtj0r78EtkyMp4sqQmRJxZKi5XSuSw02GSIo4MmTDPV+TFHGvQaasSMYMkRRxkyF6H44M2XDL5EiKuDJEKZE5xigG9QElqRC1lY4XAvhlciRBnZTIdatMzgVJEVeGKCU6mT7BLpPrRlK0plnmAGD34PeJ2k8uHsFQ4Tp2+xoWMMqcsc5kezIqal9DHXtKsrtIOeGcuyfnFtGTFZxoq4vYV5Hf2SoIz7OnZmvYVuJv1/mFGrYL2gNARvhdPXF5AQf7ZCUnnUxBeWS6hgN9/M9yYnYZ4+XOOtZcjk7XsK+Xv02PTi3hKQPy8quc8HbImbkEOwWzCALy6bKPz9RFs/mcmF3GwT757zGQl23YybkURgW74+HpBDfy+utNysIp5c8spHFLn2yGsB2lBVF7oLHezMGhSXb7ybkiDuy9KH4fCQ8/uQ2Dgs/y4MQghvPyacKlU+OfXcyiVzhz2eWq7EA8s5DCdskMYUsp9qyRRLGDJREmqhlsK/BLvi8tZbCnLJvdryicFv/R6TJywmnuO1l49MxCCsPMWd4A4My87HwC8NYrNDk8LbtWXVpMMFKUi0pe+HWdnkswIFzSRDod9YnZKga40/0CODY3j50l2YK+VeYNdJOji9PYlefPvnZ+aR77yvI+oIQz80sopGXX0CP18+L3OVz7KgZze9ntL9dOYiR7UPQeD0/8L+lmtbHmhGhh+RIWlnlTtU4uHgEATCw+IXqP88KSuzrqOJU6i1Ops6LncReFAoCppWVcWOCfoU7ONU78MzXZWe3ILH+bAODiQg2nBGdOantuXrZdZwTtT85VcWxmCcdmeB2SJy43OjqHLvM7PI9fXsC3L8k6e0emG5/hycuyz356jn92fnRyCY9OCqbnXdkm2jYuDwveA2jcpXriMv9znFlJBE8KEr/Tcwk7eQQaMgTwZ3Y8sXLH7ZDgc8xUG/+cENyhPLlyl/W80CUeneK3PTOfYs+iBzRkCAAeuszvsE/XMnhUmBRJ15uZXElHnjw6zH7O6VP9OH2Kb48PP7kNAHCJuWgpcXFJJjeHZkqYEkyAcHaxcRND0qE+OZ/BdI2/L55hzthFXFxZWFIyQcp0LY3zS8JZ61a+p3OLvBs5l5YocebP7rdYT2NKsD9SiloVrJN2ZC7T/M64SH+TM/Py88mpOWBKcIo/PC0zCKp2ubAg6+Sfm6/jBHPGNqBVWTLJrK6hsTkXBAsBnZiVrdt2bK4RPZ2c5w+heHT+Ep5cnBS9z9FF2fqc55ca22MuQhpjtpaI1sI8My/rNzxeP4HH6ydQhexGxuHaV0XtL9caac+FGi9RulA7xG4bYs1CdP5y44NypYjgSFENrTOGVIoIjhTVjKUoOVI0ZdTAXVioicQI4EnRRLW1w3Gl6KKxHadmZWIE8KTovPEeHCk6Odd+cuJKEcGRoseNNt++xBMjWzg4UnTCiMc5UmSKEEeKjlrbxJGiR42rJFeKzMj+icsyMQJ4UmSWVHKk6HgHM/qYcKRoxrpOcqTopFVywunEHDbG83Gk6IxRi8+RojPWooIcKZo2yoy4UmTK0KGJgWj7SatUjCNFpghxpIhkiOBI0YMTrbFQXCk6NNO6W8yRorOWCHCk6OR863U5UmR2vDmdcLtjz5Eic7vPL2VYYjQhnDXvkvWaHClaNBZD5UgRd5p64shcBkeMcmCuFJ0RlpqdscfdMM4np4zLP0eKTBniXKfs0n+OFNkz73KkiFtmT9jlaBwpMmVokjFWgWSIy6Pzl/DofKuvy5UiU4ZOLMXFiGSIiy1CHCkyZWixHv+uHq93NsObKUOXqkej7UmGuJAIkYusha5Oux2SIkqHTEJSZMoQcR6Ho2JUx+oDMyRFNUd7SVJEhKSI0iGTkBSZMkRIkyIiJEWux0JSdN7xGSVJERGSoiccAhSSosc9j3HFyCQkRScctcKhi41LgKRpERCWokcdV8eYFPnql0NSdMZxIQtJkevCF5IiW4Zaz/FfZF2/R0iKbBlqvY6/E2PLEBHqxBx2zPoYkiK7gwTw11syCUnRtGPMRUyKXMkQR4psQlLkEqCQFNkyxMGUISImRaYMESEpsmWIgylDREiKXAIUkiJfhz4kRT6JC0mRS4ZCKZEtQ0RIikwZIkJS5JKhUEp0xDMuMiZFru8/JEWuYz3Eqbl2GSJCUuRKhkLXKe44aCK0BElIilzXhFBKJJ2xrfH+q0/yISlyyVAoJTJFSIIrGQpJkUuGQimRJBEiXMlQSIpcMhRLiQ7XvupMhkJS5JKhUPLTjVTIpOvrEHWSFHVSQucSI5cMEZ2Uz7nEaCpwgLmkyCVDRCflcy4xurhQa0uHbFziExKlTsrnXGJkp0MmLilyyRAhKZ8zcUlRSDJcUuTqfBOS8jnCJUV2OmTi2l6XDBHS8jnCJUUuGSJcUhS6Cygpn2s9Z/UxHfo9XFLkk6HW63Ww8KBjd3TJEOGSolAHySdFdjpk4pIilww1t2m64hSjUJmcT4rsdMjEJUUh8XE9FpIhX0rkkiHCJUWHZkpOGSJcUhSSIZ9guGSo9RyZ+Dg75cKSr8b7hrsCLikKJUMuKfLJUAiXDBEuKQolQy4p8slQjKCMOqQodKy7ziUuEYoRKpNzXadCMuRKiaSpfeu9/e/jkqKQDLlSohOz1Y7L5Fy4pCgkQ76U6OjidMdlci5cUhSSIddjZ+aXOiqT8+GSIp8IhbhcO9lxMtRNuiJEdlRlS5ErHbIxpciVDjnfV1hGZ0uRKx2yMaUoJEPEWsvnXOmQjSlFIREyWWv5nCsdsjGlKCRDhClFIRkibCnypUM2phRxytBMKQp1vgn7YsNJgcw2IRkizO0OyRDhkiLO7DamFIVkiDCliFMSYUuRLx1qf45ZmhH/DKYUxWSo9brWAoSM2ZnMjkxIhghTijh3i20pCskQYUpRSIbatsuQIs6YIVuKQjJEmFLEKY0z23CSIVuKQjJEmFIUEiETU4o4yZAtGiEZaj1HVhrXVrbFkCE7JeKOeTKliFMmZ0oRR4bslCgkQ4QpRZwyOVOKODLk+j5Z5YqGFHGOdfNcwpEh+xLAGTNkXqc4yZApRfxxne3tONcEU4o4yZApRRwRslOiTsrkYjy5ONkmRhwRslOiTsrkJG04ImSnRNIyOa4ImSkRR4Rs+bH/uxvlckAXZpkjRvue5fz7Qk0wshjAUOE6thA13xv7g+mQi23CWej2lMosISJGitlgOuRiKZGlDb0Z+cxiOypZsRylhDccfQt4+djTk2cJkUknO22vYIY/ADjQl2V1wInxckZcElfMyO5J7OvNsoSIoNnnpFN9VrKy7dpZSYlqxLeVUiwZMlkSzupzsC/DFiJiVyVhyZDJTFW2XTf2y8pnDvTUWTJksqcsTy53FGX77sGhSZYMmZRysnPPpGeRVB+DpQWWDJl0klwseBb/9NGbrbNkqNU+EQ/Wl84aub+yLJ5RbTS/LB4zJJ3lbU95kSVDRH+uKh4z5FtA2sfwyqyUkt9kuJCIy+SYsys36c/LJlAYL2fEZXL1DrqIGWGnYaCQEpfJLSwLZ3Osyc5vO0uljsrkMpAdHwXI+iX7ymVRmVwlmxKnQscgW74mh4I4FRrM7RWnQj66JURdL5mzSRLZTistnwOASziNKchK4rhzmxOPzU+K2n97dgITyazoOZchy8k7mfrw/12eELW/sDyH8zXZdp1dlsXEX7h8StT+kdSjeDT1qOg5APCI8OD7ykXZ5/j8xEWcq8ue853acVH7f52Q7eefvziJz1+cFEf3Z+dlJvGdS7KO7kOXZK9/bmEJk0uy5zwyKR/f9q0J2cX/8HSVlZ6afOGssP054bTBVeAh5jpWJk/OyuTj386NiNpPLBZwcoY/y92Ry72YFM4M99Vz/NntAODwrGwWPaDRmZas1dJ4H9nv8eSM7PUnlxKcF84Q1sk+8si0rPN2YTGF00KZf+iyTLIfnJLNnMhd54w4M5fgoUngoUnR0/DgJdnvYS/EGePozBK+NSHr6D4oHFd7SnhTFwDOLVRxWtgB/+aErI9xclHWtzpTm8accGa0Ly8+JmoPAKfTsqqlE8JFSi9jFt+ak/X7Hp+TXfsfTz0pan948X48tvhp0XMA4MTMV0Ttq3VZgtYJ6y5EiqIoiqIoiqIom5WuCZErspqvNuJGaUp0efEkLi/KozRuSlRNNe4UcFOiBTTudkiTDwDslOhC0nhtbkp0MdUoRZSkRKeXLzf/n/6dCzclOlVrvC73uzpWv9DYJkzgNGTplSQlOrmyb3BTovPVlbUJFuSjW7kp0ZNJY1u4KdGT1cZilyeZE5dcWG7fdm5KNFNt3KnkpkRUSspd6ZoSlctVeVkXNyWqrZTXnRCUh04sNs5TF5mrfB+ebm0LNyWidocu8z7HqTnZWkvGJokSgIXlRiLBTYku1xpJwZMzPaz2E4uy9MmEmxI9vjIWao5ZBkbp0KRgYVSz1IqbEl1YabfEvAzSeJI55q47udRKIrgpEb32McGEIvR5zzHLxi4IUzSgNX7q0AzvNz8+12hXZZYwUjrE/W7tcZQXmd/v6bnGj32BeS6hdGiCeQ49Kly+AgAuLjZODtxSfkqHJOVW5xZkKf7R2XkcnW1cay8s8raL0qGLNV5icKYm67cdTx/H8XTjmnwpzetfnU4fbqZD3NSH2j2RfoTV/jJkqRgAnFqaAQBMJ7zvltKhxRTvuz28eL94m2YXz2B28QwA4PICrw9O6ZArJepWuRywgQlRktQ7EqMYWbTH6zEpIhkipKVzZ5eno519WzZiUkQyRHRSOkf/SIhJkd2hjkkRyRDRiUDGpOgRS4I4UnTS2idiUkQy1Hz+wlxUjA4tTLb9d0yKSIaImBSRDDW3STibIxGTohlLUmJSZI+ri0mRLQ6Xq8tRMTq30H5BjklRzRprxJEikiGCK0UmMSmyH49J0Slrso6YFE07Xo4jRSRDREyKSIaa7SNSZMsQp2zuyOX21dxjUvS4NVteTIrsUjmOFLnGncSkyJaCmBTZM47FOu6mDHGxX5MjRfbnjEmR/bljZXPTtdSqGfZiUkQyRMSkyC6Vi323nEllXJAMETEpskvlYlJky9B05Px5cbHalCEiJkV2qRxHimwZipXNkQhJsEvlYlJky1CsbI5EiIspQhJsaYpJkS1DTyxdCLY/tTTTlCEudqlcTIpsGaoux4WNRIhLtT6/IaVyxLoJEaVDNt2UIluGiE7GE/nEiNIhG19n3ycZ3RxPROmQC58U+bbL93dbhohOxhP5vitKh1Ztk0eKbBkiNmI8EeBPi2wZInxSZMsQIR1PFJIi3+8H+KXIliHCJ0W+SUa4SZGJT4psGSJ8UmTLECFJioiQFB122Qf8UuT7u0+KbBlqtZd/tz4WllOrZIjwSZEtQ832HinyJUMhKbJliPBJkS1DhE+KfOOGJqtpUVoUw5eQ+KTIt76Vr+Puk6FQSsRNRkx80ueTIt/n9kkRZ1FaG1uGCJ8U+cYN+b6PkAyFUiJbhmL4xg35pMiXDPmkyBYhDp2OG3LhkyKfDPlSopOLsx2NG3LhkyKfDPlSopAIhVKiTsYNufBJkU+EfCnR46knOxo35CIkRT4Z8qVEPhFaT0HqqhBRdOWTIWI9kiKbKZxdJUZ2OmRjS5FPhghpAuKSIjsdMrmMuVViFJIhwpaiWBLUjfI5Ox2ysb8rnww1t6lL5XN2OmTySO3kKjGy06FVr2dJkU+GiG5MsmCnQ23bs3xplRiFZIiwpcgnQ4R0kgWXFMUSFFuKfDJE2FLkkyHCJ0V2OmTikiKfDBH254x9bluKfDLUar/68dAmuVIinwiZ2FLkk6Fme2b5HOGSIp8M+fDJEGFLEWcSBZcUhWYlcwlDrFzMlqLQYr/A6o57LBlySVFIhlwp0cXFVDQBs6Uo9rltKYrJkCsl8smQj9gkCvb3wkmGbCk6PVcPypArJepkEoUQthTFZMhOiU7NLQZlyJcSdVImF8KWopgIuVKiTsrkQthSxEmFbPE5kT4UlCFXSiQtk4ulQrYUxUTITokOL97fcZmchJj00OPdLJcDruCkCmsZV5RF0ZsO2az37HNmR58jFhPJbFOMQjJkIi2hA+Qz0JnbzulQn6+1Zp+LyRAhFUhTinzpkIktRSEZMiEpislQ83WF44pMKfKlQyamFIVkqG2bVqSI89sRa5l5jjMFvSlF3DE2JEUxGSKkM8+dmK21iVFIhghTimIyRNDn5X5u7piiVvvWd8vZJFOKODJEkBTFZKjZ3pAizrghU4o4MmSmRDEZIkiKJDPKmVLEmaLZFAfp2JmYDBHUceeWyZlSxEmGTCmSzqIH8D83SRE3GTKliCNDZkrUyYxyXEiKuKmQKUUcGTJTIumYIW4yRFLETYVsKeLIkJkSScvkuKkQSdGZ2jRLhsyUqJMyOSncVIik6DJmWTJkpkRrLZGLwRWh6vJsMykyxwuFMFOijSyRs+naOkRET+l6+UakZCetocJ14vcopwZE7Yfr8cUAberC1XGkaydVU/L4u5DIBjNfTJ/F9vpO0XOqkNVhLEaSOpuplHx68YvVJ7A3+12i5wwnQ6L285EE0WYmJUviLuEUxpODoucUIB+8PpyWreEhXTup1sEpZmFZdve0R7jGFACUhWstdTIJhBTpNo2VZFMnX9cjHxs1XUtjf0V27hnIydpXBevOAMD5Rdl02Y9OZzAgX7YN0kpL6Z4uWFIMgHwtLqCxDomsvfgtkBb6U09W/jkKwtu3RwQTRgDA5Q7GY0l/j+Pzc9hR5C0CTMTGCNks1WXHuFR9zyVT2J4eED4LWKrLPseisF8h7YecTh9FHrLfYgEy6eiE0fpuUfsSMxwwOZOWVV2dWvi6+D2WhCldKS9bMgEAJme+LX5OiK4nRDPzj4ufI0mLcpkKpmtnMF2TRXCTddlaN6fTR3E6fTTecIXz6TO4mOanUZfS5zGV5t39B4Cz6aOYSMk+AwCcS5/AOWHqJTlYzqVPs2diAYCz6WOYTMlSu5n6OVF74mjt/7HbTqcmcERQ23s8fRQX0vzFyw7jmzifyO8snU7xt+li+hROCe9ezaRmcDThf7+X6vM4XRWOh6stiRbFu1RbwHzC71DPJ1V2ukfMLS/jgqC+/vTCImaXZRdcM0XlcKm2IEofzy8u4cFJ/ueerSX41qT8zj8gS1cuLGZwaIZ/kT67kMfEEr8Xfnw+L1oY9dFp+Xo7AHByDpCss3xxMcGEYNHLiwtJtMzT5PJSHf//9t49XLKqvPP/7l3n1qev0E3TIPegCEEeIHgZQndALhIxghDQMTJmohlhghplhCfKiFH5IfoIkjjexiBJSAJGM8gkEAdRJE0ElYsIDQToK3053ed+qXvV/v1xzqpatWvtvd+3TtU5Vae+nzzE01Wrdu267b0++/uutbKKBRkBYKYQYH9Gfn7NFAMMK9czGs4G2J+RP+ZANsA2Rb9SUroX5pVpDyXFyxjKlJBRLvS5P1vAeF5+TNiV0Vd67MhOY7Qk/43vLU1gRFh5AgAjwZS4UgWYlaFG2BXoLmru8Hdiny/v7+z2d2K/or2mbwcAw8WXMVzUjf0BZtfV1KytmSmPYSeeEbcf8ffgVV+e9Gz3nsd273lxe0AvQ+ncXqRze1Es6eQxk5f3h4ulbNNlCGijdYi0JXQAxGKUD2YPROPlPSIxyqN6AJL8cA741X3QSBEAlRQBwKi3RyxGdrIikSJ73yVStN8SAo0UARBL0e7gOQCzUiQRo5HCKxgpVA9AEima8qqleRopAqCSIgA4EGwTidEYqp+xRIpGrJOBVIqmveoBSyNFAMRSNFqopoESKRorVuuHJFJkt5FIUbpUQtpKnzRSBEAsRbYISaTIft0SKTqQq76XEimyVzbXSNGUcAprw3CuKh8SKRrKVmMbiRTtylTba6QI0MnNbusjkDxuxBIhiRTZY1AkUjRpDTqSStFMQSc2GWu7Uimy20mkyC7jk0iRLUJ7MrLP+xXlorZ2+ZpUiuxSMYkU2TK0J5v8e92RncaOrK5DubekkxVbnCRSZMvQvvI49pXHEx+zKzhQkaEhTzYueIe/U9TOsNtqL5Eiu09n9/WisEVoWnghXitCwKwMabDP+RIpskUoGyRXq+zJPqWSISNCraZY0i0urKElQtRISgQkT83dm3LXjMdJkZEhm0bSIg1JUhSWhwl/JFaMhhzPnyRFrjKzViZFQLIUDYUOdOPeUKwYGRmyiZMiW4RsNEkRkCxFu0KfR5IUbcOv6m6LkyJbhgxxUjTiOAlokyIgWYrGQrW9SVJky5AhTopsKTDESZHrPm1SBCRL0d5s7etIkiKXAMVJket1x0mRLUMGTVIEyKQoLENJKZEtQ4Y4KbJlyBAnRbYMGZKkKJwOSeRmt/JC/ohDgOKkyDVLWZwUTTqmpUuSorAMJaVEGWXyBLilKU6KXBM9xEmRKxVKkqKwDCWlRNqJDQD3uJk4KXIlQ3FS5BKhpJQoLENJKZEmRQKik6E4KXKlQnFStMPfWSdDSSnRbqU8NZIMhUmSIpcIxclRpjxWJ0NJKZHrnB/HQqRCLpqdEhkZatQxkmibhMim0bRIQ5QURV0xiCqhs9MhmxF/aEHSIi1RUhS1r1FStD9CAsb8A04xCsuQzUKU0EVJ0VTEATpKisIyZBj29zrFyCVDBm0JnaZ8DoiXIjsdsomSorAMVfapMOMUI5cMGVxS5JICg6Z8DoiWonTMuKQoKQrLkCFKiuLEx3Vf3OvWTt4RJUUzEZ3dZ8a9SDGKSoaipMglQwaXFLlkyOCSIpcMGaKkKKpULkqKdqejZSjqMS4ZiiNuymaXFLlkyBAlRVHJUJQURcnQcDa6fE5bVhc3FbhLiuJK5FxS9Mq0F5kMRUlRlAzFpUTaGdW0ZXJxqZBLivaWJiKToSjpibo9KiVqpEyukRK5KFxStNvfGSlDUSlRlAxF9fkaLZHT0EgqFCVDrpQorkQuKiVqlgw1k2Ip29JkyNAyIZqvwYWlKCodsgmX0LnSIRtpCZ3NfNOipBQlLEWudMjGJUVJkxCExxUlids+f3fT06IwYSlypUM2YSmKSodswlIUJUOG7f7LNWIUJUM2jZTQ2bjSIZuwFCVdKdrjb6sToygZMoSlKEqGavargXFFGsJSlCRJYSmKkyFDWIqiZMgQliJJaZx2Ha+wFLnSIZuwFEXJkE1YipLK5MJSFCdDLuJkyKAZUwTUS1HSuKGw4EhSofBjkmQonBLFyZCLOBkyhKUoqUwuLEWSZCgsP0kyFE6J4mTIRSPjhZIIS1FSMhSWov3ZQqIMhVOiJBkKp0StKJGz5WckmEpMhsJSJJGhcEqUJEPhlGg+JXISJOPBbSmSjBcKp0SSErnw/UkyFE6JFiIVakWJ3HxTorAItSodAto0ITIkldBF0WhaJKknBapSFJUOhTHCIZWERscVaROjRkvootKhMOb1xqVDNkaKkmTI0GhS1OwSujBGiuLSIRsjRUkyZDBSpDlAGilKkiHDjmB/w+OK4tIhGyNFcSmJjZEgaWJkpEgiQwYjRUkyZNBOtABUpUj6uo0UJcmQwUiRRIYMRoqkY4aMFEllyKREEhkyGCmKS4dsjBRJJ1EwgqMpkTOPkSZDRoqkMmRSIokMhZGOGTJSpCmTMxIkTYaMFEllyKREUhkyKVEj44WkZXJGijSpkJEiaTJkpEgqQyYlms94IQn7g4mWJkNGiqQyZFIiqQyZlKgZJXJxNDJWCJAnQ0aKpOd6kxJJZcikRN2cCtk0fdrtMK5puEvlHFK+fHpgz/NFCVGY/tQqVftB/yBV+x7lFMcT5d04yJdPqThW3oVlyn2aLu7D6h7FcxR3YF2PfGrnyfI+rPEPV+2TVDQNMwmLtoaZyu5BX69uQcdiKYP1AyeJ26fLY1jpy6diHy68rPr+pQsHsKrvCHF7AOjzdNNlA8Cq4BBV+xlvHIcppgEd80axIZC/Twe8MRwcrFa0H8YhwTpx+0lvGod5uunUAaCgvBCTDpTrhPjDOFQxtf+r/i4cFxwrbj8VZHDKSt2xY6YQ4OSD5NfIRnLAMct179PKHl37mZLumt1LUz76FA/ZPlXCIcqpy4cyJawbkD/JgUwJ6wbkzzGWK6M/pevoa2ZUA4CVvfrZBsfzZaxRvLkzxQArFM8zXQhw+KB8+3vTZaxRzMW9Z6aIPuX7qp3yGgCmSrpjwU5/u+oYu9ffhYPLh4rbj/pDqvZD/g711M97vZexDkerHpMVXpwzlJTTao8Ut2KNoi90IPcC+lPyfsR4ZjsG+3Tn03RuCGtXnChunymMYl3/61TPUQx0y5poha5RGepJyRfuDoIy+nrqP4tWpkPAIiZEpbLuQzMLPUkpBwVkiiPIFGVpS7Y0jtHCNowWZOM60uUxTJb3YbIsS4kmyrPpylhZtwiYtsYUACaKuufQXhXRlBlOBQeQC6aRC2QHv7HCDuRLM8gLP++p7Fy6V5BfASvOXWXbn90ifgwATCkTqZxgoV6bybw8scuXpzFd0u3PTHkYe4PnsTeQXT2a8cYBzJ6AJYzNXfXb58n264A3+90e9XRXIg94OmHeG8hmNzKMlmcwFcglfhjjSHvymGHEn93/IV/2Pr069/5v9WTHJrPvz0zJjx0mXXh2TCcs22cUApX3sT0tL4U7kE8hrVhEVrsI5/ap2c7uAcXAepMu2ItsxnGg0l72HGNzCwXnFIaTLpaRU0wZXQoCjCsTKG17TToJzMoQAOwRLnJqFkMdFyysDMzKEADkhe/rruwMdmVnMK68Qr29vB8jc8dNCTv97artS4/FhlHlOOahSvWL/HlMxcIwZGmMOQdJ+0Jj5V0YK+/CZFneER8p6hYdPZB7QdV+PLNd1R6YlSENmcLseWs49x+i9iP5lzGSfxkTBdn7uj/9LPann630h5LI5keQzY/A9xpY0E1BI1VhzWLBhcgWoVI5pxIjewVcDVIpMkilyCCVIoPkQGC3kUqRXdcqkaKxYvUAJqmbtV+nZPzVVCg+l0qRQSpFlfYKKTJIpChtvf8SKRouVN9HiRSlC9X3SSJF+XL1fZwu7ReJUTh1S5KimdBJXXsilkqRQSJFtghJpGjSugIplaLRcvU7J5GiYYxX/pZIkZEhQ5IUvRp635OkKLzPGikySKRoxDpsS6RoJF9tI5GiA/lqoiKRIluGJH13I0MawqVWSVIUFq0kKRoLde4lUpQuVh8jkaKSVRAilRy7neQxtgxNC8r4JG1s9gqlybAntLpukhTtytaedyRStL28H9utc4NEimwZkhxf7TYS0bHbSNonjVd27pNyoh/pxThDuK+UJEUjxa01MjSe0A86kHuhRoZypeQ+hC1D6bysRNCWoZHp5PfAyJCUkbzuc9ifflbVPqtYI6hRwkNktAu7NoOWC5Ek4oqTIs+r38UkMSo7xhjESVG2NF53W5wUpR2CEidFJh2yMVc9pLimZkxiorirrdIiIF6Kxgr1B+Q4KTLpUE37wlSsGLmuhsRJkeuzjpMiW4YMcVJky5BhMv+qKi0CoE6LAP3JKe6kPeaYoCJOikw6ZBMnRS4BipOiSUc5RpIU2TJkiJMiW4YMcVIUliGDNCkySJMiQ5IUucaexEnRiONwHSdFtgxV2sdIkS1DhjgpciVDcf12lwwlpUTa6Zk1qRNQL0OGOCmyZajaPvqFlxzV8XGCM54vO++Pe4wrGYoTHtd9cSmRS4biUqKwDCURliEJ25WVAzv97c5kKO746rovTnJc98W1d8lQXEq013vZKUNxKZHrfBPXB9JW0yxEKqRNhtK5IVUylCmMOmUoLiVyyVBcSuSSobiUyCVDjaREcZMrSFKhVpfLAQuUEM1XiqLQJkaaEjoAqhI6AKoSOoPrRx93IHBJ0XRxX+zc+C4pstOhMC4pintdLikKp0M2LilyyZBBmxQB+rSokfI5TQldrjTZlBI6Ox0K45KimfJw7Jgs10kqnA7VtHecJF0yZHBJkUuGDC4pihMf130uGTLsDUadYuSSIYOmfA6QJUVhXFIUTodsXFIUt58uKZopBLED8V1S5JIhg0uKXDJUae+QIpcMGVxSFFcm5+q3xyVDBzIlp8jEyZArJYqTIVdKFCVDcbhkKA6XDBm00hN1f1yZnEt84kTJJUVxyZBLiuJkyJUSxcnQeCnrTIriZMiVEjVSIqdJ50f9oYbL5MT7pEyFgPiLb9o+kCslipMhV0oUJ0OulChOhKJSojgRcqVEjaRCmmTIlMhJMSVyraZdZAhY4JK5JOkJl9C50iEXthS50qEwthS50qEwthS5EoMwrSihs+n0cUUAVOOKANSNK3KlQ3WPCaVFSbWy+7NbasRI8lnbUuRKh8LYUuRKh8LYUhQnQwZbiqSTU9gnqzgZqrS3TtBxMmRoRfmcjXZMEaAfVxSWDVc6ZBOWoqh0KIo4GTLYUiSRNluKpDOS2VIUJ0MGW4riZKjS3pKiOBky2FIkGTNk99ulZXK20EiSIVuKJMmQdDyRIZwSJclQOCWKkyEX2vFCQONjhqRIyuRsKZIkQ7YUSZMhW4okyZAtRRIZso+tEhHSlsXZbYb8HYkyZKdEUalQGDsl0oxZBfSVM8DSGi8kRSJCdkokESG7fyQRofmmRJJZpBe6bK7ls8zZLOs/Stw25feLhcjQm1ouEqLK/vSsFQmR4eDeY0WdZMMqf4OzXK6ZNJKslaE74fX58tlBACDlxa9oHyatHOOVK+inA/V93bom6wdOUn3WK/31IiEy9KdWiYTIsKrvCJEQGVak1qtn6zvMO1EkRJX25SNFQmTYEKyPTYfCHBysVsnOIcG62HTIxWHewbHpUJiV3rJEGbIZDAZVMnRoeb1IhmwOKW9Qtf+NgTWq9gBwmGL2LwBYqTsEYHmP7jS0O62bLWzPjH7MkFYLtKfSdQMpVTrUn/JUyVB/ylfJ0Jo+Xy1Da/p8lQyt6PVUMnT4oK8aM7Sm31eVyfWlPHWZ3JrUgKpMbm2wRpUMHVY+UpUKHVw+VJUKHVw+VJ0KaWcuA4BCwjqQ86UgWB+vpr2y0iS8Ho4I5YQAg/3y2f8AYF3/61Sp0OreI1WpUE9qmSoVKitnV519jhWqiRPyBV3AMB8WNCEqKBZoKpVzKBR1X+BCaUY1b3mmOCKeYQOYTYpmCvIDz2R5H7LFcXF7QF8elm7gR5vO6a7YT+d10ywWyq09EBaVB0JAf6VBO7HGeEnXidW+p2NZ3VUw7SBLANhW+Jmq/X9At57T897TqvYve7L1qAz/4T2T3CjES9B9zjs93dgu1+rhcWzBL1Tt04EuLc55+o7NdKGElybkF5pGcwF2TMs7veN5neC8OuNB4x7Pj2cxUZDvv2F/XnccGy7oZiR7bkp3TAovHJzETFEngTtn9J2bEWW536hwdj7Dc2O6fdoyrvvMXs6Oq9oDwNOB7jjzTPBvqvZbyrr2W4NfqtpvC55UtR8v6BZCBXQzpgL6fs9MXteHmUxvV7WfziiFsTiKYlGX8pQD3fi2fHFKdV6fyQ2pZKhYSi9AiZyvkqFGhGs+LKgQFYujYikyb5pGisxjpFJUKufn2ss62CaNkUqRKc2TSpE5KGinnE7nR8RiNJ2btW2pFBmRkHbgTUInlSJtOjQzt/8aKTJtpVLUk1oGQFZOCQCluatnPcK1tcyVKukB0XxPpScBU5ankXHTdn9eVt5gSgXNorJJmEVnpVOzjmL2hDoB2W/NbH8f5AIyPVeaNyKc1GBsbsHktDCFGvVmv6sZyMaOjZRn3xttye0O5YrkW5TlHN3IPqUMHcjrLtIMFWa3vycvPNYXZ48V0kWGi3PGmBVOxz1ZKNb8rwRTcZYVTmVtStSkU1+P5Wb3ZTQn26c9mdnz/nhB1onaOVdpkINcNLf7s4Pbxz3Zb3R3+dez7YUXzMaK22v+NwmzXen2J0qzFSvpkuy8a2Rouqi4EDwnQ9IyMG2/x5wHpedzI0OZnKwiw8hQSdhXtUWoKOwzmHP/dFZWQWReq7Q6ZmbuGF8sy/rCxVJjF7F1ZXOzulES7lM5yKslc74syjpEhdK0Ki0qFGfUaZF2ldtiKaNKi2YKQ6q0KFscV3VQNWvxGDRiBMxKkSYtms7vVSUbhXK6pWlRsZxRp0XapEhTUgnIpcigvUqkvTKm/d4BcikySKXIIJUig1SKDBopMkilyCCVIoNUigwSKbLTIYkU2emQVIqmrYUpJSnRaK7a2ZWkRONW31WSEr06U20jSYmeH6+eA6QpkS1DkpTIliFJSmRkSIqRISlFZemeRoIM2oVgpRJkGBNKkMHIkJSdyrLr7f5/VGRIipEhKVIJMmirEowMibevTIa0s6Nq+zgz+f2q899kersqGZrO7FAlQ42mQppzfr44peqzzOSGKjIkoVhKNyxDcnxoVKMc5Bc8GTIs6BgiQ09PdeX43ojVa6Nitd6e5ZHbjXpMT2rAebu58l7ffllEe3e5yfJedx1o1Ix2Az1r6m6LOzD0pepfc9KkAoN9a+tuM+mQs33/+vp9ivkhrug7rO62uPFbvf5g3W2NpkMuenz3ZxYnTK6VkKM+ewAYSK2pu60UU1tddHxf4uqYfa9+nFPUdxQAlvfVf2ZJM9m5vntxwrS+r35V7bjZ9Q7xjq27zaQ3Llyrm5t0KMxquH9nUdvfgOMin3c6YuKGteX69xSopkNhBgP38Ws04gryMqxy3m7SoTCrfPf4oKhSuaMD9yrocaVyJ0XUsdsyZPPa1e4BQrYM1ezTCrfojEd8tV8z6N6OLUM2XoRH2TJks7rXvf9xqdD6vvrjFxCdDK3rdZ9zomTo8D73eS1KhgZT7gkoomRoIOXukETJ0Kre6DGXUW4zkHJ/EFEy1OdoHydCB/fX71OcCK3prb96HSdC/aj/XiRJ0Jqg/vcZJ0JrUkfW3RYnQgf1HFN3W5wIubYfJ0KDqfp+QpwIrehxHyviRGhZ78F1t2n7O3Ei5DqPx4nQsv5D6m6LE6GUo4+aJEI9jr5CnAitGHhN3W1R/a/+3tXO26NEqMd3H4uaJULx8uI+7qQi9sne1kKnQ8AiJUQ2rrQorsYwKimKe4wrKYrraLqSorjJC1xJUey6Ry0eVwToxxZxXFEynZ4WAfrvXjgtSppqPJwWxckQUJ8WRckQMJsUhdOiuO27kqJpbyJShgB3UhQlQ4A7KYqSIcCdFEXJEOBOiuLGDbmSoqRxQ660KEqGAHdSFCVDgDspipIhwJ0URckQ4E6KomQIcCdFSSVyrqQorkzOlRTFJUOu0rm4ZMhVOheXDLlK5+KSoaj74oKecOlcvhTEJkPh+5JSoXDpXFIqFC6dayQV0tJtqRDQneOFtDQyXigKV9lcXCrkKptrZioUXTYXrRfhsrnFTIVsFkWIXF+oRkroNGV0LKETtG+ghM4gmd3PlqJmpkOGsBRJJMk+8MSlQwZbiuLSoco2LSmSzHJjHzjjpN1gnyyk6xzZ3zvJd7CTS+j2Yau6hM6WojgZMthSFCdDBluK4mTIYEuRZBIFW4qkkyjYUhQnQwZbiuJkqLJPlhTFyZDBlqI4GTLYLhAnQwZbiqTjhWwpkowZsqVIUiZnS5GkTM6WIkmZnC1F2jK5UqArk+vEEjl7LJFUhuyxRBIZsoVGIkN2G4kM2W0kMmSPJZLIUHgskUSG7LFEkj6M3UYiQ/Y5nCVy8bS+RM5HIyVyYRYjHQIWqWTOYJfO1dzuKK+Ko7dnuWrmip7UgKizWW2/TDW9tav0Kb69bo7aRqad1kxHDsjkwGawd52qvXbKTIkQ2fT4y1SpUV/PStVrHkitEQmRoVjOqab91Hyfgeiy0GayrKe+vCKOHk+XkPlIXofGpgzdLForPN3+ry2vFwmRYTBYIRIiwzKsEgmRYZW/QTWrXFzJYBRH+brf8doB3bFudZ9uumzt2emFCV1HOaM8LgKAB/lrWNc7oBozdHjfctWYocFUSjVmaCDlq2VoeY/yfKZqrZ8NL1vW7f8kdOeavb7ugg4AzJTkSygAQBDIX/NBPceokqE1qSNVydBgaq0qGVrRc6g6FUopqyW0U2RrZ0crKStWggbSC1+5XElfj7ucOgrphAnAbNlcK0VoVmp0v/yoZXUWS4aANiiZc5FXviHZwhhyRbkk5AoTqvQnX5hCqST/QeQKEypp0f74GyGnXPhLe4DJK9ZyCVBWlZOlc/vhKb+q+dKU6spMsZRBNi9/jzQyBMgXGbb3R0MjC5hl87opm8fS8ik/p3K7VVOFTxX21Cwkl8REYRemCvLFgPPlaYyWdEnULu8/MB3Ifwd78KJq+3sKuvKavblfqdo3MrnE1rL8auNUKY/tM/KT7IFsAS9Pyo+jw9myalpnrQwNQb/AtXadq5eKunKfVxTHIACYKMqFLlsqYTyvF8AZhaCVygEKZbmg7cunMaW42Li/PKUSnD2ebkKW3d5LqvYAMJzV/e7H0q+o2r+a/rm4baYwir1Z+XFiIrMDe6fl03BPZ17Fvindcgv54hQyeflabDO5farzWTqnK98vlnTnykZkSIvmObSTkpWKk8gpyg61qVaxNIWycj3McgNDHBaCRRUilwmW56xXK0UAVFIE6DudGikCdElOoTTTMjHK5Ifm9mdUJEbmSkI2PyISI5OsaKQI0I+x0UoRoK/d1UiRlNLcVei+npXOAaBhTCmotGzTpH+ak4iRIakUmXYaKQL06ydppAiASIrsBW1HSztEYpQOxit/S6RoPJi9IpsNZL/5scLsPkjLHE057kReV+OvkaLiXOKmkSIAIik6kK12xCVSNGytVyORokZlSCM4pu2EJ/udjXmTqufIYLZTsb8s+04U5lLkmVLyMS5rldeVGygKkUhRSSFCgH5q8/1lXUfWyNC0J3s/jQxpzhlGhiRTTI+lX6nI0Hhme2J7e1a1aUGnXzrNtWFCOXZmOqNLhQD9hTptJYiRIcn4k2JpqiJDkoQuCPItlyHtc2hECJiVIQ3a/pJWLoGqDJUc/d3FTIeANkiI4t6AfHFULUa54oRKjLRjhUqlvDotit1eqHQvSYoaKZer30br0qJ8eUYlRj1+f6wYhcc0JUmR6+pG0o88XOKYJEW9ETPaSZFIkY0qzRTUIIclKEmKwvcnSdFUrrZcI0mKwlKTJEXh+zVJkUGbFsVJkZEhQ5IUGRkyJElReGxiK6SoGCo/TJKiqdAxUJMUAfFSNKxcvHO+yZBEWMJtkqRoLNQJT3oOI0OGJCkqhEpq46QoK1y7aD6EZSgpJQrLUFJKFJahpJQonAwlSVE4GUo6ZwxnX1QlQ9pUSDuRQFiG0oX4RCYsQ5lcfPuwDKVzQ0gnjF0Jn4fiUqKZ3D6VDKVze1XJ0GKkQuVy/G8+/By5hM9MmwppZKiRVEj7npbLmdhkaLFlCGgDIZLQqBhpiOp0liPqlaOkyDXRQyMldK0uo2uWFEWNu4mSogARU6Mr0iIPvjot0v7gm5UUlSLGKERJUdREIZHfz4jtq2fQy4+pSuialRRFyUyUFEXdHrWdfMxJKUqK7HTIRlM+J02KDFFSFDVRSzOlKCxDhigpCsuQIUqK7HSoUaJSomaVycUJS9R9UVIUlqGk7YRlKImwDMURJUPNTImikqEoKYpKhqKkqNFkSMJu7yV1mVyUCEUlNFEyFJUSRclQVErUymRoOvOqOhnSTwzgFqGobUSJUFRK1G4lco2kQi4ZCiL6M1EiFLXQbKtToSQRaifaQoikZtiMtChucoRG0iLV/ijTnWZIkSmXc+EqoYsbeCctoTMsdAmd5IcdbhM3AUY2P1onRvNNh2xamRQB7hOKNg2Ka++SonA6VNN+gcvn4mTIEJaiKBkyhKUonA7ZuKQonA7ZSMvnDPOVoiJKkTJkCEtRlAxFESdDrpQoLh3SjCdykTRmaNKbrpOWpGQnLEVRMhRFnAy5UqI4GQqnREnJUDOkaDHL5FwpUZwMhVOiJBFynU9aPV5ovsmQTTglmsjsiJWhcEokEaFwSrRQJXISklKMcNncQpXIaWhliVzSReLwfY2mQhLaIR0C2kSIAJ0U2YlRSfAFa+XYokZK6IwYSWa6s9OiZpTLufdpYUrootIhG1uKJFOAt/O4oqh0yMaWIsk08vZ3UzJzoPZqHaCbbGEs/XJFjOJkqNLekiJJqZstRRJBWsjyuTgZMthSFCdDBluKJNP4t3JMkcFIkUSG7JRIkgzZUiQplbOlSJMOLcQEChIZsrcpSYZsKZIkQ0aKFqNMzoWdEklkyE6JJMmQkaI93pA6GdIgLZGzBUUiQ3ZKJJEhkxJlCqOqZKhdxgvZZXMSGTLb7IQSORembE4qW6ZsrpGJE7QypEHyfhr5MYlQp8kQsMjTbofxldNtA+5VhOOIWrU3Cs2U2K2e2jqqfC+OuIQoTH/vwaqpGVcsO0K1L9p0ZTKjSwgkcmyj/S6sdKwmHYdEiGxmsvKrZb6vmwoXaOz7o0HzfT5o4LiG5EVKf0o3hSkADPjuFcCjKELeIc8oF8TVLjS8uu8oVft1OFrV/pDgIFX75SndUgJr+nTf5wNZ3W+9ESHSUIbuNNob6N6fgzz5eS6lmBYcAHxP1x4ABnzdFPkjRfn3eaXfryqTk06aYNCsYwYAozldygPMznwrpTel6/eop7BWrNcI1C+amUSPcv/1nXHdhQnNjGeel2p5KuRFLlzqxlf2S8qKPpun3fYClLoFyhl7W0nbJEQAUC6n1V/OYnECRdWU23IbzRWGkcnLr0rki5PIKyxdW6KnJZPbDajGzexB0Vp4NAnt4riaNGc6t1fV6S+Vs4By7R7t5yWZ6cfQ76/CYEq37s3ygQ3ituVysaWCo71CVShNquR7z+TjmFIIr2bxuUx+BOMZ3Voi+fIMJotyQZsu7UdWUeKmSXfTuf3IF+QdwmIpg5GMvJTHRwqj0F0B3uPLZX0SaewtyV/veCmL7Rn5d217ZhozivPEq8oOcMZLI+PJOxlpbxpZT34czHozmPLHxe0LnvzCSiEoIavscGpL57LlIsaL8k7MNsUaPXv83XhRkWLu919FWiFEY9ijWr9sWPG7AoDpzCuYzsgFqlgcRSYn/y1m88OYycrXGJpRJEO5wj7kCroStmJpClnFcT+bH0K+IK8wKSj6a0E5j0CxvqQHT91naClBWbU/QVCMHEfkbI9i4kQPNpq2QGnuPw2ltpIhoM2ECDAfst7YtVKkEaNMfq9ajDSIplaeT+c3KKrESCNFgOwKVJ+/HIB+QgR1EqI8qACyz8usIzSd26sSo1ZKESD/XjT6/dHWMEukKJOvdpAkUmRkSCNFANRSBEAkRdOlammLRIrG5zol2pJXiRTZxw6JFGkXvwWAgjd70tJIEQCRFI2XqlejJVKkESegKkMF6M8pEilKWyVwEinSiBNQlaH9goSrYI2J0EqRFO2iqEaGJOWHe/xqR3/MT5ao/b5O6segS6SNDEmPnbYIScqAtKVCWc1aPpkdFRnKJ8xeBqAhEdKWpWnEqVAYrciQRHI0IgToFleeL6L+rLLPohWhAPL25fJ0AzKkpaR6DQtF2wkRUJWiZqdFpVC0qB0708lpEQC1FMWJUX9vbQmNNpbXSlGcGDkj/oQDTDl0ANVKrFaKNGLUKimSEpagJCkqhKRAkxQB8VIUlqAkKcqExrdJpCg8+YcmKQLipWg8dIU2SYrC4+Y0SREQL0VhGRrFq4lJkZEhQ5IUTaL2GKtJipIIy1BSShROhpKkyJUMxUlRWjnGKCxDSSlROBmKk6KCYF2VOCQpUViGklKicDIUJ0W2DEkIy1BSShSWobiUaDjzYkPJkIawDMWlRNn8sFqGNIRlKOmCqEuE4mQnmx9Sy5CGsAzFyY43939twwKkQhrqRSjuuNJYKtSuMgS0qRDZNCpGUjoxLZoXEV/EIHDXDS9GCV2UbLQ6LYr6rEw6FCZqP/t99/iVxZCiZpXWNSspstMhG235nCYtipOiqJkQo6TITodsmlE+FzWJSJQURR0rNOVzACKlKCxDhigpCsuQIUqK7HTIEJUARd0eJUVRZXJRUqQpkQOiZSgqAYq6PUqKtGVyzudsYumcJhnaVjqgLpNzEZUStTIZihKhuONolAxFJUCaZChKhKLK5qJkKCol0iRDzUyFosrmWl4i57xdPx63KUT0TaLGBHV2KtSIPC08bStE4Q9/IcYWacVISiNp0XzJxM34tcAldKZczkXLS+iAugNPOB2yaeW4IkAvRdpxRfMlTnxc44rC6ZDNfJOiJOkJ3x9Oh2yaUT4XJUOGsBSF0yGb+ZbPJR0jwlKUVCo33zFFUTIUhUuGDNqyuLAUNTJmSHN/UjIUlp9Gy+RchFOipGSoGaVzcTIUTomSRCicEs03GbIJp0Rj2BMrQ+GUSJsKAbpkqFgcjZWhcEqkSYWA5o4XCp/ztSIENF4i5yIsPu1cIieiTVKhxkSoERmq0q7pENDGQgS4pcgWo/A88i40UgToyujstCgrGCi4lEvowixUCZ14RpwWjCsy2OOKotIhm4WabKFVky4YKYqTIYMtRVHpkI0mKQKqUhQnQ4awFEnWyWq0fC5Ohgy2FEmmmNeWzxmk44ZsKYpKh2yMFElkyE6J4mTIYEuRRJCMFElkyE6JpMmQNkEySGTITokkyZCRovmWybmwU6JsuShKhowUaVIhQCZDdkokSYaMFDU6XigJc0xtZPIEDRIZMimRPV5IQiPjhSQYAVroErk4lkKJXBKePzuLXSOpkA7J8aYU+rtzZAhos2m3o/AiF8/UDRD2FFNozyL/4mqnVuzrkU8LrJn62xCbEDnQ/JCWDxyr2vbyvvXitpK1bGwKRe2PWjftZ3/vGtW21y47Qdw2XZLPtgPopuVuBG1ZnOb3MYtGepVTlcYssOtisF/+nWxk+5q1nOIWi3buiyIlPWTZSaptA8BK7xBV+xVl+bFsGXRTBmsY83RTaxc9/clZspZaowwE0Ul6mIMC3bTyA8rvb14pW9oFaac9+YXKgmC9JptcoDuOjWbqF5iOI53TjdHRsKz/CF0ypOxg6saU6Cdg0dIusqIda9MImtI8T3n+K5cbu2CzkLS7DAFtnhAlo4vvgiAbOVbG3V5+JUIbPWqSqAAlBNqYMmLci3v7ui+qdpG0nGJ8hRZtB0W9KGtuH7KK1bQ1a+toJ1vo7ZF3mAKU1e+NZj2J2bRWczUqrfp9aK6oFoujyBd0K7xPZeQLmuYLUyrBmc7uEa8jlC0cECVthkJpUnXs0JYBeZ6PachFvQT5WJecl8O4ouM87k2q2pcV3/eMN6PuaE8F8gQki2lkoTgfII0JT7b9MsoY8cbF2wZ0pXPaMrs9/j5VgqZZHHisvAvTZflve6y4Q3WhaTy3XdwWaK0MAfGTK4RR9WWU6cEs8yuNSm6raK/oz/ipQfjKtZEWbRyRg0Cxplm5nFOtu0Ti6QghSu546cVI2kY7qYNWirRipMLzVQcSLRIp6knNLgSWK002XYxMWVsjnX8tEinq61kJQCdFgKyEzqzY3duzvCViZNr0pAaVYpR8krWvXkl+H6aNtsxEIkWlcrZSZqmRIkCW+kxnq5+9ZnFViRTZbSTHDW/uCq9UiuzJQyRSZGRowtclnRLJ0YgQAIx4s/sgkaKMVcYmlSIjQ9NB8mu1RUgiRTnF+Cv79WmlSIKRIelCs9qp2I0MSd7HsXK1fFYiRWNFuayM57ZXZEiSuKZzO1ouQxoq/ROB5LQ+/bD7X9qyqgTsPoygL6MVoXYimPs/KZ0kQp2QDgEdIkSA9A3tjLQo/FraKS3SokmKgPZKixK3FxqfpE2KtGmRhjgpcr0PzUyLwr8F7cEu7rcRvi9JisL3NzspCo/b0SRFSWQLtYmAJikC4o8bXqjcpaEB4zFSFE6GkqQoFxqTFCc84fuS5MjIkCFOijLKCQ6A+mQorjOvSYWAehmSpkSNkJT8NJIM2SSlROFkKO59tGVIQliG4lKidkuFwsT1S9T9lgWRIU3b1qRCQOfLkE2c7HRaKtQpMgR0kBABGilqblpUbdsZaZFzBrwmpUWeN1B3W7NK6LTjh1zEJSLacjkXUVJk0qEwzZAikw6F0SRFQLQURd3ejKQoqra5GeVzUbdHSVHUBBxRUhQ1iUGUFNnpkCEqJQrLkCFKijSyFJYhQ5wURU0t7yKqTC5KisIy1AhRUhSWIYOmfC4uJYoqk5MkHIYoSYpKhqKkyPWamlU657q9PHc0dRGVDEVJkbZMzkVUSqRNhlxEpUTtmArV3R4hPc2Roah+hna2MXfbyH1sQolcJwjSUk6FgM6SIaDDhAjQvMHyHyzHFjUHrRS1Oi1qVRldp44rAvTvS1iK4r772ulBw7+LuN9J0pS1YcJSlDQb4XzL51wyZNCUzgH18hMnQ9rFpV1SFCdDmvFEQL0UxcmQS3I0yVGUDEURlw65pEgzZgiIT4fC92nK5IB4wZtv6VxSMhSWIk2Z3D5sjZWhsFhqkqGx4o5YGQqnRJpkqF1L5ERtGxovJGX+0y7Horxw2wnSE8VSHyvUaTIEdKAQAdqOV2vK6BpJi6Ri1EhapBKjFo4tWqgJF6TTYjcqReFyORetkiJAV0JnS5H09c5HihK3bcYhCGa+0U79aaRIIkeNlM8ZMZJMca0pn7OlKCodstEkQvaxIiodstGWz9lSJJlEwUiRJBmyJUcztkgiQ7ZEaEvlJDJkd+a1EygkYadEmrRLghGgbFCcd5mcC5MSaVIhQCZDJiXSpEKAXoYWG7sf0j4lctI+hj2eqH0mTmgXNKlQp4pQJ8oQ0CHTbkcRPR13e+MqO4tjoG+dqn02r+gIBmXVQVSz76sGddNzR5WGudvqRMqDryqZkwiRYdXy16r2ZWXv4eK22np3zXuopVhKqy4CaBdTbhWplG6KYgDo7zlI3FaTAPX4y0RC1AgDvbrpsg8ZPFHVfhmUUz0HK1TtpWhmtgOAnKdL6LKB7tjS48mnEtest7Y6OEQlQ2uDNeK2jbDPl68tMxHoJlsoBPLErKD4vQ2m1qqOoZq1hbqHFPSpkBztkiW+L++DlEvy71Xrx1u1chrz1n0+WjpVhoAOTYgMnfrGa0v0tGUxmo9VexDQ7Pdkehsm09uSG86RK4yL25aVK1WXgzw06+Zo3pfJmZcwOfOSuP1MUd4h1qx/kytMIFAuQKsdV6U9ebUDJWUKWS6lVet4FRUnXc12Z6cql29bc2W7HBQwNPMMhmaeEbUPgjLSwbh4+yXF7yftTVYW1BRtW7F+UNqbFAvUeGkXxku7kC3L18jRtJ0pD6umkB715KmypkKggBIKyg7UJOQJWwaT6PPkV+9bJUPp3H4Mp58Xt6cMRdEenW3P61FdBG8vGdLQnPFZi0Gn9skNHS1EQGd/AFop0omRj1Z9vFqhk0jRVGa2XEIrRVox0kqRVoySMIvsaqVII0ZSKTIy1Aopapd0yKCVIkAmL9nCbNmURIrMiuyaldYBaenhbBuJFJUDXcJiI5EiI0MzgrEttghJpCg/l/ZIpEgjWWEkomPaTJeSJWemrFhsE9UUbNxLTlqMDA0Lygi1IgRUZWiwnJz4ZaB7z1spQxooQ4uH5FyhFaHOliFNW8pQM+l4IQI6+4NYmLSodWIkRZMW5QrjLU2LZqUoWhrC41qaLUWGmeKBWDGazNcu0tcKKTKUg2KsGIU7/Es1KQqfSOOkyMiQQZMUJUlRWILipCh8n3YMRFJKFP4uxUlROBmSSJGUfKj0LU6KwjKUlBKNl3TTPIeFKU6KwjKUlBJpSgLDyVCcFIVlKEmOJjGjToZs4lKiQpBeMBkqlqIfO515hTLUxrQ6FWofGercVAjo7D64zZIQIqDzP5DWpkVAJ6VFhigpyubrr7YuRFokZTFK6HKF+ivaWikCdGlRlBS1WzpkUypNRopR1Mm0GeVzBcfvNUqKoqcqn3/5XFQ6FCVFjXyHwkRJkSvBiUp1wjLUCFGiESVDUSmRtkzORZQUufYxKiXSlslpbo8SoaiUSJMMaUQIaF0yRBFqb5gKRbWlDLWKJSNEQOd/MN2UFklpJC3SidHCldCZcjkXrRpXFATlyn82ceLTDClqd7QldGEpCqdDNmEpcsmQQVs+FyZOksJSlFQqJx1PBLhTorhxQ2EpiitnC98XJ0OulEhTKpeUDIXlJ06GJKVzccQlQ2EpipOhcErUyvFCQLwMhVMiyhCRwFRoPm0Xjk7vc4dZUkIELI0PSCNGJi3Sjy9qPpr9buWEC0BtGV3y066adAAAL6RJREFUdyK+hC5MK0voKo8LlcuF0Y4rAnRX+20pSioFs6WondOhMLYUSU6qrZpowZaipBTIvl+SGM2nfC7p+2JLkXYShWa0qTy3JUVJj7OlY75lci5sKUoaN2SnRPMpk4tDIkN2G4kM2SlRq5KhQjnTVBmyy+YoQ+2LpkSuc1Ohzi6PMyyFvnaYjp52O45OnZI7jOcNqFaR7+892FlSFoUm2dGgnZ7bTKogQftD1Lx/mrIkD/Lv2Krlr41NiMKUFGsPZPK6BSo9Tz4Fue/1qDr32nWF2oFUapXqxOoppn3VTN/u+X3i75/vD6q+qwN98qneAWD94Mnitv2efHrt5cEasewMBqtUpXKaxU6nSrppoTWsSK0XT6Kwwl+vkqHVgXxq9dWKabh7kVIlQ2l/WiVDmkklWpUK9aSWUYbaFM/rE/fZPK+nQ0WotdOXLyRLUYaAJZgQGZbKBxYEWVXHJ1cYbZnkaNCmRZqOtPb1tWphM038PjnzEsZnXhBvW7OeUEnR6QaAQnFc0bbxmbo6BfW03JrvquIEqPmda9pqCYKyqnxuSjGV9DDkiZVkhjVDGvJxPZOlPeoFm9MFeYf+QE7+O58oyi8E9UIu4r3QlbJOY/5jtKIoBvLjb0px0cg1bjIOylD7Ik6Fyp2aCgGUofZnyQoRsLQ+OG0HSDseqVVo9qHVUtRKMUpkLqVqFykqlaZRKsneb+nK052YDhmkJ07TTvJay+WZuccknwhbfeLO5uVr2mjIz5VBSaQoE8x2YNPBWPJ259IeieiYNtoFW6VoZChTHBU/xqTA08Vk8TMylPaSjwlGhtKe7JyRg67MNe3Lf+eNyNCAYCFlI0MpP3lR3Gx+T8u+/2ThMH0gybGyvcYKLR2WUp/axZIWImBpfYDahRqB1pXEafdBuh/l8rS4Y92I9C2qFM2RJEUZq+QxSYqms9VxLaVytiExkrKUfksukj7D8P2tSopahaRTaI8bSkqJ8ooxIUaGGkGT/iRJ0WSp+h5IUiJbbJIkx8iQBE1J7HySoSQpsmXIF3QHbBlahnhxsWWo31sZ27ZVyRBFqPPR9nsoQq1hqZ//gS4QImDpfZDqAwTTotC2F7+EbnzmBXFalC9ONS0tKjrKw6KkqOQoTVhqv6Uw2iuLUd9Tkw7VbtstRQt5Ao/rILomUWhV6VxcSpRXjAXSlsqFiZMilwBFSZFLhqLaumQoKiVyyVBUSqQpk8sh33bJkATKUHehFSHKUGtY6ud9Q1cIEbA0P1CmRY1td3bbi1xCN0c7ldBJcf2WOrlczkX4M4z7TJdiUmTjkqKodMglRVHpkEuKomTIJT5RMuRKiVwyFEcjZXISFioZsgmnRHEiFJUSRcmQKyWKkiFXShQlQ66yuSgZcpXNUYY6m7iLvuHJjChCrWUp9p2j6BohApbmB2sOHFI56oa0SCtGraAbpWip0WhS5EqHardbsv5enPcx3GFMmmLblqKkUjlbipJK5WwpSkqGbAFKSoZsKUqSoXBKlCRD9v1JMmS3TZIhOyVKkiE7JdImQ1LS/nTlPylMhsh8YXlc+9AN53mbJTvtdhxLZUruKDRT8nrewKILkmYffH+FSpBmty0bbO37/S2ZvctDT2VShSTWLH99zRiiOPp6VtaMIUoi5Q84S+acbVMrnCVzLjyvZ8klRDYeesQn3tnvp2z6Yg+ptjih9/duELc9aPB4cdseL3nAeyNtNcyU5AseZ5QLXUun8x/sXSdOhlb0bBAnQ4PBSrEMDQaDYhkqo6ySoAwmxSKUC6bEIpQtTYpFqFTOUYQ6GFWfRXE8Jo3TbTIEdFlCZFjqH7R2fNFi06q0SL/txU+LxqblYzYm0y+q9qNQlJcBFRVlQEtZhoDGk6Jmbpd0LpryO8mMc5XtCmacMwz78vFdU37yLIA2KciTnmX+QfLtKhKkvGIpAdJ+MBVqL5Z6HzmKrhQioHs/8O5EujJ068Z3BIG8VEVzpVMviPL9aAdZ7kwkoXv7BPO5gqwTXipnMTz9rKhttjSO6eKQ7PnLk+IkZ6Z0QNx2NPcKcsJ1tCYzu1AozqBQlKV7ucIEsnmZOBRLGczkZULie72YKMlTXwlpT36MmPB1izznFesX+YrKDM3irJm87HtGCEmmm/vGXStEQHd/8N3J4g5oD4K8WEg0a2dQish8SZIiezxakhRlS+OVv5OkKFeuCkuS6Nj3J7UdzVUX4UySosmMfHFUQDeepVjSCIM8ETFMePECY8vQlD8evy1LhiRrOtky1O+tiG1ry1BfQlvKECGLQ7f3ibtaiAD5opNkqbD4s3y1Ii3SzMhn9kG6H3FSRGGKIi4Bap90yEaaFAHJUmQjTYri0IwFsmUoCZcMxaVEYRmKS4nCMhSXEoVlqBkp0VJIhgb71kW2DcuQ7w+Kn4cQUoX94Fm6XogM/DJ0E9ISutbRziV07tvaY3bCzqI9xScOlxRFzVbokiI7HUp8rnJ9cqMRH1fbKBlypURxyZBLitopGbJxpURRMuRKiaJkqISCMylimRwhSwf2fatQiAghhBBCCCFdC4XIgqbcbSx+SrRQY4rikiOOKWol4ZSo/VMjTemcTVw6FC6bc6VDhnDyE5caaRIlm2aOGwqXzcWlQ+Gyubh0qNGyucUqlQuPI2pFOpTJDzEdIqRJsM9bC4UoBL8g3UZnls8lyVEjY4rkbSlFOtpfgqJIWty3kbFEcTJkMKLTzLFD0hnnDKZsTlIqZ6RoIUvlbEzZnESGTNncYo4bMhMrFMqZRBky44goQoQ0D/Z16+nKhVklLPXFW4mLFBZTjjyvTyUmi007LOpLWkdPao247YplR4jb9vrLGtibeDSyoxkL1NuzXNy+JyVbUBUAVva/Rtx2dUrWthfyxW3LyuNcSbj2Sy6YFidDGtkdmX5O1K4VC2sTstSgDLlhQhQBvzDdSOckRe0AZWhpUxROkFAsjWNcuj5RXr7gbzovW9B0LP0K0nlZ53oy/bL4+QFgOiObsa5QHEMmt1fUtlSW/86LgWyx6EwwgclAttZRGnIhBIAMZLKZCSbEopUP5On1VFZWOkgZIiQZ9m2joRDFwKkICSHdjFSKJBgZknRwjQxJpUiCkaFcQSZPZixVodi8fTAyNJ7ZlthWI0NSjAxlkSwkGUyqZEiKkSFJUkgZIqQ5sD+bDIVIAL9EhBBSjy1M0pQIiO/oaiRoLF1NcKQpkQTNxBKFYnVShbiUqNFkaKS4Vfy4ODTJUFiE8ogWjkZkKImp7G7KECFNgn1YGRQiIfxCEUK6EU1KFCVFmlK5MFGCZMtQEuFSubiUyCVDUSmRLUNxuGQoKiWSJkNAvYxElc3NR4Y0zx+HRobC9PWscbalDBESD/uucihECvjFIoR0Iy4pihKlsBRFyZCr4xslP+Hbo2TIlRJFjRsKS1GusK/hZMhGOpbIRZQMuVIiqYxEyZCrbK4ZMuR6DfORoSgoQ4TEwz6rDgqREtZhEkK6EVuAmjW2yO4AN2u8kC1F2kkU4rBTImkyBMSXytkp0XySIRs7JWpmMmSXzS1UMuSiXE5ThgiJgf3UxqAQNQi/bISQbkMqQiYlmk+pXBgjTNJSOYkMmZSoGcmQjUmJpOOGmiVDNotdJpcPphNlyEyswPFChDQH9k0bh+sQzROuV0QIIW4G+g4XtUv5sjV0ckV5J78obqudbj8latXXu1bUbsWA7D0CgMGUbJs9nuz9nC7uw/Ke9eLnLwUFUbsyZO0AYFSY4iUtRk1It0MZmh9MiOYJo0lCCHGTzTc+niZMWjg2p1gcRbEoTaZatfaYbLvlch6T6e2ytsLzTL48jXRpRNRWw1RRlqKlSyPIlmSJ0/6pZ0TtKEOERMN+aHOgEDUJfhkJIaSeZkiRRobkLL4MSdHIkJRpoeAAVRlqpmgZGSqW4svgKEOERMO+Z/OgEDURfjEJIcTgVf7K5vc2JEbp3N4aGSrFdJ51qVArZKh2u/mCewpsQC5D5aBYI0PTxaHIto3K0Ewxej8BeTIE1ApTXEokTYYIIdGwz9lcKERNhtElIYS40UiRNBUCtDLUCuTb1ciQFJcMRaU50mRoqrjPKUNR25WmRy4ZikqJmA4RUg/7ma2BQtQi+GUlhJB6JFK0FMcLAdEyFB5HNF8ZiiJKhsIpkSYVAqJlKJwSaZIhyhAh9bBv2TooRC2EFk8IIfVEldCFS+TiWLzxQqWIv+NpVjJkl821YsyQRIZsAWrWuCI7JaIMEVIL+5Oth3NGLwBBUOT03IQQEiKb34uBvsMAdFqJnGzb+cJ+9KTWiLfY7GQoXRpBWThVNtC8ZMgmW5rEQGoVZ5QjpEEoQgsD1yFaYChGhJDuwUtuAsATrpsTBNn57MyiIBWiAGWsXHaUqG2fv1zUbiKzAyuF6xyNp7di1eAxorYAMJnZiVXC/ZVOLS5d+JeQboAitLCwZG6B4RecENI9NO96WyfKkJQAZXHbfGEK07nkJGcis0O8zfH0VnFbYFaGpIxNPYtSSV7aRwhhX3ExoBAtAqwFJYR0DwHmI0ZBkKUMYVaE8oUpUVtbhqay8SVotgxJkhytDElhOkQI+4eLCYVoEeGXnhDSPeilaKmLkEaGpCxkMhQnR2EZikuJKEOEsE+42FCIFhleDSCEdA9yKVoqMuTq7EeJ0JRDMKJkyFU2105lclIoQ6TbYT+wPaAQtQn8MRBCuoP4EjqWyFVpVjIULpuLkyFX2VycDIXvi5OhcEpEGSLdDvt+7QOnPGsjzA+DM9ERQpY+AcKz0C1lEQIWR4bCMBkiZPGhCLUfnHa7TaEUEULI0qAntUYlQ/09B4nblso5RVuFcHq6ApJScVLcNgA7g6R7oQy1JyyZa1NYU0oIIUsDaRpSKk2iVJKLRTr3qrhtriBfdFWb3sgXyqUMke6F/br2hjFEm8MyOkIIWfq0SoSAxmTISE5Pz8Hx7efaBSjCS+hSUIZIN0IJ6gyYEHUI/EERQsjSZD4ylCsciGybK+yrkaGk5IfJECHNhX23zoFC1EEwbiWEkKWFS4bSOfckCa0qkQOiZShKely3R0kPZYh0G+yvdR6sw+pAWEZHCCGdRak0iVRqVc2/NTRLhoqlcfSk1tT8WwuTIULcUII6FyZEHQyvQBBCSOehLZFLkiG7bK4VkyfYApQkQ7YAUYZIN2D6YuyPdTaMGJYATIwIIaQzkMrQbNlcSrVtqQw1ugYQkyFCaqEELR24DtEShGJECCFLAakQlVq6F4SQWihCSw/2nJcgTIwIIaRboAwRslBQhJYuTIi6AIoRIYR0KnEpEWWIkIWAIrT0YU+5C2BiRAghSw3KECGthiLUPbCH3EVQjAghpNOhCBHSaihC3Qen3e5C+EMnhJBOoRTxNyGkFbCP1J0wKuhSmBYRQkgnQRkipJVQhLobTqpAAFCMCCGEENJ9UIQIQCEiIShGhBBCCFnqUISIDYWIOKEYEUIIIWSpQREiLihEJBaKESGEEEI6HYoQiYNCRMRQjgghhBDSKVCCiBQKEVFDMSKEEEJIu0IRIlooRKRhKEaEEEIIaRcoQqRRKERk3lCMCCGEELJYUITIfKEQkaZBMSKEEELIQkERIs2CQkSaDsWIEEIIIa2CIkSaDYWItBTKESGEEELmCyWItBIKEVkQKEaEEEII0UIRIgsBhYgsKBQjQgghhCRBESILCYWILBqUI0IIIYQYKEFksaAQkUWHYkQIIYR0LxQhsthQiEhbQTkihBBClj6UINJOUIhIW0IxIoQQQpYeFCHSjlCISNtDOSKEEEI6F0oQaXcoRKRjoBgRQgghnQNFiHQKFCLSkVCOCCGEkPaDEkQ6EQoR6XgoR4QQQsjiQQkinQ6FiCwZKEaEEELIwkERIksFChFZslCQCCGEkOZBASJLFQoR6QooR4QQQogeShDpBihEpOugHBFCCCHRUIJIt0EhIl0N5YgQQgihBJHuhkJEyByUI0IIId0EJYiQWfzF3gFCCCGEEEIIWSyYEBHigGkRIYSQpQhTIULqoRARkgDliBBCSCdDCSIkHgoRIQooR4QQQjoBShAhcihEhMwDChIhhJB2gAJESONQiAhpEpQjQgghCwkliJDmQCEipAVQjgghhLQCShAhzYdCRMgCQEEihBDSCBQgQloPhYiQBYZyRAghJA5KECELC4WIkEWGgkQIId0NBYiQxYVCREibQUEihJClDQWIkPaCQkRIm0NBIoSQzoYCREh7QyEipMOgIBFCSHtDASKks6AQEdLhUJAIIWRxoQAR0tlQiAhZYlCQCCGktVCACFlaUIgI6QIoSYQQ0hiUH0KWPhQiQroUShIhhNRC+SGkO6EQEUIAUJAIId0HBYgQAlCICCExUJIIIUsFyg8hJAoKESFEBSWJENLuUH4IIRooRISQeUNJIoQsFpQfQsh8oRARQloGRYkQ0iwoPoSQVkEhIoQsKJQkQkgSlB9CyEJCISKEtAUUJUK6D4oPIaQdoBARQtoaihIhnQ/FhxDSzlCICCEdC2WJkPaB0kMI6VQoRISQJQlliZDmQ+khhCxFKESEkK6F0kRIFcoOIaRboRARQkgEFCaylKDwEEKIGwoRIYTMA0oTaQcoO4QQ0jgUIkIIWSAoT0QDJYcQQhYGChEhhLQxlKilAeWGEELaFwoRIYQsYShUzYFCQwghSxcKESGEEEIIIaRr8Rd7BwghhBBCCCFksaAQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka6EQEUIIIYQQQroWChEhhBBCCCGka+lZ7B0gZCkyNDSE8fHxxd4NQgghS4w1a9bg0EMPXezdIGRJQSEipMkMDQ3h0ksvRSqVWuxdIYQQssQYGBjA3/7t31KKCGkiFCJCmsz4+DhSqRReeOElZNIZwPPm7vHhYe5v+zbPd/ztzf1/v/q3V72/uh0fnldt681VwXqe/bfnuM3ebmru2a39Qwp+6H4PXvXxCG9r9jbf3BZUt+Wj/vE+fHiB/RrNu+PVbcu3Xm9tW1S2W9lX+zavept5u007eNW/fa/6yMq771nP6Zk21vY9q621ffNe+1Zjv+b5a7dRff7q3/bzms3U7ldQ87ja11f7uMrjnW0D671w7Ivj9c1uP3A8V3Wfqs8bWNur3l+p06553sB6Xvv1hV9rUPO+mec1++RZj/e8oGa/w7fN7p/V1mpT//zW4/yg8vjq5177d91tfvX12bdV21Z3sva26t/WIaPy/tm32YeO0GEEXu0HU31DrS+WZ3/JzL7UfFj2G+/V3u+57699fuv+ygfqekzo/sp2/eo2K/f79T8kz6u29a0XWbN/1m1eeF9897asdoF9mx/afs0+hfZv7nmDmvutxzueC6Hn2rHjAP6/m76P8fFxChEhTYRCREiLSKczSM+ka3ottshUbqv8naqRC8DIhiU5jvvt2yry4gVWx9C0tTvbQV3He7aDayTCq8qNS3iQqspJRZj8ivz4QVWYAqTqHg/48IPq37PtrPcnqL5uhESpun9m/6t/248wQuTDqxMiLyRENSITur9WiKqPsSWj2n+qbsclKbYQ1Hbs7b+rzxHevi0BzvtD2429H9XOti1E1X0JIh5fFSJbVOrfl8D6PKzHoP7+yr5Yz+uHHld9jOt++7XUS4wtSdXPqlaIbGmqPj5aiOz7a+TLdwtRjeiEb7P6xfZtNUJU+3Op6XfXCJHvamt/sHP/tt9Y3xIi60OMFJ7K/Q7JcQiPF3W/LRNOoUlq60fcbwtPWIh8d1sv4X6rXWDfFhaiGslxbytw3u87n8t5PyGk6fDXRQghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQroVCRAghhBBCCOlaKESEEEIIIYSQrqVnsXeAkKXK4OAyeADgeXO3+PAw97d9m+c7/vbm/r9f/dur3l/djg/Pq7b15q5xeJ79t/X4yrbM81d3ZfaZgrlbA/go1z4eQeX+2b/N9suV5/dRmv07qD6Xj1Rln81jfPjwAvs1mtdUfV/s6zVBze2z/y5X3qnq4wLrtmBuv8s1r9G8b9W/fQ+Vx1fefQ/We2XaVPfO86y21vbNe+VbjX2E3+PqNqrPX/3bfl6zmdr9CmoeZz+/H3pc5fHOtoH1Xjj2xfH6ZrcfOJ6ruk/V5w2s7VXvr3yqNc9rPrnqfvn246xt2t8E+/sIAF5QfXy4bfg2Lwgqz+t51u2e/f6av4Pqaw2s7XvVx9h/193mV1+ffVu1bXUna2+r/u3Vv5ia2+xDR+gwAq/2g6l+0NYXy7O/ZGZfaj4s6wtrjgk1j6m/v/b5rfsrX0jXY0L3V7brV7dZud+v/yF5XrWtb73Imv2zbvPC++K7t2W1C+zb/ND2a/YptH9zzxvU3G893vFcCD3Xjh0HQAhpPhQiQppMuVxGT08PXv/61y72rjSA6bgVrdsKi7EjNQSh/y1HNSTEEKD6hSFkCdHT04NymUdBQpoJhYiQJuP7PorFIm644QYcffTRi707hBBClgg7duzA5z//efi+n9yYECKGQkRIizj66KNxwgknLPZuEEIIIYSQGHiJgRBCCCGEENK1UIgIIYQQQgghXQuFiJAms3btWvzhH/4h1q5du9i7QgghZAnB8wshrcELgoDz8BBCCCGEEEK6EiZEhBBCCCGEkK6FQkQIIQQAcO+998LzPPz7v//7Yu/KkuRHP/oRPM/D/fffv9i7QgghxIJCRAghbcBdd92FD33oQzjjjDPQ398Pz/Nw5513zmub11xzDXp7ezE+Pp7YtlAo4LrrrsPb3vY2nHnmmfN63mawefNmXHvttfit3/otrF27FgMDA3j961+P66+/XvR62pHzzjsPZ511Fq677jqUSqXF3h1CCCFzcAwRIYS0Accccwx27NiBdevWYfny5dixYwe+853v4A//8A8b3uZRRx2F173udfjRj36U2PaOO+7ABz7wATz00EN461vf2vBzNosNGzZgeHgYZ511Fk477TR4noeHH34YTz31FI477jj8+7//Ow499NDF3k01//f//l+8853vxF133YU/+IM/WOzdIYQQAiZEhBDSFnz729/G9u3bceDAAVx11VXz3t6TTz6JXbt24eKLLxa1//rXv44jjzwS55xzzryfuxl87GMfw86dO/Hwww/jtttuw6233oonnngCV199NbZu3YrPfvazi72LDXHhhRdi3bp1+MY3vrHYu0IIIWQOChHpatLpNO644w78j//xP3DRRRdh06ZNeOCBB1ryXAcOHMCNN96It7/97bjwwgvxZ3/2Z9izZ09du02bNjn/u+uuu1qyX6Q9OO+883D00Uc3bXs/+MEPAADvfOc7E9s+++yz+OUvf4nLLrsMnuc52zzyyCO45JJLcOihh6K/vx9HHnkkLr30UmzevLnS5jOf+UwlyfnOd76DN7zhDVi2bBmOPfZY/MVf/AUAIAgCfPnLX8YJJ5yAgYEBvPa1r8Xf/M3f1D3f9ddfj8MPP7zmNs/z8D//5/8EAPz0pz+VvRGYlcPf//3fx1FHHYX+/n4ccsgheOMb34ibbrpJ9PiJiQl8+tOfxkknnYQVK1Zg1apVOP744/H+978fO3bscL7+O++8E6effjoGBwdx9tlnV9r09vbikksuwebNm/Hyyy+LXwNZHPL5PL7+9a/jXe96F8477zx86EMfwi9+8QvRYyXH/Fwuhy984Qt4//vfj9/93d/F2972NvzX//pf8Y//+I8oFoux2//iF7+ITZs24frrr6+7L5fL4a677sKVV16J888/H5deeik+/elPY9u2bTXtnnjiCXzhC1/Ae9/7Xpx//vl497vfjVtuuQXDw8M17fbu3Rt5btq0aRO++MUvit4TQtqVnsXeAUIWk4mJCdx555049NBDcfzxx+Opp55qyfOk02l89KMfxczMDN73vvehp6cH3/3ud/HhD38Yd9xxB1avXl3T/owzzsCFF15Yc9trX/valuwbWZrce++9OPXUU0WS9dBDDwEA3vKWtzjvv/322/Gxj30My5Ytw7ve9S4cddRR2L17NzZv3ozvfe97OOuss2raf+UrX8HDDz+Miy++GG9961vx/e9/Hx/96EcxODiIp556Ct///vfxjne8A+eeey7uvvtuvP/978cxxxyDTZs2Je5rb28vAKCnR3b6evrpp3HmmWcilUrh4osvxtFHH43x8XFs2bIF3/rWt/CpT30q9vFBEOBtb3sbHn/8cfz2b/82LrzwQvi+jx07duC+++7DlVdeWfcef+lLX8JPfvITXHzxxbjggguQSqVq7v9P/+k/4dvf/jZ+/OMf4/jjjxe9DrI43HzzzXj44Ydx+eWX44gjjsADDzyA6667DrfffjtOOeWUyMdJj/m5XA7bt2/HW97yFmzYsAG+7+PZZ5/FV7/6VTz//PP49Kc/7dz+Cy+8gAceeAB9fX3O+z/3uc/h0Ucfxe/93u/hda97HYaHh/F//s//wdVXX40777wTGzZsAAB84xvfwOTkJM4++2wceeSR2LNnD/7pn/4JP/vZz/BXf/VXlfWO1qxZgxtuuKHueR5//HE8+OCDeOMb36h6XwlpOwJCuphcLhcMDw8HQRAEzz//fLBx48bg/vvvb/rz/N3f/V2wcePGYMuWLZXbtm/fHpx99tnBN7/5zZq2GzduDG699dam7wPpHG6++eYAQPCd73ynocdv27YtABB85jOfEbW//PLLAwDBSy+9VHff008/Hfi+Hxx++OHBtm3bau4rl8vB7t27K/++8cYbAwDBwQcfHLzyyiuV23fu3Bn09fUFq1evDl73utcF+/fvr9z32GOPBQCC3/u93xPt6y233BIACD7xiU+I2n/84x8PAAT33ntv3X3mtx/HM888EwAILrnkkrr7stlsMDU1Vfm3ef3Lly8Pnnnmmcht/upXvwoABP/lv/wX0Wsgi8Nzzz0XbNy4Mfj7v//7ym3ZbDZ4z3veE1x11VWxj9Uc813cdtttwcaNG53f0XK5HFx11VXBzTffHFx++eXBddddV3P//v37g40bNwb/63/9r5rbn3jiiWDjxo3BPffcU7ntqaeeCkqlUk27p556Kti4cWPwrW99K3E///RP/zS48MILg2w2m9iWkHaGJXOkq+nr6xOv+P3YY4/hmmuuwQUXXIC3ve1tuO666+rKD6J4+OGH8frXvx4nnnhi5bajjz4ap59+On7yk584H5PL5ZDL5UTbJ8TGlMtJxw+9+uqrAOCcpOCb3/wmyuUyPv/5z+OYY46puc/zvLqyNgD46Ec/iuOOO67y7yOPPBJnnXUWJiYm8KlPfQqHHHJI5b43v/nNOO644/CrX/0qcT+ffvpp/Pmf/znWr1+P6667TvTaDMuWLau7Tfrbj3p8f38/VqxYUXf7f/tv/w1veMMbIrdl3mfzvpP25Kc//SlSqVRN2Wl/fz8uuugiPPfccxgaGop8bCPHfBuT4ExPT9fd98Mf/hDbtm3DH//xHzsfm06nAQAHHXRQze3m+97f31+57dRTT4Xv13YFTz31VKxataqmHNTF8PAwnnrqKWzatKlmm4R0IhQiQgT88Ic/xPXXX49ly5bhQx/6EN7//vdj+/bt+JM/+RPs3bs39rHlchlbt27F61//+rr7TjzxROzevbtyAjP867/+Ky644AKcf/75uPLKK/Hggw829fWQpc0PfvADHHXUUTj11FNF7UdGRpBKpbBy5cq6+37+858DAC644ALx87ue97DDDou9zzWezmbr1q246KKLUCqVcPfdd2PdunWifbniiivg+z7e9a534Y/+6I/wD//wD9i9e7foscDsb/SUU07BP/zDP2DTpk249dZb8eSTT6JcLkc+5k1velPsNg8++GAAqBunQdqLl156CUcccQSWL19ec7uRnKgxYI0c8wuFAsbHxzE0NIRHHnkEd999NzZs2IDXvOY1Ne3S6TS+8Y1v4H3ve1+k0L/mNa/BIYccgnvuuQePPvoo9u/fjy1btuDLX/4yDjvssMRZJNPpNDKZTF0pd5gf//jHKJfLOP/882PbEdIJUIgISSCdTuP222/HO97xDnzpS1/CZZddhve+972VWaKSJjuYnJxEPp93nrzMbXbH6OSTT8YHP/hB3HTTTbj22mvh+z4+97nP4d57723eiyJLltHRUfzbv/2bOB0CZtOPUqmEQqFQd9/ExAQ8z6sIjYRVq1bV3WbG/ETdFzeAfNu2bTjnnHMwPDyM733ve6qZ8N785jfj4YcfxqZNm/D3f//3eO9734sjjjgCb3rTm0RX6nt6evDjH/8Y11xzDV5++eXK2kgbNmzAZz/7Wed6QknTgWcyGQDA4OCg+HWQhWdkZER83LbRHvOB2UlL3vnOd+Lyyy/HDTfcgPXr1+Pmm2+uGyt35513or+/H1dccUXkfvf09OBzn/scli1bhj/7sz/D7//+7+Oqq65CJpPB1772NeeFD5t//Md/RKFQSBSnBx98EGvXrsXpp58e246QToBCREgCv/zlLzE9PY1zzz0X4+Pjlf9838eJJ56IJ598MvbxpuzNDAa3MQNi7dK4r33ta7j88stx1lln4eKLL8a3v/1tHHvssfjWt77FEjqSyL/8y7+gWCzikksuET/GlLCNjo7W3bdmzRoEQZCYhLaKrVu34uyzz8bevXvx3e9+F+94xzvU29i4cSMeeOABjI2N4Sc/+Qk+/vGP49e//jUuuugibN26NfHxa9euxV/+5V9i9+7d2LJlC7761a/i4IMPxo033uicXStqpj6DeZ/t0kHSfuRyOfFxO/w4QH7MB4DTTjsNt956Kz772c/i4osvRiqVQjabrWmza9cufO9738PVV18dOZmCYeXKlTj++OPxB3/wB7jpppvw3//7f8e+fftw4403xp5Hnn76adx5550455xz8Fu/9VuR7Xbt2oUXX3wR5557bl3JHSGdCL/FhCRg6vz/9E//FO985ztr/vvFL36B8fFxALMnuJGRkZr/gGq9tuvqez6fr2njore3F5deeimmp6fx4osvNvOlkSXID37wAxx00EGiGdsMZryL6/tlyr/+3//7f83ZQQVbt27FOeecg7179+Kee+5RpV4uli1bhrPPPhtf/vKX8clPfhKZTEZVjup5Hk488UT8yZ/8SeVx9913n3o/zPscN86ILD79/f0NHbcbOeYffPDBOOOMM3D22Wfj2muvxZlnnomPf/zjlfMIAPzFX/wFTj755Jpp3F1MT0/jwx/+MH7zN38TH/rQh7Bx40a85z3vwec+9zk888wzkUtL7NixAzfccAOOO+4451TeNub7z3I5slTgtNuEJGDGCtxwww2V2n8bM6Xuj3/8Y9x888019z3yyCNYtWoV+vr6ak5sBnNb0niI9evXA5gtxSAkilwuhx/+8Ie4+OKLxdNSA8Dv/M7v4LbbbsPjjz9eJ1JXXXUVvvnNb+KGG27AW9/61poppk1y5JpYYb6YMrk9e/bgnnvuwbve9a6GtvOzn/0Mp512GgYGBmpuNwPiw7eH2b59OwDUTSghfbyLxx9/HMDs+07al7Vr1+LAgQN1tycdt5txzD/77LPxv//3/8bmzZtx8cUX44knnsDjjz+Oz3/+8zVpbalUQi6Xw969e7Fq1SosX74cP/3pTzE6Oorf/u3frtnmqaeeiuXLl+PXv/51XYI8NDSEa6+9FsuXL8ctt9ySWM754IMP4qijjsIJJ5wQ246QToFCREgCZlDrmjVrcMYZZ0S2e+Mb34hbb7217nbf93HcccfhhRdeqLtvy5YtOPzwwxNPPmbA+Zo1axR7TjqJb3/725VFTn/9619Xbnv44YcBAGeddRY++MEPxm7jRz/6Eaanp9VJyrnnnouVK1fiwQcfxCc+8Yma+97whjfgK1/5Cj7ykY/gN3/zN3HJJZfg6KOPxr59+/DII4/goosuwle+8hXV80k455xzsHPnTrzlLW/BM888g2eeeaauzWc+85nE7dxyyy34yU9+gk2bNuHYY4/FwMAAnnzySTz00EM47rjjEkXr6aefxqWXXoo3velNOOmkk7Bhwwbs3r0b9957L3zfx8c+9jH1a3vwwQfVKR5ZeMzadDMzMzUTK2zZsqVyv4tmHPNNWdvMzAwAYP/+/QDgXAvowIEDePe7341rrrkGV1xxBcbGxgCgbuKPIAhQLpfrxr1NTEzg2muvRaFQwG233ZYoa1u2bMHu3bvxgQ98ILYdIZ0EhYiQBN70pjdh+fLluOuuu3D66afXXXkfHx/HmjVrsG7dusgTye/8zu/gm9/8Jl544YXKzEM7d+7EU089hXe/+91127JJp9P43ve+h9WrV/Nq3BJm8+bN+Ou//uua2x599FE8+uijlX8nCdEPfvAD9Pf343d/93dVz71ixQq8733vw7e+9S3s3bu3bgKFa665BieffDK+/OUv44EHHsD09DTWr1+PN7/5zbGDu+eDmfL3sccew2OPPeZsIxGiq6++GqtXr8bjjz+On/70pwiCAEcddRQ++clP4mMf+5hzkgebM844A9dffz0efvhh/Mu//AvGx8exYcMGnHfeefjEJz4RuZhtFNu3b8ejjz6Kj370ow2lS2ThOPvss3H33Xfjvvvuw3/+z/8ZwGzJ2/3334+TTjqpMnnG0NAQstlsTXqqOeavXr26btzZP//zPwNA5Zh/+umn46abbqrbxy996UvYsGEDrrzyyspU90cccQSA2QWX/+iP/qjSdvPmzchkMjWLfGcyGVx33XUYHh7G7bffjiOPPDLxfTHlcuedd15iW0I6BS8IgmCxd4KQxeT73/8+pqenMTIygnvvvRebNm2qnDAuu+wyrFixAg8++CBuuukmHH300Tj33HOxZs0aDA0N4bHHHsPJJ5+ceJU4nU7jAx/4ANLpNN7znvcglUrhu9/9LsrlMu64446KBN1xxx3YvHkzzjzzTBx66KEYGRnB/fffj6GhIXzqU59STX1MuosgCHD44YfjtNNOw/33369+/IsvvoiTTz4Zn/nMZ/CpT32qBXtIgNkr/F/84hfx/PPP4zd+4zcWe3dIAjfeeCMeeeQRXHHFFXjNa16Df/3Xf8Xzzz+P2267rTKF/Ec+8hE8/fTTeOSRRyqPkx7zv/vd7+K+++7DWWedhcMPPxzpdBo///nP8ctf/hJnnnkmvvCFL8Tu3xVXXIFjjz0Wt9xyS+W2QqGAD37wg9i+fTsuvPBCnHTSSdi9ezf+6Z/+CStXrsR3vvOdyvN/8pOfxObNm/H2t7+9bra4ZcuWYePGjTW3lUolXHbZZTjssMPw9a9/vcF3lZD2gwkR6Xruuece7Nu3r/LvRx55pHJiu+CCC7BixQqcf/75WLduHf7u7/4Od999N/L5PA455BCccsopePvb3574HIODg7j99tvx1a9+FX/zN3+DcrmM0047Dddcc01NIvSGN7wBzz77LP75n/8Zk5OTGBgYwIknnojrr78+dsYfQh5//HHs27ev4YkHTjjhBHzwgx/Ebbfdho985COJU/MSPWNjY/jLv/xLXH311ZShDuGTn/wkDj30UPzwhz/E9PQ0jjvuONxyyy2Ja3xJj/mnnHIKnnvuOTz00EMYGxtDKpXCkUceiWuuuQaXXnppQ/vc29uLr371q/jrv/5r/OxnP8NDDz1UkZs//uM/rnl+s5bS/fffX3chZcOGDXVC9MQTT2B0dBRXXnllQ/tGSLvChIgQQgiA2XEKX/va13DZZZdxBrQW8OSTT+K+++7Dhz/84chFNQkhhCw8FCJCCCGEEEJI18J1iAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdC4WIEEIIIYQQ0rVQiAghhBBCCCFdy/8Py3w/3K0XcbQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration_idx = 49\n", + "\n", + "result = all_results[iteration_idx]\n", + "\n", + "iteration = result['iteration']\n", + "image = result['model_map']\n", + "\n", + "data = image[:,0]\n", + "data[data <= 0 * data.unit] = 1e-12 * data.unit\n", + "\n", + "hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "96731b2a-be51-4b40-b8b7-34ed55d004ad", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.html b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.html new file mode 100644 index 00000000..b22b95da --- /dev/null +++ b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.html @@ -0,0 +1,877 @@ + + + + + + + DC2 Image Analysis, 511 keV, Data Reduction — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DC2 Image Analysis, 511 keV, Data Reduction

+

updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)

+

This notebook focuses on how to produce the binned datasets with the spacecraft attitude (scatt) binning method for DC2. Using the 511keV thin disk 3-month simulation data created for DC2, an example of the image analysis will be presented. After running through this notebook, you can go to the next notebook, 511keV-DC2-ScAtt-ImageDeconvolution.ipynb.

+
+

Notes on the coordinate system of Compton data space in the image deconvolution

+

We have two options on the coordinate system to describe the Compton scattering direction (\(\chi\psi\)) with, namely the Galactic coordinate or the detector coordinate.

+

Using the Galactic coordinate is intuitive, and the spectral fitting adopts this coordinate. Thus, we suppose that Galactic coordinate should be adopted also for image deconvolution eventually. However, in this case, we need to convert the detector response into the Galactic coordinate for each pixel in the sky because the response matrix is described in the detector coordinate. As for now, it takes a long time to compute it. Thus, the pre-computed converted response are provided in DC2 for +several main sources (511 keV, Al-26, Ti-44, continuum). The pre-computed responses assume that we analyze 3-month data without extracting some time intervals, and the pixel resolution of the model map is already fixed in them. While there is less flexibility in binning/modeling, it is relatively fast to perform the image deconvolution in DC2 since the most computationally heavy part, the coordinate conversion of the response, can be skipped.

+

Using the detector coordinates for Compton data space may not be so intuitive. However, the advantage is that we do not have to convert the response matrix. Instead, we will convert the model map into the detector coordinate. Because the model map generally has a much smaller data size than the response, we can compute this coordinate conversion quickly.

+

The disadvantage of this method is that we need more bins due to continuous pointing changes of the COSI satellite. Since COSI is an all-sky monitoring satellite with ∼90-minute orbits, it changes its pointing by ∼4 degrees every minute. Thus, in this case, we need to divide the data into several bins so that astronomical sources can be considered at rest in the detector coordinate for each bin within the COSI’s angular resolution. The straightforward way could be to divide the data every +$:nbsphinx-math:sim`$15 seconds, considering that the COSI’s angular resolution is an order of degrees. However, we need :math:`5times10^5 time bins for 3-month observations, which makes the event histogram very huge. To avoid this issue, the spacecraft attitude (scatt) binning method is introduced. Instead of binning data over time, we first analyze the satellite attitude and find the time intervals when the satellite has almost the same attitude within the angular resolution. Then, we +assign the events in such intervals into the same CDS. In the DC2 simulation, the orbit inclination is assumed to be 0 degrees. In this case, the number of the scatt bins becomes 100-1000, which makes the computation more executable. With this method, at least in DC2, we can perform the image deconvolution using the original response matrix and have flexibilities to change binning/modeling, e.g., the pixel resolution can be changed in a relatively easy way.

+

While both methods have pros and cons, our baseline is to eventually use the Galactic coordinate. But we still need to carefully investigate how they will be scaled with longer exposure, finer pixel resolution, etc. Thus, we provide the notebooks of both methods for the image deconvolution in DC2.

+

For the Crab image analysis, the following notebooks are based on the scatt binning method - ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb - ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution.ipynb - ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb

+

GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb uses the galactic coordinate.

+

If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits.

+
+
[2]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix
+from cosipy.util import fetch_wasabi_file
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+import os
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
+
+

0. Prepare the data

+

Before running the cells, please download the files needed for this notebook. You can get them from wasabi.

+

Basically, the data reduction from raw tra files may take hours depending on your environments. So we can skip this process. Please download the following data files and then run the following cells.

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5 - cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz - cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz - In this notebook, only the albedo gamma-ray background is considered for a tutorial. - If you want to consider all of the background components, please replace it +with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB. - cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori

+

From docs/tutorials/image_deconvolution/511keV/ScAttBinning - inputs_511keV_DC2.yaml

+

You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files.

+
+
[ ]:
+
+
+
# Response file:
+# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5
+# File size: 350.43 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5')
+
+
+
+
+
[ ]:
+
+
+
# Source file (511 keV thin disk model):
+# wasabi path: COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz
+# File size: 202.45 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# Background file (albedo gamma):
+# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz
+# File size: 2.69 GB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# Orientation file:
+# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori
+# File size: 684.38 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')
+
+
+
+

please modify “path_data” corresponding to your environment.

+
+
[2]:
+
+
+
path_data = "path/to/data/"
+
+
+
+
+
[3]:
+
+
+
%%time
+
+ori_filepath = path_data + "20280301_3_month.ori"
+ori = SpacecraftFile.parse_from_file(ori_filepath)
+
+
+
+
+
+
+
+
+CPU times: user 16 s, sys: 1.16 s, total: 17.2 s
+Wall time: 16.9 s
+
+
+
+
[4]:
+
+
+
full_detector_response_filename = path_data + "SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5"
+full_detector_response = FullDetectorResponse.open(full_detector_response_filename)
+
+nside_local = full_detector_response.nside
+npix_local = hp.nside2npix(nside_local)
+
+nside_local, npix_local
+
+
+
+
+
[4]:
+
+
+
+
+(16, 3072)
+
+
+
+
[5]:
+
+
+
full_detector_response
+
+
+
+
+
[5]:
+
+
+
+
+FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'
+AXES:
+  NuLambda:
+    DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'
+    TYPE: 'healpix'
+    NPIX: 3072
+    NSIDE: 16
+    SCHEME: 'RING'
+  Ei:
+    DESCRIPTION: 'Initial simulated energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 1
+    EDGES: [509.0 keV, 513.0 keV]
+  Em:
+    DESCRIPTION: 'Measured energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 1
+    EDGES: [509.0 keV, 513.0 keV]
+  Phi:
+    DESCRIPTION: 'Compton angle'
+    TYPE: 'linear'
+    UNIT: 'deg'
+    NBINS: 60
+    EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]
+  PsiChi:
+    DESCRIPTION: 'Location in the Compton Data Space'
+    TYPE: 'healpix'
+    NPIX: 3072
+    NSIDE: 16
+    SCHEME: 'RING'
+
+
+
+
+
+

1. analyze the orientation file

+

Here the orientation file is analyzed to define the indices of the spacecraft attitude binning.

+
+
[6]:
+
+
+
%%time
+
+nside_scatt = nside_local
+
+exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt, start = None, stop = None)
+exposure_table
+
+
+
+
+
+
+
+
+angular resolution:  3.6645188392718997 deg.
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+duration:  92.36059027777777 d
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 7979955 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 44.7 s, sys: 1.88 s, total: 46.6 s
+Wall time: 46.5 s
+
+
+
+
[6]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(2088, 87)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(2088, 116)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.792486557202956, -23.48162697469867][45.79313907872797, 66.51842748236865][1.0000000000065512, 0.9999999999969589, 0.999...13091.0130910
22(2152, 116)[[45.978454945885545, -23.778456203550505], [4...[[45.978454945885545, 66.22154379644951], [46....[46.11600105920392, -23.997057178710705][46.11666483156788, 66.00300061062126][0.9999999999969589, 0.9999999999969589, 1.000...13268.0132680
33(2152, 148)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
44(2217, 148)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[48.22733567147042, -27.24260105367847][48.22779496794004, 62.75745007981912][0.9999999999969589, 1.0000000000065512, 0.999...11295.0112950
.................................
273273(2732, 574)[[169.8606861124748, -53.117736603001354], [16...[[169.8606861124748, 36.88226339699865], [169....[169.88431682515662, -53.105715691570055][169.88431237591922, 36.89428628084324][0.9999999999969589, 1.0000000000065512, 1.000...919.09190
274274(450, 512)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
275275(2864, 819)[[109.12274453361954, -62.18192897402973], [10...[[109.12274453361954, 27.818071025970276], [10...[109.11536622684899, -62.18125087710709][109.1153664213486, 27.818749379017405][1.000000000001755, 0.9999999999969589, 0.9999...210.02100
276276(216, 761)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
277277(212, 819)[[289.1161733315789, 62.182064711183735], [289...[[109.11617333157892, 27.817935288816265], [10...[289.1158698854739, 62.181869345669945][109.11587008833249, 27.818130910219594][0.9999999999969589, 1.0000000000065512, 0.999...216.02160
+

278 rows × 10 columns

+
+
+

You can save SpacecraftAttitudeExposureTable as a fits file.

+
+
[7]:
+
+
+
exposure_table.save_as_fits("exposure_table.fits", overwrite = True)
+
+
+
+

You can also read the fits file.

+
+
[8]:
+
+
+
exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits("exposure_table.fits")
+exposure_table == exposure_table_from_fits
+
+
+
+
+
[8]:
+
+
+
+
+True
+
+
+

The sum of values in the ‘exposure’ column should be the same of the observation duration.

+
+
[9]:
+
+
+
(np.sum(exposure_table['exposure']) * u.s).to("day")
+
+
+
+
+
[9]:
+
+
+
+
+$92.36059 \; \mathrm{d}$
+
+

SpacecraftAttitudeExposureTable can produce SpacecraftAttitudeMap that has an exposure time in each Z- and X-pointing pixels.

+
+
[10]:
+
+
+
map_pointing_zx = exposure_table.calc_pointing_trajectory_map()
+map_pointing_zx = map_pointing_zx.to_dense()
+
+
+
+
+
[11]:
+
+
+
hp.mollview(map_pointing_zx.project('z').contents, rot=(0,0), unit = u.s, title = "Exposure map projected in the Z-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+hp.mollview(map_pointing_zx.project('z').contents, rot=(0,90), unit = u.s, title = "Exposure map projected in the Z-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_23_1.png +
+
+
+
[12]:
+
+
+
hp.mollview(map_pointing_zx.project('x').contents, rot=(0,0), unit = u.s, title = "Exposure map projected in the X-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+hp.mollview(map_pointing_zx.project('x').contents, rot=(0,90), unit = u.s, title = "Exposure map projected in the X-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-DataReduction_24_1.png +
+
+
+
+

2. Calculate the coordinate conversion matrix

+

CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.

+

In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.

+

If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.

+

If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index.

+

In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it.

+
+
[13]:
+
+
+
%%time
+
+nside_model = nside_local
+
+coordsys_conv_matrix = CoordsysConversionMatrix.spacecraft_attitude_binning_ccm(full_detector_response, exposure_table, nside_model = nside_model, use_averaged_pointing = True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 11min 16s, sys: 5.89 s, total: 11min 21s
+Wall time: 11min 20s
+
+
+

You can save CoordsysConversionMatrix as a hdf5 file.

+
+
[14]:
+
+
+
coordsys_conv_matrix.write("ccm.hdf5", overwrite = True)
+
+
+
+

You can also read the saved file.

+
+
[15]:
+
+
+
coordsys_conv_matrix = CoordsysConversionMatrix.open("ccm.hdf5")
+
+
+
+
+
+

3. produce the binned data

+

Using the exposure table, we can produce the binned data. Note that here we generate the binned histogram manually. We consider implementing this functionality in the DataIO class in the future.

+
+
[16]:
+
+
+
def get_binned_data_scatt(unbinned_event, exposure_table, psichi_binning = 'local', sparse = False):
+    exposure_dict = {row['healpix_index']: row['scatt_binning_index'] for _, row in exposure_table.iterrows()}
+
+    # from BinnedData.py
+
+    # Get energy bins:
+    energy_bin_edges = np.array(unbinned_event.energy_bins)
+
+    # Get phi bins:
+    number_phi_bins = int(180./unbinned_event.phi_pix_size)
+    phi_bin_edges = np.linspace(0,180,number_phi_bins+1)
+
+    # Define psichi axis and data for binning:
+    if psichi_binning == 'galactic':
+        psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = 'galactic', label='PsiChi')
+        coords = SkyCoord(l=unbinned_event.cosi_dataset['Chi galactic']*u.deg, b=unbinned_event.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic')
+    if psichi_binning == 'local':
+        psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = SpacecraftFrame(), label='PsiChi')
+        coords = SkyCoord(lon=unbinned_event.cosi_dataset['Chi local']*u.rad, lat=((np.pi/2.0) - unbinned_event.cosi_dataset['Psi local'])*u.rad, frame = SpacecraftFrame())
+
+    # Define scatt axis and data for binning
+    n_scatt_bins = len(exposure_table)
+    scatt_axis = Axis(np.arange(n_scatt_bins + 1), label='ScAtt')
+
+    is_nest = True if exposure_table.scheme == 'nested' else False
+
+    nside_scatt = exposure_table.nside
+
+    zindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[0] * 180 / np.pi,
+                        unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)
+    xindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[0] * 180 / np.pi,
+                        unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)
+    scatt_data = np.array( [ exposure_dict[(z, x)] + 0.5 if (z,x) in exposure_dict.keys() else -1 for z, x in zip(zindex, xindex)] ) # should this "0.5" be needed?
+
+    # Initialize histogram:
+    binned_data = Histogram([scatt_axis,
+                              Axis(energy_bin_edges*u.keV, label='Em'),
+                              Axis(phi_bin_edges*u.deg, label='Phi'),
+                              psichi_axis],
+                              sparse=sparse)
+
+    # Fill histogram:
+    binned_data.fill(scatt_data, unbinned_event.cosi_dataset['Energies']*u.keV, np.rad2deg(unbinned_event.cosi_dataset['Phi'])*u.deg, coords)
+
+    return binned_data
+
+
+
+

Load the 511keV data (without background)

+
+
[17]:
+
+
+
%%time
+
+signal_filepath = path_data + "511_thin_disk_3months_unbinned_data.fits.gz"
+
+unbinned_signal = UnBinnedData(input_yaml = "inputs_511keV_DC2.yaml")
+
+unbinned_signal.cosi_dataset = unbinned_signal.get_dict_from_fits(signal_filepath)
+
+binned_signal = get_binned_data_scatt(unbinned_signal, exposure_table, psichi_binning = 'local', sparse = False)
+
+
+
+
+
+
+
+
+CPU times: user 7.22 s, sys: 334 ms, total: 7.55 s
+Wall time: 7.56 s
+
+
+

Load the background data

+
+
[18]:
+
+
+
%%time
+
+bkg_filepath = path_data + "albedo_photons_3months_unbinned_data.fits.gz"
+
+unbinned_bkg = UnBinnedData(input_yaml = "inputs_511keV_DC2.yaml")
+
+unbinned_bkg.cosi_dataset = unbinned_bkg.get_dict_from_fits(bkg_filepath)
+
+binned_bkg = get_binned_data_scatt(unbinned_bkg, exposure_table, psichi_binning = 'local', sparse = False)
+
+
+
+
+
+
+
+
+CPU times: user 1min 34s, sys: 4.3 s, total: 1min 39s
+Wall time: 1min 39s
+
+
+

Sum up the signal and background data

+
+
[19]:
+
+
+
binned_event = binned_signal + binned_bkg
+
+
+
+

Save them

+
+
[20]:
+
+
+
binned_event.write("511keV_scatt_binning_DC2_event.hdf5")
+binned_bkg.write("511keV_scatt_binning_DC2_bkg.hdf5")
+
+
+
+

You can move on the next notebook (511keV-DC2-ScAtt-ImageDeconvolution.ipynb).

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb new file mode 100644 index 00000000..5e84267b --- /dev/null +++ b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb @@ -0,0 +1,1131 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, 511 keV, Data Reduction\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on how to produce the binned datasets with the spacecraft attitude (scatt) binning method for DC2.\n", + "Using the 511keV thin disk 3-month simulation data created for DC2, an example of the image analysis will be presented.\n", + "After running through this notebook, you can go to the next notebook, 511keV-DC2-ScAtt-ImageDeconvolution.ipynb.\n", + "\n", + "### Notes on the coordinate system of Compton data space in the image deconvolution ###\n", + "\n", + "We have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) with, namely the Galactic coordinate or the detector coordinate.\n", + "\n", + "Using the Galactic coordinate is intuitive, and the spectral fitting adopts this coordinate. Thus, we suppose that Galactic coordinate should be adopted also for image deconvolution eventually. However, in this case, we need to convert the detector response into the Galactic coordinate for each pixel in the sky because the response matrix is described in the detector coordinate. As for now, it takes a long time to compute it. Thus, the pre-computed converted response are provided in DC2 for several main sources (511 keV, Al-26, Ti-44, continuum). The pre-computed responses assume that we analyze 3-month data without extracting some time intervals, and the pixel resolution of the model map is already fixed in them. While there is less flexibility in binning/modeling, it is relatively fast to perform the image deconvolution in DC2 since the most computationally heavy part, the coordinate conversion of the response, can be skipped.\n", + "\n", + "Using the detector coordinates for Compton data space may not be so intuitive. However, the advantage is that we do not have to convert the response matrix. Instead, we will convert the model map into the detector coordinate. Because the model map generally has a much smaller data size than the response, we can compute this coordinate conversion quickly. \n", + "\n", + "The disadvantage of this method is that we need more bins due to continuous pointing changes of the COSI satellite. Since COSI is an all-sky monitoring satellite with ∼90-minute orbits, it changes its pointing by ∼4 degrees every minute. Thus, in this case, we need to divide the data into several bins so that astronomical sources can be considered at rest in the detector coordinate for each bin within the COSI's angular resolution. The straightforward way could be to divide the data every $\\sim$15 seconds, considering that the COSI's angular resolution is an order of degrees. However, we need $5\\times10^5$ time bins for 3-month observations, which makes the event histogram very huge. To avoid this issue, the spacecraft attitude (scatt) binning method is introduced. Instead of binning data over time, we first analyze the satellite attitude and find the time intervals when the satellite has almost the same attitude within the angular resolution. Then, we assign the events in such intervals into the same CDS. In the DC2 simulation, the orbit inclination is assumed to be 0 degrees. In this case, the number of the scatt bins becomes 100-1000, which makes the computation more executable. With this method, at least in DC2, we can perform the image deconvolution using the original response matrix and have flexibilities to change binning/modeling, e.g., the pixel resolution can be changed in a relatively easy way.\n", + "\n", + "While both methods have pros and cons, our baseline is to eventually use the Galactic coordinate. But we still need to carefully investigate how they will be scaled with longer exposure, finer pixel resolution, etc. Thus, we provide the notebooks of both methods for the image deconvolution in DC2.\n", + "\n", + "For the Crab image analysis, the following notebooks are based on the scatt binning method\n", + "- ScAttBinning/511keV-DC2-ScAtt-DataReduction.ipynb\n", + "- ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution.ipynb\n", + "- ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb\n", + "\n", + "GalacticCDS/511keV-DC2-Galactic-ImageDeconvolution.ipynb uses the galactic coordinate.\n", + "\n", + "If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "2a7ca026", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "Before running the cells, please download the files needed for this notebook. You can get them from wasabi. \n", + "\n", + "Basically, the data reduction from raw tra files may take hours depending on your environments. So we can skip this process.\n", + "Please download the following data files and then run the following cells.\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/ScAttBinning\n", + "- inputs_511keV_DC2.yaml" + ] + }, + { + "cell_type": "markdown", + "id": "8462d0dc", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9f64536f-144e-443e-8336-4866ebee9e3c", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "# File size: 350.43 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c09adf05-ad79-4141-96cb-0e0a3b54a9c8", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (511 keV thin disk model):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz\n", + "# File size: 202.45 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_thin_disk_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5360bb81-b4f8-486a-9238-947dd085ac91", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5eb6c100-e8d4-4904-a258-0403ce98cf5e", + "metadata": {}, + "outputs": [], + "source": [ + "# Orientation file:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "# File size: 684.38 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16 s, sys: 1.16 s, total: 17.2 s\n", + "Wall time: 16.9 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(16, 3072)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside_local = full_detector_response.nside\n", + "npix_local = hp.nside2npix(nside_local)\n", + "\n", + "nside_local, npix_local" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 60\n", + " EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "Here the orientation file is analyzed to define the indices of the spacecraft attitude binning." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 3.6645188392718997 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "182c9f53f9ac483e8244d24e2a887e58", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(2088, 87)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(2088, 116)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.792486557202956, -23.48162697469867][45.79313907872797, 66.51842748236865][1.0000000000065512, 0.9999999999969589, 0.999...13091.0130910
22(2152, 116)[[45.978454945885545, -23.778456203550505], [4...[[45.978454945885545, 66.22154379644951], [46....[46.11600105920392, -23.997057178710705][46.11666483156788, 66.00300061062126][0.9999999999969589, 0.9999999999969589, 1.000...13268.0132680
33(2152, 148)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
44(2217, 148)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[48.22733567147042, -27.24260105367847][48.22779496794004, 62.75745007981912][0.9999999999969589, 1.0000000000065512, 0.999...11295.0112950
.................................
273273(2732, 574)[[169.8606861124748, -53.117736603001354], [16...[[169.8606861124748, 36.88226339699865], [169....[169.88431682515662, -53.105715691570055][169.88431237591922, 36.89428628084324][0.9999999999969589, 1.0000000000065512, 1.000...919.09190
274274(450, 512)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
275275(2864, 819)[[109.12274453361954, -62.18192897402973], [10...[[109.12274453361954, 27.818071025970276], [10...[109.11536622684899, -62.18125087710709][109.1153664213486, 27.818749379017405][1.000000000001755, 0.9999999999969589, 0.9999...210.02100
276276(216, 761)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
277277(212, 819)[[289.1161733315789, 62.182064711183735], [289...[[109.11617333157892, 27.817935288816265], [10...[289.1158698854739, 62.181869345669945][109.11587008833249, 27.818130910219594][0.9999999999969589, 1.0000000000065512, 0.999...216.02160
\n", + "

278 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (2088, 87) \n", + "1 1 (2088, 116) \n", + "2 2 (2152, 116) \n", + "3 3 (2152, 148) \n", + "4 4 (2217, 148) \n", + ".. ... ... \n", + "273 273 (2732, 574) \n", + "274 274 (450, 512) \n", + "275 275 (2864, 819) \n", + "276 276 (216, 761) \n", + "277 277 (212, 819) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[45.66020516346508, -23.269427365755966], [45... \n", + "2 [[45.978454945885545, -23.778456203550505], [4... \n", + "3 [[46.29919922293719, -24.286823740507035], [46... \n", + "4 [[48.1115581160702, -27.07000329743496], [48.1... \n", + ".. ... \n", + "273 [[169.8606861124748, -53.117736603001354], [16... \n", + "274 [[180.0238082643748, 46.67626678787605], [180.... \n", + "275 [[109.12274453361954, -62.18192897402973], [10... \n", + "276 [[325.1571038593629, 61.0351405587937], [325.1... \n", + "277 [[289.1161733315789, 62.182064711183735], [289... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "2 [[45.978454945885545, 66.22154379644951], [46.... \n", + "3 [[46.29919922293719, 65.71317625949297], [46.3... \n", + "4 [[48.111558116070206, 62.92999670256505], [48.... \n", + ".. ... \n", + "273 [[169.8606861124748, 36.88226339699865], [169.... \n", + "274 [[180.0238082643748, 43.32373321212394], [180.... \n", + "275 [[109.12274453361954, 27.818071025970276], [10... \n", + "276 [[145.15710385936296, 28.964859441206304], [14... \n", + "277 [[109.11617333157892, 27.817935288816265], [10... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.77592919492308, -21.83137450725276] \n", + "1 [45.792486557202956, -23.48162697469867] \n", + "2 [46.11600105920392, -23.997057178710705] \n", + "3 [47.169799754806256, -25.642813300423782] \n", + "4 [48.22733567147042, -27.24260105367847] \n", + ".. ... \n", + "273 [169.88431682515662, -53.105715691570055] \n", + "274 [180.01420731505038, 46.68360608975279] \n", + "275 [109.11536622684899, -62.18125087710709] \n", + "276 [325.15317939441115, 61.03567974667542] \n", + "277 [289.1158698854739, 62.181869345669945] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.79590102793104, 68.17007080261746] \n", + "1 [45.79313907872797, 66.51842748236865] \n", + "2 [46.11666483156788, 66.00300061062126] \n", + "3 [47.188380045186555, 64.35902575261872] \n", + "4 [48.22779496794004, 62.75745007981912] \n", + ".. ... \n", + "273 [169.88431237591922, 36.89428628084324] \n", + "274 [180.01420553833427, 43.316394483057174] \n", + "275 [109.1153664213486, 27.818749379017405] \n", + "276 [145.15317503922358, 28.964324759952632] \n", + "277 [109.11587008833249, 27.818130910219594] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 71072.0 \n", + "1 [1.0000000000065512, 0.9999999999969589, 0.999... 13091.0 \n", + "2 [0.9999999999969589, 0.9999999999969589, 1.000... 13268.0 \n", + "3 [0.9999999999969589, 0.9999999999969589, 1.000... 71137.0 \n", + "4 [0.9999999999969589, 1.0000000000065512, 0.999... 11295.0 \n", + ".. ... ... \n", + "273 [0.9999999999969589, 1.0000000000065512, 1.000... 919.0 \n", + "274 [0.9999999999969589, 1.000000000001755, 1.0000... 646.0 \n", + "275 [1.000000000001755, 0.9999999999969589, 0.9999... 210.0 \n", + "276 [1.000000000001755, 0.9999999999969589, 0.9999... 970.0 \n", + "277 [0.9999999999969589, 1.0000000000065512, 0.999... 216.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 71072 0 \n", + "1 13091 0 \n", + "2 13268 0 \n", + "3 71137 0 \n", + "4 11295 0 \n", + ".. ... ... \n", + "273 919 0 \n", + "274 646 0 \n", + "275 210 0 \n", + "276 970 0 \n", + "277 216 0 \n", + "\n", + "[278 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "nside_scatt = nside_local\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(\"exposure_table.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(\"exposure_table.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "8ebcb20e", + "metadata": {}, + "source": [ + "The sum of values in the 'exposure' column should be the same of the observation duration." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0f073766", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$92.36059 \\; \\mathrm{d}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(np.sum(exposure_table['exposure']) * u.s).to(\"day\")" + ] + }, + { + "cell_type": "markdown", + "id": "e9306cf5", + "metadata": {}, + "source": [ + "SpacecraftAttitudeExposureTable can produce SpacecraftAttitudeMap that has an exposure time in each Z- and X-pointing pixels." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b24d8dc3", + "metadata": {}, + "outputs": [], + "source": [ + "map_pointing_zx = exposure_table.calc_pointing_trajectory_map()\n", + "map_pointing_zx = map_pointing_zx.to_dense()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b75a6097", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dX/P7Ndu6vVSqveuyzJRW644UIxzXRMMc3GlNADBAj8wpsAKYQXEgjJG5LQOwRIqAFCb8aAey+SJcvqvWv7/f2x3rUkS/bKlrRF83kePZZXszNn7szcud97zj1HEkIIZGRkZGRkZGRkZGRkxiGKQBsgIyMjIyMjIyMjIyMTKGRBJCMjIyMjIyMjIyMzbpEFkYyMjIyMjIyMjIzMuEUWRDIyMjIyMjIyMjIy4xZZEMnIyMjIyMjIyMjIjFtkQSQjIyMjIyMjIyMjM26RBZGMjIyMjIyMjIyMzLhFFkQyMjIyMjIyMjIyMuMWWRDJyMjIyMjIyMjIyIxbZEEkIyMjEwZkZmaSmZkZaDNGjXvvvRdJkvjiiy/82n7FihVIkkRFRcWo2jUUFRUVSJLEihUrAnL8UCSU7+Gxut+G+xzIyMj4hyyIZMYVkiQd9kd+0cjI+IckSSxatCjQZgSMYD3/Z5991q++zvsTKNEoczDea/fss88G2hQZmXGFKtAGyMgEgl/96ldD/i1UZyhlxjeffvppoE0IKh544AHuuusuUlJSAm3KmFNSUnLIPg7gv//9L9999x1JSUlYLJYxsuzQhPI9PFb324033shFF11Eenr6qB5HRma8IQsimXHJvffeG2gTZGRGlJycnECbEFQkJSWRlJQUaDMCQklJCSUlJUP+/YcffuDBBx9Ep9Px9ttvExkZOXbGHYJQvofH6n6LjY0lNjZ21I8jIzPekEPmZGSGoLy8HLPZTExMDHv37u33t+7ubgoLC1Eqlf1C7Lxx5Hv27OGPf/wjEyZMQKfTkZqayq233kpHR8egx1q7di3nnXce8fHxaLVaMjIyuP7666mtrT1o2/r6em6//XYKCgowGAyYzWYKCgpYsWIFe/bs8W13uNCLwcJ9+sanv/zyy8yaNQuj0djPa9bT08MDDzxASUkJBoMBo9HInDlzeOWVVw7doAPwrhfo6uri1ltvJS0tjYiICEpKSnjrrbcAcDqd/Pa3vyUvLw+dTkdOTg5/+ctfDtqX3W7nL3/5C6eddhoZGRlotVpiYmI48cQT+eCDDw55/Pb2dm688UZSUlLQ6XQUFRXx2GOPIYTw+1wWLVqEJEnYbDbuuecesrKy0Gq15OTkcN9992G32w/6jrf96+rquOqqq0hJSUGpVPa7Xv/85z9ZsGABUVFRREREMGnSJB544AFsNtuQ5zMYr7zyCscddxxmsxmdTkdhYSG/+c1vBt0PwI4dO1i5ciWZmZlotVri4+OZP38+jz/+OHDg3gL48ssv+4VfDZxs+P7771m6dCmJiYloNBrS0tL4yU9+Qk1NzaDHXrt2LaeccgqRkZGYTCZOPPFEvvvuu0G3PRSDrenou66noqKCiy66iNjYWHQ6HTNmzOC9997za9/DOX/vcYdzrOFer+FQVVXF2WefjdVq5emnn2bmzJl+f/fZZ5/lvPPOIzs7m4iICEwmE/PmzePFF188aNt//etfSJLE7NmzcTgc/f62ZcsW9Ho9ycnJNDQ0+D4f7B622+089thjTJs2jejoaPR6PZmZmZx11ll88sknftk9Fv3ySNxvixYt4oorrgDgiiuuGDSscag1RN7+pKmpiWuuuYakpCS0Wi3FxcU888wzg56fzWbj3nvvJTs7G61WS1ZWFvfccw82my1ow0FlZEYNISMzjgDEcG77119/XQBi7ty5wuFw+D6//PLLBSDuvffeftsvX75cAOLMM88UZrNZXHPNNeLOO+8UU6ZMEYCYPn266O3t7fedd999V2g0GqFWq8WyZcvEXXfdJRYvXiwAkZycLPbs2ePbtru7W+Tk5AhALF68WPzsZz8Tt912mzjvvPOE2WwW7777rm/bZ555RgDimWeeGbItFi5c2O+zX/3qVwIQp59+utBqtWLp0qXi5z//ubj22muFEEK0traKqVOnCkBMmzZN3HjjjeL666/32fSLX/zC77bNyMgQycnJYvbs2SI/P1/ccMMN4uqrrxZGo1EoFArxySefiHPPPVekpKSIq666Stxwww0iPj5eAOLVV1/tt6/a2lqhUCjEscceK6688kpx1113ieXLl4uYmBgBiCeeeGLQ4yclJYkZM2aI3Nxccdttt4kbb7xRJCUlCUBcf/31fp/LwoULfdc9KSlJ3HTTTeK2227ztcvpp58u3G53v+8AYtKkSSIjI0MUFxeLG2+8Udx8883iP//5jxBCiLvvvlsAIjY2Vlx77bXi9ttvF8XFxb7rZrPZDjqfjIyMg2y74oorBCBSU1PFypUrxW233Sbmzp0rALFo0aJ+97UQQrz33nsiIiJCKBQKcdppp4m77rpLXHvttWLOnDkiMzNTCCHE+vXrffdKRkaG+NWvfuX7+fzzz337euqpp4RSqRR6vV5cdNFF4o477hBnn322UCgUIikpSezdu7ffsb/99lsREREhlEqlOP/888Xdd98tTj31VKHRaMQpp5wigH77PxTeZ7G8vNz3WXl5ue+84+LixKxZs8Qtt9wiLr/8cqHVaoVCoRCfffbZYfftz/kf6bGGe72GQ3d3t5g2bdqwn1UvOp1OTJ8+XSxfvlzcdddd4uqrrxYpKSkCEPfcc89B299www0CEHfccUc/GwoLCwc9/8Hu4WXLlglATJw4Udx8883i5z//ubjssstEVlaW+NnPfuaX3aPdL/c9xtHcb88884w466yzBCDOOuusfvdVa2urEOJAHz3wOQDElClTRH5+vpg4caK48cYbxdVXXy3MZrMAxLPPPttve7fbLZYsWSIAkZeXJ2677TZx0003iZSUFHH22WcP+n6QkQlnZEEkM67wCqK+L5q+Pw888MBB37nuuusEIO666y4hhBDPPvusAMRxxx0nXC5Xv229L0WLxSIqKip8n7tcLnHuuecKQNx///2+zzs7O0VMTIxQKBTiq6++6rev3//+9z7h4+Wdd94RgLjlllsOstNms4mOjg7f/49GEOn1erFu3bqDvuM9vwcffLDf5729veLkk08WkiSJ9evXD3q8gWRkZPjEgtVq9X3+1VdfCUBER0eLGTNm+AYCQghRVlYm1Gq1KCkp6bcvq9Uq9u3bd9Ax2traRHFxsYiOjhY9PT2DHn/evHn9jt/c3Cyys7MFIL788ku/zsUriPLy8kRLS4vv897eXjF79mwBiOeff77fd7z34mWXXXbQIHfVqlUCEGlpaaK2ttb3ucPhEKeffroAxG9/+9uDzmfgYNJ7D5xzzjkHnb/3Wj/66KO+zxobG4XJZBJqtVp88cUXB53nwDY+1KBp586dQq1Wi5ycHFFVVdXvb5988olQKBTi7LPP9n3mdrtFQUGBAMRbb73Vb/tHH33U114jIYgGm8z48MMPBSBOPfVUv/YvxKHP/0iONdzrNRzcbrdYunSpb/8DBbo/lJaWHvSZzWYTxx9/vFCpVAddZ6vVKqZOnSokSRIffPCBEEKIFStWCED88pe/PGhfA+/htrY2IUmSmD59unA6nQdt39TU5Jfdo90v9z3G0d5vh+u3DyWIAHHllVf2a6utW7cKpVIpCgsL+23//PPPC0DMnz+/3+RKa2ur7zmUBZHMeEIWRDLjCu9LY6ifqKiog77T29srpkyZIiRJEn/+85+FwWAQcXFxoqam5qBtvS/Fvi9XL2VlZUKhUPhm2YUQ4sUXXxSAWLZs2UHbOxwOkZmZKQDfTLpXEN19992HPdejEUSDCa6mpiahVCrFjBkzBt3fhg0bDpoNPhReQTLYICsrK0sA4tNPPz3ob4sWLRIqlWrQAdJg/OEPfxhU3HiPP3DAI8SBtluxYoVfx/AKooGiRwghPv/8c98scV8AodFoRH19/UHfueqqqwQg/v73vx/0t507dwqFQiGysrIOOp+BgqikpESoVKp+otKL0+kUFotFzJw50/fZww8/LABx8803H+p0+53DUIOmW265RQDivffeG/TvZ599tlAqlT4R/8033whALFiwYFBbvd62kRBEGRkZg94/6enpwmKx+LV/IfwTRMM51nCv13C45557BCBKSkpEV1fXEe1jKN58800BiOeee+6gv+3atUsYjUYRFxcnHnroId81HqxNBt7D7e3tAjwe+iMRcF5Gu1/ue4yjvd+ORhDp9XrR3t5+0HcWLFggANHZ2en77IQTThhy0sd7/rIgkhlPyEkVZMYlYhjrQ3Q6Ha+99hozZszgpptuQpIk3njjjUMuoF24cOFBn2VnZ5OWlkZFRQVtbW2YzWbWrVsHwPHHH3/Q9iqVigULFlBRUcH69etJT09n4cKFpKSk8Pvf/55169Zx2mmnMW/ePEpKSlAqlX6f0+E45phjDvrsxx9/xOVyDblOwrtOYPv27X4fx2w2D7qQOjk5mfLycqZPn37Q31JSUnA6ndTV1fXL6LR161YeeughvvrqK2pra7Farf2+V11dfdC+VCoVc+fOPehzb+z8+vXr/T4XGPy6H3vssSiVykH3lZmZSXx8/EGfH+q+yM/PJzU1lfLyctrb24mKihrUlp6eHjZu3EhsbCyPPvrooNtotdp+12v16tUAnHrqqYNuPxy8636+/PJLfvzxx4P+3tDQgMvlYteuXUyfPt13zoO1oVKp5Nhjj6WsrOyo7QKGfF7S0tKOaL3SSBzrSK6Xv7zyyiv85je/ISEhgbfffhuDwXDQNhUVFYOuN+z7rFdWVvLggw/y6aefUllZSW9vb79tB3vG8vLy+Nvf/sall17KHXfcQWxsLC+//LJf/ZXJZOKMM87g3XffpaSkhPPOO4/58+cza9Ys9Hr94U98AKPVLx+Osbrf8vLyMJlMgx4HoLW1FaPRCHj6NoVCMWj/d+yxx46YTTIyoYIsiGRk/CA/P5/JkyezatUqioqKOOmkkw65fUJCwqCfJyYmsnfvXtrb2zGbzbS3twMMKa68n7e1tQGeAcLq1av51a9+xTvvvMNHH30EeDIPXX/99dxzzz2o1eojOcWD7BxIc3Mz4BFGgw1wvXR1dfl9nKEG8yqVasi/e//Wd6H26tWrOf7443E6nZxwwgmceeaZmEwmFAoFGzZs4O233x50QXpsbOygAxXv+Xuvj78Mdt1VKhWxsbH9Fo8PPM5A/LkvKisraWtrG7INW1tbEULQ2NjIfffd55f93vtsJFIHe++Xhx566JDbee8X7zkf6tkZKcxm86Cfq1Qq3G73iB1nOMc6kuvlDz/88AMrV65Eq9Xy73//e8gBfEVFxaDH9QqiPXv2cMwxx9Da2sr8+fM56aSTiIqKQqlUUlFRwXPPPTdk0oeTTjoJk8lER0cH559//rDur9dee40HH3yQl19+2ZdKXKfTsXTpUh5++OEh75fBGK1++XCM1f12qOMAuFwu32ft7e3ExMT4/taX4bSpjEy4IGeZk5Hxg9///vesWrWK2NhYtm7dygMPPHDI7evr6wf9vK6uDjgw0Pf+6/18IN5sRn0HvampqTz11FM0NDSwZcsWHnvsMSwWC/fffz/333+/bzuFwvN4O53Og/Z7uBe5N4NWX7w23HrrrQhPuO2gP59//vkh9z0a/OY3v6G3t5f//ve/fPDBBzz66KPcf//93HvvvcyaNWvI7zU1NfUbJHgZeJ38ZbDr7nQ6aWpqGnTmdrB27nvc4dwXQ+1j6tSph7xefb2l3gHVYDP9w8V7/Pb29kMe2ztr793+cM9OuHIk1+twVFdX+zLKPfHEE8yZM2fIbRctWnTIY/3xj3+kubmZp556ii+++ILHHnuMX//619x7772cfPLJQ+5XCMHll19OR0cHsbGx/OMf/+Crr77y+xwiIiK499572bVrF5WVlbz44osce+yxvPjiiyxdutTv/cDo9suhhslkoqWlZdD3w1DtJCMTzsiCSEbmMKxatYpf/vKXFBQUsGXLFgoKCvjVr37FN998M+R3vvzyy4M+27NnD/v27SMzM9M38Jw6dSrAQSlUwTOQ/vrrrwGYNm3aQX+XJIni4mJuuukmPv74YwBfumqA6OhoAPbt23fQd9esWTOk7UNxzDHHoFAofDYFE6WlpcTExAyaJnawa+HF6XSyatWqgz73Xg/v9fGXwY71zTff4HK5hrWvQ90XpaWlVFVVkZWVNeSMMIDRaKS4uJitW7fS0tLi13Fnz54NMGSq8oEoFIpBBWXfffl7v3jv8cHa0OVyHfJ5CxSHOv/hciTX61D09PRw5plnUltby89//nMuu+yyo9pfaWkpAOedd95BfzvUM/bQQw/x4Ycfcskll/DZZ5+hVqu5+OKLfR7E4ZCWlsYll1zCRx99RG5uLt98882w9jMW/fLR4vVYj9R9NRRTp07F7XYP2v8F47MmIzPayIJIRuYQtLa2smzZMpRKJa+++ioJCQm89tprqFQqLr744iEHLn/605/61S5yu93ccccduN1uX50JgLPPPpuYmBheeeUV3/oNL48++ijl5eWceOKJvjCXrVu3Djp75/2sb1z9jBkzUCgUvPzyy/T09Pg+b2lp4c477xx2W8THx3PJJZewZs0afv3rXw/6wi4rK6O8vHzY+z5aMjMzaWlpYdOmTf0+f+qpp3xhhUNx99139wv1aWlp4Te/+Q1Av2vlD7/+9a9pbW31/d9qtXL33XcPe18rV64EPJ6vxsZG3+cul4vbb78dt9vNlVdeedj93HbbbdjtdlauXDmoV7C1tdW3XgJg+fLlmEwmHn/88UFn8auqqvr932KxDCq4AW688UbUajW33noru3btOujvdru9n1iaO3cuBQUFfPXVV7z99tv9tv3LX/4yYuuHRpJDnf+RMNzrNRRCCJYvX866des444wz+N3vfnfUtnnrAw0UCR999BFPPvnkoN9ZvXo1v/jFL8jNzeXxxx9n0qRJPPLII1RXV7N8+fLDersaGxvZvHnzQZ93d3fT1dWFSqVCo9H4fQ6j1S+PJBaLBfCs1xpNLr/8cgDuueeefnXS2tvb+fWvfz2qx5aRCUbkNUQy45LBkgJ4Ofvss31V3leuXEllZSWPPfaY77MpU6bwhz/8gRtvvJEVK1bwzjvvHLQPb6KDCy+8kKioKD766CM2btzI9OnT+4kRo9HI008/zfnnn8/ChQs5//zzSU9PZ+3atfz3v/8lMTGRv//9777tP/74Y+644w7mzJlDfn4+8fHxVFVV8fbbb6NQKLjjjjt82yYlJXHJJZfwwgsvUFJSwpIlS+jo6OA///kPCxYsGHbCAPAMTHfv3s0vf/lLXnjhBY499lgSEhKoqalh+/bt/Pjjj7zyyitkZWUNe99Hwy233MJHH33EscceywUXXEBUVBRr1qzhm2++YenSpbzxxhuDfi8pKQmbzcbEiRM588wzcTgcvPHGG9TW1nL99dezYMGCYdlRWFhIcXExS5cuRa1W8/bbb1NWVsaSJUuGNUM/d+5c7rzzTv73f/+XiRMnsnTpUgwGAx988AFbtmzh2GOP7Xeth2LlypWsXbuWv/71r+Tk5HDyySeTnp5OS0sL5eXlfPXVV1xxxRX87W9/A/AteF+6dCnHHXccp556KpMnT6ajo4NNmzaxb9++foL3hBNO4NVXX+WMM85g2rRpqNVqFixYwIIFC5gwYQJPP/00K1eupLi4mFNOOYX8/HwcDgeVlZV8/fXXxMXFsWPHDsDj8XzqqadYvHgx5513Hueeey65ubls2LCBTz/9lFNOOYUPP/xwWNdjtDnU+R8Jw71eQ/GHP/yBN954A4VCQV5eXr9Q2sFYsWLFkEV9vVx//fU888wznH/++SxdupTk5GS2bNnChx9+yAUXXMBrr73Wb/u2tjaWLVuGQqHg1VdfJTIyEoBrr72WTz/9lDfeeIM//vGP/OxnPxvymNXV1UydOpVJkyYxefJk0tLS6Ojo4L333qOuro6bb77Zt19/GK1+eSSZM2cOer2eRx99lObmZt/auZtuumlEQ/Quv/xyXn31VT788MN+/d+bb77JzJkz2blzpy/sWkZmXDBq+etkZIIQDpN2mz7pTh977DHB/mJ+g3HOOecIQPzxj3/0feZNvVpWViYefvhhUVBQILRarUhOThY//elPB02JKoQQP/zwgzj77LNFbGysUKvVIi0tTVx77bWiurq633bbtm0Tt956q5g+fbqIjY0VGo1GZGRkiPPOO098++23B+3XarWK22+/XaSkpPhqwvzud78TDofjkGm3D5Xa2GaziT//+c9izpw5wmQyCY1GI9LS0sTxxx8vHnnkEb9rgwxVSFSIA2msB2Ow9LZCeAopzpo1SxiNRhEVFSUWL14svvzyyyHT2HqP39bWJq6//nqRnJwsNBqNmDBhgvjTn/40rDS/XnutVqv4xS9+ITIzM4VGoxFZWVni3nvv7VfnyMtg7T+QV155RcybN08YjUah1WpFUVGR+M1vfnNQEcm+5zMY7777rliyZImIi4sTarVaJCQkiJkzZ4pf/OIXYvv27Qdtv2XLFnHZZZeJ5ORkoVarRXx8vFiwYMFBacDr6+vFsmXLRHx8vFAoFIL9Nb76smnTJrF8+XKRnp4uNBqNiI6OFsXFxeKaa64ZNK36mjVrxMknnyyMRqMwGo3ihBNOEKtWrfLr3uzLodIgL1++fNDvHOq+G4xDnf/RHGu412sg3nP398ffNv3222/FcccdJ8xmszAajWLevHni3//+ty+1fN9r763v07d/9NLW1iaysrKEWq0W33//ve/zgfdwa2uruO+++8Rxxx3nez4TExPFwoULxcsvv+z3Mzra/XLfY4zE/fbBBx+I2bNnC4PB4LtG3v0eKu32UP3JUH1mb2+v+J//+R9ff5WRkSH+3//7f6KqqkqApzisjMx4QRJiGCs0ZWRkDsmKFSt47rnnKC8vP+yMq0xg8V6fioqKo97XokWL+PLLL4e14H2kSUxMJCoqip07dwbMBhmZYETul4fHxx9/zEknncRdd9112ARCMjLhguwPlZGRkQlxWlpaaGpqIjU1NdCmyMjIhAg1NTUHfdbc3Mxdd90FwDnnnDPWJsnIBAx5DZGMjIxMiNLe3s7DDz/MRx99hMvlGnYaYhkZmfHLbbfdxsaNG5k7dy5xcXFUVVXxwQcf0NLSwk9+8pNBC3TLyIQrsiCSkZGRCVFaW1t54IEHyMrK4oEHHuAnP/lJoE2SkZEJEc4991zq6+t59913aWtrQ6fTUVxczJVXXulXFksZmXBCXkMkIyMjIyMjIyMjIzNukdcQycjIyMjIyMjIyMiMW2RBJCMjIyMjIyMjIyMzbpEFkYyMjIyMjIyMjIzMuEVOqiAjIyMjM+YIIejt7aW6uhq73U5aWhqRkZG+Wk4KhTxfJyMjIyMzNsiCSEZGRiaMEUJgtVrp6uqiu7ubrq4u309HRwc9PT10d3dTV1eH1WpFCEFPTw91dXWYTCYkSaKhoYHW1laSk5NxOBzs2bMHSZKwWCx0d3dTXV2N0WhEp9PR0NCA1WrFbDbjdDppaWnB7Xaj0Wiw2WzYbDbcbjdut3tQexUKBQqFAo1Gg06nw2azoVAosFgsqFQq2traUKlUJCcn097ejt1uJyEhAbPZTFVVFQBFRUWo1Wp27NiByWSioKCAjo4OqqurKSwsxGKxUFtbi8vlYv78+RiNRsrLy0lNTWXChAmo1Wo6OzvJyckhNjYWjUaDUqkcy8smIyMjIzOGyIJIRkZGJkjxipPW1lZaW1tpa2vz/T7Y/5ubm+ns7MRut9PV1UV7ezu9vb1Dig8vCoUCtVpNREQEFosFIQRdXV1ERUURHR1Nc3MzTqcTjUaDWq2mt7cXtVpNTEwMBoOBnp4eYmNjycvLY/fu3XR3dzNv3jy0Wi3ff/89KpWK4447DrvdzurVq0lLS2P69Ons2LGDNWvWIISguLiYadOm8e2331JfX8+sWbOIiIjgk08+wel0MnfuXGw2G99++y0ajYaioiK2bt1KR0cHCQkJGAwGqqurcblc9PT04HA4aGtro729HZvNRkNDAz09PVRVVaFSqWhsbMRms/HKK68ctn0kSUKj0WCxWDAajXR1dREZGUleXh46nY7m5mamTJlCRkaGr70XLFiA2WzGbreTmppKfHw8kiSN5O0hIyMjIzNCyGm3ZWRkZMYIm81GY2Oj76ehoaHf/72fNTc3+wSPw+EYdF8RERFERUUhhCAjI4OEhAS6u7vp7e1l3rx5GI1G1q1bR2dNDw1rOjDG6sk/NY26VW10llnJWpRE0uQ41j+2BwUKpl2bi63LybaX9qKJVHHMbRPY9XYVDRvaiJkQSdKMGLa+uBeA4kszUagkNj9bDkDhRenUfNdM+95ulDoFhsQIuut6cVndJM+2YEjQsfvt6kHPo/CidAC2v1o56N/zzkqhu95KzepmlDoFxoQIuuo9+47KMJA8x+L77qQrshBOwZYXKkCCoksyqFvTQsuOThKmRpN3Zgo//GEH9i4nxZdlojYoWf94KW7cTP1pNnVbm9nzSTXmIj1x002UflJFR203SfOjURsVzJo1i66uLr788ksUCgXx8fFUVlZSU1ODEMLX/oOhVqsxmUwApKamkpmZidvtRgjB8ccfT1xcHO3t7WRkZFBSUkJcXBxarda/G0tGRkZG5qiQPUQyMjIyR4HL5aKxsZHa2tpBf+rq6nzCp6Oj46Dv6/V6oqKiiI2NJTU1lfT0dLRaLeeccw5paWm8/te3SCiwsOffDahRU7w0G2cLVH3eRIRBQ9GyDPZ8WEvrj11kLEgl9bg4vntgGwDZp2ZgVttRSs0oOhVE2WPpRYGQupFaNZhiIlFr1Lgdbuo3tuF2eDwl9k4nG58sw2F1ec7R5iY6JxJ9nJaeRhv7vm7odw4DxUzxsgwqv2ygelUTNaubj6p9+wqpxGkxpC+M54dHdgDQvreb9r3dvr9XftbgW4Okj9USkxNJ9bdNnm0ru9nwZBn2LicAzds7UKik/d4fNaboSGob2zFKURhtBqJsMUQ22zBIFpKdFnSShm/u2wLAKf/vVKq+bmDfe03k503llItOY+vLe7Fa7aSdGIvKIrHltTIcOMhdmkDT3jbOXn46O3bsYN26dcTGxuJwONi2bRttbW189tln9PT0HHTuGo2G+Ph40tLSUCqVqFQqTjjhBJKSkuju7iYnJ4fp06cTFxcnh/TJyMjIHAWyIJKRkZEZgt7eXqqqqti3b1+/n5qaGmpqaqitraWhoQGXy9Xve3FxcSQmJpKQkEBBQQGzZs2is7OTNa9sQepRkTotkfRpSWx/sgplr4rJF2fTsbebig/raY+AvAUT2fZ0FWubykgoTCPJEEOL5DmGUW/Euf93a5uD7norjm7PIL92TQutpV0gAQJcNhfmTAM1q5tx293oojWo9J5uv3lnB2v/sgu30yOCalY3ozWrfeeQsySZngYbu96qoqOyhw1PlNHTZAOgY++AwbsECSXRNGxsxWV1s/m5crrrrSN+PWq+b6a9ohuX1Y2kgPgp0dRvaIX9cQ59xVFPk40NT5T57EifH48+XsuGf5QB0Fraia3N431zOdys/csun1hS6VXoYjQ+gWjOMhw4Hwk2PbvH911Hl5Pueiu2ds//DTERKDVKDJLHG5QQkYLoiuCtm74gIk5D8bRp7Pu4EafVxYknLsGUbmDT03tw4aTomlRqttRTvqoGVRwkz7GQmJiI3W5n/fr1NDQ0sHXrVhobG/u1i1KpRK/Xk5qaSnZ2NiqVCo1Gw5IlS0hLSyMiIoIJEyYQHR090pdERkZGJiyQBZGMjMy4RAhBY2Mj5eXlVFRUUFFRcZDwaWpq6vcdrxcnNTXVNzP/r99/iAYdlmQzSfkJ1H3RjqJJQck5OXTW9lL2XA31+l4mLs8i25JPZ28vimotzdYelJKnC973VQMqnWeG3+1wkzzLQnedld4mG65eN26nQKFW4Ha4KX2vBqfNI4iES7D38wa8S1N00RpKrsph/d9L6a6z0lndi63D6bN/w9/LfL+7bG56bXbf/y0TTBRemM4Pf9yBvdPJrn9XYetw+I7TVTN4KBiAPk5LzpIkrC122vd2H3Lbo6GvHaZ0AzlLkuis7qGnwTbIxvSzo+yDGrQmj+DTmNTM/GkB21+rpHlHBwjobT7QFk1b2mna0u77f8vuLuz728KQoGPq1blseKKMrp5e3E7PNRAujyorfb8GldZzLT3XTODs9QiryBQ9ybMs7P20HoDueqtPxCklFU3f9OBq1hArJRGpiyA3NYXNz5Xj7HEx5/SFGGdFsOGJMty4ST3NTH1pM7W7GsHgJHNRIpGRkbS3t7NhwwYaGxt5/fXX+zVJbGwsiYmJCCGYOnUqEydORKfTYbFYWLx4sbzOSUZGZtwiryGSkZEJW1pbW9mzZ49P9Az8t+96j6ioKNLS0vr9vPI/b6NDj44ItOhJmBQDApq2tqM2KJl1eyHbXt1Ly85OYotMJB1jYfNz5SAgKsOAo9fpG6wr1BKSUsJldWNMjiB3STJbXqzA2esi57QkNCa1L/TMMsFEZ02vbxDeF7VRhTnTQOP+AfuUK7PpbbGz699VKFQS0fmRtJV14bIdOlEAQMHSNGztDio+rkOpVRCVYaC1rMs3uD8chiQd3bUez4nWpPYJqOFwuDVEh6LvMfvacjgkpUR0jtHjbbK7yTopEU2kmp1v7jvsd5VaBeYcIy07OxEuQf65qeiiNWx6ag8AcROjaKvoxtHlPOi7GpOayGQdzTs6ASi6KB1rh4M9/6lFFaFk4qWZlL5XTVetFZVOidvlxu3YHwIYr0UdofIIKAkmLc+i9odmmrZ1EFMQSdFFGXz/8HYc3S5ii6NAgvrNLdjoQT9BRUdbO2fccDJbtmxhw4YNANTV1dHefkD4RUREEBkZSWpqKrNnzyYhIQGn08nxxx/PlClTZA+TjIxM2CILIhkZmZDF6+UpLS2lrKyM0tLSfj8tLS2+bY1GI1lZWWRlZZGZmUlmZibP3vY6ERjQoUctaUCC6FwjPY02bG0OLIUm8s5K4fuHdngGv2en4na5KX23BoC4SVG0l3f7Qq36oovWYEjQ+ga/M28poGFTK3s/a0AbpSZtYTyVn9dj7zz4uwOJKYjE2mqnp8GGpdDEhKVp/PCHHTh6XOiiNdg7Hbidh+/K1UYVqXNj2ft5A26Hm8Tp0Ti6XR4vyTCJiNUy7fpctr9WScvOzmF/38vRCCIvlgmRTLggnXV/LaW3aRBv0WG/b0JtUFK3thWFWkHGcfFUrWoaVNQMRKGS0ESqsbbaUeuVHPOzCex4Yx/N2zvQx2vRRWv8ah9NpIr04xLY92UDtnYHGccnED/ZzI+P7vSdY3e9DWur/eDvGlVE9RHJuWcko1Aq2PVWFZJSYtYdE9j9djXN2zvQmtXo47Se0EoBksGN2+SgsaaJKx65gHfffRer1UpnZyelpaX9Jg0MBgMxMTHMnz+fnJwcbDYbxxxzDPPnzycuLk72LsnIyIQssiCSkZEJeux2O7t372b79u1s376dHTt2sGPHDnbv3k1n54HBZlJSErm5ueTm5vLVMz+gx7hf8BhQo/EN2JRahc+DkjgjBp1ZTcUnnjCmOXcXsfezemq+b0YXoyEmL5K6dS2+mfqhUGoVpB4bR8PGNnqbbKTMsZC2IJ7V/7sdBJhzjFhb7VhbDh7QDkRrUmNMiaB5u0eozPhpPg0b2qj8ssGTCEAp+eUB8qLSK3H2uNBGqZlyVTZbX97rtzflUERlGWgv7z78hodgJATRSNkCHk9T8cUZbHxyD7Z2B2q9EkeP6/Bf3I9Sq0C4BG6nIH1RPPGTzax5bBcAliITXVW9fnnSdDEadNEa2so8a8Jm31nIvq8aqP6umYhYLfFTzFR903jY+0ChlkicFkPL7k6sLXaSZ1vIOC6e7x7YDkDmiQlY2xzUrWnx2e/dpxACVSy0trTR6+5CmwOGVB1ut5uysjJqamoOtJvBQFRUFLNmzWLq1KkYjUby8vI46aST0Gg0frefjIyMTCCQBZGMjEzQ0NHRwY4dO3yixyuAysrKfIkLYmJiKCwspLCwkC+e/N4nevQYfWtyBhKda8Te7aS71oopXc/kK7JZ8+ddWFvsJM2MQRejofyjOgDUBpUvScHhSJsfhypCSfl/65CUEtNvyKPsgxpad3eh1CgQbuGX5wY8a1McPU7snU4SZ8SQeWICPzy8A7dToNQpcFn9F0B9yT4lkagsI+sfL/V8sD/hwpEgKSUmnJ9G44A1NkfDSAkiL7ETo4ibGMWO1/f5Hfp3EH3aaOp1ubTt6fLdH8PFe+0UKo+npvzjeurWtKCJVKHWq/xOPqFQSUgKCZfdTXSekZxTk1n7f7sRLkHWSYk4e13s+7rx8DsC1AYljm7P85R9SiK9zXZqf2whwqJh+o35bHpmDx2VPRiSdGgMKo83aRAkA/S6u+joaUdKcKLPVqFQKNixYwfNzZ7sgkqlkuzsbNRqNVOnTmXx4sWkp6eTmZlJVlaWX/bKyMjIjDayIJKRkRlThBDU19f38/Z4f6+uPpBiOT09ncLCQrZ9VIYBEwYiMWBCIx2+Nkt0rhHLBBOl73lmsKdem0t7RRd7PvSslYnJi6Rld6ffXhZJKSFcAmNyBBMuSGPTU3uwdzpJOiYGpVZJlZ8D0YF418BICs9gufq7JvZ91YhCrQDwZTkbLpZCE9Y2O921VvTxWjSRao+nYQTIOS2J5h2dtO0Zmf2NtCAy5xixFERS9p/aEdufvdNBT4MNQ5IOnVnj89wNl77XNW1BHCmzY/n+4R0ItzjiNVgAqfPjcFld1P7oEVqTr8xmxz/30VXT67t3/WHgs5F9SiJRGQbW70/GkXt6Ms07OoYUSH0RkU7s2h4aG5voVXWhy5Fob2+nru6AsExOTqawsBCtVktOTg7nnHMOBQUFJCQkyGnEZWRkxhRZEMnIyIwaNpuNbdu2sWHDBjZu3MjGjRvZtGmTb22PSqUiLy+PwsJC1v1rm0/06IlENYS3x4tSq0CtV3nWbhiUTL0uj91vVdFa2oWl0ERCiZltr1aCYNgelr5hQ5NXZtNZ3UP5R3Wo9UpS5sVRs7rJr7U/hyJlbixp8+M8A2KXQB+npbfZhjgyDdSPqdfm0rKrk72f1R/9zvAIQp1Z3S8T20gx0oKoLxGxWqyt9iP3FA0g44QEYvIiWf+30qPel6SACIunrpOklJh1+wRfSNzRoIlUkTw7lqpvG3H2uMg6OZHIFD2bnvYkfeh7b/uD79mRoOiiDOo3tNK8vYPoPCN5Z6Wy/q+7fWvZHD3Ow+7bKZwIiw0Rb6dyezXTzi3i22+/pbGxEbfb812dTkdhYSELFiwgOTmZ1NRUzj33XHQ63ZE3jIyMjMwhkAWRjIzMiNDQ0OATPV4BtGPHDpxOJ5IkkZuby5QpU1j3xnaM+z0+ERhRSAq/9q82KInJN/nqzhRekI5Sq2DLCxWAZ5a8eVv7EQ3aJaWEQukJR4qbFEXemSms/t/tuB2C2CITtk4nnfsOLpw5vIPA5BVZNGxqo25tK9ooNREWDW3l3UccwuZFY1KTd0Yype/XYGtzDHvQezgyjk8gocSzFsbfEEB/GS1BpFBJzPhpPvXrPYksRgpv22rNanKXJLP73ZpBswEOC8lT66i32Y6t3UHijBjiJ0Wx6dnyo743ItP0aCNVNG3rQKFWMPvOCex+p5rGze0oNQrcLnFEgjHCosFSGEXVNx7v6MTLM3FZ3Wz/Z6WvLlXLrg5faN7hcAs3vXTjiOxBkyOISTWza9cudu/ejRACpVJJYWEhBoOBKVOmcN555zFp0iQSEhJQKPzrQ2RkZGSGQhZEMjIyw8LpdLJr1y6f+PEKIG8ojMFgYPLkyUyZMoUv/vY9RswYiTqsx2cw0hbE0V1npWVXJ6Y0PZNWZLHucU8mMX2cFrdL+JWkYDBUEUqcvZ7B2jE/m0DN901UfdOExqQmKkNP8/aOox78G5MjSJhqpux9T/hW2vw4Ovb10F5x9Iv/4UAon0ItUXhhBns/raNrBJIlDESpUWBI1NFReZSicBBG00NkStfTXWfFZR85cejFmKQj44REtr+6F7dTDCs07XBEZRowpel9a4JyliRRv77tqOs7KVQSlkIT7Xt7sHc4SD02juRZFn74ww6g/zMxXHQxGhRKiZ5GmycD4XW5bHq2nM59PcQURGJI0LHvqyMILdW6cUZbqautY9G1x/DBBx9QX1+P1eq5z41GI9OmTWP27NnExcVRXFzM4sWLUankMosyMjL+IwsiGRmZIXG73ezevZsffviBH3/8kR9++IGNGzf6BiNpaWlMmTKFLe+VEomZSKKIwHjE6XdjCiJJKIlm+2uewXHhRem0V3RTs7oZSQGSUnHE62qQQJIkhFuQMsdC6rGecDWEJ+1yd4P1iMVVXzSRKhRqBdYWO1GZBrIWJ7L1pYphZSrzh+hcI7lnpLD+8VKc1pHdt5fY4ija9w5eU2ekGE1B5EVtVBGVYaBp68gkghiIKkLJ1GtzKX232q/1NcNBrVdSfEkm5f+to31vN7oYDW6H+6hDNsEjYgzxOk/adQlP2N7XjfufNwkhxBF7qBRqBW6nGwQkz7YQlWE48FxfmE79htYjTtcuhKCXbpyxPZBkJy7dwqZNm9i3z1NHSqfTMXnyZAwGA4sXL+acc84hPz9f9iTJyMgMiSyIZGRkfFRXV/cTP2vWrPEVbszPz2fmzJn88NLm/eLH7KndcwQoVBJup0ChVjDlymwqv6ineUcn5mwj8ZPN7H63esRm28HjSZnx03wqP2+gfn2rbyDYsqtjRNbs9KXkmhx6m23sfLNqZHe8H6VGgcvuRq1Xkjwnln1fNR65SDwECpXEtBvyqF/X6nf2siNhLARR2vw4EqZFs+7/do94yB94Bv9pC+Ko/q4JZ4/Ld41Gg4Lz0oiwaNjwj7IR3a+kgJj8AxMDCVOjSV8Uz5rHdo34s5h3RgoNm9po29OFZYKJ9EXxbHxqD26H29c3HBFGFzZ9N/X19Uw5P5/PPvvMl+1Or9eTlJTEueeey+zZs8nOzmbSpEly8gYZGRlAFkQyMuOW1tZW1qxZ008A1dZ6QruSkpI45phj2PJ2KSZiMBF9xOIH9q+7sHtmiwcu8s48MYGmbR1HHQ40kKRjYkiYGs2G/RmyEmfE0LG3m57G4RfuPBT6eC2FF6az5fkKbO0O9HFabO2OURkQJ8+ykDzLwrq/js7AfiBqvRJHr+uo17EcirEQREigjhhePaEjxSska1Y3U/P90SVIGAylRoE2Sk1Pow2tWc3EyzLZ/lolPQ0jfF/HaTFlGHz1iab+JIe69a3U/tBymG8OD2NyBLFFJl8dsMlXZtO5r4fy/9aBtH8C4CjWwzmEnQ5aId2GO9pGY2Ojr35SVFQUCxcupKSkBJPJxEUXXURKSsqInJeMjExoIQsiGZlxgNvtZuvWrXzzzTd8++23/PDDD+zevRvwDApmzpxJ6Sf79oufGHRSxFEdT1JKqCOU2LucvvUEm58tp2NfD6Z0PWqD6ohTFw+FQi1RcF4atT+20FbWRWRqBKY0PdWrm0d8QK+NUqOP19K6uwuFWiL75CT2fdOIre0oF9cPgUIt4XYIdNEaorIM1K9rHZXjgOfapS+Mp+rbwxf9HAnGRBDtR6lVkDovjsovG0bU6zGQhGnRtJd3Y221+67daKA1q0k7No49H9bidgqi84z0NNiwtY/wfShBymwLHft66KzqxZxjJGlmDDvf3Dfi52YpNOHodtJR6ekrJi0/sG5QY1Th6HUd9bWzil5UBQ4aWupInhLP6tWr6eryhDrm5uaSkZFBQUEBP/nJTyguLpa9SDIy4wBZEMnIhCG9vb38+OOPPgG0atUq2traUKlUTJ06ldmzZ/PZn1djIgb9Uaz56UtErJbeJs8sdfElGbidwrNmwJtxamfHiM/QR2UaMGcbfeml889J9YTijFDNnaHIOimRmIJI1v5596geBzzhXpYiExuf2INwj353bUjSUXxxJltfrPC7aOjRMJaCyJCgo/jSTLa+XEH3KCSfGIikkCi5OpumbR2jGnboZfpN+bTs7PB4V0YRc44ntHXXvz1hoRnHJ9C2p2vEkoV4UeuVxBT0ySx5UToKpcTWl/YC/fuco0EIgTLNRfW+ak64eQ5vv/02+/btw+12ExUVRVJSEgsXLmTZsmUcc8wxREQc3YSRjIxM8CELIhmZMKCpqYlvv/3WJ4DWrFmDw+HAZDIxZ84cdn9UhRkLUcSgPIJsb4OhUCtQahU4upyYc4xMvDSTtX/ZRW+znciUCFwO94iH8SBBdI6R3mY71lY78VPMJEyNZsvz5SO+FqjfYRUSxZdm0LipjfoNbSh1CoRLjNrMv+eggABDog5joo76DW2jd6wBHNU6jmEyloIIxvbcABJKzHTVWemus/qu6WihUEtISgmX1U3C1GjiJkWx9cW9oyqkJQVMvDyL+vWtNGxsQxetIcKiobWsa8TPVR+vRalW0FndS4RFw/Qb89nyYgVtZV2ojSpcNveIradzCSfttNCla0XKsFNVVUV3dzcqlYqkpCTOP/985s+fz9SpU8nIyBiRY8rIyAQOWRDJyIQYQgjKy8v56quvfAJoxw5P2tzU1FQcVRJmLJiJxUjUiHh/vGjNal9YWMlPcuiq6aX03RoUKglThoH2iu5RCUXSRqmxtTuQFDDztgnUrPakyB5tTBl6OvZ6Uk1nHB9PW3k37eUjOws+GMmzLETnRbL1pYpRHUD3Ra1XkjTLwr6vGkc1nGwgYy2IwCOKUufHUfN9M84xWFcEgATFl2TSurtzVNYWDSQqy0BUpoHKzz01mPrey6NJ6rGxJM+O9aTyFgee3ZFGUkpEZRro2NuN2ynIPTMFY5LOt2awb181Eggh6KIdkdlLu9RCj7PLl9UuMTGR0047jZkzZ1JcXMzcuXPlMDsZmRBDFkQyMiFAdXU1n3/+OZ999hmfffYZe/fuRZIkJk2aRMumLszEYiYWnaQf0eNKClCoPAkR4iZGkX9uKt8/tANnrwtTmh5bp2PU1s14SZoZQ+aJCXz/8A7cDoHaqBrVNNBeTOl6Jl+RzcanyuisGtmED4cjKtOAKX1/HZox6qFj8iPJWZLMhn+U+l1McyQIhCBSG5SUXJNL2fs1tOw6stTPw0baX4eqcuTqUPlLZGoEU67MYdMze0alltRAvM+oQq1g1u0TqPikjtofRzYZw0C0ZjXaSDUd+3pQ6ZXMun0CO/9VRdOW/QVone4R9yJbRQ/qyU6qqvcRkaJm8+bNCCFISUlh8eLF5OXlccIJJzBr1qyRPbCMjMyIIwsiGZkgpKmpiS+++MIngHbu3AnA5MmTad3UQwzxmIk9qsxvQyEpJF+IzfQb82ja1sHez+pRRSiJTImgrXx0vEB9mXBBGu0V3dT+0IImUoU+XkfbnpEPwRlIVOb+WfUvPLPqkSkRdFaPjRgy5xiJyY9kzwe1Y3K8wRjJ4qL+EghBBIE5175kn5pEy67OUV/v5qXvvZy+KJ72iu7RF2YSmLON9NRbsXc5SZ5lwZShZ8c/943uYZUS5iwDndW9OHtdZJyQgGWCiXX/51nz17ePG9HjRroR6b3s2lJK9BQ9GzduBDwlCxYtWoTFYmHlypXk5uaO+LFlZGSODrmUs4xMENDe3s5XX33l8wL1fZF273IyidlEE4dms5b4kYuAO4jYYhM5pyXzwx93IlyCik/q6G32FCt19rpGvOikF02kivgp0VR941l43tNgw97h8QLZO53YO0d50Lh/bYcuRkNUhsE3YBorMQSe4p46s2bMB+qqCCVxk6Ko/bEloAJhrBEugaTwpGNv3NyOs3fsvGKSUkJn1qDSjV1YlfdelhQSURkGbB0OjyAazXVNgn6Cz9bu6LeuMHV+HA0bWkekyGy/w7pEv76qcVMbXdUez5hCJTHz1gLK/lND09aRzXQpOhWw1UC+NAU2wQmmLDo1rdTs2sd/7f+loqKCBx54gMmTJ1NUVERxcTE33ngjZrN5RO2QkZEZPrKHSEYmADidTr7//ns+/PBD/vvf/7JmzRrcbjdpaWk49ymIIZ5o4kY8BG4wJl6eSfOODmp/aEEXrSEmP5K6da2jUuyzL5JCQm1QYu90EpkaQfHFmWx8qswnwMaKgvPSsHXYqfi4fkyPC55F8DH5kSM+MBsOsROjyDk1iXX/t3tM6vQMJFAeIvCEzk27Po+y/9TStLV9zI/vJbbYRMuuztFN0jEEmYsT0ZpUo1ZIeCgiLBqmXJXD1hcr6KzuRROpwtHtGvVMigq1gsRp0bTs6sTaaid5loWYgki2PF8xqscFkGJd1DRV0SIasUa309raikKhYPr06SQlJbFs2TKWLl2KSiXPVcvIjDWyIJKRGSOqq6v56KOP+OCDD/j4449pb28nJiYGdYt+vwCKJwLDiCZBGIyoTAPJsyyelNhA6rFxdNX2jlnojpeiiz2Zmba97EmhO5bZvzRGFY4ez+ArcXo0jm4XzTvGXpQkTI0m6+RE1v5l95isixoKpfboil8eDYEURBDYcwfPvTj9pjz2fFA7ppkEvVgmmFAblNStbfVMUug99cPGgr7P/MD+YKww5xgxJkX4vNOFF6ZT833zqIcTCiFwGmw0dNfSrm2iVdFAb28vUVFRTJ8+nYKCAu666y7S09NH1Q4ZGRkPsiCSkRklbDYb3377LR9++CEffvghmzdvRpIkTCIaC4lYSMBEzKgLIICkY2LoabTRXt5NZJqe1Hmx7H6rGqd17DwCaoOS7FOS2ft5PdYWO5GpETit7hGpIzIclFoFM28pYO/n9dT+MLoLvQ9lg3cQPlpZuA6L5Emk0LJzjJIKDEGgBZGXmIJIT4KFALwR+94DgRRoybMspC+K58dHd465DRGxWlTaAym10xclsOfDmjFN8KHSKck7O4Wqb5vo3NdDVJYBfZx2TPoJIQk6aKXZXUdvbCt1zXUIIZg4cSIZGRmcddZZXH755Wi12lG3RUZmPCILIhmZEaS8vNwngD799FO6u7tJSEhAUa/DQiIxxKORRv+FpopQYs4y0LTN4/WYtCKL1tIu3yzoWKFQSRgSdHRW9yIpJSZensnez+rHJP3vQKJzjb51BZYJJtrKuwIy8DQmRzDxsky2vFhB1xiuURpITEEkhRems+6vpWMuSvsSDIIoIlbLtOtz2f5q5dhlnRuEyJQIii/NZMsLFXTVjP29odQqMGcZfd7S6DwjrbvH1nMMnhThGccnsOX5CoRLEJkaQXeddUzrR4FnjVN0jpHNz5YDntDGtj3dY7LezKW00+isp0VRT4e+ia6uLgwGAzNnziQ7O5vbb7+dwsLCUbdDRma8IAsiGZmjwO128/333/POO+/w9ttvs337dlQqFUanmVgSsZA44rWAhkJSSig1Cpy9LmKLTOSfm8aPj+70hGKNckHIoUhfGE/yLAvf/2FHQBfsG1MiKLkqh83PltO+d2xTHg9EUkDKnFiqVzcHPIlBhEUz5mu2BhIMggiCoy0kpUTybAs13zWNaqFhf4jKMDBpRRYbnigLiDjzIiklZt0+gZrVzVR+2RAAAwDhCW2ceWsBO97cR/O2DlQRSlx295g8w0IIuhTtNLvr6Ilto66lBrfbzYQJEygqKuLcc8/loosukmsfycgcBbIgkpEZJj09PXzyySe88847vPvuuzQ0NBAbG4u6yUgcScQQj0pSj7ldU6/NpWNfN2Xv1yIpJVRaRUAWyWefkkR3vZX69a2o9EpUWiXW1rEfaCo1CiyFJho2tgGeKvd9M1yNNenHxdO4uT2g3hgvGpMae0cAwvQGIVgEkZdgaZuIWC1xk6J8hVUDQd9nJn6KmebtHbjsY6/UdNEanDYXzh4XCVOjMSTo2PPh2KenV+uVOG0eEZSzJBlTagTr9xeCHUvcSgdNzgaaqKXd0Eh3dzfx8fEcd9xxTJgwgZtvvpmYmJgxt0tGJpRRBNoAGZlQoL6+nqeffpqzzjqL2NhYzjrrLL755hsiGszMYBFTmhZSLM0gXkoZMzEUmaZn2g15KHWex7j8v3VUf9cMeNLOjqUYMiTqDvxH8nhBAJw9roCIIfCE++SclozW5LkegRRDSo2CmPxIIlMiAmaDF02kiuk35hE3MSrQpgQdcZOimH5jHprIwGf5ikyJICY/EqUmcK9p7zOjNanJOS2Z6DxjQOywttpx7u/PJAUer81++vU9o4yjx+XzCFV/10T5x3WAZ+3RtBvyiEwb/aygAAqXmngphSJpBrN7T2GW5ngiGqL59ttvue+++0hJSeHMM8/k7rvvZsOGDWNik4xMqCN7iGRkhmDnzp289dZbvP3226xevdqTEMEdTSzJxJGMQYocc5viJnkGsY2b21EbVWQsiqfyi4Yxywo1GMYkHSXX5LL5+XLaywMbjqaL1mDONlC3thUAtVEV0OxtkkJCoZFwWd2jVgzySIgtjtqf5jnAcVkEl4dIqVEQnWcMaBr0vnjvGaVOgdsuAnr/9H2WEqdH07anO2CTHV6isgxMujyL9f8opbvWGjA7NJEq0hfGs/fzBhzdzn799FjjMlupaq2kkRraJc8E2axZszj55JOZO3cuJ5100pjbJCMTCsiCSEamD9u2beP111/n9ddfZ+vWrej1egw9ZuJIJpakMUmIMBBjSoQnhl9A3lkpuF2CsvdqxtyOvkRlGojKMvjCeczZBtr2BFYMAaTMsZA4w8L6x3eP+QLswcg7KwVdjIbNz5QH2pSgJZgEUbAy+Yoselvs7H67OtCmoFBJTL0uj9ofm6lZ3RxYYyQwZx3oe9KPi6e9vHvUU2YfjtzTk5EUErvfqQbJk0glIAlUjC6aqKW6cx+dumasViv5+fksW7aMxYsXM3v2bHndkYzMfmRBJDOuEUKwdetWnwjavn07JpMJfYeZBFKJIQGlFLgXhj5Oy7Tr89j6UoUnQ1qAkiN48dYNiS8xk1ASzZYXKoIiMYAhKYKmLe0g7bcxAAUuB8OQoENtUAaFWASPQLO1OQKzOH0IglEQpS+MRxetZtdbgRcg4JlwcHS76K4PnBekLwq1ArfTDcJT2Le7tjcoElJMvCyT+vWtNGxsG9O6ZoMbBAhP6G7xxZms++tuehoDF7YrRQicGV3s2L6Dnqg22tvbSUxM5Oqrr+a8885j4sSJsjiSGdfIgkhm3CGEYPPmzbzxxhu8/vrr7Nixg6ioKPTtZuJJwUICigCKoLQFcUSm6n0FCk3pejr29QRUCAFMWp5FV10v5R/VBdaQAWSemEB0biTr/14a8DYCjyBLOsZC9XdNQWFPX5JnW3B0OWncMvahPEMRjIIobmIUaqMq8B6QgUieDIW1PzQHhQcUCab+JJfW0k4qPqkPtDX9yD4lEUNCBJufC7B3VgJT6v4+HCi+JIOOfT3s+2psSyD0xS1cKCbaKKveTatopK2tjdjYWC655BKuuOIKJk+ePCaZUWVkggk5qYLMuGHz5s3cc889TJgwgSlTpvDnP/+ZWbNm8d5771FfX0+xNJM4KXnMxZCklEiaGUNErCccr6uml7ayA7U/OioDJ4ai84woVJ4XY93aFl9do0ATYdH4FnhXftHAxifLgkZ8RKbqSZsfhz42+Aoo1qxuDioxFKw0bmkPPjEE6GO1pM2PIzJlbBbvHxYBG58so/ILj8cxOs9IhEUTYKM8NG7toG6tp6CqQiUFLCEEAp8YAmgt7fKlMY+I1ZI0MwZJObbiQyEpYauenLYp1NfX8/e//52CggKef/55SkpKSEhI4Pzzz2fDhg3Ic+Yy4wXZQyQT1lRWVvLKK6/w4osvsmXLFqKjozn77LNZunQpJ554Ikt0lwTMNrVBhaPbiaSA6Tfns++rRurXtQbMnoFoTWqm35zP7rerArI4+FDknZlCRJyWTU/tCbQpg6LUKXBZA5+wwIs+Totlgonq75qCw7PQh2D0EIFnEJ0yJ5am7R1BkSrdS7DdW32ZfGU2PY02St8JjlBDL3GTosg7K5U1j+0KipTqXhKmRZM2P461f96FcB94JwSK960v8cknn/DrX/+arVu30tnZSW5uLlOnTuXee++lqKgoYLbJyIw2sodIJuxobW3liSeeYOHChWRkZHDfffcxceJE3n33Xerq6tj3bCePnP5MQMVQfImZGTfno9QqEG5Y++fdQSGG9PFacpYkAWDrcLD+8d1BI4bUeiXGJE+K3T0f1rLl+SBKVCDBhPPTSJljAQi6AasxOYK4yeaAF/sMJYTbU3tnYKp09/ypR7S/it/MOaLv7XpyRr//e++tlDkWJpyf1i8FdV9KH5097GM1XzmH5iuPzE6lJYbt77VTvr8+kDFJh0ofHGtSGje3s/7x3T4xlLMkCX1c4D249etaWfuX3Qi3R+jOuDmf+BJzwOxZoruER05/BuP3qTQ3N/P++++TmprKW2+9RXFxMQsWLOCOO+5gx44dAbNRRma0kD1EMmGB1Wrl/fff56WXXuL999/H6XRy4okncskll3DOOedwbtTKQJtIyhwLjh4XDRvbUBtURGXoad7REVSD1MjUCHLPSGHrixXYOwM3UzkYBeemEhGnZUMACiH6Q9qCOLpqrbTu7gy0KYMT4IQcQxGsHiLgoDYbKIYUX6/3azcDxVDmPd/59b2BYij/qjW+36PzIjEm6QZdizJQDOXestqv4w0mhixPHd5WpaV/EVBXcwslP8mhp9HGrn9V+XXssUITqaL40kxK36mmMxCZ34ZAUoBlgon2vT04up3ETzGj1it9teUCyestT/Dee+/xwgsv8PHHH6NQKDj99NM5//zzWbJkCWazOdAmysgcNbIgkglZ3G43X331FS+++CJvvPEG7e3tTJ8+nUsvvZQLL7yQy1NuDrSJ6GI0WFs82Zdyz0jG3uEMqgxfACnzYolK07MtCAekkkJCY1Rh63CgNqpAENCQksHQRqmxtQdPGM5ADAk6uhusQSmGIMgFEYAEhngd3fXWIb1DhxNGQ3mHDiWMBoqhvvQVRtD/HhzKM3Q4UXQoz9DhRNFAQQSg1itwtbbh6HKiNamxdzmDpg5XX4qWpdO+t4fqVU2BNqUf6Qvj0ZhUlL7rKbHQ910SSP687df8+9//5t///jc//vgjWq2WCy64gBUrVrBo0SIUCjnwSCY0kQWRTMhRWVnJc889xzPPPEN5eTlZWVlceumlfPLr7zFIpkCb5yMiVsv0G/LY+nIFrbu7Dv+FMURSSihUEi6bm+g8I/p4HdXfBteAADxrhYxJOtYHqVfIMiGSgvPSWPd4aVAMVgaiUEkc87MJVK9qYt/XgctqdSiCXRClzY8jZW4sP/xhB845JYfcdjBh5E+o3GDC6FCCCA6IIl2MhmnX5bLzzX007+g8bKjcYMLI3zC5wYTRYGKoL67mFqZem0tXTa+nLk+QkTIvlp4GK627u1BqFbidIuClBAYSnRdJ8cUZrP3LroCnN++LlOTEskDHjz/+SFlZGdHR0Zxxxhncd999ZGZmBto8GZlhIQsimZDAarXy9ttv8/TTT/Pxxx+j1+u58MILueKKK7h3/qNBkyI0Os+IOdvoS01tmRBJy+6uoHvBTr4ym95GW1AOUMDjGRJugS5Gg0qn9GVlCjYkhURskSmoM7cZEnTYuxw4ul2BNmVQgl0QqQ1KNEY1nfmFfn+nrzAaztohrzA6nBjqS/5Va4ibGEXTtg52/3GW39/zCqPhrhnqK4oOJ4a8GOLV2OtbsbbYfc92MJJ3ZgoRsVo2PR1cyVokpURMnpHmHZ5w3KyTE2kr6/LUpgsChBDc9fG1/PKXv2Tjxo309PQwc+ZM5s+fz/3334/BYAi0iTIyh0UWRDJBzfr163n66ad56aWXaG1t5dhjj2XlypU8v/IdVJIq0OYBnll4hUqB0+oiblIUcRPNbH+tMuhe+oYEHb0tdtwOj1fI2uoIquxZXlLmxhJTEMmW58qDan1VX4wpETh7XUHpFQo1gl0QefGEywmGzGIwCIqv1w87mULmPd8NSxD5jtWlItLlRisETSr/khnk3rL6iJMoxL+1c9jfcbe2MGl5Fs07OoJibcxAImK16MxqWku7UGoU6KI1QVMM14ukkCi8MJ3GzW00bmlHpVPidrqDJnukSzhZ/uzZPPDAA+zcuROz2czFF1/MiSeeyJlnnikXf5UJWmRBJBN0NDc38/LLL/P000+zYcMGEhMTWb58OV89uAGDFBlo8w5i6nW5tO/tZs9/agNtypAotQpm3lrAvq8agy5WfiCRqRGY0g1Bbeek5Vk4rS62vxa8g3jLhEiSZ8ey9aW9uB1BqiwZe0HUeeFsIl/zL8mAF4VaQfa9E9liUKF50/9XZu1cT4Y6R6T/30n/yDMAL10+vIHjhL/0kLpUjUYIPjRGgB9e85QvPPdFj2V4x+rI9fyb+/DwRNHuO/KZ/04pHXu7gyqhwWCkzI0lbUEcPz6yE5cteJ+f7NOSiMowsP7x0kCbchC9qm4W3F7C008/TX19PdnZ2dx8881ccsklxMbGBto8GZl+yIJIJigQQvDdd9/x+OOP8/rrr+NyuTjjjDNYuXIlj5zxDAopeBZqqiKUJM+2UP1tEy67m+hcIz1NNmxtwbewPrY4iubt7Qi3x6vRXdsblF4XY5KO+JJo9nwQvKKyL0qtAkkh4ewNzjA0AFOGntiiqKBv07EURJ0X9l9fMxxhFPPgFCoilNRpleS+6F9iD68g8uKPMPIKIi/+CKMJf/EU/lRpPOnCt196+LWUXjHkZTiiyCuIwH9RtPvOgn7/z/75d2SfmkT9hla6a4PLCwOerG+GpAi6qns9GeAKo2jaGnyhsVqzGn2s1ufVSpkXS83q5qDqm9ySm8W/ncn333/P+++/jxCCadOm8Yc//IF58+YFTci7zPgmeEaZMuOSzs5O/va3vzF16lTmzZvHqlWruP/++5njPIXOt5T86czngkYMec1QqCSSZsRgSPTUxGkt7QpKMaSP01JwbirmbE+F9q7q4BRDABqTGmNSBEptcFzrQZEg/bh4VHolLps7qAYcg9GxtyfoxVCg6bxw9kEiaTB2/X0mq80a6rQe0VB6qYrSSw8dsjtQDAGoO4c/8Mt9zv/7zGkHlxOKXu7ghNWdSMOY79Q3u9A3H/5YfcUQQOntBZTeXjD4xvsZKIYA9v1+NsakCLQmtd82jiXC7ekzAczZRk/a/9jA1y4aiK3N4VtLZEjSkTQjBoXKc58FyasThVDw6f9bS9fbKuY4TmHZsmVUVlYyf/58Jk6cyJVXXklVVXClZ5cZfwTJ4yIz3tiyZQs33HADKSkp3HDDDWRkZPDBBx+QtWcqH9/1I1pJF2gT+5E4PZqSa3JBAnunkx/+uJOOyp5Am3UQSq2C5Nme4qA9jTbW/HlX0Cy8PQgJYvI9IZAtOzvZ9PSeoA5N0Zk1JEyNxpAQXPfmYMQWmdDHB9/gLVjxCqPDiaNoh5vMPkLYH2E0EHWnNKQwGugd8pL7nGtIYeT1DvXFEAUJGTDx9cFrYg30DvXlUKJooBjqy1CiaDAxBOCQJN7Kj6dlp8fGmPzI4SzPGlNaS7tY8+ddvjWXybMtQTl507G3hx/+uNNTQ06CkmtySZweHWiz+qGRtNS+2Etx3Tz++9//YrFYeOaZZ5gwYQLXXnst33zzTaBNlBmnBN8TLRO22Gw2Xn75ZebPn8+kSZP417/+xU9/+lPmuk+h510NfzjtqaBynWsiVURYNAB0VvfSsKkNSeGxL9iyxnmJTIkgfVE8uhiP3cHoufISkx9J4YXpQTnrOhjWVjtrH9tFe3l3oE05LGkL4ombZA60GSHJoYRRTq+Lkk4HDPC8jLQwGopDCaO+tDfCuk8Eth7If7aD/Gc7hnUcfzxFgzFQFA0lhnxIEnsenENErJbCC9N9EyTBiLcv1cVoSF8UT2TKwR7AYMD7bpIUEg2b2nxrtSJitWgigyMREYAkSfzvyf9A+00Ci/RncPvtt/Puu+8yf/58cnNzeeGFF7Bagy+UUiZ8kQWRzKhTU1PDPffcQ1paGpdccgmNjY28+OKLFNXNpWZVCxPPPDDtOPmKLOImRgGexfUl1+SgNng68dT5ceSfk+rbduJlmSRM9cx+GRJ0lFyTg9bsCb9Inm1hwvlpvm2LlqWTNNOTIjbCoqHkmhzfQDxxRgxFF2f4tp2wNI2UORYmnJ9O9qlJlFyTA0D1qibiJkUx8fJM37b5Z6eSNj8OALVeSck1OUSmel6UscVRTF6Z7ds29/RkMo6PB0CpUVByTQ5RWZ50pDEFkb7jAGSfkkjWSYmAJ+yh5JocovM8oW/mHCMl1+T4wiKyT0ti0oosANr2dNPbbPN5MUzpekquyUGl84T6pC+MJ+/MFN9xJq3IIm6yGQBjsqe9vS/N1HmxFJx7oL2LL80kYZqnvfXxWkquyUEX7RFeybMsFF6Y7tu28MJ0ko7xtLcuxtPe+jhPeyfNjKb4kgxadnay/m+lpC+MJ2WeZ4GtxqSm5JocjMmeNoyfbGbS8izffvPOSiFtoae9VRGe9jal6z3tXWRiylUH2jtnSRIZJyQAoFBLlFyT4wsfjMn3tLc3pCTr5ESyT/G0t2dmNYeYAs/gLL7EzKw7JqA2KHE7BRnHJ5BzerLvOJOvzCa22LNmw5S2v731nvZOWxBH3lkH2nvi5ZnET/G0tyFp/z27P2QoZW4sBUv73LMXZ/hmdyNi97f3fqGbNDPGt/YGYMIFaT7PoNasRrgFLTs9g+CEqdEUX5rp2zb/nFRSj/W0t9qo8tyz+wd3cZOimHTFgfbOPTOF9EX771nd/ns2w3PPWgpNTLm6zz17WhKZi/e3t8rT3tG5nvaOzvXcs5LSc89mLk4k+9Qk33ejMgxYJnjaMCrTQMk1Ob4Z+PTj4sk9o097H0UfMTezhwi1xzuSGW1nasqBhf3TU3tJN3uyBho0bib9fDLismM87dvtZHGzjQ1GFW/HaTmu1c7ELs8A2eB0c2ajFYvdTemlKhKS3BQsPOCBmaXupUjp8SxocXOSpguL5FmDlKZwcIrN4+FJ/8hKXoGTzGyPGFEqBVNnOjBHe/ZliXUzdaYDEOQ+52JWq4NTPvfYL0kweaFEtKf5McfBxGMlVBrIKZHIKZE4ZZ3HE5PyhZtj8qzER3lsMBtczMrrRaX0DKSzE+wUpdl8IXQLzN2k6h105ILF7eI0WzcR+2Nvi502jrUfaMMT7D1wSxaltxegt6hY0ttNpNuzbaHDziLbgW2Ps/UyweFp78qfldCuUPiyNnr7CC8F56UFTR9hbbGz5k+7yDwxkZiCSJKOicFSZPLcsxrPxsHQRyROi8aUrqe7zurbr/d9pDV72tD7ngh0H6Hs0bDt5b1ceNrF3HPPPcTFxXH55ZcTFxfHkiVLKC8vR0ZmtAme6QKZsGPt2rU8+uijvPbaa2i1WlauXMmWl8vJy83k+ZXvoJA8L8C+azE6a3qxd3le1E6rm86qHtwuzwvV1mqHPqmsu2p7sXV4BiUu+/5tHZ6/29oddGsOzC511Vl9ldxdDuHZ1u7Zr73DQVdtL0qtgvRF8dg6HVjbHOx+uwrhFqTMifWFctk7nXTVHnipdzdase+3we3y7Ne7raPLSVfNgXCWnkYbTpvnXIXbs6333B09Ljqr+mzbZPfNQgsBnVU9OHo82zp7nHRW9fgmqRVKCUOiDpVeibPHRWdVL45ubxt69utNAW5tteOyH2jvrppe7J3728Xm2dabvtXaZu+Xqaqrttd3rgfae/+1abfTXXdgUXZ3/YH2djs827rsbrRmNekLE2jd0+Vrk+4GK7Y2z0DI7dy/7f52snU6+rV3T6PNZ6+vDa2ebe3dzn6Zq3oabb77Qbj3t2Gvp10c3f3bsLfJduBcve29vw2VGgXCLQ60YYsNZfeBc+2q7sXR5erf3q4D7d03HW5Xba8nnAVw2fa3odPta2+F8kB7d9dZsXU4+7Whr707HL6BzsD2Bo/93ufIflAbWrG27m/D/fes03t/dzn71XzqbbT67jvhol97O7qcdFb39NnWhts1oL17Btzf+xu8t9nW71ydva4D92yv955lf3sP3ke4F07FuXXbsPqIWqOS/ZvS61Sg6jMB3WFVYHV6BrQuN7T1KnC6wXX6MQilk2a1Aud+D3GbSqJLuX9bSaJRrcC+f+BcMU9J8XvVMM0zEGx3K+gVnj+6kWh2K3Hsjw2zItHiVqLulFB8vZ6e1Mk4Xfu90AI62xU4HJ7/Oxye/3vRrBX07K4BkhBAVyvs1xc4HJ7/CwH6SOhsFVi7PWm2e88+hvYeBXanZ79Ol0R7j/LAs2BX4OrThh29CjQfbIdrJuMAmhRKvHKvS1L0W6fSIinp2f+BvaGVJmUKTt+2Epo+G7dICrr3P3NOoF6louPkKcy5bAvSxwk0bTuQwCDY+gjfPeoSpM2Po+aH5v79bBD2EfUbWnHs7xM0kSokyZPMCIKnj+iptbHlmQqM7lTOKD6f3qRWPv30U/Lz8zn//PM599xzOffcc1Eo5Ll8mZFHzjInM6K4XC7eeustHn30Ub755hsyMzO5+eabeee2L1FJwbl41otCJTHlqhz2fl7vi2sPVnTRGszZBurWtgKetUPBvP7Gh+SZPa1Z3RS0hUJDGV20hqnX5bL1hQo69gXfGrfBONIsc+6FU32/K75cf4gtPZQ9dKDeTvwa/1976u4Dz1XlGYIEm4uTW+z8O05Lp2rwgVn+T370/V7987mHPUbKg6t8v3vqHR2evsVfFSVFfn3HvWGb7/fes4/x6zsAEW/94Pu9/IHD1y3KuvtA8dY9D/pX5yhuneeaaJRuFpxWgbOoDiRYOzW4B799+97E6dG07enG2hrc9cliCiLJOC6BjU+WBU39oqFwCgfn/Ol4/vCHP1BZWUlRURH33nsv55xzDiqVPKcvM3IEd08jEzK0t7fzxz/+kdzcXJYuXYpCoeBf//oXORXT+c/PVgWtGDJl6Jl+Ux6qCE841Pq/lQa9GAJPKELy7FhfCFKwi6HE6fuTEQjY+2l9SIih5NkWMk9MCLQZw8JpdVH5RUO/2d7xgHvh1H4C6XA0zJBomDH89Yrp70pEfKxkvVGFXTH49/uKIegvdvxB8fX6fmLHH9wbtvUTO4ORHtvsC6uE/iLnUAzcrq/Y8Yfsn39H9s8P/R2vGAKwuxR88m42SCC16zjmX2amr3czfX1w9nHevldSSqTMicUyIXjXQXnxhiu7nQJVhJLpN+VhytAH2qxBUUlq3r3la/IqZ/LrX/+a2NhYLrjgAhITE7n88stpbW0NtIkyYYLsIZI5KsrLy3nkkUd45plnsNlsXHTRRex8oQaTFFyZbQaiNauxtTlQ6ZVkLIpn7xcNOHuCe5CujVJjTI6geXsHSB6PljfcI5iRlBJTVmbTvKODfV83Btocv0meZUFtULH3s/pAmxLWjISHqC9DeYv6eogGciiPUV8PUV8qzxj8OwMFUV+G8hYdSjQN5jE6lGAayluUFtOMo9tJzffNB/1tMG/R4QTTUJ6iQwmmwbxFfcXQQE48pxRljQnbgjJQ9t8uGD1HCrXk8bgIz6RVV01vv1DWYGTgO9D7bgxmOkUb0uwu1qxZg1ar5dJLL2XZsmUsXLgw0KbJhDCyIJI5IjZt2sSDDz7Ia6+9htls5rrrruPL36xHKwVn5p2+ZC5OJLbIxNo/7wraujyDkXliApYJJtb9dXdo2C3tDyexuj3iLchDM0KdyNQITBkGar5r9q1lCAWORBD54w0aKIwOJYj60lccDSWGJEmQHu+ktUvBluP7D8wPJYi89BVG/niQBooifzxIfYXR4bxHcLAo8seDNFAU+eM9GiiKDiWIABbd/h2oBNiVoHYNmpo72MSRpIBp1+fRtL2DvZ+GzoSKpIDpN+fTtLWdio+D326bsHL8r6bzyCOP0NnZyVlnncUvf/lLpk7131ssI+MluHoRmaBGCMHXX3/NkiVLmDJlCt9++y2PPvook5vns/q3O4JaDOnjtBiSPBl16ta0sPPNfSEhKtQGFVGZnow9lV80sOGJspCwGyD75EQmXZYFEiElhnKWJJM4IybQZgwbQ2IEccVRISWGRpPhhtF58SeUTghIjHFi0rtJf1ci/d3hhd8dTRidv+F0Q4mgxBkx5CxJOujzvgLI33C6rLu/O6IQOi+HE0MAXzw8BwRov81CvTl50G28IXXBElYn3LDhiTL2fdkAeDInejMhBjPCDTvf2EfdGk8YmiFJ58sOGoxoJR3f3r+VWfYTueWWW9i4cSPTpk2jqKiIJ598Enm+X2Y4yB4imcPidrt5//33+f3vf8+qVauYOHEiP//5z3nmsn+jCJZS2Idh0hVZOLqd7PjnvkCbMixyliQTlaFn3eOlEGJPqj5Oiy5GExJrsvqSuTiRngYrDRvbAm3KuGC0PEQDKT99+AV1U748VBitYKC7Qveef0IikMRPMaOP11HxcV1A7ThcEdyBJBidFF2+EWGy+f2doPAcSTDtulza9/ZQ9n5NoK0ZFhMuSEOtV7H52dBIe+0Wbs5/fDH33XcfdXV1zJo1ixtvvJGLLrpITsAgc1hkQSQzJA6Hg1deeYUHH3yQbdu2MW/ePO6++24eOf2ZoCqgOhiSApKOsdBW1kVPow1NpApHtyskZs8lpYQuWkNvkw2lVoFCKflSkwY7Sq2ClLmx7PuyIWQ8WeGAKkLpSXUb/Lf3QRRelI4kSWx/vRrhdB7+C8De+z1hV2mf+l+4sTtRO+xECjl3eLwZ1tMHz8gmIVApwbE/VXYoCKJgYjiiKPK11YCnb09bGE/c7xtAc/hOpsvl8XDsnBG4dTFqvRK3S+CyuYmI1WJttQdtce++SEoJtV6JvdOJPk6LOcdI7Q/NQd+3CyG49b0r+N///V+++uor4uPj+f3vf88ll1yCRqMJtHkyQUoQTJ/IBBt2u50nnniCvLw8li9fTnZ2Nl9//TURq5J49Ixng14MeZA8hen2F4izdzpDQgyBJ9SsaFkGSJ4MRqEihgCMSREkTo1Gaw69l86E89OwFJoCbcYRkbskmeJLMgNtxlEjqVRIw5jJ3XeCjn0nHN7z053oGRTHrxHDSrntZSihU5JnY0J6cKdYHgpLoalf8epAEPnaap/QOdx2XnTRGhKnRlN6ocEvD5Bxf1HcgjVq389Y4+hxebLRSVC0LIPskxPH3IYjQbiEryaSKcNA4rRoBl3EFWRIksSjZzyL5ut4nnrqKfLz81m5ciVZWVlcffXVtLe3H34nMuMO2UMk48Nut/Pss8/y29/+ln379nH++edT+c9WjFJUoE3zC02kipxTkyn7oAZ7pxNJKYXELJwXVYQSZ68LTaQKtV5Fd73/s9+Bpm9bh2ICBYVKIvf0ZBo2tdG2pzvQ5gwbY5IOpVZJe0Xo2d7XQ9SXQ3mLvB6igQzlMfIKooEcymPk9Q4NpK+3KDrShdMFnT3KkPMOmbMNxE82U/peTVA8r0N5iwYTTH37mL59z6HWEHk9RX0JhNfIkKDD0ePE3un09fmhgretB75rQ4Eu0Y52oZ0vv/ySlJQUfvGLX7BixQoiIoJ37bPM2CJ7iGSw2+384x//IC8vj2uvvZY5c+YwS5xIy+vukBFD4KlErzaq0ER6ZgBDSQxlnJDApBVZSAqPNyvUxNCUldmkzPHUOAmGwdVwcTsFu96qDkkxBNBVaw1JMXQohustAvzyFvXlaL1FrZ1KOnuUw95HMNC2p5tdb1UHzfPqj6fIi9fmlDkWpqzM9tVjWztV4fsZiNdT1JdAeI26662eCTsFTFqRRcYJoVPrzPtO1USqURtVuOxBHjvXB6MUhfqrOObrT2XhwoXccMMNJCYmcscdd2Cz+b8uTSZ8kT1E4xi73c4zzzzD7373O/bt28eFF15IxastGKXQCRsyJkeQfXIiW1/eG/TFSQ9FRKwWfbyW5m0dgTbliEiebaFtTxc9DaH3Ysk/J5X69a0hKyjSFsTRWd1LW1lXoE05IobyEA2kr8doKA9RX/p6i4byEPVloLdoKA9RX6ynH4PF5MKkd1P75PCKqQYLUZkGEqZGs+vfVYE2BejvKTqcSDIk6IjKMlCz+uDaSn3p6zkazFM0kLHyHFmKTPTUW+ltDs2wS/CsGy2+OIM9H9XRVRM6BaGd5l46s+tYv349ycnJXHnlldxyyy2YzeZAmyYTIGQP0TjE4XDwj3/8g9zcXK677jrmzp3LLLGYptecoSOG9o9d7J0OHD0ulJrQu5UthSaKLs5AUkBvky3kxJBSp8Cc7VmjVbO6OSTFkFKrQK0PzRl+L6Z0AxGW0FuzNVxGa32RF+/6ouF4jXTv/YBe68YcGTphT4Oh1itRaoOjD/WKIH88Rt31Vp8YMmcbUOoGP4e+XqPBPEUDGSuvUfO2Dnqb7UgKKLo4IyTXMCo1Chw9Luyd+0Vk8C8xAkDVFkH0uixmuRezcOFC7r//fjIzM/nrX/+K3R66AlXmyJE9ROMIt9vNP//5T/7nf/6HsrKykPQIAcRNjCJlbiwbn9oTUmFxAzGl6UmYGk3Zf4Ijhn+4pB8XT8LUaNY+tisk7ZcJDvz1EPWl4pczh3WMmK3Dvz+HE8IlE1gUKonpN+dTv66Vyi8a/PrOkQie0fIcKVQSOaclU7e+lc59PaNyjLFAUkpMuTKbqlVNNG0JrcQFyjQn2hI37733HklJSVx44YU8+OCDcrrucYQsiMYBQgg++ugj7r77bjZs2MDpp59O43tWIiVzoE0bHhIgPPVt4kuiqfy8PuQG4lqTmoRp0X6/tIMayZPxydoSmrNpmYsTadraHlJhHgNRG5Q4ukPbO1F4UTq9eTF87daT/qB/iQn23elJbODS+ff8Z/zSE/7mb5rnIxFDoX4tjMkRxBabqPi4PtCmHBG6GA3WVvsRpZ73Vxx1Og94HGtmj159tfRF8dSva8XWEbhU4UeCQiWRflwCDRta6Wm0+d7ZoUSXaMc+rZl169YxefJkfve733HaaaeFSHZdmaMhOHzkMqPGd999x3HHHcepp56K0Wjk66+/xvq+LuTEUPIsC5MuzwKgp9FGxcd1ISeGwDPoiJ9sDomq5YMhKSD3jGT08VoQhKwYUmoVRGUa0JrGPgXvSCEpJKbfmE/SMTGBNmXEqPz5MVT+fPCaP4OhtEoorYceqHjFEIye1yfpmBim35iPpAjdQZM2Sk1UpjFoQueGi7XFI4b08Vpyz0hmODXDd85w+OX9iVQdWJeWvDqS5NWRR2LqIVEbVMRPNmNMDr3sZ26noOLjOp8YmrQ8i+RZlkCbNSyMUhQx67P59NNPiY6O5vTTTyc7O5s333wz0KbJjDKh2fPJHJatW7dy9tlnM3fuXFpbW3n//ffRfpPAfQv+FGjThsf+8UVXbS+tpZ0hE588EO/LrXlHB2v/bzeO7tBIVToQpUaJIV7ny+QXqrhsbjY+WUbzjtBat9Ufwa5/V9Gya/RmqgPFkQgjf/G39s1waNnVuT8pQehN0nhp3t7BxifLQjo5DXgyoBnidSg1w18b6BVGhxJHfUURHBBGIyWOHN1O1v7fbl/fFIrCyEvr7k66avd74EPs3f3AiY+j+jKWxx9/HLvdztKlSzn99NP55ptvAm2azCghC6Iwo7a2liuvvJJJkyaxefNmXnrpJeI25fHI6c+EnMs344QECs9PB6Cjsoeqb5tCcrwRlWmg5OocjCmeF1uorntSqCScVhcbn9oTshnNABKnR6OL0YTkvdQX4fYMxG1toRVWMxxG2lvUl5EURbY2By27OhGhrSVAeELPEqZFB9qSI6atrIuNT+3BaXWhUB35O+9QwmigKPIyUsLI+44wpkRQcnUOUZmGo97nmCOg6tsmOio9a6IKL0gn4/jQSTEOngKvb17/KYU1c3j11VfZtm0b8+fP5/jjj6eqKjiyMsqMHLIgChN6e3v5zW9+Q15eHm+//TaPPfYYmXtKeObSf4ecEPLSua+H1rIQnv3e3+ztFd1sfr6crurQXauSMsfC5D71PkIVhUoiZU4sloKRD3UZa7JOTvSELoY5oeIt0sdryTo5cUT2FUgsE0ykzIkN+WddUkpM7lMf7Ujp6zXqK5CGEkUwcsKoq7qXzc+XHygJEMKXpLW0k86q0EwYIUkSTy57g5x9U7n66qvZvHkz+fn53HDDDdTXh+aaO5mDkQVRiON2u3nppZcoKCjg/vvv59prr2Vi8zzevvlLFMMJog4SMhcnknN6MuCZ/a5b2xpgi44MTaSKadfn+Wb22stDs8aNl9ayLho2toWsd8uL2ylY/7dSar4/dN2SYEdjVBGdG4k6IjTXoh0Jwe4tUus910RjDO1rUrO6iQ1/Lw35Z124BA2b2mgtHVlvtr/rjWBkwum8746oTAPTrs9DExma91fd2lZfeG/u6clkLg4tbxEALgXlT7YysWkeN910E3//+98pKCjgueeew+0OdfewjJxlLoRZtWoVt956Kz/88APnnnsudf/qQS8ZA23WURFfYkahUlC3piXQphwVkgKyTk6i+rumkA5p0sdp6WmyhXx4GUBkSgTWNkfIrt8KV/pmmfOHtN+uour/zfV7/6m/W3Wkpo1r1AYVOrOazhD2bPuQQB+r9Sz2HwWGI3iONDud1qwmZU4sez6sDfn+OHFGDG6Hm4aNbYE25ahQJLnQTHPw3nvvUVhYyE033cR1110XaLNkjpDQcyHIUFFRwYUXXsi8efNwOp1MZyEd/1aErBjKOD6e9IXxADRsaAtpMRRbbEIfp0W4Yc8HtSEthpQaBZNWZJE2Py7QpowIOUuSyQ6DkCYgJAsRHwoJkIYxwRrMIidcrk32KYnkLEkOtBkjQtr8OCatyBq1a1Mzu9NvoRP5dSyRX8cO+xi2Ngd7Pqj1lZ6ILQqt+oF9qVvT4hND6QvjyTg+PrAGHSHuWiXW93V88803dHd3c/3113PuuedSVlYWaNNkjoDw6LnHCVarlfvvv5/CwkK++eYbiphB9LosoqXQHrC67G5c9tCt3+FFUkDqsXHETzEH2pQRwWV3s/2flb5K8KHOlucrKP9vXaDNOGpUEUpm3TmBmDBYBzUQye2/MEr93aqgE0YxBZHMunMCKt3wM5wFG+X/rWPL8xWBNmNEqFndzPbXKnHZRzesyR9hFKn2eKm8wuhIxFH8FDOp8+NCek2RF5fdFfKZDe+d/yh5lTMpMc7hxx9/pLCwkDPPPJOWltCd3B2PyCFzIcJ//vMfbr75ZiorK0l2ZJNFISopNGOJAZJmxuB2CerXheYaoX5IoNIqcVpdKHUKXNbQ7twVKglLoYnGzaFVaXwoVHolbofA7Qjt6+JFqVEQW2SiZXdXWIT/FV6UjjUvhq+d/UPmxBDTdWm/PVgEHSqEbixFk9qgIibPSNO2jlEffI8VSo0CSSnh7A39SSuAuMlmmre1j1kdu6HC6TodBydE6Zzf5Pd+ve8alU6J0+YK+TA6gIRp0SiUErU/hq6QcAkn7XnVbNyzjtTUVB577DHOOOOMkE1uNZ6QPURBTkVFBWeffTZLliyhtayTGY7jyJMmhbQYAoiI0xIRowm0GSNC7hkpFF2cARDyYgggpsBE7hkpaKNCu9aQl6zFiUy+IivQZowYLrub+g1tYSGGDsVIeIvG2oPk6HZSv6EtbMQQwKQVWWSdFB6hplqzmtzTk8fUuzqU18jrKer32TA8Rt53TdHFGeSeHh6hjRExGiJiQztzplJSEVOawWzpRLr2WjnrrLMoLi5m1arg8mbLHIzsIQpSrFYrDz/8ML/97W+JjY0luiqVeFJCepYhKtOAQiWNeNafQGNI0KE2qkK6Ns9AtCY1to7QXf/UF22UGl205kDq2hAnbX4cjVvasbbaA23KiDCUh6gvfb1Fg3mI+tLXWxSIkDpdtIa4iVHs+7pxzI89GkRlGrC22rG1h0l/EOC+ra/HaDAvUV/88RiZc4w4upx01w+dBjwUic4z4naIkO63hRDYs9rZ3LqG3t5efv7zn3PnnXdiMIRgXalxgOwhCkI++ugjJk2axH333UeCNYPcqhkkSKkhLYbAEyaXUBK6Bf/6otYrPQtBJeiut4aFGIrJj8QywbNQN1zEEICt3RHSL9W+aExqkmdb0JrDw3vnL6G0tkhrVpM8yxKy6ZEH0l7RHTZiCA70bZZCE9F5Y78Or6/HaDAvUV/8WWfUVtblEUOSJ0GRSh/669cAEqZEkzQjJtBmHBWSJKGtMDO1bRFJtix+//vfk5aWxmOPPRZo02QGQfYQBRGNjY3ceuutvPTSS0QTzwRKMEihm0kGPPVS1AYV3fVWFGoFbqc7LGKdzTlG8s5IYdMze8JmsJB7RjIqnZIdr+8LtCkjQlSGgezTktjyQgWOrjAKL/POi4TBcwT+eYj6kvpAkIeeSITNtfGiNqqYeFkmZf+poWNvaBbXHMiE89NwWl2UvlsTaFOGlVhhKK+RNkrN5Cuy2f1udVhM0CGBQqXA7XBjSNTh6HJiD/F+XFjs7DFsoXzvHi688EIeeeQRkpKSAm2WzH5kQRQECCF46aWXuOWWWxBCkNiaQ5JID3mPEEDhBemojSo2Pb0n0KaMCKoIpW9xsUIljdnC3LFCUkohX5DRiz5eS+K0GE/dDpmg5D/V63j9w+NYvTadrZuU1Mw/vCgKekEUpmSfkkTduhZ6Gkanls9YE4x9nT/CqMfpWXvrOu5gIdf3ndT3XRXqTF6ZjaPLyfZ/VgbalKNGCEG9VEWdpYzu7m5uvPFGHnzwwbAY74U6cshcgCkvL+fUU0/lsssuQ9WsZ2LrPJKlzJB/OLxu+7L/1LD91b0BtmZkUOuVTLs+j/gSM0DYiKHs05IwpXkGosE2QDgaehpsYSWGJIXEMT8rCOn6I335T/W6gz5L/jo8vA+xRSaOua0AKYzesHs+rA0bMQQH+jpTmp7sU4Njlr5zftNh1w3pVZ61g8rPk1F+3j+ZgvedlFBiZtr1eWETPrf91b2U/ccjAEP9nCRJIlFKp8S2gOz0HB566CEWL17M7t27A23auCeMuuvQwuVy8cgjjzBx4kS2bdtGiXQskxSz0Ui6QJt21GSfksjEyzJBAnuXE0dPeMxSOXpcVH7ZQMvOI6s0HowoNQoMcTrUhtB+yfRD8oT/6eNCO1vRQCSlRM3qZrpDfFD6n+p1g4ohL8lf94S8MOpusFHzfTOSMrxesfo4LblnJIdF/RsvaoMKQ7wuqArq+iOMvAwmjJp3dlL5ZQPOMHr32rucIMGkyzLJPiUMsh52K0naXchUaT5lZWUUFRWxfPlynM7QDgsMZeSQuQCwdetWrrjiCtasWUOqyCFHmohKGrBIOoQviz5OizZKHTbZ5AwJOjSRqrA5n3BHE6mi+JJMdr9TTVdNb6DNkenDYEKob8jcQAYLoZND5gKHMSWCvDNS2PpSBfZOeeA2VgwWSucNnRvIwFC66Fwj9s7wyUIXnWvE1u6gpzGEJ4YGRAC5lS7aCypZv20dU6ZM4amnnmLq1KkBMm78EjxTIuMAl8vFQw89xLRp0+jq6mIGx1GgmHqwGApBLBMiKbooHUkBPY22sBIPybMsnqrgYYTaoKT40kx0YVILqi/2Tifr/1YadmLIMiEypLPLHcorNBSh7CnSmtVYJox9FrPRpKu6l/V/Kw1LMaSL0VB8aSbqIAzJGsxj5A2dG8hAj1Hq/DiSZ1lG1b6xpLW0i55GG5ICii5KD4tnTOFSEr0ti+niOJxOJzNnzuTiiy+WvUVjTHjkBQ0BSktLWbFiBatWrSJd5JG4oxClFHwd75Hi6HXh6HXtn/kIXe/WYJS+V4NCHUYxIoBS67n33GFUQBLAmByBo8eJrS08Mv/5kCDvrFQqv2ygZnVzoK0ZFkcihPriFUX+JFwIJmILTaTNj6d55/Zw6xLRmtWoI5R01YaH1wEO9IVKnTJow7y9osif5AteUbTtlL24HWF2AwJI0oFxR5gQJcUQuS2K6RMNvPbaa+zZs4fnnnuOgoKCQJs2LpBD5kYZt9vN3/72N+644w4SExOJLk8nWvLD2xACl0WpURBfYqb2h5ZAmzLi6OO0FJyXxvZ/VmJtCY8CmOOB4kszQQi2vhQeiTz6olBJSAoJVwiJWH/E0KFC5gZSM18fMiFzSo0C4RZhk3ylL8WXZIAksfXFikCbMq6J/Dp2yNC5gWiWNjHh/HR2vrkvtMPNhiDpmBgaNrSFRv/oR9KsNtFMe+4+KioquOSSS3jqqadQKOSgrtFEbt1RZN++fZx88snccMMNxPQkkl4+JWzEEEBUloGM4xJCOoxnKBw9TrrrenF0h5fL2pCoo/jSzJDP1DMU21/dGxR1RUYDt1OExsseKHu5xG/P0OqPo6Cl3a9tQymEzmV3h6UYAih9N3yyhw5EpfeEExsSgz/BUef8pkHTbw+G65U4Ggp0YfdOA9BFa8g4LoGoLEOgTfEPP8Z4ZslCaulEJhZM5tlnn+X444+nvLx8DIwbv8iCaJR4+eWXmThxItu3b2cqxzJBmoZKOkyEohAhIYa8Fdhbdnay5rFdYRWepDWpUWoVOLpd7HqrGpctNAag/qJQSbgdblzW8Dov8MzIu53CV4k+nMg7MyVk1gGUvVzi97anpUzz/a74ZsPIGxNgkmdbyDszJdBmjDi2DgdupwiqzGwjhcvmxu1wo1CFTpi067iawwojl1qwOg32PF9I3WsT0ZjCZyLT2mpnzWO7fBlgvWOUoMaP8Z5SUmHZmsU0FlBeXk5RURG33norcmDX6BB+vVmA6ezsZPny5VxyySXoO6LIrZ6ORfIjRWSI3OD6eC0zbs7HnGMECJvCb14mXJBG7hnhN4Dx0lnVy/bXKhHu0Ljf/MWcbWTmrQVoo8LnJd8XW6cjJGLl/RVDp6VM6yeGvCi+2RBWwsjR48LWGX4CHUAbpWbmrQWYs0NkVt5PhEuw/bVKOqtCLynL4YRRpsUT3n5MFeT8vwL2vT5xrEwbdbxjEXOOkRk356OPD5GyC36M/WKkeLIrp5Kblcejjz7KxRdfTHu7f151Gf+R1xCNIGvWrGHZsmXU1dWR0VVIkpTRf4PB4kZDsPkTSsw0bGoPu0E1eFJsO60ubO3hNYixTIgkbqKZnf+uCqviq140RhVxk6Ko/i60Eg6EC4MJoZ0Lnx5024FCqPCidAC2v9q/Cr372IP3CeHpSQpVUuZYaNzc7qkRE2ZISomCc1Jp3NJG847QrD03sD4RQEVzDAY7qF3QFuH5LG3pljG2bPSQFBLxk6Oo39AWaFOGjx9jxDqxj0rTdiIiInjggQe44oorxsi48Ef2EI0Abrebhx56iLlz59JQ2szkrmMPFkODESJiSFJI5JyejCndk+WpfkNbWIkhhUoiZV4sSNBdbw07MeTFaXOFpRgCTwHgcBVDWrM6qAvnHmmI3OEIF+GjNqjCcp0lQPV3zWEphsDjKXLa3aHymh6UwTxGmZYWujUeMSQJKGyEmn9OZN8b4eEtEm7hE0OmdD05pycjKUIk/NGPmy1RSmNSxzxUShVXXXUVv/vd73C5gj96IBSQBdFRUldXxymnnMKdd95JsiOLGRyHXjIe/osh1stqTerQiMs9AiLT9KTNiyPCEiIu9iOgeUdn2CYbSD8untgiU6DNGDUyjkugaJkfEywB4FBiqODLlb7fhwqROxwDQ+hCUSQVLUsnY1FCoM0YNWKLTKQfFx9oM0aF0neqfetSQpmhQukibVDUALH7c5XseyN8hBGAJlKNNtTWSvkxNoyQDBTUzSJDKuCee+5h1qxZrF27dgyMC2/kkLmj4JNPPuHiiy9GoVCQXJ93+LVCkhRSQkhtUKHUKLC2hn/aaaVWEXYJFAAsRSaiMgzs+bA27GqheCk4L5WOfT1hmf4dPAuE1XpV0FWa98cztHPh04cVQkOFzA3EfWxJSAoiQ4IOR48zLIuZgifdsSlNz843qwJtyuggQfYpSbRXdNO8vSPQ1hw13jC6iuYYwBM65xjCAR1OoXS6aA0uuzu0suz5MWZsEQ3sjlyP2+3mjTfe4JRTThkj48IP2UN0BLjdbn77299y0kkn4WqUKKifGVaJE7zknZlC3lnhm2AgbUEcKXM9Be7CUQwBqDQKTyao0Lr1hsXON6vCVgwB2DudQSWGyl4uGVbyhJEiFMUQeMJww1UMAdT+0BK+YghAeDJYqrThMVwa6C3yiqHCRihu6L9tOHmM8s5OIe/Mg9dUBTV+JlyYo16M3mbitNNO45ZbbsFmC786U2OB7CEaJq2trVx22WW8//77ZFFINkVIfhTZCkW0JjVIhO2amvRF8bhdgqqvGwNtiswRoNQoMCZH0F7RHWhTRg1Tup6Ygkj2flqPCBLNvuflEr/0dc7FG/zan78eolBFUkDGCQm07OykozJ06igNl6gsA51VvbgdQXKjyviFV/AUNYBSwOZBojvtdpXfz3Owoo1SgyAsyzIACCHYq9hJmdhKYWEhX375JbGxsYE2K6QIjymPMWLdunVMmzaNVatWUcI8cqTisBNDkWl6ii5KR6GSsHU4wlIMeetLVH7RELZiKKYgkrQFfhQBDmFiJpiYeFlm2K5tA89L3JRmCCox5A+hPngaSYQbTGmGsE0JD56wzomXZmKZEBloU0aVtAVxxBSE1zl6w+K2xR8QQ8pB+pvheIaDEVu7A1uHA4VKomhZOpFp+kCbNKJIkkSmmMAJhadRV1fnG6vK+I8siPzkqaeeYu7cuTRXtFPUOptYKSnQJo0K3ixkIZOVZZhozWqm35xPVGZ41c4YSIRFiyEh+CutHw2Nm9pY/7fSsA5Hatzczqan9wTaDKC/GArP3mH02PT0Hho3h2/dEHunk/V/Kw3rcwQwJOqIiNEE2owRJ23pFp8wSuiC03eCYYilw6EsimD/2EYQthlX2R5BUctsOqp6WLBgAdddd51cyNVP5JC5w2Cz2bjxxht58sknSSGbfKaglII3Be6RYkjU0V0XPOsURgtJKZG+MJ6qbxvDdt2QTPggKaSgSHE/lGdoMMuG6x0K95A5L8FyLWVkDkXdaxMpaoTN8eDuM2Vutw/uiQ91b3DYjn2UbpoLKli/dR2XXXYZ//jHP9DpwnuS9GiRPUSHoKGhgRNOOIHnn3+eImZQKE0LSzGkiVQx5cpsEqZGB9qU0UMCjUmNcAn2flYftmLImKQL7+u4n4JzU8k6yY9EJiFMhEXDnLsLMaZEBNQOf8PkIPQHR6OFMSWCOXcXEmEJP+9CX7JOTiT/3NRAmzHqJEyLxpAUnoPLxAu30HLjFtwK0Ns9tYoORSh7jBKmRjPlyuzwDLt2KbBsy2Yix/D6669TWFjIhg0bAm1VUCMLoiHYsGEDM2fOpLS0lMn2eSRLmYE2adSwdzrZ+tJe6je0BtqUUSNtQRxTrspGoQ7vYB9zbiRJM2PCPqaprbybzqrwXaAO4Ox1Uf5xHb1NwZsxqO9tJouhoeltslH+cR3O3vAuoNhZ1UN7efgmOQFAgqQZMUTnhNdaooFkLNvKSWWeZAuHI1TXF9VvaGXrS3vDOuw6UUpndtTxNDc3s3jxYtasWRNok4IWOWRuEN58800uv/xylD0apjAXnRRei++8xE02o1RL1K0NXyHkRRWhxJSmp2VX6BfZOxwKlYTbKT/WMkePP94h7512pIJovITMyYQP46WPjcmPpKOyh/IXC4cMmRuMUJwcSZwejcshaNzUFmhTRgWH2sZ6+zfYdb384he/4J577gm0SUGH7CHqgxCC+++/n6VLlxLZE8MMFoWtGAJPeJUxKbDhOKNNRKwWlU6Js9cV1mJIbVASneeZsQzrF7UEafPjwjPEYQCxxVFExGoDdnx/Q+UkQnMANNZExGqJLY4KtBmjjiZSRdr8uLD2Unv72Jj8SNSG8Auj99KyqxOn1UXWpduJsvn/XglFb5ExKQJjmIZBAqgdWqaziOTINP7nf/6Hq666Crc7PJcOHCmyINqP1Wpl2bJl/OpXvyKbIiYyC6UUnoMu5f4Cc+Uf1VH6Xs1htg5tCs5NJWdJiBVjOwLiJ5vJPzvFU4Q1jImwaEmZG4smMnxTGHvJOTWJmDxjQI6tmFJI7oP+heply2LIL2LyI8k5NTyzk/ZFY1KTMic2LLOx9UWpVZB3dgpxk8yBNmXUyTk9mRO/6xrWxEf5K1Mof2XK6Bk1wpS+V0P5R3XAgTFSuKGUlGQ1TmZa2jE8/fTTnHfeeXR1dQXarKBBDpkDWlpaOOuss1izZg151hISpPBdFBqVYaDwwnQ2PbuHnobgXZswUmij1AgB9jAtxtYXbZQ6LOtGDURSSuGbMrUvEiiUgQnNUUwp9P1e+vOhvVQjIYbGS8icQiXhdonBU/OFGePlGR0vfa7GpEbqU6TdHw+Qok82hqxlG0fLtBFHH69l8opstr9WSfve8F0P1yhq2KFdS3x8PF988QXZ2dmBNinghKcMHgYVFRXMmzeP7du389lnn4W1GALorO6h6ttGehrDWwzF5EciKSVs7Y6wF0P6eM+ANdxfzAqVNG4GWgCIMA9/HGe4neNDDIGnxotCJfmKYIcr3j7X2weHK/b9RdolpURMfngnk+hptFG1qpHO6vBO2hMnJfPkk0/S1tbGySefTGlpaaBNCjjjWhCtW7eOOXPmYLfbWbVqFb+c98dAmzRqmNL0aKPUuJ2Cqm+bwvrFrDGqKFiaRvxkc6BNGXVi8iOZdl1eQNeajBUJ06KZeUsBkjK8B1kAqcfGkn1aYMKr+nqHZEaWnNOSSJ0XG2gzRh2FSmLGLQXjogRARKyWadfl+dZwhjPxU8wULE1jwjVbyLl4g98hdCEVPieg6psm3E6BNkpNZFr4riN/7vK32bBhAwqFgpkzZ/L0008H2qSAMm4F0YcffsiCBQtIS0vju+++44YJvwi0SaOHBDlLkklfGB9oS8YEe5enanr9+vDPnteyu5OtL1UEdWrmkaJ1dxflH9eNCw+Ro8eFo2vsU8EOJoaGWkskrx0aPvYuJ44wT70NHm9Y+X/raC0N//UJvU02tr5UQWtp+Cbt8VK/rpX1fyvt1zcNd11RKJG+KJ7cJclhnSDkJ7k/Z9WqVZjNZq699lreeuutQJsUMMblGqJnn32Wq666itNOO42ud5VhmzyhL2qjCpfNhdsR3pc7brKZxs1tYe0B8zJeUr/KjA2H8gwNXEc0kmJovKwhkgl/xk2fLEHcJPNBKar7ri1SHKaiayisK1KoJZQaJY7u8K1T5EWo3ehPdvD+++/zpz/9iRtvvDHQJo05485D9Kc//YkrrriClStX0v2uOqzFkNqgIvdMT+YxR5cz7MWQKV1P/lkpYZ9KHECpUzDj5nwsE0yBNmVMSJwRQ9w4CIEEz6BKax7bLHqHC5Pr6yWSPUNHh9asDvu1NV7iJptJnBETaDPGBEuhiRk356PUhf+wypgUQf5ZKZjS+4eThZu3yO0QOLqdKDUKcs9MCesU65JDQc+7Gq6++mpuuukmLr/88kCbNOaE/5O7HyEEv/71r7nlllu488472fNECwopvE9fF63GlBqBShe+D3FfOip7WPPYLrpqegNtyqgjXILaH1vo2BfeCz+9GJN0GBPDt0ZEX0zpemb+tABd9NikLfZ3zVDugzZZDB0luhgNM39aENbrEvpiTNSFdW2XvnRU9lD7Y8u4COntqullzWO76Kg8+P0TjmuLVDolptSIMeuTA4UkSZT+vYmzzjqLF154gV/84heMpyCycREyJ4Tgzjvv5OGHH+a3v/0tn/1iHZIUxjN0EgdCxvr+HqYoNQpi8iNp3NIeaFNkZI4apVZBZKqetrKxWX8xnCQK7o3bR/z44ypkTgJztpHOqh5cNrkookzoEzcxipZdnbjsB9/PwxE7QR9CN87GVSf/7yzuuOMOTj75ZN555x00mvAWgzAOPEQul4trr72Whx9+mMcee4zP71kf3mIIyD8rhexT9meoCvOHFiC2yETO6cmoDeEb/tiXjBMSSJgW/tmbvGijwr8Ia19cNveYiSHwX+SUXWSm/IE5o2xNmCOgraxr3Imh8fQMJ0yLJuOEhECbMSaoDSpyTk8mtmjw0O2sZRv9FjpB7y3aP5bKPiWJ/LNSAmvLGPDRnd9z55138tFHH3HBBRfgdIb/OqqwFkROp5PLLruMJ598kmeeeYZ3fvpVoE0aE9rKu8dNKBVA/YY21v3f7nGx8BE8HrHxsgZBUkiU/CSH1GPDP1Wxl9R5sQfF5o82hxNFZReZfb/LoujoMKXrx0XqbS+px8ZRck0OkmJ89FkKlYRSE9ZDKx+Obifr/m839RvaDrndcLw/QS2KgI59PbSVh2/B1r6se2gPjz/+OO+99x4XXHABPT3hPa4M25A5p9PJpZdeyptvvskrr7zC3y94LdAmjTpqoyogqXoDhUqnxJgSMaaz6TJjT1SmAWurPewLz3op+UkOdWtbqVvTMqbHHSp0rq8Y6kvW3d+NyHHHVcgcngQhidOj2fD3skCbMiZozWp0Zg3tFeNjEDleMecY6azuwWU9tPcznMLoxsuY66a3LuO8886jsLCQH3/8Ea02POsehuU0hsvlYvny5bzxxhu8+uqr40IM6WI0zLgpn5iC8C8O5yVhWjQTzktDqQ3L2/ggdNEaYidGhXVNhMFor+geN2IIYMPfy8ZcDMHgXqKhxJDMkVO3pmXciCEAW5tj/IkhCWInRo15tshAodQqmLA0jUQ/CvGGi7copiCSGTflo4sJ/7U1fz77Be699162bdvGJZdcgsMRnu/jsBtJulwuVqxYwWuvvcYrr7zC385/NdAmjQnWFjt7PqodV96S6lVNbHiybNzE48cURJJ1UiIK5fhQRJJSIv/sFPRx4TkbFYz0FUWHE0Ny6JyMv+jjtOSfnYI0TvouhVIi+6TEcVMWwWVzs+GJMqq/a/Zr+3BYW9RW1sWej2qxttgDbcqY8MX/bODNN9/k7bff5tRTTw3L8LmwEkRut5srr7ySl19+mZdeeol/XPjPQJs06khKCUOCJ61p/brWcVEUTqVTYtifynW8dEYANaubWf946bi4xgCaSBX6uPGRstdLytxYJq/MDrQZfiOLoiNj8spsUuZYAm3GmKKP06GJHB+Jb9xOwbrHS6lZ7Z9ACAe872JDks7vUh+h7C1yOwX161oBMCToxoXY/8s5L/LEE0/w+eefs3jx4rBLtBA2gsjtdnP11Vfzwgsv8MILL/DksjcCbdKYkDLHwqQVWeMmbAwgeZaFiZdmolCHfwfkxRt64ex1BdiSscPW5mDDE2X0NNoOv3GY0FXbS9O2wKaPd2/cLofKjTLN29vpqrMG2owxo6fRxoYnyrC1hWeozWB4++rxEjYHoFBLTLwsk+RZ/ov94XqLmq8OrkkYpVbBpBVZ42aC46WV7/Pggw/y/fffs2LFClyu8BmThEVSBSEEt9xyC3/+85957rnneH75O4E2acyQlBLGJB2dVeFfjNSLpPDMNnbXj48BhcakZsbN+ex6q4qm8VJrSQJtpBpbx/gZQAULvpnYisNnuhuJxArjLanCeEZrUmPrdIyLchDgWUeUf3YKax7bjX2c9GWGBB09jVbEEUSy++MFMn3m6ZcsT4xMUpeRIDI1gq5a67goyuvl6lfPZ9myZcyfP59PP/0UpdI/r2AwExZuhd/97nc89thj/N///d+4EUOGRB26aA3CJcaNGJIUElrz/2fvvePjuOv8/+fM9qLdVe+9y71HASdOJaSSQCohjRAIoZfcJcDdcff9He2OIwTIHaQACYEQEiAkBNILKXbcuy1Lsnrv0vbd+f2xWll2bFkrrTS7M/N8PPJ4xPbMzlsfzX4+n9fn3QxIYVQjhgD8YwEO/aGVwUNjcpuyaDgKraz7cvVUOKhacJba0Jnlm5aP25CUzBwjHq8qc2pEZxZxltrkNmNRsWWbWfflahwFi1tSXk4GD41x6A9t+MfUIYYgsjZL4YhnLNZS67F4iwY+VZ8w3qKxdg9SSMKcasSWo4416xfXPclnP/tZXn/9de699165zYkLSS+Ifv7zn/PNb36Tb3/72zx91ytym7NolF6YQ9mHc+U2Y1HJXZ/Gqs9UyLphlAUJBg6OEQ6oo3gEwES3lwNPtqpK+BrtepbdVIqzSJ6NckzlcDUxNC+cxTaW3VSKwa6OnBqIbJTV9p0OB8IMHBxTjUcsis4ssuozFeSuS5vT/bHkFiWKKAIo+3AupRfmyG3GonHwp9185zvf4fvf/z4//OEP5TZn3iR1yNxTTz3FNddcw2c/+1kO/KQLQVBPTonOJCLqRdU0I4VIfLKzxMZQg3oq6eVtSMeSYaLxuU65TdFYaAQwu4wEJoKE/IsrfmcUQycJnYunIFJjyJzOKGKw6fEO+1W3WVYj5Zfk4en30blZPUUWUivtjBydIByY+wt+snkpGjJ3MuQOozPY9YQDYdVUvo1Sc1cOP/nJT/ja177GD37wA7nNmTNJe9T+yiuvcMMNN3D11Vdz8IHuKTGkM4pTfVoE8fiO0aJBQNQfE00zXqt//7WCGL2WOF8bNeL4awWdcFzhANEgkrHEid6qI+QPH+cxONm1U1VPhBN+Vp2AaDh+XOZ07bzGMLbxjkw0EkMN4zOOYbzHe+ZxicN4nziGuuPHJRwME/SFTn5tAr6zov74cZnLeFvSjZRdlIvJaZhhDOM03ok0R0jgHfIjhaX4vrOnubb5tysQJAl9SEKYPB8TwxL68ORGpsSNXpIQJ/+t9N534jpHTD/Hms8cMdt3NhHmiFAgfNxh1nzmiPjNyQs/R+gtOsovzsWabTrttacbw9N/7xNnjgh6QoR8oYTZR8Q6R8Q8hgKMtrgJB6WIbXMc79Lrd1H+id3oonORJKEXJITJUwSByJ+jDN9xhqxzRGA8SDgoYXLqSa91zHIMF34fsdBzxIGfdHHmmWfyox/9iGeffZZkJSkF0e7du/nIRz7COeecQ56jkLIPRULHTC4D9ffU4SyOhJzkbUhj3Zerp+5bemMJ5RfnAWCw6ai/p460ykgj0+xVLjbcfaxTe+11xVReUQBEXtL6e+pIr3UCkLnURf09dVNfiOqPFlJzdeHUvfX31JG13AVAWrWD+nvqpqrAVVyWT90NxVPXrv9aDTlrUwFwldmpv6duqjRp+YdzWXZT6dS1675URcVleeSsScNRaKX+nrqppmAl52ez4vbyqWtXf7aCwo2ZQCTfqP6eOmxZkdjWorMzWX1nxdS1Kz9VTsl52QBY0ozU31NHymScd359Bmu/UDV17bJbyii7aHK8HZHxdpXaAchdl8b6rx4b7yUfL6Hi0sh46y2R8U6dHO+slZExjFJzTRFVV0bGW9AJ1N9TR8aSyHgXnZPNhq/WYEmP/KxVVxZQe23R1L1n/HMtWSsj451amUL9PXXoLZEEv/JL8lhyY8mxMfxK9ZQb31Vqo/6eusjGGyi7KIflt5RNXbv2C5Xkn5kBQEq+hfp76rCkRxby4nOzWXnHsTFcfWcFRWdnRcY7KzLe9slY4sKNmay+69i1Kz5ZTsn5kfE2T463oygy3nlnpLP2i8fGO2tlKobJn8Vo10fGsDwy3jlrUtnw9Zqpa+tuKKbi8nwg4kGsv6eOtOrIpJy5/ITx/lgh1R+NvLOCGHlnM5dFxjC9dvKdnZz4Kq/Ip/a6Y+/shrtryF4deWdTKyLjbbBNvrMX57H0E9Pe2S9Xk7chMt7O4snxnqy6VHphznElptd8rpKCD2ZgchpIq0ph3Zeqp3oQFW3KYtWnj73fqz5dTvE5kfG2Zpgi72yeBYCCD2Sw5vOVU9cuv61sKowhkeeI3PVp5J2RPu85Iv+MSLWjWOaIVB9c3xDGNVnQb/mAxGXNxw5cLva7WRX0UXrPO3GfI6J5YvOZIzLqnNTfUze1kCfLHFG0KfLn+cwRS28qpfziyHgn+hwR8ofJXOqi+qpj34W5zBEA9rzIeCfDHNHySg99+0YTZh8xlzliLvuI9FoHa79YRfklefOaI85/MuJZM4bhktxxss2Rw4Qia4BLco9FjKxL9VDylUglOlnniNvKKftwLqJBSIh9xELPEYIgYHk3h/Lycj72sY/xpz/9iWQk6ULmuru7Wb9+PRkZGTh3FJNR7iLgDjLR7UU0iKRV2hlpmSAwEcKSbsSaaYrE8BJJWA75wox3ehB0AunVKYy2uvGPByPJcLlmBvaPAuAotk4VLBBESK9xMNbuwTcawOQ0kJJvof/AKEiRSQUBRlsjScgZdQ7GOj34hgMYU/Q4Cq0MHBxDCkuk5FsQDeJU5+70WgcTPV68g34Mdj3OIiuDh8cIByXsuWZ0Zh0jzZFr06pTCHhCjLe70Zl1uEpsDB0ZJ+QPY8sxY7Dppxqzplam4Bv24+7zoTfrcJXZGGoaJ+QNY80yYXIapkLPUivs+MeCTPR40RlFUivsDDdPEPSEsGSYsKQbpxL6XWU2gp4Q411eRINAWmUKIy1uAhNBzGlGbFlmBg5GxtBZYiMUCDPeMW2829z4x4KYXAZS8iz0R8e7yIokwVibO9Llu9bBWIcH30gAW66Z/DPSOfynDpAiFV0EUThuvMe7vHiH/MfG+9AYUkjCnm9BN328axxM9E6Ot02Ps9jKYMMY4YCELdeMwaJjuGlyvKtS8Az68fT70Ft0uEqnjXd2pKfG0JHoeNvxjQRw9/rQmUVSy+wMN00Q9IawZpowuYwMNUyOYbmdwETknY2O98jRCQLuyDtryTAxeGiMnLVp+McD+EeDjHd6EPUCaVUpjLS6CYxPjne2mYEDk+NdbCMcDDPW4UEQBdJrUhht9+AfDZx0vJFgtG3aOzs53iaHgZQCCwMHR5HCk+OtExhtcR97Z7snx9uuxzH9nc2zoDOJU+9sek0K7j4fngE/BqsOZ4mNwYZxwoHJd9aqZ7hpfGq8vUOT72x0vBvHCfkm31mH4dh4T39nTSKp5cfeWWumCXOqkcHD0XfWnhRzhC0nMnZ9u4fnNUd4BibfWevMc4T/F8uZMMCwScAYksidkOiyCfh1Ai6vhC0IHfbI5iFvXCLtm4cXZI4o2pRF0Bvi4JNtc54jThzvZJgjaj5ayESvj6Mvds95jjjxndXmiMSdIww2HcXnZtP2ep/s+4jZzhHx2Edkr0pltM2NwaqLyz7C+Nk1DPp1eMMiVl0YlyFEpzciRtKNQSRg0K8HJKrf2i/PHGHVMdHtIzARlH0fsZhzhKvGylbPGwwMDLBt2zYqK48dOiQDSSWI3G43mzZtoqOjgy1btnBL4ZfkNmnRyFmTSu/u4XnF42okD+Y0I6s+U8GB37VMbb7UgKATEHXCoufQqI1YmxzGkuQcK2rMIVI7OqNIOCSpqkyxq8xG7XXF7HjgCN4h9TQUjyfj15wBgM8pnObKCHLnFIkGgazlLrq3Dclqx2Lyoz3/xvnnn092djb/+Mc/sNvtcps0a5ImZC4cDnPzzTezb98+CjprVSWGLOlGSi/MnXIpqwW9RcfKT5Vjz1VHGcvpeAf9vPfDQ6oSQxA5Zdxwd42qqm8tNokkhjTUh9GuZ8PdNaRWqGs9G26a4L0fHlKlGLLnmln5qfKpELT5YhqRMI0kvph2ldopvTB3KiRRDXxp2b9R0r2MpqYmzjvvPHy+5GmsnjSC6Jvf/CZPPfUUFe4VOIRUuc1ZVDwDfrbed2jKva8WRIOIZ9CPd0Q9PRwgkqiIAEGvcjpAz5bxDg9H/tJJYFw91RMhkrdw5jeOxYAvFJoYShwcRVbO/Max3AO14B8PcuQvnYx1qKN/3nSC3hAIHJe0rgZ8IwE8g/7jigLEg0QXRYOHx9h63yG8g+oSwXbBySrXGbz33nvceOONcpsza5JCEP3617/mO9/5DhXSUrKEfLnNWVSyVrgQRAi41bc59o8GOPRUG0GV/ex59Rms/mzlVBUYNeEfD9K7a1huMxadkC9M84vdeAYW7jQtVjGksbB4Bnw0v9ityvDQ3l3Dqjv0AECANXdVkndGhtyWLCoBd4hDT7XhH43/4eapvEVyh8tFCbhDCGJkL6cmjO1OVqSt5w9/+AP/93//J7c5syLhBdGOHTv49Kc/TS4lFFF1+hsUhD3PQsVl+VPVnNREwcZMUgrV93MDDB4apf3NPtX1JzG5DBRuzJyqpKQmgp4QXVsGCUwsjPifixjSvEMLS2Ai8jsPetR14AOR6lWFGzOnqsmpBgna3uhj8PCo3JbIQkqhlYLJqnXxJpG9RSkFViouy8c+WeVQLWQMFlJAOZ/73Od4+OGH5TbntCT0zmNgYICrrroKg9dCDatU1XgVYLzTw7YfH56qgqIWopV7ouVU1Ya710fv7mG5zVh0rJlm8jakI4UTd2FbKOx5FlIKFmax1MRQ4pJSYFHdJglACkvkbUjHmqm+/NDe3cO4e5MnryKe2LJMpFelHNcTZ7ZECyrMRKKKotFWN9t+fJjxTvWFiVaxgpzsHL761a/S29srtzkzkrCCKBQK8fGPf5zR0VGWcwY6IT7JeMlCWnWkr4FvAVzMiY4Uktj1YBM9O9RTmSVK0dlZuMrUlWwcZahhjM3/dVCVlRTzz8yg+JzsuH+uJoYSm+JzssmvV1f4FEA4ILH5vw5OlRBWG64yO4VnL4ynJJHp3j7EroeaFrS6YKIWXIju5aJ7O7UgCiIVgysxGo1ce+21BIOJGyqbsILo29/+Ni+88ALFg3VYBJvc5iwqjmIrddcVY89X38mhNcs01YBVbSFjCJFEazVVpDkOdTmAj+Pw0+0cfKotrp+piaHE5+BTbRz+Y7vcZsiHSr/z5jQjziKb+n7+yTXdkm7EmhVbBIj99+9i//27s7q270pPQuZM2vMt1F1XjKNYXekAeq+Zwt5a3nzzTa644gq5zTklCdmH6Nlnn+Wyyy6jnCWUCrWnv0GBWDJMePrV51av/lghZpeBXQ82yW2KxiJizTKx/JYydv+ySbXhJPEmWSrKaX2I1In2nVcvK24vwzsUKZo0F04XPtd35fGhaYl00KPWvR2Ad2Uf/9jxOr/97W+57rrr5DbnfSSch6i9vZ2bb76ZDHIpoUZucxYdW04kplqtX5jDf2zn4B/ie1KeLEx5xlRI0Bum491+1ZUnhUiCec01hdiy45dPkSxiSO3Yss3UXFOoykIi3kE/He/2q7KoRBS1zvkH/9DG4T/N3TM6W09RlETyFkX3dtG9npow7cggWyjg05/+NEePHpXbnPeRULNwKBTipptuwmKxUMda1RVRsOdZWPXpCpwl6goRjKIzikghCd+w+vKmbLlm1nyuSnWu9Cj+0QBtb/QRDiacw3rB0RlFdAaReDnrNTGUPEiShM4gojMm1FK8KISDEm1v9OEfS9ycgoXEUWxlzeeqsKmw8bhvOIAUkub13scSQgeJJYqcpTZWfbpCdQVVBEGgVlpDSkoK55xzDm53YhUMS6iQue9+97vce++9rJI2kiZkyW2OLLjK7Qw3jsttxqJjz7Ow9KYS9jzSzESPV25zFh1BFEitsDPYMKbK3KnslakMHhpVZb+teBLLop8oQkgLmVMvBquOtGoHPTuHVDnvpVWmMHRkXJWVNW3ZZpbfVsqeXzYz3jW/NX96CN2J4XInIxHmPleZneEm9e31AIRKHy8feY4vfvGL/PCHP5TbnCkS5lhqy5YtfOtb36JYqlKlGNKbI1X01CiGALxDftre6GOiV31iCCJlaAcPq1AMAeZUIxWX5qmyBC8wpxK0JyORTkA1YiNe70CyYc00U3FpHuZUFYaOSTB4eEyVYghgotdL6+t9eOMQEZKMIXRRMRTd+6kJqcFESbiG++67jzfffFNuc6ZICA/R2NgYq1atoq9xkLWcgygkjE5bFAw2PWs+V8mRZzvp3zcitzkai4yz2EbWCheNf+1UZcgYRMLGwsEwUlhuSxaf4vOySa9xsP2nDXP+jGQOk1O7h2j1XZUMHByl5eUeuU1ZdAQRRL1IyK/CLz4gGgTKP5xH765hRlom5DZHESTTXJixxEnFpXls+0kDgQl1hY5KksRO45uErH62b99OaWmp3CYlhofoy1/+Mj09PSxlg+rEEEDAHeToyz0MNaqzJ0PxuVlkLXfJbYZs6MwiBrtetWIIIORXpxgCGNg/Qssrc98MNz2+EkmavYchkcSQBrS80sPAfnUehElhVCuGINKPyWDXozOrb98TJWu5i+Jz4xcVFOv8Jqe3aLhxnKMv9xBwq0sMQSSfaE3qB/F6vXz+85+X2xwgAQTRiy++yEMPPUTBeBVWQZ0NKZGge+sgIa86Fwaj3aDqBWHw0Bj7H2+R2wzZqLuhmMxlTrnNkI3xLi8DB0bndG/T4ytjul4TQ4nHwIHReedQJDOZy5zUXV8stxmysf/xFgYPqfMwFEBv0WG0G+L6mckiioLeEN1bB1UZKg8Q7hUp9y7jueee45lnnpHbHHlD5sbGxli2bBljLR5WsVF1VeUAltxYwsCBEbq3DcltioYMmJwGwoGweosJCFD24VwGD42pNn8uY4mD8S5vzCXHTyaGBOHU03miiiG1h8yZ04zYc83075ubKE52XOV20qpSaPpbl2o3hgarDtEg4htRX4XVhSYZQuhy1qSSXutk32NHF/3ZciNJEnsM7+C1jLNz505ZQ+dkPZb/53/+Z/r6+qhljSrFkCDCWIcbjwp7rwCIeoHUSpV6BScp2pTF0pvkj52VDQma/tqlWjEEUPWRAlLLY/senMozdKrQuUQVQxqQWm6n6iMFcpshG8ON4zQ9r14xBLD05lKKNqmvmNR0UivtiPr47wOTwVvkGfQz1uFGhRkjCILAyrQN+Hw+vvjFL8pri1weotdff51NmzZRxUqKhAo5TNCQmfRaBzVXF7L1x4dV2XsIQG/VYXIamFBpyIw5zUjQE1J1c0ZBFBBEZp1DNpswuemeokQXQ2r3EIl6ASmMaquNQSRsSm/RqbIxM0T60PmGA6qdB00uA2u/UMXBJ9vmHD58OpLBU6RmOmjmgLSNv/3tb3zoQx+SxQZZBJHH42HZsmX0Nw6zlk2q9A6lVadgchjoem9QblNkxZJuxDOgzkVQA5beVELQG+Lg79vkNiUpiCVnSBCkpFjU1S6INKD2miJ0ZpG9vz4qtykaMrFYe4FEFka569PwjQRUmVMmSRI7df9AcgbYt28fOTk5i26DLA66733ve7S2tlLHWlWKIYg0InWW2uQ2Qz4mf+1qFkP5H8ggvz5dbjNkpeGZDlWWG47iLLFRc01hQoSKaMiDqBeouaYQZ7F614OjL3fT8EyH3GbISn59OvlnZshthmxM7QUWeEuYyCF0rhI79jzLoj0vkRAEgTXZZzI6OsrXv/51WWxYdEHU1NTEd7/7XfIDZdiElMV+fMLQ+movB59U76l45WX5VFyaJ7cZsqI3ieiM6mvKNh3fcEDVohgh0ocl3iXXy27YGdfP01g4wkEJUS8mQM1X+fAM+FUbNh1FZ9KhV3G1VYCKy/KovCx/wZ8TiyiSJCHmap5z5cCTrbS+2rsoz0pEwl06SqjmiSee4ODBg4v+/EUPmbviiiv4+zMvciYfQifoF/PRCYEgRqrqDDWoN4kcIGOpE0GAvj3q7L+hAY4iK6mVKZEePOpNn4iZ0y3OySaGtJA5DQQoPjeboYYxRlvdclujIROZy5xIEvTvXbx9wek8QCcWqlmM+TW10s5w47gqe/OFpBDv8gLVKyvZunUrOt3iHRov6nHEX//6V5555hmqWKFKMQSQWpHCkhtKsGSY5DZFVvr3jqhaDJlchgUJk0omzKlGXCU2VYuhubwDMy3IySaGNI6h6vlAAleJDXOqUW5LZEXUC5hc8e3Jk0z07RlZVDEEsYfQLbS3yJJhYskNJbjK1RlBpRN01NdsZOfOnfz4xz9e1GcvmofI5/OxdOlSBo+MqrbnUBRrpgl3n09uM2Sj4IMZ9O0dUXWIxPJPluEb9nPoqXa5TdGQkbrripAkOPBE7N6RExfmZBVDmocIaq8tAkHdY6AB1R8twOQ0svvhJrlNkQ2Ty0DmUift/+hf1OeezFN0qjYGsLDzrdr3iAB7Te9gzNJx4MABrFbrojxz0TxE999/P83NzVSxUrViSDREfm41v+jGFD35Z2RgSVe3h6zhzx20vdkntxnyos5p4Dg63h2gc/PAnO6dviAnqxjSiNC5eYDOd+f2HigKlc8JbW/2qb64hCXdRN4ZGRhTFjeKqPT6XTF5i5oeX7lg3qLoHjG6Z1QjZd5ldHd3c++99y7aMxfFQzQ8PExZWRnWoVRqhdUL/biEZeUd5QweHqP1NfUmzUEkj0qSUHWolNoxOgys+Vwl+x47quUMzIOmx1cmvRjSPEQaAI5iK0s+XsK2+w/jHwvKbY6GXAggCMiaP9P82xUzeodOZCHm4KJNWaRVpbDz541x/+xkob+qif3Nezlw4ABlZWUL/rxF8RB9//vfx+fzUUbtYjwuMRGg451+BhvUV19+CiFy4iGFUbUYyl2fRtYKl9xmyEo4EKbllR48/er1lgJkrXRhcs49ZyDZxZBGBJPTQNZKl9xmyIqnz0fLKz1xr7iYbGStcJG7Pk1uM+RDiogh0SDI5jGcS15RvL1Fgw1jdLzTr2qvaVZvCQaDgfvvv39Rnrfggqizs5Mf/ehHZLmLMAnqrK8OgBRJGBzv8MhtiWy4yuxs+FrNvDaASsCaZVZ9UY2gJ0TnuwME3OrszA6gM4tUXVEwr74TCxm2obF42PMtVF1RgM6k3rLLAXdkTgh61DsnQCR/xJplltsMWTE5DWz4Wg2uUrtsNpTdsHPWB06V3x6n8tvj6Kor0FVXxOX54x2eSOEpFZ8PhIdFciZK+NnPfkZDQ8OCP2/BQ+Y+85nP8OSTT7J8cCN6QZ0bYZPLQH59Bq2v9hL0qneyN6boSa910LVlUG5TNGTGWWoj6A4x0eOV2xRZEcTI8Z8Ujn0a1ooqKIf5vAdKwpZtRm/VMdI8IbcpGjKTuz6NgQOjCRE+ebpDp8pvv7+NSujQkXk/V2/RUbQpi453+lVbhCokBdnmeIXq6mq2bNmyoM9a0OOoI0eO8OCDD5I+WKBaMQSRJEFniY1wUIVF5afhHwuqXgyp+QR4OqUX5JCzTsVhIZNIYSkuYuhUf6eRHMz1PVAauevSKD0/R24zEgK1rxVdWwYTQgzBzIdNJxNDQFw8ReFAGGeJTdVFqHSCnmX5q9i6dSt79+5d0Gct6Dfuu9/9LrqQgQLKF/IxCc9w4zg7Hjii6thoR5GV/Pp0uc2QnYpL86m7oVhuM2Rn10NNHH2pW24zZMVZaqP2mqIp78Bs0YSP8hBEgdprinCW2uQ2RVaOvtTDLhWXnI6y5OPFVFyaL7cZ8iJAfn06jqLFKbl8OmIJoYsy3xC6cFBixwNHGG48uehSC6YD6ZgkC9/5zncW9DkLJoja2tr49a9/TTGV6ITF6zSbaFgyTOiM6j7pAbDnWchY4pTbDNnp2jIQSZRUOVJIIuRVt8dUECYrLsbgGTidGNLEUnIihSUEMfJOqJmgN4QUUu/BYZT2t/vp2qLyMuwSZCxxzivHciGYLopO5R06kfl6i3QmEUu6epsWi4JImaWW3/72t7z88ssL95yF+uD//u//xm63k8/Cl8pLZCovz6fqIwVymyE7ne8OsOtB7eRvtM2t+vh4Z7GNmqsLEfXq3v0NN02wP4a8mdmKHU0UJSf7f9fKcJO65wbRIFBzdSHOYnV7ykaaJxht09oR7HqwKSH7c80lX3M+oqjqIwVUXqHufWRuqBir1cqPfvSjBXvGgnS+6uvr4+c//zk5nhJV5w4BHHyyFZ1JvR4yANEgEg6o2xsAkFJgwZphomfnsNymyIqgA1EnqDqEFEDUz34MGh9fqebqq6ohlndCiYQDEqJOQMVBJVNkr3Th7vcx1q7eyrRREnIP0W4BFieU7ejLPYR86i3IBSAERHL9pbzwwgt0dHSQnx//kNIF8RDdd999iKJIIfEpP5jM+MeCqu+1UnJ+NstvU7enEMBVaievPkNuM2QnVs+IUqm4LJ9lN5ee9rrGSY/PbLfJyVptTu0su7lUyxtB85RFyavPkLXsdKKw/LYySs7PltuMk9LwyUwaPpm54M/x9PsSpsCEnBRQjsVi4e67716Qz4972W23201BQQEpQxlUCSvi+dFJhSAKLL2phNZXexlpUffkbs+3YErRM3BQxU1pJ4nkjMhthbzoLTrV9xoBcBRaEQ0iw02nPmVsPEn420yeomQUQ1rZ7Qiucjthf1gLlUKbI0BbK6Kk16TgGwsmVA/Hpu/Xn/TvKx/qO+U98y3D7SyxUbQpi72/PqrqipRjyzvYcWAbHR0dZGTE94A57h6i3/72twwPD6u+spzeosM3EsA/oan68Q6PJoYm0RY4WH1XJQUbF/5ULdEZbXPHLIZmIhnFkMYxhhvHNTEEFGzMZPVnK+U2Q3a0tSLCwMGxhBJDM7GQ3iL/eBDfSAC9Rd1FulLasgmFQvzud7+L+2fHdWQlSeKnP/0p6VI2VkHdrt7ARJDDf2xXfbhcaoVdqy5HpMTy6s9WYLBqwfFH/tLBwIFRuc2QnfRaB5aMk/eXmEkMnexsUBNDyY8lw0R6rUNuM2Rn4MAoR57tkNsM2TFYdaz+bIXqS7FDpNpcakVi7ClP5R2KcjJRFI8mrZ5+H4f/2E5gQt2eU4b0pIdy+NnPfkYoFN+xiKsgevfdd9mxY4fqvUOiXsBVbkdQt5AHILUyhawVLrnNkJ2gO8RQ4zgBt8onM2Dw0JjqDwoAKi7LI60q5X1/PxvP0HRRpIkhZZBWnULFZXlymyE7nn4fg4e0iIJAdM3QokzIXukitfL9c+ViczoxFGWhcosEMRJaq/YKrWWOGg4cOMD9998f18+Naw7RjTfeyNO/+RNnchGCihsqpFWlUHd9MVt/fBjvkF9uc2RHi4XWiGLNNJGSb6Fn1/DsqwQoFEEEBOG4viuxhsmVK0AMaTlEEQSdAJKkzZUCZK9wMdbhwd2nHZxoJM4eYraCaDpld78Tt+ebU42s/UIV+3/bwuBh9R4aSJLETtfrrFq7khdffDFunxs3H0ZfXx9PPvkkBZSrWgwBDB4eY9tPGzQxNPkaJMJEJjfOEhs6s+YydJbYKL0wV/ViCCLfi+li6PAD6wmNzL75nhLEkMYxpJAmhgCQoPRDuThLtFAxnVlUfU8mmLaHkHlrGau4kQo8MR9yzYR3yM+2nzaoWgwBCIJAxnAhr776Kh0d8QuvjdsO7YknniAcDpNLcbw+MqnRQoKg5LxsltxYIrcZsqMziSy7uZS0Ki0/oOu9QTb/1wG5zZAdk8NA7bVFmNMiAujwA+tjul8TQ8rDnGak9toiTA519+4D2PyDA3S9Nyi3GbKTXuVg2S2l6IzaYdqSG0soOU/+8ttz8fjEUxRpe8sIuRSh0+n49re/HbfPjNu37LHHHsMVzMQonDxJWC2kVtpZcmMJokHdXjKI9Jvp3zcitxmyE/KFee++Qwwe0goJgOYxhEh4VDTH8EQxdDovkSaGlIsgskDdAZMLbY6IMHBolPfuO0TIrw1I/76RhOlPNRtRJBUcXxmv8fGVcRFGokFkyY0lCVNkQi70goHyknKeffbZuH1mXKbew4cPs3nzZs07RKTTtm80QDigxQQNN43Ts2NIbjMSAt9wgJBPW9Rqri7UimwQCX3Y/9tWdv9/K0/676cSRZoYUi7ewcg74RsOyG2K7GStdFFzdaHcZshOyBfW3odJenYMzdimYLGZSRSdKIamM19RFA6E8Y8GCAe1Paa5KZ2uri52794dl8+LiyD6zW9+g8PhIIPceHxcUjNydIIjz2glQ82pRlIr7bLH/CYCeRvSyV2fJrcZCYF/LEjQq1XaQ4DDP1s34yUniiJNDKkEbc4k6AnhH9OqqwHkrk8jb0O63GbIjxCJwDGnzj7PcqEpu/sdWULoGp7pYORoYnjL5CQ1mEVGRgYPP/xwXD5v3oJIkiQee+wx7KNp6AR191gxpuixZZvlNiMhSK9Jofoq7YQPwOjQY0zR8gIAmv7WpZXUBcL/vZpbezwIpynyGRVFmhhSPoIo8MF/XUrWMpfcpsjO4KExmv7WJbcZCYHJYcCYopfbjISg+qOFpNfIX377RKYLo5m8Q9OZryiyZZtV/16IgkheagEPP/wwgcD8PanzFkTbtm2jqamJHIrmbUyyk7UylWW3liKI2hFfxzsDbPtJg1ZNDDj6Yg8tL/fIbYbsiHoBg03dhyZReg0i/3AYkVRekVPjGFJYouGZDkbb3XKbkhAYbDrV91sBOPpSD0df0tYPJNh2fwMd7wzIbYnsCKLAsltLyVqZKrcpspMZyGdsbIw33nhj3p81b0H0zDPPkJqaiouMeRuT7HS83c/uh5qQwpoKALSGchAJf9HWdCBScnvD12pVf6oFMKoXabDObhyqvty5wNZoJAo9O4bwDqq8XQNgdBjY8LVarfR2FG0dARJ/TxFr+NxcvURSWGL3Q010vN0/p/sVxVEzOTk5PP/88/P+qLgIoksuuQRR0ErjSCFJayQHmFwGln6iZKqksJpxltg48946TE4tZG6808P+37XgH0/sRW0xSA+EyfOdPpeq9t+OAqDLzlpgizQSAVeZDVuOFnbtHwuw/3ctjHfOLvxIyZicBs68t07rRwRY0o0s/UQJJlfirqexhDeHfDoOP7KGw4+sifk57j7fcX3s1IogCJx11lk89thjhELzy0+el4ppaWlh165d7HqsYV5GKIGUfAtVVxWgM2nCUNSLBL0hQlryPN4BP80vduMb1SoFBdyhSP6QNoez/m8drB2b2RMQFUNRNFGkfErOzyF7tRYGgxTJIwq4tTXENxqg+cVuzXNIpNhG0BtC1CW2u2w2oijkOz58PFZRpDOJVF1VgD3fEtN9SmRw/xg9PT28807sBS6mM6/d+1/+8hcMBgPp5MzLCCUgGkWMNr1WWplI47CDT7ZpixmRxaxry6AmAoC06hTSqhIvIVYOmv7WTcP/23fKfz9RDEXRRJGy2fOrZpr/1i23GQlBWpU2XwAgQdeWQe1Qjcih2sEn2/AMJL44LL9hZ8zFcGIRRSFfGKNNrzXtBUL7zVgsFt5+++15fc68BdGmTZvQC4nrvlwsRpon2PvoUbnNSAhMLoNWWGKS1Aq7FgIzSeYSJ1krXXKbkRBIYYmQL0zVnVve92+nEkMayifkC2s5qJNkr0wlY6lTbjMSAluOWfWNOKMIopDQIXMncjJRdKJ3aDqxiKK9jx5lpFkrv62TdFx44YX8+c9/ntfnzFkQ+Xw+3nzzTY6+qFU/QQCjXUsUj7Li9nIKz8qU24yEoPTCHK0R6SSHnm7n4O/b5DYjISg6J4ucNZHQqOmiaDZiSPMSKZecNakUnaP9fgEO/L6Vw0+3y21GQpC1wkXJBVokDkDhWZmsuL1cbjNiYroomkkMRYlFFBnteq3gBtC7f5B3332Xzs65FyGasyB677338Hg8pKJtfK2ZJtZ/tYaUAi2WE+DgE6307ByS24yEYMf/HqH11V65zdBIMPQm8bhQh6o7t8TkGdJEkTLRGUX0Wh6qxgm0vtrLzv87IrcZCUHPziEOPtEqtxkxsxDhcymFVtZ/tQZrpmmOVikH61gq4XCYzZs3z/kz5jzzvv766zgcDlJwzfnhSsE3EuDAE61MdHvlNiUhGG1z4xvW4p0BpDCE/FpeGcCyW0oTsqmeHDT9rfu4fhqNv1nF4R/my2iRRiLQ8c4ATVoOERBp7r3sllK5zUgIQv4wkraMAOAbDjDalpy9uipvOxjXz5vo9nDgiVZ8I9p+i24DWVlZbN26dc4fMWdB9Nprr7Fx40YErbEgIV+YgYOjhINa7LejyEru+jS5zUgIbNlmaq8twmDTwikRwDPgI+jRVvUTafzNqqn/n60oCvVoXkcNZRP0hPEM+LRwIMBg11N7bRG2bC0fFSB3fRqOIqvcZsSEaI787mruPHUxnVgJByQGDo5qxbyIlN9eu3Ytf/zjH+f8GXMSRH6/n7fffpvDzyWf23IhyDsjXSt9OElKgZVsrXsyAIJOQNAJhAPaZIUER/7SyUiLlgAKsO5L1RRszDxODEU5nSjSxJByKdyYydovVcltRkIw0jLBkb90ahU6gbA/PLWeaEQKbqQUJI8gioqhKLMRRVW3bpvVZ9vzLeSdkT4nu5TGWIebQ4cO0dfXN6f75ySIdu7cidvtxqXlDwGQuzaNlDxNEAF0vN3Pzp83ym1GQjDe6WH/4y1ayBwg6gUMWuGRKVpe6WHvLXkx36eJIWUzdGSM1le033EUg12PqNdEQMgfZv/jWqPaKDt/3kjH2/1ymzEvau7cd0phNFsxBJCSZyF3rRaVAxA+aCQcDrN379453T8nQbR9+3b0ej12tJKYANt+0kDXe4Nym6GRYIgGQQv3mMRRbGPDV2swOpKnXOpC0rt7mAHzqaffk3mJNDGkfMa7vPTuHpbbjITA5DCw4as1OIptcpuSGAiTa4pGUnGid+hEThRFsYghgK73Btn2k4aY7VIiJp8di8XCjh075nT/nATRjh07qKurQyecvnyghnoQRFjz+Uqtmd4klZcXsOTjJXKbkRBMdHnY93gLgfGg3KYkBP7/W4E1MHMs0HRRpIkhdWBM0ZNWrc2fAP7xIPseb2GiS/OKACy9sYTKy7XCKxBp2rvm85UJf+B4OjEUJZ55RWpGFERyc3P5/e9/P7f753LT9u3b6ds9MqcHKo28M9JZ+okSuc1ICASdQP/+Ua3iySRdWwZof2tusaxKI+AOMdQwpjWdBJofXcm5nSFyPKcfi8M/zNfEkIpwltqpu65YyxUh0rx4qGGMgDsktykJQds/+ujaokWiQKSyb//+UUWFU9bcuS9m71CUpZ8o0fKIJrFgo6OjY073xhzUHwgE2LNnD8XUzOmBSsPT72NYQV/K+RAOSLS8rDXqjZKspUEXAnu+BWumid6dw3KbIiuNv1kFksTvyvQEZ3EcVf7xubn+NZKTgf0jvHtkDCmkHRwAZK90MdHr03JngJFmrSBNlIkeLxM9id/mJOz1ztpL1PBQLTC3OX+4eRxPvy/m+5RIuMlAp9iJ2+3Gao2t8EbMHqIDBw7g8/m0/kOTDB0Zp/0fyZ3cFy8Mdj2WDK1BWJSsFS7MqUa5zUgIXGV2Cjequ5noVEU5QcCnFwiJMx+kaGJIfYSDEkHNIzJFwcYsXGV2uc1ICMypRrJWuOQ2I2GwZJiSolBP2Ht64RYVQ8BJK4+ejvZ/9DN0ZDzm+5RICi7C4TDvvPNOzPfGLIgOHow0ltIKKkSw51vQaZ3FAche4WL5bVojPYiED1ZekU9KgVZ9EKD9zT623X9YbjNkY/oiZw5KfKA7iMN/ai+AJobUiSXdSOUV+RhsWn4uwLb7D9P+Dy3sGCCl0ErlFflaOOUkK24rSxqBOJMomi6GosQqinQmUWv9MonLHqm49+yzz8Z8b8w7+cbGRlwuFwZBO/kWDQIrby/XighM0r1jiL2PHpXbjIRACkm89R/76N83KrcpGjJz4uKmkyDFD+Ip9JAmhtSLoBMwpxkR9dohm8bx9O8d4a3/2KeFU06y59FmenYMyW3GrDmZKDqZGIoSiyhKq3aw8vZyReVUzZXwBKSnpyOKsc+hcxJE5eXlMT9IiYSDEtsfaNBclZME3SEmuhI/rnfRkNCKCExSfF42xeeqL2TuZIvahEHgb0V6hk3vX7w0MaRu3L0+9jzSrBWmmaT43GyKz8uW24yEQApLWpPaaUx0eZMuvHQ24XPTma0oGmoYY/sDDYQ1sQxAbW0t3d3dMd8XsyA6cuQI7du0xHkApMgCFvQk15dyochdl6Z5yyaxZpmova4IYxLEOC8GgYmg6qpFxRr2oIkhDY3jCbiDBCa0Uv0ARrue2uuKsGZpeboQKb2duy75GpJGRdFM3qHpzGYdCXpCuHt9mmCepPNgL5s3b475vjl5iCxoSY4AzmIbRZvUd+p9Klzldux5WhwrgCAICEBY8xAB0PnuAJ3vDshtxqIxesMZp/y3dG+Y648EcPqOvRuaGNKASKL4Gf9ciz13dpWplI7a5o2ZCIclBCJri0Ykf9tVnpx70YXwFBVtysKpNTEGICsvg66urpjvEyRJmvWOze/3YzabqZFWky9oyfPZq1LJWZPKrgeb5DZFQyOh0ZlFpKBEOKh8gThdDPVd8v5SqJagROlYmEaHiE8nqF4M1V5XBMCB37XKbIn86C06sla46Ns7ojUxBkS9gKAXCHnDcpuioRF35lJR7lTrxYrby+jeNpRUeVULRbfUyl62MDo6SkrK7KOWYvIQ9ff3I0kSRjSXLUDPjiFNDGmcFEEUEr6L9mKy/NYySs5Xfi7AiZ6hzOfeP1d69AL7U3WaGNJ4H0FPiM53BzQxNEnJ+Tksv6VMbjMSB2FybdFQBHOZ/08lonY92KSJoUmiGqW3N7am5jEJor6+vuMepqERRWcSWfuFKpylmssWIP/MdDZ8VWteHKXpb110b1f2ZH2qMLkTRZEpJJHjDlNx085FsEojmRD1As5SG3qLVnYbIoeOTX+PPfRFqWz4ag359elym5EQOEttrP1CVdK3PYmnKNKI4Mh0APDGG2/EdN+cBJFBE0QAVF1ZQNmHc+U2IzGQoG/fCP4x7WQTYPDwGI1/7ZTbjIRhpHkikvSpUGbKGYLjRVG6V+JD7SEMNq3ghsbxGKx6lt1Uij1Xy8UEmOjxMtI8IbcZCUPjXzsZbBiT24yEwD8WpG/fiCIKCcRDFJVdnEvVlQXxMimpEcYjB0reGHO1NA/RPBhuHme01S23GQlByB+m5eUePP3K3fTGgrvXR/9+rQdRlKzlLsVWRzqdGDoR22d38959h/CPaaWVNY7HNxbgvfsOMdqqiQCIVOvMWu6S24yEoX//qKIPlmLB0++j5eUeQn5l5JfNVxSNtrgZbtJawAAInshho9EYW7/UmAWRyWRCh3ayCdC7c5j+fSNym5EQiAYBa5ZJ66I9iT3XnLQVcBaC0otySFXgeMQihjKfM1H+8R2EgxK+4YAiTjY14owEvuGAKoqPzIbUihRKP5QjtxkJg6vcrlUgnETQRfYcokE5e475iKL+fSP07hqOs0XJiSiIOJ1OmpubY7svlotHR0dxOp1a2cdJbNlmLexlEnuOhdV3VmJOjU2RK5Xs1amUnKv8IgKzZfP3D9LxjvLK5zoef3fW14YMAkM312PLMVN2ca7WVVzjfYh6gbKLc7HlaJtegI63+9n8g4Nym5EwlJyXTfaqVLnNSAjMqUZW31mJLUdZ4aWxiqK0F8wM3VyPwabHlq3NG1FEUWTHjtjGMiZB5PP5MJu1AY+y5MZisldrkxNEYr13PtiIb9gvtykJQdPz3ez+pVaBUA3MRhSFpp1ieq9YhqPACtrBksaJCAKOAisGq1ZUQeP97H6kmaa/dcttRkLgG/az88FG3D2x5YkkA7MVRWkvHNuPOz+5nCUfL14ok5IOl8tFfn5+TPfELIhMJmXmAcyFvb8+qpU5nCTkDzPe4dFCPSaRwhLhgDYWUequLya1Qnkhc1FmEkWhE0I6+r16XvVlEQ4oI/ZdI36EA2F2/ryR4SYthwggtcJO3fXaJi9KOBBG0pp9AxAOSox3eBSTQ3QipxNF08UQQOu4gbdHnQtpUlLhcDgWNofI6/Vqgmga7j6f1i9iEku6kcKzM7UwoEny69Mp+GCm3GYkDJGFXG4rFpaTiaITxdB0hm6uX0hzNDSSHimMdnAwjYIPZmpltycR9QKFZ2diSVdumP6pRNGJYgjAFxIZC+i0dWUSj8cTcw5RTAkwXq8Xo9GIzpjcdd/jReHZWQweGmWiW3ku21ixZprIWZ1G744hglpXcXQmHTqDqH1XJml4pgNA8eOR+octjF697thfnEQPZVmCLEv38VqHldFbziD18S2LZ2ACEm00qfR3YzaIRpFVn66g6flOho5oFaPG2t2Mtbu1d2MSg1VHyC9o4wHozSI5q9Nw93gV3e6j6tZdND20fOrPqS+bQXi/l9BhDJFjDXJ42KStK0AgEKC/vz+mewRJkmbtf7300kvZtWsXt99+e8zGaWhoaGhoaGhoaGhoLCS/+tWvyM3N5a233pr1PTF5iFJTU3G5XBx8sjVm4zQ0NNRL9ccK6d42qJomi91fKMW+yzDr6+2vH15AaxKb/A9kANDxVmyneRrKx1lqI2dNGof+0Ca3KRoasuL+YCXhGNuaqHldSU9PJzs7tkq/MQkip9OJKIr079EaTmocj7PURtmFOez+ZTMhnxYyV/WRAowpevY+elRuUxIC4Y/tjHV48A4qvwrhVLO8D4ZOGuttECXshjDDPhEJgdRfvYOag24zJxtvao2MAQFS8i14BvwEPSG5rZGd8W4vo61u7d2YZOknSvCPBTn8p3a5TZEdnUlk+S2lNL3QrfiDttEbzoDJCNqZ8lKno/Z1pb+4H4sltpLsMQWimkwmfD6tS3KUFZ8qJ2uFS24zEoKgO8RIy4RWAWeSnl1DdG5WXt+dudK3Z0RdYmgGMsxBPpjrRi9GFi0NjSh6k44VnyzHWWyT25SEwDvop2+P1vw8SufmAXp2aZVtIVLJdaRlgqBb2QcHJzb/1p2iem2BPcDG3Igw1NYVkCQJuz22yrYxeYjMZrMmiKYx3DiGV+u7A0T6EGn9EY6h9BOrWMlY4mS8S9keopOJocELve/zEvV59LzaYcX+y9k3ddVQB0FfiO0/a8A3EpDblITAkm7ElmOhf58migAGD4/JbULCEA5Iit9znCiGougC0vs8RZ6AQJ9Hr4mhSWw2G9XV1THdo3mI5kHLK72MtrjlNiMhEHQC5lQjQowxrkrFmmXSTnmnUfWRfFLLlduHaCbP0OCFxwcuBCUBw4NbQHOmapyIFGnnoNTeKrHiKrNTeUVszRWVjLPYhjVLa30Cyt9znEoMRTnRUzTg09Nz3/aFNCmpmJiI/VA6JkFks9kYH9dKgUYxOQ0YU2JysikWW5aJtV+owpqhTdYAOWvTKL0oR24zEoZ3v3+Arq2DcpuxIMwmTG66KMr/63ZKLshGnGUsuIZ6EA0iJRdkY83U5lGArq2DbP7BAbnNSBjKLsohZ02a3GYkBNbMyT2HAgXi6cRQlOmiKPvp9zA5Z1/IR+kMDAzQ0tIS0z0xCaKMjAzGxsYIS8qO2ZwtNR8rpGhTltxmJASeAT97ftWMd0i5IVGx0PJyD3t+GVtTMCUTDkiK9IjMRgxFGbzQS+qv3sFg15NW5UDUab1ENI5H1AukVTkw2LWDNgCkyblDA4Ddv2ym5ZUeuc1ICLyDk3uOAWXtOWYrhqLoAhKpv3qHonOyqf5Y4QJZlVxIkoTH42H16tUx3RfTrJuZmQmAHx9mrDE9SIkcebaToE8ThwAhf5iRo1reTBSt0t7xlF+Sy0iLm/69yskFiEUMwbGu4yPNE2z/acNCmKSR5AQ9Ie3dmEbGUifOYiuNz3XJbUpCoK0rx1DqnsPx+LsxiaK+S3z0XbIK01170Zt0C2hZ8hAkQCgUora2Nqb7YjqinC6INCKFBHzDWvIrROJ58+vTtVCPSVzldsovyZPbjIRB1IuIonJCxGIVQxoaGrEjigKiXvOkRim/NA+XgnMxY8GaaSK/Pl2ROUSOx2dXcKfvkmN7cd9wgIkeNRfaPobgihwciGJsc8ecBFFAE0QAOEts5K7X4nkhUgKz8KwsrFnv77uiRvQmEXOqUW4zEoaGP3fQu3tYbjPiwlzEUNQ7BJBSYGHN56swOrR4b43jMToMrPl8FSkFsfXPUCq9u4dp+HOH3GYkDGaXEb1JE4gA1iwzhWdlKbbVx+lE0XQxBGD4yXKcJVohJwAxNSKI9PrYQo81D9E8SCmwkrnMJbcZiYEE737vgFYedZL+/aPse+yo3GZoxJn5iiEA/3iQ/n0jhANa+IvG8YQDYfr3jeAfD8ptikYCsu+xo1qT2kn6943w7vcOKDI3NcqpRNGJYgigbEzC/9XyhTYpKehvjvTqqq+vj+k+QZKkmF6n9PR0UgdzKRVii83T0NBQL8tvK8Pd5+XIXzrlNmXOxEMMabyf2uuKADjwu1aZLdFINCouz8eaYWL3w01ym6KhIRvTc4pOJoZORO3rTot0mA7rEcbHxxGE2YdUxux7LS8vx43yEtk05k/5JXkUnaNV3QNIKbRSf2+dFjY3SftbffTuGpbbjDkTTzEk6ARs2Wat7LbG+xANkXdDiXkRc6F35xDtb/XJbUZCYE4zUn9vnRZOOUnROVmqytONFE+YXXSW2nNcLdUiTqczJjEEcxBEFRUVeNB6EUFkglp1Z4Ui6+DPBe+gTysyMYl3yE/Lyz0EvVoVQoDBQ2OMtiZnE2PRHHte3EwndJY0I6s+U4FNy7fTOAFbtplVn6nAkqYdpACMtroZPDQmtxkJQdATouXlHrzaGgtEigh4BtSRvnG6fKJUn8TlRwOk+I8FfDU+vnKBrUpcBgcHycuLXSzPyUNkzdMma4hMUCNHJ7Su4pN0vDNAz44huc1ICALjQTo3DxD0aIIIIhs9Z2nyJXxGxVDlJ2ffHPJ04QreIT87f9HIRK86FnON2TPR42PnLxq1fm6TOEtt2LK1gwOI7Dc6Nw8Q0PLLAOjZMUTnuwNym7FozLSuBATotor4o1W3hYgwUqsoMjkMbNq0Keb75iSIOjs7CWnNWQl6QjQ936V5RSYR9QJm7WRzCleZTescPUn26lRKL8yR24x5MRtRNJvY7XBQYrzToxVV0Hgf4UA48m4EFZwpHgNlF+aQvTpVbjMSApPTgKss+Q6VFgpzmhFRr67Q0lOtL+NGgS1ZOnw6YUoMqZWwEKalpYXi4uKY741ZEFVVVQHgRnNjAxjsek0ETJK5zMWaz1UiKKjfzHyou76YtKoUuc1ICFpe7mH3w81ymxETJwuVm0kUzTaRVTSIFJ2dhSVdmzc0jseSbqTo7CxEg1ZaGWDXw820vNwjtxkJQVp1CrXXxb7JUyKCKLDmc5VkLnXKbcqic7J1xuGXsASlk4ohtXmJjEUQDM7NixrzrLts2TIEQWCM4Tk9UGmUfziXChUl9s3EYMMYe37ZTIyFCxXLtvsbtBDCSUL+cFJ5RGbKGzqZKIqlqo+oF8helap5DzXeh8lpJHtVKqJWVAGIeMy0kPQIPduH2P6TBrnNSAgkSWLPL5sZPKLOfPYT15szekKs7z111JaaRFFXR6SS7WWXXRbzvTGX3Qaorq7GczhMtbAy5gcqDUu6kXBI0sLmNDRmwFliI3tVKof/2C63KadltkUUGh6KtB5Qe4nT+aKV3dY4FVVXFtCzfYiRFq2yrYbGdKYqyQkSdr+ECIwaZz5IKb9h54LbJTcN0m7ChR5aW2NfT+bkl1+9ejVjaCffAJ4BvyaGppFfn449TysLCpC9KpWCD2bIbUZCIOoFjHY9JPjBdywV5So/eUATQxoaC4QggtGu18rTT1LwwUyyV7rkNiMhsOdZyK9Pl9sMWSn/+I6pELlxo3BaMQTq8BSFs30UFhbO6d45CaJVq1YRtPu00ChAb9ZRckG2lg8wSe46TRBFMdr1mJzaewEwdGScvY8eTfiu4mGvd9bXHnxgCYcfWTOn56y8o5yMJY453auhXDKWOFh5h9ZtHkAKw95HjzKk0rCoEzE5DRhStDBbiAiinLXqFkQQ8fg4fBJrekMYQ6dfXKu+nLyN0WeDJEkMjveTmZk5p/vnLIjGx8dxa/2ICAfDpNc4tY3vJFt/fJjurYNym5EQtL3ZR+Nzyp6AlEgsogiYkygaOTqBf0wrn6txPP6xICNHtfAwjffT+Fwn7W9qTWoBurcOsu3+w3KbkRBU/kcjxeMSodM4iKJiSJedtQhWyYMPDxMTE9x6661zun9OOUQjIyOkpaVRHV5FvlA6pwdraGioB5PTwJrPVbLvNy1Js+GbKXzu4ANL3vd3VbduW0hzFIuWQ6RxMpwlNpZ8vJhtP2nAN6KFpWtonIqZQuFO5RUK9fQukDXy0U0re6UtdHd3k52dHfP9c/IQOZ1OVq5cyTD9c7ldQ8Gk1zpY/dkKuc1ICBxFVurvrcPk0sIcAhNBml/oxjuYPA0nT+UpOpkYgtg8RUaHAYNNd/oLNVSFwabD6NDmCwDvoJ/mF7oJTGieVJPLQP29dTgKrXKbkhCs/mwF6bVayHGUUxVLmClETomeIl2tn8zMzDmJIZijIALYtGkThiJJyyMCsla6WP+1GrnNSAh8w34GDo0haGVj8Qz6aXm5h5BPKxsbDkp0vTeIbzS5TnpPFEWnEkNRZiuKltxQTOFG5S1IGvOj8Kwsltyg9ZoB8I0G6HpvUGtSC4R8YVpe7sGTRAdKC4WgExg4NIZvWBsLgA1fqyFrpet9okjp+UInY2h8kDVr5pbXC/MQRGeffTatra14cc/54UphvNND2xu9mggAxru8tLzcgzSLBD+lExgP0rl5gKDn1P0B1ISj2Io1yyS3GTETFUWnE0NRZiOKGv7cTufmgXnZpaE8Ot8doOHPiV+afjGwZplwFGseEYCgJ0Tn5gHNWwZIIYmWl3sY74ot11OJCDqB1jd6Ge/0AMc8RbMVQ0ryEvkkL62trdx8881z/ow5C6KNGzciCAJDaEl+7l4fXVsGNREwiTnViDlNKzIBkFJg0aruTVJ+US45a9PkNmNONDwcXw/weJcX75B2wqlxPN4hv7bRmyR3bRplF+XKbUZCYM+zkFKgrSMA5jQj5lRtfwERcdi1ZRB3r2/q79ToGQIIF0ecMxs3bpzzZ8xZEKWmprJy5UoGUV5i1lywZplIrbDLbUZCUHVlAUVnK+fkYT4Un5NN/plaLyKIlNA9+kK33GbETDRhVWeKn6cvrTqFjCXOuH2ehjLIWOIkrTpFbjMSguYXutn36FG5zUgI8s/MoPicueVFKI2iTVlUfSRfbjMSgtQK+3FRF4cfWM+BfyuZ9f1KKqwwau4nIyOD/Py5vxv6+Rhw6aWX8pOjPyE8FEYU5qytFEH2qlRcZXaGjhyR2xTZafhzOwEtTAyAg0+1EfJqOUQAAXfyvRMnVu/RmUKEfDMXQ5hNtbm0qhT0Zh39+0bmY56GwsiocxD0hhg8NCa3KbITDkqEg8k3ZywEh59uR2dW9x4rStPfujBYtII0ACUX5DDcNM7fP1J03N8f+LcSav/t6Iz3KkkMSZJE30gv11133bw+Z05lt6Ns3bqVdevWsYazSRXm1ghJKehMIuFAGEnb+2ponJS06hRSy+00/rVLblNmxUylTE8lirTS27Gjld3WOBnll+Qy1DDO4GFNHGponAxBhKb71xEQ35+/PpMgUpIYAhiRBnmPV3j99dc566yz5vw58zpyWL16NXl5efShzpjF6YR8mhiKojfrKL8kNykT6OONNctEzTWF6LUTLXQGEaNCOq2fLHxOE0MaGvHDaDegM2peEb1FR801hdp6SmQ9Lb8kF71ZW08BDv10/UnFEHDS0LlQT6/ixBCAuNyD1WrlzDPPnN/nzOtmUeTSSy/FUB7Wym8DxedlU/qhHLnNkJ1QIIyj0IbBNq+ITEUQDkrojDp0Jm1h79s7woEnksMLMJN3KMp0URSrGMpenUqdVl5Z4wTqbigme3Wq3GYkBAeeaKVvrxZSqjfr0Bl1WvlxwGDT4yi0EfJrp8+p31vJmrGZC/NMF0VKFEJR+sZ7WLNmDXr9/Pac896lXX755TQ2NjKB5tb2jQTwDSdXn5WFQApJ7PjfI4w0T8htiux4B/3se+yo9l5MJ8Gr089GDEXRmUJz8gz5xwK4e7VqYhrH4+7z4h/T5opEnyMWE+9QZA1JpqbWC8VI8wQ7/vcIUljd4vDwA+sZ0wlMzLLVi5LFkEeaoKmpiS984Qvz/qx5C6LzzjsPp9NJD23zNibZ6d46qPUWmYYW7nAMzUMEBpuOM79Rl9DVGJu+Xx/T9afqEH46hhrGOfpSz5zu1VAuR1/sYahhXG4zZCe1IoUzv1GHwaaFRmlrxzG0PcUx9tsMHLSePgT98P/kLYI18uEuGsBsNnPRRRfN+7Pm/XaZzWY+9rGP0U2rFjYHmJwGLdYXcJbaOOOfajE6lJEzMh8qr8in7notPCrgDtH8YjfuPt/pL1Y4gk7A5DRoJ+EaxxAi64fW4DviKWt+sTspK1PGm7obiqm8QiszbXIYOOOfanGW2uQ2RXZSA2FsIS1sUJIk2iaaqKurw26f/0FrXOT2Jz7xCTxMMILmHSm/OI/SC7VmchNdXo4820nIpy1o3dsGaX1duS7rWSNB15bBhA0fjHqHhPbZNUCcq3cIwFlsZd2XqjFpBwYak5gcBtZ9qRpHkVVuU2THNxyga8sgaGestL7WS/e2QbnNkJ2gL8SRZzuZ0BoXs2HMz5mjpw+h1Dkj18QSBp5MjDFM/0A///RP/xSXz5tX2e0o4XCY0tJSQq16aoXV8bAraTGnGgm4g4R8mnrX0DgRe64ZnVHHSEti5ZedLFROKvDMeM98BJHerMOWa2asza36ZGmt7HYEUS+QUmhlostL0KvugyRnsY2QP8S4tvnV0HgfOpNI+3+tZkx/cp9GVAhNZz7rVaJymF34skZpb2+fd0EFiJOHSBRFPv7xj9NDG2GV1572Dvk1MTSJJd1I3oZ0uc2QHwGyV7q0UEog74wMis7JktuMWTGTp2i+i0vQG2KkeUL1YkjjGOGgxEjzhOrFEEDROVnkbciQ2wzZsWaZyF7p0kJrgbwN6VjSjXKbkRCEfGFyP7/1pP92MjEEyvMShYUwg7Yu1q9fHxcxBHESRAA33ngjQQJaTyIgZ20a5ZcqO5FtNthyLRSelaklQkpQcn4OzmIt9rnx+U72/vqo3GYcx0yFFE4miuJx0iboBG2B1zgOS4aJvA3pWg4RsPfXR2l8XttLOEtsFJ+fo/rQQZ1RpPCsTGw5swtnVjIVl+aRszbtpP92KjEURUmiaEjsZXx8nBtvvDFunxm3nWpdXR0bN26kjSPx+sikJRwIE9bq5DOwf4TN/3VQ6xkAbPmfQ3S9p8WBh7zhhCqZOpuqctNFUdzCDiQoPjcLW445Pp+nkfTYsk0Un5sFWnEipLCkRVoQybl8738OyW2G7IT8YTb/10EGDmh9qUL+Y/vLqju3TP396cSQ0mgNNrB27VquueaauH1mXI/u77rrLobpZ1xS90vbu2uY5he65TZDdqQwqj/ZiiKFtIGASBWt2muKMKfJ7xmJpcS20G6Jawy2FJZ45zsH6N83GrfP1Ehu+veN8s53DqDyqHPMaUZqrymKVGHU0NaOKBKq/24ANL/QTe/u4ak/65z+mMSQErxEQm6QAXq47bbb4vq5cRVEV155JTk5ObTTGM+PTUpEg6CVhwSyVrhY87lKuc2QHVuOmVV3Vqi+DHk4EEY0CIh6+cOCyu5+Z9bXVj7Uh666YgGt0dDQgEhxCdEgEA6oe/drchhYdWcFtmzNi7zm85VkrXDJbYbsOEttiIbj185YDuoElJGO1mVoxmKxxNU7BHEWREajkTvuuIMuWglKiVlad7HIXOZi6Y0l6C3qbiw30eOlZ+eQ6uPi/WNBRlsnENQ9DATcIfb9pgV3b2L0IopFFAFxFUWVl+eTf6aWOK4RIf/MDCov1/rNuHt97PtNi9aDSIDR1gn84+reSwk6gZ4dQ0z0qLvioN6iY+mNJWQuc73v32YjiqZvPZqS2EsUkoIcbNnPnXfeSXp6fIt2xaXs9nQ6OjooLi6mPLSMIkG9J6o6o4jeqkvYnisaGnKiM4oJlVs2U/hc5UN97/u70KH550oWnp2JbyhwXPiDGtHKbkfIWu7C5DLQ9sb73zc1kWhzg4ZGomByGQi6Qyf9fswUCneyc9iyJC3DPZjewY6Bd2lsbKS0tDSunx338l/5+flcffXVtHJY1SW4Q/6wJoYmMaboyVzuktsM2dGZRFIKtCo51R8rpPbaIrnNOI5TeYpOJoYgPp6ittf7VC+GNI7Ru3tY9WIIoPbaIqo/Wii3GbKTUmBBZ1J5hVYgc7kLY0p8yionO77hwCkPC07mJZopRC4ZvUSSJNEiHWbZsmVxF0OwAIII4J577sGLm27aFuLjkwaT08DKO8pVX0nKUWyj4tI89GZ1hw9mr0xl2c2lqg8f7No8QNubibfxO1EUnUoMRZmvKBL1grbQa0xhTNEnRG6d3LS92UfXlgG5zZAVQSew7OZS1efN6C06Ki7Nw1Gk7nxsW46ZlXeUx1RoRIkzSS8dDAwM8K1vfWtBPj/uIXNRLrvsMl559nXquRBBpYkTgggVl+XT8U5/wuRMyIGgExBELUlWb9WhN+nwDqmrPGay0fT9+tOKoenMNXyu6Jwsslemqr6srhYyF2Hdl6vp2TFE62u9cpuikQCYU40EfSGCKs+l0hlFwiFJ1dX2rFkm8uszOPKXjtNW2mt8fGVMYihZQuckSWILL7P+vDW89NJLC/KMBfPH3nvvvbgZU3WjVikMDX/uULUYgkjZULWLIYCgO6SJISKekexVqZhciVlxb7EKLfTuGubw0+1zuldDeRx+ul31IZQml4HsVamapwzwDvlVL4Ygkn6gZjEEkUIjDX8+vRgCZXqGAKhxM8Ywd91114I9YsEEUX19PZs2baKZgyyQEyppcBRacZXZ5TZDVhxFVtZ+sUr1YXOZS52UnJ8ttxmyU35JHin5iZlP1fT4Shr+dfbf17l6iLyDfkZaJuZ0r4byGGmZwDuo7gOTlHwr5Zfkym2G7JScn03mUqfcZsiK3qxj7RercBRZ5TZFVlzldhyFsx+D2Xp8ym7YmTTeIYDd7TsoKSnh8ssvX7BnLGjG3je+8Q3GGKKfroV8TMKTd0Y6uevS5DZDVjwDfgYPjao+f0Zn1mG0qztvJByUeOc7+xOyKen0RNPZiKL5VJsz2PTknZGu+tL8GpFcibwz0jHY1D039O8b4Z3vHCAcVPchqtGuR6fyw0NBJzB4aBTPgLoPCXLXppG3Ib7lpZNJCAEMSr30jXdz3333odMt3PdiwXKIIBLzd+655/Lea9s5gwtUm0ukM4mEfFrImIZGInOqqjuV3x4/6d/Pt/S2LdvM8tvK2P1IExPd6u2xoeUQRZKml99axq6HGlUfYq2hoXE8c9lDnmo9SzYxJEkSezPeIrcgh+3bty+ojlhQD5EgCHz3u99lglG6UO9iF32R1X4SLOgEMpc5Ve8hQUD1Y5C51MmSG0vkNmOKmUqQxhI+FwsTPV7e+c5+VYshjQgT3ZF3Qe1iaMmNJWSoPFTMaNcrOBFkdhjtejKXOVUfURLdM8bjQD3ZQuSijKb20tPfze23377gTpUFL3K/YcMGrrrqKprYR1hSb4Kgs9jG+q9WY8kwyW2KbIh6gYrL8nGWqruEZtWVBVR/TN19NgLuEJ6B5Nn8nSiK4tGYVUND43g8Az7VFxKovrqQqo8UyG2GrDjL7FRclo+oYkFkyTCx/qvVOIvntl+aLn6SUQgBhKUw+4Z28KEPfWhBiylEWdCQuSgHDx5kyZIlVISXUSRULvTjEhJBF6ms1btriHBAvfHReouOoEfdC5491wyCwHinR25TNIitQV3lt8fjKoZqry1i8NAoPTuH4/aZyYYWMgfZK12kVTs48IR6x0Ajgj3PgiRJTHSp23Os9r2CaBDIWpFKz46hOVfZa3p8ZdKKIYDR4m7ea3mLHTt2sGLFigV/3qK0Qa6pqeG2226jmQMEJHUmyEkhie6tg6oWQ8DUBCeI6j35Ge/yamIIMFh1MTWaWwiafxvbJBtvz5B3yE9AxYu+RoSARyvJb3IaMFjVHVYOMN7pUbUYiu4N1CyGAMKByJ5RrWIoKAXZ37+TtWvXLooYgkUSRADf/va3MdmNNLF/sR6ZkOSfmUHBBzPkNkNW6m4opuQCdZeeTq9zkLMmVW4zZKX2+mKKz5HvPYiKIUGY3YKzEItL8wvdDB4ai/vnaiQXg4fGaH6hW24zZKX43GxqryuW2wxZyVmTSnqdQ24zZKX0wmzqblD3e1DwwQzyz5z7PjEa9RBL9EOi0cwBgsEgP/vZzxbtmYsmiPLy8viXf/kX2jjCmDS8WI9NOHQGEVG/aMOekPTtHWGoQd2bQEeBFUeRunOpGp/rpOXVHrnNAGYviuKNqBcwpqi7wIYGGFP0qm9G2vJKD41/VW8jdwBHkQ1Hgbr77gweHqNv74jcZsiKqBcRDbHPB02Pr0xqERQl6PTSSgP33HMPa9euXbTnLkoOURS/38+KFSvoPtjPGs5WbRluDQ0NeTlVqJwknXxOWqjQg+Lzsslc4mTrjw8vyOcnA1oOEaz9QhV9+0ZoeTkxDgg0NDSSCyWV2W4s2s7o+AhtbW1YrYt3QLCorgqj0ciPf/xjhumnm7bFfHRCIYiQvSpV1fHStmwzhRsz5TZDdnQm9XoLdSaR4vOyF7XyYvNvV8yYN3QyT9FCLii9O4c4/Kf2Bft8jeTg8J/a6d05JLcZsmHJMFF8Xra650Ozen/2KIUbM7Flm+U2QzYMVh3Zq1IRYnwVZvIKJZvHqI9OjrY2c++99y6qGIJFFkQAF1xwAR/96EdpYDdBKbDYj08IdCYdpRfmkFqRIrcpsmHJNJG1woXOqN5FoOyiXJbeVCq3GbIRDkpkLnFidslbWOFEpouihT5d8wz4GW11L+gzNBKf0VY3ngH1FlUwuwxkLnESDqq36NCyT5RSdlGO3GbIhs4okrXCperWJKkVKZRemIPOOLvDcqWEyEURTGEOs4uLL76Yr3zlK4v//MUMmYvS2tpKbW0tae5caoRVi/34hEDtJSURAPWufQDY8y0YLDqGjozLbYoqiLWinCQJCy6I9BYdWStc9O8dwT8eXNBnJSpqD5kz2vVkLHXSu2tY3WuCykmttBNwhxjvUHkFUpXvDWa7N4xFCCVL2NzwshZ27t/Bvn37qKqqWvTny3I8X1RUxHe/+13aaWRI6pPDBNmJvvDWTJWehkxOeEa7XrVeovEOjyaGYFG6sscqhmBxFhGdUaT4nGzMacYFf5ZGYmJOM1J8TjY6gzrnQWBR5oBEZ6hhXLViSGcUMdgni8uoVAxF94LxPhQRBGlO699iMyINsG33Vm688UZZxBDIJIgA7rrrLj7wgQ+wn62EJHWejGYudbLqMxWy92KRC51RZM3nK8lerd7y0ykFlnmV10x2XOV26u+pQ29euHy6uSwGpdfvWgBL3o9vJMA739mvhc2pmNFWN+98Zz++UXWGkOstOurvqcNVbpfbFNnIPzODlAKL3GbIRvbqVNZ+vlK1h6Mmp4FVn6kgc6kzrp8rV/XUWAkLIfazlTVr1/CLX/xCNjtke/tEUeThhx9GModoZJ9cZshK/4FR9j3egm9EnQthyB/m4JNt9GxXbzKxLdtM1jJnzEmUSsHd66XllR4ktR4LamioHEmSaHmlB3evOpuRCiJkLXepuphAz44hDj7ZRsgfltsUWfCNBNj3eAv9B0bj8nmCICWNGAIYX9qFV+fmwQcfRK+Xrw2FLDlE0/nBD37A3XffzTrOwSmky2mKrIh6QdUJpapF5fHSC00ie4eiVFyah280QNsb6gwfVnsOUeFZmZgcBo48q+4ePKpHWwtUyXz2fifLI5pJCC322jYbRqUh3uMVrr7map544glZbZH9XPorX/kK69evZ5+KQ+cKN2ay7NYyuc2QjczlLmquLpTbDHmYnLv0FvWWYLekG0mvjX939mQQQwCeQb9qw6U0wD8awDOo3gpz6bUOLOnqzaGbmvtVKoZqrikkc7lLbjNkY9mtZXFrQZJMXiGAkBQJlVu+YjmPPfaY3ObIL4h0Oh2/+tWvkCxBDpN46nUxGG4ap3vroGoTS4PuIP7xIIKozgFwldvZ8LUajA515pKl1zgovyRPbjNko+Ptfnp3DstthoZM9OwcpuPtfrnNkI3yS/JIq4n/gUgyYHIY2PC1GtXmTwmigH8sSNCtzsNwBOjeOshw0/yKKyVbiFyUkSWteHTjPPLIIxgM8u9/ZA+Zi/KLX/yCO+64g+XUkyXky22OhsaioTOKZCxx0rd3hHBAfTHUokFECklI4fhNRcniHQIQdAJml0G1fWjUHjJnSTfiHQ4ghRJiKV50BFFA0Amqnfsylzrp3zei2vwZjfkRy1qXSCFz/VIXO3mLW265hUceeURuc4AE8BBFuf3227nqqqvYz1a8kjorLhWelUnZh3PlNkMeBMhc5lRlYmnIH6Znx5AqNwQA4UA4rmJo/JozyPxjbBWb5Fwo0qpSWPO5KlWHTaoVvUXHms9VkVap3ibdUlhS9dzXs2NIlWLIlm0mc5lTtZExZR/OjVuo3GxJlPLbPsHLfrZy8cUX8/DDD8ttzhQJI4gEQeAXv/gF2flZ7GULCeK4WlQCE0H8Yyp1HQOFZ2WRqtKNgc4kUnJ+tmpj6QvPyox72FysokguRo5OsPuXTarcFKmdkD/M7l82MdIyIbcpslB+ad6ibwoTBUu6kZLzs9GZEmYbtqikVqVQeFaW3GbIhn8sSECFoYKSJNFRtB+L08wjjzyCICSOIk6ob2JaWhqPPfYYI8IAzRyU25xFp3vbEO3/UGelKSTY9YtG1f784aBEeo0DS7o6G/X6x4L4RuYfMjZ+zRnH/Xk2okjuMIKgJ8Roi1u1IVNqRgpJjLa4496MMVnwDfvxj6mzoIgl3URatUO11WXb3+xj1y8aVVtMov0ffXRvU1/LkVYaaDraxLe+9S2yshJLECeUIALYtGkT3/zmN2liHwNSj9zmyELehnRVNiuNnpBHOzarCSkkse0nDQweHpPbFFno2TFE+z8WJrF8JlEktxiKkrM2DWeJTW4zNBYZZ4mNnLVpcpshG+3/6KdHpQVFBg+Psf2nDao8CImu8Wr0iuesSSVvgzpbzIwaBjjCHr72ta/x1a9+VW5z3kfCCSKAf/3Xf+XCCy9kL5tVmU9kTjNiTlVn6FRqhZ3Vn61UpSgCEA0CJpVWmzOm6OcVMniid2g6iR4+l73SRUqhVW4zNBYZR6GV7JUuuc2QBUu6EWOKfE0Y5cTkMCAaEidUaDGxZplY/dlKUivUWVnP5FLn/k5IDbHf+B7Lli/jO9/5jtzmnJSEqTJ3IgMDA6xZs4ahllHWsAmdoCUcqwIhIoqGGuZXhjJZWXpTCeFAmP2/VV/FraU3lRDyhTnwROw/+0xiaDp9V3qm/j9RvENqR+1V5tRK7bVF6Ewie399VG5TFp2664sR9QJ7Hz0qtymykFppZ+jIuGrD5eJNoleaC0thtguvI7jCvPbaayxfvnzRbZgNCXs8k56eztNPP82ZZ57JYd9Oalkjt0mLTsZSJ4Io0Ld7WG5TFg+JKTEkiCCpzKN+9KUeVSZaAjQ+10nAvbC5FFFPkf337y7oczQ0NGam4ZkODFZ1HnQ2Pt+JQYVVJaNruhoPPDOXu5DCEv17R+Q2ZdFptuxlIjjK68+9nrBiCBI0ZC7K6tWreeCBB+igmQ6pWW5zFh1XqQ1nsTrDaAo+mMHSm0rlNmPRGe/04BtWZ5KxZ8A/5+TyWAXOwKfq5/SchSJjiYNVny6X2wyNRWbVp8vJWKLOpqRBT0i1vbd8wwHGu7xym7HoLL25lIIPZshthiw4i624VJgnGlwyQrPnMN/61reor0+sdfdEEloQAdx66618+tOf5iA7GJLUVYHsyLOdHPlLp9xmyMJYm4f+/SOq7FHgLLFRd0OxKn/2ok1Zcy4oMhtR5HMK+JyRgU0kUeQbDjDUNI4gqvCXrlIEncBQ07gqD0CyV6dStCmxKkwtCgLU3VCszgIqAvTvG2GszXP6axXIkb90cuQ5+fdzi9mLaEQa5I29r3D22Wdz7733Ltpz50rCCyKAH//4x2w652x28w5uSUWu1sn4WmepTXWJtyMtE3RtGVRljHHQF0IKSujN6gup0Ft08/q5k9VTNNbh4eiLPXFtUKuR2EghiaMv9jDWob4Not6sU2UjYr1ZhxSUCPpUWGZdgq4tg6rruZW9KvWYAFbR9C5mhdgtvs0ZZ27gb3/7Gzpd4n/fk0IQGY1G/vCHP1BaVcJO3iIgqcvNnlaVQnqtU24zZKHo7CzVlaWd6PJy4PetquxN0vR8Fx1vz6/89qlEUdQzdCKJIorMaeqtuqVGjCl6zGnqqzYF0PF2P03Pd8ltxqIT9IQ48PtWJlQWLpezNo2is1XoEQTSax2kVamr4XxQCrAj9A+sTgtPP/00ZrNZbpNmRVIIIog0bX3uuecwpxnYzTuEVZRtf/TFHvb/tkVuM2RBZxbRq7STt7PEpsrynKJBxGCfnzA4URSdSgxFSQRRtOymUnLXqbM/hRrJXZ/O0ptK5DZj0THY9aosOW1ONaozVA7Qm0R0ZnWu4/sfb+HoS+rpqRmWwuxhM16fl0cffZTs7Gy5TZo1SfWGVlRU8Mc//pFxwzCln0xFkiREg4CgOza56oziVO6FIAqRP08iGgRE/Syv1b//WkGMXkucr40acfy1gk5ANAhTYTT2fAv5H8iY8dpjP6t4bFyEE35WnYBoOH5c5nTtvMZwdtc2/72bjnf6Zz2G8Rjv2Y9hHMb7xDHUCVM/e9VVBWSvdsVpvBfnnRX1x4/LXMZ7+a2llJyXfZoxPP14R0WRTpAQp2IVJPSChDD5Z2HyzxARRcN3nCHbHLH/dy10vtsf/3c2lmtlmCOEaXvjucwR08dw5msTa47o3jY4VWJ+LnPErK5NwDmi9Pxslt9aNqtr5/fOxmlOjtM+ImuFi+qrChD1sYxhLNcm7hzR8e4ALa/0nvzaGMbw/eOSuHNEfn06tmxzZIyity7UPkKS0IckhMkuOmI48uco+rCEGA3HlqQFnSNMH/YwrOvjqaee4pJLLiGZSCpBBHDWWWfx4IMP8tBDD3GUgyy/rYzSC3MAMLkM1N9Th7M4cgqTtyGNdV+unrp36Y0llF+cB4DBpqP+njrSKiOuzOxVLjbcXTt1be11xVReUQBEXtL6e+qmwtYyl7qov6du6gtR/dFCaq4unLq3/p46spa7AEirdlB/Tx26SS9HxWX5kYT5SdZ/rYactakAuMrs1N9TNxU2U/7hXJZNq7S27KYS8jakI+gEHIVW6u+pmwq5KDk/mxW3H6tStfqzFRRuzATAlmOm/p46bFkRt2XR2ZmsvrNi6tqVnyqn5LyIirekGam/p46Ugkh1u/z6DNZ+oeqYDbeUUXZRbmS8HZHxdpVGGqzlrktj/VePjfeSj5dQcWlkvPWWyHinTo531srIGEapuaaIqisj4y3oBOrvqSNjSWS8M5Y4qb+nDntuxP6qKwuovbZo6t4z/rmWrMkcq9TKFOrvqZuKTy+/JI8lN5ZMXbvuK9XkrouE4LlKbdTfU4fJGWmEWnZRDstvObZQr/1CJflnRgRoSr6F+nvqsKRHGsYWn5vNyjuOjeHqOyumQgJsWZHxtudE7C3cmMnqu45du+KT5ZScHxlv8+R4O4oi4513Rjprv1iFFIbdDzbhLLFTfnFkvI12fWQMyyPjnbMmlQ1fr5n63Lobiqm4PB8AnSnyzqZVRypYZS4/Ybw/Vkj1RyPvrCBG3tnMZZExTK+dfGcnJ77KK/Kpve7YO7vh7pqpwgepFZHxNtgm39mL81j6iWPv7LovV5O3ITLezuLJ8XZFxrv0whyW33ZsvNd8rpKCD2bQ9HwXA4dGqb+nbqpBb9GmrOOqsK36dDnF50TG25phiryzeZGS2gUfyGDN5yuBiKdofbmHJU5f5FqdxCW546QbI+GIZbYAF2Yfy0usT3dT8OVI0ulizxHeIT8Bd2hec8S6L1WRf0bEy5Qsc4QtO/LMec0RdZE5Iro4J8Mcse6L1VP7pLnMEVGW3lSaVHOEqJ+2mWRucwSAPc8SlzkCWJR9RPtb/RhTDKRVy7uPWMw5InOZk5y1aeSfmQD7iEWeIzKXuXAUWxdlH5ESgOsbwmROpiPWDklc1Xgsiur81jDreyKCyBJkweYI6exhnn/+ee68804uuOACko2Ebcx6Ov7jP/6Df/mXf2F1Zj2F+nImur2IBpG0SjsjLRMEJkJY0o1YM00MHBwDIsUJQr4w450eBJ1AenUKo61u/ONBzKlGbLlmBvaPAuAotiKFJMbaPQgipNc4GGv34BsNYHIaSMm30H9gFKTIpIIAo61uADLqHIxNlk82puhxFFoZODiGFJZIybcgGkRGjkYSC9NrHUz0ePEO+jHY9TiLrAweHiMclLDnmtGZdYw0R65Nq07BOxzA3eNFb9XhKrExdGSckD+MLceMwaZnuDGyuUutTME37Mfd50Nv1uEqszHUNE7IG8aaZcLkNEz1AkitsOMfCzLR40VnFEmtsDPcPEHQE8KSYcKSbmTwUGQMXWU2gp4Q411eRINAWmUKIy1uAhNBzGlGbFlmBg5GxtBZYiMUCDPeMW2829z4x4KYXAZS8iz0R8e7yIokwVibGwTIqHUw1uHBNxLAnGpg2S1ltL/dR9fmQVIKLAiicNx4j3d58Q75j433oTGkkIQ934Ju+njXOJjonRxvmx5nsZXBhjHCAQlbrhmDRcdw0+R4V6XgGfTj6feht+hwlU4b72wzxhR9pLkckUZzvpEA7l4fOrNIapmd4aYJgt4Q1kwTJpeRoYbJMSy3E5gIMtF9bLxHjk4QcEfeWUuGaWq8naU2pJDEaKsbUS+QVpXCSKubwPjkeGebGTgwOd7FNsLBMGMdHgRRIL0mhdF2D/7RwEnHGwlG26a9s5PjbXIYSCmwMHBwFClMZLx1AqMt7mPvbPfkeNv1OKa/s3kWdCZx6p1Nr0nB3efDM+DHYNXhLLEx2DBOODD5zlr1DDeNT423d2jynY2Od+M4Id/kO+swHBvv6e+sSSS1/Ng7a800YU41Mng4MobeB5ej325mJKBDJ0hkm4IM+HX4wiJ2XZgUQ4gub2QxyzAGsf1xryxzhHc4QOYyJ/17R+Y1R3gGJt/ZJJkjijZlEfSGOPhk25zniBPHOxnmiOorC2h/q5/RVve854jouqbNEXObI1xldgLu4ILtIyZ6vEghKWH2EYs1R5hTjWStcHHwD22R8ZZxH7HYc8RIixspJC3KPqLtseXkT0j0WAW8egGHT8Lph7aUiPjLmZAIiDDQY0MnSax+bH/c54hOqYX9vMcdd9zB//3f/5GMJK0gkiSJL3zhC/zsZz9jSXg92UKB3CYtGiaHgYKzMml6vgsplJS/vpgRDQLhgDp+1ulkr06l6Owstv74sGp+1xA5JQwHwvTsHJ7X50wvMep4ZXY9vdJ/8c68njlXUivslF6Yw66Hmgj51JMjWXtd5JT2wO9aZbZk8dCZRVbcVkbzC91TmyE1kL3ShWgQ6XpvUG5TFg1BJ7D2C1W0vt5Lz/Yhuc1ZdESDSDigjvlM0AmUfTiX9jf68I0uXjn905bSPnr82ld6T3zXOKluglcP/J1bbrmFBx98EGF6HHQSkbQljQRB4L777mNgYICnnnoKg99ImqCOKiZ6mw5nsQ2Tw4B3SB0V96JiKL3GwcjRyImJGhg5OkGbqK7+WwDWbDOhOP+OR891n1YUySWGAIaOjDN05Ihsz9dYPELeMNt/pr7ftSXDhM6U+OV3403bm31T3gU1oLdE9igDB0dVI4YgcljtLLbRbRtcVEE0IwsshoakPvY0vMOSJUv46U9/mrRiCJLYQxTF7/dz+eWX89Zbb1E3vgGHkCq3SYuDgKpq2kOkh8PaL1bR8kqPqk4YNebGTKdmJxNGcoohNaNGD5GGhpLJXZdG8bnZbL3vsGoOL6eQYW920rXu6MkP/+IpiLy2cfbo3mH16tU8++yzWK2zi8JIVJKuqMKJGI1GnnrqKZYsWUJTxi7GpVG5TVocpEjCW/VVBVNJpUon6A2x44Ej6hNDAhSfl626XgYIzLv89qkYPde9IJ87X5Z8vJiSC5KnTKnG3Ci5IOe4pHg1YLDrj1XbUglpVSkUn5etup+7671BdjxwRDViyJplovqqgkjRi0Q4qD6FGIon4XQfO/kHGRkZ/OlPf0p6MQQKEEQANpuN5557jtzcXJqzdzGhElEkhcGYYpiq3qMGom7oaEKkKpDAmm7C6DDIbcmiUvWRAmo+Vnj6C0/CaWOqOV4UJYp3qH//6FTys4ZyGWken0piVgs1VxdS9RH15PoCGB0GLOnGxNgkLwKCKJBSEKnklzAhY4uAwarHmGKYapEiG0etiyKG3NI4h0zbcTgc/PnPf8bhcCz4MxeDpA+Zm05vby/nnHMOQ0NDlHQtxyao7ERdJRhT9Kz9YhWNz3XRs0N9SapqwZ5nAQHGOzwx3zsbQRTF8Yo1YQSRGtFC5tSBPd8CEox3xv591kgOslenUn5xLlvvO4x/LCi3Oaqh+Tuzbyw+35A5MTfIzuDbuFwuXnvtNXJzc+f1eYmEIjxEUbKysnjllVdwuVy05O3BLamnek/Zh3Mp+7ByXsyZ8I8F2f1Is+rEkKATyFjqlNuMRWO807PgYggSxzsETJWrnd6sT0NZiIbI73h6g0M1MN7hUZUYyljqPK75qBro2T7E7oebVSOGyi6Wf98lLq85/UWTzFcMeaQJ3vO8TjAY5IUXXlCUGAKFCSKA7OxsXnnlFVJSUmgt2KsaUTTR42Wi2yu3GYtGdKNszTSpZtFxFFmpvrJgqpGlGnCW2ig6Rx3VIwHMqcZIs9Ici9ymaCwQthwzSz5eMtV8VA0UnZOFs9QmtxmLhi3bTPWVBVPNdJWOoBOmcpnVJHonuuTbd4nLaxCX19B4/ekLiZXe805cxFBHyQFSU1P5+9//TnGx8nIgFRUyN53Ozk42bdqE1+ulsG0JVsEut0mLht6iI+hRfjKj3qxj3ZeraHm1l853B+Q2Z1EwuQz4htUTm529KpXMZU72Pnp0VnH4sXqHSq/fNTfDFghBjOQdqOl3rMaQOZPLgH80gKSGisQCLLuplN5dQ/PuK5ZMqGmuzjsjneJzsnjvf9RRVU7OPdaJHqGZBFG8Ksrp8sJscb+K3W7nrbfeorBwbrm9iY7iPERR8vLyePXVVzGbzTTn7mJcGpHbpEUhvdbB2s9XYXIq//Qx6A2x//FWVVWdiy6wBqs6enn07Bhi76+PqiYpWQqjmk2UmvENq0QMAUiw51fNqhFD0blZTd/jrvcG2f94qyrEkMlpYO3nq0ivXdxCAlGP0GyJlxiakMbYI70LwBNPPKFYMQQKFkQA+fn5vPnmm2RkZNCQvp1RSfk5J8ON47S81oNvRB2T8UjLBFJIwuQyIOrVETpXdnEuS24skduMRWU24UXJ7h2KkrXCRfG56gkTVBvF52aTtcIltxmLhppCAwGWfKKEsouVlVtxKkSDgMllQApJjLSoozqmbyRAy2s9DDcuXjpGrEIobr2GCnwcydyO0+lkz5491NfPvnhDMqJoQQSRnKLXXnuNiooKDqRsYUjqk9ukBSXkD9O1JeIxseeaVZG4K+oFVtxWRuFZ6thE9mwfovmFbrnNWDTSqlJY98Vq1Wys9Gadqkrpqw2DTRfpV6ICTC4D675Yraoeas1/76Znu/IPXwEKN2ax4rYyVRxG6owi9txI/m7XlkFC/oV38cbiFYqrEAJGxQH+0fciZrOZ119/nfz8/Lh9dqKi2ByiExkbG+OKK67g3XffpdqzhgwhR26TFhRRL7D2i1X07Bym5eUeuc1ZcJwlNsa7PIR8aolDUQ+iQcRVZmPoyDhS6NTTlVI8RGpDjTlEakHQCaRW2BluGiccUMVWQ1XoTCL2XAsjR5XvHSo+L5vsFS62/vgw4eDCvsuzFUGN16fGVQRFGZR6OWTbRmVlJX/6058UWUDhZKhGEAF4PB6uueYa/v73v1MTWEO2oOwmcbZsM+5+34ybSKWht+oQRQH/uPLLftZcXchoq5vOzeooKDETjY+vRBRm/54nuhgSxEiTw4VeeBMBNQkiUS8QDkmqyYlTE3kb0nEUWTn4ZJvcpiw4xhQ94ZBE0K38nKEogk7AmmFiomdhq8rFEh4X3n0w7s8Xlrt5dd8LnHPOOfzxj3/EZlNPdUh1+O0nsVgsPP3003zsYx9jr7CZVumI3CYtKBM93qn8msKzMuU2Z1Gou75YNfHb7j6fanLF9GYdlZfnz1hyPCwpJ2xj/VdryFmbJrcZGnEmd10aG742+w1PMmPLNlN5eT46szq2Gb6RAO5en9xmLAplH86l7np1eA0Kz8qcypNaaDE0W478s5kj/xz/9hvtUhMv7/kbdXV1qhNDAKoLVDcYDDz22GPk5ubywx/+EK80QSXLEQTlbKZOxFlkI3OZi84tA4S8yg4pa3yuUxXeIYDW13rlNmHRCPpCWNKNGOx6OCECtPHxlVP/H5aEGT1Fie4ZitL4166EWXw14sdgwzi+UXXMT8YUPZZ0o2rCmAcOjjJwcFRuMxaFpr92ReZihaMzi2Quc+EbDtA7PCy3OceJoLIbdsbtcyVJojvnCAe7d3HXnXfxP//zPxgM6sjZnY6qQuZO5Mc//jFf+tKXuPrqq+n7fQCdoNxSxqJ+MvxGQBXhGqJBwJK28O5tudGZRYrPyabjrX58o+rwFp3IdEEU5VSiKFkEkZpQU8ichvIwOQzkfyCDlld7FH/gaMsx4xnwqSMfbHKvNLV3WgROFS53Mm9QvARRWAojnj/KSy+9xNe//nW+973vKdpBMBPq8GWfgi984Qv84Q9/4JlnniF01gAByS+3SQtGOCgh6gWW3VSqipKvJefnUHttEYLS3/AwuEptWCa7hCsdvVWHJd142utOFj6XTGLIaNeTuz5NFdWb1IKoF8hdn4ZRBSfrlnQjepX0SrNkmnCV2pAUnk4jiFB7TREl5yu7IBVEWh8su6l0UcXQyVio0LgoQSmAcN4Ib7zxBv/xH//B97//fdWKIVBhyNyJXHXVVbz88stcdtll+AiwUvogFkGZcZPhoMRYhxtPv/LjnFtf66XrvUHFNz8M+cNsf+CIKrx+EFmQQ74Q+3+rbG+C0WGg9IIcRponcPcp//uqBsypRkovyGGs3aP4sN7SC3PRGUX2/KpZblMWnOHGcVXMwVIY9j3eQmBC2e8ugKffx1iHW9FFbYSMEPt5B88WDy+88AJnn3223CbJjqpD5qZz6NAhPvzhD9Pe3MkK6nEJGXKbtOCk5FsY6/DIbcbCIkB6dQoDB8fktmRBEfUCOWvS6HpvQNEi0Jppwj8eJOiJHMeeLFxuOtND55LJQ4QAgoCif5dR1BQyJ4ggSSh+86y36DDa9YoW84IIuevS6d42qOiNM0B6jYOBQ6OKf2/l3hNND5mbyTM033C5EWmQ3byNxWXmN7/5DRdffPG8Pk8pKD2gaNZUV1ezefNm6s/awDZep0NS9slW5nIXy24tU3yzy/TqFGquLppVmFUyY0k3UXxeNvZ8q9ymLCjuPt+UGJoNSVt5TlKHGFIbUhjFbyoBgp6QosUQgD3fSvF52VjSlR2ubEk3UnN1oeKb65pcBpbdWkbmMqcsz4+KoYUOkwssQDD+mQAAcxJJREFUGWab8Bqr61dx4MABTQxNQ/MQnYDf7+fzn/88P//5zymkgkqWIyo0EcVRZGW01S23GQuOJd2IZ0C5+WFR9BZdTGIhWUmttFPwwUz2/LKZxt+snNU95XGsyLNYqKWviVo8RKroGybA8ltKaftHH0MN43Jbs+CoZc5Vyxoq556o6TTRDtOZi4dIkiQaxb0cDR+ivr6eV199FZNJ2WI+VpS5058HRqOR//3f/+X++++nnUZ28ZZiiy1Ev/g5a1JlOxVZDKITec7aNIwpyk2bC3pCIICzVJk5cFH8Y0E8/T66f7cUo1G58ey+0YDiT9nVhLvPp/hKkDqjiLvfh39Mud9LmJxjBRQthowp+qleaEoWQ5nLnOSsSQVIeDEkMTcxJNgk9hje4Wj4EP/2b//Gm2++qYmhk6AJopMgCAKf+9zneOHFFwin+nmPV5iQlJuDYs+zYM+1yG3GgqIziRR+MJO0aofcpiwoGbUOlt5YgjlNuSGCE91ejvylk8BkESuliqKBA6Oq6jWldFpf62XggLL71IR8YY78pZOJbuW2OzCnGVn6iRIyapW9lqRVOyj4YAY6k7K3ifZcC/a8xN7/zCft0C2Ns8P0OqO6Qf7617/yr//6r+h06qgAGStayNxpaGho4PLLL6fh4BGWsI4sIV9ukxYUk8Og2FNMnUlURZNAW45Z0RsSINIj4sGlDFpgYlL7+f0n9/4lY7hcFJPDgKAT8A4p94RWDSFz5lQjUkhS7NwKkZ/RlmuOiD6F7ypUMcei7DUzkfY6p/IQnfg1inUt65M62cd75Bbm8POf/5yLLrpoTvapBWVL/zhQWVnJ5s2b+chHr2A379Ag7Sas0Gxnk8PA6rsqFRs+F53Y02sdFHxAuVUEowu1NUu5LnFBFFjbAQXTDtyV6CmqubaIwrMy5TZDY54UnpVJzTWFcpuxoKRVpVB+cR6CmKSFTGZBdE5Vshgq+EAG6ZPeL6WKoczlLlbfVYHRIX9RqZOJofkWopQkieG6NnbxNh++7CJ2796tiaFZoNyEijjicDh48skn+dGPfsRXv/JVRhhkmbQBk5DYbtZY8Y0GOPJsh+LDOqwZJsU3Ms1Y6qT6ygK23n8Y33BinILFk9YnltAdhBOdQkZj8JSeomSk4c/tquj7oXSOvtSNwaac9/JkdG4eoHf3MFJIme4hk8vAqk9XcOjpdvr3jchtzoJhzTaDgkUtwMD+EZAk/AniIYoy0zdntt4hv+RlL1sY2tfH1VdfzeOPP45er+y5J15oIXMx8uabb3Lttdcy0DXEMjaQKijz9NbkNJC7Lo2WV3qUXf5XQJHhHYIo4Cy1MdyozEpPbX9YOvX/hhBT+URRoqIomcPl1IIaQuaUjpJDq6bjKrcz0jyuzDVRoWthFEGE4nOz6doymJChcqcb+tmsZWKVj7fbXsVqt/K73/2Oc845Z172qQ0tZC5GNm7cyPbt26k/ewPbeYMW6RBK1JT2XDNp1Q50ZuUm31mzTKy5qxKrAr1FUliaEkOJEBawUCztgQuP8L7VRCnhc6JBoOyi3IRP+tU4NfZ8C2UX5SLqlXvqvuL2cgrPVubhIBybQ4cblSmGrFkm1nyuUtFh1jqzjrRqB7bchevxEwtRMTSb8LjTiSFJkmiVGnjp8HOkZaTx9ttva2JoDmiCaA7k5OTw0ksvcfc/3U0De9jFW/glZZXHHTg4xo4HjhB0h9CZRAw25Qkj33CA4aMT+MeVsXk+Gem1DtZ8rhJzqjKrzrU7YHfOyf9NCaIoHJBIKbQquly80jGl6EkpsBAOKu/gLErLKz0MHlRmJVZzqpG1n6+cyqtRIv6xIMPNE4oMrzbYdOiMIkF3iB0PHGHwUGK8p7PNEzqdGBIcYY5kbucwu/j8Fz7PwYMHKS8vj4eJqkMLmZsnzz33HLfccguj/eMsYR3pQvYprw1vXIX45o5FtC4+VF1ZgDXDxM5fNMptyoKht+iQJImQV1nHf4JOIGOJk77dw3KbEjd0r+YBcHQg7bTXFn5s70KbozFPtJA5jUQna7mLvn0jisuP0plFBASCXuX2U1p5RznuPh+H/9gutynH0TiL3kNHNv2SD+Wd+rpBqZfD1u2EpBAPPfQQ119/ffwMVCGah2ieXHLJJezevZuzzv8gO3iTBmnPjFXowhtXEd64ahEtnD8tr/TQ+Hyn3GYsKLXXFVF5mfJKqkshaUoMKdHLB6APwbp2SD+hp56SxJBoUG64ldJR8u/Onm+h4rI8dEZlbiWic6ZSi0VUXpY/dSChVBqf76LllR65zYiJI5t+yZFNvzzlv4eFMJ0ZDWznDVavXc3rr7+uiaE4oMxZbJHJzc3l73//O9/73vdo5TBbeRW3NHMyezKJIt9IgLF2DwBlF+UqMnSg+YVujr6cXJNmLDiKrKz7UjW2nMSIn54rUe8QQEn6IAAhEVL8YE7+CLmTYs+zcMY/1Sky103pWLNMnPFPdYrNATPa9ZhTjYT8yvKsQ6TX0LovVeMossptyoJx9OUeml/oltuMuJNe66DsolwAxtrc+EaSJxRwJiEE4JEmOJD2Dgf6d/ONb3yDV155hXXr1i2OcQpHE0RxQhRF7r77bt7d/C6Z5Wls5iW6pJYZCy4kkyiCSOUyvVWHzqC812a8w4N30I+gE8g7Iz1ScUdBjLa5afp7N+5eZfXPKEkfRBLglTLomKbTleQdcvd6aXq+E79Wfjvp8I8HaXq+U3HfuyiDh8bY++ujcpuxILh7vTT9vZvRNvfpL04mBMg7Ix1BFPAO+hnv9MhtUdzRGUX0Vh1Ckm1VTieGhh3dbOYlDFYDDz30EP/v//0/dDplRn7IQZK9LonP+vXr2b59O9ffeB37eI89bJ6x4EIyhdBJYYnDT7fTOxmClV6TorjKSfZcM0WbsrAnuSflfUjQvXUQKZy8oXPTvUPTiXqKDCHIU2ALrXBQonvbEEG3cuP8lUrQHaJ725AiCyqkVaWgMylzC2Gw6ZDCkTlTaaWo7TmTa1yestY4US+QVp0CQO+uYQ4/3Z40FQFPFyIXkPy0Fu5h68g/uOzKS9m1axe33nrr4hmoEpQ5m8mMw+Hg0Ucf5YknniCU7uFdXqBPmjkHJ1lEURSDXU/VlYVkLnfJbUpcGWv3sPW+w4x3KfNE15xqZO0XqqYWDqVQkj5I2SDUt0HJDfvlNifumFONEc+lRlKRd0a6Iis86owiVVcWkL0qVW5T4k5adQprv1ClyN8bwHiXl633HZ4Kg1cKmctdVF9ViMGe+BU5pxdUOJ1XaMjYwzu8QM9IN1//+td56qmncLlcC2qfWtGqzC0w3d3dfOpTn+LZZ58lJ3sVleWXYNDPHE+eLJXozKlGvEN+QJmN+Yo2ZaEzioqLsc5enUrfnmHCgeT56p/KOzQdMQSdfWlkXq+ccLkoqZUpVH+0gG33HyYwoSxPkVKrzBlsetZ8vpJDT7Ux1KC8BskGm56QP5RU88hsEA0imcuc9GwfktuUuFJ6YQ4hf5jW13rlNiWuTN97TN+TJDKNj688rRAaHQtz1e16Xn3jMBdccAGPPPII+fnKK/yUSGgeogUmJyeHZ555hkceeQS3p5EtW+9ncOjIjPcki7coOvFEk09T8pWVOOwfDyqyR1HP9iHCAQmDTY8gKifkMayDzOv3IogorurV0JEx3v3eAcWJISUTmAjy7vcOMHREWWJIZxQRxMjPpyQxJIgCBpuecCCsODEE4J9Q3nqWkm85rlhQMoghOL1X6O+v+lh5biubt7Zzxx138Pzzz2tiaBFQ1q4hQREEgVtuuYU9e/bwgQ+uYeeeRzjU8AzB4Klzi9rvOZP2e85cRCvnjqffR/tbfYoLM+veOkjH2/0ASV+d7UREvcDKT5VTeFbid5dPeTMDq372C93y28ooPu/U/cCSktl28dNILBT4eys+L5vlt5XJbUbcKTwrk5WfKldcXmx07ep4qz+SE6Ugxru8tL/Vh6f/1HupZGLCHebDnzBz8Q1tFJXWs2fPHv7v//5PK5ywSGiCaBEpKirixRdf5Cc/+QlDI3vYvO3H9A8emvGeZBBF4aBE+z/6kcIS5jQjddcXJ23i/skwOQ2suL2MLAXlS4WDEo3Pd9K1ZUBuU2bNbEVR+z/66N6mrIUfIGdNKituV95GVKmsuL2M7NXKy7Hp3jZI+z/65DYj7nRtGaDx+U5FFcDIWuFixe1lmJwGuU2JGwabjrrrizGnGZHCkb2HEn5nz7/sYfmmVl5/s4GbbrqJV155hbIybb5fTDRBtMiIoshdd93F3r17Ofvs9eze+2v2HXgCv//UYRXJ5C3Sm0REg6CoUArfSIB9v2mhd8+w3KbElcFDYwTcIXQmMWEXzJQ3M47780yiKHROpHDJwMEx3L3KODGcjrvPx2DDmOJKwisSAQYbxhRzcj0dd6+PgYNjcpsRN0xOAzqTSMAdYvCQcn4uiDSU3feblqTqw3M6wkEJ0SCgV0iFw4HBEBuv1HHpjR2UVmxk7969/OpXv0KvT/ziEEpDGW9UElJaWsrf/vY3fv3rXxMItfPu1h/R1bNjxr5FySCMxru87P31UUL+MAarjpw1yjghHWmeACnSaLHsohxFbUqrryyg6qoCuc2YNbPxFJlcBpbdUorJlZhCby6Mtrppe71PcSFYikSCttf7GG1VTg8bc6pRcd8pgKqrCqi6Mnnmv9MiRBqoW7NMIE2uXQogZ00qBquOkC/M3l8fTfoQ/VBI4ldPTLDkrFZ27+3gzjvv5MUXX6SiokJu01SLJohkRBAEPvGJT3Dw4EGuvfYqDhz6Azv3/BKPZ+Zwn0QXRVHSahwUbcpCb1FO+Jwlw0RKvlVRzWmbX+ym4U8dcpvxPk70Dk3nRFEU9Q5FCYwHCXlD6E3KefcgcprtKrPJbYbGaXCV2RLW6zpXdEaRkDdEQGGJ+Q1/7uDoi8qpJKoziKQUWLBkmOQ2JW7oLTqKNmWRVuM4/cVJQEtbgBXnh7ntS12cc95HaWho4Gc/+5mWKyQzWtntBOL555/nM5/5DO3tXaRv+hBp685GOM0XpOA7by+SdXNDb9YR9IYQDSLWTJMyumILgETktCogEQ4oo9y4IAo4iq0Jc6I4kyCK4g5GeoWcKIiUStE5WeSsSmXLD2fOPUwmlFh2e/1Xq+neNqS4EsdKwllqY7TFjRRWxhZINETC1YPu0NQalezY8yy4+3yEA+GpvURSowvTJjXRbtqFxZrOl770Jb7xjW/IbZXGJJogSjDGx8f51re+xY9+dB/GjCyyL7wKW0nlrO5NZHFUsDGTgvoM3vvRIUJ+ZQiIZbeUEnAHOfj7NrlNiQu569IoOT+HrfcdIuCWd+GZjRiKMrax/5T/Zk4zklHnVEwSuN6iQwpJivkOgTIFkc4oIugEgp4k38BNUvDBTPr3j+AdTI6yxqfDYNOx9ovVNL/QrZjKa7XXFKG36Njzq2a5TYkLOqPIui9V0/5OP+1vJv/8PST10ZZ5gL7+Xj772bv4z//8TxwOZXi8lIImiBKUXbt2cdddd/HWW2/hqFtF5nmXY0hxzniPJELh/zc7UdR+75kU/OfiCShBBGuWmYlub6RPjEmX9JsFe66ZcFDC3aeQxGkBrBmmhPh58t5NYSwwu5CPmQRRep2D0gty2PnzxqR/35SKEgWRktBbdKy8o5zmF7oZODAqtzlxw5ppwt3vU4QnBSI/j6AXmEjy3Bq9RUfIF0IKR0qGu3u9SEl8/iOkhdg7uI0uqZWqqir+7d/+jeuvv15uszROgiaIEphwOMyjjz7K3XffTf/wCOkbP0Ta2o2nDKOTpqW1nE4Ytd97LA9pMYURQOHZmWSvSmX7TxoUUS4TAcovyaNr80BCiIl4kLs+jb49I7KIiLx3U6b+/3SiaCYxFEXQCUghBbxnk+SuS8OWa+HIM4mX9zUXlCaIKi7PZ7zToxjPAyjnO6S36Mhc5qRrizJ+N9ZME7kb0ml8rlMRwk7UC6z5XBXd2wdpeyO5vUJhKUyXuZkmaT9Go5H/+Z//4dZbb0UUlZN/rDS030wCI4oiN998M4cOHeKuT99B3yt/ofmh/2Ki5chp7237xpm0fWN2xRfa7z3zOIG00HRvHaL5he4pMZTsjfD0Zh32XAtGhzKSqA02PYVnZZFaYV/0Z08XQwAphvkLTCkkYbDqSCm0zvuzEoGgL6x5uxKYoCekmJDGlEIrBqtOEWIIILXCTuHGLAw2ZZQ0NjoM2HMt6M3JnYwf3QOEgxJNL3TRvW1IZovmh1TmYQsvc8C7g/PPP5/t27fzyU9+UhNDCY7mIUoidu7cyV133cXbb79NSu1Kss69FIMzberfpVN8107lLTqVCFpMj1Hu+jRy16ax8xeNiuldZM+zJH3xCJ1ZJORd/E3diYIoysk8RbPxDkWpvCIfe56FHQ+c/jBBY3FRmodISay6s4LxDg8NCvFGgnxzWzxRwhoTRTQIrLyjgq73BpLec+eV3LQ5DtIy2kRNTQ2PPvooa9euldssjVmiydUkYuXKlbz55pv88pe/xD7cQ9P/fpe+154j5Js5ZjgWbxEsrsdouHGc7m1DihFDqRV2Vn6qHFu2WW5T5kV0w5C13EV+ffqiPPNUYgjm7yk6+lIPe36pjGRjAJ1JxJab3O+YErHlmtEppGEkwJ5fNnP05R65zZg3+fXpZC13ASS9GLJlm1n5qXJc5YvvwV8IwgGJ7q2DDDeeujl9wmMJMVDWwtv8HY95nH/6p39iz549mhhKMpQzc6uEaBjd4cOH+ea99+De8TZND/wnwzvegeDME/1chNFC4xnw07l5AICMOgfLbytDTOIeP0NHxtnz62YmepI7sTWKOd2YMP0spouiWLxDAIGJIEFPCNEgYLAld3gJQNGmLOquLZbbDI0TqLu2mKJNWXKbMW8MNl2khLMnRGAi+fsOWTJMmNONcpsRFyZ6vOz5dXNSCwjRILL8tjLS6yJV1jo3D+AZSL4KhpIk0SkdZbv5dXYf3c6dd32GI0eO8N3vfhe9XhlhmWpCC5lLctra2rj33nt57LHHMGXmknnBFdjKqmZ1rxDDb34xwuhSCixk1DlpfkEZTfLSa1LIXZ/Ogd+1KiKnYCETq2fyDp3IWMAUsyCKsvy2MnwjAQ49ldyl0k2T+Wq+0YDMlswfJYXMmRwGJMCf5L+X6o8WYnIa2P1wk9ymzAulFIPQGUVqryuic/MAg4fG5DYnLpRemEP//hHG2pMz9E+o9rKjezP9w31ce+21fPGLX6S+vl5uszTmgSaIFMKWLVv4yle+wltvvYWtso7M8y7DlJE94z1F39sCQNvd62f1jJBZovhf3pm1TWPXnkHKE+/O+vrpOEtsFJ+bzf7ftiRtAnlKoZWs5U4an+uS25R5Y8s2U3d9Mft/2xJ371f11sjmfiw4uxCwzjPmviFwFFnxjQbwDSf3hlVJKEkQKQWTy4DJYWC01S23KXNmIecsOSi/JJfe3SOMtSXn70Rv0VF3QzEtL/Uw0pIYzb/nglsao4E99NFJYWEhv/nNb9i4caPcZmnEgeSNTdI4jvXr1/Pmm2/y+9//nsyAm7Zf/Bfdz/2ewOjwKe9p/aeIECr8/hYKv79lVs9p+fd6Wv599qcgY9eewdi1Z8z6+ighfxh3vy9pxRDAWJt7Sgyl5FtIq569FyTR8Az6Io0ZhxYurCFFf/pNy3zEEMBoqxvfcABBjJweJzPptQ4qLsuT2wyNSSouyyO9NrkbLQo6AUEE33AgqcUQgHfIT//+ETwDydsKIa06BXu+BYDG57qSVgxBpPqiu89HKJCc0RI+yUNfzRE2617CXKjj0Ucfpbm5WRNDCkITRApCEASuvvpqDhw4wA9+8AP0rQ10/N/36H3pGULu05/InE4U6bzHNpALLYzGOz1TfVZs2WaW31aGMSV5Y3KzVrrIr8+Q24w5Ew5INL/QTcgfxmDTY7TH53cR9Q5FmY0omjdCJHSu6OzMhX/WAiKIkVh8klvXKQMh8rsQknxFLTo7i+W3liX1O2W06zHY9IT84ePaOyQj+fUZZK90yW3GnDGm6Fl+WxnWrEge6pFnOpKuOp6QEuYIe9hqeYUjrQ1cd911HDp0iBtvvBHdKXpCaiQnWsicghkdHeWHP/wh//3f/40oihhXf4DU9WchGo8lyUfD5k7kVGF0IfPJX5dThdKdSgTFEkpnyzZTsDGTw39sT+p4cJ1RJOQPY3IakrpXybKbSwkHw+z7Tcu8P+tEQRTlZOFz8/UOTSdrpYuJbi8T3ckfSpPsaCFziYMtx4wt20zvrmG5TZkzSz5ejKgX2fOr5KwqqTOK6C06fCOBqTUjWRF0AlVXFtD+Zl/ShS2GpCBdlqMclQ4iSRJf+9rX+NrXvobL5ZLbNI0FQhNEKqC3t5f//M//5IEHHiA1NRVp1QdwrToDQac/pSCKcqIwOpUginKiMDqdVyjWHCOTw0Ddx4s59FQb7t7kDIVYflsZgYkgB55Izg2gOc2IFJbmnYdzKjEU5URRFE9BpBiEyIFBMgs7JQgiW445suHTVlPZMbkMCKKAdzD5qpYB1F5bhMGqY/cjySnorFkmqq8qZP/jLclZ9EUXxlMxQNPIYfr6+rjgggv4zne+w4oVK+S2TGOBSXIHv8ZsyMrK4kc/+hGHDh3ioosuou/vf6T5ge8ysvs9Wr6+ZsZ7Y8kvgkXIMRJgott7bDOehKEdh//UztGXIpX0kjGPxTvoxzccQNQLlFyQPae+K6cTQ3B8+NxCiCFBJ7D0phKyV6fG/bMXi9y1aay4vUxRvW+SDZ1JZMXtZeSsSTv9xQlK9upUln6iJCnnI4j8DkouyEbUC/iGA0kphqJjf/Slbg7/OQkb4U6+Or6RQORwIMleJUmS6JZa2ax/mbcOvs6aNWs4dOgQf/3rXzUxpBI0D5EK2bdvH9/85jf505/+hCE1g6rRcnKEYsRZBMC33b3+tF6i6RT/yzsxCZ5YPEZ6s44Vt5fR+HxXcvZkEGDZTaWMHJ2g9fVeua2JGUuGiaWfKOHgk60xl06djSCKcmjtwp0yFp2TxUjzBCNHk7Pqkd6iw+QyMNGleYjkxJZrxjccSNoiMM4SG85SG62vJt88BJGWDTVXF7H30aN4+pMvcqDo7CycJTb2/Lo5Kb2MrnI75R/OZeeDjUnX+FaSJIK1I+zu3M7QyCCXXHIJn/nMZ7j00kvlNk1jkdEEkYrZsWMH//7v/86f/vQnLNgp0y2ZlTCSgsGYvECFL3uZyJl9c8/etQLlXz99eW+dSaT4nCyOmAsR//ReUsZb56xNw93rTbiKTlERezqBOr3Px2x7fqzZEWY8NPv3YSEFkYb8KEEQacjDXOafRMRRZMWaZaZ766DcpsREdM012vUUfDCDlld7CfmSYw0OC2H6dR0cCezDzTi1tbU8/PDDnHFG7FVxNZSBJog0TiKM6sgRSk4pjKTgsc7lsxFGhS8fO72ejTDqXXvM1z4bYeS9dD2CIFFf56XnjU463hk47T2JSPmleQw1jCVM473pnr3TCaOiTVk4i09/wrlmx7HFcjaiaFHEkADVVxUw3DxBz/ahhX9enLFmmSg5L5tDT7Un3YEAJLcg0hlFqj9awNGXenD3JZ9nImdNKs4SG4eebk8+z4QQKfAycnSC1teSz7OVVp1CamUKjc92ym3KnMivTydnTRrbHziSVEI0LIXpoY2utEYGBwe57LLL+OY3v8n69bPrx6ihXLTAcw1WrVrFH//4R3bs2MFFV17AvtAW3g7+lY5wE2Hp/RssQX+s5HLxv7xz2matbecdS463dfum/jsVWVuPTa6NP6if+u9UmJ/dgiTB0W4D3fmleC9dj3TlWnyXrZvRrkRC0AkYzDoEMXECr6eLoGiu16nCH4eOjNG3b2TWYgjArkuQDaQUiXtP1nCnkC+MaBAxxKkUusbsMdj1iAYxaU7FTyTgDuEbCSSfGAKQoG/vCEMNiXGAFCtTc34S5W0JOmGq/cVgwzjtb/UnjRgKC2GCy0Z4V3iBfbxHZWUljz/+OM8884wmhjQAzUOkcRJ27drFv//7v/P0009jxkaJWEOeWIpOOLbhmu4lOpGTeY2me4lO5GReo+leohM5mdfIe+nxE9raai++gMCepshnm5+dfWGIRCC/Pp2hxvGEqKQ3Uw7YyTxHaVUpjLa53ycwThREUU7lKdJC5dRBMnuINBYfvUWHo9DK4OHkE0LWLBOp5fakjWKouboQg13PniSqgBeSQnRxlDZ9AxPBcc4880zuv/9+Vq9eLbdpGgmGJog0Tsnu3bv57ne/yxNPPEF6ejqOgRwKxUoMgnFGQRRlujCaSRBFOVEYzSSK4P3CaLoospnDiAKMeUTMxjA6ESa8YlIII1EvsOKTZXRvH6LrvcSIKZ9NYYyUJ95FNIis/XwlXVsHaXujb+rfTiWGopwoiuQSQ6UfysE3EqDz3eTbsFizTPhGAknnrUhWQaQziZichoQ4tIiVvDPSMTkNNP+9W25TYqbwrExy16ax9f4GwoHketdz16eRsyqVXQ81JU3DWEuGiXAwjG84gC3HTDgoJUXhioDkZ6Kyl4Nde3G73XzsYx/j5ptv5uKLL5bbNI0ERRNEGqelqamJ//7v/+bhhx9Gr9eT7s6nSKzGFDLO6v6oMJqNKIJjwuh0gihKVBid6CWKUlPkJ80R4u29ZqbXAk1kcTQ9QTijzsFIq5vA+OlF6EIy22qBGX/bFuk/IQECrNk++03LeMgkq2eo+NwsfKPBpEtu1lt0bPhaDUee60y6PKhkFUTZq1OpuCSPzf91MOnCLXPWpmFy6Gl5JYlybwSm5hRTiiFpetwY7HqcRVb6948CSVb8QYA1n6tiuHGMxr92yW3NrBDTwjQHDtEtteL1ev//9v48Tq6yzvv/X+ec2peurfd9zb4vEJYQwiqCDJuIKMsojuIy6qjjz4fO7X3P7dw+9IszijoMI+IC4oaDoCCKsggIhKxkTzrdnfS+79W1nvP7o7qqq5NO0gndXRX683w8QopTZ7nqyunq8z7Xda6L8847jwceeIDly5dnumgiy0kgEtPW2dnJ/fffz/e//32CwSB50RIqWIhTcU9re33T6jM63mihddqhKKnkpRMvTBTFwG4xCIZVzCaD0twYR7tM6Hpi39kcjFSTwtpPLqBj++QWl0w5oyHUrXEuXNFP5PwmDNf05wXZtloebTwb7lI7I20hDP3c+ko/VwORoiq4im1nPOS8OHM2v4XF7yvn0P+0JOa4OYeUXZJHwRof2793+JxoFVLNCiUbcunY1kc0GMeeayXUF8n675WgMcJRDtKhHcNkMvGZz3yGT3/60xQVFWW6aOIcIYFInLGhoSEefPBB/v3f/53Ozk5yjWIqqMNDAEU5fYA5k2CkvrQD4JSDKqRLH5DBPHpiy0SeJ8aiigiv77UTjU+U9dh7Etst+Oib0zpO6xcvBKDkG3+b1voA+sbVqC/vmPb66qolib8PHiQe1jF0A0+Vk9GO0JR3pMduSLSQ2X97ZgGv8euJuq360ulH9ANo+EZi/bztp/7qsGo6C/Ii7Ou0svGL09t3toSh4g0B7AErR54+N0eAOpecq4HoXFRzXTFj3WHa3ji3uoRqFpXqdxXR9HxnxlvKp8Nk13AW2hhsHEVRFTSres60IprsGms+Xkv979uyZsTTUwkHhun2HeXQkUPk5eVx22238dnPfpaKiopMF02cYyQQibMWCoV45JFHuO+++zh06BA5+CinjnxKpzXJK5w+HCUDUdLZBCOYHI5UxUA3FFTFYGVNmPo2C3svnxzkphOMkqEo6XThSN84+bNOJxwlQxGA8dZ+1n6qjp59QzQ9N3Xf/2QoSppuOEqGIpheMEqGoqTThiOTzkV37EEvOPkEutkShgDyV3qxByznVpcioPqaIsIDkXPqoe1zMRCVXBDA6rHQ8Oy50Y0oqeKyfMZ6I3TtGsh0UabFV+titCNE5BwIQemqrioksDiHbd89nPUtK5CYWLjysgL2//IYesxANSnZ3Zql6Yzk97KvbTdD9BEIBLjnnnv46le/it1uz3TpxDlKApF423Rd59lnn+Xb3/42zz33HFZslFJDCdVYlOlNwHmqYHR8KEo6VTg6PhAlpQcjq1lnSWWEA0ctjEVUOq7ViSiAMr1wdHwgSjpVMDo+FCWdKhylhyKzDeIxiG3dh6vEzlhv+ISZwY8PRelOFZDSQ1HSqcLR8aEoaapwtDAvTKE7hnLzW6BN/W+TTYHoXFW+OZ/IUJSObefOc0TnYiAqXOvDkmPm2AvnVmA+lyiawtpP1NGzb5CmP3dmujinZbJp2AIWRlrH0CwqmkXN+iBnsmnEQnGsXjO115Vw+KlWIln8bFbUiNBKAx3Oo4yMDnPppZfyT//0T1x77bWoqvz+EG+PBCIxo/bs2cN3vvMdHnnkERRFIRAqoow6XErOtLafKhidLBAlnSwYnSwUJU3uUmewYUmIhlyNrR7zlOtPFYxOFoqSpgpHJwtFMHUwSg9E6VZdpjDcB4d/vPeE904VipKmCkdThaKkqcLRyUJR0kQ4MrCZDEIxlUu/8BqoRvr4FlkbhvwL3ZRdnMfunzaiR+Wrcjaci4HoXKKaVZbfWUnzy93nzFDVyRYKi9uUCBXnwI9e7fUl5JQ52P79w5kuyrRUXlmAr8bNjv+qz3RRTmvUGCK4pJsDR/YBcMMNN3Drrbdy0003Zbhk4p0kO69CxDlr2bJl/OAHP6C5uZmvfOUr6EUhXudP7DBepsdox+TU8NW5UxOQOgttuEsnmrgDrYex79qD+tIOzGYDf0CHzauAxLDCOeWO1Lreahc2v4WaL7zGwn/ZQmkshmk833v0OH7HxN25gCOG05IIQCbVIM8Zw3ArRJ0qDquOzx2nvtVMo12jMBynbCxGIKJj0g3KQnGsusGhB9fT/v21jH5nYv6CxY/txKMk+oZrGBSpUawkjuNUdPQvraf1ixfS+sULcZfacRbaUF/egaIkPpvFkiiv1Zr4f33jKvSNq3G+eyWuosSEtvrOffgKwDI+v63FBr4C2Ps3g2P7DdyblpB/3RJsGxLByVfnwvtCIlhZTAa57jiKkjiOy6bjcSTKO3bDeTjuWAu3rkvUi11jzcN70Mbr0KvHydcn6jD0tfX0/Nv5NH79AjSbiq/OTd2/vJGq74L4xLqF8RgePU73GoWB1WBZqRPTE8NEBX+xEstrlal1D9/gwpGXaElUzQq+OjcmuwaAzWfBW+NKresuc+AsSFSEoiXWNTsT61o9Znx1aeuWJOo7sTL46txYxicvteSY8dVNDAbiKrbjKp44D311biw5ZsZ6IwR7w3hr3CR7gR5/zvpqXVi9iRBtdoyf3+OTLToLbOSUpZ2zNS5sPkuqvn11blRzYl1HnpWciol1PVVO7IHEupo1Ud+aJVEIe8CCp9I5sW6lE3uuNVUPZZvyMNnG69BvwVs9sW5OuQNH/nh9m8br2zFeh14zvtq0Oiy1T9S3mqxvU1p9p9VhiT11zqbqe3wSR4vblFh3PAS7imy4Sibq0Ow0Yc0Zr0OX6ZTfEen1bRqvb9U0Xocn+Y6AxN3wRH2P12GuFU9FWh1OVd/WtPquSqzrq3PhW5B+zqqnPGdzyk6sb/Op6rvwuPoeP2etU52zRROTXp+0vg2D8HA0dZ4lP4N1/MaP2XniOes+3TlrSjtnJ9W3M1Xfye+I1Dmbaz3pOatZxte1qdReX8KS91fgqXISGU6EoZwKR1Z+RziLEz8fZpeJwcYR9j6SmJ8nW78j/ItysOda0Swq4cEYLa8kBurJxu8IZ6EV85owO4xXeI0/0dBcz4033sixY8f4xS9+IWFIzDgJRGJW5OXl8eUvf5mmpiYeeeQRKtaUsJNXeTn8DP3lzcQtiWb5kg25VF5emNpu0XvLCCxMtCa5G+pZtjyOebzBpmh9gKqrJ0aMWXBTKblLPADY86xcHhpj0Te2U/OF11j/l2MsrJgY2WxZYZjinMQxHWaddWUhHOZEcMkvjLOkKkp7zILzjxoXDEZZOxzjkoEIjrjOlX0RvOPzXVSNxdk0EOHQg+s59OB6ij5aw6o9zQBYMLjEMoZPTaxbrMa40DwxAlXh3Qvw37MIAE2DZSvj5HgS4cPnN1i2cuKh2/IqndIb69A3rsa4ZBWLN6h4chPvuQOweINKPArRMJTUKVQvV6hZqaCuWsLi2yrwb67D/tst5DjirK4OY9LG95sXZUHxRJeI5RVh8j1xxm44D/PNq1h6ewV139wGQF08yvroxHwTF0ZDVOqJbQf+ZR1Lb6+g56vrqP7ia9TEolwQmRj9aUMkRM34XFVOQ+fy8BiR5Qbda1SGclTibYl/422rVWreVUThOn+iDl1mlt5ekfoFG1jkZtHNZan9Vl1ZSNH5ASBxgbv09gpcxYkLBF+dm8XvK5+ow80FlF6UqDTNrLL09orUxZu3ysnS2ytSIadsYx7ll+Ql/keBpbdX4K12MtYTpu/gMEveV442HjBKLsylYnNB6jiL31eOf/yXvqvYztLbKzCPX6wVneen8qqJ83vhTaUEFic+uyPfytLbK7C4Eyd44VofNdcUp9Zd8Hel5C33AmD3W1h6e0XqQil/pY/a95Sk1q25tpiC1b7EMc8PUHFpAY6CxAVN7lIPC24sTa1bfXURReP1bXaaEnVYmKzvHBbeMlHflVcUUrwhUd+aNVGHyQs9b42LJbdN1HfFpfmUXpyoQ1VTWHp7RSpweCqT9Z242im9OI/yTfmpbXNKHXjHL7JyShN1mAwjp/qOcBUm1jU5EhdVp/uOWHp7BdacxLqFa3zUXDuxbt17Sshfmahvm2+8vscv7vNWeKm7vgRFU1h4Uxl17ymhYE2ivi3uRB0mL9hzl+Sw8KaJ+q66upDi88bPWXvinHUWJerQv8DNolvT6vCyAkouSJyzqiVRh8mLZW+Ni6W3TzwoXr4pj7KNiTpU1PH6rhqvw3LneB1q6DEDQ4eC1f7UtovfV5G6qHWXOBJ1OF7fxecHqLpi4vxedEsZgUWJ89tZaEuc3+OhoXCdn+p3pdXhDaXkLUvUtyMwXt/jwatglZfa6ybO79rrilP1bfUmfu7tfis9ewaJjMZYcMNEHWbrd8SC64upflcROWUOFt5URmx8DrBs/Y6oe08xJRcEsOSYqbmmiNBA4ndkNn1HRJUIR41DvBR8hj9s+x15i7z85Cc/obu7m5///Ofk5098bwgxk6TLnJgThmHw+uuv8/3vf5/HH38cAF+4gHJLLT41NzWZpNmhEY/o6DEDRVMw2VSiwTgYibuIiqakRusxOzTiUR09aqCoCib7ydcN334+cR3ihoKCgVkziMYVDBQ0xUBTITI+6pzvqTc5/K1VWA0Y1RR8UYNVI1Fe81iIKmAyIDR+d8+qG+hAxWNxOi60YcEgioKOgoaBCYPw+H0HCwYGEB2fUENz6RT8OYyhK6iqgaZBNAqgYDIl1o3HEuuazRCPw6E7TCz+zyAmcyIMAWgm0MZDY2QM3H7QdRgdAEUFkxn23uam5CUD03hXtdj4ZzWbDOI66LqCohiYNYjEEmWI5KqMVENk/Jkqq6ETRyGmKKiGgQWDMAqGomAyDDQMyr51mMP/vHDSuophYJ1i3TAKlz7bwEDDCKMdIeIRHZTEv2tsLDGqnmpW0Mzj/64kLnAMw0icL8l1QzpGPPEgsGZViY6Ot9jZVDCYOLecp1jXqoJC6nkss1MjHp44D13FNhbdUs6BXx0j2BM+5bonnLOqQix05uesyaGhRw30qJ74d7RrxMbiGPoU69o1jLhBPKKj2VQsLhOhvuh4HaqoZoVY8MR1T6jDU9X36epwivpO1sup6nvxbeWompJ6oDtVh2nrKspxdTgL3xGnqu/0OjTZNTRLYtSwaZ2zp6rv4+plpupb0RS8VQ5q31PKnp82Jrqdne6cPVV9J+vwNPU9uQ5PU99p9eIsspG3zMPRv3SeUN8nrcMMfUdYc8wYOsTGYmhWjehoDD1mnFCH2fAdYfGYqdiUT+NzHcQjOhaXKfH9xfF1mNnviHhUZ1jrZ6S6k0ONB1FVlRtuuIHLL7+cD3/4w2ja+B09IWaRBCIx53p6evjRj37Egw8+yJEjR3DhoZRqCinHpEz9/M5Mme48Ou5fvp56PXD/Gs4bivJswEpMVbDHDca0E4cXr310ostY+4XTG+km6p748Sv/4/Tm16i/a+KXw6LvBU8sxxoFZw7senHyj/ahuyee4yp5cXqTpQYDE8caqp3WJtTedzD1+vA/LzzpeibD4OpQkANmC8aXt05v5xmiqFBxeQEtr/ScM8PnpiayzHLn1DNE50idQuKitvTi3FTIyGb5q7wUnxfgrR81okezu7CrPlpDsDPEod+2ZrooJ2V2moiOxlDNKsvuqKTxuQ6Gm0/8XZFpujlObNEgu/btYDDWT0FBAZs3b+b+++8nLy8v08UT84wEIpExuq7z3HPP8cADD/C73/0Op9OJZziPUmpwKZ5ZP/7pwlF6KEpqeGAd7+sMsT3HzP7xftLp0kNR0unCUXooSjpdOEoPRUnJcKQoieeMwmNgtSe62PW0JNZJD0VJpwtH6aEo6XThKD0UJU0VjlTDQB9vgVr9X28x2DSa9Reck+6eZimrx8zyu6s4+D8tWXkhlO5cCUQ5ZQ4W3FTK7h83Eh7M3pG4jm9xyFpKopvUYONo4n9VJWuHqM5b7mHoWJDwYBSrx0xkOJa1ZS1a76d8cz5bv30oa7+jop4gRwYOMpTTzfDwMOvXr+d//+//zdVXXy2jxYmMkUAkskJzczM/+MEPeOihh2hvbycHPyVUUkBZxlqNpgpEAIHFOQy3BNlz32pKQnEMoG38+ZKpAlG6k4WjqUJR0snC0VShKCkZjoproKhGYcdfDPTx66OpQlHSycLRVKEo6WThaKpQlHR8OHLqOjeGRql/ooWutwZOul02WPWRGka7Qhx+MnvvEANUXlFAx/Z+Qn2R06+cQedKILL5LRSu8WX9ENB1f1eCI9/Grh8cyXRRTil/hZfa64vZ9t3DWR0wVbPC2k8uoO31nqyd38tb7QIFBo6MYHGbcJc66N0/lOliTRIzonTSwkBuO+09bRQUFHDPPfdw6623smLFikwXTwgJRCK7RKNRnnrqKR5++GGeffZZrFYr3rF8iqnESy6KcmJXtZl0fDg6WShKWnBTKWPr/fzFbwXDQAFqfja9O7Pp4ehUgSjd8eHoVKEoyRo3qHpgDJMZiusUWg8Z7P/g6YdBPz4cnSoUJR0fjk4VitId/ueF+PU4fYpK9f/vdTSLmrV3Nz2VTkIDEcID2XsRdy45VwLRucLms2D1mBOtrVko/WfbWWhjtGN6XYXnkmZVKb04j9ZXe4iF4qlnc7KJopLqCrn4feXEozqH/qcls4U6jmEYDKg9hBf2cbjhEJFIhI0bN3LJJZfwpS99CYfDcfqdCDFHJBCJrNXa2spPf/pTHn74Yerr67HjpJhKiqjApsz+F2kyHJ0uFCV/wXsqnVT9fTVP51ko+vmZXcy3X2ifdihKKv9jaFqBKKlkLM7F/VH2/V4nGjl1S9EJ246Ho+mEonRDtdMPRUk9n6/lqlCQAz88wnDL2Ok3yBBFU8gpc2TthSckhlc2O0107RzIdFFO6lwIRPmrvERHYvTXj2S6KCflqXQy1BzEiGfvr3R3qZ2lt1ey+yeNjHZmXxBKMjs1Vv1DLYefamXgSPb9m1tyzKz8UDWHnmhh8Oho1t1AMjwxhgs72X1gN2OMEAgEuOaaa/h//+//UVZWdvodCJEBEohE1jMMg5dffpmHH36YX//614RCIXx6HsVUkUcRqpIdI9DY/BYKVnk5+nxi9vrc965koE8hEpl+q5b68g6avnbqyU6PV/mV1zj00Lrp7X/8mR1NN7iiJ8pOi5Vu05nVX+1nXqf3w2dWRoD8304vGKkaFK1y0bZjhFh33xkfZ64UbwhQfmk+W+8/lBqdKdtUXV2IzWth/y+zN2ycC4Fo8fvKCQ1EaPxjR6aLMiWTQ2P9pxdw9IUu2l7Pzm5dkLiJUHphLq2v9aDHsuvSw11ip3xzAft/cTQxGlyWPdNkcZvwVDrp3j0IQMVl+XTuHMieLrFmg35bJ01D9fSrXaiqyvXXX8+nPvUpLrnkEnk2SGQ9CUTinDI0NMSvfvUrHn74YV577TX8fj+OPi+FlOMhMOtd6qZLs6is+8wCjv6lk45t/eiXrAJjemVTX96Rej3dcFT5lddSr6cTjuxxg419UV73mii8d3vql3/9t6c3Cl/tZyZazc4kHAV+OFFOLeA/xZoJVrdG3RVuDj3RwlhvlvziT1LAkWsl2B0+/boZkt6tJludC4EIsr8uHXnWxJDKWfYb3R6wsODGUg483pyV3UyT3302v4XqdxVR/1RrYpjybDE+smHhOj8Vm/PZ+p3sGSzBMAyG6KOdY/Q52gkGg5x//vncddddXH311VRXV2e6iEJMmwQicc7av38/P/rRj/j5z39OS0sLdpwUUkYh5TiV6XcHmy2aRUWPGxhxg8orCnDkWdn382PoG1efdtv0UJR0unCUHoqSptVyZBi8941+evYN0fq3ntTi6YSj9GCUdLqAlB6Kkk4Wjqw5GhUX5XDkLwNE2rP3znfZpjx69w1lbTiy51oZ68nOsmV7IMrmunPkWQkszqH5r92ZLspJaVaVuutLaHyuI+sCUcmFueQuyWHXQw2ZLsqUlry/nNGuMEf/0omiKaiakhVhaNQYZii/k7boUfr7+ykuLmbTpk184AMf4Nprr8108YQ4KxKIxDlP13X++te/8rOf/Yxf//rXDA4OsmbNGoa3xyikDKsyvTmBZpOv1oUlx0zn9n5Uk0LR+QE6t/UTWX/y0XWmCkVJJwtHU4Wi4x0fkhTDYNFIHMe3DjLcMobVY0aP6qmJ9+DU4WiqUJR0snA0VShKN1VAMtlUytdaafpzx6SyZZpqVljx99W0b+2jc3t/potzAke+lTX31rH3Z01Z+QxMNgciX62LpR+oZPsDhwl2ZV8oKljjo2idn7d+1IAezZ5f5WaHRuUVhTQ+15F1gxGYHRqqWSU8GMVdasdVZKd9a19WtKyZbBoFa320v9GLHjMoXOsjPBjNip/bsBEivmSQrkg79fX1uN1uli5dyj/+4z9y6623yuSp4pwngUi8o4RCIZ555hkeffRRnn76aWKxGJdffjmtz/WTT8msD+E9HTnlDpZ+oILtD9QTHohOeiD2+NajU4WipOPD0XRCUdLx4WjBPVtZeHMZ9oCFnf998mF7jw9IpwpF6Y4PSKcLRklawI+rwEzN5V72/baXUHPP6TeaQ+nPG2TbsweQGFyhv34kKy76jpfNgQglEYr6D2f+gjRdtp9vFpeJZXdWcujJVkZas2tglFX/UMNYb4SDv2nOdFFSkr8DbD4Lqz9Ww95HjzKUDfOH2XX0BcMoAZ0XXngBRVFYunQp//Iv/8K1116L3Z75m41CzBQJROIdq7+/n9/85jc8+uijvPTSS9hsNq677joOPN5MLkWYlBMnVp0rqllJ3dFd9Q81DDSMnDC/ib5x9bQC0fGavnbBGYWidIceWseST+7A6jUz2hHC4jaRt8xD25a+k45elQxH0w1FSclwNN1QlKQF/KgmheJlJlpe6SYeznwXkqTAkhwqLs3nrR81Zt2d8WyV1YEoC5nsGiv+voqjL3Rl1VwzyaGqm1/qyqoBExRNofg8P917BokMx3AW2ggPRLNm4trKKwrwVrtSN6DSfzdkhF1n2NVLxaUFPPXUU4RCIVatWsW9997LTTfdRG5ububKJsQskkAk5oXm5mZ+/vOf86tf/Ypt27Zht9u55pprOPQ/rRkPR/6FbiIjMUZax3CXOchb7qHpuY6s6AKTt8xD1dWFbPvu4azou57kLrWz+H3l7P5xY1YNtmDzWShY4+Po851Z1xpTfH4AX62LvT87mumiTJKtgWjpByvpPzxM2xtZ9uyaApWXF9C+tS+rnsmxBywsv7uK/b88llXD5WsWlbWfqqPhjx307BnMdHFQzQqVVxbS/dYAwy1juErsWFwm+g4OZ6xMujlOd6SNhbeU8dRTTxGJRFi9ejW33norV1xxBevWTW8UUyHOZRKIxLzT0NDA448/zq9//Wu2bt2KzWbjmmuu4fATyXCUuW51gSU5FK8PsPsnjQB4qpwMtwQzGo6SdyxVs8qqj1TT8Gw7Aw2Zn3tHNSmJO9EKlF6UR/uW3qwKbc4CG+GhaNa0FHlrXLiK7bS80p1VYS0rA5ECpRfnMdI2ljXz0JjsGtYcc1bN36NZVIrOC9DyauKcSv1MZpi32kn1u4rY+YMG9Kie8VYX1azgLnUw2Jj43lx+VxVtW3oz2sIXM2L00E7J1V7+8pe/EIvFWLt2LZs2beL6669n06ZNGSubEJkggUjMa01NTalwtGXLFlRUAhSSTyl5GQ5HJpvGeZ9fSMOzHXRs7cv4swImu0bFZQW0vNxNeCiKI99KeCCa8RDiLLSx/K4q9jzSxEhbltyZVmDNx+sYOjZK/e/aMl2arJaVgSgL1V5fQk6Zg+3/eThrAq2r2M6yO8YnWu3IbFDTLCpWj5lgdxhrjpnSjXkcfb4zozckkt/Zhev8VL+rkC33HcxoV72YEaWHdkIV/TS1NBKLx1i3bh21tbV88pOf5KKLLspY2YTINAlEQow7evRoKhy98cYbqKj4yCePYvIoyshodVavmVgwTjyiU3FZPjnlTnb/uHHOyzGVVR+tYawnzMHftGS6KJMGpii9KJfOHf0ZH4nO5rcQHY1l1TNOKFByQS4j7WOpu9WZlm2ByFPlxFVkp/W1nqwJHpB4RsfsNGV8Ik6zU6NglY+WVxMDm6T/7GXSwptLsQespxwMZi4tv7uKwaOjHHuhC82iYnJoGeniGDZCDPt6GPH30tBwBN3QWbBgAevXr+f//t//S1VV1ZyXSYhsJFMHCzGuoqKCz33uc7z++uscPXqU+/79PpZtWsgBtvMyT7PF+AuNxn5GjEHm6j5CegvMQMMoXbsGgMSDwgtvLsORb52Tckxl32NHOfp8F5AYOa/63UWopsxMjJusI6vHTMkFubiKMz/6UagvQjysY3ZqLLujEnvAkukigZEYNc1VaMt0SbKWq9CGr8aVFWHIHrCw7I5KzE6NeFjPeBgCcBXZKbkgF6sn0XqeqTCkmhSq311ETrkDgKPPd7Hv55l7Ps6Rb2XhzWUoWuI7sGvXQOqmQzyiz1kYMgyDEWOQwQWt7Pa/wsv8np39bxDXY3zms5+hqamJgwcP8uijj0oYEiJN5p4kFyKLlZeX89nPfpbPfvaz9Pb28swzz/DUU0/xxOO/5Qh7seMk1ygij2K85KIqs39vYbBplMGmxC9Yi9uE1WtOjfyWU+5Aj+qMtM9dt5XI8MRs7ha3CUfAmnp+wOo1Z+Zu6GCUrfdPzOReujGP/sPDme3OoygYBhiZv4kOwJ5HmrLiYj9btb7WS+vr2TGQgqGDYQBKZm40JDkLbfjq3LS83E1//cikn7G5lvxu0WMGjoAViytxGRPqn/uw6CqyoZpUhpqDGHEDq9eMxW0iPBClc8fczUmmGzph3xChkgH27ztAUB/BfMTM4iWL+ea/f4N3v/vdMjqcEKchXeaEOAOhUIgXX3yRJ598kqeeeoq2tjZMmMmlkDyKCVCYkeeOltxWDgrs+3mi25HNb8nY3WSr18y6Ty3gwK+b6T2QuYeGVbPKyg9X0/paT6plLdNUk4KzyM5wFswxEliSQ9+B4YzPYZMtXeYUVcG/yE3vvswPZe0uczDaPpYVAxQA5K/0UnJBLrt+mBikIFMCi3NYdEsZW+8/RHgwMyPspX+3Lnl/BYZhZOTcjRlRlKVjNPcdpam9gRhR3G43V155Jffccw+bN2/GZpOWYCGmSwKREGfJMAy2b9+eCke7du1CQcFDgFwKCVCICw/KXNzdVcBs14gG47hL7az8cA07HzqSmBRRYW5bBBQILMqh//Awesyg+PwAsXCcrp0Dc1iI8aKoEy0zZZfkEeqP0L07c0PvllyYS9nGPN78zkHiocxdWNoDFtZ8vI79vzxG36HMDfcL2ROI/AvcLH5fOdv/83BGh3LXbCrrP72Q5pe7af1b5iYgzlvuweaz0PzXbmDyz9Jcyl/lxWTVaHujF9Wk4KtzJ260zPF3Gga4SuysuqeGXQ8dYbh1DLNDIzoWn5OyGIZB1BckVj7M/rcOMmD0YGBQVFTEhz/8Ya6//npWr16NySQdf4Q4GxKIhJghTU1NPPPMMzz77LM887tniBPHgo0ABQQoJEABZmX2nyNRTQreGlfiQteARbeUER2Lc+TpzIx2VnNtMbFQnKN/6UQ1KVhyzBlpvaq7voRgb5jWVzN3kYmSGI470yNyQWLOpEx0MzpetgQiyJ46cRbaEsNrZ/C3c+lFudgDVg4/1Trnx7b5LUSGEt3iKq8oQLOqHHm6fc7LAVBzXTEmm8bBx5tBSQTngSMjc9J6FzUiKEtDtHQf5VjXUSKEMJvNXHDBBak5ghYuXDjr5RBiPpBAJMQsCIfDvPrqqzz77LM8++yz7N69GwAP/lQ4ysE/J61HuUs9GHGD3gNDWL1maq8tpv7ptow845O/ykvde0rY8u8HiY7GTr/BLCm9KBdXiZ0Dv2rOWBkqryjA4jJx6Ldzf8GZzpFvJdgVztjxsyEQZboOABbcUEJkJEbTnzszVobFt5Yz1BrM6E0Ds9PEef+0kMO/a81Iq3LqO/L3bYQHowQW5aBoCj17Z79l2TAM4vlBxgoGObD7AIP0AVBUVMQHPvABrrrqKtatW4fP55v1sggx30jbqhCzwGq1ctlll3HZZZfxzW9+k5aWFv74xz/y7LPP8tvHn6SBfZix4DcKCFCAn3xsimNWypL+i9xk0wCIjiaGpC4+P0A0GJuzbmTduwcJD0ZTYWjJbeV07hyY82eNgj2TL37NDm3Oh+keaRvD7MrsV7C3xsWyD1ay47/qs2rCz7nkLLSx+qO17HmkiYGGzE3COtw2RnRk7m8SpJ/7w21BxnrmPhgGFueQv9LL/l8cIzoaY8+jTQwdm7vn7PJWeDHbE93ykt+NJrtGeDA6699NISOIaWWEppYmWnuPEe2KYB20ctk1l3HTTTdxySWXsGDBglktgxBCWoiEmHOxWIw33ngj1Xq0detWABy48JGPjzz85GFRZv+B2LrrS4iMxjj6l040m0rhGj+dO/rnZDJD1aRQ8+5iunYnhqd1FtqwuE30H57bi9K8FV5q3l3Etu8eSl0MzbWCVV5C/VEGj8793EC+Whf99ZkLAtnQQpSpOvBUOLH6zBlpCYHEnEJrP7WAI0+3zfmzdb46F5GhGKOdITxVTvKXeznyTNucdEUz2TUKVvvo2NZHPKxTcXkBFqdpTroHRoww8fIRhu191B88QpDEeVdeXs4dd9zBFVdcwfr163E6nbNeFiHEBAlEQmRYT08PL730Es8//zzPP/88Bw4cAMBJDn7yx0NS7qw/f+SpcLLk9nK2ffcwkZEYnionsVCc0TkayrvyigL8C9xs/896IHHRMhfBzGTT8C9ypy5K81d66d0/NKfDCi+5vYKx3jCNf+yYs2Mez+w0ZaQbYyYDUaY+c1LV1YXYA1b2PTZ38+doFpXA4pzUyIv5q7z0HRgmFpqDn7W0n+k1n6ij7+DQnHURdBbZMNk0BhtHsbhNrP1kHfseOzbrNyGiRoRBUy/qohANRxoZGEt0g8vNzeWGG27g6quvZsOGDZSWls5qOYQQpyaBSIgs09bWxosvvpgKSI2NjQDk4BtvPcrHSy6aMvPdrRRNSc1ttPyuKsJDUQ490YKiKfjr3PQfGUaPzt5XRvKCyeI2se7TC9j/y2b6D8/dKGhWr5m1n6jjwOPN9B2cw9HXlMRUM4aemFNqtCs0p6PQ+epcLHpvOTsfrJ/zEdYyFYjsAQurPlrLgV8dm9PWIZNNw5FvZehYMDFym8GcDp7gX+hm0S1lbPv+4Tl9jtC/wM2iW8vY+p1DRIZjs37DQzUr+Grc9B1KDC2/4MZSrDlmdv8k8X2a/l03k+JGjAF60KuDdI6009GVGAzC6/Wyfv167rrrLjZt2iQBSIgsI4FIiCzX2NjICy+8kApI7e3tKCjk4MdLAC+5eAhgUawze2AlcfEWG4uTU+5gxd9Xp541ceRbiYf1WZsLRDUr5C310LN/iHhYp+ySPEx2bU5aUMwuU+pZjsorCxnrDdO5fW4mWVRUWPvJBfQdGqLh2blrLVI0hfyV3sRkknP8GyFjLUQKFKz20bVrYFYujE+m+l1F+Be42fa9Q3M2jHXBGh/2gJWm5xLnVPo5Ppuqri4kNhan+a/daFaV3MU5dO8dnLWbKlaPGc2qEuwK4yywsfpjtbz1owaGjgUTASw080NkR5Qwg3ovo64BQt5h2lpb0Q0dn89HdXU1H/3oR7niiiuoqqqa2QMLIWaUBCIhziGGYXDw4EGef/55/vrXv/LKK6/Q2pro9+7EnQpHXnKx45zRUeySM8QDLP1ABQB7f5bo6uOtdjF0bHTW+v8XrvNjsqq0vNqDalIo25RP+5ZeIsOze1FX8+4iRjtDdGzrR7OqqCZl1p8zsuaYiYXixCN6os4Ho3MaUuaqq2JSJgLRXH9GlMTFenggimZRMdk0wkOz2zpjdmroMYN4WKdwnR9nvpUjz8zu0NUWt4mi8wI0v9SFHjMovSiXWFinY2vfrBxPNSnklDtTg2Es/WAlhm6kuiCmf2fNBMMwUHJjtPW0MUgPIf8wvX2JEfmKi4vJz8/nmmuu4Y477mDRokVzMwedEGJGSCAS4hxmGAbHjh3jlVdeSf3Zs2cPABZsqRYkLwFceFEVdUaOq1lUzE4Tof4Ijjwraz5ex+6fNjLYOIojzwoKszaMsavIxtIPVLLzoSOEB6K4S+3ExuKz3tWrfFM+Rev9bPmPg3PSoqBoCuv+cQHduwfm7DkLd4mdZXdWsfsnjYy0jc3JMec6ELmK7Sy/q4o9P21kuHVuPmPlFQXkLfOy9buH5uzcOe+fFtK+pY9jL3XN6rHsAQsmu8Zwyxg2n4WVH65mz8+aZu3ZQ0e+FQwIdofxVDlZfmcV2//zMMHuMDafhehobMae/9MNHVN1jI7Bdjp62xi29DMWSYx+t3TpUiorK1m6dCn33nsvFRUVEoCEOIdJIBLiHaa/v5/XXnstFZC2bNlCOBxGQxvvZpeLBz85+Gesm50910qoP4IRN6j7uxKcBTZ2/vcRIPHswFBzcGbvyI/PHA+w7M5KYqF4ak4he8AyK+FIs6m4i+0MNIyiqAo11xbR+reeWQ1iOeUOQv0RIsOxuenmpEDxeQHat/bNWTeyuQ5EiqZQtM5P25beWW95S/6bWdwmbD7LrA4lbQ9YKLkwlyNPt2PoBt5qJ8NtY7PyLFr6z9jiW8vRbCp7ftqUeDPtZ3MmmOwaOWWOxETTwKp/qGG0M8ThJ1tRNAWbzzJjQ4VHjDBUhBhzDXNkbwOD9BInjslk4oILLmDt2rX4/X7uuusuysvLZ+SYQojsIIFIiHe4cDjM9u3bUwHp1Vdfpbe3FwAbjlQ4ysGHGx+mtzlYg6IpWHPMhPojmBwaG76wmAO/aaZnzyCOfCuOXCs9+2Zubg9FUzDbNSIjsYlnnf67ntH2EJpFnZXR4mx+C0tuK2f/r5oZ6wlj9ZqJDMdmL0QosPpjtQw2jtLw7Ox2e0qaq+dM5jIQzeWoctXXFOGpdLLjv+pnLXgpmoLFbSI8EMWea2XxrWXs+8UxQn2zcENg/GfJVWRj1T/U8tbDDQw1B7G4TUSD8Zk79xXIXZxDsCdMsCtM3jIPC24q5Y37DhALxrH5LISHom/7eHEjxhD9jNoGUcrDNDe1MBJJhC6Hw8Fll13Gxo0bqays5Morr5TJUIV4h5NAJMQ8YxgGjY2NvPnmm2zZsoUtW7awfft2gsHE3WsnOeMhyUcOflx43lZXO7NTIx4x0KM6pRfnUbTOz5vfPggkJoYdbg0y3DIzXZcUTcFb7UqNTLf4tnL0qM7B37SMr8CsXJyu+FA1keEoB37dPPM7H+epdBIZiTHWE575i9DjmB0aaz+5gKbnO2ft+Y+kuQpERev9lG/OZ/v3Ds/aJLyKpmB2aESGY9hzrVhcJgabZm9Y50XvLcPiNvPWww0zv/O0n5WFN5ehmhT2/zLxb+SrczPQMDJj55+71I67xEHbG4kbNes/u5D2N/toeaUb1ayiWd7es3u6oqNVxGhuamHI6CPiH6W3vwfDMLDb7RQUFHDeeedx4403smbNGmpqatA0bUY+mxDi3CCBSAhBLBZj3759k0LS7t27icfjqKi48aZakXLw4cB91v3l01ttVt9bS+f2ftre6MWRZ6VwnZ+jL3TOWDcfT5UTRYGBhlHsAQsrPlzNnp82Mdoxs8832PwWNLPKaGcIV7Gd8k35HHqyhdgsXXgvu6MSPaaz7+ezFyJyl3noPzxMPDy7Q6HNVSDSrCq+Ojc9e2ZvAtIl7y9HNanseaRpVvZvcmgs+LtSjr3UxUjbGM4CG/GoPuMtQs5CG8vurGTXQw2E+iJ4q50YBgw2zky402wqFZsL6NjaR7A7TPH5AQpW+xKtafC2WnYNwyDICLZVBm1trXR0tTOiDhLX42iaxvLlyykqKqKqqoqPfvSjLFmyBJNp5qcwEEKcW+RbQAiByWRixYoVrFixgg9/+MMABINBdu7cmQpJb775JnsPvwmAiobLyMGNFxee1N8mxXzaY6Vf6Ox4oD712uox4yl3oI+/X31NEdHRGM1/7U6scBatO+kXcPGITvuWvtTzBtXXFKFoCkd+33ZmO51C+gWpalIwdCP1zFTeMg/DrWOE+mfuovXIH9rRLIlWO4vbhGpSZ3T/QCo4mB0aJodpxp7TmGv2XCuxYIxoMD4rYcjms6DHdCLDMY691D3jXTRtPguuEjs9ewaJjcUxdAPVlLgZMdo5c8G+5rpijLhBwx/aGesJ076lDz2a+CwDDWcZhNJ+ZssuycPsNNHwh3b0iIGnwknfoWGC3WHa3uhNtQ4B069Da5zB+CBD0X4oCTMUG6CzsxOdOOyE/Px8rr39XaxYsQK/38/NN9+M3+8/u88ihHhHkxYiIcS09fX1sXPnTnbu3MmuXbvYtWsX+/btIxpNDG1rx5kWkLy48WDDcVatSaUX5RIdi9O5vR+rx8yaj9ey59GjDDcHsbhM6HHjbQ3UkL/Si6IqdO7ox+TQWP3RWg4+3sxQ88w9+K6oCus/s4DW13pofa0XzaaioCTmQ5khNe8uwlfrZut3D81Kd8DF7yvH4jax66FZ6JbF7LcQrbynmshwLNXda0YpsO5TC+ivH57RIa1NNg0Dg3hIp+SCAMUX5LL124cw9Jn7B84pd7Dw5jJ2/Fc9sbE4Bat9GHGDrrcGzr7cdg1VU4iMxHCXOVj2wQq2f7+e8FCUgjU+zHaNlld7zni/hmEQIoi5Lk5/qI+25nZGtUGC8cRw2yaTifLycvx+P7feeitr1qxh6dKlFBYWnvVnEULMLxKIhBBvSyQSYf/+/amAlAxLyYEbTJgntSK58eAkB+0MBm8wOzTyV/no3NFPbCxO9TVFeKtdbP/+YQDyV3kZbg6e9YhvZpeJkgsCtL7WS3QkRsVl+TgLbKkuaYqqnPXFqGpSQAE9alC6MY/SC3J5474DM3Zxq5oU7AEro50hTDaNgtVe2t/sm7E5ocxOE6pZmdH5XNLNdiCyes3oUWPGBlNQTQpF6/107hggForjLLAx1huesfpWVIXzP7+Ilr/1jD9Do2DonPXzOunn7pL3lzPSEeLYC10nnPNnwx6w4C510LVrAIA1n6hj4MgIDc+2Y7JriYlvd/af0TNbil1nlBH6g73o+SHGLMO0tbQTI3H+ORwONmzYwIoVK4jH41x33XVceumlWCyWs/oMQggBEoiEELPAMAza2tomBaRdu3Zx6NAhkl85dpw4yUn9cZGDE/e0gpI1x4wlx8Rwy1jiAvILi2h8roPO7f24SuwUrfXT8Gz7WXdf8tW5sXnNtL/Zh6IlLlCPPN1G955BNIuKoRtndQFsdmo4C+0MHBkBBdZ+so6jL3TNWFeuwKIc6q4vYet3D834xKOqSaHisgKaX+6e0X3PRiAy2TXKNuZx9PnOGZ8s2OTQWPepBRx+spXeAzMzWmLuMg8Vm/PZ9r3DYIC3xsVox9hZDSSgmhQUVSEe0clb5qHm2uJEAI8bFK33ExqIpgYdOVOaRaX6XUW0b+tjpHWMgjU+qq4s5I3/LxHw3aV2IkOxaU06GzdijDKMuVYnqAzRfLiNUYYYI9E9T1EUKioq8Hg8XHvttVx44YXU1NRQV1cnAx4IIWacBCIhxJwJBoPs2bOHvXv3snfvXvbt28fevXs5dmziYjgRlNw4cKf+duDGgvXkXe+U8TvhcQNvjYuyjXns/nEjkLgrHh6KcuTpdlDAW+ViuCU47bCkmhUKVvnoPzJCqC9C8YYA5Zvyef2b+8FIPIAeGoic8UAQqlmh5IJcevcPEewOk7fcg39BDgd/8/ZGqks+kK5oCis/VM3RF7vO+gI4nc1vYdkdlRz8nxaGZ7Bb4WwEIneZg4U3lbLnkaYZGXDAV+em4tJ8dj3cgBE3ZmQ494U3l9F3aIju3YM48qwEFufQ+loPevTMfiVrNhWb15IYKESBDf+8mGMvddH2ei82vwVfjYvOnf3T3q9mUXGXOhhoHAEDaq4twuo2s2/832f53VU0v9zNwJERFG289ekkuzYMgyhhLHUG/YP9dHd1E3OHCGrDDAwMpNbzer1s2LCBpUuXAnDRRRdx1VVX4XQ6z6guhBDibEkgEkJk3PDwMPv3758Ukg4ePEhTUxO6nrjwNGFOC0mu1Gs7zlO2KuUu86BHdPoODWPPtbL2E3Xs/kkjg02j+OpcuIsdHHupa9pltXrNuArtqdaB9f+0kK5dAxz9Sydmpwn/Ajc9ewfP+II5sDgHb5Uz9SxK7XuK6XprgKGjZxc+NKtK5RWFtL2emDzWWWgjNhYnPHj2Xd/Su1+ZHNqMjKI3k4EovUxvp5sjJAb5MNk1RjtC2HOtFJ8foOnPHWc96p6nwkneCg/1v0sM4lFzbREDDaP07j+zVibNopK71EPfoWGiozEqLi8gf4WXN/8jMZR9YFEOIx1jZ9TFsfzSfIZbgvTXj+CpcrL8ziq2fe8QY70R/AvcqGaVnr0nb8XUNR1LlUFXcxeDoUHUkhij8SG6OrpTXd0URaGqqoqqqio0TeOqq67i4osvZtGiRXg8njOqAyGEmGkSiIQQWSscDlNfX8/Bgwc5cOAABw8eTP1Jv8NswYYDF3ZcOHCmvXadMPKdzWchMhxFjxkUnefHX+dm78+OAolnILp29tPyag8mu4a32kn/4ZFThhubz4IeN4gMRfHVuVlyW3liEsmxOIXrEiNanelcPppFZfH7yml9vYf+w4mL1MCiHBr/2HHWF/lLP1CBoiozMiR0yQUBSi7MZdv3Dr/tYblnKhBpVpW1n1xAy6vdtL3ee/oNTmPZHZUYupE6N86UoipUXV1I74EhBhsT4btkQy77f3nsjMNy+nlkcmic/7lF7PvFUfoPj2DJMaNqyilHGdQsKr46FwMNo8TG4pRelEv+Si/b/zMxyuPSD1TQd3iY9i19qCYFi9t84v7sOkp+lI6mrsSw1nUK/f399Pb0EmZitDuPx0NxcTFut5vrr78+FXjWrFkjI7wJIbKWBCIhxDnHMAy6u7upr69P/Tly5EjqdV/fRAAxY8GOExtO7DjGXztSyzRl4nmEwrU+RjtDDLeM4a1xseyDlWz5j4NEhqKUXJSLxWWi8Y8dwHhXub7ICRe3qllJdU+quroQDGj8UweqWWXdP9Zx6LetDBwZOaPBCvKWechf5WPvo00AVL+7iMGGEXoPTL8rnGpWMDtNhAeiuIpsLLipjL2PNp1Vi5HJruGrddG9++0/+zSTLUR5yz3014+c1TNOVq+ZpR+o5OD/NDPaHsLqNRMdjZ1RF7bAohw81U4axlv5ln6wks6d/dN6Rix98AdvjYsFN5Sw9f5D6FFj0nkEk8+xJM2iYvNbUnNsVV1dSGQkRuurPVhzzKz/7EL2PNrEwJER3KV2nAU2Orb1p7aPG3FMJQYhRulu7SFiGcNSqdDd0sNQcJAoEwHJ7/eTk5NDUVERV1xxBVVVVaiqyiWXXEJlZeVZz1EmhBCZIvMQCSHOOYqikJ+fT35+PhdeeOEJ7/f19aUC0pEjR2hqaqKpqYnGxkbqj+0mFpsYVcti2LDjwIaTw1vtWHFgw85QvYPeb/SjjplQFIV4WCduSoQfRYVVH6nhyB/a6djah7vETtF5AY483UY8omNxm4hH9FR4AlA06Njan3qmpXCNj5ILchPPIgHFGwIEu8OJAReO071nkO60i2qL04RqTsxD5C5zUHlZAQd+feyUo3npUSMVvuJRg8HGkdTD78UbAgS7QtOebyY2Fk+FofxVXnw1Lg7+T8usDPt9SgosvKmU/voRunYNnHFA81Y7ceTbaHu9l/BglMHGkVTQmE5QNTs1Ft1STtNfOhhuGUM1K1icE79WkwF2ymPXuHDkWVOtWas/WpsYWe7lbkJ9ETq29qNoCkSN1HmkWVU0i0pkOIZmUam5tpj2Lb0Mt46Rt8JL9buK+Nu/7QUD4iE91XoXGozw0jd2MBYdwbXczJHmoww2D6LkxolZw3S19hAhBK2JsplMJspLy4npKhdevoHzzjsPv9+Px+PhyiuvJD8//4zqWQghsp0EIiHEO47f78fv97N+/foT3ovH47S2ttLY2JgKScnA1NzcTFPLPiKR8bvhY6CgYjPsWN+0YxsPS1bdzsD9XWhhM5phwWW2Yc0xEx+fyLL2umIMY7zVQ4FF7y2j9W89HHupKzHSXIGN9m19DDRMhJ/AwhxU0wgDR0Zw5FtZ+sFK9j7SRLA7jLPAhmpRU4MZHPj1xMALhm4QHo4SHW8VWfy+ciIjMY48nXhWxVloI9gVwkhryBrrCU+aNyewMAdFUxhoGMXiNuGpdNKzb2haQz3Hw4lJSec8DAEYEBmJTbsLmqIp5C7JYbBplMhwDFeRHW+NKxFKDKacS0hRwZFvS7W81FxbjMVlYv8vEwE0PBwl2c+ie/fgpFDmLktMNDzaGcKRZ2XpHZXsfbSJYFcYV7Edb5UzFYj2PtrEWH8EZ4GNyEiUYy914S61U3JhbuLf24CFN5YCsO8Xx4hHdaw5ZgyzgZIf5+iRJg5+9wCxvAjmQnjmpS2EjCDkxBgeHSaebDV7azzwVJfj9XrRNI077ryDhQsXYrVaqampYfXq1ZhMcnkghJg/pMucEEKk0XWdnp4empubT/qnvb09NRltkgkzVuxYseGwObFpdtRRMzazndpNZQzuCRHpMChbV0jtNSWpO/nV7yokMhqn5eVuFBXylnkJ9oTxL3TT+moP8YhO7fUlOPOtqclRl36wks4d/fTsHcRk17DnWhlpHcPQDXKX5qBHjcQgEgELaz+5gD2PNDLQMEpOuQN7rpXO7f1TfXQA8lZ4qb2umC33HSAe0fHVuQgPRAl2h09bd/4FbgrX+Djwm+ZpdzU70y5zqllh0c1ldGzvp+/Q6bsMOvKsWL1m+g+PoFlUzvv8Iup/30b3KSYgLVjjY6wnzNCxIN5qF8vuqGTrdw8R6ksOMqDQs3cIRVVwldgZ6wkTG4uTu9RDweqJro0r76lmtCtM/VOtaFaVkgtz6Ts4hCPXRtfuATCgdGMeZoeWaAVS4MIvL6X+mRa6j/ShenWctRba9nZhLlRoP9xFKDaG6tcJjo0y2D80qSsbgKZpuFwuFi1aRFVVFfF4nNzcXK666ipKS0txOp3U1dVJ4BFCiDTyjSiEEGlUVU11x1u7du2U6+i6Tm9vL+3t7Sf8aWtrS71uaW8gFArx1p9fn9h4K5i3WTAbVixYOfymG4tiI2YY2E0Ocmqr6Osepu35VoqW51OzuYy3vn8Us8NEyYW5REdihPrDxEKJZ00sLhMLbijl9f9vP7FgYqJQk02j79AwoYEoR1/sJDyU6CLoqXQSWJiTCkTL7qykZ+8gHdv60WxqYvS8fYP0HxpOtbpUXVlIf/0IjX/qOGGC3BPqJW4QCcZTYcjqMb+tUe3SWXPMhIeiiedsgnH0k7ReHT8haMFqH75aF/2H64lHdN7894PoMR1PpZORjjHiIZ3CtT5yl3rY89MmAIrW+ek9MMTQsSDh4UiiDsc/h6/WlWiN2zuEyaay8kPVHHyihehojFgo8W+Tv8KL2WVi3y+OEQ3GWPmpSupfaKGluZWYI4JW66C/uw1THrx6YC8RPUQsP8pYeIy/fu13RIzx8DkANI1/rm4TxcXFlJeWous6OTk5XHrppRQVFdHX18fKlStZsWIFgUAAVVVnpM6FEGK+kBYiIYSYJYZhMDg4SHd3N93d3XR1daVeT/Wnq6trorvecTRMOOx2zJoVY0TBYrJSvDyP0aYIasRETq6LomW5DOwfw2IzY7XZUCIK1ZeX0PpCL2aTBUVRqb6qiB0P1qOqClVXFxEaiNDwTDu+WhdLP1DJzv+uZ6Q9RMnFuVhdZhr/1I5qVvFUOlFNamri1+hIjJILAmg2jWMvJIYtN9m1VFByFtpY/dFa3vpRA0PHTj50+HRaiHLKHaz4+2p2PFif6rqWfqzyzfnEQ3FaX+vF4jKx9lMLOPxUC3rMYLBpFD2qU3V1EeGhKK2v9uAqsrHqH2rZ+7Mm+utHqHl3EVavhcY/tqPHDVZ/rDbxGp2YEaX4Ej9Hnm8Fs4Fi14lGoljzNdr39mAOqAz1DGHyq/Q2D6A4dIb7RonEw0TiESKRqVvWzGYzdrudiooKioqKCIVCOJ1OLr74YvLy8ujo6GDp0qUsX76cQCCAz+eTwQqEEGKWSCASQogsYRgGw8PD9Pb20t/fz8DAAP39/ak/6f/f19dHX18fg4ODqeXpg0VMRUHBpJkxq2bsOTaUiIrZZMZqt6GhkVPgYrQljDPPjqKDI9dO795hnHk2PKWJrnMjrSGsbiu5dTmMtIcxWzXiQQOr24KnzEnfgWGIKyiKiqfUSceb/dh9VgILPKiKSstLPahmDWfAymhrmLLL81AUhWN/7sJZaiUaiRMeDFN6cS6GYjDYMsLAsRGK1vsJ9oXQ4zqxWBz/QhfBnhCjfSFUC+gY2HPN9B4cIjQcxlvnQrMqDDaPEOwL41/kYmwwjB7XiYaimD0ag50j6MTQ1TiRaIRoLMrYcIi4EiMSiXC6X48mkwmr1YrX66WoqAiTyUQ4HGbNmjUUFBTQ09ODw+Hg4osvxufz0d/fT21tLVVVVbjdbgk4QgiRJSQQCSHEO4BhGASDQUZHRxkdHWVkZGTSn+Hh4dR7fX199Pb2oigKo6OjtLW1EQqFiEajBINBhoaGUFWVWCxGPB4nGAyiKAqxWCz1Jx5/+5OyzgZN0zCZEiMDqqqKyWTCZrMRiUSw2+2YTCZMJhOxWIzS0lLsdjvhcBi73U51dTV+v5+mpiYWLFhATU0NkUiE/v5+zj//fHw+H2NjY3g8HkpLS3E4HBJqhBDiHUACkRBCiLMSi8UYHR3FMIxUcBocHERVVcLhMKFQiGAwyMDAAC6Xi66uLnRdp6+vD03TCAQC7N69G4AVK1aknr2qrq7G7XajqiqdnZ2sXLkSh8NBe3s7OTk5FBYW4nA4aG1tpaKiAo/Hg2EYRCKR1JDQuq7LszRCCCGmRQKREEIIIYQQYt6S22dCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYtyQQCSGEEEIIIeYtCURCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYt0yZLoAQ70SdnZ0MDAxkuhhCCCHeYbxeLwUFBZkuhhDvKBKIhJhhnZ2dvPem94KW6ZIIIYR4p7HZbDzyyCMSioSYQRKIhJhhAwMDoIHpYA7KmAUl1TFVRVGVxEsl7e/x14qqwvji1EaKAuqJ6061/clfp+1TTf1P2vLxF6oysbKiTHSoTa7HxD6N9PeZOI6R2tfEciO9HMnt0zvrppdj/LVx0tcTGxlpH+WEzr9K2rpK2rqk7Sf1WThx/2nLUBSM48o65TYnbJ9WL+nbT3Gs9Pcn7eP4ssAJZTl+m9O9zzTfP+myU60z6X1jyveNKctgTN7fCZ/FOHH/SuIYJz3+pH1NsT1G2uluTKyatq6Sti/luGMpyuTtJ1Y9cXtVMdKOYYxvk1iefK2kLQdQMVLlTmw/sa/kcZLbHP9+8lgqE3+nlimc+L5y3L7SXif/VtO2UdBT+0ouUxU9bd3kcj1VPxoT5dbG100eR1MMlPFlWlpZtbRjpbZXDDTSjpUqq55WluT2+sQxTrJNsozJrxBV0acsa3pdqqSVL62syf1MqpfUfkEbP0uS54qmgDL+fxrKpNeJ9RTU8deqoqKicLTVxL9918vAwIAEIiFmkAQiIWaJEjShBs1pIUid9BpIXp2ML1LTroZODERKeqBJDz7p605afvy6x21/fLhKK4uhpF2NThGyUiEn/f3xS7TEChPLJy4VE+sk354USFL7T3utTrX8JMvU4/d1inVT7ysnrpsWAqcMVOlh5mSvU9sraa9PLNfkdad+PeX7nOb902x/uuNPGQ458bNOdazJ758mEB237qRjnrDuSQJR+vLU8acKNNMIROmvp9heSQsvU20zcbpMXLgrqXIZk5an9pO2LHmRzRTboBhpnyEtEKVvf5LwcsKyk74/VWCYCA5a2jbp60IiDKQvm1g3bVn66+NChqboqOOVlb6vxGvGX0+EsGRg0JSJwKElv8aYOP7kfelp2yRf6xP7TSvLRLjRU2XV0upEI718kwPR5DJPLl+y3BPLJgKPlhZ+NCW5npq2LPF/QojZIT9dQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYtyQQCSGEEEIIIeYtCURCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLVOmCyDEO5XhiKErKkrqtoOKoiqJl0ra3+OvFVWF8cWpjRQF1BPXnWr7k79O26ea+p+05eMvVGViZUWZuF2SXI+JfRrp7zNxHGPSMcfXndhB2rLkfzjhvdQ2OhPHUpKvJ9Y10j7KCftK+yikbT/5fWWKdU/4qGkvjlvv+G1O2D6tXqYoV3r50983pihL+jEm7WuKbU73/lRlner9ky471TqT3jemfN+YsgzG5P2d8FmME/evJI5x0uNP2tcU22Okne4TJ5CStq6Sti/luGMpyuTtJ1Y9cXtVMdKOYYxvk1iefK2kLU/tJ1UWgxPqCiO1L0Mx0NPeNyatk/hbH1+mKhOfUSW5zEgd//jXyb/VtG2U8R/O5NeJioGq6GnrJpfrqfrRkp8PA2183eRxNMVAGV+mMVFXWtqxUtun7UtN+xqaOKaSeq2hoIyvoaXWM1DHK1NVlInXqff1KcuaqiuM1Ovjy5rcz6R6SSufNn6s5D+VpoAy/n+Jsk68TqyXVj5FRUXhaKtctgkxG+QnS4gZpus6JpOJ2MKhTBfl3GAc9/cMmeq6W4h3iok4lLp3MA+lJ9z50+HFZDKh6/P3X12I2SCBSIgZpqoqsViMr3zlK1RUVGS6OEIIId4hjh49yte+9jVUdf4EQCHmggQiIWZJRUUFCxcuzHQxhBBCCCHEKcgtBiGEEEIIIcS8JYFICCGEEEIIMW9JIBJihgUCAe6++24CgUCmiyKEEOIdRH6/CDE7FMMwZnhsJyGEEEIIIYQ4N0gLkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3jJlugBCvFNEIhF++MMf8qc//Ynh4WFqamq45557WL9+faaLJkTW+c1vfsP999/P/v37GRoawu/3s2TJEu69915uvvnmTBdPiNMKBoP84he/YN++fezfv5/h4WG+9KUvcc0110xa73e/+x1/+tOfOHbsGCMjIwQCAVavXs3dd99NUVHRpHX7+vp48MEHee211wgGg1RUVPDBD36QzZs3n3D8rVu38sgjj9DQ0EA8Hqe0tJSbb76Zq6+++qz2+dJLL/H8889z4MAB+vr6yM/P54ILLuCuu+7C7XbPUK0JkZ0kEAkxQ77+9a/z4osv8t73vpfS0lL+8Ic/8M///M985zvfYcWKFZkunhBZ44EHHuDjH/84RUVF3HjjjQQCATo6OtiyZQtPPPGEBCJxThgcHOTHP/4xBQUF1NbWsmPHjinXO3z4MEVFRVx00UW43W7a29v5/e9/z9/+9jd+9KMfkZubC8Do6Cif+MQn6O/v55ZbbsHv9/PCCy/w1a9+lVgsxpVXXpna5yuvvMKXv/xlli5dyt13342iKLzwwgv827/9G4ODg9x6661nvM/77ruPQCDAVVddRUFBAUeOHOGJJ57g9ddf54c//CFWq3UWa1OIDDOEEG/b3r17jY0bNxqPPfZYalkoFDJuu+0242Mf+1gGSyZE9lmzZo1hsViMzs7OE97r6enJQImEOHPhcDh1vu7fv9/YuHGj8cwzz0xr2wMHDhgbN240HnnkkdSyxx57zNi4caOxdevW1LJ4PG585CMfMf7u7/7OiEQiqeWf/exnjRtvvNEIh8OpZdFo1LjtttuMu++++6z2uX379hPK+Yc//MHYuHGj8bvf/W5an0uIc5U8QyTEDHjppZfQNI3rr78+tcxqtXLttdeyd+9eOjs7M1g6IbKP2WzGbDafsDwQCGSgNEKcOYvFctbna2FhIQAjIyOpZbt27cLr9bJ27drUMlVV2bx5M319fezcuTO1PBgM4na7sVgsqWUmkwmPxzOpJedM9rl69eoTynnJJZcA0NTUdFafU4hzhQQiIWbA4cOHKS0txel0Tlq+ePFiAOrr6zNRLCGy0m233cbo6CjLli3jC1/4As888wxDQ0OZLpYQs2pwcJD+/n4OHDjA17/+dYBJQSUajU7ZLc1mswFw8ODB1LJVq1bR2NjIQw89REtLC62trfzkJz/h4MGDvP/97z+rfU6lt7cXAK/XO81PKcS5SZ4hEmIG9Pb2TnmnMLmsp6dnroskRNb6/Oc/TyAQ4IEHHuBb3/oW9913HyaTiWuvvZb/+I//oKqqKtNFFGLG3XzzzUQiEQA8Hg+f/vSnJw26U15ezrZt2+jo6Ei1IAG89dZbwOTfI3fddRft7e088sgj/PSnPwUSIedf//Vf2bhx41ntcyqPPfYYmqaxadOms/3YQpwTpIVIiBkQDoen7P6T7M4QDofnukhCZC1FUfjQhz7Em2++SXd3N0888QQ33XQTTz75JNdddx3xeDzTRRRixn3zm9/km9/8Jp/4xCfIz89nbGxs0vvXXXcdqqry1a9+ld27d9Pa2sqjjz7Kyy+/DEz+PWI2mykrK+PSSy/lq1/9Kl/5yldYuHAhX/va19i7d+9Z7fN4zz33HE8//TS33norZWVlM1kVQmQdaSESYgZYrVai0egJy5N3A2V0HiGmFggEuOGGG7jhhhvo6enh+eefp76+noULF2a6aELMqDVr1gCwYcMGLr74Yu666y7sdntqVMWamhr+1//6X3zrW9/iE5/4BAB+v59PfepTfOtb38Jut6f29e1vf5t9+/bx0EMPoaqJe9uXXXYZd955J/fffz8PPvjgGe8z3a5du/jGN77Beeedx0c+8pHZqRAhsogEIiFmQCAQoLu7+4Tlyf7XyWFVhRDw4osvsmnTJhRFSS2LRqP09fUBE883CPFOVVJSQl1dHX/+858nDTN/6aWXctFFF1FfX4+u6yxYsCA1nHeylSYajfL0009z++23p8IQJAZVOP/883niiSeIRqOpXgvT2We6+vp6vvSlL1FdXc2//uu/YjLJpaJ455OzXIgZkJyDYnR0dNLACvv27Uu9L4RIuOGGG8jJyWHDhg1UVFQQjUZ57rnn2LdvH7fccgsVFRWZLqIQsy4SiaR6EaQzm82pAXkAtm3bBsC6deuAxOAM8Xh8yq6l8XgcXdfRdf2M9pnU2trK5z//eXw+H9/85jdxOBxn+emEOLfIM0RCzIBLL72UeDzOU089lVoWiUR45plnWLJkCQUFBRksnRDZ5etf/zqrV69my5YtfO973+PRRx/F5XLxwAMP8Nhjj2W6eELMmFgsxvDw8AnL9+3bR0NDA4sWLTrl9s3NzTz55JNceOGFqdYcn8+Hy+Xi5ZdfntRVOxgM8uqrr1JeXn7KbtpT7RMSPRo+97nPoaoq9913n4wsJ+YVaSESYgYsWbKEzZs389///d8MDAxQUlLCs88+S0dHB1/84hczXTwhssq9997Lvffem+liCPG2/eY3v2FkZCTVPfrVV1+lq6sLSIwqZxgGt9xyC5s3b6aqqgqbzUZDQwN/+MMfcDqd3HnnnZP2d8cdd7B582by8/Npb2/nySefJCcnh8997nOpdTRN47bbbuOhhx7iYx/7GFdffTW6rvP000/T3d3NV77ylTPeJ8AXvvAF2traeP/738/u3bvZvXt36j2fzzdpRDwh3mkUwzCMTBdCiHeCcDjMD3/4Q/70pz8xMjJCdXU199xzD+edd16miyaEEGIW3HrrrXR0dEz53i9/+Utyc3N54IEH2LFjBx0dHYTDYXJzc1m7di133nknRUVFk7b5P//n/7B79276+/vxeDxcdNFFfOhDH8Ln852w/+eee47HH3+c5uZmotEoNTU13HbbbVx66aVntc/kJKxTWbVqFffff/80a0WIc48EIiGEEEIIIcS8Jc8QCSGEEEIIIeYtCURCCCGEEEKIeUsCkRBCCCGEEGLekkAkhBBCCCGEmLckEAkhhBBCCCHmLQlEQgghhBBCiHlLApEQQgghhBBi3pJAJIQQQgghhJi3JBAJIYQQQggh5i0JREIIIYQQQoh5SwKREEIIIYQQYt6SQCSEEEIIIYSYt/7/F37nGIXDMAIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddZhc1f3/X3fcdmfW3SWebJSEhOAeIECQoCG4FmkpfKGFCqW0UKw/aItTIFCgNGhwgoQQd1/JuruMn98fkx02yWpWZmf3vJ5nnmRn7tz7mbln7j3v8zFFCCGQSCQSiUQikUgkklGIKtAGSCQSiUQikUgkEkmgkIJIIpFIJBKJRCKRjFqkIJJIJBKJRCKRSCSjFimIJBKJRCKRSCQSyahFCiKJRCKRSCQSiUQyapGCSCKRSCQSiUQikYxapCCSSCQSiUQikUgkoxYpiCQSiUQikUgkEsmoRQoiiUQikUgkEolEMmqRgkgikUhGAKmpqaSmpgbajEHjwQcfRFEUvvnmm15tv2TJEhRFoaCgYFDt6oqCggIURWHJkiUBOX4wEsxjeKjGW19/BxKJpHdIQSQZVSiK0uND3mgkkt6hKArHHXdcoM0IGMP187/88su9uta1PwIlGiWH037uXn755UCbIpGMKjSBNkAiCQQPPPBAl68F6wqlZHTz5ZdfBtqEYcXDDz/MPffcQ0JCQqBNGXJycnK6vcYBfPbZZ/z444/ExcURERExRJZ1TzCP4aEab7fccgsXX3wxycnJg3ociWS0IQWRZFTy4IMPBtoEiWRAycjICLQJw4q4uDji4uICbUZAyMnJIScnp8vX16xZwyOPPILBYGD58uWEhIQMnXHdEMxjeKjGW2RkJJGRkYN+HIlktCFD5iSSLsjPz8dmsxEeHs7+/fsPeq2lpYVx48ahVqsPCrFrjyPPy8vjb3/7G2PHjsVgMJCYmMgdd9xBY2Njp8dav349559/PtHR0ej1elJSUrjpppsoKys7bNuKigp++ctfMmbMGMxmMzabjTFjxrBkyRLy8vL82/UUetFZuE/H+PQ33niDo446CovFcpDXrLW1lYcffpicnBzMZjMWi4U5c+awbNmy7r/QQ2jPF2hubuaOO+4gKSkJo9FITk4O//vf/wBwu9089NBDZGVlYTAYyMjI4O9///th+3I6nfz973/njDPOICUlBb1eT3h4OCeddBKffPJJt8dvaGjglltuISEhAYPBwPjx43nqqacQQvT6sxx33HEoioLD4eD+++8nLS0NvV5PRkYGv/vd73A6nYe9p/37Ly8v55prriEhIQG1Wn3Q+frPf/7D/PnzsVqtGI1GJk2axMMPP4zD4ejy83TGsmXLOP7447HZbBgMBsaNG8cf//jHTvcDsGvXLpYuXUpqaip6vZ7o6GiOOeYYnn32WeDnsQWwcuXKg8KvDl1s+Omnn1i0aBGxsbHodDqSkpK4/vrrKS0t7fTY69ev57TTTiMkJITQ0FBOOukkfvzxx0637Y7Ocjo65vUUFBRw8cUXExkZicFgYMaMGXz44Ye92ndfPn/7cftyrL6er75QXFzMwoULsdvtvPjii8ycObPX73355Zc5//zzSU9Px2g0Ehoayty5c3nttdcO2/a///0viqIwe/ZsXC7XQa9t27YNk8lEfHw8lZWV/uc7G8NOp5OnnnqKadOmERYWhslkIjU1lXPOOYcvvviiV3YPxXV5IMbbcccdx1VXXQXAVVdd1WlYY1c5RO3Xk+rqaq677jri4uLQ6/VMmDCBl156qdPP53A4ePDBB0lPT0ev15OWlsb999+Pw+EYtuGgEsmgISSSUQQg+jLs3377bQGIo48+WrhcLv/zV1xxhQDEgw8+eND2V155pQDE2WefLWw2m7juuuvE3XffLaZMmSIAMX36dNHW1nbQez744AOh0+mEVqsVixcvFvfcc484+eSTBSDi4+NFXl6ef9uWlhaRkZEhAHHyySeLu+66S9x5553i/PPPFzabTXzwwQf+bV966SUBiJdeeqnL7+LYY4896LkHHnhAAGLBggVCr9eLRYsWiV//+tfihhtuEEIIUVdXJ6ZOnSoAMW3aNHHLLbeIm266yW/Tfffd1+vvNiUlRcTHx4vZs2eL7OxscfPNN4trr71WWCwWoVKpxBdffCHOO+88kZCQIK655hpx8803i+joaAGIN99886B9lZWVCZVKJebNmyeuvvpqcc8994grr7xShIeHC0A899xznR4/Li5OzJgxQ2RmZoo777xT3HLLLSIuLk4A4qabbur1Zzn22GP95z0uLk7ceuut4s477/R/LwsWLBBer/eg9wBi0qRJIiUlRUyYMEHccsst4rbbbhMff/yxEEKIe++9VwAiMjJS3HDDDeKXv/ylmDBhgv+8ORyOwz5PSkrKYbZdddVVAhCJiYli6dKl4s477xRHH320AMRxxx130LgWQogPP/xQGI1GoVKpxBlnnCHuuececcMNN4g5c+aI1NRUIYQQGzdu9I+VlJQU8cADD/gfX3/9tX9fL7zwglCr1cJkMomLL75Y/OpXvxILFy4UKpVKxMXFif379x907B9++EEYjUahVqvFBRdcIO69915x+umnC51OJ0477TQBHLT/7mj/Lebn5/ufy8/P93/uqKgocdRRR4nbb79dXHHFFUKv1wuVSiW++uqrHvfdm89/pMfq6/nqCy0tLWLatGl9/q22YzAYxPTp08WVV14p7rnnHnHttdeKhIQEAYj777//sO1vvvlmAYhf/epXB9kwbty4Tj9/Z2N48eLFAhATJ04Ut912m/j1r38tLr/8cpGWlibuuuuuXtk92Nfljsfoz3h76aWXxDnnnCMAcc455xw0rurq6oQQP1+jD/0dAGLKlCkiOztbTJw4Udxyyy3i2muvFTabTQDi5ZdfPmh7r9crzjzzTAGIrKwsceedd4pbb71VJCQkiIULF3Z6f5BIRjJSEElGFe2CqOONpuPj4YcfPuw9N954owDEPffcI4QQ4uWXXxaAOP7444XH4zlo2/abYkREhCgoKPA/7/F4xHnnnScA8fvf/97/fFNTkwgPDxcqlUp8++23B+3rz3/+s1/4tPP+++8LQNx+++2H2elwOERjY6P/7/4IIpPJJDZs2HDYe9o/3yOPPHLQ821tbeLUU08ViqKIjRs3dnq8Q0lJSfGLBbvd7n/+22+/FYAICwsTM2bM8E8EhBAiNzdXaLVakZOTc9C+7Ha7KCoqOuwY9fX1YsKECSIsLEy0trZ2evy5c+cedPyamhqRnp4uALFy5cpefZZ2QZSVlSVqa2v9z7e1tYnZs2cLQLz66qsHvad9LF5++eWHTXJXrVolAJGUlCTKysr8z7tcLrFgwQIBiIceeuiwz3PoZLJ9DJx77rmHff72c/3EE0/4n6uqqhKhoaFCq9WKb7755rDPeeh33N2kaffu3UKr1YqMjAxRXFx80GtffPGFUKlUYuHChf7nvF6vGDNmjADE//73v4O2f+KJJ/zf10AIos4WM1asWCEAcfrpp/dq/0J0//mP5Fh9PV99wev1ikWLFvn3f6hA7w379u077DmHwyFOOOEEodFoDjvPdrtdTJ06VSiKIj755BMhhBBLliwRgPjtb3972L4OHcP19fVCURQxffp04Xa7D9u+urq6V3YP9nW54zH6O956um53J4gAcfXVVx/0XW3fvl2o1Woxbty4g7Z/9dVXBSCOOeaYgxZX6urq/L9DKYgkowkpiCSjivabRlcPq9V62Hva2trElClThKIo4umnnxZms1lERUWJ0tLSw7Ztvyl2vLm2k5ubK1QqlX+VXQghXnvtNQGIxYsXH7a9y+USqampAvCvpLcLonvvvbfHz9ofQdSZ4KqurhZqtVrMmDGj0/1t2rTpsNXg7mgXJJ1NstLS0gQgvvzyy8NeO+6444RGo+l0gtQZjz32WKfipv34h054hPj5u1uyZEmvjtEuiA4VPUII8fXXX/tXiTsCCJ1OJyoqKg57zzXXXCMA8c9//vOw13bv3i1UKpVIS0s77PMcKohycnKERqM5SFS243a7RUREhJg5c6b/uUcffVQA4rbbbuvu4x70GbqaNN1+++0CEB9++GGnry9cuFCo1Wq/iP/+++8FIObPn9+pre3etoEQRCkpKZ2On+TkZBEREdGr/QvRO0HUl2P19Xz1hfvvv18AIicnRzQ3Nx/RPrri3XffFYB45ZVXDnttz549wmKxiKioKPHXv/7Vf447+04OHcMNDQ0CfB76IxFw7Qz2dbnjMfo73vojiEwmk2hoaDjsPfPnzxeAaGpq8j934okndrno0/75pSCSjCZkUQXJqET0IT/EYDDw1ltvMWPGDG699VYUReGdd97pNoH22GOPPey59PR0kpKSKCgooL6+HpvNxoYNGwA44YQTDtteo9Ewf/58CgoK2LhxI8nJyRx77LEkJCTw5z//mQ0bNnDGGWcwd+5ccnJyUKvVvf5MPTFr1qzDnlu7di0ej6fLPIn2PIGdO3f2+jg2m63TROr4+Hjy8/OZPn36Ya8lJCTgdrspLy8/qKLT9u3b+etf/8q3335LWVkZdrv9oPeVlJQcti+NRsPRRx992PPtsfMbN27s9WeBzs/7vHnzUKvVne4rNTWV6Ojow57vblxkZ2eTmJhIfn4+DQ0NWK3WTm1pbW1l8+bNREZG8sQTT3S6jV6vP+h8rV69GoDTTz+90+37Qnvez8qVK1m7du1hr1dWVuLxeNizZw/Tp0/3f+bOvkO1Ws28efPIzc3tt11Al7+XpKSkI8pXGohjHcn56i3Lli3jj3/8IzExMSxfvhyz2XzYNgUFBZ3mG3b8rRcWFvLII4/w5ZdfUlhYSFtb20HbdvYby8rK4h//+AeXXXYZv/rVr4iMjOSNN97o1fUqNDSUs846iw8++ICcnBzOP/98jjnmGI466ihMJlPPH/wQBuu63BNDNd6ysrIIDQ3t9DgAdXV1WCwWwHdtU6lUnV7/5s2bN2A2SSTBghREEkkvyM7OZvLkyaxatYrx48dzyimndLt9TExMp8/Hxsayf/9+GhoasNlsNDQ0AHQprtqfr6+vB3wThNWrV/PAAw/w/vvv8+mnnwK+ykM33XQT999/P1qt9kg+4mF2HkpNTQ3gE0adTXDbaW5u7vVxuprMazSaLl9vf61jovbq1as54YQTcLvdnHjiiZx99tmEhoaiUqnYtGkTy5cv7zQhPTIystOJSvvnbz8/vaWz867RaIiMjDwoefzQ4xxKb8ZFYWEh9fX1XX6HdXV1CCGoqqrid7/7Xa/sbx9nA1E6uH28/PWvf+12u/bx0v6Zu/vtDBQ2m63T5zUaDV6vd8CO05djHcn56g1r1qxh6dKl6PV63nvvvS4n8AUFBZ0et10Q5eXlMWvWLOrq6jjmmGM45ZRTsFqtqNVqCgoKeOWVV7os+nDKKacQGhpKY2MjF1xwQZ/G11tvvcUjjzzCG2+84S8lbjAYWLRoEY8++miX46UzBuu63BNDNd66Ow6Ax+PxP9fQ0EB4eLj/tY705TuVSEYKssqcRNIL/vznP7Nq1SoiIyPZvn07Dz/8cLfbV1RUdPp8eXk58PNEv/3f9ucPpb2aUcdJb2JiIi+88AKVlZVs27aNp556ioiICH7/+9/z+9//3r+dSuX7ebvd7sP229ONvL2CVkfabbjjjjsQvnDbTh9ff/11t/seDP74xz/S1tbGZ599xieffMITTzzB73//ex588EGOOuqoLt9XXV190CShnUPPU2/p7Ly73W6qq6s7Xbnt7HvueNy+jIuu9jF16tRuz1dHb2n7hKqzlf6+0n78hoaGbo/dvmrfvn1Pv52RypGcr54oKSnxV5R77rnnmDNnTpfbHnfccd0e629/+xs1NTW88MILfPPNNzz11FP84Q9/4MEHH+TUU0/tcr9CCK644goaGxuJjIzkX//6F99++22vP4PRaOTBBx9kz549FBYW8tprrzFv3jxee+01Fi1a1Ov9wOBel4ON0NBQamtrO70/dPU9SSQjGSmIJJIeWLVqFb/97W8ZM2YM27ZtY8yYMTzwwAN8//33Xb5n5cqVhz2Xl5dHUVERqamp/onn1KlTAQ4roQq+ifR3330HwLRp0w57XVEUJkyYwK233srnn38O4C9XDRAWFgZAUVHRYe9dt25dl7Z3xaxZs1CpVH6bhhP79u0jPDy80zKxnZ2LdtxuN6tWrTrs+fbz0X5+ektnx/r+++/xeDx92ld342Lfvn0UFxeTlpbW5YowgMViYcKECWzfvp3a2tpeHXf27NkAXZYqPxSVStWpoOy4r96Ol/Yx3tl36PF4uv29BYruPn9fOZLz1R2tra2cffbZlJWV8etf/5rLL7+8X/vbt28fAOeff/5hr3X3G/vrX//KihUruPTSS/nqq6/QarVccsklfg9iX0hKSuLSSy/l008/JTMzk++//75P+xmK63J/afdYD9S46oqpU6fi9Xo7vf4Nx9+aRDLYSEEkkXRDXV0dixcvRq1W8+abbxITE8Nbb72FRqPhkksu6XLi8uSTTx7Uu8jr9fKrX/0Kr9fr7zMBsHDhQsLDw1m2bJk/f6OdJ554gvz8fE466SR/mMv27ds7Xb1rf65jXP2MGTNQqVS88cYbtLa2+p+vra3l7rvv7vN3ER0dzaWXXsq6dev4wx/+0OkNOzc3l/z8/D7vu7+kpqZSW1vLli1bDnr+hRde8IcVdsW99957UKhPbW0tf/zjHwEOOle94Q9/+AN1dXX+v+12O/fee2+f97V06VLA5/mqqqryP+/xePjlL3+J1+vl6quv7nE/d955J06nk6VLl3bqFayrq/PnSwBceeWVhIaG8uyzz3a6il9cXHzQ3xEREZ0KboBbbrkFrVbLHXfcwZ49ew573el0HiSWjj76aMaMGcO3337L8uXLD9r273//+4DlDw0k3X3+I6Gv56srhBBceeWVbNiwgbPOOos//elP/batvT/QoSLh008/5fnnn+/0PatXr+a+++4jMzOTZ599lkmTJvH4449TUlLClVde2aO3q6qqiq1btx72fEtLC83NzWg0GnQ6Xa8/w2BdlweSiIgIwJevNZhcccUVANx///0H9UlraGjgD3/4w6AeWyIZjsgcIsmopLOiAO0sXLjQ3+V96dKlFBYW8tRTT/mfmzJlCo899hi33HILS5Ys4f333z9sH+2FDi666CKsViuffvopmzdvZvr06QeJEYvFwosvvsgFF1zAscceywUXXEBycjLr16/ns88+IzY2ln/+85/+7T///HN+9atfMWfOHLKzs4mOjqa4uJjly5ejUqn41a9+5d82Li6OSy+9lH//+9/k5ORw5pln0tjYyMcff8z8+fP7XDAAfBPTvXv38tvf/pZ///vfzJs3j5iYGEpLS9m5cydr165l2bJlpKWl9Xnf/eH222/n008/Zd68eVx44YVYrVbWrVvH999/z6JFi3jnnXc6fV9cXBwOh4OJEydy9tln43K5eOeddygrK+Omm25i/vz5fbJj3LhxTJgwgUWLFqHValm+fDm5ubmceeaZfVqhP/roo7n77rv5y1/+wsSJE1m0aBFms5lPPvmEbdu2MW/evIPOdVcsXbqU9evX88wzz5CRkcGpp55KcnIytbW15Ofn8+2333LVVVfxj3/8A8Cf8L5o0SKOP/54Tj/9dCZPnkxjYyNbtmyhqKjoIMF74okn8uabb3LWWWcxbdo0tFot8+fPZ/78+YwdO5YXX3yRpUuXMmHCBE477TSys7NxuVwUFhby3XffERUVxa5duwCfx/OFF17g5JNP5vzzz+e8884jMzOTTZs28eWXX3LaaaexYsWKPp2Pwaa7z38k9PV8dcVjjz3GO++8g0qlIisr66BQ2s5YsmRJl01927npppt46aWXuOCCC1i0aBHx8fFs27aNFStWcOGFF/LWW28dtH19fT2LFy9GpVLx5ptvEhISAsANN9zAl19+yTvvvMPf/vY37rrrri6PWVJSwtSpU5k0aRKTJ08mKSmJxsZGPvzwQ8rLy7ntttv8++0Ng3VdHkjmzJmDyWTiiSeeoKamxp87d+uttw5oiN4VV1zBm2++yYoVKw66/r377rvMnDmT3bt3+8OuJZJRwaDVr5NIhiH0UHabDuVOn3rqKcGBZn6dce655wpA/O1vf/M/1156NTc3Vzz66KNizJgxQq/Xi/j4ePGLX/yi05KoQgixZs0asXDhQhEZGSm0Wq1ISkoSN9xwgygpKTloux07dog77rhDTJ8+XURGRgqdTidSUlLE+eefL3744YfD9mu328Uvf/lLkZCQ4O8J86c//Um4XK5uy253V9rY4XCIp59+WsyZM0eEhoYKnU4nkpKSxAknnCAef/zxXvcG6aqRqBA/l7HujM7K2wrha6R41FFHCYvFIqxWqzj55JPFypUruyxj2378+vp6cdNNN4n4+Hih0+nE2LFjxZNPPtmnMr/t9trtdnHfffeJ1NRUodPpRFpamnjwwQcP6nPUTmff/6EsW7ZMzJ07V1gsFqHX68X48ePFH//4x8OaSHb8PJ3xwQcfiDPPPFNERUUJrVYrYmJixMyZM8V9990ndu7cedj227ZtE5dffrmIj48XWq1WREdHi/nz5x9WBryiokIsXrxYREdHC5VKJTjQ46sjW7ZsEVdeeaVITk4WOp1OhIWFiQkTJojrrruu07Lq69atE6eeeqqwWCzCYrGIE088UaxatapXY7Mj3ZVBvvLKKzt9T3fjrjO6+/z9OVZfz9ehtH/23j56+53+8MMP4vjjjxc2m01YLBYxd+5c8d577/lLy3c89+39fTpeH9upr68XaWlpQqvVip9++sn//KFjuK6uTvzud78Txx9/vP/3GRsbK4499ljxxhtv9Po3OtjX5Y7HGIjx9sknn4jZs2cLs9nsP0ft++2u7HZX15OurpltbW3iN7/5jf96lZKSIv7v//5PFBcXC/A1h5VIRguKEH3I0JRIJN2yZMkSXnnlFfLz83tccZUElvbzU1BQ0O99HXfccaxcubJPCe8DTWxsLFarld27dwfMBolkOCKvy33j888/55RTTuGee+7psYCQRDJSkP5QiUQiCXJqa2uprq4mMTEx0KZIJJIgobS09LDnampquOeeewA499xzh9okiSRgyBwiiUQiCVIaGhp49NFH+fTTT/F4PH0uQyyRSEYvd955J5s3b+boo48mKiqK4uJiPvnkE2pra7n++us7bdAtkYxUpCCSSCSSIKWuro6HH36YtLQ0Hn74Ya6//vpAmySRSIKE8847j4qKCj744APq6+sxGAxMmDCBq6++uldVLCWSkYTMIZJIJBKJRCKRSCSjFplDJJFIJBKJRCKRSEYtUhBJJBKJRCKRSCSSUYsURBKJRCKRSCQSiWTUIosqSCQSiWTIEEIghMDr9eJyuaitrUWlUhEREYFGo0FRFAD/vxKJRCKRDDZSEEkkEskIxuPx4HA4aGlpoaKigoaGBtRqNc3NzezatQu1Wo1KpaKyspK8vDwiIyPxer2UlZXR2tpKVFQUbreb3NxczGYzJpOJhoYGysrKCAkJwePx0NDQgNPpRKvV4nK5aG1t9Qsft9uN2+1GCIHH48Hr9fr/7QyVSuW3qf2h0Wj8YkmlUmE0GtFoNLhcLgwGA1arFbVaTWNjI3FxcYSGhtLW1kZrayvp6eloNBqqqqowmUzExcWhUqmorq4mPT2d6Ohov51jx47FYrHg8XiwWq3ExMRgNpvR6/Wo1eohPnMSiUQiGSpklTmJRCIZpgghaGlpoaCgALvdTltbG0VFRezbt4+QkBAaGhrYs2cPdXV1aDQaGhoaKCgoQK1W43Q6aWxspKWlhZ4u8yqVCrPZjKIofk+N0+lECIHRaPQLBpVK5d++o3DRaDSo1WqMRiM6nQ4hBAaDAYvFgkqlwuVyYbPZMBqNeDwehBBERUWh0WjYtGkTAJMnT8btdlNdXY2iKGg0Gux2O/X19Wg0GjweD83NzTgcDhRFwel00tbWhtvtPkxotYstr9eLVqsFoK2tDUVR0Ol0uN1uampq/N9vV+KsHUVRMJvNhIaGotPp8Hg8pKamYrVacbvdhIWFkZ2djdVqpampiczMTJKSkjAajRgMBlJTU/3fr0QikUiGH1IQSSQSyRDR1tZGTU0NFRUVbNmyBZfLRUtLC3l5eezZsweDwUBVVRWFhYU0NTXR1taGy+XqdF9Go5GwsDB0Oh0mk4mMjAysVit1dXUkJCQQHx+PWq3m/X+twF7qQvFoMIYY0Kq1uOu96Ax6bPEWzGFGLFEmTFFGTJF69Fat/xhej8DR4MJe58TR6MLZ5MLV7MbZ7MbZ5MLZ7MbV7MbrDuxtRK1ToTVr0JrVaM0adBYNuhAteqvvYbDp0IVqUal9gkQIgaPeRWu1g9ZqOy3VrbTU22koa8LR6kBjU+HyuGhrsiPUbgzxWs6+7jQ8Hg+lpaWUlJQQFhZGQ0MDubm5tLa24nQ6qauro62trVMbtVotRqORkJAQkpOTiYqKwm63k52dTXp6OmazGa1Wy+TJk4mJiSEiIgKj0TiUX6NEIpGMWqQgkkgkkn7Q7tUoKSlhw4YN2O12Ghoa2Lt3rz8krbKyktLS0k4nyyaTibCwMDQaDWPHjiU2Nhav10tISAjjx4/nH7e8ijU6BE+TgtKmQqvSoUWLInofwmUI12GJM2CJM2KONWKONaAz+yKmhVfQVuuktcpOW7WDtlonjjoX9nqfCGKQ7xBpp8UBkL+ibHAPpIAuRIvBpsUYrsMYqccYoff9G65DUfnEkrPZRUu5neZyOy3lbbSU22mrdfb6exCKBxcuXF4nwuhFHSJoqGzihr9fwY4dO2hubkZRFCoqKti5cydut5u6ujpaW1sP25fRaCQ+Pp7o6Gg8Hg9jx44lKysLq9WKwWBg2rRpJCQkEBkZiUYjI+AlEonkSJGCSCKRSLqgtbWVHTt2UFVVRWVlJTt27GDLli2o1WrKysrIz8+noaHhsJCrqKgoIiIi0Gq15OTk+PNWvnjxe9yVAi16LBYzSqsGVR+ETW/QmjWEJpsITTJhifeJH43edwx7vZOWcrvvUXlAANU4Ed7A3Qam35oFwPqn9wbMBkWlYAjTYoo2YI4xYI41YIk1+r1lHqeH5jI7TcWtNBa10lTciqvFM6A2eFUehNFNS3MLThxoohVOWjrPn8+1adMmXC4XNTU1VFVVHfRelUqF1WolLS3NL6gnT57M+PHjiY6OJioqivHjx2MymQbUZolEIhkpSEEkkUhGJUIIqqqq2L59O+vXr8ftdlNcXMymTZsoLy+noaGB6urqg94TFhaG2Wxm0qRJJCYmotPp+PGdDbgrFPQcyJlp1aCIoetoYIrWE5psJjTRRGiyCUOYDvCJn6biNprL22gpa6O5zI67bWAn8SMdjVF9QBwZCEkwEZJkQh/qE0n2OqdfHNXnt9BW7Rgyu4TixWty+3KqsKOJEcxZNA2n00lxcTHbtm2jpaWF2trag94XGRmJ1WolNjaWnJwcEhMTUavVzJgxwy+eZJ6TRCIZjUhBJJFIRix1dXXk5eWxdu1a8vLy/AUKNmzYQH19PXa73b+t1WolKSmJkJAQIiMjmTVrFst+s5zw6DBUTVrUbXrUSuArjeltWmzpFmxpZmxpFrRmDV6PoKW8jcaiAx6MolacTe5Amzoi0YVqCU00EpJkIiTRhCXOgEqtwtnsoj6/hYb8Furzm3HUd577NZR4hAeP0YE3xEVtZR2L/3AOa9asobq6mqamJoqKimhoaPBvbzAYsNlsTJs2zV8IIj09nRkzZpCRkUFYWFgAP41EIpEMHlIQSSSSoKXdy7Nv3z6++eYbqqurqaioYPv27ezdu/egvAy9Xk92djZpaWmo1WomTJjA+3/8EpPagkljRuUcnjkYap0KW4aFsEwLtjQLhjAdwitoKm2jIb+Z+vwWmopaA17Y4EjJuT4DgE3/zA2wJUeGSqMQmmzCmmbBlmrGEm9EUSnY653U5zZTu7eJ+rwWvK7uK9kFCq/OTau7hVZPM+f85iS2bduGx+MhPz+fPXv24HD87PkymUxkZWUxYcIEoqOjiYyM5PjjjyczM5OoqCjpXZJIJEGLFEQSiWTY43Q62bZtGytXrqS+vp59+/axbt06CgsLD/LyREREMH78eFJSUtjx3R48ZWr0TiNGtQWNRxs0Eza9TUt4dgjh2aFYU02o1Cpaq+zU5/m8Dw0FLXgcw3OC3Veyz00AYM97JQG2ZGBQ61WEJpuxpZsJywzBFKnH6/bSUNBC7d4m6vY2Y69zBtrMXiGEwKN20+ppxqFrRR3nYfwx2ezfv5+dO3ceFFJqMBhISkpixowZZGVlYbPZOPbYY5k4cSI6nS6An0IikUh6RgoiiUQybGhsbGTXrl3s3LmTXbt28fXXX1NaWkppaSkejy//xWazMWHCBOLj48lbU4hrvwojZszqEFTewIe0HSnmOAOR462EZ4dgjjb8PIne00Tt3qZhEYIl6TuGMB3h2SGEZYVgTTGh0vjEbfXORmp2NNJSYe95J8MUr8pDq6eZVprRpnjJOCqF0tJStm/fTl1dHQBqtZr4+HhiYmKYM2cOYWFhzJgxg1mzZhETExPgTyCRSCQ+pCCSSCRDihDCX3K4Xfi0/7+k5GcvQXJyMvHx8dTuaURVa8CshGDV21A5tN3sPbgwxxqInGAlcrwVY7gOV6ub2t1N1O5poj6vGY9zZHiBusMUowegtWLoihIECpVWhS3dTMSYUMLHhqA1amircVC9s5Hq7Q20lAevODoUr95Fg6OeFtGEN8KBNd1EcXExZWU/l1ePiIggISGB5ORkTjjhBGJiYpg9ezapqan+JsASiUQyFEhBJJFIBg2Hw8GOHTvYtGkTmzdvZvPmzWzZssVf/Uqj0ZCVlcW4cePY8N8dmAnBTCgmQtAowzOnp7+YovRETToggiL0uFrd1OxspGp7Aw0FLYPe92e4MeuuMQCseWx3gC0ZWhQVWNMsRI4PJWJsKFqThrZaJ9XbG6jcXEdbTXCE1fUVN248VjuN9no8YQ5sGWb27dtHdXU1brevEIjZbGbChAnExcWRk5PD8ccfz8yZM2XZcIlEMmhIQSSRSAaEyspKv+hpF0C7du3C7XajKAqZmZlMmTKFDe/sxEIoZkIwYkGljPyVYI1RTdREK9E5YYTEG3G1+URQ9fZGGgqaESPfEdQlEWNDAKjZ1RRgSwKHogJrqpnI8T6hrDGqaSpppXJzPVXbGkZFuXQvXoTNhcPQTKOznrhpkWzdupWKigqEEKhUKhITE0lJSeHUU08lLi6O+fPnk5GRETS5gRKJZPgiBZFEIukTbrebPXv2+MVPuwAqLy8HfKu7kydPZsqUKXzzj5+wYMOCdcR6fLpCUUFYZgjRU2yEjwkBFOr2NlGxqY66vc0BbYYqGb4oaoXwbN+4CcsMAQR1e5qp2FxH7Z6mUedB9Ko9NIkGiHOQMCOKHTt2UFxc7K8gGRYWxtixY0lJSWHKlCmccsopTJo0Ca125ITWSiSSwUcKIolE0iVer5e9e/eyZs0a1q5dy5o1a9i8ebO/sltSUhJTpkxh24f7CMFGCFaMWEb1iq0uVEvs9DBip4Whs2hpLmvzrfRvrcfVOvJX+vtK6onRABR8WRlgS4YfWpOayIlWYqaEYYk34mh0UbGxjvL1taO6z5QQAk+IA7u5mdqWGiInhbB7925qamoAXyhueno648eP58wzz2T8+PHMmjULjWZ0LcpIJJLeIwWRRCLxU1JScpD4Wbdunb9xY3Z2NjNnzmTN61sPiB8bWkWW023HlmEhbkY44dkheFxeqrbUU76+LqiriA0FM36RDcC6J/cE2JLhjTnWQOz0cKImWVFrVdTuaaJsXS31uc2BNm3Y4NG5aPLUQ6ITa4aJnTt3UlpaCvjKgk+aNIlJkyYxZcoUjjvuOCZOnCiLN0gkEkAKIolk1FJXV8e6desOEkDtFaDi4uKYNWsW25bvI5RwQgmT4qcT1HoVsdPCiJ0RjjFcT0t5G2Xraqna2jAqKsRJhh61TkXUJCuxM8KxxBqx1zkpXVNDxYY6OeY6watz4whtps3USPS4cFavXk19fT0AMTExxMfHc9RRRzFv3jxOP/10wsPDA2uwRCIJCFIQSSSjAK/Xy/bt2/n+++/54YcfWLNmDXv37gXAarUyc+ZM9n1RdED8hGNQjAG2eHijt2qJnx1BzNQwVGqF6u2NlK2roam4LdCmSUYRIQlG4mZGEDnRitftpWJDHaU/1eBokD2rusOlt+OwNFPdUoUhQyE3N5e2Nt9vNyYmhrFjx7JgwQKOOuooZs+eLfORJJJRgBREEskIpK2tjbVr1/oF0KpVq6ivr0ej0TB16lRmz57NV0+vJpRwTKM856cvWOKNJMyJJHJ8KG67h7J1tZStqcXVMnrzOfrLlKvTAdj8Ql6ALQledCEa4mZGEDsjDI1eTfXORkp/rKapRAr03iCEwK5twRneQvK8aNavX09xcTFutxuTycSYMWM488wz/ULJarUG2mSJRDLASEEkkYwAqqur+eGHH/wCaN26dbhcLkJDQ5kzZw57Py3GRgRWwlGPsmpvA4Et3ULS/CisKWbaahyUrK6hcnMdXpe8fPaXsRckAbDr7aIAWxL8qLQK0VPCSJgdgTFCT31+M0XfVdGQ3xJo04IOr+LGHd1Gg6oGQ5Kabdu20dLSglqtZvz48eTk5DB79mzOOOMMUlNTA22uRCLpJ1IQSSRBhhCC/Px8vv32W78A2rVrFwCJiYm4ihVsRGAjEgtW6f3pB2FZFpLmRxOaaKKpuJXiH6qo2T36Sh9Lgo+IsSEkHhNNSLyRxqJWir6rpG6vLMBwpAghcIa0YLc1UVpZTJu5yd9gOjMzk9TUVI4//njOOOMMpkyZIq+7EkmQIQWRRBIElJSU8PXXX/PVV1/x1VdfsX//fhRFYdKkSdRuacZGJDYiMSiyk/tAED4mhOT50VjijTQUtlD0bZWs5jVI6Kw+j6WzQYYdDga2DAvJ86MITTbTXNZG0bdV1OxqDLRZIwK3yU6rpZGqlnKc1hZKS0sRQhATE8PkyZM55phjWLx4MZmZmYE2VSKR9IAURBLJMKS6uppvvvnGL4B2794NwOTJk6nb0ko40diIlJXfBpiwLAspJ8RgiTX6wo2+raKhQIYbDSaz7hoDwJrHdgfYkpGNNdVM0jFR2NItNJe1sf+rCur2SZE/kAiDh3pRTVtYPa36JgoKCgCIjo5m9uzZnHDCCSxevJjo6OjAGiqRSA5DCiKJZBjQ0NDAt99+6/cCbd68GfD1/mnZ4yacaMKIQqfoA2zpyCQ0yUTKiTFYU8w0FLSw/+sKGgtbA23WqCBqsg2Aqi31AbVjtHDQWN/fwv4vK2gskmN9MPDonNQp1TijG6lz1fjbGiQmJjJjxgwWLVrEqaeeSmRkZIAtlUgkUhBJJAHA7Xbz008/sWLFCj777DPWrVuH1+slKSkJd5HKL4BkCNzgYorWk3pCDOFjQmkua6PgywoZGicZFYRlHvCGxhmp3dPE/q8qZBPhQcahtGGPaKBeXU21o4K6ujoURSEzM5OjjjqKq6++mjlz5qDXy4UviWSokYJIIhkiSkpK+PTTT/nkk0/4/PPPaWhoIDw8HG2t6YAAisaIWSbjDgG6EA2pJ8YQNdmGvc7J/q8qqd7eEGizRiVJ86MAKPq2KsCWjE4iJ4SScnwMhnAdlZvq2f9VBc5mmc812AghsKtbcSc2U2Uvp6q1nKamJgwGAzk5OZx33nmcd955ZGRkBNpUiWRUIAWRRDJIOBwOfvjhB1asWMGKFSvYunUriqIQKsKIIJYIYgglXAqgIUSlUUg4OpLEuVF4nF4Kv6mgYmMdwhtoy0YvM+/w5RCtfVzmEAUMBWKnh5NyXDQqrULx99WU/FiN1y2nB0OFEAJ7aBNNlhqq3GVUVJfj9XpJTk5m5syZXHvttcybNw+z2RxoUyWSEYkURBLJAJKfn+8XQF9++SUtLS3ExMSgqjAQQSzhRMs8oAAROSGU1JNi0YVoKF1dQ9G3VXicUglJJO2o9SqS5kcTf1Q4zmY3BV9UUL1Nek4DgUs4cSY0UuUuo9pRQX19PTqdjilTpnDmmWdy4YUXMm7cuECbKZGMGKQgkkj6gdfr5aeffuL9999n+fLl7Ny5E41Gg8VtI5JYIoiVvYACjDnWQPppcVhTzNTsaiT/s3Lsdc5AmyWRDFsMYTrSTo4lYlwojUWt5H5UKvOLAkh7D6Tm0Fqq3GWU15ThdrtJSEhg7ty53HTTTRx99NFotdpAmyqRBC1SEEkkfaS1tZUvvviC999/nw8++IDKykoiIyPRVluIIo5wotEo8sYUaNQ6FSknxBA3M5zWagd5K8poyJcltIcbk5akAbD15fwAWyI5FGuqmfTT4zBF6ildU0Ph15XSqzoMcAsXroQmKj2llLeU0NTUhMViYd68eZx33nlccsklMrROIukjUhBJJL2goqKCjz76iOXLl/P555/T1tbGmDFjsO8WRBGPlQjpBRpGRIwPJf20ODR6Ffu/rqT0pxqQV7phyfjFyQDsWFYYYEsknaGoIH52JMnHRuO2e8j7tIyaHbKx63BBCEFbSCNNtmqqXGWUl5ej1WqZOnUqJ510EjfccANJSUmBNlMiGfZIQSSRdMHu3bv53//+x/Lly1m9erWvIII3jEjiiSIesxISaBMlh6C3ack4I57wrBBqdjaSt6IMR6Mr0GZJJEGP3qol/bQ4IsaGUrevidyPy2To6TCkRTThSKyntKWIinpf36PU1FTOPPNMLr30UmbPnh1gCyWS4YkURBJJB3bs2MHbb7/N22+/zfbt2zGZTJhbbUQRTyRxsiDCcEWBhNkRJB8fg6vVTd7HZdTuaQq0VZJeoDGoAHDbZShWMBCeHUL66XFoTRr2f1VB6RrpfR2uuFROGkxVNIZUUVxdiNPpJDU1lRNOOIErrriCY445BpVKFWgzJZJhgRREklGNEILt27f7RdDOnTsJDQ3F1GgjhkTCiUGtqANtpqQbjBE6ss5JJCTRSOlPNez/qhKvS06ug4VZd/nKbq95TJbdDhZUWhWpJ8YQf1QEjYUt7H2/hLYa6S0azgiNlzqlkqaoakrqCmltbSUrK8vfEHb+/PlSHElGNVIQSUYdQgi2bt3KO++8w9tvv82uXbuwWq2YGmxEk0AEMaikCBr+HPAKpZwQg6PBxZ7lJTQVtQbaKkkfiZ0RBkD5uroAWyLpK6HJJrLOTkAXqqXwm0pKfqyW3qIgQKi8tIbVUdJWSJW3lLa2NhITEznrrLM499xzOfHEE6U4kow6pCCSjBq2bt3KW2+9xdtvv82ePXuw2Wycc845XHDBBZx00kksMF4WaBMlveQgr9DqGvZ/VSGbSEokAUClUUg5IYb42RE0l7Sx53/F0lsURLzf8irLli3j888/5/3336e1tZWoqCiuuOIKzjjjDI4//nhZMEgyKpCCSDKiKSwsZNmyZbz22mts27aNsLAwFi5cyKJFizjppJM403BpoE2U9JG4meGknhyLs1F6hUYC8XMiACj9sSbAlkj6Q0iikaxzEtFbteR/Wkb5eunxCzY+aP03b731Fm+++SY//vgjDQ0NJCYmsmjRIm655RYyMjICbaJEMmhIQSQZcdTV1fHOO+/w2muv8e2332I0GjnnnHO49NJLOeWUU6QIClK0JjVZZycQPiaU0jU1FHxeLr1CIwCZQzRyUGkV0k6JI25GODW7G9n7fgnuVk+gzZIcAe+3vMprr73Gq6++yrp167Db7YwfP54FCxZw5513EhMTE2gTJZIBRQoiyYjAbrfz0Ucf8frrr/PRRx/hdrs56aSTuPTSSzn33HM5z7o00CZK+oEtw0L2wgQURWHP8hLq9soKciOG9lQFWQdjxBCeHULW2QkIIdi7vIS6fc1Dclx1TDSeisohOdZo4r3Gl3j66ad599132bBhAxqNhkmTJnHllVeydOlSLBZLoE2USPqNFESSoMXr9fLtt9/y2muv8c4779DQ0MD06dO57LLLuOiii7gi4bZAmyjpJ4paIfWkGBJmR1K3r4k9/yvB1eIOtFkSiaQHtGYNWeckEJ4VQsnqago+r0B4B2+6oY6JPuhvKYwGh1eKn+S5557j1VdfJS8vD7PZzIknnsjixYu54IILUKtlQSJJcCIFkSToKCws5JVXXuGll14iPz+ftLQ0LrvsMr74w0+YldBAmycZIPQ2LWMvSMYcrafgiwpKf5I5JiORiZenArDt3wUBtUMyOMTNCiftlFhayuzseqcIR8PAN0o+VAx1RAqjwcNttTP7hok8//zzVFdXEx4ezvXXX8/FF1/M5MmTA22eRNInpCCSBAV2u53ly5fz4osv8vnnn2Mymbjooou46qqrePCYJ2QVnBFGeHYI2QsTcds97PxPIS3l9kCbJBkkpCAa+VjijYy9IAm1XsWe9wY+5LU7QdSRgRZHeW/k+P+ffsmmAd13MCGE4KZ3L+HVV1/ls88+o62tjQkTJnD99ddz9dVXYzKZAm2iRNIjUhBJhjUbN27kxRdf5PXXX6euro558+axdOlSXl36PhpFE2jzJAONAiknxJA0L4qaXY3sWV6Mxy6TSySSYEdjUJO1MIGIMaEUfV/F/q8qBqRnUe4bOWTfUdqn9xypMOoogLpiNAsjAK/Gw8m/n8XLL7/M7t27MRqNnHLKKVx//fWcdtppcvFSMmyRgkgy7KipqeGNN97gxRdfZNOmTcTGxnLllVfy7SObMCshgTZPMkhozRrGnJ+INcVMwZcVlKyqDrRJkqFAFlUYVSQcHUnqiTE0FrWy6+1CXC39q0KX20GkDLQwyj1EAPVlKj/ahRFAm6aZlAvC+eSTT6irq2Ps2LGcfvrp3HnnnSQmJgbaPInkIKQgkgwLhBD8+OOPPPvss7z99tt4PB7OOussli5dyuNnvYRKkV2zRzKWeCPjLk5GAXa9W0TjftlbaLQgy26PPkKTTIy9IAnhhZ1v7ae57MhCYg8VLB3pizg6VBh1t1+QwqivePFy438W8/TTT/PDDz8AcNZZZ3HllVdy9tlno1LJ+7sk8EhBJAkoTU1NvP766/zjH/9g8+bNpKenc/311/Phr79DrxgCbZ5kCIiaZCXr7ASay+zs/E8hrmZZRW40EX/0gcasq2TRjNGELkTDuAuTMcUY2PdBCVVbG/q8j56EC/RNGO15PL5Px5fCqO94jS7GL03io48+Ij8/n+TkZC699FLuueceQkNlUSRJ4JCCSBIQtm3bxrPPPsu///1vWlpaWLBgATfeeCOPnv68jDEeLSiQemIMiXOjqNhYx76PShEeeTmSSEYLiloh+fYpJFncFP9QRcGXfcsr6o0gaqcnYbTzwVT//9VWZ++NQAqjI0EIwRWvnM2zzz7L2rVr0el0HH/88dx5552ceOKJgTZPMgqRgkgyZDgcDt59912effZZvv/+e2JjY7nmmmv45o8bMCiyCs1oQq1XMea8JMIyLeR/Xk7paukdGK3ETA8DoGJ9XYAtkQSCuitnkxbqYkKYg/rcJna9U4TH0XNCWe7rU33/Ufo2helMGHUUQ4fSF3EkhdGRYRetZC+N5b333qOuro6ZM2eycOFCfvGLX2A2mwNtnmSUIAWRZNApLS3lmWee4ZlnnqGuro7jjz+eG2+8kY+f+RKvHUp/qkFRKURNslKf14yzSYZMBQtasxqtSUNrlQOAmBwbbbVOGgtb0Vu1pJwYw/6vKnDUu4iZGkb4mBDyVpQx4ZIUDOE6KjbWk/tRKVqzhswF8ez/uoLWSgehySZCEk3+wgqGMB1uuwd3W/8SsCVDhzFSj8aopqnIlw+WenIMdfuaachvwRJnIO20OHb9p4ipN2SgMarZ9XYRtbubCEk0kjQvit3vFeNxeAnLCkGlVajZ0QiA1qLxNeeVd65hj8aoRq1X4aj39R5KODqSpuJWGgtbMUXrSTk+hnWmOJxeFZPC7SRZXLS4VaypMDKttYya3U1UbKxDb9OSckIM+7+swNHgIjTZRNM9Weyz+nJPbA6BXSOwa3ovSdqFUXdi6FB6K46ORBj1poKd0oX4S1u8uQ9HHB4oaoWoiVYai1qx1zqxppqJnWVj0vHjePnll1m9ejUmk4lLLrmE+++/n5SUlECbLBnhyEw2yaCxfv16Lr/8clJTU3nyySc5++yzuWDepai/ieBfF/0HjU7rv3NoLRqyFyZiivLlDUVOCGXshUl9u7NIBoXICVZCknwePGOknpzrMzBG6ABImBPJuIt/vlHFzYrAlm7x/aGAzqJBpfFdZlytbtx2D1OuTkdRK5Svr6Nhf4tvU5Xv0T7JNUUbiJ5i8+937AVJpJwYA4DGpGbshUmYovQAqLSKHCcBwppqxhDuGwuhySZm3J6N1uwrh58wO4L00+L824YkmNCHaAHwuAT2WidCCDY8u5eqbfW4W38WuwLwun2DIWJcKDGTbf7XZt6eTdyMcADMsQbST49DrfeNMUUlB8KQoxz4DQKmKD1jL0xCY1QDvpDYcRck+zeNnmLDFH0gN1T4fvPtp6zGoaaoWYNGEcyLa6UlIZy6ozIAUGlU6Cwa/+/clm5hbP3P4+WEUjfjawUIhVAHnFXgxurwjZ+oVkFq4+Eepz2Px/e5/LanQYenQdfjdoKu9Xr6JZsOevQFIRSEOHyM5y+b0qtHoEk5MYbMsw7kaQnIPCuB0ETfvUV4BSqVmndv+RLLT4mcO2Mx8+bN46233iI9PZ0TTjiBDz74IIDWS0Y60kMkGVA8Hg//+9//eOKJJ/j+++9JTU3ltttu4/07V6JRtN2+V6VREF7fhTF8TAhhWSHkfuhbxRuzKInq7Q3U7Gwcio8xqlDrVUSOC6V2bxOuFg/xsyOImWJj4z9zAZh6Qya1e5vY/2UFWrOG5GOjKF5VjaPehS5Ui0av8nuIuiMsK4Sxi5JoqbSzY9n+gybAPWGOMeBxerHXOdHbtGQuSCDvk1LaapwkHx9N1EQb65/eA0BIopHWKkevwm4kfSMsK4SQRCOFX/smkjPvGEPl5jr2f1WJ3qoldno4JT9W427zoDGpEV4xsH2kFAjLsNBa5cDR4MKWYSHtpBg2PZeL8MK4i5LxugW73y0CICTJREtZm19cSfqPWq/CFKWnqbgNgOm3ZlO1rZ7CrysxRuhIPz2efR+W4Kh3YQjTodapaKnouopc3ZVzDvpbp/IyK6aNEK2X9VVGKtt8AjvslR8P2s4fMofPQ+RUQatWweISTKj1sjlChV0L06o8JLQIPkj17eesfDe5VhWOW7agNasJzwqhemcjO5+Y0bfvoZfeoow+ip7eeIqga2/RkTIYXiZTtJ4x5yay/Y39OJvcxEwNQ6VRKFtbC/i8RD3ljXoUN1NvT+e1116jsrKS6dOns3jxYm699VZ0up7FqUTSW6QgkgwIDQ0NvPDCCzz99NMUFBQwf/58br/9dv7fea/3u0iColbIOieByk311Oc1ozaofJNdOXJ7jaJWMEboaK30CZeMBfE4G1wUfVeFPlTLjNuz2fZqAQ0FLYQmm7DEGSn9yZfXo6hA9HNOGzs9jIwz4qnd3cTu/xYN6ATVHGPAEKajZlcjigpm/3ochSurKFlVjdasRm/V0VzaNmDHG03oQjSMOT+JvE/LaCmzEzsjnIgxIWx/fb/v9VAtrmZXv8bHuIt9HoSdbxb2296wTAtCQH1uM4YwHTNuy2b76wXU7WvGFO0L4ZMl3fuOJd6Io8GJq8VDwtxIkudHsfqRnQivz4Nnr3V2K3q641BBBKBWBFMj7cSa3Gyt1bO/6eeJb7sw6iiIekLBizhwHxpX66XGoBByzWasqWYmXpHK2if24Gx0kXRMFG1nJrDK6jtemMtLo0bB0809rDNh1FcR1BmBEkaH0mehpIAxQk9btQO1XkXGGfEUflOJva5vhSoORQjBNcsW8ec//5nNmzdjs9m47bbbuPnmm4mOju7XviUSkIJI0k/y8/N5/PHHeemll3A4HFx88cXs/ncpoUrYoB1z3EUHJlBv9X8CNVJR1Aqx08Koz2+hrdpB7Ixw0k+L48c/7UB4BYnzonA1u6jYVA/4vHODtYqeckIMScdEUfpTDXmflg26kNXbtHhdXp+366gIUk+KYfVfduF1edGFaGSOWg+knRKLxqhm7/ISFJVC9sIEildV01J+ZBPenph0VRoAW1/KH9gdK2CONtBW68Tr8pJ+Why2dDMbntkH+CbyjUWtssx7F7T/VlRaFbPvHkv+5+WUralFa1aj0v6cF9Rfcl+fSvhnnbVYEEwIc5BudbG3Xseueh0dY2NrTzmC8XhAPHQULB2vfTFTw9Ca1RR/X82+Z2ZyRUUbq0O17DJpsbm9xDk87DFpOhVIaqtzQITQoQwXYdSR7kRSyokxxE4LY+0Tu/G6Bscmp60F7TQn3333HQALFizgvvvuY9q0aYNyPMnoQAoiyRGxZcsWHnnkEd566y1sNhs33ngjK/+4Eb1iHPRjhyaZUNQKDQUtg36sYY+CX2AkHB2JPlRL3ooyUGD2r8aRt6KMyi31aM0a9FYtzWVtQ+dZUyDzzHhip4eT/1kZJT8OfSU5ReXLe2qtdIDiC/GqWF9H4cq+5Q6MZExRerLPTWTnm4U4Gl1ETbah0ihUbBh5Vd90Fg3OZjdqnYqjfjWW3I9KqdhUjz5Ui0qnoq2659DP0UDycdHETPVNahG+0KfWKsegXDs6eno6E0bpoU4mhDsoaNSytVYPKKgPmWhXndm385Zx6caeN1LAEmdk5/9NpE2tkNnm5qhGJ29EGxGKwuxGJy0qha0WLQhB9s1rB+3a2ltRBEMrjA4lbfFm1DoVpuifQyoHE6/BSdKFYbz77ru0trZy0kknceedd3LqqacO+rElIw8piCS9RgjB999/z5///Gc+/vhjUlJS+OUvf8l/b/0StaIZeoMUiJ5ko3JL/dAfO0BojGpUGgVnkxtLgpFJV6Sy8R+52OucxEwLQx+qpfCbA5P9DmJpqFFUCtnnJhI5PpS9y0uGzTmypplxNLiw1zqJGBdKxJhQ9r5fgvCOrstgzNQwVFqFsjW1vrCWMw+EtdT2L6wlmFDrVQivwOsSpJzgW9Ve87ddCC+odSo8ztGTg6aoFLLOTqBmdyM1OxsxhOvQW7U05A/+olNXoW8dxVGSxcWUCDulrRo2VhlQdeGc6o0w6pUY6oK9z8z0h95Na3LSolYh7tqAIVzH1Osz2PpqAc0lbehCNHjdYsCrYg5HbxGAIgRHlQu2RSg06w54zwp8xRLS7v2xm3cODELt5ezHjuUPf/gD1dXVTJo0iccff5zjjz8elUrWDpP0DjlSJD3i9Xr54IMPmDdvHvPnz6ewsJB///vfZOyfzvLbVgZGDOGLa886JwFr2sjtU6A1qwnPDvH/PWlJGknzowBoq3ZQuLIKj9N3063YUPezGIKAiSGVRmHcxclEjA1h19uFw0YMATTkt/w86Vd8BTzaxZA5trOwnZGBolaInGBFdaAssTFChzHSV6XP4/Cy57/FARNDM+8Yw8w7xgz5cT0Orz+kp3BlJVtfzUd4fRXTZt4xhqgOle1GKu1jXngFQgh/RJq91jkkYqg7ak+x+8Piipq1rKsyEGtyMzO6DVUXE/6oj/REfaQfNJuyblpL9o1rANgQokPctQEAj8ND4coqv4cxaX40k5ak+d8Xnh2C1qzu9/F7W5muq2p0g4XRDVFtAlPH6NNUX65e/sNzDnoMBopHxQe3f8fkmvn89a9/paWlhZNOOomsrCyeeeYZPB7ZrkHSM9JDJOkSl8vFsmXLeOSRR9ixYwdz587l3nvv5fEFL/W7UMJAoTGp+1StbLijqCByoo3m0jbaqh3E5NjIPCuB1Y/sxOP0Ykkw4mpy42gcmPj9gUatVzF+cQqWOCM73twf8ElVbzHHGph6fSbb/l1AfV5zoM0ZMNrzI/Q2LTNuy2bHskLq9jYF2qyDSDrWlxBdNEzCGFUahahJNupzm3E0uojOsWGM0LP/y4pAmzag2NItTLw8lY3/3Ddo+WG9obfFEcI/MxBp8AmiRoeKdaVG3N7u70OdeYz64yHqLfpQLdoQDc0lbah1Kmb/ehx7PyihclM9pig95jgj1dvq+12sZqAYkJLcQkBX84KCrhuvD4YHSQjBZS8t4LHHHmPbtm1kZmayZMkS7rzzTozGwQ/rlwQnUhBJDsPpdPLKK6/w0EMPsX//fhYsWMCvf/1rfjf/yUCb1iUDUQktUFhTzZhjDZSu9uXYHPXLsRR+W+kLZ9KpUNRKUDQk1RjUTLw8FUOYju1vFAxJDPlAYku3+MVQTI6Nhv2t/a6MFEhSTogmLDOETf/ylU/XhWpxDlMhPZyJPyoCY6Se3I98LQBsGRbqc4NTNBvCdFhTTP5iKh3HfCDpS8W49G+0HBXTSqtLxZqSnkUR/CyMhkIMdYbGqEZ4BB6nl7hZ4STNj2bNo7sAiJ8dQUu5fVjnxHYnmIwugUZAk5auBRF0K4o6MtAC6bblV/D000/z+eefExERwU033cR9992HXj94nkRJcCIFkcSP0+nk5Zdf5qGHHqKoqIgLLriAwv/UYVGsgTatWyZfnU59bvPB4WLDGI1BTcLcSCo21GGvc5JwdCQRY0LYcqDKlkqrDFp1nsFCY1Az8YpU9FYt214tOOISvMMBRa0w7aYsytfXUrKqOtDm9B4FYnLCaClvo7nMjiXBiDFcR9XWhkBb1i1Rk3zXl+FuJ/h6XE25OoPNL+bRVBR85bsTjo4kdnoYG57Z12P/l6GkL4IIYPJdO5lwTWafRBFA6Burj8S8AafjNX7yVWnU7G6iZFU1hjAdMdPCKPmhGrd9+C+CASQdG0XsCTH8J0vVvSBqJ0DCyGVtxTupie+//57w8HCuvfZa7r//fszmkRtyL+kbUhBJDhNCF154Ifvfqh32Qqid6Ck2HA2uYb3CFjnBitaspmxNLSqtwrSbs8j9sJS6fYFfne0v7Z4hvU3L1lfy/b2OgpmOTYJjcmzYG1zDNvyvo3d02k2ZVGyqDyohN+suX/7Qmsd2B9iS3mGONfhDzDLPiqexsJXKzfWBNaobrGlm9FYtlZvqUVQKioph16i2r4Io49KNmGMMTLwilVaVjjUlRly9EEXDRRB1RVimhYwz49nw//bidQvij4rA2eymevvwXSxQ61QYInS0lB28CNZtGF4vRREMvDBqURrRzrPz3XffYbPZ+O1vf8u1114rhZFECqLRjNPp5KWXXuJPf/oTRUVFXHTRRRS8WYtFCQ20aUGPLkRD4twoCldW4m7zkHJCDHqrlj3vFQfatAFlJIqhQxm/OIW2Ggf5n5UH2pTDCEk0Mu7CZDY/n4ej0TWo/aQGC0OYrwlmMIYnZpwZT2NhC1VbG9AY1AivGHbV6dJOjcUYrmPHsuHbt+1IBBH4yoFPuiINR6OLH1sjexRFw10QHUr2uYk4Gpzs/6oSjVFN8rHRFP9QFbS91A4TSQHyFgG4rW2EHKPio48+wmq1cs011/Db3/4Wi8Uy4MeSBAdSEI1CXC4XL730En/84x8pLi4OeiFkjNSjMagCnrMSMS4URa1Qva0BrUXDlKvT2fV2Ec2lwZVL01vUBhWTLk9Dbwv+MLmeUFQKwisIzw7B1eKmqSRw57Rjnw+VVkXysVGUrKrGNYKKiwQj6afFEZZpYf3f9wbaFEISjGhMGur2NvnH7lCz56XpAGRftb7HbY9UEMHBomjrq/nUnTery/cFmyDqiCXByNhFSWx+Pg9Xi5vIiVaER1CzszGgdsXPjsBe56R295EVa+lL5bnBEEYeqx31DDtffvklsbGxXHHFFTzwwAOy+MIoRJbdHkV4vV7efPNNxo8fzw033MDcuXM5SpxM9VvuoBVDAHGzwsk8M37Ij6uzaEicF4mi9q1KhmeHEJbhW11yNbtZ9+SekSuGdComXpY6KsQQ4J9Qxs4IJ25WREBtST4umrEXJvtCn1xeCr6oCGoxNGZRImMWJQbajH5T/EMVuZ+UAb6Qy5hpYSgBusPGzYogbmY4QMB7bO15abpfHA0GrZUOtr6Sj96qZcIlqdjeXtOp8AlmMQTQXNLGuif34GrxeYfCMiyEZ/laMihqhcR5kegsQ98Cw5pixhxz5C0L0u79kbR7fyRjWR0Zy7pvBj0YZbvVDQb40sZc/WnMmDGDv/zlL6SkpPD444/j9Q4vb69kcJEeolGAEIJPP/2Ue++9l02bNrFgwQKqPrQTotgCbdqAoNKq0BrVQ1KK2hxrQKVRaCpuwxSlZ/LV6Wx9Kd8nCALYCHUoUWkUxl/iK6299ZX8gJbsHWoUlW/y4XUJzDEG7PVOPI7Bv2mGZ4cgvIK6fc1oTGpUGtWIqRg35Zp0ADY/nxdgSwaO8OwQxixKYsMze3HUD815UutVGGw6WirsqLQKwiMCWnmzOxF0qNeoPx6idixxBiZemUZzSRvb39jvLxrReMlsIPgFUaccuOeYYw1MWpLGlhfyaK1yEJJoxOsWQXdtVk0ee9hzuYvDDntuMJu9ukJaaR1Txdq1a0lOTub+++/n6quvlg1eRwFSEI1wfvzxR+69915WrlzJvHnzePjhh4d1+exhh+ILP2kPx5twaQpet2DnW754fEWtDKtqTYONooKxFyZjS7ew/d8FNAZhpa2BYuqNmTSXtrF3ecmgH2vcRcm42jzse3/wjyUZGLQmtc9zp0DmmfGU/lRDa9Xg5dhlnZOAJc7Ixn/sG7Rj9IXeeIXahdFACCKA0GQTEy5LpT6vmV3/KQzaVgxHQsd70biLk1FUCjve2A/4cg2bStqCYsGuM1HUkY4CaTCF0b1f3MjNN9/Mrl27GDduHM888wzHHXfcoB1PEnikIBqhbN++nfvuu4/ly5czefJkHn74Yf525ovDpqHqQJJxZhzVOxoHrgqY4usb4W71YE01M+nKNDb+ax8tZXa0Zg2uVndQ3FgGg+xzE4mcYGXnm/tHRIW8/mAI1+Gxe/yT3oEcEyqNQurJsVRva6CxqDUoS7FLfOhDtYy/NIW9y0sGJ4T2wNjTmtSoDWrstcOjOEVfwuTUur4pl+76CdkyLIxfnEz19sYRV8Sm1yigNWlwtbgxxxmYel0mW1/Jp6GgxdfMvM0zYNer+NkRRE20DriHtydhBD5xNJiiSAjBpS+eyWOPPcb27dv9IXXHH3/8oB1TEjikD3CEUVZWxtVXX82kSZPYunUrr7/+OlFbsnh8wUsjUgwpKjCG69Ho1QO2z4mXpZJxWhwAjYUtbH4h119S1NUyesVQ+hlxRE2ysue/RaNeDAHYa524Wj2odSqmXpdBxPiBy8PzugXGCD16q9b39wgWQzNuy2bGbdmBNmPQcDS62PjsPr8Yyl6YQHh2yIDsO2J8KDnXZaDWqXC1eoaNGOorHqeKrKt3Dsi+6nOb2f1uMVETraSfETcg+ww6BP5co5YyO5tfzKNhv2/BMOP0OCZeljpgh2oubaN6EAo7eLfs6nGbjGV1qCaPJe+NHPLeyBlwGxRF4Y2rPyZ2+1j++te/UlxczIknnsjFF1/Mjh07Bvx4ksAiPUQjhLa2Nh577DH+/Oc/YzAYePDBB3nv1q9RBSqrN4gwxxoYd1EyW17Kx9nowppqxm33BF389WCSdEwUKSfEsPeDEio2dJ/4OtpQVJB6Uizl62tpqznyCanOoiFrYSJ5K8poqx555cu7IvWkGAAKvqgIsCWDj0qjkLUwkcrNddTt7f+igjFCR+z0cAq+KB+W4WF98RKNvXH7QX/vfWFcl9t25yFqJ2ZqGFlnJ5D/RTklPwRPX67BxhxrQGNQ01DQgj5Uy6Sr0tj5VuGwvd/1xlMEsO+egws7pF+yacBtEYqXU/88m4ceeojW1lYuueQSHn/8ccLCDs9zkgQfUhAFOV6vl2XLlnHvvfdSXl7ObbfdxrrH9qJVdIE2bUhQ61VHlNQeNzMclUah5Mca1DoVKSfFUPJDNY6GkZGoPpBET7aRfW4i+7+uoOjbqkCbM6xRVApRk6xH1KhTUSuMvSCJ4u+qAlrWWzJ0ZC6Ip6XSTtma2j69L3qKjaqtDQGvINcTuW/k4HH0znt/qCBqpzNh1BtBBL6KjMnHRrP7v0VUbR2+zU0Dhd6qJWFuJPu/qMDj9JIwJwKvW1C2tm/j0RStR1EpgyqqjlQYtTOQAkloPcRfZOGNN94gKiqKG2+8kfvuuw+1euAiVSRDj3QfBDGrVq1izpw5XHbZZcycOZOZrhPZ/Lf9o0YMAYw5N5GxFyT1uJ1aryL+qAhUWt+Q11o0aA+UKPU4veR9XCbFUCdYU81knp1A+cY6KYZ6QVimhcwF8Rgj9b3aXm/VMuHSFHQhGoRHsPPNwlEnhsLHhBA+ZmBCyIINt92Dx963BR1jpJ7MBfHYMoKjgaRa70GtP/Ky8FlX7zzicLrCbyqp2FhH1jkJWFPNR2zDSMXR4CLv4zJ/M2GtReu/L6q0vnumWt/zNDH9tDiS50cPqq29CaEDyPxz56KsPaxuIELrFJeastfamKM6lcmTJ/PAAw+QlZXFe++91+99SwKHFERBSEFBARdddBFz587F7XYznWNpfE+FSQmOG+RAUvJjTZerWYpawRDmE4cag5rUk2IISfA1Wyv8upKCz0d+iE5/MEXpGXdRMg35zeR+KKub9YbaPU2sf3pvr0Pe3A4PilpBYxy9K4uZC+LJXDD0fcSGAwVfVFC5pR6A5OOjiT+q5x5XbdUO1j+9l7q9R9YIM1C0C6MjFUdHKoz2fVhCQ34L4y5KxhTdu4WK0UrB5+UUfl0J+Kqrpp4Ug8bguzYZwnQoqs7zkPf+r4Rd7xYNun3eLbv8j+7oShS1M1DiyOA24f08lP/9738AnHfeeRx99NFs3Ng7D6ZkeCFD5oIIu93OX/7yFx5++GHCw8OxlcYTR8qILJYwEGSdk4A51sCmf+YCvmai7Sthku7RWTRMviYdd5uHrS/ly+/tCEg+Lhq1TkX+Z+UHPa8L1ZJ2cgz7Pirts3dgJNLe1HGkN/ftidSTYnC1uCn5sabT19NOicXj8FK4snKILTtycnuYcHYMp+sqZK4zvPa+jRW1TsWkJWloTRo2P5+Ls9ndp/ePVjreM6den0FzuX1I2gwcCV2F1HUVQteR9klwRj/C6oQQ1IWWkafaQXNzM0uWLOHJJ5/EZDId8T4lQ4v0EAUJH3/8MRMnTuSPf/wjMfYUsktnEa+kjmoxFDE2hIixP4faaM1qpt6Y6Q+NKFlVzZ7//lx2VU7qe4dKozB+cQoKvj4W8ns7Mlwtbpwth0+8FHxhT/pQ7dAbNQxpqbCPejEEPm9RuxiKnR52WNVCZ4vbV/J/GKAek4l6TGb/99PPcLre4nF6/T15xl2cjEozeu+bfaHjtX/3f4spWeUrTmFNMzP1xky05p8Fbfrpcb3ycA4WHb1HHT1IPXmLwHdNVvAJ+J5EfJf7UBTCm+KZ1nQ8ExKn8Oqrr5Kamso//vEPvF55Dw0GpIdomFNQUMDtt9/O8uXLCSeaMeRgVgauvG8wk3VOArpQDQ35LRR/77tQp58WS8XGejnB6gdjzk8kPDuULS/mye9xgDBE6IieaKPo+6pR1ci3N2QtTAB8YTcSH9kLE3G1usn/rBx9qBZH4/DKb+xMDHl2H94Qti+Ty4xLNqEy9LyaD333ELVjjjMw+ap0anaO4h5FA4A5xkB0jo38T33e78R5URijdDTubx2WVUhVk8f2ylMEh3fVOFKvkV3XQmH4TgrLCpgxYwbLli0jM7P/iwiSwUMKomGK3W7n0Ucf5aGHHiIyMpKw4kSiSRjVHqF2dKFahMeLq8VD3IwwoqeGs+WFvGFfcSkYSJwXSeqJsez8TyE1g9BbYjRijjUw5ZoMvC4v218voKl4dBVN6ImcGzIA2PSP3ABbMsxQfEVNJlyayu53i4bV77En71C7OOqrIGqnJ2F0pIIIIHJCKGMXJVPwRTnFshx3v1FUCpOvTqdiQy3l6+vQmtUoahXOYSbi2+lN3lBXM4m+iiMhBG0JdRSIXVRVVXHZZZfxxBNPEBoqF7WHI1IQDUM+/fRTbrnlFgoKCkhwZ5DGODSKJtBmDQsUFcy6ayzlG+rY/2WFv0u7pP+EZYUwfnEyRd9WUfhN8OQpDGesqWYa9rcQPdlG9c5GvDL8UNIXFJh2UxZNxa3DKnejt+Fynt37ei2KuppsdiaO+iOIwFfAIumYKHa+WUjtnuAqTjFsUUBr0pB8XBSR462seWzXsOyNdShdCaSephV9EUce3NQmF7G9ZDM2m40XXniBs88+u9fvlwwNUhANI6qqqrjjjjt4/fXXCSOKsUyV4XGALd1M2ilxbH4+F69bEJJkIvm4aOw1DnI/Lgu0eSMCY6SeKdek05DXws7/FAbanBGBIVzH9Juz2PVuETU7fKv7Q9GvQxL8mGMNCI+gtcrhy3dRFLwuL4ZwHY56Z8Anmn3JH9p7dRQAIrF7z2hPE8yOwqi/gghg7IVJ2NItbHkhj9aq0dMIeTCZeEUqXo+g6NsqmopaUWkUplyTQf5nZdTntQTavB45VBz1ZnLcF2HkDrWz07WBitZS5s2bxyuvvEJ6enqfbJQMHlIQDQOEELz++uvcfvvtCCGIrc0gjuQew+O8x0xF9d3ILO9oTfMVRmjIb8EQpiNhTgT7v67E3eZLwI0YF4rH4aU+r//d3kc7ar2KnGsz8HoEW17Ik0UU+knHZsGWOAPNZT9P3iZclorwCn+C94hGUaAXt5fpt2QBsP7vewdsn8HO+EtSUFQK218r8D+nqBWm35JF9Y5GCj4v7/rNQ8CRCKJ2uhJGvZ1YqgyGARFEKq2KKVeno6gVNj+XK697A4AxUo+rxe2/T2uMalKOj6bkxxrsdU5s6WaE8N3Xhzvt4qgvV5t9x73MqfE53W4jhKA1qYZt9etxu9088cQTXHPNNahUssZZoJGCKMDk5+dz44038umnnxJDEmOYgk7pOn7ae8xUgBEphFRaFV6X76Y0/uJkPE4vu/8rE18Hm7EXJmFLs7DpX7nY65yBNieo0RjV5FyfQeE3lVRuqj/sda1Zg9flHR2Tr44LOt3cZtJPjwMg75NuvL293NdIQa1TodIquFoOrsAWmmSirdaJq5PqhUNNb0XRoYKonUOFUX9KHh8phnAdOddlUL+vmV3vDH4fndHOmPMSUelU7HzTF4XQ8Z4/XDlSYQR0K468Bje52q3sb8xlwoQJvPLKK0yfPv2I7ZT0HymIAoTH4+Gpp57i/vvvJyIigoiiZCKVuMO2axdA7YxEIQRgjNAx5doMdry+n8ai1oNW2Q8l4ehI6nObZQW0ASB+dgTpp8ax48391O6WsfQDQfzsCKq3N+Bs6nrSqrVoiMmx+asjjkgO9XAf6a1moPYTBCTOi6RiUz2uHvrkqPUqJl6Wyv6vKwPmJe+vIGqnXRgFQhABRIwNZdxFyeR9Wkbp6s57QEl6T3SODWuKucuct/Z7e2iyifGXpPgW4mqDZyGuL4VC2oVRO50JJHtsPXs8W6itreU3v/kNv/71r9HrZQPhQCB9dAFg+/btzJkzh7vuuouI1ngyiqYdJIa8x0z1Pzoy0sSQNdVM4jzfzbKtxknRykraDlwYuxJDKq1C3IxwTDG9K6Ep6ZqQRCOpJ8VSvKpKiqF+Ej87grAsCwClq2u6FUMA1mQTcTMj0JpHUbEURTlc3OALj20Pke3N9iMVrUVD3MwIrMk9N3IUXl9+kaMhcBPJvQ9Y2PuApd/7UYqNKMXGAbDoyKjZ1UjxqmpST4olJEk20ewvXpe3W69P+729/Z7fLoYS50X5ewgOZzIu2eR/9ETmN0sO+vvT0k3+RzuGchsTa+eSHjKG3/3ud2RlZfHNN98MqM2S3iE9REOIx+Phb3/7G/fffz8ZGRlYdsZiVXyNzA4VPx0ZSUJIpVWhqHwXxbhZ4USOt7L1lfy+V4qT1eX6hcakZur1mdjrnGx7NT/gSdrBzrgLk2kub6Po26pevycYwkX6RU9i5sCtZ9ZdYwBY89juPr1vJHIkY0JRQdzMCErX1AzpNbGz6lxZvzvcW9WTh6id9Lt/7K9JR4yigolXpGEI07Hpn/twtQ5+s1hJBxSYdGUa1dsbKFtbi1qvQngJyutjVx6kQ71FHWn3HLkimikw76S4uJhf//rXPPDAA+h0uoE3UtIpUhANEfv27WPJkiWsWrWKZJFFOhNQ5s/o8X0jSQyhwIzbsqnaWs/+r46srHN3oXSS3jPh0hTMcUY2/XNfj94MSeeoNAq6UK1vhfMIBbparyLt5FgKv6nE2UOYVNDRG++OEIQc8Ig0Fbb2+j0jCZ1FQ/Jx0eR/Xn5E17bQJBMTLkthy8v5tJQNXRhxd/1cOgqjYBBE4DsPOddn0FJuZ/vro6DoySCi0iiEJJmOuHhCygkxRE2ysu6pPUG98HmoOOpOFLVzSuJkysJz2VWzlZSUFN58801mzZo1OAZKDkKGzA0yXq+XZ555hilTplBWVsbUydeQMf/KHsWQ6ruNI0IM6W1a0s+IQ1ErICBvRRnl64+sk7UpWs9RvxqLJT5w4RUjgYSjI7FlWNj9bpEUQ/0g7dRYJlyS0i9vpUqtEJpswhgxSmPGFYWmwtbei6ERiDFCT0iSCZX6yD5/Y1Era5/Y4xdDKm3gv8f2cLqBCKkbKpzNbva8V0JYZgjxsyMCbU5QEzE2lElXpKELObKQ4PL1tb4iK8JXXTH9jDj0Nu0AWzn4dAyvy7hkE5nfLDksjO5QPivewtYtLbzz0jjsdjtz587lD3/4Ax6P9FoONtJDNIgUFRWxdOlSvvjiCxLiZpGRfhoadc8Tn5EghLRmNa4WD8YIHRMuTWXHsv397vWgMaiJmmylfF0dwiuH7ZFgjjUw5Zp0SlfXUPBFRaDNCWq0ZjV6q47m0u77q/TISA3/7KXAyTjTlz+Z+1Eve4qNxFvWAI2BhKMjiZ5sY9NzuQjP4H5P3XmIOpJ+INci7y9zet42wF4igNSTY4k/KpzNz+fJfmFHyEHe835iitIzfnEK214rwF7r9M8tgp2OeURd0dCkcMOvXfznvQLGjBnDW2+9xZQpUwbfuFGKFESDxBtvvMGNN95ISEgIkWEnExGe1e32pfOMJD68aoisG1wyF8RjjjOy+bncQJsi6YBKq5BzXSZep5fNL+RJUXkEGMJ1pJ0cy57/FQ9o6KaigrRT4qjb10TdvhHWW6sHYTTtxgwANjzbw/VihN2qwjIthGWGkP9Z2YDl8Bkj9djSzJStrR2YHXZDXwXRQe/tQhwNB0GkqBWmXJ2OSqti07/24XWNrHEX7ORcm0FzWRv7PiwNtCkDRk/i6K33ddx2XyWNjY088sgj/OIXv+ixT6Wk78iQuQGmqamJK6+8kksvvRSjPo30lKu6FEOl84z+RzCLIUUFsdPDMB+o/Fa+vpb8T3u52ttLzHEGkuZH+bq2S46ItFPi0Fu17P5vkRRDR4hKo6AxqlHrBvbSKbygC9Ggs4zAqnM9CJkNz+aOOjEEvpwVXYhmQAuatFU7/GIofEwIxsjhGYqZfvePw0L8dIbwCHa/W4Q+VEv6qYe3wpD0Dr1Vy+Sl6ZiiB3YM5n1aRtl63xg3xxqInR6GEuQz2VPjc/yPzrjobCdbvw7n+GNiueOOO5g/fz6VlUeWhy3pmiAfRsOLdevWMW3aNP773/8ybswiJoy7EK3m4HyXjiKonWAVQ+0XISEgfnakv3Ruc5mdxsLWAT2WOdpA5AQrXvfImxgNBeFjQoibEU7eijLaaoKn58NwQW/VggKtlQ62vpw/KLlXu94uoqKTZq4jAiGOTNQc6fuCgIpN9ex6e5CagSqQfGw0cTPCB2f/A8RwFUZtNU7yVpQROz2ciLEhgTYnKHE2uXHUOwfck9FY2OrPl7Ommok/KsJ/iQh2YQRdi6PoSC8fv6bj0d+PY/369YwfP55PPvkkMEaOUGTI3ADg9Xp57LHHuO+++zDoo5kw7iJMxp+TMjuKn44EqxACX2WjsRcksem5XJxNblQaRYqVYYrWrGbaTVk07m9l538KA21O0KHSKEy/NZuKjXUUfjP4q3KJcyNxO7yUrxv8sKeA0WGSNPUGX8jcxn908BKN4NtS3Mxw1DoVxT8MblNejUGN2+Hx5SYNQp5a/jJfLoMQ3U94OwuZCxbGXZhMSLKJDc/sxS1LcQ9L2uceuhANOddmsOvtIhqLBnZBdjjQMaxu03YNi2+oITe/lqVLl/L//t//Q6sNvqITw40RoKcDS3l5Oaeddhp33303cTGzmZ5zHSZjRKeeoI4EoxjSmjV+L1BLhZ3KrfX+xN3BFENakxpFJUPljpSMM+JBwN4PO+8cLuker1uw9/0SSn8ami72WrMGrUk9JMcKGB0ET3NJG80lbZ2+NhLRGNVD0pDXbfeJIVOUnmk3ZWGKGpzwOUUR/sdIY99HJSgKZJweH2hTgpaQJBOG8MHrpdM+9xAeQeXWeloqDniP0swjqvF1R89RzgQ3W74KZcniZJ5//nlycnLYvXt3oE0MeqSHqB988cUXXHLJJahUKmKjTsdx9uQe3xOMQqidjDPisKVbWP/3vUN63DGLktCa1Gx7tWBIjzsSiBwfytgLktn5diE1OxoDbU5QMZQJ6qOadm+RvBUNChqDmtRTYsn/rAyPfeASlto9RF3R7jkKZg8RQOQEK2MXJclr6BEy4/Zsqrc1DHlV0+m3ZFGX10zexwObzzzcWPqvbdz0q3JUKhWPPvooV111VaBNClqkIDoCvF4vDz/8ML/5zW8wpmYRf/alaMw9xxkHnRhSIPWkWJqKW6nZ2YjGpEZ4xJA3RjVF69EY1TTuH3lu8MFEY1Iz/aYsGgpa2PXOIOUqjGDaSxhvfj43IOGg0ZNt6MO0FK2sGvJjDyUhCT4velNJP8uXD3OSjo3CUeeickt9wGxoLwjiaHD1e189CaJ20hZv7vexAs3YC5KwppjZ8MxeXDJ0rk/ordoBGW99Ra1XoagV3K0eIsaFEpJo9ImyETjjdQoHeeGbKakrYsmSJfzzn/+UIXRHgAyZ6yN1dXWcffbZ3H///YTPPZmki67rUQwJVXCJIbW+vVqCr/JVe/iOu9Uz5GIIfInsUgz1nYzT40GB3I9HTnnSoaRkVTWbXwiMGALQWjToQ0f+TW3cxcmMuzg50GYMOvpQLdoAVxHMOjuBMecnBdSGYCT3I981NONMGTrXVwIhhgA8Dq8/70trUqML0frFkH+OM0LQKXrG1M5kctw0Xn75ZU455RT2798faLOCDukh6gMbNmzg/PPPp6GhAfPJ52PJHN/ltuLA7y3poeARQuCLN59yTQbbXiugaRgkJqadEktdbjP1uSOsN8sgEzEulHEXJrPrnUKqt8swj96iMaqZeFkqBV9VyDE3RIRlWQCo2yu/78FGb9Wi0igDUmlyNHmIACLGhzLugmR2vrWfml1NgTYnqEg7JRa1Qc2+9wOfxxqaZGLCZalsfj63383ihyP1uir26DeiVqt55ZVXOOusswJtUtAwsmTyIPLCCy9w9NFHU253E7b45k7FkFD9/IDgEUNqnYrwbJ+Xq7XKwf6vK2gbBhcKReUTaCMpMXIoUOtVpJ8eR83ORimG+ojH6aW5rA173fApTR6WFULCnIieNwxS6vY2j2gxlDAngrCs4VG62dHgoq3GiaJSSD4uGpVWTgF6S82ORmp2N5J+evyA9yEb6bRU2GkuCfwCKxyY43xV4RdD4dkhI+p82pxRTPcei1boOffcc/nb3/6G1zv0kT3ByMgZBYOEw+Hg2muv5ZprrsE4fhrJV9yKznZwb4eOIqidnsRQ8f8dTfH/HT3Q5h4R0Tk2ss9L9LuRS1fX+CoUBRjhhe2v76cqgDH3wUjK8TGodSpyP5Ghcr1G8YWHCo9g34el2GuHjyCyxBoITTYH2oxBI+2UWNJOiQ20GYNGaLIZc6wh0GYchCFMS+yMcCzxw8uu4U7ex2VoDCpSTogOtClBReXmesrX1wXaDMBXfbG9YqharyL7vESic2yBNWqAUbfomdR4NKmmLO666y5OOukkmptH7qLTQCFD5rqhsrKS8847j7Vr1xJ+ynnYJs/yv3aoAOpIV2LoUAGU+KfAeZCiJlnRGNSUra1FUStoTepBaTbZH0zRelorA++pCiYscQamXJNB/ufllK4emjLRI4HkY6OJmRbG+qf3DL9+WoPQQ2Y4Mf3WLADWPz201SuHlGF4DlVaFV7Xka8cj7aQuXYS5kSQenIsm5/LpflAg1BJz+itWkISjcMuakEXosHV6kF4BHEzw3HbPVRtbQi0WQNGa1I1a8t+IDExkZUrV5KUJHMIu0LGInXBpk2bOOecc3A4HMRdfAPGxNRuRRB0LoS68gIFUgwBmGONaAy+DyQ8YtiJIXOsganXZ7L1lXwaCloCbU5woEDGggRaKu1D1jNnpFC6tobm8rbhJ4bAP5EOSTRiijZQsWF4rLQOFCNVCMVMC6O10k5TcduwE0OAXwwlHxeNx+mlZNXgNoodKZSsriFqso3MBQlsej53WJ7b4Uj4mBCSj4umdnfTsLrOdpz7mOOMuNvcI0oQmYoiOTrqZLY3rWH69Om8/PLLnHHGGYE2a1giQ+Y64d1332Xu3LlUOL2YL7wOQ3LfxFB7OFxnYijxT6sCIoYUtcLkq9OJmRoGQMHn5ez7YPiGVLVU2Nn2WgGNhVIM9Za4GeFY4gzs+7BU3qR7iS3djFqvwt3qoXb38E6UDssKIXqyzedtkAxvFIieYhs2uUPdoiDHVF8QsO+DUsxxBuJnjdzcvoGmYmMdax/fPazE0KHse7+Egs99/ZJipoYxeWk6ijr4fxzaKhPjqo9CLTQsXLiQhx9+ONAmDUukh6gDQgj+8Ic/8MADDxAyPoeEsy5Gpe25w3LSQ6t6lQ8UCCGkC9XibHQhPIK6fU20VQdJCJpAVvnqA1qzhpQTYyhfV0vzCO/nMlCoNApZCxOp2FhH4deVgTanR4pWVlIoGHFiN+e6DAA2/Ss3wJYMIAK2vpzv7zk7nOk49hW1gvCMsAE2CDSXtlG2rpbk46Kp2laPqyXwObfDHa/rwLgahuGjndFW7aBuX5P/99A+lwpW9IqR8XVzKIzZzv/93/9RWVnJo48+ilqtDrRpwwbpITqA3W5n8eLFPPDAA0Qcexpx517eoxhKfmQNiug6LK4jgRBDpig9M27LxpbhK2tbtLKKxmFQSrsnrKlmss9NlBWQ+kDqiTEIj6Dgq6HtBh7MeN2CLS/mUfRtcDQ+FV5AgDFChy3dEmhzBozWagetwbJQ0wtsGRaMEToQB85ZkBA+JoTpN2ehNcsJUm8o/LoSIQQpJ8QE2pSgwZJgZNadY9AFQX+1xqJW/73BlmFhxm3ZGCP1Abaqf6i8KlJKJ5KtncyTTz7J/PnzaWwcXjldgUTOOIHa2lpOPvlkli9fTvz5VxJ5zCkoXSztJT+yxi+Eiu6e1ek2hzKUYkhRKX4B1FrlYO/7JTTuD66wM7VOhVrXv4Tf0YQ5zkB0jo39X1fiscvvrCcUtULC3EgUlYKj3hV0K+JJx0STfGxUoM0YMPb8t5g9/y0OtBkDRvKx0SQdE3xVyJpK2qja3oC7TV5DeoO7zUPh15XETA0bdlUEhyttVQ4qN9eDN7iuuY37W9j7fok/wsaWYUFRBYH7txMURSHZnc3RsSewbt06Zs2aRVVVcCwKDjajXhAVFBQwd+5cdu7cyVdffUXIuN5VzhmuRE2yMn5xCroQXzRk1Zb6YR2z2xm1e5rY+VZhoM0IGtJPjaO10kH5+tpAmxIUhCQYSZoXhSkqOFf7cleUsvXVgkCbMWAYI3UYI3sOTQ4Wtr2aT+6K4Zuf2RWuZjf7v6xAeIXs/dZLytbV0lrlIP20uECbEhR4nF4KvqjA2Ty8ijj1hNct/O0/dCEaxi9OIWqiNbBG9RNjeRjvvfceNTU1TJo0iTVr1gTapIAzqstub9iwgTPPPBOTycQnn3zC2f/+qNPtkh85eKD01jMEQ+MdMscYsMQZqNhUDwoYI/TBkyt0CIYwHV63d9hVvRuuRI4PZewFyWx9NZ+G/ODyBAYStUEV9N40nUWD2qAO2t96O7PuGgPAmsd2B9iS/mGM1OO2e3AF2WSvIzXXzsGg8nJCdAtbGgwUt2mJeO7HTrcdrWW3D8WaZmbSFWnseqdw2JWUHo4oaoWoSVYa97cOqwbYfcEYqaetxgHCV3yhubSNlorgLMH+1w33cfrpp9Pc3Mzrr7/O2WefHWiTAsao9RCtWLGC+fPnk5SUxI8//niYGGoPjeurGPIYBB6DGNJqchHjQombFeFPVgzmCVLysdFMuDQ10GYEBSqNQurJsdTsapRiqBeY4wwkzvOFmgW7GALIPjdxRKxM531SRt4nZYE2o9+knxbHmHMTA21Gv7F7VWxr1FNu93mJaq6d439IDqchv4WaXY2knhyLShOcYVRDTdopsVhTg7fZdFu1TwyhQNzMcCLGhQbapCPmV9MeYt26dSQkJHDRRRfx3HPPBdqkgDEqPUQvv/wy11xzDWeccQa7xh2NSvdz6MyhAqgjXYkhj+HgrzDlt52vqA0kMTk2BFC5qd5XFlKIoErg7Qq1XoXeqpUNWXtB4rxIko+LZsMz+7DXBudK21ASNyucqEk2tr6cH3R5Q51hCNfhanWPCHE3EtAY1GiM6qBd9QYOEz06lRevUHCLwyf6jSf0rkDPSPcQgS+yYdrNWez/qkL2c+oFap0Kj3NkXLcUlQKKr59jdI4NBXzROkGGR3gQx9WxcuVKfvOb3/C73/0u0CYNOaMuUPjJJ5/k9ttv59prr2VlVDYqlbpbEdTOoWLoUBHUzlCIIQBLggnhEVRSPyImd+14HF4phnqBxqAmcW4U5etqpRjqJWVrailfVzsiFg4A/3lX61QoKgW3PThL/yaf4CtAUPjV8C993hkagxrhFbjtnqA9B50jmBvRRp1TzaaGw4sGRL1n9P+/6tzOS/2PBjEEYK9zUr6hlqR5UZRvqJWLFD3QLoZGQpl30aFAhCXWiKIOTkGkVtSIlRGce+65/P73v0etVvPb3/420GYNKaMmZK69x9Dtt9/O3XffzcrosaT8dX2fxFB7OFwgxJCigqyzE/yu2dyPSslbEfxhJh1JPy2OuFnhgTYjKEicF4miImhKRgeS2BnhROfYgOAqg9xbJi9NJ+Wk4C39Gz3Z5ms4G6SknhTD5KXpgTZjEFDY0qBnV1PPBS+i3jMeJJBGI0Urq1DUColzR04FyMFkwmWppAbxdasz8laUkfuRb14WMT6UrLMTUIJolq2g0PBfhTvuuIMHHniASy+9FK93BN40u2BUeIiEENx99908+uijPPTQQ3z9wBZSlN5VMSv47Ux600WsOzHUdNFs//9D3lrdq+MeSvtETjUCuiZ3hdftDbqKeIFAF6IhblYEJauqcbWOpBXpwcEUrQ/6VcjuyP+sPKjzBtc9sSfQJvSLom+rRlSVvI7UOH1TBLUiMKgELR7f7E7f0PnvqTdeo5GKq8VNyepqEuZEUvZTTdBVUhtqKjfXjejiSaoDZbmDbRFOURS2PlHELbfcwt///ncaGhpYvnz5qGjgOuJziDweDzfddBP/+te/eOqpp/jgrp4LHQi370e6//e9SyLtTAx1FEHt9FUMaUxqxl+cQsGX5TTuH/4NVSVDQ8aZ8USOD2XdU3vwOILsaisZNBRV8N18g52R9p13VThhmq2NEI2XldUmQOlSEB2K5T9HtgAYrKj1Kmbclk31zkZyPwy+0uuSwcGaYiblxBh2LNuPuy14FjFn3zeWhx56iPPOO4833ngDnW5kLvy0M6I9RG63myuuuIK33nqLl156iTeu+7Tb7fsqhOBnMdSZAOpIn8TQgWpx7lYPbdWOUeE1CU020VzWhtc18j9rfzCE6YiZGsb+L8ulGOqBpPlRNJe1Ube3OdCmDDpqnYop16RT9G0VVdsaAm1On2gPN9vyYl6ALekbUZOsJB0Txebn80ZMgnhX7G7SoygHympJusTj8FL0XRVpJ8dSsqpa5nf2QGiyCWOknooNdYE2ZVDxuL20VTt+FkMH5njDndUP7eK5557juuuu48QTT+Tzzz/HYBi5TYiDKLqxb7jdbi677DLefvtt3nrrrS7FkHC7/Q/omxgK3y5oumj2gIohY4SO6Tdn+ZtG7n2/hOaSkR16oNIoTLgslbgZMn+oJ5KPi8bV4qZsrWzC2i0KWOKNGMODs/lqX/E4vVRta6ClMvh6YTibXTibXYE2o8+0VNip2tYwYsRQ/rIpXVaOa/GoaHarURCY1CPj8w4WZWtrcTa7STpG5hL1hC3NQuzUsECbMeg0l7Sx9/0SwBfCPf3mLIwRweFtefPaFTzzzDP8+OOPnH766bhcwXet7i0jMmTO4/H4PUNvvfUW/1z8zmHbtAugjvQkhpK+/Hmy0RLbu4lWb8WQolIQXoGiVsg4PY6i76tw1I/cgXcoepsWj8MbVO7kocYQ7hPLeSvKpCCSSCQDSleNVkO/Mvn/PyHUTrzBzXd7TYheeItGW8hcO3Gzwkk/NY71f98b1GXYB5v2ec9oQm/TkjQvitxPyhAeETTfwaUvnsl1113H9OnT+frrr0ekp2jEeYg8Hg9LlizhrbfeYtmyZQeJoUO9QR3pSgwlfWn3P9oZaDEUmmRi+m1Z6EK1CI9g34elo0oMATjqXVIM9UDSvCicLW7KR3h4QX9JOSGGkITRWfFKH6plwmWp6G3aQJvSa3QWDTpL8ERv620HvuPQ4PmO+0PjCa3+x+YpHtbVGXslhkYzFRvqcLW4SZReom5pFwIq7egZT456F/s+LEV4BLpQLTNuyyY0ydTzGwPM60s/4sknn2Tt2rWccMIJOBzBW8inK0aUIPJ6vVx99dW88cYbvP766zx36X8BuhRB7RwqhjoTQe0MqBg6cA1oqbRTs7MR7wgJvegLikph4uWphCYP/wtCINHbtERPsVGyqnpEV0zrLyqNgjXNjDFydITKHYrrwKKCxhg8FYFyrs8g5/qMQJvRa9q/W1fbyK2Q1RWtWoX9xziw/Gc1YR+v63bb0eodAvC6BcWrqomebAuqxYlAEJNjY+YdY3wNTkcZXqeX6p0dQp2H+Vfw35u/4sknn2TNmjVccsklOJ0jy/s5YkLmvF4v1157LS+//DL//ve/eemy93r1vnYx1Jn4OZSBFEO2DAvpp8Wx5YW8EdbMr29ozWoyTo+n8NtK2ZC1GzIWxBMxNpR1T+weFUU2+kWQJKxKfLT3iKoMwmaGI4muQuYOJW3xZpKPiyZ6io31f9+L8AiaLzw8j3Y0CyLwLc7M+MUYanbLinPdYQjTYU01U7llZDWZ7ysag5rJV6eTt6KM+tzhXQjommWLuOSSSzj22GP57LPP0GiCx8PfHSPCQySE4I477uCll17i5Zdf7pMY6soTdCjdiaHKGYr/0dswudYKO/V5zUEROzqYuFo87HqnSIqhbtCFaonJsVHyY7UUQ90QNzPc5xmSXxF6q5akY4MjXKdyU33QiKHkY6PRW+WKf8WmOnI/LvNPYC3/We1/SHx43YKSH6uJybGhGyXhlUeCvc5Jxca6US2GwBc+WJ/XTGvF8C+M8/zid/jLX/7CN998w7nnnssI8auMDEH0pz/9iaeeeor/9//+H69e+X6v3uM9dmqvhBB0LoY6iqB2Mn7VdXNWgIixoeRcm4FKo+BsdpP3SdmIqVB0pIQmm4a9mzjQJB4dgcfppVwWUugSlUYhblYEYZmWQJsyLDBG6IidHh4UE7HEeZEkzosMtBk9ogvVEjM9DEN4cFSH6gu99Q6146h3Ube3CTg8/0MKo58pW1uLx+kl/qiIQJsyrNHbtKO+Kp/H6SXvkzKczW5UGoWc6zKIGBsaaLO6ZMWvVvPAAw/w4Ycfct11140IURT0guhf//oX999/P7/73e/4781f9eo93mOn9nr/7WKoowDqKILa6UkMAbRWO2gsbpUC4ACWeCOTr0oPioTCQKE2qIiZGkbZmtpRL567w+sWbPrnPkp/qgm0KcOC+rwW1j25B2fj8C/OEj8rgvhZw3/C6Gx0se7JPTTktwTalGFD4rwoplydgRL0M4nBwevyUr6ujtjpYaj18kvqCoNNR/zsiFFTqKRHFGgsaqW1anh7i77/3TbuvPNOnn/+ee6+++5Am9NvgjqH6N133+XCCy/kpptuYuffy1CU3imN3gqi/AW9KyvYnRgKHxNC7PRwdizbL0N5OsGSYKS5tE1+N12QMDeSlOOiWfvEblwtozfXrDvCMi20VNhxNo2+JPee0BjUGKP0NBV13l9G0jtCkky0VTlGbL5nXzxEaYs3+/9vjjVgjjUETchjINBaNMy8PZv9X1ZQ8qNcsOmU9qmbnAccjgLjF6dQvq6W2j1NgbamU6IX63jjjTf417/+xbXXXhtoc46YoF2y+PLLL7nkkku46KKLBlQMqVZuRLVy44CIIQBXixt3qweVRrqFOqO5RIqhrlBpFOJnRVC5tUGKoa5QIP20OBLnDv+Qq0CQcmIM2QsThq9X+oBdw/r6qED2wkRSTowOtCUBp6MYAmgpt0sx1AOuZjdVWxqInx05vMd5IBG+x2isNNcTKo0Kd6sHV+vwXfCreMPBRRddxI033sgLL7wQaHOOmKAURFu2bGHhwoUkJSVh/1GNoijETAtj8lVp/m2sKWYMYQfHenclhtpFkGrlRgBy/9p9g9Z2uhJD1lQzGQviAWgqbmPP/4rxuuSsvyO6EA3jLk4+7ByNBCzxRn8Xaq1ZTerJsf7Sq1GTrIy7KNm/7YTLUkk9ORbw5SjM/e0EbOm+PJjMBfHoQ7WU/lgNwKQr03yTW3yhdEfdPZawrBDA5yWZcFmqf7/ROTYiJ1r9f4ckmVAbgvLn3j0CNj2Xy/6vKwNtybCk8JsKtryYF7BFB0u80V+EICTRyKQlaf6y1ZlnxTNlaTqTrkzj6PsmEDPN17Helm5h2s1Z/u3CsiyEZ4cE5gMACNjyYi6F38gx1hVJ86P897yRhNqgIqRDSHfkRKu/KiL4rt/teYthWSEcdfdY/3U2e2ECk670zUlKfqxGH6r1f0e2DAtzfzvBn+OXdkrsQdfvcRclE3Xg+q23aUk9ORat2fd7MEbqscSPvD5rIYlGZv96rCxacghel5c9/yumqbgN8M0LrKnmgNiiC9EcNK9IPyOOjDPiUBSF6nfdZGZmcuONN7JixYqA2Ndfgm6GVF5ezoIFC8jMzGSqfi5tVb4YeXutk/qCn2O7M8+OJ25mOOC7qEVfPAW15udZwaEiqJ3+iiH7gll45o5BlxWJSht0X++QoTGqUetUQdOMVWtW+5tHas0a0k79WeQkHB3JjNuy/dtmnhVP3IEkWkWtIjw7BK3Z916Pw4uz+eeVnqpt9dTn+Upsutvc7Puw1B83bI4z0lzWRmuVrwJf8apqKg6sxgq3oPiHatpqfK95PQJXy8/7taaY/blZar2KKUvTCTsgtCLGhzLtpkz/alzE2BBs6YG5wPYHQ5gOtV6Fx+HF45D5VZ3havHgavGgqJUhyWGwppoPSiCfcEkK0VNsALjbPDjqXf58k4pN9RR9V4XX5aW5vM2fm+NqcVO3t8kfnhY10UbMVJ9YUlQw+ao0rGlDM17VehWKWvF/jyORvhZU6AxHowtHfXD2JLGlm4kY6xPcilph2k2ZRIz3JbOHpVuYsjTd/9sJTTJhTfl57Lla3XgPVEdrq3FQ/EM14kAl0IpN9RSv8i1mtVY5aCpr8wuZ1ioH+z4sxX2gl1V9XjNVW+v9+3U2u/05o1qzhvDsEBS1z4b4WeFkdhCfM27LJuFon4dcb9OSdmqs/36js2j8Qmq401rloOhb3/VA0jkqrQq9TYdaNzRzS0UFsdPD/OM2JNHE2POT0Jh8Y6qlzO5LeQAUj0KOYQ4JCQlcfvnlFBQUDImNA0lQ5RC1trZy3HHHUVJSwpo1a1iSdHuX26p1KhSNgrvVg/XcKUyY6GHdk7txNrrQmjUHTR7b6asYsi+Y5X/ObPASZfNQUO6bJBs+XNOHTyYZDuitWtxtHjxOL2FZFiLGhrLvA1//iJzrM2gqbiX3ozJ0Fg0Tr0hl7/ISmkp8NzlzrIGKDXW+/YRqcTs8/ZqkW1PMTFqSxrZ/51Of188kbgWMEXqcTS48Di+WBCMRY0PZ/2UFABMuTcHZ7Gbv8hLUehUzfzGGXe8WUZ/bjDFSjylSR83upmEX2jhpSRoep5cdb+wPtCnDninXpNNSYfeP54FCbVCRcFQklVvqsdc5STg6kohxoWx5IQ8AQ7gOZ5O7/5OcA72lNAY1aafEUrqmhpZyO7EzwomaaGXrK/mDMj4zz4rHHGNg8/N5A7/zYcKR5g8FDQpEjAmhtdpJW7UDW4aFsecnsfbJ3XgcXrLOSUBr1vivIyknxlCzq5HmkjbUehW6EK1v4amf48uWbmbi5WlseTGPxn7k9Kn1KjR6NY4DBVNipoXRUu6bmIYkGMk6J4FtrxbgbHaTcWY8IQlGNv0rF/CN55qdjdTta0atU6ExqnE0DP/CK5LOSZwXRe3uRv+i6UBhjNDRVuNb4Jh2UyblG+ooXV2DSqOgqJRuCzy9UvwkM2bMQK1Ws3HjRiIjgyecPWgEkdfr5aKLLuLjjz9mYuscQpWwPr1frVP5T+K0mzKp3dNEwRcV/td7I4ai1wm0LZ0PhPhIN0lRLtbtNuDxKlIQdYOiUjCEaf0/uEARnWNDeARVWxvQhWiYdedYtr+xn7q9TUSMCyUmJ8xXDANf6I+r1Y2jfmhuHmMWJWGO1rPhmX1Dcrz2CafaoCJuRgRV2+px1LtInBdF/OwI1jy6C/Dl6zSXtVG5uR4U37kMVP8IXYgGtV5NW7XsYdUTYZkW7HXOAfnN6SwaTNF66vNaUGkVpt+Szb4PS6jbe2TNBFUHVju9R1BF0Zrm84QWfVsF+EKNytbVDlhjQ2OEDkOYjrp9w7tRYn/oS0PWnkg4OhJ7nZOanY39NavPKGrF19dP+K7tllgjeSvKADjql2MpWV1N8ffV6G1aoibaKFtXg8fuHdJGztNuzqK5rI09/y0ekuPpbVq0Jo1/FX/8JSlUbKyjZmcj4dkhjF+cwpq/7cLZ5CZqkhVFrQQ0J0xrVhM5wUr5ulqEdBR1i0qrYsrV6ZSuqfEvxg4EUZOsZJ2T6HMgNLlRVPT5XLisraxxfM24ceNYvXo1Wm1whEEGTUzX/fffz7vvvktm65Q+iyHgIEWb/1k5lVvqAd8Fo/gvR3X6nuh14qDHoWJIrRJE23yeptJqNWt2STHUG0KTTUy/JRtTdNfNbgcKS7wRXYgvfCByfCizfz3OHypmTTYTkugLK3M2udn2WgGNRT5vTM3ORr8YAmgubRsyMaQ1a4gYG0r5+oG7yPXIgQmBx+6l+Psq/2ct/r6K9X/f499MObBCBGCOMTDnnnGYY3wFSAxhOn9Y4WCiqHwPZ5NbiqFeUrevuf9i6EC+c8LRkWQu8OWyeV2CtY/vPmIxBDDj1ixm3Jp1RO9tyG/xiyG1ToXXI/C6fddpc6zB1+esH7TVOEe0GBpoQuKNvubIQ4DOovHnoB56LVIUBaVDAYN1f99D8fe+8DVHvYvi76t8YgiG1PNdvq6WyPGhQxbG5qh3+cUQwI439vvFakNhC9teK/BX5wxJNGFN9oUDKmqF2feMI/JA6KAuRDMkeUu6UC1pJ8diiupdUavRjNflZdNzuX4xFDEu9IjDorUmNbYMX0h9za4mdr653z8ujkSYahtMTLfNZdOmTfziF784IpsCQVB4iF599VWuvPJKsphEijJmQPed+vspaAWsMBqJXt/1dp15hpKjXaTGuVi1zYjb47v4SjHUMyqNgjXVPCgTjfAxIRjCdJSurgEF5tw7nv1fVVC6ugZDuI7w7BDK19cO6yIXicdEkXRMFGse2zWsc2P8q3nrfV3Gs89LxGDT+ZL48a00NeS3HJQzNRDEHxVB7PQwNv4zd9R3N+8LOouvkEnux2UHTZJ6QqVRmLw0nbI1NVRsqkdjVCO8YsDGZtwsX65n2ZqBbTyccWY8IYlGNv0zt8/vtSQYyTg9jh1vFuIa4PE7nAimcDmdRYM1zUzV1gYAJl+djr3WyZ73ilHUCrHTw6jePrwrcqoNKmbdOZaib6so/r4q0OZ0iUqrEDs9nNo9TdhrnSTMiSD5uBh+/PMOEBA/OwJ7nZPa3QNfBlqlVYb1/Xk4otarmHFbNkXfVfnmPn0k7dRYwrNDfYufA/jVlxny2d62nt/85jf8/ve/H7gdDxLD3kO0ceNGrr/+euJIJZnsnt/QR3bv0rN7n/6AGOp8JBwshgQWo+/vwkoNP+0wSDHUR7xu0W8xpKh937kxUs+Uq9P9BQ7MsYafk14FbPpXLuXrfBMte62T0tU1w/tiq0DstDCqtjUMazEEvoT9sjW1flGS/1k5+z4sAXwrTtkLE/0VmsyxBqImWbvcV1+oz2+mbG2tFEN9xNniprXK4Qsr6gXt1Q69bkHNzp/j1N1t/cuPO5SyNbUDLoYAcj8qZfvrPi+vIUxHznUZGMJ7V9VSeAWtVY5Oc00lPRM50Togid9Rk6yYY33egpAkE9kLE9EeSOje90EJ+Z+XAyA8grI1tcNaDIHPA1+1rYHYGWHDtxQ+Ps9v6eoa7LU+r3LZ2lo2PZfrnyJZU83+86K3aZlydbrfM9h+b+7PsSV9w+PwsvGfuf7G5L2NvtEYfL+l/V9VsOWlga9GGmdPY+z/Z++9wywpy7z/b4WT8zmdT+c8PXl6IjIEEcEAiIAoQUARRTDu6ru8uz/fa/fd19V11wWFxYwiwmJEAZUgOUzO0zOdc+5z+uRcVb8/qk/16Z4OJ9TJ9bmuuWCmq6uerq5Tz3M/9/f+3lUb8c1vfhN//OMfxT15GsjpgMhms+GjH/0oZAEV2rE97l5D8eK+eS9CDAlviAQBDrtqAqgzrS0rqSmNYFdbADKaA0AgGOZvoRQMxYdMQ6P5mqrEOlITgLp08QO++c4GNF7FW1WHvRH4bSFBxjX6+izOPT0iHOufC4KN5M8L1tyig9Iox9Th/GvgF/ZE4JvhF81hH4MD3z4nNJIzNetQe1m5cGxFpylpyaRvJojJw+IvoAseDuj94zi8U+t3Pzc0aLDp9nph0TP65izc4/FnlRKhao9liTOdmESzOwRFwG8LIrRQiB51SVoN72QAvX8czzkjkWyRSHZIpqXRcq0V5rbErdLVZQpUdC5K4usuLxdsred73Tjw7XMI+/igxzcTzMvs3eRhG5QGOcwtWbSSTxA2wi2RJ5/7nxGMvs5nuAiSgN8WEn4XjVdXCHbjwMLcncDSTWdVYeeXWwWnPIn4CLnCAMdvRm69u0nIvK9G+XYTdtzfApmGAhvm0vZZsk61waItwb333ovBwcG0XEMscjYgYhgGt956K1wuF7ZgLyhCXM2t++a9S/7OAZj3k3AHll4nmh0iCX5mHJ+jcaJPgXBk8RMuBUPxo9DT0FWrBZ3/auisi/1LyreZsP1zzcKO48RBG2bP8LKJiJ9BzzNjwk5WvlPRaYJ73AfP5PqL1lyHCbFCFmfsrVkcf7QXAD+B1lxSBv2CXl1plqNko37dpny0mkLHLXVx7/JLrIzKIkf9+8ov+He5jhZ6ATkHvTj+o764gqdUqb64BNUXp9eJyD8XRPfvxsBGONBqCjvvbxXswJdT/75yoY9YIdP/5DawHHHBn1QJeyI4+v0eQdq2FgRJoGSjXqgF0tdqUHNJmfAuOPbfvULtDxvh1nS3yhe8kwG4x32ClXy+E7CH0PPMmGCTP3vaiYlD/IYepSCx/XPNKN/G/6wKgww669q1SIH5EGxdLsGeXyIxwj4GXU8OCzXIq2XsbOddGH5lOu1ZVYIj0ercCY/Hgw9/+MMIhXJ3rZazj9w///M/48UXX0SdvQMqQtyeE8uDIR4CfXMK2P0UAA4qGSsEQ2Ydg4s2BaCQsWA5AvMePmgauYaTgqEE8UwGcPzRPmGXL4q6VIGSjXrh7x23LvYvsXW7cOqxATAL1r22cy64RpK3Lc1VZFoapmYdpo9n0Ewhg0QzdRzLF+JHf05TkxbNH7Iiuh2vr1MLTTljkWtokDSRN72rchW5XgbLBsMFBhjmNj1qLysTCnO9GQrKjzzUiyMP9WbkWgC/iTL44qSQvYzNVsu1NH9vEslgFxhiBEjRguyooU0stIqCvi5qdsGh+UNWIQs0fXweh/+rW5B15lN2PxGmTzgW+tPlR4+gRHCN+ATjBibE4tRjA7B1838v22pEx611wrElG/VL1B8Av6AffHFKeIYkEsc55AXHcFDoZdj5xVZB/gzwDXBpJYWInxHVnW4tlIQKW5X7cP78edx+++0ZuWYy5KSpwnPPPYdrrrkGTdiIBmKDqOdeORhaSp0phGZLSDBLoCkOpovDOKGjwcTI9lo/e1jUsRUDtJJCJMCAlBEo3WTEfL8HIVcY1ftLUdlpxuEHuwHwWYOgI1RU1pvWfRbUvbccB/8jt80U0kG0wSoIYM/X2jF50I6R12f4fmKUFASJzoLVsMIog75GLezmC7+HIoGgCOz8QiumT85j5NUZ/t+SsJnNR/qf3BbXcU23nEjq/OU7TGi8qgKHH+RdKjmGz/DUXlqGyj1mHPzOed7qv8ieOYCfB3f/XRuG/jadVBF8vkKQgMIoFxQdu77ShsnDdoy9NQuFXgZjkxazZxwgKRKGeg1s5zNv315IEBSB2svKMP72HJ/BI4Adn2+Bc9CD/j9PZnw8topRHJ88iEcffRSf+9znMn799ci5gGhsbAxbt24FaVdgKy5KS93QeqgDDKhLI7AGGbxtlCO0ipRHCogSo2SjAW03VOPM40Nwj/ux52vt6H1mDHNdLt5ZJsIVtWZ/++ea4ZsNovt3o9keSlaRaWhwHIeIj0HlLjPq31eB3ufG4Z3wZ713VSEh09Kou7wMhjoNjj3alzWTio0LO8ZRA4RMY2zUwjcXhFxLI+JnEJgv/Gcs3mAISD4golXUgpuoG3u+tgFDL01h8rAdtJoCQRBFb1jRdmMN1CUKHP9BhnrN5SIE72LJhjmUbNSj5bpqHPzOeRgbNOj4RB3O/WYEti4pKBIDWkmh+ZoqjL8zB/98CBFf5jcZOY7DYMVJTDjGcPDgQWzZsiXjY1iLnKpaYxgGn/zkJ6FSqdCEHRkNhnRPHwAA9PxwFwBAGyHR7otAF2Fhk1+Y1paCofWhlCTKthgxc8oBJsDCUK+G3xaCZ8IPNszi4HfOCY4yxe4so6lQQlOuxNDLU9keStaJXSjNdTkRdIVRf0U5bN1umJq0mDhgE/qISSQOSRPQVKpg3WuBwiDDiR9l1748VVeqVHEM8I6XGz5WA5VFgbG3Z4W6FYnkKNtiRNUeC+9MBqD7t6Nwj/My52wsxHKRmRPz2Hgrb1ySiVq9nIRbnPvnzrpg7+HXBI4BD1yjPuhr1LB1uS5YS0gkjr5WBaVRjpAnkrXPIEEQqLdvgkvvwEc/+lGcO3cup5q25lRA9J3vfAevvfYatnP7ISfEbe62PBiKBkDLafBHMKKk4KFJ9CkpvHc+jN+XkZJULk60lUpQSgrOQS8oGYmGKyvgmw3COejFwF+nliy8ij0IiqV8mxEhdxjz/VITyFjCXgb2bjfm+zygFSRvh2zj3Y6MjXxj3dE3Z4s6s5goNZeWoXy7Cad+2o+wj8l6ofqZx4eyev0oZ345hIodZth7xe+tko8klBkigJr9pXCN+uAc9MJnC8Le5wZJE6h/fwXC7ohQsyXBM9/vQcgdRvk2Ewb+mnn5Ui4ibJBGOJz62YCwWaKtVKHhygrYzrn4zdUGDZgAUxDmQxmBABo/UIX5XjeCzjAIioClXYe5s5nPvpFhGhvQiXeGXsZXv/pVfP/738/4GFYjZ0wVDh06hP/v//v/UMe1wkyUiXpu9817oXv6wJI/KzHxSCf2z4dRt1CvMKaicFJLI3a5IAVDSyFp/oMVdQWq2leCmv2lAPjC2gP/fg7OQS8A3k1Kcgi7EIIESjcZMXPaKS3sl0HSBGglBY7hEPYxGHl1Bp4F+2eVRcH3nFq4Z7pqVU739sg2JB21pp/B6Z8PIjAfBhNkQcrIrGdpsglBESBlfB3L+Ltz8M8FQZAE2m+sgb5Gvf4J8oxE5HJrQix85gCA43vTqBd60XjG/Rh5dQZshEPIFUGoyOVxK8IBM6ccKN1skBzVVsDUosOGm2sB8K6XB/79nGC0ULO/FFX7eGdKguTXINH3m8QKcPyGz+ibvFV6yQZenhh18s00CpsOG8u34ZFHHsEf/vCHrIxhJXLiY+h2u3HLLbdAHdGhERtFP/9qAVAUSkmi5wc74aFJ/L5MgQE1nzhz0SR6NDS4heyQFAzxUHJSaISqKlFgw811gpXmwJ8nceaXQ8Kx0R0fmZZG5S4LlEYpIFqOsVELmYbGrCQDu4CyrUbs/FKr4HwWy+Rhu/Cs8c0Bm1CyQX/BcRKAuU2HzvtbIdfRS3qKkDSBzvtbULlz7Z4V6WT337Vh99+1Ze36lTvN6Ly/ZcmCipQRKz5zEouUdOix9dNNwlxw5vGhFfuDjb01mzE3q3xj9owTMjUNQ712/YOLDDbMIuJjhM9lrKLkzC+HMLBgCqCzqrDh5jqhMazSJBelKXDBsPBaC9hDQkA5e8aJY//di6CT78tGKTN/v0on61FhqsSnPvUpzM7OZvz6K5ETpgp33303nn76aWzxXAw1kdkXA0kT2PSNTehRUzilWyFa5jjsdkUwJyNAf+V4RseWS8Q6AW28tQ4gCJx9YggA/wIqhkLkdNFyrRW6GjWOPZI56+F8QaamYGjQYu7s+j1NtFYVvFMBcAyHhqsqQFJEVpx0chFaTaFqtwWjb8xc4KBWttUI57AXQUc4K2OL9iDKVt2OwiiDoU6DmZOOVY8xNWsx31cYctbR324S/j8UWlk1v5pcrumDlWAjHAZfnAJBEdCUK+GZWL9hL62iULbFiImDxeOoFi+d97fAOexF37MT2R5K3hK7Btl4Wz3AcYJJSzG6GMZSvt2Eip1mnPrpgGBnH0v1xaUo327E8Uf7Mm5zz2pDOEK8hksvvRR/+tOfMnrtlch6GP3SSy/hpz/9Kao9rRkPhgBeq3pCR6N/hb4nAACCgIzjUPPkhQ5I4//roiV/ChVtlQp7vtYOdRm/AzP08jT6nh0Xvi4FQ8nDp/v1mOtaf8FfjIR9TFzBEMDLdKI1ar6ZILzTvL6ckpMo3VScspSqvRZQShIRH4OR1y4MhgBg5qQja8EQwAdC2TQxCDrCawZDhgYNNt5aD23V2g0l84HYYAgA5PLIkj/LIUgCpZsMwo67dzoA3yyfXeQYLq5gCOCbAdddUS7MIRKLzJ51wrJh/cbUxQhJE3HJ7GPXIH3PjmPo5WkAgKZciT1fa4e2Upm2MeY6vrkg7N2uFYMhAJg95cDoG7NZ6flFeuRoU27Fs88+ix/96EcZv/5yspohcrvd2Lx5M9zDfmzHftFd5daicpcZbITDm59rXvO45icimLxo/YnQ+u13xBpaTtBwVQUoGYm+5yZAkAQqOk2YPeNMuh/MtnuaMH1iHpOHLpRUFDOmZi023lqPY4/2wjcTzPZwcorW66thO+8Smvwli2WDHm03VOPIQz1F1exPrpdh+2eb0Pf8xLrWtdoqFeqvKEfXU8MZnxjLdxgBANPHHBm9Likj0PHxOgz9bXrdhb2mXCkE2PnM8oBoNWpuPAOAb6y680ut6P7dWMqfw2LfqV8NdZkCO+5twdlfDRVMFlIsGq6qgLlVh6PfT049QasolG4yYOroPDiWQ/M1VWBCLAZfkNxcV6J8uwkkTawofU0XHMehp/QInMF59PT0oLy8PGPXXk5W90z/4R/+AbOzs9iAzowGQwD/EvJ/om7JvzU/EbngTzQYosHBRKwcDBRCMCTXy9BynRUyDS+h8E4F4F5YJHAsh8nD9pSaY86ecRavtegalHQY4JsLSsHQMgiSADisuquVCLZzLhx5cDEY2nZPE8q3m1I+b05DACFXGEe+3xNXH4+wLwKW4UCrM288Wnd5Oeouz/wkSKtosAyHsG/9IDkaDJVtM6Lxg5XpHlpW2fn/xrHtM00AeGOcIw/2pBwMAQATZEGQkGqzluGbCcI3G0DJRkO2h5JzTB6y4/yvk+/LF/EzmDxsF+YR97hfWIfItDRarrNCrs8d22exMbfpoK+N3xhGVSKHujSzWVyCINDs2wqWZfHFL34xo9deTtZst19//XX893//N1qxDSpCk5FrkjQBVYkC3qkA+p+fBOuqQDPi2zHeSgdQQUbwfEi35N/zORjSVqkg19Kw97jBhBhoK1VQGGUIeyNrSkiSYfwdqa/HcqJyuYnDkq5+ORzLoeeZMdHOF/Lwn3OCImA77xIWuOoyBcBBkAEVAg3vr4BMTaPnmbG4e3YEHWF0rSALzgQnftifleuGXEn8zByQ4b27jGBY2KtyKgHvTAC2bhcIigDHcMJnRwy2fKoR7gm/UBAvwTPX5ULVHgv6npvIak+wXENsOX6suYfCIIO2UgUmxG/0mlt1CHkicctA84HKXRYEnSG4RnxxHT/00rTw/5oKJfxzwYwoBiifHK2Wzfj1r3+ND37wg7jjjjvSfs2VyIpkzu/3Y/PmzZjrd2AnLstYdqjuinKUbzXiyPd6ENm3bd3jY6VyarDgAPiXJdXyLSCS62iEfQw4hkPThyqhKVfh1M8G0npNXY0aTIApqEWnGBibtNh0mySXWw4lJ6Gv4zvcp9uGvPUj1VCXKXDiR9lZlKcDS4ceMhWFqaOJO3vprCrIdTLYzhd2d3hLux4hdxju8eQXP3ItLWqwkG5WlctxwNV9gEMJjH/lTFrHYGrRIegMSe+7ZURlc2d+OQjHgDfbw8kpKjpNYMJc2l1Yt3yqEd4pP/r/PAmCIiBTUwUhsSZlRMI9H0mawM4vtWL6hAPDf5te/xtEgOM4nDMfhI/1oL+/H2Zz5p1Ps5K7/va3v42RkRF0YGdGpXJjb87i7JPDCQdDAOADWRDB0K4vt8HSxme5hl6axqnH0hsMAUD9+8pRvdCbSGIRc5sOfru0OFiOqVmLjo/XQr6S66PI9P5pHOd+PQKAdyraeFt93kooosXHti5XUsEQAJRtN6Fyd2Ynog031wr9RjJF5W4zyrYlL5uU62jsuL8FJRvz0+ZdHQIuGwS0QQAE8GYdcLA6/ded73VL77sV8M0EEXCEYG7Lz+cpneisamjK02+KcOqxAcGMwdKuw64vt0Guy5qISjQSDYYA3mzs7K+GMfZm5uywCYJAW2Q7/H4//vmf/zlj140l4wHRwMAAvvWtb8EaboSG0K3/DSmiLlNgy6cbIdfRYEJsXHUsq5ko1JFhbKf578+XYKii08TbZIPXg5//zYhQuMmE2Iw0Aj37yyEMviBJJJZjbtFhvlfq3r6cuS4Xjj7Si5Ar/c5nHMsJDmu0kgQ4DpGFmhJFHgVG6lIFdny+BebW1N6pgy9M4czjQ+IMKk5kGlqoXcwUZx4fwuCLyRdWh9wRDL44hfne/CqCVy8okIILt1u+UBbqlQPVN6U3OxRFX6dG04eqMnKtfMLe407581uI9P5pHEMvZcAEgVtYEwGY7/Xg/G9GhAzRxlvrUNGZX3WnGz5Wi/orK5L+fu9UAEyIhVxHY8unGzPiEEm5FWjWduCRRx7Bu+++m/brLSfjAdFXvvIVIEiiARsycr1IgEXYzRcMAwC7f3vS56IIDjS4nA6GCIqAdZ8Fmgp+RyXgCMMz6Reac9nOu4UPfaZgIxzC3uQNGQoRdZkCSqMc9h4pIFqJgD3zVu6eyQDO/op3WaMUJLbf24zKXdlrWJoIvtkgun8/CnuKATYb5t8NCoMMpCwz08Opnw2kXbYbhZSRQnf26M+aLNPH5vkFg5aGypLbDadHf7sJLXPAB3oBGQMwJPBaA2CPv95aNCg5CXWJQmqeuQx7jxtKo1yyJl+FTLZNYEIsbOcX3qUE4Jn0I7CwcaapUMK6zwKCyu1iQnuvG+7R+GqH1oJjOITdkZRMtRKh3NEAjVKLe+65Byyb2bVqRt9If/7zn/GnP/0JrdgKikjvjqC+Vg1SRiDkCuPcr0cQ8TFxBUNrWWwPMHIcjuRmL4rohMyxHMp3mIWeGY5+D4ZfmclIJmglLBv0aP1IBrQYeYa5VQcmxMA5LOnFY2m4qgKt12f/eWGCLHr+MCb0hzI2aaG15t5nn1KQgouQrcslyuecUpDY8fnmvNsRjYfKnSbs+HyzqE5nzR+uQvO1VtHOJyZaqwrGJr6/36gBOFADhFf40aM225lgvteD078YzPjGXK7jHPIiEmRgbpVkc0sggF1fbUP5jixtTnHA8CszcPTz2WBtlQrlO8yCc12uboZMH58XpRY07GNw7td8toyUEQm51iUDyZLYpN+JM2fO4De/+U1ar7WcjOkUgsEgvvSlL8GMMpQhvZMHpSCx4eO1GH/XlpAGMp5+Q9XfeRfEe7chEl55d4B883jc1xOL8h0mNH2gEoe+242In8HxR3tXbMCYDQrRkUkMzC06zPd7JEehZbhGfaCVqzRJzjCx2buq3RYwYRbdv03eAjYdWPeWoHKXGYcf6kk54xGFCbI49/QIXCLsLsbDzi+3AgCOPNiT9mtNHrHDMxUQtR9O/58nBQVCrlG9rwSkjITbsthXpH6F47KRv1eXKeCfC+bMXJVtOIaDo98Dc6sOY29lrnYj5+GA0TdmRcl2iMH0sXnMnJgHOIBWU9h+bzP6n5/E9PHk6jbTgbqUz8CmYhqzElV7S2DdZ8GRh3rS2lNMPWVCla4G9957L66++moYDJmxpM+Yy9x//Md/4B/+4R+wi7kCWiL9OyDqMgXvarbw08WbHQrrVr8dtS8EsK0zAp8P6Dl3YSyZyWCo6YOVCMyHMP6uDbSKgqZcCeeQlG3IB2gVhT1fa0ffn8YxfcKR7eFIxAOx0FgywMLYqEHZNhP6nh1PqmBV7HGpLPzCMl3nT3d2ufbyMgDAyKsz6b1Qmn8WSk7CUK/JqgyWlBFovsaKmRPzcAx4QSn5ZqjUK2vX7DCXT2RohDyqEgU672vB2SeH8q4OK52UbTOi5VorDn7nfMYkShKpYajXwDsVQCTAwLrPAoVJnnVb+aYPV0FvVeG42C0NCD7YyoQxCqMP4k3vX3DXXXfhRz/6UdqvB2RIMudwOPDNb34TFUxdWoMh60UlaPwA3zTPN7N6MES+efyCPyNXKdcMhqIM9pMYH838DjZJEyjbZhR0tGEfg8hChB7xMzkZDBEkMl4snQ8Ym7QgCAJ2qSv5Esq2GqEqyVH9PAehpw8pI0GSi1amJJ35NKi2Usk30OOQtmDI1KxF5/0taa/1GHl1Ju3BECUn0Xl/iyAfSwcVnSa0Xl8NWpWd+QHgHaVIihDqv5hA7gVDAP/Mnn58UJAhSfA4+j0gCAKGhsz0ZswXZGoKZVuNfMPuHMM55EUkwAevkSCLiI//f4LkA9xszA8Df57E2adGxD8xByEYavxAJawXlYh/jQUolwLt1o144oknMDubmYxpRgKif//3f0cwGERjmo0UIgFGeBhjWR78LGfoX/ete+7aF3h3OaeDhNdz4QOetuzQwqVUFgVarrFCV83rN0dem1nSZCwX0VSosOfv26GpTL9lZj5hbNDAOxNAOI96mKQbgiRQd3k5TM3pW7CKhb3bjfML0jl1mQK7vtommJhkitrLytB4dWVar+GdDsDe4077IqRkoz7t9tUEScDe44ZvZn2X0WQZP2DD8R/0ZXxnX1OhxK6vtgnF+Od/Mwp7d+6btTgHvZJcbhkhdwS+2QCMjbn/HswkSosCrR+pztl6nSjTx+Yx8hq/uaOrVqPlGqvQDgEZjIs4lku7S2vEzwiBYLowD9eCJEnce++9ab1OlLRL5iYmJtDc3Ixyfx2aiVUaw6WIpkIZl532aqwXEEWDIQCgZRzKK1jMTJEIL9QRpSsYqr20DPo6tWCDK9PSebWIphQkjA1a2HvdUq1MDDu/2Ap7jxsDf5WsyJdA8AvXfHpWaBWFyt1mjL05C45deBdNB9IuMyNpApSSyqv3wWrs/rs2AMCh/+zO8kjEgSAJmFu1iy5VabkIoCnn5z2CBGr2l2HikG3FYIx6NfcyRAAAAmi51or5Xjfmugq7EXAiNH6gEqZmHY5+P/01dfkCQQIkTeadEUfsmm3zHQ1wDnkx8np6s+EKvQwNV1Vg6OVpBOYz49aa6hp8LWw1wzg9cRyHDh3C9u3Ju0THQ9ozRP/yL/8ClUqFerSl5fymFh223dOUtFVlIsEQAFAkUN/IQq0Rf8VDkATKd5h4KQwA54gXc2edwtfzbfHDBFnYzrvyaoGbbhRGGZQmORyDklRkCQv1Hfn2rET8DEZf54MhSkliy12NsO61pO16+ho15Dqat7LP0PugdIsRpZvTV9R66ueDOPXzwbSdv3SzAaVbjGk7/3IsG3Rou7EWSlP6drOtey3YclcjKCUJjgVGXp/Jr2AIWNw0yEEZVDZxDHigMsuhMOZPH7R0w7HIu2AIWLpmmz3jgHOEL21QlypQvsOUluw7KSdBK6mMGb2oyxTYdk8TTC3p6aFlGq+GSqXCAw88kJbzx5LWgKivrw8/+clPYLFXgybS8+Ge73Xj7BPDGet+HQwCb79Ow+ngb50Y2SFSFv1QcKjZXyroh52D3qQ7zucCFTvN0NdkodFFDmNs0IJjuZys+coWlJzEnr9vz/umhEyAxelfDAqfWWOTVvRFccNVFWhIodleMhjrNWm1Wg3YQgjY0reTqa9Vw1ifuZqMubMuHH+0V/TdWaVJLkippo7O89bVgfxbJMbS+8dxzJ1xrn9gEeEc8oJjORgbJNlcLOU7TGjJUXv7eJg6Og/nID/vGxo0qNlfiqhAa3ENmDr+uSDO/HIoI43NAb6m6OyvhtPWZJ5kKdQEW/Hiiy/irbfeSss1hGul8+Tf+ta3QDEyVKNJ9HPXXFIKXfVCr52B5HbbE80O8RCIikHFCIbMbTrs/ko7aBUFjgWOPdKLyUP29b8xD6joNEFfJwVEsRgaNPBM+tNqWZl3EMD4u7a0pdwziWfCL+xk1l9Rjur9paKe/8wvhzDwQga6tsfQ++w4+p9Pn7yz9YZqtN6Qvt5T/c9PovfZ8bSdfyX8CwGeTsTeVTX7S1F/RTkAfrfcMyGupW62kGnotGbT8g0myMI94ZfqiJbBhlgwocJw3ps8ZMexR3oF6+7dXxFvQzBTDbVjiZqj6KpVqBF5zgOASqYeep0e/+f//B/Rzx1L2u7c6OgoHn/8cdShBRQhrusOQREwNmiF5qPJEI+RwmrUNzJoakn+g6mvVcPcxj/8rhEfRt+cARvhdwqi/y0ETvywH2NvzWV7GDmFsUEDx6CUHYqFCbIYe2sWwQztaGWKUz8bwNCLfPBibNKibJsx6XMpzXLe9jvIIuzNsHR24ZVkqNOkReKhNiugNovvLkiQxOKGTBZeq6VbjNjyqUYoDMmrI8q2GQVnvMEXp3DqsQGxhpdduVwMHbfUoe695dkeRk7hHPJKm4nLmD3jxMBfM7sZlE6ENV+Yw+ibM0LfN3ObLqWMfPtNNWi/sUaUMSaKtkoFY6MWBCXuPEGwBJq1HXj11Vdx9OhRUc8dS9oCov/8z/+EVquFFY2inpek+aLr048PpjWTsnJ2iCcQIBA8m+COY8zzUb7dhIodfBf4iJ/B+Ls20ZoqSuQuSpMccq0MrmEpIIpC0gSq9liyYlWcbtgIJ7jwGBs0KOlIvg6n5Ror2m7IziQH8AHZ5jsbhI0cMTnx436c+LHI/TLALyy23NmYtezD3BkHTj02gKAz+UC/dKMBhgW5XyTAJLRhtl79UK7Q+8cx9D+fG8FZruAe9UGhk0l1RMuglRQoZeYzIOmEDbMYf3fREKVihxnl20yLByQYW4y/O4fJI9lRGU0esuP044PgGE50u3HDdCVMJhO+973viXreWNLiMjc7O4u6ujpU+OvRRGwU7bxlW4youaQUJ38ykJLdX7xSub47Vl6ktT+8dsdk9kTXkr/TKgrb7mnC4AuTsJ13g5SRBR8AVe42w9KuFxzyJPgd47brq/Hut7vyXvsvFtoqFbbc1YATP+rnGykXMARJgGM5aK0qVO40Y+Avk3EXCsu1NGgVldV7pK1UwjOZX7LGXBkzraLisuOm5CQaP1CJySN2eMb9wjOTDLo3V+8R4ovIcyZDJHEhtIrC3q9vQPfvRzF7WqqxirLvgQ0YeW0G4+/asj2UtBJdI1ra9Wh4fwVO/Lg/rxr10koKW+9uxOgbs5g55RDtvDOlQzhrO47Tp09jwwbx2/ikpWvmQw89BJIkUYNmUc/rHPFCcVKWsvd5/T+9u+bXe36yc82vEySgUAEBHy6QYkSDIUpBwtSiw9wZJyJ+BtPH5+Gb43XlhR4MAbyGXpKGLUVfrYJvNiAFQzF4Jvw48O/nhCanhUx0YSvX0pDrZGDieA8QFAFwQMgTQSjLLpPRwIKgxLVG3/mFVgDAERFthqNjzIVgqPriUlR0mnD04d517xsTZiHXySDX8lNzssHQeuRaMFT9nhJwHDD+jiSxBnjliG8uCH2NWgqIYjj361H4C3zjDFhcI/rmgpg+MS8EQyWbDJjvda9ag0yQBEo3G+AY8CDkzt58EQkwmDnpgFNkNUzJfA0Uii584xvfwG9+8xtRzw2kQTLn8/nw3//937B4qyAnxNGF66pVIGkCQUcYo2+mt2PtesFQ+8M+6C3AjveRUKzRi9HUokPrdVbIdfzENvrGbNo6yucijn4PxtL8u8o3dDVquMYKoxBaTIohGIrF3u3G2SeGAG5BinZXw6p1Jta9Fmz/XFPOdGi37rNg22fENcmZ63ZirlvcRd+2zzTBui999ueJMNflxOCLU6sGQwqDDJvvauAbOHLA2SeGUm6sulZ2KBch5SSoLBSD5zKuUZ/k0roMR7+n4GpN18I/F8ToG/w6Sq6j0XqddU17a7mWRutHqqEuy2yj8JUYfXMWQWcYJE0IBmipQkYoNJnb8ec//xkul/i9y0R/Az311FNwOByiOctRchIdn6iD9aL0v+DjCYYAwOsAzrzNIrwsvqnSzqL+Sr44dO6sE0ce6slqlJ5NdNUqUHJpgotCyUloypRwj64ttywmFEYZdn25DZqK7L+8swVJE4j4mFWNEuw9bowfsKUtU5AozmEfr08XMT4benEaQy9Oi3dCApg8Ys8Za/uAPQTbudUn77A3goiPEV1zn0+MvDqT9oaV+YZ7xAt1uVKaR2NQlShQc4n4Lmb5QMgdwZGHeoTelPVXVqD64qX3IugK4+1/PQtnDvU5tF5Ugo5P1In2HBvGKhEIBPCv//qvopwvFlE/aRzH4ZFHHoGFK4eaEMcykgmxOPP4EMbezp1UeiQMuOYAluWlcyTNS+WYELOYylyQuRQjci2NrZ9uEoqBJQCtVQWCJAQnGQkALDB3zomAPTPdtHMR30wQ554eARvhINNQ6Ly/ZcmusG82iOljudOLzDPhx9QRu6iubaYWnbhN/Thg6og9J+RysTR+oBLVF/Mbe/oaNTrvb4FMQ4GNcDj39EjGeum59+fOXBoLKSMg10smAlFcoz4QhHi764WA0iRH5S4zaHXhmfDEQ8gTEd69TJABE+SldJScFFQGHMOByyFV/tjbczjz+JBojXWVhAp1ZY146qmnwDDi1lWJGhAdOHAAx48fFyU7JNfLhB4e3ulA2jvYx5sdilLVBOjMwLb3Eqio4/9t8pBdSG8WM2FfBMce7RVdP5rP6KxqRAJMUckm1yPoCmPwham87ECeFjjAMeSFby7IZ8ZvqYW6VHw76lQhSKDuinLBDjpVWq6tQsu14jiiGZu0qLuiHEQObqqHPRGh/tU3F4RjyJsWO/B8k8tF6fhEHZo+UJntYeQMflsIkSADTaUUEEWZ73Xj0H92I+LLH4OBdDH6xiwmD/NuchWdJuz4fDPM7Tq0fyx7bqQrwTEcvNP85lT1/lKhjCQVrJEGjI2N4Q9/+EPK54pF1GnjkUcegQoaWJB6J3VDvQYV2005YccbGwzJlUBNO4GqZgIqLXD+IIeJP53L4uhyD47ld76l5qOLaCuU8ExK9UOxlHToC85CNRXCPgb9z00g4megMMlgqNfmZJaVYwFNuTKl/jqxnH1yGGefHBblXAqDDJpyZU7tkEYJzIdg3VcCSk4i4ud/12FpYScw+NIUhl4unD4zYuCdCkBbxJJiifiYPGJH11Mj4CIcCBCovbxMlMBDTGgVhYrtJlHmNMWcHjrKgB/96EcijGwR0Wy3Z2dnUV1djbpQO+qIVjFOCZImMtKoNJHskMYIdOwlcOYtDn7PhRbbEkDpJgNoNZXWPlH5RucXWmDvcWPwBWnCB3gteOd9LTj980Epk7gCBEWg+uISzJxwCIWphdS0uZiI/u4UBhkqOk1gwiwm3rWl7fe5VoYoV+VyEivTcFUFzC06HH24N9tDyRnab6qBZyogmTatgqpEgS13NuDMr4bgzTHZsJjzmKtuEkdG3kV3dzeam8VxtBZte/bpp58Gy7KoRF1K52m+pgrl2/mmVLmwAGh/2IfKRmDDHr7g1esAjrzIB0MSK6MuU0BXJbnjRKEUJFRmRc69nLKJfy6Ig/9xXqqpWgFdjRoqsxyjr/MuPQRJYOvdTRkxlkkEgiJg2aBP+Twt11nRcp015fNYNuhF75CeKtaLSrD1040gSAJBZxjTxx2oubgM2jTJoPJVLhfFus8Cc6v4zX/zFe9kACqLQjJWiME95pOk56tAUAT8c0Ec+q9uYb3RcUsdqvbkhuNmdE1fvt2E5mtSk0lrJ8pAURS++93vijE0ACIGRE888QSMkdLUrLYJ/obF059DLFbLDikZDqqFuiW/B3DPLwZnHAs0bCZQYyns5mDJMvzKDHqeGcv2MHIGTTkvefBMSZK5WMLeSM64p+UStZeUov7KRdkxx3KYPGKHo5/fhSFzxJ7Y1KRF+401UFnkKZ1HW6lKOUBQWeRov6kGxkZx6ppSJfo7cvR7MHl0XnjOA/MhaSNgDQz1WqjLcq9uLltEZdbF7MS5nPF3bWu6NhYzrddZsen2+sWaewJwj/rgt/EBpFxLQ5YDhhRsmOWDoxT2r8gwhSptDV577TWIJHQTRzLX09ODtrY2bMZelBPVSZ0jW5KQFQMijsMNUyH4+1gMnFx5TJWNQGRoMqccoCRyk6o9FtS/rxzv/ltXTtY2ZIONt9Vj4sAc5vukVOtyCJIAraYQXsWlcvMdDfBOBzDw18kMj+xClCY5AvO54RKYK2NpvLoSmnIlTv9icNVjCBKgFJTo3ecluVyBQQD7HujA8N+mMXFQ2oAFeDdCdYki51wkcwF9rRokTcIxsPK82nxNFQx1mpySYKay9ndqZnHY8zpefPFFXHnllSmPRZSqq1/96lfQ6/UocSXnEKMpV2LjrXXoemo44w95691HAPCpxopOE2ZOOcAEWLz1H7vg3EoitH3lENb7GgvUtgC1F35N9cyhdA45p5GpKXTe34pzvxmBc1CqDQH43T3vdEAKhhag5CTCnjAikunGBRAknxFaLRgCgImDNoT9/NdJGSl0Nc8G0QCEkpNZcwuMXjvbwVD0dzF3zrluD6SNt9Uj7I2g+3fiZdKrDugArC4lSq3Va4YhkBYHvryDA3wzAUFlIAGYmnTYcHMtDn7nnGRKsgzXyNqZ56GXpqEq4TP6lJJE2RYjpo7Op93FeTW0VSp0fLwWZ54YSqrtgM5rgU6nw2OPPSZKQJSy9oLjODzxxBPQusygiORScYH5EKZPOuCbzZ4ulFaSqLu8HMYGXnIxS1MIrdId3voaC4rkoKClBd1yWJbD2NuzRd1bZjnqUkXGeozkA0yIRc8z41KT2mVQShK7/64dpua1ZV+28y64hvl713KdFe03Zddmtf3GmpRqgHbc14wd9yVfFNtynRVtN2b5Hty0eA9cwz7Yzq8t6Rl9YxZjb2UuYzOxNz/CIZImsOfr7SjdZMj2UHIG/1wQqhJJRhjFMeTB8R/2CRb2EouYWrRrBs+RAAP3GC/DNDZoUXd5OegsOr36ZgKYPulA0BFO6vtJkKg1N+Cvf/2rKD2JUr4TR48excDAACpWSpWsA0ESkKkpMCEWw3+bzrhkLhqdEiSBsJfB4Qe749amNlWEsaNJWuQuhwmwGHt7DkFncg94IaIqUcAnFYEKKAwykLLcKn7PFSYO2OCZij9LPnXEjukTvGw3W4YC0yfmhX4YyeAc8sE5lHxwPHnYjpkTWZAuE4v3fPqEA1MJ3APnkFfozSGxCBvhMPLajCSHisE3F8zJfmTZggmw8E5JiouVaHh/JUq3GOM61nbOhcMPdiPsZUBQBDo+XgttVWZ7XrERDsN/mwYTYiFTUyBWSUKshXrUgvn5eTz33HMpjyflgOhPf/oTTCYTjEjc3ab2slJsvbsp4xM5SfPXY0IsSBkJmYbPbEX75vQ9uHfdc4zZaHSNXlhMXMxyOYAvbs70hyqXketo0ApKcsWJofX6arRcm7qrWKHBBFiMvjm7plxuOc4hL+Z7eb14w1UV2Hhrai6fyTDf51lXIrYW/c9PoP/5iaS/3znkzUot2sZb6tDwft78Yr7XnbB9vKFBg4arUu/ZV2hMHrJL78sYfLNB0EoKMm1u9ZXJJtaLSnLGQCWXOP6DPoy8Oh338dE1r0xNgZQtyp6ja+RMQVC8k2rtZaUJf6+eNUOn0+HJJ59MeRyiBEQf+tCHQCbRGnzykB2DL05mVL9Ye3kZNt/RAIBPRZ/55RBC7vgXINbX+AfGFyTh9C2VCBZ7MAQAFTvNaP2ItNiNEpU6SBmiRfr/PIFRqYfEEpQmOar2WlLKnM2dcWLmlIP/C4GUHHwSRa6j0X5TDeT6xJu1Guo1STXrk+tl/DUz2YAw5r7OnHJg7qwz6VPJ1BQ05UpRNgT5+qHCQKahUb7NmNHnN5eJlhJIWaJFzC06yY1wBTiGS0ppFXJHcOaXQ8JGxOY7G1B7WZnYw1sVjuEw+OJUUr0rCYLA/v378corr4BlU0sbphQQDQ8P4+TJkzj5RGKOFUqTHKSMRMgTge18+rXNlIIUJs35Xvea8o54skMAoFGwqC2RZGHLGXl1Bmd/JU7X+UJAXaIAy2S/4DuX8M0EpZqqZWgrlajZX5pSIblrxIfZ0/wCvWZ/Kb/xk6FFJRNkIdfJoEgiOGm7oRptNyTuTqrQ0ZDrZMIuZ9oheIe/mov5XczZ0851i5jXYu6sC2ceH0r7hmC+1A9FUZcq0HytFUpjanbuhUJgPgQ2wkIt1REJnP7FICYOSK57y2m7oQbGxsQ3l5YzeciO+T7+vSHX0aAU6a8zsp13IeSJgJSRUJoS++zb3vFhbm4O58+fT2kMKf2Uzz77LGQyGSxILO3f/rEaNH84taZMibDp9no0XMU74LnH/Iu7qAkSzQ4BgF7NoqkijOgKRsoO8TAhVqofikFVooDfFpIckxbQ16pRfXHiafFCZ67LhUP/2S1aHaVj0MtnL6KnS3NgxIRYnPrZANzjiffa6v7dWFJua+5xP079bCD97nbRe8cBc2edcKQgD1yJRCf/Qsc14sO7/3ZO2kSKwgF+ewgqKUMksQ6UgkyqDmc5M6ccgvlCw1WV2HR7fcrnjJfma6oSNgpSO0yQy+V4+OGHU7p2Sn2IrrrqKnAcB+7lxBxhVCUKsBE2aWeJeDC16OCZ8CHsZaCzqhB0hhFaR5u/VnYoNhhaCSkg4mm8uhL2HhccA5LlNsDb6zIhBud/PZrtoeQEFTvNqOg04cQP+7M9lJyBoIi0ZgnKd5hQvt2EM78YTLtxjVxHQ12mFJrIpgtjkxa+mUBCcudkIGkCm+9owNTx+bT0nLO067Hh5loc+q9uhFzJzYfryeXyLUMkcSEbbq4FQRHoelJSXwBA5S4zyraZcPLH0jySbuRaGnKDDJ5xP2QaCtoqlVC3mg4URhlImky4jtC7dxwOhwNdXV1JXzvpDFEwGMSbb76JoZfiL+DSVqkAgq/dSWcwRMlJtF5vRelmIwB+J3G9YCgVpGBoEU25ErRaKv6MojTKEJiXMmZRpo7YpWBoGRWdJuz8YiuSKMOMC990APO97oy4eFovKkHTBxPrR9f0wcokvqcK1osSN/JJFDbCwd7rhi9NjnCOQQ/O/moIYW965qd8DYasF5VIhhMxBBwhKI2J1+cVKt6ZQNyOwBKpEfJE4FnI/JdtMaL1+mpQ8vRJ6IKOMB8MEUjIoIsZJ9Hd3Q2nM/m6zqR/qsOHD8Pv98OE+OQvlJLEpk/Ww7rXkuwl14RWUqi7ohykjAATYnHih/0JaUwTzQ4Z1Ax2NgWg/euRpMZbqJz+xSDmziT/QBYaCoMMQack/ZBYHdeoD6NvzabNRtY97sfoG7yJhblNh813NqRtQht9fTbhgNfQqIUhQceoEz/sw+jr6THmoOQkNt/ZAHMrn3kZfWM2KSlgPDBBFvN9nqw1RsxVmBCbudqwPCDoCEMh1VQJuIZ9GHtLMuaJRaal8Z5vbFy3j10qjL9rw4kf9i84NBOou6IctDK5/qPrYd1Xgk2frAcVZ58kalQDlmXx4osvJn3NpGfF119/HXq9HjoY4zqeCbA48/hQSv0q1oJSkijfZhSaUqW7joVhCfhDhFQbIrEqMi0NkibTmg3NJ0ia4BuPtkh2qbF4JwNpkWOtRNjHwDsdSFvdTSTA8JMlTcStZT/2cC+OPRyfMQ9BEiBpftMrXY0ZmRAL73QAYX9mGj+qShRo/nBVUm5za8nl8jU7BPCZ5JHXZrI9jJwh4AiBkpGQaST1BcDLjLWVyrRmKvINJsii77mJtBsWRdfWmnIlyrcZ4w5YEmXykA1nHh8CE4hvrlJzOmi1WjzzzDNJXzPpn+S1117D/v37QRDrv8T1dWoAgGfCL6psQ1OhROv11QDB76AcfrBHKARLhGRqhzwBEgPfPyntYsVgqNdg79c3QJGE9W4hojTw9yHgkDJEAD+JTR628SYTEgD4xXDpZkPa5HLLcY/6MPCXSQCArkaNjo/Xiu4gRClI7PxSG8q2JFZbGg9lW43Y+aU20RdClIJEx8droavh56qBv0zCPZq8g1wikDQBXbU6s/bheQC90BtFAoLBhCSb45HraGy7pxlaq9TzMAobZjF9bB7BJGsRE8U95sfhB3v4DV+C7y+oqVCKdn42wsEzwa/nDXXrO+cRBIHt27fj0KHkS1iSegOHQiG88847sPqaUEe0rXmsplyJLXc24uyvhsRvnkcAKrMccg2NkCeStOyg+csHVv2a7dP7Vrk0h/lv7kEIBLgVgsKGB95Naiz5TMARwuhbswj70lvonC9EJQ6S6x4PE2QF6ZYEj7FRg5pLygS77ExC0gRYhhM9W8QEWQy/Og3HYHzGKts/1wyAbyq4Ho4BD0BA/DGHWLAMl/GGhADgnQrE9bMvp+2IDEB6apuyDaUgsfdrG3D+d6OSBBsQVAYKkzxt8s18IuQK4/gP+6TNtRgoOQlDgwbOYW/cWZVUia655RoaKnN6JJ2mZi023lqP4z/og3edWk73uRCGHEPwer3QaBK3H09q++XEiRPw+XwwxlE/5J0O4MRP+kULhsq2GrHhY7X8uScDOPnTgbQZJqwWDAGArJHFx4JeGFYQ/hdjMATwL+3xd+YyUrydDyiMMkT8jJRFXEBlkUvN9JYxeciOIw/1ZOXazkEvzv9mFOD4TFXrR6yiZYumj83HvRHgmfTDMxnfIi/oDIsmL6QUJFo/YuWbJ3PA+d+MwhlnEJcOxMx6de/M700YJsii66lhOEW2OM9XmBCLsD8iqA6KHY7lNxLYsDS3RlGa5Oj4eB1U5szPsSFPBCd/OgDvFB+wbLi5FmVbjaKce77PgxM/6V83GAIAjceISCSC5557LqlrJfUGPnbsGGiahhZrSyK0lXz6zCPGjsbCxl3YG0HQFRbFa30t1gqGXM2AiyDxqkwJ7zKtS7EGQwC/qErEFaTQUehlGUtf5wPWi0rQel3iDTgLnVyY1BUGGZQmuajF/YYGDS9pXofeP46j94/j6x7Xen01DA2pNx2MwjEclGYFFDmwyCzbYsTuv29P+7yWT9h73Ain0R023wi5I5BpJVllFOs+C0wta1vOFxPemQAO/Ps5eKeym0EkSAJBZ3jROVOEV1o0hojGFKuhCGogl8uTls0lFRAdP34cHR0doIjV3SX0tWpsu6cZuurUF8gNV1Wg9SP8xDrf58HAXyfBsdnNQoQIAmOUDOE4aqiKhaq9loTtcwsZ2YKUU4Jn8KUpnP+t1I8piqZCie2fbYIiB+oCHP0enHqM71Mk19FouKpClPoNWkmtm3XSVCqhWWeioxSkKG5GpIxEw1UVkOtosBEOp342kPaeSfHgGvWh/7mJuBcPvFxuZfI9OxTFUK9B2RZjtoeRM4Q9EcglUwUBQ4NWMNGSAMABET+TNrfSuIfBchj466SgCmu9vloUC31dtQrb7mmGvla96jEkSFRXV+Po0aNJXSOpT9exY8cwe8qJsjVe3q4RH04/PpiUyUGUaMNC96gvo24i62WHAEDGcahnwhijaPgXskTFnB0CgKGXpiTXlxjkGlrKEMXABFgwAUnzHYWNcHBP+HNuF1xTroS5RYfR12fBpvD4Oge9cUnQNt5SBwA49J/dqx4TlVClCkkTMLfo4Oj3IOTOfiAUJTAfEgrnJXhMLVroq9WYOeXI9lBygpAnIhlvxCA1qV2KqkSB6veUYOjlKYS9mXHIjAfngEeo+UylCbl7zI/Tjw/CNbK22U14lMSUbCqpayS8eg2Hwzh9+vSadttKE19clYoee+Nt9ai/ohwAMNflwvQJR9LnSgdycNgdCcLAZl/ukiswQTbtnePzCZmWTlvDxbyDAJqvqVo35V1M+OeC6Ht2Iudq7ub7PDj6SC8iAQaUgkT1xaUpSbn0NWqoS1fXtfc9O4G+ZydW/bq6VAF9zeq7gutBkASqLy4FpSAR8TM4+kiv+AY/IqCvUcPctr4EqBiyQwAw9NI0Tj02mO1h5AxhbwRySTInsQokTUBpksfl/JxJpk84MNfFN9Gtf185Nt5Wn/S5ojFFNMZYicqKCvT09GB+PvFa04QDonPnziEYDK4aEBnqNei8v2VdCcSKg5ERgv3s7GkHbN2Z70QcT3YIALwEiV8pdZii+BdUsWeHAKDmklKUbBTfajdfkUuSOQFKQUJTrgSlSE8Tt3xEW6VKWw+HlFmI0fS1Glj3WlJaiDVfa0VFp3nVr9t73LD3rN4zp2KnGc3XWpO+vlxLw7rXAn3tQv1RbsWfAmXbjLDuK8n2MCRylJAnArk2+/LaXKH20jJ0fKI228PIGbxTAZz++WBOrzls512YPe0AABAkv+ZPFG2lEp33t8BQv3I9qdKjBcdxeOeddxI+d8Kz3Pnz5/lBrWKo4Bz2ovv3o/BOJmYHStIEtn+uGVNH5zH+zhxmTjoSHZpEllGVKHKiQDwXICgCtIqSMkQLMAEWJ38ykO1h5A4EsPnOBgy/Mo2JA7Zsj2ZV5nvdOPK9HjAhFgRFoKRDn7BF+JnHB9fMHNdfySsBhl6aXvHrA3+ZTEoqVLrZgLkuF4KusPAz5DL9f54U1dQi31Ga5Gi7oRq9fxyHbza9zSbzgZAnAlpFpSQ7KiQ8k36E/dL8mk+4hn1wDfOSt6p9JajYYcLxR/sSUkl4JgPo/v0onMMrK9DkXl5N0NsbX7PvWBKeZfr7+2E0GiFzXpiyohQkmCCLubPxZ3ZoFYWInwEb4TD21lxWbTbjzQ4BgJzjsD/sxwlaAf0/Jt8IqpDo+f1YtoeQM0Q7iufybo1EFuGAEz/qR8SfO1rv1YgGEuZWHVqutcI95k+o3iUaDFFKcsX+GCUb+M21lQKi6PckKsVVmuRoudYKNsLBds6V88EQgLgWucUilwMAJsjAOx0AKy3+AQCRhf5+MjUlSdOBNbPKxYipWYv2m2pw+KEeRHy5P6/YulyI+BghGIrGAvEQjTGiMccSwiRKSkqSCogS1mv09/ejqanpgn9Xlyqw6yttQqfveJCpKXTe3yL4lU8fn8+bwlIOQBgEKh8+le2hSOQg9IIUKh8WvJmgdLMBu/+uHUSOKsSygX8umFcZRNs5F44+3Cu8oxN515uatdj91fYVLa6PfK8HR753YS8mhUGG3V9th7FJG/d1orVGgfkQjj7cC9u5zMuuk4VSkNj0yfpVpSDFRtjHoO/ZCQTs+bEmSDeRAD+XiOG2WAjQSgqaCqkmNYrfFsLwqzNg82DzB+Df0dPH+Tqfsq1GdN7fApk6/mdbX6PGrq+0rVifajabcfbs2YTHlPDypK+vD2NHL9zJCzhCGH1zNq6eQ7SK/6HDPgbDr0zD3pv9SD+R7BAAhAkCb8hVCUsDCxWCIrD36xtg2aDP9lByguikxQSlgAgAfDNBjB+Yy7olaK5gbtWhev/6ja1zjWizVUuHHlvubIAyzu7kzmEvhl6aQtgXfwAY9kUw9NIUXCPxqQaUZjk239UAS4d+yVjzhagpDRtZ+UNSTNmhKDINBTqBRVIhE1nIrorVPDnfsXTosf2zKyzOipTAfAgTB2w5Z9ITD/ZeN4ZfmUZ4IbMVjRHWwj3hx+gbsysnUbwkhocTdyFMKkOkwoU7dmyYw/jbc+v2B1Ka5dj5pVaYmvlzTB2dz+n03krBEACA49D0jQOiNJ0qFEbfnpW03gtEJ63I8nRukeKdDmD87blsDyNnUJrkMKzRTyHXsXW5cOqxAWH3fr1eSmyYw+RhO9jwhfPD1s80YetnLlQdrPU9sUSvHbCHcOpnA7B15U9WaDk9fxhLqVVFobHlrkZUXyQZTQAAI2WIlmA778LxH/Zlexg5g0xDwdioyUsVRsTHYOoony0yNWux80ut6262cQyH8XfmVgwASZcCTmdita5AgjVEoVAI4+PjaMeOxQvTBLbc1YjhV6fXtDKllRQiAQYBewjDr0zDNbq2l3imsfx0ZZe4MsvK7ki0ksCu/70Rr8qVGKUvXAyUHlt5Etc9fSD5QeYwHMNJC94YaIWUIYpFXcantX0zUsAMABMHbZg4mLtmCvEQXbib23Rov6kGx/67b115U/V7SsBxwPg7i++KwPyFz4T1ohIQBDC2zjtFZZFj+73NOP+bUdi73XkfTJAyArTywhqRzuMsgJU/O0e35+EKKE56/zgu1WEuEFmYSygpIALAL6JzeTM90+hrNdjwsVq8++2uFWs18wXXqA/Dr0wLc0k0dlgNU7MWdZeX49RjA0JwpFcbcH56Hna7HWbz6g6ny0noTTo3NweO4yDHomaPoAl4pvzwrzERaqtU2PWVNmirVACAyUP2CwuhchBqlWAIALq/0II35UrYyAtfTqsFQ4UMSRPQ16mldP4ClIIEx3Lr7m4XC3WXlaP+fal3q5bIPeb7POj5w7gwga3VnJmUk6BkS7/e/dsxdP92qSELJSNBylY/T/QaflsIPX8Yx3xv7vUVSobGqyux4WbJSjiKa9SXN3XF6YYNc2AZTsoQLSDXy1D33jLINNL9AHhH0MMPdud1MATw0uHJQ3YA0dihVYgdVsJvD8Ez5QdBLcq1ZBwfowwNDSV07YRWr7OzswCwJCBiAuyqhY/RCc0z6cfwq9PwzRROvQ1LEBikZfCRS2/hWsFQoWaHAEBhlGPLnY1rNmAsJiglJezoSQC9z42j79nxbA8jZ+i8vwUVnaZsD0MUOIbD3FlenmBo0GDnl1eXO4y8OoOR12eW/JvSJL+g0d7I6zMYeW3pccLxZjl2frkVhgbefGDurHNdqXa+MHHAhv6/TC75Nz47tDKFnB0CAGOTFiWbpN52UZggIxj2FDsyNYXSzUYpQFyAjXB5Vze5Hr6ZAIZfnYFnks/8r7RJFrCH0PfsxJIkCx3ixW8jIyMJXS+pgEi2EBDVXlYGU8vKDkD6OjV2fbkVKosc4JB3xV5rZYd6v94GguPQEAlDw+Z3NC4WAXsIR77fA+9U4QS9qUDJV7CDLGIiPkayio1h6tg8PAVoyOKZ9GP87bnFDbIVaiwJkkDZVqOwo7flUw3Y8qkG/mvUwtfIlb6R/0/AHsL423PCJFlI+GaDcRkTFQvmNh3KF1xoJfgsEUlLARHANyI98lAP/DYpgwjwDUubPlS5JFOS77ARju/Tx/Hy6F1fboW+buXaW1OLFrWXlfHf5+CD5EgksTVH8hkiAtBWKC/Y2YsWdHnG/Zg4aCu4iDUKBWB/KIBSdjELUKzZIQDgWA4Beyivgt50QtKEdC9iqL2sDOZWXbaHkTOMvzMHz0ThLXyZACvU/Wgqldjx+ZYL5giFUYaWa62CvfTAi1MYeHEKAGBs0KDlWusFJg1Kkxw7Pt8i2OyOvT2X99KQlVAYZLDus8TVwb3Qs0MAMPDnSZz9VeJuUYUKy7Ag6cJZ8EqIB62moatSgyjQxyPoCmPioE3YMFpuHqE0yfn5gQBk4OeckydPJnSNhAMihUIBCjTAAV3/MyJo/QBeLtH5hVbItDTYCIfRN2bzclG4XnYIACIAnlBpMUwl3kG9EFGVKNBwVQUoKZ0PACClbuJL0FYqV+xBU4yQMhL6WvWaNTKFQMTPwDnkvWBTLGAP4fCD3XD083U/c6edmDvNS+7m+zw4/GD3BRLsoDMM55B3zeLaQkBpkqPmkjLIVPy8spZcTqL4YCNcQWUAUkGhl2H7vc1r1pcUE45+D078uD8v19zxwIYXYwq5lkbnF1qX9GybPGTHuf8ZATiAJEhoNBo4HI6ErpHQjOxyuWAwGKAuVQoN8GLxTgVgO+/Km8ZQiRINhgAABAGWIMAthOPFnB0CeD2vsUELciWpSxFCSAHRErqeGsHkYfv6BxYB6hI5ttzVyMuJC5igI4z+5yfAsRyUJjk23V4PuZ4PiqPySVpFoebSMtRcWib0noh+Ta6XYdPt9VAYZeBYDv3PTyDoKEzFQRTnkBcHvn0OQdfaP2cxZIcAoGSjAZtur8/2MHIGjuGkDNECTJiFY8BT8JskEhfChFjYzrvgnb5Qdq6vUUNVooBWq0UwmJirbUJv1WAwCKVSicqdZjRfawUIPiu07Z4mUAoSET+DwRemwORxQLRWdigWguNwadCPcmZtjWIxBEMA4Brx4fgP+oTGWsUOQZFgpYBIYgW8M0EcfbinqHp2UXLedZGJWbw0XFWBTZ+sR8UOEyp2mLD5k/VouGrRiZAJMOBYTrCwLzak7BCfZfTbiudzsh5shANJFUcwvB7R9eZ6Vv/FQkmHHrv/rn3l+ssCgwmxGHxhChE/A0pBYts9TbzJDgE0X2tF5U4zVCoVwuHENtAS0nsFg0EoFAoM/HUSch0vmwvYQ3whfYH/DpZkhxagOA4EitNmW2JtSFLKEMWy80utGH19BtMnHNkeStbhGK7oCoG90wGhFkSmplD3vgrMnnZgvs8jSOeMTVqwDIvma60YenkKER9TdPUjtJJCxydqobh1EixW7tVXLNkhAHAMeOAYKAxLdTHgGEkyJ0AAKrMcIXckrzfhxcI3F8TkIRs4rsjWHQSvTgvYQwAHnPnlEEKuMNgaFjZbYr3+EnqzBgIByGQy6KpVaP5QFQiKQNAZRu+fxguiwDXe7BAAcASBV5RqTK1RQ1Qs2SGAX8zs+nKbIHspdgiKkDJEMUwdtcMrNWUFwDepbbiqouBriFZDaVFAX62CbyYgBEMAr4H3z4agr1ZBZSlO+36O5YNljsr/+VQMSJqATCvV6UZhGQ6kFBAB4LPOnfe3wti0stNxseGbCWL0zVmgyJYdTIBF75/GEXSGQVAEmj9YCV21CiRJwu9PzLgooRnZZrPB4XBAaVaAoAjQamqJGw4pIxd3L4iF5nnRv1LEkgVAYscSS3ZFlhxLEksaAZI0sURjm8ixpIwQnCsIEsLP1vv1NlAcByom8qY5DiTHofQYBwIcKJJD9EkkCQ4ksXgsJScX05jE0saF/M+6zj1M5Nhk7qEI9zvoCGH6xDxAIuYerv+7ib3f6x+78n1J5NjU7mH8xxIUEPtmWvMepvh8J3YPEzk2vnsYz7Fjb/Guavn+jkj2HsYeK9PQMDZqQclFfGYTOTZL74govukAjv+wD2EvA7lehov+sQMX/WMH5HoKYW8Ex3/YB1+MNlz0z3cO3yuO5aD/xhg4Y4B/fYRJIBobsQRO7FkMDorhfVq21YjdX2lL7Hkr4PcpiKXr3WJ+nwLAqccG4BzyFtU7YrV7KNNQ0Nepi3bNRcr4mISgCCjNcrAsC7k8sTrdhAKirq4ukCQJ95gPZ381jJr3lGLrp5uEr3fe34Kai0sBANpKFfY90CE06qy9rAzbP7d47LZ7mlD3Xt4zXF2iwL4HOqCz8m4h1ReVYOcXWoRjt9zVKGjLFQYZ9j3QIbhLVO42Y9dXF+VsG2+vR9OHqgAAtJrCvgc6YG7h7X7Ltxux939tEI7dcHMtWj9SDQCQlVuw57OVMDfxY7A0q7Dns5XCw3NxKIBLg4vR5i1+D27ze1BtCKNMy+D9rV5EfzebKoLYq1hsKrj779pRsdMEADA2arHvgQ5ecgig8QOV2HxHg3Dsri+1wrrPAgDQV6ux74EOofi6/opybL178R7u+Hwzai7h77emXIl9D3RAU87b0tZcUoodn28Wjt16dxPqrygHwPu573ugA/pq3hjDus+CXV9qFY7dfEcDGj9QCQCQ62jse6ADxkZ+F6Zipwm7/6598X7fWo/ma6zw20KYOGDD3r/fAHOrHgBQttWIfQ90CMe231SL1o/y95ugCOx7oAMlG/mme5YOA/Y90CF8cFo/Ur2kY/ve/7UB5duNAABziw77HugAreazUU0fqsLGmMLbXV9tQ+VuMwDAUK/Bvgc6BIezhqsqsOWuRuHYnV9oQfVFJQAAnXXhmS3hn9m695Zh2z2L93v755oEn3t1Kf/Maiv556Xm4lJ03r/4zBobtMIut9LE329DLf/MVu21YOeXF+/3ptsb0PRB/n7LtPz9NjUv3O9OE/Z8bfF+d3yiDi3XWgHwL4d9D3TA3M7f79LNC/d74YXRdmMN2m6s4f9CAPse6EDp5oV72K7Hvgc6hBdXy7VWdHyiTrjOnq+1C41DTc38MxvdqW36YCU23b74zO78ciuq9vLPrKGWv99Rq+WGKyuw9dNN0FWrQKupvH5HkDL+mbV08M9syUb+mY2+sFs/Wo32mxaf2X0PdKBsoYeKuZW/37SSgnPQC+9UAO03Lh5bDO8IgJeE8febf2ZrLysDSZMgaRK1l/HXNrcs3isAaL7Gio231hfNvZIdqQEYAghTUD2/CeQUf6+oEVPRvU/n+zzo+p9hbP10Exqu5D/fxfw+VVvkMMVkRIr6ffoPHfDNBBHxM0X3jrjgfdqqh7lVjy13NhbdO0K4359uQs17SnH2V8Nwj/lBURSGh4eRCASXgODwuuuuw5EjR/Ae7fuhMivgHPFCpqYF2YO5VYfAfAi+2SBoJQVjowbz/R4wQRbqMgUUehnm+/hjTc1ahNwReKcDoBQkTE1aOAa9iPgZqEoUUJnlsPe4AfAPdNgfgXcyAFJGwNyig3PYi7CXgcoih7pUCdt5FwD+l8GEWHgm/CAoApY2HVyjPoTcEd6nvFIJWxd/rL5ODY7h4B7zAwRQskEP95gfQVcYCoMMOqsKc+dcAAfoanh/d9cIr+su6dCj8RsysFUucDQLyq4GU+ECKA6EXY3eT1NwDnkBAJYNenineY2jTEPDUKeGvccNNsJBW6kEraLgGOCPNbfp4LeF4J8LglZTMNZrMN/nARNioSlXQqZdvN+mFh2CzhB8M0FQShKmRi3mBzxgAgv32yDHfO/CPWzSIuxZuN9yEqZmLRxDXkR8C/fbIoe9O3q/NYj4GXgmAyBpAuZWHZzDPoS9ESjNcmjKlbCdW7zfbJiF3xaCqkQOhUEG1wh/vxVGGXRVKsxF73etGhwHuEd9i/d73I+gMwyFnpdiCve7WgWCIuAa5u+3pUMP72QAgfkQ5Doa+ho1bN1ucAwHbZUKlJxcvN/tevhmA/DbQpBpKBjqNLD3usGGOWgqlZCpaEGXbm7VwW9fuN8qCsaGxWdWU66EXEcveWaDrjB/v6PP7ABvBawuVUBpWnxmN91RD4omcfKnA8L9dg55Efbxz6yqRCHcb0ODBkyQf2aj99s14kPIExG89YX7XacBy7Bwj/lBkPzP6hrzI+QKX3i/F5wgXaOLz6x7wo+gIwy5XgZ9tQq28y5wLH+/SYqEczjmmZ1auN9aGvramGe2SgVKQcI5GPPMzgX5+62mYIh9Ziv4Z3bTrfXo+eMYIj6mqN4Rwv1e9szqrCqQMrKo3hHu8Qvvt6lFKywczz41DEevp6DuFWUxw1CjQCTIwjsTBkkTMNUrcOL6GgQIEjqWhYllMELzi4eqSBjvCwVwYlyBaQ+NMm0EDj+FQISESsai4tj5onyfGpu0CHsj8E4Fivp9uvXuRjAhFmceHxLud7G+Tw31GiiMcsyddUKmovL2HSHW+5QJs9BWqSBTUsX7jvBFYKjVIGAP4mDwVZSXl+PgwYOIl4QCovvuuw8vv/wyOpX70Xh1JY492oewp7i7z6/lBFRMxa+WDj023FSLd7/VBSYo6d9bP1oNuZYWJq5iR12qQNAVlp4N8IuN5murcOIH/UVpGSvX0bBeVIKhl6bAsUDHLbV8X7unRkCQQP2VFRh/ew6hAphb4ulpFwvBcdjQE4E7SCIQuXD+KKa6VIB/b+hr1Zg6Op/toeQEmz5Zj5A7gp4/jGV7KFmHVlHovK8FPc+MCQtoieJGpqWx495mDPx1Au+6XkFTUxNefvnluL8/oRW7UqkEQRCYPe3Eke/1IOyJgKQJWDr0CQ+8ELC063Hm0uIs/l2OY8CD4z/ok9xeorAAUagto5PANxuUgqEFgs4QZk44itZ0Q66TwdKuh6aS3xnnWIDjAEpBQlOhgqVdL/QryncYW2K9tziCQFebbMVgCADcN+8VY1h5g75WjYb3V6x/YJFAEETRFc2vRsTP4OB/nJeCoQW0lUr+s1KEy46SDj1ImkDYE8GR7/Vg9rQLLMtCJktsHkk4IAoGg6jcbRZ0t5Z2Pdqury66LvQERWDDzbXQx3TKXU4x9ZFgAizfJEt6WQMAb31ZhC+m1ai9rGxJV+lixm8LYeS1GbDh4nk/UHISVXt4nb5nwo+j3+9F2VYjtn0mpsbhM00o22bE0e/3wjPB12tW7bEsLSovIFr+vfuCf5NzHNrCISgklzkAwNTRebz7b+eyPYzcgQCkSVZiJeR6GUwtuqLbiFUYZGi9vhqWhdq/lmutqNxtRjgcTq+pgkKhQDAYRNAZhm8uCBDA7Bknjj7Si6AzDBAQCsEKHY7hcODfz2HurLOopHGroTTJUXdFOSildC8AAByKokFavJiatUJhcLFD0gS0lcqist3WVatQe3kZVAvFsxzLYeyNWfQ9NyEc0/fcBEbfmAXH8gs+VYkCtZeXQVetysqYxSKRLJGKY7ErHERg0+rHFFuWSGIRgiTASrEyAF4yt/XuRugWaruKHXu3G8ce6RXen4WOsVELEEDQGcbRR3oxe8YJEHw/pqAzjHA4DJUqsbkjoRlZo9HA4/HA3u3GyKszwkZF0MF3g7W067HxtjrBoaPQifiZdZtvFkuWSKahUNJhAC2X+hABAMuwUr+IGE7+ZADTx6U6AIDfPNh2TzM05QUutyX4gmUAcAx4ceShHvjnFntRhTwRoSgXAF8kH1M35J8L4shDPUuKnwst67o8S+QkKTyh1mGOJDG7o8B+2CQo22pE6/XV2R5GzkDJiKLKLK8Fx3HwTAbAFGEdZrGjssix8bY6WNr4rFA0BgEHjLw6A3u3G4FAABpNYqqUhAKikpISuN1usBwDELz9YqwMxnbOhRM/7Be6sGur8ntnby0IikDr9dXC7uVaWaJiCIrcY34c/X4Pgq5wtoeSEzAhDmSBSn0kUsNvD+H4D/vgnQqsf3AeY27VYcPHaoUNsoifX7hQChLb7mkSLH9j0VlV2PaZJlAKcsn3qEoU2PCxWphbdRkavbgkWkuEdWQvxZIlYsNsURqPrAYpI6WAaAEmwKL/+Qn4ZqWG3wDvgLfzi61L+gMVGtGYwm8L4cQP+wWnQ4B336vcbeZ7dXEcfD4fSktLEzp/Qiu26MlDCAIcUNJhgHbZpOZdaKhnbNJi22eaoKlQJjSgfIEgAIVeVlSyF4n4YcMsKOnZENjwsVrUvbc828PICTiGg3cqADZSmNKG6Dvf3u3GsUf7hA2yKJSchN8WRMB54eZJwBmG3x68oG7IPxfEsUf7BJvaQppXYrNENZEwrgj4eJcJoOizRHNdLgz8ZTLbw8gZ+ICoMN8biUJQBBR6mdArstgJOkOYPeNE/L7R+YWmQoltn2mCcaEPl3d66Yai1qpCSYcB4ABWFgHLsigrK0voGskHRADOPD6E8bfnVjzW0e/B6V8MCrugUe14ocBGOJz+xaDQOwAo7iyRyiLHjvtaoC4rrN9zsjAhFqS8uBczsTgGPfBM+LI9jJyh+uKSgqy3tLTrse2eJiErFCuRixJyR9D9u7EVWzaEPfzXQu4LvxY9l8oix7Z7moQi2kKCIQgECGLdDBFQHFkiSh7TqV4CpIwAI2WIAADaCiV2faVNaIBe7Phmghh+ZXrdMo58Ixo7eKcCOP2LQaEn1HLG354T2pywSn7+qKhIzKEyqYAovBAQRYu3LO36FZ2AovpwXbUKnfe1QF8rFb8VKpEgC3uPW7JWXkDKEC1l8rAdtvPubA8jZzA164SO8oWATMt3gbd1u3D2iaELskJRzK06GBvX13UbGzWryuP8thDOPjEEW7drybVznbVkc9Es0QRF421F4UrNE6Xthhq031iT7WHkDJQkmRPwzQVx5okhBBySTB9YaFtQriyoOkt9rRqd97UI8urYmtMolJyEZQO/ORaNSVgVHxDV1tYmdL2UMkQAPxm1frRaGNBKuMf86PqfYaHjcCFkiygFiX0PdAhFw1GKNUsU9kQw9NIU7zYowWeIaLKgXk6pINfSBRUApMrpnw9i4qAt28MQBXMbr11XmuUAB8EEYSXKthpRts207jnLt5lQttW46tcdA16AA5RmOXZ+sTVva4uWo+RYEMs0L2vJ5go9SzT61izG3llZhVKMkDRZsFLbRGGCLBz9HilAXMDYqMX2zzWDVuS/sVU0RnCN+ND11DDc4/5Vj7V06NF6ffWSjTFWwa9D6+vrE7puwi5zZrMZASxKX8KeCI79dy9mTjrW/N6o9ltplmPHvc1rBlD5ABvhMPzKNHwzF0pCitWGW1WiAK3M/w+jGERlDYXaQyVRqi8uRdsN0k5vIREt3nX0ezDwl0kE7CtnhWI5/5tR9D07vu5xvc+O4/xvRtc9LmAPYeAvk5hfkFHkekHxelmiKwJ+7AlLReJR3KM+uEclqS0AYW6VTCZ4VBY5qvZYJEnlAo5BD078qA+RYH4/H5YNeuy4t5nfYANg71lbWTJzwoFjj/QukWAHKT9kMhmqqqoSunbCWoOmpiaM2WeX/FvU8k5Trryg0Gk5AXsI554ewXwf/0OqLPJV5RW5DMdwa+7wepiVd8PbjgDdOwsvi0KQQOd9Leh5Zmzd4LgYiLpj0SpKkhECGH93DpOHCyMjIgZlW42ovrgUxx7pzfZQksLYpEXLdVac/MkAQq5wXJbqSrMcAXsorqLw6DHR71mL6LXlehm23t2I3j+Or6ozzxS2T+9b9Wuu5tW/T/PoSTBBFo3rzKPFQtlWIzwTfslJDPxcAizOLcWOukyJuivKMXXULrWqBe+655nM3/dGNBawd7tw7umRuDbYojHHcmWSj/WgpKQEJJnYhnTC29fNzc3w48LJRlulwvbPNcNQt74+3N7jBscCMjWFbZ9tRsVOc6LDyDoEScDYpIVMvXJGZK2gp+2ILF3DyhocC5z82QDsvVKdCABEfPykJVPnR31Dugk6w3m58ZEufHNBzJ525K2k0j3uw/TxeUR8F5ofrISpRYfO+1sSkkurShTovL8Fppb4zCcivgimj8/DPZ79jILlp++u+jV93+rf5xrxrbupWEw0fbAK+jjWFMUAvbDWCMf5mSt0bOdcePebXZKEcAGVRY7ay8ry0vm4YqcZ2+5phkxNgWPXzwoBvM329s81r9jexxNyJZwdApIIiJqamqCuurDxqmfCj7O/GoJzeHX9+HLCPgbnnh4RMgqqEkXeLBBoJYlNt9VDVy0ZRURxj/qEQKDYCcdkiCT4ZqT17ysX+ssUO55xP0bfmEU+bW3qa9XYdk8TKCUJJsBi5NWZuBcjjgEPzv96ZEXXudXwzwVx/tcja9YkxcJGOIy8OgMmwIJWUth2T1NeGfloWRby/9uZlwuadPHuv3Vh+liCPZwKFJmUIZJYA7lehvJtJpCyPFlEE4u1QjMnHTj36xGEE1g/Ooe8OPurIXgmLqwv8kW8qKurS3hISQVEExMTYLgLBz7fx2eOZJr4F4HRojiSJrD5jgbUXpaYb3i2CPsZHPqvbjgGVpdmFFuWqKLTJHjEFzvRnfPVMojFBqUkYdlgkDJmMWgqlIJOOh8IOMLwzQRBxGEJvRyO4ZJyGbSddydnI0vwNrTZdKBaK0u0EmaOwY5IEAXbSCRJOElxDECSzC2ncrcZrR+xZnsYOYNz0IvDD3bnzaZ07WVl2HxHA0iaABtmE5I5R2OMaMwRC0dwsNvtaGlpSXhMCQdEra2tAAAfVp7cDHUa7PpyW8L9aNgIh66nhjF5iK8zUJcpcns3mQNCrrCUro2hZKMB+pr82ZFNJ2yEAxNmpQBgAe9kAEe/34PAvCSbi9J2Qw2qdluyPYw10ZQr0f6xGpA0gZArjJ5nxhJekLXfWMN3EE+Syt1mtCVovRzxM+h5ZgwhVxgkTaD9YzW8JW2OsJJsboSS4X8UWvT/38J2josXfY0aG2+ty+11QAahVRSYMCutORaI+BgEXZJ8MJ+gFKQQG0wesqHrqeGEn2dNuRK7vty2ankOawiCZVls2rQp4fEl/KbZvHkzCIKAG44Vv+4a9WLghSn45xJf+Hgm/Ah7+cm27fpqNH0ocQ1gpqDVFJo/XCU0IFyNYsoSnXl8CCOvzWR7GDlDxMdIkjmJVel6chhDf5vO9jDWhGM5yNR0Ss+xzxZEyJV8pibkCsNvS76onlZRkKlpoUdFLsMlkX0rVDiO31SSbJV5ZGpayg7FMHvGieFXcvv9mUl01Spsv7c5p/uyNX2oCm3XVwMAwl5mRbnbevhmgxh4YQqu0ZWl1AE1n6y5+OKLEz53wgGRTqdDS0vLqgERxwJTR+zgWC4ly+GzTw5jeGGxoC5VQGnKLWkJSZPQVChBxvEzFlNQJLFI2BfJ6ZdTptl8RwOs+3I7I5JJAvOhnFzsqSxyNH6wkpedzQZx+ueDCLmT34kdeXUmpaa8tvNujLya/EZLyB3B6Z8P8k5lBND4wcp1N7LEIm5zBY7Dh4Je1DKF50CaLO4xP87/elSSzC0g19EIuaXnIwqtpvKnXiYDRPwMHAOe5CTGaURpkgs9CIf/No2zTw4nfS5KToJjuYUYY+VjPJQLRqMxMzVEALBjxw64sbbNqs6qSko6FyXkjghWenXvLUfrQlSZK4RcYZz8yQC8eWxzKDbVF5dKXcVjCLrCUOikgCiKvdcN7wp9u4oVuY5G6/XVOVdHJNPQMNZrIE8xmFea5KjcbRalTwhBEajcbU55Y0yu5X82mSa3PpcUgEmSgo/gp+TBf1vdtrtYoNUUCEktJyDXyRCSJGICHZ+oQ+MHcldFlGn8thAGX5jKuSxi6/XVqLu8HADvNpvs5lpUKqezXugqF4sjZEdjY2NSta5JvW62b9+OiDYIbo3iT89UAOMH5hCYT31Ho/v3o+j+Pd+kT2mWw9Scf4X7xZAl8tuCcE8mngItVEKuMOT6wvjdisH4O3NZ7w+TSzBBFkqzPCdklQqDDDWXlALgrZ+PPdqXUlYI4G1Rqy8qFWN4AIDq95TCUJ+aBXPIHcGxR/vgGuGtuWsuKYXCkP3PKEMQOCZTYo7M/rOQK2z4WC1arsutjdBsotDLEJQyRAJDL05hco1ekMUGQRFQmuU50ajW1KIVNvq6fz+K7j+s32R7Pfz2EMYPzMEztXoSguM42N1zSdUPASkERB6PB74V+hEJA2M4jL4xCzbMpvwLYsOc0Py1bKsRTR+syvovXVOhxJ6/bxdSgalSCEGR7ZwL42/PZXsYOUPQFYFCl/+/V7GglCR0kumGABNiceqnA/CMZ38TQVupQvkO02LmRATVxfTxeRx9uEcUCQfHcDj6/Z64GsCufzL+PzINjfIdJmgr195xTJV4ZHMWloFqmQak2LNEw3+bxsQBaT6JwkvmpAxRFNeo1LMrFnWJAju/0ApNkqossSAoAk0frELZViMAIOgIx9WMe71zsmEWo2/MrjmfcLowvF4v9uzZk9R1kgqIdu/eDZIk4cD6Lyt1qQI7v9QK7TpprngZeXUGJ382AI7hIFNTqL20LCs60rAngvEDNoS88b+g1soSFQIkTeRVL6l0E3KFIdPQWQ/ecwVLqx5bP9UIkpbuRyzZkm/JNBTKd5gAALbzLhx7uBfhBN5naxGt0RHTESt6LrHqf8LeCI493AvbeRcALASE2cnQXBz2Y1NEcmCMxTXqg0eSpAPgF4QytVRDFIUgCVTtsUBhlDYco/jtIZz6+UBWGqCTMgK1l5bxjVUZDid/OpBS3WcsWqsKO7/UGlfywW9wAgCuuuqqpK6VVEBkMBiwbdu2uAIivy2ImZMOBOzi/ZLCHn7S1tWoUb7DBJLOvNA45Ilg7K3ZhD3fC1k6Z2jQoPO+lpRrDwqFqLxBIcnmAPDdp48+3AM2x4o+s4mpRYs9f98OeRZqzSztetRdXi5I9sQKXigFia2faULVXvENNKz7LNj6mSbRrJijPzOtolB3eTnMbXpRzpsoL8jVOEvnVi1ZNpHraFTuNkuW2wtE3w/BFNwaCwmZmkLdFeVQWbKbDckl2DAL17APTCjzLiQkTaJ8h0lQgETX6GIQsIcwc9IRl9Oog7ShvLwcTU1NSV0r6Vn4sssuw2/nfgtuhFuzeIljIbjFkTIi5dRZLPZuN+b7eEkGKSPRck0Vhl+dyUivE1pJQV2mgHvcn7AkxB1ZvR9G1QElJvYm78iUTdyjfpz62UBC3YYLmajVsEIvk/rvAIgEGEQC0rMRi2vEh/O/GcnYfaEUJAz1Gti73Zg6Oo+5sy7Rr80EWXQ9OQz/nPgGGjMnHXCP+8EExZ30I34Gxx7pFe6FuU0H55A3oev0PbhW/yAO1tdWPpfaBqieOZTIcAsedakCDVdWYO6ME9IbA1Aa+WA5ajRV7IQ8Ebz7za5sDyOnoOQkKnaZYetyZWS9oTTJUXt5GfqeHUfEz+DI98SRR8dCyghE/IwQQ6yHPTiL7du3J3+9ZL/x0ksvxcjICALwxXU8pSSx494WQVcoFtFfgMIgg7pUsabRg5joqlXYclcjZEkUROdrwLMekQAD16gv52wfs0V08lKYpAxRFOt7SlCyMTu78LkIE2Qx1+USdaNoLSo6zWi51iq0REhXIOYa8aVlYyTsYwRDBLGJ3gtKTqLlWisqOhNrJtv85QNJXbe5MoSKnck3ri1EHANevPtvXdLm2gJKsxwcu1hLLSGxHFJGoPqikoy1qOE4DppSBRQG/npir/vKthmx494WUMr4whRWGcL09DQuv/zypK+ZdEC0f/9+EASBeczGdTwTYDF5xA7n8MrNlFLFPxfE8R/28y8MAthyVwNKOtK38HIOe3H04Z6EaohiWSsoqjqgS3ZYWcd6UYlo9WL5DhvhEHCGoMoxW+Vsoi1XQmmSZA6xqCxy1F9ZnrbaO0pOQl/HSxkmDszh+A/60iarqNxtxoaP1abl3LFsuLkWlbvTE0QwIRbHf9AnFPTr69Qp9dRbD5KAZC+9AlL/oUWUJjmCrnBeNBfOBJZ2HTbeVp/tYeQUYS+Dg985D8dA+pxcSzr02HxXA0DwZgnHf9ifFiUAADiHvJg8YgcTiO9F4LfwtaAf+chHkr5m0q9hk8mEbdu2wY74C6fG35lD0BEGQRFpLawmaQKeqQD8C2nDdOiQ2TDHF69J76clVOwwQVuxuiSw2AjYQ1CapQAgSvfvxzD2VnybKMUCraRQstGQNvvnaH8wkibAsUirU1XQGYZ3Jv2F8N7pQFrlQyF3BBzLzyXtN9ag+uKStF2rZ0KOgarmtJ0/H9l4W71g+CEBqExyUeuw8x0mxEn1VBkkuoYOzIfgnQqkff1OUASCjjDG34nfZdJBzaKsrAytra3JXzvp7wTw4Q9/GEGTG2yCWzmbbq9Hw9WVqVx6Tdgwh4G/TApNUzfcXIuWa62iXkNXrULD+ytSOkchZomOPtyLqaMiWOMWCH67lCGSWBv3uB9HHuwRVQ5DKUhoq/hM7dhbszj50wFRHd9Ww97txshr4rgLrcXIazOwd6dfesxGeMeksbf4iVlbpVozW7SWbG78sgu/T6tkQRLSrtpyvFN+qV4mBqVZLmzwSgCOAQ/6/jSe7WHkFgSw9dONMLWI26ez5VorNtzMZ/09kwEM/GUyrRLvhqsrsen2+oS+h+M4jNlHsH///pSunVJAdO2112J+fh5OJNYca+KADVNH7KlcOiFG35zF9El+kS7X0qK4fin0MhgbU3/wCjEokliEzxBJAVEUdZkC+x7ogEbKIl6AmJns+isr0HZDNUDwErBM1B7UXFqaUbc8uY5GzaXiNX5djaAjzEsMCaDthhrUX5naRtgiHHY0BtFUIS38lzP08rTUxDkGpVnKEMUi00rtLC6AA7wzAUT8qdfdKfQywS14+uQ8Rt/MnKpj6ogdEwcSiynCJV643W7cdNNNKV07pRl4x44dqKqqwiwmEvo+23kXvFMBgEBGuoQ7B71wDS90Jr+0FJvuaEj5nHNdLhz/QV/K51mPfAuKrPss6Ph4+msI8gW/LQhaQWWtv0muEZgPY+T1GYREtOUsBFQlCuz5Wjv0tck3rqUUpNCrYeTVaZx5fChjkl6VRY6q3ZaMWswrDDJU7bZkbsOBA848PoiR13jHI3WpIsUglsCRfgVG5/iFh/8ju0UYZP6jMMikVgUxyNQUaAUlOZXGsPGWOjReLdbGROHQ9+wE3GOpN/refGcDai7hN5tcwz44B9NT+x9LNBbwTgWE3nDx4tTMQq1Wp1Q/BKQYEJEkiQ9/+MOQNbFJubvVvbccm+9syGikP/TSNLp/NwqAd76z7rNkvVFkIbnO+W0huET4QBYK0V09qV8CDxtmMf7OnKh9CgoB/1wQA3+ZhC+FAtXma6xovb4aAF9gm0nJkd8WwuH/6oZ7PHOfffeYH4f/qzujO+dBZxhhL78D23p9NZo/nJgUe7lszhckEQhLjgqxVF9cgo231WV7GDmDupTPpvtm01O8no/0/2USk4czpzLKF2RqKm5XtlhImoB1n0X43vO/HcXgS/FZXYsBQRHYfGcD6q4oT+r7bcw0du7cCYUitXVWym/ia6+9Fv39/fAi8UX95CEb+p4dz6hNMxNi4ZngJ21DnQbV+0uT2uWr2V+KTZ+sF21chSKds/e4paL5GPy2EFiGg7pMkohFUZrkKNloyPYwco6po/MJN3qmlKTQrX3o5Sl0/c9IOoa2JgqDDJSczEiN0nLYCAdKTmZEabCcrv8ZwdDfpgAACqNMWEzEY79NEhx2NAagV0m20ssZeXUG3b8by/YwcgZ1mQJshEXALgVEUdyjPvhmpPuxnC2fakTNxYnLiCkFhZr9ZTDUagAAngk/2HDmbB45hkPfs+OYPJiYVA4AWH0IY2NjKWeHABECoiuuuAIGgwHTGE34e0PuCBwDfCrOUKdJdSgJY+9248iDPQh7GRAUgY231gmddtfDPeFPOK2XCvkSFBEkLyUhZdKuJwBwLAf/XBCaMilDFMXYqEHLdVZJA74C1ftLYWqJ/7PefmMtWq7hsxRBR1hoBpxJmj9cJRTdZoMNH69F04eqMn7dkCss1Ga1XGNF+43x3wMZzYHjgAgjfQaWE/Yx8E6n36kwX1CXKeGfC0o25AvItDSq9lpAJ9EDstDp/dM4po7FZ2qlq1Fj4611IEgCYW8Ehx/shr0n82ql6NrfMeBNSkrvME1DJpPhzjvvTHksKa9alUolbrzxRkxhJOmmqLoaNTbf2ZCSfj5Zov04aCXFT1D+xeZ8a+Ho92DykJSyXY5cL8OOz7dAH2dgWQx4ZwJShiiGmZMOHPj2OamB7wroq9VQl6xdEyPX0oJ5weALk+h5Jru76b3PTmDwpamsXX/wxSn0PZdYHavY9DwzhsEXJgHwZg8qdu3VazBM4vigEr6QtHEUi6ZCicarK9Pa9ynfUJcp4JWyIQIqsxx17y0HJW26XoBrxLeuhFhoyu1nwHEQAst09aZbC30tv/bXVSfXu5LjOAw7+7B3716YTKnb9IvyRN1+++3ww5uw21wU96gPJ3/an7YO5PEQ9kbQ9eSw0GRq0yfr13QTUlnkglRFLAqhlijoDOPUzwbgHsve7zLX8M0EoCmXAqIobISTgqFV6HpqGOPvrv0e3XhbPerfx7+bfLPBtPYVioeQK8yb5GQJ71QgK5mxWELuiFDjUf++ClzpCQCrbBAqZSwMagYrOV4Uu7GCXEfDUK8Bk0G5Tq6jKVPCNytlzKK4Rnx495tdUh+iFTC1aGFuW11hUH9lhWBp7Z8LouvJYYS92Zs/XCP82j9ZI4iwyQfbvA2f/OQnRRmPKB6p+/fvR21tLSZHRmBEcg3sojfE3KqD3x5KW/fbeBl7aw4hD/+BU5rloJWUUHsEAI0fqEIkwKD7t4lLBddiYq8bujdXvoe6NxVw74+/UVVW4ADXqBQMxeKdDoJWUpDrZVlfuOUKNftLIdPSGPjLZLaHknMQJKAuVwp91ADehS7sjSDiZ9DzzFhGbLTXQ12mQPuNNeh6aiTrDlhKkxwdn6jF+d+MZqz4vOcnO1f89yGGw+Yn/Wh1ukHLAJkC8Mc4SFe3AZVWFoe+2y1tDCxjvteD+d70u7fmC3IdDVpJSfUyEnFRuskISkYu6dGmrVIhEmAQsIdgO+eEOwfWZ+pSBZQmOew97pRc8Wy6CWjDWtx+++2ijEuUDBFJkrj11lsxjdGEm7QugQBqLy9D5c7sd6i2nXcJv6iq3Ra03VADxMi9+54dx9DLmZeJrBYs5RKWDXpU7DRnexg5g2+GX9hqyqU6oighb0Sy3l6Fqr0l2HJngyBtICgCm++oR/V7+M++dyqASCD7xfgcw8E16kPQmX074KAzBNeoDxyb/QAjRBHwOvn/t7YQ2PgeAkTMTDvWDZz86YAUDK2AVHu6lGi/Nu+MlCGK0viBStS9Nzk3skKn5w9jOPfrGGMdAmi/sQZVu/n1mHsss7Xvq1HRaULtZWVL1tSJwhEshmx9eN/73peyu1wU0d4+t912GyIIJ9yTaAkccObxIQz8NXt69JUYeGESZ345CHCATEOj7YYacCyXtl3a9bJAuR4U6awqGOszb5KRqwSdYUT8DLQVyelkC5HpY/MYy2Czt3xi+vg8Tv50AOoyBUiaAMdw6HpqBMOvzmR7aEvw20Loe3YiJ4q9OZbvweG3ZT84A4Dz9/M1lKPnOZw/yIFjAZICdAv7RFKTzQvRlCux939tgKZSkhdH0VWpEfZFciIjnCsE7CEEHNLnZzXkOhptN1RDpqEBDjj9+CAGXsixNfVfp3Dml0Mp9ckLVbng9Xpx7733ijYu0QKijo4O7N+/H6NILd0dNTXQVCp5J6pc2DDiILyQFEYZlGY5qvZaoKtWpa34M+elcWsw9PI0zossJcx33BN+aKukgCgWmZaGypKhppp5RMTPIOSOYNMnG1C+g8+Weyb8OZVRiL7/cg1dtQpVey3ZHoYAywIeB///5fXAposJVKTeF7wgCbrDGPjrpCQPi0FbpVwi1ZcAJg7aMB2nk1oxQclJWDbo0Xp9NVRmhVDjHnSEM9agey0IEmi5zipseETX+skywvShrq4O73//+8UYHgARAyIAuO++++DAHDycM+VzyVQ0lCY5yBxzm/GM+3Hyx/0wt+igsiiw4/6WrMjDcj1LJLEU97gvJxeQ2aTto9WCOYAEj6VdBxAAE2TgmwnkRPZlOQQJlG4yQGfNPSdJnVWN0k2G3NhIW8bUIDDRz8ExC5DbO/jftYRAxMdg6og9pwL/bKOtUsMtBUQCpIyA0ixPSWpViFTsNGPHfS18v6r5EE78uB+eDDbJjgdSTkJpkkOmSt26IKwJYHhySBSr7VgILlmv7BUIhUKoq6sDPaVGO7FDrNOCoIicfEkSJIGyrUY4h7wIzId423CRTQXWC3xyMZMk18uw5a4G9PxhLKvOgbmEuU2Hjo/X4dB/dUvGCguoShSI+CMIe7NfD5MLqEsV2H5vM7qeHMZ8nwc1l5TCNeqDc9Cb7aGtDAFRdh43fJzv33NOjKayIo0pXlYzVgCA9odXf/eZyoH2PQSOP9qXMROInIYAqt9TgtnTTgSd0vsRABR6GXZ9pQ1dTw1npT9MLmJs1GDT7Q048r2erBu5ZBt9jRogeKc2pUkOQ70GMycdOVFHuRyx1/BTNb3on+3BxMQEjEajaOcVdR9NLpfjnnvuwSRGEOHEealRchLb7mkSpCO5BMdymD4+L3wwK3eaUXNpmajXyMd6orAnjNkzzqzaOeYa7oXdGp1VyhJF8c8Fiz4YImUkKjr5d5tvNohjj/Rivo+3JBt9YzbngiGZhs/cA8gJGcYFLIxJaZLzGvocobwOsLYu/n1+Gjj2SK8QDFV0moraUEBplKP6PaVCfy0JQLswV0gZokXcY36c/sWgVEMEoObSMlQuqJMC8yFMH58Hx3GQaeicanpe0WnCtnuaRCsv4WgGfdPd+NCHPiRqMASIHBABwD333ANQHCYwLMr5mBCL2dMOuIZzZ2Ggr1Gj8wstF7y8u38/hu7f8bUzWqsKW+9uhEyb+gs+F7NAa8GxwPDfpnOmwDkXCHsiCDrDUkC0jOr9pUXtSKivVaPhqkqhlmr5Z0ZhkKHpQ1U5s1iu2mvBlk83giBzZ8JdDkES2PLpxqzXEkWNFQDeeluuWHrPor9rlUWOhqsqs9KYPFcIzIdw8DvnhI0jCd4uOegKIyy5cQowIRbOIW9ubsakGZmWxta7G4Va5O7fjaL790ubcqvMcuz5+/ackuc7h7yYPe0QrfGrx2pDMBTEP/3TP4lyvlhEn2WtVituuukmjKAnNQvuGMbemoPfFgJBEjnxiw77IrCdc61YFCb8G8vBNxsUXma6alXadO26N0tyLlMk19FFPcGvhHvcl5N1F9lEpqaETtnFQtSUBQAc/R4ceah7zc0DY6MmZ8wnRl+fQdevhnJSpZMk6AAAmsBJREFUlhGFYzl0PTmM0ddzx5VvrAcYPL30npHbOgDwgdGRh7rh6Oczg1V7LXydRDFB8BtpxbjQXQ19jVpqcL6Mqj0WGJu02R5GxiBICGvesHeh+fNClctK68+gM4yup4ZzwpiEX/MS8NtCGHtLnE19juPQ6ziDzs5ObN26VZRzxpKWJfoDDzyAAHyYgrhOY1V7zNh4Wz1oZXYXUH5bCEMvT4ONrP729kwG0PvHcQAAraKw+c4GVHQmvxMeT5Yol4Kiih1mtN9Um+1h5BSuUR+0VlVOpbOzzeALU0Vnv62vVaNqtwWUgn/9riUbDDrDOPr9Xninst+HhCABNsLBM5n9sayHZ8IPNsJl3VxBoeLlcusRfQYoBYmq3Zai2kyS62js+Vo7dDXF8zOvB0ER0FlVcOaQMiYXMLfqikplUdFpxuY7GvhNQw7o/eP4mu9fNsLB3uNO2cEtVWglhY231aNqj7jqD1+VHXaHHd/4xjdEPW8UUU0VYrnmmmvwynOvYx/eD4IQZwFIkHyvgmxPyEqzHOCQUFGfukyBoCMMJsSiaq8FtILCSBI7mOsFPb6IHMzlKfSCEgmZmgJIQkr3x6CpVGL7Pc049bMBUY038h2SJkCrKITchfuslGw0QGmSY+wtPvgjaWLNDZXl0CoK5jYdZk440jTC9a+//XPN6P3jOBwDHlHPLaqpQgzGRi1arrPi+A/6kl4gDP3rvjW/XvtCAH13rL5Bd9nzPlhbCBz/Gwd2hSGwJ7ou+LfYZ6P64lIE5kOYO5u6c2uuItNQqNxpwfjBOTCBHLRVzAL6WjW23NWI4z/og3c69zcgJMSj9tIyRIIMJg7YQMlJKAyyhIxXLO06sBFOqEXNFtpKJbzT4jmlchyH05Y3YSmzoKvrwvemGKStgvF//+//jeeeew6zmEAZrKKck2MhBEM1+0vhGPTAPZZ5zXHde8shU1F8Y6k4iU1hEhQBYmEOJUgCKos87gfevX8O1KtVax5DvVqV9aAo7CvuYvmV8E4FEAky0NdrpIAoho5b6sAEWZx7WtwFcS6hNMmgLl3spp1IMAQAphYdGq+qxHyvOztGFBwwc8oBz1T+1Hh4pvyYOeVIuwyr+Rer/z4m3uzCtIIEE4x/VRD7bKhLFYJEplAJe5mkNgcLGUOdBpEAA++MFAwVA+pSBfy2IDgWICgIKhImxCbsQlm+w4ywJ5KVgEhXrYKhQYuxN2dFT1wEK52YmZzBfz74n6KeN5a0ZYgA4PLLL8fR105iN94rWpYI4B+WTbfXw3bOhYmDNtHOGy9yLQ1KQYpiGlCyyYC2j1bjyEM9CdmNrhcUZTsgAoCGqyrgHPRKlqExdNxSB4IkcPaJoWwPJWfQWVUI+xkE7IVlwtFynRW+mQDG3xXnHSXTUAXpypeuDJEYrJchAvgs0XJIkoPRxMFuI0G+eVyUsVgvKoG6RIHeP42Lcr5cgJSRKNtq5IuuEwgaC52Nt9WDYzh0PSWOOVUhULnLjIpOM47/oC/bQxEVhUGGXV9uw/nfjuZ9JrhqjwWWDXqc+eWQ6K1yzpUdgEIjR29vL0gyPVrotCqs//Ef/xFuzGMOk6Kel2M4nHl8UAiGolr8TBHyRERzULN1OXHml0NCMNRynRWmltQb9q0XMGUCpVHOS+ckBJzDXuhr0mewkY+4x/0FEwyR9OLGT8ARQkhEyWjYy4CgiIwXFVd0mlC21ZjRa4pJ2VZjxts2lJZz6NjEQC4Xb1EQcocRcC5+TmKftXxFV6VC49UVWa8LzikIQF+jgnNEqh+KxTsV4DO+BYCpRYeW63jlVNAZxunHB2E7l7/BUHQNPnHQhjOPD4oeDIUq3BifHsPXv/71tAVDQJoDoiuuuAKXXXYZ+nAGYieiorpEQ70GO7/UClWJYu1vEAlaSaHx6srFXhwpwrEQeo2QNLHEq11hlEFhlK34ffFkgLIdFJ17egTTWap5yFVcQ15QcgqayuIpDI2Hkg496t4rbg+vTEMpSXTe34rSLUYAwOjrs5g9Le4kV7HDhA0fq82oM5+mQgltpTJj1xMbbaUK2orkxl//T+8m9X3TkwSOHqYRCokXtMyedmL0db4GrWyLETvubwGlzO+dFeewFwe/c15qxhqDtkoFSk7lVKuRXMA16sP4O/nVgiSW2PUcQfA9NqObGs5Br2i1NjqrCtvuacrYJoOqRIGdX2qFoV4DAKL9HFE4jkN3+CQaGxvxmc98RtyTLyOtb1OCIPCtb30LXrgwifTIIdzjPoy/PQe/LTM2gzINBUODJi27c2yEw/nfjGK+l5eYVV9cik231696fD4ERYWwiykmnkk/IkEGxobisQ6NhyUNP/OMaANFJsBi/MAc3GmsD5s6aseJHyVvEpAM/c9PYuCvUxm7ntgM/HUS/X8WV6WwGiTJQW9gARDw+9L37nON+jBxwCaYEGjz0Xlr4fZIUrmlmJq0iAQYeKSGrEswtWjzegNg0+0NqL64FABg73Hj/G9GE64ljYewj4Fn0g8iQ2svvy2I8bfn4B5Pz7znq7Jjem4K//Iv/5LW7BCQ5oAIAPbs2YOPfvSjGMBZsJz4kzgb5jD29hzA8Q500Sg1XfhtIRx/tC/hQrdkGPzrpFBoLlNT2HZPEzTlS3c6czko0lpV2PdAx5Ji8mInmhE0FVEvhXiYPGxH9+/G1j8wxzDUa7Dt7iahWd7EAVtC7pOJwrELDT0JpF06R9KZl+elE2OTNu0bNJVVLDZvZUDT6TVCCMyHMHGAl4xrrSpsu7sp7XOf2JRuNqLzCy0gZdKmWSzGJi0cgx7Rd9rzGZVFjo231EObR8oKTbkS2+5pEsoGzj09jMG/pn9jJjAfQt+zE2l3+DXUa/j1KAeMvT0HNiz+O48jWJz3nsCWLVtwyy23iH7+5WQk3P5//+//IUQGMIaBtF7HelEJai/Nb9lNLGyEE9zpSDlv4hCVFphatEJwxFw+sW5glI2gyD8bRN/zE6LWURQC831u6GrUGa99ywfyIXhWGGVCTYpzyIvTPx/M+G6upU2PjbfUpbVhq2UDfw2FYWXZbj6hMMiw8ZY6WDbo03qd8TESJ4/RiEQyt8j3jPtx+heDcA7xEqvyHaZVpda5hG8mgOlj82lZSOUrlIKEvlotNOmV4PHbQjj8YHdas+9ioClXwtTCbyIFnWH4bSGQC2UQvplgWjJCK0GrqLS/A2ovLYP1ovT2vnTXzGDeOY/vfve7ohqzrUZGVmTt7e341Kc+hUGcQ5hL3+5p75/GhYwKQabn5m2+owEN769Iy7nXIugIo/t3o4gE+Cxb7SVlqNzFN70iyNyUpjEhFtPH5rPeJCzXmO/3gKQIGBvya0c33ZRvN2HbZ5tB57gRh7lVh5pLSkHK+NdnNpon2s67cOJH/aKZu6zE7Gknjv+gryDqO4LOMI7/oG9JTRe7f/uSP6mgUHDQaDkABDyepe/iVM8dD9FgiJSRqL2kDGYRjHnSjXcqwKs7JASMDVoQJJH1HjK5SNAZzlhAkQgkTQgmSZW7zai5hN+UjwQYdP9uFEFH5t+fzR+uQsu14rS7WU50bX3u6ZG0Ol5yMgZdcydwySWX4IorrkjbdWJJq+12LBMTE2hra4PJU4E2Yltar0XJSWy5qwHjB22iNzIs3WxA2BuBYyDLBY8Ev5vEBFiUdOjRfI0VR77fA+758jW/LdN23JpyJdRlCtGLy/OdHfe1wDnsRf9z2bdHzxUoJQlNmRKukdzbBay9vAwcw2H0jVkQJD8B5srkXLLRAHu3S9TxUAn2zkmFTNtuR3+2eAOVyYtUCOtWv7e1LwTQ2h6B3sDhyEEaQnFMDGJZb8cDSRPgWIBjOdRcUgqCIjDyam71+TG36sBxEOplJXiaPlwFQ50Gxx7pzfZQcorGqyvhHvNh9kxurSNkagqdX2hF77PjsHW5QCkX3ptZnhrUpQqwDCe6e2vZNiOseyw49dggmFB654fpmn6cmziNo0ePYsuWLWm9VpSMaXaqqqrwjW98A6Pog5tzpPVaTIiFrdudlqats6ed2Q+GAICDUFDrHvNj6G/TiPgYMJdPoKFHDf38yj13My2dMzVrUX9F5jNquY6j3y3VES2DCbA5FQzRKkrYDWMjHNgw/3njWC5ngiG5XoaWa62wdBhEOydJE+i8rwUVnZm1qs4EFZ0m7LivJeGMusxNrPpn8iIVBh47gzOnVg6GMg0b4cCxnPD/0WeVIImMuhOuRclGA8rz2Mo9XZgatZJcbgVoJZkzKhhDgwaNH6gEwBsYDP1tGp6FtSYTyH4wBAC+2WBaWlm4x/ywdbvTHgxF9AGcHTuJW2+9NWPBEJDBDBEAhEIhbN26FVPn59CJSzOiCSRIoGybCdPH5lM+F2+HSQryhFyEpAl0fKIOZy7TYtQA6IKAMgLMqrFkrq658UxGxkNQhOie9IWAqVmLjbfW4+gjvfDPZcYhMR+QqSk0X2PFyOsz8E5lr0s7pSSx60ttGHp5ClNHU393pBOFQSaqrI0ggbKtJjgGPRmRe2QyQ6QwymBs0GLm5DyY98SfIVqNejKEGZaG6dsHxBpi2qjoNKH+fRU4/FC3sJmWTUiayJmNhVxAXarAjs+34OyvhiTJXI6hr1Uj5IkgYA/BskGPyp1mdD01nNPPb80lpfBM+EV5lsp3mDBzYj4jRh8cx6Gn4gh8YQ8GBweh02VO/pvRqm65XI7vfe97cGAOUxjNyDX1dRo0Xl15gTtbMlTsNKPuvWtL0rING+Fw5pdDwKf5gKdxHtgXc6tlC+U8o7/dlJHxSMHQyjiHvGBCDCztua/1zyRhP998NLYfV6ag1RSq9lgA8Dt9/c9PYK7LlfFxJEo0GDK36lDSkbppAMcC08fns6J9TzdBRxjTx8WZ2Clw6KCDqKfy4z7NnXOh//kJIRiq2mPJSr1e1Do5lxeT2cDSrkckyMAxmLsbrtmAUpJpqwlf77oAAAJo/Wg1yrfzGXPbORfO/HIo559fQ50GSnPqpjuaciUar66Evi4zNc8Bqx2jU8P4v//3/2Y0GAIyHBABwJVXXokbbrgBvTiFCJf+icQ56MXR7/XAO83vNqdi8dn3p3F0PTUs1tDSTs2NZ3CyHHi5EQAByCPAR84BNQ7+65kKihqvrkT9lbkdSGYaNsJhvtcDS3t6Xa/yDg7oenI4K9I5TbkStZeXCZPI7BlnXhmCWNr1MKf4PFXuNqPuisL/rNZdUY4qa2q/WwYEXg5p0cXkR/+siI8RajCUZjnq3lsGTVlmG+6SNIFdX2wrSDlmqpjb9ZjvdUubiMuov6IcWz/TmNFrlnTosfur7XxzUw44/dgghv82ndExpMqZXw5h8pA96e+PrpW90wEc/V4PnBkI1DmawWnXUWzbtg2f/exn03695WTF9/e73/0uaDWJPmRGthW1fbZeVIKtn25KSYuaTwskAKi56Qx8C/M1QwJHq4CZhdKVtjmg9HvpD4r8tmBa3bDyFdt5F3RWNeT63LfIzTQKoywjzSZrLy1D20erAfCbJ4f/qzst2utM0PfcOHr+sNDLKclXHEEsOiYVMgQJkIPJOSQZCQbvkflAg0MIBHKhbihRAvYQDn23W5B/t91QjZpLS9N+XY7l0P/nCcxLdTJLkOtl0FWpYDsvmUwsZ/KwHUMvpT8Yaby6AlV7eYWAc8iLgT9PgI3w2dR8ddokSAhuqIlA0gS23t0E6z7+fmSqdcpM1SB8fh9+8pOfpL0J60pkZeqrra3Ft771LYyhH/PcbMaua+9xY+qYPalUZ80lpWj9SHUaRpV+ovVCDAkMmIHggt8CQwARks8Ujf1mE+rfV54W7/rJw3ZRargKDXuvGyzDSrK5FWi6uhL1acpUaKtUkGv5D4F3NgB3TA+hTDmrpQOOBcABqhIFdtzbnFRPp4mDtowsPrLN0EvTmDhoi+vYyneWmvNQ4CDLhcrpFIl91t3jfqHZuFxHC42GxYZj+cxrIcoxU8HSpgPLsJjvkwKi5fhmgnAMiB9AK4wy1L+vXNgAYkKsYJwT9jGYPuHIeVncenR+oRXVSfQKYiMcpo7aYe/J3PMYKvHgzMhJ3H333ejs7MzYdWPJ2l7gfffdh/e85z3owhEwXGaiT/9cUEghlmzUw9Qcv8tXwB6CdyZ7Rd6pspKJQp8FOLVgAKcLApZLS4XaDW2lUtSmj6oSBeS6lZ3vihUmyMIx4JVkcyvQ9+dJdD0pvjyVpAlsuq1eaKxq63Jh4kB8C+N8IeQJwz3uT2hXj5SRqNxtzhknp0xA0gSqqhmQVHyLHhX4iNPG0XgtrEYkDzNDqzFxwAbbQr1c+XYTNt1WL/qzoKtWoemDlUntWBc6lnY9nIPevN6QSQeaCiWq9lhEy1qrLHJoKnmZKK2gULbFCKWZ3zgafmUm5w10EmXo5WnMnnHEfbypWSvUoU4esmdM2cORLM5GDqO2thYPPvhgRq65Ell7M5EkiZ/97GfglAz6cTbj17dsMKAkAava2TNOjL9TuE3kXErgj+1A9yMtAIDay8rR+IFFi26lKbXgaMtdDajYYU7pHIWI7bwLhjpNztjh5goh10ITPhHWZIY6DbZ+pklwtTr5swGMvpm5zHSmYQIsev84joifAa2m4jKUMdSrUX9FBWTq4tm0kKlp1LWx8F1Pou+2tX9uGTi8X+FFGxVdIBROMLSc0TdncfJnA2AjHC+d+UwTDCIUVMt1MqhLlcIuvAQPraJgqNfAdj73DVwyjbZKhaq9lpRMUGLXLk0frELdZXzjVO90AIf+q7ugXV7nzjoTCmpKOgywbBCvhUO8zFUPw+Fy4Oc//zkUisSVDWKRUdvtlfjOd76Dr3/969iFy2EgLJm7MMHr5TmWg8oih98eWtU/3tKuh3c6gMB8ftYWxBKvkULtzWch19AIusLQVCix/bPNOPXYAFwjvqTsUjXlSgTmQ2n3r883ZBoKu7/ajr7nJyRZ4TL0dWq031iD4z/sRzhBDbPSLAetouAZ90NhlKHusnIMvjSJsDe/agBTpfkavtHj0Ud61+2PQSnJrNgxZ7oxayxDj+5EaB0Hq+YnIpi8SAUrGcYsSy/UDV2I9dvvpGOIWUWmodBwZSWGX5tG0BGGzqpC2M/kbZ1dLlLRaULTB6tw8D/PI+IrrvdTXBBIuLdPdI2ir1Vjy12NOP6DPninA1DoZQh5I0VlXFGyUQ+Zhl7dYIEAVGY5/LYQCJIAx3EZ7aUUtvjwhu0vuOOOO/DYY49l7sIrkPXc9Ve/+lXs3r0bZzMonQMAcHyBJ0kT2HxHA2oXdg1WouH9FSjbYszc2NJIPP2HQiEafb/ciqCL13n754I49/Qw3GO881fzNVa031ST0HW90wEpGFqBsJe3WS3bbMz2UHIO71QAMycdcU9esbKKhvdXCDVIQUcYPc+MFV0wBACDL0yh639G1pzgoq56udCbJtOESALgOOgjK//sDf4IqOsXgp1/O4zSb78L67ffKcjgZyXCXgY9z4wJNT91V5Sj4crFRtvxSpn0teqsWOnnA6WbjZjv90jB0GokuDhvv6kGzddYAQDuMR/OPT0Cv43PAgVd4aIKhgBAXaqEvmb1DG/d5WXYfEcDSJpPEGQyGGJJFl3cYVitVjz66KOZu/AqZP0NRVEUfvGLX4BTRdCDkxm/PhvhcP63o5h4d/U6gmOP9mL8QOHI5VYKikIhWvgTpf/JbQD4e2Q77xbS1jMnHZg56QDAF+B23t8CTcXashxaSaH5Wuu6xxUjs6cdMNRrJLe5ZTBBFkMvT8fl7KgwyLDrK23Q16oBAP3PT+Dsr/LHIj9dMCGWl4QQQNsNNYKLUhSSJrD1042o2Z9+h7FcZasngg/PBUGxF64EykIsSlfZyIkGRsUUIJ391TD6/zwBgA9ydn2lDQrD2u8tggTab6pFzSXF+4ythkIvg6FOI9ihSyyitaqw68tt68r1NRVKdN7fItQoz5xaXJ9wLC9Lz3dzhFQYeW0G3b9bve/n+Ds2nP/taFbu0Ux1P+wOO37+859Dqcz+2jDrAREAtLe346GHHsI4BjHDJWeFmgquER8iAQa0isK2e5pgqOejaZLmG0SyYa7gih1rbjyzYhC0nGhQFItjwCO4jxAkAeeQFwEHL6GovawMDe+vuOB7mBADdYkCsiw0Asx1bOdcYMIsSjdlXrubD5RtNa6YoTU0aFB9Mb/ICjrDmDo6L2Q1Q+7ikkWsCwf47cELZL9shMO5p0cwfaJ45Zq9ahp/M8nBLEjnaJYTgqCDehneSoPzZr7CMRxCbl7JEXQtfOYWLImrLy6FoeHCnWiOBU78qA9jBVyDmywlmwxgwizsUv3QBfB9sxwrWl43vL9CUPUEHCE4h7xC81Z7tzstrnT5jr5uMUtrqNdg22eaQKsoRAJMVvr++SscODN8El/84hdxxRVXZPz6K5ETAREA3H333fjoRz+KLhxBgMv8LwfgX/be6YCwuK++uBQ77m8pWOelpltOxHXcSkFRlKAzjL7nFrufh70Rwd2KkpPYdHs9NBVKcCxw6mcDcAxIXbiXw4RY2HvcKN0sBUQroa9VQ1vN2wDratTCTqC6VME7RS58PEdem5HsfNdg5NUZ2Lv5jYyqPRZBKuca8QmL3ELBffPeuI/1UQSmFfxGDcFx2OaJ4Ap7EBTHAQTB/5G4gKAjjJHXZvi/ELxDlbqEL4iW62joqlW8pI7gNygkSdiFlG4ywN7tluTkKxCYD2Ho5WlwLAdNhRKbbq8XFvQhbwRhL//OYgIs+p6byNteQZmAVlHYeGs9yrYZAfBBpHcmkLVNQ1YVxnHnu9i6dSv+4z/+IytjWImcCYgIgsCPf/xjlFvLcAaHkA2vBybEuzMFHWEQFJ8dGnxxsqDTrU23nIgrMForKIpl8rBdcOOj1RTYCIdIgJ8IKzpNaLy6opANmpJm9rQD2gpVUr1jCp2hl6Yx8OdJkDSBjbfWoXQhWzR5yI7TPx/MqOa5EKAUJCp3mdH0wUqhKW0h4r55r/BnXTgOV9iC2OmK4ISWxl8sCjBSIBQ/HHD654OYPMwXbpduMWLjrby9/Y7Ptwh9vyQWUZUooK1UJWSLXCwQJG+2UrmHd6ZlgizYCCe4sY6/PSc8axLrE/EzOP3YAGQaGgRFIOgIo/eP41kJxDmOQ5/hJEiSwB/+8IesNGBdjdwZCQCz2YwnnngCTsKGQZzP3kAIQF+tQukWI/yzxeGmI2ZQFCXoCKPrqWFh115hlKNqTwl0VhVAABtvrYO+Tp3EaAuP+V4Pwv6IsNiX4KncbUbnF1tAkHx26MSP+zH+tiS9SQUmyOL4D/owdWQezmEvLO06UMqcmgpEZ73gaLMngsoQC5uMQIQk4JR65aTE+NtzOPHjfrhH/Zg6Zsf2zzejcrfUdiGW8m1GhH0RzPdJ8i6Al3RtvLUOIAB1uRKWNj0Uej6LHZgP8WsJKQuUNBwLVHSaYdmgy+qmtLNuAiOTQ3jooYfQ0NCQvYGsQM699S+77DL80z/9EwZwFjYuOx3Tay4uRdOHrTj6cA+803wz1mJYuKcjKIpl+JVpdP9+FP65EGgltdAZmt/eL91sQNsNhbtbvR4cy2H2tBPlW43FnUEjgC2fbhQap873etD/3ARUFjk2f7JBkORIpAZvlOLC7Bknmq+xomK7KdtDyhiLwdEeKBYkI31qGm8Z5Rgooj5M6SZgD/3/7d13fGPVnf//173qliwXufcyvTANBoZOCC2QhN5SCAlkk7DZJJtN+Oa3+91kSbLZ5Ju+yRKyQAoE0oBAgBDK0AemML2P+7j3Iqvr3t8fsmV7xjNje2yrfZ6PhxkhXV0d2/LVfd9zzucw3OGjbXMvtc+20nckcuJfsC6LMz5VldLHOUWFvFVZdO6eehXNZLT4htLoUHEtqBMOaBitBobbfGz+/kEaXm6PcQsT3+i563CHj90P1bLowyUxq5ocyBti+9HN3HjjjXzyk5+MSRtOJu4CEcDXv/51Lr/8cvayOSbzibr2DtD8Vld0XkzOMicrP14ZHXOfzKYaimYUjHTo2jNAyBcm5A1z8E9Hcbd6AdDC+oRqYqvuqiJ/9CQtRT44O7b3YU43kb0oPdZNmVfZi9NZdnt55H906DsyFC2T6usL0L1/EE9XgB0P1ETnwIiZs2aZqb66KLLukF9jx/01tG6ODD/JXpR+yqphyWJhToBrG/2UPwu5z6toLxupeh7O7Q+QfoIy3GJqFFVh0fUl2POt6JpO9/7BaEEPb3eAvsND0aGuy24vJ3txih3zFqVjdhjp2JEixUxGPsPz12ax6q6q6N0hXwhtJBC6W70c/NPR6HlAcDgkw6FPkzU7ciHRtcwJgK8vyP7fN9G1p3/e2xJOC/Ke+y0WLVrE7373u3l//amIy0BkMBh47LHHKCovZDfvENbnZzKmvcCKYlDw9QWiZRsBuvcPsuvhuuhidAZLXP7YZs1Uiy3UP75q2vu2ZJgovzT/uEIVPfsHqX2+LfI/SqRnYPSk2LXYyTlfXYrRaojuIxkLXQx3+Bhq8VCwNrmv1iuqwqJrSyIFEYgM4Qq6Q9Hf6dE3uhhsPP5CyHB7pLdWleFMp8XmMuMssaGPzI0MuEOR9ScUqLisgML187hA9jwzqjo2UyTstA2aqGk2oetjxxJNg+JujQVvQ9lfleiXmB5zuhFbtjnyvjrGQOMwR9/sAiKVXIPuULSKa9YCB4uuLYlWDEtW+WuyGWr24On0x7ops041KtGLKkargXO+uhTXSOD1dvsjPYUjv97a59ro2T943PNX3VWFszT5R+XMldFzVF9vgF0P1034GffXutE1SMuzkFl14vWJZpOuaByyb8NoNPLcc89hNsdn50Lcnlm4XC6efPJJ/BYPh9k556+nmiIV0coumnytBHdLpCcjb1Um6+5ZmPTlo08UilRFj37B9EORwaySvzrz5GsL6ND0eme0FORwp4+mNzqjxRkW3zC28JpiUMhdmRENS4muY0cfWQvSo5XUkkXOcicLPxz5nY0uiKwaI4efgYZhjjzTMqXiJYXrs1n72QUohuQ+YZpLfTVudjxQe/zPW4dd/1vL0dcjlcNyljspPCu55n2sKfaxoiByEuoOqHQNTPw703SFzQes9Awmx/EkVvwDQXY9WIen6+Qn/FpI58gzLQw0RKqPqkZ1bIFIYOGHi8lZ7pzz9s4nc7qRrAUO2pOkd8hoNZC7MiN6TF7woWIW3xBZuD3kC9P0RifDI8FvsMlD0+udJ+35MVgNeLr8BD3JVflyvpjSDKz7x4XkrcoExs5dj1W8IYeyi/PnpU3tJTV09LTzq1/9iqqqqlM/IUbiNhABrF27lvvvv58W6mnR6+fsdRQVtKDG3kcaaHq966Tb9tW4OfpWF8EUKCE6GoqODUHHmk4o8nT52fKDQ6f8oBzP1xug9d2xhXNrnm2h+e3I78meZ2Hx9aVYRtYKcS11UnxuzpT3HW+69gyghfSx4YKJZiSnGNMMrLyjMrpQqn7MCKSDfz5KzwzW3uivjfz9EYMqlMkgZ3lGtHTtZMIBLVp5yF5gI71k7CptIvbMqYpOVXYAuznyPR3sNLO77VTz0BQMqk5+1tgJme+a9XPYyuSSWe2Y8fDynoODHPzzxEUkR48dzrI0Vt5RiXH0YmSCXhPJX52FFtLpTuDFWIvPzcG1NBJULVkmFl9fij0v8nfV/FYXNc+OrSfZ+m5PdHTNVATdIY483YK3JzUKWs22oCdM81vdpyzWUfNsK/seawCY0wvKwyXd7GvazZe+9CWuu+66OXud2RD3n3B33nkn//AP/8BBdtCnnzyszMTSm8uoeH9kIdHh9lPXZQ8Oh2jbEhlvn7XQwcpPVCb1ELq5Gj53Olf4PZ3+6FADd5uPd793IFr8wpZjiVSxG7H2cwuiV0oMVhVbjiWuP0jDAY2ufQORQBTH7Rw1vqev6gOFLLu1DIgsqucfDEb/nnoODHLk6dNfdNnbE6Bje99xAUucmjndyKJri6c8R63xlQ4OP9UMRIYyrf/SYszOxJhfNLBu7Dhemhkk0xq5gDXkN+APnfp4nZMRZllFAItJ3mjTVf6+fErOm52LUkeebqHnQOTCiR7W8Q8Go+sZLbu1nKoPFEa3Pemog3ihRObRdO8biO+1h5TIZ+lo9cm8VZms/dyC6MPpxTZsrkgAGm6PfAa72yKfweM/n2fCWZYmIwCmyWBRWfmJSrIWRoaht27uia7TdCJ6WI/Mk1dgxccrqLqq8KTbz0Qwd5itbW9xySWX8N3vfnfW9z/bEuJM/qc//SkXX3IRu3kHj376JSoNVjU6X6G3ZmjGZS9D3jCeLn90/HOyqrxt15S2m2oocpalcc69S2dt8nbIG452wTe/2cXBP0WuMCpqpECGpztycM5e5GTdPQsxjFzpLjgzm/yRhcpGt48H7dt6sWaayV4YfxONc1dkRMd2O8vTOPOfFkVCJpF5X517xq56Hn6qmaETdNefrtKLcqMrlYupCQyF2PbTw3Ttm/6V6eEOH0ff7CQwGCl7W/6+PDIq52f8+XTlrcrkhuFh+tZB+zqVN+rSaBmc3rGmo8/Apr1W/ME4OSgkkD2/qqPhpdmvEDvU4o0GdIDOPf30HYkUWUnLtXDmPy2KVtRylqaRuyL+Frp2LU7HmmmmdWvPqTeeB+M/8/JXZ1JwZmSIrMGssu6ehdHPIE+3n669A9HtD/7pKM1vjVyg1plQEOl0mNONnHFnVXTOkZiasF/D0+Wf2e9Bh4aXO6IFPixO06wswxB2BNjmfoOKigqeeeaZuFpv6ETiv4WA2Wzmz3/+M5WLKtjJ2wT1mXelqiaVMz+/KPqH37G9j/66mQWioWYvtc+1AuAoslF5RUHSXtmovG3XlILRVELRcIePplc75vwKma5FJuiPjqHtPTTI7ofrxoYE5VtIy7MCkZC84f9bHr3C4ii0UnT2uMnl8/hrdbd6GTzqmfj680RRI8VFRns9c1dkRHt9IDLuOGukh8Hd6mPf7xrwD0T+HvuODM3bMBAtqKNJJbApMztNoERC0UwqNwWGQrS8EzmJU1QFZ6kd68gFDZvLTN4ZmTGdCL/4+hKKzon8vfTVunnHYmX01KDjTJXOMxU6z5xO+xT8QRUFXXqJpsjsMB63GPdc6t47EC3l7esPsO93DbhbI70UWYvSKdow1ku17NayaEAyWNRIAaUYnP0Urncx2DTM8EhvyrwY97YvOtuFozDymZe10MGG/2959FiflmfFnh+5uBX2a+x+uI7ew5HA6W7xcvSNrjnvmQ8Mhdh+/xFZm2kKFINC5RUFOIoiI2Jqn2tlqHlmFyD769zRokWVVxSw4iMVp9U2zRhmj2kTFquFl156CYfDcVr7my8JEYggsmjrc889hzXbxG7eQZvGX2ZGhZ0lN0cm+WlBjdrnWme97KDNZcZRYEv6MpGzEYrCfo2Wd3pm7arSVIX9GoNHx6qX1T7XRv2LI+scaFD3Qlu0q99RnBY9wQJY+YlKqq6MDK00WFQqryiIjpM3pRlmvVRx65YeMqscpOXO/ro7JruBjIqxq/tlF+dFv1eT3ciaf1hARnnk8ZAvjH9orOt910O1NL4SufqrBTX6atzRtaTmU8umbprfkgVap2rZrWUs/FDxrOxL13T2/Kaejp39AGRWOai8ogB9ZF5X/pos0ktsJ9nDzI2exGZWOzjjzsroyZ63J0BgKNJ7FXSHqDeZ0JTjA9BoMJpqOFpWEWBVtZ+kP7DPgvJL81l5R2wWWtSC+sixKHJe0PhKB7sfqo08qIB/KERw5PMmo9zOmn9YgGlkzaniDa4Jvc0ZFXZM9tmfU5GWZyGz0kHryJD72WLJMEWLPFmzzVReURANOVVXFk74nRRtcOEojvSieTr91L3QFn1r17/YTu1zbdFtB496YjL6xdPpj+/hhPFCB0eBDZtrdoeK1j7fRu3zkQv9lgwTZ3yyalpzAjU0anN2MDQ8xFNPPUVFRcWstm8uJUwgAliwYAFPPfUUblM/FZ/MxGBTox+INpc5OoEbYOUdldEFv3RNR0HBaIscNLr3DxIcnt2T8a49A+z5TT26pmPNNk84mU42sxGKTA4jRee44maYWjig0b6tN7oSdvu2Xrb95HD08bbNPfQcjFwtM9oMZFU7MI586BSsy2b13dXRbZfeUkbphZFqhUargaorx8JTWq4luiYARN630YpySqS7WjEo9OwfwD8YpGjD2PvImGaIvodRwJ4/1pNjzTZPWGyt8KzsaGEGo9XAmV9cFO39yl7sZMXHKqI/e0VVolf3A0Mhdj5YS3995ApdX4072gsKxxdHiCVFHbniWTw3J9/J5MgzLRMKk8ymtq29bP3x4eiJVdHZLjIrI++1tFwLK++ojF4wSMu1TAhLxjQDo7lFMShYs8zR96WzfNywJwXW/8sS8m45A+2iNYQ8ITw9gWiBiKbXO+neN1ako/or75yy3Z1nKlif3YL12S0n3Kaxw8SBRgsJMaEvxupfbKfmmdOfJzhboscqPXL1vL82ckzrr3ez88FaAu6RCz2KMuFYuOLjFWQvihyjsxamc+YXF0WHEOWvyZpQeTFvVWb02G6wqNjzrWOFZWyGsQIQQNE5LvyDQXoODKAYFCwjvbYwUqZ83Imta5kzejHMmm2m6sqC6MT30gtzWXrLWK/96k9Xk78u0iajRY18No18TvQcHKRty9jf/bYfH6Z9WySQ+QeCtG/rjZvwoRgUlt1WFu3xEJMrOseFdaSk/Z7f1NO1Z3ZHZQSHQ9H5YEarAf9gMHqxqeqqQhZcUxTdNntROiZ75PxFMSgYrCppVwc42tHE/fffz4UXXjirbZtrcXI6OnUXXnghDz74IA8//DDBc7qjH7SF611Uf2DsF+Vu80YnlQ02eTjwx6Z565HIrHJQsC4b1ZS8H6KnG4osThPl78uPTsyMd937B6OlYf39Qbb/T030oNGxo4/9v2+MbjvQOIynM/KYwaqSUemIBpfsJc4J79NF15VQelHk6qQ53cRZX1pMRoUdXYPhdi/5q7OiH4RLby6j6opIL5XRamDNZxaQOTKPI6PczqLrSqL7Tcu1RD9gQ/4wnbv68fdHDmrd+wbY9pPD0ROGxo0dtGwa621xt3hj0uszXboOuSszyCiT9SpOaOQQNNzuixYemQujV+YBdvyiJlIJkMgJZmAoGB1CVXxuDpWXj03ePfMfF2EZmQzvLI3MSbNkRP7ftcQ5tiaSHnmfDg5E/o4GFy3l8EDerF3BHg1G478A3F6VIa8aaUDyHs5PjxIZih7yhudszuBs0oL6hFLELZu6adwYKTWvazrbfnyY7v2Rk0x/f2RNwtH3mc1lxjbaa6/AomtLor3pmZUO1nxmQfR4XXVFIUtvigQXg1Ulf3UWw+1edC3SC3XWlxZjdkROJssuyptw/F7wgSKyF0dCmcEy8hkyEso8nT4GGoej2+5/vJHOkfkf7jYf2/+nJnqsH2gYpvuYdX7ilSnNAIoiQ6FPQjUpFKzLJrNqfoagDXf4OPTno9HzAXeLN/o3brCoLLutPDraJGd5BvoF/Tz77LPce++93HnnnfPSxtmk6Hpi1q/993//d775zW+yzLCOIq0yckVEZ17GLk+FalTQQjomu5GMSntCl9g8makWUpgsQI3+jFLN+O/b5jKjhXX8/UFUo4Kz3I671UvIG8ZRZOWMT1bRuLGTlk3dOIpsaCEtMqxPAUehDW9PpKiHoo5Uok6xH6eiKpMu/igiSs7LIaPSwb7fNcTFe0M1qRjMSrSHPmuBg+INOYSDGof/0oyjwMZQs+eExwXtojWT7/f1HcfdV/v/NpyyPVPpSUKB5R+poL/eTcvbMkzzWAVnZlNyXg477q+Jm96GeaOAokR6owwWFZvLgrvNC3pkiJxqVHG3eik5L4eyS/LY/as63C0+jDYDjiIbg43DaCEdS6YJ1aBES02n6mejmFzuigz664cJDofi6r1hshsIB3S0oIa3uoe3a17ltttu47HHHot102Yk4XqIRv3Hf/wH//iP/8hBfQcdejMhbzhuwhAQfcPmrsig6orCpC3NfToV6OLlj3q+jf++vT2B6NU8LaTTX+uO9mS6W3107h6IDC00KLhbvWPlTPVI8YXRK5e6Rlyc8M630TCUszxjTsb9Jzp3m5f+2qG4eW9oQW3CcOW+Gjfhkd6lsE9joGF4RscF7aI1JwxLp02H/tohhtviv/cjFvpqhmh+uzv1whCAPjY0L+zXcLd6o39rnk4/7lYvikGh6BwXnTv7cbdEemlD3jD9te7oe93fH5yw7k4qfjam5SXGaJH5FpmzXBgdPhxP743gcBgtqOEp6OOdute57LLLePTRR2PdrBlL2LN0RVH4yU9+wi233MIh83Z69c5YN2lSrZt72PGLGsJ+DYNZJWtBYlTbmI6ZhqK0XAvrv7x4TgoHJIuWt7swO4wT5geJiQwWleoPFJKzLP7K7MZaf91wtDpcKhgNRlMNR1PpRQJoeaeH/rrhU2+Ygvz9wei8FHG8vFWZmOxGmjdJ7+KJ2Fxm1n52YVKeH81U1gIHBrNK2K+x4xc1tG6Oz+O4L2eQLV2vs3btWp599tmEKK99IonbckBVVX79619zySWXcNixnUG9L9ZNmtToXKa8VZksvrF0bGJ8EplJKPL2jozPTsUri1Pk7QnQc2AwstChzGGYVNivsf3+Gtq2yknZKGuWmUXXlSTlsWaq8rbp5G2bvaupRpuBRdeVJMYCoPMgo8LOms8skJ7Zk1Gg5NwcevYP4uud+XIhyc7XF2DPb+uj83RTndFmYPGNpdFF5U+1yGqshLK9bBt6gwULFvDKK69gNif2sTGhAxFE1ih64oknWL58OXU5u3Dr8TuBsG1rLzt/WUvIG0YxKEl3NWS6axXpYZ2Glzuild3E5Jrf7sbmsuBa6jz1xikqOFIxKqPCHl10OZVZMkxYs80Tih2kqtFgdLrhSAtqWLPNs15iP1GFvGEGGodnvWJrMnEtdWJzWWh+uyvWTYlrugYD9TMbLptMshY4UFSFkDfMzl/WxvVFvnCmn/cCb5Cbm8vrr7+O05n45ycJH4gA7HY7zz33HIWFhdTn72I4jkPR6FWinKVOlt5anpQfrtMJRapJIe+MzEmvMrpvPgf3zefMevsSjbvVS3+dm9Lzc2PdlLhmshtYdns5eauzYt2UmBtoGGb3Q3VJd4Jx9FLraT3/dIKRFtLZ/VCdXMUeMdzho+5vbafeMIWVnpdLf507WpFUHM+cbmTx9SVJeS40HZYME0tvLSdnZFmOeO5RDDv9bNfeIC0tjddff528vLxTPykBJEUgAnC5XLz88su4XC4aCvcwrA/Fukkn1bV3gJ0P1ER7RzKrk6+36FTqH1+FalRZ8KEinGVjC4UeG4QkFMHRt7pwFNqS7n0ym4LDYXY9WJvy8xmKznFFS/Qmo9MNRXB6vUYGq5rU68ydSnqxjRUfr0jp4ZhTkVntwFFkk96hUzA7jFizzYT8qdnTOPqZ7h8IsvOBGrrivCJxyOFnh/ImFouFt956i8rK2CzGPBeS6lMzLy+PjRs3kpmZSWPRHjy6O9ZNOilPV6RiWNYCBys+WpF0VVamEoqOPLyCPy0x0nMg0qt3ovCT6qFooH6YoWYPZRclx5WYuTJahc+eb0UxpN7QOZvLTNnFeTgKEmtxQ0VRUIzGKW9/9FLrrASjmXAU2Ci7OG/WV4hPGErk4kM8VXWNR+WX5DF41CPFOE7B3eZj14N1hH2pN7w3Lc/Cio9WRKdPjJ4Txquww88u41sYjUZee+01FixYEOsmzaqkCkQA+fn5bNy4kfT0dJpK9sZ9KIJI6dkdD9RET+ZcS9KTZgL9VEJRwKDQc/c5uG8++6TbpXooanytE2dpWtLNPZttRpuBMz5VRcG61Bs65+0JsPXHhxJ2WNd0QhHEJhgNNAyz9ceHJpRJTiVDzV4OPXE0bkq5x6OshQ7Si9NofLUj1k2Ja6pJxexMsaFyysg5HpELeDseqKGvJv7PU8PpAXaZ3sZgMPDaa6+xdOnSWDdp1iVdIAIoKChg48aN2Gw2jpbuS4hQNNweGWOclmdhyc1lZCXR0KgThSLnxjScG9PI2Gjj4lwPBYWnrqSSyvOK+mvdDDQNU3ZJfqybEtdC3jD7fteQckPnnGVpKAYl4a+0KkZj3AejsE9DMSg4y9Lm7TVjLb3ExuIbSzGYk/K0YVaVX5zPQOMwA/WJeWFivriWOjnri4swpqXO8MusagdLbi6LjggaPfeLZ5ozyC7jWyiKwmuvvcby5ctj3aQ5kbRHtqKiIl599VWsViv1hbtw6/E9LnOUp9PP9p8fiV4xyFnuTIoPoPGhaDQIjdJRaPEaGQwa8GdMrWssVUNR06udpBfZyF6cHuumxLXBRg+6BtZsc9Iuijyewayy7PbypJrbMt1QBGPBaD7CUfE5LpbdXp4Ux+epMFoNqEYlupCumFz24nQcRTaaXo3PtRHjSe+hQfY/1kjIk9zDLw1mlZzlkWIJfTVutv/8yNgi63EulOFju/I6QFKHIUjiQARQXFzMm2++SU5ODkdc8btO0bFGh2KY0gws+GAxOSuSY8HJk5XlPuK20BeMXCWSUHRiAw3D9Ne7KbtY5hKdimJQWHlHJaUXJv/PKhzQ2PVgHW1bkqtXbCa9RaPS//Au6X94d5ZbNKZ1S29k7kOKrKPWV+PmwO+bZKjcKZRdnEd/vZuBRukdOpWwX0uI4WKnK2dFBgs+WIxppCcsUYbbBjI9bAu9htVqZdOmTaxYsSLWTZpTSR2IIDKnaHTy14H0LfTpiVPxJegJs/3nR+jYEQlyuWdkYs1O/Im8rv99Z9L7c8wh8iyRYXMSik6s6dVOHAU2XMsSv+7/XNLDOgf/1ETTa8l9pdZkjwQGb7c/adcdmmkogrkLRlpQw9sduco7+jtIRnlnZFL9gcKkmdc6l3KWO3EU2JL+mDMbshenU3l5QaybMWes2WZyz8gEoGNHH9t/foRgAvWEBVxDbPW9SlZWFps2bWLx4sWxbtKcS/pABJCdnc1LL73EmWeeyX7bFrr19lg3acoCQyHQQVGh9Pwc8lZmxrpJs2KyUFRhD1KeNrZIqz9DmVIwGl3TKFUMHvXQe2SIivflo6hylnIyQ81etKCGyWFM2nUuln+0nOqri2LdjDmnGI0YfDN/v48Go9kOR9XXFLH8o+Wzus94oqhEwpD0DJ2UYlCouLSA3kODDDZ5Yt2cuGeyG5O6oELeGZmUnp8T+fvRR87lEoS/YJB3B1+luLiYzZs3J1Vp7ZNRdF1PmcOc1+vl5ptv5u9//ztLguvIV0pi3aRpUY0Kuh658p23KhMtpNO9LzHmRp1Iz90boreNik5kHcnjT3osA5O/Tbuu8074/6lUtUsGabkW1nxmAXV/b0u6YVJzYeUnKgn7NfY/3hjrpsw6Z1kaYb/GcEf8T86dzNJby/AuzKbxO3tPue3Rr66P3g5bT/7RVf7vk/dEzzZ7vhWDRZWT4BRXdLaLyssL2H5/TbTnUKSWnOUZqEaFzl39KAYFRSHhFsf2lfbzbmukitzrr79OVlbqVGtNiR6iUTabjSeffJIbb7yRvcpmmvSaWDdpWrSQjh6O/HFllNvJqLSf4hnxb3xPUUhXAAV1kkuRx/YUdV3nPS4MQaS3KBV6jDxdfjp29lF2UV5KFA04XTXPtnLkmZZYN2NWjfYODjZ5EjYMjdd07/pTbzSOwaecVo/RbBnu8EXDUDKtfVV9dSHF5+bEuhkJwWBRKb0wl/YdfRKGpsCaZU7KYiSZlXac5ZHzMj2sJ1wYGipr5+2jr7Bu3TrefffdlApDkGKBCMBkMvHoo4/ypS99icPs5LC+i0TsJDvyTAu1z7UCkdKVVVcl7hhv1/++Ew1G1fYAl+QNM9n4DH+GcsIgdKxUCEWNr3aiGlVKL8iNdVPinrfbT3A4hMGsklGR+BcSABZ+qIiFHyqOdTNm1XRDEcRPMFr4oWIWXJM8QxeD7jAhT+IM84ml0gtyUY2KzB2aouqri1hyU2msm3H6FKi6qhDX0sh83prnWqlJwAtvuq7TWVrH5sa3uPrqq3nrrbdIS0udJQVGpVwgAlBVlR/84Af85Cc/4ahSg+tmA2E9cSa7RY1kBqPVgNFiGMsQsT83mBHX/75DT8BAjds86bfg+t93pjUkLtlDUdAdonlTF0Vnu5J2fsxsKz4vh8U3lKAaE/SPZJyeQ0P01QzFuhmzrune9ScMRqXf23LC58U6GPXVDtF7OAl+HyM/wqbXO+nY2R/TpiQCi9NE0dkuWjb1EHRLgJyKmr+20PByAi9aO3qY0UfPv9To/ycaXdEIX9zD7qbtfOYzn+Hpp5/GeBpFbBJZSs0hmsyTTz7JRz7yEdavX4/yRiYmJbGruDnL01j4wWL2/KY+oSbxjTd+XtGJKtLB1ANPMs8rUk0qZ35+IQMNwxx6sjnWzYl7qlHBnG7C15cYZU9Twegcoje1469Iln33+AA0fh7RyZT856bTbluqMVhVzrizisZXOpIj3M2DxTeUkFFuZ9t/H0naKo9ijDndyMo7KjnyTEvCzxvUzCHaqw9z6NAhvv3tb3PvvffGukkxlZI9RONdf/31vPLKK+zdu5dtvIpXT+y1A4LDYXqPDEXDkDk98ZK+zaCx2OFHScTLLfNMC2o0vNJB7spMnOWp18U9XVpIx9cXQFGhcH12pAJQgik5LydSBlnEpeqrCyk+LzHn3mhBnYGGYYY7E39O2nzIqLCTuyKT+pc7JAxNUfXVRdEhZolk9FwqMBSi98hQQpXQnoyWHmS3/W3q6up49NFHUz4MgQQiAM4991w2bdpEXmUOW9hIv94d6ybNmLfbT/3fI2XFbS4zZ35hEVkLHDFu1fTkPb2LaqOH4ie3n3S7qfb8JHuhhc5d/Qwe9VB9VVFCnuDHQlq+lYpLC0gvSbwQGfSECaTI0JyTDZ+LV4GhEKEEPFkypRnQwzp1f2vD3x889RNSnKJG5o8MNA3Ttbs/1s1JDAoYLSpqghUfyVrg4MwvLMLmiowgqv97e0IXzwjmDLMl/AohLchLL73ErbfeGusmxYWUHzI3XldXFzfeeCNvvvEmS1hLsZLgtdeVSC38rr0D6GGdjAo77lZvQqysrqgKuja1t+Z0wk6yDp+zF1hZ/elq6v/eTuvmnlg3JyEY0wwJeeKabE42ZO5YZd/dIkPm5kDeqsxIyej/qSE4nBph+3SNltne+cvapKjyKCYymFUcRTYGGoZRDAq5KzLo3N2fkPOExhsq7GRbx9tUVFTw4osvUlVVFesmxQ25njxObm4uL730End/+m4O8B6H9J1oevyHhxPSI70HelhHMSgsvrE0YYZy6JqOalSmtPCoFFqA4XYf7dt6Kbs4D5M98YZJxsJoGCo+NychSti7ljopuyQvYYumzIaE6S1SoOySvIQZGtRzaJCGVzokDE2RyW6k7OI82t7rlTA0Dc7StIQ5fhWfl8PiG0tRDAp6WKdzV39ChyFd1+korWVz6xucf/757Nq1S8LQMSQQHcNsNvOLX/yC//7v/6aZWnbxNkE98Sdg62GdnQ/U0PJOZDhgznIneasyY9uokzClGVj/L0vIXpw+pe0rb9uV8kPoGjd2oms6lZflx7opiUOJzANIL7LFuiWnZHGasGaZE/pD+USmc45U8p+b4r/3RwdblhmLM76rP9pcZow2A2GfRsf2vlg3J2FUvD8fXdNp2ihltqcqLc/CGZ+sIqs6fofw563KJGd55CJGyzvd7HygJrr2YyLTzWFqi3aw9+hO7rnnHjZu3IjdHv8XAeebDJk7iZdffpmbb74Zf1+QVZyHXZnayXkiqLqyEKPNwOGn4rcyWcGZ2fQdGcI/MP3x7KlagS5/TRYLP1TMnl/XM9CY2AVC5o3CxJL1ckScV0tvLcO3MJs3Q2noU7hEV/rtiWGo+f87d9Lt4j40xYFVd1fjHwhw8I9HY92UhJFRYY9WGevYISFyOhxFNobbvcTrwJtF15UQ8oaoe6E91k2ZNVqmn13KO7iHh/jZz37GXXfdFesmxS3pITqJ97///WzevJmyJSVs4RU69cRbcOtE6l5o4/BfImEoa6GDVZ+qwmCJr7dD+7beGYUhmF7BhWTSsaOPgaZhFnywKCnW2pkXIwEoe1E6q++uxmCNr7+DrAUOCtdnx7oZ80LRIl/TEe89RoXrs+O2sM2hPx+l7vm2WDcjYahGhQUfLGKgYVjC0Ay4W+MrDBmsKqs+VRX9+zz8l+akCkPewj42eV5CNSi8+uqrEoZOIb4++ePQwoUL2bx5M9fe8GF28w5H9N2JPa9ovJETwZAnzFCLl7A/8n3ZciwxbNREhWfN/GQiVUNRzTMtWDJMlF6UF+umJBRPt5+hZg9aIL66iNKL0+J6mMlcmG4ogvgNRlnV6aQXx081Q9WoUHZxHopBwdcXSJmKhbOh9KI8LE4TR/6aPBdH50NGpZ1lt5fHzUXX0XOcsE9jqNVLyDtSXCe+Dv0zpus6naV1vN36CstXLGfPnj1s2LDh1E9McfHx7oxzTqeTP/3pT/zwhz+kiSNs5w38ujfWzZo1Qy1e6l6IXCVMy7Ww7p6FcXNFM3vR6Z1MTHVuUTLNK/L2BDj6Rhcl5+ZgL7DGujkJw9cboPb5NnRNx5JpipsS5k2vd7L/902xbsa8m0lvEcRfMNr/+0aaXo+fuSb2AiuFZ2ZHSwiLqbEXWCk5N4em17vw9Sb+vOJ5pUPIG45edI2lrAUO1t2zkLTcSCiq+1sbQy3Jcz4XtgU5XLCVPUd38OlPf5rNmzeTny/ziqdC5hBN05tvvsktt9xCT1sfKzmbLCU31k2addmL0uk9MgQ65K/NwtPhS4oDRirNK1JUhdWfro4U03iwNmmufM0H1aiw7vOL6NzdT+MrHTFrR0aFHWOagZ79gzFrw3wYP4foZEbnFx07hyhRuJY5CXnCDDTEfm6falJlIdHpUGD1XdUoBoWdv6yJq2Ff4tTSi22k5VsjhUMUyF6YTu/hoVg3a9YFct3s8LyNjs7999/PRz/60Vg3KaHEyTXQxHHBBRewfft2Nlx0Ntt5g0b9EMmWKXsPR8IQChSszSIzDobrmOyG095HKg2h0zWdI8+0YC+wUrwhMUqtxwstpHPk6WZaNsV2gWbXUicFa1Nj7tBUzKS3KJ4UrM3GtSR2ZbgXfrg4UrYdJAxNU/GGHOyFVo480yJhaJrsBdaYD8PPrHZQsDYrWjQn2cKQrusMVrTyVveL5Bfks3XrVglDMyA9RDMUCoX4t3/7N7773e+SQwHLOAuzEj9zb2bTaB3+4g0unGV2DvxhfofvLPhgEfY8K7seqpu1fU4l9Oi6QtXtO2ftNWOh8vICCs/KZscDtQm9snasGG0G8tdkxSwcqUYFLZTch+ip9hCNKvlOYvYQxfp3WXSOi8BQiO59AzFrQyJKy7Ww+tPVtG3tpf7F5JlwP1+W3FSKyWFkz6/q5/V1l95SxmDTMC3v9ETPYZJR2BKk0bWXupZarrvuOh577DGsVhkqPxPSQzRDRqOR//qv/+LZZ5+FnBDv8hI9euyG18yl0QOJtyeAu3Vk6NzI+i3zof29Pupfnt0PolP1Ful6pEJb3WOrZ/V151vjxg58fQEWX1cypUVuxUQZFXaKN+RgTp+/xW5dS51klEf+tpI9DAGcc9kA1p5wrJsx50Z/lxnl9nldsHV0HmHruz0ShqZJURUWXVeCtzdAQwyHzyayQ082c/jJ+VneI6PCHl3UzN3qxdsTmeuVrGHIlzvINuNG2vva+NnPfsaTTz4pYeg0SCA6TVdffTW7d+/mwvefzw7e5Ii+J3mq0B2j9/AQR9/sAiCzysHKOyqx58/9H5+71ctgo2fW93uiUDQahkYlcijSQjqHn2omLd9K6UXJN99trvUcGOS9nx0mMBSatyILeasyyVudOT8vFkPPt2zn+Zbt0f8vetND0Zuz/3ceb/JWZ5J3Rua8vFbuigxW3VWNJTO+F4iNV6UX5ZKWZ+XwX5qT9qR6rulhfcbLZ0yHvcDKyjsqyayKDPE/+mZX0g2NG6Wh0VVWz1udL1JUXMSWLVu45557Yt2shCdD5maJpml8//vf5//c+39IJ5MVnE2aEvu5N3PJUWjF3eYDoPrqIvqODM3ZAchRbCPvjEzq/jY3a2aMDqE7NgwdK1GH0JVemEvZRXnsfrguKQpkxMKi60vQAho1z7bO7QspoBqSe6jc+CD0pxcu4d33yti3e2yeYOsFJx4+l6hD5kapRgUtrM9PoRMFMivt9NfFvpBDokkvtnHGJ6toer2To290xbo5CWn5RyvoOThI+7beOdl/9qJ0shY6qH0ucl7gKLKNjWJJUuF0Pwet79He1cadd97JL37xC0wmueAxG6SHaJaoqspXv/pV3t38LrnV2WzmZdr0xqQruDDeaBhSDApmuxFlZCFQo80w64uCGq0G0ottGK2nX1xhMpW37TplGIKp9xbVfS++av4ffbOLoVYvi64rQTXJ0LmZ6Ds8RF/N3F1xLFiXRVqeBfTkHSp3bK/QiSRzb5EWioShtDwLBeuyZn3/iqqw4JqiSO+9joShGVBNkaFy7lZvdFSEmCYFhpo9+Ppmt0S5alQw2gzR22a7CcUQ+UxL9jDkKe1hk/9FfEEvTzzxBA899JCEoVkkgWiWrV+/nu3bt3PbR29lH1vZw2YCenJPZtfDOgf+2BQtD1xxaT6r7qqe1dfor3Wz68E6Qr65m2sw1d6fU4Wi0TBU970N8ROMdDj8VDNmp4nKKwpj3ZqE1LV3gJ6DkUDkWuqMfgjPBkVVKFiXjWtx7KqQzaWpBqFjJXMwci1xUrAue9bn9qlGBVuuBUuGnCjNVNWVhZidJg7/pVmWLJgpHZpe66S/1j2ru111VzUVl0bW1eneP8iBPzYl/XDGsDlIY/EeNjW9yrp16zhw4ADXXXddrJuVdCQQzQGn08kjjzzCH/7wB8IuL+/yIl36HA+ziSNH3+qi/sVIF7bBqlJ9ddGsTUqf67HwVbfvnFIwqnts9aTBaLIAFC+hyNcboO6FNgrXZeNalpwn3vPBkmli0XUl5Mziz1DXdHY/XMfRt5LvavRMgtCxkjEUHX2zi90P16Frs3MyZ7ComBxGwgGNPb+qT9r5E3MtZ3kGBWuzqftbW3RSvpi+vFWZ0Z6c02FON1J9dREGS+R0tf7FtqQ8Tp6IN7+frcZXONrdyHe+8x3eeustWWh1jkggmkM333wze/fu5fJrLmMXm9inbyWoJ/8B1t8fjA7TsLksZFY5oms3nE4wsudbOesLi3GWT6087+mYSW/RyYJPvPQWdWzvo2tvPws/WCwTrWfI3x9k+/8coWtPpGLXaV3hV6DyigLMTlN0KFWymGmv0IkkXW/RyNDISK9tQbQ61kwtvr6UxdeXzE7bUpQ1y8yCDxbRtaefjh19sW5OwrJmm1n4oWIchTMvujR6rqBrkSJOo2sZ9dcN4++f+yINsaabwjSXHuDt9pepqq5i+/bt/J//839QFBnyPlekqMI80HWd3/zmN3zhC1/APxhkGWfiUlIw4Stw5ucX0b1/gIaXZ1bC1LXUSV/NEFpw/t62U64y12yb0mZVX31n5o2ZBQazyup/qCbkDbP74fpZu0KdijIq7Sz8YDF7fl2Pf3D6H9KWTBMrP17J4b80M9iUHCf7tSN/L4cuenhK23/5y9cCsK95aovQqm/tnEGr4pezLI1F15aw57f1p3Wil5ZrQdeR9cZmSFEVzvhkJUabgZ0P1BIOJGe12PliTDMQ8oZndJGn4v355CzLYNt/H06qi0RT5c8fZNfwZnx+L1/+8pf51re+hapK/8Vck0A0j5qamrjzzjvZuHEjJVSzgBUYldS6Sp9RYSfgDuHt9pNRacdZlhap4BPn78JThaKF/xEZJ33kU1MvbR3LYOQotHLGp6po2yKLDZ4Os8NI8bk51L/UPuP3sKJCMlTqrz3mb2QqgegDxWtZemsZAAd+34R2/uqTP4HkC0Qw8/dARoWd/LVZHH5K5rqcrsrLCyhcn83uh+qiBYPEPFEilVAHmzwM1A9jy7FgdhgZaEitgiCaUaOzuJa9DbtYvHgxjz/+OGvWrIl1s1KGRM55VFZWxksvvcTPfvYzetPaeJeX6Nbnpox0vBpoGI5ewUzLsZBRZo9+kKflWk75fMWgUHVV4bwtCjvqZEPoRsMQwMKHulj40NTGN8dyCJ27zUfDSx0Ub8ghe1F6zNqR6ALuUCRQjlQNy18ztaphabkWFl1fgsGsJnwYqn1s9XFhaCo+ULz2uPuSMexMha5Fem4XXV8ypePgKEUFo0VFNcpH+enIXpRO8YYcGl7ukDB0mjIq7az7/CJMjlMPj4++1/XIgsVpI8PivN3+lAtDvrx+3rO9wsHmfXzxi19k3759EobmmRxF55mqqtxzzz3s3buXCy8/n528zR59MwE99Q7CbVt72ftIAxAZc7z2cwvJXnzyk3M9rGNzWTDZ56b89skcW3Bh4X+4J4Sh8aYTimIVjFo399BzcJBF15VgzTLHpA3JxLXESeFZU6saZnIYsaSbEros/+kEocnC0Cj1rZ0pGYx0HSzpplOfSCqRif8QmU+x//EmtGCCp+oYsmabWXRdCT0HBml9tyfWzUl4QXeI7v0DBN2hk26XvTidtZ9biDU78tmz97cNtG2dm/WK4plmDdFUso+3Ol6msKiQd955hx/96EcYDPN/jpPqZMhcDOm6zqOPPsoXv/hFhnrdLGQVhZSl7KS5zGoHAw3D6GGdskvyCAc0Wt7ujnWzJmVYvGDK255qGJ1eElk7oToGi74aLCqr7qpGD+vseqhOTqxOk2pS0YIaJocRLagR9iffz3OqIejYIXMnCkHjh8xN5thhdKkYlsbLWuBg6a3l7PxlDZ5OmS90OlSTyqq7qlBUhV3/K/OG5lrJeTmoZpWmVztRDAoZFfZZL8udKHRdx1Paw66eLWiaxle+8hW+8Y1vyFyhGJKffAwpisLHPvYxDh48yM0fuYn9bGUHb+LVU6ureFR/rXtsPQEdGJnsb7CokWFd43KiwaJiccZu/lX4UA3hQzVT2vZkvUWjYQhmfsX9dIT9Ggf+0IQl08TCDxXP62sno9FAuejaEpbcWHrc49UfKIxUFEtQUy4wcoyT9QidSioGoKorC6j+wMT1wkZLGPfVuNn+8yMShmbBwg8XY8kwceAPTRKGZkF6sQ3XknGjPJTIcMTRktm6Doz8mPWwnrJhKJweoKZoO+8cfY1Vq1axZ88e7rvvPglDMSY//TiQm5vLo48+yvPPP4+jzMo7vEiDfggt0ScXnIam1zppeScyfCFrYTpLbi7DZI8MJVGNCis+Xkn5+2NfqW86oWiqw+imGopUqxXVOvOypqO83X6OPN1C7ooMis/NOe39Cah9rjVaSXH8EDp3uy8hT2RPtO7WqZxqeNxUpdowuuEO/4S5LLYcC2d9cRGZVQ4AfH3Jv3zDXCve4CJ3eQZH/tIilflmiWupk7KL8lCNkWOeyW5k6S1lZC2MhKSWTd00vd4ZyybGlIZGf3kLb3n/xoCnj//5n/9h06ZNLFgw9REnYu7IkLk443a7+b//9//y4x//GDtOFrOabCUv1s2KOUuGCf9ApCTt2nsW0l87RPOmHgIzKHU8V6Y6jG50CN343qETOdkwumPDkOY7vXlo5ZfmU3JuDnsfbWCgPjV7KefCstvK8A8EqX0+MQuoTBaEpvKhMdUhoKcaMpfqzE4TgcEgheuz6djRN69LDiSrjEo7Kz5aQfOmbhpfmdkSEGJypRfkkrsyg+3/E7lYOP6zO5X5c4c4ENpOd28X11xzDQ8//DC5uVOvSivmnvQQxRmHw8GPfvQjdu7cyerzVrKdN9ijb8avn/rkOZlFD6gKtLzdRceufgKDQTIq7ZRfmn96i2POkun0Fk215PZ0htCdbm9R48YO+uvcLLmpNDrRVZw+d6uP/LXZZFTOb2XE2TDTIXKxmA+XbEwOI2vvWcCZ/7QIe4GVti29EoZmgc1lZulNZfTXuWncKGHodCmqQvml+dHKr701Q7Rs6o4OcU/1MKTZAjSV7OXNzr+TnuHg+eef569//auEoTgkPURxTNM0HnnkEb761a/S09lLFcsoZQGqIjkWoPCsbJxlaZjsRvb+tgGITDgeaPTEvDjAyXqLxgen6QSe8SeZpwo/M+0tMlhVVn2qGkWBXQ/WEfKFZ7QfMVHe6kw6d/VTeXkB7lYvXXsGYt2kk5pKEDrRB8d0w5D0EE1OUWHhh4rx9PhpfjM+i8skGqPNwKq7qtBCOrsfrkvKoifzQTWpZJSn0VcTmQO04uMVoOuEfBoH/3Q0to2LExoaQ2Xt7G5/D4PBwD//8z/zjW98Q6rHxTE5s45jqqpyxx13cOjQIT73+c9yhN1s5mV69dQdgzueOd1IYCgUDUMmu5Flt5XjWuoEIgftWDlRb9Gx91ffvnPKJ5DT7S2aSY9R2Kex/7FGjDYDS28pi4uet0TlKLSSXpoGQOfOfgCMFkPcrxkz014hkJ6h02WwqCy6thhrthldg8N/aYmGofTSNOyFpz9nMFUpqsLSm8swWgzsf7xRwtAMjH6m5ix1suy28ujyF3t/20Drll76jgzFsnlxI5A3xJ7sN9nauIn3ve99HDp0iG9+85sShuKc9BAlkJ07d3LPPfewadMm8ilhASuxKYk3DGcuWTJMBIdDaCGdqisLcBSlsfvhupi2abS36FRD6qYaeMJ+A0s+u29abZhuj5GzNI0VH6+ga+8AR55umdZzRcSSm0sxmA3se7Rh0seLznEx3O6LmwUI1VVLo7dr7p3a4qDjPzxmGoakh2iMalJZ+fEKGl/tpL9uYgWu5R+tIBwIc/CPcgV+JhZ+qJjclRns+W0DQ0c9sW5OwjnjU1UMNXuo/3s7qlHBZDem/HC4Y4XtfpqzjnDk6EEqKyv5+c9/zlVXXRXrZokpkkCUYEaH0X3ta1+jo62DMhZSwRKMSuxKUMeSooLRaiDoOX5ol6PIhiXDRM+BQQxmlaW3lFH/YjvDHfG9CO6pglHYP3aVaS6DUe7KDBZfX0rDK+00vyVDdqZLNSkoqjL5lWgFln+kgoEGd8x/tuOD0KjpBKLT7RVK9UCkmhRKL8yj9d0egsMnXszSYFHRNV3mEc1A8Xk5VL6/gENPHo374arxwl5gpfKygmhJctdSJ/6BIO7W4+czO4psqEaFwabUDJqaMUxv0VH2tuzEarXyxS9+UYbHJaD4HrshjjM6jO7w4cP86//9VzpsTWziBVr0uoRe9X6mln+0gqoPFE36mLvVS8+BQQCMaQZ0TSfojQQn1xJndGhdvDnZMLrxYQjg4P3Lp7Xv2t+tofZ3a6a0bdeeAZpe76Ti0gJyVmRM63VSlaPIxqq7qzE7jGhB/cTDcnTY97sGmkcWHs5bnUlmtWPe2qmuWhr9msyC706tDLEMkTt9qlEld0UG6cW2k24X9mtoQR2zw8iqu6txFJ18exGRuzKDyvcX0PRGp4ShU3AtdeJaEvlcDHrC6JqOMS3ymdNzYHDSMASR+bzll8Z+GYz5pus6Q6WdbLO9wt6Wndx4443U19fL8LgEJYEoQTkcDu677z4OHTrEzR+9iQNsZzMv06OnVtWcptc6aX7r1Ov7+PuD7PtdY7RMd/aidHKWjQQiJbLWkWKIr/kyUz3ZPHj/8jkLRk2vddKxs49F1xZH10ARJxZ0h/D1+glPpaiHTnTMmWuxk+yF8/PzPVEImq4qCUMzZrQZqLyiAINZJeQN895/H6H38NTmX4RDGr5eP0H3iXuTRERmtYOFHy6hY0cfTa/K3NtjKQZlwqLnOcuckf8HAoORz0x//6mHxR15uoWDf0itHt5A3hB7XG+yuekNVq5cyXvvvcfjjz9OTo6s5ZeoZMhcktiyZQv//M//zNtvv00OhSxkJXYlPntA4oWigq5FJiuv+mQVO/+3FnerF5N9ZAheHP1l1D62+rjeoRM52TC6Iw8dfzJc/ZEdJ92fosLSW8rJqEhjz28aTniVMJVlVjkYbBpGC838TaOoCrqm41rqRDWpdO3un70GjjOdQHSioXOzGYZSccicJcPEyjsrOfTnoww1z/zvSTUpOEvtx803EpHe2pV3VDDQMMz+3zfF1fE8phQwpRkIDodxFNlYfXc1ux6uY+ioJ/qZKE4slOGjyX6AupZaKisr+eEPf8i1114b62aJWSA9REli/fr1vPnmm/zxj3/EUWFhi+EVDujv4dOTfEyvEpmcPpPqS6MH/qGjHt77+ZHoif6ia0tYelPZhNeIterbd7LozvemtO10e4xO1Vuka3Dwz00Md/hZfnu5rFF0DKPVwJKbSik4M/u09qNrkTO2jAo7WQviszeu6vad0jM0Q7YcCws/XIyiKvgHgrz308OnFYYACtZls+SmUoxWGZ4znjXbzPLbyxnu8EfKQKd6GBr3Gbb0pjIWfrgEiAwrf+9nh6NFJmYShjKrHCy7vRzVFAcflHMonBaktfQgbww+T+9wD//1X/9FTU2NhKEkIoEoiSiKwk033cSBAwf4f//v/+FzDbLV8gpH9N0E9KnNCUg4OhStd+EsSTut3Xi7x34+ja920vJOZG5HWq6Fs/9lCWl5U5tkPtemGorg+PlFk/UOjXeyYKQFdfY/3kjQE2LFxyowO4xTbkeyUgwKKBDyhdn1UB2t7/bMyn7r/tbGkb80A5EhP1VXFc7qcE5t14Epbzt+LpEEodOjqOAotGF2Rv52ZuNKfOu7Pex6aGS9MIW4G/YbC2aHkRUfrSDoCbH/8cbT6rVNBvZ8a+QzLDfyGdbybjdNr40NH/T2BE5r/7qmE/aFk7bYh2YO0VlWx1uB56nvquUzn/kMjY2N3HvvvaiqnEInExkyl8QGBwf54Q9/yA9+8ANUVSV3sJQyFmJQ5GR2qszpRgrWZXP0zS70sE7VVYWEAxqNr8R+rtbhX62b1vYG8/TOwCYbSmd2mlj1ySpC/jB7flNPaJLqfqlixccrcLd5aXhp7t4LeWdk4lrq5MDo+HyFWbnaPZ1hc9MJUDORzEPmXEud5J2ROfb7m0MVl+XjKLRF12VLRaY0Ays/UYnBbGD3w3X4B1OzLHT5pfkYTCp1L7ShGBRKL8il/b1eAkMy72yqdEOYvuJW9nfsIhwOc9NNN/GDH/yAgoKCWDdNzBEJRCmgs7OT//zP/+T+++8nKyuLzI5CiqlCVeTqxnQVrs9GD+u0v9eHyW5gwTXF1L/Yjq/v9K6ynY6pBKPxPUtTrTI36thgZHOZWfmJKgJDQfb+tiFydToF5a/JYrjTh7tlfuZU2QutLL2pjL2PNMzK++1Uoaj21szo7cqvvXPar3ciyRiIDBaVsF8jo9JO7ooM6v7WNuc9FenFNtLyrHTs6JvT14lXRquBlXdUYLIb2f3reny9sTsmzzdrlpnKywuoebaF4HCYgnVZKAaFti29c/7apjQDIb+GHk6OU0kNDXdpJwf7d+N2u7nqqqv48Y9/zIIFC2LdNDHH5Iw4BeTl5fHjH/+YQ4cOceWVV3JY2cU7/J1WvREtCWZQFm9wsfTmslNvOAvatvTS/l7khMPsMGG0GaKBoPCsbArXn948kpmYzjA6iAScUxVSGO/YoXTengB7f1uPJcPE8o+WY7AcfxgZvP0cBm8/Z1rtSgRlF+dRdLYLgI4dffMWhgDCPo3ew0P4+iMnejbX3M3lGh+GAOq/s2HOXivZLL21jIUfKgZgoH6Ymr+2zsuwraEWbzQMFZ3jouzivDl/zXhhsKgs/1gF5nQTe37bkBJhqHB9NoVnRT5vQr4wRpsBsyOyHmH7e33zEoZgZOmLKxO/10RHZ7ikmx3OV9nS9BarV69m69atPPvssxKGUoQEohRSUVHBr3/9a/bs2cMV117GfrbyDi/SqjckdDDyDQQZapn/4hHDHT72/Lqe0MjaRpYME9bMyEmqalSovroQa9b8FCBYdOd78xqMPF1+9j7SgC3bwvLby1FNkx9Kki0YKQYFxRibeRq+vgB1L7SBDia7gTWfWUD+mqwZ70/bdWDCcLjaWzOjX2J6shY4MI3Mq2vb2hudgxgrikFJmflEqkll+e3l2LLM7H2kYcJ80GRizTJTfXUh6sjxx5ppxpIRCUAhb5g9v66PyaLj9X9vp23r/ISvuRAJQl3syHiVd46+RkVVBa+88gqvv/46a9eujXXzxDySIXMpbMeOHdx333385S9/wYadSpZSQJkMpZsFthwLy24tY99jjfh6A+Qsd2K0GWnfNj8fHKPD6KYakqY7jA4igcpRZGPFxysYbvOx73cN0SvhJwpBzsfenfbrxFrxuTkEBoN07Y2vRR0zqxwMNXsIBzRyV2YQ8mn0HZnaWjbjTaf3Zy6GziX6kDmDReWsLy6m6bVOWjfPTmGN2ZS7MgNzuomWTbENaXNBNSksu60cR1Fk7lSyLQlQcGY2IU+I7v2D2Fxmlt1Wzv7fNyVt6JtPGhqekh4ODe2hr7+XNWvW8O1vf5urrroq1k0TMSKBSCR8MLJkmgj7tWhPTTwqvzQfa6aJQ080gwLVVxfRvrU3Jlf0TmYmwWj1vQdZ8bEK3K0+9j/eSDignbJXKJGC0cIPF+PrC3D0jVMvABwrS24sJegNUftcGyigGpSTDtOqf3zVxDsapl6lcbZDUSIGovRiG+WX5rP/sUgVM0uGCf9AfE7gL70wF2uWmSNPt8S6KbPKYFZZdns59gIr+3/XyODRxF9iwp5vpeCsbGqfbQVg8Q2l+PoDcVHE50Sc5WmY7Ua69w/GuilToqHhKe7mkHsvff29rF27lm9961sShIQEIjFm586d3HfffTz11FMJFYzO/KdF9BwapP7v7bFuypSYHUaW3V5O3d/aGDzqIXtROuklaTRujJ8PvekGo1yvxuVHAni6/Oz7XQN9N6yf0vPiMRgpBoWFHyyia+8AfTWJs+Dl6MKuOSsyqL6ykPd+fmTCRYLjQtCxphiKUjUQmdONmOxGhtt9kUnsVxRQ+1xrQlXuylroIHd5Bkf+2prQk+ANFpXlH60gLcfCvkcbGJrHuXyzrfx9+Qw1e+g9PISzLI2qKwvZ/1gjAXdivK+qrizAnm9jz2/qY92Uk4r0CHVzaHAPfQN9rF27lm9/+9tceeWVsW6aiBMSiMRxdu3axX333ceTTz6JlTTKWUQRFXFbrjst14IW0mNa6e10FJ6VTWaVI1qad8lNpXTu7qf30PSHP8226QQjl0/jsuYwgWYv73pzCGpTn8PQdbV/WvOZ5oJqUtGCkbl0i64voefAID0HEuOq53iWTBPZC9PZ9M+lAKzu0mhKV+i1nuL3EaNeokQJRMtuLcNgNbDn1/F94ncyrqVOXEudHH4yss7V+Pd8ojDaDKz4aAWWTBN7H21guC2+etlPJXtxOnlnZEYWjCXy/u+vdSfsPBzVePLe6FjTDRpDxZ0c7t9L/0A/69at41vf+pYEIXEcCUTihHbv3s1//dd/8Yc//AGXy4WzK48SqjEp81MoIBUpqsLCDxfTtaefvho32YvSKb0gl72PNBAOaNFegPk21WCU5de5rDlE0KuypdlKIDy13sWuq8fGxMciGNnzray8s5I9v6lPuBOsUZP1AJnCOlc1auzIVTmarmAP6miA90Sryk8hFKVKD5HFaWLlJyo5/FQzg0c9WDJMhLxhwoHEChAn4ii0suLjlTGbjD8TpjQDKz5WgSndxL5HGuK63aPHaoNZZcXHKmh6o4u+I0NkLXCQuzKTI0+3xORYPldUkxJXi7Nq5hD9ha0c7t7P8PAwGzZs4Bvf+AaXXXZZrJsm4pQEInFKdXV1/OAHP+Dhhx/GaDSS7S6kjEVYFVtM22V2GFl6axlHnm7B05Wck0zTS2zkrsyk7m9tAKy8sxJ3q5f6v7ejqAo2l3lev/epBKMMv86VtWGCmsK7HTaCvqn1FI0PRTD3wcjmMpNenEbn7n5QoOS8HNrf64vruWinHPY2mdFDvKJwTptGnlfnmSoDAEZNJ6SO+/2cIhAle1GFrAUOHIU2jr4ZmS9WeXkB7dv7knISu9FmoGBdFs1vd4MeWQR4qMWDtyc+e9otzkiZf6PVwJ7fxlk1OSUyUsHbHUDX9MgwsgJbtDex6qpCuvb0M9ScuEP7TiZvVSaVVxSw439qYj7UL2wL0J17lMPt+wmFQlx22WV885vf5Mwzz4xpu0T8k0Akpqyjo4Of/vSn/PznP8fj8ZAbLKacxdiV9Ji0x+wwsuCDRRx6spmwPzmu2p6Ka5mT0HCYgcZh0ktsrPpUNTt/WYO7zUd6iQ2D2UB/3dzPezlVMCrZaGZDgQcFeLfDhjtowHCKq4fHBqLxTjccHb4/Mqdpyee3oqgK4YBG8Xk5FK7L5r2fHZmXK7V1j62e0naKMndtMYV10gPQa1OwhHSur9V4o1ilxaFEgpOiTBqKknVhVsWgkLsig4GGYfwDQQrXZ5O9yMm+3zVACn0yKqrCun9cSNu2Xlo2dWMwq+iaHjdDodJyLSz/aAV6WJ+1hYlPV2aVg3AgzFCzF0eRjdV3V7PrwVqGWrxkVNgxphnoSZBCA6fLYFHJOyOTtm29Mfu7CaX7aM+s50jLQYxGI9deey3f/OY3WbhwYWwaJBKOBCIxbYODgzzwwAP88Ic/pKOjgxy9iHIWkoELRZn7tS8MFhXFoBDyxO+V/PmgGhXSi9MYPDqMrkWqoVkzzdHJrYtvKKV9ey8D9cOgMCcfVCcKRtkvWrEYNM7J92I1aGzptNHnj8xBO1EwOlkgGjXTYHT4/vUous4tXV72p5nY7TBh0HUW/OO2eRu2Eg+BaDxTWKdqQKfBqeA3Kqzq0sjy67xWYoiGorkMQqPmOxDZXGZsLgu9h4dQjQrr/2UJdS+00bmzf15eP14pqoKighbSKTk/h6L1Lrb++BCxXqLOWZrGstvK8Q0E2Pe7RoLz3QMxcuzMqLRTsDYrUikUWHlHJb7+AEeebkFRwVlqZ6jFEzchMlYyKuy4272EffPzxgnmDdNiqqG2pQa73c7tt9/ON77xDQoLC+fl9UXykEAkZszn8/HII4/w/e9/n8OHD+MkizIWkkfJnFamW3lHJVpIY9/vGufsNRKVwawSDmioJoUlN5bSurmH/rphcldmUHVlIVt+eAg9rJNRaSfkDTPcPjtj8I8NRtkvWgEwqjpn5XnJMod5r8tGh3diYY7x4WgqgWi8qYSj3BUZlF2Sx++XZqIrCuW+ED1GFbdx8vfnos9umVYbpiveQtF4JUM6jqCO/549KAaFNf9QTf2L7fTVuFFU5uzEeK4DkcGskrPMSW+Nm6A7RPn78sldkcG2nx6OPp4s84JmiyXThKPQFikqosC6f1xI06ud874WV/aidBbfWIq7xcv+3zfO+UgAe4EVo83AQP0wqlHhrC8tpu6FNrr2DJBZ5aDo7GwO/vkoWlCX980kFIPCmf+0iI6dfTS92jlnr6MrGt7iPur9B2nrbCM3N5dPfepTfO1rX8PpdM7Z64rkJoFInDZN03jhhRf48Y9/zEsvvYQFKyVUU0wVZsVy2vtXVIXclRkMNA7j7w/iKLQS9ITjdt2PeJSWayGz2kHru5GFI1d9qorhLj81z7RgtBpYcnMp9S+2M9zuw5xuxGg1zHhuUt8dExf6VBWdNTk+CtNC7O6x0OQ+viiHIahPOxCNUnSdJZ/ZS8AdQlFhzWcW0PJODx07+rDnW8lenE7Lpm4O/vdZ09qvISNA9e07Z9SmE4nnQFR5267obaPVQOmFudH5M0XnuCg8y8V7/x0JEfZ8K/6BICHf6ffSzkUgyj0jE9Wg0LGjD6PNwNn/soQDf2ii9/AQBouKFtITuuz0fFJNCsUbcug5OIin00/+2iyKz3Gx4xc16Fpk6HJgODTrPdD5a7JYcE0RPQcHOfRk86z9vtJyLYR8YQJDIewFViovL+DAH5sI+zQWfqiYtFwLux6qA6DoHBf9te6knaM6FyyZJkKeSPER1zInCszaGkVhc5CBgnaO9OxnyD3EsmXL+Kd/+ifuuusuDAbDrLyGSF0SiMSs2rt3Lz/5yU945JFHUBQFl6+QUhbiUKZ31cbmMmPPt9K9fxBFhbO+tITmt7uiJ/Ti9CgqqGaVsE/D7DRReXkBTa924O0JUHZRHgXrstjyw0MAVF9dyFCzl85d/RjMKhkVdgYah095tXZiMNJZke2n0hnkcL+ZQ/1mImNRxmT95p2Tz00ameNiCelUD2nUpav4jApndYYpHtb4S6WJ6o/soOT8HAbqh49bm2R0HtFUGTKOn6dwugFpqoEI5j4UjQ9Ap+IotOIostH+Xh8AZ31pMZ27+mnc2IElw0TR2S6a3+4mOByKlOEN61M+QZ5pIMqosOMfCOLrC5BRYWfhtcXs+J8awgGNqqsKUY0KNX+NLHCZiOWl41V6sY2MCnukGAOR3qPeI0PU/70dk91A7spMOnf3n9aQ5vJL8yk9P5e2bT3UPt82rbBlsKhklNvprx9GC2rkrc4kvcgW2Q+w/suLadvWy9HXu7C5zJRdkk/9i+0EBoMYrCpaQIv5MMFksfBDxSgGhcNPNaMYFIrOdtG1u3/ahRdCTi+dGU0caTuIrutcdNFF/Ou//iuXXHLJHLVcpCIJRGJOdHV18ctf/pKf//zntLW14SKf6vSllBVU0D+y2KVrqZOQL8xA/TBmh5HFN5RS9/c2htt9lJyfQ+F6F1tHTspleML8MdoMWJymaEnb6qsLcbd46djZH508vOOBmsjv6YJcXEuc7PrfWiCySN9Qi5euPQMY0wzkr87iyJJq/GEVhylEtTNIqSNEm8dIs9uIN6wyGDBgUnUW7j1Mz4FBAu4QmdUO1H+sYmte5KrflU0hum0K23INOII6H2oI8VKJgS6bSqZfxxLW6UibOAzu2CF10w1EMHkoOtZ0Q1KseommE4BOxZptRgvpBAaDpJfYWHRtCbsfriPoCVN9TRGOAiu7HoxcZV/44WK69g7QX+vG4jThWuqkY2cfYb+GvdBK9VWFBD1hDvy+CddSJ95uP54uP5ZMEwVrs2l+u4uwX6P0wlwchbboel1nf2UJre/2cPTNLqxZZvLXZtGyqTuuqwQmI2d5GiFPGE+XH2dpGss/WsH2/zmCfyBI5eUFOIpt7PnVSLW1KwvoPeKmv9aN2WHEtdRJ555+wj4Ne74Vs9NI/uqsyHtkRx+t7/bg6fJjdhjJPSOTjp19hDxhcldm4CiyRRfjXn13Nd0HB2l+swt7oZU1n14QLTaTvzoTR7GN2ucigcieb8U/GJT3yXwZmYOVlmdh1aeq2f1wHcMdPgrXZ+MsTYvOycpfk4Wny8dQszcSaivT6PC00RA8TGNrPQ6HgxtvvJF///d/p7KyMrbfk0hK8bnSpkh4ubm5/Ou//itf+cpX+OMf/8iPfvQjtmx/jcOGTHL0UoqooOhsF55OHwP1w4SDGgF3MHolsG1LpNrRKAlD8yfkDU84WRg9kQBwt3rZ/P2D0ceHmjyEPGNX+wwWA+rI/Byzw0jJ+Tn0/3YXw+0+8r6wllxbmG1dVtbk+Mi3hWgeNrK7x4ZJ1am8vIDhDh8BdyhyArRtgOrfNVL7uzUcylQZnX7kNsJjC4yRimhAv0Xh2N4mmDivqfojO1j02S0zCkWnUjsScI5tQdVp9ibpujLjUDSb4Wcyvt6xoDjU7OW9nx2J/n/nzj56rWPDV4w2AwZz5D1hyzFTfmk+3fsGCPs1Ctdlk5ZjYaDJA0D11UUjJ8FdmNKM5K7IGAlPATydvgnHgR0P1BJ0R4bN+voCNL7SMaffs5jcYKNn7PZRD+98Z3/0/3uPDOFuHeuptbksmEfW+bK6zFReXkDvkSHCPo3C9dnkrswEHQ78oYnqDxQRGArR9FonppFjSd+RIUKeMKpJxTjuPda+vRdvd+Q96enws/n7BwkOR45LHTv76RhXMCOe1y5KSiOHME+nn3e/uz/a+xZwh/D1jw17L97gomvvAAPdQwyVd7G14wC9vb2UlpZy33338aUvfQmHwxGDb0CkCukhEvNC13XeeustfvGLX/DEE08AkOXPp4SqeatOJ2JLURVUk0L3rWeTYQ5zVl7kRGpLZxqDAQNZvzl1RbOpLhB7Iov+uSV6+8A3Kk65/VR6iEZN5x08Gpam0lt0olA016FnPqhGhSU3laHrOgd+3xR3izuK+WHPt7L0tjIURWH/440Mt/sic72CelItXiomp+s6wRw37bYm6tqOoOs6GzZs4Atf+ALXX389qjp3RZqEGCWBSMy77u5ufvWrX/HAAw9QW1uLgwxKqKKAMoyKKdbNE/PEnG5k0T3LcJg0dnRb8d+/bVrPn0k4Gh+IxjtZOJqLUHS6vUfJJJ4WZhXzL2eZk4UfLsbbE2D/440EhmK7sKeYP5ohjLugi3rvYbp6OsnOzubmm2/m3nvvpaKiItbNEylGApGIGU3TeOmll7j//vv561//it1uJ2MolxKqcSgZsW6emAeqUWHhtSXkLs/g6FtdNG7smHa1qtkMRqPGB6S57iVKdRKIUpQCFZfmU3JeLl17+jny1xbpHUwR4WwfnY4matoPEQgEWL16NZ/97Ge58847MRplJoeIDQlEIi4cPXqU//3f/+XBBx+kra0NJ9kUU0E+pdJrlAKKN7ioeH8B/fXDHHri6IwnPE81HJ0qEI134BsVEormkASi1GO0GVh8QymZlXbqX2qX6qEpQDeFcRd2c9RXR2tHC+np6Xzwgx/k3nvv5Ywzzoh184SQQCTiSzAY5JlnnuHhhx/mhRdewGKxkOnNo4gKMsmRuUZJLKPCzpIbSwkHNQ78oem0F409WTiaTiACCHeMLTJYe4p5PxKIpkcCUWqxF1hZeksZBpPKwT8fZaBhONZNEnNE13UCeUN0Wo5S115DKBTijDPO4BOf+ASf+cxnsFqtsW6iEFESiETcamlp4be//S0PP/wwNTU12LBTRAWFlGNV0mLdPDEHLE4TS24uxZ5vpfa51gnVoU7HZOFoOqFofCCadP/HhCQJRVMngSh15K/NourKQjxdfg7+oQn/oCyunYzCNj/9OR3UDxyhf6APl8vFtddeyz//8z+zbNmyWDdPiElJIBJxT9d13nzzTR5++GH+9Kc/4fP5yNJyKaKSXApRFVmhOpkoBoXqDxRSsDabzt391D7XOutl12t/t+a0eommaipV5CQQSSBKdgazyoJrishdmUn7e73UvdCGFpJTj2Siqzq+oj5awvU0tjVgNBrZsGEDn/70p7n11lsxGORzWsQ3CUQioQwODvLHP/6Rhx9+mHfeeYfs7GzSejMpoEzKdyeZ3JUZVF9dRNAd4uCfj572ELoTMeTnTWm7mQSikxkfllI5FEkgSm72AitLbirFZDdS89dWuvcNxLpJYpbouk4ob5jutFYaumoZHh6mqqqKW265hX/6p3+ioKAg1k0UYsokEImEdeDAAX71q1/x+OOP09zcjA07BZRSQBl2xRnr5olZYM0ys+TGUtLyLTS81EHr5rmffH2ygDTboUhIIEpmheuzqbysgOFOP4f+fBRf39SLk4j4FUz30p/ZTuNALf0D/WRkZHD55Zfz+c9/ngsuuCDWzRNiRiQQiYSnaRpvvPEGv/vd7/jTn/7EwMAAa9euZWh7iAJKsSi2WDdRnAbFoFBxaT7FG3LoPTTIkWdaCHpmVoVuJsYHJAlEs08CUfIx2Q0s/GAx2YudtLzbTcPLHehhOdVIZGFrgKGcLroNbTQ0NGCxWDj//PO58847ueWWW6Rctkh4EohEUvH5fDz//PM8+uijPPfcc4RCIS699FJaXuojj2Ip4Z3Ashams/DDxQDU/LWF3kND894GQ36ehKJZJoEoubiWOFlwTRG6PvJ3enj+/07F7NDNYTz5vbgzetm7dy+qqrJ69WpuvfVW7r77bjIyZL1AkTwkEImk1dfXxxNPPMGjjz7K66+/jtVq5ZprruHgn4+SQyFGRa5oJRpTmoEFHyzGtcRJx84+6l5oI+yf3YILYn5JIEoOBotK1ZWF5K/OoufAIEeebSE0jz25YnZoxjC+gn60Yi/vvfcewWCQxYsXc/311/O5z32OkpKSWDdRiDkhgUikhKNHj/L444/zxz/+kffeew+bzcZVV13F4SdbJBwloLxVmVRdVUjIF+bIX1pkLZMEJoEo8WWU21l4bTFGm4G6v7XRuas/1k0S0xBWw/jy+tDLfdEQVFZWxtVXX83nPvc5VqxYEesmCjHnJBCJlFNXV8ef//xn/vSnP7Ft2zasVitXXXUVR54aDUcyrC4RWDJMLPxwMZmVDlq39ND4Ssesl+cWc08CUeIyWFQq3p9P4ZkuBhqGOfyXZvwDsrZQItCMYbz5fWjFXrZv3x4NQVdddRWf/vSnWbt2baybKMS8kkAkUlpDQ0M0HG3ZsgUVFRcF5FFCroSjhFC4PpuKS/MJeTVqnmul74jMWUgkEogSU/aidKqvLsJgUWl8pYO2rb2xbpI4hcicoH46wkdp6mggFApRXl7OlVdeyac+9SnOOuusWDdRiJiRQCTEiMbGxmg42rx5MyoqWeSRSxG5FEq1ujhmyTBRfXUR2QvT6do7QN0LrQSHZf5CIpBAlFhMdgNVVxaRuyKD3iND1D7bin9QeoXiVdgawJPbR2e4hab2RsLhMJWVlXzgAx/grrvuYvXq1bFuohBxQQKREJNoamriiSee4Omnn+b1118HwEnWSDgqwo5TFoGNQzkrMqi6shBFhYYX2+nY2R/rJolTkECUOPJXZ1JxeQFoUPdCG117ZZHVeKPrOqEML4POLtq8zbR3t6EoCosWLeKKK67g7rvvljlBQkxCApEQp9DT08Pzzz/PM888w1N//gthQtiwk0MhuRSRSQ6qosa6mWKE0Wag8vIC8ldnMdA4TN3f2hju8MW6WeIEJBDFP3uBleoPFOEsTaNzVz91f28j5JUe2HihoRHMc9Nn7aC5r5H+wX5MJhOrV6/mmmuu4Y477qC8vDzWzRQirkkgEmIafD4fr732Gk8//TTPPPMMra2tGDGRQwG5FOGiQOYdxYmMCjtVVxWSlmOhbVsvTa92EvLJSVy8kUAUv4xWA+Xvy6PgzGw8nX5q/9bKYKMn1s0SROYDefMG6KaVpq4GfD4fTqeTDRs2cMMNN3DLLbfgdDpj3UwhEoYEIiFmSNd1tm/fHg1Hu3btQkEhAxc5FOCiAAcZMrQuhhQVCs9yUXZxHnpYp2FjBx07+kCOenFDAlF8yl+TRcWl+SgGhabXOmnb2oMuRRxjRtd1glle3Ok9dAZaae1sQdM0iouLueSSS7j11lu58sorMRgMsW6qEAlJApEQs6ShoYHnn3+eF154gef/+jxhwpix4iIfFwW4yMekmGPdzJRkshupeH8++auzGGr1Uv9im1zpjhMSiOJLRoWdyssLcBTa6NzVR/1LHQSHQ7FuVkoKm4P4cgboVTtp6W3CPezGZDKxYsUK3v/+9/ORj3yEVatWxbqZQiQFCURCzAG/38/bb7/NCy+8wAsvvMCePXsAyCA7Go6cZEvv0TxLL7FRdUUh6SVp9BwapOHlDrzd/lg3K6VJIIoPthwLlZflk73IyeBRD/UvtjHU7I11s1KKruuEcoYZtPfQ7mmhvbsNXdcpLCzk3HPP5UMf+hDXX389Docj1k0VIulIIBJiHjQ3N/P3v/+dF154gb/8+WlCBDFhJpt8XOSTTR5WJS3WzUwZOcudVFxagCXDRPuOPppe7ZSr4DEigSi2THYDZRfnU7A2C19/kIZX2unZPxjrZqWMsD2AN2uAHtpp6T6Kx+vBYrGwatUqLr/8cm655RapCifEPJBAJMQ8C4VCbN68Odp7tG3bNgDScJBFHlnkkk0uZsUa45YmN8WgUHhmNqUX5qIaFVre6aHlnW7CfpkoMZ8kEMWGwaJSvCGHonNc6JrO0Te6aNvaix6WU4K5pFmDeLMHGDB00zbYSl9/ZEHbsrIyzj//fK677jquueYarFY5/gsxnyQQCRFj3d3dvP7662zcuJGNGzdy8OBBAOw4ySZvJCTlyPyjOWKwqJRekEvhehdaSKPlnR7aNvcQDkgwmg8SiOaXwaxSdI6L4g05KAaFtq09NL/ZLRUY54hmCuF3DTJg6qHd3Up3bxcAeXl5rFu3jssuu4wbbriBsrKyGLdUiNQmgUiIONPa2sprr70WDUj19fVAZGHYSO9RHpnkYFCMMW5pcjE7jJScn0vBuizCAY2WTd20bulFC0owmksSiOaHalIoXO+i5NwcDGaV9vd6OfpmtwwVnWWaMUzANcSAuYdOTxudPR3ouk5WVhZr167lfe97H9dffz1LliyJdVOFEONIIBIiztXX1/Pqq69GA1JbWxsKCk6yycRFJjlk4MKsWGLd1KRgTjdSckEuBWuzCPs0mjd1076tV3qM5ogEorllsKgUnplN0Tk5GG0qHdv7OPpmF4EhCUKzQbOECLiGGDT10u3tpL2rDU3TSE9PZ9WqVVx88cVcd911rFmzRoroCBHHJBAJkUB0XefQoUNs3LiRN954g7feeouWlhYA7KRHw1EmOdiwywfwabA4TZRcmEv+6ky0oE7b1l5aN3cTHJahRbNJAtHcMNmNFJ3jovDMbFSjQseufprf7MI/EIx10xKWruuEHX68mYMMKD10uTvo6esGwOl0smLFCs4991w+/OEPc+6556KqaoxbLISYKglEQiQwXddpamrirbfein7t3bsXADPWaA9SJi4cZKIq8gE9XeZ0I0Xn5FCwLgvVoNCxs5+WTd34+gKxblpSkEA0uyyZJkrOzSF/TRZaWKd9Wy8t7/YQdEuP0HRpaISzvQyn9dMb7qJzoB33sBuAwsJCzjjjDC688EKuueYaVqxYIQFIiAQmgUiIJNPX18c777wTDUhbtmzB7/djwDAyzC6HDLJxki3D7KbBYFUpPNNF0dkuTGkGug8M0vput6zVcpokEM0OZ1kaRetduJY6CXnDtGzuoW1rD2GfDPWcKt0WIpA1jNvcT7evg/buNoLBIEajkYqKCtauXcvFF1/M1VdfLUUQhEgyEoiESHJ+v5/t27dHA9Lbb79NT08PAFbSouHISRbpZGGUYg0npRoV8lZnUXyOC5vLgrvVS+uWHrr2DkjJ4hmQQDRzikEhd0UGRWe7cBTa8HT7advSQ8eOPrSQvBdPRlPCBLKG8doHGdB66RrsZGCwH4C0tDSWLl3K+vXref/738/ll18ui6EKkeQkEAmRYnRdp76+nq1bt7Jlyxa2bNnC9u3b8Xg8QKTcd8ZIQHKSjYMMGWp3AlkLHBSud5G9MJ3gcIj27X20beslMCjzNKZKAtH0mdONFJyZTcG6bMx2I72Hh2jd0kN/rTvWTYtLGhrhLC8e+yCDeh89w1309Hej6zomk4ny8nJWrlzJhg0buPzyy1m5cqUMfxMixUggEkIQCoXYv3//hJC0Z88ewuEwKirpZEZ7kZxkkUa6FGwYx5ptpvCsbPJXZ2Ewq/QdGaJ9Rx99R4bQZcTSSUkgmhpFhexF6eSvySZrgYNwUKNzZx+tW3rx9cp8tlE6OnpWAK9jiCG1jx5PF129nYRCIRRFobi4mKVLl3LmmWdyySWXcMEFF8giqEIICURCiMl5PB527twZDUlbt27lyJEjAKgYcOAknUwcZET/NSqmGLc6tgxmldyVGeSvySK9OI2AO0jnrn46dvTh7ZGT1slIIDo5a7aZ/DVZ5K/OxOwwMdjsoWN7H937BlK+FLxmCBHM8OCzuRlS+un39tHd30UoFCkgkZuby5IlS1i7di0XXnghl1xyCVlZWTFutRAiHkkgEkJMWW9vLzt37mTnzp3s2rWLXbt2sX//foLByBAxG/ZxASmTdDKwkpaSvUn2fCv5azLJXZmJKc3IQNMwnTv76T4wIBPdx5FAdDyj1YBrmZO8MzLJKLcT9Ibo2t1P+/Y+PJ3+WDdv3o2Wuw6ke/CYBhkM9dPr7qZ/ZM6PqqoUFBSwYMECVq1axdlnn80ll1xCUVFRbBsuhEgYEoiEEKclEAhw4MCBaEAaDUujhRuMmCb0IqWTgR0nhhQp3qAYFFxLIkOdMqvs6JpO3xE3XXsH6D08iBZM7UOwBKII1aiQvTid3BWZZC10oCgK/XVuOnf1031gMGUKdujGMOEMH16bG7cyQL+/l57+bnx+HxApeFBeXs7ixYtZvXo1GzZs4Nxzz5WiB0KI0yKBSAgx63Rdp7W1dUJA2rVrF4cPH2b0kGPDjh1n9MuBEzvpSR2UzA4jOcszyF2RQXpJGuFAmJ5DQ3TvHaCv1p0yJ73jpXIgUo0KmVUOcpY5yV7ixGgxMNjsoWtPP937BpJ7EWCTRijDhz9tmGFliKFgP33uXvoH+qOb5OXlUV1dzfLly1m3bh0XXHABS5culYIHQohZJ4FICDFvPB4Pe/fuZd++fezbt4/9+/ezb98+mprGToYjQSmdNNKj/6aRjhlLUg29s2aZyVkRCUf2PCvhQJi+I256Dg3Se2QoZYbVpVogMlhUshel41riJGtBOgaziqfLR9feAbr2DCTVgr+6rqOlhQjZvQRsXjzqEEPBQfqGeqMlrgGysrIoLS1l0aJF0fBz3nnnkZ2dHbvGCyFSigQiIUTMDQ0NceDAgQkh6dChQzQ0NKBpkWBgxDQuJDmit23YE75XKS3XQvZiJ64l6aQXp6GFdQYahuk9NEjv4SH8A8lbxjsVApE1y0zWAgfZi9LJqHSgGhSGmj30HByk5+Bgwhfc0E0aWoafgM2Hz+DGHR5k0NdP30BfdKiboihkZ2dTWlrKwoULWbFiBevWreOcc87B5XLF+DsQQqQ6CURCiLjl9/upqanh0KFDHDx4kEOHDkW/+vv7o9uZsZKGAxsO0rCPu+1IuMp35nTjSDhyklFhRzUoeHv89NW66atxM9AwjBZMnt6jZAxEqkkho8JO1oJ0sqod2FwWtLDGYONYCAoMhWLdzGnRLWFCDh8Bixe/0cOw7sbtH2RguB+3e2z9I6vVSlFREeXl5SxYsIBly5axevVq1q1bR3p6egy/AyGEODEJREKIhKPrOl1dXdTU1ES/amtro7d7e3uj25owY8OOFTs20kZup0XvMyiGGH4nJ2ewqGRW2smsjpxYW7PMkRPrJg/9dcMMNg4z1OpN6LlHyRCIFINCeomNjHI7GeV2nGVpqEYVX1+AvpqhaJCN5zLZukEjnB4gnObDb/ThUzx4wkO4fW4G3QN4vJ7otjabjfz8fEpKSqisrGTx4sWsWLGC1atXU1ZWllRDW4UQqUECkRAi6fT29kYDUm1tLQ0NDTQ0NFBfX09TU1N0nRKI9C7ZSMOKHSs2LKRhxYaVNCzY4mrukjXbTFa1g6xqB84KO0aLAS2kMdTsZaBpmMFGD0PNnrg+8T5WIgYi1aROCEDpJTZUo0rIG2agcTgy3PHIUNwsmKrrOnpaGM0eIGjxETD48OHFFx7GHXAzODzA8PBwdHtVVcnKyiI/P5/i4mLKy8tZtGgRy5YtY9WqVRQXF8fN34QQQswGCURCiJQSDodpaWmhvr4+GpJGA9PRo0dpbm4mEBg7kVVQR4JSJCSN3o6EJSuWkS91vnualMhaR6M9Es5yO2a7EV3TGe7w4W7zMtTixd3qxdPpR9fi81Af74FIUSEtz0p6sQ1HcRrpRTbSci0oqkLQE2KgMRJEBxqGGe70wTz/mHVFI2wPolmChC1+gsYAfsWLV/PgCQzj9g4x5B4iHB6rWGcwGMjMzCQnJ4fCwkLKy8uprq5m0aJFrFixgkWLFmEyJdZQUyGEOB0SiIQQYhxN0+ju7ubo0aMn/Gpra4suRjvKiGkkKFnHBaVIaDJjwYwFExZMmFGVuSkbbHOZcZbbSS+2RU7c86woqoIW0hhu9zHU5sXT4cPT6We4yxcXleziKRAZLCr2fCtpeVbs+Rbs+TbsBVYMJjUaNIdavbhbvAw1e/B0zc0iqZquodvC6LYQYUuQsClIUPXhx49P8+ILevD4hxn2DOP1eSc8V1VVMjIyyMnJIT8/n6KiIkpLS6msrIyGnvLycgyG+B0qKoQQ800CkRBCTJOmafT09NDW1nbcV2tr64T/9/l8xz3fhBnTuJAUCUyj91lHHjdhxIwJM0ZMMxqipBoV7AVWHEU20ovScBRZsbkivRsA/sEgnk4fni4/ni4/vt4A3r4AgcH5q2oXi0BkcZqwZpuxZpuxucyk5Vqx51mxZER6RbSwjrfbz3CnD3drpKdtuM2LFpr+x6Wu62jmELo1jG7R0E0hQsYgQTVAEB9+3Y8/5MMf8uH1e/H6PXi93uP2YzQaycjIICsrC5fLRX5+PgUFBdHAM9rLU1paKmFHCCGmSQKREELMEV3XGRgYoKuri66uLjo7O6O3J/vq7OycMFxvPAPGkXA0GpZM0bA0er8RE0aMGDBgwDjhy4gRBRXVqGJzmbHnWUnLs5CWG/nXmmWOhi4tpOHrD+LrC0S/AkNBAkOhka/gjMLBZGY7ECkGBXO6EYvThNlpivybbsSaORKAss2oxkgPna7p+AeCeLp8DHf68XT4GO704e0OoIU1dEVDN2noRg3dGEYzauimMLpRQzOECatBQgQJEiCoBQiEAwTCfvxBP/6AH7/fhz8weS+SwWDA4XDgdDrJzMwkKyuL7OxscnJyyMvLo6CggOLiYsrKyigrKyM3N1fm7QghxByRQCSEEHFC13WGhobo6emhr6+P/v5++vr6ol+n+v/xxSImo6AcF5QMI3HJoBgxm82YrWZMNiNmmwmTzYQ5LfJlNBlQVRWDIfIvmoIe0NGCQAj00a9A5F8toEMI0ICwAmEFPTx6G9AUFFTKr8hFVRSa3+gBRUNTdFAAo45iBMUIukFHMQBq5D5G7h/9wqCDEVAj22iaRjgcRtM0QsEw4WCIUCA8cjtMKBQiFAwRDAUJaUGC4SChcJBgKPIVCAYIBAKc6uNRVVVsNht2ux273R4NOKMhZzTo5OTkkJubOyHoZGdnS8ARQog4IYFICCGSgK7reDwehoeHGR4exu12H/c12f3H3ufxeAiFQgSDweP+Hf91qvAVK+ND2/h/j/2yWCzYbLboV1paWjTU2O120tPTJwQcp9NJRkYG2dnZ0d4cp9MpoUYIIZKABCIhhBAzEg6HTxiaPJ7IXBifz4ff78fv90+4HQgECIfD7Nu3D4/HQ1VVFUajEaPRiMlkwmKxYLFYsFqt0X9Hv0wmE2azObrd6DYWiwWDwYDRaMRgMEhYEUIIMSUSiIQQQgghhBApa25qvwohhBBCCCFEApBAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUJYFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWRKIhBBCCCGEEClLApEQQgghhBAiZUkgEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyJBAJIYQQQgghUpYEIiGEEEIIIUTKkkAkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsoyxboAQyaijo4P+/v5YN0MIIUSSyczMJD8/P9bNECKpSCASYpZ1dHRw0/U3gSHWLRFCCJFsrFYrjzzyiIQiIWaRBCIhZll/fz8YwHjIieI1o0QHpqooqhK5qYz7d+S2oqowcnf0SYoC6vHbTvb8E98et081+j/j7h+5oSpjGyvK2IDa0e0Y26c+/nHGXkeP7mvsfn18O0afP36w7vh2jNzWT3h77En6uG/luMG/yrhtlXHbMm4/0e+F4/c/7j4UBf2Ytk76nOOeP+7nMv75k7zW+Mcn7OPYtsBxbTn2Oad6nCk+fsL7TrbNhMf1SR/XJ22DPnF/x30v+vH7VyKvccLXn7CvSZ6PPu7tro9tOm5bZdy+lGNeS1EmPn9s0+Ofryr6uNfQR54TuX/0tjLufgAVPdruyPPH9jX6OqPPOfbx0ddSGfs3ep/C8Y8rx+xr3O3Rf9Vxz1HQovsavU9VtHHbjt6vRX8+BsbabRjZdvR1DIqOMnKfYVxbDeNeK/p8RcfAuNeKtlUb15bR52tjr3GC54y2cfQQoirapG0d/7NUGde+cW0d3c+En0t0v2AYeZeMvlcMCigj/2dAmXA7sp2COnJbVVRUFBpbjHz7vzPp7++XQCTELJJAJMQcUTxGVI9pXAhSJ9wGRs9ORu5Sx50NHR+IlPGBZnzwGb/thPuP3faY5x8brsa1RVfGnY1OErKiIWf84yOnaJENxu4fO1WMbDP68IRAEt3/uNvqZPef4D712H2dZNvo48rx244LgZMGqvFh5kS3o89Xxt0+vl0Tt5389qSPc4rHT/H8U73+pOGQ47/XyV5r4uOnCETHbDvhNY/b9gSBaPz90defLNBMIRCNvz3J85Vx4WWy54y9XcZO3JVou/QJ90f3M+6+0ZNsJnkOij7uexgXiMY//wTh5bj7Tvj4ZIFhLDgYxj1n/LYQCQPj7xvbdtx9428fEzIMioY68sMav6/IbUZuj4Ww0cBgUMYCh2H0MMbY60/clzbuOaO3tbH9jmvLWLjRom01jPuZGBjfvomBaGKbJ7ZvtN1j940FHsO48GNQRrdTx90X+T8hxNyQvy4hhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUJYFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWRKIhBBCCCGEEClLApEQQgghhBAiZRlj3QAhkpWeFkJTVJToZQcVRVUiN5Vx/47cVlQVRu6OPklRQD1+28mef+Lb4/apRv9n3P0jN1RlbGNFGbtcMrodY/vUxz/O2OvoE15zZNuxHYy7b/Q/HPdY9DkaY6+ljN4e21Yf960ct69x3wrjnj/xcWWSbY/7VsfdOGa7Y59z3PPH/Vwmadf49o9/XJ+kLeNfY8K+JnnOqR6frK2TPX7C+062zYTH9Ukf1ydtgz5xf8d9L/rx+1cir3HC15+wr0mejz7u7T72BlLGbauM25dyzGspysTnj216/PNVRR/3GvrIcyL3j95Wxt0f3U+0LTrH/azQo/vSFR1t3OP6hG0i/2oj96nK2PeoMnqfHn39Y2+P/quOe44y8sc5ejhR0VEVbdy2o/dr0Z+PYfT7Q8cwsu3o6xgUHWXkPgNjPyvDuNeKPn/cvtRxh6Gx11Sitw0oKCNbGKLb6agjP0xVUcZuRx/XJm1r9GeFHr19bFtH9zPh5zKufYaR1xr9VRkUUEb+L9LWsduR7ca1T1FRUWhskdM2IeaC/GUJMcs0TcNoNBJaPBjrpiQG/Zh/Z8lk591CJIuxOBS9dpCCxifc1BnwYjQa0bTU/a0LMRckEAkxy1RVJRQK8W//9m+Ul5fHujlCCCGSRGNjI9/61rdQ1dQJgELMBwlEQsyR8vJyFi9eHOtmCCGEEEKIk5BLDEIIIYQQQoiUJYFICCGEEEIIkbIkEAkxy1wuF5/4xCdwuVyxbooQQogkIp8vQswNRdf1Wa7tJIQQQgghhBCJQXqIhBBCCCGEEClLApEQQgghhBAiZUkgEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyjLFugBDJIhAI8NBDD/Hiiy8yNDREdXU1d911F2eddVasmyZE3HniiSf46U9/yoEDBxgcHCQ7O5tly5bx2c9+lhtuuCHWzRPilDweD7///e/Zv38/Bw4cYGhoiK997WtcddVVE7b761//yosvvkhTUxNutxuXy8WaNWv4xCc+QWFh4YRte3t7eeCBB3jnnXfweDyUl5fz0Y9+lEsuueS419+2bRuPPPIIdXV1hMNhSkpKuOGGG7jiiitmtM/XX3+djRs3cvDgQXp7e8nLy2PDhg3ccccdpKenz9JPTYj4JIFIiFnyne98h9dee42bbrqJkpIS/va3v/HVr36Vn/zkJ5xxxhmxbp4QceP+++/nc5/7HIWFhVx33XW4XC7a29vZsmULTz31lAQikRAGBgb49a9/TX5+PgsWLGDHjh2TbnfkyBEKCws577zzSE9Pp62tjWeffZZNmzbxq1/9ipycHACGh4e555576Ovr48YbbyQ7O5tXX32Vr3/964RCIS677LLoPt966y3+9V//leXLl/OJT3wCRVF49dVX+fa3v83AwAA333zztPf5/e9/H5fLxeWXX05+fj61tbU89dRTvPvuuzz00ENYLJY5/GkKEWO6EOK07du3T7/gggv0xx57LHqfz+fTb731Vv0zn/lMDFsmRPxZu3atbjab9Y6OjuMe6+7ujkGLhJg+v98ffb8eOHBAv+CCC/Tnn39+Ss89ePCgfsEFF+iPPPJI9L7HHntMv+CCC/Rt27ZF7wuHw/rdd9+tf/jDH9YDgUD0/i996Uv6ddddp/v9/uh9wWBQv/XWW/VPfOITM9rn9u3bj2vn3/72N/2CCy7Q//rXv07p+xIiUckcIiFmweuvv47BYOBDH/pQ9D6LxcLVV1/Nvn376OjoiGHrhIg/JpMJk8l03P0ulysGrRFi+sxm84zfrwUFBQC43e7ofbt27SIzM5N169ZF71NVlUsuuYTe3l527twZvd/j8ZCeno7ZbI7eZzQaycjImNCTM519rlmz5rh2XnjhhQA0NDTM6PsUIlFIIBJiFhw5coSSkhLsdvuE+5cuXQpATU1NLJolRFy69dZbGR4eZsWKFXzlK1/h+eefZ3BwMNbNEmJODQwM0NfXx8GDB/nOd74DMCGoBIPBSYelWa1WAA4dOhS9b/Xq1dTX1/Pggw/S3NxMS0sLv/nNbzh06BC33XbbjPY5mZ6eHgAyMzOn+F0KkZhkDpEQs6Cnp2fSK4Wj93V3d893k4SIW//yL/+Cy+Xi/vvv5wc/+AHf//73MRqNXH311fzoRz+isrIy1k0UYtbdcMMNBAIBADIyMvjCF74woehOWVkZ7733Hu3t7dEeJIDdu3cDEz9H7rjjDtra2njkkUf47W9/C0RCzn333ccFF1wwo31O5rHHHsNgMHDRRRfN9NsWIiFID5EQs8Dv9086/Gd0OIPf75/vJgkRtxRF4ZOf/CRbt26lq6uLp556iuuvv56nn36aa665hnA4HOsmCjHrvve97/G9732Pe+65h7y8PLxe74THr7nmGlRV5etf/zp79uyhpaWFRx99lDfffBOY+DliMpkoLS3l4osv5utf/zr/9m//xuLFi/nWt77Fvn37ZrTPY7300ks899xz3HzzzZSWls7mj0KIuCM9RELMAovFQjAYPO7+0auBUp1HiMm5XC6uvfZarr32Wrq7u9m4cSM1NTUsXrw41k0TYlatXbsWgHPOOYfzzz+fO+64A5vNFq2qWF1dzb//+7/zgx/8gHvuuQeA7OxsPv/5z/ODH/wAm80W3dePf/xj9u/fz4MPPoiqRq5tv+997+PjH/84P/3pT3nggQemvc/xdu3axXe/+13Wr1/P3XffPTc/ECHiiAQiIWaBy+Wiq6vruPtHx1+PllUVQsBrr73GRRddhKIo0fuCwSC9vb3A2PwGIZJVcXExCxcu5OWXX55QZv7iiy/mvPPOo6amBk3TWLRoUbSc92gvTTAY5LnnnuP222+PhiGIFFU4++yzeeqppwgGg9FRC1PZ53g1NTV87Wtfo6qqivvuuw+jUU4VRfKTd7kQs2B0DYrh4eEJhRX2798ffVwIEXHttdfidDo555xzKC8vJxgM8tJLL7F//35uvPFGysvLY91EIeZcIBCIjiIYz2QyRQvyALz33nsAnHnmmUCkOEM4HJ50aGk4HEbTNDRNm9Y+R7W0tPAv//IvZGVl8b3vfY+0tLQZfndCJBaZQyTELLj44osJh8M888wz0fsCgQDPP/88y5YtIz8/P4atEyK+fOc732HNmjVs2bKFn/3sZzz66KM4HA7uv/9+HnvssVg3T4hZEwqFGBoaOu7+/fv3U1dXx5IlS076/KNHj/L0009z7rnnRntzsrKycDgcvPnmmxOGans8Ht5++23KyspOOkx7sn1CZETDl7/8ZVRV5fvf/75UlhMpRXqIhJgFy5Yt45JLLuGXv/wl/f39FBcX88ILL9De3s69994b6+YJEVc++9nP8tnPfjbWzRDitD3xxBO43e7o8Oi3336bzs5OIFJVTtd1brzxRi655BIqKyuxWq3U1dXxt7/9Dbvdzsc//vEJ+/vYxz7GJZdcQl5eHm1tbTz99NM4nU6+/OUvR7cxGAzceuutPPjgg3zmM5/hiiuuQNM0nnvuObq6uvi3f/u3ae8T4Ctf+Qqtra3cdttt7Nmzhz179kQfy8rKmlART4hko+i6rse6EUIkA7/fz0MPPcSLL76I2+2mqqqKu+66i/Xr18e6aUIIIebAzTffTHt7+6SP/eEPfyAnJ4f777+fHTt20N7ejt/vJycnh3Xr1vHxj3+cwsLCCc/5j//4D/bs2UNfXx8ZGRmcd955fPKTnyQrK+u4/b/00kv8+c9/5ujRowSDQaqrq7n11lu5+OKLZ7TP0UVYJ7N69Wp++tOfTvGnIkTikUAkhBBCCCGESFkyh0gIIYQQQgiRsiQQCSGEEEIIIVKWBCIhhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUJYFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWf8/yM5KEYtoypYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "cd627fef", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm375nt2pW06r03y3KRey8Ug+mmY0w1JUAIAUIIfPCGhBQgpFDyhpDQQg2BvKGG3o2xce9Vlmyr967t5/tjvWtVa2VL2qK5r0sXeHbKmTPt/M7TJCGEQEFBQUFBQUFBQUFBYQwi+7sBCgoKCgoKCgoKCgoK/kIRRAoKCgoKCgoKCgoKYxZFECkoKCgoKCgoKCgojFkUQaSgoKCgoKCgoKCgMGZRBJGCgoKCgoKCgoKCwphFEUQKCgoKCgoKCgoKCmMWRRApKCgoKCgoKCgoKIxZFEGkoKCgoKCgoKCgoDBmUQSRgoKCgoKCgoKCgsKYRRFECgoKCiFAZmYmmZmZ/m7GiPGLX/wCSZL48ssvfVr/mmuuQZIkysrKRrRdA1FWVoYkSVxzzTV+OX6w8cILLyBJEi+88IK/mzJkRvNaS5LE4sWLR/w4CgpjDUUQKYwpJEka9M/XAZeCwlhnrA/OAvX8Ozs7KSgoQKVS8e233/a7znfffYdarSYnJ4e2trZRbqHCQIT6xIaCQqCi9ncDFBT8wQMPPDDgb8rHSCEY+eyzz/zdhIDioYce4p577iElJcXfTRl1wsLCeOmll5g3bx5XXXUVW7ZswWQyeX9vb2/nyiuvBOCll14iPDzcX031cv755zN79mySkpL83ZQhk5KSwq5du4iMjBzxY+3atYuwsLARP46CwlhDEUQKY5Jf/OIX/m6CgsKwkpOT4+8mBBRJSUlBObgeLmbOnMl9993HL3/5S3784x/z7LPPen+7/fbbKSkp4f/9v//H3Llz/djKo0RGRo6KoBgJNBoN48aNG5VjjdZxFBTGGorLnILCAJSWlmI2m4mOjubgwYM9fuvo6KCwsBCVStXDxc4Tt3DgwAH++Mc/Mm7cOPR6Pampqdxxxx20trb2e6wNGzZw4YUXEh8fj06nIyMjg1tuuYWqqqo+69bU1HDXXXdRUFCA0WjEbDZTUFDANddcw4EDB7zrDeaT35+7T/c4jVdffZVZs2ZhMpl6WM06Ozt56KGHKC4uxmg0YjKZmDNnDq+99tqxO7QXHteQ9vZ27rjjDtLS0jAYDBQXF/PWW28B4HA4+M1vfkNeXh56vZ6cnBz+/Oc/99mXzWbjz3/+M2eeeSYZGRnodDqio6M59dRT+eCDD455/JaWFm699VZSUlLQ6/WMHz+eJ554AiGEz+eyePFiJEnCarVy//33k5WVhU6nIycnh1/+8pfYbLY+23j6v7q6muuvv56UlBRUKlWP6/Wvf/2LhQsXEhkZicFgYOLEiTz00ENYrdYBz6c/XnvtNU466STMZjN6vZ7CwkJ+/etf97sfgN27d7Ny5UoyMzPR6XTEx8ezYMECnnrqKeDovQXw1Vdf9XA57T3ZsHbtWi666CISExPRarWkpaXxgx/8gMrKyn6PvWHDBpYuXUp4eDgRERGceuqpfPfdd/2ueyz6iyHqHutRVlbGZZddRmxsLHq9nunTp/Pee+/5tO+hnL/nuEM51lCv10Dcf//9zJgxg+eee877TL399ts8++yzTJ06dUgTQ3v37uWee+5h+vTpxMXFed9TN954I+Xl5T3WtdlszJgxA0mSeOedd/rs66qrrkKSJH71q195lw30vtq6dSvLly/33otxcXFMnTqV22+/HbvdPmi7u1/z3bt3s2zZMqKjozEajcyfP5+PP/643+2sVisPP/wwEydOJCwsjIiICBYsWMC//vWvYx6jO93vwaeffpqJEyei1+tJSEjgxhtvpKWlxbvul19+iSRJHDx4kIMHD/a4p7rvd7D39ptvvsnMmTMJCwsjOjqayy67jIqKin7Pcd26dZx22ml9nrWhxuspKIQEQkFhDAGIodz2b7zxhgDE3Llzhd1u9y6/6qqrBCB+8Ytf9Fj/6quvFoA499xzhdlsFjfeeKO4++67xeTJkwUgpk2bJrq6unps8+677wqtVis0Go1Yvny5uOeee8SSJUsEIJKTk8WBAwe863Z0dIicnBwBiCVLloif/OQn4s477xQXXnihMJvN4t133/Wu+/zzzwtAPP/88wP2xaJFi3ose+CBBwQgzj77bKHT6cRFF10kfvazn4mbbrpJCCFEU1OTmDJligDE1KlTxa233ipuueUWb5vuu+8+n/s2IyNDJCcni9mzZ4v8/Hzxwx/+UNxwww3CZDIJWZbFp59+Ki644AKRkpIirr/+evHDH/5QxMfHC0D885//7LGvqqoqIcuymD9/vrjuuuvEPffcI66++moRHR0tAPH3v/+93+MnJSWJ6dOni9zcXHHnnXeKW2+9VSQlJQlA3HLLLT6fy6JFi7zXPSkpSfzoRz8Sd955p7dfzj77bOFyuXpsA4iJEyeKjIwMUVRUJG699VZx2223if/+979CCCHuvfdeAYjY2Fhx0003ibvuuksUFRV5r5vVau1zPhkZGX3adu211wpApKamipUrV4o777xTzJ07VwBi8eLFPe5rIYR47733hMFgELIsizPPPFPcc8894qabbhJz5swRmZmZQgghNm3a5L1XMjIyxAMPPOD9++KLL7z7evbZZ4VKpRJhYWHisssuEz/96U/FsmXLhCzLIikpSRw8eLDHsb/99lthMBiESqUSF198sbj33nvFGWecIbRarVi6dKkAeuz/WHiexdLSUu+y0tJS73nHxcWJWbNmidtvv11cddVVQqfTCVmWxeeffz7ovn05/+M91lCv12Ds3r1bhIWFibi4OLFlyxYRFxcnDAaD2Llz55D289BDD4nIyEixbNky8aMf/Uj85Cc/EUuXLhWSJInExERRXl7eY/2SkhIREREhoqOjxaFDh7zLn3vuOQGIU045RTidTu/y/t5XW7ZsEXq9XhgMBnHppZeKe+65R9xyyy3itNNOExqNRrS1tQ3abs91WLhwoTCbzWLBggXe94NerxeyLPd5n1itVu8zPW7cOHHXXXeJW265xfv+uffee/s9xtVXX91juecevPjii0VERIRYsWKFuPPOO73v0JNOOqnHPh544AERGRkpIiMje9xT//nPf7zrHeu9ffHFFwudTicuvvhicdddd4kFCxZ4z8FisfTY5quvvhI6nU6o1WpxySWXiHvvvdf73j/jjDOG9KwpKIQCiiBSGFN4BFH3j033v4ceeqjPNjfffLMAxD333COEEOKFF17wfsy6f9CFOPoBjImJEWVlZd7lTqdTXHDBBQIQDz74oHd5W1ubiI6OFrIsi6+//rrHvh5++GGv8PHwzjvvCEDcfvvtfdpptVpFa2ur998nIojCwsLExo0b+2zjOb9HHnmkx/Kuri5x+umnC0mSxKZNm/o9Xm8yMjK8YqH7x/rrr78WgIiKihLTp08XTU1N3t9KSkqERqMRxcXFPfZlsVjE4cOH+xyjublZFBUViaioKNHZ2dnv8efNm9fj+A0NDSI7O1sA4quvvvLpXDyDp7y8PNHY2Ohd3tXVJWbPni0A8eKLL/bYxnMvXnnllX0GuatXrxaASEtLE1VVVd7ldrtdnH322QIQv/nNb/qcT29B5LkHzj///D7n77nWjz32mHdZXV2diIiIEBqNRnz55Zd9zrN3H/d3D3nYs2eP0Gg0Iicnp89g+dNPPxWyLItly5Z5l7lcLlFQUCAA8dZbb/VY/7HHHvP213AIov4mMz788EMBiDPOOMOn/Qtx7PM/nmMN9Xr5yp///GcBCJ1OJwDxxBNPDHkf5eXlfQbVQgjx0UcfCVmWvZMm3Xn99dcFIObPny8cDofYuXOnCAsLE/Hx8T3uayH6f1/deeed/d4PQgjR2NjY5/3bH92vw1133dXjt3Xr1gm1Wi3MZrNoaWnxLv/tb3/rvT7dn82amhrve+Pbb7/tc4yBBFFaWloP8W+3271iZe3atT22GWhiw8Ox3tvh4eFi69atPX5bvny5AMTrr7/uXeZ0OkVubq4AvBMwHp566qkhP2sKCqGAIogUxhSeF/1Af5GRkX226erqEpMnTxaSJIknn3xSGI1GERcXJyorK/us6/kAdhc9HkpKSoQsy95ZdiGEePnllwUgli9f3md9u90uMjMzBeD9mHoEUe8Zyv44EUHUn+Cqr68XKpVKTJ8+vd/9bd68WQDipz/96aBtE+KoINm/f3+f37KysgQgPvvssz6/LV68WKjVauFwOHw6zh/+8Id+xY3n+L2FqBBH++6aa67x6RgeQdRb9AghxBdffOGd3e8OILRaraipqemzzfXXXy8A8fTTT/f5bc+ePUKWZZGVldXnfHoPpIqLi4Vare4hKj04HA4RExMjZsyY4V32+9//XgDitttuO9bp9jiHgQTB7bffLgDx3nvv9fv7smXLhEql8or4VatWeWfy+2urx9o2HIIoIyOj3/snPT1dxMTE+LR/IXwTREM51lCvl6+4XC7vu2T27Nl9rJUnysSJE/vcjx5+8IMfCED85Cc/ERMmTBCSJImPPvqoz3rHEkT9re8rnusQGRnZY8LIg+c+eeGFF7zLcnNzhSRJYteuXX3Wf+aZZwQgrr322j7HGEgQ9Weh9ljKnnzyyR7LT0QQ9Weh//zzz7397+Gbb77pY6Hy4HQ6RX5+viKIFMYcSlIFhTGJGEJ8iF6v5/XXX2f69On86Ec/QpIk3nzzzWMGbC9atKjPsuzsbNLS0igrK6O5uRmz2czGjRsBOPnkk/usr1arWbhwIWVlZWzatIn09HQWLVpESkoKDz/8MBs3buTMM89k3rx5FBcXo1KpfD6nwZg5c2afZevWrcPpdA4YJ+Hx59+1a5fPxzGbzf0mA0hOTqa0tJRp06b1+S0lJQWHw0F1dXWPDGI7duzg0Ucf5euvv6aqqgqLxdJju/786NVqdb9B5R4f/U2bNvl8LtD/dZ8/fz4qlarffWVmZhIfH99n+bHui/z8fFJTUyktLaWlpWXAQPTOzk62bNlCbGwsjz32WL/r6HS6HtdrzZo1AJxxxhn9rj8UPHE/X331FevWrevze21tLU6nk7179zJt2jTvOffXhyqVivnz51NSUnLC7QIGfF7S0tKOK15pOI51PNfLV1544QVvLNWWLVvYt28f+fn5A67jYfHixd5nQQjBK6+8wgsvvMCWLVtoamrC6XR619Vqtf0e+7HHHmP16tX84Q9/AODee+/ltNNO86ndl156KY8//jjLli3joosu4tRTT2XevHnHlUBk6tSp/WbTW7x4Mf/4xz/YtGkTV199NW1tbezfv5+UlJR+Exh4nsmhvBumT5/eZ1laWhoATU1NPu9nuI7jafv8+fP7rC/LMnPnzmXv3r3D1i4FhWBAEUQKCj6Qn5/PpEmTWL16NePHjx/0g56QkNDv8sTERA4ePEhLSwtms9kbVDuQuPIsb25uBiAiIoI1a9bwwAMP8M477/DRRx8BEBsbyy233ML999+PRqM5nlPs087eNDQ0AG5h1N8A10N7e7vPxxloMK9Wqwf83fNb94DqNWvWcPLJJ+NwODjllFM499xziYiIQJZlNm/ezNtvv91vQHpsbGy/g1XP+XcPevaF/q67Wq0mNjaW2traAY/TG1/ui0OHDtHc3DxgHzY1NSGEoK6ujl/+8pc+td9znw1HqmrP/fLoo48ecz3P/eI552M9O8OF2Wzud7larcblcg3bcYZyrOO5Xr5QVlbGj3/8Y8xmMw888AB33HEHV111Fd9++22Pe/+FF17gq6++6rO9RxDdeeedPPbYYyQlJXH66aeTkpKCwWDwbts78YwHvV7PWWedxbZt21Cr1fzwhz/0ue0zZ87km2++4Te/+Q1vvvkmL730EgAFBQU88MADLF++3Od9DXZfee6/ob6TfaG/e8DzHusuKk8UX48z2LM20HIFhVBGEUQKCj7w8MMPs3r1amJjY9mxYwcPPfQQ991334Dr19TUUFBQ0Gd5dXU1cHSg7/mvZ3lvPFnmug96U1NTefbZZxFCsHPnTj7//HP+93//lwcffBCXy+XN3CTL7iSSDoejz34H+5h7Mmh1x9OGO+64gz/+8Y/H3H60+fWvf01XVxdffPFFnwxMDz30EG+//Xa/29XX1+N0OvuIot7XyVdqampIT0/vsczhcFBfX09ERESf9fvr5+7Hra6u7nc2vL/7YqB9TJkyxWt9GQzPgKqiooKJEyf6tM1gx29paen33Adav6ampt/fB3pGQoXjuV6D4XK5uPLKK2lra+PVV19l+fLlrFu3jldffZWHHnqI+++/37vusTKK1dbW8sQTTzBhwgRWr17dx9JyrAyTq1at4tFHHyU2Npb6+npWrlzJhx9+OOC935s5c+bw3nvvYbVa2bBhAx9++CFPPvkkl19+OXFxcZx66qk+7Wew++pE3snBhud5HKhPBlquoBDKKGm3FRQGYfXq1fz85z+noKCA7du3e2cnV61aNeA2/c20HjhwgMOHD5OZmekdeE6ZMgXofzDicDj45ptvALe7R28kSaKoqIgf/ehHfPLJJwDe1LoAUVFRABw+fLjPtuvXrx+w7QMxc+ZMZFn2timQ2L9/P9HR0X3EEPR/LTw4HA5Wr17dZ7nneniuj6/0d6xVq1bhdDqHtK9j3Rf79++nvLycrKysAa0PACaTiaKiInbs2EFjY6NPx509ezbAgKnKeyPL8oAz3J59+Xq/eO7x/vrQ6XQe83nzF8c6/6FyPNdrMH73u9+xatUqLrvsMq815X//939JSUnhwQcf9Nnt68CBA7hcLm+K5u6Ul5f3SPffnYaGBpYvX45Go+Hzzz9nxYoVfPzxxzzyyCNDPhedTsfcuXN58MEHeeKJJwAGnOjoj40bN9LW1tZnee9nPTw8nJycHCoqKti3b1+f9b/44gug/3fycKBSqYbVatQfnnPt75lyuVz9vhMVFEIdRRApKByDpqYmli9fjkql4p///CcJCQm8/vrrqNVqLr/88gEHLo8//ngPFxKXy8VPf/pTXC4X1157rXe5pybGa6+95o3f8PDYY49RWlrKqaee6rU67Nixo9/ZO8+y7hXMp0+fjizLvPrqq3R2dnqXNzY2cvfddw+5L+Lj41mxYgXr16/nV7/6Vb8f7ZKSEkpLS4e87xMlMzOTxsZGtm7d2mP5s88+63UrHIh77723hztdY2Mjv/71rwF6XCtf+NWvftXDV99isXDvvfcOeV8rV64E3Javuro673Kn08ldd92Fy+XiuuuuG3Q/d955JzabjZUrV/ZrFWxqauphjbj66quJiIjgqaee4uuvv+6zfu96MzExMf0KboBbb70VjUbDHXfc0W88gs1m6yGW5s6dS0FBAV9//XWfge6f//znYYsfGk6Odf7Hw1Cv17HYvHkzDzzwACkpKfzlL3/xLjebzTz33HM4HA6uvPJKn2obeepbecS9h/b2dm644YZ+rdDgvufLy8v505/+xMSJE3nqqafIzc3lf/7nf3wadK9evZqurq4+y/t73w1GS0sLDz74YI9l69ev55VXXiEyMpLzzz/fu3zlypUIIfjpT3/a43zr6+u9FnjPMzrcxMTEUFdX1+95DxeeOKwvvviiz+TH3/72NyV+SGFMorjMKYxJjlWQcNmyZRQXFwPuj96hQ4d44oknvMsmT57MH/7wB2699VauueaafgsPehIdXHrppURGRvLRRx+xZcsWpk2b1kOMmEwmnnvuOS6++GIWLVrExRdfTHp6Ohs2bODjjz8mMTGRp59+2rv+J598wk9/+lPmzJlDfn4+8fHxlJeX8/bbbyPLMj/96U+96yYlJbFixQpeeukliouLOeuss2htbeW///0vCxcuHHLCAHAPTPft28fPf/5zXnrpJebPn09CQgKVlZXs2rWLdevW8dprr5GVlTXkfZ8It99+Ox999BHz58/nkksuITIykvXr17Nq1Souuugi3nzzzX63S0pKwmq1MmHCBM4991zsdjtvvvkmVVVV3HLLLSxcuHBI7SgsLKSoqIiLLroIjUbD22+/TUlJCWeddRZXXnmlz/uZO3cud999N7/73e+YMGECF110EUajkQ8++IDt27czf/78Htd6IFauXMmGDRv4y1/+Qk5ODqeffjrp6ek0NjZSWlrK119/zbXXXstf//pXwB1T9eqrr3LRRRdx0kknccYZZzBp0iRaW1vZunUrhw8f7iF4TznlFP75z39yzjnnMHXqVDQaDQsXLmThwoWMGzeO5557jpUrV1JUVMTSpUvJz8/Hbrdz6NAhvvnmG+Li4ti9ezfgtng+++yzLFmyhAsvvJALLriA3NxcNm/ezGeffcbSpUv58MMPh3Q9Rppjnf/xMNTrNRAWi4UrrrgCu93OCy+84LUWezjttNO4+eab+ctf/sJ9993H73//+2PuLzExkcsuu4x//vOfFBcXc9ppp9HS0sInn3yCXq+nuLiYzZs399jmscce49133+XCCy/kpptuAtzWl9dff505c+awfPlyNm/e3Kdt3fnd737H559/zoIFC8jKysJkMrFjxw4++OADoqKiuPHGG4/Z7u4sXLiQZ555hrVr1zJv3jyqqqp4/fXXcblcPP300z3cOu+66y4++OAD3n77bSZPnsyZZ55JZ2cnb7zxBrW1tdx99939JiQYDk455RTWrVvH0qVLWbhwITqdjsmTJ3POOecM2zFkWeaZZ55h6dKlnHvuuVx44YXk5OSwdetWPvnkE8444ww++OADr9u1gsKYwJ8p7hQURhsGSbtNt7SvTzzxhAB3sc3+OP/88wUg/vjHP3qXedKslpSUiN///veioKBA6HQ6kZycLH784x/3qHXRne+//14sW7ZMxMbGCo1GI9LS0sRNN90kKioqeqy3c+dOcccdd4hp06aJ2NhYodVqRUZGhrjwwgt71MXwYLFYxF133SVSUlK8NWF++9vfCrvdfsz0rcdKt2q1WsWTTz4p5syZIyIiIoRWqxVpaWni5JNPFn/6059EfX39gNt251jpZT1prPujv3TKQrgL3M6aNUuYTCYRGRkplixZIr766qsB0497jt/c3CxuueUWkZycLLRarRg3bpx4/PHHh5Sa2NNei8Ui7rvvPpGZmSm0Wq3IysoSv/jFL/qt39Jf//fmtddeE/PmzRMmk0nodDoxfvx48etf/7pPcd/u59Mf7777rjjrrLNEXFyc0Gg0IiEhQcyYMUPcd999/aYW3r59u7jyyitFcnKy0Gg0Ij4+XixcuLBPGvCamhqxfPlyER8fL2RZFhyp8dWdrVu3iquvvlqkp6cLrVYroqKiRFFRkbjxxhv7Tau+fv16cfrppwuTySRMJpM45ZRTxOrVq326N7tzrLTbvdMjezjWfdcfxzr/EznWUK9Xbzwpz4+VPr2jo0Pk5eUJWZZ9qrfV0dEh/t//+38iJydH6HQ6kZqaKm655RZRX1/f51zWr1/vfTf1l0L88ccfF4A477zzvMv6e04/+ugjcc0114jCwkIREREhwsLCRH5+vvjRj37Uo87bseh+HXbu3Oktmm0wGMTcuXPFhx9+2O92XV1d4je/+Y0oKioSer1emEwmMW/ePPHqq68e8xjdGehdJcTRdPy9n5f29nZx0003iZSUFKFSqfrsd6jv7WPdh2vWrBGnnnpqn2fthz/8oQB8rimnoBAKSEIMIf+wgoLCMbnmmmv4xz/+QWlpqdfNRCEw8Vyf3qmGj4fFixfz1VdfDSmd+3CTmJhIZGQke/bs8VsbFBQCjbKyMrKysrj66qt54YUX/N2coGDevHmsXbuWlpYWjEajv5ujoDAqKPZQBQUFhSCnsbGR+vp6UlNT/d0UBQWFIKCzs7PfOLUXXniB1atXc9pppyliSGFMocQQKSgoKAQpLS0t/P73v+ejjz7C6XRy0UUX+btJCgoKQcChQ4eYMmUKS5YsITc3F4fDwaZNm1i1ahVms9lbSFdBYaygCCIFBQWFIKWpqYmHHnqIrKwsHnroIX7wgx/4u0kKCgpBQEJCAitWrOCrr77iiy++wGq1kpiYyLXXXst9993Xb/0zBYVQRokhUlBQUFBQUFBQUFAYsygxRAoKCgoKCgoKCgoKYxZFECkoKCgoKCgoKCgojFkUQaSgoKCgoKCgoKCgMGZRkiooKCgoKIw6Qgi6urqoqKjAZrORlpZGeHi4t5aTLCvzdQoKCgoKo4MiiBQUFBRCGCEEFouF9vZ2Ojo6aG9v9/61trbS2dlJR0cH1dXVWCwWhBB0dnZSXV1NREQEkiRRW1tLU1MTycnJ2O12Dhw4gCRJxMTE0NHRQUVFBSaTCb1eT21tLRaLBbPZjMPhoLGxEZfLhVarxWq1YrVacblcuFyuftsryzKyLKPVatHr9VitVmRZJiYmBrVaTXNzM2q1muTkZFpaWrDZbCQkJGA2mykvLwdg/PjxaDQadu/eTUREBAUFBbS2tlJRUUFhYSExMTFUVVXhdDpZsGABJpOJ0tJSUlNTGTduHBqNhra2NnJycoiNjUWr1aJSqUbzsikoKCgojCKKIFJQUFAIUDzipKmpiaamJpqbm73/39+/GxoaaGtrw2az0d7eTktLC11dXQOKDw+yLKPRaDAYDMTExCCEoL29ncjISKKiomhoaMDhcKDVatFoNHR1daHRaIiOjsZoNNLZ2UlsbCx5eXns27ePjo4O5s2bh06nY+3atajVak466SRsNhtr1qwhLS2NadOmsXv3btavX48QgqKiIqZOncq3335LTU0Ns2bNwmAw8Omnn+JwOJg7dy5Wq5Vvv/0WrVbL+PHj2bFjB62trSQkJGA0GqmoqMDpdNLZ2Yndbqe5uZmWlhasViu1tbV0dnZSXl6OWq2mrq4Oq9XKa6+9Nmj/SJKEVqslJiYGk8lEe3s74eHh5OXlodfraWhoYPLkyWRkZHj7e+HChZjNZmw2G6mpqcTHxyNJ0nDeHgoKCgoKw4SSdltBQUFhlLBardTV1Xn/amtre/zbs6yhocEreOx2e7/7MhgMREZGIoQgIyODhIQEOjo66OrqYt68eZhMJjZu3EhbVSe169swxRrJX5pC9XcttB2wkrUoiaSJMWz680FkZKbemI21w8HOVw+jDVcz8/Y89r5bSe3mFqILTCRNi2LHq4cBuOIpM06nimuWfYzLBa9/tJg5k3eRmVxDl1VLVV0UibFNhOltrNlaSE2DmfNO+q7f8/jnh4tZ83EEu/55qN/f885LoaPGQuWaBlR6GVOCgfaaLpwWF5EZRpLnxHi3nXhtFsIhuPzBf+FySqz7dAlp+XtIzjrIoT35bP9uPidd9BoGUxdrPzwdq0XPgvPewmaF9164kMj4ErKK1rF/WwZ7t+STNu579MZ6tq6eSEebgVmzZtHe3s5XX32FLMvEx8dz6NAhKisrEUJ4+78/NBoNERERAKSmppKZmYnL5UIIwcknn0xcXBwtLS1kZGRQXFxMXFwcOp1uSPeXgoKCgsLxoViIFBQUFE4Ap9NJXV0dVVVV/f5VV1d7hU9ra2uf7cPCwoiMjCQ2NpbU1FTS09PR6XScf/75pKWl8cZf3iahIJoDb9ejQUvRhZk4GqH8y0YMLg3jL03nwMfVNG3oIGNBOqknxfDdI3sAyF6aiVljRyU3IrfLRNri6JLUCKkTqVlLRHQ4Gq0al11Qs7UFl91tKXln51rKa0rQX2IlLqqNA+WJvPL+qby0dT/x0S0crIz3tl+WYfkZX/Y4p399dBILp21lbvFOZk/adUL9u+/tCu//J06NJn1RPN//aTcALQc7aDnY4f390Oe1CCH4f1kzCYvTMfWWVL58xE5LaQL6GC1qfQmrfjmR35Z+T2LmQVxOFZIkoVKpMejNjJvUTmqulgijRGy0iknz7Wi0RvLzDHS1hVM0+zmEgIjIq8iZuIW84i3UHEpl17ormX7qR5gi29j87RRqDkVQMONTWltcfPX2IrSGSqZMvIzdu3ezceNGYmNjsdvt7Ny5k+bmZj7//HM6Ozv7nLtWqyU+Pp60tDRUKhVqtZpTTjmFpKQkOjo6yMnJYdq0acTFxSkufQoKCgongGIhUlBQUBiArq4uysvLOXz4cI+/yspKKisrqaqqora2FqfT2WO7uLg4EhMTSUhIIDU1FbPZTFtbG+tf247UqSZ1aiLpU5PY9Uw5KknNpOuyaT3YQdnn9agNKtIWxFK9sYmuehvR40wkTT1qnZmwIh2Hxcnuf1cgqSQKzk+m/NsG2qssqMNU6M0a2is6QEDGyfEY4/XsPGJBKf5BDuXf1lO/vQWVTkZrUtPVaIMjXwGdWYO12W2RKr4xhzkLq1h28mocTpnahigSYxuR5b6fDJdLYsvebCblHUClElTWxhAf04Ra5RZYua/dNGAfn9zZRdiOpgEtRN2RVBLGBD3tlV1IMsRPjqJmc5O3/T1XBlOSgY4aC8IpyF+WSli8js1/K+lzrkhgiNZia3fgtLqInRBJ6rxYNj/tXnf88nQ6aiwc/LwWJLh77QEM4e3o9Baa62M4sG0Skxd+hUrlYuMXJ2G3aZl1+kcIAes+Pp20gt0kZR6ktclM+d58cos3o9XZ+HbtYiy1UaScvgZrl5Ndr8zEFX4YVcJe6g7oaN6ZSWJiIjabjU2bNlFbW4vD4aCurq7HqapUKsLCwkhNTSU7Oxu1Wo1Wq+Wss84iLS0Ng8HAuHHjiIqKGrSPFRQUFMYiiiBSUFAYkwghqKuro7S0lLKyMsrKyvoIn/r6+h7beKw4qampJCUlERcXx/89/CFal56YZDNJ+QlUf9mCLMkU35BDW1UXJe9VoglTMeHqLPa/W0FbeRdh8ToMMToadrWCrCIq14TaIFO3rRVZLTHnngL2vVNF7dYWIjPCSJ4ZxZ7/K8dld6GP0uKwOnF0ukWYIVaHJEFnnRVTioHi63PY9PR+OqotRBeEow3XUL2+cdD+iBkXQeGl6Xz/x93Y2hyExemwttr5b+nGQbetaTDz1Jtn80mYnhr10BwPhiKIuhOZaaToigw2/62EzlrroOurdDK6CA2ddVa0ERpm3lHArtcP0bC7r9WuN4nTo7G12mnc24YxUc+UH+Sy+e8ltFd2ERanQwjoqne3QR2mQq1TYWmyIWtkCi5I5cwfryImqZrD+/LY9u18Tr/iRVRqJxUlOai1VhLSytltS6L9UALaiA605nYsdWbqvp9A8info9LbqFtbhLUxktQzVuOwu9j/QR42dSV2bQX1pSra9uQTHh5OS0sL27Zto66uro/VKTY2lsTERIQQTJkyhQkTJqDX64mJiWHJkiVKnJOCgsKYRRFECgoKIUtTUxMHDhzwip7e/+0e7xEZGUlaWlqPv9f+5230hKHHgI4wEiZGg4D6HS1ojCpm3VXIzn8epHFPG7HjI0iaGcO2f5SCgMgMI/Yuh3ewLmskJJWE0yZhStKTe2Yi218uw9HlJOfMJLQRGq8oiBkXQVtlF7bWvvFDGpMac6aRuu0tAEy+LpuuRht7/1OOrJaIyg+nuaQdp/XYiQIACi5Kw9pip+yTalQ6mcgMI00l7Qhn38/CR5WbgZ7Wnmink0ZZBknC6HLRcRypso9XEAHoIjRYj/SRMUlPR5XFp+0klURUjomWsg6cNhdZpyWiDdew59+HB91WpZMx55ho3NPmtjxdkIo+SsvWZw8AEDchkuayDuztjj7baiM0hCfradjdBsD4y9KxtNo58N8q1AYVE67I5LQbP8Yc28COtnQklQtZ7Ra+tmYTTqsWQ0IjwgVVn80iIv8gpoxqOg7HU/PNNNLP/wy1wUZ7WZL7eIkVNFbbOLTWTGtbC3nhF7J9+3Y2b94MQHV1NS0tLd72GQwGwsPDSU1NZfbs2SQkJOBwODj55JOZPHmyYmFSUFAIWRRBpKCgELR4rDz79++npKSE/fv39/hrbDxqGTGZTGRlZZGVlUVmZiaZmZm8cOcbGDCiJwyNpAUJonJNdNZZsTbbiSmMIO+8FNY+utvrduVyutj/biUAcRMjaSntwNbP4FcfpcWYoPMOfmfcXkDt1iYOfl6LLlJD2qJ4Dn1Rg62t77a9iS4Ix9Jko7PWSkxhBOMuSuP7P+zG3ulEH6XF1mbH5Rj8Va4xqUmdG8vBL2px2V0kTovC3uEc0Epy+M0JPf5tO2jy/n+k08V5HZ18YdBzWDM0q1DOT9Z4/7/wsnSA4xJEHmLGhTPuknQ2/mW/11IztO0j0BhVVG9oQtbIZJwUT/nq+n5FTW9ktYQ2XIOlyYYmTMXMn4xj95uHadjVSli8Dn2UlsY9bYPuRxuuJv2kBA5/VYu1xU7GyQnETzKz7rE93nPsqLFiabJx1Z6ews3RqcNSG40xowpJgrq1ExBOmfi5W3E5ZQ7++xTiZm/DlF6Nvd2AvcWEIameF1eehSR14JKaqa9r4dqbZvLuu+9isVhoa2tj//79PSYNjEYj0dHRLFiwgJycHKxWKzNnzmTBggXExcUp1iUFBYWgRRFECgoKAY/NZmPfvn3s2rWLXbt2sXv3bnbv3s2+fftoazs62ExKSiI3N5fc3Fy+fv57wjAdETxGNGi9AzaVTvZaUBKnR6M3ayj7tAaAOfeO5+DnNVSubUAfrSU6L5zqjY247Md+Vap0Mqnz46jd0kxXvZWUOTGkLYxnze92gQBzjglLkw1Lo23Q89VFaDClGNwudcD0H+dTu7mZQ1/VIquPWJp8sAB5UIepcHQ60UVqmHx9NjtePdjHmtJb/AyErcwIR/oxyeGgSqXy/rs33YXPQAyHIAKIzDLSUtox+IqDYEzSU3R5BlueOYC1xY4mTIW90zn4hkdQ6WSEU+ByCNIXxxM/ycz6J/YCEDM+gvbyLq9V61joo7Xoo7Q0l7SDBLPvLuTw17VUfNeAIVZH/GQz5avqBrwPPKLJ5VDRtj8NQ3It2ohOmndn0rQ1j8yLP0GSoGFTARv+nUNVuQwIVGpwOtzXUwgnGl0XjY3NdFma0BkbMEU4cLlclJSUUFlZebTfjEYiIyOZNWsWU6ZMwWQykZeXx2mnnYZWq/W5/xQUFBT8gSKIFBQUAobW1lZ2797tFT0eAVRSUuJNXBAdHU1hYSGFhYV8+cxar+gJw4RK6t9SEZVrwtbhoKPKQkR6GJOuzWb9k3uxNNpImhGNPlpL6UfVAGiMauwdg1sGANIWxKE2qCj9uBpJJTHth3mUfFBJ0752VFoZ4RI+WW4AjAl67J0ObG0OEqdHk3lqAt//fjcuh0Cll3FafBdA3clemkhklolNT+13L5Dg8Bu+iZ/eyC6Yu0dFqUZNqUbT4zdfxE9/DJcg8hA7IZK4CZHsfuNwv65/PiHhTdQw5eZcmg+0e++PoeK5drJaYtZPx1H6SQ3V6xvRhqvRhKnpqPHNzU9WS0iyhNPmIirPRM4ZyWz4330IpyDrtEQcXU4Of1M3+I6AyzfXoDa4hXn9+kI04R1EFhziX7ecxfT5LrZ8L9PaLGEKF2h00FTfv+CVVBa6uppobWtCVtcTFtGOLMvs3r2bhoYG9/mrVGRnZ6PRaJgyZQpLliwhPT2dzMxMsrKyfGqvgoKCwkijCCIFBYVRRQhBTU1ND2uP5/8rKo6mWE5PT6ewsJCdH5VgJAIj4RiJQCsNXpslKtdEzLgI9r/nnsGeclMuLWXtHPjQHSsTnRdO4742n60skkpCOAWmZAPjLklj67MHsLU5SJoZjUqnotzHgWhvPDEwkuweLFd8V8/hr+uQNe5YHE8a7KESUxiBpdlGR5WFsHgdLY/kUW3CPdA/EQRMr4Qyix7Dz9af4M7cDLcgMueYiCkIp+S/VcO2P1ubnc5aK8YkPXqz1mu5Gyrdr2vawjhSZsey9ve7ES7RIx5qqKQuiMNpcVK1zi20Jl2Xze5/HXZn4zty7/qC59loiMrA6ZDILnARGS3Y9J07pXfueBcNtdIRgeTZ5wA3ldyG1V5HXV0DFlstemMTLS0tVFcfFZbJyckUFhai0+nIycnh/PPPp6CggISEBCWNuIKCwqiiCCIFBYURw2q1snPnTjZv3syWLVvYsmULW7du9cb2qNVq8vLyKCwsZOP/7fSKnjDCUQ9g7fGg0slowtTu2A2jiik357HvrXKa9rcTUxhBQrHZnW5aMGQLS3eXukkrs2mr6KT0o2o0YSpS5sVRuabep9ifY5EyN5a0BXHuAbFTEBano6vBijg+DdSDKTfl0ri3jYOfu90AfXWHGwjZBWaXkzb90WWJy06svpCH4RZE3THE6rA02Y7fUtSLjFMSiM4LZ9Nf95/wviQZDDE6OuusSCqJWXeN87rEnQjacDXJs2Mp/7YOR6eTrNMTCU8JY+tz7qQP3e9tX2h4sxC7GhAw74BM8zcq6mskomIF+RNcbFwtY7dJ6A0Cu/2ou91AOFdvQMRYEfE2Du2qYOoF4/n222+pq6vD5XK3S6/XU1hYyMKFC0lOTiY1NZULLrgAvV5/zH0rKCgoHC+KIFJQUBgWamtrvaLHI4B2796Nw+FAkiRyc3OZPHkyG9/chemIxceACVnyLTOZxqgiOj/CW3em8JJ0VDqZ7S+VAe5Z8oadLXQ1DB6j0xtJJSGr3O5IcRMjyTs3hTW/24XLLogdH4G1zUHb4b6FM4d2EJh0TRa1W5up3tCELlKDIUZLc2lH/3V0hoA2QkPeOcnsf78Sa7O930HvUEWRRn00bmZCpURGg8SHRS6cRy5XoAsiWS0x/cf51GxyJ7IYLjx9qzNryD0rmX3vVvabDXBISGDOMtLVYMPaYidxejTxEyPZ+kLpCd8b4Wlh6MLV1O9sRdbIzL57HPveqaBuWwsqrYzLKXwSjNVvFfbcrwVSmiV2JwiQYOE+GblEYtcWFUiChGRBY52E3dZXIEnfbemzzCVcdNGBPbwTbY4gOtXM3r172bdvH0IIVCoVhYWFGI1GJk+ezIUXXsjEiRNJSEhAPo7shgoKCgrdUQSRgoLCkHA4HOzdu9crfjwCyOMKYzQamTRpEpMnT+bLv67FhBkTkYNafPojbWEcHdUWGve2EZEWxsRrstj4lDuTWFicDpdT+JSkoD/UBhWOLvegf+ZPxlG5tp7yVfVoIzREZoTRsKvV5/ifgTAlG0iYYqbkfbf7VtqCOFoPd9JSduLB/3DUlU/WSBRemsHBz6ppP0bq6WOJou4CqDdqJ5i7oP5okrmAF0QAEelhdFRbcNqGwezWC1OSnoxTEtn1z4O4HGJIrmmDEZlpJCItzBsTlHNWEjWbmmmv7Bpky2MjqyViCiNoOdiJrdVO6vw4kmfF8P0fdgM9n4mB6C2MPJgsIAtoNbjF0mm7ZL7Mc9FggsLnNBjDBYcP9BQu/QmjPuhcOKIsVFdVs/immXzwwQfU1NRgsbjvc5PJxNSpU5k9ezZxcXEUFRWxZMkS1EOsh6WgoDC2UQSRgoLCgLhcLvbt28f333/PunXr+P7779myZYt3MJKWlsbkyZPZ/t5+wjETTiQGTMedfje6IJyE4ih2ve4eHBdelk5LWQeVaxqQZJBU8nHH1SCBJEkIlyBlTgyp893uagh32uWOWstxi6vuaMPVyBoZS6ONyEwjWUsS2fFK2ZAylflCVK6J3HNS2PTUfhwW3/d9+M0JxxQ/3Ultkqg3CSya/n8fDlE0koLIg8akJjLDSP2OlsFXPg7UBhVTbspl/7sVNO1vH9Z9a8JUFK3IpPTjaloOdqCP1uKyu07YZRPcmeyM8Xp32nUJt9veN3VHnjcJIcSAFqqBhJEHlRNcMggJ8mol4tolVme7n905B2TKol24nnZnn/NJGHVDCEEXHThiOyHJRlx6DFu3buXwYXdmPb1ez6RJkzAajSxZsoTzzz+f/Px8xZKkoKAwIIogUlBQ8FJRUdFD/Kxfv95buDE/P58ZM2bw/Svbjogfs7t2z3EgqyVcDoGskZl8XTaHvqyhYXcb5mwT8ZPM7Hu3Ythm28FtSZn+43wOfVFLzaYm70CwcW/rsMTsdKf4xhy6Gqzs+Xf58O74CCqtjNPmQhOmInlOLIe/rvNJJDa+lw+AzeFbsLrKBaftlCmNFexO7Hkthss6BKMjiNIWxJEwNYqN/7vvhK1+/SFrZNIWxlHxXT2OTqf3Go0EBRemYYjRsvlvJcO6X0mG6PyjEwMJU6JIXxzP+if2HpdL3UDILph2SOJQtKAmApKboahKpmvxAYRaUDrHevzXyOTEGtZBTU0Nky/O5/PPP/dmuwsLCyMpKYkLLriA2bNnk52dzcSJE5XkDQoKCoAiiBQUxixNTU2sX7++hwCqqnK7diUlJTFz5ky2v72fCKKJIOq4xQ8cibuwuUDQJ8g789QE6ne2nrA7UG+SZkaTMCWKzU+7B46J06NpPdhBZ93QC3cei7B4HYWXprP9xTKsLXbC4nRYW+wjMiBOnhVD8qwYNv7Ft4G9RwT1xldRpLODVQ1IwyuCujMagggJNIah1RM6XmS1xNQf5lG5poHKtSeWIKE/VFoZXaSGzjorOrOGCVdmsuv1Q3TWDvN9HacjIsNI9Xp3ApQpP8ihelMTVd83DrJlTwYTSlEdkNossS3FfT+fW2rHFmWhrageXCA5ZfbPPf74Pbuw0UoTpFtxRVmpq6vz1k+KjIxk0aJFFBcXExERwWWXXUZKSspxH0tBQSF4UQSRgsIYwOVysWPHDlatWsW3337L999/z759+wD3oGDGjBns//TwEfETjV4ynNDxJJWExqDC1u7AEKtj6s25bHuhlNbDnUSkh6Exqo87dfFAyBqJggvTqFrXSHNJO+GpBiLSwqhY03DCgem90UVqCIvX0bSvHVkjkX16EodX1WFtPsHg+gGQNRIuu0AfpSUyy0jNxqYB1x1IBPVmIFEku2B8tUTTHbuHlI3seBkVQXQElU4mdV4ch76qHVYLZG8SpkbRUtqBpcnmvXYjgc6sIW1+HAc+rMLlEETlmeistWJtGeb7UIKU2TG0Hu6krbwLc46JpBnR7Pn34eM6t2OJpJRmyEuswh5jQdOgJ+a7FOoXHcIRbke2qHBpnHDk1i2Z4VsNp95YRBfqAju1jdUkT45nzZo1tLe7XR1zc3PJyMigoKCAH/zgBxQVFSlWJAWFMYAiiBQUQpCuri7WrVvnFUCrV6+mubkZtVrNlClTmD17Np8/uYYIogk7gZif7hhidXTVu2epi1Zk4HIIdyyQBAnFUTTuaR32GfrITCPmbJM3vXT++anUbm2muWR44zh6k3VaItEF4Wx4ct+IHgfc7l4x4yPY8vcDCFf/r2tfRVB3+hNEict2YUzSU3R5JjteLvO5aOiJMJqCyJigp+iKTHa8WkbHMZJPDBeSLFF8Qzb1O1t9Lpp6Ikz7UT6Ne1op/fj4isj6ijnH7dq69z9ut9CMkxNoPtB+QslC+hNJC2IPoasJoyutDSSIWpeE5JJonFUJAtTtGhwmu7cU0vEKJCEEqjQnFYcrOOW2Obz99tscPnwYl8tFZGQkSUlJLFq0iOXLlzNz5kwMhhObMFJQUAg8FEGkoBAC1NfX8+2333oF0Pr167Hb7URERDBnzhz2fVSOmRgiiUZ1HNne+kPWyKh0MvZ2B+YcExOuyGTDn/fS1WAjPMWA0+4adjceJIjKMdHVYMPSZCN+spmEKVFsf7F02GOBehxWlii6IoO6rc3UbG5GpZcRTjFiM//ugwICjIl6TIl6ajY39/j5eERQf0SfvbfPMk+M12gwmoIIRvfcABKKzbRXW+iotniv6UghayQklYTT4iJhShRxEyPZ8fLBAYX0cCDJMOGqLGo2NVG7pRl9lBZDjJamkvYTPtfqtwqZl1Lq/be6VYvklLBHWVG1a4j/MoOGmZXY4juRLSqE2oVQ9zzo8Yokp3DQQiPt+iakDBvl5eV0dHSgVqtJSkri4osvZsGCBUyZMoWMjIwTOk8FBQX/owgiBYUgQwhBaWkpX3/9tVcA7d7tTpubmpqKvVzCTAxmYjEROSzWHw86s8brFlb8gxzaK7vY/24lsloiIsNIS1nHiLgi6SI1WFvsSDLMuHMclWvcKbJHmoiMMFoPuuMXMk6Op7m0g5bS4UmZfSySZ8UQlRfOjlfKjjmoPB5R1Lo5pse/M+//DnBnM0uaFcPhr+tG1J2sN6MtiMAtilIXxFG5tgHHKMQVASBB0YpMmva1jUhsUW8is4xEZho59IW7BlP3e3kkSZ0fS/LsWHcqb3H02R0uctYdKc7qlNA2GLDFdIFKELklHk2LjvqF7kxzqk41ToPDaz2qtxq9+2iZP/T+F0LQTgsis4sWqZFOR7s3q11iYiJnnnkmM2bMoKioiLlz5ypudgoKQYYiiBQUgoCKigq++OILPv/8cz7//HMOHjyIJElMnDiRxq3tmInFTCx6KWxYjyvJIKvdCRHiJkSSf0Eqax/djaPLSURaGNY2+4jFzXhImhFN5qkJrP39blx2gcakxt5+4imHByMiPYxJ12az5dkS2sqHN+HDYERmGolIP1KHZpgEUW8h1J3M+78jOj+cnLOS2fy3/dg7Rkkk4B9BpDGqKL4xl5L3K2nc2zY6B5WO1KE6NHx1qHwlPNXA5Oty2Pr8AVoPjbwo8jyjskZm1l3jKPu0mqp1Q0vGMBRy1ulRdaiRrWrs0RZkq0z8J1k0T6nBktKOZJcQKkG93djv9scjkAAsohPNJAflFYcxpGjYtm0bQghSUlJYsmQJeXl5nHLKKcyaNetETk9BQWEUUASRgkIAUl9fz5dffukVQHv27AFg0qRJNG3tJJp4zMSeUOa3gZBkyetiM+3WPOp3tnLw8xrUBhXhKQaaS0fGCtSdcZek0VLWQdX3jWjD1YTF62k+cOIuOIMRmXlkVv1L96x6eIqBtorREUPmHBPR+eEc+KBqSNsdSxQdSwR1x2MlGs7ior7iD0EE/jnX7mSfkUTj3rYRj3fz0P1eTl8cT0tZx8gLMwnM2SY6ayzY2h0kz4ohIiOM3f86PKKHzVmjR1cfhi3KgtC6CN8Vg77aSN3iQ9TbjEguEMcoSXS8AkkKdyHSu9i7fT9Rk8PYssVdXyk/P5/FixcTExPDypUryc3NPa79KygojBxKKWcFhQCgpaWFr7/+2msF6v4h7djrYCKziSIO7TYd8cPnAdeH2KIIcs5M5vs/7kE4BWWfVtPV4C5W6uhyDnvRSQ/acDXxk6MoX+UOPO+stWJrdVuBbG0ObG0jPGg8Etuhj9YSmWH0isLREkPgLu6pN2uHPFCPPntvD1HkqwjyoBWCpJnRVK1r9KtAGG2EUyDJ7nTsddtacHSNnlVMUknozVrU+tFzq/Lcy5IsEZlhxNpqdwuikYxrEvQQfNYWe4+4wtQFcdRubhqWIrPdKZltAY7GDoXF1ZP5rDuGK1bdSdynWVSOa6El0eI+917v1MhV/T9Dgwkl0SbDDiP50mTYCqdEZNGmbaJy72E+tn1MWVkZDz30EJMmTWL8+PEUFRVx6623YjabT+yEFRQUThjFQqSg4AccDgdr167lww8/5OOPP2b9+vW4XC7S0tJwHJaJJp4o4obdBa4/JlyVScPuVqq+b0QfpSU6P5zqjU0+Ffs8ESRZQmNUYWtzEJ5qoOjyTLY8W+IVYKNFwYVpWFttlH1SM6rHBXcQfHR+OPU7TiwFeeN7+UMWQh4yXXZmOC1sfnTXqNTp6Y2/LETgdp2bekseJf+ton5Hy6gf30NsUQSNe9tGNknHAGQuSUQXoR6xQsIDYYjRMvn6HHa8XEZbRRfacDX2DueIJoAAdzKYxKlRmB6xUqPWEXMojIhaPaXTGvsIo8EYqiVJinVSWV9Oo6jDEtVCU1MTsiwzbdo0kpKSWL58ORdddBFqtTJXraAw2iiCSEFhlKioqOCjjz7igw8+4JNPPqGlpYXo6Gg0jWFHBFA8BozDmgShPyIzjSTPinGnxAZS58fRXtU1aq47HsZf7s7MtPPVg8DoZv/SmtTYO92Dr8RpUdg7nDTsHt66SL6QMCWKrNMT2fDnfccVF/VR5Wbv/xc8d/NxtSHz/u/chXNHoeZQf/hTEAF+PXdw34vTfpTHgQ+q+mQSHA1ixkWgMaqo3tDknqQIc9cPGw26P/O93wejhTnHhCnJQNvD7sLR6VuiaEjvoCPat4mZJuvRSSv5FN9dAYUQOIxWajuqaNHV0yTX0tXVRWRkJNOmTaOgoIB77rmH9PT0IZ+TgoLC0FEEkYLCCGG1Wvn222/58MMP+fDDD9m2bRuSJBEhooghkRgSiCB6xAUQQNLMaDrrrLSUdhCeFkbqvFj2vVWBwzJ6FgGNUUX20mQOflGDpdFGeKoBh8XlrV00Wqh0MjNuL+DgFzVUfT9ygd6DtcEzCD+eLFzdhZAHXwWRJ14ICaLzw2ncM0pJBQbA34LIQ3RBuDvBgh++iN3vAX8KtORZMaQvjmfdY3tGvQ2GWB1qnUxbRReGGC3pixM48GHlqCb4UOtV5C1LofzbeuTXDBgbtOg71DSkdR7TetRdFHkYijgCEJKglSYaXNV0xTZR3VCNEIIJEyaQkZHBeeedx1VXXYVOpxvqaSkoKPiAIogUFIaR0tJSrwD67LPP6OjoICEhAblGTwyJRBOPVhr5D5raoMKcZaR+p9vqMfGaLJr2t3tjdEYLWS1hTNDTVtGFpJKYcFUmBz+vGZX0v72JyjV5Y6BixkXQXNrul4GnKdnAhCsz2f5yGe1DjFHqTwh151iiyCuEjhBdEE7hpels/Mv+URel3QkEQWSI1TH1llx2/fPQ6GWd64fwFANFV2Sy/aUy2itHN7MhuMWYOcvktZZG5Zlo2je6lmNwpwjPODmB7S+WIZyC8FQDHdWWUa0fBe4Yp6gcE9tecNdCSn8zhfZoK05t33b0J4q6M1SB5FTZqHPU0CjX0BpWT3t7O0ajkRkzZpCdnc1dd91FYWHfYrYKCgrHhyKIFBROAJfLxdq1a3nnnXd4++232bVrF2q1GpPDTCyJxJA47LWABkJSSai0Mo4uJ7HjI8i/II11j+1xu2KNcEHIgUhfFE/yrBjW/mG3XwP2TSkGiq/PYdsLpbQcHN2Ux72RZEiZE0vFmgaf+2QwIeShP0HUWwh1xxCjHfWYrd4EgiCCwOgLSSWRPDuGyu/qR7TQsC9EZhiZeE0Wm/9e4hdx5kFSScy6axyVaxo49FWtHxoACLdr44w7Ctj978M07GxFbVBh+tCM6JYXYzBR1J2hute1yy00uKrpjG2murESl8vFuHHjGD9+PBdccAGXXXaZUvtIQeEEUASRgsIQ6ezs5NNPP+Wdd97h3Xffpba2ltjYWDT1JuJIIpp41JJm1Ns15aZcWg93UPJ+FZJKQq2T/RIkn700iY4aCzWbmlCHqVDrVFiaRn+gqdLKxBRGULulGYCweF2PDFejTfpJ8dRta/HZGuOrCOpNwXM3H1MEAWgjNNhaR7Z+lK8EiiDyECh9Y4jVETcx0ltY1R90f2biJ5tp2NWK0zb6Sk0fpcVhdeLodJIwJQpjgp4DHw4tPf1woAlT4bC6EE5BzlnJRKQa2PR0CQCR38SANDRR5GGo1iOXyk69o5Z6qmgx1tHR0UF8fDwnnXQS48aN47bbbiM6OnrI7VBQGMsoqUwUFHygpqaG999/n7fffptPPvmErq4uCgoKMNSamc54IutjRsUK1J3wtDDyzk1hy7MlOC0uSj+uxtLsFh7CKUZVDBkT9XRUH0lzK7mtIACOTvcgxh9E5ZnIOTOZltIOrK12v4ohlVYmOj8cS6NtUEFkWzqDL577+3Ed5/TkYjIZRAyFq5l2ax7736mgbrv/MqsFInETI8k9J4UNT+4d9lTQQyU8xUB0fjgV39b7RYQA3mdGF6Eh58xkXA7XCWdEPB66T6hIMj3ieXq8e0aY7u/Uiu/qaTC7J77UehU5/4xm3zsVyIfdmedcn6X5vN/u67bbtEScUXLM9WWnhngphXhSEF2Cdm0T1bUVfPvtt7z++us88sgjLFmyhKKiIi699FKKi4uHcJYKCmMTxUKkoDAAe/bs4a233uLtt99mzZo17oQIrihiSSaOZIxS+Ki3KW5iJAB121rQmNRkLI7n0Je1o5YVqj9MSXqKb8xl24ultJT61x1NH6XFnG2kekMTABqT+riytw0XkiwhayWcFlePgrf9YVs6o8e/hyKKTk8uHlK7Yosij6R59rNfFoFlIVJpZaLyTH4Z9PeH555R6WVcNjHiKamPRfdnKXFaFM0HOvxi+e1OZJaRiVdlselv++moGh1R1B/acDXpi+I5+EUt9g5Hj/e0h6EIpHbb0YLbg4mj3jjNFsqbDlFHJS2SW5zNmjWL008/nblz53LaaacNaX8KCmMFRRApKHRj586dvPHGG7zxxhvs2LGDsLAwjJ1m4kgmlqRRSYjQG1OKwe3DLyDvvBRcTkHJe5Wj3o7uRGYaicwyet15zNlGmg/4VwwBpMyJIXF6DJue2jfqAdj9kXdeCvpoLdueLx1wnd5CyIMvgmioQigQCSRBFKhMujaLrkYb+96u8HdTkNUSU27Oo2pdA5VrhlaHZ9iRwJx19N2TflI8LaUd7oKzfiT37GQkWWLfOxUguROpdE+gMpg46i6IujNUcYTJST1VVLQdpk3fgMViIT8/n+XLl7NkyRJmz56txB0pKBxBEUQKYxohBDt27PCKoF27dhEREUFYq5kEUokmAZXkvw9GWJyOqbfkseOVMneGND8lR/DgqRsSX2wmoTiK7S+V+TVZAriD4Y1JBuq3t4B0pI1+KHDZH8YEPRqjql+xOJAQ6s5Aouh4hVDeeSlYm+3+CU4fgEAUROmL4tFHadj7lv8FCLgnHOwdTjpq/GcF6Y6skXE53HV7YidE0lHVFRAJKSZcmUnNpiZqtzSPal2z/hsECLfrbtHlmWz8yz466/q6yw4kjgYSRd0ZikCSDAJHRju7d+2mM7KZlpYWEhMTueGGG7jwwguZMGGCIo4UxjSKIFIYcwgh2LZtG2+++SZvvPEGu3fvJjIykrAWM/GkEEMCsh9FUNrCOMJTw7wFCiPSw2g93OlXIQQw8eos2qu7KP2o2r8N6UXmqQlE5Yaz6en9fu8jcAuypJkxVHxX3297fBFCHnoLohO1CCXPjsHe7gio2KFAFERxEyLRmNT+t4D0RnJnKKz6viEgLKBIMOUHuTTtb6Ps0xp/t6YH2UsTMSYY2PaPga2zo4IEEalH3uFA0YoMWg93cvjr/ksg9I4n8pWhiCOXcCJPsFJSsY8mUUdzczOxsbGsWLGCa6+9lkmTJo16TKyCgr+R/d0ABYXRYtu2bdx///2MGzeOyZMn8+STTzJr1izee+89ampqKJJmECclj7oYklQSSTOiMcS63fHaK7toLjla+6P1kP/EUFSeCVnt/jBWb2j01jXyN4YYLVF5JgAOfVnLlmdKAkIMAYSnhpG2II6w2MAroFi5piGgxFCgUre9JfDEEBAWqyNtQRzhKUPPZDYiCNjyTAmHvnRbHKPyTBhifB/EjyR1O1qp3uAuvCyrJe/7YtQReMUQQNP+dm8ac0OsjqQZ0Uiq0RUfsqSCHWHkNE+mpqaGp59+moKCAl588UWKi4tJSEjg4osvZvPmzShz5gpjBcVCpBDSHDp0iNdee42XX36Z7du3ExUVxbJly7jooos49dRTOUu/wm9t0xjV2DscSDJMuy2fw1/XUbOxyW/t6Y0uQsO02/LZ93Z5j+DgQCDv3BQMcTq2PnvA303pF5Vexmnpm7BgKNYhD1889/cTtgyFxemIGRdBxXf1gWFZ6EYgWojAPYhOmRNL/a5Wvxau7c1A91YgMOm6bDrrrOx/JzBcDT3ETYwk77xU1j+xNyBSqntImBpF2oI4Njy5F+E6+k3w4PosbUhWIg9DjjU6wvuWV/j000/51a9+xY4dO2hrayM3N5cpU6bwi1/8gvHjxx/XfhUUggFFECmEHE1NTbz55pu8/PLLfP311xgMBs477zxWrFjBaaed5lcR5CG+2EzOGcl8/8fdOK0uJJXk91gccNcdSZoRTcn77hofgVCs0oMmTIUuUkN7lQWVVkYIETCxQkgw7qI02so7qfiuf8vC8YghflKLdsnBE2ycu4ZM6vw4Nj2136+ZyvojUAWRJEtMvSWXw9/UeWtZBRIpc2IITw1j95uHA8Y6KmskJEnCaXNhStJjabH7Le1+b7q/y3LOSqLq+8Z+Y3pGG8+7X6WXmXnHOEo+qKR2c3Of9Vo/yBnSfjusbiGVtGzXcbXrv9ZX+eSTT3j00Uf59ttvsdvtLFiwgFmzZnHdddcxbty449qvgkKgoggihZDAYrHw/vvv88orr/D+++/jcDg49dRTWbFiBeeffz4XRK70dxNJmRODvdNJ7ZZmNEY1kRlhNOxu9XtF+u6EpxrIPSeFHS+X+b0OS28KLkjFEKdj89PHN/s50qQtjKO9ykLTvrYB1/FZFP2kZ9KD4RBF/k7IMRCBKoiAgO0zgKi8cExJ+gFjUfxN8Q9y6Kyzsvf/yv3dlB5ow9UUXZHJ/ncqaOuW+c3fSDLEjIug5WAn9g4H8ZPNaMJU/U6w+CqOPKLIw/GKozca/857773HSy+9xCeffIIsy5x99tlcfPHFnHXWWZjN5uPar4JCIKEIIoWgxeVy8fXXX/Pyyy/z5ptv0tLSwrRp07jiiiu49NJLuSrlNn83EX20Fkuje1Yy95xkbK2OgMrwBZAyL5bItDB2BuCAVJIltCY11lY7GpMaBD1cSgIBXaQGa4vvbjjHFEU/6f/eOBFBZEzQ01FrCdiBfUALIgAJjPH6gMnw1h9DvQdHA41RDRLY2x3oIjTY2h0BZ50EGL88nZaDnVSsrvd3U3qQvigebYSa/e+6Syx0/5Z0ZzBx1FsUeThecfTkzl/xn//8h//85z+sW7cOnU7HJZdcwjXXXMPixYuRZSU0XSE4UQSRQtBx6NAh/vGPf/D8889TWlpKVlYWV1xxBZ/+ai1GKcLfzfNiiNUx7Yd57Hi1jKZ97YNvMIpIKglZLeG0uojKMxEWr6fi28AaEIA7VsiUpGdTgFqFYsaFU3BhGhuf2t/vYKU/+hVEAwih7hyPKJLVEjN/Mo6K1fUc/iYwLQmBLojSFsSRMjeW7/+wO+Dir8A9UJ56cy57/n2Yht0DWyf9yZSbcmmv7HLX5QkwUubF0llroWlfOyqdjMshAsJ9uTtReeEUXZ7Bhj/vPaYLc3/iaCBB1J3jFUdSkoOYhXrWrVtHSUkJUVFRnHPOOfzyl78kMzPzuPapoOAvFEGkEBRYLBbefvttnnvuOT755BPCwsK49NJLufbaa/nFgscCJkVoVJ4Jc7bJm5o6Zlw4jfvaA+4DO+m6bLrqrAE5QAG3ZUi4BPpoLWq9ypuVKdCQZInY8RFDztzmFUU+CCEPx2slMibosbXbsXcERixHbwJdEGmMKrQmTUBbiOImRFK/szUgLTDgLkzqsDixNNq8z3YgknduCoZYHVufC6xkLZJKIjrP5BW8Wacn0lzS7q5NNwDdxZEvosjD8YgjIQT3fHITP//5z9myZQudnZ3MmDGDBQsW8OCDD2I0Goe8TwWF0UYRRAoBzaZNm3juued45ZVXaGpqYv78+axcuZIXV76DWlL7u3mAexZeVss4LE7iJkYSN8HMrtcPBdxH35igp6vRhsvutgpZmuwBlT3LQ8rcWKILwtn+j9KAiq/qjinFgKPL6bNVqDe2pTOGJIZgmOKIApBAF0TBROBPILjrmTXsbh0w+Yg/McTq0Js1NO1vR6WV0UdpA04IS7JE4aXp1G1rpm57C2q9CpfDdUzrZesHOUMSRR6ORxw5hYOrX1jGQw89xJ49ezCbzVx++eWceuqpnHvuuUrxV4WARRFECgFHQ0MDr776Ks899xybN28mMTGRq6++mq8f2YxRCvd38/ow5eZcWg52cOC/Vf5uyoCodDIz7ijg8Nd1Aecr35vwVAMR6caAbufEq7NwWJzsen3og/izd7hTq/9fZbHP2xyPGIoZF07y7Fh2vHIQlz1AlSXBIYhkjUzRigwqvquncU9guqUBFF6ajlqv8n8x0mOQMjeW1oMdAZXQoD9S5saStjCOdX/ag9MauM9P9plJRGYY2fTUfp/Wr3qrcEj7t9nUZFyy7XiaRpe6g4V3FfPcc89RU1NDdnY2t912GytWrCA2Nva49qmgMFIogkghIBBC8N133/HUU0/xxhtv4HQ6Oeecc1i5ciV/Oud5ZClwAjXVBhXJs2Oo+LYep81FVK6Jznor1ubACmoGiC2KpGFXC8Lltmp0VHUFpNXFlKQnvjiKAx8ErqjsjkonI8kSji7f3dA8QsiDL4LoRKxCERlhxI6PDPg+DQZBBJB9RhL1O1toPdg5+Mp+Qm1QIVwioAfw3ck+I4mazU10VAWWFQbc1ixjkoH2ii53BrjCSOp3BFY9NgCdWUNYrM5r1UqZF0vlmgaf3k2+iCObracnxvGII5fkYslvZrB27Vref/99hBBMnTqVP/zhD8ybNy9gXN4VxjaBM8pUGJO0tbXx17/+lSlTpjBv3jxWr17Ngw8+yBzHUtreUvH4uf8IGDHkaYaslkiaHo0xUQ+4K48HohgKi9NRcEEq5mx3hfb2isAUQwDaCA2mJAMqXWBc636RIP2keNRhKpxW1wmJIV84URe51oOdAS+GgokDH1QFtBgCcHQ5cVpdqMNUpJ8U704bHqCodDKmJAO6CI2/m9IvwuV+ZwKYs03utP+xOj+3qi/WZrs3lsiYpCdpejSy2n3hB/t0Ji3b5f0bCK22Z1bPg/+a2OPPF2Qh89n/20D722rm2JeyfPlyDh06xIIFC5gwYQLXXXcd5eWBlZ5dYeyhWIgU/ML27dt56qmneOmll+jo6ODss8/m5ptv5vdnPBOQs0WJ06JImhHDpqf3gyBgCqn2RqWTSZgSReUat3++zqwJSLEGgATReeE07g1cF6Tu6KO0TLw2i73/KaeltMOnbQYTQv1ZiYYjVih2fASd9VY6awMvRqw3wWIhAnfhYkOsjoadrf5uyjGJzDKSf34qW587ELjPfy+i88Np3NcWsOnhu79Lk2fHULOpKSAtcd5vkwRTfpBL1boGqjf4PiHTn9Wot5WoP4ZqORJC8LOPf8CvfvUrVq1aRVhYGFdccQVXXHEF8+fPH9K+FBSGA0UQKYwaVquVf//73zz11FOsWrWKxMRErr/+er789Ub0Upi/m9cHbbgalVamq8GGMVGPOdtE5dqGgBRCHszZRsZdks7mv5Ucd8D/aBFdEE7hJelsfGp/QCZ36A9ZLfmUetlXi1B3QTScSROm3JRL4742Dn5WM2z7HCmCSRBlnppAVG44m/7qW7yGP/H1Xg0EDLE6pt6cy65/HQroGC1wJ64ovjGH3f86RPMB3yZG/IGkkkieFUPzgXY6qi0YYnU4rc4hFdzuLo58EUUehiqOnGE2Ft41hb///e9UVlaSk5PDAw88wMUXX4xerx/SvhQUjpcA9k9RCBUqKyu5//77SUtLY8WKFdTV1fHyyy8zvnoulasbmXBurnfdSddmETchEnAH1xffmOMu8AekLogj//xU77oTrswkYUoU4M6gVnxjDjqz2/0ieXYM4y5O8647fnk6STOiATDEuD9oHveHxOnRjL88w7vuuIvSSJkTw7iL08k+I4niG93pSytW1xM3MZIJV2V6181flkragjgANGEqim/MITzVALjjdyatzPaum3t2MhknxwOg0soU35hDZJY7HWl0Qbj3OADZSxPJOi0RcLs9FN+YQ1Se2/XNnGOi+MYcr1tE9plJTLwmC4DmAx10NVgxJrg/IhHpYRTfmINa787sk74onrxzU7zHmXhNFnGTzIA7NW7xjTlow4/097xYCi442t9FV2SSMNXd32HxOopvzEEf5c5clDwrhsJL073rFl6aTtJMd397BhBhce7+TpoRRdGKDBr3tLHpr/tJXxRPyjx3gK02QkPxjTmYkt19GD/JzMSrs7z7zTsvhbRF7v5WG9z9HZHuFtOx4yOYfP3R/s45K4mMUxIAkDUSxTfmeN0Ho/Pd/e1xKck6PZHspe7+RnL3d3SBO4FHfLGZWT8dh8aowuUQZJycQM7Zyd7jTLoum9gid/2riLQwFv0pE5fFfR9adqTRsTbfu277FxOxlbnvAUejiSXbJXQWCe2Sg6TMjaXgom737OUZJE5z97ch9kh/R2uP9GG0V0gAjLskjeTZMYB7Jlu4BI173FaMhClRFF2R6V03//xUUue7+1tjUrvv2RR3f8dNjGTitUf7O/fcFNIXH7ln9Ufu2Qz3PRtTGMHkG7rds2cmkbnkSH+r3f0dlevu76hc9z0rqdz3bOaSRLLPSPJuG5lhJGacuw8jM40U35jjdZ9MPyme3HO69bcf3xGHv65j09P7ve8IcBdFLb4xx+tCG19sDoh3xKSV2agNMrnnppB7TjI5Zx7t78nXZxNTeOSeDYB3hHAJuhqs3kkczzvCQ8GFaQHzjrA02lj/+F4yT00kuiCcpJnRxIyPcN+zWvfKg70jim/MQR3m7u+0hXHknXe0vydclUn8ZHd/G5OO3LNH3AqH8o5InBpFRHoYHdUW734995rOfOSePfKdGOgdkbRsF+lX7OPU3TIxnW5xndksWFJ6VGjPqhBMqnX/W+sUnFEi6Hp+Agf/NdHnd4SqU8vOVw9y6ZmXc//99xMXF8dVV11FXFwcZ511FqWlgZskRCF0CIy8xQohyYYNG3jsscd4/fXX0el0rFy5ku2vlpKXm8mLK99BlmQsjbYesRhtlV3Y2t0zWA6Li7byTlxOt1uCtckG3VJZt1d1YW11uzA4bUfWtbt/t7bY6dAeDdRtr7Z4K7k77cK9rs29X1urnfaqLlQ6mfTF8Vjb7Fia7ex7uxzhEqTMifW6RtjaHLRXHc2O1FFnwXakDS6ne7+ede3tDtorj8YcdNZZcVjd5ypc7nU9527vdNJW3m3dehscMd4KAW3lndg73es6Oh20lXd6fkZWSRgT9ajDVDg6nbSVd2Hv8PShe7+eFOCWJhtO29H+bq/swtZ2pF+s7nU9s8qWZht0c19sr+rynuvR/j5ybVpsdFQfTafaUXO0v11297pOmwudWUP6ogSaDrR7+6Sj1oK12T0QcjmOrHukn6xt9h793Vln9bbX24cW97q2DkePzFWddVbv/SBcR/qwy90v9o6efdhVbz16rp7+PtKHKq2McImjfdhoRdVx9FzbK7qwtzvJW6cj196Edb8eZHe/yCYLqI7es6rodiS9+1wljYPyT6yo76vFfqS/ZdXR/u6otmBtdfToQ29/t9q9A53e/Q3u9nueI1ufPrRgaTrSh0fuWYfn/m539EjZ3FVn8d53wkmP/ra3O2ir6Oy2rhWXs1d/d/a6v490eFeDtce5OrqcR+/ZLs89y5H+Dpx3hPPIvzvrLViOuE8dvWcD8x0RFqujvbKLrsajVti2isB7R7SUdeC0uTBnG0lblED9zqMJDALtHeG9R52CtAVxVH7f0LMPB3hH9Ohv59H+7m7Ja6/q8lpxnNYjfehwefv7eN8RNZubsB95brThaiTJ7bYGg78jLF83Evd9I6Z6K13PTaChm9GmRQfWIyNJF1BvANuRUz98dzqqFtj/8hRyr9g06Duis8rK9ufLMLlSOafoYrqSmvjss8/Iz8/n4osv5oILLuCCCy5AlpW5fIXhR3GZUxhWnE4nb731Fo899hirVq0iMzOT2267jXfu/Aq1FJjBsx5ktcTk63M4+EVN4LttRGkxZxu9vuEqnRyQ/ux9kNyzp5Vr6gO2UOjxkLfuaLB1QVi1T9u8VxQ17O3QR2mZcnMuO14qo/VwYCcA8BBMLnPgnuEvujKTjX/ZFzTxOcGExqgieXYsBz+vCdh4ou50f/cmToui+UAHlqbAd1fOOCmBLc+UnLBbpS+JFezd3O1yr9g0pP07hJ3zHz+ZP/zhDxw6dIjx48fzi1/8gvPPPx+1WpnTVxg+FEGkMCy0tLTw7LPP8uSTT1JWVsbChQu5/fbb+d8LXgnIJAkeIjLCyDs3hS3PHBhS1jB/kzI3loQpUWz66/6AjmnykDgtirbyroArcngskmfHoDWpKft04Dic7kLIw2CCaCSEkAe1QUXClCiqvm8ImviRYBNEsloiaaY7qD6Y3hmZpyZga3d4E64EA8YEPeGphiElBfAXkkpi6s25VG9oDMiiswOhNqiYfH02+96pOKEsioMJI3s/MUhDEUdCCBb/qphPPvmEr7/+mpiYGM4880wef/xxoqJG7p2qMHZQBJHCCVFaWsqf/vQnnn/+eaxWK5dddhl7XqokQgrsF5QnY5A6TEXG4ngOflmLozOwBze6SA2mZAMNu1pBOhI0bQ/8x1dSSUxemU3D7lYOf1Pn7+b4TPKsGDRGtXumuh/6E0Me+hNFIymEgplgE0TBSsbJCdg7HFSuDZ7BetqCOGLGRbDluQNBMfEja44kshDuGLv2yq4erqyBSO9v4IlmJh1IGPUniDwM1WrUJpqRZrezfv16dDodV1xxBcuXL2fRokVD2o+CQncUQaRwXGzdupVHHnmE119/HbPZzM0338xXv96ETjL4u2mDkrkkkdjxEWx4cm/A1uXpj8xTE4gZF8HGv+wLjnZLR9xJLK6gyng1GMcSQh56C6LREEPhqQYiMoxUftfgjWUIBoJREEmyRPKcGFrLOnrEpCgMP553h0rvfpcEA5IMU2/Jo35Xa1BkevQgyTDttnzqd7RQ9smJt7u3ODqWKIKhCyOrsHDyA9P405/+RFtbG+eddx4///nPmTJlypDbqqCgCCIFnxFCsGrVKh5++GH++9//kpGRwV133cX//egzVFJg+/KGxemQ1BIdVRb0UVo0RhVt5YE/kNEY1YTF6Wgp60BWS0gqKThihXBnwYpIM7L5mZKgiAXwkHNWMh01FqrXN/b5zRcx5KEgrHpUrUKJ06NJnBrF5r+VjNoxh4NgFETgzupWvbGp3/skkEmcHo0xQUfJ+0FUtFeC4utzaD3cwYEPfYvR8zcqnYxwClwOQWSmkc46qzeRRSATnmrA3uHE0mTDmKRHOASddSdWFsEjjAYTRN0ZijiSdC4m3JzBW2+9RWlpKYWFhdx5551cd911Ae2yrxBYKKk6FAbF5XLx7rvvMn/+fBYuXMihQ4d46aWXyDk4jbdv+yrgxRBAztnJ3tS3liZbUIghgPTF8e50uRK4HCJoxBBA9YYmDn1dG1RiCNzZsTyZmrozFDEEo+8iV72+MejEUDCz+W8lQSeGwJ2NzGkLsodSwOFvaoMilsiD0+pyW8UlyDkzyZu+PtBpK+/yJoVIWxBHzlnJg2wxOBmXbCPjkm1DEjn7X57C/pd9s/QIq8y2xw6TVTqFp556iqamJm644QbmzJnDyy+/jMMR+EJUwf8oFiKFAbHb7bz22ms88sgj7Ny5k3nz5nHvvffyp7OfD/hZF0mGpJkxNJe001lnRRuuxt7hDApXIkkloY/S0lVvRaWTkVWSNzVpoKPSyaTMjeXwV7XB4dbnA5ov3fVbMo2+D373zRjdQrNqg8qdWjjwb+8+BKuFCAAJ1HpVUCVXCHYkGdIWxVOxuj5oJog0YSpcTveEliFWh6XJFhQxUZJKQhOmwtbmICxOhznHRNX3DcPybvdV7LiO5PDOX7ne530LIbjjvWv53e9+x9dff018fDwPP/wwK1asQKvVHld7FUIfxUKk0Aebzcbf//538vLyuPrqq8nOzuabb77BsDqJx855IeDFkBvJXZjuSBFJW5sjKMQQQPbpiYxfngGSe5YxWMQQgCnJQOKUKHTm4PvojLs4zVus0oNHDAGUdUQPuo99M6yjLoYAcs9KpmhF5qgfd6xTtCJzWGbQ/UFMYUSPwrTBgj5KS+KUKExJgR+v6sHe6XSLNwnGL88g+/REfzfJJ4RTeGsiRWQYSZwaBQzP9z/3ik0+WYxkrfv7t/e56ex9brpP+5YkicfOeQHtN/E8++yz5Ofns3LlSrKysrjhhhtoaWkZfCcKYw7FQqTgxWaz8cILL/Cb3/yGw4cPc/HFF3PoX02YpEh/N80ntOFqcs5IpuSDSmxtDiSVFBSzcB7UBvdMszZcjSZMHVQpqrv3dTAmUJDVErlnJ1O7tZnmAx1ATzHk4VhWIn8IIQ+mJD0qnYqWsg6/teF4CWYLUWSmEafVSXtV8DyrHszZRuInmdn/XmVQPq+eNgfbe96YoMfe6cDW5vC+84MFT1/3/tYOB8eyGHmsRN0ZisUIoF20oFtk46uvviIlJYX77ruPa665BoMheIS1wsiiCCKFPkLokksu4eDrjUEjhDyodDJFKzI58GEV7ZXBESPkIeOUBKLzw9n89P6gczXzpNWu294cVPU3BqI/IdSd3qLIn0IoFAhmQaTgX1LmxBA3wRw0abm7I8lQ/INcGve2BVUmOgBTsoHspUnseKVs2N0W+xNG/Qmi7gxFHFkNHaQti+K1114jPDycG2+8kV//+tfodEOLEVUIPRRBNIax2Ww8//zz/Pa3v+Xw4cNceumllP2zEZMUMfjGAYIp2UD26YnsePVg0PiT94chVkdYvI6Gna3+bspxkTw7huYD7XTWBp84yD8/lZpNTbSUdQwqhqCnIAoEMZS2MI62ii6aS9r93ZTjItgFkTnHRHiyIahqbHUnMtNIwpQo9v6n3N9NGTLGBD2RWcagKjbbnZjxEXTWWOhqsPm7KceNSidTdHkGBz6qHvaJyO7iaDBRBEMTRg5zF23Z1WzatInk5GSuu+46br/9dsxm8/E0VSEEUGKIxiB2u52//e1v5ObmcvPNNzN37lxmiSXUv+4IHjF0xI3Z1mbH3ulEpQ2+WzmmMILxl2cgydBVbw06MaTSy5iz3TFalWsaglIMqXQymjD3h9YXMQRHY4kCQQwBRKQbMcQEX8xWqGCI0XpjFYMVTZgKlS743qEdNRavGDJnG1Hpg+scGna20tVgQ5Jh/OUZfWIYgwGVVsbe6cTWdqSY6zCGGPsaZ+RhKHFG6mYDURuzmOVawqJFi3jwwQfJzMzkL3/5CzZb8ApUheNHsRCNIVwuF//617/4n//5H0pKSoLSIgQQNyGSlLmxbHk2+NwkuhORFkbClChK/ht8PvwA6SfFkzAlig1P7A3K9nfHVzEEYF8cRPVbgoBgtxAp+B9ZLTHttnxqNjZx6MtafzdnyMhqiZwzk6ne1ETb4U5/N+e4kVQSk6/Lpnx1PfXbhz9xga9iBwC7RP4P1vm8unpBIlrzId577z2SkpK49NJLeeSRR1CrA7+siMLwoAiiMYAQgo8++oh7772XzZs3c/bZZ1P3noVwyezvpg0NCRDuIqvxxVEc+qIm6AbiuggNCVOjgvKj3QfJnfHJ0hics2mZSxIpuyGcFpP7HooNGzwhQaCJIY1Rhb0jeIKy+yNUBFGwXwtTsoHYogjKPgmueBYP+mitu35OcH0S+iV9cTw1G5uwttr93ZQhIasl0k9KoHZzk7uY65Fv9nDjszCyu81VvggjafoEANq7arFq17Bx40YmTZrEb3/7W84888wgya6rcCIEl31ZYch89913nHTSSZxxxhmYTCa++eYbLO/rg04MJc+KYeJVWQB01lkp+6Q66MQQuAcd8ZPMaIzBOeskyZB7TjJh8ToQBK0YUulkTEuiMdh8/8gFmhiSZIlpt+aTNHPwdOAKI0vSzGim3ZqPJAfvoEkXqSEy0xSUrnNw5F0kICxeR+45yUjBeRpojGriJ5kxJQdf9jOXQ1D2SbVXDE28OovkWTHDfpz8leuHFC+09+kZ7H16xjHXEeu3A2AyxBOjOpfPPvuMqKgozj77bLKzs/n3v/99Qm1WCHyC9JWhMBg7duxg2bJlzJ07l6amJt5//310qxL45cLH/d20oXFkfNFe1UXT/rZh9U8eTTwft4bdrWz4333YO4KzcrZKq8IYr0cbrvF3U06Ixv9k822Rjeqoo4k46jsHjgMJNDHkRrD3P+U07m3zd0PGPI17244kJQi+SRoPDbta2fJMSVAnpwHQhmswxutRaQcPwg9E7B0ONvzvPhp2u2NKg1EYeWja10Z71ZFECyPw7R4JYeTh4Xu+QdOxmKeeegqbzcZFF13E2WefzapVq463uQoBjuIyF2JUVVVx//338/zzz5OVlcWvfvUrnlvxf0Fp7s04JYGwGB27/hXcrjSRmUYmXp3F5mdKaK8IrnTg3QnG+kK9aflvLuk1KhoiXHQY+p5Lb7e5wBRCoUWouMyFCvpoLZGZRmo2Nvm7KSdMsL+zTCkGiq/PYds/SoOyxlh3Ci9Np7POysHPR84ls48rnf3Y457ernQet7neCOHi+rvGc++991JaWspJJ53Eiy++SGpq6gm1VyGwUCxEIUJXVxe//vWvycvL4+233+aJJ54g80Axz1/xn6AUQwBthztpKgni2e8j3d5S1sG2F0uDWgylzIlh0spsJFVw3kvgFkOyC7KqVSQ09//q624lCnQxlHV6ott1USEgCIvXkXV6or+bccLEjIsgZU5sUD/r4A7wn7Qym5Q5w++yNVq0V3Sx7cVuYiiIL0nT/jbaykc2YUQfi5Hm2GLYV2uRJMk8+4fd5MZewQ033MC2bdvIz8/nhz/8ITU1wRlzp9AXxUIU5LhcLl577TXuvfdeqqurue2221j/h31opOBMw5u5JBGVTqbkvUp/N+WE0IarmXBVFiXvVwb9zB64B3vmLBOVa4Oz3kfLf3O9/y+73I5NYoDpoNiwjoAXQ1qTmglXZ1HyXiUtB4P7/goVC1FkppGcs5LZ/o9SbO3B6RIL7jhBSQ5uy4qH5NkxNJe0u2Naghzv/fViKba24L2/AHLPTsZhdY54Ao+9z00f1ErkwWMtGshK1B2H08KMU1384Q9/wGQy8fjjj3PllVciy4qNIZhRBFEQs3r1au644w6+//57LrjgAqr/r5MwyeTvZp0Q8cVmZLVM9frGwVcOYCQZsk5PouK7eqzNwZUpqDthcTo6661BGxpx6I2JRBrdljlzm0SXTmAdZK4g8sz9o9AyBQ+hIohCDY1Rjd6soS2ILdteJAiL1QW1MNKZNaTMieXAh1VB+z72kDg9GpfdRe2W5lE5nq+WIICCv/t+v9ee2knatp289957FBYW8qMf/Yibb775eJqoEAAocjYIKSsr49JLL2XevHk4HA6msYjW/8hBK4YyTo4nfVE8ALWbm4NaDMUWRRAWp0O44MAHVUEthlRamYnXZJG2IM7fTTkuDr0x8eg/BEwo01B46NjJIIJFDAVjIeKxQqhcm+ylieSclezvZgwLaQvimHhNVlBfG2uznQMfVHlLT8SOD676gd2pXt/oFUPpi+LJODl+RI+X/4N1Ptckqp4bQfVc3/q2JSGe7acuZtWqVXR0dHDLLbdwwQUXUFJSciLNVfATwft2GINYLBYefPBBCgsLWbVqFeOZTtTGLKKk4BywenDaXDhtwVu/w4MkQ+r8OOInm/3dlGHBaXOx61+HvJXgg4nuYqilwwASrC20sSt9YIEaLGJIbVAx6+5xRBeE+7spCr2ILghn1t3jUOuDM8NZd0o/rmb7i2X+bsawULmmgV2vH8JpC+4Meh7iJ5tJXRAX1DFFHpw256hlNhxKoVZfhFHeK+0AXLF+DdJtt5B6+WWsW7eOwsJCzj33XBobg3dydyyiuMwFCf/973+57bbbOHToEMn2bLIoRC0FZy0bgKQZ0bicIiQyGSGBWqfCYXGi0ss4LcH90ZXVEjGFEdRtG/5K46NBD8sQoHMIjCYLzgHGqMEihDyotDKx4yNo3NcetOnbuxNKLnMao5roPBP1O1tDZvCt0spIKglHV/BPWgHETTLTsLMl6GOkPN8atV6Fw+oMejc6gISpUcgqiap1Iy8kBnKji9zRvxdB4urWfpfvW9HTM8dlsxH+wcfs/vobUlNTeeKJJzjnnHOCNrnVWEKxEAU4ZWVlLFu2jLPOOoumkjam208iT5oY1GIIwBCnwxAdnIkfepN7TgrjL88ACHoxBBBdEEHuOSnoIoOv1lBvMQQwpRpmbtf3O2AINjEEbstdzebmkBBDoYa9w0HN5uaQEUMAE6/JIuu04M+eB+44nNyzk0PCuur51oy/PIPcs0PDtdEQrcUQOzqZMwdyo2sp6t+LwFc3OlmrpeO8s0m++05qDHrOO+88ioqKWL169Qm1V2HkUSxEAYrFYuH3v/89v/nNb4iNjSWqPJV4UoJ6liEy04islmja3+7vpgwrxgQ9GpOa5pLQOS9dhAZra3DFP/UnhgCMNoHRBtYES4/lwSiGwB0PUbe9BUuTzd9NGRZCyUIEoI/SEjchksPf1Pm7KcNCZKYRS5MNa0twvQ8GIhjfbcfCnGPC3u6go8Yy+MpBRFSeCZddjFqW1u4Wo4GsRB66W4t6W4i6I4QgcuMWDr37Hl1dXfzsZz/j7rvvxmgcuAi4gv9QLEQByEcffcTEiRP55S9/SYIlg9zy6SRIqUEthsDtJpdQHOXvZgwLmjCVOxBUgo4aS0iIoej8cGLGuWfBgm3AMJAYQgg6tBK1JskdS3SEYBVD2ggNybNj0JmDz3o3VtCZNSTPikEbHtxWfA8tZR0hI4bg6LstpjCCqLzgtxQ1l7S7xZDkTlCkDgv++DWAhMlRJE2PHrXjjUTiBUmSaJ1WTMQ9d6FfOJ+HH36YtLQ0nnjiiRNtrsIIoFiIAoi6ujruuOMOXnnlFaKIYxxTMErBm0kG3PVSNEY1HTUWZI2My+EKCV9nc46JvHNS2Pr8gZAZLOSek4xar2L3G4f93ZQhMZAYim8XTK+CzzPBonFPJqRfvG0UWzZCeOZFQuA5gtCzECERMtfGg8akZsKVmZT8t5LWgyNbXHO0GHdxGg6Lk/3vBnfNOw+6SA2Trs1m37sVITFBhwSyWsZld2FM1GNvd4xafa+a2+b6vG5blu/usYaqaixvvkVpyX4uvfRS/vSnP5GUlHQ8TVQYARRBFAAIIXjllVe4/fbbEUKQ2JhDEulBbxECKLwkHY1JzdbnDvi7KcOC2qDyBhfL6tAoXtgdSSUhnP49J1WCOwWrs6Z20HX3vTgVAJ2hryg1WwQ5jbAhCZCk0BBDIUjICaIQJXtpEtUbG+msDd5aPt0JhHfdcNP9m9T9WxXsTFqZjb3dwa5/je47wldhlPCEOz5o/59mD7quEIKudZtxffwRHR0d3HrrrTzyyCMhMd4LdhRB5GdKS0u5+eab+eijj0ggjQImo5X0/m7WCaMOU+HodKI1qREugb0z+F/MmjAVU27Oo+yzamo3N/u7OcNG9plJ1G9rofWw/2d+PWIIBhdEHjEE/Qui7oSCGJJkiRl35HPggyrqd/af8SgYCUVBFDs+guylSax7bA8idPIrhCQRaWHEToh01/gJERKKzWScksjGp/bhCJFvryRL2Nod3rHFaDKYMPIIIg+DCSPZLqFta0N6+z/s2rKFU045haeeeoq8vLwTbqvC8aPEEPkJp9PJn/70JyZMmMDOnTspZh4TpVkhIYaylyYy4cpMkMDW7ggJMQRg73Ry6KtaGve0+bspw4ZKK2OM06Mx+t/vvLsY6u/f3ekuhgCsXUdjaiQhmFkhiLS453pCQQyBe0a7ck0DHSEyQx/KdNRaqVzbgKQKrU9sWJyO3HOSQ6L+jQeNUY0xXh/URVt707CnjUNf1YaEGAL3t9fW7gAJJl6ZSfbS0c162FvwDEbuHWsGXccWHo71iqtIvP5GSkpKGD9+PFdffTUOh5I91F8oFiI/sGPHDq699lrWr19PqsghhyLUUugESYfF6dBFakImm5wxQY82XB0y5xOIDCR++rMS9RZDHjxWIoNdcFIZrE0B49Xbh62NCiNDKFqIQhVTioG8c1LY8UoZtjZl4BYMROWasLWFTha6qFwT1hY7nXX+mRjqz1p0LMHUn7VItvecUZAtFowfvM+2NWuYPHkyzz77LFOmTDnxxioMidCZEgkCnE4njz76KFOnTqW9vZ3pYjEFUnFIiKGYceGMvywdSYbOOmtIiYfkWTHuquAhhMaoouiKTPQBUAvqWJag3r8NJIbgqJWoSyPx39zQE0Mx48KV7HJBhM6sIWZc8Gcx6057RReb/ro/JMWQPlpL0RWZaEIkS5uH1AVxJM+K8Xczho2m/e101lmRZBh/WfqoP2MJT6weksUo9441g1qMXHo9bedfSOKtP8LhcDBjxgwuv/xyxVo0yiiCaJTYv38/ixYt4mc/+xlJtkwSd40jUgqdl5S9y4m9ywkhGBi4/71Kdr560N/NGFZUOvdH3+XnApLHEkO9OZYY8hDdKTDaBOmXhJYYQoK881K9adEVAp/Ywgjyzk0NKfcyDzqzBlNS8Lt3d8fzLlTpQ0sQ7Xz1IPvfC41Mej2QpKPjDj8wEm50+rR0Oi+7nMlz5/L6668zf/589uzZc7xNVBgiisvcCONyufjrX//KT3/6UxITE4k6kEaUFBrWBpVWJr7YTNX3jf5uyrATFqej4MI0dv3rEJbG0CiAGYj4Koh2P5rq03pLq23ot7Sx45XQErDgziAlyRJOP4vY4SZUXeZUWhnhEiGXiRKgaEUGSBI7Xi7zd1MUfMQQo2Xcxens+fdhv7mbjSRJM6Op3dwcFO/HA7+bM+g6lrIyjB9/SFlZGStWrODZZ59FlhUbxkii9O4IcvjwYU4//XR++MMfknVmCukHJoWMGAKIzDKScVJCSLrx2DsddFR3Ye8ILZO1MVFP0RWZAVG8r/S1yT6tt++OHN/3+f92hExdkd64HCIoPvYKbpw2V0iKIYD971ay65+hN+kA7gypRVdkYkwMLQuYrT00v2kA+igtGSclEJll9HdTfCL77u8GXUefmYn9qmuYMGkqL7zwAieffDKlpaWj0LqxiyKIRohXX32VCRMmsGvXLs7+88ksvGcmaik0Kpd7KrA37mlj/RN7sTaHRmFSAF2EBpVOxt7hZO9bFTitoTUAldUSLrsLp8W/5zVUMaSq1B17RSEYd/1mXA7hrUQfSuSdmxJScQBjheTZMeSdm+LvZgw71lY7LocIqcxsHpxWFy67C1kdWr6OTquLvW9VYO90otLJaCNCZyLT0mRj/RN7vRlgPWOUQCb77u8GFUayXk9Y+oUUzb+R0tJSxo8fzx133IHi2DUyhN7bzM+0tbVx9dVXs2LFChLmRnP6y3NJmx06lYjD4nVMvy0fc44JIGQKv3kYd0kaueeE3gDGQ1t5F7teP4Rw+e+F2l0M7X9seJ6NGb/cx4w7CtBFhs5HvjvWNrvffOUVjh97pxNrW+gJdABdpIYZdxRgzg6OWXlfEU7BrtcP0Vbe5e+mjBh556RQeEmav5sxrHjGIuYcE9NvyycsfpBJtADBF2uROS6XpEkryc0bx2OPPcbll19OS0vLKLRubKHEEA0j69evZ/ny5VRXVzPzpxMpOCu7x+/7ZoSG325CsZnarS1+HVSPFMYEPQ6LE2tLaA1iYsaFEzfBzJ7/lPu1Ont/lqHc2/sviNifq5wzue8zlHfVRrQmNXETI6n4ruHEG6kwqoRqDNFYIGVODHXbWtw1YkIMSSVRcH4qddubadgdOrXnwC1mVTqZzhCsaSbJEvGTIqkJwuLp/cUWJa3uORFWV76J6j3vYzAYeOihh7j22mtHq3khj2IhGgZcLhePPvooc+fOpUXbyLkvndxHDAUzkiyRc3YyEelhANRsbg4pMSSrJVLmxYIEHTWWkBNDHhxWZ8CJIejfSuRr3FDeVRsBt398qIohnVkTEIVzFY4PjVEdknGWABXfNYSkGAK3pchhcxGKU8bWFrtbDEmQMi82pNwDhUt4xVBEehg5ZycjycFxfr5Yi+JSp5A3+ybUag3XX389v/3tb3E6Fe+B4UARRCdIdXU1S5cu5e6776ZoeR7nP3sakWmhVXsC3LE1weCXezyEp4WRNi8OQ0xwmNiPh4bdbUGTbOBYYqh7LJFHDKWfFE/s+NBNR51xUgLjl2f4uxkKx8n45elkLE7wdzNGjNjxEaSf5Hv6/GBi/zsV3riUUMQQoyNtXhzhaWH+bsqIoA3XoAuyWCmfEi4YY8mcfjOp+Yu4//77mTVrFhs2bBiF1oU2isvcCfDpp59y+eWXI8syM/6naNBYoWBzmdMY1ai0Mpam0E87rdLJIZdAASBmfASRGUYOfFgFfnzSfUmikHt7lU+WIY/bnEcQFVyYSuvhzpBM/w7uAGFNmDpkKs33JtRd5owJeuydjpAsZgrudMcRaWHs+Xe5v5syMkiQvTSJlrIOGna1+rs1w06ofvt6o4/S4rS5girL3oHfzenjMteb5rp9HNryT1wuF2+++SZLly4dpdaFHoqF6DhwuVz85je/4bTTTkOXrWLpS/NDKnGCh7xzU8g7L3QTDKQtjCNlbixAyH4Q1FrZnQkqwMUQ+O4mp6rUecUQwJ5/l4esGAKwtTlCVgyNBTpqLCErhgCqvm8MXTEEINw1pdS60Bwueb59KXNjSVsQOmVBepO3LIW8c5P93Ywh4VvChTymnnI7+ohUzjzzTG6//Xas1uCafA8UFAvREGlqauLKK6/k/fffJ4tCTltbjKw69ovygz3jyb1i06D7tp45AwDdf9cNS1tPFF2EBiRCNqYmfXE8Lqeg/Js6fzclZNn34lTUmsH9m7OWb+HAw4MXqwPIvsf9kVBpZUzJBlrKOk6ojYFMRHoY0QXhHPysBhGamj3kLUSSDBmnJNC4p43WQ53+bs6IEZllpK28C5c9RG/UECd1QRyySuLQl7X+bsqIoIvUgCBoyzJ0LZt5zN+FcFH7zsuUiB0UFhby1VdfERsbO0qtCw1Cc8pjhNi4cSNTp05l9erVFDOPpeunHlMMfbBnvE9iyHrmjIARQ+FpYYy/LB1ZLWFttYekGPIEkB76sjZkxVB0QThpC/0727fvxak+rZe1fAtwVOgMRPY93/VYJ3pcBBOuzAzZ2DZwf8Qj0owhK4bGAsIFEWnGkE0JD263zglXZBIzLvTiZ7uTtjCO6ILQPMfyb+q8YiiUkix4sLbYsbbakdUS45enB13clOGt7zG89f2Av0uSTMJ5V3FK4ZlUV1d7x6oKvhO6I4lh5tlnn+WHP/whWmsYk5jNpPXRA677wZ7xPu/XI4TA/2II8GYhc2dlCT3joc6sYdLKbPb+X3lIWxYMMTqMCf6ptO6rEIKjYmgw+hNLdVub6ajqCml3pLptLdRtU+pNBDtbnzvg7yaMKLY2B5v+up/OutB21TEm6kPeAhaZZSR/WSpbnz8QUkXXPUiyBAK/Zlw9ETyiaCCLUVfBIsbvFGxrWsvChQu54YYb+Mtf/oIkhZ7IHW4UQTQIVquVW2+9lWeeeYYUsslnMiqp/xS4/QmhgaxD3YVQIGBM1NNRbaG9soudIeq6Au4Pd+3mZtqrQrfoHkDF6nq/HHe0xJCHUB+ASbIUUinuxzKhfi1D/VkE2P2vw/5uwojTXtlF7dbmkJ1octpcPcY4nrFPsHEsYaSXwpihWkRDQRl//etf6ejo4G9/+xt6vX8mSYMFxWXuGNTW1nLKKafw4osvMp7pFEpTUUkq8tb1TM/scY3zhe7ucd3xp3VIG65m8nXZJEyJ8lsbRhwJtBEahFNw8POakE2iYErS++06DiSGHPa+EwgnKoYKLkgl67RE3xsXhBhitMy5txBTisHfTVE4QUwpBubcW4ghRuvvpowoWacnkn9Bqr+bMeIkTI3CmBSag0un1eWOWXQKtEfiiEOVhClRTL4uO6jdrvtzpetaNhOcMjE7s5nATN544w0KCwvZvHmzfxoZJATvXTDCbN68mfPOOw+r1cok2zzMUkyfdQYTQd2tQ4FmEeqOrc3BjlcO0nIwdF3I0hbGkTgtmg1P7sVlD91ZWnNuOLGFEdRsbhpVj8ehxgv5wrEsQ82lHTitoV2MztHlpPSTarrqQ3/mPdTpqrdS+kk1jq7QvmfbyjtRaUO8iLAESdOjqd/ZSkdV8FkWfEXWSBRfn03V+kYOfx2asbY1m5uwNNlCwho2kMUoUUonNjKWDQ3fsGTJEj744AOmT5/ujyYGPEqWuX7497//zVVXXYWqU8tk5qKXjgbf5a3T+WwNyr1ik89CyB8WorhJZlQaieoNTaN+7NFGbVARkRZG497QLbLnQVZLuByj91j7IobUGqfPYujAw3MGTbCgEDqEepY5hdBjtN+x/iI6P5zWQ504LKEt5AESp0XhtAvqtjb7uynDQteymT0sR3aNlU22Vdj0Xdx3333cf//9fmxdYKK4zHVDCMGDDz7IRRddRHhnNNNZ3EMMge8JE9JeVQe0GAK3e5UpKbTdcQyxOtR6FY4uZ0iLIY1RRVSeO/vRaH2o9/5txqhbhpAgbUFcULs4+EpsUSSGWN3gKyoEBYZYHbFFkf5uxoijDVe769mEsKuV5x0bnR+Oxhi6FrHGvW04LE7UelXIv4tMSQZMIeQG2duNTmPXMY3FJIen8T//8z9cf/31uFyhGTpwvCiC6AgWi4Xly5fzwAMPkM14JjALldRz0LX/5SmD7ifqKz1RX/n2UB08R+LgOT5+NSTJ/TcMqI4UmCv9qJr971UOyz4DlYILUsk5K7iKsR0P8ZPM5C9LcRdhPU4OPDKHA4/4Vgto7998dwHtXkT1RDHE6EiZG4s2PHRTGHvIOSOJ6DyTv5uhMExE54eTc0boFfDujTZCQ8qcWAzRoR0vpdLJ5C1LIW6i2d9NGXFyzk6mIMRjw/a/V0npR9XA0TFSqKGSVGTVTWJq2kyee+45LrzwQtrb2/3drIBBcZkDGhsbOe+881i/fj15lmISpP4f/MEEUXchZKoY2Ce1uwjKv3ngvPJATxE0DJcqMsNI4aXpbH3hAJ21oR+boIvUIATYgrQY21DQRWqOu25UdyGU/bNju6t1F0OS/tiuFMMphrzHVElBmzJ1SEggq0LfNWesuMzJagmXU4RiNYM+jJVn9ETeucGENkKDFMJF2rsTFq9j0jXZ7Hr9UEjHVdeJSnbrNhAfH8+XX35Jdna2v5vkd0JTBg+BsrIy5s2bx65du/j8888HFEOhQltFJ+Xf1oV8itTo/HAklYS1xR7yYigs3u3KEOofK1ktjZmBFgBi9NwfFUYel2NsiCFw13iR1VJIFvjsjued63kHhyq2I0XaJZVEdH5oFqb10FlnpXx1HW0Vnf5uyogSJyXzzDPP0NzczOmnn87+/fv93SS/M6YF0caNG5kzZw42m43Vq1fz83l/HHDdY1mHervJ+WodOibD6CIHEJEWhi5Sg8shKP+2PqQ/zFqTmoKL0oifZPZ3U0ac6Pxwpt6cd0L+3b66yYHvrnJ5V20cdutQwtQoZtxegKQK7UEWQOr8WLLPDH33qrFGzplJpM6L9XczRhxZLTH99oLQLuVwBEOsjqk353ljOEOZ+MlmCi5KQ2MK4RhOAeWr6nE5BLpIDeFpYYNvE6T846q32bx5M7IsM2PGDJ577jl/N8mvhPBdfWw+/PBDLrroIsaPH897773HisQfDnkfvsYKwRCEEAyrEHLvD3LOSqa9sot971QM774DEFu7u2q6pdHm76aMOI372tjxStlxp2buTwwdeGROH7c5f8UMdadpXzsOi2tMWIjsnU53RXWFkMLW7sAe4qm3wW0NK/24mrbDoT3LDu6U6jteKaOpJPRjMWo2NtFS1oG9PfjTVPtC+uJ4TEkGNj29P2QnkX+Q+zNW161m+vTp3HTTTURHR7Ns2TJ/N8svjMkYohdeeIHrr7+eM888k/Z3VX2SJ/RHdwvRYEKou4XoWEKoT/zQsYTQCV4mjUmN0+oM6Ro84E4lXretOWRfXt05kdSvg1mFuguiwcRQ9ziikRJDCqHLWIkhUgh9xko6biSIm2gOmRTVAyFrJFRaFfaO0BeAQuMi7HQ777//Po8//ji33nqrv5s06ow5l7nHH3+ca6+9lpUrV9LxrmZIYsiXDHIeMeSvDHLd0RjV5J7rzjxmb3eEvBiKSA8j/7yUkE8lDqDSy0y/LZ+YcRFD3nYkXORgZMVQ4vRo4saACyS4B1U6c+hn0Rur6MyakI+t8RA3yUzi9Gh/N2NUiCmMYPpt+aj0oT+sMiUZyD8vhYj00HUnA3DZBfYOByqtTO65KSGdYl2yy3S+q+WGG27gRz/6EVdddZW/mzTqhP6TewQhBL/61a+4/fbbufvuuznw90ZkybfTD4ZU2v2hj9IQkWpArQ/dh7g7rYc6Wf/EXtoru/zdlBFHOAVV6xppHaJLSjCKIThSMysxdGpEHIuI9DBm/LgAfVRopy0ei+ijtcz4cUFIxyV0x5SoD6naLsei9VAnVesax4RLb3tlF+uf2EvrodB3iQRQ61VEpBpC/p0sSRL7n67nvPPO46WXXuK+++5jLDmRjQlBJITg7rvv5uc//zm/+c1v2PC7EqQRECIxfz92uuLuyFbfu77k0VlDaoc6LQWAtvIuNj61H2uIZ1lTaWXiJrgLHoZ6pjUPLrtgw8S8IZny9z822+d1VWbfC0iOhpvc/ncrKf24esSPEwi0VXSx/eUyLE2hHwM31rA02dj+ctmYmLQBKP24mv3vhnatOw/2DgeHv6kLeU8MD55vbdyEyBOqfxcMWFvtbHxqP23lR57bEDbwSpJExzsaHn30UX77299yxhlnYLONjW9RyCdVcDqd3HLLLfztb3/jiSee4J0ffz0kMdRww+Az6h4htPepmYOu6xFCuXesHXRdjxDKuWvNoOsCqFPdQih7GjiKkjjwYdWYiKWJHR9B1tIkmks7xoSvb9xPp9LhlMEy+LpDEUEAeQ/t9Hnd/BvXDWnfx8tYqfXhwWl10TwGArTHJIIxeW3H0jOcMDUKfZSWg5/V+LspI47GqCbn7GTkD6uo2dzs7+aMLEfGUtlLk1DrZfa+FdoJqj66ey133303v/vd77jkkkt48803UatDWzKE9Nk5HA6uuuoqXn/9dZ5//nleWfn+sO4/ECxCHhHUnebSjrER2HmEms3NNJW0jwkxVHvLHJIki0+m3VAQQ5IsUfyDHCpW11O+qn5UjulvUufF0nq4c8y4o4w1ItLDiEgLc5c/GAOkzo8jZU4M3/9hD8IV+t8lWS2FvMXEg73Dwcb/3YetLfS/vR5aD3eOmRjAjY8e4KmnnuLWW2/lkksu4eWXXyYsLHTdfUNWEDkcDq644gr+/e9/8/rrr/P0Ja8P276HIoRg9MSQxiBh7xLUbmn2eR/BjFqvwpRioLmkfUy8kGtvmQvAlvbBk0aEghgCEC7B7n8dHlPuY7ETInFYXYogClHC4vXETogcM4KobnszbeWd/5+99w6M46r39p+Z2V60u+q9F0vuPQppJoWQAiQkIYF0akiA0MJNuAVe+F3g8r73AqFcekmABAiBFALphRQ77t2WLVmy1Xvbvju/P0aS7dhJLFnS7M6c5y9iZmc/OnvmzPmebzOFMQTQuWFAbwnzyuS711/lYbQ9SCKc1FnR3NK3a3jqf1s9FsOXIH/ok8/w57/8mfe///2cccYZvP7669jtxmxEbMhjjEQiwU033cSf/vQnHnjgAd2MITkin7IxdPDba0/ZGLIUF51gDDkyZJZd7SNQap7qVHkrAix4fwmK3ZDTeIqeT55JzyfPxC0nKbbHeLs4yLcyhpL2Ez/7ZsZQ/V37T/i3+TSGJhk+NG6acBuArT8+SNdGc22qzETXxgG2/vig3jLmjchQjOFD43rLmF8k7WDDLNUiFbvMgqtKyDdBI95JMuu8rPpULY5MYxdaALj3fffxla98hd27d/OhD32IWMyY72PDeYgSiQQ333wzDz74IL///e/536sfmPG9js0fStXwuEnCI0la1wcZajfmRD0Z7a/00b93hETEuCdSk14hgAJ7jBpnlI6Ih+Qx/3/uD18Bpu8VgtT1DAFIikTN5YUcebmPYO/MGs8KBAL9ceXYKX5HNk2PdpiiCpusSFRelM+RV/roeK1fbzlzTiKSZOtPD5qiGfokQwfHaP5Hp2n+5uf/bSsPPfwQV111Fe9+97t55JFHDBc+ZyiDKJlM8uEPf5jf/e53/O53v+MnH/jDad/zVA2h/T9aMy1DCGbHGJIUcPoUggMJevaZ48G0OBTsASvjnWFDL0bHGkMAB0J22sJWkicpcWOUELljsXktuHLMUbJ3kqIzs8lakMH2XzTrLUUwhyy5tZL+PcO0v2r8zfIkrhwHNq+FyJDxD+2ScZXNPzpAPJR4+4sNwuS72F3gIDIYIx429t+ejKt0bx4EwJ3nINgXMbyx//0r7uenv/gpH/7wh7nwwgt54YUXDFVowTCxRslkko9+9KPcd9993Hffffzsuj+d9j3nyiskxU/dGHL2yG/pGSpY6KDhEg/KhGe+6ZOlp6xjLpHn8OSgcG0Wi64vR7bqm9gYueTU+/Qc+vqp9/+BE40hl6z5hKLqifNsusZQ5ZdOfV7rZQyBFmqz9acHTeUdGusM0bd7+O0vFKQ1/XuGGes6hTKRBiHYG2HrTw+awhiaZNIYMkvYHIBslVh0QzmFa7P0ljJvKHaZxTdXUNRojr/5t7c+zre+9S3Wr1/PzTffTCJhHMPXEKadqqp89rOf5Ze//CW//vWv+eX1D+st6aRU36mVzz74f09tA+vseXsjq3NnmJGuGInY9Iyhkes0DRm/f/uS3kpDLQCJ3SfmlJyMuTSGAA6/1EP/3pG37/cgTzSkTZ7aA2sp18Yvfqjtba+dK2Oo5Zvate5jJDjlJBdljrFx1MmRyPEv1/x/DpD/T9h/q/+U7j85B0+FxJCOG3MJ7F6r4XtovZHhlnGGW0yWb2FCzOQZOhZ7hpXIaMwU7SBAyyOqfV8RG7/XRNQEa1kyprLz14cI9prH2E9Ekuz67SHGOs3zN//jrvX87oHfcd1113HkyBGeeeYZFEXRW9ZpYwgP0X/+53/yve99jx/84Af85qZH9JZzUqazEXX2yG9rDLmyFOxemf2fKGXLVUUzMoZOhUlj6FSQXa45NYYkWcLut6ImYbz7bRYfWTn5/z4JlvLSKWPoVJhrYwhgvPTojiGUlNgw4qQzcvT8QjOEppd4nzbGEJBR4mL1Z+tw55krZM5X4UZxGGJZFrwFikPGV+HWW8a84s5zsPqzdWQUGyvv4K0Y2DfKvj8dJjpqfGNokvHuMGpS84xJsjnKU48eCaEmVBwBG+58c7yzfnrtH/nkJz/JCy+8wD333KO3nFkh7T1EP/nJT/jXf/1XvvrVr/Ln25/VW84JTNcQOlXK1jgZK57egzdXhhDMvVcIoGBNJqXn5fL6d/a9eWnPtzF+3shcGUJwojF06OuNlP/rycPVjjWGTkSiI3rUMzQdQ+jN5l9iaBjF73vT/09vxrvC7Plj29sbvgbC5rGw+MYKdv++lYH9o3rLEcwhvjI3DdeWsf7/7TV82d5JxrvN90wnY0n695rvWVYcMss/UU3bcz10rDePN7Ty3QXIFomdvzmkt5R5Ye8PuvjGN77B3XffTV5eHp/73Of0lnRapLVB9NBDD3Hbbbdxxx138OJ/bEeSUuc0YjqGEEzPGGr6ZCmHVBVlGnEHs2EMKQ21J4TNzYchNEnXpgFC/ZGTG0PTNIRgdoyhyCWrsf/t+Dyb6eYLvZUxVOWM4FWSbB1zANKbGkO1vxg6IWxuunMQUsMYAkhEk/TvHtFbxrwSHY+z8Xv7TdFg2OwMt4yb8rc22zM9SdWlhYT6IqYxDhLhJPseOmy6cutNj7STjBm36u3JeOaeTdxxxx18/vOfp7Ozk29/+9t6S5oxaRub8eyzz/LBD36Qq6++mr0/6poyhhSbzGQRLkk+vmO0bJWO6zD8ltdaTrxWkiev5YRrFXXCOFFV6u7acGrXAt4eCXeP9j0SKhZUJgOsZY43emQLRD9egF1NEgfiSDBxL1lVsRxzX9kqIykSI9edwch1a1GkY+4rqRP/fXRcJEVCaahFaahFPsZMluQ3RJ9NXAsTIXJW6Zgx5LhCB289htMbb6vHQjKmMtg0duK1Dutbjvcb72utnAiRkzjxb7UcNZQmx1AzhlQU+fgxlOUTx/vQ1xuRJn4L6U1/G20MW77ZSMs3znjTa8dLVZKqREyVmDSGZAtHx/sN+hVVnZpb1Xe+9rZzVlaOOUAIjpIcGT7lMZwKhZBOcq311K6VlOOvnRxDZ5aNyosLsPusR/9WRUK2yidce9x93/Tao3N2UpMea8TbXqtCeDCKmlRPebzfbAxnfO2pjOFsjrdF4thzrNNZI051zp7O/J7+GJ782kQseZwxNK0xVE6cs9MZ71mds2957YljaHEqVF1SgCvP/rbXvt0Yvv08TJ01Ih5KkIgk5n28T3kMp3PtKa4RI61BknFV03aaa8Rs7SPmeo2IjcVJxlXsPgtZ9RmnOIazMN5vHMN5XiP2fL+TM888k+985zs89thjpCtpaRBt376d973vfaxbt47CjBIq31UAaDGrjXc34CvTYrML12ay+rN1U59bdH05VZcUAmB1KzTe3UBmjReAvOV+1t5VP3Vt/bVl1Ly3GNAmaePdDWTVayFGOYv8NN7dMPVA1L2/hPPGw1Tf+RrVn11P490N5C7xA5BZl0Hj3Q1TzUOrLy/i/JAWMuDskXmPY5RKRYsvzpMTXOkcxTmx6V5uDXOeXTthafpkKUtuCnBGPExNIkaOmuC66BjeiQ3wikSEd8eOdrZf/sWF5N62DIAMe5J31YzjtWsnF9WZUc4uP3rtso9WUXH1AgAcXlh7hQ1vlva3FdbKLL/kaLjW4psrqbqsBNnlwuZVOOPOCnxlTgDyl2ew+pNlU9cu/FA51Zdp421xauMdmBjv3GXaGE6y4JpSaq/QxltSJBrvbiB7oTbepevyWPv5BTiztAZotVcUU/+BUs1SkxXOuKuW3KXaeAdqPDR+qQ6LU7Piqi7JZ+EHj3qC1nyhnrw67T6+fIU1H8rA5tb+1vI1DhouPhrXv/KLDeTfvFS71pPkvJVhXA5tvCuL46xpOFr9bMVt1fj+fTkAfpJcGx8joGrjvSgZ5fK49jse+nojSz9cReZ/aL+NV1W5LjxGzkThh/p4lCvDY1P3LXPE8PeEyf/nAFYHnHG5BX+upjevQmLNJUet1QvGwrxjPKIZQ3ZtzmbWaYtyzpI3jPdVJVRfoP1/yZFhGu9uIGexNoZZ9RNzdmLhq3lvEfXXHv1d1961gLwVAW28q7003t2A1W2ZGO9CFt1QMXXt6s/WUbg2UxvDMjeNdzdMVV2quCifJbdWHh3vO2ooPisbu89KZq2X1XfW4crRNk6l5+Wy/ONVU9cu/3gVZetyAXBl22m8uwFvoTYPi9+RzcpP1Uxdu+TWSiouygf0XSMWXF0y9dmTrREFazIpPCOL6suLaPjg0fFe84UF5K/Sxttf6aHx7gZs3onxfncBi288ZrzvrKXoDK3aUUaJi8a7G6YaB5ZfkMfSjxwdwxWfrKbk7BwA3PkOGu9uwJ2rheGWnpvDituqp65d9tEqys/PA8CZadPGeyIXpKgxm1WfPupVXnxzJZUXT6zJGdp4+ys8ABSszmTN54+O98IPlU/liZ3OGpHd4KPx7oapF/nUGjHBGf9ST+4ybbwDNdqcnVojLi1k4fXlR8fwc3UUrNbmrL9iYs76tDlbeXE+S24+OmdXfbqGojOzAfAWOWm8uwFnljZny96Zx7KPHR3DFbdVU3quNmfdudp4l56n/XfJ2TmsuP3otUs/XEX5Bdp4OybGO6NUG+/CM7JY9Zmj473oxgqqLtHG2+axaGNYpY13/soAa7+4YOrahg+WUf0erWrpqawRde/X5qwkMytrRCKaJGeRn7orjz4LM1kjADyF2ninwxrR+mw3vbtGTnuNOHYfkQ5rRFZ9Bqs+U0vVpYWntUbMxj5iXteIW6u08DmrdNprhGciJymV1whJknC+lk9VVRVXXXUVf/nLX0hHJFU95ug6Dejq6mLNmjVkZ2fj21JGdpWfWDDOeFcY2SqTWeNhuHWc2HgCZ5YNV459KobXV+EmEUky1hFCUiSy6ryMtAWJjsW1ZLgCx5RLP6PMhZpQGT0SQpIha0EGo0dCREZi2H1WvEVO+vaMgKotKkgw0qYZGdkNGYx2hIgMxbB5LWSUuOjfO4qaVPEWORm4YTG9SW2xKpJjDKsyY6qCgyTZSoLOhIUEEgEpgVVSOZyhPZQliRhhJPpkBRsq+ckE7bKFuCQRSCZwotIhW8jaoZLrjhOMSYxFFayySpYrTl/QQjwp4bUlcFhVesctxNwStc0DREMQHFZRLODPlxnuSRKPgtMLDq/EYIc2TTLUfuLhBOPdUWSrRKDSxciRMLHxBI6AFVe2lYEmbRy8uRKJWJKx9mPG+3CQ6Ggcu9+Kt9BJ3+R4l7pQVRg9HNS6fNdnMNoeIjIcw13goOiMLPb/pR1U8BY7kSwKI22hifH2MtYZJjw4Od5O+veNoSZUPIUOFJvM9psWU/XLIwRKLYSGkoRHklgdEt48haH2OMk4uDNlLHaJ4c4E4w15ZPsThMIS42EZq0Ul4E3QP6yQSEp4nEnsNpX+YYXOMy0UJeOMSxJDkoJNVclX43RJFqKShE9N4FFV2ifcOflSnLAkMSgrWFSVokScbkUhLMlkJBP41CSHZQu1iRi+l4JEQypjQyDLECiQGOlTiUXA4Qa3T6J/8rfJlkjsO8RoewhJlsha4GXkSIjoSOyk440KI4ePmbMT423PsOItdtK/dwQ1OTHeisRIq3ZtVn0G411hwoNRbB4LGaUuBvaPkoyreAqdKHZ5qlJa1gIvwd4Iof4oVpeCr9zNQNMYyVgSd74Dq8vCULNmAGbWegkPRgn2RrA4FfwVbgYPjpGIJHHl2rFnWBk8oF0bqPYQHY0z3h1GscsEqjwMtYwTDyVw5dhxBGxTeTj+Sk9arBHufG3sercPIVvlqXCTrPoMxru1nltWjwXfseNd4EBxKFPjnVnnJdQfJdQXweJS8Je7GTwwRiI6Md5uC0MHJ8awxktkaGK8HQr+SjeDzWMkwhPj7bMy2HSS8bbJBKqPjrcz244zy8bAvsnxdhMPJRjrDCNbJTJrvAy3BomNx3Fk2nDnOujfq42hr9xN6Xm5xMMJ9v7x8IzXiDeOt7fYiSRLx423tkZEj67J+0a1NaLIiXLseC/IYLxnYrzdFnxlLgaaRknGVNwFDqxOhaHm8ak5GxqYGO/JOTs53nla352pOVvjITIcI9gTQXHILHh/CeM9EQ491YUrx47db2OwaWIMqzzExrU5Oznew4fGiQW1OevMtk+N97FzVrZIZNZ6GW4LEhubGO88B/17Jsa7zE0ynhRrhA5rhNWtUPbOPA6/0Dsr+4h0WSPylgcYORzE6lJmvEbMxj5iXtcIl8J4V4TYePy01ohApYeh5nHi4URarBH+BS42hl6kv7+fTZs2UVNz9NAhHUgrgygYDHLeeefR3t7Ohg0buLnkTr0lzYiOu858+4uAwv96BYCW/+8MapIxWmQr8bfIkyp/VJuUo+XOU7p/bMIzkvvK28c1H7pSO+Eo+++tp3Tv5i9rnpXyL799z5vJnJs3KzjwRlr+s5GKf91wStcCtP6H1vOp6pdHTun69suL8R88xapAE09P5zvePh2v/N+0nJ6Wb7x9Ppc3meTysVH2PNDKiKfkba9Pbt/7ttekA5KihfIlouaKwzYz9ddqp7R7HmjTWYlgvlBsMsmEavhGlsfir3RTf20ZW350gPCgcRuKC44iWyVyl/jp2jSot5R54zs7vsIFF1xAXl4e//znP/F4PHpLOmXSJmQumUxy0003sWvXLoo76tPWGDoVCv/rlSljCCBDVVkVj5D/Jv10yh8NThlDp0LMLU0ZQ6fCpDF0KjR/eemUMXRK936LAgQWp8Kyj1bhKdBcxi3/2UjLf2rXt3x9zSndf9IYOhXaLy+m/XLN3T5UdQrN9KbxLp80hgAq7n77YgfZ96zn9f/eN3US/VYYxRgC7ZRx7V0LsHrSut6LQCB4E2weC2vvWkCgOn02SrPBUPM4r//3PlMaQ54CB8s+WjUVgmYW/BUeKi4qmApJNAN3Lv4K5V2LaW5u5vzzzycSSZ/G6mmz6/jXf/1XHnroIRarZ5AhBfSWM2ccawhNMiLLPGxzE5aOt1+nYwRNMleGEDBrhtAkslUmNBAlPBybMoROlekYQsCUIXRKTPNQ81hj6O2o+JdXkS0SSQni4bdvKGskYwhgrD3EgUc7TFOKeBK738rK22vYed+hqRAOgbHJKHWx6IZyNn2/iciwefrURMfiHHi0g9H2kN5S5p14OKEV81EkknHzeMciwzFCA1GtKEDo1BqlG4GB/aNs/O4+YkHz/M0AHsnHcv8ZvPT601x//fX88Y9/1FvSKZEWHqLf/OY3fOMb36BaXUSuVKS3nDnhjV6hSXKX+pFUdVrGkPfQiS+a2fIKtX5u2Qn/NlteoTf+e3Qkxr6HDtP0r6fmDQLNEHozY+jgLSc3embDGCp4+eQb+OkaQwCFjdms+GTNVBWYNzN6jGYMgbZZ6tk2pLeMeScRSdLyVBeh/vQ5TROcHqH+CC1PdZkyPLRn25DpDj0AkGDl7TUUnjG9w8Z0JxZMsO+hw0RHzGP4TxILJpBkpgo/mQXbER9LM9fwpz/9iR//+Md6yzklUt5DtGXLFj7+8Y9TQDmlTK9ZaKpS+F+vHJdHdDJDCLQqOtWXF9GiJuiRtJ9qrr1CMP0QuWnd+xR79BSfncPed5XTK5/6FJ1tr9BQlfX4XKIZhsidjIq7Xzsul2jSGAIY2DdCdDj2lt9nRGPI7reSu9hPx4Z+EhFzbRLjoQSdG0694a4g/YmNm/c3V+wyhWuy6NkxRGTIRJtkFQ6/2MtYl/m8YwDeEhe+cjdHXurVW8q84i12UX15EcHeCGMd5vntswdKKKaPO+64A6vVyq233qq3pLckpT1E/f39XHnllVjDThawPKUar84Gb+YVmmSsI8Sm7+2nR56ZMTQTr9BsG0OH/j/NADr09cZTNoYkRcJzfgF+9a03xZN5RG/lFXozpuUVglMyhia9RNPxCsHxxhBAsCdCz/ah4/5t0gBKbt9rSGMIwJXjoHBtFmrSPKEkk3gKnXiLT60YisA4eIudeArN97urSZXCtVm4chx6S5l3erYPEewxpyfYnWsnq9Z7XE8cMzDSFmTT9/abyhiapJal5Ofl8/nPf56enh695bwlKVtlLpFIcOmll/L6669TP7AWp+R++w8ZiMw671TJRLVxel4YgIGFrmldH8w/9QUq4ZzmlJnG5eqkia6qSID6NkawHJv+wuroO/Vr/Qemd3pp//vGU7/4JI9e6bm5jBwOTpWZFZiDuqtKsDoVdt53SG8p846Zq8wtuqF8KpxIYB78lR68JU4Ov2AuT4n2UtdbhL4cu7czC3FHmN3eDTQ0NPDUU09hsaRmcFrKeoi++tWv8uSTT1I20GA6YyijzEXDtWV4irSTQ+nVbdP6/HSuz/rZq2T97NTKXQOUfP2VUyqlDVDxlU1UfGXTKd+78utbWPyjXWQkEyBJb2sMVdxz6roByv7jFcr+4809cm8k795XsD/x+ilfP51rT2YMIWmJ1maqSHMc5jo0PI79fz7CXrEpNh17HzrM/odPrR2AITHpM+/ItOErdZvv75947TmzbLhy7fpq0QFPkZOGa8vIKJvegXW6Ywk7KOmp56WXXuK9732v3nLelJQ0iB577DG+9rWvUak2kCXl6y1n3hlpDbLpB02MTbMKj/TqtmkbQ6dKyddfoeTrp25MTMcQAs0YAig+M8A74uGTGwyT977n1Slj6FQNnOkYQqAZQ6eK/YnXjxpDp+JwfbNrVNh53yG6Npovr8CVa+eML9ab8iUJWghR3GSViAQQDyZMGSIK5n7muzYOaN5gc/701F5RTMnZuXrLmHfG2kNs+kHTVANjMxGQcmhcchZ/+9vfeOCBB/SWc1JSziA6cuQIN910E9kUUM4CveXMO+58LaY61HfqMcYnM4TeytiZiVdoOrzRGKr46psbR5Vf3zJlDAE0PdbNS1YnvIl3aLpeITjRGHorYyfv3lembQxNi7cwmJxZJvUMAfFwkvbX+ggPmK9Hh2KXWXBNCe488+VTmB13noMF15Sg2FPuVTznhAeitL/WR9xEZZjfiFnX/L1/Osz+v5jTMzq5t5vc65kJ+5Zs8qRiPv7xj3Po0CG95ZxASq3CiUSCG2+8EafTSQOrDFdE4e3wFDpZ/vFqfOWnFiI4XY8QvLmh9GZGz3S9QtMNkTsW2SahJiDvayf/m+YjRO5kvJnR86bG0Jt6gN7cGHIXOFh5R63pXOmTREdiHH6x11S9OSZRbDKKVSZF0zkFc4iqqihWGcWWUq/ieSEZVzn8Yi/RUROW30YLjV95Ry3uAvNtjCNDMdSEasp5D+CrcLP849WmK6giSRL16kq8Xi/r1q0jGEwtT1lKzcZvf/vbPP/88+S1V2GTzOdGH+sIsfP+QwwfGn/ba6drCMHshsi9MY9opiFyk3jy7az+ZAWunBNPzI4NkTsZJzN63s4QeqPxMx2vEMwgX+htNrvB7gi7f99qzqacEuQtD2B1mauL+STR0Ti7fttq2spTZibYE2HXb1tNaxRYXQp5ywPmy6VBqzy2+/etBLvN+dy78xys+XwdHhMahMMt4+y875Apq85ZJCsN7hW0tbXxr//6r3rLOY6UMYg2bNjAv/3bv1Gm1pIpmS+21OLQNoNDB09eXWzSAJqpV2g+Q+ROes1E2NwbQ+QmCQ/HOPzKAMG+40Om5torBKdmDE0aQMflC50Kp3jqryZVBvaPmjKm3BGwUX1ZoSlL8AKmK0ErOBGzzgFXjoPqywpxBEwYOqbCwP5R0+aQjfeEaXuhl7CZ+lAdw2Ql2cm9n5lQm+yUJxfw3e9+l5deeklvOVOkRNnt0dFRli9fTu/BAVaxDllKGTttXrC6Lay8o4YDj3XQt2tYbzmnjGSd3ktMUqb3uybD4Wldn674ytzkLvVz8G8dpgwZAy1sLBlP8jatpwxJ2fl5ZC3IYPMPmvSWogtmLrsNsOL2Gvr3jtD6TLfeUuYdSQbZIpOImvDBB2SrRNW7C+nZNsRw69tHhgiMRfZCH9WXFbLp+03Exs3lJVZVla22l0i4omzevJmKigq9JaWGh+izn/0s3d3dLGKt6YwhgFgwzqFnuhk8mF616dXYqSfAv9W1pWdnkrPQO/XfyXDYNMYQgOKQsXospjWGABJRcxpDAP27h2l91nybYYFG67Pd9O9On4Ow2URNYlpjCCAZU7F6LCgO8+17Jsld4qfsneaLCgItIujQM93EguYyhkDLJ1oZOItwOMynPvUpveUAKWAQPfXUU/z85z+neKwWl+TRW44+qFoZzkTYeC8GNRadMobezMg59oVgJkNokoF9o+z+XaveMnSj4YNl5Cz26S1DN8Y6w/TvGdFbhkAn+veMMNZpvnVvkpzFPhquK9Nbhm7s/l2r6Rp1HovFqWDzWPWWoQvxcEJrs2HSs9Bkj0xVeDGPP/44jzzyiN5y9DWIRkdH+ehHP0omuRShv7tMDxZeX07+yoDeMuaEU/UgHXyih65Nw6Y0huw+q2mLCQAgQXgoSszEPXiyF2aYtxmvAEemjeyFGXrL0I1YMEF4KGrKwgqTWF0Kdp85jYKO9f00PdKutwxdyV8ZYOH15XrL0IV8Ssm1FnLDDTfQ0tKiqxZdDaJ/+Zd/obe3l3pWmq7ENmjx06PtQUJp3HvlzYyeN/v3Y40e2SIRqHSd8O9movS8XBbdaM7DAABUaP5b55sWEzEDte8rJlBlUu+4gECVh9r3FestQzeGDo7R/ESnaU/JARbdVEHpeeYMG5skUONBtphvHwgQGogy2h7EhBkjSJLEssy1RCIRPvOZz+irRa+iCi+88ALnnXcetSyjVKrWQ4Jglji2uMKpeIVkh1ZNLLPWTd378tn4vf1ETFppxjJxMjhu0pAZR6aNeChh6uaMkiwhyZg2h8zsRRVki4SaxLTVxkALm7I4FVM2ZgatD11kKGbaddDut7Lq07Xs/eNhET5sUtppYY+6ib///e+8613v0kWDLgZRKBRi8eLF9B0cYhXnmdI7lFnnxZ5hpfP1Ab2lzAqS1XbKIXKTBlEyHMaZZSPUb86XoAAW3VhOPJxg7x8O6y1FoBNmN4gEUH9NKYpDZudvDuktRaATYi8ABWsyiQzHTJlTpqoqW5V/ovpi7Nq1i/z8/HnXoIuD7lvf+hZtbW00sMqUxhCAp9CJr8Ktt4xZYzoV55LhMMmI5hEx8wJY9I5sihqz9JahK02PtJuy3PAkvnI3C64pMW2oiEDzEC24pgRfmXHeB9Pl0DNdps8jKWrMoujMbL1l6MbUXsDES6G/3IOn0Km3DF2QJImVeWcyMjLCF7/4RV00zLtB1NzczDe/+U2KYpW4Je/bf8CgtD3Xw94/mvdUvObyIqovK9Rbhq5Y7DKKzcQFFYDIUMzURjGS1ofFrOFyAi1UUrbIKVDzVT9C/VHThk1PotgVLCYuvw1QfXkhNZcX6S1DN/b8sY2253r0lqEbyU6Fcup48MEH2bt377x/v2W+v/Czn/0sRGQqqJ/vr04JJBn8VR4Gm8ZMnUQ62DyGSZ2DU7Q+a96FDyCj1EWgxqv14DHpszDcMs5wi2jIaHbMXHYfAAnK3pnHYNMoI21BvdXoQtvz5n4fAAwfGkefrPYUYeJvD9R4GDo4ZsrefCXxWto5xHXXXcfGjRtRlPk7NJ7X44i//e1vPPLII9SyFEWad1ssJQhUe1n4wXKc2Xa9pehK385heneYsxkhaEmkZg+TcgRs+MvdpjWGANPPAcFRTD0XVPCXu3EEzF1+XrZI2P3mLL8N0LtjmL6d5t0XADiz7Sz8YDn+KnNGUCmSQuOCs9m6dSvf+9735vW7562oQiQSYdGiRQwcGGE5Z5s2dwjAlWMn2BvRW4ZuFJ+VTe/OYVOHSCz5cCWRoSj7HjqitxSBjjRcW4qqwp4HzVtQQBRVgPoPlIJk7jEQQN37i7H7bGz/RbPeUnTD7reSs8jHkX/26S1FN8y+RwTYaX8VW67Cnj17cLlc8/Kd8+Yhuvfee2lpaaGWZaY1hmSr9nebeaLbvBaKzsjGmWVuD1nTX9s5/FKv3jL0xZzLwHG0v9ZPx/p+vWUIdKZjfT8dr4l5YPY14fBLvaYvLuHMslN4RjY2rzmjiODoHnFyz2hGKsOL6erq4p577pm375wXD9HQ0BCVlZW4BgPUSyvm+utSlmUfq2Jg/6jpY4UlGS1O2MShUmbHlmFl5R017Lr/kGlzBgQawkMkAMgoc7HwQ+Vsunc/0dG43nIEeiGBJGHK/JljKT0vl8xaL1t/clBvKbrRV9vM7pad7Nmzh8rKyjn/vnnxEP3Xf/0XkUiESpMWUgBAgvZX+xhoMl99+Skk7cRDTWJqY6hgTSa5S/16y9CVZCxJ67PdhPrM6y0FyF3mx+4zb86AQMPus5K7zK+3DF0J9UZofbbb9BUXc5f6KViTqbcM/VA1Y0i2Sqb2GA40jdL+ap+pxyC3pxyr1cq99947L9835wZRR0cH3/nOd8gNlmKXzFlfHQBVSxgcaw/prUQ3/JUe1n5hgek3gK5ch+mLasRDCTpe6ycWNGdndgDFIVP73mLT9p0QHMVT5KT2vcUodvOWXY4FtTUhHjLvmgBa/ogr16G3DF2x+6ys/cIC/BUevaXoxlh7SCs8ZeLzgeSQTP54OT/84Q9pamqa8++b85C5T3ziE/zxj39kycDZWCRzboTtfitFjdm0PddDPGzexd7mtZBVn0HnhgG9pQh0xlfhJh5MMN4d1luKrkiydvynJs371hMhc2IeTOLOc2BxKaIUvYCCNZn07xkxdfikxalQel4u7a/2mbYIVUKNsynjWerq6tiwYcOcftecHkcdOHCAn/3sZ2QNFJvWGAItSdBX7iYZN3dQbHQ0bnpjyMwnwMdScWE++atNHBYygZpUTb8JFoh5MEnB6kwqLsjXW0ZKYPZ3ReeGAVMbQ6CFlvvK3aYuQqVIFhYXLWfjxo3s3LlzTr9rTp+4b37zmygJK8VUzeXXpDxDB8fY8qMDpo6Nzih1UdSYpbcM3am+rIiGD5bpLUN3tv28mUNPd+ktQ1d8FW7qrymd8g4IzIskS9RfU4qvwq23FF059HQ320xccnqShR8qo/qyIr1l6IsERY1ZZJTOT8nlVCQZV9nyowMMHRzTW4qu2PdkYVedfOMb35jT75kzg+jw4cP85je/oYwaFGn+Os2mGs5sO4rN3Cc9AJ5CJ9kLfXrL0J3ODf1aoqTJURMqibC5PaaSNFFxUXgGTI+aVJFkbU6YmXg4gZoQz8ORV/ro3GDyMuwqZC/0iRxLNG+hM8u8TYtlSabSWc/vf/97nnnmmTn7njnLIbrzzjv5zW9+w9LBc0wdLrfk1kpiY3H2/MG88fECwbH4ytwUrMlk/8NHTO01FWiIHCLBJLJVovZ9xXRuGGC4VeQRCQSgNW62ui2mbtirWpO8Zv0H69at49FHH52T75iTzle9vb385Cc/IT9UbmpjCGDvH9tQ7Ob1kAHIVplkzNzeAABvsRNXtp3urUN6S9EVSQFZkUxvDMkWMQaC4zH7nEjGVGRFwsRBJVPkLfMT7IswesS8lWknMfse4tAz3SQi5i3IBSDFZAqiFTz55JO0t7dTVDT7IaVzEsv13e9+F1mWKaF6Lm6fVkRH46bvtVJ+QR5Lbp37plqpjr/CQ2Fjtt4ydGeoeZzdwhtA9eVFLL6pQm8ZghRh8U0VIm8E2P1AG0PNwjtU2Jht6rLTkyy5tZLyC/L0lqErob6I6QtMABRThdPp5K677pqT+896yFwwGKS4uBjvYDa10tLZvHVaIckSi24sp+25HtO7/j1FTuxeC/17TdyUdgItZ0RvFfpicSqm7zUCkFHiQrbKDDWbO2FWhMxp+Ks8JKNJRg4H9ZaiO2KNEO+KSbIWeImMxk3dwxHAV+6m9Lxcdv7mkKnzTkeXtLNlzyba29vJzp7dA+ZZ9xD9/ve/Z2hoyPSV5SxOhchwjOi4sOrH2kPCGJpAvOBgxe01FJ+do7cM3Rk5HDS9MSQ4ytDBMWEMAcVn57DikzV6y9Ad8a7Q6N87anpjCCA6FicyHMPiNHeRLu/hPBKJBA888MCs33tWR1ZVVX7wgx+Qpebhkszt6o2Nx9n/8BHTh8sFqj2iuhxaieUVn6zG6hLB8Qcebad/z4jeMnQnqz4DZ7Z5+0sIjseZbSerPkNvGbrTv2eEA4+16y1Dd6wuhRWfrDZ9KXbQqs0Fqs29pwz1Rdj/8BFi4+b2nDJoISuRzw9/+EMSidkdi1k1iF577TW2bNlieu+QbJHwV3mQzG3IAxCo8ZK71K+3DN2JBxMMHhwjFjT5YgYM7Bs1/UEBQPXlhWTWevWWIUgRMuu8VF9eqLcM3Qn1RRjYJyIKYpPvDBFlQt4yP4EasVZKshZaK1vMXZ+/MmMBe/bs4d57753V+85qDtH111/Pn3/7F87kYiQTN1TIrPXScF0ZG7+3n/BgVG85uiNioQWTuHLseIucdG8bAvOGQQPac4Ekmb7visgh0pAUCVRVrJUS5C31M9oeItgrDk4EYg8xiSNgY9Wna9n9+1YG9pv30EBVVbb6X2D5qmU89dRTs3bfWfNh9Pb28sc//pFiqkxtDAEM7B9l0w+ahDE0MQ3EQqYlRCoO4TL0lbupuKjA9MYQaM+F2Y0hwVHUhDCGAFCh4l0F+MpFqJjikPGViXGYei7MvbUkPBhl0w+aTG0MAUiSRPZQCc899xzt7bMXXjtrO7QHH3yQZDJJAWWzdcu0RoQEQfn5eSy8vlxvGbqj2GUW31RBZq3ID+h8fYD1/3eP3jJ0x55hpf4DpTgyzdt9XHA8jkwb9R8oxZ5h7t59AOu/vYfO1wf0lqE7WbUZLL65AsUmDtMWXl9O+fnmLr8NYm85SQGlKIrCV7/61Vm756w9Zffffz/+eA42ydxJwoEaDwuvL0e2mvwoA63fTN+uYb1l6E4ikuT17+5jYJ8oJADCYwhaeJTIMRS8EUlmjroDphdijdDo3zfC69/dRyIqBqRv17DoT4XWpHbh9eWmLzJhkaxUlVfx2GOPzdo9Z2Xp3b9/P+vXrxfeIbRO25GRGMmYCIUZah6je8ug3jJSgshQjEREvNQWXF0iimyghT7s/n0b4QGTh9UKpggPaHMiMhTTW4ru5C7zs+DqEr1l6E4ikhTzYYLuLYOiTQGQjCWJjsRIxsUe09GcRWdnJ9u3b5+V+82KQfTb3/6WjIwMsimYjdulNcOHxjnwiCgZ6gjYCNR4TB/zC1C4NouCNZl6y0gJoqNx4mFRaU88F4I3RcwN4qEE0VFRXQ2gYE0mhWuz9JahP5IWgeMIiDDjpkfaGT4kvGWBeC7Z2dn84he/mJX7nbZBpKoq999/P56RTBTJ3D1WbF4L7jyH3jJSgqwFXuquFCd8ALYMCzavyAsAaP57pyipC+Qu8fOOf18owuYEU0iyxFn/sYjcxX69pejOwL5Rmv/eqbeMlMCeYcXmtegtIyWoe38JWQtE+W0Ad57D9PNClmQKA8X84he/IBY7fU/qab+ON23aRHNzM/mUnraYdCd3WYDFt1QgyeKIr/3VfjZ9v0lUEwMOPdVN6zPdesvQHdkiYXWb+9BkkpHDQQ482iFyJQRTqEmVpkfaGTkS1FtKSmB1K6bvtwJw6OluDj0t3h+osOneJtpf7ddbie5IssTiWyrIXRbQW4ru5MSKGB0d5cUXXzzte522QfTII48QCATwk33aYtKd9lf62P7zZtSksAIA0VAOtPAX8U4HtJLba79Qb/pTLdDyRUR+neCNdG8ZFHllgC3Dytov1IvS25OI9wgg9hSTqEmV7T9vpv2VPr2l6M8hB/n5+TzxxBOnfatZMYguvfRSZBH7gZpQRSM5wO63suiGclFSGM0IOPOeBuw+ETI31hFi9wOtRMfES82d78BfKTZ7guPxV7px54uw6+hojN0PtDLWEdJbiu7YfVbOvKdB9CMCnFk2Ft1Qjt0v3qfB3ojoY4fWk+icc87h/vvvJ5E4vfzk07JiWltb2bZtG9vubzotEUbAW+Sk9spiFLswDGWLTDycICGS5wn3R2l5qovIiKgUFAsmtPwhsYaTvyJA+QX5essQpBjlF+STt0KEwaBqeUSxoHiHREZitDzVJTyHaMU24uEEsiLcZYpdpvbKYjxFTr2l6M7A7lG6u7t59dVXT+s+pxW78uijj2K1WsmKiRe7bJOxuS2itDJa47C9fzyst4yUIDISo3ODaDAIkFnn1TY6Ju+yDdD89y7Rq0xwAjt+3SJaNkyQWaslz5t+vVAR75AJYsGE2FtMkIgksbktomkvkNjtwOl08sorr3DWWWfN+D6SqqozXn3f9a53oaoq6tO+GQsQGA+730p0JC5yqYBAtYfoWJzxrrDeUnSn7spiJIvE3j+IF5rgKPXXagV59jzQprMSQSpRf00piXiS/X8+orcU3XHnO7B5LAweEH14JFnClmER/ZkEx+F+T4ze3l5efvnlGd9jxqZlJBLhpZde4tBTovoJEtg8IlF8kqUfqaLknBy9ZaQEFRfli0akE+z78xFhDE1Qui6X/JUiNEpwPPkrA5Suy9VbRkqw5w9twhiaIHepn/ILRSQOQMk5OSz9SJXeMlIGm8ciCm4APbsHeO211+jo6JjxPWZsEL3++uuEQiECiI2vK8fOms8vwFssYjkB9j7YRvdWUUELYMv/HqDtuR69ZQhSDItdFqEOghNQbDIWkYcqeANtz/Ww9ccH9JaREnRvHWTvg8KbDOAtcbHm8wtw5dj1lqI7rtEAyWSS9evXz/geM155X3jhBTIyMvDin/GXG4XIcIw9D7aJsKgJRg4HhTt7AjUJiajIKwNYfHOFaKo3QfPfu0Q/DcEJtL/aT/Pfu/SWkRJkLfCy+OYKvWWkBIloUvQsmyAyFGPksOjVBTDeFWLPg21EhsV+iy4rubm5bNy4cca3mLFB9Pzzz3P22WcjScJXl4gk6d87QjIucmYySl0UrMnUW0ZK4M5zUP+BUqxuEU6JBKH+CPGQeKsLBIK3Jx5KEuqPiHAgwOqxUP+BUtx5oiQ7QMGaTDJKXXrL0J1kTKV/74go5oVWfnvVqlU8/PDDM77HjAyiaDTKK6+8wv7HhdsSoPCMLFH6cAJvsYs80T0ZAEmRkBSJZEwsVqhw4NEOhlvH9VaSEqy+s47is0W4seB4Ss7OYdWdtXrLSAmGW8c58GiHKNMPJKPJqfeJAPKWBfAWC4MIwFPkpPCMLL1lpASj7UH27dtHb2/vjD4/o6PrrVu3EgwG8Yv8IQAKVmWiJlTG2kUTufZX+kT35AnGOkLs/l2r3jJSAtkioTgUYqIpKwCtz3YT7BUhtoLjGTwwKsJfjsHqsZAIJ0wffZGIJsW75Bi2/uSg3hJSBm+hk4JVmXS8JkKwk3ttJJNJdu7cybp166b9+Rl5iDZv3ozFYsGDKLcNsOn7TXS+LvoECI5Htkoi3GOCjDI3az+/AFuG6DAO0LN9iLFOYRAJjmesM0zP9iG9ZaQE9gwraz+/gIwyt95SUgMJ0btMcAKdrw+w6ftNestICewRD06nky1btszo8zMyiLZs2UJDQwOKpMzoSwXGRJJh5adqphrqmZ2a9xSz8EPlestICcY7Q+z6XavwEE2QWefF5hW5ZYLjsXktWgNjAdGxOLt+18p4p4i8AFh0fTk17ynSW0ZKkFnrZeWnasSBo+A4ZEmmoKCAP/zhDzP7/Ew+tHnzZnq3D8/oC41G4RlZLLqhXG8ZKYGkSPTtHhEhHxN0bujnyMszi2U1GrFggsGmUdGsF+05abi2DF+5OPkWHI+vwkPDtWUiVwRQkyqDTaPEggm9paQEh//ZS+cGEYkCWmXfvt0jyBbxnAAsuqFc5BFN4MRNe3v7jD4rqao6rR1KLBbD6/VSFllAqVQzoy81EoFqD+58B0f+KfJmBII3w1PkxJVjp2frkN5SUgKLSyEZTZo+NwKg/tpSAPY8IIr0yBYJ2SYTF0YAAHnL/Iz3RBjrEF4igeDNKD4rm/GuMIMHxvSWojvtajP75K2Mjo7ick2v8Ma0PUR79uwhEomI/kMTDB4YE8bQBFaPBWe2aBA2Se5SP46ATW8ZKYG/0kPJ2bl6y0gZ4kGRKC44kWRcFcbQMRSfnYu/0qO3jJTAEbCRu9Svt4yUwZltx+oRYccAR/7ZJ4yhCbz4SSaTvPrqq9P+7LQNor179wKIggoTeIqcKKKzOAB5S/0suVU00gMtLKrmvUV4i0U5doAjL/Wy6d79estICaxuCzXvLcKZJYxlwfE4s2zUvLcIq1vk5wJsunc/R/4pwo4BvCUuat5bJMIpJ1h6a6UwECdQ7LJo/TKB36P1wXzsscem/dlpm9cHDx7E7/djHRYvc9kqsewjVez782F6d4icqq4tgww2i1MKADWh8vLXdonGxYITkC0Sjkyb2NgITkBStLkhW2RAeIoER+nbOUzvjiHRl2mCHfe1iHzlCTLrMqi7ophX/r9dpo88SI5DVlYWsjx9R8WMDKKqqirYPO3vMhzJuMrmHzURHRWVs0ALAxLhHsegwjRT9AxL2fl5oKq0PtujtxTdiQzH2PHLFr1lCFKQYE9EzI1jKHtnHkjQ+ky33lJ0RxSkOZ5x0bZgisGmUTb/qIlkQswRgPr6erq6uqb9uWmbUAcOHODIJrE4AaBqL7B4SBgBAAWrM0XJ7QlcuXbqry3FJmKcAYiNx0W1KIFAMC1iwTixcXHgCGDzWKi/thRXrsjTBa30dsHqTL1lpATxUIJgT0R4Dyfo2NvD+vXrp/25aRtEBw8exIlIcgTwlbkpPU8kik/ir/LgKRRxrACSJCEBSXGqB0DHa/2ik/YEnkInZ/xLvShAIjgBZ7adM/6lHk+BQ28pKYFYN46STKpIIMKwJ/AUOfFXib3oJKXn5eITTYwByC3MprOzc9qfm9bxdTQapb29nQWsmPYXGRFHpo1AtYe250UYEIiyuccy3h1mtxiPKRSHjBpXTR/fDBAdidH2fI84+RacQGw8TtvzPUREGDag5dtJFolEOKm3FN2JBxPinXIMbc+JfdexBKo9RIZjDLeO6y1Fd8a2xwkSZHR0FK/31KOWpmUQ9fX1oaoqNsTJJkD3lkG6twzqLUOQgkiypOUPif0/AEtuqWS4ZYzmv08/rtdoRMfi4tRbcFLioYSYG8dQfkE+vnI3W/73gN5SUgNJ8xCJfCLBG9n2s2a9JaQMkzZKT0/PtAyiaYXM9fb2HvdlAsEkil1m1adr8VUIly1A0ZlZrP38Ar1lpAzNf++ka7M4PACwOBV8FW5RZU5wArJFwlfhxuIUZbdBO3Rs/sf0Q1+MytrPL6CoMUtvGSmBr8LNqk/XirYnghPIyMkA4MUXX5zW52ZkEFmFQQRA7RXFVL67QG8ZqYEKvbuGRcW9CQb2j3Lwbx16y0gZhlvGtaRPAZ5CJ4tvrMDqFgU3BMdjdVlYfGMFngKRiwla6PFwiwgBmuTg3zoYaBrVW0ZKEB2N07trWERhTFB5SQG1VxTrLSMlkMa0A6VweHqVCKf1RhYeouMZahkjGRNPI0AimhSlUY8h2BMRBsAx5C7xM9YVEmMCjLSO8/p39xEdFT00BMcTGY3x+nf3ERsTB0ugVev05Dvp2T6kt5SUoG/3iN4SUoZQX0TsOY5hpDWIbBFRBwBSSDNtbLbp9UudtofIbrejTL99kSHp2TpE3y7RkBW0JrWuXLsIA5rAU+AQFXCOoeLifAJiPACtf1lkKCZONgUnokJkKCaKj0wQqPZS8a58vWWkDP4qj6hAOIGkaHsO2Sr2HAB9u4bp2Takt4yUQJZkfD4fLS3T6+k2LYNoZGQEn88nyj5O4M5ziLCXCTz5TlbcVoMjMD2L3KjkrQhQ/s48vWWkDOv/ay/tr4pkcQB3voPKSwrEaZ7gBGSLROUlBbjzxaYXoP2VPtZ/e6/eMlKG8vPzyFse0FtGSuAI2FhxWw3ufBFeCmB1W3DniXVjElmW2bJly/Q+M52LI5EIDocY8EkWXl9G3gqxOIEW6731ZweJDEX1lpISND/RxfZfiaovghOxuhQyil0gDpYEb0SSyCh2YXWJogqCE9n+yxZRqXOCyFCUrT87SLB7enkiRiV/RYCFHyrTW0bK4Pf7KSoqmtZnpuXeiEQi2O0if2iSnb85RCyU0FtGSpCIJhlrD+ktI2VQkyqqaJ0xRcN1ZXS+3s/ggTG9pejOUPM4W39yUG8ZghQkGUuKuXEMgWoPBauz2P37Vr2lpATJmHipTJKMq2LPcQxdWwbp3ytyzCbJyMiY2xyicDgsDKJjCPZGRPLrBM4sGyXn5ogwoAmKGrMoPitHbxkpQzKWFAaiQCCYFmpSGAHHUnxWjii7PYFskSg5NwdnlgjTB4iNxQn2iqJFk4RCoWnnEE3LQxQOh7HZbCg2UfcdoOTcXAb2jTDeJVy2rhw7+Ssy6dkySFx0FUexKyhWWTwrEzQ90g4gxgPt1Lvy3YVs+d8mUaUSrYkxiLkBINtkln+8muYnOoQ3FRg9EmT0SFDMjQmsLoVEVBLjAVgcMvkrMgl2h0W7D7Tc1My6DA6/0KO3lJQgFovR19c3rc9Iqqqe8hv5sssuY9u2bXzkIx+ZtjiBQCAQCAQCgUAgmEt+/etfU1BQwMsvv3zKn5mWhygQCOD3+9n7x7ZpixMIBOal7qoSujYNiCaLghMoekc2AO0vT+80T2B8fBVu8ldmsu9Ph/WWIhAI0oisrCzy8qZX6XdaBpHP50OWZfp2iMQtwfH4KtxUXpTP9l+1kIiIkLna9xVj81rYed8hvaWkBNLDRxhtDxEeEFUILU4FZ5aN0faQ6EUE5CzxA6LpJAASeIuchPqjxEXBHsa6woy0BcXcmGDRDeVER+Ps/8sRvaXojmKXWXJzBc1PdomDNsEJ9JX14XROryT7tAJR7XY7kYhI2ppk6UeryF3q11tGShAPJhhuHUdNih0eQPe2QTrWi747k/TuGBbG0AS+cjdLP1yFYhd5AILjsdgVln64Cl+ZW28pKUF4IErvDtH8fJKO9f10bxvUW0ZKoCZVhlvHiQfFwQFA7lI/Sz9SqbeMlEFVVTye6TWDn5aHyOFwCIPoGIYOjhIWfXcArQ+R6I9wFHFidTzZC32MdQoPEcBQ8xibf9gkPKmCE4hHEmz+YROR4ZjeUlICZ5YNd76Tvl3CKAIY2D+qt4SUIRlTxZ7jGMJDUYaaRSGWSdxuN3V1ddP6jPAQnQatz/Yw0hrUW0ZKICkSjoANSRFltwFcuXZxynsMte8rIlA1vdMao5KIJLXyqMKZKngjqtbOIREVxjKAv9JDzXun11zRyPjK3LhyResTEHuONzLSGqT1WVFhbpLx8ekfSk/LIHK73YyNCQt0ErvPis07LSebYXHn2ln16Vpc2WKxBshflUnFxfl6y0gZXvuvPXRuHNBbRkrgyrFTfmEeslW8yAXHI1tlyi/Mw5Uj1lGAzo0DrP/2Hr1lpAyVF+eTvzJTbxkpgStnYs8hDEQAbF4Ldp9VbxkpQ39/P62t02voPC2DKDs7m9HRUZKqiNkEWHBVCaXn5eotIyUI9UfZ8esWwoMiJAqg9Zludvxqek3BjEwypgqPyARWj4XM2gxkReQQCY5Htkhk1mZg9YiDNgBURK+uY9j+qxZan+3WW0ZKEB6Y2HP0iz0HQOm6POquKtFbRkqgqiqhUIgVK1ZM63PTWnVzcnIAiBLBgWtaX2REDjzWQTwijEOARDTJ8CGRNzOJyA85nqpLCxhuDdK3U+QCDLeMs/kHTXrLEKQg8VBCzI1jyF7kw1fm4uDjnXpLSQnEe+UoYs9xPIdf7MFiV/SWkRLEiZFIJKivr5/W56Z1RHmsQSTQCglEhkTyK2jxvEWNWSLUYwJ/lYeqSwv1lpEyyBYZWRYhYgKB4NSRZQnZIjypk1RdVohf5GICWshcUWOWyCGaIDIUY7w7rLeMlEDyawcHsjy9tWNGBlFMGESAVj63YI2I5wWtBGbJObm4ch16S0kJLHYZR8Cmt4yUoemv7fRsH9JbRkrgLXay8lO12DJEvLfgeGwZVlZ+qhZv8fT6ZxiVnu1DNP21XW8ZKYPDb8MiyvUD4Mp1UHJOrmj1MUHBmkx85aKQE4Ac0Awii2V6occzDpkTgLfYRWadl84NIlkcFV77lkh+naRv94hoJig4KdGxOH27hknGRPiL4HiSsSR9u4aJjsX1liJIQXbdf0hvCSlD365hUY79GHIW+xnYNyLCCIG+Fq1XV2Nj47Q+J6mqOi3zOisri8BAARXS9GLzBAKBeVlyayXB3jAHHu3QW4ogxai/thSAPQ+06axEkGpUv6cIV7ad7b9o1luKQCBIE1rV/bS7DjA2NoYknXpI5bR9r1VVVQQRFqjgRKouLaR0nai6B+AtcdF4T4MIm5vgyMu99Gwb0ltGSiApEu48hyi7LTgB2arNDZEXodGzdZAjL/fqLSMlcGTaaLynQYRTTlC6Llfk6QpOirNOxufzTcsYghkYRNXV1YQQvYhAW6CW31Yt6uBPEB6IiCITE4QHo7Q+0008LKoQAgzsG2WkTTQxBnBm2lj+iWrcIt9O8AbceQ6Wf6IaZ6Y4SAEYaQsysG9UbxkpQTyUoPWZbsLiHQtoRQRC/SJ9A7RG8Mtvq8Yh1g0ABgYGKCycvrE87WYHVVVVuApfAFEFk3gowfChcdFVfIL2V/v1lpAyxMbidKwX4zGJO8+BxaUw3CK8y+HBKFt/epBgr3iZC45nvDvC1p8eFP3cJvBVuIkHE6J6Ftp+Q7xTjtK9ZVBvCSnDZAnyeEgcwALYM6ycd9550/7cjELmOjo6SIjmrMRDCZqf6BRekQlkiyROKI7BX+kWnaMnyFsRoOKifL1lpATJuMpYR0gUVRCcQDKW1OZGXFTOAqi8KJ+8FQG9ZaQEdp8Vf6WoIjaJI9OGbBGhpaB5y5qf6BQGEZCUkrS2tlJWVjbtz07bIKqtrQUgiHBjg9Z1XhgBGjmL/ay8owZJ9JsBoOG6MjJrvXrLSAlan+lm+y9a9JaREshWmdJzc3FmiXVDcDzOLBul5+YiW0VpZYBtv2ih9ZluvWWkBJl1Xuqvnf4mz4hIssTKO2rIWeTTW0pK4Mi0YfVMO+DLkNhKIR6fWZXOaa+6ixcvRpIkRhma0Rcajap3F1AtEvsAGGgaZcevWphm4ULDsuneJuHWnyARTQqPyASyRSJveUB4DwUnYPfZyFseQBZFFQDNYyZC0jW6Nw+y+ftNestICVRVZcevWhg4IPLZAaovLaTq3QV6y0gJOtu1SraXX375tD877bLbAHV1dYT2J6mTlk37C42GM8tGMqGKsDmB4C3wlbvJWx5g/8NH9JYiSDFE2W3Bm1F7RTHdmwcZbhW5hwLBm2H3W5FkifCAyD1sUreTLAnR1jb998mM/PIrVqxgFHHyDRDqjwpj6BiKGrPwFIqyoAB5ywMUn5Wtt4yUQLZI2DwWEAffAoHgFJBksHksojz9BMVn5ZC3zK+3jJTAU+ikqDFLbxkpQ2QoJoyhCZJ5EUpKSmb02RkZRMuXLyfuiYjQKMDiUCi/ME/kA0xQsFoYRJPYPBbsPjEvAAYPjLHzvkMglgwAln2siuyFGXrLEKQY2QszWPaxKr1lpARqEnbed4hBERYFaEUVrF4RZguaQZS/ShhEoEUplV+Yh+IQeYeqqjIw1kdOTs6MPj+jLKzly5czNjZGkDHcmDtpPBlPkrXAx9DBcUL9wkLf+L39ektIGQ6/JBoKCk7O8KFxoqMzS/wUGJfoaJzhQyI8THAiBx/v0FtCytC1cYCujQN6y0gJ7D4bWQt8tD3Xo7cU3YkQYnx8nFtuuWVGn59RDtHw8DCZmZnUJZdTJFXM6IsFAoF5sPusrLyjhl2/bRUbPsFxiBwiwcnwlbtZ+KEyNn2/iciwCEsXCARvTRdt7FQ30NXVRV5e3rQ/PyMfm8/nY9myZQzRN5OPCwxMVn0GKz5ZrbeMlCCj1EXjPQ3Y/SLMITYep+XJLhHnPIEtw4rVregtQ5BiWN0KtgyxXgCEB6K0PNlFbFx4Uu1+K433NJBR4tJbSkqw4pPVZNWLkGPB8Sj1UXJycmZkDMEMDSKA8847D2upKvKIgNxlftZ8YYHeMlKCyFCU/n2jSKJsLKGBKK3PdJOIiLKxybhK5+sDREbESS/Awg+WUXJ2rt4yBClGyTm5LPyg6DUDEBmJ0fn6gGhSCyQiSVqf6SYkDpSQFIn+faNEhsRYAKz9wgJyRbENAAbHBli5cuWMPz9jg+jcc8+lra2NMMEZf7lRGOsIcfjFHmEEAGOdYVqf6UZNiJdYbCxOx/p+0T16gowyF65cu94yUoKmvx6hY32/3jIEKUbHa/00/VWUpgdw5drJKBMeEYB4KEHH+n7hLQPUhErrM92MdYb1lqI7kiLR9mIPYx0hvaXoTkQN09bWxk033TTje8zYIDr77LORJIlBROJ4sCdC54YBYQRM4AjYcGSK6moA3mKnqLo3QdXFBeSvytRbRkow1hkmPChOOAXHEx6Mio3eBAWrMqm8WDSbBK2qmrdYvEcAHJk2HAGxvwDNOOzcMECwJ6K3FN1JlmnOmbPPPnvG95ixQRQIBFi2bBkDiMoWoJ1mBao9estICWqvKKb0XBEOBFC2Lo+iM0UvItBK6B56sktvGSlBZp2X7IU+vWUIUozshT4y68xduXWSlie72HXfIb1lpARFZ2ZTtm5meRFGo/S8XGrfV6S3jJQgUO0RURcTjDj6yM7Opqho5nNjRmW3J7nsssv4/qHvkxxMIkvmroGetzyAv9LD4IEDekvRnaa/HiEmwsQA2PvQYRJhkUMEEAuKOTFJZq0Xi0Ohb9ew3lIEKUR2QwbxcIKBfaN6S9GdZFwlGRdrBsD+Px8RfWYmaP57J1anKEgDUH5hPkPNY7T8w9wHjaqq0jvcw7XXXnta95lR2e1JNm7cyOrVq1nJuQSkmTVCMgqKXSYZS6KKva9AcFIy67wEqjwc/Fun3lIEKYQouy04GVWXFjDYNMbAfmEcCgQnQ5JBtsqmL9w0rA7wOs/ywgsvcM4558z4Pqd15LBixQoKCwvpRTQMS0SEMTSJxaFQdWmBcOWihVIuuKYEizjRQrHK2ESndYFAcArYPFYUm/CKWJwKC64pEe9TtPdp1aUFWBzifQqgJjG9MQQgLwnhcrk488wzT+8+p/VhWeayyy7DWpUU5beBsvPzqHhXvt4ydCcRS5JR4sbqPq2ITEOQjKsoNgXFLl7svTuH2fOg8AIA5K0I0CDKKwveQMMHy8hbEdBbRkqw58E2eneKkFKLQ0GxKaL8OGB1W8gocZOICiOg4l35lL1T5JUB9I51s3LlSiyW09tznvYu7T3veQ8HDx5kHOHWjgzHiAyJPitqQmXL/x5guGVcbym6Ex6Isuv+Q2JeHIuoTk90NEawR1QTExxPsDdMdFSsFWKNOEp4UHuHiKbWMNwyzpb/PYCaFMZhZCgm+voBIXWc5uZmPv3pT5/2vU4rhwggHA6Tn59P5nAhVdLC0xYkMA6KTRYnORModhHna3UrrL6zjj1/aGOwaUxvOYIUQeQQCd5IoMZL/TUlvP6dfcTGzV1YQbw7jiL2FII30l/Sxp6e7fT29uLxnF6l59P2EDkcDq666iq6aBNhc4DdZxWxvoCvws0ZX6rHliFyRmreW0TDdSI8KhZM0PJUF8Fe0TNBUiTsPqs4CRccRdLeH6LBt+Ypa3mqS1SmRAujrHmvKDNtz7Byxpfq8VW49ZaiO65cu/b+MDmqqnJ4vJmGhobTNoZgFgwigBtuuIEQ4wwjOq9XXVJIxUWimdx4Z5gDj3WQiIgXWtemAdpeEP26UKFzw4AIHwR8ZS5W31mHXRwYCCawZ1hZfWcdGaUuvaXoTmQoRueGARBnrLQ930PXpgG9ZehOPJLgwGMdjIvGxVS+q4CqSwr1lqE7owzR19/Hl770pVm532mHzAEkk0kqKipItFmol1bMhq60xRGwEQvGhYtbIDgJngIHik1huNXc+WUWh4K7wMHo4aDpk6VFyJyGbJHwlrgY7wwTD5v7IMlX5iYRTTAmNr8CwQkodhmry0J40Nx5ZfvZRiR3hCNHjpx2QQWYJQ+RLMt86EMfopvDJE1eezo8GBXG0ATOLBuFa7P0lqE/EuQt84tQSqDwjGxK1+XqLUN34uEEwy3jpjeGBEdJxlWGW8ZNbwwBlK7LpXBttt4ydMeVaydvmV+E1gKFa7NwZtn0lpESJCJJ0xtDSSnJgLuTNWvWzIoxBLNkEAFcf/31xImJnkRA/qpMqi4T7kx3gZOSc3JELwkVyi/Ix1cmYp8PPtHBzt8c0luG7kiKJF7wguNwZtspXJslcoiAnb85xMEnxF7CV+6m7IJ804cOKjaZknNycOc79ZaiO9WXFZK/KlNvGbozKPcwNjbG9ddfP2v3nLVGMQ0NDZx99tnseGkPeRTP1m3TkmQsSVJUQqF/9zB9u4ZNv5gDbPiffagJMRCJsHguAFCh7J25RMdihPrNfdIn0HDn2Sl7Zy6dr4tcXDWpkoiI9bJzwwBdmwb1lqE7iWiS9f93L5I4KyARFftLgLZ4E6tWreKaa66ZtXvO6tH97bffzhB9jKnmbqbWs22Ilie79JahO2oSYQxNIIwhDbvPSv01pTgyze0ZUZMqr35jD327RvSWIkgR+naN8Oo39mDyqHMcmTbqrykVVbQmEO+OCVRM/2wAtDzZRc/2Ib1l6IpUEKefbm699dZZve+sGkRXXHEF+fn5HOHgbN42LZGtkigPCeQu9bPyjhq9ZeiOO9/B8tuqTV+GPBlLIlslZIs46hMIBCciWyRkq0QyZu7drz3DyvLbqnHnOfSWojsrP1VD7lK/3jJ0x1fhRraKd2entQWn0zmr3iGYZYPIZrPxsY99jE7aiKvmLq2bs9jPouvLsTgVvaXoynh3mO6tg6aPi4+OxhlpGze9yz8WTLDrt60Ee0Qvopr3FFF0pkgcF2gUnZlNzXtEv5lgT4Rdv20VPYgkGGkbJzpm7r2UpEh0bxlkvNvcFQctToVF15eTs9ivtxRdSahx9rbu5rbbbiMra3aLds1K2e1jaW9vp6ysjKrEYkql6tm8dVqh2GQsLkX0XBEIToLoOA4l5+YQGYyZPvxBlN3WyF3ix+63cvjFXr2l6IpYGwSCk2P3W4kHE6Z+Pgay2tnS/xoHDx6koqJiVu896+W/ioqKuPrqq2ljv6lLcCeiSWEMTWDzWshZ4tdbhu4odhlvsaiSU3dVCfUfKNVbhu4cfqHX9MaQ4Cg924dMbwwB1H+glLr3l+gtQ3e8xU4Uu8krtAI5S/zYvLNW/yutiQzFTG0MqapKq7qfxYsXz7oxBHNgEAHcfffdhAnSxeG5uH3aYPdZWfaxKtz55o4BzihzU31ZIRaHucMH85YFWHxThenDBzvX93P4JbHxky2SeNELprB5LSK3Djj8Ui+dG8xdaU9SJBbfVGH6vBmLU6H6skIySs2dj+3Od7DsY1WmLzTSQzv9/f3827/925zcf9ZD5ia5/PLLefaxF2jkIiSTJk5IMlRfXkT7q32mzpmQFAlJFkmyFpeCxa6YvqGaQKN0XS55ywK8/j/79JaiKyJkTmP1Z+vo3jJI2/M9eksRpACOgI14JEHc5LlUik0mmVBNXW3PlWunqDGbA4+2m7bSnqqqbOAZ1py/kqeffnpOvmPO/LH33HMPQUZN3ahVTULTX9tNbQyBVjbU7MYQQDyYEMYQmmckb3kAu9/kp13bhtj/5yN6yxCkCPv/fMT0IZR2v5W85QHhKQPCg1HTG0OgpR+Y2RgCrdBI01/NawwBsCDIKEPcfvvtc/YVc2YQNTY2ct5559HCXubICZU2ZJS48Fd69JahKxmlLlZ9ptb0YXM5i3yUX5Cntwzdqbq0EG+RufOpwgNRhlvH9ZYhSBGGW8cJD5j7wMRb5KLq0gK9ZehO+QV55Czy6S1DVywOhVWfqSWj1KW3FF3xV3nIKDH3GABsP7KF8vJy3vOe98zZd8xpAPuXv/xlLnz+QvroJIfCufyqlKbwjCwkWWKoeUxvKboR6o8ysG/E9PkzikPB5jF33kgyrvLqN3ab/tTP6raQs9hHz7Yh4iFxEmxmLE6F3KV+encMExuP6y1HN/p2DdO/d8T0a4PNYyFs8sNDSZEY2DdCqN/chwQFqzJREyojh4N6S9GNAbWH3rEufvbbv6Ioc/dczFkOEWgxf+985zt5/fnNnMGFps0lUuwyiYiZfZ0CgeCNuPMcLLm1ku2/bGa8y7w9NkQOkZY0veSWSrb9/KDpQ6wFAsHxmHkPqaoqO7NfpqA4n82bN8+pHTGnNR0lSeKb3/wm44zQiXlfdpMT2exNWiVFImexz/QeEiRMPwY5i3wsvL5cbxm6Mt4d5tVv7Da1MSTQGO/S5oLZjaGF15eTbfJQMZvHAuY8O57C5tG852aPKJncM5rVGAIYCfTQ3dfFRz7ykTl3qsx5kfu1a9dy5ZVX0swukqp5w0J8ZW7WfL4OZ7Zdbym6IVskqi8vwldh7hKatVcUU3eVuftsxIIJQv3m3vwJBILjCfVHTF9IoO7qEmrfV6y3DF3xVXqovrwI2cQGkTPbzprP1+ErM+9+Kakm2TW4hXe9611zWkxhkjkNmZtk7969LFy4kOrkYkqlmrn+upREUrTKWj3bBknGzBsfbXEqps+X8BQ4QJIY6wjpLUWgM/UfKGVg3wjdW4f0lqIbImQO8pb5yazLYM+D5h0DgYan0Imqqox3mttzbPa9gmyVyF0aoHvLoGlz6kbKuni99WW2bNnC0qVL5/z75qUN8oIFC7j11ltpYQ8x1ZwJcmpCpWvjgKmNIWBqgZNk8578jHWGhTEEWF2K6RvNhQejxEz80hdoxEKiJL/dZ8XqMndYOcBYR8jUxtDk3sDMxhBAMqbtGc1qDMXVOLv7trJq1ap5MYZgngwigK9+9avYPTaa2T1fX5mSFJ2ZTfFZ2XrL0JWGD5ZRfqG5S09nNWSQvzKgtwxdqb+ujLJ15p4HLU92MbBvVG8ZAp0Z2DdKy5NdesvQlbJ35lF/bZneMnQlf2WArIYMvWXoSsVFeTR80NzzoPisbIrONPc+sYU9xONxfvjDH87bd86bQVRYWMi///u/c5gDjKpD8/W1KYdilZEt8zbsKUnvzmEGm8y9CcwodpFRat7YYICDj3fQ+ly33jJ0RbZI2LzmLrAhAJvXYvpmpK3PdnPwb+Zt5A6QUeomo9jcPWcG9o/Su3NYbxm6IltkZKt514O4L0wbTdx9992sWrVq3r53XnKIJolGoyxdupSuvX2s5FzTluEWCAQCgLLz88hZ6GPj9/brLUU3RA4RrPp0Lb27hml9xtwHBAKBwNyoqsrB0s2MjA1z+PBhXK75OyCYV1eFzWbje9/7HkP00cXh+fzqlEKSIW95wNTx0u48ByVn5+gtQ3cUu3m9hYpdpuz8PFNXXuzZOsj+vxzRW4ZAZ/b/5Qg9Wwf1lqEbzmw7ZefnmXs9dJj3b5+k5Owc3HkOvWXohtWlkLc8gGTiqdBLB4faWrjnnnvm1RiCeTaIAC688ELe//7308R24mpsvr8+JVDsChUX5ROo9uotRTecOXZyl/pRbOZ98isvLmDRjRV6y9CNZFwlZ6EPh9+8hRVC/VFG2szbgVygMdIWJNRv3qIKDr+VnIU+knFzJpADLL6hgsqL8/WWoRuKTSZ3qd/UB2SBai8VF+Wj2Mx5WC7Zk+xnG5dccgmf+9zn5v/75zNkbpK2tjbq6+vJDBawQFo+31+fEpi9pCQSYN53HwCeIidWp8LggTG9pQh0wuJUyF3qp2/nMNGxuN5ydMHsIXM2j4XsRT56tg2Z+51gcgI1HmLBBGPtJq9AavK9gZn3hkOLW9m6ewu7du2itrZ23r9fl+P50tJSvvnNb3KEgwyqvXpI0J3JCe/KMelpyMSCZ/NYTOslGmsPCWMITN2VXbHJlK3Lw5Fp01uKQCccmTbK1uWhWM25DgKmXgMmGWwaM60xpNhkrJ6J4jImNYYm94JmNYaG1X42bd/I9ddfr4sxBDoZRAC3334773jHO9jNRhKqOU9Gcxb5WP6JatP2YlFsMis/VUPeCvOWn/YWO01dXtNf5aHx7gYsDnOGCESGY7z6jd0ibM7EjLQFefUbu4mMmDOE3OJUaLy7AX+VR28pulF0ZjbeYqfeMnQjb0WAVZ+qMe3hqN1nZfknqslZ5NNbii4kpQS72cjKVSv56U9/qpsO3WafLMv84he/QHUkOMguvWToSt+eEXb9rpXIsDlfhIlokr1/PEz3ZvMmE7vzHOQu9pk2iTLYE6b12W5Usx4LCgQmR1VVWp/tJthjzmakkgy5S/ymLibQvWWQvX88TCKa1FuKLkSGY+z6XSt9e0b0lqILY4s6CStBfvazn2Gx6NeGQpccomP59re/zV133cVq1uGTsvSUoiuyRTJ1QqlpMXm8tACqLyskMhLj8IvmDB82ew5RyTk52DOsHHjM3D14TI94F5gSs+/9RtRBXudZrr7mah588EFdteh+Lv25z32ONWvWsMvEoXMlZ+ew+JZKvWXoRs4SPwuuLtFbhj5MrIMWpzlDxgCcWTay6s3bnT00EDVtuJQAoiMxQgPmrTCXVZ+BM8u8OXRTa79J98QLrikhZ4lfbxm6sfiWStO2IEmoWqjckqVLuP/++/WWo79BpCgKv/71r1GdcfazTW85ujDUPEbXxgHTJpbGg3GiY3Ek2ZwD4K/ysPYLC7BlmDOXLGtBBlWXFuotQzfaX+mjZ+uQ3jIEOtG9dYj2V/r0lqEbVZcWkrnAnAci9gwra7+wwLT5U5IsER2NEw+a8zAcCbo2DjDUbM7iSsML2wgpY/zyl7/EatV//6N7yNwkP/3pT/nYxz7GEhrJlYr0liMQzBuKTSZ7oY/encMkY+aLoZatMmpCRU2mxFI070iKhMNvNW0fGrOHzDmzbISHYqgJk85/WUJSJNOufTmLfPTtGjZt/ozAnPSpnWzlZW6++WZ++ctf6i0HSAEP0SQf+chHuPLKK9nNRsKqOSsulZyTQ+W7C/SWoQ8S5Cz2mTKxNBFN0r1l0JQbAoBkLGlaYwggs9bLyjtqTR02aVYsToWVd9SSWWPeJt1qUjX12te9ZdCUxpA7z0HOYp9pI2Mq311g2lC5iBRmNxu55JJL+MUvfqG3nClSxiCSJImf/vSn5BXlspMNpIjjal6JjceJjprUdQyUnJNLwKQbA8UuU35Bnmlj6UvOyTFt2NzwoXG2/6rZlJsis5OIJtn+q2aGW8f1lqILVZcVmnZT6MyyUX5BHoo9ZbZh80qg1kvJObl6y9CN6GicmAlDBVVVpb10N06fg1/+8pdIUupYxPrVtzsJmZmZ3H///bzzne+kRd1LJfV6S5pXujaZt/w0Kmz76UHTbgqTcZWsBRmMtAVNGToVHY2b1ksUDyUYaTWnV9zsqAnV1L99ZChKbMx8m0IAZ5adzLoMWp/r0VuKLhx5qZfO9f2mLSZx5J/mrCraRhPNh5r5v//3/5Kbm1oGccrkEB3Lv//7v/O1r32N5ZxNlpSnt5x5p3BtFolY0rT9eVw5doK9Eb1lCATzRv6qTEJ9EYYPmc9TYOYcIl+5G2e2XSuqIxCYBDO/4/NXBpAtMh3r+/WWMu+MWPt5Pfo8n//C5/n2t7+tt5wTSElf7X/8x39w0UUXsZP1pswncmTacATMGToVqPaw4pM1uHLsekvRBdkqYTdptTmb12LakMG8ZX68JS69ZQjmmYwSF3nL/HrL0AVnlg2bN6WCVOYNe4YV2Zo6oULziSvXzopP1hCoNmdlPbvfnPs7KZBgt+11Fi9ZzDe+8Q295ZyUlPQQAfT397Ny5UoGW0dYyXkokkg4NgWSZhQNNpmzDOWiG8tJxpLs/r35TssX3VhOIpJkz4Pm+9vNjJk9RGam/gOlKHaZnb85pLeUeafhujJki8TO+w7pLUUXAjUeBg+MmTZczmwk1SSbpReQ/Emef/55lixZorekk5KyBhHA5s2bOfPMM8mOFFIvrdRbzryTvciHJEv0bh/SW4ouSDKoJksp8hQ6iQXjRIbM16jTmWUjFkwQDyX0liKYR4RBZE4sTgWrSzFlzqTdb8XqVBjrDOstZV4x4zt9kpwlftSkSt/OYb2lzDsHHds5Em/hhRdeoLGxUW85b0pKhsxNsmLFCn70ox/RTgvtaovecuYdf4UbX5k5w2iKz8pm0Y0VesuYd8Y6QqY0hgBC/VHTGkPZCzNY/vEqvWUI5pnlH68ie6E5m5LGQwlTGkMAkaGY6YwhgEU3VVB8VrbeMnTBV+bCX+7WW8a8E184TEtoP//2b/+W0sYQpFiVuZNxyy23sH79en7y45/iUj0EJPOU6DzwWIdpXcqjh0NaxTkJ042Br9xN0ZnZ7P59q+n+9tLzcomMxExXUCQyFGOweQxJlkxbbc9sSIrEYPOYKQ9A8lYEsGdYaXveZBXWJC1crv2VPvMVUJGgb9cwwW5zFlM48GiH6XouDasDbNr5Aueeey733HOP3nLelpQ3iAC+973vsX//fv753MusVt+JSzJJMt7EvshX4cbhs9K9dUhXOfPJcOu4aXtzxCMJ1LiKxaGYzmNicSqmLL0+2h5itD2ktwzBPKImVA491a23DF2wOBRTNiK2OBTUuEo8Yq51HQAVOjeYr5pi3vIA4cGoZgCb6KxLzk2wvfcVzjhjLX//+99RlNR/3lM6h+hYBgYGaGxs5Mj+TlazDqtkniodFe/Kx5lp1zwGJqP03Fyi43FRllZgeByZNpKxpOmaM5s1h8jmtSBbZcID5gwbE5iH/FWZ2NwW2l4wmUcQaPhgGaG+CC1PduktZd6IqzF2Zb9CPBFnz5495OWlR/uclM4hOpbMzEwef/xxHJlWtvMqSRNl5h16qtuUxhCA4pCxmLSTt6/cbcrynLJVxupJC+f1rLL4xgoKVmfpLUMwTxSsyWLRjeV6y5h3rB6LKUtOOwI2fCbMIQGw2GUUhznf47t/18qhp83jCU6qSXawnnAkzH333Zc2xhCkkUEEUF1dzcMPP8yYdYiKDwdQVRXZKiEpRxdXxSZPxWlKsqT99wSyVUK2nOK1lhOvleTJa5nlaydFHH+tpEjI1qM5BZ4iJ0XvyH7La4/+rfLRcZHe8LcqErL1+HGZ0bWnNYandm3LP7pof7XvlMdwNsb71MdwFsb7jWOoSFN/e+2VxeSt8M/SeM/PnJUtx4/LTMZ7yS0VlJ+f9zZjOEvjnUJrxO4HWul4rW/25+x0rtVhjZCO2RvPZI04dgzf+trUWiO6Ng1MlZifyRpxStem4BpRcUEeS26pPKVrT2/OptYakbvUT92VxciW6YzhdK5N3TWi/bV+Wp/tOfm10xjDE8clddeIosYs3HkObYwmPzrP+4hTunaWx9D+7hBDSi8PPfQQl156KelEWhlEAOeccw4/+9nP+PnPf84h9rLk1koqLsoHtFKWjXc34CvTTmEK12ay+rN1U59ddH05VZcUAmB1KzTe3UBmjReAvOV+1t5VP3Vt/bVl1Ly3GNAmaePdDWTV+wDIWeSn8e6GqQei7v0lLLi6ZOqzjXc3kLvED0BmXQaNdzegTHg5qi8vouGDZVPXrvnCAvJXBQDwV3povLthqlld1bsLWHxMpbXFN5ZTuDYLSZHIKHHReHcDjkzNg1B+QR5LP3K0StWKT1ZTcrZWgMKd76Dx7gbcuQ4ASs/NYcVt1VPXLvtoFeXna1a8M9NG490NeIu16nZFjdms+nTtUQ03V1J5cYE23hnaePsrtJyugtWZrPn80fFe+KFyqi/Txtvi1MY7MDHeucu0MZxkwTWl1F6hjbekSDTe3UD2Qm28sxf6aLy7AU+Bpr/2imLqP1A69dkz/qWe3InmhoEaL413N0zFp1ddWsjC68unrl39uToKVmdq413hpvHuBuw+rRFq5cX5LLn56It61adrKDpTM0C9RU4a727AmaU1jC17Zx7LPnZ0DFfcVk3pubnaeOdq4+3J1/SWnJ3DituPXrv0w1WUX6CNt2NivDNKtfEuPCOLVZ+pRU3C9p814yv3UHWJNt42j0UbwyptvPNXBlj7xQVT9234YBnV7ykCQLFrczazTqtglbPkDeN9VQl179fmrCRrczZnsTaGWfUTc3Zi4at5bxH11x6ds2vvWkDeCm3OBqq18ba6J+bsJYUsuuHonF392ToK12rj7SubGG+/Nt4VF+Wz5Naj473yjhqKz8qm+YlO+veN0Hh3w1SD3tLzco+rwrb841WUrdPG25Vt1+ZsoROA4ndks/JTNVPXpssaER6MEgsmTmuNWH1nLUVnaF6mdFkj3Hnad57WGtGgrRGTL+d0WCNWf6Zuap80kzVikkU3VqTVGiFbjtlMMrM1ArQWBem0Rhx5uQ+b10pmnb77iPlcI3IW+8hflUnRmSmwj5jnNSJnsZ+MMpeu+4hJ5muNUM8d4oknnuC2227jwgsvJN1ImxyiN/K1r32Nf//3f2dFTiMllirGu8LIVpnMGg/DrePExhM4s2y4cuz07x0FtOIEiUiSsY4QkiKRVedlpC1IdCyOI2DDXeCgf/cIABllLtSEyuiREJIMWQsyGD0SIjISw+6z4i1y0rdnBFRtUUGCkbYgANkNGYxOlE+2eS1klLjo3zuKmlTxFjmRrfJUhZms+gzGu8OEB6JYPRZ8pS4G9o+SjKt4ChwoDoXhFu3azDov4aEYwe4wFpeCv9zN4IExEtEk7nwHVreFoYNaQ9NAjZfIUJRgbwSLQ8Ff6WaweYxEOIkr147dZ51qfhqo9hAdjTPeHUaxyQSqPQy1jBMPJXBm23Fm2RjYp42hv9JNPJRgrDOMbJXIrPEy3BokNh7HkWnDneugf682hr5yN4lYkrH2Y8b7cJDoaBy734q30Enf5HiXulBVGD0cBAmy6zMYbQ8RGY7hCFhZfHMlR17ppXP9AN5iJ5IsHTfeY51hwoPRo+O9bxQ1oeIpcqIcO94LMhjvmRhvtwVfmYuBplGSMRV3gQOrU2GoeWK8a72EBqKE+iJYnAr+imPGO8+BzWvRmsuhNZqLDMcI9kRQHDKBSg9DzePEwwlcOXbsfhuDTRNjWOUhNh5nvOvoeA8fGicW1OasM9s+Nd6+CjdqQmWkLYhskcis9TLcFiQ2NjHeeQ7690yMd5mbZDzJaHsISZbIWuBl5EiI6EjspOONCiOHj5mzE+Ntz7DiLXbSv3cENYk23orESGvw6Jztmhhvj4WMY+dsoRPFLk/N2awFXoK9EUL9UawuBV+5m4GmMZKxiTnrsjDUPDY13uHBiTk7Od4Hx0hEJuZshvXoeB87Z+0ygaqjc9aVY8cRsDGwf3LOeogF4ym/RoSHYuQs9tG3c/i01ohQ/8ScTZM1ovS8XOLhBHv/eHjGa8Qbxzsd1oi6K4o58nIfI23B014jJuesWCNSc40Y7w6jJtSU2UfM1xrhCNjIXepn758Oa+Ot4z5ivteI4dYgakJNmX3EXK8RHWoru3mdj33sY/z4xz8mHUlbg0hVVT796U/zwx/+kIXJNeRJxXpLmjfsGVaKz8mh+YlO1ERa/nzTRrZKJGPm+FuPJW9FgNJzc9n4vf2m+a1BOyVMxpKmqqwYqPZQcVE+237eTCJinhxJMxZVUBwyS2+tpOXJrqnNkBnIW+ZHtsp0vm6eIjmSIrHq07W0vdBjunYCoHnPkzFzrGeSIlH57gKOvNhLZMQ85fTVhnGe2/MPbr75Zn72s58hHRsHnUakbeayJEl897vfpb+/n4ceeghr1EamlKu3rHnB4lbwlbmxZ1gJD5qjQtGkMZS1IIPhQ9qJiRkYPjTOYblXbxnzjivPQcIkv/EkgwfGGDxwQG8ZgnkgEU6y+Yfm+62d2XYUe+qX351tDr/Ua6q+Qxantkfp3ztiGmMItMNqX5mbLveAaQyiQbWXHU2vsnDhQn7wgx+krTEEaewhmiQajfKe97yHl19+mYaxtWRIAb0lzQ8SpqppD1oPh1WfqaX12W5TnTAKBEbGjB4igcDIFKzOpOydeWz87n7THF5OYaK9Wdg9xg7lVVasWMFjjz2Gy+XSW9JpkXZFFd6IzWbjoYceYuHChTRnb2NMHdFb0vygaglvdVcWTyWVGp14OMGWHx0wnzEkQdn5eWTWevVWMr9ImK789sIPlVF+YfqUKRXMjPIL849LijcDVo/laLUtk5BZ66Xs/DzT/d2drw+w5UcHTGMMuXLt1F1ZrBW9MIkxlMyKsJV/kp2dzV/+8pe0N4bAAAYRgNvt5vHHH6egoICWvG2Mm8QoUpNg81qnqveYgUk39GRCpClQwZVlx5Zh1VvJvFL7vmIWXFXy9hcaiL7dI1PJzwLjMtwyNpXEbBYWXF1C7fvMk+sLYMuw4syymWaTLMkS3mKtkp9ZQsYArC4LNq91qkWK0QmqY+yzbyYjI4O//vWvZGRk6C1pVkj7kLlj6enpYd26dQwODlLeuQS3ZLITdZNg81pY9ZlaDj7eSfcW8yWpmgVPoRMkGGsP6S1FMIeIkDlz4ClyggpjHeJ5Nip5KwJUXVLAxu/uJzoa11uOYA6QC+Jsjb+C3+/n+eefp6CgQG9Js4ahDCKA7u5u1q1bx/DwMOUdS3BJHr0lzQuV79YmZfMTnTormR88RU7TbZQlRSKrPoO+ncN6SxHMEYpNJqPUxXDruGmqKprNIJKtMr4yFyNtQRJR8yScm43sRT7694yYqjooaAdZZjF6Ky8pANU8+66QOs7uwGtIksTmzZspKzNW2K8hQuaOJS8vj2effRav10tb8U6CqjlKmo53hxnvCustY96YNIZcOfbjOjAbmYxSF3VXFE81sjQDvgo3pevMUT0SwBGwac1K8516SxHMEe58Bws/VD7VfNQMlK7LxVfh1lvGvOHOc1B3RfFUo0yjIynSVC6zWYwhgPFO8+y7Quo47eV7CAQC/OMf/zCcMQQG9BBN0tHRwXnnnUc4HKbk8ELTeIpAK3kZDxk/mdHiUFj92Vpan+uh47V+veXMC3a/lciQeWKz85YHyFnsY+d9h0wRhy/JWt6BmX5js3mIQHuOoyMxVDM4iCRYfGMFPdsGTdVXzExrdeEZWZSty+X1/zFHVTmz7LEmUQqTbAg+h8fj4eWXX6akxJi5vYY1iADa29tZt24dY2NjlHUuwiP59JY052TVZ1BzeRFbfnyAyLDxF2NfmZuRI0HThSVYXQqxoHkWZIFxMaNBJDAuZlybJUUio1gL9TU6dp+V5R+vpunRdlMURhlXR2kt3EEoFOLxxx+nsbFRb0lzhuFC5o6lqKiIl156iezsbJqyNjOiGj8Bf+jgGK3Pd5vCGAIYbh1HTajY/VZkizlC5yovKWDh9eV6y5hXzBRelLvUT9k7zRMmaDbK3plH7lK/3jLmDTM9uwALbyjXcktMgGyVsPutqAnVFMYQQGQ4Ruvz3QwdNEE6RnGEAzmb8fl87Nixw9DGEBjcIAItp+j555+nurqaPd4NDKq9ekuaUxLRJJ0btD49ngIHis3wPzGyRWLprZWUnGOOTWT35kFanuzSW8a8kVnrZfVn6kyzsbI4FFOV0jcbVrei9SsxAXa/ldWfqTNVD7WWf3TRvdn4h68AJWfnsvTWSlMcRio2GU+Blr/buWHA8AVRRuR+/tn7FA6HgxdeeIGioiK9Jc05hg6ZO5bR0VHe+9738tprr1EXWkm2lK+3pDlFtkis+kwt3VuHaH2mW285c46v3M1YZ4hExNiLlBmRrTL+SjeDB8ZMFxppBkTInHGRFIlAtYeh5jHTVE00E4pdxlPgZPiQ8b1DZefnkbfUz8bv7ScZN/ZcHlB72OfeRE1NDX/5y18MWUDhZJjGIAIIhUJcc801/OMf/2BBbCV5krGbxLnzHAT7IqbaRFpcCrIsER0zfg+EBVeXMNIWpGO9OQpKmAlJ1pocGv3FC+YyiGSLRDKhmqJAiNkoXJtFRqmLvX88rLeUOcfmtZBMqMRNlCslKRKubDvj3cauKictCfLcridZt24dDz/8MG63eapDmsNvP4HT6eTPf/4zV111FTul9bSpB/SWNKeMd4en8mtKzsnRW8680HBdmWnit4O9EdPkilkcCjXvKTJNyfE1n19A/qpMvWUIZpmC1Zms/cICvWXMC+48BzXvKUJxmGObERmOEeyJ6C1jXqh8dwEN15nDa1ByTs5UnpTRjaEjajPP7Pg7DQ0NpjOGAEwXqG61Wrn//vspKCjgv//7vwmr49SwBEkybgysr9RNzmI/HRv6SYSNHVJ28PEOU3iHANqe79FbwrwRjyRwZtmweixg/AhQDv6t0/AvXzMy0DRGZMQc65PNa8GZZTNNGHP/3hH69xq/6hhA8986tbXY4CgOmZzFfiJDMXqGhvSWM2eoqkpX/gH2dm3j9ttu53/+53+wWs2Rs3sspgqZeyPf+973uPPOO7n66qvp/UMMRVL0ljRnyJaJ8BsJU4RryFYJZ6bx3duKQ6ZsXR7tL/cRGTGHt0hgLMwUMicwHvYMK0XvyKb1uW7DHzi68x2E+iPmyAeb2CtN7Z0MSlJNIl8wwtNPP80Xv/hFvvWtbxnaQfBWmMOX/SZ8+tOf5k9/+hOPPPIIiXP6ialRvSXNGcm4imyRWHxjhSlKvpZfkE/9B0qRjD7Dk+CvcOOc6BJudCwuBWeWTW8Zc47NY6FgTaYpqjeZBdkiUbAmE5sJTtadWTYsLuMeMB6LM8eOv8KNavB0GkmG+mtKKb/A2AWpQGt9sPjGCsMbQ3E1hnT+MC+++CJf+9rX+K//+i/TGkNgwpC5N3LllVfyzDPPcPnllxMhxjL1LJySMeMmk3GV0fYgoT7jxzm3Pd9D5+sDhu8En4gm2fyjA6bw+oH2Qk5EEuz+vbG9CbYMKxUX5jPcMk6w1/jPqxlwBGxUXJjP6JGQ4cN6Ky4qQLHJ7Ph1i95S5pyhg2OmWIPVJOz6XSuxcWPPXYBQX4TR9qChjSEpO8FuXiW0IcSTTz7Jueeeq7ck3TF1yNyx7Nu3j3e/+90caelgKY34pWy9Jc053iIno+0hvWXMLRJk1Xnp3zuqt5I5RbZI5K/MpPP1fkMbga4cO9GxOPGQ0Y9jQZIw9G85iZlC5iQZVBXDb54tTgWbx2JoY16SoWB1Fl2bBgy9cQbIWpBB/74Rw89bU+yJgGF1gO28gtPv4Le//S2XXHKJ3pJSAqMHFJ0ydXV1rF+/nsZz1rKJF2hXjX2ylbPEz+JbKg3f7DKrzsuCq0sNH2blzLJTdn4eniKX3lLmlGBvxPjGEIBqDmPIbKhJDL+pBIiHEoY2hgA8RS7Kzs/DmWXscGVnlo0FV5cYvrmu3W9l8S2V5Cz26S1lToktHGKT9DwrGpezZ88eYQwdg/AQvYFoNMqnPvUpfvKTn1BCNTUsQTZoIkpGqYuRtqDeMuYcZ5aNUL9x88MmsTgVUxgLgRoPxWflsONXLYbeXJqlr4lZPESm6BsmwZKbKzj8z14Gm8b0VjPnmGXNNcs71Mh7IlVVOSjv5FByH42NjTz33HPY7cY25qeLMXf6p4HNZuN///d/uffeeznCQbbxsmGLLUw++PkrA4Y+FZlcyPNXZWLzGjdtLh5KgAS+CmPmwE0SHY0T6oug2Iy9fEVGYoY/ZTcTwd6I4StBKjaZYF+E6Kix80x8FW6QMLQxZPNapnqhGdkYylnsI39lAMCwxpDkVtlhfZVDyX185Stf4aWXXhLG0Ekw9o5ihkiSxB133MGTTz1JMhDldZ5lXDVuDoqn0ImnwKm3jDlFscuUnJVDZl2G3lLmlOz6DBZdX44j07ghguNdYQ482mH4/ib9e0ZM1WvK6LQ930P/HmP3qUlEkhx4tIPxLuO2O3Bk2lh0QznZ9cZ+l2TWZVB8VjaK3djbRE+BE0+hcfc/QXWMLfYXGFEG+Nvf/sZ//Md/oCjmqAA5XUTI3NvQ1NTEe97zHpr2HmAhq8mVivSWNKfYM6yGPcVU7LLhN9Gg9Yow8oYE0Ipl1Gcw1hEiMmTM+Qra8ygpEuFB457QmiFkzhGwoSZUw66toP2N7gKHZvQZfFdhijUWY78zjbzXmaRX7WAXr1NQks9PfvITLr74Yr0lpTTGNv1ngZqaGtavX8/73v9etvMqTep2kgbNdrZnWFlxe41hw+cmF/as+gyK32HcKoKTL2pXrnFd4pIsUX1JIVkG9/gt+EApJefk6C1DcJqUnJPDgmtK9JYxp2TWeqm6pBBJNm4fk8k11cjGUPE7ssma8H4Z1RjKWeJnxe3V2DKMWVRKVVWGGg6zjVd49+UXs337dmEMnQLCQ3SKqKrKd77zHT7/uc/jI4vFrMUuGc/NmrPYR/+eEUOXES05Owdnjp39fz6it5Q5I3uRj7oritl4737DelDMzN67nQAAZctJREFUkNDsyrUTG48TGzfu32kGD5HVrWB1Wwj2GDsnzMjPpN1vZdWnatn35yP07RrWW86cUXtlMcHeCEde6tVbypwhWySy6jPo3WG83zGqhtnJBgbp5aqrr+J3v/sdFotxc6dnE2EQTZOXXnqJD3zgA/R3DrKYtQQkY57e2n1WClZn0vpst7HL/0oYMrxDkiV8FW6GDhq/0pORwzrMgBkMIqNjlmfQX+VhuGXMmO9Eg74LJ5FkKHtnHp0bBgwbKifXRnjl8HO4PC4eeOAB1q1bp7ektEKEzE2Ts88+m82bN9N47lo28yKt6j6MaFN6Chxk1mWgOIybfOfKtbPy9hpcOcYLLVOT6pQxZNSwAIDSc3NZ+pEqvWXMGbJVovLiAkMn/RodT5GTyosLkC3GDSVb+pEqSs415uEgHF1Dhw4a0xhy5dpZeUeNocOsFYdCZl0G7gKH3lJmHVVVaVObeHr/42RmZ/LKK68IY2gGCINoBuTn5/P0009z15fuookdbONloqqxQiH6946y5UcHiAcTKHYZq9t4hlFkKMbQoXGiY8YtEZtVn8HKO2pwBIxZda5/7witz3brLWPOSMZUvCUuQ5eLNzp2rwVvsdPQYcitz3YzsNeYlVgdARurPlUzlVdjRKKjcYZaxg0ZXm11Kyg2mXgwwZYfHWBgn7HmqZSR5EDOZvazjU99+lPs3buXqirjHhLOJSJk7jR5/PHHufnmmxnpG2Mhq8mS8vSWNOvUXlGMK9vO1p8e1FvKnGFxKqiqSiJsrOM/SZHIXuijd/uQ3lIEgpMiQuYEqU7uEj+9u4ZRE8baLikOGQmJeNiYeV8Ayz5WRbA3wv6HjZczPKD2sN+1mYSa4Oc//znXXXed3pLSGuEhOk0uvfRStm/fzjkXnMUWXqJJ3WG4KnStz3Zz8IkOvWXMKfXXllJzufFKqqsJdcoYMqKXD7RmkNWXF+IpMm5YmWw1briV0THyb+cpclJ9eaFhmyRPrpk924cMZwwB1FxeNHUgYVQOPtFpuCiCpJSkI7uJzbzIilUreOGFF4QxNAsYcxWbZwoKCvjHP/7Bt771LdrYz0aeI6gaJ5k9Mhxj9EgIgMqLCwwZOtDyZBeHnjHWonksGaUuVt9ZhzvfePHTiVgSR8CGzWPMsDJPoZMzvtRgyFw3o+PKtXPGlxoMmwNm81hwBGwkosY6BASt19DqO+vIKHXpLWXOOPRMNy1PduktY9bJqs+g8uICAEYPB4kMGycUMKSOsyfzVfb0befLX/4yzz77LKtXr9ZbliEQBtEsIcsyd911F6+tf42cqkzW8zSdaquhCi5IsoTFpaBYjTdtxtpDhAeiSIpE4RlZWsUdAzFyOEjzP7oI9hiwf4YKO39zyHCx4ZMEe8I0P9FBdNy4uW5GJToWp/mJDmM+d8DAvlF2/uaQ3jLmhGBPmOZ/dDFyOKi3lNlFgsIzspBkifBAlLGOkN6KZh3FJmNxKUgG26oMZXSxnqexuqz8/Oc/5+tf/zqKYszIDz0w2HTRnzVr1rB582auu/5advE6O1hvmIILalJl/5+P0DMRgpW1wGu4ykmeAgel5+XiMZonRYWujQOoSQOHzjlkMmu9esuYdZJxla5Ng8SDxo3zNyrxYIKuTYOGLKiQWetFsRtzC2F1K6hJbc00WilqT/7EO67QWO842SKRWaet/z3bhtj/5yOGqQgYU6O0lexg4/A/ufyKy9i2bRu33HKL3rIMhzFXM53JyMjgvvvu48EHHySRFeI1nqRXNVYOjtVjofaKEnKW+PWWMquMHgmx8bv7Ges05omuI2Bj1adrp14cRiJvWYDaK4oNmc/gCNg0z6UgrSg8I8uQFR4Vm0ztFcXkLQ/oLWXWyazzsurTtYb83QDGOsNs/O7+qTB4o5CzxE/dlSVYDRY6PWjr5lWepHu4iy9+8Ys89NBD+P1+vWUZElFlbo7p6uriox/9KI899hgFlFHLUqySMRZaR8BGeDAKGLMxX+l5uSg22XAx1nkrAvTuGCIZM9ajL1slFJtCzIChZYEaL3XvL2bTvfuJjRvLU2TUKnNWt4WVn6ph30OHGWwyTk7pJFa3hUQ0YcB1RCZnsY/uzYN6S5lVKi7KJxFN0vZ8j95SZpVj9x7H7knSnbgao6fyILubd3LhhRfyy1/+kqIi4xV+SiWEQTQPqKrKr3/9az7zmc8QGYnRwCpDled25ztYfFMFu+4/xGi7cU6d8ldlothk2l/p01vKnGB1W4iHEqhJYy0BkgyyRTZWovdkZKqxfirAuAYRYMjfTbHJJONJw4QjTSLJEhanMQ9UAIrekU0iktTCAA2Ct8jJwuvL2fHrFsa7jBPVMWTpY2dsA7ILrr/+en74wx+KXKF5wHixJSmIJEncfPPN7Nixg3e8s5EtvMRedQtx1RiVT0J9EY683Gu4MLOujQNTxpDRqrPJFollH62i5BzjdZdfcmslZecb58AB0DbUBtpUmwYD/m5l5+ex5NZKvWXMOiXn5LDso1WGy4udfHe1v9xnKGMItPC/Iy/3EuozRp52Qo3TV9vMxtjzrD57JTt27ODHP/6xMIbmCWEQzSOlpaU89dRTfP/732fA1clrPEWf2qm3rNMmGVc58s8+1KSKI9NGw3Vlhkrct/usLP1IJbkGypdKxlUOPtFB54Z+vaXMOkf+2UvXJmO9+AHyVwZY+hHjbUSNytKPVJK3wng5Nl2bBjjyz169Zcw6nRv6OfhEh6EKYOQu9bP0I5XYfVa9pcwaVrdCw3VlODJtqElt72GE36xf6uJVnmTPoV3ceOONPPvss1RWivV+PhEG0TwjyzK33347O3fu5JyLzmIrL7NDXU9UNYZ3xWKXka2SoeLKI8Mxdv22lZ4dQ3pLmVUG9o0SCyZQ7LKhXpj9e0cJ9hjjxPBYgr0RBppGDVcS3pBIMNA0apiT62MJ9kTo32ucEvd2nxXFLhMLJgxXur9n+xC7fttqqD48ybiKbJWwGKTCYVSN0F65hy3Jf9K4bi07d+7k17/+NRaLsYpDpAMih0hHVFXl/vvv584772R0YIwallJAKZJkjB2P1aWQVZ9B1ybjJKe6cu3krwjQ/I8uw4TCNFxbiuJU2PHLFr2lzBp2v5Xa9xWz/y9HiAwZZzNgRAydQ2QgHAEbNe8tMtwztfiWCuKhhHHmnwSV7yqga/OAoQ6G8lcG6N8zQswg7QdUVaXHcoS98a3YPVZuuOEG7r33XhEepyPGMLHTFEmSuOGGG9i7dy/XfOhqdvM6W3iJkDqut7RZIXNBBqXn5WJxGucBd2bb8Ra5DNWctuWpLpr+0q63jFklNhYnEU5gsRtn7oF2mu2vdOstQ/A2+CvdhvK6glZMIRFOEBszVtGBpr+2c+gp41QSVawy3mInzmy73lJmDYtTofS8XDIXZOgtZVYIqeO0lG9lR3w9V1zzXpqamkThhBRAeIhSiCeeeIJPfOITHGlrp5IGSqlBTvNWyxaHQjycQLbKuHLsxuiKLQGq5gFLxFSSMWOUW5JkiYwyF8MtxjDIjUjpulzylwfY8N/79JYyaxjRQ7Tm83V0bRo0XIljI+GrcDPSGjRMlU3ZqoWrx4OJqXdUuuMpdBLsjZCMJaf2EmmNkuSw2syBxA4C2QHuvPNOvvzlL+utSjBBeu+2Dca73/1udu3axafv/BQH2MF6nmZATe8X6uQCVnhGFouuLzdG08yJF82Ca0qpvcI4fQHyVwZouLYMq8s4p1SOTBvFZxmnkl7Ha/1s+n6T3jIEb8Ome5voWG+cgiXFZ+XgyDRG/zw4mphvpKIXdVcUU3+1drhgBGNIscksur58qiF1uhtDg2ov2wP/ZF9iK5+4/RMcPHhQGEMphvAQpSjbtm3j9ttv5+WXXyaPEmpZgl1y6i1rxkgyuHIdjHeFkWRQ7ArxUHovcJ4CB8m4SrDXIHHaEriy7cb5e4CshgwqLsxn608Opv18MypG9BAZCYtTYdnHqmh5sov+PSN6y5k1XDl2gn0RQxgPoP09kkViPM3bX1icColIAjWplQwP9oTTuueVlJlg58AmOtU2amtr+cpXvsJ1112ntyzBSRAGUQqTTCa57777uOuuu+jvGaCSBkqoTvswupJzc8hbHmDz95sMUS4TCaouLaRzfb9hjImCNZn07hg2hBEhKRJqwgDzbIKC1Zm4C5wceMQYeV9GM4iq31PEWEfIUD1fjPIMWZwKOYt9dG4wxm/jyrFTsDaLg493GMKwky0SK++opWvzAIdfTO/S7kk1SaejhWZ1Nzabjf/5n//hlltuQZbTe/9mZMQvk8LIssxNN93Evn37+OSnbqOJ7YYIo+vaOEjLk11TxlC6N8KzOBQ8BU5sGcZIora6LZSck0ug2qO3lFlBTahYXQreEpfeUmaFeCRpCEPVqMRDCRLRND7SPgZviQurSzGEMQQQqPZQcnYuVrcxShrbMqx4CpxYHOkd5jy5B0jGVZqf7Ez7yrRqZYgNPMOe8BYuuOACNm/ezIc//GFhDKU4wkOURmzdupXbb7+dV155hTyKqWYxTim9K04VrMmkYFUmW3960DC9izyFzrQvHqE4ZBJhY2zqAGreW4Sn0MmWHx3QW4rgDRjNQ2Qklt9WzVh7iCaDeCPBGGubEd4xk8hWiWUfq6bz9f6099yF1SCHM/bSOtLMggULuO+++1i1apXesgSniDBX04hly5bx0ksv8atf/Qq5IMGr/IMD6g7iavr2hBg6OEbXpkHDGEOBag/LPlqFO8+ht5TTYnLDkLvET1Fjls5qTp9DT3ez41fG6bOk2GXcBek9x4yIu8CBYpCGkQA7ftXCoWe69ZZx2hQ1ZpG7xA+Q9saQO8/Bso9W4a8yhgc/GVPp2jjA0MExvaXMHGeC/spWXuEfhBxjfOlLX2LHjh3CGEozjLNym4TJMLr9+/fz5X/7Mt3ONl7h77SrzaSjsy/UH52qxpTdkMGSWyuR07jHz+CBMXb8poXx7vRObJ3EkWUzRD+L2HiceCiBbJWwutM7vASg9LxcGj5QprcMwRto+EAZpefl6i3jtLG6Fa2EcyhBbDz9+w45s+04soxRJW+8O8yO37SktQEhW2WW3FpJVoPWV6hjfT+h/qjOqqaPqqp0qIfY7HiB7Yc2c9vtn+DAgQN885vfxGIxRlimmRAhc2nO4cOHueeee7j//vvx4KOGJWRJeXrLmhHeYifZDT5anjRGk7ysBV4K1mSx54E2Q+QUGCGxesmtlUSGY+x76LDeUk4L+0S+WmQkfb3DkxgpZM6eYUUFomn+u9S9vwS7z8r2XzTrLeW0MMKaBVoJ6vprS+lY38/AvlG95cwKFRfl07d7mNEj6Rn6J9WF2dK1nr6hXj7wgQ/wmc98hsbGRr1lCU6D9D2KFwBQUlLCfffdx/r161n6jkVs4SW2qi8zrqZfedTRI6EpY8hX7mbJrZVYnOl7mh8dTxDqjxjCGHLnOVj1qdq0DwU89HQXh55Jf4M7MhIzhDFkNCIjsbQ3hgAOPdPFoafT+zkxypoFkIgmCfVHiAXTt5iKxamw5MOV+Mq0vOeWJ7vS0hgKqqNsU1/hqb2P4fQ6ePHFF3nggQeEMWQAhEFkENasWcNLL73EH/7wBzzldjYoz7BH3URYDeotbUYkokmCfZG0rqY1ejjIwcc7AfAWOcms8+qsaOaEBiL07R4mPJh+YQ3HMtIWJDIUQ5K10+N0Jqs+g+rLC/WWIZig+vJCsuoz9JZxWkiKhCRDZCjGSFt6vjsmCQ9G6ds9TKg/fVshZNZ58RRp/QcPPt7J6OH0/U3ioQTB3giJWHoeEEbUEL0LDrBeeRpHicJ9991HS0sLZ599tt7SBLOEMIgMhCRJXH311ezZs4dvf/vbhLNGeN3+DE3qdqJqer0UxjpCU31W3HkOltxaic2bvjG5ucv8FDVm6y1jxiRjKi1PdpGIJrG6Ldg86ftbIGmhc6Xn5uit5LSQZC0Wn/S264yBpP0Wad4ijtJzc1lyS2Vazymbx4LVbSERTR7X3iEdKWrMJm+ZX28ZM8bmtbDk1kpcuVoe6oFH2tOuOp7kTXKAHWx0PsuBtiauvfZa9u3bx/XXX4+ipG8Ei+BERA6RgRkZGeG///u/+X//7/8hyzI5IyWUUoMipddm1p3noPjsHPY/fCSt48EVm0wimsTus6Z1r5LFN1WQjCfZ9dtWvaXMmNxlfsa7wox3GaP4RTpjpByidMed78Cd56Bn25DeUmbMwg+VIVtkdvw6PatKKjYZi1MhMhybemekK5IiUXtFMUde6k27QkMJNU6n8xCH1L2oqsoXvvAFvvCFL+D3+/WWJpgjhEFkAnp6evjP//xPfvSjHxEIBPB3F1BEJXIaHmfaM6w0fKiMfQ8dJtiTXl6vSZbcWklsPM6eB9NzA+jItKEmVSJD6Z8rkfZI2oFBOht2RjCI3PkObcMn3qa6Y/dbkWSJ8EB6hvfWf6AUq0th+y/T06Bz5dqpu7KE3b9rTc88RyVJqLqf5uH99Pb2cuGFF/KNb3yDpUuX6q1MMMek345YMG1yc3P5zne+w759+7j44ovZL23jVf5Bh9pKUk2z0ycJxrvCRzfjaRjasf8vR6YSltMxjyU8ECUyFEO2SJRfmJe2fVckRWLRjeXkrQjoLWXGFKzKZOlHKtP2NzACil1m6UcqyV+ZqbeUGZO3IsCiG8rTcj0C7TcovzAP2SIRGYqlpTE0OfaHnu5i/1/TsBHuxNSJDMe0w4E0m0qqqtKltrHe8gwv732BlStXsm/fPv72t78JY8gkiLeoiSgvL+dXv/oVO3bs4F3vu5DdvM6rPEmHeihtDKPIcIz9Dx8hEU1icSisvL0m7RrUhQeiWs8FCRZdX07puenZt8Tut5GzyI8rJz37FKkJlZHDwbTcPE3Su3OYbT9vJhFJj+fXiCQiSbb9vJm+XcN6S5kx4YEoI0eCaRuS7Mqxk7PIj92fnr2GSs/NZdH15SBpvfnSbU3yV3lYeXsNikMmEUmy/+EjRIbTwzukqiqxBUNs9j3HTjZwzvln8eijj/Loo49SWVmptzzBPCJC5kzMli1b+D//5//wl7/8BSduKqgnn9K0CaVT7DJl63I5/M8+YmPxtIy3zl+VSbAnnLYVnY7t82GUnh+C+cUIIXMCfTDK+pNR6sKV66Br44DeUqbF5DvX5rFQfFY2rc/1pM3hTFJK0qe0cyC2iyBj1NfX84tf/IIzzjhDb2kCnUiPna9gTli+fDkPP/wwmzdvnvAYbZwIpUsPj1EikqT5713ExuJIisSyj1VR1Jilt6xp0bVxYMoYqrqsMO1Kc09uQErPO3rCmXZIUPf+4rQNnXPl2mm4rhTFJpbz+UaxyTRcV5q2XtL8lQHq3l+cts/tohvKKT1P87CnmzGUWeel6jKtbP5IWzDtjKGixiyWfawKSZGIjsVp/ntXWhhDSTVJp9rKVv/zbI+t5/zL17F+/Xp2794tjCGTI96gginDaMuWLVx8xUVpZxgBqEmVIy/3MdA0BmjlPtMpHl5SJKwOBUlOH83HMnhglN5dw+mZVK5qoZjp2vMqEUkiW2Ws6VwKPU2xeizIVjktNoInIxZMaKFNafrc9u4cZrBpVG8lM2JqzU+z99Rk+4uBpjGOvNyXNoZoUkoSXzzMa9KT7OJ1ampq+N3vfscjjzzCmjVr9JYnSAFEyJzgBLZt28b/+T//hz//+c84cFFGLYWUp1W57sW3VBAbi7P3j4f1ljIjihqzGDw4lpaV9DJrvYwcDqatgSGYX0TInGA6WJwKGSUuBvannyHkyrUTqPLQ/mq/3lJmxIKrS7B6LOxIowp4CTVBJ4c4bGliPD7GmWeeyb333suKFSv0liZIMYSHSHACS5cu5aGHHmLbtm1ccd17aZK3szPnZVrUPcTU9Ej2PPBoB4df6gW0MqzO7PQJaZEtErlL/PjK3HpLmTayVab6skIKVqdnxa2Kd+VTeEZ6hV1O4sq1i2pz84hil6caTqYbhWdkUfGufL1lzIiC1ZlUX1aoNSVOM3zlbnKX+JEt6eMVcmbbsfutABx+qff/b+++4+Oo74SPf2Zme9NqV713F9nGlW6M6cSEECBAIIRccNoBT5LnyvPcc5cnd89druRJeSDkOO4ScgGO5BJyCSY4TqgOEMAYF9xkW1bvva62z/PHSquVJeOCpF1Z3/frJWs89bc/zc7Md36N2ufbkpyiMxPSgwxUtPCu40WOqfvZcutHeOGFF3jzzTclGBIzkhIicVp1dXV8+9vf5oknnsBgMOAZyaWIKiyKNdlJOyPlW3Jxlzl579FjC6ZqSGID4YzlLgabfIRGwklO1Zkxpxlj40/oxNomLJA8Byi+KovAUHjB1ec3WDUu+tOl1L7QRuee/mQn56ws1BKi7LXpVGzJ451v1Sy40tCc9R7MLgONr3QlOylnbuJaooDZaVwwY9wYHQbSimz0HB4CFljnDwqse7CKgRPDnNjenuzUnBHVE6U+dJQOvQm/38+FF17IY489xsqVK5OdNJHiJCASZ6yzs5NHHnmE73//+/h8PjJD+RSzBLuS2h0BKJqCxW1krDeI0aaRs85D69s9REOpf+qrBoV1D1bRsaeP5t93Jzs5Z8WebaHq1gKO/GfTgutGdiFyFlgZafOjR1P/vE60UAMiRVVw5FkYbhlLdlLOexaPiWV3FnHsv1piY9wsIIVXZJK9Np09jx4nGk7976ZqVMi/OIOO9/oI+SJYM8z4+4Ipf13x6SM0cpQOrQmDwcBXvvIVvvzlL5Obm5vspIkFYuGVOYukyc7O5hvf+AZNTU184xvfIJrj523ld+zX32JA7yFVY2s9osfG/QGchTZyN3hQDQvj1I+GdfY+XkvLGz0ApJXaMVi1JKfqzARHw4y0jhEcXhglW4nyLvZSviUv2ck4K8MtYyn/0HI+0aP6gguGym/KI++ihVclNDQyfi0ZXRjXEoNVI600VuW55Y0e9j1+YkEEQwCqQSX3Qg/OQhsAYz2BlL6uBLzDtFQc5G31d4SzfTz44IMcPXqUf/zHf5RgSJwVKSES58zv9/PUU0/xrW99i2PHjuEinSIqyaIgpccyUg0K0bCOalBYdmcRDa90Mtqe+m8dFVVh3UOV9BweouHFjmQn56yYHAZs2RYGTowkOylnJOsCN1avaWFVKQLKbswlMBBcUI22F2IJUf4lXsxpJup2LIxqRBOKr8pirDdI1/6BZCfljKRXOBjt8BNcINWFJ5Rel4N3mYv3vnc8pYOJCfZcCyVXZXPkP5vi98aUDuC0KCNZvRxuO8AQfXi9XrZu3crXv/51rNaFUZVfpJ7UfWoVKc9isfC5z32OI0eO8MILL3DRtes5yC7eZDv1+hGCemr2kDZxoTfYDKAo8fr/Bktql7zoUZ33f1hH887YQ7oj34pmWRhf4byLvVRsyVswXcx27R9YcMEQQNgfWXCDEy9EkWCUcGBhtRsCaHyla8EEQ4qmUP6RvAXTyYnBouHIjz2MN73Wxfs/rEv5YGjinhcei4CixO6JkLLBUEgP0qDX8Lb5Rd5u28naK1exbds2urq6+Md//EcJhsSHIiVEYlYdPHiQhx9+mKeeegpFUfD6cymkEofiSnbSTmvNFyvorx2m4aXOZCfljKx9oJKhZh+121qTnZTTU2KlRMHhcOq/fUzgWeKk8PJMDjxZvyDanC1EC7GEaCFRjSorP11C8+vdC6ar6olrhMlpiJUOLYCvXsXN+bgKbez5/vFkJ+WMlFybTXq5k73/UpvspJzWqD6Eb3k3NScOA3DLLbdwxx13cOuttyY5ZeJ8sjBeL4sFY8WKFfzbv/0bzc3N/NVf/RXRXD9v8zv26q/To7djsGukVzrjA5Dacyw4Cybf6qRXOOJdfBpssXUnuii1ZZlxFdni67rLHFg8pti6lvF1x7titWaYp3RbnVZqx+qNrauZVdIrnfEuiq1eE2mldhpf6aT70CCuYhueKif2HAuqMbbuRLsdS7oJd7kjvl9XoS3e9a5qUEivdGK0xdY1u42kV0yu6yywYs+xALHqb+mVzvhgmmaXkfTKyc4pHHlWHLmWyXypdMYHxDM5DaRXOjn4ZD2NL3dgz7WQtSotvjy90oE5LZaHxon8Hi+ZsWdb4nXDAdzlDizp43loPSm/M0/Ob3s8vzXLeB6aEvK7JCG/S+zxrs41k0p6hZNIKFZysfzuYpbfXTyZh8U2bJnjeWhUPjC/nYU27NnjeaiN56F9PL/TjKRXJqybP5nfKON5OJ7fppnyOy/hPKx0YnLFOuLw9QZwlzuZqAX6Qees0TY9v12ny29jQn4XT6474zlrSjhnT5Hf5jQjhZsy429/LR4T7rLJdV1F089Zwweds9knnbN2Q0J+J+RhfsI5q8x8zjJeQOjItcTfpgMY7QbMrvE8dBhS9hoBse9XepUj4ZxN3WtErGc2ncBwKH6eTXyGlLtGVDrRLCoVN+ez/JPFpJXaY+0P9dS9RtjzYt8Po8PAYP0Ih56Kjc+TqtcIz1IX1gwzmkklMBim5Y1YRz2peI2w55gxrg2wV3+Dt/gddc21fPzjH6epqYmf/vSnEgyJWScBkZgTmZmZ/OVf/iUNDQ089dRTFK/NZx9v8npgO/1FzURMsS5T8y/OoOTqyfEwln6iEO+SWGmSI8dK9d3F8WL83A1eSq+fbCRZdWsBGcvTALBmmqm+uxizK7Zuztp0yrdMrlv50XyyLnADsRto9d3F8Rt35io3lTfn03dsmNF2P+UfyaP4qmyqPl6AyWmg+u7i+M04Y7mLJbcWxPdben0OeRfGqnQYrBrVdxdjz43dCD1VTpbeURRft/iqbPIvyQBANSlU310cvxG6yx1UJwQJRZsyKdyYBcRuMtV3F5NWGrsJuYrsVN9dTNgfJTQaoeCyTEpvyKPipnwAlt1ZHL9hOfNtsTwcf7DLu8hL6TXZk/l9eyHepbEblj3HQvXdxfEHsJz1HspuSMjDWwrIXBHLb5t3PL/HH6qyV7upuGmyE4KKm/Li+W12G6m+uxirJ5aHwdHwlAeL8htyyVkfG7fI5IitO3GD9S51svS2wsn8vjaH3PFG4QZLLL8debE8TK90suzOyfwu2pxNwWWx/NaMaiy/xx/e3KWxPJwIcgo3ZlJ0RWbsPwpU312Mu8zOWE+AvqPDLL+zCG08wMi/NIPizZN5uOzOIjzjN31HXuycNY4/rOVe6KHkusnze8mtBXiXxc5vW1YsD03OWB7mrEun/MbJPKz6WAGZK2N5aPWMn7PjD0pZF6RT8dH8yTzckkf2mvTYMS/yUnxlNrbs8XO2Oo2qj0+es2XX55I7nt9Ge+z8duRM5LeLJbdP5nfJNZPjMmnmWB5OPOi5yx0svyvh/L4yi4LLY3moauPn7HjAkVYykd+xp52CyzMp2pQV39ZVYMM9fs66CmJ5OBGMpNI1QtEUltxaSOVH88leG8vvVL5GaGaNaFhHj0L2msmxwVL5GtFzcJDgaJiqWybzMFWvEVU351F2Qy6uQhtLbi0kHIi99EnVa0TlR/PIv8SLyWWk/MZc/AOxzoZS6RoRUoI06sfY6dvOb957nsylbn784x/T3d3NT37yE7KyJq8bQswmqTIn5oWu67z99tt8//vf59lnnwUgPZBNkamCdDWDyPiNxGjTiASjRMM6iqZgsKiEfBHQY28RFW2yzY/RphEJRYmGdBRVwWA99boGm0Y0pBMNRVHU2INJeCyCHo294VWNCmHf+LpWDT2qY7BoBIZC2HPMFF6eRd1v2gkHImjG8eNMrBvRY+02lFiawv4oeiTWMFUzq4RGJ9so6bo++Vntp15Xs6igM2XdSOCkfJlY16yiWVQUXSEwFMJVZCUa0hlp98+4rqIohP0z5OFp8ntqHp4mvxPy5YPyu+jKLAbqRhjt8E/Nw7EoelRHNSpT8zsxD0+T3zPl4SnXNaugQMQ/c3478iwsvb2Imp814esJfOC60/JQPUV+f4hz9oPyW7OomBwG/H2h8Tyc4fw+1Tn7Qfn9Ic7ZD8rvZXcVoWpKvEH3GZ2zSbxGGKwamkklPBY5s3M2SdcId6mNio8WcPDJ+li1s9Ods0m8RthzLWSuSKPx5c5TX5NPzsMkXSPMLiN6FMJjYTSzRmg0TDSsT8vDVLhGmNKMFG/Kov7FDiLBKCaHIXb94uQ8TO41IhKKMqz1M1LWybH6o6iqyi233MLVV1/N/fffj6aldvtecX6QgEjMu56eHn70ox/x+OOPc+LECRykUUAZORRhUIzJTt40zkIbpdfmcPCpWDsSo91AKIW7f626pQBbtpl9j59IdlI+kGpUWfVHpbS905vyDb0VFYqvzqbljZ6FMwjnAhkUd0G1IVogeQqxh9qCyzPiQUYqy1rtJu9CL+//qJ5oKLUTu/oL5fg6/Rz7Veq23Zy4R6lGlRX3llD/YgfDzb5kJ2uaqDFCeOkg+w/vZTDcT3Z2Nps3b+aRRx4hMzMz2ckTi4wERCJpotEoL774Io899hjPP/88drudtOFMCijHoaQlO3kz0kwq679SRdOrXbS/25fs5MxIURVMTgOBwRDmNCOuIhvdBwaTnawZKaoS74kprdTOYMNoyj9wTnl7mqLMaUZWfqaUo//VkpIPQokWSkDkKrRRdWsBB/69nsBgKNnJOaWTSxxSlhKrJjVYPxr7b8K1INVkrkxjqMkXv6YGh8Mpm9bcDR6KNmex+/8dS9lrVCjNx4mBowy5uhkeHmbDhg389V//Nddffz2qKi05RHLImSeSRlVVrr/+en71q1/R0NDAV77yFSK5Y7zNi+zSX6FVryOsp9aDRyQYpfb5NnprhoBYHWl3meM0W80vParHH9gylrsouSZnSoPqVDLxUGFOM1J9TwlZ4/XhU9mKT5VQdmNqD/gXGAzRc2gwpUsyF5rgaJieQ4MpHQxBbCyq6ntLkp2M08pa6ab6nsk2RqkaYKhGhZJrcshYHmvXExgMpVxa3WWOeMcSvTVD1D7flnLBUFgP0arXc8j7B3YObCeUPcJDDz3Evn37eOedd7jxxhslGBJJJSVEIqWEQiG2bdvGE088wY4dOzCbzbjHssijBDcZKEpqPdhX3VqAZlA58rPY221FJeWqp0zUKzdYNfIvzaDlje54He5UYs+xMNoRGyBXM6kpd0OfkFZixz8QJDCQ2g/GC8VCKSFaKCzpJsxpxlhpawpK/G4nfudTiWZWKbg8k9Y3ewj7I/FraCpJvNcsu7OISCjKsf9qSW6iTqLrOgNqD4ElfRyvO0YwGGTjxo1cccUV/MVf/AU2m+30OxFinkhAJFJWa2srTz75JE888QS1tbVYsZNHCbkUY1FS50I6cYNPK7FTdUsB+5+oIziUeg/L7nIHlTfns+/x2niD2FRkz7aw8r5SDj3TwHDLWLKTc0qKpuAqtKXsgyfEulc22g107RtIdlJOaSEERFmr3YRGwvTXjiQ7KaeUVmJnqNmHHkndW7qzwEr13SUc+HE9o52pFwhNMNo1Vn++guPbWhk4kXp/c5PLyAWfLePYL1sYbBxNuRdIelqY4ZxODtQcYIwRvF4vN954I3//939PYWHh6XcgRBJI+aRIWfn5+fzFX/wFx44dY+fOndxx3+202+r5g7qDvfrrdOotRPXkP9hP3IgCQyG63u+PB0OZq9zxMRZSwcCJEXY/fIyQL4JqUKj+VAnO/NQb2XusN0DLWz2MtKfuAxPE6uovu6soPj5HKnKXOeJdVItz513imjLWTaox2DSWf7KI3A2e06+cRCPtflrf6mGsN5DspEzjzLdS/akSVINCaDTC7oePpVQwZHIayFwZa1sbHL/XBIZj95qUCIaMOv3ODvbqb/Dq0Db21L7Ljbdex6uvvkpXVxdPPfWUBEMipUkJkVhQhoaG+NnPfsYTTzzBW2+9hcfjwdbnJoci0vCmTJW6ic4XGl/upOO9/pTrncrkMFBxcz51O9rx9wVTtkGz2W1k6e2FHPtlC2O9wWQnZyoFbBlmfN2p93A3IRWrcJ5sIZQQQernpS3THOtSOcW+xlaviaqPF1DzbHNKVjOduPZZPCbKbsildltrrJvyVDF+78hZ76F4cxa7H06dzhJ0XWeIPtppos/Wjs/n46KLLuK+++7j+uuvp6ysLNlJFOKMSUAkFqwjR47wox/9iJ/85Ce0tLRgxU4OheRQhF1J/ltxzaQSjejoEZ2Sa7KxZZo5/JPUfOi7YGsZPYeHaP1DT7KTMoXZbaT02hyOb2tNyXZPEwo3ZdJ7eChlgyNrhpmxntRMW6oHRKmcd7ZMM95lLpp/353spJySZlapvDmf+hc7Ui4gyr80g4zlLvb/oC7ZSZnR8k8WMdoVoPHlThRNQdWUlAiGRvVhhrI6aQs10t/fT15eHps2beKee+5hy5YtyU6eEOdEqsyJBWvZsmV885vfpLGxkVdffZV7tn6SvrR23uJ39K2po1E/RkBPXhuUSDAar88/2DBK79FhAFSDQv5lGRgsKVLVSoGu/QMMNcXawpjTjBhTpBpYYCBEzc+biQSiGKwalTfnp0zaJqhGBe8SF87C1GnXlsiWZWbdA5WkV6Rula9UlV7hYN0DldiyzMlOyoychTa8S10p14uk0Rb7rhqssYE3a36eOqVDRpsW79luqGk0NgZaimSfwaKRf1kGqiGWoL5jwww1xq7Lye7qP6D78S3rpKF8H2/xW5rGTrBkyRKeeeYZmpqaeOaZZyQYEgualBCJ84rf72f79u08/fTTvPDCC4TDYa6++mpaX+wni/yUGPjVVWSj+p5i9jxWS2AglHINYpfcVojVa2Lfv6bWwK6OfCtVH8vnwJMNhFKpSgtTx1BJxeqH6ZWOWIcAqZUsIMVLiJRYUNR/PHXakkDqn28mh4EVny7h2HOtjLSmVscoqz9fzlhvkKO/aE52UuIm7gGWdBNrvljOoacbGUqF8cOsUaJVwyjeKK+++iqKolBdXc3XvvY1tmzZgtWaem1QhThXEhCJ81Z/fz+/+MUvePrpp9m5cycWi4WbbrqJmmebySAXg5K8Dg9Uo0I0FPvqrf58OQN1IzS81Jm09CQyWDTMbiOjHf5YQ94VabTt6kup3qtUg0LhpqyU60Lcu9xF8ZVZvP+j+pTrpjdVpXRAlIIMVo1Vf1RK46td9B4ZSnZy4ia6qm7e2UU0nDrXCkVTyLvQQ/fBQYLDYew5FgIDoZQZuLbkmmzcZY74C6jEe0NSWKMMO3opvjKbbdu24ff7Wb16NV/60pe49dZbycjISF7ahJhDUmVOnLfS09PZunUrr732Gk1NTfzN3/wN9fX1HOQd3rH+FtfHo3TozYT1+S9tSLzhNe3somf8wcZZaKPsI7lJrQIT9kfiY4OkFdvJvzQDVUuROiXj7DkWsle7MTlSpxc/gNF2P71Hh1PmYStR3kVequ8pTnYyFozqT5WQd5E32cmYJuyP0HdsmJH21Cp5MTkMZK92Y8+xJDspU6iaQv6lGbiK7QCMdviT+v1UjQplH8nFWRArXek5MkTTzq748mQEQ1FjhE69Gfdt8Pvwr3mnayfHjx/n61//Ou+++y579+7l85//vARD4rwmJURi0amrq+PZZ5/l5z//Obt378ZisXDjjTdy/Jet4yVHyatW513uIm+DlwM/rgcgrdTOcIsvqW8MJ95YqkaV1Z8ro25HOwN1yR97RzUosTfRChRclkn7rt6Uqnpoz7YQGAqlTEmRu9yBI89KyxvdKVV1LiVLiBQouDyTkbaxlOl62WDVMLuMKTV+j2ZSyb3QS8ubsXMq/p1MMneZnbIbctn3b3VEQ9Gkl7qoRgVngY3B+th1c+V9pbTt6k1qCV9YD9NDO/nXu3n55ZcJh8OsW7eOTZs2cfPNN7Np06akpU2IZJCASCxqDQ0N8eBo165dqKh4ySGLAjKTHBwZLBoX/ukS6nZ00LG7L+ltBQxWjeKrsml5vZvAUAhblpnAQCjpQYg9JzaQ68GnGhhpS5G35gqs/eNKhppGqX2+LdmpSWkpGRCloIqb83EV2tjzz8dTJqB15FlZce/4QKsdyQ3UNJOKOc2IrzuA2WWkYGMmja90JvWFxMQ1O2e9h7Ibctj1raNJLZ0K6yF6aMdf3E9DSz3hSJj169dTUVHBgw8+yGWXXZa0tAmRbBIQCTGusbExHhy98847qKikk0UmeWSSi1mZ/wakZreRsC9CJBil+KosXEV2Dvx7/bynYyarv1DOWE+Ao79oSXZSpnRMUXBZBp17+wn5klsyY/GYCI2GU6qNEwrkX5LBSPtY/G11sqVaQJRWaseRa6X1rZ6UCTwg1kbHaDfg70vueFxGu0b26nRa3ox10Z8qncIsua0Aq9ecMp3BrPxMKYONozS92oVmUjHYtKT0tBfQ/Qyn9zDi6aWu7gRRPUpVVRUbNmzgb//2byktLZ33NAmRiqQNkRDjiouL+ZM/+RPefvttGhsb+dZ3vsWKTUuoYQ+v8wK79Jep148wog8yX+8REktgBurGu4gl1lB4yW2FSe0O+PAzjTS+Eqv77ioab/tkSE5bo4k8MqcZyb8kA0de8ns/8vcFiQSiGO0aK+4tweo1JTtJoMd6TXOkWDuPVOLIsZBe7kiJYMjqNbHi3hKM9lj31ckOhgAcuVbyL8mId12drGBINcTa4riKYt3dN77SxeGfNCYlLRDr3n7JbYUo4+0tu/YPxF86RILReQuGdF1nRB9ksKqVA543eJ1fs6//HSLRMF/56ldoaGjg6NGjPP300xIMCZEgtVokC5EiioqK+OpXv8pXv/pVent72b59O9u2beOXz/6KExzCip0MPZdM8nCTgarM/buFwYZRBhtiN1iT04DZbYz3/OYqshENRRlpn79qK8Hhyc4oTE4DNq853n7A7DYm523oYIjdj0yO5F6wMZP+48PJrc6jKOg66Ml/iQ7AwacaUuJhP1W1vtVL69u9yU4GEDtndB1QktupiT3HQnqlk5bXu+mvHZnyHZtvE9eWaFjH5jXHO1bx989/sOjItaAaVIaafegRHbPbiMlpIDAQonNv/7ylI6pHCaQP4c8f4MjhGnzREYwnjCxbvoxvfuef+MhHPiIdIghxGlJlToiz4Pf7ee2113juuefYtm0bbW1tGDCSQQ6Z5OElJyntjpbfVQQKHP5JrNqRxWNK2ttks9vI+oeqqPl5M701yWs0rBpVLri/jNa3euIla8mmGhTsuVaGU2CMEe9yF301w0kfwyZVqswpqoJnqZPew8nvytpZaGO0fSwlOigAyLrATf4lGez/YayTgmTxLnOx9PZCdj9yjMBgcgZ6Tby2Lv9kMbquJ+XcDeshlOoxmvsaaWivI0wIp9PJtddey9atW9m8eTMWi5QEC3GmJCAS4hzpus6ePXviwdH+/ftRUEjDSwY5eMnBQRrKfLzdVcBo1Qj5IjgLrFxwfzn7fnAiNiiiwvyWCCjgXeqi//gw0bBO3kVewoEIXfsG5jER40lRJ0tmCq/IxN8fpPvA4LynY0L+pRkUbszk3YePEvEn78HS6jWx9o8rOfKfTfQdG05aOiB1AiJPlZNldxax55+PM9abvKppmkVlw5eX0Px6N61/6ElaOjJXpmFJN9H8+25g6ndpPmWtdmMwa7S904tqUEivdMZetMzzNQ09Njj06q3l7P/BCYZbxzDaNEJjkXlJi67rhNJ9hIuGOfL+UQb0HnR0cnNzuf/++7n55ptZs2YNBoNU/BHiXEhAJMQsaWhoYPv27ezYsYPtz28nQgQTFrxk4yUHL9kYlblvR6IaFNzljtiDrg5Lby8kNBbhxAvJ6e2sfEseYX+Expc7UQ0KJpcxKaVXlTfn4+sN0Ppm8h4yUWLdcSe7Ry4AS7opKdWMTpYqARGkTp7Ycyyx7rWTeHcuuCwDq9fM8W2t835si8dEcChWLa7kmmw0s8qJF9rnPR0A5TflYbBoHH22GZRY4DxwYmReSu9CehCl2k9LdyNNXY0E8WM0Grnkkku44447uOaaa1iyZMmcp0OIxUACIiHmQCAQ4M0332THjh3s2LGDAwcOAJCGJx4cufDMS+lRRnUaekSnt2YIs9tIxZY8al9oS0obn6zVbio/ms+u7xwlNDr/A+JOKLgsA0e+lZqfNSctDSXXZGNyGDj2q/l/4ExkyzLj6wok7fipEBAlOw8Aqm7JJzgSpuGlzqSlYdkdRQy1+pL60sBoN3Dhf1/C8edbk1KqHL9G/rqNwGAI71IXiqbQc2juS5Z1XSeS5WMse5CaAzUM0gdAbm4u99xzD9dddx3r168nPT19ztMixGIjZatCzAGz2cxVV13FVVddxTe/+U1aWlr47W9/y44dO/jVs89Rx2GMmPDo2XjJxkMWFsU2J2lJvJEbLBoAodFYl9R5F3kJ+cLzVo2s+8AggcFQPBhaflcRnfsG5r2tka9n6sOv0abNezfdI21jGB3JvQS7yx2s+FQJe/+lNqUG/JxP9hwLa75QwcGnGhioS94grMNtY4RG5v8lQeK5P9zmY6xn/gND7zIXWRe4OfLTJkKjYQ4+3cBQ0/y1s8tc5cZojVXLm7g2GqwagcHQnF+b/LoPwwVBGloaaO1tItQVxDxo5qobr+LWW2/liiuuoKqqak7TIISQEiIh5l04HOadd96Jlx7t3r0bABsO0skinUw8ZGJS5r5BbOXN+QRHwzS+3IlmUclZ66Fzb/+8DGaoGhTKP5JH14FY97T2HAsmp4H+4/P7UJq5yk35R3J573vH4g9D8y17tRt/f4jBxvkfGyi9wkF/bfICgVQoIUpWHqQV2zGnG5NSEgKxMYXWPVTFiRfa5r1tXXqlg+BQmNFOP2mldrJWujmxvW1eqqIZrBrZa9LpeK+PSCBK8dXZmOyGeakeGNQDRIpGGLb2UXv0BD5i511RURH33nsv11xzDRs2bMBut895WoQQkyQgEiLJenp62LlzJ6+88gqvvPIKNTU1ANhx4SFrPEjKmPP2R2nFdpbfXcR73ztOcCRMWqmdsD/C6Dx15V1yTTaeKid7/rkWiD20zEdgZrBoeJY64w+lWRe46T0yNK/dCi+/u5ix3gD1v+2Yt2OezGg3JKUaYzIDomR95gml1+dg9Zo5/Mz8jZ+jmVS8y1zxnhezVrvpqxkm7J+H71rCd3rtA5X0HR2atyqC9lwLBovGYP0oJqeBdQ9WcviZpjl/CRHSgwwaelGX+qk7Uc/AWKwaXEZGBrfccgvXX389F198MQUFBXOaDiHEB5OASIgU09bWxmuvvRYPkOrr6wFwkT5eepSFmww0ZfarWymaEh/baOV9pQSGQhz7ZQuKpuCpdNJ/YphoaO4uGRMPTCangfVfruLIfzbTf3z+ekEzu42se6CSmmeb6Ts6j72vKbGhZvRobEyp0S7/vPZCl17pYOknitj3eO2897CWrIDI6jWx+gsV1PysaV5LhwwWDVuWmaEmX6znNp157TzBs8TJ0tsLee/7x+e1HaGnysnSOwrZ/fAxgsPhOX/hoRoV0sud9B2LdS1f9fECzC4jB34cu54mXutmU0QPM0AP0TIfnSPtdHTFOoNwu91s2LCB++67j02bNkkAJESKkYBIiBRXX1/Pq6++Gg+Q2tvbUVBw4cGNFzcZpOHFpJhn98BK7OEtPBbBVWRj1R+Vxdua2LLMRALRORsLRDUqZFan0XNkiEggSuEVmRis2ryUoBgdhnhbjpJrcxjrDdC5Z34GWVRUWPdgFX3HhqjbMX+lRYqmkHWBOzaY5DzfEZJWQqRA9pp0uvYPzMmD8amU3ZCLp8rJe48em7durLPXpmP1mml4MXZOJZ7jc6n0+hzCYxGaf9+NZlbJWOai+9DgnL1UMacZ0cwqvq4A9mwLa75Ywfs/qmOoyRcLwPyz30V2UAkwGO1l1DGA3z1MW2srUT1Keno6ZWVlfOELX+Caa66htLR0dg8shJhVEhAJsYDous7Ro0d55ZVX+P3vf88bb7xBa2us3rsdZzw4cpOBFfus9mI3MUI8QPU9xQAc+o9YVR93mYOhptE5q/+fs96DwazS8mYPqkGhcFMW7bt6CQ7P7UNd+UdyGe300/FeP5pZRTUoc97OyOwyEvZHiASjsTwfDM1rkDJfVRUnJCMgmu/PiBJ7WA8MhNBMKgaLRmBobktnjHaNaFgnEoiSs96DPcvMie1z23W1yWkg90IvzTu7iIZ1Ci7LIByI0rG7b06OpxoUXEX2eGcY1Z8qQY/q8SqIides2aDrOkpGmLaeNgbpwe8Zprcv1iNfXl4eWVlZ3Hjjjdx7770sXbp0fsagE0LMCgmIhFjAdF2nqamJN954I/5z8OBBAExY4iVIbrw4cKMq6qwcVzOpGO0G/P1BbJlm1v5xJQeerGewfhRbphkU5qwbY0euhep7Stj3gxMEBkI4C6yExyJzXtWraFMWuRs87Pru0XkpUVA0hfX/rYruAwPz1s7CmW9lxadLOfDjekbaxublmPMdEDnyrKy8r5SDT9Yz3Do/n7HkmmwyV7jZ/b1j83buXPjfl9C+q4+mnV1zeiyr14TBqjHcMoYl3cQF95dx8D8a5qztoS3LDDr4ugOkldpZ+elS9vzzcXzdASzpJkKj4Vlr/xfVoxjKwnQMttPR28awqZ+xYKz3u+rqakpKSqiuruZLX/oSxcXFEgAJsYBJQCTEeaa/v5+33norHiDt2rWLQCCAhjZezS6DNDy48MxaNTtrhhl/fxA9olP5sXzs2Rb2/esJINZ2YKjZN7tv5MdHjgdY8ekSwv5IfEwhq9c0J8GRZlFx5lkZqBtFURXKt+TS+oeeOQ3EXEU2/P1BgsPh+anmpEDehV7ad/fNWzWy+Q6IFE0hd72Htl29c17yNvE3MzkNWNJNc9qVtNVrIv/SDE680I4e1XGX2RluG5uTtmiJ37FldxShWVQOPtkQW5jw3ZwNBquGq9AWG2gaWP35ckY7/Rx/rhVFU7Ckm2atq/CgHoBiP2OOYU4cqmOQXiJEMBgMXHLJJaxbtw6Px8N9991HUVHRrBxTCJEaJCAS4jwXCATYs2dPPEB688036e3tBcCCLR4cuUjHSTqGD9lZg6IpmF1G/P1BDDaNi/9sGTW/aKbn4CC2LDO2DDM9h2dvbA9FUzBaNYIj4cm2Tv9ay2i7H82kzklvcRaPieV3FXHkZ82M9QQwu40Eh8NzF0QosOaLFQzWj1K3Y26rPU2Yr3Ym8xkQzWevcmU35pJWYmfvv9TOWeClaAomp4HAQAhrhplldxRy+KdN+Pvm4IXA+HfJkWth9ecreP+JOoaafZicBkK+yOyd+wpkLHPh6wng6wqQuSKNqlsLeOdbNYR9ESzpJgJDoQ99vIgeZoh+Ri2DKEUBmhtaGAnGgi6bzcZVV13Fxo0bKSkp4dprr5XBUIU4z0lAJMQio+s69fX1vPvuu+zatYtdu3axZ88efL7Y22s7rvEgKR0XHhykfaiqdka7RiSoEw1FKbg8k9z1Ht79f0eB2MCww60+hltmp+qSoim4yxzxnumW3VVENBTl6C9axldgTh5OV322jOBwiJqfN8/+zselldgJjoQZ6wnM/kPoSYw2jXUPVtHwSuectf+YMF8BUe4GD0Wbs9jz6PE5G4RX0RSMNo3gcBhrhhmTw8Bgw9x167z0E4WYnEbef6Ju9nee8F1ZclshqkHhyH/G/kbplU4G6kZm7fxzFlhx5ttoeyf2ombDV5fQ/m4fLW90oxpVNNOHa7sXVaJoxWGaG1oY0vsIekbp7e9B13WsVivZ2dlceOGFfPzjH2ft2rWUl5ejadqsfDYhxMIgAZEQgnA4zOHDh6cESQcOHCASiaCi4sQdL0VykY4N5znXl08stVnzpQo69/TT9k4vtkwzOes9NL7aOWvVfNJK7SgKDNSNYvWaWHV/GQefbGC0Y3bbN1g8JjSjyminH0eelaJNWRx7roXwHD14r7i3hGg4yuGfzF0QkbEijf7jw0QCc9sV2nwFRJpZJb3SSc/BuRuAdPkni1ANKgefapiT/RtsGlUfK6BpZxcjbWPYsy1EQtFZLxGy51hY8ekS9v+gDn9fEHeZHV2HwfrZCe40i0rx5mw6dvfh6w6Qd5GX7DXpsdI0+FAlu7qu42MEy2qdtrZWOrraGVEHiUQjaJrGypUryc3NpbS0lC984QssX74cg2H2hzAQQiwschUQQmAwGFi1ahWrVq3i/vvvB8Dn87Fv3754kPTuu+9y6Pi7AKhoOHQXTtw4SIv/NijG0x4r8UFn72O18WlzmpG0IhvR8eVlN+YSGg3T/Pvu2ArnULqT+AAXCUZp39UXb29QdmMuiqZw4tdtZ7fTGSQ+kKoGBT2qx9tMZa5IY7h1DH//7D20nvhNO5opVmpnchpQDeqs7h+IBw5Gm4bBZpi1dhrzzZphJuwLE/JF5iQYsqSbiIajBIfDNO3snvUqmpZ0E458Kz0HBwmPRdCjOqoh9jJitHP2Avvym/LQIzp1v2lnrCdA+64+oqHYZxmoO8dAKOE7W3hFJka7gbrftBMN6qQV2+k7NoyvO0DbO73x0iHgzPPQHGEwMshQqB/yAwyFB+js7CRKBPZBVlYWW+6+gVWrVuHxeLjtttvweDzn9lmEEOc1KSESQpyxvr4+9u3bx759+9i/fz/79+/n8OHDhEKxrm2t2BMCJDdO0rBgO6fSpILLMgiNRejc0485zcjaP67g4NONDDf7MDkMRCP6h+qoIesCN4qq0Lm3H4NNY80XKjj6bDNDzbPX8F1RFTZ8pYrWt3pofasXzaKioMTGQ5kl5R/JJb3Cye7vHZuT6oDL7izC5DSw/wdzUC2LuS8humBrGcHhcLy616xSYP1DVfTXDs9ql9YGi4aOTsQfJf8SL3mXZLD7/x1Dj87eH9hVZGPJbYXs/ZdawmMRsteko0d0ut4fOPd0WzVUTSE4EsZZaGPFp4rZ8/1aAkMhstemY7RqtLzZc9b71XUdPz6MlRH6/X20Nbczqg3ii8S62zYYDBQVFeHxeLjjjjtYu3Yt1dXV5OTknPNnEUIsLhIQCSE+lGAwyJEjR+IB0kSwNNFxgwHjlFIkJ2nYcaGdRecNRptG1up0Ovf2Ex6LUHZjLu4yB3u+fxyArNVuhpt959zjm9FhIP8SL61v9RIaCVN8VRb2bEu8SpqiKuf8MKoaFFAgGtIp2JhJwSUZvPOtmll7uFUNClavmdFOPwaLRvYaN+3v9s3amFBGuwHVqMzqeC6J5jogMruNREP6rHWmoBoUcjd46Nw7QNgfwZ5tYaw3MGv5ragKF/3pUlr+0DPehkZBj3LO7XUSz93lnyxipMNP06td0875c2H1mnAW2OjaPwDA2gcqGTgxQt2OdgxWLTbw7b7+s2qzpVijjDJCv6+XaJafMdMwbS3thImdfzabjYsvvphVq1YRiUS46aabuPLKKzGZTOf0GYQQAiQgEkLMAV3XaWtrmxIg7d+/n2PHjjFxybFix44r/uPAhR3nGQVKZpcRk8vAcMtY7AHyz5ZS/2IHnXv6ceRbyV3noW5H+zlXX0qvdGJxG2l/tw9Fiz2gnnihje6Dg2gmFT2qn9MDsNGuYc+xMnBiBBRY92Alja92zVpVLu9SF5U357P7e8dmfeBR1aBQfFU2za93z+q+5yIgMlg1Cjdm0vhK56wPFmywaax/qIrjz7XSWzM7vSVmrEijeHMW7z16HHRwlzsY7Rg7p44EVIOCoipEglEyV6RRviUvFoBHdHI3ePAPhOKdjpwtzaRSdkMu7e/1MdI6RvbadEqvzeGd/xsL8J0FVoJD4TMadDaihxllGGNFFJ8yRPPxNkYZYoxY9TxFUSguLiYtLY0tW7Zw6aWXUl5eTmVlpXR4IISYdRIQCSHmjc/n4+DBgxw6dIhDhw5x+PBhDh06RFPT5MNwLFByYsMZ/23DiQnzqaveKeNvwiM67nIHhRszOfDv9UDsrXhgKMSJF9pBAXepg+EW3xkHS6pRIXt1Ov0nRvD3Bcm72EvRpize/uYR0GMN0P0DwbPuCEI1KuRfkkHvkSF83QEyV6bhqXJx9Bcfrqe6iQbpiqZwwWfLaHyt65wfgBNZPCZW3FvC0f9qYXgWqxXORUDkLLSx5NYCDj7VMCsdDqRXOim+Mov9T9ShR/RZ6c59yW2F9B0bovvAILZMM95lLlrf6iEaOrtbsmZRsbhNsY5CFLj4z5fRtLOLtrd7sXhMpJc76NzXf8b71UwqzgIbA/UjoEP5llzMTiOHx/8+Kz9TSvPr3QycGEHRxkufTrFrXdcJEcBUqdM/2E93Vzdhpx+fNszAwEB8PbfbzcUXX0x1dTUAl112Gddddx12u/2s8kIIIc6VBERCiKQbHh7myJEjU4Kko0eP0tDQQDQae/A0YEwIkhzxaSv2DyxVyliRRjQYpe/YMNYMM+seqOTAj+sZbBglvdKBM89G086uM06r2W3EkWONlw5s+O9L6No/QOPLnRjtBjxVTnoODZ71A7N3mQt3qT3eFqXio3l0vT/AUOO5BR+aWaXkmhza3o4NHmvPsRAeixAYPPeqb4nVrww2bVZ60ZvNgCgxTR+mmiPEOvkwWDVGO/xYM8zkXeSl4aWOc+51L63YTuaqNGqfj3XiUb4ll4G6UXqPnF0pk2ZSyahOo+/YMKHRMMVXZ5O1ys273411Ze9d6mKkY+ysqjgWXZnFcIuP/toR0krtrPx0Ke89eoyx3iCeKieqUaXn0KlLMaNaFFOpTldzF4P+QdT8MKORIbo6uuNV3RRFobS0lNLSUjRN47rrruPyyy9n6dKlpKWlnVUeCCHEbJOASAiRsgKBALW1tRw9epSamhqOHj0a/0l8w2zCgg0HVhzYsCdMO6b1fGdJNxEcDhEN6+Re6MFT6eTQfzQCsTYQXfv6aXmzB4NVw11mp//4yAcGN5Z0E9GITnAoRHqlk+V3FcUGkRyLkLM+1qPV2Y7lo5lUlt1ZROvbPfQfjz2kepe6qP9txzk/5FffU4yiKrPSJXT+JV7yL83gvUePf+huuWcrINLMKuserKLlzW7a3u49/QanseLeEvSoHj83zpaiKpRen0NvzRCD9bHgO//iDI78Z9NZB8uJ55HBpnHRnyzl8E8b6T8+gsllRNWUD+xlUDOppFc6GKgbJTwWoeCyDLIucLPnn2O9PFbfU0zf8WHad/WhGhRMTuP0/VmjKFkhOhq6Yt1aVyr09/fT29NLgMne7tLS0sjLy8PpdHLzzTfHA561a9dKD29CiJQlAZEQYsHRdZ3u7m5qa2vjPydOnIhP9/VNBiBGTFixY8GOFdv4tC0+T1Mm2yPkrEtntNPPcMsY7nIHKz5Vwq7vHiU4FCL/sgxMDgP1v+0AxqvK9QWnPdyqRiVePan0+hzQof53HahGlfX/rZJjv2pl4MTIWXVWkLkijazV6Rx6ugGAso/kMlg3Qm/NmVeFU40KRruBwEAIR66FqlsLOfR0wzmVGBmsGukVDroPfPi2T7NZQpS5Mo3+2pFzauNkdhupvqeEo//VzGi7H7PbSGg0fFZV2LxLXaSV2akbL+Wr/lQJnfv6z6iNWGLnD+5yB1W35LP7kWNEQ/qU8wimnmMTNJOKxWOKj7FVen0OwZEwrW/2YHYZ2fDVJRx8uoGBEyM4C6zYsy10vNcf3z6iRzDk6/gZpbu1h6BpDFOJQndLD0O+QUJMBkgejweXy0Vubi7XXHMNpaWlqKrKFVdcQUlJyTmPUSaEEMki4xAJIRYcRVHIysoiKyuLSy+9dNryvr6+eIB04sQJGhoaaGhooL6+ntqmA4TDk71qmXQLVmxYsHN8txUzNixYGaq10ftP/ahjBhRFIRKIEjHEgh9FhdWfK+fEb9rp2N2HM99K7oVeTrzQRiQYxeQ0EAlG48ETgKJBx+7+eJuWnLXp5F+SEWuLBORd7MXXHYh1uHCS7oODdCc8VJvsBlRjbBwiZ6GNkquyqfl50wf25hUN6fHgKxLSGawfiTd+z7vYi6/Lf8bjzYTHIvFgKGu1m/RyB0f/q2VOuv3+QAosubWA/toRuvYPnHWA5i6zY8uy0PZ2L4HBEIP1I/FA40wCVaNdY+ntRTS83MFwyxiqUcFkn7ytTgSwMx673IEt0xwvzVrzhYpYz3Kvd+PvC9Kxux9FUyCkx88jzayimVSCw2E0k0r5ljzad/Uy3DpG5io3ZTfk8odvHAIdIv5ovPTOPxhk5z/tZSw0gmOlkRPNjQw2D6JkRAibA3S19hDED62xtBkMBooKighHVS69+mIuvPBCPB4PaWlpXHvttWRlZZ1VPgshRKqTgEgIcd7xeDx4PB42bNgwbVkkEqG1tZX6+vp4kDQRMDU3N9PQcphgcPxt+BgoqFh0K+Z3rVjGgyVz1MrAI11oASOabsJhtGB2GYmMD2RZcVMeuj5e6qHA0k8U0vqHHpp2dsV6msu20P5eHwN1k8GPd4kL1TDCwIkRbFlmqj9VwqGnGvB1B7BnW1BNarwzg5qfT3a8oEd1AsMhQuOlIsvuLCI4EubEC7G2KvYcC74uP3pCQdZYT2DKuDneJS4UTWGgbhST00BaiZ2ew0Nn1NVzJBAblHTegyEAHYIj4TOugqZoChnLXQw2jBIcDuPIteIud8SCEp0ZxxJSVLBlWeIlL+Vb8jA5DBz5z1gAGhgOMVHPovvA4JSgzFkYG2h4tNOPLdNM9b0lHHq6AV9XAEeeFXepPR4QHXq6gbH+IPZsC8GREE07u3AWWMm/NCP299ZhyccLADj80yYioShmlxHdqKNkRWg80cDR79UQzgxizIHtO3fh133gCjM8OkxkotTs/fGAp6wIt9uNpmnc++l7WbJkCWazmfLyctasWYPBII8HQojFQ6rMCSFEgmg0Sk9PD83Nzaf8aW9vjw9GO8GAETNWzFiwWexYNCvqqBGL0UrFpkIGD/oJdugUrs+h4sb8+Jv8shtyCI5GaHm9G0WFzBVufD0BPEuctL7ZQyQYpeLmfOxZ5vjgqNWfKqFzbz89hwYxWDWsGWZGWsfQozoZ1S6iIT3WiYTXxLoHqzj4VD0DdaO4imxYM8x07umf6aMDkLnKTcVNeez6Vg2RYJT0SgeBgRC+7sBp885T5SRnbTo1v2g+46pmZ1tlTjUqLL2tkI49/fQdO32VQVumGbPbSP/xETSTyoV/upTaX7fR/QEDkGavTWesJ8BQkw93mYMV95aw+3vH8PdNdDKg0HNoCEVVcORbGesJEB6LkFGdRvaayaqNF2wtY7QrQO22VjSzSv6lGfQdHcKWYaHrwADoULAxE6NNi5UCKXDpX1ZTu72F7hN9qO4o9goTbYe6MOYotB/vwh8eQ/VE8Y2NMtg/NKUqG4CmaTgcDpYuXUppaSmRSISMjAyuu+46CgoKsNvtVFZWSsAjhBAJ5IoohBAJVFWNV8dbt27djOtEo1F6e3tpb2+f9tPW1hafbmmvw+/38/5Lb09uvBuM75kw6mZMmDn+rhOTYiGs61gNNlwVpfR1D9P2Siu5K7Mo31zI+99vxGgzkH9pBqGRMP7+AGF/rK2JyWGg6pYC3v6/Rwj7YgOFGiwafceG8Q+EaHytk8BQrIpgWokd7xJXPCBa8ekSeg4N0vFeP5pFjfWed3iQ/mPD8VKX0mtz6K8dof53HdMGyJ2WLxGdoC8SD4bMacYP1atdIrPLSGAoFGtn44sQPUXp1ckDgmavSSe9wkH/8VoiwSjvfuco0XCUtBI7Ix1jRPxRctalk1GdxsEnGwDIXe+ht2aIoSYfgeFgLA/HP0d6hSNWGndoCINF5YLPlnH0ly2ERsOE/bG/TdYqN0aHgcM/bSLkC3PBQyXUvtpCS3MrYVsQrcJGf3cbhkx4s+YQwaifcFaIscAYv/+75wnq48HnANAw/rm6DeTl5VFUUEA0GsXlcnHllVeSm5tLX18fF1xwAatWrcLr9aKq6qzkuRBCLBZSQiSEEHNE13UGBwfp7u6mu7ubrq6u+PRMP11dXZPV9U6iYcBmtWLUzOgjCiaDmbyVmYw2BFGDBlwZDnJXZDBwZAyTxYjZYkEJKpRdnU/rq70YDSYURaXsulz2Pl6LqiqUXp+LfyBI3fZ20iscVN9Twr5/rWWk3U/+5RmYHUbqf9eOalRJK7GjGtT4wK+hkTD5l3jRLBpNr8a6LTdYtXigZM+xsOYLFbz/ozqGmk7ddfiZlBC5imys+qMy9j5eG6+6lnisos1ZRPwRWt/qxeQwsO6hKo5vayEa1hlsGCUailJ6fS6BoRCtb/bgyLWw+vMVHPqPBvprRyj/SC5mt4n637YTjeis+WJFbJooYT1E3hUeTrzSCkYdxRolFAxhztJoP9SD0asy1DOEwaPS2zyAYosy3DdKMBIgGAkSDM5csmY0GrFarRQXF5Obm4vf78dut3P55ZeTmZlJR0cH1dXVrFy5Eq/XS3p6unRWIIQQc0QCIiGESBG6rjM8PExvby/9/f0MDAzQ398f/0n8f19fH319fQwODsbnJ3YWMRMFBYNmxKgasbosKEEVo8GI2WpBQ8OV7WC0JYA904oSBVuGld5Dw9gzLaQVxKrOjbT6MTvNZFS6GGkPYDRrRHw6ZqeJtEI7fTXDEFFQFJW0Ajsd7/ZjTTfjrUpDVVRadvagGjXsXjOjrQEKr85EURSaXurCXmAmFIwQGAxQcHkGuqIz2DLCQNMIuRs8+Pr8RCNRwuEIniUOfD1+Rvv8qCaIomPNMNJ7dAj/cAB3pQPNrDDYPIKvL4BnqYOxwQDRSJSQP4QxTWOwc4QoYaJqhGAoSCgcYmzYT0QJEwwGOd3t0WAwYDabcbvd5ObmYjAYCAQCrF27luzsbHp6erDZbFx++eWkp6fT399PRUUFpaWlOJ1OCXCEECJFSEAkhBDnAV3X8fl8jI6OMjo6ysjIyJSf4eHh+LK+vj56e3tRFIXR0VHa2trw+/2EQiF8Ph9DQ0Ooqko4HCYSieDz+VAUhXA4HP+JRD78oKxzQdM0DIZYz4CqqmIwGLBYLASDQaxWKwaDAYPBQDgcpqCgAKvVSiAQwGq1UlZWhsfjoaGhgaqqKsrLywkGg/T393PRRReRnp7O2NgYaWlpFBQUYLPZJKgRQojzgAREQgghzkk4HGZ0dBRd1+OB0+DgIKqqEggE8Pv9+Hw+BgYGcDgcdHV1EY1G6evrQ9M0vF4vBw4cAGDVqlXxtldlZWU4nU5UVaWzs5MLLrgAm81Ge3s7LpeLnJwcbDYbra2tFBcXk5aWhq7rBIPBeJfQ0WhU2tIIIYQ4IxIQCSGEEEIIIRYteX0mhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0TIkOwFCnI86OzsZGBhIdjKEEEKcZ9xuN9nZ2clOhhDnFQmIhJhlnZ2dfOLWT4CW7JQIIYQ431gsFp566ikJioSYRRIQCTHLBgYGQAPDURfKmAklXjFVRVGV2KSS8Ht8WlFVGJ8d30hRQJ2+7kzbn3o6YZ9q/D8J88cnVGVyZUWZrFA7sR6T+9QTlzN5HD2+r8n5emI6JrZPrKybmI7xaf2U05Mb6QkfZVrlXyVhXSVhXRL2E/8sTN9/wjwUBf2ktM64zbTtE/IlcfsZjpW4fMo+Tk4LTEvLyducbjlnuPyU8z5onSnL9RmX6zOmQZ+6v2mfRZ++fyV2jFMef8q+ZtgePeF01ydXTVhXSdiXctKxFGXq9pOrTt9eVfSEY+jj28TmT0wrCfMBVPR4umPbT+5r4jgT25y8fOJYKpO/4/MUpi9XTtpXwvTEbzVhG4VofF8T81QlmrDuxPxoPH80JtOtja87cRxN0VHG52kJadUSjhXfXtHRSDhWPK3RhLRMbB+dPMYptplI48QlRFWiM6Y1MS9VEtKXkNaJ/UzJl/h+QRs/SybOFU0BZfx/GsqU6dh6Cur4tKqoqCg0thr4xvfcDAwMSEAkxCySgEiIOaL4DKg+Y0IQpE6ZBiaeTsZnqQlPQ9MDIiUxoEkMfBLXnTL/5HVP2v7k4CohLbqS8DQ6Q5AVD3ISl48/osVWmJw/+agYW2di8ZSAJL7/hGl1pvmnmKeevK8PWDe+XJm+bkIQOGNAlRjMnGo6vr2SMD09XVPXnXl6xuWcZvlptj/d8WcMDpn+WWc61tTlpwmITlp3yjGnrXuKgChxfvz4MwU0ZxAQJU7PsL2SELzMtM3k6TL54K7E06VPmR/fT8K8iYdsZtgGRU/4DAkBUeL2pwheps075fKZAobJwEFL2CZxXYgFA4nzJtdNmJc4fVKQoSlR1PHMStxXbJrx6ckgbCJg0JTJgEObuIwxefyp+4ombDMxHZ3cb0JaJoObaDytWkKeaCSmb2pANDXNU9M3ke7JeZMBj5YQ/GjKxHpqwrzY/4QQc0O+XUIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoGZKdACHOV7otTFRRUeKvHVQUVYlNKgm/x6cVVYXx2fGNFAXU6evOtP2ppxP2qcb/kzB/fEJVJldWlMnXJRPrMblPPXE5k8fRpxxzfN3JHSTMm/iHacvi20SZPJYyMT25rp7wUabtK+GjkLD91OXKDOtO+6gJEyetd/I207ZPyJcZ0pWY/sTl+gxpSTzGlH3NsM3pls+U1pmWn3LeB60zZbk+43J9xjToU/c37bPo0/evxI5xyuNP2dcM26MnnO6TJ5CSsK6SsC/lpGMpytTtJ1edvr2q6AnH0Me3ic2fmFYS5sf3E0+LzrS8Qo/vS1d0ognL9SnrxH5Hx+epyuRnVJmYp8ePf/L0xG81YRtl/Ms5cTlR0VGVaMK6E/Oj8fzRJj4fOtr4uhPH0RQdZXyexmReaQnHim+fsC814TI0eUwlPq2hoIyvocXX01HHM1NVlMnp+PLojGmN5xV6fPrktE7sZ0q+JKRPGz/WxJ9KU0AZ/18srZPTsfUS0qeoqCg0tspjmxBzQb5ZQsyyaDSKwWAgvGQo2UlZGPSTfs+SmZ67hThfTIZD8XcHi1BihLt4KrwYDAai0cX7VxdiLkhAJMQsU1WVcDjMX/3VX1FcXJzs5AghhDhPNDY28nd/93eo6uIJAIWYDxIQCTFHiouLWbJkSbKTIYQQQgghPoC8YhBCCCGEEEIsWhIQCSGEEEIIIRYtCYiEmGVer5fPfOYzeL3eZCdFCCHEeUTuL0LMDUXX9Vnu20kIIYQQQgghFgYpIRJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKJlSHYChDhfBINBfvjDH/K73/2O4eFhysvL2bp1Kxs2bEh20oRIOb/4xS945JFHOHLkCENDQ3g8HpYvX86XvvQlbrvttmQnT4jTOnLkCDt27GDv3r10dHTgcrmorq5m69atFBYWxtd7/vnn+d3vfkdTUxMjIyN4vV7WrFnDZz7zGXJzc6fss6+vj8cff5y33noLn89HcXExn/rUp9i8efO043d3d/Poo4/y7rvvEo1GWbNmDQ899BB5eXmnTPP777/Pgw8+CMC2bdtwu90fep9CnA+k220hZsnf/M3f8Nprr/GJT3yCgoICfvOb31BTU8PDDz/MqlWrkp08IVLGY489xh//8R+Tm5vLRz/6UbxeLx0dHezatYvVq1fz9NNPJzuJQpzW1772NQ4cOMDmzZspLy+nt7eXX/7yl4yNjfHYY49RVlYGwHe+8x38fj9lZWU4nU7a29v59a9/TSQS4Uc/+hEZGRkAjI6OsnXrVvr7+7n99tvxeDy8+uqr7N+/n6997Wtce+218WP7fD62bt3K6Ogod955JwaDgZ/97Gfous4TTzxBWlratPRGo1E+97nP0dLSwtjY2LSA6Fz2KcR5QxdCfGiHDh3SN27cqD/zzDPxeX6/X7/rrrv0L37xi0lMmRCpZ+3atbrJZNI7OzunLevp6UlCioQ4e++//74eDAanzGtqatKvvvpq/f/8n//zgdvW1NToGzdu1J966qn4vGeeeUbfuHGjvnv37vi8SCSif+5zn9M/9rGPTTnWf/zHf+gbN27UDx8+HJ/X0NCgX3nllfrjjz8+4zF/9atf6TfddJP+8MMP6xs3btT7+/unLD+XfQpxvpA2RELMgp07d6JpGjfffHN8ntlsZsuWLRw6dIjOzs4kpk6I1GM0GjEajdPme73eJKRGiLO3cuXKaedwYWEhJSUlNDY2fuC2OTk5AIyMjMTn7d+/H7fbzbp16+LzVFVl8+bN9PX1sW/fvvj81157jaVLl7Js2bL4vOLiYtauXcurr7467XhDQ0P84Ac/4LOf/SwOh2PGNJ3tPoU4n0hAJMQsOH78OAUFBdjt9inzJ24stbW1yUiWECnprrvuYnR0lBUrVvBnf/ZnbN++naGhoWQnS4gPTdd1+vv7Z6xeNjg4SH9/PzU1NfzDP/wDwJTgJxQKYTabp21nsVgAOHr0KBCr+lZXV8fSpUunrbts2TJaW1vx+XxT5v/gBz/A4/FMeWmX6Fz2KcT5RAIiIWZBb2/vjG+2J+b19PTMd5KESFl/+qd/yg9/+EPy8vL49re/zZYtW/B6vdxyyy3U19cnO3lCnLMXX3yR7u5urrrqqmnLbrvtNj72sY/x+c9/nkOHDvHlL395Sqc7RUVFdHd309HRMWW7999/H5i8jwwNDREMBs/4nnPixAmef/55HnjgATRNmzHdZ7tPIc43EhAJMQsCgcCM1X9MJlN8uRAiRlEUPvvZz/Luu+/S3d3NL3/5S2699Vaee+45brrpJiKRSLKTKMRZa2xs5Lvf/S7V1dXccMMN05Z/85vf5Jvf/CYPPPAAWVlZjI2NTVl+0003oaoqX//61zlw4ACtra08/fTTvP7668DkfWTi95necx5++GEuuugiLrzwwlOm/Wz3KcT5RrrdFmIWmM1mQqHQtPnBYDC+XAgx3UTJ0C233EJPTw+vvPIKtbW1LFmyJNlJE+KM9fb28j/+x//Abrfzt3/7tzOWxKxduxaAiy++mMsvv5z77rsPq9Ua72a+vLyc//2//zff/va3eeCBBwDweDw89NBDfPvb38ZqtQKT95Mzuee8/PLLHDx4kB//+McfmP6z2acQ5yMJiISYBV6vl+7u7mnze3t7AeLdqgohYo23N23ahKIo8XmhUIi+vj5gss2EEAvByMgIf/7nf87IyAiPPvroGV3v8/Pzqays5KWXXpoy7taVV17JZZddRm1tLdFolKqqKvbu3QsQH9vI5XJhMpni95dEJ99zHnvsMa688koMBgPt7e3x9AJ0dXURDofJyMg4q30KcT6SgEiIWVBRUcHevXsZHR2d0rHC4cOH48uFEDG33HILLpeLiy++mOLiYkKhEC+++CKHDx/m9ttvp7i4ONlJFOKMBAIB/uf//J80Nzfzne98h5KSkjPeNhgMxktfEhmNxik9vb333nsArF+/Hoj1PFdWVkZNTc20bQ8fPkxeXh42mw2IBT0vvfQSL7300rR1t27dSkVFBU888cRZ7VOI85EERELMgiuvvJKf/vSnbNu2jU9+8pNA7Ga3fft2li9fTnZ2dpJTKETq+Id/+Ad27NjBrl27eP7557Hb7ZSXl/PYY49x//33Jzt5QpyRSCTCX//1X3Po0CH+/u//nhUrVkxbJxwOMzY2htPpnDL/8OHD1NXVcc0113zgMZqbm3nuuee49NJL4yVEAJs2beLxxx+npqYm3jNcU1MTe/fu5c4774yv941vfGPaPl9++WVeeeUV/vIv/5LMzMyz3qcQ5yNF13U92YkQ4nzw9a9/nd///vfccccd5Ofns2PHDo4cOcJ3v/tdVq9enezkCSGEmEWPPPIIzz77LJdeeumMvcpdd911DA8Pc/vtt7N582ZKS0uxWCzU1dXxm9/8BpPJxGOPPTYl0Ln33nvZvHkzWVlZtLe389xzz2Gz2fj+978/JXjx+Xzcf//9+Hw+7rrrLjRN42c/+xnRaJQnnngCt9t9ynQ/8cQT/Pu//zvbtm2bst6H2acQC52UEAkxS/7X//pfZGdn89vf/paRkRHKysr4p3/6JwmGhBDiPDQxvtwf/vAH/vCHP0xbft1112GxWNiyZQt79+5l586dBAIBMjIyuPrqq/n0pz9Nbm7ulG0qKirYvn17fCyjzZs389nPfpb09PQp69lsNh5++GEeffRRnnzySaLRKGvWrOHBBx8858BlLvYpxEIhJURCCCGEEEKIRUvGIRJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohFSwIiIYQQQgghxKIlAZEQQgghhBBi0ZKASAghhBBCCLFoSUAkhBBCCCGEWLQkIBJCCCGEEEIsWhIQCSGEEEIIIRYtCYiEEEIIIYQQi5YEREIIIYQQQohF6/8DNygKpmOj/NwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gc1fXw8e9sb9Kueu/FttwrbphiAwYMmI7pmF4DhBB44RcSEkIKnQRCQjEdAgRM72Awxrj3bklW771sv+8fa60tW7Ylq6xWez/Powe8Oztzdnd2Zs7ce89VhBACSZIkSZIkSZKkEKQKdACSJEmSJEmSJEmBIhMiSZIkSZIkSZJClkyIJEmSJEmSJEkKWTIhkiRJkiRJkiQpZMmESJIkSZIkSZKkkCUTIkmSJEmSJEmSQpZMiCRJkiRJkiRJClkyIZIkSZIkSZIkKWTJhEiSJEmSJEmSpJAlEyJJkqQhID09nfT09ECH0W9+//vfoygK33//fbeWv/LKK1EUhcLCwn6N61AKCwtRFIUrr7wyINsPNosWLUJRFBYtWhToUHpsIL9rRVE4/vjj+307khRqZEIkhRRFUY74190LLkkKdaF+cTZY339bWxvDhg1DrVbz008/dbnMzz//jEajISsri+bm5gGOUDqUoX5jQ5IGK02gA5CkQHjggQcO+Zw8GUnB6Jtvvgl0CIPKww8/zD333ENSUlKgQxlwJpOJV199lRkzZnD55Zezfv16LBaL//mWlhYuu+wyAF599VXCwsICFarf2WefzdSpU0lISAh0KD2WlJTE1q1bsVqt/b6trVu3YjKZ+n07khRqZEIkhaTf//73gQ5BkvpUVlZWoEMYVBISEoLy4rqvTJkyhfvuu48//OEP/OpXv+KFF17wP3f77beze/du/t//+39Mnz49gFHuY7VaBySh6A9arZbhw4cPyLYGajuSFGpklzlJOoSCggJsNhuRkZHs2bOn03Otra2MGDECtVrdqYtdx7iF/Px8HnvsMYYPH47BYCA5OZk77riDpqamLre1evVqzj33XGJjY9Hr9aSlpXHTTTdRXl5+0LKVlZXcddddDBs2DLPZjM1mY9iwYVx55ZXk5+f7lztSn/yuuvvsP07jjTfe4JhjjsFisXRqNWtra+Phhx9m3LhxmM1mLBYL06ZN48033zz8B3qAjq4hLS0t3HHHHaSkpGA0Ghk3bhwffPABAG63m4ceeoicnBwMBgNZWVn84x//OGhdTqeTf/zjH5x22mmkpaWh1+uJjIxkzpw5fPbZZ4fdfmNjI7fccgtJSUkYDAby8vJ46qmnEEJ0+70cf/zxKIqCw+Hg/vvvJyMjA71eT1ZWFn/4wx9wOp0Hvabj86+oqOCaa64hKSkJtVrd6fv673//y6xZs7BarRiNRkaPHs3DDz+Mw+E45PvpyptvvskJJ5yAzWbDYDAwYsQI/vSnP3W5HoBt27axcOFC0tPT0ev1xMbGcuyxx/Lss88C+/YtgCVLlnTqcnrgzYZffvmF8847j/j4eHQ6HSkpKVx//fWUlZV1ue3Vq1czd+5cwsLCCA8PZ86cOfz8889dLns4XY0h2n+sR2FhIRdddBHR0dEYDAYmTZrExx9/3K119+T9d2y3J9vq6fd1KPfffz+TJ0/mxRdf9P+mFi9ezAsvvMCECRN6dGNox44d3HPPPUyaNImYmBj/ceq6666jpKSk07JOp5PJkyejKAoffvjhQeu6/PLLURSFP/7xj/7HDnW82rBhAwsWLPDvizExMUyYMIHbb78dl8t1xLj3/863bdvG/PnziYyMxGw2M3PmTL788ssuX+dwOPjLX/7C6NGjMZlMhIeHc+yxx/Lf//73sNvY3/774HPPPcfo0aMxGAzExcVx3XXX0djY6F/2+++/R1EU9uzZw549ezrtU/uv90jH7XfffZcpU6ZgMpmIjIzkoosuorS0tMv3uHLlSk4++eSDfms9Ha8nSUOCkKQQAoie7PbvvPOOAMT06dOFy+XyP3755ZcLQPz+97/vtPwVV1whAHHmmWcKm80mrrvuOnH33XeLsWPHCkBMnDhRtLe3d3rNRx99JHQ6ndBqtWLBggXinnvuESeddJIARGJiosjPz/cv29raKrKysgQgTjrpJPHrX/9a3HnnneLcc88VNptNfPTRR/5lX3rpJQGIl1566ZCfxXHHHdfpsQceeEAAYt68eUKv14vzzjtP/Pa3vxU33HCDEEKI+vp6MX78eAGICRMmiFtuuUXcdNNN/pjuu+++bn+2aWlpIjExUUydOlXk5uaKm2++WVx77bXCYrEIlUolvv76a3HOOeeIpKQkcc0114ibb75ZxMbGCkC89dZbndZVXl4uVCqVmDlzprj66qvFPffcI6644goRGRkpAPGf//yny+0nJCSISZMmiezsbHHnnXeKW265RSQkJAhA3HTTTd1+L8cdd5z/e09ISBC33nqruPPOO/2fy7x584TX6+30GkCMHj1apKWliZEjR4pbbrlF3HbbbeLTTz8VQghx7733CkBER0eLG264Qdx1111i5MiR/u/N4XAc9H7S0tIOiu2qq64SgEhOThYLFy4Ud955p5g+fboAxPHHH99pvxZCiI8//lgYjUahUqnEaaedJu655x5xww03iGnTpon09HQhhBBr16717ytpaWnigQce8P999913/nW98MILQq1WC5PJJC666CLxm9/8RsyfP1+oVCqRkJAg9uzZ02nbP/30kzAajUKtVovzzz9f3HvvveLUU08VOp1OzJ07VwCd1n84Hb/FgoIC/2MFBQX+9x0TEyOOOeYYcfvtt4vLL79c6PV6oVKpxLfffnvEdXfn/R/ttnr6fR3Jtm3bhMlkEjExMWL9+vUiJiZGGI1GsWXLlh6t5+GHHxZWq1XMnz9f3HrrreLXv/61mDt3rlAURcTHx4uSkpJOy+/evVuEh4eLyMhIUVRU5H/8xRdfFICYPXu28Hg8/se7Ol6tX79eGAwGYTQaxYUXXijuuececdNNN4mTTz5ZaLVa0dzcfMS4O76HWbNmCZvNJo499lj/8cFgMAiVSnXQ8cThcPh/08OHDxd33XWXuOmmm/zHn3vvvbfLbVxxxRWdHu/YB88//3wRHh4uLrnkEnHnnXf6j6EnnHBCp3U88MADwmq1CqvV2mmfev/99/3LHe64ff755wu9Xi/OP/98cdddd4ljjz3W/x7sdnun1yxZskTo9Xqh0WjEBRdcIO69917/cf/UU0/t0W9NkoYCmRBJIaUjIdr/ZLP/38MPP3zQa2688UYBiHvuuUcIIcSiRYv8J7P9T+hC7DsBRkVFicLCQv/jHo9HnHPOOQIQDz74oP/x5uZmERkZKVQqlfjhhx86resvf/mLP/Hp8OGHHwpA3H777QfF6XA4RFNTk//fvUmITCaTWLNmzUGv6Xh/f/3rXzs93t7eLk455RShKIpYu3Ztl9s7UFpamj9Z2P9k/cMPPwhAREREiEmTJon6+nr/c7t37xZarVaMGzeu07rsdrsoLi4+aBsNDQ1i5MiRIiIiQrS1tXW5/RkzZnTafm1trcjMzBSAWLJkSbfeS8fFU05Ojqirq/M/3t7eLqZOnSoA8corr3R6Tce+eNlllx10kbts2TIBiJSUFFFeXu5/3OVyiXnz5glAPPTQQwe9nwMToo594Oyzzz7o/Xd810888YT/serqahEeHi60Wq34/vvvD3qfB37GXe1DHbZv3y60Wq3Iyso66GL566+/FiqVSsyfP9//mNfrFcOGDROA+OCDDzot/8QTT/g/r75IiLq6mfH5558LQJx66qndWr8Qh3//R7Otnn5f3fWPf/xDAEKv1wtAPPXUUz1eR0lJyUEX1UII8cUXXwiVSuW/abK/t99+WwBi5syZwu12iy1btgiTySRiY2M77ddCdH28uvPOO7vcH4QQoq6u7qDjb1f2/x7uuuuuTs+tXLlSaDQaYbPZRGNjo//xP//5z/7vZ//fZmVlpf+48dNPPx20jUMlRCkpKZ2Sf5fL5U9Wfvnll06vOdSNjQ6HO26HhYWJDRs2dHpuwYIFAhBvv/22/zGPxyOys7MF4L8B0+HZZ5/t8W9NkoYCmRBJIaXjQH+oP6vVetBr2tvbxdixY4WiKOLpp58WZrNZxMTEiLKysoOW7TgB7p/0dNi9e7dQqVT+u+xCCPHaa68JQCxYsOCg5V0ul0hPTxeA/2TakRAdeIeyK71JiLpKuGpqaoRarRaTJk3qcn3r1q0TgPjNb35zxNiE2JeQ7Nq166DnMjIyBCC++eabg547/vjjhUajEW63u1vbefTRR7tMbjq2f2AiKsS+z+7KK6/s1jY6EqIDkx4hhPjuu+/8d/f3BwidTicqKysPes0111wjAPHcc88d9Nz27duFSqUSGRkZB72fAy+kxo0bJzQaTaeksoPb7RZRUVFi8uTJ/sceeeQRAYjbbrvtcG+303s4VEJw++23C0B8/PHHXT4/f/58oVar/Un80qVL/Xfyu4q1o7WtLxKitLS0Lvef1NRUERUV1a31C9G9hKgn2+rp99VdXq/XfyyZOnXqQa2VvTV69OiD9scO119/vQDEr3/9azFq1CihKIr44osvDlrucAlRV8t3V8f3YLVaO90w6tCxnyxatMj/WHZ2tlAURWzduvWg5Z9//nkBiKuuuuqgbRwqIeqqhbqjpezpp5/u9HhvEqKuWui//fZb/+ff4ccffzyohaqDx+MRubm5MiGSQo4sqiCFJNGD8SEGg4G3336bSZMmceutt6IoCu++++5hB2wfd9xxBz2WmZlJSkoKhYWFNDQ0YLPZWLNmDQAnnnjiQctrNBpmzZpFYWEha9euJTU1leOOO46kpCT+8pe/sGbNGk477TRmzJjBuHHjUKvV3X5PRzJlypSDHlu5ciUej+eQ4yQ6+vNv3bq129ux2WxdFgNITEykoKCAiRMnHvRcUlISbrebioqKThXENm/ezN///nd++OEHysvLsdvtnV7XVT96jUbT5aDyjj76a9eu7fZ7ga6/95kzZ6JWq7tcV3p6OrGxsQc9frj9Ijc3l+TkZAoKCmhsbDzkQPS2tjbWr19PdHQ0TzzxRJfL6PX6Tt/X8uXLATj11FO7XL4nOsb9LFmyhJUrVx70fFVVFR6Phx07djBx4kT/e+7qM1Sr1cycOZPdu3f3Oi7gkL+XlJSUoxqv1BfbOprvq7sWLVrkH0u1fv16du7cSW5u7iGX6XD88cf7fwtCCF5//XUWLVrE+vXrqa+vx+Px+JfV6XRdbvuJJ55g2bJlPProowDce++9nHzyyd2K+8ILL+TJJ59k/vz5nHfeecyZM4cZM2YcVQGRCRMmdFlN7/jjj+fll19m7dq1XHHFFTQ3N7Nr1y6SkpK6LGDQ8ZvsybFh0qRJBz2WkpICQH19fbfX01fb6Yh95syZBy2vUqmYPn06O3bs6LO4JCkYyIRIkrohNzeXMWPGsGzZMvLy8o54Qo+Li+vy8fj4ePbs2UNjYyM2m80/qPZQyVXH4w0NDQCEh4ezfPlyHnjgAT788EO++OILAKKjo7npppu4//770Wq1R/MWD4rzQLW1tYAvMerqArdDS0tLt7dzqIt5jUZzyOc7ntt/QPXy5cs58cQTcbvdzJ49mzPPPJPw8HBUKhXr1q1j8eLFXQ5Ij46O7vJiteP97z/ouTu6+t41Gg3R0dFUVVUdcjsH6s5+UVRURENDwyE/w/r6eoQQVFdX84c//KFb8XfsZ31Rqrpjf/n73/9+2OU69peO93y4305fsdlsXT6u0Wjwer19tp2ebOtovq/uKCws5Fe/+hU2m40HHniAO+64g8svv5yffvqp076/aNEilixZctDrOxKiO++8kyeeeIKEhAROOeUUkpKSMBqN/tceWHimg8Fg4PTTT2fjxo1oNBpuvvnmbsc+ZcoUfvzxRx566CHeffddXn31VQCGDRvGAw88wIIFC7q9riPtVx37X0+Pyd3R1T7QcRzbP6nsre5u50i/tUM9LklDmUyIJKkb/vKXv7Bs2TKio6PZvHkzDz/8MPfdd98hl6+srGTYsGEHPV5RUQHsu9Dv+G/H4wfqqDK3/0VvcnIyL7zwAkIItmzZwrfffss///lPHnzwQbxer79yk0rlKyLpdrsPWu+RTuYdFbT21xHDHXfcwWOPPXbY1w+0P/3pT7S3t/Pdd98dVIHp4YcfZvHixV2+rqamBo/Hc1BSdOD31F2VlZWkpqZ2esztdlNTU0N4ePhBy3f1Oe+/3YqKii7vhne1XxxqHePHj/e3vhxJxwVVaWkpo0eP7tZrjrT9xsbGLt/7oZavrKzs8vlD/UaGiqP5vo7E6/Vy2WWX0dzczBtvvMGCBQtYuXIlb7zxBg8//DD333+/f9nDVRSrqqriqaeeYtSoUSxbtuyglpbDVZhcunQpf//734mOjqampoaFCxfy+eefH3LfP9C0adP4+OOPcTgcrF69ms8//5ynn36aiy++mJiYGObMmdOt9Rxpv+rNMTnYdPweD/WZHOpxSRrKZNltSTqCZcuW8bvf/Y5hw4axadMm/93JpUuXHvI1Xd1pzc/Pp7i4mPT0dP+F5/jx44GuL0bcbjc//vgj4OvucSBFURg5ciS33norX331FYC/tC5AREQEAMXFxQe9dtWqVYeM/VCmTJmCSqXyxzSY7Nq1i8jIyIOSIej6u+jgdrtZtmzZQY93fB8d3093dbWtpUuX4vF4erSuw+0Xu3btoqSkhIyMjEO2PgBYLBZGjhzJ5s2bqaur69Z2p06dCnDIUuUHUqlUh7zD3bGu7u4vHft4V5+hx+M57O8tUA73/nvqaL6vI/nb3/7G0qVLueiii/ytKf/85z9JSkriwQcf7Ha3r/z8fLxer79E8/5KSko6lfvfX21tLQsWLECr1fLtt99yySWX8OWXX/LXv/61x+9Fr9czffp0HnzwQZ566imAQ97o6MqaNWtobm4+6PEDf+thYWFkZWVRWlrKzp07D1r+u+++A7o+JvcFtVrdp61GXel4r139prxeb5fHREka6mRCJEmHUV9fz4IFC1Cr1bz11lvExcXx9ttvo9FouPjiiw954fLkk0926kLi9Xr5zW9+g9fr5aqrrvI/3jEnxptvvukfv9HhiSeeoKCggDlz5vhbHTZv3tzl3buOx/afwXzSpEmoVCreeOMN2tra/I/X1dVx99139/iziI2N5ZJLLmHVqlX88Y9/7PKkvXv3bgoKCnq87t5KT0+nrq6ODRs2dHr8hRde8HcrPJR77723U3e6uro6/vSnPwF0+q66449//GOnvvp2u5177723x+tauHAh4Gv5qq6u9j/u8Xi466678Hq9XH311Udcz5133onT6WThwoVdtgrW19d3ao244oorCA8P59lnn+WHH344aPkD55uJiorqMuEGuOWWW9Bqtdxxxx1djkdwOp2dkqXp06czbNgwfvjhh4MudP/xj3/02fihvnS49380evp9Hc66det44IEHSEpK4plnnvE/brPZePHFF3G73Vx22WXdmtuoY36rjuS+Q0tLC9dee22XrdDg2+dLSkp4/PHHGT16NM8++yzZ2dn83//9X7cuupctW0Z7e/tBj3d1vDuSxsZGHnzwwU6PrVq1itdffx2r1crZZ5/tf3zhwoUIIfjNb37T6f3W1NT4W+A7fqN9LSoqiurq6i7fd1/pGIf13XffHXTz49///rccPySFJNllTgpJh5uQcP78+YwbNw7wnfSKiop46qmn/I+NHTuWRx99lFtuuYUrr7yyy4kHOwodXHjhhVitVr744gvWr1/PxIkTOyUjFouFF198kfPPP5/jjjuO888/n9TUVFavXs2XX35JfHw8zz33nH/5r776it/85jdMmzaN3NxcYmNjKSkpYfHixahUKn7zm9/4l01ISOCSSy7h1VdfZdy4cZx++uk0NTXx6aefMmvWrB4XDADfhenOnTv53e9+x6uvvsrMmTOJi4ujrKyMrVu3snLlSt58800yMjJ6vO7euP322/niiy+YOXMmF1xwAVarlVWrVrF06VLOO+883n333S5fl5CQgMPhYNSoUZx55pm4XC7effddysvLuemmm5g1a1aP4hgxYgQjR47kvPPOQ6vVsnjxYnbv3s3pp5/OZZdd1u31TJ8+nbvvvpu//e1vjBo1ivPOOw+z2cxnn33Gpk2bmDlzZqfv+lAWLlzI6tWreeaZZ8jKyuKUU04hNTWVuro6CgoK+OGHH7jqqqv417/+BfjGVL3xxhucd955nHDCCZx66qmMGTOGpqYmNmzYQHFxcaeEd/bs2bz11lucccYZTJgwAa1Wy6xZs5g1axbDhw/nxRdfZOHChYwcOZK5c+eSm5uLy+WiqKiIH3/8kZiYGLZt2wb4WjxfeOEFTjrpJM4991zOOeccsrOzWbduHd988w1z587l888/79H30d8O9/6PRk+/r0Ox2+1ceumluFwuFi1a5G8t7nDyySdz44038swzz3DffffxyCOPHHZ98fHxXHTRRbz11luMGzeOk08+mcbGRr766isMBgPjxo1j3bp1nV7zxBNP8NFHH3Huuedyww03AL7Wl7fffptp06axYMEC1q1bd1Bs+/vb3/7Gt99+y7HHHktGRgYWi4XNmzfz2WefERERwXXXXXfYuPc3a9Ysnn/+eX755RdmzJhBeXk5b7/9Nl6vl+eee65Tt8677rqLzz77jMWLFzN27FhOO+002traeOedd6iqquLuu+/usiBBX5g9ezYrV65k7ty5zJo1C71ez9ixYznjjDP6bBsqlYrnn3+euXPncuaZZ3LuueeSlZXFhg0b+Oqrrzj11FP57LPP/N2uJSkkBLLEnSQNNI5Qdpv9yr4+9dRTAnyTbXbl7LPPFoB47LHH/I91lFndvXu3eOSRR8SwYcOEXq8XiYmJ4le/+lWnuS72t2LFCjF//nwRHR0ttFqtSElJETfccIMoLS3ttNyWLVvEHXfcISZOnCiio6OFTqcTaWlp4txzz+00L0YHu90u7rrrLpGUlOSfE+bPf/6zcLlchy3ferhyqw6HQzz99NNi2rRpIjw8XOh0OpGSkiJOPPFE8fjjj4uamppDvnZ/hysv21HGuitdlVMWwjfB7THHHCMsFouwWq3ipJNOEkuWLDlk+fGO7Tc0NIibbrpJJCYmCp1OJ4YPHy6efPLJHpUm7ojXbreL++67T6SnpwudTicyMjLE73//+y7nb+nq8z/Qm2++KWbMmCEsFovQ6/UiLy9P/OlPfzpoct/9309XPvroI3H66aeLmJgYodVqRVxcnJg8ebK47777uiwtvGnTJnHZZZeJxMREodVqRWxsrJg1a9ZBZcArKyvFggULRGxsrFCpVIK9c3ztb8OGDeKKK64QqampQqfTiYiICDFy5Ehx3XXXdVlWfdWqVeKUU04RFotFWCwWMXv2bLFs2bJu7Zv7O1zZ7QPLI3c43H7XlcO9/95sq6ff14E6Sp4frnx6a2uryMnJESqVqlvzbbW2tor/9//+n8jKyhJ6vV4kJyeLm266SdTU1Bz0XlatWuU/NnVVQvzJJ58UgDjrrLP8j3X1O/3iiy/ElVdeKUaMGCHCw8OFyWQSubm54tZbb+00z9vh7P89bNmyxT9pttFoFNOnTxeff/55l69rb28XDz30kBg5cqQwGAzCYrGIGTNmiDfeeOOw29jfoY5VQuwrx3/g76WlpUXccMMNIikpSajV6oPW29Pj9uH2w+XLl4s5c+Yc9Fu7+eabBdDtOeUkaShQhOhB/WFJkg7ryiuv5OWXX6agoMDfzUQanDq+nwNLDR+N448/niVLlvSonHtfi4+Px2q1sn379oDFIEmDTWFhIRkZGVxxxRUsWrQo0OEEhRkzZvDLL7/Q2NiI2WwOdDiSNCBke6gkSVKQq6uro6amhuTk5ECHIklSEGhra+tynNqiRYtYtmwZJ598skyGpJAixxBJkiQFqcbGRh555BG++OILPB4P5513XqBDkiQpCBQVFTF+/HhOOukksrOzcbvdrF27lqVLl2Kz2fwT6UpSqJAJkSRJUpCqr6/n4YcfJiMjg4cffpjrr78+0CFJkhQE4uLiuOSSS1iyZAnfffcdDoeD+Ph4rrrqKu67774u5z+TpKFMjiGSJEmSJEmSJClkyTFEkiRJkiRJkiSFLJkQSZIkSZIkSZIUsmRCJEmSJEmSJElSyJJFFSRJkqQBI4RACIHX68XlclFXV4dKpSIqKgqNRoOiKAD+/0qSJElSf5MJkSRJ0hDm8XhwOBy0trZSWVlJY2MjarWalpYWtm3bhlqtRqVSUVVVRX5+PtHR0Xi9XsrLy2lrayMmJga3283u3bsxm82YTCYaGxspLy8nLCwMj8dDY2MjTqcTrVaLy+Wira3Nn/i43W7cbjdCCDweD16v1//frqhUKn9MHX8ajcafLKlUKoxGIxqNBpfLhcFgwGq1olaraWpqIiEhgfDwcNrb22lrayMzMxONRkN1dTUmk4mEhARUKhU1NTVkZmYSGxvrj3P48OFYLBY8Hg9Wq5W4uDjMZjN6vR61Wj3A35wkSZI0UGSVOUmSpEFKCEFrayuFhYXY7Xba29spLi5m165dhIWF0djYyI4dO6ivr0ej0dDY2EhhYSFqtRqn00lTUxOtra0c6TCvUqkwm80oiuJvqXE6nQghMBqN/oRBpVL5l98/cdFoNKjVaoxGIzqdDiEEBoMBi8WCSqXC5XJhs9kwGo14PB6EEMTExKDRaFi3bh0AY8aMwe12U1NTg6IoaDQa7HY7DQ0NaDQaPB4PLS0tOBwOFEXB6XTS3t6O2+0+KNHqSLa8Xi9arRaA9vZ2FEVBp9Phdrupra31f76HSs46KIqC2WwmPDwcnU6Hx+MhPT0dq9WK2+0mIiKC3NxcrFYrzc3NZGdnk5KSgtFoxGAwkJ6e7v98JUmSpMFHJkSSJEkDpL29ndraWiorK9mwYQMul4vW1lby8/PZsWMHBoOB6upqioqKaG5upr29HZfL1eW6jEYjERER6HQ6TCYTWVlZWK1W6uvrSUpKIjExEbVazYf//hx7mQvFo8EYZkCr1uJu8KIz6LElWjBHGLHEmDDFGDFF69Fbtf5teD0CR6MLe70TR5MLZ7MLV4sbZ4sbZ7MLZ4sbV4sbrzuwpxG1ToXWrEFrVqM1a9BZNOjCtOitvj+DTYcuXItK7UtIhBA4Gly01Thoq7HTWtNGa4OdxvJmHG0ONDYVLo+L9mY7Qu3GkKjlzOvm4vF4KCsro7S0lIiICBobG9m9ezdtbW04nU7q6+tpb2/vMkatVovRaCQsLIzU1FRiYmKw2+3k5uaSmZmJ2WxGq9UyZswY4uLiiIqKwmg0DuTHKEmSFLJkQiRJktQLHa0apaWlrFmzBrvdTmNjIzt37vR3SauqqqKsrKzLi2WTyURERAQajYbhw4cTHx+P1+slLCyMvLw8/nXLK1hjw/A0KyjtKrQqHVq0KKL7XbgMkTosCQYsCUbM8UbM8QZ0Zl+PaeEVtNc5aau2017joL3OiaPehb3BlwTRz2eIjLkJABR8Xt6/G1JAF6bFYNNijNRhjNZjjNL7/hupQ1H5kiVni4vWCjstFXZaK9pprbDTXufs9ucgFA8uXLi8ToTRizpM0FjVzA3/uJwtW7bQ0tKCoihUVlaydetW3G439fX1tLW1HbQuo9FIYmIisbGxeDwehg8fTk5ODlarFYPBwIQJE0hKSiI6OhqNRvaAlyRJOloyIZIkSTqEtrY2tmzZQnV1NVVVVWzZsoUNGzagVqspLy+noKCAxsbGg7pcxcTEEBUVhVarZdy4cf5xK1+/uBR3lUCLHovFjNKmQdWDxKY7tGYN4akmwlNMWBJ9yY9G79uGvcFJa4Xd91e1NwGqdSK8gTsNTLw1B4DVT+8MWAyKSsEQocUUa8AcZ8Acb8ASb/S3lnmcHlrK7TSXtNFU3EZzSRuuVk+fxuBVeRBGN60trThxoIlVmLNwpn8817p163C5XNTW1lJdXd3ptSqVCqvVSkZGhj+hHjNmDHl5ecTGxhITE0NeXh4mk6lPY5YkSRoqZEIkSVJIEkJQXV3N5s2bWb16NW63m5KSEtatW0dFRQWNjY3U1NR0ek1ERARms5nRo0eTnJyMTqfj53fX4K5U0LN3zEybBkUM3IwGplg94almwpNNhKeaMEToAF/y01zSTktFO63l7bSU23G39+1F/FCnMar3JkcGwpJMhKWY0If7kiR7vdOfHDUUtNJe4xiwuITixWty+8ZUYUcTJ5h23gScTiclJSVs2rSJ1tZW6urqOr0uOjoaq9VKfHw848aNIzk5GbVazaRJk/zJkxznJElSKJIJkSRJQ1Z9fT35+fmsXLmS/Px8f4GCNWvW0NDQgN1u9y9rtVpJSUkhLCyM6OhopkyZwpv/t5jI2AhUzVrU7XrUSuArjeltWmyZFmwZZmwZFrRmDV6PoLWinabivS0YxW04m92BDnVI0oVrCU82EpZiIizZhCXBgEqtwtnioqGglcaCVhoKWnA0dD32ayB5hAeP0YE3zEVdVT0L/ngWK1asoKamhubmZoqLi2lsbPQvbzAYsNlsTJgwwV8IIjMzk0mTJpGVlUVEREQA340kSVL/kQmRJElBq6OVZ9euXXz//ffU1NRQWVnJ5s2b2blzZ6dxGXq9ntzcXDIyMlCr1YwcOZIP//QNJrUFk8aMyjk4x2CodSpsWRYisi3YMiwYInQIr6C5rJ3GghYaClppLm4LeGGDozXu+iwA1j23O8CRHB2VRiE81YQ1w4It3Ywl0YiiUrA3OGnY3ULdzmYa8lvxug5fyS5QvDo3be5W2jwtnPV/c9i0aRMej4eCggJ27NiBw7Gv5ctkMpGTk8PIkSOJjY0lOjqaE044gezsbGJiYmTrkiRJQUsmRJIkDXpOp5NNmzaxZMkSGhoa2LVrF6tWraKoqKhTK09UVBR5eXmkpaWx5ccdeMrV6J1GjGoLGo82aC7Y9DYtkblhROaGY003oVKraKu205Dva31oLGzF4xicF9g9lXt2EgA73i8NcCR9Q61XEZ5qxpZpJiI7DFO0Hq/bS2NhK3U7m6nf2YK93hnoMLtFCIFH7abN04JD14Y6wUPesbns2bOHrVu3dupSajAYSElJYdKkSeTk5GCz2TjuuOMYNWoUOp0ugO9CkiTpyGRCJEnSoNHU1MS2bdvYunUr27Zt47vvvqOsrIyysjI8Ht/4F5vNxsiRI0lMTCR/RRGuPSqMmDGrw1B5A9+l7WiZEwxE51mJzA3DHGvYdxG9o5m6nc2DoguW1HOGCB2RuWFE5IRhTTOh0viS25qtTdRuaaK10n7klQxSXpWHNk8LbbSgTfOSdUwaZWVlbN68mfr6egDUajWJiYnExcUxbdo0IiIimDRpElOmTCEuLi7A70CSJMlHJkSSJA0oIYS/5HBH4tPx/6Wl+1oJUlNTSUxMpG5HE6o6A2YlDKvehsqhPczag4s53kD0SCvReVaMkTpcbW7qtjdTt6OZhvwWPM6h0Qp0OKY4PQBtlQNXlCBQVFoVtkwzUcPCiRwehtaoob3WQc3WJmo2N9JaEbzJ0YG8eheNjgZaRTPeKAfWTBMlJSWUl+8rrx4VFUVSUhKpqamceOKJxMXFMXXqVNLT0/2TAEuSJA0EmRBJktRvHA4HW7ZsYd26daxfv57169ezYcMGf/UrjUZDTk4OI0aMYM3/tmAmDDPhmAhDowzOMT29ZYrREzN6bxIUpcfV5qZ2axPVmxtpLGzt93l/Bpspvx4GwIpHtwc4koGlqMCaYSE6L5yo4eFoTRra65zUbG6kan097bXB0a2up9y48VjtNNkb8EQ4sGWZ2bVrFzU1NbjdvkIgZrOZkSNHkpCQwLhx4zjhhBOYPHmyLBsuSVK/kQmRJEl9oqqqyp/0dCRA27Ztw+12oygK2dnZjB07ljXvbsVCOGbCMGJBpQz9O8Eao5qYUVZix0UQlmjE1e5Lgmo2N9FY2IIY+g1BhxQ1PAyA2m3NAY4kcBQVWNPNROf5EmWNUU1zaRtV6xuo3tQYEuXSvXgRNhcOQwtNzgYSJkSzceNGKisrEUKgUqlITk4mLS2NU045hYSEBGbNmkVWVlbQjA2UJGnwkgmRJEk94na72bFjhz/56UiAKioqAN/d3TFjxjB27Fi+/9cvWLBhwTpkW3wORVFBRHYYsWNtRA4LAxTqdzZTua6e+p0tAZ0MVRq8FLVCZK5vv4nIDgME9TtaqFxfT92O5pBrQfSqPTSLRkhwkDQphi1btlBSUuKvIBkREcHw4cNJS0tj7NixnHzyyYwePRqtduh0rZUkqf/JhEiSpEPyer3s3LmTFStWsHLlSlasWMH69ev9ld1SUlIYO3Ysmz7eRRg2wrBixBLSd2x14VriJ0YQPyECnUVLS3m7707/xgZcbUP/Tn9Ppc+OBaDwm6oARzL4aE1qokdZiRsbgSXRiKPJReXaeipW14X0PFNCCDxhDuzmFupaa4keHcb27dupra0FfF1xMzMzycvL4/TTTycvL48pU6ag0YTWTRlJkrpPJkSSJPmVlpZ2Sn5WrVrln7gxNzeXyZMns+L1jXuTHxtaRZbT7WDLspAwKZLI3DA8Li/VGxqoWF0f1FXEBsKkX+UCsOrJHQGOZHAzxxuInxhJzGgraq2Kuh3NlK+qo2F3S6BDGzQ8OhfNngZIdmLNMrF161bKysoAX1nw0aNHM3r0aMaOHcvxxx/PqFGjZPEGSZIAmRBJUsiqr69n1apVnRKgjgpQCQkJTJkyhU2LdxFOJOFEyOSnC2q9ivgJEcRPisQYqae1op3yVXVUb2wMiQpx0sBT61TEjLYSPykSS7wRe72TshW1VK6pl/tcF7w6N47wFtpNTcSOiGT58uU0NDQAEBcXR2JiIscccwwzZ87k1FNPJTIyMrABS5IUEDIhkqQQ4PV62bx5M0uXLuWnn35ixYoV7Ny5EwCr1crkyZPZ9XXx3uQnEoNiDHDEg5veqiVxahRx4yNQqRVqNjdRvqqW5pL2QIcmhZCwJCMJk6OIHmXF6/ZSuaaesl9qcTTKOasOx6W347C0UNNajSFLYffu3bS3+367cXFxDB8+nHnz5nHMMccwdepUOR5JkkKATIgkaQhqb29n5cqV/gRo2bJlNDQ0oNFoGD9+PFOnTuXbp5cTTiSmEB/z0xOWRCNJ06KJzgvHbfdQvqqO8hV1uFpDdzxHb429OhOA9S/kBziS4KUL05AwOYr4SRFo9GpqtjZR9nMNzaUyQe8OIQR2bSvOyFZSZ8ayevVqSkpKcLvdmEwmhg0bxumnn+5PlKxWa6BDliSpj8mESJKGgJqaGn766Sd/ArRq1SpcLhfh4eFMmzaNnV+UYCMKK5GoQ6zaW1+wZVpImRWDNc1Me62D0uW1VK2vx+uSh8/eGn5+CgDb3ikOcCTBT6VViB0bQdLUKIxRehoKWij+sZrGgtZAhxZ0vIobd2w7japaDClqNm3aRGtrK2q1mry8PMaNG8fUqVM57bTTSE9PD3S4kiT1kkyIJCnICCEoKCjghx9+8CdA27ZtAyA5ORlXiYKNKGxEY8EqW396ISLHQsqsWMKTTTSXtFHyUzW120Ov9LEUfKKGh5F8bCxhiUaaitso/rGK+p2yAMPREkLgDGvFbmumrKqEdnOzf4Lp7Oxs0tPTOeGEEzjttNMYO3asPO5KUpCRCZEkBYHS0lK+++47vv32W7799lv27NmDoiiMHj2aug0t2IjGRjQGRc7k3hcih4WROisWS6KRxqJWin+oltW8+onO6muxdDbKbof9wZZlIXVWDOGpZlrK2yn+oZrabU2BDmtIcJvstFmaqG6twGltpaysDCEEcXFxjBkzhmOPPZYFCxaQnZ0d6FAlSToCmRBJ0iBUU1PD999/70+Atm/fDsCYMWOo39BGJLHYiJaV3/pYRI6FtBPjsMQbfd2NfqimsVB2N+pPU349DIAVj24PcCRDmzXdTMqxMdgyLbSUt7Pn20rqd8kkvy8Jg4cGUUN7RANt+mYKCwsBiI2NZerUqZx44oksWLCA2NjYwAYqSdJBZEIkSYNAY2MjP/zwg78VaP369YBv7p/WHW4iiSWCGHSKPsCRDk3hKSbSZsdhTTPTWNjKnu8qaSpqC3RYISFmjA2A6g0NAY0jVHTa1/e0suebSpqK5b7eHzw6J/VKDc7YJupdtf5pDZKTk5k0aRLnnXcep5xyCtHR0QGOVJIkmRBJUgC43W5++eUXPv/8c7788ktWrVqF1+slJSUFd7HKnwDJLnD9yxSrJ/3EOCKHhdNS3k7hN5Wya5wUEiKy97aGJhip29HMnm8r5STC/cyhtGOPaqRBXUONo5L6+noURSE7O5tjjjmGq6++mmnTpqHXyxtfkjTQZEIkSQOktLSUL774gs8++4yvvvqKxsZGIiMj0daZ9iZAsRgxy8G4A0AXpiF9dhwxY2zY653s+baKms2NgQ4rJKXMigGg+IfqAEcSmqJHhpN2QhyGSB1V6xrY820lzhY5nqu/CSGwq9twJ7dQba+guq2C5uZmDAYD48aN45xzzuGcc84hKysr0KFKUkiQCZEk9ROHw8FPP/3E559/zueff87GjRtRFIVwEUEU8UQRRziRMgEaQCqNQtL0aJJnxOBxein6vpLKtfUIb6AjC12T7/CNIVr5uBxDFDAKxE+MJO34WFRahZKlNZT+XIPXLS8PBooQAnt4M82WWqrd5VTWVOD1eklNTWXy5Mlce+21zJw5E7PZHOhQJWlIkgmRJPWhgoICfwL0zTff0NraSlxcHKpKA1HEE0msHAcUINEjw0mfE48uTEPZ8lqKf6jG45SZkCR1UOtVpMyKJfGYSJwtbgq/rqRmk2w5DQSXcOJMaqLaXU6No5KGhgZ0Oh1jx47l9NNP54ILLmDEiBGBDlOShgyZEElSL3i9Xn755Rc+/PBDFi9ezNatW9FoNFjcNqKJJ4p4ORdQgJnjDWTOTcCaZqZ2WxMFX1Zgr3cGOixJGrQMEToyToonakQ4TcVt7P6kTI4vCqCOOZBawuuodpdTUVuO2+0mKSmJGTNmcNNNNzF9+nS0Wm2gQ5WkoCUTIknqoba2Nr7++ms+/PBDPvroI6qqqoiOjkZbYyGGBCKJRaPIE1OgqXUq0k6MI2FyJG01DvI/L6exQJbQHmxGX5kBwMZFBQGORDqQNd1M5qkJmKL1lK2opei7KtmqOgi4hQtXUjNVnjIqWktpbm7GYrEwc+ZMzjnnHC6++GLZtU6SekgmRJLUDZWVlXzyyScsXryYr776ivb2doYNG4Z9uyCGRKxEyVagQSQqL5zMuQlo9Cr2fFdF2S+1II90g1LeglQAtrxZFOBIpK4oKkicGk3qcbG47R7yvyindouc2HWwEELQHtZEs62Galc5FRUVaLVaxo8fz5w5c7jhhhtISUkJdJiSNOjJhEiSDmH79u188MEHLF68mOXLl/sKIngjiCaRGBIxK2GBDlE6gN6mJeu0RCJzwqjd2kT+5+U4mlyBDkuSgp7eqiVzbgJRw8Op39XM7k/LZdfTQahVNONIbqCstZjKBt+8R+np6Zx++ulccsklTJ06NcARStLgJBMiSdrPli1beOedd3jnnXfYvHkzJpMJc5uNGBKJJkEWRBisFEiaGkXqCXG42tzkf1pO3Y7mQEcldYPGoALAbZddsYJBZG4YmacmoDVp2PNtJWUrZOvrYOVSOWk0VdMUVk1JTRFOp5P09HROPPFELr/8co499lhUKlWgw5SkQUEmRFJIE0KwefNmfxK0detWwsPDMTXZiCOZSOJQK+pAhykdhjFKR85ZyYQlGyn7pZY931bhdcmL62Ax5de+stsrHpVlt4OFSqsifXYcicdE0VTUys4PS2mvla1Fg5nQeKlXqmiOqaG0voi2tjZycnL8E8LOmjVLJkdSSJMJkRRyhBBs3LiRd999l3feeYdt27ZhtVoxNdqIJYko4lDJJGjw29sqlHZiHI5GFzsWl9Jc3BboqKQeip8UAUDFqvoARyL1VHiqiZwzk9CFayn6vorSn2tka1EQECovbRH1lLYXUe0to729neTkZM444wzOPvtsZs+eLZMjKeTIhEgKGRs3buTtt9/mnXfeYceOHdhsNs466yzOP/985syZwzzjpYEOUeqmTq1Cy2vZ822lnERSkgJApVFIOzGOxKlRtJS2s+ODEtlaFEQ+bH2FN998k6+++ooPP/yQtrY2YmJiuPzyyznttNM44YQTZMEgKSTIhEga0oqKinjzzTd57bXX2LRpExEREcyfP5/zzjuPOXPmcLrhkkCHKPVQwuRI0k+Kx9kkW4WGgsRpUQCU/Vwb4Eik3ghLNpJzVjJ6q5aCL8qpWC1b/ILNR22v8vbbb/PWW2/x888/09jYSHJyMueddx633HILWVlZgQ5RkvqNTIikIae+vp53332X1157jR9++AGj0chZZ53FJZdcwsknnyyToCClNanJOTOJyGHhlK2opfCrCtkqNATIMURDh0qrkHFyAgmTIqnd3sTOD0txt3kCHZZ0FD5sfYXXXnuNV155hVWrVmG328nLy2PevHnceeedxMXFBTpESepTMiGShgS73c4nn3zC66+/zieffILb7WbOnDlccsklnH322ZxjXRjoEKVesGVZyJ2fhKIo7FhcSv1OWUFuyOgYqiDrYAwZkblh5JyZhBCCnYtLqd/VEuiQpF54v+klnn76ad577z3WrFmDRqNh9OjRXHHFFSxcuBCLxRLoECWp12RCJAUtr9fLDz/8wGuvvca7775LY2MjEydO5NJLL+XCCy/k8qTbAh2i1EuKWiF9ThxJU6Op39XMjg9KcbW6Ax2WJElHoDVryDkricicMEqX11D4VSXCKy83gt3LJU/yn//8h1deeYX8/HzMZjOzZ89mwYIFnH/++ajVsiCRFJxkQiQFnaKiIl5++WVeeuklCgoKyMjI4NJLL+XrP/6CWQkPdHhSH9HbtAw/PxVzrJ7Crysp+0WOMRmKRl2WDsCmVwsDGofUPxKmRJJxcjyt5Xa2vVuMo1FOlDxUuK12pt4wiueff56amhoiIyO5/vrrueiiixgzZkygw5OkHpEJkRQU7HY7ixcv5sUXX+Srr77CZDJx4YUXctVVV/H7Y5+QVXCGmMjcMHLnJ+O2e9j63yJaK+yBDknqJzIhGvosiUaGn5+CWq9ix/uyy+tQI4Tgpvcu5pVXXuHLL7+kvb2dkSNHcv3113P11VdjMpkCHaIkHZFMiKRBbe3atbz44ou8/vrr1NfXM3PmTBYuXMgrCz9Eo2gCHZ7U1xRIOzGOlJkx1G5rYsfiEjx2ObhEkoKdxqAmZ34SUcPCKV5azZ5vK+WcRUOQV+PhpAensGjRIrZv347RaOTkk0/m+uuvZ+7cufLmpTRoyYRIGnRqa2t54403ePHFF1m3bh3x8fFcccUV/PDXdZiVsECHJ/UTrVnDsHOTsaaZKfymktJlNYEOSRoIsqhCSEmaHk367DiaitvY9k4RrlZZhW6oate0kHZ+JJ999hn19fUMHz6cU089lTvvvJPk5ORAhydJnciESBoUhBD8/PPPPPvss7zzzjt4PB7OOOMMFi5cyONnvIRKkbNmD2WWRCMjLkpFAba9V0zTHjm3UKiQZbdDT3iKieHnpyC8sPXtPbSUyy6xQ5kXLzf+dwFPP/00P/30EwBnnHEGV1xxBWeeeSYqlTy/S4EnEyIpoJqbm3n99df517/+xfr168nMzOT666/n49/+iF4xBDo8aQDEjLaSc2YSLeV2tv63CFeLrCIXShKn752YdZksmhFKdGEaRlyQiinOwK6PSqne2BjokKQB4DW6yFuYwieffEJBQQGpqalccskl3HPPPYSHy6JIUuDIhEgKiE2bNvHss8/y6quv0trayrx587jxxht55NTnZR/jUKFA+uw4kmfEULm2nl2flCE88nAkSaFCUStkz0skblwEJT9VU/iNHFcUKoQQXP7ymTz77LOsXLkSnU7HCSecwJ133sns2bMDHZ4UgmRCJA0Yh8PBe++9x7PPPsvSpUuJj4/nmmuu4fs/rcGgyCo0oUStVzHsnBQisi0UfFVB2XLZOhCq4iZGAFC5uj7AkUiBknhMFBknx9OQ38K2d4vxOOSAslBiF23kLozn/fffp76+nsmTJzN//nx+9atfYTabAx2eFCJkx02p35WVlXH//feTkJDAJZdcglar5b///S9zh59F0dfVGBQTikohdqwNXZisHBdMtGY1phi9/99x42yEp/qSW71VS+45yehtWt9z4yMYcVEqepuWsVdnYssyU7GmnrLltWjNGkZcmIop1reu8FQTSdOj/es1ROjQGOWEf8HEGK0nLGXfjY70k+KwZvgubiwJBkZflYHWrCHt+FiyTk0gcpivYEpYspG8i1JR632np4icMKLy9nWl0Vo0IBuRg4LGqPb//sFXUKHj+GCK1TPiwlS0ZjVlv9RSsaYOa7qZMQsz0Vu15F2UStx4X7Kst+09llh96wpPNRE3zuZfrylGj9Ysjw/BRFH7zvmGSB0GxUTjdx4uPvly/vWvf6FWq7nvvvuIjY3l2muvZc+ePYEOVwoBMiGS+s3q1au57LLLSE9P58knn+TMM8/k/JmXoP4+in9f+F80Oq3/wkZr0ZA7PxlTjG/cUPTIcIZfkCIvfAaB6JFW/4WtMVrPuOuzMEbpAEiaFs2Ii9L8yyZMicKWafH9QwGdRYNK4zvMuNrcuO0exl6diaJWqFhdT+OeVt+iKt9fR3cZU6yB2LE2/3qHn59C2uw4ADQmNcMvSPEnYiqtIveTALGmmzFE+vaF8FQTk27PRWv23dRImhpF5twE/7JhSSb0Yb4LWo9LYK9zIoRgzbM7qd7UgLttX7UxAXjdvp0hakQ4cWNs/ucm355LwqRIAMzxBjJPTfAnT4pK7ggDTtn7G8SXmAy/IMV/8yJ9dhwjzk/1Lxo71oYpdu/YUNHxu/e9tnFPGxVr61FrVYy9OhOX3YOrzTeeUKVRodsvEbZlWkiYEuVfb96CNBKn+m6gGKN0vmNUtO/4EJZiInqktf/ev9RtabPjyD4j0fcPAdlnJBGe7Du3CK9ApVLz3i3fYPklmbMnLWDmzJm8/fbbZGZmcuKJJ/LRRx8FMHppqJNd5qQ+5fF4+OCDD3jiiSdYunQp6enp3HbbbXx45xI0ivawr1VpFITXd2CMHBZGRE4Yuz8uA2DYeSnUbG6kdmvTQLyNkKLWq4geEU7dzmZcrR4Sp0YRN9bG2ud2AzD+hmzqdjaz55tKtGYNqcfFULKsBkeDC124Fo1eRVu144jbicgJY/h5KbRW2dny5p5OF8BHYo4z4HF6sdc70du0ZM9LIv+zMtprnaSeEEvMKBurn94B+FoY2qodsttNP4jICSMs2UjRd1UATL5jGFXr69nzbRV6q5b4iZGU/lyDu92DxqRGeEXfziOlQESWhbZqB45GF7YsCxlz4lj3n90IL4y4MBWvW7D9vWLAdzHcWt7uT66k3lPrVZhi9DSXtAMw8dZcqjc1UPRdFcYoHZmnJrLr41IcDS4METrUOhWtld2vIqc1q8m7KA1TrIFt7xZ3axJXU4wet8OLs8mF3qYleXo0RUuqcbW6SZsdR2S2pdPxrHJdR8u0msicMGq2NsnjRT8wxeoZdnYym9/Yg7PZTdz4CFQahfKVdYCvlehI40Y9ipvxt2fy2muvUVVVxcSJE1mwYAG33norOp1uIN6GFCJkQiT1icbGRl544QWefvppCgsLmTVrFrfffjv/POf1XhdJUNQKOWclUbWugYb8FtQGle/kJffcblPUCsYoHW1VvsQla14izkYXxT9Wow/XMun2XDa9UkhjYSvhqSYsCUbKfvGN61FUIHp5rRA/MYKs0xKp297M9v8V9+kFqjnOgCFCR+22JhQVTP3tCIqWVFO6rAatWY3eqqOlrL3PthdKdGEahp2bQv4X5bSW24mfFEnUsDA2v+7rwqIL1+JqcfVq/xhxka8FYetbRb2ONyLbghDQsLsFQ4SOSbflsvn1Qup3tWCK1aMxqmVJ96NgSTTiaHTiavWQNCOa1FkxLP/rVoTX14Jnr3P2KOk5EpVGYdg5KUQOC2P3Z+VUrKrr1fr2P4YlHhNFS3k7TUVtWNPNjLo8nZVP7MDZ5CLl2Bh0Vq3/RpwpVk97rVMWe+kJBYxRetprHKj1KrJOS6To+yrs9c5erVYIwTVvnsdf/vIX1q9fj81m47bbbuPmm28mNja2j4KXQplMiKReKSgo4PHHH+ell17C4XBw0UUXsf3VMsKViH7b5ogL915Avd37C6ihSlErxE+IoKGglfYaB/GTIsmcm8DPf96C8AqSZ8bganFRua4B8F2A9Ndd9LQT40g5NoayX2rJ/6K83xNZvU2L1+X1tXYdE0X6nDiW/20bXpcXXZgGZ7Ms6304GSfHozGq2bm4FEWlkDs/iZJlNbRW9M9cMaOvygBg40sFfbtiBcyxBtrrnHhdXjLnJmDLNLPmmV2A70K+qbhNlnk/hI7fikqrYurdwyn4qoLyFXVozWpUWhWOBlf/BqD49sWkqdEU/1jFnm+r+mUz+x/74sZHoDWrKVlag6JSmPb/8sj/3JeQGaP12DJ84x5lgnRoabPjiJ8QwcontuN19c/n5LS1op3g5McffwRg3rx53HfffUyYMKFftieFBpkQSUdlw4YN/PWvf+Xtt9/GZrNx4403suRPa9Erxn7fdniKCUWt0FjY2u/bGvQU/AlG0vRo9OFa8j8vBwWm/mYE+Z+XU7WhAa1Zg96qpaW8feBa1hTIPj2R+ImRFHxZTunPA19JTlH5xj21VTlA8XXxqlxdT9GS/rm4CkamGD25Zyez9a0iHE0uYsbYUGkUKtcMvapvOosGZ4sbtU7FMb8Zzu5Pyqhc14A+XItKp6K95shdP0NB6vGxxI33XdQifC0lbdWOgLTKJ02LIuPkBMpX1bL70/6/oeKngCXBiKPRhavVTexYGxmnxPPL37eBgMxTE3A0uihdVuNfXvZaALVOhSl2X5fK/uQ1OEm5IIL33nuPtrY25syZw5133skpp5zS79uWhh6ZEEndJoRg6dKl/OUvf+HTTz8lLS2Nu+66i//d+g1qJQDV4RSIHW2jakPDwG87QDRGNSqNgrPZjSXJyOjL01n7r93Y653ETYhAH66l6Pu9F/sBPEErKoXcs5OJzgtn5+LSQfMdWTPMOBpd2OucRI0IJ2pYODs/LEV4Q+swGDc+ApVWoXxFna9by+l7u7XU9a5bSzBR61UIr8DrEqSd6LurveKxbQiv76LO4wydMSWKSiHnzCRqtzdRu7UJQ6QOvVVLY8HguOkUN85G9hlJ1GxpZMf7Afy97ndMTT0hFkeji8o19RgidYy/PouNrxTSUtqOLkyD1y1wt3d/nGRQUyB7XiLFP1b3f8thF4Tay5mPHscf//hHampqGD16NI8//jgnnHACKpWsHSZ1j9xTpCPyer189NFHzJw5k1mzZlFUVMSrr75K1p6JLL5tSWCSIXz92nPOSvKX8h2KtGY1kblh/n+PvjKDlFkxALTXOChaUo3H6TvpVq6p35cMQcCSIZVGYcRFqUQND2PbO0WDJhkCaCxo3XfRr/gKeHRcXJnjDQGMrH8paoXokVZUGt94PmOUzl+Fy+PwsuN/JQFLhibfMYzJdwwb8O16HF5/l56iJVVsfKUA4fVVTJt8xzBi9qtsN1R17PPCKxBC+Ku42eucgyYZAqhc18C2d4qJGh7OiItS/fvxgNvvmFr0XZW/FdXj8FC0pNrfwpgyK5bRV2b4l43MDRvSZcF1YVrCU0zoww9fOKm/KB4VH93+I2NqZ/H3v/+d1tZW5syZQ05ODs888wweT4gkplKvyBYi6ZBcLhdvvvkmf/3rX9myZQszZszg3nvv5fF5L/W6UEJf0ZjUPapWNtgpKogeZaOlrJ32Gof/zujyv27F4/RiSTLianbjaBr4u3DdodaryFuQhiXByJa39gyqi6rDMccbGH99NpteLaQhvyXQ4fSZjvERepuWSbflsuXNom5V7RpIKcf5BkQXD5JujCqNQsxoGw27W3A0uYgdZ8MYpWfPN5WBDq1P2TItjLosnbXP7eq38WF9zZphJu+iVFoq7Gx5Y8+grQynD9eiDdPQUtqOWqdi6m9HsPOjUqrWNWCK0WNOMFKzqaHXxWqkrgkhuPSleTz66KNs2rSJ7OxsrrzySu68806Mxv7v1i8FJ5kQSQdxOp28/PLLPPTQQ+zZs4d58+bx29/+lj/MejLQoR1SX1RCCxRruhlzvIGy5b4xNsfcNZyiH6p83Zl0KhS1EhRdLzQGNaMuS8cQoWPzG4UD0oe8L9kyLf5kKG6cjcY9bb2ujBRIaSfGEpEdxrp/+8oN68K1OAdpIj2YJR4ThTFaz+5PfJXHbFkWGnYHZ9JsiNBhTTP5i6nsv88HC0uSkZGXpGGvc7Lp1cJBmxTtT2NUIzwCj9NLwpRIUmbFsuKRbQAkTo2itcIetGNidWEaVFrVoO1ue9viy3n66af56quviIqK4qabbuK+++5Dr9cf+cVSSJEJkeTndDpZtGgRDz30EMXFxZx//vkU/bceizK4J7Ubc3UmDbtbOncXG8Q0BjVJM6KpXFOPvd5J0vRoooaFsWFvlS2VVum36jz9RWNQM+rydPRWLZteKezTErwDTVErTLgph4rVdfsGTAcDBeLGRdBa0U5LuR1LkhFjpI7qjY19vqnaa6cR9Z+f+2RdMaN9x5f+iLOvhSUbGXt1FutfzKe5OPjKdydNjyZ+YgRrntkV1JXSzPEGRl2Wjr3eyabXCvt2rqsBsP8xfsxVGdRub6Z0WQ2GCB1xEyIo/akGt33w3wQDSDkuhsRjovjlb9sCHcphuaxteEc3s3TpUiIjI7n22mu5//77MZuHbpd7qWdkQiQdlAhdcMEF7Hm7btAnQh1ix9pwNLoG9R226JFWtGY15SvqUGkVJtycw+6Py6jfFVx3Z7vS0TKkt2nZ+HKBf66jYLb/JMFx42zYG12Dtvvf/q2jE27KpnJdA6XLatj1xNROy2XfvrxPtld77bRO/+5tYjTl177xQyse3d6r9QwUc7zB38Us+4xEmoraqFrfENigDsOaYUZv1VK1rgFFpaCoGBIT1ZrjDIy6PB1Hg4tNrxYGTQJxOBHZFrJOT2TNP3fidQsSj4nC2eKmZvPgvVmg1qkwROloLQ+Om2CtShPamXZ+/PFHbDYbv/vd77j22mtlYiTJhCiUOZ1OXnrpJf785z9TXFzMhRdeSOFbdViU8ECHFvR0YRqSZ8RQtKQKd7uHtBPj0Fu17Hi/JNCh9amhmAwdKG9BGu21Dgq+rAh0KAcJSzYy4oJU1j+fj6PJ1WlOlQMTov31Jjk6MCGC3iVFhgjfbPPB2D0x6/REmopaqd7YiMagRnjFoKtOl3FKPMZIHVveHHrztpli9Yy+PANHk4tNrwyNpGh/uWcn42h0sufbKjRGNanHxVLyU7WcS60PuK3thB2r4pNPPsFqtXLNNdfwu9/9DovFEujQpACRCVEIcrlcvPTSS/zpT3+ipKQk6BMhY7QejUEV8DErUSPCUdQKNZsa0Vo0jL06k23vFNNSFlxjabpLbVAx+rIM9Lbg7yZ3JIpKQXgFkblhuFrdNJcG7jvdf54PlVZF6nExlC6rwbVfcZHDJUMH6kly1FUytL++6kYXjDLnJhCRbWH1P3YGOhTCkoxoTBrqdzb7992hav+kaOMrBUHXfa67LElGhp+Xwvrn83G1uokeZUV4BLVbmwIaV+LUKOz1Tuq2D65iLd3lsdpRT7LzzTffEB8fz+WXX84DDzwgiy+EIFl2O4R4vV7eeust8vLyuOGGG5gxYwbHiJOoedsdtMkQQMKUSLJPTxzw7eosGpJnRqOofRX3InPDiMjy3V1ytbhZ9eSOoZsM6VSMujQ9JJIhwH9BGT8pkoQpUQGNJfX4WIZfkOrr+uTyUvh1ZadkqKd2PDuFHc9OOeJyR0qGurvMgYadl8yw85J7/LrBpuSnanZ/Vg74ulzGTYhACdAZNmFKFAmTIwGGdDIE0FblYOPLBeitWkZenI5KOzQva1pK21n15A5crb7WoYgsC5E5vikZFLVC8sxodJaBnwLDmmbGHBe8UxaoGw3wjY0Z+rlMmjSJv/3tb6SlpfH444/j9Q7N5FrqmmwhCgFCCL744gvuvfde1q1bx7x586j+2E6YYgt0aH1CpVWhNaoHpBS1Od6ASqPQXNKOKUbPmKsz2fhSgS8hCJGZylUahbyLfaW1N75cEDQle/uCovJdfHhdAnOcAXuDc0CqXEXmhiG8gvpdLWhMalQa1SErxnW3dcirP3TcuTeuOOix7iY79cfZyb50bbeWBRh7TSYA65/P7/ZrBrvI3DCGnZfCmmd2DthElWq9CoNNR2ulHZVWQXhE0FbePBqWBAOjrsigpbSdzW/sCeqiEd2295xjjjcw+soMNryQT1u1g7BkI163CKljc19xhbXRNqyalStXkpqayv3338/VV18tJ3gNAfIbHuJ+/vlnTjjhBE499VQsFgs//vgj9k8MQyYZAt9d8n5LhhTfOI0O6bPjSJ7hmxi1rdrBL3/ftq91JBTOvyoYdl4KYckmtryxJ+ROuMKLvzpU7jnJZM5N6PU6y+6e3uXf/uLGRxCV5yty4m7z9Hv57ANbjHra8rPrtfHdXnb98/lDKhkCqNvRzKontvuSIQWy5yViiunfMr+ZcxPIPdvX0uZ1hVYyBNBS7pubKCzFxPDzUwLWOjeg9p5zWivs/PL3bbRV+8ZwJs+MIe3EOP9iYclG/6S70uFpm01YV6XxzTffYDKZuO666xg1ahTff/99oEOT+plsIRqiNm/ezH333cfixYsZM2YMDz/8MI+d/uKgmVC1L2WdnkDNlqa+qwKm+OaNcLd5sKabGX1FBmv/vYvWcjtaswZXmzskkp+u5J6dTPRIK1vf2jMkKuT1hiFSh8fu8XVX60Xr4IHJD4AawRitnWKPlhqvBjWClhgv7Pf7zbrr4LE/fdE6dKCoNepuL1t/XOcEuSctRUOVPlxL3iVp7Fxc2j9daPfue1qTGrVBPWjngxkotiwLeQtSqdncNOSK2HSbAlqTBlerG3OCgfHXZbPx5QIaC1t9k5m3e/rsHJY4NYqYUdYhd1MDfL1rLnnxdB599FE2b97s71J3wgknBDo0qR+Ewj2UkFJeXs7VV1/N6NGj2bhxI6+//joxG3J4fN5LQzIZUlRgjNSj0Xf/ou1IRl2aTtbeO/9NRa2sf2G3v6SoqzV0k6HM0xKIGW1lx/+KQz4ZArDXOXG1eVDrVIy/LouovL4bh+cBwhQvJsW3s7XEik7JEMDuR6Z2+usvllI3ltIjV7U6MBmC7rUUTbotl0m35R5VbMHA0eRi7bO7/MlQ7vwkInPD+mTdUXnhjLsuC7VOhavNE/LJEEDD7ha2v1dCzCgrmaf1vgU3KAn8Y41ay+2sfzGfxj2+G4ZZpyYw6tL0PttUS1k7NQEu7NBfFEXhjas/JX7zcP7+979TUlLC7Nmzueiii9iyZUugw5P6mGwhGiLa29t59NFH+ctf/oLBYOD3v/8979/6HaqQ6DfQO+Z4AyMuTGXDSwU4m1xY08247Z6Q6w52OCnH+rpg7PyolMo19YEOZ1BRVJA+J56K1XW01/bsgnT/1iEDXqbo2lnnMtAk1Pgyb18S1B7bvRadrN/8AsCux4855DI9aR1K+6jz6aEl6dCDtrtKiDocrqUofY6va0/h15XdjitYqTQKOfOTqVpfT/3O3t9UMEbpiJ8YSeHXFSHXRe5I4sZHkHNmEgVfV1D6UxBNsNzPzPEGNAY1jYWt6MO1jL4qg61vF8nzXTcIxcspf5nKQw89RFtbGxdffDGPP/44ERERgQ5N6gMyIQpyXq+XN998k3vvvZeKigpuu+02Vj26E62iC3RoA0KtVx3VoPaEyZGoNAqlP9ei1qlImxNH6U81OBoHZgB0MIkdYyP37GT2fFdJ8Q/VgQ5nUFNUCjGjrd2eqHP/hEiFYJquna0uHXWic+LRnYSoIxk60IHJUW8Sog4HJkaHS4Y6yO5zB8uel0hrlZ3yFXU9el3sWBvVGxuHfAW53ko9PpbU42LZ/r9iqjcO3slNA0Vv1ZI0I5o9X1ficXpJmhaF1y0oX9mz/dEUq0dRKSGTVAmth8QLLbzxxhvExMRw4403ct9996FW911PFWngyeaDILZs2TKmTZvGpZdeyuTJk5nsms36x/aETDIEMOzsZIafn3LE5dR6FYnHRPlLsmotGrR7S5R6nF7yPy2XyVAXrOlmss9MomJtvUyGuiEi20L2vESM0d0bQG9SvMzStWLEixeFn5ymo0qGDif7jl/8fz1xqGQI6NSFrjvJEBy6+1zksDAih/VNF7Jg47Z7ejxvjjFaT/a8RGxZcgLJIyn6vorKtfXknJWENd0c6HAGHUeji/xPy/2TCWstWv95UaX1nTPV+iNfJmbOTSB1Vmy/xjqYKC415a+1M011CmPGjOGBBx4gJyeH999/P9ChSb0gE6IgVFhYyIUXXsiMGTNwu91M5Dia3ldhUkLvBFn6c+0h72YpagVDhC851BjUpM+JIyzJVzGu6LsqCr8a+l10esMUo2fEhak0FrSw++PSQIcTFOp2NLP66Z201ziOuGzZ3dNxCQUF0CkDc6c/+/blXZbUPhrdGVe0v1OHbSFn5cGJYva8RLLnHTyPWPv8KbTPP/L8SMGs8OtKqjY0AJB6QiyJxxx5jqv2Ggern95J/c7gnAhzoO36uJTGglZGXJiKKbZ/K/0Fu8KvKij6rgrwTe6bPicOjcHX6mGI0KGouh6HvPODUra9VzxgcQ4WBrcJ71fhfPDBBwCcc845TJ8+nbVrZWt4MJJd5oKI3W7nb3/7Gw8//DCRkZHYyhJJIG1IFkvoCzlnJWGON7Duud2AbzLRjjth0uHpLBrGXJOJu93DxpcK5Od2FFKPj0WtU1HwZUWnx3XhWjJOimNpVgqubtTC7U13uYN0cbjvalLWw7UO7U//6cpul9g+ddi+Qcg7J+9LGDsmddx/ct/9EyHjB32TwA126XPicLW6Kf25tsvnM06Ox+PwUrSkaoAjC35qnYrRV2agNWlY//xunC09S+ZD1f7nzPHXZ9FSYWfnYnlzrCtCCOrDy8lXbaGlpYUrr7ySJ598EpPJFOjQpG6SLURB4tNPP2XUqFH86U9/Is6eRm7ZFBKV9JBOhqKGhxE1fF9XG61Zzfgbs/1dI0qX1bDjf/vKrsqL+u5RaRTyFqShoLDljT3ycztKrlY3ztaDL7wUfN2eTMqRP9fedpfr5BD3vnJvXNGrVqPsS9cecXzQ/skQ0KmlqLXSfshkqKt/D1WFX1f6k6H4iREHVS10trp9Jf+lHvM4vWx5Yw8AIy5KRaUJ3fNmT+x/7N/+vxJKl/mKU1gzzIy/MRuted+YmcxTE7rVwjlUKYpCZHMiE5pPYGTyWF555RXS09P517/+hdcrz6HBQLYQDXKFhYXcfvvtLF68mEhiGcY4zErflfcNZjlnJaEL19BY0ErJUt+BOnNuPJVrGzpdYEk9M+zcZCJzw9nwYr78HA9DTBvb5eOFZxx8RzDc6yHd62aTWodXUch5pqhb23CXlB6xpHZvWoe64jhtcreW03+68qDHumotOjAZ2t/OyQ5y5if5/v+D0sMmP6HSUgSQOz8ZV5ubgi8r0Idr+2/i6RBjTjAw5qpMareG8BxFfcAcZyB2nI2CL3yt38kzYzDG6Gja0yarkO5l17VSFLmVovJCJk2axJtvvkl2dnagw5IOQyZEg5TdbueRRx7hoYceIjo6moiSZGJJCukWoQ66cC3C48XV6iFhUgSx4yPZ8EK+rLjUB5JnRpM+O56t/y2idojOLXG0DpUAHejAhCjS6+FUVxtu4FutiWqVukcJUVf2T5L6OiGC7iVFXSVEcHBSdLiECMD8QjIAP1cc/u5yKCVEACi+oiYjL0ln+3vF8vfYR6JHhjP8vFQKv66gRJbj7jVFpTDm6kwq19RRsboerVmNolbhlEk8Qgjak+opFNuorq7m0ksv5YknniA8XN7UHoxkQjQIffHFF9xyyy0UFhaS5M4igxFolEPP/xFKFBVM+fVwKtbUs+ebSv8s7VLvReSEkbcgleIfqin6Xo5TOFB3EqIDk6F4r5tKVGQID8WKGpfK10u5OwnRoZKhLh3pRslRHuYPlRgdKhnq0JEUHSkZgn3jibrTNS4Uk6IJN+XQXNImx270odQTYkk5NoatbxVRt0MWp+gTCmhNGlKPjyE6z8qKR7fJubH28uCmLrWYzaXrsdlsvPDCC5x55pmBDks6gBxDNIh03EGYO3cutbsamew+kRxldMgnQ7ZMM+NvyEalURBe2PJWEZZEI1mnJchkqI8Yo/UMOzeZum3NMhnqI2FeL7Nd7aQID/lqLS6VCpvXQ4TX0/cbE2LfXx86UuJzKNmXru1WMgS+8UTdHScUKuOJzPEGTDF6ELDuuV3s/rQcAEOkDjnXdu8VfVdF7bYmcs9J9n3OUu8JX3drvU3HlreKEF7feNTxN2RjywztkudqNMQUZTDTPBd1m46zzjqLY489lvz8/ECHJu1HHloHASEEr732GiNGjOCzzz4jj8lMYFZIjxWyZpixZvgOovZ6F01Frf45hJqL26hYVUftNnlnry+o9SryLkrF0ehixweyX31XuttdDkC7NzFpVqn4TGuiSLXvhsZEt4PxniOX5O6VPk6MDkyKupsk7V9J7nCivktj+vD2bi1bPj00Jj5MOzGOjFMSAPC6BV6XF0WtMOqydNJmxwc4uqFhx/ulOBpcDL8gFbVOXgr1hd2flrPjfyU0F7cBvrmMmopasdf7us/ZMved10ORpsnAqLZpTEs5nvXr1zNq1Cj+/e9/y6ILg4TsMhdgBQUF3HjjjXzxxRfEkcIwxqJTDIEOKyBUWhVel+/AkHdRKh6nl+3/kxfo/W34BSnYMiys+/du7PXOQIczKHU3ISqbZ2Ses5X1Gj271dqDnjcIL2nPl+DtRvf6HnWZGyCO0yYfVatRV/MPdQjbGEPNqii2lx16mf0Tocy7f+7x9oONWqdCpVVwtXZuTQxPMdFe58TVRfVCqecMkTrGXZdFw64Wtr0bevPoDLRh5ySj0qnY+pavy/D+5/xQ4zW42a3dyJ6m3YwcOZKXX36ZiRMnBjqskCZviwSIx+Ph8ccfZ9SoUWzZsoVxzGC0ckzIJkPGKB1Tfj2M8BTfGIzt75ccMhlKmh7tn7tE6p3EqVFEj7Cy44MSmQz1AaeisFWto0zVdUuGXVHhdYHWqJA4Jvj24aPtQne41qLm0dXdToaGuuSZ0WgtGjxO70HJEEBTcRuuVjdqvYqxV2diywy9ybj7kr3Oyc4PSokeaSVxauiWjO5LseNs5JyV1OVz2/9X4q/uF55qYsqvh2GI1A1keIOGyq4hp3k8MxPmUF1dzdSpU3nwwQdxOPq5B4F0SDIhCoDNmzczbdo0fv3rXxPVlkhW8QSilYRAhzXgrOlmkmfGANBe66R4SRXtdb6Lco+j67tGKq1CwqRITDIh6rWwZCPpc+IpWVZN3XbZ/fDoCZLSvERE+xrbt2p0tB9hoEdYvIa4PD1aY9fFEAZj61Bv7Zzs6DIx0lYZiTQf3OJRPl0dUsmQ1qIhYXIU1tQjT+QovIK2ageORnkTo7dqtzVRsqyG9DnxhKXISTR7y+vyHrbVp+Pc3nHOt+895yfPjPHPIRhKDBU2RtXNIDNsGH/4wx/Iycnh+++/D3RYIUl2mRtAHo+Hxx57jPvvv5+srCwsW+OxKqF1V0qlVaGofAfFhCmRROdZ2fhyQc+LI8jqcr2iMakZf3029nonm14pkNWAjuDwXeYEOdMVHCvLKP6hutvr3L+7iCa58x3VoZgQHaijG130lxm4WzX8sMV3MXqkJGgod5k7mi5EigoSJkdRtqJWHhOPkqKCUZdnYIjQse65Xbja+qHwiXRoCoy+IoOazY2Ur6xDrVchvIRcdzpXVAuF5q2UlJTw29/+lgceeACdLjRb0AJBJkQDZNeuXVx55ZUsW7aMVJFDJiNRK6Fz9xMABSbdlkv1xgb2fHt0lczUetUhW4+k7ht5SRrmBCPrntuFs1mORziSpgUHT46qUgQGjaDNpQIE4W92cz6g/aj1KjJOiqfo+yqcLaH3PeSs1KOpNbD71SwaWzXdahEaagmRzqIh9fhYCr6qOKpjW3iKiZGXprFhUQGt5XIi5aOls2gYd30WrRV2Nr++J9DhBDWVRiEsxURjQetRvT7txDhiRltZ9dSOkEvyhcpLeeRuttVuJC0tjbfeeospU0KjumagyS5z/czr9fLMM88wduxYysvLmSBmkaOMCZlkSG/TknlaAopaAQH5n5dTsfroZrI2xeo55jfDsSQa+zjK0JI0PRpbloXt7xXLZKgLtddMO+ivKyNiHExOakdB4Guy7DmVWiE81YQxKjRL/+6c7MAdZe92MjQUGaP0hKWYUKmPbh9qKm5j5RM7/MmQSisn7z4azhY3O94vJSI7TI4n6qWo4eGMvjwDXdjRTRlSsbqO/M/KQYCiVsg8LQG97eAiNUOR4lWRWJPDzKiTsdvtzJgxgz/+8Y94PLLVsr/JFqJ+VFxczMKFC/n6669JJpNsxoTMnEJasxpXqwdjlI6Rl6Sz5c09tFX3brCgxqAmZoyVilX1CK/cbY+GOd7A2GsyKVteS+HXlYEOZ1A4VMLTQdva9b6mU3sxagWNdt+FfPiby48ugBDv/pl1eiLNx8Sx3NC9cYFDrYUI6LN9IGl6NLFjbKz7z26EJ4R3ql5IPymexGMiWf98Pq0VssXtaKg0CrpwrX98UG+YYvTkLUhj02uF2Ouc/muLUCDUHkoid7K9ahPDhg3j7bffZuzY7k8BIfWMbCHqJ2+88QajRo1i69atjGcmw5UJIZMMZc9LJO/idMA3cHLVUzt6nQwBuO0eylfUyWToKKm0CsPOTaGt0nHUXRaHmiMlQwcyab1MSGxHoxI4PSp/MtQrwjeGIXNuAhHZoVc1zJpmItZ75JZKr1bg1Q6d335EtoXMuQm+iVb76G3V7WimYnWdTIZ6Yc+3lbRVORh2bopsbTtKXrfok2QIoK3awaqndvjXN/LidLLnJfbJugc7xaMmpXo4M2NPora2lilTpvDEE08g2zH6h0yI+lhzczNXXHEFl1xyCaYmK9mlE4lShvZEeooK4idG+EthV6yuo+CL8j7dhjnBQMqsGFQaeYI6WhknJ6C3atn+v2KZVB4ltSLQqQRqVd9+fsILujANOkto3DTZ35pndvGh6fCJ4FBKhDroLBp0YZo+LWjSXuOgfGUdAJHDwjBGh2ZXzN4QHsH294rRh2vJPCX0qr/2Fb1Vy5iFmZhi+3YfzP+inPLVvn3cHG8gfmIERyjqGfQM1VbGNh9LWmQmd9xxB7NmzaKqSt7U7GtDfDcaWKtWrWLChAn873//YySTGaUcg1YZuhVCOg5CQkDi1Gj/DNQt5Xaaitr6dFvmWAPRI6143UPvwmggRA4LI2FSJPmfl9NeK0v19pRR40VB0OxUs7zEiMPd94fObe8UU7muoc/XG8yOtlWo8rbp/RBN36pc18C2d/ppMlAFUo+LJWFSZP+sf4hrr3WS/3k58RMjiRoeFuhwgpKz2Y2jwYmi9O1NzKaiNv94OWu6mcRjouhoMBnKiZHiVJNWOYqpCcexevVq8vLy+OyzzwId1pAyhHefgeP1evn73//O9OnTqdpVy5iWmSQoaYEOq1+Fp5iYfPsw36BJAeue20XZ8tp+217V+gbWPrur39Y/lGnNanLOTKJ2axOVa46uoEUoUymCaantZEd1JJL920qZPCOa+BC6kB1/YzZntnWuRtWbRGiwJ0MJkyNJnhHdvxsRsOmVQvI7Wuplw3qPVa6tp3ZrE1nzktCYQrPgR28Ir2D7/0porey/cVhly2tZ9+/dIHwt7JNv3ze5+1BlqYhhqmYOGqHljDPO4LrrrsPlcgU6rCFBJkS9VFFRwdy5c7n77rtJdGUwiRMwKUNzHIDWrPG3ArVW2qna2ODvq96fLTdakxpFJc/oRyvrtEQQsPPjoT+3TU90d/yQVyhsqNBTWD8wrb1aswZtCF2AtZS2UaPadyoaqolQB41Rjdbc/10j3XYPCN+g9Ak35WCKkd3nemrXJ6UoCmSdGhpjVvpDWIoJQ2T/HTs7rj2ER1C1scGfgFkzzAPyOwsEdYuekXXTGR49mueff55x48axffv2QIcV9Ibm3jJAvv76ay6++GJUKhXjmTnkxwqlHheDLdPC6n/sxOP0UvjVwFQpyzwtEa1JzaZXCgdke0NJdF440XlWtr5ThFtONtgjYRoP0XoPJa1aatr2HSqPuppcNxV8WdGv6x9sdn5YRv7MtCHbNe5APZm8ty84m900FbfhaJZ3kXvK1eph96flDD8vhZqtjdRuaQp0SEFn2LnJ1Gxq7Peqpq42T6drkuzTE6nPbyH/074dzzxYqBQVCVXZ2KJi2Fy2kunTp/PII49w1VVXBTq0oCUToqPg9Xp5+OGH+b//+z8iRAwjmIxO6V7J2KCiQPqceJpL2qjd2sSe76so/GbgSzUX/1CFxhg6d8z7isakJuu0RGo2yxP50ciqbCI6VUXLO2sCMnYtdowNfYSW4iUDewE90MKSjEQqLmp6cDoKxkQo5bgYHPUuqjY0DOh23XYPuz70tQ5rjGrUOhWORpkcdVfN5kZq8sLJPi2RpsJWXPLGUo9sfKkgIPvbuv/s9s1/CESNCCcs2ehLyobYMGRjrZUx4ljyI9dz9dVX8+OPP/Lcc8+h1YbGvE19SSZEPVRfX89ll13GJ598QgYjyCSvzwcNBppar/LNmL63X25H951AtTC0VfW+ZHcoyjo1ERTY/WlZoEMZ9GKXHTz+rQyo2OUNWCEPrUWDPnzon9RGXJRKTqud/1qP3NU45/UWKoIwGQLQh2vxugJ7NZZzZhJas4YNL+YHNI5gs/uTMibclEPW6Yn9VwhjiApU8u1x7CvfqDWp0YVp/cmQ/xpniNApeobVTSYqMYZFixZRUFDAokWLSEsb2mPZ+5qcmLUH1qxZw7nnnktjYyNp9XlEK0OvJKcpRs/Ya7LY9FohzcV9WynuaGScHE/97hYadrcEOpSgEjUinBEXpLLt3SJqNsvWoQMV3z+d9P/VHPS4RgcjZmko2uihsdJ3aPRs2THQ4YWUiBwL5dcMp0R3+PtzOa/7jgEV08O7td64p5b1OrahRm/VotIostLkUYjKC2fE+alsfXsPtduaAx1OUMk4OR61Qe1vqQyk8BQTIy9NZ/3zu/tkfsTBpkFXzQ79WtRqNS+//DJnnHFGoEMKGrKoQje98MILTJ8+ndrCRvLqpw6pZEitUxGZ6yst2lbtYM93lbQPggOFovIlaEN1YGR/UetVZJ6aQO3WJpkM7VV8//ROf4ficUNrvcDROnjuE0XkhJE0LSrQYfSb+p0th02Gcl5v8SdDwShpWhQROYOjdLOj0UV7rRNFpZB6fCwqrbwE6K7aLU3Ubm8i89RE1Dr5ufVEa6WdltLA32CFvdc431b6k6HI3LAh9X3anDFM9B6HVug5++yzeeyxx/B6h05rWH8aOntBP3E4HFx77bVcc801RDuSmMTxGBVzoMPqU7HjbOSek4xa79sdypbX+ioUBZjwwubX91A9wH3ug13aCXGodSp2fxa6XeW6mwD5KaAz+Pa5/NUe7IPo+tsSbyA8dWgdc/aXcXI8k9sOLs17tIlQ40gXjSMHzxiZ8FQz5vjBNcbUEKElflIklsTBFddgl/9pORqDirQTYwMdSlCpWt9AxerBMeWD2+6h7BdfF2m1XkXuOcnEjrMFNqg+pm7VM7ppOummHH79618zZ84cWloG0UltkJJd5g6jqqqKc845h5UrV5LtHEOikh7okPpMzGgrGoOa8pV1KGoFrUmNs9kd6LA6McXq5fihHrIkGBh7TRYFX1X067xQg1m3EiDo1GUuOU9NbIaKdZ+78B5wLyDgXeYUhtxA4P1NvDUHV5SB/1n3JX2HS4QO1WXuwCQo9/qVfRNgXxiE36FKq8LrkneOeyppWhTpJ8Wz/j+7aSnvvzl2hhq9VUtYsnHQ9VrQhWlwtXkQHkHC5Ejcdg/VGxsDHVafaUupYWX5TyQnJ7NkyRJSUlICHdKgJVuIDmHdunVMnjyZXbt2McY5Y0glQwDmeKP/rqXwiEGXDJnjDUy4MQdr+tC9M97nFMial0Rrld1/B0zqnopdHgrWug9KhgaFvRfSYclG4iZEBDaWfrD66Z3+ZOhoWoUGW4tQh7gJEYQlG33/GGTJEOBPhlKPjyVpej9PFDuElC6vpbXSTva8JDnhbQ9EDgsj6/REVJrB9aE5m93++RTNCcZB15rbW6biaKZHnERzczMTJ07k008/DXRIg5ZMiLrw3nvvMWPGDOqLmsipnIhNCf7++4paYczVmcSN911QFX5Vwa6PBm+XqtZKO5teK6SpqPXIC0sAJEyKxJJgYNfHZYPyAmwwssYqqLXgdkJ92eD+0CJywogdYxuyF2FDJRECQIHYsbZBM3bosBSG7D7VLwTs+qgMc4KBxCnBf20wUCrX1rPy8e0Bq9rZHbs+LPXPZRQ3PoIxCzP9pbuDmbbaxIiaY1ALDfPnz+fhhx8OdEiDkhytvh8hBH/84x954IEHiCOZPCahVoL7I9KFa3E2uRAeQf2uZtprgqQLmkBWlusBrVlD2uw4KlbV0VLaHuhwgkLxOVFMdDZRVeClePNgbBrqrHhJFUWCIZfsjrsui3F7WljfzeUHbRK0PwEbFxUQDDMyFH1X5f9/Ra3475ZLh9ZS1k75qjpSj4+lelMDrtbBf/wINH/J+UHYfbQr7TUO6nc1+38PHddSwUqvGMmrn0ZR3Gb+3//7f1RVVfHII4+gVss5HjvIFqK97HY7CxYs4IEHHiCTPEZxTNAnQ6YYPZNuy8WW5Zvfo3hJNU2DoJT2kVjTzeSenSwrIPVA+uw4hEdQ+O3AT5wbrDwobPrWRcnWzhczni07Ov0NFsILCDBG6bBlHnnOnmDRVuOgvZv3PsSqTf0bTB+wZVkwRulA7P3OgkTksDAm3pyD1iwvkLqj6LsqhBCknRgX6FCChiXJyJQ7h6ELgvnVmorbKP7BNym2LcvCpNtyMUbrAxxV76i8KtLKRpGrHcOTTz7JrFmzaGoaXGO6Aim4r/j7SF1dHWeddRarVq1iNFOJU5IDHdJRU1QK1gwzDbtbaKt2sPPDUpr2BFe3M7VOhVonB/x2lznBQOw4G7s/Lcdjl5/ZkagQDFOcbBc62lYNnoSnu1KOjcUQoaUhf2i0oO74XwnKJNthlwmGRKhD6nGx2Ouc7PigJNCh9EhzaTvVmxtxt8tjSHe42z0UfVdF5qkJlK+so7VCFlg4kvZqB1XrG8AbBE1E+2na08rOD0v9PWxsWRYaC1oRQfY+ABRFIdWdS0x8DCtX/ciUKVP48ccfiYmJCXRoARfyt+ALCwuZMWMGW7du5dtvvw3qZAh81ePyFqShC/PlutUbGgZ1n92u1O1oZuvbRYEOI2hknpJAW5WDitV1gQ4lKEThIU9xEE5wXvjt/ryMja8UBjqMPmOM1mEcQrVTNr1SwO7PB+/4zENxtbjZ800lwivk3G/dVL6qjrZqB5lzh868hP3J4/RS+HUlzpbBVcTpSLxu4Z/+QxemIW9BGjGjrIENqpeMFRG8//771NbWMnr0aFasWBHokAIupBOiNWvWMG3aNJxOJ8uWLeN3Mx4LdEhHxRxnIG5vHf2qDQ2s/deuQVc1rrsMETp/MicdWXReONY0M/lflAdFv+xASntsHWmPrcP02CbWPl2I9bGNgQ7pqHjsXoRHoLNogr4LB8DoKzIYNa3r58SqTUHTOmSM1qO1aPC6RVC31OrCNEy8JYeY0cF9wTcgBOR/Xo41zUz0yK7LwUudKWqF2HE2DBG6QIdyVJzNbtb+axdVGxsAX/EFc1xwVqZ7fN5LfPXVVyiKwuzZs/nwww8DHVJAhWxC9PnnnzNr1ixSUlL4+eefuXn4fYEO6ahFjQgnYUqUf7Bi0BRO6ELqcbGMvCQ90GEEBZVGIf2keGq3NdFYEFzdIgdKRxKU9tg6zHE6ko6xAeBxBO8Fa4fcs5OHxJ3p/M/KKdh88ONHnQhphe9vgGXOTWDY2cHdwwB8F3wFX1ZQt7050KEEhcaCVmq3NZF+UvygKyk9WGWcHB/UU2q01zh8NyAVSJgcSdSI4E2GfzPhIVatWkVSUhIXXngh//nPfwIdUsCE5MSsixYt4pprruG0006j5SN1UBZPiBtnQwBV6xp8ZSGFCKoBvIei1qvQW7VyQtZuSJ4ZTerxsax5Zhf2Omegwxk0VCZTl4/Hjw8nJs/CprfKEHvrKHjbBn+RkUMxROpwtbmDujWigzJplP//D5cI7Xhu8qFXckASlLtwVa/j6gmNQY3GqMZeP3R+ixqTGuERQ+IGQn8yROiYcHMOe76tpHRZzZFfEOLUOhUe59DYpxSVAopvPsfYcTYUoHJdQ6DD6jGP8CCOr2fJkiX83//9H3/4wx8CHdKAC7kWoieffJKrrrqKhQsX0vqRNiiTIQBLkglLvG/SP+EZGskQ+O7cy2ToyDQGNckzYqhYVSeTIaDwoWn+v0OpWNvEpjf3JUPBzl7nxGP3otap0BiCtzJY6omxpA7z/f9RtQoFqEWog8agRq1T4bZ7hlQyBDD68gwyTo4PdBiDnr3eScWaOlJmxqA2hNxlVY91JENDYY4f4RX+0tyWeCOWJGOAIzo6akWNekkUZ599Ng8++CAPPvhgoEMacCHzy+2YY+j222/n7rvvJv8/daiU4Hn7igpyzkzyN83u/qSM/M/LAxxV38qcm0DClMhAhxEUkmdGo6jwlwUNVUdKggDixoURO8pXpnqo3DjY35iFmaTNCd7Sv7FjbMQmHUUyFOBEqEP6nDjGLMwMdBj9Iv+zcoq+rzryghLFS6pR1ArJM2S1ru4YeWk66UF83OpK/ufl7P7Ed10WlRdOzplJBNFlJgoKjf9TuOOOO3jggQe45JJL8HqH4EnzEIKzeaSHhBDcfffdPPLIIzz00EN8e98alGCYMW8/HRdyqiFwR+VQvG5v0FXECwRdmIaEKVGULqvB1TZEmjt64EgJUP59Y8l8aN80n6Zo3d5WoaFRpvpABV9WBPW4wVVP9LD0+SBIgvZX/EM1xujgHCB+JI17p2xQaRV0Fu2QawHrS65WN6XLa0iaFk35L7VBV0ltoFWtrw/a4k/doVL5rtWC7SacoihsfKKYW265hX/84x80NjayePHikJjANYhy16Pj8Xi44YYbeOSRR3jqqaf47v61QZMMaUxqxizMJDzNNyZi54elVG9qDHBU/afw60oq19QHOoxBL2VWLF6Xl9KfQ6uvuqLVHTEZ6krB17UUflfbDxENDg35LTiaXEF1J/KoDbJkSFGBo8lFQ/7QLmqSPS+J4eenBDqMQa90WQ1el5eU42MDHcqgV72xkcbCofu7qd7UyM4PSwGwppkZszATjTF4kopt/6zg/vvv59NPP+XCCy/E6Rz6N0OG9CnU7XZz2WWX8fzzz/PSSy/x4a9+CHRI3bM3X3O3eWivcYREq0l4qgmVNjgS1UAyROiIGx9BydLqkBnorGh1KNqe34FPnmYjIjM4+3P3lFqnYvwN2UE5N8aYhZlB2eUsZrSV8Tdko9YN6dMoAEVLqtj+v+CaaDYQPA4vxT9WEz8+AkPk0Gw17EvhqSbiJkQEOox+53F7aa9x4G7f26MjSC51lj+0jf/85z+8//77zJ49G7t9aE8+PGSP5G63m0svvZR33nmHt99+m9cXfhLokLrFGKVj4s05mGJ884vs/LCUltL2AEfVv1QahZGXppMwSY4fOpLU42NxtbopXzm0J2HtSIKOJhHyrQAs8XoMNu0hFwnmCnMH8ji9VG9qpLUq+E5YzhYXzhZXoMPosdZKO9WbGodMtazDsdc5fd0yFYJ2/piBUr6yDmeLm5Rj5ViiI7FlWIgfP/QTopbSdn9rkSlWz8SbczBGBcfv6K1rP+eZZ57h559/5tRTT8XlCr5jdXcNyYTI4/FwxRVX8O677/LWW2/x3AVvBzqkI1L29je1N7hoLGzF4xr6J9kOXrdgzTM7g7JU5UAyROqIGWWlZGn1kG017FUStD8B296vpHxNk/8hb1tbp7+hpviH6qCs0Ljtv8Vs+29xn6xLpfP4//pbW5Uj5IqaZJwUz6jL0/3nK+lgwiMo+ama2DHBO/noQCn+sZr1L+QHOowB5XF6aSxsxd7gSyyC4bf07o1f8/zzz/PTTz8xa9asIdtSNOQSIo/Hw5VXXsnbb7/Nm2++yb/OfyvQIR1ReIqJibfloAvXIjyCXR+X4WgYull4VxwNrn3NyVKXUmbG4Gx1UzFEx1n1SSIEjHM7sCToh3wC1BV9uJaRl6ajP0zL2GCjs2jQWXpX32egkiAAvW3vZxwePJ9xXylbXsv294oR3qF5Q6avVK6px9XqJlm2Eh1Wx34USt3lHQ0udn1chvAIdOFaJt2WS3hK13PnDSavL/yEJ598kpUrV3LiiSficATfzbcjGVIJkdfr5eqrr+aNN97g9ddf598X/jfQIR3e3mNAa5Wd2q1NeEOg68WBFJXCqMvSCU8d/AeEQNLbtMSOtVG6rMY/50Eoyvj96sM+n/nAclKLGjBYQvMzcu29qRBMg3fHXZ/FuOuzjuq1A5kIdej4bF3tQ7dC1qE4mlw0l/i6cGt7mcQOZV63oGRZDbFjbEF1cyIQ4sbZmHzHsKBoKelrXqeXmq37dXUe5B/B/27+lieffJIVK1Zw8cUXD7lCC0MmIfJ6vVx77bW8+uqrvPrqqzy/4N1Ah3RYtiwLE27KQWNQ43F4KfiiArc99FpINEYV7nZPSL73nkieGYOr3UPFqqE9duhopd/3M+n3/YzXLdjwYj5V6xsCHVJAeF1eNr9WSGt58HRpKPymksJvKnv0mkAkQh1ay+1sfq0Qrys0k27wjWUce3XmkJhYs79UrKrD3e4heaZsJTqcxj1tFH5VOeiTgf7gtnso+KICj8OLxqBmwk052LIsgQ7rsD649Xtef/11PvjgA+bOnYvbPXRuDA2JhEgIwR133MFLL73EokWLeOnS9wMd0hG1VdppyG8J+a4HrlYP294tDsqxDwNFF64lbpyN0p9rhuzYoaPRkQSl3/czAAmTIzFG60F+ROitWlKOC44Lsap1DVT1YPxgoBIhgNTjYtFb5R3/ynX17P60PKRbq4/E6xaU/lxD3DgbuhDsXtld9nonlWvrQ35fEl5BQ34LbZWD/2bW8wve5W9/+xvff/89Z599NkIMje9uSCREf/7zn3nqqaf45z//yStXfBjocA4pang4467NQqVRcLa4yf+sPCQqFB1OeKopJO8M9UTy9Cg8Ti8VQ7yyXHftnwR1UGkUEqZEEZE9uO+uDRRjlI74iZFBcSGWPDOa5JnR3Vo2kMmQLlxL3ERZThl84yDqdzYDoTX+o6fKV9bhcXpJPCYq0KEManqbNuSr8nmcXvI/K8fZ4kalURh3XRZRw8MDHdYhff6b5TzwwAN8/PHHXHfddUMiKQr6hOjf//43999/P3/4wx/4383fBjqcw2qrcdBU0iYTgL0siUbGXJUZFAMKA0VtUBE3PoLyFXUhnTwXPDDR/9cVr1uw7rldlP0ydCdg7YmG/FZWPbkDZ9PgL86SOCWKxCmD/4LR2eRi1ZM7aCwYupNJ9lTyzBjGXp0VGpMCHwWvy0vFqnriJ0ag1ssP6VAMNh2JU6NCslBJlxRoKm6jrXpwtxYt/cMm7rzzTp5//nnuvvvuQIfTa4oI4rTuvffe44ILLuCmm25i6z/KUZTBl2lEDgsjfmIkW97cI7vydMGSZKSlrF1+NoeQNCOatONjWfnEdlytQ3+c1YGV5g6VAKXfv6+FKCLbQmulHWfz0OnL3Fc0BjXGGD3NxUOjyt6u18Z3e9nsS9f22XbDUky0VzvkWMcDmOMNmOMNPeryGGq0Fg2Tb89lzzeVlP4sb9h0qePSTV4HHEyBvAVpVKyqo25Hc6Cj6VLsAh1vvPEG//73v7n22msDHc5RC9pbFt988w0XX3wxF1544aBNhgBcrW7cbR5UmsEZX6C1lMpk6FBUGoXEKVFUbWwMiWRof4drDepEgcy5CSTP6F6Xq1CTNjuO3PlJg7dVem9cfXV81Orc/r8+o0Du/GTSZsf23TqHiNYKu0yGjsDV4qZ6QyOJU6PldcChCN9fKFaaOxKVRoW7zYOrbfDe8Kt8w8GFF17IjTfeyAsvvBDocI5aUCZEGzZsYP78+aSkpGD/WY2iKMRNiGDMVRn+Zaxp5oBNimZNN5M1LxGA5pJ2dnxQEtIVibqiC9Mw4qLUITlxnSXR6J+FWmtWk35SvL/0asxoKyMuTPUvO/LSdNJPigd8YxRm/G4ktkzfOJjseYnow7WU/VwDwOgrMnwXt/i60h1z93AicsIAXyvJyEvT/euNHWcjepTV/++wFBNqw+D/uXc7EeogYN1/drPnu6r+CyqIFX1fyYYX8wN208GSaPQXIQhLNjL6ygx/2ersMxIZuzCT0VdkMP2+kcRN8M1Yb8u0MOHmHP9yETkWInPDDrudPk+C9idgw4u7Kfpe7mOHkjIrxn/OG0rUBhVh+3Xpjh5lJXaczf/vkZem+8ctRuSEcczdw/3H2dz5SYy+wndNUvpzDfpwrf8zsmVZmPG7kf4xfhknx3c6fo+4MJWYvcdvvU1L+knxaM2+34MxWo8l0dg/bziAwpKNTP3tcFm05ABel5cdH5T4y91nz0vEmm4OSCy6ME2n64rM0xLIOi0BRVGoec9NdnY2N954I59//nlA4uutwX+FdICKigrmzZtHdnY24/UzaK/29ZG31zlpKNzXtzv7zEQSJkcC+8ZhDFQfXrVOhcGmQ6UNuo93wGiMatQ6VdBMxqo1q/2TR2rNGjJO2ZfkJE2PZtJtuf5ls89IJGHvIFpFrSIyNwyt2fdaj8OLs2XfhVv1pgYa8lsAcLe72fVxmb/fsDnBSEt5O23Vvgp8JctqqNx7N1a4BSU/1dBe63vO6xG4Wvet15pm9o/NUutVjF2YScTeRCsqL5wJN2X778ZFDQ/DlhmYA2wHlcGAymDo0WsMETrUehUehxePI3THVx2Oq9WDq9WDolYG5PhnTTd3GkA+8uI0YsfaAHC3e3A0uPzjTSrXNVD8YzVel5eWinb/2BxXq5v6nc3+7mkxo2zEjfclS4oQnFrsJqHN931rta7+S4Tw/XYUteL/HKWuOZpcOBqCc04SW6aZqOG+hFtRK0y4KZuoPN9g9ohMC2MXZvp/O+EpJqxp+46VrjY33r3V0dprHZT8VIPYWwm0cl0DJct8N7Paqh00l7f7E5m2age7Pi7DvXcuq4b8Fqo3NvjX62xx+8eMas0aInPDUNS+GBKnRJK9X/I56bZckqb7Wsj1Ni0Zp8T7zzc6i8afSA12bdUOin/wHQ+krqm0KvQ2HWrdwFxbKiqInxjh32/Dkk0MPzcFjcm3T7WW231DHgDFozDOMI2kpCQuu+wyCgsLByTGvhRUY4ja2to4/vjjKS0tZcWKFVyZcvshl1XrVCgaBXebB1uWhbwFqax6aifOJhdas6bTxWNfMMXqicwNp2RpdZ+uVxo4eqsWd7sHj9NLRI6FqOHh7PqoDPBNHtlc0sbuT8rRWTSMujydnYtLaS71neTM8QYq19T71hOuxe3w9Ooi3ZpmZvSVGWx6tYCG/F4O4lbAGKXH2ezC4/BiSTISNTycPXvnfhl5SRrOFjc7F5ei1quY/KthbHuvmIbdLRij9ZiiddRub+6XVoaukqD8+488TiT9/p8ZfWUGHqeXLW/s6fvAhpix12TSWmn37899RW1QkXRMNFUbGrDXO0maHk3UiHA2vJAPgCFSh7PZ3fuLHAUQUPTyOCZXe9gZI6g3KuTUCdIb4et0EAd0m067YGPvtonv5oY5zsD65/N7vS4pQBSIGhZGW42T9hoHtiwLw89NYeWT2/E4vOSclYTWrPEfR9Jmx1G7rYmW0nbUehW6MK3vxlMvj3+2TDOjLstgw4v5NPViTJ9ar0KjV+PYWzAlbkIErRW+C9OwJCM5ZyWx6ZVCnC1usk5PJCzJyLp/7wZ8+3Pt1ibqd7Wg1qnQGNU4Ggd/4RWpa8kzY6jb3uS/adpXjFE62mt9Nzgm3JRNxZp6ypbXotIoKCrlsAWeXi55kkmTJqFWq1m7di3R0cHTnT1oEiKv18uFF17Ip59+yqi2aYQrET16vVqn8n+JE27Kpm5HM4Vf92wywMOJmxBB4pQo1r+QL+9wHIGiUjBEaP0/uECJHWdDeATVGxvRhWmYcudwNr+xh/qdzUSNCCduXISvGAa+rj+uNjeOhoE5eQw7LwVzrJ41z+wakO11XHCqDSoSJkVRvakBR4OL5JkxJE6NYsUj2wDfeJ2W8nbfxKeK77s82vkjDtUi1J2ECCD3rytR69W018g5rI4kItuCvd7ZJ785nUWDKVZPQ34rKq3CxFty2fVxKfU7W45qfaq9dzu93aiiuOe/ozv9O75FEN0Gm2IVEIJZxbAzAnRXbzqqWA5kjNJhiNBRv+vo3luoSZoejb3eSe3WpgHftqJWfPP6Cd+x3RJvJP/zcgCOuWs4pctrKFlag96mJWaUjfJVtXjsXv+xbyBMuDmHlvJ2dvyvZEC2p7dp0Zo0/rv4eRenUbm2ntqtTUTmhpG3II0Vj23D2ewmZrQVRa0EdEyY1qwmeqSVilV1CHkZdVgqrYqxV2dStqLWfzO2L8SMtpJzVjKrntyOs9mNoqLH34XL2sYKx3eMGDGC5cuXo9UGRzfIoOnTdf/99/Pee++R3Ta2x8kQ0CmjLfiygqoNDYDvgNHRV72n1HoVUSN8TeuVa+pZ95/dMhnqhvBUExNvycUUq+/3bVkSjejCfN0HovPCmfrbEf6uYtZUM2HJvm5lzmY3m14rpKnY1xpTu7XJnwwBtJS1D1gypDVriBoeTsXqvjvIHdHeCwKP3UvJ0mr/ey1ZWs3qf+zwL6bsvUMEYI4zMO2eEZjjfImNIULn71Z4OEfTPW5/ihAoQuBsdstkqJvqd7X0Phna2wCTND2a7Hm+sWxel2Dl49uPOhkCmHRrDpNuzTmq11ZYFF8yBGi84FXAs/esZo43+OY564X2WqdMhnogLNHomxx5AOgsGv8Y1AOPRYqioOxXwGDVP3ZQstTXfc3R4KJkabUvGYIBHV9XsaqO6LzwAevG5mhw+ZMhgC1v7PEnq41FrWx6rdBfnTMs2YQ11dcdUFErTL1nBNF7uw7qwjQDMm5JF64l46R4TDFHf34IFV6Xl3X/2e1PhqJGhB91t2itSY0ty9elvnZbM1vf2uPfL44mMdU2mphom8G6dev41a9+dVQxBUJQJESvvPIKDz/8MNliFLFKUq/XV7+rhbYq34VU1mmJjLgo9Qiv6Frc+Aiy5yX6d8JQn2m5u5pL2tj8eqH/O+hLkcPCSJy6dwyDAqOvzCB6pG8QYEuFnaIlVSh7z0U7Pywl/7Ny/2sbdrfsO0kGUNyECIRXULluABOiw9j/M9n9cRmVa31xOZtdFHxVQdvepCT1hFiGX7DvtxQz2topQeptItRh2sc7Obu8BkUtKxL1hM6iYew1mT2+sOmYJDBu71ig4h+rWftc37VcFv9YTfGPve9q7FYrLE1RqDL79ov4iZFknppwVOuyJBkZe00m2m4k+NI+294tpqQPvsuu6CwaYkbvG9A9/MJUUo/3Vf5rq3FQ8FUFzmbfjZzKtfXs/nhf99DBcFwHqFxfj/BC3PjIQIeCx+6lYfe+ZD//s3J2flgK+MaOFH1fRUuFbzxrzCirr0DE3kNu4tQoIocdvtDJ0Wgtt7P8b1tprRzc8+8MFh3XnGq9iux5if6xlj2VfGwMWaclguJLtPriJpChwsYI/XieffZZfve73/V6fQNh0HeZW7t2LdOnTyfCHk8eE/u8vLbWrEFjUPnunnaz6dwUq/ddzCugC9MGxeSHQ42i9nXVMkbryT0riW3vFeNocJFyXAyWeCNb3y4CfBV5HA1OvO5BvZvvo/gGyTYUtLJr78kpWGgtGrQmNW1VDrQmNVN+PZxt7xZTu7UJc7wBU4ye2p3dS4K76jbXMfeQKVaPNc1M+cq6Po1/yFMg58wkyn6ppbXiyBcctkyLv+BHyrExNOS30FzafoRX9a8Du8wdSsf4Ia1Fg6vFjSFCx/DzU9j2bjH2uiO3lJkTDCROifJdIAbJoWMwiR5lpX5Hc68nk44ZbaWt2kFrhZ2oEeEMPy+FFf+fvfOOcuQs0/1TQTlLndU5d0/OM85gHDA4m2gbGzBeDAYMe2HX97LsWTbBBrLJwZhgTLKxjcEBZ3vGk2PnnJPUyrmq7h/VqlZnSa1Qkup3zhzwTKnq6+rSV2983v/tQtjHQF2iQNjHIOwRrxzxajTeYIWxXoPj3+zJmWeLpAkojHIhI9/2/mp4Jv0YfWUWCqMMrbdWoedP4/DPBYV3s0RmketlfECAi7FRN4BWUogEGJAyApSCSst3aay8E73TXfjDH/6AG2+8MeXnTyWizhDZbDbccsstkAVUaMWutMwaCnsj8NtCIEgCW26vRfn+9SM35fvN2PHRBl5lg4PkDCWITEOj8fqKxCZSE4C6eLEMY9vddai/hpeqjv39AcDoK7OCMwQA/rlg7jhDAMxNOiiNckwdy70BfmFPRNiEwz4GR77aKQySMzXqUH1FqXBs6U491EXxSa7XfvHwkkGsvpmg5AwlAwf0/mk8LmfIUKfB1jtroSnjM3qjr82mzRmqOGBZoky3GeTyCOQxqnPRFzxBEfDbgsJ+HVVJWgvvZAC9f5KcoWSQaWk03WBNKoOgLlGgbM9ilLvmbaWCrPV8rxtHvtqJsI9X+/PNBHPOGQKAyWM2KA1ymJtSn2FJF2yEW1Ke3PmbEYy+wmcCCZKA3xYSfhf115YJcuPAwrs7AdNNZ1Vh7wPNglKeRHyEXLwzJFNT2HFPw4a2bOkuE3bf3wSZhgIb5tL2XbJOtcCiLcJ9992HwcHBtFwjVYjWIWIYBrfffjtcLhe24yAoIr01txzLwT3mWzNVGy3PmT45j45fDyPikyRYk0Ghp6GrVIONrB851FkX55eU7jRh18cbBanJibdsmD3vBMBL+fY8MRZX1DcXKNtjgnvcB89k7pcMMCFWiBSOvT6LU9/rBcCXY1ReZIauMtp7JIOlVSvIMUdZ7gjRagrtH6yB0px/s6syicoiR+07Slf8vVxHC7OAnINenPphX1zO02apvKQIlZdsTolouSO0HP9cEN1/GAMb4UCrKey9v1mQA19O7TtKhTliEokT9kRw4ts9mD3n3PBYgiRQtEUv9ALpqzWouqxECHCd/G6v0PvDRrhNZ5zEgHcyAPe4L+nyJrERsIfQ88SYIJM/e86JiaN8QI9SkNj18UaU7uR/VoVBBp11/ZLdwHwItg7XiveBRHyEfQw6fj0s9CCvVVpu63Jh+MXptI8TIDgSzc698Hg8ePe7341QSLy2mmgfuX/5l3/Bc889hxp7O1REZmakjLw8A9cwL4cZOxzMWK/F3k83Q6GXgY1wcA5vUga5gPFMBnDqe31ClC+KuliBoi164b/bb1+cX2LrduHszwbALAhW2DpdcI0kL1sqVmRaGqZGndCjk29EM3UcC5z47hBmzvHNvcY6NRquKRaOc39xGxr//eiKz8s1NEiayJnZVWJFrpfB0mZYIYBhbtGj+ooSoSfSmyGn/Pg3e3H8m71JfXYjR2g1In4Gg89NCtnL2Gy1XEvz9yaRDLbECqIN2VFBm1hoFQV9TVTsgkPju6xCFmj61DyOfb2bV4sDciq7nwjTpx0L8+lyY0ZQIrhGfIJwAxNicfZnA7B18/9dssOI9ttrhGOLtuiXVH8AvEE/+NyU8AxJJI5zyAuO4aDQy7D3083CsHeAH4BLKylE/ExK1enWQ0mosEN5CF1dXbjzzjszcs1kEGUP0dNPP43rr78eDdiCOqIt49evOGBB1WXFOP6tHjBBFrSSgvXiIoy8PCPVxm6S2JrV4q1GzPd7EHKFUXlpMcr3mHHsG90A+PklQUeooKQ3rYcsqHl7Kd76n668HjS6mrACpSDR8w87QHAc3hPyoIuSw/2lk/w8MUpyglLOQr+kwiiDvkotRPOjg27FSrSHaCMnqPymzrjOR1AE9n6qGdNn5jHy0gz/d0nIzEqspHS3CfXXlOHYN3iVSo7hMzzVl5eg/IAZb/13Fy/1L/JnLh3QSgr7/74FQ3+bxsSR3CuPThaCBBRGuVDRse+zLZg8ZsfY67NQ6GUwNmgxe94BkiJhqNXA1pV5+fZ8gqAIVF9RgvE35vgMHgHs/kQTnIMe9D8zufEJUoytbBSnJt/C9773PXz84x/P+PU3QnQO0djYGHbs2AHSrsAOXJSWvqGNoFUULG06mBp06HtqQkgFS2yOoi0GtNxaifOPDME97seBz7ei94kxzHW4QMoIPhooqqcxs+z6eCN8s0F0/2E020tJK8sdov4vLRVQUHIsOAAV/+8tlO8zo/YdZeh9ehzeCX/WZ1flEzItjZq3lcBQo8HJ7/VlLdizZSFifOFXGw/YnXwivgBZvA4RwFcA+OaCkGtpRPwMAvPSM5YKaBUFQ60G831uHPh8G4aen8LkMTtoNQWCIFI+HD3XaLmtCuoiBU59P0Oz5sQIwQs2sGEORVv0aLqxEm/9dxeMdRq0f6AGnb8bga1DcopSAa2k0Hh9BcbfnIN/PpSVtg+O4zBYdgYTjjG89dZb2L59e8bXsB6i6lpjGAYf+tCHoFKp0IDdWXGGAL6kwtHvRdkeC5QmGTyTkkOUDJSSRMl2I2bOOsAEWBhq1fDbQvBM+MGGWbz1351gwwulEeEC9oTAz0zRlCox9MJUtpeSMZY7QlECMcXjcx1OBF1h1F5ZClu3G6YGLSaO2IQ5YhKJQ9IENOUqWA9aoDDIcPqH/VnNfGdbPj2qpNf23iqoLAqMvTEr9K1IJEfJdiMqDlhw+kf9AIDu34/CPc6XOUv9tzwzp+ex5XZeuCQTvXqihFt8989dcMHew9sEjgEPXKM+6KvUsHW4VtgSEomjr1ZBaZQj5Ilk7TtIEARq7Vvh0jtwyy23oLOzU1RDW0XVQ/Tf//3fePnll1E63gA5kZnhbssp2sJPaw46w5g5M4/W91SDpLP7ws4ltOVKGOr4ni9KRqLuqjJoy/kmyoG/TuHkQ71CY2yhO0GxlO40IuQOY74//4dAsoHAms5QLIP/cQhhLwN7txunftCPicNzsPe64bPxakfGeg2qLitOSMFIAqi6vARt76vG0AtTOP+Loaw3qp9/ZAjnHxnK6hoA4PwvhjD66ixsXe5sLyX3IICqy4qFvd9nC8Le5wZJE6i/rhyaUmXam7dzjfl+D0LusCA4ILFoE7ARDmd/OoChF6YBANpyFequKgMl401WQ50G2nJpeGvcEED9OyvgHvch6AyDoIglPduZhAzTaMMeDA0N4XOf+1xW1rAWonGIjh49in/6p39CDdcMM1GSlTUoDDI03WiFpY1/UOb7PBh9fRas1De0JiRNwNKqE1SBKg4VoepSvkE+5I7gyH91wjnIi1BUXlIkKYStAkECxVuNmDnnLOiSwdUgaQK0kgLHcAj7GIy8NAPPgvyzysLPI4reM12lSnKO1iEa2Bl9ZQbnHh5EYD4MJsiClJFZz9JkE4IiQMr4Ppbxw3P8LBWSQOttVdBXqTc+QaFCLHznAIADDLUaqIv4QKZn3I+Rl2bARjiEXBGECrw8blU4YOasA8XbDJKi2iqYmnRoex8/6Ns56MWR/+oUhBaqLi1GxSFemZIgeRtEClyvA7cQ8FkYmlzUxpcnxoqHZRKFTYctpTvx0EMP4fHHH8/KGlZDFF9Dt9uND37wg1BHdKjHloxfn1LytyHoDOPkd3sxtyDpHLCHeBUOyUhdAiUnoTDyXyRVkQJt76sRpDQHnpnE+V8MCcdGIz4yLY3yfRYojZJDtBxjvRYyDY1ZqQxsBSU7jNj7mWZB+SyWyWN24VlTGGXY8dEGFLVlJ+oldswtOuy5vxlyHb1kpghJE9hzfxPK964/syKd7P/7Fuz/+5aUnU+jSKwHqHyvGXvub1piUPGDCkXxehQtRe167Phog/AuOP/I0KrzwcZen82YmlWuMXveCZmahqFWu/HBBQYbZhHxMcL3Mrai5PwvhjCwIAqgs6rQ9r4aqBaccaVJLozokIAQJAzYQ4JDOXveiZPf7UXQyc9li9rAmaR4shZlpnJ85CMfwezsbMavvxqiEFW455578Nhjj2G75xKoicxuDCRNYNd9TZg+NY+x11f/pdRdXQbPhF+YfVOIxCoBbbm9BiAIXPjlEAB+A5IakZOn6QYrdFVqnHwoOenhXGXwPw5teIySY7Ht112Yu7Dxd09rVcE7FQDHcKi7pgwkRWRFSUeM0GoKFfstGH11ZoWCWskOI5zDXgQd2RkyHZ1BFE/fzlqiCsudIP07++O+vsIog6FGg5kzjjWPMTVqMd+X/+WsG9FwXTnYCIfB56ZAUAQ0pUp4JjYe2EurKJRsN2LircJRVIuXPfc3wTnsRd9TE9leSs4Sa4NsuaMW4DhBpKUQVQxjKd1lQtleM87+ZECQs4+l8pJilO4y4tT3+jIuc89qQzhOvIzLL78cTz75ZEavvRpZd6Off/55/OQnP0GlpznjzhDA16qOvjqzbnSeUpCgVfk3LyBetBUqHPh8K9QlfARm6IVp9D01Lvy75AwlD5/u12Ouo3Cd7fUo/6fjcTlDAF+mExUH8M0EhSHLlJxE8dbCLEupOGgBpSQR8TH82IBV7IKZM46sOUMA7wglK2KgUYQSzggtJ+gIr+sMGeo02HJ7LbQV6w+UzEcIkkDxVoMQcfdOB+Cb5bOLHMPF5QwB/DDgmitLhXeIxCKzF5ywtOmFsnOJRUiaiKvMPtYG6XtqXOg90pQqceDzrQXdb+SbC8Le7VrVGQKA2bMOjL46m5WZX6RHjhblDjz11FP44Q9/mPHrr1hPNi/udrvxsY99DGaUwIq6jF67fJ9ZmBQ9c8aBoGttg6DvqYlVSwHymbprytD47goAgHcqgMFnFweleacDQqo1Xnbe24Dy/dkryxErxnoNaBUVt9FfKNR98SiuOT4GS6suqc9Pn5oXJnUbG7RouskKmUZUopppR66XoerS4iVD+dZCW6HC1jtrs1KHX7rbiNLdxoQ+kwpHiJQR2Hrnxo6Oc9CLU9/vi9v4zydkGgpNN1lhbOCfoakT80kNjnaP+XH0f7vgmwmmeok5z9wFJ2QqGsb6zAygzyVqriwVZPnjJegMC8GwoCuMwWen4J3mn7vG6ytQd01ZytcpZtyjPoy+unZJWtC1GBAq3WVC+b7M2mn6mRJUFdfg85//PKanpzN67eVk1SH6x3/8R8zOzqINezIusa0uUUBlib+fhZKTeR1lkOt5QYmo0eidCsC9YABwLIfJY/ZNDcecPe8sXGnRdShqN8A3FyxIQ6Hu/x5e+XdfPIq6Lx7lszkc/+yB3Fx21tbpwvFv9AgO/c57G4RgSN5CACFXGMe/3RPXHI+wLwKW4UCrM+801rytFDVvK43r2FQ4QlFoFQ2W4RD2bdzwHzWwSnYaUX9deUquL1ZKd5mw82MNAHhhnOPf6IGtc/OzYJggC4KE1Ju1DN9MEL7ZAIq2GLK9FNExedSOrt8mP5cv4mcwecwuZEfc437BDpFpaTTdaIVcLx7Z51RjbtFBXx2/MIyqSA51cWazuARBoNG3AyzL4tOf/nRGr72crIVMX3nlFXz3u99FM3ZCRWQmMkLSBFRFCninAuj/c2K9BbXvKIWxQYcT3+5J0+oyj7ZCBbmWhr3HDSbEQFuugsIoQ9gbWbeEJBnG35TmeiwnWi43cUyqq6/74tEl/82xQM+fUldTH/LwRi9BEbB1uQQDV12iADgIZUD5QN3VZZCpafQ8MRb3zI6gI4yOX288GDUdnP5B/P0+qSTkSuJn5oAsjcdLK1EjyDcbhHcmAFu3CwRFgGM44buTCrZ/pB7uCb/QEC/BM9fhQsUBC/qensjqTDCxkepy/FhxD4VBBm25CkyID/Sam3UIeSJ5lQku32dB0BmCa8QX1/FDzy9maDRlSvjnghkppaN8cjRbtuG3v/0trrvuOtx1111pv+ZqZCVU4/f78dGPfhQGWFCFhoxdt+ryEmz5YE1SZSFjb8zh3M8H07CqzCLX0YLEbukuIyov4SWymQDLl4WMp34z0FWpMx51yAUMdVK5HLDSGaLkJExN2qUS2pvMEkXhGA6jr84KL73Ki4rRfHNlSs4tFlxjPrhGvUl9VmdVwdKaWaW+kCeSUqM7HiytekEZMxFmzjiEYJpcmz8lmM03V6LyYl7cwjPux+irs2kxzEdemcXU8cIqP4+HuQ4naCUFQ40k876csj0mFG83pvy8nnE/Tn2/TwgaVV5SjNKd/HUIioBcl/vf7wu/HMLAXxMPPpA0gS2316Dq8syNwDHNVaDCXIkHHngAdnt29oisOERf/epXMTIygnbszWip3Nhrs7jw6+GkPN6gM4zQOn1GuYBcR2PfAy2wtPB9GUPPT+PszwbSft3ad5SicmE2kcQi5hYd/PZQQZbLAcDwv1wEMrzy+29q1KD9vZUZeSH1PjmOzt+OAOCVirbcUZuzJRTR5mNbh0von0qUkl2mjPf6tb2vWpg3kinK95tRsomBmHIdjd33N2VtuOFmUehl2HJHLZQm/pnpfGwEvU+Ob/CpzTPf6y7Y/W49fDNBBBwhmFty83lKJzqrGprS9LcrnP3Z4iBYS6sO+x5oyQunKFauPO7PRHiVvrHXMieHTRAEWiK74Pf78S//8i8Zu24sGXeIBgYG8JWvfAXWcD00RHIN04mgLlFg+0frIdfRYELspvpYircZUH9tbjXkle0xCU2JIXcEXb8bEeRjmRCbkRlLF34xhMFnpRKJ5ZibdJjvdWd7GRln+F8uwvC/XLTmv891uHHie/0IudKfNeBYTlBYo5UkwHGILPSUKHLIMVIXK7D7E00wN29uTx18dgrnHxlKzaLiRKahMy54cf6RIQw+N5X050PuCAafm8J8b25JcUef6bAvAnAc/8yDD/itpkCYDvQ1ajS8qyIzF8sh7D3uTX9/85HeJ8cx9Hzy39W44RZsIgDzvR50/W5E6DvdcnsNyvbkVt9p23urUXtV8vaqdyoAJsRCrqOx/aP1GVGIpNwKNGrb8dBDD+Hw4ZU9xukm4w7RZz/7WSBIog6rz5NINZEAi7CbbxjeLKSMBCUXt/w2QRGwHrJAU8ZHVAKOMDyTfqH8yNblFr70mYKNcAh7kxdkyEfUJQoojXLYewrLIVrNERr+5wMr/i5gXyUbm6KyubXwTAZw4Vd8BplSkNh1X2PGFXeSxTcbRPcfR2HfpIPNhvm9QWGQgZRl5vVw9qcDOPvTzWeqtfKQ8GctSBkpTGeP/qzJMn1ynjcYtHRCAj3ZonyfGbvuawSlIIUIsGcy80I3lJyEukghDc9chr3HDaVRLkmTr0EmxyYwIRa2roW9lAA8k34EFgJnmjIlrIcsQuuBWLH3uuEeja93aD04hkPYHdmUqFYilDrqoFFqce+994JlM2urZnRHeuaZZ/Dkk0+iGTtAEemNCOqr1SBlBEKuMDp/O4KIb/O/zOmT8xkpK0iG6AuZYzmU7jYLUrKOfg+GX5zJSCZoNSxtejTflF89GqnA3KwDE2LgHE6u1yPX2CgrFKXu6lI037RG9JjNnFPNBFn0PD4mzIcyNmihTaLnJN1QClJQEbJ1uFLyPacUJHZ/ojFnIqIbOUGxlO81YfcnGlOqdNb47go03mBN2flSidaqEiSz5zqc6Hl8LOtDKud7PTj388GMB+bEjnPIi0iQgblZKptbAgHs+1wLSndnKTjFAcMvzsDRz2eDtRUqlO42C8p1Yg2GTJ+ah61r8+qQYR+Dzt/y2TJSRiSkWpcMJEtiq34vzp8/j9/97ndpvdaKa2fqQsFgEJ/5zGdgRglKkN6XB6Ug0fb+alQcLEr5uQmSEN2Q1tLdJuz6eCO/Lg449b3eJWoq2SQfFZlSgblJh/l+T0EoCsXjCEWzRK5RH5zDy6JaLJNRZyiKvcctZDYr9ltgPZT6/WSzWA8Woe291SnN5jBBFp2PjWDqRGYaW/c+0Iy9DzQn9Jl4skGrMXncjo7fjKTUKeh/ZnJT0sDppPJQESr2WwAAYS8jqoy0ukRRkMOS14JjODj6PVLZ3HI4YPTV2ZRkO1LB9Ml5nPpeL8ABtJrCrvsaRTfGQV2sSEo0ZiMqDhah7f3VaZfOV0+ZUKGrwn333QenM3OiUxnbjr797W9jcHAQzdiZdiEFJsji3MODGHs99Q1h2+6uQ90m6jJTRcN15bAe4l90tk4XLvxqWEhpZqoWPB7mOlzoeWIs28sQFbSKgq5KjXkRGSdiwdbpxvQpB/8fWXKEVqPjN8Poe5rPDhvrNWi+pRKkLPve/sirMzj78OCmy7+W4xjw8s24GfgRZ8444pb5T8YJEiD4BmPnYGqzskFXGGFvBJSczLoxS8oINN9SKQz57H16HB2/yY6c+nqoihTYfV+TkL2S4LH3uqGrVIku6Jptpo7bhVEJYiBqY0V8DC78cliY02U9ZBHFnLLyAxY0vjv1fXpjr8/i3MODGckyt5A74Xa78fnPfz7t14qSEYfI4XDgP/7jP1DG1EBLpC8dbL2oCPXv5B9G30wwLWViw3+bxsRbmZ8bQ9IESnYahYha2McgsvBQRvwMnEPiK70iSGS8WToXMDZoQRAE7H251ZCdbkq2G6AqkovKERLgIMizkjISJEkI6j3JyPhvFm25kpey5wD/XHpUu0yNWuy5vyntvR4jL81g5KWZtF6DkpPYc396DfCyPSY031yZFWM2+gyyYQ4kRQgZQyaQGeGcRPHPBXHukUGhDEmCx9HvAUEQMNRlZjZjriBTUyjZYQRBZj8ItRznkBeRAP++igRZoT2DIPlBztl4Pww8M4kLj46k/sQcBJXI+neWw3pR+qomKJcCrdYt+OUvf4nZ2cyo3WXEIfqv//ovBINB1KdZSCESYFLSK7QezmFvZiMVC98llUWBpuut0FXy9ZsjL8+IpixuLTRlKhz4P63QlKdfMjOXMNZp4J0JIJzh2StihuQ4WG+0wlQv/jkc9m43un7Pl0ipSxTY97kWQcQkU1RfUYL6a9MbifROB2DvcafdCCnaok+7fDVBErD3uOGbSd/ePX7EhlPf78tY83EUTZkS+z7XIjTjd/1uFPZu8WefnYNeUVUziIGQOwLfbADGeilzFovSokDzTZWi7deJMn1yHiMv88EdXaUaTddbhXEImci2R+FYLu1jYiJ+RnAE04V5uBokSeK+++5L63WiEBzHpTV+NDExgcbGRpT6a9BIbE3LNTRlyk3JaScCreIjFbPnHGlXTqu+vAT6GrUggyvT0jllRFMKEsY6Ley97oLolYmXvZ9uhr3HndTAtFxloz6ihp+NAQTAjIzm1LNCqyiU7zdj7LVZcOzCXjQdSHtUnqQJUEoqp/aDtdj/9y0AgKP/273hsezfquI6J3ll9np6CJKAuVm7qFKVlosAmlL+vUeQQNWlJZg4asu4M7YpCKDpBivme92Y69h883e+UP/OcpgadTjx7Z5sL0U0ECRA0mTOCXHE2mzb7qqDc8iLkVfSmw1X6GWou6YMQy9MIzCfZHlxgqTTBrdVDePcxCkcPXoUu3btSss1oqQ9Q/TlL38ZKpUKtWhJy/lNTTrsvLchY1KVlIxEzdtLobKk/noESaB0t4kvhQHgHPFi7sJiQ1muGT9MkIWty5VTBm66URhlUJrkcAxKpSJRos4QOICqis/gFQsRP4PRV3hniFKS2P7helgPWtJ2PX2VGnIdzUvZZ2g/KN5uRPE2Q9rOf/bhQZx9eDBt5y/eZkjLpPu1sLTp0HJbtTD0NB1YD1qw/cP1oJQkOBYYeWUmt5whYDFoIMIyqGziGPBAZZZDYcydOWjphmORc84QsNRmmz3vgHOEb21QFytQutuUluw7KSdBK6mUjJqJB3WJAjvvbYCpKT39k6bxSqhUKjz44INpOX8sac0Q9fX1obW1FfXMFtQQiakIJYKxXgvHQAYNzAXjLVWQMr4fgSCBPZ9qxvjhOUwezYzCUzop22uGbzoAl0jUYcRA6S4TGt9dgSP/1Zl1+dtMszxL1PAzXmyDpIFdt2rR/0YAjrEIIkNpqH3OENoKFfxzQTAhFsYGLQL2UEqjdDvuqUfAHkL3HzMnVNJ0gxUsw6L/z9nPaG6UITIp+L3Geclin2fDu8pBUmRGRyaoLHL4bamNzipNcj6YMuABJSehKlLAM+FP6TUksg+lIHHwC23oe3oC06fEXRafSUp3m6CvVIt29EkilO83w3qoCMe/1QNwizZgrmJs0Ka1H3BCNojO8Em8+uqruOSSS9J2nbRmiL7yla+AYmSoREPKz111WTF0lQuzdjLpDAEpdYbMLTrs/2wraBUFjgVOPtSbF84QwDcZ62vE3xOSSQx1Gngm/QXnDC0n6gwBvDT7ZEcIvnk+wk3XVmdrWZvGM+EXIpm1V5ai8tLilJ7//C+GMPBsBqa2x9D71HhanaHmWyvRfGvys8pMCp/wZzX6/zyJ3qcya0RFnaFUSt9WXVqM2itLAfDR8nxxhmQaOq3ZtFyDCbJwT/ilPqJlsCEWTCjHsqBrMHnUjpMPLUp37/9sa8oUKjM1UDuWqDOkq1ShKsXvPAAoZ2qh1+nxz//8zyk/dyxpkwAbHR3FI488glq0giJSq7pDUASMdVpEAgzcY5l/KdRcWQpKTmLgL8kZCfpqNWgVBXu3G64RH0ZfmwEb4b2s6P/mA6d/0J/tJYgOY50G06cd2V5GVqj55zdXdXaYMDBxLjO1zpnk7E8HQNL8y8nYoIVcR2Mmyd+90ixH2BsBE2Qz70wvbEmGGg1coz5hIGGqUJuTKz9eywGKQpAEdFUquIZ9WVFaK95uRPONVhz/Vg+CzuQanEt2GhFyR+Do92DwuSmwkfwLpLR/sIbPev5BnLOcsoFzyIuSHcZsL0NUzJ53YvZ85mbSpBvB5gtzGH1tRqikMbfoEPEzcI0kV1nT+p4qsCFWEP7JJNoKFYz1Woy9OZfSVgmCJdCobcdLL72EEydOYM+ePSk7dyxpcyX/93//F1qtFlbUp/S8JE2AYzice2Qwa5mUwHwIAXuCBlxMqWjpLhPKdvODvCJ+BuOHbSmfIyIhPpQmOeRaGVzD4pNIzwTTn1oprEBQQFmbHLRiaS11LmeJorARTlDhMdZpUNSefB9O0/VWtNyavf4qpVmObXfXwdyS+jrx0z/qx+kfxR88WS8bFIu5RYftd9dnLfswd96Bsz8bSNoZAoDiLQYYankJ5kiAyauAWZTeP42h/88T2V6GqHCP+qDQyaQ+omXQSgqUMr+m+bJhFuOHFwVRynabUbozZtBrgm1G44fnMHk8O7bx5FE7zj0yCI7hUi43bpguh8lkwre+9a2UnjeWtPQQzc7OoqamBmX+WjQQW1J23pLtRlRdVowzPx5Iu9xfKqFVFHbe24DBZydh63KDlJF57wCV7zfD0qoXFPIk+Ihxy82VOPzVDmGmTSGw3BGyPrVYLqexkNjyTg3OPe2F37H0nuRyL9FqECQBjuWgtapQvteMgb9Mxt0oLNfSoFUUfLPpmTkUD9pyJTyT2R2OaHg9PsGKaA+RGNYM8O+AeEQPKDmJ+neWY/K4HZ5xv/DMSBQWtIrCwS+0ofuPo5g9lz9Zkc1y6ME2jLw8g/HDmZ8FmUmiNqKlVY+6q8tw+kf9OSWaQisp7LinHqOvzmLmrCNl550pHsIF2ymcO3cObW2pH+OTFlf7m9/8JkiSRBUaU3pe54gXM2ccWXeGCIrgo47rOMCUgkTRVj4iHPEzmD41D98cn1XKd2cI4GvoHSmeCJ/r6CtV8M0GCtoZWo7XxuL4b9wrnKF8JGrYyrU05DoZmDj2AYIiQJAEQp5IVp0hAIJjQVCpjfzt/VQz9n4qtaI70TWKwRmqvKQYO+9tiOu+MWEWcp0Mci1fzV4ozlDlxUVpHfKYa0T8DHxzQeirpB7cWDp/O4q5C/kv0R61EX1zQUyfnhecoaKtBlCKtc12giRQssMIuS5t3TBxEQkwmDnjgDPF1TBF81VQKBT40pe+lNLzRkm5Q+Tz+fDd734XFm8F5ERqpKl1lSqQNIGgI4zR1zIzsXY9DDUa7P10MxT6tdPZpiYdmm+0Cg/m6KuzaZsoL0Yc/R6MieB3JSZ0VWq4stDzli3WcobGr1/aQM+uoh6db9mhWOzdblz45RDALZSifbgOCsPqe4n1oAW7Pt4gmgnt1kMW7PxYakVy5rqdmOtOYRScA3Z+rAHWQ+mTP0+EuQ4nBp+bWrOmXmGQYduH6/gBjhxw4ZdDOTFYNZWQchJUFprBxYxr1Cc5RMtw9HsQTPPAUTHhnwti9FXejpLraDTfaF1X3lqupdF8UyXUJZkdFL4ao6/NIugMg6QJQQBts5ARCg3mVjzzzDNwuVLvGKd8B3r00UfhcDhSpixHyUm0f6BGVNEjz4Qf534+iLB3qSVXeUkxaq/iVYDmLjhx/Js9CLlza3ZQqtBVqkDJpRdcFEpOQlOihLsAJMinP3XRhpkhAFBoCey6TQu1efE5iQyN5LUztBySJhDxMSv2kij2HjfGj9hEkylwDvv4+vQU+mdDz01j6Lnp1J2QAyaP2+EcEkeGOmAPwda59ss77I0g4mNSXnOfS4y8NJP2gZW5hnvEC3WpUnqPxqAqUqDqstSrmOUCIXcEx7/ZI8ymrL2qDJWXLL0XQVcYb/zbBThFNOfQelER2j9Qk7Ln2DBWjkAggH/7t39LyfliSek3jeM4PPTQQ7BwpVATqZGMZEIszj8yhLE35lJyvlQQCTBwDnnBRjgoDDLhF82EmEUFKA4I5dgg1VQh19LY8dEGoRlYAtBaVSBIIu9nMsXjCAF8lojjAPtwGEE3/50pJEcoim8miM7HRsBGOMg0FPbc37QkKuybDWL6pHhmkXgm/Jg6bk+papupSZfaoX4kMHXcLopyuVjq31mOykv4wJ6+So099zdBpqHARjh0PjYC30zhVBCsBikjIF+n6qLQcI36QBCpi67nA0qTHOX7zKDVqVUuzhVCnoiw9zJBBkyQL6Wj5KRQZcAxHDgRVaCPvTGH848MpWywrpJQoaakHo8++igYJrXtMyl1iI4cOYJTp06lJDsk18uEGR7e6UBKJfxSgfWQBbpqNXZ/ohFle3hFkMmjdiG9WciEfRGc/F5vyutHcxmdVY1IgMn7ssnSb78Z97EhL4fhY0EEewsrK7QmHOAY8sI3F+Qz4x+shro4NWXHqYQg+dEDxobUBL2abqhA0w0Vmz5PkcKLCieHugElCBEG1cOeiND/6psLwjHkzYocuFhp/0ANGt5Znu1liAa/LYRIkIGmXHKIosz3unH0f7sR8eWOwEC6GH11FpPHeDW5sj0m7P5EI8ytOrS+N3tqpKvBMRy803xwqvLS4pT0N1kjdRgbG8Pjjz++6XPFktLXxkMPPQQVNLCgbNPnMtRqULbLBFolrkiAXEej+m0lqDhUBLVFgY7fjGRN4lCscCwf+S704aOxaMuU8EwWTv/QxnDAraXgpsY2PrRACPsY9D89gYifgcIkg6FWK8osK8cCmlLlmn1PiXLh18O48OvhpD5bpPAKfwCA8tOgXXJRRUijBOZDsB4qAiUnEfHzv+uwZNgJDD4/haEXMjt0WOx4pwLQlmW/H0RC3Ewet6Pj0RFwEQ4ECFS/rSTrwgrLoVUUynaZUvJOU8zpoaMM+OEPf5iClS2SMtnt2dlZVFZWoibUihoiNYpBJE2Ibu6CtlyJ9ttrce7hwbyP9idL8VYDaDWVtTlRYmTPp5pg73Fj8NnCeOFvVDpnHQ/i4LYgTnTJ4X/sZIZWlTsQFIHKS4owc9ohNKaKbS/MBobXLYLzsxb9+8RVKhf93SkMMpTtMYEJs5g4bJN+nxIbUndNGcxNOpz4Tm+2lyIaWt9TBc9UQBJtWgNVkQLb767D+V8NwSuysuFUvsdcNZM4PnIY3d3daGxMjaJ1yjJEjz32GFiWRTlqNnWexusrULqLL0ETywuj4qAF7R/gfy7PZADHvt4tOUProC5RQFchqeNEoRQkVGaF6DanbGHsD8MbIPHaKSWcHhHWNmUZXZUaKrMco6/wKj0ESWDHPQ2iEpYBeKfN0qbf9HmabrSi6UZrXMeu5wwpJzUAIy5hAutFRdjx0XoQJIGgM4zpUw5UXVICrVQGtSrWQxaYm1M//DdX8U4GoLIoJGGFGNxjPsn+WgOCIuCfC+Lo17sFe6P9gzWoOCAOxc2oTV+6y4TG6zdXJq2dKAFFUfja176WiqUBSKFD9Mtf/hLGSPHmpLYJ/obFM58j3cjUFGQLsyD8c0G4x3yCshLHcKh/ZzlqrizN4grFy/CLM+h5QiqFiqIp5UsePFOFUzK3Vi+RsX9RMjUUIcBxBILX7cvUsnKC6suKUXvVYtkxx3KYPG6Ho59XDiJFIk9satCi9bYqqCzyTZ1HW67atINAeWQwniiDYk4cjkb0d+To92DyxLygEhiYD+Gt/+nKe3GVZDHUaqEuEV/fXLaIlllrpLI5gfHDtnVVGwuZ5hut2Hpn7WLPPQG4R33w23gHUq6lIROBIAUbZnnnaBPxKzJMoUJbhZdffhkpKnRLTclcT08PWlpasA0HUUpUbvyBVRBbScie+5vgHPKi7+mJVf+94oAFTJgVlQKUhDipOGBB7TtKcfg/O0TZ25BOoqVzsY4QwGFncwij0zRsTn5zVjxzLAurEycESYBWUwivoVK57a46eKcDGPjrZIZXthKlSY7AfChj12s4trZhSHlpMOoI+vdnNxNbf205NKVKnPv54JrHECRAKaicmj4vkQUI4NCD7Rj+2zQm3rJlezWigJQRUBcpRKciKQb01WqQNAnHwOqy243XV8BQoxFVCeZmbH+nZhbHPK/gueeew1VXXbX5tWz6DAB+9atfQa/XowjJKcRoSpXY++lmaMuzFwUhKALl+82glPwt6XliDEMvrD0bY+Itm+QMrYJMTeHgF9pgqBNfM3i20JQpeaXEAnOGoix1hgCKBEJhApEYW1DKEvEQJJ8RWssZAvi9Z66Tn0WR7WxR1BnKZkkPESEADmA0kZTOR0qU6O9irtO5ofG65Y5aNFwnKaqtibgqH7MHB/hmAkKVgQRgatBh572Nosh0iA3XiG9NZwgAhp6fFqp3KCWJ8v1mEFT2vmzaChX2fro56aywzmuBTqfDz372s5SsZ9NvMY7j8Mtf/hJalxkUkdwDGpgPYfqMA77Z7NWF0koSNW8rhbGOl5J1j/kFidTVoOSk6FQ8xADLchh7YxYBe+aixmJHXawo2Bkjxr6VU8UZlkDHoBxOz9L9otCdIkpJYv/ft8LUuL6cta3LBdcwX3LVdKMVre/Jrsxq621VcfcArcbuTzZi9yeTb4o1nC6F8WR2y5db37N4D1zDPti61i/pGX11FmOvi2e2nlggaQIHvtCK4q2GbC9FNPjnglAVSWWEURxDHpz6Qd+69lmhYmrSrus8RwIM3GN8GaaxTouat5WCVmYvmOWbCWD6jANBx0o7IR5IkKg21+Gvf/1rSmYSbfpOnDhxAgMDAyhDdcKfJUgCMjUFJsRi+G/TGS+Z01ao0P7+ahAkgbCXwbFvdMddm1r9thJsvbM2vQvMQZgAi7E35hB0JveA5yOqIgV8UhOogFLOgiTFUx4rJiaO2OCZir8UZOq4HdOn+Ux1tiJ906fnhXkYyeAc8sE5lHxPja/WCX+VO+nPJw2xeM+nTzswlcA9cA55hdkcEouwEQ4jL89I5VAx+OaCopxHli2YAAvvVOFWXKxH3dXlKN5ujOtYW6cLx77RjbCXAUERaH9/NbQVme3BZCMchv82DSbEQqamQJCJv8PUoxbMz8/j6aef3vR6Nu0QPfnkkzCZTDAicQWk6iuKseOehoy/yEmavx4TYkHKSMg0fKQ6kbk5U8ft6H1yPC3ry2VUFnnGv1RiRq6jQSuoglTFCb5z9YzPlvow2mslh3k5TIDF6Guz65bLLcc55MV8L18iUXdNGbbcvjmVz2SY7/PAOZT8EOb+P0+g/8+r92rGQ6jIj2BJ5kUKtnywBnVX8+IX873uhAdRG+o0qLtm8zP78o3Jo/aC3C/XwjcbBK1cFHmS4NUbjfWpGQydT5z6fh9GXlq71WM5UZtXpqZAykgwIf6/ozZypiAoXkm1+orihD+rZ83Q6XT49a9/vel1bPob9uSTT+Jd73oXpn6VeERn8qgdngn/oiJGBqh+WwlM9Vqc+ckA/HNBnP/FUFLn8dukkrDVKNtrhqlBi5Pf7cv2UkRBtNShkDJEKxwhDkt6ArqGZVKLwDKUJjnMLTpMnbCDDSe3H86ddy4OS43e4AxtrXIdjfpryzHw7BRCrsSc3eigvkSdKtJPQ3+hCK4ts3jNvlihUIbOhM6TEDH3deasY1OZcJmagqZUCYIiMvoOFDsyDQ1zkxbTZxwZe37FTLSVQF2sgDOBYEk+Y27SgWO5dftlChGO4ZL6yoTckSW28La76zDf58HIyzMpW9t6cAyHweemeDXnBCEIApdeeilefPFFsCwLkkw+z7OpDNHw8DDOnDmDM79MTLFCaZKDlJEIeSKwdaW/1IFSLPb7zPe6N1XeEUVVpEDFQXFou4uJkZdmcOFXyU2dz0fURQqwDJtRJa5sslZWKHaX9vpJePxLtx7FM8cKWmlOW65E1aXFmzIAXSM+zJ7jxRaqLi3GtrvqMtaczgRZyHUyKJLoq2y5tRIttyauTnphtAo+lwaHZxMv104Kglf4q7qEj2LOnnPCNZJ8ZmruggvnHxmSnKFlqIsVaLzBCqVxc3Lu+UJgPgQ2wkIt9REJnPv5ICaOSKp7y2m5tQrG+s0LWk0etWO+j7fN5ToalCL9fUa2LhdCnghIGQmlKbHvvu1NH+bm5tDV1bWpNWwqQ/TUU09BJpPBEk4s7d/63ir4ZoLoeTwzs2q23lmLgCOM7t+Pwj3mF5rKNoOuQoXqK0p4NSHpfSbAhFgh7SrBO85+W6ggnpE1naEYjFoGBh2L4UkaUWu9kB2hKHMdLti63MK8ms3iGPTyks7R0xFI6zPIhFic/elAUp/t/kP874E3xusW/0MDvNSSgb0meu84YO6CM6Eer3jItHS52HGN+HD4PzvBimAeoSjgAL89BJXURySxAZSCTKoPZzkzZx3C/6+7phxKowxnfpzc/p4ojddXQF2kwOkf9sf9GbXDBLlcju985zv47ne/m/S1NzWH6JprrgHHceBeSEwRRlWkABthk1aWiAdTkw6eCR/CXgY6qwpBZxghKd2cduqvLYe9xwXHQPI9BfnEljtqwYQYdP12NNtLSSvxOEMAYC2JwFoSwdELvBKO5Awh7SVTpbtNKN1lwvmfD6ZduEauo6EuUQpDZFMFd2gHAGD6H3jHodQFuJSAf5VAYtlNqSuZI2kC2+6qw9Sp+bSMWbC06tH2vmoc/Xp3wqWGEoVD2/uqQVAEOn4tVV8AQPk+M0p2mnDmR/EbzRLJIdfSkBtk8Iz7IdNQ0FaohL7VdKAwykDSZMJ9hN6D43A4HOjo6Ej62knnwYLBIF577TUMPR9/A5e2QgUQvIxkOp0hSk6i+WYrircZAQDucb/kDGUITakStFpq/oyiNMoQmM9vQydeZwgAxmdpHL2gLPgSuVjK9piw99PNINJUleCbDmC+150RFU/rRUUJz9dpuK58zc9wh3YIztDiXwK7Rkk0z6S/HpCNcLD3uuFLkyKcY9CDC78aQtgrvZ9isV5UJAlOxBBwhKA0yrK9DNHgnQnErQgssTlCngg843xVVcl2I5pvrkzr3LmgI8w7QwQSEuhixkl0d3fD6XQmfe2kf6pjx47B7/fDhPhUISglia0fqoU1TX03tJJCzZWlIGUEmBCL0z/oT2uNqa5KjW131wmDXCV4zv18EHPnk38g8w2FQYagM7/LYRR/ScCx4aSs0HJcoz6Mvj6bNhlZ97gfo6/OAgDMLTp+30rTC230lVmc/kFiUVtDvRaGZYpRqzpCUQjghVYWHWXpcfAoOYltd9fB3KwDwM8Mco9vvsx6NZggi/k+j9RHtAwmxCak+prvBB1hKKSeKgHXsA9jr89mexmiQqalcfGXtmw4x24zjB+24fQP+hcUmgnUXFkKWpmeAbnWQ0XY+qHauG1salQDlmXx3HPPJX3NpN+Kr7zyCvR6PXQwxnU8E2Bx/pGhlAgarAalJFG60ygMpUr3HBw2tNAoL73HJNZApqVB0mRas6FiIR6niCQ5XLQ/gPCXC3sA63K8k4G0lGOtRtjHwDsdSFufXyTA8C9Lmoi7lv3kd3px8ju8MM+6jhAAggUoFohQQDhNiWgmxMI7HUDYn5nBj6oiBRrfXZHVifFiY+q4PWMKV7lAwBECJSMh00jVFwBfZqwtV6Y1U5FrMEEWfU9PpH0IfNS21pQqUbrTmLakwORRG84/MgQmEN+7Ss3poNVq8cQTTyR9zaR/kpdffhmXXnopCGLjTVxfowYAeCb8KS3b0JQp0XxzJUDwEZRj3+hJiWBCPHinA+j907gUxYrBUKvBwS+0QaGXUvsAoFyQQA448jtDFC8zB2n0kDK40lUbloOoihQo3mZIW7ncctyjPgz8ZRIAn+Vuf391yhWEKAWJvZ9pQcn2xHpL13OEotTME3jnBRJ0in0VSkGi/f3V0FXx76qBv0zCPZqZ2UYkTUBXqRaUUCV46IXZKBIQRDeksjkeuY7GznsbobVKMw+jsGEW0yfnEcxQL6J7zI9j3+jhA74E0HxzJTRlypSdn41w8Ezw9ryhZmPlPIIgsGvXLhw9ejTpaya124RCIbz55pvo+fPIhsdqSpXYfnd9etJ4BKAyyyFfiJpktOyA4DdsaaDKIgFHCKOvzyLsk+rhAQglDunOVoqFtbJEkxfTmLyYRpggcI5SwE2QGPq3QxlenTgx1mtQd015VqaukzQBluFSni1igiyGX5qGYzA+YZVdH2/Ers9tjevYGS2HC+UcImtUaSQrqMCEWLAMl/GBhADgnQrg1Pf7CiKTHC+UgsTBz7fB3KLL9lJEQfTZUCQoR5yvhFxhnPpBX8YC4LkAJSdhbtFltI0janPLNTRU5vQ8m6ZGLbbdXSdUf62HuzOEoaEheL3JiXoldedOnz4Nn88HYxz9Q97pAE7/uB/zfalRpSjZYUTbe/m5E97JAM78ZCArggnaChUOfr4NakkKUyDoCGP8zbmMNG/nAgqjDBE/U1BZxOVO0eTFi1FvPcfCyC2G9iWniJ/3cPybPVm5tnPQi67fjQIcn6lqvsmasmzR9Mn5uAMBnkk/3HH2R/sUwGBRavYXSkGi+SYrPzyZA7p+NwpnnE5cOpDKfxZhgiw6Hh1OeFhvvsKEWIT9EaHqoNDhWD6QIEmzL6I0ydH+/hqozJm3SUOeCM78ZADehZEEbe+rRskOY0rOPd/nwekf98Mbh7CNxmNEJBLB008/ndS1ktqBT548CZqmocX6JRHact6j86SiIXUhcBf2RhB0hVOitb4Z/LYgOn4zXDDR/3hQFSkSUgXJdxR6WcbS12Ik1hkCgDYmhEORpZua5BRBFC91hUEGpUme0iy7oU7DlzRvQO+fxtF7YaPGXA4tW1mUxMzxLrupc8WfROAYDkqzAgoRGJkl243Y/39as/5eExP2HjfCkjqsQMgdgUwrlVVGsR6ywNQkZRCjeGcCOPJfnfBOZTdrRpAEgs7wonJmCra0qA8R9SnWQhHUQC6XJ102l5RDdOrUKbS3t4Mi1n6J6avV2HlvI3SVmzeQ664pQ/NN/It1vs+Dgb9OpmyAYbIwARb2bndBRf83ouKgJWHJ3XxGpqELUu5d8ZdjK5whADhFKfAaLTnMUTRlSuz6uwYoRNAX4Oj34OzP+DlFch2NumvKUtK/QSupDbNOmnIlNLr191GKBmr2TsP0pZGknJ8opIxE3TVlkOtosBEOZ386kPKZScngGvWh/+kJqQQ7BkOtBiXbjdlehmgIeyJCe4AEYKjTxlVGVTBwQMTPZKX8eskyWA4Df50UqsKab65MiYS+rlKFnfc2Ql+tXvMYEiQqKytx4sSJpK6R1Lfr5MmTmD3rRMk6m7drxIdzjwxuqsYzOrDQPeoTXTkBJSdRtNWA+V43Qu7CM3pXY+j5KdH9nrKJXEMXZoaIIFD7T0cw9K8Hl/x1iCAQWsXiG/q3Q6j94uFMrU40sBEO7gm/6KLgmlIlzE06jL4yC3YTj69z0BtXCdqWD9YAMg5vvbLy3+56eGnpg/PvqpJfEPi+KXOTDo5+D0Lu7DtCUQLzIaFxXoLH1KSFvlKNmbOObC9FFIQ8EUl4IwZpSO1SVEUKVF5chKEXphD2ZkYhMx6cAx6hT3UzQ8jdY36ce2QQrpH1xW7CoySmZFNJXSNh6zUcDuPcuXPrym0rFxr/NlOPveWOWtReWQoAmOtwYfq0I+lzpQNaRaHxXRV8/bkEAL7uW3IOF5Fp6cIbuLiG6iTBcTgYCcDMrtyoC9EZAvgB1X1PTYiu526+z4MTD/UiEmBAKUhUXlK8qVIufZV63V7Lvqcm0Hth6fnvevhpwRkKObQIzJiSvj5BEqi8pBiUgkTEz+DEQ70p62lNJfoqtSQiEMPQ89M4+7PBbC9DNIS9EcilkjmJNSBpAkqTPC7l50wyfdqBuQ6+SbT2HaXYckdt0ueK+hTKdcRFysvK0NPTg/n5xEdZJOwQdXZ2IhgMrukQGWo12HN/EzQb1PqtuhgZIcjPzp5zwNYt3knEQWcYb/zrhaw24YqNqsuKUbQlMandfEZeaCVzyzbi2n86Ivx/GQAjGMiWDe4qVGcI4IVZRDvYeeHXpK/WwHrQsilDrPEGK8r2mNf8d3uPG/Y5/j7EOkJRXH1VmD26FVySfqNcS8N60AJ99YJ0q7j8T4GSnUZYDxVlexkSIiXkiUCuzX55rViovrwE7R+ozvYyRIN3KoBzDw+K2uawdbkwe84BACBI3uZPFG25Envub4KhdnUpbqVHC47j8OabbyZ87oTfxl1dXfyi1hBUcA570f3HUXgnN1aEWLIQmsCujzei4iD/Qpg544BrODNzICRSg6pIAYVeimABfGqYVlGFkyFaIyoVdYpCBIG/0hpMk4vPRyE7QyCAbXfXoXRn8pmPTDDf68bxb/XwQjYUgeJtiQc8zj8yiIG/Tq7577VXlaKumV3hCEWx7OlE+duPrfWIrUnxNgMIikDQFcbxb/Vgvte98YeySP8zkzj3sJQRiaI0ybHjnnpJyXWBkCcCWkVJA3wX8Ez6MS+C/j+J+HEN+zBzxgEAqDhUhF0fb0x41IFnMoDuP47CObx6MkLu5XuMent7E15fwg5Rf38/jEYjZMTKlBWlIAEOmLsQf2aHVvHCDGyEw9jrc7B1ijcrFAutpLDl9hpJVS2Gnj+OYfywLdvLEAXRieJijtakjA0s1dhMkfB3hewMAQAHnP5hP2bPObO9kg2J1n+bm3VousG6brnCakTLaNfKhhW1GVDbvvrLjQnRIAiAVicWYFOa5Gi6wQpzs27hPOIXv8noHL0cgAky8E4HwEr3BQAQWZjvJ1NvpMhYGNh73Jg8as/2MkSDqVGLQw+28fMxcwBbhwtjry+OaYn6AvEwd8EFcFhdsCdMoqioKHMOUUNDw4q/VxcrsO+zLcKk73iQqSnsub9J0CufPjWfM42lHMcPNOSSreOQyGvoBeMv4hdPc2NaiDNsX8eGcWvYA4LjJGdoAf9cMKcyiLZOF058p1fYoxPZ602NWuz/XOuqEtfHv9WD6ptWKiqEPSqMPP52+Cb4qoFHWjYWVNAvrCkwH8KJ7/TmTIAN4F/uWz9Uu2YpSKER9jHoe2oCAXtu2ATpJhLg3yW0MjcM3nRDKyloyiSVuSh+WwjDL82AzYHgD8Dv0dOn+D6fkh1G7Lm/KSFnX1+lxr7PtqyaQTabzbhw4ULCa0rYIerr68PYiekVfx9whDD62mxcM4einmDYx2D4xWnYRV7KsBpMkEXX7xIvDcxXCIrAwS+0wdKmz/ZSREH0pcUE89whihP1d8+jk5ShZpVsUSFibtah8tKNB1uLjejcNUu7HtvvroMyzunkzmEvhp6fQtgXvwNIKUMw7+yCsiS+5lilWY5tH66DpV2/ZK25QlSUho3khkGTCWQaKmci3ukmEuCfi1QNT851LO167Pq7xmwvQzQE5kOYOGITnUhPPNh73Rh+cRph34LTH0e2yD3hx+irs6snUbwkhocTVyFMKkOkgnbF37NhDuNvzG04H0hplmPvZ5phauTPMXViHhFfbhqNpIyQ5kbEMPrGLHyzwWwvQxREX1qRfJ9TFWeG1DsdxAWF1AsQRWmSw7DOPAWxY+tw4ezPBoTo/UazlNgwh8ljdrDhlc/Ljo81YOwvF634e5JmYGgZAUmv/36IXjtgD+HsTwdg68idrNByeh4f29Soinxj+4frUXmRJDQBAIyUIVqCrcuFUz/oy/YyRINMQ8FYrxGEyXKJiI/B1Ak+8GVq1GLvZ5o3DLZxDIfxN+dWdQBJlwJOZ+Ll6AndulAohPHxcaiwmNInaQI7P9YgODhrEf0SB+whDL84Dddobgsm0CoKF/3fLbBIMqkAFh7ON+bgn5McIgCgFVKGKJb5f98HI8tg8CuHsr0UUTDxlg0XfpXbczSihru5RYc99zfFlS2qvLgI1mUGbmA+CFq79H3g6KiD40L9hudTWeTYc3+TIFed684EKSOkWTMx9P5pXDCUCp3IwruEkhwiALwR7Z2SKnSi6Ks12HpnHcgcnwXpGvVh+MVpIdi2UQDA1KjFzo81LBFn0KsNmJ+fh92eWI9ZQndubm4OHMdBjsVIL0ET8Ez54V+nzldbocK+z7YIAgSTR+1gcjxyzoRYdP9hFO4J6QsJ8I6xvkYtpfMXoBQkOJZbNSKed6yTJRr8z4MY/M+D2BEOYXeYd5Ylpyi/mO/zoOfxceEFtmI4M0kJf0gFDUq29N+7fz+GsktPL/k7NkLBDB9a5ZPCn1ii1/DbQuh5fBzzvfmhNlV/bTna3idJCUdxjfpypq843bBhDizDSRmiBeR6GWreXgKZRrofAK8Ieuwb3WACOW5bB1lBLIP3HZrXFS/z20PwTPmXqC/KON5HGRoaSujaCVmvs7OzALDEIWIC7JqNj+TCi88z6cfwS9PwzeSP88AxHGbPOxFy5VaderpQGOXYfrckkRqFUlJCRK8gWMUpGvzPg8L/PyJX4LB8sQG20J2iPfc3oWyPuCW344VjOMxd4MsTDHUa7H1g7XKHkZdnMfKabdFJAl8+GHLx5YNR5+eiva+hedepVc+hNMux94FmGOr4SoW5C84NS7VzhYkjNvT/ZW2J8kLD2KBF0VZptl0UJsgIgj2FjkxNoXibUXIQF2AjXM71TW6EbyaA4Zdm4JnkM/+kbOWzH7CH0PfUxJIkCx3is+wjIyMJXS8ph0i24BBVX1ECU9PqpXL6GjX2PdAMlUUOcMjZZq+1IEh+zsVqqkmFSMAewvFv90gp7AUoOZnzWdCEWSdTFCRI+HOxuDlNTJ2chycPBVk8k36MvzG3GCBbpceSIIGS7fyMIJAUtn+kDpMvHESrfBJMhMJYXyNYZpVnZeFcAXsI42/MCS/JfMI3G4xLmKhQMLfoULqgQivBZ4lIWtpHAX4Q6fFv9sBvkzKIAD+wtOFd5Xk1p4qNcJg4YgM4vjx63wPN0Nes3ntratKi+ooS/nMO3kmORBJTcU0+Q0QA2jLlipkUUZvHM+7HxFu2vPNYo5A0iZZbqqCrlOYQAQDHcgjYQ3nl9G4GkiYK+l7EZocAYHs4iEpm6eZUyFmi8Tfn4JnIP8OXCbAYe2MOAKApV2L3J5qgNC0NGimMMjRdXw5DLf9iG3h+Blv38lLstqlynHvjEvi9SwNtXpcOuz/RJMjsjr0xl/OlIauhMMhgPWRJaoJ7PjLwzGTO99qlEpZhEx5kKVEY0Goaugp1wgOsc4WgK4yJt2xCwGh5fFVpkvPvBwKQgfdLzpw5k9A1EnaIFAoFKNAAB3T8ZmTJYCxDnQZ7PtUMmZYGG+Ew+ups3hqFTIjFG/92AXM5rGiUSlRFCtRdU7bm8MVCg6SIwhy0yHErnCEAsLAMNNxKA7YQnSJSRkJfrV41/Z9PRPwMnEPeFUGxgD2MY9/qg6OfH8Y6d94Fa+MAAKCkcgxvu+230OiX7qsqjRfOIa8wiyVfUZrkqLqsBDKVJKwgsRI2wuVVBmAzKPQy7Lqvcd3+kkLC0e/B6R/1563NzYYXfQq5lsaeTzUvmdk2edSOzt+MABxAEiQ0Gg0cDkdC10jojexyuWAwGKAuVgoD8GLxTgVg63LlzGCozcIxHJCfz17CyNQUjHVakKS0WQP8XKaCdIgA1P3jysGrLynU6KZX9pVoRgjMfGKl5HI+oy6SY/uH6/ly4jwm6Aij/88T4CIMlCYZtt5RDbmeN/RDbj5bSKsoVF1ehO5TuxAKKMBxgFLDK875vRq89ey18Ll1+GLjXvT/eQJBR35WHERxDnlx5KudCEq9qQCAoi0GbL2zNtvLEA0cw0kZogWYMAvHgCfvgyQSK2FCLGxdLninV5ad66vUUBUpoNVqEQwmpnqckEMUDAahVCpRvteMxhusAMFnhXbe2wBKQSLiZzD47BSYAnCICBJofW/VmvWMhYZrxIdT3+8TBmsVOgRFgi1QhwhY3SlajmZk8cVeSE6RdyaIE9/pKaiZXZScBMdwS8rc6q4uxdY7qlG204ixnma89ew70Xlsv/DvtCwEgmARCUt9moVKxM/Abyuc78lGsBEOJJXfmeV4idqbqwl6FSJF7Xrs//tWEAUQlGZCLAafnULEz4BSkNh5bwMvskMAjTdYUb7XDJVKhXA4scBSQnn5YDAIhUKBgb9O8rMSOL7B1TsVKMgBpSRNgsjXgk2JTUGShZshilL3j4eFkribAx6cpRXop3njNtYZijLziYtQ8t03M7rGbMAxXME1Anung7jw6CgAPptc8/YSzJ53Yr7PA8eAF//edxhzE1YQBIuzb1yClj3HoVAGsP/q57K88sxCKym0f6Aagy9Mw53js/pSgWPAA8dAfkiqpwKOkUrmBAhAZZYj5I4URBB+I3xzQUwetYGLc1h63kDw1WkBewjggPO/GELIFQZbxcJmsyV0qoRCDYFAADKZDLpKFRrfVQGCIhB0htH75HheNriuB8cCHb8ehnPIm+2liAJjgxb7HmgBrZIkMAG+ZK6QM0RRopmiXkoGB8lvN6s5Q1EKIVOkLuH77fK9h2gtlGY59JUq+GaDcAzw+ydBAMXWceiMDszPlMDr1Gd5ldmBY3lnmQ0X1vt0LUiagEwr9VNFYRkOpOQQAeCzznvub4axYXWl40LDNxPE6GuzBdfGwQRY9D45jqAzDIIi0HhdOXSVKpAkCb8/MeGihN7INpsNDocDSrMCBEWAVlNL1HBIGbkYvSAWhudF/5MilhgAiR1LLImKLDmWJJYMAiRpYkmNbaLHRpUrCBJxHEskfKzwsyL2Z93gHiZybDL3MAX3O+gIYfr0PEAi5h6m534vvy8pv98peGYJCojdmda9h5t8vhO7h4kcG9893OhYmuNwXqaAjaSgHwFI4b5woAlOuE8kOFDgBKcoX/cImYaGsV4LSl5AewS5aOD7ZoI49aMBhL0M5DoKFz3Ygmce/hC8bg0Uaj8uuf4J6M12QcX9i00HCmY/5VgO/c9MCOMLlj5vhbefluwwYv9nWxJ73vJ4PwWx1N4tZJsLAM7+bADOIW9B2lzL76FMQ0Ffoy64PSL2HtJqCgRFQGmWg2VZyOWJ9ekm5BB1dHSAJEm4x3y48KthVF1cjB0fbRD+fc/9Tai6pBgAoC1X4dCD7cKgzuorSrDr44vH7ry3ATVv5zXD1UUKHHqwHTorrxZSeVER9n6qSTh2+4frUXdNGQBelvTQg+2CukT5fjP2fa5FOHbLnbVoeFcFAIBWUzj0YDvMTToAQOkuIw7+Q5twbNv7qtF8UyV/I2QEDj3YDks7PwSuaIsBhx5sF34ZzbdUovU9ixPEDz3Yjov/aQtKd5lgbtbj0IPtwoCwxuut2HJ7rXDs/r9vRdleEwDAWK/FoQfb+ZJDAPXvLMe2u+qEY/d9phnWQxYAgL5SjUMPtgvN17VXlmLHPYv3cPcnGlF1GX+/NaVKHHqwHZpSXpa26rJi7P5Eo3DsjnsaUHtlKQBez/3Qg+3QV/L9T9ZDFuz7TLNw7La76lD/znIAgFxH49CD7TDW81GYsr0m7P/71sX7fXstGq+3wm8LYeKIDQf/TxvMzXx0t2SHEYcebBeObX1PNZpv4e83QfH3u2gLf78t7fz9jn5xmm+qXDKx/eA/tKF0lxEAYG7S8fdbzd/vhndVYEtM4+2+z7WgfL8ZAGCo1eDQg+3CvKi6a8qw/cP1wrF7P9WEyouKAAA668IzW8Q/szVvL8HOexfv966PNwg69+pi/pnVlvPPbNUlxdhz/+Iza6zTQmXhz6M08ffbUM0/sxUHLdj7wOL93npnHRqu4++3TMvfb1Pjwv3eY8KBzy/e7/YP1KDpBisAfnM49GA7zK38/S7etnC/FzaMltuq0HJbFf8fBP/MFm9buIet/DMb3biabrCi/QM1wnUOfL5VGBxqauSf2WiktuG6cmy9c/GZ3ftAMyoO8s+soZq/31E5/rqrynDD8ByKGQamUQ5Xmz1oUfM9ASaaxQ1Fbugp3lhu0wRxpZkvj5n5xEV5sUeULMxQid0jnINeeKcCaL1t8dhC2CMAgFaSOPQPLcL9rr6ieGGuCo3e07sAALPjVXjuVx9COMT/TIW2nzbfXAmSJkArF57NAt5P5/s86PjNMHZ8tAF1V/Hf70LeT9UWOUwxGZFCs7mW7Kf/2A7fTBARP1Nwe8Tifrq4R5ib9dh+d33B7RHC/f5oA6ouLsaFXw3DPeYHRVEYHh5GIhBcAgWHN954I44fP46LtVdDZVbAOeKFTE3D0c8bMeZmHQLzIfhmg6CVFIz1Gsz3e8AEWahLFFDoZZjv4481NWoRckfgnQ6AUpAwNWjhGPQi4megKlJAZZbD3uMGwD/QYX8E3skASBkBc5MOzmEvwl4GKosc6mIlbF0uAPwvgwmx8Ez4QVAELC06uEZ9CLkjvE55uRK2BalsfY0aHMPBPeYHCKCoTQ/3mB9BVxgKgww6qwpznS6AA3RVvL67a4Sv6y5q10NhksPe5QITYqGvUsPW7QbHcNBZVSBlpFBOZ2nTwzvN1zjKNDQMNWrYe9xgIxy05UrQKkooHTG36OC3heCfC4JWUzDWajDf5wETYqEpVUKmXbzfpiYdgs4QfDNBUEoSpnot5gc8YAIL99sgx3zvwj1s0CLsWbjfchKmRi0cQ15EfAv32yKHvTt6vzWI+Bl4JgMgaQLmZh2cwz6EvREozXJoSpWwdS7ebzbMwm8LQVUkh8Igg2uEv98Kowy6CpUgTa6vVoPjwNfGR+/3uB9BZxgKPV+KKdzvShUIioBrmL/flnY9vJMBBOZDkOvoJfdbW6ECJY+53616+GYD8NtCkGkoGGo0sPe6wYY5aMqVkKlooS7d3KyD375wv1UUjHWLz6ymVAm5jl7yzAZdYf5+R5/ZAV4KWF2sgNK0+MxuvasWFE3izE8GhPvtHPIi7OOfWVWRQrjfhjoNmCD/zEbvt2vEh5AnImjrC/e7RgOWYeEe84Mg+Z/VNeZHyBVeeb8XlCBdo4vPrHvCj6AjDLleBn2lCrYuFziWv98kRcI5HPPMTi3cby0NfXXMM1uhAqUg4RyMeWbngvz9VlMwxD6zZfwzu/X2WpxwKRHkCHgZEm6GgozgUCKPYCZEI8wR0FMMVBSL6RC/kbY8dzbn9wjhfi97Zgtxj/j9scOIMCS6hypRVToHvdaHrsEK/O65t4HjgAuPDsPR6ynoe2Vs1GLr7bXo+sMobJ2uJc9mIe+nxgYtwt4IvFOBgt5Pd9xTDybE4vwjQ8L9LiSbK3Y/NdRqoDDKMXfBCZmKKpg9IrqfuseX3m8mzEJboYJMSRXuHuGLwFCtQcAexFvBl1BaWoq33noL8ZKQQ/TJT34SL7zwAvYoL0X9teU4+b0+hD2JTYKVyE8s7Xq0vacah7/SASYo1b8331IJuZYWXlyFDLm9FWodEAwA4wfMcX0mn8UVjPVaNN5QgdPf7y8oydhnJ04DAFxeFQ6fbsc7Dp4ERXH41dNX4PhLenQ8OgKCBGqvKsP4G3MIFeK7hQBMjTp4p/yCNHkhoy5WQF+txtSJ+WwvRRRs/VAtQu4Ieh4fy/ZSsg6torDnk03oeWJMMKAlChuZlsbu+xox8NcJHHa9iIaGBrzwwgtxfz6hkjmlUgmCIDB7zonj3+pB2BMBSROwtBdmA6ylVQ+FXpKEBXg1oFPf75PUXqKwkBQIY/C5ASYMlL1u3/DYfHaGACDoDGHmtKOgRDeizhAAuL1qdA9VYXLOjEBQBooGOA6gFCQ0ZSpYWvWQF+q+ygHzvW7JGVpAX61G3dVl2V6GaCAIouCa5tci4mfw1v90Sc7QAtpyJf9dKUCzo6hdD5ImEPZEcPxbPZg95wLLspDJEnuPJOwQBYNBlO83C3W3llY9Wm6uFOoFCwWCItD2vmroYyblFjJMgOWHZEmbNQDw0pcFuDEth9zO1z5XtZHQF/E3ZD2nKN+dIQDw20IYeXmmoJTEgiEab51rAccB1hIbPvn+J3Gupx4/efydgnjCzo81oGSnESe+3QvPBK8OVHHAsrSpPM+hlCTK9polZbUFpk7M4/B/dmZ7GeKBAKSXrMRqyPUymJp0BReIVRhkaL65EpaF3r+mG6wo329GOBxOr6iCQqFAMBhE0BmGby4IEMDseSdOPNSLoDMMEBAawfIdjuFw5L86MXfBme2liAKlSY6aK0tBKQvHeFkXDgUxIG09os4QABhLCChjYgerOUWF4AwBvEKPtlxZULLb4zNFePnYTsw5+JcWRbG4ZPd5XHfpW4i+v/uensDoq7PgWN7gUxUpUP22EugqVdladsZR6GSov7YcygILMErEB0ESYAsnjrIutIrCjnvqoVvo7Sp07N1unHyoV9g/8x1jvRYggKAzjBMP9WL2vBMg+HlMQWcY4XAYKlVi746E3sgajQYejwf2bjdGXpoRAhVBBz8N1tKqx5Y7agSFjnwn4mcKfvhmFJmGQlG7AbRcmkMEACzDFvS8iFhnCADOvcJgZnjpdyXWKSoUZwjggwc7722EplSR7aWkF4JvWAaA+sopfOqDj6PY5BL+Wafxo846Lfy3c8i7pCfVPxfE8W/2LGl+zvesq282iDf/7QLc44nNz8hXSnYY0XxzZbaXIRooGVFQmeX14DgOnskAmALqw5TgUVnk2HJHDSwtfIAt6oOAA0ZemoG9241AIACNJrEKroQcoqKiIrjdbrAcAxC8/KIhpmTM1unC6R/0C1PYtRX5G9kjKALNN1cWVPRyPdxjfpz4dg+CrnC2lyIKmBAHsoBKfWJZ7gytR9nr9oJyhgDAbw/h1A/6hFkz+Yq5WYe291bjVxcGAABqJf9eCARl+NEfrsPYdNGKz+isKuz8WAMoBf/difh5Y0dVpEDbe6thbtZlaPUSYoANswUlPLIRpIyUHKIFmACL/j9PwDcbzPZSRIGpSYe9n25eMh8o34j6FH5bCKd/0C8oHQK8+l75fjM/q4vj4PP5UFxcnND5E7LYoicPIQhwQFG7AVrrUofAO82/5I0NWuz8WAM0ZcqEFpQrEASg0MsKquxFIn7YMAuqQJ8N9mzXir9rOUCiun3l/ej5iBF93ziYiWWJBo7h4J0KgI3kZ3Y5uufbu904+b0+FMVkhQAgFJbBbHDBoPWu+GzAGYbfHlzRN+SfC+Lk9/oEmdp8fa+YW3TYcnvNxgcWCHMdLgz8ZTLbyxANvEOUn/tGohAUAYVeJgwaLXSCzhBmzzsRv250bqEpU2LnxxpgXJjDFfU1omitKhS1GwAOYGURsCyLkpKShK6RvEME4PwjQxh/Y27VYx39Hpz7+aAQBVUV5Vd5CBvhcO7ng8LsgEJHZZFj9yeboC7Jr99zsjAhFqQ8fyM1G7HcKXLOcPDML92pez5iFP5/oTlFlZcU5WW/paVVj533Nghl0/65ldFbvdaHW9/xOnQavizsxfFFByDsiaD7D2OrqqxFz6WyyLHz3gahiTafYCNcYcqNrwElj5lULwFSRoCRMkQAAG2ZEvs+2yIMQC90fDNBDL84nXdtHFHfwTsVwLmfDwozoZYz/sacMOaEVfJ7aFlZYgqVSTlE4QWHKNq8ZWnVr6oEFB3apKtUYc8nm6Cvlprf8pVIkIW9xy3NIFqgkDNEqzE1yME+uf5GXUhOkalRJ0yUzweiqmi2bhcu/HJIKJteTvdQJQbGFl9SjY9+fNXjjPWaNcvj/LYQLvxyCLZu15Jr5wOOfg96/zSe7WWIhpZbq9B6W1W2lyEaKKlkTsA3F8T5Xw4h4JDK9IGFsQWlyrzqs9RXq7Hnk03QLVSiRX2KWCg5CUsbHxyL+iSsineIqqurE7repjJEAP8yar6lUljQarjH/Oj4zbAwcTgfskWUgsShB9uFpuFCJ+yJYOj5KV5tUILPENFkXm1OiRKbJZIpAVXMVyU2OxRL3zcOFoRjdO7hQUy8Zcv2MlKCuYWvXVea5QAHQQRhNc721OFfn70WjY9+fE1nCABKd5pQssO45r87BrwAByjNcuz9dHPe9BbJ1JRUAhTD6OuzGHtz9SqUQoSkybwttU0UJsjC0e+RHMQFjPVa7Pp4I2hF7gtbRX0E14gPHY8OrysyY2nXo/nmyiWBMVbB26G1tbUJXTeh0JpGo4HZbEbA7hP+LuyJ4OR3exdVHtYgWvutNMux+75GdP1+FLZO17qfETNshMPwi9PwzUgNfVFURQqEPRGpCRYQyhooOVnQWbOoU1R5Rzv0RQTOvMis6QzF0veNg2h84EiaVyexGUiaABvh4Oj3YOAvkwjYl2aFRn+/FQDQ+GiMg8txoOPQoel9ajyuXomAPYSBv0xifqGMIrqmXGXLHbVwT/jR//REtpciCtyjvo0PKhBoJW/oSu9XHpVFDlOjDpPH7XlXJpYMjkEPTv+wD5Fgbj8fljY9Wm+rwomHehGwh2Dvca97/MxpB5yDSxVKg5QfMpkMFRUVCV074VhUQ0MDfFgaAYw6Q5rSjRtdA/YQOh8bgX2h3CFXJbo5hsPEWzYE5lcvDSk0CBLY88kmKWO2QFQdi1blfrQmFYw91Yueo/E5Q1HyOVNUssOI3Z9syvYyksbYoMWeTzdDrpdh+DdbcPz/WTH6+61L/iyB46BjWIAgEIljcGDUGVKaN34/TJ+aB8dwkOtl2PPpZqHpNhcZ+Oskpo6tPbi40CjZYcyr0tLNEH2XRN8thY66RImaK0tRYHNI14QJsPBMBnJ2bm/UF7B3u9D52MiKANtqRH2O5ZVJPtaDoqIikGRiLk7CDlFjYyP8WNnUpK1QYdfHG2Go2Vj3297jBsfy5QE7/64RZXvNiS4j6xAkAWODFjK1ZPACAMcCZ346AHvv+t58oRDx8S8tmTp/+hs2Q9AZhvfNlepz60EGCQx89VCaVpRdfHNBzJ5z5GxJpXvch+lT84j44hMAqIwwuNnrg4GJP1uqKlJgz/1NMDXF5+BEfBFMn5qHezx3swquEd8K9aRCpuG6CujjsCkKAXrB1gjH+Z3Ld2ydLhz+j46czginEpVFjuorSnJS+bhsrxk7722ETE2BY7FhVgjgZbZ3fbxx1fE+npAr4ewQkGSGSF2xMmrnmfDjwq+G4ByOX3Ut7GPQ+dgIZs44ACzUDeaIgUArSWy9oxa6SkkoIop71Cc4AoVOWMoQLUFpkqP2HaVo+YejcR1PBhc3goGvHso7x8gz7sfoq7M5Fc3TV6ux894GUEoSTIDFyEszcRsjEzSFl1VKOKn4Xzn+uSC6fjuybk9SLGyEw8hLM2ACLGglhZ33NuSUkI/SJEf5fnNOGjTp4vB/dmD6pJQxAwCZlCGSWAe5XobSnSaQshwxoonFXqGZMw50/nYE4QTsR+eQFxd+NQTPxMr+Il/Ei5qaxMcXJOUQTUxMgOFWLny+j88cyTTxG4HRpjiSJrDtrjpUX5GYbni2CPsZHP16NxwDq0sAFiJle0w5Xa6SSqKRcymDyEMpSVjaDJCp6Q17g2KdoVjyzSnSlCnjKgkTCwFHGL6ZIIiYGpUVpXHLCA1rAY4DSxAYkSWeLbV1uZPrDyB4GdpcUqDSlClRe2UZ8naQSJJwhduCuQSpZG4p5fvNaL7Jmu1liAbnoBfHvtGdM0Hp6itKsO2uOr7vM8yuKae9GlEfI+pzxMIRHOx2O5qaEi9JT9gham5uBgD4sHpKy1Cjwb4HWhKeR8NGOHQ8OozJo7zykrpEIUwrFyUcEHKFpXRtDEVbDNBX5U5ENp2wEQ5MmJVK5hbwTgZw4ts9Qs9dsoIJ+eQUtdxahYr9lmwvY100pUq0vrcKJE0g5Aqj54mxhA2yy/0BtAbXrgdXX5hf9/Pl+81oSVB6OeJn0PPEGEKuMEiaQOt7q+Lqcc0mtk4XDn9FKgGKoq9SY8vtNeK2AzIIraLAhFnp+Vgg4mMQdEnlg7kEpSAF32DyqA0djw4n/DxrSpXY90DLmu05rCEIlmWxdev6wbrVSHin2bZtGwiCgBuOVf/dNerFwLNT8M8lLjbgmfAj7OVfti03V6LhXYnXAGYKWk2h8d0VOSsKkQ7OPzKEkZdnsr0M0RDxMVLJ3Dqs5hStlR2KJV9K6Dp+PYyhv01nexnrwrEcZGo6+eeY4+AkSfjWaG5t+PuNHeOQKwy/LXk1T1pFQaamhRkVoiYHlpgpOI4PKkmyyjwyNS1lh2KYPe/E8Ivi3j8zia5ShV33NYp6LlvDuyrQcnMlACDsZVYtd9sI32wQA89OwTW6eil1QM0nay655JKEz52wQ6TT6dDU1LSmQ8SxwNRxOziWW3VYa7xc+PUwhheMBXWxAkqTuBwPkiahKVOC3MTPKJHfhH0RUW9OmWbbXXWwHlqaEYl1iuJxhvKJwHxIlMaeyiJH/XXlfNnZbBDnHh5EyJ1kJJYgcFqpWFEu1/D3R+JyhgC+bG7kpeQDLSF3BOceHoRvNggQQP115aIMZO28t2HdeX6FhnvMj67fjkolcwvIdTRC7twpAU03tJrKnX6ZDBDxM3AMeEQnQa40yQWlyOG/TePCr4eTPhclJ8Gx3IKPsfoxHsoFo9GYmR4iANi9ezfcWL/MQWdVJVU6FyXkjghSejVvL0XzglcpFkKuMM78eADeSUkRKErlJcXSVPEYgq4wFDrJIYpi73XDu8rcrsYHjiTsDNX/w+FULStryHU0mm+uFF0fkUxDw1irgXyTzrw2CLSGQiBjemIScYRiISgC5fvNmw6MybX8zybTiOt7SdIEHIMeBF2SwRuFlobULkGukyEklYgJtH+gBvXvFG8VUabx20IYfHZKdFnE5psrUfO2UgC82myywbVoqZzOuv4gO0fIjvr6+iW9rvGS1Fth165dePrpp8F5uDUv6pkKYPzIHALzm9/gu/84KrzAlGY5VGb5qs1UEtnFbwuCkxqCBUKuMHRST5XA+BoT5ymjAU3/2QEA6H2wfcPz5IMzBPCT1pVmuSjKKhUGGUp2GDH66ixcIz6c/F7fpsu3SrzA1mAYkS+eSknUsvLiYrBhblOz30LuyJKfreqyYsyccayYY5Fp2AiHoeel8p9Y2t5bjaAzjJ7Hx7K9FFGg0MsSUvHNd4aemwITktKHUQiKgMIgQ9AZznqWyNSkhd8WQsAeQvcfRxH2bt6R99tDGD8yB8/U2kkIjuNgd8/hbVsvT+oaScVfdu3aBY/HA98q84iEhTEcRl+dBRtmQVCbS2uyYU4Y/lqyw4iG6yo2fc7NoilT4sD/aZWGxsVg63Rh/I3Vjd5CJOiKQKGTZXsZooFSkhs6iFHHaC3yxRkCACbE4uxPBuAZT7yOOtVoy1Uo3W1azJxs4n0qoxnIaAajJQzO/Nv5lLycOYbDiW/3YPrU+pUJ8Z2M/x+ZhkbpbhO05etHHDOBtkIlldcuY/hv05g4Ir1PovAlc1KGKIprVJrZFYu6SIG9n2qGJsmqrFRBUAQarqtAyQ4jACDoCAuDtjdzTjbMYvTV2XXfJ5wuDK/XiwMHDiR1naQcov3794MkSTiw8WalLlZg72eaod0gzRUvIy/N4MxPB8AxHGRqCtWXl2SljjTsiWD8iA2hFHi++QJJEzk1SyrdhFxhyDR01p13sWBp1mPHR+pB0ov3gzIaVhy3llOUT85QLNkq35JpKJTuNgEAbF0unPxOb8KRvKjzE/sHAHQBABxSqogVPVeq+n/C3ghOfqcXti4XACw4hNnJ1rXcUomqS4uzcm2x4hr1wSOVpAPgDUKZWuohikKQBCoOWKAwSgHHKH57CGcfHoDflnwGPVlIGYHqy0v4waoMhzM/GdhU32csWqsKez/THFfywW9wAgCuueaapK6V1JvYYDBg586dmDw5Byvq1j3Wbwti5owDAXvqfklhD//S1lWpUbrbhImjNrDhzNZNhjwRjL0+m9Frih1DnQZbPliLo1/rkiJZAIILLy+FXrapMp98wd7jxonv9IBdiPCs5gxFSaSELpcxNWmz9p2xtOpRfUUpbJ0uRPzMqs6L/enm9U+yypJpBnh7N4mOcm6N4QzJYz1kQdXlJTj29W4wwc2Xy0R/ZlpFCXXu0ydTkIVKkLM/G5T6ZWKQ62hY2vSYOeNIye8515Ev9KJKPWY8MjWFmitL4ZsLCtVDhQ4bZuEa9mXl2iRNonS3CZ4pP+zdbsFGTwUBewgzZxxxKY06SBtKS0vR0NCQ1LWS3oKvuOIKyKq5DXtGOJZPfUf8TMozOfZuN45/q2fh3CRabqnMmBodraSgr1ZL0f8Y3KN+nP3pQELThvOZkGvRIZIAIgGGj15x6ztDsUQdo3zNDrlGfOj63Qgigcx8ZygFCXOLDgAwdWIeJx/qXbMJdyNnKBRZPZsSIYE3GliMmFJfxz5zxoGOXw+n3EiO+BmcfKhXcIbMLbqMzr8JeyNSECkGdbECdVeVgZTerwAApZG3a7Ld6yYWQp4IDv9HR0LDPPMdSk7CenFRxmxgpUmO5lsqQcoIRPwMjn+rB/bu1IbAouce/tt0XGqT9uAsdu3alfz1kv3g5ZdfjpGREQQQn0dKKUnsvq9JqCtMFdF6QoVBBnWxImNN/bpKFbZ/uB4yETREi4VIgIFr1Jf1hj6xEH15KUySQxTFenERirYkJi0cMeWvocgEWcx1uDZdYx0vZXvMaLrBKoxESLkjxgEggDktEEzDYx/2MXCNpCcKGr0XlJxE0w1WlO0xp+U6y6l9RynK9mbmWrmCY8CLw//ZIQXXFlCa5eBYTsqGSKwJKSNQeVHmHCKO46ApVkBh4K+XaruvZKcRu+9rAqWMz01hlSFMT0/jbW97W9LXTNohuvTSS0EQBOYRX9kYE2AxedyeNpUU/1wQp37Qz28YBLD9w3Uoak/fTAfnsBcnvtMj9RAtw3pRUcr6xXIdNsIh4AxBJTJZ5WyiLVVCXRH/97Lzv/gsRc8P96Hnh/vStaysorLIUXtVadp67yg5CX0NL2YxcWQOp77flzZ1psZZAocGyLQPGG17XzXK96fHiWBCLE59v09o6NfXqDc1U28jCIqQyuVWQZo/tIjSJEfQFc6N4cIZwNKqw5Y7arO9DFER9jJ467+74BhIX9asqF2PbR+uAwheLOHUD/rhn0t+aPZ6OIe8mDxuBxOIbyPwW/he0Jtuuinpaya9DZtMJuzcuRN2xN84Nf7mHIKOMAiKWNJYnWpImoBnKgD/Qt9GOkof2DAnlP9ILFK22wRtmTLbyxANAXsISrOkRBil+49jGHk+eRndfHSKaCWFoi0GKAzpySRG54ORNAGORVpLs3xyDk4Vl3ZhFe90IK3lQyF3BBzLv0tab6tC5SVFabvW4LNTmDxqT9v5c5Etd9QKgh8SgMokT2kfdq7DhDipnyqDRG3owHwI3qlA2u13giIQdITXHNWxGg5qFiUlJWhu3qDvdb1rJ/1JAO9+97sRNLnBJhjK2XpnLequLd/MpdeFDXMY+MukMDS17X3VaLrBmtJr6CpVqLu6LKXnzAdOfKcXUycy35QsVvx2KUO0GozDCcbhXPeYaHZoOfmWLXKP+3H8Gz0pLYehFCS0FXymduz1WZz5yUBKFd/WYsIIdJSn/zojL8+kvF59NdgIr5g09jr/YtZWqFKaLVKXKKQ+1FXwTvmlfpkYlGa5EOCVABwDHvQ9OZ7tZYgLAtjx0XqYmrQpPW3TDVa0va8aAOCZDGDgL5NpLfGuu7YcW++sTegzHMdhzD6CSy+9dFPX3tTOfsMNN2B+fh5O2BL63MQRG6aOZy4iNvraLKbP8Ea6XEunpMldoZfBWJ/aB08i/+AzRJJDFEVdosChB9uhWcgiruUUreUMxZJvjlEqM9m1V5Wh5dZKgOBLwNLee8ABbZMEVBm02eQ6GlWXp1+qOugI8yWGBNByaxVqr0pdIGzLHbWoeXtJys6XLwy9MC01zMegNEsZolhkWmmcxQo4wDsTWFMkJxEUehnkC3PRps/MY/S1zCkqTx23Y+JIYj5FuMgLt9uN97znPZu69qbewLt370ZFRQVmMZHQ52xdLninAgCBtJWJxOIc9ApyhFWXF2PrXetLhcfDXIcLp77ft+nz5BvWQxa0v78628sQDX5bELSCytp8E7ERmA9j5JUZhGJkOTfKFG1E7yO7N7usrKMqUuDA51uhr15/cO16UApSmNUw8tI0zj8ylLGSXm2Q7x9ShYGymzqFP+lEYZChYr8lcwEHDjj/yCBGXp4GwCuhbdaJPf/zQalcbhkKg0xS5oxBpqZAKyhpdEMMWz5Yg/prpQqd5fQ9NQH32OYHfW+7uw5Vl/HBJtewD87B9PT+xxL1BbxTAWE2XLw4NbNQq9Wb6h8CNukQkSSJd7/73ZA1sEmpu9W8vRTb7q7LqKc/9Pw0uv8wCoBXvrMesqS1HrLQ8NtCcKXgC5kvRKN6KovURwTwsxLG35xbMacgtoQunuxQFELJR8N6H9md046Rfy6Igb9MwreJBtXG661ovrkSAN9gm8mSI+37O3Hiyx2Q355eJygW95gfx77endHIedAZRtjLP3PNN1ei8d2bK8X220JSadgyKi8pwpY7arK9DNGgLuaz6b7Z9DSv5yL9f5nE5DEpkLAcmZqKW5UtFpImYD1kET7b9ftRDD4/nerlrQlBEdh2dx1qrixN6vM2Zhp79+6FQrE5O2vTNRo33HAD+vv74U1iBN/kURv6nhrPqEwzE2LhmeANdkONBpWXFicV5au6tBhbP1Sb4tXlPvYetzSwNga/LQSW4aAukYQmoihNchRtWX0OUSLZoqgzFEsuO0ZTJ+YRSVBmmFKSwrT2oRem0PGbkZSsZaMZRK7TFiELVHNXHyg5mZEepeWwEQ6UnMxIpcFyOn4zgqG/TQEAFEZZQoYIQRHYcket0OclscjISzPo/kPywiv5hrpEATbCImCXHKIo7lEffDPS/VjO9o/Uo+qSxMuIKQWFqktLYKjWAAA8E36w4czJPHIMh76nxjH5VmKlcgDA6kMYGxvbdHYISIFDdOWVV8JgMGAaowl/NuSOwDHAp+IMNZrNLiVh7N1uHP9GD8Jehn9B3V4DXVV8JSvuCX/Cab1CgCD5UhJSJunIAgDHcvDPBaEpkTJEUYz1GjTdaF0zM9x877FNXyNXHaPKS4thatLFfXzrbdVoup7PUgQdYWEYcKpwnbas+ieWxndXCE232aDt/dVoeFdFxq8bcoWF3qym661ovS3+eyDT0OBYLmMDeXOJsI+BdzqQ7WWIBnWJEv65oCRDvoBMS6PioAW0NANyBb1PjmPqZHyiVroqNbbcXgOCJBD2RnDsG92w96RfqGY5UdvfMeBdUkofLw7TNGQyGe6+++5Nr2XTVqtSqcRtt92GKYwkPRRVV6XGtrvrNlU/nyzReRy0kgLHQWhI20hJyNHvkWq/V0Gul2H3J5qgj9OxLAS8MwEpQxTDzBkHjny1Uxrguwr6SjXURev3xMi1NOQ6vuF18NlJ9DyR3Wh671MTGHx+KmvXH3xuCn1PJ9bHmmp6nhjD4LOTAHixh2hD8lqEXGF0/HpYapRfhqZMifpry9M69ynXUJco4JWyIQIqsxw1by8FJQVdV+Aa8W24pwhDuf0MOA6CY5mu2XTroa/mbX9dZXKZco7jMOzsw8GDB2EybV6mn+CS9WJieOWVV3DFFVdgL66AkUhuXoOuUpWSZrBUseOeejiHfRha40WvssjBMtLk6BUQvFHnnQ5k5QsmRiovKULlxcU48tXM9VfkC2upyK1WLrcWtGzjYxsf4I1ZZjr+uWrZYtfHG+GdDqDn8eQcoWcnTm94TMtP79vwmNovHk7q+stpWxBh6UxRuV+2ab65EppS5ZqiOwq9DHI9Lar3nVgwNWlRe2UZTv2gT5rxt8DBf2jD2BuzgvS7hMRamJq0IEhizZEEtVeVwVCtxpmfDGR4ZWuzGds/ZPTi1fm/4Ec/+hHuueeeTa9l/TBWnFx66aWorq7G5MgIjEjOIYreEHOzDn57KG3Tb+Nl7PU5hDy8s6M0y0ErKaH3CADq31mBSIBB9+8TLxXMazjANerL9ipEhXc6CFpJQa6XpbykKVepurQYMi2Ngb9Mrntc873HVjhF6XKGAIAqXSmBnGkniSABdalSmKMG8Cp0YW8EET+DnifG1g3EhK7dSIr8dErWqS5RoPW2KnQ8OpJ1BSylSY72D1Sj63ejWW8+H/jLpNDXRasoyNQUP8R7gZJdRlTst+Do17qlLOky5ns9mO+V1FujyHU0aCUl9ctIxEXxViMoGbnEIdJWqBAJMAjYQ7B1OuEWgX2mLlZAaZLD3uPeVGDIppuANqzFnXfemZJ1pSTnSJIkbr/9dkxjNOEhrUsggOq3laB8b/YnVNu6XMIvqmK/BS23Vi2Zvt731DiGXshemYiYsbTpUbbXnO1liAbfDG/YakqlPqIoIW8k7nrh5nuPpaSvKBmykTGqOFiE7XfXCaUNBEVg2121qLyYDzZ5pwKi6D3hGA6uUR+CzuyXfQWdIbhGfeDY7DsYkQDDj5UAUHlxEbbdtVRJdfQVflCu5AytROo9XUp0Xpt3RuqpilL/znLUvD05NbJ8p+fxMXT+NibTTgCtt1WhYj9vj7nHxNH7XrbHhOorSpbY1InCESyGbH14xzvesWl1uSgp233uuOMORBBOeCbREjjg/CNDGPiruByNgWcncf4XgwDHN8O23FoFjpXK5dZCZ1XBWJt5kQyxEnSGEfEz0JZJilJRpk/OYyzBYW+JOkbxZIfEyPSpeZz5yQDUJQqQNAGO4dDx6AiGXxJXOZ/fFkLfUxOiaPbmWH4GR2wmRgyMvDyDjt+MgGM4kDQB3UKfrNQ7tBJNqRIH/6ENmnKp3zKKrkKNsC8i2RoxBOwhBBzS92ct5DoaLbdWQqahAQ4498ggBp4VmU391ymc/8XQpspiQxUueL1e3HffxuXd8ZIyh6i9vR2XXnopRrG5dHdU1EBTruSVqMQQMOIgbEgKowxKsxwVBy3QVaqk5s9VGHphGl1SKeES3BN+SWJ3GTItDZUl8aGaTR86iaYPnVz3mHidodhyObEQ8TMIuSPY+qE6lO7ms+WeCb+oMgptTCjpRth0oqtUoeKgZeMDMwQb4YRS67K9Zmy/uw7l+6Xs+WoE3WEM/HVSKg+LQVuhXFKqLwFMvGXDdJxKaoUEJSdhadOj+eZKqMwKoWw36AiLoh+PIIGmG61CwCNq6yfLCNOHmpoaXH311alYHoAUOkQA8MlPfhIOzMHDbW7yPADIVDSUJjlIkTkcnnE/zvyoH+YmHVQWBXbf3ySVh0lsiHvcJ0oDMpu03FKJ2nckP218I6dos2SjXM7SqgMIgAky8M0ERJF9WQ7BcWgenYfOKj4lSZ1VjeKtBnEE0pYxedyO8SM2OPo9ALHwu5YQiPgYTB23i8rxzzbaCjXckkMkQMoIKM3yTZVa5SNle83Y/ckmfl7VfAinf9QPz7i4nhtSTkJpkkOm2rx0QVgTwPDkUEqktmNJ6Wvj5ptvRllZGcbQv+lzOQY8OPfwIJgAu+a8kmxy8rt9mD3nxMhLM/wLDryEoCQ3zUtv7/1Mc1Zk1MWKZ8IPuVYGuT7zAyTFSv8zk+h7enxT51gtW5Sr2SF1sQKt762GqUELjuWHHPttiUXLNxJUeOmnP9rMEgEAHEHgzI8HMHE08SF66WbiqA1nfjwgSkeSi3AYem4KflsIpkYtWt9bDXWx1FcIACB4Nc5sDNgVKwq9DHItLTrDNpvoq9TY+6lmKI2JVxbkG/oqtWBjOfo9GHl5Bo5+L/qeyu4IgtUgKAJMgMW5hwfhGPBs+nw28yhUKhUeeOCBzS8uhpQ6RHK5HPfeey8mMYIIl5qaV0pOYue9DULpiJjgWA7Tp+YFhaXyvWZUXb5SparQCHvCmD3vRNib+JCtfMW98FLTWaUsURT/XBBhb2r6fKKOUa71DZEyEmV7+L3NNxvEyYd6Md/HvzBGX52Fc9CbzeWtQMmx0Ea9DTEG8hfWpDTJ+Rp6kVC2x4TKSxcnyM/3enDyoV5BEa9sj6mgBQWURjkqLy4W5mtJANqFd4WUIVrEPebHuZ8PSj1EAKouL0H5QnVSYD6E6VPz4DgOMg0tqiRC2R4Tdt7bkLL2Eo5m0DfdjXe9610wGo0pOWeUlO/A9957L0BxmMBwSs7HhFjMnnPANSwew0BfpcaeTzWt2Ly7/ziG7j/wvTNaqwo77qmHbIMBffkIxwLDf5sWXYNzNgl7Igg6w5JDtIzKS4tTWnJa94EzqPvAmU2fJ1PlcvpqNequKRd6qZZ/ZxQGGRreVZF1Y7n2i4dR+8XDOPDyEK5zOkGQ4nnhLocgCWz/aL2oeolk6pXDWqO/a5VFjrprygs6ox6YD+Gt/+4UAkcSvFxy0BVGOE41zkKACbFwDnnFGYxJMzItjR331Au9yN1/GEX3H5fOolOZ5Tjwf1pFVZ7vHPJi9pwjZXMpPVYbgqEgvvjFL6bkfLGk3Fq3Wq14z3vegyd+8yQquXqQZC3iOAAAknpJREFUKSjmjg4kI0gC2gpl1gfahX0R2DpdqzaFCX/HcvDNBoXNTFep4hujRVjKkQ7kOr4HzDWSfc17seAe94my7yKbyNRUWs4b6xQNPrpjxb9ns1xOaZbD3KzDxEI/yfFvdq+bKTPWa6CyyAUp53RzTcVO1GL1oaujr8zA1uEUhbz1WnAsh45fDwty92JgdB1FRb8ttOQZqDhogb3HXVhKdAQK5t0YL/oqNdxj0vszlooDFvjmgkKbQr5DkLxj7B7zI+yN8Blljt97V7M/g84wOh4dFoUwCW/zBuC3hVI2VJjjOPQ6zmPPnj3YsWPle32zpCXs+OCDDyIAH6aQWqWxigNmbLmjFrQyPUZUvPhtIQy9MA02srZR4JkMoPdPfH8EraKw7e46lO0pHPGFst1mtL6nOtvLEBWuUR+0VpWo0tnZZvDZqYTltxMlVVmjVKGvVqNivwWUgt9+13OGgs4wTny7N6XO0DUVO9f9sxYEuaCaNikeR2MtPBN+sBEu6+IKCoOML/fe4CsffQYoBYmK/ZaCyhbJdTQOfL4VOqn/VoCgCOisKjhFVBkjBszNuoKqsijbY8a2u+pAqyiAA3r/NL7u/stGONh73JtWcNsstJLCljtqUXEgtTavr8IOu8OOL33pSyk9bxSC47i0hPquv/56vPj0KziEq0EQqTEACZKfVZDtF7LSLAc4JDSdXV2iQNARBhNiUXHQAlpBYeQVcc0VSSUyNQWQhJTuj0FTrsSuextx9qcDcIlgWrRYIGkCtIpCyJ3+Z2XgK4c2PIapCKZcwa5oiwFKkxxjr/POH0kT6wZUlkOrKJhbdJg57VjzmHdfmMcfJ3auex75VcmVMtMqCrs+3ojeP42npCk2lrb384GTzt+MbHBkYhjrtWi60YpT3+/LmoFQvs+MykuKceI7vWDD8aVAYp+NykuKEZgPYe7C5pVbxYpMQ6F8rwXjb82BCUhpIoAPmmz/cD1Ofb8P3mnxByAkUkf15SWIBBlMHLGBkpNQGGRCr2E8WFp1YCOc0IuaLbTlSninU6eUynEczlleg6XEgo6OjtScdBlpa3D5v//3/+Lpp5/GLCZQAmtKzsmxEJyhqkuL4Rj0ZKV8rubtpZCpKH6wVJzEpjAJigCxkOQiSAIqizyhBz4XCPtyq7k9E3inAogEGehrNZJDFEP7B2vABFl0PpZag3gz9D6ye81/U6jWFowxaJbtRxwAAigapyDzk5D9Ky1kC1bLc9dq7KueVzmmg+58Mfb+ZAykMgtDGjlg5qwDnqnc6fHwTPkxc9aR1X6DyWN2zJx1xO0MAVjiKKuLFUKJTL4S9jJ5HRxMBkONBpEAA6+Iyj4l0oe6WAG/LQiOBQgKQhUJE2ITtg1Ld5sR9kSy4hDpKlUw1Gkx9tpsyhMXwXInZiZn8L/f+N+UnjeWtBUUHDp0CFdccQUG0YVUJ6EIioCxQZu1fozBv06i/5nkpQ3H35jD8Iv8C8DSrseu+xrzUm607poymJulWRsCHOAa8cFQo8n2SkTF8N+mMfh8+idpx5Md2oj1nKElcMD2fhnqp3i3p7+CwenGcNLzMwJWN4zXHVvXGdooO7QZIgEGw3+bRiSHAh0R38KaA5lfM0kTMDVpAQBMMPkQac/jYxh7g6+/t15UhKYbUhNcFAukjETZXrNQPirBo6/R8P23+e0LJ0T5PjN2fbwx28tIOQqDDLs/0QRLmwEAMPziDMbfSL7npuPXw+h9cnPjLJJFZ1XD1KBNS1vAINuF+vp6fPCDH0z5uaOkdRf6f//v/8GNecwhtQ3MHMPh/CODmHiLn4OR6c005ImkTEHN1uHE+V8MIejkDZ2mG60wNeWHE6E0ytPWNJ+rOIe90Fepst7bICbc437RNJAzFZvL1JIshKyQX8EiKFuwaOJ4P6yVHYp+nlSGwTEEwlPGTa0xUcr2mFCyI7PXTCUlO4wZH9tQtNWAtvdWp1RGOuQOI+Bc/J6QdO73IuoqVKi/tizrfcGiggD0VSo4R6T+oVi8UwE+45sHmJp0aLqRD24EnWGce2QQts7cLYuN2uATb9lw/pHBlA9XDpW5MT49hi984QsgyfQZT2k1y6688kpcccUV6MP5lGeJonWJhloN9n6mGaqizAy4o5UU6q8th9KUmsFgHAth1ghJE0u02hVGGRTG3M0cdT42gul1eh4KEdeQF5Scgqa8cBpD46GoXY+at6dvhlcqskMbIWM4XHFGAesc/x3urWQwXrSYHShSb97ACQ2UwftGO9hg4oZ2sv1DmjIltOXKpD4rBrTlKmjLMrv+mdMOnPp+X0r74mbPOTH6Ct+DVrLdiN33N4FS5nZkxTnsxVv/3SUEBCV4VTFKTolq1IgYcI36MP5matTKskGsPUcQ/IzNaFDDOehNWa+NzqrCznsbMhZkUBUpsPczzTDU8pUvqVaL5DgO3eEzqK+vx8c+9rHUnnwZad1NCYLAV77yFXjhwiTS0x/gHvdh/I25hCe6J4tMQ8FQp0lLdI6NcOj63Sjme90A+IbarXfWpvw6mSQfopipxDPpRyTIwFinzfZSRIVMQ6csyJBROA4WHx/sUesDGCyLYF6XvjoXecMUdFedAqnInFhJ/58nMfDX9Jc0pouBv06i/5nMyKyTNAH9glpaOuewuUZ9mDhiE0QItLmovLXwathMSWE+YmrQIhJg4JEGsi7B1KTN6QDA1jvrUHkJP5zZ3uNG1+9GExLWiZewj4Fn0g8iQ7aX3xbE+BtzcI+npy/aV2HH9NwUvvzlL6c1OwSk2SECgAMHDuCWW27BAC6A5VJfy82GOb7GmuMV6KJearrw20I49b2+jIggDP51Umg0l6kp7Ly3AZrS3InUaq0qHHqwnW8MlgCwmBE0NUgOUSyTx+zo/sPYxgcmQbzZoY3K5VbrHyrxAtcMQHCKBssZ+JTpc4gIkgOl5+eZhSfTWwZG0nyvZr5gbNCmPUBTtseMLXfU8DK5aSQwH8LEEb5kXGtVYec9DWl/96Wa4m1G7PlUE0iZFDSLxdighWPQI81likFlkWPLB2uhzaHKCk2pEjvvbRDaBjofG8bgX9MfmAnMh9D31ETaFX4NtRreHuWAsTfmwIZT/97jCBZd3tPYvn17WnuHomTE3f73f/93hMgAxjCQ1utYLypC9eXpK7vJNGyEE9TpSDkJvy0klBaYmrSid478s0H0/XkCIUl6ewnzfW7oqtRSI/EqpNp5TkepnCbEocHOb/4zGuCFWsCW4fd0eMIC7+tbwLjSd2FLmx5bPliTF4IvCoMMWz5YA0ubPq3XmThqw9mfDWZU5tsz7se5nw/COcSXWJXuNuVEqbVvJoDpk/NpMaRyFUpBQl+pLpjBo/Hit4Vw7BvdcItcnVVTqhTEVILOMPy2EMiFNgjfTDAtGaHVoFVU2veA6stLYL2oKK3XcFfNYN45j6997WspG9+zHhmxyFpbW/GRj3wEg+hEmEtfGUHvk+NCRoUg03Pztt1Vh7qry9Jy7vUIOsLo/sOooJhUfVkJyvfxQ68IUpylaUyIxfTJ+awPCRMb8/0ekBQBY11uRXTTTekuE3b+XSPoFApx1P/jYdT/4+GUnQ8ArG5g6yxAMxxAEJjREnxR+Dps1D+0rqACgBb10pI1mdUG3VWnQOnTV1Yze86JU9/vy4v+jqAzjFPf78PsufQ0Liv0MiFamsohuvESdYZIGYnqy0pgzgFhHu9UQFDQk+Ax1mlBkETWZ8iIkaAznDGHIhFImhBEksr3m1F1GR+UjwQYdP9hFEFH5vfPxndXpE2RMmpbdz42klY1O07GoGPuNC677DJceeWVabtOLGkbzLqciYkJtLS0wOQpQwuxM63XouQktn+4DuNv2dYdZJgMxdsMCHsjcAxkueGR4KNJTIBFUbsejddbcfzbPaKTxdWUKqEuUaTNEMlVdn+yCc5hL/qfTl6+Pd+glCQ0JUpebjbNLM8cbVQut88VAksA50sIkCwHAgATE3RZMX9oGal2iKJwHBAeLYaswobHZ7av+flEBRUoBZmx3o50DWZdi3T8bE03WKGrUuPkd3uzLpVM0gQ4FuBYDlWXFYOgCIy8JK45P+ZmHTgOQr+sBE/DuytgqNHg5EO92V6KqKi/thzuMR9mz4vLjpCpKez5VDN6nxqHrcMFSrmwt2R5D1AXK8AyXMrVW0t2GmE9YMHZnw2CCaX3/TBd1Y/OiXM4ceIEtm9f+92WStI2mHU5FRUV+NKXvoQvfOELqOBqoSOMabsWE2Jh63anZWiraAx7DkJDrXvMj6GYGSH17yyHrcslqNdlE1OjFuX7LOK5byLB0e+GuSW95Tu5BhNgM+IMAViSNVqrrE7BcAiTAEsQYAiAWYgCsmnKPicD55fD/Woz+v48AfnZ5FTklkPSBPZ8sgkjr8xg6sR8Ss4pFsr2mFB1eQlOfKsnpdHm/mcmINfJsm4IAUsHu7IRDkRU+Z0kQClIUWTsi7YYQFKE5BAtw1Svhb1HuifLoZWkaKpgDHUaWFr1GPjLJMI+BkN/m4ZnwdaM2mTZJl097u4xP2xGd9qdoYg+gAtjZ3DnnXdmzBkCMpghAoBQKIQdO3ZgqmsOe3B5RmoCCRIo2WnC9MnNv9h5OUxSKE8QIyRNoP0DNZg8boet0wWlWQ65ls6YobkcgiJSrkmfD5gatdhyey1OPNQL/1xmFBJzAZmaQuP1Voy8MpOV0qMolJLEvs+0YOiFKdE7BQqDLKVlbQQJlOwwwTHoyUi5RyYzRAqjDMY6LWbOzKekab1kuxHOYW9OlBWW7TGh9h1lOPbNblEYbiRNiLIEKluoixXY/YkmXPjVkFQyJzL01WqEPBEE7CFY2vQo32tGx6PDon5+qy4rhmfCn5JnqXS3CTOnU7NnbgTHcegpOw5f2IPBwUHodJkr/81oV7dcLse3vvUtODCHKYxm5Jr6Gg3qry1PiQBB2V4zat5emoJVpQ82wuH8L4Zg63QB4Psymm+pFP4907KVkjO0Os4hL5gQA0ur+Gv9M0nYz4Cgls7jyhS0mkLFAQsAPtLX/+cJzHW4Mr6ORIka4+ZmHYraN5915Fhg+tR8Vmrf003QEcb0qdS82EmaQNXlxSjZbtz8yTLAXKcL/X+eEJyhigOWlPbrxUv0HSRmYzIbWFr1iAQZOERQ2SEmKCWZtp7wja4LACCA5lsqUbqLV/W0dbpw/hdDon9+DTUaKM2bH2WhKVWi/tpy6Gsy0/McsNoxOjWMf/3Xf82oMwRkOEMU5bbbbsNTf/gzLsI1oIn0q+HItbSgdEbKiE2p2tAqShQlB4mg0MsQdIVBqyjs+2wLep8Yy6ihV39tOViGxdDz0xm7Zi7QelsVFEYZzvw4veqLEvFhqNOg7X3VOP3D/pTXXmeCphusIGgCPX9MXr68fL8Zcp0Mw3/L3Hc10z1EAFBzZSlCrjAmj63fu7URtJIShG5yCaVZjl1/14COR0cyWvFA0gT2f64VQ38Tf+Y10+z4WAMC9mDaxg/kKg3vKoeuUo3TP+jP2DWL2vVouqkSx77WjUiASXkWPheItZVjbeh0wtEMjin/hvqGepw4cSLtc4eWkxXd36997Wug1ST6cD4j14v+Iq0XFWHHRxs2VYuaa84QAARd/BeZDbMYeGZCeAFWHLSg/tr0K+b5bcG0DinMVWxdLuisasj14pfIzTQKoywjwyarLy9By0IG1TnoxbGvd+ekMwQAfU+Po+fxBWMqyS2OIBYVk/IZgkxeiVRTpkTbe6tBycmcdIYAIGAP4ejXuoV3Qcutlai6vDjt1+VYDv3PTGBekpVeglwvg65CBVuX1D+0nMlj9owEU+uvLUPFQb5CwDnkxcAzE2AjfDY1V50hguSVJxOFpAnsuKcB1kP8/cjU6JSZikH4/D78+Mc/zrgzBGTJIaqursZXvvIVjKEf89xsxq5r73Fj6qQ9qVRn1WXFaL6pcuMDRQwb4TB92oHwgvgCG+GE5jiCBGrfUZoW7frJY/aU9HDlG/ZeN1iGlcrmVqHh2nLUXpme8lRthQpyLa8n450NwB0zET5TymrpgGMBcICqSIHd9zUmNdNp4i1bQWRyh56fxsRbtqQ+S9K8OEHmaytSS+yz7h73C43Ych0NbUV6ghEcC8yed+ZlOeZmsLTowDIs5vskh2g5vpkgHAOpd6AVRhlq31EqBICYEAs2zH8nwj4G06cdoi+L24g9n2pGZRKzgtgIh6kT9owKfISKPDg/cgb33HMP9uzZk7HrxpK1WOAnP/lJXHzxxejAcTBcZrxP/1wQk0f5EomiLXqYGuOfwh6wh+CdyV6TdzqYOm7H8Iu8HKvSrEDJdqPQu6EtV0Jl2Xz9aRRVkQJyXcZEDXMCJsjCMeCFpVVSm1tO3zOT6Ph1alTTYiFpAlvvqEXp7oV68A4XJo4kZxiLlZAnDPe4P6GoHikjUb7fLBolp0xA0gT/M8cZQY1mct1jfr6HIJy7zvNyJo7YYOtY7Dvdekdtyp8FXaUKDdeVJxWxzncsrXo4B705HZBJB5oyJSoOWFKWtVZZ5NCU8/3ktIJCyXYjlGY+cDT8Yv6pag69MI3Z8464jzc1aoU+1Mmj9oxV9nAkiwuRY6iursY3vvGNjFxzNbK2M5EkiZ/+9KfglAz6cSHj17e0GVDUboj7+NnzToy/mb9D5PxzQRz9ejd8M3yUsPqKUtS/s0L4d6Vpc87R9g/XoWy3eVPnyEdsXS4YajSgVZlvbhYzIdfCEL4U2GSGGg12fKxBULU689MBjL6Wucx0pmECLHr/NI6InwGtpuISlDHUqlF7ZRlk6sIJWsjUNGqvLIOhRr3hsZSCxM57G9I+mV0MjL42izM/HQAb4fjSmY81wJCChmq5TgZ1sTKvHMlUQKsoGGo1sHWJX8Al02grVKg4aNmUCEqs7dJwXQVqruAHp3qnAzj69e68Vnmdu+BMyKkpajfA0ha/XZwq5iqH4XA58PDDD0OhSLyyIVVkNVTT3NyML3/5yxhBL5xcZqO03X8YRd/CUEyVRb6u4WVp1W/aIcgJYrLDnb8dQd/CFGJNmRJ7P90MfTVvOCQTOTz/yBDGD+evQ5ks9m7+JWhpk7JEy9HXqLH/cy2QaRM30pVmudCDFHCG4J8NglLw251/LiiKeTGZoPbKUrS+p2pDx3K+14OjX+8S+g0LgaArjKNf74pLlpYJsuh/eqIwSn85CEYipSDhnw0i4OSNKp1VlbRyla3ThXM/H0zZMvOFaER+rlNyiJYzfXIex7/Vk/DnojaKvlqNvZ9uFoJCvX8aR+dvYxSOC+A9ULRFj/L96wSjCQjVQH1PT6D7j5lRgI4StvhwduQk7rzzTlxxxRUZvfZysp67/tznPof9+/fjQgZL5wAAHN/gSdIEtt1Vh+qFqMFq1F1dljPSqqmCYzjBOPLPBdH52DDcY/wso8brrbyRlQDe6UDah3nlImEvL7Nass2Y7aWIDu9UADNnHHFLt8eWVdRdXSb0IAUdYfQ8MYawNzcb4DfD4LNT6PjNyLov/qiBK4bZNJkm+jOvZeQXbdEvlld2uXJWRCFZwl4GPU+MCT0/NVeWou6qRSGeeEuZ9NXqrEjp5wLF24yY7/cIg9UllpGg09L6nio0Xm8FALjHfOh8bAR+G+/gB13hghsFoi5WQl+1doa35m0l2HZXHUiaAMdyGXUSWZJFB3cMVqsV3/ve9zJ34TXI+g5FURR+/vOfg1NF0IMzGb8+G+HQ9ftRTBxeO0N18nu9GD9SuNkNNsLB1uUW0tYzZxyYOeMAwDfg7rm/CZqy9ctyaCWFxhusGx5XiMyec8BQq5HU5pbBBFkMvTAdl7KjwiDDvs+2CFnM/j9P4MKvUt+DlGswIZaP9hNAy61VgopSFJImsOOj9ai6NP0KY2Kl6rJi7Pho/aqZb12lGvrKjUvqCoULvxpG/zN8ZYW+Wo19n22BwrD+vkWQQOt7qlF1WeE+Y2uh0MtgqNFg9rwz20sRHVqrCvseaNmwOkdTpsSe+5uEHuWZs4v2CcfygYxcF0fYDCMvz6D7D2tnfcbftKHr96NZuUczlf2wO+x4+OGHoVRm3zbMukMEAK2trfjmN7+JcQxihhvP+PVdIz5EAgxoFYWd9zbAUMt70yTND4hkw5zU7BiDY8AjqI8QJAHnkBcBB19SUX1FCequXinlzYQYqIsUkGVhEKDYsXW6wIRZFG/NfO1uLlCyw7hqhtZQp0HlJbyRFXSGMXViXshqhtyRgosErgsH+O1BBOaX1pOzEQ6dj41g+nQBlIKtwfSpeXQ+NiIYBKSMgG6h3HLw2Sn0Ppn5d5JY4RgOITdfyRF0LXznFiSJKy8phqFuZSSaY4HTP+zDWB734CZL0VYDmDALu9Q/tIKIj8Hseceqktd1V5cJVT0BRwjOIa8go2/vdqdFlS7X0dcsZmkNtRrs/FgDP1czwMA14sv4evxlDpwfPoNPf/rTuPLKKzN+/dUQhUMEAPfccw9uueUWdOA4AlzmfzkAv9l7pwOCcV95STF2399UUMpLiRJ0htH39OL087A3IqhbUXISW++shaZMCY4Fzv50AI4BaQr3cpgQC3uPG8XbJIdoNfTVamgreQNVV6UWIoHqYgWvFLnw9Rx5eUaS812HkZdmYO/mAxkVByxCmZhrxCcYuYVIyB1ZNAgIfjZV6/uqQVDSvr8eQUcYIy/zKqUgeIUqdRHfEC3X0dBVqviSOoK/x1JJ2EqKtxpg73ZL5eSrEJgPYeiFaXAsB02ZElvvrBUM+pA3grCX37OYAIu+pydydlZQJqBVFLbcXouSnUYAvBPpnQlkLWjIqsI45TyMHTt24H/+53+ysobVEI1DRBAEfvSjH6HUWoLzOAouC0MemBCvzhR0hEFQfHZo8LnJgk63JsrkMbugxkerKbARTqi7L9tj4gfBSnbGCmbPOaAtUyU1OybfGXp+GgPPTIKkCWy5vQbFC9miyaN2nHt4sCAaY1MJpSBRvs+MhuvKhaG0EkDb+6pR+45SjLwyi/OPDEkZxkTggHMPD2LyGD/Woni7EVtu5+Xtd3+iSZj7JbGIqkgBbbkqIVnkQoEggbb3V6P8AC8GwARZsBFOUGMdf2NOeNYkNibiZ3DuZwOQaWgQFIGgI4zeP41nxRHnOA59hjMgSQKPP/54VgawroV4VgLAbDbjl7/8JZyEDYPoyt5CCEBfqULxdiP8s7k5tV4MBB1hdDw6LETtFUY5Kg4U8eUoBLDl9hro45C8LQTmez0I+yOCsS/BU77fjD2fbgJB8tmh0z/qx/gbUunNZmCCLE59vw9Tx+fhHPbC0qoDpRTVqyDjWC8qgqFWA+9kAGyYzWsp3kww/sYcTv+oH+5RP6ZO2rHrE43rK10VIKU7jQj7InGpHBYC+ho1ttxeAxCAulQJS4seCj2fxQ7Mh3hbQsoCJQ3HAmV7zLC06bIalHbWTGBkcgjf/OY3UVdXl72FrILo3oJXXHEFvvjFL2IAF2DjsjMxveqSYjS824oT3+mBd5ofxioZ7ptn+MVpdP9xFP65EGgltTAZmo/CFm8zoOXWwo1WcyyH2XNOlO4wFnYGjQC2f7ReUPaa7/Wg/+kJqCxybPtQnVCSI7E5eKEUF2bPO9F4vRVlu0zZXlJWiEacZ8860PvkuNTcnkIC9hC80wFM/v/27js+rupO+P/n3uma0UiaUe/FljtuYEpoDgmBQGihpRISks2GJJvsb7Ps82x2N5t99tnybOqSJewmkEJJCCV0QjEYjME27t2S1Xsv09v9/THSlYSNq6Rp3/frJXs0c+fOV9LMved7zznfs2WIo891MdwQb/gXr83jnC/VZvRxTlGhcGUefXtOvYpmOlr0yQp9qHgsrBENxTBaDXi7A2z5j0O0vNqT4AhT32Tb1dsbYM8vj1J/fXnCqiaHCsfZ0b6Fm2++mS9+8YsJieFEki4hAviHf/gHrrzySvaxJSHzifr3jdKxqV+fF5O/1MmKz9ec8foLYoIG/XtHiQSiRPxRDv2hHU+XH4BYVJtRTWzlXbUUTTbSMuTE2btjGHO2CVd9dqJDmVeuRdks/XRV/BsNhhvG9TKpgeEQAwfG8PWH2Hl/oz4HRpw5a56ZumtKMVjVeG/RfY10bYkPP3HVZ5+0ali6qPpwIed8sRZFVQh5IgweHMNoNVB3TWlmrDs3hxRVof6mcuxFVrSYxsCBMb2gh38gxPCRcX2o69JPV+FalGHHvPpszA4jvTszpJjJxDm8aE0eK++q1e+OBCLEJhJCT5efQ39o19sBYW9EhkOfJasrfiHRPbHWVWA4zIHftdG/d2TeY4lmhdnu2UR9fT0PP/zwvL/+qUjKhMhgMPDII49QWlXCHt4hqs3PZEx7sRXFoBAYDullGwEGDoyx+4EmAkPxA/rkAo/i9FlyTFRdUXRMoYrBA2McfaE7/o0S7xmYbBS7Fzm54K+XYLQa9H2kY6ELb2+A8U4fxWvS+2q9oirU31AeL4hAfAhX2BPR/6btb/Yz1nrshRBvT7y3VjXJ5+9s2NxmnOU2tIm5kSFPJL7+hALVHy2mZJ37JHtIXQaLiiU3nvD17Rml5dWe+M8+IRaJ4Sy36QsVijNjzjZic5ln/G4njbZ6aX+rH4hXcg17InoV17wFDupvKNcrhqWrotUuxjt8+PrSb2imalT0iypGq4EL/noJ7omE1z8QjPcUTvx5jz7fzeCBsWOev/KuWpwVMirnTE22UQNDIXY/0DTjdzxy1IMWg6xCC7m1H7w+0WzSlBiH7e9hNBp5/vnnMZuT8/iatC0Lt9vNk08+SdDi4wi75vz1VFO8IlrlZcdfK8HTGe/JKFyZy9q7F0r56DNkMKsUrco98RVYDdo29umVn7x9Adre7NOLMyz65NTCa4pBoWBFjp4spbrencPkLcjWK6mli/xlThZeH/+bTS6IrBrjh5/RFi8Nz3SeUvGSknUu1vz5AqkAdhaGGz3svP/osb9vDXb/z1HaN8Yrh+Uvc1JyXnrN+1hyayULro2/D/0DwWN6HGMRjZ33H5V5HWcpOBpm9y+a8PWfuMEfi2g0PNPJaEu8+qhqVKcWiAQWXl9G/jLnnMc7n8zZRvIWOOhJk94ho9VAwYoc/Zi84LoyFn0yvnB7JBCl7c0+vBOJ31ibj7aNfSfs+TFYDfj6g4R9mVv58myYsgys/fpCClfmAlNt1/cruzCfysuL5iWmnvJGegd7ePDBB6mtrT35ExIkaRMigDVr1nDffffRSTOdWvOcvY6iQiwcY99vW2jb2H/CbYcbPbRv6icsJUTPiK8/yNYfHD7piXK6wFCIrnenFs5tfK6Tjrfjfyd7oYVFN1XoV33dS5yUXZQ/u0HPo/69o8Qi2tRwwVQzkacYswysuKNGXyhVe18xm0OPtzN4BmtvjByNf/5IQBXKdJC/LEcvXXs80VBMrzxkL7aRPW1R0lTsmVONCmUfytd7fJpf7qHh6Y6TPs9gVslfJmXwz0RuneOMh5cPHhrj0OMzF5GcPHY4K7NYcUcNxsmLkSl6TaRoVR6xiMZACs9XK7soH/eSeKJqyTOx6KYK7IXx+Z0dm/ppfG5q7a6udwf10TWnIuyJ0PB0J/5BKWh1JsK+KB2bBk56UafxuS72P9ICMKcXlL3lA+xv28O3v/1tbrzxxjl7ndmQ9Ge4O++8kz/7sz/jEDsZ1k6crJyJJbdWUv2R+EKi3p6T12UPeyN0b42Pt89b6GDFF2pkCN0ZOJsr/L6+oD7UwNMd4N1/P6gXv7DlW/RFFQHWfG2BfqXEYFWx5VuS+kQaDcXo3z8aT4iSOM5J03v6aj9ewtLbK4H4onrBsbD+eRo8OEbD02e/wKV/METvjuFjEixxcuZsI/U3lJ3yHLXW13o58lQ8echb4GDdtxdhdqbG/KLJRrOmQclal57YeXsDp7Tmkqs+m/obytKup3Y+VH24iPIPzc5FqYanOxk8GL9wokU1gmNhfT2jpbdXUfvxEn3blJj3pcTn0QzsH03utYeU+Ll0svpk4cpc1nxtgf5wdpkNmzueAHl74udgT3f8HDz9/HwmnJVZMgLgNBksKiu+UEPewvgw9K4tg/o6TR9Ei2rxefIKLP98NbVXl5xw+zMRLvCyrXsT69ev59/+7d9mff+zLSVa8j/96U+5fP1l7OEdfNrZD2UwWFV9vsJQ4/gZD4+I+KP4+oP6+GdxapyVWVxwz5JZm7wd8Uf1LviOt/o59If4FUZFjRfI8E2U0HXVO1l790IME1e6i891UTSxUNnk9smg570hrLlmXAuTb6JxwfIcfWy3syqLc79ZH08yic/76ts7ddXzyFMdjH9Ad/3ZqrisQF+pXJya0HiE9356hP79p39l2tsboP2tPkJj8bK3VR8uJKdmfsafn67Clbmc9xeLMFhUtKjG9nsbZswJPRX9+0d576dHMnrB2jO198EmWl6Z/Qqx451+PUEH6Ns7wnBDfMhjVoGFc79Zr1fUclZkUbA8+Xr43Iuyseaa6do2ePKN58H0c17RqlyKz40PkTWYVdbevVA/B/kGgvTvG9W3P/SHdjo2TVyg1phREOlsmLONnHNnrT7nSJyaaDCGrz94Zn8HDVpe7dULfFicpllZhiHqCPGe502qq6t55plnkmq9oQ+S/BECZrOZxx9/nJr6anbxNmHtzLtSVZPKud+o1z/4vTuGGWk6s4RovMPP0ee7AHCU2qj5WLFc2TgF3t4Aba/3zvkVMi0Wn6A/OYZ26PAYex5omhoSVGQhq9AKxJPkC//3Mv0Ki6PESun50yaXz+Of1dPlZ6zdN/P154mixouLTPZ6FizP0Xt9ID7uOG+ih8HTFWD/wy0ER+Ofx+GG8XkbBhILa8QiciHiVJmdJlDiSdGZVG4KjUfofCfeiFNUBWeFHevEBQ2b20zhObkJnQi/6KZySi+If16Gj3poeHZqTtrxJvaflDbxu1JImV6xRDM7jMcsxj2XBvaN6qW8AyMh9j/cgqcr3kuRV59N6YVTvVRLb6/UEySDRY0XUEpA66dknZuxNi/eid6UeTHtY1l6vhtHSfycl7fQwYX/e5l+rM8qtGIvil/cigZj7HmgiaEj8YTT0+mn/c3+Oe+ZD41H2HFfg8zhOwWKQaHmY8U4SuMjYo4+38V4x5ldgBxp8uhFi2o+Vszyz1SfVWwxY5S9ps1YrBZeeeUVHA7HWe1vvqREQgTxRVuff/55rC4Te3iH2Gl8MnOq7Sy+NT7JLxaOcfT5rlkvO2hzm3EU26RM5CmIBmN0vjM4a1eVTud1x9qnqpcdfb6b5pcn1jmIQdNL3XpXv6MsS29gAaz4Qg21V8WHVhosKjUfK9bHyZuyDLNeqrhr6yC5tQ6yCmZ/3R2T3UBO9dTV/crLC/Wf1WQ3svrPFpBTFX88EogSnHaVfPcvj9L6WvzqbywcY7jRo68lNZ86Nw/QsUkWaD1VS2+vZOF1ZbOyLy2msffXzfTuGgEgt9ZBzceK0SbmdRWtziO73HaCPZy5yUZsbp2Dc+6s0Rt7/sEQofF471XYE2Fg3+isrO9Sf30ZS2+rPPmGgqorilhxR2IWWoyFtYljUbxd0PpaL3t+eTT+oALB8QjhifNNTpWd1X+2AFNWfDhk2YXuGb3NOdV2TPbZn1ORVWght8ZB18SQ+9liyTHpRZ6sLjM1HyvWk5zaq0pm/E1KL3TjKIv3ovn6gjS91K23WZpf7uHo8936tmPtvoSMfvH1BZN7OGGy0MBRPPsVMY++0M3RF+IX+i05Js75Yu1pzQmMEeNo/k7GveM89dRTVFdXz2p8cyllEiKABQsW8NRTT+ExjVD9xVwMNlU/IdrcZn0CN8CKO2r0Bb+0mIaCoi/CN3BgjLB3dhvj/XtH2fvrZrSYhtVlntGYFscyOYyUXuBOmmFq0VCMnveG9JWwe94b4r2fHNEf794yyOCh+NUyo81AXp0D48RJp3iti1VfrtO3XXJbJRWXxqsVGq0Gaq+aSp6yCiz6mgAQf9/q8xSUeHe1YlAYPDBKcCxM6YVT7yNjlkF/D6OAvWiqJ8fqMs9YbK3kPJdemMFoNXDut+r13i/XIifLP1et/+4VVdGv7ofGI+z6xVFGmuNX6IYbPXovKBxbHCGRFHXiimfZ3DS+00nDM50zCpPMpu5tQ2z78RG9YVV6vpvcmvh7LavAwoo7avQLBlkFlhnJkjHLgDJxDFcMCtY8s/6+dFZNG/akwLq/WkzRmnjPfsQXwTcY0gtEtG3sY2D/6RfpOJnOdwZpePbs575lguaXe2h8Jnl+V/qxSotfPR85Gj+mjTR72PWLo4Q8Exd6FGXGsXD556tx1ceP0XkLszn3W/X6EKKi1XkzKi8WrszVj+0Gi4q9yDpVWMZmmCoAAZRe4CY4Fmbw4CiKQcEy0WsLE2XKpzVs3Uud+sUwq8tM7VXF+sT3iksLWDItSV/1lTqK1sZjMlrU+Llp4jwxeGiM7q1Tn/v3fnyEnvfiCVlwNEzPe0NJk3woBoWln6rUezzE8ZVe4MY6UdJ+76+b6d87u6Mywt6IPh/MaDUQHAvrF5tqry5hwbWl+rau+mxM9nj7RTEoGKwqWdeEaO9t47777uPSSy+d1djmWpI0R0/dpZdeyi9+8QseeOABwhcM6CfaknVu6j4+9YfydPv1SWVjbT4OPtY2bz0SubUOite6UE0yfO6DWJwmqj5cpE/MTHYDB8b00rDBkTA7/qtRP2j07hzmwO9a9W1HW734+uKPGawqOTUOPXFxLXbOeJ/W31hOxWXxq5PmbBPnfXsROdV2tBh4e/wUrcrTT4RLbq2k9mPxXiqj1cDqry4gd2IeR06Vnfoby/X9ZhVY9BNsJBilb/cIwZH4QW1g/yjv/eSI3mBo3dBL5+ap3hZPpz8hvT6nS9OgYEUOOZWyXsUHmjgEeXsCeuGRuTB5ZR5g588b45UAiTcwQ+NhfQhV2UX51Fw5NXn33K/XY5mYDO+siM9Js+TEv3cvdk6tiaTF36djbfHPoKc7QOMznXN+BdvbG9CHkqRCkZOEUOJD0SP+6JzNGZxNsbA2oxRx5+YBWjfES81rMY33fnyEgQPxRmZwJL4m4eT7zOY2Y5vstVeg/oZyvTc9t8bB6q8u0I/XtR8rYckt8cTFYFUpWpWHt8ePFov3Qp337UWYHfHGZOVlhTOO3ws+XoprUTwpM1gmziETSZmvL8Boq1ff9sCjrfRNzP/wdAfY8V+N+rF+tMXLwIHZv1AwF0xZBlAUGQp9AqpJoXiti9za+RmC5u0NcPjxdr094On0659xg0Vl6aeq9NEm+cty0C4Z4bnnnuOee+7hzjvvnJcYZ5OiaalZv/bv//7v+ad/+ieWGtZSGquJXxHRmJexy6dCNSrEIhomu5GcGntKl9icK5O/o0wz/ee2uc3EohrBkTCqUcFZZcfT5Sfij+IotXLOF2tp3dBH5+YBHKU2YpFYfFifAo4SG/7BeFEPRZ2oRJ1hv05FVc5sjkiGKP9QPjk1DvY/3JIU7w3VpGIwK3oPfd4CB2UX5hMNxzjyxw4cxTbGO3zJdVxQYNlnqhlp9tD5tgzTfL/ic12Ufyifnfc1Jk1vw7xRQFHivVEGi4rNbcHT7QctPkRONap4uvyUfyifyvWF7HmwCU9nAKPNgKPUxlirl1hEw5JrQjUoeqnpTD03iuMrWJ7DSLOXsDeSVO8Nk91ANKQRC8fw1w3yduPrfOpTn+KRRx5JdGhnJOV6iCb94z/+I1//+tc5pO2kV+sg4o8mTTIE6G/YguU51H6sREpzH0eyfKjn2/Sf2z8Y0q/mxSIaI0c9ek+mpytA357R+NBCg4Knyz9VzlSLF1+YvHKpxUiKBu98m0yG8pflzMm4/1Tn6fYzcnQ8ad4bsXBsxnDl4UYP0YnepWggxmiLN/mOCxqMHB3H2538vR+JMNw4TsfbA5mXDAFoU0PzosEYni6//lnz9QXxdPlRDAqlF7jp2zWCpzPe2xjxRxk56tHf68GR8Ix1d5LuMzAPsgpTY7TIfIvPWS7Rhw8n03sj7I0SC8fwFQ/zTtNGPvrRj/LQQw8lOqwzlrKtdEVR+MlPfsJtt93GYfMOhrS+RId0XF1bBtn580aiwRgGs0regtSotjEfsgosrPv/Fs1J4YB00fl2P2aHccb8IDGTwaJS9/ES8pcmX5ndRBtp8urV4cSZ63xnkJEm78k3zEDBkbA+L0Ucq3BlLia7kY7N0rv4QWxuM2v+fKG0j6bJW+DAYFaJBmPs/HkjXVuS8zgeyB9ja/9G1qxZw3PPPZcS5bU/SOpGDqiqyq9+9SvWr1/PEccOxrThRId0XJNzmQpX5rLo5oqpifEZzj80MT47E68sniL/YIjBg2PxhQ5lDsNxRYMxdtzXSPc2aZRNsuaZqb+xXI41s8hoM1B/Y3lqLAA6D3Kq7az+6gLpmT0RBcovymfwwBiBoTNfLiTdBYZD7P1Nsz5PN9MZbQYW3VyhLyp/skVWEyXi8vPe+JssWLCA1157DbM5tY+NKZ0QQXyNoieeeIJly5bRlL8bj5a8Ewi7tw2x67+PEvFHUQxKxl8N0aIaLa/26pXdxPF1vD2AzW3BvcR58o0zVHiiYlROtV1fdDmTWXJMWF3mGcUOxNmJhWNYXeZZL7GfqiL+KKOt3lmv2JpO3Euc2NwWOt7uT3QoSU2LwWhzEg6XnWd5CxwoqkLEH2XXfx9N6ot80dwg20NvUlBQwMaNG3E6U799kvIJEYDdbuf555+npKSE5qLdeJM4KZq8SpS/xMmS26sy/uSqmhQKz8mVq4wn4OnyM9LkoeLigkSHktRMdgNLP11F4aq8RIeScKMtXvb8sinjGxizKRbR2PPLJrmKPcHbG6Dpxe6Tb5jBKj5UwEiTR69IKo5lzjay6KbyjG8LWXJMLLm9ivyJZTmSuUcx6gyyI/YmWVlZbNy4kcLCwpM/KQWkRUIE4Ha7efXVV3G73bSU7MWrjSc6pBPq3zfKrvsb9d6R3LrM7C1SjSoLrivFWWk/+cYZrH1TP44SW8a+T05F2Btl9y+OZvx8htIL3HqJXjH7DFY1o9eZyy6zsfzz1TIc8yRy6xw4Sm3SO3QSZocRq8tMJJiZPY2T5/TgaJhd9zfSn+QViSOOIDuVt7BYLGzatImamsQsxjwX0uqsWVhYyIYNG8jNzaW1dC8+zZPokE7I1x+vGJa3wMHyz1ZnZJWViD/Klv84xODB5O3VSwajzV7GO3xUXpYeV2LmymQVPnuRFcWQeUPnbG4zlZcX4iiWxQ3niqPYRuXlhbO+QnzKUOIXH5KpqmsyqlpfyFi7T4pxnISnO8DuXzQRDWTe8N6sQgvLP1utT5+YbBMmq6gjyG7jJoxGI2+88QYLFixIdEizKmXXITqRnp4eLr/8crxeL5Udy8lSkv+qur3Yqi8A6F6czeDh5CmVO28UMu9nPg25dfHEef/DLQw3Jneyn0hGm4Hzvr2Illd76N6aeb1FBquaUo2LJbfHF688+Lu2BEdy6lLtdyzmV95CB8s+XR0vFNAsCdEHUU0qRpuB0FgGzSNWwL0om8FD8VFM09t+ySyaHWK3cROqqvLGG2+wbNmyRIc069Kqh2hScXExGzZswGaz0V6xP+l7igD9A5FVaGHxrZXkZdDQKEWFVX9WR9FqmftxIiNHPYy2ealcX5ToUJJaxB9l/8MtGTd0zlmZhWJQpKE+D6KBGIpBwVmZlehQ5k12uY1FN1dgMKdls2FWVV1exGirV5Khk3AvcXLet+oxZmXO8Mu8OgeLb63URwSlQjIUc4bZbdyEoihpmwxBmiZEAKWlpbz++utYrVaaS3bj0ZJ7XOYkX1+QHT9r0HsA8pc50/4EpMVgYP8ovr7kPzAkWtvrfWSX2nAtyk50KEltrNWHFgOry5wRiyIbzCpLP12V0XNb5lvZBW6Wfroq7Y/Pk4xWA6pR0RfSFcfnWpSNo9RG2+vJuTZiMhk6PMaBR1qJ+NJ7+KXBrJK/LF4sYbjRw46fNUwtsp7kIjkBdigbAdI6GYI0TogAysrKeOutt8jPz6fBnbzrFL3f5IrVpiwDCz5RRv7y9F9wsmPTAOMdshL8yYy2eBlp9lB5ucwlOhnFoLDijhoqLk3/31U0FGP3L5oycohgonRtHYrPfciQddSGGz3xYY0yrPmEKi8vZKTZw2ir9A6dTDQYy4jh3/nLc1jwiTJMEz1hk228ZBfK9fFe5A2sViubN29m+fLliQ5pTqV1QgRQVFSkT/46mL2VYS11Kr6EfVF2/KyB3p3xRK7gnFysrvSdyJtTY8/4tZlORdvrfTiKbbiXpn7d/7mkRTUO/aGNtjfS+0qtyW4EwD8QlHWH5lEsHMM/EL/KO/k3SEeF5+RS9/ESWRj6FOQvc+IotqX9MWc2uBZlU3NlcaLDmDNWl5mCc3IB6N05zI6fNRBOoZ6wkHucbYHXycvLY/PmzSxatCjRIc25tE+IAFwuF6+88grnnnsuB2xbGdB6Eh3SKQuNR0CLz7OpuDifwhW5iQ5pzpSsdVG0RuYRncxYu4+hhnGqP1yEokor5UTGO/zEwjFMDmParnOx7LNV1F1TmugwMlbdtaUs+2xVosOYM4qKFLw5BYpBofqKYoYOjzHW5kt0OEnPZDdidqbnMRniFxIqLs6Pf360ibZciggWj/Hu2OuUlZWxZcuWtCqtfSJpWWXug/j9fm699Vb+9Kc/sTi8liKlPNEhnRbVqKBp8SvfhStziUU0BvanxtyoU2Ewqxkz/ORsZRVYWP3VBTT9qVuGSZ2CFV+oIRqMceDR1kSHMuuclVlEgzG8vak5By8Vq8xNZy+yYrCo0gjOcKXnu6m5spgd9zXqPYcis+Qvy0E1KvTtHkExKCgKKbc4dqBihHe73mDJkiVs3LiRvLzMuUidET1Ek2w2G08++SQ333wz+5QttGmNiQ7ptMQiGlo0/uHKqbKTU5Nei5lOJkOZuH7M6fL1B+ndNUzlZYUZUTTgbDU+10XDM52JDmNWTfYOjrX5UjYZSgfe3oCeDKXTsavumhLKLspPdBgpwWBRqbi0gJ6dw5IMnQJrnjkti5Hk1thxVsXbZVpUS7lkaLyyh7fbX2Pt2rW8++67GZUMQYYlRAAmk4mHHnqIb3/72xxhF0e03aRiJ1nDM50cfb4LiJeurL06PcZ4l13oZvVX02uxr7nS+nofqlGl4pKCRIeS9PwDQcLeCAazSk51elxIWHhdKQuvK0t0GGLCwuvKWHBt+gxdDHuiRHypM8wnkSouKUA1KjJ36BTVXVPK4lsqEh3G2VOg9uoS3Evi83kbn++iMQUvvGmaRl9FE1taN3HNNdewadMmsrIyZ0mBSRmXEAGoqsoPfvADfvKTn9CuNOK+1UBUS53JbrqJPM5oNWC0GKbGeKdwYjTa4qXznYGU/hnmS9gToWNzP6Xnu9N2fsxsK/tQPos+WY5qTP032ODhcYYbxxMdhpgwfHScoSNp8PeY+Gi0beyjd9dIQkNJBRanidLz3XRuHiTskQTyVDQ+20nLq72JDuPMTZ4+tMn2l6p/n2o0JUb08kH2tO3gq1/9Kk8//TRGY/oWiTmRjJpDdDxPPvkkn/nMZ1i3bh3Km7mYlNSu4uasymLhJ8rY++vmlJrEJ86MalI59xsLGW3xcvjJjkSHk/RUo4I520RgODXKnmaCVJ9DlE4MVpVz7qyl9bXe9Eju5sGiT5aTU2Xnvf9skCqPGcCcbWTFHTU0PNOZ8vMGY+YIPXVHOHz4MP/8z//MPffck+iQEioje4imu+mmm3jttdfYt28f7/E6fi211w4Ie6MMNYzryZA5O/UyfYvTRMVlBdJLdApi4Rgtr/VSsCIXZ1XmdXGfrlhEIzAcQlGhZJ0rXgEoxZR/KD9eBlkkpbprSij7UGrOvYmFNUZbvHhlkexTklNtp2B5Ls2v9koydIrqrinVh5ilksm2VGg8wlDDeEqV0D6eWHaYPfa3aWpq4qGHHsr4ZAgkIQLgoosuYvPmzRTW5LOVDYxoA4kO6Yz5B4I0/yleVtzmNnPuX9Sn3No+JruB0nVubGm85tJs6ts9wli7j7qrS1OygZ8IWUVWqq8oJrs89ZLIsC9KSIbmJK3QeIRICjaWTFkGtKhG04vdBEfCiQ4n6SlqfP7IaJuX/j0jiQ4nNShgtKioKVZ8JG+Bg3P/oh6bO94maf5TT0oXzwjne9kafY1ILMwrr7zC7bffnuiQkkLGD5mbrr+/n5tvvpm33nyLxayhTEnx2utKvBZ+/75RtKhGTrUdT5c/JUpbK6qCFpO35qmyF1tZ9ZU6mv/UQ9eWwUSHkxKMWYaUbLimGxkyl3iFK3PjJaP/q5GwV5LtUzFZZnvXfx+VKo9pyGBWcZTaGG3xohgUCpbn0LdnJCXnCU03XtLHe71vU11dzcsvv0xtbW2iQ0oacj15moKCAl555RW+/JUvc5DtHNZ2EdOSP3n4QFq890CLaigGhUU3V6TMUA4tpqEaFVl49BR5ewL0vDdE5eWFmOypN0wyESaTobKL8lOihL17iZPK9YUylDQVKFC5vjBlhgYNHh6j5bVeSYZOkclupPLyQrq3D0kydBqcFVkpc/wq+1A+i26uQDEoaFGNvt0jKZ0MaZpGb8VRtnS9ycUXX8zu3bslGXofSYjex2w28/Of/5z//M//pIOj7OZtwlrqT8DWohq77m+MV3AD8pc5KVyZm9igTsCUZWDdXy3GtSg70aGkjNYNfWgxjZqPFiU6lNShxOcBZJfaEh3JSVmcJqx55pQ+KWcMDWx5ZizO5K7+aHObMdoMRAMxencMJzqclFH9kSK0mEbbBimzfaqyCi2c88Va8uqSdwh/4cpc8pfFL2J0vjPArvsb9bUfU5lmjnK0dCf72ndx9913s2HDBuz25L8ION9kyNwJvPrqq9x6660Eh8Os5EPYlfRpnNdeVYLRZuDIU8lbmaz4XBfDDeMER2U8+6kqWp3HwuvK2PurZkZbU7tAyLxRmFmyXo6I80qGzCXOyi/XERwNceix9kSHkjJyqu16lbHenZJEng5HqQ1vj59kHXhTf2M5EX+Eppd6Eh3KrInlBtmtvIPHO869997LXXfdleiQkpYkRCfR0NDAddddR8OhRpZxHoVKGi2EONH4y1vooPLSQvY91EI0mKRHKnHKVtxZg9luZOfPG1NupexEctVnU3l5IXt/00w0kDyfg7wFDqwuM91bhxIdypxI94SoZJ2LwFCI4UZPokM5hjXPTCwckyIdp0g1Kqz+8wWExiLs/XVzosMRZ8lgVVn+mWraNvbFP59pdkHMXzLM9sG3yXZm8/TTT3PhhRcmOqSkJkPmTmLhwoVs2bKFGz55PXt4hwZtT2rPK5pu4oMf8UUZ7/TryZAt35LAoGYqOc+VclXyEq3xmU4sOSYqLitMdCgpxTcQZLzDRyyUXGfE7LKspB5mIk4sry6b7LLkqWaoGhUqLy9EMSgEhkOSDJ2GissKsThNNDzbmehQUkpOjZ2ln67CYEmOJudkGycaiDHe5Sfinyiuk1yH/jOmaRp9FU283fUay5YvY+/evZIMnYLkeHcmOafTyR/+8Ad++MMf0kYDO3iToOZPdFizZrzTT9NL3QBkFVhYe/fCpElCXPXJ1ZhIBf7BEO1v9lN+UT72Ymuiw0kZgaEQR1/oRotpWHJNSVPCvG1jHwfStPckExz4XSttG5Nnrom92ErJuS69hLA4NfZiK+UX5dO2sZ/AUOrPK55XGkT80aQYgZK3wMHauxeSVRBPippe7Ga8M33ac1FbmCPF29jbvpOvfOUrbNmyhaIimVd8KmTI3Gl66623uO222xjsHmYF55OnFCQ6pFnnqs9mqGEcNChak4evN5BWB4xMoKgKq75SFy+m8YujaXPlaz6oRoW136inb88Ira/1JiyOnGo7xiwDgwfGEhbDfEj3IXOT3EudRHxRRlsSP7dPNamykOjpUGDVXXUoBoVd/92YtHNgxPFll9nIKrLGC4co4FqYzdCR8USHNetCBR52+t5GQ+O+++7js5/9bKJDSilJcg00dVxyySXs2LGDCy87nx28Sat2mHTLKYeOxJMhFChek0duEgzXMdkNiQ4hpWgxjYZnOrEXWym7MDVKrSeLWESj4ekOOjcndoFm9xInxWtcCY1BzJ7iNS7cixNXhnvh9WXxsu0gydBpKrswH3uJlYZnOiUZOk32YmvCh+Hn1jkoXpOnzxFKt2RI0zTGqrvYNPAyRcVFbNu2TZKhMyA9RGcoEonw3e9+l3/7t38jn2KWch5mJXnm3symyTr8ZRe6cVbaOfj7+b2Su+ATpdgLrez+ZdO8vm46qLmymJLzXOy8/2hKr6ydKEabgaLVeQlLjlSjkvaFMTKlhyjRf8vSC9yExiMM7B9NWAypKKvAwqqv1NG9bYjml9On+th8WXxLBSaHkb0Pzm8RiiW3VTLW5qXznUG9DZOOopYwre59NHUe5cYbb+SRRx7BapWh8mdCeojOkNFo5F//9V957rnnID/Cu7zCoJa44TVzafJA4h8M4emaGDo3sX7LfOjZPkzzq3IiOhOtG3oJDIdYdGO5LHJ7BnKq7ZRdmI85e/4Wu3UvcZJTFf9spXsylEkm/5Y5VfZ5XbB1ch5h17uDkgydJkVVqL+xHP9QiJYEDp9NZYef7ODIk/OzvEdOtV1f+NXT5cc/GJ/rla7JUKBgjPeMG+gZ7ubee+/lySeflGToLEhCdJauueYa9uzZw6UfuZidvEWDtjd9qtC9z9CRcdrf6gcgt9bBijtqsBfN/YfP0+VnrNU356+TjmIRjSNPdZBVZKXisvSb7zbXBg+Osf3eI4TGI/NWZKFwZS6Fq3Ln58XEvCtclUvhObnz8loFy3NYeVcdltzkXiA2WVVcVkBWoZUjf+xI20b1XNOi2rysJWgvtrLijhpya+ND/Nvf6k+7oXGTYsTor2xmU9/LlJaVsnXrVu6+++5Eh5XyZMjcLInFYvzHf/wHf3PP35BNLss5nywl8XNv5pKjxIqnOwBA3TWlDDeMz9kByFFmo/CcXJpe7J6T/ae7iksLqLyskD0PNEmBjDNUf1M5sVCMxue65vaFFFAN6T9UblKmDJmbpBoVYlFtfgqdKJBbY2ekKfGFHFJNdpmNc75YS9vGPtrf7E90OClp2WerGTw0Rs97c7OGmqs+m7yFDo4+H28XOEptU6NY0lQ0O8gh63Z6+ru58847+fnPf47JJBc8ZoP0EM0SVVX567/+a97d8i4FdS628CrdWmvaFVyYbjIZUgwKZrsRxRjvqzbaDKjG2R2eZbQayC6zYbRKcYUz0f5WP+NdfupvLEc1ydC5MzF8ZJzhxrm74li8No+sQgtoMlQuncUi8WQoq9BC8dq8Wd+/oiosuLY03nuvIcnQGVBN8aFyni6/PipCnCYFxjt8BIZnt0S5alQw2gz6bbPdhGKIn9PSPRnyVQyyOfgygbCfJ554gl/+8peSDM0iSYhm2bp169ixYwef+uzt7Gcbe9lCSEvvyexaVOPgY216eeDqK4pYeVfdrL7GyFEPu3/RRCQQndX9ZgwNjjzVgdlpouZjJYmOJiX17xtl8FA8IXIvceon4dmgqArFa124FyWuCpmYX+7FTorXumZ9bp9qVLAVWLDkSEPpTNVeVYLZaeLIHztkyYIzpUHbG32MHPXM6m5X3lVH9RXxdXUGDoxx8LG2tB/OGDWHaS3by+a211m7di0HDx7kxhtvTHRYaUcSojngdDr57W9/y+9//3uibj/v8jL92hwPs0ki7Zv6aX453oVtsKrUXVM6a5PSZSz8mQsMhWh6qZuStS7cS6XhfaYsuSbqbywnfxZ/h1pMY88DTbRvkqvRmaL9rX72PNCEFpudxpzBomJyGImGYux9sDlt50/MtfxlORSvcdH0Yrc+KV+cvsKVuXpPztkwZxupu6YUgyXeXG1+uTujjpP+ohG2GV+jfaCVf/mXf2HTpk2y0OockYRoDt16663s27ePK6/9KLvZzH5tG2Et/Q+wwZGwPkzD5raQW+vQ1244m8TIXmTlvL9YhLMqazbCzEi9O4bp3zfCwk+USXJ5hoIjYXb8VwP9e+MVu87qCr8CNR8rxuw06UOpRIaYGBoZ77Ut1qtjnalFN1Ww6Kby2YktQ1nzzCz4RCn9e0fo3Tmc6HBSltVlZuF1ZThKzrzo0mRbQYvFizhNrmU00uQlODL3RRoSTTNF6ag4yNs9r1JbV8uOHTv4m7/5GxRFhrzPFUmI5lhxcTHPPPMMDz74IF7ncFqX5z4eT6ef7f95hLA3Agqcc2ct1R85s6sb3t4ABx9rS/txwnOt8dkuwr4Ii2+ukFLcZ2jyhJxTY2ft1xdicZ5ZcmnJMeFe5MQqyWnGsubG3wNnO8St5dUejr4gRWfOlKIqLPpkOWFvZO4Lp6S5wFCILT84xEjzmc1fq/5IEefcWQsKhL0Rtv/nETwZVAwoWDTGNssGmnoa+F//63+xc+dOlixZkuiw0p5UmZtHbW1t3HnnnWzYsIFy6ljAcoxKZjWEcqrthDwR/ANBcmrsOCuz4hV85F04rxwlVs75Ui3dW2WxwbNhdhgpuyif5ld6zvg9rKiQppX6T0mmVZk7njN9D+RU2ylak8eRp2Suy9mqubKYknUu9vyySS8YJOaJEq+EOtbmY7TZiy3fgtlhZLQlswqCxIwx+sqOsq9lN4sWLeLRRx9l9erViQ4rY0gP0TyqrKzklVde4d5772Uoq5t3eYUBLbOu6I22ePEPxItMZOVbyKm06yfyrALLSZ+vGBRqry6Zt0Vh05WnO0DLK72UXZiPqz470eGkrJAnEk8oJ6qGFa0+taphWQUW6m8qx2BWMzoZEnFaDAxmlfqbyk/pODhJUcFoUVGNcio/G676bMouzKfl1V5Jhs5STo2dtd+ox+Q4+fB4/b2uxRcszpoYFucfCGZcMhQoHGG77TUOdeznW9/6Fvv375dkaJ7JUXSeqarK3Xffzb59+7j0yovZxdvs1bYQ0jLvINy9bYh9v20B4mOO13xtIa5FJ26ca1ENm9uCyS7lt89W15ZBBg+NUX9jOdY8c6LDSXnuxU5Kzju1qmEmhxFLtimty/KL06NpYMk2nbwhqcQn/kN8PsWBR9uIhSWrPlNWl5n6G8sZPDhG17uDiQ4n5YU9EQYOjBL2RE64nWtRNmu+thCrK37u2febFrq3zc16RcksZo3QVr6fTb2vUlJawjvvvMOPfvQjDAZp48w3GTKXQJqm8dBDD/Gtb32L8SEPC1lJCZUZO2kut87BaIsXLapRub6QaChG59sDiQ4rrRksKivvqkOLauz+ZZM0rM6SalKJhWOYHEZi4RjRoPw+T0aGzJ2evAUOltxexa7/bsTXl95LOsw11aSy8q5aFFVh9/8cJRqSz+tcKv9QPqpZpe31PhSDQk61fdbLcqcKTdPwVQyye3ArsViM73znO3zve99DVaWfIlHkN59AiqLwuc99jkOHDnHrZ27hANvYyVv4tczqKp40ctQztZ6ABkyUozVY1Piwrml5osGinvFEdjElGoxx8PdtWHJNLLyuLNHhpLzJhLL+hnIW31xxzON1Hy+JVxQT4gRqryqm7uMz1wubLGE83Ohhx88aJBmaBQuvL8OSY+Lg79skGZoF2WU23IunjfJQ4sMRJ0tmaxow8WvWolrGJkPR7BCNpTt4p/0NVq5cyd69e/n+978vyVCCyW8/CRQUFPDQQw/xwgsv4Ki08g4v06IdJpbBkwva3uij85348IW8hdksvrUSkz0+lEQ1Kiz/fA1VZ1itTszkHwjS8HQnBctzKLsoP9HhpIWjz3fR8mq8muT0IXSenoA0ZMVJeXuDM+ay2PItnPetenJrHQAEhtN/+Ya5Vnahm4JlOTT8sVOf1yrOjnuJk8rLClGN8WOeyW5kyW2V5C2MJ0mdmwdo29iXyBATKkaMkapONvlfZNQ3zH/913+xefNmFixYkOjQBDJkLul4PB7+7u/+jh//+MfYcbKIVbiUwkSHlXCWHBPB0Xip4zV3L2Tk6DgdmwcJjaX/egTzpeqKIsovymffQy2MnmG5VHGspZ+qJDgalpLIH0CGzJ2Y2WkiNBamZJ2L3p3DxMJyyj5bOTV2ln+2mo7NA7S+ljnLYMyHiksKKFiRw47/agRmnrszWbBgnIORHQwM9XPttdfywAMPUFBQkOiwxDTSQ5RkHA4HP/rRj9i1axerPrSCHbzJXm0LQS1zavAfj35AVaDz7X56d48QGguTU2On6ooiWU9nFrRu6GWkycPiWyr0ia7i7Hm6AhStcZFTI5URxakzOYysuXsB536zHnuxle6tQ5IMzQKb28ySWyoZafLQukGSobOlqApVVxTplV+HGsfp3DygD3HP9GQoZgvRVr6Pt/r+RHaOgxdeeIFnn31WkqEkJAlRklq5ciVvvvkmv/rVr9AKg2zmT7RqRzJ6GB0AGvTuGsHbHaDkPBfFa/LILrOhTcw3ylvgQDXJ2/qMaHDoiXbC3ijLPl2F0SpVbmZD28Y+Gp/rZLTFS83HiilYkZPokEQKiPgieDr9tG3sxduTeVVI54LRZmDpp6sIjoc59Hi7rN10hlSTSt6C+PBNLaaRXWaj4pJ8Ft9Sgbc7QO+ukYz/3caIMVrZxdvRP9Ex2MZ3v/tdGhoauPrqqxMdmvgA0nJMYqqqcscdd3D48GG+9o0/p4E9bOFVhrTMHYM7nTnbSGg8wr7ftADx8cpLP1WFe4kTQBKjMxANxDjwSCtGm4Elt1VKz9tZcJRYya7IAqBv1wgARotB1owRH8hgUam/oQyry4wWgyN/7KTjrXilzeyKLOwl1gRHmLoUVWHJrZUYLQYOPNoqFSDPwOQ5NX+Jk6WfqtKXv9j3mxa6tg4x3DCeyPCSRqhwnL2ut9jWupkPf/jDHD58mH/6p3+SUtpJTuYQpZBdu3Zx9913s3nzZoooZwErsCkyDGc6S46JsDdCLKJRe1UxjtIs9jzQlOiwUo6zIovln6+mf98oDU93JjqclLT41goMZgP7H2o57uOlF7jx9gQybgHC95M5RFNUk8qKz1fT+nofI00zK3At+2w10VCUQ4+1Jyi61LbwujIKVuSw9zctjLf7Eh1OyjnnS7WMd/ho/lMPqlHBZDdm/HC494vag3TkNdDQfoiamhp+9rOfSY9QCpFLlSlk1apVvPXWW/zqV79CLYnyDn+iUdtLRMvcg5Kigilr6qpLcDRMLBLP8fv2jNL5TvzqqsGssvxz1diL5ArrqRhr99HwTCdFq/Iov1gqz52JI091cOgPH9DIVyBvQTbZ5bb5DUokHdUUn4NhssfXrtr9y6ZjkiGAQ39o48hTHQmIMPWVfSifotV5NDzTKcnQKbIXW1n+uWoM5ngzsXPzAP17RwGIRbQZyZCj1IazMishcSaDmDHKQGULbwVepHu4Q4bHpShJiFLM5DC6I0eO8Ld/97f02trYzEt0ak0Zuer9ss9WU/vx0uM+5unyM3hwDABjlgEtphH2RwFwL3bqQ+vE8fXvHaVtYx/VVxSTv1zmvZwKR6mNlV+uw+wwEgtrHzwsR4P9D7fQMbHwcOGqXHLrHPMYqUgWqlGlYHkO2WUnTo6jwRixsIbZYWTll+twlEoyfSoKVuRQ85Fi2t7s0xv04vjcS5y4F8fPi2FfFC2mYZy44Dh4cAxP1/GLO5Wc56LqisxbBkPTNMYr+njP9hr7Ondx880309zcLMPjUpQkRCnK4XDw/e9/n8OHD3PrZ2/hIDvYwqsMaplVNaftjT46NvWfdLvgSJj9D7fqZbpd9dnkL51IiJT4WkeKQebLvF/bG3307hqm/oYyfQ0U8cHCngiBoSDR8CnMT9DQJx67FzlxLZTfb6Yw2gzUfKwYg1kl4o+y/T8bGDpyavMvopEYgaEgYU9kjqNMfbl1DhZeX07vzmHaXpe5t++nGJQZi57nL3XGvwdCY/FzZnDk5CNQGp7u5NDvM2vIa6hwnL3ut9jS9iYrVqxg+/btPProo+Tny4iKVCVziNLE1q1b+cu//Evefvtt8ilhISuwK9IDciKKClosPll55Rdr2fU/R/F0+THZDYR90YyvkjNJUWHJbVXkVGex99ctH3iVMJPl1joYa/PqwzXPhKIqaDEN9xInqkmlf8/I7AWYxDJxDpElx8SKO2s4/Hg74x1n/nlSTQrOCvtxh9hlOkepjRV3VDPa4uXA79rkeD5JiQ8zD3ujOEptrPpyHbsfaGK83aefE8UHi+QEaLMfpKnzKDU1Nfzwhz/khhtuSHRYYhZID1GaWLduHW+99RaPPfYYjmoLWw2vcVDbTkBL8/HSSnxy+plUX5o88I+3+9j+swa9oV9/QzlLbqmc8RqZTIvBocfb8PYGWfbpKlmj6H2MVgOLb6mg+FzXWe1nsnR8TrVdL2kr0oct38LC68tQVIXgaJjtPz1yVskQQPFaF4tvqZAS+e9jdZlZ9ukqvL1BDv1BymtPP4ctuaWShdeXA/Fh5dvvPaLPqzqTZCi31sHST1ehmtL7RBnNCtNVcYg3x15gyDvIv/7rv9LY2CjJUBqRhCiNKIrCLbfcwsGDB/l//+//EXCPsc3yGg3aHkJaMNHhzQ0NSte5cZaf3YRO/8DU76f19T69GENWgYXz/2oxWYWWs9p/qouFNQ482krYF2H556oxO4yJDinhFIMCCkQCUXb/somudwdnZb9NL3bT8Mf45PncOge1V5fIcM40oKjgKLFhdsY/O7NxJb7r3UF2/7KJSCAKCvI+AcwOI8s/W03YF+HAo61n1WubDuxF1vg5rCB+Dut8d4C2N6aGD/oHQ2e1fy2mEQ1E03bR4Jg5Ql9lE5tCL9Dcf5SvfvWrtLa2cs8996Cq0oROJzJkLo2NjY3xwx/+kB/84AeoqkrBWAWVLMSgSGP2VJmzjRSvddH+Vj9aVKP26hKioRitr2XWXK1JZqeJlV+sJRKMsvfXzUR80USHlDDLP1+Np9tPyytz914oPCcX9xInByfH5yuk3dXudB4y517ipPCc3Km/3xyq/mgRjhKbvi5bJjJlGVjxhRoMZgN7HmgiOJaZFVirrijCYFJpeqkbxaBQcUkBPduHCI3LvLNTpRmiDJd1caB3N9FolFtuuYUf/OAHFBcXJzo0MUckvU1jTqeT733vexw9epQ777yTdnMDB4reoV1rJCYDhU9JaDxC2xt9aNF4K9Q/GCQ4Er+iZrLHFy+15mXOELLQWJh9v23GlBW/CpvJQ3X6944ycGBsTl+jb8+I3pi2l1g59xv1GfV+S1UGS/zUGglECfsiqMa577kZPDCW0VXUjFYDyz8XPybt/U1zRiVD1jwzS26r1BdKDY6E8A/FRz1oUY22N/rmLBkyZRnSqmcyRoyxih62Zb3GrvZtXHHFFRw4cICHH35YkqE0JwlRBigsLOTHP/4xhw8f5qqrruKIspt3+BNdWmtaJEZlF7pZcmvlyTecBd1bh+jZPgyA2WHCaDPEh6sQLz1asu7s5pGkAv9giH2/acaSY2LZZ6v0xl8mqLy8kNLz3QD07hzG0zl/BSaigRhDR8YJTCTkNrckRsloye2VLLyuDIDRZi+Nz3bNy7Ct8U4/vTvjx6bSC9xUXl4456+ZLAwWlWWfq8acbWLvb1oIDJ3dMLBUULLORcl58fNNJBDFaDNgdpgA6Nk+TPfWoXmJY9lnq6m9KvUTBQ0Nb/kAO52vs7VtE6tWrWLbtm0899xzLFiwINHhiXmQOS0ZQXV1Nb/61a/Yu3cvH7vhoxxgG+/wMl1aS0onRoHRMOOd8188wtsbYO+vmolMrG1kyTFhzY03UlWjQt01JWl7Nd/XH2Tfb1uwuSws+3QVqikzDiWKQUGZh6v9xxMYDtH0Ujdo8d7J1V9dQNHqvITEImbKW+DANDGvrnvbkD4HMVEUg5JWV+1PRDWpLPt0FbY8M/t+2zJjPmg6seaZqbumRO9ttOaaseTEE6CIP8reXzXj7Q3Me1zNf+qhe9v8JF9zIZ4I9bMz53XeaX+D6tpqXnvtNTZu3MiaNWsSHZ6YRzKHKIPt3LmT73//+/zxj3/Ehp0allBMJaqSGY3buWTLt7D09kr2P9JKYChE/jInRpuRnvdS98RxPI5SG8s/X423O8D+h1vScgJz2UX5hMbC9O9LruFIubUOxjt8REMxClbkEAnEGG44tbVskkmqzyEyWFTO+9Yi2t7oo2vL7BTWmE0FK3IwZ5vo3JzYJG0uqCaFpZ+qwlEanzuVbksCFJ/rIuKLMHBgDJvbzNJPVXHgd21pm/TNpxgxfOWDHB7fy/DIEKtXr+af//mfufrqqxMdmkgQaflmsNWrV/PUU0+xY8eOiR6j9yaG0qVWj5ElNz50LZn4B4Jsv7dBH7phL7aRUzVRCU+BumtLsRedfqnwZOPp8rP/oRYcpVaWfaYagzn9DilZBZakLDU+0uQhGop/Tt2LnLjqJ0p1K8zLnJVMll0WvxCgGhWiwRg7f96YlMkQxHsWJiuMpRODWWXZZ6pxlNo48HBrWiRD9iIrddeW6t/nVNmxl9iA+FDl7fc2JF0y5KzKmlrkPAXEiOEp62Nnzhu8276RmtpqXnjhBXbs2CHJUIZLv9aLOG2TidHOnTu56sYrUy4xWvH5GiouLUh0GCfU+lovh5+Il1I2241kl9r05MFVn03Vh4sSGd5ZGe/ws++3LdiLrSz7bHXKzylSDAr1N5TpawE1PN1J+5v9CY7qxA493k7Tiz0A5C/L4bxvLUq6iwSpzpxtxF4cv4gR9kWJhmL67zg4mrwT+Nvf7Kfh6U4A8hY6qL+hLOWH003OGbIXWdn/2xbG2lN3vb2qDxfhqs8G4j9XdqlNX9bg8BPtSV/RNH+Jk5Lz3IkO46RixPCU97HT+TrvdrxJTW01L774Itu3b5dESACSEIlpVq1axZNPPsmuXbu4+qaPcYD32MxLtGuNRLXkLdd54NHWeZtAOhtCngi7/vuofhK35JhmXMFdfEsFrkXZiQrvjIx3+Nn3m2Zs+WaWf74mJRvjk/OgtKgGqpJy86ImF3Yd7/DRtrFPn9tWub5Qb8iLM7fgmlJqryoB4vO5Dv6uLeXKGKtGFVRFr5qZau9xAKPNwIrP12Bzmdn7m2bG57GwyWxwLcpm8S0V+vdZhRZ9LtBYm49d/32UkCd13lctr/ay99fNiQ7jA2mGGGOVPexwbuDd9jepXVCrJ0JXXXVVosMTSST1joZizq1cuZInnniC3bt3c+OnrqdB3cO+grdp1g4S1pKveo+vP0hgOPniOlXd24b00sqKqhCLaHqDxVWfzcov1eq9SYqavFd2Pd0B9v26BUuOiRV31OglYFOBvcjKuv9vEfaSeOJw5MkOBg/ObUntuRIcCeuTnA0WlfwlTqy58QaXJceEOVvWITsVFqeJc79Zj7MiPtT16IvdHHikNcFRnZ3Bg2MceTLeU+0osbLuLxel1NBdU5aBFZ+vxpxjYt9vWvB2z38RgVM1eaw2mFVWfqmWvIXxi1xaVCMW0fTHD/6uLaWLEkzOG1VNyXVuipkjDFW1scX6Mtva3mbpsqW8/PLLvPfee5IIieOShEh8oHPOOYdHHnmEhoYGbrnlFjqtR9nu2MARbTcBLfFX5cwOIyvvqk2r8fFaTOPIUx0MN3oACPsijHf59bkiy++opuZj8RKniqok3c8+WXnPmGVgxR01mJ2mRIf0gWxuM4Xn5ALg7QvQsamf4EjyDn06E9FgjB3/1cjgoXixhYpLClj++Rr98WRrxCRa3gIHFZfEh98Gx8IMHhojPNHTFhwN65/DdBAYCdPxdj/evnhSUXhOblKXcrc4Taz4Qg0muzFhFdU+kBLv6ZlMcmqvKmb556sBiIZijHf5ifjjvT7DjR6OPNWh9+img8KVuZz37UX6UL9EitpC9FYe5W1eZHf7di6++GK2bt3K22+/zUc/+tFEhyeSmCRE4qRqa2v52c9+RktLC9/85jcZzelji+llDmjv4dUSW9Uq7I2k9QJ84x1+ml7s1r/v2jLI0ETj1lFqZc3XFuKY6NXILreRW+tISJzT+QeC7H2wGdWksvKLtdjykydpU43K1NytxU4qLy+MN2I06Ng0oA8zS1fNr/Rw5Ml2ID706PzvLNGvXGcixaBQuDJXH7JkdZlxVtlhIk9sfrkn6Saxz5aIP0rHpgHQ4hdXKi8vxLUoPjneYFaTqjBHVoGFc75Ui2pU2fNgc1L8TXJrHWSXxwseOEpsrPnzqWPx4KFxurZOFdloerGb8Y7EX0ScK4OHxmh7vY+QN3FD/SLZAToqDvJm8HmO9Bzghhtu4ODBg7z44ouce+65CYtLpA4puy1O29jYGPfffz8//OEP6e3tJV8rpYqF5OBGUeb+JGqwqCgGhYgvvRuvJ6MaFbLLshhr96LFYOH1ZVhzzfp47kWfrKBnxxCjzd54A2+eP+lmh5Fln63G7DRy4NE2xhM88VlR4bxvL6Lr3UE63h5ANSpoMdLqSu3pMJhVClfl0r9vlIgvSuXlhdiLrPrwzfky32W3bW4zNreFoSPjqEaFdX+1mKaXuunbNTIvr5+sFFVBUeNDoMovzqd0nZttPz5MouvqOCuyWPqpKgKjIfY/3Ep4vufXTBw7c2rsFK/J04vjrLijhsBIiIanO1FUcFbYGe/0peXSA6cjp9qOp8dPNDA/b5xwoZdOUyNHOxux2+18+tOf5nvf+x4lJSXz8voifUgPkThtTqeT73znOzQ3N3P//feTV2/nPd5gGxvo0drmvDLd0turWHRj+Zy+RiqIRTRGW716g6Xh6U4OPBqf46CaFAxmhcn8tGB5Dud/Z7FeXSqnxj7nE+1Dngh7HmzC1xtk+eeq9UpK86lgeQ5rv7EQFNBicPSFbvr3x9cTikW0jE2GID6Up3vrkH5hwdPtZ7TFC8R7TtZ8bYFeaS+VlyYzmFWKVuXqC6cWrszTiyPEIhrbfng445MhiF8YmGzM9+8b5eiL3fFjiwJrv7GQguU58x6Tqz6bZZ+r1ofiznUyZC+2klNjB+IXnM7/zmL951aUeO/y5DDTA4+26tX7tBiMtnozPhlSDAr1N5ZTdmH+nL6OpsTXENpf8DYbe19kNDjCPffcQ2dnJ/fff78kQ+KMSA+ROGuxWIyXXnqJH//4x7zyyitYsFJOHWXUYlbOfriUoioUrMhhtNVLcCSMo8RK2BdN6lK3ySarwEJunYOud+PDOFZ+qRZvf5DGZzoxWg0svrWC5pd78PYEMGcbMVoN+PpnZ1iKYlBYdFM57sVOGp/ronfn8Kzsd+oF4qXMQ54Iigqrv7qAzncG6d05jL3IimtRNp2bBzK+sXI6jFYDFZcW0LNjGP9AkNIL3JSc52b7fx4B4kUogqNhIoGz76Wdix6ignNyUQ0KvTuH40MD/2oxB3/fxtCRcQwWdUbhEnFiqkmh7MJ8Bg+N4esLUrQmj7IL3Oz8eSNaLN4THPJGZr0Humh1HguuLWXw0BiHn+yYtb9XVoGFSCBKaDyCvdhKzZXFHHysjWggxsLrysgqsLD7l00AlF7gZuSoZ9aOhZnAkmsiMlGW3r3UiQIMHJidAjVRc5jR4h4aBg8w7hln6dKlfPOb3+Suu+7CYEidIj4iOaXwdT+RLFRV5eMf/zgvv/wye/fu5XN3fZYOSyNbra9wUNuORzv9g6HNbZ622JtG9UeKcS+Of+/pDkgydJp8/UE9GQLY82ATzS/H5yapZpWwL0osHO9qKl7jYvnnqvVt664poXBlLhC/2u6qzz6ttYa0qMahx9vp3j7EwuvKqFxfeFY/izHLQOkFbr2KXc2VxSy/I14oQItB354RfBMTxb29Adrf7Jdk6DRFAtEZ82fGWr10bp5ai2npp6souyh+FdiSY6LmymJM9ngPjGpU9Dk4cymn2o41z6zfPvdb9fr8sOwymz6/I+KP8s6/HmToSHzuXTQYk2ToNMTCGu1v9uPri78XfL0B+naP6D3TK75QQ82V8UIvJnv8s2nMOrvGadUVRSy8royeHUMcerz9tP5eBkv8GDVZUrxwVS51H5/qMVj++WqK1uRN/Gwxwr4oBnM83qaXu9nzYJO+bde7g5IMnabgyFTxEdeCbH1emmJQKLso/4wKL0ScfroqDrMp9gJ7Orez7vx1bNiwgf379/Nnf/ZnkgyJWSEJkZhVy5cv53/+539ob2/nu9/9LrGSAO/yMju1txhzDJC7YGrSv3uJUx+eYHYYWXFHjT6My73ESc3EsBYtBtv/88iMBr04O1oMfYx3aCzM4cfb8Q/GS5d3bR1k/8MzywtPDr2z5VtY+qkqvSFafkkBK79cp29Xe1UxBSviQ0yMWYapE6AGPduG6NkxRMUlBSy+uYK8hQ695K/BqlJynks/WebWOai9qljf74o7pxpdBrNK1foirK5472PvjmEan+vUt+3YNJBya5MkO093gJ7tUz17e3/dTPd78VLB5mxjfDjkxGCDmqtKWPmlWn3bhdeXkVsX/9xbnCZKz3frCbW9xIppWuPZvcSpV0605Jqo+nCRvm3FpQUsua1S33bxLRX6cKbgaJj+vaP6kNCmF7tpfLZL33Yy2Rdnb7zTT8fbA/r3Dc920rsj/t6wuSxUrS/CMJGM1FxZzIo7p6oa1l5VrL8XzA4jJee5MFgn3gtFVvIWOlh8SwXlH8qnZ8dQfH05Lb5t2UX5eqJVsCJHr7YJsOrLdZRPVAe0usws/VQVWfnxY5Si/xO3/6Gpdev8gyEOP95OaKIwTzQQS/icqXTS8EwnR/4Yn3Nlc5upvKxQv3BSss7Fok9ODX0vWp2nX8QwWFRcix2EK8dpKNnOG6PP0zbUzGc+8xmOHDnCq6++yvr16+f/BxJpLfE1EkVaKigo4G//9m/5zne+w2OPPcaPfvQjtu54gyOGXPK1CkqppvR8N76+AKPNXqLhGCFPWB920b11iM7NUyfddCp3m+wi/uiMamtHn5+qcufp8rPlPw7pj4+3+Yj4psb1GyyG+OKPxBsx5RfnM9LkIeSJkL88h7y6bA491kb9jRXk1WfTv3eExme7MNmM1FxZjLc3QMgTwewwYnNPDbfs2TakVzAKjoR5518O6I/JFdz5FxiaWvdrvMPP9nsb9O/7dg0zZJ1Kcow2g95zY8s3U3VFEQP7R4kGY5SsdZGVb2G0LV5wo+6a0omr8v2YsowULM+hd9cw0WAIX19gxnFg5/1HCXviDdnAcIjW13rn9GcWxzfWOlUsZazdN+OzOdQwjqdr6uKEzW3BPLF2kNVtpubKYoYaxokGYpSsc1GwIhc0OPj7Nuo+XkpoPELbG32YJo4lww3jRHxRVJOKcdp7rGfHEP6B+HvS1xtky38cIjxxvOjdNULvtDliSVWuOxNMnNN9fUHe/bcDesIZ8kQITFvmoOxCN/37RhkdGGe8qp9tvQcZGhqioqKC73//+3z729/G4Uh8FVWRvmQOkZgXmqaxadMmfv7zn/PEE08AkBcsopzaeatOJxJLURVUk0I0GMNebGXpp6pAi09OlkZKZlKNCotvqUTTNA7+rg3VpBALyykp09iLrCz5VCWKosSPBz2B+FyvcGYXPskUmqYRzvfQY2ujqbsBTdO48MIL+Yu/+AtuuukmVFUGM4m5JwmRmHcDAwM8+OCD3H///Rw9ehQHOZRTSzGVGJXkXchTzC5ztpElt8eHthx5qpPBQ7Mz8Vaklvkuuy2SS/5SJwuvL8M/GOLAo62ExhO3lo2YXzFDFE9xP83+I/QP9uFyubj11lu55557qK6uTnR4IsNIQiQSJhaL8corr3Dffffx7LPPYrfbyRkvoJw6HMr8l3gV8081Kiy8oZyCZTm0b+qndUPvvK+XJBJLEqIMpUD1FUWUf6iA/r0jNDzbKb2DGSLqCtDnaKOx5zChUIhVq1bx53/+59x5550YjTKTQySGJEQiKbS3t/M///M//OIXv6C7uxsnLsqopogK6TXKAGUXuqn+SDEjzV4OP9E+Yw6TSG+SEGUeo83Aok9WkFtjp/mVHimYkwE0UxRPyQDtgSa6ejvJzs7mE5/4BPfccw/nnHNOosMTQhIikVzC4TDPPPMMDzzwAC+99BIWi4VcfyGlVJNLvsw1SmM51XYW31xBNBzj4O/b8PbIvKJMIAlRZrEXW1lyWyUGk8qhx9v1xYBF+tE0jVDhOH2Wdpp6GolEIpxzzjl84Qtf4Ktf/SpW69wuDi7E6ZCESCStzs5OfvOb3/DAAw/Q2NiIDTulVFNCFVYlK9HhiTlgcZpYfGsF9iIrR5/vmlEdSqQnSYgyR9GaPGqvKsHXH+TQ79sIjsl6cukoagsykt9L82gDI6PDuN1ubrjhBv7yL/+SpUuXJjo8IY5LEiKR9DRN46233uKBBx7gD3/4A4FAgLxYAaXUUEAJqiKLsqUTxaBQ9/ESite46NszwtHnu6TsehqThCj9GcwqC64tpWBFLj3bh2h6qVsWS04zmqoRKB2mM9pMa3cLRqORCy+8kK985SvcfvvtsniqSHqSEImUMjY2xmOPPcYDDzzAO++8g8vlImsol2IqpXx3milYkUPdNaWEPREOPd4uQ+jSlCRE6c1ebGXxLRWY7EYan+1iYP9ookMSs0TTNCKFXgayumjpP4rX66W2tpbbbruNb37zmxQXF598J0IkCUmIRMo6ePAgDz74II8++igdHR3YsFNMBcVUYleciQ5PzAJrnpnFN1eQVWSh5ZVeurbI5Ot0IwlR+ipZ56Lmo8V4+4IcfrydwHDo5E8SSS+c7Wckt4fW0aOMjI6Qk5PDlVdeyTe+8Q0uueSSRIcnxBmRhEikvFgsxptvvsnDDz/MH/7wB0ZHR1mzZg3jOyIUU4FFsSU6RHEWFINC9RVFlF2Yz9DhMRqe6STskyp06UISovRjshtY+IkyXIucdL47QMurvWhRaWqksqg1xHh+PwOGblpaWrBYLFx88cXceeed3HbbbVIuW6Q8SYhEWgkEArzwwgs89NBDPP/880QiEa644go6XxmmkDIp4Z3C8hZms/D6MgAan+1k6PB4giMSs0ESovTiXuxkwbWlaNrE5/SIfE5TlWaO4isawpMzxL59+1BVlVWrVnH77bfz5S9/mZwcWS9QpA9JiETaGh4e5oknnuChhx5i48aNWK1Wrr32Wg493k4+JRgVuaKVakxZBhZ8ogz3Yie9u4ZpeqmbaFAKLqQySYjSg8GiUntVCUWr8hg8OEbDc51EpCc35cSMUQLFI8TK/Gzfvp1wOMyiRYu46aab+NrXvkZ5eXmiQxRiTkhCJDJCe3s7jz76KI899hjbt2/HZrNx9dVXc+TJTkmOUlDhylxqry4hEojS8MdOWcskhUlClPpyquwsvKEMo81A04vd9O0eSXRI4jRE1SiBwmG0qoCeBFVWVnLNNdfwta99jeXLlyc6RCHmnCREIuM0NTXx+OOP84c//IH33nsPq9XK1VdfTcNTk8mRDKtLBZYcEwuvLyO3xkHX1kFaX+uV8twpSBKi1GWwqFR/pIiSc92Mtng58scOgqOytlAqiBmj+IuGiZX52bFjh54EXX311XzlK19hzZo1iQ5RiHklCZHIaC0tLXpytHXrVlRU3BRTSDkFkhylhJJ1LqqvKCLij9H4fBfDDTJnIZVIQpSaXPXZ1F1TisGi0vpaL93bhhIdkjiJ+JygEXqj7bT1thCJRKiqquKqq67iS1/6Euedd16iQxQiYSQhEmJCa2urnhxt2bIFFZU8CimglAJKpFpdErPkmKi7phTXwmz6943S9FIXYa/MX0gFkhClFpPdQO1VpRQsz2GoYZyjz3URHJNeoWQVtYbwFQzTF+2kraeVaDRKTU0NH//4x7nrrrtYtWpVokMUIilIQiTEcbS1tfHEE0/w9NNPs3HjRgCc5E0kR6XYccoisEkof3kOtVeVoKjQ8nIPvbtGEh2SOAlJiFJH0apcqq8shhg0vdRN/z5ZZDXZaJpGJMfPmLOfbn8HPQPdKIpCfX09H/vYx/jyl78sc4KEOA5JiIQ4icHBQV544QWeeeYZnnr8j0SJYMNOPiUUUEou+aiKmugwxQSjzUDNlcUUrcpjtNVL04vdeHsDiQ5LfABJiJKfvdhK3cdLcVZk0bd7hKY/dRPxSw9ssogRI1zoYdjaS8dwKyNjI5hMJlatWsW1117LHXfcQVVVVaLDFCKpSUIkxGkIBAK88cYbPP300zzzzDN0dXVhxEQ+xRRQiptimXeUJHKq7dReXUJWvoXu94Zoe72PSEAacclGEqLkZbQaqPpwIcXnuvD1BTn6Yhdjrb5EhyWIzwfyF44yQBdt/S0EAgGcTicXXnghn/zkJ7nttttwOp2JDlOIlCEJkRBnSNM0duzYoSdHu3fvRkEhBzf5FOOmGAc5MrQugRQVSs5zU3l5IVpUo2VDL707h0GOeklDEqLkVLQ6j+orilAMCm1v9NG9bRBNijgmjKZphPP8eLIH6Qt10dXXSSwWo6ysjPXr13P77bdz1VVXYTAYEh2qEClJEiIhZklLSwsvvPACL730Ei88+wJRopix4qYIN8W4KcKkmBMdZkYy2Y1Uf6SIolV5jHf5aX65W650JwlJiJJLTrWdmiuLcZTY6Ns9TPMrvYS9kUSHlZGi5jCB/FGG1D46h9rweD2YTCaWL1/ORz7yET7zmc+wcuXKRIcpRFqQhEiIORAMBnn77bd56aWXeOmll9i7dy8AObj05MiJS3qP5ll2uY3aj5WQXZ7F4OExWl7txT8QTHRYGU0SouRgy7dQ89EiXPVOxtp9NL/czXiHP9FhZRRN04jkexmzD9Lj66RnoBtN0ygpKeGiiy7iuuuu46abbsLhcCQ6VCHSjiREQsyDjo4O/vSnP/HSSy/xx8efJkIYE2ZcFOGmCBeFWJWsRIeZMfKXOam+ohhLjomencO0vd4nV8ETRBKixDLZDVReXkTxmjwCI2FaXuth8MBYosPKGFF7CH/eKIP00DnQjs/vw2KxsHLlSq688kpuu+02qQonxDyQhEiIeRaJRNiyZYvee/Tee+8BkIWDPArJowAXBZgVa4IjTW+KQaHkXBcVlxagGhU63xmk850BokGZKDGfJCFKDINFpezCfEovcKPFNNrf7Kd72xBaVJoEcylmDeN3jTJqGKB7rIvhkfiCtpWVlVx88cXceOONXHvttVitcvwXYj5JQiREgg0MDLBx40Y2bNjAhg0bOHToEAB2nLgonEiS8mX+0RwxWFQqLimgZJ2bWCRG5zuDdG8ZJBqSxGg+SEI0vwxmldIL3JRdmI9iUOjeNkjHWwNSgXGOxEwRgu4xRk2D9Hi6GBjqB6CwsJC1a9fy0Y9+lE9+8pNUVlYmOFIhMpskREIkma6uLt544w09QWpubgbiC8PGe48KySUfg2JMcKTpxewwUn5xAcVr84iGYnRuHqBr6xCxsCRGc0kSovmhmhRK1rkpvygfg1mlZ/sQ7W8NyFDRWRYzRgm5xxk1D9Ln66ZvsBdN08jLy2PNmjV8+MMf5qabbmLx4sWJDlUIMY0kREIkuebmZl5//XU9Qeru7kZBwYmLXNzkkk8ObsyKJdGhpgVztpHySwooXpNHNBCjY/MAPe8NSY/RHJGEaG4ZLCol57oovSAfo02ld8cw7W/1ExqXRGg2xCwRQu5xxkxDDPj76OnvJhaLkZ2dzcqVK7n88su58cYbWb16tRTRESKJSUIkRArRNI3Dhw+zYcMG3nzzTTZt2kRnZycAdrL15CiXfGzY5QR8FixOE+WXFlC0KpdYWKN72xBdWwYIe2Vo0WyShGhumOxGSi9wU3KuC9Wo0Lt7hI63+gmOhhMdWsrSNI2oI4g/d4xRZZB+Ty+DwwMAOJ1Oli9fzkUXXcT111/PRRddhKqqCY5YCHGqJCESIoVpmkZbWxubNm3Sv/bt2weAGaveg5SLGwe5qIqcoE+XOdtI6QX5FK/NQzUo9O4aoXPzAIHhUKJDSwuSEM0uS66J8ovyKVqdRyyq0fPeEJ3vDhL2SI/Q6YoRI+ry480aYSjaT99oDx6vB4CSkhLOOeccLr30Uq699lqWL18uCZAQKUwSIiHSzPDwMO+8846eIG3dupVgMIgBw8Qwu3xycOHEJcPsToPBqlJyrpvS892YsgwMHByj690BWavlLElCNDuclVmUrnPjXuIk4o/SuWWQ7m2DRAMy1PNUabYIoTwvHvMIA4Feega6CYfDGI1GqqurWbNmDZdffjnXXHONFEEQIs1IQiREmgsGg+zYsUNPkN5++20GBwcBsJKlJ0dO8sgmD6MUazgh1ahQuCqPsgvc2NwWPF1+urYO0r9vVEoWnwFJiM6cYlAoWJ5D6fluHCU2fANBurcO0rtzmFhE3osnElOihPK8+O1jjMaG6B/rY3RsBICsrCyWLFnCunXr+MhHPsKVV14pi6EKkeYkIRIiw2iaRnNzM9u2bWPr1q1s3bqVHTt24PP5gHi575yJBMmJCwc5MtTuA+QtcFCyzo1rYTZhb4SeHcN0vzdEaEzmaZwqSYhOnznbSPG5LorXujDbjQwdGadr6yAjRz2JDi0pxYgRzfPjs48xpg0z6O1ncGQATdMwmUxUVVWxYsUKLrzwQq688kpWrFghw9+EyDCSEAkhiEQiHDhwYEaStHfvXqLRKCoq2eTqvUhO8sgiWwo2TGN1mSk5z0XRqjwMZpXhhnF6dg4z3DCOJiOWTkgSolOjqOCqz6ZotYu8BQ6i4Rh9u4bp2jpEYEjms03S0NDyQvgd44yrwwz6+ukf6iMSiaAoCmVlZSxZsoRzzz2X9evXc8kll8giqEIISYiEEMfn8/nYtWuXniRt27aNhoYGAFQMOHCSTS4OcvT/jYopwVEnlsGsUrAih6LVeWSXZRHyhOnbPULvzmH8g9JoPR5JiE7M6jJTtDqPolW5mB0mxjp89O4YZmD/aMaXgo8ZIoRzfARsHsaVEUb8wwyM9BOJxAtIFBQUsHjxYtasWcOll17K+vXrycvLS3DUQohkJAmREOKUDQ0NsWvXLnbt2sXu3bvZvXs3Bw4cIByODxGzYZ+WIOWSTQ5WsjKyN8leZKVodS4FK3IxZRkZbfPSt2uEgYOjMtF9GkmIjmW0GnAvdVJ4Ti45VXbC/gj9e0bo2TGMry+Y6PDm3WS561C2D59pjLHICEOeAUYm5vyoqkpxcTELFixg5cqVnH/++axfv57S0tLEBi6ESBmSEAkhzkooFOLgwYN6gjSZLE0WbjBimtGLlE0OdpwYMqR4g2JQcC+OD3XKrbWjxTSGGzz07xtl6MgYsXBmH4IlIYpTjQquRdkULM8lb6EDRVEYafLQt3uEgYNjGVOwQzNGieYE8Ns8eJRRRoJDDI4MEAgGgHjBg6qqKhYtWsSqVau48MILueiii6TogRDirEhCJISYdZqm0dXVNSNB2r17N0eOHGHykGPDjh2n/uXAiZ3stE6UzA4j+ctyKFieQ3Z5FtFQlMHD4wzsG2X4qCdjGr3TZXJCpBoVcmsd5C914lrsxGgxMNbho3/vCAP7R9N7EWBTjEhOgGCWF68yznh4hGHPECOjI/omhYWF1NXVsWzZMtauXcsll1zCkiVLpOCBEGLWSUIkhJg3Pp+Pffv2sX//fvbv38+BAwfYv38/bW1TjeF4opRNFtn6/1lkY8aSVkPvrHlm8pfHkyN7oZVoKMpwg4fBw2MMNYxnzLC6TEuIDBYVV3027sVO8hZkYzCr+PoD9O8bpX/vaFot+KtpGrGsCBG7n5DNj08dZzw8xvD4kF7iGiAvL4+Kigrq6+v15OdDH/oQLpcrccELITKKJERCiIQbHx/n4MGDM5Kkw4cP09LSQiwWTwyMmKYlSQ79tg17yvcqZRVYcC1y4l6cTXZZFrGoxmiLl6HDYwwdGSc4mr5lvDMhIbLmmclb4MBVn01OjQPVoDDe4WPw0BiDh8ZSvuCGZooRywkSsgUIGDx4omOMBUYYHh3Wh7opioLL5aKiooKFCxeyfPly1q5dywUXXIDb7U7wTyCEyHSSEAkhklYwGKSxsZHDhw9z6NAhDh8+rH+NjIzo25mxkoUDGw6ysE+77Ui5ynfmbONEcuQkp9qOalDwDwYZPuphuNHDaIuXWDh9eo/SMSFSTQo51XbyFmSTV+fA5rYQi8YYa51KgkLjkUSHeVo0S5SII0DI4ido9OHVPHiCY4x6R/B4ptY/slqtlJaWUlVVxYIFC1i6dCmrVq1i7dq1ZGdnJ/AnEEKIDyYJkRAi5WiaRn9/P42NjfrX0aNH9dtDQ0P6tibM2LBjxY6NrInbWfp9BsWQwJ/kxAwWldwaO7l18Ya1Nc8cb1i3+Rhp8jLW6mW8y5/Sc4/SISFSDArZ5TZyquzkVNlxVmahGlUCwyGGG8f1RDaZy2RrhhjR7BDRrABBY4CA4sMXHccT8DDmGcXn9+nb2mw2ioqKKC8vp6amhkWLFrF8+XJWrVpFZWVlWg1tFUJkBkmIhBBpZ2hoSE+Qjh49SktLCy0tLTQ3N9PW1qavUwLx3iUbWVixY8WGhSys2LCShQVbUs1dsrrM5NU5yKtz4Ky2Y7QYiEVijHf4GW3zMtbqY7zDl9QN7/dLxYRINakzEqDschuqUSXijzLa6o0Pd2wYT5oFUzVNQ8uKErOHCFsChAwBAvgJRL14Qh7GvKN4vV59e1VVycvLo6ioiLKyMqqqqqivr2fp0qWsXLmSsrKypPlMCCHEbJCESAiRUaLRKJ2dnTQ3N+tJ0mTC1N7eTkdHB6HQVENWQZ1IlOJJ0uTteLJkxTLxpc53T5MSX+toskfCWWXHbDeixTS8vQE83X7GO/14uvz4+oJoseQ81Cd7QqSokFVoJbvMhqMsi+xSG1kFFhRVIeyLMNoaT0RHW7x4+wIwz79mTYkRtYeJWcJELUHCxhBBxY8/5sMX8uLxjzPuGScanapYZzAYyM3NJT8/n5KSEqqqqqirq6O+vp7ly5dTX1+PyZRaQ02FEOJsSEIkhBDTxGIxBgYGaG9v/8Cv7u5ufTHaSUZME4mSdVqiFE+azFgwY8GEBRNmVGVuygbb3GacVXayy2zxhnuhFUVViEVieHsCjHf78fUG8PUF8fYHkqKSXTIlRAaLir3ISlahFXuRBXuRDXuxFYNJ1RPN8S4/nk4/4x0+fP1zs0hqTIuh2aJotghRS5ioKUxYDRAkSCDmJxD24Qt68fq8+AP+Gc9VVZWcnBzy8/MpKiqitLSUiooKampq9KSnqqoKgyF5h4oKIcR8k4RICCFOUywWY3BwkO7u7mO+urq6ZnwfCASOeb4JM6ZpSVI8YZq8zzrxuAkjZkyYMWI6oyFKqlHBXmzFUWojuzQLR6kVmzveuwEQHAvj6wvg6w/i6w8SGArhHw4RGpu/qnaJSIgsThNWlxmry4zNbSarwIq90IolJ94rEotq+AeCePsCeLriPW3ebj+xyOmfLjVNI2aOoFmjaJYYmilCxBgmrIYIEyCoBQlGAgQjAfxBP/6gD7/ff8x+jEYjOTk55OXl4Xa7KSoqori4WE94Jnt5KioqJNkRQojTJAmREELMEU3TGB0dpb+/n/7+fvr6+vTbx/vq6+ubMVxvOgPGieRoMlky6cnS5P1GTBgxYsCAAeOMLyNGFFRUo4rNbcZeaCWr0EJWQfx/a55ZT7pikRiBkTCB4ZD+FRoPExqPTHyFzyg5OJ7ZTogUg4I524jFacLsNMX/zzZizZ1IgFxmVGO8h06LaQRHw/j6A3j7gvh6A3j7AvgHQsSiMTQlhmaKoRljaMYoMWMMzRRFM8aIGaJE1TARwoQJEY6FCEVDhKJBguEgwVCQYDBAMHT8XiSDwYDD4cDpdJKbm0teXh4ul4v8/HwKCwspLi6mrKyMyspKKisrKSgokHk7QggxRyQhEkKIJKFpGuPj4wwODjI8PMzIyAjDw8P618m+n14s4ngUlGMSJcNEumRQjJjNZsxWMyabEbPNhMlmwpwV/zKaDKiqisEQ/5+YghbSiIWBCGiTX6H4/7GQBhEgBkQViCpo0cnbQExBQaXqYwWoikLHm4OgxIgpGiiAUUMxgmIEzaChGAA1fh8T909+YdDACKjxbWKxGNFolFgsRiQcJRqOEAlFJ25HiUQiRMIRwpEwkViYcDRMJBomHIl/hcIhQqEQJzs9qqqKzWbDbrdjt9v1BGcyyZlMdPLz8ykoKJiR6LhcLklwhBAiSUhCJIQQaUDTNHw+H16vF6/Xi8fjOebrePe//z6fz0ckEiEcDh/z//SvkyVfiTI9aZv+//u/LBYLNptN/8rKytKTGrvdTnZ29owEx+l0kpOTg8vl0ntznE6nJDVCCJEGJCESQghxRqLR6AcmTT5ffC5MIBAgGAwSDAZn3A6FQkSjUfbv34/P56O2thaj0YjRaMRkMmGxWLBYLFitVv3/yS+TyYTZbNa3m9zGYrFgMBgwGo0YDAZJVoQQQpwSSYiEEEIIIYQQGWtuar8KIYQQQgghRAqQhEgIIYQQQgiRsSQhEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZSxIiIYQQQgghRMaShEgIIYQQQgiRsSQhEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxjogMQIh319vYyMjKS6DCEEEKkmdzcXIqKihIdhhBpRRIiIWZZb28vt9x0CxgSHYkQQoh0Y7Va+e1vfytJkRCzSBIiIWbZyMgIGMB42IniN6PoA1NVFFWJ31Sm/T9xW1FVmLhbf5KigHrstsd7/gffnrZPVf9m2v0TN1RlamNFmRpQO7kdU/vUpj/O1Oto+r6m7temxzH5/OmDdafHMXFb+8DbU0/Spv0oxwz+VaZtq0zblmn70X8Wjt3/tPtQFLT3xXrc5xzz/Gm/l+nPP85rTX98xj7eHwscE8v7n3OyxznFxz/wvhNtM+Nx7biPa8eNQZu5v2N+Fu3Y/Svx1/jA15+xr+M8H23a212b2nTatsq0fSnvey1Fmfn8qU2Pfb6qaNNeQ5t4Tvz+ydvKtPsBVDQ97vjzp/Y1+TqTz3n/45OvpTL1v36fwrGPK+/b17Tbk/+r056jENP3NXmfqsSmbTt5f0z//RiYitswse3k6xgUDWXiPsO0WA3TXkt/vqJhYNpr6bHGpsUy+fzY1Gt8wHMmY5w8hKhK7LixTv9dqkyLb1qsk/uZ8XvR9wuGiXfJ5HvFoIAy8Z0BZcbt+HYK6sRtVVFRUWjtNPLP/5nLyMiIJERCzCJJiISYI4rPiOozTUuC1Bm3gcnWycRd6rTW0LEJkTI9oZme+Ezfdsb979/2fc9/f3I1LRZNmdYaPU6SpSc50x+faKLFN5i6f6qpGN9m8uEZCYm+/2m31ePd/wH3qe/f1wm21R9Xjt12WhJ43IRqejLzQbf15yvTbh8b18xtj3/7uI9zksdP8vyTvf5xk0OO/VmP91ozHz9JQvS+bWe85jHbfkBCNP1+/fWPl9CcQkI0/fZxnq9MS16O95ypt8tUw13R49Jm3K/vZ9p9k41sjvMcFG3azzAtIZr+/A9IXo657wMfP17CMJU4GKY9Z/q2EE8Gpt83te20+6bffl+SYVBiqBO/rOn7it9m4vZUEjaZMBiUqYTDMHkYY+r1Z+4rNu05k7djU/udFstUchPTYzVM+50YmB7fzIRoZswz45uMe+q+qYTHMC35MSiT26nT7ot/J4SYG/LpEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZSxIiIYQQQgghRMaShEgIIYQQQgiRsYyJDkCIdKVlRYgpKop+2UFFUZX4TWXa/xO3FVWFibv1JykKqMdue7znf/DtaftU9W+m3T9xQ1WmNlaUqcslk9sxtU9t+uNMvY424zUntp3awbT7Jv/hmMf058SYei1l8vbUttq0H+WYfU37UZj2/JmPK8fZ9pgfddqN9233/ucc8/xpv5fjxDU9/umPa8eJZfprzNjXcZ5zssePF+vxHv/A+060zYzHteM+rh03Bm3m/o75WbRj96/EX+MDX3/Gvo7zfLRpb/epN5AybVtl2r6U972Wosx8/tSmxz5fVbRpr6FNPCd+/+RtZdr9+n70WDSO+V2h6fvSFI3YtMe1GdvE/49N3KcqUz+jyuR9mv767789+b867TnKxIdz8nCioqEqsWnbTt4f038/hsmfDw3DxLaTr2NQNJSJ+wxM/a4M015Lf/60fanTDkNTr6notw0oKBNbGPTtNNSJX6aqKFO39cdjx41V/12h6bffH+vkfmb8XqbFZ5h4rck/lUEBZeK7eKxTt+PbTYtPUVFRaO2UZpsQc0E+WULMslgshtFoJLJoLNGhpAbtff/PkuO1u4VIF1PpkH7tIANNz3AzZ8CL0WgkFsvcv7oQc0ESIiFmmaqqRCIRvvvd71JVVZXocIQQQqSJ1tZW/s//+T+oauYkgELMB0mIhJgjVVVVLFq0KNFhCCGEEEKIE5BLDEIIIYQQQoiMJQmREEIIIYQQImNJQiTELHO73XzhC1/A7XYnOhQhhBBpRM4vQswNRdO0Wa7tJIQQQgghhBCpQXqIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZy5joAIRIF6FQiF/+8pe8/PLLjI+PU1dXx1133cV5552X6NCESDpPPPEEP/3pTzl48CBjY2O4XC6WLl3Kn//5n/PJT34y0eEJcVIHDx7kpZdeYufOnfT09OB0Olm2bBl33XUXFRUV+nbPPvssL7/8Mm1tbXg8HtxuN6tXr+YLX/gCJSUlM/Y5NDTE/fffzzvvvIPP56OqqorPfvazrF+//pjX7+/v595772Xbtm3EYjFWr17NN77xDUpLSz8w5j179vD1r38dgGeeeYbc3Nyz3qcQ6UDKbgsxS/7xH/+RN954g1tuuYXy8nJefPFFDh06xE9+8hPOOeecRIcnRNK47777+NrXvkZJSQmf+MQncLvd9PT0sHXrVlatWsVDDz2U6BCFOKm/+7u/Y+/evaxfv566ujoGBwd56qmn8Pv93HfffdTW1gLwwx/+kEAgQG1tLdnZ2XR3d/Pcc88RjUZ58MEHyc/PB8Dr9XLXXXcxPDzMzTffjMvl4vXXX2f37t383d/9HR/96Ef11/b5fNx11114vV5uu+02jEYjjz32GJqm8cADD5CTk3NMvLFYjC9/+ct0dHTg9/uPSYjOZJ9CpA1NCHHW9u/fr11yySXaI488ot8XCAS022+/XfvqV7+awMiESD5r1qzRzGaz1tvbe8xjAwMDCYhIiNO3Z88eLRQKzbivra1Nu+KKK7Tvf//7J3zuoUOHtEsuuUT77W9/q9/3yCOPaJdccon23nvv6fdFo1Hty1/+snb99dfPeK2HH35Yu+SSS7QDBw7o97W0tGiXX365dv/99x/3Nf/4xz9q1157rfaTn/xEu+SSS7Th4eEZj5/JPoVIFzKHSIhZsHHjRgwGA9ddd51+n8Vi4ZprrmH//v309vYmMDohko/JZMJkMh1zv9vtTkA0Qpy+FStWHPMerqiooLq6mtbW1hM+t7i4GACPx6Pft3v3bnJzc1m7dq1+n6qqrF+/nqGhIXbt2qXf/8Ybb7B48WKWLFmi31dVVcWaNWt4/fXXj3m9sbExfvGLX/DFL34Rh8Nx3JhOd59CpBNJiISYBQ0NDZSXl2O322fcP3liaWxsTERYQiSl22+/Ha/Xy/Lly/nOd77DCy+8wNjYWKLDEuKsaZrG8PDwcYeXjY6OMjw8zKFDh/iXf/kXgBnJTzgcxmKxHPM8q9UKwOHDh4H40LempiYWL158zLZLliyhs7MTn8834/5f/OIXuFyuGRftpjuTfQqRTiQhEmIWDA4OHvfK9uR9AwMD8x2SEEnrr/7qr/jlL39JaWkpP/jBD7jmmmtwu93ccMMNNDc3Jzo8Ic7YK6+8Qn9/Px/+8IePeeyTn/wk119/PV/5ylfYv38/f/EXfzGj6E5lZSX9/f309PTMeN6ePXuAqfPI2NgYoVDolM85R48e5dlnn+Xuu+/GYDAcN+7T3acQ6UYSIiFmQTAYPO7wH7PZrD8uhIhTFIUvfvGLbNu2jf7+fp566iluuukmnn76aa699lqi0WiiQxTitLW2tvKjH/2IZcuWcdVVVx3z+L//+7/z7//+79x9990UFhbi9/tnPH7ttdeiqir/8A//wN69e+ns7OShhx7irbfeAqbOI5P/n+o55yc/+Qnnn38+69at+8DYT3efQqQbKbstxCywWCyEw+Fj7g+FQvrjQohjTfYM3XDDDQwMDLBhwwYaGxtZtGhRokMT4pQNDg5yzz33YLfb+ad/+qfj9sSsWbMGgAsuuICLL76YO+64A5vNppeZr6ur4+///u/5wQ9+wN133w2Ay+XiG9/4Bj/4wQ+w2WzA1PnkVM45r732Gvv27ePXv/71CeM/nX0KkY4kIRJiFrjdbvr7+4+5f3BwEEAvqyqEiE/evuyyy1AURb8vHA4zNDQETM2ZECIVeDwe/vqv/xqPx8O99957Ssf7srIyFi5cyKuvvjpj3a3LL7+cD33oQzQ2NhKLxaivr2fnzp0A+tpGTqcTs9msn1+me/8557777uPyyy/HaDTS3d2txwvQ19dHJBIhPz//tPYpRDqShEiIWbBgwQJ27tyJ1+udUVjhwIED+uNCiLgbbrgBp9PJBRdcQFVVFeFwmFdeeYUDBw5w8803U1VVlegQhTglwWCQv/mbv6G9vZ0f/vCHVFdXn/JzQ6GQ3vsynclkmlHpbfv27QCce+65QLzyXG1tLYcOHTrmuQcOHKC0tJSsrCwgnvS8+uqrvPrqq8dse9ddd7FgwQIeeOCB09qnEOlIEiIhZsHll1/O7373O5555hk+9alPAfGT3QsvvMDSpUspKipKcIRCJI9/+Zd/4aWXXmLr1q08++yz2O126urquO+++/jSl76U6PCEOCXRaJTvfe977N+/n//7f/8vy5cvP2abSCSC3+8nOzt7xv0HDhygqamJj3zkIyd8jfb2dp5++mkuuugivYcI4LLLLuP+++/n0KFDemW4trY2du7cyW233aZv98///M/H7PO1115jw4YN/O3f/i0FBQWnvU8h0pGiaZqW6CCESAf/8A//wJtvvsmtt95KWVkZL730EgcPHuRHP/oRq1atSnR4QgghZtFPf/pTHn/8cS666KLjVpW78sorGR8f5+abb2b9+vXU1NRgtVppamrixRdfxGw2c999981IdD73uc+xfv16CgsL6e7u5umnnyYrK4uf/exnM5IXn8/Hl770JXw+H7fffjsGg4HHHnuMWCzGAw88QG5u7gfG/cADD/CrX/2KZ555ZsZ2Z7NPIVKd9BAJMUv+9//+3xQVFfGnP/0Jj8dDbW0t//Zv/ybJkBBCpKHJ9eU2b97M5s2bj3n8yiuvxGq1cs0117Bz5042btxIMBgkPz+fK664gs9//vOUlJTMeM6CBQt44YUX9LWM1q9fzxe/+EXy8vJmbJeVlcVPfvIT7r33Xn7zm98Qi8VYvXo1X//61884cZmLfQqRKqSHSAghhBBCCJGxZB0iIYQQQgghRMaShEgIIYQQQgiRsSQhEkIIIYQQQmQsSYiEEEIIIYQQGUsSIiGEEEIIIUTGkoRICCGEEEIIkbEkIRJCCCGEEEJkLEmIhBBCCCGEEBlLEiIhhBBCCCFExpKESAghhBBCCJGxJCESQgghhBBCZCxJiIQQQgghhBAZ6/8H4R9LiRRC+SIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5a6488b4", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "510e833d4aff4beb85f205288b492d01", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/278 [00:00 + + + + + + DC2 Image Analysis, 511 keV, Image Deconvolution — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DC2 Image Analysis, 511 keV, Image Deconvolution

+

updated on 2024-01-30 (the commit 26cfdeacb25335bd511a91c4f8a29bdeb36408f2)

+

This notebook focuses on the image deconvolution with the spacecraft attitude (scatt) binning method for DC2. Using the 511 keV thin disk 3-month simulation data created for DC2, an example of the image analysis will be presented. If you have not run through 511keV-DC2-ScAtt-DataReduction.ipynb, please see it first.

+
+
[1]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
+
+
+
+
+WARNING: version mismatch between CFITSIO header (v4) and linked library (v4.01).
+
+
+
+
+
+
+
+
+Welcome to JupyROOT 6.24/06
+
+
+
+
+
+
+
19:41:37 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69
+                  will not be available.                                                                           
+
+
+
+
+
+
+
19:41:38 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
19:41:38 INFO      Starting 3ML!                                                                     __init__.py:35
+
+
+
+
+
+
+
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36
+
+
+
+
+
+
+
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37
+
+
+
+
+
+
+
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40
+
+
+
+
+
+
+
         WARNING   Multinest minimizer not available                                           minimization.py:1357
+
+
+
+
+
+
+
         WARNING   PyGMO is not available                                                      minimization.py:1369
+
+
+
+
+
+
+
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94
+                  require the C/C++ interface (currently HAWC)                                                     
+
+
+
+
+
+
+
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   No fermitools installed                                              lat_transient_builder.py:44
+
+
+
+
+
+
+
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+

0. Files needed for this notebook

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5

+

From docs/tutorials/image_deconvolution/511keV/ScAttBinning - inputs_511keV_DC2.yaml - imagedeconvolution_parfile_scatt_511keV.yml

+

As outputs from the notebook 511keV-DC2-ScAtt-DataReduction.ipynb - 511keV_scatt_binning_DC2_bkg.hdf5 - 511keV_scatt_binning_DC2_event.hdf5 - ccm.hdf5

+
+
+

1. Read the response matrix

+

please modify “path_data” corresponding to your environment.

+
+
[2]:
+
+
+
path_data = "path/to/data/"
+
+
+
+
+
[3]:
+
+
+
response_path = path_data + "SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5"
+
+response = FullDetectorResponse.open(response_path)
+
+
+
+
+
[4]:
+
+
+
response
+
+
+
+
+
[4]:
+
+
+
+
+FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'
+AXES:
+  NuLambda:
+    DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'
+    TYPE: 'healpix'
+    NPIX: 3072
+    NSIDE: 16
+    SCHEME: 'RING'
+  Ei:
+    DESCRIPTION: 'Initial simulated energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 1
+    EDGES: [509.0 keV, 513.0 keV]
+  Em:
+    DESCRIPTION: 'Measured energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 1
+    EDGES: [509.0 keV, 513.0 keV]
+  Phi:
+    DESCRIPTION: 'Compton angle'
+    TYPE: 'linear'
+    UNIT: 'deg'
+    NBINS: 60
+    EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]
+  PsiChi:
+    DESCRIPTION: 'Location in the Compton Data Space'
+    TYPE: 'healpix'
+    NPIX: 3072
+    NSIDE: 16
+    SCHEME: 'RING'
+
+
+
+
+
+

2. Read binned 511keV binned files (source and background)

+
+
[5]:
+
+
+
%%time
+
+#  background
+data_bkg = BinnedData("inputs_511keV_DC2.yaml")
+data_bkg.load_binned_data_from_hdf5("511keV_scatt_binning_DC2_bkg.hdf5")
+
+##  signal + background
+data_511keV = BinnedData("inputs_511keV_DC2.yaml")
+data_511keV.load_binned_data_from_hdf5("511keV_scatt_binning_DC2_event.hdf5")
+
+
+
+
+
+
+
+
+CPU times: user 149 ms, sys: 806 ms, total: 955 ms
+Wall time: 958 ms
+
+
+
+
+

3. Load the coordsys conversion matrix

+
+
[6]:
+
+
+
%%time
+
+ccm = CoordsysConversionMatrix.open("ccm.hdf5")
+
+
+
+
+
+
+
+
+CPU times: user 1.63 s, sys: 77.8 ms, total: 1.71 s
+Wall time: 1.72 s
+
+
+
+
+

4. Imaging deconvolution

+
+

Brief overview of the image deconvolution

+

Basically, we have to maximize the following likelihood function

+
+\[\log L = \sum_i X_i \log \epsilon_i - \sum_i \epsilon_i\]
+

\(X_i\): detected counts at \(i\)-th bin ( \(i\) : index of the Compton Data Space)

+

\(\epsilon_i = \sum_j R_{ij} \lambda_j + b_i\) : expected counts ( \(j\) : index of the model space)

+

\(\lambda_j\) : the model map (basically gamma-ray flux at \(j\)-th pixel)

+

\(b_i\) : the background at \(i\)-th bin

+

\(R_{ij}\) : the response matrix

+

Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.

+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \delta \lambda_{j}^{k}\]
+
+\[\delta \lambda_{j}^{k} = \frac{\lambda_{j}^{k}}{\sum_{i} R_{ij}} \sum_{i} \left(\frac{ X_{i} }{\epsilon_{i}} - 1 \right) R_{ij}\]
+

We refer to \(\delta \lambda_{j}^{k}\) as the delta map.

+

As for now, the two improved algorithms are implemented in COSIpy.

+
    +
  • Accelerated ML-EM algorithm (Knoedlseder+99)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \delta \lambda_{j}^{k}\]
+
+\[\alpha^{k} < \mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k})\]
+

Practically, in order not to accelerate the algorithm excessively, we set the maximum value of \(\alpha\) (\(\alpha_{\mathrm{max}}\)). Then, \(\alpha\) is calculated as:

+
+\[\alpha^{k} = \mathrm{min}(\mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k}), \alpha_{\mathrm{max}})\]
+
    +
  • Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \left[ w_j \delta \lambda_{j}^{k} \right]_{\mathrm{gauss}}\]
+
+\[w_j = \left(\sum_{i} R_{ij}\right)^\beta\]
+

\(\left[ ... \right]_{\mathrm{gauss}}\) means that the differential image is smoothed by a gaussian filter.

+
+
+

4-1. Prepare DataLoader containing all neccesary datasets

+
+
[7]:
+
+
+
dataloader = DataLoader.load(data_511keV.binned_data,
+                             data_bkg.binned_data,
+                             response,
+                             ccm,
+                             is_miniDC2_format = False)
+
+
+
+
+
[8]:
+
+
+
dataloader._modify_axes()
+
+
+
+
+
+
+
+
+
+WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.
+
+
+WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.
+
+
+
+
+
+
+
+
+... checking the axis ScAtt of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Em of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Phi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis PsiChi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+...checking the axis Em of the event and response files...
+    --> pass (edges)
+...checking the axis Phi of the event and response files...
+    --> pass (edges)
+...checking the axis PsiChi of the event and response files...
+    --> pass (edges)
+The axes in the event and background files are redefined. Now they are consistent with those of the response file.
+
+
+

(In the future, we plan to remove the method “_modify_axes.”)

+
+
+

4-2. Load the response file

+

The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size.

+

So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work.

+
+
[9]:
+
+
+
%%time
+
+dataloader.load_full_detector_response_on_memory()
+
+
+
+
+
+
+
+
+CPU times: user 13.5 s, sys: 1.48 s, total: 15 s
+Wall time: 15 s
+
+
+

Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space (\(\sum_{i} R_{ij}\)). Currently, it is mandatory to run this command for the image deconvolution.

+
+
[10]:
+
+
+
dataloader.calc_image_response_projected()
+
+
+
+
+
+
+
+
+... (DataLoader) calculating a projected image response ...
+
+
+
+
+

4-3. Initialize the instance of the image deconvolution class

+

First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation.

+

please modify this parameter_filepath corresponding to your environment.

+
+
[11]:
+
+
+
parameter_filepath = "imagedeconvolution_parfile_scatt_511keV.yml"
+
+
+
+
+
[12]:
+
+
+
image_deconvolution = ImageDeconvolution()
+
+# set dataloader to image_deconvolution
+image_deconvolution.set_data(dataloader)
+
+# set a parameter file for the image deconvolution
+image_deconvolution.read_parameterfile(parameter_filepath)
+
+
+
+
+
+
+
+
+data for image deconvolution was set ->  <cosipy.image_deconvolution.data_loader.DataLoader object at 0x2b65478e0>
+parameter file for image deconvolution was set ->  imagedeconvolution_parfile_scatt_511keV.yml
+
+
+
+
+

Initialize image_deconvolution

+

In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.

+

I describe parameters in the parameter file.

+
+

model_property

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

coordinate

str

the coordinate system of the model map

As for now, it must be ‘galactic’

nside

int

NSIDE of the model map

it must be the same as NSIDE of ‘lb’ axis of the coordinate conversion matrix

scheme

str

SCHEME of the model map

As for now, it must be ‘ring’

energy_edges

list of float [keV]

The definition of the energy bins of the model map

As for now, it must be the same as that of the response matrix

+
+
+

model_initialization

+ + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the method name to initialize the model map

As for now, only ‘flat’ can be used

parameter_flat:values

list of float [cm-2 s-1 sr-1]

the list of photon fluxes for each energy band

the length of the list should be the same as the length of “energy_edges” - 1

+
+
+

deconvolution

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the name of the image deconvolution algorithm

As for now, only ‘RL’ is supported

parameter_RL:iteration

int

The maximum number of the iteration

parameter_RL:acceleration

bool

whether the accelerated ML-EM algorithm (Knoedlseder+99) is used

parameter_RL:alpha_max

float

the maximum value for the acceleration parameter

parameter_RL:save_results_each_iteration

bool

whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration

parameter_RL:response_weighting

bool

whether a delta map is renormalized based on the exposure time on each pixel, namely +\(w_j = (\sum_{i} R_{ij})^{\beta}\) (see Knoedlseder+05, Siegert+20)

parameter_RL:response_weighting_index

float

\(\beta\) in the above equation

parameter_RL:smoothing

bool

whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20)

parameter_RL:smoothing_FWHM

float, degree

the FWHM of the Gaussian in the filter

parameter_RL:background_normalization_fitting

bool

whether the background normalization factor is optimized at each iteration

As for now, the single background normalization factor is used in all of the bins

parameter_RL:background_normalization_range

list of float

the range of the normalization factor

should be positive

+
+
[13]:
+
+
+
image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 509.0
+- 513.0
+nside: 16
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10.0
+  background_normalization_fitting: false
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 10
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 2.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

(You can change the parameters as follows)

+

Note that when you modify the parameters, do not forget to run “initialize” again!

+
+
[14]:
+
+
+
image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 30")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:background_normalization_fitting = True")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:alpha_max = 10")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:smoothing_FWHM = 3.0")
+
+image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 509.0
+- 513.0
+nside: 16
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10
+  background_normalization_fitting: true
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 30
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 3.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

4-5. Start the image deconvolution

+

With MacBook Pro with M1 Max and 64 GB memory, it takes about 6 minutes for 30 iterations.

+
+
[15]:
+
+
+
%%time
+
+all_results = image_deconvolution.run_deconvolution()
+
+
+
+
+
+
+
+
+#### Deconvolution Starts ####
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Iteration 1/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+
+
+
+
+
+
+
+
+WARNING RuntimeWarning: invalid value encountered in divide
+
+
+
+
+
+
+
+
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.5039460293538105
+    loglikelihood: -1563364.0277526558
+    background_normalization: 1.0048700233481955
+  Iteration 2/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1519357.4702937151
+    background_normalization: 0.9944142064277177
+  Iteration 3/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.4670760938135765
+    loglikelihood: -1499867.5506138196
+    background_normalization: 0.999275691887223
+  Iteration 4/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1496920.474980764
+    background_normalization: 1.0004892236020582
+  Iteration 5/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 4.546207203696152
+    loglikelihood: -1490909.3204384344
+    background_normalization: 0.9998689870447892
+  Iteration 6/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1490365.0435509903
+    background_normalization: 0.9995258381190871
+  Iteration 7/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.854692362839457
+    loglikelihood: -1489307.7214813665
+    background_normalization: 0.9997388449308033
+  Iteration 8/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1489058.487761884
+    background_normalization: 0.9998124108372027
+  Iteration 9/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.2283812062183777
+    loglikelihood: -1488593.384611151
+    background_normalization: 0.9997745302553334
+  Iteration 10/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1488431.7662045578
+    background_normalization: 0.999764145247152
+  Iteration 11/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.2705691250781777
+    loglikelihood: -1488249.8944230902
+    background_normalization: 0.9997686118565604
+  Iteration 12/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1488124.8362333952
+    background_normalization: 0.9997696073518008
+  Iteration 13/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1488012.3045336306
+    background_normalization: 0.9997697876916849
+  Iteration 14/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.2230022900243092
+    loglikelihood: -1487888.5786615435
+    background_normalization: 0.9997700189565418
+  Iteration 15/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1487798.520730182
+    background_normalization: 0.9997703163980328
+  Iteration 16/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.8098974214440344
+    loglikelihood: -1487652.4673017936
+    background_normalization: 0.999770562358397
+  Iteration 17/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1487583.1765680623
+    background_normalization: 0.999771015377049
+  Iteration 18/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.618448128695514
+    loglikelihood: -1487253.9933618857
+    background_normalization: 0.9997712604348642
+  Iteration 19/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1487215.6271944637
+    background_normalization: 0.9997727102976933
+  Iteration 20/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 4.541756790045432
+    loglikelihood: -1487060.3103523117
+    background_normalization: 0.999772909371205
+  Iteration 21/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1487034.1422262355
+    background_normalization: 0.9997739086816684
+  Iteration 22/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1487009.4576823683
+    background_normalization: 0.9997741100024176
+  Iteration 23/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1486986.1429297891
+    background_normalization: 0.9997742950835806
+  Iteration 24/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1486964.0949290707
+    background_normalization: 0.9997744737637747
+  Iteration 25/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 4.967042011343623
+    loglikelihood: -1486864.6152302232
+    background_normalization: 0.9997746469610125
+  Iteration 26/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1486848.7990036565
+    background_normalization: 0.9997754874062363
+  Iteration 27/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.6330713142086324
+    loglikelihood: -1486824.3117899313
+    background_normalization: 0.9997756319817698
+  Iteration 28/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1486810.3517182083
+    background_normalization: 0.9997758601840663
+  Iteration 29/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.1820824055223498
+    loglikelihood: -1486794.6074471278
+    background_normalization: 0.9997759950994234
+  Iteration 30/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> stop
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1486781.9555685548
+    background_normalization: 0.9997761488793757
+#### Done ####
+
+CPU times: user 33min 1s, sys: 3min 35s, total: 36min 37s
+Wall time: 5min 41s
+
+
+
+
[16]:
+
+
+
import pprint
+
+pprint.pprint(all_results)
+
+
+
+
+
+
+
+
+[{'alpha': <Quantity 2.50394603>,
+  'background_normalization': 1.0048700233481955,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8a2f0>,
+  'iteration': 1,
+  'loglikelihood': -1563364.0277526558,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8a380>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b89f00>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9944142064277177,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x10368e1d0>,
+  'iteration': 2,
+  'loglikelihood': -1519357.4702937151,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b657bc70>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b88850>},
+ {'alpha': <Quantity 2.46707609>,
+  'background_normalization': 0.999275691887223,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8bd60>,
+  'iteration': 3,
+  'loglikelihood': -1499867.5506138196,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8ba00>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b89990>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0004892236020582,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8ad70>,
+  'iteration': 4,
+  'loglikelihood': -1496920.474980764,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b6568820>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b88430>},
+ {'alpha': <Quantity 4.5462072>,
+  'background_normalization': 0.9998689870447892,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8afb0>,
+  'iteration': 5,
+  'loglikelihood': -1490909.3204384344,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8afe0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b89780>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9995258381190871,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8bf40>,
+  'iteration': 6,
+  'loglikelihood': -1490365.0435509903,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8b970>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b88880>},
+ {'alpha': <Quantity 2.85469236>,
+  'background_normalization': 0.9997388449308033,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8a410>,
+  'iteration': 7,
+  'loglikelihood': -1489307.7214813665,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8ac50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8ae30>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998124108372027,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07790>,
+  'iteration': 8,
+  'loglikelihood': -1489058.487761884,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e076d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07f10>},
+ {'alpha': <Quantity 2.22838121>,
+  'background_normalization': 0.9997745302553334,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b89600>,
+  'iteration': 9,
+  'loglikelihood': -1488593.384611151,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8ae60>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b88340>},
+ {'alpha': 1.0,
+  'background_normalization': 0.999764145247152,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b896f0>,
+  'iteration': 10,
+  'loglikelihood': -1488431.7662045578,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8ad10>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8b0d0>},
+ {'alpha': <Quantity 1.27056913>,
+  'background_normalization': 0.9997686118565604,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07bb0>,
+  'iteration': 11,
+  'loglikelihood': -1488249.8944230902,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e05a50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07670>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997696073518008,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b88640>,
+  'iteration': 12,
+  'loglikelihood': -1488124.8362333952,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b88cd0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b882b0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997697876916849,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8b0a0>,
+  'iteration': 13,
+  'loglikelihood': -1488012.3045336306,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8a4a0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b89840>},
+ {'alpha': <Quantity 1.22300229>,
+  'background_normalization': 0.9997700189565418,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8bc10>,
+  'iteration': 14,
+  'loglikelihood': -1487888.5786615435,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8aad0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b89540>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997703163980328,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e075e0>,
+  'iteration': 15,
+  'loglikelihood': -1487798.520730182,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e05ae0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x10367dbd0>},
+ {'alpha': <Quantity 1.80989742>,
+  'background_normalization': 0.999770562358397,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b88d30>,
+  'iteration': 16,
+  'loglikelihood': -1487652.4673017936,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8a2c0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07880>},
+ {'alpha': 1.0,
+  'background_normalization': 0.999771015377049,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07df0>,
+  'iteration': 17,
+  'loglikelihood': -1487583.1765680623,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07b20>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b6569b10>},
+ {'alpha': <Quantity 5.61844813>,
+  'background_normalization': 0.9997712604348642,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b8ace0>,
+  'iteration': 18,
+  'loglikelihood': -1487253.9933618857,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b6579690>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b029b0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997727102976933,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07c40>,
+  'iteration': 19,
+  'loglikelihood': -1487215.6271944637,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e06950>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b024d0>},
+ {'alpha': <Quantity 4.54175679>,
+  'background_normalization': 0.999772909371205,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b018d0>,
+  'iteration': 20,
+  'loglikelihood': -1487060.3103523117,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b6569780>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b000d0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997739086816684,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07460>,
+  'iteration': 21,
+  'loglikelihood': -1487034.1422262355,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x373e07700>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b016f0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997741100024176,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b02bc0>,
+  'iteration': 22,
+  'loglikelihood': -1487009.4576823683,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b00c40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b01a80>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997742950835806,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b005e0>,
+  'iteration': 23,
+  'loglikelihood': -1486986.1429297891,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b013f0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b03ac0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997744737637747,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b00f40>,
+  'iteration': 24,
+  'loglikelihood': -1486964.0949290707,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b01150>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b021d0>},
+ {'alpha': <Quantity 4.96704201>,
+  'background_normalization': 0.9997746469610125,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b00100>,
+  'iteration': 25,
+  'loglikelihood': -1486864.6152302232,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b002b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b020b0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997754874062363,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b03730>,
+  'iteration': 26,
+  'loglikelihood': -1486848.7990036565,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b03ca0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b02ce0>},
+ {'alpha': <Quantity 1.63307131>,
+  'background_normalization': 0.9997756319817698,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b02fe0>,
+  'iteration': 27,
+  'loglikelihood': -1486824.3117899313,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b02200>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b035b0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997758601840663,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b03490>,
+  'iteration': 28,
+  'loglikelihood': -1486810.3517182083,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b011b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b02ad0>},
+ {'alpha': <Quantity 1.18208241>,
+  'background_normalization': 0.9997759950994234,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b03c10>,
+  'iteration': 29,
+  'loglikelihood': -1486794.6074471278,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b01030>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b00c70>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9997761488793757,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b02e90>,
+  'iteration': 30,
+  'loglikelihood': -1486781.9555685548,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x374b01330>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b65790c0>}]
+
+
+
+
+

5. Analyze the results

+

Examples to see/analyze the results are shown below.

+
+

Log-likelihood

+

Plotting the log-likelihood vs the number of iterations

+
+
[17]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['loglikelihood'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("loglikelihood")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_35_0.png +
+
+
+
+

Alpha (the factor used for the acceleration)

+

Plotting \(\alpha\) vs the number of iterations. \(\alpha\) is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts.

+
+
[18]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['alpha'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("alpha")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_37_0.png +
+
+
+
+

Background normalization

+

Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1.

+
+
[19]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['background_normalization'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("background_normalization")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_39_0.png +
+
+
+
+

The reconstructed images

+
+
[20]:
+
+
+
def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['model_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the reconstructed images in all of the energy bands at the 20th iteration

+
+
[21]:
+
+
+
iteration = 19
+
+plot_reconstructed_image(all_results[iteration])
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_43_0.png +
+
+

An example to plot the image in the log scale

+
+
[22]:
+
+
+
iteration_idx = 29
+
+result = all_results[iteration_idx]
+
+iteration = result['iteration']
+image = result['model_map']
+
+data = image[:,0]
+data[data <= 0 * data.unit] = 1e-12 * data.unit
+
+hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')
+
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-ImageDeconvolution_45_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution.ipynb b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution.ipynb new file mode 100644 index 00000000..2459b6a3 --- /dev/null +++ b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-ImageDeconvolution.ipynb @@ -0,0 +1,2033 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# DC2 Image Analysis, 511 keV, Image Deconvolution\n", + "\n", + "updated on 2024-01-30 (the commit 26cfdeacb25335bd511a91c4f8a29bdeb36408f2)\n", + "\n", + "This notebook focuses on the image deconvolution with the spacecraft attitude (scatt) binning method for DC2.\n", + "Using the 511 keV thin disk 3-month simulation data created for DC2, an example of the image analysis will be presented.\n", + "If you have not run through 511keV-DC2-ScAtt-DataReduction.ipynb, please see it first." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e751bbd5", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING: version mismatch between CFITSIO header (v4) and linked library (v4.01).\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Welcome to JupyROOT 6.24/06\n" + ] + }, + { + "data": { + "text/html": [ + "
19:41:37 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m19:41:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868719;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=430612;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1266;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828377;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
19:41:38 WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m19:41:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=592615;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=487884;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=715098;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=629258;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=356515;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=502226;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=565497;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=461713;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=84453;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=437410;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=15358;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=521689;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=256986;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=884611;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
19:41:38 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m19:41:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535446;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741506;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=94178;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451499;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=751666;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=226228;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85570;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=612756;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=50968;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=509890;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=146921;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=794948;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=646350;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265558;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=35839;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=46082;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=913803;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=135607;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370360;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80289;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=219211;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=844281;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=267452;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=556886;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=28294;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519854;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "## 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/ScAttBinning\n", + "- inputs_511keV_DC2.yaml\n", + "- imagedeconvolution_parfile_scatt_511keV.yml\n", + "\n", + "As outputs from the notebook 511keV-DC2-ScAtt-DataReduction.ipynb\n", + "- 511keV_scatt_binning_DC2_bkg.hdf5\n", + "- 511keV_scatt_binning_DC2_event.hdf5\n", + "- ccm.hdf5" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "## 1. Read the response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "573a7c60", + "metadata": {}, + "source": [ + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "98a778c2-73cf-467b-96b6-affc42f17102", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = path_data + \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "\n", + "response = FullDetectorResponse.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "eab660b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 60\n", + " EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "response" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "## 2. Read binned 511keV binned files (source and background)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "04e15347-6b38-42de-a7c5-cd99b2ae66ac", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 149 ms, sys: 806 ms, total: 955 ms\n", + "Wall time: 958 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background \n", + "data_bkg = BinnedData(\"inputs_511keV_DC2.yaml\")\n", + "data_bkg.load_binned_data_from_hdf5(\"511keV_scatt_binning_DC2_bkg.hdf5\")\n", + "\n", + "## signal + background\n", + "data_511keV = BinnedData(\"inputs_511keV_DC2.yaml\")\n", + "data_511keV.load_binned_data_from_hdf5(\"511keV_scatt_binning_DC2_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a409aa7b-9bd8-443b-be46-ee5a053f8349", + "metadata": { + "tags": [] + }, + "source": [ + "## 3. Load the coordsys conversion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "daaf836a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.63 s, sys: 77.8 ms, total: 1.71 s\n", + "Wall time: 1.72 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ccm = CoordsysConversionMatrix.open(\"ccm.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "## 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "### Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "### 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(data_511keV.binned_data, \n", + " data_bkg.binned_data, \n", + " response, \n", + " ccm,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "2a662f5e", + "metadata": {}, + "source": [ + "### 4-2. Load the response file\n", + "\n", + "The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size. \n", + "\n", + "So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0ab4b84c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 13.5 s, sys: 1.48 s, total: 15 s\n", + "Wall time: 15 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n" + ] + } + ], + "source": [ + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "### 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_511keV.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_511keV.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 509.0\n", + "- 513.0\n", + "nside: 16\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "787a76408f87451687d9cad617f808c7", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3072 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.5039460293538105\n", + " loglikelihood: -1563364.0277526558\n", + " background_normalization: 1.0048700233481955\n", + " Iteration 2/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1519357.4702937151\n", + " background_normalization: 0.9944142064277177\n", + " Iteration 3/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.4670760938135765\n", + " loglikelihood: -1499867.5506138196\n", + " background_normalization: 0.999275691887223\n", + " Iteration 4/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1496920.474980764\n", + " background_normalization: 1.0004892236020582\n", + " Iteration 5/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.546207203696152\n", + " loglikelihood: -1490909.3204384344\n", + " background_normalization: 0.9998689870447892\n", + " Iteration 6/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1490365.0435509903\n", + " background_normalization: 0.9995258381190871\n", + " Iteration 7/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.854692362839457\n", + " loglikelihood: -1489307.7214813665\n", + " background_normalization: 0.9997388449308033\n", + " Iteration 8/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1489058.487761884\n", + " background_normalization: 0.9998124108372027\n", + " Iteration 9/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.2283812062183777\n", + " loglikelihood: -1488593.384611151\n", + " background_normalization: 0.9997745302553334\n", + " Iteration 10/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1488431.7662045578\n", + " background_normalization: 0.999764145247152\n", + " Iteration 11/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.2705691250781777\n", + " loglikelihood: -1488249.8944230902\n", + " background_normalization: 0.9997686118565604\n", + " Iteration 12/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1488124.8362333952\n", + " background_normalization: 0.9997696073518008\n", + " Iteration 13/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1488012.3045336306\n", + " background_normalization: 0.9997697876916849\n", + " Iteration 14/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.2230022900243092\n", + " loglikelihood: -1487888.5786615435\n", + " background_normalization: 0.9997700189565418\n", + " Iteration 15/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487798.520730182\n", + " background_normalization: 0.9997703163980328\n", + " Iteration 16/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.8098974214440344\n", + " loglikelihood: -1487652.4673017936\n", + " background_normalization: 0.999770562358397\n", + " Iteration 17/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487583.1765680623\n", + " background_normalization: 0.999771015377049\n", + " Iteration 18/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.618448128695514\n", + " loglikelihood: -1487253.9933618857\n", + " background_normalization: 0.9997712604348642\n", + " Iteration 19/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487215.6271944637\n", + " background_normalization: 0.9997727102976933\n", + " Iteration 20/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.541756790045432\n", + " loglikelihood: -1487060.3103523117\n", + " background_normalization: 0.999772909371205\n", + " Iteration 21/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487034.1422262355\n", + " background_normalization: 0.9997739086816684\n", + " Iteration 22/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1487009.4576823683\n", + " background_normalization: 0.9997741100024176\n", + " Iteration 23/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486986.1429297891\n", + " background_normalization: 0.9997742950835806\n", + " Iteration 24/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486964.0949290707\n", + " background_normalization: 0.9997744737637747\n", + " Iteration 25/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.967042011343623\n", + " loglikelihood: -1486864.6152302232\n", + " background_normalization: 0.9997746469610125\n", + " Iteration 26/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486848.7990036565\n", + " background_normalization: 0.9997754874062363\n", + " Iteration 27/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.6330713142086324\n", + " loglikelihood: -1486824.3117899313\n", + " background_normalization: 0.9997756319817698\n", + " Iteration 28/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486810.3517182083\n", + " background_normalization: 0.9997758601840663\n", + " Iteration 29/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.1820824055223498\n", + " loglikelihood: -1486794.6074471278\n", + " background_normalization: 0.9997759950994234\n", + " Iteration 30/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1486781.9555685548\n", + " background_normalization: 0.9997761488793757\n", + "#### Done ####\n", + "\n", + "CPU times: user 33min 1s, sys: 3min 35s, total: 36min 37s\n", + "Wall time: 5min 41s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0048700233481955,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': -1563364.0277526558,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9944142064277177,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': -1519357.4702937151,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999275691887223,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': -1499867.5506138196,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0004892236020582,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': -1496920.474980764,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9998689870447892,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': -1490909.3204384344,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9995258381190871,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': -1490365.0435509903,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997388449308033,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': -1489307.7214813665,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998124108372027,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': -1489058.487761884,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997745302553334,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': -1488593.384611151,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.999764145247152,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': -1488431.7662045578,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997686118565604,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': -1488249.8944230902,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997696073518008,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': -1488124.8362333952,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997697876916849,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': -1488012.3045336306,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997700189565418,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': -1487888.5786615435,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997703163980328,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': -1487798.520730182,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999770562358397,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': -1487652.4673017936,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.999771015377049,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': -1487583.1765680623,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997712604348642,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': -1487253.9933618857,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997727102976933,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': -1487215.6271944637,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999772909371205,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': -1487060.3103523117,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997739086816684,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': -1487034.1422262355,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997741100024176,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': -1487009.4576823683,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997742950835806,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': -1486986.1429297891,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997744737637747,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': -1486964.0949290707,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997746469610125,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': -1486864.6152302232,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997754874062363,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': -1486848.7990036565,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997756319817698,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': -1486824.3117899313,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997758601840663,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': -1486810.3517182083,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9997759950994234,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': -1486794.6074471278,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9997761488793757,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': -1486781.9555685548,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "## 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "### Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHMCAYAAADmu70qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUpklEQVR4nO3dfVxUVeI/8M/MMMPzgwyCGkKihGCalmYpKmqYVEubZWaZlj3ZD/vaqpnu7tdq1d3atW2xzMo0TKP6rhvqmmZpKqtpJoooDz60gmiCgiBPwwAz9/fHyJVpBpznOwyf92v9MvfcM/eeOcx3+ey9554jEwRBABERERE5lFzqBhARERF5IoYsIiIiIidgyCIiIiJyAoYsIiIiIidgyCIiIiJyAoYsIiIiIidgyCIiIiJyAoYsIiIiIidgyCIiIiJyAoYsIiIiIifwkroBBDQ0NOCLL75AQUEBCgsLUVtbi0WLFiElJcWu4x4+fBjr16/HqVOnoNfr0bt3b0ydOhXjx493UMuJiIioPQxZbuDq1avIyMhAREQE+vXrh6NHj9p9zG3btuGtt97C0KFD8dxzz0GhUODcuXO4dOmSA1pMREREN8KQ5QbUajWysrKgVqtRVFSE559/3q7jXbx4Ee+88w4mTZqEOXPmOKiVREREZA2GLDegUqmgVqstqnvw4EFs2LABp06dgkwmw2233YYXX3wRffr0Eets3rwZer0ezzzzDADD7UhfX1/IZDKntJ+IiIhMceB7J7Jjxw68+uqr8PX1xQsvvIAZM2aguLgYaWlpuHjxolgvJycHUVFROHjwIB5++GFMnDgRDzzwAD7++GPo9XoJPwEREVHXwStZnURDQwPS09PxwAMP4JVXXhHLJ06ciGnTpmHDhg1i+fnz5yGXy/Hmm29i6tSp6Nu3L7Kzs/Hpp59Cp9PhhRdekOpjEBERdRkMWZ3E4cOHUVdXh/Hjx6O6ulosl8vliI+Px5EjR8QyjUYDvV6PF154AU888QQAICkpCbW1tdi4cSOefPJJ+Pn5ufojEBERdSkMWZ3E+fPnAQAvv/yy2f3+/v7ia29vb2g0Gtxzzz1GdcaPH48ff/wRp06dwuDBg53VVCIiIgJDVqfROpbqj3/8I0JDQ032KxQK8bVarcb58+fRrVs3ozqt27W1tU5sKREREQEMWZ3GTTfdBAAICQnB0KFDO6wbFxeH8+fPo6KiAr169RLLKyoqxGMQERGRc/Hpwk7izjvvhL+/PzZs2ICWlhaT/W3HaY0bNw4A8PXXX4tler0e27dvR1BQEOLi4pzeXiIioq6OV7LcxL/+9S/U1dWhsrISALB//35xdvaHH34YAQEBmDt3LpYtW4ZnnnkG48ePR0hICMrLy3Hw4EHceuut+N3vfgcASExMxB133IENGzaguroa/fr1w3/+8x/k5eVh/vz5UKlUkn1OIiKirkImCIIgdSMIePTRR1FWVmZ235dffomePXsCAI4ePYrPPvsMBQUFaGpqQvfu3TFo0CBMmjTJ6ApVQ0MDPv74Y3z//feora1F79698fjjj2PChAku+TxERERdHUMWERERkRNwTBYRERGREzBkERERETkBQ5ZEGhsbcfLkSTQ2NkrdFCIiInIChiyJlJSU4LnnnkNJSYnZ/T///LOLW+QZ2G+2Yb9Zj31mG/abbdhvtpG63xiy3JRWq5W6CZ0S+8027Dfrsc9sw36zDfvNNlL3G0MWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRN4Sd0AIiIiMqbX6aFr1kPXooe+WQ/t1RbUVWggCAAgGP5z7bUgXCsShNZdrTtN9wmG+oLecACh9TiCYNinN5xf0AtiXegFiKe9dlyT8wPi8a6fVzB63XoM47a2bbNxvXbP9evP3XoSM5/90qWrSEiw//dhK4YsIiJyOEEvoKVJh+ZGHVq0LWjW6tDSqMPV4kb8IlSa/hFvJwhcDwDX9utb9xuHC0NoQJtyQ2Aw2v71OfRty83XQWs7ADFsXD9Xa51ftcXMsfR6Afpm4+Cka7m2/euyJt314NJGDi645pfnaZ6T7tQMWUREHkzQC9DWN0NzVYuGai001Vo0a3WG4CD+u37lQq83BBl92/3C9Tp6vYAWrU7819zYcv21VoeWRkOg0jXp221TPspd2ANE0mHIIiLqZARBQLOmBZqrTdfD01UtGqoN25qrhjDVcFULzdUmCDozl0VIWjJA4SWHQnn9n7x120sOhVJhVFZXX4ugoCBABsgM/wcyWeuxZJDJAJnMUH6tSKzQdp9MLoPsWn1cK5fJZddfy9ocT37t/fLWJl87fnttuPa52r6WiS9gdF7DW2StuwB5m/eYOY9Yr/UYv3r9688LGPaVni91wC/LdgxZREQ2EPQCmhqaDVdxmnTi7bCWJp3xlR6tDrrW22Zt9uma9dDrBOh1euhbrv002ja8FszUab3F5E68vBXw8lZA6a2Al0/ray94+Vwr81ZA6eOFqqtXENa9u/hH3OiPvUxm+IP+q9AglsPwU9b6B1l+vd71utfCgXiM1uO1OZf8V/V/dR5Z6x9rucz4j7fctF3tHaO1rWKbZTJDeFIZQpRMIRPPY4mCggIkSDm4qJOq96uU9PwMWUTU6YiDgpv0aGk23JpqaTKEmZYmw5iWlubWsl/tE+vroW8dE6O7Ph5G39J2fIwgbuua2+xrMdxGO4BzUndFu2QywCfYG37BKviGeMM32PDPL0QFla/SEBhaA0vrP5lpmfzaVQ55mzIvVWtoMvz0UinEqx43YggLtzj50xO5B4YsIrKZIAgmIcaasGOocy34XLs609J0/XVrIBJfN+vR0qz3+NtfMoUMcoUMcoXc8NPr2s/WMi85fINaw5MKfsHehtdttr0DVYaARESSYcgi6kLEJ77aDFBuadSh6mcNztZeRLNGhyZNC5obr/3T6K79bEFzow7NmhY0iduGMnho3jGMhzHc4pF7ya//vDZORtvUiKBugeJtMi+V4cqOQtV6e0wOL28vcZ+Xz7U61+orlPI2oel6oLL2NhIRuS+GLKJOSFvfjNpLDai9rEFteQM0NU3iU16/DlBieaNhLFB7CnHJhZ/AAjLAS2UIIwqVHF7XBgIb/ikMY1uUcrGOl8pQJv5UGgKPl0pu+lOpEN9nCFAyyFsHHFs4XoZjZIjoRhiyiNyQrkWPussaMUjVXGowvL5kKGtqaJGmYTJA6eMFpa9hELPKx0u8QiMGHGU7wUalgJeyddtcILoeoLyU1g8MJiJyNx4RsioqKrBx40YUFhaiqKgIGo0G6enpGDJkiE3Hmzt3Lg4fPoyHHnoIv/vd74z2XblyBR9++CEOHDiAhoYGREdHY9q0aRg7dqwjPgp5sNbH7rV1zdDWNaOxvvna6yY01jYZAtS1YFV/pdEht+EUSvm1wclehp8+v37iy1BeXVeFXr17QOnrZQhRPgoofQ0hSul77d+1Qc4MPkRElvGIkFVaWorMzExERkYiJiYG+fn5Nh9r79697b6/vr4eaWlpqKqqwiOPPILQ0FDs3r0br732GlpaWpCcnGzzeanzatHq8EtBJWovNYgBSisGqNbXTdDWtxhmiraDTC6Dv9oHQeF+COjui6BwPwSG+8Kvm48hGPkYPzIvV1i2PKnh1leMXW0jIiJjHhGy4uLisHXrVgQFBWHPnj1YvHixTcfRarVYuXIlHn/8caxZs8Zk/5YtW3DhwgW88847uOOOOwAAv/3tbzFr1iysXLkSSUlJUCqVdn0W6hzqKjU4d+QSSo9exi/5lQ6ds8g7QGkIUeGtIcoPgd19ERjuhwC1D+ReXNediKgz8IiQ5efn55DjfP755xAEAY899pjZkHXs2DGEhISIAQsA5HI5xo4di1WrViE3NxfDhg1zSFvIvQh6AZf/exXnjlzCuaOXcKWk1uL3qvy84O2vhHfAtX/+qjavr5cHhPkisLsvVH4M6kREnsAjQpYjlJeX47PPPsPChQvh7e1ttk5zc7PZfT4+PgCAkydPMmR5kCZNCy4cr0Dp0Us4d/QyGmuazNbz6+aNqCHhiLilG3wCW0OTCt7+Sqj8vSy+ZUdERJ6FIeualStXIjY2FuPHj2+3TlRUFHJyclBWVoYePXqI5Xl5eQAMA/DbU1FRgcrK69P7l5SUOKDV5Gi1lxtw7shlnDtyCRcLK6FvMT+GqntMMHrf3h1RQ8KhvjmIg8GJiMiE24UsvV6P5uZmi+qqVCqH/HE7cuQI9u7diw8++KDDeg888AA2b96M1157DbNnzxYHvv/nP/8BYBjT1Z4tW7YgIyPDpPzs2bPQ6UznLqqrq0NBQYF1H4Qs7je9TkBjVQs0lc3QVDRDU9mMuotN0Fw2/92TK2UIifFBt36+6NbPF6pALwDNuKS5gEuFFxz8KVyP3zfrsc9sw36zDfvNNs7qN0vnyHO7kHXs2DHMmTPHorrr169HdHS0XedraWlBeno6JkyYgPj4+A7r9u3bF4sXL8bbb7+NtLQ0AEBoaCheeuklvP322/D19W33vampqRg5cqS4XVJSgqVLl6JPnz6Ii4szqc+JDm3Ttt8EQUBjTROuXqxH9S/1137W4eov9ai9rLnhk34BYT7oPSQcUbeHo2d8KLxUCld8BEnw+2Y99plt2G+2Yb/ZRup+c7uQFRUVhUWLFllUV61W232+HTt2oLS0FPPnz8fFixeN9jU0NODixYvo1q2bOO4qKSkJI0eOxJkzZ6DX63HLLbfg6NGjAIDevXu3e56wsDCEhYXZ3V4yTxAEXCy4gvM/XMXl7DwxTFk1aacMCO8Xgqhrwapb7wDeBiQiIpu5XchSq9VISUlx2fnKy8vR0tIiXplqa8eOHdixYweWLVuGUaNGieVKpdLoqldOTg4AYOjQoc5vMJl1cs957Ft94tpWdYd1vbwVCO7pL/4L6eWP4F7+CO7hD6WP2/2/BBERdVJd7i9KeXk5GhsbxduM48ePR2xsrEm9P/zhD7jrrrvwm9/8psPbiKWlpdi8eTNGjBjR4ZUscp7G2ib89PlJk3J/tY8hQPUMMApT/t18IJPzChURETmXx4SsdevWAQCKi4sBGK5CtT71N2PGDLHesmXLkJubi+zsbABAdHR0u+O6evbsaXQFCwCefPJJjB07FuHh4bh48SI2b96MoKAgzJs3z9EfiSx0+P9OQVtnGLAeGueLMTNuR1APP16VIiIiSXnMX6FfTx66bds28XXbkGWvfv36Ydu2baiqqkJwcDDGjh2LmTNnolu3bg47B1muovgqir4vBQAofRSImRgK9c1BEreKiIjIg0JW65WpG1mxYoVdx3vttdcsbhM5lyAIOJBRKC6kPPihflAGNkrbKCIioms4FTV1Wmf2/4LyU1UAgOCe/rg15WZpG0RERNQGQxZ1Sk2aFvyUeX2w+13T46HgwslERORG+FeJOqWjWWfQUG2YYT/qjnD0vq27xC0iIiIyxpBFnU71L3XI314MAFAo5bhrWscz9RMREUmBIYs6FUEQcPDTQuh1htHuA+/vg6AIP4lbRUREZIohizqVczmXcD6vAoBhstHBD/aVuEVERETmMWRRp9HSpMPB9YXi9vAn+sPL23MXbSYios6NIYs6jeNfn0XtZQ0AoGdCKPoM7yFxi4iIiNrHkEWdQl2FBrmbfwYAyOQyjHgqATIZ1x8kIiL3xZBFncKPnxVB16QHACRMiEK3yECJW0RERNQxhixye7/kV+Lsj2UAAJ8gFW5/OFbiFhEREd0YQxa5NX2LHgfWFYjbwx67Bd7+SglbREREZBmGLHJrBd+dQ9X5OgBA977BuGV0pMQtIiIisgxDFrktzVUtjvzrtLh994wEyOQc7E5ERJ0DQxa5rZ++PIWmhhYAwC1JkQjvFyJtg4iIiKzAkEVu6dKZapzacx4AoPT1wtApt0jcIiIiIuswZJHbEfQCDmRcH+x+xyP94BfsLWGLiIiIrMeQRW7ndPYFXP7vVQBAyE0BSEiOlrhFRERE1mPIIrfS1NCMQ1+cFLdHPJUAuRe/pkRE1Pnwrxe5lSP/OoPGmiYAQJ87e6DXALXELSIiIrINQxa5jarztcjfUQIAUKjkGD6tv8QtIiIish1DFrmFJk0L/vPxCQh6AQAwOLUvAsJ8JW4VERGR7bykbgBR7eUGfLs8B1WlhpndA7v7YuADfSRuFRERkX0YskhSZUVXsPOdI2isbQYAqPy8kJR2G7xUColbRkREZB+GLJLMqT3nsW/NCeh1hluEwT39MWH+HQju6S9xy4iIiOzHkEUup9cL+Onzkzj+9Vmx7KaBaox7aQi8A5QStoyIiMhxGLLIpZoamrF75TGUHr0sliXcG427pvWHXMHnMIiIyHMwZJHL1JQ34Lu3c1B13jDAXSaXYcRTCYi/J0rilhERETkeQxa5xMXCSux85yi0dYYB7t7+Sox/eQgnGyUiIo/FkEVOV7S7FPvX5kNoHeDe69oA9x4c4E5ERJ7LI0JWRUUFNm7ciMLCQhQVFUGj0SA9PR1Dhgyx6P1r165FRkaGSblKpcLOnTtNyrdu3YovvvgCZWVl6N69Ox555BE8/PDD9n4Mj6PX6XEo8yRObC8WyyIHhWHsS4Ph7c8B7kRE5Nk8ImSVlpYiMzMTkZGRiImJQX5+vk3HmTdvHnx9r88yLpebDsTevHkz3n77bYwZMwZTpkxBXl4e0tPT0djYiCeeeMLmz+Bpmhqa8f27uTh/rEIsGzAxGsOf4AB3IiLqGjwiZMXFxWHr1q0ICgrCnj17sHjxYpuOM2bMGISEhLS7X6vV4uOPP8bdd9+NJUuWAAB+85vfQK/X49NPP0VqaioCAwNtOrcnuVpWj2+X5+DqL/UAAJlChpFPD0D/cb0lbhkREZHreMQlBT8/PwQFBTnkWPX19RAEwey+I0eO4OrVq/jtb39rVP7QQw9Bo9HgwIEDDmlDZ/ZLfiW2LD4gBizvACXu+/0wBiwiIupyPOJKlqNMmTIFGo0Gvr6+SExMRFpaGkJDQ8X9p0+fBgD079/f6H1xcXGQy+U4deoUJkyY4NI2u5Oyk1XY/uZP4gD3kJsCMGH+HQiK8JO4ZURERK7HkAUgMDAQkyZNwoABA6BUKpGXl4esrCwUFhZi9erV8Pc3PAVXWVkJhUKBbt26Gb1fqVQiKCgIlZWV7Z6joqLCaH9JSYlzPoyECr8rEQNW5G3dMe6l26Dy4wB3IiLqmtwuZOn1ejQ3N1tUV6VSQSaT2X3OyZMnG20nJSUhPj4eS5YsQVZWFqZNmwbAMCbLy8t8l6lUKmi12nbPsWXLFrNPMJ49exY6nc6kvK6uDgUFBVZ8Cun9csowyF0mByLv88WZ4tMub0Nn7Dd3wH6zHvvMNuw327DfbOOsfktISLContuFrGPHjmHOnDkW1V2/fj2io6Od0o7k5GSsXLkSOTk5Ysjy9vZGS0uL2fpNTU3w9vZu93ipqakYOXKkuF1SUoKlS5eiT58+iIuLM6lfUFBg8S/RHbQ06XDgyjkAQLfegbh14ABJ2tHZ+s1dsN+sxz6zDfvNNuw320jdb24XsqKiorBo0SKL6qrVzp0tPDw8HDU1NUbn0+l0qKqqMrpl2NzcjJqamg7bExYWhrCwMKe2V0rVF+og6A23CtVRjnkIgYiIqDNzu5ClVquRkpIidTMgCALKysoQGxsrlrW+Lioqwt133y2WFxUVQa/XG9Xtaq6cqxVfd4viNBZEREQeMYWDNcrLy00GnVdXV5vU27RpE6qrqzF8+HCx7Pbbb0dQUBA2b95sVHfz5s3w8fExCl5dTduQpWbIIiIicr8rWbZat24dAKC4uBgAsGPHDuTl5QEAZsyYIdZbtmwZcnNzkZ2dLZZNnjwZ48aNQ0xMDFQqFY4fP45du3YhNjYWqampYj1vb28888wzeOedd7B48WLceeedOHbsGL799ls899xzDpurqzNqG7JCoxmyiIiIPCZkrVmzxmh727Zt4uu2Icuc5ORknDhxAnv37kVTUxMiIiIwdepUTJ8+HT4+PkZ1H3roIXh5eeHLL7/E/v37ER4ejtmzZ5s8odiVCIKAyhLD2DXfEG/4BrX/AAAREVFX4TEhq+2VqY6sWLHCpGzBggVWnes3v/kNfvOb31j1Hk/WUK2Fts4w7QZvFRIRERl0uTFZ5HhXSjjonYiI6NcYsshuV861meaCIYuIiAgAQxY5gNGgd86RRUREBIAhixyg8trtQrlChpBe/hK3hoiIyD0wZJFdWpp0uHqxHgAQEhkAuRe/UkRERABDFtmJy+kQERGZx5BFduFyOkREROYxZJFduJwOERGReQxZZBcup0NERGQeQxbZjMvpEBERtY8hi2zWUMXldIiIiNrDkEU246B3IiKi9jFkkc24nA4REVH7GLLIZlxOh4iIqH0MWWQzLqdDRETUPoYssgmX0yEiIuoY/zKSTbicDhERUccYssgmfLKQiIioYwxZZBMup0NERNQxhiyySetM7wCX0yEiIjKHIYusJgiCeCWLy+kQERGZx5BFVuNyOkRERDfGkEVW46B3IiKiG2PIIqtxOR0iIqIbY8giq3E5HSIiohtjyCKrcTkdIiKiG2PIIqtwOR0iIiLL8C8kWYXL6RAREVmGIYuscqWETxYSERFZgiGLrHKllMvpEBERWcJL6gY4QkVFBTZu3IjCwkIUFRVBo9EgPT0dQ4YMsej9a9euRUZGhkm5SqXCzp07jco2bdqEI0eOoKCgAJcuXcLEiRPx+9//3hEfo1PgcjpERESW8YiQVVpaiszMTERGRiImJgb5+fk2HWfevHnw9fUVt+Vy0wt9mZmZaGhoQHx8PCorK21uc2fE5XSIiIgs5xEhKy4uDlu3bkVQUBD27NmDxYsX23ScMWPGICQkpMM6K1asQEREBGQyGe69916bztNZcTkdIiIiy3lEyPLz83PYserr6+Hn5weZTGZ2f48ePRx2rs6Gy+kQERFZziNClqNMmTIFGo0Gvr6+SExMRFpaGkJDQ6VultvgcjpERESWY8gCEBgYiEmTJmHAgAFQKpXIy8tDVlYWCgsLsXr1avj72z+reUVFhdEYrpKSEruP6WpcToeIiMhybhey9Ho9mpubLaqrUqnava1njcmTJxttJyUlIT4+HkuWLEFWVhamTZtm9zm2bNli9gnGs2fPQqfTmZTX1dWhoKDA7vM60i+nKgAAMjnwy9VzKCuwv+8dzR37rTNgv1mPfWYb9ptt2G+2cVa/JSQkWFTP7ULWsWPHMGfOHIvqrl+/HtHR0U5pR3JyMlauXImcnByHhKzU1FSMHDlS3C4pKcHSpUvRp08fxMXFmdQvKCiw+JfoCi1NOhy4cg4A0K13IG4dOEDiFpnnbv3WWbDfrMc+sw37zTbsN9tI3W9uF7KioqKwaNEii+qq1WqntiU8PBw1NTU3rmiBsLAwhIWFOeRYUuByOkRERNZxu5ClVquRkpIidTMgCALKysoQGxsrdVPcApfTISIisk6XW1anvLzcZNB5dXW1Sb1Nmzahuroaw4cPd1HL3BuX0yEiIrKO213JstW6desAAMXFxQCAHTt2IC8vDwAwY8YMsd6yZcuQm5uL7OxssWzy5MkYN24cYmJioFKpcPz4cezatQuxsbFITU01Os/+/ftx5swZAEBLSwt+/vln8dyJiYno27ev0z6jlLicDhERkXU8JmStWbPGaHvbtm3i67Yhy5zk5GScOHECe/fuRVNTEyIiIjB16lRMnz4dPj4+RnX37t2Lb775Rtw+ffo0Tp8+DcAwhssTQxaX0yEiIrKex4SstlemOrJixQqTsgULFlh8nt///vddakFogMvpEBER2cKqkJWbm2vziQYPHmzze0laXE6HiIjIelaFrDlz5tg8+eeePXtseh9Jj8vpEBERWc+qkDVjxgyTkFVQUIBDhw4hMjISAwcORLdu3VBVVYUTJ06gtLQUd955JydQ6+QqS7icDhERkbWsClkzZ8402j527Bg+++wzvPLKK7j//vuNApggCPj3v/+NFStW4Mknn3RMa0kSrbcL5QoZQnrZv44jERFRV2DXPFlr1qzBXXfdhQceeMDkCpdMJkNqaiqGDx9u8uQfdR4tTTpcvVgPAAiJDIDcq8tNrUZERGQTu/5injx58oZrB958880oKiqy5zQkIS6nQ0REZBu7QpZSqRTniGrPqVOnoFQq7TkNSYjL6RAREdnGrpA1bNgwHDp0CBs2bEBzc7PRvubmZmzYsAE//fQT7rzzTrsaSdLhcjpERES2sWsy0hdffBF5eXn4+OOPsXHjRvTv3x8hISGorq5GUVERqquroVarMWvWLEe1l1yMy+kQERHZxq6QFR4ejo8++ggffvghdu/ejQMHDoj7VCoVJkyYgBdeeAFqtdruhpLrcTkdIiIi29m9rI5arcbvf/97LFiwAOfOnUN9fT38/f3Ru3dvjsXq5LicDhERke0ctnahl5cXYmJiHHU4cgNX2twq5KB3IiIi6zgsZB0/fhynT59GQ0MD/Pz8EBsbi4EDBzrq8CQBDnonIiKynd0h6/jx43jzzTdx4cIFAIZxPK0Tk0ZGRmLhwoW49dZb7T0NSYDL6RAREdnOrpB19uxZzJ8/H42NjRg6dCiGDBkCtVqNK1eu4OjRo/jpp58wf/58fPDBB7j55psd1GRyFS6nQ0REZDu7QlZGRgaam5vx17/+FcOHDzfa98QTT+DHH3/EokWLkJGRgddff92eU5GLcTkdIiIi+9j1lzM3NxdJSUkmAavV8OHDkZSUhKNHj9pzGpIAl9MhIiKyj10hq76+Hj179uywTs+ePVFfX2/PaUgCXE6HiIjIPnaFLLVajfz8/A7rFBQUcDLSTohPFhIREdnHrpA1cuRI5Obm4uOPP4ZWqzXap9VqsXbtWhw9ehSJiYl2NZJcj8vpEBER2ceuge8zZszAgQMHsGHDBmzZsgXx8fHo1q0bqqqqxLULe/XqhRkzZjiqveQCXE6HiIjIfnaFrODgYKxatQoffPABdu3ahYMHD4r7VCoVUlJSMGvWLAQFceB0Z8LldIiIiOxn92SkISEhWLhwIebPn4+SkhJxxvfo6Gh4eTlsQnlyIS6nQ0REZD+Hrl3Yt29fRx2OJMRB70RERPbj2oVkgsvpEBER2Y9rF5IJLqdDRERkP65dSEa4nA4REZFjcO1CMsLldIiIiByDaxeSES6nQ0RE5Bhcu5CMVJ67Pn0DnywkIiKynV23C91l7cKKigps3LgRhYWFKCoqgkajQXp6OoYMGWLR+9euXYuMjAyTcpVKhZ07d4rb5eXl2LZtGw4cOIDz589DoVCgT58+mD59OoYOHeqojyOp1kHvAJfTISIisoddIWvkyJH46quv8PHHH+PJJ5+Et/f15Ve0Wi0+++wzHD16FA8//LDdDe1IaWkpMjMzERkZiZiYmBsGv/bMmzcPvr6+4rZcbnyhb9++fcjMzMSoUaMwceJE6HQ67NixA3PnzsXChQtx33332fU5pMbldIiIiBzHI9YujIuLw9atWxEUFIQ9e/Zg8eLFNh1nzJgxCAkJaXf/7bffjn/+859GdR588EHMnDkTa9as6fQhq6Gay+kQERE5il1jslrXLpw4cSI0Gg0OHjyI7du34+DBg2hoaEBKSgpWrVrl9LUL/fz8HHaO+vp6CIJgdl+fPn1MQphKpcJdd92Fy5cvo6GhwSFtkEpDlVZ8HRjuJ2FLiIiIOj+uXdjGlClToNFo4Ovri8TERKSlpSE0NPSG77ty5Qp8fHyMbpd2Ro21TeJrnyCVhC0hIiLq/Lh2IYDAwEBMmjQJAwYMgFKpRF5eHrKyslBYWIjVq1fD37/9Wc/Pnz+P7OxsjB07FgqFot16FRUVqKysFLdLSkoc+hkcobGmTcgKVErYEiIios7P7S416fV6NDc3W1RXpVKJS/jYY/LkyUbbSUlJiI+Px5IlS5CVlYVp06aZfV9jYyNee+01eHt744UXXujwHFu2bDH7BOPZs2eh0+lMyuvq6lBQUGD5h3CAX85cn76hsuYyCgo63+1PKfrNE7DfrMc+sw37zTbsN9s4q98SEhIsqmd3yDp8+DC+/PJLFBUVoa6uzux4JplMht27d1t0vGPHjmHOnDkW1V2/fj2io6Otaq+lkpOTsXLlSuTk5JgNWTqdDq+//jqKi4vx17/+FWFhYR0eLzU1FSNHjhS3S0pKsHTpUvTp0wdxcXEm9QsKCiz+JTpKfd5JAFUAgL79++CmhI4/kzuSot88AfvNeuwz27DfbMN+s43U/WZXyNqzZw/eeOMN6PV6REREIDo6usNbZpaIiorCokWLLKrr7Pm3wsPDUVNTY3bf3/72Nxw4cAD/+7//izvuuOOGxwoLC7thEJMax2QRERE5jl0ha926dVCpVPjzn/9sUdCwhFqtRkpKikOOZQ9BEFBWVobY2FiTfe+//z62bduGl156Cffcc48ErXOOxtrrt2kZsoiIiOxj1xQOpaWlGD9+vMMCliuUl5ebDDqvrq42qbdp0yZUV1ebrMv4+eef44svvsCTTz5pMparszMa+B7Age9ERET2sOtKVlBQkNtMW7Bu3ToAQHFxMQBgx44dyMvLAwCjyVCXLVuG3NxcZGdni2WTJ0/GuHHjEBMTA5VKhePHj2PXrl2IjY1FamqqWC87OxurVq1CZGQkoqOj8e233xq1YejQoRZN+eCuWm8XKn29oFDad9uXiIioq7MrZI0ZMwY5OTloaWmRfE6sNWvWGG1v27ZNfH2jGeeTk5Nx4sQJ7N27F01NTYiIiMDUqVMxffp0+Pj4iPXOnDkDwDBtw9KlS02Ok56e7hEhi9M3EBER2c+uZPT8889j3rx5eP311/HSSy8hIiLCUe2yWtsrUx1ZsWKFSdmCBQsseu/MmTMxc+ZMq9rVWeh1enFJHY7HIiIisp9VIWvKlCkmZS0tLSgoKMC+ffsQEBBgduJOmUyGL774wvZWktO1BiwA8AlkyCIiIrKXVSHL3BxYCoUC4eHhHdZpby1Ach9G0zcwZBEREdnNqpD1f//3f85qB0lMU8M5soiIiBzJrikcyHNo21zJ8uWVLCIiIrsxZBGAX13JYsgiIiKym1W3CzMyMiCTyfDQQw8hKCjI7ILH5shkshtOo0DS0nK2dyIiIoeyKmR98sknkMlkGDduHIKCgvDJJ59Y9D6GLPenMRr4znmyiIiI7GVVyEpPTwcA8WnC1m3q/Bo58J2IiMihrApZgwcP7nCbOi9O4UBERORYHPhOAK6HLLlCBqWvtEskEREReQKGLAJw/XahT5AKMplM4tYQERF1flZdshgzZoxNf4BlMhl2795t9fvINQRBaLM4NG8VEhEROYJVIeu2227jVQ4P1Kxpgb7FsPQRQxYREZFjWBWyVqxY4ax2kIQaOUcWERGRw3FMFvHJQiIiIidw2GNkxcXFKCkpQWNjI+69915HHZZcwHiOLE5ESkRE5Ah2h6zCwkL87W9/w3//+1+xrDVk5ebm4pVXXsFrr72GxMREe09FTsIrWURERI5n1+3Cs2fP4uWXX8bFixcxefJkDB8+3Gj/bbfdhuDgYOzZs8ee05CTNXJxaCIiIoezK2StXbsWALB69WqkpaWhf//+RvtlMhkGDBiAoqIie05DTtZYxyV1iIiIHM2ukJWbm4sxY8YgMjKy3ToRERGorKy05zTkZLySRURE5Hh2hSyNRoNu3bp1WEer1UKv19tzGnIyDReHJiIicji7Qlb37t2NBrybc+rUKfTq1cue05CTadvOkxXApwuJiIgcwa6QNWLECPz00084fPiw2f3ff/89CgoKMGrUKHtOQ07W+nSht78ScgWnTiMiInIEu6ZwePLJJ7Fnzx4sWLAAEydOxJUrVwAAWVlZyM/Px65du9CjRw88+uijDmksOYemzeLQRERE5Bh2hayQkBC8++67WLp0Kb7++mux/B//+AcAICEhAYsXL0ZAQIBdjSTn0bXo0axpAQB4B/JWIRERkaPYPRlpr1698P777+P06dMoKChATU0N/Pz8kJCQgPj4eEe0kZyo7USkvnyykIiIyGHsClnZ2dkYPXo0ACA2NhaxsbFm67377rt46aWX7DkVOYnRbO+8XUhEROQwdo1yXrJkCY4dO9ZhnXfffRf/+te/7DkNORHnyCIiInIOu0JWr169sGjRonancXjvvfewceNGrlvoxhiyiIiInMOukPW3v/0Nfn5+eOWVV1BeXm607/3338c///lPJCYm4o033rCrkeQ8jW3nyGLIIiIichi7xmSFh4dj+fLlmD17NubNm4eVK1ciODgY77//Pr788kuMGDECb7zxBhQKhaPaa1ZFRQU2btyIwsJCFBUVQaPRID09HUOGDLHo/WvXrkVGRoZJuUqlws6dO8VtrVaLd955B4WFhbh06RL0ej169eqF++67Dw899BC8vOx+jsDlOCaLiIjIOexOBTfffDPeeustzJ07F6+88goGDRqEf/7zn7j77ruxZMkSlwSP0tJSZGZmIjIyEjExMcjPz7fpOPPmzYOvr6+4LZcbX+jTarUoLi7GXXfdhR49ekAul+PEiRN47733UFhYiMWLF9v1OaTAkEVEROQcDklAAwYMwOuvv44//OEPOHXqFO666y4sXbrUZVd24uLisHXrVgQFBWHPnj02h50xY8YgJCSk3f1BQUH44IMPjMoefPBB+Pv746uvvkJaWhrUarVN55aK8ZgszpNFRETkKFaloG+++abD/cOGDUNBQQFGjhxpdJsNACZOnGh96yzk5+fnsGPV19fDz88PMpnM4vf06NEDAFBXV9f5QlYtB74TERE5g1Uh6y9/+YvZ8CEIAmQyGQRBAAD8/e9/NyqTyWRODVmOMmXKFGg0Gvj6+iIxMRFpaWkIDQ01qdfc3Iz6+npotVqcPHkSX3zxBXr06IGbbrpJglbbpzVkKVRyKH0635gyIiIid2XVX9WFCxc6qx2SCgwMxKRJkzBgwAAolUrk5eUhKysLhYWFWL16Nfz9/Y3qZ2dnGz0x2b9/f7z66qsd3h6tqKhAZWWluF1SUuL4D2KD1tuFvIpFRETkWFaFrJSUFGe1Q6TX69Hc3HzjijA8/WfNbb32TJ482Wg7KSkJ8fHxWLJkCbKysjBt2jSj/UOGDMHf//531NXVIScnB2fOnEFjY2OH59iyZYvZJxjPnj0LnU5nUl5XV4eCggLrP4wVBEEQF4eGUu/087mCK/rNE7HfrMc+sw37zTbsN9s4q98SEhIsqud294eOHTuGOXPmWFR3/fr1iI6Odko7kpOTsXLlSuTk5JiErNDQUPE2YlJSEtavX4+5c+ciMzOz3TFZqampGDlypLhdUlKCpUuXok+fPoiLizOpX1BQYPEv0VbaumYcEM4BAEK6Bzn9fK7gin7zROw367HPbMN+sw37zTZS95vbhayoqCgsWrTIorrOHmQeHh6OmpqaG9ZLSkrC6tWrsW/fPjz44INm64SFhSEsLMzRTbQLp28gIiJyHqtC1pgxYyCXy/Hpp5+id+/eGDNmjEW362QyGXbv3m3ROdRqtUtuS96IIAgoKytrd9HrtrRaLQDDk4mdSduQ5cuQRURE5FBWhazbbrsNMpkM3t7eRtudSXl5ORobG41uM1ZXV5vMj7Vp0yZUV1dj+PDhRvWCg4NNPvPWrVsBwOxtP3fWdo4sb86RRURE5FBWhawVK1Z0uC2ldevWAQCKi4sBADt27EBeXh4AYMaMGWK9ZcuWITc3F9nZ2WLZ5MmTMW7cOMTExEClUuH48ePYtWsXYmNjkZqaKtb79ttvsWXLFiQmJqJXr15oaGjAoUOHcPjwYYwYMQJ33HGHCz6p42jaXsni04VEREQO5XZjsmy1Zs0ao+1t27aJr9uGLHOSk5Nx4sQJ7N27F01NTYiIiMDUqVMxffp0+Pj4iPUGDRqE/Px87Nq1C1VVVVAoFOjduzdmz56NSZMmOfYDuYC2tu2VLIYsIiIiR/KYkNX2ylRHzF19W7BggUXv7d+/v9H8WJ2dpoZjsoiIiJzFqpBlbp4nS8hkshteTSLX09Zen4+Mk5ESERE5llUh65NPPrHpJAxZ7klTw3ULiYiInMWqkJWenu6sdpAEWqdwkMkAVQCfLiQiInIkq0LW4MGDndQMkkJryPIOUEIu71xTcRAREbk7udQNIOmIi0Nz0DsREZHD2fV0YXl5+Q3ryGQy+Pv7w9/f355TkYO1NOnQojUsTM3xWERERI5nV8h69NFHLZ7xPSQkBKNHj8ZTTz0lLq5M0jFat5Ahi4iIyOHsul147733YtCgQRAEAQEBARg8eDDGjRuHwYMHIzAwEIIg4LbbbsNdd90FlUqFzZs347nnnkNFRYWj2k82arukDm8XEhEROZ5dV7KmTp2KtLQ0zJgxA48//rjR7OharRaZmZnYuHEjVq5ciaioKGzYsAFr1qzBp59+irlz59rdeLIdr2QRERE5l11XslatWoWEhATMnDnTKGABgLe3N55++mkkJCTggw8+gFwux/Tp09G/f38cPHjQrkaT/Ro5RxYREZFT2RWyTpw4gbi4uA7r3HLLLeJCzQCQkJCAK1eu2HNacgCjK1m8XUhERORwdoUsvV6PCxcudFjn/PnzEARB3FYoFFCp+Eddao1GS+pwIlIiIiJHsytkDRw4EHv37sWuXbvM7t+9ezeys7Nx6623imXnz5+HWq2257TkABz4TkRE5Fx2DXyfNWsW0tLSsGTJEmRmZmLgwIHo1q0bqqqqcOLECZw5cwY+Pj6YNWsWAODq1as4fPgw7r//foc0nmzX9nahL8dkEREROZxdIatv375477338I9//APHjx/HmTNnjPYPHDgQc+bMQd++fQEAAQEB2LRpk8kgeXK9tiHLmyGLiIjI4ewKWQDQr18/vPfeeygvL8eZM2dQX18Pf39/9OvXDxEREUZ1FQoFAgIC7D0lOYDm2u1CpY8CXiqFxK0hIiLyPHaHrFYREREmoYrcl7Z1cWhexSIiInIKh4Wsy5cvm1zJ6t69u6MOTw6k1wtorDM8XcjxWERERM5hd8g6f/48/v73v+PIkSMm+26//XbMnTsXkZGR9p6GHEhb1wRcm1WDTxYSERE5h10hq7y8HLNnz0ZVVRWioqJw2223Qa1W48qVKzh27BhycnIwe/ZsfPjhh7yV6EaM58hiyCIiInIGu0JWRkYGqqqqMHfuXKSmpkImkxnt37x5M/7+979j3bp1WLBggV0NJcfhHFlERETOZ1fIOnToEEaMGIEHH3zQ7P4HH3wQBw8exI8//mjPacjBjBeH5mzvREREzmDXjO/V1dWIiYnpsE5MTAyqq6vtOQ05mHHI4pUsIiIiZ7ArZIWEhKC4uLjDOsXFxQgJCbHnNORgvF1IRETkfHaFrGHDhmH//v3YunWr2f1ff/01fvjhB9x55532nIYcjFeyiIiInM+uMVlPP/00fvjhByxfvhz//Oc/MXjwYISGhopPFxYXFyM4OBhPPfWUg5pLjmB0JYshi4iIyCnsClkRERFYuXIlli9fjtzcXJNbh0OGDMG8efM4fYObMZrCgbcLiYiInMLuyUh79+6N9PR0i9YuJPfQertQppBB5eewSf+JiIioDa5d2AW13i70CVSZzG1GREREjmFVyHrzzTdtPtHChQttfu+NVFRUYOPGjSgsLERRURE0Gg3S09MxZMgQi96/du1aZGRkmJSrVCrs3Lmz3ffl5eVh9uzZAIAtW7Z0iqcoBUEQr2RxjiwiIiLnsSpkbd++3aaTyGQyp4as0tJSZGZmIjIyEjExMcjPz7fpOPPmzYOvr6+4LZe3//ClXq9Heno6fH19odFobDqfFFq0Ouia9QA46J2IiMiZrApZX375pbPaYZe4uDhs3boVQUFB2LNnDxYvXmzTccaMGWPx1ah///vfuHTpEu6//35s3LjRpvNJgXNkERERuYZVIatHjx7Oaodd/Pz8HHas+vp6+Pn5dThWqaamBh9//DFmzpyJqqoqh53bFThHFhERkWvYNRmpp5kyZQpSUlIwceJELFmyBFeuXDFb7+OPP0ZoaChSU1Nd3EL7cY4sIiIi1+Dz+wACAwMxadIkDBgwAEqlEnl5ecjKykJhYSFWr14Nf39/se7PP/+Mf//733jrrbegUCgsPkdFRQUqKyvF7ZKSEod+Bku1nSPLl7cLiYiInMbtQpZer0dzc/ONK8Lw9J8jpiCYPHmy0XZSUhLi4+OxZMkSZGVlYdq0aeK+9PR0DB8+3OqlgrZs2WL2CcazZ89Cp9OZlNfV1aGgoMCqc1jiwpka8XXF1UsoKKh3+Dmk5Kx+83TsN+uxz2zDfrMN+802zuq3hIQEi+q5Xcg6duwY5syZY1Hd9evXIzo62intSE5OxsqVK5GTkyOGrF27duHEiRNYt26d1cdLTU3FyJEjxe2SkhIsXboUffr0QVxcnEn9goICi3+J1qg7dhKAYRxZv4QY9EpQO/wcUnJWv3k69pv12Ge2Yb/Zhv1mG6n7ze1CVlRUFBYtWmRRXbXauQEhPDwcNTXXr/ysWrUKSUlJ8PLywsWLFwEYUjIAXLp0CS0tLQgLCzN7rLCwsHb3uVLbge/enCeLiIjIadwuZKnVaqSkpEjdDAiCgLKyMsTGxoplly5dws6dO81OUPrss8+iX79+WLt2rSubabW2IcuXA9+JiIicxu1ClrOVl5ejsbHR6DZjdXW1yfxYmzZtQnV1NYYPHy6WLVu2zOR4u3btwvfff48//OEP6N69u9Pa7SicwoGIiMg1PCZktY6TKi4uBgDs2LEDeXl5AIAZM2aI9ZYtW4bc3FxkZ2eLZZMnT8a4ceMQExMDlUqF48ePY9euXYiNjTWapmHUqFEm5z19+jQAYPjw4Z1iWZ3WKRxUfl6Qe3EGDyIiImfxmJC1Zs0ao+1t27aJr9uGLHOSk5Nx4sQJ7N27F01NTYiIiMDUqVMxffp0+Pj4OKW9Umm7ODQRERE5j8eErLZXpjqyYsUKk7IFCxbYfN6ZM2di5syZNr/flfQtejQ1tABgyCIiInI23i/qQhrrrs8/xnULiYiInIshqwvh4tBERESuw5DVhRg/Wcg5soiIiJyJIasL4fQNRERErsOQ1YUwZBEREbkOQ1YXwjFZRERErsOQ1YUYhSxeySIiInIqhqwupLG2zRQODFlEREROxZDVhRiNyeLtQiIiIqdiyOpCNNduFyqUcih9FBK3hoiIyLMxZHUh2mtXsrwDlZDJZBK3hoiIyLMxZHURgiCItwt9OR6LiIjI6RiyuohmTQv0OgEA4M2QRURE5HQMWV2Eps30Db4c9E5EROR0DFldBOfIIiIici2GrC6CS+oQERG5FkNWF8E5soiIiFyLIauLMJ7tXSlhS4iIiLoGhqwugotDExERuRZDVhfBMVlERESuxZDVRTBkERERuRZDVhch3i6UcTJSIiIiV2DI6iJaQ5a3vxJyOdctJCIicjaGrC6isc4QsnirkIiIyDUYsroAXbMOzRodAD5ZSERE5CoMWV2A8RxZDFlERESuwJDVBXDdQiIiItdjyOoCNFxSh4iIyOUYsroArdEcWVxSh4iIyBUYsroADZfUISIicjkvqRvgCBUVFdi4cSMKCwtRVFQEjUaD9PR0DBkyxKL3r127FhkZGSblKpUKO3fuNCobPXq02WM8//zzmDZtmtVtdwUtZ3snIiJyOY8IWaWlpcjMzERkZCRiYmKQn59v03HmzZsHX19fcVsuN3+hb+jQoZg4caJRWWxsrE3ndIW2V7J8GbKIiIhcwiNCVlxcHLZu3YqgoCDs2bMHixcvtuk4Y8aMQUhIyA3r9e7dGxMmTLDpHFJo5MB3IiIil/OIkOXn5+ewY9XX18PPzw8yWcdLz2i1WgCAt7e3w87tLJwni4iIyPU8ImQ5ypQpU6DRaODr64vExESkpaUhNDTUpN4333yDTZs2QRAEREdHY/r06UhOTpagxZZpnSfLy1sBL2+FxK0hIiLqGhiyAAQGBmLSpEkYMGAAlEol8vLykJWVhcLCQqxevRr+/v5i3VtvvRVjx45Fz549UVlZia+++gpLlixBfX09fvvb37Z7joqKClRWVorbJSUlzvxIRlpvF3L6BiIiItdxu5Cl1+vR3Nx844owPP13o9t6lpg8ebLRdlJSEuLj47FkyRJkZWUZPTX4/vvvG9W977778Oyzz+Kjjz5CSkpKu7cPt2zZYvYJxrNnz0Kn05mU19XVoaCgwIZPY0wQBDFkCUq9Q47pzhzVb10N+8167DPbsN9sw36zjbP6LSEhwaJ6bheyjh07hjlz5lhUd/369YiOjnZKO5KTk7Fy5Urk5OR0ODWDUqnEpEmT8Pbbb+PkyZMYNGiQ2XqpqakYOXKkuF1SUoKlS5eiT58+iIuLM6lfUFBg8S+xI421TTggnAMAdAsPcsgx3Zmj+q2rYb9Zj31mG/abbdhvtpG639wuZEVFRWHRokUW1VWr1U5tS3h4OGpqaiyqB6DDumFhYQgLC3NY2yzVyDmyiIiIJOF2IUutViMlJUXqZkAQBJSVlVk0/9Uvv/wCABZN/+BqXByaiIhIGl1uWZ3y8nKTQefV1dUm9TZt2oTq6moMHz68w3oNDQ3YuHEjgoODzd72kxrnyCIiIpKG213JstW6desAAMXFxQCAHTt2IC8vDwAwY8YMsd6yZcuQm5uL7OxssWzy5MkYN24cYmJioFKpcPz4cezatQuxsbFITU0V63311VfYt28fRowYgYiICFRWVmLbtm0oLy/HH/7wByiV7vf0HufIIiIikobHhKw1a9YYbW/btk183TZkmZOcnIwTJ05g7969aGpqQkREBKZOnYrp06fDx8dHrDdw4ECcOHECW7duRU1NDXx8fBAfH49XX30Vd9xxh2M/kIPwdiEREZE0PCZktb0y1ZEVK1aYlC1YsMCi9w4bNgzDhg2zql1SMx747n5X2oiIiDxVlxuT1dVwTBYREZE0GLI8nNHtQoYsIiIil2HI8nCtV7Jkchm8/Xi7kIiIyFUYsjxca8jyDlBCJrd/CSIiIiKyDEOWh9PUtC4OzVuFRERErsSQ5cFatDromvQAOB6LiIjI1RiyPJimzaB3X17JIiIicimGLA+mbTN9gzfnyCIiInIphiwPpmkTsnx5u5CIiMilGLI8GOfIIiIikg5DlgczXlKHIYuIiMiVGLI8GBeHJiIikg5DlgdrrG0WXzNkERERuRZDlgfj4tBERETSYcjyYMa3CzmFAxERkSsxZHmw1itZSl8FFEqFxK0hIiLqWhiyPFhryOJ4LCIiItdjyPJQep0e2jrDwHeGLCIiItdjyPJQrQEL4KB3IiIiKTBkeShOREpERCQthiwPxZBFREQkLYYsD8V1C4mIiKTFkOWhNJwji4iISFIMWR5KyyV1iIiIJMWQ5aE0bcZk+fJ2IRERkcsxZHkobZuQ5c0rWURERC7HkOWh2o7J4pUsIiIi12PI8lCtUzjIFTIofb0kbg0REVHXw5DlodquWyiTySRuDRERUdfDkOWBBEEQ58niHFlERETS8Ij7SBUVFdi4cSMKCwtRVFQEjUaD9PR0DBkyxKL3r127FhkZGSblKpUKO3fuNCm/cuUK1qxZgwMHDqCmpgahoaG4/fbbsXDhQns/ikM0a1qgbxEAcPoGIiIiqXhEyCotLUVmZiYiIyMRExOD/Px8m44zb948+Pr6ittyuemFvvLycqSlpQEAHnzwQYSFhaGiogKFhYW2Nd4JGjlHFhERkeQ8ImTFxcVh69atCAoKwp49e7B48WKbjjNmzBiEhIR0WGf58uVQKBT46KOPEBwcbNN5nM1o3ULeLiQiIpKER4zJ8vPzQ1BQkEOOVV9fD0EQzO4rKSnBjz/+iKlTpyI4OBharRYtLS0OOa8jGS8OzSV1iIiIpOARV7IcZcqUKdBoNPD19UViYiLS0tIQGhoq7j98+DAAoFu3bnj55Zdx5MgRKBQKDB06FHPnzkXPnj2laroRLg5NREQkPYYsAIGBgZg0aRIGDBgApVKJvLw8ZGVlobCwEKtXr4a/vz8A4Pz58wAMtwz79++P119/HeXl5cjIyMDcuXPxySefwMfHx+w5KioqUFlZKW6XlJQ47fMYhSyOySIiIpKE24UsvV6P5ubmG1eE4ek/R8wBNXnyZKPtpKQkxMfHY8mSJcjKysK0adMAABqNBgAQGhqKt956SxwYHx4ejjfeeAM7d+7EAw88YPYcW7ZsMfsE49mzZ6HT6UzK6+rqUFBQYNPnOV9cJb4uv3IRjQVVHdT2LPb0W1fGfrMe+8w27DfbsN9s46x+S0hIsKie24WsY8eOYc6cORbVXb9+PaKjo53SjuTkZKxcuRI5OTliyPL29gYAjB071ujJw6SkJCxduhQnTpxoN2SlpqZi5MiR4nZJSQmWLl2KPn36IC4uzqR+QUGBxb/EX6v4Tx6AGgBA3MBYhPYOtOk4nZE9/daVsd+sxz6zDfvNNuw320jdb24XsqKiorBo0SKL6qrVaqe2JTw8HDU1NeJ2WFgYAMOYrLYUCgWCg4NRW1vb7rHCwsLE9zsbp3AgIiKSntuFLLVajZSUFKmbAUEQUFZWhtjYWLGs9YpTRUWFUd3m5mZcvXr1htM/uIrRmKwAPl1IREQkBY+YwsEa5eXlJoPOq6urTept2rQJ1dXVGD58uFg2ePBgdOvWDd999x20Wq1Yvn37duh0OgwdOtRp7bZG6xQO3v5KyL263K+YiIjILbjdlSxbrVu3DgBQXFwMANixYwfy8vIAADNmzBDrLVu2DLm5ucjOzhbLJk+ejHHjxiEmJgYqlQrHjx/Hrl27EBsbi9TUVLGeSqXCiy++iD//+c946aWXcO+996K8vBwbN27EoEGDMHr0aBd80hsTQxbnyCIiIpKMx4SsNWvWGG1v27ZNfN02ZJmTnJyMEydOYO/evWhqakJERASmTp2K6dOnm0zJMHHiRCiVSnz22WdYtWoVAgICkJqaiueffx4KhcJxH8hGuhY9mhoME6RyjiwiIiLpeEzIantlqiMrVqwwKVuwYIFV5xo/fjzGjx9v1XtcxXi2d4YsIiIiqXDAjodhyCIiInIPDFkepu2Thb68XUhERCQZhiwP03aOLG9eySIiIpIMQ5aHMbqSxZBFREQkGYYsD2M8JotTOBAREUmFIcvDGIUsjskiIiKSDEOWhzFaUochi4iISDIMWR6GUzgQERG5B4+ZjJQM7poej/qKRjTWNsHLW/oZ6ImIiLoqhiwPo44KgjoqSOpmEBERdXm8XUhERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBAxZRERERE7AkEVERETkBF5SN6Cr0mq1AICSkhKz+8+dOweFQuHKJnkE9ptt2G/WY5/Zhv1mG/abbZzZb9HR0fDx8emwDkOWRMrKygAAS5culbglREREZK3Vq1cjLi6uwzoyQRAEF7WH2qiursahQ4fQs2dPqFQqo30lJSVYunQp/vjHPyI6OlqiFnY+7DfbsN+sxz6zDfvNNuw32zi733gly42FhIRgwoQJHdaJjo6+YUomU+w327DfrMc+sw37zTbsN9tI2W8c+E5ERETkBAxZRERERE7AkOWG1Go1nnrqKajVaqmb0qmw32zDfrMe+8w27DfbsN9s4w79xoHvRERERE7AK1lERERETsCQRUREROQEDFlERERETsB5stxIU1MT1qxZg2+//Ra1tbXo27cvnn32WQwbNkzqprmto0ePYs6cOWb3rVq1CgMGDHBxi9xPQ0MDvvjiCxQUFKCwsBC1tbVYtGgRUlJSTOoWFxfjvffew/Hjx+Hl5YW7774bs2fPRkhIiOsbLjFL++3Pf/4zvvnmG5P3R0VFYcOGDa5qrlsoLCzEN998g6NHj6KsrAxBQUEYMGAAnn32WfTu3duoLr9r11nab/yuXXf27Fl88sknOHnyJK5cuQIfHx9ER0dj6tSpGDlypFFdKb9rDFlu5C9/+Qv27NmDyZMnIzIyEtu3b8eCBQuQnp6OQYMGSd08t/bwww8jPj7eqOymm26SqDXu5erVq8jIyEBERAT69euHo0ePmq136dIlvPTSSwgICMBzzz0HjUaDL774Av/973/x4YcfQqlUurjl0rK03wBApVJhwYIFRmX+/v7ObqLbyczMxPHjxzF27Fj07dsXlZWVyMrKwrPPPotVq1YhJiYGAL9rv2ZpvwH8rrUqKytDQ0MDJk6ciLCwMDQ2NmLv3r1YtGgR5s+fj9TUVABu8F0TyC3k5+cLo0aNEjIzM8WyxsZG4bHHHhNmzZolYcvc25EjR4RRo0YJu3fvlropbkur1QoVFRWCIAhCYWGhMGrUKGHbtm0m9d5++23hnnvuEcrKysSyn376SRg1apSwefNml7XXXVjab8uWLRMmTJjg6ua5pby8PKGpqcmo7Ny5c8L48eOFP/3pT2IZv2vGLO03ftc61tLSIjz99NPCE088IZZJ/V3jmCw3sXfvXigUCjF9A4C3tzfuv/9+5Ofno7y8XMLWdQ4NDQ1oaWmRuhluR6VSWTRPzN69ezFixAhERESIZUOHDkXv3r2xe/duZzbRLVnab610Oh3q6+ud2CL3N3DgQJMrA71798bNN9+MkpISsYzfNWOW9lsrftfMUygUCA8PR11dnVgm9XeNtwvdxOnTpxEZGWly2bf1FtiZM2eMviRk7C9/+Qs0Gg0UCgUGDRqEF198Ef3795e6WZ3G5cuXUVVVZXZ9r/j4eBw8eFCCVnUejY2NSElJQWNjIwIDAzF+/HjMmjULfn5+UjdNcoIgoKqqCjfffDMAftcs9et+a8XvmjGNRgOtVov6+nrs378fP/74I8aOHQvAPb5rDFluorKy0uz/am4tq6iocHWTOgUvLy+MGTMGd911F4KDg1FcXIwvv/wSs2fPxvvvv49bbrlF6iZ2CpWVlQDQ7newpqYGTU1NUKlUrm6a21Or1Zg6dSpuueUWCIKAH3/8EZs2bcLPP/+M9PR0eHl17f+a/e6773D58mXMnDkTAL9rlvp1vwH8rpmzcuVKbNmyBQAgl8sxevRo/O53vwPgHt+1rvcbcVNardbsALzWX75Wq3V1kzqFgQMHYuDAgeJ2YmIikpKS8PTTT+Ojjz7C8uXLJWxd59H6/brRd7Cr/+Ez54UXXjDaHj9+PHr37o3Vq1dj7969GD9+vEQtk15JSQneeecdDBgwABMnTgTA75olzPUbwO+aOZMnT0ZSUhIqKiqwe/du6HQ6NDc3A3CP7xrHZLkJb29v8YvRVlNTk7ifLBMZGYnExEQcPXoUOp1O6uZ0Cq3fL34HHePRRx+FXC7H4cOHpW6KZCorK/Hqq6/C398fS5YsgUKhAMDv2o2012/t6erftejoaAwdOhQTJ07EW2+9BY1Gg4ULF0IQBLf4rjFkuQm1Wi1e2myrtSwsLMzVTerUwsPD0dzcjMbGRqmb0im0Xk5v7zsYFBTUpa8sWMvb2xtBQUGoqamRuimSqKurw4IFC1BXV4fly5cb/fcXv2vt66jf2tPVv2u/lpSUhKKiIpSWlrrFd40hy03069cP58+fN3lipKCgQNxPlvvll1+gUqng6+srdVM6he7duyMkJAQnT5402VdYWMjvn5UaGhpw9erVLjmxplarxcKFC1FaWoo333zTZOA2v2vm3ajf2tOVv2vmtN4irKurc4vvGkOWm0hKSoJOpxMH8AGGy5nbtm1DQkICnyxsR3V1tUnZmTNnsH//fgwbNgxyOb/ilhozZgx++OEHo+lCcnJyUFpaKj6tQ8a0Wi0aGhpMytetWwdBEDB8+HAJWiUdnU6H119/Hfn5+XjjjTdw6623mq3H75oxS/qN3zVjVVVVJmUtLS3YsWMHvL29xZAq9XeNA9/dREJCAsaOHYuPPvoI1dXVuOmmm/DNN9+grKwMr776qtTNc1uvvfYavL29ceutt6Jbt24oLi7Gv//9b/j4+JgMEu3K/vWvf6Gurk68bL5//35cunQJgGG2/ICAAEybNg179uzByy+/jEceeQQajQaff/45YmJizC7B0xXcqN9qa2vxzDPP4J577kFUVBQA4NChQzh48CCGDx+OxMREydouhZUrV2L//v0YMWIEamtr8e233xrtnzBhAgDwu/YrlvTblStX+F1rY/ny5aivr8dtt92G7t27o7KyEt999x3OnTuHtLQ0cUoLqb9rMkEQBKefhSyi1WrFtQvr6uoQExODZ599FnfeeafUTXNbGzduxHfffYcLFy6gvr4eISEhuOOOO/DUU08hMjJS6ua5jUcffRRlZWVm93355Zfo2bMnAMN6YL9e4ystLQ2hoaGubK7buFG/BQQEID09Hfn5+aisrIRer8dNN92E5ORkPPbYY13ukfr/+Z//QW5ubrv7s7Ozxdf8rl1nSb/V1tbyu9bGrl278PXXX+O///0vrl69Cj8/P8TFxWHSpEkmgVPK7xpDFhEREZETcMAKERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBERERE5AUMWERERkRMwZBFRp3Xx4kWMHj0af/7zn6VuikNs374do0ePxvbt26VuChE5AEMWEXmU//mf/8Ho0aOlboZZnhYKiahjXWtFSSLyKN27d8f69evh7+8vdVMcYtSoUUhISIBarZa6KUTkAAxZRNRpeXl5ITo6WupmOExAQAACAgKkbgYROYhMEARB6kYQEdni4sWLmDJlCiZOnIjf//737d4mbN3f6ueff8b69euRm5uLmpoaqNVqjBw5Ek8//TSCg4PNHv/xxx/H6tWrcezYMdTU1ODLL79Ez549kZ2djd27d6OoqAgVFRXw8vJC37598cgjjyApKUk81vbt2/GXv/zFbPvS09MxZMgQsc6iRYuQkpJiVOf48eNYv3498vPzodVq0aNHD4wbNw6PP/44fHx8jOqOHj0agwcPxuuvv45Vq1bh4MGD0Gg06NevH1544QUMGTLE2q4mIhvwShYReYynnnoK33zzDcrKyvDUU0+J5bGxseLrffv24fXXX4dMJkNiYiLCw8NRXFyMr776CocOHcKHH36IwMBAo+NeuHABL774ImJiYjBx4kTU1NRAqVQCAD766CN4eXlh4MCBUKvVqK6uxv79+7F48WLMmTMHDz/8MACgX79+eOSRR7Bx40b069cPiYmJ4vF79OjR4efavXs3/vSnP0GpVGLcuHEICQnBTz/9hIyMDBw6dAjp6enw9vY2ek9dXR3S0tIQEBCACRMmoKqqCrt378b8+fOxevVqxMTE2NTHRGQ5hiwi8hgzZ85Ebm4uysrKMHPmTJP9V69exbJlyxAcHIyVK1cahZtdu3bhjTfewJo1a/Dyyy8bve/48eN46qmnzB7zr3/9K3r16mVU1tDQgP/3//4f1qxZg/vvvx8+Pj6IjY1FQECAGLLMHcuc+vp6/O1vf4NCocCqVavQt29fAMDzzz+PP/3pT/j+++/xxRdfYMaMGUbvO3PmDH7729/i5ZdfhlxueMbp9ttvx1//+ld89dVXmD9/vkXnJyLb8elCIuoyduzYgfr6ejz//PMmV4/Gjx+PW265Bbt27TJ5X2hoKJ588kmzx/x1wAIAPz8/pKSkoK6uDkVFRXa1ed++fairq8N9990nBiwAkMvlePHFF6FQKMxO+eDr64tZs2aJAQsw3DZVKBR2t4mILMMrWUTUZeTn5wMACgoKcOHCBZP9TU1NuHr1KqqrqxESEiKW9+vXT7w9+GtVVVX47LPPcPDgQZSXl0Or1Rrtr6iosKvNp0+fBgAMHjzYZF9ERAR69eqF0tJSNDQ0wM/PT9wXGRlptA0YHhQIDQ1FXV2dXW0iIsswZBFRl1FbWwsAyMrK6rBeY2Oj0Xa3bt3M1qupqcHzzz+P8vJyDBw4EEOHDkVAQADkcjnOnDmDffv2obm52a4219fXAzBcTTNHrVajtLQU9fX1RqGqvWktFAoF9Hq9XW0iIsswZBFRl9EaQjIyMqwa+C2TycyWf/311ygvL8czzzxjMiZqw4YN2Ldvn+2NvaY1LF25csXs/tZyT5krjMiTcEwWEXmU1jFIOp3OZF9CQgKA67cN7dV6y7Htk4Kt8vLy2m2bNVeSWp+MzM3NNdlXXl6OCxcuoFevXia3BolIegxZRORRgoKCAACXLl0y2XfffffBz88Pq1evxtmzZ032NzY2WhXAWgfPHz9+3Kj8u+++w8GDB03qBwYGQiaTmW1bexITExEQEIBt27YZtVkQBHz44YfQ6XQmc2oRkXvg7UIi8ii333479uzZg//93//F8OHDoVKp0K9fP4wcORIhISF47bXXsHjxYsycORN33nknoqKi0NzcjLKyMuTm5uLWW2/F8uXLLTrXhAkTkJmZifT0dBw9ehQRERE4c+YMjhw5gtGjRyM7O9uovp+fH/r3749jx45h6dKliIyMhEwmw7333tvuXFn+/v545ZVX8Kc//QmzZs3C2LFjERISgpycHJw8eRLx8fF47LHH7O43InI8hiwi8igPPPAALl68iO+//x6ZmZnQ6XSYOHEiRo4cCQC4++67sWbNGnz++efIycnB4cOH4ePjg+7duyMlJQUTJkyw+Fzh4eFYsWIFVq1ahcOHD0On0+GWW27B22+/jUuXLpmELAD44x//iHfffRc//PAD6uvrIQgCBg0a1OGEpGPHjkVoaCg2bNiA7Oxsccb3GTNm4PHHHzeZiJSI3AOX1SEiIiJyAo7JIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInIChiwiIiIiJ2DIIiIiInKC/w8601vYBKoVfgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "### Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAG5CAYAAACQpg7iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACACElEQVR4nO2daaAcZZ3un+r17Hv2hCwEAgmBqKwmQAIOE3TEewd01HFGQBQZUHGGUfCO6+AyylxuHJERRsVRURxHR7wCwkCAS1jCkkDIIYGQ5CQkOUnOfrr79F73Q52qfqt6q66uqq4+/fy+cNJL1Ut1V/VTz3+TZFmWQQghhBBSR/hqvQBCCCGEkEqhgCGEEEJI3UEBQwghhJC6gwKGEEIIIXUHBQwhhBBC6g4KGEIIIYTUHRQwhBBCCKk7ZqyAicfj2L17N+LxeK2XQgghhBCbmbECZmBgAB//+McxMDBQ8Pk333zT5RXNDHjcKofHzBo8btbgcbMGj1vl1PqYzVgBU45EIlHrJdQlPG6Vw2NmDR43a/C4WYPHrXJqfcwaVsAQQgghpH6hgCGEEEJI3UEBQwghhJC6gwKGEEIIIXUHBQwhhBBC6g4KGEIIIYTUHRQwhBBCCKk7KGAIIYQQUndQwBBCCCGk7qCAIYQQQkjdQQFDCCGEkLqDAoYQQgghdQcFDCGEEELqDgoYQgixiUwqg73PHsHIwclaL4WQGU+g1gsghJCZws6HD2Drz3ch2OzHh/5lA0ItwVoviZAZCx0YQgixieF94wCA1FQGk8emarwaQmY2FDCEEGITqUQm93c8XcOVEDLzoYAhhBCbSMcFASOIGUKI/VDAEEKITYiuS5oODCGOQgFDCCE2kRIdmDgdGEKchAKGEEJsIi2EjdIMIRHiKBQwhBBiE2IIiUm8hDgLBQwhhNhEOsEQEiFuQQFDCCE2kE1nkUlltX8zhESIs1DAEEKIDRjLphlCIsRZKGAIIcQGjGXTDCER4iwUMIQQYgNGB4YhJEKchQKGEEJsIB1nCIkQN6GAIYQQG0gl9ILFKGgIIfZCAUMIITZgzHkxChpCiL1QwBBCiA3kCRg6MIQ4CgUMIYTYgLEKiSEkQpyFAoYQQmwg34FhCIkQJ6GAIYQQGzCWTWczMjLpbJFXE0KqhQKGEEJsoJDjwjASIc5BAUMIITZgbGSnPMYwEiFOQQFDCCE2YEziBViJRIiTUMAQQogNFBIrhUQNIcQeKGAIIcQGCgkYOjCEOAcFDCGE2EC6QL4LBzoS4hwUMIQQYgOFHRiGkAhxCgoYQgixgUJuS6HKJEKIPVDAEEKIDRTuA0MHhhCnoIAhhBAbYBIvIe5CAUMIIVUiyzL7wBDiMhQwhBBSJZlUFrKs/B1s8muPM4REiHNQwBBCSJWIM4+aO8Pa30ziJcQ5KGAIIaRKxJlHooDhMEdCnIMChhBCqiSlc2BCucc5zJEQx6CAIYSQKhFzXXQhJDowhDgGBQwhhFSJKFTCbUH4AhIAJvES4iQUMIQQUiWigAk2+RFsCuQ9TgixFwoYQgipEnGQYyAc0EqpOcyREOeggCGEkCoRy6WDYT8CYf/04wwhEeIUFDCEEFIlYqgo0ORHMJwLIclqhztCiK0Ear0AI9u2bcNnPvOZgs/deeedWLVqlcsrIoSQ0ojJusGmAAJqN14ZyCSzmiNDCLEPzwkYlcsvvxynnnqq7rEFCxbUaDWEEFKcYkm8ynNpChhCHMCzAuaMM87A+vXra70MQggpS0pwYAJNft08pFQ8g+bOWqyKkJmNp3NgYrEY0mkmwRFCvE1al8QbQCAsODBM5CXEETzrwHzzm9/E1NQU/H4/Tj/9dFx33XU45ZRTir5+aGgIw8PD2r8HBgbcWCYhhOirkAwODOchEeIMnhMwgUAAF154Ic4991x0dnZi//79uO+++3DDDTfg+9//Pk4++eSC77v//vtxzz335D2+b98+ZDL5F5BIJIL+/n67lz/j4XGrHB4za9TTcRsbGtf+3rN/D8YmJ7R/v/n6Xgynm11bSz0dN68gZ2VEY1Eetwpx8ru2cuXKsq/xnIBZvXo1Vq9erf173bp1WL9+Pa666ircdddduO222wq+77LLLsPatWu1fw8MDODWW2/F0qVLsWLFirzX9/f3mzpARA+PW+XwmFmjno7bnsA4gDgA4LQzVkE+uBdvQRE18+cswJKVc11bSz0dNy/w+hNv4el7+tG3ugVn/y2PWyXU+rvmOQFTiIULF2LdunV48sknkclk4PfnZ/T39fWhr6+vBqsjhDQ6ahWSP+SDzycZqpAYQvIyux49iHQig8EXJ5HNZOHzezo1lAjUzSc1e/ZspFIpxOPxWi+FEEJ0qH1gVOES0FUhMYnXyySiKeUPGUhNUWzWE3UjYA4fPoxQKITmZvdiyYQQYgY1iTc43e9FdGCYxOttUlM5gZmcotisJzwnYMbGxvIe27NnD7Zs2YKzzjoLPp/nlkwIaXDUMurAtHAJCo3rUhzo6GlE0ZKigKkrPJcD8+UvfxnhcBinnXYauru7sX//fvz+979HU1MTrr322lovjxBCdGSzsiZgVOEidt7lRGrvIn52AMN99YbnBMz555+PRx55BL/61a8QjUbR1dWFCy64AFdeeSUWLlxY6+URQogO8QdQzX0xjhIg3iRt+GwYQqovPCdgrrjiClxxxRW1XgYhhJjCOMgRMCbx0oHxKkbBwhBSfcGEEkIIqQLjIEflv2ISL38UvYpRsNCBqS8oYAghpArEWUcBrQqJDkw9kIwZHJgYBUw9QQFDCCFVkNY5MNMhpJBYhcQfRa9izE9ivlJ9QQFDCCFVYBzkCACST9LcGFYheReGkOobChhCCKkCMcdFLJ9W/2YIybswibe+oYAhhJAqSBUIISl/TzswDEt4Fjow9Q0FDCGEVIEoYMTyaVXM0IHxLsbZR3Rg6gsKGEIIqYK0kKQbDOccGFXMZFJZZDNZ19dFypMfQqLYrCcoYAghpAoK9YEB9GKGibzehCGk+oYChhBCqiBdoArJ+DcHOnoTJvHWNxQwhBBSBSldFZIQQhIHOjIPxpMYBQsFTH1BAUMIIVVQNITEgY6ex/i5JONpyLJco9WQSqGAIYSQKtA5MIKA4UBH72MMIckZGZkUE67rBQoYQgipAn0OTH4fGIC9YLxKodlHTOStHyhgCCGkClR3RZIAfzB3SRWrkJjE600KiRUOdKwfKGAIIaQK1BBSoCkASZK0x/UTqfmj6EUKJe0ykbd+oIAhhJAqUENIomABFEFjfA3xDplUBtlMfsJukmKzbqCAIYSQKlBLpMWyaQAIhpnE62WK5brQgakfKGAIIaQK1PCQmMALsArJ6xQTKkzirR8oYAghxCKZdFYLQxhDSKKgYRWS9xCFij+U+ymkA1M/UMAQQohFinXhBThKwOuIQqW1p6ng48TbUMAQQohF0kW68AJ6QcMqJO8hTp4WBUySE6nrhkD5lxCiXIAHXjiKuI8XYkJUUkUGORr/7VYVUjqRgZxlK3wzJOnA1D0UMMQUz/9iN/ofOYCm7gDedq4MySeVfxMhM5x0iRBSwOUqpKG94/jDrc/B3yJhxf8+BYGQv/ybGhiGkOofhpCIKY7vHQcAxEfTSLJTJSEAig9yBJSuvKrQdyOJd+9zg0jFM4iPpDG4a8Tx/dU7ogPT0t1U8HHibShgiClE0ZKcStVwJYR4h2KDHAFAkiRN1LjhwCSjufOSNxnl0Tsw4YKPE29DAUNMkYwJF8coT3BCAMMgx3B+RF4VNamE8+dMQneO8iajHKJQaemigKlHKGCIKejAEJJPqRASkBM1aRccGHEIIR2Y8oihomBLEP6wlPc48TYUMKQsmVQGmVRW+zcdGEIU9CGkfAdGDCHJsrPVQaIDk6CAKYvotISaA/CHfXmPE29DAUPKYryb490dIQrpEmXUQE7UyFkZ2XQ273k7Ec/LVIwuaTl0DkyTX+vGSwemfqCAIWXJEzAMIRECQB9CMg5zBNwd6Ciep3RgyiO6Z8GmgBZCSicyyLKXTl1AAUPKkjTczTGERIhC2vAjaMTNgY66RHs6MGVRQ0XBZj8kn4RAOPdzyNlV9QEFDClLvgPDk5sQwNCJt5ADIw50dLASKZPOIpPMhaiYx1GepCZglM/ILwgYXuPqAwoYUhbj3VyCJZqEADCGIWoXQso/R/kDXA5V5IVUAROS8p4j3oYChpTF6MCkGF8nBIC+PLpQFZL4mJMDHfPOUeaplUTOytowR9Ul0zkwvMbVBRQwpCzGhMAE4+uEADATQnJnoKPxB5cOTGl0n5vmwOR+Djk9vD6ggCFlMZZk0oEhREFN9vQFJPgC+ZdTtwY6GkNIqXiaU6lLYOwBA0CrQjI+T7wLBQwpC5N4CSmMKkoKVSApjwsOjIshJMg8T0uh6wHDJN66hQKGlCXfnmYIiRAgF4oolMCrPC7mwLjnwCiP8Ue4GIUcGLGMmg5MfUABQ8qSZ0/z5CYEQM5VCRQY5AgYqpAcLKMu1JuJvWCKU8iB8QlVSHRg6gMKGFIWYxJvJpVFOun8cDpCvIyclcs6MAG3HJgCP7h0YIqTKiBg9A4Mr2/1AAUMKUuhuSq8QyGNTjqZAabzZM3lwDgoYAqEdenAFKdwEi9DSPUGBQwpS6G5KoUumIQ0EmJZdMBEDoyjZdR0YCqiYBIvQ0h1BwUMKUuhsmleHEmjI4aECvWAAYxl1C5WIRV5jCikDJOoATow9QgFDCmJLMuFKxx4gpMGR0zKLZrE69Iwx8JVSHRJiyFev0ItLKOuVyhgSElS8QzkAv2wGEIijY6Y01I0idetKiQ6MBVRKInX55fgDyo/iezEWx9QwJCSFErgBXiHQki5QY4A4PP7tB9FJvF6h0JJvEBOzLDbeH1AAUNKIibwBoUTnQ4MaXRSZQY5qqjixtEcmKncSAPtMf4IF6VQEi+QEzO8QasPKGBIScSLYFtfc8HHCWlExKqiYg4MkBM3TlUhKXlqyvnY1iueo7zJKIY+ibeAAzOVhlwodk48BQUMKYl4EWzraxIep4AhjY3oqASKVCEBuQolp5J404mMNrixtZfnqBnUz0LMewFyQjSbkZFJZWuyNmIeChhSEvEi2N7HuztCVPRJvMVDSGqPGFFo2IkYzg21BrWpyhQwxVEdmGBzAJKUC7uJ4SQm8nofChhSElGotIoChjFi0uCkEuX7wCjPCc3sHBjBIZ6L4ZaAVg7Mm4ziqMdMTOA1/pu9YLwPBQwpiS4HRrSnmcRLGhxdCMlEEq/yHgcEjHCOhlqCCDT58h4nejQHpkX/uekKFShgPA8FDCmJeBFs7gxDmr4W8+QmjY6ZPjCAcaCj/eeNLoTUEtCGEmZSWWRSHEpoJJPOavktxtBfqIUOTD1BAUNKItrQodZA7u4uypObNDZm+sAYn3OiF4yxq6y/SegoSxcmj2I9YAC9oOGx8z4UMKQkOnu6Ocj4OiHT6Ic5lgohCXf1DpRSJ3QOTFBzYAD+CBeiUBfeQv92cvQDsQcKGFKSog7MVNqRigpC6gUzwxwBfYl12oEQUqqkA8MbDSPJEg4Mk3jrCwoYUhK9A5OrcIDMMkPS2OiGOYbK94FR3uOEA2NI4g3nyoITdGDyMOvAMM/P+1DAkJKod3CBsB8+v09zYACe4KSxUfNZAmE/JJ9U9HUBXRWSA0m8MX0Sr+jAFJtl1sjoxwjohWeQDkxd4XkB8+///u+44IIL8NGPfrTWS2lIVAcm1Fpg5DwTeUkDo4aQSiXwKs8LfWAcL6MO6HJg6MDkUyqJN0QHpq7wtIA5duwYfvazn6G5ubn8i4kjaAKmOQgAegeGd3ekgVHdlFJdeJXnnXZg9CEkViGVxnQSLwWM5yl95tWY73//+1i5ciWy2SzGx8drvZyGI5vOapUWOQeG024JAXJVSIEyDoxYoeTEQEddCEnMUwNDSIVgEu/MwbMOzPbt2/HEE0/gU5/6VK2X0rDoT3Q6MISoZDO5ZmilBjkChiReB0NIgbAfvoA+T40hpHyKTaIGmMRbb3jSgclkMti0aRPe85734MQTTzT1nqGhIQwPD2v/HhgYcGp5DYMoUMKFcmB4cSQNSlo3B6n0ZTTg9CiBKeU8VbvI6h0YnqNGkqVCSKLYpIDxPJ4UML/73e9w9OhR3H777abfc//99+Oee+7Je3zfvn3IZPIvGpFIBP39/dUsc8YTOZLI/R2fRH9/P1JyUnvsrf2Hgf5oLZZWV/C7Zg0vH7fERO7HbSoVK7nO+GjuRmD42LDt/0/xSeWclP1Z9Pf3I5GZ0p4bOjri2WNYK44fGdL+PnhkAMPpIwCU79tru16DPyQhk5QRGS/9uRJnz9GVK1eWfY3nBMz4+Dh+9KMf4a//+q/R1dVl+n2XXXYZ1q5dq/17YGAAt956K5YuXYoVK1bkvb6/v9/UAWpkDsvDeAWDAIA5C2Zj5coVGB94CcAkAKCzrRsrV55SwxXWB/yuWcPLx23scAQv4hAAoHdWd8l1To0n8BIOAwBawm22/j9lM1k8nVLc5vbuVqxcuRI7Uq8CGAUAhP3Nnj2GteLIw9sAKDdep5y2Am29SpGI+n3b3jaI2EgCUtbHY1eGWp+jnhMw//Zv/4b29nZcfvnlFb2vr68PfX19Dq2qMSkUQgo00Z4mRCyHLpfEG3RwmKOxAgkAfAEJvoCEbFpmnloBSiXxqo/FkGAIqQ7wlIA5ePAgfv/73+NTn/oUhoZyNl8ymUQ6ncaRI0fQ2tqKjo6OGq6ycRAvjmqsmDkwhOi78JbrA+MP+QAJgGx/HxhjDxgAkCQJoZYg4hNJnqMFEIVJoRlW6rUuNZWBnJVLNikktcVTAmZoaAjZbBabNm3Cpk2b8p7/i7/4C1xxxRX49Kc/XYPVNR56B4ZVSISopOPmk3glSUKwyY/UVMb2UQLGLrzi3/GJJJJRnqNGVAcmEPbDV0CcGB0z1dki3sNTAmbp0qX4+te/nvf4v/3bvyEWi+HTn/405s+fX4OVNSbGOUgA4A+xDwwhohApV0atvCaA1FQG6YTzISTx79RUGrIsQ5LoIqioYbxC4SPj46l4hgLGw3hKwHR1deH888/Pe/w//uM/AKDgc8Q5dBfHaQdG8kkINit3kwk6MKRBEXNZyoWQAKU8dwr2l1EXdWCmf4RlefpHuMiPdSOihpCMJdQqxl4wra6siljBs43sSO0pbk9P393RgSENSkqXxFteHKgix9kkXuEcbRV+hHmjoSHLshZCMuXAMJHX09SFLP/ud79b6yU0JIkCISRAuVBGh0EHhjQsuhwYEw6MKnKyaRmZdBb+gD33juVCSNprem3ZXd2TTmQAWfnbrANDvAsdGFKUVIEQEpC7OGaSWWTTWdfXRUit0YeQzDswgL2VSLpEe0MSr/YaJvJqlBrkWOhxOjDehgKGFEW9OEo+SZeoqLs4MoxEGpB0hUm8YqWSnYm8ulYHOgeGLkIhyvWAMT5OAeNtKGBIUdSLY6gloKtiEO1phpFIIyJWIZkLITkzD6lQs0nAEEKiA6NRqQND8edtKGBIUdSLY97IeeHujom8pBERQ0iBMn1gAMOQQBt7wRRqdQDQgSlGqUGOKnRg6gcKGFIQWZa1JF4x/wXQn+B0YEgjYjWJF7C3EqlYCCmsc2D4I6yS0oWQCn9udGDqBwoYUpBMMgs5o6Tri3dzgF7QMAeGNCIV94FxOIlXkvT7COocGN5kqKSmBOFZNIQkuGUUMJ6GAoYURHRWSoWQ2GOCNCJqHovkl+AzURId1OXA2O/AhFqCujy1sLGMmgBgCGmmQQFDClKoC6/2b14cSYOjViEFw35Tbfp1ISRbc2Cm89SMLqmujJrnqErKRBUSQ0j1AwUMKUjKtAPDE5w0Huo0ajM9YAB9Eq9dISRdnppBwDCEVBg6MDMLChhSkEQJBybMEBJpcFQRYqYHjPF1KZv6wOjy1Eok2tOByaFzYIqIT3/QD19Ayns98R4UMKQgxcozAX21Ax0Y0mjIsqzlwJhJ4FVeJzSys8mBSZZwSX1+n7Y2OjA5dMnXJQZcqp8XQ0jehgKGFER3cWxlCIkQlUwqCzmrOB9mBjkCxiReewRMKZcUyOWq0YHJoQshtRT/7FRBaPf0cGIvFDCkIMWGxAHGCgfe3ZHGotIeMIAzfWBK5akBuRsNugg5zCTxAjlxwxCSt6GAIQUR248bT3R/yAfJr8SI6cCQRkPMYQma6MILONMHRufAFHAT1BuPdCLDoavTqNcrySfBHyz+86de8zKpLDIpujBehQKGFEQ39MxgT0uSpCXy0oEhjYZukKPZHBhB6NhVRl3KJVUeY6jXiOqohJoDJcvf9ROpKWC8CgUMKUipJF5AiK/zwkgaDDEvImi2Ckl0YGyqQtLlqRV0YFhKbUQN35VK4AX0Sdd2Nh4k9kIBQwpSKokXEOLrsTRkWXZtXYTUGt0gR5NJvP6AD77psKtdiaGlmk0CxonU/BEGcs5yOQETYjO7uoAChhSkvD2tPCZnZZ2lTshMx0oSr/JatbLFJgemRJ4awInURrLpLDJJJReoVAIvYAwh8dh5FQoYUhDVgfGHfPAXmPUSZHydNCiVDnJUUcNItvWBKZGnBugFTCLKEFJS1wOm9OdGB6Y+MOd/liGTyWB8fBypVOGTZM6cOXbshriIOCSuEMZuvK09Ta6si5BaIybhmq1CAnJix65OvGbz1AAgxZsMU5Ooc89zInU9UJWA2b17N+666y68/PLLSKcLf8iSJGHz5s3V7IbUAG1IXLF5IezGSxoUMYfFbBUSkBM7qXgGsiybGgJZCrN5aoB+unyjYrYHDMAQUr1gWcC88cYbuOGGG+D3+3HWWWfh6aefxvLly9HT04PXX38dY2NjWLNmDebOnWvneokLZLOydrdS6MIIsESTNC5iFZHZYY6AIHZkpb9IIGRe/BTCbJ6a8bWNiplBjioMIdUHlgXMT37yEwDAv/7rv2LJkiW48MILcf755+PKK69EIpHAHXfcgccffxw333yzbYsl7qC/UykcQgpxoCNpUHQOjMkyauNrU/G0DQKmdJ4az1E9dGBmHpaTeHfs2IG1a9diyZIl2mNqOW04HMaNN96Ivr4+3H333VUvkrhLOWsa4N0daVyqrUIybsMq5fLU6JLq0TkwZZwzOjD1gWUBE41GMX/+fO3fgUAAU1NTuQ37fFizZg1efPHF6lZIXEefHEgHhhARfRVS5Um8yjbsEDBl8tRaeZMhovvcSgxyBOjA1AuWBUxXVxcmJye1f/f09OCtt97SvSaZTCIej1tfHakJdGAIKU7KwigBwN7urqby1Jp5kyGSKlO1JcJRAvWBZQGzZMkSHDhwQPv36tWr8fzzz+PVV18FAOzfvx+bN2/G4sWLq18lcZVkmSFxxscpYEgjkRbv5K3mwFTZ/DFlwiUNhP0cuirAJN6Zh+Uk3vPOOw/f+973MDQ0hL6+Pnz4wx/Gk08+iRtuuAHt7e2IRCLIZrP4yEc+Yud6iQuIbcfDpuLrvLsjjYPegbEWQqo2B0acbVTMgZEkCaHmABKRFM9RVJbEK36uDCF5F8sC5n3vex82bNiA9vZ2AMDy5ctx++2346c//SkOHz6MFStW4PLLL8d5551n22KJO4gXx2KxYoaQSKOiig9/0Aefz3wvl4BuInV154yZPDVAudFQBAzP0UqSeH0+CcEmP1LxDB0YD2NZwAQCAfT09OgeW716Nb797W9XvShSW8p1+DQ+zosjaSS0icYV5L8YX1+1A2MiTw1QbzSmtKGr1TbPq2d0SbxlHBhAETmpeIYOjIfhLCSShyhIwgVmrACAL+DTYvq0p0kjoVYQVRI+AoxVSDY6MCUqatTnOHS1shASkBM5dg3fJPZT9Syk4eFhvP7665icnEQ2my34mo0bN1a7G+IioiApVW4YagkgncjQgSENhSoEKnVgdHkV1TowJvLUgPxS6krKvmca+iTe8p+dKnKSU3SvvIrlb3MikcB3vvMdPProo1oDOyPqh04BU1+Yvji2BBAbTdCBIQ1DVnAyKhnkqLxeCCFV6YaYyVMD8kupG3noqurA+EM++Pzlgw9amElWPq9GFn9exfIn8oMf/ACPPPIIFi1ahIsvvhizZs2C319da2ziDXQVDiUdGEXcpOIZZDNZUxcFQuqZtMUeMIC9fWDEm4xS4ZAwm9lpqALGTPgI0AvD5FRju1dexfInsnnzZixZsgR33303QqGQnWsiNUa7OEqls/VDhhO8qY3fAzKzEQVMJT1gAH0fmOodmPJ5aoA+WZUCZto5MylgQqLgjKWBbkeWRarA8i1zJBLB2WefTfEyA0kKdypSiTJRsZQ61eAXR9IYiM5JdUm81QmYRNRcCCncqg8hNSqyLOuua2bQdeNlIq8nsSxgTjjhBIyOjtq5FuIR1ItjqfCR8flGv7sjjYHVQY6AMYm3uvNFvGEomafWzBASAGSSWchZJVfTrAMTZDdez2NZwHzwgx/EU089lTf/iNQ/Wqy4xIXR+Hyige/uSONgdZAjYAghVevAxMzlqQXZMRtAZWMEVEJCpRJ7wXgT02fg9u3bdf+eNWsWzj77bFx77bV4//vfj5NPPhktLS0F37tmzZpq1khcJJ3MIJNSyuErcWAYQiKNgG6MQIU5MD6fhEDYj3QiU3UnXu18K5OnxiRehUp7wAB0YOoB0wLmM5/5TME6eFmW8eMf/7hkjfzjjz9uaXHEfcQTtbwDk/v60IEhjYBukGOFISQAOQFT9Swkk3lqTOIFoBcwVkJIdGC8iWkB89GPfpSNfBqAlMkOn8rzvLsjjYXowFgpqw02+RGfqL4KKZenVuYmg0m8AAw3ZqZDSKKAaewuxl7F9Bl49dVXO7kO4hHE6oZKHJhGvjiSxkHMXak0hKS8x5729Lk8tTI3GUziBVC9A8MQkjdh5zGiQx9CogNDiEiqyhCS+p5MMotstnAH83JYzVNr5DBvJZOoVUIMIXmeqlsLDg0N4bHHHsMbb7yBSCSCtrY2nHTSSbjooovQ19dnxxqJiyRFB6bMnQrLqEmjIeauVNoHBjBOpE6XdTkLUUmemjp0NZ3INHSivSg8mcQ7c6hKwPzmN7/BnXfeiVQqpZuH9PDDD+Puu+/G3/zN3+B//s//WfUiiXvoLo4lOnwCQJghJNJgVNOJFzD0gklkrAmYqLkSavE1jT50teokXjay8ySWBcyjjz6KTZs2obOzE3/1V3+F008/HT09PRgZGcHLL7+MX//619rzF110kZ1rJg6SrCCJN8gQEmkwqukDAxgGOlqsRNKfo+UFEIeuVnZd017HEJLnsSxg7r33XnR2duJHP/qRLlR0wgknYM2aNbj00kvxsY99DPfeey8FTB1Ryd1dsMkPSQJkmQKGNAapKjrxKu+p/q4+abKJXe41HLpqxYHxB32Q/BLkjMzrm0ex/E0eGBjAhg0biua5zJ49Gxs2bMDAwIDlxRH3qSS+LkmS9ppGvrsjjUO6ikZ2xvdYLaWu1E0wDl1tRPRJvOY+N0mSNBeGDow3sSxg2tra0NTUVPI1zc3NaGtrs7oLUgMqja+rrcp5h0IagapDSDYMdKzkJgPQl1I3aiKveKzNJvECObemUYWf17EsYNauXYunn34a6XThDzadTmPLli1Yt26d5cUR96n04hjWBAwdGDLz0fJWJMAfqvzyacdAx4qTeIVmdo1aSm0lhATkRCqTeL2JZQFz3XXXobm5GX/3d3+HnTt36p579dVX8Xd/93doaWnBtddeW/UiiXtU7sAoIieblpFOslslmdmoM4yU/K/KO5Pry6hrEEJqUAdGvTGTpMpCf6pbk0lmkU1nHVkbsY7lJN6PfexjSKfTGB4exvXXXw+/34/Ozk6Mj48jk1FOzN7eXnzsYx/TvU+SJPzyl7+sbtXEMdQT3ReQ4A+W17dhw8UxEKo8L4CQekENRQTD1i6dYhWS1YGOlVchCdWC0cYUMKoDE2wOVCQ8db1g4mk0tYVsXxuxjmUBI8sy/H4/Zs+erXu8t7c373Wl/k28hXpxDLUETZ3o+m68KbR0hR1bGyG1RnVNAhYqkABjFZJVB6byPjDae6caM4SUFARMJRhLqSlgvIVlAfOrX/3KznUQj5DUhsSZbPZEe5o0ELkQkrVLpyh87KlCqtCBadBzNCVM766EYHPu82Iir/dovIYApChyVhaGxJnrEMpuvKRRyKSzyKYVB9lKCTVgCCG51gemsc/RbFbWxGKlDkyQE6k9DQUM0UjF01AjfOYdGN7dkcYgXWUTO8BYhVSdA+MLSKZyzhrdgRErkCp1YNiN19uY/jTvueceSzuQJAkf/ehHLb2XuEslk6hVjEm8hMxUxKRby0m8NlYhmXVJG70KKWVhErX2eg509DSmP80f//jHlnZAAVM/iBUKli6O0cazp0njoJ9EbTWEJA5zrC6EZHqmT4OHkHRdeE0eMxU6MN7G9Ke5adMmJ9ehsW/fPvz4xz/G7t27MTIygqamJixevBgf+tCHsHbtWlfW0KhUGlsHDCEknuBkBpOusgsvoBc+VkJIclbWzrOw6ZuMxi6jriaERAfG25j+NNesWePgMnIMDg4iFoth48aN6OvrQzwexxNPPIFbbrkFN910Ey677DJX1tGIMIRESHFSiepzYPxBHySfBDkr6wSR6TXE08B0nppZN0E3dLUBf4StduE1vp4OjPewXEYtkslkMD4+jlSqsD05Z84c09s677zzcN555+ke+/M//3N8/OMfx69+9SsKGAfRd+G1cHfXgPY0aRzEnBWrVUiSJCEQ9iM1ldYJIrNU2oVX3WeoJYhENNWQYd5kFQKGISRvU5WA2b17N+666y68/PLLRWciSZKEzZs3V7MbrWHerl27qtoOKY0VB6bREwRJ46Af5Gi943SwSREwVpJ4K+0Bo+2zJaAImAb8EdaFkCr83BhC8jaWBcwbb7yBG264AX6/H2eddRaefvppLF++HD09PXj99dcxNjaGNWvWYO7cuZa2PzU1hUQigWg0ii1btuC5557Dhg0bir5+aGgIw8PD2r8HBgYs7beREePj5uPrjZ0gSBoH0TEJWMyBAdT8mYSlPjBW8tQAJdQbmX6/LMuW5jjVKzrhSQdmRmH5LPzJT34CAPjXf/1XLFmyBBdeeCHOP/98XHnllUgkErjjjjvw+OOP4+abb7a0/TvuuAP3338/AMDn8+GCCy7AZz/72aKvv//++wuWeu/bt0+bzSQSiUTQ399vaW0zlcMHR3N/HzuEaP9w3msKHTdfQEI2LWNihMe0EPyuWcNrx+3w/gnt72NDg8j2T1raTlpWREgqnsbOnTsrEhMjb8S0v8ejowWPT6HjlpKTAJShq6++stPUnLOZwqGBMe3vwaEjSPSPFXxdoeOWFprXjR4f89T30Qs4eY6uXLmy7GssC5gdO3Zg7dq1WLJkifaYOucoHA7jxhtvxKuvvoq7774bX/rSlyre/vvf/36sX78eQ0ND2Lx5MzKZTNEcGwC47LLLdFVKAwMDuPXWW7F06VKsWLEi7/X9/f2mDlAjMfL0qzgM5SJ90soT0bekM+81hY7bttYjmBpPwpf185gWgN81a3jtuCV278F+KCJ/yYmLccLK2WXeUZi9XROIDiYhZ4FTTj4F/qD5sMYbI4ewC8cBAAsWz8fKlUvyXlPouB2aNYWJA8cAACcuPqmhZpZNbtuFgxgHAJx48lLMPaWn4OsKHbdsJouteAsAEAo0eer76AVqfY5aFjDRaBTz58/PbSgQwNTUlPZvn8+HNWvW4NFHH7W0/cWLF2Px4sUAgI0bN+Jv//ZvcfPNN+MHP/hBwTuWvr4+9PX1WdoXURDj62ZDSIASi58aTzIHhsxo7OgDA+QPdKxEwKSqOEdVktHGGroqXpcq7QPj8/sQCPuRTmQYQvIgln3Erq4uTE7mLNSenh689dZbutckk0nE43HrqxNYv349du3ahYMHD9qyPZKPOKm2khNdjcUnp9KQs5w2TmYmaV0ZtfUcmGoGOiYs5sDoJ1I31g+xPom38s9NzZuhgPEelgXMkiVLcODAAe3fq1evxvPPP49XX30VALB//35s3rxZc1GqJZFIAFBibsQZdJ14K0h20y6OsvUBdYR4HfG7bbWMGqhuoKOuCqnVooBpsFLqapJ4gdy1kA6z97AsYM477zy88sorGBoaAgB8+MMfhizLuOGGG/De974XV111FSKRCD7ykY9UtN3R0dG8x9LpNP74xz8iHA7rcm6IvagOTLDJD5/f/Fej0YfFkcbAjmGOQHUDHcUQUqi5kjLqxu2YXU0fGCD3WafiGS3Pk3gDyz7o+973PmzYsAHt7e0AgOXLl+P222/HT3/6Uxw+fBgrVqzA5ZdfnteUrhy33XYbotEozjjjDMyaNQvDw8N45JFHcODAAVx//fVoaWmxumRSBtWBqaS/hPL63NcoEUuhDc22rosQL2DHMEflve6HkMKN7MBMCxh/0Ad/oPJ7dlX0yFkZmWS2KveN2IvlszAQCKCnR5/NvXr1anz729+uakEXXXQR/vCHP+B3v/sdxsfH0dLSghUrVuCTn/wk1q1bV9W2SWnUO5VKLozK63OCJ0UHhsxQnEnirex8SVlsZNfIDSfV65oV9wXQh9OTU2kKGA9hyygBO7n44otx8cUX13oZDUc2ndXuBiue2Co6MA12d0caB3V2kS8gWbqTV6lmoKPowFSWaN+4ISTVgal0kKNK3jykBqrg8jqN082IlMRqCTXgfIVDNp3Fwe3HERmaKv9iQhxC7cRbTQWS8n4hhGQxiTfY7IfPZ74BXqMm8cqyrAkYuxwY4h0858CQ2iCWUHsthLTjgX14/pevo6kjhA9uWk8Ll9QENYm32u9fQMifqXSgoypgKkngBRrXgcmksshmlMRbqwKGE6m9Cx0YAsBQQl1lEq/dHOkfAQDEJ5IYO8wyelIb1CTeaiqQjO+vdKCjOgupkhJqoHHDvLoeMBQwMw4KGALA2iTq3OudLaOODOdCR5EhexojElIJsixr+SrVVCABegEjVjaVI5POIpPMArDiwDTmj7CuhNqi8GQIybtQwBAA+ruyygWMGF+39wSXZRnR4ZxoiY4wD4a4TyaZBaZbgFRTgQToBVAlSby6SdQVOjD+oF8b4Jiw+Rz1Mqkqe8AY39dI4q8eoIAhAKyXZxpfL+bS2EEymtZd5OnAkFqg6+ZaZRJvwGIISdeF10pH2Ra1JX4DhZDi1p1l7X10YDwLBQwBYL1BlvH1djswEYPjIroxhLhFyqYuvMr7rfWBSVZxkyG+p5EcGN0gRzowMw4KGAKguotjUHeHYu/dXdTguIj5MIS4hdgxN2BjDkwlnXiTVdxkiO9JxRtn6CqTeGc2FDAEgOFEr3TkvE/STnK7k3iNgoUODKkF+hBStWXU1hrZ6W8yrAiY6RsTuXFCIfokXoaQZhoUMARAdUm84nvsFjBGwRIbjSObydq6D0LKkdI5MNUJGJ/fpyXUVlKFpE/itRJCarxxAkzindlQwBAAxjJq6/H1pM19YCIGASPLQGw0Yes+CClH2kYHBsiJoIqSeKPVJvE6l2zvVUSHy2oIiQ6Md6GAIQD07cWrcWAyySwyafsckmiBnBeOFCBuo0/irb6BubqNipJ4xZuMah2YBknkTdrgwPhDPkjTUxsqnV1FnIUChgDIWcqST7Jkkevtafvu7owODABER5gHQ9xFFBrV9oEBci5ORTkw4k2GFQem1Zlz1MvYkcQrSbkcP4aQvAUFDAEgtChvCUCSzA+JU9HZ0zbd3WWzckGxQgeGuI1YLWSHA6OKoHQiY7oiqGoHptnZjtlexA4HBhBy/ChgPAUFDAEgDImz2uzJgYnUU+MJyNOD2Jo6QtrjrEQibiM6JXYMExW78aaT5lyYqsO8rUzitQodGG9CAUMgy7IgYCq/szO+zy57Oio4LXNO7tb+LhRWIsRJdA6MDQImoJuHZFLAVBkO0SWjNloISaruc1Ndt3QiwypID0EBQ3Q2ti0OjE13d6JQmXViJyS/EtoqlNhLiJPYOUoA0P+Ypk0m8mp5an6reWqNG0IKNgUg+SoPjauI4o+JvN6BAoZUXUINAGEHknhFAdM+qxmt3U15jxPiBroQki1JvJX/IKohpFCzxTy1Bk7itZrAq8JeMN6EAoZUHVsHgKADSbyi09La04TWXkXAJCKpispPCamWtM0OjC6EZFbATP9whi0k8AKNmcSrio1gc5Xzq9gLxpNQwJCqW5QDBgfGphNcdFra+prRNi1gACbyEnexc5ijsg0hideEGBfz1Kwmo4YbLIlXzsra51ZNAi9gCCFRwHgGChhS9ZRb5X1ikyybkninRYokAS3dYbT2NmvPRdgLhriIbphjyI4qpMqSeMU8NasOTLApAExHnhohhCS6tHaGkOjAeAcKGFL1lFvAEEKyy4GZrkJq6W6Cz+9DW5/gwLAXDHERdWZRIOyvKhlURQwhmRknIN4UBC2eo5JP0n7IG8GBsauE2vh+OjDegQKG2B9CsuHimE5mEJ9IAoCW+9LakxMwTOQlbqKGIuzoAQPo+8CYGego3hSELZ6jgDh0deY7MHZMolZhCMmbUMAQgwPjjT4wYgfetunQUVtfLoTEUmriJmqeih35L0DlSbyJaPVhXvG9jebAMIQ0M6GAIbY4MP6QD77pPi12XBzFJF3NgemlA0Nqg5YMakMFkrKdyvrApISbAjta4mdSWWRSM7ufSVJMvGYS74yEAsYiM6kboyg4whbv7iRJytnTNiTxRgSHRc19CbcGNQufVUjELbJZGZmUcr7b0QMGqLwPjC6E1Gr9x1jnJMxwF8ZWB8ZC2TtxHntuJxqEZCyFP37nRUwMRtG3tBN/+rkza70kWxBDPlYTBAHFno5PpmyxWHUOTI8SOpIkCa29TRg/HEVkeAqyLFtq6EVIJeh6wITtuWRWHkISJ1FbDyGJFUzJWBrNnWHL2/I6KUGgVXNdM75/pgu/eoIOTAUEmwMY3j+BqfEkxgejtV6ObdjhwABigmAasmxuwm4xIkNiD5hc6EjNh8kks0hMzvxERFJ7xDJn2xwYcZSAiSRenZtQhQPTSPOQmMQ786GAqQBJktAxpwUAMHl8qiZhpOi082AnduTAKO9VxI+clXV9M6wQHRG68Aq5L6KYiYwwkZc4j1jmbMcgRwAIiCEkE+eKbUm8rY3TjZdJvDMfCpgK6ZirCBg5I+tcAjd47ue78ItPPY4n7nzF1u2qd2L+kA++gPWvhJ0DHdVj6w/60NQe0h4XxUzU5eNPGhO7BzkCxmGOJnJgbOjVBDSYAyN+btUm8TbRgfEiFDAV0jGnVft7wuUw0p6nDgEA3nzmiK3ujyo2qgkfAUYBY/3iKMuyVibd2tuky3NpE7vxMpGXuIDdgxyB6W6+krp9E31g7HJJ6cBYwhfwwR9Ufi45h807UMBUiOrAAMDE0Zhr+03GUpgaVxq7Ke6PfeGT5JQiNqpNdNP3grF+kidjae1HQxQsgLGUmiEk4jz6QY72CBjJJ2kujKkqJBvGfSjvzZ3jiQYSMNU6MOI2GELyDhQwFdJZIwEzMajf1/gRe/adzcpITSkXUFsdmCpKqQv1gFERBQ1LqYkbiDkqdlUhAbk8GDNJvLoQkg19YAB9b5mZiC6Jt8pp1EDuuDOE5B0oYCpEDCG5WYlk3Jdd+07ZZE0r77dnHpK+BwwdGFJb0jZPota2ZcGBCYT9Veap5c7RRnJgqg0hAXoHxu5CCmINCpgKaekOwx9SDpvRFXES477s2rcdYwRy7xfsaYccmEDIj6aOUN7rCHEKcVaRXbOQgFw+jZmKPfU8rfomQywHbhAB4wtI8AdtcGCmj72cyTU2JLWFAqZClFJqxYWZPBZzrZTa6LjYlUBsV3Kg8f3V2Kxifk+bQcAAuaGOsZH4jOqITLxJSufA2BdCUsNRmVQW2XTp77F6nlZ9jraKDkxjhJDscF8AQ/dkhpE8AQWMBdRE3mxGds0FyAshHbFHwCRs6sIL2JfEKw5ybDUk8QK5sJIsA7GxhOX9EGIGJ6qQAEN7+hIuTDaT1VwaO13SRqlCsiOB17gdJvJ6AwoYC4iJvOMuJfIaQ0aRoSlkyty1mSFlUxdewL4QUlkHRsyDYS8Y4jBpB/rAAHoxVGqgo50uqT/ogy+g1G83ShKvXQKG3Xi9BwWMBdzuBROfTCIR0V9sZBmYtEE82RtCygmgak5w1dUKtwYL/mCIoibKRF7iMLoqJFsdGHMDHe0qoQbUoavKNmZyEm8mlUE2rSTa2hZCogPjOShgLKCOEwDcSeQtJpLsqERK2NTh0/h+sfV5JchZWQshtfbluy+APqzEZnbEacQqpICNZdRiN95SISS7uvAatzGTk3jV1hAAHZiZDAWMBdzuBTMuiKTeJR0FH7dKysa7O118fcqaPT01nkA2o9w5qcm6RvQODAUMcRaxCsmuWUiAIYRUoheMnQ6MuI1kLDVjy4GTNpdQA/peMhQw3oACxgIt3U1aW2k3esGIDsyiNbMKPm4VOx0Yn9+nlZkmLTowoqNi7AGjPc5eMMRFHEviDZsNITnjwMiyuR409UjKxknU2nYYQvIcFDAWkHySVok0eSyGbNbZuxjRadELGLtzYOy4u1ObPVlzYMSclkIJvADQ3N0EySdNv54ODHEWNcFW8knajYsdiGLIfA6MfQJG2fbMTORN2jxGAGAIyYtQwFhETeTNpmXHE0nVkmlJAvqWdSLcFtQ9Xg32390pa7MaXxerigqVUAOAzyehtSc8/Xo6MMRZVHERbPLrBotWi+gMlK5Csq/ZpHEbM7WUWhy46EwS78x0ruoNChiLuJXIK8syJo4qQqVtVjP8AR865yriKToSN9XFsxRO3d2l4hlLTebEHjDFHBggJ24SkVTVx4CQUqg5MHaGjwBDH5haOTBVtDvwMnYPcgTowHgRChiLuJXIOzWR1DLqVeHSOU8o465y35pTItkTK652HpLoqBRzYADmwRD3UKuQ7BzkCOjHEqRcTeKd+bkcjiTx6sreZ+ZxqzcoYCzSMdedoY4TQphI3WeH2Eivyn2rSbyh5oCWV1IN+ru7yk9yLadFAlq7w0Vf1+rSVOroSBx//M4LeO7nu2ZsxQYpjizLWomznT1glO2JISQ3k3gbIIQUEx0Yez63YAMIv3qDAsYiuhCSgw6MKFBU4SKKp2orkXIzVqq/s1O2U10pteqmtHSHS07ddcuBefXB/Ti47Th2/GEfju8Zc2w/xJtk01nI02X9dg5yNG6vdB8YsVs2k3jN4HgS7wwVfvUGBYxFWntypdROduMV82vU0FHnPNGBqU48aVNuW206ycW7uwodmEwqg6nxJACgrad4+AjQjxNw0oEZ3j+h/T0k/E0aA6cGOSrbq3yUQNCGG41wIzgwDiTxBsJ+YNqkZg6MN6CAsYjkk9A+WxESE0edK6UWHRg170YcZVBNJVI6aX+77WqGxemGOBbpwqvS5lI33pGDk9rfowcjju2HeBOnesAAlYwSUG4yJMmeMFawARwYJ5J4JUnSPrMkc2A8AQVMFaiCIpuWERtx5kd0/IjisEh+SWvsFmoOoLlLyQ+pxv2xOzlQ2Y71EJKuiV2JBF5AL3CcKmOPjScQn0hq/xbFDGkMxA65djswlfaBCbUEbSnjbgQHxokkXnFbdGC8AQVMFTidyCtncyXUHbNb4PPnPi5VPE2NJy3fRdmdHKhsx3oIKarrAVPagQm3BrUcAqcmUo8aBMvowUkm8jYYuhCSzTkwuiTeklVI02Fe287R6hLt6wEnHBhxWxQw3oACpgqcTuSNjcaRSSq9VMTKI+Xf1ZdSO+HAhKtxYEbKd+FVkSRJEznRkbgjwsIoYJKxtGNOG/EmYo+hgM0OjD/gg8+vOCrFHBhZlrWp0Y7cZFjsmO11xGGOdn5umgMTzzjegZ2UhwKmCkRR4UQzOzFBt1MQLMq/hURei3kwTjgwQZscmHIhJOU1ioBJJzJIROy/EI8UyHkZeYt5MI2EmAxqtwMD5CqRijVjzCRzVVB2JPAq25n5DowaQgo2+eGzoT2EiujmlEq8Ju5AAVMFYjKtE5VIugTeeXoBoy+ltsOBccCertBmFXNgyoWQlNc42wvG6MAAwOgB5sE0Ek4m8QK5MFKxxmjiTYYdJdSAMopDTQaeuQ7MtICxMXykbI8Tqb0EBUwVtPY2wRdQ1L0TISRRmBhDSKKgsZp/oxMwrQ6EkCpsU64m4/qDPjR1hMq+3sleMHJWxui02yL5c3dwo3RgGgrxLtvuRnZAThQVCyElHAjzitua8Q6MzQImxInUnoICpgp8PknLg5k4GoNsc0xUX0JtcGDmVN+NVxdCsqvddhUVDqoD09rTZKraos1BB2by+JRm689f2Qt1OaxEaiyc7AMjbjMdTxfM40o5EOYVtzUTf4RlWdYcrZDdvXs4D8lTUMBUiRpGyqSyiI7a+yOq5rb4gz609uhDKoGQXwuzeCmEpEzsVbdv3oFJxlLaBUEtFy9Hq4MOzOhbOaEy68ROLWQ3dijC5L0GQpxR5EQOjOrqyLJyDTGScOAcVbal3GikExlk05UPXfUy6UQGmD5F6cDMbChgqsSpRN5sVsbksZi2j0JzilRXJhFJIR5J5j1fDieqkCRJytnTFTgwlea/AHqhY7cDIzot3Yva0b2oDYDyI+Nk52XiLfQ5MPY7MLpxAgXyYJw4R5VtWW846XV0YwRsFH0AHRivYf8ZWSWvvfYaHnroIWzbtg2Dg4Po6OjAqlWrcM0112DRokW1Xl4eulLqwSjmr+q1ZbvRoSmtS26HIXyk7XtuCw7vHJ7edwxNy8vnjYg4UYWkbisRTVV0hxIdMl9CrSK6Unb3ghG77vYsasPYoXbs33pUee6tCLrmt9m6P+JNxOogJ3Jg9L1g8vNgnDxHtX1MpUzlnNUL4pwiO5vYAUYBU7z5IHEHzzkw9957L5544gm84x3vwKc//Wm8973vxcsvv4xrrrkGe/furfXy8tA1s7MxkVcsje40JPDmHq9upIATSbyAEF+Ppkz3Z4mIYwRMlFADyt1rU7uy7uiIzSGkaQfG55fQObcVPSe0a8+NsBKpYRCnRNs9zNG4zUKJvM6do9bbHXgdnQNjs2vGEJK38JwD84EPfABf+tKXEAzmTrCLLroIV111FX7+85/ji1/8Yg1Xl48oLuysRCrVA0ZFH76yImDsT+IFcom82YyMTCqLQKj8hT+i6wFjzoEBFLETn0whOpJANivb0vMhk85ibFoQds5vgy/gQ/fCnOMi5seQmY2uD4wjSbylBzqKlXy2tsSvot2B13GqC69xewwh1R7POTCrV6/WiRcAWLRoEZYsWYKBgYEarao4rb3NWjdNO3MjxG0VCyHpS6krF0/q3Z0/6DMlMsxipZRanGdkNgcGyIkdOStjyqYk6vHDUa15WM907kvH3FZt+jiHOjYO+iokZ0NIBR2YKaeSeHPbSlTY7sDr6CdR2/uZ0YHxFp5zYAohyzJGR0exZMmSoq8ZGhrC8PCw9m+3xI5veir1+JGoVkpdKOG2UgpNoTbSPrsFkqRUMFQTQrI9U99QSt3SXf49+iRecyEk42sjw/GK3lsMMYFXDR35fBK6FrRheP8EJgajSCcztoo+4k3EKiQnQkjBMgMddQ6MnUm8QjgqNZOTeOnAzGjqQsA88sgjOH78OK6++uqir7n//vtxzz335D2+b98+ZDL5F4ZIJIL+/n5b1udrU8oQM8kstm/dgXBH9Yd16MCYsu2QhH2H34R0pLAoCnUGkBhLY+zwJHbu3FnRtNqpyWnREMiaPhZmjlskPqH9vXvnG2gfD5fd7ugR5T3+Jh/27Hvd1FoAIJoZz+3r5T0YThd2qyphYNuo9vekPKr9//rale+RLAMv/b9X0Dav/P8XYO93rZHwwnGLjCk3Br6AhF27d9m+/aHR3LkysHcAsdZh3fMjx8a0v/e9tRehURPhWBPHbWgkd8NzYN9bSM+eKPHq+uLIvtz/y/GRo+jvN3dzZ+a4xUdzgnLo6HDNv5+1xslzdOXKlWVf43kBMzAwgNtvvx2rVq3Cxo0bi77usssuw9q1a3Xvu/XWW7F06VKsWLEi7/X9/f2mDpAZJpZLGH1jPwBgTscCzF9ZXSVSNp3FM+MHAADd89uxatWqoq89sDiKt8aGkEnKWLpwOVo6zf2oylkZTycVl6q9q9X0sTBz3KZ2vo4jzysuxoI5C7Fw5ayya3l2Uvn/7Zxtfi0AEB47jIFHxwAAXU29WLlymen3FuPgH17Q/j7jnavQPktxddJ79+L4jt3KvoKzcPLKhaa2Z+d3rZHwwnF7VToOIIVQc8CRtQSOv4V9UATz7N65OHXlCbrn3/RPAFDCq6vXrIQ/WF7AmDluB5PH8TqGAADd7b1YufIkC6v3JonX92jHdMnyxVi8co6p95k5bvGJJF7CYQBAc6iya9VMpNbnqKcFzPDwMD7/+c+jtbUV//iP/wi/v/jJ29fXh76+PhdXl6PDkMhbrYCZPD6ldfU1jhDI33cr8LJyIZo4EjUtYFLxdK7Zk829EvTTbsvbrFMTSWSnc04qyX8B9L1gIjZNilbHBQSb/Wjry62ne1GuEol5MI2Bmk8RCDtzqdRVIZUoo/YHfabEi1nEHJiZFgpxNomXs5C8hOeSeFUikQg+97nPIRKJ4LbbbquZODGDsRdMtehLqEuHRHRTqSvYt1ieGbYxtg4YKhxMJAhGdD1gKsthEQWP2EvGKsmpNCLHle10L2zXheR6dAKGlUiNgJqX4kQCr7Ld0tON1fPUzhJqYIYn8Qr9WezuA+MP+rVkfibx1h5PCphEIoGbb74ZBw8exLe+9a2SybteQD+VuvpS6lIzkPL2bXEqtShg7HdgKuvyGR2pvAuvSktXWEuajtjQjXdMKJHuXtiue66lO6z9v42wlHrGI2dlrbmcE5OoARNJvNMOjN0/xKIgmmk/xE4m8YrbnGnJz/WI5wRMJpPBV77yFezcuRNf/epXcdppp9V6SWVp62vSSqmtlDMbKTWF2oiumV1FDkzurits+91dbnsJEyd5xEIXXhWf34eWbiVsFrVhHtKI2IH3BH23XUmStKqk2EgCicjMunMletJJoYTaqRBSU/FRAtmsrLkJoVYHG7LNOAfGuU68QE50Fhr9QNzFczkwd9xxB7Zs2YJ3vvOdmJycxMMPP6x7/pJLLqnRyorj8/uEUuooZFmuqBrISCUhJFU8ZTMyxo9Yc2Bsv7sT4+smBjpGLZZQq7T1NiM6HEd8MlV1ebMYGjI6MOpjg7uUBMHRtyYx95Qey/si3sbpHjCAXhgZRwnoW+Lbe5MRCPsh+SXIGXlmz0JyQMCo18uZ5lzVI54TMHv27AEAPP3003j66afznveigAGUPJjxI1FkklnExhJo7a7MSRCZOKoImHBrEOH20heuPPFksg9NQhAWTibxmnJgBOdETJo1iy4PZjiua/BXKfohjvnzjsTHRg5SwMxkxDtsJwY5AqVDSMkpZ+YgAdNDV5sDSERSFU2NrwdUB0byS1q+ip2ooiiblpFJZWxNriaV4TkB893vfrfWS7CEsa2/VQGTTma0XI6OuS2mnJzOea058TRqrplbyq0k3kocGAmWjpsoeiLDU5YFjCzLmgPT3BlCc0d+RVcPK5EaBqcHOQJ6YZRO6MW+OKPIziZ2KuHW4LSAmVlOgipgQs2BqpzwYgQN3XibKWBqhudyYOoVuxJ5J4/FtPLmYiME8vatq0Qyt++EQ1NujdszU2qoCraWrjB8gcq/kq09OcEWrWIq9dREEvFJ5biIJdMiYlhphJVIM5qUw4Mcjdt104EBcj/EyVja9NDVekAN7TgRPgL0IXeWUtcWChibsGuoo5kp1Pn7rjyRVz/l1rlSw0SZSbeZVAZTYwkAlVcgqegcmCqmUo8KU6Z7igiYcFsQLT2KMzN6cHJGXfiJnrTDgxwBZUSFP6ScK3kCxsFzFMiJIrHaaiYgOjBOoB8nMHOOWz1CAWMTHRb7sRjRTaE2GQrRh6/MiScnEwSB3MUxNVU6hBQdSWh/V9oDRsWYA2MVccp0ofwXFVXcJGNpxGxqnke8h9hYLuiQAwPkxJGxD4wuhOTEOToDS6mz6SwyKWW0i1Oi0xhCIrWDAsYm2vqaIalTqatwYMxMoTaim0ptcqijLoTkyN2dcnEs58BER6xNoRYRhU+kihCSroS6iAMD6MNLI8yD8RyZVAYHth1DtMrp5PokXgcFzLQ4Mnbi1YWQnDhHZ2ApdTLubAUSwBCSl6CAsQmf36fNzJkYjFkOLVgJIbV2N2khG7Puj2sOTDytjUUohCg4rDow4bagZsNHqwkhqTktEtC1oIQDs5Adeb3MC796Aw9/50X8/svPIpOybvGndWXUztU7qIm8xr4iegfG/v2L/Z9mSiKv0z1gADowXoICxkbURN50IpfXUSlqCKipI2S68kDySVoYafJYDNkSgkHFyTJqQKiakEuf5PoeMNYcGEmSNPETGYpbEo9yVtZmIHXMbin5g9UtNLhjIq+3kGUZbz6tDNuLDE3h2J4xy9tKuVCFJG47k8zqzl3xvLG72SRg+CGeIQLG6R4wABASrg1sZldbKGBsxDjUsVJS8TRi08KnXAM7I+rrs2nZ1Ewg9YIVbPbDZ6JvTKWYHSeg7wFjzYEBcuInncjo7lzNMnl8Sktk7F5Y3H0BgK75bVCrM1XRQ7zB+OEoYqO5m4fDrw5b3paYk+JUFZJx22IyrTijyImbjHCreI7OjBCSzll24JgB+s+C4wRqCwWMjVgdrKhSyQgBI2K+jJk8GG1InAPhI8A4kbr4xdEOBwYwTKW2MFJA14G3RP4LAARCfu14jx2KIJvJVrw/4gyHDILF+O9KSLkUQio20NHxMG/zzA4hOdY9mSEkz0ABYyPV9oLRDXGssBlbZ4W9YLQhcQ4kBwLGidTlHRh/0Ifm9pDl/bX2VFeJNPKWeQGjvEZxaTKpbFVJ28ReDu/UC5bjb45bdhd0fWBcCCEZ95nQzStzIMw7Ax2YpCg6mcQ746GAsZFqQ0j6KdTWHZiJMu5PJp1FJqm4Bs45MOYujqrYaO1pMjUCoRjGbryVMnpArEAqHUJSXsNEXq+RzWRxpF8vYOSsjCOvjVjantgZ16lhjoChmV2igAMjOeMA6VzSGejAMIl35kMBYyPtfc3aj3A5EVEIfQipQgdmnvlmdkmHS6gBcxfHZCzXxrya8JHyfqEbrxUHZlqE+PySqfwjllJ7j6F9E9r3KdyW+/4ZXRmzuDHMUdm2GELKd2BCzYGqxH0xzOap1RPuJPEWnyBO3IUCxkZ8AaGU+mjlpdRi7krHnMocmObOkHaRLRe+cnIStbZdExfH6Ej1JdS59wsOjIkkZpFMKqOJvq4FbabGGdCB8R5iwu4Z712mJVpbTeRNudCJV9l24RCSlqfmUDJqpTPL6oGUCwImyBCSZ6CAsRk1jJSKZzA1nqzovapr09ITrviCKUmS5tpMHp9CNl08sVQnYBwYEqdst/zFUewBU60DIwqgaIXdcceORCFnFLFZrgJJpX1Oi9Z7h5VI3kB0WpacPRd9yzoBKJ9PzEJbA60iSILWZ8gJig101FriO3WOzvAkXsdCSE0MIXkFChib0Sfymg8jJaIpbZBgpSXUKur75KyMyePFXYikg4Mcc9stf3GMiiXUVQqYQNivhQ0q7cYrTpXuOaF8Ai+gzLBRm91NDEaRTnImSi1JJzIY3K3kurTPakbHnBbMP61Pe/7wq0MVb1N1Q4JhvyNTjVWCBQY6ppMZrSW+Ow7MzPghdiOEJPkkBJunuydTwNQUChibEUM/lSTy6kYIzLEmYHTzmEqUUidd6JWgr3AofJJHxBLqKnrAqKgiKDoaN9XMT0VXQr3QnIABcmEkWVbKqUntGHx9FNm08pnPP60XALBg+r+AtXJq1Q0JOBg+UrafL2DEH2KnHBhfwKclEM/EEJJTDgwgTPKmgKkpFDA2U2k5s/ZacYTAvMryX3L7NpfIq0/idcOeLnxxFJNtq3VggJwIkjNyRZ2QRyroASMiDnxkR97aIua5qM7L7JO6tDDf4Z3DFeekiQ6Mk4gVTqpoEmcTOXWTIW57pjgwbuTAALkwEqdR1xYKGJvRlTMfNR9C0k2hthhCMjuV2itJvGK5s9jHxSptul4w5hN51RBSsNmvK8cuhz6Rlw5MLRFDRPNX9QBQGg7OWdENQBHLlfZmUpN4naxAMm5fc2BcOEcBUcDMDAcm6UIjOyD3mZSb9VaOZCyFVx/cj+Nvjtm0ssaCAsZm2maJpdQWQ0gV9oBRMTuVWndxdMyBCQCSur/SDkyoJWCLTd6q68ZrLg8mGUtpVUvdC9srynXoZiWSJ4hHkhjaPwEA6FncjuaOsPacPoxkPg8mm85qISmnQ0jBAmW5brikQC48lYpnZkRHadWBCYT98Pmd+3nT3B05f4p4JWy9dzee/elreODrWxGfrKzog1DA2I4/4NPu4ieORk3b1poDI1VeQq3S1B7Shr6Vcn90F0cnE92aitvTclbWHJjWKkuoVXSl1CYFjFhB1FNB+AgAWrrD2vFmCKl2HOkfAaZPs/mrenXP6RN5zefBuDXIEdALpFo5MMDMyOfQXDMHjxlgTzfedDKDN59RBo+m4hnsf+GoLWtrJChgHEBNwk1NZRCfKK+qZVnWHJi2vmb4g9YvmKp7ExmOF62McSOJF8i1Py/kwExNJrU7XDvyXwBDMzuTvWBEAdNtogOviCRJ2ntiownEI7yDqgWiMFkgCBYA6F3SoYnMI/0jppO73RrkCOhzbNTSbTdcUkCfIDwTBhPmZrw57JrZ0I330CtDuhyafc8eqXpdjQYFjANUmsgbn0xqJ16lIwTy9q2GkeTiVVBuXRyD04m8hRwYUWBU2wNGRefAmOwFYzWBt9B7mAdTG9TQkOSXMPeUbt1zPp+EedM5MYloCsPToaZyuDXIETBWIRUIIbmQxKvss74FjCzLmhvitANjRzO7vQbBcnjnCKYmKu9X1MhQwDiAfiZS+UTe8SPWRwiU3HeRSiQ3QkhAzoHJpLLIpPRuUGTYvi68Ki3dYa37qmkHRhAwPRWUUKuIje9G32IYyW0iQ1Nartmck7oKig0xrGS2H4wuhOS0A6NrZFfAgXFJwCTqPJE3nchAjdg7HfarNoSUTmYw8OIx3WNyVsb+5xlGqgQKGAeodCr1hG6IY3UCRl9KXdqBkfySo/a4zmY13N2JVUKtFVT+lMLn96GlW9mWmRwYWZYxckARHc1dYTR1VD4NW8ybUbdF3ENXPm3If1ERw0pm+8GIYwScTuL1B32a8C6YA+NQHxjjtus9hCS6Zl4PIR3cflwTq7OmO0YDwN5nGEaqBAoYBzBbzqyiL6GuLoRkZip1UhwS52CH0VLdeCM294BRUcVQfCJZtjvu1HgSiYhyLMyOEDAiNr7jSAH3ESuL5hvyX1Q65rZoYcqju0dNdU1OuzTIEVByqVSRVMsQUr07MG71gAGqd2DE8NE73n+SVrgx+NqIpbEXjQoFjAO0z27R7qjMhJD0JdTVOjDlu/FqE3sdzH8BgHCJeUjRIftDSADQ1mN+JpIufGQh/wVQph6rPWxGD05W3CyNWEeWZW3+UbDJj9kndhZ8nSRJWjl1JpXFsTfGym5bP8jRWQEj7iNdQwem3nNgki514QWqc2BS8TQObjsOQLl+zF/Vi6XnzgOgdPXev3XQvoXOcChgHEAppVZ+SMcHy0+lVrvmSn5Jm2ZtlVBLUAuFFHJ/ZFnWLlSOJ7qVcmBGpkNIEtBiQxM7FTEcFS0TRtIn8FpzYMT3JmNpxCocJEmsM/pWRBuYOvfUnpJTxMXw0qEd5fNg0kIOjNMhJCCXB5PLgalFEi8dGLMU6t1jFjF8tPTsufAFfFh23lzteWNyLykOBYxDaFOpp9IlGxQpJdSK0Gif1VzyImwWNQ8mNpbIO7nSiYzWOdILDkxLZxh+G/6fVfS9YEon8lbTA0ZErEQaYSWSa+jLpwvnv6jo+sHsLJ8Ho6tCcjiJF8iVaudCSMp/fQFJG4fgBDPKgYm5GEJqsR5CEgXK0nMV4dKzqF2rIB3cPYroKG+EzEAB4xBmE3ljYwlNjVebwKsizlIyzkTSneQO3tkBxUs0M+ksYuNKnNeuEmqVNl0vmDIhJDXpVoI2WdoKYvUSO/K6hy7/ZVXh/BeVlq6w5pQN7R1HIlrabUgl3OsDA+Tu6LMZGZl0NtfPpCXocJ7azCmjFm/WXA0hVXDcklO58FFTRwjzTlVK/CVJwrLzlDASZGDfcwwjmYECxiHMJvLqhzjaI2D0ibz6fbtVQg3oe8yIJ3lsJK51TrUz/wXQC6JSlUhyVsbo9ATpjtktVfX66D6BQx3dJpvOYnDXCADlh8BMCFANI8nydPfeEqRd7AMDAAFhoGMqns4l2jt8k1HKJa036iGJ9+C2Y8iklJENS8+eqxt3sOzcXBhp37MUMGaggHEIcRxAqUReUWBYnYFkRN9Ir7gD43QIKdRc+OIoCgtHHZgSIaTJ4zHN+bLSwE6ka36blrRNB8Ydju8d17qYLjit15RLsUA3VqB0HkzKxSok4z5SU2ktMdTJBF6gdJ5avVGrJF7xu1IOsUx6qSBYAKWiUa2GPPr6aNkQOKGAcQz9VOoSDoyNFUgF953nwNQmTizuVzwxK5n+bIZwe1DLGSjlwIhdc62WUKsEQn7tmI8djs6IoXheR18+XTr/RWXuKd3aoNVDZfJg3OwDA+gFTGw0oTmUTjswwSa/Jr7rXcC4m8RbeRVSMpbCwZeV8FFzVxhzT+nJe40oahhGKg8FjEN0zG7WpjGXGicwYWMPGG3fc4qXUotOiNop1ymKJQhGdQ6MvSEkSZK0CrDo8FTRCjAx1NNzQnUODJBLAs6kshVNISfW0DewK53/ohJqCWLWcqXUevxwtKRDl3ZxmCOgF0liHxCnBYwkSdp5Wu8hpKSLAsYf9MHnVy7wZkNIAy8d0+a/LT17Lny+fNdw2TnztL9ZjVQeChiH8Af9WjhjYrD4VGpVYPiDPtt+zINNAbT0hLV9i+in3DocQioSX48Ibf7tbGKnovZlScUzRe8qdSXUVTowgL4MmyMFnCUVT2u9XDrmtFTUemCBWE5dwoURwwKuJPEK+xD7FzkdQgJyyfwzyYFxOoQkSZImkswKGDF8tMwQPlLpWtCm3VAd3zOOyeO8GSoFBYyDqDktyVgaicn8uxs5K2Py2HQJ9eyWgorcKmpFU3wypXWbVdYiJPE67cAIOTYJ0YEZcc6BAfRhqWJxZDWE5AtItlR/sZTaPQZ3jyKbUW4IzIaPVHTl1CXGCqSFKiRXknibigkY5/cd1gRMqq4bMboZQgJyIslMCCkRTeHQK0rYs6UnjDkndxd9LcNI5qGAcZByibyR4biWkW5X+EhFPxMpt2+3OnwCBptV58AoF2hfQEKzhflD5WjVJfLm58FkUhnN+eqa32ZL752eRSyldotK+r8YmX1Sl+aoHH51uOgPturA+PySrX2KihEUqpBiLgsYNZE3m5a161E94mYSL5Bzrsw4MAMvHNVE97Jz5mm5WIXQh5EoYEpBAeMgYjLteIFEXl0Cr00l1Ll9F55KLfa/cMNmVV0YfQ6M4oq09jSVPJGtomtmV2Aq9diRqNbMr9oKJJX2OS1a8jBLqZ1FqyCSgHkrKxMw/oAPc09R7n5jYwmMHS5cIagm8brhvij7qV0IKTxDesGoQkKSAH/IBdE5/d3IpLLIpEsLP1GILD2ncPhIpXNeK3qXdABQehaVKgJpdChgHKSzTC8YO6dQ5++78FRqXZzY4RASINis0xfG5FRa+1tNtrUbsTS7kAMzKkyN7qlihICIzydpzfAmjsZMDQwklTM1kcDwgPL59S7uQFN75Q7efBPl1GofmIALCbzKfgQHZtS9JF5lH0KyfZkGf15GdWCCDg+pVTHbCyYeSWpVc629TZi9vKvstnU9YZ5jMm8xKGAcRBdCKjAZ2okeMIW2N1EshORwEi+QuwCr8XWx8qPVxhlIImIvmEKl1OIIAbscGECoZpKBMU6mdgSxAd2C1ZW5L9r7hETeYnkwaideNyqQjPsRHZiwCw6MLtnewmRlr6CG/dwQfYChF0yJ4zbw/FHIavjo3NLhI5WlDCOZggLGQdpnt2il1IUcGDGEZFcXXpWOOS0Fy7gTLg2Jy+1DuQDLsnKBEQWFOw5MfghJX4Fkn4ARq5lGWInkCId2iOXT1gRMzwntaGpXvpeH+0fy+vbIspxzYMLu/BiKlU5iHorT4z4Ag4CpYwcmJTgwbhAyOZG6kvCRSsecFsxappT8D++fyGuHQRQoYBwkEPJr+RiF4pjqlzIQ9qOlK2zrvv1BvyYQxDLu1LQDEwj7bUleLYdu6FksZegB44wDE2wKINym/EAVdGCmq4SCzX5bG+npE3npwDiBGvLxBSTMXZHfCMwMkk/CvGnxk5pKY2jfhO75TCoLNbfXPQem8I+uOw6MEEKqUwcmm8lqvXvcEjBmHJipiYQ2PLRtVjNmndhpevtiNdJehpEKQgHjMOpQx0Q0hXgkN5U6m8li8rjiDnTMbXEkZtsplHGrE7ETLs1YUTGWUut7wDjjwAA5cRQbiSObzVWaJGMpbQ3dC9ttPe7drERylImjMe2cmXNyd1X9WcSxAocMeTC6Lrwu9IABik+8dsclrf8kXnWsBACE3Eq8btaPfyjEwPNHtYKBZefOreh6owsjPcMwUiEoYBym2FDHyeNTWly0c4694SMVXSLvEWXfKW3KbQ1s1lja0APGGQcGyImjbEbG1HguKVLMf+mxMf8FAFq6w9p8KVYi2c9hofFcpf1fjMwvkQfj9iBHZT/FBIzLOTB1GkJyswuvipkQkhg+EsujzdA+q1lL+B09OKkNnyU5KGAcplgi78QR50qote3qZiIpM3q0RDcXEniB/BCS0114VYpVIonOiJ0JvIBSNq525I2NJnSOm1WSU2ldW/tGRtf/xWL+i4rYwffo66O6Y+z2IEeg+Lwld3Jg6j+EJLpmXgkhxcYTONKvfGc75rSgd2lHxftYymqkklDAOEzHnMJDHccdmIFkRD+VOqZv9ORCCTWgvzgmYmlNTASbA47eXRbrBTOiq0Cyp4RapNvGPJhDrw7hF9c/hvtufLzhxxPIWRmHdyqhnmBzAH3LzOcSFEMtp86mZQzuzlU36X4M3XJgCoSQgk1+W7tzF2MmODBujhEotJ9Cwm//1kEtl2rpOZWFj1SWCUm/DCPlQwHjMJ3z9CJCZcKBKdRGRGdn4khUCx8BtXFgkrGUFkKyewq1kWLdeEUHpsfGCiRtmzblwUwej+Gx725HKp7B1HgSj/zvl+p+2F41jBycRHx6HMe8lT3w+au/dIlhKDE8JboxbuXA+AI+rRGiihvhI+N+6tWBqUUISRS3omunogsfnVdZ+EiltbdZGzswdijS8DcyRihgHKZ9duFxAjoHZp4zDkz7rGZI0638x49G9SXUNXBgJgZjWoloa49zCbyAwYGZLqWWZRkj003smrvCaHJgjIGulNqigEknM/jv27fpZlhNDMbw+Pdf0RICG41DVYwPKMb8VbkqJrE8uxYhJCBfLLmWpybsJzEDHBgvhJBio3EM7lJcvc55rVVNvF92nujCMIwkQgHjMIGQX2vYJibxqj1gQi0BS91EzeDz+7Q4/8RgDMmoOAfJ/YvjiNABtxYOzNR4UhMFdnXgNVJtCEmWZWz50U4M71dKe9tnN2sl4QdeOobt//WmPQt1mOGBCWz50U6ds1ENYv6L2Em3Gpo7wuhZrHxewwMTWqVeKiFWIblzngD5Ysk9B8ZcQzYvU5MQUokGgPu2DgJVho9Ulpw9V+vptffZwboeuGk3FDAuoFYiJSJKKXUmlUF0SC2hbnW07bVaiZROZDB2OPeD6trFUXB6REfCyQokAGjtDkM9rGovGKca2ImEW4OaYB19a7Lii81r/30Abzx5CIByR/4nf/cObLjhDO0C9uJ/voGD247Zuma7ObZnDP/3q8/itf8+gAe/sbXq5MNMOqvdzbZ0hdE1376Qq1ZOLUNLuEzXzIHR//C6dZPhD/q18FUiWp8CpiYhJNGBMZSf2xE+UmntbsLcFUoYafxIVHcj2OhQwLiAmMg7eTSGiWNTWnKXUwm8KmKH3+Nvjmt/u1dGnRNK8YlcVY6TPWAAJaegpVsREmo3Xl3+i80VSCKqC2MsGy/H0ddH8cy/v6b9+/xPrEbPonYsPH0WzvzAycqDMrD5jpcLTjf3AsMDE3joW89rYRhZBh773ss4UIXoOvbGmJaXMv+0XlsFv1hOrYap9Em87gmYfAfGPfdH7deUmqr/EFKtk3ijw1M4unsUANC1oFUXVraKKII4WiAHBYwLGKuBdCXUDiXw5raf2/fQPkHA1MBmFXHagRH3MTWuuF76EmpnQkjGbZsNI8VG43j0/2zTegOtfs9SnChctM64bBkWnzUHgCKMHvnf23Q/tF5g9FAED37zea0Zmhr6kjMyHv0/23BoR+HBieWws/+LkbmndMM3nSd2WBMwQhKvS1VIQH7Fk1suKZA/dLXe0DkwNSh9F8/FfVsF9+XcebYI7iVnz9Uc5X3PHrEljDR5PIanfvgqdjywT9fss56ggHEBXTO7o1H9DCSHHRhRIIkDBsUOuU5STMA47cAY9xEdiefEhARtcrQTiO6OmUTeTDqLRzdtR2xMabg3b2UPzvrgybrXSJKEC69djc7p8MnowUk89W+veiYePnE0ige/vlVz2Waf1IW/+D8XYtm5igjLpLJ45H+/pIWCKkHslFtt/xcjwaYAZp/UBSDX6VesQirWIdcJjJOv3XVgpgXMVLouE8V1SbwuHTefT9ISr8X9W5l9VI6WzjDmrVS++xNHY1qOnFWOvj6K333xGex69CCe+9kuPPLPL9ZlBRoFjAvoesEMxgxTqJ11YMRuvOJvnVsOjM/vK1iK2tpj7+ynQoguz+TxKa2TZcfsFkf7e+gdmPIC5rmf7cLR1xXLubWnCRd9ak3BMuFQSxB/8tm3ay3M33z6CHY+tN+eRVdBZGgKD3z9eU2A9S7pwMbPn4lQSxDr/+Z0LH7HbABKHtYfv/MCjr85ZnrbyVgKx/cozmHnvFZdcrZd6Muph/SjBNwMIdWoCgkQQr0yPOfsmUE3SsCla5u4L/XHPzI0hWNvjAFQrgN25trpZiNVEUZ685kjeEC42QCAg9uO4/9+7dmCw2+9DAWMC+i78cYMDoyzAqattymvvwTgngOj7Et/QWnuCsMfdP6HQax0GtyV67ZqdwdeI13z2zS7t5yAeePJQ+h/eACAMqDwXZ99G5o7i4u7rgVtuPCTp2v/fu7nu3HkNXsqfawQG43jga9vFeZLteHSm8/Swh++gA8XfXoNFqxWkmVTUxk89K0XMHzA3B3k4K5RzRGwq3zaiDgX6fCrwwYHxr0fw/wkXhfPUV0pdf0JmFok8Yr7Uh2Yvc/pw0d2suSsOZCmGxvutRBGkmUZ2367B5v/ZbvWzmL2SV3aZz8yMInfffEZDO0dL7UZT0EB4wKBsB8t046DGEJqag9qeQJOIfkkXS8alZrc3U3T1uN8/gug7zVzcPtx7W87kupKEQj5NWdt7HC0qCU/tH8cT/3wVe3fa69ahVkndpXd/pKz5uKMy5YBUDrUPrppe03unOITSTzwjee1DtMdc1tw6RfOzuuv4w/68Sd/+3bMPUWppEhEU3jwG89jzMRsFyfzX1RmLevU8iYOvTqsD0c0ShKvrpld/SXy6pJ4XcxbCgkCRpZl7BP6tNgtYJo7wlrvosjxqYqERiaVwRN3voIX/+MN7bGT1y/Ee754Di776nlon61cK2NjCfzff3wO+58/auvanYICxiXUMFJ8MoXYiGK1Ox0+UimUZ+Pq3Z3BgWl1uAeMiujAiCd7NU2lzKLmwWRSWUyN5N/RxieT+O/bt2l3QqdctAgrNiwyvf13fOBkzdWITyTx35u2IZNyb2ZSIprCg9/KiZC2vma8+3+djZauwu5RIOzHJX9/JmYt79TW/MA3turGaxRCzX+RJGDeqc4IGF/Ah7mn9mjrOiZU67mbxFubPjDKvsRxAvXrwPiDPvgC7v2sqQ6MLCuDYo9PX2d6F7frKkDtYum5lVcjxSeTePCbz2PPU4e1x8764Mk4/+OnwR/woWtBGy772nlax990IoP//j8v4ZU/7PNMjl0xKGBcopCIcOILXgjjsEhJcvfOMs+BcSGBFyhe6eR0CAkAuk/IuTyxY/qhjtmsjM3fexmR44prMmt5J8776KkVbd/nk7DhhjPQNt2o8PiecTzzk9fKvMseklNp/PGfXtASCVu6w3j3/zq77Ocaag5g4+fOQu9087jYaAIPfGOr1ik5bz+RjJZ43be001G3UgxPTY3lppe7NUoAyBdLtUjiBVCXIytUB8bN8JFxf68//pb291Kb3ReVJWfO0bqrmwkjjR+J4v4vPYPBXUqOnT/ow8U3vg1nXHairjqquSOMS79wFk585/S6ZWDrz3dhyw93IpvOOvL/YgcUMC4h5sFojzlcgaRizLMJNgccbZ5nxHghdqOEGgCa2kN5+T++gITOAp+F3YjJe7Hj+h+EF3/1ulZS3NQRwrs+8zZLOUFN7SG867Nv0/4fdz12ELs2H6xi1eVJJzN45J9fxLE9Y8oaOkJ49xfOLvj9LkS4LYiNt5ylVYFFjk/hwW/kEoBFxvfneug4FT7KbT+/u28g7M4wRZWahpCEm4x6LKVWE4/dTOA17u+N/3dI+3vZufZUHxlpag9pYjs6HMfx6fOwEEdeG8b9X3pGczmbO0N4zxfPwdKzC68tEPJj/fVn4O2XL9ce2/XYQTz07Rc8O2KCAsYlCoWLnE7gze1b/+PiZgIvkH8hbnNJwEiSlCeWuha0uWIxi6XUogOzb+sgXr5/r7I+n4SLP7OmqsqaviWdWHfNadq/n/7xTk1c2E0mlcF/3/4SjvQrpdDh1iAu/cJZFZekN3eE8e4vnKWJnvEjUTz4za1aK3+V8X05Z0YNlzlF98I2NHfqc3fcdF+A/IThWiXa15uAkWVZCyHV0oFRx5T0Le3QVZ7azTITYaTXn3gLD37jeU14dC9qx/v+8Z2Yvbyr5LYlScLbLz8J6//mdPgCuf5Iv//KM5g8VjrcWwsoYFyikNvimgNjCCG5eWen7E9/IXaiFLYYxrCGUyMEjLTPaYE/pJxeqgMzdiiCJ//1Fe015/zlClvyOk46fwFW/uliAEA2rTSNmxrPdzSqIZvO4rF/eRlvvaw4R8FmPzbefCZ6T+iwtL2W7iYl7DSdpzR6UGmCp15wZVnG2D7FgfEHfVqvFqeQJEnXlRdwtwcMUKAPTA3KgYH6S+LNpLJaA0i3r22FBJNT4SOVxe+YozVf3PvcEV2RgJyV8fx9r+PJH+xAdvqYLDxjFt775XPQ1mf+urt83QK8+3+dg6Z25do9diiK333pGa3dg1fwnICJxWL40Y9+hJtuugnvec97cMEFF+DBBx+s9bKqpqNAJZBbDkxLV1h3N+lmciAAhFtr48AA+eEqp4Y4GvH5JHRPOxPxkTRi4wk8cvtLWpfXE985D6s2LrFtf+f85SmYMz0vJToSx2P/sh3ZjD2x62xWxhP/+goGXlAqEwJhP/707880VTFVira+Zlz6hVzi7/D+Cfzx2y8gFU8rw0cnlGM1Z0U3AiHnxcQCQxjJzQReQC+YJL/kqgMUFtyeekvi1XfhdTuElP8ZORU+Ugm3BbHgdOW7GhtJaKIinczgse9tx8u/yw18XfknJ+CSm95u6Zo/d0U3LvvaeVrzzPhEEg98fSvefPpwmXe6h+cEzPj4OO655x4MDAxg+fLl5d9QJwSbAmjpzlVotHSFXTvZJEnSuT21vEvx+aWSfU7sxnjX4UYCb6F9PfSt5zF+WCmf7zmhHeuuOc3WPCR/wIeLP/M2TQwc6R/B8798vertylkZT/3bq3jzaaU81B/0TZdE91S9bUAR8Zd+4SztTu/YG2N4+LYXdbOTnOr/YsSYZ+NmojugF0whl/PUxO619RZCEgcp1jKEBACzTuxE+yznnXVdGOm5QcTGE/jDrc9h33RISZKAc//6VLzzqlUFm2KapWNOKy77ynmaO5lJZbH5ey9j22/2eKJCyXMCpre3F7/97W/xH//xH7juuutqvRxbERMd3QofqXQKMdmw6w5Mbn+tPU1aMyY3yHdgaiNgRgaUhnahlgDe9dm3OSJeW7rCuPjGt2n28o4/7MObz1ifBC3LMp7599e06grJL+Hiz7zN9nyU7oXtuPSWszVhfaR/BFvv3a09XyjB1gna+pp156XbAkbcn+thXl0Sb32FkMTOwW4n8RoFjN29X4qx+B2ztRyVvc8cwf1ffEbrWK1OsT/NJoc33BbExs+fiZPXL9Qee/HXb+CJO19BNl1bEePup22CUCiE3l537rjcpmNuq1bO5lYJtbZvYX9uzQpRES8qrRXEYe1ADFcFmwOuVUABQI+xYZ4EbLhhjaMJfnNO7sa5f30qnv5xPwDg/921AxNHo5aqaUbfimi9IyQJ2HD9GTjh7bNtXa9K75IObLz5LDz4ja1IxTNaXD/UEkDvEmt5NlaYv6pXG/XhegipyRth3pEDk3j5/jdLvNpbTB7PJXu77cAYBZNds4/K7rcliEVnzMLAi8d0IwFae5pwyd+/A72L7T1nfAEfzv/4aeia14qtv1BuLvY8dRjHBsJYvvQkNLWHymzBGTwnYKwyNDSE4eFc186BgYEarqYwYi8Yt5rYFdq363cpwsXYzfwXQJ8w3L2ozVVbvtvQMO8dl5+ERWtmOb7fU991Ao6/OY43njyEdCKDF3/1Rvk3leGCa093/O5y9vIuXPL378BD//QCMkklf2f+ql5XS5kXrO7DrkeVUnT3k3iFEJLbYd6mACABkJWqMDvCj7UgWCAnxdn95T6n2Sd1VZQoWy1Lz52HgRdzoda+pR34k5vegdZuZ66xkiTh9PcuQ/ucFjz+/ZeRSWYxcTCB+7/0DP7sy+cWbWLpJDNGwNx///2455578h7ft28fMpn8DqWRSAT9/f0urCxHsj0p/D3h6v4T4TR8AQnZtIxUm/X/dyvHLZPMItDsQ3oqC6kv6er/dzYjo6k7gPhoGs2L4Oq+ZVlG+8IwJt9KoOeUFoRWJFzbf895PrTtCSFyOFn+xaWQgGUbe5DqG0d/vzszUlZc3odd/3Ec2bSMpqVZVz+zdDCLULsfyckM5M6469+XlllBxI6nEJxt/f/b6rWtc0kTxvfFy7/QwyRbJl09bul4Fv6whExCRtdpAVe/L5nWLEIdfiQnMuhZ0YwT39eJgSN7AetRY3O0ASs/Mhu7fnUcqUgGgS4Z+w7tgXTY3huNlStXln2NJHshE6cIu3btwic+8QnccsstuPTSS0u+tpADc+utt+Luu+/GihUr8l7f399v6gDZzcTRGCQJBecTOU10NI5ULF1x3w4Rq8ctPplEdDSOnkXtrroggBLTnxiMoXdJh6v5N4ASn9/21A6cdfEa1/+/U/E0BneNauMKrNC7pN2VpEQj0dE4+l/ehbPWr3F931MTCURH4uhb0un6vlPxNMYPR9G7tMPy98XqOZpJZXCkfwTppHc7r5aie2FbVaF5q8ctNpbA1ETCckuBaohPJDF5PIa+ZZ2uX18iQ1N49O7n8e7PvtP16i+VGePA9PX1oa/PnWS/ajDbsdQJWrubgO7a7LupPVSzOGmoJYi+Ze7/GAGKNd82P+z6xUXdtxshKydo7W5C6+zafF+aO8Jo7nDfDgeUz6xW31V/0I+FZ9Tn96WWtHSFaxI+AZRO2MbhqW7R1teMk97XVzPxAniwCokQQgghpBwUMIQQQgipOyhgCCGEEFJ3eDIH5j//8z8RiUS0pNwtW7bg2DGlXOzyyy9HW5s77eAJIYQQ4k08KWDuu+8+DA7mpmw++eSTePLJJwEAl1xyCQUMIYQQ0uB4UsD86le/qvUSCCGEEOJhmANDCCGEkLqDAoYQQgghdQcFDCGEEELqDgoYQgghhNQdFDCEEEIIqTsoYAghhBBSd1DAEEIIIaTu8GQfGDtIJBIAgIGBgYLPHzhwAH6/380lzQh43CqHx8waPG7W4HGzBo9b5Th9zBYvXoympqaiz89YAaN28r311ltrvBJCCCGEVMrdd9+NFStWFH1ekmVZdnE9rjE2NoatW7di3rx5CIVCuucGBgZw66234h/+4R+wePHiGq2w/uBxqxweM2vwuFmDx80aPG6V48Yxa1gHpqurC5dccknJ1yxevLikuiOF4XGrHB4za/C4WYPHzRo8bpVTy2PGJF5CCCGE1B0UMIQQQgipOxpSwPT29uLKK69Eb29vrZdSV/C4VQ6PmTV43KzB42YNHrfK8cIxm7FJvIQQQgiZuTSkA0MIIYSQ+oYChhBCCCF1BwUMIYQQQuoOChhCCCGE1B0ztpFdIZLJJH74wx/i4YcfxuTkJE488URcc801OOuss2q9NM+ybds2fOYznyn43J133olVq1a5vCLvEYvF8Mtf/hL9/f147bXXMDk5iVtuuQWXXnpp3mv379+P733ve9ixYwcCgQDOO+883HDDDejq6nJ/4TXE7DH7xje+gYceeijv/SeccAJ+9rOfubVcz/Daa6/hoYcewrZt2zA4OIiOjg6sWrUK11xzDRYtWqR7Lb9rCmaPGb9revbt24cf//jH2L17N0ZGRtDU1ITFixfjQx/6ENauXat7ba2+aw0lYL75zW/i8ccfx/vf/34sXLgQDz74ID73uc9h06ZNOP3002u9PE9z+eWX49RTT9U9tmDBghqtxluMj4/jnnvuwZw5c7B8+XJs27at4OuOHTuGT33qU2hra8PHP/5xTE1N4Ze//CX27t2LH/zgBwgGgy6vvHaYPWYAEAqF8LnPfU73WGtrq9NL9CT33nsvduzYgQ0bNuDEE0/E8PAwfvvb3+Kaa67BnXfeiWXLlgHgd03E7DED+F0TGRwcRCwWw8aNG9HX14d4PI4nnngCt9xyC2666SZcdtllAGr8XZMbhJ07d8rnn3++fO+992qPxeNx+YMf/KD8yU9+soYr8zYvvfSSfP7558ubN2+u9VI8SyKRkIeGhmRZluXXXntNPv/88+UHHngg73X//M//LL/rXe+SBwcHtceef/55+fzzz5d/97vfubZeL2D2mH3961+XL7nkEreX51leeeUVOZlM6h47cOCAfPHFF8tf+9rXtMf4Xcth9pjxu1aedDotX3XVVfJf/uVfao/V8rvWMDkwTzzxBPx+v6YaASAcDuM973kPdu7ciaNHj9ZwdfVBLBZDOp2u9TI8RygUMtXM6YknnsA73/lOzJkzR3vszDPPxKJFi7B582Ynl+g5zB4zlUwmg2g06uCK6oPVq1fn3dEuWrQIS5YswcDAgPYYv2s5zB4zFX7XiuP3+zF79mxEIhHtsVp+1xomhPTGG29g4cKFeXagGhbZs2eP7gMger75zW9iamoKfr8fp59+Oq677jqccsoptV5W3XD8+HGMjo4WHHp26qmn4tlnn63BquqDeDyOSy+9FPF4HO3t7bj44ovxyU9+Ei0tLbVemieQZRmjo6NYsmQJAH7XzGA8Zir8ruUzNTWFRCKBaDSKLVu24LnnnsOGDRsA1P671jACZnh4uOAdn/rY0NCQ20uqCwKBAC688EKce+656OzsxP79+3HffffhhhtuwPe//32cfPLJtV5iXTA8PAwARb+DExMTSCaTCIVCbi/N0/T29uJDH/oQTj75ZMiyjOeeew7/9V//hTfffBObNm1CINAwl7CiPPLIIzh+/DiuvvpqAPyumcF4zAB+14pxxx134P777wcA+Hw+XHDBBfjsZz8LoPbftYb5RBKJRMFkIvXAJhIJt5dUF6xevRqrV6/W/r1u3TqsX78eV111Fe666y7cdtttNVxd/aB+v8p9Bxv5R6UQ1157re7fF198MRYtWoS7774bTzzxBC6++OIarcwbDAwM4Pbbb8eqVauwceNGAPyulaPQMQP4XSvG+9//fqxfvx5DQ0PYvHkzMpkMUqkUgNp/1xomByYcDmsHXSSZTGrPE3MsXLgQ69atw7Zt25DJZGq9nLpA/X7xO1g9H/jAB+Dz+fDCCy/Ueik1ZXh4GJ///OfR2tqKf/zHf4Tf7wfA71opih2zYvC7BixevBhnnnkmNm7ciH/6p3/C1NQUbr75ZsiyXPPvWsMImN7eXs3uElEf6+vrc3tJdc3s2bORSqUQj8drvZS6QLVYi30HOzo6GvaOuFLC4TA6OjowMTFR66XUjEgkgs997nOIRCK47bbbdNcvftcKU+qYFYPftXzWr1+PXbt24eDBgzX/rjWMgFm+fDneeuutvOzy/v5+7XlinsOHDyMUCqG5ubnWS6kLZs2aha6uLuzevTvvuddee43fvwqIxWIYHx9vuIZsKolEAjfffDMOHjyIb33rW3mJqPyu5VPumBWj0b9rhVDDRpFIpObftYYRMOvXr0cmk9GSkQDF4nrggQewcuVKViAVYWxsLO+xPXv2YMuWLTjrrLPg8zXMV6hqLrzwQjz99NO6kv0XX3wRBw8e1LL6SY5EIoFYLJb3+E9+8hPIsoxzzjmnBquqLZlMBl/5ylewc+dOfPWrX8Vpp51W8HX8ruUwc8z4XctndHQ077F0Oo0//vGPCIfDmgis5XetYZJ4V65ciQ0bNuCuu+7C2NgYFixYgIceegiDg4P4/Oc/X+vleZYvf/nLCIfDOO2009Dd3Y39+/fj97//PZqamvKS3hqZ//zP/0QkEtGs1C1btuDYsWMAlC7GbW1t+MhHPoLHH38cN954I6644gpMTU3hF7/4BZYtW1Zw7MBMp9wxm5ycxMc+9jG8613vwgknnAAA2Lp1K5599lmcc845WLduXc3WXivuuOMObNmyBe985zsxOTmJhx9+WPf8JZdcAgD8rgmYOWYjIyP8rhm47bbbEI1GccYZZ2DWrFkYHh7GI488ggMHDuD666/XSstr+V2TZFmWHd2Dh0gkEtospEgkgmXLluGaa67B2WefXeuleZZf//rXeOSRR3Do0CFEo1F0dXXhHe94B6688kosXLiw1svzDB/4wAcwODhY8Ln77rsP8+bNA6DMFzHODLn++uvR09Pj5nI9Qblj1tbWhk2bNmHnzp0YHh5GNpvFggUL8Cd/8if44Ac/2JBlrZ/+9Kexffv2os8/+eST2t/8rimYOWaTk5P8rhl49NFH8Yc//AF79+7F+Pg4WlpasGLFCvz5n/95nqCr1XetoQQMIYQQQmYGTGAghBBCSN1BAUMIIYSQuoMChhBCCCF1BwUMIYQQQuoOChhCCCGE1B0UMIQQQgipOyhgCCGEEFJ3UMAQQgghpO6ggCGEEEJI3UEBQwgpypEjR3DBBRfgG9/4Rq2XYgsPPvggLrjgAjz44IO1XgohpEooYAghFfHpT38aF1xwQa2XUZCZJrgIIcVpvAlVhBDTzJo1Cz/96U/R2tpa66XYwvnnn4+VK1eit7e31kshhFQJBQwhpCiBQACLFy+u9TJso62tDW1tbbVeBiHEBjiNmhBSlCNHjuAv/uIvsHHjRnzhC18oGjpSn1d588038dOf/hTbt2/HxMQEent7sXbtWlx11VXo7OwsuP0Pf/jDuPvuu/Hyyy9jYmIC9913H+bNm4cnn3wSmzdvxq5duzA0NIRAIIATTzwRV1xxBdavX69t68EHH8Q3v/nNguvbtGkT3va2t2mvueWWW3DppZfqXrNjxw789Kc/xc6dO5FIJDB37lxcdNFF+PCHP4ympibday+44AKsWbMGX/nKV3DnnXfi2WefxdTUFJYvX45rr70Wb3vb2yo91ISQCqEDQwgxzZVXXomHHnoIg4ODuPLKK7XHTzrpJO3vp556Cl/5ylcgSRLWrVuH2bNnY//+/fjNb36DrVu34gc/+AHa29t12z106BCuu+46LFu2DBs3bsTExASCwSAA4K677kIgEMDq1avR29uLsbExbNmyBV/60pfwmc98BpdffjkAYPny5bjiiivw61//GsuXL8e6deu07c+dO7fk/9fmzZvxta99DcFgEBdddBG6urrw/PPP45577sHWrVuxadMmhMNh3XsikQiuv/56tLW14ZJLLsHo6Cg2b96Mm266CXfffTeWLVtm6RgTQsxBAUMIMc3VV1+N7du3Y3BwEFdffXXe8+Pj4/j617+Ozs5O3HHHHTrh8Oijj+KrX/0qfvjDH+LGG2/UvW/Hjh248sorC27z29/+NubPn697LBaL4W/+5m/wwx/+EO95z3vQ1NSEk046CW1tbZqAKbStQkSjUXznO9+B3+/HnXfeiRNPPBEA8IlPfAJf+9rX8Nhjj+GXv/wlPvrRj+ret2fPHvyP//E/cOONN8LnU+oh3v72t+Pb3/42fvOb3+Cmm24ytX9CiDVYhUQIsY0//vGPiEaj+MQnPpHnelx88cU4+eST8eijj+a9r6enB3/1V39VcJtG8QIALS0tuPTSSxGJRLBr166q1vzUU08hEong3e9+tyZeAMDn8+G6666D3+8vWHbd3NyMT37yk5p4AZRQmt/vr3pNhJDy0IEhhNjGzp07AQD9/f04dOhQ3vPJZBLj4+MYGxtDV1eX9vjy5cu1kJGR0dFR/PznP8ezzz6Lo0ePIpFI6J4fGhqqas1vvPEGAGDNmjV5z82ZMwfz58/HwYMHEYvF0NLSoj23cOFC3b8BJem5p6cHkUikqjURQspDAUMIsY3JyUkAwG9/+9uSr4vH47p/d3d3F3zdxMQEPvGJT+Do0aNYvXo1zjzzTLS1tcHn82HPnj146qmnkEqlqlpzNBoFoLhAhejt7cXBgwcRjUZ1gqVYabnf70c2m61qTYSQ8lDAEEJsQ/2Bv+eeeypKYpUkqeDjf/jDH3D06FF87GMfy8tB+dnPfoannnrK+mKnUYXIyMhIwefVx2dKLxxCZgrMgSGEVISa85HJZPKeW7lyJYBcKKla1DCUWFGk8sorrxRdWyUOiFpBtX379rznjh49ikOHDmH+/Pl54SJCSG2hgCGEVERHRwcA4NixY3nPvfvd70ZLSwvuvvtu7Nu3L+/5eDxekbhRE4F37Nihe/yRRx7Bs88+m/f69vZ2SJJUcG3FWLduHdra2vDAAw/o1izLMn7wgx8gk8nk9YwhhNQehpAIIRXx9re/HY8//ji++MUv4pxzzkEoFMLy5cuxdu1adHV14ctf/jK+9KUv4eqrr8bZZ5+NE044AalUCoODg9i+fTtOO+003Hbbbab2dckll+Dee+/Fpk2bsG3bNsyZMwd79uzBSy+9hAsuuABPPvmk7vUtLS045ZRT8PLLL+PWW2/FwoULIUkS/vRP/7RoL5jW1lb8/d//Pb72ta/hk5/8JDZs2ICuri68+OKL2L17N0499VR88IMfrPq4EULshQKGEFIRf/Znf4YjR47gsccew7333otMJoONGzdi7dq1AIDzzjsPP/zhD/GLX/wCL774Il544QU0NTVh1qxZuPTSS3HJJZeY3tfs2bPx3e9+F3feeSdeeOEFZDIZnHzyyfjnf/5nHDt2LE/AAMA//MM/4F/+5V/w9NNPIxqNQpZlnH766SWb2W3YsAE9PT342c9+hieffFLrxPvRj34UH/7wh/Oa2BFCag9HCRBCCCGk7mAODCGEEELqDgoYQgghhNQdFDCEEEIIqTsoYAghhBBSd1DAEEIIIaTuoIAhhBBCSN1BAUMIIYSQuoMChhBCCCF1BwUMIYQQQuoOChhCCCGE1B0UMIQQQgipOyhgCCGEEFJ3/H+28zjkItrESQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "### Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAG5CAYAAABMX3rVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlWUlEQVR4nO3deVxU5f4H8M8sMKwyAgquqOBGLlRaKSqg5ZbZZmVmaWZeRbva1et2u5pe+5mWFd3rWl5puaZluWQuGSGoqamJmrihQKSAsu/DMDO/P3COM84AM3OGGYTP+/XqJ3POM+c88zj3x9fn+Z7vI9HpdDoQERERkWhSZ3eAiIiIqLFgYEVERERkJwysiIiIiOyEgRURERGRnTCwIiIiIrITBlZEREREdsLAioiIiMhOGFg5WEVFBS5duoSKigpnd4WIiIjsjIGVg6Wnp+P1119Henq62fNXr151cI8aB46b9ThmtuG42YbjZj2OmW2cPW4MrBoYlUrl7C7ckzhu1uOY2YbjZhuOm/U4ZrZx9rgxsCIiIiKyEwZWRERERHbCwIqIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDKyIiIiI7ISBFREREZGdMLAiIiIishMGVkRERER2wsCKiIiIyE4YWBERERHZCQMrIiIiIjuRO7sDJF5leRUuH/wTalUVmgV4IrhfK2d3iYiIqEliYNUIVFVqcOyLCwCA9g+2ZGBFRETkJFwKbARcFDLh56oKjRN7QkRE1LQxsGoE5K4yQFL9s1pV5dzOEBERNWEMrBoBiVQizFpxxoqIiMh5GFg1EnK36nQ5NQMrIiIip2Fg1UjoZ6zUFVwKJCIichYGVo2E3O32UqCKM1ZERETOwsCqkXBRVC8FatRaaKu0Tu4NERFR08TAqpFwcbtTckHNWSsiIiKnYGDVSMgNAisuBxIRETkHA6tGwsXtThF9JrATERE5BwOrRkLO6utEREROx8CqkTDOseKMFRERkTMwsGok9E8FAiwSSkRE5CwMrBoJw+R1BlZERETOwcCqkTBMXq9i8joREZFTMLBqJFjHioiIyPkYWDUSfCqQiIjI+RhYNRKsY0VEROR8DKwaCcMZKy4FEhEROQcDq0bCMMeKyetERETOwcCqkTBeCuSMFRERkTMwsGokuAkzERGR8zGwaiSYvE5EROR88rqbOEdZWRm2bNmC5ORkXLhwAcXFxViwYAFGjBhh0fuLi4uxbt06JCYmQqVSoXv37oiOjkbXrl1N2h4+fBibNm1Ceno6lEolRo4ciVdeeQVyec3Ds3LlSuzevRv9+vXDihUrbP6c9iKTSyGRSaDT6LgUSERE5CQNdsaqsLAQsbGxSE9PR0hIiFXv1Wq1mDdvHn766Sc888wzmDp1KvLz8zFz5kxkZGQYtT127Bj+8Y9/wMvLCzNnzsTAgQPx+eefIyYmpsbrX7x4EXv37oWrq6tNn62+uNx+MpBLgURERM7RYGes/Pz8sH37dvj5+eHixYuYMmWKxe89ePAgfv/9dyxduhSRkZEAgMGDB2PcuHHYtGkTFi1aJLRds2YNgoODsWrVKmGGysPDA19++SXGjBmDoKAgo2vrdDrExMRg2LBh+O2338R/UDtycZOjsqyKS4FERERO0mBnrFxdXeHn52fTexMSEuDr64tBgwYJx5RKJaKionD48GFUVlYCANLS0pCWloYnnnjCaNnv6aefhk6nw8GDB02uvX//fqSmpuL111+3qW/1SZ/AzqVAIiIi52iwgZUYly9fRufOnSGVGn+87t27o6KiQlgOvHz5MgCY5F35+/ujRYsWuHLlitHxsrIyrFu3DuPHj7c46MvJycGlS5eE/9LT0239WHXSJ7BXVVRBp9PV232IiIjIvAa7FChGXl4eevfubXJcHwzl5uYiODgYubm5Rsfvbqs/rxcbGwuFQoHnn3/e4r7s2rULsbGxJsdTU1Oh0ZjOLJWUlCA5Odni6xuq1FQAAHQ64Py5ZEjlEpuucy8SM25NFcfMNhw323DcrMcxs019jltoaGidbRplYKVSqcwmluuPqVQqABCWBGtqW1ZWJrzOyMjAtm3bsGjRIquS1kePHo3w8HDhdXp6OpYtW4aOHTuafUIxOTnZor84czJ8y1CUfgsAENKhM9yaNazk+vokZtyaKo6ZbThutuG4WY9jZhtnj1ujDKwUCoUQNBnSH1MoFADuBFQ1tdW3A4CPP/4YPXr0EJLhLeXv7w9/f3+r3mMrF4VBLStVFdzQdAIrIiKihqBR5lj5+vqaLOMBMFn6M1waNNdWf/7UqVM4fvw4xowZg8zMTOE/jUYDlUqFzMxMlJaW1tfHsZhh9XUmsBMRETleo5yx6ty5M86ePQutVmuUwH7hwgW4ubmhXbt2QjsAuHTpktG0YU5ODm7duoXRo0cDAG7evAkAeOutt0zudevWLbzwwguYMWOGVblX9YEbMRMRETnXPR9Y5eTkoLS0FG3atBFKJkRERODgwYNITEwUlu4KCgoQHx+P/v37C0uAHTt2RPv27fH9999j9OjRkMmqA5MdO3ZAIpEgIiICAPDAAw/gnXfeMbn3e++9h8DAQLz88svo1KmTAz5t7bgRMxERkXM16MDq22+/RUlJibBUd+TIEWH26Nlnn4WXlxc2bNiAffv2YevWrWjVqhUAIDIyEtu2bcPy5cuRlpYGHx8f7NixA1qtFpMmTTK6R3R0NBYsWIDZs2djyJAhuHbtGrZv345Ro0ahQ4cOAICAgAAEBASY9O/f//43mjdvjoEDB9bjKFjOhUuBRERETtWgA6utW7ciKytLeJ2YmIjExEQAwNChQ+Hl5WX2fTKZDCtXrsSaNWvw7bffQqVSoVu3bliwYAHat29v1LZ///5YtmwZYmNjERMTAx8fH4wfPx4TJ06st89VX+QGyetVKi4FEhEROVqDDqy+/vrrOtssXLgQCxcuNDnu7e2NefPmYd68eXVeY+DAgTbNOlnSP0fS7xUIAGruF0hERORwjfKpwKaKTwUSERE5FwOrRsQweZ1PBRIRETkeA6tGhMnrREREzsXAqhExXgrkjBUREZGjMbBqRFyMngrkjBUREZGjMbBqRIyWAhlYERERORwDq0ZEruCWNkRERM4kuo5VWloavvvuO1y8eBHFxcXQarUmbSQSCbZs2SL2VlQHObe0ISIicipRgVVSUhLmzJkDtVoNmUyG5s2bC/vtGdLpdGJuQxaSSiWQuUqhqdQysCIiInICUYHV+vXrodFoMHfuXAwfPtxsUEWO5eImh6aykkuBRERETiAqsEpJScGQIUPw+OOP26s/JJKLQoYKMHmdiIjIGUQlr7u5uUGpVNqpK2QP+jwrllsgIiJyPFGB1SOPPIKzZ8/aqy9kB/qNmKtUGmi1zG0jIiJyJFGBVXR0NEpKShATE4OKigp79YlEMKy+zlkrIiIixxKVY/X222/D3d0d27dvx969e9GuXTt4eHiYtJNIJPjoo4/E3IosdPdGzK7uoitqEBERkYVEl1vQKy8vx+XLl822k0gkYm5DVuBGzERERM4jKrBKSEiwVz/ITgyrr6tVLLlARETkSNzSppExXgrkjBUREZEj2TWwKi8vR05ODsrLy+15WbICN2ImIiJyHtGZzWq1Gl999RX27t2LzMxM4XirVq0wcuRIjB07Fi4uLmJvQxbiRsxERETOIyqwUqlUmDVrFi5cuACpVIq2bdvCz88Pubm5uHHjBjZu3IhffvkFH330ERQKhb36TLVw4UbMRERETiMqsPrf//6H5ORkDB48GFOnTkVAQIBw7ubNm1i3bh3i4uKwefNmvPrqq6I7S3WT86lAIiIipxGVY/Xzzz+jS5cuWLx4sVFQBQAtW7bEokWL0LVrV8TFxYnqJFnORWGQvM6nAomIiBxKVGCVlZWFvn371trmwQcfRFZWlpjbkBVYx4qIiMh5RG/CXFBQUGubgoICuLm5ibkNWcGFW9oQERE5jajAKjQ0FHFxcUhNTTV7Pi0tDT///DPuu+8+MbchK8gVhsnrXAokIiJyJFHJ6y+//DJOnDiBKVOm4PHHH0dYWBiaN2+O/Px8nD59Gnv37kVVVRXGjx9vr/5SHbgUSERE5DyiAquePXti0aJFeO+997B9+3bs2LFDOKfT6eDp6YmFCxeiZ8+eYvtJFjJ+KpAzVkRERI4kukBoVFQUHn74YRw+fBiXL19GWVkZPDw80KVLFwwYMAAeHh726CdZyGhLG+ZYEREROZTowAoAPDw8MHToUAwdOtQelyMRZC5SSCSATselQCIiIkfjJsyNjEQigfz2rBWXAomIiBzLqhmrffv2AQAGDRoEDw8P4bUlhg8fbl3PyGYubjKoy6u4FEhERORgVgVWy5cvh0QiwX333QcPDw/hdW10Oh0kEgkDKwfSb8RcxaVAIiIih7IqsJo/fz4AwM/Pz+g1NSwuXAokIiJyCqsCqxEjRtT6mhoGfS0rrUYHTZUWMjlT6YiIiBxB1G/cpKQkZGdn19omOzsbSUlJYm5DVmL1dSIiIucQFVjNmjULe/furbXN/v37MWvWLDG3ISsZ7RfIPCsiIiKHERVY6XQ6i9rUleBO9mW0rQ2fDCQiInKYek+++fPPP+Hp6VnftyEDhkuBVVwKJCIichirK6+/++67Rq8PHTqErKwsk3YajQY3b97E2bNn8fDDD9veQ7IaN2ImIiJyDqsDK8OcKolEgpSUFKSkpJhtK5FI0K1bN8yYMcP2HpLVuBEzERGRc1gdWG3duhVAde7U2LFj8dxzz2HMmDEm7aRSKby9veHu7i6+l2QVFwU3YiYiInIGqwOrwMBA4ef58+ejS5cuRsfI+bgUSERE5BxWB1aGWCC0YdJvwgxwKZCIiMiRRAVWeiqVChcvXkROTg7UarXZNtwr0HGM6lhxKZCIiMhhRAdW3333HTZu3IjS0lKz57kJs+PpN2EGuBRIRETkSKLqWCUkJCAmJgYtW7ZEdHQ0dDodwsPD8frrr+Ohhx6CTqdDREQE5s2bZ6/+kgVc3FjHioiIyBlEBVbffPMNmjdvjrVr1+L5558HAHTu3BkvvfQSVq5cibfeeguHDh1icruDuShYeZ2IiMgZRAVW165dQ3h4ONzc3IRjWq1W+Pmxxx7DAw88gNjYWDG3ISu5sI4VERGRU4gKrKqqqqBUKoXXCoUCxcXFRm1CQkJw5coVMbchK8mNlgI5Y0VEROQoopLX/fz8kJubK7wOCAgwCaKysrIgk8nufmutysrKsGXLFiQnJ+PChQsoLi7GggULLC7vUFxcjHXr1iExMREqlQrdu3dHdHQ0unbtatL28OHD2LRpE9LT06FUKjFy5Ei88sorkMvvDM2pU6dw4MABnD17Frdu3YKvry8eeOABvPbaa/D397fqszkClwKJiIicQ9SMVffu3XH58mXh9cMPP4zff/8dX375JVJTU7Fz504kJiaiW7duVl23sLAQsbGxSE9PR0hIiFXv1Wq1mDdvHn766Sc888wzmDp1KvLz8zFz5kxkZGQYtT127Bj+8Y9/wMvLCzNnzsTAgQPx+eefIyYmxqjdunXrcPr0aQwcOBAzZ87EkCFDEB8fj8mTJxsFlg2FVC6FVC4BwOR1IiIiRxI1YxUZGYkNGzYgMzMTrVq1wvjx45GQkIBPP/0Un376KXQ6HTw9PTF16lSrruvn54ft27fDz88PFy9exJQpUyx+78GDB/H7779j6dKliIyMBAAMHjwY48aNw6ZNm7Bo0SKh7Zo1axAcHIxVq1YJM1QeHh748ssvMWbMGAQFBQEApk+fjl69ekEqvROHPvTQQ/jrX/+K7777Dq+//rpVn88RXNzkUJWoWW6BiIjIgUQFVoMGDcKgQYOE10qlEv/973+xe/du3LhxAwEBARg2bBhatGhh1XVdXV3h5+dnU58SEhLg6+tr0q+oqCgcOHAAlZWVcHV1RVpaGtLS0vDmm28aLfs9/fTT+OKLL3Dw4EFMmDABABAWFmZyn7CwMDRr1gzp6ek29bO+ubjJqgMrLgUSERE5jF0qrxvy9vbGiy++aO/LWuzy5cvo3Lmz0ewSUL1s+f333yMjIwPBwcHCEubdeVf+/v5o0aJFnQn3ZWVlKC8vh4+PT63tcnJyjJYLHRWIyW9vxMylQCIiIscRFVjt27cPbm5uwpKbOVevXsWVK1ccVnk9Ly8PvXv3NjmunwHLzc1FcHCwEOyYmxm7OynfnG+++QZqtRqDBw+utd2uXbvMlptITU2FRmM6m1RSUoLk5ORar2mJKl0lgOrK6+fPn4dEIhF9zYbMXuPWlHDMbMNxsw3HzXocM9vU57iFhobW2UZUYLV8+XJIJBIMGDAA//znP6FQKEzaJCYm4rPPPnNYYKVSqeDq6mpyXH9MpVIBACorK42O3922rKysxnskJSUhNjYWUVFRePDBB2vtz+jRoxEeHi68Tk9Px7Jly9CxY0ezTykmJydb9BdXl7TmJSi5UR0cdgnualSNvTGy17g1JRwz23DcbMNxsx7HzDbOHjfRv22VSiUOHTqEN954A++++y58fX3t0S+bKRQKIWgypD+mD/70AVVNbc0FiUB1YPTWW2+hU6dOFm3V4+/v75SSDPK7NmJu7IEVERFRQyCq3AIAPPXUU5gyZQouX76Mv/zlL7h69ao9+mUzX19fs8t4dy/9GS4NmmtrbokwOzsbs2fPhqenJ1asWAEPDw97dt2uXLgRMxERkcOJDqwA4KWXXsKSJUtQVFSE6dOn4+jRo/a4rE06d+6MK1euGG2tAwAXLlyAm5sb2rVrJ7QDgEuXLhm1y8nJwa1bt4TzeoWFhZg9ezbUajXef//9BlkY1JA+eR0A1ComsBMRETmCXQIrAIiIiEBMTAzc3NywcOFCfPPNN/a6dI1ycnKQnp6Oqqo7gUNERATy8vKQmJgoHCsoKEB8fDz69+8vLAF27NgR7du3x/fff2+URL5jxw5IJBJEREQIx8rLyzF37lzk5ORg5cqVQnDWkBnuF8htbYiIiBzDrok33bp1w/r16zF//nysXr0aGRkZaNasmU3X+vbbb1FSUiIs1R05cgQ3b94EADz77LPw8vLChg0bsG/fPmzduhWtWrUCUF20dNu2bVi+fDnS0tLg4+ODHTt2QKvVYtKkSUb3iI6OxoIFCzB79mwMGTIE165dw/bt2zFq1Ch06NBBaPevf/0LFy5cwMiRI5Genm5UMsHd3R0DBw606TPWJ27ETERE5Hh2z2gOCAjA6tWr8fbbb2Pnzp1wc3Oz6Tpbt25FVlaW8DoxMVGYhRo6dCi8vLzMvk8mk2HlypVYs2YNvv32W6hUKnTr1g0LFixA+/btjdr2798fy5YtQ2xsLGJiYuDj44Px48dj4sSJRu1SUlIAAHv27MGePXuMzgUGBjbIwMpwI2bmWBERETlGvTwq5uHhgXfffRcff/wxtm/fblMNpa+//rrONgsXLsTChQtNjnt7e2PevHkWPbU3cODAOgMjS/rS0HApkIiIyPFEBVYJCQk1npNKpZg1axaGDRsm1I4ix5EbPhXI5HUiIiKHqPfiRt27d6/vW5AZhnWrOGNFRETkGHZ7KpAaFqM6VtyImYiIyCGsmrGKiIiAVCrF559/jnbt2iEiIsKi/CmJRIL4+HibO0nWM05e51IgERGRI1gVWPXu3RsSiUTY7kX/mhoeJq8TERE5nlWB1ccff1zra2o4WMeKiIjI8Zhj1UgZLgVWMceKiIjIIRhYNVLchJmIiMjxrFoKjI2NtekmEokEEyZMsOm9ZBu5K+tYEREROZpVgdWmTZtsugkDK8eTSCWQK2SoUmmYvE5EROQgVgVWMTEx9dUPqgcubtWBFZcCiYiIHMOqwCosLKyeukH1wcVNjvLCSj4VSERE5CBMXm/E5LdLLvCpQCIiIsew216BGo0GhYWFUKvVZs8HBATY61ZkIf1GzBq1FlqNFlIZ42giIqL6JDqwunTpEjZs2IAzZ86gqsr8khO3tHEOF4VxLStXDwZWRERE9UlUYHXlyhXMmDEDMpkMffv2xS+//IKQkBD4+vri8uXLKCgoQFhYGAIDA+3VX7KCcfV1DVw9XJzYGyIiosZPVGD12WefAQDWrVuHDh06ICIiAgMHDsTEiROhUqmwevVqHDx4EPPnz7dLZ8k6LtyImYiIyKFErQ2dO3cO4eHh6NChg3BMp9MBABQKBWbNmgV/f3988sknojpJtpFzI2YiIiKHEhVYlZaWonXr1sJruVyO8vLyOxeXShEWFoZTp06JuQ3ZyGgpkNXXiYiI6p2owEqpVKK4uFh47evriz///NOoTWVlJSoqKsTchmxkmLzOIqFERET1T1Rg1aFDB/zxxx/C6549e+LEiRP4/fffAQBpaWmIj49HUFCQuF6STeQGGzGzlhUREVH9E5W83q9fP/znP/9BTk4O/P39MW7cOCQmJmLGjBnw9vZGSUkJtFotxo8fb6/+khWMnwrkUiAREVF9ExVYPfnkk4iKioK3tzcAICQkBB9++CG++OIL3LhxA127dsWzzz6Lfv362aWzZB25G5cCiYiIHElUYCWXy+Hr62t0rGfPnli5cqWoTpF9uPCpQCIiIodiKe5GjHWsiIiIHMsuewUWFBQgLS0NOTk5NW5rM3z4cHvciqxgmLyuZvI6ERFRvRMVWKlUKnz00Uf48ccfodGY/8Wt0+kgkUgYWDmB0VIgAysiIqJ6JyqwiomJwZ49exAcHIyIiAj4+flBJpPV/UZyCLmCS4FERESOJCqwSkhIQNeuXbF27VoGVA0Qk9eJiIgcS1Tyularxf3338+gqoFiHSsiIiLHEhVYdevWzWQLG2o4pHIpJDIJANaxIiIicgRRgdVrr72GEydO4JdffrFXf8iOJBIJXG4/GcjkdSIiovonKseqR48eWLVqFRYsWIAuXbogODgYnp6eJu0kEgkmTJgg5lZkIxc3OSrLqrgUSERE5ACiAqvCwkKsX78excXFOHXqFE6dOmW2HQMr55FzxoqIiMhhRJdbOHfuHB555BEMGTKE5RYaIH0Cu7pCI9QUIyIiovohKrA6fvw4wsLCsGLFCnv1h+xMvxGzTquDRq2F3JWBLxERUX0Rlbyu0+nQrVs3e/WF6gFrWRERETmOqMCqZ8+eSElJsVdfqB64GFZfVzGBnYiIqD6JCqyio6Nx8eJFfPvtt/bqD9mZ3KhIaMObsdJqtDj1zWWc3p4CTZXW2d0hIiISRVSO1VdffYXg4GD8+9//xrfffltjuQUAmD9/vphbkY0a+kbMyT+m4/T2qwCA8qJK9J8Q6uQeERER2U5UYLV3717h5+vXr+P69etm20kkEgZWTtKQN2LW6XS48FOG8Dp5fzpaBvsgZEAbJ/aKiIjIdqICq61bt9qrH1RPGnLyetbFPBRmlhodO7zxPHzbN4Nve28n9YqIiMh2ogKrpKQk+Pr64qGHHrJXf8jOGvJGzBfj7sxWKdt4oeB6CapUGvz04W946p3+cPVwcWLviIiIrCcqeX3FihU4fvy4vfpC9cD4qcCGM2NVUVyJ1F+zAAAKLxc88fYj8OvQDABQlF2GhLVnodPqnNlFIiIiq4kKrPz8/KDRNJxf1mSqoT4VeOXQdWirqgOnzoPaQOHpgkffvB8Kr+pZqvRTN3Hm+2vO7CIREZHVRAVW4eHhOHnyJCorK+3VH7IzF7c7M1ZVDWQpUKfT4eLPd5YBu0W1AwB4t/BA5PTewO1dd059fRnXz+U4o4tEREQ2ERVYvf7663Bzc8Nbb72F1NRUe/WJ7Ei/CTPQcJYCsy/lo/BGddJ6YLfmULbxEs61690CDzwbAgDQ6YD4/yShJKfcKf0kIiKylqjk9ddeew1qtRopKSn49ddf4erqCqVSabLRr0QiwZYtW0R1lGzTEJ8KNJqtGtzO5Pz9T4XgVkohMpJuoaJYjbiPTmPU4ochc+E+h0RE1LCJ3itQLpejZcuWaNmyJZRKpXDc8D+tlhW1ncVwKbAhPBVYUVKJ1ON3ktY7PBRo0kYilSAyuje8W7oDAG5dK8TRzy84tJ9ERES2EDVj9fXXX9urH1RPjJLXG8BSYMqhG9CoqwPtzgPbQO5qfhZK4eWCR2c9gF2Lj0Kj1uJiXAZahijRJaKtI7tLRERkFVGBVX0qKyvDli1bkJycjAsXLqC4uBgLFizAiBEjLHp/cXEx1q1bh8TERKhUKnTv3h3R0dHo2rWrSdvDhw9j06ZNSE9Ph1KpxMiRI/HKK69ALpfbfM2GwkVhuBTo3Bmru5PWu5pZBjTk16EZwl+7D4nrzgEAjvz3PHyDvOHfwade+0lERGQrUUuBhqqqqpCamorff/8dqampqKoS90u8sLAQsbGxSE9PR0hIiFXv1Wq1mDdvHn766Sc888wzmDp1KvLz8zFz5kxkZGQYtT127Bj+8Y9/wMvLCzNnzsTAgQPx+eefIyYmxuZrNiRyo6VA585YZV8uQMH1EgDVSevNDZLWa9JlUFt0G1IdgGnUWsR9eBoVJXwKlYiIGibRM1ZFRUVYt24dfvrpJ6OyCwqFAo8++iimTJkCHx/rZxj8/Pywfft2+Pn54eLFi5gyZYrF7z148CB+//13LF26FJGRkQCAwYMHY9y4cdi0aRMWLVoktF2zZg2Cg4OxatUqYYbKw8MDX375JcaMGYOgoCCrr9mQSKUSyFyl0FRqnR5YXYz7Q/i5rtkqQ/1e6Y7ctCLculqI4lvlSFhzFkPnPAiJVFL3m4mIiBxI1IxVUVERpk6dih9++AEKhQJ9+vTBsGHD0LdvX7i6umL37t2Ijo5GUVGR1dd2dXWFn5+fTf1KSEiAr68vBg0aJBxTKpWIiorC4cOHhQAwLS0NaWlpeOKJJ4yW/Z5++mnodDocPHjQ6ms2RPrlwCqV85YCjZLWPV3Q0UzSek1kLjIMmXU/3Lyri4dmJN3C6R0p9dJPIiIiMUTNWH322We4fv06xo4di4kTJ8Ld3V04V1FRgc8++wybN2/G559/jhkzZojurKUuX76Mzp07Qyo1jhu7d++O77//HhkZGQgODsbly5cBwCRHyt/fHy1atMCVK1esvubdcnJykJubK7xOT08X/fmsJXeTA8Vqp85YpRy+k7QeMrB1jUnrNfHyc0fUG2HYt/wEdDrgt29T0KKTEu3CWtRHd4mIiGwiKrA6fPgwwsLCMG3aNJNzbm5u+Mtf/oLk5GQcOnTIoYFVXl4eevfubXJcPwOWm5uL4OBgIeAxNzPm5+dnFBBZes277dq1C7GxsSbHU1NTzW4HVFJSguTk5Bo+mW20qJ6pqixX2/3altDpdDizN1N47RJUaVs/pEC7SCX+iC8AdEDcx7+h12uBcGvuUi/j1thxzGzDcbMNx816HDPb1Oe4hYaG1tlGVGCVm5uLRx99tNY2PXr0wPnz58XcxmoqlQqurq4mx/XHVCoVAAjLdzW1LSsrs/qadxs9ejTCw8OF1+np6Vi2bBk6duxo9mnC5ORki/7irJHiU4iyWwXQqnXo1q07pA7OTcq+nI/yW9X5VQFdmqNPRJjN1+reXYefik8j/WQ2qiq0SP+hBE+8/Qgup1yy+7g1dvXxXWsKOG624bhZj2NmG2ePm6jAytPTE1lZWbW2ycrKgqenp5jbWE2hUJjNedIfUygUAO4ERTW11bez5pp38/f3h7+/v5WfwL4Ma1lVqTRwdXdslY26Kq1bQyKRIGJqT+x4qxhFWWXITSvCL5vOw28Aq7ITEZHziUpeDwsLw8GDB3Hy5Emz50+dOoWDBw8iLCxMzG2s5uvra7SMp3f30p/hMp65toZLhJZesyFy5kbMqhI1rh2tXgZ09ZCj4yOWJ63XxNWjuniofh/EywnXkXm8GDqdTvS1iYiIxBA1dTFx4kQcPXoUc+bMwSOPPILevXvD19cXeXl5SEpKwvHjx6FQKDBx4kQ7ddcynTt3xtmzZ6HVao2SzS9cuAA3Nze0a9dOaAcAly4ZLyPl5OTg1q1bGD16tNXXbIicuRFzyhHLKq1by7e9Nwa+3gPx/zkDAEj7KR8/FyUhfPJ9cPMyXbIlIiJyBFGBVceOHfH+++9j+fLlOHr0KI4ePQqJRCLMHLRu3RoLFy5Ex44d7dJZc3JyclBaWoo2bdoIJRMiIiJw8OBBJCYmCjWnCgoKEB8fj/79+wtLgB07dkT79u3x/fffY/To0ZDJqn/p79ixo3rJKSJCuI+l12yInLURs7WV1q0V3L818v4oxpld1wAAqb9mITslH5HTeqP1fQ1nBlGn06G8QIWCzFIUZpai8EYpCrOq/6wsr4LCywVu3q63/6v+WWHws+E5F3e5ySbnRETUcIhOtunVqxc2b96Mc+fO4cqVKygtLYWnpyc6d+6Mnj17ivol8O2336KkpERYbjty5Ahu3rwJAHj22Wfh5eWFDRs2YN++fdi6dStatWoFAIiMjMS2bduwfPlypKWlwcfHBzt27IBWq8WkSZOM7hEdHY0FCxZg9uzZGDJkCK5du4bt27dj1KhR6NChg9DOmms2NM7aiPlWSgHyM4oBAC27KOHbztvu9+g7tiv8O/kgYd0ZVFVoUZanwp7/+xU9H++IPs91hszFcblXVSpNdcB0O3gSAqnMUqjLax73iqJKFKLUontIZRKjwEvuKoNULoVUJhH+lBm+lksglVX/KZNLIZFJIbt9LDu7GJLMP6DT6gAdoNXqAJ0OWi0A7e1N1LUGm6prAZ1WV/2fDgD0fwK4axVWWJa18Pjdaj1d14pvHUvCdS4Y19EgLy8PeUd/r+sqFl3btKu6Os7Xdu06PrfhaR2Mls51OuMG1a8BXfX/Mdc1q+igQ1FRMW54/3bnUsJ1dcaXv6tvou8t9i/cifcuKSlFmmeJ2WZ3j5FOd/cP4tR5mTqHTdQXRpTy8nKo+rvi/qes27XFXuySxSyRSNCrVy/06tXLHpcTbN261Sg5PjExEYmJiQCAoUOHwsvL/JYoMpkMK1euxJo1a/Dtt99CpVKhW7duWLBgAdq3b2/Utn///li2bBliY2MRExMDHx8fjB8/3mT50pprNjTOWgq0Z9J6bTo+FIgC7U1kxlXgxvlcQAec252KG7/nInJ6b4u2zrHFzZQCXP3lBvL/LEFRVilKciqser9cIYObtytUpZVQl1v296LV6FBWoEJZgfmnUK11FXl2uU5Tk40SZ3fhnpSHsrobkZFCWPf/V6haUZbzvmsSHTN+HerSpUt4/fXX8cknnzis3MLZ3dfw6+ZLAIAhM8PQ8eFWdr2+OapSNTZP/xmaSi1cPeQYt3qwUYBnb8nJyejerTvO7U3DyS2XoNVUf61lrlI8/FI3dH+0vV2W0LQaLdJOZOP3PWm4mVJQ9xskgLe/O3xae8Kn1Z3/lK084eHrJvRJo9agokSNiuJKqIqr/7zznxoVRZW3z91+XVwp5K4REZGxzoPaIGKqfSd7LCV6xqqgoAB79uzBxYsXUVJSYrbopUQiwUcffST2VmQjFydsxHz1yA1oKm9XWh/Qpl6DKj2JVIJej3dEm/v8EL86CQXXS6Gp1OKXTcnISLqFQVN6wt3HfFmMuqhK1bj0cwbO/5iO0lzTf0G6esjh09oTylZe1cHT7UCqWYCHRQn7MhcZPJvL4NnczaL+6HQ6aCq1qFJroK3SQavRQlulhbZKB42m+k9tlfb2cf3POmhu/6mt0uL6n9fRpk2b6j0XpdX/O5VIJZBIcPtPCSRSg5/1x6USQAIhKDSJV2s4Lry2MMCttVkd16jzDnU1qOX8tWupCO7UyW7XlpgeMH5pzb8HLBkXib6pxOCg/q0Sg78ng9fGTW1y+coVdOnSxfhad/fBoKOSuw+KuLnJGJs2qP10faY11nLxSxcvolv3bnc1N2hvwf/GRHW9zu+yyP8d1tOb7+k6VlevXsWsWbNQXFz7o+5MtnUuwzpWjgisdDodLsQ5ZhnQHL8OzfDUsnD8uvkikg9UFybNOH0L3847jIipvazaBqcwsxTn96fjcsKfqLprGbV5O2/0HNEB7e5vAbdmrg79nkskEsgVMlEBa1VyEbqEtrVjr5qGm2Wu8OvQzNnduOcosuXw9LXsHw5UTaaQGv3DmCxT/Q9B58Udov7GVq9ejaKiIrzyyit4/PHH0aJFC+HJOmo4XBSGBULrP3n91tXCO0nrIUr4trd/0npd5AoZ+r96H9qGtUDi+nPVS2lFldi/8iRChwbhoXFda5xJ0ul0yEzOw+970/DH6ZsmiZTt7m+BHiM6oPV9fvxHAxERGREVWJ0/fx4DBgzAa6+9Zq/+UD2QO3gp0FFJ65Zof39LPLNiAA6tP4eMpFsAgOQf03HjfC6iZvSGX9CdmQeNWoOrv2Ti931pyEsvNrqOXCFD50Ft0GN4B/i0cuxOAkREdO8QFVjJ5XK0adPGXn2hemI8Y1W/gVVl2Z1K6y7u9qm0LpaHjwJD//4gLvz0B45/eREatRYF10uw85+/oO8LXREc3hoX4/5A8oE/UFFkvG2Rp68bQocFoWtUWxYeJSKiOokKrMLCwnDp0iV79YXqiSPrWKUcuSEEbyEDWjeY/ACJRILQx4LQqrsv4lefQV56MbRVOhz/30Uc33zRZLmvRbAPeozogI4PBUIqF7XzExERNSGifmNER0fj2rVr+Oqrr+zVH6oHLg5KXr+70rqzlwHNad7WG08u7YeejxvsBnA7qJJIgI4PB+KJtx/Bk//qj+D+rRlUERGRVURNJ3zxxRfo1KkT1q9fj127diEkJASenubzT+bPny/mViSC8VOB9TdjlXOtUMhNahHiY5S/1JDIXGR4+KVuaNvbH4c/+R2VZVXoEtkWoUOD4N3C3dndIyKie5iowGrv3r3Czzdu3MCNGzfMtpNIJAysnMhFceevuT5zrBr6bNXd2vTwx/MfRhjVZCIiIhJDVGC1detWe/WD6pHMVVpdbE1Xf5swV5apcfUXfdK6DJ0eqf/q7vYgkTKgIiIi+xEVWAUG2vbEV3Z2NjIzMxEWFibm9mQhiUQCFzcZ1OUaqOupjtXVo5l3ktbD2zSYpHUiIiJHckpm7p49ezBr1ixn3LrJ0i8H1kfyuk6nw0UnVlonIiJqKPjIUxOhT2Cvj6XAnNQi5KYVAQBadPLhdh9ERNRkMbBqIvRLc/XxVKDhbFXXIZytIiKipouBVROhr2Wl1eigqdLa7bo6nQ6pxzOFewT3uzeS1omIiOoDA6smQm64rY0dlwPV5VWoLKueBWsRrGTSOhERNWkMrJoIw1pW9nwysCxfJfzs0Vxht+sSERHdixhYNRHyetrWpqyAgRUREZEeA6smwnCJrsqOCexl+RXCzx5KN7tdl4iI6F7EwKqJqK+NmLkUSEREdIdTAitPT0+0bNnSGbdusuprI2ajpUAlAysiImranBJYPf/88/j666+dcesmy8XwqUA7bsTMGSsiIqI7rHo2PjY21qabSCQSTJgwwab3kn3I3QyfCrRn8jpzrIiIiPSsCqw2bdpkckwikQg/63Q6k+M6nY6BVQNgNGNl1+T16hkrVw+5Ua0sIiKipsiqwComJsbk2JYtW3Dy5EkMHToUvXr1gq+vL/Ly8nDmzBkcOHAAffv2xQsvvGC3DpNtDJ8KtFfyuk6nE3Ks3JlfRUREZF1gFRYWZvR69+7dSEpKwieffIKOHTsanRs+fDjGjBmD6OhoDBgwwOS95Fj1UcdKXV4l5Gt5NucyIBERkajk9W+++QZDhgwxCar0goODMWTIECaqNwD1UcfK8IlAzlgRERGJDKyuX7+OZs2a1dqmWbNmuHHjhpjbkB0Y5ljZK3mdVdeJiIiMiQqslEoljh8/bpS0bkir1eL48ePw8fERcxuyA8OlQHttwmxUaoEzVkREROICq0cffRRXr17F/PnzkZKSYnTuypUrmD9/PlJTU/HYY4+J6iSJVx+bMBvPWDHHioiIyKrk9bu9+uqruHz5Mo4dO4bjx4/Dzc0NSqUSBQUFqKiogE6nw4MPPoiJEyfaqbtkq/pIXjfeJ5AzVkRERKICK4VCgVWrVmHfvn3Yt28frl27huzsbHh5eaFbt24YNmwYhg8fblTripxDJpdCKpdAW6WzW/J6OXOsiIiIjIgKrIDqQqAjRozAiBEj7NEfqkcubnKoStR2m7EqZY4VERGREafsFUjO4XJ7OdBeTwXqZ6xc3OVG5RyIiIiaKrv8NqyqqkJGRgZKSkqg0Zj/pc0Coc6n33LGbnWsbudYcbaKiIiomqjASqfTYePGjfjuu+9QVlZWa9uDBw+KuRXZgf7JQLVKI+zhaKvK8iphSZH5VURERNVEBVafffYZvvjiC3h5eWHYsGFo0aIFZDJuxNtQCU8G6gBNpVbUpslGieucsSIiIgIgMrDas2cPAgIC8Mknn7AI6D3AeCPmKlGBVVmBQakF1rAiIiICIDJ5PS8vDwMHDmRQdY9wsWMtK1ZdJyIiMiUqsAoMDERpaam9+kL1TG7H6utGgRVzrIiIiACIDKyeeuopHD16FPn5+fbqD9UjFzvuF8gNmImIiEyJyrEaMGAAzp49i+joaEyYMAFdunSBp6en2bYBAQFibkV2YJhTpRZZcsF4OxvmWBEREQEiA6sXXngBEokEOp0O7777bo3tJBIJ4uPjxdyK7MBoxkpkkVDOWBEREZkSFVgNGzaM+wDeQ4yfCrRP8rqLu4xV14mIiG4T9Rtx4cKF9uoHOYDczY5LgQX6qutcBiQiItLjXoFNiOHMkpjkdXVFFdTl1e93Z6kFIiIiAQOrJsTFMHldRI6VYakFT+ZXERERCUQnr1tCIpFgy5YtYm5FdmCvpwINE9c5Y0VERHSH6E2YzSktLUVJSQkAwM/PD3I5k5sbAqOlQFEzVtzOhoiIyBxREc/XX39d47nMzEz85z//QX5+Pj744AMxtyE7kdtpS5sybsBMRERkVr3lWLVq1QpLlixBcXExPvnkk/q6DVnBOHndPkuBrGFFRER0R72u0cnlcvTp0wfx8fF44403rHpvZWUlNm7ciB9//BHFxcUIDg7G5MmT0bdv3zrfGxcXh82bNyM9PR3u7u4IDw/H1KlToVQqjdrl5eVh/fr1OHr0KMrKyhAUFITx48cjKirK5JonT57EF198gWvXrkGj0aBt27Z49tlnMWzYMKs+lzPZaxNmbsBMRERkXr0/FahSqVBUVGT1+5YvX46vv/4ajz32GP76179CKpVi7ty5OHv2bK3v27FjB5YsWYJmzZph+vTpeOKJJ/Dzzz/jzTffhEp1JyAoLS3F9OnTkZCQgNGjRyM6OhoeHh5YvHgxDhw4YHTNw4cPY/bs2VCr1Zg4cSImT54MhUKBd955p9bl0IZG7mr4VKDtM1blRjNWzLEiIiLSq9cZqzNnziAuLg7t27e36n3JycmIi4vDtGnT8OKLLwKorvI+ceJErF27FmvXrjX7PrVajQ0bNqB379744IMPhKrwPXr0wPz587F79248++yzAIBdu3bh+vXr+PDDD/Hggw8CqN5UeurUqVi9ejUiIyPh4uICAPjuu+/g5+eHjz76CK6urgCA0aNH4+WXX8bevXvx/PPPWz84TiCRSiBXyFCl0oiqY1V6O3ldrpDB1Z0PJhAREemJ+q04c+ZMs8c1Gg1ycnKQlZUFAJgwYYJV101ISIBMJsPo0aOFYwqFAo8//jg2bNiA7Oxss5s6X7t2DSUlJRg8eLDRVjv9+/eHu7s74uLihMDqzJkzUCqVQlAFAFKpFFFRUVi7di2SkpKEZceysjJ4e3sLQRVQvczp4+Nj1edqCPSBlZilQP2MFfOriIiIjIkKrJKSkswel0gk8Pb2Rt++ffH8889blBdl6MqVK2jbti08PT2Njnfv3h0AkJKSYjawUqvVAKqDsLspFApcuXIFWq0WUqkUarXabDs3t+qlrUuXLgn9DgsLw+bNm/Hpp59i+PDhkEgk+Omnn3Dp0iW8/fbbtX6WnJwc5ObmCq/T09NrbV/fXNxkqCgCqmxcCqxSaVBZVv1e5lcREREZExVYJSQk2KsfRnJzc+Hn52dyXH8sJyfH7Pvatm0LiUSCc+fOYeTIkcLxP/74AwUFBQCA4uJi+Pj4oH379jh16hSysrIQGBgotNXncBneY8KECcjMzMQXX3yBzz//HEB1ALZ06VIMHDiw1s+ya9cuxMbGmhxPTU2FRmM6a1RSUoLk5ORarymGBtVBUWV5lU33qchTCz9XSVX12ldr1Pe4NUYcM9tw3GzDcbMex8w29TluoaGhdbZpkAkyKpVKyG8ypF+KM0xCN6RUKhEVFYV9+/YhKCgIgwYNwq1btxATEwO5XI6qqirhvaNGjcLOnTuxePFizJgxA76+voiPj8ehQ4dM7uHi4oJ27dohMjISgwYNgkajwffff49ly5bhgw8+wH333VfjZxk9ejTCw8OF1+np6Vi2bBk6duyIrl27mrRPTk626C/OVinKQpTdLIC2SoduXbtBKrPu+YWsi3n4DTcAAIFBLREa2r0+umm1+h63xohjZhuOm204btbjmNnG2eNmt8CqqqoKGRkZKC0thaenJ9q1a2dzxXWFQiEs6xmqrKwUztdkzpw5UKlUWLNmDdasWQMAGDp0KFq3bo3ExES4u7sDAIKDg7Fo0SKsWrUK06dPBwD4+vrijTfewKpVq4R2APDRRx8hOTkZn376KaTS6kBk8ODBeOWVV/Dxxx9j/fr1NfbH398f/v7+Vo5A/XFRGFdfd/WwLrBiDSsiIqKaiQ6sioqKsG7dOvz0009C4ANUBz+PPvoopkyZYnWSt5+fH27dumVyXJ+rVFug4uXlheXLlyM7OxuZmZkIDAxEYGAgpk2bBqVSCW9vb6FtZGQkwsPDkZKSAq1Wiy5duuD06dMAgHbt2gGoztv64YcfMG7cOCGoAqqT1x9++GFs374darXa7AxbQ3R3LStXD+v6bbSdDXOsiIiIjIgKrIqKijB16lRcv34dzZo1Q69eveDn54e8vDxcvHgRu3fvRlJSEtauXYtmzZpZfN2QkBCcPn1amP3S06+ZhoSE1HmNgIAAIcG9uLgYly9fRkREhEk7FxcXISkeAE6dOgUA6NOnDwCgsLAQGo3GbD6URqOBVquFVqu1+LM5m9iNmMtYw4qIiKhGogqEfvbZZ7h+/TrGjh2Lr7/+Gu+//z4WLFiA9957D9988w3GjRuHP//8U0j4tlRkZCQ0Gg127dolHKusrMSePXsQGhoqBEzZ2dkWPWW3YcMGaDQaPPfcc7W2y8jIwM6dO9G/f39hxqp58+bw8vLCoUOHjJYny8rKcOTIEbRv377WpcmGRuxGzKy6TkREVDNRM1aHDx9GWFgYpk2bZnLOzc0Nf/nLX5CcnIxDhw5hxowZFl83NDQUUVFR2LBhAwoKCtCmTRvs27cPWVlZmDdvntDunXfeQVJSEhITE4VjX375JVJTUxEaGgqZTIZDhw7hxIkTmDx5stHMFAC8/PLLiIqKQsuWLZGZmYmdO3eiWbNmmD17ttBGJpNh7Nix+PTTTzF16lQMGzYMWq0WP/zwA27duoW33nrLmiFzOrEbMRsFVsyxIiIiMiIqsMrNzcWjjz5aa5sePXrg/PnzVl974cKFCAgIwP79+1FSUoJOnTphxYoVCAsLq/V9wcHBOHToEI4cOQKtVovg4GAsWbLE7P5/ISEh2LNnD/Lz8+Hj44OoqChMmjQJzZs3N2r3yiuvoFWrVti2bRtiY2OhVqsRHByMpUuXIjIy0urP5kyGOVa2bMRcVnCn6roLq64TEREZEfWb0dPTU6iuXpOsrCyTQp+WUCgUiI6ORnR0dI1tPv74Y5Nj/fr1Q79+/Sy6x+LFiy3uz2OPPYbHHnvM4vYNleFTgWoRS4EeSoVRdXsiIiISmWMVFhaGgwcP4uTJk2bPnzp1CgcPHqxzlokcx/ipQOtmrKoqDaqucxmQiIjIhKgZq4kTJ+Lo0aOYM2cOHnnkEfTu3Ru+vr7Iy8tDUlISjh8/DoVCgYkTJ9qpuySW3CB53docK8P8KncmrhMREZkQFVh17NgR77//PpYvX46jR4/i6NGjkEgk0Ol0AIDWrVtj4cKF6Nixo106S+K5KAxzrKwNrO7UsPJkqQUiIiITorOPe/Xqhc2bN+PcuXO4cuWKUHuqc+fO6NmzJ/NwGhijpwKtzLEyrGHFGSsiIiJTogKrd999F506dcLzzz+PXr16oVevXvbqF9UTozpWVuZYsdQCERFR7UQlr//000/Iz8+3V1/IAVzsNGPF4qBERESmRAVWrVu3Fvbvo3uD3LDcgtUzVgb7BDLHioiIyISowGrkyJE4evSo2Q2TqWEyLhDKGSsiIiJ7EpVjFRERgdOnTyM6OhovvvgiunXrBl9fX7MJ6/r9/ci5xGzCXH47sJK5SuHqwarrREREdxP123Hs2LFCeQVzVdD1JBIJ4uPjxdyK7ETmIoVEKoFOq7O5jhWrrhMREZknKrAaNmwYf8HeYyQSCVzcZKgsq0KVFcnrVZUaqErVAJhfRUREVBNRgdXChQvt1Q9yIPntwEqtsnwpsJz5VURERHUSlbxO9yb9RszWJK8bJa6zhhUREZFZDKyaIP2TgeoKjbD9UF2MSi1wxoqIiMgsUUuBL7zwQp1tpFIpPDw80L59ewwcOBCDBw8Wc0uyA/1GzDqtDhq1FnJXWR3vuHvGijlWRERE5ogKrHQ6HTQaDXJycgAAMpkMPj4+KCwshEZTvczk7++P/Px8pKSkID4+Hrt378aKFSvg4uIivvdkk7s3YrYosMpnjhUREVFdRAVWGzduxOzZs9G+fXtMnjwZoaGhQvmF5ORkbNy4ESUlJYiNjUVhYSH+85//4NixY9i6dSvGjx9vr89AVrp7I2ZL5p+YY0VERFQ3UTlW69atQ2VlJVatWoX77rtPKL0gkUhw33334b333kNlZSXWr1+Ptm3bYsmSJQgICEBcXJxdOk+2MdqI2cInA41zrLgUSEREZI6owOrIkSN45JFHIJWav4xMJsMjjzyCw4cPAwAUCgUeeOABXL9+XcxtSSQXo+rrlj0ZqJ+xkrlI4erJqutERETmiAqsSktLUVZWVmeb0tJS4bWPj4+YW5IdyN2s34iZVdeJiIjqJiqw6tChA3766SfcuHHD7PkbN24gLi4OHTp0EI7dvHkTSqVSzG1JJGs3YtaoNVCVsOo6ERFRXUSt6YwfPx6LFi3CpEmTMGrUKPTo0QPNmzdHfn4+fv/9d/zwww8oLy8XEtXVajVOnDiBvn372qXzZBvDwMqSGasyVl0nIiKyiKjAKiIiAnPnzsW///1vfPPNN9i2bZtwTqfTwd3dHXPmzEFERAQAoKKiAnPnzkXHjh3F9ZpEkSuMnwqsi2GpBXc+EUhERFQj0VnIjz/+OCIiInD48GGkpKSgrKwMHh4eCAkJwYABA+Dl5SW09fb2xsCBA8XekkQyeirQgqVAwxkrTwZWRERENbLL411eXl4YPnx4jec1Gg1ksrqLUJJjGD0VaEG5BaMZKy4FEhER1UhU8vp3331XZxuNRoMlS5aIuQ3ZmfFTgZYsBRrUsGLyOhERUY1EBVYff/wxDh48WON5rVaLJUuWIDExUcxtyM6sfSqQyetERESWERVY9ezZE8uWLcNvv/1mck4fVCUkJODpp58WcxuyMxcr61gZ7RPIHCsiIqIaiQqs3n33XbRr1w5vvfUWrly5IhzXarX417/+hYMHD+Kpp57CzJkzRXeU7MfqpwINqq4rPLl5NhERUU1EBVaenp54//334eXlhb///e+4ceMGdDodli5dip9//hlPPvkk3nzzTXv1lezE6qXA2zlW7qy6TkREVCtRgRUA+Pn5YdWqVdBqtZg9ezYWL16M+Ph4jBo1Cn/729/s0UeyM7kVTwVqqrR3qq4zv4qIiKhWogMrAGjXrh1WrlyJ/Px8JCYmYtSoUfj73/9uj0tTPZDKpJC5VP/V1zVjVV7A/CoiIiJLWVXHKjY2ttbz3bt3R0pKCvz8/IzaSiQSTJgwwZb+UT1xcZNBo9bWmbxuVGpByVILREREtbEqsNq0aZNF7T777DOj1wysGh65mxwoVtdZx6qMM1ZEREQWsyqwiomJqa9+kIPpE9ir6ngq0KjUAnOsiIiIamVVYBUWFlZP3SBH0yewV6k00Gl1kEjNP+3HGSsiIiLL2SV5ne49LgqDjZgra561Yo4VERGR5UQFVnv37sXkyZORk5Nj9nxOTg4mT56MAwcOiLkN1QPDWla15VlxxoqIiMhyogKrffv2wcXFBf7+/mbP+/v7Q6FQ4IcffhBzG6oHcgu3tdHnWEnlEii8WHWdiIioNqICq7S0NHTu3LnWNiEhIUhLSxNzG6oHllZf189YeSjdWHWdiIioDqICq9LSUnh7e9faxtPTEyUlJWJuQ/XAko2YNVVaVBRVAuATgURERJYQFVj5+fkZbb5sTkpKCpo3by7mNlQPLNmIubyQ+VVERETWEBVY9enTBydOnMCJEyfMnv/111/x66+/4qGHHhJzG6oHLgrDpUDzM1asYUVERGQdq+pY3e2ll17Czz//jLlz52LYsGHo06cP/P39kZOTgxMnTuDHH3+Eh4cHXnrpJXv1l+xE7lb3jJVhYOXOGSsiIqI6iQqsWrdujRUrVmDJkiXYu3cv9u3bJ5zT6XRo0aIFlixZgtatW4vuKNmXYY5VTcnrZQV3alh5soYVERFRnUQFVgDQq1cvbNmyBYcPH8aFCxdQWloKLy8vdO/eHeHh4XBx4SP6DZFxHau6lwI5Y0VERFQ30YEVALi4uCAqKgpRUVH2uBw5gHEdq5pmrJi8TkREZA1uadNEGSWvW5BjxeR1IiKiutllxurmzZs4ffo0cnJyoFarTc5LJBJMmDDBHrciO5FbshR4O8dKKpPAzcvVIf0iIiK6l4kOrNasWYNt27ZBq9UKx3Q6nVClW/8zA6uGxWgT5jpmrNyVCkikrLpORERUF1GB1ffff4+tW7eiT58+ePLJJ/HPf/4TI0aMQN++fXHmzBn88MMPGDBgAJ5++mmrr11ZWYmNGzfixx9/RHFxMYKDgzF58mT07du3zvfGxcVh8+bNSE9Ph7u7O8LDwzF16lQolUqjdnl5eVi/fj2OHj2KsrIyBAUFYfz48TXmisXFxWHbtm24evUq5HI5goKCMHnyZDz44INWfz5nq2sTZq1h1XXmVxEREVlEdGAVGBiI9957D1JpdbpWYGAghgwZgiFDhmDw4MH429/+ZlNS+/Lly3Hw4EE899xzaNu2Lfbu3Yu5c+ciJiYGvXr1qvF9O3bswAcffIAHH3wQ06dPx61bt7Bt2zZcunQJ69atg0JRHSSUlpZi+vTpyM/Px5gxY+Dr64v4+HgsXrwYVVVVeOyxx4yu+9///hefffYZIiMjMXz4cFRVVSE1NRU5OTlWf7aGoK4tbYyqrrPUAhERkUVEBVbp6ekYNmyYEFQBgEZzZ/YjLCwM/fr1w5YtWxAZGWnxdZOTkxEXF4dp06bhxRdfBAAMGzYMEydOxNq1a7F27Vqz71Or1diwYQN69+6NDz74QFiO7NGjB+bPn4/du3fj2WefBQDs2rUL169fx4cffijMOD311FOYOnUqVq9ejcjISKFUxPnz5/HZZ59h+vTpeP755y0foAZM5ioFJAB05utYlebziUAiIiJriX4q0MvLS/jZzc0NhYWFRufbtWuH1NRUq66ZkJAAmUyG0aNHC8cUCgUef/xxnD9/HtnZ2Wbfd+3aNZSUlGDw4MFCUAUA/fv3h7u7O+Li4oRjZ86cgVKpNFrGk0qliIqKQl5eHpKSkoTj33zzDXx9fTFmzBjodDqUlZVZ9XkaIolEIiwHqlVmZqwK+EQgERGRtUTNWLVo0QK3bt0SXrdp0wYXLlwwapOamgp3d3errnvlyhW0bdsWnp6eRse7d+8OoHpj54CAAJP36Z9I1C/3GVIoFLhy5Qq0Wi2kUinUarXZdm5u1ctely5dEvK5Tp06hR49emDbtm344osvUFhYCF9fX7z88svCDFhNcnJykJubK7xOT0+vtb0jyRVyqMs1ZnOsWMOKiIjIeqICqx49euDs2bPC6wEDBuDzzz/He++9hwEDBuDs2bM4fvw4IiIirLpubm4u/Pz8TI7rj9WU19S2bVtIJBKcO3cOI0eOFI7/8ccfKCgoAAAUFxfDx8cH7du3x6lTp5CVlYXAwEChrf7z6O9RXFyMwsJC/P777/jtt98wceJEBAQEYO/evYiJiYFcLseTTz5Z42fZtWsXYmNjTY6npqYaLZvqlZSUIDk5ucbr2ZNOUn1/VWmlyT3/uFwg/JxTdBOa5GKH9MlWjhy3xoJjZhuOm204btbjmNmmPsctNDS0zjaiAqthw4YhNzdXCE7Gjh2LX375Bbt378YPP/wAnU6HwMBATJs2zarrqlQqs1vhuLq6CufNUSqViIqKwr59+xAUFIRBgwbh1q1bQgBUVVUlvHfUqFHYuXMnFi9ejBkzZgjJ64cOHTK6h37Zr7CwEIsXL8aQIUMAAJGRkZg4cSI+//zzWgOr0aNHIzw8XHidnp6OZcuWoWPHjujatatJ++TkZIv+4uzhUrM8VOQXQ1ulM7ln7pFzAKqXdbv17gy/oGYO6ZOtHDlujQXHzDYcN9tw3KzHMbONs8dNVGB1//334/777xdee3h4YN26dTh8+DCuX7+OwMBAIb/JGgqFwmyh0crKSuF8TebMmQOVSoU1a9ZgzZo1AIChQ4eidevWSExMFPoSHByMRYsWYdWqVZg+fToAwNfXF2+88QZWrVoltNPfSy6XGyXgS6VSDB48GP/973+RnZ1tdmkSAPz9/eHv72/V53cU/bY22iodNFVayOR3Uu5YdZ2IiMh6dqm8DlTP6KSkpKC0tBTe3t4YNWoUfHx8bLqWn5+fUe6Wnj5XqbZAxcvLC8uXL0d2djYyMzMRGBgozJoplUp4e3sLbSMjIxEeHo6UlBRotVp06dIFp0+fBlCddA8AzZo1g6urK7y8vCCTyYzu1bx5cwDVy4U1BVYNmWEtq6oKDWReBoHV7RwriUwCN29WXSciIrKE6MAqMzMTH3/8MY4dOwadTiccl0gk6NevH9544w20atXKqmuGhITg9OnTKC0tNUpg16+ZhoSE1HmNgIAAIdgpLi7G5cuXzeZ6ubi4CEnxQHWiOgD06dMHQPXMVOfOnXHx4kWo1WqjJUp9HtbdhUfvFYbV19WqKii87ny2svzq7Ww8fFh1nYiIyFKiyi1cv34d06ZNwy+//ILWrVtj+PDhePHFFzF8+HC0adMGR44cwbRp03Djxg2rrhsZGQmNRoNdu3YJxyorK7Fnzx6EhoYKAVN2drZFT9lt2LABGo0Gzz33XK3tMjIysHPnTvTv31+YsQKAqKgoaDQa7Nu3TzimUqlw4MABdOjQocEu9dVFXkP1da1Gi3JWXSciIrKaqBmrdevWoaCgALNnz8YTTzxhVDtKp9Nh165d+PDDD7Fu3TosXbrU4uuGhoYiKioKGzZsQEFBAdq0aYN9+/YhKysL8+bNE9q98847SEpKQmJionDsyy+/RGpqKkJDQyGTyXDo0CGcOHECkydPNpqZAoCXX34ZUVFRaNmyJTIzM7Fz5040a9YMs2fPNmr35JNP4ocffsCHH36IjIwMBAQEYP/+/cjOzsby5cutHbYGw0VhuBR4p5ZVeWElcHvykflVRERElhMVWJ06dQrh4eFGhTz1JBIJnnzySRw7dgwnT560+toLFy4UApiSkhJ06tQJK1asQFhYWK3vCw4OxqFDh3DkyBFotVoEBwdjyZIlZrfVCQkJwZ49e5Cfnw8fHx9ERUVh0qRJQu6UnkKhwEcffYS1a9diz549qKioQEhICFasWIGHHnrI6s/WUMiNtrW5M2NlXMOK29kQERFZSlRgpdVq0aFDh1rbdOrUSUgIt4ZCoUB0dDSio6NrbPPxxx+bHOvXrx/69etn0T0WL15scX+aN2+OhQsXWtz+XmCUvK4yCKxu51cBnLEiIiKyhqgcqy5duiAtLa3WNqmpqWbrNZHzuRjlWN1ZCjScsXJnjhUREZHFRAVWr7/+Oo4fP47du3ebPb9r1y78+uuvmDx5spjbUD0xWgo0mrG6E1h5csaKiIjIYlYtBZrbmuX+++/H+++/jy1btqBnz57w9fVFXl4ezp07hz///BN9+/bFb7/9hp49e9qrz2QnNSWvGwZWnLEiIiKynFWB1aZNm2o8l5GRgYyMDJPjv/76K06cOIEJEyZY3zuqV3KF+XILZQUGOVZMXiciIrKYVYFVTExMffWDnMClpqcCb89YSaQSuLPqOhERkcWsCqzqKnVA95Yanwq8nbzurnRl1XUiIiIriEpep3ubcR2r6hwrrUaLisLqwMpDyWVAIiIiazCwasLu3oQZAMqLKqHf8pHb2RAREVmHgVUTdvcmzABQbvBEIIuDEhERWYeBVRNmbhPmUsOq65yxIiIisgoDqyZMJpdCKqtOTtfXsSo33CeQOVZERERWYWDVxOlLLtyZsTLcgJkzVkRERNZgYNXE6ZcD9eUWjGesGFgRERFZg4FVE6d/MlCfvG64ATOrrhMREVmHgVUTp38yUF2hgU6nQ9nt5HWJBHBrxqrrRERE1mBg1cQJTwbqAE2l1qDqugJSVl0nIiKyCgOrJs5wI+bKMrWQY8X8KiIiIusxsGriDDdiLr5VblB1nflVRERE1mJg1cQZbmtTmFUq/MwZKyIiIusxsGriDGesirLKhJ9Zw4qIiMh6DKyaOMMcq8JMzlgRERGJwcCqiTNcCiwyWAp0Z2BFRERkNQZWTZzhUmChwVKgJ5PXiYiIrMbAqokzXArUb2sDAO7MsSIiIrIaA6smznApUE8iAdxZdZ2IiMhqDKyaOLnBUqCem48CUhm/GkRERNbib88mzkVhOmPFJwKJiIhsw8CqiXMxM2PFGlZERES2YWDVxMnN5Fh5KPlEIBERkS0YWDVxZpcCOWNFRERkEwZWTZy55HUGVkRERLZhYNXEyZm8TkREZDcMrJo4qVRiElx5sOo6ERGRTRhYkWlgxRkrIiIimzCwIuPq6xLA3YdV14mIiGzBwIqMalm5N3Nl1XUiIiIb8TcoGS0FMr+KiIjIdgysyGgpkPlVREREtmNgRUa1rFjDioiIyHYMrMio+jpnrIiIiGzHwIqMkteZY0VERGQ7BlZktBEzZ6yIiIhsx8CK0DrUD0B1EntAl+ZO7g0REdG9y3QHXmpy2oW1wLMrB0Dh7Qq3ZiwOSkREZCsGVgQAaN7W29ldICIiuudxKZCIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDKyIiIiI7KTBPhVYWVmJjRs34scff0RxcTGCg4MxefJk9O3bt873xsXFYfPmzUhPT4e7uzvCw8MxdepUKJVKo3Z5eXlYv349jh49irKyMgQFBWH8+PGIioqq9fp/+9vfcPLkSTz99NN48803xXxMIiIiakQa7IzV8uXL8fXXX+Oxxx7DX//6V0ilUsydOxdnz56t9X07duzAkiVL0KxZM0yfPh1PPPEEfv75Z7z55ptQqVRCu9LSUkyfPh0JCQkYPXo0oqOj4eHhgcWLF+PAgQM1Xj8hIQHnz5+32+ckIiKixqNBBlbJycmIi4vDlClTEB0djdGjR+Ojjz5CYGAg1q5dW+P71Go1NmzYgN69e+ODDz7A008/jSlTpuDtt9/G1atXsXv3bqHtrl27cP36dbzzzjuYPHkynnnmGcTExKBbt25YvXo11Gq1yfVVKhVWr16NcePG1cvnJiIiontbgwysEhISIJPJMHr0aOGYQqHA448/jvPnzyM7O9vs+65du4aSkhIMHjwYEolEON6/f3+4u7sjLi5OOHbmzBkolUo8+OCDwjGpVIqoqCjk5eUhKSnJ5PpfffUVdDodxo4da4dPSURERI1Ng8yxunLlCtq2bQtPT0+j4927dwcApKSkICAgwOR9+lkmhcJ0I2GFQoErV65Aq9VCKpVCrVabbefm5gYAuHTpklE+V3Z2Nv73v/9h/vz5Zt9Xk5ycHOTm5gqv09PTLX4vERER3VsaZGCVm5sLPz8/k+P6Yzk5OWbf17ZtW0gkEpw7dw4jR44Ujv/xxx8oKCgAABQXF8PHxwft27fHqVOnkJWVhcDAQKGtPofr7nusXr0anTt3xpAhQ6z6LLt27UJsbKzJ8dTUVGg0GpPjJSUlSE5OtuoexHGzBcfMNhw323DcrMcxs019jltoaGidbRpkYKVSqeDi4mJy3NXVVThvjlKpRFRUFPbt24egoCAMGjQIt27dQkxMDORyOaqqqoT3jho1Cjt37sTixYsxY8YM+Pr6Ij4+HocOHTK5x2+//YaEhASsW7fO6s8yevRohIeHC6/T09OxbNkydOzYEV27djVpn5ycbNFfHBnjuFmPY2YbjpttOG7W45jZxtnj1iADK4VCYTZ5vLKyUjhfkzlz5kClUmHNmjVYs2YNAGDo0KFo3bo1EhMT4e7uDgAIDg7GokWLsGrVKkyfPh0A4OvrizfeeAOrVq0S2lVVVSEmJgZDhw4VliKt4e/vD39/f6vfR0RERPeeBhlY+fn54datWybH9blKtQUqXl5eWL58ObKzs5GZmYnAwEAEBgZi2rRpUCqV8Pb2FtpGRkYiPDwcKSkp0Gq16NKlC06fPg0AaNeuHQBg//79yMjIwJw5c5CZmWl0r7KyMmRmZqJ58+ZCblZd9DNhNeVa/fHHH5DJZBZdi+7guFmPY2YbjpttOG7W45jZpr7HLSgoqNbf+Q0ysAoJCcHp06dRWlpqlMCuXzMNCQmp8xoBAQFCgntxcTEuX76MiIgIk3YuLi5GM1GnTp0CAPTp0wdAddJ6VVWVMKtlaP/+/di/fz/eeecdDBw40KLPlpWVBQBYtmyZRe2JiIio4fjkk0/MpvLoNcjAKjIyElu2bMGuXbvw4osvAqheBtyzZw9CQ0OFgCk7OxsVFRUICgqq9XobNmyARqPBc889V2u7jIwM7Ny5E/379xdmrIYMGYLOnTubtP3HP/6BRx55BE888YRVS4QPPfQQ3nrrLbRq1UrIGdPT51+99dZbdX4muoPjZj2OmW04brbhuFmPY2YbR4xbXddtkIFVaGgooqKisGHDBhQUFKBNmzbYt28fsrKyMG/ePKHdO++8g6SkJCQmJgrHvvzyS6SmpiI0NBQymQyHDh3CiRMnMHnyZJMA6OWXX0ZUVBRatmyJzMxM7Ny5E82aNcPs2bOFNkFBQTUOYqtWrSyeqdJTKpUYOnRorW2CgoJqjYbJPI6b9ThmtuG42YbjZj2OmW2cOW4NMrACgIULFyIgIAD79+9HSUkJOnXqhBUrViAsLKzW9wUHB+PQoUM4cuQItFotgoODsWTJErP7/4WEhGDPnj3Iz8+Hj48PoqKiMGnSJDRv3ryePhURERE1Zg02sFIoFIiOjkZ0dHSNbT7++GOTY/369UO/fv0susfixYtt7p/hLBkRERER0EC3tGmq/Pz8MHHiRLPFUalmHDfrccxsw3GzDcfNehwz2zSEcZPodDqd0+5ORERE1IhwxoqIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDbbcQlNSWVmJjRs34scff0RxcTGCg4MxefJk9O3b19lda7BOnz6NmTNnmj23du1a3HfffQ7uUcNTVlaGLVu2IDk5GRcuXEBxcTEWLFiAESNGmLRNS0vDf/7zH5w7dw5yuRz9+vXDjBkzoFQqHd9xJ7J0zP7v//4P+/btM3l/+/bt8eWXXzqquw3ChQsXsG/fPpw+fRpZWVlo1qwZ7rvvPkyePFnYwUKP37M7LB03fteMpaamYtOmTbh06RLy8vLg5uaGoKAgvPjiiwgPDzdq66zvGwOrBmD58uU4ePAgnnvuObRt2xZ79+7F3LlzERMTg169ejm7ew3as88+a1JRv02bNk7qTcNSWFiI2NhYBAQECPtvmnPz5k288cYb8PLywuuvv47y8nJs2bIF165dw/r16+Hi4uLgnjuPpWMGAK6urpg7d67RMcO9TZuKzZs349y5c4iKikJwcDByc3Oxfft2TJ48GWvXrkWnTp0A8Ht2N0vHDeB3zVBWVhbKysowfPhw+Pv7o6KiAgkJCViwYAHmzJmD0aNHA3Dy901HTnX+/HndwIEDdZs3bxaOVVRU6MaOHaubOnWqE3vWsP3222+6gQMH6uLj453dlQZLpVLpcnJydDqdTnfhwgXdwIEDdXv27DFpt2rVKt2jjz6qy8rKEo6dOHFCN3DgQN3OnTsd1t+GwNIxe+edd3RDhw51dPcapLNnz+oqKyuNjv3xxx+6IUOG6JYuXSoc4/fMmKXjxu9a3aqqqnSvvvqq7qWXXhKOOfP7xhwrJ0tISIBMJhOibKC66vzjjz+O8+fPIzs724m9uzeUlZWhqqrK2d1ocFxdXS0qkpeQkID+/fsLm5sDQJ8+fdCuXTvEx8fXZxcbHEvHTE+j0aC0tLQee9Tw9ezZ0+Rf/+3atUOHDh2Qnp4uHOP3zJil46bH71rNZDIZWrZsiZKSEuGYM79vXAp0sitXrqBt27Ym07r65a2UlBSjLwYZW758OcrLyyGTydCrVy9MmzYN3bp1c3a37hm3bt1Cfn6+2c1Ku3fvjmPHjjmhV/eGiooKjBgxAhUVFfD29saQIUMwdepUeHh4OLtrTqfT6ZCfn48OHToA4PfMUnePmx6/a6bKy8uhUqlQWlqKI0eO4Pjx48KewM7+vjGwcrLc3Fyz/0LWH8vJyXF0l+4JcrkcEREReOSRR+Dj44O0tDRs3boVM2bMwJo1a9ClSxdnd/GekJubCwA1fgeLiopQWVkJV1dXR3etQfPz88OLL76ILl26QKfT4fjx49ixYweuXr2KmJgYyOVN+/+1HjhwALdu3cKkSZMA8HtmqbvHDeB3rSarV6/Grl27AABSqRSDBg3Cm2++CcD537em+TfSgKhUKrNJdPq/cJVK5egu3RN69uyJnj17Cq8HDBiAyMhIvPrqq9iwYQPef/99J/bu3qH/ftX1HWzqv/Du9pe//MXo9ZAhQ9CuXTt88sknSEhIwJAhQ5zUM+dLT0/Hhx9+iPvuuw/Dhw8HwO+ZJcyNG8DvWk2ee+45REZGIicnB/Hx8dBoNFCr1QCc/31jjpWTKRQK4ctgqLKyUjhPlmnbti0GDBiA06dPQ6PROLs79wT994vfQfGef/55SKVSnDx50tldcZrc3FzMmzcPnp6e+Ne//gWZTAaA37O61DRuNeF3DQgKCkKfPn0wfPhwrFixAuXl5Zg/fz50Op3Tv28MrJzMz89PmLY0pD/m7+/v6C7d01q2bAm1Wo2Kigpnd+WeoJ8qr+k72KxZsyY9i2ANhUKBZs2aoaioyNldcYqSkhLMnTsXJSUleP/9943+fxe/ZzWrbdxq0tS/a+ZERkbi4sWLyMjIcPr3jYGVk4WEhODPP/80edojOTlZOE+Wu3HjBlxdXeHu7u7srtwTWrRoAaVSiUuXLpmcu3DhAr9/VigrK0NhYWGTLHapUqkwf/58ZGRk4N133zVJvub3zLy6xq0mTfm7VhP98l9JSYnTv28MrJwsMjISGo1GSMIDqqcq9+zZg9DQUD4RWIOCggKTYykpKThy5Aj69u0LqZRfbUtFRETgl19+MSrtcerUKWRkZAhP2dAdKpUKZWVlJsc/++wz6HQ6PPzww07olfNoNBq8/fbbOH/+PJYsWYIePXqYbcfvmTFLxo3fNVP5+fkmx6qqqrB//34oFAohOHXm943J604WGhqKqKgobNiwAQUFBWjTpg327duHrKwszJs3z9nda7AWL14MhUKBHj16oHnz5khLS8P3338PNzc3k2TPpuzbb79FSUmJMCV+5MgR3Lx5E0B11XovLy+MHz8eBw8exKxZszBmzBiUl5fjq6++QqdOncxuf9PY1TVmxcXFeO211/Doo4+iffv2AIBff/0Vx44dw8MPP4wBAwY4re/OsHr1ahw5cgT9+/dHcXExfvzxR6PzQ4cOBQB+z+5iybjl5eXxu3aX999/H6WlpejduzdatGiB3NxcHDhwAH/88QemT58ulKBw5vdNotPpdPV6B6qTSqUS9gosKSlBp06dMHnyZDz00EPO7lqDtW3bNhw4cADXr19HaWkplEolHnzwQUycOBFt27Z1dvcajOeffx5ZWVlmz23duhWtWrUCUL3/1t17ak2fPh2+vr6O7G6DUNeYeXl5ISYmBufPn0dubi60Wi3atGmDxx57DGPHjm1yj7//9a9/RVJSUo3nExMThZ/5PbvDknErLi7md+0ucXFx+OGHH3Dt2jUUFhbCw8MDXbt2xTPPPGMSaDrr+8bAioiIiMhOmIhCREREZCcMrIiIiIjshIEVERERkZ0wsCIiIiKyEwZWRERERHbCwIqIiIjIThhYEREREdkJAysiIiIiO2FgRURERGQnDKyI6J6SmZmJQYMG4f/+7/+c3RW72Lt3LwYNGoS9e/c6uytEZAcMrIjonvfXv/4VgwYNcnY3zGpsgSAR1a7p7eBIRPe0Fi1a4IsvvoCnp6ezu2IXAwcORGhoKPz8/JzdFSKyAwZWRHRPkcvlCAoKcnY37MbLywteXl7O7gYR2YlEp9PpnN0JIiJLZWZm4oUXXsDw4cOxcOHCGpcA9ef1rl69ii+++AJJSUkoKiqCn58fwsPD8eqrr8LHx8fs9ceNG4dPPvkEZ86cQVFREbZu3YpWrVohMTER8fHxuHjxInJyciCXyxEcHIwxY8YgMjJSuNbevXuxfPlys/2LiYnB/fffL7RZsGABRowYYdTm3Llz+OKLL3D+/HmoVCoEBgZi8ODBGDduHNzc3IzaDho0CGFhYXj77bexdu1aHDt2DOXl5QgJCcFf/vIX3H///dYONRHZgDNWRHRPmzhxIvbt24esrCxMnDhRON65c2fh58OHD+Ptt9+GRCLBgAED0LJlS6SlpeG7777Dr7/+ivXr18Pb29voutevX8e0adPQqVMnDB8+HEVFRXBxcQEAbNiwAXK5HD179oSfnx8KCgpw5MgRLFq0CDNnzsSzzz4LAAgJCcGYMWOwbds2hISEYMCAAcL1AwMDa/1c8fHxWLp0KVxcXDB48GAolUqcOHECsbGx+PXXXxETEwOFQmH0npKSEkyfPh1eXl4YOnQo8vPzER8fjzlz5uCTTz5Bp06dbBpjIrIcAysiuqdNmjQJSUlJyMrKwqRJk0zOFxYW4p133oGPjw9Wr15tFNDExcVhyZIl2LhxI2bNmmX0vnPnzmHixIlmr7ly5Uq0bt3a6FhZWRmio6OxceNGPP7443Bzc0Pnzp3h5eUlBFbmrmVOaWkp3nvvPchkMqxduxbBwcEAgClTpmDp0qX4+eefsWXLFkyYMMHofSkpKXjqqacwa9YsSKXVzyY98MADWLlyJb777jvMmTPHovsTke34VCARNWr79+9HaWkppkyZYjJLNGTIEHTp0gVxcXEm7/P19cXLL79s9pp3B1UA4OHhgREjRqCkpAQXL14U1efDhw+jpKQEI0eOFIIqAJBKpZg2bRpkMpnZ8gzu7u6YOnWqEFQB1UuiMplMdJ+IyDKcsSKiRu38+fMAgOTkZFy/ft3kfGVlJQoLC1FQUAClUikcDwkJEZb+7pafn4///e9/OHbsGLKzs6FSqYzO5+TkiOrzlStXAABhYWEm5wICAtC6dWtkZGSgrKwMHh4ewrm2bdsavQaqk/19fX1RUlIiqk9EZBkGVkTUqBUXFwMAtm/fXmu7iooKo9fNmzc3266oqAhTpkxBdnY2evbsiT59+sDLywtSqRQpKSk4fPgw1Gq1qD6XlpYCqJ41M8fPzw8ZGRkoLS01CqRqKkEhk8mg1WpF9YmILMPAiogaNX3gERsba1XytkQiMXv8hx9+QHZ2Nl577TWTHKcvv/wShw8ftr2zt+kDpLy8PLPn9ccbSy0vosaEOVZEdM/T5xRpNBqTc6GhoQDuLAmKpV9ONHzCT+/s2bM19s2aGSP9E41JSUkm57Kzs3H9+nW0bt3aZNmPiJyPgRUR3fOaNWsGALh586bJuZEjR8LDwwOffPIJUlNTTc5XVFRYFXTpE+DPnTtndPzAgQM4duyYSXtvb29IJBKzfavJgAED4OXlhT179hj1WafTYf369dBoNCY1r4ioYeBSIBHd8x544AEcPHgQ//znP/Hwww/D1dUVISEhCA8Ph1KpxOLFi7Fo0SJMmjQJDz30ENq3bw+1Wo2srCwkJSWhR48eeP/99y2619ChQ7F582bExMTg9OnTCAgIQEpKCn777TcMGjQIiYmJRu09PDzQrVs3nDlzBsuWLUPbtm0hkUgwbNiwGmtZeXp64u9//zuWLl2KqVOnIioqCkqlEqdOncKlS5fQvXt3jB07VvS4EZH9MbAionveqFGjkJmZiZ9//hmbN2+GRqPB8OHDER4eDgDo168fNm7ciK+++gqnTp3CyZMn4ebmhhYtWmDEiBEYOnSoxfdq2bIlPv74Y6xduxYnT56ERqNBly5dsGrVKty8edMksAKAt956C//+97/xyy+/oLS0FDqdDr169aq1SGhUVBR8fX3x5ZdfIjExUai8PmHCBIwbN86kOCgRNQzc0oaIiIjITphjRURERGQnDKyIiIiI7ISBFREREZGdMLAiIiIishMGVkRERER2wsCKiIiIyE4YWBERERHZCQMrIiIiIjthYEVERERkJwysiIiIiOyEgRURERGRnTCwIiIiIrKT/weqdrja+6W3tAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "### The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "2769b6e5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADSIUlEQVR4nOydd5gUxdbG3+6emc2RtOQooMCnKCAoChIUxYAJVBQwYM4ZsxiuV71exYsZRZQrKFzMiIAiGQQDOee0sCxs3p2Z7vr+mO2mZ6ZDzUzvzobze559drf7dNWZng71Vp06JTDGGAiCIAiCIAiCIIhqR4y3AwRBEARBEARBEPUVEmQEQRAEQRAEQRBxggQZQRAEQRAEQRBEnCBBRhAEQRAEQRAEESdIkBEEQRAEQRAEQcQJEmQEQRAEQRAEQRBxggQZQRAEQRAEQRBEnCBBRhAEQRAEQRAEESdIkBEEQRAEQRAEQcQJEmQEQRAEQRAEQRBxggQZQRAEQRAEQRBEnCBBRhAEQRAEQRAEESdIkBEEQRAEQRAEQcQJEmQEQRAEQRAEQRBxwhFBtmvXLgiCAEEQMGbMGCeKrJf0799fO48EQRBmjBkzRntW7Nq1K97uaEyePFnza/LkyfF2h3AYRVFwxhlnQBAE3HPPPfF2hwiB7j8inixYsEC7/p577rl4u+MohYWFyM7OhiAIeP/996ukjmobIZs8eTKee+65OvclWfH1119rn/n48ePxdoeoxO/3Y968eXj88ccxYMAANG3aFAkJCUhNTUX79u1xzTXX4Ouvv4YsyxGVu27dOtxzzz3o3LkzUlNTkZGRgW7duuHxxx/H7t27q+jTEARRH/H5fPjwww8xcOBA7RnWokULXHLJJZg+fToYY47X+cEHH+CPP/5AYmIixo0bZ2jz3HPPaY0ynh/eDgWnnq/l5eV49913MWTIEOTk5CAhIQGNGjXCmWeeiZdffhlHjx7lLisSli1bhptuugnt27dHcnIysrOzccYZZ+DFF19EXl5eldQZD7p166Z9t/Pnz4/4+MWLF2vHn3LKKREfrxelPD8LFiywLO/o0aP4+eef8fLLL+PKK69E69atg47n5dixY/jmm2/w1FNPYciQITjllFPQuHFjuN1uZGRkoEuXLhgzZgx++umniD8zD/WlfXLJJZdo382kSZMiPn7Pnj2QJAmCICA7Oxvl5eUAgPT0dDzwwAMAgCeffBLHjh1z1G8AAHOAnTt3MgAMABs9erShTb9+/TSb+sLo0aO1z7xz505b+/p4jqqbX375hWVnZ2vn2eqnZ8+ebNu2bVzlvvbaa8ztdpuWlZaWxr744osq/nREfSHSZ0t18cknn2h+ffLJJ/F2p86yc+dO1r17d8vn16BBg9ixY8ccq7OkpITl5OQwAOzee+81tXv22We5nq+RXL9OPV9XrVrF2rRpY+lP48aN2U8//RTJqbFEURT2wAMPMEEQTOts0qQJmz9/fsx11YT771//+pfmw/XXXx/x8TfddJN2/Kuvvhrx8fpzwPPz66+/mpa1Zs0a2+N5effdd7l9Ovfcc9nBgwcj/uxmVFf75Ndff9XKfPbZZ2N3PApmzpyp+dC3b9+Ijx8/frx2/J133hm0r6CggGVlZTEA7PHHH3fKZQ1XmEKLgjZt2lRJb1x9w66nhoid/fv3Iz8/HwCQnZ2NQYMGoXfv3mjatCl8Ph9WrlyJKVOmoLCwEL///jvOO+88rFy5Ejk5OaZlvvfee3jkkUcAAG63GzfccAP69esHn8+HOXPmYMaMGSgqKsINN9yAzMxMDBkypFo+K1F3mTx5MoUk1VOOHz+OCy+8EJs2bQIAnHzyybjpppvQokULbNu2DR988AH27t2LefPm4YorrsDPP/8Mlyv2V/0777yDQ4cOQZIkPProo1zHvPDCC+jataulTePGjS33O/V8Xb9+PQYMGIDCwkIAQJcuXXDDDTegbdu2OH78OGbPno1vvvkGhw8fxuWXX4558+bhrLPO4vqcVowbNw7//ve/AQApKSm4+eab0atXLxQXF2PmzJmYO3cucnNzcdlll2HRokU47bTTYq4znlx//fV47LHH4Pf78b///Q/vvPMO0tLSuI4tLS3FV199BQCQJAk33HBDTL7cc889GDBggKWN1fUZGiUjSRI6d+6MHTt2oKysLGJ/RFHEqaeeip49e6JTp07IycmBx+NBXl4eVq5cienTp6O0tBQLFy7Eeeedh9WrVyM5OTnievTUt/bJJZdcgoYNGyIvLw+LFy/G9u3b0b59e+7jP/30U+3vG2+8MWhfeno67rrrLrz44ot4++238fDDD6NBgwaO+V5tQzH1cfSnpvZi12c+++wz1q1bN/bf//6XlZeXG9rs27ePdenSRfvuRo0aZVregQMHWHJyMgPAXC4Xmzt3bpiNvseuZcuWrKyszLHPQxA1iZrQQ1/Xuf/++7VzPGTIkLDnydGjR4NGz/7zn//EXKfP52MtW7ZkANj5559vaasfIbMafeDByefrmWeeGTRy4/P5wmxmzJjBRFFkAFinTp0MbSLhjz/+0EbGMjIy2N9//x1moz9fPXv2ZIqiRF1fTbn/LrvsMs2PSZMmcR83ZcoU7biLL744qrqdPAfbtm1jo0aNYm+99RZbsmQJKykpYYwx1rp164jbs/v372dHjx61tNm9ezfr0KGDVvYrr7wSk//V3T6pCSNkjDF23333aX48/fTT3MctXLhQO65r166GNlu2bNFsXnrpJadcZowxRoKsCiFBVvM4duwY1wtv7dq12neXlJSkPYhD0TeOHnnkEdPyrr76akcbSARRE6kpDcK6Sm5uLvN4PAwAS0lJYbm5uYZ2a9eu1YRATk4O8/v9MdU7a9Ys7XudMmWKpa2Tgsyp5+vy5cu1/c2bN7dsdN55552a7UcffRST/8OGDdPKmjhxoqGNoiisV69emt33338fdX015f77+uuvNT/OOecc7uMGDBigHTdz5syo6q6OcxCNIOPlf//7X1Tnzojqbp/UFEH2119/aX60bt2au5NDHy77r3/9y9SuZ8+emoCNpQMllCrPsqhmDvztt9+0bUYTK82SfSiKgi+//BIjRoxA27ZtkZycjLS0NHTu3Bl33HEH1q5da+mbfoKxGhI4f/58XHvttWjbti0SExPDJhb7/X7MmTMHDz30EPr27YvGjRvD4/EgLS0NHTt2xJgxY7Bw4ULTOtUMaPqhz7Zt24Z9ZrNzxTNRdMWKFbj11lvRqVMnpKWlISUlBe3bt8fo0aPxyy+/2B6v1tO/f38AQElJCV5//XX06NEDWVlZSElJQZcuXTBu3LiqmbwYJzIzM7nOb9euXdG5c2cAQFlZGbZt2xZmwxjTwivsso7de++92t/Tp0+P1O2YWLZsGe644w6ccsopyMzMRGJiIlq1aoURI0bghx9+sDzWKGvSnj178NBDD6Fz585ISUlBZmYmzjrrLLzzzjvw+/1cPhUXF+PNN9/E4MGD0axZMyQkJCA7Oxs9e/bEM888gyNHjlgeH3qvyLKMyZMnY/DgwWjevDlcLhfatGkTdlxubi4effRRnHLKKUhJSUF2djZ69eqFf/3rXygtLQUQCMEWBCHs+J9++kmrU/99WnHvvfdqx8yePZvrGB7ssixW1ff2/fff45JLLkFOTg4SExPRpk0bjBw5EsuWLYv4M3i9XkyaNAmXXnopWrZsicTERGRmZuL//u//8NBDD5kme9i8eTNSUlIgCAIyMjKwc+dO0zqOHTuGVq1aQRAESJJk+dyuDXz99dfwer0AgGuvvdY03K9r165aqNahQ4eC3r/R8NlnnwEAkpKScPnll8dUFi9OPl/178Srr74aiYmJpmWNGjVK+/u///1vRD7rKSoq0u759PR00wzUoZ+tOt4Pv//+Oxo1agRBEJCQkIAvv/wyzCaWttfQoUO1a3Px4sXYsWOHrU979uzBr7/+CgBo2LAhLrnkkig/Xe1Gn8jk0KFDUZdTk9snahihIAgQRVEL6Q3lp59+wpgxY3DSSSchLS0NycnJaN++PcaMGYPFixebln/qqaeie/fuAIDdu3dr15UV+nBZl8uF66+/3tR25MiRAIC9e/c6O9XICVVnldRDPzJm9WOkprdt28ZOO+00y+NEUbQcktT31v3yyy/srrvuMixHP4LVv39/Lp9Hjx7NKioqwurUj4zZHW92rszw+Xxs7NixtmUPHz6clZaWmpaj2vXr149t376dnXLKKaZltW7dul6O8Km9IADY8uXLw/brR9HMhrdVZFlm6enp2jVbWFhYVW5rFBcXsxEjRtheK0OHDjX1J7THa/bs2SwzM9O0rMGDB5uGgqr8+OOPrHHjxpY+paWlsW+++ca0DP29cvToUda3b1/D61bPL7/8ok3INfrp1q0b27Nnj9b7GXq8LMusbdu2DADLysqyDe0oKyvT6mvVqhWTZdnSPhLsRt+d/t78fr/lc00URfbPf/6Tu3f6999/186l2Y/H42Hvvfee4fEffPCBZtenTx/TEaCrrrpKs3vyySctz2lt4Morr9Q+z4wZMyxtX3vtNc3WqnfcjvLyci3s6dxzz7W1d2qEzMnnq37U691337UsKz8/X7OVJMk0OsKO7777TivHLvzu8OHDmm2jRo2iqo8xvtGhOXPmsNTUVAaApaamGoaxOdH2evDBBzXbZ555xtZ3fTKF++67j/cjh1HbR8h++OEHrexYRsji0T7hGSH7448/WJMmTRgQCKP87LPPwmwOHz4cNFpq9nPzzTczr9drWM+ECRM0O6tpJyr6cNnLLrvM0vbvv/925FoNxZGkHlaoKV2feuoprF+/HgAwa9asMDt1NEJl+/bt6N27t5YOtm/fvrj44ovRunVryLKM1atXY/LkyTh27BheeOEFiKJom1L/tddew+zZs5GTk4MxY8aga9eu8Pv9WLlyJRISEjS7srIypKamYuDAgTjjjDPQpk0bJCYm4uDBg1i/fj2mTp2KkpISfPrpp8jMzMSbb74ZVM+9996LYcOGYcKECZoyf//998N6M1u1asV1DvXccMMNmDZtGgAgMTERo0ePxllnnQVJkrBq1SpMmjQJRUVF+PLLL1FQUIDZs2dbjggVFhZi6NCh2Lx5My677DIMGTIE2dnZ2LFjB959913s2bMHu3fvxqhRo2p973IkeL1ebN26Vfu/devWYTbr1q3T/j7jjDMsyxNFEd27d8dvv/0GRVGwceNG9OrVyzmHQ6ioqMCgQYOwfPlyAED79u0xYsQInHzyyXC73di2bRumTJmCLVu24IcffsCwYcMwd+5ciKL5oPlff/2F1157DYwx3HbbbejTpw8SEhKwatUqvPfeeygpKcHcuXPx0ksvYfz48YZlzJw5EyNGjIAsy3C73bj00kvRv39/NGnSBIWFhfj111/x5ZdfoqioCJdffjnmzp1rOyn7+uuvx+LFi3Hqqafi2muvRZs2bVBYWIg1a9ZoNhs2bMDFF1+sjYJ1794d119/PVq0aIHc3FxMnz4dS5YswYgRI0xHi0RRxNixY/HEE0/g2LFjmDlzptZTZsSMGTO00eWbb77Z8txWJU58b/fee6824u/xeDB69Gj07dsXoihi5cqVmDRpEh577DEMGzbM1p9ly5Zh0KBBKC0thSAIuOCCC3D++eejefPmKCsrw7Jly/DZZ5+htLQUt99+OxISEsJGF8aOHYs5c+Zg5syZWLZsGZ5//vkw3ydNmoQZM2YAAHr37l0nllyJ5JnTo0cPw+MiZcmSJdp9E+kz65lnnsH+/fuxf/9+eDweNGnSBL1798bw4cNx8cUXW76bnHy+siiTjsmyjA0bNgSdS14i8b9Ro0Zo3bo1du/ejSNHjuDw4cO2yU6i4YsvvsDo0aPh8/nQqFEj/Pjjj2Gfzam214033og33ngDADBlyhQtWskMq2QK0fLOO+/glVdewd69ewEEznPPnj0xbNgwjBgxwpFkN05y5MgRPP7449r/V1xxRdRl1cT2ya+//ophw4ahsLAQycnJmDFjBi688MIgm/z8fPTp0wfbt28HEBjtuuKKK9ChQweIooh169Zh8uTJ2L9/PyZNmgS/32+Y4Oq6667Dww8/DK/Xi5kzZ2LixIlITU019U1fht3117VrV6SmpqK4uBhz5szhPwF2OKHqnE57L8syO/300xkAlpCQwL788ktDu0OHDmm9OKIosnXr1oXZhKbg7du3LysoKLCsf968eZajS3l5eVqPvCiKbMeOHYZ2Tqe9nzZtmra/SZMmbP369WE2u3btCup5NosH1p8Tj8fDvvvuO8PPqS9rxYoVtp/BjJKSEjZr1ixHflavXh21H7x89tln2uc+/fTTDW2ef/55294gPaNGjdLsjXqFnCQ0dtxocrrX6w3yyajnWN/jhcqRni1btoTZrVixgrlcLobK0SOj0ZY9e/ZovXCtWrVia9asMfR9xYoVLCMjgwFgLVq0MOwBCx15v//++y1HoPQjaHfeeaehbeizInSEjLHAM0dNH9yvXz/T+hhj7Nxzz9V62ffu3WtpGymRjJDF+r3pJzpnZmayVatWhdls2rRJS4mu/hj1ThcWFmrJITIzM9mCBQsMP9/WrVtZq1atGBCYK3XkyJEwm/z8fNaiRQvtHC9atEjbt3nzZpaSksIAsPT0dLZ9+3bDenjZuHGjY88vo8/CgyzL2nclSZJtwokdO3Zo30X79u2jqpMxxl5++WWtnK+++srWnjft/Zlnnsl27dplWo6Tz1d9WQ888IBlOfr5ZgDY559/blu3ETfeeGNEIzXq8wJA0LUcCVajQxMmTNDmFbZu3Zpt3rw57Hgn216MMdajRw/Nn19++cXU799++02z6969O/8HNoA37X2nTp0Mk6zwEOsIWW5urvY8mDlzJvvoo4/YHXfcERTFcP7555uO/vAQj/aJ1QjZjBkzWEJCAgPAsrOz2dKlSw3LUOddCoLA3nzzTUOboqIidv7552t1zZ4929BOHyHx8ccfm/q9a9cu7d5o3LgxVzIfNZJOEAR2/PhxW3seaqQg068jMGHCBEvbzZs3M0mSGAA2duzYsP36l0NKSgrbv38/12eyY/v27Vq5L7zwgqGN04JMnznrxx9/NC1nxYoVQQ9eo3Ae/YNp/PjxpmV9+OGHXHZ26K+RWH/MrjGnyM/PZ02bNrVthDzwwAOazdtvv21bbqT20XLgwAFt4v8VV1xhaev1elm7du0YAHbSSSeF7Q9t2C9cuNC0rJEjR1ra3XPPPVpj8s8//7T0a9KkSVpZU6dODduvv1fOOOMMSzH2+++/a7Zdu3a1THCgL9dIkDEWPAHaSOQwFnguqTZDhw61/KzREKkgi+V702dMmzx5smk533//fVCdRo1Q/RpF3377reVnnD9/vmZrls1qwYIFWla81q1bs2PHjjGv18vOOOOMmBsXeiJdW8vqJ9owvoKCAq2MBg0aOG5vxnXXXaeVY9aJoufZZ59liYmJ7MILL2Tjx49nn332GZs+fTp766232BVXXKG9rwGwZs2asX379hmW4+Tzdd68edq+5s2bW4bnhk5riDbJweWXX66VYdThGau9EWaC7Mknn9S2d+nSxfScO9n2YoyxiRMnauVZhY3pxatdvXZ88sknzOVysX79+rGnn36affrpp+yrr75i77zzDrv++utZYmKiVldaWlpUoixWQTZ79mzT50Pz5s3Z+PHjY07EE4/2iZkge++997TndPPmzQ0HExhjbPXq1drxDz74oGVd+fn5Wsft4MGDDW304Z9W4dZ68WpXr8odd9yhHRNtB0oo8YmhsUGdQJyeno6xY8da2nbs2FEbWv35558tba+88ko0a9bMER/btWunrU21YsUKR8q0YteuXfjzzz8BAN26dQsb5tXTq1cvLcxr9+7dWL16tamtJEm4++67Tffrw8U2bNgQqdu1DlmWcc011+DgwYMAApOTr7rqKkPb4uJi7W+rSeIqSUlJ2t9FRUUxemrOl19+qU38f/jhhy1t3W43RowYAQDYunWraSIFIBDmd84555jut7pWGGOYOnUqAGDgwIG2a+3ow0ns7uu77rrLMhzwm2++CbKVJMnU9r777rOsCwBuv/127e+PPvrI0Ea//dZbb7UtsyqJ5XurqKjQEhM0adLEcqLz0KFDcfLJJ1v6oj7bO3bsaDtpf8CAAdrz2uwa6Nevnxbis3v3btx+++146qmntGfeyJEjLX2uTcTrebN7927t7+zsbFv7q666Cvv378ePP/6Ip59+Gtdffz2GDx+Oe++9FzNnzsTff/+NDh06AAAOHDhgmuzCyc/bv39/rc79+/fjtttuC1tjCgg8K957772gbeq6ZZFSE94Psixj7NixeOmllwAAZ511FhYtWoTmzZsb2jvd9rr22mu1zz5z5sygc6JSWlqqhRZ7PB5cd911HJ/MnL59+2L37t1YsGABxo8fj1GjRuGqq67CHXfcgc8++wxbtmxBz549AQTOsxpCXxNQE6317dvX8j3FQ024/gBg/PjxuP3226EoCjp16oSlS5cGJS7Ro15/giDgoYcesiw3KysLF110EQBg4cKFqKioCLO54IILtHfIokWLDBNAMcYwZcoU7X/ecNmsrCztb/0zMhZqVgBtJYsWLQIANG3aFD/99JOtvXrh7t69G2VlZUEXlh6rRkkohYWFmDp1Kn788UesXbsWeXl5KCkpMbTdt28fd7nRsnLlSu3v888/39b+/PPPx/z58wEEBKNZPHDHjh2DLqxQ9A/uWLIt1pbFw++77z7t5dKqVataufiuev8AgWvz66+/trTXf68bN240zE4IBObhWGF1raxfv15bkDstLc3WJwBITU3F8ePHsXHjRks7u/t61apV2t/nnXeepa2addSK8847Dx07dsSWLVvw6aef4sUXX4Tb7db2+3w+bT5Es2bNMHToUNsyq5JYvre///5bE/f9+vWzbSQMHDjQ9PsqKCjQ5vU1adKE+xoAYHkNPP/885g/fz5WrFgRlCGsbdu2eOedd2zr4OG5556rE3PQokG9bwE+QWa3EHSXLl3w008/oWvXrigvL8e8efOwYsUKnHnmmTH7aoYkSXj33XcxZMgQyLKMTz/9FKtXrw5aGPqnn37CrFmztAyraudUvOZ+xkp5eTmuvvpqbc7+RRddhK+++spyoWGn215ZWVkYNmwYpk2bhpKSEsyYMSNMgKsLEwPApZdeGvNCu6rwNqNly5aYPXs2unbtikOHDmHTpk2YMWOG1jFZHQwZMkRrD/n9fhw+fBiLFy/GG2+8galTp2Lq1Km4++678e9//7vGzXPjRVEU3H333Zg4cSIAoGfPnvjxxx/RsGFD02PU6y8zMzOozWuGKsIqKiqwY8eOsA5BSZIwatQovPLKK2CM4dNPPw17ji9atEibr9ajRw/b55eK/jp1KhN5jfumi4uLcfToUQCB9MaRptg9duyYqSAz6xUK5ddff8V1113HnXI02h60SFBHbICAiLJDb6M/NhSrmwNAULKT8vJy23prM08++aT28GjSpAnmzp1reX70E0R5zk1ZWZn2d1paWgyeWqMf5Ro+fHhEx1o9WGK5VvQ+zZw5EzNnznTEJ8D+vj5w4ID2d7t27Sxts7KykJmZiePHj5vaCIKAW2+9FQ8//DByc3Px3XffBU2+/vbbb3H48GEAgd62WHs6YyWW701/7uwaOnY2e/fuhaIoAAIvQX3HgR1W14DL5cJ///tfnHbaaVrDTt2Wnp7OXUdNJ17PG7XRI0mS6bs1UtQlWt5//30AwA8//BAmyJz+vIMGDcL06dMxZswYFBcXY926dXjssceCbDweD95++2389NNP2jPLqsPSini/Hx5//HEUFBQACCQ++uSTTywb91XV9rrxxhu1RGSTJ08OE2T6Ts+bbrop7Hirjpvk5GSuDupQGjRogPvuuw/jxo0DELj+qlOQ6XG5XGjWrBmGDx+Oq666CjfeeCOmTJmC//znP0hKSsKrr74aVbnxvv4mTJigXX+DBg3CrFmzLJNqACfaCceOHYvq+jNizJgxeOWVVwAEkss8++yzQcll7K4/M/TvFv25i4UaJ8jULzBa1N5cI3heJlu3bsXQoUO1E9ypUydceOGFOOmkk5CdnR009HvrrbfiyJEj1TLcrR9CTklJsbXXX/hWw8+1tffPaV588UW8/PLLAAIN2Hnz5tkK38zMTO1vNSOVFerLLvRYp4nlHrK6f2K5VqrKJ8D+vlZHtl0uV9BIlhkpKSmWggwIPOSffPJJVFRU4MMPPwwSZB9++CGAgHC7+eabbeuramL53vRhL1Y96ypWz6ZYrgGfz2e5v2HDhsjOztaede3atbPNLFbbSE1Nhcvlgt/vx/Hjx+H3+y0b2E49b1TBLssySktLua4DHvr3768Jsk2bNoXtr4rn65VXXom+ffti4sSJmD17NrZt24bS0lI0bdoUAwcOxP33349u3bpp4dUAtKkJkRLv94M+W2xJSYlthEpVtb0GDRqEFi1aYN++fVi4cCF27dqlRWGooYVAIJrASFxZNcxbt25tGWZvhT4awuj6iweiKGLixIn45ptvUFBQgAkTJmDcuHFRdQrUtusPqJp2QqdOnXDWWWdh6dKl2LlzJxYuXIh+/foBCA6XTUxMxLXXXstdn95Xpzqqapwg0wuJc889N+YFLSPlH//4hybGnnzySbzwwgumqVrtYqydRN9jYRY6qUffkKrK0RheSktLbecC8dKqVSucfvrpjpQFAK+++iqefvppAIHe0Llz53INW+sFG89LQR9nzDPKGS3qPSQIAvx+f40Q3fr7+plnnsHzzz9fbXWrIsHv98Pn89mKMp77q0GDBrjqqqswdepU/Pzzz9izZw9atWqF3bt3Y+7cuQACDZG2bdvG/gHiiP57U1OfW2F17vRljRo1KijNdazceeedQffXli1b8NRTT+Gf//ynI+Vv2rTJsUZb3759bUctjRBFEe3bt8fmzZshyzL27dtnGl4MOPe80Ycp5ufnOybI9CE/Rh0gVfV8bdKkCcaPH2+6xAMQPJdSnW8UKfF+P/zjH//AtGnTsHTpUsyaNQsjRozA9OnTTZ9/VdX2EkURo0ePxksvvaSFjT377LMAAqnu1Yb6qFGjqjWawO76ixepqano27cvfvjhB1RUVGD58uWWOQPMiPf1d99992Hjxo2YNWsWli1bhgsuuABz5syxbI+q0xTUd6lT3HjjjVi6dCmAwIiYKsj04bLDhg2LSIhGGsrNQ40TZBkZGVp+/+qYmxXKvHnzAACNGzfG+PHjTcVYUVFR0BdS1TRt2lT7W78+lhl6G6cSmcTC4cOHIx6CNmP06NGOze3697//rYWtZGRkYM6cObYJJ1T0os0qcQoQiKdWk7KIomib/CAWmjdvjr/++guMMezfvx8tW7assroi8Umluu/rZs2aaXOXduzYgU6dOpnaHjt2jPvlfPvtt2Pq1KlQFAUff/wxnnvuOXz88cdaWF68k3k4gf7ZsW3bNlt7K5uqugbUORdAYL2dvLw87N69G6+//jouuOAC23XseJg2bZpjnQi//vor11xFI7p27YrNmzcDCDxzrASZfu4k77wII9q0aYMlS5YACDRCWrRoEXVZeux65OP1fN2wYYM2otC+ffugd28kROL/kSNHtAZoo0aNHFmDLC0tDT/99BOGDBnCJcqqsu01ZswYLbHIlClT8MwzzwAIXnvMLLlLVc09r66IlWjQi5ZoxWK82ydutxvTp0/HNddcg//9739coqx58+Y4fvw4Dh8+zNV5ysvw4cNx3333aSNi//nPf5CSkoJPPvlEs4l07Tt9+99ondpoqLauc30vvd0Ndu655wIINJ54GgFOkpubCyAwIdxqZGHevHlaw8uMSD6zHfqkHGoPvBX60aiqXIC4NjNx4kQ8+OCDAAIPwNmzZ0fUG9qlSxetcbJ+/XrLl9jSpUu1uYZnn312lY5aqr0/gH2Gwuqie/fuWsz1/Pnzbe8dJ9EvfKou1G6GGj7DQ9++fdGlSxcAwMcffwyfz4ePP/4YQKBD57LLLovc2RrGqaeeCo/HAwD47bffbMOz1URCRjRs2FDLrrV8+XJH5t7u3LkTd955J4DASOgXX3yBzz//HJIkQVEUjBo1KqjhVdu54IILtL/tFiTVJ2UYMmRI1HXqG3aqGHQC/QiMUY98vJ6v+kZaLCHH/fv318I9Fy5caDnPRP9dxvJdhaKKsrPPPhsAMGvWLAwfPtw0BLiq2l4dOnTQki/t2LEDixYtwsKFC7Fjxw4AgeyPVh1lVYHd9RdP9Oc+mtF0oGa0T1RRduWVVwKAJsrMnv1q26W8vBwLFy50xAcgMN9L9aG4uBgzZ87Erl27tGugRYsWGDRoUERlqommBEFAt27dHPGz2gSZfjjcLiRo9OjR2t9qT0p1oYZj7Nixw1REybKszTeyIpLPbEebNm20ML2///7bUpStWrUKv/zyC4CAcq8JcynULItO/DgxOvbhhx/innvuARBoyP3444/o06dPRGUIgoCrr74aQEBwv/3226a2EyZM0P6u6snD11xzjdaI/uc//xnztecEkiRh5MiRAAKhEWbp4qsCvTCaOHGipah46623Iir7tttuAxBIWHH//fdrL73Ro0c71rsXTxISErTUwrm5ufjvf/9rajt79mzbjJjqs720tFSbaB0tsixj5MiR2st9woQJOOmkk9C3b1888cQTAAIpzm+55ZaY6gECWRaden5FOzoGBMJq1Hv7iy++0JLHhLJu3TrtHZCTkxPUSRMp+mQbTi3xsn379qDREfUa0xOP5+umTZu0ejIzM2O6dlJTU7XPVVhYaPreYozhP//5j/a/0+8HVZT17dsXQCBJhpkoq8q2l34EYvLkyUHnI9LRiVjJz88PetYbXX/x4o8//tBGtNxud9QhszWlfeJyuTBt2jRt+aBly5ZhyJAhhqJs1KhR2t/PP/+8o/kZQq8/fbjs6NGjI5raIcuyFoHQuXNn55JHObGYGc/C0Pfee69m89tvv1mWJ8sy69mzp2Z/3333sYqKClP70tJS9sknn7AvvvgibJ9+QU+eBTkHDx6s2b/xxhth+71eb9AihrBYQPaNN97QbD799FPbuu0Whp4+fbq2v2nTpmzjxo1hNrt372bt27e3XdRS3d+vXz9bvyKxrQ18+umn2sLZycnJUS/Uyhhj+/fvZ8nJyQwAc7lcbN68eWE2+sU6W7ZsycrKymLwno+HHnpIq/O8885jBw8eNLWVZZnNnTvXcIFzs4UejbCz3bt3L8vMzGQAWEJCgu09kZuby8aPH2+4cGckC80zxljfvn01+zvvvNNwIenQxX/N7ms9x48f175//Y/ZgtFOEcnC0LF+b4sWLdL2Z2VlGS7qvWXLlqDF1AHjhaGLi4u1RVUFQWCvvvqq5aLex48fZ2+99RabO3du2L6nn35aq+uqq64K2ufz+VifPn20/e+//77lOahN3H///drnuvDCC8OeJ/n5+ax79+627wBeysvLWUpKCgPAzjnnHEvbb7/9ln311VeWi9quW7eOdejQQfOvf//+prZOPl9zc3PZhg0bTOtavXo1a9mypVaW1SLo+jaP1TPojz/+0N41GRkZhs+y5557TiunZ8+epmXxYLYwNGOMFRUVBT0HL7vsMub1eoNsnGx7hVJUVKRdR6mpqSw1NVV7BxcUFET1eUNZunQp+/DDDy0X/t67dy/r1auX9hlPOukk5vP5Iqon0oWhi4qK2Lhx49jhw4ct7VavXs1atWpl255mjAVdf0bvAMaqv31i9S7x+Xzsqquu0vb37t3b8Hu/8sorNZsRI0ZYXhs+n4/NnDmT6xmnKApr06aN9u5p0qSJVs/WrVsj+px///23duz9998f0bFWVNscsoEDB2oq/Oabb8YDDzyA1q1ba5M4O3TooKVMFkURM2fORJ8+fbB//3689dZb+PLLL3H11Vfj1FNPRUZGBoqLi7Fnzx6sWrUK8+fPR0lJCV544YWY/bznnnu00acHH3wQCxYswAUXXIAGDRpg69atmDJlCrZu3YrzzjsPW7dutRwGHjhwoPb3o48+iiNHjqBTp05aZqzmzZtHNNQ5fPhwzJo1C9OmTcPBgwdx+umnY8yYMejTpw8kScKqVaswadIkrefh/PPP18J5iACzZ8/GTTfdpPWM3HTTTTh+/Ljtmkinn346WrVqFba9WbNm+Ne//oU77rgDfr8fF154IUaNGoV+/frB7/dj9uzZWhYfl8uFDz74wHKRRv2cxZ07d1rOEbHiH//4B/766y/Mnz8fv/76K9q1a4crr7wSffr0QaNGjeD1enHo0CFttPXQoUMYOHAgnnrqqajq46FFixaYNm0aLr30UlRUVGD06NF44403cOmll+Kkk05CUlISCgoKsGXLFixfvhxLliyBLMu2a4fx8P7776Nnz54oLS3FO++8g2XLluH6669HixYtkJubi+nTp2PJkiXo06cP9uzZg/3793P1mGVkZGDEiBFBYU79+/fHSSedFLPPNYW+ffvizjvvxDvvvINjx46hd+/eGD16NPr27QtRFLFy5UpMmjQJJSUlGDZsmOW9lJKSgq+//hr9+vVDYWEhHn30Ubz//vu48sorccoppyA1NRWFhYXYsWMHVq5ciQULFsDr9WoLhqosXrxYi1Jo0aIFPvjgg6D9LpcLU6dOxWmnnYbCwkI88MAD6NevX7WHRVUFzz77LH766Sds2rQJs2fPxumnn45bbrkFzZs3x7Zt2/D+++9j7969AALXYqxzGRMSEjBkyBDMnDkTq1atQnFxsWn66u3bt+OBBx5Ao0aNMGTIEJx22mnIycmB2+1Gbm4uFixYgG+++UbLwNasWTPL5C5OPl/37NmDnj17olevXhg4cCA6d+6MpKQkHDp0CPPmzcMPP/yg9cg/+uijQaNF0dK9e3c8+uij+Oc//4mCggKcddZZuOWWW9CrVy8tdEoNK09NTQ27jp0kNTUVs2fPxkUXXYRFixbhm2++wdVXX42vvvpKG82vyrZXamoqrr76akyePDko6diVV17p2AhDbm4uxo4di4ceeggXXHABzjjjDDRv3hyJiYk4evQolixZghkzZmjho2lpaZg+fbplttJJkyaFLSisn9cV+s7MysoKW9TY7/fjH//4B1577TWce+65OPPMM9GhQwekp6ejoqICe/bswYIFC4KmwnTu3Bmvv/56LKfD8fZJLLhcLnzxxRcQBAFfffUVli9frs0p03//H3/8MbZs2YK1a9di+vTpmDNnDoYPH44ePXogKysLZWVl2L9/P/7880/MnTsXx44d4wotFgQBY8aM0aId1OlJ55xzDteSLnr0Ux+GDRsW0bGWOKHqeEbI/H5/UO9M6I9Rz+yBAwfYwIEDTY/R/0iSxD788MOwMiIdIWOMsXHjxlnWdfbZZ7PDhw9rvSRWPenXXnutaTmh54qn19/n87FbbrnF9nxcddVVrLS01LQc1a6+jZCFjoLw/hj19ut57bXXmNvtNj0+LS2NqxdRf4xZrxcvFRUV7O6772aSJHF9xlGjRoWV4eRIi8qyZctYu3btuHxKTU1la9asCSsj0hEyxhj75ZdftBE6o5+uXbuyPXv2sObNmzMA7P/+7/+4yl2xYkVQOVOnTuX2KVqqc4SMscDz+4YbbjA9d6IosldffdWyh17Ppk2bgkZxrH4SEhLY7NmztWOPHTumPXtFUbR8rn/++edaOd27d7fs7a9N7Ny50/b8DRo0iB07dsyR+r7++mut3ClTppja/fvf/+Z+pp5zzjls165dXPU78Xz9/fffbX1KS0tjEyZMsPWHd4SMsUDP/P3336+NlBn9NG7cmM2fP5/rXFjBc/8VFxezc889V7O79NJLw0bKnGh7GfHbb7+FHf/LL7/E+rE1Zs2axX39de3a1XDEMhT9u4bnx6g9eOzYsYjKuPLKK1lubq6lX3p7u7aCU+0TO3jeJT6fjw0fPlyzO/PMM8NGwQoKCtiIESO4z9fTTz/N5d/OnTvD7sOPP/444s+pjrC2atWKKYoS8fFmVJsgY4yxsrIy9sorr7A+ffqwrKysoIaiVaNhwYIF7LbbbmNdunRhmZmZTJIklp6ezk455RQ2YsQI9u6777IDBw4YHhuNIGOMsdmzZ7OhQ4eyhg0bMrfbzZo2bcoGDBjAPvzwQ214m0eQ+f1+9u6777L+/fuzhg0bMpfLZXquImlkLlu2jN18882sQ4cOLCUlhSUlJbG2bduy66+/nuvBrtZDgozvx06QMcbY2rVr2V133cU6duzIUlJSWFpaGuvatSt77LHHuBoeJSUlWn0ej4cdPXrUgU/M2NatW9njjz/OzjzzTNaoUSPmcrlYcnIya9u2LbvooovYyy+/bCh6GKsaQcZY4KH8+eefs+HDh7O2bduy1NRU5nK5WHZ2NuvRowcbO3Ysmz59OisuLjY8PhpBxhhjhw4dYg8//DDr1KkTS0pKYpmZmaxHjx7s9ddfZyUlJUxRFJaUlMQA61AqPYqisIyMDAaAZWdnW4bLOEV1CzKV7777jg0dOpQ1atSIJSQksFatWrFrr72WLV26lDHG1yBUURSFffPNN2z06NGsY8eOLD09nUmSxDIzM9mpp57KRo0axSZPnszy8/ODjtO/qB9//HHLOhhjbOTIkZr9Qw89ZGtfW/B6veyDDz5gAwYMYE2aNGEej4c1a9aMDR06lE2bNs3RhoLf79dCqQYPHmxql5eXx7788kv2wAMPsHPOOYe1b9+eZWRkaPf2qaeeym677baowsRjfb4WFxezyZMns9GjR7OuXbtq7/acnBx29tlns1deecUytFtPJIJMZenSpWzMmDGsXbt2LDExkWVmZrLTTz+djR8/nh05coSrDDt47z8jUWbUWRFL28sIRVGCplS0adPG0eu0qKiIffPNN+zxxx9nAwYMYB07dmTZ2dnM5XKxzMxMdvLJJ7PRo0ezb7/91jJUWo8TgowxxjZs2MDefPNNds0117Bu3bpp5zMxMZHl5OSwfv36sccee4xLJDIWeedtrPcPD7zvEr/fH/QcNxJljAVCfu+//37WvXt31qBBA+ZyuVhqaio76aST2LBhw9gbb7zBtm/fHpGPAwYM0OpNSUlhRUVFER2/ZcsW7fiXXnopomPtEBiropyiBEFExJw5c7QMW/fee2/ECSaI2Fm7di3+7//+DwD/dzBv3jwMHjwYQGDtlTfffLMqXSSIuPDvf/8bDz74ICRJwq5duxxLf08QBFFbeOaZZ/DCCy8gJSUFu3fvDlrPLlbiv2IsQRAATqyBl5aWVqVzuQhz9NnOeOeuvfvuu9rfdWHtMYIw4vbbb0dOTg5kWcarr74ab3cIgiCqlcLCQkycOBFAIN+Ek2IMIEFGEDUGVZA9+OCDaNSoUZy9qXssWrTIcv2ziRMnapPqmzdvjosvvti2zL/++ktLYjFo0CBtnS2CqGskJSXhueeeAwB88MEHOHDgQHwdIgiCqEYmTJiA/Px8NGjQAI8++qjj5VPIIkHUAPLy8tC4cWM0bNgQ27dvr9KFo+srHTp0QHl5OS688EJ0794djRo1gs/nw/bt2zFr1iz8+eefmu13331nKsh++uknKIqCLVu24NVXX8XBgwcBBDL/qQuwEkRdRFEU9OzZE3/88Qfuvvtuy7WNCIIg6gqFhYVo27Yt8vPz8d5772lrkDoJCTKCIOoFHTp0wPbt2y1tkpKS8OGHH2qLWBuhX5pAhXe+2c8//4zS0lJ7Zw1o2LChtrgrQRAEQRB1BxJkBEHUC5YvX46ZM2di+fLl2L9/P44ePYrS0lJkZWWhY8eOGDRoEO644w40adLEshxVkKWmpqJjx4644447cNNNN3GtW9amTRvs3r07Kv/79euHBQsWRHUsQRAEQRA1l2pbGJogCCKe9O7dG7179465HOrDIgiCIAjCSWiEjCAIgiAIgiAIIk5QlkWCIAiCIAiCIIg4QYKMIAiCIAiCIAgiTpAgIwiCIAiCIAiCiBOU1IMgCIKIClmWUVZWhtLSUu1H/39JSQkqKirg9Xrh9XqD/jb63+v1QpZlKIoS9Fv9URQlaB8QyHpp9qNmvhRFEZIkweVywe12az9m/3s8HiQkJCApKQmJiYlITExEcnKy9rd+e1JSElJTU5GcnAyXi16pBEEQROTQ24MgCKIewxhDUVERCgsLUVhYGPZ3QUGBtk39XVJSgtLSUpSXl8fb/RpFcnIyUlNTg37S0tKC/k9PT0dmZiYyMjKQmZmJzMxMJCUlGa5vRxAEQdQPKMsiQRBEHUNRFBQUFCA/Px/Hjh0L+x36tyzLMdUnSRKSk5ODfpKSkpCSkoLExETMnbwQAgMgCwATAEUAFEBQ1L91/zMAqPzNELBX31LsxHZB3abbDb2mEVBpqPtfYIFAfYGBier/LGgfEysLlwI/Q8YOQHl5OcrKylBWVoby8nLtf/V3RUVFTOfP4/Fo4kz/k5WVhYYNG6Jhw4Zo0KABGjZsiJSUFBJvBEEQdQwSZARBELUIWZZx7NgxHD58GEeOHMGRI0fC/s7Ly4Pf74+o3OTkZKSnpyMtLQ3p6elIT0/Hb/9dDsEvAH4Rgl8EfELgtyxAkAVADvwNBRBQf0UCqxRwzKUALgZICpiLAa7K3xLDpfedr404Hj9+XPvt9XojqisxMVETZ6pQa9CgARo3bozGjRsjJycHDRo04FqonCAIgqgZkCAjCIKoQciyjLy8PBw8eDDs59ChQzh69Cj3iFZGRgays7ORlZWFv37aAMEnAj4RgvfEb20bq7+CKl4wVI7QuRmYWwFzK4Du96Cbz8HRo0eRl5eHvLw8FBcXc5XrcrnQuHFjNGnSBDk5OWG/GzduDLfbXcWfjiAIguCFBBlBEEQ1U1FRgf3792PPnj3Yt29fkOjKzc21Hd2SJAkNGjRAo0aN0LhxYyz8fAVQIULwShAqf8NLIquuwUQGeGQwj1L5I2P4k5doI6O5ubnIy8uzFeyiKKJJkyZo3rw5WrRogRYtWqB58+Zo3rw5mjZtioSEhGr6RARBEARAgowgCKJKUBQFubm52Lt3b9hPbm4urB69kiQhJycHTZs2xR/fr4dQLp348YoBsVWPQwQJcxgYkKCAJcjaz0X3DMChQ4eQm5uLQ4cOWYZJCoKAxo0bayKtZcuWaN26Ndq0aYPGjRtTKCRBEEQVQIKMIAgiBmRZxoEDB7Bz586gn/3791s2fFNTU9GqVSu0aNEC8z9ackJwVUiB0S4SXEQVwMACYZFJMliijGtfuAz79u3D/v37sW/fPpSWlpoem5iYiFatWqFNmzaaSGvdujWaNWtGKf8JgiBigAQZQRAEB+qI165du7Bjxw5NeO3evdtUeLndbm2UYel/V0Mod0EolSCUuQC/QKKLqFEExBoDS/SDJcm47sVh2Lt3L3bt2oW9e/eahtK6XC60bNkS7dq1Q/v27dG+fXt06NABDRs2pIyQBEEQHJAgIwiCCMHv92PXrl3YunUrtmzZgq1bt2Lbtm2mowcJCQlo06YNti7cDaHUBaHUBbFUAiokEl1EnYCBgSXKYMl+sGQZA289C7t378aePXtQVlZmeExGRkaQQGvfvj3atGkDj8dTzd4TBEHUbEiQEQRRrykrK8O2bduwdetW7Wfnzp3w+Xxhti6XC61atcKu5QcCI12lLoilLqCchBdRP1HnrCnJfrBkP84b2xvbtm3D3r17DZOLSJKEVq1aoVOnTujcuTM6d+6M9u3bUyIRgiDqNSTICIKoN/j9fuzcuRMbNmzAxo0bsXHjRuzatcswwUZqaio6dOiAtT9sgVDiglDsglDmosyFBMEBE1hgNC3Fj2FPnI/t27dj27ZtKCoqCrOVJAnt2rXTBFqnTp3Qrl07mpdGEES9gQQZQRB1EsYYDh8+jA0bNmgCbPPmzaioqAizzc7ORseOHfH7l2shlLggFrso3JAgHIaBAR4FSqoPI/85DJs2bcKmTZtQUFAQZuvxeNChQwecfPLJ6Nq1K7p27YomTZrEwWuCIIiqhwQZQRB1Ar/fjy1btmDNmjVYu3Yt1q9fj/z8/DC7lJQUdO7cGX99vQlCkQtikRuCT4qDxwRBaCGPqT4Mf2EoNm/ejM2bNxsugt2oUSN07doV3bp1Q9euXdGhQwcaRSMIok5AgowgiFpJaWkp1q9fj7Vr1+Lvv//Ghg0bwka/1FCo7Qv3BYRXkRtCGY18EURNRksgkubDZU8Mxtq1a7F9+/awOWkJCQnaCFq3bt3QrVs3pKamxslrgiCI6CFBRhBEraCgoAB//fUX1qxZgzVr1mDbtm1hDbS0tDR069YNK6auCQiwYjcEhcQXQdR2mKiApfkx+q0rsW7dOqxfvz5sPpooiujYsSNOO+00dO/enQQaQRC1BhJkBEHUSEpLS7FmzRqsXr0af/zxB7Zt2xaWfKNJkyY4srYAYqEbQqEnkPmQRr8Ios7DwAKLW6f7cP59ffH3339j//79QTYk0AiCqC2QICMIokbg9XqxYcMG/PHHH1i9ejU2bNgQNgLWunVr7F1+GGKhG2KhB0IFzf0iCCIA88hQMrwY8tC5+PPPP00FWs+ePdGzZ0906dIFbrc7Tt4SBEGcgAQZQRBxgTGG3bt3Y8WKFVi5ciXWrFkTNgcsJycHh/86DrHAA/G4h5JvEATBjZ1AS0pKQvfu3dGzZ0/06tULLVq0gCDQCDtBENUPCTKCIKqN0tJSrF69WhNhhw4dCtqflZWFgi2lEI9XCrAKyqBGEIQzMI8MJdOL/nf2wqpVq3D8+PGg/Tk5Odro2RlnnIG0tLT4OEoQRL2DBBlBEFUGYww7d+7EihUrsGLFCqxZswZ+v1/b73a7ceqpp+LPLzdBPJ5Ac8AIgqgWGBhYih83vXc1fv/9d6xduxY+n0/bL0kSunbtirPOOgtnn302WrZsSaNnBEFUGSTICIJwFL/fj7/++guLFi3CkiVLcPjw4aD9zZo1w6FVxyAeS4BY4KEsiARBxB0mMigZXgx7dhBWrlyJPXv2BO1v3rw5zj77bPTp0wennnoqrX9GEISjkCAjCCJmSkpKsGLFCixevBjLly8PWtTV4/Gge/fuWPXFBoj5HgjlNApGEETNhiXIuOPzkViyZAn++uuvoJH9lJQU9OrVC2effTZ69+6N9PT0OHpKEERdgAQZQRBRkZeXhyVLlmDx4sX4448/gsJ9srKyULCxDGJ+YmAuGI2CEQRRS2GSAiXTi8EPnoVly5YFzT2TJAndu3dH//79cc455yArKyt+jhIEUWshQUYQBDeHDx/GggUL8Ouvv2L9+vVB+1q2bIkDy45CPJoAochNo2AEQdQ5GBhYmg/XvH4xlixZgh07dmj7RFHE//3f/6Ffv34499xz0ahRozh6ShBEbYIEGUEQluTl5WkibO3atUH7unTpgk0/7IZ4NAFiGc2pIAiifqEk+nHjB1di4cKF2LRpU9C+Ll26oH///ujXrx9ycnLi5CFBELUBEmQEQYRx9OhR/Pbbb/j111+xZs0aqI8JQRDQrVs3bJi1MzAS5qV1wQiCIIDAvLOxk0fgt99+w7p164L2denSBYMHD8Z5551HYY0EQYRBgowgCACBxBwLFizAzz//jL///huKomj7unbtio3f7oaURyKMIAjCDuaRccfUkVi4cCH++usvrVNLkiT06NEDgwcPRt++fZGcnBxnTwmCqAmQICOIeozf78fvv/+On3/+GYsWLYLX69X2nXLKKdj8/R5IeYkkwgiCIKKEuWXc+tk1mDdvXlBYY0JCAvr27YtBgwahV69ecLvdcfSSIIh4QoKMIOoZjDFs2bIFP//8M+bPn4/8/HxtX+vWrbHvt6OQjiRCqCARRhAE4SRKoh8j/3MJ5s2bh3379mnb09PTMXDgQFx00UXo2LEjLUJNEPUMEmQEUU/Iy8vDnDlzMGfOHOzatUvbnpmZiaINFRAPJ0EodlF2RIIgiCqGgYGl+jHspYFhHWPt27fHRRddhMGDByMzMzN+ThIEUW2QICOIOowsy1i5ciW+//57LF26FLIsAwgs1uzfL0A8nBRYJ4yRCCMIgogHDAws04tz7zsjKHTc5XLh7LPPxkUXXYSePXvC5aJMtgRRVyFBRhB1kNzcXPzwww/48ccfcfjwYW17ly5dsPnrPRDzEiHIYhw9JAiCIEJhLgV3ThuJ2bNnY/Pmzdr2hg0b4oILLsDFF1+M5s2bx9FDgiCqAhJkBFFH8Pv9WLp0Kb777jusXLlSy+qVnp6Oko1+iLlJEEuph5UgCKI2oKT4cNlLAzB37lwUFBRo288880wMGzYMvXv3hiTRXF+CqAuQICOIWk5eXh6+/fZbfPvtt0HzELp3746107YHRsMoJJEgCKJWwgSGp+bfje+//x4rV67Utjdp0gSXXnophg4diuzs7Dh6SBBErJAgI4haCGMMGzZswMyZM7FgwQL4/X4AQFZWFgrXVARGw8ppNIwgCKIuwRL9uOL1wfjxxx9RWFgIIDDXrH///hg2bBi6detGGRoJohZCgowgahFerxe//PIL/ve//wWtZ9OtWzds/GoPxKMJNBpGEARRx2Eiw8Pf34Kvv/4aGzZs0La3a9cOV111FQYPHoyEhIQ4ekgQRCSQICOIWsCRI0fw9ddf47vvvsPx48cBVGZK3CtCOpAMsYQWFCUIgqiPKCk+XPD0WZg7dy4qKioABKIlLr/8cgwbNoxS5xNELYAEGUHUYHbu3Ilp06Zh7ty5Wlhio0aNkP97GaRDSRD8lCmRIAiCAJik4JbPrsaMGTO07LoejwcXXHABrr76arRp0ya+DhIEYQoJMoKoYTDG8Pfff+OLL77AsmXLtO2nnnoq1k/bFQhLpMWbCYIgCAOYwDDu5zswffr0oND2M888EyNGjMAZZ5xB88wIooZBgowgagiyLGPx4sX44osvtDkBgiBAOOKBtC8FYjGFJRIEQRB8MDCwdB9639UVixcv1pZCOemkkzBy5Ej069eP0uYTRA2BBBlBxBmv14vZs2dj2rRp2L9/P4DK+WG7JUj7kylbIkEQBBETLNGPS/7RHz/++CPKysoAAC1btsTIkSMxePBguN3U4UcQ8YQEGUHEiYqKCnz//ff473//iyNHjgAA0tLSULpegXQwGYKP5ocRBEEQzsFcCka+fzFmzJiBoqIiAEDjxo1x7bXX4uKLL6bMjAQRJ0iQEUQ1U15ejm+//RZffPEFjh49CqAyUceKckiHEiEoJMQIgiCIqoNJCm6echWmT5+O/Px8AIHMjNdccw0uv/xyJCYmxtlDgqhfkCAjiGqirKwM33zzDaZNm6a9AJs0aYKjS0oh5ibR+mEEQRBEtcIEhnv+dwOmTp2KQ4cOAQCys7Nx3XXX4bLLLqMRM4KoJkiQEUQV4/V68e233+Kzzz7DsWPHAAA5OTnIW1QC8TAJMYIgCCK+MIHhoe9vxqeffooDBw4AABo0aIDrr78el1xyCTweT5w9JIi6DQkygqgi/H4/5syZg8mTJyM3NxcA0KxZMxxeUAzxSCIJMYIgCKJGwQSG+78Zg08//VR7bzVq1AijRo3C0KFD4XJRkimCqApIkBGEwyiKgt9++w2TJk3Cnj17AAReaMeWltOIGEEQBFHjUUMZp0yZoiWdatGiBW699Vb069eP1jEjCIchQUYQDrJq1Sq899572LJlCwAgIyMDxX/JgayJCr3ACIIgiNoDExhun34NpkyZguPHjwMATjnlFNx+++047bTT4uobQdQlSJARhAPs2rUL77zzDpYvXw4ASE5ORsVGAdKBZAgyZU0kCIIgai9MUnDd+0Mxffp0bR2zPn364LbbbkO7du3i7B1B1H5IkBFEDBw7dgyffPIJvvvuO8iyDEmSgL0eSHtSIfhJiBEEQRB1B+aWcdE/+mrvPFEUcdFFF2Hs2LHIysqKt3sEUWshQUYQUVBRUYGvvvoKn3/+OUpLSwEA4tEESDtTIZbTpGeCIAii7qIk+nH2w92wYMECAEBKSgpGjx6NK6+8Em63O77OEUQthAQZQUQAYwxLlizB22+/jYMHDwIAOnbsiJ0zjkAspLTABEEQRP3hjb+fwdtvv41NmzYBCCT+uPvuu9GnTx9K/EEQEUCCjCA42bdvH9566y2sWLECQGXmxMUVgRT2oBcPQRAEUf9gYHjoh5vx/vvvIz8/HwDQs2dP3HPPPWjTpk18nSOIWgIJMoKwoaysDJ9//jmmTZsGn88Hl8sFttMDaW8KBIXmiREEQRAEkxRc9fZgfPXVV9q78pprrsGoUaOQmJgYb/cIokZDgowgLFi4cCEmTJiAw4cPAwCEYx64dqRBLKN5YgRBEAQRCkv0o8e9nbB06VIAQE5ODh544AH06dMnzp4RRM2FBBlBGHDkyBG8+eabWLRoEYDACyXv1zKIRxMoPJEgCIIgbHjmt3vx1ltvaR2a5557Lu699140btw4zp4RRM2DBBlB6FAUBd988w3ef/99lJaWBtLY70qsDE8kIUYQBEEQvDBRwZVvD8KXX34JWZaRlJSEm2++GVdeeWXg/UoQBAASZAShsXPnTrz22mtYt24dAEAodMO1LQ1iKaXwJQiCIIhoUZJ96Dy6OdauXQsA6NKlCx5//HG0bt06zp4RRM2ABBlR7/H7/fjss8/w2Wefwe/3IykpCb51LogHkyg8kSAIgiAcgIHhnlk34N1330VpaSk8Hg/GjBmDa665Bi4Xzcsm6jckyIh6zc6dO/HSSy9hy5YtAADxqAeu7ekQvBRKQRAEQRBOwzwyut/TXltCplOnTnj88cfRvn37OHtGEPGDBBlRL5FlGdOmTcPHH38Mn8+HtLQ0lK0SaE0xgiAIgqhiGBge/vEWTJgwAcXFxZAkCTfeeCNGjhxJc8uIegkJMqLesXfvXrz88stYv349AEDM98C1jUbFCIIgCKI6YW4ZZz58spbRuGvXrnjqqafQrFmzOHtGENULCTKi3sAYw3fffYe3334bFRUVSE5OhvcvF8TDNCpGEARBEPFAHS178803UVpaiqSkJNx333248MILIQj0bibqByTIiHpBYWEhXn31VSxcuBAAIBz3wL01HUIFjYoRBEEQRLxhCTI639wMa9asARBYt+zhhx9GZmZmfB0jiGqABBlR5/n777/xwgsv4PDhw4HY9G1JkPYn06gYQRAEQdQgGBjGTBmGSZMmQZZlNGjQAM8++yxOO+20eLtGEFUKCTKizuL3+zFlyhRMmTIFiqKgefPmOPxDGcRiWleMIAiCIGoq/9n4Il544QXs2bMHoijipptuwvXXXw9RFOPtGkFUCSTIiDpJfn4+nn/+efz5558AADE3Ea4daRBkepgTBEEQRE2HiQrOe/50zJkzBwDQs2dPPPXUU8jKyoqzZwThPCTIiDrH2rVr8eyzzyIvLy+wyPNfbkhHkuLtFkEQBEEQEcDA8OD3N+Hf//43Kioq0LBhQzzzzDMUwkjUOUiQEXUGxhhmzpyJiRMnQpZlCKUSXBszIZa54u0aQRAEQRBRoiT70ezyVOzevRuiKOLOO+/E1VdfTVkYiToDCTKiTlBaWorXXnsN8+fPBwCIRxLg2poOQaEQRYIgCIKo7TCR4bznu2shjOeffz4eeeQRJCQkxNkzgogdEmRErefgwYMYN24cduzYEciiuDUZ0oEkyqJIEARBEHUIBobbv7xGi4Tp2LEjXnrpJTRp0iTerhFETNDwAVGrWbNmDW677Tbs2LED2dnZEP9Ih+sApbQnCIIgiLqGAAHvD5+ON954AxkZGdiyZQvGjh2Lv/76K96uEURM0AgZUWuZPXs2XnvtNfj9fgjFLrg3ZELw0kLPBEEQBFHXYQkyWl+Xha1bt0KSJDz00EO4+OKL4+0WQUQFCTKi1iHLMt5//31MmzYNACDmJcC1JQOCQqNiBEEQBFFfYCLDuc/8H+bNmwcAuP7663HLLbfQemVErYMEGVGrqKiowPjx47Fo0SIAgLQnBdKeFApRJAiCIIh6CAPDtR9eiE8//RQAMGDAAIwbN46SfRC1ChJkRK2hsLAQ48aNw9q1a+F2u8HWJkHKo/XFCIIgCKK+8+APN+HVV1+FLMvo1q0bXnrpJWRmZsbbLYLgggQZUSvIzc3Fww8/jN27dyM1NRUVS90QCz3xdosgCIIgiBrCK78/jqeffhrFxcVo0aIF3njjDeTk5MTbLYKwhQQZUePZvn07HnnkEeTl5QEVItzrsyCW0mLPBEEQBEEEoyT50WCoG4cOHUKjRo3wr3/9C23atIm3WwRhCc16JGo0a9euxT333IO8vDwIJRI8f2eTGCMIgiAIwhCxzIX8b/1o06YNjhw5gnvuuQcbN26Mt1sEYQkJMqLG8ueff+Lhhx9GcXExhAI33GuyKa09QRAEQRCWCF4JB6aV4OSTT0ZBQQHuv/9+/PHHH/F2iyBMIUFG1EhWrlyJRx55BGVlZRCOeeBenwVBpsuVIAiCIAh7BL+I7R/n4fTTT0dZWRkeeeQRLFu2LN5uEYQh1MIlahxLlizBuHHj4PV6IeZ7Ags+0xpjBEEQBEFEgCCLWPf2Ppxzzjnw+Xx46qmnSJQRNRISZESNYuHChXjqqafg8/kCCz5vzITASIwRBEEQBBE5AhOw4pXN6NevH4kyosZCWRaJGsPy5cvxxBNPwO/3QzycCNeWdFrwmSAIgiCImGECQ58nTsZvv/0Gt9uNl156Cb179463WwQBgAQZUUP4448/8OijjwbCFI8kwLU5g8QYQRAEQRCOwQSG3uM6Y+HChfB4PHj55ZfRq1eveLtFECTIiPizdu1aPPzwwygrK4N41APXJgpTJAiCIAjCeZjAcObjnbBo0SIkJibijTfeQNeuXePtFlHPIUFGxJUtW7bg/vvvD6S2P1aZwIPEGEEQBEEQVQQTGLo/2BYrVqxAWloa/vOf/6Bt27bxdouox5AgI+LGwYMHcccddyA/Pz+wztj6LMqmSBAEQRBElcNEhpPGNsL69evRsGFDTJw4EU2bNo23W0Q9hQQZERcKCwtx5513Ys+ePRBKXHCvoXXGCIIgCIKoPphLQfNrU7Fz5060aNECEydORFZWVrzdIuoh1AImqp2KigqMGzcOe/bsAcpFuNdnkhgjCIIgCKJaEfwi9k8vQk5ODvbt24cnnngCFRUV8XaLqIdQK5ioVhRFwUsvvYS1a9cCfgHuDVkQvFK83SIIgiAIoh4ieCUc/d6HtLQ0rF+/Hq+88gooeIyobkiQEdXKRx99hAULFsDtdsO9MRNiqSveLhEEQRAEUY8Ry1148cUXIUkS5s+fj8mTJ8fbJaKeQYKMqDZ++eUXfP755wAAti4JYoEnzh4RBEEQBEEAj57xMh566CEAwCeffIJ58+bF2SOiPkFJPYhqYdu2bbjzzjtRXl4OaV8yXLvS4u0SQRAEQRBEEJf/5zxMmzYNHo8HEydORKdOneLtElEPIEFGVDnHjx/HrbfeikOHDgXWGlufCQGU3p4gCIIgiJoFA0OPRztg6dKlyMnJwUcffYT09PR4u0XUcShkkahSZFnG888/j0OHDgFlEtybMkiMEQRBEARRIxEgYNW/tqJZs2Y4dOgQXnzxRSiKEm+3iDoOCTKiSvn888+xevVqJCUlwb2R0tsTBEEQBFGzEWQRL7zwAjweD5YvX67NfyeIqoJax0SV8ffff+OTTz4BAPj+clNGRYIgCIIgagV3dnoCDzzwAABg0qRJWL16dZw9IuoyNIeMqBIKCgpw00034ciRIxBzE+HemhFvlwiCIAiCICJi0D964IcffkCDBg0wefJkZGRQe4ZwHhohIxyHMYZ//OMfOHLkCIQyCa7tlFGRIAiCIIjax9wnf0erVq1w9OhR/Otf/6JFo4kqgQQZ4Tg//PADli5dCrfbDdemDAgKXWYEUe8QOJL3OGVTU+ohCKLOISgCnn76aUiShAULFmDOnDnxdomog1BLmXCU3Nxc/Oc//wEAKFsSIJa44+wRUeUIgn1jlhq79Qv1+7b63iOxsavLqXrsbOg6Joh6yd0nP4WbbroJAPDmm2/i4MGDcfaIqGuQICMcgzGG1157DaWlpRAK3ZD2J8fbJaKq0TdQzRqrPI1dou5QFSNjdtdWVdUbbRkEQdQ5Ph39Dbp164bS0lK88sorFLpIOAoJMsIxfvzxR6xcuRJQANfWdFpvrK7D03ANtaHGbN3G6PvluQZqmw1dxwRR7xAgYPPHB5CQkIA///wTP/30U7xdIuoQJMgIR8jLy9NCFaXdqRDLKMV9ncUqdItGw+ov1RU2WFNs6BoniHqHUOHSQhcnTpyI48ePx9chos5AgoxwhHfffRclJSUQilwUqliXcSrki5Is1B6q8/vksRGl6rNx6rPzQPcEQdQKJl0/Ex06dEBhYSEmTpwYb3eIOgIJMiJm/vrrL8ydOxeCIMC1jUIV6yzV2Rh0IpkDbzn1Gd7zVx2jRIJ44sfKRv/byESSIIhCzOVw7dfsYkwG4tSoHkEQVY7ABDz88MMQBAFz5szBqlWr4u0SUQcgQUbEhN/vx5tvvgkAEA4kUlbFukpVNALN5u44lcyBGrDWRCq2qnIeVajwMRJCgghBFAJiy8RGkCSduYko46lLvz0WURbptcxTjlVZBEFUC/d1fRZXXHEFAODtt9+G3++Ps0dEbYcEGRETX3/9NXbs2AH4BLh2p8bbHcJpqivVdyRhb9UZRlZXqYXnRxNiIX/zHhNhZdEdZ1uukyK29n2HBFGX+O7hhcjIyMDOnTvxww8/xNsdopZDgoyImqKiInz88ccAANfuVAh+upzqFNUlxHhtKAFD1cE7AlMVo452I1ScNvrRsVjKiWq/ZudQGn7ecui6Joi4IcgixowZAwCYNGkSSkpK4usQUauhFjQRNV988QWKi4shlEgQDyXF2x3CSWrifLFYbZwcXatJPvPWZWer1lWd8/J4hFBlqGL4rhOhi6ZirNJOkCR+0RWtaNPsbM5hJOeZEn0QRI3m3eFfoFWrVjh+/Dg+//zzeLtD1GJIkBFRcfToUcyYMQNAIM09JfKIEt7GmZP1OWFTF+H93E6LMadGSWpSKCdHcg4rEaWZSZKt2BI9bsCuLJty1LJsfbL7XPGivt6zBBFnBCbgjjvuAAB89dVXOHz4cJw9ImorNfDNQtQGpkyZgvLycgiFboj5CfF2p3bixKhGJMeTGAsQS9IEpxOOmOGkOIzEzgnsQgR1I15Wc7yCxJGJCBJcgfUOBUEwF2XqdgvBFfH8NBJlBEFU8uw5/8app54Kr9eL//73v/F2h6il1MC3ClHTOXjwIL777jsAlXPHaHQscnhEgbrNCTFWHfXUJqoz+12kNk76Y1VeVWCX1dAg/NAwHNFIOIWUrYox7X8jURb6v4EoswyHtIJEGUEQAAQI2lyy77//Hnl5efF1iKiV1MA3ClHTmT59Ovx+P4TjHogFnni7U/uIdlQjmsZWrOFwdR3ekapYQwZ5bZz0x87OaTjmaJkJnaARKquwwco6QsWYtlsvyszK0YkyyxE6EmUEQXDyWM9/oFu3bjRKRkRNDXybEDWZ48ePa+ldXXuT4+xNLSLShAlONKpq0pwioOY1XuM1ZyxWeOuqKfPFKm3sBA7XHC5RgJBknUBIkCRbG6vwxVCfOIzsbaqbmnbvE0QdRz9K9u233+Lo0aPxdYioddTANwlRk5k1axYqKiogFLsg0OgYH5E2fJzK0FaT4Gm0OtmwrYmN5NoIT3IO/WLNZmYcWQ4FlwuwKkcUICYkBEbBbBAEAYLH+vkkuF2mI20Bg8oMjxzJQHizRVaLjWbrQCeBk9kgCaKOM+7Mf6JLly7wer343//+F293iFoGtVoIbsrLy7WHjLQvheaO8VDdDZWa2DiKZB2oWBukNTULXm0kguQcgX9NwhEjTc5hVE6lGNNwu419FsWgssxEmeaTzj7YQDS2DzPTJSdxaD01RzsvakICG4KoJwgQcM011wAIjJJVVFTE2SOiNkEtF4KbOXPmoKCgACiTIOZRZkVbqrqB4sQcs6rGLskDz/9G26Mpl+AniuQcgc0hCTuiTc5hN+ImCOGizEBcGY2mhfkUepyZaLRJBmIoyniuU8PKHLy+45nAhiDqGS+c9zZycnJQUFCAuXPnxtsdohZBLRaCC8YYvv32WwCAdDCJRsesiMcoVU1sCMXS0x9pwzbWxXyJE3CMQPIkw4g5OYdaR+jomN5GFWVmI11A0CiZqU/q8XZhlTbJQIJEmd15NPo7FhsrqiJhTCw2BFFHESDg8ssvBwDMmDEDjLE4e0TUFqi1QnCxceNGbN26FVAA6bDNhPn6TF0PUeQVWU7Nl7Gr0+l5NzWN6vaboz6eRBeC22JuFhBIqmEgsoLKEAQIkmgoxoJsPB7LuWCajW3CEBGCxyQUUl+ezWfjSk4SMHT2PuGpz9bGoYQxTj6TSOARtYxJo2YgISEBO3bswMaNG+PtDlFLqKWtFKK6UUfHxLxECP56etnYNUTqesMhHsKnugSJ6juP+KvOBA48OFFfZfIKruQcdvDYAIAoWtuKIoTUFMBKJEkShPQ0CGmpFuUIEBITISTbdCTx+s1py5VV0gGbSkN7Gx47Jzs4eJMT1aTkI5TEhHAAQRbRr18/AMCPP/4YZ2+I2kI9bVkTkVBeXo5ff/0VACAdqqejY3bzMGr7C5pHjBj9bbWtGuBusAaMI9tuZVPVCRx4kzxE6rsTyTms6tQLFbPvRRROjGiZiTJRDAgo9bo0EmWSBCElOXDviaKxKBMFwO0J/BZEc1GmT/JhJQD1n8kuJNMitJPrfHPYhNXJs6+6rktB5H8uVnVikapIUFLbn/lElfLrv34HAMyfPx/l5eVx9oaoDZAgI2xZsmQJysrKgHIRQqF9SE+dojammI+UaMRWpFnhqoCIG6wBQ+v/eW14ynayvqo6LtrkHEblGgorIez/QHp7i3OqF2P6+vRCSS/G9Mel6NZG1Isx9X8rUaYvx0iUGV1jdklLDM4v1/nmsDGkKq+daJ8N0WR1NLNzKrFItKGZtSGRElEjEArcaNq0KUpKSrBo0aJ4u0PUAkiQEbbMnz8fACAdqWfJPJxYD6ymE0vYXBznZnELMOODg3/HamNnx2MTqU+xjmBU7o8pOYe+fMvQwxOCyFCM6UfJjMSYvj6P21iMqbhcgX2hYkzvS6goMxuh04syq+vNLq2/7jzznG8ruEVZVVzj0droRVk8EovEOiJm51NtfwcQVYIAAYMHDwYALFiwIL7OELUCgVEKGMKCoqIiDBs2DD6fD+4/GkAstZmsXxeoyy9YtfHElGoTU4IogCnmjxm1kWllY2RvRCRl2Nny2DhJdfvE1biXJMDOJ0m0zSQmCEKgLKuRMQBCgsfyuhRcElhWOoSiUgufRbCkBCC/wNxGYQBTwCq8lv5AUcD8fmsbBD4fkxVbOzAOGw54roFqv8Y5nimCKIDJsnU5gujYeeKCpz4eGyebUoJgXx6PDRFXlGQffKfnw+Px4Ntvv0VycrL9QUS9hUbICEtWrFgBn88HoUSqG2KsOhNzOJ2UIdZyHA4zdKJHX0sTzjFaw5V0wmZOGe+cM0GSqs0n1cbWJ3V0hyPxBo/fttdABMk5jNb70urjyHIoCALE1BQIZgs+IyDGlAaZYDaiDgCYxwU0yLTwOZDoQ0xNsSxHkCTTxaU1G95nhijYn1POZ4FdchWeETmtLJ7riaM+bp947LhG3Ryy0f/msTXd72DSEP1vHtuq9ikSO0JDKHWhZcuW8Hq9WLp0abzdIWo4JMgIS9SHiJhfyxeCrvZUzZzhZZE0BGIRWw6PhkUagmU6J4bDL+61ndT9vPOi7JJXROBTVSdv4D5XusQbXOfcrEye5BwIjI4FbIxFmSrG9P8b2qQkB0bPRBGCK/z8q2IMkgBIAli6iZCSRCjpgV5o5pZMRZkm/CTJVJSpvoZ+BiMbQHcujOBJBiKIATur71q3nSvjJTiuO6vrV1eHWX36a4o3lNi0LP06b7GE5UbT+RRrWerz3KmkIVZ2VZWkxEnfCQgQ0L9/fwCgeWSELSTICFP8fj9WrFgBoJYLMruJ3073/FVl4oZo6qsiMWb2P882wwaXWQKEaBpUAmfmQI7kFVw+VWHyBiMRZXicje+m5zJ0G09yDlQKEIvRKjMhEyRi9GJMqytYlAWJsUqYSwwXZaoY05XP3BKQnRFcf+gonIEoCxWOVqIsyM5IlBlde0bPA72dyTUWXp+BeHXomjIsO2SbUWcJ9/MgtCyrsnV+GhQevo3Hpqqe01aiLOgYg/dOdScyqcr6CADAtIe/BwCsWrUKsl24LlGvIUFGmLJ+/XoUFRUBPgFCUS3NrsiTmMPR+qo4cQNPg0G/r4rFmNF2rpBBi95o1cY0rC6CbZGEC1olrwgaEeQd1bOrj9fG4rNp/9r4buu3uo8nOQdMxJhulMxOwAiCYCzG9GW5JEMxphIkygzEmGbncWmizDQkUifKzEIQeUb7gBBRZvYdhwoZIzvOkeGgUSyHrinL8FKrJCYGoszSJ3VEjGP0jev6tbLTPw+dek6b2YWKsliShkRqY2Wnf+c5WR9hilDkRmpqKoqKirBp06Z4u0PUYEiQEab8+eefAADxuKd6sis6PlLlUFmxhrw4baOFxjhz+3KHGTkwV6rS0H5/JHNtYj0PggjBbTM/UhDt510JfIsrc9fndtnXxzF3h+taEXVrg9nZWY2MiSLXvCtIUmDdMJv093C5DMWYCnOJUDJSTcWYZidJlvPTVJ/EjHRLE20+nM2zJXCObK4D9Zxb2UUQqsp93dlcU6LVOmw89elEGdfcSLs5eryj5JzPRK5QT8ee05zvNJHHpxjDDqMpywmbSOzqIAIE9OjRAwC0iCOCMIIEGWGKJsgKTF6Y+tTvPCNRTqQyjqQ+J+DtLY1x1CRSeJNAxJpMQhut4hVadueJpzGk1mWbbICjPEmyX8CXe94LXyM75voEEYJUOdpkdw5cLuu5Swj4bTe/SajMgGiXeEPweGw+nwAhIcHaRk1bL9qEdrkk+JtmQUkwF4rM40JR5wyUtDUXUkwU4c9MhL9ZtqXfkERAEiGkp5nbVQpSW8Fpcy4BnDjnHOLO7juO6LqzvYZtOgxEAYLbZX0OBDFwbXKIfEGw7wzgSizCaRM6umxox/PslCQILmvxqvrkRCITnnK4O+p47LjLsnuecYy2qfudtKlBIrBnz54ATrSpCMIIEmSEIV6vF+vXrwcACEaCLNqesaqOWa/quWCh+y3mTQSb2oep8e53IqEGj01EApInhIenQRiJOAKsRYt+u9kCvqKghc/xJK+wslNFlJbi3aQ+O5/0jW+7+oz+DrOpHIUym99kN5dH80MdYTITUqpgEwVzgWC1hpgelwR/k8xAWKIkGooy5nGhuHUyFJcAf6KIkjbhQoqJIuQUNyAJUBJc9qKsUpgZijK10VzZsWAqSET992KdvEK1twqTPHGM2agk33VueozeVCfEDEVZyPViJtyCrjsLsaXfZ2onRHY+eUfAYkqyE2l9Vnb6d4jJO4ervtDwZKvQTaO/I7VR90UyEhhL0pBoEovUEFH25jUfAwA2bdoEP8cyGkT9hAQZYciWLVvg9XoBrwChLDRZAOcDs7of0FUtxgxeUjwCiTu7X4TlmOFEMomoxZjRNt4GIee20IapoWgxKit07kulGLMqx2h0wswuzMagPjufbEdCTOoz9EEfWmgkynjCHREixrRjw+fIaGJMV37Q5zMSY0b3rU6MBWwQJsr0Yky1CRVlejEW8AfGoiz0+zQSZUaNZSNRZhCCydVgNxBlhhkpQ793u2vKss6Q+gzEVdA2k+sl9DjD685gtMxIgIVtM3i2cHUg8GwzEGVcz07e+gyfXZEn3ommPtN5ozzzb6OZt6sXZkE2VdgBa/TsiKUztwoRyiSkp6ejoqIC27Zti7c7RA2FBBlhyObNmwEAYrE7eP6YUyEFTpbl9AOXMzyRN2yQr0rrhkGsYo/Xhjs88cQB9vt5RrA4Rs24QrfsylLngYWIMc1dXePcqi6ekQtNlNmFKaphVFbliPb16feZJd04sc9ajGnJFozEmL68yvsvTIxpNoIWNmo6Mqa/h0PFmGZzQpSFiTGdjSrKwsSY5k+IKFPPrVHDThVlVuFkelFmlXGSZ4QjJCmKeVmq2LG5pgD7a0+91i1CFAW3y/56CRJuBtddyGgZ16gZZyITKxu7pCF6QcQbccDjE08iE7NROu7EQVbJVYzK4k1SEqsNz/s9Ehuny4oDAgR06dIFALB27dq4+kLUXEiQEYZs3boVACAU6xpjjo5AOVmWky8Tmzh+0XpOlX4/r/DhKSsWn4zqtDDiE1m8dnY+cYgsQRBsk2BoosWuvsqy7Bcy5kls4JzvdvUJgsA5l0iEkJhgmXQDIsccKFQ2+GwSYQiSBCEp0fq8u1wQUlPsG0wet7EY02wAf5oHh/qkhYsxnU1FuoQD52WYJwPRizIjMab3SRIhpKaa+w0ERFmi/bIgXHOARJFv3pVdUphKv3hCgHmudTGB4/O5beYzqtdeUpJ9WTz18ZxPwD5JCU+SHVQ+PznmqHElRfF47AWgmkjIpj6esrgTmXA803mSGzmZpITrfuBJSORkmGMU7ZeTTz4ZwIm2FUGEQoKMMGTLli0AAKFY7a2MQw+TY5mu+HoIY53fZVinjR2XQOKtz86W50XKUxeH8NGSH9gIH33vuamNJAWuP6uMfEBlggvrpBRaWVa43YG6LFPAiwE7nqQidueAsz7B47EWSLyNeZfLfJ7bCccgeNz2319CgnUDTJQgJCcGEmZYijYJ/iYZ5mIMgJzkwuHuCfClAMXNjO1kj4DCtgK8mQy5PSwa/iIgJ7vhs5pTBpwQZSnJNnaitbBRz7dtUobKc8RhZ5uAhSeZhIvz+S7aNIwrG85c2TWtRl31RVqdT7GyY8Wus8Ptsk9SgsrzZfn5Avcfd30cHR5237HgdnE9X2zvZYD7/eboXGhecWdlYjfCaWBrbeRQ9A5vWTqbKY/MBADs2LHDvmyiXkKCjAjD7/dj165dAACxxB1fMcYrIKKJe9dtc2r+lq1PofucsrGrU31Zmb0o1W2q2LJLzKHaGqGGA6o94qahgSfqME0kERSWYyHKtDAgk3kuoWWZlaNvKJqJJP12KyFlE6YW1jC1qE8L9TJrzIbamCU/0CdRMLPTj+pZhXZyjGKo5Wm/ja4ZVYxZ3GOqGFM8QCB80bw6xc3ABMCbYS7KmCAAAqAkSPA1zbL3n6uBZiLKKq9by4QvOjvt2rQIbVTtTa8rnsQiYfO1TJ59Lt21YCRa1Oul8tlhKmxU8QCL67jSTiva6HyqIz5quKxZYpHQuW1WCUjUvw0/n2if7MSoPjNRFjKv0szG9noJPZ82SUOsRFmkSaCs7IL2WyQNsVvzjmeuYOj2mEQZz3y00O0R2Iglgetj165dlNiDMIQEGRHGoUOHAg8MGYCXc4K4kzg1yZizrmjnb3H5xGPn5ERrI0JfUqEvSr0Ys7IxmyMU8n9ogzBUlIXtV7frX6wWYiHs2LCJ8oJ9WUblmAidMCEXdj4NtvH4xFlfWDIEAyFnaMObsCNE9IY1OENEmakYCx0lU0fHgisMvmYiFWOVKC6gpGnw9yd7BBS2OVGOmShTxVjAH05RJgr2o2RAuCjTibETmziuR6uQ05DGXth1xZFYxDyjoRBuF/JcCDrW7HoJLV8nHoJ8Db0HjASm/nzqxZiFD9yiySg5TtDnMx5d464vVJQZ3ZMGzw7b60XdHvq/QdKQ0P+jSWRiBldyKB4fOBPRRJvQJdyI953OIdJ4bSpcSExMhNfrxYEDB/jqJ+oVJMiIMPbt2wcAEMpd1bMgtIpV2F0kI0+cYYxWi5vyhmbY+sQ7gsXz+SIdfQMsetmF4HNlJrZUG57zYCTGtH26EQKb5Ac84XQaFqMNtmXpfeEIobIcDdPv4/HJJvQwMP/HPARRH+poaaNvrNvZWYw2BC0PYBlKJmm/heRE88aJKATEWKP0iMVYoAzAn3hClKliTHGzILNQURYkxnRl2Yoy3tBF4IQoMxBjJ4rTfTc8I79AuBjT+aZdVxyJRWzDWtVRF7NFq1XBZXe9hI7GGlaluxesQjA9bmMxpvOZa14dTogwy+Q4LpepGNNseOtTz4PVM0337LC9XizKCr6uOEanOBOZxGIXmljEcikBQTzxt1l9HGGM3KKMJ0QxEhur6iCgRYsWAECCjDCEBBkRxglBVk2jYxHMubKzcyy5BTjFmNNJMHhseCdo2yYQELSMe1Y2XIshW4kxzU60Fz52YkWFZz6OZLFWlN7GLiED53wxgacsHp8q67RfLFcMJNSwshEErgV6tUWfrZCkE3PGrHC5zMWYriw5M9V2zlheNwMxpjkdEGWFrUVDMaaiirJDPZPCxZiuLOYRIWdZLAodsSjzmAqRQHGVyVysRsMATZzbNgidmmcjipoAMrcROO6bSlFmd98IPGWJgcQiNueAZ16Z9vls4LLhrc8mvFcQAguq287ZrHzu2V5XtqKbY/4yKt+VPAlPLDo31XJ46hREwXaxbQD8SYl44ElAwpukxEaY5eTkAAhEIRFEKCTIiDByc3MB2AiySERGLPuDTO0zFxr9bWbDUaG1fxEkuOAdYbJ1SU2UYddYskmoESiLL6TNrhytLCsxpgoDmxErtaff0rfKSfq2Nnbp3VXRI1hnL1QbzpapurVRJo6MbZLEVR+syhEFwOUKNBTs7DiTA1giiJX1cVx7STZiTBShpCcDIiB6ZUMTOcmFvK4BMSYYmwAAfBkM/a9ajZMHWWcuY2LlSNkZJgKWAYJXAXPbiLJKeMSI6eLYoWXZZCYUeDof1Llndveq3X2q3jccoptLBHrcEBI4hL7VfaP6JEn2STU4Oh+0c2DV8cMjgiOsz5FEHzz1qbZ2GVl1I1K2/tiN7nEk8bDNzqgvi3M00Q7bdxzPPO1QW6v9NjaqIDt48KB9fUS9gwQZEcbRo0cDf/jM5hlEGIbHG85nAVdYRARlcBgb/63fFqnIshuJsrEJmnxuJsqM5vsYlnUiKYVlOJFNOUFlmRpwpF02sDE8RtSJJzOxJVoLLM0mdK6I0XwSQTgheEwSFmhiTJcQxbDhqPfLrj61t9WwnEoxpoWbmogyfcPGqpET4nu4Uzoxpi/boD67ETtVjDGzlPQIFmNggMCMRZkvneGiwb+jXdIRnJm1C136mSy4Kpz4bSbKBMYgMAaIgrkoYwyQlcDfVqOhoefJKmxYrd9qDTr1t91Imvq32b0aGv5oUA63GDvhoPnn09uZCamg+YsWokwf8maanOPEdWyVWMTyfxX9wtZmz0ddBwVvfUaijDcckcsmtGyz56D+fWOXCIq3TpskHoZ/x1Ifp43VGnSW/xttj9Fm1ms/AzjR6U0QekiQEWHk5+cDAASvwQMr2rlSvA8/w6KtBVgsmaNMDrTeZiTGeBJe8G4z+rycCyKbzj8IKis8KYXhBHGbcgzLCj8oXGiFNkAsBJsQ0ogMOw+hoozXxiybWqjotUlYECTGdDZhDUejxq5ZfSEJC4J8CBVj2nYp3C7sezbYZuK73scwMaa31f0dlRhjLGiULEiMaTbhokwVY60SAs8qtyAbi7JQt41EWeXomP6zhIkyvRhTMRJlZufJ6LsIdS3kujW8J00W+w7bFnqvmnRc6P82uj7DMMmyGFa+UQbH0HvJyCez+8bKBjoxph1nnFgkDJ6EPAbn0zbZiVl9CBZlphEDPOIkWlFm9L4J/a55RKHR/0Zl8SSkirY+q2P11YXaxDLnm9fGYLvgC2wrKCgwc5Wox5AgI8LQBJlPF2IQyZB+tCNmhodYhyg6NV9Md4D1PquRsUhHw6zseHvPdT2dtvMPYCGgdKKMJ0TRsqwTlZoLLX0iCY65WZajXqrg4rWxW29IDfe0SVhgKMZ0NidGsCxGHkLrM0uCoaYVNxJjWp3SCTurURl9yI+V71ZiTG/LNZ/IYmRMJ8qYAOM5YzpR5ktnGDJolSbGVMJEmZnbAiCr7jJArJADo2Mhn0sTZUZiTEUvyuzOk3600sw1NeGE1ai1fvTGtD6diLAJ7bW7PrnQCwurDI7qPWXlkyq47O6byrLCxJiKXiTZnYOge8Ja5NomO+FAm18Ya2hepKLM6n2jnmfe8GarZwzPu96p+njKAMf7KtQvHt95p2RU/hb8JMgIc0iQEWGUlJQE/vBXPrwjEFDcDyiuoiIQUrHCMx/O6flidmJSsg+9C8y3sp8vps1FidFGnVPGI8ZsF3LmzYzG09BxygYIvNztJvSLQsDG7jv0eOzDwAQxUJZd0ga3h+P+smnkAdDmldkJCDsxBpxIBmIzZ4wleizDFMEYmCTiaBcLYccAXyrDeQP+QpvEo4YmbkHGuQ22YtjFyyz9lhMZDp+eaCzGNL8FwCWCcSRqsb1e1PJinVMGk5Eyw/o4FwoXLELNgGBxbl1Q4Bq1s+E5V8KJ+Z2WNh6P7XXMdc+rc8rs5tfxJDvhSGQCgHNx7NjnnWll2YZx8wtKrmcMj1+c7QEuvzjK4prHxllWRO0iFRJkhAUkyIgwysrKAn/I8bs8HMtw6BTVKQ7BP0oFQOvlttzPkQEqyD6W/bwNRvXlaCcMeEQ+z8Ry/Vwpy/rUjggbgSQYhIaFliUZhESFojY8Y/UdsPcJ4LsW1KxiiolYQeU1qjaUTEWNCJYQaHgKFebZOZhbQnkjDxKPmdfnTWfoO3gtmiUUoNQk9WKC6MPpSbtwacYfGDbUXJSJsgDPcYaSFuZhloLMIJZ6AUkEC11PTY8sB58LK3gbqjxC2C7hBMeItzbKzkxGAPX+mH3HWmERREBwiAPuzi2OjjSuji2bc8oVNg7YJu0Jqs/iWuBJ766vkweuBE0c1xVvsieuDkxOf+w7HTk7PKrzXR5yX6kjZMXFxdXnA1FrIEFGhKEKMkGpXhGiwi3GjP6OrkLr/TVdjBn9rd8WOicp0nJ5tuvL19kws0ZcyGR+27A/1S6svpBjeQScamdYX8h2sxBCfePT7JzqhZ3ZNRQ218bAd475R2Fl2PkU+rcVBqJMEyBqGUbCTRVjaoNKUQxFGXNLKG2aBEUCXOUMybnhZalirFVSIExRZmKYKEsQfeiWuBeJgg9uQTYVZaJfQMo+BtEP+JNEFLdMCrPRxJh6/boka1GmNlB5Rxh4iKCxarfddE6ovg4zURZkY3I/RzNH2C7hRCRwjY5YhH5b/G91rKkfgnl0g+2cXoNt1SHKuJJBcZyrMHhC/E2Iqr6aIsr095P6d2WbyufzVX39RK2DBBkRhN/vhyxXNprk6hdkEYsxq218FVrvry1izGibxUKyUZUf5chYmCgzmczPJazskquYHWs4oT+0Pp5rz6BsIwFk9H+or6ZzbXTlc2ToMy2DV1yGlW1Qp05whYkxFf33HCLGtGNDRJkmxlwnyggVZaFiTEUvyvRiTMVIlGlirNKMCeGiLEyMqRiJMlknMCMRZbzzWRxstIY1uI3KDhVlhjYh54U3QYIRdgknzLZFWZ9d4hSj7RGLMd3/3PU5NQcqSlHGlQyKU6QZYpRIxIaY6ou3KDPq3GAKUHnr+P1+885Kot5CgowIIp4PiajFWPQVWu+vbWJMv49nTaJI6okxTFG7rmwm82thSrEkVwH4J6lr9VmUpR/psmp82oU66hvBHAu3cs3TsCuDN/xSK9OiToWZi7HK/WDMVIxp1VWKsjAxpqITZWZiTEVmImQIYWJMRS/KQsWYVp1OlJmKMRW9KJMNQjDjLMp4w80sy1Qbk5Y2lefHiTnDdgkn7PZFWJ9d4hTNTrAPdbStVyfKeNeF5AljtCRCUcaVDIozPNYSXQIqXt9iqi9eoswq/Fe3r6ioyPm6iVoNCTIiiIhEgZP1OvFgdHpOmcX8mVqPU+LPaXi/P7s5L5GWV11lCYL9/BkniSRLHneZFraqKLNrUFUm8QgTYyqMQVAY/KnMVIzpMRJjKm5BRpekffAnhosxrToBUNwCFJdoP1dKsunsUEUP14hrHF7BPM9anvurujvveO/56n5u29UXyXdcnc9awnnsrlF24t6TjTp0iHoN3f1EEEGCrBq1GeN9ifK8lJ1s1NdUUabE2GDibUzxNCy1eUTmPmnXle0LS7G30+LxLT6DwipDRBR7O1VEmNZXuU+xeIEyhe+cssq6eM6D3bWncJSj+mznG89nFIXASKfV/IfK5A9CudfcRhCgJLkh+GQkHTEuS/YIKGwrQioTMPn3s0yLynaV4JaMtejk9pva7PA2xrNLh0FJZCg4ycRtP0PKAS8gCpBTrTI9MghlFdCyUJrYMDVNvp14BeyfVxzPIHUEmivCgee6UpjxCGCYrY0Nz30hc9zPqi9217tqZ1GW+t04dq709RrV5/dz1cfjD+P5TiJo6Nt1wPJeVxGdywiuZ8v96nVqBsd54G538MDViXHiz+TkZOfqJuoEJMiIIER9D51QvWKkvouyiMNFYxVldvAkgAjdbuBT0EvfSkSEbjeLw9f/bfTdhNZhZRd0DE+jwuAlH9roNCsn1MbuPFiJMv1nNCsn1Fcev4yOA4JGVUxFmT70U1GMRVmlGIMgQGCAVOoLE2WyR0BhOxGyh0GQAfdht6Eoy3aVYFTGJmRJycgQkwxF2Q5vY4xbciWEIlcgNDE1XJSJfobU/V6IvsqGulsyFmWqGFPPl5EoU8WY/jsxC+8MOi8mz6soGq8xCY3QeyIWUaa/L8x8Cl3fzcivUB/MrvdQO4OyWEh9jp0ro/pxQozZ1affbmrjsBizg/e6iuocxiDKNDFmRU0UYwAgBuoUBAEeniUNiHoFCTIiCEEQkJRUOcFdrP4hdRJl1SDKeOrgSQBhJtJ0Phn2wBqJMh6RZibQwoRVlN+nkSgzOlf6BqjZCABPOUaizOh/o8aM3XGmjeQorgWDEDdDUWYgzoNEmU6MaZtCRJlejGk2BqJMFWMZ4olkHKGiTC/GNL9DRFmoGNPsQkVZqBgzOjdGYszs3BgR+ryKtdFqB08jOVpRFsnImJ1fRoSeYzMfdWWFijFtu5OCQudHqBgzqy8eI2O29XFeV44KWt767L6LmirGADApUG9ycnLcpocQNRcSZEQYKSkpACofHhE8bJyCRFkVirJoxZh+H08Yo6JYv3B4RnhUeMP77EbfeEJm9KLM6lwpsn2jUwtPtLOxOQ+hvlvZMYUjjIzz8wGW842CRJmZnSrKDMSYiirKPIVymBjTbHSizEiMqaiizEiMaX5XirKitgJSD4SLMc1OFWVmYkzF5bIWY9qHUEcPLc67+rxyKqzLDt57IhJRxtNJYSbGQv2yqlc91zwNcJv6HA25k2VTMRZaH9eIWQ0RY6H7HQ355K3PTtzVYDEGANAJMoIIhQQZEYYqyODibDDribVxrZkxvgenQ/Vx2/L4xGtjNc+BMe3HjsCLisN3J17arLJxZlcWY7YNCSYrtg0XAIDC7O04GkGQZcDHUZ8sA16bdWIUBtjVp7BAfRznyrYspgR84rlG7erj9Z3ju9FEmaX4rvTdwoZVJjrJ2G4xD1EGXHlufLK9t6EYU8mTZTz398WGYkxFrBCQvV6G7OHItOrz23Zk2IoxFdtrQeESD1yNdPA15u3q02zs7h2FAT6LDJVAYJ/dvaWactyDzGsxVxGV54q3Pp7rnaMs5ue45wE+33l84kyhznddcb6feex4rlHe9oDfX71hilzzwaLorJYCx2hRSAShgwQZEUZaWhoAgLl0D69IHlA8c2M4sXqAaqKNd06STT2WZanl8SSJ0P+2srGjUrRZvWyDew8tfFcULhsonMkpAPMXoFqPLJs2CDVfFJsGqFLZ+LSyi8CG2YnJygZxQGiYNIYqBSKTFdtGgNara2Wnijar8+D3B649u4aQ12ddn7rPzka91nkaxbIClFdYmgl+GWJBqXERLhH+lIB4cpVbXOsuwJ8h49jhNPRdc4WhzU5fMS7/cyy8ZW6wVPPGrMAAd4kCJgnwpZoIN4VByi+BoDDz7Hd6UWA3Gq82ri2eV3YJJ7T7hqcTpnK/lShTy+N+xpjWxXFdAYCvUjzY3Tdeb8Avq3tQli07frR6FPv7VN1vJYC05Bx2NjydY+rIslWCHJ/P1ndNqNi9J9Tryipsk3cEUH0+xJqEhSmBdy7nd8NTll17gYtIEktFCPMEjsvKyorqeKJuQ4KMCKNRo0YAAOYxmhfAKX4i/d8CowepfpuhkKr8n2ekzbasUH95kkQY/c9rE7rd5mWruWXWSNM1uKxsgv42CzkKPTZswn2IjYEoC/PBTEjpGl1quWF2kdio9ZuJspDRCUNRFjJaZyrKdA0NS1GmL99MlOkbgFaiTC+ejOoL3WZmE3qtm4my0Pk5VqKMMQg+f5goU8UYkwKjZ65SBdkbDe53F+DLlAOT4mUB+/dlh4mynb5iXPbnWBQXBHqfBZdiKMqkcgGNVuu+ZyNRpjC4jhZD8FeeH6N19lQxpr9XzURZaCPe4Hlll3AiSIwFNpg3/kO2G4mWoPvQRJSFbTMSSDzXVeWxQc8hMyEVMnIUJsr093ygMONnjCrGAGthE3qsgeAKS85hZhPy7DMkVIQZibLQbWYJQ0LnzxoQdl0ZXWeRvJfskg7xJGFRxRhgLcoiLEsrL8wkypExu7ZAhKiCrEGDBlGXQdRdSJARYaiCDAkW2bOs/g/d7tAIltHfQdtCyrM7hrssnmQSZnC8MHmFHM+EakOxY5iYQjH+W79Nf5xV40/rwTSxsRgpC/JT31AIbXTpytfseGxMCBNlJqFiQaLMJHQyTJRVNjDCMqeFNjyMGrehosyoN95IlBmJJn19Zo2eUBuzaz20fKP7hleUFZYFb5aCE2MkHJODRFmQGFOpFGXnrr0cQLgYUxFcCljKiXMolQtovJrBXRLyOUMygQaJMb2NeGKOV5gY0+xCXqtmIyq656NdwokwMXbCIPyeM7lPgzolTI6zy/YX1knBc10BQWIsqKxQMWQTxmd4zwcK0z5fmBjTjjUQZTxhbmbJOfQdM6FiTP07tHyzETH9dg5xYhbCF3aOza4r/UhsJO8lu3e/adRE8Ps09L1rKMo4Qx65Omx5iDaxVCRUdnI3bNgwtnKIOgkJMiIM9WGh9uYYoo6WOZGQgROukAQLnwxfAlGWVWnEF+ahWLz0Qm1syuEJH9LmmNj1evOEPOlGniwxagCF7GeqSLHo1WeyYt7oCjivhTLZ2ujLMkATZTbzdtR5KJahSqooMxBj+nK079dqPo4sBxrxVvNH9KLMKqxQYfbz2HjChvSizOq+4RFlXh/EwjIwSdBCFfUIyglRZijGVGQBe/c2QJdlIw3FmFaeOyDKNDFWbDDaICIwSmYmxrTCAqLMVIxpdpWvVo65gVwJJ6xCiUNGuizL4rkHeZI6+Pz214167RmIsaCyVCFlIcZYZX2m93ygsBP3tNXIoeqzXSig7reVnWmYYqgoswpPVOF5jlrNp9K/I2w7pTg6FfXvN7N3oWrD8wwxEVCB3YzruwnqyLB5h8d9zlgI/Uf1AUAjZIQxJMiIMJo2bQoAYIkcyQicgEfYcRfFLB/EdvuNbG2MOCfqy3zi1M5G4Zh4XSnsbEUGV+IN+9EtdfK5rV+ybN8okeVAw8wmMYCdQFKTj9hOnPf7OZIHKAG/7c6Dzw/m9dqLZZv5VkCgsWQ6f0ZFlsHKyq3LUb8bu4alrNiPTjAFqLDxnSlgPp+1X5WiTCosDx4d06GKssxNMBZjql25BGFlBvyrbeZk+EQ0+sNYjGllMcCVX2Iuxip9Z6VlfL33PAkZbBNlVD5f7J61jPE1+DnnnvFkCWR21wLAd+0xBlZWZmkTuOdtngtqfTyj8XbXOgCF5/P5/NbfoTpPlueeL6+wF9Q8CUNMRvLDyuIZHZTlwOezm7/FkSyJd/oAV1myzPdu5sEpMaZ2Xlqwd+9eAECLFi14PCPqGSTIiDBat24NAGBJfjBwNATs9vMKN54RKSdEDe/onmbO0QtnNVFfHytvYxdzYhH9yB5PAhKDUEitKl2YHVdWLZvQKyYr1okwmJp4Q7FumGijAdaCUivLtj57oaiNKpgmwlBOZJ+0TGrgs80IqY0aMIvGidro4k1qYNHI5qoPOPH9+Uwas0w3iuP324uysgok7i82NREYkHzEj4YrjJNuCD4RKbslSOWAuwhI2J5oXFWZCzmLxEASD5P0/ILMkLivMPDdmKXwDxVjVvepz2s74q2da6vRHPW640zgYT2yYDPSFmpnVZY6Au9QggvLRB+654Ld/c6D+lwztVeTidiIA1uhovml2D8bK5P2WHaihc4lNTVUbN8jWngn5/nkSZbhSMSJOopm5xdPWfrfVvXxYNeO4WjjMDBNkLVs2ZKvXqJeQYKMCKN58+aQJAlwMcBt/pI0/DtSG8PjDB6SPHHc0cR6xyDKuJKBGB1jNKGfpyyexCJGx5jMSdP/bboAp808l7CGlFlyAv3nMxJJWpilLtzGdC6MbrtJwyqsLLP69D4aiTJdw9RUlIVuM2vM6ss3acyGn0+DRqEqxnRZMW2TGpjAVR+Cz7mhKNOLMRUOUSaWlBmLsso5XYICpBwKF2WqGBNVNxjgKQwXZazMhZyFIjyFOv9DBJcgMyTtLQwK/QwTZWYjY0b3qc8bdn+FEv6dWoiySGwAk4Q1IWGNvOGPRmXpryuz61gvxqzEnSrGYHAtVvqjv5ct7/egw2w6mczKMph/ang/6MWYldjSL4dg9mzkmcvKszyIerxNB2DYueI4n+bVMcv/Df2IIVFGmF88ZcVQX8DWph1jNK/TyMYto6ysDJIkoXnz5vz1E/UGEmREGG63G82aNQMAsGSDNXhieSjxEukDnPehG8vLwGaisNGLx9aOx8bK79CGH69dKKHz08yEY2gWQsPGX0j6bqPPpxdJoY0uvU1otjiTLG9hWRSNygqtL9SnUFGmpu7XXbdhosyssRm63UTsBSUGMD2fOpGkF2P6unSfySqpQcT1AcYNRKuRsqA67UdjwkRZyHplqihrsFInyhhOiDHdNkkXGWYkxrR9lYLLSIyF2mjwNFJDxZiK/tlhOuoZ/p1a2hj9rxIisg2PM3pm2yXC4LmujEbGjO4TnRg74QKzfS4Y3u8GmHYymZVlkQwo6H4wGhkzEltGa9OFPhttnp+AhRiz6dgLbAp+jlvOp7Wz4RBfodu5OxdtfLLyq8o6awH7dkwEndEsOfA9Nm3aFG63m98Hot5AgowwpEOHDgAARU0brQ7ZxzhsH7Eo4wlLsCuDx96B8EVtvxp2YRfqaBMHzzXqpootnlBHmxCqoJEyq9BKdZ0um4nXdpPGg0SS2ctdJ8qs52rowg+tyuKYD6df/8cyk6XdvDK7sK9KG21hV5twM23enEVWTH3jMub6fNbzAjVRZjQ6ptVnP88tSJSZLB4tKEDqwYAoE3wiUvZIhnZSRWCUzEqM6cs0E2Oaa6IAbXTM1KiyDjMxpsIzP0Y36skdpmiGOvfMLiQS4KvPasRVva6swhT194OBGFNhle8Zq3s56H63IKyTyaQsrsys6nwxm2cjYCLGQv2ye35yzL+z69gL7FIjBRyYL8wRnhhkG2PIIE9oZVB5dvtjFWOR7tfZqG2pTp068ftA1CtIkBGGdO7cGQDAUjkmiuuxE216m0jEmWlZHA9Z3gcxpx3XxGQnXiCcZakvUlu/1Nh7K+zmQAWcCjROHKiPJ5kEb8IJZpdNUC3LplEcqM+8wQhAm/fBk17f/vPZ2wRllrSw4UlkoolJG5jfbz+3TlbAKmzq8/vBSuyTNoglZUjcV2RqIihA2n4/mv9iMDqmlQMk5gEtZ8NSjIl+hqTdxyGUW/suyApYcam9eC0vtx0NVOf82WIXaqpYz7E54RbHc0gd3bKrr3KhZsv67BJc6MqyzeSoZnG0gudZBbVTh+O7sS2HQ7Co80Pt5ng5lQSD99nv50n4wvcu5U0GEpH4sSvL1ojn/c7ZYczbhomQs0edDoAEGWEOCTLCkJNPPhkAoEQqyCLFbsTNCdFmV0+YrUXYA68AtCqHp66QOnnXUeMewTOpiycLJe8ooG19wInGBIcNl8Dj6JU1XRgaODHSGMEcPcs1pCrrsrTREqdYJBnQr71mJRTVVP82NrwJEkzn1qmon88u9b4DokxQGNyFXiQdKkfWVuP6pAqG7E0VSDxSAXexcaM3SIwxBsHke9bEmCKbPz8qRy7t0sUHJ2SwuK44hZb+t5UNlx3vNWU3WsqBJo6s7q1IkjZYod7nHGXxJsGwQj96VB1JMDSfeM9VDYs2iUggxVqWfiQ4Fn9iYNOmTQBOdHYTRCgkyAhDOnbsCFEUgUQFzMM3wTdqoo3TjrT8WEQZz5w1nnKMtnPa8K6pElUCErP5B0bl8M6Ts6oPwY0c7gnoHL5bzVsIagyFTegP/2za2mKh2EzEjyjZiVonRw+86qdhKGVoshMeG14BYCTKQuYWGYoy/bmLQZQJCoOr2AdBCQgoz3FvmCiTKhiytnghlQfEj+iVw0SZ4ciYgSgLEmM6u1BfVTEW+Kwm6/7xJmSIQIyZ/W+2zbQs9XPzXC8G/0diE7bd7r4CTO9jy2PMtvE8E3ifQWHFRLeN5xlraMOZdIPrvRWNDW99pnYRCiQeO575XGZ2VSzGWIKMw4cPQ5IkdOzYsUrrImovJMgIQ5KTk7UHh5LBMXk/VuwevjVppEy/v6peeGaNB114Ck8vrJkdT2IRw2NtGjVc9cG4QRFVpkorQWgjHINEmc3IYVDjkSeRCW+yE4PGZdC5MZvbEtKAjsmGY/J8mCgzaQQHiTKjayoKUaYXYyqhokyqYMjaekKMqehFWcRhiorRd3ii8RckxlRCRJl5QoaQcxOFGDPazmOj/R/6/fBcLyHbY7FR69SIJWlDaOIRHsyeCTbPKc3O4G/r6uyfsVwdTrznycHOwJjqCzvOIYFkNHrGU3bo9ioWY8CJNlSnTp2QnJxc5fURtRMSZIQpp58eiHlWMqtBkAHGD9hI9psdw7PN9HjOEEWesBEnwnAq7XgnVcecNERXjmWdunBHy3JsRoH0PtnZ8SRFUcMcLRtDvHMU7OasMMV+4Vb9SJlF45JVziOya8wajjxEZWM/eV4TZVafTxVlVtdKBKIsaU9BmBhTUUVZw3UVATFWZhKi6JWRkF9hLcYqR8ksxZhK5RxDywQX6lwim88YKC96Mabfz2Oj/Tb7ftTOHtu5kRxJMDhsNDjmrdo+qzjnv6q/LZ8JamizZVGcCx1z2OnrNfOba25yRMIoig7HWOoDYhNIkYgop0IdHWLQvWcBALp3714t9RG1ExJkhClnnHEGgEDvju0C0dUJr3CL1SYe8L7gHHpZRvSSr6YXeERJUXhH1GKsj7dhxdX4UsWdFTwNerUsJ74XhSMDINRGto3vPp99YhG/H6y4xMYnBUJJmekcLwAQfQoS9h5HwkHzZCCqnVBUalsfKyq2FmMKC3w2ju+PZ1Fku+9YXVDdFsVCZOnLcyjBhaON9QjmZ9nZcNnxJkCyr9CxZyJXEgyr61Iri1eI8LxjohylMrNxQkTx2vBQTe9+BoY//vgDAAkywhoSZIQp3bp1g8fjCcwjS67ieWTRUB1hjE72tDn98gIse1QN/zaz4ymHFyd8shOBkZZlRaWNbUiRjZ3hMSb7uEYTbUYwtWQnduGWqj8858kyiyPTflslIAFgne1RrcdKlDEWSEfv9cF1uNDQRJAZxOMlEPwyhHIvXMeNR90EvwLpSEGgTDPRyVhAjFmNcKpizG7OiiyfGLGyEGVBiVMMXWJB59wU/T4rO4cSXPCMhgfZxFiWEyHa6nauqAC7Z6LdPiMbu+eY00kprEaZeDssI6kvFps6Dkv24/Dhw/B4PPi///u/eLtD1GBIkBGmJCYmnhgly7ZZSyhe8MaM85RTlS+fSEMyeOzMRJnRy9/IhmdbtETjUyTbIj2OU9iZTrq3sQuyNfk/GhurBCVhx5icc7ukBWHbjASJ0XwjnlG+UFHGlGCRYSTKVDGmUlYOKS8kyYfMIBaUQtCNHhmJMsGvwHW44IQQMxJlqhizmocUKsbMkE0WEg8hbN4e5xyvMHi3cSbL4LlWgq5ZDhvespy6p4zQfIi0A4r3WWpnY7Q/VIzF8l6I9v3Es80pm3qK0iCwWn2PHj2QmJgYZ2+ImgwJMsKSvn37AjjxUKmR8PTmRVqWUXnRxrabbXOihzFUlMXaq8tbllPlROqT1TF2NpwNKacSmYRuj9aGJ0FJmF2IGLMqy5CgxCIm12CoKDMaDdKLMr0Y05etF2WhYqwSoaRME2WaGPOHC0K9KAsTYyp6UWYkxnS+a5/TTIzpt4WIsRMmwaLMNFFEBHO8wv62gjMJBM+1Eo2NWd1cnRGGh0ZhE22nTuh2J2z0QszuHVNdc67M/KnK+uoJJ13QEsCJthRBmOGKtwNEzeass86CIAhgaX4wjwzBK8XbJWOcfAHYjXQJgrVtqE20dRmVZ1VfLI2OaO2cKIcpgCDy9SrHWp9al40NUzj6qjjteHvwBdH8mgnst/dds7OoV29jiSwDks39rjBAgvV8KVkGq6iA4DJ53ehEmeB2mxYjlJQFqspMMRRjGn7ZXIypVAo/Vl5un6TEZ7Ogc+X9x5Nu3nauopUYU+ERPAoDRIE7YQ3PteKITeV9zjMXM5b9QTZWAkm9n5x6tvCW4WQYfFWXUVV29QCWIGvrj/Xu3TvO3hA1HRohIyxp0KABunXrBgCQG9XQsMXqhjcGn3cULJI6o90fqa2TNlw+8TRmnDqX/PPKIgo9iqUc8DVCuRIScCQ34E2AwJVwgSsZiE2SEoWBlZWDlVlnXxRKyiAdzLe28fnh2n/UXIwBAaFVVGy7oDXz2mSVBALJQHiSc3CcJ97FyLmuS57vjjPBhWMZBzmvX1ucuDd5bVQ7W5sYR6EiseGtr7qpiT7FEblhoM102mmnoWHDhnH2hqjpkCAjbBk8eDAAQGlMgqzGYycEowljibYcfShprOKVNyw1Xo2ZWBt1PMLNKZsgc/PzwJuUAcw6vbkWimchyrQEFz6/uShjgdBBVloGVmKSMbEyUyIrLQOrMAmzluXAfi3Vv4HvCgv4qlv02bS+SEa17JJz8Hy/Rn/rt5mEq4abcgofHhunxU+sYc5OjfADzj2fSKzUO1oPbAwAOP/88+PsCVEbIEFG2DJgwAC43W6wFD+UZIseZaJm4dREbycneVdXiI0T4i5Sop3sX1WJBGIQZREnFjERZWHJKjjS+RuKMsbAfLr1zby+cFGmKIG5aKofshIuyhQlSIwZCq1QMaY7NqwsvRjjmfdlZhdJ9j+zbTohZpeZMCoxFss1xzPHiscu2nssGnjmeBlt451HTNRplGQfduzYAbfbjX79+sXbHaIWQIKMsCUtLQ19+vQBAChNaJSsVuHUZGwne4Dt6ou2geNU4ykWQifuW9lY2UVqw1OXpRkz/DtoG0djWS/KTNO5h4gyo3C4IFEWKsZU9KIsVIyp6EWZooCVlBrXpx5nJsZUdCNmXJkQeZNz2AkNTrEWbaZCs/Istzs9H5VTcDrik60vUTzLzLaTGKuXKDmB51efPn2QlpYWZ2+I2gAJMoKLoUOHAgDkJmVgIr1gahXVOR8skpBBp8IYrXyL1MYJnAjLirScWEO8EDyyYrrfbgFbm/BFjUphYzU3ifn8AQFlJMZUvD6wohJjMaYiK2Dl5aZi7IQvNuGJOnvbTIiKxf5QOyuhEcF1EutaXqHlWe53ssOBt85YfIoE3mdlbZ3nRVQ5TGRI6hhIiHTppZfG2RuitkCCjOCiV69eaNq0KeBiUCi5B1FTcDpBSXWFVPLiWCPTuTk+to16xpfkQjGb43XCKDBnrMziecMUsNJSsAqTRahVs7Jym6QiSkBomS1mrbnEAsKN4xzY4pCI4E3Q4ticMR4iud6c6Jjg8qm6710SY/UVpVE5iouL0axZM/To0SPe7hC1BBJkBBeSJOGyyy4DAMhNS8FALxuijhJL2KZdGfr98WiwOTHHh1mnLdcEglVmvsrRIVORxCoz8qm/jcQbU06kpLdKGFJRoQkuq3PO/H4wWTEPtVRHxXhHiKpp1JKzIMdGUmskvB0plHSDqGIYGNpf3BRAYHRMFKmZTfBBVwrBzUUXXQSPxwOW6gdLp+QeRB0m2pEyp8IoqxInko+YiLKwuWiGIYLB86fChBRj4aGFoWGEejGmYiTKmBJ8rIkoC8wbYyd8Ck1Gohdj+rLDCnIu6QTXvD6+ghzzqUZiJ7Yo6QZRjbAMHzZv3oyEhARcdNFF8XaHqEWQICO4yczMxIUXXggA8LcsibM3BFHFVEXykZrSGIw0IYhZEg8e0aAXVyYZBjUhZSTGUBkqqI6SGYkxldCEIUbrjIWIsiAxpvep0sZQjJ34gMZ/R2oTdgiH2OUryDGfaiRV2XFCEFFw6o3tAQTm3WdmZsbXGaJWQYKMiIhrr70WkiSBZXmhpNAoGVHHcSr5SCQJSqoLJ+aVVYoy27A6WbZdg8syuyEQHLpodb7UJB1qqKKZjSreLJJzaPPFOMI4LYlgvhhXOChfQc7Y1ETM7if9aBkl3SCqGSXFh1WrVkGSJIwYMSLe7hC1DBJkREQ0a9YMAwYMAADINEpGEM4Rr3llscIhNrQMjVZYzSlTy5FlKFZJPgBAlqGUltpmS+RNzmHnN49IcsqGm7oqxpxKvBOJHUFw0vfBUwEE1m5t2rRpnL0hahskyIiIGTlyJABAaVABJcm6AUUQRITwjLbZHe/EqF2k8GRoNBM3lcLHNhmILAdGtnwmzx1F0YSWVfp95vdzj/5ZEWl2w5gWaualNgotHkhAETUYJdmP3377DQBw3XXXxdkbojZCgoyImHbt2uGcc84BBEBuUxxvdwii7mE31yyWBAY8dUVLNKLMaC6akSjTb1PnkelRxZhOaBmJMsPEH2FGnPPjLP432xaNDTckxggiLvS6pzMURUG/fv3Qvn37eLtD1EJIkBFRMXbsWIiiGBglS7Neu4cgiCiINKkITzmxlsVVXwSizCpbo16AGQk0vSjTi7EQP/SizDzNfhQZJA2LccYmKkiMEURcUNK8WLJkCURRxC233BJvd4haCgkyIiratGmjpXT1tymmdckIoiqIZL4MT9KQ6koswinKuJKBWIUwVoqyMDEW4geT7RerVkfWYk2qUe3zxQIFOldWTYLEGFHDYWA4+YaWAAJLA7Vu3TrOHhG1FRJkRNTceOONSEhIAMvwQck2WLiVIIjYcWqRaV4bp+ae8WQm5EkGYiduZNk68YZ+flqMdTmWLMPJzIxOibGaJn5qmj8EYYCSXYE1a9bA4/HgxhtvjLc7RC2GBBkRNY0aNcLVV18NAJDbFoMJ9AIliDpBtGuqhR0T5eLJ6nabUStHwwg5knxY+hupjZUd7zphvGKMd6TVqSUe7OqqictAEESEMJGh0cBkAMBVV12FRo0axdkjojZDgoyIiZEjR6JBgwZgSTLkFpQGnyCIWkikCyXXhLTykYoxM5HtxAhsqE1V1kUQNQS5eQkOHjyIRo0aYdSoUfF2h6jlkCAjYiIlJQV33303gMC6ZCyR0uATRJ0gmqyOhjYRjgiZ/B9NVsNobWz9c9KGZ8SQd1QxyCbKUahIv/dYwmUjLYcgaggswQ/pJB8A4K677kJycnKcPSJqOyTIiJgZMGAAevToAYiAv10RJfggiLqCUwvx8s6Z0v822K+KJ9tkIJHY2AmgWMIKIw09jNVGs7UQQFU1KmbmA42KEXWQHvd1gtfrRY8ePXDeeefF2x2iDiAwRk9CInb27t2LMWPGwOfzwbUxA9LRxHi7RBBEdSII1ViXA32JdTUzIUAChyCqELlBOfwnF8DlcuGTTz6hzIqEI9AIGeEILVu21Fan97cvAnPX4cYOQRDhxJrswa6MILsYMzjWZTFGEESVwdwyUnoH/r7++utJjBGOQYKMcIwbbrghsEK9R4G/fSGFLhJEfcMuO6MTIW6avUPzseoi1TlaSRD1BAYGf/siFBQUoEOHDrjhhhvi7RJRhyBBRjiGx+PBE088AUmSoDSsgNKoPN4uEQRR3UQz5yyalPqAs/O46hokygjCUZRG5VAaVkCSJDzxxBNwu93xdomoQ5AgIxzlpJNOwpgxYwBUhi56LBZsJQiibmI32uV0+GJNSENPEESdhXlkJPUIPJPGjBmDDh06xNkjoq5BgoxwnJEjR6Jz586Ai8HXsYBCFwmiPuLUAsFOJKggMUYQRJQwMHS+pRmKiorQqVMnjBw5Mt4uEXUQyrJIVAl79uzB2LFjUVZWBmlPClx7UuPtEkEQtRWr8Dv1FRaLjf41aFdObQkFpFc7QTiCv1Ux5FYlSE5OxkcffYQWLVrE2yWiDkIjZESV0KpVKzz00EMAAgtGKxkVcfaIIIhaS1UuYsw7f602CZza5CtB1GCUjAoorUsBAI888giJMaLKIEFGVBnnn38+LrnkEkAAfJ0Kwdw0n4wgiCjhEU7R2ERad00XOzXdP4KoJTC3jLR+IhhjuOSSSzBw4MB4u0TUYUiQEVXKvffei3bt2gEeBb7OBWACNRYIgogSntT4kaTPd2pUraZQU/0iiFoGExg63dIU+fn5aNu2Le655554u0TUcWgOGVHl7N69G7fddhtKS0shHkyCe3t6vF0iCIJwhpoyp4xe5QThCAwM/g5FUHLKkJqaivfeew+tWrWKt1tEHYdGyIgqp3Xr1njmmWcgCAKUpmWQc0rj7RJBEETVw5MlkoQUQdQolJwyKDllEAQBzzzzDIkxologQUZUC2eddRZuvfVWAIH1yZQMb5w9IgiCcAAnEo7EKspI1BGEIygZXrBOgU7j2267Db17946zR0R9gQQZUW1cd911GDx4cCDJR+fjYIn+eLtEEAQRO7yZGiO1iaZugiCiQkn0I7mvAlmWMWjQIFx77bXxdomoR5AgI6oNQRDw6KOPBhaNdjN4uxwHc9OCrQRB1AHsRruqIlEIiTGCcATmltHwEg8KCgrQuXNnPPbYYxBqyvxQol5AST2Iaufo0aO48847cfDgQQhFLrjXZkFQqG+AIAiCO0kIvboJwhGYpMDX7RhYqh/NmzfHO++8g6ysrHi7RdQzqBVMVDsNGjTA66+/joyMDLA0P3wnUzp8giAIAHxJQEiMEYQjMIEFluRJ9SMzMxOvvfYaiTEiLpAgI+JCy5Yt8c9//hOJiYlgWV74TyoEAzUyCIIguMIeCYKICQYWaHtkeZGYmIhXXnkFLVq0iLdbRD2FBBkRN0455RSMHz8ekiRBaVwOf7siEmUEQRBGkBgjCMdgYIGMz43LIUkSnn/+eZxyyinxdouox5AgI+JK79698fjjjwfWKGtWBrltMYkygiAInrT5BEFEDAOD3LYYStPAWmNPPPEE+vTpE2+3iHoOCTIi7lxwwQV45JFHAABy81LIrUmUEQRBACAxRhAOwsAgty6G3Dyw1thjjz0WWI6HIOIMCTKiRnDxxRfjgQceAADILUshtyqJs0cEQRBxhsQYQTiK3LIEcsuAGHvwwQdx0UUXxdkjgghAgoyoMVx++eW4++67AQByqxL4W9FIGUEQBEEQscHA4G9dBLl1oLP37rvvxrBhw+LrFEHoIEFG1CiGDx+O22+/HUBAlNGcMoIgCIIgooWBQW5XpI2M3XnnnRg+fHicvSKIYGhhaKJGMnPmTLz11lsAAPFQElzb0iCAc8FUgiAIgiDqPQwM/g5FUHLKAAAPPPAALr/88jh7RRDhkCAjaiw//vgjXn31VSiKAvFwIlxb0yEwEmUEQRAEQVjDhMA6Y0rjcoiiiMceewwXXnhhvN0iCENIkBE1ml9//RXjx4+HLMsQ8z1wbcqEoJAoIwiCIAjCGCYq8HcugJLthSRJeOqppzBw4MB4u0UQppAgI2o8y5Ytw9NPPw2v1wuhyAX3hiwIPpr+SBAEQRBEMMwtw3fKcbA0PxISEvD888/jrLPOirdbBGEJCTKiVrBu3TqMGzcOBQUFQJkE9/pMiOWueLtFEARBEEQNQUn0w9flOJAkIyMjA6+88gq6dOkSb7cIwhYSZEStYe/evXj44Ydx8OBBwCfAvSETYpEn3m4RBEEQBBFnlFQfkvvJKCgoQNOmTfH666+jZcuW8XaLILggQUbUKvLz8/H4449j06ZNgAK4NmdAOpoYb7cIgiAIgogTcsMyiP9XDq/Xi06dOuGf//wnsrOz4+0WQXBDgoyodZSVleG5557DsmXLAADSnhRIe1IoLT5BEARB1CMYWGDN0laBBZ/79OmDZ599FsnJyXH2jCAigwQZUSvx+/1477338OWXXwIAxLwEuLakQ1Ao2QdBEARB1HWYqMDfqRBKgwoAwLXXXotbb70VkiTF2TOCiBwSZEStZvbs2Xj99dfh8/kglLjg3pAJoYIexgRBEARRV2EJlZkUU/xwu9145JFHMGTIkHi7RRBRQ4KMqPWsW7cOTz31FPLz8wPJPjZlQCxIiLdbBEEQBEE4jJJZgeSzGQoKCpCdnY0XX3wRXbt2jbdbBBETJMiIOsHhw4fx5JNPYvPmzQCrnFe2l+aVEQRBEERdgIFBblkCpU0pGGPo1KkTXnzxRTRp0iTerhFEzJAgI+oMFRUVmDBhAr777jsAgHDMA/fmDAh+mldGEARBELUV5lLg61QAluUFAFx66aW45557kJBA0TBE3YAEGVHnmD17Nt544w1UVFQA5SLcmzNovTKCIAiCqIUoqT74Oh8HEhUkJCTgoYceovliRJ2DBBlRJ9m+fTuefvpp7Nu3D1AAaXcqpP3JFMJIEARBELUABga5eSnQoQyyLKNFixZ44YUX0L59+3i7RhCOQ4KMqLOUlJTg1Vdfxa+//gqgMoRxazoEL2VhJAiCIIiaCvPI8HUsBMsMhCj2798fjz76KFJTU+PsGUFUDSTIiDoNYwzfffcd3n777UAIo0+Aa2s6pPzEeLtGEARBEEQIcnY5UvoABQUFSExMxL333ouhQ4dCECjChai7kCAj6gW7d+/G+PHjsXXrVgCAeDAJrp1pEBR6wBMEQRBEvGEig79NEZRmZQCAk046Cc8++yxatWoVZ88IouohQUbUG7xeLz766CNMmzYNACCUSnBtTaeEHwRBEAQRR5Q0L/wdC8GSZADAiBEjMHbsWHg89H4m6gckyIh6x6pVq/DSSy/h6NGjgTXL9idD2p0KgdFoGUEQBEFUF0xgkFsXQ2lZBsYYGjVqhMceewy9evWKt2sEUa2QICPqJUVFRZgwYQLmzJkDoHK0bEsGxGJ3nD0jCIIgiLqPkuqDv2MBWHJgVGzIkCG45557kJaWFmfPCKL6IUFG1GsWL16M119/Hfn5+YHRsn3JkPbQaBlBEARBVAVMZJBbFoO1LoeiKMjOzsbDDz+Mvn37xts1gogbJMiIek9hYSHeeustzJ07F0DlaNn2dIgFFLtOEARBEE6hZFTA16EIqJwrNmjQINx3333IyMiIs2cEEV9IkBFEJYsWLcIbb7wRmFsGQMxNDGRi9Itx9owgCIIgai/MpcDftghKk3IAQMOGDXH//ffj3HPPjbNnBFEzIEFGEDqKi4vxwQcf4JtvvgFjLLBu2c40iIcTIYDCGAmCIAiCFwYGpVE5/O2KADeDIAgYNmwYbr31VqSkpMTbPYKoMZAgIwgD1q1bh9deew07d+4EAAjHPXBtT4NY5oqzZwRBEARR81GS/PC3LwLL9AIA2rZti0cffRRdunSJs2cEUfMgQUYQJvj9fkybNg2TJ0+G1+s9kSJ/bwoEmcIYCYIgCCIUJimQW5UArSogyzI8Hg/GjBmDa665Bi4XdWoShBEkyAjChgMHDmDChAlYunRpYINXhGtXKoUxEgRBEEQlDAxK43L42xQDHgUAcM455+Cuu+5Cs2bN4uwdQdRsSJARBCfLly/HhAkTsG/fPgCAUOiGa0carV1GEARB1GuUFF8gPDHdBwBo2bIl7rvvPlrgmSA4IUFGEBHg8/nw1Vdf4dNPP0VZWRnAAPFwIly7UyF4pXi7RxAEQRDVBvPI8LcphtI4kD0xKSkJY8aMwVVXXQW3mzorCYIXEmQEEQV5eXl477338PPPPwc2KIC0PwXSvmSaX0YQBEHUaZikQG5RAqm9PzDHGsD555+P2267DY0aNYqzdwRR+yBBRhAxsGHDBrzzzjtYs2ZNYINXgGtvKsRDSRAYzS8jCIIg6g5MYFCalMHfqhjwBJqPp512Gu666y506tQpzt4RRO2FBBlBxAhjDIsXL8Z7772HvXv3AgCEUgnS7lSIRxMo8QdBEARRq2FgUBpUQG5dDJYsAwBatWqF22+/HWeffTYEgd5zBBELJMgIwiH8fj++++47fPLJJzh+/DgAQChyBeaXHfeQMCMIgiBqFQwMSpY3IMRS/QCAjIwM3HTTTbjkkksojT1BOAQJMoJwmJKSEnzxxRf46quvAok/AAgFbrh2p0Is9MTZO4IgCIKwR0n3wt+6GCwjkDkxOTkZw4cPx4gRI5CSkhJn7wiibkGCjCCqiOPHj2Pq1KmYNWuWNulZOOYJCDNKlU8QBEHUQJRUX0CIZQXeWx6PB1dccQWuu+46ZGZmxtc5gqijkCAjiCrmyJEj+Oyzz/D999/D7w+EfIj5Hkh7UyAW0YgZQRAEEX+UdC/8LUs0ISZJEi6++GKMGjWKMicSRBVDgowgqokDBw7g008/xc8//wxZDkyKFo574NqbAqHATXPMCIIgiGqFgYFleOFvVaKFJkqShMGDB2PMmDFo1qxZnD0kiPoBCTKCqGb279+PqVOnYvbs2SeEWYE7IMwo+QdBEARRxWjJOlqWgKUHhJjL5cKFF16IkSNHkhAjiGqGBBlBxInc3FxMnToVP/zwA3y+wAtRKHJB2p8CMY/S5RMEQRDOoqWvb1miZU30eDy45JJLcM0116BJkyZx9pAg6ickyAgizuTl5WHatGn45ptvUFFREdhYLsG1PxlibiIERYyvgwRBEESthomVCzo3KwWSApEZiYmJGDZsGEaMGIEGDRrE2UOCqN+QICOIGsKxY8cwa9YszJo1CwUFBYGNPgHSoWRIB5Ig+KT4OkgQBEHUKphbhtysDHJOKeAONPfS09MxbNgwXHXVVZQ1kSBqCCTICKKGUV5ejp9++gnTp0/H/v37AxsVQDycGAhnLKOFOAmCIAhzlGQ/5GYlUBqXA5VBFs2bN8fVV1+NCy+8EElJSfF1kCCIIEiQEUQNRZZlLF68GNOmTcP69eu17cIxD6QDyRCPUQIQgiAIIoCWqKNpKVi2V9vetWtXXHPNNTj77LMhSRRpQRA1ERJkBFELWLt2LaZNm4bFixdDu2XLRUgHkyHlJkHw0zwzgiCI+ghzKZCblEHOKdPmhwmCgHPPPRcjRoxA165d4+whQRB2kCAjiFrEgQMH8PXXX+OHH35AUVFRYKMazngwGWKJO74OEgRBENWCkuKD3KwUSqMTYYmpqam46KKLcPnll6N58+bxdZAgCG5IkBFELaS8vBzz58/H//73P2zdulXbLhS6IR1MgpiXCIFROCNBEERdggkMSsNyyM1KwdL82vaTTjoJl19+OQYNGoTExMQ4ekgQxP+3d+/RUZWH+sefPZPbhARCIGIwyP3WA5QIQhGhCHIRobWoPXo8Bz3oz/YsLT2rx1Usq4qFKl6WFZeuZa3roLUa7dEuoVIVRC6KhvtdbuEqt6S5kJCQmSQzs39/zMzODLlPAnsC389as/ae/e733e+EDcyTvff7RoNABrRjpmlq7969+uijj7Ru3Tp5vcH/oGsMOQuT5Mh3yVHJVTMAaM/8yTXyX+uWL8NjjZYYFxenW265RXfccYeGDBkiw+CXcEB7RSADrhDFxcVasWKFVqxYoYKCAmu7UR4nZ4FLjsIkGT6eNQOA9sB0+uXP8MjXzR1xNeyaa67Rj370I82YMUPp6ek29hBAWyGQAVcYn8+nbdu26R//+Ie++uqr2qtmPkOOokQ5810yyuMZoREAYowpU2bHGvm6ueXv6pGCgyLGxcVp7Nixuv3223XjjTcyWiJwhSGQAVew0tJSrVy5UitWrNCJEyes7UalU47CJDn/6ZJRxX/sAGAnM9EnX4ZH/m5umcGREiWpV69euv322zV16lQmcQauYAQy4Cpgmqa+/fZbrVixQmvWrJHH47HKjLL4wPNmRUkMnw8Al4kZ5w8M0JHhkdmpxtrucrk0ceJEzZgxQ9/73vd4Ngy4ChDIgKtMZWWl1q9fr88//1zbtm2rndfMLznOJcrxzyQ5ShIZpREA2phpmPKnV8l/jUf+zlXWcPWGYSg7O1tTpkzRhAkTlJycbG9HAVxWBDLgKlZYWKjVq1fr888/1+HDh2sLvIYcRUlyFiXKKE3geTMAiJIpU2an6sAtiV2rpLjar139+vXT5MmTNWnSJF1zzTU29hKAnQhkACRJR44c0apVq7R69WoVFhbWFtQYchQHw1lZAlfOAKAJpkyZadXydamSv4tHSqj9qtWtWzfdeuutmjx5svr06WNjLwHECgIZgAg+n087d+7UmjVr9OWXX6qsrKy2sMaQozhRzqIkwhkAhDGN4JWwrh75u1RZ84VJUqdOnTR+/HhNnjxZw4YNk8PB87oAahHIADTI6/Vq586dWrt2bYPhzFGcJEcp4QzA1cc0TPnTquXv6pE/PTKEpaWlafz48ZowYYKGDx+uuLg4G3sKIJYRyAA0i9fr1a5du6xwVlpaWlvoCw4IUhJ4MVojgCuVGecPDMyRXiV/WnXEM2Hp6elWCBs2bBghDECzEMgAtFgonK1fv15ff/115DNnpmScj7fCmcPNFxIA7ZcpU6bLZ4Uws2ONwsc56tq1qxXChg4dyqTNAFqMQAagVUzT1KFDh/T111/r66+/Vl5eXkS5UekMBLNziTLOx3NrI4CYZxqmzI41tSEsbLJmSerfv7/Gjh2rsWPHasCAAcwVBqBVCGQA2lRBQYEVznbs2CGv11tb6DPkKI0P3N54LkFGFVfPAMQGM9Erf+fqwKtT5K2I8fHxys7O1tixY3XTTTepW7duNvYUwJWGQAbgkqmoqNDmzZuVm5urzZs369y5cxHlhtsp41xCIKCVJcjw81tmAJeH6fDLn1Yjf1qVzM7Vda6CpaWlafTo0Ro7dqxGjRrFZM0ALhkCGYDLwu/36/Dhw9q8ebM2bdqkvXv3yucL+wLkl4zzCXKUJshRFi+jPJ4JqQG0GVOmzBRvYFTEtOCzYGHjDzmdTg0ZMkSjRo3SqFGj1L9/f4anB3BZEMgA2OLChQvavn27Nm3apM2bNys/Pz9yB68hx/l4GWWBkGZciCOgAWg2U6bMDoEAZnaqlr9jTcRtiJKUmZlpBbAbbrhBHTp0sKm3AK5mBDIAtjNNU9999522bt2q7du3a+fOnSovL4/cyWsEbmsMXUGrJKABqGXKlJkcCmA1dZ4Dk6SUlBQNHz5cI0aM0KhRo5SVlcWAHABsRyADEHNCtzfu2LFD27dv165du1RZWRm5U+gK2vmEwLIinmfQgKuIaZgyU2vk71gjs2O1/Kk1ERMzS1JycrK+//3vKzs7W9nZ2erXrx/D0gOIOQQyADHP6/Xq0KFD2r59u7Zv3669e/fK4/FE7uSXjIr4YEiLl+N8AhNUA1cQM94vf2p1YDj6jjUyUyKfAZMkl8ulYcOGKTs7W8OHD9eAAQOYnBlAzCOQAWh3vF6vDh8+rN27d2vv3r3avXu3SkpK6uxnVDpllMfLUR68gnYhjnnQgHbANAK3H5qpNfKn1sjsWFNnFERJSk9P19ChQzV06FANGTKEAAagXSKQAWj3TNPU2bNntXv3bu3Zs0d79uzR8ePH6+7oVyCUhYc0t5Nn0QAbmTJlunyB8JVSIzO1RmYHb52rX5LUu3dvDRkyxAph3bt35xkwAO0egQzAFamsrEz79u3T/v37rdf58+fr7ug1AgGtIk7GheBVNEIacEmYMmUm+WSmeGWmBANYirfO4BuSlJqaqkGDBmnQoEEaMmSIhgwZotTUVBt6DQCXFoEMwFXBNE2dOXNG+/fv14EDB7R//34dPHhQ1dXVdXf2yQpnVlCrjGPQEKAFTEfwtsOUGvk7eGUGX3LW/dqRmJiogQMHWgFs8ODBXP0CcNUgkAG4anm9Xh07dkz79+/XoUOHdPjwYR05ckRVVVV1dzYVuHJWEQxnlU45KuMkD1fTcHUzZUpJPvmTfYEA1iFwy6Hp8qm+vxoJCQnq27ev+vfvb4Wvnj178uwXgKsWgQwAwvh8Pp06dUqHDx9WXl6etTx37lwDFSTDHRcMaQQ1XLms2w2TvTJD4SvZK9PllRoYST49PV39+vVTv3791L9/f/Xr109ZWVkMPQ8AYQhkANAE0zRVXFysw4cP6/Dhwzp27JiOHz+uEydO1H/Lo1Qb1NzOwNLjrF1nOH7EMDPOL9PlDYQvly+w7goEsPoG2pACV72uv/569erVy7r61bdvX3Xp0uXydh4A2iECGQBEyefz6ezZszp27JhOnDjRvKAmSTVG3ZDmccrwOAODjHBlDZeY6fQHQlZSMGyFgleSr87kyuESEhLUs2dP9erVS71797bWMzMzueUQAKJEIAOANhYKasePH9epU6d06tQpnTx5UqdOnVJhYWHjlb2GjCqnDI9DRpUzcOtjldMKbIaPq2tonClTcgZvL0zyyUz0SUk+mYl+mYmBbfWNahguIyNDWVlZ1uv6669X79691a1bN243BIA2RiADgMvI7XbrzJkzVkALLU+fPl3v5NZ1hAJblUOqDiyN6vB1rrJdyUyZUpwpMyEQsJTgD6wn+KXE2tDVVOCSAs93hYeurKws9ejRQ927d5fL5boMnwYAIBHIACBmVFVVKT8/X/n5+Tp79qzOnj0b8b60tLR5DfkUCGjVjuDLKdU4ZNQYwWUwxNU4Gco/BpgyJYcpxftlxpuBcBXvlxkfXAYDVyCA+Rp8juti6enpuvbaa61XZmamunXrZr1PSkq6tB8MANAsBDIAaCfcbrcKCgqUn5+voqIiFRYW1lmWlZW1rFGfakNajUPyOmR4A8HNWq9vaRLk6mM6TCnOL9MZXMYFloozZYYvg4ErFLoaGqWwIZ06dVJGRoa6dOmijIwMde3aVRkZGcrIyLCCF4ELANoHAhkAXEGqqqpUXFxshbSioiKVlpbq3Llz1vLcuXMqKSlpfOCRpvgk+RySz5DhM6Tgy/AbF21zBNb9kvxG4GUaMiLeB9YNf3A/M7hNF68HFk3djmnW7hi2NANLQ4GrUYYp0xFaDy4dpsywdTkUCFYOf+CZLGfg2Sw5zUDwCn8fDGDNvXpVn4SEBKWnpystLU1paWnq3Lmz0tLS1KVLFytwhdYTEhKiPxAAIKYQyADgKmSaptxud0RIKy0tVXl5ufU6f/68ysvLVVFRYb2vqKiQ7f9tmIoMaRHBS/VORnw5ORwOpaSkKCUlRampqdYr9D4lJcUKXKHQlZaWJpfLJcPgyiMAXG0IZACAZvP7/bpw4YLKy8vldrtVWVlZ7/Li9aqqKlVXV6umpiZiWd82v99/ST+D0+lUQkKC4uPjrVf4+9B6QkKCkpOT5XK5rFdSUpJcLled7S6XywpcycnJcjgYDRMA0DwEMgBATPH5fDJNUz6fT36/v9718KVhGHI4HNYy9Lp4u2EYiouLY9h2AEBMIZABAAAAgE24pwIAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbBJndwcAXPlM05TH47G7GwDQIklJSTIMw+5uALjCEcgAXHIej0dTp061uxsA0CIrV66Uy+WyuxsArnDcsggAAAAANuEKGYDLKmHzNTLM4O+CDIcMhyEZDslhSIYhwxEqC243DMlhyAjtY5UZVh3rJYVtc0SWBypa20zDqP2VVFgb1naj9ljh20wj0IxV5gi0G9huWGWhOmZwm1Uu1bbhCO4fKlfkMSLqBLtvOuopi9hfEX2s3WbUKatTR+H9uKhcDWxvoL2G+lGnTmPtWtvNuvXD6ljlYW2Zwe0KqxcoM8P6Eyg3wsusfUNlptWmEb6/YVpl1ikW2h5qLrhP4FQwrfehOo7g+0BZ4H2onlVmmDJUW88R3Ga9ZFr1HIYitgfq+2vrKbS/X85QneD72rb8VnvOsPadCmx3htqz9vXLGWpToX74a/dXbduBNv1yKHD8QFmgPWdwmyG/nKH6YXWcUqCeAscJ/TxC7wPHMoPrCpaZcgR/Lk4ZckhyBv+wHTKC2ww5DUMOOWQE/+Rqqp268/9dKwC4XAhkAC4vnxH8aqRAIFMwPAW/6daWGZKjNn0YgXQTbCT0zdyhOt+4a9NOZAoItVnnG7ou2hZ+DNWz7eJ6qg1iYYGszrawABX+/uIuRu5fTx1HI2UNfYw6/WjgYzdW1tCPKtr2wtqsL6xd0kBWX7kufm9abYf3I/yY9ZVZAU5h+4TvX6eOWc+xzIhXeCCrDXnBV0NlCoW2QJPh4S0U3KRQsJIVaMLLAoHMXxtojPBAE1h3GEYgLAWXstYNq16gHQXbDNVVsF5we31lYXWcwTDptPoZCmRmk4EsvD1n6OehyG0Ohfcx7M8QAC4DblkEAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCfOQAbi8nKZMMzAZbGBeLSNsaVw0WXNoGbau8G1m2HozysImpaqdvreh7bVLM2JdEfVMSTJD22vbNGVIpqy64eVWGxGTZ4X3pZ73ZkSXLvp5NPC6eN/mzDXWWFmzj9XMsvBDNlrPbKJNs4E+NjwxdOTcYWFl1r7RTwxd24+wecgU/TxkpmrrmYYZ+VJgGShTxHa/YUqGv7ZNhY7lD5svLbhPsNw0/FZ7img/uAwdK/jeEdwntJRUZ5s/7K91aN1vSH7VzkPmD24z1NA8ZIY1mbNTtX9mofeOYJ2L5zZr/sTQhmonhq7v7yUAXDoEMgCXVfWof9rdhUsj9H03ShfnCSAk/NTy29mRqIUnYm7MAYCL8S8jgEvO4/HY3QUAAICYxBUyAJdcYmKitb58+XIlJSXZ2Bu0Fx6PRz/+8Y8lcd6gZdrq3OGcA3A5EMgAXHKGUXsTXlJSklwul429QXvEeYNoce4AiHXcsggAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYxDBNsxUz5wAAAAAAosUVMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJnF2dwBAbKmsrNT777+v9evXKz8/Xw6HQz169NDEiRN15513Kj4+Puq2S0pKlJOTo9zcXBUUFCgxMVG9e/fWtGnTdPvtt8swjEbrnz59Wjk5OdqyZYtKSkrkcrk0YMAAzZw5UxMmTIi6X2i9WDxviouLtWvXLh06dMh6nT9/XpL08ssvKzs7O+o+oW3E4nlz6tQpbdiwQTt37tSRI0dUUlIip9Oprl27atiwYfrJT36igQMHRt0vALiYYZqmaXcnAMSG/Px8zZ07V/n5+ZKkpKQk+f1+VVdXS5L69++vJUuWKDU1tcVtHzx4UI899pjKysokSS6XS9XV1fL5fJKkUaNGafHixQ1+AcvNzdWCBQvk8XgkSR06dJDb7Zbf75ckTZ8+XfPmzWsy1KHtxep5s3TpUr311lv1tksgs18snjd79uzRI488ErEtOTlZNTU1qqmpkSQ5HA79x3/8hx588MEW9wsA6sMtiwAkSV6vV48//rjy8/PVpUsX/eEPf9CqVau0atUqLViwQMnJycrLy9OiRYta3HZFRYXmzZunsrIyXX/99frTn/6klStXatWqVfrv//5vxcXFafPmzXrllVfqrX/mzBk99dRT8ng8Gjp0qN599119+umn+uSTT/TAAw9Ikj755BO99957rfkRIAqxfN4YhqFrrrlGN998sx588EH9+te/bu3HRRuJ1fPG6/XK6XRq3LhxWrhwoT7++GN99tlnWrVqlV5//XUNGzZMfr9ff/7zn7VixYq2+FEAAIEMQMBnn32mo0ePSpIWLVqkkSNHSgr8NnjSpEl67LHHJEkbN27Utm3bWtT2+++/r5KSEiUmJur555/XoEGDJEnx8fGaNWuW5syZI0n6+OOPdfLkyTr1ly5dKrfbrfT0dD377LPq0aOHpMBvrufMmaOZM2dKkv7yl7+ovLw8ik+PaMXyeTN79mx9+OGHeuaZZ3T//fdrxIgRUX9OtK1YPW+uu+46vf3223r66ac1YcIEderUSZLkdDo1ePBgvfTSS+rbt68k6d13343y0wNAJAIZAEmBL0iSlJ2drSFDhtQpnzRpkjIzMyP2ba6VK1dabXTv3r1O+axZs+RyueTz+fT5559HlLndbq1fv16SdMcdd9R7+9K///u/S5IuXLigr776qkV9Q+vE6nkjBb5EIzbF6nlzzTXXWL/wqU98fLymTJkiKfBMK78AAtAWCGQA5PF4tHfvXknSD37wg3r3MQxDo0ePliRt2bKl2W1/9913KigokCSr/sWSk5M1bNiwetves2ePqqqqGq2fmZmpnj17trhvaJ1YPm8Qu9r7eZOQkGCth55JA4DWIJAB0IkTJ6zBMXr37t3gfqGykpISa7S6poRuS2qq7T59+kiSjh8/3mD90D6N1T927Fiz+oXWi+XzBrGrvZ83O3bskCR16dLFuqURAFqDQAZARUVF1npGRkaD+3Xt2rXeOo0pLi5uUdsXLlxQZWVlneOkpqYqMTGxyfrhx8OlFcvnDWJXez5v9u7dqw0bNkiSZsyYwaiuANoEgQxAxBeSxkJPUlJSvXUuZdtut7tOeWP1+VJ++cTyeYPY1V7Pm9LSUi1cuFB+v19ZWVm69957m1UPAJpCIAMAAGhEZWWlfvOb3yg/P1/JyclauHChkpOT7e4WgCsEgQxAxBeL0AAa9QlNynxxnUvZtsvlqlPeWH2+JF0+sXzeIHa1t/PG7XZr3rx5+vbbb+VyufT888+rX79+zeoPADQHgQxAxLMahYWFDe4X/hxHeJ3GdOnSpUVtd+jQIeILUug45eXljX7BCtUPPx4urVg+bxC72tN5Ewpju3btksvl0nPPPWeN0AgAbYVABkA9e/aUwxH456CxUQpDZenp6erYsWOz2g4fGbGxtkOjo/Xq1avB+uEjqDVUv7GR1dC2Yvm8QexqL+dNKIzt3LlTSUlJeu655zR8+PBm9QMAWoJABkBJSUnW5KybNm2qdx/TNLV582ZJ0o033tjstnv06KFu3bo12rbb7dbu3bvrbXvo0KHWw/mh418sPz9fJ06caHHf0DqxfN4gdrWH88btduvXv/61du7cad2mSBgDcKkQyABIkqZNmyYpMMfOvn376pSvXbtWZ86cidi3OQzD0NSpUyVJa9as0dmzZ+vs89FHH8ntdsvpdGry5MkRZS6XSz/84Q8lScuWLVNFRUWd+jk5OZICz4KMGzeu2X1D68XqeYPYFsvnTSiMhd+mSBgDcCkRyABICnzp6dOnj0zT1BNPPKFt27ZJkvx+v9auXasXXnhBkjR69GiNGDEiou7SpUs1fvx4jR8/vt4vQPfcc4/S09Pl8Xg0b948HTx4UJJUU1OjZcuW6X//938lSTNnzlSPHj3q1J8zZ45cLpeKi4v1+OOP6+TJk5ICX5zeeustLV++XJI0e/ZspaamttFPBM0Ry+eN3+9XaWmp9SovL7fKKioqIsqqq6vb5geCZonV88bj8ejxxx+3whhXxgBcDoZpmqbdnQAQG86ePatf/vKXys/PlxS4tcjv91tfVvv3768lS5bUCT1Lly7VW2+9JUn661//qszMzDptHzx4UI899pjKysokBa5mVVdXy+v1SgrcOrR48WIlJCTU27fc3FwtWLDAGh0tJSVFbrdbPp9PkjR9+nTNmzePiVptEKvnzdmzZ/Wv//qvzfoMv/nNb3Tbbbc17wOjTcTiefPZZ5/pmWeekSQlJCQoJSWl0c+waNEiDR06tIWfHAAixdndAQCxIzMzU2+99Zbef/99rV+/Xvn5+YqLi1Pv3r01adIk3XnnnYqPj4+q7YEDB+rPf/6zcnJy9M033+if//ynkpKS1KdPH02bNk3Tp0+3HvSvz5gxY/Tmm28qJydHW7ZsUUlJiVJSUtS/f3/96Ec/0oQJE6L81GitWD5vELti8bwJ/x11dXW1SkpKGj1OKOABQGtwhQwAAAAAbMKvFQEAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAECEl19+WePHj9cvfvELu7sCm1VUVOj222/X+PHj9eWXX9rdHQC4IsXZ3QEAuFJcuHBBeXl5OnDggA4ePKiDBw/q9OnTMk1TkvTXv/5VmZmZl+TYpmnqrrvuUmFhoe677z797Gc/i6qdvLw8LVu2TJL08MMPt2EP7XX06FFt3rxZe/bs0dGjR1VcXCyfz6fU1FT17dtXY8aM0bRp05SSkmJ3V2NKSkqK7rnnHr3xxht65ZVXNHr0aCUmJtrdLQC4ohDIAKCNzJ07V3l5ebYc+8CBAyosLJQkjRs3Lup2XnvtNfl8Po0ePVpDhw5tq+7Zau7cudq5c2e9ZSUlJSopKdGWLVv0zjvvaP78+Ro1atTl7WCMu+uuu/TBBx+ooKBAH374oe677z67uwQAVxRuWQSANhK6EiYFrixkZ2crPT39shz7q6++kiRlZGRo8ODBUbWxe/dubd26VZKuqC/doaCampqq6dOna/78+Xr11Vf1xhtvaOHChRozZoykQDibP3++du3aZWd3Y47L5dKdd94pScrJyVFlZaXNPQKAKwtXyACgjUyfPl1paWkaOHCgsrKyZBiG5s6dq5KSkkt+7FAgGzt2rAzDiKqN9957T5KUmZmp73//+23WN7tlZWVp9uzZmjRpkhISEiLKBg4cqAkTJujdd9/V66+/rurqar344ot6++23beptbJoyZYqWLl2q8vJy/eMf/9Ddd99td5cA4IrBFTIAaCN33XWXbr31VvXo0SPqUBSNkydP6sSJE5Kiv12xsLBQubm5kqSpU6de1v5fai+88IJuu+22OmEs3H333af+/ftLko4fP64jR45cru61C5mZmRo2bJgk6e9//7vNvQGAKwtXyACgnQuNfhe6TTIaq1evlt/vlyRNnDixWXW8Xq/WrFmjDRs26MCBAyotLZXP51NaWpr69OmjkSNH6tZbb1WXLl0i6o0fP16SNG3aNM2fP1/fffedPvzwQ23ZskVFRUXq0KGDBgwYoH/7t3/T8OHDrXpVVVX69NNPtXLlSp06dUoej0fdu3fX5MmTdffdd7d6sIkbbrjBegbw5MmT6tu3b9RtHT9+XMuXL9euXbt09uxZeTwepaSkKDU1VZmZmRoxYoRuvvlmXX/99VG17/V6tWrVKq1du1ZHjx5VWVmZDMNQx44dlZaWpsGDB2vkyJEaO3as4uPjI+pe/PM/fvy4PvroI23dulVFRUVyu916+umn64T7iRMnateuXTpx4oQOHDigQYMGRffDAQBEIJABQDsXul1xzJgxiouL7p/1b775RlLgOauePXs2uf/hw4f15JNP6tSpU3XKCgsLVVhYqE2bNunIkSOaP39+g+2sW7dOzzzzjDwej7WtqqpKGzdu1KZNm/TYY49p5syZKioq0vz583XgwIGI+seOHdOf/vQnbdy4US+++GKrQpnX67XWHY7obyBZvny5lixZIp/PF7G9rKxMZWVlOnXqlLZs2aIjR47oiSeeaHH7paWl+p//+Z96B5AJ/ezz8vL097//XTk5OcrKymqwrU8//VQvvviiqqurmzxu+CAv33zzDYEMANoIgQwA2rGioiLt379fUvS3K1ZXV+vbb7+VJA0ePLjJ2xXz8vL06KOPyu12S5Kys7M1ZcoU9ezZU/Hx8SouLta+ffuanLfqyJEjWrNmjTp37qyHH37YOva2bdv0l7/8RR6PRy+99JKGDx+u3//+9zp8+LDuuOMO3XzzzUpLS9Pp06f19ttv68iRI9q9e7dycnL0n//5n1H9DCRp+/bt1nrv3r2jauPo0aNWGOvYsaNmzpyp4cOHKy0tTT6fT8XFxTp48KA2btwY9W2hS5YsscLYiBEjNGXKFGVmZqpDhw66cOGCTpw4oV27dlm3oDbk4MGDWr16tTp27Ki7775bQ4cOVXx8vI4fP65rr722zv69e/eWy+WS2+3W9u3bNWfOnKj6DwCIRCADgHZsw4YNMk1TCQkJGj16dFRtHDlyxLo6NHDgwEb39Xq9evLJJ60w9stf/tIagS/cTTfdpIceekgFBQUNtpWXl6f+/ftryZIlSk1NtbZ/73vfU1ZWlhYsWCCv16tHH31U58+f1wsvvKCRI0da+w0YMEA33nijZs+eraKiIi1btkyzZ8+W0+ls0eeXArd9Hjt2TFIglPbo0aPFbUjS2rVrrStjL730kvVcWrhx48bpoYceUllZWYvbr6qqsoLuuHHj9Pvf/75OsBs+fLh+/OMfy+12N3ql79ixY8rKytKrr74aMRpoQ6N0Op1ODRgwQLt27dKhQ4fk9/tbdSURABDAv6QA0I6FblccOXKkXC5XVG2E33bY1DD9q1ev1unTpyUFRpWsL4yF69atW6Pljz/+eEQYC5kwYYIyMjIkSefOndOsWbMiwlhISkqKbrvtNmu/48ePN3q8+hQVFekPf/iDJMkwDP3Xf/1Xi9sICY2omZKSUm8YC9epU6cWt19eXm6F5+HDhzd6lc3lcjV5C+evfvWrFk3NENrX4/GoqKio2fUAAA0jkAFAO1VRUaEdO3ZIat1k0MXFxdZ6x44dG903FAAl6d577436mFLgFriGQothGBFlU6ZMabCd8P3OnDnToj54PB7Nnz/fClIXDyTSUqEQWVFRobVr10bdTkM6depkjRb5xRdftGpOsIyMjHpDbmPCz4/w8wYAED0CGQC0U7m5ufJ6vXI6nRo7dmzU7VRVVVnr9V2tCnfo0CFJgSslzRn8ozFN1Q/vS2OjEYbv15KAUlNTo9/+9rfWQCE333yzHnrooWbXr8+UKVOsq1ILFizQI488onfffVe7d++2bvNsjfj4eE2bNk2StG/fPv30pz/VCy+8oC+++KLFYTSaUSTDA1n4QCwAgOjxDBkAtFOhq1VDhgxRWlpa1O2EP3PV1Gh7paWlkmqvBLVGUlJSo+Xht+M1djtm+HNMoaH7m+L1evXEE09o8+bNkqRRo0bpqaeeiur5s3Ddu3fXs88+q2eeeUaFhYXas2eP9uzZIynwcx40aJDGjx+vGTNmNBl+G/KLX/xC1dXVWrlypc6fP6+PP/5YH3/8saRAUB41apSmT5/e5JW+pq6G1ic8vEc7oicAIBJXyACgHaqurtamTZskte52RSnwvFPI+fPnW9VWe+D1erVgwQJrqP+RI0fq6aefbnTi6JYYMWKE3nvvPf3ud7/T9OnTrWHnfT6fvv32W7322mu69957rTDYUomJiZo/f77eeecdPfjgg7rhhhuswFpSUqLPPvtMc+fO1W9/+9uIAHWxaAbkCB+IJPy8AQBEj19vAUA7tHXrVusWuNYGsvAhzpsKZGlpaSooKGi3AzqEwljo6uINN9ygxYsXt3pS6YslJCTolltu0S233CIpcGVx27ZtWrlypTZu3Kjz58/riSeeUE5OTp2Js5urR48euv/++3X//ffL5/MpLy9P33zzjZYvX65z587pyy+/1BtvvKFHH320zT5XeXm5td7UgC0AgObhChkAtEOhQNG/f39lZma2qq3wObe+++67RvcNDYtfXFzc5L6x5uIwlp2drWeffbbNw1h90tLSNGnSJD3//PO64447JElut1sbNmxok/ZDt0POmTNHf/zjH63bQVevXt0m7YecOHFCkpSZmank5OQ2bRsArlYEMgBoZ/x+v77++mtJgYEoWqtbt27q2rWrJFmTTDdk/Pjx1npOTk6rj325eL1ePfXUU1YYGz58uJ577rkmn2O7FEaNGmWth57Ja0uZmZnWPGrRzHXWkNLSUmvKg3/5l39ps3YB4GpHIAOAdmbPnj3WF/nwgNQaoZBw4sQJXbhwocH9Jk6caH3Z/+STT/S3v/2t0XYbmxj6cvF6vVq4cKE1ofKlDGPr169vMmSFnv2TpOuuu65F7Z85c0Zbt25tdJ+zZ89aV7K6d+/eovYbs2/fPmv9Bz/4QZu1CwBXO54hA4A2curUKWtEvZDQ/FaStG7duojREF0ulyZMmNDi44Su8nTv3j2qocvrc8stt+iTTz6R3+/X1q1b9cMf/rDe/eLi4vS73/1OjzzyiNxut15++WV9+eWXmjp1qnr27Kn4+HgVFxfrwIEDWrdunQYOHKj58+e3SR+jtWjRIq1bt05SIAD9/Oc/19mzZxut07lzZ3Xu3LnFx/rb3/6mRYsWacSIERoxYoR69eqlTp06qaamRgUFBVq9erV1dfPaa69t8XQFBQUF+tWvfqXu3btr7NixGjx4sLp166bExESVlZVp3759WrZsmTVaZlMTd7fEli1bJAWejxszZkybtQsAVzsCGQC0kT179mjx4sUNlr/22msR76+99tpWBbK2uF0xZOTIkcrIyFBhYaFWrlzZYCCTpH79+umVV17Rk08+qTNnzmjHjh3WBNUXCz1zZqfwCZpPnz6tn//8503WeeCBBzRnzpyojlddXa3c3Fzl5uY2uM91112nxYsXNzqcf2POnDmjDz74oMFyh8Ohe++9Vz/5yU+iav9iXq9XX3zxhaTAVdloh+wHANRFIAOAduTw4cPW1Z3Wjq4Yzul0atasWXr99de1ceNGlZaWNjq32YABA/TOO+9o5cqV+uqrr5SXl2c9r9S5c2f17dtXN954o2699dY262N7sGDBAm3evFm7du3S0aNHVVJSYt3C2KlTJ/Xr10/jxo3TlClTohpmf9iwYXr11Ve1detW7du3TwUFBTp37pwuXLigpKQkde/eXcOGDdOMGTPa7OqpJOuckKS77rqrzdoFAEiGaZqm3Z0AADTPm2++qTfffFOdO3fWRx99FNVcUg2pqKjQPffco/Pnz+tnP/uZ7rvvvjZrG+3bvHnzlJubqxEjRuill16yuzsAcEVhUA8AaEdCtyvedNNNbRrGpMBEv6EQ9v7776uysrJN20f7tG/fPuXm5sowDD388MN2dwcArjgEMgBoJ2pqajRu3Dg98MADmjVr1iU5xp133qmsrCyVlZXp//7v/y7JMdC+vPHGG5KkqVOnavDgwTb3BgCuPNyyCACIsH//fuXm5iolJUU//elP7e4ObFRRUaEPPvhApmlq1qxZjT5XCACIDoEMAAAAAGzCLYsAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADb5/+URRBi+dvnLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "7ac96b22", + "metadata": {}, + "source": [ + "An example to plot the image in the log scale" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "71f5f43f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZikV3XniX9jX3Opysyqyto3VWnfkIWRQCAE2AJjjw3GNG03NmNouj1+bM8Puz3ddANeGuMee4bunm48thsz5hnjMd00NmZp24jFCIGEhXaVVPu+575nxvv7I/JE3Lh5l3MiI6syq86HRw9Sxn2X2N64n/d77r2pJEkSKIqiKIqiKIqiXIekr/YJKIqiKIqiKIqiXC1UiBRFURRFURRFuW5RIVIURVEURVEU5bpFhUhRFEVRFEVRlOsWFSJFURRFURRFUa5bVIgURVEURVEURbluUSFSFEVRFEVRFOW6RYVIURRFURRFUZTrFhUiRVEURVEURVGuW1SIFEVZs3z4wx9GKpXC1772tat9KlG+9rWvIZVK4cMf/vDVPhXlKnH06FGkUin87M/+bEf2l0ql8LrXva4j+1pN/OzP/ixSqRSOHj16tU9FUZTrBBUiRVEa7Ny5E6lUyvnPpk2blrSfm5vDxz/+cfzcz/0c7rzzTuTzeaRSKfzRH/2R9xgnT57Eb//2b+Mnf/InsXfvXqTTaaRSKRw8eHAln5qI+++/H6lUCl/84hejbffv349UKoUnn3zyCpyZsnPnTuzcuVO83Te+8Q38zM/8DG699Vb09fWhWCxi165d+NEf/VH83d/9nXe7qakpfOhDH8L+/ftRLBaxYcMGvOMd78ALL7zgbH+1JWUt3CRYC+eoKMr1RfZqn4CiKKuLnp4e/PIv//KSv1er1SV/m5iYaLTduHEjNm3ahBMnTgT3/8QTT+CDH/wgUqkUdu3ahZ6eHgwPD3fgzDvHe9/7Xjz66KP4oz/6I7z5zW/2tvv617+Ol156Cffccw/uuuuu4D7vvfdevPDCC+jv7+/06SoMvvrVr+KrX/0qXvnKV+L1r389KpUKjh8/jr/8y7/EX/3VX+GDH/wgfvM3f7Nlm5mZGbzxjW/Et771Ldxzzz34pV/6JZw4cQJ/8Rd/gb/+679u7O9q8cILL6BcLl+1468UH/3oR/Hrv/7r2LJly9U+FUVRrhNUiBRFaaG3t5dd1lUul/HFL34Rd955JwYHB/HhD38YH/nIR4Lb3HPPPfjGN76BO+64A93d3Xjd616Hr3/96x04887xUz/1U/jlX/5lfOELX8C5c+ewceNGZztKwt73vvdF91kul3HjjTd29DwVPr/+67/u/FyfOnUKd999N/7tv/23+Of//J9jcHCw8djv//7v41vf+hbe/va348///M+RTteLKn7qp34K/9P/9D/hPe95D5555pnG36801+rnaXBwsOV9UBRFWWm0ZE5RlLbJ5/N4+OGHRZ2XrVu34jWveQ26u7tX7LyOHz+OW265Bfl8Hn/6p3/a+Pvk5CQ++tGP4s4770SlUkG1WsWrXvUq/Nmf/VnL9qVSCT/90z+Nubk5/Mmf/InzGMPDw/jsZz+LarWKf/SP/lH0nHxjiF73utchlUphbm4Ov/Ebv4E9e/agWCxi//79+MM//MNGu0984hO47bbbUCqVsHXrVnzoQx9CrVZbcpw/+ZM/wdve9jbs3r0bpVIJ3d3duP/++/HpT3/ae26PP/443vSmN6Grqwvd3d14wxvegG9/+9vB0qYXX3wRP/uzP4tt27Yhn89j48aNeNe73oUDBw5EXwtidnYW//E//ke8+c1vxo4dO1AoFLB+/Xq84Q1vwJe+9CXn63fs2DEcO3aspZyTMyanWCw6/75lyxbcd999qNVqOHz4cOPvSZLgE5/4BADgd3/3d1uk58d+7Mfwmte8Bs8//3xD5v/kT/4EqVQKQD05NM/PJWJHjx7FO9/5TvT396NYLOKee+7BF77whejzMLHL83bu3Nm4IfHggw+2nIMJ93sAtH5uv/vd7+Itb3kL1q9f3zLG55FHHsH73vc+3Hzzzeju7kapVMKtt96Kj3zkI5ienm7ZH+ccQ2OI/r//7//DAw88gJ6eHpRKJdx222346Ec/ipmZmSVtqbxyYmICv/qrv4rt27ejUChg7969+NjHPoYkSVivs6Io1z6aECmK0sLMzAw+/elP4/jx46hUKrj99tvxwAMPIJPJXO1TY/HUU0/hzW9+M8bGxvDFL34Rb3jDGwDUBeb1r389nnzySdx99914z3veg1qthq985St417veheeeew6/9Vu/1djPe9/7Xvxf/9f/hT/+4z/Gv/gX/2LJcT796U9jenoa733ve53lhFLe+c534jvf+Q7e/OY3I5fL4bOf/Sze9773IZfL4emnn8anPvUp/MiP/Ageeugh/OVf/iV+4zd+A+Vyecm5/bN/9s9wyy234IEHHsDg4CAuXbqEL37xi/iZn/kZHDhwYElZ2De+8Q286U1vwsLCAn7iJ34Ce/bswTPPPIMHH3wQr3/9653n+uUvfxk/8RM/gbm5Obz1rW/F3r17cfLkSfy3//bf8Nd//dd45JFHcPfdd0ef8+XLl/FLv/RLuO+++/DGN74RAwMDOHPmDP7qr/4Kb37zm/GHf/iH+Pmf/3kA9c7thz70Ifyf/+f/CQAtZZ133nkn/4W2OH/+PL7zne+gUChg//79jb8fOnQIx48fx759+7Br164l2z388MP45je/ia9+9at48MEHceedd+JDH/oQPvKRj2DHjh0tkmaPKTp27Bjuvfde7N69Gz/zMz+Dy5cv48///M/xYz/2Y/jbv/1bPPjgg209l1/+5V/Gf//v/x1f//rX8e53v9s51kr6PSC+/e1v46Mf/She/epX4z3veQ8uXryIfD4PAPjYxz6GF198Effddx/e8pa3YHp6Gt/61rfw4Q9/GF/72tfwt3/7t43rB+ccffzLf/kv8dGPfhT9/f1417vehWq1ii996Uv4l//yX+IrX/kK/sf/+B+NcyLm5ubwQz/0Qzh9+jQefvhhZLNZ/Pf//t/x67/+65iensaHPvQh/gusKMq1S6IoirLIjh07EgBL/tm1a1fyta99Lbr9hz70oQRA8od/+IfsY772ta9NACQvv/yy+HzpeI888kiSJEnyN3/zN0l3d3cyODiYfP/7329p++53vzsBkHzsYx9r+fvU1FTyQz/0Q0kqlUqefPLJlsfuvffelv2b3HHHHQmA5PHHH2ed6yOPPJIASD70oQ+1/J2e/z333JMMDQ01/n7o0KEkl8slvb29yc6dO5OTJ082HhsaGkr6+vqS/v7+ZG5urmV/Bw8eXHLsmZmZ5PWvf32SzWZb9rOwsJDs3bs3AZB88YtfbNnmP//n/9x4/83nf/ny5aS3tzfp6+tLnnvuuZZtnnnmmaRSqSR33XUX6zWZnp5OTpw4seTvw8PDyS233JKsW7cumZycbHlsx44dyY4dO1j7d/H4448nH/rQh5J/9a/+VfLud787Wb9+fZLJZJL/9J/+U0u7L3zhCwmA5Ed+5Eec+/mLv/iLBEDyjne8o+XvAJLXvva1zm2OHDnSeE0//OEPtzz25S9/OQGQPPzww+zn4jqW/Z2wkX4P6HMLIPnEJz7h3OehQ4eSWq225O8f/OAHEwDJZz7zmbbO8ciRI42/PfroowmAZNu2bcmZM2caf5+bm0t+5Ed+JAGQ/PZv/3bLfuh69vDDD7d8js6dO5f09PQkPT09yezsrPMcFEW5vtCSOUVRGvzcz/0c/u7v/g5nz57FxMQEnnnmGfzTf/pPcfToUTz88MN46qmnrvYpevn0pz+NN7/5zdiyZQsee+wx3HHHHY3HLl26hE9/+tO455578Gu/9mst2xWLxUb5zP/7//6/LY/R2CB71rzHH38cTz31FO666y7cc889HTn/3/md30Fvb2/jv3fv3o1Xv/rVGB4exr/+1/+6ZYB5b28v3vrWt+LixYs4depUy3727NmzZN/5fB6/8Au/gPn5+ZYZ1R599FEcPHgQDz74IB5++OGWbd73vvdh3759S/b1//w//w+Gh4fxkY98BDfffHPLY7feeive+9734sknn8Tzzz8ffc6FQgFbt25d8veenh685z3vwdDQEB5//PHofiQ88cQT+MhHPoLf/u3fxqc+9SnMzc3hk5/8JP7ZP/tnLe1GRkYa5+KC/t7OhCA7duzABz/4wZa//dAP/RC2b9+O7373u+L9cWn3ewDUU7h/+k//qXO/u3fvXlKWBwC/8iu/AgD4yle+suxz/y//5b8AAD74wQ+2zHiZzWbxe7/3e0in097ZLf/9v//3KJVKjf/esGEDfuzHfgwjIyOiEk9FUa5dtGROUZQGdvnIrbfeik984hOoVqv4vd/7PXz4wx/G5z73uat0dn4+/vGP4/Of/zzuv/9+/OVf/iXWrVvX8vjjjz+OhYUF73iOubk5AFgylfI73/lO/Mqv/Ar+63/9r/gP/+E/NPZLY3ve+973duw5uMRq8+bNAIBXvOIVSx4jQTp58iR27NjR+Pvx48fxsY99DH/3d3+H48ePY2pqqmU7U6BoqvBXv/rVS/afTqdx33334aWXXmr5+7e//W0A9dJE12tJ7V944YUlwuTiueeew7/7d/8O3/jGN3DmzJklY05s4Vsu73//+/H+978f09PTOHLkCD7xiU/gn/yTf4JvfetbjTFDK82dd97pLEHdtm1b4/VdCdr9HgD1WRJ9TExM4OMf/zg+97nP4aWXXsLY2FjL+JxOvIf/8A//AADOMs59+/Zh69atOHLkCEZGRloktqenB3v37l2yzbZt2wAAQ0NDyz43RVHWPipEiqJEef/734/f+73fwze+8Y2rfSpOvvGNbyBJEjz00ENLZAio3xkH6h3CUOIwPj7e8t+VSgXvete78Ad/8Af49Kc/jV/8xV/ExMQEPvOZz6BSqeAf/+N/3LHn4Eoistls9DHqxALA4cOHce+992JoaAivec1r8KY3vQk9PT3IZDI4evQoPvWpT7UMPqcUxDeLnuvv9FqaEz64sF9LF4899hhe//rXY35+Hg899BB+9Ed/FN3d3Uin0/j+97+Pz3/+887B8p2gWCzipptuwsc//nHMzMzgD/7gD/CGN7wBb3/72wE0X3N6jWzo72aqx8W3TTabdU6U0Sna/R4AcK5DBtQ/f69//evx3e9+F7feeit+6qd+CgMDA8jlcgCAj3zkIx15D+n19k3gMjg4iOPHj2N4eLjl+xJ6rQFgYWFh2eemKMraR4VIUZQoAwMDAOp3glcjf/zHf4zf+Z3fwUc+8hHUajX8xm/8Rsvj1EH6lV/5Ffz+7/++aN/ve9/78Ad/8Af4oz/6I/ziL/4iPvOZz2BsbAzvec97VnSmvHb4/d//fVy6dAmf/OQnl8y89md/9mf41Kc+1fI3Ov9z58459+f6O72WTz31FG6//fZlne9v/dZvYWpqCo888siSiQc++tGP4vOf//yy9s/l4Ycfxh/8wR/ga1/7WkOIaIIFOyEjXn75ZQBwlhWuVpbzPXCVxAHA5z//eXz3u9/Fz/7sz+KTn/xky2NnzpyJTsPPhc797NmzzrLQM2fOtLRTFEWRoGOIFEWJ8thjjwGojxVYjfT29uJv/uZv8JrXvAa/+Zu/uWR8xL333ot0Oo1vfvOb4n3ffffdeMUrXoGnn34a3/3ud0VrD11pDh48CAB429vetuQx11pPtJjs3//93y95rFar4dFHH13y9x/8wR8EgLZeS5uDBw9i/fr1S2QIcJ8vAGQymY7f1aeSLkoNgPpYrO3bt+Oll17CkSNHlmxD04LbJVzpdPqqpg5Uiuc6h+V8D3zQZ+4nfuInljwWeg995+iDPquuKeAPHjyIkydPYteuXW0ldoqiKCpEiqIAqI8bcCVAR48exf/yv/wvAICf/umfvtKnxaarqwtf/vKX8dBDD+Hf/bt/h1/6pV9qPLZhwwb843/8j/HEE0/gN3/zN50dsUOHDjk7vkBzrNAHPvABPPbYY7j99tvxyle+cmWeyDKgKYztTuNXvvIV54Dz+++/H3v27MEjjzyyZN2f//v//r+d6cjP/dzPobe3Fx/5yEecEwDUajVnp9V3vpcvX8bTTz/d8vc//uM/9g7E7+vrw4ULF5aMjYrhm6zg0KFD+Lf/9t8CAN7ylrc0/p5KpfD+978fAPBrv/ZrLaVsn//85/HNb34TN998M1772tcuOb8TJ06Izq2T9PX1AaiPJbNZ7vfAhe8zd/jwYed09bFz9PGe97wHQD1VvHDhQuPvCwsL+MAHPoBarYb/+X/+n9n7UxRFMdGSOUVRAAB//ud/jt/7vd/DAw88gB07dqCrqwuHDh3CX//1X2N6ehpvfvOb8YEPfGDJdr/zO7+DF198EQDw/e9/HwDwyU9+spE6vPrVr26sJUOY5Vy07b/4F/8CXV1dAICf//mfdw70j1Eul/GFL3wBb3vb2/Dv//2/x/T0ND7xiU8glUrhP/7H/4iXX34Z/+bf/Bv86Z/+KV796ldj48aNOH36NF544QU8/vjj+LM/+zPnmjPvete78IEPfKBxZ72Tkyl0kn/+z/85PvnJT+Inf/In8fa3vx2bN2/Gs88+iy9/+ct4xzvegT//8z9vaU8zc/3wD/8wfvRHfxRve9vbsGfPHjz99NP4m7/5Gzz88MP40pe+1LIoaV9fHz772c/ix3/8x/GDP/iDeOihh3DLLbcglUrhxIkT+Pa3v41Lly4tmRzBxS//8i/jK1/5Cl796lfjHe94B3p6evDEE0/g7//+7/H2t78dn/3sZ5ds89BDD+Hxxx/HD//wD+OBBx5AoVDAHXfcgbe+9a3BY73pTW/Chg0bcNddd2Hbtm2Yn5/HoUOH8OUvfxnz8/P4xV/8RbzxjW9s2eZ//V//V3zhC1/AZz/7Wbzyla/EQw89hOPHj+Mv/uIvUC6X8V/+y39peW3o/D7zmc/grW99K+6++27kcjk88MADeOCBB6KvRyd48MEHkU6n8b/9b/8bnn322caYOprVbjnfAxe0DtXv//7v45lnnsFdd92F48eP4wtf+ALe8pa3OKUndo4u7rvvPvzar/0afvd3fxe33nor3v72t6NSqeBLX/oSnn32Wbz61a/Gr/7qr0pfLkVRlDpXd9ZvRVFWC1/72teSd77zncn+/fuTnp6eJJvNJv39/ckb3vCG5FOf+pRznZEkaa6j4/vn3e9+95JtQu0BJJ/85CdZ5+xbz2RmZib58R//8cbxFxYWGn//D//hPySvetWrku7u7iSfzyfbtm1LXv/61yf/x//xfyQXL170Huvnf/7nEwBJqVRqWS+IS2wdIheu9VgI33P/1re+lTz44INJb29vUq1Wk/vvvz/53Oc+5z1+kiTJY489lrzhDW9IqtVqUq1Wk4ceeih59NFHk1/4hV9IACxZnylJ6mvq/MIv/EKyd+/epFAoJF1dXcn+/fuTn/7pn04+97nP8V6UJEn+6q/+KnnlK1+ZVKvVpKenJ3njG9+YfP3rX08++clPOj8L4+Pjyfvf//5ky5YtSSaT8X7GbD7+8Y8nb3nLW5Lt27cnpVKp8d6//e1vT7785S97t5uYmEj+9b/+18nevXuTfD6f9Pf3J29/+9uXrMFEnDt3LvlH/+gfJRs2bEjS6XTLa07rEPnON/RZcAHPmkd/+qd/mtxxxx1JsVhsfKdMJN+D0OeGOH78ePKud70r2bx5c1IsFpObb745+djHPpbMzc21dY6hz/2f/dmfJffff39SrVaTQqGQ3Hzzzclv/dZvJVNTU0vahtasiq2FpCjK9UUqSYy5MRVFURRlkfvvvx/f+c53MDIygkqlcrVPR1EURVFWBB1DpCiKch0zOTnpXFz0T/7kT/Doo4/iTW96k8qQoiiKck2jCZGiKMp1zIsvvoi77roLb3zjG7F3717Mz8/jySefxN///d+jt7cXjz76KG666aarfZqKoiiKsmKoECmKolzHDA0N4Vd/9Vfx9a9/HWfPnsXMzAw2bdqEN7zhDfhX/+pfOdd8URRFUZRrCRUiRVEURVEURVGuW3QMkaIoiqIoiqIo1y0qRIqiKIqiKIqiXLeoECmKoiiKoiiKct2iQqQoiqIoiqIoynWLCpGiKIqiKIqiKNctKkSKoiiKoiiKoly3ZK/2CSiKoigrRyqll/lOkCTzV/sUFEVRlBVC1yFSFEVZxajQXBuoUCmKoqxeVIgURVGuECo3igSVKEVRlCuDCpGiKMoyUMlRVgMqT4qiKO2jQqQoiuJBZUe5llBpUhRFcaNCpCjKdYsKj6I0UWFSFOV6RYVIUZRrEpUdRek8Kk2KolyLqBApirJmUelRlNWDypKiKGsVFSJFUVY1Kj2KsvZRWVIUZTWjQqQoyqpAxUdRrj9UlBRFWQ2oECmKckVR8VEUJYaKkqIoVxIVIkVRVgyVH0VROoVKkqIoK4UKkaIoy0bFR1GUq4WKkqIoy0WFSFEUESo/iqKsdlSSFEWRoEKkKIoXlR9FUa4VVJIURfGhQqQoCgCVH0VRrj9UkhRFAVSIFOW6RQVIURSlFRUkRbk+USFSlOsAlR9FUZT2UElSlGsfFSJFucZQ+VEURVlZVJIU5dpChUhR1jgqQIqiKFcXFSRFWduoECnKGkMFSFEUZXWjgqQoawsVIkVZ5agAKYqirG1UkBRldaNCpCirDBUgRVGUaxsVJEVZXagQKcpVRgVIURTl+kYFSVGuLipEinKFUQFSFEVRQqggKcqVRYVIUa4AKkGKoihKO6gcKcrKo0KkKCuACpCiKIqyEqggKUrnUSFSlA6hEqQoiqJcSVSOFKUzqBApyjJQCVIURVFWAypHitI+KkSKIkAFSFEURVkLqCApCh8VIkWJoBKkKIqirGVUjhQljAqRojhQCVIURVGuRVSOFGUpKkSKsohKkKIoinI9oXKkKHXSV/sEFEVRFEVRFEVRrhaaECnXNZoKKYqiKIqmRcr1jQqRct2hEqQoiqIoflSOlOsNFSLlukAlSFEURVHkqBwp1wMqRMo1i0qQoiiKonQOlSPlWkWFSLlmUAFSFEVRlCuHCpJyraBCpKx5VIQURVEU5eqhYqSsdVSIlDWJSpCiKIqirD5UjpS1iAqRsmZQCVIURVGUtYPKkbJWUCFSVj0qQoqiKIqydlExUlY7KkTKqkQlSFEURVGuPVSOlNWICpGyqlARUhRFUZRrHxUjZTWhQqRcdVSCFEVRFOX6ReVIudqoEClXDRUhRVEURVEIFSPlaqFCpFxRVIIURVEURYmhcqRcSVSIlCuCipCiKIqiKFJUjJQrgQqRsqKoCCmKoiiKslxUjJSVRIVI6TgqQYqiKIqirBQqR0qnUSFSOoaKkKIoiqIoVwoVI6VTqBApy0ZFSFEURVGUq4WKkbJcVIiUtlERUhRFURRltaBipLSLCpEiRkVIURRFUZTVioqRIkWFSGGjIqQoiqIoylpBxUjhokKkBFEJUhRFURRlraNypIRQIVKcqAgpiqIoinKtoWKkuFAhUlpQEVIURVEU5VpHxUgxUSFSAKgIKYqiKIpy/aFipAAqRNc9KkKKoiiKolzvqBhd36gQXaeoCCmKoiiKorSiYnR9kr7aJ6BceVSGFEVRFEVRlqJ9pOsTTYiuI/RLriiKoiiKwkPTousHFaLrABUhRVEURVGU9lAxuvZRIbqGURFSFEVRFEXpDCpG1y4qRNcgKkKKoiiKoigrg4rRtYcK0TWEipCiKIqiKMqVQcXo2kGF6BpARUhRFEVRFOXKo1J0baBCtIZREVIURVEURVkdqBytXVSI1iAqQoqiKIqiKKsTFaO1hwrRGkJFSFEURVEUZW2gYrR2SF/tE1B4qAwpiqIoiqKsHbTvtnbQhGiVo18mRVEURVGUtY2mRasbTYhWKalUVmVIcZJK5a/2KSiKoiiKIkD7dasbTYhWIfqFWX3kcxsAALNz56Ntc9l+AMDc/MVo20ymGwCwsDAabUsilCSz0baKoiiKoqxONC1afagQrSJUhFYfJEJAXIZIhIC4DJEIAXEZMhMhlSFFURRFuTZQMVo9aA98laAytLowRSiGKUIxTBGKYZfGqQwpiqIoyrVDKpVVKVolaC/8KqMitLrwiZArHfKJkCsd8omQKx3SMUKKoiiKcn1A/UAVo6uL9savIipDq4dOJUK2DIUSIVuGQiKk6ZCiKIqiXLtoWnR10R75VUBFaPXAESFKh65UaZyNypCiKIqiXPtoWnT10EkVrjAqQ6sDSSKUJDVWu7n5i2wRWlgYZZfGqRApiqIoyvWFStGVRdchukLo/PMrRzG/md12oPsH2DLUXdzKlqHe8i62DNVq0ywZ6irtYstQNtPLakekNBxWFEVRlFWL9huvLPpKXwH0A70ykAhNz55mtR/o/gFWu+7iVvY59JZ3AQAuTxyItl1f2Q8AuDj2VLBdV2kX+/gkQvMLw6z2JEIJ9M6ToiiKoqx2dGzRlUF76iuIitDKIEmEgFYRGpk65m1ni9DI1HFvWxIhDiRCQFiGbBEanfRL1nISIZUhRVEURVk76NiilUd77CuEylDncYlQKB3iJkIAPxVyiZAvHTJFKIQrEfLJkEuEXOmQryROZUhRFEVR1iaaFq0c2mvvMCpCKwM3FZJIEOAXITsdajcRMrHToXZK42xsGdKxQYqiKIpy7aJp0cqgvacOojLUeTopQma53HISIRMzHVpOImRipkPc0jiOCGk6pCiKoijXBpoWdRbtwXcIlaHOwhEhKpfrdGkcpUPcVIgjQpQOcWWII0LzC8PsREhlSFEURVGuLVSKOoeuQ7RMVIQ6DzcV6ipuYe8zSRbYbVOpDLsth4tjT7HL4yZnzrHaLSyMi85BhUhRFEVRrl1UjJaHrkO0DFSGOsv6rjtZMrSl8gPYUuGnQn0ZnoxsyO5ny1BvZhu7HVeGSrn1rHbFfB+rXT7X3/iHA3ehWEVRFEVRVhfaJ10e+uq1iX7wOsf6rjvZbUmERhfiaw9xRQioyxAHrghJ2nJFCJDJkASVIUVRFEVZ22gJXftor16IilBn4cqQJBECZKkQF0kqxKXTqRAgkyEVIUVRFEW5dtBZ6NpDe/cCVIY6h0uEJmfOO9tyZcgnQRfnDzr/rqmQypCiKIqiXItoWiRDe/hMVIY6QzvlcRxWojwO8AvO8MIJVjsXKkOKoiiKoqw0KkV8tJfPQGWoM3SqPM4cPyQRIeDqpkLA6i+RS6XySJJZ9v4URVEURVm9qBTx0J5+ABWhzrASqdBKiRBwdccKAZoKKYqiKIrSOXRcURxdh8iDytDyWVe9HakUb2b3ddkd7P3mUBCdRxq8qbTzSQkTqWHRvjmM1s6w2mVTRYzMHGe1nZufEJ3D7PxldltuQpTN9GJ+YVh0HoqiKIqiXD1UitzoOkQOVIaWj0SGBrO3sNpVk15Uk172OVSTHlSTHlZbiQx1Jby0J4cCW96yqSKrHQAUs7znBAD5XBfyuS5W21y2F7lsL6ttNsNrVyclaKsoiqIoykqhfVw3+qpY6Adleayr3s5uyxUhACIRqrfnixAXrggBshSrHRnqKm7G2LR/LSauBBFcEQLalaEUAA2jFUVRFOVqo+OKlqIJkaIoiqIoiqIo1y0ahxhoOrQ8uOnQSiVD3FSIuNrp0EqWydlUSzswPnXM2X5l0iEtk1MURVGU1YqmRK2oASyiMtQ+q6FMTiJDV1uEgCsrQyFcMpTPbcDsXOsiuTpmSFEURVGuLVSKmlz3FqAi1D5rTYSAa1eGrtaYoaUzzYVkSMcRKYqiKMpqQqfkrnNd24DKUPtcyzK0lkQIWI0TKCiKoiiKspa43tOi69YIVIba41oWoUrSi7RgnhGVIROVIUVRFEVZy1zPUnRdzjKnMtQeuWw/u+1Abh9/vwlfLGqosdtKkchQf22Q3XZDai+77cbirfxzqNzEbgsAA113sdv2CPadz21gt02ny+y2KYFEgrn4rrF3QcvVcL1Q4VQURVFWnuu1j3zdPevr9Y1eDipCTQqCc84k/M9aMdXNP4cMP0EqZfnlfwBQyvex26bTeUFb/tit1SJC9dar4Xohl7cE1+cdvisHvSc6Jk5RlGuP6zEpWg2/9lcMlSEZtghVi5uD7VWGmqgMmW1XgwzJE5bVJ0PhSSnM800hq1K0YvDfE0VRlLXK9SZFq+EX/4qgMiRjuamQb3zNtS5CwPUpQ/ncAGbnLjjaLpWhdLqMWm1yyd9dMpRKFZEk046zcMlQBsCC4+8+GfJ3Zm0ZujqCsdbK+q5XVIoURbk2uZ6k6Lr4FVUZ4rNS5XHAtS9Dq0GEgLAM9ZZ2YXjqSGt7jwxVioOYmD7T8rdrPRlaPWLBlzjfOWtKtBLI5VpRFGUtc71I0TU/qYLKEJ+VHCvElaHa4v9WirUgQz3Zbc1ziMhQd35r499L2fXXZJlc6+MxGTIf58hQyvi38Ht45WSpc8nQ6hG8a4HY+6ITXyiKcm1yPfSlr+lneD28gZ1gJURoDjPIgS9CwNpMhQCeDK3HVlzGyWumRM4Flc1xZIjK5tZaMrTyqQtX4hKVnVWJJkWKolybXOtJ0TWbEKkM8VipVKia9LJlKIvMmpShntp6djJUQHHVyNCmyp3stusqN4j2vRrK5CSfaQAo5DaJ2q8UkvPOCt7z1SRO5cIOdlvZOlgrDV+wJZ+n1fUcFUVRwlzLfetrUoiu5TfsarChehs2VG9jt5csspoVdHQLKKIASSdaRikpIr0CZS+Scy6iiiKq7PbZVAGlzDr+/tOCRV8zgvNIl5AVyFAxN4BSfiNv35kqclnec+S2Iwo53jk02uc3oJgPz7ZIZLPr2eIikyHZcywWNqFU2BpvuEi1tAfV0h5W23JhB1tyJDJEcIWhmN/Mfl8qxV2oFHexz6G+b/66Y8DKSFE20ysQqAzkU9IriqLEuVb72NecEF2rb9TVQipCXBnKIiOWoXaJSU4pKaKUrIxoSWWI6E2FO3fZVAHZlKy0r10Z6imFO7KmCBVzA+FzyA1E27TsWyBlpgzlsvGSQFOG8rm4kBTy/AVoJQmOKUOx8zZlKJONJ47Fgiz9MkUoJkWm4Ehkh9NWkpyYIhSTIlOEJFJU33dciszPVEyKzOcoeb6yVEmlSFGUznMt9rWvKSG6Ft+gq8X1lAqtFPZ5r0v8HWppKsSlmO5p/GPSk9vm2UKeDLHPxSFCoZTIlqFQ+nMlkiGTUMfblqGQHEnL+2xCUmTLUCwl4qZCgFtqQqJjPxZqa3f4QwLgeh+4SREQlyJ7XyEpkn6mbELPU/KaLJUglSJFUTrPtdbnvmaE6Fp7Y64mPhGaSC4t+ZskFQLkMrSSdEKGqsnSDqlU4johQ66yOUkiRHRChlziI0mFgPaToda/L01bCrmN3o6rLyXqRDLk+rtPhnwpkaRUzpcM+aTIJ0MSSfLhkx/X330d/U6MtfHJj+/vPrGSlM/5UiLJ8+zMa6JSpChK57mW+t7XhBBdS2/I1WSlUyGuDF2JVCgkQ8sZR9TJ8UJ22Zw0GZKQz1SDMmSXzS03GfKRzVSDMmTLjyQZ4tzBt6UoJEN2h7ndMjn3461SFJIhOyVaTpkc5/FOJUFSbAEIJUH2Y7EkaLnlc6HPli1FMZFZXvlc6BqrUqQoSue5Vvrga16IrpU34mqzUmOFAF4qRCKxFlIhH5xzp7I5aSq0EjJEZXOSVAjgyRBJEEeGqGxOkgoBPBkisWinnImTDFHHmyND1EZaJsdJhkiKODIkmWDBhiM41EbSFuCJALXhlMVJSufa2ZakiPPZks5kSM9T8prwhEelSFGUznMt9MVTSZKs2UUTroU34GpTKe5Cb3Enu/1G8EtoVmLGtnaZSk2it8ZPE2qCtUTmUrPic+EyjqVliiGSRDZ9+VRtiN02ncpibPq0aP9c5hYmVmS/QP28paRS/HtF87Vpdtvu0naMTZ1kt08E09HnMmV2WwDIpGWTctRqK7f+xOz8CLttdoWf50JtRtRe8p1bEHxWukrbMTZ1nN1+fmGM3RZYELRVFEXhsZbXKVrzCZHSPpIykX5sRz+2s9tLZKiGRCQg3LV/CImAAEBK8LXIIYtywuugZZKs6NwT1FCBbLIACblUCd0Z3l10qVTksvxOayaTRzEvGB8jaFvK96GQk5UPdhX5yUIxvx5VZvvuEv/7AwDlwgAqBV6yta68B9UCf2zLQOlmrC/swfoC7wZHX/EGDJRv4u9f0La/tB+bu+5lt99YuZ3ddkvlB7CpxGu/rrgb64q70S849+7itugsjI22pW3idb26mJ+Zamkreqv8817uZB6KoijXGmtSiFKprKZDy0C6DodUhKQyxMUUCq5YSGQotXj2AJBhlJbkBAtemudbrcWnS5YkAybcZCOX4o8BaleGOFKUyeRF+yYZ4khRKR+fetukq7i5IUNVRulZMc8fM2TKUFcpXrJWLvDHXa0rG1NlM6RooHQze99AXYYa2zJkgdpw2vaX9jf+nSNFW7p/EABPirZUfqDx71wpapwX49y7i82ZGrlSBPAWO+5q+bzwr78cKaJS01y2X8VIUZSOspb752tOiNbqC71auJ5SIakMcckh27YMxUgWX5mVIpcqLUuGQulJLlsWJ0MmIckp5teJkyGTWEokSYXq59MqQ6GUqJ1kyCSUEpkyxMElQ6GUyJQh1v4tkQhJkSlDREiKSIYISVIEhKVoXXH3kr9JkiIgLEXdpdZp7juZFFUtwZYkRYCmRYqidJ612FdfU0K0Fl/g1UKnUqEFzC35W6dSId/fJUIREqHhtHu8jFSGXPjK5qQy5KJTZXM+EfKVzUmSIZ8I+f4uSYZ8IuT7uy8Z8kmRT4Z8KZEvGXJJkU+GfCmRLxnils4B/pQolAxxS+cAv+RI/y7BliHCJ0VmOhTDJUOET4rMdCiGLUON43qkyCc/rr/bMkT4pMg/Rb1KkaIonWWt9dnXjBCttRd2NSGdUnalUiGg/RI5Du2MFQrJkF02J02FQudul811MhVylc1JUiEgLEO2QEhSISAsQ7bkxFIh+/F2yuRC2FIkKZOLHtvqzErK5IBwOmRLkbRMDginQ5IkyPW4Kx0i7JTIJ0OELUUhGZKWzgFLpSgkQ5LSOWCpFEnK42LYUhSblVGlSFGUTrOW+u5rQojW0gu6mmgnFVpLJXLURloeB8hSIYAnQ5QSScv7ODLUbkrELZGjlCidynYkGfK14SRDknFCJhwZKuR6GknRcsvkXJgpkaRUjiNDZkrEKZUjKeLKkJkScUrlJGOFTEIyREgmWQCaUsRJhkwpCqVDJiRFnGTIlCJfOmQiKZ8zhcmXDplo+ZyiKFebtdKHXxPTbq+VF3M1IU2F9hYfYLfNQTYQXiJCuSQn2vd4elTUHgDW1fgpgjQBmwF/Cu400hhJX2a3nwB/imwAyEI23fB47byo/fT8sKh9bQWn45QKbj5TEbWfT2RTq0ukUjrNs2TdqFJaLtKSKcelSKeFl5yL9PM+k4yL2gPAbI2/jTT1nRd8DqT7npg+K2o/N39R1F5RFCXEWpiOe9UnRCpDctJpfodpY+lWbCzdym5fTMrsBKSYlFBM+KVa1aSCgkC2pDKUTtJIJ5IOVlokRLK2sq9eDQsoIT47HSFpS1TT8YVIiUKqi922mO1FMdvLbl/KrkeJsdAp0Z3nLzRKU01Xs/yFMqvZTejN8dOe7iw/eerNbkNffi+7fV9+L7oyvHPfnL4Z68CfihsAtiQ3YHONP55oW20fu+2e2k3Ym9zCbn9Dciv21vilfrtr/NdxS20ndif86x4A9GMHNqd559+T2YLeDH+c0brMDgzk+K9lX47/HhUyXVgvSKEy6fyyFrVVFEWxWQt9+VUtRGvhBVxNpNNVsQxxKSZlFJnr7dTby8asVBP+Hfvx9GhbMiQhK/hqmJNKlBh3qduRIS4ldDdkKCe8Y86FZKgnF+/wmSJUzsXLcSQiBDRlqIvRgbMnDuBIkUScgKYMVTNxuezNNl8/jhRJxMmEK0VbkmanmSNFJEMcKdpTa5ZucaToBkNWOFK0r1bfJ0eKttR2Nv6dK0X9kI0NIjhStC7T3DdHitbn6um/RIoAsKQok27ekCrmN6sYKYrSMVZ7n37VCtFqf+FWEy4Rmpq94G3fTiokwZah0MKl1aQiliEptgyNpPylZ1mkxTIkOhdr3z01vwDUsCCWoeUSSokKqa4lyVBIiiSpELBUhmJyZCdDISmSzKJG2DIUS4nsZCgkRaYMcbBlKJYSbU63SkRMikwZ4mBLkCQpAsJSdIMwuSEZIiRJERCXIluGYilRT2ZLy39LkiIgLEUkQ0RMigqZ1u+rJCkiVIoURekUq7lvv2qFSIkjTYQAfyo0lnKPZZGmQtISORe+srkrUSLn3I9Henx/96VEkmTIJ0I+6fH9PYdCR5IiSYkc4JchX0okLZGTlsn58CVAvr/7pEhaJufClwD5/u6TIluGYvhkyJcS+eTH93czHTJxSZFPhnwpkS1DhE+KzHSopb1QwnxSZMsQ4ZMiMx0y6UT5nC1DhE+KzHTIRqVIUZRrnVUpRKvZIFcLUhECOlsiZ48jWmslcnZKJEmFAPl4oZAM2SmRJBUCOpMMmdgpUUyG7JRouclQ6LGYCNkpEScZsuWn3TI5576tlCiWDNnyIy2TC8mQnRJtSW6IJkO2FMWSIPtxnwy1gy1FPhkibCnyyVCjfXLrEjEKlcpxxxMRthT5ZIiwpchOh0yWWz4XkiFCpUhRlE6wWvv4q06IVusLtVpoNxW6kiVyLqhsbqVL5KSpEMCTIRIg6SK0KzFeyBQgrgy1mxJ1KhkyMVMiTjJEbSSpENCZMjkXZkrESYZIipZbJufCTIk4yZB0kgWgKUXSsjiODJkpEadUTjLJAtCUopgMueCMGzKlyJcOmbRbPheSIcKUIl86ZKLlc4qiXC1WY19/VU27vRpfoNVEO6nQzp4H2W0HarIOZw6yKbKl420upWVTv0pFqC+RLeIpZQZzovZDaf+4r04wB9n0znPJlKj9TDLGbtuT3oLhhRPs9rm0TNKlC9G2g2Qa8WxqZSa4ILoS2WQU5UR2LbEXKY6RF7ZPicfiSafDl035Oprif5YBYCI1LGovnSZ+QXAtkU6fPzJ1TNQeAKZnT4u3URRFsVlN03GvuoRI6QwDXbdhoOs2fnuhDFVRQoGxWCkhaStdxLWdVKiadIuEpZzKo5ziTwleTPFlMYcsa+FXoqfWhx7BWkq0TX+Nf3e3mvSK0oQebIw3orbp+J30lvaZLSin+OvpDGAXehNZ2Vtvskm0TZdApvuxHb0J//XZWNuOjTX+NN87a3vRJxCiPenNGMzIyiw3Zvmp7u5iN7YW+e33Vau4ocpvf0O1gj1VviBvLcnkuD9Txu40//1an/RgW40/C9362kasq8UX4iW21rZhR423gCwAbMft8UaLpJBBb4m/bwDIZkqolvjpaypVRCpVFB1DhkyOFUVRXKwaIdJ0KE6NuSigRISA9mSISwHZhgzlGHeNTRHiLKAqFSGgLkMSpCJEMtSTinfaTBHaUIsLiClCHClqR56qSS+7bQ82NmRoQype4mXKEKd8yCxD4kjRAGQLEgMQyxPJEEcC+9EUG44UmSLEkaKdwhnV9qTlJU+bs/XvC0eKdheb3y2OFO2rNpMqjhSZbThSRDK0pyQr/QQgkiIALClaX2vukyNFW2vN7whHitbX6p9liRQBEEsRAJYUmSK0MlKUMv5fxUhR1hqrqe+/KoRoNb0gax1bhiZq/rKzgdpWkQxVURLLkARJKgR0RoZCKZErFQrJkSQVAiBKhQCeAMXax1IiW4ZCKZFLCEJS1E4yJMGWIY7o2G1i29jJUEiKTBlq7t/fXpIKAUtlKJYS2TI0mOmOJkUkQ4QkKQLCUmTKEBGSIkmKBCxNhmJS1J8poz/TKlkxKVqf9LT8tyQpAsJSZMoQEZIikiEiJkUp6wYVR4qymdbXVJIUAZ2WIpcAqRQpylpjtTjAqhAiZXlQedxKl8i58EmP7+++lOhKlMhJkiFJKgT4ZciXEvlkyJcS+WRI+ncf1aRXnAxJ8MmQLyXyyZAvJfIlQyHB8T3m+7u0TE6CT4Z8f/clQz4pCiVDPimyZahxTh4pMtMhE0n5nA+fDPlSIl+ZnE+KbBEy8UmRLUOET4rMdMhEUj4H8JIiwidFtgwRISmyZYjwSZFPfla2fA5QKVIUpR2uuhCtFjNcK9hlc9LyOODKlchxiI0XssvmVqJEzk6JYjJkP76akiFOiZydEsVEyE6JYjJkp0SxZMiWolgyZEvRlSyTc2G/HjEZslOiWDJkPx4rk7OliFMmZ0uRT4Ya52RJkU+GfLjSIUKaBNlSFBszZEtRSIYIW4p8MkTYUuSTIcKWIlc6ZGJLkZ0OmVyN8rmY9CxfimLSo1KkKGuJ1eACV1WIVsMLsFaRJEJUNrdSJXIkQGuhRC5Gp5IhE0qJuJMnUErEHf9DbSTiRFLETYVIijqVDHnbL7NMzoUpP9zJE8w2nGSIXhduMkRSxC2To3bcMUMkRZIxQyRFMRmy4ciQmRKFZIgwpYgjSJJJFoCmFHFkiCApiskQQVIUkyGCpCgmQwRJUUiGCFOKfOmQiS1FvnTI5OqWzzmPsML7VxSlk1xtJ7iq025f7Se/VtnY8yrxNjtxp6i9JBVqB+k0uPZCqjH6kj7RLHLrUrK70t25HIbnZtntuzI5nJufYLefAX/f7TKdmhS1r6Emaj+Tkk3bnQj3XxGU+LVDd9KFodRldvueZB0mBa/pQNKLUfBfo83ZbgzNT7Pb92bkHc6UsA9Zycqm1y5nV7aTOrMg+zkbmZUtggwAwwv896A7U8CZhRF2+63ZXtF7PJAr4fDcJXb7PHI4hO+z2wPA+OwZUfuJ6VOi9knCf751pJ+hVbOySFtkMt1YWJCsx5fCWn/OyvXL1ZyG+6olRCpD7VEu7MDYtGwNiA2pvZhM8WaoA2QyVE7nUE4LpphOZZBLyTpREvqSPvH6Qu3IkISujKz9unQJm9K8u9AA0J/qQr9wAdW+VBe2CNKevmQ9BpL+eMNF1iXrsanGT3vW1QbYd9IBoL82iBJjQWBiIFmHgYQ/dXd3Ins9ewT7rp9Pr6i9NLXZVa5gXUH2PdtYzmJDiX9d3tWVw4YS/yfkpt40dlT5ndn9PfV/uGytpLCnm38+fcU0dncLv5uFDHaVZdeLwYzgSQBYl5WJ7O6c7Hq3h3lzrCu9AV3pDRgs3sHed29hJ7b03M9u31Xage7yfnb7Qm4TCjn+dSKT6UJGMMV8OwufF/ObRQvW5nMbkM9tEB1D8hzqrO10LIUsUsKKk9XEWj//q8nVdIOrIkQqQ3LKhR0oF2QzGG1I7WVNhUxIZ5EzRYgjRaYIVYULVXI6nLYIFRgLxy5Hhnpz8fI6U4Y4M3StSzdff44UmSLElaI+ox1HiiRr3AB1GRK1Fw4q72dMT05IRQholSHOczE/m+UkXoJlylA34/tmyhCns2x22LlStLFsTP/OkKJdXc3PNUeKbupttuFIkSlCHCnaWmnukyNFfcVmG64Uma8lR4q6M81rHEeKtmZ7m8divM8DueZnhyNFeeN6yJUiYrB4h0iMJFIEQCRFAERSBPCEwhQhrhSZIsSRIlOEOFJknjdPilKef187mCKx1qVCxag9rpYjXPVJFZQ4UhECeGvCmEhL5CSpEIAVTYWApTLEYTUmQxKkqRDQKkOs9pYQxFIiWyBiKZEtQ6GUqL82uESGQimRS4RiguRKhkJS5BL1kBS5kqGQFLmSoVBn2dVRj0mRKUNESIpMGWq29/+UmDJEhKTIJUAhKTJliAhJkSlDREyKXK9hSIpMGSJCUmTKUOOYgffZlCEiJEV5x82hkBR1pd2d9ZAU9RZ2tvz3lp77g2LUVWr9XYtJUSG3yfrvsBRlMl3Wf8tSFmlSBPCkyESTojjXglBcC8/heuCKjyHSdEhGSIa6iu6Lb0iGysnSi3wnZWiytnTcTkiGxpMZ0bFdY4liMmSPJeq0CNljiWIiZI8lionQ2VrrGISYCF1Mxpb8LSZCp3CutX0kGbmQal3fKpaknE23jiuIpUKX063nE0uFpqzxSpxU6IL1WYqVydnjiWKppT2eKFYmZ48nipXJ2WNNYqnF0EzreBmXCNmcn2qt53bJUGv71nFgLhkyOTbe+vMTS4MOWMNxXDJkcmi09XxcMmRzeNS6XkSE8shk6/fZJUMm9pgilwyZ2O+zS4ZM7DFFLhkysccU+WTI5Mz0Uy3/bcuQzamRb7UeoxS+yTc6eaDlv20ZspmZa71e2DJkY4/JicmPa1H0mPxMz7aWtsfkZ3bufMt/x+Rn6biimPys/nFFIXFIhOOOrxbXwnNYLVzp8USaEK1SVmuJnI4XCrPaUqG+VNeyU6EYq6lEDuDJkM1aHDNkJgicEi6zY8+RIaA1KYrJUL198yclJkNAa1LEKY0z28RkCGhNijgyBLSmRZySQ/O1j8kQsHbHFJlIyueAtVlCZ9Lu2CIJmhaFuRbKz66F53Atc0WFSNMhHlwRoskVJCJEkyusVIkcteOKULtjiSQiRGOJVkqGaCwRV4ZoLBFXhmgsEVeGqJ1EhGgsEVeGqHSOK0NUOseVISqd48oQlc5JZIjacmWInitXhqh0jitDVDrXzgQKErgydD0jnWyh3YkWYukQQVIUS4cIkqJYOkSQFHHSIYKkKJYOESRFsXSIICmKpUMESVEsHSJIKCSiQ225skPtuLJD7biy02zHlZ3VK0VcUVjNQnEtPIfVxJV2hitaMne9CVEqlUeSyKZPlqZCe0oPiNoDwIZEdodeOl5oLpFNnywtm8u24fHS9YU2FPOYFkzh25tP49I0fwrfvmIGZyb504J35zO4PMNv31fI4+KM7LPXncvh/Cx/2ujuTAGXF/jTRq9Ll5aU/4XoS3VhKOFPVT6Y6cbYgvA5Z/O4MM9/zuvSJVyq8dv3Z8qYWuDH/v2FAqYXZN+f3rwshc1n5J2iinC67D7ZfQ4UM7KfoYl52fkMtzGL/dCM7H24NCMr79hQzIm2GSxncWGKf42p5tJ4cXKY3b6MAo6mj7DbA/W1ll5KPc1uvyXZhxfmvspu31/Yh1Pjj7Pb95Z34eL4c+z268p7cXniJXZ7AOgp78bU7MV4Qzqn0m5cnuQfo1zYgLGp44L2GzE2eZDdvlTYgqmZk+z2VwqpJKzG8rOVfg7F/OYlpZjB80kV25jWfnVxJcvmrlhCdD3KkPn/MaqlPaiW9iCd5r1OA+WbMFC+CaOpC+xz2o5BbMcgisz3oidTQE+mgFyK9zFJI4U0UigIyuQWkhpKzLuYANCTKqIilJuBbBmVDP/zt6Eo239vXvY16ivKOrDdwg5vX0F2/oC8NJBTGmRCaRh3OnFKt7ipHi0q2pXhP/fubL3tQJa3OCc9h740rz0t+llifvb6C/XXtJjhf562VnKo5iTt09hQlMnEzmoKA4KqrVt6FrCpyO+439U7hZu6+D/aW0vz2N/FvzkwUKjhhi6pZAK7uvivazWXxo4q/7O3oVj/vvUVeJ+NwcVUb6DETN4XPxM3lntZ7cuof/Z21uILHRO08Oy+5PZIyzpbkn0AgJtyr2e17y/U22+p/gD7nACgv3qLqP36yj5RewAo5flLEADA+rLsGF0l3oLNjfZl2SRKpQJ/gfZUqiheRDeb6UU20ys6n2KBlwTW228RDStIpfKNf1am/eJrlMrW/+Fsky6KSjEpbZSWYq78Asgry5V0Bx1DtAJwv0SEdIXvgfJNovZAXYYk9Ag7vGlhFL+Q1LAgSJJ6UkX0GF9sjhQNZMstnd2YFG0o5ltkqMi4k27KEEd0zDaD5biEmDK0vhBvb8pQP1OMTBnakI939k0ZWs9YwV46Tko65mlQXEvflCEu9nOISRHJEMGVIoIjRVsrzfeNI0VbK802XCnaaYzx4UjRLT1NEeJI0V29zYSRI0VbS827hRwpGig0rzFcKeo1PhocKTJfe44UkQxxGbRKHGNSZH8WuFJESKSI4EoRwZUigiNFveXmeXOkaJ0hEVwp6invbvw7R4p6S832HCkqF5qldRwpKheaY6c4UlQqbDH+fWtUjMzONFeMTBGSilGxsEkkRoC8qkbaP5O2r28ku96vxPg0+71T4lwRIbpe0iHJHQXCJUOhlMglQ6OpC8GkyCVDoZTIJUOhlMglQ6GUyCVCoZSop40vM/euP9FOKiRJhvqKmY4kQyEpciVD/YV8UIxcyVBIilzJUEiKXDIUSolcMhRKiVwyFEqJurN5pwyFPi/iiS8yss8e0EyHTEJSZMoQEZIiU4aIDcVUUIx2OqbGDkmRKUNESIpMGSJCUmTKEBGSIlOGiJAU9eZbZYgISZHrNQ9JkUuGuCmRCTcpIkJSROmQSUyKKB0yCUkRpUMmISmidKhlHwEpMmWosY+AFK1zyENIinrKu1tkiAhJkSlDjWO0kRRJ0qKu8t4VTYuA9jrXISlyHT8kRabUESEpcvXJQv00eXvP6xHoY6XSS7dZ6QWB20n6VgtXyiFWXIiuJxmSPEYlclyoRE4ClchJuBLJkA+XFIVkyJUS2anQkm0cd+pDMuRKiUIi5JKekAi5UqLufGbNlcm5pCgkEi4pCiVDLikKJUMuKYqlQq7PTeg5uFKikAz5UiKXDIVwyVC4ffgy75IilwwRLilyyRDhkiKXDBEuKXLJEOGSIpcMES4pcomQiaR8DuAlRSY+KbLTIROXFIWk2CVFLhkidtZ2OcXIJUOES4pcMkS4pMglQ419OaTIJUONfa3S8jmXGJnpkI1Lisx0aEl7hxS5RKL52FIpCXWefZ3rkPi4HgvJ2GpMisRpkaCEDvDPZhgSH9djsfduLXIlXEJL5jrASpTImSkRV4TMlIgjQmZKROOFQpgpEY0XCmGnRJISOUCeDElTIYCXDJlSxEmFTAHipEKmFHFEyEyJ+gp5lgzZKVFMhuyUqN0xQ1w4ZXKmFHHK5Ewp4pbImZ8hznMwpYiTDNlSFJMhOyWKyZDdIY7JkIuQDBGmFIVkiDClKCRDhClFIRkiTCkKyRAhHVMELJWiWJmiLUWxUjlbikIyRJhSxCmbNKUoJEMmphSFZIgwpSgkQ8RKlM+Z2FLkSodMbClyJUM2pXx/ixi50qElxzGkKCRDhClFIRlqtDeeZ0iGmm1kSREg71xLyueApVIUex72uKJY38yWHE5frrU98/kbfS1XOmSz0lO8r1UpWmlWfJa5azkhkopQksyKUqFabV6cCnUnA6JUaDqZF6VCc0lNnAq5FmsNkReuXTSRzIplaGJhXlQmN72QiErkLk0viErkzkzOiVOhVBtTqM7WZF/387OTIhm6vDAlkqGztRHRmKGhZEI0ZmhsYVY8XggA5oWvU0r4VkwtzIuSoemFmigZGp+riWXo/HTCkiHiwjRPhkwGi7Lp3sbmZb8fB8ZyLCEiXh5LR9MhmyNjNdFEFsfGZ0Xjhi7NzLNkyGRqXvZ5PT7Jnx2SOJo+whIi4qXU0ywhIl6Y+2owHbI5Nf54MB2yuTj+XFSGbBbamOGqIBzTeHnyJZYQEWNTx1lC1Gg/eZAlRMTUzElxhzlJpsWyk8vKOv0pyH4fJ2eOifpoSTLbRnuhWCTzLCEiarVxsezMzF2ONzJPaQ3NQrfSM86taELkkyHpnQjpIm0AkMvKYmzpOUnbD3TdJZKhXYX72ppSewtkMfOWokwk+hkD+00qWdlFrDcrSyIGinnsLMkurACwtSw7zkZhzf6ublmH5oYe4SB/xoKRNuaimVz2VGSv7Y0VWWfgjorse3pDUbYg6q6KPDVcLxzTsbGUEw+U39slS9D29cj2v79H/l7f2ydLTV7dL5Obu9bzp1wn9vWMitq/qo8/JToA3NErEzoAuHWdzH7v7pN9t29ZJ3uv1xdS2CKU371d8u/F/YWbRe3fUHyVqP3riz8uav8D5XeI2v9g9Z+I2gPAYE5WcgcA2yDb5qbKw6L2N3a/VdR+e+8bRe03dL9S1B4A1nfdie7yTtE23cVtovYbyrLXtbd6q6i9tJ8pFRWgnnAVBQsnp9NV5LOySYY2dt8jas9d52s5pJkzszZx929WOmC5oiVznFlNTLrL+6+oDHHPjdoV87y7OgNddwEAyjneee0q3MdqR9yU3Nb4R4J03EnPYoLB7TCSDA3keXdESIbKzBm5BoQTIQB1kZDKRI9wWu3ufKrl/2NUc/V2XOmi8+8t8M+LZGhrhXeMrlwaXYK74ECzJGhjiblA7WI7rpxS2V81x3sO/cX650gyaJ0+2xuEz0HClsUSSW7iuL1af77c0GDL4m9PRfDbsbNSF4MNBZ4g7K/WZWhdjteeZGhTmZ9MDFbqcsOVovX5ehK9t8q741leXPtoR5kvRZVsfZudVV4iQ+sxba3wrgWbyvV26wvy9JcrRbQOlUSKtpTqAr+9xJsGn9rdVOJ1/mih2ttTvE7v5sUyvhsgK5/bn74P+9O839cN2XrfQyJFezN1CeRK0cZU/SbpjuwrWO235OqL4W4v3Ms+JwAYKMlkdqDrDgx03SHaBgBbivqq9coXrhRtLNfLMLlSlM/VJaJHOCasqySbYbGQW49Cjrc4uQlXiqrFerLHlSIq1eRKUX5xYegrJUUyMcrAJ0YrxYoJkW1ytmzE5MMWIY4Y5bL9LTIUEyOpoNE2EkiGiJgU2TLUHVlE1SVBCwj/WNvjTmIdzJ58piFDXJabDMWkyJahCqPzbotQPh3udPTk0y0yVGBMw82VIIJkiIhJkf0cYlK0oZRekgzFpMgWoQFG+iFNSKQiYY+Bin1mSYYIjhTZoh+TIvs5cF6DLYyp1k1IhoiYFG2xfm84UkQyRMSkiGSI4EoRwZEikiEuJENETIrK1kKwHCkiGSJiUmQvTsuVIoIjRXabmBTZi/JypIhkiIhJkf04V4oIrhQRHCnai1bhiEkRyRAxmLslKkYkQ0RMikiGCK4UERwpWpdvdvAHSjdHxajLKq3jSNG66o0t/x2TIpKhRvsVTop6KvuiYmSKUFdpV1SMClY/jiNGpXxrmWNMikiGiCuRFK2EGNkSFJci+7e99b9XMiVa8YSoHem4miVyob87p4f0pEQDXXctkaEY7SRDUnypkK+D6RMhX0pUyWacMhRKidopk5PiS4V8UuRLhXxS1J1POWUoJEi2DMWQJluhEjmfFPlSIZ8UbSi6y8VCwuN6LJQScddTarQvuj+bISnyfZ59UuR7fiEpcslQKCWyZSiGLUOET4p2VhaWyBDhkyJbhoiQFLlK5UJS5JKhUEpkyxDhkyJbhogd5QWvGNkyRHCTIiIkRZQOmYSkyPeYT4psGSJ8UrSlVFoiQwQ3KSJCUkTpkElIijY7Zr67AT/gFSNbhgifFNkyZCItoZOWz4WkiNIhk+2Fe71iZMqQiU+KbBlqtF/BpKjRPiBFlA6ZbCjf4hUjSodsfFLkkx9pWgRAnBZJyueAuhT5xMg1kcfG7nu8YkTpkM3qLaFb+bRoRYSIDC4mQvbjsRI532MhGXI9dqVTIRs7JdpVuC8oQ66UKCZDrpSo3RI5LrFUyJai3mwhKEOulCgkQ76UqNMlcrYUxVIh1+MhGXKlRKHn4EqJ2hkvFCuRs6Uoloi4pCEkSi4pCsmQS+J9MhQiVgJqS1Es3XK9LqFkyCVFIRlypUQ+GfLhEyETW4p8MkS4pCg0bsglRaFkyCVFPhkibCnyyZCJpIQOcEuRnQ6ZuKTIJUOES3xi6ZEtRT4ZItoZU+SSopAouaTIJUOES4pcMmRiS5FPhghu+ZyJS4rsdMjEJUV2OmTikiKXDJnYUuSTIaKdEjoXdjpk4pIiOx1qaV/ctkSMXDJk0k5aJMElRXY6tPTxpVJkp0MmxVzfEjGy0yGbtTKuKCQ+7hK6WF+t/vhKpUQrlhBdqVSIkwxRG25aZbbhtDdToiuRCnGTIVOKODJkdjA5MmR2JFdq8gSSooFinpUMVXLpFjHiyJCZErU7XohLNZdiJUOmFHGegylFXBkyU6J2xwvFMOWBUyZnShEnGTI/sxwZ6itkW5KidiZQ4GC+PpwyOVOKOMmQKUUcGTJTIo4MEdwxRYQpRZxJFEwp4pTJmVIUkyEbjgwRphT50iETU4pCMkSYUhSSIcIUIO74ouVMtOBLhmxMAeKkRqYUhWSIMKUoJkNEO+OKiFA6ZGJKUUiGCFOKQjJE7Mi+YkVK6ExMKfKlQy3tDSlaV70xKENEd3lnQ4xCMtSyzTJK6HzpkIkpRZwUyGwTk6FmO/nYonbSIoIzzbspRb50yGSlSuhsOjXhQifo+LTb5eJO8Ta5jCx+n5q9JD5GNrPy865zLiomG9OyuxXSGeQAYINw0cfxuQVxMjSzIPsIzQmnNOaMD7KZmKuJk6FSViY30onehE8b56YWxM9B6HMAgJFZ4RTT8kOImRZ+plwL6MaQXvjaed7Sj65UsNcJq0cHhIIDAOdnMtF0yGZn17iofSolezcuTslm6Ts4XhQJUeM4s7I3cGxO9v4JZ8tuiwvTsoNIp/Buh+FZ+fS5Fxdk48oSyGZNHErL+xWVmmxWzRN4jiVEJvMp2Ws1llyINzKYrslmf7ww9hRLhmxywrXpSmnZjKLDc8dF7UcmXhKXxc3Oj4naA0A6JRs3Ku2rlnPhceYuhiYPitrPzJ0VH0MqOrXajPgYSSLfJkTHE6KiwIp3lV+DXeXXiPa/qSAfNzNYvVsUEW8r/yC2lX+Q3X5z+RXYXJbdzbktdb+o/c3ZbejJyr5YW0oFUYdsoJjGri7ZMcpCiejOp0Xr8wxWsugW9PL7Cmn0FdLYXpXd+e8vSgc8y2bx6snJOq/r8sCNPZ0ZQxKiOwdsEwz2HiimRK/V1kpKPJh8Q0nWfrCcxjrhrFwbSilsFBxnczmFQcad/NbzkrXf2w1sKPI7o7sqNfTm+J2+vdVZ9AgnQACAV/fLOgF3bryAXsFsctu3Xsa2LUPs9usqU7ihX7bWxl3r5B2ZSnYBO8r8FKonW8PWEv/13VisYUtJ1mnfUJDJSjUL7BKsLTVQTGF7VdYt2NWVXrJobYxbhSa/pZzDHV3xRIm4qdKDmyv8DvW2fA9uz8bvstvszMru6r8u/1rclONXz+xMDWIv+InJtmQzboZszM++lGya7Vt7fhJbMrdhS4bfF7s1/VrsBz/BuhWvwp6aTLpuyrxW1P7m3p/EtgK/lGxj4RZsq/D7hQCwoXwr+kuy6qcu4XTevenN6E3zt8mmChio8EsNU6l0W1OMZzOyJTuqpZ2olnay26+rysolOVzRabdNTBHaWrg72n5T4baGDO3qeh12db2OdZzBanzfJhIRAtAiQl2ZeIJzW+r+hgxtiMwgR9yclUXIQF2GJAwUmx+F9YzpnMvZVEOG1jGnf5aIDVCXIcm2fdZ5dDEnLaAOPldw1steWphLyHD6AWabjcybRSRDA4KbS93CGaMHDBHiSJEpQlwpIhnidsoGy8JSv1KqRbg4UrTZEBuu5FA7rjzuld1oxq5KsyPNkaK9RsIjkaJ9XfW78gNF3p24Ozc2705zpGj71qbYcKRoXaW5T64UdeXqUrO/m59aVbLN14gjRT3Z5nsgkSIAbCkiGeJKkXlPiCNF5vdbKkUA2FJECwZzpcgsOeVI0U2VZhuJFAEQSdEt6Xq6wJWiPflmuRVHinammgusS6QIAFuKtid16eBKkV3VwpGiW9NNUZFIEQC2FA0ullPelHktS4zMMVkSKQIgliIAbClat1j61pXfzBKjzYXm85BIEQCRFAH8dZfyuQ3I5+rDSLKZKkuMyoXmZ10iRZ2mo0K0vqsuH7GU6EqlQrYMxVIiW4ZictSJVCgkRTdnty2RIU5KZMtQLCUyZYiDKxWKSZEtNLGUaFASv2CpDBEhKep3pB2xw9oyFGsvXE/TKUwhKdpSXpoMcaTIlqFYSjQgTNBcAhSTIjsZinXKbBmKpUS+5CkkRZsdAhSTIvvxmBTZMhRLiUwZIkJStNdR7saRIpIhIiZFpgxxMGWIkCRFQFyKSIYIjhSZMkSEpMiUISImRRuLrdvEpMiWoJgUuQLykBS5vt/bq+nod9CWoJgUbbXGNcWkyDX+TpIUAXEp2pZv3R9HikiGiJ3ZvqAYmTJESJIiIC5F25LWDmtMikiGiH2pVwbFyFfiL0mKgLgU3YrWMVkxKRp0jC2TpkUxKdpYaJUHjhRtKLcuDNtf2h8Uo3WOcUDtpEUhsqnWDkxMilKp1u9rMb/5iqVFISgdIufoFCuWEPmkyCdDvpQoJEO+lKidVMgnP76/+2TIlxK1UyLnIyRFvmTIJ0U+GfKlRO2UyPnSHZ8U+WTIux/BAqWEtEQO8CdDPinyyZCvDyAdDxIqkQtJkS8Z8kmRT4Z8r6G0RA7wy4qvQ+ZLhnxSJC3DA9wy1Dy++zHf332vlS8Z8kmRS4bapSe34BUjW4YInxT5ZMiXErlkiPBJkZkOmfikyJYhwidFleyCU4baxSdFtgwRPinyyY/v76FqYUn5HOH7Dvrkx/d3W4YIafkc4JciMx0y8UmRLUNESIpsGTKRltD5pMhMh0x8UmTLECEtnwPkJXSAX4rMdMjEJ0W2DBF7ajd2rITON2OfT4psGWq0D0iRLUMmnSqhM9MhE58U2TJEDFRu6VhaRMmQ8/geKTLTIROfFK1EqRxxxUrmVmq8kC1FMRmyU6J2SuRiyZAtRTEZslMiaYncllKh8Y+EWDJkS1FMhuyUSFoiB8SToSVJE0OG7JQoJkP2KawvxMvk7G1iyZDdB4j1CeyUqJ3xQkC8TM6WolgyZL+WMRmyH7dL2FzYHbJYmZwtRRwZslOikAz5iCVH9msVK5OzpSgmQ66UyJUO2dhS5JMhwpaiWDJkS1FIhghbinwyRNhS5JMhwpYijgi5UiJXOmRiS5FPhghbimJJkHRMEbBUijjpr/0djCVB9uM+GSJuXZdfIkax2RltKfLJEGFLkU+GiHbGFAFLpciVDpnYUuSTIcKWIp8METfjjiViZKdDNrYUcSaAsqXIJ0OEtHwOWJoWudIhE1uKYtOXt1M+14kSOlc6ZGJLkU+GCOm4ImBpWmSnQza2FIVkiFjpcUXLpWNC5IquKCXiihClROZ4IQncZIikiCtD1E5aIgfwkyGSIq4MUUokkSBKiQaK6Y6UybkgKeLKEKVEg5Vsx8rkXJAUcZMhOhXpeCGAXyZHv//cG6QkRVwZslMi7pghkiJumRy9ptxkiNq1k9pwxwyRFEmOQVLElaHBNsYW0WvFHTNEUsRNhkwp4sgQQVIUkyGCpIhbJieZZMEmJkMESVFMhgiSIkkqZEpRTIYIkqKYDBEkRVzZMdtx55IhKZKUwpIUcccKSSdaAJppEWeqeqApRTEZIkiKYjJE2FIUSodMSIpiMkSQFMVkiJCOKQKaaVFMhgiSIslsuO2Uz5EY+dIhG5KimAwR7ZTPkRj50qEl2xhiFEqHTEiKYjJESMvngGZa5EuHbEiKYjJEtFs+R2LkS4dsSIpc6VAny+au2qQKiqIoiqIoiqIoV5uOrUPkszTXqs4h9qV24PlENkf6jtoOHEg9I9qmmJJN67SjtgOH0/zzuidzCy7OTccbGvTnZPPPV9tYn2dLJY0J2XqG4jVhhM2xvpDCuHBZCuYEci1I1w1aX0gwMc8/0IZCDZeF65ZIGSwu4MIs/4msW0wMzk7LzmtaOJRiZ6UmOsbW0gIOT8jekDnh8Jlt5QRnp2UflG3lGk5Prex7uL9rHudm+M99V3kO52eE08gX5Ou8bGTOJEfcMHgRk5Oy8R/d62VJ0fiw7JpYqc7i0CnZOI6Tk7L1UQBgWPAdBIC+wjzOTvNnWNlYmMfJKdmMLJMLwqUD8jUcn5R91reXazgl/H5Iv7dbSjU8O8x/Ljf1AE/J5uLAmPCkdnXV3++DI/zv1c3rsjgwIruQTs3L2t/Ym8dTQ/zv1C09JXxneFh0jJGU8MUFsC6RLUr6it4ePD0sW7tsErLr1Wh6WNT+xvR2PF07INoGAGYS2fNYgKxDdhvuwdHUMXb73clOPI3viY5xcfIFUfu+8n5cmHhOtM3O6gM4Pf2kaBvfmqWXx/5BtB8fK/bLf1vmQdyWeRD9tXhdIbEvtUN8nB21+jb7E15Uuz+5DfuT2xrbSY7B5Z5MXQK5grOvq4J9XRWsF6zPs1m4Pg/QXLm8wvyd7cnX/5Gs19KTT7FXUgf4q64TfYX6P93CcbjSdYPWC2vzNxTqP7Dr8/wf2o3FGruMBqjLkIR1RvnUJsFxevMJNpX4z3+ncKA/lRDtrvCfz4Zigi1l/jltE7RtblN/HpsFa8NsK9ca23HY3yUTlV2LJVobBIKzqzKNrqzsOHu6x1DN80vsbhi8CAAol/nbDN4+icpW/vtS2Zpg4638zl5lsURwzxb+Apul7Bxu6B5ltweASmYBW0r85923+N5tKso6PltL/PYDhXnRmkl0ndou+OwSkrWT9lXncUs3/7NI+761V/b9vUMwu/be7hTu6hPckOhqtt3bI7sxsV+wltz2agb7e/k/bDcutr1jnUzoX9nby267t9SNVxRl/Z97SztwQ7kLN5S7RNvd3ssfX7KzXMbNZf6bPpjpxv7UduxPbWe1vzFdb3d7WjYBwu7abtyU3M5vn9yMG5I7cEPCm/ziNtRL+XYmsvfkdvCHe5RT67C9ch+2V+5jte8r118j6cQMALC5eBe77fbivRjM3SIOWSR0RIjsdOi2zIMt/82RIlOGbk7tZR1XKiq2NHG2N9vsrsXPi2SIy76uVuPlSNFm4fo8QFOGuPRY12WOFPXkm204omO24dS+91llsFwpMscBcaTIlKFKNv7DTDLU2J4hRaYIcaTIlKGBfFwk1jkG2HOkqDfffL4cKTJliLN/e5A5R4rMyQU4UmTK0CbmQqe21HCkyNyGI0WmDG0sxJ/3LquDy5GiXZVmKs2Voj3dzUVLOVJEMkRwpGjw9ubYJI4UmW04UlSxxktxpKiUbb6+XCmqZJrvG0eK+qz3jCNFG41tOFI0YLTnSJF9feJKkdmOI0X7qs3z4kiRvU+OFN1kDAXiSNHe7uZvDkeKTBlq7IMhRTeva7bhSNH2arMNR4putNpwpOiWnmYbjhTtLTWraLhSdG+ptR1Hil7R23wTOVK0s9wcRMuRosFMazUQV4oa58SQot213dhda44F4kjR7qR1gi+uFBEcKdqd7Gz8O0eKyqnW15MrRQRXinZWH2j8O0eKthdbJ+CwpahT44g6nhDZMhRjX2qHOBnaUdvhlJlQSsRNkGLHCEmRS4ZCKZEtQzE2V7ItMkSEprYG3DIUSolsGYrRk0+1yBARkiLXYyEpsmWIi2tShJAUuZKhkBTZMsTBJUAhKXIlQyEpcskQB1OGiJAUuZKhkBRJF6wE3NNPh6TIlQzFpEiS8IS2Ce3HlQyFpMiWISIkRaYMESEp2tM91iJDREiKbBkiQlJkyhARkiLXYyEpsmWICEmRKUPEDd2jQTEyZYgISZEtQ0RIijY6tglJ0YCjvSQpImJS5Ho8JEWmDBGSpIgISZEpQ0RIikwZIiRJUcu+AlJkyhARkiJThhrtBUkREZIiU4aIkBSZMkRIkyIiJEWmDBEhKTJliLi5vE6UFgFhKaJ0qOWcAlJkipDJTcntorQICEsRpUMmISkyZYi4Ha8QpUVAWIooHTJpZxrvzcW7RGkRIB+Ow6GjQhSSIVdKFBIhV0rkkxQTl/iEZMi1P2nyBISTIZcUhWTIlRK5RIhDKBlySVFIhlwpkUuEYoREySVFIRnypUScqbKXbhPopDmkKCRDrpRIWiIHhMvkXFIUkyGfsLhkqLGNQ4pCZXKuY4RkyJcShRYodUlRqEzOJ0UhifGlRKFtXI+FyuRcUuSToRAuGSJcUuQSIROXFPlkKIRLhgiX+IRESVI+R7ikyCVDJi4pcskQISmfI1xS5JIhwiVFLhkifFIUSq99UhSSJZcUuWSI8ElRSK5cUuSSIcIlRS4ZInxS5EqHWvbpkCKXDBGS8jmgLkUuMbLTIROXFLlkiJCUzwF1KfKJkZ0OmbikyCVDhKR8jnBJkZ0OmbikyCVDjXMSls8RLimy0yETlxS5ZIiQls8B7rTITodMXFLkkiETnxiZ6ZCNS4rsdMik01K0bCGiqKqdZCiGKUXtSArAS4bMfXOOY6ZE92RuWXaZnAtTirgyZKZEWyrpZZfJuTCliCNDtvy0M2YohilFXBFautYQo4zHkCJOMmR2PjgiZLfhjBkypYibDJnC0ptPgjLkgjNmyDwGJxmypSgkQy44Y4ZsKeIkQ7YUcbYx23DGDJlSxJEhOyUKyRBhSlFMhghTijgyZKdEIRkiTAHilNLZUuRLh0xMKYrJEGFKUUiGCFuKfOmQiSlFIRkiTCkKyRBhSxGnlNeUn+3lGqucTjKmCFgqRZztTSkKyRAhGVME1KXIFKOYDBGmFIVkiLClyJUOLdnGEKCQDBGmFIVkiLClyJUO2dhiFJIhYrljilzpkI0pRSEZItopnzPFyJcO2ZhSFJIhop3yOVOMXOmQjSlFIRkipOVzhClFIRki2k2KOlE2t+xZ5l7b+/8Ttb+YPi8qkXs+Odi2DEk4lj4mPs76nCyCuDg3LSqTuzy90FYy1CWbnAgTc7IyuXNTSVvJkITxeXmZHHOppBYm5mUTKEzMp8RlctLJAM9Np0UTKFyYzbRVJjddk71gZ6dS4gkUsinZ5eXwREYkQ6cmU21NoJBLy7Y5PZUWldadmEyLJ1AoZ2Sv7fmZLEuGTDa0sR7Q+GxelA5NTuZZMrQczj1bYskQcehUH1uGTE5PyMqaT03lWTJkkiSy7+HJqRxLiIhjkznRZC/tcmoqHUyHbJ4bzYplakH4Wj01FE6HXAzLAz8cHJlnCRFxYGSBJUMm0p+3p4amWEJEfGd4mCVDNhnhib08ORZMh1yMzso+J89PDrGEiDiQHA+mQy7G5+XXkxdST7OEiHg59VQwHXKRFn5Snsb3WEJkMpHwJ64hLkw8xxIi4vT0k8F0yMVzl/9UelotXPF1iB6s8CZMIO4r8BYRM9lZKWNnhbl65SKvK90kar+nKtv/jq4sXrFeFgPfvl4uQzsr8s7h3i7ZxWa/7FqGTSXZrGUAsL9b1l76wwrU75hKx4/sqcg6O4PFefTnZdvc3iObTvSOHnknd0NhHtsFs1gBwKv6ZOe1oyxrXz+GrIP/qj5Z72V3ZQa7KzPYJixzemBA1sF/7cCEqP2OylRjsVMu9/YPi9rf0DeEnpLs9QWAm3acF7Xfcr/stc3dNoDcbQOibTY/KLxm7ZE9BwAo5Oaxq3dEdpxu2edkoDCDDUXZe3Kz8BjS68PGwhw2FuSdvTds5CWPxJsHZbP7AcBN3bLn8o7tsvbbSvO4rUc+1ulHtso6oT8kXM9yb7WGPVXZZ/6nd8rujP6T7d24T/Y1BADc1Ct77j+9XZYUba8kuHWd7Biv65NNvf+2vj2i9gBwd5+sDwgAP1x+paj9O3teI5JaALipR7ZUwRuKvAVxiR21Hbg5kacxD1ffI2r/Q+V3iI+xXJZfMpfhvVm3dXXjtq66sXNXoe7N14VgS4n/gZCK0K5KGbsWt9nF3JZkaB1zYZsdXXKx2bq48n2/ICUhGepjlkANFmsYXCxtGmCmHlRexRUcqQgBzfEh/czkhmRIMj7HvGNayTCfy2JpUxdzhfrBYhtrwSx2RLh3gDcvduy3C+TDLLniStGuxXKoQebUwSRDkvEVGxf3vafCey507tzpiXcz92uzt1rvsHLTmN2VeidsE1NwdlSanTauFO3sqq91McAUnBv65GuJAMC2wWEAQJaZMKxbrHZIM695pghxpSgzUL8o9vwA7xjZxbR1+472XgOuFFVz9e9Vf4H3mR8oNN9rrhR15+j6wDtG7+I5bSvJP/sSMbqpu34DYHuFJyA7KnWpu6OXv2bLvq7pxWPxjrG/q97u7l6eQG4rNa+LEim6sUu2jMDOxXY3dcsnmeFKEZ3/Xet4z2N/d3O/EikiUeFK0Sv76/9/U7f8BiZXijaU6t3a/b28fuat6+vtblmXwy3reNvs66m3k0jRjkq9H7uvIhNCgFf6aLbjStGGYr006L7CjeLwQSJF96TqIngTeIHIbekb6u3TO3FTeidrm3aW7bFZlhD9eN8HAcSliERIAskQwZEiW4ZicsQVIBM7GYpJkS1DXYwVRUmGiJgU7awkS5KhmBQNCgf3A0sH3sdkx36cI0f2YPmYFNnJEGfignbKRzZZg99jUmTLECclsjsfMSnabMkGR4ok69kQu+yxIREpspOhmBRtLM41ZIiISZEtcjEpcskQJyUiGSJiUrTb6hDGpGiHowMZkyKSoUb7iBTZMsRNiUiGiJgUrbNKv2NS5BKgmBSRDBExKcpapadcKSrkrHFaESmqWu1jUmTKEBGTIpKh5j7Cx+i1zokjRS4BikkRyRARkyKSIeKO3vGoGJEMNY8ZPgbJEMGVIhOOFJEMETEp2mk9zpGivZYExaTIPm+uFJnEpOjWdaklghKTIpKhRnuGFG23+jUxKSIZIrhSZBKTIpIhgiNFJEONfTCk6BW9rf3mmBTZj0uTIiBekWUPK+FIEclQ47yYUtSyTUSKSIbISdqlYyVzPinyyZAvJerNZ5fIEAef/Pj+7pOhkCT5yuR8UuRLhnxStLWcWiJDMUIlcj4p8slQKCXyDbz3SY7071vKsoU3gXCZnE+KfDIUSolsGSJ8UuRLhnxS1E6Jii1DREiKfDIUSolsGSJ8UuQrk/NJkS1CHHzn65OiUDIUkiJbhgifFNkyRPikyCVDMWwZInxS5EuGYlJkyxDhkyJbhghuUsTBliHCJ0W2DBExKbJliPBJkS1DBDcpMvFJkS1DhE+KbBkiQlIUugb5HrNliOAmRSY+KbJlqHls9zFsGSJCUmSmQyYhKbJliJAsOA3UpcgnRrYMET4p8p1vSIr2e8TEJ0UhKZGWz93UXfOKkS1DsePbMkSEpIjSIRufFNkyRNzdVxaX0O2rdHnFyJahxnl5pMj395AUUTpk45Mi3xj7dsrnbsJerxhROrRkG48UdSIZIlZ0DFEsGbKlKCZCvpSonTI5yeN7quW2xgyFsKUoJkKulIgzXsiWolgy5JIi6Sxk0uQoJkKulIgzZsiWolgy5JIinwz5iJXJ2VIUEyFXSuSTIcIlRbFkyCUZPhnyERszZEtRTIZcKVGsxM+WIk6ZnEuKfDJE2FLkkyGCWz5HuFIinww1trEkJ1Ym11OadoqRT4YIW4p8MkS4pCiUBLke88kQYUuRT4YIlxQVcvNeGSJsKfLJEOGSIlc6FMInQ839tR7DJ0OES4o4N2TsNj4ZIlxSZKdDNrYU+WSoeQ4y8XJJkU+GCJdk+GSIcEmRnQ7Z2FLkkyFCOqbIJUU+GSJsKeKUrbmkyE6HlmxjnYdPhiTnYeKSIp8MEbYU+WTIxCVFdjpkY0uRT4Ya59XGmCJbjHwyRHSqfM5Oh5acmyVFPhlqtGeWz7VLR4XITImkZXLcVMiUIu7kCWYbbpkcteOKkJkSSccMcVMhU4ramTyBWyZHUsSdktkUHOnYIm4qZEpRuxMocDCliCNDZkrEHTNEUsRNhUwpiskQQVK0oTDPLpMzZYMjQ2ZKxJ1AgaSImwyZUsQd70RSJBkzZEpRTIZsYjJEmFLESYdMKYrJUGObRcGRjBkypSgmQwRJUUyGCFOKOGOFzDYxGSJIimIyRJhSFBMhE5KimAwRphRxZMhMiWIy1Nyv7OaFKUWSdJraxmSIMKUoJkMESVFMhghTinzpkIkpRTEZIm7raU62EJMhwpSimAwRJEUxGSJMKeKU+JlSFJMhYrkTLcRkqLHN4vnEZIgwpciXDpns7801xCgmQwR3TJGJKUUxGSKk44pMKeIKEklRTIYIU4o4MzDfnNzdIkYxGWqcl7CEzpSiTqZDwDKm3Q7V6nEnTSAm5mWn0Feof/hH52TbSaetTLcxjXO3cDpqxk2HFraXF3B5Vu6xeeE0w725Gi7MtreKNxfpdJ0AUBA+DwCYE/rTQGEe0wuy17jKnGiB2FCcxqUZ2bziubTsGNML7b1/GeFU2XnheW2qTOLkuGw647ma7P3Y2TWO0xPyMYIF4dTXKcg/j9JjVJidYmJT3yimp+Q/5N29MhHsukV+HcrslE3vWjsrn4ls4hlZAnPutHyQcz67gFMjspt+0s9KO99f6fdkVtgeALZVJzAxJ/t8SZ/7huokjglf35rwq3hhRrDWhMGccLkC6e27raUZHJmQjf+QTtm/qzqF50Zk1+DRefkPdrdjQfMYEwuy45yflrXfU63h+KTscy/tQwDAYCnBs8J5XDhjzJfLpRnZkzk1JUth93XVf3dPTsh+t7LCDvdCQF0+d+m3RPsiOpoQ3dSbx02MhcNMqrkUNjLsniAZkrKtksLWCv8F39udwu4u2Ru0t1u2oOSOimxRzO3l+t0j6aQAGwoL6BWsUyNpS6zPLWB9jl9etrkoHzezvTQr3mZ9fh4bBbO9URpTFPzAbC9PY32ef4dWOs0uAGwuT2JAsN36wiw2t7HmzJbyJDaV+Ntt7xrHJuadXwCNtlur/GmpB4ozoufCTVNsdvWMYnOVv+3m6jgGBc8DAAarE1gveH03VidQFdz939RXF4iicEr1vs2TyAmmoO+6LSO+Y5S57wZgM/N2MQDs2oz0q4TLLqRTqNzB70ym0sCmrbLpovPZ+nVuSw9f1taXprBOMOV5V34WA4LPCQD05GfRL7hG9ORnRdcUE4mkD3aPYVM3/3u1oVq/RuwQvL6DlQlsEXwX1xdmsJ+5QLHJzsokbujiH2d3dRJ7q/IJHSTri93SM4FdVf5nhdre0sN/HltKs7ipS74chHSdtF2VadwqKIMcyC8sWeiXA2fBYWJfdV58jMHFCphbBfd/bl0H7Kjy+4O39y7g9l5ZSf++7hpeJUj8Bstp3NMnE2dia4V/02R/bx57umU3Wfb15LFPsoAmg44JkSlC3JSkatgwR4psGepm2vQ2Q4Q4UmQu5MaRor3d9X8k7DBiYY4UkQxJ2WCUfXFEx2wzkOcd0xQhjhRtblmhPf7Dur00i+1GSRNXitYb43U4UiRZ7LBxbuXmBZ8jRaYM9THHEmwuN39QOR2Y9UYHenN5ii0TW4zjcKRouyEeHCmSiBNhlo1xnocpQ5sFx9tldL44UmS24UqR2Y4jRRuN9hwpIhmS0re5+TpxpKjrNiO5YEpR5j6jNpwjRbuaC7Wwpcg4F44UpYyfE6kUERwpMt9rjhR1GdcRrhT1GNtwpMhsL5GibcZnkiNFg4Z0SKSI4EjRYKV5ThwpWm9cd7lStLMyiZ3G9YQjRbsNEeJK0VajlJEjE6bUSKTItb0Pc+wnV4rMta92VaZZz8Vsw5Eis3/CFRazxJAjReZCw+2IF8CTIrONRIoAvhjtM0okOVI0WG5eILlSROkQwZGi/YY7cKXIbNdJKeqIELlSoZgUVYXRoC8ZCknRtkqqRYY4uFa1DkmRS4RiKdEOR41sSIpcMsRJiTY4xsCEpMj1WEyKJKkQ0CpDREhwtgsX0CTWO2Z0C0mRS4ZiKZEpQ83j+s/XlQzFpMiUISLUgVnv6TjHZGKL4zghtjtSmJDwuB6LpUSuiQVCz8OVDHGkaJej0xWSItdjMSlyPR6Soo2O9iEpcslQLCXq2zzZIkNESIpaZIiISFGLDBEhKTJkqHGImBQ5ziEkRSnHz8mmrWNRMaJ0yCQkRa73OCRFXY7rR0yKehzbhKTI1Z4jRdscn8mQFA06ZCMmRRsc4hCSIlOGCElSBMSlaKfnGhKSot2O5xGToq2OyS5CIuGSmZgUuR4PSZFrdlBpUtQ4duC5uB6TJEVAXFhck1CEpMiUIe4xgGY6ZBKSItdjMSlyCVBIivY5xotJkiKgLkUhMbJliJAkRUBcilyPd0qKli1EoRI5lxRVcymvDPlSoliZnEuKQiLkS4lcMkS4pCiUCvmkyCVDhEuKQslQSIpcMhQiJEouKQqVyPn+7pIhwiVFIRnySdT6/LxThhrbOaQolAz5pMglQ81zWHreoTI5nxS5ZCiET4aa+3P/wPhkyJcSuWSosY2j8xASJZ8UhdbicT2PUJlcSIpcMtTYziE+IVHySZG0rM4lQ4SkfA7wS5FLhExcUuSUIcIjRU4ZIlxS5JChxiF8UhQQMpcUuWTIxCdFLhkKERJeSfkc4Jcil9wQLikKtQ9JkUuGCJcUuWSI8EmRS4YIlxS5ZIjwSdF6z7XWJ0U+GSIk5XOAX4pcMkS4ZCEkMT4pCsmSa3+h9eNu6prxipGZDi05B8dzCYmST4p8N2pv6XaXt4Vm5JOUz9ExfLhkiHCJT0iUfFIUEh/XYy4ZInxSZKZDNi4p8skQ4ZOi/R5/2NOdc4pPSJY6IUXLEiLOeCFTijipkC1F3DFDphRxUiFbikIy5IJTImdLUUiGXHDK5FxSFJMhW344pXTmBYiTCtltQjJEmJLDSYZsKQqJUMt2hhRxyuRsKQrJkAvOmCFbimIyZHdeYjLU3G/zB2ZLeTKaDNlSFJKhxjZGJ4JTJmdLUWxhUqD1eXDGDLmkKCRDzn0wSuls+YnJkN1pDskQYUtRrFTOlqKYDBGmFAVliLDEJChDhClFARlqHMKWIkbJnilFMRkibCmKyZCdEnFKIm0pcqVDJrYUheSGkIwpAtxSFJIhwpSikAwRthSFZIgwpSgkQ4QtRT4ZIvZ3j7WIUUyGCFuKXOmQiS1FIRkixGNxLPnhlNOZUhRbTJuwpSgkQ41zMZ4L53nZUsQp5TelhTM9uS1FrnTIt3+gLkIhGSIkY4qApVLEKY2TjiuypSgkQ4QpRTEZImwp8smQiSlAnHK65UpRW7PM/XjfB0WTJ4zOJuISuXNTNfEECqNzibhE7uREIpKhw2OJeLzQ+emUSIaGZ1NtjRnKCmcHG55LiydQWBB+Wi7PZVgyRJybyYnL5M7N5Ngy1NhmOiseMzS9kBbJ0OXZvHgChUszBVEydGG6yJYhE+msT2enSiwZWg4nxyssGSJOT5bEEyjQzHMSGTo9XhVNtgAAZ8YromTo8lSJJUMm4zN50bih6akcW4ZM5ibTPCEiaglPhkwKsh+y2rdfFE3qMPHUNFuGTM6e7BIlQ6dGukWTZgDA0FQxKkMmF6ZKLBkyuThdFG1zYbrIEiGbibkcS4iIs6NVlgyZzM7LZt87NV6JypDNTBsz/L08VonKkMnB8TJLhkyOTBRFkyEcGS+JxxY9N1JhCxHxwliBJUMmRyaKItF7drTEHtdMTAtnUTw+mY7KkM3lOfln5dkhmRwdG0+JRefp4UwwHbL59gWeDJk8cWmCLUTEyYk5lgyZHBqdE0268NLIbFszzbUlRL97029gWPB92VRMcHpKJirlLDAq7OcNlhNMCqeG3FpawEXB9NKDxQWcm5F9aAbyNYwLpnHeWprF6Bx/LaP1+aZwSLbryc1jRNC+vzCLc9OyD/LW8jQuCqY3HSzN4LJwOtSB4jROT8kWK+vKyp47AGwuTWNecIHdWJ3ApUnZefVXJjE2zZ+Ou7c8jUvC6aV7FztsI1P82bg29oxjaIL/XPq7J3BxVDY7zbrKFM6O8KdA7q9OYFTwHABg47p6Z214TPBc1k3g4pDsufRUpzAyzj9GV2kG07OyWut16yYxN8f/PHZtmkVtRj6ta2FLGqki/xqZuWcXkOW3r915KwAg/cJLovOqfecAu20yvYCpl2Uz7wFAbSGF4Qv89zGbqWFsSjadfrkwh9FJ/jaF3LzoGgEAhewCxgWfr57iDGbmZddHoP4dXhBMS12tzGBU8F0EgO6uKVwcqrLbV4qzuDjGv0auW1w76ewo/xhAPeU6M8a/TnQXZnFe+PswUJoWTXk+2D2GM6OyaeV7CjM4NiZ77oPlKVwSfiY3lKdEz7+QruH4pOx635VbwIUZ/uu1rTQjar9u8UbsoQnZc99cnMPpaf5x9lWnxX2vTcVZHBVcV8qZBM+PyuSuv5DgsHA+mt1dwDnhVOndOWBUcPnuKwC/9sK/kZ0YllEyxxW8TYtlY5uZC3YCdRkCgG7B+z+4uMBnWTDv/dZS3bj7mXcdBhcX/NtYYC5wmq9hQDhF9tbFOzPdzEX/TBmS0LO4/x7h4oIbi3xL3bqYprhWa3cxuHi3TJJ4UInHZsFd2a6s7LnX918/Tpa55g7d7e8TTBfdv1ii0cVMSXoXX98+wWxqvcK710BdhoBmRyFG/+Kijf3MxRvNfW/q4V1d+xdf327BWAySIQDoZSzgCNRlyPx/Dj2Ld2R7mHdmuxY/90XBd3nduvp7nmMmvF2b6t+pdEF2/6uwpf4TkUzzrpGZe3bV/2W+vVkxJaRfuZ/Vjs69dINMOGuL66H0DvDex+xiaW2X4K5/ebHst5u5sDEtIMu9RgB1GQKAKvPz1bO470J2HoUs/xpJ3+EMc6246uLCyd3M76LZtn8dL7GtLP5e9XfJk9F2pgofZI4p6l78jdsg+H2gRZe5U55TUidJ7HoWk7QdguR9cPE59Ak+k/S8uc+/sPi7K6nQ6Fos2x9gzkpLixVz25vsqcy0LCIegipmJJUzQL3vxe1/bVpst5N5XSkvLkh/czf/ut2/+FuyW+Db1HajYHkaCoa4AVGfzE1b6Og6RDabrCfNkaKy/KZUQ4aa+wgfZ2tpoSFD7GNYq5/HpMgWoSpjXZutVkwdkyKXDHFEyhaBmBjYQsP5Um61LlwxKRq0OhEcKbLr3TlS1JWVPff6fluPE5Miu/SJI0X9wimpe63XlyNFtgz1MGSCZIiISZEtQRwpsvcZk6J+6/XlSJEpQ0RMimwJ4kiRLUExKbI7zxwpIhkiYlJEMkRwpYhkiIhJUUOGCIYUUToEALWb9rHOyyQmRfY5c6WoZi0OGZOirHV950hR2ep4xaSoYF2rOFJUsMr9YlLU49gnR4rs73BMiqpW55EjRXabmBRVrN8pjhQtuRYxpMgu+eNKUWN7xu/DgHWNi0mRLUEcKeqxygo5UjRonTtHiuznG3v+hbR8DG+XNYY5JjnbrO8rR4rWOcr0Y1JkSxBHivZVW59vrP+1yXqcK0XEzd0LUTHqt35DJFJEcKTIliDhUkViliVEoZTIliHCJ0XlrFuGYimRLUPN/bn/7hOhUEpkyxDhkyJfKhSSIluGCJ/ghJKhkBT5BMD3d5/IhL6UtgzF9mXLEBGSonYWFLRliAhJkS1DMXzjQEJS5JKhUGfHlqHGMQJS5EuGQlJkyxDhkyKf/ISkyLcvnxTZMkSEpMglQ4RPinzyE5Iin/z4/u7rNIekyJYhwidFtgwRMSmyZSjGEhkiAlJkylDjbysgRTYxKbJliPBJkS1DREiKbBkifFJky1DjGIHrhC1DhE+KXDLU3Jf/Gun7DvukyJYhIiRFvsd8UmTLUKN9QIq816KAFPnGP4WkqNvxuxaSAluGCMniuEBYimwZIiRJERGSIt/z9P3dliEiJEW2DBE+ybFlKNYecMsQ4ZMin/yEpMiWIcLX/7JliAhJEaVDNj4psmWIiEmR6/GNxcQrRj75CUnRctIhoAMJkUuKfDJE2FIUS4V8UuSToeZ+Wx+PpUIuKfLJEGFLUaxEziVFPhkibMHhlMm5pEhSIgbEUx3Xl9InQz58MkS4pCgkQ5tLU86kyCdDhOu1CcmQKyWKDYp3SVEoGXJ1dnwy1DiGtb/e0lS0TM4lRT4ZIuzOQywJcj0eS5tsKfLJEOGSopAMEbYUxZIg1+OxJMh+PJYguKTIJ0M+fDJEpAuJU4xCMuRKibwyRDikyCVDjcc6JEWhRMslRbWFlFeGCG75HOF6n30yRNhS5JOhxjGcqU74d8uWopAMNfe59Dxi32FbinwyRLjEJ5Ye2VLkk6FGe4cURa9F3ePimfFcUuSSocb+HL8PPhkipFOeux7zyRDhkqLB8tSSdMjEJUWxJEhSPgi4pcgnQ4S0HM7VPiRDhC1FsSTI9bhPhgi7/+WTIcIlRT4ZImwp8skQ4ZOimCzZUhRLglyPL1eGgA6VzJlSFJMhgqSIWyJnStFgOYnKEEFSxC2RM6UoJkM23PFCphTFZMhGMmbIlCKODJltuON+zC8lR4bM/cZkiDCliJsMmVIUkyHCfP6cZMiUIu4MYaYUccrkzM5OTIYaxxCW3wGtUhSTIYI6EdyxQmY77ngkkqKYDBGmFHFkiOhtjE1gPhejHXesEMEdY2JKEUeGzJQoJkMmphRxkiFTNKIyRBhSFJKhRptlShFnzJMpRTERMjGlyJcOmZjvd0yGCO6YosYxjOtETIYIkiKODDX33bxGcr/DJEUxGSJMAeKOLyIpislQo70hRdznYcKdGc+UopAMNfZr/D7EZIiQTnlutonJEGFKUUiETEwp4sqO2c6XDpmYUhSTIcKUHF865GvPkSGCO6aIMKUoJkOEZEw30CpFMRkiSIpiMkTs7moVIG45HUkRtyzObNcJGQKWMcuciyJzMCUxPCef8agimDSBWC+cWhoAckJVrMlPC73CqaKl02oT0lc5x5w4YDnb5ISfFQDIpOTnNSaYkYeoCAYSA7KJE4iU8L3kDlQ2kcz2RBSFn8licQ5zwmlHFwQzLgLAvLA9AJSEA1YBIJuVf74ks7wBQK2d51KRPZdin+w9JHL9svcx++q94mPU7rlD1F468xwALHz9eVH7iRfbe73GL8t+hReEUwADwIzwuzXbxsxwmTau91yxMykJb/61w9SUbCaudq6RtTbexwnhDJJJIj8vyQQzADApnM0VAGbbmI68nc/XiHDGuqE2fueLwvOab+M9AYAp4TW/KlwAGpD38c638d6fF86u3C5TgptTgL+vfkVnmbORylAqBazLy7bJp4E54QVsY6EmlpuuXG3JYpwhUkiQkXZwUwnGBD925cwC8m1cWEqZBRQz/C9YOzJUyc6Lzq3eXvalr+ZnURKW/GVSCXqF63X05OeQFXyW15WmURNeKEuFOZF4lAtz0bIZm2JhDhVhB6RSmkVG8Llvh1xuAUWBrOQL8yiXZc+jqzojlptCZQ6ZyILGNql0grxgm3QmQVa4jkahOC9KL/Ld86i1MfFktiuFZIb/mmX2rkdy9rLoGLW7bxfdOUoKRSzcebvoGDhzAZl9nuXXHSwMzaG4UX6zoTaXQrmL/7lMpRNkhR2dVCoR36DIC2/mFHPzyAm/8/nsgvgmRTa7ILpxks3XkBXO0Colk66J1pgC6olgXngtBoCKoLIjn1kQze4HyGUok05EsyHWt6mhJBy31F2cET13oH4DTDI+aj5JsatAiHW5OZQE/aJCZkF8oxSoi0pZ8P3qyc2L+5KV7DzKgnNbSFLoa2N24g3M2ZWJXFoeLKRTstBjIQGYE6Dyjt+JnbQjQwRXivLGmc7VUiwxMsf3cN+YLiNN4kiRucAl94NstuNIUdn44krEw/zCc6SoXRkiOOfW2p5b2tHseHClyHyNuVLUY1wkOFJkrjTPlaKS8M6qeSeWK0XFNu7emvLElSISmxyzVMFsx5GivLFwLleKuqrNH3muFBWMBIYrRSnj88GRorRRnsCVokKx+fw5UpQ3Vk+XSFG2q7lvjhRl9q5vtmdKUe1uQ2wYUpQUmuuNsKXozIXGv3KkaGGo+SJJpKhmVDZwpMj8rHClyEyQV0qKisb1hCtFpkBwpch8zhwpMkVIKkXcFMpMLaRSBGDFpQjgze4HtCdDBFeKzNeLK0XdRskc97mbnymOFJmpDVeK1hn75UhRwWgjkSLzis2RIrNkn9uXNM+HI0ULxuu1UlJkixC3722us82RogWjSaekaNlCtBwZImJSlPecZUiKXDPAxd6YLkdpXUiKTBkiYh9k1+MhKSo7vrAc8XB90UNStFwZIkLn5m4fG/wrSwcyKXdaF5OiHuHFYZ3jRygmRbYMxTo6rrKUmBTZMlQpzUaTItfjMSmyhSYmRa7HJUkREJciU4aImBQVHOVoMSlKOa55ISlKO2q1Y1JkyhARkiJThhrtIy9vtivVIkNESIpMGWq0j0hRiww1/ui/TpoyRESlyJAhIiRFpgwRxY1JVIxqjjLvkBS5PisxKXKV03ZaioqO60hMilziEJMiaSrmEqBOS5GrhCsmRdlMbcl4sZWQorz1Gx2TIqkMuYhJkev1KuXmxGlR7Lm7PkshKXKVsMWkaJ1jfyEpKjge40iR60odkiLXGO9YX9J1HiEpWnC8Xp2WIl8fO9b3TjtesJAULTge6oQULUuIOiFDhE+KfDJEuKQotEaQ741xyRDhkiKXDBG+D3LoA+6SIpcMESHxkETBQOdkqN32PinyyZAvJYpdQHxS5JMhX0rkkiHCJ0W+ZMjX0QnV6PukKJQM+aQoJEs+KfKJjE+KQrLk25eZDpn4pMglQ0Q7Y4N8UuTq4BIuKXLJUOO8PFLkkiHCJUUuGWq093wkXCJk4pIilww12nukyClDjQeXvjYuGSK8UuSQIcIlRS4ZMvFJkUuGCJcUhT4rPlEIjS3slBS5ZCi+L/932CdFvufoS4lC4tMpKQqNZ/E9x9DEGZ2UIluGCJ8UtSNDvrGoPimKjf/xSVG3Z6IO33MPibV0enGfFLlkiJD2mUL9mdCV1SVFoQmvfH2a0PFdUuSSIaJTUhSTHt/jLhkiXFLkkiFiuVLUthB1UoYIW4piMkSYUhRbMBVY+saEZMhFSIYI+4MsrQsNyRDhkqLYF9tOiVZChuzz4siTLUWxZMiWIu7ra0tRLBmypSgkQ4QtRbEyObujwxmwbEsRp0zOlh/OGCNbimKpji0/nHI6e58+GSJsKQrJEOGSIlc6ZGJLUaiDS0jGFAFLpSgkQ4QpRSEZarS3nmZMhghTikIy1GhvSVFQhhqNmq9pSIaIJVIUkCHClKKYDBG2FIVkiDCliPNZsYVBOtEKB1uKYjLkSok4JWV2hzaWDNlSxBGe5UoRZ3C//Vw5swh2Qop8MkTYUtRJGSJsKeJOhmBLkU+GCPu5c0ovbSmKTXBgS1FIhgi77+RKh1rOydGv4VxZJWOKgKV9G05/SjKmCFi+FHHL4ux2IRkiTCkKyRCxHClqS4hWQoYIkiKuDJlwZIigN4YrQ5QScWSIoA8yt7NOKRFHhghTPrh3OUiKVjIZovOSJEkkRdwyOZIiqWySFHHL5EiKODJEkBRxxwyRFElmbyIpkowZIgmSTLhAUsQtcSMJ4o4tMvcdkyGCpIgjQ4QpRTEZIkiKOB1cgqQolA61nNeiFHFkiJBMtAA0pYgrQ4RkogWgKUUsGSJqCUuGiIYUMWSoZTumDBEkRRwZMpF8VkgcuDIkTYmAphRxkyGSonx2QTS+hjq23DI5kiKJ6LQrRZKZzug5c2Sosc0ypCgmQwRJ0UrIEEFSJJ0ZjqQoJkMEPXfJ5BwkRdzZ3kiKODJEUB8qJkONc1o8Rgqymd5IirhrQ1IfR9KfIikKpUMmV2KiBaDZ9+bIEFHJJiwZItqVoiszj56QdiY3bEeg5MeQv/mSNxEAptuYljefronPba6NKSQlH2CgvQ+XdPa5dqQOANYz119Y7nEktDO19pU6jnQa2KSN6WylM9wV2ugcptKJqMPaLu1Mmys/hrB9e7NLI5UVfpMrpfYOJCApyqblFT+HRTI54eyhbZRnSrkSn610m2nV3LxsWmbplP2AfNp++cIi7U31Pz0nn/Jc+l5y5clkRnhe3A60TVGYSrQ1Db1wG8nNZUL6cWl3Om4p0ucOANPCbebb+K5I+4VA+5+xlaatX4njE/wnk0nJDjI8W9/3XBu/K0OCNUFo/2PMbaiyQ7J+zuxip3CW2TmkfV8WrllAcD9kY4trVUwK1hSgD/3UAu/iOr/4RZxqY12MWeaPKv1oSX+8043kjvcho1RwXDB3Px1jaob3XlJHQvLjRW2nmccw20q2mV88N+4aH7Mz2Zb/50Ado4V53veR2s3O8j/D5pojs1O8c1uYqe9fIngz0/V9c5/L/OJzoO04SKWOUvq5IeF3pSL7/qb2bKlvd+Bl9jZJdw+QE3y3XjxQ327XVtG5ZQdkEjW3WAGYK8t+jNKC94a+W9yOMV1PJB1pWpuI22Gn78n8QlokBnROU9OyNU6mJvjXopnF7y1XiiYn6+cieR6TdI2c5X/2RyfrCadEiuj3ZIb5G0mv77Sgf0C/EZPM6/3w4vOQrjdE58b97R5dXGdIUj10eaa+DbefQ+0kIkF9omnm8x9ZXP9oLkmJbjJPLn4eR5ifFzqvy7P87xa15Z7XucXPiESKLs62IWkL1Mfnv16nJlMYEwRYo20uedZ2rsKRoozRhHMgkiGCK0VmjSFHiuz9cqWI4EiRLUFcKSJWSorGrIsvR4rsOwAxKZq3LkArIUX2DxxXiux2MSmySyQ5UmQfIyZF9l1VjhTZbTiCY7fhbDNvnVtMimwJ4kiRfZc4JhL24xwpci3AGJMikiGCI0USqQGaMiTZ3pShmRFGe+u0uVJkylDt6HD8OIsy1NieIUVJd0/zPxhSRDLU2J4hRbXDlxr/zpUikqHGqTGkaMb4PHGkyP5uiVNYRnt7odZYh931PeHIhH0uKyFFM9b3NSZFJEME53nY4sCRIpKhxjaM67f9OxKTIvv15UiR/RsRk6Jh63lwpcg+t9hv96i16CpHikiGiFg/x36cI0V2XygmRSOOxWA58jEpTB/t8+JIkUScgKYMERwpMmWIWwk1vWD38eOv16nJZhuOFLUrQ8AyS+ZCUpRxPBQ6mC1DREyKXLNQhKTIt7+QFLlmiA1JkU9+QlLk2t9KJ0VESIp8cSg3KWq076AU+X7YYlLke9wnRb7xYiEp8h3DJ0W+EpOQFPkeCwmO77HQNnaHjfBJkU9+QlLkK5nxSZHv7yEpamc1eluGiJAUuWQmJHe2DIX2Q7iSoZAU+TobMSlyJUMhKbJlqLGfgBS1yBARkCJbhhr7CUiRKUNETIpsGWqcWkCK7M46EJYi33crJDmua0iovS1DRDulXSGZ8J1DJ6XI9foCfimyZYgIPQ+fMISkyJahxjaB19j3++GTIt/rG5Ii32+E7znaMkTEpMh3br7fbluGiJAU2TIUw9f/CUmRpFoGcMsQEZIilwyFUiLfeYWEx/VY6JxsGSJCUuRKhmJSZMtQ49wCv6mmDBEhKVqODAEdGEPkkiKXDIUO6JMhwicxoXnKXVIUkyuXFIXWEHRJTCwJcj0ekqtOSpGdDpm4vnix2lCXFNnpUEv7FSyfI9KpxCklMVnils8Rrh+12DHsDk2s3t71oxZLj1wpUCwJcj3u67ARthTFkiDX49LxA7HkyCVFMRlypUQ+GSJcUhSSGNd5+2QotL9QmZxLimJ3XueGEqcYhcrkXFLkk6HG/hxS5JQhwiFFPhlq7M8hRS4ZIlxSNHfZL0ONU3NIka+zDrilKPbdcnUyQymzq71PhghXhz32XXHJRCyl6oQUhV5fYKkU+WSIcD2PWHoyPZtdIkY+GWps43iNYxUGthTFXl+XFEnHDPlkiHBJUZKkxImmT4YI1/UqJEOuPk7sZrBLikIy5EqJQjJEuAQklAy5pCgmaS7xCYmS65x8MkS4pChUJueTIp8MNc7Nce1xyRDhkqLlyhDQoUkVTCkKyZDroDEZIkyZqWQT1kq2phRxy+9MKWIsqN4iM9yyOLMdp/yuE1IUkiHC/AJyB8qZUhSSoUb7ZUoRtxbclBNuOZ0pRZzZBM0fN+4xuGOKCPPHjftDJxkf5Nom1mEjSIq4Y4XMdhwZMkWCOx7HlCJuMmRKUUyGCFOKOGVu5vnHZMi1X86YIVOKJLX5phRxxgyZUhSTocZ+DSkKyhBhSFFMhhr7NaQoJEOEKUUxEWo5NUOKYp11oFWKuN8ts7PJuWaY7WMyRJgddu53xbz+ssc9LUOKOK8v0JSimAwR5vPgjq8xickQYb7GkjGoAP/1NaWI8xthPt+YDBGmFHHPy/zdjskQYV63OMmQ2cfhVsaYUsRJhkwp4sgQYQoIp0zOlCJuYmUKEKdMzjynmAwRphRxxgwtJK1iFJOhxrkZ16CQDBGmFHVChgAglSTyOVg+sPM3nH/fVZXt6jJThkx6PQu4hqgKZ68CgIpwtqAJZodtOcdY38a0iIA8Dq4KVxcHgJwwYSkJZ6QB2p/5SIpvcVUf3KlGTSRTul5JpOdVKs2KJk8A5BMCtEM7s321M/ueZFIHoL3Z94pl4XTRve1NJ1fYKusYZh66RXyMhR+4R9Q+/cwz4mMkf/eUqP3UAfn3FwDGL8k6uLOCQfqEZGA/AMwJr/UAkGtjJq52viuloqzXIpmcAqjPUskVIkJagVDfpo2SQ+FsX+3MJiddx0o6cQLQ3myr0228XpeYArUcpEML2pnlDZBNHgDIJu5ql8ttXIuGhWPtAflzB4DzwlnlfQbzvx/9N+Jjd2yy6rkEeGlM9uSHhFZ3cQY4KDwGAJyeln3xxxfSOCfo5J2byWJcOFDu8lwaJ5h3v4D6dNynp+QXiXPT+cb6RhzG5jI4w5xNjLg8m8M5QZ3v+HwWF6b5644A9btFF4XbjM3lMCa4owMAF6eLoprl4dk8jo92iY4xMl3EpYkyu/25sQrOjVVExzg7VsXZsapom8sTJZwflR3nxPleUfuLYxVcGBGe1yj/tQKAkfESLg/LngcADI3Ipos+d6kLQ2P8cxsZL7HvLBPTszkMD/OPMTuTweg5+XUiWUhh+hhfpNJ9RSTfPyQ7RlcV6Rdf5B/j4MtASfZ64YkXkerhP//pg9NIMdeLMpHK0NhEATPCEtGhiRKmBNevoakixoXVBFNtjCeans9iQngcqXhMTOUxNiH7HJ+/LLsOnx2t4vKk7Dt/YaKCEeGYlnOTZVwS/HZdni7grOD3AQDOTpRxZpx/zTszXsGlKdl36+R4BUeEv3WnxitiuTk0VsWw4HN/YSaPC8L07eJMHkOCz/C56TyG25CIk1N5dhIDAIcn8jgwJnu9Tk/lcHqKf4wDYwVcYFZCEKem5PJ8fCKFM1PSbWTX4pMTCzg1uYyVWC06IkRzxnPgStGh8Xo7rhRdNG7iHRxLscVodHFRPa4UmWIjkSJ72xCXDdOWSBEAkRSdM0oVOFJktuFKkVnOx5GiceNuEVeKTEHhSpEpQlwpMvfNkaJhI6LmStGIcQyOFJkixJUiqQgBdRkiuFJ0cVEGzjEF56Jx/lwpIhniStHIePN5SKRodKz+vnCl6Nyl5vstkSJAUG5jfLc4UjRr/MhJpCgxSho4UpTua54/V4qSrub7zZGi9EFj3BFXip5o7pcjRdMHm7ciJVLUjgwRXCkampB11IeMzi1XikiGuOVMQOvdfq4UkQyZ380QE8ZvD1eKLo3Uv+vjzOdydrT5eZRKEQC2FJ2bbH5vOVJ02Th/rhSZ7ThSZLbhStFJYxuuFJ0yj8N8Xw4Zv10cKTJFiCtFF412HCky+1ESKTopvLF8eKLZnitFEhGy98uVIpKhiXlen/v4RKplGA1XikiGpplT1p2caIpQp6Ro2UI05zj3mBSRDBExKbroqWiISdGotcJ4TIpcQhOTIvvxmBRddsSOMSmyF2vlSNE5R922JCkC4lLkGtskSYqAuBS5xCQkRb5UKCZFrn2GpGjYUa8bk6IRxzFCUuQSoJgU2TLESYouOzpfMSm6aElATIouOs47JkW2BMWkyNXh4kgRyRARkyJThhrbRKTIPrfogGzHd0uSFAFxKUoWUi0y1Dh2QIpMGWrsJyJFpgw19hOQohYZImJS9MTS/YWkyJShRvtMEhWj5cgQEZMiW4ZiKdGQo1MbkyI7GeJIkav0KSZFdjIUk6IJx29OTIpIhoiYFJkyRMSk6MJEBRcmWo8TkyJThoiQFF12nHdMilyPh6TI9VhMik46tjky2hUUo1Ou40Tel0PCG3kuAYpJ0UVhkuTqR3GkyJahWEpkyhARkyJbhmJy5NpfTIrsZCgmRb6Zp2NSZCdDMSkyZYjohBQtS4hcMkT4pMiWIWJo1i1GPhkifFJkyxDhk6KQyPikyPd3375cMkT4pMiWISIkRa4vMeGTIt/ffVIUmujBJ0XjnlpinxSFhERaPgf4pSi0L+mUnz4pcskQ4ZKikPj4HguJj+8xlwwRPimyZahxXh7BcckQ4ZMin/z4/h7qaIWkyJYhwidFLhlqbON5XXzn5p2yN/Dd8knRrOeHzSdFLhFqOQdB+RzglyKXDBEuKXLKEOGTIocMhXDJkIlPijohQ4RPinzJkE+KXDJE+KTIVyYXkqLQOBCfFPnK5HzfB5cMEb7X0pYhwidFLhkifFJki5CJT4pcMkS4pMglQ4RPiqRldSFR8kmRS4ZiuGSocRzP8/TJkC8lComP7zGfDPlSolA/KiRFvmTIJ0UuGSJ8UuSTH9/fQ3LlkyJfmZxPimJrk7qk6PhE4i2T80mRS4aI5UpRx8YQubClyCdDJtJxRcBSKfLJEHF6OiMeV2TLTyw5sqUoJEOELUU+GSJcUhT6EhO2/MSSI1uKOLPe2VLkkyHCliKOiNgiwymNs9twxMo+F1c6ZGJLUUiGCMmYImCpFHHK5Ow2IRkibCnyyVDjvCzBCckQYUtRLAmyH+eU4rikyCdDhC1FIRlqbDMmO7clizoyvlu2FPlkqHEMS4piMtQ4F0uKXOlQy34tKQrJUGOfhhQFZYiwpSgiQ3ZKFJOhxnaWFHVShghbimJlcrYUhWSIsKUoNmbIJUWcQfG2FMXGDNnfi5AMEfZr6pMhwpaikAwRthSFZIiwpSgkQ85jMtI5W35iMmTLD6eUzpYijgzZKVFIhhrHsZ5vLBmypYhTGme3iSVDthRx+lEuKYqVydlSFJIhwpaZWBJkPy4dk3RqKhMdM2RLUUyGXHDGC9lSFJKhTtC2EIXSIROSIo4MESRFsXTIhKQoJkMmJEXcsT8kQdyxReMLafFkCyRFMRki2ploAWhKELeMjqRIMgU4SVFMhgiSIkkqQ0IjmTyB2kpSJjqnmAwRJEUcGSJIirhjhaidZMxQO+OLSIpiMtQ4r0XB4cgQQVLEHStE7bjjEoBWKYrJEEFSxJGhxjZjsnMjKeLIEEFSFJOhxjEWpYgrQwRJUUyGCJIijgy1DUkRMxkiKeLKUGO7RSlaCRkiSIq4Y4ZIijgyRJAUcSdQICmans+KZggjKeJOoEDfD44MEfTaxmSIICniyJANR4YIkiKuDFFKxJEhgiSImwyRBEkmWyApkiRDJEUcGWocZ/F5c8vkSIokkydQW26ZHEkRR4ZsTk7l2WOGSIo4MmQimTyB2nFliFIiyeQJJEUSGaKUSDJ5AkkRV4aWkxK1JUTfGx4Vtf/qGfk0sI9eEE5PAeCx8/IpIZ8ZkSVFj12Sr1nw/WHZMb4/LDvG6akCTk8VxF/kZ0dkMiWdfQ4Avs/84SKeGZbNYgMAzw53i7d5coixForFty/Jtnn8fJ/4GN85OyBq//VTG8THODtWZaVDJo+dlh2HO9GCyT+c2ihq/33hOQHA86cG8Pwp2Wv89AnZeQHAs2dkxzh8cZ34GMfPyrY5d0z+3QKAyUOdKZ/zkX7xRV46ZCIsk5t6WTiX6yKXTsvu9l9sY3bDM8Lvyqk2bmpIOquArBNtclooHi+fXy8+BleGiGfO94vaX54siWSIeFH4O/R8G79b37kge72+dkb23AHgsQvya9HfnJYf55vCGUq/e1n2XQTkY4a+c1n2uzg8mxVPngAAXzsv6+P9jzPyY/zNWdk2374g14FnHQt7x3j0vLwM7LtDI6L2Ukch2hKiR4b/dzw9IjvgMdfSsh5eGKnL0Eujcil6fohvh5cWE6gjzPSK2nHbA83kimvRl2bq7V4c40vUhdk0LsymcXYmg7PMO8bHJrMt/8/h1HQWhx0rifs4s7iw5EHh9KmnBBeYs4sSeEzYwQeAE4J07cB4/c7ZC2PMWcgWz+slwTTWBxcTlaPMO4AvLu77gHBa6iPjJRwQdFwOL3aODgo6Yicnyzgm6FSdWGx7dEzWaZdMA2veWT3J3O7EaL3TIimDoc7nCebrdXGxTEfSmaS7+GeHeJ0qWhzz/ElZh7XW3pJGwDf5awGlTp1F6tgpwb6/Lz8f+Ner8HHxRP19nGFWBJAMcRdQBpolWtPMVIUShUlBcjOymGpzk/eJxX0PTRcwJEgwRoTTK5+nz73kujLa1diOA10fJMs8HBmv4Ljw9+TM4m/JEHMWMvp9OCt4zY4tJsnHmLNUHlj8rTrA/M0CgJcFiTtxcLz+HJ4f5W8raQsAL43V+x1HJvif+5fHs3hpnN+e2h6d5H0XD4xlcGAsw1pE1OSFxb49NyU5Nl5v9+ww/zjPjVC/k3eMg6P1dsfH+RfJI2PyAOLIWF2GTk7wfeDpUZlrnJ2dwCPD/7toG2JZY4g4UnRyvPnEOVJEMkRwpejiVFOEOFJ0ySrHk0gOt709tklaZ8mRoguOlYNjUmRLEEeKTk0323Ck6Mx06z45UnR2urlfjhSdtRIxrhQdHG92bjlSRDJEcKWI4EjRQau8LCZFL1r75ErREeMH78BoNSpGhy2p4UjRSUMeOFJ0wmrDkaLj483z4EiRq8yEK0UER4rsO/ExKbpode44UmSP84hJ0ZT1PeFKkSlD498dZ23TAkOKUqfONv+dI0VtyNDkE827i1wpIhkiYlJkJ0McKbLHq8SkyC6v4kjRCLPEl5hw7JMjRaYM2Z9pF7bUcKTI/L5ypMi+LsSk6Mh4BUeM7y9Xis5YvyExKbIrOThSxJUgwpYgjhSZMsRNPUiGCI7omG1OM5YdIRkiOFL0siFCHCmy28Sk6IDVNzs1mWKJ0QuyoKMhQwRHikiGuJAMERwpMmVodJYnRiRDBEeKTBk6PRv/DTo7O8E6Fx/LnlQhJEWmDBHHxua8YmTLEBGTIlOGiJAU2TJEhCTH9ViovW/2u5AUUTpkEpIilwwR3KSICEnRqemljx2eyHnFyJYhIiRFpgw1jhu4KNsyRBybKAXFyJQhIiRFtgwRISlylS6GpMiWIYKbFBExKTriufvnkyJbhoiQFJ10SENIimwZIkJSZMoQEZKiUM19SIooHTIJSZGvLImbFBEhKZKsGQMslSEiJkWuZKjTUmTKUONvISlapgwRMSmyZYjgJkWN9gEpkq594xtrEpIilwyFUiKXDBEhKXIlQyEp8slMSIpc39OQFPmuBz4pOuL57sakyJahGL6y9pAUuWQoJEg++QlJkSsZCknRwfHCEhkiQlLkeiwkRbYMET4penk82yJDjf0EpEiSIgFLZcgkJEUuGQolOLYMESEpcslQ6Bi2DDW2CUiRKxmKSZEtQ4RPip4eHXUmQyEpWq4MAR2aZc4lRS4ZMpGU0AF+KXLJEPH80IKohA6Qi4/rsdj6SC4pcskQ4ZKikAwRLikKiY/rMZcMmUhK6AC3FLlkqHH8NupzAXda5JIhwiVFPhkiXFIUGsflkiKfDBEuKbLTIROfFPlkqLmdrNPukiKXDBEuKfLJEOGSIpcMEa5OEGcAsquz5ZIhwiVFsTEaLikKdRpdUhSSIVdK5JMh4vzJqlOMQmVynZIilww1HnNJUYdkiHBJ0cUTFa8MES4pCo0bcklRSIZcKVFs4L1LikLJkEuKQjJEuKQoVCbn+nzHkh2XFIVuWrj2JymjBfwyRPikKCRDrpQoNsbXJUUh8XE9FkuCXI+HyuRcUuQToRghUXJJkU+GfLhEqGV/QlFypUQhGSJcUhRKhlzC4pMhwiVFoWTIdQyfDPk4MlYLlsn5pMgnQz5iJXIuKeqEDAEdnHbblKKYDBGmFPnSIRNbikIyZGJKkS8dMjElh1Mad2Q8JS65M6UoJEOEZEyRiSlFnNI4s01MhghTinzpkIkpRSEZapzHVL5FjHzpkI0pRSEZIiRjighTijiTWphSFJMhwpSikAwRphQdGS9FZai5XbMz4kuHTEwpCskQIRlTRJhSFJIhwuwMSdbpMDtdIRkiTCniDlg3pYhTVmRKEScZ4o4nsjGliDNmaLlSFJKhRhtTijosQ4QpRTER8sGZRMGUIk4yZEoRdxYyU4o4ZXKmFHFkiDCliDNmyPycS8b+EJyyVnO/HBkyU6KYDBHHJ0otYsRJhkwp4k54ZEoRp0zObCMZK0RwxgyZUsSVIVN+nh8tsUrpTCniyJCZEsVkqLFfYSmdKUUcGXLBKZMzhSUmQzbPjaRYZXLmMTgyZKZE3PFCthRxZMhMibjjhUwp6pQMAUAqSaRDTes82PsB72PrM7Iv5qRw5O6+7vr+uUJEbCy394GWEFlgdwkVWVqLG7sWWOmQzYxwut0d5Xm2EBGlyCrvNtWMfFBeRj7dPeYS2UbbSjPRdMhmfU72WdzXPcEWImJa+B7m0219tZETblcUvo87qhPRdMgmnZKd067uMfHChQCQQPYaz9fkH8hSRvZZqeZlafqmdaPRdMhF/yaZ6FTvlc92ltotm7EvOX5BfAyODJlcOimXoUJhXjyj3IRgaQBANnECMVeT/TYUhJ9FAFhXnBFPoCC90m/uGheP8ZOIHQCMMyeysMmlZc9mVviebCrOiMcMSX8b9ndNiSdQkB6jXcY9C3/6mBf+zO2rzovL5GbamMl5SzkRjxmS9sZTbbwls8LnsiA8qe58/fMuTYYuL8gmUUsHfqvbnVShbSEC3FJ0IV3/Aduf2s7ax1PJ8wCAG5J97OOeQv0O42053jEA4NJsPRq6uZffSTo9MY/NAmN5aaQ+teuebt7F7NxkXQR3d/OPMTpbf7t2CX4rjozV/39zmf/tOTxWw74e/oX80OIdh1sFM3aenEzhxi7+t/PwRP0H7IYqfxu6q7O7yv8Re/Jy/XXaz5xl+9hiOnjXOr7YH5rI4oYqv/3zo/XPyO4K/7m/PJ7BLd2ymw2HF++67e/idcIPjtc7ebf28BcNOziex74q/2L50ni9c39jF/8YRycLuKlrkt0eAI5O1L+3Oyq84xxZbL+txD+vC4trUGwv86aBPr84bezuLv5dsNHZHLb1jLHbA80UY8u2YfY2tYUUul/Fl4LapfpzzvzADlb7he8dAwCkB/jX7PFHR5HO83/STh+pf8kLOdn35MRwN3oL/Pf9/FT9OVSyvO/VpcUERyLPlxaToe4s77mMLQpBf0HWcTk3XcBgkf/cjy0mONvK/A7PyckiNgu+V6cW18/pZb6PRybrr9VAXtY7PDuTwbYS/wbFicX1YDYW+Mc5OJ7FtjK//Quj9fdxV4X3G3d0ov67LvlNfG6kvs2eKv+79dxw/f9v6WVvgicu1XBjD19UXxypv057u/nbPD80j5vX8ftcB4brx9jZxT/GgZH6Z2SwzD/OC6P1a/yNXbxr6pHx+vdjdxf/5sSRsRlsKQvaT9R/Q7eX+fJ8YLKe8vRn+Nftl5L6tb6/xltK41T6KABgW23XksfalSGggyVzQFOGAOBAcly07cupl1jtSIYA4Jm543hmLn4ckiEAeH6Y10k6PTHf8v8xSIYA4NCobM2Lw6O8Y5AMAU3JkXB6kncxO7wYj740UsNLI/GL5iEjfn12iHcuJydl04uTDAH1jr6Uw+O8jzrJEAAcYNzdOWaUSj45xLv4HVqUDm7MTzIEtL4OIeg1em40i+dGuaWPzXYHGCULJEMAf02rg4tyQ5ITw2z3InORuaOT9XYvMBeSBZoyBADHhNPEc0stLxirlB9n3AE+b6yhcZiZJo4uLi54YoR/x8Qs6Tp1ope1TW3xbvHot3miRjIEAAuPH4u2JxkCgNoF3jV7/NH6D3Ftlnfjh2QIkE2VfWJx/Zhh5jTWJEMAMDEf/15dMvY7tcD7vl8SziY3ZqQjkrVazi0mQ2eYCdExo5ztBLNk7uTid4O76PgpY5HaYcb7SDIEABdmea+vuaTFCebimGa7c8xJjg4u/iacYE79TDIEAEcm4r9xR4023N9EkiEJJEP2v4d44lK9r0GSE8Nsd3A0vs3zQ/N4fmi+8e8cSIYkkAwBwJlJ3nFIhriQDAHA4THmDbzFdqcmuTf8mtfd45PxmxkHJkcbMgQAFxd4122SIS4kQwBwIn1EtG2MjgqRTUyKKB0iYlJkypAJR4pMYlJkS9DpiXm2GBExKTpnfVFiUmTKEMGRIrtNTIoOO2pFOVJkEpOik9agw5gUuSSAI0V2zW/sB8CUocY+hJF3TIoOWbPjxKToeYfMxKTI9drEpOiwY9YejhSZxKTooCVBMSlyPR6TIpIhgiNFpgwRMSk6Ym0TkyJThjicd3RSY1JEMtQ4p4gUzcxlnSIQk6KaVToTkyJThoiQFJky1NhHRIpIhhrtI1JkyhDhez1MTliLacakyJQhgiNFJjEpsmVoNFI6NuYoFeNI0TlLgmJSdMwhQDEpOmndKIhJkSlDHEwZImJS5JqcKCZFrsdjUnTQ+i2ISZEpQxyOOoQp9ptoy9AhxlhplwDFpIhkiIhJEVeaCJcAxaTIlqGjY/FjmjJExKTIlqEXx8LXU1OGOBwZm2nIEBGTIlOGOJgiZBKTIluGLqbPB9ubMrQSdEyIzHTIxCdFtgwRL6deYqdFJj4pMtMhE58UhcTH95iZDpn4pMiWIeLw6Dw7LSJCUuR7zCdFLhkifFJ0yDM4zydFtgwRL45lxBNHhKTINwDS9wPgkqHGvjxSdMzz4+CTIluGCN9UoSF8UhR6TXxS5JIhwidFZjpk4pMiW4YIblJk4pMiW4aIkBS5ZIjwSZEtQ4RPinwyxEmJbHxSZMtQ45w8UhTr+PukyJahxvE9UuSSoXbxSZEtQ432HilyyZCJ77WxZYjwSZFLhmJc8uzLJ0W+ZMgnRS4ZIkJSZMsQ4ZMilwzFsGWI8EmRT4Z8KZFLhgifFIWWr/BJETdBIg6OZ5fIUGNfHinyyZAvJXLJEOH7TfQlQyEp4qZBxBOXaktkiPBJj+/vvpQoJD6+x3zJkE+KDozMOWUoxAujE95kyCdFPhnypUS2CJn4pMgnQ76UyCdDIV5KjnmTIZ8U+WSokynRsoSIavV8MkRIy+eApWmRLx0ysaXIJ0MEt3zOxJYinwwRthT5ZMjEliJXOmRyZGyp/MTSI275nIktRT4ZImwp8smQiS1F0jSEVo8OwS0VaNmvJUU+GSJsKfLJkIktRa50yMR+bTipGbd8zsSWIp8MEbYU+WSIeGk8v0SMYqJkS5FPhgiXFIVkiLClyCdDhC1FsWTIJUWudMjEliKfDDXOyZIibnmYLUU+GWqchyVFMRlypUSudKhln5YU+WSo0d6SopgMEfZr5JMhwpaimAy5UiKfDBG2FMXK5GwpCskQ4ZIinwwRthTFZMhOiU5OFr0yRNhSFEuGbCkKyZAPzlp+tvzEZMhOiXwi1LJPS4piyZAtRSEZ8hErkzs0nloiRjEZsh/3iZCJLT+xZMiWIm5pnEmsTM6WIo4I2SkRp0TOlqJYMmRLUUiGfMSSIVuKODJkp0TSEjkgngyRFC1n/BDQgYQoJkPEgeR4Q4x86ZANSRFHhoh2yudIjLhlcdQuJkOEdEwR0JSimAyZkARxxxednkwaYhRKh0xIimIyRHDHFJmQFEnHy0imxTSlKJQOmZAUxWSosV/mmCITkqKYDBH0GknGVT3XMiaJdxySopgMESRFMRkyeUk4voikKCZDhGRMkQlJUUyGCJIibpmcKUUxGSJIimIy1DgnwZgiE5KimAwRJEXcZMiUopgMESRFMRlqtF+UIq4M2cRkiCAp4iZDphTFZIggKeKOGSIp4siQzbnpQlSGCJIibjJEUhQTIROSIm6ZHEkRV4bMlEiysDlJEDcZIiniyJANt0yOpIgrQ+bvoWTMEEkRNxmidhwZsuGWyZEUcWWI2h0YXmCPGSIpkqRCJEXS8UIAv0yOpIgrQ5QSHZmY7FiZnAuSIq4MUUp0Kn2UXSbXiaRoWbPMAcCt698tan9u/gX0ZLex21+eO4Kt2Tukp4XNiWx613Opy9if3STaZnxedvfhaOoUbs3wZlgCgMmFBWyvtLcwqYQXxsaxq8yfLerFyWHcUhFMJwegtyCbH/LY2Dxu6JH9YNTa+CT/w+Up7Knyf5RfHJvAnb2y6Ya7hW/hC8MLollzDo8uYIdgBhyiJNzkyFgNe7tl91CKwqnYT06msLXM3+bMVAq7BDMfESXh1LknpzLYXOJvc3Y6jZ1l2fVBOn358FwWe6uyH7ENgpm+iOn5LHZtv8RuPzWWw8ArhB0e4a25i0+kUe7hz4525GgfSjlZSQsAnBdO3X5hpoAe4Yx10wuyJ39xJodylv/6Ds1msD4vO6cF4VIFAHBsMofBIn9sx8mpDLaVZOclnRb/+GQGXTnZ9UG6dAYAnJ1KYVNJcPNyPIV+4bJ348Kw44XhGdzcyz/Is0PT7BlyTaaF814/OXEeNxb7xceR8OL0RezO9bHbH50bwp78etExZmpyqXum9jK21fizIx9MP49bkttFx5B+c4+mTmFzTdb3nYL8Wno09Ry6U7xZ5ADg6OSjGCzfKTrGwcv/VXhWrSw7ITo3/wLOzb/AbgsAI/MnRMc4Ob90pfMQQziN51JP4rnUk6LtDszzk6iX58/jDC6z2x9N1RcafHZBFhcen5BNiXp8Yla0zQtj9bVHjkzK7lo8N8GPfo5PTuPpoSk8PcTrjB0bq1/5Xx7h/wIcGJ4XtQfqMgQAh8ZlCd73h/nrtRwZm8NTl/gXjxcW71BxZs0xOcYY8Nl6Xgt4XjCDDi3MdnCU/yNwcjLBQcFsiFRSySmtBOoyBPAWTyZOTaZwajKFg4JE7eRUve3pKdnl8ihjIWTi7EwGRyf5Yw/o7jdnwWFiZC6Hl0dki7dOC9d2mVpMEi98j/9aTR6ax+TL/O/uxSfq+54ckd1pmBKuA3RwuAejgm0uLKY8I4IZ6y7O5ETr4VwUTs4xtJh6XJ7ln9O5mRwuCtoDdRkCgDPTvOdC36kTU/zjnJ7OsvcP1GUIAMbm+NeH4xP164OEs1Oy9nS9uiioaHp5dAFnJgVTcQ/LyqWeHar/BkqrWR4fuYRnJvj9oCcn6nf+X5y+yGr//ZnjjX+4cPdNHJ2r92UOzfKfxzNzx/HSwknRcZ6pvSxqfzBdr6R6LvU0e5sTOIPjOMNuT/1SLi+ln8NL6edwIi0b53809Zys/eSjAIAzk99ntR+ZPyH2ChfLL5kb/S4AsKWI4Jz85blmBCaVIoIjRedSzS8CR4penm8O+jqDyyIxAnhSNLnQvPhxBcdsJxUjgCdFL04ON/6dI0XHJ1svsFwpIjiSc2C42eblEZ4YkQwRHCkya3o5UnRkrClCHCl6wRIUjhQdNtpwpeiI0e75YZkY1c8rLkUnjTFqHCmyJYgrRQRHiuyODkeKqONGcKTo7HSzDUeKzPIcjhTZ4yM4UjRidOy5UmTK0JHj8butU9ZYM44UTR5qflc5UkQy1NiGIUVHjjbPnStFB4eb5XUcKbpglbxxpMiUG44Ume0n5+Ov7ZA1UQBHis4Zx7g4m2WJ0TGByANLv1McKTptLBLOkaLjzGmrG+0nUjg+0bw+cKXIlCGOGNnXKY4UvWxc4zlSZMrQ8wwxIhkiOFL0+MglPD7STI05UkQyxMWWII4UmTJ0eC6eapMMcbGXeuFKkSlDJ9Lx50EyxOUEzuCEIUIcKTJl6HQ63u99KS2TmuZxmtuNJvHPAMkQF3IJcpHl0NFpt0NS5HosJEWmDBEn55+KitEQTi/5W0iKTBkiJEkREZIil4WHpMiUIUIqN5ztKB0yCUmRKUOEJCkiQlJE6ZBJSHBMGbK3kSZGISlyzfoSkiJThoinLsnSIiAsRYcdj8Wk6Ijn8ZAUHXGMLwtJ0UnHhB0hKfLJT0iKzjg6HyEp8nVwQlJkd9yIkBSZMkSEpMg1VkGSFBEhKRpxdOhjUuRKhjhSZBOSIlOGGn8LSJEtQxxMGSJiUmTKEBGSIluGOLiSnpAUudqHpMiWISIkRec86VNIilwyFBIW33cqJEWmDHGO4ZKhUEpkipBJTIpcAhSSIkmSDdRF6GXHNT4kRa5kKCRFtgzFsEXIJCRFLhkKJTmSRCi0v5AUuWQolBJJx6c3tnMkQyEpcslQKCU6IUiECFefNCRFLhmKpURHU885k6GQFLlkKJQSdSIVMun4OkTtJEXtlNC5xMglQ0Q75XMuMTLTIRuXFIUiyXbK51yCE0uDXI+5ZIhop3zOJUZ2OmTikiKXDBFSuQltZ6dDJi4pCq0LICmfI1xSZKdDJi4pcskQIS2fI1xS5JKh5nktfcwlQ432bSwm7JIilwwRrk5HrGMjKZ8jXFLkkiHCJUWhgds+KQotPOmSIpcMES+PdDvFKFQm55MiOx0ycUmRS4YajzmkKCRDvpTIJUOES4oODvc4ZYhwSVFIhnwpUajszSVFofYuKfLJUAifDDXOwSFFoWTIJSw+GQrhkqHQMULJkEuKfDIUIyQ+rsdCMuRKiVwiFCNUJueSopAMuVIinwjFCCVDLokJyZDrsRenL7ZdJufCJUUhGfKlRM/UXm67TM6FS4pCMuRKiY6mTrVVJufDJUU+EQpxdPLRtpOhTtIRIbKjKluKOJJkPjlXOuRCWkZnS5ErHbIxpSgkQ8Ryy+dc6ZCNXRrHYbnlc650yMaUopAMEaYUhWSIsOXGlw6FtgvJEGFKUWyRNGCpFLnSIRtTikIyRJhSFJIhwiVFvnTIxJSikAw1z6vZJiRDjfaWFHFK48w2IRkizM4Ht/TFliJO582UopAMEaYUcWaxsqUoJEOEKUUhGTIxpYgzZsiWopAMEaYUhWSo0caQIk4yZEtRSIYIU4pCImRiShEnGbKliDMGyJQiTntTijgyZKdEMRlqnIuxHadMzhQWzvfJTolCMuQ6BqdMzpQijgy5rh+c0jizDScZMqWII0N2SsQZM2RKEScZMqWIK0N2SsQpkzNlhpMMmW04ImSnRO2UycV4aeFkixhxRMhOidopk4thShFHhOyUSFomxxUhMyXiiJCdEtky1IlyOaADs8wRA933dmI36MluYwsRsTV7RzAdctEP/mxvALA/u4klRMQg1otNfDe2itq3w/ZKPpgOuZgRzijSlZItynf7uhJLiEzamVFubEH2PPZUiywhIu7srbJkyCSfkd2T2NudYQkRQbPPcWTIpJSR3Tnd251mCVGjfZd8nJDwlLCrmogHSO+tLojvZKeF57WzPC+a1ndneY4lQyYDBfksQNsqshnrdm2/xJIhk0qv7MaMdOKEcs8sS4ZMTglnkgOAmZrse9uTmxdNiFDNLognUJipyT6I6/PzbBki+vPz4jFD0lnbtpXmWTJEDBYXxGOGhoQV6FsWZ76UTKCwqZSIy+SGZmTX6cFyRjSBws29BXGZ3OVEPk30PGS/5zcW+8VlcsVE9r1NC+//78mvb6tMbiYlGyc9A1l/7JbkdlGZ3HYMivui45Clgdtq+8SpUHdqgzgVKufd1/ZOCVHHS+ZsRqZkH6gT498WH+PAxFdwfuIZ0TYvTz8iav93M18Wtf/2wv/AmXnZB+R5vChqf7kmv1A9MnFQ1P45PIaD+J5omxdSsvfir4cPido/P38CLy7I49LDKZlof35c9mX9y9Fn8UxyQLTNwTnZQNOvXRwWtf/2pVF8+9Iozs7KPisvT8lWn/7medmPwGPnZT/8pyfmcUI47+xjF+TToj5+WXZJPDOV4JRwkePvD8vk5ntDMim4PJvGgTH5uJYXhWsV/cPLm0XtL41UcPwYf7r+Uyd6MTQq6/Q8eWBQ1P7lUfn6TOdnchiZk3XAuWtYEdy1tYjLc2lMMNeKIp4flS/p8PhlmQwdHktwbFz2/Xjskuy1/YchWftzwmUBL03X8PTlBE9flj2PJy7Krj8HRmQ3JL43exhfGJaVZP234WdF7b9bk/WTAOCZ2S/jhdm/FW3z2eFPidofnX1M1P44nsZRfF+0zZen/1rUHgCOzco65kfHvyFqf3nmEL45+znRNk8k3xS1Pzz5dVH7oZkjeHruK6JtAOD5oc+I2k/NysdKSVlxIVIURVEURVEURVmtdEyIXJEVpUPclGh0ul6DOTFzFhMz8pneuCnR0PRhAPyU6OTC9wEAxxf+QXxO3JRoejE25aZElA5JUqJDqL8PZ9NncZYxzaIJNyU6ma4nUNyU6ESqXur47MIx8SQTkpToqVp98B83JXoW9ff6QEo+3Ts3JTpeq9c/c1Oik7P1ATjHZ3mzE5y2UiFuSkTH4aZEZ6YXV7tmrud0caqeDp2UrjQIsFOic4vHODHBT6KGZut3gM9M8e4Em+24KdHwYqkOt/Tm0ky93aFx3qX68myznSQlmlgct8JNiYYWx8+8cHaA1f7SCH/h5yXHYqZEB87WyymGZ3jJB6VDkwv8hOG8UWLGTYlozM4Yc70hGqszzlyw9fJcsx03JaIxb/T54kDlX+eZCcvhMXldM32Pjk9wv4P1/+eu6UPp0CwzvLk03drw/BRvw5OL151L07zrD6VD56d5T+R7s4dZ7UxeRD1NeinFqxKhdOhgwk89npmVVdI8O/3XeHYxiTk4xeuPUTr04txXWe2Pg7+ODwC8XPs2Xq7VK5VOLfD6Mcdmv9tIh87O8LahdOjMOK9feXlGVkkDAOeT+nt9scb7vFA6dH6SlyQOzciqbgDg5PBXcXK4/t5NMsskKR26NL70vDpVLgdcwYRoZOq4uHyOI0V2m5gUkQwR0tK54wv/EBWjowtPtPx3TIqmrRrSdkrn6B8JMSl6Dq2xdEyKSIYIaekcEJ9573lrMB1HikiGiJgUkQwRB1JPRcXoePpoy3/HpIhkiIhJ0UlLgrhSZBOTIvs4MSk6Y/2Ax6SIZKhxvPH5qBidnmh9PCZF56xjcKSIZIjgSpFJTIqGrXELMSmyO6sxKTJliOBI0YTVUY9J0ZA1mUBMimwZ4pTNnTrR23rMiBSRDBExKbJL5ThSdN4x3iYmRfYEBjEpsmdzi0mRKUNc7AlAOFJkj4WJSZEtQ7GyuVOTS0tPY1J0xqrSjUmRXSoXkyJbhrictK43MSmyS+ViUmTLEN3o9PEiXm7IEBGTIrtUjiNFtgzFyuaebaMkzS6Vi0mRLUOxsjkSIS6mCEmwS+ViUmTLUKxk8HxysCFDXOxSuZgU2TI0Ohtfk4lEiMvU7JkrUipHrJgQ+eTH93dKh2xCUuR7rJ3xRD4xonTIxidFtgwRnRxPFBIf32O+i6ZPimwZItoZT+QTI0qHbHxSZMsQcSXGEwH+tMiWIcInRbYMEdLxRCEpstMhE58U2TJE+KTIliGCmxS1HNsjObYMET4psmWo0V6QFBEhKfI95pMiW4YInxT5OqncpIjDxHxmiQwRPimyZYjwSZEvGQpJkS1DjWN7pMiWIcInRb5xQ5MLGVFaFMO35o9Pinzr/fikyCdDoZSIMxuijW9iAJ8U+ZIhnxRJx+ABS2WI8EmRb9yQT4pCMhRKiWwZiuEbN+STIl8y5Pt9t0WIQ7vjhlz4pMgnQ76U6OjsY22NG3LuyyNFPhnypUQhEQqlRO2MG3Lux/N6+ETIlxIdnvx6W+OGXISkyCdDvpTIJ0KulKhTdFSIKLqKJUErkRTZnJ94ZokY2emQjS1FPhkipCV0Limy0yGT5/HiEjHipEB2m9gdpE6Uz9npkI0tRT4ZIjpVPmenQyaHU0eWiJGdDtnYUuSTIaITkyz4RAWoS5EtRiEZImwpCh0DkE+y4JIiOx2ysaXIJ0OELUU+GWq093RW7HTIxCU+sfTI7uD5ZIiwpSh2x94lRa50iHClRD4RMrGlyCdDBLd8jnBJkU+GfPhkiLCliDOJgkuKXOkQ4UqJQgugAkulKLT4KbBUimLJkEuKQjLk+swdGU9FZ0mzpShWJmdLUUyGXCmRT4Z8xCZRsKWIkwzZUnRyYiEoQ66UqJ1JFELYv/MxGbJTou/WHgnKkC8laqdMLoQtRTERcqVE7ZTJhbCliJMK2VJ0dPwbQRlypUTSMrlYKmRLUUyE7JRoaOZI22VyEmKpEElRJ8vlgKs4qYIpRb50yMQcVyQZY7TSs8+ZUuRLh0zOzD/XEKOQDJlIS+gA+Qx0phT50iGTg/heQ4xiMkRIS+hMKfKlQya2FIVkyISkKCZDhHRckSlFvnTIxJSimKg09rvYjiNDxHJmnvOlQyamFMVkiCApiskQIZ157sTEQosYhWSIMAWIW0pHHb2YDBGS6XyBVikKyRBhShFHhgiSopgMEaYUccYNmVLEkSEzJYrJEEFSJJlRzpSikAwRphTFZMgmJkMESRG3TM6UIk4yZEqRdLpogD9miKSImwyZUsSRITMlamdGOS4kRdxUyJQijgyZKZF0zBA3GSIp4qZCthRxZMhMiaRlctxUiKToOJ5myZCZErVTJieFmwqRFF2eOcSSIfP1WW6JXAyuCI3OnmwkReZ4oRBmSnQlS+RsOrYOEZHPbZKfRGrlvSyXkQ3qLeX408MSNchqjtdlZWshbaptE7UHgKG0bD75l8a+gr7KftE2xTRvUUOiCtk6IelE/vk4OPUItpV/ULTNZCJbsK2Ukj3vnkT2vC+kTmBbbZ9om2wb9zjmhZ/bako2JXBXRjZVLyBf2ycvXaQIQDW38tedSlZ2XtJTWiecOXlrST6Rxdh8Gnursp7lhpLs7ncmLfsZOj8pW+vs4HgZPTl52eT4vOwNWUhk77d07SDuZAAm5mKkHEblS1hhfE72/mXb+OrlhBcF6fpHY228uLPCBfEOzJ5HXyL73TiRlq0hMwf+ukQAMCwsOb8w+jiqpT2ibQBgoSY7r2xG9h0v5/pF7Ycnj6BSlPVX5xeE8SSAaeFCsIWc7PMhfd4AMDote8+l/WcAGJ3k3ZAmUil5P6FWk/3OxOh4j2B27izm5uN3wYm5+YuYFYydmJ073/hHwsS0LOa7OPYPuDjGL4m7PPEihif4H4CJ6bM4Of4ddvuR+RM4UJOtiwMAp+eewek5WTJzaYJf5nVh7CmcGOHXxJ6beBqHJmQp3KEpWc0tcWKSX3N8ZuYpjMzySzkvTx3EqUn+eKrzsy/g5bm/Z7cnTqT5n6nz6dM4nY6nrSan0sdxTrDN5fQFHE/JjnF8fgjH5/k/CufmJ3Bmjp9enZwbxeHpEdE5XZiZFY11ujy9gMvMGaOIkZkaTgvGFJybCpfd2AzNJKKZvMbngRfHZOkFcXCcv47Ouek8nhnqZbc/MV7FUUF689JwD4Zn+SZ4cFy+8CoAHJ/MstI34sJMRtg+jVGBrFyaSYnl5vx0CsxwFgBwciLBKCM1NTk2Ns+eTQ2oJyXnJiWf8xqGZmSycmm6hmHBNqcm5jA6J/t+H5uawJkZfofswKyszwIA36t9Fefn+b/HL419BUfGvsZuf3D4i7g4xu8fXBh9nN3WZHxKVvo1NXMSY5P88U/jk0dwfoR/bsOTsv7g0PiLGBqXV+qMTr6E2bkL7Pazc+dlz3vqBM6PPsluf27k2zg3IkvEpmZkv/ejkwcwOnkAgOQ6kiBJ+KslJ8lsx2UIWMGSOYkUARALDm3D2Y7aTEwfYYmR2YYjRZcnml8UiRQBEEkRAByoPcoWo+cWvtb4d44UvTTWXFyLI0UXxpqlYxIpAsCWoiOTdYk4NPUNlhgdnHqkpQaZI0VnZprPQyJFAERSBAAvz/09S4wupJp3cDhSdD7dHJPFlaJT6eZzlUgRALYUDSXNslCOFJ2bb4oQR4pOzjXL+DhSdGFmFhdmmhde6QQQXCkaMTpjHCkyxz9xpGhopvljw5Eis7JQIkVjwoTk3HRTVDhSdGK82vh3jhS9NNy8eyqRIoA/TTZQlyGCIzkXZsySOU77ZhuOFJnlbFwpOj8tk6eTRmkaV4qOjTU/WBwpMttwpMgUofNMs5PODndqohmJcaXo2JRxnWJIkSlDl1Lx69T3al/F92qycRfm7zeHg8NfbPw7R4pMGRqfOsSSHLMdt2Mt7YCPG3LDkSJThiam40MvTBEam+KNbR6dfEmckEj7wONTzT4CR4pMEeK8xlMzJxvt6oITpilCUmQ3YCTiJGVFhChJ6hfJmBTZj8cEx/eYdJt20iIJMSmyv4Qnx78TFKMRx/iZmBSZMkSsZFIExKXo3ERrbe+hiUeCYkQy1LJNQIp8M9RIkiIgLkWXp1prdWNSdH72hSV/C0mRKUNESIpMGSKkSREQl6LL6dY7XTEpMmWosU1AikwZIkJSZMoQIU2KgLgU2RIUk6IRx53pkBS5JoMISZEpQ4R0zReOFNkyFEuJTBkiQlJkyhARkiJThoiYFNnpEEeKTBniYMoQEZIiU4aIkBS5JjyISZEtQzGXOMlc98fElCEiJEWux0JS5EqFYlJky1AsJTJliIspQ0RIilzJUEiKXCIUS4lsGYqlRKYMcfAlQyEpcj0W6oibHXAilpaMC5OedpIhm5gUuUQolBK5+r3R5z0lK3nrRCoUkh3/Y6HrSrLk8Zjs0OPkGJ1mxYvo5+YvXrG0SIJPinx/95XQmemQyfDES1ckLZLikyLf3SWfFJnpkMmJkW84xciWIZMrUULnkyIzHTLxSZEtQ8Spye85xcglQ4S0hE5SPgeEpchMh0x8UmTLEHE8ddIpRi4ZamzjkCKXDBGS8jnAL0VmMmTjkyKf/Pj+7pIhwiVFoZnxpFP4+qTIN+/Ei2NZrxj5kiGfFLlkiHBJkUuGCJcUuWSI8EmRr1TOJ0XHJ7NeGfIJjkuGQrhkiHBJUWjGQZ8U+ZIh30fNJ0Ojs/7yOZcMhQiJkkuKQiVyLim6NF3zJkM+KfLJUCglcslQCGmZXCgVcknRS2Nf8f52+6TIJ0O+lKidMrl2SuR8uORgfPKIV4Z8KZFPhnwpUbslchLaSYV8MuRKiUIlcr7XvJ0SOTnyVGglkyFixYTINjhbimKSZH9QuKVxZrvYNtwSOpPlpkWxiNaWIlc6ZOKSIlc6ZGKPK4pF7ZcmDnQ8LbKxpciVDrW0t6SIs8q1LUU+GSJGZo+3iJFPhkzaKaEzcaVDJrYUudIhk9Ppk0vEyCdDhC1FPhkyaWdckQRbilzpkIktRSEZImwpiiVB9uMhGSIkY4qApVLkSodMbCniTMJnS1GsTM6WopAMuQjJECEZUwQslaLYuCFbijipkC1FMRla2l72c8tZMNWWoliZnO0SnGTIlqKYDNnyIxlfBIRlyH28eHtbimLJkC1Fx6YmojJkp0QxGbJTopUokTOl6ODwF6PJkC1FHBmy5ScmQ3aHezklchyGJ49EkyGzX8YZL2SnRJwSOTslivVPbRG8EqlQ7L0w5YdfImdfY8LXHFt8lv73yqRDwBWedluaFrUzeQJtJ4GkiCtHJEW+dMiGpIhTrwq0P65Imhi1W0LnS4dsSIpC6ZAJSVFMhhrt20yKOl1CZ0NSFEqHTEiKYjJEkBTFZMiEpCgmQ8S59Mm2xxWF0qGW9otSFEqHTEiKYjJEkBRxZIggKeKOFZJOtAA0pSi2bhJBUhSTIYKkSDIjOUkRd8wQSRFXhigl4sgQQVIUSodMSIq4kyiQFElK5EhyuMlQsz3vdaWUiCNDNtwxQ/Sxk5TJkRRxkyGSIK4MUUrElSFKidoZL8QtkyMpkqRCJEXcZIikiCtDlBItZ7wQhwujj69oMkQdb64MkRxwZYhSok6UyIVoZ6wQwO+jNp43U4YoJeLKkPR9INpPhfjXnCuVCpl0fNrtJQdItTer0VognZbNXlSrTaIgmJZ8Zu4s+rvuFh3j4tiT6K3ewm4/PP4sstn17Pbz85fFzzuf7RW1TwunX5ycOYZSYatom6mZk+gq38BuPzZ5EOXCdtE59VRuErS/gM1d97DbA0AB/M4lkQin2B6aP4oNWf407JdrJ7ADt7Hbn0sfw/Ya/304nn4ZW2q72e3Ppk/ghkQ2dTkA9GRln8FMStaBPTs7iS1F/vfo/PQMdlX509Beml7ATetk197hWeCWHsHMXFNp3Nglu1vXm5O1n63J7tm9MJbHQIH/HA6Np9FfEE75PZ1Cn2Dm+aFZoFvwcRqaBarCn03JTHIAcGla/rN/cnIGlQz/xCYW5kXtJxfm0Zvnv1DjcwvoyfP3f2lmFsWMrMRxaF64kBGA0RTvhhDx3NSXUMlvYLe/OPYP4t/sVIo/S2SSyJ/zlSAF2Zciwby4vyV/naQ3LuTfO8k5Aav3/esEK5kOAVdxYdZrgVptkj31H7WbmeOlRIS0RA8AhsefE7Wfn78sai+Z7rBWm8T07GlMz/LSjOnZ05icOYbJGd5sLtROcoeD2kqmt6wfS5YUjUzwEiLi9Fh8YV9iePYYzs3K3ucLcy/h4txBXJzjLeA2NH8UQHxAL3G5Vr+LdQy85PFcuv7eHU/L3odTadkihS+nZHfwxpIpdgoFABfnpnFulr8+xdnZ+vfn1DTve0QLNB4Z5x2D7sq/MMT/8aAFZJ8bkf0kSGasOz2dwfNjfJM4PFHAySl+B/mFMVnpHi1ue1GQxlAKc4m5pMrQ4uvKXduH2kvSvZFZYFYgRGcna5gTrp9zclK2hszEgqzjMrnYfniW90KNL6Y3I7PMxGoxJZ5eYKay88M4OT+MCcg6l8/jcZxM+Nf956a+JNq/tD8g/W1fzZ3pBPzPlKQtIO+Xtfc6tZc9cI+VJNOr+v1bC6gQdQDpfOicL5/ZhnsRvDjWHFTHkaLh8Wcb/z4/fzl68TQf58ig/ThXigiuFBHS2BfgSdHYZFMgOFJknjdHiiZnmrXFHCkanm3u/9zscywxujDXKgUxKSIZIiRrYQB8KSI4UmS24UjR2XSzzIArRWNJUzo4UnRxrvkDxJEikiEiJkXmavVAXIrsEiWJFBEcKTo11WzDkaLT08078xwpOjzRbMORIlOGOOVpJEMS7JK0mBQNWdUeMSmy23OkaMTYhiNFZyeb6RlXikwZ4oiO2YbTflIoT+PC9YIuWSWzMSk6OT/c8t8cKXoej+N5NEvMOFJkytAEo8TO7AdwRMdsw+kor4XOdEx0Esy3tIn1tWbmzra0kb9OXMlZ0UKsNfHerQVWXIhWOuJaLYTkwPWY/UWMIV0oFqhL0WpKi4CwFLkeC0mR67HYwEDXYyEpMmWoeVy/FLnOKSRFpgwRp8eeEKVFAMRpERCXIpuQFFE6ZBKSIkqHTEJS5HosJEWmDBExKTJliAhJkSlDREiKbBkiuEkRwU2KiJgUDTvKtENSZMoQEZIiU4aIkBSZMkSEpMiVDIWkyCVDsZRIuqaPLTfttg9J0Yhjm5AUmTJEhKTo5P+/vTuPkqOs9/j/qZ6ZzGQPJBCIkEgksgheQBavkgCymigBoriBeBRFjyQRF1BAw0X5KXoAo/fghcMNXC8IeOH3A5QgNxBCjEoUSeSyRSB7SCaZJDOZfev6/TGp7urqWp5npmeml/frHHRS9dTSy/TUp7/P81RbZ2hlKC7khK2Lax8WhuKqRGFhKK5KFAxDSYJhyIQ/CJl4tf2p0MpQXCgK+9sf97c6bF3cRXM5XFAPRVXI/nmyGzcTd+z+rCsnQ5ElBn0MUeZAZTyWKCg4xiYpNAT7uSb9ogbHFfkrQ1GC44r81aEwwT7KSUHJ9jHXjZiS8++k6tGo2ml5y5IqSGHjiuLCUtiYorBAlHteueOKks4pOK4oLBD5BccV+atDYSaPyH2dg5WhMJNqjsz5d7A6FBQcUxQWhvyCY4rCwpBfcExRUvUoOKYoLAwFBccVhYUhv8NqxuUtCwtEnskj8sf7RAUiT3BMUbA6FBQcU5Q0gD04pigsCAUFxxSFhSG/4JiisDDkd+zY3McYFob8DhuZe7Gc1E0uOJ7IpDIUHFOUFIaC44mSwlBwPFFS+7DxRGFhyDMi5CkPC0N+Nancx2jSRS44PiipGhRsn1QZCo4nSqoMBccTJYWh4HgikzA0WrnjOZLC0GFO7ud9Uhe54FiipC9Bbf9Oh41HKcUL6uB4oqQwZHuNFXyekp+jsM+Iwl5a259T+Riqwgpd5gbBYHSh8yv1cUWSrMYVScobV2TSnS5YLUrqUtfc9mZOtSgpDPWdx2bfz8nn5K8WJYUhKbcLXVIYknIrRSZhSMqtFCWFISm3UpQUhqTB6T7nZzumSLIfVxSsFMWFISm/UpQUhoKSwpCUWykymc3LXykyCUNSbqUoKQxJuZWipDAk5VaKksKQlFspMhkz5K8UmXaT81eLTCpD/q5zJpUh0/FEnmCVKC4MSflVoqQwFGQ7Xkjq/5ghUybd5PyVIpPKkL/rnGllyN99zqQy5O86ZzJeyF8lMvk77/87bfI3238RXS5jTsppvJDx3svgdStGQ1YhkiqrSiT1VU1sg4I9++lZB/uXtRyMHTXDKBB5RtVOtRrzNH70MUaByDNl7MlGgcgzecT7jAORZ1LNkUaByHNw9VFGgcgzTccnVof8pqZnWIWjd6WnG1WH/Ga4702sDvkdVjMuMQz5TR4x0ioMvatulFEY8htXbTeZwKGj7T+HJ9gdQuNq7D5j6iy/mmvusfvcsw0hkmQ574BSlh/F42rsutaNqU4OQ34jquzCUE3KsQ5Do6uqrcLQ6KpqqzA0YUSN1Zih8SOqrbrJ1VVVWXeTG606q25yhznHWE2eMHrEwVZfelZXH2j1Babj1HFBXaIq8bUbymE3BKKyMPhTP1Ymm+fV/jmtqZ5k3La7p8FqGu/Wju0aO9J8mnBJam7frAmjzKe0bmzfqEmjj7Vov16HjD7BuH1DxzpNqjOf8ruhY50m1x1n3F6SWtI7daQ+YNx+b2q3Dk0fatx+e2q7DkmbT/26JbVJ0y2mFd/tNOmIqoOM27f19ug94+ymcW3YP6fzkePNpize3tb3u3CU2e2DtK2t7/fsPWPMfoc2tPS1n2T4MLz7Mk2qs/uc3N3h6oBa8232dLpWx9jd4WqCxf6bu12NqjJv39iVtgp1W9vbVePYTUvd5nZplGOelnvdtKod8/TbK1e1FufUlO7QaIvz2ehs05h0fnfYOG/0rNDI6onG7Xc0rbK6LUR/JgcCytVQBqIh7TJXKRMsDD2bgXuEIXOD+5ya3qTYa2c6jXdrx3ZJfQHHlNe2sc2s+1lj+0ZJUkPra4bt+/a7o3WtUfuGjnU5/2/avr4jfmycX0u6r3vKW/q7Ufu9qd2S+kKOCa/djpRZF40t+6tn6y27AG7oNa80StLb+yrrG8b+sL1Pzx7Dm+YG999ouF1zd1+7tl6z9o1dfZUh06rV1va+Kmm3a16Nadt/08Q2w5sn9rp959TjmlWtevd/rnYanlNTuu993Wp4PhudbZKklpT5FPtv9KyQJLX37DZqv6Op76bbpiGHMARkDXVmYAxRWSnMjCbwG9zn0zQUeWzvbdTcvtkqGEnmochjGoo8pqEos3/DUOSxCUUe01DkMQ1FHtNQ5DEJRd5d7iWzUOTvqmQaihp8d/x8qyn5wtSrDknSuqaYhvt51SFJersl+ep9g69Ng8FD8KpDfe3Nfpf9YWivQWDxhyGTY9iGLS8MmfLCkCkvDNkwDUGeXsMQlGlv+bnrhSFTXhgy9UbPikwYMuWFIVOEIWB4DWmXucxB6To3BAZ/1pPKM7jPaVgXurjAFNaFzqsORQnrRhcXmMK60HnVoTBhXei86lCYsC50UQEoqvtcVPu47nNedSgoqvucVx0Kiuo+FxWYorrPbYkYWxXVfc4fhvyius/FjduI6kLnD0N+UV3n/GHIL6rrnD8M5ZxPRNe5DRGBKarrnD8M5bYP309cUInqOhdVGbI9RlTXuagwFNV1LioMRXWdiwpDcV3nosJQVNe5qDAU1nUuLgiFdZ2LC0JhXefiglBY17mkEBTWdS4uCNnOfApUquHoUUaFqGwRfgqvtKtFkl03Oim/WhQXhqT8alFcGJLyq0Vx1aCGjnV56+Pah1WKWtI7I8OQFF4pigpDUnjwiasehVWKosKQFF4pigpDUnilKGkQe1i1KCoMSeGVoqgwJIVXiqLCkBReKYoKQ1J4pSgqDPW1z1+XVLUJqxTFdZOzPUZY17m4ylBY17m4ylBY17m4ylBU17m4ylBwXa+bjq0MBbvOJVWFgl3nkqpCwa5z/akK2aIqBJSuYQlEjCUaKnShKzw34ufC8Icik4DkD0VJ1SGPPxSZBKRS7kJX3/GKdRc6fyiKC0MefwAy6UrnD0VxYcjjD0VxYcjjD0WmM3r5Q1FcGPL4Q1FcGPL4Q1FcGMqcjy8AxYUhjz8UxYWhbPtsG9MubP5QZDJmyPYY/lBk0k3OH4pMusn5Q5FtN7k2t8uqm1wpdpHzjyUyDUP+sUQmYcjmNhBApRqujDAsXeYyB6frHEqWo2IKm9VVEwb/IBazQ0lSdcpuNrPqqvybmRZS8KaHSY7UB4wCkefQ9KFWY4sOSR9iFIg809PTjQKRZ7IOMG7rGV9Tk9zIZ3SN3XtiTI3dTG+239jtsxxvM9g3LZhU51iNGZpQ61iNGRpV5ViNGUq79mGoW+YTLUhSrez+rjuO3avQ4drNob4rZTfpyNYu+/v89adaDyDfcBZM6DIH9EvxhCFJ6ultHPRtbO510dOzx+rGux1d9WpJ6I7n19K+0ap9e9cuNVjenPjV3hV6p9v8prJr0sut9v9S7zKr9n/t/V+r9q869pNL/LM7ujth0I6uNr3d2mLc/p22Tv2zyfyb/a0tPdocvCtpjLf2dWlnu/nFsk1bz+5Ouz/W6/fZtd/eZhc+dhrckDfbtlsNneaPuUUdalGHOmX3PHVa3CizW73qsrgAanE71SPzALjbMf9CQ5I2d/7Vqr1EGALKxbAGIrrOAYVjE3C8tqbbZNpbhCJJVqFIklXIMW3f3pX9hrih5VWjYNTZ25z52SQU7eh5Pef/k3j7NL15bkN3302C3+5ZbdZ+fxchm1BUr72S7EKRJKNQ9I7vhp8moWirLwiZhKK39tnNeuaFoXqLUOSFoT2GoWhfV19YaeoyCy3tvX0X+i3dZhf8Xrsug5sN7ezIPs66VHIFp0W5r5FtKDJhW3lqce1uGuuFoZRrdpnjhaG0xXUJYQgonOHOBMNeIRruJwAoJz29jYkhJ7jeun1CKAquTwpFHV31Of9OCjnB9bYhSpJ1tSguFAVDUFIoCu4rKRR5YciTFIoaAuMlTEKRF4Y8SaFoR1db7jlZVIqk+FC01aIqJOWHoaTKT3C9SSgKVoaSQtG+QAhKCkVeGPIkhaLg+rhQ5A9DJoJhqD+SqkTBMJRUJQqGoaQqUbAylBSKgpWhpFDU1Po6YQgooGLIAsMeiAAUnnV3OIMgldO+QJWiYBjyRIUc2+X+6lBQVCjyV4f8bLrPmVaKPFGhKBiGPFGhKBiGPHGhKBiGPFGhKBiGMucUEYr81aH+iqoSRVWGokJR1PK4UBTVTS4qFAXDkCcqFAXDUBLTCpIUHYaiqkRxYahQXeeiKkNRoai/lSETmzv/at1NjiAElKeiCETFkAyBchMWcApZPQoLRXFBaai7z8WFIU8wFEWFIU8wFMUFn7B1caHKtPucJxiKosKQJxiK6rU3Mgx5gqEoKgxFiQtDYVWiuOqQzXgiKT/8JFWO6tu784JR0pihYCiKCkNR4sJQWPCJC0PBKlFSZSgYikwqQwPtOlfIbnJhVaK4MBSsEiUFobAqEWEIKLxiyQBFEYik4nlCgHJiW/nxtjFu27MnE4JMqkb+UBRVHfLzhxyTgDSU3edMqkD+NiYVJn8oiqoO+ZmOKfIMZKIFkzDkrxKZVIb8ocikq5w/FJmMG/JC0FBMoGAShvxVIpPKkD8AmVSGvFA0HN3kwvirRCZhyF8lMqkMeaFot7PbujJkgy5ywOAopmv/YZ12O4hpuIHKUDdiilEg6q+qqtHW24wdOdWqfcri88pmoLYkOZbfVY2vOcyq/ST3XVbtx7ljrNqPdOym7x5VZffZ35W262ZmqzrsTqZx7S2njh5R1Z8Jv800dtm91xrSduO/JKlWdq9vymKC8xFOtVU3uSYnvsoZtLHrBav2zW1vWrUHYK6YAlHRVIik4npiAAyevkqRTfcZu7a9vfuSm/m36G1Wo0WlqKV9q/a1bTRuv8/i5rb72jaqyaJ9c8dWbW02v8hr7N6st3r+Ytxekv7pvGzcdkdqhzY4W4zb12tvzs1kk2zs2a130uYXwTvS5vdukqTmdKf29phXTPb1dGlPt/kFfFtvr1Voae42f++3dqdVY3G/sD3pVquw4rHpOtcu8+emVR3a65oHtDanTTWqNW6/I/2G6qonGLcnDAGDp9iu+YsqEEnF9wQBGEwmF3u9gf833LNlKJJkFIpa2rN3mDcJRY2t/9zf1jzkSDIKRc0d2XMxCUWN3ZutzkGSdqjvPGxCkSSjUOQfw2QSijb22N1XxgtDtqFIklEo2teT7bZnEoraeu3ew14YMglFrb4udSahaE+61epc+sMLQ60GXfL8bboNAlebYzeebUf6Dav2hCFg8BTjtX7RBSKpOJ8oAIMl7mIvuC7pwjB3vUko6g1MpGBTKZLiQ5EXhrJt40NOcF82lSIpPhQFw9BbPX9JrBR5YciTFIp2pHbk/NumUpQkGIaSqkTBEJQUiprTnWpO54aauFDkD0MmgmEoqUoUDEFxoajVYuY5KT8MDUaVKFgZigtFJoHJLxiGkqpEwTAUVyVqbnuTMAQMomK9xi/KQASg0th2nzNvHxeKgmHIExWK/NUhv0J0n4vaR1Qo8leH/Gy6z0mKDEXBMOSJCkXBMOSJCkVhM9xFVYmiKkNRoSgq/EQtDwahJFFhKKpKFFUZigpFtt3kwkRViaIqQ/0JRWHa1WndTS5MVJVoMCtDBCGgchVtICrWBAlgsAysGhTXvhDd56LCkCcYaILVody2A+s+FxWGPMFQlNRVbqBjiqLCUJS46b5txhNJ+aGoP2OG4gSrREmVoWAo6m83OZN1SZWhYCgqdDe5YJUoKQgFw89AK0N+wSrRjvQbsWEoWCUiDAGDr5iv7Ys2EEnF/cQBGAx2F48244uCoSiqOuTX3+5zcWEo23a97+eNie1tu895TMcN+UNRVHXIzwtFJmHIXyVKuveRlBuKTMYNeaHIJAz525hWhmwmWfAzCUP+KpFJZchrM9BucmEG0nXOpiokmYUhf5XIpDLkhSLGCwHFp9iv6Ytq2u0oTMcNoLAsp1WuGm/VPu3ajC+x+14qlRph3HZM3RSrfUvSmOrJVu3HOQcbtx1lOX2345o/NynL53G06qzaS1KVxTGCNz5N3LfF1N22waXeIPz7pWV3WZAOuUlqoXQ7dvdU2pL+h1X7Xfv+ZtUegL1iD0NSkVeIAGBw2FzwuXY3q+1tVDptNs4hnW5T2uI+MOl0i9ENcD2NLXY3Ym1u36ztzeYXiPu64rvu+e1Ob9QW1/x8dmi9tjvJN6fNtE9tMG7blNqtd1LbjNtL0i6nwbjtXmeftrvmr1NzulONvWZVqI50r9rS5hcXTb2dqpN5iLa9x1CtajTSYurrTse8kmQbhhqdeo2tOsS4PWEIgKckAlEpJEsApcbuW3CTUORvYxqK+tomhyJ/G5NQ5LUxDUXN7dmudSahyAtDWztfMtq/xyQUmXTZ89uZ2tS3nUEoakplu+CZhiIvDO1wdia23etku2aahCKbCR060tkudSahqKnXrhubF4ZGGgYo2/DkhSGTUNSfMGRq176/EYaAIVIq1/AlEYik0nlCAZSSpFCUu96mUpQkGJhsKkVSfCgKrrOtFEnxoShYGUoKRbvTG3P+HReKgmEoqUrkhaHM9jGhyB+GTAUrQ3GhyB+GTATDkGmVyEQwDCVVifpTGfJLqhIFQ1BcKBpoGIqrEhGEgKFTStfuJROIpNJ6YgGUiqhQFL48KhSFLY+qEkUvDw9FNmEpKijFhSJ/dShJVDe5qFAUDEP9ERWKgmHIY9N9Lq5KFNVNzqRS5ImqEkVVhqJCkb865ImqEkVVhqJCUVgYGqkRkZWiqPAUFYoGu5ucKcIQMHRK7Zq9pAKRVHpPMIBSMLDuc3GVI5uuc33tW2L/nXNci/FEUngoigtDNuOJpPxQFBeGwqpEcV3lgqEoKgxFiasOhYUimzFDUnx1KBiKbO97FBaGPMFQ1N9uclGCocimktTpdMaGoeA6mzDU6NTHhqFglYgwBAydUrxWL7lAJPU90aX4ZAMoZq6ywSg5INl0n/OHIpOA1N+KkElAsu0+5w9FJpMoeKHIpDLkD0Um44a8UGQShvxVItuuciZhyF8lsukqZxKG/FWiuDAUZBKGvCpRrWoG3E0ujFclsqkKSfZhyAZhCBgapXx9XhLTbkdhOm4ApSSVGmVdMRosVVXjrNqPrj3Uqv3ImgON29Y4o4zbVjl2F/EjZfc4a1zzGdMkqdZi+u4x7mjjthOq6qzCULdr3ta1rIhKdlNxN1qOpbKZMt0mDDX37iAMAUOoVMOQVKIVIk8pP/EAKk+xhCGp70a1wZvVxrXd17bOeN8tHVuSG+3X2LZBu1rNb4Db0G5+Hvu631F9t9lNOvf0btKe3k2qTyffVNezW+bd9tqcFu1MmV/Mb+9Nvsmsp8M1r670JwzZaFenai1CZYdjXg1tdsy7iK7f+3vt2veicXsAA1Pq1+QlHYik0n8BAKBUmIQiLwztak6+QWZjW7Zbm0ko2tvR163OJBTt634nsU0Uk1DkhaF3lHwubRYX/VJfqJCkvW7ydl4Y6jW4OepAwpDJzWC98zblhaE2g4qSF4aqDLrtrd/7e6vzADAw5XAtXvKBSCqPFwIAhkNSlSi4Pi4UBStDJqHIlBeGPHGhKBiGkqpEe3rtJmgIVobiQlEwDCVViWxCRbAyFBeKhqIy5BdXJepwWga1MpQrOcgB6L9yuQYvi0Aklc8LAgBDLSoUmXapixMVivzVoUzbiCpRMAz1R1QoigpDUVUi225yYaJCUVgYiqoSDUc3uagqkVWIs6yWhYWhqCoRlSFgaJXTtXfZBCKpvF4YABhKNuEnrEoUN24oGIrCwlCmbSAUxYWhsCqRTVe5pMpQMBTFhSGTrnNx4kJFMBTFhaFglWioK0N+wSpRXBgK6zY3sMoQgMFUbtfcZRWIpPJ7gQBgqPhDUVJA8oci20kUkvR3koWkMOSvEg20m1wYfyhKGjfkrxINpJtcnMEIQ/4q0WBVhpqdPYlhyF8lSg5DdJsDCqkcr7VLetrtOEzJDQCDL5UynzL7oLH/YhSIJOmg0e+z6io3onqscdua1EjjtpJUnTKfNW2KjjKeROHg9GSrUOHd48eEySQI/ZWWa3XeNveB6pX5hdabe/8/47a2N18GEK4cw5BUhhUiT7m+YABQTGymEq9v+otx262Nzxq3be8yn866tXOHGtvNQpmnodVs6m5JeqvH/DGud14zbmszU12L02rcVpI6ZV51kqRWtRu33ZvaZdx2n7vDuO1be58wbgugMMr52rpsA5FU3i8cABQLk1DktensTr7o9dq0diQHFy8MNbW9ldi2P2zCU1tPXzevd7r/L7Fti9tXNdnuvJ283/1haLeTXGnxwtA+wwBlG4aaZR6A+xOGWt2GxLZeGHJUZbBnV1SHgIEr92vqsg5EUvm/gABQ7AZyQ1qTUORJCkWtndkwZhJ0/G2SqkReGDLhhSETA6kMJYUifxgyCUb+MJROuO+RPwwltR28yhBBCCiESriWLvtAJFXGCwkAw8km9MRViUwqSB7brnJBcaEobF1UKAoLQ1FVorAwFFUlCgtDUVUim25yneouusqQCcIQMPQq5Rq6IgKRVDkvKAAMl7BQFBWUwoJPVBgKqxJFhaGwKlFYGIrTn25yJoaqMuQXrBLFBaGodVFhKKzyExWGwtpGhaGwbnNRYSi82xxhCCiESrp2rphAJFXWCwsAw8EfgJKqRv4AlFQZ8oeipMqQPxQlhaFg+EkKQ/4qUVIY8leJksKQv0qUFIb8VSLbypCpZrVl/jNFZQgoH5V2zVy2027HYUpuAChNNtN8V1eNGbTzGFV7sFG7KTXHG1eGDnXfY1wZmuhONA5D49wxxmGoVjVWISillHEQSillHIRGO5OMg5CrXhGEgMKptDAkVViFyFOJLzQAYOiZzDjnMZlxzvOWY77fjSnzGfjWp9YlN/LZ4L5k3HZL+9+M27659/+1OAvCEFAolXqNXJGBSKrcFxwASpnp5A3pdJu6uncate3q3pn5z7R9Y8srRm1bO3Zoe4tZaGju2aGtPf9IbLdX7xjtT5L2OOZd07alzG+EK0mb3LXm+27/u3HbdxpXGrd1LW7kCiBeJV8bV2wgkir7hQeAUpUUivzrk0KOaQjqT/vWDvMw0txjN/GDJO1QfIDxh6HtqU2xbf1haFdqS+Kx/WGosTe+vT8MNXXEtyUMAcOj0q+JKzoQSX1vgEp/EwBAubCZ/jss3MQFnuC6uCpRMAzFVYmCYSiuSmRaHSqHylBc4CEMAYXBdXCfig9EHt4MAFA6bKb4HmjwSWofNFiVobAwFFYligpDYVWiqDC0K7UltFJENzmgfHDtm0UgAgAAAFCxCEQ+JGUAKB023eP8CjluKNhtLq46FOw2F1cdCnabK/aucsFxRINRHXLVQ3UIKBCueXMRiAJ4gwBA6UkKR/0NQSbbeaFoKLvK+Xnd5kzCkNdtbjjHDXkTK7zTuDIxDHkBiCAEFA7Xuvkq8sasJrh5KwBUthE1BxsHqZrqScb7HVM3xbjt6OqDjNqNcMxvWJtWr3FbSWrrNbux7ISqw40rQ60dG6zOAUBhEIbCUSGKwBsGACqbTVWpu6ehoO0kaV/7RqN2u1pf1bYWs5uebt73R+PjS9LGvUuN2u3ct1r/3PuIUVvCEDA8uLaNRiCKwVSEAIBC8cLQ3paXE9vahCFTXhjauu/PiW037l1qFYZMEYaAocf1bDICkQHeRACAJHHVn/5WhrY3m1V+kthUhoJBKC7wEIaA4sY1rBkCkSHeUACA/ggLQ1FVItPKkJRfHYrqNjeQMBSHMAQUN65dzRGILPDGAgDEsakEBUWFobAqkWlXuagwFNZtrhBhKCz4EIaAocc1qx0CkSX6YQIATMUFJH+VaCCVIT9/laiQlSF/AKIyBBQvrlP7h7ml+8l1e5iaGwCQp7unQTXVk4yrRYUKQ37D3U2OIAQMPYJQ/3EfogEiFAEA+quqapxx2+qU2b2GetMdRu16ehuNjw2guBGGBoYucwNEaRIA0F+9vfsK2q6zewdBB6ggXIcWBoGoQHgzAgAGg00YMkVoAkof156FQyAqIN6YAIBC6e3dlxOG4gIPYQioLFxzFhaBqMAoXQIABsq0KiSFh6Go0EMYAkob15mDg0A0SHizAgBMBMPPQMNQFMIQUNq4thw8BKJBRIoHANhICkP+AEQYAioD15ODjzmjhwD3LAIAJCl0ZYgQBJQ+gtDQ4D5EQ4xgBAAAgDgEoaFFl7khxhscAAAAUbhWHHpUiIYR1SIAAABIBKHhRIVoGPHGBwAAANeEw4sKUZGgWgQAAFBZCELFgQpRkeAXAgAAoHJw7Vc8qBAVIapFAAAA5YkgVHyoEBUhflEAAADKD9d4xYkKUZGjWgQAAFDaCELFjUBUIghGAAAApYUgVBroMlci+IUCAAAoHVy7lQ4qRCWIahEAAEBxIgiVHgJRCSMYAQAAFAeCUOkiEJUBghEAAMDQIwSVBwJRGSEYAQAADA3CUPkgEJUhghEAAMDgIAiVHwJRGSMYAQAAFAZBqHwRiCoAwQgAAKB/CELlj0BUQQhGAAAAZghClYNAVIEIRgAAAOEIQpUnNdwngKHHLzoAAEA+rpEqExWiCke1CAAAVDqCUGUjEEESwQgAAFQeghAkAhECCEYAAKDcEYTgRyBCKIIRAAAoNwQhhCEQIRbBCAAAlDqCEOIQiGCMcAQAAEoFIQimCESwRjACAADFiiAEWwQi9BvBCAAAFAuCEPqLQIQBIxgBAIDhQhDCQBGIUDAEIwAAMFQIQigUAhEKjmAEAAAGC0EIhUYgwqAiHAEAgIEiBGEwEYgwJAhGAADAFkEIQ4FAhCFFMAIAAEkIQhhKBCIMG8IRAADwEIIwXAhEGHYEIwAAKhdBCMONQISiQjgCAKD8EYJQTAhEKEoEIwAAyg9BCMWIQISiRzgCAKB0EYJQ7AhEKBkEIwAASgdBCKWCQISSRDgCAKD4EIJQighEKHmEIwAAhg8hCKWOQISyQTACAGDoEIRQLghEKFsEJAAACocAhHJFIEJFIBwBAGCPEIRKQCBCxSEcAQAQjRCESkMgQkUjHAEAQAhCZSMQAfsRjgAAlYQQBPRJDfcJAAAAAMBwoUIEhKBaBAAoR1SFgHwEIiAB4QgAUMoIQUA8AhFggXAEACgFhCDAHIEIGAACEgCgGBCAgP4jEAEFQjgCAAwlQhBQGAQiYBAQjgAAg4EQBBQegQgYAgQkAEB/EICAwUcgAoYY4QgAEIcQBAwtAhEwzAhIAFDZCEDA8CIQAUWGgAQA5Y0ABBQXAhFQ5AhIAFDaCEBAcSMQASWGgAQAxY0ABJQWAhFQ4ghIADC8CEBAaSMQAWWGgAQAg4sABJQXAhFQAQhJANA/hB+g/BGIgApFSAKAXIQfoDIRiABIIiABqDwEIAASgQhADEISgHJB+AEQhUAEwAohCUCxI/wAsEEgAjBghCQAw4XwA2CgCEQABg1BCUChEHwADBYCEYAhRUgCkITwA2AoEYgAFAWCElB5CD4AigGBCEBRIygBpY/gA6CYEYgAlCzCElA8CD0AShWBCEBZIiwBhUfoAVCOCEQAKhahCcgi7ACoVAQiAIhAYEI5IfAAQDgCEQAMAKEJxYCwAwD9RyACgCFCeIINQg4ADA0CEQAUMUJUeSDcAEDxIhABQBkjUBUGgQYAyheBCAAAAEDFSg33CQAAAADAcCEQAQAAAKhYBCIAAAAAFYtABAAAAKBiEYgAAAAAVCwCEQAAAICKRSACAAAAULEIRAAAAAAqFoEIAAAAQMUiEAEAAACoWAQiAAAAABWLQAQAAACgYhGIAAAAAFQsAhEAAACAikUgAgAAAFCxCEQAAAAAKhaBCAAAAEDFIhABAAAAqFgEIgAAAAAVi0AEAAAAoGIRiAAAAABULAIRAAAAgIpFIAIAAABQsQhEAAAAACoWgQgAAABAxaoe7hMAylF9fb0aGxuH+zQAAGVmwoQJmjx58nCfBlBWCERAgdXX1+uSSy5RVVXVcJ8KAKDM1NXV6b//+78JRUABEYiAAmtsbFRVVZXeeONNtbe1S46zf01Kjvb/7F/mpEJ+dvb/byr7s5Ndn91PSo6Tbevs7wXrOP6fnZBl/v1W7T+67/xUpVRgvSMnu72C++pblvKWudl9pZS/fUopOa7/MXrPjpO3r5Tv8ea2VWa/mXP1L3Oyy7yn22snJ/tzyslumXn2Hd8xHa+Nb/+Or61v/95znfI1TuUcP3cf2eNnf/Yf19tN7nm5OdvlPr7c7TLbh7Z1fc9FyLmEPL6+/bshx8qeU/a4rm9/2fWZfto5x3V9x/U/vuBjdXOeN++43jk5vu0dx8057+CyvvPztfW1yT++b7uUm9k++7rn/py3LJV9fP5l2bbZk8xdlv3Z95GRef78y/wfHYGPETm5L0z2CfW9sRz/m8w7l5wXy//EO7nrnfD1ucf3rc+8oGHbBNZn9pvK7jOzPpX/i+Q42bYp34PMOT/fMid4Lqnwffnauf5lqcD+c84pcH77j+vmrPdtH3IsBY61adMu/T+3PKrGxkYCEVBABCJgkLS1tauttS3nqsUfZDLLMj9X5YQLyQsbvpATst6/LBNeHNd3Yei19V9su3kX3n0XuF6IcLLhJizwqCobTjKBKZUJPyk3G5hcVeVtL6WUcrM/97XzPT9u9nErEJSy5+edf/Zn/xZeIErJyQtETiAQ5QSZwPrcQJTdxh8ystdP2f2EhRR/IMi9sPf/nD1GcP/+EBC6PrDf2PXKXmz7A1H2XNyI7bOByB9U8p8X1/d6+LZR/vrMufiOmwpsl90mbL3/seSHGH9Iyr5WuYHIH5qy20cHIv/6nPCVCg9EOUEnuMx3XexflhOIcn9dcq67cwJRKqyt/4Xd/2//E5vyBSLfixgZeDLrQ0JOSOBxotb7w0RooElqm4pY7w88wUCUCm/rJKz3tXP9y4KBKCfkhO/LDV2fCj1W6HoABcdvFwAAAICKRSACAAAAULEIRAAAAAAqFoEIAAAAQMUiEAEAAACoWAQiAAAAABWLQAQAAACgYhGIAAAAAFQsAhEAAACAikUgAgAAAFCxCEQAAAAAKhaBCAAAAEDFqh7uEwDK1ahRI+VIkuPsX5KSo/0/+5c5qZCfnf3/m8r+7GTXZ/eTkuNk2zr7v+NwHP/Pvu0z+/KOnz2VviO5+5e6Simdu73czPq+n739pzPHT6m372c3e6yUqjLn7G2TUkqO63+M3mPKPi/+72vcnOV9/05nnqnsdq5vmbv/vNM5j9F73rI/pxxlts88+458z5XXJnt2juNr69u/91ylfI1TCj7H2X1kj5/92X9cbze55+XmbOc/fiqwXWb70Lau77kIOZeQx9e3fzfkWNlzyh7X9e0vuz7zquYc13vlsueV8m/n26f/neB/P0qS42a3D7YNLnNcN3Ncx/Etd/zPr/ezm32srm//TnYb/895y1LZx+dflm2bPcncZdmfnfwHk7PM/9ER+BiRk/vCZF9o3xvL8b/JvHPJebF8b1jvMyFnm/z1ucf3rc+8IcO2CazP7DeV3WdmfSr/F8lxsm1TvgeZc36+ZU7wXFLh+/K1c/3LUoH955xT4Pz2H9fNWe/bPuRYChxr06ZdAlB4BCKgwNLptKqrq3X00TOG+1T6wbtw6/Et6x6OE8nhBv4/HdUQ8LjKvmGAMlJdXa10mk9BoJAIRECBpVIp9fT06MYbb9S0adOG+3QAAGVi06ZN+tGPfqRUKpXcGIAxAhEwSKZNm6ajjjpquE8DAAAAMfiKAQAAAEDFIhABAAAAqFgEIqDAJk6cqC984QuaOHHicJ8KAKCM8PcFGByO67rMwwMAAACgIlEhAgAAAFCxCEQAAEnSY489Jsdx9Oc//3m4T6UsPfPMM3IcR0uXLh3uUwEA+BCIAKAI3H///brqqqt08sknq7a2Vo7j6L777hvQPq+++mrV1NSosbExsW13d7euvfZanX/++frQhz40oOMWwqpVq/Stb31LH/jABzRx4kTV1dXp6KOP1nXXXWf0eIrROeeco9NPP13XXnutent7h/t0AAD7MYYIAIrAu9/9bm3atEmTJk3S6NGjtWnTJt177736whe+0O99Tp06Ve9973v1zDPPJLZdsmSJvvSlL+nZZ5/VRz7ykX4fs1AOOeQQNTQ06PTTT9eJJ54ox3G0YsUKrVmzRtOnT9ef//xnTZ48ebhP09rvfvc7XXjhhbr//vv1uc99brhPBwAgKkQAUBTuuecebdy4Ubt27dJXv/rVAe/vpZde0pYtWzR37lyj9r/61a90+OGH66yzzhrwsQvhmmuu0ebNm7VixQrdcccduv322/X3v/9dX/va17R+/XrdfPPNw32K/XLBBRdo0qRJ+o//+I/hPhUAwH4EIlS0trY2LVmyRN/+9rc1Z84czZo1S0899dSgHGvXrl1atGiRZs+erQsuuEDf+9739M477+S1mzVrVuh/999//6CcF4rDOeeco2nTphVsf48//rgk6cILL0xs+8orr+jFF1/UvHnz5DhOaJuVK1fqoosu0uTJk1VbW6vDDz9cl1xyiVatWpVpc9NNN2UqOffee6+OP/54jRw5UkcccYR+8YtfSJJc19Vtt92mo446SnV1dZoxY4Z+/etf5x3vuuuu05QpU3KWOY6j73//+5Kk559/3uyJUF84/MQnPqGpU6eqtrZWBx10kE455RTdcsstRts3NTXpBz/4gY499liNGTNG48aN05FHHqkrrrhCmzZtCn389913n0466SSNGjVKZ555ZqZNTU2NLrroIq1atUpvvfWW8WPA4Orq6tKvfvUrXXzxxTrnnHN01VVX6W9/+5vRtiaf7fX19br33nv1la98RbNnz9bHP/5xLViwQC+++GLe/tauXavvfve7mjdvns455xxddNFF+va3v63/+7//y2m3ffv2yL8Xs2bN0k9/+tPIc/71r3+tWbNm6Yorroh9bM3Nzbrwwgs1a9YsrVixIrTNunXr9N3vfldz5szRueeeqyuuuEKPPPJI7H6BYlM93CcADKempibdd999mjx5so488kitWbNmUI7T1tamhQsXqrW1VZdddpmqq6v129/+VvPnz9eSJUs0fvz4nPYnn3yyLrjggpxlM2bMGJRzQ3l67LHHdMIJJxiFrGeffVaS9MEPfjB0/eLFi3XNNddo5MiRuvjiizV16lRt27ZNq1at0iOPPKLTTz89p/3Pf/5zrVixQnPnztVHPvIRPfroo1q4cKFGjRqlNWvW6NFHH9XHPvYxnX322XrooYd0xRVX6N3vfrdmzZqVeK41NTWSpOpqsz9fa9eu1Yc+9CFVVVVp7ty5mjZtmhobG/Xaa6/p7rvv1g033BC7veu6Ov/887V69Wp9+MMf1gUXXKBUKqVNmzbpiSee0OWXX573HP/sZz/Tc889p7lz5+q8885TVVVVzvp//dd/1T333KPly5fryCOPNHocGFw//vGPtWLFCn3yk5/UYYcdpqeeekrXXnutFi9erPe///2R25l+tq9atUq/+c1vNHPmTF1wwQXq7e3V008/rW9+85v67ne/q9mzZ2f2uXXrVqVSKc2dO1cHHnigmpubtWzZMs2fP1+33nqrTjvtNEnShAkTdOONN+ad0+rVq7Vs2TKdcsopoee8c+dO3X///Ro5cmTi87JkyRJ1dnZGrv/rX/+q733ve5oxY4auuOIKjRw5Utu2bdOuXbsS9w0UFReoYJ2dnW5DQ4Pruq77+uuvuzNnznSXLl1a8OM88MAD7syZM93XXnsts2zjxo3umWee6d511105bWfOnOnefvvtBT8HlI4f//jHriT33nvv7df2GzZscCW5N910k1H7T37yk64k980338xbt3btWjeVSrlTpkxxN2zYkLMunU6727Zty/x70aJFriT3wAMPdN9+++3M8s2bN7sjRoxwx48f7773ve91d+7cmVn3wgsvuJLcj3/840bneuutt7qS3O985ztG7b/5zW+6ktzHHnssb533ux/n5ZdfdiW5F110Ud66jo4Ot7m5OfNv7/GPHj3affnllyP3+Y9//MOV5H7+8583egwYXK+++qo7c+ZM9ze/+U1mWUdHh/vpT3/a/epXvxq7reln+/r16929e/fmbNvZ2el+7nOfcy+55JLEc2xvb3fnzp3rfutb30ps+41vfMO94IIL3I6OjtD1ixYtchcuXOjOnz8/9j349ttvu2eeeaZ73333uTNnznSfe+65nPUtLS3u3Llz3euvv97t7e1NPC+gmNFlDhVtxIgRxnf8fuGFF3T11VfrvPPO0/nnn69rr71WGzZsMNp2xYoVOvroo3XMMcdklk2bNk0nnXSSnnvuudBtOjs7Y7+ZA6J43eVMxw9t3bpVkkInKbjrrruUTqf1ox/9SO9+97tz1jmOk9etTZIWLlyo6dOnZ/59+OGH6/TTT1dTU5NuuOEGHXTQQZl1p512mqZPn65//OMfiee5du1a/du//ZsOPvhgXXvttUaPzRP2bbjp737U9rW1tRozZkze8q985Ss6/vjjI/flPc/e847h9fzzz6uqqiqne2ltba3mzJmjV199VfX19ZHbmn62H3HEEZowYULOtiNGjNAHP/hB7dq1S21tbbHnWFdXp/Hjx6ulpSW2XUNDg9asWaNZs2aptrY2b/3atWv1/PPPa/78+bH7kaRf/OIXmjVrVmSF7JlnntGePXv05S9/WalUSu3t7Uqn04n7BYoRgQgw8PTTT+u6667TyJEjddVVV+mKK67Qxo0b9fWvf13bt2+P3TadTmv9+vU6+uij89Ydc8wx2rZtW94fwz/84Q8677zzdO655+ryyy/XsmXLCvp4UN4ef/xxTZ06VSeccIJR+927d6uqqkpjx47NW/fXv/5VknTeeecZHz/suIceemjsurDxdH7r16/XnDlz1Nvbq4ceekiTJk0yOpdLL71UqVRKF198sb74xS/qwQcf1LZt24y2lfp+R9///vfrwQcf1KxZs3T77bfrpZdeir3wO/XUU2P3eeCBB0rqu3jF8HvzzTd12GGHafTo0TnLvZATNdarP5/tQXv27FFdXV1oeGltbVVjY6M2bdqku+++Wxs2bNAHPvCB2P0tX75c6XRa5557bt663t5eLV68WHPmzNF73vOe2P0899xzeuWVV2IneHnxxRc1evRoNTQ06HOf+5zOP/98ffSjH9Vtt93Gl3koOQQiIEFbW5sWL16sj33sY/rZz36mefPm6bOf/WxmlqikyQ727dunrq6u0G+jvWX+C6PjjjtOV155pW655RZ961vfUiqV0g9/+EM99thjhXtQKFt79uzRH//4R+PqkNRX/ejt7VV3d3feuqamJjmOkwk0JsaNG5e3zBvzE7Wup6cncn8bNmzQWWedpYaGBj3yyCNWM+GddtppWrFihWbNmqXf/OY3+uxnP6vDDjtMp556amR1Nnhuy5cv19VXX6233norc2+kQw45RDfffHPo/YSSpgNvb2+XJI0aNcr4cWDw7N692/jz2c/2sz1o69atWrlypc4444y8cWaStGjRIl144YW6/PLL9fDDD+vCCy/U5z//+djHsmzZMk2cOFEnnXRS3rrHH39c9fX1uvLKK2P30dnZqTvvvFOXXnpp7O/91q1b1dvbq+uvv16nnnqqfvjDH2r27Nl6/PHH9ZOf/CT2GECxYVIFIMGLL76olpYWnX322Tk3hEylUjrmmGP00ksvxW7vfVPmDQb3GzFiRE4bSbrzzjtz2syePVtXXnml7r77bn30ox8N/SYR8Dz55JPq6enRRRddZLyN14Vtz549eRfzEyZMkOu62r59u971rncV8lSNrF+/XmeddZa2b9+u//mf/9HHPvYx633MnDlTTz31lNrb27V69Wr97ne/05133qk5c+bolVdeyeneF2bixIn65S9/qV/84hd64403tHz5cv3yl7/UokWLVFNTo+9973s57aNm6vPs2bNHknK6DmL4dHZ2Gn8+B7eTzD/b/To6OrRo0SLV1tbqqquuCm1z1VVX6VOf+pR27typP/zhD+rp6Ym9oe+WLVu0bt26TFXUr6mpSUuWLNHnP//5vK57QQ888IB6enp02WWXxbZrb29XR0eH5s6dq4ULF0qSzjjjDHV3d+uJJ57QF7/4RR1++OGx+wCKBRUiIIHXz/8b3/iGLrzwwpz//va3v2VCUmdnp3bv3p3zn6RMgAn79r2rqyunTZiamhpdcsklamlp0bp16wr50FCGHn/8cR1wwAFGM7Z5vPEuYe8vr/vX//7v/xbmBC34w9DDDz9sVfUKM3LkSJ155pm67bbbdP3116u9vd2qO6rjODrmmGP09a9/PbPdE088YX0e3vMcN84IQ6e2trZfn8/9/Wzv7e3VTTfdpI0bN+rmm2+O7P45Y8YMnXLKKZozZ45uv/12vf766/rx2X1eRgAACARJREFUj38c+Ti892RYd7l77rlHY8eO1bx58yK3l/qm8n7wwQf15S9/ObGC6T22s88+O2f5OeecI0l69dVXY7cHigkVIiCBN1bgxhtvzPT99/O6Oixfvjzvj9XKlSs1btw4jRgxIhOQ/LxlSeMhDj74YEl9XTSAKJ2dnXr66ac1d+5c42mppb5vde+44w6tXr06L0h99atf1V133aUbb7xRH/nIR3KmmPYqR2ETKwyU103unXfe0cMPP6yLL764X/v5y1/+ohNPPFF1dXU5y72B8sHlQRs3bpSkvAklTLcPs3r1akl9zzuG38SJE0OniU76fO7vZ/vPfvYz/eUvf9H3v//9xDFBnpqaGn34wx/WAw88oM7OztCgtWzZMk2dOlVHHXVUzvItW7bod7/7nebPn5/Tha+rq0s9PT3avn27Ro8erXHjxmnJkiWaNGmSTjjhhMz4WK+i2djYqO3bt2vy5MlKpVKaOHGiNmzYkPd38YADDpDUdw8joFQQiIAEXjehCRMm6OSTT45sd8opp+j222/PW55KpTR9+nS98cYbeetee+01TZkyJfGbOG/AeVJXB5Sue+65J3OTU+8GjPfcc0/mZoinn356Yt//Z555Ri0tLdaVlLPPPltjx47VsmXL9J3vfCdn3fHHH6+f//znWrBggd73vvfpoosu0rRp07Rjxw6tXLlSc+bM0c9//nOr45k466yztHnzZn3wgx/Uyy+/rJdffjmvzU033ZS4n1tvvVXPPfecZs2apSOOOEJ1dXV66aWX9Oyzz2r69OmJQWvt2rW65JJLdOqpp+rYY4/VIYccom3btumxxx5TKpXSNddcY/3Yli1bZl3Fw+Dx7kHX2tqaM7HCa6+9llkfpj+f7XfeeaeWLl2q+fPnZyoppjo7O+W6rtra2vIC0WuvvaZt27bpS1/6Ut52DQ0NSqfTWrx4sRYvXpy3/lOf+pQ+8YlPaMGCBaqvr9e2bdv06U9/Oq+d9/ftySef1NixY3XUUUfpxRdf1K5duzR16tSc40n8vUJpIRABCU499VSNHj1a999/v0466aS8b94bGxs1YcIETZo0KfKbxDPOOEN33XWX3njjjcyMRJs3b9aaNWv0qU99Km9ffm1tbXrkkUc0fvz4vG/+UD5WrVql//qv/8pZ9qc//Ul/+tOfMv9OCkSPP/64amtr9dGPftTq2GPGjNFll12mu+++W9u3b88bSH311VfruOOO02233aannnpKLS0tOvjgg3Xaaafp0ksvtTqWqU2bNknqm+7+hRdeCG1jEoi+9rWvafz48Vq9erWef/55ua6rqVOn6vrrr9c111wTOsmD38knn6zrrrtOK1as0JNPPqnGxkYdcsghOuecc/Sd73wn8ma2UTZu3Kg//elPWrhwYb+qSyi8M888Uw899JCeeOIJfeYzn5HUVz1ZunSpjj322My4uvr6enV0dORUSU0/2yXpwQcf1EMPPaTLL79cn/zkJyPPZ+/evZkqi6e5uVnPP/+8Dj744Lx1Ura7XFjIOuKII3TLLbfkLb/nnnvU1tamBQsWZKq8V155pZqamnLarV+/Xv/5n/+pz3zmMzruuOMyU9CfddZZeuCBB/Tkk0/mVLqefPJJVVVV6cQTT4x8jECxcVzXdYf7JIDh9Oijj6qlpUW7d+/WY489plmzZmnGjBmSpHnz5mnMmDFatmyZbrnlFk2bNk1nn322JkyYoPr6er3wwgs67rjjEr8lbmtr05e+9CW1tbXp05/+tKqqqvTb3/5W6XRaS5YsyYSgJUuWaNWqVfrQhz6kyZMna/fu3Vq6dKnq6+t1ww03WE19jMriuq6mTJmiE088UUuXLrXeft26dTruuON000036YYbbhiEM4TU1/X2pz/9qV5//fXEqY8xdBYtWqSVK1fq0ksv1bve9S794Q9/0Ouvv6477rgjM1X8ggULtHbtWq1cuTKzneln+8qVK3XjjTfqsMMO0xe+8IW845988smZrmdXXnmlDjroIB177LE64IADVF9fr6VLl2r37t266aabdOaZZ+Zs29vbq3nz5unQQw/Vr371K+PHvGDBAjU1NeV9ERO0Zs0aLVy4UDfffHPesX/yk59o6dKlOuuss3TCCSdo7dq1eu6553TZZZfpK1/5ivG5AMONChEq3sMPP6wdO3Zk/r1y5crMH7zzzjtPY8aM0bnnnqtJkybpgQce0EMPPaSuri4ddNBBev/736/Zs2cnHmPUqFFavHix/v3f/12//vWvlU6ndeKJJ+rqq6/OqQgdf/zxeuWVV/T73/9e+/btU11dnY455hhdd911xn3NUZlWr16tHTt29HvigaOOOkpXXnml7rjjDi1YsCD0nkQYmL179+qXv/ylvva1rxGGisz111+vyZMn6+mnn1ZLS4umT5+uW2+9NfFeXqaf7d69jLZu3aof/ehHeftZvHhxJhDNnj1by5cv129/+1u1tLRo7NixOvbYY/WDH/xA//Iv/5K37d///nft2bNHl19+ef+fgH769re/rcmTJ+upp57SH//4R02ePFlXX331oFWOgcFChQgAIEnauXOn7rzzTs2bN48Z0AbBSy+9pCeeeELz588PvXcNAGB4EIgAAAAAVCzuQwQAAACgYhGIAAAAAFQsAhEAAACAikUgAgAAAFCxCEQAAAAAKhaBCAAAAEDFIhABAAAAqFgEIgAAAAAVi0AEAAAAoGIRiAAAAABULAIRAAAAgIr1/wNj8rQy7AnlPQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration_idx = 29\n", + "\n", + "result = all_results[iteration_idx]\n", + "\n", + "iteration = result['iteration']\n", + "image = result['model_map']\n", + "\n", + "data = image[:,0]\n", + "data[data <= 0 * data.unit] = 1e-12 * data.unit\n", + "\n", + "hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8fd8b4e1", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.html b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.html new file mode 100644 index 00000000..721ab071 --- /dev/null +++ b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.html @@ -0,0 +1,1636 @@ + + + + + + + DC2 Image Analysis, 511keV, Upsampling — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DC2 Image Analysis, 511keV, Upsampling

+

updated on 2024-01-30 (the commit 26cfdeacb25335bd511a91c4f8a29bdeb36408f2)

+

This notebook explains image reconstruction using the pixel resolution of the model map finer than that of the response matrix.

+

Note that this notebook is advanced. It is assumed that you have already performed the two notebooks (511keV-DC2-ScAtt-DataReduction.ipynb, 511keV-DC2-ScAtt-ImageDeconvolution.ipynb).

+
+

Point

+

In the current implementation, the pixel size of the model map can be differnt from that of the response matrix. The model pixel size is used in the following instances:

+
    +
  • coordsys_conv_matrix

  • +
  • image_deconvolution

  • +
+

Thus, make sure that NSIDE in these instances must be the same. In this notebook, I present the case with NSIDE = 32 in the model map.

+

When we convert the model map in the galactic coordinate to the detector coordinate, the pixel size will be downscaled so as the converted model map has the same pixel resolution matching the detector response. Thus, using finer resolution in the model space does not improve the angular resolution in principle, while the reconstructed image will be smoother.

+

There are three different NSIDE defined in the analysis:

+
    +
  • NSIDE for the pixel resolution of the model (coordsys_conv_matrix, image_deconvolution)

  • +
  • NSIDE for the pixel resolution of the response/data/background CDS (full_detector_response, inputs_511keV_DC2.yaml)

  • +
  • NSIDE for the pixel resolution of the spacecraftattitude binning (exposure_table)

  • +
+

Normally, these three values are set equal, but in principle they can be different.

+
+
[2]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
[3]:
+
+
+
nside_scatt_binning = 32
+nside_model = 32
+
+
+
+

In this notebook I change the NSIDE in the exposure table, so the binned data need to be reproduced.

+
+
+
+

0. Prepare the data

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5 - cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori

+

From docs/tutorials/image_deconvolution/511keV/ScAttBinning - inputs_511keV_DC2.yaml - imagedeconvolution_parfile_scatt_511keV.yml

+
+

Load the response and orientation files

+

please modify “path_data” corresponding to your environment.

+
+
[4]:
+
+
+
path_data = "path/to/data/"
+
+
+
+
+
[5]:
+
+
+
%%time
+
+ori_filepath = path_data + "20280301_3_month.ori"
+ori = SpacecraftFile.parse_from_file(ori_filepath)
+
+
+
+
+
+
+
+
+CPU times: user 16.4 s, sys: 1.14 s, total: 17.6 s
+Wall time: 17.2 s
+
+
+
+
[6]:
+
+
+
full_detector_response_filename = path_data + "SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5"
+full_detector_response = FullDetectorResponse.open(full_detector_response_filename)
+
+nside_local = full_detector_response.nside
+npix_local = hp.nside2npix(nside_local)
+
+nside_local
+
+
+
+
+
[6]:
+
+
+
+
+16
+
+
+
+
[7]:
+
+
+
full_detector_response
+
+
+
+
+
[7]:
+
+
+
+
+FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'
+AXES:
+  NuLambda:
+    DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'
+    TYPE: 'healpix'
+    NPIX: 3072
+    NSIDE: 16
+    SCHEME: 'RING'
+  Ei:
+    DESCRIPTION: 'Initial simulated energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 1
+    EDGES: [509.0 keV, 513.0 keV]
+  Em:
+    DESCRIPTION: 'Measured energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 1
+    EDGES: [509.0 keV, 513.0 keV]
+  Phi:
+    DESCRIPTION: 'Compton angle'
+    TYPE: 'linear'
+    UNIT: 'deg'
+    NBINS: 60
+    EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]
+  PsiChi:
+    DESCRIPTION: 'Location in the Compton Data Space'
+    TYPE: 'healpix'
+    NPIX: 3072
+    NSIDE: 16
+    SCHEME: 'RING'
+
+
+
+
+
+
+

1. analyze the orientation file

+

This section is the same as in 511keV-DC2-ScAtt-DataReduction.ipynb, but the nisde is changed to 32.

+
+
[8]:
+
+
+
%%time
+
+exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt_binning, start = None, stop = None)
+exposure_table
+
+
+
+
+
+
+
+
+angular resolution:  1.8322594196359498 deg.
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+duration:  92.36059027777777 d
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 7979955 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 1min 13s, sys: 2 s, total: 1min 15s
+Wall time: 1min 15s
+
+
+
+
[8]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(8272, 427)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.49705286596814, -21.370653963754705][44.49899938347305, 68.62948123249228][0.9999999999969589, 1.0000000000065512, 0.999...22051.0220510
11(8399, 427)[[44.78167623289732, -21.840823005240516], [44...[[44.781676232897325, 68.15917699475948], [44....[44.84546317102121, -21.94574666279381][44.845668028631366, 68.05426833879696][0.9999999999969589, 0.9999999999969589, 0.999...7207.072070
22(8528, 427)[[44.937249783176014, -22.096275698920152], [4...[[44.93724978317603, 67.90372430107985], [44.9...[45.280789592422735, -22.65671255168847][45.28405398202019, 67.34354151639131][0.9999999999969589, 1.0000000000065512, 0.999...29025.0290250
33(8528, 488)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.792486557202956, -23.48162697469867][45.79313907872797, 66.51842748236865][1.0000000000065512, 0.9999999999969589, 0.999...13091.0130910
44(8656, 488)[[45.978454945885545, -23.778456203550505], [4...[[45.978454945885545, 66.22154379644951], [46....[46.11600105920392, -23.997057178710705][46.11666483156788, 66.00300061062126][0.9999999999969589, 0.9999999999969589, 1.000...13268.0132680
.................................
562562(3526, 515)[[19.469949806943756, 24.43289490159796], [19....[[199.46994980694376, 65.56710509840204], [199...[19.471417500535573, 24.430350678106848][199.47141729115225, 65.56964934798671][1.000000000001755, 0.9999999999969589, 0.9999...257.02570
563563(745, 3302)[[289.1161733315789, 62.182064711183735], [289...[[109.11617333157892, 27.817935288816265], [10...[289.1158698854739, 62.181869345669945][109.11587008833249, 27.818130910219594][0.9999999999969589, 1.0000000000065512, 0.999...216.02160
564564(11555, 3438)[[129.37391657068838, -62.722167168565605], [1...[[129.37391657068838, 27.277832831434402], [12...[129.3748932372682, -62.7229126247577][129.3748932228599, 27.277087393995096][0.9999999999969589, 0.9999999999969589, 0.999...38.0380
565565(749, 3438)[[309.37452108662, 62.72183635479668], [309.37...[[129.37452108662, 27.27816364520332], [129.37...[309.3747190421793, 62.723149712157756][129.37471903379148, 27.27685031183828][0.9999999999969589, 1.0000000000065512, 1.000...57.0570
566566(11205, 2781)[[83.68502160846401, -56.50792179772638], [83....[[83.68502160846401, 33.49207820227362], [83.6...[83.68453862559674, -56.50760146476969][83.68453900120738, 33.49239873132499][0.9999999999969589, 0.9999999999969589, 0.999...10.0100
+

567 rows × 10 columns

+
+
+

You can save SpacecraftAttitudeExposureTable as a fits file.

+
+
[9]:
+
+
+
exposure_table.save_as_fits(f"exposure_table_nside{nside_scatt_binning}.fits", overwrite = True)
+
+
+
+

You can also read the fits file.

+
+
[10]:
+
+
+
exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(f"exposure_table_nside{nside_scatt_binning}.fits")
+exposure_table == exposure_table_from_fits
+
+
+
+
+
[10]:
+
+
+
+
+True
+
+
+
+
+

2. Calculate the coordinate conversion matrix

+

CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.

+

In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.

+

If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.

+

If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index.

+

In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it.

+

With NSIDE = 32, this process may take a few hours. I also prepared a python script to create the conversion matrix. If the notebook does not work, you can use mk_ccm_upsampling.py

+
+
[ ]:
+
+
+
%%time
+
+coordsys_conv_matrix = CoordsysConversionMatrix.spacecraft_attitude_binning_ccm(full_detector_response, exposure_table, nside_model = nside_model, use_averaged_pointing = True)
+
+
+
+

You can save CoordsysConversionMatrix as a hdf5 file.

+
+
[ ]:
+
+
+
coordsys_conv_matrix.write(f"ccm_nside{nside_model}.hdf5", overwrite = True)
+
+
+
+

You can also read the saved file.

+
+
[11]:
+
+
+
coordsys_conv_matrix = CoordsysConversionMatrix.open(f"ccm_nside{nside_model}.hdf5")
+
+
+
+

Check the matrix shape

+
+
[12]:
+
+
+
coordsys_conv_matrix.contents
+
+
+
+
+
[12]:
+
+
+
+
Formatcoo
Data Typefloat64
Shape(567, 12288, 3072)
nnz27869184
Density0.0013020833333333333
Read-onlyTrue
Size850.5M
Storage ratio0.0
+
+
+
+

3. produce the binned data

+
+
[13]:
+
+
+
def get_binned_data_scatt(unbinned_event, exposure_table, psichi_binning = 'local', sparse = False):
+    exposure_dict = {row['healpix_index']: row['scatt_binning_index'] for _, row in exposure_table.iterrows()}
+
+    # from BinnedData.py
+
+    # Get energy bins:
+    energy_bin_edges = np.array(unbinned_event.energy_bins)
+
+    # Get phi bins:
+    number_phi_bins = int(180./unbinned_event.phi_pix_size)
+    phi_bin_edges = np.linspace(0,180,number_phi_bins+1)
+
+    # Define psichi axis and data for binning:
+    if psichi_binning == 'galactic':
+        psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = 'galactic', label='PsiChi')
+        coords = SkyCoord(l=unbinned_event.cosi_dataset['Chi galactic']*u.deg, b=unbinned_event.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic')
+    if psichi_binning == 'local':
+        psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = SpacecraftFrame(), label='PsiChi')
+        coords = SkyCoord(lon=unbinned_event.cosi_dataset['Chi local']*u.rad, lat=((np.pi/2.0) - unbinned_event.cosi_dataset['Psi local'])*u.rad, frame = SpacecraftFrame())
+
+    # Define scatt axis and data for binning
+    n_scatt_bins = len(exposure_table)
+    scatt_axis = Axis(np.arange(n_scatt_bins + 1), label='ScAtt')
+
+    is_nest = True if exposure_table.scheme == 'nested' else False
+
+    nside_scatt = exposure_table.nside
+
+    zindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[0] * 180 / np.pi,
+                        unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)
+    xindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[0] * 180 / np.pi,
+                        unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)
+    scatt_data = np.array( [ exposure_dict[(z, x)] + 0.5 if (z,x) in exposure_dict.keys() else -1 for z, x in zip(zindex, xindex)] ) # should this "0.5" be needed?
+
+    # Initialize histogram:
+    binned_data = Histogram([scatt_axis,
+                              Axis(energy_bin_edges*u.keV, label='Em'),
+                              Axis(phi_bin_edges*u.deg, label='Phi'),
+                              psichi_axis],
+                              sparse=sparse)
+
+    # Fill histogram:
+    binned_data.fill(scatt_data, unbinned_event.cosi_dataset['Energies']*u.keV, np.rad2deg(unbinned_event.cosi_dataset['Phi'])*u.deg, coords)
+
+    return binned_data
+
+
+
+
+
[14]:
+
+
+
%%time
+
+signal_filepath = path_data + "511_thin_disk_3months_unbinned_data.fits.gz"
+
+unbinned_signal = UnBinnedData(input_yaml = "inputs_511keV_DC2.yaml")
+
+unbinned_signal.cosi_dataset = unbinned_signal.get_dict_from_fits(signal_filepath)
+
+binned_signal = get_binned_data_scatt(unbinned_signal, exposure_table, psichi_binning = 'local', sparse = False)
+
+
+
+
+
+
+
+
+CPU times: user 7.34 s, sys: 362 ms, total: 7.7 s
+Wall time: 7.71 s
+
+
+
+
[15]:
+
+
+
%%time
+
+bkg_filepath = path_data + "albedo_photons_3months_unbinned_data.fits.gz"
+
+unbinned_bkg = UnBinnedData(input_yaml = "inputs_511keV_DC2.yaml")
+
+unbinned_bkg.cosi_dataset = unbinned_bkg.get_dict_from_fits(bkg_filepath)
+
+binned_bkg = get_binned_data_scatt(unbinned_bkg, exposure_table, psichi_binning = 'local', sparse = False)
+
+
+
+
+
+
+
+
+CPU times: user 1min 37s, sys: 4.49 s, total: 1min 41s
+Wall time: 1min 41s
+
+
+
+
[16]:
+
+
+
binned_event = binned_signal + binned_bkg
+
+
+
+
+
+

4. Imaging deconvolution

+
+

4-1. Prepare DataLoader containing all neccesary datasets

+
+
[17]:
+
+
+
dataloader = DataLoader.load(binned_event,
+                             binned_bkg,
+                             full_detector_response,
+                             coordsys_conv_matrix,
+                             is_miniDC2_format = False)
+
+
+
+
+
[18]:
+
+
+
dataloader._modify_axes()
+
+
+
+
+
+
+
+
+
+WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.
+
+
+WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.
+
+
+
+
+
+
+
+
+... checking the axis ScAtt of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Em of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Phi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis PsiChi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+...checking the axis Em of the event and response files...
+    --> pass (edges)
+...checking the axis Phi of the event and response files...
+    --> pass (edges)
+...checking the axis PsiChi of the event and response files...
+    --> pass (edges)
+The axes in the event and background files are redefined. Now they are consistent with those of the response file.
+
+
+
+
+

4-2. Load the response file

+
+
[19]:
+
+
+
%%time
+
+dataloader.load_full_detector_response_on_memory()
+dataloader.calc_image_response_projected() # mandatory
+
+
+
+
+
+
+
+
+... (DataLoader) calculating a projected image response ...
+CPU times: user 20.5 s, sys: 2.81 s, total: 23.3 s
+Wall time: 23.8 s
+
+
+
+
+

4-3. Initialize the instance of the image deconvolution class

+
+
[20]:
+
+
+
parameter_filepath = "imagedeconvolution_parfile_scatt_511keV.yml"
+
+
+
+
+
[21]:
+
+
+
image_deconvolution = ImageDeconvolution()
+
+# set dataloader to image_deconvolution
+image_deconvolution.set_data(dataloader)
+
+# set a parameter file for the image deconvolution
+image_deconvolution.read_parameterfile(parameter_filepath)
+
+
+
+
+
+
+
+
+data for image deconvolution was set ->  <cosipy.image_deconvolution.data_loader.DataLoader object at 0x3eb3d36a0>
+parameter file for image deconvolution was set ->  imagedeconvolution_parfile_scatt_511keV.yml
+
+
+

Do not forget to make sure that NSIDE of the model map is modified to 32

+
+
[22]:
+
+
+
image_deconvolution.override_parameter(f"model_property:nside = {nside_model}")
+
+
+
+
+
[23]:
+
+
+
image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 20")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:background_normalization_fitting = True")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:alpha_max = 10")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:smoothing_FWHM = 2.5")
+
+image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 509.0
+- 513.0
+nside: 32
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10
+  background_normalization_fitting: true
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 20
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 2.5
+
+#### Done ####
+
+
+
+
+
+

4-5. Start the image deconvolution

+

With MacBook Pro with M1 Max and 64 GB memory, it takes about 9 minutes for 20 iterations.

+
+
[24]:
+
+
+
%%time
+
+all_results = image_deconvolution.run_deconvolution()
+
+
+
+
+
+
+
+
+#### Deconvolution Starts ####
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Iteration 1/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+
+
+
+
+
+
+
+
+WARNING RuntimeWarning: invalid value encountered in divide
+
+
+
+
+
+
+
+
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.4918880393981695
+    loglikelihood: -1756598.0322312904
+    background_normalization: 1.0024218882576656
+  Iteration 2/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1711635.518049215
+    background_normalization: 0.9971577453519401
+  Iteration 3/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0871086083508616
+    loglikelihood: -1701368.15366006
+    background_normalization: 0.999685900356176
+  Iteration 4/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1695610.545668051
+    background_normalization: 0.9999373176079243
+  Iteration 5/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1691748.2580263622
+    background_normalization: 0.9999267553231147
+  Iteration 6/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 3.3352964931227564
+    loglikelihood: -1684493.5281347963
+    background_normalization: 0.9999159811049237
+  Iteration 7/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1683748.9067139933
+    background_normalization: 0.9998932072705006
+  Iteration 8/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.2014651710448034
+    loglikelihood: -1682463.6552417497
+    background_normalization: 0.9998941090155609
+  Iteration 9/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1682061.3451082548
+    background_normalization: 0.9998924718443246
+  Iteration 10/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1681719.0622706544
+    background_normalization: 0.9998916199988997
+  Iteration 11/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1681425.6162618792
+    background_normalization: 0.9998911255697669
+  Iteration 12/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.715627885915885
+    loglikelihood: -1681000.181726581
+    background_normalization: 0.999890734568304
+  Iteration 13/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1680801.790441107
+    background_normalization: 0.9998901905185211
+  Iteration 14/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.2122797273704515
+    loglikelihood: -1680427.7005234426
+    background_normalization: 0.999889956371463
+  Iteration 15/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1680295.699487886
+    background_normalization: 0.9998895673515545
+  Iteration 16/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1680177.476488873
+    background_normalization: 0.9998894604073867
+  Iteration 17/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.1526900219311305
+    loglikelihood: -1680055.2851265944
+    background_normalization: 0.9998893892247812
+  Iteration 18/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1679960.7616204866
+    background_normalization: 0.9998893341848446
+  Iteration 19/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1679875.0225631895
+    background_normalization: 0.9998893073627257
+  Iteration 20/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> stop
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: -1679796.9820035975
+    background_normalization: 0.9998892961410736
+#### Done ####
+
+CPU times: user 1h 9min 8s, sys: 3min 24s, total: 1h 12min 33s
+Wall time: 13min 17s
+
+
+
+
[25]:
+
+
+
import pprint
+
+pprint.pprint(all_results)
+
+
+
+
+
+
+
+
+[{'alpha': <Quantity 2.49188804>,
+  'background_normalization': 1.0024218882576656,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632d70>,
+  'iteration': 1,
+  'loglikelihood': -1756598.0322312904,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632da0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631090>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9971577453519401,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58750c0>,
+  'iteration': 2,
+  'loglikelihood': -1711635.518049215,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f5877af0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96320e0>},
+ {'alpha': <Quantity 1.08710861>,
+  'background_normalization': 0.999685900356176,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631750>,
+  'iteration': 3,
+  'loglikelihood': -1701368.15366006,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f5874700>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632a10>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9999373176079243,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631e10>,
+  'iteration': 4,
+  'loglikelihood': -1695610.545668051,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58769b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631540>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9999267553231147,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632c20>,
+  'iteration': 5,
+  'loglikelihood': -1691748.2580263622,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f5876f50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96328c0>},
+ {'alpha': <Quantity 3.33529649>,
+  'background_normalization': 0.9999159811049237,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96317b0>,
+  'iteration': 6,
+  'loglikelihood': -1684493.5281347963,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631120>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9633b80>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998932072705006,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632f20>,
+  'iteration': 7,
+  'loglikelihood': -1683748.9067139933,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632bc0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632230>},
+ {'alpha': <Quantity 2.20146517>,
+  'background_normalization': 0.9998941090155609,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631240>,
+  'iteration': 8,
+  'loglikelihood': -1682463.6552417497,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631180>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96314b0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998924718443246,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632ef0>,
+  'iteration': 9,
+  'loglikelihood': -1682061.3451082548,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96304f0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631c60>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998916199988997,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9633100>,
+  'iteration': 10,
+  'loglikelihood': -1681719.0622706544,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9630b50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9630220>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998911255697669,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96325c0>,
+  'iteration': 11,
+  'loglikelihood': -1681425.6162618792,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96308e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96317e0>},
+ {'alpha': <Quantity 1.71562789>,
+  'background_normalization': 0.999890734568304,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9630700>,
+  'iteration': 12,
+  'loglikelihood': -1681000.181726581,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632890>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96313c0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998901905185211,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9632b30>,
+  'iteration': 13,
+  'loglikelihood': -1680801.790441107,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f8b97880>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631b70>},
+ {'alpha': <Quantity 2.21227973>,
+  'background_normalization': 0.999889956371463,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9633310>,
+  'iteration': 14,
+  'loglikelihood': -1680427.7005234426,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96313f0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96300a0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998895673515545,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9631c90>,
+  'iteration': 15,
+  'loglikelihood': -1680295.699487886,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96336d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a7790>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998894604073867,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9630df0>,
+  'iteration': 16,
+  'loglikelihood': -1680177.476488873,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9633f40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a7040>},
+ {'alpha': <Quantity 1.15269002>,
+  'background_normalization': 0.9998893892247812,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9633b20>,
+  'iteration': 17,
+  'loglikelihood': -1680055.2851265944,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9630c40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a6f20>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998893341848446,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f5877910>,
+  'iteration': 18,
+  'loglikelihood': -1679960.7616204866,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e96335e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a6ef0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998893073627257,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a7880>,
+  'iteration': 19,
+  'loglikelihood': -1679875.0225631895,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a71c0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a4550>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9998892961410736,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a5720>,
+  'iteration': 20,
+  'loglikelihood': -1679796.9820035975,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3e9633e50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x3f58a6d70>}]
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+
+

5. Analyze the results

+

Examples to see/analyze the results are shown below.

+
+

Log-likelihood

+

Plotting the log-likelihood vs the number of iterations

+
+
[26]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['loglikelihood'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("loglikelihood")
+
+
+
+
+
[26]:
+
+
+
+
+Text(0, 0.5, 'loglikelihood')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_47_1.png +
+
+
+
+

Alpha (the factor used for the acceleration)

+

Plotting \(\alpha\) vs the number of iterations. \(\alpha\) is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts.

+
+
[27]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['alpha'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("alpha")
+
+
+
+
+
[27]:
+
+
+
+
+Text(0, 0.5, 'alpha')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_49_1.png +
+
+
+
+

Background normalization

+

Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1.

+
+
[28]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['background_normalization'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("background_normalization")
+
+
+
+
+
[28]:
+
+
+
+
+Text(0, 0.5, 'background_normalization')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_51_1.png +
+
+
+
+

The reconstructed images

+
+
[29]:
+
+
+
def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['model_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the reconstructed images in all of the energy bands at the 20th iteration

+
+
[30]:
+
+
+
iteration = 19
+
+plot_reconstructed_image(all_results[iteration])
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_55_0.png +
+
+

An example to plot the image in the log scale

+
+
[31]:
+
+
+
iteration_idx = 19
+
+result = all_results[iteration_idx]
+
+iteration = result['iteration']
+image = result['model_map']
+
+data = image[:,0]
+data[data <= 0 * data.unit] = 1e-12 * data.unit
+
+hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')
+
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_511keV_ScAttBinning_511keV-DC2-ScAtt-Upsampling_57_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb new file mode 100644 index 00000000..221b934f --- /dev/null +++ b/tutorials/image_deconvolution/511keV/ScAttBinning/511keV-DC2-ScAtt-Upsampling.ipynb @@ -0,0 +1,1940 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, 511keV, Upsampling\n", + "\n", + "updated on 2024-01-30 (the commit 26cfdeacb25335bd511a91c4f8a29bdeb36408f2)\n", + "\n", + "This notebook explains image reconstruction using the pixel resolution of the model map finer than that of the response matrix.\n", + "\n", + "Note that this notebook is advanced. It is assumed that you have already performed the two notebooks (511keV-DC2-ScAtt-DataReduction.ipynb, 511keV-DC2-ScAtt-ImageDeconvolution.ipynb).\n", + "\n", + "## Point\n", + "\n", + "In the current implementation, the pixel size of the model map can be differnt from that of the response matrix. The model pixel size is used in the following instances:\n", + "\n", + "- coordsys_conv_matrix\n", + "- image_deconvolution\n", + "\n", + "Thus, make sure that NSIDE in these instances must be the same. In this notebook, I present the case with NSIDE = 32 in the model map.\n", + "\n", + "When we convert the model map in the galactic coordinate to the detector coordinate, the pixel size will be downscaled so as the converted model map has the same pixel resolution matching the detector response.\n", + "Thus, using finer resolution in the model space does not improve the angular resolution in principle, while the reconstructed image will be smoother.\n", + "\n", + "There are three different NSIDE defined in the analysis:\n", + "\n", + "- NSIDE for the pixel resolution of the model (coordsys_conv_matrix, image_deconvolution)\n", + "- NSIDE for the pixel resolution of the response/data/background CDS (full_detector_response, inputs_511keV_DC2.yaml)\n", + "- NSIDE for the pixel resolution of the spacecraftattitude binning (exposure_table)\n", + "\n", + "Normally, these three values are set equal, but in principle they can be different." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "e246b643", + "metadata": {}, + "outputs": [], + "source": [ + "nside_scatt_binning = 32\n", + "nside_model = 32" + ] + }, + { + "cell_type": "markdown", + "id": "8d093a5f", + "metadata": {}, + "source": [ + "**In this notebook I change the NSIDE in the exposure table, so the binned data need to be reproduced.**" + ] + }, + { + "cell_type": "markdown", + "id": "7d93d4e9-d70f-41b5-93b6-fa8c556403c8", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/511keV/ScAttBinning\n", + "- inputs_511keV_DC2.yaml\n", + "- imagedeconvolution_parfile_scatt_511keV.yml" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16.4 s, sys: 1.14 s, total: 17.6 s\n", + "Wall time: 17.2 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "16" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside_local = full_detector_response.nside\n", + "npix_local = hp.nside2npix(nside_local)\n", + "\n", + "nside_local" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 1\n", + " EDGES: [509.0 keV, 513.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 60\n", + " EDGES: [0.0 deg, 3.0 deg, 6.0 deg, 9.0 deg, 12.0 deg, 15.0 deg, 18.0 deg, 21.0 deg, 24.0 deg, 27.0 deg, 30.0 deg, 33.0 deg, 36.0 deg, 39.0 deg, 42.0 deg, 45.0 deg, 48.0 deg, 51.0 deg, 54.0 deg, 57.0 deg, 60.0 deg, 63.0 deg, 66.0 deg, 69.0 deg, 72.0 deg, 75.0 deg, 78.0 deg, 81.0 deg, 84.0 deg, 87.0 deg, 90.0 deg, 93.0 deg, 96.0 deg, 99.0 deg, 102.0 deg, 105.0 deg, 108.0 deg, 111.0 deg, 114.0 deg, 117.0 deg, 120.0 deg, 123.0 deg, 126.0 deg, 129.0 deg, 132.0 deg, 135.0 deg, 138.0 deg, 141.0 deg, 144.0 deg, 147.0 deg, 150.0 deg, 153.0 deg, 156.0 deg, 159.0 deg, 162.0 deg, 165.0 deg, 168.0 deg, 171.0 deg, 174.0 deg, 177.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 3072\n", + " NSIDE: 16\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "This section is the same as in 511keV-DC2-ScAtt-DataReduction.ipynb, but the nisde is changed to 32." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 1.8322594196359498 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f8fbe1f0f5ca49299ffcaa7ce1ecabf1", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(8272, 427)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.49705286596814, -21.370653963754705][44.49899938347305, 68.62948123249228][0.9999999999969589, 1.0000000000065512, 0.999...22051.0220510
11(8399, 427)[[44.78167623289732, -21.840823005240516], [44...[[44.781676232897325, 68.15917699475948], [44....[44.84546317102121, -21.94574666279381][44.845668028631366, 68.05426833879696][0.9999999999969589, 0.9999999999969589, 0.999...7207.072070
22(8528, 427)[[44.937249783176014, -22.096275698920152], [4...[[44.93724978317603, 67.90372430107985], [44.9...[45.280789592422735, -22.65671255168847][45.28405398202019, 67.34354151639131][0.9999999999969589, 1.0000000000065512, 0.999...29025.0290250
33(8528, 488)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.792486557202956, -23.48162697469867][45.79313907872797, 66.51842748236865][1.0000000000065512, 0.9999999999969589, 0.999...13091.0130910
44(8656, 488)[[45.978454945885545, -23.778456203550505], [4...[[45.978454945885545, 66.22154379644951], [46....[46.11600105920392, -23.997057178710705][46.11666483156788, 66.00300061062126][0.9999999999969589, 0.9999999999969589, 1.000...13268.0132680
.................................
562562(3526, 515)[[19.469949806943756, 24.43289490159796], [19....[[199.46994980694376, 65.56710509840204], [199...[19.471417500535573, 24.430350678106848][199.47141729115225, 65.56964934798671][1.000000000001755, 0.9999999999969589, 0.9999...257.02570
563563(745, 3302)[[289.1161733315789, 62.182064711183735], [289...[[109.11617333157892, 27.817935288816265], [10...[289.1158698854739, 62.181869345669945][109.11587008833249, 27.818130910219594][0.9999999999969589, 1.0000000000065512, 0.999...216.02160
564564(11555, 3438)[[129.37391657068838, -62.722167168565605], [1...[[129.37391657068838, 27.277832831434402], [12...[129.3748932372682, -62.7229126247577][129.3748932228599, 27.277087393995096][0.9999999999969589, 0.9999999999969589, 0.999...38.0380
565565(749, 3438)[[309.37452108662, 62.72183635479668], [309.37...[[129.37452108662, 27.27816364520332], [129.37...[309.3747190421793, 62.723149712157756][129.37471903379148, 27.27685031183828][0.9999999999969589, 1.0000000000065512, 1.000...57.0570
566566(11205, 2781)[[83.68502160846401, -56.50792179772638], [83....[[83.68502160846401, 33.49207820227362], [83.6...[83.68453862559674, -56.50760146476969][83.68453900120738, 33.49239873132499][0.9999999999969589, 0.9999999999969589, 0.999...10.0100
\n", + "

567 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (8272, 427) \n", + "1 1 (8399, 427) \n", + "2 2 (8528, 427) \n", + "3 3 (8528, 488) \n", + "4 4 (8656, 488) \n", + ".. ... ... \n", + "562 562 (3526, 515) \n", + "563 563 (745, 3302) \n", + "564 564 (11555, 3438) \n", + "565 565 (749, 3438) \n", + "566 566 (11205, 2781) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[44.78167623289732, -21.840823005240516], [44... \n", + "2 [[44.937249783176014, -22.096275698920152], [4... \n", + "3 [[45.66020516346508, -23.269427365755966], [45... \n", + "4 [[45.978454945885545, -23.778456203550505], [4... \n", + ".. ... \n", + "562 [[19.469949806943756, 24.43289490159796], [19.... \n", + "563 [[289.1161733315789, 62.182064711183735], [289... \n", + "564 [[129.37391657068838, -62.722167168565605], [1... \n", + "565 [[309.37452108662, 62.72183635479668], [309.37... \n", + "566 [[83.68502160846401, -56.50792179772638], [83.... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[44.781676232897325, 68.15917699475948], [44.... \n", + "2 [[44.93724978317603, 67.90372430107985], [44.9... \n", + "3 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "4 [[45.978454945885545, 66.22154379644951], [46.... \n", + ".. ... \n", + "562 [[199.46994980694376, 65.56710509840204], [199... \n", + "563 [[109.11617333157892, 27.817935288816265], [10... \n", + "564 [[129.37391657068838, 27.277832831434402], [12... \n", + "565 [[129.37452108662, 27.27816364520332], [129.37... \n", + "566 [[83.68502160846401, 33.49207820227362], [83.6... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.49705286596814, -21.370653963754705] \n", + "1 [44.84546317102121, -21.94574666279381] \n", + "2 [45.280789592422735, -22.65671255168847] \n", + "3 [45.792486557202956, -23.48162697469867] \n", + "4 [46.11600105920392, -23.997057178710705] \n", + ".. ... \n", + "562 [19.471417500535573, 24.430350678106848] \n", + "563 [289.1158698854739, 62.181869345669945] \n", + "564 [129.3748932372682, -62.7229126247577] \n", + "565 [309.3747190421793, 62.723149712157756] \n", + "566 [83.68453862559674, -56.50760146476969] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.49899938347305, 68.62948123249228] \n", + "1 [44.845668028631366, 68.05426833879696] \n", + "2 [45.28405398202019, 67.34354151639131] \n", + "3 [45.79313907872797, 66.51842748236865] \n", + "4 [46.11666483156788, 66.00300061062126] \n", + ".. ... \n", + "562 [199.47141729115225, 65.56964934798671] \n", + "563 [109.11587008833249, 27.818130910219594] \n", + "564 [129.3748932228599, 27.277087393995096] \n", + "565 [129.37471903379148, 27.27685031183828] \n", + "566 [83.68453900120738, 33.49239873132499] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 22051.0 \n", + "1 [0.9999999999969589, 0.9999999999969589, 0.999... 7207.0 \n", + "2 [0.9999999999969589, 1.0000000000065512, 0.999... 29025.0 \n", + "3 [1.0000000000065512, 0.9999999999969589, 0.999... 13091.0 \n", + "4 [0.9999999999969589, 0.9999999999969589, 1.000... 13268.0 \n", + ".. ... ... \n", + "562 [1.000000000001755, 0.9999999999969589, 0.9999... 257.0 \n", + "563 [0.9999999999969589, 1.0000000000065512, 0.999... 216.0 \n", + "564 [0.9999999999969589, 0.9999999999969589, 0.999... 38.0 \n", + "565 [0.9999999999969589, 1.0000000000065512, 1.000... 57.0 \n", + "566 [0.9999999999969589, 0.9999999999969589, 0.999... 10.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 22051 0 \n", + "1 7207 0 \n", + "2 29025 0 \n", + "3 13091 0 \n", + "4 13268 0 \n", + ".. ... ... \n", + "562 257 0 \n", + "563 216 0 \n", + "564 38 0 \n", + "565 57 0 \n", + "566 10 0 \n", + "\n", + "[567 rows x 10 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt_binning, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it.\n", + "\n", + "**With NSIDE = 32, this process may take a few hours. I also prepared a python script to create the conversion matrix. If the notebook does not work, you can use mk_ccm_upsampling.py**" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a6488b4", + "metadata": {}, + "outputs": [], + "source": [ + "%%time\n", + "\n", + "coordsys_conv_matrix = CoordsysConversionMatrix.spacecraft_attitude_binning_ccm(full_detector_response, exposure_table, nside_model = nside_model, use_averaged_pointing = True)" + ] + }, + { + "cell_type": "markdown", + "id": "427fd56f", + "metadata": {}, + "source": [ + "You can save CoordsysConversionMatrix as a hdf5 file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dea7c0f6", + "metadata": {}, + "outputs": [], + "source": [ + "coordsys_conv_matrix.write(f\"ccm_nside{nside_model}.hdf5\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "3f45b3cc", + "metadata": {}, + "source": [ + "You can also read the saved file." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "60f38738", + "metadata": {}, + "outputs": [], + "source": [ + "coordsys_conv_matrix = CoordsysConversionMatrix.open(f\"ccm_nside{nside_model}.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "b6cda81d", + "metadata": {}, + "source": [ + "**Check the matrix shape**" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "96a387db", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Formatcoo
Data Typefloat64
Shape(567, 12288, 3072)
nnz27869184
Density0.0013020833333333333
Read-onlyTrue
Size850.5M
Storage ratio0.0
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coordsys_conv_matrix.contents" + ] + }, + { + "cell_type": "markdown", + "id": "4ae2fcdb", + "metadata": {}, + "source": [ + "# 3. produce the binned data" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "d6bdd700", + "metadata": {}, + "outputs": [], + "source": [ + "def get_binned_data_scatt(unbinned_event, exposure_table, psichi_binning = 'local', sparse = False):\n", + " exposure_dict = {row['healpix_index']: row['scatt_binning_index'] for _, row in exposure_table.iterrows()}\n", + " \n", + " # from BinnedData.py\n", + " \n", + " # Get energy bins:\n", + " energy_bin_edges = np.array(unbinned_event.energy_bins)\n", + " \n", + " # Get phi bins:\n", + " number_phi_bins = int(180./unbinned_event.phi_pix_size)\n", + " phi_bin_edges = np.linspace(0,180,number_phi_bins+1)\n", + " \n", + " # Define psichi axis and data for binning:\n", + " if psichi_binning == 'galactic':\n", + " psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = 'galactic', label='PsiChi')\n", + " coords = SkyCoord(l=unbinned_event.cosi_dataset['Chi galactic']*u.deg, b=unbinned_event.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic')\n", + " if psichi_binning == 'local':\n", + " psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = SpacecraftFrame(), label='PsiChi')\n", + " coords = SkyCoord(lon=unbinned_event.cosi_dataset['Chi local']*u.rad, lat=((np.pi/2.0) - unbinned_event.cosi_dataset['Psi local'])*u.rad, frame = SpacecraftFrame())\n", + "\n", + " # Define scatt axis and data for binning\n", + " n_scatt_bins = len(exposure_table)\n", + " scatt_axis = Axis(np.arange(n_scatt_bins + 1), label='ScAtt')\n", + " \n", + " is_nest = True if exposure_table.scheme == 'nested' else False\n", + " \n", + " nside_scatt = exposure_table.nside\n", + " \n", + " zindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[0] * 180 / np.pi, \n", + " unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)\n", + " xindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[0] * 180 / np.pi, \n", + " unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True) \n", + " scatt_data = np.array( [ exposure_dict[(z, x)] + 0.5 if (z,x) in exposure_dict.keys() else -1 for z, x in zip(zindex, xindex)] ) # should this \"0.5\" be needed?\n", + " \n", + " # Initialize histogram:\n", + " binned_data = Histogram([scatt_axis,\n", + " Axis(energy_bin_edges*u.keV, label='Em'),\n", + " Axis(phi_bin_edges*u.deg, label='Phi'),\n", + " psichi_axis],\n", + " sparse=sparse)\n", + "\n", + " # Fill histogram:\n", + " binned_data.fill(scatt_data, unbinned_event.cosi_dataset['Energies']*u.keV, np.rad2deg(unbinned_event.cosi_dataset['Phi'])*u.deg, coords) \n", + " \n", + " return binned_data" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "6c921875", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7.34 s, sys: 362 ms, total: 7.7 s\n", + "Wall time: 7.71 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "signal_filepath = path_data + \"511_thin_disk_3months_unbinned_data.fits.gz\"\n", + "\n", + "unbinned_signal = UnBinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "unbinned_signal.cosi_dataset = unbinned_signal.get_dict_from_fits(signal_filepath)\n", + "\n", + "binned_signal = get_binned_data_scatt(unbinned_signal, exposure_table, psichi_binning = 'local', sparse = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "291c718a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1min 37s, sys: 4.49 s, total: 1min 41s\n", + "Wall time: 1min 41s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "bkg_filepath = path_data + \"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "unbinned_bkg = UnBinnedData(input_yaml = \"inputs_511keV_DC2.yaml\")\n", + "\n", + "unbinned_bkg.cosi_dataset = unbinned_bkg.get_dict_from_fits(bkg_filepath)\n", + "\n", + "binned_bkg = get_binned_data_scatt(unbinned_bkg, exposure_table, psichi_binning = 'local', sparse = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c01bdfaf", + "metadata": {}, + "outputs": [], + "source": [ + "binned_event = binned_signal + binned_bkg" + ] + }, + { + "cell_type": "markdown", + "id": "6952e6a5", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "42ae33b7", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "dc875668", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(binned_event, \n", + " binned_bkg, \n", + " full_detector_response,\n", + " coordsys_conv_matrix,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "20f9c0be", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "8982e77a", + "metadata": {}, + "source": [ + "## 4-2. Load the response file" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "9f4407c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 20.5 s, sys: 2.81 s, total: 23.3 s\n", + "Wall time: 23.8 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()\n", + "dataloader.calc_image_response_projected() # mandatory" + ] + }, + { + "cell_type": "markdown", + "id": "e6091c9c", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "a1c17851", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_511keV.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "1b162894", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_511keV.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "89aeb1ad", + "metadata": {}, + "source": [ + "**Do not forget to make sure that NSIDE of the model map is modified to 32**" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "46c7a9f0", + "metadata": {}, + "outputs": [], + "source": [ + "image_deconvolution.override_parameter(f\"model_property:nside = {nside_model}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "1e5a7300", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 509.0\n", + "- 513.0\n", + "nside: 32\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ef13726b066d4ba1899e84c14267ab97", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/12288 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.4918880393981695\n", + " loglikelihood: -1756598.0322312904\n", + " background_normalization: 1.0024218882576656\n", + " Iteration 2/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1711635.518049215\n", + " background_normalization: 0.9971577453519401\n", + " Iteration 3/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0871086083508616\n", + " loglikelihood: -1701368.15366006\n", + " background_normalization: 0.999685900356176\n", + " Iteration 4/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1695610.545668051\n", + " background_normalization: 0.9999373176079243\n", + " Iteration 5/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1691748.2580263622\n", + " background_normalization: 0.9999267553231147\n", + " Iteration 6/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.3352964931227564\n", + " loglikelihood: -1684493.5281347963\n", + " background_normalization: 0.9999159811049237\n", + " Iteration 7/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1683748.9067139933\n", + " background_normalization: 0.9998932072705006\n", + " Iteration 8/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.2014651710448034\n", + " loglikelihood: -1682463.6552417497\n", + " background_normalization: 0.9998941090155609\n", + " Iteration 9/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1682061.3451082548\n", + " background_normalization: 0.9998924718443246\n", + " Iteration 10/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1681719.0622706544\n", + " background_normalization: 0.9998916199988997\n", + " Iteration 11/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1681425.6162618792\n", + " background_normalization: 0.9998911255697669\n", + " Iteration 12/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.715627885915885\n", + " loglikelihood: -1681000.181726581\n", + " background_normalization: 0.999890734568304\n", + " Iteration 13/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1680801.790441107\n", + " background_normalization: 0.9998901905185211\n", + " Iteration 14/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.2122797273704515\n", + " loglikelihood: -1680427.7005234426\n", + " background_normalization: 0.999889956371463\n", + " Iteration 15/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1680295.699487886\n", + " background_normalization: 0.9998895673515545\n", + " Iteration 16/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1680177.476488873\n", + " background_normalization: 0.9998894604073867\n", + " Iteration 17/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.1526900219311305\n", + " loglikelihood: -1680055.2851265944\n", + " background_normalization: 0.9998893892247812\n", + " Iteration 18/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1679960.7616204866\n", + " background_normalization: 0.9998893341848446\n", + " Iteration 19/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1679875.0225631895\n", + " background_normalization: 0.9998893073627257\n", + " Iteration 20/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: -1679796.9820035975\n", + " background_normalization: 0.9998892961410736\n", + "#### Done ####\n", + "\n", + "CPU times: user 1h 9min 8s, sys: 3min 24s, total: 1h 12min 33s\n", + "Wall time: 13min 17s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "8b9266e3", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0024218882576656,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': -1756598.0322312904,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9971577453519401,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': -1711635.518049215,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999685900356176,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': -1701368.15366006,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9999373176079243,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': -1695610.545668051,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9999267553231147,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': -1691748.2580263622,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9999159811049237,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': -1684493.5281347963,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998932072705006,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': -1683748.9067139933,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9998941090155609,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': -1682463.6552417497,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998924718443246,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': -1682061.3451082548,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998916199988997,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': -1681719.0622706544,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998911255697669,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': -1681425.6162618792,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999890734568304,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': -1681000.181726581,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998901905185211,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': -1680801.790441107,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.999889956371463,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': -1680427.7005234426,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998895673515545,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': -1680295.699487886,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998894604073867,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': -1680177.476488873,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9998893892247812,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': -1680055.2851265944,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998893341848446,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': -1679960.7616204866,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998893073627257,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': -1679875.0225631895,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9998892961410736,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': -1679796.9820035975,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "45404e60", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "ed1e8893", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "eef989ce", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "f96c2978", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlkAAAHMCAYAAADmu70qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABie0lEQVR4nO3deVxU9f4/8NcsDMgmMCiiCIogiqLgnorimrZom7bcTLOyuua1r612+1mWtm+YZYsULrkU3dIM9YIbV5NcEWURNZnQBBlAYAYGhpn5/YGMTAw4MDPMMPN6Ph49nHPO55zz/gjIq3M+53MEOp1OByIiIiKyKKGtCyAiIiJyRAxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFYgtnUBBFRVVWHLli3Izs5GTk4OKisrsXTpUkyfPt2s4x47dgwbNmxAXl4etFotevbsiQcffBCTJk2yUOVERETUHIYsO1BeXo7ExEQEBAQgLCwMJ0+eNPuYycnJePfddzFs2DA88cQTEIlE+PPPP3H16lULVExEREQ3w5BlB6RSKX766SdIpVLk5uZiwYIFZh3vypUr+Pjjj3HPPfdg8eLFFqqSiIiIWoMhyw5IJBJIpVKT2qanp2Pjxo3Iy8uDQCDA4MGD8fTTT6N37976Ntu2bYNWq8Vjjz0GoP52ZKdOnSAQCKxSPxERETXFge8dyO7du/HSSy+hU6dOePLJJzF37lzk5+dj4cKFuHLlir7d8ePHERwcjPT0dNx7772YNm0a7rjjDqxduxZardaGPSAiInIevJLVQVRVVSE+Ph533HEHXnjhBf36adOm4eGHH8bGjRv16y9dugShUIh33nkHDz74IPr06YO0tDSsX78eGo0GTz75pK26QURE5DQYsjqIY8eOQaFQYNKkSbh27Zp+vVAoRP/+/XHixAn9uurqami1Wjz55JP4xz/+AQCIi4tDZWUlkpKSMGfOHLi7u7d3F4iIiJwKQ1YHcenSJQDAs88+a3S7h4eH/rOrqyuqq6sxefJkgzaTJk3C77//jry8PERHR1urVCIiIgJDVofRMJbq1VdfhZ+fX5PtIpFI/1kqleLSpUvw9fU1aNOwXFlZacVKiYiICGDI6jB69OgBAPDx8cGwYcNabBsREYFLly5BLpeje/fu+vVyuVx/DCIiIrIuPl3YQYwYMQIeHh7YuHEj6urqmmxvPE5r4sSJAIBff/1Vv06r1WLnzp3w9vZGRESE1eslIiJydrySZSd+/PFHKBQKlJSUAAAOHTqkn5393nvvhaenJ5YsWYKVK1fisccew6RJk+Dj44OioiKkp6dj4MCB+L//+z8AwNixYzF06FBs3LgR165dQ1hYGP73v/8hMzMTzz//PCQSic36SURE5CwEOp1OZ+siCJg9ezYKCwuNbtu6dSsCAwMBACdPnsR3332H7Oxs1NbWokuXLhg0aBDuuecegytUVVVVWLt2Lfbu3YvKykr07NkTDz30EKZOndou/SEiInJ2DFlEREREVsAxWURERERWwJBFREREZAUMWTaiUqlw9uxZqFQqW5dCREREVsCQZSMymQxPPPEEZDKZrUuxugsXLti6hHblTP1lXx2XM/WXfXVctu4vQxZZXU1Nja1LaFfO1F/21XE5U3/ZV8dl6/4yZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRUwZBERERFZAUMWERERkRWIbV2AJcjlciQlJSEnJwe5ubmorq5GfHw8YmJiWnWcPXv2ICkpCRcuXIBYLEZISAgef/xxDB06VN9GoVBgw4YNSEtLQ3FxMXx9fTF06FA8+uijCAgIsHTXiIiIqINyiJBVUFCATZs2ISgoCKGhocjKymr1Mb755husW7cOcXFxmDZtGurq6nDx4kXI5XJ9G61WiyVLlkAmk+Guu+5Cz549cenSJfz88884evQoNmzYAHd3d0t2jYiIiDoohwhZERER2LFjB7y9vbF//34sW7asVftnZWVh3bp1WLhwIWbPnt1iu9zcXDz77LO455579OuDg4Pxzjvv4NixYxg3blyb+0FERESOwyFClrlXj3744Qf4+fnhvvvug06nQ3V1tdFjVlVVAQD8/PwM1kulUgCAq6urWXUQERE5Cp1OB50O0Gm00Gp00Gl10Gp00Gp10Gl019c12maw/kb7xtsaPms1Oug0Wui09XeZdA3H1RruX1RUjshI2/0dOETIMtfx48cxcOBAJCUlYcOGDSgvL4efnx/mzJmDe++9V98uIiICnTp1wtq1a+Hl5YXg4GBcvnwZa9asQb9+/QzGbhEREZlCp7sePuq00NRpoa2r/6zVaKFp+FxXH0Y0DZ/rrn/W6KDVaPXhRNsQaBo+NwouWo0OxVdLUX40W7+s1Wjrg0mdDlpt430bbWtYp/1bMDIITMaDlM0JADxhu9M7fciqrKxEeXk5zpw5gxMnTmDevHkICAjAzp07ER8fD7FYjJkzZwIAfHx88Prrr+O9997D//3f/+mPMWLECLzxxhsQi5v/65TL5SgpKdEvy2Qy63WKiMiJabU3gklDaNGory9rDJe1dVqUXqzCRUWhPrzUhxutPvjcCEDXw4TRbY3W6ds1BKEbwUmjaRyi6re3dxi5gsp2PZ9N6epDrEAgsMnp7S5kabVaqNVqk9pKJBKz/+IabgGWl5fjtddew6RJkwAAcXFxmDdvHtavX68PWQDQuXNnhIeH45577kGvXr1w/vx5bN68Ge+88w7eeOONZs+zfft2JCYmNll/8eJFaDQas/pg7xQKBbKzs21dRrtxpv6yr47L2v3V6XTQqnWoq9aiTqVt9KfmxvL1dZqahisn0F91qb96ghu3l65v12p0QBsySy6KLd9JRyIABEJAIBQ0+bN+W9P1AhEgEBhZLwTQeLnRsfH3to2O3ex5BM0fT1WjQnZ2tsVDVqSJ9yDtLmSdOnUKixcvNqnthg0bEBISYtb5GsZRicVixMXF6dcLhUJMnDgR33zzDYqKihAQEIC//voLzz77LF555RV929jYWHTr1g1vv/020tPTMWrUKKPnmTFjBsaMGaNflslkWLFiBXr37o2IiAiz+mDvsrOzTf6GdATO1F/21XGZ0l+dtv6KkLqmDrXKOtQoalGj/1Nd/59CjVplHVTX19VeX1ejUNcHIgcnEAkgEgshFAkgFAshFAsgEgmvf65fL7q+vn5ZCFHDZ/H1z/r2fz/W9c+ihj8FEPx9WXi9rVAAoVgA2Z8yhPYJ1e8nEAn024RCAQQNbf+2XSC0zZUgc9n659buQlZwcDCWLl1qUtuGAefm8Pb2hkQigaenJ0QikcE2X19fAPW3FBtuIdbW1mL06NEG7caOHQsAOH36dLMhy9/fH/7+/mbXS0RkqrpaDWoqa6GqVEOtqkOdWgtNrQZ1NRpoarWoq9Wgrtbwc12NFhq1BqXya/jT9Rg06vr2dbXX923UXqPWtn+nBLgeSm6EkYZl/TqX6+tE14OJS6M2IiFELo0Ci1iIklI5ugUGGASdJoHm+jp9CGoUfBrWCcTC6wFKoA9AtrpN1ZwyXRG6hvnYugynYXchSyqVYvr06e12PqFQiPDwcOTm5kKtVsPFxUW/rWGOLB8fHwBAaWlp/SVureE/LHV1dQDg8Lf9iMh2tHVaqJRqqCpqoaqs1YcnVWXt9f/U19fdWF9XY96/SaWoslD1N7i4iSDxcIGrpwtcPa7/59l0+UYbCSSdxPpgVH87yLLBJTtbjcjIUIsekwiww5BlbUVFRVCpVAa3GSdMmICsrCzs2rULd955JwCgpqYGKSkp6NWrl/4KVM+ePaHT6bBv3z6DIJiamgoACA8Pb8eeEFFHo9PpUFejQW11HdRVdfV/Vtf/WatUGwSk+iB143NtVZ1Naxe5CCF2FUEkEULsIrrxWSKCWNJMcGr0p+T6nyIx3+ZGzsNhQta6desAAPn5+QCA3bt3IzMzEwAwd+5cfbuVK1ciIyMDaWlp+nUzZ87Er7/+io8//hgFBQUICAjA7t27UVRUhLffflvfbvr06diyZQs++OAD5OXloXfv3sjLy8Ovv/6K3r17cyJSIgel1WihrtKgsrhKH5AawlHjP9Uq4wFK/6eqrk2DsltDIABcvSRw85LAzcsFbl4SuHpK4NJJpA9EYlchRBLR9bB0/bNEBLHkxuc/ZBfQf0A/iCUiiFyEHXZMDpEtOUzISkhIMFhOTk7Wf24csoxxdXXFJ598gjVr1iA5ORkqlQphYWF49913MWLECH27zp074+uvv0ZCQgJ+++03bN++Hd7e3rjtttvwxBNPGNxqJCL7odXq6oNPVf1g7Nqquut/1g/Krq1So6aq/mpSw/bG29Sq+ttuR3Gp3Wt39XCB6/Ww1BCc/h6iGv5z9XKBq7uLRQKRa5kYbl4SC/SAyHk5TMhqfGWqJatWrTK63tfXF6+88spN9+/SpQtefvnlVtVGROZruNWmqlSjRlELlaJ+DFKNQl3/5Jriejj6W1CqUdZfSbIVsasIkk5iuHQS6/90cRdD4nb9cycxJJ1EkLi7wM3bMDi5erpAKOLtNaKOymFCFhF1HFqNtv7x/kp1fVhSXB9/dD0sGQSpRtu0de33yL9IIoSruwskHmJI3F1Qq1XBr4tvfShyF8Ol0/Xw5GYYoOq31S+L3cQQ8jYbkdNiyCIiq6lRqnE1rwyFZ8tQdO4aqkpV7TaIWygW1A+4vh6UXN0bffZwgcRdDMn17a7XP+vXu4shcjGc0sXW8+0QUcfDkEVEFqMsVaEwt7Q+VJ0tQ2lBpdkDvUUuwvqxRh7XxyN5usDNs/5WmquXBG7XH/9385LUB6XrgUksEd384EREVsSQRURtotPpUCVXI3dvgT5YKYqrW9xH/0i/142g1DD2qPFnN0+Jvo3YlWGJiDomhiwiMom2Tgt5fkX9VarroapGoQbwl9H2AgHgF+KNbhG+6NbPFwERfnD3cW3foomIbIghi4iMUqvqcPXcNf2tv6vnr7U4g7jIRYguYT76UNU1zAcSd05rQkTOiyGLiKDT6qAsU0H+RzkKc+tDlTy/Ajpt8wOqXD1c4N5djLBhwegW4Qv/0M6czZuIqBGGLCInoVFrUFlcjcqiKlRcrUJF4fU/i6qgKK6+6ct+PaRu169S+SEgwhe+PTyRk5vDd74RETWDIYvIgdRWqVFxtao+SBVVoaKoGhVFSlRerYKiRNWqJ/18gzwREOGrD1ae/p2sVzgRkQNiyCLqQHQ6HarLa1FRVHXjilRRVX2QKqqCqlLd6mOKXITwDnCHV4A7fLp7IKCvLwL6+vKVKkREZmLIIuoAdDodTv50Hqd/vQh1dfODz5vj6uGiD1LeAe7w7nrjs7uPK1/+S0RkBQxZRB1A7t4CnEg632Ibdz9XeHd1h3c3D4MQ5d3VHa6efMqPiKi9MWQR2bkSWQXS1+fol3tE+aNzoAe8AzrBq2t9kPLq6s4ZzomI7AxDFpEdq62uw574k/on/yJvDcHouXx/HhFRR8BJbYjslE6nw6GEM6gorAIA+Pf2xsiHImxcFRERmYohi8hOnd13CRd+uwIAcOkkxsR/RUPkwluCREQdBUMWkR0q+bMCh9dl65fHLRgI7wAPG1ZEREStxZBFZGfUqjrsjc/Qj8PqPyUYvUcG2rgqIiJqLYYsIjui0+lw6JsslF9RAgCkvbwx8h/9bFwVERG1BUMWkR3JO3AJ5w/+BQBw6STCxH9Fc2oGIqIOiiGLyE6UFlTit8Qb47DGPh6Fzt04DouIqKNiyCKyA2rV9fmwauvHYfWb1BN9buE4LCKijowhi8gO/PZtNsr/qh+H5RfihVFz+tu4IiIiMhdDFpGN5R24hHP/uwwAcHETYdK/YjgOi4jIATBkEdlQ2aVKHPo2S7889vGB6BzIcVhERI6AIYvIRurHYWXcGIc1sSf6jO5u46qIiMhSGLKIbOTwumxcu6wAAPgFe2HUIxyHRUTkSBiyiGzgXNpl5B2oH4clduV8WEREjoghi6idlV1WGI7DemwAfLp72rAiIiKyBoYsonZUV6PB3lUnUVejAQD0jQtC2NgeNq6KiIisQWzrAixBLpcjKSkJOTk5yM3NRXV1NeLj4xETE9Oq4+zZswdJSUm4cOECxGIxQkJC8Pjjj2Po0KH6NqWlpfjyyy9x+PBhVFVVISQkBA8//DAmTJhg6W6RA/ptXTbKCurHYfn29MTouZE2roiIiKzFIUJWQUEBNm3ahKCgIISGhiIrK+vmO/3NN998g3Xr1iEuLg7Tpk1DXV0dLl68CLlcrm+jVCqxcOFClJWV4b777oOfnx/27duH1157DXV1dZgyZYolu0UO5tzBy8jbfwlAwzisGIhdOQ6LiMhROUTIioiIwI4dO+Dt7Y39+/dj2bJlrdo/KysL69atw8KFCzF79uxm223fvh2XL1/Gxx9/rL+6ddddd+Gpp57CZ599hri4OLi4uJjVF3JM1y4rcCjhRvgf8+gA+PbgOCwiIkfmEGOy3N3d4e3t3eb9f/jhB/j5+eG+++6DTqdDVVWV0XanTp2Cj4+Pwe1DoVCICRMmoLS0FBkZGW2ugRxXXa0Ge1Zl3BiHNb4HwsdxHBYRkaNziJBlruPHj6Nfv35ISkrCjBkzMG3aNNx111348ccfDdqp1Wq4uro22d/NzQ0AcPbs2XaplzqW9PU5KCuoBAD49PDELRyHRUTkFBzidqE5KisrUV5ejjNnzuDEiROYN28eAgICsHPnTsTHx0MsFmPmzJkAgODgYBw/fhyFhYXo1q2b/hiZmZkAYDB+6+/kcjlKSkr0yzKZzEo9Inty4be/kLu3AED9OKxJi6Ph4ub0P3ZERE7B7v6112q1UKvVJrWVSCQQCARmna/h1mB5eTlee+01TJo0CQAQFxeHefPmYf369fqQdccdd2Dbtm147bXX8Mwzz+gHvv/vf/8DANTU1DR7nu3btyMxMbHJ+osXL0Kj0ZjVB3unUCiQnZ1t6zLaTUN/q0vUOJVwRb++11QfXKkowBUH+qtwpq+tM/UVcK7+sq+Oy1r9jYw07Y6E3YWsU6dOYfHixSa13bBhA0JCQsw6X8PtP7FYjLi4OP16oVCIiRMn4ptvvkFRURECAgLQp08fLFu2DB9++CEWLlwIAPDz88OiRYvw4YcfolOnTs2eZ8aMGRgzZox+WSaTYcWKFejduzciIiLM6oO9y87ONvkb0hFkZ2ejb1gEtm84DG2tDgAQPq4Hxj84yMaVWZ4zfW2dqa+Ac/WXfXVctu6v3YWs4OBgLF261KS2UqnU7PN5e3tDIpHA09MTIpHh4/S+vr4A6m8pBgQEAKi/wjVmzBicP38eWq0Wffv2xcmTJwEAPXv2bPY8/v7+8Pf3N7te6hjSN+SgVNYwDssDo+c5zz9qRERUz+5CllQqxfTp09vtfEKhEOHh4cjNzYVarTaYgqFhjJWPj4/BPi4uLujf/8bLfI8fPw4AGDZsmPULJrsnz1Iib0/9945IIsTEf8VwHBYRkRNyuqcLi4qKmgw6nzBhAjQaDXbt2qVfV1NTg5SUFPTq1avFK1AFBQXYtm0bRo8e3eKVLHIO5YVKXPj1xgMOo+dFwq+nlw0rIiIiW3GY/71et24dACA/Px8AsHv3bv1Tf3PnztW3W7lyJTIyMpCWlqZfN3PmTPz666/4+OOPUVBQgICAAOzevRtFRUV4++23Dc4zZ84cTJgwAV27dsWVK1ewbds2eHt747nnnrNyD8ne1dVqsHdVBjTXx2GFje2OvuODbFwVERHZisOErISEBIPl5ORk/efGIcsYV1dXfPLJJ1izZg2Sk5OhUqkQFhaGd999FyNGjDBoGxYWhuTkZJSVlaFz586YMGEC5s+frx+/Rc6puqIGaV+cRkl+BQCgc6AHxswfYPbTr0RE1HE5TMhqfGWqJatWrTK63tfXF6+88spN93/ttddaVRc5voJTxUj7IhPV5bUAAKFYgEmLOQ6LiMjZ8bcAURvV1WpwdMtZZO26McbPzVuC0Nt94BfMcVhERM6OIYuoDUoLKrFv9Sn963IAIGhwF4x7Kgr5ly/YsDIiIrIXDFlEraDT6ZD9XxmObDoLjVoLABC5CDHioQhETg2pH4N12cZFEhGRXWDIIjJRVXn94PZLp4r163x7emHCM4M5TQMRETXBkEVkgj9PXkXal6ehqqjVrxswLQTDH4iAWCJqYU8iInJWDFlELair1eDId7nITvlTv65TZwnGPTUIPQd3sWFlRERk7xiyiJpRIqvAvtWncO2yQr+uZ0wXjHsyCp28XW1YGRERdQQMWUR/o9PqcGZXPo5uOQttXf3s7SIXIUY+3A/9JwdzglEiIjIJQxZRI8oyFdK+yMTl0zfePygN8ULcM9Hw7eFpw8qIiKijYcgiuk52rAhpX51GjUKtXxd1e28Mmx0OkQsHtxMRUeswZJHTU6vq8Pt3ucjdU6Bf5+7jivFPD0KPKH8bVkZERB0ZQxY5NfnFcuxbfQrlV5T6dSHDAhD7xEC4eUlsWBkREXV0DFnklHRaHTJ/vYjj3+dBq6kf3C52FWHUnP6ImBDEwe1ERGQ2hixyOsqSahz44jT+yroxuN2/tzfiFg6GT3cObiciIstgyCKncvFIIQ5+fQY1yuuD2wXA4DtDMeS+cIjEQtsWR0REDoUhi5zG6V8v4vfvcvXLHn5uGP/PQegeKbVhVURE5KgYssgp5O4tMAhYvUd0w5jHB8DNk4PbiYjIOhiyyOFd+O0vHEw4o18ecm8YYu4J4+B2IiKyKg5CIYf258mr2L8mE6h/gBBRt/dmwCIionbBkEUO66+sEuz55CR016doiJjQEyMeimDAIiKidsGQRQ7p6vlrSPnwODRqLQAg9JZAjHlsAAMWERG1G4Yscjilf1Zi97vHoFZpAAA9Y7og7ulBEAoZsIiIqP0wZJFDKS9UYufbR/TzYAVG+mHS4hgIOQcWERG1M/7mIYehKKnGzreOorq8FgDQpU9nTHluKMQSkY0rIyIiZ8SQRQ6hurwGO986CoW8GgDg29MTt740DJJOnKWEiIhsgyGLOrwapRq73jmK8itKAIB3gDumLx3BiUaJiMimGLKoQ1Or6rD7/WMokVUCqH9VzvRXRsDdx9XGlRERkbNjyKIOS6PWIPXjE7iadw0A4OYtwfRXhsOrSyfbFkZERASGLOqgtBot9q4+hcunSwAAEncxpr88HD7dPW1cGRERUT2HGBUsl8uRlJSEnJwc5Obmorq6GvHx8YiJiTFp/9mzZ6OwsNDoth49emDz5s0G63bs2IEtW7agsLAQXbp0wX333Yd7773X7H6QaXRaHdK+PA3Z0SIAgNhVhFtfHAZpL28bV0ZERHSDQ4SsgoICbNq0CUFBQQgNDUVWVlar9l+0aBGqq6sN1hUWFmLt2rUYPny4wfpt27bhww8/xPjx43H//fcjMzMT8fHxUKlU+Mc//mF2X6hlOp0Oh9dl4/zBvwAAQrEAU5YMQUBfXxtXRkREZMghQlZERAR27NgBb29v7N+/H8uWLWvV/rGxsU3WrVu3DgAwZcoU/bqamhqsXbsWt9xyC958800AwJ133gmtVov169djxowZ8PLyMqMndDPHvj+H7JQ/AQACoQATF8WgR5S/jasiIiJqyiHGZLm7u8Pb27K3ilJTUxEYGIioqCj9uhMnTqC8vBx33XWXQdu7774b1dXVOHz4sEVrIEOntl/AqW0X9MvjnoxCr+EBNqyIiIioeQ4RsiwtLy8PMpkMkydPNlh/7tw5AEC/fv0M1kdEREAoFCIvL6/danQ22SkyHN1y4+939KORCI/tYcOKiIiIWuYQtwstLSUlBYDhrUIAKCkpgUgkgq+v4fgfFxcXeHt7o6SkpNljyuVyg+0ymcyCFTu2cwcv47fEbP3y8Af6InJKiA0rIiIiujm7C1larRZqtdqkthKJBAKBwOLn37t3L8LDw9GrVy+DbTU1NRCLjf+VSSQS1NTUNHvc7du3IzExscn6ixcvQqPRmFOy3VMoFMjOzr55QyNKz1YhN6kY0NUv9xjtDZewmjYfrz2Y09+Ohn11XM7UX/bVcVmrv5GRkSa1s7uQderUKSxevNikths2bEBIiGWvaGRkZKC4uBizZs1qss3V1RV1dXVG96utrYWra/OzjM+YMQNjxozRL8tkMqxYsQK9e/dGRESE+YXbsezsbJO/IRu7fEaO9J+O6QNW/ynBGD0v0uLB2tLa2t+OiH11XM7UX/bVcdm6v3YXsoKDg7F06VKT2kqlUoufPyUlBUKhsMl4rIbzaTQalJWVGdwyVKvVqKioaLEef39/+PvzKThTFeWVIeXDE9DW1SessLHdMXqu/QcsIiKiBnYXsqRSKaZPn26Tc9fW1uLAgQOIjo42GojCw8MBALm5ubjlllv063Nzc6HVavXbyTwlsgrsfu8Y6mrqb6OGDO2KcU9GQSBkwCIioo7D6Z4uLCoqanbQeXp6OhQKRZMB7w2GDBkCb29vbNu2zWD9tm3b4ObmZhC8qG3Kryix8+2jqK2qvy3bfaAUExZFQyhyum9VIiLq4OzuSlZbNUwemp+fDwDYvXs3MjMzAQBz587Vt1u5ciUyMjKQlpbW5BgpKSmQSCQYP3680XO4urrisccew8cff4xly5ZhxIgROHXqFP773//iiSeesPhcXc6mRqnGzrePQFVRCwDoGu6DKUuGQCwR2bgyIiKi1nOYkJWQkGCwnJycrP/cOGQ1R6lU4vDhwxg1ahQ8PZt/yfDdd98NsViMrVu34tChQ+jatSueeeYZowPlqXUyf/kDCrkKAOAX4oVbXxwGFzeH+RYlIiIn4zC/wYxdmTJm1apVRtd7eHggNTXVpGPceeeduPPOO02ujW6u6loNsnbX38ZteB+hq4eLjasiIiJqOw50IbuQ8dN5/UD3/pOC4dXF3cYVERERmYchi2yuoqgKuXsLAABiVxGi7+pj44qIiIjMx5BFNnfix3PQaurnw4q6rRc6dW5+UlciIqKOgiGLbKr0z0qcP/QXAMDV0wVRt/e2cUVERESWwZBFNnXshzz9a3MGzwiFxJ2D3YmIyDEwZJHNFOWV4c/jVwEA7n6uiJxq2fdQEhER2RJDFtmETqfD0a15+uUh94Rz0lEiInIoDFlkE5cz5SjMKQUAeHdzR9/xPWxcERERkWUxZFG702kNr2INndWX7yYkIiKHw99s1O4uHilESX4FAEAa4oXQkd1sXBEREZHlMWRRu9JqtDj+wzn98rAHIiAQCmxYERERkXUwZFG7yku7jPIrSgBAt36+CBrkb+OKiIiIrIMhi9pNXa0GJ388r18e/kAEBAJexSIiIsfEkEXtJiflTyhLVQCAnjFdENDX18YVERERWY+4NY0zMjLafKLo6Og270sdX22VGhnbLtQvCIBh9/e1bUFERERW1qqQtXjx4jbf3tm/f3+b9iPHcDo5HzUKNQCgz+jukAZ727giIiIi62pVyJo7d26TkJWdnY0jR44gKCgIUVFR8PX1RVlZGc6cOYOCggKMGDECkZGRFi2aOha1UoMzyZcAAAKRAEPvC7NxRURERNbXqpA1f/58g+VTp07hu+++wwsvvIDbb7/dIIDpdDr88ssvWLVqFebMmWOZaqlDunSoHGqVBgDQb0JPeAd42LgiIiIi6zNr4HtCQgJGjRqFO+64o8kVLoFAgBkzZmDkyJFISEgwq0jquBTyahQerwQAiCRCxNzdx8YVERERtQ+zQtbZs2cREhLSYptevXohNzfXnNNQB3bix3PQ1V/EwsBpveDu62bbgoiIiNqJWSHLxcUF586da7FNXl4eXFxczDkNdVBllxU4l3YZACBxF2PQHaE2roiIiKj9mBWyhg8fjiNHjmDjxo1Qq9UG29RqNTZu3IijR49ixIgRZhVJHdPxH/Kg09V/HnRnKFw9GbaJiMh5tGrg+989/fTTyMzMxNq1a5GUlIR+/frBx8cH165dQ25uLq5duwapVIqnnnrKUvVSB1H8RznyjxQBAFw8RRhwa8u3lYmIiByNWSGra9eu+Oqrr/Dll19i3759OHz4sH6bRCLB1KlT8eSTT0IqlZpdKHUsx7ae1X8OGtsZLm5mfasRERF1OGb/5pNKpXjllVfw4osv4s8//4RSqYSHhwd69uzJsVhO6q+sElw+XQIA8OrSCQExnjauiIiIqP1Z7PKCWCxGaCgHNjs7nU6Ho1tuXMUaMiscalG5DSsiIiKyDYuFrNOnT+PcuXOoqqqCu7s7wsPDERUVZanDUwchO3YVxRfqQ5VvTy/0Gd0dubkMWURE5HzMDlmnT5/GO++8g8uX6x/V1+l0+olJg4KC8PLLL2PgwIHmnoY6AK1Wh2Pf5+mXh80Oh1DYtnddEhERdXRmhayLFy/i+eefh0qlwrBhwxATEwOpVIrS0lKcPHkSR48exfPPP48vvvgCvXr1slDJZK/OH7yMa5cVAICu4T4IHtLVxhURERHZjlkhKzExEWq1Gu+99x5GjhxpsO0f//gHfv/9dyxduhSJiYl4/fXXzTkV2TmNWoMTSef1y8Mf6NvkVUtERETOxKyQlZGRgbi4uCYBq8HIkSMRFxeH48ePm3Oam5LL5UhKSkJOTg5yc3NRXV2N+Ph4xMTEmLT/7NmzUVhYaHRbjx49sHnzZv3yzz//jBMnTiA7OxtXr17FtGnT8Morr1ikHx1Z7t4CKOTVAICgQf4I7M9pO4iIyLmZFbKUSiUCAwNbbBMYGAilUmnOaW6qoKAAmzZtQlBQEEJDQ5GVldWq/RctWoTq6mqDdYWFhVi7di2GDx9usH7Tpk2oqqpC//79UVJSYnbtjkCtqsPJny7ol4fd39eG1RAREdkHs0KWVCq9aaDJzs62+mSkERER2LFjB7y9vbF//34sW7asVfvHxsY2Wbdu3ToAwJQpUwzWr1q1CgEBARAIBLj11lvbXrQDObMzH6qKWgBA71Hd4N+7s40rIiIisj2z3l04ZswYZGRkYO3ataipqTHYVlNTg2+++QYnT57E2LFjzSryZtzd3eHt7W3RY6ampiIwMLDJNBTdunXjWKNGVJW1yNxxEQAgEAowbBavYhEREQFmXsmaO3cuDh8+jI0bN2L79u3o378/fH19UVZWpn93Yffu3TF37lxL1dsu8vLyIJPJMGfOHFuXYvdO/fIH1NV1AIC+43ugc6CHjSsiIiKyD2aFrM6dO2PNmjX44osvsGfPHqSnp+u3SSQSTJ8+HU899ZTFrzJZW0pKCoCmtwrNIZfLDcZwyWQyix3bVpSlKmTvru+HyEWIIfeE2bgiIiIi+2H2ZKQ+Pj54+eWX8fzzz0Mmk+lnfA8JCYFY3PrDa7VaqNVqk9pKJBKL37rTarXYu3cvwsPDLTq31/bt25GYmNhk/cWLF6HRaCx2nvZ0IbkEGrUWABAw1BOyootAUdN2CoUC2dnZ7Vyd7ThTf9lXx+VM/WVfHZe1+hsZGWlSO4u+u7BPnz5mH+fUqVNYvHixSW03bNiAkJAQs8/ZWEZGBoqLizFr1iyLHnfGjBkYM2aMflkmk2HFihXo3bs3IiIiLHqu9lB+RYnDGX8CAFw6iTBx3nC4eUuMts3Ozjb5G9IROFN/2VfH5Uz9ZV8dl637a3fvLgwODsbSpUtNamuNpxZTUlIgFAoxefJkix7X398f/v7+Fj2mLR1POgedVgcAiLq9d7MBi4iIyFnZ3bsLpVIppk+fbm5ZbVJbW4sDBw4gOjraoQKRpZXkV+CPw1cAAG7eEgyc3tvGFREREdkfp3t3YVFREVQqldHbjOnp6VAoFBYd8O6IGr8EOnpmH0g6WeyCKBERkcNwmHcXNkwemp+fDwDYvXs3MjMzAcBgComVK1ciIyMDaWlpTY6RkpICiUSC8ePHN3ueQ4cO4fz5+nf01dXV4cKFC/pzjx071iLj0uxZYW4pCjKKAQCe/m7oP7mnjSsiIiKyTw7x7kIASEhIMFhOTk7WfzZlni6lUonDhw9j1KhR8PT0bLbdgQMHsGvXLv3yuXPncO7cOQBA165dHT5kHU86p/885J5wiFxENqyGiIjIfjnEuwsBGL0yZcyqVauMrvfw8EBqaupN93/llVec9oXQ2jotCnNKAQBeXTshLLa7jSsiIiKyX2a9Vsde3l1I7UNZqoKu/oFCSHt5Qygy69uHiIjIoTnEuwupfVTKq/WfPf072bASIiIi+8d3F5LJFI1DlpQhi4iIqCV8dyGZTClX6T/zShYREVHL7O7dhWS/DG4XdnGzYSVERET2z+7eXUj2S8ExWURERCbj42FksoaQ5eImgquHi42rISIism9mX8k6duwYtm7ditzcXCgUCuganvFvRCAQYN++feaeimxIp9VBWVI/JsvTv5P+/ZRERERknFkha//+/Vi+fDm0Wi0CAgIQEhICkYgzgDui6opaaNRaALxVSEREZAqzQta6desgkUjw1ltvYejQoZaqiewQx2MRERG1jlljsgoKCjBp0iQGLCdgGLL4ZCEREdHNmBWyvL294erqaqlayI4pinkli4iIqDXMClnjx4/H8ePHUVdXZ6l6yE4pSjgRKRERUWuYFbIWLFgAT09PvP766ygqKrJUTWSHOCaLiIiodVo18P3+++9vsq6urg7Z2dk4ePAgPD094eHh0aSNQCDAli1b2l4l2VxDyBKKBHD34S1iIiKim2lVyDI2B5ZIJELXrl1bbGNsHXUsDSHLQ+oGgZBzZBEREd1Mq0LW999/b606yI7VVqlRW1U/7o63ComIiEzD1+rQTVVyPBYREVGrMWTRTXH6BiIiotZr1e3CxMRECAQC3H333fD29kZiYqJJ+wkEAsydO7ct9ZEdUMhvTN/gxZBFRERkklaFrG+//RYCgQATJ06Et7c3vv32W5P2Y8jq2BpP3+DB2d6JiIhM0qqQFR8fDwD6pwkblsmxKUp4u5CIiKi1WhWyoqOjW1wmx2QwEamUV7KIiIhMwYHvdFMNY7LcfVwhchHZuBoiIqKOgSGLWlRXq0H1tRoAvFVIRETUGq26XTh+/HgIBK2f7VsgEGDfvn2t3o9sT8kXQxMREbVJq0LW4MGD2xSyqOMyGI/VheOxiIiITNWqkLVq1Spr1UF2SsHZ3omIiNqEY7KoRYZPFjJkERERmapVV7Jakp+fD5lMBpVKhVtvvdVShyUbazzbO69kERERmc7skJWTk4P3338ff/zxh35dQ8jKyMjACy+8gNdeew1jx44191TNksvlSEpKQk5ODnJzc1FdXY34+HjExMSYtP/s2bNRWFhodFuPHj2wefNmAEBRURGSk5Nx+PBhXLp0CSKRCL1798YjjzyCYcOGWaw/9sRwIlKOySIiIjKVWSHr4sWLePbZZyEUCjFr1iz8+eef+P333/XbBw8ejM6dO2P//v1WDVkFBQXYtGkTgoKCEBoaiqysrFbtv2jRIlRXVxusKywsxNq1azF8+HD9uoMHD2LTpk2IjY3FtGnToNFosHv3bixZsgQvv/wybrvtNov0x540vBxa4i6GxN3FxtUQERF1HGaFrG+++QYA8PXXXyMoKAjffvutQcgSCAQYMGAAcnNzzavyJiIiIrBjxw54e3tj//79WLZsWav2j42NbbJu3bp1AIApU6bo1w0ZMgQ//PADfHx89OtmzpyJ+fPnIyEhweFCllarg6K0/nahZxfeKiQiImoNswa+Z2RkYPz48QgKCmq2TUBAAEpKSsw5zU25u7vD29vbosdMTU1FYGAgoqKi9Ot69+5tELAAQCKRYNSoUSguLkZVVZVFa7C16jIVdBodAI7HIiIiai2zQlZ1dTV8fX1bbFNTUwOtVmvOadpdXl4eZDIZJk+ebFL70tJSuLm5wdXV1cqVta9KDnonIiJqM7NuF3bp0sVgwLsxeXl56N69uzmnaXcpKSkADG8VNufSpUtIS0vDhAkTIBI1/14/uVxucEVPJpOZX6iVcY4sIiKitjMrZI0ePRo//vgjjh07ZvTpur179yI7Oxtz5841+ZharRZqtdqkthKJxOIz0Gu1Wuzduxfh4eHo1atXi21VKhVee+01uLq64sknn2yx7fbt25GYmNhk/cWLF6HRaMyo2HouZZfrP19TyZGdXd1C6+YpFApkZ2dbqiy750z9ZV8dlzP1l311XNbqb2RkpEntzApZc+bMwf79+/Hiiy9i2rRpKC0tBQD89NNPyMrKwp49e9CtWzfMnj3b5GOeOnUKixcvNqnthg0bEBIS0qbam5ORkYHi4mLMmjWrxXYajQavv/468vPz8d5778Hf37/F9jNmzMCYMWP0yzKZDCtWrEDv3r0RERFhkdotrfTwGQDXAAD9Boeja5hPm46TnZ1t8jekI3Cm/rKvjsuZ+su+Oi5b99eskOXj44NPP/0UK1aswK+//qpf/8knnwCoT3rLli2Dp6enyccMDg7G0qVLTWorlUpbVa8pUlJSIBQKbzoe6/3338fhw4fx//7f/8PQoUNvelx/f/+bBjF7YzARKZ8uJCIiahWzJyPt3r07Pv/8c5w7dw7Z2dmoqKiAu7s7IiMj0b9//1YfTyqVYvr06eaW1Sa1tbU4cOAAoqOjWwxEn3/+OZKTk7Fo0SKTB8d3RA1jskQuQnTylti4GiIioo7FrJCVlpaGcePGAQDCw8MRHh5utN2nn36KRYsWmXMqiykqKoJKpTJ6mzE9PR0KhaLFAe+bN2/Gli1bMGfOnJveUuzIdDqdPmR5+ney+Ng3IiIiR2dWyHrzzTfxwQcfYPDgwc22+fTTT/Hjjz9aPWQ1TB6an58PANi9ezcyMzMBwGDg/cqVK5GRkYG0tLQmx0hJSYFEIsH48eONniMtLQ1r1qxBUFAQQkJC8N///tdg+7Bhw+Dn52eJ7thcjUKNupr6Afl8nQ4REVHrmRWyunfvjqVLl2L16tUIDQ1tsn316tVISkoyOqO6pSUkJBgsJycn6z+b8nSjUqnE4cOHMWrUqGbHkJ0/fx5A/bQNK1asaLI9Pj7eYUIWp28gIiIyj1kh6/3338c///lPvPDCC/j8888REBCg3/b555/jhx9+wNixY7F8+XKzC70ZY1emjFm1apXR9R4eHkhNTW1x3/nz52P+/Pmtrq0jYsgiIiIyj1kzvnft2hUffPABampq8Nxzz6G8vH5epc8//xxbt27F6NGjsXz58hYn6ST7xJBFRERkHrNCFgD06tUL7777LoqLi/HCCy9g9erV2Lp1K2655Ra8+eabEIvNfoCRbEDBV+oQERGZxeyQBQADBgzA66+/jvPnzyMpKQmjRo3CihUrGLA6sEqDK1kc+E5ERNRarUpBu3btanH78OHDkZ2djTFjxjQZ3zRt2rTWV0c2o7wesgQCwMOXIYuIiKi1WhWy3n77baPzJel0OggEAuh0OgDARx99ZLBOIBAwZHUwDWOy3P3cIBRb5IInERGRU2lVyHr55ZetVQfZEbWqDqrK+pd0czwWERFR27QqZNnqdTfUvhQlHPRORERkLt4HoiY4fQMREZH5GLKoicYhy4tPFhIREbVJq24Xjh8/HkKhEOvXr0fPnj0xfvx4k14cLBAIsG/fvjYXSe1LUcwrWUREROZqVcgaPHgwBAIBXF1dDZbJsTS+kuXBkEVERNQmrQpZf3/vX3PvAaSOzWC2dylvFxIREbUFx2RRE4qS+itZbl4ucHHjrP1ERERtwZBFBrR1WlSV1l/J4ngsIiKitmvVZYrExMQ2nUQgEGDu3Llt2pfal7JMhesT9zNkERERmaFVIevbb79t00kYsjoOzpFFRERkGa0KWfHx8daqg+yEopizvRMREVlCq0JWdHS0lcoge8ErWURERJbBge9koLJxyOrC6RuIiIjayqzn84uKim7aRiAQwMPDAx4eHuacitqJwZUsKa9kERERtZVZIWv27Nkmz/ju4+ODcePGYd68efDz8zPntGRFDSFL7CqCq6eLjashIiLquMy6XXjrrbdi0KBB0Ol08PT0RHR0NCZOnIjo6Gh4eXlBp9Nh8ODBGDVqFCQSCbZt24YnnngCcrncUvWTBel0OihLbsyRxVcmERERtZ1ZV7IefPBBLFy4EHPnzsVDDz0EN7cbY3hqamqwadMmJCUl4bPPPkNwcDA2btyIhIQErF+/HkuWLDG7eLKs6opaaNRaABz0TkREZC6zrmStWbMGkZGRmD9/vkHAAgBXV1c8+uijiIyMxBdffAGhUIhHHnkE/fr1Q3p6ullFk3Uoihs/WchB70REROYwK2SdOXMGERERLbbp27cvMjMz9cuRkZEoLS0157RkJY0HvXt14ZUsIiIic5gVsrRaLS5fvtxim0uXLkHX8J4WACKRCBKJxJzTkpVwjiwiIiLLMStkRUVF4cCBA9izZ4/R7fv27UNaWhoGDhyoX3fp0iVIpVJzTktWopBztnciIiJLMWvg+1NPPYWFCxfizTffxKZNmxAVFQVfX1+UlZXhzJkzOH/+PNzc3PDUU08BAMrLy3Hs2DHcfvvtFimeLItXsoiIiCzHrJDVp08frF69Gp988glOnz6N8+fPG2yPiorC4sWL0adPHwCAp6cnfv755yaD5Mk+NIQsgUiATj6uNq6GiIioYzMrZAFAWFgYVq9ejaKiIpw/fx5KpRIeHh4ICwtDQECAQVuRSARPT09zT0lW0hCyPP3cIBRyjiwiIiJzmB2yGgQEBDQJVe1FLpcjKSkJOTk5yM3NRXV1NeLj4xETE2PS/rNnz0ZhYaHRbT169MDmzZsB1M/99fHHHyMnJwdXr16FVqtF9+7dcdttt+Huu++GWGyxv852V1ulRm1VHQDAk08WEhERmc1iqaC4uLjJlawuXbpY6vAtKigowKZNmxAUFITQ0FBkZWW1av9FixahurraYF1hYSHWrl2L4cOH69fV1NQgPz8fo0aNQrdu3SAUCnHmzBmsXr0aOTk5WLZsmUX6Ywsc9E5ERGRZZoesS5cu4aOPPsKJEyeabBsyZAiWLFmCoKAgc0/TooiICOzYsQPe3t7Yv39/q8NObGxsk3Xr1q0DAEyZMkW/ztvbG1988YVBu5kzZ8LDwwP/+c9/sHDhwg775CQHvRMREVmWWSGrqKgIzzzzDMrKyhAcHIzBgwdDKpWitLQUp06dwvHjx/HMM8/gyy+/tOqtRHd3d4sfMzU1FYGBgYiKirpp227dugEAFAqFg4QsPphARERkLrNCVmJiIsrKyrBkyRLMmDGjyQuFt23bho8++gjr1q3Diy++aFah7SkvLw8ymQxz5swxul2tVkOpVKKmpgZnz57Fli1b0K1bN/To0aOdK7WcSl7JIiIisiizQtaRI0cwevRozJw50+j2mTNnIj09Hb///rs5p2l3KSkpAAxvFTaWlpaG5cuX65f79euHl156qcWB73K5HCUlJfplmUxmoWotg7cLiYiILMuskHXt2jWEhoa22CY0NBRHjhwx+ZharRZqtdqkthKJpMnVM3NptVrs3bsX4eHh6NWrl9E2MTEx+Oijj6BQKHD8+HGcP38eKpXKaNsG27dvR2JiYpP1Fy9ehEajsUDl5ikuuPE+yYKr+bhcarm/V4VCgezsbIsdz945U3/ZV8flTP1lXx2XtfobGRlpUjuzQpaPjw/y8/NbbJOfnw8fHx+Tj3nq1CksXrzYpLYbNmxASEiIycc2RUZGBoqLizFr1qxm2/j5+cHPzw8AEBcXhw0bNmDJkiXYtGlTs2OyZsyYgTFjxuiXZTIZVqxYgd69e9/0Jdvt4aSyfgqLTj6uGDhogEWPnZ2dbfI3pCNwpv6yr47LmfrLvjouW/fXrJA1fPhw7Nq1Czt27MAdd9zRZPuvv/6K3377DdOmTTP5mMHBwVi6dKlJba0xyDwlJQVCoRCTJ082eZ+4uDh8/fXXOHjwYLO3Tv39/eHv72+pMi1Ko9ag+loNAA56JyIishSzQtajjz6K3377DR988AF++OEHREdHw8/PT/90YX5+Pjp37ox58+aZfEypVIrp06ebU1ab1dbW4sCBA4iOjm5VIKqpqQ8oSqXSWqVZlaKEc2QRERFZmlkhKyAgAJ999hk++OADZGRkNLl1GBMTg+eee85mM8EbU1RUBJVKZfQ2Y3p6OhQKRbMD3q9du4bOnTs3GQe2Y8cOALCL235twUHvRERElmf2ZKQ9e/ZEfHy8Se8utKaGyUMbgt7u3buRmZkJAJg7d66+3cqVK5GRkYG0tLQmx0hJSYFEIsH48eONnuO///0vtm/fjrFjx6J79+6oqqrCkSNHcOzYMYwePRpDhw61cK/aR+OQ5cWQRUREZBEO8e5CAEhISDBYTk5O1n9uHLKao1QqcfjwYYwaNarZl1gPGjQIWVlZ2LNnD8rKyiASidCzZ08888wzuOeee8zrgA3xlTpERESW16qQ9c4777T5RC+//HKb9zWFsStTxqxatcroeg8PD6Smpra4b79+/Qzmx3IUvF1IRERkea0KWTt37mzTSQQCgdVDFrUdX6lDRERkea0KWVu3brVWHWRDiuL6kCVxF0Pi7mLjaoiIiBxDq0JWw4uQyXFotTooSuvHZPFWIRERkeUIbV0A2Vb1tRroNDoADFlERESWxJDl5DjonYiIyDoYspwcB70TERFZB0OWk+OVLCIiIutgyHJylcUMWURERNbAkOXkDGZ778KQRUREZCkMWU6u4XahyEWITt4SG1dDRETkOBiynJhOp9OHLA+pGwQCgY0rIiIichwMWU6sRqlGXY0GAMdjERERWRpDlhPjk4VERETWw5DlxBTFNwa9ezFkERERWRRDlhPjlSwiIiLrYchyYgYhqwtneyciIrIkhiwnxitZRERE1sOQ5cQaQpZAAHj48koWERGRJTFkObGGkOXu5wahmN8KRERElsTfrE5KraqDqlINAPCU8lYhERGRpTFkOSllSaN3FvrzViEREZGlMWQ5KQ56JyIisi6GLCdlOH0DQxYREZGlMWQ5qUp549uFDFlERESWxpDlpHi7kIiIyLoYspyUQciScuA7ERGRpTFkOamGkOXm5QIXN7GNqyEiInI8DFlOSFunRVVp/ZgsD86RRUREZBUMWU5IWaaCTlf/mU8WEhERWYdD3CeSy+VISkpCTk4OcnNzUV1djfj4eMTExJi0/+zZs1FYWGh0W48ePbB582aj2zIzM/HMM88AALZv3w4fH5821d/eFI2eLPTioHciIiKrcIiQVVBQgE2bNiEoKAihoaHIyspq1f6LFi1CdXW1wbrCwkKsXbsWw4cPN7qPVqtFfHw8OnXq1GRfe2f4ZCEHvRMREVmDQ4SsiIgI7NixA97e3ti/fz+WLVvWqv1jY2ObrFu3bh0AYMqUKUb3+eWXX3D16lXcfvvtSEpKan3RNsTpG4iIiKzPIUKWu7u7xY+ZmpqKwMBAREVFNdlWUVGBtWvXYv78+SgrK7P4ua2NIYuIiMj6OPDdiLy8PMhkMkyePNno9rVr18LPzw8zZsxo58osgyGLiIjI+hziSpalpaSkADB+q/DChQv45Zdf8O6770IkEpl8TLlcjpKSEv2yTCYzv9A2ahj4LnYVwdXTxWZ1EBEROTK7C1larRZqtdqkthKJBAKBwOLn37t3L8LDw9GrV68m2+Pj4zFy5EiMGDGiVcfdvn07EhMTm6y/ePEiNBpNG6ttPZ1Oh8riKgCAi5cQOTk5Vj+nQqFAdna21c9jL5ypv+yr43Km/rKvjsta/Y2MjDSpnd2FrFOnTmHx4sUmtd2wYQNCQkIsev6MjAwUFxdj1qxZTbbt2bMHZ86c0Q+Kb40ZM2ZgzJgx+mWZTIYVK1agd+/eiIiIMKvm1qgqr8Hhuj8BANIenU3+RjFHdnZ2u5zHXjhTf9lXx+VM/WVfHZet+2t3ISs4OBhLly41qa1UKrX4+VNSUiAUCo2Ox1qzZg3i4uIgFotx5coVAPUpGQCuXr2Kuro6+Pv7Gz2uv79/s9vak6KY47GIiIjag92FLKlUiunTp9vk3LW1tThw4ACio6ONBqKrV68iNTUVqampTbY9/vjjCAsLwzfffNMepbaZsoQhi4iIqD3YXciytqKiIqhUKqO3GdPT06FQKJqdG2vlypVN1u3Zswd79+7Fv//9b3Tp0sXi9VpaZaPZ3hmyiIiIrMdhQlbDOKn8/HwAwO7du5GZmQkAmDt3rr7dypUrkZGRgbS0tCbHSElJgUQiwfjx442ew9ikpefOnQMAjBw5skO8VofTNxAREbUPhwlZCQkJBsvJycn6z41DVnOUSiUOHz6MUaNGwdPT0+L12YvGIcuLr9QhIiKyGocJWcauTBmzatUqo+s9PDyMjrW6mfnz52P+/Pmt3s9WGkKWQCRAJ1+GLCIiImvhjO9OpuHpQk8/NwiFlp1jjIiIiG5gyHIitVVq1FbVAQA8u3A8FhERkTUxZDkRReMnC6UMWURERNbEkOVEFAZzZHE8FhERkTUxZDkRTt9ARETUfhiynAhDFhERUfthyHIiimLO9k5ERNReGLKcSOMrWR5SjskiIiKyJoYsJ9IQsjr5uEIsEdm4GiIiIsfGkOUkNGoNqq7VAOCThURERO2BIctJKEo4RxYREVF7YshyEnyykIiIqH0xZDkJpZxPFhIREbUnhiwnUSnnbO9ERETtiSHLSRjcLuTLoYmIiKyOIctJNA5ZXrxdSEREZHUMWU6iIWRJ3MWQuLvYuBoiIiLHx5DlBHRaHZTXp3DgoHciIqL2wZDlBKqu1UCr0QFgyCIiImovDFlOwGDQO99ZSERE1C4YspwAJyIlIiJqfwxZToDTNxAREbU/hiwnoOBs70RERO2OIcsJ8HYhERFR+2PIcgINIUvkIkQnb4mNqyEiInIODFkOTqfT6UOWh9QNAqHAxhURERE5B4YsB1ejVEOt0gDgrUIiIqL2xJDl4Dgei4iIyDYYshycorjxk4WciJSIiKi9MGQ5OF7JIiIisg2xrQuwBLlcjqSkJOTk5CA3NxfV1dWIj49HTEyMSfvPnj0bhYWFRrf16NEDmzdv1i+PGzfOaLsFCxbg4Ycfbn3xVqYoYcgiIiKyBYcIWQUFBdi0aROCgoIQGhqKrKysVu2/aNEiVFdXG6wrLCzE2rVrMXz48Cbthw0bhmnTphmsCw8Pb33h7aDxlSwvhiwiIqJ24xAhKyIiAjt27IC3tzf279+PZcuWtWr/2NjYJuvWrVsHAJgyZUqTbT179sTUqVPbVmw7a5jtXSAAPPw4JouIiKi9OETIcnd3t/gxU1NTERgYiKioKKPba2pqAACurq4WP7clNVzJcvd1g1DMIXhERETtxSFClqXl5eVBJpNhzpw5Rrfv2rULP//8M3Q6HUJCQvDII48YveJla3U1GqgqagFwPBYREVF7Y8gyIiUlBYDxW4UDBw7EhAkTEBgYiJKSEvznP//Bm2++CaVSibvuuqvZY8rlcpSUlOiXZTKZxev+O8MnC3mrkIiIqD3ZXcjSarVQq9UmtZVIJBAILPuaGK1Wi7179yI8PBy9evVqsv3zzz83WL7tttvw+OOP46uvvsL06dObvX24fft2JCYmNll/8eJFaDQaS5TeRNmFGyFLBSWys7Otcp6bUSgUNju3LThTf9lXx+VM/WVfHZe1+hsZGWlSO7sLWadOncLixYtNarthwwaEhIRY9PwZGRkoLi7GrFmzTGrv4uKCe+65Bx9++CHOnj2LQYMGGW03Y8YMjBkzRr8sk8mwYsUK9O7dGxERERap/e9yr/wJ4CoAoFe/nugfGWyV89xMdna2yd+QjsCZ+su+Oi5n6i/76rhs3V+7C1nBwcFYunSpSW2lUqnFz5+SkgKhUIjJkyebvE/Xrl0BABUVFc228ff3h7+/v9n1tYaipPFs7xyTRURE1J7sLmRJpVJMnz7dJueura3FgQMHEB0d3apA9NdffwEAfHx8rFRZ23BMFhERke043TP9RUVFzQ46T09Ph0KhaPZJwWvXrjVZV1VVhaSkJHTu3Nlqt/3aiq/UISIish27u5LVVg2Th+bn5wMAdu/ejczMTADA3Llz9e1WrlyJjIwMpKWlNTlGSkoKJBIJxo8fb/Qc//nPf3Dw4EGMHj0aAQEBKCkpQXJyMoqKivDvf/8bLi4uFu6VeRpClqunC1zcHOZLTURE1CE4zG/ehIQEg+Xk5GT958YhqzlKpRKHDx/GqFGj4OnpabRNVFQUzpw5gx07dqCiogJubm7o378/XnrpJQwdOtS8DliYVqOFsrR+wlRexSIiImp/DhOyjF2ZMmbVqlVG13t4eCA1NbXFfYcPH270XYb2SFlaA51WBwDw7MKQRURE1N6cbkyWs+CLoYmIiGyLIctBNQ5ZHlI+WUhERNTeGLIcFJ8sJCIisi2GLAelkN+YiJS3C4mIiNofQ5aD4pUsIiIi22LIclANIUvsKoKrl33N30VEROQMGLIckE6ng6KkPmR5+rtBIBDYuCIiIiLnw5DlgFQVtdDUagHwViEREZGtMGQ5II7HIiIisj2GLAfEkEVERGR7DFkOqLLR9A2enIiUiIjIJhiyHBCvZBEREdkeQ5YDUjYOWXw5NBERkU0wZDmghitZApEA7r68XUhERGQLDFkOqOGVOh5+bhAKOUcWERGRLTBkOZja6jrUKNUAOB6LiIjIlhiyHEzjQe98MTQREZHtMGQ5GMMnCzkei4iIyFYYshxM45DlwStZRERENsOQ5WA4RxYREZF9YMhyMIriG7O9c0wWERGR7TBkORhFSaPbhXylDhERkc2IbV0AWda4BVGoKKpCVXkNxBKRrcshIiJyWgxZDsanhyd8enjaugwiIiKnx9uFRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQxZRERERFbAkEVERERkBQ4xhYNcLkdSUhJycnKQm5uL6upqxMfHIyYmxqT9Z8+ejcLCQqPbevTogc2bNxusKy0tRUJCAg4fPoyKigr4+flhyJAhePnll83uCxERETkGhwhZBQUF2LRpE4KCghAaGoqsrKxW7b9o0SJUV1cbrCssLMTatWsxfPhwg/VFRUVYuHAhAGDmzJnw9/eHXC5HTk6OeZ0gIiIih+IQISsiIgI7duyAt7c39u/fj2XLlrVq/9jY2Cbr1q1bBwCYMmWKwfoPPvgAIpEIX331FTp37tz2oomIiMihOcSYLHd3d3h7e1v0mKmpqQgMDERUVJR+nUwmw++//44HH3wQnTt3Rk1NDerq6ix6XiIiInIMDnEly9Ly8vIgk8kwZ84cg/XHjh0DAPj6+uLZZ5/FiRMnIBKJMGzYMCxZsgSBgYG2KJeIiIjskENcybK0lJQUAE1vFV66dAlA/S1DFxcXvP7661iwYAEyMzOxZMkSqFSqZo8pl8tx9uxZ/X8ymcx6HSAiIiKbs7srWVqtFmq12qS2EokEAoHA4uffu3cvwsPD0atXL4NtDYPj/fz88O6770IorM+oXbt2xfLly5Gamoo77rjD6HG3b9+OxMTEJusvXrwIjUZj0T7YG4VCgezsbFuX0W6cqb/sq+Nypv6yr47LWv2NjIw0qZ3dhaxTp05h8eLFJrXdsGEDQkJCLHr+jIwMFBcXY9asWU22ubq6AgAmTJigD1gAEBcXhxUrVuDMmTPNhqwZM2ZgzJgx+uXz58/rg5pIJLJoH+xNaWmpUz0k4Ez9ZV8dlzP1l311XNbq79mzZxESEgI3N7cW29ldyAoODsbSpUtNaiuVSi1+/pSUFAiFQkyePLnJNn9/fwD1Y7IaE4lE6Ny5MyorK5s9rr+/v35/APrbhStWrLBE2URERNSOvv76a0RERLTYxu5CllQqxfTp021y7traWhw4cADR0dEGgahBw1+mXC43WK9Wq1FeXg4fHx+TzzVixAi8+uqrCAwMhEQiMatueyaTybBixQq8+uqrFr/qaI+cqb/sq+Nypv6yr47L2v015Zh2F7KsraioCCqVyuhfTnp6OhQKRZMB7w2io6Ph6+uLlJQUPPzww/rbhzt37oRGo8GwYcNMrsPHxwdTp05tWyc6oJCQkJsmfkfiTP1lXx2XM/WXfXVctuyvw4SshslD8/PzAQC7d+9GZmYmAGDu3Ln6ditXrkRGRgbS0tKaHCMlJQUSiQTjx483eg6JRIKnn34ab731FhYtWoRbb70VRUVFSEpKwqBBgzBu3DgL94qIiIg6KocJWQkJCQbLycnJ+s+NQ1ZzlEolDh8+jFGjRsHT07PZdtOmTYOLiwu+++47rFmzBp6enpgxYwYWLFjg8APYiYiIyHQOE7KMXZkyZtWqVUbXe3h4IDU11aRjTJo0CZMmTTK5NmcmlUoxb948qzykYI+cqb/sq+Nypv6yr47LHvor0Ol0OpudnYiIiMhBccZ3IiIiIitgyCIiIiKyAoYsIiIiIitwmIHv1H5ycnKwa9cunDx5EoWFhfD29saAAQPw+OOPo2fPni3uu3PnTrz99ttGt/300092OSDz5MmTzb7qac2aNRgwYECL+xcXF2P16tU4evQotFotYmJisGjRInTv3t0a5Zrlrbfewq5du5rd/uOPP6JLly5Gt33zzTdG388pkUhMfqjEmqqqqrBlyxZkZ2cjJycHlZWVWLp0qdHJj/Pz87F69WqcPn0aYrEYt9xyC5555hmTJxw+ePAgvv32W8hkMvj4+OC2227DI488ArG4ff7JNaWvWq0Wu3fvxoEDB3Du3DlUVlYiMDAQEydOxAMPPKCfB7Al//rXv5CRkdFk/YgRI/DBBx9YskvNMvXr2tz3dnBwMDZu3GjSuWz9dQVM729LUwoNGzYMH330UYvnmT17NgoLC5usnzFjBp5//vm2Fd8Krfk9Y88/rwxZ1GqbNm3C6dOnMWHCBPTp0wclJSX46aef8Pjjj2PNmjUIDQ296TEee+wxBAYGGqxraeoMe3Dvvfeif//+But69OjR4j5VVVVYvHgxlEolHn74YYjFYnz//fdYtGgRvvnmG7t7h9iMGTOaTKqr0+nw4Ycfolu3bs0GrMaee+45dOrUSb/c+D2ftlReXo7ExEQEBAQgLCwMJ0+eNNru6tWrWLRoETw9PfHEE0+guroaW7ZswR9//IEvv/wSLi4uLZ4nPT0d//73vxEdHY3Fixfjjz/+wPr161FWVobnnnvOGl1rwpS+qlQqvP322xgwYABmzpwJX19fZGVl4dtvv8WJEyfwySefQCAQ3PRcXbp0wZNPPmmwrj3/Z8nUrytQH/hffPFFg3UeHh4mnccevq6A6f199dVXm6zLzc1FUlIShg8fbtK5wsPDcf/99xusCwoKan3RbWDq7xm7/3nVEbVSZmamrra21mDdn3/+qZs0aZLujTfeaHHf5ORkXWxsrC4nJ8eaJVrUiRMndLGxsbp9+/a1et/vvvtOFxsbq8vOztavy8/P18XFxem+/PJLC1ZpPadOndLFxsbq1q9f32K7hIQEXWxsrK6srKx9CmulmpoanVwu1+l0Ol1OTo4uNjZWl5yc3KTdhx9+qJs8ebKusLBQv+7o0aO62NhY3bZt2256njlz5ugeffRRnVqt1q/76quvdOPGjdPl5+dboCc3Z0pfa2trdZmZmU32/fbbb3WxsbG6o0eP3vQ8ixYt0j3yyCOWKbqNTP26rly5Ujd16tQ2n8cevq46nen9Neadd97RjRs3TldUVHTTtrNmzdK9+OKLZtVqDlN/z9j7z6t9/C8mdShRUVFN/u+gZ8+e6NWrl/7F16aoqqqCRqOxdHlWVVVVhbq6OpPb79+/H/369TO4AhYSEoIhQ4Zg37591ijR4lJTUyEQCIy+NL05SqUSOjubHUYikZh0heXAgQMYPXo0AgIC9OuGDRuGnj173vRrlp+fj/z8fNx5550Gtxruvvtu6HQ67N+/v831t4YpfXVxcUFUVFST9bGxsQDQqp/luro6VFVVta5ICzH169pAo9FAqVS26hz28nUFWt/fBo3fzdu1a1eT91Or1aiurm71+cxl6u8Ze/955e1CsgidToeysjL06tXLpPaLFy9GdXU1XFxcMHz4cCxcuPCm47ls7e2330Z1dTVEIhEGDRqEp59+Gv369Wu2vVarxR9//IHbbrutybb+/fvj6NGjqKqqgru7uzXLNktdXR327duHgQMHNrm925z7778f1dXV6NSpE8aOHYuFCxfCz8/PypVaRnFxMcrKyoy+56x///5IT09vcf+8vDwAaLK/v78/unTpgnPnzlmuWCspLS0FAJNvZRcUFODWW2+FWq2Gn58f7rjjDsybN69dxymZSqVSYfr06VCpVPDy8sKkSZPw1FNP3fRn0BG+rjd7N68xJ06cwNSpU6HRaNCtWzfMmjULs2bNsmKVLfv775mO8PNqfz8F1CGlpKSguLgY8+fPb7Gdq6srpk+fjpiYGHh4eODs2bP4/vvv8c9//hNr1641+L8ReyEWizF+/HiMGjUKnTt3Rn5+PrZu3YpnnnkGn3/+Ofr27Wt0v4qKCtTW1hr9v86GdXK5HMHBwVat3xxHjhxBeXm5Sf8we3l54Z577sGAAQPg4uKCzMxM/PTTT8jJycHXX39t8tgXWyopKQFgfEyRVCrVf00lEkmb9m/Ybs82b94MDw8PjBw58qZtu3fvjpiYGISGhkKlUmH//v1Yv349CgoKsHz58nao1nRSqRQPPvgg+vbtC51Oh99//x0///wzLly4gPj4+BZDoSN8XW/2bt6/Cw0NxaBBg9CzZ09UVFRg586d+PTTTyGXy/H0009buVrj/v57piP8vDJkkdlkMhk+/vhjDBgwANOmTWux7cSJEzFx4kT9cmxsLEaMGIFFixZhw4YN7fLUSmtFRUUZ3FYZO3Ys4uLi8Oijj+Krr75q9imqmpoaADA68LLhh76hjb1KTU2FWCzGhAkTbtr27/+HGxcXh/79++PNN9/ETz/9hIcffthaZVqMqV+z5v7Rrq2tNWj79/1tdUvNVBs2bMCxY8ewZMkSeHl53bT9yy+/bLB866234v3338cvv/yC2bNn3/TJ2/b098H5kyZNQs+ePfH111/jwIEDLb4qraN/XRvezTty5EiTvq4A8M477xgs33bbbXjhhRfw/fff4957723VLUdLMPZ7piP8vHJMFpmlpKQEL730Ejw8PPDmm2+26SXZgwYNQmRkJI4fP26FCq0jKCgIY8eOxcmTJ5sdV9bwCLxarW6yreGH25TH5G2lqqoKBw8exIgRI9r8FOSUKVPg5+fXYb625n7NGv6xbmj79/3t+eu9Z88erF27FrfffjvuuuuuNh+n4Wm0Y8eOWagy65k9ezaEQuFNa+3IX1egftxSbW1tq24V/p1AIMDs2bOh0WiMTtthTc39nukIP68MWdRmCoUCL774IhQKBT744AP4+/u3+Vhdu3ZFRUWFBauzvq5du0KtVkOlUhnd7u3tDYlEYvSSc8M6c/7OrO3gwYNQqVRm/cMMdKyvbcNtg+a+Zg1f07bub4/zwAHA0aNH8dZbb+GWW24x+7H1hisclZWVlijNqlxdXeHt7X3T78+O+nVtkJKSAk9PT4wePdqs4zR8bdvz57ml3zMd4eeVIYvapKamBi+//DIKCgrwzjvvmDzgvTl//fWXyRPH2Yu//voLEonEYE6oxoRCIUJDQ5Gbm9tkW3Z2Nrp3727Xg95TUlLQqVMnjBkzps3H0Ol0KCws7DBf2y5dusDHxwdnz55tsi0nJwdhYWEt7h8eHg4ATfaXy+UoLi7Wb7cn2dnZePXVVxEREYHly5ebPWD9r7/+AoAO8TWvqqpCeXn5TWvtiF/XBnK5HCdPnsS4ceNaDBymaO+v7c1+z3SEn1eGLGo1jUaD119/HVlZWVi+fDkGDhxotJ1cLodMJjOY8uDatWtN2h0+fBhnz57FiBEjrFWyWYzVfP78eRw6dAjDhw/XT7ZZVFTU5LH38ePHIzc31yBo/fnnnzh58iTi4uKsWbZZrl27hmPHjmHcuHFwc3Nrst1YX439Pf3888+4du2aSYOo7cX48ePx22+/oaioSL/u+PHjKCgoMBibVldXB5lMBrlcrl/Xu3dvBAcH45dffjG4jfzzzz9DIBCYPOi4veTn5+Oll15Ct27d8O6777Z4e0Qmkxn8nSiVyia3WXQ6HdavXw8AJk942R5qamqMjq9Zt24ddDqdwfenI3xdG9u7dy+0Wm2zV6SN9beioqLJMIi6ujp89913cHFxQUxMjFVrBkz/PWPvP68c+E6t9tlnn+HQoUMYPXo0Kisr8d///tdg+9SpUwEAX331FXbt2oWtW7fqH/9/+umn0bdvX0RERMDDwwN5eXlITk5G165dMWfOnHbviylee+01uLq6YuDAgfD19UV+fj5++eUXuLm5GQymXblyJTIyMpCWlqZfd/fdd2PHjh146aWX8MADD0AkEuH777+Hr68vHnjgAVt0xyR79uyBRqNp9h9mY32dNWsWJk6ciNDQUEgkEpw+fRp79uxBeHg4ZsyY0V6lt+jHH3+EQqHQ3x44dOgQrl69CqB+Rn9PT088/PDD2L9/P5599lncd999qK6uxubNmxEaGmrw6pLi4mLMmTMH06ZNwyuvvKJf/89//hNLly7Fc889h0mTJuGPP/7ATz/9hDvuuMPsK76W7KtQKMTzzz+PyspKPPDAAzh8+LDB/t27dzf4xTZnzhxER0dj1apVAOoff1++fDkmT56MHj16oKamBv/73/9w+vRp3HnnnUYfq7eWm/W1srISjz32GCZPnqx/mvfIkSNIT0/HyJEjMXbsWP2x7P3rCpj2fdwgJSUF/v7+zQYjY/09dOgQ1q9fj/HjxyMwMBCVlZVISUnBxYsXsWDBgna5PWrq7xl7/3llyKJWO3/+PADgt99+w2+//dZke8M3vzETJ05Eeno6jh49CpVKBalUijvvvBPz5s2z27mUYmNjkZKSgu+//x5KpRI+Pj4YN24c5s2bd9NXTLi7uyM+Ph6rV6/G+vXr9e8ubM17tWwhNTUVvr6+GDp0qMn7TJkyBWfOnNEPsg0ICMCDDz6IRx55xOjVMFvYunWrwfvY0tLS9EFx6tSp8PT0REBAAFatWoXVq1fjyy+/1L8LbeHChSbdbhk9ejRWrFiBxMRExMfHo3Pnznj44Ycxb948a3XLqJv1FYD+F/OXX37ZZP9p06Y1e/UAAAICAjB48GCkpaWhtLQUQqEQISEheO6559o9VJvydR09ejSOHj2KXbt2QavVokePHliwYAEeeOABk179ZC9fV8C0/gL1V83Pnj2rH+BvqtDQUISEhCAlJQXXrl2DWCxGeHg4li9fbtKTxpZg6u8Ze/95FejsbVpmIiIiIgfAMVlEREREVsCQRURERGQFDFlEREREVsCQRURERGQFDFlEREREVsCQRURERGQFDFlEREREVsCQRURERGQFDFlEREREVsCQRUQd1pUrVzBu3Di89dZbti7FInbu3Ilx48Zh586dti6FiCyAIYuIHMq//vUvjBs3ztZlGOVooZCIWsYXRBNRh9WlSxds2LABHh4eti7FImJjYxEZGQmpVGrrUojIAhiyiKjDEovFCAkJsXUZFuPp6QlPT09bl0FEFiLQ6XQ6WxdBRNQWV65cwf33349p06bhlVdeafY2YcP2BhcuXMCGDRuQkZGBiooKSKVSjBkzBo8++ig6d+5s9PgPPfQQvv76a5w6dQoVFRXYunUrAgMDkZaWhn379iE3NxdyuRxisRh9+vTBfffdh7i4OP2xdu7cibfffttoffHx8YiJidG3Wbp0KaZPn27Q5vTp09iwYQOysrJQU1ODbt26YeLEiXjooYfg5uZm0HbcuHGIjo7G66+/jjVr1iA9PR3V1dUICwvDk08+iZiYmNb+VRNRG/BKFhE5jHnz5mHXrl0oLCzEvHnz9OvDw8P1nw8ePIjXX38dAoEAY8eORdeuXZGfn4///Oc/OHLkCL788kt4eXkZHPfy5ct4+umnERoaimnTpqGiogIuLi4AgK+++gpisRhRUVGQSqW4du0aDh06hGXLlmHx4sW49957AQBhYWG47777kJSUhLCwMIwdO1Z//G7durXYr3379uGNN96Ai4sLJk6cCB8fHxw9ehSJiYk4cuQI4uPj4erqarCPQqHAwoUL4enpialTp6KsrAz79u3D888/j6+//hqhoaFt+jsmItMxZBGRw5g/fz4yMjJQWFiI+fPnN9leXl6OlStXonPnzvjss88Mws2ePXuwfPlyJCQk4NlnnzXY7/Tp05g3b57RY7733nvo3r27wbqqqir885//REJCAm6//Xa4ubkhPDwcnp6e+pBl7FjGKJVKvP/++xCJRFizZg369OkDAFiwYAHeeOMN7N27F1u2bMHcuXMN9jt//jzuuusuPPvssxAK659xGjJkCN577z385z//wfPPP2/S+Ymo7fh0IRE5jd27d0OpVGLBggVNrh5NmjQJffv2xZ49e5rs5+fnhzlz5hg95t8DFgC4u7tj+vTpUCgUyM3NNavmgwcPQqFQ4LbbbtMHLAAQCoV4+umnIRKJjE750KlTJzz11FP6gAXU3zYViURm10REpuGVLCJyGllZWQCA7OxsXL58ucn22tpalJeX49q1a/Dx8dGvDwsL098e/LuysjJ89913SE9PR1FREWpqagy2y+Vys2o+d+4cACA6OrrJtoCAAHTv3h0FBQWoqqqCu7u7fltQUJDBMlD/oICfnx8UCoVZNRGRaRiyiMhpVFZWAgB++umnFtupVCqDZV9fX6PtKioqsGDBAhQVFSEqKgrDhg2Dp6cnhEIhzp8/j4MHD0KtVptVs1KpBFB/Nc0YqVSKgoICKJVKg1DV3LQWIpEIWq3WrJqIyDQMWUTkNBpCSGJiYqsGfgsEAqPrf/31VxQVFeGxxx5rMiZq48aNOHjwYNuLva4hLJWWlhrd3rDeUeYKI3IkHJNFRA6lYQySRqNpsi0yMhLAjduG5mq45dj4ScEGmZmZzdbWmitJDU9GZmRkNNlWVFSEy5cvo3v37k1uDRKR7TFkEZFD8fb2BgBcvXq1ybbbbrsN7u7u+Prrr3Hx4sUm21UqVasCWMPg+dOnTxusT0lJQXp6epP2Xl5eEAgERmtrztixY+Hp6Ynk5GSDmnU6Hb788ktoNJomc2oRkX3g7UIicihDhgzB/v378f/+3//DyJEjIZFIEBYWhjFjxsDHxwevvfYali1bhvnz52PEiBEIDg6GWq1GYWEhMjIyMHDgQHzwwQcmnWvq1KnYtGkT4uPjcfLkSQQEBOD8+fM4ceIExo0bh7S0NIP27u7u6NevH06dOoUVK1YgKCgIAoEAt956a7NzZXl4eOCFF17AG2+8gaeeegoTJkyAj48Pjh8/jrNnz6J///544IEHzP57IyLLY8giIodyxx134MqVK9i7dy82bdoEjUaDadOmYcyYMQCAW265BQkJCdi8eTOOHz+OY8eOwc3NDV26dMH06dMxdepUk8/VtWtXrFq1CmvWrMGxY8eg0WjQt29ffPjhh7h69WqTkAUAr776Kj799FP89ttvUCqV0Ol0GDRoUIsTkk6YMAF+fn7YuHEj0tLS9DO+z507Fw899FCTiUiJyD7wtTpEREREVsAxWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERWwJBFREREZAUMWURERERW8P8BeA/K3zYCGtoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "5e58ab72", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "74e8bf4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABudElEQVR4nO3deXxU5dk//s/sk2SykISERfZ9U1zAyr60FKzap1qt9acV17oWv49WhKePVWuLX2u/PtpaFdpKtbXCo8Vqq1S0LBVEEUGRsC8BRciezGQy+/n9MTkn50wmyeznnszn/XrxeiWz3oeZzLnmvq77vgySJEkgIiIiyiFGvQdARERElGkMgIiIiCjnMAAiIiKinMMAiIiIiHIOAyAiIiLKOQyAiIiIKOcwACIiIqKcwwCoCx6PBwcOHIDH49F7KERERJRiDIC6UF1djVtuuQXV1dV6DyXtjhw5ovcQMobH2nvl0vHyWHuvXDpevY+VARDB6/XqPYSM4bH2Xrl0vDzW3iuXjlfvY2UARERERDmHARARERHlHAZARERElHMYABEREVHOYQBEREREOYcBEBEREeUcBkBERESUcxgAERERUc5hAEREREQ5hwEQERER5RwGQERERJRzGAARERFRzmEARERERDmHARBRCoSCIRz76DRqjzTpPRQiIoqBWe8BEPUGh7eewpbn9sBoMuB7T81BQald7yEREVE3OANElAJ1R5oBAKGghIbqFp1HQ0REPWEARJQC3la/8rNH9TMREYmJARBRCnhd/qg/ExGRmBgAEaUAAyAiouzCAIgoBdQpMC9TYEREwmMARJQCnAEiIsouDICIkhQKSfC6GQAREWUTBkBESfK5/YDU8bu31affYIiIKCYMgIiSFDnjwxkgIiLxMQAiShIDICKi7MMAiChJnQKgVj+kkNTFrYmISAQMgIiS5HVF1PxIgM8d0GcwREQUEwZAREmKtu8PC6GJiMTGAIgoSdFqflgHREQkNgZAREliAERElH0YABElKXoKjAEQEZHIGAARJYkzQERE2YcBEFGSGAAREWUfBkBESWIKjIgo+zAAIkqSsg+QQX0ZAyAiIpExACJKghSSlGDHUWZXLvdEbo5IRERCYQBElAS/JwCpvetFYUW+cjlngIiIxMYAiCgJHmdHoJNXZIMlzwyAARARkegYABElQV3sbHNYYHNYOl1ORETiYQBElAR1I1SbwwJbQXsA5PJDktgRnohIVAyAiJKgTnXZCjpmgKSQBH8bO8ITEYmKARBREjQpsEIL7A5r1OuIiEgsDICIktDVDFDkdUREJBYGQERJ0ARADisDICKiLMEAiCgJnVaBFViiXkdERGJhAESUBO0MEFNgRETZggEQURJYA0RElJ0YABElwdsa3gfIYjfBZDYyBUZElCUYABElQZ7lkWd+1DNAHicbohIRiYoBEFGCJEmCRw6ACuQAiPsAERFlAwZARAnye4KQguF2F3LgYyswK9ezBoiISFwMgIgSFFkADQAmiwlmm6nT9UREJBYGQEQJkgugAW3tDzvCExGJjwEQUYIi9wCS2eUAyOVjR3giIkExACJKUFcBkFwPFApICHiDGR8XERH1jAEQUYIi22AoP3MvICIi4TEAIkqQtgi6Y/k7d4MmIhIfAyCiBHWdAmMAREQkOnPPN8msY8eO4YUXXsCBAwfQ0NAAu92OIUOG4Pvf/z6mT5/e4/2dTieee+45bNmyBV6vF+PGjcMdd9yBMWPGZGD0lEuYAiMiyl7CzQCdPn0abrcbCxcuxI9+9CP84Ac/AAAsW7YMb7zxRrf3DYVCWLp0Kd59911cfvnluO2229DY2IglS5bg5MmTmRg+5RDOABERZS/hZoAuuugiXHTRRZrLLr/8ctxyyy1Yu3YtLrvssi7vu2nTJnz++ed45JFHMGfOHADAvHnzcM011+CFF17Agw8+mM6hU47xulT7ABV0FQCxHxgRkYiEmwGKxmQyoaKiAi6Xq9vbbd68GaWlpZg1a5ZyWUlJCebOnYv3338fPh9PRpQ6cnrLZDXCbDUpl2saonIGiIhISMLNAMna2trg9XrR2tqKrVu34sMPP8TcuXO7vc/BgwcxatQoGI3auG7cuHF48803cfLkSYwYMSLqfevq6lBfX6/8Xl1dnfxBUK/mdWo7wcvUK8KYAiMiEpOwAdAzzzyj1PwYjUbMmjUL/+f//J9u79PQ0IBzzjmn0+VlZWUAgPr6+i4DoDfeeAOrV6/udPmxY8cQDPbuzexcLheqqqr0HkZGpOpYJUlCm9Mb/sUc0jymtyWg/Fz3Vb1u/7e59LoCuXW8PNbeK5eON53HOn78+B5vI2wAdOWVV2LOnDmoq6vDxo0bEQwG4fd3/23a6/XCarV2uly+zOv1dnnfyy67TLPKrLq6Go8++iiGDRvW61eQVVVVxfRm6Q1SdawBbxAfBE8AAIrKCjWPGfAFsRNfAgCsxjzd/m9z6XUFcut4eay9Vy4dr97HKmwANGTIEAwZMgQAsHDhQvznf/4nHnjgATz//PMwGAxR72Oz2aLW+ciX2Wy2Lp+vvLwc5eXlKRg55QJ1cbM9IgVmtppgshoR9IWYAiMiElRWFEEDwJw5c7B///5ul7OXlpZq6nhk8mVyKowoWZ4u9gCKvEzdMZ6IiMSRNQGQnL7qbiXYqFGjcOjQIYRCIc3l+/btg91ux6BBg9I6RsodXe0BpFzWXgjNGSAiIjEJFwA1NjZ2uiwQCOCf//wnbDYbhg4dCiC8aqu6uhqBQEfB6ezZs9HQ0IAtW7YolzU1NWHjxo2YNm1a1PogokRo+4B1PQMU9IUQ8PXuInoiomwkXA3QE088gdbWVpxzzjno27cv6uvrsWHDBpw4cQJ33nkn8vPzAQArV67E+vXrsWbNGvTv3x9AOE326quvYsWKFTh+/DiKi4vx+uuvIxQK4cYbb9TzsKiX0bbB6BxYazZDbPVr9gkiIiL9CRcAzZs3D//4xz/wt7/9Dc3NzcjPz8eYMWNw2223YcaMGd3e12Qy4fHHH8dvf/tbvPbaa/B6vRg7diyWLVuGwYMHZ+gIKBf0nALTtsMo6GPPyLiIiCg2wgVA8+fPx/z583u83fLly7F8+fJOlxcWFmLp0qVYunRpOoZHBCD2FFjkbYmISAzC1QARZYOeZoDs7AdGRCQ0BkBECVAvb48lBUZERGJhAESUAKbAiIiyGwMgogTIQY3RbIDZ1nmFl3plmHrFGBERiYEBEFEC5ADI5rBGbc3CFBgRkdgYABElQJ7ViewDJrMVMgAiIhIZAyCiOAV8QQS84d2doxVAAxEzQEyBEREJhwEQUZx8rd0XQAOA2WaC0RxOjXEZPBGReBgAEcXJ20MneAAwGAxKITRngIiIxMMAiChO2k0Qu26wK88OsQaIiEg8DICI4tTTHkDKde2zQ35PEMFAKO3jIiKi2DEAIopTT20wol3HNBgRkVgYABHFyRNDDRAQsRLMyUJoIiKRMAAiilO8KbDI+xARkf4YABHFSb2snSkwIqLsxACIKE4x1wCxHQYRkbAYABHFKfYUmKohKgMgIiKhMAAiipOczjKYDLDkmbu8nZ0pMCIiYTEAIoqT0gm+wBK1E7yMRdBEROJiAEQUJ29ruAi6u/qfyOsZABERiYUBEFEcQoEQ/G3dd4KXaTvCcx8gIiKRMAAiioM3hk7wMkueGQaj3BGeM0BERCJhAEQUB3UgY++mESogd4RnQ1QiIhExACKKgzfGNhjKbeSO8FwFRkQkFAZARHGIdQ8g5TbtQZLPHUAoyI7wRESiYABEFIdYd4GOdhvOAhERiYMBEFEcPDH2AVNuw3YYRERCYgBEFIdEU2CR9yUiIn0xACKKQ9xF0EyBEREJiQEQURy0NUDdL4MHtEvlOQNERCQOBkBEcUiqCJoBEBGRMBgAEcVB6QRvAKzddIKXadthMAAiIhIFAyCiOHjbV4FZCyxKm4vucAaIiEhMDICI4iAHMbGkvyJv53WxISoRkSgYABHFKBSS4HMHAMQRABWoiqCZAiMiEgYDIKIY+TSd4HteAQYA1nwz0J4pYwqMiEgcDICIYhTvCjAAMBgNHQ1RGQAREQmDARBRjOLdBFG5LQMgIiLhMAAiilG8bTCU27YHS163H6GQlPJxERFR/BgAEcUo3kaonW4rAT43Z4GIiETAAIgoRonUAAHsCE9EJCIGQEQxUgcv9hj6gMlshewHRkQkGgZARDFKtgg68jGIiEg/DICIYpRsEXTkYxARkX4YABHFKOEaIAZARETCYQBEFCNva8cqMGscM0B2TQqM/cCIiETAAIgoRvLsjTXfDGMMneBlnAEiIhIPAyCiGMXbCV5mc3AVGBGRaBgAEcVACklKM1RbHEvgAe4DREQkIgZARDHwtQUgtXexiGcFGABYC8zKzwyAiIjEwACIKAaJrgADAKPJCGt+OAjiPkBERGJgAEQUA2+CfcCU+ygd4bkKjIhIBAyAiGKQ6CaIyn3kjvAuPyR2hCci0h0DIKIYJNoGI/I+kgT4PYGUjYuIiBLDAIgoBok2QpVxKTwRkVgYABHFIJki6Mj7MAAiItIfAyCiGCSdAlPVDXm4EoyISHcMgIhikKoi6MjHIiIifZh7vklm7du3D+vXr8euXbtw+vRpFBUVYcKECbj55psxaNCgbu/79ttvY8WKFVGvW7duHcrKytIxZMoBnmSXwWsCIC6FJyLSm3AB0Msvv4w9e/Zg7ty5GDFiBOrr67Fu3TrcfPPNePbZZzF8+PAeH+Omm25C//79NZc5HI50DZlygCYFlsgMENthEBEJRbgA6KqrrsKDDz4Ii6XjhDFv3jzccMMN+POf/4z//u//7vExLrzwQowdOzadw6QcIwctljwTjOb4M8dcBUZEJBbhaoAmTZqkCX4AYNCgQRg6dCiqq6tjfhy3241gMJjq4VGOUjrBF8S/BB6ISIGxCJqISHfCzQBFI0kSGhsbMXTo0Jhuv2TJErS1tcFisWDKlCm48847e6wfqqurQ319vfJ7PMFWPHxtAbQ2eGDNM6Og1J6W56DUkiRJCVoSqf+JvB9ngIiI9JcVAdCGDRtQW1uLG2+8sdvb2Ww2LFq0COeeey4KCgpw4MABrF27FnfccQd+97vfobKyssv7vvHGG1i9enWny48dO5aymaTGI23Y95caAMBZM4oxeE5JSh43WS6XC1VVVXoPIyMSOdaANwQpGG5fEYAvof+rULCj/UVjTXNG/r9z6XUFcut4eay9Vy4dbzqPdfz48T3eRvgAqLq6Gk8++SQmTJiAhQsXdnvbefPmYd68ecrvM2fOxNSpU3H33XfjpZdewn333dflfS+77DJMnz5d87yPPvoohg0bhjFjxiR/IAAaHE4lAMozOmJ6gTKhqqpKmLGkWyLH6qx14yOcBACUVpYk/H+10/4l/J4gTJI5I//fufS6Arl1vDzW3iuXjlfvYxU6AKqvr8fSpUtRUFCAn/3sZzCZTHE/xtlnn43x48dj586d3d6uvLwc5eXliQ41JuqUV2uDJ63PRamT7C7Q6vv6PUGmwIiIBCBcEbTM5XLh/vvvh8vlwhNPPJFUcFJRUYGWlpYUji4x1gIzzLZwEMcAKHtoA6DEiqDV9/W6/JAkdoQnItKTkAGQ1+vFAw88gJMnT+Kxxx6Lufi5K6dOnUJJSUlKxpYMg8GgzAK11nt4EswSybbBUO7bvhdQKCgh4OUKRSIiPQkXAAWDQTz00EPYu3cvHn74YUycODHq7erq6lBdXY1AIKBc1tTU1Ol2H3zwAQ4cOICpU6ema8hxkQOggDcInzvQw61JBJpO8AlsgijjSjAiInEIVwP0zDPPYOvWrZg2bRqcTifeeecdzfULFiwAAKxcuRLr16/HmjVrlF2fb7/9dowePRpjxoxBQUEBDh48iLfeegsVFRW47rrrMn4s0RSUaeuAEtlVmDIrlTVA6sd0lOclNS4iIkqccAHQ4cOHAQDbtm3Dtm3bOl0vB0DRzJs3D9u3b8eOHTvg8XhQVlaGSy+9FIsXL0ZpaWnaxhyPyELo0kGFOo6GYpHqFFjkYxIRUeYJFwA9/fTTMd1u+fLlWL58ueayW265Bbfccks6hpUymhmgehZCZwNvko1Qo93X42RDVCIiPQlXA9TbcSl89tGkwFJVA8QZICIiXTEAyjAGQNlHHaxYkwmACtgQlYhIFAyAMkybAmvTcSQUKzlYMdtMMFvj34xTxlVgRETiYACUYbYCC0zW8H87Z4CyQ0cn+ORW7DEFRkQkDgZAGabZDJEBkPAkSYKnvQg6mQLoyPtzBoiISF8MgHTgKAvv/+JvC8Ln5olQZAFvEKFAeMfupAMg9TJ4F1eBERHpiQGQDlgInT1StQcQAJitJqUXHFNgRET6YgCkg/xS7gWULbRL4BNvhNrxGJZOj0tERJnHAEgHBaU25WfOAIktVW0wIh+DARARkb4YAOlArgECABdngISWyhSY+jGC/hACPnaEJyLSCwMgHbAGKHukfAaogCvBiIhEwABIB+oAyM0ASGiaPmBJ7gMERPQD40owIiLdMADSga3QApMl/F/PFJjY0pUCAzgDRESkJwZAOuBmiNmDKTAiot6JAZBO5J5g/rYAN0MUmDpIsackBaZqiMq9gIiIdMMASCeaQuhGr44joe5oU2Ap2AeIKTAiIiEwANKJJgBiV3hheZzhIMVkMSpNbJPBFBgRkRjMqXiQYDCI5uZm+P3RP9ArKytT8TS9ipwCA1gHJDJva3sj1AILDAZD0o/HGSAiIjEkFQAdOHAAK1euxKeffopAIBD1NgaDARs3bkzmaXol7gWUHeQgxVaYfP0PANjVAVArl8ETEekl4QDo0KFDuOuuu2AymTBlyhRs27YNI0eORGlpKQ4ePIimpiZMnjwZ/fr1S+V4ew3NDBCXwgsp4Asi6AsBSM0eQEBEETRngIiIdJNwAPTHP/4RAPDcc89h6NChmD17NmbOnInFixfD6/XimWeewaZNm/DAAw+kbLC9CWeAxJfqAmgAMFmNMFmMCPpDXAVGRKSjhKs69+zZg+nTp2Po0KHKZZIkAQBsNhvuuecelJeXY9WqVUkPsjeyF1qVzRAZAIkp1XsAAeGUMDvCExHpL+EAqLW1FQMGDFB+N5vNaGvrWM1kNBoxefJk7Ny5M7kR9lKazRCZAhOSJgBKUQoMYEd4IiIRJBwAlZSUwOl0Kr+Xlpbiiy++0NzG5/PB4+HJvSv57QGQzx2Ary16ETnpJx0zQOrHCniDCPrZEZ6ISA8JB0BDhw7FiRMnlN8nTZqEHTt24PPPPwcAHD9+HBs3bsSQIUOSH2UvxaaoYlOv0kppAMS9gIiIdJdwAHTRRRfhs88+Q11dHQDgmmuugSRJuOuuu3DppZfihhtugMvlwrXXXpuywfY2DtVKMBcDIOGkOwUGsB0GEZFeEl4F9u1vfxtz585FYWEhAGDkyJF48skn8dJLL+HUqVMYM2YMrrjiClx00UUpG2xvo5kBYh2QcNKXAuNSeCIivSUcAJnNZpSWlmoumzRpEh5//PGkB5UruBRebNpl8EyBERH1JuwFpiO2wxCb16lOgaVmHyCA7TCIiESQdC+w+vp6HDx4EE6nE6FQKOptFi5cmOzT9ErqGSAXU2DCSdsMkOqxPKwBIiLSRcIBkNfrxS9/+Uu89957ygaIkSRJgsFgYADUBXuhFUazAaGAxBkgAXld4VVgRpMBFrspZY/LGSAiIv0lHAA9//zz2LBhAwYNGoT58+ejb9++MJlSd5LIBQZjeDNEZ00bl8ELSJ4BsjlS0wlepg2A2BCVslfd0WZsW12FgWeX4/zvjtJ7OERxSTgA2rhxI4YOHYpVq1bBak1dfUSukQMgb6sffk8AFnvSWUlKEaUTfArTX4C2nkiUZfDeVj8av3ChYlQJjMbUBXvUu336xlHUHG5CzeEmjJ0/CAV97D3fiUgQCRdBu1wuTJ06lcFPkrgSTEzBQAh+T3iX5lQWQAPipcBCIQlvPPgB/v7wduxed1jv4VAWafrKpfzc/FWrjiMhil/CAdDgwYPR2NiYyrHkJK4EE1O6CqABwGI3wWAKz7KIEAA5z7iVk9fJ3bU6j4ayhSRJcNZ09H90nnHrOBqi+CUcAF199dV4//33O/X/ovgUlOYpP7MpqjjStQkiIF5H+JaajhNXC09iFKO2Ji8C3o5ednzvULaJueBk9+7dmt/79u2LqVOn4oc//CGuvPJKjB49Gvn5+VHvO3ny5GTG2KsxBSamdLXBUB7TYYGnxafpN6YX9Td3r8sPb6s/LcdMvUtkwKMOpImyQcwB0JIlS6KuhJEkCS+88EK3q2Q2bdqU0OByAVNgYlKvzkr1DJD6Mf1tQYQCIRjN+u1JGnkic55xwza8WKfRULaIDHiYAqNsE3MAdP3116d0KTCFMQASUzprgICIdhitfuQV21L+HLGK9k2+nAEQ9UBd/xPtdyLRxRwA3XjjjekcR87KK7TCaDIgFJRYAySQdKfA7BENUYUKgPhNnmIQ+T7xtvrhdfnT8oWBKB3YC0xnBqMB+e11QJwBEkc6i6AjH1PPvYCkkARnDQMgil+0lBfrgCibJL3rXl1dHf71r3/h0KFDcLlccDgcGDVqFObNm4fy8vJUjLHXc5TZ4aptg9flR8AbhNnGHbX1pg2AUr/XlSgd4d1NXgT92h5+kQERUTTRgp2WM270ZfqUskRSAdBf//pXPPvss/D7/Zp+YO+88w5WrVqFO+64A9/5zneSHmRvF7kSrLh/gY6jIUAblNjTMQNUKEYAFG22hzNA1BNfWwCels4rGFkITdkk4QDovffew1NPPYXi4mJcd911OPvss1FaWoqGhgZ8+umnePXVV5Xr582bl8ox9zr5DICEo16env4iaP2Wwkc7YbU2eBDwBWG2ciaSolO/b0qHFKKh2gmAKTDKLgkHQC+//DKKi4vxhz/8QZPqGjx4MCZPnoxFixbhpptuwssvv8wAqAcO9UowFkILQZ6VMRgNsOSlvj+bKO0wmlUnMluBJVyPJAHO2jb0GejQbVwkNnWgM3BiuRIAMX1K2SThIujq6mrMnTu3yzqfiooKzJ07F9XV1QkPLleoU2CuBi4lFYHSCLXAnJbtH2wRq8D0ov4mP2BiWdTLiSKp3x/lw4qUgJ7pU8omCQdADocDdnv3nX/z8vLgcPBbZE80NUCcARKCvDIrHQXQQOd9gPSifJM3aAMgnsioO+oZoMKKfBRVhrsAtDZ4EPQHu7obkVASDoCmT5+Obdu2IRAIRL0+EAhg69atmDFjRsKDyxVshyGWUDAEnzv8vk5XSwh1Cszj1H8GyFFm16S8WMtB3VEHyEWVHQEQJG6ISNkj4QDo9ttvR15eHu69917s3btXc93nn3+Oe++9F/n5+fjhD3+Y9CB7u7xim9Id3M0ASHe+1o6gPl2bulnzzJAza3rNAMl9vwDtt3iAKTDqnvz+sOabYXNYUFjR8d5h8EzZIuHqzptuugmBQAD19fW48847YTKZUFxcjObmZgSD4SnQsrIy3HTTTZr7GQwGvPLKK8mNupcxGA0o6GOHq64NLqbAdJfuNhhA+DW3FljCQYhLn1Vg6hNVUWU+8kpsMNtMCHiDTIFRl0KBkPI5VViRD4PBgCJ1AMT3DmWJhAMgSZJgMplQUVGhubysrKzT7br7ncIKSsMBkNfl5xJknWkaoaaxK7rNIQdA+swARaYxDAYDCivy0HjSBWetG6GQBKOR/f9Iy1XfBikU/hyXA59C9ewhZ4AoSyQcAK1duzaV48h5kU1Ri/txLyC9pLsNRuRj+9wBXYKNljOtys9yCqOoIh+NJ10IBcK96Qr75mV0TCQ+deAsBz7q9ClngChbsBeYILgSTByeDKTAAMBW0LHCzKdDHZAzYgYI4Dd56lnkzCEA5JfYYLKETyd831C2YAAkCK4EE4fXmd5O8Mpj67wZYrQTGb/JU0/Uq7zk94vBaFBmEZ01HSkyIpHFnAJbvXp1Qk9gMBhw/fXXJ3TfXBKZAiP9aIqgC9OzDxCg7TGmx0owuQjaXmiBNT88FgZA1BNNCkxV/FxUmY+mL10I+kNwN3pQUMb0KYkt5gDohRdeSOgJGADFhikwcWhqgHrpDFDAF4S7wQtAm/biUnjqiRwAGU0GzRe3woqOgKelxs0AiIQXcwD01FNPpXMcOY8zQOLQrALLQBF05HNmgrpOQ72E2VGWB4PRACkkcT8X6kSSJOW94+ibpync1wbPbeg/LuPDI4pLzAHQ5MmT0zgMkjdDlIISAyCdZWIfIEDfdhjR6n8AwGg2wlFuh7OmDS1n3JAkKS290Cg7tbX4EPCG93lTv28AbSDN4JmyQUraXAeDQTQ3N8Pvj/4hXllZGfNj7du3D+vXr8euXbtw+vRpFBUVYcKECbj55psxaNCgHu/vdDrx3HPPYcuWLfB6vRg3bhzuuOMOjBkzJuYx6MFoNKCgjw2uOg9a67mVvJ6UdJQBSm1MOujZEDXaUmZZUWU+nDVt8LcF4HH6kFdky+jYSFyalYMV2vdNIevHKMskFQAdOHAAK1euxKefftplTzCDwYCNGzfG/Jgvv/wy9uzZg7lz52LEiBGor6/HunXrcPPNN+PZZ5/F8OHDu7xvKBTC0qVLceTIEVx99dUoLi7G66+/jiVLlmDVqlUxBVB6yi+1w1XngcfJzRD1pHSCz7ekdW8eTT+wDAdA3Z7IKvIB1Cu3YwBEsu4C58K+eYAB4X5gDIAoCyS8DP7QoUO46667sHfvXkyZMgWSJGHEiBGYMmUKiouLIUkSzjnnHCxYsCCux73qqqvwv//7v1iyZAkuueQSXH/99fj1r3+NYDCIP//5z93ed9OmTfj888+xbNky3HDDDbj88svx9NNPw2g0JlzEnUnqQmh3I9NgeunoBJ++2R8gIgWW6RkgdQ1QxKabXAlGXekqdQoAJosJjvZaRqbAKBskHAD98Y9/BAA899xzWLFiBQBg5syZ+OUvf4m1a9fi29/+No4dO4bFixfH9biTJk2CxaI98QwaNAhDhw5FdXV1t/fdvHkzSktLMWvWLOWykpISzJ07F++//z58Pn16LsXKoVo1wTogfUghqSMASuMKMEDfVWDyicxsMyGvWLvUv6iyIyDiiYzU1MXzhREzh+rL1I12iUSVcAC0Z88eTJ8+HUOHDlUuk/t82Ww23HPPPSgvL8eqVauSHqQkSWhsbERxcXG3tzt48CBGjRoFo1F7WOPGjYPH48HJkye7vG9dXR0OHDig/Osp2EqHgtKOVAObourD5w4A7Xu4pXsGyKopgs5ccB4KSXDVhuvM5GaWapGreYhkLd2kTgFtUMQdoUl0CdcAtba2YsCAAR0PZDajra3jw9JoNGLy5Ml47733khshgA0bNqC2thY33nhjt7draGjAOeec0+lyuUFrfX09RowYEfW+b7zxRtTNHo8dO6Z0t0+3BndHb6Zj+07AX9qcked1uVyoqqrKyHPpradj9TR0fGv1BN1p/38x2Y0IekJwNrSm/Lm6OlZPUwChYDjKM+QHOt0m6AspP58+Vpc17w2+j9Ov8VQLAMDiMOHgkQOdrvcYXMrPVTsPorwt+Z6GufS6Arl1vOk81vHjx/d4m4QDoJKSEjidTuX30tJSfPHFF5rb+Hw+eDzJzWRUV1fjySefxIQJE7Bw4cJub+v1emG1dt65V77M6/V2ed/LLrsM06dP1zzvo48+imHDhmVsBVmNtQkHX6sDADjMRTG9gKlQVVWVsefSW0/HWnukCZ/gFACgYkB52v9f9hTVwOlpg+QzpPy5ujrWLz+vA/AlAGDgyH4YP35sp9t8VlKDtiYvAq7YPkhEwPdxevk9AWxrDc+Mlw6M/vlkb/kKJzbuBgAUW0sxfnz0L5zxyKXXFcit49X7WBMOgIYOHYoTJ04ov0+aNAn//ve/8fnnn2PixIk4fvw4Nm7ciCFDhiQ8uPr6eixduhQFBQX42c9+BpOp+1VRNpstap2PfJnN1vVqlvLycpSXlyc81lRQF0G7WAOkC0+GOsF3PIcVzpo2+Fr9kEISDBnoCK9tZRB9t96iiny0NXnR1uSF3xOAxZ6SHTMoi2kK5ys7p7+AiL2AWEBPgku4Buiiiy7CZ599hrq68IzFNddcA0mScNddd+HSSy/FDTfcAJfLhWuvvTahx3e5XLj//vvhcrnwxBNPxBSclJaWor6+vtPl8mVyKkxUeSU25QTIdhj60LTBcHSeTUw1uR+YJAG+tuhbSaSapo6jX/QUhWYlGGs5CN1vnSDjXkCUTRIOgL797W/jtddeUwqTR44ciSeffBJTp05FcXExzj//fDz22GOaFVmx8nq9eOCBB3Dy5Ek89thjmkLr7owaNQqHDh1CKBTSXL5v3z7Y7Xbh9wEyGg3I7xOepeIqMH14Mz4DlPmVYLGcyNgTjCLFMnNoK7AoqydZBE2iS3he22w2o7S0VHPZpEmT8Pjjjyc1oGAwiIceegh79+7FL37xC0ycODHq7erq6tDa2oqBAwfCbA4fxuzZs7Fp0yZs2bIFc+bMAQA0NTVh48aNmDZtWtT6INEUlNrRWu+Bp8WHoD8Ik4WbIWaSejVWRgIgHdphyDM6BpMBjnJ71NvwmzxF6m4PILXCynx4jzbDVe9BMBCCyZzw92yitBIusf/MM89g69atmDZtGpxOJ9555x3N9fLGiitXrsT69euxZs0a9O/fHwAwZ84cvPrqq1ixYgWOHz+u7AQdCoV6XEEmCk1X+AZvtx80lHqZ6gSvPEeGG6JKkqTM6BSW58Foin5y4maIFMlZ07HKN3IXaLWiinzUHW0GJMBV24bi/smvBCNKB+ECoMOHDwMAtm3bhm3btnW6vrudpU0mEx5//HH89re/xWuvvQav14uxY8di2bJlGDx4cNrGnEraAMjDACjDensKzNPig98T3tYh2kZ2siLu50IR5PeBJc8Ee2HXs+mRs4cMgEhUwgVATz/9dEy3W758OZYvX97p8sLCQixduhRLly5N9dAyoqBMGwBRZmWqE7zyHAWZbYgaaxrDVmiBJc8Mf1uAM0CEUDAEZ114BqgoyuaZakWVHfVBfO+QyJicFYxmBohd4TNO3xRYBgIgdSuDbgIgg8GgBEiuOg9CgVCXt6Xez1XngdS+eWZ37xsgooCes4ckMAZAgomsAaLMkoMQS565y/qYVNIEQBkogm453XFCKu7pRNaeBpNCkvLtn3JTSw89wNQKuRcQZQkGQIJxMAWmq0x1gpdluiO8M8YZIAAo6sel8BTmjDF1CgAFfewwWcKnFs4AkcgYAAkmr8QGOb3OFFhmSZKkBCGZSH8B2kDLk4FVYD01s1Qr5GaI1E6zC3QP7xuD0QBH3zzlfnKTbCLRMAASjNFkRB43Q9SFvy0AKRT+sNZlBigTKbD2ACi/xAazrfs9ptjWgGTxzACpbxP0heBuYiqfxMQASECO0vC3p7ZmH4IsPs2YTC+BBwCj2QhLnqnT86eDry0AT0t4lqmn9BfA3aCpg3rzTPVK1a5otlHge4cExQBIQOpCaDdngTJGHYDYM9AHTCb3HEt3AOSMoZmlWn6pHUZzOB/LFFjuinXzTDXuJE7ZgAGQgLgXkD48Gd4DSHmu9jSYt9Wf1nqJeOp/gHBvusK++cp9WcuRm2LdPFON6VPKBgyABBS5GzRlRqb3AFKeS+4IH5SUE006aLvAx3giYy1Hzot180y1Qu4FRFmAAZCA1DNArnoGQJmi7sWV0RmgDG2G6DwT+14uMtYBUTxbJyi365sHtK9mZfqURMUASECcAdJHpttgKM+lWQmWvqXwyX6TZyojN8WzBF5mtppQ0Cf8OcbAmUTFAEhADID0oV8KTNUPzJm+GSD5RGbNN8cc4LErPDnPdOxHFk9zZjl49jj98LnTv8UDUbwYAAkoX7UZopspsIzRYxl85HOlay+gYCCE1vZ2FoU9NLNUY1d4atGkTvO6uaVWETfSJMExABKQ0WxEXkl4M0QXZ4AyRpsCy9wyeHsG2mG4atsgL+KK61t8haqWgzNAOUkOXvKKrbDYzTHfTx0sMQ1GImIAJCg5DdbW7OVmiBmiTYHF/kGfrEwUQbfEuQeQzGQxKe9FBkC5x+8JoK199V+sBdAyzVL4Grb1IfEwABKUshJMAtyNXH6cCXLwYbaZYLJ03yYilTKRAlN3gY8nAFLf3uvyZ6RdB4nDWauq/4mxAFq5PVcQkuAYAAlKUwjNpqgZkelO8DLtDFB6VoElspRZxhNZ7oq3B5gaVxCS6BgACYorwTIr3Ak+HHxkPADKQA1QIkvgo92exay5RVMAHef7xu6wwpofTiXzfUMiYgAkqIKyjgJCBkDpF/AGEQq0d4LP4BJ4IEMpsPYTmcliVPZniVUh2xrkrET2AFKT3zutdW2sZSThMAASlDYFxgAo3fRqhAqEC43NtvR1hJdCkpICc/TNg8EY2xJ4GfcCyl3OJGaAgI73jiSFVyISiYQBkKCYAsssvfYAinzOdARA7iYvgv7wt+9401+R9+FeQLlFDnjNNhPyiuL/YsD3DomMAZCgCvrYlP1XGACln15tMCKfMx0d4ZOp/wEAa75FGZ96NRn1bqGQBGf75plFlbFvnqlWyPoxEhgDIEEZzUbkF4c3Q2QAlH6aRqgZrgFSP2fQH0LAm9qO8C1nWpWfEwmA1PdrbfQg4Etfx3oSR2t9G6RgOBhPJP0FROwFxPQpCYYBkMDkNJi7yYsQCwjTSpQUGJD6QuiWM4nv5aLcTz4BStq9Yaj30swcJvu+AbdQIPEwABJYvnozxCZuhphOuqfAClQNUVNcB5RsISvAE1kucibYA0wtv9QOoymcOmMKjETDAEhgDhZCZ4xHpBmgFAdAyonHABT2TexExk3tck+i7VPUjEaDshTeWdOW8vo2omQwABKYeiWYi0vh00rbByyzy+CB9KbA5G/yjjJ7wi0+tH2dGADlgmSL52VyABTwBtHWnJ6dzokSwQBIYEo/MHAGKN10T4GlaQZI3b+rMME6DoApsFzkbG9gajAa4ChLbOYQ4D5SJC4GQAJTzwC5GQClle5F0AXp6QemTWMUJPw4eSU2ZbNGnsR6P0mSlNfZUW6H0Zz4qaKosiN4YvBMImEAJDD1DJCLDVHTSg6ATBYjzNbMdYKXpSsF1nJavQQ+8W/xBoNBKYR11rgRCrGWozfzOv3wtwUAJJf+AiJaqTB9SgJhACSw/D52boaYIXo1QpWlKwWWikLWjvuHZ5BCQYntWVKo6ZQLxz46LVSvLPX7JpnUKcAUGImLAZDATGYj8rgZYkbIQYctw33AZOr+Y6kMgFKxBF7Gtgap53P78eZPt+O9/9mFz944qvdwFKnYA0imDqCYAiORMAASnFwH1NboRSgozjfE3iTgCyq9soSYAUplCiylJ7KOFBq/yafGV/salNf7+MdndB5Nh1QGzmarCfl9wl/kmAIjkTAAEpwcAEncDDFt9C6ABsInCZPF2Gk8yZJPOPZCC6z5yR0bUxmpd+Zgk/Jzwwkn/J6AfoNRSWXqVP0YnhYffG1iHCMRAyDBabrCs+4iLbR7AOkTAAEdwZcnRavAgv4Q3A3hoDmZFWAyLoVPvTMHG5WfpZCEmsNN+g1GxZnCGqDIx2D6lETBAEhw3Aso/bytqkaoOs0AqZ87VTNA3qaOb9rJpjEAwFGWB4Oxva2BqsEqJSboD6LuaLPmMnVApCd5hs9eZIU1z5z043H2kETEAEhwnAFKP3XAYdczAJI7wvtCKem47mnsCIBSkcYwmo1wlIffjy01brY1SFLdsRal9kx25kCTPoNRCfiCcDe2zxymYPYHYCE0iYkBkOAK2A8s7cRJgalWgqWgEFoTAKXoRCan0vxtQXicbGuQjGizPTWHG3XfY0mT/kpB4AxEzAAxBUaCYAAkOAdTYGknQhF05HOnIg2mDoDScSLjN/nkqAugSwY6AIQDy8aTTp1GFJaqHmBqRawBIgExABKcvHwUYAosXbR9wPTZBwiIbIeRigCo4zFSdSJjV/jUkCRJmQGy5psxZs5ZynV61wGpA5RUzRzaCi2wtNcS8X1DomAAJDiTxQR7UfikzBmg9BAnBZaeGSCzzYS84tQEduwKnxotp93wtIRTiJWj+6ByTB/lujMH9A2AWs50tN1J1cyhwWBQgnBXnQchgXa9ptzFACgLyGkwdxM3Q0wHIVNgrcnV14RCkrIKrKgyHwaDIanHk2lTYOxPlyj1LE/l6D4oH1oEk9XYfl2TTqMKS0cKDOgInqWQxN6GJAQGQFlA2QwxJKGNmyGmnHrfHV0DoBSmwFrr2yC1x8qp+hYPaHeDbuZS+IRpAqAxJTCajeg7ogQA4Kpr03W2V06BpXLmEAAKK7mTOImFAVAW4Eqw9JJrgIxmA8y2zHeCl9kLU9cPrOV06us4AMBiNyOvJFyXxiLoxMkBkMFkQN/hJQDCM0GR12daKCQpAVBhRV7KZg6BiPQp3zskAAZAWYCbIaaXuhFqKj/w46WZAUpyGXyqWxmoyY/X1uwTpnVDNvG4fGj6Mjx7Vj60SAm6+40uUW6jVx1Qa70HoWB4GX4qA2dAOxPprGEKjPTHACgLcAYovZQASMcCaCC1RdAtKWxmGYl7uiSnRlXjo571qRil/wxQOvYAkvF9Q6JhAJQF1DNALi6FT6mgP4iAN7zrsp71P5HPn2wA5ExhF/hIRdzVNyna+p+OoMfmsKDPWeH9gOqr9WmMms6Zw4KyPBhN4RlWvm9IBAyAsgBngNLH29pxktE7ADLbTMoJwptkQ1T5RGYwGZT2FanCvYCSE7kCTE3+XQpJqD2i7ROWCekMnI1GAxx9w4XQLWfYSoX0xwAoC+T3YQCULupAQ+8UmMFg6GiImkQNkCRJyomssDwPRlNq/8zZ2DJxwUBICWwKK/KQX2LTXK8phNahDkiTOk1xAAR0BFUBbxBtLWylQvpiAJQFzFbVZohMgaWUKHsARY4hmRSYp8UHvyec1kt1GgPgap5k1B9rVhqgRs7+AOEl8TI96oDk19NggDJbk0qFbKVCAmEAlCXkNJi70at7s8TeRNsGQ4AAqCAc6Po9QQQT3C03nQXQgLatAU9i8TmtLoAe0zkAKqzIV/beOXOoKaN/65LUsQS+oDwPJnPqTw/cSZxEwgAoS8iF0FJIQlszN0NMFVHaYChjcCS/FL4ljXUcQERbg3q2NYhHd/U/QPj/Vr7c3xZA4xeZa4zqbfXD527fPTwN7xuAzXRJLAyAsoSmEJppsJTRpsD0a4TaMYbkV4Klq5WBmvy4UkiCs457usRCkiSlrseab0af9g7wkfSqA3Jm4H3DAnoSCQOgLMGVYOkhXgos+QAonXu5yPhNPn4tZzoaoFaM6gODMfqmm5rGqBnsC5bu1CnAFBiJhQFQltDsBs0ZoJRRBxl20VJgCS6FT3cKDIj4Js8TWUwi+391pWxoEUwWuTFq5maANHsAVaS+ABpo7y/GViokCAZAWYIzQOmhaYRaKFgAlGQNkLXQlLbeZppv8qd5IovFmQNNys/R6n9kJrMRfUcUAwBctW1obczM37szAzNAQMd7h61USG8MgLIEa4DSQ7wi6OQaovraAkqaxV5iTtm4IrGtQfzUDVAr2ju/d0WPOqBMzBwCEelT9gQjHTEAyhKcAUoPOcgwGA3K0m49JVsEra7/sfVJ3/Hkl9phNLOtQazCDVBdAIDyIUU9zsxp64AyEwDJwYi90AJrfvq+DBRWdqTXWAhNetL/Ez+C2+3GK6+8gqqqKuzbtw9OpxPLli3DokWLerzv22+/jRUrVkS9bt26dSgrK0v1cDPGbDXBXmiBx+lnAJRCcprJ5rDo2gleZk+yCFp9QrGnMQAyGg0orMhH86lWtNSE2xqI8P8nqppDTcrP0fb/iVQxqkT5OROF0AFfUEm1pTP9BbAQmsQhXADU3NyM1atXo7KyEiNHjsSuXbvifoybbroJ/fv311zmcERfcppNCkrt4QCo0YNQSIKxi1UkFDtROsHLkp0B0gZA6T2mospwABT0heBu8qKgT2p7jvUm6jRW5eiSHm9vd1hRMtCBpi9dqD/eAr8nAIs9fR/Xzto2oH3PxXSmvwCuICRxCBcAlZWVKbM1+/fvx6233hr3Y1x44YUYO3ZsGkanr/xSO+qrnZCCEjzNXk2PMIpfKBCCvy1chCnCEnggsgg6/lVgzgzNAAGdu8IzAOpaTxsgRlM5ug+avnQpjVEHTEjfDLYzzT3A1ArZSoUEIVwNkNVqTUmqyu12IxgMpmBE4nCUdeTOmQZLntct1h5AAGDJMyv7wyQ9A1Sa3gCIm9rFRtMAtW9ezF9cMtkXLBObZ8rsRVZY7OEaKCdTYKQj4WaAUmHJkiVoa2uDxWLBlClTcOedd2LQoEHd3qeurg719fXK79XV1ekeZtzUhdCueg/6jtBxML2AaCvAgPaO8AVmeJz+xAKg9hOKNd8MS156lsDL2BU+NvXHWzoaoMZQ/yPTrARLdwBUk7kAyGAwoLAyHw3VTjjr2hAKhmA0CfddnHJArwqAbDYbFi1ahHPPPRcFBQU4cOAA1q5dizvuuAO/+93vUFlZ2eV933jjDaxevbrT5ceOHRNmJqnJ41J+Plp1HG2OhpQ8rsvlQlVVVUoeS3TqY3V+0dFTrdXnFOf/wBIuxnC3eOIaUygowdXelsJSbEz76+p2dgRoXxz8CvlV+u7pIur7+NT2FuXnUGHsr6kkSbAUGOFvDeGr/fXYu3evUmie6mM9daRG+fl08xdoqDqdsseOKi/8mSoFJezevqfbejVRX9d0yaXjTeexjh8/vsfb9KoAaN68eZg3b57y+8yZMzF16lTcfffdeOmll3Dfffd1ed/LLrsM06dPV36vrq7Go48+imHDhmHMmDFpHXesSqR6HH4jPEvlsJZg/PjU1DlVVVXF9GbpDdTHesJbgz0If9D3H1yJ8eNH6Tk0xeHSZngamhD0Shg7ZmzM346bv2rFdukEAKBiSCkcDltaX9egP4jdz58CJMDgsej+HhL1fXzqn58oP0+ePR6lgwtjv+94L6p3nEHQK6F/4WDlvqk+1r3uOgCAyWrEOVMnpX1Fn3PkfjTsPwYAqCwaiIHjy7u8raiva7rk0vHqfay9KgCK5uyzz8b48eOxc+fObm9XXl6O8vKu/whFoE6BuVkDlDRtCkz/RqgydT2SrzUAe1FsY+u8kV16Zy5NFhMcZXa46jxcztwFSZKU9JU134w+Z8W3GrVydB9U7zgDIJwGiyd4inmMIQmu2vDMYVFFfka2M4jcSHNg2p+RqLOcSLxWVFSgpaWl5xsKLrIGiJKj7QQvRg0QkHg7jEwWssrkFT1elz/h1h29mbPGjbZmuQFqSZcNULvST7VkPl11QK2NHqVGKd0rwGRcCUYiyIkA6NSpUygpKdF7GEkz20zKyZGrwJKnbjZqFzUAiqMhqnpFTVG/zJzIuKdL92Lt/9WVsmHFHY1R09QSQ4/AOXILBSI9ZG0AVFdXh+rqagQCHYWXTU1NnW73wQcf4MCBA5g6dWoGR5c+cld4d4MHUkjSeTTZLStmgOJYCZapXk5q7AnWvUT2/1FTN0Z11rbBnYbGqJncA0jmKLfDYGpvpcL3DelEyBqg1157DS6XS1mWvnXrVtTUhFcpXHHFFXA4HFi5ciXWr1+PNWvWKLs+33777Rg9ejTGjBmDgoICHDx4EG+99RYqKipw3XXX6XY8qVRQakdDtROhoIS2Fh/yS2x6DylrqVM2QgVAqnokTwIpMJPFGN5r5kzKh9ZJIbvCd0tpgGo0KIFMvCpH98Hp/Y3K4w27sH8P94iPHjNARpMRheV5aDnjZisV0o2QAdCaNWtw+nTHMswtW7Zgy5YtAIAFCxZ02dZi3rx52L59O3bs2AGPx4OysjJceumlWLx4MUpLSzMy9nSLbIrKAChx2VAE7XXGFgBJIUn5Jl1YkRd3rUmiOAPUNa/Lj8YvwltXlA0tSriVhXY/oKaUB0DqjuyZCoCAcPDccsYNf1sQHqcPeUX8LKPMEjIAWrt2bY+3Wb58OZYvX6657JZbbsEtt9ySrmEJQU6BAUBrvQd9hyf2rZJUAZAhvEJHFIkUQbubvBkvZAW4GWJ3zhyKr/9XVyrUhdBpqANSAlcD4Oib1/2NU6ioMh9f7gn/7DzjZgBEGZe1NUC5SjsD1NbNLaknSif4AkvGZkxiYUugI3zLmVbl50x+i7fmW2AvDI+Xxaxa2gao8df/yMKNUQsAAHXVLQh4U7u9gfy6OcrsMJkzd0oorOgIthg8kx4YAGWZyBQYJU60TvCyRFaB6VHHIZN7grU2ehDwibFrugg0BdBxtMCIRg6gpKCEmiNNST2Wmnr7gkzOHAJMn5L+GABlGU1DVO4FlLBQSFKaoYpUAA0klgJrOaOu4yhI+Zi6o6w4k8IrlUjbANXRNw8FMTZA7Uq6+oJlsgdYJHUzXXUdElGmMADKMvl9OvLknAFKnM/tB9p3ERAtALLmW4D2jFysKTCnjjNA3AuoM00D1CTSXzJNAKTaWyhZes4cFnEzRNIZA6AsY7GblZQNZ4ASJ2IneJnRaIAtPzymmGuA2r/JGzJcyApov8mra5Fymbb+pyTpxyvql6+0RKk51AhJSs0eYOo9eDKdArPYzcgrDh8TA2fSAwOgLCSvBGtt5GaIidJugijOEniZPCsVawpMPoEUlOVltJAViPwmz1QGkNr6HwAwGAzKLJDPHYC7NjVtR/ScAQI6gmd3kzflxd1EPWEAlIXkQuhQQILHGXurBOog6iaIMnlWytvq7zHI9bh8yvHocRIr6tdRc8RUhrYBqiXPjD5npaaBqXomyXnSm5LH1HMGCIgInlkITRnGACgLaVaCMQ2WEK8qcBQyAGpfWg4p/I2/O3q0MlDLK7bCbDOFx8KTmKYBauWoEhhTtMWCug7I+UVqAiA5YLU5LLqkggvZE4x0xAAoC2k2Q2QhdEKyZQYIALyt3c/yadMYma3/AcLpGflE5qxxI5TjadlkG6B2pXxYkdIYtSUFM0BBf1D5/MhU77hI3EiT9MQAKAtxL6DkqWuA7IIVQQPauqSeCqE1S5n7ZXYJvPK87SeyUFDK+VnJVNf/yEwWE8rbd373NgXgbkouCHLWtCkrIQt1SJ0CESsIOXtIGcYAKAupAyBXjp9sEiVqJ3iZekyeHgIgpw5d4CPxRNYhFQ1Qu5LK/YCcOu4BJCvkZoikIwZAWYgzQMnTpsAEXAUWRzsMdepAr2/ymrYGp3N3KbymAeqQwoQboHalMoV9wVo0BdCZT50CQF5RR/0YU2CUaQyAshBrgJIn8j5AQGQ7jNhSYPYiK6x5+jR1ZVuDsJpDqen/1ZVUzgDpvQQe0NaPuWrbcr5+jDKLAVAWstjNSvfy1nruu5IIdVBhLRCnE7xM2w6j6yLogC8Id0O4FkSv9Begbb+Ry9/kTx9sUn5OZf2PzF5oRfGA9saox5NrjNoiQOoUiKwf4+cZZQ4DoCylbIbY4EnZrrC5RE6BWfPNMJrE+zOINQWm2cdFp2/xAOAot8NgCi/3zuXlzJoC6DTMAKkfVwpKqD3alPDjyO8dk8WI/CR7lSWDK8FIL+J98lNMCkrDOXtuhpgYucu6iOkvIPYUmAhpDAAwmowoLA+/J1tq3DkZlIcCIdS2d2p3lOdpavVSqV8K+oJJIUlpQFpYkQdDivYqSoS6/ohNUSmTGABlKRZCJ04KSUpQIeIKMCD2jvCiBEBAx6Z2/rZgTgbldcdbEPTJDVBL0vY86tRaonVA7iav0qxVj80z1TgDRHphAJSlCspUXeG5FD4ufk8AkqCd4GUxp8AECoByvSt8uvb/iVTULx/mfKPynIn0AxSl/gfgbtCkHwZAWcpR2jFtzBmg+GhXgIm3BB4Ip5Qs7Su6uk2BCVIDFPn8zTl4IstE/Q8QXjlVdFb4C5DPHUDTKVfcj+EUYOsE5fnLO1JwubyCkDKPAVCWyi9jP7BEaQKgQjFngADAHkNHePmbvNlmQl6RvsFcUQ5/kw83QG0C0N4AdVBqGqB2pXBQxwxwIvsBtQiwCaLMaDbC0f551nImN+vHSB8MgLIUa4AS53GpGqEKWgQNdKTnvC5/1JNCKBiCqzZcNFpUmQ+DQb9CViCcmpHlWi2Hs6YNbe2tKSpGpq4BalcKz1IFQKql97ESKQUGdMxC+dsC8Dq73/eKKFUYAGUpBkCJE70NhkwemxSS4G/r3BG+td6DUDAcGOmdxgC0J9JcS2Vo639K0v58jv42pTFqIoXQygydQb9doNW4kSbpgQFQlrLmqTdDZAAUD9E7wcvU9UnR6oBEWgEGhNNw+SXhmYlcS4Flqv5HZjQbUD4s3Ges5Ywb7ub4GqPKQUZBqR0miynl44uXJn3KAIgyhAFQFpNngbgZYnxEb4Mh62kvIJHqOGTyTFRbsw9+T+dZq95K3QC1YmRJRp5TPdMUTx2Qz+1X3k96L4GXFXIpPOmAAVAWkwOgoD/EvHkctCkwMVeBAREd4aMUQotWxwHkZirD29rRALV0cOoboHYl0b5gos0cAhHpUwZAlCEMgLIYm6ImJntSYN3PAIm0B5BMcyI7nRsnsppDTUD7BGw69/+JVDkqBQGQIIGzegaIKTDKFAZAWYyF0InJtiJooKN1h5o8w2IwGTTBsJ4Kc3AzxEzX/8jsRVYU9w83Rq0/1oKAL7bGqKL0j1Oz5plhb9/GgTNAlCkMgLKYOgBysYtyzLKyBigiBSZJkhJgFJbnCdPQNRdTYOoAqF8aW2BEI884hYISao80x3QfEVNgQMdslLvRG3MwR5QMMT41KSHaFFh8q0Bymbc1PJtisZtgMov7J9BdCqytxQe/J3ySUO+/o7dc6+sUCoRQc7gJQHsD1LLMLinvl0AdkLrhqCgpMIBpMMo8cT/9qUfqGSA3U2AxE70Rqqy7VWBOAes4gPCY5e0ZciEFVl+dmQaoXUmkMaocmFrzzUL9DRSp9iPKheCZ9McAKIsxBRY/SVJ1ghc4/QVoV6hFpsBaBOrlpGYwGJSl1a56D0KBkM4jSq9MNUDtSlG/fKV2puZgU4+NUYOBEFrrO3YPFwlngCjTGABlMWu+RWmYySLo2IT8krJ7sshL4IHuZ4BEreMAOsYjhSQ463p3YH7mQJPycyYLoGUGgwGVo0oAhIPknhqjumrbIG8ZJlLgDEQuhe/d7xsSAwOgLMfNEOPjd3fMSIg0/R+NyWyExR7epbdTCkzATRBluVIHFG6AGp4BykQD1K5o9wNq6va2Ii6Bl+XK+4bEwQAoyymbIfpCUfeKIa2AJ3sCIEDVELW7FJhgJ7JcWQrvqm2DO4MNULsSTx2QyDOHeSU2mG3hgJ8pMMoEBkBZjpshxifQ1rG8VvQaIKBjjF6nTzPDJ5/I8vvYYLbq38tJLVe+yZ/OcAPUrpQPK+pojNpDSwwR9wCShevHwoXQzlo3Qj3UMxEliwFQluNmiPEJtGXbDFC4TikUlBDwhoM3X1sAnpbwUn7RvsUDubMXkDrY0KP+R2aymGJujKrpHyfYzCHQMZsZCkhc2UppxwAoy2lmgNgVvkdZFwBF2QtIxBYYagV97MqMRG9Ogcn1NplsgNoV9QxUTTdpMPn1MJoNyC8VY/dwNfYEo0xiAJTlOAMUH00NUIHYq8CA6CvBWgROYwDhgMDRN5zKaKlx98ri/HADVCeAzDZA7UoshdCSJCnvncK++brVLHUnV2YPSQwMgLKcgzVAccm6GaAo7TBEXskjk09kQV9IKRTuTWoON+nSALUrmsaoXdQBuZu8yqaNIs4cArlTQE9iYACU5TQzQEyB9UhTBJ0NAVBB54aooqfAgN7fFV6U+h+ZujFq3bHmqL20nIJunqmmed9k+QyQFJLwxWe1qD0aW482yjwGQFnOkmdW9orhDFDPsnUZPKBKgWXBiay3f5PXswFqV9SNUeuinHRFL4AGAEffPBjaM3PZ/L4JBULY/NxnWP/Yx/jbT7bh0zeO9MpUcLZjAJTlDAaDUgjNzRB7pkmBZcMy+GgpsJqOXk52QXezLu7FtRyhQEjpvO4ot2e8AWpX1L3Iou0HpJkBqhBjzJFMZqPy/5mtRdABXxDv/s8uHH7/lHLZjlcO4qOXD/DzWTAMgHoBOQ0W8Abhaw3oPBqxyQGQyWoUbv+caNQBkMflD/dyam8vUdSvQK9h9aiwF+8FVH/CqWxJIEL6S6Yey+kodUAib4KoJo/N5w7A0572zRY+tx/rH9uBE5/UAAAMpo5C8z3/OIZ/r/ocoWDv7o+XTRgA9QKapqgN7KHTHTkFlg3pL0C7Us3r8mt6OYmaxgCAwr55QC9IZUQjWv2PrLh/AeyF4fd1zaHOjVE1qwdFfu9UZGf6tK3Zi388+hFO729vj2I3YdEDUzDjpgnK38LBTV/gvad3R63RosxjANQLqKfg3SyE7pIkSfC7wx88oqaOItkKtSmwbKj/AcKb88krFHtbCkzTAV6gAMhgMKCifTxelx9NX7VqrpeDifxS8XYPVyuq7Pg8y5bZQ2dtG/7+yIeoP94CIPwF6+L/mooBE8owdv5gzLt7Mozts0HVO87gnV/uhK+Ns/V6YwDUC3AvoNgEfSFI7V+8smcGSFsErU1jiFnHIZO/yXtd/l7Tp07bANWEPoP1aYDaFe1+QB2Bms/th8cZfg1EnjkEtOk5Z434M9qNX7rw94e3o7k94CwoteOSn34NfUeUKLcZ/rX+WPDj85VeZ6f21uOtn3+k7OhO+mAA1AtoUmCcAeqSV1VPkA0F0ABgtppgsob/TL0un9Bd4CP1xk3tXHVtcDfq3wC1K5oASJWqUwcSor9vCrPofVN7pAl/f3i78sWzuH8BLn3oa+gz0NHptmed3RcXL5+ifPbUHW3Gm49sh6te/CCvt2IA1AuwIWpsPKqO6tkyAwSoOsJHzgBl0Tf5bEll9ETU+h9Z+bAiGM3hoEw9A5Qt9T9A9rTD+PLzOrz184+U2c2yoUW45KcXwlHe9cxsxag++NaDFyK/xAYAaD7Vir8/vB1Np1wZGTNpMQDqBZgCi406DZNVAVB7IbQ6ADJZjMjvI14vJ7WiXrgXkLrNhIgBkNlqQvnw9saop91oa2+Mmi0rwADAmm9R/j5Ffd8c33Ea/3z8Y/g94Zx6v3Gl+NZPpiKvyNbjfUsHFeLSh76mvA6uOg/+/siHqDvGDRMzjQFQL2DNNyu55XQFQO5mL7b9sQov3rwBb/3io3ArgCyjCYCyJAUGdARrQX8ILafDdQaFFfkwCJZ+iZRNqYxYybMqBgPQV+cGqF2J1hdMuweQ2AEQ0BGktTZ6EAqItXfOgU0n8d7/7FLGNfj8CixcegGs+bF/phRW5OOSn34NpUPCNWSeFh/+8eiH+GpffVrGTNExAOoFDAaDMgvUWp/azRB9bj8+XnsQa+/ZjKp/VsPnDuDU5/V448EPsOFXO5WGkNnAq0mBZccqMEA7WxUKhl9b0b/FA9mTyoiVz+1Hw8n2BqhDimDN07cBalf6RSmEzqYZIEA1RgnwNImzWuqzvx/Fv1d+rmxFMWrWQHz9nnMTWlWXX2LDt35yoRKw+tuCWP/Yx2g4mP1/K9lCzL9giltBmR3NX7WGN0N0B5Ke4Qh4g9j7TjU+e+OoJnBQq95Zg+pPajBqxkCc992RKOwr9gdr9qbAOo81G05i1nwL7IUWeJx+YVMZ8ag51NTRAFXA9JesIsqO0Ordw7Phva+epfI06r+CUJIkfLzmID5946hy2cRFQ3Hh/zc2qZlYW4EFi5ZNwXtP7cLJ3bUI+kPY/7+1qCz9EqNmDUzF0KkbDIB6icg6oEQDoFAghAObv8Cuvx5WVrsAgNFkwNj5g3HOpcNwYnctdr12ONzlWwIO/ftLHNl2CmPnD8bk74xAfnHPeXA9ZHsKTC0b0hhAOA3mcTajtcGDgC8o9P4zPdHu/1Oi30B6kFdkQ3H/AjR/1Yq6Y83wtQWU3cMLK/JhMIidOgW0Ab63Ud8ZoFBIwrY/7MX+f51ULjv/qlGY/O0RKfm/NNtM+MZ/nofNz32GI9u+AiRg83Ofwdvqx8RFQ5N+fOoaA6BeIrIrfOmg+PYnkUISjm7/Cjv/95A2XWFAeIbnipHKSXfc/MEYNWOgZoYoFJRQ9U41Dm7+AhMXDcWkbw0TLsjI1hkge5SxZsMMEBBOg9UeDhd3Omvc6HOWWPvmxENTAD1G3BkgIBygNX/VilBAwvEdp7Ni93A17QyQfgFQ0B/Ept9+hmMfng5fYACmLR6P8d8YktLnMZqNmHPHObAVWFC14QQAYPtL++B1+XDed0dlRdCajRgA9RKOBJfCS5KExsNtWPfSVjRUa+t5hpxfgfOvGh01mDLbTDjn0uEYO28Q9vzjGD5/+zgC3iAC3iB2v34E+zacwNmXDceEBUOUAm29eVtV+wBlUQCUrSkwoPNS+GwNgELBkFL4X1Bmh0OQBqhdqRzdBwc3fwkAOPzvjqacIu8erqZ+3+gVAPk9Abz75Cf4ck+4MNlgMmDO7WdjxLQBaXk+g9GAixaPR4unGV/8O/ylYde6I/C4/Jh2/XjhFz1kIwZAvUQiS+FP72/AjjUHNXubAED/8aWY8r3RqBjV87dcW4EFF1w1GuO/OQS7Xz+C/e+eQCgowdvqx46/HMDet4/j3CtGYszss2A061tz31tSYAYD4Ogr9glYVlTZ0bDVmcUrwRqqxWyA2hX1GE9VdawsypbAOb/EBpPFiKA/pEsNkMflwzuP71SCXpPViK//n/Mw6Jy+aX1eg8GAwbNLcNawAdj+4j4AwL4NJ+Br9WPWbWfDpPNnaG/DAKiXyFfPAPWws2j98RZ8vPYgTu6u1VxePqwIF1w9BgMnlsU95ZpfbMO068dj0sVD8clrh3Ho318CEuBu8mLr7/diz9+P4fwrR2H41/rr9k1GLuY2WYzCzErFInLFWkF5XtZ8EGq7wmfvjrenBe3/1ZXiAQWwOSzhoF+1KDRbAiCD0YDCinw0femCpykAKSRl7HOjtdGD9St2oPGL8OaE1nwzvnn/BRl93ScuHAqbw4Itz+2BFJJwZNtX8LYGwivOsuizS3QMgHoJR2nHjEBXM0DNp1vxyauHwoV2KnllZky7bhKGTqlMOtdc2Dcfs287G2dfMgwfrz2E6o/PAAinPzb+5lN8+uZRTLlqNM6a3DfjeW1vey8kW4Elq3LqkTNA2VLHAfSe3aA1BdBjSvQbSIwMBgMqR/fBiU9qNJdnS/E8EH7vNH3pghQE3I0eTdPndGk+3Yq3V+yAqzYcrOeV2LDwgQtQNrgo7c8dadSMgbDmmfGvp3cj6A/hi09r8faKHVjw4/OzagZbZMIFQG63G6+88gqqqqqwb98+OJ1OLFu2DIsWLYrp/k6nE8899xy2bNkCr9eLcePG4Y477sCYMWPSPHJ9WQvCmyEGvMFOAVBrowe7/noYBzZ9ASnY8XWwoMyO864YiUB5C4ZN7JfS8fQ5qxDf+M/zUHO4CTteOYCvqhoAhFMJ//zlTlSO6YMp3xuNfmNLU/q83ZFngLKp/geIEgBlybd4AMgrtirvy2xNgWkaoNpNcS8w0Evl6BJNAGQ0GTRtc0QX2Usu3QFQfXUL1j+2A23N4VrBwoo8LFo2RZPGzbQh51di4QNT8M4TO+FvC+DMwUb842cfYuHSC4TfCT4bCDeP3tzcjNWrV6O6uhojR46M676hUAhLly7Fu+++i8svvxy33XYbGhsbsWTJEpw8ebLnB8hims0Q2wMgj8uHD1/ej7X3bMb+904qwY+90IKvXTcWV/5qFsbMGZTWqeWKkSW4+L+mYuGyKcoW/UC4p9LfH/kQ/3z8Y9Qfb0nb88sCvqBSw5F1AVDEt71sKWQFwu9LedbBWeNGKCTWrr6xcNV54G4IbwnRd2QJjCbhPjajikzZOPrmCde8tTuFFR0BT7pnD0/vb8A/fvahEvz0GeTApT/9mq7Bj6z/uFJ867+nwl4UToU3nHDizYe3Z/WMqiiEmwEqKyvDunXrUFZWhv379+PWW2+N+b6bNm3C559/jkceeQRz5swBAMybNw/XXHMNXnjhBTz44INpGrUYCkrDmyH624L4eO1BVL0T3rlZZskzYdK3hmHiomEZ3cXWYDDgrEnlGDixDMd3nMHHaw+i+VS4pcPJ3bU4ubsWI6b1x3nfHYXifun5wPG1ZmcBNBBecWc0G5St97NpBggIj7fxpBOhoITW+jbhN8yMdCbL6n9k5cOLs/t9U5GZ+rGTu2rw7lO7EPSFAAAVo0rwzR9fINQXpfKhxbj0p1/D2ys+gqvOA2dNG/7+8HYsfGAKSgdnx4ykiIQLgKxWK8rKyhK67+bNm1FaWopZs2Ypl5WUlGDu3LnYsGEDfD4frNbsaYEQL/X09u7Xjyg/myxGjF8wBOdcOlz5FqEHg8GAYVP7Ycj5FTj871P45K+H4KoLz1Yd2fYVjn54GqNmDkRxv9R/UHuc2bkHEBD+f7M5rGhrCs9CZN2JTDXeT984isI0rWA7U9MM/+EjPd8wTl98Vqf8LPr+P2pmqwnlw4rDO1gju2rHAO1M5xef1sKal/riX587gM/+cUyZHT/rnHLMX3IuLHbhTo0o7l8QDoIe+xhNX7rgbvLi749sx6RvDYPRlD0ze2pnappRamzIaCmEmnivchIOHjyIUaNGwWjUTlGPGzcOb775Jk6ePIkRI0ZEvW9dXR3q6zuWi1ZXV6d1rOmgXgoPhFdSjJ49EOdePlKofUuMJiNGzzkLI6b3x753T2L3347A0+KDFJRwcNMXaX/+bOoDJrMVWJQAKJsKWQFtALT/vfSmok+gKW2PbTCEU7rZpHJ0HyUAyqbUKYBwoGwAIIVXrqY7VT78a/0x+w6xl5oXlOXhkgcvxD8f/xi1R5rhcwew838P6T2spJT3qWcAlAoNDQ0455xzOl0uzyjV19d3GQC98cYbWL16dafLjx07hmAwmNJxpovf0VH8XDY+H4NnlyCvzIQTZ44BZ7q+n8vlQlVVVQZG2JlxCHDODytx6sMWnNregqAv/TUigaJW3Y43UXkDDGj6EigabMPhYwdjuo+er6uaJ88PgxGQQnqPJDklI/Ni/r9Pt1hfW0M/bziIAOAtaBbi/RCPkmF2NB2NfWPXRFWe70DlPAsOHNyf9ufqSSyv7fDLi+B71YvmY+n/v0m32tpaVFWlfq+n8ePH93ibXhUAeb3eqCku+TKv19vpOtlll12G6dOnK79XV1fj0UcfxbBhw7JnBdl4YOzZTpgsxriK96qqqmJ6s6TTpHMBz7U+1BxqUmoW0qHO/RUumD05bY+fLuPGSqg92ozSwYUx99MS4XWVjR47GnVH0/sN/uQXJzHorEFpeWyzzYh+Y0uF6WUW82s7HhgzoRUGgyHrUqcAMOanY7B9/W4M7HdW2p6jsDJPl2XuXYn1tZ14Tnh1ojq9n21OfnESk6aORclAhy7P36sCIJvNBp/P1+ly+TKbresmneXl5SgvL0/b2DIlW1sNAIDdYcXgcyvS+hxu1a642cRgNGRd+kXNUZaX9jSsu6AeQ8dXpvU5slG6FhZkgsliQp8ReXxdozAYDbqljlLFXVCvW/ADCLgMPhmlpaWaOh6ZfFmixdVERETUu/SqAGjUqFE4dOgQQiFtscG+fftgt9sxaFB6pseJiIgou2RtAFRXV4fq6moEAh373MyePRsNDQ3YsmWLcllTUxM2btyIadOm9eol8ERERBQ7IWuAXnvtNbhcLiV1tXXrVtTUhLd0v+KKK+BwOLBy5UqsX78ea9asQf/+/QEAc+bMwauvvooVK1bg+PHjKC4uxuuvv45QKIQbb7xRt+MhIiIisQgZAK1ZswanT59Wft+yZYsyq7NgwQI4HNGLpkwmEx5//HH89re/xWuvvQav14uxY8di2bJlGDx4cEbGTkREROITMgBau3Ztj7dZvnw5li9f3unywsJCLF26FEuXLk3H0IiIiKgXyNoaICIiIqJEMQAiIiKinMMAiIiIiHIOAyAiIiLKOQyAiIiIKOcwACIiIqKcwwCIiIiIco6Q+wCJwOv1AgCqq6t1Hkn6nThxAiaTSe9hZASPtffKpePlsfZeuXS86T7WIUOGwG63d3k9A6AuyDtRP/roozqPhIiIiOK1atUqjBkzpsvrDZIkSRkcT9ZoamrCRx99hP79+/fqJqrV1dV49NFH8ZOf/ARDhgzRezhpxWPtvXLpeHmsvVcuHW8mjpUzQAkqKSnBggUL9B5GxgwZMqTbSLk34bH2Xrl0vDzW3iuXjlfPY2URNBEREeUcBkBERESUcxgA5biysjIsXrwYZWVleg8l7XisvVcuHS+PtffKpeMV4VhZBE1EREQ5hzNARERElHMYABEREVHOYQBEREREOYcBEBEREeUcboTYC+3btw/r16/Hrl27cPr0aRQVFWHChAm4+eabMWjQoG7v+/bbb2PFihVRr1u3bp1wqxN27dqFJUuWRL3u2WefxYQJE7q9f21tLX7zm99gx44dCIVCOPfcc3H33XdjwIAB6Rhu0n7xi19g/fr1XV7/2muvoW/fvlGv+8Mf/oDVq1d3utxqteLdd99N1RAT4na78corr6Cqqgr79u2D0+nEsmXLsGjRok63PX78OH7zm99gz549MJvNuOiii3DXXXehpKQkpud6//338cILL6C6uholJSW4+OKL8YMf/ABmc2Y+DmM51lAohH/+85/YvHkzDh06BKfTif79+2PevHm4+uqrYbPZenyeH/3oR9i9e3eny6dOnYonnngilYfUrVhf267e24MHD8af/vSnmJ4rG15bAJg1a1aXj3HBBRfg//2//9ft81x11VVKuya1yy67DPfdd19ig49TPOcZUf9mGQD1Qi+//DL27NmDuXPnYsSIEaivr8e6detw880349lnn8Xw4cN7fIybbroJ/fv311zmcDjSNeSkXXHFFRg3bpzmsoEDB3Z7H7fbjSVLlqC1tRXXXnstzGYz1q5di7vvvht/+MMfUFxcnM4hJ+Syyy7DBRdcoLlMkiT86le/Qr9+/boMftTuvfde5OXlKb8bjfpPBDc3N2P16tWorKzEyJEjsWvXrqi3q6mpwd133w2Hw4FbbrkFbW1teOWVV3D06FE8//zzsFgs3T7P9u3b8V//9V+YPHkylixZgqNHj+LFF19EY2Mj7r333nQcWiexHKvH48GKFSswYcIEfPvb30afPn2wd+9evPDCC/jkk0/wP//zPzAYDD0+V9++ffHDH/5Qc1mmv8TE+toC4WD8/vvv11xWUFAQ0/Nky2sLAD/5yU86XbZ//368+uqrmDJlSkzPNWrUKHzve9/TXHbWWWfFP+gExXqeEfpvVqJe57PPPpN8Pp/mshMnTkjz58+XHnnkkW7v+9Zbb0kzZ86U9u3bl84hpswnn3wizZw5U9q4cWPc9/3zn/8szZw5U6qqqlIuO378uDRnzhzp+eefT+Eo0+vTTz+VZs6cKb344ovd3u73v/+9NHPmTKmxsTEzA4uD1+uV6urqJEmSpH379kkzZ86U3nrrrU63+9WvfiV9/etfl06fPq1ctmPHDmnmzJnS3/72tx6f57rrrpNuuOEGye/3K5etXLlSmjVrlnT8+PEUHEnPYjlWn88nffbZZ53u+8ILL0gzZ86UduzY0ePz3H333dIPfvCD1Aw6CbG+tj//+c+lBQsWJPw82fLaduWxxx6TZs2aJZ05c6bH21555ZXS/fffn9RYkxXreUbkv1n9v/pRyk2aNKlTVD1o0CAMHToU1dXVMT+O2+1GMBhM9fDSxu12IxAIxHz7TZs2YezYsZqZoyFDhuC8887Dxo0b0zHEtHj33XdhMBjw9a9/Peb7tLa2QhJoCzCr1RrTzMTmzZsxbdo0VFZWKpddcMEFGDRoUI+v2fHjx3H8+HFceumlmqnz73znO5AkCZs2bUp4/PGI5VgtFgsmTZrU6fKZM2cCQFx/x4FAAG63O75BplCsr60sGAyitbU1rufIptc2Gp/Ph82bN2Py5MmoqKiI+X5+vx9tbW1xP18qxHqeEflvlimwHCFJEhobGzF06NCYbr9kyRK0tbXBYrFgypQpuPPOO3usH9LTihUr0NbWBpPJhLPPPhu33347xo4d2+XtQ6EQjh49iosvvrjTdePGjcOOHTvgdruRn5+fzmEnLRAIYOPGjZg4cWKnlGVXvve976GtrQ15eXmYMWMG7rzzTpSWlqZ5pMmrra1FY2Nj1MaJ48aNw/bt27u9/8GDBwGg0/3Ly8vRt29fHDp0KHWDTZOGhgYAiDk9e/LkSXzzm9+E3+9HaWkpLrnkEixevDhjNTHx8ng8WLRoETweDwoLCzF//nzcdtttPf4dZvtru337drhcLnzjG9+I+T6ffPIJFixYgGAwiH79+uHKK6/ElVdemcZR9izyPCP636yYfwWUchs2bEBtbS1uvPHGbm9ns9mwaNEinHvuuSgoKMCBAwewdu1a3HHHHfjd736nieJFYDabMXv2bHzta19DcXExjh8/jjVr1uCuu+7Cb3/7W4wePTrq/VpaWuDz+aJ+W5Mvq6urw+DBg9M6/mR99NFHaG5ujumDs7CwEJdffjkmTJgAi8WCzz77DOvWrcO+ffuwatWqmGst9FJfXw8geg1LWVmZ8ppardaE7i9fL7K//OUvKCgowIUXXtjjbQcMGIBzzz0Xw4cPh8fjwaZNm/Diiy/i5MmTePjhhzMw2viUlZXh+9//PkaPHg1JkvDhhx/i9ddfx5EjR/DUU091G7Rl+2u7YcMGWK1WzJ49O6bbDx8+HGeffTYGDRqElpYWvP322/j1r3+Nuro63H777WkebdcizzOi/80yAMoB1dXVePLJJzFhwgQsXLiw29vOmzcP8+bNU36fOXMmpk6dirvvvhsvvfRSxlYYxGrSpEmaVMGMGTMwZ84c3HDDDVi5cmWXq128Xi8ARC3Ak/8Y5duI7N1334XZbMbcuXN7vG3kt8M5c+Zg3Lhx+NnPfoZ169bh2muvTdcwUyLW16yrD1Ofz6e5beT99UwTxeKll17Cxx9/jP/8z/9EYWFhj7d/4IEHNL9/85vfxC9/+Uu8+eabuOqqq3pcIZlpkcXa8+fPx6BBg7Bq1Sps3rwZ8+fP7/K+2fzatra24oMPPsCFF14Y0+sKAI899pjm94svvhg//vGPsXbtWlxxxRVxpdFSJdp5RvS/WdYA9XL19fVYunQpCgoK8LOf/Qwmkynuxzj77LMxfvx47Ny5Mw0jTL2zzjoLM2bMwK5du7qsYZKXEfv9/k7XyX90sSw11pPb7cb777+PqVOnJrxi7Rvf+AZKS0uz4rVN9jWTP0Tl20beX+TX+7333sPvfvc7fOtb38J//Md/JPw48qqhjz/+OEUjS6+rrroKRqOxx/Fm82u7efNm+Hy+uNJfkQwGA6666ioEg8GoWx+kW1fnGdH/ZhkA9WIulwv3338/XC4XnnjiCZSXlyf8WBUVFWhpaUnh6NKroqICfr8fHo8n6vVFRUWwWq1Rp1Dly5L5/8qE999/Hx6PJ6kPTiB7Xlt5Gryr10x+TRO9v2h7XMl27NiBX/ziF7jooouSXvYrzww4nc5UDC3tbDYbioqKenx/ZutrC4TTRg6HA9OmTUvqceTXNtN/y92dZ0T/m2UA1Et5vV488MADOHnyJB577LGYi5+7curUqZg3rRLBqVOnYLVaNfvdqBmNRgwfPhz79+/vdF1VVRUGDBggfAH0hg0bkJeXh+nTpyf8GJIk4fTp01nx2vbt2xclJSU4cOBAp+v27duHkSNHdnv/UaNGAUCn+9fV1aG2tla5XiRVVVX4yU9+gjFjxuDhhx9Ounj51KlTAJAVrzcQnuVsbm7ucbzZ+NoC4fHt2rULs2bN6jYQiIUer21P5xnR/2YZAPVCwWAQDz30EPbu3YuHH34YEydOjHq7uro6VFdXa5aONzU1dbrdBx98gAMHDmDq1KnpGnLCoo338OHD2Lp1K6ZMmaJs8nfmzJlOS4dnz56N/fv3a4KgEydOYNeuXZgzZ046h520pqYmfPzxx5g1axbsdnun66Mdb7T/q9dffx1NTU0xFdWKYPbs2di2bRvOnDmjXLZz506cPHlSUwcVCARQXV2Nuro65bJhw4Zh8ODBePPNNzWp0ddffx0GgyHmAtRMOX78OJYuXYp+/frh//7f/9vtdH91dbXm/6S1tbVT2kCSJLz44osAEPNme5ni9Xqj1nP88Y9/hCRJmvdnb3htZf/6178QCoW6nMWNdqwtLS2dUvuBQAB//vOfYbFYcO6556Z1zLJYzzMi/82yCLoXeuaZZ7B161ZMmzYNTqcT77zzjub6BQsWAABWrlyJ9evXY82aNcoS6ttvvx2jR4/GmDFjUFBQgIMHD+Ktt95CRUUFrrvuuowfS09++tOfwmazYeLEiejTpw+OHz+ON998E3a7XVNU+fOf/xy7d+/Gli1blMu+853v4O9//zuWLl2Kq6++GiaTCWvXrkWfPn1w9dVX63E4MXvvvfcQDAa7/OCMdrxXXnkl5s2bh+HDh8NqtWLPnj147733MGrUKFx22WWZGnqXXnvtNbhcLmW6e+vWraipqQEQ3unb4XDg2muvxaZNm3DPPffgu9/9Ltra2vCXv/wFw4cP17QbqK2txXXXXYeFCxdi+fLlyuV33HEHli1bhnvvvRfz58/H0aNHsW7dOlxyySVJz5Km8liNRiPuu+8+OJ1OXH311fjggw809x8wYIDmhHPddddh8uTJePrppwGElw8//PDD+PrXv46BAwfC6/Xi3//+N/bs2YNLL7006rLkdOrpeJ1OJ2666SZ8/etfV1ZefvTRR9i+fTsuvPBCzJgxQ3msbH9t1Tvqb9iwAeXl5V0GLdGOdevWrXjxxRcxe/Zs9O/fH06nExs2bMCxY8dw6623ZizdF+t5RuS/WQZAvdDhw4cBANu2bcO2bds6XS+/MaOZN28etm/fjh07dsDj8aCsrAyXXnopFi9eLOReMTNnzsSGDRuwdu1atLa2oqSkBLNmzcLixYt73BY+Pz8fTz31FH7zm9/gxRdfVHqBxdOjRi/vvvsu+vTpg/PPPz/m+3zjG9/A559/rhRdVlZW4vvf/z5+8IMfRJ1FyrQ1a9Zo+htt2bJFCeAWLFgAh8OByspKPP300/jNb36D559/XukrdOedd8aUQpg2bRoeffRRrF69Gk899RSKi4tx7bXXYvHixek6rKh6OlYAyknz+eef73T/hQsXdvmNGwAqKytxzjnnYMuWLWhoaIDRaMSQIUNw77336hLsxvLaTps2DTt27MD69esRCoUwcOBA3Hrrrbj66qtjateSLa+tHACdOHECBw4cUAq9YzV8+HAMGTIEGzZsQFNTE8xmM0aNGoWHH344ptWgqRLreUbkv1mDJNJ2sEREREQZwBogIiIiyjkMgIiIiCjnMAAiIiKinMMAiIiIiHIOAyAiIiLKOQyAiIiIKOcwACIiIqKcwwCIiIiIcg4DICIiIso5DICIKC2++uorzJo1C7/4xS/0HkpKvP3225g1axbefvttvYdCRCnAAIiIMuZHP/oRZs2apfcwouptARsRdY/NUIkoLfr27YuXXnoJBQUFeg8lJWbOnInx48dnrNs2EaUXAyAiSguz2YwhQ4boPYyUcTgcSidvIsp+7AZPRGnx1Vdf4Xvf+x4WLlyI5cuXd5n6kq+XHTlyBC+99BJ2796NlpYWlJWVYfr06bjhhhtQXFwc9fGvueYarFq1Cp9++ilaWlqwZs0a9O/fH1u2bMHGjRuxf/9+1NXVwWw2Y8SIEfjud7+LOXPmKI/19ttvY8WKFVHH99RTT+Hcc89VbrNs2TIsWrRIc5s9e/bgpZdewt69e+H1etGvXz/MmzcP11xzDex2u+a2s2bNwuTJk/HQQw/h2Wefxfbt29HW1oaRI0fihz/8Ic4999x4/6uJKAGcASKijFi8eDHWr1+P06dPY/Hixcrlo0aNUn5+//338dBDD8FgMGDGjBmoqKjA8ePH8de//hUfffQRnn/+eRQWFmoe98svv8Ttt9+O4cOHY+HChWhpaYHFYgEArFy5EmazGZMmTUJZWRmampqwdetWPPjgg1iyZAmuuOIKAMDIkSPx3e9+F6+++ipGjhyJGTNmKI/fr1+/bo9r48aNeOSRR2CxWDBv3jyUlJRgx44dWL16NT766CM89dRTsNlsmvu4XC7ceeedcDgcWLBgARobG7Fx40bcd999WLVqFYYPH57Q/zERxY4BEBFlxI033ojdu3fj9OnTuPHGGztd39zcjJ///OcoLi7GM888owk83nvvPTz88MP4/e9/j3vuuUdzvz179mDx4sVRH/Pxxx/HgAEDNJe53W7ccccd+P3vf49vfetbsNvtGDVqFBwOhxIARXusaFpbW/HLX/4SJpMJzz77LEaMGAEAuPXWW/HII4/gX//6F1555RVcf/31mvsdPnwY//Ef/4F77rkHRmN4Lcp5552Hxx9/HH/9619x3333xfT8RJQ4rgIjIiH885//RGtrK2699dZOsy7z58/H6NGj8d5773W6X2lpKa677rqojxkZ/ABAfn4+Fi1aBJfLhf379yc15vfffx8ulwsXX3yxEvwAgNFoxO233w6TyRR12XxeXh5uu+02JfgBwqlAk8mU9JiIKDacASIiIezduxcAUFVVhS+//LLT9T6fD83NzWhqakJJSYly+ciRI5WUV6TGxkb8+c9/xvbt23HmzBl4vV7N9XV1dUmN+dChQwCAyZMnd7qusrISAwYMwMmTJ+F2u5Gfn69cd9ZZZ2l+B8JF46WlpXC5XEmNiYhiwwCIiITgdDoBAOvWrev2dh6PR/N7nz59ot6upaUFt956K86cOYNJkybhggsugMPhgNFoxOHDh/H+++/D7/cnNebW1lYA4VmoaMrKynDy5Em0trZqAp6utgYwmUwIhUJJjYmIYsMAiIiEIAcIq1evjqsI2GAwRL38H//4B86cOYObbrqpUw3On/70J7z//vuJD7adHMg0NDREvV6+vLfshUTUm7AGiIgyRq55CQaDna4bP348gI5UWLLkNJp6RZfss88+63Js8czAyCvYdu/e3em6M2fO4Msvv8SAAQM6pbuISH8MgIgoY4qKigAANTU1na67+OKLkZ+fj1WrVuHYsWOdrvd4PHEFR3Ih9Z49ezSXb9iwAdu3b+90+8LCQhgMhqhj68qMGTPgcDjw1ltvacYsSRKef/55BIPBTnsGEZEYmAIjoow577zzsGnTJvz3f/83LrzwQlitVowcORLTp09HSUkJfvrTn+LBBx/EjTfeiKlTp2Lw4MHw+/04ffo0du/ejYkTJ+KJJ56I6bkWLFiAl19+GU899RR27dqFyspKHD58GJ988glmzZqFLVu2aG6fn5+PsWPH4tNPP8Wjjz6Ks846CwaDAd/85je73AuooKAAP/7xj/HII4/gtttuw9y5c1FSUoKdO3fiwIEDGDduHK6++uqk/9+IKPUYABFRxlxyySX46quv8K9//Qsvv/wygsEgFi5ciOnTpwMALrroIvz+97/HX/7yF+zcuRMff/wx7HY7+vbti0WLFmHBggUxP1dFRQWefvppPPvss/j4448RDAYxevRo/OpXv0JNTU2nAAgAfvKTn+DXv/41tm3bhtbWVkiShLPPPrvbzRDnzp2L0tJS/OlPf8KWLVuUnaCvv/56XHPNNZ02QSQiMbAVBhEREeUc1gARERFRzmEARERERDmHARARERHlHAZARERElHMYABEREVHOYQBEREREOYcBEBEREeUcBkBERESUcxgAERERUc5hAEREREQ5hwEQERER5RwGQERERJRz/n84IVVKrouugwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "c49100a2", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "f672d9cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAG5CAYAAABMX3rVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnZUlEQVR4nO3deVxU5eI/8M8wwLCDgIL7Au5LmFopsmm5Zd66aVnX0sxMMa/9rl6321fTa9c2K7rlmle0rmnXck0tNRExNTVJDUVJIFNB9p2ZYeb8/sA5MjLADGc2hs/79erVzDnPOed5HHA+nuc5zyMTBEEAEREREUnmZOsKEBERETkKBisiIiIiM2GwIiIiIjITBisiIiIiM2GwIiIiIjITBisiIiIiM2GwIiIiIjITBisrq6ysRGpqKiorK21dFSIiIjIzBisry8zMxCuvvILMzExbV8XifvvtN1tXwWqaU1uB5tVettVxNaf2sq3Ww2BFFqNUKm1dBatpTm0Fmld72VbH1Zzay7ZaD4MVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZkwWBERERGZCYMVERERkZk427oCJJ2qXI20E7egLFXDJ8gDIUPa2LpKREREzRKDlQNQKzX4cVMKAKDjwCAGKyIiIhthV6ADUHi6iK+VpSob1oSIiKh5Y7ByAM6ucshdqz9KZZnaxrUhIiJqvhisHITCq/qulbKUwYqIiMhWGKwchMLTFQCDFRERkS0xWDkIN+/qO1YatRZVKo2Na0NERNQ8MVg5CP0B7LxrRUREZAsMVg5CN8YKYLAiIiKyFQYrB6EXrMo45QIREZEtMFg5CHYFEhER2R6DlYNQeLmKrysZrIiIiGyCwcpBcIwVERGR7TFYOQh2BRIREdkeg5WD4B0rIiIi22OwchB8KpCIiMj2GKwcBLsCiYiIbI/BykE4K+RwcpYBAJRlDFZERES2wGDlIGQyGdy8uBAzERGRLTFYORDdOCsGKyIiIttgsHIgumBVpdRAo9bYuDZERETND4OVA9EbwF5WZcOaEBERNU8MVg5Efy4rTrlARERkbQxWDqTmeoEcZ0VERGR9zraugCHl5eXYtm0bUlJScPnyZZSUlGDRokUYPXq0UceXlJRg7dq1SExMhFKpRM+ePREbG4vu3bvXKpuUlIRNmzYhMzMTfn5+GDNmDF588UU4O9/7ozl37hwOHTqECxcuICcnB/7+/njwwQfx8ssvIzAw0GztlopzWREREdmWXd6xKioqQnx8PDIzMxEaGmrSsVqtFgsWLMDhw4fx5z//GTNmzEBBQQHmzJmDGzdu6JU9deoU/vGPf8DLywtz5sxBREQEtmzZgri4OL1ya9euxfnz5xEREYE5c+Zg+PDhOHr0KKZNm4a8vDzJ7TUXLmtDRERkW3Z5xyogIAA7d+5EQEAArly5gunTpxt9bEJCAi5duoTly5cjOjoaADBs2DA8//zz2LRpE5YsWSKWXb16NUJCQrBq1SrxDpWHhwe++OILjB8/Hh07dgQAzJo1C/369YOT070c+tBDD+Gvf/0rvvnmG7zyyitmaLV0NYNVJScJJSIisjq7vGPl6uqKgICARh177Ngx+Pv7IzIyUtzm5+eHmJgYJCUlQaWqHtSdkZGBjIwMPPHEE3rdfk899RQEQUBCQoK4LSwsTC9U6bb5+PggMzOzUfW0BHYFEhER2ZZdBisprl69iq5du9YKQj179kRlZaXYHXj16lUAqDXuKjAwEC1btsS1a9fqvU55eTkqKirg6+tbb7nc3FykpqaK/1kyiPGpQCIiItuyy65AKfLz8/HAAw/U2q67A5aXl4eQkBBxbJShO2MBAQENjp363//+B7VajWHDhtVbbs+ePYiPj6+1PT09HRqNeSfxrCy8N3dVzu08pKSkmPX8piotLbV5HaylObUVaF7tZVsdV3NqL9tqHr169WqwjMMFK6VSCVdX11rbdduUSiUAiF2CdZUtLy+v8xrJycmIj49HTEwMBgwYUG99xo0bh/DwcPF9ZmYmVqxYgc6dOxt8SlEKVbkaP+MmAEDh5G7UD4AlpaSk2LwO1tKc2go0r/ayrY6rObWXbbUehwtWCoVCDE016bYpFAoA9wJVXWV15e6XmZmJN954A126dMGCBQsarE9gYKDVpmRwcXeGTC6DoBE4xoqIiMgGHG6Mlb+/v8FuvPu7/mp2DRoqa6iLMDs7G3PnzoWnpyfeeecdeHh4mLPqkslkMnEAu5JPBRIREVmdwwWrrl274tq1a9BqtXrbL1++DDc3N7Rv314sBwCpqal65XJzc5GTkyPu1ykqKsLcuXOhVqvx/vvv29XEoDXpBrDzjhUREZH1NelglZubi8zMTFRV3Ru0HRUVhfz8fCQmJorbCgsLcfToUQwZMkTsAuzcuTM6dOiAvXv36g0i37VrF2QyGaKiosRtFRUVmD9/PnJzc/Huu++K4cwe6YKVuqIK2iptA6WJiIjInOx2jNXXX3+N0tJSsavuxIkTuHPnDgDg6aefhpeXF9avX4+DBw9i+/btaN26NQAgOjoaO3bswMqVK5GRkQFfX1/s2rULWq0WU6dO1btGbGwsFi1ahLlz52L48OG4fv06du7cibFjx6JTp05iuX/+85+4fPkyxowZg8zMTL0pE9zd3REREWHhPw3j6c1lVaaGu6/hsWJERERkfnYbrLZv346srCzxfWJiongXasSIEfDy8jJ4nFwux7vvvovVq1fj66+/hlKpRI8ePbBo0SJ06NBBr+yQIUOwYsUKxMfHIy4uDr6+vpg0aRKmTJmiVy4tLQ0AsH//fuzfv19vX3BwsF0FK7f7FmJmsCIiIrIeuw1WX331VYNlFi9ejMWLF9fa7u3tjQULFhj11F5ERESDwciYutgLvUlCOYCdiIjIqpr0GCuqjcvaEBER2Q6DlYPRX9aGwYqIiMiaGKwcjH5XINcLJCIisiYGKwfDrkAiIiLbYbByMOwKJCIish0GKwejqDndAp8KJCIisioGKwfDO1ZERES2w2DlYFzdnSGTVb9msCIiIrIuyROEZmRk4JtvvsGVK1dQUlJSa/FjAJDJZNi2bZvUS5ERZE4yuHq6QFmqZlcgERGRlUkKVsnJyZg3bx7UajXkcjlatGgBuVxeq5wgCFIuQyZSeFUHq8oSTrdARERkTZKC1bp166DRaDB//nyMGjXKYKgi69ONs1KVV0GrFeDkJLNxjYiIiJoHSWOs0tLSMHz4cDz++OMMVXZE4XnvyUAVuwOJiIisRlKwcnNzg5+fn5mqQubCJwOJiIhsQ1KweuSRR3DhwgVz1YXMRH9ZGwYrIiIia5EUrGJjY1FaWoq4uDhUVlaaq04kEZe1ISIisg1Jg9fffPNNuLu7Y+fOnThw4ADat28PDw+PWuVkMhk++ugjKZciE+h3BfLJQCIiImuRPN2CTkVFBa5evWqwnEzGp9KsiV2BREREtiEpWB07dsxc9SAzcmNXIBERkU1wSRsHpPCusRAzgxUREZHVmDVYVVRUIDc3FxUVFeY8LZlIb/A6uwKJiIisRvJagWq1Gl9++SUOHDiA27dvi9tbt26NMWPGYOLEiXBxcannDGRunMeKiIjINiQFK6VSiddffx2XL1+Gk5MT2rVrh4CAAOTl5eHWrVvYuHEjfvzxR3z00UdQKBTmqjM1wJVjrIiIiGxCUrD673//i5SUFAwbNgwzZsxAUFCQuO/OnTtYu3Ytjhw5gq1bt+Kll16SXFkyjpOTDK4ezlCVV6GS0y0QERFZjaQxVj/88AO6deuGpUuX6oUqAGjVqhWWLFmC7t2748iRI5IqSabTdQfyjhUREZH1SApWWVlZGDRoUL1lBgwYgKysLCmXoUZQeFU/GagqU0PQCjauDRERUfMgeRHmwsLCessUFhbCzc1NymWoEXRPBgoCoKqosnFtiIiImgdJwapXr144cuQI0tPTDe7PyMjADz/8gN69e0u5DDUCnwwkIiKyPkmD11944QWcOXMG06dPx+OPP46wsDC0aNECBQUFOH/+PA4cOICqqipMmjTJXPUlI3FZGyIiIuuTFKz69u2LJUuW4L333sPOnTuxa9cucZ8gCPD09MTixYvRt29fqfUkE+lNEsonA4mIiKxC8gShMTExePjhh5GUlISrV6+ivLwcHh4e6NatG4YOHQoPDw9z1JNMxK5AIiIi65McrADAw8MDI0aMwIgRI8xxOjIDN68a6wWyK5CIiMgquAizg+IdKyIiIusz6Y7VwYMHAQCRkZHw8PAQ3xtj1KhRptWMJGGwIiIisj6TgtXKlSshk8nQu3dveHh4iO/rIwgCZDIZg5WV6Q1eZ1cgERGRVZgUrBYuXAgACAgI0HtP9qfmHavKEj4VSEREZA0mBavRo0fX+57sB+9YERERWZ+kwevJycnIzs6ut0x2djaSk5OlXIYawcnZCS7ucgAcY0VERGQtkoLV66+/jgMHDtRb5rvvvsPrr78u5TLUSArP6ikXGKyIiIisQ1KwEgTBqDINDXAny9CNs1KWqY36rIiIiEgai89j9ccff8DT09PSlyEDdOOsBI0AdaXGxrUhIiJyfCbPvP7222/rvT9+/DiysrJqldNoNLhz5w4uXLiAhx9+uPE1pEa7fy4rV3ezTLRPREREdTD5m7bmmCqZTIa0tDSkpaUZLCuTydCjRw+89tprja8hNZpesCpTwbuluw1rQ0RE5PhMDlbbt28HUD12auLEiZgwYQLGjx9fq5yTkxO8vb3h7s4vc1vRm3KBA9iJiIgszuRgFRwcLL5euHAhunXrpreN7IfCu8ZCzAxWREREFidp0A0nCLVvbpwklIiIyKrMMppZqVTiypUryM3NhVpt+AucawVaHxdiJiIisi7Jweqbb77Bxo0bUVZWZnA/F2G2HQYrIiIi65I0j9WxY8cQFxeHVq1aITY2FoIgIDw8HK+88goeeughCIKAqKgoLFiwwFz1JRPoBysuxExERGRpkoLV//73P7Ro0QJr1qzBM888AwDo2rUr/vKXv+Ddd9/FG2+8gePHj3Nwu43wqUAiIiLrkhSsrl+/jvDwcLi5uYnbtFqt+Pqxxx7Dgw8+iPj4eCmXoUZy5eB1IiIiq5I0xqqqqgp+fn7ie4VCgZKSEr0yoaGh2Lt3r0nnLS8vx7Zt25CSkoLLly+jpKQEixYtMvopxJKSEqxduxaJiYlQKpXo2bMnYmNj0b1791plk5KSsGnTJmRmZsLPzw9jxozBiy++CGfne380ubm52LFjBy5fvowrV66goqICcXFx6N+/v0ntsjZnVzmcFXJUKTW8Y0VERGQFku5YBQQEIC8vT3wfFBSEa9eu6ZXJysqCXC436bxFRUWIj49HZmYmQkNDTTpWq9ViwYIFOHz4MP785z9jxowZKCgowJw5c3Djxg29sqdOncI//vEPeHl5Yc6cOYiIiMCWLVsQFxenV+7GjRvYunUrcnJy0KVLF5PqY2u67kAGKyIiIsuTdMeqZ8+euHr1qvj+4Ycfxo4dO/DFF18gPDwcFy5cQGJiIgYOHGjSeQMCArBz504EBATgypUrmD59utHHJiQk4NKlS1i+fDmio6MBAMOGDcPzzz+PTZs2YcmSJWLZ1atXIyQkBKtWrRLvUHl4eOCLL77A+PHj0bFjRwBA9+7dsW/fPvj4+CAhIUHvHPZO4eWCsvxKKMvU4hOaREREZBmS7lhFR0dDpVLh9u3bAIBJkyahZcuW+Oyzz/DSSy/hgw8+gLu7O2bMmGHSeV1dXREQENCoOh07dgz+/v6IjIwUt/n5+SEmJgZJSUlQqaqfjsvIyEBGRgaeeOIJvW6/p556CoIgICEhQdzm4eEBHx+fRtXH1nRPBmrUWmhU2gZKExERkRSS7lhFRkbWCjD/+c9/sG/fPty6dQtBQUEYOXIkWrZsKbmixrp69Sq6du0KJyf9zNizZ0/s3bsXN27cQEhIiHin7f5xV4GBgWjZsmWtLs3Gys3N1esuzczMNMt5jaX/ZKAKzgqu3UhERGQpZpl5vSZvb28899xz5j6t0fLz8/HAAw/U2q67A5aXl4eQkBAx7Bi6M3b/2DEp9uzZY/CpyPT0dGg0GrNcoz4VVfcmbk25kArPINd6SptXaWkpUlJSrHY9W2pObQWaV3vZVsfVnNrLtppHr169GiwjKVgdPHgQbm5u4lgmQ3777Tdcu3bNajOvK5VKuLrWDg+6bUqlEgDELsG6ypaXl5ulPuPGjUN4eLj4PjMzEytWrEDnzp0NPqVobqW/pCL7fCkAoG1Qe7Tp1bgu1sZISUkx6ofQETSntgLNq71sq+NqTu1lW61HUrBauXIlZDIZhg4div/7v/+DQqGoVSYxMRGbN2+2WrBSKBRiaKpJt01XR12gqqusobY0RmBgIAIDA81yrsbgsjZERETWI2nwOlA9rur48eOYPXs28vPzzVEnSfz9/Q12493f9Veza9BQ2cYOnrc3esGKk4QSERFZlORg9eSTT2L69Om4evUqXn31Vfz222/mqFejde3aFdeuXdObAR4ALl++DDc3N7Rv314sBwCpqal65XJzc5GTkyPub+r0Bq+XcL1AIiIiS5IcrADgL3/5C5YtW4bi4mLMmjULJ0+eNMdpG5Sbm4vMzExUVVWJ26KiopCfn4/ExERxW2FhIY4ePYohQ4aIXYCdO3dGhw4dsHfvXr1B5Lt27YJMJkNUVJRV2mBpvGNFRERkPWZ7KjAqKgpBQUFYuHAhFi9ejNjYWEyYMKHR5/v6669RWloqdtWdOHECd+7cAQA8/fTT8PLywvr163Hw4EFs374drVu3BlA9t9aOHTuwcuVKZGRkwNfXF7t27YJWq8XUqVP1rhEbG4tFixZh7ty5GD58OK5fv46dO3di7Nix6NSpk17ZzZs3A6ie/woAvvvuO1y4cAEAMHny5Ea309I4xoqIiMh6zDrdQo8ePbBu3TosXLgQn376KW7cuNHoiTW3b9+OrKws8X1iYqJ4F2rEiBHw8vIyeJxcLse7776L1atX4+uvv4ZSqUSPHj2waNEidOjQQa/skCFDsGLFCsTHxyMuLg6+vr6YNGkSpkyZUuu8Gzdu1Hu/f/9+8bU9Bys3TwYrIiIiazH7PFZBQUH49NNP8eabb2L37t1wc3Nr1Hm++uqrBsssXrwYixcvrrXd29sbCxYswIIFCxo8R0REBCIiIhosV7NrsSlReN2bToJdgURERJZlljFW9/Pw8MDbb7+Np556CpWVlZa4BBlJ7uoEuUv1x8w7VkRERJYl6Y7VsWPH6tzn5OSE119/HSNHjhQn5STrk8lkUHi6oLxQyWBFRERkYWbvCrxfz549LX0JaoDC626wYlcgERGRRVmkK5Dsi+7JwCqlBlUqy69PSERE1FyZdMcqKioKTk5O2LJlC9q3b4+oqCjIZLIGj5PJZDh69GijK0nS1BzAripTw9lVbsPaEBEROS6TgtUDDzxQPWbn7jp6uvdk3+6fJNSjReOe1CQiIqL6mRSsPv7443rfk31ScC4rIiIiq+AYq2ag5h2ryhIGKyIiIkthsGoG9LsCuRAzERGRpZjUFRgfH9+oi8hkMrte9sXRsSuQiIjIOkwKVps2bWrURRisbIsLMRMREVmHScEqLi7OUvUgC7r/qUAiIiKyDJOCVVhYmIWqQZak8KyxEDPvWBEREVkMB683A+wKJCIisg6zrRWo0WhQVFQEtdrwF3dQUJC5LkUmcnGTQyaXQdAI7AokIiKyIMnBKjU1FevXr8cvv/yCqqoqg2W4pI1tyWQyKDxdUFms4h0rIiIiC5IUrK5du4bXXnsNcrkcgwYNwo8//ojQ0FD4+/vj6tWrKCwsRFhYGIKDg81VX2okN++7wYrzWBEREVmMpGC1efNmAMDatWvRqVMnREVFISIiAlOmTIFSqcSnn36KhIQELFy40CyVpcarHsBeBnWFBtoqLZycObyOiIjI3CR9u168eBHh4eHo1KmTuE0QBACAQqHA66+/jsDAQGzYsEFSJUk6TrlARERkeZKCVVlZGdq0aSO+d3Z2RkVFxb2TOzkhLCwM586dk3IZMgO99QI5zoqIiMgiJAUrPz8/lJSUiO/9/f3xxx9/6JVRqVSorKyUchkyAy5rQ0REZHmSglWnTp3w+++/i+/79u2LM2fO4NKlSwCAjIwMHD16FB07dpRWS5JMfy4rDmAnIiKyBEmD1wcPHoxPPvkEubm5CAwMxPPPP4/ExES89tpr8Pb2RmlpKbRaLSZNmmSu+lIjcYwVERGR5UkKVn/6058QExMDb29vAEBoaCg+/PBDfP7557h16xa6d++Op59+GoMHDzZLZanx2BVIRERkeZKClbOzM/z9/fW29e3bF++++66kSpH5cVkbIiIiy+NkRs2EwqvGQszsCiQiIrIIs6wVWFhYiIyMDOTm5ta5rM2oUaPMcSlqJHYFEhERWZ6kYKVUKvHRRx/h+++/h0ajMVhGEATIZDIGKxtjVyAREZHlSQpWcXFx2L9/P0JCQhAVFYWAgADI5XJz1Y3MyNXdGTIZIAjsCiQiIrIUScHq2LFj6N69O9asWcNAZedkTjIovFxQWaLmPFZEREQWImnwularRf/+/RmqmgjdAHZ2BRIREVmGpGDVo0ePWkvYkP3SDWBXlVdBq9HauDZERESOR1Kwevnll3HmzBn8+OOP5qoPWVDNAeyqMsNPbxIREVHjSRpj1adPH6xatQqLFi1Ct27dEBISAk9Pz1rlZDIZJk+eLOVSZAb3L2vj5uNaT2kiIiIylaRgVVRUhHXr1qGkpATnzp3DuXPnDJZjsLIP+nNZqQDUDsFERETUeJKnW7h48SIeeeQRDB8+nNMt2DnOZUVERGRZkoLV6dOnERYWhnfeecdc9SELqhmsKjmXFRERkdlJGrwuCAJ69OhhrrqQhXFZGyIiIsuSFKz69u2LtLQ0c9WFLExvIWYGKyIiIrOTFKxiY2Nx5coVfP311+aqD1nQ/U8FEhERkXlJGmP15ZdfIiQkBP/+97/x9ddf1zndAgAsXLhQyqXIDNgVSEREZFmSgtWBAwfE1zdv3sTNmzcNlpPJZAxWdkDhzWBFRERkSZKC1fbt281VD7ICVw8XQAZAAJRlXIiZiIjI3CQFq+TkZPj7++Ohhx4yV33IgpycZFB4uEBZpuYdKyIiIguQNHj9nXfewenTp81VF7IC3QB2BisiIiLzkxSsAgICoNFozFUXsgLdAHZlmRqCVrBxbYiIiByLpGAVHh6Os2fPQqXieJ2mQpxyQQBU5VW2rQwREZGDkRSsXnnlFbi5ueGNN95Aenq6uepEFqQ/lxUDMRERkTlJGrz+8ssvQ61WIy0tDT/99BNcXV3h5+cHmUymV04mk2Hbtm2SKkrmUWsuqyAbVoaIiMjBSApWgiDA2dkZrVq1qrW9vvfGKC8vx7Zt25CSkoLLly+jpKQEixYtwujRo406vqSkBGvXrkViYiKUSiV69uyJ2NhYdO/evVbZpKQkbNq0CZmZmfDz88OYMWPw4osvwtnZudHntFd6d6w4gJ2IiMisJAWrr776ylz1qKWoqAjx8fEICgpCaGgozp8/b/SxWq0WCxYswG+//YaJEyfC19cXu3btwpw5c7Bhwwa0b99eLHvq1Cn84x//QFhYGObMmYPr169jy5YtKCgowNy5cxt1TnvGZW2IiIgsR1KwsqSAgADs3LkTAQEBuHLlCqZPn270sQkJCbh06RKWL1+O6OhoAMCwYcPw/PPPY9OmTViyZIlYdvXq1QgJCcGqVavEO1QeHh744osvMH78eHTs2NHkc9ozhScXYiYiIrIUSYPXa6qqqkJ6ejouXbqE9PR0VFVJe+LM1dUVAQEBjTr22LFj8Pf3R2RkpLjNz88PMTExSEpKEp9izMjIQEZGBp544gm9br+nnnoKgiAgISHB5HPaO3YFEhERWY7kO1bFxcVYu3YtDh8+rBcuFAoFHn30UUyfPh2+vr5SL2OSq1evomvXrnBy0s+NPXv2xN69e3Hjxg2EhITg6tWrAFBrjFRgYCBatmyJa9eumXxOe8euQCIiIsuRFKyKi4sxY8YM3Lx5Ez4+PujXrx8CAgKQn5+PK1euYN++fUhOTsaaNWvg4+Njrjo3KD8/Hw888ECt7bo7YHl5eQgJCUFeXp7e9vvL6vabcs775ebm6p0nMzPTxNaYF+9YERERWY6kYLV582bcvHkTEydOxJQpU+Du7i7uq6ysxObNm7F161Zs2bIFr732muTKGkupVMLV1bXWdt02pVIJAOIdtrrKlpeXm3zO++3Zswfx8fG1tqenp9tk1np12b1r5mblIyUlxWLXKi0ttej57UlzaivQvNrLtjqu5tRettU8evXq1WAZScEqKSkJYWFhmDlzZq19bm5uePXVV5GSkoLjx49bNVgpFAqDY5502xQKBYB7oaiusrpyppzzfuPGjUN4eLj4PjMzEytWrEDnzp1tMk2DVqPFGfwBAHCBwqgfksZKSUmx6PntSXNqK9C82su2Oq7m1F621XokBau8vDw8+uij9Zbp06cPfv31VymXMZm/v79e95vO/V1/NbvxgoKCapXt2bOnyee8X2BgIAIDAxvRCstwkjvBxd0Z6oqqZtEVqNVocfHbdFw7fgvaKi3kLk5wcnaC3NUJcmcnyF10/5ff2+dS4z9nJzjd977WPmcnlN5SIt+rRNzn5OIE5xrnu3/SXCIickySgpWnpyeysrLqLZOVlQVPT08plzFZ165dceHCBWi1Wr3B5pcvX4abm5s451TXrl0BAKmpqXrpNjc3Fzk5ORg3bpzJ52wKFF4u1cHKwQevF/xRgmNrLyL3epFVrncBdf8uODnL7oYuuV440w958lqhThfSXBRyuHq4wNXTGQoPF7h4VP/f1dMZru7V752cGN6IiGxNUrAKCwtDQkICRo8ejYEDB9baf+7cOSQkJGDo0KFSLlOv3NxclJWVoW3btuKUCVFRUUhISEBiYqI451RhYSGOHj2KIUOGiF2AnTt3RocOHbB3716MGzcOcrkcALBr1y7IZDJERUWJ1zH2nE2BwtMFpTkVUJaqIQiCw91N0WoFXPo2Hed2XINGrQUAyGSAq6cLNGotNGotBK3pqwFIqlOVAG2VBuoKy42rc3F3hquHM1w9XKDwdIaLuzMUni7Vgczj7j5PFyg8nOHiUf1/3T6ZXAYIqP4PgHDvBcQ/KQHA3VUUVCVVKMuvvLtdEHeLh9V8I5JB5gTIgOoPRHbfaxkg022s8Vr34ym7GxxlMt2Bd/fJZHfPgxobobfN0X7Gich+SQpWU6ZMwcmTJzFv3jw88sgjeOCBB+Dv74/8/HwkJyfj9OnTUCgUmDJlSqPO//XXX6O0tFTsbjtx4gTu3LkDAHj66afh5eWF9evX4+DBg9i+fTtat24NAIiOjsaOHTuwcuVKZGRkiLOka7VaTJ06Ve8asbGxWLRoEebOnYvhw4fj+vXr2LlzJ8aOHYtOnTqJ5Uw5p73TPRkoaAWoK6rg6uHSwBFNR9HtMhxbdwF3rhaK23zbeCJqRj+0CvUTt2m1ArR3Q5ZGrYGm6u7rKi00Ki20Nd/fLacV32tq7BOgUWuQeycPvt6+Ylnxv7vltWotqnTnuO+85gp56ooqqCuqUJZXaZbzNeQsblrlOhZxL5vVSG41t+l2ySAIAk7Lbuht1+0zeOqam/WKyAyXqXV8zYvUV66uN8aVM1S1qqoqJLtk1dhsuC6yOtqFBjbXWcu6TlHvH5SRZWuVu/daqVQhRVF7iIe5mJznTc7/xh+gVFbisiLf1AtYjCX/rVNZWYmKcGcMmNDNcheph6Rg1blzZ7z//vtYuXIlTp48iZMnT4p/EQFAmzZtsHjxYnTu3LlR59++fbteV2NiYiISExMBACNGjICXl5fB4+RyOd59912sXr0aX3/9NZRKJXr06IFFixahQ4cOemWHDBmCFStWID4+HnFxcfD19cWkSZNqhUFTzmnv7p/LyhGClaAV8Ov3mTizLRUaVfVdKsiAvmM6Y8CErnB2leuVd3KSwUkhh7NCDkB6+6UMltRq9MOW1kAwU1dqoCqvgqpcDVVZFVQV1f9XlquhLq/+f/X2KqjK1OKdOqqD3p04oebm2gXr2OOoVLD+08q2VAHHHhJRU3kzamuplf6BaYhMaMwKyfcRBAEXL17EtWvXUFZWBk9PT3Tt2hV9+/blLfj7pKam4pVXXsGGDRtstnhz0sZLuHKk+l/gT741BIGdLTOBq7WezCjJKUfiuou4nXLvX2M+QR6IfLUvgnv4W/z6gO2fQrmfRq0LYtVj6XSBSwxn5Xff68ba6f4WMHRHpub/7m4rKSmGt4+Pfncb9MuL3Xm427V4t6tR91q427Wo6zUU/yoSanQl3t0u1Oym1HU91uiaFO7LP0LN5GSge7PmS90Jav1NeLdulZWVcHNz08tW+mUFwy/rKKO3vZ6/ffX+am5kOcNVMFCXu/9Xq9VwdnGufUxdl2jg60PSt8t9B9d7Lr0/97oL3v+ZaDVaOMnNtgBJnXUyqriFs/v944Prr0vT/oeEoBXQLbIdhk7rY5Prm2WtQJlMhn79+qFfv37mOB1ZmMLLMdYLFAQBqT/cwOn/XoG68t6/sns91gGDnusOFze7XQrT4uQucrj7yuHua3gaEKnsLUhaEtvquJpTe9lW62m+3zzNmCMsa1OWV4HjGy7hjwu54javQDdETO+Ltn3sZ3oLIiJqXiQHq8LCQuzfvx9XrlxBaWmpwdnEZTIZPvroI6mXIjNx82y6y9oIgoBrx2/i1JbLUJXfW+i7e0w7PPyXHg4xXoyIiJouScHqt99+w+uvv46SkpJ6+2Q5zsq+KLybZrAqL1Qi6bNL+P3nO+I2jxYKRLzSF+3DWtqwZkRERNUkBatPP/0UxcXFePHFF/H444+jZcuW4lxQZL8Unk2vK/C3k7fx46Zf9YJg6NA2GPxiL72uTSIiIluSFKx+/fVXDB06FC+//LK56kNWUDOIVJbUXv/QnlQUK/HjphSkn7437YabjyuGvtwHnQYF1XMkERGR9UkKVs7Ozmjbtq256kJWovdUoB3fsco4k42kjZdQWXwv/HV+OBjhL/WGm0/TmemeiIiaD8lL2qSmppqrLmQlCs97H7s9jrFSlqpxcksK0pJuidsUXi4Y8lJvhAxubcOaERER1U/SzGixsbG4fv06vvzyS3PVh6xA7qKbcdz+gtWN5Bx8veC4XqjqMKAVnn43gqGKiIjsnqQ7Vp9//jm6dOmCdevWYc+ePQgNDYWnp6fBsgsXLpRyKTIzhZcLqpQau+kKVJWrceqLK7ia8Ie4zdXDGY+82BNdI9ryyVIiImoSJAWrAwcOiK9v3bqFW7duGSwnk8kYrOyMwssFZXmVUJaqIAiCTYNL4c1SHHznDEpz763t1LZvICKn94FngLvN6kVERGQqScFq+/bt5qoHWZluygVtlYAqpcamy79cOpAhhioXNzke/ksPdB/WnnepiIioyZH0bRocHNyo47Kzs3H79m2EhYVJuTxJcP+yNrYMVoW3SsXXT74VDt/WhruTiYiI7J2FlvWu3/79+/H666/b4tJ0l8LTfhZiLrpdBgBw93VlqCIioibNJsGKbE/vjpUNg5WqXI2Koup5qhiqiIioqWOwaqbu7wq0leKscvG1TzCDFRERNW0MVs2Um53csSrKKhNf+wZ72KweRERE5sBg1UzpdwXabr1AvWDFrkAiImriGKyaKb2FmG15x+o2uwKJiMhxMFg1U/byVGCx7o6VDPAJYlcgERE1bQxWzZQ9DF4XBEGcasErwB3OrnKb1IOIiMhcGKyaKXuYbqGyRAVVeRUAwIcD14mIyAHYJFh5enqiVatWtrg03eXsKofcpfrjt1WwqjnVAgeuExGRI7BJsHrmmWfw1Vdf2eLSVIPurpWyzDZPBeq6AQHAlwPXiYjIAZi0QFx8fHyjLiKTyTB58uRGHUuWo/ByQXmB0mZ3rPSDFbsCiYio6TMpWG3atKnWNplMJr4WBKHWdkEQGKzslMKz+o6VRqVFlUpj9cHjerOusyuQiIgcgEnBKi4urta2bdu24ezZsxgxYgT69esHf39/5Ofn45dffsGhQ4cwaNAgPPvss2arMJmPwqvGlAtlaqsHK93koDK5DN4t3a16bSIiIkswKViFhYXpvd+3bx+Sk5OxYcMGdO7cWW/fqFGjMH78eMTGxmLo0KG1jiXbu//JQM8Wbla7tqAVxGDl08oDTnI+oEpERE2fpG+z//3vfxg+fHitUKUTEhKC4cOHc6C6nbLllAvlBZXQqLQAONUCERE5DknB6ubNm/Dx8am3jI+PD27duiXlMmQhtlyIuYhTLRARkQOSFKz8/Pxw+vRpvUHrNWm1Wpw+fRq+vr5SLkMWohu8Dlh/IWZOtUBERI5IUrB69NFH8dtvv2HhwoVIS0vT23ft2jUsXLgQ6enpeOyxxyRVkizDll2BuvFVAO9YERGR4zBp8Pr9XnrpJVy9ehWnTp3C6dOn4ebmBj8/PxQWFqKyshKCIGDAgAGYMmWKmapL5nT/U4HWxDmsiIjIEUkKVgqFAqtWrcLBgwdx8OBBXL9+HdnZ2fDy8kKPHj0wcuRIjBo1Sm+uK7If+l2B1g1Wujms5K5O8LDi04hERESWJClYAdUTgY4ePRqjR482R33IimzVFajVaFF8pzpY+QZ7QubE4E1ERI6Bkwc1Y3rByopdgSU5FRA01Q88cKoFIiJyJJLvWAFAVVUVbty4gdLSUmg0GoNlOEGo/XFWyOEkl0GrEaz6VGAxnwgkIiIHJSlYCYKAjRs34ptvvkF5eXm9ZRMSEqRciixAJpNB4eWCiiKVVe9YcQ4rIiJyVJKC1ebNm/H555/Dy8sLI0eORMuWLSGXW3e9OZJGDFZWHGNVc6oFH96xIiIiByIpWO3fvx9BQUHYsGEDJwFtohSergDKoK7UQFOlhdzZ8sPu9KZaaM0xVkRE5DgkfYvm5+cjIiKCoaoJs8UAdt1UC64eznDzdm2gNBERUdMhKVgFBwejrKys4YJkt6w95UKVSoPSvAoAd6da4BxnRETkQCQFqyeffBInT55EQUGBuepDVqYXrEos/2RgcXY5cHdpSR8OXCciIgcjaYzV0KFDceHCBcTGxmLy5Mno1q0bPD0Nf1kGBQVJuRRZiLW7AouzOL6KiIgcl6Rg9eyzz0Imk0EQBLz99tt1lpPJZDh69KiUS5GFWHtZmyLOYUVERA5MUrAaOXIkx8g0cXoLMVsjWNWcw4rBioiIHIykYLV48WJz1YNsxJZdgVzOhoiIHA3XCmzm3GzUFeju6wpXD5cGShMRETUtDFbNnDWnW1CVq1FRVP3kIZeyISIiRyR58LoxZDIZtm3bJuVSZCH6XYGWnW6huMb4Ki5lQ0REjkjyIsyGlJWVobS0FAAQEBAAZ2fTL6NSqbBx40Z8//33KCkpQUhICKZNm4ZBgwY1eOyRI0ewdetWZGZmwt3dHeHh4ZgxYwb8/Pz0yuXn52PdunU4efIkysvL0bFjR0yaNAkxMTGNPmdT4+LuDJmTDIJWsPgdq5prBPpyfBURETkgScHqq6++qnPf7du38cknn6CgoAAffPCByedeuXIlEhISMGHCBLRr1w4HDhzA/PnzERcXh379+tV53K5du/DBBx9gwIABmDVrFnJycrBjxw6kpqZi7dq1UCgUAKrD36xZs1BQUIDx48fD398fR48exdKlS1FVVYXHHnvM5HM2RTKZDApPZ1SWqK0brNgVSEREDshiY6xat26NZcuWoaSkBBs2bDDp2JSUFBw5cgTTp09HbGwsxo0bh48++gjBwcFYs2ZNncep1WqsX78eDzzwAD744AM89dRTmD59Ot5880389ttv2Ldvn1h2z549uHnzJt566y1MmzYNf/7znxEXF4cePXrg008/hVqtNvmcTZVuygVLPxVYdLvGVAsMVkRE5IAsOnjd2dkZAwcONHly0GPHjkEul2PcuHHiNoVCgccffxy//vorsrOzDR53/fp1lJaWYtiwYXrzaw0ZMgTu7u44cuSIuO2XX36Bn58fBgwYIG5zcnJCTEwM8vPzkZycbPI5myrdOCtVeRW0Gq3FrlOsmxxUBni3YlcgERE5HkldgcZQKpUoLi426Zhr166hXbt2tZbH6dmzJwAgLS3N4BI5urtMhrrmFAoFrl27Bq1WCycnJ6jVaoPl3NzcAACpqakYNGiQSec0JDc3F3l5eeL7zMxMg+Vs6f65rNx9zN+1KQiC2BXoFeAOZ1e52a9BRERkaxYNVr/88guOHDmCDh06mHRcXl4eAgICam3XbcvNzTV4XLt27SCTyXDx4kWMGTNG3P7777+jsLAQAFBSUgJfX1906NAB586dQ1ZWFoKDg8WyFy5c0LuGKec0ZM+ePYiPj6+1PT09HRqNpo4/AeuqrLrXRZfyyxW4B5hnfqnS0lKkpKQAANRlGqjKqwAAcm9B3O4oara1OWhO7WVbHVdzai/bah69evVqsIykYDVnzhyD2zUaDXJzc5GVlQUAmDx5sknnVSqVcHGp/eXu6uoq7jfEz88PMTExOHjwIDp27IjIyEjk5OQgLi4Ozs7OqKqqEo8dO3Ysdu/ejaVLl+K1114TB68fP35c7xqmnNOQcePGITw8XHyfmZmJFStWoHPnzujevbtJfy6WUnQ2BTkXq+8mtQvqgKBuLcxy3pSUFPGHMCu1AMAfAIA2oa2M+uFsSmq2tTloTu1lWx1Xc2ov22o9koKVbhzS/WQyGby9vTFo0CA888wzRk2RUJNCoRC74GpSqVTi/rrMmzcPSqUSq1evxurVqwEAI0aMQJs2bZCYmAh3d3cAQEhICJYsWYJVq1Zh1qxZAAB/f3/Mnj0bq1atEsuZck5DAgMDERgYaFL7rc0ay9oUZ3HxZSIicnySgtWxY8fMVQ89AQEByMnJqbVdN1apvqDi5eWFlStXIjs7G7dv30ZwcDCCg4Mxc+ZM+Pn5wdvbWywbHR2N8PBwpKWlQavVolu3bjh//jwAoH379o06Z1Ok8LT8Qsy6pWwAzmFFRESOy+KD1xsjNDQU58+fR1lZmd4Adl2faWhoaIPnCAoKEge4l5SU4OrVq4iKiqpVzsXFRRwUDwDnzp0DAAwcOLDR52xqrLGsTc05rHw41QIRETkos023UFVVhfT0dFy6dAnp6emoqqpq9Lmio6Oh0WiwZ88ecZtKpcL+/fvRq1cvMdxkZ2cb9ZTd+vXrodFoMGHChHrL3bhxA7t378aQIUP07lhJOWdTYJ2uwOoB8jK5DN4t6+46JSIiasok37EqLi7G2rVrcfjwYXEMFFA9DurRRx/F9OnT63xiri69evVCTEwM1q9fj8LCQrRt2xYHDx5EVlYWFixYIJZ76623kJycjMTERHHbF198gfT0dPTq1QtyuRzHjx/HmTNnMG3aNL07UwDwwgsvICYmBq1atcLt27exe/du+Pj4YO7cuXrlTDlnU6TwtOwdK0F7b6oFn1YecJJz7W8iInJMkoJVcXExZsyYgZs3b8LHxwf9+vVDQEAA8vPzceXKFezbtw/JyclYs2YNfHx8TDr34sWLERQUhO+++w6lpaXo0qUL3nnnHYSFhdV7XEhICI4fP44TJ05Aq9UiJCQEy5YtM7j+X2hoKPbv34+CggL4+voiJiYGU6dORYsWLRp9zqZIvyvQ/AsxlxVUQqOqnnjUh+OriIjIgUkKVps3b8bNmzcxceJETJkyRe/puMrKSmzevBlbt27Fli1b8Nprr5l0boVCgdjYWMTGxtZZ5uOPP661bfDgwRg8eLBR11i6dKlR5Uw5Z1Nk6a5AXTcgwKVsiIjIsUnqk0lKSkJYWBhmzpxZa8oBNzc3vPrqqwgLCxPnhiL75OrhAtxdrccSXYH6TwQyWBERkeOSFKzy8vLQp0+fesv06dNHb0kXsj9OTjIoPKrvWlk8WPGOFREROTBJwcrT01OcXb0uWVlZtdb8I/uj6w60SLDK4hxWRETUPEgKVmFhYUhISMDZs2cN7j937hwSEhIaHHBOticGq3I1tFrBrOfWjbGSuzrBo4WbWc9NRERkTyQNXp8yZQpOnjyJefPm4ZFHHsEDDzwAf39/5OfnIzk5GadPn4ZCocCUKVPMVF2yFHEAuwCoytVw83Kt/wAjaTVaFN+pDla+wZ6QOcnMcl4iIiJ7JClYde7cGe+//z5WrlyJkydP4uTJk5DJZBCE6jsebdq0weLFi9G5c2ezVJYs5/65rMwVrEpyKiBoqn8eOHCdiIgcneQJQvv164etW7fi4sWLuHbtmrgMTdeuXdG3b1/IZLxD0RQovCyzXmBxjYHrnMOKiIgcnaRg9fbbb6NLly545pln0K9fP/Tr189c9SIrs9RcVkWcw4qIiJoRSYPXDx8+jIKCAnPVhWzIUsva6D0RyGBFREQOTlKwatOmDeeochD6y9qYMVixK5CIiJoRScFqzJgxOHnyJHJycsxVH7IR/a5A860XqJtqwdXDGW7e5hkQT0REZK8kjbGKiorC+fPnERsbi+eeew49evSAv7+/wQHrQUFBUi5FFmaJrkCNWovSvAoA1d2AfJCBiIgcnaRgNXHiRHF6BUMLIuvIZDIcPXpUyqXIwizRFVhZUAXcnWvUh1MtEBFRMyApWI0cOZJ3IRyEJZ4KrMyvEl/7tub4KiIicnySgtXixYvNVQ+yMUt0BVbk3zsPJwclIqLmQNLgdXIcTnInuHpU52yzdQXmMVgREVHzwmBFIt1dK2WpeZ4KrNkVyKkWiIioOZDUFfjss882WMbJyQkeHh7o0KEDIiIiMGzYMCmXJAtSeLmgJKcCylI1BK0gecFkXVegu68rXD1cGihNRETU9EkKVoIgQKPRIDc3FwAgl8vh6+uLoqIiaDQaAEBgYCAKCgqQlpaGo0ePYt++fXjnnXfg4sIvWnujG8AuCIC6skpSGFKVq6Eu0wLgjOtERNR8SApWGzduxNy5c9GhQwdMmzYNvXr1EqdfSElJwcaNG1FaWor4+HgUFRXhk08+walTp7B9+3ZMmjTJXG0gM1F46i/ELCVYFddYI5BTLRARUXMhaYzV2rVroVKpsGrVKvTu3VucekEmk6F379547733oFKpsG7dOrRr1w7Lli1DUFAQjhw5YpbKk3mZcy4rvTUCOb6KiIiaCUnB6sSJE3jkkUfg5GT4NHK5HI888giSkpIAAAqFAg8++CBu3rwp5bJkITWDVaXEuaxqrhHIrkAiImouJAWrsrIylJeXN1imrKzGl6yvr5RLkgWZcy6rohpdgQxWRETUXEgKVp06dcLhw4dx69Ytg/tv3bqFI0eOoFOnTuK2O3fuwM/PT8plyUL0uwKlTblQrLtjJQO8W7ErkIiImgdJg9cnTZqEJUuWYOrUqRg7diz69OmDFi1aoKCgAJcuXcK3336LiooKcaC6Wq3GmTNnMGjQILNUnszLXMvaCIIgjrHyCnCHs6tcct2IiIiaAknBKioqCvPnz8e///1v/O9//8OOHTvEfYIgwN3dHfPmzUNUVBQAoLKyEvPnz0fnzp2l1ZoswlxdgZUlKqjKqycH5RqBRETUnEgKVgDw+OOPIyoqCklJSUhLS0N5eTk8PDwQGhqKoUOHwsvLSyzr7e2NiIgIqZckCzHXU4FFtznVAhERNU+SgxUAeHl5YdSoUXXu12g0kMvZHWTvFN7681g1VnHNJwIZrIiIqBmRNHj9m2++abCMRqPBsmXLpFyGrMRcXYF6c1jxiUAiImpGJAWrjz/+GAkJCXXu12q1WLZsGRITE6VchqxE7uwEF7fqO4vKssY/FVgzWHHxZSIiak4kBau+fftixYoV+Pnnn2vt04WqY8eO4amnnpJyGbIi3TgrSV2Bd+ewkjkB3i3dzVIvIiKipkBSsHr77bfRvn17vPHGG7h27Zq4XavV4p///CcSEhLw5JNPYs6cOZIrStah6w5UlqohCILJxwvae1MtuLVwhpNc0o8YERFRkyLpW8/T0xPvv/8+vLy88Pe//x23bt2CIAhYvnw5fvjhB/zpT3/C//t//89cdSUrUHhVD2DXagRUKTUmH19WUAmNSgsAcPNv/CLORERETZHk2wkBAQFYtWoVtFot5s6di6VLl+Lo0aMYO3Ys/va3v5mjjmRFUgewF9dYysbN3ywPnRIRETUZZumnad++Pd59910UFBQgMTERY8eOxd///ndznJqsTOpcVjUXX3bnHSsiImpmTLqlEB8fX+/+nj17Ii0tDQEBAXplZTIZJk+e3Jj6kZVJXdZGP1jxjhURETUvJn3zbdq0yahymzdv1nvPYNV06HcFmj7lQs2pFtwCeMeKiIiaF5OCVVxcnKXqQXZCalegboyVs0IOV2/Otk9ERM2LScEqLCzMQtUgeyGlK1Cr0aL4TnWw8gnygEwmM2vdiIiI7B0nGSI9uukWAKCyxLRgVZJTAUFTPfcV1wgkIqLmSFKwOnDgAKZNm4bc3FyD+3NzczFt2jQcOnRIymXIiqTcsaq5+DKXsiEiouZIUrA6ePAgXFxcEBgYaHB/YGAgFAoFvv32WymXISuSMsaKiy8TEVFzJylYZWRkoGvXrvWWCQ0NRUZGhpTLkBVJeSqwqMbkoAxWRETUHEkKVmVlZfD29q63jKenJ0pLS6VchqzI2VUOuWv1j4WpXYFF7AokIqJmTlKwCggI0Ft82ZC0tDS0aNFCymXIynTdgaZ2BRbf7Qp09XCGm7drA6WJiIgcj6RgNXDgQJw5cwZnzpwxuP+nn37CTz/9hIceekjKZcjKFJ7VociUYFWl0qA0rxJAdTcgp1ogIqLmSNKaI3/5y1/www8/YP78+Rg5ciQGDhyIwMBA5Obm4syZM/j+++/h4eGBv/zlL+aqL1mB7o6VRq1FlUoDZ9eGJ/oszi4HqmdagA+nWiAiomZKUrBq06YN3nnnHSxbtgwHDhzAwYMHxX2CIKBly5ZYtmwZ2rRpI7miZD33Pxno7N9wsKo5vsq3NcdXERFR8yR5ldx+/fph27ZtSEpKwuXLl1FWVgYvLy/07NkT4eHhcHHhenFNjf6TgWp4+rs1eExxzakWeMeKiIiaKcnBCgBcXFwQExODmJgYc5yObEx/klDjplzQm2qBwYqIiJopswQrS1CpVNi4cSO+//57lJSUICQkBNOmTcOgQYMaPPbIkSPYunUrMjMz4e7ujvDwcMyYMQN+fn565fLz87Fu3TqcPHkS5eXl6NixIyZNmmQwIJ49exaff/45rl+/Do1Gg3bt2uHpp5/GyJEjzdVku+HWiElCOdUCERGRmYLVnTt3cP78eeTm5kKtrv1FLJPJMHnyZJPOuXLlSiQkJGDChAlo164dDhw4gPnz5yMuLg79+vWr87hdu3bhgw8+wIABAzBr1izk5ORgx44dSE1Nxdq1a6FQKABUz8E1a9YsFBQUYPz48fD398fRo0exdOlSVFVV4bHHHhPPmZSUhH/84x/o3bs3pkyZAplMhqNHj+Ktt95CUVERnnnmGZPaZu/u7wo0hq4r0N1PAVcPdv8SEVHzJDlYrV69Gjt27IBWqxW3CYIgPm6ve21KsEpJScGRI0cwc+ZMPPfccwCAkSNHYsqUKVizZg3WrFlj8Di1Wo3169fjgQcewAcffCDWoU+fPli4cCH27duHp59+GgCwZ88e3Lx5Ex9++CEGDBgAAHjyyScxY8YMfPrpp4iOjhbHh33zzTcICAjARx99BFfX6qkIxo0bhxdeeAEHDhxwvGBVYw6qSiOClapcjYqi6i5DX96tIiKiZkzSPFZ79+7F9u3b0b9/fyxfvhyCIGDUqFFYsmQJxo0bB7lcjujoaHz00UcmnffYsWOQy+UYN26cuE2hUODxxx/Hr7/+iuzsbIPHXb9+HaWlpRg2bJjePEpDhgyBu7s7jhw5Im775Zdf4OfnJ4YqAHByckJMTAzy8/ORnJwsbi8vL4e3t7cYqgDA2dkZvr6+4h0wR2LqHaviGuOrONUCERE1Z5KDVXBwMN577z1ERkYCAIKDgzF8+HD87W9/w6pVq3D8+HEUFhaadN5r166hXbt28PTU/5Lu2bMngOrZ3A3RdUMaCjsKhQLXrl0T76yp1WqD5dzcqp+AS01NFbeFhYUhPT0dn332Gf744w/cvHkTmzdvRmpqqnhHrS65ublITU0V/8vMzKy3vD0wdSFmLr5MRERUTVJXYGZmJkaOHAknp3v5TKPRiK/DwsIwePBgbNu2DdHR0UafNy8vDwEBAbW267bl5uYaPK5du3aQyWS4ePEixowZI27//fffxXBXUlICX19fdOjQAefOnUNWVhaCg4PFshcuXKh1jcmTJ+P27dv4/PPPsWXLFgDVAWz58uWIiIioty179uxBfHx8re3p6el6f1b2RFlUJb7OuZ2HlJSUesvfuFAovi5W5yMlpXoG9tLS0gaPdRTNqa1A82ov2+q4mlN72Vbz6NWrV4NlJI+x8vLyEl+7ubmhqKhIb3/79u1x9uxZk86pVCoNzn+l64pTKpUGj/Pz80NMTAwOHjyIjh07IjIyEjk5OYiLi4OzszOqqqrEY8eOHYvdu3dj6dKleO2118TB68ePH691DRcXF7Rv3x7R0dGIjIyERqPB3r17sWLFCnzwwQfo3bt3nW0ZN24cwsPDxfeZmZlYsWIFOnfujO7du5v052It6soqnMNNAIDCya3BH6Tso78AqP7c+zzUHS3aVS/MnZKSYtQPoSNoTm0Fmld72VbH1Zzay7Zaj6Rg1bJlS+Tk5Ijv27Zti8uXL+uVSU9Ph7u7u0nnVSgUBp8uVKlU4v66zJs3D0qlEqtXr8bq1asBACNGjECbNm2QmJgo1iUkJARLlizBqlWrMGvWLACAv78/Zs+ejVWrVunV+aOPPkJKSgo+++wz8e7csGHD8OKLL+Ljjz/GunXr6qxPYGAgAgMDTWq/rTkr5HBylkFbJUBZZsQYK91UCzLAuxUHrxMRUfMlKVj16dNH7DoDgKFDh2LLli147733MHToUFy4cAGnT59GVFSUSecNCAjQC2w6eXl5AFBvUPHy8sLKlSuRnZ2N27dvIzg4GMHBwZg5cyb8/Pzg7e0tlo2OjkZ4eDjS0tKg1WrRrVs3nD9/HkD1nTageizWt99+i+eff16vy9PZ2RkPP/wwdu7cCbVa7VAzzMtkMii8XFFRqGxwjJUgCOIYK68Ad6PWFSQiInJUkoLVyJEjkZeXJ45TmjhxIn788Ufs27cP3377LQRBEEONKUJDQ3H+/HmUlZXpDWDX9ZmGhoY2eI6goCAEBQUBqB5XdfXqVYMBz8XFRRwUDwDnzp0DAAwcOBAAUFRUBI1GY3A8lEajgVar1ZtqwlEoPF2MClaVJSqoyqvHZHGNQCIiau4kBav+/fujf//+4nsPDw+sXbsWSUlJuHnzJoKDg8WpDkwRHR2Nbdu2Yc+ePeJTdyqVCvv370evXr3EwJSdnY3Kykp07Nix3vOtX78eGo0GEyZMqLfcjRs3sHv3bgwZMkS8Y9WiRQt4eXnh+PHjePnll8U7U+Xl5Thx4gQ6dOjgmFMu3H0ysEqpgUatgdzF8J2ootucaoGIiEjHbEvaFBUVIS0tDWVlZfD29sbYsWPh6+vbqHP16tULMTExWL9+PQoLC9G2bVscPHgQWVlZWLBggVjurbfeQnJyMhITE8VtX3zxBdLT09GrVy/I5XIcP34cZ86cwbRp0/TuTAHACy+8gJiYGLRq1Qq3b9/G7t274ePjg7lz54pl5HI5Jk6ciM8++wwzZszAyJEjodVq8e233yInJwdvvPFGo9po7/TXC6yCh5/hYFV8m4svExER6UgOVrdv38bHH3+MU6dOQRAEcbtMJsPgwYMxe/ZstG7d2uTzLl68GEFBQfjuu+9QWlqKLl264J133kFYWFi9x4WEhOD48eM4ceIEtFotQkJCsGzZMoPr/4WGhmL//v0oKCiAr68vYmJiMHXqVLRo0UKv3IsvvojWrVtjx44diI+Ph1qtRkhICJYvX27SNBJNif4koSp4+Bm+K8c5rIiIiO6RFKxu3rwprrfXrl079O3bFy1atEBBQQEuXbqEEydOICUlBatXr0abNm1MOrdCoUBsbCxiY2PrLPPxxx/X2jZ48GAMHjzYqGssXbrU6Po89thjeusHOjpjJwmtGay4+DIRETV3koLV2rVrUVhYiLlz5+KJJ57QW0ZGEATs2bMHH374IdauXYvly5dLrixZj5vXveV76g1Wd8dYyeQyeLc0bSwdERGRo5EUrM6dO4fw8HC9Nf10ZDIZ/vSnP+HUqVMmTxBKtmfMHStBK6A4u/qOlU8rDzjJJa2QRERE1ORJ+ibUarXo1KlTvWW6dOnikNMROLqawaqyjklCywoqoVFVf7bsBiQiIpIYrLp164aMjIx6y6Snp9vt0i1UN/3B64aDVdFtDlwnIiKqSVKweuWVV3D69Gns27fP4P49e/bgp59+wrRp06RchmxAvytQZbBMcda9OawYrIiIiEwcYxUfH19rW//+/fH+++9j27Zt6Nu3L/z9/ZGfn4+LFy/ijz/+wKBBg/Dzzz+jb9++5qozWYH+PFZG3LHiHFZERESmBatNmzbVue/GjRu4ceNGre0//fQTzpw5g8mTJ5teO7IZo7oCa85hxTFWREREpgWruLg4S9WD7IyLuzNkTjIIWqHOYKXrCnRWyOHRws2a1SMiIrJLJgWrhmY9J8chk8mg8HJBZbHKYFegtkqL4jvVwconyAMyJ1mtMkRERM0NJx6iOum6Aw3dsSrJqYCgqV7CiOOriIiIqjFYUZ10A9jVFVXQVunPRVZccykbPhFIREQEgMGK6qH3ZGC5/l0rDlwnIiKqjcGK6qS3XmDJ/cGKc1gRERHdj8GK6lTfXFacw4qIiKg2BiuqU31zWenGWLl6OEPh7QIiIiJisKJ66C9rcy9YVak0KM2rBFDdDSiTcaoFIiIigMGK6qHfFXhvvcDi7HKgeqYFjq8iIiKqgcGK6lRXV2DN8VU+fCKQiIhIxGBFdaqrK7A4iwPXiYiIDGGwojrV9VSg3lQLDFZEREQiBiuqk8KzxjxW7AokIiJqEIMV1cnVwxm4+8Cfoa5Adz8FXD041QIREZEOgxXVSeYku7cQ892uQFW5GhVF1U8IcikbIiIifQxWVC8xWN29Y1VzfJUPx1cRERHpYbCieukGsCvL1dBqBf0nAjmHFRERkR4GK6qXQrcQswCoytT3rRHIrkAiIqKaGKyoXvfPZaUXrHjHioiISA+DFdXr/rmsinVjrGSAdyvesSIiIqqJwYrqpbesTYkKRXfHWHkFuMPZVW6rahEREdklBiuqV807VoW3y6AqrwIA+Lbm3SoiIqL7MVhRvWoGq5y0IvE1l7IhIiKqjcGK6uVWoyvwTlqh+JpzWBEREdXGYEX1qnnHqjS3QnzNJwKJiIhqY7CieonzWN2HY6yIiIhqY7CietV8KlBHJpfBK9DdBrUhIiKybwxWVC9XT+da23xaecBJzh8dIiKi+/HbkerlJHeCq4d+uOL4KiIiIsMYrKhBNQewA4AP1wgkIiIyiMGKGnT/AHbesSIiIjKMwYoadP8Adk4OSkREZBiDFTXo/q5AX3YFEhERGcRgRQ2qGaycFXJ4tHCzYW2IiIjsF4MVNahmV6BPkAdkTjIb1oaIiMh+MVhRg2reseL4KiIioroxWFGDagYrHz4RSEREVCcGK2pQ657+kMmru/86PtjSxrUhIiKyX7XXKyG6j3dLDzz7URQ0Ki3nsCIiIqoHgxUZxSuAiy4TERE1hF2BRERERGbCYEVERERkJnbbFahSqbBx40Z8//33KCkpQUhICKZNm4ZBgwY1eOyRI0ewdetWZGZmwt3dHeHh4ZgxYwb8/Pz0yuXn52PdunU4efIkysvL0bFjR0yaNAkxMTF65Z555hlkZWUZvFbbtm3x5ZdfNrqdRERE5DjsNlitXLkSCQkJmDBhAtq1a4cDBw5g/vz5iIuLQ79+/eo8bteuXfjggw8wYMAAzJo1Czk5OdixYwdSU1Oxdu1aKBQKAEBZWRlmzZqFgoICjB8/Hv7+/jh69CiWLl2KqqoqPPbYY+I5Z8+ejYqKCr3rZGVl4bPPPjMq6BEREVHzYJfBKiUlBUeOHMHMmTPx3HPPAQBGjhyJKVOmYM2aNVizZo3B49RqNdavX48HHngAH3zwAWSy6ikC+vTpg4ULF2Lfvn14+umnAQB79uzBzZs38eGHH2LAgAEAgCeffBIzZszAp59+iujoaLi4VM/fFBERUetamzdvBgC9AEZERETNm12OsTp27BjkcjnGjRsnblMoFHj88cfx66+/Ijs72+Bx169fR2lpKYYNGyaGKgAYMmQI3N3dceTIEXHbL7/8Aj8/PzFUAYCTkxNiYmKQn5+P5OTkeut4+PBhtG7dGn379m1kK4mIiMjR2GWwunbtGtq1awdPT/05k3r27AkASEtLM3icWq0GALG7ryaFQoFr165Bq9WKZQ2Vc3OrXmA4NTW1zvpdvXoVmZmZePTRRxtsS25uLlJTU8X/MjMzGzyGiIiImia77ArMy8tDQEBAre26bbm5uQaPa9euHWQyGS5evIgxY8aI23///XcUFhYCAEpKSuDr64sOHTrg3LlzyMrKQnBwsFj2woUL9V4DAA4dOgTAuG7APXv2ID4+vtb29PR0aDSaBo9vykpLS5GSkmLralhFc2or0Lzay7Y6rubUXrbVPHr16tVgGbsMVkqlUhzfVJOrq6u43xA/Pz/ExMTg4MGD6NixIyIjI5GTk4O4uDg4OzujqqpKPHbs2LHYvXs3li5ditdee00cvH78+PF6r6HVavHDDz+ga9eu6NSpU4NtGTduHMLDw8X3mZmZWLFiBTp37ozu3bs3eHxTlpKSYtQPoSNoTm0Fmld72VbH1Zzay7Zaj10GK4VCIXbr1aRSqcT9dZk3bx6USiVWr16N1atXAwBGjBiBNm3aIDExEe7u1TOIh4SEYMmSJVi1ahVmzZoFAPD398fs2bOxatUqsdz9kpOTkZOTgwkTJhjVlsDAQAQGBhpVloiIiJo2uwxWAQEByMnJqbU9Ly8PAOoNKl5eXli5ciWys7Nx+/ZtBAcHIzg4GDNnzoSfnx+8vb3FstHR0QgPD0daWhq0Wi26deuG8+fPAwDat29v8PyHDh2Ck5OTUeOriIiIqHmxy2AVGhqK8+fPo6ysTG8Au67PNDQ0tMFzBAUFISgoCED1uKqrV68iKiqqVjkXFxdxUDwAnDt3DgAwcODAWmVVKhWOHTuGsLAw3oUiIiKiWuzyqcDo6GhoNBrs2bNH3KZSqbB//3706tVLDEzZ2dlGPWW3fv16aDSaBrvvbty4gd27d2PIkCEG71idOnUKpaWlnLuKiIiIDLLLO1a9evVCTEwM1q9fj8LCQrRt2xYHDx5EVlYWFixYIJZ76623kJycjMTERHHbF198gfT0dPTq1QtyuRzHjx/HmTNnMG3aNL07UwDwwgsvICYmBq1atcLt27exe/du+Pj4YO7cuQbrdejQIbi6uhq882Us3aD45jDtwu+//w65XG7ralhFc2or0Lzay7Y6rubUXrbVfDp27ChOzWSIXQYrAFi8eDGCgoLw3XffobS0FF26dME777yDsLCweo8LCQnB8ePHceLECWi1WoSEhGDZsmW11v8DqrsU9+/fj4KCAvj6+iImJgZTp05FixYtapUtKyvDyZMn8cgjj8DLy6vR7dKtObhixYpGn4OIiIhsY8OGDfU+1S8TBEGwYn2avcLCQvz0009o3bq1OH2EI9JNK/HGG2+gY8eOtq6ORTWntgLNq71sq+NqTu1lW82ryd6xclR+fn4YMWKErathNR07dnT4+bp0mlNbgebVXrbVcTWn9rKt1mGXg9eJiIiImiIGKyIiIiIzYbAiiwgICMCUKVMMrvnoaJpTW4Hm1V621XE1p/ayrdbFwetEREREZsI7VkRERERmwmBFREREZCYMVkRERERmwmBFREREZCacIJSMdvnyZRw8eBDnz59HVlYWfHx80Lt3b0ybNs3gotU1HThwACtXrjS4b+fOnXb3tMr58+cxZ84cg/vWrFmD3r1713t8Tk4OPvnkE5w5cwZarRb9+/fH7Nmz0aZNG0tUV7J//etfOHjwYJ37v/76a7Rs2dLgvv/85z+Ij4+vtd3V1RWHDx82VxUbpby8HNu2bUNKSgouX76MkpISLFq0CKNHj65VNiMjA5988gkuXrwIZ2dnDB48GK+99hr8/PyMulZSUhI2bdqEzMxM+Pn5YcyYMXjxxRfh7Gy9v2aNaa9Wq8V3332HY8eO4dq1aygpKUHr1q0xbNgwTJw4EQqFosHr/PWvf0VycnKt7Q899BDef/99czapTsZ+tnX9bHfo0AFffPGFUdey9WdrbFsjIyPrPMfAgQPxwQcf1HudZ555Rlx2raZx48Zh3rx5jau8iUz5nrHX31kGKzLa1q1bcfHiRcTExCAkJAR5eXnYuXMnpk2bhjVr1qBLly4NnuPll19G69at9bZJWXvR0p5++ulai3e3bdu23mPKy8sxZ84clJWVYdKkSXB2dsZXX32F2bNn4z//+Q98fX0tWeVGGTduHAYOHKi3TRAErFq1CsHBwXWGqprmzp0Ld3d38b2Tk+1viBcVFSE+Ph5BQUEIDQ3F+fPnDZa7c+cOZs+eDS8vL7zyyiuoqKjAtm3bcP36daxbtw4uLi71XufUqVP4xz/+gbCwMMyZMwfXr1/Hli1bUFBQUOei7pZgTHsrKyuxcuVK9O7dG3/605/QokUL/Prrr9i0aRN+/vlnfPTRR5DJZA1eq2XLlnj11Vf1tlnzH0jGfrZAdcifP3++3jZPT0+jrmMPn62xbX3jjTdqbbty5Qp27NiBQYMGGXWtrl274tlnn9Xb1q5dO9Mr3UjGfs/Y9e+sQGSkCxcuCCqVSm/b77//LgwfPlxYvnx5vcfu379fiIiIEC5fvmzJKprNzz//LERERAhHjx41+dj//ve/QkREhJCSkiJuy8jIEKKjo4V169aZsZaW9csvvwgRERHCli1b6i23ceNGISIiQigoKLBOxUygVCqF3NxcQRAE4fLly0JERISwf//+WuVWrVolPProo0JWVpa47cyZM0JERISwe/fuBq/zwgsvCC+99JKgVqvFbevXrxciIyOFjIwMM7TEOMa0V6VSCRcuXKh17KZNm4SIiAjhzJkzDV5n9uzZwosvvmieSjeSsZ/tW2+9JYwYMaLR17GHz9bYthry9ttvC5GRkUJ2dnaDZSdMmCDMnz9fUl2lMvZ7xp5/Z23/T0pqMvr27VvrXwHt27dHp06dkJmZafR5ysvLodFozF09iykvL0dVVZXR5RMSEtCjRw+9O10dO3bEgw8+iKNHj1qiihZx+PBhyGQyPProo0YfU1ZWBsGOpsZzdXU16i7KsWPHMGTIEAQFBYnbBg4ciPbt2zf4mWVkZCAjIwNPPPGEXhfCU089BUEQkJCQ0Oj6m8qY9rq4uKBv3761tkdERACASb/LVVVVKC8vN62SZmLsZ6uj0WhQVlZm0jXs5bM1ta06KpUKx44dQ1hYGFq1amX0cWq1GhUVFSZfzxyM/Z6x599ZdgWSJIIgoKCgAJ06dTKq/Jw5c1BRUQEXFxcMGjQIs2bNanB8li2tXLkSFRUVkMvl6NevH2bOnIkePXrUWV6r1eL69esYM2ZMrX09e/bEmTNnUF5eDg8PD0tWW7KqqiocPXoUffr0qdV1W5dnn30WFRUVcHd3x9ChQzFr1iz4+/tbuKbS5eTkoKCgwOCCrT179sSpU6fqPf7q1asAUOv4wMBAtGzZEteuXTNfZS0oPz8fAIzuqr5x4wZGjhwJtVoNf39/jB07FlOmTLHqmDJjVVZWYvTo0aisrIS3tzeGDx+OGTNmNPh72NQ/21OnTqG0tBSPPfaY0cf8/PPPGDFiBDQaDYKDgzFhwgRMmDDBgrVs2P3fM/b+O2t/vwHUpBw6dAg5OTmYOnVqveUUCgVGjx6N/v37w9PTE6mpqfjqq68QGxuLzz77TO9fHfbA2dkZUVFReOSRR+Dr64uMjAxs374dr732GlavXo1u3boZPK64uBgqlcrgvy5123Jzc9GhQweL1l+qn376CUVFRUb9hezt7Y0///nP6N27N1xcXHDhwgXs3LkTly9fxoYNG4wey2IreXl5AAyPDwoICBA/U1dX10Ydr9tv77788kt4enri4YcfbrBsmzZt0L9/f3Tp0gWVlZVISEjAli1bcOPGDSxbtswKtTVeQEAAnnvuOXTr1g2CIOD06dPYtWsXfvvtN8TFxdUbBJv6Z3vo0CG4uroiKirKqPJdunRBv3790L59exQXF+PAgQP497//jdzcXMycOdPCta3b/d8z9v47y2BFjZaZmYkPP/wQvXv3xqhRo+otO2zYMAwbNkx8HxERgYceegizZ8/G559/brUnTozVt29fve6SoUOHIjo6Gi+99BLWr19f55NPSqUSAAwOnNT9kuvK2LPDhw/D2dkZMTExDZa9/1+z0dHR6NmzJ/75z39i586dmDRpkqWqaRbGfmZ1/SWtUqn0yt5/vK26ykzx+eef4+zZs/jb3/4Gb2/vBssvXLhQ7/3IkSPx3nvvYe/evXjmmWcafGrWmu4fYD98+HC0b98eGzZswLFjxzB8+PA6j23Kn21ZWRlOnjyJhx9+2KjPFADefvttvfdjxozB3//+d3z11Vd4+umnTepONBdD3zP2/jvLMVbUKHl5eViwYAE8PT3xz3/+E3K53ORz9OvXD7169cK5c+csUEPza9euHYYOHYrz58/XOUZM96i6Wq2utU/3y2zM4+y2VF5ejqSkJDz00EONfoLxscceg7+/f5P4bKV+Zrq/nHVl7z/e3j/vI0eO4LPPPsPjjz+OJ598stHn0T1JdvbsWTPVzHKeeeYZODk5NVjXpvzZHjt2DCqVyqRuwPvJZDI888wz0Gg0BqfXsLS6vmfs/XeWwYpMVlpaivnz56O0tBTvv/8+AgMDG32uVq1aobi42Iy1s6xWrVpBrVajsrLS4H4fHx+4uroavJWs2yblz8sakpKSUFlZKekvZKDpfLa67oC6PjPdZ9rY4+1tjraazpw5g3/9618YPHiw5EfMdXczSkpKzFE1i1IoFPDx8Wnw57Mpf7aHDh2Cl5cXhgwZIuk8us/V2r/L9X3P2PvvLIMVmUSpVGLhwoW4ceMG3n77baMHrdfl1q1bRk/mZg9u3boFV1dXvfmaanJyckKXLl1w5cqVWvtSUlLQpk0bux+4fujQIbi7uyM8PLzR5xAEAVlZWU3is23ZsiX8/PyQmppaa9/ly5cRGhpa7/Fdu3YFgFrH5+bmIicnR9xvb1JSUvDGG2+ge/fuWLZsmeRB57du3QKAJvGZl5eXo6ioqMG6NtXPNjc3F+fPn0dkZGS9AcMYtvhcG/qesfffWQYrMppGo8Gbb76JX3/9FcuWLUOfPn0MlsvNzUVmZqbeFAWFhYW1yp08eRKpqal46KGHLFXlRjNU37S0NJw4cQKDBg0SJ7/Mzs6u9Xh6VFQUrly5oheufv/9d5w/fx7R0dGWrLZkhYWFOHv2LCIjI+Hm5lZrv6H2Gvqz2rVrFwoLC40aCG0PoqKi8OOPPyI7O1vcdu7cOdy4cUNvnFlVVRUyMzORm5srbuvcuTM6dOiAvXv36nUR79q1CzKZzOiBw9aUkZGBBQsWIDg4GO+88069XR+ZmZl6fy5lZWW1ulAEQcCWLVsAwOiJKK1BqVQaHC+zefNmCIKg9/PpKJ8tAPzwww/QarV13nU21Nbi4uJaQxyqqqrw3//+Fy4uLujfv79F66xj7PeMPf/OcvA6Ge3TTz/FiRMnMGTIEJSUlOD777/X2z9ixAgAwPr163Hw4EFs375dfFR/5syZ6NatG7p37w5PT09cvXoV+/fvR6tWrfDCCy9YvS0NWbp0KRQKBfr06YMWLVogIyMDe/fuhZubm95g2LfeegvJyclITEwUtz311FPYt28fFixYgIkTJ0Iul+Orr75CixYtMHHiRFs0x2hHjhyBRqOp8y9kQ+2dMGEChg0bhi5dusDV1RUXL17EkSNH0LVrV4wbN85aVa/T119/jdLSUvG2/4kTJ3Dnzh0A1TPre3l5YdKkSUhISMDrr7+O8ePHo6KiAl9++SW6dOmit2xITk4OXnjhBYwaNQqLFy8Wt8fGxmLRokWYO3cuhg8fjuvXr2Pnzp0YO3as5Lu65m6vk5MT5s2bh5KSEkycOBEnT57UO75NmzZ6X2YvvPACwsLC8PHHHwOoflR92bJlePTRR9G2bVsolUocP34cFy9exBNPPGHwEXhLaaitJSUlePnll/Hoo4+KT+L+9NNPOHXqFB5++GEMHTpUPJe9f7bG/BzrHDp0CIGBgXWGIUNtPXHiBLZs2YKoqCi0bt0aJSUlOHToENLT0zF9+nSrdXsa+z1jz7+zDFZktLS0NADAjz/+iB9//LHWft0PvCHDhg3DqVOncObMGVRWViIgIABPPPEEpkyZYpdzHUVERODQoUP46quvUFZWBj8/P0RGRmLKlCkNLu/g4eGBuLg4fPLJJ9iyZYu4VqApa1jZyuHDh9GiRQsMGDDA6GMee+wxXLp0SRwsGxQUhOeeew4vvviiwbte1rZ9+3a99c8SExPFYDhixAh4eXkhKCgIH3/8MT755BOsW7dOXHds1qxZRnWlDBkyBCtWrEB8fDzi4uLg6+uLSZMmYcqUKZZqVp0aai8A8Qt53bp1tY4fNWpUnXcJACAoKAgPPPAAEhMTkZ+fDycnJ3Ts2BFz5861epA25rMdMmQIzpw5g4MHD0Kr1aJt27aYPn06Jk6caNSyS/by2RrTVqD67nhqaqo4QN9YXbp0QceOHXHo0CEUFhbC2dkZXbt2xbJly4x6OthcjP2eseffWZlgT9MkExERETVhHGNFREREZCYMVkRERERmwmBFREREZCYMVkRERERmwmBFREREZCYMVkRERERmwmBFREREZCYMVkRERERmwmBFREREZCYMVkTUpNy+fRuRkZH417/+ZeuqmMWBAwcQGRmJAwcO2LoqRGQGDFZE1OT99a9/RWRkpK2rYZCjBUEiqh8XYSaiJqVly5b4/PPP4enpaeuqmEVERAR69eqFgIAAW1eFiMyAwYqImhRnZ2d07NjR1tUwGy8vL3h5edm6GkRkJjJBEARbV4KIyFi3b9/Gs88+i1GjRmHx4sV1dgHq9uv89ttv+Pzzz5GcnIzi4mIEBAQgPDwcL730Enx9fQ2e//nnn8eGDRvwyy+/oLi4GNu3b0fr1q2RmJiIo0eP4sqVK8jNzYWzszNCQkIwfvx4REdHi+c6cOAAVq5cabB+cXFx6N+/v1hm0aJFGD16tF6Zixcv4vPPP8evv/4KpVKJ4OBgDBs2DM8//zzc3Nz0ykZGRiIsLAxvvvkm1qxZg1OnTqGiogKhoaF49dVX0b9/f1P/qImoEXjHioiatClTpuDgwYPIysrClClTxO1du3YVXyclJeHNN9+ETCbD0KFD0apVK2RkZOCbb77BTz/9hHXr1sHb21vvvDdv3sTMmTPRpUsXjBo1CsXFxXBxcQEArF+/Hs7Ozujbty8CAgJQWFiIEydOYMmSJZgzZw6efvppAEBoaCjGjx+PHTt2IDQ0FEOHDhXPHxwcXG+7jh49iuXLl8PFxQXDhg2Dn58fzpw5g/j4ePz000+Ii4uDQqHQO6a0tBSzZs2Cl5cXRowYgYKCAhw9ehTz5s3Dhg0b0KVLl0b9GROR8RisiKhJmzp1KpKTk5GVlYWpU6fW2l9UVIS33noLvr6++PTTT/UCzZEjR7Bs2TJs3LgRr7/+ut5xFy9exJQpUwye891330WbNm30tpWXlyM2NhYbN27E448/Djc3N3Tt2hVeXl5isDJ0LkPKysrw3nvvQS6XY82aNQgJCQEATJ8+HcuXL8cPP/yAbdu2YfLkyXrHpaWl4cknn8Trr78OJ6fqZ5MefPBBvPvuu/jmm28wb948o65PRI3HpwKJyKF99913KCsrw/Tp02vdJRo+fDi6deuGI0eO1DrO398fL7zwgsFz3h+qAMDDwwOjR49GaWkprly5IqnOSUlJKC0txZgxY8RQBQBOTk6YOXMm5HK5wekZ3N3dMWPGDDFUAdVdonK5XHKdiMg4vGNFRA7t119/BQCkpKTg5s2btfarVCoUFRWhsLAQfn5+4vbQ0FCx6+9+BQUF+O9//4tTp04hOzsbSqVSb39ubq6kOl+7dg0AEBYWVmtfUFAQ2rRpgxs3bqC8vBweHh7ivnbt2um9B6oH+/v7+6O0tFRSnYjIOAxWROTQSkpKAAA7d+6st1xlZaXe+xYtWhgsV1xcjOnTpyM7Oxt9+/bFwIED4eXlBScnJ6SlpSEpKQlqtVpSncvKygBU3zUzJCAgADdu3EBZWZlekKprCgq5XA6tViupTkRkHAYrInJouuARHx9v0uBtmUxmcPu3336L7OxsvPzyy7XGOH3xxRdISkpqfGXv0gWk/Px8g/t12x1lLi8iR8IxVkTU5OnGFGk0mlr7evXqBeBel6BUuu7Emk/46Vy4cKHOuplyx0j3RGNycnKtfdnZ2bh58ybatGlTq9uPiGyPwYqImjwfHx8AwJ07d2rtGzNmDDw8PLBhwwakp6fX2l9ZWWlS6NINgL948aLe9kOHDuHUqVO1ynt7e0MmkxmsW12GDh0KLy8v7N+/X6/OgiBg3bp10Gg0tea8IiL7wK5AImryHnzwQSQkJOD//u//8PDDD8PV1RWhoaEIDw+Hn58fli5diiVLlmDq1Kl46KGH0KFDB6jVamRlZSE5ORl9+vTB+++/b9S1RowYga1btyIuLg7nz59HUFAQ0tLS8PPPPyMyMhKJiYl65T08PNCjRw/88ssvWLFiBdq1aweZTIaRI0fWOZeVp6cn/v73v2P58uWYMWMGYmJi4Ofnh3PnziE1NRU9e/bExIkTJf+5EZH5MVgRUZM3duxY3L59Gz/88AO2bt0KjUaDUaNGITw8HAAwePBgbNy4EV9++SXOnTuHs2fPws3NDS1btsTo0aMxYsQIo6/VqlUrfPzxx1izZg3Onj0LjUaDbt26YdWqVbhz506tYAUAb7zxBv7973/jxx9/RFlZGQRBQL9+/eqdJDQmJgb+/v744osvkJiYKM68PnnyZDz//PO1JgclIvvAJW2IiIiIzIRjrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEwYrIiIiIjMhMGKiIiIyEz+Pz696Wyz7YRHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "0f6be4ef", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "6a3118de", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "b8fa452b", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "e35ad147", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADdd0lEQVR4nOydd5gURfrHv909M5sTOWcBBU5RUFAUDJgDngEVBczhZ856Zk/PU88zHIbzUEQ9QeXMIoKKICCYRZCckbSEzbsz012/P3q6t6enurtmdmZndvf9PM8+O1NTXf12T093fet96y2JMcZAEARBEARBEARBNDpyug0gCIIgCIIgCIJoqZAgIwiCIAiCIAiCSBMkyAiCIAiCIAiCINIECTKCIAiCIAiCIIg0QYKMIAiCIAiCIAgiTZAgIwiCIAiCIAiCSBMkyAiCIAiCIAiCINIECTKCIAiCIAiCIIg0QYKMIAiCIAiCIAgiTZAgIwiCIAiCIAiCSBMkyAiCIAiCIAiCINIECTKCIAiCIAiCIIg0QYKMIAiCIAiCIAgiTZAgIwiCIAiCIAiCSBNJEWQbNmyAJEmQJAkTJ05MRpMtklGjRpnnkSAIwomJEyea94oNGzak2xyTKVOmmHZNmTIl3eYQSUbTNBxyyCGQJAnXXXddus0hbNDvj0gnc+fONa+/Bx54IN3mJJXy8nK0atUKkiThpZdeSsk+Gs1DNmXKFDzwwAPN7kty4/333zePed++fek2h4gQDocxZ84c3HnnnTjmmGPQsWNHZGVlIT8/H71798Z5552H999/H6qqxtXub7/9huuuuw79+/dHfn4+ioqKMGjQINx5553YuHFjio6GIIiWSCgUwssvv4xjjz3WvId16dIFp512GqZPnw7GWNL3+e9//xs//vgjsrOzcdddd3HrPPDAA2anTORPdEAhWffX2tpavPDCCzjxxBPRoUMHZGVloW3btjjssMPw6KOPYvfu3cJtxcOiRYtwySWXoHfv3sjNzUWrVq1wyCGH4K9//StKS0tTss90MGjQIPO7/eKLL+Le/ptvvjG3P+CAA+Le3ipKRf7mzp3r2t7u3bvx+eef49FHH8VZZ52F7t27R20vyt69e/HBBx/gnnvuwYknnogDDjgA7dq1g9/vR1FREQYMGICJEyfis88+i/uYRWgp/ZPTTjvN/G4mT54c9/abNm2CoiiQJAmtWrVCbW0tAKCwsBA33XQTAOAvf/kL9u7dm1S7AQAsCaxfv54BYADYhAkTuHVGjhxp1mkpTJgwwTzm9evXe9Zvieeosfnyyy9Zq1atzPPs9jd06FC2Zs0aoXafeOIJ5vf7HdsqKChgb731VoqPjmgpxHtvaSxeffVV065XX3013eY0W9avX88GDx7sev867rjj2N69e5O2z6qqKtahQwcGgF1//fWO9e6//36h+2s812+y7q/ff/8969Gjh6s97dq1Y5999lk8p8YVTdPYTTfdxCRJctxn+/bt2RdffNHgfWXC7+8f//iHacOFF14Y9/aXXHKJuf3jjz8e9/bWcyDy99VXXzm29euvv3puL8oLL7wgbNNRRx3Ftm3bFvexO9FY/ZOvvvrKbPP+++9vuOEJMGPGDNOGESNGxL39Qw89ZG5/zTXXRH1WVlbGSkpKGAB25513JstkE1+MQkuAHj16pGQ0rqXhNVJDNJytW7diz549AIBWrVrhuOOOw7Bhw9CxY0eEQiEsWbIEU6dORXl5Ob777jscffTRWLJkCTp06ODY5osvvojbbrsNAOD3+3HRRRdh5MiRCIVCmDVrFt59911UVFTgoosuQnFxMU488cRGOVai+TJlyhQKSWqh7Nu3DyeddBJWrFgBANh///1xySWXoEuXLlizZg3+/e9/Y/PmzZgzZw7+/Oc/4/PPP4fP1/BH/fPPP4/t27dDURTcfvvtQts8/PDDGDhwoGuddu3auX6erPvrsmXLcMwxx6C8vBwAMGDAAFx00UXo2bMn9u3bh5kzZ+KDDz7Azp07ceaZZ2LOnDk4/PDDhY7Tjbvuugv//Oc/AQB5eXm49NJLceihh6KyshIzZszA7NmzsWPHDpxxxhmYP38+DjrooAbvM51ceOGFuOOOOxAOh/G///0Pzz//PAoKCoS2ra6uxjvvvAMAUBQFF110UYNsue6663DMMce41nG7Pu1RMoqioH///li3bh1qamritkeWZRx44IEYOnQo+vXrhw4dOiAQCKC0tBRLlizB9OnTUV1djXnz5uHoo4/GDz/8gNzc3Lj3Y6Wl9U9OO+00tGnTBqWlpfjmm2+wdu1a9O7dW3j71157zXx98cUXR31WWFiI//u//8Nf//pXPPfcc7j11lvRunXrpNneaK6Yluj9ydRR7JbM66+/zgYNGsT++9//straWm6dLVu2sAEDBpjf3fjx4x3b++OPP1hubi4DwHw+H5s9e3ZMHeuIXdeuXVlNTU3SjocgMolMGKFv7tx4443mOT7xxBNj7ie7d++O8p7961//avA+Q6EQ69q1KwPAjj/+eNe6Vg+Zm/dBhGTeXw877LAoz00oFIqp8+677zJZlhkA1q9fP26dePjxxx9Nz1hRURH75ZdfYupYz9fQoUOZpmkJ7y9Tfn9nnHGGacfkyZOFt5s6daq53amnnprQvpN5DtasWcPGjx/PnnnmGbZgwQJWVVXFGGOse/fucfdnt27dynbv3u1aZ+PGjaxPnz5m24899liD7G/s/kkmeMgYY+yGG24w7bj33nuFt5s3b5653cCBA7l1Vq1aZdZ55JFHkmUyY4wxEmQphARZ5rF3716hB97SpUvN7y4nJ8e8Eduxdo5uu+02x/bOOeecpHaQCCITyZQOYXNlx44dLBAIMAAsLy+P7dixg1tv6dKlphDo0KEDC4fDDdrve++9Z36vU6dOda2bTEGWrPvrt99+a37euXNn107nNddcY9b9z3/+0yD7x4wZY7Y1adIkbh1N09ihhx5q1vv4448T3l+m/P7ef/99044jjzxSeLtjjjnG3G7GjBkJ7bsxzkEigkyU//3vfwmdOx6N3T/JFEH2888/m3Z0795deJDDGi77j3/8w7He0KFDTQHbkAEUOynPsmhkDvz666/NMt7ESqdkH5qm4e2338bYsWPRs2dP5ObmoqCgAP3798fVV1+NpUuXutpmnWBshAR+8cUXOP/889GzZ09kZ2fHTCwOh8OYNWsWbrnlFowYMQLt2rVDIBBAQUEB+vbti4kTJ2LevHmO+zQyoFldnz179ow5ZqdzJTJRdPHixbjiiivQr18/FBQUIC8vD71798aECRPw5Zdfem5v7GfUqFEAgKqqKjz55JMYMmQISkpKkJeXhwEDBuCuu+5KzeTFNFFcXCx0fgcOHIj+/fsDAGpqarBmzZqYOowxM7zCK+vY9ddfb76ePn16vGY3iEWLFuHqq6/GAQccgOLiYmRnZ6Nbt24YO3YsPvnkE9dteVmTNm3ahFtuuQX9+/dHXl4eiouLcfjhh+P5559HOBwWsqmyshJPP/00Ro8ejU6dOiErKwutWrXC0KFDcd9992HXrl2u29t/K6qqYsqUKRg9ejQ6d+4Mn8+HHj16xGy3Y8cO3H777TjggAOQl5eHVq1a4dBDD8U//vEPVFdXA9BDsCVJitn+s88+M/dp/T7duP76681tZs6cKbSNCF5ZFlP1vX388cc47bTT0KFDB2RnZ6NHjx4YN24cFi1aFPcxBINBTJ48Gaeffjq6du2K7OxsFBcX409/+hNuueUWx2QPK1euRF5eHiRJQlFREdavX++4j71796Jbt26QJAmKorjet5sC77//PoLBIADg/PPPdwz3GzhwoBmqtX379qjnbyK8/vrrAICcnByceeaZDWpLlGTeX63PxHPOOQfZ2dmObY0fP958/d///jcum61UVFSYv/nCwkLHDNT2Y2uM58N3332Htm3bQpIkZGVl4e23346p05C+1ymnnGJem9988w3WrVvnadOmTZvw1VdfAQDatGmD0047LcGja9pYE5ls37494XYyuX9ihBFKkgRZls2QXjufffYZJk6ciP322w8FBQXIzc1F7969MXHiRHzzzTeO7R944IEYPHgwAGDjxo3mdeWGNVzW5/PhwgsvdKw7btw4AMDmzZuTO9UoGarOLamH1TPm9sdT02vWrGEHHXSQ63ayLLu6JK2jdV9++SX7v//7P247Vg/WqFGjhGyeMGECq6uri9mn1TPmtb3TuXIiFAqxyy+/3LPtc889l1VXVzu2Y9QbOXIkW7t2LTvggAMc2+revXuL9PAZoyAA2LfffhvzudWL5uTeNlBVlRUWFprXbHl5earMNqmsrGRjx471vFZOOeUUR3vsI14zZ85kxcXFjm2NHj3aMRTU4NNPP2Xt2rVztamgoIB98MEHjm1Yfyu7d+9mI0aM4F63Vr788ktzQi7vb9CgQWzTpk3m6Kd9e1VVWc+ePRkAVlJS4hnaUVNTY+6vW7duTFVV1/rx4OV9T/b3Fg6HXe9rsiyzv//978Kj09999515Lp3+AoEAe/HFF7nb//vf/zbrDR8+3NEDdPbZZ5v1/vKXv7ie06bAWWedZR7Pu+++61r3iSeeMOu6jY57UVtba4Y9HXXUUZ71k+UhS+b91er1euGFF1zb2rNnj1lXURTH6AgvPvroI7Mdr/C7nTt3mnXbtm2b0P4YE/MOzZo1i+Xn5zMALD8/nxvGloy+180332zWve+++zxttyZTuOGGG0QPOYam7iH75JNPzLYb4iFLR/9ExEP2448/svbt2zNAD6N8/fXXY+rs3Lkzylvq9HfppZeyYDDI3c+zzz5r1nObdmJgDZc944wzXOv+8ssvSblW7SQlqYcbRkrXe+65B8uWLQMAvPfeezH1DG+Ewdq1azFs2DAzHeyIESNw6qmnonv37lBVFT/88AOmTJmCvXv34uGHH4Ysy54p9Z944gnMnDkTHTp0wMSJEzFw4ECEw2EsWbIEWVlZZr2amhrk5+fj2GOPxSGHHIIePXogOzsb27Ztw7Jly/Dmm2+iqqoKr732GoqLi/H0009H7ef666/HmDFj8Oyzz5rK/KWXXooZzezWrZvQObRy0UUXYdq0aQCA7OxsTJgwAYcffjgURcH333+PyZMno6KiAm+//TbKysowc+ZMV49QeXk5TjnlFKxcuRJnnHEGTjzxRLRq1Qrr1q3DCy+8gE2bNmHjxo0YP358kx9djodgMIjVq1eb77t37x5T57fffjNfH3LIIa7tybKMwYMH4+uvv4amafj9999x6KGHJs9gG3V1dTjuuOPw7bffAgB69+6NsWPHYv/994ff78eaNWswdepUrFq1Cp988gnGjBmD2bNnQ5adneY///wznnjiCTDGcOWVV2L48OHIysrC999/jxdffBFVVVWYPXs2HnnkETz00EPcNmbMmIGxY8dCVVX4/X6cfvrpGDVqFNq3b4/y8nJ89dVXePvtt1FRUYEzzzwTs2fP9pyUfeGFF+Kbb77BgQceiPPPPx89evRAeXk5fv31V7PO8uXLceqpp5pesMGDB+PCCy9Ely5dsGPHDkyfPh0LFizA2LFjHb1Fsizj8ssvx9133429e/dixowZ5kgZj3fffdf0Ll966aWu5zaVJON7u/76602PfyAQwIQJEzBixAjIsowlS5Zg8uTJuOOOOzBmzBhPexYtWoTjjjsO1dXVkCQJJ5xwAo4//nh07twZNTU1WLRoEV5//XVUV1fjqquuQlZWVox34fLLL8esWbMwY8YMLFq0CA8++GCM7ZMnT8a7774LABg2bFizWHIlnnvOkCFDuNvFy4IFC8zfTbz3rPvuuw9bt27F1q1bEQgE0L59ewwbNgznnnsuTj31VNdnUzLvryzBpGOqqmL58uVR51KUeOxv27Ytunfvjo0bN2LXrl3YuXOnZ7KTRHjrrbcwYcIEhEIhtG3bFp9++mnMsSWr73XxxRfjqaeeAgBMnTrVjFZywi2ZQqI8//zzeOyxx7B582YA+nkeOnQoxowZg7FjxyYl2U0y2bVrF+68807z/Z///OeE28rE/slXX32FMWPGoLy8HLm5uXj33Xdx0kknRdXZs2cPhg8fjrVr1wLQvV1//vOf0adPH8iyjN9++w1TpkzB1q1bMXnyZITDYW6CqwsuuAC33norgsEgZsyYgUmTJiE/P9/RNmsbXtffwIEDkZ+fj8rKSsyaNUv8BHiRDFWX7LT3qqqygw8+mAFgWVlZ7O233+bW2759uzmKI8sy++2332Lq2FPwjhgxgpWVlbnuf86cOa7epdLSUnNEXpZltm7dOm69ZKe9nzZtmvl5+/bt2bJly2LqbNiwIWrk2Ske2HpOAoEA++ijj7jHaW1r8eLFnsfgRFVVFXvvvfeS8vfDDz8kbIcor7/+unncBx98MLfOgw8+6DkaZGX8+PFmfd6oUDKxx47zJqcHg8Eom3gjx9YRL0Q8PatWrYqpt3jxYubz+Rgi3iOet2XTpk3mKFy3bt3Yr7/+yrV98eLFrKioiAFgXbp04Y6A2T3vN954o6sHyupBu+aaa7h17fcKu4eMMf2eY6QPHjlypOP+GGPsqKOOMkfZN2/e7Fo3XuLxkDX0e7NOdC4uLmbff/99TJ0VK1aYKdGNP97odHl5uZkcori4mM2dO5d7fKtXr2bdunVjgD5XateuXTF19uzZw7p06WKe4/nz55ufrVy5kuXl5TEArLCwkK1du5a7H1F+//33pN2/eMcigqqq5nelKIpnwol169aZ30Xv3r0T2idjjD366KNmO++8845nfdG094cddhjbsGGDYzvJvL9a27rppptc27HONwPA3njjDc9987j44ovj8tQY9wsAUddyPLh5h5599llzXmH37t3ZypUrY7ZPZt+LMcaGDBli2vPll1862v3111+b9QYPHix+wBxE097369ePm2RFhIZ6yHbs2GHeD2bMmMH+85//sKuvvjoqiuH444939P6IkI7+iZuH7N1332VZWVkMAGvVqhVbuHAhtw1j3qUkSezpp5/m1qmoqGDHH3+8ua+ZM2dy61kjJF555RVHuzds2GD+Ntq1ayeUzMeIpJMkie3bt8+zvggZKcis6wg8++yzrnVXrlzJFEVhANjll18e87n14ZCXl8e2bt0qdExerF271mz34Ycf5tZJtiCzZs769NNPHdtZvHhx1I2XF85jvTE99NBDjm29/PLLQvW8sF4jDf1zusaSxZ49e1jHjh09OyE33XSTWee5557zbDfe+onyxx9/mBP///znP7vWDQaDrFevXgwA22+//WI+t3fs582b59jWuHHjXOtdd911Zmfyp59+crVr8uTJZltvvvlmzOfW38ohhxziKsa+++47s+7AgQNdExxY2+UJMsaiJ0DzRA5j+n3JqHPKKae4HmsixCvIGvK9WTOmTZkyxbGdjz/+OGqfvE6odY2iDz/80PUYv/jiC7OuUzaruXPnmlnxunfvzvbu3cuCwSA75JBDGty5sBLv2lpuf4mG8ZWVlZlttG7dOun1nbjgggvMdpwGUazcf//9LDs7m5100knsoYceYq+//jqbPn06e+aZZ9if//xn83kNgHXq1Ilt2bKF204y769z5swxP+vcubNreK59WkOiSQ7OPPNMsw3egGdD6/NwEmR/+ctfzPIBAwY4nvNk9r0YY2zSpElme25hY1bx6rVfL1599VXm8/nYyJEj2b333stee+019s4777Dnn3+eXXjhhSw7O9vcV0FBQUKirKGCbObMmY73h86dO7OHHnqowYl40tE/cRJkL774onmf7ty5M9eZwBhjP/zwg7n9zTff7LqvPXv2mAO3o0eP5taxhn+6hVtbxavXfg2uvvpqc5tEB1DspCeGxgNjAnFhYSEuv/xy17p9+/Y1Xauff/65a92zzjoLnTp1SoqNvXr1MtemWrx4cVLadGPDhg346aefAACDBg2KcfNaOfTQQ80wr40bN+KHH35wrKsoCq699lrHz63hYsuXL4/X7CaHqqo477zzsG3bNgD65OSzzz6bW7eystJ87TZJ3CAnJ8d8XVFR0UBLnXn77bfNif+33nqra12/34+xY8cCAFavXu2YSAHQw/yOPPJIx8/drhXGGN58800AwLHHHuu51o41nMTrd/1///d/ruGAH3zwQVRdRVEc695www2u+wKAq666ynz9n//8h1vHWn7FFVd4tplKGvK91dXVmYkJ2rdv7zrR+ZRTTsH+++/vaotxb+/bt6/npP1jjjnGvF87XQMjR440Q3w2btyIq666Cvfcc495zxs3bpyrzU2JdN1vNm7caL5u1aqVZ/2zzz4bW7duxaeffop7770XF154Ic4991xcf/31mDFjBn755Rf06dMHAPDHH384JrtI5vGOGjXK3OfWrVtx5ZVXxqwxBej3ihdffDGqzFi3LF4y4fmgqiouv/xyPPLIIwCAww8/HPPnz0fnzp259ZPd9zr//PPNY58xY0bUOTGorq42Q4sDgQAuuOACgSNzZsSIEdi4cSPmzp2Lhx56COPHj8fZZ5+Nq6++Gq+//jpWrVqFoUOHAtDPsxFCnwkYidZGjBjh+pwSIROuPwB46KGHcNVVV0HTNPTr1w8LFy6MSlxixbj+JEnCLbfc4tpuSUkJTj75ZADAvHnzUFdXF1PnhBNOMJ8h8+fP5yaAYoxh6tSp5nvRcNmSkhLztfUe2RAyK4A2wvz58wEAHTt2xGeffeZZ37hwN27ciJqamqgLy4pbp8ROeXk53nzzTXz66adYunQpSktLUVVVxa27ZcsW4XYTZcmSJebr448/3rP+8ccfjy+++AKALhid4oH79u0bdWHZsd64G5JtsaksHn7DDTeYD5du3bo1ycV3jd8PoF+b77//vmt96/f6+++/c7MTAvo8HDfcrpVly5aZC3IXFBR42gQA+fn52LdvH37//XfXel6/6++//958ffTRR7vWNbKOunH00Uejb9++WLVqFV577TX89a9/hd/vNz8PhULmfIhOnTrhlFNO8WwzlTTke/vll19McT9y5EjPTsKxxx7r+H2VlZWZ8/rat28vfA0AcL0GHnzwQXzxxRdYvHhxVIawnj174vnnn/fchwgPPPBAs5iDlgjG7xYQE2ReC0EPGDAAn332GQYOHIja2lrMmTMHixcvxmGHHdZgW51QFAUvvPACTjzxRKiqitdeew0//PBD1MLQn332Gd577z0zw6oxOJWuuZ8Npba2Fuecc445Z//kk0/GO++847rQcLL7XiUlJRgzZgymTZuGqqoqvPvuuzEC3FiYGABOP/30Bi+0awhvJ7p27YqZM2di4MCB2L59O1asWIF3333XHJhsDE488USzPxQOh7Fz50588803eOqpp/Dmm2/izTffxLXXXot//vOfGTfPTRRN03Dttddi0qRJAIChQ4fi008/RZs2bRy3Ma6/4uLiqD6vE4YIq6urw7p162IGBBVFwfjx4/HYY4+BMYbXXnst5j4+f/58c77akCFDPO9fBtbrNFmZyDPum66srMTu3bsB6OmN402xu3fvXkdB5jQqZOerr77CBRdcIJxyNNERtHgwPDaALqK8sNaxbmvH7ccBICrZSW1tred+mzJ/+ctfzJtH+/btMXv2bNfzY50gKnJuampqzNcFBQUNsNQdq5fr3HPPjWtbtxtLQ64Vq00zZszAjBkzkmIT4P27/uOPP8zXvXr1cq1bUlKC4uJi7Nu3z7GOJEm44oorcOutt2LHjh346KOPoiZff/jhh9i5cycAfbStoSOdDaUh35v13Hl1dLzqbN68GZqmAdAfgtaBAy/crgGfz4f//ve/OOigg8yOnVFWWFgovI9MJ133G6PToyiK47M1XowlWl566SUAwCeffBIjyJJ9vMcddxymT5+OiRMnorKyEr/99hvuuOOOqDqBQADPPfccPvvsM/Oe5TZg6Ua6nw933nknysrKAOiJj1599VXXzn2q+l4XX3yxmYhsypQpMYLMOuh5ySWXxGzvNnCTm5srNEBtp3Xr1rjhhhtw1113AdCvv8YUZFZ8Ph86deqEc889F2effTYuvvhiTJ06Ff/617+Qk5ODxx9/PKF20339Pfvss+b1d9xxx+G9995zTaoB1PcT9u7dm9D1x2PixIl47LHHAOjJZe6///6o5DJe158T1meL9dw1hIwTZMYXmCjGaC4PkYfJ6tWrccopp5gnuF+/fjjppJOw3377oVWrVlGu3yuuuAK7du1qFHe31YWcl5fnWd964bu5n5vq6F+y+etf/4pHH30UgN6BnTNnjqfwLS4uNl8bGancMB529m2TTUN+Q26/n4ZcK6myCfD+XRuebZ/PF+XJciIvL89VkAH6Tf4vf/kL6urq8PLLL0cJspdffhmALtwuvfRSz/2lmoZ8b9awF7eRdQO3e1NDroFQKOT6eZs2bdCqVSvzXterVy/PzGJNjfz8fPh8PoTDYezbtw/hcNi1g52s+40h2FVVRXV1tdB1IMKoUaNMQbZixYqYz1Nxfz3rrLMwYsQITJo0CTNnzsSaNWtQXV2Njh074thjj8WNN96IQYMGmeHVAMypCfGS7ueDNVtsVVWVZ4RKqvpexx13HLp06YItW7Zg3rx52LBhgxmFYYQWAno0AU9cuXXMu3fv7hpm74Y1GoJ3/aUDWZYxadIkfPDBBygrK8Ozzz6Lu+66K6FBgaZ2/QGp6Sf069cPhx9+OBYuXIj169dj3rx5GDlyJIDocNns7Gycf/75wvuz2pqsgaqME2RWIXHUUUc1eEHLePnb3/5mirG//OUvePjhhx1TtXrFWCcT64iFU+ikFWtHKpXeGFGqq6s95wKJ0q1bNxx88MFJaQsAHn/8cdx7770A9NHQ2bNnC7mtrYJN5KFgjTMW8XImivEbkiQJ4XA4I0S39Xd933334cEHH2y0fRsiIRwOIxQKeYoykd9X69atcfbZZ+PNN9/E559/jk2bNqFbt27YuHEjZs+eDUDviPTs2bPhB5BGrN+bkfrcDbdzZ21r/PjxUWmuG8o111wT9ftatWoV7rnnHvz9739PSvsrVqxIWqdtxIgRnl5LHrIso3fv3li5ciVUVcWWLVscw4uB5N1vrGGKe/bsSZogs4b88AZAUnV/bd++PR566CHHJR6A6LmUxnyjeEn38+Fvf/sbpk2bhoULF+K9997D2LFjMX36dMf7X6r6XrIsY8KECXjkkUfMsLH7778fgJ7q3uiojx8/vlGjCbyuv3SRn5+PESNG4JNPPkFdXR2+/fZb15wBTqT7+rvhhhvw+++/47333sOiRYtwwgknYNasWa79UWOagvEsTRYXX3wxFi5cCED3iBmCzBouO2bMmLiEaLyh3CJknCArKioy8/s3xtwsO3PmzAEAtGvXDg899JCjGKuoqIj6QlJNx44dzdfW9bGcsNZJViKThrBz5864XdBOTJgwIWlzu/75z3+aYStFRUWYNWuWZ8IJA6toc0ucAujx1EZSFlmWPZMfNITOnTvj559/BmMMW7duRdeuXVO2r3hsMmjs33WnTp3MuUvr1q1Dv379HOvu3btX+OF81VVX4c0334SmaXjllVfwwAMP4JVXXjHD8tKdzCMZWO8da9as8azvVidV14Ax5wLQ19spLS3Fxo0b8eSTT+KEE07wXMdOhGnTpiVtEOGrr74SmqvIY+DAgVi5ciUA/Z7jJsiscydF50Xw6NGjBxYsWABA74R06dIl4baseI3Ip+v+unz5ctOj0Lt376hnbzzEY/+uXbvMDmjbtm2TsgZZQUEBPvvsM5x44olCoiyVfa+JEyeaiUWmTp2K++67D0D02mNOyV1SNfe8sSJWEsEqWhIVi+nun/j9fkyfPh3nnXce/ve//wmJss6dO2Pfvn3YuXOn0OCpKOeeey5uuOEG0yP2r3/9C3l5eXj11VfNOvGufWft//PWqU2ERhs6t47Se/3AjjrqKAB650mkE5BMduzYAUCfEO7mWZgzZ47Z8XIinmP2wpqUwxiBd8PqjUrlAsRNmUmTJuHmm28GoN8AZ86cGddo6IABA8zOybJly1wfYgsXLjTnGh5xxBEp9Voaoz+Ad4bCxmLw4MFmzPUXX3zh+dtJJtaFT42F2p0wwmdEGDFiBAYMGAAAeOWVVxAKhfDKK68A0Ad0zjjjjPiNzTAOPPBABAIBAMDXX3/tGZ5tJBLi0aZNGzO71rfffpuUubfr16/HNddcA0D3hL711lt44403oCgKNE3D+PHjozpeTZ0TTjjBfO21IKk1KcOJJ56Y8D6tHTtDDCYDqweGNyKfrvurtZPWkJDjUaNGmeGe8+bNc51nYv0uG/Jd2TFE2RFHHAEAeO+993Duuec6hgCnqu/Vp08fM/nSunXrMH/+fMybNw/r1q0DoGd/dBsoSwVe1186sZ77RLzpQGb0TwxRdtZZZwGAKcqc7v1G36W2thbz5s1Lig2APt/LsKGyshIzZszAhg0bzGugS5cuOO644+Jq00g0JUkSBg0alBQ7G02QWd3hXiFBEyZMMF8bIymNhRGOsW7dOkcRpaqqOd/IjXiO2YsePXqYYXq//PKLqyj7/vvv8eWXXwLQlXsmzKUwsiwm4y8Z3rGXX34Z1113HQC9I/fpp59i+PDhcbUhSRLOOeccALrgfu655xzrPvvss+brVE8ePu+888xO9N///vcGX3vJQFEUjBs3DoAeGuGULj4VWIXRpEmTXEXFM888E1fbV155JQA9YcWNN95oPvQmTJiQtNG9dJKVlWWmFt6xYwf++9//OtadOXOmZ0ZM495eXV1tTrROFFVVMW7cOPPh/uyzz2K//fbDiBEjcPfddwPQU5xfdtllDdoPoGdZTNb9K1HvGKCH1Ri/7bfeestMHmPnt99+M58BHTp0iBqkiRdrso1kLfGydu3aKO+IcY1ZScf9dcWKFeZ+iouLG3Tt5Ofnm8dVXl7u+NxijOFf//qX+T7ZzwdDlI0YMQKAniTDSZSlsu9l9UBMmTIl6nzE651oKHv27Im61/Ouv3Tx448/mh4tv9+fcMhspvRPfD4fpk2bZi4ftGjRIpx44olcUTZ+/Hjz9YMPPpjU/Az2688aLjthwoS4pnaoqmpGIPTv3z95yaOSsZiZyMLQ119/vVnn66+/dm1PVVU2dOhQs/4NN9zA6urqHOtXV1ezV199lb311lsxn1kX9BRZkHP06NFm/aeeeirm82AwGLWIIVwWkH3qqafMOq+99prnvr0Whp4+fbr5eceOHdnvv/8eU2fjxo2sd+/enotaGp+PHDnS06546jYFXnvtNXPh7Nzc3IQXamWMsa1bt7Lc3FwGgPl8PjZnzpyYOtbFOrt27cpqamoaYL0Yt9xyi7nPo48+mm3bts2xrqqqbPbs2dwFzp0WeuThVXfz5s2suLiYAWBZWVmev4kdO3awhx56iLtwZzwLzTPG2IgRI8z611xzDXchafviv06/ayv79u0zv3/rn9OC0ckinoWhG/q9zZ8/3/y8pKSEu6j3qlWrohZTB/gLQ1dWVpqLqkqSxB5//HHXRb337dvHnnnmGTZ79uyYz+69915zX2effXbUZ6FQiA0fPtz8/KWXXnI9B02JG2+80Tyuk046KeZ+smfPHjZ48GDPZ4AotbW1LC8vjwFgRx55pGvdDz/8kL3zzjuui9r+9ttvrE+fPqZ9o0aNcqybzPvrjh072PLlyx339cMPP7CuXbuabbktgm7t87jdg3788UfzWVNUVMS9lz3wwANmO0OHDnVsSwSnhaEZY6yioiLqPnjGGWewYDAYVSeZfS87FRUV5nWUn5/P8vPzzWdwWVlZQsdrZ+HChezll192Xfh78+bN7NBDDzWPcb/99mOhUCiu/cS7MHRFRQW766672M6dO13r/fDDD6xbt26e/WnGWNT1x3sGMNb4/RO3Z0koFGJnn322+fmwYcO43/tZZ51l1hk7dqzrtREKhdiMGTOE7nGaprEePXqYz5727dub+1m9enVcx/nLL7+Y2954441xbetGo80hO/bYY00Vfumll+Kmm25C9+7dzUmcffr0MVMmy7KMGTNmYPjw4di6dSueeeYZvP322zjnnHNw4IEHoqioCJWVldi0aRO+//57fPHFF6iqqsLDDz/cYDuvu+460/t08803Y+7cuTjhhBPQunVrrF69GlOnTsXq1atx9NFHY/Xq1a5u4GOPPdZ8ffvtt2PXrl3o16+fmRmrc+fOcbk6zz33XLz33nuYNm0atm3bhoMPPhgTJ07E8OHDoSgKvv/+e0yePNkceTj++OPNcB5CZ+bMmbjkkkvMkZFLLrkE+/bt81wT6eCDD0a3bt1iyjt16oR//OMfuPrqqxEOh3HSSSdh/PjxGDlyJMLhMGbOnGlm8fH5fPj3v//tukijdc7i+vXrXeeIuPG3v/0NP//8M7744gt89dVX6NWrF8466ywMHz4cbdu2RTAYxPbt201v6/bt23HsscfinnvuSWh/InTp0gXTpk3D6aefjrq6OkyYMAFPPfUUTj/9dOy3337IyclBWVkZVq1ahW+//RYLFiyAqqqea4eJ8NJLL2Ho0KGorq7G888/j0WLFuHCCy9Ely5dsGPHDkyfPh0LFizA8OHDsWnTJmzdulVoxKyoqAhjx46NCnMaNWoU9ttvvwbbnCmMGDEC11xzDZ5//nns3bsXw4YNw4QJEzBixAjIsowlS5Zg8uTJqKqqwpgxY1x/S3l5eXj//fcxcuRIlJeX4/bbb8dLL72Es846CwcccADy8/NRXl6OdevWYcmSJZg7dy6CwaC5YKjBN998Y0YpdOnSBf/+97+jPvf5fHjzzTdx0EEHoby8HDfddBNGjhzZ6GFRqeD+++/HZ599hhUrVmDmzJk4+OCDcdlll6Fz585Ys2YNXnrpJWzevBmAfi02dC5jVlYWTjzxRMyYMQPff/89KisrHdNXr127FjfddBPatm2LE088EQcddBA6dOgAv9+PHTt2YO7cufjggw/MDGydOnVyTe6SzPvrpk2bMHToUBx66KE49thj0b9/f+Tk5GD79u2YM2cOPvnkE3NE/vbbb4/yFiXK4MGDcfvtt+Pvf/87ysrKcPjhh+Oyyy7DoYceaoZOGWHl+fn5MddxMsnPz8fMmTNx8sknY/78+fjggw9wzjnn4J133jG9+anse+Xn5+Occ87BlClTopKOnXXWWUnzMOzYsQOXX345brnlFpxwwgk45JBD0LlzZ2RnZ2P37t1YsGAB3n33XTN8tKCgANOnT3fNVjp58uSYBYWt87rsz8ySkpKYRY3D4TD+9re/4YknnsBRRx2Fww47DH369EFhYSHq6uqwadMmzJ07N2oqTP/+/fHkk0825HQkvX/SEHw+H9566y1IkoR33nkH3377rTmnzPr9v/LKK1i1ahWWLl2K6dOnY9asWTj33HMxZMgQlJSUoKamBlu3bsVPP/2E2bNnY+/evUKhxZIkYeLEiWa0gzE96cgjjxRa0sWKderDmDFj4trWlWSoOhEPWTgcjhqdsf/xRmb/+OMPduyxxzpuY/1TFIW9/PLLMW3E6yFjjLG77rrLdV9HHHEE27lzpzlK4jaSfv755zu2Yz9XIqP+oVCIXXbZZZ7n4+yzz2bV1dWO7Rj1WpqHzO4FEf3jjfZbeeKJJ5jf73fcvqCgQGgU0bqN06iXKHV1dezaa69liqIIHeP48eNj2kimp8Vg0aJFrFevXkI25efns19//TWmjXg9ZIwx9uWXX5oeOt7fwIED2aZNm1jnzp0ZAPanP/1JqN3FixdHtfPmm28K25QojekhY0y/f1900UWO506WZfb444+7jtBbWbFiRZQXx+0vKyuLzZw509x279695r1XlmXX+/obb7xhtjN48GDX0f6mxPr16z3P33HHHcf27t2blP29//77ZrtTp051rPfPf/5T+J565JFHsg0bNgjtPxn31++++87TpoKCAvbss8962iPqIWNMH5m/8cYbTU8Z769du3bsiy++EDoXboj8/iorK9lRRx1l1jv99NNjPGXJ6Hvx+Prrr2O2//LLLxt62Cbvvfee8PU3cOBArsfSjvVZI/LH6w/u3bs3rjbOOusstmPHDle7rPW9+grJ6p94IfIsCYVC7NxzzzXrHXbYYTFesLKyMjZ27Fjh83XvvfcK2bd+/fqY3+Err7wS93EaHtZu3boxTdPi3t6JRhNkjDFWU1PDHnvsMTZ8+HBWUlIS1VF06zTMnTuXXXnllWzAgAGsuLiYKYrCCgsL2QEHHMDGjh3LXnjhBfbHH39wt01EkDHG2MyZM9kpp5zC2rRpw/x+P+vYsSM75phj2Msvv2y6t0UEWTgcZi+88AIbNWoUa9OmDfP5fI7nKp5O5qJFi9ill17K+vTpw/Ly8lhOTg7r2bMnu/DCC4Vu7MZ+SJCJ/XkJMsYYW7p0Kfu///s/1rdvX5aXl8cKCgrYwIED2R133CHU8aiqqjL3FwgE2O7du5NwxIytXr2a3Xnnneywww5jbdu2ZT6fj+Xm5rKePXuyk08+mT366KNc0cNYagQZY/pN+Y033mDnnnsu69mzJ8vPz2c+n4+1atWKDRkyhF1++eVs+vTprLKykrt9IoKMMca2b9/Obr31VtavXz+Wk5PDiouL2ZAhQ9iTTz7JqqqqmKZpLCcnhwHuoVRWNE1jRUVFDABr1aqVa7hMsmhsQWbw0UcfsVNOOYW1bduWZWVlsW7durHzzz+fLVy4kDEm1iE00DSNffDBB2zChAmsb9++rLCwkCmKwoqLi9mBBx7Ixo8fz6ZMmcL27NkTtZ31QX3nnXe67oMxxsaNG2fWv+WWWzzrNxWCwSD797//zY455hjWvn17FggEWKdOndgpp5zCpk2bltSOQjgcNkOpRo8e7VivtLSUvf322+ymm25iRx55JOvduzcrKioyf9sHHnggu/LKKxMKE2/o/bWyspJNmTKFTZgwgQ0cONB8tnfo0IEdccQR7LHHHnMN7bYSjyAzWLhwIZs4cSLr1asXy87OZsXFxezggw9mDz30ENu1a5dQG16I/v54oow3WNGQvhcPTdOiplT06NEjqddpRUUF++CDD9idd97JjjnmGNa3b1/WqlUr5vP5WHFxMdt///3ZhAkT2IcffugaKm0lGYKMMcaWL1/Onn76aXbeeeexQYMGmeczOzubdejQgY0cOZLdcccdQiKRsfgHbxv6+xFB9FkSDoej7uM8UcaYHvJ74403ssGDB7PWrVszn8/H8vPz2X777cfGjBnDnnrqKbZ27dq4bDzmmGPM/ebl5bGKioq4tl+1apW5/SOPPBLXtl5IjKUopyhBEHExa9YsM8PW9ddfH3eCCaLhLF26FH/6058AiH8Hc+bMwejRowHoa688/fTTqTSRINLCP//5T9x8881QFAUbNmxIWvp7giCIpsJ9992Hhx9+GHl5edi4cWPUenYNJf0rxhIEAaB+DbyCgoKUzuUinLFmOxOdu/bCCy+Yr5vD2mMEweOqq65Chw4doKoqHn/88XSbQxAE0aiUl5dj0qRJAPR8E8kUYwAJMoLIGAxBdvPNN6Nt27Zptqb5MX/+fNf1zyZNmmROqu/cuTNOPfVUzzZ//vlnM4nFcccdZ66zRRDNjZycHDzwwAMAgH//+9/4448/0msQQRBEI/Lss89iz549aN26NW6//fakt08hiwSRAZSWlqJdu3Zo06YN1q5dm9KFo1sqffr0QW1tLU466SQMHjwYbdu2RSgUwtq1a/Hee+/hp59+Mut+9NFHjoLss88+g6ZpWLVqFR5//HFs27YNgJ75z1iAlSCaI5qmYejQofjxxx9x7bXXuq5tRBAE0VwoLy9Hz549sWfPHrz44ovmGqTJhAQZQRAtgj59+mDt2rWudXJycvDyyy+bi1jzsC5NYCA63+zzzz9HdXW1t7Ec2rRpYy7uShAEQRBE84EEGUEQLYJvv/0WM2bMwLfffoutW7di9+7dqK6uRklJCfr27YvjjjsOV199Ndq3b+/ajiHI8vPz0bdvX1x99dW45JJLhNYt69GjBzZu3JiQ/SNHjsTcuXMT2pYgCIIgiMyl0RaGJgiCSCfDhg3DsGHDGtwOjWERBEEQBJFMyENGEARBEARBEASRJijLIkEQBEEQBEEQRJogQUYQBEEQBEEQBJEmSJARBEEQBEEQBEGkCUrqQRAEQSSEqqqoqalBdXW1+Wd9X1VVhbq6OgSDQQSDwajXvPfBYBCqqkLTtKj/xp+maVGfAXrWS6c/I/OlLMtQFAU+nw9+v9/8c3ofCASQlZWFnJwcZGdnIzs7G7m5ueZra3lOTg7y8/ORm5sLn48eqQRBEET80NODIAiiBcMYQ0VFBcrLy1FeXh7zuqyszCwz/ldVVaG6uhq1tbXpNj+jyM3NRX5+ftRfQUFB1PvCwkIUFxejqKgIxcXFKC4uRk5ODnd9O4IgCKJlQFkWCYIgmhmapqGsrAx79uzB3r17Y/7bX6uq2qD9KYqC3NzcqL+cnBzk5eUhOzsbs6fMg8QAqBLAJECTAA2QNOO15T0DgMh/Br2+8ZRi9eWSUWb5GFZNIyFS0fJeYnqgvsTAZOM9i/qMyZHGFf3vxMuPQW1tLWpqalBTU4Pa2lrzvfG/rq6uQecvEAiY4sz6V1JSgjZt2qBNmzZo3bo12rRpg7y8PBJvBEEQzQwSZARBEE0IVVWxd+9e7Ny5E7t27cKuXbtiXpeWliIcDsfVbm5uLgoLC1FQUIDCwkIUFhbi6/9+CyksAWEZUlgGQpL+X5UgqRKg6q+hARJarkhgEQHHfBrgY4CigfkY4Iv8VxhOv+F40+O4b98+838wGIxrX9nZ2aY4M4Ra69at0a5dO7Rr1w4dOnRA69athRYqJwiCIDIDEmQEQRAZhKqqKC0txbZt22L+tm/fjt27dwt7tIqKitCqVSuUlJTg58+WQwrJQEiGFKz/b5axliuo0gVDxEPnZ2B+DcyvAZb/x116JHbv3o3S0lKUlpaisrJSqF2fz4d27dqhffv26NChQ8z/du3awe/3p/joCIIgCFFIkBEEQTQydXV12Lp1KzZt2oQtW7ZEia4dO3Z4ercURUHr1q3Rtm1btGvXDvPeWAzUyZCCCqTIfwRJZDU3mMyAgAoW0CJ/Ks79y2mmZ3THjh0oLS31FOyyLKN9+/bo3LkzunTpgi5duqBz587o3LkzOnbsiKysrEY6IoIgCAIgQUYQBJESNE3Djh07sHnz5pi/HTt2wO3WqygKOnTogI4dO+LHj5dBqlXq/4KyLrZacIgg4QwDA7I0sCzV/Dv5umOwfft27NixA9u3b3cNk5QkCe3atTNFWteuXdG9e3f06NED7dq1o1BIgiCIFECCjCAIogGoqoo//vgD69evj/rbunWra8c3Pz8f3bp1Q5cuXfDFfxbUC646Rfd2keAiUgAD08Mic1SwbBXnP3wGtmzZgq1bt2LLli2orq523DY7OxvdunVDjx49TJHWvXt3dOrUiVL+EwRBNAASZARBEAIYHq8NGzZg3bp1pvDauHGjo/Dy+/2ml2Hhf3+AVOuDVK1AqvEBYYlEF5FR6GKNgWWHwXJUXPDXMdi8eTM2bNiAzZs3O4bS+nw+dO3aFb169ULv3r3Ru3dv9OnTB23atKGMkARBEAKQICMIgrARDoexYcMGrF69GqtWrcLq1auxZs0aR+9BVlYWevTogdXzNkKq9kGq9kGuVoA6hUQX0SxgYGDZKlhuGCxXxbFXHI6NGzdi06ZNqKmp4W5TVFQUJdB69+6NHj16IBAINLL1BEEQmQ0JMoIgWjQ1NTVYs2YNVq9ebf6tX78eoVAopq7P50O3bt2w4ds/dE9XtQ9ytQ+oJeFFtEyMOWtabhgsN4yjLx+GNWvWYPPmzdzkIoqioFu3bujXrx/69++P/v37o3fv3pRIhCCIFg0JMoIgWgzhcBjr16/H8uXL8fvvv+P333/Hhg0buAk28vPz0adPHyz9ZBWkKh+kSh+kGh9lLiQIAZjEdG9aXhhj7j4ea9euxZo1a1BRURFTV1EU9OrVyxRo/fr1Q69evWheGkEQLQYSZARBNEsYY9i5cyeWL19uCrCVK1eirq4upm6rVq3Qt29ffPf2UkhVPsiVPgo3JIgkw8CAgAYtP4Rxfx+DFStWYMWKFSgrK4upGwgE0KdPH+y///4YOHAgBg4ciPbt26fBaoIgiNRDgowgiGZBOBzGqlWr8Ouvv2Lp0qVYtmwZ9uzZE1MvLy8P/fv3x8/vr4BU4YNc4YcUUtJgMUEQZshjfgjnPnwKVq5ciZUrV3IXwW7bti0GDhyIQYMGYeDAgejTpw950QiCaBaQICMIoklSXV2NZcuWYenSpfjll1+wfPnyGO+XEQq1dt4WXXhV+CHVkOeLIDIZM4FIQQhn3D0aS5cuxdq1a2PmpGVlZZketEGDBmHQoEHIz89Pk9UEQRCJQ4KMIIgmQVlZGX7++Wf8+uuv+PXXX7FmzZqYDlpBQQEGDRqExW/+qguwSj8kjcQXQTR1mKyBFYQx4Zmz8Ntvv2HZsmUx89FkWUbfvn1x0EEHYfDgwSTQCIJoMpAgIwgiI6mursavv/6KH374AT/++CPWrFkTk3yjffv22LW0DHK5H1J5QM98SN4vgmj2MDB9cevCEI6/YQR++eUXbN26NaoOCTSCIJoKJMgIgsgIgsEgli9fjh9//BE//PADli9fHuMB6969OzZ/uxNyuR9yeQBSHc39IghChwVUaEVBnHjLUfjpp58cBdrQoUMxdOhQDBgwAH6/P03WEgRB1EOCjCCItMAYw8aNG7F48WIsWbIEv/76a8wcsA4dOmDnz/sglwUg7wtQ8g2CIITxEmg5OTkYPHgwhg4dikMPPRRdunSBJJGHnSCIxocEGUEQjUZ1dTV++OEHU4Rt37496vOSkhKUraqGvC8iwOoogxpBEMmBBVRoxUGMuuZQfP/999i3b1/U5x06dDC9Z4cccggKCgrSYyhBEC0OEmQEQaQMxhjWr1+PxYsXY/Hixfj1118RDofNz/1+Pw488ED89PYKyPuyaA4YQRCNAgMDywvjkhfPwXfffYelS5ciFAqZnyuKgoEDB+Lwww/HEUccga5du5L3jCCIlEGCjCCIpBIOh/Hzzz9j/vz5WLBgAXbu3Bn1eadOnbD9+72Q92ZBLgtQFkSCINIOkxm0oiDG3H8clixZgk2bNkV93rlzZxxxxBEYPnw4DjzwQFr/jCCIpEKCjCCIBlNVVYXFixfjm2++wbfffhu1qGsgEMDgwYPx/VvLIe8JQKolLxhBEJkNy1Jx9RvjsGDBAvz8889Rnv28vDwceuihOOKIIzBs2DAUFham0VKCIJoDJMgIgkiI0tJSLFiwAN988w1+/PHHqHCfkpISlP1eA3lPtj4XjLxgBEE0UZiiQSsOYvTNh2PRokVRc88URcHgwYMxatQoHHnkkSgpKUmfoQRBNFlIkBEEIczOnTsxd+5cfPXVV1i2bFnUZ127dsUfi3ZD3p0FqcJPXjCCIJodDAysIITznjwVCxYswLp168zPZFnGn/70J4wcORJHHXUU2rZtm0ZLCYJoSpAgIwjCldLSUlOELV26NOqzAQMGYMUnGyHvzoJcQ3MqCIJoWWjZYVz877Mwb948rFixIuqzAQMGYNSoURg5ciQ6dOiQJgsJgmgKkCAjCCKG3bt34+uvv8ZXX32FX3/9FcZtQpIkDBo0CMvfW697woK0LhhBEASgzzu7fMpYfP311/jtt9+iPhswYABGjx6No48+msIaCYKIgQQZQRAA9MQcc+fOxeeff45ffvkFmqaZnw0cOBC/f7gRSimJMIIgCC9YQMXVb47DvHnz8PPPP5uDWoqiYMiQIRg9ejRGjBiB3NzcNFtKEEQmQIKMIFow4XAY3333HT7//HPMnz8fwWDQ/OyAAw7Ayo83QSnNJhFGEASRIMyv4orXz8OcOXOiwhqzsrIwYsQIHHfccTj00EPh9/vTaCVBEOmEBBlBtDAYY1i1ahU+//xzfPHFF9izZ4/5Wffu3bHl691QdmVDqiMRRhAEkUy07DDG/es0zJkzB1u2bDHLCwsLceyxx+Lkk09G3759aRFqgmhhkCAjiBZCaWkpZs2ahVmzZmHDhg1meXFxMSqW10HemQOp0kfZEQmCIFIMAwPLD2PMI8fGDIz17t0bJ598MkaPHo3i4uL0GUkQRKNBgowgmjGqqmLJkiX4+OOPsXDhQqiqCkBfrDm8VYK8M0dfJ4yRCCMIgkgHDAysOIijbjgkKnTc5/PhiCOOwMknn4yhQ4fC56NMtgTRXCFBRhDNkB07duCTTz7Bp59+ip07d5rlAwYMwMr3N0EuzYakymm0kCAIgrDDfBqumTYOM2fOxMqVK83yNm3a4IQTTsCpp56Kzp07p9FCgiBSAQkygmgmhMNhLFy4EB999BGWLFliZvUqLCxE1e9hyDtyIFfTCCtBEERTQMsL4YxHjsHs2bNRVlZmlh922GEYM2YMhg0bBkWhub4E0RwgQUYQTZzS0lJ8+OGH+PDDD6PmIQwePBhLp63VvWEUkkgQBNEkYRLDPV9ci48//hhLliwxy9u3b4/TTz8dp5xyClq1apVGCwmCaCgkyAiiCcIYw/LlyzFjxgzMnTsX4XAYAFBSUoLyX+t0b1gtecMIgiCaEyw7jD8/ORqffvopysvLAehzzUaNGoUxY8Zg0KBBlKGRIJogJMgIogkRDAbx5Zdf4n//+1/UejaDBg3C7+9sgrw7i7xhBEEQzRwmM9z68WV4//33sXz5crO8V69eOPvsszF69GhkZWWl0UKCIOKBBBlBNAF27dqF999/Hx999BH27dsHIJIpcbMM5Y9cyFW0oChBEERLRMsL4YR7D8fs2bNRV1cHQI+WOPPMMzFmzBhKnU8QTQASZASRwaxfvx7Tpk3D7NmzzbDEtm3bYs93NVC250AKU6ZEgiAIAmCKhstePwfvvvuumV03EAjghBNOwDnnnIMePXqk10CCIBwhQUYQGQZjDL/88gveeustLFq0yCw/8MADsWzaBj0skRZvJgiCIDgwieGuz6/G9OnTo0LbDzvsMIwdOxaHHHIIzTMjiAyDBBlBZAiqquKbb77BW2+9Zc4JkCQJ0q4AlC15kCspLJEgCIIQg4GBFYYw7P8G4ptvvjGXQtlvv/0wbtw4jBw5ktLmE0SGQIKMINJMMBjEzJkzMW3aNGzduhVAZH7YRgXK1lzKlkgQBEE0CJYdxml/G4VPP/0UNTU1AICuXbti3LhxGD16NPx+GvAjiHRCgowg0kRdXR0+/vhj/Pe//8WuXbsAAAUFBahepkHZlgspRPPDCIIgiOTBfBrGvXQq3n33XVRUVAAA2rVrh/PPPx+nnnoqZWYkiDRBgowgGpna2lp8+OGHeOutt7B7924AkUQdi2uhbM+GpJEQIwiCIFIHUzRcOvVsTJ8+HXv27AGgZ2Y877zzcOaZZyI7OzvNFhJEy4IEGUE0EjU1Nfjggw8wbdo08wHYvn177F5QDXlHDq0fRhAEQTQqTGK47n8X4c0338T27dsBAK1atcIFF1yAM844gzxmBNFIkCAjiBQTDAbx4Ycf4vXXX8fevXsBAB06dEDp/CrIO0mIEQRBEOmFSQy3fHwpXnvtNfzxxx8AgNatW+PCCy/EaaedhkAgkGYLCaJ5Q4KMIFJEOBzGrFmzMGXKFOzYsQMA0KlTJ+ycWwl5VzYJMYIgCCKjYBLDjR9MxGuvvWY+t9q2bYvx48fjlFNOgc9HSaYIIhWQICOIJKNpGr7++mtMnjwZmzZtAqA/0PYurCWPGEEQBJHxGKGMU6dONZNOdenSBVdccQVGjhxJ65gRRJIhQUYQSeT777/Hiy++iFWrVgEAioqKUPmzqmdN1OgBRhAEQTQdmMRw1fTzMHXqVOzbtw8AcMABB+Cqq67CQQcdlFbbCKI5QYKMIJLAhg0b8Pzzz+Pbb78FAOTm5qLudwnKH7mQVMqaSBAEQTRdmKLhgpdOwfTp0811zIYPH44rr7wSvXr1SrN1BNH0IUFGEA1g7969ePXVV/HRRx9BVVUoigJsDkDZlA8pTEKMIAiCaD4wv4qT/zbCfObJsoyTTz4Zl19+OUpKStJtHkE0WUiQEUQC1NXV4Z133sEbb7yB6upqAIC8OwvK+nzItTTpmSAIgmi+aNlhHHHrIMydOxcAkJeXhwkTJuCss86C3+9Pr3EE0QQhQUYQccAYw4IFC/Dcc89h27ZtAIC+ffti/bu7IJdTWmCCIAii5fDUL/fhueeew4oVKwDoiT+uvfZaDB8+nBJ/EEQckCAjCEG2bNmCZ555BosXLwYQyZz4TZ2ewh704CEIgiBaHgwMt3xyKV566SXs2bMHADB06FBcd9116NGjR3qNI4gmAgkygvCgpqYGb7zxBqZNm4ZQKASfzwe2PgBlcx4kjeaJEQRBEARTNJz93Gi888475rPyvPPOw/jx45GdnZ1u8wgioyFBRhAuzJs3D88++yx27twJAJD2BuBbVwC5huaJEQRBEIQdlh3GkOv7YeHChQCADh064KabbsLw4cPTbBlBZC4kyAiCw65du/D0009j/vz5APQHSulXNZB3Z1F4IkEQBEF4cN/X1+OZZ54xBzSPOuooXH/99WjXrl2aLSOIzIMEGUFY0DQNH3zwAV566SVUV1fraew3ZEfCE0mIEQRBEIQoTNZw1nPH4e2334aqqsjJycGll16Ks846S3++EgQBgAQZQZisX78eTzzxBH777TcAgFTuh29NAeRqSuFLEARBEImi5YbQf0JnLF26FAAwYMAA3HnnnejevXuaLSOIzIAEGdHiCYfDeP311/H6668jHA4jJycHod98kLflUHgiQRAEQSQBBobr3rsIL7zwAqqrqxEIBDBx4kScd9558PloXjbRsiFBRrRo1q9fj0ceeQSrVq0CAMi7A/CtLYQUpFAKgiAIgkg2LKBi8HW9zSVk+vXrhzvvvBO9e/dOs2UEkT5IkBEtElVVMW3aNLzyyisIhUIoKChAzfcSrSlGEARBECmGgeHWTy/Ds88+i8rKSiiKgosvvhjjxo2juWVEi4QEGdHi2Lx5Mx599FEsW7YMACDvCcC3hrxiBEEQBNGYML+Kw27d38xoPHDgQNxzzz3o1KlTmi0jiMaFBBnRYmCM4aOPPsJzzz2Huro65ObmIvizD/JO8ooRBEEQRDowvGVPP/00qqurkZOTgxtuuAEnnXQSJImezUTLgAQZ0SIoLy/H448/jnnz5gEApH0B+FcXQqojrxhBEARBpBuWpaL/pZ3w66+/AtDXLbv11ltRXFycXsMIohEgQUY0e3755Rc8/PDD2Llzpx6bviYHytZc8ooRBEEQRAbBwDBx6hhMnjwZqqqidevWuP/++3HQQQel2zSCSCkkyIhmSzgcxtSpUzF16lRomobOnTtj5yc1kCtpXTGCIAiCyFT+9ftf8fDDD2PTpk2QZRmXXHIJLrzwQsiynG7TCCIlkCAjmiV79uzBgw8+iJ9++gkAIO/Ihm9dASSVbuYEQRAEkekwWcPRDx6MWbNmAQCGDh2Ke+65ByUlJWm2jCCSDwkyotmxdOlS3H///SgtLdUXef7ZD2VXTrrNIgiCIAgiDhgYbv74Evzzn/9EXV0d2rRpg/vuu49CGIlmBwkyotnAGMOMGTMwadIkqKoKqVqB7/diyDW+dJtGEARBEESCaLlhdDozHxs3boQsy7jmmmtwzjnnUBZGotlAgoxoFlRXV+OJJ57AF198AQCQd2XBt7oQkkYhigRBEATR1GEyw9EPDjZDGI8//njcdtttyMrKSrNlBNFwSJARTZ5t27bhrrvuwrp16/QsiqtzofyRQ1kUCYIgCKIZwcBw1dvnmZEwffv2xSOPPIL27dun2zSCaBDkPiCaNL/++iuuvPJKrFu3Dq1atYL8YyF8f1BKe4IgCIJobkiQ8NK50/HUU0+hqKgIq1atwuWXX46ff/453aYRRIMgDxnRZJk5cyaeeOIJhMNhSJU++JcXQwrSQs8EQRAE0dxhWSq6X1CC1atXQ1EU3HLLLTj11FPTbRZBJAQJMqLJoaoqXnrpJUybNg0AIJdmwbeqCJJGXjGCIAiCaCkwmeGo+/6EOXPmAAAuvPBCXHbZZbReGdHkIEFGNCnq6urw0EMPYf78+QAAZVMelE15FKJIEARBEC0QBobzXz4Jr732GgDgmGOOwV133UXJPogmBQkyoslQXl6Ou+66C0uXLoXf7wdbmgOllNYXIwiCIIiWzs2fXILHH38cqqpi0KBBeOSRR1BcXJxuswhCCBJkRJNgx44duPXWW7Fx40bk5+ejbqEfcnkg3WYRBEEQBJEhPPbdnbj33ntRWVmJLl264KmnnkKHDh3SbRZBeEKCjMh41q5di9tuuw2lpaVAnQz/shLI1bTYM0EQBEEQ0Wg5YbQ+xY/t27ejbdu2+Mc//oEePXqk2yyCcIVmPRIZzdKlS3HdddehtLQUUpWCwC+tSIwRBEEQBMFFrvFhz4dh9OjRA7t27cJ1112H33//Pd1mEYQrJMiIjOWnn37CrbfeisrKSkhlfvh/bUVp7QmCIAiCcEUKKvhjWhX2339/lJWV4cYbb8SPP/6YbrMIwhESZERGsmTJEtx2222oqamBtDcA/7ISSCpdrgRBEARBeCOFZax9pRQHH3wwampqcNttt2HRokXpNosguFAPl8g4FixYgLvuugvBYBDynoC+4DOtMZa5SFL0a4m+K4IgCCL9SKqM357bgiOPPBKhUAj33HMPiTIiIyFBRmQU8+bNwz333INQKKQv+Px7MSRGHfyMxS7G3D4nCIIgiEZGYhIWP7YSI0eOJFFGZCyUZZHIGL799lvcfffdCIfDkHdmw7eqkBZ8zmTcxBZj9Z/TLYYgCIJIM0xiGH73/vj666/h9/vxyCOPYNiwYek2iyAAkCAjMoQff/wRt99+ux6muCsLvpVFJMYylUS9XnSrIQiCINIIkxiG3dUf8+bNQyAQwKOPPopDDz003WYRBAkyIv0sXboUt956K2pqaiDvDsC3gsIUM5aGhCAatxrynBEEQRBpgkkMh93ZD/Pnz0d2djaeeuopDBw4MN1mES0cEmREWlm1ahVuvPFGPbX93kgCDxJjmUcq5oLRrYcgCIJIA0xiGHxzTyxevBgFBQX417/+hZ49e6bbLKIFQ4KMSBvbtm3D1VdfjT179ujrjC0roWyKmUqqknOQ14wgCIJIA0xm2O/ytli2bBnatGmDSZMmoWPHjuk2i2ihkCAj0kJ5eTmuueYabNq0CVKVD/5faZ2xjKcxMiZaBRrdmgiCIIgUwnwaOp+fj/Xr16NLly6YNGkSSkpK0m0W0QKhHjDR6NTV1eGuu+7Cpk2bgFoZ/mXFJMYIHes6ZpQynyAIgkghUljG1ukV6NChA7Zs2YK7774bdXV16TaLaIFQL5hoVDRNwyOPPIKlS5cCYQn+5SWQgkq6zSK8SJc4IlFGEARBpBApqGD3xyEUFBRg2bJleOyxx0DBY0RjQ4KMaFT+85//YO7cufD7/fD/Xgy52pduk4hMh0QZQRAEkULkWh/++te/QlEUfPHFF5gyZUq6TSJaGCTIiEbjyy+/xBtvvAEAYL/lQC4LpNkigiAIgiAI4PZDHsUtt9wCAHj11VcxZ86cNFtEtCQoqQfRKKxZswbXXHMNamtroWzJhW9DQbpNIkTJBA8V3aYIgiCIRuDMfx2NadOmIRAIYNKkSejXr1+6TSJaACTIiJSzb98+XHHFFdi+fbu+1tiyYkjIgE4+4U0miDEDulURBEEQKYaBYcjtfbBw4UJ06NAB//nPf1BYWJhus4hmDoUsEilFVVU8+OCD2L59O1CjwL+iiMRYUyGTxJgVIxOj1T77e6OMSB+88+/1HYl8j421DUEQLRIJEr7/x2p06tQJ27dvx1//+ldompZus4hmDgkyIqW88cYb+OGHH5CTkwP/75TevkmRaR4pXifaKHcqo05248ATyNb/vDKn//Z2Resmso1bXbp2CKLFIqkyHn74YQQCAXz77bfm/HeCSBXUOyZSxi+//IJXX30VABD62U8ZFZOJV2expXQoRTwfRGoR8VSmyusVr5c0XlviGQQgCKJZcU2/u3HTTTcBACZPnowffvghzRYRzRmaQ0akhLKyMlxyySXYtWsX5B3Z8K8uSrdJzQejM2j96UpS/XtrZ7EhP+/m1OlkLHnnpaVgvaasZQD/Wmvu2H9v9jKCIJolx/1tCD755BO0bt0aU6ZMQVER9WeI5EMeMiLpMMbwt7/9Dbt27YJUo8C3ljIqJg23Ef9keYeao5epuR1PKhANOXR639yhMFiCaJHM/st36NatG3bv3o1//OMftGg0kRJIkBFJ55NPPsHChQvh9/vhW1EESaPLLC6cQrFaeoc4maQzyUOqkl14teMWTugm6unaqyeR74AgiCaNpEm49957oSgK5s6di1mzZqXbJKIZQj1lIqns2LED//rXvwAA2qosyFX+NFuU4fA6xPbPG9o+wSeeZA+8eiKexHiSXTjV8fKKirTjZQOROPF+vwRBNDmu3f8eXHLJJQCAp59+Gtu2bUuzRURzgwQZkTQYY3jiiSdQXV0NqdwPZWtuuk3KbOJNdNAYtLTOo6jIsosbkQ53vMkuEkl+Ibovt/pNHUnW/5zeN4oNHt9dczrfBNFCeW3CBxg0aBCqq6vx2GOPUegikVRIkBFJ49NPP8WSJUsADfCtLqT1xtzIxA5aJtqUCYicl3gFUTJpDt+bXUDxRBVPdLkJMaf3bu3y3jeEZInydF5fBEEAACRIWPnKH8jKysJPP/2Ezz77LN0mEc0IEmREUigtLTVDFZWN+ZBrKMU9F+pMNV/ou00MQwDZ/zt9Fq9gchNhXv9TQSJhq251CIJoNKQ6nxm6OGnSJOzbty+9BhHNBhJkRFJ44YUXUFVVBanCR6GKTqSrAxWvh4cgUgFP5Ih4p2xlkux9rYrUEfKUpUqYJZLYRbQOQRApZfKFM9CnTx+Ul5dj0qRJ6TaHaCaQICMazM8//4zZs2dDkiT41lCooiPpjDfnhTxRcgciGTh5oJLg6bILK+O9tVySpZj3XnXiorHno8ULzVUjiEZFYhJuvfVWSJKEWbNm4fvvv0+3SUQzIMOfNESmEw6H8fTTTwMApD+yKatiJkPpy4lkE++8Lvs2rk3XCyueoOIJMZE6CWE9tkwUaDTAQhCNyg0D78ef//xnAMBzzz2HcDicZouIpk4GPlmIpsT777+PdevWASEJvo356TYnc6H5RQThiJMnzGMj7zJOnaR4zjJVmBnwsoESBJFUPrp1HoqKirB+/Xp88skn6TaHaOJk8BOFyHQqKirwyiuvAAB8G/Mhhely4kKdIqKp0wBPl3fTEve/6/5FE4Dw7JRkV89ZXCItk0WZAd1/CCIlSKqMiRMnAgAmT56Mqqqq9BpENGmawNOEyFTeeustVFZWQqpSIG/PSbc5mQl1hrxpCp3aloxI6nihZmJ/CzGeMUXx3r+9Ds8eXh37f06ykISEWVO4fimxD0GkhBfOfQvdunXDvn378MYbb6TbHKIJ0wSeJEQmsnv3brz77rsA9DT3lMjDRksLF7J31N3e87wa9naI9OD1/Qg34z53iyt23LxeBsY21rYVGZIiR7+XpKg6kKVYkea1LwfbHSpFv87Ea9htLTOnNPs055QgXJGYhKuvvhoA8M4772Dnzp1ptohoqmTgU4NoCkydOhW1tbWQyv2Q92Sl25zMoqV1WhJdaFe0E5uJndvmSJJEhVcGRMeQRF6ZLEX/2avYhFjUZxJnO69wyIaKsiSI2ZTiJMTiqdPS7m8E4cH9R/4TBx54IILBIP773/+m2xyiiZKBTwwi09m2bRs++ugjAJG5Y+Qdq6eldVYS7XR6beflcbOWOW3jtK9M7CjbSenCxALJMISaERBbia49pigx4kmy/LYkSYLkj1183l7GC4G0C7cY0eYgRhsz8UijXrOi4YzkPSMILhIkcy7Zxx9/jNLS0vQaRDRJmkDPhMg0pk+fjnA4DGlfAHJZIN3mZA4trUOSTmEj4s3heT4yUYw1pmdFJCxQqBkBceImNKyfCXixJEUBZD0UUZIi4YeSBMiWduxlkf9WUWaIOlOUuYkqF1HmmoDErR2RxCOiyUkyAXuoo5doI4hmyh1D/4ZBgwaRl4xImAy8wxOZzL59+8z0rr7NuWm2JoNoSR2PdM+REdm3l9fByZMm6rlLFiIev2TsP4ltxS3G3DyXHGFmii5EPGFWL5csA37LWoeGOLPWkaToOtBFmWT7jXI9ZW7HYRYl6CkT8dw2Re8uz1Mmslh1S7pnEs0eq5fsww8/xO7du9NrENHkyMC7O5HJvPfee6irq4NU6YNE3jGd5tyx4IUNNifcvA+8sEnediJiQ0RsxWOjSChnCjwrCS+szJsDZiuzCjHjven1Msp8vlhh5ffFhCaa29YXxCb1kOVY7xnPRoHvLSlrm4mSLJHemDh5y0TCIJNxf23O92giY7jrsL9jwIABCAaD+N///pduc4gmRobfxYlMora21rzJKFvyaO4Y0Lwf9I0VRpduEvFUOG3nVu7UdiI2Ou0nyR4VQ1w0aG0uXjgiT4jJcmwIYn0lSD7L/DAjHNGYMybXe9LM/8Y2kXBHyHJ9m5b9WL1nUaLM+l/gexPKJJkskhR62uiIhDY61UnmPgkiBUiQcN555wHQvWR1dXVptohoSjSBOziRKcyaNQtlZWVAjQK5lDIrNusHfFPo3GUiTSHETAAhMSEiCL0yI/KEmD0s0SizebOkbNs9SOaUcbxiMW3bvGd6mCTnOBJI/OFUlhQSFenpJtE10US8ZyLvE22bIAR4+Ojn0KFDB5SVlWH27NnpNodoQmTYnZrIVBhj+PDDDwEAyraclu0da84P6xR34FIZypXSMLFmTIOyB7qFRfLEiXVuGCckEQBgeKwsyTlM75iRfTHgjw1D9Pn0Mr+lLhDlWTP2G+Vts+yXZ6vrMQn+VqxJQBo9pNFa1pB5kpkg7NzElFuCEbd23OpbP2vO930iaUiQcOaZZwIA3n33XTDG0mwR0VTIgDss0RT4/fffsXr1akADlJ056TancWhJo6aNMJLOy0yXUEicYNu8z4l6rOc8ru/Aywsox3qY7PPD7B4v87dlCx+UFMUWqihBys6O3s7n0//MOgqQY6kD8OeeGQLOij0ZSApEmdN7p7KE8ApfFQmj5c1DdDrWxhRriXjG4mknGW3HU49odkwe/y6ysrKwbt06/P777+k2h2gikCAjhDC8Y3JpNqRwC7hsmvMaOylO+iDS0Rfp/DutcxVP2w0ReiId5lR6O0Q77KIdffu5FDTCuSNvYA3nk6VY4cMLSwRiyvTkHLY6AT9gSVEvxYQbypCysmLKJVmGlBWot8/n09uyoijR65bZ7YuUJSTKBAc4vL5Pp+s7KYgmmhE9tmTMlWwq8Oa9JZK0hGiWSKqMkSNHAgA+/fTTNFtDNBUkRv5UwoPa2lqcccYZqKmpgf/XEsjlzTy7YnN+aDaBcESmsZSJHKaJ3e6s+ze2cbNJtF2RfdqPn7d/e5lInQQM8q5jFwtc8cJpxx4eaBdiGouEJcoA03Thpcj1v03GwFQNklVkaRpYWIXks7QdqVf/XgOCoej9My26DgCEQtF2axo/9Mj+vUdsjSnzQOSad7ou0grveHl1WhKMxT5D7GXxdLss1zzRdNCKgggN2ou8vDy89957yM7O9t6IaNE04yEsIlksWLAANTU1QK0MqdzvvUFTgUISG9Cc+yh+stpONm4eN2uZfZuGevN4+3ezwWv/ybI7UlGszI6IGLMn1bDN3+LO55JkPeTQsEFR9GQdVi+YokDKs4VO88r8/npPmbVt2/5ibOAkFeGl1o8RkvbjNfbp9h5i17zodZEqPNebc94w9n0jZAhNG8lKSGIva0hCkub6XMtgpDI/OnbsiKqqKsyfPz/d5hBNgCZ6xyMaky+++AIAoOxqRsk84pkAnpL9pzCkpxFCEu2vmxJOdifjWNzOiX2eW0acO5H06UZIotXeeMSY5TcWlZLeSMAhS9F2BPyIWRPM2L/Pp3uusgL6f8NDJkn6a+MzIFI3unMqKZEQRKtnLdK2IcqiEo7YT5fFfmub9rDN2A1d5mI18F7Au64a+hsVHVCIo8Ho//bXTvWSce/K5PBJt+eQ0zPJKrhEE5Lw2iaRllIkSBg9ejQAYO7cuek1hmgSUMgi4UpFRQXGjBmDUCgE/4+tIVdzspM1JTLhIeQV0mR8Hm+oTxMIR3TZQWKhTYlul+62GxvesSTgBYtp1pgfplnalmXu7yzKw2SIK/vjh5N8A35/vR2SBJaTBaku5GgTk3UxJdVa1gBSNSAcjq7HWEwZACAUjq6jqrF1tNjrIuZRag8plKXYsphGONdbkq5DXoijJEsx5aK/9URCJnn7E9yZSOOx9XnXOO934NV+c7oX8KBuYErQckMIHbwHgUAAH374IXJzc9NtEpHBZOiwEZEpLF68GKFQCFKV0vTEGG/idaPuP45J8yJZzHhtpcALFrvrJJ83p9Akr3NlP16nz5MR+pSITU51EkXk+ERtsv/3Ss5hvLebZM+WaNaV6/8bCzFbPpMMT5jRrhEiaPWeBQKQrNtJkh5e6Kv3tLHc7KjfMVNkaPnZYDm29cd8Cph1TbKAn595MWANZ4zcL/xeIZUSf16cHd7vxuu35PXd2V/HgVNobKLetHhDZnmeYWEvnNu9j2+c+73U/jre5CbNKcQSiH02imSgFM1SmUwbM2FANQ6kah+6du2KYDCIhQsXptscIsNpwncQojEwbiLynia2EHQ6wzMS7aQ3RKgkGaeQpSQ0XP9ftOPjVGZ97yVe3MSctW5DbBLpADrh1hFPpk1OtvDCA+27s4bpGcLMvqBzlBdMjsy9staRolPU643pWRKNrIvG7zU7y3zN/L56MSZJYFl+MEUGywno7xXdc8ZkSziiT9G3URQwWQJT5HpRZtgpy9GiLGKPVZQBqBdl1vAvmyhzzcbIE7oO51lvLMGBGwGSGYooKrpEt3O1x+16jvd8eJ1fp7ZF7jNNFeN3xxvEdHuexhNuGa8tvPaakCiTIGHUqFEAQPPICE8oZJFwJBwO44wzzkBFRQX8v5RArkhjdkVehipe9ql0eMEA9xCZJkJSxZckR4f4NOHzIoRIOJpBY10rPJvsZS7Cy3g0cIUGEOsl4s65snVmDWFjOQeSPR29JIFlByBF7GSKDJanCykppEbKJGi5Acg1oajttIACpSpoFmkBHyRNg1RVG72LmjrYYXWWMuP6DUaHRjJe+KKtzP5IlSRJbHHYRLMmeoXg2e9RvDpO24m0k2jbPNs5WEMc7VlFjTJe2GW8dZJOKr8Xke0yAft1L0n853Uiz3CvtjMErSCI0IF7UVBQgA8//BAKL/EPQYA8ZIQLy5YtQ0VFBRCSIFUIZFdMVpiDfaRONPtUqsWY0wiq0/sMJuF1qfiN8d+nYtTYyauQqjluvP3Zk1zEu29Rj6mXXTyb7J+7lXl4wcz3TmuIWevyxJjP53yskXIpKxDzW2c5WYAs60IsIsaYIoFJEphfAVMkqPlZerhiTn1SDzXXD+ZXoBbo3nwt4ANkgPnqBR0URfeY5Wab25mevKysetvsGIk/eJ0pi7fNvm6ZdZFra5nn2mZu3jM7bl6dhn4m4iWKt20v22OqOHvd4vnMnuzEvl3SifccJOs7M15nwvPIy5Mm8plb2yLJTdKMVOFHfn4+KioqsGLFinSbQ2QwGfCLJTKVn376CQAg7wu4Z1f0ElSJ1jHKePtrLHghY/GEgmUgSUtZzwsDTMZ5sQoe+5+9jvHaXpbIPt3KeDbw6jRkf6J13ISVm4DktGGIA55I4IYkWsMK9Uoxc6wcU9lby2QpOh19pH2WkxXduZJlMMU4ToD5FQTb5Jl1mCJDzQtAzfWbZZpPRl37/KinG+OEU9rno0GWIVnXCpLkSObG6PPrKsqMdpzOp+19jDBzu87t9aIaE/ztOYXcWYlZqkAgvM9pO9H9eQzeiGRFFQ3FTDRcM5GlCYTPQSJ1RLZzGxBpLETnmiX6XE9WOylCgoQhQ4YA0OfkE4QTTacXSTQ6piAr40x8t79uLjSX+QCIHRFO6pww0XMjKg4S9Ta5dVbdRJSbkHLoBHt1sGO2dROTbtvZj8HrWGw2iXT8Y8qsYstaZsf2m7engeemi5elaGEj6wk8otpSIgLJuk9FhlaYo8/9itgTLAqARQktCcGSAIJF0eJO80sIFdV7wbRsH7RC+xplvnpPmWGnIseuW2YXl7KkJykx39tEqrUsajuZe80k5D3jlSXy2xYRfDyPcDzbxbs/ERETz0CZgECJNyGJ2/3Uaz1C0ftwIusRujQmVpZIO5mIyGBvIzJ06FAA9X0qguBBc8gILsFgECeffDKCwSD8P7SGXONrfuLLTlN52AiQ9PlgQPxznwwbjHkadps0lrhHKxHi2J993o/jPCpw0p2nyCY7VpsYY642utYTyRio7zBqG8e1x6zfuyxFCRp97TH7osuSnhHRtp2Wr4cqQmNgioxwns/0lslhBjmoIVjkh+G8l8IM/ooQ1FyfntyDMchhBqW6Po29HNYgl9cA1rltqgapujb6e1A1sLr6uWhgsWnzAYCFwtHnT9Ni57FoWmwdARK+rqy/N7c5UoK/R/t1ZpSZ9olcw7w6TmVWmBZ7v+GV2RHdzjbvimks5t7JK4vdXeLb8Uh0f54InAOLEbGf88qaGmno8mo5YYQO2Y2srCzMnDkTPvsgD0GAPGSEA6tWrUIwGASCMqTaZibGvEZaG9R0akdM40013SBEw1/s8Lw9XqPicPbkuNVxDbezEZVgQqAtSdLD07wETGPY5FZHb4cTRscRWpI9CyJvO14IkD0kz1gM2Yo1tT3gLMasdRQ5WowBgE+BWpRjii/mk1HXOgtqTr0NapaMyi5ZsEZSa1kSKrtm62IMuvcsVKAg2Kre46X5ZYRb5UXbbXjnbGUxnjJ/bFIjyW/3nnHOaYzHkO89E8na2CAvrb2OvW2Fc71wrjP74t5e17DRNq8sZju7DV7hocax2I9HZDsg5n7G+x3FlEXmIca9Hef+KXT/FtgurrZiN4zdVzK8kU6kKjxTlESnRjRgO6nWh8LCQtTV1WHNmjXx20y0CEiQEVxWrlwJAJAr/e7zx5oa9jlPDWoq9gFo/++1xo9TYo140kLHPUFdNLQnEeLwQPGSH9jrWOsKhXbZtrPX5SVZcNp/1NpaXmUe84ackju4fWa+t3ijuEk24rHTYm9U6HH9jmP/27aLSWMPxKSJBwDJ74/+7vzRYYtQInPGokScDLVAT1/PJAlMllDXKgtMAZgMaAF9TllNax/UgIS6Qt0WzSehrlCBmiWhtpUCJgFqtgwmS1ADsi7KJETS30sIF1nCFyUpdt0yIFqUGZ1+v02kSTJXyJgddt455p1Xy/FHV/O+XkQ8o+YxWP9z9hOzPyfb7NcEJ1wz5poVtN08n3ZR6XEMjmG+TtsZn8eTOMOK+R3L0e14bWerF3P/drr3Cjy7RISaa9vx4nZ8TkKO9z8Zn8VtO+del6LPJEgYMGAAAGDp0qWJ2Us0e0iQEVxWr14NAJAqm4Br3euGnAIvWEKLm3LaSVbbjuv2uJWJjnzy4I24exyzqLDiJzsQ8yiIeI7sZVbhw51L5bA/rjDizRvi7M/TTrsdRgfXbd0vtzL7gsteXjCjzLId14MBxIoxKbKumLWdrED09SFJYJykHoYYA3TPWG07XYwZqFkSKrr6zHlkmk9CbbGCYIFsloWzJZR398EcR5J0j1pNe8s6ZoYos54HL1EG1Isye6faTZRZz4P9v4BnM+EEIRyEvGBGW/bFvu3EeE1t3mRZ1pO7xAh6gd8DT+Dbbefcc7jHx9vO/p7nzRIo04/PIvYkmZ/Qxn5PtSUykQxB5yY87O8dnmsJPzME5tY5bufl4UqmF0x0PpyQt45zH0yR92z//fcHUN+3Igg7JMgILqtWrQIASFUC6e5TRSI3Z/tDqgEiLFnCK+Uk+kBMFJHRakR3tBw7i15Cx/7a+t+rLQEPBFeAOT1cvcqM9w21054gwkBRYvdn/W9/zbOT52Hj2WrrYOsddCn2GvL5YtqP6pBKkp7Qw2Yjswk0pigIF1rCDRUZtW0C0BTJDF3U/BKq2ilQAxJCeZEyH1DVWUJ1u8h2MhAskKBmS6hqX2+r6pegBiTUtgnU2+CTES6MDVXkijKrwLSFYurtRYuyGFETOafCIaICQp+HiBfZ1QvmtD+7nU7XntfxGdcKZwHxmM0sdTy9yFG7k7y344RL2r1n9jJe2GVM25F2Y7zIXiHbxtxLXpl9G16ZwKCaV1RFPFEcjfnciyvyw/46Wc+8JDD1tv8BANatW5dmS4hMJXOuViJjCIfD2LBhAwBATpcg8wp7EI1pT3j33g+qjCBZHi9RBOaiAPxOUWxbHLu8svw5dUxFOrC8OkYH0fpXbzi/zPrfWs/6Ph47rdt7hRLy9udkA2873v4dwi/rN7OJMeOaihElnHT3dltkmSvG1ILo+WCQYXq8mKR7uKraKWA+6PUkXYzVtpUioYxATRsJTNK31b1iuihT/dZ9RZsWI8okiS/K7OfbRZRxBY/Xdc3znnlt5yLKhESJffBAVIgleu3Zt1OU6Ouf8xvhzeGM6/gEtot6HxE89oEIu9gW2p99nqVb2KQVe5nTdvb/AmHnIvOORcWaVzh+MkhaOH4GIFfr94sNGzYgzEkQRBCZcaUSGcX27dv1G4YKoK6RL5FkCwihXSZJfCUcNiF4vMkSWk6dAF49t23A7+Rwww3jFUx6Y2ICiRcaJtJp9LLTqUwkSQPPm2Xdzu1Y7N46r/0ZYWAidtoQCYfTC+1tx3Z6YkO1JN07ZnnPYtb1kqHl1mdKBHTvWF1J/XaaX0JlJxmqRTep2UBZX0SlwA/n6mVmOzJQVyyhqlN9JU2xeMmMej7ZXEzatFuRo0MqZVsYZqSMJ8p4yWpi4F1nTiGO9noJ/JYcQ2Lt+/P6bSXzN2I/ZqffMi+pRiLH53Beoj1cSmxIZQP2F9sW/zdof88Vd/btBEI4E30mJbI2m4iHzaleMrdzMFSsXiqpVZCdnY1gMIg//vgj3dYQGUgGXKVEprFlyxYAgFTrS21CD3toYRqEWNJG+UQmIhuv461jrxfPeXIabbW+9hqBFfCC8d7r2zt0Hp0Ek9voOi+00P7aq8x47+Z9cAs5dAufdAo9dBKC8dhg9RpYvRsyP3mCWW577+QhiAlNtBLTIeaIMUWO/f6soYoOYkzNC+jrjEUyUTNFRl1rP5gsQWKRMMUOMjRfJKmHD9D8QFVnDWqOhrpWevptzQfUtVGh5mmo6sQiXjUAEhDORpQoiwpdBACmp9U3RZmRFtsqyjQGSDZRZqQZj1OUcb1TlnNi2xBCJHrN8vbj5LFyuD55x8MNhfRqy3jNO2bjGrQmS7H/zuz3Bq9z7HY+nGxLYH9Ra/XxvM+c//F+Fm2ziyhrSCif4DZu3javz0Q8Ym7bJcP+VCFBQpcuXQCABBnBhQQZEUO9IOPMB0gWyciS5Ni0+805qV4wJ/HkVRZPHZHzk6CHK5HkHICAGHMLf7J22nmeKgGPUIyo4XkYnLwOPO+S3UwPG/R5KILb8doRsMFrxN15LkysSPOaQ6PbbhESxnUQNddHchdjBoriLcYkCVqOXiZFBBCTJVOMAfq8r6r2uhgzULOAiv3CYH4GSIAWYKhtp6GujQooACRAzVdR0S8Ea1IPR1HGGCSLGNRyrVkU9eNlNi+f5PfHrpfFOS8xCSB43mSR7z1eUWZ9zyuzI+rBs29m9y5J+oLZMQMEXt4lo8xtIAOIXb9OkvQy6/2EN2jD207kHuOUyMRrf7zjsyU3aUgCIrGBMI4oa0hyDC8hl2hiEZF7KG93vO0SFWWNKNQ6dOgAQI9CIgg7JMiIGHbs2AFAQJAlmjgiSTdAr7h2a52EJiO7eal4nzcGIuGGCYoq0XqOnjCvDlU8HT+Rzou9oycwIu6UYdH63xAm9rKYUWmZ73HySprgdD7tyQG4IkpgbkmMSBOdy2LHen3LhniO7pxJPltopiwDvuhOKzMy5hkiRpJ04SNJUYsYh4r8pqdM9Uuobi+DKYAUWYNW8wPVPUJAQAPL1gtZgKFVnz3I71auv1cYlMIQlIKQXteCXZQxGQgWWwSYxsAUqV6UMWZ6xlh2dJijFLB38uVYUQbEClqHsN8YvESZm+fVDd52XvsGX0w63odk23UsMP/KXuboPfYqs68RZnxmX4aA95r3mX2gwW4XZ02yGDHHa8tpwErkmHkDNfZ7hf37cXomiERr8LYRjfJwe0YmM6rE/EiKeu2ZfVj0WZ6kZ70hyLZt25aU9ojmBQkyIobdu3frL4LWh4qLOBGYTCz0mQdOIQp20WWv7/TeY2f1/zNlojDvASvy0IVDh8ryX6Qed34Y4Oy90jd07ixaOxwCHQ0nm2KOJ9JOlL02r5HjSDNP3Fg6mrw1kpza4nkKRGyw7kO4c+UUmhrvdqYhDmLM8rnk43REeWLMdj2YYgyAxHTPVLA4Eqao6Uk8qm2eMasYg8QAhQGFIbTpsg9ZvjAKsutQ1KUMcn4IksQgAVDyI6LM4swKZwNVHWXIYb1QC0ioKwlEbIl46nwRT5lFQJqijNWXxSXKPMRvXKLMS0hY64kKEKd92myLuR559yFrubEdb2FoF29PTBik3UYvbyBvO6cMkF4CVZLEPGr2/drnkfLaj0N0uR4fZ+DK/J687gGiUR52RMSatZ5bm6IRIwI2eK3hmbCdSXjmv/fELAD1g94EYYUEGRHDnj17AABSyCZG4gmhS9R7xm0qQQ9XoqRSbInYH4fQ8oIbJuXQMfKqx7fVYyTfqOPR4RAJxeHaJLuLIbftYs4xt8PGuY7t34VAeuqEbeCViXagEul42d/zxBjASSggx4hxFiPYJLCAr17UAPp6YHk+M0xR80moaS1DUus30wJAdbewLsIiKFkqhvTeiCyfnq1MAtAqrxrDe62vtxERUdYr2lMGCahup9vPJH2eWijfNg+MMbCcQEyZPUlJjCh1EmVe343DdRzz+xII5zJsi3qdyG8Zsb/BBnXoRQYDOF5n0bA9rxBAbogoT/wkmgyH533nCStekpLoDflCjifmEriv6nU534X9vUiZ8PXoco9xQnR/Am0lnDrf6/7oVObQthTS65WVlYnZQ7QoSJARMdQLsgYuCp2E0L5GTzffGGLMTWw1QIg5ebdShqgYs74WGIG3l9Vv73CuRLxFXudYNHzGrY6TPdb9uF0DIjaIhhjZOxOiYUFWOw0xBgBMq69qCA5DWJkeTsksi/KMMaaLsSw/mCQBGgBNi4gxXeDIIcPzpIcSShqDUqeLsaruYcDHIvnvJSgBDcN6rkebrCr0KNTvVVm+MA4q2YLOOftwWI8N9bYCUPJCqO6pizKlLmJSZG0ziQFKULclVBjxlIU1sw7LiXjFtEiZLNUvhM2Y7ploqCizeVsB2+/A7kHmeX8aiogY4yEa/mW9vgD337GLSBMKEXb5D1iEk5uHyyVkWmR/UZ87ec/0CtH/jXrWwQ2eB89NZIt+l07nXcTT7vRZonjdo732JyD4ktqXcLuv8myIvJbC+vdOgozgQYKMiKGqqkp/EU7CDaypiLEGePCiEB1ZbIAXzC2Mz3idcWKMg5Odnumc3c6nlxAT9YLF60kyyngerkRGeXnti3jPnNryqmO0F1XHpRNnr2cpZ/Z5ZZIE5ld0MWYp0/xKvTDSGMCAmtaG2NPXDKtrxXQxZmwW0DCkx0YU+msBAIX+WuxfsgMHlWxBlhyGAg3dcvbgqF5r6rcBIOeGUdtWMxN4aD6guq0MpU4zQxo1RYKWpUR78CSLADPKFJvgkuXYazbJnrJYTxXv+0vg/iUwSGK1LbqSwPHxfjfcRCYev2fZJRGNRxn/HiOYREfgvsrbn5eXD4C3Z8wpsYhXiKUDCXnKRMsS3c5e5vQcFNmfQIhjSkRZPDaEyUNGOEOCjIihpqZGf6Gm7/JI6lpgydzGTViJeG8aCG9EVji00CvERWTuglEWbRR/fxzbXT1gQGpGX00DON4mJ2HSEAEtMFLq1XHw9AYmyavKbQOI/U4j3g3J3hk0Ooz2rIMRj5IuxnRBIxlligQ1Wy+Tg5G09YqEYIEMORjZ3C+huqOevl6ujKQNz1JxcM9NyFOCCGl6WYGvFhPbzscJRUsjh8GQqwTRM7fUFGWMSdCqfNByNFR1idjAADkM1JYo5nulTgOTJaiWTIuSquqiLMtapkWfH01/H9UxNzyKUcIt8t2IfPccXEWZ21wkp9+4g4BLWIzx6jmR6OBXvN4b4zXHLp7Yco0wcBr0SWB/9XU97r8ideIYDEvpQF2i300y9sfD4tW30qgDvYYNkf9SRJBVVlY2ng1Ek4EEGRGDIcgkrRFvXBYaLMbiedgnIsbcHsy8+knCa46VIyITxEU7cg0QY552i4yCJguRDqWo182p/UTnHoh4A3nbJNrR8arLE2OAc1pwA8YsGRYRSTHPdDFmCHOVQVIZgkUKmAzIYQY5DFR3YnqGRQZIYQkISTi45yYURTxjGpMQkMM4s+gHFMt16OCrwLGFy5AthyCDQQZDz9xSDO+5DmqlTw93lAA1V1+nzF/FIGmR9PclCpQ6zZLUQxdlUkjV7UbEUxbw62LM8KDFhCpGRJm9I2jPcmk9r9b/VuIRZaKDKF5JL3jt82zx+u243SdF2vFCZMCEV+YgkkTnqiZrfzE4CTG3OpksyhI5Vw3ZHw8HMWbQKKLMbgPTgEifKhQKcTYgWjokyIgowuEwVDUyo15tfEGW0I2yIRNtmwgJP0RTMd/EIIEwRS4NeTgnGl7oZEciiIomr+147YhO8Hdq38umhM+7FBXaZ5SxqOOR671iEZhPhhyuL2OKBDVbhlLHzPfBQgm+yvp2mJ8hv2MldlYXmGUF/lqcU7IEBRGXmh8aDgyU48zCn8w6IaagVvWjU/fd9SZqEnw1QG2bSPsMUIIMoQKrkASksAaWZcuiaBWYxjmIJ5ufeV6kjLw3Od5j7N5Pj84uAPHfQwaehxiS7MWJJ9tkXDQgfFHUppSHwieLZCb6SASn30jkfhgOh8Hs90+ixdME7oZEY9LkbhJeN163z+PtDNg7Jo1EUxdjrpnaGvJQFE1UIUIyR2tFxZj1NdeD4lEWjyhLNFzIOH8aq783GPvVIt4iSTJD8yTVCNWLiBJV00WZDD3DoiRBUhnkkBpJ6qHo6e6ZvgZYTRsJTAGUEOAvk6AFGHK6VcCvqKgK+rG6rK0pxoplPUOHDIYOCuCXZHRSGM4o/Bl1zIeVle0R1mS0zalCpx6lkFQJ/j0yJE2CmgXUtJN0D5ymZ3cMFvr0UMY61bSH5fgjx6XWr0lmZFo0zodxrJH3kjWUM+pcGudNQOC43GtS0Sn2bLOBNrt+1liiLJH7d4q8OPEkJOGicc6//dnNq+NiQ7yJUzKedIkykQELABUVFcnfN9GkIUFGRJHumy1LhehJ1gO/MWPPIzQZMeZY1WWkPA3nM+Wk6vhEvWLphjegYxdyQETcIMqjpvn0RB76NhGhFNAQiKS2Z0yCyiR0DJSZYsxAjrQtSxJaySo6B/YiqCqRMg35/iCYX4NseP0lfX+a1TEmS6Y4NMsk6E9J633J+C6s65Txfm9NwfsTD4mKssYeyIqZz8jSNpjmhldypriIU4w57S/dz/+4ybTv1UuMsfrza0YiEUSEZvbEIBpK9KT9NOw/3k6s4GgUt3Mkui3QtMRDKsWYG5xOQIzHNZkPUOv3Z5s8bb4W/Y4z7cEO8MVNPJ8D9cdl/29/bcV6DzDOn/X6t6a7N0IXDc+YLOsZE7X67ZiiABogBSPCSgK0LN0b5atWI2USJBXI2hdZsNkHPSuiKmHvjkIAQE4ghMPbrUeIKZhf3QcA4Jc09PFnIV/KAgDUMQ2/BFujtVKJo1uvAgBUhwNYu70t4NdQ2z6yblkYyNoD8x4nMcBfperzzHKMeW8MclCFNTEJAEDVy8w5ZJYEJvrpsQgA633HPG/2EFTxOWSpIuHICC9RJvK7iuc+7IXb9Z4uErRB+DtJYVSLYYPVloyKonH7nQhcV0kdABa5ji27y83NTd6+iWYBCTIiCjmqM9/4IzgJ3SAb8kBPZmcgBcT98EuXGDNIhyjjTZ5ORJglu/OWaAiXFafvPx4x5rZPXplL2+Z3aYQqWrexbCepWmStMYsLSmVAWNPFmAxITE/oIQc1BPP161YOAr4qXYwxn54KX6qVsW9PPg5vtx75Sh1UJqM0XIBva3qipy8bfkmBIsnwQ8GPda1Qy/xQJA2d/HsxpHgT1mxrBy0k6+Zmq6hroyJrDyCrDEwGggUy/JUqJDXS+ZT1LJByULWEJUZEmarqghOI9VgaAtV+TiXZ+/uKQ5SlqkOcdFGWLDEm+lsRud7jpaFtpEqMGfd5nmdM0DsWrw2MscwSY25kohgDALk+rDkQCHhUJloaJMiIKCRJQk5Ojv5GYWkRLEkRZV7vRT8zSNbNO4F24noQ2h/GSXo4x2DrgHvt01OU8Tpw9rLGeIDa98ezQcROEVud2oqxlUW/5p33hpwrr7pM49exh9xozCwzQhGlULj+c1n/k+ssZZKeyCNQZSzGDGhZQNZuOWo7f04IC3f2tBQxFCvV+CESuRhiKtaENRTINWadCi0b80r7oLCgur6tsIysXQrC+ZHda0CgUoOaZfVk6fPImD86Y6SkqtEDHryQo8gi2NFlWqx4i9lOLPwv1R1iz/adrm3PUC2HgRPR9r3qCFzvvPuo0L1V5DfPK3P4/rxs4NrDE1oJhikmbIMIDTlXidwzE7kWkSYxBoAp+n5zc3ObXngokXJIkBEx5OXlAai/eTQpUWZ98PPC2ES2FemsJ0IDw2jiFmX2/8nCLhDcbIjazKETxXvAOj10RQWT24Pa6bow3sfT2UqkU2FHJMzKVQAn0Qbr/qLe66JMsnvFDFFiKWeyZb4bY7ook2F6yyRVg1wTBpMlhHMUQNLXAAtUaQgWSmAS4KsFsncogAL4WtdAUTTsq8rB7G394ZdU9MneDkXSsFMtwLxa4PdQCCEmwy+paKuUY5+ai7e3DUF1KID8rCCKW1WChWRkb/VDCushkaF8Cdn7NEgqoPkkhHMVgAFKTRiSqoFJ0BORMBZJgc/08EWfbe01Q6RFzoUkWZK0WK+xBib1aCzvhNB+vDrCvPuw9bVoqKNIyK3D9W4VGTyxEbcAied+5fH9OdngKMbsr2MGQ8TFmJsNvPfCiN7H3c5Vop8ZZLAYA6APcoPCFQk+JMiIGAxBBh/nQRov8czjidk0CTfOhtjNQ3T0T6ROErxlQg9x4739wZ6s8BZHr423KGMqp45XWaKjsEBsR4Yn4p1CHu3XBNdD4hE+yatj2Opmu9P1ItIpEbGJ1xZHlMV8N1ZRFmlDstaJXBtSWIt62kgagxRm5hwuI6FG1l5jEAhQgoBSJcMXuQ8xJqGsJhvf7+uGgKTvM8R8+KWmO76r6QEAUMBQpWXh890DUBnMqt+fxKDs80EKGfsHsvYwqH6rkATkkBZtP6CHMsZ8Pwl6opMlxnj78/rNO5VxEPIkOV171mMyslNa4f1ueMds+x6E7xUC3h7GsUFEmIjYwPVA8fbHE1Ui15WAGOPaLlAmPugncC2IlvHqJCK+UinGRO/jXij6NmYUEkFYIEFGxFBQoK/3w3wunQevuTtOnb44BZpxA01J9kXvnfPL3Ub6RLwdvLbiNS3REBO3jlxDxRkvtI4jAg3b4x29tv4X6TCaZU7fjfHaSQxZr1VrnURG/928c26/JTfPnGGjyH7c7LXvL6p9sU6pNYkHNA1S2OI5iyT+kGvDZpnmVyCpGvyVhqdMBpP0eV0AwBQgnAfIdUDdJj2+UJYZ8rPrUFqTj2k7D4XKZGwOtUIt86FMzcXPtd2wW83DW6XDUB0OoDBLX0S6JuTH3vUlkBgQzq8XfHI4sp9sCZLGECjX7dMCEU8eA6SaiIJT6ufsmGGYRlm4/rjqzwevA5lkMcbznIh8Zm/L4Xfv5EFxtNfNO+1yX2Sq5ng/c/rvWuY18OR0jiL3prj35/BZ/fGp/P052WKvE9WYtzBPeiIOJ/El+oxzI1kDpg7tWPsNDRJj9teJDjIH9O1KSkoSs4Vo1pAgI2Jo27YtAIAFHDwAXt4DESHWXESZG6L2unVk4kB4rlmyRJnTvAa7MHPyzkVtJiiyLKPDdmHnVRZtu8MorJfI5oU1eg1OGPWdvHNO753KrPu11vHy4In+Lm0er+jvU6/L7F4wzncshSPZCI3wPU2DVKdC8yv12Q3DDEqdZmaDlsN6psVwHsBkBokBvioJdVvyUZBTC0Vi0JiEPyqL8NaOQxGK5MlXIWFHqAhvlQ5DWTAbsqTBJ2mQJYbd60og1+mCjymAms2QszNyT5EkQAJ8NZrusQMiWRUVSDWh+hT4kbXWpFA4+nzwOsTWcyNZki/YRb2dRDxjol4VEY85B7sXh++NdxnUsJfZ3ifiXXIffLHcxxLxGGpafPvzslPECyZSR28wtl5MFW8748JLfCXD4xSPuBG5Z5of1fcbkiLG3MpEm4sIstatWyfcBtF8IUFGxGAIMmSlOMtiAje2Bt1cE6UBN+C4sYoAu7dC8GFo9yTFHZbiNKpsLXPqzDl1JGK8Aw4j2V428PYn2PESOS+ek91VLUa0eZZplv2JfKd2QWQVgoZg4iXUsO4v4nVw3Z/bQIBdTNpFmT180fg+w2pUWVRSD+iZFRXD6xRBDmnIKqvfTtKA7F3R5sh1ErZvrO/EqEzC+n2t8PmOAwAAlWo2Zu/oj7Vlbcw6VeEANq5rB0mt91xJKpC7XQKLPPlklSF7T32GRcNuuToU/XRkDAhG2x11rGY1+3Wuca79JImxeBAdqBHwrCX0u3ESMCJCkXcevLZzuueIlNkRFHIx9zRV9d6fsY29zL6d/Vxpzl7FaDvjGHhy284osyMaoh3vgK3odhwS7iM0YNBYmMggd5s2bTwqEi0REmREDMbNwhjNSSmJuv4TuOHatzFu3EJtNaYos5JguIiTCBMKQ4raXxwj8F5eNmOf1v9u3jOjnleZdZ8eYUFR4UOcECXra6cOpWPdSCcmSvipWuy51lh0myKhlIZQcwpftJTFhnDVC8KoEE6OTVG4ibLI56Yok+q9YDA8Y5H3Ul1EyESSX0ghFUq1Xqb5ZYABSp2KQLmKcJa+na+aIWeHnuBD8+ub+8oVbN3QBgxATdCPsKpgd1UuPthyIObt7IOakB9BVUFpTT4qQtlYs7ojpDoZTAaYj0EOA3lbJChBFkkyAl2MhbXIfvT09EpVCJKm6Z4yRTLFmKSx+hDMsKWzHTkuptmEebrEGK/Tb/3vhZcHPcHfTVSdqEEHl4EW6+/d+G8cH6/MfpzxlvFsctuf3U7jvxo9MGH+t9a3t8mrY2/Ldv7rd+EgxqyvvURXvCGIbmGDoqHZTm3G4QVLSVhiip73o8YPB0AeMoIPCTIiho4dOwIAWHYjrUOW4A2QJ6a8ypxEmJAwcwrPFBnZiyPUIqYtOwmOZoqOYos87D23cxJyvJFf3uiwtRPDK+NtFxOiJ1DGCVGKKeN463jhSNwQJWN7W52Y8+eQnCCm/RgvA8d7Yfdo2EbXncKYuIlTYsIuY6/1GNs1DbB6xuzvASCsRae/h+6tytkTyVTIIqJsl1S/QD0DfGUKtq1uC1XTH13BsA9bt7TCxq31I85lNdlYu7wTpLr6x5ukArl/RMRY5H3O7tjvSqkN62LMSihcv/YYY/qx2L8Huxgz6prnwHYureU2hMQYrwPOE2I8D41IW7zfjUdoHwChED3ub4S3P97vW6QsxiiBMp6Xitd2KBRdxvNWh2yeVKOe9TeoqrHngecFC0f/RkTuAfq2AsKEdz16hVXzypyeZbYy3vOVW2a/rzpsZxdiSQ1LTBa272rz5s0AgC5duqRun0SThQQZEUP37t0BACwnDIYEb3KJYI8rjzNEgTdSFu9NWvgm7xTekIhYa2ibBm7eM6fQNDg85G2j3V4j4bzPYuZ0GP+dhJp1dNj+udOovddINU8EWj/3Gv221nc6Hqs9XmUu3oBYz5bNE+EgtLh1vGzh7Q/ghl/GXG88UWYP37OJMEnVgLpg/ecyIIU1+CqDgARoir6gslKn1QslSRdluX8YqRj1OWa+ChkVmwqhajKqducCYRmsVsHOXYWoCfpRuaEISrUMOahvJ4eAvM0y5JC+ELSkArm7VEhhps8r88mQNMBfEQRUBmZZdFeqCQKM6an8ncRYOMwZELHPw4tDjPG+s+hK0f/tr72I14Pk1LaTrW6eckPkeO3PyXPu5E13KnPbzsle6/7jPT6H351TaKFbGLVQVIPTvd6O6LNF9DMPRJ7H9jL7wKnXdnFjHxhNtifM47pmYKYg69q1a/L2SzQbJNagGZ9EcyQUCuH444+HqqoIfNcWUlDx3iiVSOkfN5Dsi71mAomel1Qfi8ai9pHqBTAZY7H7kOXoTpHMOVeaxi+3E8kSGFMWn5Hi29ltt38GOH9u36fX/hyOP+Z8Kpx7gGLbVpIh+Wz1ZBnw+4xGwRQZLDfLso0ELcuHUGHAso2edbG6TaQtCQjnSqhpz2COD0X+B9ta5p6FJfj3ytAsTUkakLNdglKnbyCrQO5OFXKQWeowBPbWQQrVn1OJMUhVteb3JmlMn0MWrxgz4M35s7ZjHUBwIxMe1/bfg/1acbrWRWyPJzTTDbffUBLg3nNc6jYY2z3VLPPceQq9P9zdZcD1ySPV58H+e+ANVmZpCA7dBUVR8Pnnn8Pv96fWJqLJkf6eLpFx+P1+dOrUCQDAcmI7IULwwmUSJV3zt6JMSCxEIqHQSHGjYs+NyLlymtQtWuZUx/7aMMnBA+cV9ii6nfW/+dotbI83Om4vt5bxwheto59eoVROHjzeb8TY1vreWsewh7ediOfDvh0nTIo7oh9lU+S6c/OU8byM0D1lUo3FU8YY5KAKf3mkLNLplMP1+5c0IFBu8ZRBD2kMlEvI3qaLPSkkIXubAl91fR05DORtluCvtp4DQA6x+iyPGkOgLFgfkoiIGLPaGHUAlnXLGiDGYuYkOnmBrYjeT0W9RLzteO3Yt+OF2nld64IJPBJJGGKUuR4Lh2TfczztFLmn8sp4XjBV5d/7k5CUwinixOtZlrYsyCJRKSnbv8M9nFc1Rw9l7dixI4kxggsJMoJLnz59AABafiTsKFFxlUxRFu/DxumB1YAbNO+h5PWZV+y8aGy9i1H8/8ZrtxBHgblnwp0Ip+0if27hj1GHIyq6XLZz3N6pIyoaemh9bxd5dhHCC5e0dmidwiztr433oqLLjtd2vPOiabHn094J9BJlBqFwlJCRwmq94ImUR4ky6Onwc3er+lpgKgAG+KsYcrdJkDQ9FT4Y4KsGcjf5kL1dgRxGJPRQiiTwgO4ZY7pnTFaB3FKLR41BF2PhyDHIFjFmnA9JX6PMPgeuoWLMbMfpmtQ/dBbuZnsuQsst1JdX17qNl2Djhe/xxL39+ARCduNJGOL2mZNAcpxDmYDoct3OYYCq/rg9RJdTmLl9cMT633gdxzOOFypo/9z+OmnztxpCvElFkr7/+I7Z6Ev169cvFdYQzQASZASX/v37AwBYvmWCMq9j51RmRaSOKLwYcLeRQpE61jIhE5xHCuNJGuK0nVtbjg+/RBKL8OoBsZ2ARCd2c9qNmaMEcJJCxHZEeHW4SSiS5ZkTSFgQOwLO6chyyrjzhEQSHfDa99rOqYMtkgCFlwyEI8AQk/5erU9GYByrLWW8FFYh1YaihJpVlEkMUGo05O60dj4BfyVDwfqISIORxp4hZ1f996DUAoVrATlYv50cAvK214cqShoQ2FdXL8YAQEO0GDPst84bY0xMjGmx55OfcZNzzxG5P4rMp3Lazq0d0e04ZVzBwtlOdJ2vmO0EykR+3zxi7eZc6/Hcl3hiy95WVEOcewDvnspLeMFJnuE1cOg279ppO7cyT0Sft6LP6UTaShSnQa44OWL8wQBIkBHOkCAjuOy///4AAC2fkzFKRHTxcBqpTwaJjoi5eZcyCNEHrGBj0f/tZU7ngCfqvDyXiSQgcavjFM7jtJ19G5u3zl4mMvnejtfEfJ7njjvyLppAwOkzeygmr/Pt1KbxXsB7xhVlYVuyC0O4WNvgibLquqgyuTZsijI5zOCrUZFbqrcjaYC/hiFQpQswSdMXkZbDgFIHZO3VX+fuYPBXM/is88Z2hSEHNUiagxhTGeTquhgxJtWFos6FoxizX2NMiyrjZ8JzEGNepHhuVDzhxF6/Cy9vN1coOfxmhTz1Iji14+Slspc5feZki9fgmKhnhyO8jP8iHq5G9WSJHl+KkookjFMfJQn9lhUrVgCoH+wmCDuU1IPgUl1djZNPPhmapiGwpE3qE3ukOPFDQliTZjAtI5KLiJKqJCRMYzFt88ocjLJuFFvG32FsHZHvQvT7kqXYjhRv8rzX8YnUEUAkUYBxy+bVTegzkQQoQExiD0mRo8+dLMUm/5AkSL76pB5QlPokH5Ey5lOiE30AYH4FoYJIdg4JULNkhPIVszMkMV1YBfMtqe01Bl8Ng+aPPr5AhZ5REQAkVZ8zFtWpUhlkSwIP3QCOGLMvDA3oQtSOIcbMpnid+cwUY40K7zeTiGDg/e6S1TbgfC+xiwPefcr+uYCgELmfNnqIYDzPvwwd1HQlxdc+y1IRHFoKRVHwySefIDc3N6X7I5omTaeHSTQqubm56Nu3LwBAK3KY4J5MrCNRDQlpTCbJmhycSMhFEue6eYWwiNZxatupjLNh9H/ea68RU6cyr9FUp3POCx2yj8wbrw2cvHReo/cCI/z2sDY3T0Qinjnua9Ewtpj122LDtXihkFGesnA42lPGGKRQuN5TFrFHqgvBX66XSRqDvyKMrD2hyHvAV6XBV60hq0w162Tt08v8VbpdksqQsysEX7Vqvg+UBYGwBqiRc2CIMZ5nzCiLR4zZFu9ukBgTScQR00z8iSocQ/qcvEJu3qV46tj3wdufyD0w0bZ5+/Ly+Fvrudkq6OESDRtMSdp3a5lXHbv9oiHxmUgqI3UcMPpQ/fr1IzFGOEKCjHDk4IP1mGetuBEEGRB7Y8wUUebVsffanvff2pZXmIpIOCF31/z5Z6LhLfZt4sm65SjuRDo4ovMBRIVuIuFCop1RkTpe23FCpuKeV+PSSYsnAUq0XQ6izBLyyJt74yrKjDbs4YuhcFSaeQCQgmH4y2ohhTRIGoNSqyJrrxG+qHeqlDqGnN1hZO3TIIdZJAkIg6QyZO8JQw7r2/pq1XoxZrQf1hITY2aIpu3a4syNiiEeMWZ97SDG3BJVeIULOtoIJB4uGO+gBG8707g4w9Ti2Z/RrtM+RESJEw514k2ekWhmX9MGkWeLvT6vjXi3y2TS1Mc47vrDAQCDBw9ulP0RTRMSZIQjhxxyCAB9dIc15gLRVjLFW2ZHZFQxEQ9bPA/BJDwI4/GMJdp2IglPeMcmtF1ihsYv5AxEJuLzyryONx4PG6/zHGdbjgLQbZ5Z5H1MAhSNxWQlFBZl1jllGiDV6ZkWAT1M0VejImdHfR0prCGwL4RAWX1bksqQu60Osm2OmFRnqaNpkKpqIVkyQkqqBqk2OqkHC4ZirwOVc23EJPBwSPNuJ0bQOouv6M28E1U4bRe9P4drIxGStZ3ovVN0QIa3ndcAUMwmsYl+uPcyhzpxJ89ojHOQCE1BfPH6DE5ljWEOGH788UcAJMgId0iQEY4MGjQIgUAAyNbAcjnZ3BqTeEMMnG7IybwJxxPOkioS9J4ldd8JbRo7UuyVcTKe7ayfNUjIuXVwREafnUbZeaPXvHasYsta5mW/03ZOZYaJbqLMJZ2/0RGN8tYYosyw1/7bs4qyyG/TTPShRUSTpkGprBdgcl0YSm0Y/ooQJJXBVx3WhVRYg68qbK4rptSpkOsi9yyVwVcRaVNV9Xar6yBFQi4ljdUv/MwT2MZ/nhiLHF+Ux9Ge5dJ6ztzuY4LzwxKe68UT8NbP7GXmDgUHGRK5H4h4cnjtu/12nD6L4x7pJKDijS4QxkkgJnKcTYFkPIutz3Re8g1rvTTCcsPYuXMnAoEA/vSnP6XVFiKzIUFGOJKdnV3vJWtVm2ZrEHvj9RoJc7pJJ1OYZcJDMEXeM8d9iYTCCI46J1ImWiepIUCxO4x9n+iINq8da3tu4VxuZaKhYbaOutAyAJxU/bx05lGeMs3mJQP0Nmrron6rUigMuaqmXqSFVCgVtZDrwmaZXBdGVmmNuaCzZJTtrNazJzI9bFGpDsNXoWdUlBjTwxQrakwxZuwTdcGY9eFiQhWNMEXbuYs6V07LENiFWCrFmMj3LlJH1EtsfMbbxqnMuo3Tex7J+p3BWTB5ZSVsyPxbrk1egjFVYjjVOF2rXoOriQy48soyJLpGa60PKA0ZMgTZ2dlptobIZEiQEa6MGDECQP1NJSNJdHTMS9w1dZw8MvbPre/dypwe+iLtp8ODJ0i8IZUiQk60MydgnFhHzWkEPd6Om1PYIxzEgCFAjN8Pb801q0hRNbBQKOpzZk+Jr2pAKAyppj7Rh1QThFwVea/p6fGlYBhyddC0W64OQQrq5XqZBrm8Rl/vzGynLnoeHON7xljIFqrISXcfs65YkjMniswhjG1LUITH7IwjvkQQEWii2ySIyG8qkeQZDTTK/bfYFL1abnh5f3l1eHVFIlua2HN6vxO6AqjvSxGEEz7vKkRL5vDDD4ckSWAFYbCAmvr094mS6E2a9wDIxBT8icLrkFvTL4uMyDqVxbM/++dWGzJgOQGeCJNkybUTx+u8uS0JYBV+CS1LYP/ujDJePbftRM+7xmJShzPGYtPm2ztLmhaVOp8xBklV61Pia0wXPEY6fI2BQYNUF6wvA4CwCqmmDszv09sNhSFXA1p2wNynFNYgV0YWk44IG0nVvVZypWVdsZDueYsSYqoKhFUHMWY5JmvmRIsX0ROnOoJzxIz/kiTx92fYZHxH9hBE3pIO3J0lIMREaKAXx/i92H+HRpm1jkg7vPq833mcRlqNii2zv28OAsy4Fo37gNvcrHiey8nwnGUYLEs11x8bNmxYmq0hMp3094SIjKZ169YYNGgQAEBtmwFhi41BY3vLGvvh09idAhHvjsiIcjK8fHGZHf93IDpnTSTMSTTZiaBh7mVO55czdy02MYT9fDNuxsGocEWNRXudIuGMVu8ZAKAuWO8pA3RRVlEdtS+5uhZSrTUZiAa5rDpKfEk1dTHhk6gLRtvEWKwYC3E8Y7zjt2Vq5P5+BRJ2CGXXtHswneYUioYgepDotSoaaizikfbariFzReNOqOF2L0pnKKFTCL/b+3i243mqRNoXoQmKLRHUNnqf6aCDDkKbNm3SbA2R6ZAgIzwZPXo0AEBr10IEmUEqHhLxhG14PfyaIyKdRpG5F04hfF71Gxmv5CX2skTCszwqe58LjgCIWcOKl6bdNicLmmZZkyzyufU9AKhqvSgz5l4Z3jAtsmaZEc7I6lPUS2ok7JExSLVBvU7YllyDMT0cUmNAKKSvo2Y9llBI/9zAnikSqM+eyEvWYf2NJriGmCfJ8OS4CLF4MgJ6XatO/0USYyRKQgk1ohtwLsuUsGve9eb2TOH9T2Q7Im66H9sOAHD88cen2RKiKSCxhFM2ES2FiooKjBkzBqFQCP4fW0Gu9qfbpManoWGMyfyZNaeQynTjFGaUAWGUIoiEbiUUHhndgPNnlrZjQhkBPXTRXi7LkBRLm5IMKLH7kIzwRUnSwx0VOVqQMAb4bCHUYTW6LUnSyyxCiYU5iTe06AWdY7ItAvyEHV7eQg72sE/hR7Bo+KH9+xL0grUoEjxPKUUkXJ66a00GLTeE0MF74Pf78f7776OgoCDdJhEZTtPodRBppaCgAMOHDwcAaO1bmJfMgDe6aP/cXidVXi3e6GhjP6ibS8dANGFGujtrDiQyhyapiUWsbXPC7Xgp8vW1yyxtWT1lgO6lUq3eNAZWF9QzIRqEw/qf1YtlZEo0BJfG9AyO4fokH2ayDnvCjqjEI2rMsSRTjPH+c7GHJXo27uIVdt2smfyWRUnwPCVv/w7hf0713OoQGYvWoQYAMHz4cBJjhBAkyAghTjnlFACA2r4GTG6hDwZeCKHog7WxbLLbl8p98gRoc8ItfDKZc7kaSEOyzMUt0DxEGcARGQ6iLGpbY05ZlFDTBZQh3piqASHLumWALqQMsWZcg5olLDEirMz5aVEDGVp0KvvIf8+U/9b924/HhbiyJlrPS7yJOYz3AmGJLVaMeZWlbP8s9r3Tc8WpDpHxMJkhp6/uvT/99NPTbA3RVCBBRghx6KGHomPHjoCPQWspyT2aIvE84N0e+k4iS+S9SIeiKXcw7HNKRBOUuG1nLW8kvNZpc9kw9r2IKIvJZhg9R4upsXXs3jOmamA1NVH7YaFQdDIQxsBq6+pt0Fgktb0t8QYv3T1vnTT7tWxf+JkjxoTFl/18iwqwqMbFrhmR+WFNgkSS+4h4woX3L3hfbE73PCIutLa1qKysRKdOnTBkyJB0m0M0EUiQEUIoioIzzjgDAKB2rAYDPVyaHKJhMSIiS3R/bt7D5tRBcerseXX44k0+0ggIec94iVVsXh2RdcuYTdxErVtmpJs3RJnh0YqEM5p1jbYiYoqFw/qcMGN7qxfMsJGbsMMmrqy2Wb1vEVuN17yFtHn/Y7CeL+t/LxIItWtQkgvRDIONgVfSDXudZP+GePczp/9OZUSzhoGh96kdAejeMVmmbjYhBl0phDAnn3wyAoEAWH4YrDDkvQGReaS7Y9Cc50UkM4wxXfNbzF0KeFK8PGVeogwwRVm9N0vT3weDsdvYwhlRVxdzLTEjdDHyHpoaI3BZ0Hbv0li0GON488xy6+FyhJiQZ4znBRP1TCYg1hMSY8nKdpooIt6sVApD0dBzkUGm5nSPIzxhRSGsXLkSWVlZOPnkk9NtDtGEIEFGCFNcXIyTTjoJABDuWpVma4hmA82Z8EYkxDGFHdS4whmt+zTEDuoFS0yafFXleqOs3rMoz5mxjWYrC4Wj29JYzDpihvCKSttvpLK37t8jbX1cmRHjTc7BI8HvMaHvLJ59iXiARUN67W2mM+mG9b/9NUG4cODFvQHo8+6Li4vTawzRpCBBRsTF+eefD0VRwEqC0PLIS0YkETdhRiJNRyQsqyEdbM/dJzYHKSqrIlAvynjredVXqveeRTxnhtiqF3YR0WVf9Dki1qz17F4w0wZrSK5dLBrrp3G8X57YhVimijHr62RcK/GEDqZqnleikIeLaABaXgjff/89FEXB2LFj020O0cQgQUbERadOnXDMMccAAFTykhGNQaLJRuJNSNJUEO2gioi2BDq79ix93I4/r11O4o8okcNLkGHzntnDGQ0Plz0TojnHzPKemzDEY/8iYYlcL1iqwgQdN40WygklZ0kmIm0nq06yIDFGNJARNx8IADjmmGP0JGgEEQckyIi4GTduHABAa10HLSd2cjxBNApuk+lF67S0UEmvuUDJ9Ma4iTKOaIkJZ7R7z/RK0V4si4fLEGWmJ82oYw+HNP7bBJhTco4Y+622JzIXzNyBgxczzu8hIa9lGuYlZhT2gZ3m/rsnUo6WG8bXX38NALjgggvSbA3RFCFBRsRNr169cOSRRwISoPaoTLc5REsmUc+YmxBz8sI1Z5IQusb1zHh5yjTGFUIxa3/Z1zJjTF+TzB7iGA7Hii479jljHsKMa7fIezeSlAiDxFiciNwfCCIBDr2uPzRNw8iRI9G7d+90m0M0QUiQEQlx+eWXQ5Zl3UtWEPTegCCaIiLCrbmShPC5qHacwiQdsg66ijTrHDBLGTfk0Sq2rBkdrW2zaJGYcDKOeBNYJEjcC3rz7GvO8AZVmvNvlUgrWkEQCxYsgCzLuOyyy9JtDtFEIUFGJESPHj3MlK7hHpW0LhnRfPHq2MXb6WtKQi5BQWGdY2Zu59YuwF2XK8Z7Zp8r5pYR0VYWk7XR3N4lBNGpzI5ISvokZrxMcMOk7D/joblgRCPCwLD/RV0B6EsDde/ePc0WEU0VicWdOoogdHbt2oULLrgAdXV18C0vgrInO90mEURmIUn1r51utdY6Rj17WSYixTeeJ8kOxyTSjtO2gC6YZAmS5Zwxxsz3puiyt9MQD5PV5kYUOuQV84C6M0Qjo7aqRfiAMgQCAbz11lto27Ztuk0imijkISMSpm3btjjnnHMAAGrPSjCJHoYEEYVI0gCeh60pdCzjnAflmpHR/mcvtycDcfCmAfUCLCo1voGbJ8wrE2WSslQmCokxG5SYg0gzTGZoe2wuAODss88mMUY0CBJkRIMYN24cWrduDZajQu1CafAJIoZEwxibQnKRBNY7Syglu1WUGTjNO3MTXU7lXmGZaRQ2NF/MBiXmIDIEtXMVtm3bhrZt22L8+PHpNodo4pAgIxpEXl4err32WgD6umQsm9LgE0TSaQriDEhojlnC62a5zUNzep9msWU/Tt6x29d5S3BHiW2X6WT69U+0GFhWGMp+IQDA//3f/yE3NzfNFhFNHRJkRIM55phjMGTIEEAGwr0qKMEHQaSSpiLMPKvEChHjv+eC007hg06ijReOKGinKHabee95/73KEjAkse0ynUy/5okWxZAb+iEYDGLIkCE4+uij020O0QygpB5EUti8eTMmTpyIUCgE3+9FUHZTgg+CSDn2pCFu79NBnIk/nJtJ/XEwjcXsx17mVCdjIDFGEClHbV2L8P5l8Pl8ePXVVymzIpEUyENGJIWuXbuaq9OHe1eA+Ztpx4AgMgmvxAZeC16nem01rzXIhJtx9p4lOsdK1EMl4tnKCEiMEUTKYX4VecP01xdeeCGJMSJpkCAjksZFF12kr1Af0BDuXU6hiwSRDkRElogwS5o9DnO24hRoIvOv4m3Law5XKvadEkiMEUTKYWAI965AWVkZ+vTpg4suuijdJhHNCBJkRNIIBAK4++67oSgKtDZ10NrWptskgiASxe55S6b3LAVZDZ08ZwklEGlKNEcx1hTmSRItDq1tLbQ2dVAUBXfffTf8fn+6TSKaESTIiKSy3377YeLEiQAioYsBNb0GEQTRMBorxbg90UYDwhu9PFzNhuYqxggiw2ABFTlD9Gtz4sSJ6NOnT5otIpobJMiIpDNu3Dj0798f8DGE+pZR6CJBNDdSLcqs7728aS2V5ngeSIwRGQgDQ//LOqGiogL9+vXDuHHj0m0S0QyhLItESti0aRMuv/xy1NTUQNmUB9+m/HSbRBBEsjGyOBqPkVRldZTkWAFiZHBkWmw2R3sZ7729Dev7TIfEGEE0GuFulVC7VSE3Nxf/+c9/0KVLl3SbRDRDmsjTh2hqdOvWDbfccgsAfcForaguzRYRBJF0GmuuD0+AWL1l9te8bdzWMOPtJ1O9cZloU0MhMUZkKFpRHbTu1QCA2267jcQYkTJIkBEp4/jjj8dpp50GSECoXzmYn+aTEUSzximjY6PtXyDkUaSNeJOOiNaJl2S0kemQGCMyFOZXUTBSBmMMp512Go499th0m0Q0Y0iQESnl+uuvR69evYCAhlD/MjCJHr4E0eyxr4vWHDrdTh44J++daB2nsiQlOclomsN1QTRLmMTQ77KO2LNnD3r27Inrrrsu3SYRzRyaQ0aknI0bN+LKK69EdXU15G058K8tTLdJBEGkg1TNMWvK2OextRSo60FkKAwM4T4V0DrUID8/Hy+++CK6deuWbrOIZg55yIiU0717d9x3332QJAlaxxqoHarTbRJBEOmAtxh1S++YZ+pctVTS0r9zIqPROtRA61ADSZJw3333kRgjGgUSZESjcPjhh+OKK64AoK9PphUF02wRQRBpwWmeGQm05g99v0SGoxUFwfrpg8ZXXnklhg0blmaLiJYCCTKi0bjgggswevRoPclH/31g2eF0m0QQRCZCHffmB32fRIajZYeRO0KDqqo47rjjcP7556fbJKIFQYKMaDQkScLtt9+uLxrtZwgO2Afmb2GhOgRBiGNNCmIXadTBbzrQd0VkOMyvos1pAZSVlaF///644447INGcV6IRoaQeRKOze/duXHPNNdi2bRukCh/8S0sgaTQ2QBCEIJKU+sWoieRAXQwiw2GKhtCgvWD5YXTu3BnPP/88SkpK0m0W0cKgXjDR6LRu3RpPPvkkioqKwArCCO1P6fAJgogDXnIQp89F3hOpgc4zkeEwielL8uSHUVxcjCeeeILEGJEWSJARaaFr1674+9//juzsbLCSIML7lYOBHt4EQSSI09pnXv+N1yQe4sPrnNH5JDIcBqb3PUqCyM7OxmOPPYYuXbqk2yyihUKCjEgbBxxwAB566CEoigKtXS3CvSpIlBEEkTgN9ZSRiBDDay4fnUciw2FgesbndrVQFAUPPvggDjjggHSbRbRgSJARaWXYsGG488479TXKOtVA7VlJoowgiMbDTZSJhEO2JEQ8iS35/BBNAgYGtWcltI76WmN33303hg8fnm6ziBYOCTIi7Zxwwgm47bbbAABq52qo3UmUEQSRRpwyOrbkcEev8MSWch6IJg0Dg9q9Empnfa2xO+64Q1+OhyDSDAkyIiM49dRTcdNNNwEA1K7VULtVpdkigiAIC06LWbt93lxoTsdCtGjUrlVQu+pi7Oabb8bJJ5+cZosIQocEGZExnHnmmbj22msBAGq3KoS7kaeMIIgmRHMULs3xmIgWBwNDuHsF1O76YO+1116LMWPGpNcogrBAgozIKM4991xcddVVAHRRRnPKCIJocvBCG5siTd1+gkAkTLFXhekZu+aaa3Duueem2SqCiIYWhiYykhkzZuCZZ54BAMjbc+BbUwAJtAAsQRBNEOvi1Yw1jcWsqWtANAMYGMJ9KqB1qAEA3HTTTTjzzDPTbBVBxEKCjMhYPv30Uzz++OPQNA3yzmz4VhdCYk2gI0MQBGFHkqJFjiHKMkGg2W2gbgHRDGCSvs6Y1q4WsizjjjvuwEknnZRuswiCCwkyIqP56quv8NBDD0FVVch7AvCtKIakkSgjCKKJYxVo6RRk1AUgmiFM1hDuXwatVRCKouCee+7Bsccem26zCMIREmRExrNo0SLce++9CAaDkCp88C8vgRSi6Y8EQTQzUhnaaBd/9OgnminMryJ0wD6wgjCysrLw4IMP4vDDD0+3WQThCgkyoknw22+/4a677kJZWRlQo8C/rBhyrS/dZhEEQSQPnljiedISfW9vjyCaGVp2GKEB+4AcFUVFRXjssccwYMCAdJtFEJ6QICOaDJs3b8att96Kbdu2ASEJ/uXFkCsC6TaLIAiCIIg0o+WHkDtSRVlZGTp27Ignn3wSXbt2TbdZBCEECTKiSbFnzx7ceeedWLFiBaABvpVFUHZnp9ssgiAIgiDShNqmBvKfahEMBtGvXz/8/e9/R6tWrdJtFkEIQ4KMaHLU1NTggQcewKJFiwAAyqY8KJvyKC0+QRAEQbQgGJi+Zmk3fcHn4cOH4/7770dubm6aLSOI+CBBRjRJwuEwXnzxRbz99tsAALk0C75VhZA0SvZBEARBEM0dJmsI9yuH1roOAHD++efjiiuugKIoabaMIOKHBBnRpJk5cyaefPJJhEIhSFU++JcX4//bu/PwqMpDj+O/M5NtQkJCIEIiOwS0AgVZrMVQFGVTWsSN1nuVy23VWyvep7W15daiVWtvvVqXPtXW69JaKNZ6kYJVFMUFBQFRFtnCFiGBmH0j28y894/JnEzIvp4s38/zzDMz55z3Pe8cDsn8ct7zvlYFP4wBAOipTGT1SIp9vAoPD9ePf/xjzZ071+lmAa1GIEO3t3fvXv385z9XXl5eYLCPA3FyFUY63SwAANDO/PEVip5uVFhYqISEBD3wwAMaN26c080C2oRAhh7hyy+/1H/913/p4MGDkqm+r+wE95UBANATGBn5hpTKP/yMjDEaO3asHnjgAQ0cONDppgFtRiBDj1FRUaEnnnhC69atkyRZ+REKPxgny8t9ZQAAdFcmzK+qsYUy/SolSd/85jd1xx13KDKS3jDoGQhk6HFef/11Pfroo6qoqJDKXQo/GMd8ZQAAdEP+mCpVnVcgRfkVGRmpH/3oR9wvhh6HQIYe6ciRI7rnnnt08uRJyS+502PkzoimCyMAAN2AkZHv3DPS6DL5fD4NHjxY999/v0aNGuV004B2RyBDj1VaWqrf/OY32rRpk6TqLoxpfWVVMgojAABdlYnwqWpMkUx8oIvizJkz9ZOf/EQxMTEOtwzoGAQy9GjGGK1bt05PPvlkoAtjlaWwtL5y50U53TQAAHAWX0K5+lwsFRYWKioqSsuWLdOVV14py6KHC3ouAhl6hfT0dP3yl79UWlqaJMl1yqOwY7Gy/PyABwDAacZl5B1eLH9ymSQpJSVFK1as0NChQx1uGdDxCGToNSorK/W///u/Wr16tSTJOuNWWFpfBvwAAMBB/thKeccUyXh8kqQbbrhB3/ve9xQRwe9n9A4EMvQ6O3bs0IMPPqjc3NzAnGUZ0XKnx8gyXC0DAKCzGMvIN6xE/iFlMsYoMTFRd999t6ZNm+Z004BORSBDr1RcXKwnnnhCGzZskFR9texQnFwl4Q63DACAns8fUyXvmEKZ6MBVsblz5+qOO+5QbGyswy0DOh+BDL3a5s2b9T//8z/Ky8sLXC07GS33F1wtAwCgIxiXkW9Iicywcvn9fiUkJOiuu+7SJZdc4nTTAMcQyNDrFRUV6fHHH9dbb70lqfpq2ZG+chXSdx0AgPbij6tQ1ehiqfpescsvv1x33nmn4uLiHG4Z4CwCGVDtgw8+0KOPPhq4t0ySKysqMBKj1+VwywAA6L5MmF/eEcXyDyyXJA0YMED/+Z//qRkzZjjcMqBrIJABIUpKSvTHP/5Ra9eulTEmMG/ZsVi5voySJboxAgDQXEZG/sRyeUcWS+FGlmVp4cKFuuWWW9SnTx+nmwd0GQQyoB579+7Vww8/rGPHjkmSrIIIhR2JlasszOGWAQDQ9fk9XnlHFcvEV0qSRowYoZ/85Ce64IILHG4Z0PUQyIAGeL1erV69Wi+88IIqKytrhsg/0UeWj26MAACczbj98g0tlYZWyOfzKSIiQkuWLNHixYsVFsYfNYH6EMiAJmRmZuqJJ57QRx99FFhQ6VLY8Ri6MQIAUM3IyH9OubzDS6QIvyQpNTVVt99+u5KTkx1uHdC1EciAZtq6daueeOIJnTx5UpJkFYUr7Ggsc5cBAHo1f5+qQPfEvlWSpCFDhujOO+9kgmegmQhkQAtUVVXp5Zdf1p/+9CeVlZVJRnJ9GaWw9BhZlW6nmwcAQKcxET55h5fIf05g9ESPx6MlS5bo2muvVXg4f6wEmotABrRCTk6Onn76ab355puBBX7JndFH7pPR3F8GAOjRjNsv3+BSuUd5A/dYS5o9e7ZuvfVWJSYmOtw6oPshkAFtsG/fPv3+97/X7t27AwsqLYWdiJHrtEeW4f4yAEDPYSwj/8AyeYeWSBGBr48TJ07U7bffrrFjxzrcOqD7IpABbWSM0ebNm/X000/rxIkTkiTrjFvu9Bi5ciMZ+AMA0K0ZGfn7V8g3rEQm2idJGjp0qG677TZNnz5dlsXvOaAtCGRAO/F6vVq3bp2ef/55FRQUSJKs4rDA/WUFEQQzAEC3YmTk71cZCGIxXklSXFycli5dqgULFjCMPdBOCGRAOystLdVf//pXvfzyy4GBPyRZheEKS4+RqyjC4dYBANA0f99KeYeVyMQFRk6Mjo7W9ddfrxtuuEF9+vRxuHVAz0IgAzpIQUGBVq5cqTVr1tg3PVv5EYFgxlD5AIAuyB9TFQhi/QK/tyIiIrRo0SJ95zvfUXx8vLONA3ooAhnQwbKzs/Xiiy9q/fr18noDXT5ceRFyn+gjVzFXzAAAzvP3rZR3SKkdxNxut6666irddNNNjJwIdDACGdBJMjMz9ac//UlvvvmmfL7ATdFWQYTCTvSRVRjOPWYAgE5lZGTiKuUdWmp3TXS73briiiu0ZMkSJScnO9xCoHcgkAGdLCMjQytXrtTrr79eE8wKwwPBjME/AAAdzB6sY0ipTN9AEAsLC9O8efN04403EsSATkYgAxySlZWllStX6rXXXlNVVeAXolUcJndGH7lyGC4fANC+7OHrh5TaoyZGRERowYIFWrx4sQYOHOhwC4HeiUAGOCwnJ0erV6/W2rVrVVFREVhY7lZYRrRcWVGy/C5nGwgA6NaMq3pC5+QzkifQMyMqKkoLFy7UDTfcoP79+zvcQqB3I5ABXUR+fr7WrFmjNWvWqLCwMLCwypL7dLTcmR5ZVW5nGwgA6FZMuE++5DL5Bp2RwgNf9/r27auFCxfq2muvZdREoIsgkAFdTHl5ud544w299NJLysjICCz0S64vowLdGcuYiBMA0DB/tFe+5FL5zymXqjtZnHvuubruuus0b948eTweZxsIoBYCGdBF+Xw+bd68WatXr9bnn39uL7fyI+TOjJYrnwFAAAAB9kAdSWdkEirt5ePGjdPixYs1ffp0ud30tAC6IgIZ0A3s2bNHq1ev1ubNm2X/ly13yX0qWu4sjywv95kBQG9kwvzyDSyTb1CZfX+YZVmaMWOGbrjhBo0bN87hFgJoCoEM6EYyMzP16quv6rXXXlNxcXFgYbA746louUrDnW0gAKBT+PtUyZd8Rv7Emm6JMTExmj9/vq6++mqde+65zjYQQLMRyIBuqLy8XG+//bb+7//+T2lpafZyqyhc7lMeuXKiZBm6MwJAT2IsI/+AcvmSz8jEeu3lKSkpuvrqq3X55ZcrKirKwRYCaA0CGdCNGWO0d+9erVmzRu+++6683upf0FWW3NlRcp32yHWGq2YA0J35o6vkH1QmX2K5PVpiWFiYLr30Ui1cuFDjxo2TZfFHOKC7IpABPURubq7Wr1+v9evXKysry15uFYfJneWRKztKlo97zQCgOzBuv/yJ5fINLKt1Neycc87RN7/5TV111VVKSEhwsIUA2guBDOhhfD6fPvnkE7322mv64IMPaq6a+Sy5ciLlPu2RVRzOCI0A0MUYGZm+VfINLJN/QLlUPShiWFiYpk+friuvvFJTp05ltESghyGQAT1YQUGBNmzYoPXr1ys9Pd1ebp1xy5UdJfeXHlkV/GIHACeZSJ98ieXyDyyTqR4pUZKGDx+uK6+8UnPmzGESZ6AHI5ABvYAxRp9//rnWr1+vd955R+Xl5fY6qzA8cL9ZThTD5wNAJzFh/sAAHYnlMnFV9nKPx6PLLrtMV111lb7yla9wbxjQCxDIgF7mzJkzeu+99/TWW2/pk08+qZnXzC+58iPl+jJKrrxIRmkEgHZmLCN/QoX855TL36/CHq7esixNmjRJs2fP1syZMxUdHe1sQwF0KgIZ0ItlZ2dr48aNeuutt3T48OGaFV5LrpwouXMiZRVEcL8ZALSSkZGJqwx0SRxQIYXVfO0aPXq0rrjiCs2aNUvnnHOOg60E4CQCGQBJ0pEjR/Tmm29q48aNys7OrllRZcmVWx3OCiO4cgYATTAyMvGV8vWvkL9/uRRR81Vr4MCBuvzyy3XFFVdo5MiRDrYSQFdBIANQi8/n02effaZ33nlH77//vgoLC2tWVlly5UbKnRNFOAOAEMaqvhI2oFz+/hX2fGGSFBcXpxkzZuiKK67QhAkT5HJxvy6AGgQyAA3yer367LPPtGnTpgbDmSs3Sq4CwhmA3sdYRv74SvkHlMufUDuExcfHa8aMGZo5c6YmTpyosLAwB1sKoCsjkAFoFq/Xq127dtnhrKCgoGalr3pAkLzAg9EaAfRUJswfGJgjoUL++Mpa94QlJCTYIWzChAmEMADNQiAD0GLBcPbee+/pww8/rH3PmZGsonA7nLnK+EICoPsyMjIenx3CTN8qhY5zNGDAADuEjR8/nkmbAbQYgQxAmxhjdOjQIX344Yf68MMPlZaWVmu9dcYdCGb5kbKKwunaCKDLM5aR6VtVE8JCJmuWpJSUFE2fPl3Tp0/XmDFjmCsMQJsQyAC0q6ysLDucffrpp/J6vTUrfZZcBeGB7o35EbIquHoGoGswkV75+1UGHnG1uyKGh4dr0qRJmj59ur7+9a9r4MCBDrYUQE9DIAPQYUpKSrRt2zZt2bJF27ZtU35+fq31VplbVn5EIKAVRsjy81dmAJ3DuPzyx1fJH18h06+yzlWw+Ph4XXTRRZo+fbqmTZvGZM0AOgyBDECn8Pv9Onz4sLZt26aPP/5Ye/fulc8X8gXIL1lFEXIVRMhVGC6rOJwJqQG0GyMjE+MNjIoYX30vWMj4Q263W+PGjdO0adM0bdo0paSkMDw9gE5BIAPgiNLSUu3cuVMff/yxtm3bptOnT9fewGvJVRQuqzAQ0qzSMAIagGYzMjJ9AgHMxFXK37eqVjdESUpKSrID2IUXXqg+ffo41FoAvRmBDIDjjDH64osvtGPHDu3cuVOfffaZiouLa2/ktQLdGoNX0M4Q0ADUMDIy0cEAVlXnPjBJiomJ0cSJEzV58mRNmzZNgwcPZkAOAI4jkAHocoLdGz/99FPt3LlTu3bt0pkzZ2pvFLyCVhQReC4J5x40oBcxlpGJrZK/b5VM30r5Y6tqTcwsSdHR0frqV7+qSZMmadKkSRo9ejTD0gPocghkALo8r9erQ4cOaefOndq5c6f27t2r8vLy2hv5JaskvDqkhctVFMEE1UAPYsL98sdWBoaj71slE1P7HjBJ8ng8mjBhgiZNmqSJEydqzJgxTM4MoMsjkAHodrxerw4fPqzdu3dr79692r17t/Ly8upsZ51xyyoOl6u4+gpaaRjzoAHdgLEC3Q9NbJX8sVUyfavqjIIoSQkJCRo/frzGjx+vcePGEcAAdEsEMgDdnjFGp06d0u7du7Vnzx7t2bNHx48fr7uhX4FQFhrSytzciwY4yMjIeHyB8BVTJRNbJdPHW+fqlySNGDFC48aNs0NYcnIy94AB6PYIZAB6pMLCQu3bt0/79++3H0VFRXU39FqBgFYSJqu0+ioaIQ3oEEZGJsonE+OViakOYDHeOoNvSFJsbKzOO+88nXfeeRo3bpzGjRun2NhYB1oNAB2LQAagVzDGKDMzU/v379eBAwe0f/9+HTx4UJWVlXU39skOZ3ZQOxPGoCFACxhXdbfDmCr5+3hlqh9y1/3aERkZqbFjx9oB7Pzzz+fqF4Beg0AGoNfyer06duyY9u/fr0OHDunw4cM6cuSIKioq6m5sFLhyVlIdzs645ToTJpVzNQ29m5GRonzyR/sCAaxPoMuh8fhU33+NiIgIjRo1SikpKXb4GjZsGPd+Aei1CGQAEMLn8+nkyZM6fPiw0tLS7Of8/PwGCkhWWVh1SCOooeeyuxtGe2WC4SvaK+PxSg2MJJ+QkKDRo0dr9OjRSklJ0ejRozV48GCGngeAEAQyAGiCMUa5ubk6fPiwDh8+rGPHjun48eNKT0+vv8ujVBPUytyB53J3zWuG40cXZsL8Mh5vIHx5fIHXnkAAq2+gDSlw1Wvo0KEaPny4ffVr1KhR6t+/f+c2HgC6IQIZALSSz+fTqVOndOzYMaWnpzcvqElSlVU3pJW7ZZW7A4OMcGUNHcy4/YGQFVUdtoLBK8pXZ3LlUBERERo2bJiGDx+uESNG2K+TkpLocggArUQgA4B2Fgxqx48f18mTJ3Xy5EmdOHFCJ0+eVHZ2duOFvZasCrescpesCneg62OF2w5slo+ra2ickZHc1d0Lo3wykT4pyicT6ZeJDCyrb1TDUImJiRo8eLD9GDp0qEaMGKGBAwfS3RAA2hmBDAA6UVlZmTIzM+2AFnzOyMiod3LrOoKBrcIlVQaercrQ11xl68mMjBRmZCICAUsR/sDrCL8UWRO6mgpcUuD+rtDQNXjwYA0ZMkTJycnyeDyd8GkAABKBDAC6jIqKCp0+fVqnT5/WqVOndOrUqVrvCwoKmleRT4GAVumqfrilKpesKqv6uTrEVbkZyr8LMDKSy0jhfplwEwhX4X6Z8Orn6sAVCGC+Bu/jOltCQoIGDRpkP5KSkjRw4ED7fVRUVMd+MABAsxDIAKCbKCsrU1ZWlk6fPq2cnBxlZ2fXeS4sLGxZpT7VhLQql+R1yfIGgpv9ur5nQ5Crj3EZKcwv465+Dgs8K8zIhD5XB65g6GpolMKGxMXFKTExUf3791diYqIGDBigxMREJSYm2sGLwAUA3QOBDAB6kIqKCuXm5tohLScnRwUFBcrPz7ef8/PzlZeX1/jAI03xSfK5JJ8ly2dJ1Q/Lb521zBV47ZfktwIPY8mq9T7w2vJXb2eql+ns14GnprpjmpoNQ55N4NlS4GqUZWRcwdfVzy4jE/JaLgWClcsfuCfLHbg3S24TCF6h76sDWHOvXtUnIiJCCQkJio+PV3x8vPr166f4+Hj179/fDlzB1xEREa3fEQCgSyGQAUAvZIxRWVlZrZBWUFCg4uJi+1FUVKTi4mKVlJTY70tKSuT4rw2j2iGtVvBSvZMRdyaXy6WYmBjFxMQoNjbWfgTfx8TE2IErGLri4+Pl8XhkWVx5BIDehkAGAGg2v9+v0tJSFRcXq6ysTGfOnKn3+ezXFRUVqqysVFVVVa3n+pb5/f4O/Qxut1sREREKDw+3H6Hvg68jIiIUHR0tj8djP6KiouTxeOos93g8duCKjo6Wy8VomACA5iGQAQC6FJ/PJ2OMfD6f/H5/va9Dny3Lksvlsp+Dj7OXW5alsLAwhm0HAHQpBDIAAAAAcAh9KgAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIWFONwBAz2eMUXl5udPNAIAWiYqKkmVZTjcDQA9HIAPQ4crLyzVnzhynmwEALbJhwwZ5PB6nmwGgh6PLIgAAAAA4hCtkADpVxLZzZJnqvwVZLlkuS7JcksuSLEuWK7iuerllSS5LVnAbe51ll7EfUsgyV+31gYL2MmNZNX+SCqnDXm7V7Ct0mbEC1djrXIF6A8ste12wjKleZq+XaupwVW8fXK/a+6hVprr5xlXPulrbq1Yba5ZZddbVKaPQdpy1Xg0sb6C+htpRp0xj9drLTd3yIWXs9SF1merlCikXWGdC2hNYb4Wus7cNrjN2nVbo9pax19mnWHB5sLrqbQKngrHfB8u4qt8H1gXeB8vZ6ywjSzXlXNXL7IeMXc5lqdbyQHl/TTkFt/fLHSxT/b6mLr9dnzukfrcCy93B+uxt/XIH61SwHf6a7VVTd6BOv1wK7D+wLlCfu3qZJb/cwfIhZdxSoJwC+wkej+D7wL5M9WtVrzNyVR8Xtyy5JLmr/7FdsqqXWXJbllxyyar+l6uqdOua7w0SAHQWAhmAzuWzqr8aKRDIVB2eqr/p1qyzJFdN+rAC6aa6kuA3c5fqfOOuSTu1U0Cwzjrf0HXWstB9qJ5lZ5dTTRALCWR1loUEqND3Zzex9vb1lHE1sq6hj1GnHQ187MbWNXSoWltfSJ31hbUODWT1rdfZ741dd2g7QvdZ3zo7wClkm9Dt65Qx9ezL1HqEBrKakFf9aGidgqEtUGVoeAsGNykYrGQHmtB1gUDmrwk0VmigCbx2WVYgLFU/y35t2eUC9ai6zmBZVZerXl7fupAy7uow6bbbGQxkpslAFlqfO3g8VHuZS6FtDPk3BIBOQJdFAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhzAPGYDO5TYyJjAZbGBeLSvk2Tprsubgc8hrhS4zIa+bsS5kUqqa6XsbWl7zbGq9Vq1yRpJMcHlNnUaWZGSXDV1v11Fr8qzQttTz3tRq0lnHo4HH2ds2Z66xxtY1e1/NXBe6y0bLmSbqNA20seGJoWvPHRayzt629RND17QjZB4ytX4eMqOacsYytR8KPAfWqdZyv2Uky19Tp4L78ofMl1a9TfV6Y/nt+lSr/urn4L6q37uqtwk+S6qzzB/y3zr42m9JftXMQ+avXmapoXnILHsyZ7dq/s2C713VZc6e26z5E0NbqpkYur7/lwDQcQhkADpV5bQvnW5Cxwh+322ls/MEEBR6avmdbEirhSZiOuYAwNn4yQigw5WXlzvdBAAAgC6JK2QAOlxkZKT9eu3atYqKinKwNd1LeXm5vvWtb0ni2LUUx671OHYBvfVzA+hcBDIAHc6yajrhRUVFyePxONia7otj13ocu9bj2AFAx6LLIgAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQyxjThplzAAAAAACtxRUyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhYU43AEDnOnPmjFavXq333ntPp0+flsvl0pAhQ3TZZZfpmmuuUXh4eKvrzsvL06pVq7RlyxZlZWUpMjJSI0aM0Ny5c3XllVfKsqxGy2dkZGjVqlXavn278vLy5PF4NGbMGC1YsEAzZ85scv8HDx7U3/72N3322WcqKChQbGysLrjgAi1atEiTJ09u9ecK6onHbtmyZfrss88arTsxMVGvvPJKKz5Vja547HJzc7Vr1y4dOnTIfhQVFUmSHn/8cU2aNKlZ+++N511bj11nnXcA0B1YxhjjdCMAdI7Tp09r2bJlOn36tCQpKipKfr9flZWVkqSUlBQ99thjio2NbXHdBw8e1F133aXCwkJJksfjUWVlpXw+nyRp2rRpeuihhxr88rhlyxatWLFC5eXlkqQ+ffqorKxMfr9fkjR//nzdfffdDX5BXL9+vR555BF7fzExMSotLVXwR9ySJUu0dOnSFn+uoJ567IJfjD0ejzweT7319+/fX88++2yLP1dQVz12zz33nF544YV6621uIOut511bj11nnHcA0G0YAL1CVVWVufnmm01qaqpZuHCh2b59uzHGGJ/PZzZu3GjmzJljUlNTzY9//OMW111cXGy+9a1vmdTUVHPjjTea/fv3G2OMqaysNK+88oq59NJLTWpqqnnkkUfqLZ+RkWFmz55tUlNTzfe//33zxRdfGGOMKS0tNc8++6xJTU01qampZuXKlfWW37Nnj5k5c6ZJTU01y5cvN1lZWcYYYwoKCszDDz9sl3/77bdb/NmM6dnH7o477jCpqanm2WefbXHbm6MrH7vnnnvOXHPNNeZnP/uZeeGFF8y6devs47Vz584m99+bz7u2HruOPu8AoDvhHjKgl3jjjTd09OhRSdL999+vKVOmSJJcLpdmzZqlu+66S5K0detWffLJJy2qe/Xq1crLy1NkZKR+85vf6LzzzpMkhYeHa9GiRfYVgnXr1unEiRN1yj/33HMqKytTQkKCfv3rX2vIkCGSpOjoaC1dulQLFiyQJL344osqLi6uU/7pp5+Wz+fTyJEjdd999+mcc86RJMXFxemuu+7StGnTam3XUj352HW0rnzsbrrpJv3973/Xr371K918880t7l7Ym8+7th47AEANAhnQS7zxxhuSpEmTJmncuHF11s+aNUtJSUm1tm2uDRs22HUkJyfXWb9o0SJ5PB75fD699dZbtdaVlZXpvffekyQtXLiw3q5X//Iv/yJJKi0t1QcffFBrXWZmpnbv3i1JWrx4scLC6t4aGyx/+vRp7dq1q0WfTeq5x64zdNVjJ0lut7tF+wvVm887qW3HDgBQG4EM6AXKy8u1d+9eSdLXvva1erexLEsXXXSRJGn79u3NrvuLL75QVlaWJNnlzxYdHa0JEybUW/eePXtUUVHRaPmkpCQNGzas3vKh7xsqP378eEVHR9dbvik9+dh1tK587NqqN593AID2RSADeoH09HR7gIcRI0Y0uF1wXV5enj1iWlOCXaqaqnvkyJGSpOPHjzdYPrhNY+WPHTtWa3nwfb9+/dSvX796y7rdbg0dOrTe8k3pyccu1FtvvaXrr79es2bN0vz58/W9731PzzzzjHJychr9DI3pyseurXrzedeeOuK8A4DuhkAG9AKhX24SExMb3G7AgAH1lmlMbm5ui+ouLS3VmTNn6uwnNjZWkZGRTZYP3V9o+dC21yfYtrPLN6UnH7tQGRkZysnJUVRUlEpLS3Xw4EG9+OKL+td//Ve9//77zfo8Z+vKx66tevN515464rwDgO6GeciAXiD0y1RjX9yjoqLqLdMRdQe7cpWVldVZ31j5s9sVfN9U+WDbWvrFsicfO0maOHGi5s2bp6lTp6p///6yLEslJSX64IMP9PTTTys/P1/33nuvnnzySV1wwQXN+lyhbQ3qaseurXrzedceOvK8A4DuhitkANCLLV26VPPmzdOAAQPsecpiYmI0b948/f73v1dMTIy8Xq+eeuoph1uKnoTzDgBqEMiAXiD0L9vBQSDqE5xY+OwyHVl3cFLY0PWNlT+7XcH3TZUPtq2lf+XvyceuKeeee66uvvpqSYEBRIITCDdXVz52bdWbz7uO1tbzDgC6GwIZ0AuE3meSnZ3d4Hah96A0dW9MUP/+/VtUd58+fWp9uQvup7i4uNEvh8HyofsLLd/U/TPBtp1dvik9+dg1R3C4dWOMTp061aKyXfnYtVVvPu86Q1vOOwDobghkQC8wbNgwuVyB/+6NjfYWXJeQkKC+ffs2q+7Q0f0aqzs4stvw4cMbLB86+ltD5c8eFS74Pj8/XwUFBfWW9fl8+uKLL+ot35SefOw6Wlc+dm3Vm887AED7IpABvUBUVJT9F+ePP/643m2MMdq2bZskaerUqc2ue8iQIRo4cGCjdZeVldmT6J5d9/jx4+2BBYL7P9vp06eVnp5eb/nQ9w3tf8+ePfZABi35bFLPPnbN8fnnn0sKzHk1aNCgFpXtyseurXrzedcZ2nLeAUB3QyADeom5c+dKkj799FPt27evzvpNmzYpMzOz1rbNYVmW5syZI0l655136u1etGbNGpWVlcntduuKK66otc7j8egb3/iGJOnVV19VSUlJnfKrVq2SFLiPJTU1tda65ORkewLbl156SV6vt075lStXSpIGDRqkr371q83+bEE99dgZYxptX2ZmptasWSMp0IUsPj6+eR8sRFc9dm3Vm8+7tuqM8w4AuhMCGdBLzJ07VyNHjpQxRvfcc48++eQTSZLf79emTZv08MMPS5IuuugiTZ48uVbZ5557TjNmzNCMGTPq/fK2ePFiJSQkqLy8XHfffbcOHjwoSaqqqtKrr76qZ599VpK0YMECDRkypE75pUuXyuPxKDc3Vz/96U914sQJSYG/0r/wwgtau3atJOmmm25SbGxsnfK33nqr3G63Dh8+rHvvvde+L6aoqEiPPvqofRXgtttuk9vt5thVW7lypR588EFt3bpVxcXF9vLS0lK98cYb+v73v6/i4mKFhYXptttua/Fx6+rHzu/3q6CgwH6EHoOSkpJa6yorK+uU783nXVuOXWecdwDQnVimqT9VAegxTp06pTvvvFOnT5+WFOgW5ff77S9MKSkpeuyxx+p8cX/uuef0wgsvSApcDUhKSqpT98GDB3XXXXfZI6JFR0ersrLSvnIwdepUPfTQQ4qIiKi3bVu2bNGKFSvskd1iYmJUVlYmn88nSZo/f77uvvtue4jss61fv16PPPKIvX1MTIxKS0vtv8YvWbJES5cubd6BqkdPPHahbQvuNywsTCUlJfL7/XZdd999t30lrjW66rE7deqUbrjhhmZ9hp/97GeaN29eneW99bxry7HrrPMOALoLJoYGepGkpCS98MILWr16td577z2dPn1aYWFhGjFihGbNmqVrrrlG4eHhrap77Nix+tOf/qRVq1bpo48+0pdffqmoqCiNHDlSc+fO1fz58+1BCupz8cUX6/nnn9eqVau0fft25eXlKSYmRikpKfrmN7+pmTNnNrr/q666SikpKXrppZe0a9cuFRQUqF+/frrgggu0aNGiOlcQWqonHrtLL71UkrR3715lZGSoqKhIpaWlio2N1bBhwzR16lQtWLBACQkJrfpcQV352LVVbz7vWquzzjsA6C64QgYAAAAADuEeMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAFDL448/rhkzZuiOO+5wuilwWElJia688krNmDFD77//vtPNAYAeKczpBgBAT1FaWqq0tDQdOHBABw8e1MGDB5WRkSFjjCTppZdeUlJSUofs2xija6+9VtnZ2brxxht16623tqqetLQ0vfrqq5KkW265pR1b6KyjR49q27Zt2rNnj44eParc3Fz5fD7FxsZq1KhRuvjiizV37lzFxMQ43dQuJSYmRosXL9YzzzyjJ598UhdddJEiIyOdbhYA9CgEMgBoJ8uWLVNaWpoj+z5w4ICys7MlSampqa2u56mnnpLP59NFF12k8ePHt1fzHLVs2TJ99tln9a7Ly8tTXl6etm/frr/85S9avny5pk2b1rkN7OKuvfZavfzyy8rKytLf//533XjjjU43CQB6FLosAkA7CV4JkwJXFiZNmqSEhIRO2fcHH3wgSUpMTNT555/fqjp2796tHTt2SFKP+tIdDKqxsbGaP3++li9frt/97nd65pln9Mtf/lIXX3yxpEA4W758uXbt2uVkc7scj8eja665RpK0atUqnTlzxuEWAUDPwhUyAGgn8+fPV3x8vMaOHavBgwfLsiwtW7ZMeXl5Hb7vYCCbPn26LMtqVR1//etfJUlJSUn66le/2m5tc9rgwYN10003adasWYqIiKi1buzYsZo5c6ZWrlypP/zhD6qsrNQjjzyiP//5zw61tmuaPXu2nnvuORUXF+u1117Tdddd53STAKDH4AoZALSTa6+9VpdffrmGDBnS6lDUGidOnFB6erqk1ndXzM7O1pYtWyRJc+bM6dT2d7SHH35Y8+bNqxPGQt14441KSUmRJB0/flxHjhzprOZ1C0lJSZowYYIk6R//+IfDrQGAnoUrZADQzQVHvwt2k2yNjRs3yu/3S5Iuu+yyZpXxer165513tHnzZh04cEAFBQXy+XyKj4/XyJEjNWXKFF1++eXq379/rXIzZsyQJM2dO1fLly/XF198ob///e/avn27cnJy1KdPH40ZM0bf+c53NHHiRLtcRUWFXn/9dW3YsEEnT55UeXm5kpOTdcUVV+i6665r82ATF154oX0P4IkTJzRq1KhW13X8+HGtXbtWu3bt0qlTp1ReXq6YmBjFxsYqKSlJkydP1iWXXKKhQ4e2qn6v16s333xTmzZt0tGjR1VYWCjLstS3b1/Fx8fr/PPP15QpUzR9+nSFh4fXKnv28T9+/LjWrFmjHTt2KCcnR2VlZXrwwQfrhPvLLrtMu3btUnp6ug4cOKDzzjuvdQcHAFALgQwAurlgd8WLL75YYWGt+7H+0UcfSQrcZzVs2LAmtz98+LB+8Ytf6OTJk3XWZWdnKzs7Wx9//LGOHDmi5cuXN1jPu+++q1/96lcqLy+3l1VUVGjr1q36+OOPddddd2nBggXKycnR8uXLdeDAgVrljx07pj/+8Y/aunWrHnnkkTaFMq/Xa792uVrfgWTt2rV67LHH5PP5ai0vLCxUYWGhTp48qe3bt+vIkSO65557Wlx/QUGBfvSjH9U7gEzw2Kelpekf//iHVq1apcGDBzdY1+uvv65HHnlElZWVTe43dJCXjz76iEAGAO2EQAYA3VhOTo72798vqfXdFSsrK/X5559Lks4///wmuyumpaXpBz/4gcrKyiRJkyZN0uzZszVs2DCFh4crNzdX+/bta3LeqiNHjuidd95Rv379dMstt9j7/uSTT/Tiiy+qvLxcv/3tbzVx4kQ98MADOnz4sBYuXKhLLrlE8fHxysjI0J///GcdOXJEu3fv1qpVq/Rv//ZvrToGkrRz50779YgRI1pVx9GjR+0w1rdvXy1YsEATJ05UfHy8fD6fcnNzdfDgQW3durXV3UIfe+wxO4xNnjxZs2fPVlJSkvr06aPS0lKlp6dr165ddhfUhhw8eFAbN25U3759dd1112n8+PEKDw/X8ePHNWjQoDrbjxgxQh6PR2VlZdq5c6eWLl3aqvYDAGojkAFAN7Z582YZYxQREaGLLrqoVXUcOXLEvjo0duzYRrf1er36xS9+YYexO++80x6BL9TXv/51ffe731VWVlaDdaWlpSklJUWPPfaYYmNj7eVf+cpXNHjwYK1YsUJer1c/+MEPVFRUpIcfflhTpkyxtxszZoymTp2qm266STk5OXr11Vd10003ye12t+jzS4Fun8eOHZMUCKVDhgxpcR2StGnTJvvK2G9/+1v7vrRQqamp+u53v6vCwsIW119RUWEH3dTUVD3wwAN1gt3EiRP1rW99S2VlZY1e6Tt27JgGDx6s3/3ud7VGA21olE63260xY8Zo165dOnTokPx+f5uuJAIAAvhJCgDdWLC74pQpU+TxeFpVR2i3w6aG6d+4caMyMjIkBUaVrC+MhRo4cGCj63/605/WCmNBM2fOVGJioiQpPz9fixYtqhXGgmJiYjRv3jx7u+PHjze6v/rk5OTo0UcflSRZlqX/+I//aHEdQcERNWNiYuoNY6Hi4uJaXH9xcbEdnidOnNjoVTaPx9NkF84f/vCHLZqaIbhteXm5cnJyml0OANAwAhkAdFMlJSX69NNPJbVtMujc3Fz7dd++fRvdNhgAJenb3/52q/cpBbrANRRaLMuqtW727NkN1hO6XWZmZovaUF5eruXLl9tB6uyBRFoqGCJLSkq0adOmVtfTkLi4OHu0yLfffrtNc4IlJibWG3IbE3p+hJ43AIDWI5ABQDe1ZcsWeb1eud1uTZ8+vdX1VFRU2K/ru1oV6tChQ5ICV0qaM/hHY5oqH9qWxkYjDN2uJQGlqqpKP//5z+2BQi655BJ997vfbXb5+syePdu+KrVixQrdfvvtWrlypXbv3m1382yL8PBwzZ07V5K0b98+XX/99Xr44Yf19ttvtziMtmYUydBAFjoQCwCg9biHDAC6qeDVqnHjxik+Pr7V9YTec9XUaHsFBQWSaq4EtUVUVFSj60O74zXWHTP0Pqbg0P1N8Xq9uueee7Rt2zZJ0rRp03Tvvfe26v6zUMnJyfr1r3+tX/3qV8rOztaePXu0Z88eSYHjfN5552nGjBm66qqrmgy/DbnjjjtUWVmpDRs2qKioSOvWrdO6deskBYLytGnTNH/+/Cav9DV1NbQ+oeG9tSN6AgBq4woZAHRDlZWV+vjjjyW1rbuiFLjfKaioqKhNdXUHXq9XK1assIf6nzJlih588MFGJ45uicmTJ+uvf/2r7rvvPs2fP98edt7n8+nzzz/XU089pW9/+9t2GGypyMhILV++XH/5y1/07//+77rwwgvtwJqXl6c33nhDy5Yt089//vNaAepsrRmQI3QgktDzBgDQevx5CwC6oR07dthd4NoayEKHOG8qkMXHxysrK6vbDugQDGPBq4sXXnihHnrooTZPKn22iIgIXXrppbr00kslBa4sfvLJJ9qwYYO2bt2qoqIi3XPPPVq1alWdibOba8iQIbr55pt18803y+fzKS0tTR999JHWrl2r/Px8vf/++3rmmWf0gx/8oN0+V3Fxsf26qQFbAADNwxUyAOiGgoEiJSVFSUlJbaordM6tL774otFtg8Pi5+bmNrltV3N2GJs0aZJ+/etft3sYq098fLxmzZql3/zmN1q4cKEkqaysTJs3b26X+oPdIZcuXaqnn37a7g66cePGdqk/KD09XZKUlJSk6Ojodq0bAHorAhkAdDN+v18ffvihpMBAFG01cOBADRgwQJLsSaYbMmPGDPv1qlWr2rzvzuL1enXvvffaYWzixIn67//+7ybvY+sI06ZNs18H78lrT0lJSfY8aq2Z66whBQUF9pQHF1xwQbvVCwC9HYEMALqZPXv22F/kQwNSWwRDQnp6ukpLSxvc7rLLLrO/7P/zn//UK6+80mi9jU0M3Vm8Xq9++ctf2hMqd2QYe++995oMWcF7/yTp3HPPbVH9mZmZ2rFjR6PbnDp1yr6SlZyc3KL6G7Nv3z779de+9rV2qxcAejvuIQOAdnLy5El7RL2g4PxWkvTuu+/WGg3R4/Fo5syZLd5P8CpPcnJyq4Yur8+ll16qf/7zn/L7/dqxY4e+8Y1v1LtdWFiY7rvvPt1+++0qKyvT448/rvfff19z5szRsGHDFB4ertzcXB04cEDvvvuuxo4dq+XLl7dLG1vr/vvv17vvvispEIBuu+02nTp1qtEy/fr1U79+/Vq8r1deeUX333+/Jk+erMmTJ2v48OGKi4tTVVWVsrKytHHjRvvq5qBBg1o8XUFWVpZ++MMfKjk5WdOnT9f555+vgQMHKjIyUoWFhdq3b59effVVe7TMpibubont27dLCtwfd/HFF7dbvQDQ2xHIAKCd7NmzRw899FCD65966qla7wcNGtSmQNYe3RWDpkyZosTERGVnZ2vDhg0NBjJJGj16tJ588kn94he/UGZmpj799FN7guqzBe85c1LoBM0ZGRm67bbbmiyzZMkSLV26tFX7q6ys1JYtW7Rly5YGtzn33HP10EMPNTqcf2MyMzP18ssvN7je5XLp29/+tq6++upW1X82r9ert99+W1Lgqmxrh+wHANRFIAOAbuTw4cP21Z22jq4Yyu12a9GiRfrDH/6grVu3qqCgoNG5zcaMGaO//OUv2rBhgz744AOlpaXZ9yv169dPo0aN0tSpU3X55Ze3Wxu7gxUrVmjbtm3atWuXjh49qry8PLsLY1xcnEaPHq3U1FTNnj27VcPsT5gwQb/73e+0Y8cO7du3T1lZWcrPz1dpaamioqKUnJysCRMm6Kqrrmq3q6eS7HNCkq699tp2qxcAIFnGGON0IwAAzfP888/r+eefV79+/bRmzZpWzSXVkJKSEi1evFhFRUW69dZbdeONN7Zb3eje7r77bm3ZskWTJ0/Wb3/7W6ebAwA9CoN6AEA3Euyu+PWvf71dw5gUmOg3GMJWr16tM2fOtGv96J727dunLVu2yLIs3XLLLU43BwB6HAIZAHQTVVVVSk1N1ZIlS7Ro0aIO2cc111yjwYMHq7CwUH/72986ZB/oXp555hlJ0pw5c3T++ec73BoA6HnosggAqGX//v3asmWLYmJidP311zvdHDiopKREL7/8sowxWrRoUaP3FQIAWodABgAAAAAOocsiAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBD/h/qQR7Ss4mVGQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "a5a240bc", + "metadata": {}, + "source": [ + "An example to plot the image in the log scale" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "7bdcd79f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebQsS1klvnPOms+50xvhMS3pRhRQGpRJ4eHwcGoFFVGXSAva2i6xFw6t+AMcGtGl3U6rsRXRltVCSzeiiNIODMoguBoVFVQQfKCM793hjHWqMvP3R1VURUbunafq3nPHE/uus27Wl5ERkXPs/L5vR1BVVQUPDw8PDw8PDw8PD49jiPBqd8DDw8PDw8PDw8PDw+NqwRMiDw8PDw8PDw8PD49jC0+IPDw8PDw8PDw8PDyOLTwh8vDw8PDw8PDw8PA4tvCEyMPDw8PDw8PDw8Pj2MITIg8PDw8PDw8PDw+PYwtPiDw8PDw8PDw8PDw8ji08IfLw8PDw8PDw8PDwOLbwhMjDw8PDw8PDw8PD49jCEyIPD4/rFi984QsRBAHe9KY3Xe2uHIo3velNCIIAL3zhC692VzyuEj70oQ8hCAI885nPPJL6giDA53/+5x9JXdcSnvnMZyIIAnzoQx+62l3x8PA4JvCEyMPDY4H73e9+CIKA/t18882N8pPJBD/zMz+Db/7mb8bDH/5wpGmKIAjwy7/8y7KNj3zkI/ixH/sxfPVXfzUe9KAHIQxDBEGA97///Zdz19bCYx/7WARBgNe//vWHln3wgx+MIAjw7ne/+wr0zON+97sf7ne/+6293Vvf+lZ87/d+L/7Nv/k3OH36NLIsw/3vf398y7d8S+u1t7e3hxe84AV48IMfjDzPcebMGXzN13wN3vve99LyV5ukXA8fCa6HPnp4eBwvxFe7Ax4eHtcWRqMRnvvc5zbs/X6/YdvZ2VmUvemmm3DzzTfjwx/+cGv9f/7nf47nP//5CIIA97///TEajXDu3Lkj6PnR4dnPfjbe9ra34Zd/+ZfxlKc8RZZ785vfjL//+7/HIx/5SDziEY9orfNRj3oU3vve9+LUqVNH3V2PFfDUpz4Vn/zkJ/GYxzwGX//1X484jvH2t78dL3vZy/DKV74Sf/AHf4DP/dzPrW0zHo/xBV/wBXjrW9+KRz7ykfiu7/oufPjDH8Zv/uZv4nd/93fxx3/8x3j0ox99lfYIeO9734tut3vV2r9cePGLX4zv//7vx2233Xa1u+Lh4XFM4AmRh4dHDRsbGyuHdXW7Xbz+9a/Hwx/+cNxyyy144QtfiBe96EWt2zzykY/EW97yFjzsYQ/DcDjE53/+5+PNb37zEfT86PC1X/u1eO5zn4vXve51+PjHP46bbrqJljOesOc85zmH1tntdvGv/tW/OtJ+eqyO7/7u78Y3fuM34tZbb63Z//N//s/4wR/8QTznOc/Be97zntq6n/7pn8Zb3/pWPO1pT8OrXvUqhOEsqOJrv/Zr8W//7b/Fs571LLznPe9Z2K80btTr6ZZbbsEtt9xytbvh4eFxjOBD5jw8PC4aaZrirrvuWmvwcvvtt+Pxj388hsPhZevX3XffjU//9E9Hmqb49V//9YV9d3cXL37xi/Hwhz8cvV4P/X4fn/u5n4vf+I3fqG3f6XTwDd/wDZhMJvjVX/1V2sa5c+fw6le/Gv1+H1/3dV93aJ9UDtHnf/7nIwgCTCYT/PAP/zAe+MAHIs9zPPjBD8Yv/dIvLcq99KUvxWd8xmeg0+ng9ttvxwte8AKUZdlo51d/9Vfx1Kc+FQ94wAPQ6XQwHA7x2Mc+Fq94xStk3971rnfhC7/wCzEYDDAcDvHkJz8Zb3/721tDm973vvfhmc98Ju5zn/sgTVPcdNNNeMYznoG/+7u/O/RYGBwcHODnf/7n8ZSnPAV33HEHsizDiRMn8OQnPxm/93u/R4/fP/3TP+Gf/umfauGcq+TkfN/3fV+DDBl7p9PBX//1X+Oee+5Z2Kuqwktf+lIAwE/8xE/USM9XfMVX4PGPfzz+9m//dkHmf/VXfxVBEACYeQ7t/rEPDB/60Ifw9Kc/HadOnUKe53jkIx+J173udYfuhw03PO9+97vf4oPEE5/4xFofbKx6HwD16/ad73wnvuRLvgQnTpyo5fi88Y1vxHOe8xw85CEPwXA4RKfTwUMf+lC86EUvwv7+fq2+VfrYlkP0v/7X/8ITnvAEjEYjdDodfMZnfAZe/OIXYzweN8qa8MqdnR18z/d8D+573/siyzI86EEPwkte8hJUVbXScfbw8Ljx4T1EHh4eNYzHY7ziFa/A3XffjV6vh8/8zM/EE57wBERRdLW7thL+8i//Ek95ylOwtbWF17/+9Xjyk58MYEZgnvSkJ+Hd7343PuuzPgvPetazUJYl3vCGN+AZz3gG/uZv/gY/+qM/uqjn2c9+Nn7hF34BL3vZy/B93/d9jXZe8YpXYH9/H89+9rNpOOG6ePrTn44/+7M/w1Oe8hQkSYJXv/rVeM5znoMkSfBXf/VX+LVf+zV86Zd+Ke6880789m//Nn74h38Y3W630bd//+//PT790z8dT3jCE3DLLbfgnnvuwetf/3p84zd+I/7u7/4OP/IjP1Ir/5a3vAVf+IVfiKIo8FVf9VV44AMfiPe85z144hOfiCc96Um0r7//+7+Pr/qqr8JkMsGXfdmX4UEPehA+8pGP4P/8n/+D3/3d38Ub3/hGfNZnfdah+3zvvffiu77ru/CYxzwGX/AFX4DTp0/jox/9KH7nd34HT3nKU/BLv/RL+JZv+RYAs8HtC17wAvzX//pfAaAW1vnwhz989QPtIAgCxPHsVWhf4x/4wAdw991349M+7dNw//vfv7HdXXfdhT/5kz/BH//xH+OJT3wiHv7wh+MFL3gBXvSiF+GOO+6okTQ3p+if/umf8KhHPQoPeMAD8I3f+I2499578apXvQpf8RVfgT/8wz/EE5/4xIval+c+97n4rd/6Lbz5zW/GN33TN9Fcq3XvA4O3v/3tePGLX4zHPe5xeNaznoVPfepTSNMUAPCSl7wE73vf+/CYxzwGX/IlX4L9/X289a1vxQtf+EK86U1vwh/+4R8uju0qfVT4gR/4Abz4xS/GqVOn8IxnPAP9fh+/93u/hx/4gR/AG97wBvzf//t/F30ymEwm+KIv+iL8y7/8C+666y7EcYzf+q3fwvd///djf38fL3jBC1Y/wB4eHjcuKg8PD4857rjjjgpA4+/+979/9aY3venQ7V/wghdUAKpf+qVfWrnNz/u8z6sAVP/wD/+wdn9Ne2984xurqqqqP/iDP6iGw2F1yy23VH/xF39RK/tN3/RNFYDqJS95Sc2+t7dXfdEXfVEVBEH17ne/u7buUY96VK1+Gw972MMqANW73vWulfr6xje+sQJQveAFL6jZzf4/8pGPrM6ePbuwf+ADH6iSJKk2Njaq+93vftVHPvKRxbqzZ89WJ0+erE6dOlVNJpNafe9///sbbY/H4+pJT3pSFcdxrZ6iKKoHPehBFYDq9a9/fW2b//bf/tvi/Nv7f++991YbGxvVyZMnq7/5m7+pbfOe97yn6vV61SMe8YiVjsn+/n714Q9/uGE/d+5c9emf/unV5uZmtbu7W1t3xx13VHfcccdK9a+CV77ylRWA6nM+53Nq9te97nUVgOpLv/RL6Xa/+Zu/WQGovuZrvqZmB1B93ud9Ht3mgx/84OKYvvCFL6yt+/3f//0KQHXXXXet3HfWlntPuFj3PjDXLYDqpS99Ka3zAx/4QFWWZcP+/Oc/vwJQvfKVr7yoPn7wgx9c2N72trdVAKr73Oc+1Uc/+tGFfTKZVF/6pV9aAah+7Md+rFaPeZ7dddddtevo4x//eDUajarRaFQdHBzQPnh4eBwv+JA5Dw+PBb75m78Zf/RHf4SPfexj2NnZwXve8x5867d+Kz70oQ/hrrvuwl/+5V9e7S5KvOIVr8BTnvIU3HbbbXjHO96Bhz3sYYt199xzD17xilfgkY98JL73e7+3tl2e54vwmf/5P/9nbZ3JDXJV8971rnfhL//yL/GIRzwCj3zkI4+k/z/+4z+OjY2Nxe8HPOABeNzjHodz587hh37oh2oJ5hsbG/iyL/syfOpTn8I///M/1+p54AMf2Kg7TVN8x3d8B6bTKf7oj/5oYX/b296G97///XjiE5+Iu+66q7bNc57zHHzap31ao67/8T/+B86dO4cXvehFeMhDHlJb99CHPhTPfvaz8e53vxt/+7d/e+g+Z1mG22+/vWEfjUZ41rOehbNnz+Jd73rXofVcLD74wQ/iO7/zOxHHMX76p3+6tu78+fOLvjAY+8UIgtxxxx14/vOfX7N90Rd9Ee573/vine9859r1rYqLvQ+AmRfuW7/1W2m9D3jAAxphecAsbwsA3vCGN1xy33/lV34FAPD85z+/pngZxzF+6qd+CmEYSnXLn/3Zn0Wn01n8PnPmDL7iK74C58+fXyvE08PD48aFD5nz8PBYwA0feehDH4qXvvSl6Pf7+Kmf+im88IUvxGte85qr1DuNn/mZn8FrX/taPPaxj8Vv//ZvY3Nzs7b+Xe96F4qikPkck8kEABpSyk9/+tPx3d/93fjf//t/4+d+7ucW9Zrcnmc/+9lHtg+MWJmcl8/+7M9urDME6SMf+QjuuOOOhf3uu+/GS17yEvzRH/0R7r77buzt7dW2swmUkQp/3OMe16g/DEM85jGPwd///d/X7G9/+9sBzEIT2bE05d/73vc2CBPD3/zN3+Anf/In8Za3vAUf/ehHGzknLuE7KnziE5/AXXfdhU9+8pP4hV/4hYbC3OXEwx/+cBqCep/73GdxfC8HLvY+AGYqiQo7Ozv4mZ/5GbzmNa/B3//932Nra6uWn3MU5/D//b//BwA0jPPTPu3TcPvtt+ODH/wgzp8/XyOxo9EID3rQgxrb3Oc+9wEAnD179pL75uHhcf3DEyIPD49D8W3f9m34qZ/6KbzlLW+52l2heMtb3oKqqnDnnXc2yBCARbL8u971rlaPw/b2du13r9fDM57xDPziL/4iXvGKV+A7v/M7sbOzg1e+8pXo9Xr4+q//+iPbB+aJMLktbevMIBYA/vEf/xGPetSjcPbsWTz+8Y/HF37hF2I0GiGKInzoQx/Cr/3ar9WSz40XRKnoMbs5lrbgA4N7LBne8Y534ElPehKm0ynuvPNOfPmXfzmGwyHCMMRf/MVf4LWvfS1Nlr9UfOITn8CTnvQk/N3f/R1+5md+Bt/+7d/eKGOOuTlGLozd9uqtCrVNHMdUKOOocLH3AQA6Dxkwu/6e9KQn4Z3vfCce+tCH4mu/9mtx+vRpJEkCAHjRi150JOfQHG8l4HLLLbfg7rvvxrlz52r3S9uxBoCiKC65bx4eHtc/PCHy8PA4FKdPnwYw+xJ8LeJlL3sZfvzHfxwvetGLUJYlfviHf7i23gyQvvu7v7sRGnUYnvOc5+AXf/EX8cu//Mv4zu/8Trzyla/E1tYWnvWsZ11WpbyLwU//9E/jnnvuwctf/vKG8tpv/MZv4Nd+7ddqNtP/j3/847Q+ZjfH8i//8i/xmZ/5mZfU3x/90R/F3t4e3vjGNzaEB1784hfjta997SXVz/DRj34Ud955J973vvfhF37hFygZAmYT7gJoeMgM/uEf/gEAaFjhtYpLuQ9YSBwAvPa1r8U73/lOPPOZz8TLX/7y2rqPfvSjh8rwrwrT94997GM0LPSjH/1orZyHh4fHOvA5RB4eHofiHe94B4BZrsC1iI2NDfzBH/wBHv/4x+NHfuRHGvkRj3rUoxCGIf7kT/5k7bo/67M+C5/92Z+Nv/qrv8I73/nOteYeutJ4//vfD2A2CakLNteTmUz2T//0TxvryrLE2972tob9cz7ncwDgoo6li/e///04ceJEgwwBvL/ATAnuYr/qf+QjH8Hnfd7n4X3vex9e+tKXSjIEzHKx7nvf++Lv//7v8cEPfrCx3siCuyFcYRheVa+DCcVjfbiU+0DBXHNf9VVf1VjXdg5VHxXMtcok4N///vfjIx/5CO5///tflMfOw8PDwxMiDw8PALO8AeYB+tCHPoT/8B/+AwDgG77hG650t1bGYDDA7//+7+POO+/ET/7kT+K7vuu7FuvOnDmDr//6r8ef//mf40d+5EfoQOwDH/gAHfgCy1yh5z3veXjHO96Bz/zMz8SjH/3oy7MjlwAjYewOGt/whjfQhPPHPvaxeOADH4g3vvGNjXl//vt//+/UO/LN3/zN2NjYwIte9CIqAFCWJR20qv7ee++9+Ku/+qua/WUve5lMxD958iQ++clPNnKjDsM//dM/4QlPeAI+8IEP4Fd+5VcOJbRBEODbvu3bAADf+73fWwtle+1rX4s/+ZM/wUMe8hB83ud9XqN/H/7wh9fq21Hi5MmTAGa5ZC4u9T5gUNfcP/7jP1K5+sP6qPCsZz0LwMyr+MlPfnJhL4oCz3ve81CWJf7dv/t3K9fn4eHhYcOHzHl4eAAAXvWqV+Gnfuqn8IQnPAF33HEHBoMBPvCBD+B3f/d3sb+/j6c85Sl43vOe19jux3/8x/G+970PAPAXf/EXAICXv/zlC6/D4x73uMVcMgZ2OJfZ9vu+7/swGAwAAN/yLd9CE/0PQ7fbxete9zo89alPxc/+7M9if38fL33pSxEEAX7+538e//AP/4D/7//7//Drv/7reNzjHoebbroJ//Iv/4L3vve9eNe73oXf+I3foHPOPOMZz8Dznve8xZf1oxRTOEp8+7d/O17+8pfjq7/6q/G0pz0Nt956K/76r/8av//7v4+v+Zqvwate9apaeaPM9cVf/MX48i//cjz1qU/FAx/4QPzVX/0V/uAP/gB33XUXfu/3fq82KenJkyfx6le/Gl/5lV+Jz/mcz8Gdd96JT//0T0cQBPjwhz+Mt7/97bjnnnsa4ggMz33uc/GGN7wBj3vc4/A1X/M1GI1G+PM//3P86Z/+KZ72tKfh1a9+dWObO++8E+9617vwxV/8xXjCE56ALMvwsIc9DF/2ZV/W2tbnf/7n40Mf+hA++7M/Gx/60IeoqMAzn/nM2rw4//E//ke87nWvw6tf/Wo8+tGPxp133om7774bv/mbv4lut4tf+ZVfqR0b079XvvKV+LIv+zJ81md9FpIkwROe8AQ84QlPOPR4HAWe+MQnIgxD/Kf/9J/w13/914ucOqNqdyn3AYOZh+qnf/qn8Z73vAePeMQjcPfdd+N1r3sdvuRLvoSSnsP6yPCYxzwG3/u934uf+ImfwEMf+lA87WlPQ6/Xw+/93u/hr//6r/G4xz0O3/M937Pu4fLw8PCY4eqqfnt4eFwreNOb3lQ9/elPrx784AdXo9GoiuO4OnXqVPXkJz+5+rVf+zU6z0hVLefRUX/f9E3f1NimrTyA6uUvf/lKfVbzmYzH4+orv/IrF+0XRbGw/9zP/Vz1uZ/7udVwOKzSNK3uc5/7VE960pOq//Jf/kv1qU99Srb1Ld/yLRWAqtPp1OYLWhWHzUPEwOZjMVD7/ta3vrV64hOfWG1sbFT9fr967GMfW73mNa+R7VdVVb3jHe+onvzkJ1f9fr/q9/vVnXfeWb3tbW+rvuM7vqMC0Jifqapmc+p8x3d8R/WgBz2oyrKsGgwG1YMf/ODqG77hG6rXvOY1qx2Uqqp+53d+p3r0ox9d9fv9ajQaVV/wBV9QvfnNb65e/vKX02the3u7+rZv+7bqtttuq6IokteYi8OuOXYsq6qqdnZ2qh/6oR+qHvSgB1VpmlanTp2qnva0pzXmYDL4+Mc/Xn3d131ddebMmSoMw9oxN/MQqf62XQtqn9icR7/+679ePexhD6vyPF/sm4117oO268bg7rvvrp7xjGdUt956a5XnefWQhzykeslLXlJNJpOL6mPbdf8bv/Eb1WMf+9iq3+9XWZZVD3nIQ6of/dEfrfb29hpl2+asOmwuJA8Pj+OFoKosbUwPDw8PD485HvvYx+LP/uzPcP78efR6vavdHQ8PDw8Pj8sCn0Pk4eHhcYyxu7tLJxf91V/9VbztbW/DF37hF3oy5OHh4eFxQ8N7iDw8PDyOMd73vvfhEY94BL7gC74AD3rQgzCdTvHud78bf/qnf4qNjQ287W1vw7/+1//6anfTw8PDw8PjssETIg8PD49jjLNnz+J7vud78OY3vxkf+9jHMB6PcfPNN+PJT34yfvAHf5DO+eLh4eHh4XEjwRMiDw8PDw8PDw8PD49jC59D5OHh4eHh4eHh4eFxbOEJkYeHh4eHh4eHh4fHsYUnRB4eHh4eHh4eHh4exxaeEHl4eHh4eHh4eHh4HFt4QuTh4eHh4eHh4eHhcWzhCZGHh4eHh4eHh4eHx7FFfLU74OHh4eFx+RAE/jF/FKiq6dXugoeHh4fHZYKfh8jDw8PjGoYnNDcGPKHy8PDwuHbhCZGHh4fHFYInNx7rwJMoDw8PjysDT4g8PDw8LgGe5HhcC/DkycPDw+Pi4QmRh4eHh4AnOx43Ejxp8vDw8ODwhMjDw+PYwhMeD48lPGHy8PA4rvCEyMPD44aEJzseHkcPT5o8PDxuRHhC5OHhcd3Ckx4Pj2sHnix5eHhcr/CEyMPD45qGJz0eHtc/PFny8PC4luEJkYeHxzUBT3w8PI4fPFHy8PC4FuAJkYeHxxWFJz4eHh6HwRMlDw+PKwlPiDw8PC4bPPnx8PA4KniS5OHhcbngCZGHh8clwxMfDw+PqwVPlDw8PC4VnhB5eHisBU9+PDw8rnV4kuTh4bEOPCHy8PCQ8OTHw8PjRoEnSR4eHgqeEHl4eADw5MfDw+P4wZMkDw8PwBMiD49jC0+APDw8POrwBMnD43jCEyIPj2MAT348PDw8Lg6eJHl43PjwhMjD4waDJz8eHh4elxeeJHl43FjwhMjD4zqHJ0AeHh4eVxeeIHl4XN/whMjD4zqDJ0AeHh4e1zY8QfLwuL7gCZGHxzUOT4A8PDw8rm94guThcW3DEyIPj2sMngB5eHh43NjwBMnD49qCJ0QeHlcZngB5eHh4HG94guThcXXhCZGHxxWGJ0AeHh4eHm3wBMnD48rCEyIPjysAT4I8PDw8PC4Gnhx5eFx+eELk4XEZ4AmQh4eHh8flgCdIHh5HD0+IPDyOCJ4EeXh4eHhcSXhy5OFxNPCEyMPjEuBJkIeHh4fHtQBPjjw8Lh6eEHl4rAFPgDw8PDw8rgd4guThsTo8IfLwOASeBHl4eHh4XM/w5MjDox2eEHl4EHgS5OHh4eFxI8KTIw+PJjwh8vCYw5MgDw8PD4/jBE+OPDxmCK92Bzw8PDw8PDw8PDw8PK4WvIfI41jDe4U8PDw8PDy8t8jjeMMTIo9jB0+CPDw8PDw8NDw58jhu8ITI41jAkyAPDw8PD4/14cmRx3GAJ0QeNyw8CfLw8PDw8Dg6eHLkcaPCEyKPGwaeAHl4eHh4eFw5eILkcaPAEyKP6x6eCHl4eHh4eFw9eGLkcb3DEyKP6xKeBHl4eHh4eFx78OTI43qEJ0Qe1w08CfLw8PDw8Lh+4MmRx/UCT4g8rnl4IuTh4eHh4XH9whMjj2sdnhB5XJPwJMjDw8PDw+PGgydHHtciPCHyuKbgiZCHh4eHh8eND0+MPK4leELkcdXhSZCHh4eHh8fxhSdHHlcbnhB5XDV4IuTh4eHh4eFh4ImRx9WCJ0QeVxSeBHl4eHh4eHgcBk+OPK4kPCHyuCLwRMjDw8PDw8NjXXhi5HEl4AmRx2WFJ0IeHh4eHh4elwpPjDwuJzwh8jhyeBLk4eHh4eHhcbngyZHHUcMTIo8jgydCHh4eHh4eHlcKnhh5HBU8IfK4ZHgi5OHh4eHh4XG14ImRx6XCEyKPi4YnQh4eHh4eHh7XCjwx8rhYeELksTY8EfLw8PDw8PC4VuGJkce68ITIY2V4IuTh4eHh4eFxvcATI49V4QmRRys8CfLw8PDw8PC43uHJkUcbPCHyoPBEyMPDw8PDw+NGgydGHgyeEHnU4ImQh4eHh4eHx40OT4w8bHhC5AHAEyEPDw8PDw+P4wdPjDwAT4iOPTwR8vDw8PDw8Dju8MToeMMTomMKT4Q8PDw8PDw8POrwxOh4IrzaHfC48vBkyMPDw8PDw8OjCT9GOp7wHqJjBH+Te3h4eHh4eHisBu8tOj7whOgYwBOh6wHR/P/CsQfz/93bNCA2U49bx2HbeHh4eHh4eCh4YnTjwxOiGxieCF0PiKxlm8gE1nJ1iH2VOtx6PDw8PDw8PNaBJ0Y3LvyI+QaEJ0LXAyLnd4EmgQFmJEbZ3ToMVHkPDw8PDw+Pi4UZX3lidOPBiyrcQAiC2JOhaxhRNMSMxNSJTByPwEkMhD1s1BFFPQAlKV9hHTIU+G8kHh4eHh4erfDjrRsPPmTuBoC/Ka8NBEG+WK6q/cXyjAgBRbFTKz8jQsB0erZuj+b24jyxbdXKzogQUDj2MJzZy3LbsXfn9t163+dEqIL/6uXh4eHh4bEqvLfoxoAfSV/H8ETo2oBNhIAlGTJEyIUhQsCSDBnCs7DPyZBrNzBECFiSIUOCDGwyZIhQo+/WI8CTIQ8PDw8Pj/Vgj8U8Obp+4T1E1yE8Ebo24BIhYEaGGBGS56wqG6ZpcZ4SoQrNskWx1SBCwIwMKRJUlQekbv8Q9/Dw8PDwOAp4YnT9wecQXUfwMatXGly0II5PUDKUJScaZChPTtJzliebDTKUJZuz+h0ylCWblAxl8WaDDGXJBoCSkqEkGjbIUBQPEcVNAheGfbqPM6h8Jw8PDw8PDw8/Xrv+4M/WdQJ/Y11JaCIEAEWxzL/JkhOL5UmxDFHLk5O0jnxOevYP7rHq2KRljX1/YpWNl2Vr9mSD1pFYBO1g8qnFsk2CptN7F8th2Aew/LoVBHktH2pJhvycRh4eHh4eHm0Igth7i64T+FH2NQ5PhK4kmBT2kgjZsIkQsCRDLhEaT88vSFCzjrp9PDlL7UCdCAFLMuQSofHk3hoJMjBkyPUGTaf3LkiQwpIUec+Qh4eHh4fHOvBS3dcHfA7RNQpPhK4klEeomccThzyMLAqzhi0IeERqRfKGFFjZPN3E3sGnGvay1A/bomrmDZUkl2jWZrOeqhqrHso2PTw8PDw8POrwxOjahM8hugbhydCVQRh2aa5Nnt7UIEPd9DS66elG2U56qkGGOskmOsTL00lONAiOLrvZKJunm5QM5cmJBhnKkhGyZISiOmiQoSweNchQlmwgSzaQRH2k8UZtXRTmVOQhDHsN71IQ5CL3qDn/koeHh4eHx3GDH+Ndm/Bn5RqCv0muDGwSVJZLz0ee3tQoa5Ogg+lyrp9OeqpR1iY2+9Pzlr0ZcmeX3ZucpfZlv6yyFhnKSb1ZsiQuuwefrK8jHi875K7NwwTMxB6MHDhTtrNRzz3yRMjDw8PDw8PAh9Fde/Aj8GsEngxdfigZapcITct96g0CmkToYLpFSQzQJEK7B5+S3iAXuwf31IgQMCNDjATtjj9RI0Kz7T9JCdCsnk82co9cMpTGGziYnkNEQgRdMhSGfZTldotnyP1d0H55eHh4eHgcJ3jRhWsHPofoKsMTocuPJD6Fotxt2N3QMADoZmcwLfYadpYj1Ik3cGApywFAHm1iXF5olK2qJgnoRqewW5BcICKx3Yk2sTu9p2EvymZuTx5vYOfgEw07AJTVpGHLkg3sjZv9iKPOQuhhaeviYMr2r/lAj8Ic02KrYWeEKAhSVCTPycPDw8PD4zjAE6OrCz8av4rwZOhoEMwvY3dy0SSeeXNcMtTLbwMATKY7C1s3OwMADTJkvDwHxbJsZ06kbDKURzNvjkuGOuHMbhOfbnSqYbPr2C2WxKdjbA4ZyuZKcrvlMiwun/fLJkO258jNPTJeorKcIEtGGE+WYX5x1IFCGg9rpMh4kabW8WCeJQAI58SytM5JEKSiJeNd8h4lDw8PD48bG95bdHXhR+RXAZ4IHQ0C6/I1ZMiQIAZDhIAlGTJEyIUd7mbIUMfyKBkyZEhMY/twaTfExxAhF3Ydhgx1bNucDGWOnPbuZEaGcqtfhgy5IXQ26nlDTY+RTYayZHPhJYqjZsihTXziqF8jRTPbYOElCqkSX1pbXnqJfN6Rh4eHh8fxgs8tunrwIXNXGJ4MXToCwuMrTCkZKsrdGhEySKKmKMC02KMCCFGQNGwhmrZxeaFGhNqwW3yqQaZ2i3tqRMigIGFuu5NP1oiQwVTIY+8dfIrkDTXrHU/ON7xD48lZSoYKIts9Lbapd6ikst+7De/QjBAxMuS9RB4eHh4exweeFF1ZeNntK4QgiD0ZWgvNSUDjaIOSoV7nDkqGRp37NsjQIL2FkqF+dKZBhnrhqZXJUDfYbJChbrDRKAcAJYoGGeoGmw0y1A02KRnqhpsNMpSHowYZ6kSbKKspymraIEN5xPvWy28mtltoWYacqO+p8Dk24W1EJpUNyDmY2Zv1suujfUJZRr68d8rDw8PD4+rCjxuvLPyRvgLwF/Q64IPXmAzge507AKCW+zLq3FfWPEibA/t+NAuZG1fL5P9eyEPbesHMvlct2+sGMxKzX12wbM2+2vbt6h7LNtt+h9ga288J13axzBHKw1HDxrxMi/Lz41hUY2TxEGMrF6gtb8jNMYrCDFGY1aTI46hJUAwZSqIhJsWyrZCq1xGCMydDdRnviyFDAZqTyHoy5OHh4eFxbcPnFl0Z+JH6ZYQnQuvCJkOzwWsbEXLhkqHxPHfFJkL780G5IUK1eh0itD8nPoYIAUsyxEiLS4R2q3MNuyFDfPu6bauckZyu5XkyxMcQIRsuEdqZWoIL1nEsLE+SIUX1vKEl+eEkZ5kLlMYDHEy3auWSuI/JdLuxnYFNfKKoj6LYdmw9FJaIhQubDBmiZJOhAHFDYKOJw8iQlwf38PDw8Lg24HOLLj98DtFlgidD64CFxzUH/Hl6smEbT85Lr1Aa9Zv1ojnAH1db1CsUkdC4gESZhsS2W52jniImqV0R21b5iRoRMmA5QgWaYXUs1G5mb27vEqJFWSLpPS32GzaXEBmwiV4LkkvEHvBFsSND5ZoVNLefESLmbVwnStgTIg8PDw+PawueFF0e+ByiI4aP+Vwds4lS64PWTnYbJUMDQnpG2X0bZGgY34ZhfFuDDPWDM+gHTa9QPzjZIEO9aqNBhnrVBiVD/WqD2EYNMtSvRg0y1K82KBnqVoMGGepg2CBDeTBskKE8GEoylIdDKvrQdyamBYA4aCrCATOPUKO/WXMSW5anpULyEkJc06RJfqNDVO5shGGzTndC2aW92S9mA0SoHpUNv5Khd4z4NdvnE+fqCYuZXdXh4eHh4XFl4MeZlwf+iB4h/AW6GtQArJM11eAMEZpYIVSjrEmOhnFzWwNDhOw8n34wG3DvYxna1SPkhtmAJRHaDaw6q3k+T3C+YWPbuuhWM7KxFdy7sHUwExnYqqzwt6ApPMBswIwEGZTkq1IyH/jn0XARTmiQRUOM7bwf4rFhniFDhty8IwDI4hHGU2u+I0JoGMkxZCiKuiiK3Vo5E3ZnEND8pHYyFIYdlOWeY+ujLK161yZDlzvsTolFrEaG7PswDLuLuaHU/enJkIeHh8e1A59bdLTwI/gjgidDq4ENttqIkAubDI2L2cDaJkP7luCB8gi5cEnPfrDTsBviozxCh9kuBGcb2xviY4iQbTNEyIZLenaqe5q2cpajZBMhoE6GOuEm9sqzjfoNbO+QIUU2GWJ5Q8bGPEMA9w7ZZCiJ+pg4kt1JPMRkeoF6hhRsMhSGPZTlTo0MGbJTlntH6hlazqF0pTxDq3mFgMPJ0GF2T4Q8PDw8rk14UnR08DlElwhPhFYDG2hlZM6fyXSbkqFu3CQyWcByhHioV0zygfaxTT1ALHeI5QmFrXLOS1wIzlIixXJ/pkHzwTbBanlDO+U9DSJkwLxDUzTzgaYkb2gy95zU6+NheVXVDAFk8xWx/CTWR0mISDts+3WgSBJ/2ZBcsIp5gy6Hh2jV3KhCELnVI6XZ+bTV/jw8PDw8rg14YnRp8DlElwBPhlxwgsDmCOrn92nYRvn9GmToRHL/BhnaCG7FRnBrY/th1cxlmdmbeTODcqNBhobVqEGG+lUf/apJvPpV0xPSrZoD927VbZChTpWjUzUHqjnZPquaA/QOaTtHv0GGcvQXfy6SoFlvEjTbTwiRTYUXKCNzCLGySbyaLY0HdFLdNGrmMSUx2UcmqhF16SSzSdRHlrBcKFZH0xYRWxh2RC5Ts31uY+00j3EcjRCTY8LmeWJ9B4CItK/KsnpX9SypfV91ey6tvrp8Ottee8vYuWvagiAXXrTVPph4eHh4HAX8mPTS4I/eRcJfeC6aL39DhIp5bgKgiRDDieT+DZshQntY5rasS4R4WRb2Nhv87AZW/1ckQspuiNB2sJy/Z1UiNNuek6FVbAAnQjP7emQojzewPz036ysZpNtla3W2kCE754iJNzAiNNt+dTJkL0/nuUisrK5Dk6E4HmE6z49SoXfrkiE7j8mQoSgaoCi2GtvU+hk3r2fT9yjs1u5JQ4ZcO7AMW1yUJWTS9N/OQzIEwZ4/ipVTYNsbMlOXVW/L16rb2siQ2yd2/O11ro3sgfW/D8Lw8PC4MvAhdBcPP6pfE54IudBEyIZLhIxIAiNDbUTIhkuEbIGDVclQGxFq2lf3CrlgHiHg0rxCwKWTIUaEgNU9Q6t6hYD1PEPNOg8nQ1mygfHkXI3ImNwk5hUy6w+zp/EGDqbnamQojoaYFhekZ4iBiRhw22qeoVk/RtbyANNiq0aGjAiF8vYo2OVZLlccn8B0eq/0rhyGtv2/+JwlQ4Ca80mtP0+V3dcZAbLPi7GxObGa8KTIw8PjysHPWXRx8DlEa8CTIRuMCDXzfACgQ+YP6pLwpF7It6chX1UzVygWYTJRxc8bK8/nGbq00JeC5JFMRW7JJCBzCq2Ya8TKLeoleUhTZiPzFM3szYEeyy9huUVTMvcQwPOIaJ1kPiMAqMgxZGWZtDnAz7UCy09i9ZYkX2q+ZsWWeJ9Y3g/t/6rlWsDaUvlZZbnadXGpeUt8rqnVX10BuYeDkCkEAutEkrMBR0XvIf+a9fDwuPLwpGh1+ByiFeHJkEEEFp+fJc25bAad2xtkaCO9AxvpHY2yJ0ISSledbpChYbmBIfH0KK/OkOX/oIM+6l/xc6TI0RwgdYjAgrIxe0acsBktlyIj7WeE+KXE28S8SlnVWfw12yMeIGJLgg71LOVh07OWEs9GGvXRJTknKZHBzlhuEPE2pckAabJ6WYY0HnDvFCnPbFkyQp7UvZBJ1EWWbDTK8pylpscniYbUY8XqzOKmBzSJ+0hIW23S6MweOx6uOOxQDx2TTGeeqCQeUvuqtijqIoqbxysi+8BscTRoePLieIPmTQFiXizSfhx1kVB7897QOUY+z8jDw+PywY9dV4cnRCvAX1AGnAi5ZGjQuR2Dzu2NsoYIHVTLWP0T4X0aZGhUncaI5AUZIrQXLFXPlOjBsOpLMgQA+1h+yVdEaB0y5CJDvBYZatiqrEGG0ipvJUPdatiwNdvqtpKhbrAcaCsitA4ZapbrrU2GsmTZniI4bWSotn08oCF5qm5jy9PlcbHrOwyGDNVC0OZkyCZFjCDN2tqY99s6t3MylFqhcSyPalYvI2O9xf/2cVMkicGQoTTeWNrm+8hIQmN7k3dVC0NcfftwMS/Vss9mmZEiBZsUzQipOTerkSK3v0Y23iZFwVzGXocCelLk4eFx+eDHsKvBE6IW+NmADVyvUEmJEABJhFyvECNCACQRcr1CF0OELtUr5NrX9Qq5ZOgovELKM8SgiJDyDLlgRAiok6E8mg/WBRmi/bLIUD4f5K/j7bHLGrJCyY0gQm55s6w8Q7wPXavMBoDVPUPNMv1aPbX2iWdI9SWpiUjkc9tqZMF4iWxvkfESMc9Qow9zkmCTBUaCDtvezlsyXqJwhXmpDCmy1feW4hcbh24PLM+DTYTMsspJs9HuKfIkyMPD48rBj2cPh88hEvAXjkk+bl4eTJ64l9/csA3jW2nuAZscNReiAYwcRMRTlbZMiMnyB2hbQYwJmUtm1RyiNIywT3JYCpI/MiW2BBF2aa4PqTPgOUgqj2gSNHNbWF7RzE7yQkh/M/SxWzUneC1ZzhPJF0rC7mJyXRvFivk6SdjB2FJAaytL81IwI2DjQxTbDquD5UKxuZfWyeUJQ0Kqkw0cTJp9ZblUDGk8wGTaru52GJK4u1ACtHGpc0AxqDpXjYlPov5CSdAGe7aH4nmfJSMcTJvHnPWN5Y9FYY6DuRqjjWszz8iLP3h4HAf4vCIO7yEi8GSIk6EsOd0gQ4P8VgxyogBHyNAmbsEmbmmUHZXNHBPm6TGz6rjoB3wy1jxIkAeOVyaIkZHzy8hQEkRIgibRikmCeBo2y6ntE0LemI15lQAgJbakSpBUxI4UCfFCJVWKblX3gKToIEXTM8Q8SBkRusiCPp0sd1VJbwCIhbqdG1KXCCU3KvUd9ah3KCfS1DP7BrV1yETCVBEvHjRy57JktHJ+Up5uNupl3iK1fVtYIEMSd5HE3UNtevtew3Om+sBsbujeoiwNo+w2QtfisEuvG4YsYcd2RPPJFOKoI/ZNeFCd6ykK85XzjALERC6c53FqG7Orjzzec+XhcaPDj3E5PCFycNwvFPYCZkQIgCRCw7hpV0TIJUM2ERpbngZFhNrIkAtFhJhdEaF1yFDDhmgtMsRgyJAt470OEZqVb9oVETJkyCZAigzRtuZkqBNZuUlsElBrUGtLeVOCcwgZssmTChE7jAzZpIgRJGA5uO+kpxo2GyrMjoXm2blKbdvYyzZZkvlRc7tNclYhPW75WXt27lI7kbD7Y5Ztm8phMqF6ae1ctvc1ruUDmfA8O5Sx/dgmca+2P4vwy0OOaa2/tuT5IaGF6+QZHT4hbURsqmzg/N9szcPD48bGcR/rMnhC5OHh4eHh4eHh4eFxbOEJkYXjzJh5aAbPF2oLk3PBwuSYZwhQEtmrh8mZELl1vEMu1g2TW8c7xGyreofSuc+nUYfwDrnoVn0kVbqWd4hhFe9QJ9hEEnRXDpVT4U6reIeyefiUCpVzkcejhnfIeJRUqJwNEza3SjhYJz3ZDCVrEWxwvUOmPhYu526fJRuN9plHxoB5hoytbd2yvabXq82jovrG4Mp+s9C5hbgBuXZchTgmgLA8ts39aJssOI46DXujv8T7aMLmXK9RW+ic+zye/XafF22hc6uUVd4i7yXy8LjRcZzHvAxeVGGO43xhUCKUnqFJ5JwI3YbSSew+Ud1KE/y7hPR0kVHhAUoiggglSfxVwgdREKBwLnFmU0jDEJOy2bcwaLYXBQEOSNmCHMcoCDF2cqySIMI+mdh0QkQVEsTYI6IIBZmwFZiFye0G2w07m+A1qTLsBnWxgk7Vw16w02yPnOMEGfbQFDtgk74mQQf7JRNGaAoFJEEXY6dsGvapMENJrqc8GuKgaB4DAAgIic3CYaM9ACjIOUrDPvam99RtUR/7JKGeIY83aN9Yv/JoA/tFs96KCIJk0RDjwjlmUV8eBwZVngkLZNEA+9Pm+WBIol5DsCCOcir8QK+HqEcFHtgksFkywrRoioWoCWPzeISDon69x1GHCywQIZUoSqkARkEmslXCC2wy2ijqY+qIgERRD0XRvDcZwrCDslytrAnjq8ikzLx8iqoxCXMErCj6EQT56m0hRkWeix4eHuvDiyzMcOw9RMdZijAIUgQBkX1OzzRsvfzmhpLcML5NkiEXo2oDo2qjYe9Ce3pcMM9LhABRCxla1cbsaUgGVmGEjHiF1qk3IoMwtm/AjBS6xyghBDaZ/2vYlVdIzGmUEFW/jlAATJA1Js5NyPkEgBgZ8qCeDM+kvdOgi5R5loiNzX0EzAbwuSNv7f6ur9tEFtbXu7/tNu18KNUPJjsOzAiDKxChcpTyeKNZNuJls2jQqCdr2Wcqix71G3a1H2nUJ+3pXBvXI9Qm/80EHpRHyfXwZMlIlnUnqE3jgfQiKrh1x1FHT/6bNMuqPCZXeCGO+lIePCbH2Z17KYp6cj6m0JG/D8MOQpGXBzTzmoIg17lO5H3CPFMqImGttmhelYeHx7o4zuNgG8eaEB3XC6CNCBkyZLxDjAgBMzLk4kR1qyRDLrrzKUJdKCKkyFDDNich65AhF2kYSjKk2lutrXBlMqQFGDgZMsitOYgYEQLqcxp1S2vC0BXJUDLXv2N2F/F8itpGWUGGDLLASqY/hAxlVtgRG8DnNZGG+qA/j5oDVJsM2cuU+Fi2Tkzk5K1BLSMM9vpav1j4nkWG7GVWr02GMmf/GWy7Iksr99MiFExUoVavLUwQEYJukSMlxmDgTsDL7KvWBdTDMO1QObofFvmJopTal/1ZXnN2CJ1LioD6nEkROS9sYlq13iY9Lily1wdOSDJVwLNs9vvkMFJkE5lVSJGxKRU+Dw+Po8FxHRMbHNuQueN64ikRSk41bFVVUiK0ETcnUy1RUCLUJ4PpCaaUCDFSUFQltTN/UAVOQhSKqlqZyEzKskGGJlVJy7JQvIOyoESIhf7tVxNKhCYk7GQPY+oVKkSIym6wTb1Ck6AZArYbXKBkiIXY7WObkiE2z9F+dYGSIRZ+Na62KBli8wyNi/NysM9wUGxTMsQwLi9QMsRC5/am9zT6sT89R0kLC4c7KLYpyQjINbFf8HpZqOu4uLD28Vm1vNo/FrZ4MN2iBKRkoaLTXZrPRPdvcp4SHxYSNy32KamJxDvhoNhp5A7N+ty8Zg8mWzVCtChLwurGk7NUiY7VO52eaxCiabElvUAuimJHeIGax7Is9xqEqA1VtU/fKyyEEyg4iSHHflYv8Q7Recp8yI+Hx1HhuIbQHUsP0fEkQwF9aaVxU9ygk56iZGgQE4JU3UTJEBNI6CChZIiJG4QIViZDofDSmHqYjZVPyOApCgLqGcqpmAK/nXpRk7So/vbIOVLhdEMifNA2QS3z1DGhBgDYLJtiGkrGe1A1PSORqHcUNK8hJeAwDJtS7Urem3ksU1FWl+f9GETNPjNSBwCjpPnBYJjeTsuysDy2/axsc19GCa931X4dVflRet+Vyw6z5nFX6GfN4y7r7aze33XqBYB+etPKZbtp815wRRcMennz+lbhd928uX+drLk9sBScsMHEcYBZaF7DFusPBRERqIjJO2RWlnmh+D3J6k3i5oe6WdlmHaEQZuEeJC8Y4eHRhuM5Rj6GhOh4nmgSFhafQBqfaHxBtedUMRjEN0sy5IJNqArMyJALNQcQIzEBNBliCBFIMuQiCUJJhphtVTK1Vr0iF2qdcDpGhhLEi79meXJOqgwZCZ3jk7tmNMyOkaFsHiTZ7AOZ9FVM8KpszK7IUB6MkAckhEqQIZ7PNBvg5g6hYWWNZylz1MSYd6oTzmx2uOCsHaLoNq/XXZeHo0aOkylj6rfbM3+sH6p8vR9Duj9ZRPoxD93rOB6wNOrJ/Cc3DyqLhs2ycwKQOUQgi4cNL5fZ1lUlzKIhneDVbO/moCVhp+EVi+cfM5i3rJl7NPN8sHmntNpgs6xLfsxvRopc9b1lX1gonp7zia2Lov6hIX0GQZgjIJ4xSraivugfJ0WMGGlS5ImRh4fCcRwrHytCdPxOcPOhb4iQi056qkGGXCJkBrob1U2SDDXqRSLJkAtFYhQRYmSojQgpMuRinbwgRXrWqle8mFeV7wbqZKgzJy+MBC3LL89Jr5pPuEnIzayeJRnqzMsyIgTUyZARXGBEaNaHpd0ILigPkG0/rKxNhsyyIkKzMt1Dlw2UZ8gua0iDEn2wyYMhFC7RWJS1CI8hQcxb5JY1ZISRKdaeIkGs/IK4CeEJm/wt+iEEHmxiosQlGDmSZQk50nlTZiLfet+UDLzZB1v6XQlJGLvtHVJiD4YArTJBryFFSWxd44T8KLtNimw5ckWKzJ/5ba9jMEQltAiPCuszpCiy+qnqNf2LavXy82pI0WG5SmaNh4cHx3EbMx+bHKLjdWL5Qz5LmiSmmzUV5QBgmDTD4E5WPESHEaESFSVCLJdGQb2qFBFaBypkjZnXqXu/LCgZmpC8BwAoye2nbsgJiclncuUAMBV2lV80JXYl4c3KAsAkaOYMsXyfWR3NnBFV1lUxXLds2BJGyHBQ7VIyxOoGeM4HkyMHgIB8g1L9U5LQq4Ll2rRhrzwrCRHDOueFyWazHCxgvX6r9hhC8g44KHakGl8ojj/rd1E2r/1Z2ea1wfKlZnZSluQetdVBy5I6JsU2nZ+J9eFiwHIQ1HkNw6b3md0nqt6yIfU9L1sKO72Pj8UwyMPjonBccoqOhYfoeJGhJuJ4k8aFs6+Qvfg0enEz3nxYNW39qkeFE/KAe4XY5KYqcGFdrxBDEHCCo7QXGEmKgwAhKR8RYxgA3YjkPZHtpWeJqNvpMD0t1a3sOQt9E8p1tmLdoi9Vs2yMCDEL11MeJ6J+l1Ud5ORaYpPG5uijg+YgVpVldlU+RQf9oJkHouvgXiRXYhwAtXWCEfV0sbIZ+nxiXGIDgG6wQetldQPAyej+tA5VT6MfQZ/auwF59gQj9MJmeC4L+TN2WpYQuG7UPH+dcLMRigjwDz+zuoc07JKJfAA8BDIOu5RsMe8WkzEH9MSxbLJeZlN1dNLTVNyCTYILAHGYIyZhbswWBSn1svEJcoe8XqI4CNQ9Y4v2wi4i0l5I2gvCVIhLrPfRxMPjOOG4jKFveEJ0XE6kgiJCigy5GFanJRliYLLZcRBKMsRsq+YKqTA4QJMeY7cV3hThiFl4WxhIMsTaUmSIwZAhW/JbebIMGbKPt8otMuu4vV3G24YhQ3ZoHSNCwJIMpY4MuCJDDIaE2HMdufMeXUxZu7xNdA4jTm59hgzZJECF1LEwv44I4VuUbem/QbYIS6yXNYTRJjOKCNnl7PKMCNn1MKLjtmPK9AKeIG+TIhXeZ+z2elXWkCFGioB6fpapQ4UgAvXwS0OG3LYX9hVUC02YXtvcU4t6TUgfITQz+0Zj2SVFh9VhkyIT3qdI0axM3lhmhGZmt0LsTFkVEidIkU2MzDIjRbM2lnWb9z4jRQA8KfLwWBPHYSx9QxOi43ACFa6GV8genAfzgfy15BVidkWEFBliUGTIhiE5yiukPEMMq+QWGQ9d23xGNhnqzNX/GBmKqlh6hmpttuQXuUTISHozMpSiI709tTrmg/5VytoESHmGVHlWr/IM1crOiYHyDNnIFrlOjjAAITyKBJnfzHvm1lsnLRuN8i5MGbceQ3iYl8slTIYUqVwuGyoHihEh4yVySZD5vUoYoE2KmmIZxIM374frMTKkyCYDxkvkCjksBR648EOtf3NCk8SOGESLp8j1AJk6XAnxwzxFLllp8xRFjkqm8hQxYmTqSJx1fH6q2TFz3/HKU8SI0ZIU2c/eCJ4YeXhw3Ohj6hs2h+hGP3EKUTSk+54nm4hIrPaAhIz0g5N0ULtZcXnVLpWKDml+DEMchJiS+PI2BTkXURDQeX0UlPS24DwLglevg887NCW2OAgwKZt21WdWbxQEOCibx6kgxy4OQuyLuN8kiLBPchBY3lGMEHtkPqF18ouSKsFBsN+ws3lqEmQYB3u0bgaWq5NXfewH2yvXsW551u+s6mA3uLDS9t1qiP1gh/Sjt/K+d6oe9kgdofjGxfrcn8uwr9rvvOrTsipfiuVGdasBtoJ7V6qjgyF2q3Mr9Q3gOVc9bGK7umflsgCwi/ONdSpXieUTpUEXu+VZUge5N4IuxmXzmKZhH3tFsw6W45NFA4yLrWbZkp+XguTWJHEPB5NmHbM2m/UkcQ+TafP6U3lC7Pil8QDTonm9s3MTRx1adlo0nyuzPjf3MQxSFOVusyzJ/wqCCJXITfLwOO64UXOKbkgP0XEmQww5kWvN4w36JZLlTwyrEYZV88tsN0glGXKhwuaYDVgvRK5tDqJVpbdnbTZtKpyO9ToIAgRB0PD2MG+Tqds9Vuso3Bl76syJpI4p0C7j7eZ9xeLxECNqKNIpL1JS8fC7tMqRV/WvtmxyV2BGNlxPkpH8zh1BD/e3bWfrLqZ8t3K8OCLkr1sNG2XNbzdfiuVPmbrd+tmEuabuVfvcJ3NStfXb1Mv2h81D1a820K0GTlkeitXBEH3wEDfXe6VymvrByQWhMTC/3WcaK1trA/VnXYouDV9M0ZVhj92GPHlfhvm5an1GndDNpUrDPvJog9fhhLmlYVPKHACiMJNqd+4cSCZkTZV3vVVRmCGOOg0PVBRmci4mt2waD6jHipUFZt4tt3wYxFIp0PUghUGKOBogphMn83nXPDyOO27UMfYNR4hu1BOlEEXDxZ+LPNmUZMhFPzgpyRCDIkKKDDEbs68TIqfIg1teLS/b1GSI190E8yABIg9pBdJzWB6Rzntabpc798I6Mt42GeqgPWfIJkI2UWJkKK1ypBUJgbHasAkAIxtKrMEmA2p53fKH1WP3zyYLLnFog02GDtt3mwzZy3Z7h/XZJUOq34ftg73eJkV2/YwEDSxPsx3eZ5MiFvan8pvs51Yb0Wkr627nkiKgHqJoh0zapMhWJ3RJEVAP+bPD7ZSEOYNNimwixCTA7Wd9FC7vG5vk2MRGTQyryrukyICRFyVBvirRccsG1rOIlrXIT2i9r1hY3axuT4o8PFbFjTjWvqFC5m7EE9QG5RHqpHxW8l7alNhOgi4lQifLZtkIESVCs3qYnHBzwD6tSkqEplW5Vq4QIwMlqrUksiOhIKfqZyiqipKhSVlSMkSi5jCpStoeC5tT9oOyoMe1aAkjZKF2e5hQz9AEq4fIjYOx9AzRfgSsjj1KCFjo136wTQf+yq6wbj0szGs3uECJhLIzqH0fB3vUOxQQkqr6rELqFHaDC2sdQxYWthtsUWI0FWGX9LhW56hnaB1J9e3qHvqsawOThx9jm+aQ0X6XZ6low355nirWsdCyveIsndNqvzhHSRALW9ufnqsRIoOD6RYlNSrcTpWfTHdo/awv03KPep2YLDrAj8m02KPXvZI/p9L45W6NKNl2BR9G5+FRx40UPnfDeIiOExkKw74kQxkRUgCATtLM/+mHZ+gAoS+8QhlTJBNeIUVM1g2RY2DkIQjWn4uI5e8EwvOi+FFMGFUSas8QQ06kulWYndrHTkRED1pD5/i6ftAc1ETiMaEmfu0zT4oIh0uFol2/JJNKCpI1KPk1Pyqb13ZWZXIC2s2Sf0hgdlXHifLmle1uyKAB67eyM28bwD9oAEBXtKnsp8T+sHPcE3WcKbm09bDcaNZLzjsAnMEd1N5l/RB13FQ1ZcXbyqswRjYpNcC9Whuh2PfwFmpn4hQb8X1o2VHC54VjoXn9lPeZfSQDmgIQBu7k3Ys2U55fGkVNwsGiFgBQQgWAhtupsDpZBxFmSIXSn5rwFVhO+upsIct7eNzouJHG3jcEIbqRTshhCMmXwizeXPy56CQnJBlq2KoRJUNdZOiSAa0iQusSk1XrUGFiKzpzauW5Et3M6H6PXEe1LpkfkjSqr6Rhb0LC25ChzMlFWueYGDKUBREyJ1SOnbcoCOmkuYYMufMXKbluplJnyJBLihgZSqqEEh9jc4mIIkmMsNg2d31n7pHpNPJ1moMxs607GDcExyU6jPgcVnaVOgwZco+BISYuQWEkBliSIZcUmd/udm1kqO94gsxv186IjIFL/MwzyX02md+rkCLze1X7so2N2m/joXM9XkaNkJEi12a8S27+kQm3o4p9JCcJaJIfIytO1fgcApAYme2wTi7iudckjXqUGKl8INdzFIazZwQjRWEQU4+QS2jMb9amK8ut6jD9YGWV4p1LioIgXkp5S1LkiZHH8cSNMga/7gnRjXIiDkMY9iUZYmgjQooMMSgitI5XaBWYbdf1CtnmVYiRnp/o8PoPqyMhd5NLWJI5AVIS3swz5BJEc+yVx0l5htzzlpsBiyi/imdIyXUrEmRgk6GOGNib34r02HabMDHiozw6s/b5AM+2m2W3HjMYV94e274uCWJ1GBLkeobM/isvjU1ilDfIXqfK2PUogqVIkPltExjbS2R7hwwpUiRIPa9sYqNIzmEkCKh7h5QAhSFFrjQ7k4NnRAlYkqLUCZ8zpMgmRywnCbDmU3ImnjX22CIILikycElRbd2cFNlEIw47C5Ji21VOkSFFLikxpMj2+BzmKQqc59IqpKit7Mw+P/7WszCK+tJbxEkR4EmRx3HFjTAWv65ziG6EE7AKGBHKEx0L38t4GMQwIhLb1QYSNL/gbYp8BzOIthEFAS7XVaQG/YqUqH6UqGhdbP6fWbsrdQ+AluouuAItFfCNAmBKEoyYVPesDm5v23+GiZDJnVTNXJAYIcYkl4jJdbeB5gSQ3JM2UOlrZJgICWiFdXJqWJttdoYOcuyBSwVfKlT4oTuAPAz9IMN2xXMxGJQkNYO6DtUxVPLuDEG1+n4O0MUWeK4Iy2kDtLw4y4VSZQuRi6dkx/ewusy5kryekuttKnNt9P1TkFyBOMwwKZty2CqXR12LisDQfoi6mQR3GMa0vDxWpZDxlnZ1n6z+PAuC1OcmedwwuJ5ziq57D9GNDOkVIpPxzewjOiN5NzpJZ25XXz7pxKthLMkQA/OuKI+LwrpkSEENwkIEKAjhYGRIhaYl4eoy2VE4+1ulPWDmtUrJBmz/Dwsz5GFyAfKQqMaRepQEd4SQ5pal5EtpjJDWEyFCRki5CsFrC8tr2lNat1nHQv8yWn9SU9uz6+ig+dV5VZuxq/Kr1tNDh+5LF1lDTh2YkR7z59oZWFljHwRND1uf9LGPHEMyKe7M3vzi3kcHIyLGMCSeqVE1wBDN59YQPWoHZqTIhjne7PnXqfKGxwuYeeq6JQlxIx+UsqpDxSVSdLQHidiZkl6GPp0AOAk66ATN8q6kNwAkYRdZxD1vUZjJvKJkxRyfOOxQ4pNGPUTk42YcZjXvll3eRRCESGIltd2sgynbBUHYmBQWmE02m0RDJCRvV0t2N6//IEilah2zB4gRiDxNDw+Po8d1SYjseN4bEW1EyJAhW81JESGgOXs7MCNCjAz1q54kQwyrhLHZ9nWwTt1taCNDzTY1GWJIiGvIJk52HpHNa+zQujYy1LQt99/uk70vtr1NKY8SNgQLMmRLdreRIQZDhmxSZNdhD9wjEWLCSI9ttwmQvWxvp4iQWpchWZChrFaPFd5Xa5fXbwiLTVwuZfmwunsWybCPrR3uapMiRXps2GVWWa5tO+8bI0UAaqTILmOToj4hTsCSDDFSNKujd+iyS4QY+jV589yyLwe/dtiiTYqMQqBSFbRJkQqrU8v5XPpbyYvbpCixiKpNioy6XSfapMRIkSKgTkZssmKTIhYGZ0N5g2xSFNfC87JGGUnOViBFi7wkMmfSrN/6+rBJka1QZ5OiIEjm/+eSGDHYdpsIeVLkcT3heh6fX3chc9frgV4VjAgB3CuUkxwhYPYCYUQoRkaJUIKUEqGBfHE1B9NVxclKm33VuoH1iRCTpo4C4UUJA0lM6KSspGxR8ZC8g6KiXqFJyclQQY7LQVHS/S8qLjOu+gJwgrhfFtQrtF9NKRkaY0rJUEXqPkAhZbwZGRrjQJKhZtkx9QxNMKFkZYwDSWLYcRxjQr1FexjTevawL4nMqmXXtbN+TzCluX97mEgSs12NVyJKbWW3qj1KgraxT+06fK5pPx9sURJ0IdimXqQL2KGeIXaNbmFXnrftYKdGiJb2Larwx8LtdoMLVEZ9N9hq5B8BwB4uUM8QC03cwVk6aex+daFGiBZ1V2ep3PeUhEiOi/MAOIE5KHao92ZS7lGxBBaiVpRjSmyKakrrnpZj6kliIXuT6e5CTMFtk+3PtNhDQLzoZcnDfybFBSrZPS22FoTIRlXtrzynUVUdUBJUiXBLD49rFddb+Nx15SG6kclQFA0P9QrZUGQIAJ2zoodN4RUacK8QeagDgiAgkGFcyr5q3cB6ZKiqNNnSJIz3hYfC8TpSkUiUkQ1mdTfLqlwkFjYHKLU4PVmtsveIZDcA9EP+AmdkSHmRWLgWwMU6ABUOx/unQqGkd0F4BlQfWXhXWz0bZGCq6j4BPgEmq6PNTsuSAS8AnGr58n1GfHFnuEkkzt9M5pYBgJtISBEADIj6GLMBwO0hz5lU9tuI50PhTKA9IqdFWPHJSj9/XSg59xMll8I+KWTKmZreyYpLb58At28Et/G6SVhdLz6DXizk22N+3O1JY20wgqM8RZmaUkLY2UTjylPE5j9qtYuJapNoiDQmk/cm/FwnMZcrZ6INQZAiipv7qoQctAfp0tRe29AezueFJTxmuN7G7NcNIbreDuw6kHMKCSKkyFA3PklfVCq8gsXEA5wMqYG2UodTpGddOe11yZCC9AyFQcMrowkFr5vZA/DXkanbDbdTZEhBHUf7f9quQ6LWUaoz0tyZcy8aMpQ4L0KtUqfC5KIG+TG/17W7UPbOIkRutfpV31X9dhvub9e+7j51kDTW9YxksiO13otmbbGcsa4Iie1FsSTLrt387seOBPi8XfO/a2cYRfWBsiFJQ8dufrskSpGqfphKr/eAeLzM+XG9W8Zr6IbeZcha5nniEu3uvEsm9M7NS+q0KAOqXNBBVX8XZPP+uu8DIwPOSBHAJbyB5oe3aH4Mm/bZ8XJJURJ2EMoPb0pprn4cDKlySVEYJEiiHg3bi8SHHresCadjpMi0y0iRmt8oFu95lxSZ34oUMWJ0NUhRe7ueFHnMcD2N3a8LQnQ9HdB1EEVDSobW9Qq1ESH75TcJZko2M69Q8yGfB4kkQwxsUO4m99uEqW0Q7+JSvUKHtisYyCpkKLBstt0sq67L42iZmXT3zD5bse5xXNVjZCaHjYOwRoYOk+ZeJb/IJhH2shnMJ4iofV1yY9tZfWbZ/F6VkKxSJ1vu1HKPOAli2ym7qtvYe05IjiFFinx0w7hGhuxlm/ActuySI0OKVLu23SYv9rJLigwMCXLJkdlW1Wd7O21S1LGed4Mgo8QIWJIiN4TSkCI7dNMmRbZMu5p7SU1Ga0iRTYbsOpQ0uJ275JIiA/NeSB1SZ0hR7BwHmxTFVl4Mi0ZosxtSVM85ShbEyCY8Nimyl11StOijICLJQjZ8eQ1EYbr4bYf4qbynNBlIb5EiRYYYxRbhsUmRTYSUvDcjRcDSW+TmGi1/28/8oyVFLgmqt2sTIU+KPGa4Xsbw10UO0fVyMNeB8gql5AHYRoQURgGfYX6TzHYPgCpFsa/JwKXNN3QY1s0Vupirl4WgqZA35RVSHh2hkk2zJQIAU7IDE6FizBTxLhYsT4PJfgNamrsQdpUbcqllLwbreCrbsG4/16n/qOpmXj0lK9/Wv3XvQYajeqscxfWh+jIV12/bugmRUz4QEsuFsK8r314FTfu68uUHQTPPBgAm4LLRB0KSnOUaAUAh5LoLUV7JbyuPEUMlju9BsUPtSlKc5Te1SckXBZfIVnLgpcijYG2k0QAHxVazDiH7XZW8L+rY8DfRemgTeWA5ejOsN62Cx42H6yGf6Jr3EN1oZEi5vNN4uBYZUvHUgIgHL4d0IsIuMprPkQURHUiogZRSlmN2nZ/DvR/KK7LuoKstL4iLMPB6YsGGQiHAwIqrMWeAgJKzEELVThG5FjtbFyJASgbPQQBqZ/lLgBiUBxGSoEmukyBqhN8dVp7ZWR1ZEFO7kY9PCdlPw0jamdKiUl9k9oupm9m7YULtzBvTj2Nk5Nx1owi5yEvrJSG6Mdkm5vZezD+a9JOmvZ9Ea9uHSXNfmQ0ABqSOXszr7sQRBgkffOdR1Aj9A2bnhIXcMYGJDhIqJNFBih61ZzW1wKU9p2F4KjSPTcybVAl99idVSmXAE2StKnZM3jsjHqE4yJCFpN2wQ3OKkrC7CK9z63E9VgCoOATA341REFN58CjMhNIcD7cDIBVdmT2Je9SexgNkxLMEzEhRsz9c9lt7kJg0ecZV70Q+kJIJD0ItHMMkyMMwk2F+nFypgHOP6xnXw1j+miZE18MBXAcqKVIRIUaGsmi4eOC7X+W6waYkQwwqsT0jg05FSmzSY/MB9ZV53YR/RYQuhgxxuyrP7YYM2eQnDILFb5ss2byDhdy5CKQ3g/TPIjY2wVF297ftOViH5AJLMmQPzO1QOzt/JVlhuV73enZDemzyYy/b27lEwiYojKy02U1dbp3mt6pbLdv1KKLVDdtD0DLRV5sUdSOrzSisEaOeFa9pkx9GhIAlGXJJkfltE5FLWbYJkFl2SZEhQ4wUufV1rP7apCiPokXoKFDPh1LnJJ1fa4dJkLvo1STWM8tuy3Bbst4W0ckXst7OPEpz1TtGioCW94BFipJaX+oh17G1ziZFhqwwUjSz83YZKQJQI0U2EWLLSdCtEaNgHqalPhgyUgTU5yWylxt5RfPt3aku4iindgNJolYgRZFFSmqy33NiEsXDGjEyhIWRIoDPkQRoz49NiozwUxDmi79FP+dhf2pupmtJFMLj6uBaH9NfsyFz1/qBWwf060gQUyIErOcVioJEJsMmyOhLkClWzZLlm4OJIFhvwNwms902L46NElxOukR1UaE4fJJUrvSmQueYV6isKuoVmpaVkObmj/hpVVEyxELYJmVFPTxFix3gHqNJWdLjfFByme91Qo8OqoKSmImwj6vpWuUnVUE9QAyTqpAD2oOyoKRH2ffLKa1L2ddps61uRob2yyn1DI3LAv149UmU94uyRoYMdqclJUO705J6hnamBbVvTwrqpVkHFyZT6hm6MJlSErQ10X3pEPvWZFIjQzbYfbhVjhdkqFZ/NaZ5YtvYR4dIte9gn074u4M9KgXOQuV2g10qDb4T7CKpmn3ZCS8gqZp92Q22aoSo3p+zNUJkMCUhd+Nym3p0xuUFSkim5RgJeUcW1YTWM63G0s4wLZvhf5NyT8pvM4/RZB6GF5P+jyfnF4TItSdEkZGF6I2n56ln6KDYqhGiZX8uLAiRjWJ6gXpwynIHASPtJIypwpR6hqrqQE4LUpX7NA9qWmwhJMe5LHeFtDgLrbsmh6gel4BrNXzumvYQXV8QX/fFAyQRSZSHeYVqZcOhJEO9aoOSIRaWAYDOQwNoNbN1ZLZjpVCnvDBHkcSAGTFbhwyxkDRAh8ip8kxqG+BXSBhozxBDHvOyqWgzjQK5joVTAZzQyhA5cQxWSai3oSS+GRnKQx5qp3LehrGe/0OtW9fOw+T4MVN1nEj4YFTZN1NRPls9DwMATuacyJ3MuP20KH9zh9tv6QrZ9LR57TAbANze4/t0W5fbb+5w+xlhP52vNkeMwWbMv7KfFF/BTwT8a/2pgCfqnxZS4MwTpcLnTlS8jlHJP7iNhAADAGxUXCKchdZlYR8d0n/lKWKTw5p6GHJRj/RQkYlmlaeoo/J1k1PoJlw6u5/xfN1BzuXTqQcpHlHRBkaSAKCT8vORpVwmPRVy4CGR4g8QU7IVBCkiES6nwuhy0U8tQ872N5BeLS3cwOxH5XFqq8d7ta5nXJOE6PryDvF41zDsUzJkq8/YMMpybqKlnHtBvBSAGRmidkKG0iBqSPQC7Xk+gJbZdu2K3CgyxOwlKvpl1NjZOtOsu854Slyp7XXJEJ+7qH1OIyW1rZTl3LZF2sfaYX8h2sPw3C/lhgy5A3zTv0b5kJdXBEGRrSyIGl5LQ3rcuozdJUWdiJdv20YRK9X/NAzlvq7aTxPK1o243c35YV4OANTTA8zC3lyi3kvCRflG/fPfHcfem3uMug4xHyRB7X/X7kIRn7Z1rt3UPUx4HweOvSvseWT6HjW8TVkYyjwpJUnuevPM87Xj5MeY3646YHf+2yU/yt5BIsOfXWnwRV2O4l0y914xJTzjTXLlvQ+T8XZJURxkSAOhPidCDt2cIlPOLW/KuaRoYXdIURx2kYZ9qoaXhB1JmNhEsoBWuMudkDgz35FLiownySVFcZTrMLx4REPuVORJovKNHFJkfrukyCjkMVKURH1EYU7XqTFPLI4ZJ0Us1C9y/j/MDhxdfpInRZeCa3WMf80Romv1QHGs5xVS8xMwie02r5BNhiZYqs/0qg1KhnroSDLEcBR5PnEQ1MiQGdu7IgPKbrDObPZA+9xFSmjAJiqm1jgMKBlSUtualKxHCBXscak9nlN9cftjfrs3vNl3eWzW9AwpVTObGNjLdv2G/LhEyCy7JMLUowhMR4RAtW2T1/J67Hwf3n+2rMiRIl4uCTJQdpsMpSIHyPYK2mFvynsJLEmRS4LM717sEgxOggxsu71sE5tLWbZhSJHbR0N+3NC/wYII6uNhe1BtUmRf+zYpsq9Zle/lkqJFPXOy03XIkSE/ym6H59mkyJYHt0lRbIUpKRlwZQf0nEdKxtuQIpvApEF/QYzs/B+VL8SEFtwyNtbxFAFLiXCXBJnfrj2NegtiZK+zSZFNnFxStOiPyCtS8t6H5SHFFhmxRZpii/Ak8XBBjELLK888RbMy3DOjyI9Zx6BIkSFGdh+iaLAgRnaoXxDkwlu0jqcIODpSFJBl9tvDxbU41r+mcoiuxQOkwbxCYg4DlSuUcve8mu1beYU2Ku6yn63j27hfJQGdlL1q7o/BuoN9BSZJDXBFOKCdsLEBvxoMKW9Ry9iJQqlkq/4ruW0mZXoxCtzqTlcCs0rmW5FRtV8MWRhiv9DSti7UJbiuIMTFSMavI/2chSHGZXO/pPz3mt0JxI5JL6OaeLelYRXaybDuPXFE0bDyWnY9v232SctNdCAqYucW0JL1bdLeDKpH7BrMwwg7RVNKuhB39B64RLOZn65hF+Xbt+F5PPaHOxtUehpdKvutpLqVRPa6EuFaqlqD5QMBXOJbyq2LfIqyFFLmQmp7XdnvQkh5MyRRX7YbinFbID6mqXrKStiVtLg4jxrkuRz2UJbba9RxMQ+wa2aIfU3iWsonusY8ROtebKx8hMvrKuX1R9GAPgCyZEPY1dcqIfVJvnp1MUIXvJ5e1aVqQ2ryVUWGkjCggyEl3xyFAR20qYGcsjModTmlgGfWMSQhH8Dr0DklIc4HhXJATuy2Sp3bRzbQjQMuzZ2G3D6ri+cSxWKbKOB5STJvSniGmF2VZaFnwMxzwbbJo4jOKaXLhzKnStnX2V+1X6ZdF504REb6n0Xc3olDSuJ7MT+H/SSkOWe9JEAmPpy6oXDLtln9gbT3iddomAbUmzRMAgzXsA+SgHqKesou9on1EZh9KBmmZK6yKKACDiqsLg1DdElYnatmZ9uZV7MTRTI8j+Xk9UQ+3pBECSSIaQ5SVMXIqy5yJuONlHqR0qpDIxQSZPQ9laKLjAj8mHXNeoTnQYQFZiQ8byYFTvoedJGRfC5Xxc5dx0PuutQblUdD5CzqI9qgH0FVGJ4Ju7NhQuua9g4tHwYxzWNu9/zw6yqOOlSIIo0HtO083USebpLyq4f6RWFOleyiqIeIhDXO7NzzxiJ6omhI54oMwx798G3sfB2/xpXqHhfh4hLo154nat1Qwmup79cQIQpWnpAtABquSoPL6R7l9duuXRsmJ6hpX8YDV9Xyi1Qa9hZkyP66lIX9xQPc/hKmiBCgZVcZEZq1ockQgyJCzB4ES4Jkkx9lt2F/3ba5i01y2r74t5EhbtdkiEERIdNte0xrhwTa7dhEyA5nsvtoD3btY2Lb24jQUeRH2f22B/5ZuCQfdoiXbXfLG9h5KyoMzS5T35aHjan5dZR9tn27p9AlOoftl9xHq51OLYzt8GW7vE2K9GBfSGULEgAsyZBLcsw2jPy4dptk9EWYXC18bs1lFXqn9sscH5dYGUKoSNGsfn4MlbS3TYrsa9gmRXlN9pwvd8SyTYrs8EubFBlxD5cUJfN3FyNFgBZmAEBJ0Wyb5UAvrZb12qTIVq2z31k2ibFJkW1nywnyGjEyyym6tfLRPGSQkSKgJaxOiFy0ESObFNlqeTYpSi3yYZMie1ubFJmxQB5v1IiRUcZTZEN+aCVlAS3utC4pAupy5XY/7LZt1T2bFBmVPnc+RtMPO9Sv3iaX+GakaGZfnRTNyq8+zxNbZ5bdnHJDetx5KZXd4NomRvaY3O2Pu85as8ZkzJcb10TIXP2AtHVHnXA12FHhCuvuMnsBlvTmqqqSEqGZvfmwCoKIeoXCIKEP7QChJEOzL3TNm2gQiJegkAlmA+iy4kRIyT1XVUWJTpudYVpxqW0lzW2qpup4YUDJkBosKyLEzIWQGy9K7hWalFyye1xUtI8HZUXDnw7KipKhg7KSROigqCgZOigrSobWfUKsEzq3X5TUK3RQlvS8jMuSfl0/KNrK8xN5UFSUDB0U/NiNy1J6gRjWnYuLYVyUNTJksF9UlAwdlBUlQ/vTSpKGccE9Q3tim71pRYmEsqtwu3Vf3+yqunDA+3jhgB+fC5OKese2J5UMob1wUNLrZGtS0OthZ1rQa3q3mEpp73Wg7i9m3ykPFmTIxgXsISGyx7vBLqKKvxf2g92F+EJ9m+0aIVq0HZyjMt67OE+9OmNsS2/POiggQs2IfVxuIyVEZ1xtSQI0qXbpuoNym8qHj4vzNUJksF9coB6m/eIcHRPsT89RqfCD6RaV/VahadNij9pZaF1R7lPSZOpmRGta7NGxzsF0i8qQ7x+cpf0/mF6gxGwi7NNiixKhotihdhXuqEL9WPmy3JHkSK0ry21KdspyV9qVDDp/il6tIb16oldiXd2+fgjk0eOa8RABmnXPLhJ+sPU2POGSavGjbVIy/qUkJi7xNB5SMpTGA/qAyOMN+uDLwxF366NLyVCvHM7+2IzmQn1IJZWrQfS6du19WM/O3v1qbqQoCGT4XBpxMqTnHaJmub/Ky6BkstXXdv2lW32tFp4AUT4RYhFJyD1D6vio5Hx13lkIGAAMUyGVLezq67ysp2X+G+1FWd0zICXN1fWwpn1TxLZtZryPJ0T5k7l+1J/IeNuncm4/0+H2m4S9L1JDR+RD54b4AD0QHxFv7fI2bxH202KfTrUcn1MdcUyFLPmmsG+kfCcUYT9sQtymvdmukgffFDLgo4p/QZ+t26D2EyWXdD5RcslllfM6rHg9eSVyc4W3S9lZeF4W9pGQD4ZZMJDepX7Ipa37kbDHYn9jLsut7H0hYa1kv5WYg8pdZmOUWWha8/hEYbr4cxFHHUrc0niAjHxE7uW8/92M76+SHFcS38ouQ/SE14yN7cKwR+1t68KwTwUmwrCLmLQdhl06x9PM69S8N45uolteXo2JtdcskHLqoVBzvFq46oTIeId47CV3G7bHa2aUDAVBRslQgJheQErNRLlo1c2lXNXGDe5+jchDE05X/xphvpy5Satq9nHg6MgQnUMIQro54ANrVV7ZVZ9MV9wutX11N4NWN+/ZDPZLh3UdRoZcj5j57fZ13RC8dUhYFgV00N0WIrcIAYvcfs7+dwflqShvfrv2eFHeCTGb/3bt5ry4pNH8dsmG+e3yFdNvt3ybolpbiCEtL/KO2tp128gP6b97/I3XxrV3xPExBM9ttyfq6cWBtQ7Ounlbjt0QE3dqoWFS3861u1DEp22dW5chWiPHbvowdOoxXNENnzPHheU+mWPshs+ZY+ySalPeJdWLa925B8xv195dyJvz8i4pMp4nRor6sZj7S3wc7AtCATRD6/K5Z6jv5BRl1azuQblRsxtPUtcR+8nmdpf8mN+u3ZAel/xE83e5azeTyrqkyNhdUmR+y5C7oE/XKbuSG1dCSWYc4KLjDKSNmp2bb2TU71xSZMiNS4qM58YlRWb84pIiO2TPJUVLe/36Mn1lpGiVFIN6GyOkhPAlUZ8SGkVyjoIUGbu7zvx27aZNlxQZMuSSIqP0x0jRbD0nRZwYBViPGPHyanzcNjZX6SWGFF0LoXNXlRAFQdI4eCbOUiectcVuXm6vECc3F0uGarZwRB+Cbmy0gfEK2TiYhwR0kdXIUDEnV3kY1ciQUS5Sg2h3LqLQ+d+1ryr17G63Ki4mBElOWHpEniEWLugeT9OHOKzXbwZorn058K/Xo4hIZpW3Ye+juy47jFyI8qrtdT1D63rUZPkVPDRurpXKvWLnTC0rsuYeH1O/209FQs1vN4TN2F3PYroYzPMBuxs2Zuph4WSGFLmkxkB5aRTpse22l8gmPLaXaEMs2+2qtlxStCgvyRU/L8Ayr8g9x4YUuffGgoiSeZ6YXZEg89slQea3W96QIjcMz5AiO2zPJkWR9RHOJkV2aJ1LijIrVE7lG7mkyMAlRct6BBkQHqHDPEWR8z439tj5MGhIkWs3JMglRzbBccmO+e2G3WULWfFlXbbcuE2Q7Kk07HrsMUFsjW068UaDGAGrz4W0sK/hKQKapMiGyi1iniKAk6JZ2xutfYpdCXQjOe7IhhtCYxMbmyzZdjtvyR7L2eVtu01+GAnixI7b5RxNKrdrDVIEXD1vUVufDCmyvUNh2EEYdq46KbqqOUSRkJdmuT9x1Me0aEpxAjO3blE210VhF9OiKakYhTkKZo/6VIoyiYdU+jGJ1VeH1YkQoBM51depDRGiAAAbQrWHqREBWhlrXaltVfyo8k+UBLcSTsjjgEpTqwF0G3FiLScBMCEr0hA4IKHJSQCMSYeUTPC6x00pCLdV43rGDqtLQe2DApMRvxioa3TdRz3Aj1MaBjggB6PNzqSc8zigMs6dOMABUfptK79P7NrbRc2tUtlqnfRqyo8U69WjuqSuLXWNToV9LBSV2b162Lp90Yi6JnamzYryiJ/Lbszl6PMoxC6pJw0D7IlrYmfa3Ok4CLA1beaKjFukbydCjlrJ0U9EDs84EDLYorxCGfATo+pRctfrttsGJf1drinlzfJ4kqCDveossXexX57n9qJZPg672C/ONcuHHexPiT3q4WC61bCn8UDmISkCFAlp7qmQ2lYS4kWhJLsvb/6Jyiu6GGipdiG/LmXZhRw5GcOGURdF0TyXSnY8DLsoy+Y5jqORHCOr8XkS9TEl43Mlt10UF6j9SuCqeYjSpBk3GkfdBtOf2fVEcVoNhX/FkuVFG2p25zQeISDJqpebDPWqDUwCfvP30KEvrzyMucR0ENKBBRtoRmFdNe0wu5potW3i1HXgTvxqkMeB9DJcDBliUMJUQpRKlk/CgPYpDXk4XJtkNNvnNJp5oVhaSRry46HqagvRY/Xo8vy4KslwZc+jkHrtUuHtVP0x++C2oc79uvZ1c8jWLT8QEtqDpBkGZ+xuuJtBL+bb9GKApSwNkwrduPkAGSUV+sR+Ii0xjJuDgc2kxEbStI+SEifSpn2YVNhIGZmoMEwIkYx4GF4eaY9TGvLcpyTgE9GmkVasU/l8Op9svZyijqhH5RoNnLC6JAjRJ1/4kyBCEkSNSWGB2YSwPSKw0EGCIYloyJBiSPKTOlUHfeIp6lZ9Ku2dIUeHeKiyqkM9TlnVQYd4lhJkyMnHwxz9Vrta1wGR00af5vyqelJ0kQd8vNEJNqldhdblkSiv5jhcQ+Ib0FLbcZjVvFlLexcxGZO1SY6zPqkQOh1a11TjUwp9bcp93M69PgCQJyeQJ00PXJZsUM9cEvdo/5Oot5h4t27vivykFJEYs66rsKfye9QYmo3dF+vIuY/CLh2nM25wpXBVCJEiQwyMDBmtfHZi1EGW5aM+JUNK5lHFrkrNfXVjBwNKhlQMcq/aoHM89NBZ/DXaDuOFDKuNJAiRkC8ebojcwh4evmyPB+1lu4xd9brhbzb5sZftttzBZG3dJZAhu4Q95rGXbTJkL9tlMhGeZffNbrcW9rXCsr3/rsaAPWi2+5eLuurbaiKxXnlqXp9kqDC8iyBCilRd7HLtvMb82HbEeVqlvH2+7IG5fX7tELNc2F1SZIfJ2dvYdpsU2cTDJkUjy26TIpvY2KRo0yJCNikaWcu1ba36bVJk98EuY+dA2aTI3keXFNn3h02K7HvZPvb2ObRJkX1d9IRsur3crZXhy3YZu/6OeIbYpMh+brqkCAD6YUqJEQB0g5QSI0aKAFBSBICSIgCUFAGgpAgAJUWz8oJQqDA8i5issty2ziZFtt0mRWpbOyzeJkV2yJ1NihIntI7aLVJkD0htApJYg157nJJYqmz2uMYd49Sktq3xkk2Kssi2d+nyKn2yw+Vs8pDEXWpv67exHYXdECNGUBQxytMTlBhJwhePKDFS7UbxkBIjncfTp8TIhLI16hHjaePUoI4N6aS4dkjRVQmZs3d2XVekcje2b7PeTLihmoBMMGb7hrRxlF6hRptVQkkQMIsFZ0QoCgJKhMKgRf2NnJ6i5Pay4l6houQESM82r8PmmFeorPSX9bI6Gs9QBe7pmVTcM3RQ8vJjIYe9X3D57HGLNDSz70+rBhla1sX7ut9SFyMTYyFLvV+0lW+2qyTDFZhMOdAixt9S9bphgetCTXukQsnUvqnymlyuVx7Qx0+1nUX84GnPKS+v6lenZlrxDVRo26Tk5fdFFJOyAzrkjoXBAqChkIB+tqnzrzAV7aoQwzEJwwNAw/MAYFzpg6GGDCqEbgz+/p0Q+3ZwgZKg3WAbGZmYdS/YXQgy1MtfoPa9YIdKge9jm3ptlL1t3R4uUPsuzss2WJ7wfnWBKuDtVWep7Pd+eZ7bi7N0MLpfnKuRj4V9eq5GiAwOplvSYzQt9mqEaGEvxzVCtLTvrt0nNv4aT87T8dd4cp72Ve1Dm11JiCvv0HhyjpKg/cm9dJv9g3upHPl4cp6eBxUeOBEha2r8q8fS3B7S+Y/0eBmYTRNDW1hhTH4w+dihZY4aV5wQ2WQoiXqYkjjFJOphUuxQO4tpBWbsna2bbXO+aY/7mEybsZNpPKJ9ypNNTItm7GSWjOgFelRkqFsNaGher+rSeSQAIA8SSnzSMKQ5N1owgJoRBQF9sSt7AG4PgxlZYlin/iwKZV5KHoWNXBlDkNymtcT0vE/OBoZ4TBy7GXy6gyJT3h14mUGsa1/U47Z7iJ3lJhjvlLvOECHXbq4JN5clPmTf3IGjOXZ7U96uW/9hdjeNwtTv9scQZFUP0MwFSUVd69pN224+kbm+3GvYXI/u+TTeDdduvDauvS/sxjPkXl89y6uyO61f+4O5l8W1Gw/QvtPGcF7XXlEvb7w721PXPuvM+Un92TZKZvZzjn0w9yqddez9aGa/d+IIDsxJ2znHnhv7Qb0/toftvBOab9ZdcOzm/G9N+L2zM+HXl3svGA+guneU3a3fXHeu3TxHtp0HlfkI5uYaGTGGraL5XjNz1+046zoRt5sPc+edvAPjbTpf1QdxRgxoG/V3cMfYg/q4wKjc7Qb1ejpVPi9fHxOkc/tuuO2Unw2q9xr1cDsAdMt+a127Qd1uRCF2gwuOvU/txqu1HZyrl5+Tqm3cU7MbUrVX1cc7ZmyxU9bLGyGHneKT9fJz+27hlI+G2Bf5HZ1oEwckFyULh5hWzXygLOxjTMrHQYZx2WwjDfvYnd7TtEc9mv+URn2Mp816sni4tv2A5Jtn0RAHZXOMOls3wAEZv6ZRD2OSxxMHKbeHHT6mjXsYT8417FGYYX9Ccs2iLg7IviVRn9rjSOXedym5UmPm2boBJtPmsYjCjI7xozCtzZ91pUnRVQmZS6IeZb7r2gHtxpR1xX0qhqBC4fJkE3nSjMdVrs2jCpHrVgN0SXhBr+rS+YaAGRHKiUpHGoZ0okCpLqfyhVRInbAH838uVH6Rgqo/i0KpYpZHIQ2tkt6iQ8hQo7ywyy/3qp41v+ir8sqehUEtVK/ep/VC4VRCvNo3fezW9NjJUD5e/7pKdbN1R2OXbcvwP24XU9/UQthUaJdtV+FzPSfHxw45G6wQDmdP2zO0ynQs75Ed6lYPn1sOwA0Bcpc3rOVBLcRuaTdkCABOWCF2PasPdhhebtutcDv3OrKV7+x1tmKdff7t8Dn73lFziql8MHU9K7ucs0zY5bxbKtcoSjAQYjxKpEfZRyLvYCQmP1XS330R+qaV7/gHSENmXKhQvE7V1WF6oi4V7qfC+pS9L+Z/6uMktXcCnlfUC3n5XsRFmrpRs3weDZETjw8wIy1sotk4yBATpd8s7NP5FrNwuCBltf7EJ9GNSZ/UmCseUq/VuvY06tOJddOwR+eRnG3TW8iM19qI+FxMyn5YmJ4LNV61lfRWscdRn6arBEGMgAhkxGGnJYKqRz1gaoyu5re6EriihChNbm4cAHMQXbv57drb4kLN7+Y2sweES4TMb5cImT65F5aZTdklQuGchBylV8hGNRdKcImQCTlgRGgyd4e6RMiW2mZo8wqx38ruEiFjd5s9rD1Vv0uETHuMCJlwFHfwaUqtSoZMte5g2Iwz3PGGKeeWNwNTl8QYe6OekJdXdrOfjAipOXuWc+TU7bZkeN1e/9/AHDP32Km5cw6TsXbtph9u/aYfLiFR9dhl3X1Q+3aY3W3bHEv3+orE9WjOo0uGjF3JYauJT5VMtkuGPJpgk8YCWsabCS0AS3LiXjPmfnDJkbp/lN3U7157xu4+Swwpcp+rhhSxD2eGFHWdMGxDfox3yLW7YduGFLm5SIYUufPmGVLUce2LuYnqAzBDiox3aFl+9j5NHbshMi7R6SzqaRIgY3NJkKrLkCJXMtyQn9whTcbu5jwZUuSG3BlS5IbcGVLkjjEMKXLnPzKkyCUihhS5JMgmRh1HwMGQIrcuQ4pcEmR+u6TJbO+SLEOKXMJhxl8ueTEkxyU769pNvW4IoE2KXFJj+uj21ZSLnXthYW/Ii8/Htg6xMKTIVfczY9fEyeUx5MedZ8nY3dwfQ4rcPB9DitTY2e6zgem721czXndJUBSmVzyX6IqGzPXyBzZsSdyloWgyBC7uURecWXcwYdt0pXzkZNp0hefpJpWVzOIhpkQOshNvoCBhc51wU8ZKrkqGDNSXrgGJMTboRXykJKW2VyRDh0FLQIu49zXTwvScNy0eACUbLL/cKylmHqev5LalDHfI8xKSkOcyrFt/KuoHZoMz1kZb2yoMj+VQtNl3hUTwOvLWeSTkraOAHotc7O+sjaPbNyXD7oZUAjNRA2bPo/XKmzYYlGchCvQjX+YsrZkf1BF5Rmm43s1eiLwhlR80VnlDwu6G+NW2WTPXqO0a2yFS3Up6e117233lhskBs+c5s6dRgB1xkaVRgD0i+92JQyrv3Y0iKu/djSKcn/JQvPNF893aDRNskXduHiTYJqFYPaTYRnM8kSPFBTTHDT10GmF4wIxcuWF4i7qqDsYg4wDkdJtu1ZVtbAfN0KRO1WmE283a7WI7JGFdVQdbwb2k/kEj3G5mH2IraIafAaDhbQBQtkiUs5D+mV2MM8RcM2wMBWhJ82nVPM/AavkplwK1X8D6OfFSXlyNG6MhlU5Pwx52J59q2JOoh/1J89pI4wHGE5ZK0qP2OOzQELcsGaEseV/ThMuzR2FKx91hGNPye+O7af2XA1fMQzToPrhhU2IEKnGPud0OW7duG3nadDcCza8FBmaCNPcm74SzekLHvZgHQ+TBsHFTGRU59+Fi5EfdhFUz+WpBEuO6YYxuGDdEC4z3xOU3cRggDpvhbUba2h0yBNYfs7uDKhMit45wgwrby6KADtryiAXnmW24qEMeBXQeFSY9DKwfrrZuONxRhckpO3ARoX4toXhtdne9+d0VE5cq2WvXrjxZywll4djr/9fbqG+76j4ou0saTP3usTUKb81JcbndgNl7MbcPkoqSlX5cyXC8QVyhS4jMIK5q4WYGG0mBbtR8/pxIp+hEzUHyyXSCQdy0n0gnOJE2B0OjZErtvbjARkoG23GJzbRZfyeqamp2BllYUblvYEb0mIR3GnKp7jY7g7nm1MS8q9oPu6/cMDnzDG5M5Gsm7CUXk1nXcdzE5rcbctedTxTrKtkZ+yiuHyjjeRpFmWOflRu4X7/n79q+mHC9T8QXAGAIPkZYNwwPADIizNC2jWpDTWarwu36JR+HDKpmEv+s/g1RnoSeoY9+0LR3ghF6wSlaTyfYpFLheTCkH307wYgKSKTo0lC/LOgvxkw2kqCDTri5GGctyw+o3YTzud4mE57nerNU+TTsIwm7SByPiSmbBN2GsIVJl3AjheIgRxaNkEWul6WLLBo2PFHmtytTbjxU3YSfIybwADQjnQ6zq7SVkAh4GajJfNW4nJVn3OFy4YqGzJkDl8Td2gExoWhuvKS9bBMeNybRXk4Te5tlG7peS/rRIkOryEmy2aIBNG7GRf1ijgGmIge0xCCLhzHQDGtYtC3cP8pDwtTcAK1Ipezr5AoBTSJkll35ZLOYR/V5cGyi5s7BE4ht4oW9PnC2u24PbOyxh5LbljLc1rLdN9tu92Hd+lNRP1AnQ/mabdvHyyYEatmGzGFaW257XTs1z9vg9nVJkGs3pMit3xxjV+56FfJjb2Pbe8Ju5wDZpKhfy/Wptzew1tmkyLbXcnCsXB6bFJ2wiIpNik5axMYmRTbhsZdHyZTae9a2Ninq2nlGFimyPVU2KcpCe1/qpMg+ZsPasYRlx1r2npBOt7EuOXKvve7io0DdrsLkZE5RiyShS4oW26w455GBS4oW9oi/21xSZGCTIlsC3CZFuWW3SZGt0moTFpvUuATHDtOzSVHHak9tr9qwSVHHqt9+/+d2eYsU2Up6NimyI01sUmTnKQ2qkwtiZIfi9YOTC2Jkk5RecGpBjDrBZk0G3CYt9jjHzpG260rRpcSoE4xkDpSco0mMt5Sd5TkBzRC/w8q7pKi2TuTGyfSJSJATka+l5pOySZFNYGxSZI9/6/LlPWq3w+DsOu0yNilKk0FtHG6Ppe2wOJsH2Nvbc1wpQnW5cEVC5myGp5KlQuFGVe7SNlQtkqEMenZl3icmCwkAqQiDK6upvJn1vAkiqVR8/QKAQcSPrXqJSY/NmiRGQV1YSnpWQZEzlQcFaE+IGpwrwQA1Nlj3GKk9Hhe6jaOUhtbnYr22j+ppQSKIWqFOtZax5va2Y3pU+6YiTNV5npSavK3ruWOenLbyABCLEDp1bHMR9pYTbxEA6kUCgETUo8LkxiXfiQNh3y+4fVeEySn7rC4Rirdm+Jy63/aLShIlBXW9qnvLVbczYGGpQFMl8VL6pJ75qo2JkARWdjWMmYrxQyHsSjpc2QFQ5dY2qLq2g2353i9Ff9Uk7YUIcdP1iNAtIZlekgngD0MoQusUVBty30SYmSqvQt/WHXO2hdCpfVZ9UmGD4+KCJEdShlsov6ny8vgVB9SuPENtJEaNzW1lOYWt3b87tMyl4rITIpsM5fGInqQ83qAyheYCcGMm7cQ1V67QrHOlGE1dY0c20iTiuf0yiYKulKRJMpw4cqHmy8nEiV82X2DGQb3+YTWrf+rc9OZrUeHaBRGyVX3cB7MiQsDsKyJ7OSchHzQmIc/biMOAzokRBvzlb3o4dS47Q86aksSzfXDbMEnEbv6RnaSs5I3dK96QJ3c3zCDV3Q8zuHTtZvDqhuGb8mMpk83rUTlGLMw/i3h54yVSuUF7MmeI21m/lPy0kg025Xed528u+mrqcfc7P8SuZMlZG4dJpa9qz0Tb6loy69g57UR8cNuLK5pD04srWr9RXZs4RMNWaXNzbIyy265DKowHaHcq7E75M9nsRbc9rb88T2SzAdjWpP7RaTT3Bt07rn/c6cWz+u89qNu7kZHprtdjSNu5Sb3ddGGvD1QSixSed/bNeP22ps1jnoQVtiZNexoCF8i4I4+AHTLuUHlu6p4w9j2nroUkt2M31/eFAy4Fvu1KhFtfFHac3CEzyayyu/lJxuN0wblZzPtJ2if1nTAhd24O0mFS4FtkQKdyk7pBSnOTOphdXzto1tUPMuxW3M7qMl6tC04OjGnDzYE6TIr8gpNvpCTHjcdpuyH7PftKvxWedexzuW4nD8n2Prk5SsYbpey7jT4NWu3r5EDl6GO3apZPgg72q2buVR4MMa6IpHbQp+WNp8vdxp4rys3BSueeItduBCRUXfuO9Hh37u3aLc9S+3bxiXq7c6/WztSRVJ+Pg/ccCXMjGOGOm42zwM3NN54dl8jklsjC1LknjCOByZhHYUbz/OOoU8srutyk6IqEzOXxaHGg3FmIl8ogtlJHM35yZufShIevE25HFfLmqKYYMBlKADK+lsXpAksy5MJ2nUfWl4VVyBBQ//KkyFAaBouXnf1BMgmXL82wZl9Kc9seGZN3ZJYNbElt94On+o6mPFUqzE9JGys521ldIjxLySdbdhUi5x4/tlwLYRN2Fb7mhtQxNTs7LNAu74YLuh6IwxTNVHkX60tuc7vykKwSVrhuuGHb9nb/1l3ORNvqWrLXuZ4gc17cS9ooxCVOfpCxu/X3hMeoL7w2QF3m2sYJEaJWs1v1GjIEAP3YCoHLloODQWKFydnhc9a2PXvbdGnvWiF5G1Y9tgdrI+FfPe2QPxcjsf8DR53PnINB4pKJ2f9uTpE5165aoMpzy8X9ay93rLrs60+FUw7T5QViX7t9KwHODbnrWe+SVZbtUDw7/G4obn5pT9YLt1OS327khMpNMup3bm6SISrALCyvFpo3L9sN0pp6nrH3g6xWn708DJbvdbsN+31vh8fbUuS28t6wFnK33NYWYrLD7/oiKmVQ8nGJCumf1cXXKbsSjdJiUhtOuVnf7XA/YBny1w020A2W2xiC4eYhmWV32hOz7JZnZez6DWylvNQKm7Pt9rIS13JVAA26IgywH52h9l7MJdU7RL4c0GNiOwTORptEdhykDRU9AA0Zc0O63JQZO2zuSoXOXXYP0enhoxq2SblHD/xBsUPJy35xTpKdcbEl16mZeJUSSBxw4sE09AHQGFhg5iViZGgc7FEyNEVBkysLFCuTIYMQQSsZarRR8bCcsuIhaZOyknlH7gSodl0M6sJToXDTsqJkqCg1GSoqHopSVXxwXlZ8cF5UnBSo4zcpefmxsO9fROjcuvlZbXXtFbpfdD8KfvwOCk6GVPndKT/e+6IeFV6m7AfieBuoEKZ1oU7FgehXIa6zScnnIJpWXC57UgbUXlScDE2qQJKh/TKgZGi3CGukZ2GfcjtQJ0A2UiK2AOhreSzC3vYLPog+N0loSN+5SUwV7s5Nopp3yMb5aUjV9bamQYOQAsDWJKDX2oUJP9c7Ldf+OnZA39dMdXFWlwifa4mE2pmWNeJzmH17UtJ8pAsHBX1HSftkuvAO2Tg/ndCc2Z1i0pACB2aeIkOGavZy3JACN2CiRQaB+JC3bgjdhWq/RogMtrFP84W3sdeQIgdmniJXchyYeYpYPvJ2cKGWm2SwFZ5tyIEDM0+RIi7bwTlKgpT9YrBuuN9uda5BWABgv7pAUxjG1TYlKPvVBWofV9u0fmDmEUpJHtG0GtPxpKprv7xASdBueVaSo4OKqyMqBcFC2FXIXVvYW07m8py1fUBTTQ6KbZqycjDdoiTo7NZf0PqPCpfVQ3TzxuOpfZDcSu2j5HZq30juK9tQ26jkNeX96YXcy9MjqiuAnhRtUJ2gZKhfDSkZGlZ9nKiaF1E/yOSkdeyhbqDIUFfahXdG2FV5Ff6uvD9a7lok5ke8T90okHOA5FE9mdlGRwijuEnvi/JiIKLKH9WcMcrppXNIuL1tXRoCI9G+6peaj2Vd+wmhD6LmgVH9UXZ1vIH1j2GbXXnEmPJYW79U+Q2ieDaz80GCsp9o8YzclHESc2vO47tv73LZ29M5t5/ocPtmZx8jsc1Jsc3JnL/EbxXlbW9VrR5B6ADgVMqP4Ullz/g5Op1z+0lx7W+Ia1/Z01Bfm+o5pJ6Zyg4Ap0QjZ8TD8aausvNO3SLsN3f4jt+c8wN4Rthvzvjg9ea0h2HCb7y+8EYBeloLZVcCEzcJhdybxIfeM8J7cAZ8bHOm4mObMxX3Htxc8vHZmfJWOf3HzeV96Lp+tSG3kZPmCjGpIRknAcCo5GOxExDjyYDv3ya4XZUfBXqOnGHAPTb94GRjLikAGASnqT0Ph9TeDTelsqDql5qYV4qACeEGlUOvVO4AoBvzvipPlapLcYqjwhUJmTPIo03khJAwmURgfjGQmz8PR4s/hsPIkLudIUONSczmZCiTk6HVLwxzgSaNieTmk2FV9Qf7UElrCo9UN0woGerF0eKvsU0cSjKk5u0xMqtuxJr52OcOJE01rmfHkCHXHpMQPGBJhtxumcGma3elZut1aTtbp+xAiyKZCHdScsvq+Bm7274hQ2pCVpcstUlMG5s75miTBmceKzcUj7WhJpVUIUFunw4rv6pctZq41ra5Y7nDwpfawppcqHUqHK4j9sOow7ljVeMBcj0cxsvjejGMnclxj+ZEyRVAMCFnrtfFhK51HU+QIUMdx27IUJ/IaCv05224pKg375NLirpzBboTDvkxniE3fM7MxzQkJNGcg5FQoBs6XjlzPbnhc1nEw+rWDZ9z16+yzuyD20ay6Gv9gjKCM4wUqYlkzQSwvYTb+47dbD90bkrz4WrDsZt3lxtW1xF2g0ESYZA01w2TWIbiuaSoM/dKMVJkbC75MZPYNuxzMuSSItPGMHZy5ub1rBruZ6TI1byEbVLkTI58oxpiQ4TWKSLD1pnfq9oNGXJJkSnnkiJTziVFxsPlfpw25IKRjFl9QuQKQ3TQXNfFCF0IVTz0ZTur2k3drt2MNV1SZProkiIztnVJkfFiuePvaD4GXZcUhUGy+GPbsO2YvPnM3oM96e2VwGUjRC6Tc4lQIk6EIUAuETLlGAkyNlfr3dg70Sb1DPXCU9Qz1AtOXpRniJZ3bjBDilwylM5zhlwyFM3D+1wiZKLTlNwp0PQKGSLiSlgbYpJGwYIM1fosBsez/in7ap4h07brGTI/3cG1sbtkSEln29usajddTEOeM9RGCi517qFcDJbV4D4W+2APrNx1hoC4dakBOctRcttcJQdIbdtWXg0QFYlUpNM+fmq/1yVBrl3lbNntKU+jsvfdvJX5+XbD4QwpckPeFnkuMR/YA0syZGBIkUsgDCmy83iAJSlyPUMuKTKwSdGmRXZsL1E/5R6dntMnQ4q6zvxGhhS5YXJmn9zJaW1S5F7/hhS5RNKQIvd6MuQnc86RS4oMlBdnlRwilRvn7oNpw7Ub8uOqb9qkyCVB5rciQa7dkCK3HpcUGbikaFme3yS23Q3RM6TIfU8aUtRzCIohRR0nRK8fJwsS5BIkQ34GkbDHnBy5bbikaFFeqMcqKfJB0FkQo3oOUr4gRm4oniFFPecjryFFPSe0rl8N1iY7h9ldEnRUniI338jAJiw2EepWw8Vvl4gYwsGIiyEvLkFSJMz8dj+sL/ok6mnu3/qeIuYtko6JaGNBjOycIJvgsFQXQ4rsfCGzHbAkXQaGFLkhhS4pupxeosuWQ2Q63QtPyZhGlZuj0CaHuG6+UB8nsYemksigOoE9Mqt0v9poKMUBszkBmPTlsOpjLKQVO+APuDTgb8Ys4C+CPvkCZqC8QmnI8ybSiKvIpUJFLgoDHJCKooArZgE6Z0iRKiWSt650NjAbKCiFL2UnE7MjiyoqC5yGXPmrDep4sHbboPY7D6uGephBGlbYpapZWnmO5SMo+8Vg3XweKQsdccU9peQFzMiMUvlaxw60iYdwuyLLGfHkANzDA8zIE1OlG8QFJkSa2sz1w2Srh8mE5umcyMYyf6cnCFBHCBskIp+oUDLaU/583BP2NCxw77j5jknCEvcesC+Ys4N3YdKsLw4qbE2b/UpCbgf0faGeE+te/ypvKIuaCo7A7DpjCndpCGyTV5UJK94i63oxf060Qe1fIXZEHz9FLANcIC+ffhLiAqmsF4e0fCcKcGHCd64XR9iZijw4ceer/DhXadVASZQrey+OcW7ClPRiqrDXixJq74cpzpfNkNNukOK8GMMdJZQcuTquXWS4gGa/OshwLmiO7TpVBxfCcw17vxxi11HqA2Yfs1l54OKmg1FQ8uJKsntQbmA/aO53t+rT/mZVB+eDTzbt6GK7aqr1xUHWULMzmJb8OlDT5gD1uTttlGLMrmTB07C/UHf+2Lk/ke1dCi6Lh8gmQwxm4i+X8fawufhjduWd6WBYUxYx6AYb1M25vpenWTegZ4023p/MSZQcBV2Mgm6D+AzCDIMwo8RnECVIw+ZpulgyRO0qdE48ySNlX4TO1e3Gw8S+2qchHyhmUUC9THkU0Hlesqh9gHwUdvPF1/26bAaobohSFlaLv0ZdYYWc2OOgonPJZFHV+OIMAN24ogNkVrfbXxeHzXnT5nWptR3pEMROxL0hacjtWVhX57PtLL/qYkKNDgvRW9VubMwr1o35+evH/ProxRUlur24oufJ9SQZDGL+srUnPnW9KMO5YlseuV6XMbUDwMl8HzkhRCf7u+iS/J3NwS76XSJJ3B1j1CdTM6QTbHTZlA1TbJL8ozQ04XP1NpKFl2vi2JfHbygInFLfY/YkqKioRRpycYw8qqSdPQ9U3pC59tQEwK43yty7fT2ekfl57H7txdzj1Yl43lwnaobVATNv0ijl9mEaypC7oXNzGMU75Y1yyy/t+oHBojIGSUQFJIZpSCfA7cYhbaMbhzTUrxdHNNzPeLg2Eje0znit1vM6jUIeWqfymW2vU61+y0u1ir2PfB6UVl83RIe2YTxcQyFspcL9huUGtUtvFCnfLfvoibFfXvWQV80wL2VPqw7yqt8QscirPtKqg9SZl2ow7w8Tw1D9BYCRyBfri0goJtgQBQmdQDYOu5IQpWEfIRKEzlg4Ro406DaEJ9Kg25oOYyLLLpeX6LKFzNlkyN5pdQJcEnSYHWiJ63SkF02ZPk7WyJC9rU2GOtaFa5Mhe1Zomwwl1fJkq7wg9UCRbu8oabjggRkRUmSoLV9IyUWnJHRuVn65bIe52WTI3nbdr986L6cezmdIUR4FtbA6mxTZA9AoqPdFSR6vYrcPJRvMzvaD29XXfZcg2cTFniDTHgRlYrlrDaBSUWfuEC+7nL29fZ7sgY4k0cor1RJW1xHLKqTMJkJqORbnToWvuURt3ZC+VaWR7Xrt42yfP5vE2NeEPTC2r8GeOF92PfbxsMmQPQnqSAz4gSUZMmDkx7WftAiJTYpO9pdfE21StDlY2m1SZC/bpCi3yItNiuy2bFJkyJALdyJYlxTZsEmRfV/a5McmUTW7Vd4mRak4l/a9ruy5qKftWl5b8MV63biiMzYpsre371fbrsr0lV2E6NmkaNWQO0lyrPK2Kp5dvmO9DGzC4ubo2ss2ganLjC+XbVLUrbUdUbvKgZptw0+gS4oWdVnkx1ante19SzrZJkW2+p49hnFJir1sEx6bACm7C5cUsTbq5Zf9stX3bFJkT3hrkwZ7HKekye3y3XJZplcOF8TIJTzrEqPZOj52dEnRsvxyv+2+2/21x6w2KcrAx+R21FY33FwQo8giPFk0osRI5Q4t1hMlRQBUjQ+op8fYOUaJKH8UOPKQuQee+EpqP6h2JRmKxIFSULP8tkG1EVf84aLKj4M96RliUpjAMuHRhQqFYx4hQHtyFAma1cXtysszKSvpGVIXigp5WBdKeW5dUgVoWeO2+nSeFN8/RQLX/cqgZpbfLwJKxMZFUBtkr9q2cvIfVQiPCg1RIWRK6hvQ4UAK6hZoC2I8qgdfmxyyunaUmJcOE12PeHcEkXFFE2wo8rNfRA1Pi0Ev4c/inlCmy1pU3RjGB/z5vE9C3gBgR9jvHWcNQmSwJULuAGB3yk+sCkXdL8RzlYTZAi1hZMJeinqUTD2gQ5iVve2+X3cKAFVetbE9qeQUCiqETr1/1JXuTuZtoELx2o6H2u+dSUkJ2/aklO9rFUK37jE8EDuoQtLUCHAiQprOV7uSnABajlxh3SGo2o+JCD1TqQsXwnNyLBeKN+kU/PlVBGvGj0LLiCtkFR9fqr5eCM/VCJGNfZIWAgD7aIYOAs0JZA0KEd4G6JQYFQqosF+ep6ILAPDhs29Yq67DcOQeopiQgmF1GqdwR8M+KDflZGDK9acuYEArhPSrETrExbhRblLFlEE1QpeU71c9nCybYYBDdKXrts0DRPsqvgr1k5ASlUESNrwiBlkEGl6WRgEtPwvnWI+UKFIgw/CEcEMnDmgb3Zi33Y354NF4ANRXUO3ZWM8DpEL90pD3K26x09CXEBiJJGxlv6gwuQDoshC9sKJ2FcLTjXgIYEeUB4DNVOyHKK/sbWGDbUSC9df1qB1mB/R+dER/1WSpPRE+N4xLHlYXlTXvhcEgLmg44SiZSlIAAJkgS7f2eNz4CRLCBgAnhruU+IxG+8g7TXt3eIDusEmg8s4Uo1EzHC7PJtgY8D5tCinwm0Rf2fEzSIKKetOSsKShiElQ0fC5LKzo3E95yMPqAC2yoe4B9UyIg4peh7NnPatfPzs7Yl0v1v2Vsv3CflNHffTjsuP9GDS0rp8EGJKvDoMkwEamQ/EY2qTIWbgfANwiDuJN3RgD0k43DqhnqxeHGAg7K9+JAoxalPcY1JhDSZHfHA9qIhO1beKUjm1GcUIn1B1ECRWTUPWbNhjWDfe7tbyZjtv66ND5n7rIqCJfBzn6VQ994vnpVl06lgRA554E6t4sG5nIPe8gpXnpp8vTNGIpqZJF6F3dntK0kQgJugEfp2eCqAB1r1KtHeEZdCfJNRhEN1O76tOl4LKFzBkMLTed7RK0iZDthhyWGwsy5Lo2DRkalSdriiK2KohLivpCkWRDELGBKG9f7PaFad9QicV8TV4QACSWsIMdCud6gsyDySUMLAYZAH1QLvooXlAqzM1+RifOMlPuskmY21/zW9ldqC+CdsiH3SfbbpMMpSJn+m7677ZmBhkqN8jt9rphZHYf1XIt9MW2O8vmt/seNoN1lxik4ZIsuAN69Z63B99dEbZjL9fKWNt2WrY1v928CWN3PWDG7g4IlafM7kfmLKuQxXWXgeU+uoNO89u9JnoRP08sfwSYkSG2Hz1rgF0P6Sos+7Iee2DPSNFoHj7mkqITcxW33FVxmxOMzCEMJ4ZLomKTIpvY2KTIJkL2sl2mtm1mhc85pCid99ElRcl8n044Mt3muG0SL5cd9qaOXS0kUYTV2edMTYjrkiIlCW/s7j2Qifvbvi7s67Meurdctp9B7nhehcapMnY5lxQZu0uKbLu9zn7e26TIDr+zSZFNUmxSZBMbRoqAZhiemXdvkDTnuxvO23RJkamjl4S1EDp72SZF9tx+Nsnp1ULo1gsPdEmRadslRSb0zyVFnbl9mCQ1YsTU9xZ9sYiKTYpsIsRIkbutqt/+7ZY3KryjMK8RIxOdY/K3F/VYHi57DNe3wvUYKZqV11LQjBQBaJAi89slRYYMdapOPcxv/uE+Q1obf/as/bBJkZ2/rtI4GCkCdC69S0CMBygL+zViZP+OgqQebjcnNknQqREjm/DYy6rM5cKRhsw9+MTTF8tTjGtkyGA/2KZeod1wm3qF2tya58N7pFdIKZMot+N2sEXJ0G6wSy/yMQ7o14UJCuoVmlSl9AqtK2pwUFbyAVlUnAxVFW+nqPhAflJqr9C6oVQHRUXbPih4eMSk5PHvyj4t25PmlRdL5QUVVUA9DupYKfu05F4hZd8vuIBAG1RI1kHJ9wGYhfswMrRbBNQTsVsE9Mv0fhFQLxLAPZNt2JnyNnaFfV+EDR6UAfXkjEu+bxeL/TKgX973Cm4/KLln6KAMKBkal0GNDNn2nhhYd9SAW6i/GeW5EcmlGRdhg0AAwP40op6h8SSukaGF/SCmXh4ACMXkseWE3wTnz+c1QmRwbqu7IEM2zu7mCzJk4979jHqGzk5mz2d3XieD3YL3a1/Yt6Yhvea2i5BeoztFQJ8jKrR0X9yv+2UgPV9MIXNmp+ZZv6bcA7Qz5eRor+D2rQm3XxB2QIcTKyXO8wcV9dpcmFTU03NuzN9BFw5KOQn51qRakCEX4ZoPvi3RzoVJWSNEy7a5/cKkrOU/GZw/KKjYw9akkFN2qGthUmrv8vZ0QknNVjGhJOj8dELHQxemB9QztD2dSI8RU8EFgHHFw9hUyN8F7NYIkcEuxpQcXcAOOiJ0cDvYkZ4hhUKE/O0FewtCZGOMgxohWpTHQUPQCwAuBNu1fHeDrfBcY45Mg91gi9oPiLofAIzLbek1KqoJJTWTao/ax9U29SaNq+0aOfu7e19J27sYXBYP0ag8iZNytuNbqP3m8qa17ABwa3kbtSuWPhITig2CDm4Bn1n4ZnC2fFJM/noy5u7Ak6n4ArJCAqiNQRriZMvoXz3E3bkhFvY1E2/XzedJQx1WoF4qKsxC2VVfgbakeR0Kp4iECgtRpECGTAlvgAyFU6FiLfkgQzHYBICRUMtyJ6E02BD2E6kagKv+6lHXSVGXakPZGYkA9L4B+viq8wcAm6I+ZT+x5jE8JXJtTgi7UkYDNGk+ne835g4yuFmEyd085LHkN5/iL87Tt/FY9c5p3V+1TtV1RrR9ZsjLn+7w8LlT2QFOEUU8QB9DAOiLa+5Eygc4p4RdXSMb4rmg7ktlB/Q92HpvZnzdTTm3nxH2mzvr2QFgqMKG+esUt/f4O+X2rghtk3Y9NLqtp9cxJT1AhwjeLNq5SbxsbumuZ79dyAcOkkjO96Ttetxxa4cTg9s6/AP0fbq8/O3Cfmsnl8p/o5QfdOWNujXmH9FvIUIBAHBTxMd6N4cb1A7Mxo3DgO+LO9ekgRKTuFmoIp8SY9ATAR//nhTRT5vlSTnZrvIWKbGzYcjnPgKAYcDH2CPwMb6yn8TtNeGzo8SREyI1OdawGlCWq2ZKBpYuS5e195AvmPFGY5KvWV0uOzdkKHdiLaXSSZDTC7ofZPqCnn8hcUPhjCqMCoVzPUGGDOUOuWGxx8BSmS0jX4i6cSBJkprET8kpq8kwD5NlZu1erBS2u4vGo6JyqICmN8YMgN1NUlEXm8xz2f6sLveLrPnK7H5tNuXdL7uLsBdnYCJDxeZkyK1H5fi47bhkKhHtq3C7ruiXIUPuAMv8du1tuTl52F6Xu50KG1THsG2dCoVTNrt9t199ca6MOpxrN6FYrhx2b253w9oMGWKhcEY1zh3Qb1gTn7qqbEaxLXVEFozCm+uN2RzN7c5Af3h65mFK+3W7ITzZBsm3mdtcUmTqGJyqE5Y0m9k3NuoELjHhc706+YmCWf2uVHdkT1TreMyixaS3TSJjHq0uKTL3U8+xm+vMLW+uATesLhP3gLnG1LXIZNjNs9KtS7ZhPUtcb6yp323HTD7rfhQxv9XktIOkaqwzbbqkyHwAc0mR+WDm5hoZMjJyxseGc7jll/Vrbw8NoZv/dkmRaV+GCDrtGI+V+yHR/HbLm4+dGyK8YDOLsOl8GTShdi75GQi7yS1mpMgQFffjrhnHqI++G+Jr5UYaSfLlkiLj5XJJUR7Nvd9iEl3Xm2XU99pkytk6N0Sv0V9nDGnGju4Ysjcfl7qkyIT52Wp/ADCYb98ReTq9IEUvaPa3Ld/dJUVGWMwlRcl8XO6Sogz9xf8ZmVJntk4oygn1PTsdxsXlIEVHRogefOLpDTJk3HMuETJuRpcIGQLURUZdlDYRYljVM2RIkUuGzEW66kWczFXihnEqY2CVRKb7kDCkyPUMGVLkkiFDrhgJMlLVLhGyCY0iHmrg7z7TzParzk2TCjKl+qSksG24z397G/dZGy/aqb9czSZufxf5UcKu5hcCdMiNIkGM1LC+LgYnYtCkyqv2F/0V7TeIRcvACWgOghQJUoTGDilTJEkNDN3yacsxOez4qnwgd7ktt8hADXDdgaSxu4NuQ4p6jt2QItczZJMiV0LbwCZDy3bmBMIhCoYUuXMALfJ1Ro59TooMGVrY+9wrYpMiRpDYtoYUGTJkYEhR4hK2OSkyZGhhn+9rRM4dCyMEdI4WsCQ57v1kSJF7vZnyDaIsCPQqnmi7jbqse30bU5dqgwqnCBLUF2RHeYrtci7RMutc+3BBtOp1GVLkRg8YkuOSEEOKXAcME2yY1c/zhpb9nb+3XfIi8qTMb3c/TL1u+N660RUbWbggRu6YwZAiN+/IkB83DN/YXaElm6y4BEWRH9s+tLbfyKIFMXLHPqYdtw3z2w35M6TIkKGFfc28JZv8uCTI/DY5S4s2LGLkjhPNeNK1m9895yO98hS5pMigEyQLYuQSJEOKEkfZzZCi2LEbUuSqLK/rKQI4MZrZuwti5JIdQ4pccmTKuXOCdqpeLVXnUnHZRRU8PDw8PDw8PDw8PDyuVRyZqMKjNr6D2lXSmctYDQZRiq2i+QWzGybYKXl8dydIsFXxeTJUO4mYA0iJMfSiGDtFM7Z9mCQ02XCYRDggyX6DJMRYZC26IXKLvgpxhbb0zW7MkyPziM8/kUfAWEjpqwtk3bli8ojPJaH61Il0Uq04VHIel9k24rhH4liFFZ0/JAsrWj4NKzmnj5qvQiEPS+yXzZ3JwxIHpI08qjAmdvMFeN35Udadb6QX8f52o5Imo3ejEttTLQxyFOhGlZwvJg/5um5UYU8cq3WhrrdBUtJE/EFc0HPYjwuMybHtRQWm4vypeYgGwmsEAD3hFRn19zCZkFCZE3soxk1798wE5Zj3K2rJF2Eo9nQ9u59oet+jtMSFe5tfWKOwxNlt/uX1wgEPgQaA7Qn38O8V4r0SltgmcxdlYUXvgzQssUPKp2GFHSHWoO5NdWTVMykN+bWeRxV2xT3Qa7k/1hVSUfd5L6pwYdqsbBBXOEcEN4ZxSe2APlZqTiM1N5Px6GyT9LZhMhOMcDFKuX2QAOf4UEa2r6DqGibAWWUfNw9KPwlw/oAfLDU/E7D+e2IzC2k7ozTA2TEZR6UhzhE7oK+fsZiHSc3zNEginDtgY7sYFyZNey+OqH3ZL96OngeK24dxiq2ieQGN4gTb02b7gyTB1qRZvhvFODfl4+NdcPtewHNL1fxF3aqPC8FZum5YbWI3aOaeDsoNam+DmnPpL86+bK16dP1HhNRxsW2gjw30kaH5QhmFecPlCOj4TVbWwLgIB447chBkGAQZ8qDevnGH5mHzJdSL4oaspLEzKJ1+49J1c4OMS9oNcxukIQZpSIlPL+bKQ3mkBQPUDOUqZ8jY3fqyeRssZC0NuT0T/Vo3Z8iENLjEpxPN/phnPosqREFFE6DzsKIkSvbrkIkwm3lGM7sbLmO2YWF0eVgiJ3kfzNZqF+EvNXlpEgKThDwMJxdzEKm5hpTqmQntc0P8zG+WjN6JKpr/oHKj2uZFYrBzllRelMobYvZuVFJxi35c0n4NRMK7CcVq5hkZu5NPNCc8fB6iKbVvZAc0PAwAhvkYEZPj7s/CzZLEyQ86MQ9Dc8LWumdmL+SQJOKnZwJEg+aNG5+IEJ9o3ojRIER6hoQEz0lV90x9UBDNBSpM3xb2+X5t9ptiClFYNcIEF+uCEiMSXhiHFQZifiJgec4MVN6eCoc0YPdVHvLrTc2rlQQVLW+eV+41vQzL1YNgdh8M4pLKig/iks7N1I9KKu5iwmaHbijd/Pc6QhKDuKJCNf24wgkyd1hPzHVkh7ep/KB1hYBUO8w+SHg9h+VMbYowwE0hOc5ypnpxQEUW+kmIfhJS8aeNbGZ3121mRtWSt78pcqBYblQvCWjYYC7mYerEIQZJ1JAdN783nBwkk+qgUh6UvRfHdFzYi2KqqteLYjrnkgnnc7cx4X/9mLc/EGPSjbj50ScNImyQOZoyJNioBo38/KzKMCpPYFTWw+e6c1nvYaXD57pC+pvZ+9UQfZI31K+G6Fb9xjZKEOJicCSE6HEbz6393nDiBg0pchPQbKJjkyF72S7TC+t3uEooc8kRqxfAghT1orhGemxSZNvtZfuiTywRBaWEomSy3ThfQ4p6cVCL3bWL1eascZqzydAqeTgyPyfi5VyBAdUXe9kuo7a1D49Sc3PtZpssqhoS2jYpsgcKsTgmtWNllbeJjMrBcXNtDCly84ySWp/Ki15ODyE6qq+mrD23FKDnEbLtqow9aLP7qBTwXLshRS7hsEmRmv9o3XmR2iaudQeAtqiCyiGy98Vetome3S+bDOVWeZasP6vHHVjzY1qfh2hK7RuWeppLioaWvLZNikaEQACEcGS8/zYpsomNTYpsImQv22Vq2woPU+So9bl9NLBJkX0cGiILVr6RTYri0D6f7XM7ASxHRykzLo9huub9pebVsp83NnF3n1dKmKEb1T+M9MR9YBOefu265st2mVG8JEauLL1Ligxs8mOrStr2gbWtTYrs54pNimzSs5EuSQZTMFVKcjZpsQUfbLu9bBMZt3217UAQMJUDZZMiO5/JJkV2npJNVuzxh02KmHiCIT8ueVFquXY79rJNiuxt7XptxVybFOWRXWe0IEYdJ2xETVDrkqJFGxb5sfOW6vYYvZiPD+1xoz0PpfuhXcmKq+labFJkEyF7uWu1YZOi1IqQ2gi6C2LkynW7pMjAJUUGLimyf3dr85BuULtNhGxi5BIklxS5HORicSQhc3Zn1GRWecgvtkj42beKA+kZKi+iy0nIb0zVvgqdA4BI+IPZPAAAFz4A2uYf4u0eFnal5ttRUtmqvMK6oRqADutT+6JC4dQ+hC1yuEXF56QBdGidEkRQ/VVyvG1fGtokfNfBumF4gJ6HBFg/BFLu+9qhM3oDFTKpcDFfeC7mOAbiqld1Mc8hoK83NcAGdCieCpPri1C4HvF+LLbp8lCKzkBvk40EYRvxsxKIhPFqwvev2OL1j8/ps75zjr+PLuxqcZ4LYz663Jny95Gah2hCwhwN1HWttlHhQRczr5AKs7yY57i6FlX4XNure91+qefVuseEhakatIWwqXt93eeJauNiQof1MVmvbTXP07mDUgonAG3vSbkJhe6vPigHIuSfpS60QR9D8Vw6pPpCVKhC6NTYUx3bQNxsql0A2CXpHwCwV/F3xR74c38S6PeBbDvYlpPCqpA4BftY/em5/7p2X5r1HSFGQZfm5gzjtCFFDQCDOEaXhKjlUYTTaTPeuxtFtPyiviShLsNRktDtBkmELhkZD5KITmZm3MQMSrt/kIaU+PQTHgrXjzkh6sbcm2NCyJRXRc3Rk4WcfCgFOhUil7RKUnN7HvFtVChcHokwuKjS0t4hnwjTbMf7W9GHTlvIG7dXdC6jPCprngF3nbKzdd2Y29OwbMg1GyRhJdtR26j2e3GxVr9UaFkelTJkSPVV1dVtOVZdMVeM6m8nKiTB6MUFrU/V1YsLenx7kbDHU3k+1CSrg2SCmIW8qVC4zj7iqERM+jvs7yMk129/c4xIfLXvnBHe01sThD0SDndTjvBEk6yEJzJENzXJStiLkNzMCUnnJjGwiCoMTjbD4cKoxMagOc9SFJaIwhKbneY2UVBhmDRf/lFQynOirp+0JezN9QoCM0VBdr1lUUXts3tKh9eyUNVuVLaEvvJw0UFccntSyrmZVMhoLy4xSpr7PohLOrfYIC7p3GKDuMSGqGfdeZt6cYUNEloHzLxOA3IvDBMe8tuPuX3WvghjTSo6D5OybyQ8FHCYVNikduCkSJ8jtyYA4L79UK7bSPl8Sycz7sHaTHlY3yDRHq8NEW6XRyKELg6ol4qF9Bm7ki9XY7xhEi7+XHSigI4Ze0lIPVXDJKLlh6kee6roI1vBz0YeBziRNU9UFkbYiJrP3jxIsEnmNuoik3N7AsCw6mNIQuJuKW+hE+AO0aUT5vaRS7tywFwsLpkQGe/QiMQiAi3Shpa7zyYruR2uJsr047jhLlSxkyNhty9GmxTZdpsU2Rej7QnaSMPFjcJygxiUlKbtirc3tcPgbFLikiB7m168JENuN9qIClteJczNLpOFyzbctg/LGWr2afkgr4XBWfZa/8LZ33Kbel1mO/fLpgqHWyXkLRHhefXQNqt8Q+a6bJRhvw26tZAsO5SOL7ttutuYsqu2bxMYu4zqlwots8u4pMiscwdWq4TiqT65g0fVX3sg6w5qFXlTddVDoSx7JOzW4Lo5D9F8/h6nT0ooYaRC4ZwBv02Khv3lOpsU9TetupyBnSFDoZObkN66fPbapMgmPDYpspdrZaxtXVJk2nRJUWiHdFmkKLT21SZFLmm0SZH93GGkCGgSVfN8ca+fdIWwN5sUZeJatkOEFdlXcyDN2uD96NXu1XrInAqT03Mh8fBYlxTZ/bRJkd2GTYoGtfLczkjRzF5v2/R9I6kTJlsy3CVFdgieTYqGIjTPhmvvLdp37KJetWxvb5MiuwwjRUCTFBlScyKrE6OhNZRz122I0LyToowNleuk5ofaSIMaMbJD5WohdLFt56F4KqTPJUVGXt0e78365IQIinGiPX60x5UqfG8V+fJZ/6N5PWGNGNnLNimyj4lNijIrp56RIgCUFAGzaW1sYuQSIXvZLmeTIntuJEZ+2uyGFB1F2Nwlh8x9yeYPUPukKigZOijLGhky2C2KGhky2JlOW71Cyl2omN5uUdCLcHdaUvvORLuI1w2FOygqSoYOSh6XfFBqgYQ2D7TyaB+UnAxNK05U9gvuydkvdBvrhsgdlJwMTUruySmqQHp42ti9ClmaVgElQ2XFSdKkCqS4gQoLUGF9KuRsvwgpGdkvQjr42S9C6VGoWq4U5VFva58RAtUvQJ8TFYmyM41o29vTkJKh3YLbgaMNhdsrIrrvu1N9ThR5WjdM7qAMqRdiXESUDE3LsEaGbPQzHeLQ7fB1ZRnUCJFBMQ2oZ6gcVzUyZCPoa4Echmqbk73JxyYNAgYAex8PamTIYOuevEaGaut2WsLn9kXI3SRtzGsEADvTmIaR7RWRvEdViJdSgNydho2cSWNn987ONJTPTB0GrW8eFSa3VwTUA7Q9DanHaGsSSk9WuWb43PlJSMUbzk0iYQ8lkVPHHdAhf1vTgHpttqcBJUfb00BGMIiIUQn1jL33gPfp7EFAPTn3jLmHB2gPXVbX0IUJ90CdO+Ak6OyBFqFQoX37IkzuwkFFVXsvHJSUBCn7uXHZmID3sD7N1vGDsj0pafTR1qSg+efbE94vAAjXlHU8Ny7oMbl3PKkRokX5Yh+5yNMfV9wrXrUE3l4ItqlHaRt7dLLYbexTEqTsAPB/z71Etr8KjjRkzmCYJDiZ8g6fIq46ADiZ8ZH/SVEeAA13A2bsWIW8ncl5fWc6vP0zwnWhvD+9OAC7f3qxVndRbmv1RUV5eEw7DJ2IK+4AzZnAD7Or2cbVS7cbcyWwi2mDvdyA9oT5Wchd056GXIEJ0J4IlQCvvCmdqKTEqivsALCZ8ofNCWHfIIpXgPZ6AVqtqq2dUxkfnKryXREylEeFXHdS5LucUn2SbavzWiz+XPSiQm53WhAJdUzUfgziKXLSdj+eStGETZHrc0qoo50gIV/AzDPEwucAYNDfR6Su+ZOcXHVvFV7V+/Fnf3gLVxoKTvQQnOBfH9U26QPE5IX3oWaMbuLHJAjqXrH6uqrhTTPYzPgx2RDnnU2GC5hwuOb1kISlvEdYaNmsDfXc0KF77LmVRTq0draer7sp5/t+S873/WZRvh8XjQmHDUbCfnuH13WfLm/71g6vpx+X2BTHd9Y+3/fbO3ybW/P17F2hvjeIeYgeAAxFn+7X423cr8fLP6Bf4lRG2hYhdwYqrPD+fW6/X4/b7yvsbaGLaox0c5ePtW7t8sGTst/eC1tU8TQhUWF3t4gB2m09Pi69vR9zJb80bEwGbKDsqu1bu3wAenPaxQaJsMrDCKOIb+MKn9m4PTxJ7bdFG9R+SzSk9puiAXpCaOJSccmEyM0NapOiNgzY9ayY2ZndGZGNK9RVCenG4YIMuUIGKp6yzQVp1rmzRJv+dB27IUOuJ8jt/9JOzTXVGKUWp8LdGB9TIXJSRSiuFjOCuzkv5rdLZBJhX0g/O3Z3xnG7/FL1jNflnjITvuF+YTdkiOftiNwGq6zrqTEeoIZ9PhBQIW/uF/7OCmTLJS1mG3dbs43rnTK/3YG8qZdJe7epwSmpbBPGs2q/zGDOHfwzMuD2q+duI/bxMFlv1ScGu0217+725rdrN3W57Q9ErknfsjfktefrXO+C8Qy54XPDOXFzr101sAdmZMjAJUW9zVl9gfscOjP735nVAMktsxdl4EjfGmITDOovUpsIuaTIlHVJUTB/OMa31YlXMB+45LfWn8NGz2dwqj44tj+wKlIENI+dUacbOuTHPBf6zqDdnKNu7NrtcDg1QK7bzbPPvbZU2Othkt9sG9vurjNeT5cUGQLj9tdc8+61b+4R9YHJrtP97ZIiU4dLFAfz3y5RNB7dTYco2l4slxQNrVwmlxSZ326uk/mt7G499jlipAhAgxSZMD+XFJnfJ1K3r5WwL38zUgTwkDvzQdMlLCfnCpPuB08T2ud+nDUfQDdTTb7cNkxUi0uKujG3mygcNxrHtisFQZcUmUgfRoqMCl4j7G4+MHMJjvltpl9hUF4il/yY367djG03nYFmHs3qPZnHOJnznWekCECDFBkRtF6YNojRcF7WVXoeCbv5babJYXBJ0VGQpEsiRF958vkAlqTIJUPJws69LJ04aJAQg7xBmmZ1Ma+QIUUuGTJeIpcMdSJur23r9MuQIveCNaTILW+uR5cMmSaVa3jWVv23adL96GDsdr6Qu07OMyGIymxbRVC43SUdmWhDlWdlDMzxcmWRlwODJpFTZM5cUow4Ldp3BhpmYOkODJbE0LVzQqMGJjbcbTpiwG/62Bzwl7W2VtnG3lbPF1QfHBzWL3dQlAty1LWIg9svRSoOI0Gr9sm2uQTMrsfdd0WCVF2mfXdAaI5Fn5AkQ4rcMDkziHXD5MyAe+h4scy12xzQz+vp79fI0GL9fN8NGTIwpMiQoYV9/uwxZGhhn5OiBqGZEx3mFTI2lzgtCJXzcDSkKHAGLIYUueKmhhSxaJNhf39BjAJBKBuS5XNS5D4bDSlyCWt3kQfWvA8NKXI/rJhrq/khaFbOJcu5eA4sZbebbS+2oXN9mevRkYGPzGDcIRwLsuMSl9lv9x4ZxMWC1Lj3m6nbbcOQIpdQGVI0cAiNIUVueOtmWjSI0WLdvA4m6mAIhEtqDiNBrl15nIAlKXJJkJqTaSjIkSE/LglxSZENQ4rcSA1DVpiwgyEsJ505yBakySmvIlbsdnouAUzNexeOffa/O3YydkWCGBRxMqTITXuwSVHPWWdIkTtuVATHLqskzF1xB0WCzG93jO2SIhuGFBmiZGBIkTt/pyE0TBHakKKhQ5wUwWkjP8auSJD533CSi8Ul5RDZjQ+TmMobDpOQxlN24wD7RK8wCbkdaM+b6SUBxuS51k8C7JCg3EESYJe0MxDlAS233Y8h2uYzYvdjHpPbifQM2mrf+3ElZUO7UQU2yXMu2klD3b6SllTbqH3Jwwr7pL+zvvL9UDkX/VjPmt4R9eVhSWPE87CS+6jyj/KopLPAd6MSB0Q+N48KKqubRwUtD+jznkcF9ovmgy2LSuxO+QNPbaPsgM5/6ohtuvGU26MCu6Lt3Sl/O6ncCtXfblzQfe/GhZRG7sVT2b7ad7Uv3ajAHrH3kynGpP1uPMWBOO5MMQ4AeukEU1JXPzvAhNQ16Ixl3kNXhBMBQD4UYZhngIp0Lb4lpw+18NYhqjEPZ4KY3BBiFvigk6H82PnmiihE8TE+79DBJ0Qs/z06tGNrh4eDhAHPKQqDCjuT5oAgCfW9WFT8ekzDAjvkekzCitaVhiX2ybMjC0t5T6t8kCysaF3A7Noek3WDeEqfXT3xHAB0flA3ntJ97wl7J+LHqhdPsSXuafWc7UYFzk9YXQUuEDswI2Nb5Jwoexs6UYELE6aEW+I8sY+SAtvT5r6MkoKWB/TzdJQUuPeA7UeJTxH7KC5x74QfxxNJifOkX4D++j5KSpwl9XWjCucm7F0Nau9EFc4TO6BlxAcJsEUeT6MUOE8ej4NklgPV6Ov8EmHrAD1+GiazXCsXm6m2s36p/gI6J60TAfeOmyuzCLh3v3nAsijAeaJt3olDXBDPbEBPbTNMYmxPSPh4ElF7LwmxxexxhJ3p0v6ae35U9uUwHEkOkZ7NVzx85ozV9QKZSUldex4FyKNAihi4rNxAqbmZJLluI9wuoPX1kgC9JKDCA+pLg8kddj8EmPKuY8ykKjVV2WahZezLnVKyAZYeFderlIt2zG/24SIJ6spt7jYu5L4swrjcL5emr2QfRa6N2nd7Ik13O/NFVYXcscsrj0oh+d0eDtf8asu//hq7+mrLviSrsDNTloXfKC+Nspt6lCQ1g/n6rTxBynPkhhKZdUxIQHqbTFib69GJTfnmfpj6Wfv9eNrqVVIeIvfYLD0F/HpJSRudeEoFFnpzb4QrlW2EEhL3y3tnlufC3ke93gGCgK/rbEwbIXKAFSbnrItvmYeuOQ+18NbhrDzJAw3ObCDYbOYHBZt9BGc2mvbOPHzu5lF9xfxLZnQzzymyJ3W10T/ZHD0EYYUgrDAcEKnueTVDR6zCkOZe4obP6XsxDUt0ouY1l4ZChMN4l526UuH1NR5Gdk8nYUlDee0QWxfm2nbDOQcinLMnngOmLuYVNfege8/3hN3cZ1KGnrURFdggIiRm/9xQPOMRY/lMxjOlQv6Y3faE2TD7MmyE/BnPDveCKWlzlmM2Sgqa62nKunlmJlf3lGM3XqsTSYkTwrvFwv02Ey6TbmybjfBB7lUy4xAlVc68Tp2IR+SoSW7NpLqjlJdXeUtqXS+eER9XsML8du1GcELZ3X65/a61ndQnGjYwY7QTTsifcR6dYAM+YDHZrQvNAWL04qg2oa1dvu9Ej5nfrt1AqfK59V8sLokQDZO4diBSy4Nik6HEsrv5OKwMsCRFLjmySZEhKst1y3I2GbLLKMUQ194T5MgmRTYZqrdNm5DkSclnq1C0WV3L5SysaoN/N7zMwCV0igSZ30mAmkCEfY+kYlnKZzfIiQkhc/bRxOFHZW1G87os7XLZDglUuVKz9pzQNhFyV5fpLi17Re1J7birWHwnD0AMWFRcvz2Ytrexl90B95IIFCuTIPu3PfhSktT18jwkTBGHJqFZbm+v6wl7fdvVyFFdDtvNK1j+tgdsdv9VDpJrN8eomUuybN9uzyZFHctuk6KeSNZ3VeMMKTJkyMAmPr2ezqXpbCzbt4lPI0xuvm5Bhgzmz3dDhhblLVJkEx6bFNWW7TIdJ3zOkCInrONSSFHghsJZpMgNDDCkyPUguqTIwL4O7XvcJkU2GerVrgHn41HMP6CoUFj7nklqbfNnq10XEx8xpMglHHoeM37/1O6xFUmQ+d2Uwp/S5YG4j21S5O6fIUVueOAwmS6IkUtq7N/rLrv7MlyE/LmhdfzZY5Miu4xatkmRW6chRa5wkUuKattY/bSXR7V8LLuPpQw3NOXcMYEiP7bdfvePavZleTtn2yVB5rdLKhT5sAmGCtMDmqkMigQpdT9lt/ulll2dBtMvd4zmkqKF3Rrw2eNumxTZ+f0uH3BJkiEtrl2Rn76YAqc2NU5cX75UYnTRIXPfetuLZGibS2IMVMrOujMym5hIJW3okisDxf6iNWlhP9Zyj2oflTdFldehStr9C2jp5zUVGmfhEyIcTTUvZafVjMyifC8qcaDC5y6CwispZdXfTlTKsBIVPqfC+trCrlgIymwb3rbaDyWR2zZBtwovu5j21T6qU5W3tK3CaVS4h+prJ5pir2AhMLPBkAwR5NWtjV4ywT5pHwCVa57Z+XFMlbKh+Dreyw9QqNCgtjC5Ea8vPcXLswlUASC8dQOYigfkiKvJSWzxUDikEcp/PkdXrRs+t3NWJ3Rub/N9DIIKW0KSW4VBTsUzTV3bByWvJwlKGpoJaFlq1Ya639rCeHvxlIb+Alo6fl35/bbnk+qzgj6+vFedqJAhdwBQrdm+gnrHdKMSO+L8Kqhnh8IgnuIcCfMEQMPA2+xtUM/ntrBCFTqvxiMsLQCAHEMM4gpb0/XeJ+pdqlIMgFn+07mD9Y6ZGpMoe1vbKnyQpXcAwI64IFUKCUuRmbUdzutT77n1dkZJeatz0otD/OI/v2CtNgyOVHZ7kATSA9NLAjo/TxzyULg04uWVCIPdPgtt68UAU9buJU3PiSnP1OHakvF6sVZ/YwP5blzRAXY3qmiImmH2Qm0cnWgpKGAjjyoadtYJS3TIC0zJNRvBAiZxnYcVJQWdUMlO83rUbOnAbP/YHBhMDWnZ55Ie4yyqELNjMq+HXWadqKTtd6OCDgTyqKBfTtvkqGfb8JA3FT7Hwm/yqNDKVS3KTrMwORbWIeSikymtrxsXyFnonvDeLPtMRAaENHFbXxkMGTJtrdrnTjyteW4OsytPgdkmZecxLpCw8MRkSgc7vXTSSPAHZmQIaE40CgC9/rjhCVm0vzkByLp1ydAC7EvdzSeADiERJ0azPxe9zmybRqfaB4vreop6m/p89YnohBFcGJC5nqKgRCdu1heHJb22krCk12IUVPI6BnjYamJNsly3cxntVLRth/Eqzw8N6Yyn/HnXcl+xkDfl4TU21/M6s0/XCr3NwlKqPgJtipAFBiyELpmuZe/FU4ySqZQRZ0Ivvaig9o1kQvur6jdlWfhgLyroNA69uJCy7oOkaIhYzNrnIYLLfvDwQdZ+HpZ0st1cTCeSR1z4Ydk2y3evaCh+P+b1dKNKeq+MGASTC7c9VTY20opON9JmV3LkAA8f7MX1CXUN8gg4STxFeRTgJBmM5nGAYRq2ikO4k9YCM2EIluLiRnsZdOOA1mPqV+suFpdUm+0JsomQPfhXOwrMyJCBTYpSseySIdsTpIgYUCc2NimyXYo2KbLL28s2GXLLK2lt224fF1uBLRHhbvZ1qELRZuuqmsvYJkV22J1NTGwiZC9nYtt2ZTZrXwLehgrps7e1yZDdnrt/sQhfc1/69svZPsZ26GFca6eNjC3X2e3b5CaphbzxMBm7fCbKu1ChcbbdHjy5oW/2wEItu79XqdsemKh6c7HsQoXfKWniVfraNqBstsn7aROeVZZtMpQ77dvlbFJkt2eToo51fG1SZIfP2aSoJ+Z7AWZkyMAlRblNCKx1F0OGwls3lj9sUmQTG5sU2UTIXu5ZpMbe1iJD4W1WW24fLzMpMrBJke35s0mRLZBRO9fi/rfPtXsNJ3Yb4tmjnnt5xMuoMFyGejgfD0GtPe9WuK9UHpC7vb1cf/bwZRV6az93XSJhH1N7XT8uagp4NslZd9mFTVrssGub/Khlm9TY/bXrVKTL3b5er31+LLtDimwiNBBhem7u1Crhg3b7djioTYpyESbnwiYzNhGyl+0yNinqizL2GEaRosV6i7TYRMherpepDrW79dvlbGU++7jYY1GbFNljWZsU2eN7RooMbFLkEhT7d62cSGlRXMElP52It3mpBOmSQuYMZJiY8PMdFFWNDBmMi0pu0+YyZB6etm32ps34ysO2Uc2r8gclJ0mTsk6GbChOpzyMKkxr1n7QyEEyUCFs5ZqhV/tlQL08kyqgniegzSW8XljbtAqkVwjQfVYucXUspxUnStMqkJ4etS9qhndX4tfgoIzkAGXd8Lk27E4j+jV2v4gkqWDetYvB7lTvo1LiUlDHZK+Ia94hG/sF3/e2+hRU6OB+EVNPUts2SmUuF4ObXOQYFWVYI0M2MhEiBwDpCfEcXpUM2ThFvD8A0BF1jQWxu/c8NavQOWD98DlAh9Btb+fyXt0dq/Ajofglw5L4Nb9XxDUyZGMqQrjWDaXdL/S9eFCGkrgoL5J6Rqj7amcat3qvGdS+qLC6nWlMJ0DemsZSLOZinqkKW5NYHkd17hVUeOLWNKYk6Pwklp4v1TZTZAV0GCIAbE0imfOkoMIHlTrouUlExzfnJzxCCIBU21w3neDCJJB52oBWdVPHTI0XtiYB9QApOzAbXzKoZ8SueAXcM65k6osKrSvaUjnEpb0zqSgJ2plUUm+gLRXA4KqFzKlQuF4SUKKUhOurwqWhHhj3Yr6uE+m8HeYyBHQ4XM+awNS1s5uyH1c4IS5Y9SWjG/HwORXu1o14KNiyHX51qnC4JOTrkoC3n4WVnDxuJF5qKqSvG5dURW9m522omczbwjwyEdaXh0pJrv5V0IZ6seQt4XNskJuK8gAwTPjA0PU8GGRRIdelIQ/FA4ATGR8wbwp7N5lSdbQsniJj4SnCDgAbGd9HFlYGzPad7WMeTRtzvhiczPUX/k0S9gTMvvCzHJ08nko7OyYAMBLHUZXP4ikNeeukEzkgV6Fw/cH6ZCjZCKi0dnQ6k2+jhvqbAQt5A1CdOYVq0FSZq0YDVGf4jOa45TRvW3mKqooTuLKi3q+qnP11R5xc9rr8WCpEYUWvlSQsZP5XVzzX3LmnDGIR9jYLnyP2oKSEAABGLaGewxbBCEZ88pg/7wCdE6fu0048oWGIWTyteVHtttVxVM+60+I50I2n8mNKL560rmM4I/Yxjwp6jlUo4CCZSPJ6a4d/BLi1s0fbUG3nUSHfc4N4Ktfd2uHHsidCJDsRD63LwkoSq5ty3vZNWUHHH92oRI+MV3pxc/49g76w35xrsteJKgzZWDGq6HxWw7hET5Cr2zq8/ds7Be1bV4QP9uOqMWeVgRqn3tLRY/HNtLmuG+l0mUESNBSdDU4Lz9PpPGzM7QnMosQYf2ib03QdXBIhku4tET5nL7tzQ5l1SvGMtmMRGPt42+FlrgKaWefKURsy5IamuRODMbtNilz1Nxvmq4J72LQqHK/LvoEZKVKy0+a3S1SVh88mD3Zdatnum0t8lAKcPVGeTYrqdq6g5hKfttnX7X7a+2W74+tKcjyEBVi69l27ekHZdnuQYA+ItRx34dhnLwJ38G//zh31KrsOe9kmFyq8yw1zUwMNm/Cssgws999tw5Ah16uS10L3+HJjIsyE7wewDElz+8UGX7M6pocuuyQnM9eqqyg4/+0OGu2+2KSoY3mAXFLUmYfKuaSo05vMy9f34zAyZGCToui09RXJIUULMuSSJUOGnHyi6sySjdikqBoNrDIOKcrmEkmrkiLrc3CNFFl9tEmRSwBdUlTNPTrdDifw3axe3g5ltK+PxL7/nOvOhEu695ghHO41HIuwt3r4nCDdQqqbkaVcPO9sb05c21/+vAOW17dLisyxcO89+7e9bN8njBQBzeNong1ujp/pbz+ZylA8l/yoZfu3azfedpcU2OfOJiYqFFBta2+v+uS2odqu2V1FzpZ1i8l3hUKgu1wPURQflBL3XVdRu/0ut0lRLQxRfMR1SZEhHC7xMOXcyW/dsH6bFPVqdt6+S4rM9q7d/ght9627QvigS4pMdI9LisyYeTNdSn3b9tm65XuiK1JnXLikyPxWdgA1UmQTHsU9LpUUXVTI3Lfe9iLaoYOCu78mpR50jwu+7qDkZKiodL5OUelcG+VhGpfcM7RXcDK0Ow0kSVLnYlxyF+uk4mRoIsLdZvVov2Rb+8zLo87LuAxaw/FUG6xvB2VAydBBGTRmDQeAccHts3UhDak4KEPpFdovQr7vVSClapXHpqgCGlZRVAElQ5MylCRJhUqpbWbhc82X4riIqGdkv4jlYKitfRXetT+NKBk6KCLp/VEYT2PqHdmfRtQztDeN6b7vF9wOzI4L6+/+XNmIDaLG05iSof1pLL/oK8yOCzmPRUT3fVqG8jiqL+pVFSzIUM1eBgsyVC+/OhmyEYQOITIIA+4ZCgPuGZoWNTLU2Ia1/Yl7lmTIxkc/ScuX/3yOxsYUH9+X3q2DT/HJZgFg93yyIEM1+x7X490dJ1TsAtBhcvvTmApq7E5i6n3Zn0bS+9KmWMdC7sZlSEnQuOXZVVSBDG2blgH9+KCu74NpRO+tvWkiP0yo0O69SUzb3p3E9Bm5M0lkXmNbWM7ONKEeoDY7Cz3emcatx5hhdxpTb85+EVG76hOgw+S2Jgnt19Y0lmHiW1Mejrcz1SGCOyJMcWsa0Xf2+UlEI0nOTyL5LlchfzvTkJKj3SKk3pftIpRjrzb1vQvTgHqALkxDSo52ioB6mHaKQEbkqPvh/CSgIhHnJiFNdbj3IJAOiB3x2jh7UEnvz9akogRpt+DbKPus/YqSnZ0Jt+9Nq4sKm7soD9Gm0C0fEVcawBU1gBnhUetWESlwoULeVM4OAJwULkNpz3TIm4IKX1MXuDsPwLK88EDMld9UjopSblNfS9SXmracHeXa3hBzGKjyyp6HpUwObVcL4vUxtR6gPalYTgIowkmUvU1cYCByQYYpD0MYpPyLtSo/a3/98K4NEVIyWDMcrG2boQifU31q20fV383OPjY7PGxlJMJZRqJ8GheSrLjzAxn0xPnqCnvWkhDNyBAASoaAQ8jQUL/Uw00++A9ONUPeAOgwudtv4fbNEarRkK+7z62iDR5WF97E64lO6tkUkw25CnlfeB+Ep6hN2EJdK2qOKWmX4XOVDDHWoV3rPdPatgG0B7kr6lP3iboXAS03r54fyr4p2lCheAYqtG9duwrfA7QS6CnxXDsp7KdE+BwA9MQ+nhb9Pd3S35tE+2fyfXm9nBT1nRLn61TGr6FTQv0O0HMDns74NmfWtOdhJcdrAHBTJsLuMhEKuGZ5QI9xbhGhfafFmOy0GNsCej6mM7l+b5wRYXcs5M7Y3cixZftiG8FFlP0wXHTInMskF5LQTj9MgpuaFJTBeC1c74VKlrPbdwmmIUPsy4Jhzyq0zQ1v7Ih9MeXdMLE84jlGs21mF77riTHMvWlvL69gSJJLloxHRYWdueTH/GakyNiakwjOwzCcbTpy39vtDG2hHqYetY8q5E3lEwFNz4oJZVAhbw37IoSKHMf5OvdrsRkAqLArZVe5LgoqvEu1n63ZL9umw+e43fW2tLVhBjPuuo4dEuKGrYhQHkNIXGKiBrf2usRp3/x27em8bTdvyLTJ8oZyMTjIO8LLNFyBDLG8oTmRqJxE2uDMYG53jsOtnKhUN89ndk31nD8NZDOvVMOrZNw5Limaz3vR8FrN7czLVc0PS0o4XDmf96QzFPkzHXeC2/l7gxAZc27d68Z4k9xr1dTl3idGyU7ly83W1U+keQa5bRgvk+ttSq1nl3quMWGEVDwjU/FcXYSNuuqg5jlE7jFja4QbHrKP6vmhvFAA9yLni/bdZ2S7XYXvqWkGZuuc8N/5b/f89hbPO+c9O7ez/TBlXVJkzq9LiI19XZn0RR9FmKC7/5lo35xf9+Onecf3CSkx4xGXFJnfjTC52Bx3N0S/lG0YDOKyQYxMZIzrpTHjRfcjuimn0gvcsDxg+VHbJUVm39w+mePl2s24mYXbGeE2lxSZ8XnfeaR3rClu3KluDOFRxIetiw9Jp3HH42084TAciYi3G6ZmSJHqqLtjdjkVWrcKGTIwJ9f1DGXWBcpciUDzIjWkyG3D9Mctb0iRS4QSkQMELC9Sl9ws7auVB+rER3mMFEFozH4uSFCb1LWB+1AxD3FXse3wfeR2QMfBu+UAvY/mJe16hlQ+EbB84bsP82RBJgtuF7kybN3SzgnCqiTEFgFQdQF6wKAJynr9YusUodIE7PA21JfdDksaVsfFDDzcQYwS8rCOnTuIUyTI/E7dAa8ZwDlt2aToqMhQMgyaniHr9nC9KoYUGTK0tM/37TAytOjQ8g1abS7JS81LlNXJy4IUubFthhQ5kwAuSJFjt0lR5RyW9MSSGJXOJJCHkSKXtOY1aXQ+4HdD68x17NZl7hN3Ql+bFClFN5fQqNy1WBAKVoeBTYrc7f5/9v6lV5JtWxOEhpm5+3pHxN7n3HPzZmWVSghBly4STfgD2UD0adClgRAdCpESEqJbLRq0qlM9fkDRhwYCSqhEVmbex7lnn73jtdbyt73NaLhP92Fjfp8t9xUrYsdjfNKKcB82bc5p5mbTxmfjFdZIK8+IPJAie/+M3VuX5GUUj8/D6weLTRI5rieXoJbSueSIWs9ImYHdNkw2LgihOcRfTvFx6DYBoQ8Wj2TlmtyMlW5gcUS2v3D8luSH8e3vy2tEqec/iW1m5MiSHea2r9sh/SsQDUtcgr5p9cVrQpr0/oxoWQ+fQIrsMYb9rU5EPZGmx+QMNot1IEVWTw+kCNX6RDKRIfGxJCh8t+PPCDn6FBKk8awYov/Nf+ffHD6z2JyLbBfTYzFJcHXfjMjHxhDZnQi0GVmERHYnkh0xTbnNjjHtYZrDaYqPXYSnd2Zjz9Ie9nWR9bTy+RhY7Mg07aEvLJNfpD2tKM2y312mHawOfpm10J+ZyUX4cYxVMZ+mHezvIuuozzhTBphr3SzrYKzAbNJKe+axWAUoYJJ10oB0pEz+1DZ2fc8mjTSgYvps0koN+ppNWqlI9XEGVvV9krVSgWrx04yPwWI3UMa2Q3+TVmrQ33TS0vN1bqX6sd+LXSvsOr4g7iEXlw38HWe3LSy4OrlNJBl5HZb9DfaRSP8ldklL/vYNjPXp//RHkZScx5tr3FfBXXOSd+9jYdWIvH+E7btfsLz5jY/R1b1U83jOXStSbmILV9+LFCztNrlWk6SH91aS9FIBeSpYLsLT07M1LUt6uA5O0240nTJLD4zin0R2xANdx1MiF+FrIZ1T2sP1IEs7qcH5ylK+DrJYjGna0XM/y1q4jclFeCwZ+x1ZX1eTmqZ1Z2seewZN01YKuN52sq15nAJLSc5Sq0/TTgpwLEwuImfLs6SXLfiNmc5ymWG9ZAxjutck7WG68Fna0TTirBwIe6l9lXXwWKZkbBGRosWDoHMlstML1k28T5b0sqrR2CIFNxLS9egi2+USsJikWJ4lXL/W+D/+w3/2dCODT7IQTVP8QzJzWLAcWXaXEXmQMbLAWOEYGRLBCuDlmWmvn8rYhuY8S3ustKQ9fNgEa5PtKxzf2FtBpMhPSXppRmCmh2M0byxT7GoosltcoMvZE8TiVJczkR2BQXOe7n3okR996Mf2F9rC6zjt4A1yPWlh+/DmLXrze3gjHM9rlvF03EjBt+4lVm63T7KObgtzs9aLnXzcGmKVoKfcXJB8mnVQPiHWk6NVJd7nYtoc9ovl+JxNw7FYq84Eu/IEmW0f5Kw96mtCrpUApBiOkSGE2e1+nubBObndfQ9ppi2y1xP4dir9w5VIGVtKkr99s/tg6gcdrDpd3Ff/xz+KXAFCdHMj/R9wDJKISP+3xtpU7Y/9Tz/FbYsaxjn1RSvZT7GS19W9dPsiIrM3wzl3+1N5QeKzmNUOXSs0dTqxnoS6cch6kyS4ZlUi+JkSZHYdDN8p6Uk7eE3OJi08HuY+NyXy3baOrnno3jq4G0ZuiN1gLNQfko1Zx2ZZe5ZrMJNP0g4mW8nSftTFmFm1piBxzuWkgc/NWdZCS3no49SshyI7aw4r88BKIDzpQXFGXG8iAhMyhOvXWknGdBaR2HMkyJB8mvS0iPshIyQpEo88aq4nHZRfZbgkRxjbHsuUjC2yOy8oZjxLsKUo6KnWchXOLysSy3TyWYq3MRe6YBliXALp11kybjw5Bc8mRJoIaOVQH4CenI0tmhHioEmR/qzbXWbDk6t/mqfIUEAy6O+4z7Cyt3bPwp81LDnSc9bxRQmR64cRqtcjEh+fJUX6BmKf9Tj6eNln/Z2l8hYZ3ogDlzNSRf3UhVHPXZOdsfkO2+GHvyVOg+tY7aN/Vu0SoNuzujnsYb3bR7u8YLlWEPSDnH1G39k2PTetPGgiMhnIrdvXeW4uw/HwPCypCXOJ426Uu98Uz3coN9cAIUFWzs7zdDDn034XJte/8Wxwfak15wQypC3fBzIUsCdFgQxpDNJrv1ZEQZGi9A9XR7kiRQcydNi2I0VR3I8iRf0f1TZNim5ujm1OIUWVOSeKFPWFmqMiRb16halJUQeqKQZS1JlTqUmRPuenkCJNHvS1aknFKUq2fo7o9UO/ndfrsCU77CURaycyvCZn5LiY+5y9h3Vfej04Zc079aXTdLCWPn2fjpVCGIx3omswW+M1KRrc/yMuxuyaYKncp+SZokmRJVQHN0TrWjbVbn1mnxNKIJwcY3sCKdIrmCZFUVp4QhyYzjIjeor+rD18NCmapH2ki7FwAi3XrnlafkXOnSViTBdlupgmRVo/1aTIvrQPpMieX02KtO5r9fOZ2XaY+4lucoxTnPL5XDzLZe5/+9/9N1DO4n/Y/E4xe506hkgctxMwlsCBXVCfyjSHfRECdab7HLMIBTAzNQMz0zJMk566VLC3nuwYuZsYP4Zz5yvCzbRjfbGK8CzOh6XAHXPVYsfJzgs7v8/FueNQk37GXQEZmMsZ+63GXNTYfJnl5aXP47nuc2Ng18uUZF5klqGLO+63MMEeb7ttwGoiIpL+3Q2UJ/8JrgnU/+kPUQzQcdufoJym3b5/wO3LcpeSG43xz8CtTkS6XxZQXr/ngfXFPb+2izV2k2Puc8xVa+z+YfswVynmjvUcjLmvUavr2JpH18nz7lV2z+3cEJn74Hnn5SXv67HxmzPXThHuSn3ueWTnSoS77z3n+ho790yfYO5wJZEzl7eUuIeKnP8sYNcES+0dcK4OwvS4sRI77K5jKcGZW9165JrIyWOFueKJjDzT6R6cFzR8aYH4P/z9f3beDvJCSRVEOFGZEDNWmvB9mOkrS/gJnqX4xnsOGWIubNOkhwp+luD2YRvCJMH+t4wMTdOO3ihj408SfCNNEvzjs77G6hJN0w76ul4QNwvmujcj8uM+yHzdUQKTJWOug8Sik2IXkHPJ0Cxr6bHs3OHAvIh8QuRZ2o0oGePb0DFORlxW0hFF55zxs7SDrm1pyt1ixiwtbL5jx3eOW87YtjTp4TEmSQ/HZ3IRrixOsg7WwZnNWiifXHbSAv9uEZHsqpceWEJERLLbVHoQEJm8nkm/BW5yf3wlsuVxOFLG2/o//hG7z93cSI/c55J0aE0a6fuAvJDkbwDry6uhlSuMXXYyeY2VrK4Qmd3g36VvUrkAaW37PoHWvDTpoatnmvAYHJEx4oH66mFf7Jof25bt3buRi3eW9lA5zJKeKr8J2UZdRskaxdaPMWQpOy94jWL39dg+Y9sS0l+aYDe5LOHPp0nawd+Er3n42cGuRxHuvpck42sxdUUk46RJD5/PXZ/QuoLIFa+XcSLOdACkszAdb0LmKoLd7QKyBIdiTGmYBA4HuCDtd311MMtuKljH3Z3fWN72IlfkWPpeoqzLAcwQkREdPyM6qd5u0fXnvRB/zstzkRciRGNkKEAfpJ7smJsZ+9z1Q2KkSY9edJ9Lho5jKpMg+TzmkjBGUgI0KRojQwGWFOkx7EWgx2Gf9Slix8KO185NLzADl7OBix425c6IPN5Hm6/x56gddR0c7qMLmQ6yej2DDB3HOM0Vhrt2YDn7jL6zbUP3naddViwpCnMbG5991seVDuRPz+PUduz4xvYZG2dwLvQ9Qc7pKZ/t/mxsTX5mqo6Elk8uj+0tKcqu+AuN7Pa4CmhSlKg8q5oUJX9UhMOQov5PJNOcJjbafU67yWlSpDI+QFKExsqP9VMGpCg/xjZpUtSX6rclpEgkJkV9c5ybJkWaJGhSxNzMBs/BTyRFp7ifWfLBttl2WgHX2/Tx6nXOEp+EbBsjQ2hftn7odmP3+fC84M/svrY4dc1j8x9cE+SZYJ9PA7dI/Tynax5+drDrcdcOz2tsLT3FZdiOw3SCof72NCnSV5AlLGwMprMwHW9C+hFRcX8g3uiU0ASmA7G47jHdiLn5a113eH7xGJYUDdyCTyBF1qChdfyxMBoNq+8HnEJ0nkuGRF6AEJ1ChgKyBE92LBHBmLzrMenZMWC8j8hpZOg4Nn5jMCWWlCA7hQwF9JKcRIYCAilCY4Tzy6xCSJ6Svtixs8Dc3Rg9fltB3rBkSQ8XvrExRLBb23T/Zg1aklJsLQptZ+CNq8inkaHjGD3cNhb8y96Ejlle9P+oPXt7eY5lJigrdm5jY7A5T7IWWp7OTRwxNt+xt5psn7FxJhm2ejKr25i1KOyHgMbuu2RAhrRck6GAQIosGQpWouw2HZCh4/ZuQIYO8m09JEMBe1IUEZS9JQcSmq4bkKHDGFfXgtLfHfooCQHL42KSyd+8GpChgPQPVwMyFDB5nR2IUWe6C6RIk6GAi8sWWkwuZg1NRIDwXFJ0ToKCIGPbuNsV3qfvE/jsCIrXuS6taD1gFpawBtkxxhKW7M4LXqPYfR3+ZySI9ccsXPCaCC+XyIs9mDgjwdfFbs3Dzw4ElgY+zItZ259KJMPGYV4j2MOHkyJ0BYVnPBuD6SxMx4NWpH0fMJlIuCbgfthaxHQgFrc9phuxRFAXKbbQBp3XuqkFUoQCasZIEddjsfwpUoQ8wj6F8DyFF3OZ08gS7COYEle4sM85chGh6a0v0p6m1mauX0w+ISQuHTH70fgQ3FwSwam1R83AIy5sYxcZw7k+02yhYmkiz3UpFMHFVndjY4Ui2ZNURu7YWDyFNn9zh66vadrS6+4Uy5DGc2JdxhQqtu05sTbMZYU9CJnrjQiPU6BKI3XzYArN+edxbPwxnJ8yGJ+vlL0dnHTSAIU8m3bSETc5lHJbRCThmXQluZlIn8duX8lP19KvcrzT1SUUI9IjItLf3eF+son0N3FmuNF9yNiyyiX5CZCuTSXpa14gNp3iczmZ4XPZtSNE9cTEGgHsmuj7hLu9EfcqGqd5RmbDJ/sia+EYaJwiux/G5kXd18aO5bx5jbnojVmRzo3TPCdbncju2TFG4vA+42TFoiOEN5X+8Af7Y8cyMg7Sd1oyvgi3ojC9aUwHob8VlD6RcINdx8LDFBh4Ai88Bvu9mv7888J0zE64IeIpfR2Pj+Vtj+/VuuNxRs/JS6DxyYTIup3rg9Nz0wdmTwCLC2KYpsOTq0+CvoDsQh1+YDtekNv2jFjoYzmVfITp2rHH8vUzhDHRj/cpP6glRayvcAPZQ58Q+dgNzxD6snM4jG36jNyQiJtfbHLej2MmHc6//b208qGvF+2+Yq8jqvie+cAcQ5i/PY404dueQ4b4nIf/W/kYbJ/huz1vCfntzw3Wtv2x+bBjZYRlbJ9T24W+7du8TGUB0qQomyp3E+smd7Hb1pqQm/Rq164rOukKc45vjkxJk6Lkp6M7W0SK/vB612a1GYj7n/eZ4vJh+zEydGhjSRGxNh3G/PnNsL2aoyZF/Ua5zxlS1G076bb7N/J3w3MZzu30eqjQ6QKu1JXRKKHht7XKfFhr7PV8ysuqc0kRa4fan9KHXfPSwzPVXJNkXT03RnHXB7ZCnXK+TiVFes153rp83hrL3BpZ+nK7bZyg4THYvh1xibQkiH1nZIndDxYtGX+3bbcGnupaxjx3hiEH55Ei9vIXjZOSz2Ng7U6pwTgWb6QRdGfrHdXs+7JyvTcLVRlLf23vu9C7ba91er2P5huW/ITvqDboqXgRC1GYADoJveDFJ7R9DhliQGw6LNSW7XZEHtpbosOUStTWwk45jG3JUPhBTyFDqO+X+DHDw+QpMhQQpmMXh4S0H+srwPYV5hKNTRTkp/o/mpytIi57OVFUgNLR9zjAOVxHX5IM2e/Msrmb18uTIfv9HHLEFLJw/piiYs/vkUx9Ghli3w/yTyBFp/YZHjIZqBOBLEUiR8U9kKGAQIoCGRrssydFmgwFIEuRiCJFezIUEAjKgQwF7EnRKWToMEYgRdZNbk+KLAE7kCJixdJkKCCQokCENAIpskQzkKKOZFeCyS6yQATMSyf24uXgsmIJxdh6+jxSxK75dOTNORovrHl2n3AMscK9b/8MKwuLUzrH0+EpUjTm6noOnkuK7G/N0peHbaeQITtGPDa+Tg/9EJLDSNBTpMiOE569KPtceG7bDHhPkaJTyZHI5yFFYy+uz/UmOqcgfei7Mbscz/FQHshPY/oKcnR1jYWmPEWK7JGE9sjKkyaY6IS2dp/nkqIXc5l7jqnq3JR8n9N38BSMjX/uiXxOOkI2PjPFjo4/su1c9znWeqwXeixnLhBPPaDONbc/x5r1ufHSKWB/73EYzlUcTiU13yvOL5jwPCT0ZmU+EMQfb8ITF1BMWF9njjG2eI/4eTDXwgSQVJFxosxeCJx7HZ9idf1UPHUP8ZTYuP25qfbH9mFpyl9yjLFU0dSiMZJC+9xx2G88RnrOHZvhXDJ06vZTgbLvBtDzRdo/x1X/9wa9Vkh7S2CG28gYpH1HzuTYmvOc5YiN/xweUZ7v3U7xLEJUmAmEZw0obi6J4AWJMbje/G/HGDthJXgzF35Imys+JfLQnl1ICIc3XWw7kdu3IMfzGPcUtn2CNTCaz1hfrD7AuXK0gB3fENjj528iRF5OYX8q/3/0Fvdw7cW/S5LgmiDhOmIPSbaws2McO3Z7f4Xv6L4LMlZPoht5qPM54+9Mfg6eqh9y6pzi7addr6z/bqQex3PnbPsM90OL4oZILEC6L5bXlsN9sn1ZoC4Hb0X3UbL9BqSLvsGxNsnrvRva42og79/sLEbJYjnc4W5n7UnybdwZIVBJuc9sYOKQkvl8N9ZPQ+uULPdz+QnHICV3cW2kbr075vQuvofb/bmySSmaKljhSDwbIEthHbBv5o/Wk1OtKjs5UlBY7ZjnXo8MyWGdZsQAyxtSQwbVwwnHb9fP8N3ev2zdGlsL2TzDGGjtDjJ7zk7Z59S+wndmBTvn2XE8j3a+uI+a/EbPBbtGwm9uiXe1f5bi2JHdPtazptkfy0toB/TckvZjZCToRGil7kybwzjh97LXBBmvGRkD6cMiR/3SnuOCyIOOjN4bjVlizo3zQfzhMLcW/wahNpGtUfTcWKJnW4gCKbInTx+U3qQXpKfIkP1ux2j74QHrH0pfBPahEX5Y9oPb9qeQosgXmrUjckYkNCmy8/0UUmT3/dKk6FTL0OciRacWQ+vItaKVDn29aFJkr6NPIUXsc9zX8H8tZ9v0Q1H3/Smk6CVI0FNjnTsnhqdI0ecgQ0+1C33b+0GTIk2GmkqtE1Ozz54UZYYHBFKUXqYHMhSgSdGADC1UTM5rk6hgT4oCGTq0C6TobkhQBqToKTIUsCdFgQwd5htI0XJIzDQp6hfH8TQpCmQoIL3LDsSoNcQxkKJAhg5yRYoGsV2KFNn7P5Af5g7H4m4s9DrzXDJ0brtTXcY+hRSdahkK7Z4iQ+g7W/sYAWu7NNoWzhnbx34eG4etOSxO6txnx25MTI4CxsjQs15mPUGGAqhXyOD5OtwnPK8bcyyfoh18DjJ06Jt8Hoxjfy9CdsK4dnzd7ikyFBDOcUHk1mCQDX4TLT+eJaufazyXDAXo3S0JCt8/JbHCJ7nMEfdyqTp8YXY9J0OMfIyRkrbHrLXsEmriq9hiQC7usfGp2xuRszHaPoGKetWlVIEfIzLnEqbnEKyxY4FjkGPsJaELIltw2BhP4VyXS1qtu0/h9VV3Gb3uaMV58hDq+2T0jR9C1fAHGtvWdnicMVLElJqajNH35z9Qz3eLeR4pYhir4s5w7pv2c96Yi+xIEbIMNVUakaGAviHnpeInpt802DK0yGMyFAAKroqIJA1+SCT59nQyFED6YmPLT7cDMnTo/+4iIkOfguyixdn/Jt3Z1zGTZyQtcZKcT4bYPfHU9YvIEFN6RZ5HitDxIzKi90Goibzr8bz6PqFjlDVPycjXVTznsXEqcl6oNX/kGmLXEZvv2LPjOWso8poYGydN+oN1aCiPyVCAJUMBz9EPziVD5cjzEXn4iOz0LLRStSO/15Zcxzm7vuV0MvTUGExXzhKsx2cJzpZ87O88uUjsjSay+00sGQrYnOPaBfDJMUSbuIi5iIiAMg/S9MTsFdx4nsEe2bYCBLyGGxtt2/V1OilqenZxD8c6ynd9IyLBLuJERMoRxWzMFIu2NT0mcV3PiR9aXELf6Fh6wUSmF5EaHOOOJMfHGBaoc0hReBA8y5ecPNjx3EQqtoiAh1q4FuzDOzwYESmq2wzK2y6FCkWQ2W1Nm9FtoT+kPHQ9VjYCUULjsDH0HOzY57iYhN+VEUW0X9cnVKHoe2ztCTK0rWlT+PBs2gySyK5LqTzsh4AUhyTtpa6B0pD10hTAzXZfLK/ZmLeo+y7aZSvtElSkv0ilW5SRXO4upX9cx/I9SUoeHofym11muuRxHu8znWHi0zbSo/igxUJERPpbY2263495C4ja/UqSu6tI3C9KSa/jMbpVK91qX5PFJJ9o8913lHq7LTOZIDe5JoXWHabEj5Fw9uKkoe5YCVRkmSU3yMaUb6rgE0IW5oGArvu+T+A5aDt8DweZXdfDeobm27QZlNdEHubTtGk0t+YwTjy3ukvhs6NqM/ibBZndxp4du3HTs58dCGGtQddE1WaQ3LR9eviLxn+CDKH1s2gx6SzaDD6bqw5HLAV9AekHbZ9Aed2lWN4nUP8IZAjtU41sq7sE6kB1l0D9L8gK89uHPlBfu/MSy/M2g3NaN8FtcygPOjK6JhBJ2Y2RnK3Dj+n22wbrbNumlxJsQLJz8WxCpE/UKaRIK9wDs1dEHPDnTyVF9of9FFKkP+uh7cVwiqWImTn1LE4lRWPucIM5k8+nkCI7hj6W4e+K5fomHrpRpko+/A0aMr6el1WSP5UU6c/DuR3bn0KK7DVwiqWIfdYPNK1QMHKC0JD+NCkaXBNa3lmFgJOwpz4ztxLmYjL2+zJXlG4gt/sfP2viY0mQ/j44F72WZ6o9Pl/sc7S/6leTokTFmGhSlKoK4ZoUablITIo0NClKLtQ8NSm6O9b6GZAiYzGKSFGQa1I0PRZ9HZCi9mi1GZCiPRmK+rw3Y2lSdH90odOkqFfHpElRIEIIgQwFaFLUlsffQpOigYujIkVfigwF6Ot8zJ1Vf7b3Skfur8F994mkqO/xfab3ZZ93c9z9b1/usDVzuPaxNXbMSm7Hwc8L/Vk/F/Rvx37HsWcHm/8pzw792b546QfPN9WXIjn2t9bfB+1GxtHX1BgZOsxLPY+1pYPpHLt5JU9+1r/PQK6vR/XZWobCPlWXRhaY4ThPfy7JZw1LgvT34Xk5ynN9Hag5rUmmUqsb62tijAwdx+C6+6k6/VYZ8LU+slVKqiZA+nPxCT5zSd+fbxD9X/2n/wbKSfztaOGlczGW5o9tY8WtRHbVdXFf501u7CwytwJaKJSMfTFSeHMM5xLnsYKzbAYvVZB1LPvLuRnoRMYyOI3sRMDS2s5GqsjzeZ039ktnTuMpX1nqXtzPJGtHCdg5Y78kXjoDHY/5+WQj+wEs/fDFDLt3XVxi+eyGX3fTV/z4J3+DF/D0X72G8uQ//Vso73/+6WAdirb96U9YTrLGJff3WL5ex4Qo4M9vobj7ZQ7lzTtgDdujeqCbpFzhOZcFkRPXq89Fhj4Vp6TJt2BrpMjp9W+O4593r6YJd5X7Uq627Fl/buzr2Hl8qWfH2LXCrDxj6yfPvsfHQW5yIkMyNJzX6R4jIsGN67zf/tx476dc9F7AcCEi47oR83Cx1qWA/EyDgAj2+hrrS+T8WCKRIRnSOJfo/Of//L87q73IMy1Eqxr5EousgKWo7jirZOnyihbvU3ciIBGSiOxOcM76Y24AIrIFP2bXYwsSM3lWXUJjasougf6Wu/MS79P3+ALrhV/cYV7MHMtMu8intO2x+VaEv7XY7YNM5ylc2No+of6sTF53qZSwr1Rq8nay6RPqf8wWVnYe2y6B7nBtn0rexIpO2yVSAPlujAz2VbVcjvpi7Z/aVncp3Na0KVTaqmYiBVHmtuUMyqsmg25fdZtCOWsftp0zRtOmMJ6p2Y/N+htzX0NKa1lPoAJWt9gNkclFuIuiiEhZnad4Vxt8HMnIap/MEmkX8eKaXE+kf9jE8tsLkY9z3FdO6gDNpiJzQGKaRpIidp9LFgueXpuMIe8fRK7ia7K/X0tyBe7TRSXJJX+gs9iseptFVjgRkarKBta8g7zJoIL/kmSoJu6czLUpbEMIrqY43gYruV2fUEWajt8l8H4ccw1m9ylbo8pmAte7gsjL5nnratXidaJqMnjfs77qNv3sz46imdDfKm/wi5GqTaUga2fRZNBjomgy+gxGz00RkXU9gfFBRYtd28oupa71jFiVXQp1tpI8/4s2PUuutyOdpmhTqM9tmlQ2wHJTtKlsyLnP2wz2tapTqHuuG+zatmkTAaq9iGA9eTffhBK+bYN1fCbfzRnL13UP44byppccuDZVz0zF/ezXm5oUdQP58bP+MSzBCSzQnhjdTn/WfW2aITHSP64lRWGTJUV6zvrH1j+uJizMzKlhb7BysI/Az8ytj7Fu5k/61Dz1QqJv0IqYjC35CdecHa8l5mS9COpFic1Db7Ny3Vc56EuNZx64zcBcjcc5+dxpszQZny3u9mGkH0K6r1M+675YG/R9OD5x4VDXlSZFlRrTKhxBkbEKjf6uP2ulgLVhfZ06hj6OmshRf8z9j/Wtz5E+LvZZw8qZi6LGp5KiQIaadbyuJDN1rStSlCiXMk2KkluVts6Soquda13ycWjZ6WdKydKkSCVK0KQo0W5yhhQlHz7s+ry+HMjlvTLnKFLU3x9d/DQpahfHQq2IFDWr3Q9jSVG9xS6LVYVdHAeuj4oUvTQZChi4uPUp/Ky/W3mcUho/o7S8G6y3w7mH/u26NFhX1Tk6xTU4vk8n0b4iOzJ0aHPCWlrqdWVkHR1bcxuyzg3WP7J+6zZjzw429inPDv3Z9hnIkL3OqsG8hvsUg3OG29lncH74vYbX2lqtq5oUab2H6RyWFIUx7dgDPYXoPDUZe0xu9Qn2AlvL9WdNhPTnYRvze5FrdFXruR3l60avDUf5Ruu6hl8E/diS0U2j73/VvhlaebSOz+S7OcfzEtmRoQBNijQR0p+fS4ZEnuky97/4j/73h883U6y4301xJorLDJvELjJuSRqpmyc3E2x+u8pwAofLlLt9MVc1Nv407aGJcZr01JrCwNz6rrIeH0fWjb6ZYGDm3VnawW0XaQ9ji6YpN0Wzx/xl1sJ92NiztKNvlybkfNn02RpTMs407em5ZMfC3D+uJg18e3o5aegD7VxcThr4sJ5lLX2Iz7KWnktWUO9i2gwI0WH8aQPf6s4mLbW+nOv+wvoaG+Pcwq6hP/TGeZLxccYKMCJMsw6So2nWwbdrkxHX2Oe4zyHL0OS2HxChaPvfXUJ5+p/8jHf445sDGdLo//iHIRnSuL3D8pK4sDXNgQxpJNtiSIb0+L9gefMW1EMK+xT9gQxpdHUyIEMHeZsMyJAGI7IsgYDIp5GhwRjUVbuDFpsswZnsAs4tFDtNWzjOLGupGxVbVxl292l8jrO0G5AhPTazvjBN6Kl1FW2bZB1dP9jvwp5d7NkxNq9zMU1baBmapB2NlR0Du46maQdfHmZpPyBDx/F7SiyYVWiS9PBZN0076Mkypq89x01uSuY8Szt6LMwbjOmeN5MWkqHLrBuQIQ12jMyDappgy1CW9AMyFJAm3N1NhB/jRYYtQ1kyJEMBk1SgVWi3z3Fe/+e/fiGXuYC272VJIqMeSjzhB/Kseyj7QcBUQNFyNzkRkXmF5UtieluRNLRtP2TJGsxasyQX3oIFq3UJvfhY6sMV6WsFsk0FMHe4MfMuM8eywLtNg820RZuOHAt+EG2InLVv+oQuLOzYRUS2IyZ6hKLNZEseOFtyvpYVVv6WVVwUUmT3Fg25ITC5iMi8wH0xuYjIkri2lc2EukisSH+LHMuXpH3VZlA5CeMjrMl82ZyYa0jdZlBhOoxD+mPysp5gt5gRV5oNuSZyZvUh12PfJ1KUuC9mKUIKvIhIw/mAJJNE2g94oe7fLfFOK9LhfIHlXS+yBH2tVyI1XtRZwgZZgsx3ItK/x2O394UkU/7oszWIAmwNooOcrJF1nfGSAmz9Yu6hI25aSMGuu5SmJUaux2NykZ0CiJTMtk8pUWPEIyfXN3thVDQT2te6JPcvWT/YOlg0GT1+tnaLiKwq3N+ayKsOu5DVXUrjadgY7FiYt0LeTOi2OTmPczLGtpnQ5+m2mVBXtTk5ljlZIx/JGrkm+se2yWRJrq8Fka9GXNGQLrFt09EX3guimz2QlyZMx9u2Kd32ocTH8p7IWT/LJqVxQ/Oa6b1MDsUistPhkcFj0/SUKzySoCUmL9peNiwf94n4JEIUYElRvX/taWONAnu0J0bnDkekaNcmlgULlGWXT8k3TQIZrkhMisLFYklR+G7jgAKjtsRHf7fbwtsGSyTCGxBLSgKpQQsCc4dD+z/VH5PrfhkxscdSH45xuCiEh4NdQMObHFswTL8VGnMfZG539qEXvlu5no+dc5ibJUVhfEvwwoPOPow04RnzzUbft2ZxD9+tXBMrq4hoMmJJUVDASjN+SfoKCotVXIbuKHh8Kw/7WCXwqfZo/EMbFIMV5myPZf/d7sOIyinui1YeFGLbZ7A+WbkOyj6VFIWXZdXaXFv7t/D1vJd6PlxvE5VRxZKi5GLXf0SKLvZKjrHShEQJyfuPw/baLKZJ0Xp1/GxIUfJ+bxkytYuSt/u+L4eK1oEMzYyb1r1yyzOkqHnspHncPSQS81NXm3QvHz7rqn2WudRYNgaZAA0pYvW6WPrjcO3Yt+6DbJasCKZ1fd5/Z3JMethLROWuZN2SQ38kG5u9HwIZsvcvc/XS321fYW2yY4d10Fo89BobPwcmh/9tNjT+7NjPyxAcRngGbsydPS9pNEf93crDM8Y+a/LBWj/cttmfL5vNNrwotMRHfx/bZp/p4blorTThxae1+ASiYmvurMn9o5/Hdp+gj1idIXy3+gJzRdN6DSJFYbvdFlzVrMUlEBWrL+nvlsyEPtZGh13u2+XR+Q3HiNtbaP3Y2juCHh65te3lSH1nBg2t99fGVSJwCitf7ZV4m2DhUzLLaTybELX9qQew+25Nacw9bte2h23Cia272B0vkJ9T5bv+gm+kkbfhYsAkyJKjQIrsxT5mEQpy+7AJN4JdHAIpOtVPNaDq8ELActmHdkzOLE9ojHAsNrYqEAz78A0LqF0wLSk6Zb56rpEPMXmQhe/o7daWzC0swnb8sPjbB1x+IA7YKoS2MTkjQeE7GoO9nd3Nbadox0QEk6P8MM5pisquD0xqSrLPkZid1l6Pb12PNMGxZCeQoDhOaj9fIx+L/2AkKHy3+4a+o/iHvRxlqHqKFFk3pgMpAi5JgRQlIL1kIEWBDAUcSNGFeeO7J0U2a9yBFJ2TcmlPig5kKGBPig5kKGBPiiLL0J4UaTJ0mNeeFAUiNNi2P4RAho7yXduqHP6+gRTBWlF7UvQUGQoIj1d7DQVSdGqcoMjTJMjKw/6obstxW3z9B1Jk3eGOdYEwobOWIfZyZWxb6Muub2FsuxZWRD4YC6SDDjL+7MAvwxjRgbWKOvJ8fOL5wEgQsgoF2ca+JNufF+s1EYgOsgqNbQuwLwnDc9R6gQS9x1ptAsGxZCg8/5HHRtjHkg2mrwR9wZKhIGeeL2Gb3R5IkSUuQU+Mic74ONs2iXTM0LclN/nh/NpjxO2rw8tcpEfJfttQHvRmW+O66Y/EyO4TdPqxAqrcwDKUBxJkydCnWImeRYgWJGrpvsAT+Vjggy9akfc53ucDkd+TvkRE7ok7HstcISIyJ24Qc+IOd18R94CR1IMPZB82BnO5eySm2JCxhFmE5mS/BRmftR8jXw/EtM3mzEzhzKxddKksyYLL9hHhbneLmiiUI4rGR2LufyBuBQ/EDYG5LYiIPJJ97okL14ccx3owuchOaWCuao8F3u+RjM/aM0uNiMgjmdu58sWIi+CCzGtVXJztCrgg4zctztYnIrI605WHuf4wq5SISF4Q958tubZX/NpuFiPpdIlfcv8YZ58TEZGP2LUtefset18uh9Yhvc9ff8Xy9zgddz/Hc4KFZvdoV/wBWm+Ja1uJzyUiQ4dtZ2ZRtC8gApgS3wvPqnmqBTpgbI0aU3zZfhuy3jJ3tDH3X7a2LM50+2JrbdlmtDaOiMiCPAeYfFkT919yTkQwURJ5ueeDSEyGAj6yvsiaOrbtQ3lBXeLfk9/lnrjPfSQvge6Jm5gIJxcfyT73RC9h7m5ll4wSpY9E93tH1g8mf0vkItzSw/p6XxLdtuQ6LLPyPJKQld02/Ez5SHlCS0Nw7okF5ZGkq2Mc5Sk8ixD9lx/+jaxry+J2/y/JSUCucOHgN8a1LnxfmZNT7PtYVj0dB/kx1h1PCS4isqrtWzBs8dkSS5DIjqlvAbsOMrutOLwlMGMHZk0I1hrF7ewtUegNAnPhY8cS2m2Qf26bwpgi9mbj+IbEWmiw/DCHEVdA6r6GrBHE7e4wDpBvSNxQkFmCFaxJ9uEWiBWKTyraTHLwwA0yuy08UOyDhckD2AN320zwvPbKkVVe2BvAoDSwN5BICXrKqmXjbcJ32/4wDpAHsre1v4l2jSGugKdawUR2FjVELKlr3+ENr3mLHVwqwflqu1RyoCAEq5ElRX1w8d1MTfv93BZceajvgZWEJM0JVpf+rSE/+4JVyVtj1en2rmjW2iMiyWolyWIZy4NVqR4u3slv7wZjBRzmMsPHiCxgzQMPUK2Wezc5s1u5IYRzRDGj7pZPxAzF7nO7OSFDW93hKvXBcmPd2p6So7i4o+txvHYyJT5YPCzJYOsHs4QEGbR8E4t8WBtj963db8jWYZqumWYOy+D24mA5spYN7o3w3OeDtZKENR6t9esaxwCxZ8bYs4ZtC89K9DxlLzGD3L7cDTHOVjcI2dhQnPeGxDMHvcPqH0f3NWyFsS+9Q4ps9jKcxauzcUJ7u1/QBRHx2bQJLDcT4nzsGCEuyPKLoB8j3rGqsZzG6df9wTOsMgtV4A02KcJir+vb9iKxxSggb7rB/wFN18t/+eHf4Mk9gWe7zIlIRIoCNFkZptzrVZvhvoEEWXJkSREbRzdbktTfq3rMtQ67kLH861quTaJb8ll/tzcQu3GGqRDVeDptI/RjHSc7jDTF46eqzfGzXkiY72vsQ4svNS3X++iFzy6O1H1Nx6uMuN2xzxsSN2QX9BV5yLKHiX4g6X30g80+5ML3U0mQ/q4/r+rpYF76Ibiuj8TIKhmBzIz5iA/mS3zUNSk6Ne4pkCBLjnQ7PV9NiiwJCaQIvW1nJIi/mdfHeJybHpO69kVuLjt5lPZWnS/tQqdJkXWhC6Soty6+e8XdKtWWFGmFX5MiTYbadyppgonLORARQ1AOpKgbLraaFCWro2VIk6Io7mhPig5kKGA/ZkTMFCnqPhznrkmRJkNRzNDSuMntd/uSZCjg6D43nJPWHTQZ0aSIJTw4lRzp+cSux8fvLA7GEhQdk6PBXIlZnOXg/j8xWU9YezcmXlITDb0O67W6bNPB8eptUfzrwSXrNBLE+hp7PgTYYwykyJIg/V1/3ppnBZrHqc8a/d2+ONTPUE2GdKwPI0k24VPQDWy9Hk2KTtFdNE6N0wm6mx27aJOBXqd1Oq2j0SRZDdYJ7YtxTYr0Nk2KWNIDmyQhkBxrLNByva0YjHH8PNSxuaeB5QuBFC2Mjq9JkeYJlXKNsyQooPnEKrjPSrstIvI/+5v/7PD5IsM/8gXJGbisWrmexPss61ZeTfFDYprivkRELsGbP5Fd6m2EphO5JdbqS26ZhGDnf92I3IL7O293qcLx2LizGaGtk5F0wkWb0P7YnNkpZmd+0yZyN4k727aJ3E3wBTslc56SdKtsTkWbys2Em0XHqjojsMDhVZ3J3TQeZ9uk8hrIRXbpNRFYqnCGVT2Rm8lIisUzwc5J3mZyB8ZZNxO5m+LXQCO3IwRLKZu3E7nKzjtGlrmLXitNJjfkOLbNRK7JOaZV7Okdwce/ImOwNMOzDF9bl1Pcz+UMH1/XJ3J9g/0aLt/w8z77F3ghzP5jkipbRJJ/+TOU93/6A94BpOkWEZGSZJn7SFJr/4rlIiLdX2PLk4hI/Z77UZcPxAqw5i5OjBB9Khk69NPyjHVjRU/PQdMn9JnS9IlMybp27lrAULTZ2WsBuxd5NtWJXIK09tsmk2vyPBkr5XDuvIo2heM/B+w5vmomcgPWj1WTyR05xuekl2ZYkGemCP9dTk0AdRijSeUWnMdVk8oN0ElE+Plivy4/v6lcE91KJK7jc5DT1N5knFrkNfAq3DQir1jBaHp+2ZywfFlz/Zn1NZbYoCLbllUH9fdl1cosJesaoSyaI/wuFiIRkbLrZFnHi1jZdrIEfnxBtiUMb1kj5bOjPoFF28scpOGr2l4W1e4PYX2Ga50tBBuwqrE8BJnZYDPdXzTfDjP7qkuitxQiO7a+bvC2Yxvi2gfk2xb3tW0T6L4XZE+Zhe18oLxLYepL5qJ3mANyqdjHU6FtmyaD8mU9gfKQ2pylOEfpNVmsU95mskKuC00Gs+aEtshFYdVMYGwUk4d+lsCCFQJI2X7I6rVpJvhYauyKt20yeBzMBSTImNy+4d2NcZ4boN3XYlNP4ZvnTTOBAbzbJoNyFvAssnt7juRNl0bufiI75QSl8G67RDYgnigQuu2GxBrNJ1LM4/GTVKR+D9bbNJH2r2vYlwghJk0nya/ATS4vJHmYx/KHuSSbOIV38vaDSBPPaZQM/baC2nrzoYa1c8qH9IuQoaKZSAcU5qKZQBIe3G/RtqrNIPEp2xTWaWn6hMoZwjaWLhq5kRVthpPTsPskJEU4cy1AY6zrCYwFZa7FYT7svmb7sWMs2oycExzMH2QsjTSa16qe0GcDQni+oufsqsmga9mYPPxZsJTTIrvnLMreNq8ncJzHOoMhAizGOugWKDHAok6grrIiOhTTk5iFZ1Enhz8UOrGssWvbvMI6J4t7D7oj0hXHxkD1gZaVSI7kZOxl3cuy7iHxWVbdKOlh++D2u4OoOkB421q2XTzpomtl1Xz6y+NPIkSlmrAmRWWr5FULiZHIkBRpIqQ/6zaWFOmTjEjRcb9jO83D1iOudQGavOjPtg0LOtOkSF+suv3Q3S9RcuyWF48xvKk1ESqYa1+LP7M2LKZJZEiKtgOzsXYxIHL1kNULrDVzrwd9KbOxdqOI/IuzJz/rmgWsFpPIkBRt1Vz0A0AfiyZF+iGgiYQmQiyV6G5eyq3hzM+bZvjg1KTIPpz0fmviSjF0x8NuGEOXDO56ocHcQ9hnTYqsG2DAWAYpu5/+rMlTbs7lsX325GeWEldk6Eqk5dplSZMi/aZWkyKtDCNSdOiLkCIRGZAiXcR1QIoUsTiZFKnFVpOiJFeprxUpGnxWpGgQj6RI0ZNkCMy9+XBcuDUpYkRI5OXJ0GGOihQN5Oq3toq93qatSfo60Mq4JjrnfkbQpEh/PsWdjN4nI4lsTlkL9P76/i+J25d+TliyweZo11F2jNbNDo1pUZB2bC6rGq9Jg3VfP3PGnmvkmXuK3H7Xz0L9vFzWk8FzVj935vpZocbRyZg0KdJkaD2YFz+/i1rrHvjzmnxm+oyWL4iLWoDW6bQOqHPVaH1Sf16oNkzHXNbJSWNoUrRUck2KNBkauuGdlhXOkiK9TevrA/kglAZzhVVby6o9Tk6ToqI77vOppOiTXOZKwOBERC6IqYuhIVOYkBLYr2fBFxfvd01c6G6I/IKsF8wV4GbCGTw7maziMKsPyFz3bif9aMpycogwP/wYbic9jS1ioMdI3eRw+7tJSzO3sOM710VOhLsD3ExaahVi41wQEzo79rtpQ0kQSrMsInKuo8XYXfhqWtNaC+xXp5Xqz2x/M2moT/y5YO4st9MGEqLgOsdioV7q3F9PWkrImJscc0m6IO52l0R+c1lRdz/mPicicvUz7m/6L/C5yv6jWyhP/uXPwzdPGj9xlzuIFclkN8koIRqQIYXmHT724v7LkyEN5j7HkhSkSU9d654iNKdikvS0r2na0bkxV7Fz3bSvsvPXCFaIlh0HvUcmLS28LXL+s+bcJ9Nl1tHx2TOLrU/svN9NWkqUnuM+x93RWDhDOyBDGqzoKfPIYhos03nuJj31bGFgx85czkREric9jechydEoQITJKK6yIRnSYEszd/XDG5hFaLZXBJkFiO2HLEIiImWPT1ZKrq27yeTLu8yxAYuulUUTs4VV00D2Nq8rWYP2YRvCu7yWdznep+p6mYMfomx7eQBWpLLrKftljPy3HLvDLUj2u02DzZBFy4nVglzM9yUvKlsQt7d1Mwz4G84Ny98VxCxdJ1FWvtAPuvnzNqFpIdmi9I4oGts2hX1tiSueSGxdGm7D4/+aT2F/6zaVBXHtewRpObdNSl0IfiUpnld1Bue7Iu5+qzqj5G3szSAbf01cITZtBt0xWPvd+Ph3/EBSx65q7IrH5LuxyRgjqWNZithNM6EZBrH7D6/WzlKx520GXfvKNoXyukth1fumTWkK7xX5bfs+kc2apzPOH/Cx1G/xQsgsRf0/f4RyKSuRtyBd9uNq92fx/kEkx+my+1/wGC9JhvLVlCpb2xyf+205i+pJieySZSCyTWOJumwkDoXEGXUpVNzqLqXubozYoPsggFl68zajbl/MtYwp/vdkjWDt101Gs4baBDuhPU/JzEnwWMZStG3bplGR0J0cZzMdG3/MhQ09GxY1WcubTN4Sa/JyxD2cPUcXdQqfl4smo8/+Xwt8jKxEybLGes+qxjrPnMhFRP6an6cP7MZGcoEuamHb2xz3x4jKusF65abB+qBNeqD7/y3HY7AQkmXdR5nfRHakhsmZQeJj3spHcmJQeI2IyLKppACucIuukKKPD3LbV7Lu8bPhuWRI5BNd5lZtJav2+Etp05UmRZoIMZOWJUXhuyVFRatd6BpZVMf+dHYKTYpK9cMhUiQSmwTD72lvBE1s9MWrL7RzUoKLxBd1eHtgb4Jy4HI3dItjrnEacdrIJOpLf7fkh33W+7M3InZhDJlXLCnSRcuGJmrtjoZN12Nmc7uYhxpM9lzp2kwrYp5fEHcCRIp2fWI3g6VRgDWx0fPVDzX94FsRFwXdDvl6h75tLShtsRqMOXC/wC5/doywD8s2ZK1jmvCc8nmwrxmDxUVtiQuN/c4yDDJFNE5HnkX76nmJWNeeFMq1sopIkUhc1yi89bbuc1oZ/6ykaP/6MbLe6EQJmhRpIqQ/v1f7G1J0yChn3ii+NBk6jGeW80CGLPHZMhJc4wyBY2To0N6QohB8bp9iSOkX4S5u7LMeo+ri2nZ6mwazNjPXOOZKp7+fKtdrCcsaqs/Pmqzf+ntUzFMRno05Vpa1VPehSdFYBtMwNzs+f+mEnw0D97UTXMdFjmTIZlAbiwtiz0v9jNTP68c6lcc6nOPhtR3IkNVHmE6hdRD9HJ8TuXYts32GdlYfoPoMcS2z22zsTiBDdp9z4s1FuIudJlt2jKCj2qKozCCgLTw5yRBt3eBG3ef2ZEjzBJEdGUJYdEfXak2Ktv2xvSZFZd9I2f9OLnMiIv/jN//rw+e7bBYdqIjI68kUkqC7yQRagG4nU2oxuky5Cf31bAJzmL+ZpQNCFPDzRSolaP9qigPTRLjJ9naCmferGX6z8GqK87rfTbkplbnQ3Ux6av25nfSQHF1mPXzbcjPB8jHcTfE+r6Y9rA3watLBVOF3Iy56zBXv1aSj+9xNOvhG63bSwYK0t5OeFqolnpvymrj2/TRrB3FGh/ZT7KbwatpQKw97S8zc+u6mLY2Fupu08Jz8NOPue8yl5W6C97mbtJHCENqjN6K3k5YSHQbmbng3aaBixsYW2bnvjcU2IVxmLbQMXU8aSJqusxbO63ba0LomFyQT1e2skgbsc3uB3eRuLivqBnhzy4uVPst9DvhiJP/yZ5o1Ti5IXFNN3hxdXcTptUVE0vSzkSGNJMGWoSztIBnK0g7WlhIRqUdiSmyqapGdayjKxJUKJkNZ0lPrD8M07Wi2rxnZNks7eG2PuX0xMFe1MTlaBy7TDq5BIjwL13XWwbX8OuuoVegma+G2yxT3JcLX8+sMH8t11sFnBpPfTFpKYNjVcDNpoWXoZtLBvtgzVGT33EVeFCJcf7rOKpCfBQAApxNJREFUemgZuiEuZzeTHnqp3E76KLV0AHPpezXFOtItHRu/2A4Z2dhLb5aZ7SrDZOh2gsnQ6xm2Ct1NueWJuajdTBJIhq4mCXR3Y/LLDMsDEC8QEblMM0iGLtPJgAwd5Ml0QIYCbpOLARH6v83/T3QuT+GTLEQaH1rsPvHXGst/qZdQ/muzlKVge99jR+yAIvK+xA/39yiNhoi8JaznQ9HLmjBmZDoUEfl1iy+G34j8XY77uS/5mwJ2o41VF/5Atn0k8vcFJnAiY+6DuC9mLn5LXPHeFSlc5ES4xesdqbgsIvJbQVzVRuQscQR7S/RrgZXDX3Imx8rRL/mMPkSYy8FvxOXgVzKGiMhfyT6/EPcfEZEVefD9RlwumCvGOyL/bWRs5qLB9nlH3OR+G6l6z/bZjc9cWvD4TP5ArDvMrU6EW8MeyXwXxA1wucXyp16DnW0p+mdMSLp/fI/HX/G1vF/EWeZERPp/wH11f8HPkvrt+WRIhMeRbbbEzZT8Jhvyu48l+2BWSCZnlhnWfizGaOzFAMpQKSLyALIejskZURDhrmLnytnYY0lzPlb42B+IXETknh47dylEWNWpvCNrM1vnf6PPHnbsxN2tSan7Gnu+sWeoiMhfyLNvXuHr7rFKqAvbX7d4H6Zz/JXIWVjCuhb5lYzB5H/FS5P8lvfyG9HrmJvavOyojsjluK+/bnB7lmxsVXdUB36HUtIJ16U/FtwqoxMhDORdKR8afDLfdgsov+/xOn/f42fPc/BJhCgwsUJ2D55VP3zIBXPWso/ZnojIWgpZC95mSVEuuxOLSFEIurIWp2rvXmez0wVL0uNIZjpLisJ3S4oCM7ZmyPDdMudjMaqRAlbm+gpdWFJUKLc+S1jCtc5Ms8wKFvpD36089GXnFe4n6/IX5GxxFJGIFAUrkyVFYf7W5U5n3LPblqTYmYbdFvqwpChYxeaGMIT9H4w8uBOwN2siEpGi8N2SovDdpiQdGyPsw4jXvM5kHrnd7faxpCgQlchNLrjpmX62h36sm1xwn4vjvFg18TXpK7xBtm6IgdSgon9hGyI+bBtzaQnfbftjOuGhPLxtR0po2GZJUXi7bVOhhzo0KxN3EVy6bExRIEPr1YWsVy/gPrd/A9n+OkyA0Je7dt2v86F8T4b6j/GDL8gsKep/27fdDhebLrjsmfU3kCFL/MbI0HY5k+1yX+TWEIft/hxGRXH3SrG1zoUECrF8dx2gWJ9wrdi32cGKaPti6biDZciOEcgQIkXhmkNWJVZQNFzrNkYmWGOt9YS5o23bdHTbmNzGLIV1wFpew9oUF/lOKUkLfSNr/7E4KF7r7Lzywzk0a/bY80Ctj0M5dvcOrmjWdfywjtt+xjKzhRTWUWHQ4zPUbgvPQvusDM97+2x/HNEDgrXDkpmga1gdabGXWx1lReSo7MphjAq3YXOaK13O6oFBz7N641hW5NVe4bO643bfh9VNDzqoyfAQxtiasVcjmSBCljdb+HS1z/ysQ1Z2cxlPkS0iUvemrw4bL+aykbngJDqbPR/IDV8o99xjvd/+KdYhkRewEAUyFGBJUcCyLw7EaNEPH3aBFFkStDychOEV+NjlB2JkM1CwRAysjtFj2R2IkXVXCxeevQBzQnbszXA4DmJO1HWSbJNww1t5WBCQy92GkB1GfvKWx0oxEhS+2wUpzMu+XGDJIeZVclgobd7+sHBal7vwALDHsyL+v3qbhV7MLeFgNZbCQm9dBMODwD4gLCkK0ITFjh0IiyUuoZ1tH0hR9LCrj+3ZGLs5D7fNiR/56vAQxr7tVjEIhMUqE8w1UPd9Kjk6jmF94Sf79oZgjrjmjaVAZ+SIKWuhnVUg2RvizSAdtz3G3Tbr6hNIkS3KGUiRjW9hiRZE5NNIkXHHCKQokKGAQIqsZUiTIkuQAik6kKGAPSnqovilfj+34aITSNFTZIhuiwjlfh0yFoJATGw2uaN8+PtrwkITJZhrK/TF0nFbQtMSEqS/Mzc5VGcnfLf3Qn64F3B8zalEB7V5ap8jcRmOXRLSUj0xJ93nYVuTUrIT+rdrXWhn7/sgt2RIr7nM7c2+7ArPvEfyAi5axw8vxvBzBG0LWIJnaXjm2ReD4VlpX36GZ7slQ+GZPq+465d98Rp0kIWRBx3FEpeD7mJJVnX8f0n1leH30PccJtHCL72D3mjJUCBAq6o7fLawpOY4d6OD7smOHSPsb8lQKGszVh5nBWqDihzJUEAgRTZFtsiRFFkyVMruR7FEKJddu43kBzJkURrusSbtzsEnxRCJiPyP3vwvoXyTbOW2j9OyrpO13PTXkXyZLOS2fxXJ8ySXVz1P1Xqd4AfZNYk3KrtW3sxiE3HRdvLzBcpw1ckdyQ/N0hEybOpO3oAc33XXy6tZPEbd9TRVOGh+AIv7WNY7H1iLVY3HWda9vJpi+R2Qi/C02CzFdtHuYqos8nbnF2uxbXZxSwhj0U/sl5pXCRxnXuF5rWqRN0R3mrJ0ymRiLDZp3SRyC6ptj8lvSNpvNoaI0Kr02zaR15N4YV63qdwB+abBcpHzU9Ru2lRuQPwMk2/JnER42u/nzCtvM7kC1d83TSY3oPp70aZye+Y5YWm3yy6V19P4lWbdpfJ6FsubLpFXF/jJfnvJ44Zu70hGty6R6z/G43StyMW/iNezvuok+7sr2Fdyx8kXxBa/ym3ebiUFa2n1tpYErHHFh0wSco+MkaGcuHquy5lMwO+V1xOYVr1oMno9slgfJq86nHC26lJ4bVVdSq8tlnp6LMUyS2ect5lcgnt03aRyje7pJpUbco+ci22byiU473mbwGfPtk1kRtbrsbfE7Nmatwk8xm2byhW47pZNKlfkN2FujSwGpybtV3Uir8GzclEn8Bm6exbiQdjYIjwu67ESeQ2eoY8Vfrbfl7vYGQQ2PJsX02nWRL5psHxedXJLlJd2RHVmqa3nVSdXICh6XeNxtk0nr2aYHHdkfGYA2jStXGbxGOsayxdNLTcZ/kEaovuyFNkiO2PJVOL+5slSLvr4ubBK53LTxZxgm67lFshFRP4f8/+cjn8KPtlCtE5Wsk6GPnybZLvftjZt14PtcV9LKF+a/gNKqeSxj2OUqr6ReVvIvDXmtX1w17zCD9mHEvtCIhPjvGwjE6XIkWlbtn1k7kN5IFXMioSsTlU3npUE+cwuqUkZZx457oflKyDf1D10Bdw0+M1PsHLZNz8HdzialQ8taDzN5rrBKTuPpnwrx/Oy24fjY1fATZPAQM/VPk35qdlumPwwDnAD3OzTsKN9Nk0CXetCkgr2BpFl8jsnTfmmTSPLVJDr/5+Sb0fmlLcJ9JsPLjIoIDlvM2jFyYnb24ZYxwJQDFTeptBFr+wSIt+/0TVuckFZXhgrRajFsgTxSW2fyCLHMUVdn8hyGW/ribIT4mTLt8P1rN+vYy3I+9qva+l+i9fr/jGX/jFu373bSLeKb7bm7e750Zm1tHq7u2FZoqEe3SPzC3qM6+3FoODpQb4/t40hLPnemmf3CZYhRD6qNsPpuEnabWbNqYib3JgrXNmlUJkuiFxkd/+gOTCXsHAPWGvMhlgwQltkOSraFKf1Jlam4GFgH9NhjavAb7tt08gVWWSXFbXoEpjEByUP0vOy24PFPrdW3H1mVdTfqsFjL1l7Evcaioja7cytLWxj/T2UCXxOPxJLyyNxO7vfv4uJPU92ZVGQvrGsetkAOWorEnv6BATdx+pAIVPxGup5HRw7zAtZdFA5GN2/HUdbbzRWdSeruoM627rupGzRy4fTrDwBIUv0ph3+IOumlnVTwxTZq66Uiiy+zHNsTnT+VTrfjZ8Ot2/T3fNjbeRFspWC8Ipz8MmE6P/z+H8REYlIUYAlRQGaFC2To0uEJkV5kqs2x/5LqQbmssd+DYmRiESk6CBXpEj7RWpSpImQ/qxJzabuDmTHXrjMBGlJ0bH9cQxtfdIXvr6n7OKhyY7OUW8Ve544QaVQrJ/+rBcevThoV0A71qnm8OMYx8/bwfEdF2hNdiwB0J83ihjFpvyn58XSW+pj1P3qeWlSxFzxGAmyoMfX4s9RO/V5UacHYmQfuMx1QhMQrdCckqZckxr2WX9n8rE5aQVBz28sla0mO+wz+n4c5yjXStt6MC8tP7bXhQiHcusGuSM/Vrm1pChAkyKtKFtSpBV1TYo0Udh+PI5hkwYFUtSbB74mRb3yU9GkSBMh/bl7d3Sh0KQokKHDtv1aGsjQoS91TxYfjudUk6LN/PhW0pKitUqgoAkOq/2UG3fMsI91k9PnWhdXHaTjJmm3NRHRqtBTJClAXzf62tLkpzByvU3fP7pvdk/YFwJhf0uC2D3KXNgK1kb9TpykWMKYHPrRfa1Jv7YPPQ6bu4Z1Xw6kyL7U0f3q58WWuHoP2td6fcefNZhbm3Zrt/0+lIk8lHrbcX9NhhZErnFPjNb2ZWzQN5am3uOG6SRKn1kTOXsRbMnL+qDjDVNLW1Kk56VJke4vb/W8mIscT4agsTnEFXWDvjQp0mRI67qaDA3K2ZAszyz786orB65wVd8MiJEmQ7Uc5ZoMlclx/0CGLAIZsghEKHCRT8Enu8yJiPwPfvqfHzuU81JttoJPcpFs5KZ/A7ch81rAjeA3oFcJVhouMzzfacq5YkvMhcyEmhG/pRtiir0ifmdTZq/fg21lPzAzuY6ZxxHGWPWEzJmlEWeudSz19tgpWdXYNC/Czcrs2NkwbL5MLvK8Y3kpjA3BXP7ofNkYpD1z0XsO2HGwMcZdB88fn3nLMnc4dg6ZKxP7LUR2KXoRbib4TccNcKsTEbkbcZ+7Iym5L3/i0cizn/FBpnfY7SIhi4AlVgEdeZPTPHK3q/IRj7FdcTc5W8Mp4NwU2mNpr6116bBPz/rC55aNMebyxs7W2D5sfLYPc6sb0zbYPcrOIjsONgazeo1l3htbs85dNuj45EDYOdxtO68vBva8Y/LHiru17eaF5Wy9ZNmamW4ydv2cez0wsFAIdgxP6UuoHIwI1yOZHpCQG4Sp8M2oS995Lm9sjFq4i1xJdPt5+ihTosNXCbYkJWQVmPTHi/ElCNEnW4g0tslKNsmcbMOmsSLZSJGQzBKgryrJZZXOIYssk1IelLUpIJdKHno8xrzBD/5lXcsS1MNY1bVs2/jBvGwq2YAUg5u2hrnWq66TR+KiR93nlDVKI292VYaRmXZN9llWHTQhMzN06AvOt+5kCbZtmx4eS9li17q8xZaiTXN6UdtTts8rbCWbV9g0v9qb7dG8mMWLydmxrOrzqlGjzIJj8gDmark799i1jslRworgpmdRtNzixWpJMXe/LchwtDuGBLrPbduUpp0tyHzH5rVtE1hLq+gSaMEqOuwiWHUJdLerupS64dVdApNDtH0CUyM3XSoLkBa67VKZb69kvo1jfboulcUyljdNKusP+EHWlqnkv8XnpM17qd+D+KNVI+2HeO1tP5TS2Shp2dUT6tbxWlK97aUjZQTyjxPpkDvR4jJKOiGyS1G+3OJt63IG3ee29YRmZmNkoWgzqNDmbXZweRy2T2FfZZdCJbDsEqqYloTYFG1KSc+2wdvWxF1r3QwLhQdsGp7RzbqPHcYmLmzbFo+xbVPY17pN4bFv24Qq5SOlVUbXIObyhhIhrRu8lqwa3E/YB2FBnmvrBq/7yxq3Z3Jm4Ql4KIm1pRxadALuC5xEYF52sP2iwnoG0z9EuM4S3M6isSvsirbTl9DYLXVHW1SNLCqi45Faa6u2hhaaVdNQfXQN6nyumkbyFsS8tk3kBneYL6j9I7Kz8KBs0EvJJZf4oljJVlaylQoQonn6CMeYJ29lnryF27YS6/QiIrksZZU8wG3PxYsQIsvMLJEJZGibLAfESLfTpEh/1m0se2SmNUSKRCQiRcXerDdvygEx0heSvghX6rMmRZrwIFJk22hYUqRjiljVX01wbDrH7cBM3MF9NKhfbZR2/OjnqvvVn/WipOehj0MXydWkSGeOY+SHuf4h0nBKJeehqxs2u6+Iu6CGJT+hXxs3pcdjrniaFLFj0P2cUzdKZwjUD8jhuceudUy+Ii57p7j7iRxJx7Yd+sgzt0DdZkNcV1bEBYeRonPmpT9rRUZ/3gzcbbBboI5fYOTHyk95S69JkbZCaFJkFX5Nijq9DyBFIhKRopbUA2tVXQ5NirrV8eLTpEh/1qRIF1dFpEhEIlKUf8SvsVeLoweBPg+2XpPept3kNCnaKmJ6qqXmlHpCmhRp9zDdl3Z502dEK/360VB2yWGbvY5QXI7IMLOa3W9N3LX0faQJC3OLy7sjgRnL+jaU4zFsv4c5Kbk+P7ofrZdX3fE7einCXpTkdD3S8z22H5yrDre35zbsY8kVy+aq1/k1ef6w55KWazJkydVD2R/IkCUyc0KS7gsVjqBOvs6OpvtaVFjPWBJdROspmyiFNF5DWIyP1l+G+o4KnWiGxEgTobwZ6pNBp7TEhNbsAYRHZKiPalKk22tdVo+nLUGLrjiQoaIfzoFmjSYZ3VYydGnWpEiToVq5yGkipMnPVhaH7xsZEqlchgaWl7AOibyQy5yIyH/v5/8pHoBwrp4YOC/7G2gxuunfUHPaXfdm4IOocdXjh/q14DedFyhFkYi8mk4HF+Chn2wCyc5NNoXk6NVkBnO2i4jcTvHD8pL426QjfkDXkwS+0biZptBqcztN4FsZEZGeOt1hTMi8Xs3SASEKeD1LYGrwV1Ou8DMXpDEw0/bNBKfPvJsm0GL0aooL2L6Z8fkyFzp2GGMVqdEYN6SydcgqeO55PFd+N+nhG9PbSQ/fjN5OeqpYMNcE5krAaM7dhFeMv5l08A3z2LzOBTtXN1kHA7pvJi2MB7mZtJAMvZ421ArB3OpuifuciMgr4kL3+lUuDSCTt39TQjJ09Xf9gAxpZFfnnduuIG4lt6lUb+Nt6UUPyVCa9QMypMFc5ETi2KAAm/Y6YJp2kPRkSQ/lk6SHMTiTtKdEhblLnevWNiVjTNMe1t4J21jBZO5+hcdnj6/rDN+3t1kH783LrKf3+bkuYQzX+0xxaPybrIfWnKush1b0y4y/MDrXlfsyw2ToZoKtQrcT/MLxhshFxi1lFZkYW8NfzZIBGQq4m6WwNs+rWTIgQ58CNqe7aQrJ0M0kIbpSOiBDFswdzdbjOcyL6FevJ1NIhpguejuZwPZXWUatQpYAHeYquD2b65XMIjIUMJMptAxN+wtqFWJISUjO3z/8X8/qh/f/Qtj22BRWkOqyJUmCsJB3UD524j6mv8oquY/HTtbymH6A+9wT1z5W9faXCst/bfDx/dYuIYt+12xgcVkRnv2OBf6xwDsRkXek+NBvRDP+bdtA0++ybmgeepY0gi0WdE6kKvO7vIcWrE2NTfC7OfFtzBWQjc+qP/9K2v+6ZVn2eki4RLgL268kYcp7kmr/A7Z2y4di94eKT29JRkKR8+XvidvSRyL/QKwKW+Jus8sad54LyYeKxzN+KPG2jxV3rcMuOjj7U0kyUomIPJAaI6zCPZN/JAH+dZdGWelEdor0nOwjIvK4xYThYR6XSRARWfyGXzat/hEfX7NKpHwfy+vHXurH+P6oPoo0a3wON/8ExbL8Fb/omj+SuY7VZ6pmUZ0nEZFtM6FKvi2aG4AK8IqIrInc1tQJKDvsPld1Kc1Kx+fKat3w++aB3FOs2PWqSamVhd3P9+Qe/EDkD0TO6u+h+zjI0baiTeShSuk4bL5UTtbEscQ+6LH9UPLnxG/khcSv2/PkrHj9fdHKPXrTJTtLC3JhW1St/IU88H4hlVJ/2RCrCdExxuRIv1nXrfxGUvv/lmOz2685edgK9wRi7mihNmc0r76Uv9axjrztK3lb4fCPdzW+GD40WG7rgQawzG/LZAEzQa+TpXxIPsJ9RETuU7Doi8hH+TOUb9tYlxcRKbrzuMRz8KIxRA6Hw+FwOBwOh8PxLeHFCNEvj/9VZCUKzM1aicJ3y+zC97JfQ9anfQoRkJVIRCIrUUjnba1EodKttRIFFr8wbH6+Z9hrKWDQmQj3tbRWomZvTrVWomCRtlaiYr8BWYlWB99ZmxJyLyeJFnb7nPbmJViHrJXokDvftA+pJq1pOsQazctuYDLPScrM4Rx4yku2LU6T2UXj6fa2nzCXRdVRUz6yEonEbnk6pgfJ7RvDfC+3L82C9cdagZ76HmDH2ZLxmTy8ibVvMcMLRGvBCe4l9g3xlsQfaLB97BjBJ9++udYWHZuAIexj32jruQxjFvBnO55GiGGwgeIHeYPltm5SiFl5rHB9IpG4dlEAshKF2BhrJQry5drI9/NcPwwtLE2xjwd5O7R8NCviIqQsQ8hKJBJbifKPuzHqYihf3++OqzZWjJBK3CZFCNYhVB9oXWFL2lZZdFh8kI0nCnLWntUOsvOyadhtexGepjsee38Oo5TSezk4J+F+se6e4R6zyQFYzbJBHGC0Ngz/t3J0P4vEMTWhvV2iw/0bx1Fxq9Ep3+19zmodheO1lTfCmmqPg7mxPYykqg6xrtbdOzzL7PN0QeTBOmR1BW0ZsvE4LA5nofQErbMsqvawzdbEWdbNfgxbh6d9ltyC1eAZi/MJFiCbgnrZVIdt2264LViHtv3QehT0ynU//DHt9wC7f8Cmr2Sz32bbhL6sPFiHbCa4YB2ytUKXJC6f1Q4VEVmlj7ICrnKL/q0s+p3HV2OONViHrJUoWIe2Xcwxfnn8r+gczsWLW4jGXOeQ+xwjP2GbiEhtyIYmRqXxWwykqDD1jwIpyk0c0pjrHHKfW/RFRIwCAimyJCh8z83FF0hR09tFZdfOuueOuc6FP4tN09P9wkJnF4xAisKCFBDasXpLdnzmOjevOrpwIj9ikeNizfL+Izc5tm1zqGcwHCuQIkSmmBteIEU2w9+xDpMJMiX1mQIpigvnhrkN5YEUIdLDiI9ub9usSH9Pya3iEuZvH+yBsFhfe10byiIoG2if3ZyMQtxgxWxDlBaRo9LGao0wFxqEsI/NZsXkgRRF8gbLAymyCncgRSiwP5AiG3cyJ4kCRI6kyMoDKWqNohtIUSBDAYEUWTIU3OYQAQqyynhgBFIUyNCh/Z4UBTJ0kO9JkS02G47Juspp8mHJUHCb2wL3tkA0bHxQ+C2snLUPchtDFuZlyRBrH4Dkx7HNOVS1eAZyVYfIkpuKvHAoOtx+O3IPiuzWEUaCojWG9FWQ9mGZt/dtOG5Gcth9HrbZ7ewYD+fKrFeBFNkXTKxgeVhbLRkKcpb0Bz2/ji/2sNy6ygVdAbnJBVJkn+nBbW5BXOuZfFk3ke5xHOvTyFHQbSwZyg86D0+KhdzhmDzAusoFYmJd5QJxsWQotLOEJhCgDSFJ676ExGrRb092lQukyJKhQIIsGQr1gBARCuV1AhGy2Lb30FWu6JZfxFUu4MWSKoiI/Kuf/ieHz1W3lqv0p6hN0S3kMn0dyat+K7Mk9lWv+q1cpq/geHWfy2WCt01J0oTL/hbKt8lSfur+JpKv0rn8DOSL5FFe9fFxLJOF3PbxnLbJWl6Tukp3CZ7r3RS/4c2bliZgWNetXE3ibau6lussfqCv2lpugHzZVHKT4fHZFcNqDuVtK6/AseRNK69n8dh508mbC3QMnbwC2QmWRP4UWN2oedXKDTiHm6aVO3De86aTVzPQvu7k9UU8r7zp5dUMy69JURxWK4cFJudNT+tZsW1508vtFMhbXHsib3mdp3OTMmybYwIIjU0jcg3krD2bE2sfwOr+sKuq6BKZgX2qLpGrDMlFrsAtW3W7oGzUz80kfjlQd4ncAbmIyO3kvPpEQUF+M4sfqm2fyE9X8Yufqsnkp9vY6l3WE3n9OpZXZSa3P+OHdjolSVyYdfBxKrOr+FjW80uZTkH84/pSpuCcLPNLmYD6T6GQ7YRcC+WZ9YaKNoN1poo2g/Wqii6VKZGj9mWbwrkWLW6/myux1I3U4lk1iYBlQVZNIpfg2l3VCawzl7f4HihakevJeWoIm23RJnIB5lS0iYAlV4oWJ7ypOoHtwz6sjh4DS5awbvA4yxqPsax6uQCL6KLq4Nq9rHq5A/J51ckdeWayOjzFSCaKeVVDfWVeV/J6guVIv1i0pdxlsXV22ZbyKuPxfudg09ZyncZjr7pSLkG9ymVfyI2AOUkut6Tu5VzWciM4brGhFZMwtslWXgG9dZ1s5La/ieeVrIl8BZOMPaYfqF7M6oQybJK5zMhxL/u3kkp8ftfNO5ml8XyrbiOX2RsgX8tVduQWX62FKEys6nbMLTfmrYCiw+a3ijBXxhBFcNKGol/Kqv8gq964yslSHpNf5TH5dSAPqcCta11I6/1AEjOca0ZcAGtULY089JsoJXgrvczrSub1UJnIyRsOLcsb+7Zkd1Gj+kkisVn4KI9vhmU7rEocsO1q+LYkpH20b17CHG2e/nxvZZpbn4Iw/kgtJCZntQuQ9Wy+f2tlXQfDd/vGKczXWs3CG7UFsXixWlOollTZYivfdi+324Kly7oBjm0L35l7Ikv+gAKBixYHAZctT+4gEu+zIdYs1j68GWbBySzTXtXFb29FdkoUeqMd3oJbd5jw3Vq0wk/N3lzbt+zHN8p4eUauSE2fyBxkRKv7RObAdU67UM0ji8jefS4fPuyrvYXqcT184JX7cRcLkqb7IVYmytVE8od4XsV8IuUKvFx4xMx7Pd/NsTaJAII1qzauhsv9MdnCqEtlMUO1gLYNrivE6g2x9NrUfa7DrmpBbtsHcmbnGqw/eE4JzFa2bROosK9IrbGwLfQ5kNfjLmz2HgjtrLU3yJC8ILV+TnV7s2PbYw/3JVqiwz7o+JCVS2S3HuEaRHBavOzE3ppjM7UGLwW7dof21nUuWHKsu9tj2cpj2cLstPclTrq0648U4Kzxi5Agt/rFot3pFavWuJbt5eH/gFVbHf4smJyVRUE6jcjRQrMx9XaC1w8KlZjLer/P8AXRPFnKPFnK2ngvrZLF4c9im2CdeE1qdy4TbDVZJjtvJ+shFXRe61G1TD7IMvkAS+jY8jkBrAapyI4MIawbnESt6vDxHbhFu+MWL0mGRL5AUgVNijQR0p81Ear67eG7lmvTWd3nUqv86NodzxIkS4oCLCk6yAn50aRokRyPSZMi/XmdLA/EaKsutkUyPxAjm9owkKLWpDZkCwvzgRWJSVGAJkU67/1mpK5SWET0grTqjsTI+syG/W1hMGaOZsXLNClaDfL/P/0ZbQvfbbtAKOaW1DSYHJ2bdW9BYqM0KdJyTYr0w0+Tn615KG5GiM5TJMhCP1j1A57VLtIERD/4NQHR/Fa79VmysyFk56n2FnpOeh9buFYrPRsSw8RqD+32x+QoKGxWqWKxDSxL14bUgdGkSLvDaVJUD+RHQoGU5UCK7LZAiipDLAIpKg0J06SoUpn8NCkqV8d9NCkq5hPV5rivJkNVfmwTyFBAIEU23imQoqUheIEULUFMlSYaOuObPj+a9DC5th5RkmTIWfjdrDyMYS1VzcH1C7ffbUuU/NhGX9t6WbRESOvUlCSZAs7MhS0npGKrXGE1EWKxhZoUaXlJ5PqeIwnSovvy6G4X7/PU8dn6eAVZS/WYS9L+KZdtC9s+kCLr1haeq4/mBWQgRfdlI/eqVqJ9FmoypFNBa51FFxplusyiJYTEyJeENIXvlgiFz1qPERnqLJoM6TTULAMciwsXOZKhSG4IRCBFlgSF79tkOyBDgeisk82ADOnPmgwN5ThDMtN1lwmWWxK0PcQbzYf1QiWXan+Olv3bARnq9handfNuQIY0AdKfi1b12728i5zFi7rMiYj86fX/EMrLZimXkzdwWwrMlGPIzmwvIjIhbmkXgk2FE2DaExFZ9/fyWv72rLFTwjuviZnyNXAdFBG5SM6000scnxRgSVfAY7+WV4LHb4mpNyPHNyXznSa4/SzF8owVoBnBsq6hm94YalIfioHVW8qIfEb8xabk+LYNdmsoWu4O95JvONh5Z25vzGuRufsxF5rngF0iY/Wq2HzZPmyMMRca5rpEzyGRI/c8EYHueSK72kUId8R9TkTkbopfWFRtJj9dYuXg+gLvc3WJFZ/pFN9jCTk+VP9IRKQqsf9jXuJ7fllcyDQjVllSa0iEx+gwN7lTC7Qe2hM5a4+sVyI7os7uM+auZWPUdF8MzNrCxmDKBXd54/cSu/9YX2xsVo/m3PZj+2xqEeD1LeuGHx8lacRVjbmwsfkyF3FWN6ckz8OHNqdu/iJct2CqJnMhY/UPE/qLY6Sk/VoKuQKucCIileAfoyXyhtTtERGpE7xG9qSvjOie7DhYbaBV8iA3JEzDWoQCKkL2zq0nKiJS9NiDats80H0Q6mYjF9M4PEVE5H75/zyrr6fw4hai94v/u+Q1PuCimUeyqtsMWGBA022l6WJzYdWtJW8fDyYzDSYXEVk12GQ3b/8i8/Yvsbz/q8z7v8J9UK2kVXIPs9xtkrmskvh81EklizSWN9LIPXAD3PYVrV+07ipZd09nIBnsQ4LuRESWoMDWY7KE5tiVbOFbkVxq+IZl21cwJ/+2q2Xe4Pmwt0o6GwzbHs23rmFRs1VdS9HGC9SmbaBLYd62sAjalsiLtqMWpFXd0erZTI6sO0XTQ5c7kZ3VCW0bk6/A28ei6WE9p6LtYRFbkZ0SwNxDkItJ2cZZmERi647uA8mZ617Ydo67X0Hc/fR2i52LYPwQK1vsClR1CbQUlR1+K1/3iSwBYag7kTmoF1N3iTxU+GFbd6k8lFzJeSxiX/mqzWQOahfl1VQelrFPeF7MZLmK22+3M9ms47HXqwspcuBzvr6UCpCYxeYysmSJ7MgQw6qaUvKxaSaQ4GyZvM0gwWG1gAoiL9sUEp+SuLyNEZi8TWAh13WbwrluyBgiOwsQWo42DXYvy4FVRWQnQ/f9mNWG1easut39YVGSfapOBC2RBVlztg2f14YksCGlc7iL3EjSnmXVQeLzWLYHd+1h+xZ6jiyqBsrnVS1r8Lz6WBfQ5eyh5dYR5Pp/mC8JgH+QlSwl3meRrKC+sUzWsgAWj6VsYD9bKaFbG80KnKyxnkNc2kQE6nGH/dJHSD5Wyb2sgYtZnmygvEg2A0+jgHWygO5rSOcUERgyIhJbcjRsZrfDnPolTGywbt/Lun0vDXBDXFfvpOviG6Ss51LW80heN8R1rlm9OBkS+Ywuc5oUlap4KSJFIgJJkYhAUnQY40RiFD6vmrcDYqTbaFK07o+FpDQpWvdHwqNJkSZCLPU3u0DZzXTfLyExeuzyATHSRMgSI008NCnSWfI0KdKLliZFj+qG04uFrkzMTMXM7MwKlc2bckCMglufjafSZMd+ZttWJ3zWpEgTIRZnhcjPmHxZtQNipB92mvzojH1arttrUlQQlztLeM79jEiRCC9ya0kRcxPRCpH+XJLPmqRsSD9azlz3rOvLufFGVgHSfRVk7pr8aHceLdcud5oUaWVPkyKtzC4HbnXH9poUaXc7RopEJCJFFXHz0nJNinLVtyZFeXF8E6tJ0XZ7lGtStF4dP2tStFbucJoULTZKToqa1salbDVyHnQhVU1+tkyu3eR6/bvi1NcFkWt3OE2KSuLypsmQVfRRnI1InPI9YEPGEBm6w+lrjLmf5uS+KMh9z9qMubkxkkTCNgft9bni9+2wDVtTBi65aj0pydrHXOG0JWhZdTTO1Lq3HfchLtvKJV2TIu3upknRx/r4bNakSJOhVV/KSukOmgjpLGaP/fqgV8wVYXmQlTwIduVChEdkJD5G9as/b+U4P02A9OdcxQbp/gsVa6OJ0CD8IX046G+bdCmb9KgnsZTT7MW5yI4MIRREvh7MS42tdE3tyqaJUC5Kp1NESFt1tt3jgQxtunvVBmeMDkSIYV3heCFEhESGZKisVYhNg6+Pl8CLu8wF3F3/90VE5Gr684AQaaQg04eIyCTBZszuzOwcY7ib/AtIpt5k//GAEB3kyX80IEQBr+Vv4QV+1/+BBpldEje9mw5nzLsimUymwv2NmHvbTTKDacNvkwv4FueVXA8I0UHe3w4IUcAbuY3SiwdMmGsdOY6MuNYx0/EYXk2n0DJ0R+SXWQZJ0E02iWKjRETuJhPZArnIiItgRlwEqUsa3sDOxvUkoRYjto3J72bpgHQF3EwT6rrB5ktd0rAYvtEV4S40NxP8VpfJRXaZ6c7Z53qkL/Z7sOOeUFdDfODM5ebVpINv8N/MWphd7OfZ7rpH1o6fL0pIhn66LChJuiBuelczsh4QFzb2RGrIuHmFXd5mkxZah6ZZB8lQcG/cgPTa07SDabenaTcgQxr9mW5yzB2OWWxYP5MEk6FJ0kMyNE16aJkM16uNDRLZuZuylwYjycgg2P3C7m8mv0gxGZqlmDxNEnwPX2TcGnyZ8eNm1y15d3S2KxyyCImIXE1SSIZupxmMz72dZjARwu1kMiBDAXfZbNQyZGOhA5i+xuR9cp5+97q/g1ahV3IzIEMBt3IJLUNXMoNk67K/olahOuGptjviCleDOYlwFzkWtnHd3w7I0FH+Cr54v+nfQKvQlbyCVqHL5DW1CrFwlXrEcMGMIHWLiR4LobmYvj6QodX2v6XjfQo+e1KF+fYfJa8wIy4q5lpHLkJyAkWGDFIjtwUt9viw/f9B+W/lfw3lv9b/X1k28UX1W/vfyBq4473v/4NsOjw2y8X+kGL5IzV/8ux7LAvJXwXP6S8kycRf0tidUETkl/Qvskjj3/Vt8n6QdCJgm2zpGx52HCxfPpMza5SIyK8VHvtthc/ThwaPweTv6i3NvocCRouupe5+LJsPK6abkweorSWhcU+2UTnR/u+LDlqLqraH863aHrv7tX2UKCLAZlUKYFaqjwWW35dcU7snhQ4fyXNvTuRj7kAw817HM/Kx+kxLoKCKiDxUeDn/QOJtPpQz+QASCoiIvAMuciIib7c4vhCRBRGRvJ7IwybOPrcuZ9DdbpVfyBqQmEV+KRti0SnI2B/JXO/JsT1WM3kkBVlZkdsFiT+yCQ4C8jPd4aougW51VZdQBdwWKQ5ghVLnNZFXicwr3Be7/m29tABivJCKuKpVHSYrTF62PDsbswJzFzYsF+HrAa31R+TM8j4nLnL3ZQ1fuD3Upfw1x2TllwI/2/5c4jfs/1RjJfgfu9+gXGRENyEB+0hnEBFoTRERWSaPsgT6xDpZyF/TXyL5Nl3L2xRbIt4nRBck8o9EH2PePiJyqI8Zyfs5lLNaOsgCI7LzUnovf47n1H+Qd/L3kXzZ/Sa/9VjXfd/8Oyh/qP8Rz7XFc9o0+LcWEdlU2GK0rfA+dUNqkjYLWeb/TMd5KXw2QmQZnCVFgelZUtTs30RYUlS2u/aIFAUyVNaLATEKZCivPkJitC7fyrqML/pV9ZusKrwIIFIkIpAUiUhEisINYElRKDBrSVEodmUXnkB4EJkIJmdLiuaHglrrQerHx/0itU6Xsk6BKTRZwDcSInyBQ6RIJDZ7s+MIb3Is+VntswtaeSBDy76gRc9WJmaKFTdbqerOuiBa+DwWf8XSd9IsOoYUBZc9S4rC20RLMsLD05KiQCLKto8IRU72YfKqC2/O8di7eTHScnoMlAjPnhcdQxPOB5bbFLRhrihN+SH9tVGQnkqXzbJO2X2Yq40Glw8V0uBaZ0lR+Gms0husCHOTlrolmen0Po+GBITioNatLpChR0NkckIW1oqEaVKki6UiUiQiESkKRWQtKVpWu/2rzqTdrmdErjLZGYtZsABZi0woZGqtbwUpuJsTklQS1zbtRtkO3PCOny0pCkkPrE4dLEa2fbi+7DFoq1BcIFz2+5gx9nJLfsJ3JrcYixdCYG62+ruVh3vSLkOhnTXG6JTaUYbIJzJ/WktQIEN2TWPFyu9LzOgeahJz2xYyb3fPQP08uu+2cr9/k2+9RD7ui9CvTVD9x733iy0Z8pg8HHQSW2YkkCGrG4TvlvyE71bHQEQItQvYpliZ3iZrEn9zzARcapc6pe+UJk11IEOFCRHYyuJAhqJtezKkMyOLHHXBbT88zkCGrEcS8lAS4ZmUl4TI2tCRwzybB5jwoGyXBzK0bY5z2DQfDmQIpckOZKg18e2BDNXtUIcLZKg0xLw0XOBzWYdEvoCFSCOv7qG1qKgeoLWoaBbQWlS3m8MfwlPWoqIanvBAinJzMQRSZC+SQIq27ZDsBFJk6y8FUmTfBjzHUoTeyDwmy8OfhU3TONyGF5BAiuyCFhYJu1CFdoXJmR9Ikc2lr1NI2uMQiQMeA/lZmQWFWYpEuLXI+j4HsOQTInGV6IC1Ik6DMUg68kCKim74dA6kyCZ1CKTIPlADybBvEvMWkwctYyTIIm97uG3TdBExOs4LKwBhvlYeyIs9jq0iL/AYGts/lgdShN64HpSVSLkRKGfKEHOb0/vEY+/+t8a4g7y18mQ/9lBpDaTI/hyBFFkFPpAimHZ7T17sPoEUlYYkBFJkLUOBFFkyFKxEa2KRQgikaGHSZQdS9GgsTIEUBTIUEMhPIEOxPLb+BFJk3eHC+dkaclOT1NeBFFkyFKxElgyFS9X+1sd5nZ4BLvRl3ecCKbJkOxwDcpFrD/sM5YEUWcvQUyTIyssn7i8mJ+E0NDELSp9t5xDQkBciej52jWJrV1j7rGUorGmWDIU1y5KhYCWyZCjE+gQiZHFPXJo+9qsDGRrIk/sDGbJgViGR2DIUdAOrSwQSZMkR0zHCd0uGwv6WDC33NSQtEdoedA9igSFka5U8QMuQJkLRtn7+yZahQIIsGQr9WjIUyJUlQ6HMjSVCxYHoPBj5rv9zrUKb6v3hz2JbfYCWobpZQ8tQ2SwiMvS58dliiAJm038RyZp2LRfTn4F8K5ezP0TyqlnRtHtF9SizyR3c1vX4zUrCYlZAhWQRkSzFbytZrFPRLORm9qdIXrYruZn8TSSvurW8yv5l3E+/lJ/lX0XyVXIvP/dx+922B3ndx+fwMXkvd0A+T97KjfwU99N/kOvkDZTfJHE/IiIXoAqyiMhU8PljsUDTHp/XZTqXN10813WykrseXx/rZC2v+vj62CZbWM15IzmM2cqloHJUkTqXUm6BvJRGXiVxP2XfwArdIjwGiaXFHnvLwZzoiraVyyy+L6q2kysQ5FK0ndxMQPuulxuQ/7doe5hCfNv0cgNyTedNL5cg6GZL5EXbyzUYt2xx/wEszunclNwMRYtTi1fdLg7Jomx3cUuonzvgtVV3Iq+ngAB3ibwGKa6bPpGfplgjLLtEfp7FpqqqS+UNSMm9bTP5eYZfFlxmeIwZiTNi6clZBjiWOGFezeQajDGvpnIJYpYW9UQuUnxXrJsM7rNtMpmCfYo2lSlIH151KYwHK7pEplCeQnnZJTSujKXQZgQKFRwWGSf46xrHu+UtThdfdr1cgPur7nH7psf3Xd3hFNZ1t4sPivrp8DyrDvdfkPmHuTLUJF0106iY6++iamE86X1VyGUaLwYP3UauwTP1PlnIG/Cs+5B8lNd9/Nx8SD/IXfcmkn9Mf5VbkK55nryTV32sv4iIPMqvcgv0glX/Qe4SvA8DizFi5UtYDE4ha3gc22Qll+jZn8xlBp7Z234Oy7YU/UJmCY4HL7qlzED5lKJbyCyN96m6tVymsQ6Td49ylQL9rHkr1xOshzXkZXBNshR3PXZPODfVdl5+lEmGdcC8+iBpCuq9NY8yyeLjbtqFTCbxcdc1T9rwEvjsFqKGBFSVLDU3iTdiVh8RnHUirz7AVH5F9VHy6p3kJuNF2TzKtnwn23Ioz6t7WRe/yroYusrl5UdZFb/KysiDRcsy5ODyZ5l1KDa1bLEr3oPEfrIiIg8k5kdEZEEz3WH5RrBpmr3d2ADTbdEvYTrybbKURfJBFqbY1zqZQ//gbbIeZG8JCG985tEbpX2QHXizEyxgtjBZsFhZC1WoLJ2TlJxMbitSH8Yncmq9AmlOi64dFNDV8g1M793S5A7btpVi/2f30f8HVO1u4bPBvMVeHrn1dfjtaHjbaVOIb59we2PBxUzOEkgwd76qxdvqDqci36XRRvPh6YXhuF2Yb9y/SPwWPvRjYyHC6VyYN/pBOV6Y2JDm4AoXa5dhnweToCBYSuYkhuYBxNxsmwlM4b1pJpFbnYjIuprJArRflBeyBv0vigvJQdzQnMT/zPcWJWu9CfE/1volsiNDaJ9QpNUmoiiI+1w4fzb1dcgOZy1yIfscTbwA5HmXSgdeLhVdAlWXdZPAWjWbhidEWJM4HGYFLQlZCLebve3C7Wbd8MJ3a70Jcms5CkuVtZqGdrb/cG/Z+Wz3MY2M9GzqDiZF2NR47VhWHSREC+I3eF/hZ8QDcE0S2ZEhBBYfEwrNr/bP1YCP6U6vsKmf58nu2Y6Kdj7Kfh+jFwTrhbVirPv7wx+SIxeyol9CfSSXpawF6CMk6+2WZLBjCbCYDsRq7IjsyBCW432CDmi3B08j63EUrDzafU1EZFX9Kqvq16jsTbDYWD05hJJYHbmqV1LVq0jnrpqVVM0KpsLOS3yd7cbB1qSmwXpn0+Lz1JLkbC+JL+Iy1zTzAzFq2uOFWtYPB2LUKH/CorqHxMjGCGmEHwuBpfWzpCjAkqIAS4oCLCkKYAFlzNyoSZE2nWpSpEmNJUXapKtJ0WPyXrU5pn2cJ0fz6UYeD8RIL2Da7Kvlm/7+QIz0XBfy7kCMbH58S4oCmK8wS0luSVEAywizGwNfG8ydMB+k5nz6syZF+SDd51Feqmw8mhSV6g2NJkXatW7V1gdipOWbpjkQI01otoYYWZLESFD4HsjQ4ZiYmxxLAMGCiUlMESMtmvxoRUPLWRutgNj+tR6it2kFaNiXKLme39OftdJoFbgtdZOL+xE5kiJ7GgMpspYCS4oCECkKsKQoQJMi7UqmSZF2odOkSGdu06RIEx5NivTnQRu1ryZF88EcVEpwkoiBJUMQOZIhi62RB1JkSVMgRTYWKZAZWzeoPshx/JfI8HfVpChX+2hSpMfQl4pOuKB1fU3Crd6uyZBeBvR1rW8vTYb0Z2ZtYVkkWbFXJidLVHTPhf3tvRXmZ2OB9JqwqbtBXOQxtnNYny2sHTZ9tl6TNBnS660mQ0V3/GE0GdJZ1DQZmqvnnCZDOqb3gSQ8CGTIIpAhhECGLFhcC4uDYXLrQhZ0kVyWg9TRgRQVsh6QoUDstslqQIZCKutNMh+QoVCY1Lq7NcrNXpOhyri+aTJUKZd+TXYCAbKfNSwJCmD1NFfVeTooSzZW1VhPYrp1Xn6kZCivPkAy1DSPAzIUCFDTLgZkKLRpm+UXIUMiX8BlTkQk1S5CCX4QZSnO/IPMbAF9j1fAltS46YlpkI2RsLkSV7npJDbDiuyI3M1l7DooIjJNsYkRmVVFRKYJbi8iMiXpuVkayJakx2YmVNaemazZXM9NM8lMt5OeKzXMLXJC5En/Mu8GmFl/So6tlFJeCb5upgmeK3WhS8705xoBc2dkQ0zT81KIs7mylLpj1eLPGZe5yImIzAhHOHeu586paLGb4dg+LPU2k99M+Am8JumvbydYPiMuZpdEfkHc55B72Rha4v6FLDwiMSF5qj1KTR7QEYsNs6j05P5hyn/VJfS3Ztc+syKx5AOoGLAIt/KwjHG7sbG8I+pESu6hc1csmoqbtGcuwjSVOTnZLEX2bh8sb0hfRYt3eGhzWoICpZEWEckT4h5F2rcJ/lFLUEJDRKRh/ZBwBBHuUsWe4wwpe1aT59+Euubjfpg+05CESQ3xEOmIHrrbxs8TAjt32+ojDQ1pSSInqseR9kxnYue7IanY6xaTPBGRjlg4GfScupEswi+FL2Ih0gfSk4NqSGHWuplLTdzumnYpDQj66roNPPF9X8Dx23YpLeinaR6kQVk36g9S1jHz3Za/ybbEmT02Rczsq3olmzJm8GWzhIw/bx9hlrttey/b9l4W7V+jbavu/aCoVsC6ew/fQqybt1GyCJFd0S1Ut6lsF7B91W/huEW/pC539O0RMImLcIuTCHcPZO6EG5BdT2QXrImy1zA5y9Q3Vuka1VKopYXJHKq+kU0H5F0rOaiblLfN4Y9tsyi6VrYdlqMaTFXXUfc9ZEEq2g7K86aDWenyppMSKBF500HLVdl2g8K2x3n2NClE3fXUSsUy4jE5ryPClSpkUWOpupsepwyuOpx6uO4Epk+uut0fSrtcdYk8VPEDctukMgcWpG2TwYKvmzaDbnWbZgKtN6t6IitgvVlUU1kDN7lFPZUC1AFa1BOY1W1ZTwbFT4/zyaTqUkiiijaFsTh5m0B50aUwpidvE0i6xhIlnBsbxNw0bcKFgE2DCdem2ZEJpJ4VbS8t2Knuekg0+l5g+7brIWlo+15aQKzaHruw1V0PXfTKDrevyPzzpodWpk3dS91h4rOu8dq0rBvoujyv6yipjojQOj8fkkf5ADwo7tP3cp/GusND8it0p3+UX6k15777JyhnbvzMSiGy00UQSuIGVbSPUiC9oltC/aToFlAPqfut5D3op19LDtzbtv0jTGyw6T5KCZJM5N0jjMEp2iW18hTtHGZf01nbBmM0D7Bmz5ZYc7ble9kC/ZEnL8OeV1WzlApYYKp2JVUbnwuW7KBq5lIRXb3r1tKR8yTCnotH+ZcgQyJfOMtcv3cZssQkfG7a+YAYtSoziiZFliRpUlQrv0pNivSPgcYWkQEp0p81KWrUhYBIkYicRYpEBJIiEW4GZam/RQSSIhGB5ESEm2YRyRERuBiNtWfjapc7DetbHNz41nI/IEZBbuOT1sn8YCa3VaGDaXyR3A+IUcg8Y6tNa8Jz7mdNinT2PU2KSvX2TZOiWln0NCmq1BsfTYoq9YDVBMeSHbZNf9YPa02KisEYytWjOyoDiBTt5MytjsjJK1ekeIhwdz5Eio5jn+a6F7xaLJlhGe8CGbKkqHqivQVL1a1316RIWwU0KdKnUpMia0XQpEgr25oUbVVKb02KtCuZJkUb4la3Gbi6HdtrIqQ/L1QbTYp0bSBNirQ7nCZFSyXXpGhjXOE0KdLucPq86MxtWq7d3krSnlmi7KVQkjijMF6ccnv3v9X1Axmy1pVzU8Dv+iKxQWcmGECEREQgERqT18Q9b+Cqpz5rS4+eg74v9dJg1wN9P63VF702LevjCdSkaK5KLOj1VJMhvfZrIrRRzxBNhLRbuiZC+rmnidBSFZ2/7/7pQIbW3VG+bH89kCFNcHS65vAS9nicx+9aRyjbxYEMaeIzRoTKM2NwapJtlmVyszFKAaxuJNORCpKBbbdtjudE9rEZjgPGyBDsRxEeHV6iiZDO6KaJUKnc2DQR0uRHf261bqL08b5vBt5YQyLUm8/9qLwnRX8/F76Iy9xhMOCCliSX0Gozyd4MCFHAdPKGWowm2asBIQpI0xvITtnYWfYKWowmk58HhCjgYvo3UoP21xd/R2Oephl2k5pk2O2NZe9A2U8CWMXfnrnQMdPrmVlfJikuiMiqHDMXOmaqZaZ31o8IN5uzDHg33StoAbrubs+S33avonTkIiJ3/esBIQp4JTeDh+Kh/2Q2IESHeaazASEKuMom0Poztu0qm8C3l9cpll9l2YAQHeY0mUSxSTt5Bt1FbiYZJDU30xTKLzIsv5qkkDRdT9JDwod47BQqczfTBNZJuZokMDj6apJAZfEyS6C7DWt/M0ngW/6bCXe3Qpm2RHB2OxGR61H3Obztkri3zYj8grjhsYxuLMscd1Vj7nNYbpMgBKAkBcexsZx5T6HEBiIiF2kfpb4W2bkMIktPluDjmCa4fZJgy1CaYMtQ12PSkyacDKWCyVCWJvD+yRJMhrI0gWRokiaQ9GQJlk/JuBdpAq1F0xTfh1maQMvtJOVxjdN0SIYOY2fpgAwFXGfZgAwFXKYZtAxNJYNWoZv+GlqFrvtX0Cp01/8BWoVeJX+iViHqZnWm65cI1w8YEuIiTl3mSfbflOgBzB2NZWV7zrlg+/Q91rlY+w54aIiIzCZ3kAxdTF9Dq9DF9DW0Ck0nt9AqdDH5CVqFLiavoVUoS2bUKpQkE2IVSgRbhbCchbp8DnxRCxHCmAtdD1yG6mYnR9t2lqL4hDK/RTY2IkMiwVIUX9hl/UE6QN625W+QoImIFDWx2JAse+yNAAuaExHZEgsWMsuKHDPhRXJW14lUtmbjMusSfQND3gix9votVzQn8lZIvzHT+JD+BcpZjSgmZ4GqrAo2q/1wTypXs6xDzAVjbNu58scG3z8fKtz+vsIpmj+WWP6hwPJ70p7JH0q+oD6SQiYLEojB5I+2qNAecyJn7R9KrIQ9VljO6rDQuIaR119Vl0D3uaLF8i2R520ic+Ju9wjc7dZNBpMcrJrJwMp0lGdRHSCRXS2lHLRf1hkkJKsmhfIAm/wggMXuMDK2bPBjdkPkLCU2m+u5bnIsZshmMdRgSVIKIqcJDgibZCmp2YsMZqli82TkxtYFCliyQCzha8b7Er9Q/LXCa/RvRM94m+Bn0l/Tf8Dy/r+B8l+a/xrLy/8XlKMi9SLcg0WE6wZUznQMJifB9MgVTYRbbZA1SiTO1BZgM7Ud+qFZk3nCL5bUy9bDfFJe30M9sGrmUG9s2iUkQ227hmSo6wpIhtp2C8lQ0ywgGQoeYJ/iIvd74cu6zD2D6Vnio7/zbfbEvvSJtgvi7rslRd3e59SSopD0wZKiUGjWXtwhw4e9GcINiAphhRvXkpN8Pxd7Y2/rffFYc0ME0mNv9vDdkqJqfwx23OBna0nRQW5ITvDjtaQofLftw/d19z4iRiFTjSVFwbfYkqJQaM2mIw/Za2xKz6fkNoVpqH5ti9JV+wBZWxU8ZLNbmcDXch8UagvZ5nt5DoJG2bbw3cYtFf243MYzhWK0NoV4sDBtIjc+LN/uv6+NG174vj2xfbBIrWsQ+7RXquzb3mb/Rjo31qagnFllrGDucKGCPXGTi93wBLYP466YUkcUWRRPtJO/XPKN7xW0Tg8hPTlN4DDu9mbd50J7q+8HghG71cFhaYxRsAAx9znEP8J1ascOt401ygaDjm3fPiG3JOqp9uwcRSm3Q2rtKMNjv2/fG3m37z8+GWEdsdapRRNnABU5Fkq16+djv3tOlmYdvt+/ELMB/yEjrH3GPHa7F3f2ebiod5lpbUbbZbWTW4U/kCHrohXIkFXSNQE4VTcIuoXVMcJ3q5MEMmTlgQzFxUT3z3kTxxTIkI1jCmQo6CwB4dxYMhbmUZv2+vhtSupAhmyWtnA+bVa3g9y23+uKjdExK5C9efd9N3frZdXu23Wt1VWLwfZj++3g/0P/e4LUG2sZMzI8F1/SOiTyFViITgGzCI1v0/6JnwOtIGtR122htahu7qG1qKjvobWIBcaxQDoRTIxEduQEWW2KZg7feJTtCr6xYW9B8voRWovYuHn7CK1FefdIAymRtYi1F8HESOR8SxGr0cTqHDC5JUUBlhQFWFJ0aE+yAVlSFJBLDYlR2IaAkjmMyVGSBxFcV0kkJj9PyS3JOcznzPaIFB23kfgkErd0buIEViPp3PaaFOkX1SsSN6RJke7SkiKtQGurj7YyaPmWyLUVY07ij7SVSKe41lailYoV0lailWqvrUTzQdzQsc1SpRfXc1s1eM67fnVMEP5ck9TX2kp0bkIE1p5ZW55Lhk6V501Pr09mgaQxQ59Zzi1SWM7uLxZ3uK5bun4EMmQRyJBFIEMW98Q7QJfHGPTTYS+GQIYsAhmyOMcyNG4JwduoPsHkzRJahqpuAy1DRbuEliEWp7Rt7qFlKK8foGWI6klPWIWQZaioHqEFiMqJfsgSGLBEY227jsiOyI4IdSArc9tuIxIksiNCKGyEJSz71vBFY4gOg5J01t8f0IOplxSk1O66XKagMm/TruVi+nMkr9u1XE5xpeKyWcj1LK4OXdYLuZzFYxTVo8ymcUrHql7B2KWqWcEUkE2by8X0dSRvu4rIS5ll8bmou1wusrj/sl1BedHM5XLyJpKL7N7+oIrOVbeWi/RVPHa/hZWh6z6XyyRuX/ZruQDVqot+Sdujit6FrOU1qAKeJxt53YH5J4XcgqrkZVLKdY9juHIp5AqkZh+T34DK3bmUcgPab6SQW9C+kEruQAr2bV/JLYiBeyn7xYTEoImIzEia8Eua/vq8WbHWNG0w6X9CDmFGOmJpt69HllyawvvcuKEz27O02+emXmfptbnbIB7gOQ/CsRgkOAaNPzqv/Vj6bgRGeph1kbmwifDf4dw09KzvDPycbYflTYdT09ddD+/Zou1h+5zI13VL7/1FW8LSCIt+KxcgjmWeLOWqj9fBx/SDTPt4HXyUX2GM8LL5FZbrWJdv4XN5W76Hz99t+U4upkAfqO/lAugiVbuSi0ncj4hIWT/Cvup2A8eu6hXUOepmA4+halZyOYv1oLKey9Xsj0C+kCswn7x+hP0X9QOM666aFSynUlS4n93YjzKdxDpB1SxhfHXdLiUD8qaZS5rF8o68gKSrCEsLTp+PWG6tQUfwF42fgi9tHRL5RixE3y7wk4P5Vtakcm/J/FlJHJKIyJZUB2b+qawgF8s1z4vgnudTXJGc9ef6GjPfXhHuJ8yy2dCYJhLHw7LZsPYsvThLI75ISTpyUmx2C5I4BOTUkmTd7nbfdcHZnbzcy4ftw/e1aV/IbvFe9UN5sDatTc2Hoq8l3/8Nxj1TXvSNrMGDo+47qfsOWqPqvpMVca1DSRyKtoeWoqLtJQfyssVv3Iu2h2+mi7aDlquq7bG862UJ3OqaTmQJnqEhlTBSisv2WOx1MKcugTEx2zaRRxBPtG5TeQBFYDdtKnMkb1JZgX5WdQpjbhYkPmjZpNCNbd2m0O2t6BIp93/RtjaB8TjbNoE1f0I687gfbNUpSUrnqsP1fsougUklijbBLm8tJiubBsvzph9NKIEc0nuJrTddf/w7VS4Su+CF71bO3AiDO5t1eQv3qm2P7lWRcYvyosXxQguS8Wye4GfBIymSylJkswyzzMrDvElY8XmmU6DYkoCSxBJb17JDX0TXsO5mh/ZU15gT+XkxzwXRr9i4TIfajU30KxILhZJxiezIEELbLqElZmehiRf5vq9gprZeGt6e9I+Jz+chQ78XfhcLkciPZCUKCE+e4ekO1qLO5LgP1iLrGxqsRaj4VbAY2QC4YC2yC0WwFtkbPLy50QtXsBTZRSK8JbHEKbwVao1SepQPHyjBUmRz/QeLkCVCQW6JkLYUWd/gYCmydQOCpcim7wyWotoo88HyY4lQsBRZIsTaB0uRdbMLlqI8Gc4/WIoqU4wvWIrKZHhOtaXIEp5gETpVHixFucmMFyxFliAFS1EgRAHBUmTd74KlqDDE5mqfmdASnqfkhXm7dLsvvlyDt2U32STadjfdKes2CPxqb7KxROhy/3rZyq/2cvvG/WqC218f+h/O83aawvkc5Ea7fDXd9W951qt99mukgN/tX2rbmPHX033slCELr/aFW228zU/TfdyWSXzw8zTEiw3lb4LcEJ67fT+WIN3sx10YQnW1z5BnCdtViucTLGCIIAVrlyVCl/sx7DGHTH+WCAW5TXxwsZdbgjQl/ex/zoiwhex8dp6B6NgECuEy0RajILNkXZMlyxnw0+xorbFkJz1THqxBlgQFub2uw7g2tidYd+x9lh3OD5ZbMqStRJYMBSuRJUPBSmTJULASWTIUrESWDAUrkSVDwUpkyVB4JlsyFJ69lgwFy44lQ8FKZMmQthJZAhD6smQojG3JUNA1LBkKx2D1jWAlsmQoWImsjhOsRJoMhb4tEQoWIjtmsBBFetK+H0SCgoXIEqFgIbJEKFiILBEKFiKb6CtJds9dS16SZLaXD5+vieyecZYc0fakfzlk6/28ROj3sA6J/I6ESORHJEUMrEIwTh+ZpnGhw+M++JxmCd/nHLA0kSkZl6YLJ+nFWepNBpbO8nLyJiJEIjtShAqpXaSvYD2Dq/SniBCJ7EgOsgxdJLfQMsTas7TpM8Fub1c9Ttc+Ffz7Jv3LGYHPTaM6Idd1RuSTFzJYJyz98ch6g1zo7qYZSZmd0hTbSH6VnZeq+3qSwvTkt9MUzmeGfH1E5JrIr0aWXZbC+4LclhOSLnvK+mHuc6QfBuaqxjLAjXiAUZzr3oYwS3EWuIsUW4umKbYuTRMcY5QlPbRepQnOJsdSbrMsbCLnuxJ+7pQdbD4drVWE27MMdjmpjyYi0OosIrIFJRRERPIEe1gUCYk1Bd4Dk+QCWoam6RW0DI2lZkaWoYvpT9AyNJqCmVhCmG7CUmez0hoMrD0rMcLQEfevnriX2Re7x/ZccWdpvtk+PRvjBWrxJDKB/STJDFqKWEmana76fZIhEXeZ+0qAL7Bz04KLiLQsTSUxwSJLk8gxE148J5Kbn7RHZvOur6E5umkLaDavmw2UV/VK6ga7KKyKX6HpfFn9At3r1s076I63bH6FCSBW7VtIrFYtdl1gVb9ZZe81SfLA3OrWSXysIrtisag+kojA+khj8i17iKfxNbdN1rIEc9okW1kCV79cCpgwYiNFZH0ak+dSQeWklEaW5H6q+1Y2bfyAfChrmKDhkaTxnldY/sjkJH0vSxP+QPIrs4QQyH1uJ4diuq1oRRbgWb1tcMa6vE2oHKXpXjfY3W7VpIPkB1qO02jjGk6bBru8sbTUY9tYljkWu7NuSEzPmam1z03FjcjQtsHkLG966DrX9r20fU+JBsM5rYO73alyNh+bKS6AkSFW5HkF6gWJiCy6QhbkGbcgrsvMHY4lSZh3+BnxUP49br/9x0iWVx9ksY3Tc1f1R1lt436adi6bIu6nbVeyLf85ljdL2RY4mUPbFVID/aNpt1DPaDosr5oldDFjOgxzR0OposfkumDpKeMytzYRkYa4GDLdDSXi6qV5scKkrB+erIwlSPi+XOQsfldC9Hsywa8POGsdy97Rtsvo5gqpFNtmOSBGIVuIzUwSFqO6XQ8WpkBu2q4YEJ3w2f5u4bslReENCfUlJj66zJeYy3nMDPMnPrcWE6uhhEhR3W2lVgtcaGOrcAe5rfpd7S1J6/79gBhVe8JgSVFI421JUa6IjSVFgfRY8vOU3JKiQIYQKRIRSIp2cnyeWRY9RH7G5JoUlephsOyLATGqlYVRk6JaFZzVpChYbuxb5FCI1hakDd+3kTz000G5jSliKcLDW+4odfj+qyVF4SsjPmybCCZFu/ZYKdfynGSl04RBkyJNhNhnjRUjHkQeCM8YUbIWmUCGLPmpnpBba1b4zuQ2PqgmqbiDJclSAWR52qolWxsOtZvc0EVu2Ou5pOgUsB6ZHKXBFjmSIcuJniJD1jkmkKHGWAk0EWrNW/9AhurEpNXekyFtCZonb2H67Hn364EMNSqmcln9csgMp13SN8Vb2RQxqcpJ3HBVf4Typp1DecuUeUI8RPgL0QZkKhOJ00cHMHIT9BYbTx3aWwtXID2a/JTN4vC9VvOqm/WBDOn5an1Jp69umvmBDNnMbU27gmQI6WsiPCvxSxGhbw2/Nyf43S1Ev/cJ+PrQmv93CKTIkqPfy1rU9w387SyJOva9gcSoalaQGAXyY0lQ+G59kQMpqpttRJACKWpMfNKhroCRB1Jk5YEU1bYWwJ7YWHJk2x36J8kczrEWLZIP0Fq0Thaj1iKR80mQlQdSZElQ+G5JUyBFG9NPIEU2XimQIpa4gclzE6/E3FhEhFqLkKVIBKfyDqSIkSAr3x7kQ6UqkCIrD6TIuskF8mNdfoLcxlcEUmQNRsv6SH6s5YDJAynaNrb9Tpu2FgtGlpClKICTnqE8jGXJUJizJUOMBGm53RZIkbUMPUWCrPwpEmTlgRTZOkXhUrBudeGnfYoMabCU2ox4nIOnekCJGcbkjKBZy1D4eqplKJAiaxkKpGjMKoQsQ4/pB2gZOtcqxFJkWyIUiJIlQ+FZbslQUOAtGQp6hCVDzT7Rk9UldBpn+7wPViJLhsKcEBkaswohfYW116THyhFeyiqEiFC713eiF9f747dEKJAgJ0O/H37XGKLDJDyW6MUQgueGQnx+2XlH8UBdX0kK4pC6vqHxQ8ifuO87GD/UdhVMe1m3G54OE8p3C98MpAdtOpwWPEtxHA+NiwJxP3WXw1SoVbfB8nYtFxlI+93lcgVSiDddKddZnH677nO5S+J03YWs5UZ+gvMvZC3XPUgJnuRyAdLCMnQJ1jpSEreUgVS0VZLLTRfPpUi2ct3HqUu3yRrKWfs8yeUWyEVEaqnlFYjVqqWVG3CtV30r12l8DGdm5JaURFmgfoq2ldtJfB2WXXdI/DCYY9vLq1ksL9te3lzg36Voenk1Q5aS/pCcQSNvRV4Bl30mZ/FELP6IZD6HWNSJ3EziftZNIlcg7ilvBcqLlqcfL1ocQ1W+kJxhLNMbAstsx4qton5sUgILlB6+63uaNh5JW9K+6XqZAN89Zp069/wgNzlWs2zVl/Q+fUweYczmY/JephI/G1b9B5mCsgPr5i1Mw7wq/yoZeHZuy3eSpfGzs6w/SAqeMT1ze6cKNzreHuoUoY8QfD/Y1peSpvGzuetyycAzu21XpP1aUnB+um4rGXh2du1Wskksb5sllLN01B1zIwMxPrvzwG7q79u97KXxNRCi391CJPJ1nIjvBXax26VXjN3u+r6QrltHKcD7ruBFvPoKLhYs0QLLl9+QgnXMte5UeaXeAlXmjVCwDlkXuqbNYRG1ps2h9artSinbpZTAMmctSk/JUR8iIjl5C8UsSKt++HYwuGOgorJh29ZkPgpud6UJAi6SzeFvMJdkCYvQ5rKUDSgqWyQbKBcR2RB3OxazdKo8P7gSArfGfVHapXHRq/cPsY25zqu9a922M+m9u0ZykMI7b7kcWaG2XXN2YVqbIjxYkpamGmVI6DA35oOi6aVowj44RbF1ucuJWx2KWRHZWSfOiT/aNAlM971qkpPd4oIbnp1T+G7lwaJUtLFFLHy34V7lE3ILJg+pz5EcKfbViNwizN1yjGAZsjk3niJDIjE5OdeV7im3NyRHm1D6bxGRpu+lN1vKtjubDImIdGCEx2TvJWCs0Y8Jjvm0a/NxbGwxWpV/hXKWJrsEhc/Dcx3qAqPWB2yfQ/0cPkd6BbbK2yy6Acw9j5UmQe5lIsdwgUHfJnTgOOZOv2lNX8HK05kMuMGtjZ+H7z8d9efG18IBvgpCJPL1nJDvATyADhMRtvggUiSC36B0fQOJUddVB2KkM7g0bXEgRjqDiyY57LMmKYws7dqRoMqR6tK4H1YTCZOiQIB0Ve2BXJ1X3YcmTpoUNWqB1qRIZ79jD96NPEJiJBKTosOcaGakTbRfIesDMcrlKN8k8wMB0mRKk6JKjaNJkXbR0ySHfWbtNRApCrCk6DCn/XVemUyGgRQV3fF61+TnlM+aFG07LdfxSsdxtfJWqvgmVDdJJCZFAZYUDfcJKZyHilEgRYz0aLkmStpVS5MiLdekSBMbTYo0EVqRNixWiJGgXJEgBrbtFNJzymdNhNhn/VNUJ8gD7NwPabiJm9wpZMhCkyFGjLS0Je01GWKfDzWK+uGxh49N30uj+gykiCVPeIoMWTwmjwcyFG87kqFauenqNVmv1ZoMafcxTYbCM3FbvhuQoeCeVtYfKBlCON8Ni/2eI1nV1Lnr1LNPk6FWPa81GQrt7Uta7V6GyFDXbikZQmA6DUuCwAjY+Pl0MnQOvibd/6twmQtw17nfF2l6C83sCU3zzVJgnueid27qTZYak91Ys8nrKH5IRKBbwk6OXehYe5byk6fdxAsm6we53E2BK4GIQNeMAOSyNiZn8+9YVkTSHvV/078ZEKJD2/68NYClAk+IG8MFqAgfcAXcXUREpqQv5FJzlU2gZYghIa5GGXHXmYL04CIiF0yeYfklScktIgI87mSK0pDJmDsclrP2bDpkWOoudc7D7HOnhx4DOy4GZBXKktPIUABLrY1Svz8XzHXuHLe3SZpAi9G5yRZQinqR88nQgli2RUTWZBsqvVC2+EUcKxjKUlsz5f1zKuIsbXPYisGe6+ylzHnXIQwPGN0hnk+WXpPz6aTmS+FrIkRfjYVI5Os6MT8ikJl9JyeZUEhiBeZCx35f5FrHkjM07ZbI1zTTTV69g+lAdXYZDZ79Dr8tQlaqpsuj4rMiPFV40xZw3LYrYUa8vH2Eme+YW52ISN7jByx8eMv6kNVu2McC1lMq+iWUl/1atmDcx+RXaLliVivrsndsH5+zMslhnY86KWWdLmFGvDqpZQn2KaWWNUzvXctG4uv2I8mqhNqKxAVqRUSqvokKzorsis2u2rh90bWyaOL2ZdfJso7vuarrZUmizplyvESat4isgJJdtCJrcKvnLc5gl4+0RzVzVjWppUMeHzSpANF5qg4TjZeStz13k2PzQUDHVbZYPS1akQywsKpjcUHHP7YNyRGYOxy61HrB1qqXIkPbtoXHa11kA8bI0KP8FslW7VtYemHTfJAGjLEu38LnxLb8jTzn5vJ7uGid52oXZGyerP2ngbkEUnlfkUx7Toa+FL42nf+rIkQiX98J+hHBFj9qPiakCBEjS6LCZ+1ap8FIzpic1kQiZnRNioKrgo0f6vZuTTaLXWjPXPfQwy70g8DImCZFOjWrJkUhq51N4y1yTOVtSVFw5UCkSEQgKRIRSH7G5JoU6T41KSolpPZeDt3y9mTIkqKjCx85ZyNucjxNuHJnlKP2rklRruSa6ITPlvwweegHkSIRgaRIRAakqOiOD29NirRbnSZFrBiliIobMvFE+SHOyKYIDxm62Jt41Qdxq9Ny1l4TnRVJCR7aWJKwJfJgRWGkSGRIRD7lswYzxgQyZElR6MfuF1zvdEZB7Y6nVX5tMdKkiM1xzHuObQtyS35QSmzt9qZbn/JZ4zlkCCGQIWvxZWToUX47kKGB27IiQjrD6KYhcUSgqKrIjgwhsDTZX58CT38x0vZlyNBZcrLmfn3n8vvF16jrf1UucxruPvd1AJnK0/Qauq2dk7UutEc3RZrOIKnJ0ktY14DdWFl6CfuZTl5B8jWd3MKK1LPJ3YEQDdtfw/bT7Aa66LXg7f50cg2TTMwmd5BMXU7eDAhRwFX2E0zzHTLTVYCoXCU/DR7oAciFcSbXkvexy8dFcgvJ1EVyC8nRdfITJFk38tOBEGmkwF3tsr+BFqPr/g7GP132t1InmJjedq+kTmIt+1V/OyBEh/ZyOSBEY7iRGbQM3cgM9nGdzKQC1/JVMpUCyO+y2YAQBbyeTAeEKOAyw65/r6YptAy9miUw5uTVDLe/m+LCqLcTTDxeTWM5a3szwWToZoItQ9cTbEG5nmCXsquMEwSEWYrbj8mRnj5NsWVoSvrJEhzDxKwt6Fjbrod9dz1OYCCyc/FD25j8HLe35Ey5yMuQoRVYXzvpz7YKTZMraBWapteQDE2SGSRDWXoByRCO/c3k21De2TzHft3TwVz5kDxJZoQIfSvn8vvB10iGRJwQOT4BKOWmSCcJSFks0sG03QhtV8CU3V27lQSkHe26jSQgFbbI7mEC59k3kmVxOmaWKhyl+O76WiZZHLPTtLlMJ3H7sl7IBMQD1e1GZpO7SI5iltqugqnDmzaXS5Sue0+eLkGa0qYr5TKN+6r6rVyk8blpicUCxQ5V3VpmoI+mL+CYdb+VqyROE172a7lK4vZlv5aLJO4/A37lYynIaynltn8T95/k8qqL5SyN9zbZynWP47qi+SQ5bJtLIXcgDXgulVyD+KZSGrkF133VN/Iqi+WMEBVtK6+mILV328ktCPop2l5ezWJ53nD5LUjffU480abB6bI3TS83IGBpLL32NXi0VK3I1RmPnKrbkRyLusPHVXc4rfdY+wmQ2xpTIiJNz93k0MO9aGwettD3y6gCveD5NH0vGXBXa58hRziHDG26ajSLXCQHRChg1byFcZ7b+iN8PhTVQyQrq/ewPAZLhORwfMv4WgnRV+cyF/C1njDHEWyxjt/C7J7iNjtdSOMNs9YRFzpaW4EExMJ57q8tm3Gm6xtp2i20QrHCsrqC+KB9g13orOUo9Gld5XbpwBcwIx7LkodijQ7bSIrvohv2VfW7Yy9NtqKiW0jdb6XuTdHbbhkVpD30ReR2zNCndecrD25+Cyi3FqhKtoNMdxos055IHBgdrEzLdChnaby3yXbwv5Zbmd3HYmWsZKHYrC0yW+7ffq7NdR8sTMvWyLtOljW3bKFYI5FjsdeAo1udLS47Lrco2h662m0bLBeJLUebfd8bM8ZT6bUtSEK+wz52v3CI1srC3N7Cd9sPixniRUVjS1A4dHvGwliWToQ061b+kmQIzSdkgLNkpn1CbsHkdRcnKCnaToq2i1zhNh12kXsuGULYmoKoIiLb8r1sy/eRK3lZ7bPUGbmTIcf3iK9Zt/9qCZHI133iHDsMaxx1So59dFnRMyonpCgQI53es+/Lw1+Ym54nAk/DOZ5AoVPWkqbND8RIEyRNijSJQe50IiPpvQkpCnI9ZtHMD8TIutZpUqRTeVuCchiDEJr6QJqO/VXd+kCANBHSnxv1G7AxWeIH5K4nciRF2g1PkyJdK8mSIp0il2WLsqTo2D7Uc4pJkJXrz4Vy6dPyXMUoWVJ0aC+Y9AdShNztRHZkKECToqJtB6m9NSnS6YotKTq03zMCS3qQfK1Ijna30+Rn22C5dokLJMeSoPCdxQRpMqJd6TQZypvdH9qHkilCggJOkbPPLD4onD7LNcNXNteCkNOXJkNR/2eSGy1nnwNsHadAigqSbntDauOdS4ZWzdsBGQolE7b1R0qGEA5kyMDJkON7xNeu03+1LnMa7j73bQC7yp33+7GU2vbt2UE86vuLL22UrhO54okIrAy+k5/m/heAEkxM0itodWIxV8j9YmwurL2IyAS4WvH04fgcs2yCDOi4MjJmSlKBo5giEZ66PSHvfGbANU1EYKV5EZEpSdfN0n7jtjg9bdLjPiYkrWxGzsEMxVuR8zsjabpFeArvCU29jdzhcFvkBiYylnb79DTOrC1LCsxSg4uIkK5guuxz03ePZDyHYPFBCKxG0kvWH0I4N9bnJcDIZt7gk4BihkRE7pPYhe05ViGWWIdmLa3jcSWZOBlyfJf42smQyFduIXJ8W6BWIfAg6rtKemT96WvpQawKr7J9/gMXpxbfDKxNAU27lgZYkZgFqQEufTVJCV7UH6Jq2bv2S6mBixuqSxFc6yzarqKudW1XwqKySCYiUoEHfdmuBoVkD3NXBWgH8+xK2E9FLHTI3a7q1tCyVHQLmIK87NZSdPiYUCpwEexaV8haVkmcznybLKFlaZ3MoXwJ3kJvk/WgKO1hzGQra5CCPE9yWGS2IMV0F318fW37SuYgkYcIT+FdtJ2sQRFY9iZ+BbTVXR+xPG/6gQVJyzegPZKF9tGYTQ/lVdfLlsSclF0Pk0awpAvIIsNSbjcdJi1jqbst2h4nMqg7TNiqrhdUjuqlyMq5ZIhcMmel+KYpytsOxh2tiWXoIYnXkzEytGx+hTGTefURuk/nVZxUoarfS1XHlqFeGidDDsfviG+CEH0LzNKxQ99XA2IUipB2XUmJEe6HBfA34DNK3Tn+sOepxUnsj1Lcw/Vo440CGUKkSGQsVfgWftak6Fih/BESI0Z+WBySyJAABRJTtsuBPHxGZEbvNybX7nm6n5BFr2rXA2IU2p8agxSgSZF299OkqOnLgyuhJUXB7Y7FG2lSpNOCa/Lz1GdEikQEkqLdfkd5rkiPJkWBDNk6SiFLHiJFIiLzthgQI5bCuxi4z7WRfGWI0jEdN9ZaNSlibnXMohHIkN0eSIaWaxcxLdepxzUpKrteSmIxCcTEkp8wrpaz9NsoIYJtg+Sam+nPeqr6VGtSxNKsB7JyboFYi+eSIU2KNOnpyPGxY9WoCNMKZChRtryHZHEgQ7qIMyNDy+ZXWTa/wm15FbvI5dWHAxnS674mQvhZ5nB8f/hWdPhvghCJfDsn1LHDS1qL7Fsz/vA4741nsDpZl7BAiuw1hyxFOzkotNoVkBiFh6PtC1mKRARaikSwtSgQH5QK/LjNBOez/oG8ajdStRspTWXvQH4sOWJkiZGrql0PyJOIwLgkkSMpsuQIWYp27cYtRTYVeCBFOgZJRKClSITHIKFtgRRtDYEJpKgwcUnIUrSTryPLUCBFNmV4IEWo5hGzFi2amlqArDyQImtZCaTItmdxSSIx2QkkyFqGQjtrcWFkKm96ShAQEQrHYglLID923KLl5MaSobCvbc8SNrD6RSJjBV2HOwUrkSUrzyVFn2oZarun6xpZnEqGsiSRdVdByxCyComMkyGLYCViZAjOEViFdn25buP4fvEt6e7fRAyRhscTfYuIYxsS4Hm/ezCg+IgvUSMAaQU9TNmN4oq6vpIUyNt2O5JC/LQ4pK4rZZLFabnbrpAZSLXd9pVcTF7DviYZmGNXwbTidbuB8qpZwbTiCE2bwz6aLpcLcExNX8ksPa3vqtvAtnWXywVMM76Vywyn30YxVVW/pqnAr4F82z9COULRL+U2+UMsl7XcgDTgRbKB8gm4X/JkK2+6eB6bZCtv+vi8iOwI1Oskjqu6SOL+i66R20kcm5S3rbyaAnnTyqtZ3A9ybdrJYxlNr930cgPyVm+bTm5AwBJyHSuaXm5AWnCRHXG5AuMWTQ/l0GWt7eUSHFTdn5e6G4G6ybXIsWtHQhBhYTWG2DYRTIi6XgQl9Ua8uhP8W7c9lyMgy9CmraUBZ+AxWUoH5A/yC+ybWYU2xVsYu1nWH8lzAL/UcDi+Z3xLZEjkG7IQBXxrJ9ghEhOadiQmqAXtvwTw0xal7G7bNcxO1xGXOJQpTyR2F+y6/PBn0bQ4MLciqbbLBsUVldSFjgUEW3kIELZpxetmc/g7tW9raWr21ovKuC2GuCRkcbJtj30PFZBmb4Er2kcpjBWp6taybbHlh2W9s+524buVF/0SFq4VEVn3eMyNsSiFIrSxfC1r8rZ7nuJ5z4G1ibnWVX1DA9HXJs4o32ers6m9Q4D70uS23jZd5Gq3ax/HGdH02kFu2m+Jb1rVxfFExaGP+P5nCQpYtrayjfsPtXGs5YxkFh/NSsfSeVvCwurxsNgdkZhU6e+nWpAQcWo7ToZEYpLDSA+S110ndddFCTA27e4anBj15pFYWhEZmld/lnn1Z+m62HV7U+CkCiXILifiZMjxY+Jb1NW/OUIksjvR3+LJ/rGBtQvuLvB7kaJefd5/OiNld9cVB2LUKlc6TYo6JWcxVIwUBWI08EtXpKhVLlGIFB22EVIUyIsmMZQskVpLQT5IQa760GnHLSkKYEQnkCK9XX+uB31zRcSSIhGRbXt/IEaVqnGkSZGufcQSMwS5JkLssyZFgxThxAUvyAvlbqdJUa7c7TQp2mg5UQw1dArv1SBF+1FuSVFAIEUs25cmLJoU5UrOXOoO6bUJKdF9b9Rn7T7G9tXQZOiUuKSyjeWMmGgypF3jTknFzWodHfpTY+qHuyYlzDJ32O9EAqSbaTIUrP80eQLpj8VKMTKEEMiQhSZDITPkg/xCyRCDJkPaNVmToeP6v3Qy5Pjh8C3r59+cy5yGu885vjRwym7s+nZOCvEknUESxN5ZJCSdcpbhdNITkj58LDW3xTS7oSlkEWgqbCDPUpzWmqXNRg5Bs/QGWpGykXWCpRqfgPmwVOC0b5gG+xW0GCGXPRGRjIyZgeuQtWUpw696/Nu/Tq5hTaMpSfedkd95CuQsdfeEpcwGcvYWj+n5KAX41SShlh42R8YTUHOWWjs7o+9pyokPAqsnhPp4ToY51H1P5GwuZxwOBSNDiKA30kHL0Ef5Z9gHI0N5ha25DSE8LIbW4fje8a2SIZFv1EIU8C2feMe3CZyyeysdSIrQ99jdiPWB3faIZQ1ZrfpG2oakzqbymODoQrMa2/I9lJ9Tf6NuNlLVsbys5yf3UTUraJ3akCKH1ArVbg5FbAfybiPbJq4RwtzqkLWp7JaSd7H8scUK16aL3W3Kfg2tUNpKpbGWeH4sZXiV5LJIH2SRxsf5HmTZy6WSpYC0wlIfCsMOxiVZIpHSWrStrJv4nti2+NrfAMtT0XYDC1NA1eLU3Y9lLCvbXkrSftt0A4vTcVxmqYrldYfd7VgtIOsiKLIjGohs8GxysawXXrPpJcDIEE+2EMv7vhf0rpZbhuLr50FWspR4nXhIfoU10RgZ2pbvoLxuPkLi42TI8aPiW9fJv2lCJPLt/wCObw88ZTcmRZoYBSJzXqY8G1fVDvqKWo+QIk2MQmFVZvVB5MfKkYud/s761qQo9GdJUSA9tLChIkW6rW7fHNKJc8sWIkUiMiBFxf5NsCVFgQwhUiQiA1IUPluiVPa7uSFSJDJ0zQtkaNsP55zLbn6IFIkMs+NVpGaRiEiZ7K7VeYLPlyZFuWDSE8iQjT8K7nbrQUrv43WtSVEgQxtDlIIbHiJFu+3KTY6QlUBi8pHUbZoUsZik0I8lPyWQ89igkMnOxB4BOSMaoY0dIhyeNkp9ijuI7acH8qfIkCU5gQxpUsScVp4iQ9qa+CD4+n1IcJIERIa25btRMoTgZMjxo+J70MW/eUIk8n38EI5vCywpRCBF1v0NWYueLjZrFYNYCez7AhKjQIq6roqSOiBrkSUSAYGsWIsMsxQhaxFLxMAsRchaFPqwc2RxTOhYNCmyqb8DKbKxS2OWIkuCwvfSpPhGlqIgC2QoIJAiawVClqJAigIZCgik6NSU4cFKFMhQQCBFuQyvH2QpClYiaxkKpEjHHonw+COR2DIUSJGNSQqkCKUGt2Roc0j/bRIz7L+X1NJjEzzgfrYN78eSoWAlspYhRIICLNFoSFuWrEAkXk2eayVipOocy1Db9dQyhL4jMrRpG2oZ0sj6nasnIkMheYKFJUI6LgKRIVt/z+H4kfC96ODfdAyRhccUOb4u4FTen280FN+EY4dERCYg3qjtCplmt5GcxUOhWJ6m3cK+WTxQmsbzbtpCZpM4LTdC1axg27rdyMX0NdwHzWXX/k3cf72Sy1mcxjoFfZTtSi5BKvSyWcrFJE55jVx3qnYj15M4JXfZLuQ6+2MkRzFZZbeWmzTu40JwjJmIyGUfpzAvko287n6O5FNwrYnEmb1ERDZSyBuJ+56Q2COkqG+7Wm5BrB5P3Q1SZXet3EzieY+9FUTdF20nNxOURjxu2/S9XIFc33XXyyVI243QkjTcdYfTiKMnet318Lw2XX9WHSJmVKu7Ho6LyFDT95KCtZHNowF95G0rHVhL70lGxw/pXyLZvP5nmEWOWYVERJp2Trc5HD8ivhcyJPKdWIgCvqcfxvE9wD6wP++7B2yxWh/+Bm37SmriKlaD7HlNtz2krtbtUFFakbhYbdsV0f4iu6x4NenDWnmYFQu1DbDZ9EJqcN5+DuVFZdzc6oXkoDiuSOyCV+4tcqWxzFXtesRdb2jNKVucMTDvHmls06YzffRrWfYkzkq2skhwQUkbZ5QnuSyBS10uhawE/5ZzE8uxkUoWwLK56avI1W4LlFaRndUJZRUrujayHBQdc7Frqfvdto23sUK1ZdtR17rc7MNihqq2jyxbYVeWctui6WLSwsajiQ96kkJ7hAwhMDLE2qJ+ENHKSWwZIkMf0r9QMoSwKX+LXvI07fzw53A4jvjedO7vihCJfH8/kONbx5c1wGpSZAmSJUUichIp0p8RqdHkh33W+6M+6sF+OqU4TqqAoOXadQ+lGB9vPz+2UW59lhSJyIAUaZc8RnQQdFvtymdJkYjItj2662hXPE2KSvU7W1IkIhEpKhWJ0aQo1D9i0KQol+NvpknRRgDpUS54mhRtlMsRqn+0Vq6f2gVPkyJGfA5tVUySdsGzxAcldNBkSLcvWxxvhJR/rfTrBAss3glBkyHNtRAf0+N1aj7NQC7ws8ZLkyFt3UFt6w4TJE2GtJWJkSGEMTIUzdlJkMMB8T3q2t+Vy5yGu885vi4k8iXJUSITmrghTW+hvzuqsD7NbqHFiKYUB5hk14O6SYc5gnt0ml0PCNFzMJvcwVgm5J421j4haaaRi9rV9CeYuAG55l1MXkkFzunl5E0U2ySC04ZfZ3+EsUkZSd+N0nq/Sv4kIkNCdJgjcK173f0sOUjIMO1xum/kUvhGbgaE6DA/0PYuvYDWIdRWBKf/vskmkCQhl63gBofIEHPNQ+nCrycpJEOo7eUkgWRoliWjhVQHc0sxGerIox1xmDThZIitWoiwMKsTOh+pJCen/04SbBn60OOXHeeQoVUeyxJJnQw5HATfIxkS+Q4tRAHf6w/m+Fbx+1mKLJClSARXVC8q7E/fkcKpSF7XcWKC3XjxPErWFliVREQa0McWvOkVwa6Au/b4GCuSmQ4VvF0WcYFHEWzNWhV/hW2XBVbikGveY/WPuC2wKlXk977v/knuu3+K5My17n2Kj3GVxvPbpnjMt8Atr0hyWQNr1PsOx4OsgdWJZby7b2ICV3QNJFr3VSn3FU6Vj4L3C+K6tahiObMALSvMejZ13J6l1j4nlTe39MSypu+pixvq/1wrUgUSJdTkRQtKwvG5yJCIW4YcDobvWbf+bgmRyPf9wzkcnwKbFSl8RqSobTfSAsuFJT/hOyJFnXGfO1ZzjxXntttCAmRlgQwhUlSbeJ1goarbNSRGdTOUBRc+S4rCd0SKULySCMl4Z9qGNoUhhEGOXPOsW16wOiFSZOOM6v54LtcdjisazHdvRbKZ6opkNyYiRet0adqGPrAiq5HLjpisTUa7AliXAhmy9ZBCxrtN93T2L+2Cl58QfxTIkK2fFJR/nba7OqThHir7geDYjHWInLAMdCzuRiQmKOF7lLsS8BVNhKwVZ4wM2UK6zIqELEmBDFlShOLEziFD8/qfTyZDbbuEa6DD4fj+dervmhCJfP8/oMPxKUCuc0whCKSoVSThKUtRr1zlunYbEaNdf8RitSdAmgg9ZSnS5MiSIo360P7YnyVFAYEEWXIUSNE58UqaHLG2gRSxWKlB25Au3JzDQIq0dYglXxA5kiKd7pslYAikKJAhC20dCqQokKFo/soFD1mJRI6kSJMhZCUS4em/D+Mp4hOsRDYl+LC9ijPaEyVrGQqkiFlCNAIpYtYeTYYCUeJt45ggO4dAVJj1RsvDZ2YVQv2P9a3bhi6ZSx2yDG3aekCG2n2bc8kQAiNDDocD40fQpb/bGCILjylyOM4FjqGJS0BysDgcAfEe59yj58QwpSBd82FM8E6o7baSgdTjtH8wbxavBOdA00/HsTkoRTkbL0txPNE0vYLyqt3IzeRvIvlFgs/FVOL+M8HxRJMexIsJ/l0y0HZCrqMMyGmMEZDnUssNmYe1dhz7ieUXKZ7fFOSSnpD80ihOiaWi/tSE/nXXw/H6kV7OyTxXgQAoFi+E0mdXJDkGKrh6bvIEJ0MOx3n4EciQyA9gIQr4UX5Qh+Pl0AoqBotVrx7KUSxTLw20TNlitjtZKR3IOAYL3bIitcDdb9d3QS1O1mrVtmvs3tduoSUKFb891V1v13Z7kltekOVVbP1BWfHqdiPbOi4syVD3W+hSV4CsXrksD0Vhrdxim6xkAQrFbpO1rNJ5JF8CN7s8KaBVCaX+zqWiViWEjVSRC54ItjxVfSurNr6eS+hq18m6Pi3GqOniNNwi2EpTkaxsKJX3WBpulsgBuvG1uLgqiq2q+w4Sn7KP2266Smqw7tyDa+B9+mdYCw3F2K3yf3Yy5HCciR9Jd/5hCJHIj/XDOhwvhxZ8Zm+S++gzS/AwjGHaKZqIFO3kpfqc7/fBAfCaFIV+WRyUCHfJwwQIu4lpUhTc8BApEjFpzPdtmbueJkXBNY+52mlSVDe7fhEpEpGIFIXsdpsG1yLSpCiQoVVP2ipSFMjQKsHJMjQp2jIXvL1ck6I8weQmpP/WpCgHcUc7+T7GyGxHWfBEVEySum4roNCLHMmQjjFiNYwCYcl1yu4n3OS0Gx1zqXuKTLUkDfex7fFv1368b5EjGdLkhyVKCGRIb2fxXoEM9cmx7fv0z7BtIEO9+m1Y8gQnQw4Hx4+mM/8wLnMa7j7ncDwHmWCLEUopjtOMo3TgSTI7EBeNNL2KrENpegFJU5JcRNahJLmE/YqIZNnNIbHDQZZeQ4tRlt1GRGgni9tOJ6+i+kuzyStoGZpmt1Hb6eQWFqq9mLyOUoNfTF9DcjQBLnGXs59ganHW/mbyN4PEC4e2SZya/S75G2gFQu5zd/3PsgVFXZH73V33BpIk1Pa2vxnUQjrMV+K1/lYuaVY6hNvkAlqGpsBd7y6bRZah28kEkqHbaRYRi6tJCsnJLEsiy84sTSAZmqZxKm+0v8jOTc+Ol6W88GuWxGQoSxNoFUolichQKgm0Ck2TNCJDU8mgVSjp04gMJZJCq1CSZG4VcjiegR+NDIn8oIRIxEmRw/F1gUVFoNgMpK2xZYzFQbWSJDy2aNBzX5G2sYG970tJ05uBrOtyybKbqC2MX2rXkk1exSOB9apuljIFbRHBqduNXM5+iuSsfdPlcj39Y9wWEKKyXcjN5E+RHBGiol/ITRL3i0hOIWu56d+c1jbZyE0HzgUgRNtkLXf960jOUCS53Pbx74cIUS61vAbnaALixMq+lbssPkco7qhoO7mapJHsMkPXYCSSsju9bdF2MgNtRQS6yG3bRqYpuJZB55uukhm4liugfH1IPsqFxOfyQxLHDD2Ufw/vkTVIce9kyOEYx49IhkR+MJc5jR/1B3c4vk4wQmPfJrcjbU/ZX41o4phsKvKn22K3LZR5z7rrte1GGlLnqLUpw0mckkicSa9pt1LUOJucdZ9r2lyaNo9SfQdYt7qyXVGXuk0zjDMquoVsOhyrtOlNv/1a1r1J5y3Yfa5INpH7XUGy0xXJVtbJ8Pxwt7zt4W/YB3bhzKWUpYlVYlanom9kbawfyEoisstqtzKpvJF1ibnfFW0npanvY7+PtWX9iojkTRvVDtqC+kwiu9TlNjECc4db9NvIrfFDgq+dt/IP0hpr3UP597DtKv9z9Jx3MuRwjONH1o1/WEIk8mP/8A7H14c4/miHpxI7PEWQbAzU8TsiQKg+E2+r45XimCbt3odimDQp0m55lhSJDMkP+xygSZF2lWMxRZoUNcAlsVTz1KSobGOXpqI7yjQpKkC6ZJ3m25IiEZFNMj/ur4gPiknaqLpHOs23JUW7/Y9zsSTo2AdOCR5qJGloMrRQ10QBnjGaDK1UWmlc7+hIQPJmnBghMqMJz1NttcxmicubeG6aDNVqHFvHSWRIhrQ1aAHcMhEZeiv/IG/lHyI5IkOr/M+yyuP4IidDDsc4fnSd+Id1mbNwFzqH42sHimHCsUqn78+xi216uqjnru1lRIjS9IYmibCYZHc4YQNYl6aTV5AEoTXscvqHKHbocvaTNC2e1ySL3eeup38cEKJDW+BGeDP504AQBWQghfhN8scBIRIRuU3+AK1DLB4JWYdQ2u7b/hW0DrE04df9dWQd2sUpxWRoCvp4nVxCMjRNUNzRFJKhKXCzu5qkEZm5zGIZA2uLtIDgNofIUAMSJUzTNCJDszSDliGU6OJKZpAMPcqvkSxLppAMbYCLXJJMnAw5HCP40YlQwA9tIdLwC8Lh+Npxagrwc/bnOJUM7drG7nOsaC2aR9POT+63qnHBVIRtGQeUI6UxAKXvnm/jYHURkU0VzwMpqYhMiYg8Nv8UyT62sRVAJHazExH5KPGxMVe79+kvkQwldzi2j5Xwt0DG8E5iS9wWkCkRkXdNfJ2wYrGIzDxWsateDpIciIjcV/E1vW6wq999Vch9FV9/iw7I+gJaht53MRG5JxkH/5zGv/37/j/AttAytI3377qtkyGHYwSu+x7hhMjhcDgcDofD4XD8sHBCpOBM2eFwPB/WWtULTgohQB7XawrfkZXIyvq+kK4bWkeChapuYqtPCRIphHTfyEqUlyYRQj2P+9xbglDh120zHK8i9ZxERNatSdAwEnv0VNyRiMgWxBAF6xCKRVqb/Xey3RwW6XC8bbKWRTK0BqFEDME6ZGNmtsAKGaxDttjrtmtkY6wwyBIUZHab3VfkaB3atEMrESo0K8KtQyJx/aa5xJYvZh1CFjxkHXrI/4M85P9BWjM/Zh1yOBwcrvMO4YTIwC8Qh8PxfCAXPuaqF5MjVsT2sH2QxKGIZJYUBQRSpOsslfUDJEYaVX10KwukSJMh5Danod3lAinSZGjbqqQLKvYokCJNhpDbnIZ2lwukSJMhRHQ01sl80Ga5JzprUAtn1/dxvECKNBlajLjkiQzJUCAazFVuC+Sa8DASFKDJUPjMXOVOIUOhOO2CZFp8igyFc/c+/eVJMhTqYT3k2H3OyZDDcT5c143hSRUIPMmCw+H4mrBL3IAVUNA6kkwnf4CFZ0VE0jSu95KBpAlXF3+E1iGUjCFL43pBIjgZQwqSLkzY/qA2zSSJ2970b6B1KAX1g1BNKBGRV/1PkBBN+3g8VDPndX8HY4emoD7SBZCJiGQguUIK63ZhdICko8f+TTalZKhGcW+gHtiNzCAZKkAmP0RQr/tX0DK0KuL4rW0ZE6ld4WYnQw7HGJwMYbiFiMAvGIfD8TXhdDIkgixVdYMtLF2XS9PESQAq4Pq2BG/j62YteRnXJ7Judrs+Y6tJ2a4kb2JLlXWzE8GudmW/gjWPPvRxMoiijwlS3i9k2+N05O8lTt+MEjdsk6U8JrG17Lf0N9A23j+XQuag37XEv/kapHdf9oUswfWBZCjV9YOs5C8tthbeA0L4IY1/74/pW/lzGie6+AAsQO/6OCnCff338pfm/x3PbfPvI9m2jH8XkdbJkMPxBFy35XBCNIK+b/zicTgc3yjiWk2nKoyhDpImRfU+W9dTbna7/XbER5OiINuCGKVo/338kyZFgQxpNzuGbbcjOJvuOFYgQ4z8WBzbz4+yPWlZJU8fAyI+QbZ4wn1PZJwMaaKDSA+TBzK0lKNr34Ng1777ZDFKhh5VPNXH9C3sY4wM6d/mvsbFVcfJkK0v5nA4GFyffRpOiE6AX0QOh+PbRGwpCqSo6/JBnSRkJWIIpKhujkp/sBIhK5BFIEU6xihYiSqarlztvydFZa8Kxu6tRIEMnYJcxSht+8cDWUKWJJbSW7vlBSvRIL4ofYhkgzko4hOsRJoMBRKDLEMMmgyF/ZhlCMESoeV+7swyhKDJUEhewSxD0bw2//4sy5DD4eBwHfY0eAzRGfC4IofD8f0Ax6EkKMYmjeN+RERSEA+UoXgkEA+UZbhP1BbFHaF2aO4iuDAsixtCMUYiIilY/1Fh1wu5jmTTHh/rrAfxUCCWKCNzOhUtjAHCSlKbYIJRgux5rcSJGSrBRX8RUS1A/a1NgQkWc/l0OBwcToZOh1uIzoBfWA6H4/tBLyhVOMp0h1ztkKxpV1LWQytC3S6lqFGMUSxD1qW62UheD5Xpsl3B9N45SjEOCnPm7aNs22Hbon2Uon2ELnk6A96hD6Dg5/2jzPu48O2jxLFEKKnAKo37XKbzgXtagE33LSKwHbLgfEx/kzmw9nxI/xLJRETeSWzF+djF8WQfm/8gyyY+/g/lv41kD9t/F8kWm38njfm96uajkyGH4xlwnfU8OCE6E+6H6XA4vndoUhQ+awIUPjfgDf8pqJodwdCkCMUdnYOi2c1Fk6JAhrZKlrenu9SJHMmQJlCBDK27YyKFnMQmoVpJgQw9KLISyNCjIirLdA77HCNDKLZH9/kRJHoQeZoMzftjprdAhh674z4fG5wW+xwyZOFEyOE4H66nPg9OiJ4Jv9gcDsf3gd78r7cM1zlsFZrv/z9ad4KVqFZv+4OVKJChMQRSVDfHeKJgJRrUNtpbiQIZ0rCWoS2wHgWSUxiSFKxEp1qGLIKVSJOhYCU6xzKEoMlQ+HyOZQhBk6GHZEd83snfn2UZivos/+2TZGhb7gilkyGH42Xguunz4TFEnwiPK3I4HA4RAXEuKYjzOTXuCNU2StN4vS3rhVzN/gDGAXFDsKYPiSUC+xfNXK6mP0dyFKOE6iVNk/iYphKfo2X/Vn5K/uN4Tn081y6J6wGh2J4WuEJ+qP+dvJn+J5G87nEcUAMy17VdnOxBk9aA1fbfy2z6p3gsQGb7HtdDcjgcHE6GPg1uIfpEuGnS4XA4RFC2L2xRetpCVCGLTx1bUco67qusF1BegHThqJ0Iro2ErFAiIjnoF9VQWrdxnaJ1937gdiayI0MICyB/lLhg6WP/l6iPh/bPsmjj2B6Ej8V/C+UPeZz17XH797Ishqm1Hzb/TjYFtkRZVHV8TpwMORznwfXQl4EToheCX4wOh8NxOilCxKhq5p9MhiyK+uFsMhT1AeaU1w9nk6HH5pg2WscfBTyHDOltj30cB/TQolTVO+uQRSBDi3JYYDWQoWVx7P9xi2sHIay2u/01AQqfNQFyMuRwnAfXPV8OToheEH5hOhwOR2v+35Gip6xFjAhpMhSSMJxDhlA73VbHJp1Dhiy2zcOADC2bHWFhliELRIYW/dsh4dmTIGYZsrBkKFiJNBma1zvyc65laDD3vZXoQcUCBStRIEMabhlyOD4drnO+LDyG6DPBY4scDocDIa5/lCSgThGIK2rahcymfxPJUY0gGC8EYn3KBscg7WZ62jvDsl7I1cUfT5rXNI3jiFAM0rp6J69m/+qk8TsQM7Qo/iI3szhmBxW+bVpQYwjEBomI5OUvMBaoaVFqdlyM1uFwPB9OhD4P3EL0meAXrMPhcCA8/Q6uB8H7yMWubpZSN3GdIWRtqpqlFPUwG1tJMt6xOKRTZXn5EaYPz6tYtqney7Icxvesq3dwXqs6tgwtq1+i9osCp9Ce5/8Y77/9B9mWw5ifdf5Pkpe/SW7keTmMFwpAFh8nQw7Hy8N1y88HJ0SfER7o5nA4HAioKOyOCJ1DhixYDFIF2o6RoTG53s7IEEIgQzoOZ1MBd7onyJAmRcsqJihPkaGQ6lpkR4ai8fN/gvtroFggTYCcDDkcLwvXJz8/3K/rC6DvG3ehczgcjgi9BBe6U4mQCCdDsSxuJ4LJ0FNE6BS5JUOb4i1MFS5yGhlaVr9A17+wzcKSoU31Xuo2dpETOZ0M5eVvcnXxd9A65JYhh+Pzw4nQl4HHEH1hODFyOByOUxDHGon0kiRxbBEiDV23lSx7NZC17VImk7iOEIr1ERGp6weZTYexQVXzIDPQB0LVPMgliOPJQH2mvPogNxd/N5Btqw9yc/G3Udu+j2sPrYu/ytVsGF+1Lf4iU1A3qWlj0rJLehHXktohzh7ocDg+L5wIfVm4y9wXhl/gDofD8Ryc7mKHMtq1bWwtappHaZo4pbfIjgxZVCCldpDbbahtUX2UAsQR5dWHSLYFMhGRTfku2rYu4hpDW+I6V9Xvo/ODztcRToYcji8N1xW/PJwQ/Q5wX1CHw+E4FTzeyIKl92ZkKKCqhwTjVDKEiBBrq4nQRhGYU8nQpnwnmzKOL3qKDOljwS5u+ny15rOTIYfjS8L1w98P7r/1O8JjixwOh2MMpxEhkdOtQiICrUKIBAWcYv0Z23aqVUgkJkOIBAVYMpRXH6Tv8PmxZMitQg7H1wUnQr8vPIboK4ETI4fD4fgSILFJ4P1gL40kySyW91UkR7Kj/NLIiii+SQTHODXNA4x7apoHSdPbgazr1vQ4HA7H1wknQl8HXAv/SuDWIofD4fg9gN8JMhLR99VJMt42tuBwS1ZsbUIyEZzdzYmQw/F1w8nQ1wOPIfqK4L6jDofD8bnRq/+fJkOB1PR99SQZerrtkQwFEnQKGQqfTyFDYe5OhhyOrxeu7319cJe5rxRuLXI4HI7vA0lySWOfHA7HjwUnQl8nnBB95XBi5HA4HA6Hw/Ftw4nQ1w0nRN8InBg5HA6Hw+FwfFtwIvRtwGOIvhH4DeVwOBwOh8Px7cB1t28HbiH6BuHWIofD4XA4HI6vE06Evj04IfqG4cTI4XA4HA6H4+uAE6FvF06IvgM4MXI4HA6Hw+H48nAS9H3ACdF3BCdGDofD4XA4HF8GToa+Hzgh+g7hxMjhcDgcDofj88CJ0PcHJ0TfMZwYORwOh8PhcLwMnAh9v3BC9APAiZHD4XA4HA7H8+BE6PuHE6IfCE6MHA6Hw+FwOE6DE6EfB06IfkA4MXI4HA6Hw+HAcCL04yH9vSfg+PLwG93hcDgcDocjhutIPybcQvSDw61FDofD4XA4fnQ4Efqx4YTIISJOjBwOh8PhcPx4cCLkEHFC5DBwYuRwOBwOh+N7hxMhh4YTIgeEEyOHw+FwOBzfG5wIORCcEDlG4cTI4XA4HA7Htw4nQo4xOCFynAwnRw6Hw+FwOL4VOAlynAonRI6z4cTI4XA4HA7H1wonQo5z4YTI8Ww4MXI4HA6Hw/G1wImQ47lwQuT4ZDgxcjgcDofD8XvBiZDjU+GEyPFicGLkcDgcDofjS8GJkOOl4ITI8eJwYuRwOBwOh+NzwYmQ46XhhMjxWeHkyOFwOBwOx6fCSZDjc8IJkeOLwImRw+FwOByOc+FEyPEl4ITI8UXhxMjhcDgcDsdTcCLk+JJwQuT43eDkyOFwOBwOR4CTIMfvBSdEjt8dTowcDofD4fhx4UTI8XvDCZHjq4KTI4fD4XA4vn84CXJ8TXBC5Pgq4cTI4XA4HI7vD06EHF8jnBA5vno4OXI4HA6H49uFkyDH1w4nRI5vBk6MHA6Hw+H4duBEyPGtwAmR45uEkyOHw+FwOL4+OAlyfItwQuT45uHkyOFwOByO3w9OghzfOpwQOb4bODFyOBwOh+PLwYmQ43uBEyLHdwsnSA6Hw+FwvBycADm+VzghcvwQcHLkcDgcDsf5cBLk+BHghMjxw8HJkcPhcDgcHE6CHD8anBA5fmg4OXI4HA6Hw0mQ48eGEyKHYw8nRw6Hw+H4keAkyOHYIf29J+BwOBwOh8PhcDgcvxfcQuRwALi1yOFwOBzfI9wq5HDEcELkcDwBJ0cOh8Ph+JbhJMjhGIcTIofjDDg5cjgcDse3ACdBDsfpcELkcHwCnCA5HA6H42uAEyCH4/lwQuRwvBCcHDkcDofjS8JJkMPxMnBC5HB8Bjg5cjgcDsfngJMgh+Pl4YTI4fgCcILkcDgcjufACZDD8fnhhMjh+MJwcuRwOByOMTgJcji+LJwQORy/M5wgORwOx48NJ0AOx+8LJ0QOx1cGJ0gOh8PxfcMJkMPxdcEJkcPxlcMJksPhcHzbcALkcHzdcELkcHxjcILkcDgcXzecADkc3xacEDkc3zicIDkcDsfvCydADse3DSdEDsd3BidIDofD8XnhBMjh+L7ghMjh+AHgJMnhcDieByc/Dsf3DydEDscPCidJDofDMYSTH4fjx4QTIofDISJOkBwOx48HJ0AOh0PECZHD4RiBkySHw/G9wMmPw+FgcELkcDjOgpMkh8PxtcPJj8PhOAdOiBwOxyfDSZLD4fi94OTH4XB8KpwQORyOzwYnSg6H46XgxMfhcHwuOCFyOBxfFE6SHA7HU3Dy43A4viScEDkcjq8CTpQcjh8PTnwcDsfXACdEDofjq4YTJYfj24cTH4fD8TXDCZHD4fhm4WTJ4fh64KTH4XB8q3BC5HA4vks4WXI4Xh5OehwOx/cIJ0QOh+OHhZMmh+MIJzsOh+NHhRMih8PhIHDC5Pie4ITH4XA4MJwQORwOxyfASZPja4CTHYfD4Xg+nBA5HA7HF4KTJ8c5cJLjcDgcXwZOiBwOh+MrhpOo7wNObhwOh+PrhRMih8Ph+I7hhOpl4ITG4XA4vl84IXI4HA6Hw+FwOBw/LNLfewIOh8PhcDgcDofD8XvBCZHD4XA4HA6Hw+H4YeGEyOFwOBwOh8PhcPywcELkcDgcDofD4XA4flg4IXI4HA6Hw+FwOBw/LJwQORwOh8PhcDgcjh8WTogcDofD4XA4HA7HDwsnRA6Hw+FwOBwOh+OHhRMih8PhcDgcDofD8cPCCZHD4XA4HA6Hw+H4YeGEyOFwOBwOh8PhcPywcELkcDgcDofD4XA4flg4IXI4HA6Hw+FwOBw/LJwQORwOh8PhcDgcjh8WTogcDofD4XA4HA7HDwsnRA6Hw+FwOBwOh+OHhRMih8PhcDgcDofD8cPCCZHD4XA4HA6Hw+H4YeGEyOFwOBwOh8PhcPywcELkcDgcDofD4XA4flg4IXI4HA6Hw+FwOBw/LJwQORwOh8PhcDgcjh8WTogcDofD4XA4HA7HDwsnRA6Hw+FwOBwOh+OHhRMih8PhcDgcDofD8cNi8ntPwOH4HvHu3TuZz+e/9zQcDofD8Z3hzZs38rd/+7e/9zQcju8KTogcjhfGu3fv5F//638tWZb93lNxOBwOx3eGy8tL+S/+i//CSZHD8YJwQuRwvDDm87lkWSb/9t/+e8m3uUiS7Lekksj+s5YlKfic7P9Nj5+T4/ZjP6kkybFtsveCTRL9OQEy3W+2H13NTzJJzfZEkuP+YvvaydIg6499pRLvn0oqSa+PMZydJOorVcc7bCuHfg9z1bLkKAunO7ST5Pg5TY57Hs5+osZMQhvVf6Laqv7DuU5V43Qw/rCP4/jHz3rc0M1wXv1gv+HxDfc77A/b9upcgLmA49v134OxjnM6jtur/o7bD37ag3F7Na4+Pnus/eC8hXHDnBK1f5L0g3lb2W5+qq1qE4+v9kv7w/7H3334OZKlx+PTsv9/e/cdFsWd/wH8PbsozdiwIoLBiu0JxhIViIKH2EETU06jz+mdJSh6trN7d5Yzd9b42GIsOYIlcoeaYFfkMAE1aIyinHcUPcQCBiKsFNnv7w/c2ZndxV0M/lD3/Xoek9lvn9ndYT4z35k1ljUOUp1mXFbsMuTtp0xT7jpMdiOQ1G+McYMqPliS8kNmGIvqzVJueEmdL1nOV/evyJffUEt1TPLldjXGNuV8jfkXSZKMZTWKlVSNT5EmmY5FY7ktRTmhTNOYtK8ak8n4nvQrVPmK+hb6gklfmZn3sXxZNPLy8hgQEVUhBkREz4lO9wi6Qp3qqEUZyMhp8rJWFVwAhmBDEeRYyFemycGLJBQHhoayyoNtYXbgXX6AawgiJGNwYynggdYYnMgBk0YOfjTCGDAJaM3qAxpohHG5vJxi+wjjesMkUDKOzzB+47KyhiEg0kAyC4gkk4BIFciY5KsDImMdZZBhPH4ytmMpSFEGBOoDe+WysQ/T9pVBgMV8k3afmg/jwbYyIDKORVRQ3xgQKQMV8+0iFO+Hog7M8+WxKPrVmNQz1rGUr1wX8yBGGSQZ3yt1QKQMmoz1Kw6IlPmq4EtjOSBSBTqmaYrjYmWaKiBSf11Ux92qgEhjqazyjX3yWrlhNYqASPEmVhjwyPkWghwLAY9UUb4ymLAY0Fgrq6kgXxnwmAZEGstlJSv5inJCmWYaEKmCHMttCYv5Got9WcwnoirHbxcREREREdktBkRERERERGS3GBAREREREZHdYkBERERERER2iwERERERERHZLQZERERERERktxgQERERERGR3WJAREREREREdosBERERERER2S0GREREREREZLcYEBERERERkd1iQERERERERHbLoboHQPSqcnFxhgQAkvQkRQMJT5aVaZLGwrL05L8a47JkzDe2o4EkGctKT85xSJJyWVFfbsvQv3Eo5T2JJ6kCGujV9SHk/PJlQ/t6uX8NysqXhbEvDbTymA11NNBAEsp1NKyTcbsoz9cIVXr5a728pYz1hCJNPBm3XrWOhu1mXNZIkOvLW1+CYlsZyhhHJ0mKsor2DdtKoyisgek2NrZh7N+4rOzX0Ix6XEJVT9m/xqSeXN9iWaHYFhbGYmH9ytsXFvoyjsnYr1C0Z8yX31VVv4Z3zjgujbKeok3lJ0H5eQQASRjrm5Y1TZOEkPuVJEW6pNy+hmVhXFehaF8y1lEum6VpjOunTDOWNQ5SnWZclsxXRpWm3HWY7EYgqd8Y4xut+GBJyg+ZYSyqN0vxgTXsE1R1zPPV/Svy5Q+kpTom+XK7GmObcr7G/IskScayGsVKqsanSJNMx6Kx3JainFCmaUzaV43JZHxP+hWqfEV9C33BpK/MzPsgoqrHgIioiun1ejg4OKBdu9bVPZRnYDhwe6xIK62OgagIk//rKypIZCBg/MAQvUIcHByg13MvSFSVGBARVTGNRoPHjx9jwYIF8PLyqu7hEBHRKyIzMxNLly6FRqOxXpiIbMaAiOg58fLyQtu2bat7GERERET0FDzFQEREREREdosBERERERER2S0GRERVzM3NDWPHjoWbm1t1D4WIiF4h/PtC9HxIQgg+h4eIiIiIiOwSrxAREREREZHdYkBEREQAgJiYGEiShG+//ba6h/JKOnHiBCRJQmxsbHUPhYiIFBgQERG9ACIjIzFhwgR07doVjo6OkCQJO3fu/EVthoeHo0aNGsjLy7NatrS0FLNnz0b//v3Rq1evX9RvVUhISMCMGTPw5ptvws3NDU5OTmjXrh3mzJlj0/q8iPr16wc/Pz/Mnj0bZWVl1T0cIiJ6gvcQERG9AFq0aIHMzEw0aNAArq6uyMzMxI4dOzB27NhnbtPT0xNt2rTBiRMnrJbdvn07xo0bh5MnTyIwMPCZ+6wqTZo0QU5ODvz8/ODr6wtJkhAXF4eLFy/C29sb3377LRo3blzdw6y0Q4cOYejQoYiMjMSvf/3r6h4OERGBV4iIiF4I27ZtQ0ZGBu7fv4+JEyf+4vaSk5Nx69YtDBs2zKbymzZtQvPmzdG3b99f3HdVmD59Om7evIm4uDisWbMGq1evxvfff49JkyYhLS0Nf/rTn6p7iM8kJCQEDRo0wObNm6t7KERE9AQDIrJrOp0O27dvx8yZMzFo0CAEBATg8OHDz6Wv+/fvY/HixRg4cCBCQkIwd+5c3L5926xcQECAxX+RkZHPZVz0YujXrx+8vLyqrL0DBw4AAIYOHWq17JUrV3DhwgWMGDECkiRZLBMfH4/Q0FA0btwYjo6OaN68OYYPH46EhAS5zJIlS+QrOTt27ECnTp3g7OyM119/HevXrwcACCGwatUqtG3bFk5OTmjdujW++OILs/7mzJkDd3d3VZokSVi4cCEA4MyZM7ZtCJQHh++88w48PT3h6OiIhg0bolu3bli2bJlN9fPz87Fo0SK0b98etWrVQu3atdGqVSuMGTMGmZmZFtd/586d6NKlC1xcXNCnTx+5TI0aNRAaGoqEhAT85z//sXkd6PkqKSnBpk2bEBYWhn79+mHChAk4f/68TXVt3bfHxMRg0aJFeOeddxAQEIDly5dX2GZqairmzJmD0NBQ9O/fH2PHjsX+/fvNplrqdDqsX78eI0aMQFBQEEaNGoWYmBiz9g4fPlzh35bc3Fyz8jqdDps2bcLIkSMRFBSE4cOHY+HChSgqKpLL5OTkYPPmzYiIiED//v0REBCAixcv2rTNiF40DtU9AKLqlJ+fj507d6Jx48Zo1arVc9uZ63Q6REREoLCwEKNGjYKDgwP27duHKVOmYPv27ahTp46qfNeuXRESEqJKa9269XMZG72aYmJi8MYbb9gUZJ08eRIA8NZbb1nMX7duHaZPnw5nZ2eEhYXB09MTWVlZSEhIwP79++Hn56cqv3btWsTFxWHYsGEIDAxEdHQ0IiIi4OLigosXLyI6OhqDBw9GUFAQ9uzZgzFjxqBFixYICAiwOtYaNWoAABwcbPvzdenSJfTq1QtarRbDhg2Dl5cX8vLykJKSgq1bt2L+/PlPrS+EQP/+/ZGUlITevXsjJCQEGo0GmZmZOHjwIEaPHm22jf/617/i9OnTGDZsGIKDg6HValX5PXv2xLZt23Dq1Cm0atXKpvWg52vFihWIi4vDu+++Cw8PDxw+fBizZ8/GunXr0Llz5wrrVWbfHhUVBZ1OBx8fH4tBiEFqaiomT54MDw8PfPjhh3B0dERSUhLWr1+PrKwsREREAADKysowc+ZMpKamIiwsDB4eHjh37hxWr16Nhw8fYvTo0WZtjxs3Dk2bNlWl1apVS/W6oKAAU6dOxf379zFkyBA0a9YMeXl5uHz5MkpLS+Hk5AQAuHXrFqKiouDh4QFvb29cvXrV+oYmelEJIjtWXFwscnJyhBBCXLt2Tfj7+4vY2Ngq7+fLL78U/v7+IiUlRU7LyMgQffr0EVu2bFGV9ff3F6tXr67yMdDLY8WKFQKA2LFjxzPVT09PFwDEkiVLbCr/7rvvCgDixo0bZnmXLl0SGo1GuLu7i/T0dFWeXq8XWVlZ8uvFixcLAKJ+/friv//9r5x+8+ZNUbNmTVGnTh3Rpk0bce/ePTkvMTFRABBDhgyxaawrV64UAMSsWbNsKv/73/9eABAxMTFmeYbv/tNcvnxZABChoaFmeUVFReLhw4fya8P6u7q6isuXL1fY5g8//CAAiI8++simdaDn6+rVq8Lf319ERUXJaUVFReL9998XEydOfGrdyuzbs7OzhV6vF0IIERwcLJYtW2axzU8++UQEBgaK/Px8VXp4eLgICQmRX586dUr4+/uLr7/+WlVuwYIFIigoSDx48EBOi42NFf7+/uLatWtPXR8hhFi1apUYMGCA6rttSWFhoTzG06dPC39/f5GcnGy1faIXEafMkV2rWbOmzb/4nZiYiPDwcAQHB6N///6YPXs20tPTbaobFxeHdu3awcfHR07z8vJCly5dcPr0aYt1iouLUVxcbFP7REqG6XK23j/0v//9DwAsPqRgy5Yt0Ov1WLp0KVq0aKHKkyTJbFobAERERMDb21t+3bx5c/j5+SE/Px/z589Hw4YN5bwePXrA29sbP/zwg9VxXrp0CX/84x/RqFEjzJ4926Z1M3B2djZLs/W7X1F9R0dHs7PrAPC73/0OnTp1qrAtw3Y2bHeqXmfOnIFWq1VNL3V0dMSgQYNw9epV3L17t8K6ldm3N2nSpMIpqUqFhYWoWbOm2WfLzc0Njo6O8uvLly8DAIKCglTlgoKCUFJSoprOqqTT6Sp8yuHDhw8RGxuLIUOGwN3dHaWlpSgpKbFY1sXFBbVr17a6PkQvAwZERDY4evQo5syZA2dnZ0yYMAFjxoxBRkYGPv74Y2RnZz+1rl6vR1paGtq1a2eW5+Pjg6ysLOh0OlX6kSNHEBwcjF/96lcYPXo0jh8/XqXrQ6+2AwcOwNPTE2+88YZN5XNzc6HVavHaa6+Z5Z07dw4AEBwcbHP/lvo1TNOpKM/SPRdKaWlpGDRoEMrKyrBnzx40aNDAprGMHDkSGo0GYWFh+M1vfoPdu3cjKyvLprpA+Xe0c+fO2L17NwICArB69WokJydDr9dXWKd79+5PbbN+/foAyu/BoOp348YNeHh4wNXVVZVuCHIqutfrWfbttvD19UVhYSH+9re/ISMjA3fu3MGBAwcQHx+vejJhSUkJtFqt2fRRQ9CUmppq1nZERARCQkIQHByMP/zhD7h165Yq/8cff0RJSQk8PDywcOFC+e/Q5MmTcePGjUqvC9HLgvcQEVmh0+mwbt06DB48GLNmzZLTQ0JCMGrUKERGRqrSTf38888oKSmxeDbakJaTkwNPT08AQMeOHdG3b180bdoUubm5+Mc//oE///nPKCwsRGhoaNWuHL1yHjx4gH/961+YNGmSzXWcnZ1RVlaG0tJS+R4dg/z8fEiSZHbfwdNYOmtsOGirKO/x48cVtpeeno6+ffsiJycH0dHRlXoSXo8ePRAXF4fly5cjKioKO3bsAAB069YNK1eutNqWg4MDTp06hSVLliA6OhozZswAADRs2BDh4eGYP3++2T1C1h4H/ujRIwDlZ9ip+uXm5lrdP1tS2X27rQYPHoz09HQcPHgQX3/9NQBAq9Vi2rRpqqu+np6eKCsrQ0pKiuo+J8OVI+W4HR0dMWDAAPj6+sLV1RWpqanYt28fJk+ejG3btpldtdy6dSvc3d0xb948FBYWYufOnZg2bRp27dpl88kIopcJAyIiKy5cuICCggIEBQWpfhBSo9HAx8cHycnJT61vmPZmeqAJlE/ZU5YBgI0bN6rKDBw4EOPHj8fWrVsxYMAA1ZQJIlPffPMNHj9+XKng2TCF7cGDB2YH83Xr1oUQAtnZ2WjWrFlVDtUmaWlp6Nu3L7Kzs/HVV19h8ODBlW7D398fhw8fxqNHj5CUlIRDhw5h48aNGDRoEK5cuaKa3meJm5sbPv30U6xfvx7Xr1/HqVOn8Omnn2Lx4sWoUaMG5s6dqypvbVrUgwcPAEA1dZCqT3Fxsc37Z9N6gO37dltptVq4u7uje/fu6NOnD2rWrImTJ09i7dq1qF+/Pvz9/QGUP5ly165d+Mtf/oLp06fDw8MD58+fl58yp+w7MDBQ9fti/v7+6N69O6ZMmYK///3vmDlzJgBjsA4Aa9askYP21q1bY9KkSfjnP/+J3/72t5VeJ6IXHafMEVlhOGM2bdo0DB06VPXv/PnzcpBUXFyM3Nxc1T/AOH2htLTUrG3D3OynBTk1atTA8OHDUVBQYHEKBJHSgQMHUK9ePZue2GZguN/F0ufLMP3r2LFjVTPASlAGQ3v37rX5nqiKODs7o0+fPli1ahXmzZuHR48eVWo6qiRJ8PHxwccffyzXO3jwYKXHYdjOT7vPiP7/ODo6PtP++Zfu2ysSGRmJqKgoLFq0CCEhIQgMDMSyZcvQuXNnrFmzRr6a6ubmhuXLl6O0tBQzZszAe++9h02bNslPobN035tS586d0b59e3z//fdymiGQ6927t+oKZocOHdC0aVNcuXKl0utD9DLgFSIiKwz3CixYsECe+69kmC5z6tQprFixQpUXHx+P2rVro2bNmhYfs2pIszYFoVGjRgDKp2gQVaS4uBhHjx7FsGHDbH4sNQC8/fbbWLNmDZKSkswCqYkTJ2LLli1YsGABAgMDVY+YNlw5svRghV/KME3u9u3b2Lt3L8LCwp6pne+++w6+vr7yo4INDDfKm6abysjIAACzB0rYWt+SpKQkAOXbnaqfm5sb7t+/b5Zubf9cFft2S2JiYuTfsFLq3bs3NmzYgDt37sDDwwNA+T15e/bsQVpaGoqKitCyZUu57+bNm1vtq1GjRrh586b82jDeevXqmZWtV68eCgoKKr0+RC8DBkREVhimCdWtWxddu3atsFy3bt2wevVqs3SNRgNvb29cv37dLC8lJQXu7u5W7yUw3HBet27dSoycXibbtm2Tnwr1448/ymlxcXEAAD8/P4wfP/6pbZw4cQIFBQWVvpISFBSE1157DcePHze7H65Tp05Yu3Ytpk6dig4dOiA0NBReXl64c+cO4uPjMWjQIKxdu7ZS/dmib9++uHnzJt566y1cvnxZvi9CacmSJVbbWblyJU6fPo2AgAC8/vrrcHJyQnJyMk6ePAlvb2+rgdalS5cwfPhwdO/eHe3bt0eTJk2QlZWFmJgYaDQaTJ8+vdLrdvz48UpfxaPnx/AbdIWFhaoHK6SkpMj5llTFvt2Sn376yeJDOwxXhkyfEKfValW/U3f06FEAwJtvvmm1r9u3b6v+rrRt2xaA5fumnuV+KKKXBQMiIiu6d+8OV1dXREZGokuXLmZn3vPy8lC3bl00aNCgwrOBb7/9NrZs2YLr16/LTyS6efMmLl68iPfee8+sLSWdTof9+/ejTp068h8revUkJCRg165dqrSzZ8/i7Nmz8mtrAdGBAwfkm6cro1atWhg1ahS2bt2K7OxsswcohIeHo2PHjli1ahUOHz6MgoICNGrUCD169MDIkSMr1ZetMjMzAZQ/7j4xMdFiGVsCokmTJqFOnTpISkrCmTNnIISAp6cn5s2bh+nTp1t9bHDXrl0xZ84cxMXF4ZtvvkFeXh6aNGmCfv36YdasWRX+mG1FMjIycPbsWURERDzT1SWqen369MGePXtw8OBBfPDBBwDKp7zFxsaiffv28n11d+/eRVFRkeoqqa379srw8PDAhQsXkJ+fL/+wa1lZGU6fPg0XF5en3suXl5eHqKgotGzZUnUCz9Lflu+++w6pqakYMWKEnObp6YlWrVohISFBVefcuXO4d++eqizRq0QSQojqHgRRdYqOjkZBQQFyc3MRExODgIAA+WzbiBEjUKtWLRw/fhzLli2Dl5cXgoKCULduXdy9exeJiYno2LGj1bPEOp0O48aNg06nw/vvvw+tVot9+/ZBr9dj+/bt8h+d7du3IyEhAb169ULjxo2Rm5uL2NhY3L17F/Pnz6/Uo4/Jvggh4O7uDl9fX8TGxla6fmpqKjp27IglS5Zg/vz5z2GEBJRPvf3kk09w7do1tGzZsrqHQ08sXrwY8fHxGDlyJJo1a4YjR47g2rVrWLNmjfyo+KlTp+LSpUuIj4+X69m6bwfKT3AYHuH9xRdfoEWLFvJVQj8/P/nzcOzYMSxduhTNmjXDkCFD4OjoiBMnTuDq1asYP348PvroI7nNKVOmoEOHDvDw8EBubi4OHTqER48eYf369arP1wcffIA2bdqgbdu2cHV1xb///W/ExsbCzc0NW7duVU0HT05OxowZM9CsWTMMHToUBQUF2LdvH9zc3PDZZ5+prnoZTuJkZGTg5MmTGDhwoHxCZcyYMVXx1hD9v2BARHZv5MiRuHPnjsW8vXv3yjv3ixcv4ssvv0RKSgpKSkrQsGFDdO7cGcOHD7fpys29e/ewYcMGnD9/Hnq9Hr6+vggPD5fnggPA+fPnsXv3bqSlpeHnn3+Gk5MTfHx88OGHH9o0/YHsV2JiInr27InNmzdjwoQJz9TGpEmT8NVXXyE9Pd3ibxLRL/PTTz+hRYsWGDt2LNatW1fdwyGF4uJifP755zh27BgKCgrg7e2N8ePHq35TylJABNi2bweA5cuX48iRIxb7nzt3rurK7rlz5xAZGYn09HTodDo0b94cYWFhZtNhN2zYgISEBOTk5MDFxQVdu3bF+PHjze7r++yzz5CYmIjs7GwUFRXBzc0NPXv2xNixYy3eG3vhwgV8/vnnuHHjBpycnNCzZ09MnDjR7BHjT5v2abqdiF5kDIiIiAhA+YHdxo0bMWLECD4B7TlITk7GwYMHMWXKFIu/XUNERNWDAREREREREdkt/g4RERERERHZLQZERERERERktxgQERERERGR3WJAREREREREdosBERERERER2S0GREREREREZLcYEBERERERkd1iQERERERERHaLAREREREREdktBkRERERERGS3GBAREREREZHd+j+vtFb2zSQsBwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration_idx = 19\n", + "\n", + "result = all_results[iteration_idx]\n", + "\n", + "iteration = result['iteration']\n", + "image = result['model_map']\n", + "\n", + "data = image[:,0]\n", + "data[data <= 0 * data.unit] = 1e-12 * data.unit\n", + "\n", + "hp.mollview(data, min = 1e-5, norm ='log', unit = str(data.unit), title = f'511 keV image at {iteration}th iteration', cmap = 'magma')\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bcda4052", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.html b/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.html new file mode 100644 index 00000000..b124c7d7 --- /dev/null +++ b/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.html @@ -0,0 +1,2514 @@ + + + + + + + DC2 Image Analysis, Crab, Image Deconvolution using CDS in the Galactic coordinate system — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • + View page source +
  • +
+
+
+
+
+ +
+

DC2 Image Analysis, Crab, Image Deconvolution using CDS in the Galactic coordinate system

+

updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)

+

This notebook focuses on the image deconvolution with the Compton data space (CDS) in the Galactic coordinate system. An example of the image analysis will be presented using the the Crab 3-month simulation data created for DC2.

+

In DC2, we have two options on the coordinate system to describe the Compton scattering direction (\(\chi\psi\)) in the image deconvolution. Please also check the notes written in Crab-DC2-ScAtt-DataReduction.ipynb.

+
+
[2]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution
+from cosipy.util import fetch_wasabi_file
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
+import os
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
+

0. Files needed for this notebook

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip (please unzip it) - a pre-computed continuum response file converted into the Galactic coordinate system - cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz - cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz - In this notebook, only the albedo gamma-ray background is considered for a tutorial. - If you want +to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.

+

From docs/tutorials/image_deconvolution/Crab/GalacticCDS - inputs_Crab_DC2.yaml - imagedeconvolution_parfile_gal_Crab.yml - crab_spec.dat

+

You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files.

+
+
[ ]:
+
+
+
# Response file:
+# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip
+# File size: 6.7G
+fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip')
+os.system("unzip psr_gal_continuum_DC2.h5.zip")
+
+
+
+
+
[ ]:
+
+
+
# Source file (Crab):
+# wasabi path: COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz
+# File size: 619.22 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# Background file (albedo gamma):
+# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz
+# File size: 2.69 GB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')
+
+
+
+
+
+

1. Create binned event/background files in the Galactic coordinate system

+

please modify “path_data” corresponding to your environment.

+
+
[3]:
+
+
+
path_data = "path/to/data/"
+
+
+
+

Source

+
+
[4]:
+
+
+
%%time
+
+signal_filepath = path_data + "Crab_DC2_3months_unbinned_data.fits.gz"
+
+binned_signal = BinnedData(input_yaml = "inputs_Crab_DC2.yaml")
+
+binned_signal.get_binned_data(unbinned_data = signal_filepath, psichi_binning="galactic")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+CPU times: user 15.9 s, sys: 528 ms, total: 16.4 s
+Wall time: 16.6 s
+
+
+

Background

+
+
[5]:
+
+
+
%%time
+
+bkg_filepath = path_data + "albedo_photons_3months_unbinned_data.fits.gz"
+
+binned_bkg = BinnedData(input_yaml = "inputs_Crab_DC2.yaml")
+
+binned_bkg.get_binned_data(unbinned_data = bkg_filepath, psichi_binning="galactic")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+CPU times: user 1min 49s, sys: 3.88 s, total: 1min 53s
+Wall time: 1min 54s
+
+
+

Convert the data into sparse matrices & add the signal to the background

+
+
[6]:
+
+
+
signal = binned_signal.binned_data.to_dense()
+bkg = binned_bkg.binned_data.to_dense()
+event = signal + bkg
+
+
+
+

Save the binned histograms

+
+
[7]:
+
+
+
signal.write("crab_dc2_galactic_signal.hdf5", overwrite = True)
+bkg.write("crab_dc2_galactic_bkg.hdf5", overwrite = True)
+event.write("crab_dc2_galactic_event.hdf5", overwrite = True)
+
+
+
+

Load the saved files

+
+
[8]:
+
+
+
signal = Histogram.open("crab_dc2_galactic_signal.hdf5")
+bkg = Histogram.open("crab_dc2_galactic_bkg.hdf5")
+event = Histogram.open("crab_dc2_galactic_event.hdf5")
+
+
+
+

In DC2, the number of time bins should be 1 when you perform the image deconvolution using the galactic CDS. It is because the pre-computed response files in the galactic coordinate have no time axis, and all of the events are assumed to be projected into a single galactic CDS. In the future, we plan to introduce more flexible binning.

+
+
[9]:
+
+
+
bkg.axes['Time'].edges
+
+
+
+
+
[9]:
+
+
+
+
+$[1.8354873 \times 10^{9},~1.8434673 \times 10^{9}] \; \mathrm{s}$
+
+
+
+

2. Load the response matrix

+
+
[10]:
+
+
+
%%time
+
+response_path = path_data + "psr_gal_continuum_DC2.h5"
+
+image_response = Histogram.open(response_path)
+
+
+
+
+
+
+
+
+CPU times: user 2.24 s, sys: 17.7 s, total: 19.9 s
+Wall time: 29.7 s
+
+
+
+
[11]:
+
+
+
image_response.axes.labels
+
+
+
+
+
[11]:
+
+
+
+
+array(['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi'], dtype='<U8')
+
+
+
+
[12]:
+
+
+
image_response.contents.shape
+
+
+
+
+
[12]:
+
+
+
+
+(768, 10, 10, 36, 768)
+
+
+
+
+

3. Prepare a ‘fake’ coordsys conversion matrix

+

The coordsys conversion matrix was initially introduced to convert a model map in the Galactic coordinates into the local coordinates. In the case of this notebook, the CDS is in the Galactic coordinates; thus, ideally, we do not have to convert the coordinates of the model map. However, as for now, the code for the image deconvolution was mainly developed for the CDS in the local coordinates and requires the conversion matrix, so here, we generate a ‘fake’ coordinate conversion matrix, which is +an unit matrix. Then, the same code can be applied for both methods. We will consider removing this fake coordinate conversion matrix in the future.

+
+
[13]:
+
+
+
nside = image_response.axes['NuLambda'].nside
+nside
+
+
+
+
+
[13]:
+
+
+
+
+8
+
+
+
+
[15]:
+
+
+
axes = [event.axes['Time'],
+        HealpixAxis(nside = nside, coordsys = "galactic", label = "lb"),
+        HealpixAxis(nside = nside, coordsys = "galactic", label = "NuLambda")]
+
+ccm = CoordsysConversionMatrix(axes, binning_method = 'Time', unit = u.dimensionless_unscaled, sparse = True)
+
+for ipix in range(axes[1].npix):
+    ccm[:,ipix,ipix] = 1 * u.dimensionless_unscaled
+
+
+
+
+
[16]:
+
+
+
ccm.contents
+
+
+
+
+
[16]:
+
+
+
+
Formatcoo
Data Typefloat64
Shape(1, 768, 768)
nnz768
Density0.0013020833333333333
Read-onlyTrue
Size24.0K
Storage ratio0.0
+
+
+
+

4. Imaging deconvolution

+
+

Brief overview of the image deconvolution

+

Basically, we have to maximize the following likelihood function

+
+\[\log L = \sum_i X_i \log \epsilon_i - \sum_i \epsilon_i\]
+

\(X_i\): detected counts at \(i\)-th bin ( \(i\) : index of the Compton Data Space)

+

\(\epsilon_i = \sum_j R_{ij} \lambda_j + b_i\) : expected counts ( \(j\) : index of the model space)

+

\(\lambda_j\) : the model map (basically gamma-ray flux at \(j\)-th pixel)

+

\(b_i\) : the background at \(i\)-th bin

+

\(R_{ij}\) : the response matrix

+

Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.

+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \delta \lambda_{j}^{k}\]
+
+\[\delta \lambda_{j}^{k} = \frac{\lambda_{j}^{k}}{\sum_{i} R_{ij}} \sum_{i} \left(\frac{ X_{i} }{\epsilon_{i}} - 1 \right) R_{ij}\]
+

We refer to \(\delta \lambda_{j}^{k}\) as the delta map.

+

As for now, the two improved algorithms are implemented in COSIpy.

+
    +
  • Accelerated ML-EM algorithm (Knoedlseder+99)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \delta \lambda_{j}^{k}\]
+
+\[\alpha^{k} < \mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k})\]
+

Practically, in order not to accelerate the algorithm excessively, we set the maximum value of \(\alpha\) (\(\alpha_{\mathrm{max}}\)). Then, \(\alpha\) is calculated as:

+
+\[\alpha^{k} = \mathrm{min}(\mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k}), \alpha_{\mathrm{max}})\]
+
    +
  • Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \left[ w_j \delta \lambda_{j}^{k} \right]_{\mathrm{gauss}}\]
+
+\[w_j = \left(\sum_{i} R_{ij}\right)^\beta\]
+

\(\left[ ... \right]_{\mathrm{gauss}}\) means that the differential image is smoothed by a gaussian filter.

+
+
+

4-1. Prepare DataLoader containing all neccesary datasets

+
+
[17]:
+
+
+
dataloader = DataLoader()
+
+dataloader.event_dense = event
+dataloader.bkg_dense = bkg
+
+# the loaded response matrix should be assigned to both full_detector_response/image_response_dense in the Galactic CDS method.
+dataloader.full_detector_response = image_response
+dataloader.image_response_dense = image_response
+
+dataloader.response_on_memory = True
+dataloader.coordsys_conv_matrix = ccm
+
+
+
+
+
[18]:
+
+
+
dataloader._modify_axes()
+
+
+
+
+
+
+
+
+... checking the axis Time of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Em of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Phi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis PsiChi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+...checking the axis Em of the event and response files...
+    --> pass (edges)
+...checking the axis Phi of the event and response files...
+    --> pass (edges)
+...checking the axis PsiChi of the event and response files...
+    --> pass (edges)
+The axes in the event and background files are redefined. Now they are consistent with those of the response file.
+
+
+
+
+
+
+
+
+WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.
+
+
+WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.
+
+
+
+

(In the future, we plan to remove the method “_modify_axes.”)

+

Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space (\(\sum_{i} R_{ij}\)). Currently, it is mandatory to run this command for the image deconvolution.

+
+
[19]:
+
+
+
%%time
+
+dataloader.calc_image_response_projected()
+
+
+
+
+
+
+
+
+... (DataLoader) calculating a projected image response ...
+CPU times: user 1.38 s, sys: 1.65 s, total: 3.03 s
+Wall time: 3.09 s
+
+
+
+
+

4-3. Initialize the instance of the image deconvolution class

+

First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation.

+

please modify this parameter_filepath corresponding to your environment.

+
+
[20]:
+
+
+
parameter_filepath = "imagedeconvolution_parfile_gal_Crab.yml"
+
+
+
+
+
[21]:
+
+
+
image_deconvolution = ImageDeconvolution()
+
+# set dataloader to image_deconvolution
+image_deconvolution.set_data(dataloader)
+
+# set a parameter file for the image deconvolution
+image_deconvolution.read_parameterfile(parameter_filepath)
+
+
+
+
+
+
+
+
+data for image deconvolution was set ->  <cosipy.image_deconvolution.data_loader.DataLoader object at 0x2da0f7eb0>
+parameter file for image deconvolution was set ->  imagedeconvolution_parfile_gal_Crab.yml
+
+
+
+

Initialize image_deconvolution

+

In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.

+

I describe parameters in the parameter file.

+
+

model_property

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

coordinate

str

the coordinate system of the model map

As for now, it must be ‘galactic’

nside

int

NSIDE of the model map

it must be the same as NSIDE of ‘lb’ axis of the coordinate conversion matrix

scheme

str

SCHEME of the model map

As for now, it must be ‘ring’

energy_edges

list of float [keV]

The definition of the energy bins of the model map

As for now, it must be the same as that of the response matrix

+
+
+

model_initialization

+ + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the method name to initialize the model map

As for now, only ‘flat’ can be used

parameter_flat:values

list of float [cm-2 s-1 sr-1]

the list of photon fluxes for each energy band

the length of the list should be the same as the length of “energy_edges” - 1

+
+
+

deconvolution

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the name of the image deconvolution algorithm

As for now, only ‘RL’ is supported

parameter_RL:iteration

int

The maximum number of the iteration

parameter_RL:acceleration

bool

whether the accelerated ML-EM algorithm (Knoedlseder+99) is used

parameter_RL:alpha_max

float

the maximum value for the acceleration parameter

parameter_RL:save_results_each_iteration

bool

whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration

parameter_RL:response_weighting

bool

whether a delta map is renormalized based on the exposure time on each pixel, namely +\(w_j = (\sum_{i} R_{ij})^{\beta}\) (see Knoedlseder+05, Siegert+20)

parameter_RL:response_weighting_index

float

\(\beta\) in the above equation

parameter_RL:smoothing

bool

whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20)

parameter_RL:smoothing_FWHM

float, degree

the FWHM of the Gaussian in the filter

parameter_RL:background_normalization_fitting

bool

whether the background normalization factor is optimized at each iteration

As for now, the single background normalization factor is used in all of the bins

parameter_RL:background_normalization_range

list of float

the range of the normalization factor

should be positive

+
+
[22]:
+
+
+
image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 100.0
+- 158.489
+- 251.189
+- 398.107
+- 630.957
+- 1000.0
+- 1584.89
+- 2511.89
+- 3981.07
+- 6309.57
+- 10000.0
+nside: 8
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10.0
+  background_normalization_fitting: false
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 10
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 2.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

(You can change the parameters as follows)

+

Note that when you modify the parameters, do not forget to run “initialize” again!

+
+
[23]:
+
+
+
image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 50")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:background_normalization_fitting = True")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:alpha_max = 5.0")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:smoothing_FWHM = 3.0")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:response_weighting = False")
+
+image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 100.0
+- 158.489
+- 251.189
+- 398.107
+- 630.957
+- 1000.0
+- 1584.89
+- 2511.89
+- 3981.07
+- 6309.57
+- 10000.0
+nside: 8
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 5.0
+  background_normalization_fitting: true
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 50
+  response_weighting: false
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 3.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

4-5. Start the image deconvolution

+

With MacBook Pro with M1 Max and 64 GB memory, it takes about 4 minutes for 50 iterations.

+
+
[24]:
+
+
+
%%time
+
+all_results = image_deconvolution.run_deconvolution()
+
+
+
+
+
+
+
+
+#### Deconvolution Starts ####
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Iteration 1/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+
+
+
+
+
+
+
+
+WARNING RuntimeWarning: invalid value encountered in divide
+
+
+
+
+
+
+
+
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 260079415.0311088
+    background_normalization: 1.077578659034381
+  Iteration 2/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 260401557.7357421
+    background_normalization: 1.0747057018207677
+  Iteration 3/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 260682519.76500124
+    background_normalization: 1.0571054446248327
+  Iteration 4/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 260809172.77131456
+    background_normalization: 1.0309768887336166
+  Iteration 5/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 260886454.33277905
+    background_normalization: 1.021384848051889
+  Iteration 6/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 260948848.85980994
+    background_normalization: 1.0108113971582602
+  Iteration 7/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 260990804.146106
+    background_normalization: 1.010467249618972
+  Iteration 8/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261020956.71722955
+    background_normalization: 1.0006157261333617
+  Iteration 9/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261042859.29807213
+    background_normalization: 1.0058641809947886
+  Iteration 10/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261043269.8568107
+    background_normalization: 0.993741326854415
+  Iteration 11/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261060491.10965943
+    background_normalization: 1.0058657276309866
+  Iteration 12/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261007827.2710289
+    background_normalization: 0.9877974265453751
+  Iteration 13/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261076265.054812
+    background_normalization: 1.009811538136611
+  Iteration 14/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261099396.40515625
+    background_normalization: 1.0048700520907765
+  Iteration 15/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261065843.9794334
+    background_normalization: 0.9909347457044095
+  Iteration 16/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261110094.00162172
+    background_normalization: 1.0063495429365543
+  Iteration 17/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261122168.5957638
+    background_normalization: 1.002376744947073
+  Iteration 18/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261096313.19243956
+    background_normalization: 0.9913786458527394
+  Iteration 19/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261129961.28983143
+    background_normalization: 1.0040459860775908
+  Iteration 20/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261137407.31313634
+    background_normalization: 1.0006492242650211
+  Iteration 21/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261116234.46936882
+    background_normalization: 0.9913697621614236
+  Iteration 22/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261143530.8942464
+    background_normalization: 1.0023744856891161
+  Iteration 23/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261148417.64207026
+    background_normalization: 0.9993636106475906
+  Iteration 24/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261130513.34431684
+    background_normalization: 0.9912144784871131
+  Iteration 25/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261134896.0466035
+    background_normalization: 1.0010662808202762
+  Iteration 26/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261066166.29685706
+    background_normalization: 0.9857849794974954
+  Iteration 27/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261132943.80258343
+    background_normalization: 1.0068265206936726
+  Iteration 28/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261148296.52335072
+    background_normalization: 1.002108052281045
+  Iteration 29/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261099965.81865662
+    background_normalization: 0.9892543515924257
+  Iteration 30/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261148351.3486695
+    background_normalization: 1.0052136331020776
+  Iteration 31/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261157018.92679334
+    background_normalization: 1.0011610943268634
+  Iteration 32/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261118727.1099544
+    background_normalization: 0.9902093594726253
+  Iteration 33/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261157889.93501914
+    background_normalization: 1.0039161394431217
+  Iteration 34/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261163498.17249128
+    background_normalization: 1.0003082708761435
+  Iteration 35/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261131700.08152235
+    background_normalization: 0.9906204498077124
+  Iteration 36/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261164799.9998866
+    background_normalization: 1.0028450774020168
+  Iteration 37/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261168573.0233805
+    background_normalization: 0.9995616625471752
+  Iteration 38/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261141391.23569417
+    background_normalization: 0.9907927868095415
+  Iteration 39/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261170119.05511898
+    background_normalization: 1.0019485964391688
+  Iteration 40/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261172684.28548497
+    background_normalization: 0.9989160733417498
+  Iteration 41/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261149001.1256929
+    background_normalization: 0.9908537644843672
+  Iteration 42/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261174372.75896752
+    background_normalization: 1.0011848359144828
+  Iteration 43/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261176099.88843274
+    background_normalization: 0.9983550801218972
+  Iteration 44/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261155194.31362218
+    background_normalization: 0.9908594816570173
+  Iteration 45/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261177870.56885752
+    background_normalization: 1.00052012791432
+  Iteration 46/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261178995.64073008
+    background_normalization: 0.9978600300598851
+  Iteration 47/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261160372.66833794
+    background_normalization: 0.9908343850485126
+  Iteration 48/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 261180809.8795411
+    background_normalization: 0.9999277350857754
+  Iteration 49/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261181491.66160578
+    background_normalization: 0.9974136084439371
+  Iteration 50/50
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> stop
+--> registering results
+--> showing results
+    alpha: 5.0
+    loglikelihood: 261164793.80599907
+    background_normalization: 0.9907885000950185
+#### Done ####
+
+CPU times: user 6min 3s, sys: 3min 40s, total: 9min 43s
+Wall time: 4min 9s
+
+
+
+
[26]:
+
+
+
import pprint
+
+pprint.pprint(all_results)
+
+
+
+
+
+
+
+
+[{'alpha': 1.0,
+  'background_normalization': 1.077578659034381,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446202200>,
+  'iteration': 1,
+  'loglikelihood': 260079415.0311088,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446201a50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ca2f0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0747057018207677,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ca140>,
+  'iteration': 2,
+  'loglikelihood': 260401557.7357421,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461caa70>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cac50>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0571054446248327,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c93f0>,
+  'iteration': 3,
+  'loglikelihood': 260682519.76500124,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c9570>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c9150>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0309768887336166,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c98a0>,
+  'iteration': 4,
+  'loglikelihood': 260809172.77131456,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c8a30>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ca830>},
+ {'alpha': 5.0,
+  'background_normalization': 1.021384848051889,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c89a0>,
+  'iteration': 5,
+  'loglikelihood': 260886454.33277905,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c8640>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c8520>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0108113971582602,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cb8b0>,
+  'iteration': 6,
+  'loglikelihood': 260948848.85980994,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cb880>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c8310>},
+ {'alpha': 5.0,
+  'background_normalization': 1.010467249618972,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c97b0>,
+  'iteration': 7,
+  'loglikelihood': 260990804.146106,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b80d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c9d20>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0006157261333617,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cb940>,
+  'iteration': 8,
+  'loglikelihood': 261020956.71722955,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b85b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c84f0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0058641809947886,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c9930>,
+  'iteration': 9,
+  'loglikelihood': 261042859.29807213,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b8940>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ca050>},
+ {'alpha': 5.0,
+  'background_normalization': 0.993741326854415,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c9db0>,
+  'iteration': 10,
+  'loglikelihood': 261043269.8568107,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b8f70>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c8c10>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0058657276309866,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ca290>,
+  'iteration': 11,
+  'loglikelihood': 261060491.10965943,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b9900>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c9c90>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9877974265453751,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cb910>,
+  'iteration': 12,
+  'loglikelihood': 261007827.2710289,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b9d80>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c8790>},
+ {'alpha': 1.0,
+  'background_normalization': 1.009811538136611,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ca980>,
+  'iteration': 13,
+  'loglikelihood': 261076265.054812,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b9f90>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cb070>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0048700520907765,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ca0b0>,
+  'iteration': 14,
+  'loglikelihood': 261099396.40515625,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba920>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c9090>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9909347457044095,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cb760>,
+  'iteration': 15,
+  'loglikelihood': 261065843.9794334,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bada0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c88b0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0063495429365543,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c93c0>,
+  'iteration': 16,
+  'loglikelihood': 261110094.00162172,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bb220>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461cb700>},
+ {'alpha': 5.0,
+  'background_normalization': 1.002376744947073,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bb640>,
+  'iteration': 17,
+  'loglikelihood': 261122168.5957638,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bb5e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bb670>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9913786458527394,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b93c0>,
+  'iteration': 18,
+  'loglikelihood': 261096313.19243956,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b9fc0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bb940>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0040459860775908,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba1d0>,
+  'iteration': 19,
+  'loglikelihood': 261129961.28983143,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba080>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bbb20>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0006492242650211,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba380>,
+  'iteration': 20,
+  'loglikelihood': 261137407.31313634,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba320>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b96c0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9913697621614236,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b92a0>,
+  'iteration': 21,
+  'loglikelihood': 261116234.46936882,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255420>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bbdc0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0023744856891161,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b84f0>,
+  'iteration': 22,
+  'loglikelihood': 261143530.8942464,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446254f70>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba410>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9993636106475906,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b9210>,
+  'iteration': 23,
+  'loglikelihood': 261148417.64207026,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255b70>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba050>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9912144784871131,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b9a80>,
+  'iteration': 24,
+  'loglikelihood': 261130513.34431684,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255330>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba3b0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0010662808202762,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b97e0>,
+  'iteration': 25,
+  'loglikelihood': 261134896.0466035,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446256c20>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bbbb0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9857849794974954,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba260>,
+  'iteration': 26,
+  'loglikelihood': 261066166.29685706,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446256f80>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bb8e0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0068265206936726,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b8070>,
+  'iteration': 27,
+  'loglikelihood': 261132943.80258343,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446256ce0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bb460>},
+ {'alpha': 5.0,
+  'background_normalization': 1.002108052281045,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b8fd0>,
+  'iteration': 28,
+  'loglikelihood': 261148296.52335072,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446256140>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461bbd90>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9892543515924257,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b8730>,
+  'iteration': 29,
+  'loglikelihood': 261099965.81865662,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446254040>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba560>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0052136331020776,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461b9480>,
+  'iteration': 30,
+  'loglikelihood': 261148351.3486695,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462545e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba5c0>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0011610943268634,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257fa0>,
+  'iteration': 31,
+  'loglikelihood': 261157018.92679334,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257f70>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462560b0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9902093594726253,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257670>,
+  'iteration': 32,
+  'loglikelihood': 261118727.1099544,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462576d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462579a0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0039161394431217,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446254910>,
+  'iteration': 33,
+  'loglikelihood': 261157889.93501914,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446254a60>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257790>},
+ {'alpha': 5.0,
+  'background_normalization': 1.0003082708761435,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446256770>,
+  'iteration': 34,
+  'loglikelihood': 261163498.17249128,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462567d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446254880>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9906204498077124,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446256ad0>,
+  'iteration': 35,
+  'loglikelihood': 261131700.08152235,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462fa5c0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255c90>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0028450774020168,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462fb370>,
+  'iteration': 36,
+  'loglikelihood': 261164799.9998866,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dceb0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462fae60>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9995616625471752,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255000>,
+  'iteration': 37,
+  'loglikelihood': 261168573.0233805,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461df160>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257d00>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9907927868095415,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255b40>,
+  'iteration': 38,
+  'loglikelihood': 261141391.23569417,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dcc70>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257250>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0019485964391688,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257460>,
+  'iteration': 39,
+  'loglikelihood': 261170119.05511898,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461deb00>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462563e0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9989160733417498,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462fa530>,
+  'iteration': 40,
+  'loglikelihood': 261172684.28548497,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461df130>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462f9240>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9908537644843672,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257760>,
+  'iteration': 41,
+  'loglikelihood': 261149001.1256929,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dff40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255ba0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0011848359144828,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462549d0>,
+  'iteration': 42,
+  'loglikelihood': 261174372.75896752,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dfb80>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257940>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9983550801218972,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446254eb0>,
+  'iteration': 43,
+  'loglikelihood': 261176099.88843274,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461de3e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446255780>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9908594816570173,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ba9b0>,
+  'iteration': 44,
+  'loglikelihood': 261155194.31362218,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461ddfc0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2afc22bc0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.00052012791432,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446254970>,
+  'iteration': 45,
+  'loglikelihood': 261177870.56885752,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dd360>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x446257c70>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9978600300598851,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462548e0>,
+  'iteration': 46,
+  'loglikelihood': 261178995.64073008,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dd7e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4462557e0>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9908343850485126,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dc9a0>,
+  'iteration': 47,
+  'loglikelihood': 261160372.66833794,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dc8e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dc970>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9999277350857754,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461de1a0>,
+  'iteration': 48,
+  'loglikelihood': 261180809.8795411,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dc790>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dde40>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9974136084439371,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dc490>,
+  'iteration': 49,
+  'loglikelihood': 261181491.66160578,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dc640>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dc610>},
+ {'alpha': 5.0,
+  'background_normalization': 0.9907885000950185,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dda50>,
+  'iteration': 50,
+  'loglikelihood': 261164793.80599907,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461c0190>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x4461dd390>}]
+
+
+

(If you want, you can save the results in the directory “./results” as follows)

+
+
[27]:
+
+
+
import os
+
+os.mkdir("./results")
+
+for result in all_results:
+    iteration = result['iteration']
+    result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')
+
+    with open(f'./results/result_itr{iteration}.txt', 'w') as f:
+        paramlist = ['alpha', 'loglikelihood', 'background_normalization']
+
+        for param in paramlist:
+            value = result[param]
+            f.write(f'{param}: {value}\n')
+
+
+
+
+
+
+

5. Analyze the results

+

Examples to see/analyze the results are shown below.

+
+

Log-likelihood

+

Plotting the log-likelihood vs the number of iterations

+
+
[28]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['loglikelihood'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("loglikelihood")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_52_0.png +
+
+
+
+

Alpha (the factor used for the acceleration)

+

Plotting \(\alpha\) vs the number of iterations. \(\alpha\) is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts.

+
+
[29]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['alpha'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("alpha")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_54_0.png +
+
+
+
+

Background normalization

+

Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1.

+
+
[30]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['background_normalization'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("background_normalization")
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_56_0.png +
+
+
+
+

The reconstructed images

+
+
[31]:
+
+
+
def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['model_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the reconstructed images in all of the energy bands at the 50th iteration

+
+
[32]:
+
+
+
iteration = 49
+
+plot_reconstructed_image(all_results[iteration])
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_1.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_2.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_3.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_4.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_5.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_6.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_7.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_8.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_60_9.png +
+
+
+
+

Integrated flux over the sky

+

Define the Crab spectral model

+
+
[33]:
+
+
+
iteration = []
+integrated_flux = []
+integrated_flux_each_band = [[],[],[],[],[]]
+
+for _ in all_results:
+    iteration.append(_['iteration'])
+    image = _['model_map']
+    pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr
+
+    integrated_flux.append(np.sum(image) * pixelarea)
+
+    for energy_band in range(5):
+        integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)
+
+plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')
+plt.xlabel("iteration")
+plt.ylabel("integrated flux (ph cm-2 s-1)")
+plt.yscale("log")
+
+colors = ['b', 'g', 'r', 'c', 'm']
+for energy_band in range(5):
+    plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = "energyband = {}".format(energy_band))
+
+plt.legend()
+
+
+
+
+
[33]:
+
+
+
+
+<matplotlib.legend.Legend at 0x446361ed0>
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_62_1.png +
+
+
+
+

Spectrum

+

Plotting the gamma-ray spectrum at the 50th iteration. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixels at each energy band.

+
+
[34]:
+
+
+
energy_truth = []
+flux_truth = []
+
+with open("crab_spec.dat", "r") as f:
+    for line in f:
+        data = line.split('\t')
+        if data[0] == 'DP':
+            energy_truth.append(float(data[1]))# * u.keV)
+            flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)
+
+
+
+
+
[35]:
+
+
+
def get_differential_flux(model_map):
+    pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr
+
+    differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths
+
+    return differential_flux
+
+
+
+
+
[36]:
+
+
+
iteration = 49
+
+result = all_results[iteration]
+
+model_map = result['model_map']
+
+differential_flux = get_differential_flux(model_map)
+
+energy_band = model_map.axes['Ei'].centers
+
+err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers
+err_energy[0,:] *= -1
+
+plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')
+plt.plot(energy_truth, flux_truth, label = 'truth')
+plt.xscale("log")
+plt.yscale("log")
+
+plt.xlabel("Energy (keV)")
+plt.ylabel(r"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)")
+plt.title(f"Spectrum, Iteration = {result['iteration']}")
+plt.grid()
+plt.legend()
+
+
+
+
+
[36]:
+
+
+
+
+<matplotlib.legend.Legend at 0x3137d7d30>
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_66_1.png +
+
+
+
+

Plot All

+
+
[37]:
+
+
+
title = ["100-158.489 keV",
+"158.489-251.189 keV",
+"251.189-398.107 keV",
+"398.107-630.957 keV",
+"630.957-1000 keV",
+"1000-1584.89 keV",
+"1584.89-2511.89 keV",
+"2511.89-3981.07 keV",
+"3981.07-6309.57 keV",
+"6309.57-10000 keV"]
+
+position = {"l":184.600, "b": -5.800}
+
+i_iteration = 49 # ==>50th iteration
+th = -5
+
+fig = plt.figure(figsize=(30, 15))
+gs = GridSpec(nrows=3, ncols=4)
+
+ax0 = fig.add_subplot(gs[0, 0])
+ax1 = fig.add_subplot(gs[0, 1])
+ax2 = fig.add_subplot(gs[0, 2])
+ax3 = fig.add_subplot(gs[0, 3])
+ax4 = fig.add_subplot(gs[1, 0])
+ax5 = fig.add_subplot(gs[1, 1])
+ax6 = fig.add_subplot(gs[1, 2])
+ax7 = fig.add_subplot(gs[1, 3])
+ax8 = fig.add_subplot(gs[2, 0])
+ax9 = fig.add_subplot(gs[2, 1])
+
+axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]
+
+ax_spectrum = fig.add_subplot(gs[2, 2])
+ax_likelihood = fig.add_subplot(gs[2, 3])
+#ax_background = fig.add_subplot(gs[1, 3])
+
+#plt.subplots_adjust(wspace=0.4, hspace=0.5)
+
+image = all_results[i_iteration]['model_map']
+
+for i_energy in range(image.axes['Ei'].nbins):
+    plt.axes(axes[i_energy])
+
+    data = image.contents[:,i_energy]
+    data[data < 10**th * image.unit] = 10**th * image.unit
+
+    hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = "s-1 sr-1 cm-2")
+    hp.graticule(color='gray', dpar = 10, alpha = 0.5)
+    hp.projscatter(theta = position["l"], phi = position["b"], lonlat = True, color = 'red', linewidths = 1, marker = "*")
+
+###
+
+plt.axes(ax_spectrum)
+
+energy_band = image.axes['Ei'].centers
+
+err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers
+err_energy[0,:] *= -1
+
+differential_flux = get_differential_flux(image)
+
+plt.plot(energy_truth, flux_truth, label = 'truth')
+
+plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')
+plt.xscale("log")
+plt.yscale("log")
+plt.xlim(90, 10000)
+plt.ylim(1e-8, 2e-3)
+
+plt.xlabel("Energy (keV)")
+plt.ylabel(r"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)")
+plt.title(f"Spectrum, Iteration = {iteration+1}")
+plt.grid()
+plt.legend()
+
+###
+
+plt.axes(ax_likelihood)
+
+iterations = [_['iteration'] for _ in all_results]
+loglikelihoods = [_['loglikelihood'] for _ in all_results]
+
+plt.plot(iterations, loglikelihoods, linewidth = 1.5)
+plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = ".")
+
+plt.xlabel("Iteration", fontsize = 12)
+plt.title("Log-likelihood")
+plt.grid()
+
+###
+#    plt.axes(ax_background)
+
+#    plt.plot(iterations, background_normalizations, linewidth = 1.5)
+#    plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = ".")
+
+#    plt.xlabel("Iteration", fontsize = 12)
+    #plt.ylabel("Background Normalization", fontsize = 12)
+#    plt.ylim(0.7, 1.4)
+#    plt.title("Background Normalization")
+#    plt.grid()
+
+#    plt.savefig(f"fig_{i:03}.png")
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_GalacticCDS_Crab-DC2-Galactic-ImageDeconvolution_68_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb b/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb new file mode 100644 index 00000000..9598a15f --- /dev/null +++ b/tutorials/image_deconvolution/Crab/GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb @@ -0,0 +1,2761 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# DC2 Image Analysis, Crab, Image Deconvolution using CDS in the Galactic coordinate system\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on the image deconvolution with the Compton data space (CDS) in the Galactic coordinate system.\n", + "An example of the image analysis will be presented using the the Crab 3-month simulation data created for DC2.\n", + "\n", + "In DC2, we have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) in the image deconvolution. Please also check the notes written in Crab-DC2-ScAtt-DataReduction.ipynb." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e751bbd5", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "import os\n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip (please unzip it)\n", + " - a pre-computed continuum response file converted into the Galactic coordinate system\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/GalacticCDS\n", + "- inputs_Crab_DC2.yaml\n", + "- imagedeconvolution_parfile_gal_Crab.yml\n", + "- crab_spec.dat" + ] + }, + { + "cell_type": "markdown", + "id": "cbb84ad7-5fcb-4a56-abc3-6acac81c0879", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6a1764ad-7fa3-4c86-9702-4862b819bda2", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip\n", + "# File size: 6.7G\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip')\n", + "os.system(\"unzip psr_gal_continuum_DC2.h5.zip\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "18da2d27-a27a-41ea-9979-0051deace5f4", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (Crab):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "# File size: 619.22 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "adbfb183-e74b-4a79-90f5-83500dbe46d8", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 1. Create binned event/background files in the Galactic coordinate system\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "markdown", + "id": "90fec91e-8209-4f03-bbe3-b9acb78682b8", + "metadata": {}, + "source": [ + "**Source**" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9cae1835-e54b-4720-b3a6-196c42cbd1ce", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 15.9 s, sys: 528 ms, total: 16.4 s\n", + "Wall time: 16.6 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "signal_filepath = path_data + \"Crab_DC2_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_signal = BinnedData(input_yaml = \"inputs_Crab_DC2.yaml\")\n", + "\n", + "binned_signal.get_binned_data(unbinned_data = signal_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "3544076d-3475-48d6-9aec-55dab18567c2", + "metadata": {}, + "source": [ + "**Background**" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "801ba251-96e0-4243-8f55-1678823f1d58", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n", + "CPU times: user 1min 49s, sys: 3.88 s, total: 1min 53s\n", + "Wall time: 1min 54s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "bkg_filepath = path_data + \"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "binned_bkg = BinnedData(input_yaml = \"inputs_Crab_DC2.yaml\")\n", + "\n", + "binned_bkg.get_binned_data(unbinned_data = bkg_filepath, psichi_binning=\"galactic\")" + ] + }, + { + "cell_type": "markdown", + "id": "4eb8577f-d394-49b9-a13f-a527d4512f77", + "metadata": {}, + "source": [ + "Convert the data into sparse matrices & add the signal to the background" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f224b957-d0df-4b4b-98dd-90d3a5bda3fb", + "metadata": {}, + "outputs": [], + "source": [ + "signal = binned_signal.binned_data.to_dense()\n", + "bkg = binned_bkg.binned_data.to_dense()\n", + "event = signal + bkg" + ] + }, + { + "cell_type": "markdown", + "id": "217e40dd-5587-4c43-bb77-44ddba2a8dbb", + "metadata": {}, + "source": [ + "Save the binned histograms" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "24289425-380b-4d26-a7c0-cbbd5c58e7b2", + "metadata": {}, + "outputs": [], + "source": [ + "signal.write(\"crab_dc2_galactic_signal.hdf5\", overwrite = True)\n", + "bkg.write(\"crab_dc2_galactic_bkg.hdf5\", overwrite = True)\n", + "event.write(\"crab_dc2_galactic_event.hdf5\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "badfd194-59f0-46d4-90b3-73cce60207c8", + "metadata": {}, + "source": [ + "Load the saved files" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "e0f3dcae-5d3c-45af-931d-057d5681859c", + "metadata": {}, + "outputs": [], + "source": [ + "signal = Histogram.open(\"crab_dc2_galactic_signal.hdf5\")\n", + "bkg = Histogram.open(\"crab_dc2_galactic_bkg.hdf5\")\n", + "event = Histogram.open(\"crab_dc2_galactic_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "0e7bb933-0ec0-47af-a18c-ac241abfea82", + "metadata": {}, + "source": [ + "In DC2, the number of time bins should be 1 when you perform the image deconvolution using the galactic CDS.\n", + "It is because the pre-computed response files in the galactic coordinate have no time axis, and all of the events are assumed to be projected into a single galactic CDS.\n", + "In the future, we plan to introduce more flexible binning." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "88efdbfa-aa5e-40b3-bdd6-2635946318e4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[1.8354873 \\times 10^{9},~1.8434673 \\times 10^{9}] \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bkg.axes['Time'].edges" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 2. Load the response matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b5b295cf-0a96-4501-aa4e-4182a21dfe63", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 2.24 s, sys: 17.7 s, total: 19.9 s\n", + "Wall time: 29.7 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "response_path = path_data + \"psr_gal_continuum_DC2.h5\"\n", + "\n", + "image_response = Histogram.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "fbdbd818-8a58-4d25-a657-d43fc7f88ea4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['NuLambda', 'Ei', 'Em', 'Phi', 'PsiChi'], dtype='FormatcooData Typefloat64Shape(1, 768, 768)nnz768Density0.0013020833333333333Read-onlyTrueSize24.0KStorage ratio0.0" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ccm.contents" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader()\n", + "\n", + "dataloader.event_dense = event\n", + "dataloader.bkg_dense = bkg\n", + "\n", + "# the loaded response matrix should be assigned to both full_detector_response/image_response_dense in the Galactic CDS method.\n", + "dataloader.full_detector_response = image_response\n", + "dataloader.image_response_dense = image_response \n", + "\n", + "dataloader.response_on_memory = True\n", + "dataloader.coordsys_conv_matrix = ccm" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis Time of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 1.38 s, sys: 1.65 s, total: 3.03 s\n", + "Wall time: 3.09 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_gal_Crab.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_gal_Crab.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 158.489\n", + "- 251.189\n", + "- 398.107\n", + "- 630.957\n", + "- 1000.0\n", + "- 1584.89\n", + "- 2511.89\n", + "- 3981.07\n", + "- 6309.57\n", + "- 10000.0\n", + "nside: 8\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "47c41cb7e171425fbd02a1fe23f0ea9d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 260079415.0311088\n", + " background_normalization: 1.077578659034381\n", + " Iteration 2/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260401557.7357421\n", + " background_normalization: 1.0747057018207677\n", + " Iteration 3/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260682519.76500124\n", + " background_normalization: 1.0571054446248327\n", + " Iteration 4/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260809172.77131456\n", + " background_normalization: 1.0309768887336166\n", + " Iteration 5/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260886454.33277905\n", + " background_normalization: 1.021384848051889\n", + " Iteration 6/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260948848.85980994\n", + " background_normalization: 1.0108113971582602\n", + " Iteration 7/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 260990804.146106\n", + " background_normalization: 1.010467249618972\n", + " Iteration 8/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261020956.71722955\n", + " background_normalization: 1.0006157261333617\n", + " Iteration 9/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261042859.29807213\n", + " background_normalization: 1.0058641809947886\n", + " Iteration 10/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261043269.8568107\n", + " background_normalization: 0.993741326854415\n", + " Iteration 11/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261060491.10965943\n", + " background_normalization: 1.0058657276309866\n", + " Iteration 12/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261007827.2710289\n", + " background_normalization: 0.9877974265453751\n", + " Iteration 13/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261076265.054812\n", + " background_normalization: 1.009811538136611\n", + " Iteration 14/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261099396.40515625\n", + " background_normalization: 1.0048700520907765\n", + " Iteration 15/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261065843.9794334\n", + " background_normalization: 0.9909347457044095\n", + " Iteration 16/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261110094.00162172\n", + " background_normalization: 1.0063495429365543\n", + " Iteration 17/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261122168.5957638\n", + " background_normalization: 1.002376744947073\n", + " Iteration 18/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261096313.19243956\n", + " background_normalization: 0.9913786458527394\n", + " Iteration 19/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261129961.28983143\n", + " background_normalization: 1.0040459860775908\n", + " Iteration 20/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261137407.31313634\n", + " background_normalization: 1.0006492242650211\n", + " Iteration 21/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261116234.46936882\n", + " background_normalization: 0.9913697621614236\n", + " Iteration 22/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261143530.8942464\n", + " background_normalization: 1.0023744856891161\n", + " Iteration 23/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261148417.64207026\n", + " background_normalization: 0.9993636106475906\n", + " Iteration 24/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261130513.34431684\n", + " background_normalization: 0.9912144784871131\n", + " Iteration 25/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261134896.0466035\n", + " background_normalization: 1.0010662808202762\n", + " Iteration 26/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261066166.29685706\n", + " background_normalization: 0.9857849794974954\n", + " Iteration 27/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261132943.80258343\n", + " background_normalization: 1.0068265206936726\n", + " Iteration 28/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261148296.52335072\n", + " background_normalization: 1.002108052281045\n", + " Iteration 29/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261099965.81865662\n", + " background_normalization: 0.9892543515924257\n", + " Iteration 30/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261148351.3486695\n", + " background_normalization: 1.0052136331020776\n", + " Iteration 31/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261157018.92679334\n", + " background_normalization: 1.0011610943268634\n", + " Iteration 32/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261118727.1099544\n", + " background_normalization: 0.9902093594726253\n", + " Iteration 33/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261157889.93501914\n", + " background_normalization: 1.0039161394431217\n", + " Iteration 34/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261163498.17249128\n", + " background_normalization: 1.0003082708761435\n", + " Iteration 35/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261131700.08152235\n", + " background_normalization: 0.9906204498077124\n", + " Iteration 36/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261164799.9998866\n", + " background_normalization: 1.0028450774020168\n", + " Iteration 37/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261168573.0233805\n", + " background_normalization: 0.9995616625471752\n", + " Iteration 38/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261141391.23569417\n", + " background_normalization: 0.9907927868095415\n", + " Iteration 39/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261170119.05511898\n", + " background_normalization: 1.0019485964391688\n", + " Iteration 40/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261172684.28548497\n", + " background_normalization: 0.9989160733417498\n", + " Iteration 41/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261149001.1256929\n", + " background_normalization: 0.9908537644843672\n", + " Iteration 42/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261174372.75896752\n", + " background_normalization: 1.0011848359144828\n", + " Iteration 43/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261176099.88843274\n", + " background_normalization: 0.9983550801218972\n", + " Iteration 44/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261155194.31362218\n", + " background_normalization: 0.9908594816570173\n", + " Iteration 45/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261177870.56885752\n", + " background_normalization: 1.00052012791432\n", + " Iteration 46/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261178995.64073008\n", + " background_normalization: 0.9978600300598851\n", + " Iteration 47/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261160372.66833794\n", + " background_normalization: 0.9908343850485126\n", + " Iteration 48/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 261180809.8795411\n", + " background_normalization: 0.9999277350857754\n", + " Iteration 49/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261181491.66160578\n", + " background_normalization: 0.9974136084439371\n", + " Iteration 50/50 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.0\n", + " loglikelihood: 261164793.80599907\n", + " background_normalization: 0.9907885000950185\n", + "#### Done ####\n", + "\n", + "CPU times: user 6min 3s, sys: 3min 40s, total: 9min 43s\n", + "Wall time: 4min 9s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': 1.0,\n", + " 'background_normalization': 1.077578659034381,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 260079415.0311088,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0747057018207677,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 260401557.7357421,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0571054446248327,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 260682519.76500124,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0309768887336166,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 260809172.77131456,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.021384848051889,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 260886454.33277905,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0108113971582602,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 260948848.85980994,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.010467249618972,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 260990804.146106,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0006157261333617,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 261020956.71722955,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0058641809947886,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 261042859.29807213,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.993741326854415,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 261043269.8568107,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0058657276309866,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 261060491.10965943,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9877974265453751,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 261007827.2710289,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.009811538136611,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 261076265.054812,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0048700520907765,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 261099396.40515625,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9909347457044095,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 261065843.9794334,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0063495429365543,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 261110094.00162172,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.002376744947073,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 261122168.5957638,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9913786458527394,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 261096313.19243956,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0040459860775908,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 261129961.28983143,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0006492242650211,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 261137407.31313634,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9913697621614236,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': 261116234.46936882,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0023744856891161,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': 261143530.8942464,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9993636106475906,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': 261148417.64207026,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9912144784871131,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': 261130513.34431684,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0010662808202762,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': 261134896.0466035,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9857849794974954,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': 261066166.29685706,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0068265206936726,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': 261132943.80258343,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.002108052281045,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': 261148296.52335072,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9892543515924257,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': 261099965.81865662,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0052136331020776,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': 261148351.3486695,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0011610943268634,\n", + " 'delta_map': ,\n", + " 'iteration': 31,\n", + " 'loglikelihood': 261157018.92679334,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9902093594726253,\n", + " 'delta_map': ,\n", + " 'iteration': 32,\n", + " 'loglikelihood': 261118727.1099544,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0039161394431217,\n", + " 'delta_map': ,\n", + " 'iteration': 33,\n", + " 'loglikelihood': 261157889.93501914,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 1.0003082708761435,\n", + " 'delta_map': ,\n", + " 'iteration': 34,\n", + " 'loglikelihood': 261163498.17249128,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9906204498077124,\n", + " 'delta_map': ,\n", + " 'iteration': 35,\n", + " 'loglikelihood': 261131700.08152235,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0028450774020168,\n", + " 'delta_map': ,\n", + " 'iteration': 36,\n", + " 'loglikelihood': 261164799.9998866,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9995616625471752,\n", + " 'delta_map': ,\n", + " 'iteration': 37,\n", + " 'loglikelihood': 261168573.0233805,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9907927868095415,\n", + " 'delta_map': ,\n", + " 'iteration': 38,\n", + " 'loglikelihood': 261141391.23569417,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0019485964391688,\n", + " 'delta_map': ,\n", + " 'iteration': 39,\n", + " 'loglikelihood': 261170119.05511898,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9989160733417498,\n", + " 'delta_map': ,\n", + " 'iteration': 40,\n", + " 'loglikelihood': 261172684.28548497,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9908537644843672,\n", + " 'delta_map': ,\n", + " 'iteration': 41,\n", + " 'loglikelihood': 261149001.1256929,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0011848359144828,\n", + " 'delta_map': ,\n", + " 'iteration': 42,\n", + " 'loglikelihood': 261174372.75896752,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9983550801218972,\n", + " 'delta_map': ,\n", + " 'iteration': 43,\n", + " 'loglikelihood': 261176099.88843274,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9908594816570173,\n", + " 'delta_map': ,\n", + " 'iteration': 44,\n", + " 'loglikelihood': 261155194.31362218,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.00052012791432,\n", + " 'delta_map': ,\n", + " 'iteration': 45,\n", + " 'loglikelihood': 261177870.56885752,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9978600300598851,\n", + " 'delta_map': ,\n", + " 'iteration': 46,\n", + " 'loglikelihood': 261178995.64073008,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9908343850485126,\n", + " 'delta_map': ,\n", + " 'iteration': 47,\n", + " 'loglikelihood': 261160372.66833794,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9999277350857754,\n", + " 'delta_map': ,\n", + " 'iteration': 48,\n", + " 'loglikelihood': 261180809.8795411,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9974136084439371,\n", + " 'delta_map': ,\n", + " 'iteration': 49,\n", + " 'loglikelihood': 261181491.66160578,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5.0,\n", + " 'background_normalization': 0.9907885000950185,\n", + " 'delta_map': ,\n", + " 'iteration': 50,\n", + " 'loglikelihood': 261164793.80599907,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "1a69308c-c13b-4162-820a-7ac3a514e0ba", + "metadata": {}, + "source": [ + "**(If you want, you can save the results in the directory \"./results\" as follows)**" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "44d94156-fc95-43f0-ac56-3e784bbad1eb", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.mkdir(\"./results\")\n", + "\n", + "for result in all_results:\n", + " iteration = result['iteration']\n", + " result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')\n", + "\n", + " with open(f'./results/result_itr{iteration}.txt', 'w') as f:\n", + " paramlist = ['alpha', 'loglikelihood', 'background_normalization']\n", + "\n", + " for param in paramlist:\n", + " value = result[param]\n", + " f.write(f'{param}: {value}\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAHMCAYAAAD8h12kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABu+UlEQVR4nO3deVyU1eIG8Gdm2HcYEBd2UBREcTdXBDMqs0yvXTNzSbPtavenuZSVXbW05Xo1za5pkaI3u3ZdKiXNXQkVBRdAEBUEZZd9hm3m/f0xMjqBwDDDDODz/Xz6xLzved/3cDB5Oue854gEQRBARERERDoRG7sCRERERO0BQxURERGRHjBUEREREekBQxURERGRHjBUEREREekBQxURERGRHjBUEREREekBQxURERGRHjBUEREREekBQxURERGRHpgYuwKPKplMhh9++AGJiYlISkpCaWkplixZgieffLLZ90xOTsa3336L5ORkyOVydOrUCWPHjsX48eMhkUj0WHsiIiL6M/ZUGUlxcTEiIiKQnp4OPz8/ne+XnJyMN954A9nZ2XjxxRfxxhtvoHPnzli3bh3Wr1+vhxoTERFRQ9hTZSRSqRS7d++GVCrF1atX8eqrr+p0v3379gEAvvzyS9jZ2QEAnn32Wfztb39DVFQU5s2bp3OdiYiI6OEYqozEzMwMUqm0SWVjYmIQGRmJlJQUiEQi9O7dG6+//jq8vb3VZcrLy2FmZgYbGxuNa6VSKTIyMvRadyIiIqqLw3+t3G+//YZFixbB0tISc+bMwbRp05CWloY333wTWVlZ6nJ9+vRBeXk5Pv/8c6SlpSE7Oxt79+7FiRMnMGXKFCN+B0RERI8G9lS1YjKZDGvXrsXYsWPxzjvvqI+Hh4fjpZdeQmRkpPr42LFjcfPmTezbtw+//PILAEAikeDtt9/Gs88+a5T6ExERPUoYqlqx2NhYlJWVISwsDEVFRerjYrEYPXr0wIULF9THJBIJOnfujIEDByIkJARmZmY4fPgw/vWvf8HJyQnDhw83wndARET06GCoasUyMzMBAG+//Xa9562trdVfR0ZGYteuXdixYwesrKwAAKGhoZg3bx7WrFmDxx57DCYm/HETERG1FP6WbcWUSiUAYOnSpXBycqpz/sG1p/bs2YO+ffuqA1WtoUOHYv369cjOzoabm1vLVpiIiOgRxlDVinXp0gUA4ODggP79+zdYtrCwUB3CHlRTUwMAUCgU+q8gERERqfHtv1Zs4MCBsLa2RmRkpDocPejBeVZubm6IjY1FcXGx+phCocDRo0dhZWWlDmhERETUMkSCIAjGrsSj6qeffkJZWRkKCgqwZ88ejBgxAl27dgUATJgwATY2Njh06BBWrlwJT09PhIWFwcHBATk5OYiJiUHPnj3x97//HQBw8OBBrFixAl26dMEzzzwDc3Nz/P7770hISMCsWbPw8ssvG/NbJSIiavcYqoxo0qRJyM7Orvfczp070alTJwBAXFwctm/fjsTERFRVVcHFxQW9evXC888/D39/f/U1Z8+eRWRkJG7evAmZTAZ3d3eMHz+eSyoQEREZAEMVERERkR5wThURERGRHjBUEREREekBQ5UBVVRUIDk5GRUVFcauChEREekZQ5UBpaenY/bs2UhPT9fquuvXr7dQjag+bG/DYnsbFtvbsNjehmXs9maoagMqKyuNXYVHCtvbsNjehsX2Niy2t2EZu70ZqoiIiIj0gKGKiIiISA8YqoiIiIj0oNVtqJyUlISoqCjExcUhOzsbdnZ2CAwMxKxZs+Du7t6ke8TGxmLbtm1ISUmBUqmEu7s7Jk+ejLCwMHWZw4cPIzo6GomJibh9+zaCg4Oxbt26FqkPERERtX+tLlTt2LEDly9fxqhRo+Dr64uCggLs3r0bs2bNwsaNG+Hj49Pg9fv378fq1avRv39/zJ49GxKJBLdu3UJubq5Gub179yI5ORndu3dHSUlJi9WHiIiIHg2tLlRNmjQJH3zwAUxNTdXHQkNDMWPGDGzfvh3vv//+Q6/NysrCmjVr8Pzzz2PevHkNPue9996Di4sLxGIxpk2b1iL1ISIiokdHqwtVQUFBdY65u7vDy8ur0fWd9u7dC6VSiVdeeQUAIJPJYGlpCZFIVKesq6tri9eHiIiIHh1tYqK6IAgoLCyEvb19g+XOnz8PDw8PxMTEYMKECQgPD8fYsWOxefNmKJVKg9eHiIiIHh2trqeqPocOHUJeXh5mzpzZYLnMzEyIxWKsWrUKkydPhq+vL06cOIGtW7dCoVBgzpw5Bq1Pfn4+CgoK1J/Zs0VERNR+tfpQlZ6ejjVr1iAwMBDh4eENlpXL5VAqlZgzZw6mTJkCAAgJCUFpaSl27dqFqVOnwsrKymD12bdvHyIiIuocv3nzJhQKRZOfWVZWhsTERG2rSs3E9jYstrdhsb0Ni+1tWC3Z3gEBAY2WadWhqqCgAIsWLYK1tTWWL18OiUTSYHlzc3PI5XKMHj1a43hYWBjOnDmDlJQUBAcHG6w+48aNw9ChQ9Wf09PTsWLFCnh7e8Pf37/Jz01MTGzSD5P0g+1tWGxvw2J7Gxbb27CM3d6tNlSVlZVh4cKFKCsrw/r16+Hs7NzoNVKpFJmZmXB0dNQ4Xvu5tLTUoPVxdnZuUjkiIiJq+1rlRPXKykosXrwYGRkZWLVqFby8vJp0XW3vT35+vsbx2s8ODg4GrQ8RERE9OlpdT5VCocCyZcuQkJCAjz/+GD179qy3XH5+PsrLy9GlSxeYmKi+jdDQUBw+fBi//vorZs+eDQBQKpU4cOAA7OzstBpy07Y+REREpL3SPBmKs8qhrBGgVCihqBGgrFFCWaOEokYJpUL12dLOHN6DOsLEvOGpN8bU6kLVhg0bcPr0aQwZMgSlpaU4ePCgxvkxY8YAADZt2oSoqCjs3LkTnTp1AgAMGzYM/fr1Q2RkJIqKiuDn54eTJ0/i0qVLWLBgAczMzNT3iY+Px8WLFwEARUVFkMvl+P777wEAvXv3Vs+9amp9iIiI2gNZUSVuX8lHtbwGNVVKKKoUqKlUQFGtRE3t11WqZYo8B7jCd0ineteDbExNpQLnfkhGwm9NfzM+9scU9JvUFV2HdYFIrP0zW1qrC1WpqakAgOjoaERHR9c531CIEYlEWLlyJTZv3owjR44gKioK7u7uWLp0aZ3rLly4UOfNvC1btgAApk+frg5VutSHiIhIV4IgIO96MUpzZaiS16BaVoMqeQ2qZDWoltegSlat/uzkbot+k7rCRmrZrGfdiMnCyW8uo1retDfUb57NRvLRDAydEQiHLjZNfk5OSiGOf30JJdkyrepXfrcCJ76+jIQDaRj4Ynd0CWpd85ZFgiAIxq7EoyI5ORmzZ8/GN998w7f/WjG2t2GxvQ2L7a0/NZUKyEsqIS+uQkVpFSqKq1SfS6pQce8fWUU5Bk8KQucAabOeUV1Rg+MbLyHtXE6TrzGzMsGQGYFa9SApqhU4E3kViYduNaueYokIvZ7xQfBzvjAxe/jwXE2VAhd+uobLv9xEbfqQmIrRY7QHzG1NIZaIITERQWwihlgihthEBImJGBCJkHrqNjLi8jTu59bbBQNf9IeTuy0A4//5bnU9VURERPqiqFGivECO0jw5yvLkKC+sQMfuTs0OOQBQXiDH0Q0XkX21sEnlD6w8i/5/9Uevsd5aDZOV363Awc/PoyCtRKv6VclqcGzDRaSfz8HQmYGwsDFrsHxJTjkOr43XeI734I5wD3aBiZkEJmYSSMzEqq/NJfeOiVFwqxR/RCSiNE8OpUJA/J7ruB59B0NnBMKtt0ud5+TfKMaxjZdQdLtMfayDnwNGvBYEh86N93L5PtYJdxIKcGb7VXVdMy/m4falPHQLcUO/iV2b2kQthqGKiIjavJoqBW6eyUZxVjnK8jVDFP48HiMChkwPQMDjnlo/pyRHhv0fn0VZnrzJ1wgCcO4/yci7XoQRc3rBzLLxX735N4px8IvzkBVWAgBMLSXoPc4XlvZmMLMyhamlCcwsTWBmVftvUyiqlYiOSMD16CwAwM2YbORcLcTwOUFwryfkAMDNM1k4sekKquU1AFS9Ro+93AP+oe6NBkBrqSU6B0gRt+c6Lv9yA0qFgNJcOaJWx8J7cEcMntoD1o4WUNQoEb/nOuL3XIegVP0wxCYi9JvYFUFPe0MsafpCBJ0DpXhuxRCknr6D2B9TUF5QAUEAko9m4np0FjoOtEFXnxqYWhgn3jBUERGRQQhKASU5MhSkl6AgvRR300tQcKsEEhMxRr3ZGx26OjZ+k3pUlFXh1+VnUJhR1nhhABCA6O8SISusRL+/dG1y71Hh7TIc+PisOuhYOZnDtasjLO3MYHHvH0t7c1jYmqmO2Zrh2PZYZJ4sBgCknc1BYWY0Rv+9LxwbmH9080wWjm28pJ4MbutiiTHv9IOjm22D9TMxl2DUW8Hw6OeK6G8TUFleDVlRJX5bHYsej3tg4GR/ddhQVCtwZnsyEg/enyRu19EKYfP6QOpp16T2qH3mgBe6wW9oJ5z+NkHde3czJhuZF/PQ6xkfpJ3JRkH6/XUipV52GPl6L/WQnbZEYhG6Du8C70EdkRCVhvi9N1ST6isVyDxZjP9ePoHnVw+DhW3DPXQtgaGKiIhaRHFWOe4kFqAgrQR300txN6MUNZX1T4COWh2Lp5YOhLOXdhvV11QqcPDz8/UGKgs7M9i6WMLGxVL1b2dLFGeVIyFKFSTi91yHrKgSw14JbLS3pCCtBAc+OYuK0moAgEMXGzz17gBYOVo0eJ3HSAf0GOiL4xsvoUpWg+I75dj3fjRGvNYL3gM7apQVBAHxe6/j/I/X1Mdcuzli9P/1gaWdeZPaA1ANk3X0d8SJf1/G7cuqdRqTDt3C7cv5CHmjNyxszXBkXRzyb94f7vN5rBOGzerZpF60+ji62eLp9wfh2snbOLv9KipKq1EtV2h8LyKJCMHP+qLPc74Qm+i+TKaJmar3rluIG+L+dx1Jh29BUAjo0M3BKIEKYKgiInrkCUoBBWklyIjPQ8bFPBRmlqJnuBf6/aVbs++ZevoOjn99CYKi4XehxBIRlAoBVbIaRH1yDk9/MLjBXpwHKWuUOLwuDrkpRQBUIWr4rJ6w62QNG6nFQ4eA7Fyt8MfWJEAAUo5lQl5cibC5fR66/lHutUJErY5FlUw1RCb1ssOTiwfAwq5pv7g9+7ni2RVD8PuaOBRmlKK6QoHD/4pD0FhvDHihG8QSMWqqFDi1+QpST91RX9d1eBcMmxUIian26zJZO1kgfHF/JP1+C2e2X4WiSomSbBl+XhYDEzMxqitU4Vab4b7GiEQidBvhBo8+HXDuh2QkH81Un3N0s8HI13rB2Ue70NwUlnbmGDI9AIFPeOLwN7EY8IL2a1LqC0MVEdEjqLKsGpmX85F5MQ8Z8XmoKKnSOB+3+zpsO1ih20g3re9991YpTn5zuU6gsu1gCamnHZw8bVX/9rCDha0pDqw6h9yUIlSUVuPAx2cx9oPBsHO1avAZgiDg5OYr6rfBTC0lCF/cv0k9XYFPeMHS3hzHvroIZY2AjLg87P/4LMYs6Fenh+NOQgEOfn5e3cPWoZsDwhf2h5mVqTZNAvuO1hj30WCc2nxFPefp8i83UXCzBI9N64GTm6+owyEADPhrN/R6xkenoCMSiRDwuCc6B0pxfOMl5F0vhqAU1IHKzvXecJ9X04f7msLC1gzDZweh6wg3JPyWBid3W/Qa692scKgN+07W6D7RBfadrFv0OQ1hqCKidq+mSoHi7HKUZMtg19EKUg/9/hJpSYIgIP9GMcysTWHfUbdfFrLiSmSeKsb1/8YgN6UQjS2oc/rbBDh52MLZu+m9C1Wyavz+rwvq+UDegzsicIwnnDxsHxpEnninP/avPIuCtBLICitVwerDwbB2evjQ2tn/JOPaidsAVJOeH/+/floNHfoM7gQLWzMc+ud5VMsVyL1WhJ8/ikH4ogGwdVGt8ZQRl4vf/xUHRbXqe+kcKMXj8/s2exK0qYUJQt7sDRc/B5zZfhWCQsCdhAL8tPCUuoyJuQQhb/SC14CODdxJOw6dbfDMssGI33sdcf9TTRb3GdwJw2YFah0OtdHR3xEd/Zs3T66tYqgionajSl6D4jtlKLpdjsLbZSi6U4aizDKU5so0AoTP4E4YNMUf1s1cINEQBEFARnwezv/3GgrSSiAxE+PppYPQwc+hWferKKnCnndPqydZP8jEXILOPaVw7+0Ct94uuLjvOq4ezoCiWonf18ThuRVDmjTUJQgCTmy6rF7QUeplh5Gv9Wpw3SIAMLc2Rfji/vh1+RkU3S5HaZ4c+z8+i7HvD4Klfd25RJd+uYHLv9xUfRABo94KRudA7ZdI6Bwoxdj3ByPq01jIiypRfKccPy/7A+GLBqA4qwxH11+E8l5vm0ffDgidG9zo99IYkUiEnuFecPayw+F18ZAX3f95WDmZY8z8flqF2KYSS8To+3xXdB3uhoqSSjj72Os83Ed1MVQRUZuXfj4HZ3ckozirvEnlb8Rk4VZcLoKf80XQU14tPiyhDUEQcPtSPs7vuoa868Xq44oqJU5tvoLnVgxp1iTfMzuuagQq+87WcO/tAvdgF3Ts7qjRBo+93AN300uRm1qEsnw5jqyPR/jiARA3si3Ilf1pSDurWqTSzMoEYfP6NDmEWNqZ48l3B+KXj2JQmitH8Z1yRK06h6eWDoK59f3elGsnbuPsjmT156EzA+tM+NaG1MsO45YNxoFV51CSLYOssBI/f/QHaioU6iDuM7gTQt7opZfJ1bU6dnfC+JVDcOTLeGRfLYSLrz1G/19fWDcy8V1Xtvcm7VPLYKgiIqPSdVOHpMO3EP1twkOHskzMJbDvZA1HNxtYOVog5VgGKkqrUVOpQOzOFKQcy8RjL/eAe58OOtVDV4KgGgo6v+uaxtwa4P5k7ru3SnElKg29xvpode87CQXqoTKJuQjPrRjW4GRwiakEYW/3we53T6OipAp3rhTg/I8pGPDXh08Azr56F2f/cz/sjHy9V6Pzov7M2tECT703ED9/FAPZ3UoUpJfit9WxePLdATC1MMGtuFyc2HRZXb7fxK7oEeah1TPqY9vBCs8sG4yDn55H3o1ijS1auoW4Ydisno0GyuawcrTA0+8PQlmeHDYuluw5agcYqojIYARBQGmuDFlJd5GdVIispLuQFVeg6llz9H7WR6tFAAVBQNzuVFzYlao+JvWyg9TLDo5dbODQxQYOXaxhI7XU2Hi19zM+OP/TNSQdTIcgqBZz/O2z8/Do2wGDp/ZoNAgoqhUoyVENJzq62ejlF2FW0l2c/29KnRW6nTxs0XdCV1g5mmPfh38AAnDhp1R4D+oIW5emBRZFtQKnv01Qf/YMdWzS23XWThYImxeM/SvPQVAKuLjvBpx97OvtFZIVVeLIunj1wo69x/nAs59rk+r3Z7YuVnhqyUD8svwMKkqqkJtahENfXEDwc744vDZO/YyAxz0QPN63Wc+oj6WdOZ5aOhCH18Yh86JqGYLAJzwxeGqPFt24VyQSwbaDduGTWi+GKiJqMYIgoCRbFaJU/xRAdrfunJ7zu64h42IeQt7oBTvXxidjK5UCor9LwNXDGepjQWO9MfCv/o3+AjS3McWQaQHwD3HDH98nqoPMrQu5uH05H73GeiPoaW/Ii6vuTW4vR3G2TP3v8ny5uldswF+7ofe45v9ilxVV4thXF3HnSoHGcYcuNug30Q9eAzqqv5+Axz2ReDAdNZUKRH+XiDHv9GtSoLu474Z6WLRDVwe49m36predekgxaIo/YrZdBQCc+PqSOrDWUiqUOLo+HrJ7c4M6BTih31902y7EoYsNnlwyAL8uP4MqWQ3uJBTgTsL9NvIZ3AmPTQvQe8+OqYUJxszvh+vRWTCzMoFHvw7sPSKtMFQRkd4pqhU4tzMF16OzNCbi/pnEVAxFjRIQgNxrRdi95DQGv9wD3Ua6PfSXWU2VAsc2XNTYYHbQlO4IetpbqzpKPe3w9PuDcD06C2e3X4WsqBKKaiXidl9H3O7rTbrHxX03EDDGs9lvg5349yWNQGXfyRp9J/jBe3CnOsNN/Sd1Rdq5bMgKK5ERn4e0s9nwHtSpwfsX3SlD/F7V9yKSiDDslZ7ILsto8Jo/Cwz3Qt71YlyPzkJ1hQKH1lzAs/94TP3W2Pn/XkNW4l0AgJWDOUb9LVirHseHkXraIXxRf+z/+JzGgqGde0ox8vWgFus9EpuI0XVElxa5N7V/+pt1R0QE1UKSxzdexpX9aXUClYm5BF2CpOg3qSvGfjAIL28ejaBpHWHbQTVxtrpCgZObruD3NXF11k0CgMryakStjlUHKpFEhJA3emkdqGqJRCL4De2MiV+MQNBYb4gkDf+iNrMygbOPPRy6qHrTqmQ1SDl+u1nPvnurVD3MZGFnhpGv98KET4fBd0jneufvmFmZ4rFpAerPf3yfhCpZ9UPvLwgCTn+bAGWNqlst6ClvOHlovy2ISCTCsFk94XhvS5HiO+U4/u/LEAQB6edzcHHfDVU5iQih8/rAqp639ZqrQ1dHjFnQDxJT1a8qZx97jP5731b1YgHRg9hTRURqVbJq3Em4C2cfO9g0Y7kBQRBwZvtV3IhRLW4oNhGhc6AUnXo4oWN3J7j42Nd5g8rWzRzjPxmGmG1JSDmmWoE5PTYHualFGPFqENyDVRvBlhdW4LfVsbh7S7WHmIm5BKPf7gO3h2wUqw0zSxMMerE7/Ee64cL/UlGSXQ7bDlaw62gN+473/21hZwaRSISC9BLsXnIaAJAQlYaAxz207jm5vP+m+us+433RdXjjvSNeA1zh3scFGXF5kBVVIvbHaxgyPaDesqkn76h7kGxcLNH3eT+t6vcgUwsTPP5/fbDnvWhUyWqQfi4Hf2xNQurJ+4Fy4GT/FlmTqHOgFOP+8RhyUgrhN7Rzs7dRITIE/ukkesQJgoC81CJcPZKB639kQVGlhKmlBKFz+zx0Z/uHufzrTVw5kAZAtenp6Lf7wqNv42/VmVmaYMSrQfDo0wGnNl9GRWk15EWV+O3TWAQ87gH/Ue449M8LKMuXAwAsbE3xxML+cPF10PbbbZBDFxuE/i240XJSTzt0DpTiTkIBSnJkyIjPa9L3Wau8sALXT6u2IzG3Nm3yquUikQhDpgfip8STqKlUIPFQOvyGda6zdlVFaRXObE9Sfx46I/ChW7A0lZ2rNULe7I2Dn50HACT+dn8jXu+BHdHzSS+d7t8QqaedVpv8EhkLh/+IHlGV5dVIPJiO3UtOY9+HMUg5flu9Cna1XIGDn51H4qH0Ru5y37VTmusHDZsVqFXQAFQ9Mc+vHq7R+5R46BZ2v3taHahsXCzxzLLH9B6otBUY7qn+ujZINlXib+nqRSW7j/bQak6WrYsl+k68NxFcAE5tuQKlQqlR5ux/ktUb/3oP7qju7dOVR58O6DtBs8fLvpM1hr/akxO6icBQRfRIEQQBudcKceLfl7DjzSOIjkhUD6cBqjlDLr6q1ZwFpYDo7xIRE5kEpbLhtaQyL+XhxL8fWD/oL13hH+LerDpaOZjjiYX9MGRGACRmmn9FOXnYYtyywUbd26uWR58O6uUX7iQUoOBWSZOuq66oQdLvtwCohkcDx2i/zlLPcE84earmON1NL8WVqPvhNyvprnoY1dTSBI9N7aH1/RvSZ7wf3PuoQpqJuWo9q5bc6oSoLeHwH9EjIiupAH98n6QRomp18HNA9zB3+AzuBImpGGd/SFZvA3JlfxpKc2QIebN3vT0q+TeKcfhfcerNc7uHuSP4Od3WD1JvBBsgxbGvLiL/Zgk6B0ox+u+t5xe4SCxCYLgX/vg+EQCQcCANI+b0avS65GOZqJLVAAD8hnaGVTNW0BZLxBj2Ss/7a1ftugbvgR1h5WCGU1uuqMsN+Gu3Zt2/ISKxCKP/3hc3Y7Ig9bZv0ppXRI8KhiqiR0BpngwHPzuv3p0eUPVK+Q3rAv9QtzobDA96sTvsO1rj9LcJEJQC0s/n4tflZ/D4gn4a22iU5JQj6tNY9X09+7tiyIxAvQ0FOXSxwbMrhqAsvwI2zhatboip28guOP/fFFTJapB6+g4G/NW/3r3qaikVSo2hwua+tQiogrDG2lURCejg64DiO6o1qVz87NFdD6uN10diIobfMC47QPRnHP4jaucEpYDjX19WBx+plx1GzAnCixtCMWR6QJ1AVat7qDueWNQfpvfetsq/WYJ97/+hHuaSF1cialWseukDV39HjHqrt9638xCJRLBtpVt4mFqYwH+UaphTWSOoh/UeJu1cDsryVHPD3Ho7w9FN+yUOHtR/kmq1dQDIiMvDhZ+uAVD1Jg17pWW2ViGih2OoImrlcq8VIvNyfrP3yEv4LQ3ZSfderXe2xNNLB6LbSLcmvQ3mFuSMcR8Nho2zanmF8rsV+GVZDG6eycJvn51HSY4MgKpHacz8fk3ePLc9CRjjidq8l3joFhTVinrLCYKgHlIFdOulqvXntatq/4j0fNKLb8sRGQFDFVErVVOlwKktV7DvwxhEfXJOY7Papiq6XYZzP6SoP4+YE6T1nCRHN1uMW/6YegJ7dYUCh9fGI/9GMQDAyskc4Yv7w9ymdcx1MjRbF0t43dsPr6KkCtf/yKq3XE5yIfLutZnU0xadA6V6eX7t2lW1bJwt6ryhR0SGwVBF1AqV5srw87IYjb3tLv9yE1cO3GzgKk1KhRLHv74ERbXqdfvAcM9m/yK3sjfH00sHwWug5ia5ZlYmCF80oFkLhbYnD67RdOVAWr29ipd+1eyl0tdwZu3aVdZSC0jMxBg+O6jZ2+YQkW74Xx5RK5N+PgfHN15SvyEmNhGptxqJ2XYVlvbm8B3SudH7XNx3A3nXVT0j9p2sMeCv/jrVy8RcgrC5fXBuZwou/XwDphYSPD6/H5zcdZsX1B506OoAF1975F0vxt30UmQl3UXngPsBtuhOGW5dyAUAWDtZwGdww3v2acvWxRJ/+XwElAplq3k7kuhRxFBF1EooFUrE/ngNl36+oT5m52qFsLf7IO1cDuL+lwoAOL7xEizszNClp/ND71WQVoIL98qLRMDI13vpZb6TSCzCwMn+6DHaHaYWJrCwNdP5nu2BSCRCzye9cHT9RQCq3qoHQ9WVA2nAvc6rwHDPOlv16INqjtyjN6eNqDXh8B9RKyArqsT+j89pBCqvAa54buUQSD3t0HeC3/23zBQCfl9zAflpxfXeS1GtwLGNF9XrRvV+1rfONia6snWxYqD6E++BHWHlpHoT79aFXBRnq5Y2kJdU4toJ1R55ppYSdA9t3qKoRNT6MVQRGVlW0l3sfve0+g09kUSEQS9111ipWiQSYejMAHj0U237Ui1X4LfVseq37x50flcqCjPKAABOnrboo8NGutR0YhMxAsfc27pGABLu7Y2XdOiWel6b/yh3Ds8RtWMMVURGIggCLv58A/tXnoW8qBIAYOWomhAe9FTdicxiiRihbwWjQzcHAIC8uApRq85BXlypLpOTUojLv9y4V16Eka/3gqQFhpqofv6h7uqtdVKOZUJWVInEg6pwJRKL0DPcy4i1I6KWxr9tiYwk+Vgmzv0nGcK9ffU6B0ox/uOh6Ojv+NBrTMwlGLOgHxy6qPa+K8mpXSm9BtUVNTi+8ZJ6raJ+f+n60IU9qWVY2Jih63DVSuM1lQr89mmsemNjn8Ed1et9EVH7xFBFZASCUsClfffnTwU/54vwJQMa3OKkloWNGcIXDVDP38m7t/feme1X1cOBHfwc9LK4JGnvwd6ogrT7myzz50HU/jFUERnBrbhcdQDqHChF/0ndtNpSxMbZEuGLBsDMSvUCb+alfPWaVhIzMUa+3gtiCf/zNgaHLjZw6+2icaxTgBOcve2NVCMiMhT+rUtkBA9uqtvzKa9m3cPJ3RZjFvSDxFTzP+OBk/1h38lah9qRrno+6anxuRd7qYgeCQxVRFrKSSlE/J7rKL9b0azrC9JKkJWoetPPvpM13P/Uq6GNjt2dMOqt3uq95zoHShHwuGfDF1GL6xLkDGcfVc+U1MuuTs8VEbVPXPyTqIlKc2U4+59k3DyTDQBIOZ6J51cP03pRzQd7qQLDPSHSYtivPl4DOuLJdwci51ohAsfofj/SnUgkwhML+yEjPg/uwS78mRA9IhiqiBpRJa/Bxb3XceVAmnq9IUD15l1CVBp6j/Nt8r1khRW4Hn0HAGBubap+U0xXnQOletugl/TD0s4c3Ua4GbsaRGRADFVED6FUCrh2IhOxO1MgL65SH7ewM0NlaRUEAYjfcx1dR7jByqHxt/YAIPHQLSjvrXTuH+rOjW+JiNoRzqkiqkdWUgH2Lo3GyU1X1IFKbCJCr2d8MOmfI+B/b6uR6goFYn9MadI9a6oUuHr4FgDVqumBYzxapvJERGQU/N9kemRUyapRnFUOpUKAoBSgVKr+LTzwWakQcDUqD3evpmtc6zXAFQNf9Iedq+qtun4Tu+J6dBaq5TVIOZ6JgMc9Gn1lPvXUnfsLQQ7qCGspF4IkImpPGKqo3RMEAclHMxGzLQk1lQqtrpV62mLQ1B7oHKA5X8nS3hx9nvfD2e1XAQGI2ZaEp98fVGdrmQfroLGMwpNe2n4bRETUyjFUUbtWWVaNk5svI+1sjlbXWdqbof+kbug60u2hi3IGPuGJq4dvoSRbhuyrhbh5Jhs+gzvVW/b2pXwU3VZtcuzazREuvg5a1YeIiFo/hipqt7Kv3sXRDRdRXnB/PSnvgR1hLbWASCyCSCyCWHLv3/c+iyQi3C3Jw9DxfWFmZdrg/SUmYgya0h2HvrgAADi7IxkefTvUu8TClag09dfNXeyTiIhaN4YqaneUSgHxe1IR91OqenNhc2tTDH81CF4DXBu9PjGxotFAVcujbwd07inFnSsFKMuX48r+NAQ/p7nEQuHtMmRezAcA2LhYwrN/43UgIqK2h2//UbtSViDH/hVncGHX/UDVsbsjxq8a2qRApS2RSITBU3uoVzSP33sd5YWaK60nPLjY5xOeWu3xR0REbQdDFbUbN89mY/fi08i+WggAEIlUb+k9tXQQbFrwTTsnd1t0H61aHqGmUoHYnfeXWKgoqcK1k7cBAKaWEviHcDFIIqL2iqGK2jxFtQKntlzB4X/FobJctWSBjbMFnv5gMPo872eQnqF+E7rCzEo1mn7txG3k3SgGACQduaVehd0/xL3Jw4pERNT2MFRRm1ZTpcChf8bh6uEM9THvgR0x/uNh6OjvaLB6WNiZoe+ErurPMVuToKhWIOmgarFPiICAMdzomIioPWt1E9WTkpIQFRWFuLg4ZGdnw87ODoGBgZg1axbc3d2bdI/Y2Fhs27YNKSkpUCqVcHd3x+TJkxEWFqYuc/jwYURHRyMxMRG3b99GcHAw1q1bV+/9qqqqsGXLFhw8eBClpaXw9fXFrFmzMGDAAL18z9Q8NVUK/L4mDpkX8wAAEjMxHns5AP6j3B66XlRLCnjcA0m/30JxVjlyUgpx5MuLkBVVAgA8+7vCztXK4HUiIiLDaXU9VTt27MDx48fRr18/zJ07F8888wwuXryIWbNm4caNG41ev3//fsyfPx8mJiaYPXs23njjDfTu3Ru5ubka5fbu3YtTp06hQ4cOsLW1bfCen3zyCX788Uc8/vjjmDt3LsRiMRYuXIhLly7p9L1S8/05UJmYSxC+aAC6h7obJVABgNhEjMEvdVd/To+9vzZWEBf7JCJq91pdT9WkSZPwwQcfwNT0/tyT0NBQzJgxA9u3b8f777//0GuzsrKwZs0aPP/885g3b16Dz3nvvffg4uICsViMadOmPbRcYmIiDh8+jNdffx2TJ08GADzxxBOYPn06Nm7ciI0bN2r5HZKu6gtUTyzsj049nIxcM8C9Twe49XZWL6EAAM7ednA14FAkEREZR6vrqQoKCtIIVADg7u4OLy8vpKenP+Qqlb1790KpVOKVV14BAMhkMgi179X/iaurK8Tixr/948ePQyKRYNy4cepj5ubmePrpp5GQkICcHO1W6ibdqALVhT/1ULWOQFVr0Es9IHpgcnzPJ72M1ntGRESG0+pCVX0EQUBhYSHs7RvesPb8+fPw8PBATEwMJkyYgPDwcIwdOxabN2+GUqls1rOvXbsGNzc3WFtbaxzv0aMHACA1NbVZ9yXt3Q9Uql6g2kDVsXvrCVQA4NjFRr0AqNTLDt4P2bqGiIjal1Y3/FefQ4cOIS8vDzNnzmywXGZmJsRiMVatWoXJkyfD19cXJ06cwNatW6FQKDBnzhytn11QUACpVFrneO2x/Pz8Oudq5efno6CgQP25sZ42eri2Eqhq9ZvYFb5DOsHayQISkzbx/y5ERKSjVh+q0tPTsWbNGgQGBiI8PLzBsnK5HEqlEnPmzMGUKVMAACEhISgtLcWuXbswdepUWFlp9wZWZWVlneFIADAzM1Off5h9+/YhIiKizvGbN29CoVA0uQ5lZWVITExscvn2Rlkj4Op/c1F0XbVSudhUhO4vOOOuMht3E7P1/jy9tneRfm7Tnj3qf74Nje1tWGxvw2rJ9g4ICGi0TKsOVQUFBVi0aBGsra2xfPlySCR1N6p9kLm5OeRyOUaPHq1xPCwsDGfOnEFKSgqCg4O1qoO5uTmqq6vrHK+qqlKff5hx48Zh6NCh6s/p6elYsWIFvL294e/v3+Q6JCYmNumH2R7V9lDVBipD9FA9yu1tDGxvw2J7Gxbb27CM3d6tNlSVlZVh4cKFKCsrw/r16+Hs7NzoNVKpFJmZmXB01HzTqvZzaWmp1vWQSqXIy8urc7x2WK+hejk7Ozep3lQ/QRBwctPlNjPkR0REj7ZWOdmjsrISixcvRkZGBlatWgUvL68mXVfb+/PneU61nx0cHLSui5+fHzIzM1FeXq5xvLZ70c/PT+t7UtNcO3kb16OzADBQERFR69fqQpVCocCyZcuQkJCAjz76CD179qy3XH5+PtLT01FTU6M+FhoaCgD49ddf1ceUSiUOHDgAOzs7rYbcaoWEhEChUGDfvn3qY1VVVdi/fz8CAgLg6uqq9T2pccXZ5Yj+7v64+Ig5QQxURETUqrW64b8NGzbg9OnTGDJkCEpLS3Hw4EGN82PGjAEAbNq0CVFRUdi5cyc6dVK9sj5s2DD069cPkZGRKCoqgp+fH06ePIlLly5hwYIF6snlABAfH4+LFy8CAIqKiiCXy/H9998DAHr37q2eexUQEIBRo0Zh06ZNKCoqQpcuXRAVFYXs7GwsWrSopZvjkaSoUeLo+ouoqVRN5u8W4gYfLktAREStXKsLVbXrPkVHRyM6OrrO+dpQVR+RSISVK1di8+bNOHLkCKKiouDu7o6lS5fWue7ChQt13szbsmULAGD69OkaE9rfffdduLq64rfffkNZWRl8fHywevVqrSe9U9Nc2HUN+TeKAQB2Ha3w2Ms9jFwjIiKixomEhy05TnqXnJyM2bNn45tvvuHbfw9xJ6EA+z8+CwiAWCLCuI8eg7NPw4u+6tuj1N6tAdvbsNjehsX2Nixjt3erm1NFj66K0ioc++oicC/m95/UzeCBioiIqLkYqqhVEAQBJ7+5AlmhajHVzj2lCHra28i1IiIiajqGKmoVrh7OQHqsanNqC1tThLzeS2NTYiIiotaOoYqMrjCzFDHbktSfh78aBCtHCyPWiIiISHsMVWRUNVUKHF1/EYpqJQAg4HEPePbj2l9ERNT2MFSRUZ37IRl3b6m2D3J0t8HAKd2NXCMiIqLmYagio8mIy0VCVDoAQGIqxqi3gmFi1vCm2URERK0VQxUZhaJagVNbEtSfB03pDid3WyPWiIiISDcMVWQU107cRvndCgBAlyBn9Hjcw8g1IiIi0g1DFRmcskaJ+H031J/7v9ANIhGXTyAioraNoYoM7np0Fsry5AAAt17OcOGq6URE1A4wVJFBKZUC4vddV38Ofs7XiLUhIiLSH4YqMqi0s9kovlMOAOjYwwkduzsZuUZERET6wVBFBiMIAuL33O+l6sNeKiIiakcYqshgbl3IVS/06eJnj849pUauERERkf4wVJFB/LmXKvhZX77xR0RE7QpDFRnE7SsFyLteDABw8rSFR98ORq4RERGRfjFUkUHE705Vf81eKiIiao8YqqjFZV+9i+yrhQAA+87W8BrY0cg1IiIi0j+GKmpxf55LJRazl4qIiNofhipqUXnXi5B5KR8AYOtiCd8hnYxcIyIiopbBUEUt6sFeqt7jfCCW8I8cERG1T/wNRy2m4FYJ0s/nAgCsnMzRdUQXI9eIiIio5TBUUYu5uOeG+uteY30gMZUYsTZEREQti6GKWkTRnTLcOJMFALCwM0P3Ue5GrhEREVHLYqiiFnFx3w1AUH0d9JQXTMzZS0VERO0bQxXpXfndCqSeugMAMLc2RY/RHkauERERUctjqCK9SzmRCUGp6qbq8bgHzKxMjVwjIiKilsdQRXolKAWkHM1UfRAB/pxLRUREjwiGKtKrO4kFKM2TAwDcgpxh62Jp5BoREREZBkMV6VVybS8VAP9RbkasCRERkWExVJHeVJRWIe1cNgDAwtYUHv1cjVwjIiIiw2GoIr1JPXUHyhrVBHW/4V0gMeEfLyIienTwtx7phSAISD6Wof7sH8KhPyIierQwVJFe5F0vRmFGGQCgQzcHOLrZGrlGREREhsVQRXqRfPR+L1X3EC6jQEREjx6GKtJZlbwG16NV+/yZWkrgPbijkWtERERkeAxVpLObMVmoqVQAAHwf6wxTCxMj14iIiMjwGKpIZ1ybioiIiKGKdHQ3oxS5qUUAACcPWzj72Bu3QkREREbCUEU6STmm2UslEomMWBsiIiLjYaiiZlNUK3Dt5G0AgMRUDN+hnY1cIyIiIuNhqKJmS4vNRWVZNQDAa4ArLGzMjFwjIiIi42GoomZ7cG0q/1Fcm4qIiB5tDFXULKW5Mty5UgAAsHO1QqceTkauERERkXExVFGzJD8wQb1biBtEYk5QJyKiRxtDFWlNqVAi5YQqVInEInQd0cXINSIiIjI+rZa+jo+Pb/aDgoODm1QuKSkJUVFRiIuLQ3Z2Nuzs7BAYGIhZs2bB3b1p83ZiY2Oxbds2pKSkQKlUwt3dHZMnT0ZYWJhGuVOnTuG7775Deno6HBwc8NRTT+Hll1+GiYlmsyQnJ+Pbb79FcnIy5HI5OnXqhLFjx2L8+PGQSCRNqlN7knkpH7K7lQAA9z4usHa0MHKNiIiIjE+rUDVv3rxmr0N07NixJpXbsWMHLl++jFGjRsHX1xcFBQXYvXs3Zs2ahY0bN8LHx6fB6/fv34/Vq1ejf//+mD17NiQSCW7duoXc3FyNcjExMXjvvfcQHByMefPm4caNG9i6dSsKCwsxf/58dbnk5GS88cYbcHNzw4svvghzc3OcOXMG69atw+3btzFv3jyt26Kt01hBPYQrqBMREQFahqpp06bVCVWJiYk4e/Ys3NzcEBQUBEdHRxQWFuLKlSvIyMjAwIEDERAQ0ORnTJo0CR988AFMTU3Vx0JDQzFjxgxs374d77///kOvzcrKwpo1a/D88883Gna++uor+Pr64osvvlD3TFlZWSEyMhITJ06Ep6cnAGDfvn0AgC+//BJ2dnYAgGeffRZ/+9vfEBUV9ciFKllRJW5dUAVUKwdzuAe7GLlGRERErYNWoWrmzJkany9evIjt27fjnXfewdNPP60RuARBwM8//4x169Zh6tSpTX5GUFBQnWPu7u7w8vJCenp6g9fu3bsXSqUSr7zyCgBAJpPB0tKyThBMS0tDWloa/v73v2sM9Y0fPx7btm3DsWPHMG3aNABAeXk5zMzMYGNjo3EPqVSKjIwMPGpuxeVCUAoAgK4jukAs4bQ8IiIiQMeJ6lu2bMHgwYMxduzYOsFFJBJh3LhxGDRoELZs2aJTJQVBQGFhIeztG95X7vz58/Dw8EBMTAwmTJiA8PBwjB07Fps3b4ZSqVSXS0lJAQD4+/trXO/s7AwXFxdcu3ZNfaxPnz4oLy/H559/jrS0NGRnZ2Pv3r04ceIEpkyZotP31RZlJ91Vf+3Rt4MRa0JERNS6aNVT9WfJycmYOHFig2W8vLywa9cuXR6DQ4cOIS8vr05P2Z9lZmZCLBZj1apVmDx5Mnx9fXHixAls3boVCoUCc+bMAQAUFKjWV5JKpXXuIZVK1ecBYOzYsbh58yb27duHX375BQAgkUjw9ttv49lnn22wPvn5+Rr3aqynrS3ITi4EoNqWhpsnExER3adTqDI1NdXo1alPSkqKxvwobaWnp2PNmjUIDAxEeHh4g2XlcjmUSiXmzJmj7kUKCQlBaWkpdu3ahalTp8LKygpVVVUAADOzutuqmJmZQSaTqT9LJBJ07twZAwcOREhICMzMzHD48GH861//gpOTE4YPH/7Q+uzbtw8RERF1jt+8eRMKhaIp3z4AoKysDImJiU0u31IqS2pQlicHAFh3MkVyylUj16hltJb2flSwvQ2L7W1YbG/Dasn2bsr8cJ1C1YABA3D06FFERkbihRde0AhP1dXV2LlzJ86dO4fQ0NBm3b+goACLFi2CtbU1li9f3ujyBebm5pDL5Rg9erTG8bCwMJw5cwYpKSkIDg5Wh6nacPWgqqoqmJubqz9HRkZi165d2LFjB6ysrACoJs7PmzcPa9aswWOPPVZnCYZa48aNw9ChQ9Wf09PTsWLFCnh7e9cZemxIYmKiVpP9W8r16DsAVBso+/R1Q0BAN+NWqIW0lvZ+VLC9DYvtbVhsb8MydnvrFKpef/11XLp0CZs3b8auXbvQvXt3ODg4oKioCFevXkVRURGkUilee+01re9dVlaGhQsXoqysDOvXr4ezs3Oj10ilUmRmZsLR0VHjeO3n0tJSdTlAFdpcXV01yhYUFKBHjx7qz3v27EHfvn3VgarW0KFDsX79emRnZ8PNrf5lBZydnZtU77Yi+2qh+uuO3R0bKElERPTo0WmieocOHbBp0yaMGTMG5eXl+OOPP3DgwAH88ccfKC8vx5gxY7Bp0yZ06KDdhObKykosXrwYGRkZWLVqFby8vJp0XW3vT35+vsbx2s8ODg4AgK5duwJQzQn7c7m8vDz1eQAoLCzUmOReq6amBgC0GsZr67KTVZPURSKgQ1eGKiIiogfp1FMFqHp93n33XSxcuBC3bt1CeXk5rK2t4e7u3qy5VAqFAsuWLUNCQgI+/vhj9OzZs95y+fn5KC8vR5cuXdTDb6GhoTh8+DB+/fVXzJ49GwCgVCpx4MAB2NnZqUOXt7c3PDw88PPPP2PcuHHqYcU9e/ZAJBJh5MiR6ue4ubkhNjYWxcXF6rcPFQoFjh49CisrK3Tp8mhs0VJRVoXCjDIAgNTLDmaWOv/RISIialf09pvRxMSk0dXOm2LDhg04ffo0hgwZgtLSUhw8eFDj/JgxYwAAmzZtQlRUFHbu3IlOnToBAIYNG4Z+/fohMjISRUVF8PPzw8mTJ3Hp0iUsWLBAY2L6G2+8gSVLlmD+/PkICwvDjRs3sHv3bowdO1ajZ2zKlClYsWIFXnvtNTzzzDMwNzfH77//juTkZMyaNeuh86nam5zkB4f+nIxYEyIiotZJb4ng8uXLuHbtGmQyGaysrNC1a9d6F/JsTGpqKgAgOjoa0dHRdc7Xhqr6iEQirFy5Eps3b8aRI0cQFRUFd3d3LF26tM51Q4YMwYoVKxAREYG1a9fC3t4eL730EqZPn17neQ4ODoiMjMR//vMfyGQyuLu7Y/78+Y0uqdCeZD8Qqlz9OfRHRET0ZzqHqsuXL2PVqlW4fVv1VpggCOqFQN3c3LB48eKHDuHVZ926dU0q9+677+Ldd9+tc9zKygpz587F3LlzG73H8OHDG1wSodbAgQMxcODAJtWrvcp5cJI6QxUREVEdOoWqmzdvYsGCBaioqED//v3Rp08fSKVS3L17F3FxcTh37hwWLFiAr7/+usmTzan1qalUIO9mMQDAvpM1LO3NG7mCiIjo0aNTqIqIiEB1dTU+/fRTDBo0SOPclClTcObMGSxZsgQRERFYtmyZLo8iI8pNLYKgUO33x6UUiIiI6qfTkgrx8fEICQmpE6hqDRo0CCEhIYiLi9PlMWRktUspAEBHf05SJyIiqo9Ooaq8vFz95t3DdOrUCeXl5bo8hoyMi34SERE1TqdQJZVKkZCQ0GCZxMTEejcuprZBqVAi91oRAMDKyRw2LpbGrRAREVErpVOoGjp0KOLj47F582ZUVlZqnKusrMS3336LuLg4DBs2TKdKkvEUpJWgplK1anxHfyf1m51ERESkSaeJ6tOmTcMff/yByMhI7Nu3Dz169ICjoyMKCwvVe/917twZ06ZN01d9ycA49EdERNQ0OoUqe3t7bNy4EV9//TUOHz6MmJgY9TkzMzM8+eSTeO2112BnZ6dzRck4Hlz0k5PUiYiIHk7nxT8dHBywePFiLFiwAOnp6eoV1T09PR+ZLVzaK0EQkHPvzT9za1M4utkYuUZEREStl173/vP19dXX7agVKLpTjorSagBAh24OEIk5n4qIiOhhWt3ef9R65Fx9YH0qbqJMRETUoFa39x+1HprzqThJnYiIqCHc+48eqvbNP4mZGM4+9kauDRERUevGvf+oXmUFcpTlywEAHfwcIDHRaUkzIiKido97/1G9NNan4tAfERFRo7j3H9Ur+4FJ6q6cpE5ERNQo7v1H9cq5N0ldJBbBtauDcStDRETUBnDvP6qjorQKhZllAACplx1MLbiIKxERUWO49x/VkZPC+VRERETa4t5/VAc3USYiItIe9/6jOrKTH5ikzp4qIiKiJuHef6ShuqIG+TdLAAD2na1haWdu5BoRERG1DVzRkTTkXS+GoBAAAB39uZQCERFRU+ncUxUbG4udO3fi6tWrKCsrgyAIdcqIRCIcPXpU10eRAWRrbKLMoT8iIqKm0ilUHTt2DB999BGUSiVcXV3h6ekJiUSir7qREXCSOhERUfPoFKq+//57mJmZ4eOPP0a/fv30VScyEmWNErmpRQAAaycL2DhbGrdCREREbYhOc6oyMjIQFhbGQNVO5KeVoKZSAUDVSyUSiYxcIyIiorZDp1BlZ2cHc3O+HdZe1G5NA3ApBSIiIm3pFKpGjhyJ8+fPo6amRl/1ISMqzr6/8bWLj70Ra0JERNT26BSqXn31VdjY2GDZsmXIycnRV53ISMrvVqi/tuZ8KiIiIq1oNVH9hRdeqHOspqYGiYmJOHXqFGxsbGBtbV2njEgkwg8//ND8WpJByO6FKrFEBEtbMyPXhoiIqG3RKlTVtwaVRCJBhw4dGixT3zFqfWp7qqwcLSASc5I6ERGRNrQKVT/++GNL1YOMrKZKgYrSagCAlRNfPiAiItIWt6khAICssFL9tbWThRFrQkRE1DYxVBEAQFb4wCR1R4YqIiIibWk1/BcREQGRSITx48fDzs4OERERTbpOJBJh2rRpzakfGYjGm3/sqSIiItKaVqHqu+++g0gkQmhoKOzs7PDdd9816TqGqtbvwVBlxVBFRESkNa1C1dq1awFA/bZf7Wdq+9hTRUREpButQlVwcHCDn6ntkt19cKI63/4jIiLSFieqE4A/Df9xojoREZHWGKoIAFB+7+0/CzszSEz4x4KIiEhbWg3/jRw5EiKR9itti0QiHD16VOvryDCUSkG9ThXnUxERETWPVqGqd+/ezQpV1LpVFFdCUKq2EmKoIiIiah6tQtW6detaqh5kRHzzj4iISHecPEMof+DNP+77R0RE1Dxa9VQ1JC0tDenp6aioqMATTzyhr9uSAbCnioiISHc6h6qkpCR89tlnuHHjhvpYbaiKj4/HO++8gw8//BDDhg3T9VHUQrjvHxERke50ClU3b97E22+/DbFYjL/85S+4desWzpw5oz7fu3dv2Nvb49ixY00OVUlJSYiKikJcXByys7NhZ2eHwMBAzJo1C+7u7k26R2xsLLZt24aUlBQolUq4u7tj8uTJCAsL0yh36tQpfPfdd0hPT4eDgwOeeuopvPzyyzAxqdssTb1nW8SeKiIiIt3pFKq+/fZbAMA333wDNzc3fPfddxqhSiQSITAwEFevXm3yPXfs2IHLly9j1KhR8PX1RUFBAXbv3o1Zs2Zh48aN8PHxafD6/fv3Y/Xq1ejfvz9mz54NiUSCW7duITc3V6NcTEwM3nvvPQQHB2PevHm4ceMGtm7disLCQsyfP79Z92yruO8fERGR7nQKVfHx8Rg5ciTc3NweWsbV1RVnz55t8j0nTZqEDz74AKampupjoaGhmDFjBrZv347333//oddmZWVhzZo1eP755zFv3rwGn/PVV1/B19cXX3zxhbpnysrKCpGRkZg4cSI8PT21vmdbVRuqTC1NYGapt2l2REREjxSd3v6Ty+VwdHRssExlZSWUSmWT7xkUFKQRqADA3d0dXl5eSE9Pb/DavXv3QqlU4pVXXgEAyGQyCIJQp1xaWhrS0tLwzDPPaAz1jR8/HoIg4NixY1rfs60ShAcX/uSbf0RERM2lU7eEi4uLxgT1+qSkpKBz5866PAaCIKCwsBBeXl4Nljt//jw8PDwQExODjRs3Ii8vD7a2thg/fjxmzpwJsVisrhMA+Pv7a1zv7OwMFxcXXLt2Tet7tlVV5TWoqVQA4HwqIiIiXegUqoYMGYKffvoJsbGx6N+/f53zR44cQWJiIqZNm6bLY3Do0CHk5eVh5syZDZbLzMyEWCzGqlWrMHnyZPj6+uLEiRPYunUrFAoF5syZAwAoKCgAAEil0jr3kEql6vPa3LM++fn5GvdqrKfNGMoLuZEyERGRPugUqqZOnYpjx45h4cKFCA8Px927dwEAu3fvRkJCAg4fPoyOHTti0qRJzX5Geno61qxZg8DAQISHhzdYVi6XQ6lUYs6cOZgyZQoAICQkBKWlpdi1axemTp0KKysrVFVVAQDMzMzq3MPMzAwymUzre9Zn3759iIiIqHP85s2bUCgUTfr+AaCsrAyJiYlNLq+Nwuty9ddyZcs9py1pyfamutjehsX2Niy2t2G1ZHsHBAQ0WkanUOXg4IAvv/wSK1aswK+//qo+/q9//UtdgQ8++AA2NjbNun9BQQEWLVoEa2trLF++HBKJpMHy5ubmkMvlGD16tMbxsLAwnDlzBikpKQgODlaHqdpw9aCqqiqYm9+fW9TUe9Zn3LhxGDp0qPpzeno6VqxYAW9v7zpDjw1JTExs0g+zOZJzMgCo3mL07OaGHgEeLfKctqQl25vqYnsbFtvbsNjehmXs9tb5Va/OnTvjq6++wrVr15CYmIiSkhJYWVkhICAAPXr0aPZ9y8rKsHDhQpSVlWH9+vVwdnZu9BqpVIrMzMw6k+drP5eWlqrLAarQ5urqqlG2oKBAo95NvWd9nJ2dm1RvY+IaVURERPqh0yzrEydOqL/u2rUrnn32WUydOhUTJkzQCCZffvmlVvetrKzE4sWLkZGRgVWrVjU6Qb1Wbe9Pfn6+xvHazw4ODuq6AkBycnKdcnl5eerz2tyzreK+f0RERPqhU6havnw5Ll682GCZL7/8Ej/99FOT76lQKLBs2TIkJCTgo48+Qs+ePestl5+fj/T0dNTU1KiPhYaGAoDGUKRSqcSBAwdgZ2enDkje3t7w8PDAzz//rDG3ac+ePRCJRBg5cqTW92yr2FNFRESkHzoN/3Xu3BlLlizB+vXr613pfP369di1axeGDx/e5Htu2LABp0+fxpAhQ1BaWoqDBw9qnB8zZgwAYNOmTYiKisLOnTvRqVMnAMCwYcPQr18/REZGoqioCH5+fjh58iQuXbqEBQsWaExMf+ONN7BkyRLMnz8fYWFhuHHjBnbv3o2xY8dq9Ixpc8+2qHbfP7GJCBa2bft7ISIiMiadQtVnn32GN954A++88w6++uorjflJX331Ff773/9i2LBh+Oijj5p8z9TUVABAdHQ0oqOj65yvDVX1EYlEWLlyJTZv3owjR44gKioK7u7uWLp0aZ3rhgwZghUrViAiIgJr166Fvb09XnrpJUyfPr3Z92yLanuqrB0tIBKJjFwbIiKitksk6Lg8eFpaGt566y04ODhgw4YNsLe3x1dffYWdO3diyJAhWL58eb0bFD+KkpOTMXv2bHzzzTet4u2/mioFIqaregJd/R3xzIeD9f6MtsjYb488atjehsX2Niy2t2EZu711Xg7cy8sLq1evRl5eHt555x2sX78eO3fuxGOPPcZA1cpxPhUREZH+6GWPlcDAQCxbtgypqanYtWsXBg8ejBUrVjBQtXKyQoYqIiIifdEq9URFRTV4fsCAAUhMTMTQoUPx+++/a5xrbDV0MrzyggdDFZdTICIi0oVWoeqTTz6pdzKzIAgQiUSonZ71z3/+U+OYSCRiqGqFygsfWKOK+/4RERHpRKtQtXjx4paqBxkB51QRERHpj1ah6sknn2ypepARyBiqiIiI9EYvE9WpbVL3VIkAKwfOqSIiItIFQ9UjrPze23+W9uYQm/CPAhERkS60Gv4bOXIkxGIxtm7dCnd3d4wcObJJq3CLRCIcPXq02ZUk/VMqlJDfm6jOoT8iIiLdaRWqevfuDZFIBHNzc43P1PbIi6tQu5a+tSOH/oiIiHSlVahat25dg5+p7eCbf0RERPrFiTSPqAdDlRVDFRERkc4Yqh5R7KkiIiLSL62G/yIiIpr1EJFIhGnTpjXrWmoZ3PePiIhIv7QKVd99912zHsJQ1fpo7vvHUEVERKQrrULV2rVrW6oeZGCa+/7x7T8iIiJdaRWqgoODW6gaZGi1W9SYWZnA1EKrPwZERERUD05UfwQJgqCeqM6hPyIiIv3QqYsiJyen0TIikQjW1tawtrbW5VGkR5Vl1VBUKwEwVBEREemLTqFq0qRJTV5R3cHBASNGjMD06dPh5OSky2NJR+WFXKOKiIhI33Qa/nviiSfQq1cvCIIAGxsbBAcHIzQ0FMHBwbC1tYUgCOjduzcGDx4MMzMz7N27F7Nnz0Z+fr6+6k/NIOObf0RERHqnU0/V5MmT8eabb2LatGl48cUXYWFx/xd0ZWUlduzYgV27dmHDhg3w8PBAZGQktmzZgq1bt+L//u//dK48Nc+Db/5x3z8iIiL90KmnauPGjQgICMDMmTM1AhUAmJubY8aMGQgICMDXX38NsViMl19+Gd27d0dMTIxOlSbdcDV1IiIi/dMpVF25cgX+/v4NlunWrRsuXbqk/hwQEIC7d+/q8ljSEff9IyIi0j+dQpVSqcTt27cbLJOZmQlBENSfJRIJzMzMdHks6UjGnioiIiK90ylUBQUF4fjx4zh8+HC9548ePYoTJ06gZ8+e6mOZmZmQSqW6PJZ0VPv2n8RUDHMbUyPXhoiIqH3QaaL6a6+9hjfffBPLly/Hjh07EBQUBEdHRxQWFuLKlStITU2FhYUFXnvtNQBAcXExYmNj8fTTT+ul8tQ8tfv+WTtZNHlJDCIiImqYTqHK19cX69evx7/+9S9cvnwZqampGueDgoIwb948+Pr6AgBsbGywZ8+eOpPayXCqK2pQJasBwD3/iIiI9EnnTd/8/Pywfv165OTkIDU1FeXl5bC2toafnx9cXV01ykokEtjY2Oj6SNKB7MHlFDifioiISG/0tpOuq6trnRBFrQ/f/CMiImoZegtVeXl5dXqqXFxc9HV70hOuUUVERNQydA5VmZmZ+Oc//4kLFy7UOde3b1/83//9H9zc3HR9DOmJrJChioiIqCXoFKpycnLw1ltvobCwEB4eHujduzekUinu3r2Lixcv4vz583jrrbfw73//m0ODrUQ59/0jIiJqETqFqoiICBQWFuL//u//MG7cuDqv5+/duxf//Oc/8f3332PhwoU6VZT0g/v+ERERtQydQtXZs2cxZMgQPPvss/Wef/bZZxETE4MzZ87o8hjSo9o5VSIRYOnAUEVERKQvOq2oXlRUBB8fnwbL+Pj4oKioSJfHkB7VblFj6WAOsUSnHz8RERE9QKffqg4ODkhLS2uwTFpaGhwcHHR5DOmJskYJWbFq+I/zqYiIiPRLp1A1YMAAnD59Gr/88ku953/99VdER0dj4MCBujyG9ERWXAnc29uaa1QRERHpl05zqmbMmIHo6Gh8/vnn+O9//4vg4GA4OTmp3/5LS0uDvb09pk+frqfqki745h8REVHL0SlUubq6YsOGDfj8888RHx9fZyiwT58+mD9/PpdTaCU01qjim39ERER6pfPin+7u7li7dm2T9v4j4+Jq6kRERC2He/89Qsrv3l+jinOqiIiI9EurULVq1apmP2jx4sXNvpb0gz1VRERELUerUHXgwIFmPUQkEjFUtQLc94+IiKjlaBWqdu7c2VL1IAOoffvP3MYUJmYSI9eGiIiofdEqVHXs2LGl6kEtTBAElN/rqbJyZC8VERGRvnGfkkdERWkVlDWqlT859EdERKR/env7T1+SkpIQFRWFuLg4ZGdnw87ODoGBgZg1axbc3d2bdI/Y2Fhs27YNKSkpUCqVcHd3x+TJkxEWFqZR7tSpU/juu++Qnp4OBwcHPPXUU3j55ZdhYvLwZvn000/xyy+/4LHHHsPq1at1+l4NSfbAm3/WTlyjioiISN9aXajasWMHLl++jFGjRsHX1xcFBQXYvXs3Zs2ahY0bNza6gfP+/fuxevVq9O/fH7Nnz4ZEIsGtW7eQm5urUS4mJgbvvfcegoODMW/ePNy4cQNbt25FYWEh5s+fX++9r169igMHDsDMzExv36+h8M0/IiKiltXqQtWkSZPwwQcfwNTUVH0sNDQUM2bMwPbt2/H+++8/9NqsrCysWbMGzz//PObNm9fgc7766iv4+vriiy++UPdMWVlZITIyEhMnToSnp6dGeUEQsHbtWjzxxBO4cOGCDt+hcZQ/8OYf16giIiLSv1Y3pyooKEgjUAGqVdu9vLyQnp7e4LV79+6FUqnEK6+8AgCQyWQQBKFOubS0NKSlpeGZZ57RGOobP348BEHAsWPH6lzz22+/4ebNm5g9e3Yzvivj475/RERELavVhar6CIKAwsJC2NvbN1ju/Pnz8PDwQExMDCZMmIDw8HCMHTsWmzdvhlKpVJdLSUkBAPj7+2tc7+zsDBcXF1y7dk3juEwmw9dff42XXnoJUqlUT9+VYWnu+8dQRUREpG+tbvivPocOHUJeXh5mzpzZYLnMzEyIxWKsWrUKkydPhq+vL06cOIGtW7dCoVBgzpw5AICCggIAqDcgSaVS9flaERERMDc3x6RJk7Sqd35+vsa9Gutpa0kPzqmy4kR1IiIivWv1oSo9PR1r1qxBYGAgwsPDGywrl8uhVCoxZ84cTJkyBQAQEhKC0tJS7Nq1C1OnToWVlRWqqqoAoN4J52ZmZpDJZOrPGRkZ2LVrFz744AOtJ6jv27cPERERdY7fvHkTCoWiyfcpKytDYmKiVs/+s8KcEgCASAJcT78GkUik0/3aM320NzUd29uw2N6GxfY2rJZs74CAgEbLtOpQVVBQgEWLFsHa2hrLly+HRNLwKuDm5uaQy+UYPXq0xvGwsDCcOXMGKSkpCA4OVoej2nD1oKqqKpib3+/JWbduHXr27ImQkBCt6z9u3DgMHTpU/Tk9PR0rVqyAt7d3naHHhiQmJjbph9mQCxVZAABrR0sEBgbqdK/2Th/tTU3H9jYstrdhsb0Ny9jt3WpDVVlZGRYuXIiysjKsX78ezs7OjV4jlUqRmZkJR0dHjeO1n0tLS9XlAFVoc3V11ShbUFCAHj16AFDN0Tpz5gxWrFiBrKwsdRmFQoHKykpkZWXBzs4O1tbW9dbH2dm5SfVuacoaJSpKVQHS0qHtLQdBRETUFrTKUFVZWYnFixcjIyMD//znP+Hl5dWk6/z9/ZGZmYn8/Hx07txZfTw/Px8A4ODgAADo2rUrACA5OVkj0ebn5yMvLw/jxo0DAPXaVkuXLq3zrLy8PLzwwgt46623tJ5rZWjy0irg3kuQVvacT0VERNQSWl2oUigUWLZsGRISEvDxxx+jZ8+e9ZbLz89HeXk5unTpol4WITQ0FIcPH8avv/6qXvpAqVTiwIEDsLOzUw+5eXt7w8PDAz///DPGjRunHlbcs2cPRCIRRo4cCQDo27cvVq5cWefZn332GTp27IipU6c2uhhpayAvur+auqUDQxUREVFLaHWhasOGDTh9+jSGDBmC0tJSHDx4UOP8mDFjAACbNm1CVFQUdu7ciU6dOgEAhg0bhn79+iEyMhJFRUXw8/PDyZMncenSJSxYsEBjovkbb7yBJUuWYP78+QgLC8ONGzewe/dujB07Vt0z5urqWmd4EAC+/PJLODo6Yvjw4S3UCvqlEarYU0VERNQiWl2oSk1NBQBER0cjOjq6zvnaUFUfkUiElStXYvPmzThy5AiioqLg7u6OpUuX1rluyJAhWLFiBSIiIrB27VrY29vjpZdewvTp0/X6/bQGsuL7ocqKPVVEREQtotWFqnXr1jWp3Lvvvot33323znErKyvMnTsXc+fObfQew4cPb1Zv048//qj1NcYkL7r/liN7qoiIiFpGm1hRnXSj2VPFt/+IiIhaAkPVI4AT1YmIiFoeQ9UjQF7MiepEREQtjaHqESC711NlZmUCE7OGV6UnIiKi5mGoegTU9lSxl4qIiKjlMFS1c9UVNaiWqzZv5nwqIiKilsNQ1c7Ji+8vp8AtaoiIiFoOQ1U7pzFJncspEBERtRiGqnZOVsTV1ImIiAyBoaqd43IKREREhsFQ1c5x4U8iIiLDYKhq52RFnKhORERkCAxV7Zy8hD1VREREhsBQ1c7VDv+JRICFHd/+IyIiaikMVe1c7UR1CzsziMUiI9eGiIio/WKoascEQVAvqcChPyIiopbFUNWOVZXXQFkjAOAkdSIiopbGUNWOyYo5SZ2IiMhQGKraMY01qthTRURE1KIYqtqxB1dTt+K+f0RERC2Koaodk7GnioiIyGAYqtoxOedUERERGQxDVTsm5xY1REREBsNQ1Y5x+I+IiMhwGKrasdrhP7GJCGbWJkauDRERUfvGUNWO1fZUWTmYQyTiFjVEREQtiaGqnVIqlKgoVc2p4tAfERFRy2OoaqcqSqoA1Q41fPOPiIjIABiq2qkHt6jhm39EREQtj6GqnXpwOQX2VBEREbU8hqp2SnPfP25RQ0RE1NIYqtopjeE/9lQRERG1OIaqdkrOhT+JiIgMiqGqnWJPFRERkWExVLVT7KkiIiIyLIaqdkperHr7z9TSBCbmEiPXhoiIqP1jqGqnHtyihoiIiFoeQ1U7VFOpQLW8BgCXUyAiIjIUhqp2SP7AJHUu/ElERGQYDFXtkKyIW9QQEREZGkNVO8SeKiIiIsNjqGqH2FNFRERkeAxV7VDtcgoAe6qIiIgMhaGqHdJY+NOBb/8REREZAkNVO6SxRQ2H/4iIiAyCoaodUvdUiQALO/ZUERERGQJDVTtU+/afha0ZxBL+iImIiAzBxNgV+LOkpCRERUUhLi4O2dnZsLOzQ2BgIGbNmgV3d/cm3SM2Nhbbtm1DSkoKlEol3N3dMXnyZISFhWmUO3XqFL777jukp6fDwcEBTz31FF5++WWYmNxvlvPnz+PQoUO4dOkS8vLy4OTkhL59++KVV16Bs7OzXr93fRAEgVvUEBERGUGrC1U7duzA5cuXMWrUKPj6+qKgoAC7d+/GrFmzsHHjRvj4+DR4/f79+7F69Wr0798fs2fPhkQiwa1bt5Cbm6tRLiYmBu+99x6Cg4Mxb9483LhxA1u3bkVhYSHmz5+vLvf111+jpKQEISEhcHd3x507d/C///0Pf/zxB7Zs2QKpVNoi7dBcVeU1UNYIAABLzqciIiIymFYXqiZNmoQPPvgApqam6mOhoaGYMWMGtm/fjvfff/+h12ZlZWHNmjV4/vnnMW/evAaf89VXX8HX1xdffPGFumfKysoKkZGRmDhxIjw9PQEAb775Jnr16gWx+P4w2sCBAzF37lz873//w+zZs3X5dvVOY5I6e6qIiIgMptVNuAkKCtIIVADg7u4OLy8vpKenN3jt3r17oVQq8corrwAAZDIZBEGoUy4tLQ1paWl45plnNIb6xo8fD0EQcOzYMfWx4OBgjUBVe8zOzq7R+hgDl1MgIiIyjlYXquojCAIKCwthb2/fYLnz58/Dw8MDMTExmDBhAsLDwzF27Fhs3rwZSqVSXS4lJQUA4O/vr3G9s7MzXFxccO3atQafI5PJIJfLG62PMWhsUcPhPyIiIoNpdcN/9Tl06BDy8vIwc+bMBstlZmZCLBZj1apVmDx5Mnx9fXHixAls3boVCoUCc+bMAQAUFBQAQL3zoaRSqfr8w/z3v/9FdXU1QkNDGyyXn5+vcS9D9GxpbFHD4T8iIiKDafWhKj09HWvWrEFgYCDCw8MbLCuXy6FUKjFnzhxMmTIFABASEoLS0lLs2rULU6dOhZWVFaqqVNu4mJnVHR4zMzODTCZ76DPi4+MRERGBUaNGoV+/fg3WZ9++fYiIiKhz/ObNm1AoFA1e+6CysjIkJiY2qWzG9UL117lF2ahMLGryc0hFm/Ym3bG9DYvtbVhsb8NqyfYOCAhotEyrDlUFBQVYtGgRrK2tsXz5ckgkkgbLm5ubQy6XY/To0RrHw8LCcObMGaSkpCA4OFgdpmrD1YOqqqpgbl5/D096ejqWLl0KHx8fLFq0qNH6jxs3DkOHDtW4fsWKFfD29q4z9NiQxMTEJv0wASDv+CUAJQCA7r27wbGLTZOfQyratDfpju1tWGxvw2J7G5ax27vVhqqysjIsXLgQZWVlWL9+fZPWhJJKpcjMzISjo6PG8drPpaWl6nKAKrS5urpqlC0oKECPHj3q3DsnJwfz58+HtbU1Vq9eDSsrq0br4+zsbPC1rDSG/zinioiIyGBa5UT1yspKLF68GBkZGVi1ahW8vLyadF1t709+fr7G8drPDg4OAICuXbsCAJKTk+uUy8vLU5+vVVxcjPnz56O6uhqff/55q1z0s1btRHWxiQhm1q02MxMREbU7rS5UKRQKLFu2DAkJCfjoo4/Qs2fPesvl5+cjPT0dNTU16mO1E8d//fVX9TGlUokDBw7Azs5OHbq8vb3h4eGBn3/+WWNu0549eyASiTBy5Ej1MblcjoULFyI/Px+ffvppk1d1N5YHV1MXiURGrg0REdGjo9V1ZWzYsAGnT5/GkCFDUFpaioMHD2qcHzNmDABg06ZNiIqKws6dO9GpUycAwLBhw9CvXz9ERkaiqKgIfn5+OHnyJC5duoQFCxZoTEx/4403sGTJEsyfPx9hYWG4ceMGdu/ejbFjx2r0jC1fvhxJSUl46qmnkJ6ervEGn6WlJYYPH96CraEdpUKJilLVPDEup0BERGRYrS5UpaamAgCio6MRHR1d53xtqKqPSCTCypUrsXnzZhw5cgRRUVFwd3fH0qVL61w3ZMgQrFixAhEREVi7di3s7e3x0ksvYfr06fXWZ//+/di/f7/GuY4dO7aqUFVRUgXcW+vUksspEBERGVSrC1Xr1q1rUrl3330X7777bp3jVlZWmDt3LubOndvoPYYPH95oKPrxxx+bVJ/WQGOLGvZUERERGVSrm1NFzScvur9EBHuqiIiIDIuhqh3R2PfPnvv+ERERGRJDVTuiMfzHnioiIiKDYqhqRzR7qhiqiIiIDImhqh1hTxUREZHxMFS1I+ypIiIiMh6GqnZEXqx6+8/U0gQm5g1vPk1ERET6xVDVjjy4RQ0REREZFkNVO1FTqUC1XLUPIpdTICIiMjyGqnZC/sAkdS78SUREZHgMVe2EjJPUiYiIjIqhqp2Qc98/IiIio2Koaic0eqocOKeKiIjI0Biq2ona5RQA9lQREREZA0NVO6Gx8CcnqhMRERkcQ1U7IePbf0REREbFUNVOqCeqiwBLW86pIiIiMjSGqnZCXqSaU2VhawaxCX+sREREhsbfvu2AIAjqniquUUVERGQcDFXtQJWsBopqJQDAisspEBERGQVDVTsg52rqRERERsdQ1Q7wzT8iIiLjY6hqBx7sqeLCn0RERMbBUNUOyNlTRUREZHQMVe2ArOiBLWoYqoiIiIyCoaod0Oipsufbf0RERMbAUNUOcN8/IiIi42Ooagdq3/4TS0QwtzY1cm2IiIgeTQxV7UBtT5WlgzlEIpGRa0NERPRoYqhq45RKARUlqonqXE6BiIjIeEyMXQHS3dgPB0NWVAmJKTMyERGRsTBUtXFisQiu3RyNXQ0iIqJHHrs2iIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPSAoYqIiIhIDxiqiIiIiPTAxNgVeJRUVlYCANLT07W67tatW5BIJC1RJaoH29uw2N6GxfY2LLa3YbV0e3t6esLCwuKh5xmqDCg7OxsAsGLFCiPXhIiIiLT1zTffwN/f/6HnRYIgCAaszyOtqKgIZ8+eRadOnWBmZtaka9LT07FixQosXboUnp6eLVxDYnsbFtvbsNjehsX2NixDtDd7qloRBwcHjBkzplnXenp6NpiOSb/Y3obF9jYstrdhsb0Ny5jtzYnqRERERHrAUEVERESkBwxVrZxUKsX06dMhlUqNXZVHAtvbsNjehsX2Niy2t2G1hvbmRHUiIiIiPWBPFREREZEeMFQRERER6QFDFREREZEecJ2qVqqqqgpbtmzBwYMHUVpaCl9fX8yaNQsDBgwwdtXaPJlMhh9++AGJiYlISkpCaWkplixZgieffLJO2bS0NKxfvx6XL1+GiYkJHnvsMbz11ltwcHAwfMXboKSkJERFRSEuLg7Z2dmws7NDYGAgZs2aBXd3d42ybGvd3bx5E9999x2Sk5Nx9+5dWFhYwNPTE5MnT8bQoUM1yrK9W8bWrVuxefNmeHt74/vvv9c4d/nyZXz99ddISUmBtbU1Ro0ahdmzZ8PKyspItW1b4uLiMG/evHrPbdy4EYGBgerPxmprhqpW6pNPPsGxY8fwl7/8BW5ubjhw4AAWLlyItWvXolevXsauXptWXFyMiIgIuLq6ws/PD3FxcfWWy83Nxd/+9jfY2Nhg9uzZkMvl+OGHH3Djxg38+9//hqmpqYFr3vbs2LEDly9fxqhRo+Dr64uCggLs3r0bs2bNwsaNG+Hj4wOAba0v2dnZkMlkCA8Ph7OzMyoqKnD8+HEsWbIECxYswLhx4wCwvVtKbm4uIiMjYWlpWefctWvX8Pe//x2enp546623kJubi507dyIzMxOfffaZEWrbdk2YMAE9evTQONalSxf110Zta4FanYSEBGH48OHCjh071McqKiqEv/71r8Jrr71mxJq1D5WVlUJ+fr4gCIKQlJQkDB8+XNi/f3+dcl988YUwevRoITs7W33s3LlzwvDhw4W9e/carL5t2aVLl4SqqiqNY7du3RLCwsKEf/zjH+pjbOuWU1NTI8yYMUOYMmWK+hjbu2V8+OGHwrx584S//e1vwssvv6xxbsGCBcJzzz0nlJWVqY/9/PPPwvDhw4UzZ84Yuqpt0oULF4Thw4cLR48ebbCcMduac6paoePHj0Mikaj/rxIAzM3N8fTTTyMhIQE5OTlGrF3bZ2Zm1qR1TI4fP44hQ4bA1dVVfax///5wd3fH0aNHW7KK7UZQUFCdXg93d3d4eXkhPT1dfYxt3XIkEgk6dOiAsrIy9TG2t/7Fx8fj+PHj+Nvf/lbnXHl5OWJjYzFmzBhYW1urjz/xxBOwtLRkmzeDTCZDTU1NnePGbmsO/7VC165dg5ubm8YfCADq7s7U1FSNvwxJ//Ly8lBYWFjv/lE9evRATEyMEWrVPgiCgMLCQnh5eQFgW7cEuVyOyspKlJeX4/Tp0zhz5gxGjRoFgO3dEhQKBdauXYunn34avr6+dc7fuHEDCoWiTpubmpqia9euuHbtmqGq2i588sknkMvlkEgk6NWrF15//XV0794dgPHbmqGqFSooKKi3J6X2WH5+vqGr9MgpKCgAgIf+HEpKSlBVVQUzMzNDV63NO3ToEPLy8jBz5kwAbOuWsGHDBuzbtw8AIBaLMWLECPz9738HwPZuCXv37kVOTg7WrFlT7/nG2vzixYstWr/2wsTEBCNHjsTgwYNhb2+PtLQ07Ny5E2+99Ra++uordOvWzehtzVDVClVWVtY7UbT2L7nKykpDV+mRU9vGjf0c+ItHO+np6VizZg0CAwMRHh4OgG3dEv7yl78gJCQE+fn5OHr0KBQKBaqrqwGwvfWtuLgY3377LV5++eWHvjnZWJtXVVW1ZBXbjaCgIAQFBak/Dxs2DCEhIZgxYwY2bdqEzz//3OhtzTlVrZC5ubn6L8AH1f5hMDc3N3SVHjm1bcyfg/4UFBRg0aJFsLa2xvLlyyGRSACwrVuCp6cn+vfvj/DwcKxevRpyuRyLFy+GIAhsbz3bvHkzbG1tMWHChIeWaazNGWCbz83NDcOGDUNcXBwUCoXR25qhqhWSSqXqLswH1R5zdnY2dJUeObVdxw/7OdjZ2fEvQi2UlZVh4cKFKCsrw+eff67xZ5ht3fJCQkJw9epVZGRksL31KCMjAz///DMmTpyI/Px8ZGVlISsrC1VVVaipqUFWVhZKSkoabXP+na6bDh06oLq6GhUVFUZva4aqVsjPzw+ZmZkoLy/XOJ6YmKg+Ty3LxcUFDg4OSE5OrnMuKSmJPwMtVFZWYvHixcjIyMCqVavUE9Rrsa1bXu2QSFlZGdtbj/Lz86FUKrF27Vq88MIL6n8SExORkZGBF154AREREfD29oZEIqnT5tXV1bh27RrbXEd37tyBmZkZLC0tjd7WDFWtUEhICBQKhXqiKaDqtty/fz8CAgL45p+BjBw5EtHR0RpLWJw/fx4ZGRnqN6moYQqFAsuWLUNCQgI++ugj9OzZs95ybGv9KCwsrHOspqYGv/32G8zNzdWBlu2tH97e3li5cmWdf7y9veHq6oqVK1fi6aefho2NDfr374+DBw9CJpOpr//tt98gl8vZ5k1UVFRU51hqaipOnz6NAQMGQCwWG72tRYIgCC36BGqWDz/8ECdOnMCkSZPQpUsXREVFISkpCWvWrEFwcLCxq9fm/fTTTygrK0NBQQH27NmDESNGoGvXrgBUq/Xa2NggJycHs2bNgo2NDSZOnAi5XI7//Oc/cHFxwaZNmzhE0gTr1q3Drl27MGTIEISGhtY5P2bMGABgW+vJe++9h/LycvTu3RsuLi4oKCjAoUOHcOvWLbz55pt44YUXALC9W9rcuXNRXFyssU1NcnIy3nzzTXh6emLcuHHqVb579+6NL774woi1bTvmzZsHc3Nz9OzZE46OjkhLS8PPP/8MExMTfPXVV+r/aTBmWzNUtVKVlZXqvf/Kysrg4+ODWbNmYeDAgcauWrswadIkZGdn13tu586d6NSpEwDVXmp/3h/tzTffhJOTkyGr22bNnTsX8fHxDz1/4sQJ9ddsa90dPnwYv/76K27cuIHi4mJYWVnB398fzz//PIYNG6ZRlu3dcuoLVQBw6dIl9X50VlZWGDVqFObMmcO9/5po165dOHToEG7fvo3y8nI4ODigX79+mD59Otzc3DTKGqutGaqIiIiI9IBzqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiIiISA8YqoiIiIj0gKGKiNqUrKwsjBgxAh9//LGxq6IXBw4cwIgRI3DgwAFjV4WIdMRQRURt3ty5czFixAhjV6Ne7S0EEtHDmRi7AkRE2nBxccG2bdtgbW1t7KroxfDhwxEQEACpVGrsqhCRjhiqiKhNMTExgaenp7GroTc2NjawsbExdjWISA9EgiAIxq4EEVFTZWVl4YUXXkB4eDjefffdhw771Z6vdf36dWzbtg3x8fEoKSmBVCrF0KFDMWPGDNjb29d7/xdffBHffPMNLl68iJKSEuzcuROdOnXCiRMncPToUVy9ehX5+fkwMTGBr68vJk6ciJCQEPW9Dhw4gE8++aTe+q1duxZ9+vRRl1myZAmefPJJjTKXL1/Gtm3bkJCQgMrKSnTs2BGhoaF48cUXYWFhoVF2xIgRCA4OxrJly7Bx40bExMRALpfDz88Pc+bMQZ8+fbRtaiLSEnuqiKhNmz59OqKiopCdnY3p06erj3ft2lX99alTp7Bs2TKIRCIMGzYMHTp0QFpaGv73v//h7Nmz+Pe//w1bW1uN+96+fRuvv/46fHx8EB4ejpKSEpiamgIANm3aBBMTEwQFBUEqlaKoqAinT5/GBx98gHnz5mHChAkAAD8/P0ycOBG7du2Cn58fhg0bpr5/x44dG/y+jh49in/84x8wNTVFaGgoHBwccO7cOURERODs2bNYu3YtzM3NNa4pKyvDm2++CRsbG4wZMwaFhYU4evQoFixYgG+++QY+Pj7NamMiahqGKiJq02bOnIn4+HhkZ2dj5syZdc4XFxdj5cqVsLe3x4YNGzTCzOHDh/HRRx9hy5YtePvttzWuu3z5MqZPn17vPT/99FN07txZ45hMJsMbb7yBLVu24Omnn4aFhQW6du0KGxsbdaiq7171KS8vx2effQaJRIKNGzfC19cXAPDqq6/iH//4B44cOYIffvgB06ZN07guNTUVzz33HN5++22Ixar3kPr27YtPP/0U//vf/7BgwYImPZ+Imodv/xFRu/bbb7+hvLwcr776ap3eobCwMHTr1g2HDx+uc52TkxOmTp1a7z3/HKgAwMrKCk8++STKyspw9epVnep86tQplJWV4amnnlIHKgAQi8V4/fXXIZFI6l2CwdLSEq+99po6UAGqYVCJRKJznYioceypIqJ2LSEhAQCQmJiI27dv1zlfVVWF4uJiFBUVwcHBQX3cz89PPdz3Z4WFhdi+fTtiYmKQk5ODyspKjfP5+fk61fnatWsAgODg4DrnXF1d0blzZ2RkZEAmk8HKykp9zs3NTeMzoJrY7+TkhLKyMp3qRESNY6gionattLQUALB79+4Gy1VUVGh8dnR0rLdcSUkJXn31VeTk5CAoKAj9+/eHjY0NxGIxUlNTcerUKVRXV+tU5/LycgCq3rL6SKVSZGRkoLy8XCNEPWyZCYlEAqVSqVOdiKhxDFVE1K7Vho6IiAitJmqLRKJ6j//666/IycnBK6+8UmdOU2RkJE6dOtX8yt5TG47u3r1b7/na4+1lrS6i9oJzqoiozaudQ6RQKOqcCwgIAHB/GFBXtUOID77JV+vSpUsPrZs2PUW1by7Gx8fXOZeTk4Pbt2+jc+fOdYb6iMi4GKqIqM2zs7MDAOTm5tY599RTT8HKygrffPMNbt68Wed8RUWFVoGrdrL75cuXNY4fOnQIMTExdcrb2tpCJBLVW7eHGTZsGGxsbLB//36NOguCgH//+99QKBR11rQiIuPj8B8RtXl9+/bFsWPH8P7772PQoEEwMzODn58fhg4dCgcHB3z44Yf44IMPMHPmTAwcOBAeHh6orq5GdnY24uPj0bNnT3z++edNetaYMWOwY8cOrF27FnFxcXB1dUVqaiouXLiAESNG4MSJExrlrays0L17d1y8eBErVqyAm5sbRCIRnnjiiYeuVWVtbY133nkH//jHP/Daa69h1KhRcHBwwPnz55GcnIwePXrgr3/9q87tRkT6xVBFRG3e2LFjkZWVhSNHjmDHjh1QKBQIDw/H0KFDAQCPPfYYtmzZgv/85z84f/48YmNjYWFhARcXFzz55JMYM2ZMk5/VoUMHrFu3Dhs3bkRsbCwUCgW6deuGL774Arm5uXVCFQAsXboUX375JaKjo1FeXg5BENCrV68GFwAdNWoUnJycEBkZiRMnTqhXVJ82bRpefPHFOgt/EpHxcZsaIiIiIj3gnCoiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPWCoIiIiItIDhioiIiIiPfh/VyUHiZKp9EwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACe5UlEQVR4nO39eZxU1Z3/j79uVW/Q3dB0N40g0N1sDYUoJlGjCAJOHIwTZuISjZ9EccG4k0z8BOEzk8Xgx/kYM/5wXNEoiYkjRKPiREmMQfiKUQmCAsW+NA30Qu9dvVR31b2/P4rat7uc875Lnefj4cOm6t465546dc77vM/r/T6SoigKBAKBQCAQCHIIl9kVEAgEAoFAIKBGGEACgUAgEAhyDmEACQQCgUAgyDmEASQQCAQCgSDnEAaQQCAQCASCnEMYQAKBQCAQCHIOYQAJBAKBQCDIOYQBlIaBgQHs378fAwMDZldFIBAIBAIBY4QBlIb6+nosXboU9fX1mu47fPgwpxoJUiHamxbR3rSI9qZFtDctZre3MIAY4/f7za5CTiHamxbR3rSI9qZFtDctZre3MIAEAoFAIBDkHMIAEggEAoFAkHMIA0ggEAgEAkHOIQwggUAgEAgEOYcwgAQCgUAgEOQcwgASCAQCgUCQcwgDSCAQCAQCQc4hDCCBQCAQCAQ5hzCABAKBQCAQ5BzCABIIBAKBQJBz5JldgUR27NiBZcuWpXzvmWeewcyZMzPef/r0aTz55JPYtm0bZFnG+eefj/vuuw/jxo3jUV2BQCAQCAQ2xHIGUJhrrrkGM2bMiHvt7LPPznhPX18fli1bht7eXnznO99BXl4e1q9fj/vuuw8vvvgiRo4cybPKAoFAIBAIbIJlDaDzzjsP8+fP13TPm2++iRMnTuC5556LGE8XXXQRlixZgnXr1uGOO+7gUFOBQCAQCAR2w7IGEBDy6BQUFCAvT101P/jgA0yfPj3Oc1RdXY0vfelL2LRpk20MoN62fhz9tBnBoaDZVbE8zS1dGDp02PDnFBbno/arY1FYnK/7M+SAjPrtzehu7st6bUX1CJx9biUkSdJdXm/HAI5+0oTgYOZ+4spzoeaCs1A6epjusgCgcW8bTnyUvb2LK4ah9sIxcOe7dZc1NBDAkY8bMdA9qPsztFJcXoSaC89CXoGxeh/9uAn93dlPuR53TiVGTzLmle486cPxHS1QZCXjdfnD8jDpq2NRVFqguyxZVnB8ezO6GnuzXjtqfCkmzB4NyaW/f/d1+XH04yYE/IGM17ncLlR/pQojxhTrLgsAmg90qOrfw8uKUPtVY/0k4A/iyCeN6O/M3k/GzihH1dRRussCgK7GXtR/1gIlKGe8Lr8oD7VfPQvDRhTqLkuRFRzf0YLOk76s1za3dKHc1Y6zppfrLs8IljWAHnnkEfT398PtduPcc8/FXXfdhenTp6e9XpZlHDlyBF//+teT3psxYwa2bduGvr4+DB8+POX9ra2taGtri/y7vr7e+EPoZOOj29HR0GNa+XbjODqZfE7jvg4suOc83fcf2HISH76wW/X1V/37hRg7o0J3eX/5z89w+nCXqmv3/uU4rvvlPN0GV1t9N/74808BqGvv3vY6nPeNSbrKAoBtrx6A98/0v8GvtA1g9j9P1n3/39cfwJ6N6uotuQ/ihifmo3hUka6yAoNBvP2zj+H3Dam6/uQXrfjaD7+sqywAOPpxIzY9+bnq66/431/GxPOrdJe36b92otHbrura3e8ew/WrL4PLrS+up6uxF2//9GMA6vp3d0sfvnztVF1lAcCONw7h8w1HVF0rScC3/n+XoXR06rkrG8GAjP/5+SeqjC0AOP5ZCxY9eIGusgCgfnsz/vL4DtXXV45qEwZQmLy8PFx22WX46le/ipEjR+LYsWNYt24d7r33Xjz99NOYNm1ayvu6u7sxODiIiorkCSX8WmtrKyZOnJjy/g0bNmDt2rVJrx89ehTBoHpPjM/ng9frVX19IoqiCOPHJE4dOG3ouzuyoy37RTHs+eQgOpRm3eW1HlNn/ABAd1Mfdn+xB+58fRNEyxfZV3OxHP2iAfmTB3SVBQANe5t032uEo7tOoGCquokiFQ1e9fVWggo+37oHZZPSe+YyjSf97UOqjR8AaDrUZqh/H9veoen6fdsOw1fYqru800c6VV/b2z6ALz7bg4JifV6Ztr3ZvVqxHNt9EsM86ts+kfo96n/3igJ8/pEX5VP1GUD+7oBq4wcAmg+3G+onx//eqen606dPw+vV35bp8Hg8Wa+xnAE0a9YszJo1K/LvSy+9FPPnz8ctt9yCNWvW4LHHHkt5n98f+oLz85O3MAoKCuKuScXixYsxZ86cyL/r6+uxatUq1NbWoq6uTnX9vV6vqoZPR2AwiL/hOABg1IQSfPna1AafIETDiQZMGD/B0GdsfuZzDA0Eke/KN/TdtX64C00IGQpfvWkGSiqSJ7bThzsjK7/RFVXwePR5SRRFwUfBkKdh5NhiXHBD6j66441DaDvWDQCYNrkOhSX6tvhcTQ04hJCB5/naRIw7pzLpGn/vIP6/NSEPWMnwUkNteTC/Ez0I/V7/4Qdf0v05ahjsG8KW53YBMF7vQwVd6I7U+3wAyR63o5804vBHjQCA8WdPwERPei9JpvGkvaEHO3AKADDunAp4vlad8roPf7UbA92DcEt5hp6t6+9enEKoL13w7TqMPCt5y6mtvhs7/nAIAFBRXgmPR7+X5FPlBACgpLIIX/1u6np/8ccjaDnQCQCYMmlKyt+cGg51nMJ+hIy1afPHp/RcBQaD+OCpkAesuKjYUFseLexBJ0ILhIX3z07puarf3oyDW04CAM4eOx61nrN0ldXd3IvtCH3OWdNH4Zwra1Ne99HaPejr8ENSXIaezff5fpxAaHH25eumYtT40rTXNpxowKwLp6Ps7BLd5RnBcgZQKsaPH49LL70UW7ZsQTAYhNudbOUXFob2LIeGki3JwcHBuGtSUVlZicrK5EGdmuBQdI+2eFQRai4YY2JtrE9fcRtqPMbaaOtLeRgaCCIYyLw/ng055v4J543GyLHJE4QrLzohykP6y4sta9jIgrT95OCWExEDyMjzxfbL0VPLUpYXq3sx2pbh+935Lu6/gQFfVGcUNPCdANF6u9wSai5IPWF1NfoiBpCR8mL7z8izitO206ev7MNA96Dx7ySmvLNnVaCyJlm/VFCchx1/SL7eSHlFpen799FPGiMGEKu2HD1pZMryAjFaO1b9GwBqLjwLrhRaKV9bf8QAMvJssfeOGDM8bVtuf+0A+jr8TMfBcTMrMGZaev1SX3GbacYPYKNEiFVVVRgaGsLAQGq3+ogRI1BQUBCn4wkTfs0KBk42YjufS+d2hUAb7rxQO7MasIGQ8DhTWQA7gyTTtlZsHzI0iMbU1a3m2Ri1Zbp2ZElsvWVGRkKm7yT2PSPlxX0nKsoz+p3IGvuAkWeTZSUi7M40DnJpS4L+HTa4JJeU0vgBEp6N0W830+8p/HxGygISxiaC368RrF27GE6dOoWCggIMG5baxelyuTBp0iTs27cv6T2v14tx48alFUBbCdlGnccphAcaw5OfignJzcEgUTOoAQYnJBUGF6vJCIj3APGG1XcCRJ8703fiYjSRqjG4Y99j6QHi3b/VjoNc2jLNs0kuCZJbMlwWoK5/s1osqfntAtHnVhRAzhItlgk7LeItV7vOzs6k1w4dOoStW7figgsugMsVqnJzc3NSpNZll12Gffv2xRlBx48fx44dOzTnFDILtSt7ATtcjDxAagZtF/GgxsPgUvVsjNqSYhHgcrsQDo5jZSSo/k4IPUBKUMkaLq+6vHReElbPZmb/VmGUMPMUZlq8mPRshsuz0SLechqgn/zkJygsLMQ555yDUaNG4dixY3j77bdRVFSE733ve5HrHn74YezcuRNbtmyJvPbNb34T//M//4Ply5fjhhtugNvtxvr16zFq1CjccMMNZjyOZtSu7AXsiGwRBGQoiqI7VFyrB4iVWzvjIMphyy3tClmS4MqTIAcUphogClz5LgQHZXYre7XfCYGXJNEo0Zu/Rk0fYOaRUdu/GRlcWtoy4A+y8xRm8sjw2C7X0JZ6M6KpXZxZAcsZQHPnzsV7772H9evXo7e3F2VlZZg3bx6WLFmC8ePHZ7x3+PDhWL16NZ588kn85je/iZwFdu+996KsrIzmAQxip87jFCKDghJaJUt5Og0gFROEXTVAavQf4brIAeMTBKUGCAg9U3BQZrayV61bYbUNqmFlr9cAUqUBYvVsKn5LifWgbEtmnkKVBokT29IKWM4Auvbaa3Httddmve6JJ55I+XpVVRUeeugh1tUiQ+3KR8COxJWP3kk3PNCoFTbaSQOkeksiz4UhBI0LKYk9QKyFwhmNUuKVvYuRl0SVBojVFq/KcZDLs6koj5WBT6IBsmhbWgFr1y4HERogeli57VVNfjxc9hbSSEQmCAPPpsgKlGBIq0I1gLpZ1FtRLK/t4B1NxOzZNBjcTMqj1gCpEMs7vS2tgLVrl4MIDRA9rIWbavUfzDRAFAaQyogjFikFzHChh5/JUG6mYFRgTCGC1qUBYqA5cuVJaXVyzLxbFtYAAQxF/hSeQou2pRWwdu1yEKEBooe1UaJW/0ERaWFW1Bmz7TYbeYC0GokAjbaD9URK4m2yqG4lVgOkKPoi6uSgjPCtTtYASW7J0GG4FIgZ1mIIDRA9rI0Sq0RlAeZFndnNhc6i3lrzrQD0K3sWE2mmsiSXBFc4V44DdSuR8s4ETBguy6oaIM79xCpYv4Y5htAA0cPMS6JihSy5pcjxUKyOwqA2uNRM7rKBnDNmuNAjSeBkRXcSOF2pCai1HQwMrmzbkiy2iayqW2HRlqoDGMzUAHEeB62C9WuYY9gphNApsB5oMg1qkiQxCaUN6AqDD6a9Lht6os50TxAqvVssYTGR6kneZyg7N7UObFDdyj6aWNRAf6NuS0I9lRWPsUmsC29PoVWwfg1zDDsJyJwCi0FUUaLJ//IIVsiqB2wTk+7pbUtTtsAYbKWoX9lH8/BQrOwpPZyx77Pa3iNvywK+W27Uv93gUNQTq1qfyFkrZhWsX8McQ2yB0cNiVacEFeDMOJPNa8HibCbVok3Gg5rkQkZhI4uUAmYEArAQgKoWipsY3UOxsmdxqKYVj3pJfE/v85nqKSTccrPDDob1a5hjCBE0Paz39bNOEPnGJwjV6e0ZR+Vky5LN2pNCrQFKLF8LauvNWmya+JmJsOjfIW1U9tPZY9+nMO54RDmGDzxNBZMtMD3byQ70FFoB69cwxxAeIHpYTEhhfQSgYouARcSRxsSEgFERdEjP4cowOQAJg/agzrY02QOkX9sR1bxYKRVCXHl6vxMdBr6xZ6Nty7CmLlOOI4BWKxYbMMHitwvwb0u1yUCtgvVrmGOYIQDNdZgMahrE62GNAbuorPRnO+Ux3iJwZfMAxZwzxUQETZYHiG29M+nAYo1I8m0ivbqVgLr+FlueHFB058pR25bMNG6R3DWZr2PflhkMIEliHlGXl+G7Y9GWap/NKli/hjmG2v1aATtYaCS0JO9jkiuHOJIk3C6ZtgcAWo0ES1j3gUxGcNzERqADY+Lh1PCdsDh/Tk+oOIvkm9kMfLPa0tCz6WlLFr8BG8xf1q9hjiG2wOhhrgFSqZFQZAWyzlw55IehqvUA2VQDxML9r2Xx4mJtBPNOTaBjCwzgL4RndY5fbPbiTJjVliQJOonHQStg/RrmGHbrQE6AxapOS/oC0ogj1pEdWbYI7BoFxmTw17KyZy0UVhtNxNm7BdBOpKzPr8qqcSNuS+b9hHMUmN3SuFi/hjmG3VyIToB5DhiVgxrARnPEe/WvKArkQMhTRR0FRpYIMd+4LkfTyp51qDjnPqBF20G5pcz8/Kps/Zt1W6r0FDKLGOVsTNptAW/9GuYY4jBUepjrVjR4gHh7G5h4t2INEmoNENUWGHEGa5Yr+2yHTjLXrRD3b5I8Vyo9QOQaIEKtGOvfrh0W8NavYY4h8gDRwzwHjEoNEMAo6oyzBii2jtk0EtRtyQo7a4A0bbkSbu8l3qcFygM8ZTl6bp0WjRulp5BJAINLgkutoWyj364RrF/DHEOIoOlhEv6pVwPEIp0+Zw1QvLGlYYvARjoCO2qAtB5NAfA3uBPf5+7hdEW9Xyz6W9YweGJPIcuACS3Re3b67RrB+jXMMbQMNAI2OFkDxGIyUpslF7CzBsiclb0SjHofNJen1gPEIneNTg8QSVtG8g4xMEi09G8CkT/LbSkt/YRJ+gIbLOCtX8Mcw24WtBNwsgZIkqSI14bFZJQtCiy3NUDqDp1MfN+ooagpKovQIEm8T1N5WvRUBreJYuuYTQTNPMKNIqWAyn7CPMu1DeYv69cwx4gMalmEjQJ2MD/hmVoDxHm7JV7YyF8kakY2WWoNEMvJRtPKniJ0m3VG4Wxbbiz7t9XC4BkultS2I4uyAHtIOKxfwxwj0llt0HmcAuujMCg1QNmEjbHlMVkhUySKyyENkJHyVGuAiL0WZmVLpo5ytFtbkmiAbBbEY/0a5hgRd6UNOo9TIHfZM/QAqTGUja6QZQ0eIOaCWztpgHSu7PWUp+XQSVN1K5yPwoitD5MoR4L+bVZbqm1HQ2Vp+A1YAevXMMcQHiB6mOhWdCaK4739EXsNi2fTIoJmEnJtxlEYFAnuDPYBOahBb2RH3Uo4L0+W09lD17DzcGrKdG6ztsy6Nc/aE26DOcz6NcwxIit74QEig/ooDCaRWSqFjQBjDVC2PEA2PQqDuQCU8xaYXtG9bXQrGjycsf1bz+nzej1AdmhLOSgj3CTZ+klswISdtq+NYP0a5hiRjKQ2sJ6dgplh8LxDW2OvYTGxUx+GSvU7YC1M522UaDESJZcUMVzt4N2KvU9L/4YSSiugFWoNEGVbahUlGz181YwABiNYv4Y5hlpho4AdsYOe3cLgtWiA5ICia4UcO6hpShRno1Ba1tmSNenA9HiANBqJRic2PaJkgIFuRcOzxd6nqSy9ea5s0JZa88oZ3i4f0lae2Vi/hjmEFmGjgB2SJBnfJjLpKAwtgxqgcxDV6QFiIYB1ahi80a1CrUZi5FBNuxyFoWEcZNmWmtI82EADpHU72XBKAZt5gPLMrkA2fvOb3+CFF15AbW0tfv3rX2e89sUXX8TatWuTXi8oKMBf/vIXTjVkR6yw0Q6dx0m48lwIDsnkR2EYjczS4tYGQoOoOz+LGycBLSJo5hogWyVCJNQAaZxoDHuAtERlmaQB0ltevAia9rBf3hGjWs+WNL5dHjOH2WARb2kDqKWlBb/97W8xbNgwTff98Ic/jLvH5bL+FwHYz33oJNz5Lgz120MDpEXYCBgXXes+KsBgW2Y75ZwlLL1ykgS43IQaIC0TG3miT77HfCReY7QtScLgtXiLGf52tRiTuvOTCQ8QO55++ml4PB7Isoyuri7V91122WUoKyvjVzFOmBH9IgjBcu+btwdI76AG6Jwg4lb/dCtkyhUkSw2QGt2K0a0UrRogF0MPEO9En4qiQA6cOZ1dh4dTK3qPerFD5mm9GiA2ARPWn8MsW8OdO3di8+bNuO+++3Td39vbq0vwaSZa3ZUCdthJA6R3UEu8V3V5ekWinDMcs4Tlyl6r14JCA8QyWSBvDZDWbMIsvSTZ+rfkloAzlxjNq+XOd2XNcWQ4DF6nBkjWeUiv3Y7CsKQHKBgMYvXq1bjqqqswefJkzfdff/316O/vx7Bhw3DppZfinnvuQXl5ecZ7Wltb0dbWFvl3fX295nKNYrfO4ySMJlPTqwHSMyFpHdSYrpAJzgIzwwPE8igMat2KqvJi+reiKFkn3kzlZTO6zQrd1l2ehv4tSRLcYb2gUU+hGuOOui0Tfgd5Bdr0gnY7CsOSBtBbb72F5uZmPP7445ruKy0txdVXX42ZM2ciPz8fX3zxBd544w3s3bsXzz//PIqLi9Peu2HDhpQC6qNHjyIYDKqug8/ng9fr1VTvMH2tQ5G/u33duj8nlzDS3rEMBQcBAMGhoK7P6+7sifx98PABuAvT//h9jf7I36dbWjWXN9AZiH5WX0/W+7t6otvHBw8cRkl3gabymhs7omUPDmSvrwRAAXp7+nS1pX/gzHehBEh/A5IbUIJAn+F6Z+9DLS2+yN8nG05B9vakvC5d/24/0hf5u62jFV5vIOmauLoNDkT+3rPbm3XrJZGu9mgfOnz0EApOp58Y+9ui41h7a7vmthzqjY63fQPZv4vO7mj/PHLoCFoHizSV13Qy+mz+IX/2+rpCnpH+3n5d/WSgL/T7VyQ56/2tTb2Rv0+dbITk7c1wdTKdR/sjf7d3tmUtr98fvd67ey/yirQZMe1tMd/FscMo6srPeD2r8TsVHo8n6zWWM4C6urrw4osv4qabbtKs47nuuuvi/j1//nzMmDEDP//5z/HGG2/gO9/5Ttp7Fy9ejDlz5kT+XV9fj1WrVqG2thZ1dXWq6+D1elU1fCrajnVjJ04BACpGl+v+nFzCSHvHcqikC70YhCIDM6bP0Cy+PVzYjS6EJhnPLE/G1U/HiB58gSYAwMjSMs317zzlw2c4CQAorxiV9f6uv3vRjNCEWzOhGlVTR2kqr2fHPpxENwCguGRY1vI+LTiBgD+IgrwCXd/NNuUkABlFw4tIfwPbCk5gqD+IfJ313q6cAhBE0fDCrPcXdjXiEEIe56qKKng8tSmvS9e/j/qasA+nAQBnjTsLHs+kjOUdG+lDd0No4p02pQ4Fw7QN/ceH9aIdoclxhmc6CkvST2w9p/uw48w4Vlo8QnNb9rb1YxtOAABGjsp+f++uAzh1pn9OOHsizvZUaiqv33sQx9EJABiuon9/VtiIoH8Qble+rn6yU2oCEEBhUfZ+Vt/fjANoBQCMLh8Nj0fbjkiDvwVetAAAxoytgsczNfP1ZX2RcWzq5KkYNrJQU3knN36GNoSM8zpPHYpHZTZGWY3ferGcj+qFF15AaWkprrnmGiaf97WvfQ3l5eXYvn17xusqKytRV1cX+a+6uppJ+VoQGiDzMCpKlTUIGw3nLdGqAWKZKC7LFgFgXEhpVjJQwwJQLaHbLIXwGvuALjGtzuR9hrf3VD1btE/yjnIMlccmYIKkn2huS9p+aTaW8gA1NDTg7bffxn333YfW1tbI64ODgwgEAmhsbERxcTFGjBih6XOrqqrQ3d3NurrMsdtJuk4iUZSqde9bk7DRaFSWkX19o4niVEwQRpKpmZkM1HASOC2h28QJ7lhOpFkPXzVTt2JQdJ0t03lseYbP8bO6BsiogN0Gc5ilDKDW1lbIsozVq1dj9erVSe9ff/31uPbaa3H//fer/kxFUdDU1ISpUzO7/qyA8ACZB6uVD3VUlpbIjsR71aIlDB4w5knRcso5a4ykQpDlaNSM1tBto0ccUBpckkuCK8v2MPnxDUbbUkMm6NjyDIv8NRokdmtLO8xhljKAamtr8fDDDye9/sILL6Cvrw/3338/xo0bBwBobm7GwMBA3FZVZ2dnkm7ozTffRGdnJy666CKudWeByANkHkbz1+jOXEscBm90UMsWJgwYC7k2cwA1kgpBa2JCpsc3qDGCGXmAKPq35tBthlvKavq3y4AHSJGViJFvRU8hs7aU1LWl2VjKACorK8PcuXOTXv/9738PAHHvPfzww9i5cye2bNkSee26667DwoULMWnSJBQUFGDXrl14//33MXXqVCxevJj/AxhEeIDMw7CXRO/ZRYbD4NUbJAD/RHGAsZQCZi4CjHiuDIVuEx6FARjTAKnq324XJAlQFPpnM6wB0uABUs7kytESMKH3ENvEe/WUR2FwxfYTrakWzMBSBpBRvva1r2H37t3YvHkzBgcHMWbMGHz729/GTTfdhKIibaGRZiA0QObBaqDR7NYmPN8n8V7V5WkVQcd4UrTmnNE6QbAkkgQuoBiqN0UiRL1HYQA6je6wbkXld+LKdyE4qO9sPc0Cb4ZtqUUEDWjPlWMoyaMNDHOzAhj0YgsD6IknnlD12o9+9COK6nBDbIGZh2GjRIMGSHJJcLklyEHFfhogNRNEuA2U0CpZjdGUqn7kW2AJW4VaDo3VunhhqQHSfPQGZw9Q+LrgoGxck0Ph3dK4BWYkYIL6GBtD2+Wcx0ErYI9a5ghiC8w8KD1AsdfZTQOkZYsA0N6WWrc/WGLE/W/qyp7QC0jRv808CkNN/zaSMoPae6v3KAy95WkdB83GHrXMEcRRGOZhZEJSZAWKBmFjbHl2OgpDkqBK72CkLbVu7bDEyETqeA2QhtDt2PKoD/s1LoLOfr0RL4kR75bRZyMJgzcphYVe7FHLHEHryl7ADlZeC7UaCVYeIMrVv9Zn01OemRogI0aCke/EcC4oQk+C2oVZxMCn6N8sk5hq9XAa8RRSRO8ZSJgpPEACUoQGyDxYreq0aCQAmhVyvP5D+wnPWk45T7yOoi1ZYcRIMLSyt7gGSA7KUM50G9V9gJEHSFVbMgoqkNySKuE7M08hoSYHIGpLoQES6EVogMyD2b6+higZwF4aIK36j9h7VZeVKxoglhl+OR+FoWdr3lAyTCNtaaR/azTuAP5tGQ6YAIxFZQH82zI2GahdFvD2qGWOIDRA5mFk71uPbsVIskCzNEBatz9i71VLrmiAXC4poqci13YY2ZZUq3EL58qRFciyNq+jWcc3aDXuAJq2NLRdTtiWdtzBsEctcwShATIPQ7oVHfmbYlfIiqJxgtCqI2CU5FHrgK2nPNtqgPR4SVgZwZwT3OmZ2AxtgxrQABnycBL0bz1taSRggrIt7XYMBiAMIEthRwvaKTAbsHVsE8Wef6WqPCM6AsIQfz3lWeEoDIBoZc8o8zTvozD0bM0bMoKHtJ0HZ/iwX61JHk1qS4p+YqQtzVy86MUetcwRhAbIPAyJRHVM2kZCxclDaTWukJmFwVN7gIjrbeT0ecoweCMaIEDHNmiOaIA0e4upNUA2CmDQiz1qmSMIDZB5sNrX1+Ul4Sy4NTQZaTzlHEDc+WQUK2RWGBr89azsjQiFYydSrdmLCTVAgMGJ1MEaINULCrM0QEYMV5vMX/aoZY5gRxeiUzDmste//QEQCG6JvVuG3Og6VsisMLJVqGtlb0ADFLstqSZ021QNEGFKAa1lKYpieQ0Qi34CqIwYZeXdEh4ggVbMjIDJdQzpVgx6gHh7G1hNRiQaIJuGweta2TPQAKn2yBAa3InXWflYkVj9nZaDXiPlUWiADARMRAMYVOY4Ik4HYjb2qGWOILbAzIP6+AZWExJvDZCRiV1PeWYuAgy5/w0YCcGA/khAii1XIwLvxPtVlac1V44kRTI4805MmHgdiQbISMCEke09oQESUCJE0OZh1lEYAH8NkMvtQnjxRxLiT9yWrDBLAwQFkbPk1KL1zCV2xl12LwJgQlvq1MkYMVx1lUe8oDC0vSc0QAJKIj9GKZSWXUAH9cqHcoUM6BdS6hmw7bqKNEsDBOg3FK245Zp4HUlbhnPlEIRuU/92WXjv9Dyb0AAJSIkMannqhI0CdlDrVlitkLVuSZBrgAhyKrHCjit7XVFZDtMAAfpTCugxuCkj3BLrpdd7p+vZCPqJ2dijljmC1jOXBOyg1q2wGNTUChsB/VsEhjVANjoKw8yVPXcPEKNEnyTZwA0YCRRnzxnyblG3JaUGyIYSDnvUMkeIuCtt0nmcBPlRGAy8JFoMZb2ncxve2rFRNtn4lT3f40kA/UaJIisRzZBVQ7dZZEuWpJB+TQ16Q8WNnOMH2KAtKTVAwgMkMIIsPECmQXl2UeJ1vAc1IOY8IQoNECs3ul01QJwnUnLdisE+oFdLosUAZuEBclpbKooCOaAtiWlswASFnsps7FHLHCFWAySghdmkTagB0jRBsNBIEG+32EoDRLiy12MkSm4J0DuxUetWdIyD4d+CHIxmLleDkzVAehYvAK2eymzsUcscQWiAzMNQtmTqozB0eIB0r5CNGnc20gCZFbqttTw9RqIkSbrPlDLrKAxNW7x6jUkbaID0tqVeUTKlnsps7FHLHEFogMzD5ZIguc4kUyMI/2ThRtcyyIQHUUVWIGtZIRtNgkeQKI4VdsmYrddIJM2VQ9y/KdvSzGNF9Bp3WuYUSj2V2dijljlAnLDRJtaz09D7wyc/CsOABwjQ5nEymiguF4/C0HU8hc6VvRYj0cXAA0Tp4dQyaetuSx26FfKjMHS2pV5RMouIUaEBEmjCju5Dp8Fkm4hzqLgeYSPAaLuFwAOk9ZRzljDLlqx6Yos+H+9tm9hrDWmALOrh1KvhM/MoDEoPkJ6ACTslMdWLPWqZA9ix8zgNveI/Sg2QXmGj7kFUh7eBxQrZnU+fDJSJMN0d3UrNhl5DUfcWmF4PkNE+QOzh1N2WhPmbAP5tqVsDRDgOmo09apkD2NF96DRYeIB4a4D0Dmq6B1GTjsIwQwfHQgNEoVsx6gGiPg5FkyZHjkZx6fVw6m5LQg+n5JLgUmso61ws6dYA6T1WxIaLeHvUMgewo4DMadhBA2R0UAMMiEQJNUBmrCBZHN9AolvRYXDHXmvlozD0joOUeirJJUXOauSdmRkwEAZvcLGkKIAc5KunMht71DIHsOM5Kk5D7963nkFbrwbIqLAR4O8BYnGsiBmLgNgkcLqTU1LoVgx6gBStuXIIk2Ea3bZJ/Iys5elty7CXhCCJqVnPprk8Gy7iLV/L3/zmN5g3bx5uvvlmVdefPn0aP/nJT/D1r38dixYtwooVK3Dq1CnOtTSO3pW9gB2xe9+KonOC4KwB0itspNQASZIEV56kuazY681aBER0YHpX9tS6Fb0TKW8dGIOoLIpnI08poCOJKWXCTIBRW9pkEW/pWra0tOC3v/0thg0bpur6vr4+LFu2DDt37sR3vvMd3HrrrTh48CDuu+8+dHV1ca6tMezYeZxGZJBQEElJoAZd52XZRAOkW3St15AwUQMEGF/Z69atcA7dBgwYXISh23pD/PVGZhltS4pjbJzelmaSZ3YFMvH000/D4/FAlmVVBsybb76JEydO4LnnnsOMGTMAABdddBGWLFmCdevW4Y477uBdZd3Y8SRdp5G48lE7CYcHGr3CRitrgJIMroD68oYQJDnolSVGV/aajFLilb3e6Dw7Hd+gtbyktlS57tHtKdSzVWrXtrQBlq3lzp07sXnzZtx3332q7/nggw8wffr0iPEDANXV1fjSl76ETZs28agmM4QGyHz0uu11TX7EbmZqHYGelAJ6TjlnjZ4QYEVRbKft4B1NpPvZ9PZvFltuFBogHWJ5p7elmVjSAxQMBrF69WpcddVVmDx5sqp7ZFnGkSNH8PWvfz3pvRkzZmDbtm3o6+vD8OHDU97f2tqKtra2yL/r6+v1VV4nQgNkPkY1EhSZmY0KYAGaiCM9KQWs4EIPP6Om3Ewx26UUImgmGiAdmiNXnqQ6N5Nu75bZGqBBbeXpFvlTeArNbksbYEkD6K233kJzczMef/xx1fd0d3djcHAQFRUVSe+FX2ttbcXEiRNT3r9hwwasXbs26fWjR48iGAyqrofP54PX61V9fZj2I32Rv9s6WuH1Dmn+jFxEb3un/Ky+nsjf+737UTQqX9V9A/1+AIAsyarrEhyMDhbdnT2q7+s83B/5u72jXfV9p9u6I38fP3YcfcVtGa6OKa+9M/L3kaOHMeQeUFVmQA7tlQ0NBlTXMTAQbZMBfx+z71ULgWDod6el3kF/tN79/n7V9/Wc8Ef+bm1uTXlfqv596kT0u2xsPoUhrzp9Y7cvet+B/QdR3FGg6r6+3gEAgOSC6meLDSLwdav/jXY3DET+7ujuUH1f8+nob/dE/QkMlatrk7bW9sjfR48fhVzkV1XmYCD03QWHZOzZs0eVYajICsLN4h9U9zsCgN7mqFXW1tKm+r6mhmibNLU0Qfb6VN3X1RNtu0MHDqPZV6iunr7QHCa5gL379qq6h+X4nYjH48l6jeUMoK6uLrz44ou46aabUFZWpvo+vz/UIfPzkyetgoKCuGtSsXjxYsyZMyfy7/r6eqxatQq1tbWoq6tTXQ+v16uq4RM50t2IfTgNABg77ix4PLWaPyMX0dveqTi9+Qu0IfQjnlQzGWVnl6i67zM0AgiisKhAdV3kgIxP0AAAKCocpvq++v5meNECABgzrgoezxRV9+FkPY6hAwAwdsw4TPWcreq2E+9sj7TJdE8djp48rKqu+4vb0d86BATVDUQA0Nflx6dn2mRE2Qhm36sWDpR0oO/0EBQN9R7oHox8lyPKSlXf1zq8C7vQBAAYOaIs5X2p+vfgwcOR73JizUTUeMaoKq/jkz1oQWgSrJ1Yi8pJI1Xdt8vVAmAI+YV5mr6TT9wNkIMKCvOLVN93SmnDbjQDAKrGjIbHo27szWs9gSMIGTNjqs6Cx1Ot6r6m93fiNHoBANPqpuJE2zFVdT1c2g3fGXfRjLoZqryjQwMB/A3HAQClI0tUt0nnSB8+RyMAYETpSPVjTP3RSJtMqB6PyZ5xqu7r/mwvmhAynqrHV+Os6eWq7vO62wAMwp3vVl1HluO3HixnAL3wwgsoLS3FNddco+m+wsKQlTo0lOw5GRwcjLsmFZWVlaisrNRUJkuEBsh8dOfm0aEBktwSIAFQ7HMUhh4NkHwm54ya4yGs4EKPJIGTFciyokrUziQ1AbW2Q8dWitZtSXe+C3Iw6EjdSmJbqjGAjJ7ODli7n+gZB83GUjVtaGjA22+/jWuvvRatra1obGxEY2MjBgcHEQgE0NjYiO7u7pT3jhgxAgUFBXE6njDh18w0cLJhBf1DrmN0oNEyqEmSpCuU1syjMPRGnal9Pr1huyzRo81ikbxPU3ZuYh2Y3uSUET0VcSJE3ZnOORslRjMzA/QaID1h93bR/wAW8wC1trZClmWsXr0aq1evTnr/+uuvx7XXXov7778/6T2Xy4VJkyZh3759Se95vV6MGzcurQDaClhh9Zvr6BlEFUXRHbrtznchOCSTZFuNXyGr17SxmCDkgAwUuLPeY4UokthyA0NB5BVqq7duI5HwKAxAp8hfR/8GQu2ouiwz25KzUcLktzuo5dmiOiy9+akoPIVmYikDqLa2Fg8//HDS6y+88AL6+vpw//33Y9y40D5mc3MzBgYGUF0d3eu97LLL8Nxzz2Hfvn2YPn06AOD48ePYsWMHrr/+epqH0InYAjMfPWHwSlCJ5A7Ru0LWu6ojHdQ0nHIO6GtLKywC9HiATF3ZUyRe1Lmy13OoJpO2tGhKAVM9hYTnqtlpAW8pA6isrAxz585Nev33v/89AMS99/DDD2Pnzp3YsmVL5LVvfvOb+J//+R8sX74cN9xwA9xuN9avX49Ro0bhhhtu4P8ABhCJEM0nT8+qzoDXInL4KrEHSNfkp/PZAJq2ZIWulb3urYaod8mq2g5FViJh/lpX9npyQTFpSz1bYFLIyFdfnnYjwUzvFkl6hrAnvMA+85elDCCjDB8+HKtXr8aTTz6J3/zmN5BlGeeffz7uvfdeTRFlZmAF/UOuo2cVacRzp0cDpFf/oTvxoo7EbYC+QdsKXlCj9dZ9FAbByt7opK3ZA6QjVw6TttThAXLnuVTnOApfn/gZWcvS2b9jAyZ4n+GWWDe1bak3GajZ2MIAeuKJJ1S9BgBVVVV46KGHeFeJOXoHNQE79BwXYUS8bnSCoIw4MuIB0tWWJmeCBvh7gGI9DhQrez1GsF6DG4jZAgsoUBRFlYFh1mG/Wp9Nz2JJb1uGAya06gUpI0b1JgM1G/vU1OFYYfWb6xiO7KDQADFY1enRSOh9Ni3lWeFAYEoNkCRJuo7eYHEYqh7dimYvoA4j2KyjXox4OFUb+AzakjqiTpcX1EYLePvU1OEIDZD5ULq1Y69XzuTKUVUei9BWHYOoXu9W7GdkLcsCvwFd26AG6h0xgvUKhSm3wLR6SfRsJ7IQ7urQABnSuOlqS/XbbYC+fkLZllZYvOjBPjV1OEIDZD7Uk5+e7RbdUTKEB70mXk9hTLKCOn+RLiE8o+R9qsoy4OE02geoNUBaMKstraoBssLiRQ/2qanDERog89H1wzcy+RlcIfMOgzcibNS13WKBZKB6+oCR1a/hZJhaVvaEuhVA53ai0AClRFdKAcLDUK2weNGDfWrqcOzagZyELvGfke0Ps5KpqR2wDQgbdQlurZAHiFAEHVueHhG0pDE3k1m6FYD/RJorGiCKrPGGF2Y2WsDbp6YOxwqr31zHrDB4QKermXPItaEB26Zh8Lp0Kwbqree4CFnvtg1x/zasAeIc4abISiiRqcayEq+n1FPpMe4kCXC5OXsKLfDb1YN9aupwrLD6zXV07euz0gBxjjqjjsqi9qSwwmi9da/sKVITGO3fxDowTcd8uKLeMN6LCcA8DVD4kF4t5RnZmteTwsJO85d9aupwrJAFN9eh1gDpibZgEQJNYtwZDbm2gAiaUgMk64gENLTlSpDmgbwtNW4TGTFIqL0kurRpJnkK7bSDYZ+aOhwjP0YBG6g1QEYNLi3lSS4pkniP99lFAIOke1YIgycwFI3owKhX9nqPwkj8HLXl6TW4eAcUAMYjpSi3lMk9hTaav+xTU4ejV9goYIeZGiDKLQmSrR2baoCo663HKDFNA2TxPhD+/epKukgdBk9oTJJEuFngt6sH+9TU4egd1ATsoN77NqIB0ipsBLQLKZm57G20ijRLAwTwX9kb9sgQC4X1Gt2Uxpam8lhpjjT+fkki3Czw29WDfWrqcPQOagJ2UO99G9EA6dlnN+IBol7955oGCFD3vSiKwiR5n65nI5hIDZWnUVDOzMNJ+GyAdqOExHC1wG9XD/apqcPRO6gJ2GF4UKPQEehMTBh7D4nA22iiuFzUAKloJyWoAEryvWow7N0i9JK4dEgBtJ6tR/7bNdKWRjRAWvukOApDQI1eYaOAHeRHYRgQXesZZFxmeYBslE2WXAOkcWVvpleO8igMPd+/1mNFTO3fnNtSlqNRhVrnFEmS4MozkFLARot4+9TU4RiZ2ARsMJwskNDVbGSCsGrYrhWSgRrWrXDWdhgxtiSXBOlMJCD1URhay9OTTThcnqIAcpBvW5p5rIia8ozmlTOUUsBGc5h9aupwhAbIfMJh4gCNB8hQCLSRLbCAAkXJnnOG+tmskAxUjxHMStuhygAyaCRG+wCt10JreUYM/NjPyVgWIw2QFdvSqEFiKKWA8AAJtGBE2ChghyRJmlc+rASwWr0kRicIrYMo9UGvuXYUBqBya4PVyp5a5K+1f+t4NkNtSR3hxrktjW5Jad0uFxoggW5ihY126jxORGuouFlh8IYnCK1udArBrcU8QNTHoagxgpmt7KnTPHBO8phYnqq2tKsGSGM/MeQpFBogAW/s6j50IpqFlKy8JGpWrEEZis4IIED7hGTWURhmJgM1km8FEiIaG13lcf5OgJiVPXWI/5C6Yz6MaCE1t6VdNUBqxgqD/URogARk2LXzOBGtK2QjA43WQdSoh0SrUWLWURhmriAN5VvJc0GSNIZum7WyJwiD19qWiqIYS/NAqKcyHDBhF0+h0AAJeGNX96ETMaKR4H0MglGNjBEPkJXPLmKJoXwrBF4LZit7gjB4zVuuwaiXSFeaB0I9lZGACVeeZMxQJvQUqg2YEBoggW7s2nmciMvACpn3vr5RAazlNUBW8AAZyc5t0GtBrQHSHAnIWShsxEOSWB7vttQTMMHMUCb0FAL881OZiX1q6mCM/vAF7KCMkjGi/7C6BsjldiG8yNWqATIzGajkkiKre63HRZDoVhit7KGcCb7IAuVRGEYXgka2wIwsKCgCGDQnQmTkKQR0bM/baBFvn5o6GCuE/wpCRDQSwWgm1UwYEjYW6B9k8vLdmsoCTPA2FITqaCcNEBD9Xnifug2YoAEyYgRr7HOa+7fBcVDrFhirttSewoL4t1tA0JYWSGKqB/vU1MFYIfxXEELzXnvsIKoxAshlwM1sdItA++RHIKS0gAYIoK23Zi+JjVb2hqKydD1b9PenxkgwK1KKPMKNYDvRCklM9WCfmjoY2abWsxPRu/ftztceAWRIA0SgI5ANrpCjQsrsZVkpGajeM9OsbpAAtNuumr1bjAzuxM9KWx5xpJSRYz6c3pZmYZ+aOhjhAbIOsT/egJqBZtCAAJbwHCjAvLD7wKAKY8vAKees0ZIETpaViJbG8JYUxXcSW56a7yWcm8klwaUxN5PmxcRQMPK3YQ8nYVta0VNot7Y0C/vU1MEIDZB10Jwrh9HRFLzPLgL0DKJsRKmayzJbA6TBA0QdmWdUt6JX20HRv416OI0cF2GkLdW0oyIrkTB/Ck+haW2pIxmomeSZXYFEjh49ipdeegn79+9He3s7ioqKUF1djW9/+9uYM2dOxnvfffddPPLIIynfe+ONN1BRUcGjyoax0uCf62j1kjA7mkJzlIz2QcbKUTJWSgWhZWuDlZEIEOmydIppdX3/ZyIBFYX+2Sh1MsqZgIlM2cvtFMGZVJ7GfqJVCmAmljOAmpqa0NfXh0WLFqGyshIDAwPYvHkzVqxYgQceeACLFy/O+hm33XYbxo4dG/daSUkJryobxuiqTsAOvQONYbc2gUFiZF/fyKAdzjmTaWC0UhRJYhI4tfU2/J0QiE31Jl7U+5248l0IDsrkmc5JNHUJY0VeQfroLqOCayOeQgpj0sgRJmZiOQPo4osvxsUXXxz32tVXX42lS5di/fr1qgygiy66CNOnT+dVReZYafWb6+g9LkLPllQ454wcVEiEhpq9W6wm9zM5Z6S8DIaEhbygiVuFmcKWWYala44EJNSB6f1O3HkhA0jrNij1YahGkwUGhzIbQCwNEs3PRnhsjt3y2Nmitm63G1VVVfD5fKrv6evrQzAYzH6hBbBrFk0nQukBir3PyRogIHtbWkkHp8X9b+rKntALSNG/mbYlwRaYlpQZ1N5bwxog4nHQLCznAQrT398Pv9+P3t5ebN26FZ988gkWLFig6t5ly5ahv78f+fn5uOCCC3DPPfdgwoQJGe9pbW1FW1tb5N/19fWG6q8Fu4YQOhEtE5ISEwGk13ANlRe0dKZcSQrpObSS2Jb5RemvtVIeES0TqeM1QAZCt2PLIwlLNzFUPFtbMk1gSR0Gz1kLaSaWNYCeeuopbNiwAQDgcrkwb948/OAHP8h4T2FhIa688kqcf/75KC4uxv79+7F+/XrcfffdeOGFFzBmzJi0927YsAFr165Nev3o0aOaPEk+nw9er1f19QDQeLIr8vepplPwezs13Z/L6GnvTLR3dkb+PnrkGDql5rTXxg4MA4P9uuqhSKHPGOjzZ72/8UR35O+m5kYEvT2ayupo7I/ef6oZ+V5/xuv7fH0AQlEd4bppae++gajHdp93HwpK0w83PSejdens6WT6nWqlt7838vc+734Ujkhfb9+paL27ero01zvQHx1buju6k+5PbO+2lphF2vFjaB0s0FRea3t0rKk/Wg9fUWvG68N9fDCQvX+mIiAHAABDA0NZ728+Hu0vzaebIXn7NJXVdXIg8ndL82l4vYGM1/u6o+XtP7gPkiRp6t++3ujvb/++AxhWnp/22r7Tg5G/e3za+4kciGal7+nqyXr/6eb2yN/HG46jQ0k/jqW8vy061jTUN2BgREfG64cGz3zPcvbvORbW43csHo8n6zWWNYCuu+46zJ8/H62trdi0aROCwSCGhoYy3rNw4UIsXLgw8u+5c+fiwgsvxH333YeXX34ZDzzwQNp7Fy9eHBdlVl9fj1WrVqG2thZ1dXWq6+31elU1fCz+fYdQj04AQHXtREz0VGm6P5fR096ZGDxwGCcQmiTGjx2Pak96o9nfO4RP0AAAKB1Zqqseu4paMNjTD5fkznp/4MgRHEVoIJpYMwG1nrEZr0/kpNyKvWgBAJSPqoTHMy3j9XvcrQCGkFcQrZuW9m4aNYh2hIyuybVTUFo1PO21jVI7dqEJADC6qhIej3kavubynWhHaPKdXDsZI8YUp722yd2BL87Uu7KqAh7PDE1lBfxBfIoTAIBhRcOT2jaxvU9v+QLNCE3cU+qmYNTZ2oI75OPHImPN2LPOxhTPuPTXBmV8pIQ84SWlxbr6997iNgy0+wBFyn7/yXocRsjAGz/xbEzzjNdUVkt+B/YgNNGPGjEqa3n78zvgwyAkt4SZM2cC0Na/Wz/chdMIGcu11ZNQPqE0/bVHu7ATjQCAitEVmttSkRV8jOMAgKKCYVnvb//bbjQiZKBNnjYJlTUjNZXnajweGWvOqhqLOk/mHZS/BUN1G16cvW6xsB6/tWJZA6i6uhrV1dUAgEWLFuFf//Vf8eCDD+K5557TFGZ37rnnwuPxYPv27Rmvq6ysRGVlpaE660VogKyD7n19A1EygLU1QEb1H7GflbasXNUAmZgIUcu2je4+oCUVAsu21NK/DW7vAfzbUmvABGVbynL03ESzf7tasU1t58+fj3379qGhoUHzvVVVVeju7s5+oUkIDZB10LL3zUK3oiVZoFkaIN3GnQYtTa5qgFwuKZI/xmpHHBg1uIHoRKrICuQshwszPeZDg8Fl1LgDaNpSU8AEYVvaOYrZNrX1+0N77VoiwcKcOnUKZWVljGvEDhY/DgEbNEUuMcjfFLtCVpQsE4TR07J1Jnk0OmCrKc9KeYDIvSR6jWDOCe5YTGyahMIMk/dp8nAS9G8WbRn+HWpNl8C7La2UwkIrlqttR0ey2CoQCOBPf/oTCgsLUVNTAyAUtVVfX49AICp064wRsIb529/+hv379+PCCy/kVWXD2NmCdhq6B2wG20ThVPlpy2MYAq31oFc92HUQ1Ru+r9tQ1Jl5mvdRGCy25jUZwUPR/s8iL082IhFuBB5Olm1J0U+0tKWVFi9asZwG6LHHHkNvby/OO+88jB49Gm1tbXjvvfdw/Phx3HPPPRg+PCSkXLNmDTZu3Ih169ZFsj7fddddmDZtGurq6lBcXIwDBw7gnXfeQVVVFb773e+a+VgZERog66DFS8Ji2yYxVDzT55CH0hpcIWtJKWClRQC1+1/L6fOUYfAsNUCAim3QHNEAGfYWU2uAtPQTm81fljOAFi5ciD/+8Y9466230NXVheHDh6Ourg533nknLr300qz3fvzxx9i2bRsGBgZQUVGBb3zjG1iyZAnKy8uJnkA7QgNkHfTu6zPxkgzJwLD01zLLzAxtwkbdA3bMeWUUK2RWaBr8WazsdZ6Z5tJx6KRZGiBA40TqYA2Q7gWFWRogLYarzeYvyxlAl19+OS6//PKs161cuRIrV66Me23p0qVYunQpr6pxw84uRKehzWXPbvsDIBDcEnu3NLnRGayQWaFlq5DJyl6DBih2W1LPoZOmaoA4t6WWLVdFUWynAdLTTwCdEaN6vVs28wDZq7YOxUoRMLmOJt0KYw8Qb2+D3smIRANkoVUk5XcCRCcNLSt73R4ZQoM78T4rHSsSq7czctBrpDwKDZCGgIloAIOky1CmTgdiFvaqrUMRW2DWQbduhXhC4q0BYjmxqynPSosATe5/hkZCMKA+EpDZlquKsgB7eDglSYLrzIG7mspi8GwkGiAtARMst/ccrAGyV20dipX0D7mO7gggggnJ8ArZ7UJ4MUgS4k/clqwwSwMEBZGz5dJh9Mwl/caddi8CYEJbqtTJsDRcVZVHvKBgur3nYA2QvWrrUCI/Ril07pLAPKhXPpQrZEC9kJLFgG3XVaRZGiBAvaFohy3XxPtI2jKcK4cgdJv6t6vHe8fi2YQGSMCVyKCWp0/YKGAHtW5F7wrZ6JYEuQaIIKcSK+ywsmcSleUwDRCgPqUAC4ObMsIN0Oe9Y/JsBP3ELOxVW4di9MwlATuodSt6BjW9wkZA/RYBcw2QjY7CMHNlz90DpDPRJ0k2cIZGAsXZc5q8W9RtSakBsrGEw161dSgRd6XNOo8TIT8KQ4eXxIih7NaxQmaytWOjbLLxK3u+x5MA6o0SRVYiGiG7hG7ryZYsSSG9mh7UhoqzPMcPsGBbUmqAhAdIYARZeIAsA+XZRYn38R7UgJjzhCg0QHrd6BbyAGnSrXCeSMl1K4z7gFotiREDWI8HyGltqSgK5ICxJKaxARMUeiqzsFdtHUqsBkhgLronbUINkKEJQo9Ggni7xeyFgFVX9iyMRMktAWonNmrdCoNxMPzbkIPRTOapcLIGiMXiBaDVU5mFvWrrUIQGyDpoypbM4yiMTOUx8ACpXiGzNu5spAEyK3Q7W3ksjERJklSfKWXWURiGtnjVGpM21ACpbUtWomRKPZVZ2Ku2DkVogKyDyyVBcp1JpkYQ/qnHjW5kkAkPooqsQM60QmadBI8gURwrrJoxm5WRSJorh7h/U7almceKqDXujMwplHoqs2ByFlgwGERXVxeGhoZSvj9mzBgWxTiSOGGjzaxnp+LOdyHgD1rvKAyGHiAgNHC5Ct0pr2OdKC4XjsJgcjyFypW9ESPRpcMDROnhNDJpq25LBroV8qMwVLYlK1GynohRsxcvWjFkAO3fvx9r1qzB559/jkAgkPIaSZKwadMmI8U4GisN/IIQ7ryQAUSRvE+t/oOFsBFIntzz0hhAzAXeGlbIek45Z4nubMm6J7bo8/Letom9V5MGyCYeTrUaPjOPwqD0ALEImLBTElOt6DaADh48iHvvvRdutxsXXHABPvroI0yZMgXl5eU4cOAAOjs7MXv2bJx11lks6+s47Nx5nIpa8R+lBoiVsFH1IMrA26BnhezONz8ZqC5huju6daoVtYYisy0wtR4g1n2A2MOpui0J8zcB/NuSmQaIcBw0C90G0K9//WsAwLPPPouamhpcdtllmDt3LpYsWQK/34+nnnoKH3zwAR588EFmlXUidnYfOhU9QmHeGiBWg5rqQdSkozCsoIPTowGi0K2w9gBRH4eSUZMjR6O2WHk4VbcloYdTcklw6TWUVS6WmGmA1B4rYuNFvO7a7tq1C3PmzEFNTU3ktfBJxoWFhfj+97+PyspKPP/884Yr6WTsLCBzKmrFf5QaINaDGqBBJEqoAbLCClLP8Q0kuhUGBnfsvVY6CoPVOEipp5JcUuTsRt6ZmQENYfCMF0uKAshBvnoqs9Bd297eXowbNy7y77y8PPT390c/2OXC7NmzsX37dmM1dDh2PkfFqajd+2YxaKvVALEWNgL8PUB6jhWxwiIgNgmc6uSUFLoVxh4gJVuuHMJkmKy3bRI/M6k8Vm0Z9pIQJDE169mylmfjRbzu2paVlaGnpyfy7/Lycpw4cSLumsHBQQwMDOivXQ7AamUvYEfs3nfYq5kKyigZVsJGSg2QJElw5UlZy4p93yqLgIgOTO3Knlq3wmoi5a0D0xGVRfFs5CkFGCQxpUyYCehsS4v8ftWiu7Y1NTU4fvx45N+zZs3Ctm3bsHv3bgDAsWPHsGnTJlRXVxuvpYOxc+dxKpFBQ0EkRUEqmJyXZVENEDPRtVpDwkIaIED7yp6ZboVz6DagweAiDN1mFeKvNjKLdVtSHGPj9LY0A90i6IsvvhhPPvkkWltbUVlZiRtvvBFbtmzBvffei9LSUvh8PsiyjO985zss6+s47HySrlNJXPmkm5TDAw0rYaOVNEAss8kOIUhy0CtLtK7sDRmlxCt7tdF5dj6+IVt5rNvSSlmu7dqWZqDbAPrnf/5nLFiwAKWlpQCAKVOm4PHHH8fLL7+MU6dOoa6uDtdccw0uvvhiZpV1IkIDZD0S3fb5RamvYzL5EbuZqXUEalIKsDjlnDVqQoAVRbG9toN3NJHqZ2NocKsqj1oDxEAs7/S2NAPdBlBeXh7Ky8vjXps1axYeffRRw5XKJYQGyHpo1UiwzMyctizGAliAJuJITUoBK7rQw8+cMTdTzPYohQiaiwZIhebIlSfpzs2k2rvldA0QAw+Q09vSDOxVWwciNEDWQ6tRwjIzc9qyeIQJE3qcVG+3WWQAVeMBYm0kAjTaDq0TKYm3yaa6lVgNULqACTkoI/yWkzVAkoFkoGZh+CywtrY2HDhwAD09PZDl1I20aNEio8U4FqEBsh5ajRK7RGUB5kWd2c2FrqberPOtAPQrezUTqZGyJJcEl1uCHFQcqVuJlHcmYELKSzYAuGxJUbcl535iFroNIL/fj1/84hd4//3301q+iqJAkiRhAGVAaICsh2ovCYMVsuSWAAmAYt2jMFhM7vKZnDOpVohWdKFHksDJCmRZSSly55KagFrbocLgMrot6c53QQ5mPlvPrrqVxLZM5QlkfTo7YK1+wmIcNAvdBtBzzz2H9957DxMmTMDll1+O0aNHw+1OfbCiID1W1D/kOloHGiODmiRJcOe5EBySLRUGzyPqLBiQkVeQPEaw8m6xJNH970pxaCyP5H0Zs3MT68BYJacM9Z8gTdSh2rbkpKdKFTAhPIXWRbcBtGnTJtTU1OD5559HQUEByzrlFFZc/eY6agZRRVGYaCTC9weHZJpEcXo0QKwG0YAMpDKArLgFljCx5aUygHgYiQTCdEoNUOz95AY3hZ5KhVHC47eb2SCJ7sgw0ycSeArNQHeNfT4fLrzwQmH8GERsgVkPNdlrlaACMBA2xpZHrQEKDgXTlxce1AwKG9W0pRUXAfETaep2MnVlT6EDG2Szso/qqdL3Ny5taZGUAuF2NFwWcRJTreeqWeW3qwXdHqCJEyeio6ODZV0AAEePHsVLL72E/fv3o729HUVFRaiursa3v/1tzJkzJ+v9PT09ePbZZ7Flyxb4/X7MmDEDd999N+rq6pjXlQVCBG093PnRCV/Vqo7RClltZAfNKpLt6h+gaUtWmLWyp4gEVOMFVGQlEuZvdGWvJheUmR5Ol1u/ga/GKDHTu0WSnsHGGiDdNb7hhhvw4YcfJp3/ZZSmpib09fVh0aJFuP/++3HTTTcBAFasWIENGzZkvFeWZSxfvhx/+ctfcPXVV+POO+9ER0cHli1bhoaGBqb1ZIUV9Q+5jpqBhtV2RGx5qiM7KBIvMkjcBtC3JSs019thGiCWCzNVW2AmRTm68126cxwB6gwuVgZJJGAiQ1mJ5fEOg2eVDNQsVHuAdu7cGffv0aNH48ILL8T3vvc9XHfddZg2bRqGDx+e8t7Zs2errtDFF1+clD366quvxtKlS7F+/XosXrw47b0ffPABdu/ejYceegjz588HACxcuBA33ngjXnrpJfz4xz9WXQ8qWLkrBexw50f1HukmpLgJooB2gqD0NrD0AKlqS4ssAjR7rgi3GhLrp7k8Fc/GytgCom0jB5RIZHAi7IS70d+uqiSmjLxbsZ+ZCKu2jAuYoIgYVdNPYpOBGhwHzUC1AbRs2bKUHVdRFLz00ksZregPPvhAV+XCuN1uVFVVYd++fRmv27x5M8rLyzFv3rzIa2VlZViwYAHee+89DA4OWk6zJDRA1kPNCpmlbsU8DZCKFTKjZ8tUnhWTgapZ/bKqtyRJUSG8ym0i3it7ph7OBCM41khJVQ/Ko15YejjTGviM2zI4JJNH1NnJe6sF1QbQzTffbMhVqJX+/n74/X709vZi69at+OSTT7BgwYKM9xw4cABTp06FyxX/RcyYMQNvv/02GhoaMHny5JT3tra2oq2tLfLv+vp64w+hAqEBsh6Ubu3Y+5UMuXK4hLaqGERZ5IBJ/Myksiz4G1CzsmdZb5ealT2n0O1UsPTKJRrBqQwgLt40FRogpho3VW1pbA6NLJYIIkbVtKUVFy9aUG0A3XrrrTzrkcRTTz0V0fy4XC7MmzcPP/jBDzLe097ejvPOOy/p9YqKCgChrNXpDKANGzZg7dq1Sa8fPXoUwWD66IVEfD4fvF6v6uvbTrdHyzp+FC0D1vJQWR2t7a2G0y29kb9PNZyC4vUlXdPbPBj5u7uny1AdBgb7I3/v3rUn5UDS2hLtJ/Un6tEuN+kqq799KPJ3e2tH2noHBgMAgKHgYNw1Wtu7oysaKHHk0FG0BRqTrmk5Fm3flrYWeL39SddQ09EZU+/DR1O29+lj0X5yuq0FXu+A7vIUKTSRDPT507Z3d1dP5PUDh/brnnDaG/sifzeeaoI7RXvH9hNfb4+h/t0/EC1v7559yC9ONoBamqLt3XCyAd35p3WVNeiLjtVd7el/l4P+0PMF5YCh/t3W0Rn5++iRY+hytyRfczT6/K3trfB6h5KuUYuM0PP5BwbT1rOroyvy98EjB5E/TF9+vs5T0X7RfKoFXu9g0jX+7kDk797+Xs39hMf4Hcbj8WS9xvBRGLy47rrrMH/+fLS2tmLTpk0IBoMYGsrccfx+f8otrvBrfr8/7b2LFy+OizKrr6/HqlWrUFtbqymCzOv1qmr4MC0ffI4WhCaAaXVTMXJssep7BdrbWw1HfU04iFYAwOiKKng8k5KuaSnoxOcITeYVVRWG6nB8ZC+6Eeqb06bUobA4P+matq270ITQBDhl2mRUTByhqyxfWz924BQAoKS4NGW9FUXBR8GQB7S4ZHjcNVrbu3/PAZxCNwBgwtkTMN4zOukaV3MDDiHkfT17wjhM90xQ/0CcGNh7ECfD9R43ARM8VUnXHGg5Eekn4yaMwwzPRN3lfV7UjEDfANySO217HyroivSTc2bN1J2eoGHoNPYhZGBUjKqExzM16ZqOEz2RflJeOcpQ/z41agAdCE2mUyZNQXHFsKRrurfvjbT3pCm1GDNtlK6y/L4h/B2hwJzhw4rT1vtTOXTNsOIiQ/176PARNCBkcJw9djxqPWclXXO48xT2n2nvcWefBY+nVvXnJ7J72GkMdvfBpbjS1vNYkQ+dCBnjnpkzkF+kb5pvlNrgRcigKx9VDo9netI13c192I6TAIBR5SM19xMe47cWDBtAra2t+Otf/4qDBw/C5/OhpKQEU6dOxcKFC1FZWan7c6urq1FdXQ0gdJbYv/7rv+LBBx/Ec889l3YrrrCwEIODyVZq+LXCwsK05VVWVhqqr16EBsh6qNkCYyleVxVyTSiCZnXKOaBScGvFPECEIujY8tSIoI0eOmmGbiXyuZy3lHNBAwSo1wvyPlaEVYi/WRgygP7whz/gmWeewdDQUNx5YH/+85/x/PPP4+6778Y3v/lNw5UEgPnz5+Oxxx5DQ0MDJk5MvdIqLy+P0/GECb8W3gqzEuIoDOuhSv/BUgOkRpTKIwkexYCtMZzcKosANeJtlvUOl6cmDJ6VsQXQPlvG8gjTPCiyEkpkarCsxPsp9VRqjDtJAlxuRm1powAGLeg2gN5//32sXr0aI0eOxHe/+12ce+65KC8vR3t7Oz7//HO89tprkfcXLlxouKLh7SufL1mPEWbq1Kn44osvIMtynBB67969KCoqwoQJ5rvWE7Hi6jfXUSWC5rD6B/hHnVFHZVF7Ulihtd7MVvYUqQm09m+KPsDqmA9XyDumyAr3xQSgI2CCUT/JeEgvqwAGNd4tC/52taC7xq+88gpGjhyJF198ETfddBNmz56NiRMnYvbs2bj55pvxq1/9CqWlpXjllVc0fW6q7NKBQAB/+tOfUFhYiJqaGgChrbf6+noEAlER1mWXXYb29nZs2bIl8lpnZyc2bdqESy65xHIh8IA1c6DkOmqSqbFMYKkm2oJHCDSJcac15NoivwHKMPjY8uQzkYCpYJaagDjNA3lbZtkmYmmQUHtJ1IxNZnkKrfLb1YJuD1B9fT2uuuqqtLqZqqoqLFiwAO+++66mz33sscfQ29uL8847D6NHj0ZbWxvee+89HD9+HPfcc08k2eKaNWuwceNGrFu3DmPHjgUQ2iZ77bXX8Mgjj+DYsWMYOXIk3nzzTciyTB7FphaWP0YBG6g1QFoNLiPlSS4JLrcEOZhhhcxy+0Nr0j2L/AYoj8JIVV5eqkNjTVrZszoKI/Fz05XHwuAK+IPqdCsEBglTT2GCBzflIb1meQot8tvVgm4DqKSkBEVFRRmvGTZsGEpKSjR97sKFC/HHP/4Rb731Frq6ujB8+HDU1dXhzjvvxKWXXprxXrfbjUcffRRPP/00Xn/9dfj9fkyfPh0rVqxIqxsyG1bCRgE7zNQAUW1JyMEgzdaOTTVA1PVOMkpSGECmaYBs1gfCv990xh0v7xZFzjAtxiRJlmsL/na1oNsAmjNnDj766CMsXboUeXnJHxMIBLB169asRksil19+OS6//PKs161cuRIrV65Mer20tBTLly/H8uXLNZVrFqwGNQE7qPe+tWiAjAobgbBRk36FzM1lb6NVpFkaICC7kUA5ibIoj/LAUCDahyiNrYzl8dIcZfn9kkS4WfC3qwXdNb7rrrswbNgw/PCHP8SePXvi3tu9ezd++MMfYvjw4fje975nuJJOhtWgJmAH9d63Fg0Qi332rBoJThogO+kIzNIAAam/F0VRmGmAND8bwUTKtLwsgnJuHk7CZwOyGyUkhqsFf7ta0O0Buu222xAIBNDW1oZ77rkHbrcbI0eORFdXVyRzckVFBW677ba4+yRJwquvvmqs1g6C1aAmYIfmQY1CRzDErp9EBLcUxp0a75YFV5GmaoBStJMSVAAl+Vo9aPZuEXpJXAykANnO1iP/7bJsSw0LCqbn+OX6URiJKIoSOaQ0lsRcO7H5gVL9O9dhJWwUsIP6HCgtomsWg4zLLA8QgUaCFeQaoCwrezO9cky3eLP0ARbff/gzVIXBU/dvzm0py9EoQqNziiRJcOVJkAMqUwpYZPGiBd0G0Pr161nWI2cRGiDroTlZIKGrmeUEYZWwXSsmA9WsW+Gs7WBpbEkuCZJbghJU1HnlKHQrjDIzx5anKIAclJM0c9QaIMq2ZJ1Xzp3vghzIEDBhwcWLFuxXY4chNEDWw+WOuuBJTgLXsEJmOUHIASWlR5b62ayYDFSNEcxL25HSAGJsJEb7AK3XIlt5LA382M+NK4uTBsgKbcnaIMkqKLf5URj2q7GDYClsFLBDkqSsQmFeAthsXhLWE0S2QZS3ZwNgGyXDCrOOwgDSbG1wWNkDJoj8s/VvBs+mqS2pI9w4tyXrLals2+U5owFau3atrgIkScLNN9+s616nw1LYKGCLK8+F4JBMowHSEAbPfIIYkuHOj885Q34UhsU9QNTHoaQygrmt7KnTPGTzcLI28DkbCaZqgLL0E6aewlzXAL300ku6ChAGUHrs3nmcjDvfhaF+mkipbIOoHJShMDSUs01IZh2FYaVkoFryrUAK1Z1ZeZy/EyBmZU8d4j+UOgiGpcg/a1s6RQOUaqxg3E80HStiw0W8agNo9erVPOuRk9i98ziZbCtklgNNtkGUtYckm1Fi1lEYVloEaMq3kueCJBkM3TZrZU8QBp+tLRUlKsZmOWkD/PVUmgMm7OopdKgGSLUBNHv2bI7VyE2sGP0iCKFFI8H8GITEshhrZLR4gCiPwrDSIkBTvhUCrwW3lT1BGHy2tpSDUa8QkzQPhHoqLQETrjyJraFM6CkMB0wk1j9nNECZCAaD6OrqwtDQUMr3x4wZw6IYx2HF6BdBCJeGFTLvfX3W/STrhEStAbKiB0hLdm7GXgtqDVCqiY3yKAyWHpLE8ni3ZThgIjgk0+Q40pAugaWnEAiNhYl6QbvLOAwZQPv378eaNWvw+eefIxAIpLxGkiRs2rTJSDGORWyBWRfKKBkt+g+7aYBcbhck6UxOlixtaSUvqOSS4HJLkIPpk8DJhB4gXit7KKFgDCkvw8qec6g4ay+Cli0wVguKTAETLAMYsiZC5OQpBFIHTNh9DtNtAB08eBD33nsv3G43LrjgAnz00UeYMmUKysvLceDAAXR2dmL27Nk466yzWNbXUdjdenYyEY1EMJRZNVGcy1LY6GQNEBB6vuBg+hWyFTVAQOjZ5WCGJHAsQ7dN0gABoedI9Lzw0slQGSSpPjtVHVgtKDIGTIQ9haw9MhS/XeLFGTW6DaBf//rXAIBnn30WNTU1uOyyyzB37lwsWbIEfr8fTz31FD744AM8+OCDzCrrNOx+kJyTSdxrzytIv/JxMYwAotAAadERsEq8GBzMkFLAghogIPzsQXINUEovCeeVfX5R/PtMNUDZ+htzD1D095jKSGDeltlSCrBMYUHelpkNLrvLOHTXeNeuXZgzZw5qamoir4WzyhYWFuL73/8+Kisr8fzzzxuupFOx4iGQghBqjRJ3vvEIIGoNkKZ0+gwH0bQRQBb2AAH0GiDeR2EAGsW0nJNh8jC4U312qjqQHC3DK8TfgW1Jje4a9/b2Yty4cZF/5+Xlob+/P/rBLhdmz56N7du3G6uhg7F753EyaickFoOMllUdcw0QwZZEpgnCyslAMyWBU2QlVHfYU7eSbSsl/JokIeksLc1lZQkVd4IGCFBxzAdrgbcD25Ia3TUuKytDT09P5N/l5eU4ceJE3DWDg4MYGBjQXzuHY/fO42SyhiXz2v6gnvwIVnXhCcJuA2imYwCYb0uaoFtJ9dmJdWCuN3KoBijxc8MoshIJ83diW7JMBmoGuluopqYGx48fj/x71qxZ2LZtG3bv3g0AOHbsGDZt2oTq6mrjtXQoQgNkXbKKUhlu22SN7OC5/cE5URyQeSvJyl7QTBMbc2G6Fq0FRdQZQ6+F5JYAKXtZAM1RGLw0QOGAiVi4Re/BGm3JMhmoGegWQV988cV48skn0draisrKStx4443YsmUL7r33XpSWlsLn80GWZXznO99hWV9HITRA1kXtgaHU+/oUiRB5aY6yebestgiIZktOTgLH63T2xM9O9RpF1BlL3YokSSEhfJpQcZ4eTgqjO1PABMtoUYDeA5Q1ZYZFAxjUotsA+ud//mcsWLAApaWlAIApU6bg8ccfx8svv4xTp06hrq4O11xzDS6++GJmlXUaVl795jpZhcIMBbCSS4LklqAElazeBubCRkLBraKEzjWL1ZRYOYok0QiOzYHC63R2gD4MnreBH/6c4JBsOd0Kl7aMMYCokzxy9RRm2iq12G9XLboNoLy8PJSXl8e9NmvWLDz66KOGK5UrsF7ZC9ihdkJiNkHkuRAIBsmPwshaHgeDK9YAsvIiIDFjdqwBZGa+FUqDi9XERqkDozwKA8jclmamsCDxFNrcA2TPWjsEKw/+uU6mQTRW2MjKa5FJb2LaURiMhI2Z3OhWFkGrrbftV/ZZ0jywQK0OjFK3knit7vIytCXPJKaW8BRaNIWFWuxZa4cgM3aPCtiRaRDloVvJlEzNrKMwWAkbM0W5WTkQIFO9zTJIEq/Vi+qVPSsDP4MOjOsWWDYNEOe2ZK4ByqbfM8lTaNcFvD1r7RDEFph1yTQh8RCvuzJ4gPiuIpWk91kPapnc9lYOBKD0XFlJAyQHZSiMczNl9ABx3nJNKi+c48gtJR1xo6u8DFvKPPV7lIfmApm/O7su4O1Za4fAemITsCPTqo7H1mU04sg6GiBWg1qmCcnK28CZtgqpMzNTrux5jEsZNUDEaR5Ynz1H2b/DAROACmOSc1uyTgZqBvastUMQHiDrknFfn4PXwooaINb6D0BogNLhckW9EWav7HmMS+HPUWQFcoZcOcy9JEQRbomfHfk3j7ZUaUzybksnzF/2rLVDEBog65JRA8RBtxKrAQqfqRcpj6cGiHOSx8TPERqgDOURbhNl1K1w8ABl+j2ZFQbP2rsV+9lheLal2SkFnLCDYc9aOwQnWNBORbUGiLVORkHErRwpn6MGiGKFrFokarFBNNO2FBcvoNqVPedIKZ4ifyCLl4QwESJrfRNAHDBhclJJKycxVYvuPEC82Lt3LzZu3IgdO3agqakJI0aMwMyZM3H77bdjwoQJGe9999138cgjj6R874033kBFRQWPKuvGCRa0U1GtAeKhIwjIabepKFfIXDRAmcKELTaIUmuXXJlW9jYO3QayGJNO0gARtiV5luuEgAkrJzFVi+UMoFdeeQW7du3CggULMHnyZLS1teGNN97A7bffjmeeeQaTJk3K+hm33XYbxo4dG/daSUkJryrrhocnQcCGjHvfHLc/wp+fXxR9j3U/yTQZ8RA2ql0hW20QVavtIFnZx3qAGORmymjgc9StZCvPjhogs9oya5Zr3hogCy9e1GI5A+hb3/oWfvzjHyM/Pz/y2sKFC3HLLbfgd7/7Hf793/8962dcdNFFmD59Os9qMsHK+odcR/XkR7xC5n0UBk8BbOLnJ5Zvtd9AxlBxjtqOjLqVfPa5mSh1K0CWtuTs4VQUhavGzVIaIMIs13bVsFqu1rNmzYozfgBgwoQJqKmpQX19verP6evrQzAYZF09plh59ZvrZPrhcxHAZhIKE4bB8wyBTvx8gE9bsoI6FUIkVDyTboVAlMzDKM2YUoDwKAwlqACcchwB9BqgdAETLkY5jlSL5S3221WL5TxAqVAUBR0dHaipqVF1/bJly9Df34/8/HxccMEFuOeee7Lqh1pbW9HW1hb5txZjSy9OcCE6lUyDKM8weIC/5kj1doQIg4/8TdkHMmVL5rIlRd2/OW+lSJIEV54EOaCQbLmaqaeSgwrceVFDh8cZhZGybPTbVYstDKD33nsPp0+fxq233prxusLCQlx55ZU4//zzUVxcjP3792P9+vW4++678cILL2DMmDFp792wYQPWrl2b9PrRo0c1eZJ8Ph+8Xq+6a7t8kb/3H9zPZG8/19DS3po+95Q/8ndrS1tcGa1HeyN/n24/Da/XD6N093RF/j544BCKuwqi73X2RN87fBB5RcYGm9hVo6+nN+7Z/F2ByN+9fcltq6e9m1ui9T9x/CQC3u7oe42d0fdONcBX1Krps3nS0hL9fZ5sOIWgN/ocTac6I3+faDyBXm8bjOIfHAAAKAqwZ/ceSC4p0t7+gUEAgKwEmfT3vtahyN9tp9vjPrPjSH/k7/bONibldXZ3RP4+fPAwTg9ERW6d7Z3R944eQkGr8WlJOvMT6esdiKv/UF90LO/z9zHp363N0fHg1IlGwBv9d+PJ6O/6VNMp+L2dmj47FQP+6Pfj3eWFuzA6Hgz0nelDksLkexvojI4H7W0dcZ/ZdWwg8ndHV7uu8niN3wDg8XiyXmN5A6i+vh6PP/44Zs6ciUWLFmW8duHChVi4cGHk33PnzsWFF16I++67Dy+//DIeeOCBtPcuXrwYc+bMiSt31apVqK2tRV1dner6er1eVQ0PAAcLOgH4AQmYeY6Hyd5+rqGlvbXQXtKDL9AEABhZOjKujIPtJ3EAoYl63Nlj4fFUGy6vc5sXzQhNuNUTalA1pSzy3pHCbnQhNNh4zpmBvAJ3qo/QxKf5JxAcklGQVxj3bF2NvdiOkwCAURVlSW2rp73z20/iMNoBAGNGj4HHUxN5r2fnPpxAaJKonVyLsTPK9TwOFwo7T+EQQoZNVWUVPJ7ayHu9X+yP1ntSDcZ5jEeYHhvpQ8+JkDE9bUod8ovyIu29XTkFIIii4YVM+nt3cx924hQAYETJiLjPPNbbhL1oAQCcNW4MPJ7Jhsvr/WI/GhEyICeOr45rr4ZhfWhHaFKf7pmOotKClJ+hhc8KTyE4OIQ8V17cs/V2DGAbTgAARo4awaR/H+ttjowHoytGx7XXwN6DOI5OAEBN7URM8FTpeZw4Gsr6IuPB1MnTUDQi2l6fS80AAigoymfST/o6BvDZmfGgZHhp3Gc2DJ3GHjQDAKrOqoLHM1Xz5/Mav9ViaQOora0Ny5cvR3FxMX7+85/D7dY+8J977rmhAWT79ozXVVZWorKyUm9VdcH60EkBO8g1QJl0OZyEycEhmaSsPJvqCFRvS/LQyQRkxCohw98TMw1QAe2zkbdlmlBxLqJktW3JYOECqNuaJcnhZeHfrlosW2ufz4cf/ehH8Pl8eOyxxwwZJ1VVVeju7s5+ITF2P0nXyZBrgFQIhV15EjNDOV3EEY8JgrotWWHWcRFAemEytQaIh+iaMlQ8k8DbjiH+gDpjUmiA1GFJD5Df78eDDz6IhoYG/Od//qdq8XM6Tp06hbKyMiZ1Y0l0YrNn53Ey5EdhEK7qYj+LIrsrdVuyIlMSOO4Tacz3oMgK5HBuJoJJlMfKXs1xEZIEuNxsn89sgTd5W7IO8Sf23FFjuVoHg0H89Kc/xZ49e/Czn/0M55xzTsrrWltbUV9fj0AgKtLq7OxMuu5vf/sb9u/fjwsvvJBXlXXDY2ITsEH1URiEJ0qzXGW51KyQKSYIC68iM+YBIlzZ8z6agmJlryZUnKUBnC5ZIM9z/ACaRJ/p2lJRFObHfLjcLoSdzuIoDAKeeuopbN26FZdccgl6enrw5z//Oe79K664AgCwZs0abNy4EevWrYtkfb7rrrswbdo01NXVobi4GAcOHMA777yDqqoqfPe73yV/lmzwmNgEbDBLswCkn5CYThBqVsgUWwQWXkWarQEKw8NIlNwSIAFQiDRAKkLFmRr4kWSBChRFiWwd82hLymM+gPRtKcecIci6LYODMsl2OTWWM4AOHToEAPjoo4/w0UcfJb0fNoBSsXDhQnz88cfYtm0bBgYGUFFRgW984xtYsmQJysutE10SRhYeIMtCPqip2JJgOcikWyFzcdmr1X9YbBClrne6lT2P/iZJEtx5ISE8hQZITVsy3eJN8HC5891JZdtVA5SuLXktJtx5IQNIHIVBwBNPPKHqupUrV2LlypVxry1duhRLly7lUS0usM7uKmCHyxXKpKrImZOpkRwYymGCCA+iiqxAlhW4zmSN5f1smQZRq7nRVR+FwdkI5mUkhiMBqTOdp9PJ8NC4AaG2jBhADtAApfUADbH/7QLpAyasvHhRiz1r7QDihI0WG/gFIdL+8HlPfoP8twjS6RZiy7ZrCDQrMtU7wGGySXdcROx3wtJIdKXxApoV4cZy0k7bljyO+bCMpzCY8hpW5cV+fujf1l28qMWetXYAPAYZAVvUCCl5h4origI5EDKUeWiAAP7eBjUh/gCbU85ZQn/IZcyRBoE03wmHPkAihCf2cKbzyvB+NvKw+3T9hIMxSTEOUmPPWjsAK0e/CEKkTaZGuELm1U/SDqK8V8gZJj+rJQNVs7JndegkkN5Q5CU2jRj4BNuSag6W5da/07UlYQoLgH9bctMAEY6D1Niz1g7ACe5Dp6MqlJbzCpnXoJZ2EDUpxN+KOjg12iVeXguZ0AOU5JXj3AdiP1+WFSgyXw9n2rYk9HBKLimiszNcXrotMA76PSD6fBSeQmrsWWsH4AQBmdOJbBEQZwFOmwOGlwYojZCS8pgPK64gM0bmMT6aIvGz0upWeGxtmBjlyMu7RakBklxSKK0AUhj4nCPc0omguQRMKIAcTDM2WfD3qwZ71toBWFn8KQiRbu+b8rgIXoMapQYo3WQE8AnxZ0XGJHC8I5cIPUBKMOqFSSqPc6QU722bxDK4tWXYS0KQ48isZ0sqT3iABHrhkUlWwJbYvW9FSTNBcNYAcQuBJtQASZIEV15ymH3sv626CIjowNKt7Kl1K7wmUt46sHSTKMcQ/1Rl8G7LtJ5CDtF7AH+BN6CyLS36+82GPWvtAHiEGwvYEhlElNAqOQzvdPpmaoC4ia6zpBSw6iIg28qem24l3TYowcqeiwZIRZJHXs9G2ZYUWa6d3paU2LPWDkBogKxPthUyL2GjmRogntlkgfRnJVl1EZBtZc/UKCVe2aeLziM9voFX6DZhGHxseWkj3Cg0QA5pS0rsWWsHIDRA1ied257L5EfsZqbWEaRKKaDISsSzZtUBNFUIcOyhk07RdvCOJkr7bJwN7qTyqDVAHMTyTm9LSuxZawfAa2UvYEc2DxBJZmbOAliAJuIoVUoBO7jQXSk8V3GHThKIoEk0QCk0R648iVluprTeLadrgDh4gJzelpTYs9YOwAkCMqeTzSghycxMESZM6HFKu91m0QE0lQeIt5EI0Gg7sk2kJN4mh+hWYjVA4YAJOSgjHDvhZA2QxDAZKDXWHHVyAKEBsj7ZjBK7RmUB5kWd2c2FnqrevPOtAPQr+1QTKcuyJJcUOerEibqVSHkxARMkW1LUbcm5n1Bj35rbHKEBsj5pvSQcVsiSWwLOLKKschQGj8ldjsk5YwcXeiQJnKxAPlNvktQE1NqOFAYX623JVNtETtGtpGpLbgEMZmqAOI+D1Ni35jbHDvqHXCfbQMNyUJMkKWUorZlHYfDa3olMEJy8WyxJ5f6nSN4np1vZE2y78kpOGdFTESdCTJvpnLNRIjyF1se+Nbc5dlj95jqpBlFFUbiFbqdcIRN7gCgmCDnFCtmqq8hUExuJkUggTKfUAMV+HrnBTaGnSmGUUPx24w2SqDifmz6RwFNIiX1rbnPEFpj1SRUGrwQVgIOwMbY8K2iAWJ5yDqRuSzssAlIZiqau7Cn6AKeVfSoPJ0lbmpRSgPqYD24aoCzGpFV/u2qwb81tjhBBWx93ftQASLmq47RCtoIGiNezxZZnBw9QqonUVA0Q5z6gKArkAPvT2WM/zyoezrAom0l5ZnkKibcThQZIwAQ76B9ynVQTEq/tiNjy6DVAwcjfPE45B+jbkhXx9Q6e+T+BV84kDRDP1ATRLbBofzPLw+nOdzHLcQSk0bhxOu4oNmCCYnsvlXeLVzJQauxbc5vDa2UvYAe1biVrlAyht4GnB8i2GiDO2o5sWw2J1xguL8Wz8TK2gGhbyQElkiuHW1tmCYNnbXCn8hTyasu4gAmKLbBU/STIR29EjX1rbnOEBsj6UOtWzNIApdqS4PVsseXZTQMkp6o344nNlZecK8cs3QpzL2AKI5hb4s0sYfC8jDsgxsAnaEvKc/xiy7BDElM12LfmNkdogKxPXr478neq0G13AZ9BTYnJlUMS2ppqhcxTA5RKS2PRRQClBggA3Gf6HEXiRervJJURzK9/J/92AT5HUyR+Xuq2ZJsp2ZXCA0R5FIbMcRykxL41tzlCA2R96Ce/LAMNSw1QmhUyL2Fjyq0kG3hBqfMXpRLCkybvI9AApSuPVAPEU+NG2JZmRYw6ZQFv35rbHKEBsj4pf/g8J78sK2TeuT14ChtTbrfYIBloqj7A8xy/rEJ4zkccUGiAgJi2dEiUo1ltSRIxatPFixrsW3Ob45QO5GRS5oDhaLimTKZGKILmdco5kEZIaQMdAaUIOra8VCJo1odOmqVbAfhPpNk0bjyjHCnbkiQMPtvCzKK/XTXYt+Y2xw6r31wn5RYYweofSONq5hxyTRHiH1uOHRYBKXUrHOud6rgImde2DXH/zqoB4pxUUpGVyEGl9BogPm2ZyriTJMDl5uwptMFvVw32rbnNscPqN9fJdsAhxYTEq59kjcqiToRo0d9AtnpzW9lTpCbI1r+JdWBMQ/xdUW8Z78UEYJ4GKO6QXl4BDKm8Wzb47arBvjW3OXaIgMl1qDVAqc5m4qYBojbusoVcW/Q3QBkGH1uenCISkOuWK0FqAvK2TNgm4mmQUHtJUmrTTPIUWvW3q4Y8syuQyN69e7Fx40bs2LEDTU1NGDFiBGbOnInbb78dEyZMyHp/T08Pnn32WWzZsgV+vx8zZszA3Xffjbq6OoLaq8cpeRScDLUGKJvBxbI8ySXB5ZYgBxXuZxcBKpLuWfQ3QHnIZdryTFrZ8zoKI7Yc3kZ3wB/kHlAAZI+U4r2lnFfoNs9TaNHfrhosV/NXXnkFmzdvxpe//GXcf//9+MY3voHPP/8ct99+O44cOZLxXlmWsXz5cvzlL3/B1VdfjTvvvBMdHR1YtmwZGhoaiJ5AHbyEjQJ2mKkBotySINnasakGiLreqYwS0zRANu8D4d9vyqSL1GHwhMYkSYSbDX67arBczb/1rW/h97//PZYtW4Z/+qd/ws0334z/+q//QjAYxO9+97uM937wwQfYvXs3VqxYgVtuuQVXX301nnjiCbhcLrz00ktET6AOXoOagB3Ue9+ZNECshY1AspCSzGVvo1WkWRogINlIoJxEeZRHeWAoEO1TlMZWXHlUmqOE3y9JhJsNfrtqsFzNZ82ahfz8/LjXJkyYgJqaGtTX12e8d/PmzSgvL8e8efMir5WVlWHBggX48MMPMTg4yKXOeuA1qAnYQb33nUkDxGOfPZMHiHr1b1UdgVkaICD0fSiKQpK8L+WzEUykXMtLEJSTeTgJnw1INkpIDFcb/HbVYIuaK4qCjo4OjBw5MuN1Bw4cwNSpU+FyxT/WjBkzMDAwkHEbrLW1Ffv374/8l83YMgqvQU3AjqyDGoWOgFNiwtjPJBF4Z0sUZ9HfgakaoCEZigxASX6PBVm9W4ReEhcHKUDi2Xrkv12ebZlhQcH1HD+CtqTEciLoVLz33ns4ffo0br311ozXtbe347zzzkt6vaKiAgDQ1taGyZMnp7x3w4YNWLt2bdLrR48eRTAYVF1Xn88Hr9eb9brBgZA3KqgEVF0vSI3a9tZD0B/9kXd39sDr9aLxVGfktZONJ9DvbWdWXmtbd+Tv+mPH0Tu8DQN9fgCAIsnMnzMgDwEAhvyhPth5pD/yXkdne8ry9LZ394mByN8tzafh9QbR0dYZee3IscMo7LDecNRzwh/5+3RzK7xeLzpaOyKvHTl2GEVd+alu1Veeryvy98H9BzHkjpY/4O9n2gfCJ7IDgK+7F16vF6dORPtgU3MjAt7uVLfqouV0T+TvhuMnMejtQp/vTJ9zg3n/HgyE2i44FPrtdDdE+2BndwfT/t3bFN1daD3dBq/Xi7bT0bHhWP1RtPQVaP7cdHT3dEb+PnTgEIq7CyJRg/4hP/O2lNyAEgT6evrg9XrR1BD9LptbmqB4fbo+l+f47fF4sl5jvREngfr6ejz++OOYOXMmFi1alPFav9+PgoLkThZ+ze/3J70XZvHixZgzZ05cuatWrUJtba2mCDKv16uq4f+unAQgo2h4karrBalR2956CAZkfIKQ13BY4TB4PB707T6ABoQmqZpJNRjvqWRX4Il6HENoch07Zhymes7GDqkRQBCFwwqYP+e+knb0t/VAkUODxfGBFnjRAgAYM7YKHs+UpHv0tvfpwk7sRjMAYNSIUfB4PDjx7na0oQ8AUOepw/CRhQaehg+tw7qwC00AgJGlZfB4PDj5p8/QGlPv4lFFzMrr+HgPWtALAKiZWIuTbccBhCbSEWWlzPvAx+4GKEEFBXmF8Hg8GDp0ONIHJ9ZMQI3nLGZl5Z0+gSNnnmXM6DHweKqx230a/RhCfkEe82c7XNqN3sZBQAGm101Hk9IR6YNVY0bD40ke1/X2746RPnyORgDAiJKR8Hg8aP7rTpw+811Omz4VI8YUG3iaeLq370UTQkbHxAk1qKwZgb/hOACgZEQx87bcVnACQ/1B5OeFxiG5/ljku5xQPR6TPeN0fS7P8VsNljaA2trasHz5chQXF+PnP/853G53xusLCwtT6nzCrxUWph9gKysrUVnJcDLLgtAAWR+XO+qSpzgMNWMINM8tsIASpzWJfY8VTjgKg1K3ApzZAos5noSLDizPhUAwmDIbOIluheM4mNiWVBogM9qSd0SlO8+FIaRJKWDR364aLFtzn8+HH/3oR/D5fHjsscdUGSfl5eVoa2tLej38WngrzGx4ChsF7JAkKUkoTCWATdQR8J4gEgdR6oNerboQMOsoDCDUPnIg5nw2HkZwolCYSuSf2L85PFtSW1JlOjdBA8Q7KstFOA5SYsma+/1+PPjgg2hoaMB//Md/oKamRtV9U6dOxcGDByHLctzre/fuRVFRkapEihQoQYWbsFHAlsRQcbPC4LlPEEOEEwTBCpkVZh2GCoS+ezmY+j1m5SUIhcn6N+ckj4nlyZyNBLOOwgiXwzsqKylgwgYBDGqwXM2DwSB++tOfYs+ePfjZz36Gc845J+V1ra2tqK+vRyAQiLx22WWXob29HVu2bIm81tnZiU2bNuGSSy5JqQ8yA6d0nlwgPNBQREolDqJyUIbC0VBOnJDMOgrDyslAM+VbgRSqO7fyAvFbYFxX9tQh/kOh55J5ejgT2pI6D5DM0cOZNFZwnlMyHiti40W85TRATz31FLZu3YpLLrkEPT09+POf/xz3/hVXXAEAWLNmDTZu3Ih169Zh7NixAID58+fjtddewyOPPIJjx45h5MiRePPNNyHLctYIMkqc0nlygcQVMs+BJnEQ5e0hSTRKzDoKw8qLgIz5VvJckCTGodsJfSB2C4zryp4gDD6xLRVF4ZvmIZMGiCLRZ+xiibOnkEIDBNDkVKLEcgbQoUOHAAAfffQRPvroo6T3wwZQKtxuNx599FE8/fTTeP311+H3+zF9+nSsWLECEydO5FZnrfD8IQrYkkkjwfsYBN4amUweIMqjMKy8CMiYb4XAa8HbA5Sxf/PMJzMkQ459Ng5tmVEDxPrZMgRMuPIkvoYyZ+9tbHnhgAmnaIAsZwA98cQTqq5buXIlVq5cmfR6aWkpli9fjuXLl7OuGjPsEP0iCOHKsELmva/Pu5+YrgGygwcoU3Zuzl4LOcEDxFsDlBQJyFkozNNDklgeby9JOGAi1tNEZigTaoCAFIszC/9+s2HfmtsYsQVmHyijZJI0C5w9hZQaIJfbhfAiOFEDZGUvqOSSIqv7xOMiKDxAMpEGCEooOIPyKAzeXoRMW2A8FxQUAQyJv10qDRCQYnvewr/fbNi35jbGKdZzLhDRSAQVKLLCVdjoZA0QkCKU1gYeICCFAJRn6HZSHqDU77GC0ug2yyABkkXQPBcUiZFS3D0yFL9d4sUZFfatuY1xykFyuUDSXnvsd8cxAohCA5RJR8Az8aKdNEBAilQIRB4gmTAPEMDf6M70W+LjAYr+PkPbiTQLiqQtMN6GMklbJmzNOkTGYd+a2xg7HAIpCJHOKHHns48AotYAJeoIqLYkIhFANvcA8datJGaCpjaC+YbB0xncAK2RkBgGT6IBclhbUmHfmtsYp3SeXCDdCpnHIJPR2+QAjUTsBGGnZKCxSeAUWYkYJRS6Fe4eoIStlLARLEkh3RbTshJCxZ2qAUo65oO3wNuBbUmFfWtuY5zSeXKBJFEq1fYHhUGS6N0i0hHYbQCN1S5x35bMEAZPaQRz1xs5WAMUPGMohwXsTmxLnslAKbH2yONQhAbIPiQJkzlu2yRFdhCJkgH+ieKA+K0kO3lBYyc27sL0RK0F5y2wdFsbPJ5NckuAlFwWQHMUBpUGSA7yPVgYMNdbLCeMg6ylAJRYe+RxKEIDZB/SHRhKva9PkQiRSnOU6N2y+iIgmi1Z4T/RJB1xQBQGj/CWG7/+LUlSnBCe0sNJYXTHtuVQf/SIJvKxgmBxZpcAhmzYu/Y2xU6r31wnSSjMUQAruaSIO5kkUVyGZGo8JwhFAQL+aHy31RcBsW0xNBAzsZGIoKPvkSS44zyxxQrhzdSt8G7LwRgDiCRhJu+2TGNw2fkYDEAYQKZgJ/1DrpNOBM1tgogRUlJ6gCiyu8Z+Ju8VMktchPVO0loQHYUB8Bf5x36uqboVTuW5CT1AZh2FAcRHjFr9t5sNe9fepggNkH1Id34RL8M1Vm9i2lEYnISNsYNl7ArZ6ouAdPWmWNkrREdhAPETKW8PkJm6lcT3mJWXxgNEkcLCrKMwrP7bzYa9a29TnHKQXC6QbvuDl+Eam0zNrKMweAkb03mArL4IoPRcmXYUBhJW9rwM/BgdGOkWWKIGiHNbcu8nifo9k47CsPv8ZbnDUHMBsQVmHyhXdUBMyDXxURjBIYX7oOZymAeIYqKRFc5h8DHPEBgMQuGcmynOA0Qpgo75PUluCZKLzsPJW79HcRRGOk+h0AAJNCO2wOwD5aoOsIYGiNegJjRAKspKWNkrhBqgIQoDP1YDRJzmgffZc5T9Oy5ggvrYnEGZazJQSuxde5siPED2Ie2g5mANEG/9B0DTlqxIV28u2cBdUe9EKA9Q6nqwgtooDX+uIisIDEYfjruXhDDCDaBdLFFHjMZFQgoDSKAVoQGyD3Fu7T4Ha4A4J3lM/FyKtmRFunpTCIUVwjxAcc/G2cAHiHUyBP3bla6fcG5L6pQCFM9Ghb1rb1OEB8g+UK+QIxOSAgQG+ObKoV4hp91OtPhvgLresSt7mfAoDAphOqVHNV0iRN76JoC2LamTStopgCEb9q69TREaIPtALdxNK7omXCFTaIB4PxtLqOvtilnZU4bBU4r8k8pzmAaINGCCOMu1nQIYsmHv2tsUcRSGfTBLI0FRXuygFhgKchc2Ok4DRLCyj/MAccjNZJbIP7E8J2iAzGrLpCzXIompakQYvAmIozDsA2VoK5B+peWEQS1tW1r8N0C9so8VwktBKfIa79xMlM+WVJ4DNEBmtWWSBohztCDFOEiFvWtvU4QGyD6YFdlBUZ5ZIdBJ5VncAKJe2UdCxWO2wLhtSxJ7t9L2Ac5RjgF/ECDKcQSYpwFyccpxRP0boMLetbcpQgNkH1xWWSFz9gBReGScdhQG95V9TBg8hcHtNA+QJElw5UnJZTnEAxRnlJwJTXdKP6HC3rW3KTLnpFUCdlgmSobHBOGWAClFWcSJ4qy+CKCud7g8RQH3oyksowHibHSTRnASlZeqLak9hXafv+xde5sS5wHiIGwUsMMqUTI8BjZJkiLPQRndlFSexVeRZnmAACDo5yxMJ45wI2/LFP2bYvFiljeNup8IDZBAM7EnLvMQNgrYETcZDfL33MXlLhnkrxWLCG4H+UaRABmezeKrSBdxvWPLkwk1QBR9gLwtU/RvEsN1kL/MIfF4CoBmYWan32427F17m+KUk3RzgXQTAcUgGqkDJ2EjkPr5KFb/ca9bfBVJXe9U5VEY3CTlUbelg/t3qs+l8G6ped0u2Lv2NiW8r29392EukG5QoxxoeBrKKSdbwgEbsJcGKBbSPkCwsqcoL+XnSogc7Mm8PML+nXaxRGhwkRt3Fv/tZsPetbcpsVtgAmtDvfJJNSHxNJQpDS7qyZYVVvAAUUTmmVWeO4+fFIDUS2KFxRKvccntQqqvyOqLl2xYLhFiX18fXn31VXi9Xuzduxc9PT1YsWIFrrzyyqz3vvvuu3jkkUdSvvfGG2+goqKCdXV1EeQc2SFgB/XKxwoeIAoNULY6WAnqlX3KbUluE1tqw4PSwOf5/acsj7p/O6gtY/U/gP3nMMsZQF1dXVi7di3GjBmDKVOmYMeOHZo/47bbbsPYsWPjXispKWFVRcPIwgNkG9J6LYhXyLwQGqDsWMJLwqksSZLgznfFRabyLC+lR8YhHk4rLJZ4t2WSAWTzOcxyBlBFRUXEW7Nv3z7ccccdmj/joosuwvTp0znUjg1BoQGyDS5XSICsyEr86w4QNgLEGiBiQ4IV1Ct7M4zgJAPIAQLvtOVRa4BEW1oWy9W+oKCAyVZVX18fgsEggxqxRZGVyAGHdreecwXKgYbarU36bDbdAqNe2adqJ2oj2Am6FYC2LZ2sAQJo+wkVlvMAsWDZsmXo7+9Hfn4+LrjgAtxzzz2YMGFCxntaW1vR1tYW+Xd9fT2XugVFFmjb4c5zhc4SSniNS1nEqyxLiEQtngyUPFIqP7k9uBrBJkedOcVr4XgNELHBRYGjDKDCwkJceeWVOP/881FcXIz9+/dj/fr1uPvuu/HCCy9gzJgxae/dsGED1q5dm/T60aNHNXmSfD4fvF5v2vcDA1EDqH+gL+O1guxka28WyJKc9NrR+iNo8uUzL6u9sS/pNf/gALdn7B3oTXqtqbkRsrcn5fVG2nuwN/l3JLmBvXv36vo8Kob6UtTbBezdx6fere1dSa919XRy6wNBJZD0Wn3DMbQFGpmX1XVyIOm1wcAgt2fz9Sb345bWZni9yb8zwFj/TtxGDHPg0H4uebxOt3Unvdbt6+bWloHgUNJrx0/Uo1Nq1v2ZPMdvj8eT9RpHGUALFy7EwoULI/+eO3cuLrzwQtx33314+eWX8cADD6S9d/HixZgzZ07k3/X19Vi1ahVqa2tRV1enug5erzdjw/d3+fEpGgAAI0aNUPUlCdKTrb1Z8EVRC4Z8/XGvTZs+DaWjhzEv60SwFftwOu61kpEl3J6xcZQfHYh/tok1EzDJMzbl9Ubae7BvCH/HibjX8gryLP8bGBoIYFtCvd35bm71luuP4jg6414bXVUJj2cGl/K8w9sw0OGLe21q3RSMGl/KvKzmvA7sQfyEWVw6nFtbtv5/X6AV8cbO+AlnY5pnfMrrjfRvWVbwyZmxPYwkATPPmanr87IhnTqOY+iIe61idDm3tjxQ0oG+0/FG0JSpk1E5aaTuz6QYvzPhKAMoFeeeey48Hg+2b9+e8brKykpUVlZyr0/cFpjN3Ye5gtmZeZ2yRUAZccYS6u8kpW6FWtvhgMzMAK0GKFXABFftFrWeyoEaIHvXXiVVVVXo7k52F5pBrJvUDoO/gHbv2wph8E4RbbJCcktAwg4GtdiUXANEKfJ3UlsmfLaTDBK7/n4zYe/aq+TUqVMoKyszuxoAojmAABEGbxeEB4gNkktKEjzbYREgSVJSmzhpojE7WaBT0jyk+myn/HbTlmeD328mbFv71tZW1NfXIxCICvg6OzuTrvvb3/6G/fv348ILLySsXXqEB8h+UA7aTj4KI9Vn22URQLmypw43NjtZoFOiHFN9tlM8d+nKs/sWmCU1QK+//jp8Pl8kLH3r1q1oaWkBAFxzzTUoKSnBmjVrsHHjRqxbty6S9fmuu+7CtGnTUFdXh+LiYhw4cADvvPMOqqqq8N3vfte054klzgCyyeCf6yQOKpJLgovT6exmGyTp6sCKkMETjaqyyyIg0VBzUrgxpQbIyUdhpPpsngY+9bNRl0eBJQ2gdevWoampKfLvLVu2YMuWLQCAK664Iu2xFgsXLsTHH3+Mbdu2YWBgABUVFfjGN76BJUuWoLy8nKTu2RB5gOwH5eTnZA0QQOtJYYnZHiCn5AFy8lEYqT7bSR4Z6rakwJIG0Pr167Nes3LlSqxcuTLutaVLl2Lp0qW8qsUEeUhogOwG6eSXYxoJu7jQSTVAJq/sXW6JS94awHxRMkC7oHCUoexAD5C9a29DhAfIflBOfma77AHaLQm7DKC5ZAQ7xduU7rMp29JJYvnEz5Y4GspU2GP0cRBCA2Q/HL39QS24JZxsWUKqATLbK8exLMklhdIKxJbv4LYk1+SIxYsm7P8ENkN4gOwH6eSX4lwsJwkbKScIlpi+sneQUUppcDm5Lc3WUzlh/rL/E9iMOA2QAzpQLkAZui1JUk5Ntnb5DTjZC0ipWwGIjQShAeJWnl0WL5mw/xPYDHEUhv2gXiHnUtSZXVaRpAnuTD4Kg7dRSukFFBoghuXZdPGSCfs/gc0QiRDth+krZAcJG+26iqTUP1BrO6i3NiiTBZrelg7qJ9TjIAX2fwKbIQsPkO1w59Me32DmFkGeg56NJWZrOyhX9o7q36k8QCl0dszKK0h8Nje3slL9Vp2ib6LC/k9gM4JCA2Q7KEWbqcqjXCFTP5tdcmGZngfIQdoO0m2iFJO2JHE0gAh/u6kO6aXccnPCAt7+T2AzRBi8/TB9heygyA67riIpv5OU2bkJt1Koo8BIkzxyHnMp2zLVIb2kbWmT324m7P8ENkOEwdsP6r3vxPKcdDSFXXUEpCt7SYIrj27bldzDaeIWmJNC/AGT29Imv91M2P8JbIYsPEC2w9EeIOoIIJuuIqmTwJnZB8ijHCmfjdwg4Zsp2dS2tMlvNxP2fwKbEesBssvgn+s4eVVHHZZu1ygw6jPMzAy7d5QGyGQPkJPb0gnzl/2fwGYIDZD9cBe4E/5N7EZ30BZY0gTBuS1ZQe8FjO9zlOfPOclISGxHJ4X4A8RtmfBb5R0xSoH9n8BmCA2Q/aBe1VFut5ieA8YmiwAzt1IktwQXz9xMDvZwUmZxBxzeljaN4MyE/Z/AZoijMOyH6as6B08QdlkEUG8VxpbnpKMpAHMPlnValGNsW0oS4HI7py0psP8T2AxxFIb9MHtf30lHU9hWA0RtKMaU5ySDO9Xncw3xd8VnNnfSlhQQ/zxOOsKECvs/gc0QR2HYD+rIJdIweOoB26ZCSjPFtE7ack31+ZQGF3lbOujZ7BrBmQn7P4HNEB4g++FkD5DkkuKOBhAaoNRQ19tl4sqeu4FvosFFnuaB8Nmc5t2iwP5PYDPCGiDeh04K2OFkDVDi5wsNUGqc7AEyPRKQ0OBy9LM5LMKNAvs/gc0Ie4CcYD3nCmZ6gHgLG4EEwa3QAKXEyRogs4XCTvKSmLlYIl+82OS3mwn7P4HNCGuAnGA95wpmaoAo9tlJdQRCA6S5PHKvhdPKM9PD6SBDWWiABIaRhQfIdjhZtJlYhtP0H6xwtAaI2sCPfTYCKYCZHk7KxRL5OX7CABJoJewBcoL1nCuYKdqkGGScrJFghZONYCd7LZLKc3Bb8p5TEg/ptcviJRP2fwKbEdkCc0DnyRXMPDCUfIJw2AqZFeR9gNAIllwSJMJIQErdSmJ5TtYAkXiLiccm3tj/CWxGRATtgM6TK8SGiQPE2x/UE4TDcs6wwsyjMEh0YCZFnVEb+EIDZLA8YuOVN/Z/AhuhKEokDN4uA78g5Po1KzMv+QThsBB/Vjj5KAyAtg9QP5vQADEsT3iABHpRggoUJfS3XVz/ghBmnc3k9AnCLgsBMz1A1Ct7x3m3hAaIXXnEBhdv7P8ENkJkgbYvZnlJnDxB2CkZaFy7SIjTzPAuz2kre3IPp9AAsSvPYR6gPLMrkEhfXx9effVVeL1e7N27Fz09PVixYgWuvPJKVff39PTg2WefxZYtW+D3+zFjxgzcfffdqKur41zz7IhzwOyLWToZ6jB4J2XlZUmikShJnEO3TVzZk4r8Hba95+SEmYDQAHGnq6sLa9euRX19PaZMmaLpXlmWsXz5cvzlL3/B1VdfjTvvvBMdHR1YtmwZGhoaONVYPbEeILEFZi9yRgPksBB/VlBuEwImr+wJ88mQpHmgXLzEeAZdeRKpoew0TyEFlnuCiooKvPHGG/j973+Pu+66S9O9H3zwAXbv3o0VK1bglltuwdVXX40nnngCLpcLL730Eqcaq0ceEltgdkVogNhA/WysIA/dNlMDRNgHnNaWsQET5B4ZBxrmvLHcExQUFKCiokLXvZs3b0Z5eTnmzZsXea2srAwLFizAhx9+iMHBQVbV1IXYArMvQgPEBpfbhfCi2E5eUMklRVb3TvQAmZUM02mJEIGoUec0z11SeTb6/abD/k8Qw4EDBzB16lS4XPGPNWPGDAwMDGTcBmttbcX+/fsj/9XX1zOvnxBB2xcn62TMyjxtt9+Am7DeQgPEDrPO1iP3yBBvJ9ppAZMOy4mgjdDe3o7zzjsv6fWwR6mtrQ2TJ09Oee+GDRuwdu3apNePHj2KYDCoug4+nw9erzflez0n/ZG/O3s6014nUE+m9mZJfpUMHAJKxxdi/4F9XMuSgwoKSt0Y7AlCKfNzf77giD4AgLtQwun+U2j3NqW9lkV7j5hYiI5D/SgaK9nqN1AysQAdB/oxbJyLe739UgCSC1BkYKCoi3t5eaNDY9zwMfk4XH+Qq3ZFkRUUjcrDQEcAUvkg92cbKu4HALjyJbQPNaHHezrttSz6d/H4PAx4B1E8Lo/7sw3KQbjyJMgBBf7hPdzLc1cEAADDKvJw7NRhSI3G+gnP8dvj8WS9xlEGkN/vR0FBQdLr4df8fn/Se2EWL16MOXPmRP5dX1+PVatWoba2VlMEmdfrTdvw/uohjK08G8EhGSOqhqOiZoTqzxWkJlN7s2TGdAWtV3Zh1IRS5BW4uZc39T+nwdfaj4pqgj7iAWZe0INhIwpRNCL59xMLi/au+/F0tB3rRuWkkXDZJAweAKb/23S0EtZ7Wt007NuzH1++NHlRx5oZMxS0/UM3ys4uQV4hQf9+rA7dzb2oqB7BXSgMD+A534fCknwMG1mY8VIW/Xv6NDnUT2pHwOXm7yWZ9sQ0DPUHMHJsMfeyZsxQ0LagGyPHFiO/yLj5QDV+p8NRBlBhYWFKnU/4tcLC9J2/srISlZWV3OoGAIXF+Zh4fhXXMgR8kFwSRk8uIyuvsDgfhcX5ZOWNGl9KVpY7z4WqKWVk5bHCRVzv4lFFGFZO0wckSULlpJEkZQFAwbA8VNbQlVd2dglZWdT9ZHhZIVCW2bBjhSRJqKyl+954Y/9NvBjKy8vR1taW9Hr4Nb3iaoFAIBAIBM7CUQbQ1KlTcfDgQciyHPf63r17UVRUhAkTJphUM4FAIBAIBFbCtgZQa2sr6uvrEQgEIq9ddtllaG9vx5YtWyKvdXZ2YtOmTbjkkktS6oMEAoFAIBDkHpbUAL3++uvw+XyRrautW7eipaUFAHDNNdegpKQEa9aswcaNG7Fu3TqMHTsWADB//ny89tpreOSRR3Ds2DGMHDkSb775JmRZxq233mra8wgEAoFAILAWljSA1q1bh6amaCjuli1bIl6dK664AiUlqQVtbrcbjz76KJ5++mm8/vrr8Pv9mD59OlasWIGJEyeS1F0gEAgEAoH1saQBtH79+qzXrFy5EitXrkx6vbS0FMuXL8fy5ct5VE0gEAgEAoEDsK0GSCAQCAQCgUAvwgASCAQCgUCQcwgDSCAQCAQCQc4hDCCBQCAQCAQ5hzCABAKBQCAQ5BzCABIIBAKBQJBzCANIIBAIBAJBzmHJPEBWwO/3AwDq6+s13Xf8+HG43W4eVRKkQLQ3LaK9aRHtTYtob1p4t3d1dTWKiorSvi8MoDSEM1GvWrXK5JoIBAKBQCDQyvPPP4+6urq070uKoiiE9bENnZ2d+PTTTzF27FjVh6jW19dj1apV+Ld/+zdUV1dzrqFAtDctor1pEe1Ni2hvWijaW3iAdFJWVoYrrrhC173V1dUZrU4BW0R70yLamxbR3rSI9qbFzPYWImiBQCAQCAQ5hzCABAKBQCAQ5BzCAGJIRUUFlixZgoqKCrOrkhOI9qZFtDctor1pEe1NixXaW4igBQKBQCAQ5BzCAyQQCAQCgSDnEAaQQCAQCASCnEMYQAKBQCAQCHIOYQAJBAKBQCDIOUQiRAYMDg7iV7/6Ff785z+jp6cHkydPxu23344LLrjA7KrZmr6+Prz66qvwer3Yu3cvenp6sGLFClx55ZVJ1x47dgxPPvkkdu3ahby8PFx88cW49957UVZWRl9xm7J3715s3LgRO3bsQFNTE0aMGIGZM2fi9ttvx4QJE+KuFe1tnKNHj+Kll17C/v370d7ejqKiIlRXV+Pb3/425syZE3etaG/2/OY3v8ELL7yA2tpa/PrXv457b9euXXj22Wdx4MABFBcXY8GCBVi6dCmGDx9uUm3tx44dO7Bs2bKU7z3zzDOYOXNm5N9mtbcwgBjwyCOP4IMPPsB1112H8ePH491338WPfvQjrF69Gueee67Z1bMtXV1dWLt2LcaMGYMpU6Zgx44dKa9raWnBfffdh5KSEixduhT9/f149dVXceTIETz33HPIz88nrrk9eeWVV7Br1y4sWLAAkydPRltbG9544w3cfvvteOaZZzBp0iQAor1Z0dTUhL6+PixatAiVlZUYGBjA5s2bsWLFCjzwwANYvHgxANHePGhpacFvf/tbDBs2LOm9gwcP4gc/+AGqq6tx7733oqWlBevWrcOJEyfwi1/8woTa2ptrrrkGM2bMiHvt7LPPjvxtansrAkPs2bNHmTt3rvLKK69EXhsYGFBuuOEG5c477zSxZvbH7/crra2tiqIoyt69e5W5c+cq77zzTtJ1v/zlL5V/+Id/UJqamiKvbdu2TZk7d67y1ltvkdXX7nzxxRfK4OBg3GvHjx9XLr/8cuWhhx6KvCbamx+BQEC55ZZblP/1v/5X5DXR3uz5yU9+oixbtky57777lJtuuinuvQceeED5l3/5F8Xn80Vee/vtt5W5c+cqn3zyCXVVbctnn32mzJ07V9m0aVPG68xsb6EBMsjmzZvhdrsjqzUAKCwsxFVXXYU9e/agubnZxNrZm4KCAlVJsjZv3oxLLrkEY8aMibz2la98BRMmTMCmTZt4VtFRzJo1K8mbMGHCBNTU1KC+vj7ymmhvfrjdblRVVcHn80VeE+3Nlp07d2Lz5s247777kt7r7e3F3//+d1xxxRUoLi6OvP6P//iPGDZsmGhvnfT19SEQCCS9bnZ7iy0wgxw8eBDjx4+P+/IARFx+hw4dihu4BGw5ffo0Ojo6Uh6mN2PGDHz88ccm1Mo5KIqCjo4O1NTUABDtzYP+/n74/X709vZi69at+OSTT7BgwQIAor1ZEwwGsXr1alx11VWYPHly0vtHjhxBMBhMau/8/HxMnToVBw8epKqqY3jkkUfQ398Pt9uNc889F3fddRemT58OwPz2FgaQQdra2lJ6KcKvtba2Ulcpp2hrawOAtN9Bd3c3BgcHUVBQQF01R/Dee+/h9OnTuPXWWwGI9ubBU089hQ0bNgAAXC4X5s2bhx/84AcARHuz5q233kJzczMef/zxlO9na+/PP/+ca/2cRF5eHi677DJ89atfxciRI3Hs2DGsW7cO9957L55++mlMmzbN9PYWBpBB/H5/ShFieEDy+/3UVcopwu2b7TsQE4R26uvr8fjjj2PmzJlYtGgRANHePLjuuuswf/58tLa2YtOmTQgGgxgaGgIg2pslXV1dePHFF3HTTTeljZ7L1t6Dg4M8q+goZs2ahVmzZkX+femll2L+/Pm45ZZbsGbNGjz22GOmt7fQABmksLAwMljFEv7iCgsLqauUU4TbV3wHbGlra8Py5ctRXFyMn//853C73QBEe/OguroaX/nKV7Bo0SL8v//3/9Df348HH3wQiqKI9mbICy+8gNLSUlxzzTVpr8nW3sLQNMb48eNx6aWXYseOHQgGg6a3tzCADFJRURFx48USfq2yspK6SjlF2HWa7jsYMWKEGLQ04vP58KMf/Qg+nw+PPfZYXB8W7c2f+fPnY9++fWhoaBDtzYiGhga8/fbbuPbaa9Ha2orGxkY0NjZicHAQgUAAjY2N6O7uztreYjw3TlVVFYaGhjAwMGB6ewsDyCBTpkzBiRMn0NvbG/e61+uNvC/gx+jRo1FWVob9+/cnvbd3717R/hrx+/148MEH0dDQgP/4j/+IiJ/DiPbmT3hbwOfzifZmRGtrK2RZxurVq3H99ddH/vN6vWhoaMD111+PtWvXora2Fm63O6m9h4aGcPDgQdHeDDh16hQKCgowbNgw09tbGEAGmT9/PoLBYETECIRcd++88w48Ho+IACPgsssuw0cffRSXcmD79u1oaGiIRNMIshMMBvHTn/4Ue/bswc9+9jOcc845Ka8T7c2Gjo6OpNcCgQD+9Kc/obCwMGJ8ivY2Tm1tLR5++OGk/2prazFmzBg8/PDDuOqqq1BSUoKvfOUr+POf/4y+vr7I/X/605/Q398v2lsDnZ2dSa8dOnQIW7duxQUXXACXy2V6e0uKoihcS8gBfvKTn2DLli341re+hbPPPhsbN27E3r178fjjj2P27NlmV8/WvP766/D5fGhra8Obb76JefPmYerUqQBCGUZLSkrQ3NyM22+/HSUlJbj22mvR39+P//7v/8bo0aOxZs0asUWgkieeeAKvvfYaLrnkEixcuDDp/SuuuAIARHsz4v/8n/+D3t5enHfeeRg9ejTa2trw3nvv4fjx47jnnntw/fXXAxDtzZP7778fXV1dcUdh7N+/H/fccw+qq6uxePHiSGbi8847D7/85S9NrK29WLZsGQoLC3HOOedg1KhROHbsGN5++23k5eXh6aefjhj4Zra3MIAY4Pf7I2eB+Xw+TJo0CbfffjsuvPBCs6tme771rW+hqakp5Xvr1q3D2LFjAYTOVUo8K+mee+5BeXk5ZXVtzf3334+dO3emfX/Lli2Rv0V7G+f999/HH//4Rxw5cgRdXV0YPnw46urqcPXVV+PSSy+Nu1a0Nx9SGUAA8MUXX0TOpho+fDgWLFiA733ve+IsMA289tpreO+993Dy5En09vairKwMX/7yl7FkyRKMHz8+7lqz2lsYQAKBQCAQCHIOoQESCAQCgUCQcwgDSCAQCAQCQc4hDCCBQCAQCAQ5hzCABAKBQCAQ5BzCABIIBAKBQJBzCANIIBAIBAJBziEMIIFAIBAIBDmHMIAEAoFAIBDkHMIAEggEAoFAkHMIA0ggEHChsbER8+bNw//9v//X7Kow4d1338W8efPw7rvvml0VgUDAAGEACQQCMu6//37MmzfP7GqkxGkGm0AgyEye2RUQCATOZPTo0Xj55ZdRXFxsdlWYMHfuXHg8HlRUVJhdFYFAwABhAAkEAi7k5eWhurra7Gowo6SkBCUlJWZXQyAQMEKcBi8QCLjQ2NiI66+/HosWLcLKlSvTbn2F3w9z+PBhvPzyy9i5cye6u7tRUVGBOXPm4JZbbsHIkSNTfv6NN96I559/Hp9//jm6u7uxbt06jB07Flu2bMGmTZuwb98+tLa2Ii8vD5MnT8a1116L+fPnRz7r3XffxSOPPJKyfqtXr8b5558fuWbFihW48sor467ZtWsXXn75ZezZswd+vx9nnXUWFi5ciBtvvBFFRUVx186bNw+zZ8/GT3/6UzzzzDP4+OOP0d/fjylTpuB73/sezj//fK1NLRAIdCA8QAKBgIQlS5Zg48aNaGpqwpIlSyKvT506NfL3hx9+iJ/+9KeQJAmXXnopqqqqcOzYMfzhD3/Ap59+iueeew6lpaVxn3vy5EncddddmDRpEhYtWoTu7m7k5+cDANasWYO8vDzMmjULFRUV6OzsxNatW/HjH/8Yy5YtwzXXXAMAmDJlCq699lq89tprmDJlCi699NLI55911lkZn2vTpk146KGHkJ+fj4ULF6KsrAzbtm3D2rVr8emnn2L16tUoLCyMu8fn8+Gee+5BSUkJrrjiCnR0dGDTpk144IEH8Pzzz2PSpEm62lggEKhHGEACgYCEW2+9FTt37kRTUxNuvfXWpPe7urrw8MMPY+TIkXjqqafiDI/3338fP/vZz/CrX/0K3//+9+Pu27VrF5YsWZLyMx999FGMGzcu7rW+vj7cfffd+NWvfoWrrroKRUVFmDp1KkpKSiIGUKrPSkVvby9+8YtfwO1245lnnsHkyZMBAHfccQceeugh/PWvf8Wrr76Km2++Oe6+Q4cO4V/+5V/w/e9/Hy5XKBblS1/6Eh599FH84Q9/wAMPPKCqfIFAoB8RBSYQCCzBn/70J/T29uKOO+5I8rpcfvnlmDZtGt5///2k+8rLy/Hd73435WcmGj8AMHz4cFx55ZXw+XzYt2+foTp/+OGH8Pl8+PrXvx4xfgDA5XLhrrvugtvtThk2P2zYMNx5550R4wcIbQW63W7DdRIIBOoQHiCBQGAJ9uzZAwDwer04efJk0vuDg4Po6upCZ2cnysrKIq9PmTIlsuWVSEdHB373u9/h448/RnNzM/x+f9z7ra2thup88OBBAMDs2bOT3hszZgzGjRuHhoYG9PX1Yfjw4ZH3xo8fH/dvICQaLy8vh8/nM1QngUCgDmEACQQCS9DT0wMAeOONNzJeNzAwEPfvUaNGpbyuu7sbd9xxB5qbmzFr1ix85StfQUlJCVwuFw4dOoQPP/wQQ0NDhurc29sLIOSFSkVFRQUaGhrQ29sbZ/CkSw3gdrshy7KhOgkEAnUIA0ggEFiCsIGwdu1aTSJgSZJSvv7HP/4Rzc3NuO2225I0OL/97W/x4Ycf6q/sGcKGTHt7e8r3w687JReSQOAkhAZIIBCQEda8BIPBpPc8Hg+A6FaYUcLbaLERXWG++OKLtHXT4oEJR7Dt3Lkz6b3m5macPHkS48aNS9ruEggE5iMMIIFAQMaIESMAAC0tLUnvff3rX8fw4cPx/PPP4+jRo0nvDwwMaDKOwkLqXbt2xb3+3nvv4eOPP066vrS0FJIkpaxbOi699FKUlJTgnXfeiauzoih47rnnEAwGk3IGCQQCayC2wAQCARlf+tKX8MEHH+Df//3fcdFFF6GgoABTpkzBnDlzUFZWhp/85Cf48Y9/jFtvvRUXXnghJk6ciKGhITQ1NWHnzp0455xz8Nhjj6kq64orrsArr7yC1atXY8eOHRgzZgwOHTqEzz77DPPmzcOWLVvirh8+fDimT5+Ozz//HKtWrcL48eMhSRL+8R//MW0uoOLiYvzv//2/8dBDD+HOO+/EggULUFZWhu3bt2P//v2YMWMGbrjhBsPtJhAI2CMMIIFAQMY//dM/obGxEX/961/xyiuvIBgMYtGiRZgzZw4A4OKLL8avfvUr/Pd//ze2b9+Ov//97ygqKsLo0aNx5ZVX4oorrlBdVlVVFZ544gk888wz+Pvf/45gMIhp06bhl7/8JVpaWpIMIAD4t3/7N/zXf/0XPvroI/T29kJRFJx77rkZkyEuWLAA5eXl+O1vf4stW7ZEMkHffPPNuPHGG5OSIAoEAmsgjsIQCAQCgUCQcwgNkEAgEAgEgpxDGEACgUAgEAhyDmEACQQCgUAgyDmEASQQCAQCgSDnEAaQQCAQCASCnEMYQAKBQCAQCHIOYQAJBAKBQCDIOYQBJBAIBAKBIOcQBpBAIBAIBIKcQxhAAoFAIBAIcg5hAAkEAoFAIMg5hAEkEAgEAoEg5/j/A6HJ2FSHFy/EAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG5CAYAAAB802v0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACJW0lEQVR4nO3deXhU5dk/8O/MJJlkMkkmmewQICRhX6KCGztaxGqtVatU+7rVldKC1RahfW21vj/3VqwLaimgVkFFrVrABYHIIgiyJ0ACSQjZ92SyTJKZ8/tjOCdnkklmOWcySfh+rovrysycmfPkJGTuuZ/7uR+NIAgCiIiIiKhH2kAPgIiIiKi/Y8BERERE5AYDJiIiIiI3GDARERERucGAiYiIiMgNBkxEREREbjBgIiIiInKDAZMKWltbceLECbS2tgZ6KEREROQHDJhUUFhYiHvvvReFhYVeP/fUqVN+GBH1hNe7b/F69y1e777F6923An29GTAFmNVqDfQQziu83n2L17tv8Xr3LV7vvhXo682AiYiIiMiNoEAPoCfNzc1Yt24dsrOzkZOTg8bGRixbtgxXX321R89vbGzEypUrkZWVBavVirFjx2LhwoUYPXq003FWqxUffPABvvjiC5SVlSEiIgITJkzAXXfdhdTUVH98a0RERDTA9NsMU319PdasWYPCwkKkp6d79Vy73Y6lS5fi66+/xg033IAHHngAtbW1WLx4MYqKipyO/etf/4pVq1bhggsuwOLFi3Hdddfh0KFDePDBB1FWVqbmt0REREQDVL/NMJnNZnz88ccwm804fvw47rvvPo+fu23bNhw9ehRPPPEEZs+eDQCYO3cubr31VqxevRqPPfYYAKCyshJZWVlYsGABFi5cKD1/0qRJWLJkCbKysnDzzTer+n0RERHRwNNvM0whISEwm80+PXf79u2IiYnBzJkzpftMJhPmzJmDHTt2oK2tDYBj2g8AoqOjnZ4vnlev1/t0fiIiIhpc+m2GSYmTJ08iIyMDWq1zPDh27Fh89tlnKCoqQlpaGoYMGYK4uDisX78ew4YNQ0ZGBqqqqrBy5UokJSVh7ty5Ll+/qqoK1dXV0m1f2gkQERHRwDEoA6aamhpMnjy52/1i5qi6uhppaWkICgrCX//6V/z1r3/FsmXLpONGjx6NV199FRERES5f/9NPP8WaNWu63Z+fnw+bzebVWC0WC7Kzs716DvmO17tv8Xr3LV7vvsXr3bf8db3HjRvn0XGDMmCyWq0ICQnpdr94n7yXQ0REBNLT0zF79myMGzcOxcXF+Pe//40///nPeOGFF1xOy1133XWYNm2adLuwsBBPPvkkUlNTu63Ccyc7O9vjHxYpx+vdt3i9+xavd9/i9e5bgb7egzJg0uv1Up2SnHifGARZLBb85je/wYIFC7BgwQLpuDFjxuC3v/0tNm3ahOuvv77b68TGxiI2NtY/gyciIqJ+p98WfSsRExPjVGMkEu8Tp+a2b9+Ompoap2wRAGRmZiI8PBxHjhzx/2CJiIio3xuUAVNGRgZyc3Nht9ud7s/JyUFoaChSUlIAALW1tQDQ7ThBEGC3272uRyIiIqLBacAHTFVVVSgsLERHR4d036xZs1BTU4OsrCzpvrq6OmzduhWXX365VMs0dOhQAMCWLVucXnPHjh1oaWlBRkZGH3wHRERE1N/16xqmDRs2wGKxSFNpO3fuREVFBQDgxhtvhNFoxBtvvIHNmzdj/fr1SEpKAgDMnj0bH374IZ566ikUFBQgKioKn3zyCex2O+6++27p9adNm4bU1FSsXbsW5eXlUtH3Rx99BLPZjGuuuabvv+kuBEGARqMJ9DCIiIjOa/06YFq/fr3T9iRZWVlS1mjevHkwGo0un6fT6fDss8/i1VdfxYYNG2C1WjFmzBgsW7YMw4YNk44LDg7Gyy+/jLVr12L37t3YsmULwsLCMGPGDNx7770wmUx+/f7csbXbkPXGUcSnR2H8VSMCOhYiIqLzWb8OmN5//323xyxfvhzLly/vdn9ERASWLl2KpUuX9vr8iIgILFq0CIsWLfJ5nP5g77Bj8zP7UJpdg1O7SmA0h2H4lIRAD4uIiOi8NOBrmAYrbZAW8RnntmwRgG9ePoiKvLqAjomIiOh8xYCpH5tycwbSLnfUZdna7Pjy+f1oKG8K8KiIiIjOPwyY+jGNRoOZ909E0rgYAEBrQxs2P7MPrQ3dm3ISERGR/zBg6ud0wTpcueRCmIY4Ctwbyprx5d/2o6ONPaKIiIj6CgOmAUBvDMZVf5iCMJNjS5eKk3XY/uphCHYhwCMjIiI6PzBgGiAi4sJw1e8vQpBeBwDI31uGve+dCPCoiIiIzg8MmAaQ2NQoXLH4Ami0jkaWR/6bj2NfFAR2UEREROcBBkwDTEpmHKbdNU66vfutHBTuKw/giIiIiAY/BkwD0JgrhmHyT9McN9ijiYiIyO8YMA1Qrno0NddbAzwqIiKiwYkB0wDlqkfT6d2lAR4VERHR4MSAaQDTBetw0c9HSbfrS9kFnIiIyB8YMA1wUYkG6euGsuYAjoSIiGjwYsA0wIVGhiA4zNGbqaGMGSYiIiJ/YMA0wGk0GkQmhAMALFUtsHXYAzwiIiKiwYcB0yAQeW5aThCAxgpOyxEREamNAdMgEJUYLn3NOiYiIiL1MWAaBCITZIXf5axjIiIiUhsDpkEgUpZhqmeGiYiISHUMmAYBthYgIiLyLwZMgwBbCxAREfkXA6ZBgK0FiIiI/IsB0yDB1gJERET+w4BpkHBqLVDOgImIiEhNDJgGCafWAqxjIiIiUhUDpkGCrQWIiIj8hwHTIMHWAkRERP7DgGmQYGsBIiIi/2HANEiwtQAREZH/MGAaRNhagIiIyD8YMA0ibC1ARETkHwyYBhG2FiAiIvIPBkyDiLy1AFfKERERqYcB0yAiby3AXkxERETqYcA0iDi1FijnlBwREZFaGDANIk6tBSrZWoCIiEgtDJgGGbYWICIiUh8DpkGGrQWIiIjUx4BpkGFrASIiIvUxYBpk2FqAiIhIfQyYBhm2FiAiIlIfA6ZBhq0FiIiI1MeAaZBhawEiIiL1MWAahOStBSyVLQEeDRER0cAXpPQFCgoK8NFHH+H48eNobGyE3d49o6HRaLBu3TqlpyIPyVsL1Jc1ISopvJejiYiIyB1FAdPBgwfxyCOPoL29HTqdDtHR0dDpdN2OEwRByWnIS2wtQEREpC5FAdPrr78Om82GP/zhD5g/f77LYIn6HlsLEBERqUtRwJSXl4crrrgC11xzjVrjIRWwtQAREZG6FBV9h4aGwmQyqTQUUgtbCxAREalLUcB06aWX4vDhw2qNhVTC1gJERETqUhQwLVy4EBaLBStWrEBra6taYyIVsLUAERGRehTVMP3lL39BWFgYPv74Y2zatAkpKSkwGAzdjtNoNHjxxReVnIq8xNYCRERE6lHcVkDU0tKCkydPujxOo9EoOQ35wLm1AAu/iYiIlFAUMG3fvl2tcZDKnFsLsPCbiIhICW6NMkixtQAREZF6VA2YWlpaUFVVhZYWFhkHGlsLEBERqUfxXnLt7e147733sGnTJpSWlkr3JyUl4cc//jEWLFiA4OBgpachL4mtBaoLGqTWArogJhSJiIh8oShgslqtWLJkCXJycqDVajF06FCYzWZUV1ejpKQEq1atwq5du/Diiy9Cr9erNWbyUGSiAdUFDVJrAa6UIyIi8o2igOnf//43srOzMXfuXDzwwANISEiQHquoqMDKlSuxZcsWvPvuu7jrrrsUD5a8w9YCRERE6lAUMH3zzTcYNWoU/vznP3d7LD4+Ho899hjOnj2LLVu2eB0wNTc3Y926dcjOzkZOTg4aGxuxbNkyXH311R49v7GxEStXrkRWVhasVivGjh2LhQsXYvTo0S7PtXbtWmzduhXV1dWIiorC+PHj8cc//hGhoaFejbs/YWsBIiIidSgqaikrK8PUqVN7Peaiiy5CWVmZ169dX1+PNWvWoLCwEOnp6V491263Y+nSpfj6669xww034IEHHkBtbS0WL16MoqIip2MtFgsWLVqEjRs34sorr8Tvfvc73HjjjWhra0N7e7vX4+5P2FqAiIhIHYoyTKGhoairq+v1mLq6Op+yNGazGR9//DHMZjOOHz+O++67z+Pnbtu2DUePHsUTTzyB2bNnAwDmzp2LW2+9FatXr8Zjjz0mHfvGG2+grKwM//znP5GcnCzdf9ttt3k95v5G3lqgoZwZJiIiIl8pyjCNGzcOW7ZsQX5+vsvHCwoK8M0332D8+PFev3ZISAjMZrNP49q+fTtiYmIwc+ZM6T6TyYQ5c+Zgx44daGtrA+CYttu4cSN+8pOfIDk5Ge3t7dJjg4G8tUA9M0xEREQ+U5Rh+p//+R98//33uO+++3DNNdcgMzMT0dHRqK2txYEDB7Bp0yZ0dHTgl7/8pVrj9cjJkyeRkZEBrdY5Hhw7diw+++wzFBUVIS0tDUeOHEFbWxuGDh2K//3f/8WOHTtgt9sxfvx4PPTQQ8jIyHD5+lVVVaiurpZuFxYW+vX78RVbCxAREalDUcA0ceJEPPbYY3juuefw8ccf45NPPpEeEwQB4eHhWL58OSZOnKh0nF6pqanB5MmTu90vZqyqq6uRlpaGs2fPAnBMyyUnJ2P58uVoamrCmjVrsGTJEqxduxaxsbHdXufTTz/FmjVrut2fn58Pm83m1VgtFguys7O9eo5XDB0AAEEADu4+gjDz+d0Ty+/Xm5zwevctXu++xevdt/x1vceNG+fRcYobV86ZMweXXHIJduzYgZMnT6K5uRkGgwGjRo3C9OnTYTAY3L+IyqxWK0JCQrrdL95ntVoBwKkj+d///ndprBkZGXjwwQfx8ccf49577+32Otdddx2mTZsm3S4sLMSTTz6J1NRUl6vwepOdne3xD8sXzUdPojr7FAAgzpiEYePi/XaugcDf15uc8Xr3LV7vvsXr3bcCfb0VB0wAYDAYMG/ePMybN0+Nl1NMr9e7rEUS7xObaIoB1LRp05wCu/HjxyMpKQlHjx51+fqxsbEuM0/9EVsLEBERKTcoC1piYmKcaoxE4n3i1JwY9ERHR3c7Njo6GhaLxY+j7BtsLUBERKScVxmmzZs3AwBmzpwJg8Eg3fbE/PnzvRuZAhkZGTh8+DDsdrtT4XdOTg5CQ0ORkpICANL0WVVVVbfXqKqqwrBhw/pmwH7E1gJERETKeRUwPfXUU9BoNBg/fjwMBoN0uzeCIECj0fgtYKqqqkJTUxOGDBmCoCDHtzNr1ixs27YNWVlZUh+muro6bN26FZdffrk0FTds2DCkp6djx44dqKurg8lkAgDs3bsXFRUVuPHGG/0y5r4kthZob7GxtQAREZGPvAqYHn30UQCdU1ribX/ZsGEDLBaLNJW2c+dOVFRUAABuvPFGGI1GvPHGG9i8eTPWr1+PpKQkAMDs2bPx4Ycf4qmnnkJBQQGioqLwySefwG634+6773Y6x6JFi/Dwww9j0aJFuO6662CxWPD+++8jJSUFP/3pT/36/fUFthYgIiJSzquAqes+bp7u6+ar9evXO22rkpWVhaysLADAvHnzYDQaXT5Pp9Ph2WefxauvvooNGzbAarVizJgxWLZsWbdptgsvvBDPPfccVq1ahTfeeAOhoaGYMWMGHnjggYCs8POHyEQDqgsaIAiApbKFm/ASERF5SdEquYMHDyIpKQkJCQk9HlNeXo7S0lJkZmZ6/frvv/++22OWL1+O5cuXd7s/IiICS5cuxdKlS92+xpQpUzBlyhSvxzdQRMkKv+vLmhgwEREReUnR3MySJUuwadOmXo/54osvsGTJEiWnIYXYWoCIiEgZRQGTIAgeHeOuMJz8i60FiIiIlPF79e/Zs2cRHs4poECKiA2Vvm6qtQZwJERERAOT1zVMTz/9tNPtb7/91qkwW2Sz2VBRUYHDhw/jkksu8X2EpFholF76uqWOARMREZG3vA6Y5DVLGo0GeXl5yMvLc3msRqPBmDFjsGjRIt9HSIrpgrQIjQhGa2M7mhkwERERec3rgGn9+vUAHLVJCxYswM9//nPcdNNN3Y7TarWIiIhAWFiY8lGSYmGm0HMBUyvryoiIiLzkdcCUmJgoff3oo49i1KhRTvdR/2QwhaC2CLB3CGhr6oDeGBzoIREREQ0Yivow+btxJanHYOos/G6ua2XARERE5AVFAZPIarXi+PHjqKqqQnt7u8tj+nLzXeouzCQr/K5vQ/TQAA6GiIhogFEcMH300UdYtWoVmppc9/fx9+a75BmDKUT6urm2NYAjISIiGngU9WHavn07VqxYgfj4eCxcuBCCIGDatGm49957cfHFF0MQBMyaNcuj7UnIv8KcpuS4Uo6IiMgbigKmDz74ANHR0Xjttddw8803AwAyMjJw22234dlnn8Wf/vQnfPvttywK7wcMXabkiIiIyHOKAqbTp09j2rRpCA3tzF7Y7Xbp6x/96Ee48MILsWbNGiWnIRXIAyZOyREREXlHUcDU0dEBk8kk3dbr9WhsbHQ6Jj09Hbm5uUpOQyqQF31zSo6IiMg7igIms9mM6upq6XZCQkK34KisrAw6nU7JaUgFwaE6BOkdP4eWegZMRERE3lAUMI0dOxYnT56Ubl9yySU4evQo3nnnHeTn5+M///kPsrKyMGbMGMUDJWU0Go00LdfMDXiJiIi8oihgmj17Ntra2lBaWgoA+OUvf4m4uDj885//xF133YW//e1vCAsLwwMPPKDKYEkZcVqurbkDHW22AI+GiIho4FDUh2nmzJmYOXOmdNtkMuFf//oXPv/8c5SUlCAhIQFXXXUV4uLiFA+UlDNEyVfKWRERZwjgaIiIiAYOVTp9y0VEROAXv/iF2i9LKgiLlq+UY8BERETkKUVTcps3b8a2bdt6PebUqVPYvHmzktOQSpx7MbGOiYiIyFOKMkxPPfUUNBoNpk+fjv/93/+FXq/vdkxWVhbWrl3LrVH6AfmUHFsLEBEReU5Rhglw1C19++23+M1vfoOamho1xkR+0nVKjoiIiDyjOGC6/vrrcd999+HkyZO4//77cerUKTXGRX7QteibiIiIPKM4YAKA2267DY8//jgaGhrw61//Grt371bjZUllThkmTskRERF5TJWACQBmzZqFFStWIDQ0FMuXL8cHH3yg1kuTSkIjQqDRagBwSo6IiMgbqgVMADBmzBi8/vrrGDFiBF555RX87W9/g83GBon9hVarQVhkCABOyREREXlD1YAJcOwn98orr+Diiy/Gf/7zH2aa+hmx23dLfRvsdiHAoyEiIhoYVA+YAMBgMODpp5/Gz372M7S2tvrjFOQjw7k6JsEuwNrYFuDREBERDQyK+jBt3769x8e0Wi2WLFmCq666ClYrp3/6i7AuvZjkt4mIiMg11bdG6Wrs2LH+PgV5Qd7tu7nOCvPwAA6GiIhogPDLlBz1XwZZa4EWthYgIiLyiFcZplmzZkGr1eKtt95CSkoKZs2aBY1G4/Z5Go0GW7du9XmQpJ6uU3JERETknlcB0+TJk6HRaKQ948TbNHB0nZIjIiIi97wKmF566aVeb1P/Jw+YOCVHRETkGdYwnWfCmGEiIiLyGgOm80xQiA4hBkdikRkmIiIiz3g1JbdmzRqfTqLRaHDHHXf49FxSX5hJj7bmDmaYiIiIPORVwLR69WqfTsKAqX8xmPSoL2lCh9WGtpYOhIT5vR0XERHRgObVO+WKFSv8NQ7qQ10LvxkwERER9c6rd8rMzEw/DYP6UtfC76ik8ACOhoiIqP9j0fd5iL2YiIiIvKPaXIzNZkN9fT3a29tdPp6QkKDWqUihMPZiIiIi8origOnEiRN44403cOjQIXR0dLg8hluj9C/MMBEREXlHUcCUm5uLRYsWQafTYerUqdi1axfS09MRExODkydPoq6uDpmZmUhMTFRrvKQCdvsmIiLyjqKAae3atQCAlStXYsSIEZg1axZmzJiBO++8E1arFa+88gq2bduGRx99VJXBkjrY7ZuIiMg7ioq+jxw5gmnTpmHEiBHSfYIgAAD0ej2WLFmC2NhYvPnmm4oGSerShwdDF+z40TNgIiIick9RwNTU1ITk5GTpdlBQEFpaWjpfXKtFZmYm9u/fr+Q0pDKNRoOwKEeWqaWeARMREZE7igImk8mExsZG6XZMTAzOnj3rdExbWxtaW1uVnIb8IMwUAgBobWiDvcMe4NEQERH1b4oCphEjRuDMmTPS7YkTJ+L777/H0aNHAQAFBQXYunUrhg8frmyUpDqDKVT6mlkmIiKi3ikq+r7sssvw8ssvo6qqCrGxsbj11luRlZWFRYsWISIiAhaLBXa7Hb/85S/VGi+pxKm1QH0bws1hARwNERFR/6YoYPrpT3+KOXPmICIiAgCQnp6Ov//973j77bdRUlKC0aNH48Ybb8Rll12mymBJPeKUHAA017YCiArcYIiIiPo5RQFTUFAQYmJinO6bOHEinn32WUWDIv9zmpLjSjkiIqJecS+581RYlCzDxBomIiKiXqmyl1xdXR0KCgpQVVXV4/Yo8+fPV+NUpBJDdGeGqbmWARMREVFvFAVMVqsVL774Ir788kvYbDaXxwiCAI1Gw4Cpn+H2KERERJ5TFDCtWLECGzduRFpaGmbNmgWz2QydTqfW2MiPwiJDAA0AgVNyRERE7igKmLZv347Ro0fjtddeY6A0wGiDtAiNCEFrQxszTERERG4oKvq22+244IILGCwNUOK0XHOdVdoDkIiIiLpTFDCNGTOm21YoNHCI+8nZOwRYm9oDPBoiIqL+S1HA9Ktf/Qrff/89du3apdZ4JM3NzfjXv/6FRx55BNdccw1mzpyJTZs2efz8xsZGPPfcc/jJT36CefPmYfHixThx4kSvzykuLsaVV16JmTNn4vjx40q/hX7PEM3CbyIiIk8oqmGaMGECXnjhBSxbtgyjRo1CWloawsPDux2n0Whwxx13ePXa9fX1WLNmDRISEpCeno4DBw54/Fy73Y6lS5fi1KlTWLBgAaKiovDJJ59g8eLFePPNN5GSkuLyef/4xz/Oq+lFMcMEOKbloodGBHA0RERE/ZeigKm+vh6vv/46GhsbsX//fuzfv9/lcb4ETGazGR9//DHMZjOOHz+O++67z+Pnbtu2DUePHsUTTzyB2bNnAwDmzp2LW2+9FatXr8Zjjz3W7Tl79+7F999/j1/84hd46623vBrrQOW0nxwzTERERD1S3FbgyJEjuPTSS3HFFVeo2lYgJCQEZrPZp+du374dMTExmDlzpnSfyWTCnDlz8NVXX6GtrQ0hIZ2drjs6OvDSSy/hpptuwpAhQxSPfaBwmpJj80oiIqIeKQqY9uzZg8zMTDzzzDNqjUcVJ0+eREZGBrRa5xKtsWPH4rPPPkNRURHS0tKk+z/44AM0Njbi9ttvR1ZWltvXr6qqQnV1tXS7sLBQvcH3IacpOfZiIiIi6pGigEkQBIwZM0atsaimpqYGkydP7na/mLGqrq6WAqbq6mqsXbsWCxcudFl/5cqnn36KNWvWdLs/Pz+/x47nPbFYLMjOzvbqOWppqelcGVdWWIHs7MHfWiCQ1/t8xOvdt3i9+xavd9/y1/UeN26cR8cpCpgmTpyIvLw8JS/hF1ar1WnKTSTeZ7V2ZlNWrlyJ5ORkXHvttR6//nXXXYdp06ZJtwsLC/Hkk08iNTUVo0eP9mqs2dnZHv+w1Nbe2oEDKAEABAuhARtHXwrk9T4f8Xr3LV7vvsXr3bcCfb0VtRVYuHAhjh8/jg0bNqg1HlXo9Xq0tbV1u1+8T693TEUdO3YMX375JRYtWtRt+q43sbGxGD16tPRv+PDh6gy8jwWHBiFI76g5Y9E3ERFRzxRlmN577z2kpaXhH//4BzZs2NBjWwEAePTRR5WcyisxMTFONUYi8T5xau61117DpEmTkJSUhNLSUgBAXV2ddGx5eTkSEhL6ZtABYjDp0VDezD5MREREvVAUMMkbSRYXF6O4uNjlcRqNpk8DpoyMDBw+fBh2u90pc5STk4PQ0FCpD1NFRQXKyspwyy23dHuNZcuWwWg0YuPGjX027kAwRDsCprbmDnS02RAUcv70oSIiIvKUooBp/fr1ao3DZ1VVVWhqasKQIUMQFOT4dmbNmoVt27YhKytL6sNUV1eHrVu34vLLL5dqmR555BGneiYA+OGHH7BhwwYsXLhwwE61eUO+Uq6lzoqIeEMAR0NERNQ/KQqYDh48iJiYGFx88cVqjcfJhg0bYLFYpKm0nTt3oqKiAgBw4403wmg04o033sDmzZuxfv16JCUlAQBmz56NDz/8EE899RQKCgqkTt92ux1333239Pquxm2xWAAAmZmZ/XIFoNq6Nq9kwERERNSdooDpmWeewQ033OC3gGn9+vUoKyuTbmdlZUl9kubNmwej0ejyeTqdDs8++yxeffVVbNiwAVarFWPGjMGyZcswbNgwv4x1oApjt28iIiK3FAVMZrPZ675D3nj//ffdHrN8+XIsX7682/0RERFYunQpli5d6tU5r776alx99dVePWcgk2eYWPhNRETkmqK2AtOmTcO+fftcLuGngYH7yREREbmnKGC69957ERoaij/96U/Iz89Xa0zUhzglR0RE5J6iKblf/epXaG9vR15eHvbu3YuQkBCYTCZoNBqn4zQaDdatW6dooOQfnJIjIiJyT/FeckFBQYiPj+92f2+3qf8IjQiBRquBYBeYYSIiIuqBooDJk6Js6t80Wg3CokLQXGtlhomIiKgHimqYaHAQp+Va6q2w25kNJCIi6kpRhkmuo6MDRUVFaGpqQnh4OFJSUqTO29S/iYXfggC0NrbBIOv+TURERCoETA0NDVi5ciW+/vprp/YCer0eV155Je677z5ERUUpPQ35kVPhd62VARMREVEXigKmhoYGPPDAAyguLkZkZCQmTZoEs9mMmpoaHD9+HJ9//jkOHjyI1157DZGRkWqNmVTWtReTOYBjISIi6o8UBUxr165FcXExFixYgDvvvBNhYWHSY62trVi7di3effddvPXWW1i0aJHiwZJ/hLG1ABERUa8UFX3v2LEDmZmZePDBB52CJQAIDQ3F/fffj8zMTHz77beKBkn+xW7fREREvVMUMFVXV2PChAm9HjNhwgRUV1crOQ35GQMmIiKi3ikKmMLDw1FWVtbrMWVlZQgPD1dyGvIzTskRERH1TlHAlJmZiW3btmHfvn0uH9+/fz+2bduGzMxMJachPwuLYoaJiIioN4qKvu+8807s3r0bjzzyCC699FJMnjwZMTExqKmpwcGDB7Fnzx7o9XrceeedKg2X/CEoRAd9eDCsTe1oqWfARERE1JWigCk1NRXPP/88nnrqKezevRu7d++GRqOR9o5LTk7G8uXLkZqaqspgyX/CTCGwNrWjuc4KQRC6baBMRER0PlPcuHLSpEl49913ceTIEeTm5kqdvjMyMjBx4kS+8Q4QBlMo6oqb0GG1ob2lAyGG4EAPiYiIqN9QZe8SjUaDSZMmYdKkSWq8HAVAWFSI9HVLfRsDJiIiIhluvksAAEN0qPR1c11rAEdCRETU/yjOMNXV1WHjxo04fvw4LBYLbDZbt2M0Gg1efPFFpaciP5K3FmiuZeE3ERGRnKKA6dSpU1iyZAkaGxulQm9XWMfU/xmcpuQYMBEREckpCpheeeUVNDQ04Pbbb8c111yDuLg46HQ6tcZGfch5So4BExERkZyigOnYsWOYPn06fvWrX6k1HgoQTskRERH1TFHRd1BQEIYMGaLWWCiADLJu35ySIyIicqZ4a5QTJ06oNRYKoJDwIOhCHL8O9WXNAR4NERFR/6IoYFq4cCFOnz6N9957T63xUIBoNBrEpZkAAJbKFjRWMmgiIiISKaphevvttzFy5Ei8/vrr+PTTT5Geno7w8HCXxz766KNKTkV9YMh4M8pyagAAJUerMXqOIcAjIiIi6h8UBUybNm2Svi4pKUFJSYnL4zQaDQOmASB5ghn7P8wFABQfrcboOSkBHhEREVH/oChgWr9+vVrjoH4gLi0KwWE6tLfYUHKsmpvwEhERnaMoYEpMTPTpeeXl5SgtLUVmZqaS05PKtDotEsfEoOhAJVob2lBbZEHMsIhAD4uIiCjgArKX3MaNG7FkyZJAnJrcGDLBLH1dcqwqgCMhIiLqP7j5LjlJHh8rfV18tDqAIyEiIuo/GDCRk+gUI0IjHfvKlR2vgd1mD/CIiIiIAo8BEznRaDRIHu+YlmtvsaHyVH2AR0RERBR4DJiom2SnOiZOyxERETFgom6GjGfAREREJMeAibqJiDcgIi4MAFB+shYdVluAR0RERBRYDJjIpeQJjtVy9g4BZSdqAjwaIiKiwGLARC6xjomIiKhTQAKm8PBwxMfHB+LU5KHk8THS1yXsx0REROe5gARMN998M95///1AnJo8FBapl7ZFqSpoQKulLcAjIiIiChyv9pJbs2aNTyfRaDS44447fHouBU7yeDNqzjQCAlCaXYPUi33bO5CIiGig8ypgWr16dbf75LvZC4LQ7X5xx3sGTANP8gQzjm4qAOCoY2LARERE5yuvAqYVK1Z0u2/dunXYt28f5s2bh0mTJiEmJgY1NTU4dOgQvvrqK0ydOhW33HKLagOmvpM4JgYanQaCTWAdExERnde8CpgyMzOdbn/++ec4ePAg3nzzTaSmpjo9Nn/+fNx0001YuHAhpk+f3u251P+FhAUhLi0KFSfrUF/ahKaaVoTHhAZ6WERERH1OUdH3Bx98gCuuuKJbsCRKS0vDFVdcwQLvAcyp6zezTEREdJ5SFDAVFxcjMjKy12MiIyNRUlKi5DQUQGIDSwAoPloVwJEQEREFjqKAyWQyYc+ePU7F3nJ2ux179uxBVFSUktNQAMVnmBCk1wFwFH739LMmIiIazBQFTFdeeSVOnTqFRx99FHl5eU6P5ebm4tFHH0V+fj5+9KMfKRokBY4uSIvE0dEAgOZaK+pLmgI8IiIior7nVdF3V3fddRdOnjyJ7777Dnv27EFoaChMJhPq6urQ2toKQRBw0UUX4c4771RpuBQIyePNOHvYMR1XcqwapiHGAI+IiIiobykKmPR6PV544QVs3rwZmzdvxunTp1FeXg6j0YgxY8bgqquuwvz58516NdHAI99XrvhYNcbNGx7A0RAREfU9RQET4GhQefXVV+Pqq69WYzzUD5mHR0JvDIbV0o7SY9Ww2wVotQyCiYjo/BGQveRoYNFoNUga59iMt625A9UFDQEeERERUd9SnGECgI6ODhQVFcFiscBms7k8ho0rB7bk8WYU7C0HAJQcrULcSK58JCKi84eigEkQBKxatQofffQRmpubez1227ZtSk5FATZE1o+p5Fg1Jl+XFsDREBER9S1FAdPatWvx9ttvw2g04qqrrkJcXBx0Op1aY6N+JDLRgPCYUDTVtKLsRC062mwICuHPmoiIzg+KAqaNGzciISEBb775JptTDnIajQbJE8zIzSqGrc2Oitw6JMu2TSEiIhrMFBV919TUYMaMGQyWzhPy9gIlx7ivHBERnT8UBUyJiYloamLn5/NFMjfiJSKi85SigOn666/H7t27UVtbq9Z4qB8Ljw6FaUg4AKDydD3aWjoCPCIiIqK+oaiGafr06Th8+DAWLlyIO+64A6NGjUJ4eLjLYxMSEjx+3ebmZqxbtw7Z2dnIyclBY2Mjli1b5nFzzMbGRqxcuRJZWVmwWq0YO3YsFi5ciNGjR0vH1NfXY+PGjdi5cycKCwths9kwbNgw/PznP8cVV1zh8VjPN0ljzagrboJgF1CRV4ehE2PdP4mIiGiAUxQw3XLLLdBoNBAEAU8//XSPx2k0GmzdutXj162vr8eaNWuQkJCA9PR0HDhwwOPn2u12LF26FKdOncKCBQsQFRWFTz75BIsXL8abb76JlJQUAMCxY8fw5ptv4tJLL8Xtt98OnU6H7du34/HHH0dhYSHuvvtuj895PkkYHY2cr88AAMqP1zBgIiKi84KigOmqq67yyz5xZrMZH3/8McxmM44fP4777rvP4+du27YNR48exRNPPIHZs2cDAObOnYtbb70Vq1evxmOPPQYAGDFiBN59910kJiZKz/3Zz36Ghx56CO+++y5+8YtfICwsTNXvazBIHBMtfV12glOxRER0flAUMC1fvlytcTgJCQmB2ezbkvXt27cjJiYGM2fOlO4zmUyYM2cOvvrqK7S1tSEkJATJycndnqvRaDBjxgz88MMPKCkpQVoamzN2ZTSHwRgbBktVCypy62DrsEMXxB12iIhocBt073QnT55ERkYGtFrnb23s2LFobW1FUVFRr8+vqakBgF5bJVRVVeHEiRPSv8LCQuUDH0DELJOt3Y6q0/UBHg0REZH/qbKXXH9SU1ODyZMnd7tfzFhVV1f3mDlqaGjA559/jkmTJiE2tufanE8//RRr1qzpdn9+fn6Pe+n1xGKxIDs726vnBJo9slX6+nDWcQzpGDh9uAbi9R7IeL37Fq933+L17lv+ut7jxo3z6DjFRd+e0Gg0WLdunZJTecxqtSIkJKTb/eJ9VqvV5fPsdjv++te/wmKxYMmSJb2e47rrrsO0adOk24WFhXjyySeRmprqtBLPE9nZ2R7/sPqLpCgLTm/8FgAg1IUMqPEPxOs9kPF69y1e777F6923An29FW++60pTUxMsFgsAR2YnKKjvEll6vR5tbW3d7hfv0+v1Lp/34osvYs+ePfjjH/+I9PT0Xs8RGxvbawZqsDMlhyM0Ihitje0oP1ELwS5Ao1W/+J+IiKi/UBTJvP/++z0+Vlpaipdffhm1tbX429/+puQ0XomJiUF1dfcu1OJ9rorJV69ejU8++QT3338/rrrqKr+PcaDTaDRIGB2Dwn3lsDa1o7bYgpiUiEAPi4iIyG/8VvSdlJSExx9/HI2NjXjzzTf9dZpuMjIykJubC7vd7nR/Tk4OQkNDpT5Moo8++girV6/Gz3/+c9x22219Ns6BLmG0rL3A8ZoAjoSIiMj//LpKLigoCFOmTPGqaaU3qqqqUFhYiI6Ozi06Zs2ahZqaGmRlZUn31dXVYevWrbj88sud6pu2bNmCl156CT/60Y+waNEiv4xxsEqUBUzl7MdERESDnN+Li6xWKxoaGrx+3oYNG2CxWKSptJ07d6KiogIAcOONN8JoNOKNN97A5s2bsX79eiQlJQEAZs+ejQ8//BBPPfUUCgoKpE7fdrvdqXt3dnY2/t//+3+IjIzERRddhK+++srp/BMmTHDZq4kcYkdEIkivQ4fVhrLjtRAEwS9NTImIiPoDvwZMhw4dwpYtWzBs2DCvn7t+/XqUlZVJt7OysqSs0bx582A0Gl0+T6fT4dlnn8Wrr76KDRs2wGq1YsyYMVi2bJnTOAoLC9He3o66ujqX27osW7aMAVMvtEFaxKebUHKsGk01rbBUtSAizhDoYREREfmFooBp8eLFLu+32WyoqqqSAp477rjD69furaBctHz5cpfdxiMiIrB06VIsXbq0x+deffXVHm/mS64ljolGyTFHBrDsRC0DJiIiGrQUBUwHDx50eb9Go0FERASmTp2Km2++GVOnTlVyGuqnEsfESF+XH69FxvQhARwNERGR/ygKmLZv367WOGgAik83QaPTQLAJKDvBlXJERDR4Dbq95KjvBOl1iE2NBADUFTehtaF7w1AiIqLBQLWAqaOjA/n5+Th69Cjy8/OdlvrT4JU4unNaroztBYiIaJBSvEquoaEBK1euxNdff+20JYler8eVV16J++67D1FRA2dzVvJO4uhoHPlvPgCg7EQNRkxNCPCIiIiI1KcoYGpoaMADDzyA4uJiREZGYtKkSTCbzaipqcHx48fx+eef4+DBg3jttdcQGRmp1pipH5F3/C4/zgwTERENTooCprVr16K4uBgLFizAnXfeibCwMOmx1tZWrF27Fu+++y7eeustdtIepEIjQmAaYkRdsQVVBQ1ob+1AcGjfbbZMRETUFxTVMO3YsQOZmZl48MEHnYIlAAgNDcX999+PzMxMfPvtt4oGSf1b4hhHlkmwC6jIqwvsYIiIiPxAUcBUXV2NCRMm9HrMhAkTpO1NaHBKdNqIl9NyREQ0+CgKmMLDw522L3GlrKwM4eHhSk5D/ZxTA0uulCMiokFIUcCUmZmJbdu2Yd++fS4f379/P7Zt24bMzEwlp6F+zhgbBmNsKACgIq8O9g57gEdERESkLkXVuXfeeSd2796NRx55BJdeeikmT56MmJgY1NTU4ODBg9izZw/0ej3uvPNOlYZL/VXCqGhYqkrRYbWhqqAB8emmQA+JiIhINYoCptTUVDz//PN46qmnsHv3buzevRsajQaCIAAAkpOTsXz5cqSmpqoyWOq/EsfE4NSuUgBA2fEaBkxERDSoKF7/PWnSJLz77rs4cuQIcnNz0dTUhPDwcGRkZGDixInQaDRqjJP6OXGlHODo+D3p2gAOhoiISGWKAqann34aI0eOxM0334xJkyZh0qRJao2LBhhTshF6YzCslnaUn6iFYBeg0TJYJiKiwUFR0ffXX3+N2lquiiJAo9VIXb+tlnbUlVgCPCIiIiL1KAqYkpOT2WOJJE79mNhegIiIBhFFAdOPf/xj7N69G5WVlWqNhwYweT8mNrAkIqLBRFEN06xZs3DgwAEsXLgQv/jFLzBmzBjExMS4LPROSOAu9oNd7IhI6EK0sLXZUX6iJtDDISIiUo2igGnBggVSG4GXXnqpx+M0Gg22bt2q5FQ0AGiDtIhPN6E0uwaWqlZYqlpgjA1z/0QiIqJ+TlHAdNVVV7FtADlJHBOD0mxHdqnseA3Spw8J8IiIiIiUUxQwLV++XK1x0CDRtfCbARMREQ0Gioq+ibqKzzBJ/Ze4ES8REQ0Wijt9E8kFhwYhdkQkKk/Xo/asBe8/tB0R8QZEJhgQkWBApPh1fBiCQ/nrR0REA4Oid6xbbrnF7TFarRYGgwHDhg3DjBkzMHfuXCWnpAEgeYIZlafrAQAN5c1oKG9G8ZHux4WZ9EgcFY0Z909ESBiDJyIi6r8UvUsJggCbzYaqqioAgE6nQ1RUFOrr62Gz2QAAsbGxqK2tRV5eHrZu3YrPP/8czzzzDIKDg5WPnvqlidekorWxHVWn69BQ0Yz2FpvL41rqrMjfW4b4DBMmXsMNmomIqP9SFDCtWrUKDz/8MIYNG4Z77rkH48aNk9oMZGdnY9WqVbBYLFizZg3q6+vx8ssv47vvvsP69evxy1/+Uq3vgfqZ0IgQzLh3AgBHUN3a2IbGc5mmhopmNJa3oL60CRV5dQCAkmPVgy5gqi9rQm1RI4ZdlAAt99QjIhrwFBV9r1y5Em1tbXjhhRcwfvx4qcWARqPB+PHj8dxzz6GtrQ2vv/46hg4discffxwJCQnYsmWLKoOn/k+j0SAsUo/4jGikTx+CC2/IwKwHJ+Enj1+KsKgQAEDZiRrYbfYAj1Q97a0d+M+fduHrvx/AvvUnAj0cIiJSgaKAaefOnbj00kuh1bp+GZ1Oh0svvRQ7duwAAOj1elx44YUoLi5WcloaBDQaDZLGmQEA7S02VOU3BHhE6qk9a0FbcwcA4NjmQjRVtwR4REREpJSigKmpqQnNzc1uj2lqapJuR0VFKTklDSLJ4zr3nis5Nng2cW6qaZW+trXbcfDT0wEcDRERqUFRwDRixAh8/fXXKCkpcfl4SUkJtmzZghEjRkj3VVRUwGQyKTktDRJihgkASrMHUcDUJaN04psiWKqYZSIiGsgUFX3/8pe/xGOPPYa7774b1157LSZMmIDo6GjU1tbi6NGj+O9//4uWlhapwLu9vR3ff/89pk6dqsrgaWCLTDQgPCYUTTWtKDtRC1uHHbqggd9L1VLV6nTbbhNw4ONTUiE8ERENPIoCplmzZuEPf/gD/vGPf+CDDz7Ahx9+KD0mCALCwsLwyCOPYNasWQCA1tZW/OEPf0Bq6uBaEUW+cdQxxSBvRwlsbXZU5tUhcUyM+yf2c03VnQGTVqeB3SbgZNZZTL5uJCITDAEcGRER+Upxt8BrrrkGs2bNwo4dO5CXl4fm5mYYDAakp6dj+vTpMBqN0rERERGYMWOG0lPSIJI8zoy8HY4p3ZLs6kERMFlqzk2/aRw9qQ59ehqCTcDBT/Iw8/5JgR0cERH5RJX2ykajEfPnz+/xcZvNBp1Op8apaJBJGi+vY6oBbgjgYFQiZpjCovSY9JORyPn6DNqaO5D7bQkmX5eGqKTwAI+QiIi8pahg5KOPPnJ7jM1mw+OPP67kNDSIRcSFISIuDABQfrIWHW2uu4IPFLYOO5rrrAAAY0wo9OHBUlNOwS7gwMd5gRweERH5SFHA9NJLL2Hbtm09Pm632/H4448jKytLyWlokBOzTPYOARW5dYEdjELNta2A4Pg6PDYUADD+quHQGx1bAZ3aWYLaYkughkdERD5SFDBNnDgRTz75JH744Yduj4nB0vbt2/Gzn/1MyWlokBtM/ZjkBd9GsyNzFmIIxqRrz2WZBODAR8wynQ/OHqrE6e9KIQhCoIdCRCpQFDA9/fTTSElJwZ/+9Cfk5uZK99vtdvz1r3/Ftm3bcP3112Px4sWKB0qDl7yOqWSA92OyyAKm8JhQ6etx84YjNNKxFczp70pRU9TY52OjvlN9pgGbn9mHb146iOwvCwM9HCJSgaKAKTw8HM8//zyMRiN+//vfo6SkBIIg4IknnsA333yDn/70p3jooYfUGisNUuHRoVIhdOWperS3dgR4RL6TN60MN3cGTMGhQZj0k5GOGwLww4bcrk/1WVtLB3b+6xgOf34agp3ZjP6g8lS99PUPG/LQ1twewNEQkRoUdwk0m8144YUXYLfb8fDDD+PPf/4ztm7dimuvvRa/+93v1BgjnQeSzk3LCTYB5SdqAzwa38kzTMbYMKfHxl05DGEmPQCgYG85qgvU2T/v2KYC5Hx9BnvfPYHj3xSp8pqkjKWyM3C2Wtpx5L/5ARwNEalBlbbKKSkpePbZZ1FbW4usrCxce+21+P3vf6/GS9N5IlnBtNzBT07hvUVbkZulbFPnuhILPvx9Fr56YT/sPmZq5DVM8gwTAATpdZh83UjptlpZpsr8zmzG3vdOoKm2tZejqS/Ifw8A4MjGAjTXWwM0GiJSg1d9mNasWdPr42PHjkVeXh7MZrPTsRqNBnfccYcv46PzRNLYzsLv0mM1Hj+vrsSCfR+cBARg/4ZcZMwc4vMYjm4qQF1xE+qKm1B2vAbJsr3uPCVOyWl0GoRF6bs9PmZuCg5/dhrNtVYU7q9A1el6xI5UtiF13dnOVXftLR3YvTYbVy65UNFrkjKNXfYO7LDacPCTU7j8jnEBGhERKeVVwLR69WqPjlu7dq3TbQZM5E5YlB7RKUbUFllQlV+PtuZ2hBiC3T7v8GenpWX8lsoWtDRYERbZPVDxhLzupKG0yaeASZySC48OhVar6fZ4UIgOmdenYdfqbADA/g9zcdUfpvg0XgDoaLOhsaLZ6b6CveUo3FeO4VMSfH5dUqbpXMAUpHc07O2w2nD86zOYMH+EX7bHaW1sw4ltZ9EaZgUYkxH5hVcB04oVK/w1DiIkjTOjtsgCQQBKc2ow/KLe3/AbK1uQe25bFVHVqXqkXBDv9bk72mxOK9fqy5t7ObqH17DaYLU4inu7TsfJjZ49FIc+PY2m6lYUHaxERW4t4jOivT4fANSXNkFctW6I1qO51jHts3PNMSSNi/Eo6CR12e0CLDWOwDkq0YCUC+Jx8JNTsNsE/LAhF7MXTlb9nPveP4njW4qg0QGjxloQPcTo/klE5BWvAqbMzEw/DYPI0Y8p+wvHEuzSbPcB05H/5kOwOdcaVZ72LWCqOdPo9FqNPgRMFtkKOWMvAZMuWIcLfpaOHf88CgA4+J/TmPfIRV6fDwDqZE0wx/1oOMpO1ODsoSo011ix74NcTgEFQEttq/S7ZIwNw6RrU5Hz9RlYLe3I21mCidemwjwsUtVzigslBBuw81/HcM2fLoZG0z3DSUS+U6Xom0gNiWNjgHN/490VfjfXW3Fiq2NFmFbX+cZQebq+p6f0qvJUndPtBh8CJueC77BejgRGzRyCsChHX6bSnBqfmxvKA6booUZMu2u8NA2U/WUhKvLqfHpd8p1TL67YMIQYgjH5p2mOOwRg3/qTqp7PbrOjvrRJul2WU4Pcb5UtgCCi7hQFTJs2bcI999yDqqoql49XVVXhnnvuwVdffaXkNHSeCDWGwDzc8cm7prARrY1tPR57dGMBbO12AMA42dYjlafqfQo+5PVLgCNg8vZ1PM0wAYA2SCsVe7e3dMBS5dvKNvk2K6YhRkTEG3DhTRmOOwTg2zePwt5h9+m1e9LRZkNFXp3PKwkHO4us4FtsLTHuR8OkRqZFBypRdtzzhQ3uNFa0wN4l07r338d7/f9DRN5TFDBt3rwZwcHBiI2Ndfl4bGws9Ho9/vvf/yo5DZ1HkmTbpJTmuH5TsVrakfO1Y+pOG6TBxGtSEXcu+GhtaOu2pNsTXTNTHVYbWuq9e8PpraWAKzEpEdLXNWd868kkZpi0QRpExDvenCfMHw7zCEfgWVvUiCMb1e0B9M0/DuLTx3bji2f2MWhywSlgOvd7EBSiw4U3pUv3f7/upGpbptSVdAbNGkdyEa2N7dj73glVXt+Vo5sLsPmZ71XrJUY0ECgKmAoKCpCRkdHrMenp6SgoKFByGjqPyPsxlfawr9yxLwvQ3mIDAIyaNRTh0aFOS/O7Tq+509bc7jSlIWoo635fbywu9pHrTcwwecDk/VYp9g476sscU4dRSUZodY7/zlqdFtPvmQCxhOWHDXmo9/J76UlbSwfO/FABACg+UsV98VyQZwvlzUszZgxBVLKjo335yVrpOipVV9L5sx02JxrBYY7S1JPbzqqayRI11bZiz9s5OHuoCl8+vx/WJnYxp/ODooCpqakJERERvR4THh4Oi4W7s5NnEkdHQ3NuOX5Jdvc/9u2tHTi22ZFd0mg1mHxuu5G4NFnA5GUdU1V+g9SaQBfc+V+iocK7OiavM0zDOwt/fQmY6subpeLirqui4kZGYfz8EQAAW7sdO1cdUyWjUVPYea0A4MDHeQN+w2S1uZqSAxyB7NRbRkm3971/UpUMXb0swxQ1XO90jh2rjsKm8pRsdUGDtDKzqaYVu1YfU/X1iforRQGT2Wx22nTXlby8PERH+7Zkms4/IYZgxKY6Aom6Yku37sg5W4qkpftplychIt7R0ybOKcPkXcAkD7BSMuOkrxvKvAuYxBomXYhWqqnqTVSiQQrQfAmY5AXfpqHh3R6/6OcZMMY6AreSY9XI+7ak2zHeqsrvcm0FYNsrh9DCLtYS6fcgWIuwcxsui4ZPSUBcuuN3tbbIglM7lP9M5BmmMHMwxlw5TPr/UFfcpPq2LDWFzr+rp3aV4tQu5d8HUX+nKGCaMmUKvv/+e3z//fcuH9+7dy/27t2Liy++WMlp6DzT07RcR5sNR2V//OXbjBiiQ2GIcTSsrMpv8GoT2ipZgJV2eZL0ddeGkL0RBEHKMBnNYR4t6dbqtDCdyww1lDWhw2rz+HyAc4dvU3L3vjvBoUGYdtd46fZ37+SgpUFZYFOV31mzIm6Y3FxnxfaVh7nxLxy/B2KGKdwcKmVLRRqNBlMXjJZu7/8wF7Z2737uXc8nBs7G2FDoQrTQajWY9qvx0pTsgY/yfFr12ZNqF/V2O/91zGnjaTW11Fvx+V/3YMuKA9zEmAJKUcB02223ITQ0FH/4wx/w9NNP4+uvv8bBgwfx9ddf46mnnsLSpUthMBhw2223qTVeOg84FX7LpuVys4rRXOd4wx8xNQHRQ52ng+NGmgA4Vp25qknqiZhhCtLrMHRynNTawJsMU1tThxTweDIdJxLrmATBecWbJ+TFvtFDXTcqTLkgHiMvdQSBVks79rxz3KtzdCUGTFqdBlcvmyq1Rjh7qAqH/bTBbEebDa2WgbHiq625Q6qv66mOLXmcGUMnORbKWKpakLPF9w2TWxra0NbcAcBRxyaKTXWekt21Rp0pWaAzw6QL1iL1kkQAju97+8ojfgmaj24uRFlODfL3lOHbN46q9n0QeUtRwJScnIxnnnkGMTEx2LRpE5588kksWbIETz75JDZv3gyz2YznnnsOycnJao2XzgMJo6Kl3kpiPyZ7hx2HPjstHZMp9rWRcZqW87COqaXBKmUEYlMjERwaJK1s8uZTuaXG85YCck6F34XerTgSAyyNVoPIxO5TcqJLbx+LEIOjEDhvR4nPhcDtrR1SvUx0SgSMsWGOrtXnAsx9759E+clan167J811Vry3aCvW/WYbCveXq/ra/uBUvxTXc+H/lAWddUYHPzmFtpYOn84nr18yDXH+HbjwpgyplcHZQ1XI31Pm0znkOqw2aTFE9FAjpv9qgpTZLTlWjWNfFio+R1fyRRz5e8ukGkaivqa4ceWkSZOwbt06/OUvf8HNN9+Ma665Brfccgsef/xxvPfeexg/frz7FyGSCQ4NQly6CYAjy9NU3YJTu0thqXS8GQ2dFOtyw9pYHwq/5dNx4muKdVHWpnaPMxveNK2UM/tY+G23C6g/V7sSmWiALqjn/8oGk95pGqjge98Cj+rCRqnYV6wzGzIxVgpeBZuArS8flGrM1JC/pxRWSzs6rDZsffmQy+mg/sRVSwFXYkdEYeRljsxfa0Ob1OHeW3XFnZnUrtOyIWFBuOyOsdLt3W/lKJ7Sqinq/B2IGR4JvTEYs+6fJD3+/XsnUHvW+3q8ngiCgKou/5f3vHtc9cBcrqaoEXvfO+5TXSENbqp0+g4ODsacOXOwcOFC/P73v8eDDz6I2bNnIziY+1iRb5Jl03LFx6px6NNT0u3M67tnlwAgLrUzYKrysPBbHliJGarIhM5P6p5ukSJ/o/RmSi46pfNNTr6XnTuNFc1S406TB/uGiVMnAHx+s5EXfMfKrvWFN6YjYbRjYYelqhVZbx5Rbdqk/ESd9HWH1Yavnt/fbSFAf9JTSwFXLvp5Z0uWs4crfTqffFpWbFkgN3xKAoZd6NgqqKXOqrjLuDyIELOjQybGYvz84QAc03/bXj2s2sq8hrJmacpRXCAh2AR889JBxfV4Pdn2yiEc/iwfnz3+ndfT5DS4cWsU6peSxnUWfv/wYZ70STpxTDQSx8S4fI7eGIzIREd2qLqwwaMO104B07kMlfgagOfTck1OPZg8D5jCIvUwmBxTGjVnGj0ONJy2RPEgYAqNCJHeUKsKGtDR5n2hcbWs4FvMMAGO4vW5iyZLKwMLvy9H9pdnvH59V8pznYM7S1Urvv7bDz6Nvy/01FLAlajEcOmY6gLvFiqI6kt6zjABjiLzy+4Y17ldztdnFG2XI582lk8nT10wWgrcqwsa8MOHva+e9pQ8SJ90bSoSxzgC86aaVmx75bDqjVOb661SUNje0oGvnt/PjukkUSVgqqiowBdffIF///vfWLNmTbd/a9euVeM0dB6JzzBJnyjlb0KTXdQuyYlZIlu7HTVupgYEQZBaEOiNwdJUXGSCDwFTjW9TckDnG4/V0o7mWs8+Ndd12RLFEwmjHG82gk3wuvUCAFQVOJ6j0WkQneJccB9uDsPM+ydKt/f8O0c63leW6hYpEDUPj5DqcSpy67Djn/4p/u1os6FwX7nTz9MbTtvjxLoPnM3nAs/2VptPK9nEDFOIIUgqwO8qIi4MF954rsu4AOxcdRR2m28ZoGpZhkm+gXBQiA6zfz1Jqj08/NlpVZpmyn9P4zOiMfc3mdL3WXykCgc/VrdxasXJOqfbDeXN+Oalg6pvLyQS7AJ2rcnGV3/7AY2V6q1kJP8IUvoCr776Kj788EPY7Z2/UIIgSMuqxa/vuOMOr163ubkZ69atQ3Z2NnJyctDY2Ihly5bh6quv9uj5jY2NWLlyJbKysmC1WjF27FgsXLgQo0eP7nbsjh07sHr1ahQWFsJkMuHHP/4xbr/9dgQFKb485KOgEB3iM0xOq+TMIyKl1UU9iUuLwqldpQAcf2xjR3SvdRI1VbeitcHx6TE2NUr6nfUlYLL4mGECgOhhETh72LEfY82ZRikw6I28dsWTDBMAJIwy4eS2swCAitxaJI11nalzpcNqk9oYRA81IihE1+2Y4RclYMLVI3B0UwHsHQK+WXEQY283dzvOU+WyN6+UC+Ix4uIEfP74HnRYbcjbUQLTEKPL4n8l9n+QiyP/zYcxNgw3/20mtL3UhrkiBfcaePRzjB0RicJzNWVV+fVSqwZPtLd27kFoSjb22spiwvwRyNtRgpozjagubETJsWoMnRTX4/GuCIIgZV/CzaHdeo3FjojChTdlYN/6kxAEYPtrh/Gzp6cjJMz3v6PyDHDsyEiEReoxZ1EmNv2/vRAE4IeP8hCfYfL6e+lJRV5nRlOj1UCwCyg5Vo3db+Vg2t3q1+MWHapE9rlC+dqzjbjuL5chNNJ14EuBpyjD9Nlnn2H9+vW44IIL8MQTT0AQBMyfPx+PPfYYrrvuOuh0OsyePRsvvvii169dX1+PNWvWoLCwEOnp6e6fIGO327F06VJ8/fXXuOGGG/DAAw+gtrYWixcvRlGR8xLe7777Dn/84x9hNBqxePFizJgxA2+99RZWrFjh9ZhJXcnjnN9sM69Pc9vfKPZcawHAfQNLV9NxQGfRN+BFhuncG2WIIQjBod69QZiHeb+nnFRboXFdu+JKQkZnA9myE97VMVUXNsgKvnsOQqf+YrRUPN9Q3ozTm33PMshrrRJGRyN2RBRmPdhZYLxv/UkUfK985ZdIEASc2u1owGipavFpOxkxgDFE6aEL7h5UdhU7ojNLI+9x5Qn5+Nz9DmiDtE59y8qOe1/HZqlsQfu51Xzy6Ti5ST8ZKWUyGytb8N3bOV6fR2S3C9JedcbYMIRFOqauk8ebcdHN51YZCsDWlw85ZfaUkAfpVyy+ANogx9+bnK/PIPsr9VfnyT8QNpQ148vn93vdj80btg47zvxQ4beeWYOd4oApMTERzz33HGbOnAkASExMxBVXXIHf/e53eOGFF/Dtt9+irq7O69c2m834+OOP8cEHH+DBBx/06rnbtm3D0aNHsWzZMtx111244YYb8NJLL0Gr1WL16tVOx7766qtIS0vDCy+8gJ/85CdYvHgxbrvtNnz66acoLOTy1UBKkjWwNA0Jx4gpCW6fEzsiUmoW2HV1TVfy5crygCkkrHN6w5OASbAL0hSOu7oVV2KGebdSTt6sMCIuzGW2x5Wo5HApK1CRW+fVlFZVD/VLXemCtJj7m0xpP7PKI00+T29VyAKm+HOrJlMvTsRFN3cWS2979bDiqT9RQ1kzmms6p0Rrz3pX8Gtrt6HlXJ8wT38PzLLVnt5uZOtUv+RBljFxdGfA7Evhf7Wsw7d8daecVqvBrAcnITjU8Tt5cttZn1dl1hVbpOAhrsuq2Mk/GYmUCxxZJaulHd+8dFBxobmtwy79zYiID8OIqQmYfs8E6fHda3NQfLRK0Tm66rrBeEVeHb55+aDPU6buHPzkFL58fj8+eORbv640HKwUBUyFhYW45JJLoNV2vozN1hkdZ2Zm4rLLLsO6deu8fu2QkBCYzb6l87dv346YmBgpiAMAk8mEOXPmYMeOHWhrc0zDFBQUoKCgAD/5yU+cpt9+9rOfQRAEbNu2zafzkzoSMkwYeWkSDDF6TP/VhG5dk10J0uukJo61Zy29flqTZ6C6/kEWV8q11FnR3tp7j5yWhjbYz+3p5s0KOVFUcrhU++FJwNRU3Sp9X57WLwGOAuD4DBMAx5uM/A3XnZ5WyLkSmWDA+KuGS7eLj3j/JtPe2iG9QUcPNUIf3jn9k/nTNKkju2Pl3A9SQ1MlSrOd98Sr83KFlHxaNtyD+iXAkYkyRIsd6uu9CmKd6tg8yDKGm8OkuqrKU/VevynLs589ZZgAx8//0ts72xl8v+6EV+cRObX8SHP+ndOcC8zEwLQitw7fv+fbeUTVBQ3SylMxSzZq5lBMvDYVgOOD0TcrDnrVFLc3bS0dqD73/8oQo0dwmCPIPLO/ArvWZPulRu/0bke5QofVhi+e3ed1kO4tW7sNDeXqXK/+QHHRt9HY+Qc7NDQU9fXOn/ZSUlKQn++fDsA9OXnyJDIyMpwCOQAYO3YsWltbpWm5kycdS2y71jXFxsYiLi6ux33yqqqqcOLECekfM1H+odFqMPe3mbj15bk9roxzRZwSEuwCqnr4gyDYBSlrYojRwxDt/AbnVMfkZosUeXrbk7qVrnRBnVuk1JU0ud0qQ77UuacO3z1xyjLkev4JU/zDqtFqen2zFMlrzXwJmCpP1UurxsQ3L5FGo8GM+yZKe7I11bTiq7/tV7xyruSY86d9b5eUO62U9CLTaD43LdfW3CH1GvNEnZsVcq7En5uW7bDauu0J545TwXcPGSbRqFlDpeC8vrQJjV58X6LK/J4/0ABAqDEEVyzpnDY7uqkA+XtKvT6PqEL2/0EcO+BYAShls5ra8eXz+2FtUt5rrOJkrTTNPfyiBFy55EJozn1wOr6lCAf/c6qXZ3uvqbrFKdhra+7Apqe/d2pNoSa7XcBnj+/B+w9lIeuNI6qvaAwERVXNcXFxqKzs7B8yZMgQ5OQ4z1nn5+cjLMz7aQolampqMHny5G73ixmr6upqpKWlobq62un+rseKj3f16aefYs2aNd3uz8/Pd8qwecJisSA7O9ur51DvOsI6A5yju06gxtb5x1283s1V7VI9RmicttvPoFXb+Ucke99JmC0G9KQ6p/OPULOt0aefpy7S8clWsAv44dsjCE/sufCzZH9nENiMBq/O1xzc+aZ+Yk8+bPHu3zRt7XapR1RYbBBO5rn/JG+3CdCGaGBvE3DmUDmOHTvm0f56oqIdddLXHeHNLr/H4ddGoP5fFrQ12FCZV4/Pn9uBjOtjvTqPSBAEFB1xnjoqP1Xt1bUtP9T5O2PpqPf4uYKxc9n6wW+PwTzWs5q08nzH3yeNFjhbXYDiWo3bvydCZOfP/1BWDpJaew98nM6X5zifNlgjna83+mQBOPeZc99XR5CQ6V1wX3Sssz6tylqKumzXU3sjfhSN05scwe621w6htqMCodHe9wDM3df5Xtakq0V2duf/66QrQ1F1Nhgtle2oL23CZ0/twNgF8WhqbvL573fhjs4AzRbRjHpdBdKvjUHufxzXef/7uahvqUH8ZO+uW08qZL+fGh0g2BxNUz99fBcm3JGIUJO6i5wai63SFOfJbWdRW12L9J+YPZop6Im/3i/HjRvn0XGKrtCECRNw+PBh6fb06dPx1ltv4bnnnsP06dNx+PBh7NmzB7NmzVJyGq9ZrVaEhHR/wxHvs1od6Xtxaq6nY5ubXWcWrrvuOkybNk26XVhYiCeffBKpqakuV+H1Jjs72+MfFnkmPqwepzftAgDomkKdrq94vXO/LQbgKPAdOTkF48Y5r7bS15WgaPshAEBUcAzGjRuJnhwtzAfgyKKkjhuGjHFDvB5zx+nTqDzqCESigmIxatzQHo+t3nkEgOOP7bipo6T6Ho/Ok25D9rtfQbAJsFZ69oeiIq8OEBxZ2SFj4j3+fS2Z0IozP1SgvcmOxPAUKZPiiTOf7ZO+vmDOeET1sPVLSvxwfPb4d+iw2lB1rBmjLjZi3I+Guzy2N7VnG9He5Nw7qrWmA2NGj4FW51kiviU7F4DjzS59/AgMH+e+5g4AwpvLcfbbHwAAoR1RGDdulJtnOD6976l1/EyikowYP8Gxgsvd35N4Qz3yv3D830CD3uOfZVtLB3bVOjLp5uGR0vl6E6OrRdH27xw3aj0/F+CoJ/quwvHziEoKx6QLJ/R47NixAjT1h3BqVylsbQLaC/S4cNoYj88lOvjqNwCA4FAdLpo1qdvPfUTySPznf3fBamlH3elWNB7QIvIio89/v0+9/5309ZQrJjqy3OMAU9gpfL/OMftxamMN0selOva4VKhye+d79ZVLLsQPH+aiurARbY025H1Qi2sfu6Rbpl2JA8fzAHQGvZVHmmAymTDj/onQ+hg0Bfr9UtGU3FVXXYUhQ4agrMxxURYsWID09HR8/vnnWLZsGd59910kJCR4XbStlF6vl4IhOfE+vd5RMyAGSj0dKx7XVWxsLEaPHi39Gz7c+z/Q5D8xKRFSD6eetkhxWq6c1j3d781KOSUtBUROe8q5qWOq9aEHkygoRCetzKovafKoKZ839UtyQyZ2Zm69mZYT7II0PRIaGeI0PdqVeUSkYz+7c45/49tGtvLpODFBZbcJXvVGkk/N9raPXFdmWRF9tYcF7JZKWad3D1dJAo7/G2JBdvnJWo/rZGplXejl/Zd6E5cWJTXMLD1W7VVNTu2ZRtg7HMe72gZJTmzOKf7cig5WeHwekaW6RSr4j0szuQySIxMMuPKhC6Rps6ObClB+wLftUzrabNKik8hEg1OgMuknIzFunuM9RbAJ+PrFA07/B30hCAKKjzn+D4qbjM9/dKrUxqKhvBmbnvpe1SadYqsUANI1y/22GN++PnCn5xQFTBdccAGee+45JCY6tl0wGAxYuXIlHn/8cdx777147LHHsGbNGunxvhITE+NyOq3rFJx8is7Vsb4WnVNgaYO0iBnuCEAayppd7m0mLyiNcxEEeNPt22kfuRjfpp89XSknCILUDyncHOpTjxt5TVBFbp3b4z1dIdfVkImyOiYvVhfVlVik7TASRkW7nWIbMTVBqnGpKWz0qQGgvOBb3EoE8K7w22lbFC+al4bHhCI0wjGFVJXf4FFgUeflCjmRVqdFXJoJANBcY3X63e1NtbzD93D3NWyAozZPrD1srrM6jdkdV1sW9SY0IgRx5+qO6oq9r5mStxOQ1y91lTTWjGl3dWbX8r+o9Xi/SbmKvDppoUjX+kyNRoNLbx+L4VMdGUqxQLvRTS1lb+QrQBNHR0MXpEVYlB4/Xj5VqrerPWvB5mf2Kd5vEADamtuljvJRSeG44reZgyJoUm1rlPr6euzfvx+7du1CREQErr32WlxxxRV9Xr8EABkZGcjNzXVqpgkAOTk5CA0NRUpKinQcAJw44VyTUVVVhcrKSulxGnjENwXAuXgUAOwddukNIDLB0K0BH+AoKA0xOIIR9xkmedG366ykO2FRIVLDut4Cppb6NimY8LRhZVcJo0zS154sLRY/3Wo07ot95aKSwhES6cgwlB2v9bgoW/7mldDLm5fcsCmdQU7hfu8yDIJdkJZ368ODMfLyZOkxb1oLiE0rg8OCnFb1uaPRaGA+12C1taHNo27v8kDO0z5cogQf2gs47yHn+e9A8vjOYKD0mOuaUFecG1Z6ltVMkU1bnT3k3d588hYWXRcZdDVmbgoyZjqm3e0dAooOeL8PYJmsnYCrBrJarQZzfj1ZGktLfRs2P7NParTrLfkHFnm7lnBzGH78x6nS9kxVp+tV6QVVcqxaWrQxdFIsRkxNHBRBk+KAqbS0FMuWLcP111+Phx9+GI899hgefvhhXH/99Vi+fDlKS31fteCJqqoqFBYWoqOjc+n3rFmzUFNTg6ysLOm+uro6bN26FZdffrk0FZeamophw4bhs88+cyrW/uSTT6DRaPq89orUI/9U2nUj3pqzjdJ0RpyL6ThR5Lm6GUt1S68r18RP6WFRIR41K3RFo9Eg5tx2I60NbT1uMOvLlihdxY/y/A2zo80mBQ2mIUZpisUTGo0GplTHVIOt3e5xs8yuDSs9MfyiznqhM14GTDVnGqUsZOLYGMTINkT2NMMk2AUpcPalF5c8c+fJ9IsvK+RETgGzhz8T+Yo6T1ZJipInyKZlvQiYxGJhjVbj1NyzNymZnQFT0UEvAyZZptWTmsDRsztrDAv3ed9nSt44tKcVwEEhOvzokQulgLi+tAl73zvu9bkARwAjGjLeeeYkMiEcVy+fKn1wLDtei69fPKCor5V8Ok5cMTsYgiZFAVNxcTEefPBB7Nq1C8nJyZg/fz5+8YtfYP78+RgyZAh27tyJBx98ECUlJT69/oYNG7B27Vps3LgRALBz506sXbsWa9euhcXi+EP2xhtv4H/+53+cVuvNnj0b48ePx1NPPYU1a9bg448/xuLFi2G323H33Xc7nWPhwoU4deoUHn74YXz22WdYsWIF3nnnHVx77bUYMWKEbxeGAk4eMHWtY3Lq79LLp1epdkZAjyl+e4dd6gHkzTSMK57UMckzHr4GTOHRoVKNTeWp+l73yaotaoRwburAm/olaYwjO6+Jp3VMYsCkDdJ4XCgePdSIiHjHuUpzalxOw/akRDYdlzw+BpGJ4dJKHk9bC7TUW6WaG0/2kOvK7GXHb+dNd73LMMWnm4Bzs5yeZJgEuyCtkoyID/NqGtg8LLLzjTi7xqM3xw5rZ5AePdTzIN08PFJqOFtyrNptew75+arOZZxNQ4wuM85dxY+KljLCZw9XedXSwtZhl1p6GGNDEdFLvVuoMQTzl06VGsHm7ynzun2GYBekjuIhhiDEuPg/FT00AvMfnSr1gjp7qBLbXj7k04bQgiBIAZM2SINEWQZtoAdNigKmlStXoq6uDg8//DDeeecdPProo7j//vvx6KOP4u2338bvfvc71NXVYeXKlT69/vr167Fq1Sp88sknAICsrCysWrUKq1atQmNjz9MWOp0Ozz77LObOnYsNGzbgtddeQ1RUFF588UUMGzbM6djLL78cTz75JBobG7FixQpkZWXhl7/8JR566CGfxkz9Q1RSeGe36dN1To95Wh/hyZ5yTbVW4Nz/dV+aVsrJa0Pku8LLqZFhAjqnHWzt9h57VQHOb95mL+qXRFGpodKbsycBU0u9FQ1ljmsdOzLK4y7mGo1GyjIJdsGrwl/59hRJ48zQBWmlGrb6kiaP/phbfOzBJIp1KvzuPWASBEHqnRMeE+r1VjwhhmApm1lzphFtLb03Zm0ob5amaGK8mJIFHBmipHGON0xrU3uPv9dy1YUN0hu1p9Nx4rnE1WQdVhtKPdz+pfJ0vfShoLf6JTmtViPVunVYbSg56l32zNbm+JDiSX+5iLgwpF7s+N1ub7Xh7CHv+ppVn2mQPkAkjTf3uEItbmQUrvr9FOhCHGFB/t4yr6e3AUe9lNhPLHF0TLffz4EcNClqK7B//35MmzYN1113XbfHNBoNfvrTn+K7777Dvn37XDzbvffff9/tMcuXL8fy5cu73R8REYGlS5di6dKlbl9jxowZmDFjhk9jpP5Jo9UgNjUSpdk1aK6xorm2VVqJIgZMGg16zWA4BUxlPQRM8volpQGTBxkmeZM50xDvMgtyCaNMOLXTkfmtyK3tcRrC1xVyomCDDubhkaguaEBNYSOa660wRPVc5yWfGpHvfeeJ4VPicXRTAQBHHVP6dPftHew2u1S/FBoZIjUCjR5iRH1JE2ztdjRWNPfY1kAkbboL31ZKRsQbEGIIQltzh9utXlob26Q3QG/rl0QJo6JRc6YRggBU5tU5Feh3Je/wbfZiOk6UPN6Mgr2OaauSo9Vuf49668DvTkpmHHKzigEAZw9WYmgv35dI3rBSPl3pzvCL4qXNrAv2lTstFuhN2fHOAD3Rww2wUy9Nwsntju8rf08pRkz1rGUFAKdgrut0XFeJY2Iw8/5J2PqPgwCAvB3FXp0LcJ6OG9LDZuli0LTlpYMQbAJyvy1GiCEIl93Rv1vsKMow2e12t9NWI0eO7FZ8TdQX5PVJYpBka7ejtuhcTc7QiF4/nXvS7dtpOwyFU3KmZKM0FVRT1PuUXFhUCEKNvu9qLi9sLT9R1+NxUoZJA5g9XB3Vlbzrt7tP4mVeFN92lTAqWppOOXuo0qMpmeqCBqmBadK4GGlFnjx750kdk1PA5EOGyVH47Qjem2usPdawAV2n4/xf+F9d6FvBtyhZ9iZdku0+E1PlpsN3b4ZMiO1sL+Bh4Xe5j0H6kImx0AY7TnbmhwqPMySlOZ3XO8nDHQyGjDdLCwkK91d4NS0nb5mR5CZgAoDUixOkqc0zByq87mp+9nDndR/aQ8AEdM80ZX91ptff+/5AUcA0atQoFBQU9HpMfn6+180cidTgVMd07lNrU1mblO7vreAb8D7D5GsPJlFQiE7qi1J31tKttqi1oU1aJaNkOg4AolMipHqF8lzX/Xhs7Tap/44pOdzrqR+RU3sBN9NyFfLl3V582gccS+aHXeD4lN/eakOJbKqtJ/Ji2ORxnW8m8i1nPAuYlE3JAc7Zzt6m5ZynZX3MMHmxUq7GaUsU74PmqKRwab+8suO1bouJxf+r2iANor3MaOmNwdKihvqSJrdL8QVBkFbI6cODpf9/nggK0cGU5vhZtza0Oa2064ndZkf5ScfvZZhJ79S+pDfaIK1TmwFPi9ptHXYpo2Uw6T2qd9PqtEg7t1LU3iEgf2+Zm2c4n0+c4g6LCnG7QGDE1ERM/HHnXn15O3yrd+4rigKme++9F3v27MHnn3/u8vFPP/0Ue/fuxT333KPkNEQ+iR1pkr4WV91YSjuX5br79Bpm0ksFpz394W1SoWmlnPgHxm4TUNdlk0/5dJyvLQVEWq1GmoZrrrU6ZUhEtUUWqVeML9NxooRRJqkuovhIVY99hmztNim7EJlg6HXqrifDLpK1F/Bg9ZJz/VLnp32TLGDypLWAvLWErwGTfDVYdS+F30pWyImMsWHSUvKKvLpesyPilFxwWJBXDTlFGo1GyjJ1WG2oPNefx5W25nZpvzPzsEjogrx/i5K3F3CXZWoob0ZroyODEp9h8nrbjphRndfDk3qfmsJGtLc4skOJY9z3GJMbeUlnP8P8PZ4FMZWn6qX6s6TxZo/Plzats7WGN0FM+Yla6XxDJnq2TZF8xWHu9rN+2XRYLV59ZHS1f9oFF1yA559/HuvWrcPEiRMRExODmpoaHDlyBGfPnsXUqVPxww8/YOLEiWqNmcgjxthQhEaGoLWhzVHYKQiwFHemfN1lmDQaDSITDKg504jGimbYbfZuHYDVnJIDHJ/gxR3Fa840SsW5QJfMgpeb7roSnxGN4iOODEv5yTpExDl/2nWuX/J+KkakC9YhaWwMzh6qQnOtFXXFFkQP7f7Jsyq/+27x3ho6KRa6YC1s7Xac+aECwl1Cj2+Cto7OVgeGaL1TdiEqMRwaDSAIHgZM5wJOrU4jBSLeMsuC0t7qmOQBk681TBqNBgmjopG/twztLY5MoqseW1ZLu5Q9ixkW4dM+fYBjWk584y05Vt1jsbNTk1Q3/z97MjQzFvved2wtUnSwstetcpRkNAEgOiMMGq0Ggl1A4b5yXHzr6F6vUamsfsnT6ThR8ngz9MZgWC3tOPNDBTqsNrcrCEuOyeqJPJiOE8WmRiIqKRz1pU0oy6mBparFow8C8gxyb9NxclFJ4YgfZULFyTrUnrWg6nS9Ux+9/sSr8H316tXd/u3du9excWVRETZu3Ih33nkHGzduRFFREQRBwN69e7F69Wp/jZ+oRxqNRsoiWS3taKxokTJMumCtUzDSk4hz03J2m+CyK7I4JafRaRDm4xulnHxM8mJbQNmWKK64m5Zx7vDte4YJcNSWiHqalnPqv+TDmxcABIcGSb1/mmutva4AdPr0Pc7503dQiE762deVWNwurxZXBYXHhPq8uWhUUrj0Bth7hsnxexAcFuRzcAYACaNN0tc9TcvVFCkr+BY51TH10o/JaQWrj79z5uGR0nUpOVbda71Pubzg28tFBgAQHKZD4hjH8xrKm91O33rSf6kn2iCtVIDdYbV5VKMlrxn0pH5JpNFokC7LMp3a5VmWyang24OCe9HoWZ1ZJrG4vT/yKsO0YsUKf42DyC9iR0ZJ8/3FR6rQWuMo8I0ZHgGtB+n+rq0F5HvMAZ0ZpvDoUJ83lJTrbaWcWi0FRPFpUVIWxVX9hZRh0ni/nLwr5zqmaky4OrXbMfLi23gfM0yAo4ml2H25cF95j1Ov8u1Qksd1f/OKHmJEQ1kzbG12WKpauv3sRW3N7VL3dV+mrERarQbm4ZEoP1mLxsoWWC3t3XoCdVhtUjbLlBzuc8YH6Fr4X+syE+NU8K3gd8AYG4bIBAMayptRkVuH9tYOlzVxTj3SfMwwaTQaDJ0ci5Pbi2Frs6Msp6bHzWvFrvIajfuMc0+GT0mQpnYL9pW7zJ4CjhodsZ5Ibwx2qpPzVOqlSTix1bEy7/R3pUi9uOdtxzqsNmnVaWSCodd+T66kTUvG/g9zAQB5O0sw+bq0Xo9vrrdKtXfmEZEI82JKPfXSJOx+KwcdVhtO7SrBJb8c43FLkb7kVcCUmZnpp2EQ+Ue87I9gzpbO3ejjZPVNvekaMA2RzSx3WG3S8m6lLQVEhphQ6MODHT1rugRMYoZJbwxGWKTvK+REIYZgRA+LQE1ho9SPR2xKaOuwSyv1ohLDfdqzTi46xYgwkx4tdVaU5tTA1m5z6oouCILUdTrEEKSoRmvYhfGO3k+Co65kys2jXB4nr19KdvHp2zTEKNWl1BZbegyYnDdfVjYta06NlLI91YUN3cZVX9Yk9f3ytX5JOtfwSOhCtLC12Z22o5Fz3hLF9wwT4LjGDeXNsNsElJ+sxdBJ3YMYcRujIL1O0YeCoZPjpExF0aFKlwFTW3M7as86vr+Y4ZE+L2oYflECvnsrBwBQuK8CF1yf7vK42mJLZ0f50dE+ZSKTx8VI03JFByp7DDwBoOxEjVSD6Or3253IBEPnVFmRBdVnGnrdeNmX6ThRSFgQUi9ORO63xWhr7kDhvnKp8Lw/UW0vOaL+SP4pVb69g6fLlXtrXmlRcYWcSKPpXBnUXGuVVsW1NbdLm2eahhgVZRbkxCyD2I9HVHtWtlu8gvolkUajwZAJnYW/5V02/W2saJa+V1+Kb+UMJj3iz9VA1BY1uizY72izSYGJMTbMZTAkrxOr66WOqcmppYCy34NYp47f3euY1FghJ9IGdW7Ea6lqQVNN9ylnqdGkBj5lROTk26S4mpZrabBKU5vmEZGKMrZDJsZKv0M9NXqsOFUvBZ+e7lnoSkRcmLTCsep0vdPfBTmn/kteTseJtDqtlFVyt1rOaQXoBO8DJgBO03Luir+LPei/1JuMWZ19005uP+v18/sCAyYa1MIi9S6LFT1N90cmdL4pdQ2YmpwKvtUJmADnWhExyyMv9FW6Qk5O/kYhr2NRs35J1HVaTk7eC8rXgm+54U6b8XZfLVeRVycVmCe5mI4DnK9zb1ukNCrswSRndtpTrnsdk1PBd5IKdWy97Ctot9mlgveoRN/bSojk11neG0gk/3697b/UlT48WKqDqy9tQkN5U7dj5NPQnnb47on8962nvQxL3Wy466nUS2Wr5b7rebWcU/+lHn7H3Rl5SZLUJ+nUrpIea/kEuyBlmIJDdT79H04aEyNNGxYfrXa5cjfQGDDRoNf1j29wmA4mD/uthJtDoT33B6PrH90mFadi5JzrmBxvInVn1cssyDkXftdJX1c57RavPMMEQMowAUBJl8Jvp+JbFQKmYbLNeF0t93Y3HQecm/I6l+TorZhX3oMpXGHAFJ1shC7Y8WfZVS8mJXvIuZLYSwPL+tImKahUOh0HOD68iK9TnV/fbb8/ef2Sr/VEcs6b8XbPMjl1lVf4Ozd8ivz3rXuALgiCVPAdHKZz2gbJW0ljY6R97M4crEB7a/etbayWdilDGTMsAmGRvi0OCI0MkabXmmusTkGfXM2ZRrTUOzLE4vZC3tJoNZ1ZJsGxZUp/w4CJBr2u2aTY1CiPp3y0Wo00XdNQ3uzUI8RSo962KHKuCr/VXiEncu7HUyv145Gv0nK13NwXhuhQRJ9bBViZX4/Wxs6eWOKbtUarUeXN0pQcLjUFLDtei1ZLm9Pjzg0re9gtXq+TPvHWFVt67A8jb14aoTBg0gZ1rt6sL21CW7NzUCGukNPoNE7Txb6Kc8ow1jk95lS/pOANXk4MTgUB3d585Svk1MhqyuuWuk5dCXZBmhYOM+kVFesDjtWt4muUZNd0647dUNaMlnObdCeMiu7WnsQbWl3najlbm93ltFxpTo003ehL/ZKcfIuhvJ2up+U87e7tTsaModKHlNys4n7Xk4kBEw16XTNM3mzoCUB647W12dFc19nHySmzoGLAFD00QvqjIb5pqdm0Uk7sxwPA0Y/nbCPssoLvyEQDQgzud2/3lPTHVOgMWqxN7dLUT8yw3rer8VS3zXgPdP5BlzdPjEww9No/SwxO21ttLmt8AOcpOTV+D+TTcvKgxW4XpKaOkQkGj1Z5uhNqDJG+x+qCBqdshXyFXG/Fvt5wmpbrsk2KmNUMMQR53AG7NzHDIqQO46XZzu0Faost0pY48RkmxTWBGo0GI85lmQSb0C2IKVWhfklu5KVJ0tenvyvt9rjTBwKFAdPwC+OlXQHy95S5bNPgazuBriLiwqTxNpQ3O7Vh6A8YMNGgF5saKQUggPf1EZGyguBGWR2T05RcjHpTckF6nbTZa+1ZC+w2uzQlFxymgyFGveAMcG7YV36iFrXFFmkqRq36JZF8Wk6sY6rMq+ssvh2tfDpONPwi13VMZSdrPV49FO1Bx++mc4FzaGSIKkuhnQu/OzN9TVUt0s9F6Qo5Oanw3y44ZXnkfcDUyjAljY2RsrvyHkFNNa3Sh5HYkVGqLGpwtBdwZJls7XanjJbzJs8mxecCutTNdekyX6ZS/ZIocUy0NC0nrpaTExtWarQaqU+Ur4L0OoyY6qibam/pQNEB5ynu9tYOaYVrRFyY4mB3lFNPpv5V/M2AiQa9EIPzHlHeTvnI/wDI95RrOjclpwvRQh+hXhYG6JyWs7XbUVPYKGUxTMnqrZATyes3KnLrVOvw7UrimBhogxzjF7dJcWpYqdKbF+Do5SS+qZw9VCV9Mi6Vffp2VwzrtAmvi4DJ3mFHc60jYFJa8C2Sd/yW1zHVqVy/JOqpgaW4qlQfHoxwlYL0EEOwVBNXV2yRgqRKef2SwoJvOec6ps6sT7mCTZ570nXzZ3kmRsyU6IK1Xme4XZGvlhO72ouaa1tRV+z4XYkbGaVKhthptdxO54xWaU5n+4IhkzzbDqU3I6YmIMTgyDLn7ylDW0v3Gq1AYcBE54XRc1IAAFGpoV6/sckzTPXnMkyC0Nn522gOUz2Ikdcxnd5T1tl7R8XpOJF5RKRUaFx+otYvK+REQXodEkc7ghRLVQsaypqdamfUzDBptRoMu8DxhtlhtUmBknwqKGmcmwyTm5VyTTWtEMsslLYUkM451CitTJJvkeLUUkDNDJOsw7W4WrGlwSoFMzHDfd8SxZXk8Z1TNuLUkVOQrmLANGSCWbqWZ2UBk5hh0uo0TpseK6HVaR09wOCYwhV/3xorW6QVX/EZJp8Kol2Rr5Y7LdtbTo12Al0ljTdLtY5FByqcagLl03Guemt5KyhEh5GXOaYcO6w25O/pPuUYKAyY6Lww6ZpU3PrqXIy7Nd7rP/6RiZ2f5sUpubamDrS3Oj5BqvXpW84pYJLVKKhZvyTSBWmlrFtjZYvTG4tabyZyQyZ2/hEvOlSJinP1ROExoaquNgQg1TEBjtVybc3tqDrtCAhNQ4xutxaJkgUmrlbKqbHpbldBITppKrDurEXavkWNPeRciUw0SJm4itxaCHZB1YaVXSWPl7cXODct66cMU4ghWMogNZQ3o760Ca0NbVItWGxqlKodpUdM6b46U95/SY3pOFHimBiERZ3LoB6slDIxatYvibRaDUZe7ghi7DbBafNfsf+SRqtx+tkqMaqfbpXCgInOGwaT3qdPysa4MIhPE1sL+GuFnEj+JiU28wPU2XTXFfm0ROO580UmGKAPV3eqEXAuCj22uUAKCHzZ/NSTc4nZs8IfKlB2vFbqJdPT6ji5kLAgKXPkaqWcpdI/rSXEOiZB6OzFVV8qzzCpFzDJC//bmjtQW2xxavKqVsG3KGFUtPQzKTlWDUEQpAxTaGSI6v+fUiZ3/r7JA3RA/d+5IRNjoQs59/u2v9xpOxRAnYJvkVar6TYtJwiCFDDpgrWK+0vJOe0td261XGNlsxR8xmeYVFsgEpcWJbVPKT9RK50j0BgwEbmhC9JK/XXE1gJOBd8qZRbkjLFhCHaxHYmaUzFyruo4zCrXL0mvOzwSoedqvhorOoNBtWpJ5IL0OilAa6mz4vDnp6XHPN2MVJwGbWvucFolCfgnwwQA5hGdWRYxmBAzXIZovaorFwHnzY4rTtb6paWAKChEJ72RWypbUHKsWurJFJemTsG3XEpmZzH22YOVfquZAxy/b0PF37f6NlTk1Un1S1qdBvHp6p4vVbZaLv+7UjRWNEurdxNGRauaPTOPiJSCmLLjtWisbHbq7q2knUBXGo3GOcuU1T+yTAyYiDwg9rxpa+6A1dLuty7fIo1G020qRBeiVdwvpieuPomqXb8k0mg1SJ7Q/Y+rPwImwHm1nHyZsqfTI70VfltU3BZFTl5sX13QgNaGNrQ2OoIKfwTNzh2/61B9boWcRqvxS92cvLbm8GedQaw/fueiU4wwxJxrL5BT4zRlpWST557Im1jmfH2mc/ovLQpBenU3lE0YHY2wc9PKZw9XoWBfZ/G3WtNxIo1Gg/RpnT2ZTu0s7VK/pF7ABDj6P4krKnO/PSv1iAskBkxEHui6p5zTG6UfapiA7rUjpmSjov21ehMaEdKtLkbtFXJy8jomwPHJ3KxyrYwoRdyMVyZmeARCIzzbwNiptUBxbwGTyt3ez425Kr8BdaX+qV8SxaZ2Fv6X5tRIgaEpOdwvu8Ynj+veXgJQp8N3VxqNBimTHUGzrd0u1UsZY8MQHq3+/91hF8RLU/jyRo9JKk7HibpOyx38OE96TK2Cb7m0aZ0ZrdwdxVLwqTcGO63uVIPBpJdWOTbXWLvtDhAIDJiIPNA1YJI3MfRHhglwETD54ZO+XNcMjz8KvkVdm9vFpUWp0ojRFUOUvlsGLdnN6jg5eaF918JvcfojSK+TlpSrITg0SKpTqi1qdOqJ5I8Mky5YJ2V3LFUt0jJxtQu+RXEjoxAc2j0QU3OFnFxKpquMpskv5wqNDEGCGBzJkiKJKhZ8y42UrZZra3YUfgeHBfnlA09EnEFayVpf0iSdb8iEWL98mBsl25D3RD/oycSAicgDzpvwNsHiNCXnn2kycYsMkT9WyMnJ30Ai4sIQavQsA+MLoznMKVPir+k4kXy1HODdZqTyQFXevFIQBKmGyRgbqnrtjRjAdF2VpGbBt5y8H5MoRqVtcbrSBmm7BRDh5lAYonzb88yd5PGd7QVEahZEdyWfBgYAjUb9eilRwqjobqs9k8bGKNp+pTfy4m+R2tNxopQL4qV6x8J95Whv6d5lvC8xYCLygDzD1FjeIu0fFmIIQoiL4mw1RKd0zTD5541SJPZHAoA4lYtTXZH/kVWz/5Ir8jcwjca75d0hhmCpBqbubOdKudbGNtjaHJ23/VH4L8/wybtU+y1gynBR+O+nDBPQPcunZjuBrkIMwUjs8jvm6vtVS9cA3ZyqTgNJVzRaDVIvSXS6T+36JbnUSxKlDclFQ/wUMOmCtNJedvYOAVXHmt08w78YMBF5ICK+8w2xvrRJKvr2V3YJcCxplwdq/p6Si0oKx5SbRyF5ghkX3JDu13MBwKSfjETyeDNGzR4qrSzyF1OyEXHpjjfk5AmxXr95idk9a1M7WhocTfvkewmq3T8K6FJDdm5qJzhU/a1xRK6W2PsrwwR0r7HxR/2SXIpsM94gvc5v042A4wOW/PWVbk/ijny1HODfgCk0IsSpg3p0itEvvehEGbJpuYpDrrcn6isMmIg8EBwaJG3kWV3YINV4GP1UvyQS31SMsaGq7E7vTub1afjx8ov9Pv0HAOHRofjxHy/GzPsmSqth/OlHD1+E2QsnYc6iyV4/19VKOX8VfIvMLoKVKD9sjSMKi9Q7bSEUGhnitrGnEjEpEdJ0C+C/VZmilAs63+RjR/qvZk40YmpnlsmfAQzgmO4TaykN0XpEp/j3/2/69M5pOTW6e/fGPCxS+vDQVNrm1PKir/lnLoFoEIpMMKC51iptgAr4r+BbdPGtY5AwKhoJo6L9VpNwvjBE6aX0vre6Fn4njzc7BUzhKrYUEIUYghGZYECDbMNnf03HiRJGmaRl8GaV+y91pdFqkJIZj9xvixGk1/k9w2QaYsTYK4fhzIEKZF6f5tdzAcDEa1JhqW5FWKRzRsYfNFoN5vx6MrK/OoMxc1P8FlSLhk9NxLh5w9FY2YxJ16b69VyAo/N3VX42whND0Nbc7vfz9YQBE5GHIhMMTn18AP9MxciFhAUhY4Zvb/KkHpOLPeXkAVOEHzJMgKN5qHPA5N/MQfyoaGkrihiVO3y7cvGtoxFuDkXSuBi/1fiINBoNpt09HtMw3q/nEQWHBmHmfRP75FyAo4u4mp3Ee6PVanD5neP65FwAkDYtGQljolFuOdtn36Mr/MhK5CH5SjmRvzNM1D/It6QRWwtY/NztHejcIkXkjx5McqlTExERF4YQQxAyZvo/UA+L0mPKzaMwxEUjUyKRPjxY9S16fMEME5GHIlzUEDFgOj+EGkMQZtKjpc4qtRYQ9/jTaDVSfZvaujYD9PeUnN4YjJ//fRbsHXa/NKwkGsiYYSLyUJSLgMnfRd/Uf4h1TK0NbWhtaJOm5MJj9H6rL4uVFX5rtBpEJvo3YAIc0y0Mloi6Y8BE5CGXGSY/Lqel/kVex1R5ul7aMNafrSVCI0OkrVliR0RC5+eVXUTUM07JEXlIHx4MvTFYeqMMiwqBLpifxM8X8sahZw9VSl/7q35JNGdRJk7tKkE6i/+JAooBE5EXIhMNqMxzbN7pz8wC9T/yTXjlu7T7e1o2ZlgEYoaN9us5iMg95neJvBAZ3zktx4Lv84t8Sk7sVQQAxjgGzkTnAwZMRF6QF92y4Pv8Ehapd+pMLfL3lBwR9Q8MmIi8IN86IiLO/1uVUP/iaj8/Bs5E5wcGTEReGDE1AUMmmhGfYUL6tGT3T6BBxWXAxAwT0XmBRd9EXggK0eHqZRcHehgUINFDnfdX0xuDERzKP6NE5wNmmIiIPCRfKQcwu0R0PmHARETkoa5TcgyYiM4fDJiIiDwUFhUCfXjnSjkWfBOdPxgwERF5SKPROGWZmGEiOn8wYCIi8oJzwMQME9H5ggETEZEXRkyJBwAE6XVIGBMT4NEQUV/helgiIi+kXBCPG5+dDr0xBIYofaCHQ0R9hAETEZGXuvZjIqLBj1NyRERERG4wYCIiIiJygwETERERkRsMmIiIiIjcYMBERERE5AYDJiIiIiI3GDARERERucGAiYiIiMgNBkxEREREbjBgIiIiInKDARMRERGRGwyYiIiIiNxgwERERETkRlCgBzAYWK1WAEBhYaHXzz1z5gx0Op3aQ6Ie8Hr3LV7vvsXr3bd4vfuWP6/38OHDERoa2usxDJhUUFZWBgB48sknAzwSIiIi8tabb76J0aNH93qMRhAEoY/GM2jV1dVh7969SEpKQkhIiMfPKywsxJNPPok//elPGD58uB9HSACvd1/j9e5bvN59i9e7b/n7ejPD1EdMJhPmzZvn8/OHDx/uNrIl9fB69y1e777F6923eL37ViCvN4u+iYiIiNxgwERERETkBgOmADKbzbjzzjthNpsDPZTzAq933+L17lu83n2L17tv9YfrzaJvIiIiIjeYYSIiIiJygwETERERkRsMmIiIiIjcYMBERERE5AYbV/axtrY2rFq1Cl9++SUaGxuRlpaGe+65B1OnTg300Aa85uZmrFu3DtnZ2cjJyUFjYyOWLVuGq6++utuxBQUFePnll3HkyBEEBQXhsssuw6JFi2Aymfp+4ANQTk4ONm/ejAMHDqCsrAyRkZEYP3487rnnHqSkpDgdy2utXH5+PlavXo0TJ06gpqYGoaGhGD58OH7xi19g2rRpTsfyevvHW2+9hX/+859ITU3F2rVrnR47cuQIVq5ciZMnTyI8PBxz5szBvffeC4PBEKDRDiwHDhzA4sWLXT722muvYfz48dLtQF5rBkx97KmnnsK2bdvw85//HEOHDsWmTZvwhz/8AStWrMCkSZMCPbwBrb6+HmvWrEFCQgLS09Nx4MABl8dVVFTgN7/5DYxGI+699160tLRg3bp1OH36NF5//XUEBwf38cgHnnfffRdHjhzBnDlzkJaWhurqanz88ce455578Nprr2HkyJEAeK3VUlZWhubmZsyfPx+xsbFobW3F9u3bsWzZMjzyyCO47rrrAPB6+0tFRQXeeecdhIWFdXssNzcXDz30EIYPH45FixahoqIC69evx9mzZ/Hcc88FYLQD14033oixY8c63TdkyBDp64Bfa4H6zLFjx4QZM2YI7777rnRfa2ursGDBAuGBBx4I4MgGB6vVKlRVVQmCIAg5OTnCjBkzhI0bN3Y77oUXXhCuvPJKoaysTLrv+++/F2bMmCH85z//6bPxDmSHDx8W2tranO47c+aMcMUVVwhPPPGEdB+vtf90dHQId911l3DbbbdJ9/F6+8ef//xnYfHixcJvfvMb4fbbb3d67JFHHhGuv/56wWKxSPd99tlnwowZM4Q9e/b09VAHpB9++EGYMWOGsHXr1l6PC/S1Zg1TH9q+fTt0Op30aRAA9Ho9rrnmGhw7dgzl5eUBHN3AFxIS4lFTs+3bt+Pyyy9HQkKCdN+UKVOQkpKCrVu3+nOIg8bEiRO7ZStSUlIwYsQIFBYWSvfxWvuPTqdDfHw8LBaLdB+vt/oOHjyI7du34ze/+U23x5qamrBv3z7MmzcP4eHh0v1XXXUVwsLCeM190NzcjI6Ojm7394drzSm5PpSbm4uhQ4c6/bABSCnIvLw8pz90pL7KykrU1ta63Lxx7Nix+O677wIwqsFBEATU1tZixIgRAHit/aGlpQVWqxVNTU3YuXMn9uzZgzlz5gDg9fYHm82GFStW4JprrkFaWlq3x0+fPg2bzdbtmgcHByMjIwO5ubl9NdRB4amnnkJLSwt0Oh0mTZqEBx98EGPGjAHQP641A6Y+VF1d7TIDIt5XVVXV10M671RXVwNAjz+HhoYGtLW1ISQkpK+HNuB99dVXqKysxN133w2A19ofXnnlFXz66acAAK1Wi5kzZ+Khhx4CwOvtD//5z39QXl6Ov//97y4fd3fNDx065NfxDRZBQUGYNWsWLr30UkRFRaGgoADr16/HokWL8Oqrr2LUqFH94lozYOpDVqvVZdGl+AfMarX29ZDOO+I1dvdz4JuKdwoLC/H3v/8d48ePx/z58wHwWvvDz3/+c8yePRtVVVXYunUrbDYb2tvbAfB6q62+vh7/+te/cPvtt/e4wtDdNW9ra/PnEAeNiRMnYuLEidLt6dOnY/bs2bjrrrvwxhtv4Pnnn+8X15o1TH1Ir9dLf9zkxB+0Xq/v6yGdd8RrzJ+Deqqrq7F06VKEh4fjr3/9K3Q6HQBea38YPnw4pkyZgvnz5+OZZ55BS0sLHn30UQiCwOutsn/+85+IiIjAjTfe2OMx7q45g1PfDR06FNOnT8eBAwdgs9n6xbVmwNSHzGazlFaUE++LjY3t6yGdd8R0bk8/h8jISP6R84LFYsEf/vAHWCwWPP/8806/w7zW/jd79mwcP34cRUVFvN4qKioqwmeffYabbroJVVVVKC0tRWlpKdra2tDR0YHS0lI0NDS4veb8m65MfHw82tvb0dra2i+uNQOmPpSeno6zZ8+iqanJ6f7s7GzpcfKvuLg4mEwmnDhxottjOTk5/Bl4wWq14tFHH0VRURGefvppqdhbxGvtf+I0hcVi4fVWUVVVFex2O1asWIFbbrlF+pednY2ioiLccsstWLNmDVJTU6HT6bpd8/b2duTm5vKaK1RSUoKQkBCEhYX1i2vNgKkPzZ49GzabTSraBBypxI0bN2LcuHFcIddHZs2ahV27djm1cdi/fz+KioqkFUfUO5vNhr/85S84duwYHn/8cUyYMMHlcbzW6qitre12X0dHB7744gvo9XopWOX1Vkdqair+7//+r9u/1NRUJCQk4P/+7/9wzTXXwGg0YsqUKfjyyy/R3NwsPf+LL75AS0sLr7mH6urqut2Xl5eHnTt3YurUqdBqtf3iWmsEQRD8fhaS/PnPf0ZWVhZuvvlmDBkyBJs3b0ZOTg7+/ve/IzMzM9DDG/A2bNgAi8WC6upqfPLJJ5g5cyYyMjIAOLrIGo1GlJeX45577oHRaMRNN92ElpYWvPfee4iLi8Mbb7zBaQsPvPTSS/jwww9x+eWXY+7cud0enzdvHgDwWqvkj3/8I5qamjB58mTExcWhuroaX331Fc6cOYNf//rXuOWWWwDwevvbb3/7W9TX1zttjXLixAn8+te/xvDhw3HddddJ3acnT56MF154IYCjHTgWL14MvV6PCRMmIDo6GgUFBfjss88QFBSEV199VfpAEOhrzYCpj1mtVmkvOYvFgpEjR+Kee+7BxRdfHOihDQo333wzysrKXD62fv16JCUlAXDszdV1v61f//rXiImJ6cvhDli//e1vcfDgwR4fz8rKkr7mtVZuy5Yt+O9//4vTp0+jvr4eBoMBo0ePxg033IDp06c7Hcvr7T+uAiYAOHz4sLS/mcFgwJw5c3D//fdzLzkPffjhh/jqq69QXFyMpqYmmEwmXHTRRbjzzjsxdOhQp2MDea0ZMBERERG5wRomIiIiIjcYMBERERG5wYCJiIiIyA0GTERERERuMGAiIiIicoMBExEREZEbDJiIiIiI3GDAREREROQGAyYiIiIiNxgwEVG/UFpaipkzZ+L//b//F+ihqGLTpk2YOXMmNm3aFOihEJEKGDARUb/129/+FjNnzgz0MFwabAEeEfUuKNADICICgLi4OLz99tsIDw8P9FBUMWPGDIwbNw5msznQQyEiFTBgIqJ+ISgoCMOHDw/0MFRjNBphNBoDPQwiUolGEAQh0IMgIiotLcUtt9yC+fPnY/ny5T1OxYmPi06dOoW3334bBw8eRENDA8xmM6ZNm4a77roLUVFRLl//1ltvxZtvvolDhw6hoaEB69evR1JSErKysrB161YcP34cVVVVCAoKQlpaGm666SbMnj1beq1Nmzbhqaeecjm+FStW4IILLpCOWbZsGa6++mqnY44cOYK3334bx44dg9VqRWJiIubOnYtbb70VoaGhTsfOnDkTmZmZ+Mtf/oLXXnsN3333HVpaWpCeno77778fF1xwgbeXmoh8wAwTEfVLd955JzZv3oyysjLceeed0v0ZGRnS1zt27MBf/vIXaDQaTJ8+HfHx8SgoKMBHH32EvXv34vXXX0dERITT6xYXF+PBBx/EyJEjMX/+fDQ0NCA4OBgA8MYbbyAoKAgTJ06E2WxGXV0ddu7cicceewyLFy/GjTfeCABIT0/HTTfdhA8//BDp6emYPn269PqJiYm9fl9bt27FE088geDgYMydOxcmkwnff/891qxZg71792LFihXQ6/VOz7FYLPj1r38No9GIefPmoba2Flu3bsUjjzyCN998EyNHjvTpGhOR5xgwEVG/dPfdd+PgwYMoKyvD3Xff3e3x+vp6/N///R+ioqLwyiuvOAUqW7ZsweOPP45Vq1ZhyZIlTs87cuQI7rzzTpev+eyzzyI5OdnpvubmZixcuBCrVq3CNddcg9DQUGRkZMBoNEoBk6vXcqWpqQnPPfccdDodXnvtNaSlpQEA7rvvPjzxxBP45ptvsG7dOtxxxx1Oz8vLy8P111+PJUuWQKt1rNW58MIL8eyzz+Kjjz7CI4884tH5ich3XCVHRAPSF198gaamJtx3333dsjpXXHEFRo0ahS1btnR7XkxMDP7nf/7H5Wt2DZYAwGAw4Oqrr4bFYsHx48cVjXnHjh2wWCz48Y9/LAVLAKDVavHggw9Cp9O5bEMQFhaGBx54QAqWAMfUpE6nUzwmIvIMM0xENCAdO3YMAJCdnY3i4uJuj7e1taG+vh51dXUwmUzS/enp6dIUXFe1tbX497//je+++w7l5eWwWq1Oj1dVVSkac25uLgAgMzOz22MJCQlITk5GUVERmpubYTAYpMeGDh3qdBtwFMnHxMTAYrEoGhMReYYBExENSI2NjQCAjz/+uNfjWltbnW5HR0e7PK6hoQH33XcfysvLMXHiREyZMgVGoxFarRZ5eXnYsWMH2tvbFY25qakJgCPL5YrZbEZRURGampqcAqSeWi3odDrY7XZFYyIizzBgIqIBSQwo1qxZ41XRs0ajcXn/f//7X5SXl+NXv/pVtxqid955Bzt27PB9sOeIgU9NTY3Lx8X7B0svKqLBhDVMRNRviTU7Nput22Pjxo0D0Dk1p5Q4rSdf8SY6fPhwj2PzJsMjrvA7ePBgt8fKy8tRXFyM5OTkbtNvRBR4DJiIqN+KjIwEAFRUVHR77Mc//jEMBgPefPNN5Ofnd3u8tbXVq2BKLBw/cuSI0/1fffUVvvvuu27HR0REQKPRuBxbT6ZPnw6j0YiNGzc6jVkQBLz++uuw2WzdejYRUf/AKTki6rcuvPBCbNu2Df/7v/+LSy65BCEhIUhPT8e0adNgMpnw5z//GY899hjuvvtuXHzxxRg2bBja29tRVlaGgwcPYsKECXj++ec9Ote8efPw7rvvYsWKFThw4AASEhKQl5eHH374ATNnzkRWVpbT8QaDAWPGjMGhQ4fw5JNPYujQodBoNLjqqqt67MUUHh6O3//+93jiiSfwwAMPYM6cOTCZTNi/fz9OnDiBsWPHYsGCBYqvGxGpjwETEfVb1157LUpLS/HNN9/g3Xffhc1mw/z58zFt2jQAwGWXXYZVq1bhvffew/79+7Fv3z6EhoYiLi4OV199NebNm+fxueLj4/HSSy/htddew759+2Cz2TBq1Ci88MILqKio6BYwAcCf/vQn/OMf/8CuXbvQ1NQEQRAwadKkXptXzpkzBzExMXjnnXeQlZUldfq+4447cOutt3ZrWklE/QO3RiEiIiJygzVMRERERG4wYCIiIiJygwETERERkRsMmIiIiIjcYMBERERE5AYDJiIiIiI3GDARERERucGAiYiIiMgNBkxEREREbjBgIiIiInKDARMRERGRGwyYiIiIiNz4/46i2SSRQmzEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 50th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "2769b6e5", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACrqElEQVR4nOzdd3hT1eMG8PfejO4JhVJKKRuhKCigCAoiqIAIKgKKAg5UUBScuPdWVBT3AJQvIPJDBUSW7Cmykb1X955Z5/dHmkvSZidtOt7P8+Rpmpzce9Im9973nnPPkYQQAkREREREREQA5EBXgIiIiIiIiGoOhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIoVfQuLJkychSRIkScLYsWP9sch6qU+fPsrfkYjIkbFjxyrbipMnTwa6OooZM2Yo9ZoxY0agq0N+ZjKZcMUVV0CSJEycODHQ1aEK+P0jqmzNmjXK9+LVV18NdHX8Kj8/H7GxsZAkCV9//bXfl19tLYkzZszAq6++Wuf+Qc789ttvynvOzc0NdHWo3KuvvqpsMNy5uXsQvm/fPkycOBHt27dHeHg4oqKi0KlTJ0yZMgWnTp2q2jdFRPWKXq/Ht99+i+uvvx5NmjRBUFAQEhMTMXjwYMybNw9CCL+v85tvvsGOHTsQHByM5557zmG5kydPYsGCBXjuuedwww03oEGDBsr2tE+fPl6t25/b11OnTmHKlCno1KkToqKiEB4ejvbt22PixInYv3+/V/VzZfPmzbjvvvvQqlUrhIaGIjY2FldccQXefPNNZGZmVsk6A6FTp07K/3rVqlUev37Dhg3K6zt06OBVHS5cuIBFixbh1Vdfxc0334wmTZooy0xOTnZ7Odbhwp2bO8HcYDBgzpw5uO2225CcnIzQ0FBotVo0btwYffr0wVtvvYXU1FSv3rcn3n77bZu6u9vAk5OTg6lTp6Jfv36Ij49HUFAQQkNDkZSUhMGDB+P7779HaWmpW8vKy8vDBx98gD59+qBRo0bQarVo0qQJevfujWnTpqG4uNiHd1izDB48WPlbf//99x6//vTp01CpVJAkCbGxscrfODIyEpMnTwYAvPDCC8jJyfFrvSH84MSJEwKAACDGjBljt0zv3r2VMvXFmDFjlPd84sQJl+Xr498oEF555RXl7+zOzZ3/3QcffCA0Go3DZURERIg5c+ZU/ZujesHTbUt1+fHHH5V6/fjjj4GuTp114sQJ0aVLF6fbrX79+omcnBy/rbOoqEjEx8cLAOKxxx5zWG7atGlO69W7d2+P1+3P7evPP/8swsPDHS5Lq9WKqVOnelxHR0wmk5g8ebKQJMnhOhs3bixWrVrl87pqwvfvo48+Uupw9913e/z6++67T3n9+++/7/Hr//jjD6efv+bNm7u9rNWrV3t0rODqb37s2DFx2WWXuVxORESEmDVrlsfv3V0HDx4UQUFBNut0dOxubenSpSIuLs5l/Vu0aCH+/fdfp8v666+/RIMGDZwup2XLlmL79u0+v1/r/+Mrr7zi8/K8sWDBAqUOvXr18vj1r7/+uvL6CRMm2DyXl5cnYmJiBAAxZcoUf1VZCCGEGn6QnJxcJWct65s1a9YEugr1zhtvvIGUlBSnZRo1auT0+a+++gpPP/00AECj0eCee+5B7969odfrsWzZMvz6668oKCjAPffcg+joaNx0001+qz/VTzNmzGB3snoqNzcXAwYMwMGDBwEAl1xyCe677z4kJibi6NGj+Oabb3DmzBmsXLkSt912G5YvXw612vdd/RdffIHU1FSoVCo888wzDssZjUab30NCQtCmTRvs2bPHq/X6c/u6ZMkSjBkzBkajEZIkYdiwYbjxxhuh0Wiwdu1a/PTTT9DpdHjiiScQERGBBx54wKs6W3vuuefw8ccfAwDCwsJw//33o3v37igsLMSCBQuwYsUKpKWlYciQIVi/fj06d+7s8zoD6e6778azzz4Lg8GA//u//8MXX3yBiIgIt15bXFyM+fPnAwBUKhXuuecej9df8fOn0WiQkpKCnTt3erwsayNGjMDIkSOdlrn88ssdPpefn4/rrrsOp0+fBgBERUXh3nvvxSWXXIKwsDCcOnUKc+fOxd69e1FQUIAxY8YgNjYWgwYN8qneFQkhMG7cOJSVlSEsLAxFRUVuvW7btm0YMmQIdDodAKBVq1a455570KJFCxgMBhw5cgQ//PAD0tPTceLECfTr1w979+5F06ZNKy1r9erVGDx4MPR6PQDgqquuwogRI5CQkID09HQsXLgQf//9N44fP46bbroJmzZtQps2bfz3RwiAwYMHo2HDhsjMzMSGDRtw7NgxtGrVyu3Xz5w5U7l/77332jwXGRmJRx55BG+++SY+++wzPPXUU2jQoIF/Ku7XyOlEfWwlq6ln++s765bE1atX+7Ss8+fPi9DQUAFAqNVqsWLFikplrM/uNmvWTJSUlPi0TqKaqia0ZNR1kyZNUv7GN910U6XtSVZWlk0r4+eff+7zOvV6vWjWrJkAIG644QanZRcuXCgeeeQR8cMPP4jdu3cLg8Fg09vIk5ZEf25fi4qKREJCglJ2xowZlcosX75cqNVqAUCEh4eL1NRUt+tqz44dO5QWxKioKLF79+5KZaz3R926dRMmk8nr9dWU79+QIUOUenz//fduv27WrFnK626++Wav1r1x40Yxbtw48dVXX4l//vlHlJWVCSGEzy2JvrZAWbcEde7cWWRlZVUqYzKZxAsvvKCUu+yyy3xapz1ffPGFACDCwsLEa6+95nZLYt++fZWy9957r9Dr9ZXKFBUViX79+inlHn/88UplSktLRVJSklLGUcvXxx9/rJTp27evN29VURNaEoUQ4vHHH1fq8dJLL7n9unXr1imvS0lJsVvm8OHDSpm33nrLX1UWDIlViCGxZvJnSLQ+YHv66acdlrvjjjv8etBGVBPVlIPUuiotLU1otVrlIC8tLc1uub179yrhJD4+XhgMBp/Wu3DhQuX/6k03OG9Doj+3r5988olS5o477nC4rKefflop99RTT7ldV3uGDh2qLGv69Ol2y5hMJtG9e3el3OLFi71eX035/v32229KPa655hq3X2cdRBYsWODXOgU6JPbs2VNZ1pIlSxyWMxgMonHjxkrZ/Px8n9Zr7cyZMyIyMlIAEB999JHN58VZSCwtLRUqlUo5WZObm+uw7N69e5VlXn755ZWenzt3rvJ8165dnZ4UGThwoFJ25cqVHr1XazUlJO7atcvmc+juCSHrLtgfffSRw3LdunVTTpb5crLJWpWPbmoZsXPt2rXKY/Yu+HU0oI3JZMIvv/yCESNGoEWLFggNDUVERATat2+P8ePHY+/evU7rZj1IiaU756pVq3DnnXeiRYsWCA4OrjQ4icFgwLJly/Dkk0+iV69eygW1ERERaNu2LcaOHYt169Y5XKdl5EHr5uEWLVpUes+O/lbujG66detWPPjgg2jXrh0iIiIQFhaGVq1aYcyYMfj7779dvr7iIAJFRUX48MMP0bVrV8TExCAsLAwdO3bEc8895/8LYesIIYTSNcbVaH+PPfaYcn/evHlVXjdrmzdvxvjx49GhQwdER0cjODgYSUlJGDFiBJYsWeL0tfZGBTt9+jSefPJJtG/fHmFhYYiOjsbVV1+NL774AgaDwa06FRYW4pNPPkH//v2RkJCAoKAgxMbGolu3bnj55ZeRkZHh9PUVvytGoxEzZsxA//790bRpU6jVarsDFKSlpeGZZ55Bhw4dEBYWhtjYWHTv3h0fffSRcpF8cnKy3QEO/vrrL2Wd1v9PZx577DHlNUuXLnXrNe5wNbppVf3fFi9ejMGDByM+Ph7BwcFITk7GqFGjsHnzZo/fg06nw/fff49bbrkFzZo1Q3BwMKKjo3HppZfiySefdDhg1KFDhxAWFgZJkhAVFYUTJ044XEdOTg6SkpIgSRJUKpXT7XZt8Ntvvyndve68806HXeFTUlLQt29fAEBqaqrN/tcbP/30EwBz19Fbb73Vp2W5y9/bV+vHH3/8cYfLmjhxorJd+eWXXzyqs7WCggLlOx8ZGelwYJCK76069g///PMP4uLiIEkSgoKC7L5PX469Bg0apHw2N2zYgOPHj7us0+nTp7F69WoAQMOGDTF48GAv313NlJ6ertx31nVSpVKhZcuWyu/udgd1x/jx45Gfn48uXbo4/Q5UlJWVpXTjbdSoEaKiohyWbdu2rXLfXt2tj0/vvvtup8e7o0ePVu7/73//c7u+3rJ0AZUkCbIsK93EK/rrr78wduxYtGnTBhEREQgNDUWrVq0wduxYbNiwweHyL7vsMnTp0gWAefAsy+fdGesu2Gq1GnfffbfDsqNGjQIAnDlzxn+Xr/kjaTobuMa6BdHZzV66P3r0qOjcubPT18my7LTZ1rrV6O+//xaPPPKI3eVYt/T16dPHrTqPGTNG6cpgzboF0dXrHf2tHNHr9WLcuHEulz18+HBRXFzscDmWcr179xbHjh0THTp0cLis5s2b16mWUH+1JFqfMXPUBcDCaDQqZ/BkWfbr2UFHCgsLxYgRI1x+VgYNGuSwPhXPwC1dulRER0c7XFb//v1FaWmp03r9+eefolGjRk7rFBERIX7//XeHy7D+rmRlZYlevXrZ/dxa+/vvv5WLu+3dOnXqJE6fPi2aN29u9/VGo1G0aNFCABAxMTEuuw2XlJQo60tKShJGo9FpeU+46qXg7/+bwWBwul2TZVm89957brdk/PPPP8rf0tFNq9WKr776yu7rv/nmG6Vcjx49HLaUDRs2TCn3wgsvOP2b1ga333678n5+/fVXp2U/+OADpayzVjhXSktLlS6f1157rVfL8KYl0Z/b17y8PJtun66+ix07dlTWvX//frfqW9GiRYuUZbjqOpmenq6UjYuL82p9QrjXkrhs2TJl4J7w8HC7XXj9cez1xBNPKGVffvlll3W37o5pr5uirxztF5zxZwuU9T7K3ZbEBg0a+G2/MWfOHAFAqFQqZTAYd1sSS0pKlG7YGo3GaUvivn37lGUOHTq00vPWrYNLly51WucdO3YoZePj4917o3a483/csWOH8ndXq9Xip59+qlQmPT3dprXb0e3+++8XOp3O7nqsB/YaPXq0y7pbd8EeMmSI07K7d+/2+3eoykPi+vXrxcKFC202ugsXLqx0O3DggM3rjh49Kho2bKi8plevXuLdd98Vc+bMET///LOYPHmyzQGfo3+8dSAYMGCA8mGbMmWK+Pnnn8WMGTPEhAkTxPnz55XXXHnllSI8PFwMGTJEvP7662LWrFnil19+EZ9++ql48MEHRVhYmNN/xL///isWLlworrvuOqXc119/Xek9Vxz9yZ2QOHLkSKVMcHCweOihh8TMmTPFzz//LCZNmiQiIiKU52+88UaHTc6WMl26dBHt27cXkiSJIUOGiC+//FLMmzdPvPPOOzb9xj3pMlLTWX8mrrnmGtGyZUsRFBQkIiIiROvWrcXdd98t/vjjD5fN9ZaNrqsNrIX1/3fr1q1+ejf2lZaWiquuukpZX6tWrcTzzz8vfvrpJzF37lzx5ptvirZt2yrP9+3b1+7OyHrjOmTIEBEaGipCQkLEQw89JGbMmCHmzJkjnnzySZvvhLMDh19//VXptqLRaMTtt98uPvvsM/HLL7+I7777TowaNUoZxVCWZYcj/ln/LS3f68suu0y8++67Yu7cueKbb74Rjz76qFJ+//79yoGu5XP/0UcfiXnz5olp06YpXYF69OghmjZt6vBg4u2331aW8fPPPzv9H/z0009K2ddee81pWU95EhL98X+bMGGCUk6r1Ypx48aJmTNnip9++klMnDhR+dtad69zdJC6adMmpbwkSeKmm24SU6dOFfPmzRMzZswQDz30kM3/ytFyrAOTvbp/9913yvNXXXWV3Wtoapt27do5/b9bs/4MDBgwwOt1rlq1SlmOt90vvQmJ/ty+bt682aP1W3+/5s2b51Z9K3rnnXc8ChiWk1MAHHYjdsVVSPzf//6nbF/j4uLEP//8U6mMv469rEN+cnKyy/1pq1atlPK7du3y5u07ZVm2tyExJSVFdOrUSYSHh4vg4GCRmJgobr75ZvHll186PSFvYX3Sxtk1iS+++KJS7tVXX/XkLTqUmZmpjEo6adIk5XF3Q6IQQgwaNEgpe9999zm8JrF///7Ktt3eSXjL/hrwLCQCEBkZGW6934pchcS///5bOckUGhoq/vzzz0plsrKybD6jl112mXjttdfE7NmzxZw5c8QLL7ygHDs4+3tmZmbaXDJQUFDgtO7WofS3335zWtZoNCongNq3b++0rLtq5BQYRqNRXH755QKACAoKEr/88ovdcqmpqcrZLlmWxb59+yqVqTjdQa9evUReXp7T9a9cudLplz4zM1M5KyTLsjh+/Ljdcv6eAsO6L3fjxo3tnuE8efKkzRl6R9dnWP9NtFqtWLRokd33ab0sX4JNUVGR3ZMD3txcDa3sirtTYFx55ZXi5MmTDpdjfdG3OwcBo0ePVsrbO0vlTxWv5bG3QdfpdDZ1+vLLLyuVqTgEeFJSkjh8+HClclu3blXONMbExNhtlTp9+rSyIU5KShJ79uyxW/etW7eKqKgoAUAkJibaPSNXsYfCpEmTnJ5xtT6LO2HCBLtlK34u7B1MpKamKgdZrg42r732WgGYz9yeOXPGaVlPeRISff2/WV80Hx0dbXdI8oMHDyrTIzg7SM3Pz1cGQImOjhZr1qyx+/6OHDminKQKCwuze3CQnZ0tEhMTlb/x+vXrlecOHTqkBODIyEhx7Ngxu+tx14EDB/y2/fL2QMdoNCr/K5VK5TL0Hj9+XPlftGrVyqt1CmF7YmT+/PleLcObkOjP7evMmTPdPhgWQoiXX35ZKf/GG2+4Vd+K7r33XqffhYos2wsANp9lTzgLidOmTVNaU5s3by4OHTpU6fX+PPYSQoiuXbsq9fn7778d1nvt2rVKuS5durj/hj3gbLvuiLtTYDRp0sTp+xOi8onbqKgoMWnSJPHNN9+I2bNni7ffflt06tRJeX78+PF+O7F1zz33CMB8rZp1KPEkJB4+fNimB1CrVq3Eq6++KmbNmiV++OEHMWXKFKUlLigoSPzwww92l2P9vfj000+drtP6mBeA2LBhg8fvXQjnIfHXX39VpgOJjY0VmzZtsrsMywlQSZLEJ598YrdMQUGBuOGGG5R1OQrB1j1cHP2dhDAfz1u+s40aNXLr82DpCSlJktMWX3fVyJBoPZ/ItGnTnJY9dOiQ0jIxbty4Ss9bH/iFhYWJc+fOufWeXDl27JjLnYi/Q6L1iHX2znRYbN261WZnYK8rlvUX7/XXX3e4rG+//datcq5Yf0Z8vbmzk3fmlVdeEcHBwWLAgAHi9ddfFz/99JOYN2+e+PTTT8Vtt92mfJ4AiISEBHH27Fm7y5k8ebJS7rPPPnO5Xk/Le+v8+fPKmarbbrvNaVmdTidatmwpAIg2bdpUer7iTnLdunUOlzVq1Cin5SZOnKgc4O7cudNpvb7//ntlWbNnz670vPV35YorrnAaEP/55x+lbEpKitNBPKyX6+hgwnqQDHvBSwjzdslSZtCgQU7fqzc8DYm+/N+sRyq0NyKkxeLFi23Wae/A2HoOtT/++MPpe7RuwXI0WtuaNWuELMvK/ysnJ0fodDpxxRVXKK/1xwkZT+dWdXbztot7Xl6esowGDRr4vbwjd911l7IcRyd2XPEmJPpz+/rpp58qzz355JMul+VpeXtuvfVWZRn2TsL6Wt4eRyHResTMjh07Otyn+fPYSwghpk+frizPWdc66+Dgar3ecrVdt2f16tVCkiTRvXt38eyzz4offvhBzJ8/X3z77bfiwQcfVE5mAuYuisuXL3e6vOLiYvHggw+K4OBgh9uH66+/3un22lN//fWXsuyKl3B4EhKFMIeWfv36OZ3zc/z48eLIkSMOl2Hdw8PVaL7WrZeA94M6OQqJX331lbL/aNq0qcOu5f/++6/y+ieeeMLpurKzs5XPRf/+/e2WWbJkibI8Z134rU+UuVqvxfjx45XXeHuyyZpfBq7xN8tF8pGRkRg3bpzTsm3btkX37t0BAMuXL3da9vbbb0dCQoJf6tiyZUvEx8cDMA8iU9VOnjypzPPTqVMnDBgwwGHZ7t27K4MWnDp1Cv/++6/DsiqVCo8++qjD5y3LAYD//vvP02rXSMOGDcO5c+fw559/4qWXXsLdd9+N4cOH47HHHsOCBQuwe/dutG7dGgBw/vx5hwMOFBYWKveDg4NdrjckJES5X1BQ4NubcOKXX35RBrd46qmnnJbVaDQYMWIEAODIkSMOBwsBgC5duuCaa65x+Lyzz4oQArNnzwYAXH/99S7nAhsxYoQyt5ur7/UjjzwCWXa8Kfv9999tyqpUKodl3bmY/+GHH1buf/fdd3bLWD/+4IMPulxmVfLl/1ZWVqYMvtG4cWOnF80PGjQIl1xyidO6WLbtbdu2dTkwRd++fZXttaPPQO/evTFlyhQA5m3dww8/jBdffFHZ5o0aNcppnWuTQG1vTp06pdyPjY31ejme8uf7DcTfribsH4xGI8aNG4e33noLAHD11Vdj/fr1dueuA/x/7HXnnXcq733BggU2fxOL4uJi/PrrrwAArVaLu+66y413Vj3atWuHQ4cOYevWrXj33Xdx7733YtiwYXjggQfw9ddf48SJExg4cCAA84CHd955J/Lz8x0uLyQkBK+99homTZrkcJ+1evVqvPPOO8o8qL4oKirCQw89BAC47bbbcMstt/i0vObNm2Pq1KlOlzNr1iy8//77Dj/Dw4YNQ3R0NADzAEovv/yy3XKff/55pYH1nP1tPfX666/j4YcfhslkQrt27bBp0yZ06NDBblnL90KSJDz55JNOlxsTE6N8JtatW4eysrJKZW688UZl37Z+/Xq7g68JITBr1izl94pzIzpbv4X1tttbvs+wWwXWr18PAGjSpAn++usvl+UtB32nTp1CSUmJzcbWmrMDpYry8/Mxe/Zs/Pnnn9i7dy8yMzMdjjJ19uxZt5frrW3btin3b7jhBpflb7jhBqxatQqAOcRaNuYVtW3b1uZDVZH1zsSXUU6Tk5MhhPD69f6UkpLi9PmOHTvir7/+QkpKCkpLS7Fy5Ups3boVV155ZTXV0DeW7w9g/mz+9ttvTstb/18PHDhgd1RQwDzhrTPOPiv79+9HdnY2ACAiIsJlnQAgPDwcubm5OHDggNNyrr7X27dvV+5fd911TstaRvt15rrrrkPbtm1x+PBhzJw5E2+++SY0Go3yvF6vV0Y2TkhI8PtkyJ7y5f+2e/du5YRD7969nQZswHwCwNH/Ky8vT5lQvXHjxm5/BgA4/Qy89tprWLVqFbZu3WozMmSLFi3wxRdfuFyHO1599VWHI3DXdZbvLVC9IZF8U1paijvuuAMLFy4EAAwcOBDz589HaGiow9f4+9grJiYGQ4cOxdy5c1FUVIRff/210knXX3/9VQkUt9xyi/8mAfeDJk2aOH0+JiYGCxYsQPfu3bF3715kZWXhyy+/xLPPPmu3/IwZM/Dwww+jrKwMt912GyZPnozOnTtDo9Hg6NGjmDVrFqZOnYqlS5diy5YtWLJkCXr06OF1/Z9//nmcOnUKkZGR+Oyzz7xeDmAOwZMmTcL06dOhVqvxzDPPYPTo0WjdujX0ej127dqFqVOnYuHChfj222+xbds2LF++vNIIzFFRUfj444+V0PPmm2/i77//xvDhw5GQkICMjAwsXLgQK1euREhICKKjo3HhwgUAcHoy2F0mkwmPPvoopk+fDgDo1q0b/vzzTzRs2NDhayzfi+joaJtjcUcswbCsrAzHjx+vdPJUpVJh9OjRePfddyGEwMyZMyvtX9avX49jx44BALp27eryuNXC+vvjj5kJalxILCwsRFZWFgDzUOeeDredk5PjMCQ6OntW0erVq3HXXXchNTXVrfL+PLvhiOVLAtgOMeyIdRnr11bk7IsBAEFBQcr90tJSl+utKyzTiXz99dcAgCVLllQKiZYDWMC9v01JSYlyPyIiwk81rcy6NXD48OEevdbZRsWXz4p1nRYsWIAFCxb4pU6A6+/1+fPnlfvWQ4vbExMTg+joaOTm5josI0kSHnzwQTz11FNIS0vDokWLcNtttynP//HHH8pw5/fee6/LYFXVfPm/Wf/tLK3rzjgrc+bMGZhMJgDmHaD1yQxXnH0G1Go1/ve//6Fz587KwablscjISLfXUdMFantjOeBRqVQO961VwZ/vNxB/u0DvH6ZMmYK8vDwA5qkGfvzxR6V3hj1Vdex17733Yu7cuQDMIaliSJwxY4Zy/7777qv0emcnk0JDQ906aV6VgoOD8fzzz+POO+8EYD5WsBcSv/32W6VXyRNPPIGPPvrI5vmOHTvivffew9VXX42hQ4ciJycHw4cPx5EjR9xqia5oy5Yt+PzzzwEAb7/9ts+96MaMGaNMQ7FgwQKb1sSgoCD06tULvXr1whNPPIGPP/4Yu3fvxiOPPKJM32Bt7NixKCwsxBNPPAG9Xo9NmzZh06ZNNmUiIiIwe/ZsvPLKK8oxrLMGDXdNmzZN+V7069cPCxcutPmu2mM5fsnJyfHqe2HP2LFj8e677wIwt76+8sorNtOBuPpeOGK9z7PepnirxnU3tfzzvGU5622POzu4I0eOYNCgQUpAbNeunXL2ZM6cOVi4cKFyi4uLAwBl/piqZN10HxYW5rK89YfeWdcVf5yZqausW5Xsdf2wdJkAgMzMTJfLs+yAK77W33z5Djn7/vjyWamqOgGuv9eWHgBqtdqmxc8Rd75fY8eOVcLVt99+a/Oc5XdJknD//fe7XFZV8+X/Zt09zFkLhIWzv50vnwG9Xu/0+YYNG9q0crVs2RJXXHGF1+uricLDw5WD/NzcXJdzW/pre2P5nBuNRmUu0ergz+1rILbVgd4/WH8+ioqKXPbkqapjr379+iExMRGAufud9QnDU6dOKfO5JSQk2A18t956q8NboLvyW7g6VigtLVW6xcfGxuLNN990uKwhQ4bgxhtvBOBeTyB7dDod7r//fphMJlx55ZUYP368x8uwtm3bNiUg3nTTTU67m7711ltKmFuwYIHNiUZrjz76KA4ePIjJkyejU6dOiIiIQHBwMFq3bo3HHnsMe/bsweDBg22+F5ZLvHzh6fcCqJrjl3bt2uHqq68GAJw4ccJmDl/rLtjBwcHKCQh3WNfVHyf1alxLonW4ufbaa32eBNhT77zzjpK+X3jhBbzxxhsOJ/t01Wffn6zPLLozuar1wV1Vtlq5q7i42OW1Ze5KSkrC5Zdf7pdlOWPdbG+vZcm6tdbZtXwW1v3D3WkN9pblOyRJEgwGQ404EWD9vX755Zfx2muvVdu6LcHFYDBAr9e7DIrufL8aNGiAYcOGYfbs2Vi+fDlOnz6NpKQknDp1CitWrABgPjhq0aKF728ggKz/b+4EBGd/O+tljR49WumS6w8TJkyw+X4dPnwYL774It577z2/LP/gwYN+uUYIAHr16uWyddceWZbRqlUrHDp0CEajEWfPnnXYNRzw3/bGOnxnZ2e7dbLAH/y5fQ3EtjrQ+4d33nkHc+fOxaZNm7Bw4UKMGDEC8+bNc7j9q6pjL1mWMWbMGLz11ltK17pXXnkFADBz5kzlIH306NEB73XhLVfHCps3b1a6bV999dUuD9779euHZcuWATAHtJEjR3pUn82bNyvXl7dq1Qpvv/223XKWcS4AYM+ePUp4bdeuHe644w7lOetrA/v16+d03SEhIbj66quxZMkSCCGwfft2h6GyZcuWmDp1qsNlFRYW4syZMwDMJykdXTPoiccffxwHDhzAwoULsXnzZtx4441YtmyZ0+Nky6Uvln28v9x7771KC+qMGTPQu3dvALZdsIcOHerRSSN/Xx5Q40JiVFQUwsPDUVhYWC3X+lW0cuVKAECjRo3w+uuvOwyIBQUFNv+MqmbdN/7IkSMuy1uX8ddgPb5IT0/3uJnekTFjxtg0xVcVV2d2rfuIOxscCDD3g7dskGVZdjnAhy+aNm2KXbt2QQiBc+fOoVmzZlW2Lk/qZFHd3+uEhATlWrjjx4+jXbt2Dsvm5OQ47Wpq7eGHH8bs2bNhMpnwww8/4NVXX8UPP/ygdKmsKWe5fWG97Th69KjL8s7KVNVnYPbs2cqgSFdccQUyMzNx6tQpfPjhh7jxxhttBubx1ty5c/12YmP16tVuXftqT0pKCg4dOgTAvM1xFhKtr8V193oWe5KTk7Fx40YA5gMQS6tQVfPn9rVDhw6QZRkmkwm7du2CyWRyevLMH387T+qfkZGhHHzGxcVVuo7LGxEREfjrr79w0003uRUUq/LYa+zYscrgObNmzVIGK7E+UeRogLiaMpaBM66OFaxb09zpAh8VFaXcd+ekZUXWfzNLC6ArO3fuVL5DQ4YMsQmJ1V1/i3Xr1invpUePHk67S7tLo9Fg3rx5GDlyJP7v//7PraDYtGlT5ObmIj093a0Tze4aPnw4Hn/8caXl8PPPP0dYWBh+/PFHpYy7A9ZYWOeS5s2b+1zHamtisN4gu/rSX3vttQDMB3TuHJj4U1paGgDzoAfOdiIrV65UDgYd8eQ9u2I98IylpcIZ61Y7R4PWkHPWZ1Ltndnt2LGjcsC0f/9+pzvWTZs2Kdeu9uzZs0pbdy1nowDXI4NWly5duig7l1WrVrn87vhT165dlfurV692WtbS9ckdvXr1QseOHQEAP/zwA/R6PX744QcA5pNMQ4YM8byyNcxll10GrVYLwPx9cNW13jJYlj0NGzZUzgRv2bLFL9dynzhxAhMmTABgbjGeM2cOfv75Z6hUKphMJowePdrmAK62s3RDA6C0NDhiPfDITTfd5PU6rcOOJaBWB39uXyMjI5UBnPLy8rBlyxaHyzpz5ozSCpOUlOR160WfPn2Urrrr1q1zen2Q9f/Sl/9VRZag2LNnTwDAwoULMXz4cIfdt6vq2Kt169bKAGPHjx/H+vXrsW7dOhw/fhyAuXXN2cm7ms7VsYJ1sLK0jDlj3VpVEwbyCVT9rcOSPy/dsATF22+/HQCUoOhon2Q5piotLbXpFuqryMhIpQ6FhYVYsGABTp48qXyeEhMTXbbcVmQZ5E2SJHTq1MnnOlZbSLTuyuDqzMKYMWOU+46Gx60qlq40x48fdxjsjEajw+Z7a568Z1eSk5OVLpa7d+92GhS3b9+Ov//+G4D5TEJNuDbHMrqpP27V0Yp47Ngxm7OcliGNrUmSpJxtE0I4HT1s2rRpyn3LlBNVZeTIkcqB/XvvvefzZ88fVCoVRo0aBcC8A3E0dURVsA5r06dPdxp0Pv30U4+WbRle/MyZM5g0aZJyIDtmzBi/nW0MpKCgIOWzn5aW5vSs9NKlS12ORGvZthcXFysX7XvLaDRi1KhRyo592rRpaNOmDXr16oXnn38eAHDu3Dk88MADPq0HMI9u6q/tl7etiIC565Hluz1nzhxlgKSK9u3bp+wD4uPjbU4cecp6wK7qmO7Jwt/bV+vHnX3PP/vsM2Xf7+nAX9bCw8OV705+fr7D/ZYQQhlgpGI9/cESFHv16gXAPBCMo6BYlcde1i0iM2bMsPl7eNpaUpOUlZXZHA/aO1awPtGyZcsWp10WjUajcj0aYHuS0119+vRxa1tkHcLGjBmjPF7xOkjr+s+fP9/pPvTkyZPKdkKWZa8vDVq9erXyd2jZsqUSpvxFrVZj7ty5GDZsGABzULzpppvsBsXRo0cr91977TW/jkNS8Xth3QV7zJgxHl0uZDQalV4Q7du398/Abb5Ns2hmPVGuowk5H3vsMaXM2rVrnS7PaDSKbt26KeUff/xxUVZW5rB8cXGx+PHHH8WcOXMqPWc9CbI7kxj3799fKT916tRKz+t0OpuJX+FkctapU6cqZWbOnOly3dYTedszb9485fkmTZqIAwcOVCpz6tQp0apVK6Xc559/bndZlufdmdjYk7I13R9//CHmz5/vdEL1ffv2idatWyvvu0+fPg7Lnjt3ToSGhiqT6a5cubJSGesJa5s1ayZKSkr88l6cefLJJ5V1XnfddeLChQsOyxqNRrFixQrxxhtvVHrO0SS09rgqe+bMGREdHS0AiKCgIJffibS0NPH666+L3bt3V3rO1Xelol69einlJ0yYIIxGY6UyFSdMd2fS5dzcXOX/b307fPiwW/Xy1pgxY5R1nThxotLz/vy/rV+/Xnk+JiZG7Ny5s1KZw4cPiyZNmtj8Dawn87YoLCwUzZs3FwCEJEni/ffft/u/sMjNzRWffvqpWLFiRaXnXnrpJWVdw4YNs3lOr9eLHj16KM9//fXXTv8GtcmkSZOU9zVgwIBK25Ps7GzRpUsXl/sAd5WWloqwsDABQFxzzTVeLcP6GMGT/Yg/t69FRUUiISFBKTtjxoxKZVasWCHUarUAIMLDw0VqaqrL9+NsG7Rjxw5l4vGoqCi727JXX31VWU63bt0cLssd1n+Lit+/goICm+3gkCFDhE6nsynjz2OvigoKCpTPUXh4uAgPDxcARGhoqMjLy/Pq/XrCk+26EEIcOXJEfPDBByI/P99hmezsbDFw4ECb7WNOTo7dsldeeaVS7qqrrhJZWVmVyhgMBvHwww8r5Ro1aiQKCwsrlXP38+eK9efF0bG7EEJkZGQo/zsAYvz48XaPobKysmze58CBA+0u7/jx4+LUqVMO17d8+XJlQnpJktw6dnfG2T5Or9eLYcOG2fxv7H0eb7/9dqXMiBEjnH5m9Xq9WLBggVvbXpPJJJKTk5X32rhxY2U9R44c8eh97t69W3ntpEmTPHqtI9V2TeL111+vnO27//77MXnyZDRv3ly5ULl169bK8OmyLGPBggXo0aMHzp07h08//RS//PIL7rjjDlx22WWIiopCYWEhTp8+je3bt2PVqlUoKirCG2+84XM9J06cqLTSPfHEE1izZg1uvPFGNGjQAEeOHMGsWbNw5MgRXHfddThy5IjTLjDXX3+9cv+ZZ55BRkYG2rVrp/Srbtq0qUfNwcOHD8fChQsxd+5cXLhwAZdffjnGjh2LHj16QKVSYfv27fj++++VMyE33HCD0hWLzI4dO4bJkycjLi4ON910Ezp37oz4+HhoNBqkpaVhzZo1+P3335URsBISEpwOsJGQkICPPvoI48ePh8FgwIABAzB69Gj07t0bBoMBS5cuVc6GqdVqfPPNN06Hs7a+BvbEiRNOrzly5p133sGuXbuwatUqrF69WjkT16NHD8TFxUGn0yE1NVVplU5NTcX111+PF1980av1uSMxMRFz587FLbfcgrKyMowZM0aZmLdNmzYICQlBXl4eDh8+jC1btmDjxo0wGo0u5zZ0x9dff41u3bqhuLgYX3zxBTZv3oy7774biYmJSEtLw7x587Bx40b06NEDp0+fxrlz59w6gxcVFYURI0bYnJHt06cP2rRp43Oda4pevXphwoQJ+OKLL5CTk4OrrroKY8aMQa9evSDLMrZt24bvv/8eRUVFGDp0qNPR+MLCwvDbb7+hd+/eyM/PxzPPPIOvv/4at99+Ozp06IDw8HDk5+fj+PHj2LZtG9asWQOdTqdMZmyxYcMG5ex9YmIivvnmG5vn1Wo1Zs+ejc6dOyM/Px+TJ09G7969a3WXNotXXnkFf/31Fw4ePIilS5fi8ssvxwMPPICmTZvi6NGj+Prrr5UuYX369PH52tigoCDcdNNNWLBgAbZv347CwkKXQ8ZX3I5Yj7h34sSJSs9ffvnlNtPIWPhz+xoaGopvvvkGQ4YMgdFoxL333oslS5ZgwIABUKvVWLt2LWbNmqVs+z/++GM0btzY9R/IiS5duuCZZ57Be++9h7y8PFx99dV44IEH0L17d6V7meWSgPDw8EqfY38KDw/H0qVLMXDgQKxfvx6///477rjjDsyfP1/p9VCVx17h4eG44447MGPGDJuB9W6//Xa/T1Xz0UcfOZx6IDc3t9Lnr0WLFpW6MxYWFuLpp5/GSy+9hP79+6Nbt25o3rw5wsLCkJubi3/++Qdz585VPtuWaXccDTLy6aefok+fPigtLcWWLVvQvn17jBkzxmaexNmzZytdnQHzZ9Cd0barWsOGDfHWW29h0qRJAIAvv/wS69atw1133WUzT+LMmTORkZEBwLxvrDjNh8W///6LkSNH4pprrkGfPn3QunVrqNVqnD17FkuXLlUuW5AkCZ9//rlPvS9cUavVmDNnDiRJwvz587FlyxblGkXrz+UPP/yAw4cPY+/evZg3bx6WLVuG4cOHo2vXroiJiUFJSQnOnTuHnTt3YsWKFcjJyXGri6wkSRg7dqzSW8Vyyds111zj1rRT1qwvpxk6dKhHr3XIH0nTnZZEg8Fgcxar4s3eGezz58+L66+/3uFrrG8qlUp8++23lZbhaUuiEEI899xzTtfVs2dPkZ6erpwRd3Zm6s4773S4nIp/K3daR/R6vXjggQdc/j2GDRsmiouLHS7HUq6+tSR+/PHHbn2eUH7W/OTJk24t94MPPhAajcbhsiIiItw622r9GnstRJ4oKysTjz76qFCpVG6939GjR1dahj9bpCw2b94sWrZs6VadwsPDxZ49eyotw9OWRCGE+Pvvv5WWTHu3lJQUcfr0adG0aVMBQFx66aVuLXfr1q02y5k9e7bbdfJWdbYkCmHeft9zzz0O/3ayLIv333/faUuGtYMHD9q0djm7BQUFiaVLlyqvzcnJUba9siw73a7//PPPynK6dOnitFWkNjlx4oTLv1+/fv0ctmp46rffflOWO2vWLJfl3d3GOtoXVuSv7asQ5s+EpRXL3k2r1drtRWTNk5Yck8kkJk2apLQo2rs1atRIrFq1yq36O+PO96+wsFBce+21SrlbbrmlUouiP4697Fm7dm2l1//999++vu1KLNsHd2/2jm127tzp9uuTkpLcOr5cvny5iI+Pd7m8sLAw8cMPPzhcTnW3JFp8+OGHQqvVuqx/cnKy2LJli8PlzJ8/3+UyGjduLObNm+f1e7Pmzj5Or9eL4cOHK+WuvPLKSq2FeXl5YsSIEW5/Ll566SW36nfixIlK2wdn/39HunfvrnweTSaTx6+3p9pCohBClJSUiHfffVf06NFDxMTE2By8OjuQWbNmjXjooYdEx44dRXR0tFCpVCIyMlJ06NBBjBgxQnz55Zfi/Pnzdl/rTUgUQoilS5eKQYMGiYYNGwqNRiOaNGki+vbtK7799luh1+uFEMKtkGgwGMSXX34p+vTpIxo2bKh0ZbH3t/LkwHfz5s3i/vvvF61btxZhYWEiJCREtGjRQtx9991u7WycbRx9KVvTZWZmil9++UVMnjxZXHPNNaJVq1YiKipKqNVqERsbKy677DLx0EMPedW9Ye/eveKRRx4Rbdu2FWFhYSIiIkKkpKSIZ5991q2wWVRUZHOgYq87ijeOHDkipkyZIq688koRFxcn1Gq1CA0NFS1atBADBw4Ub7/9tt0gJkTVhEQhzBvkn3/+WQwfPly0aNFChIeHK/+Drl27inHjxol58+bZ7WojhHchUQghUlNTxVNPPSXatWsnQkJCRHR0tOjatav48MMPRVFRkTCZTCIkJEQAzrsZWzOZTErXmNjYWFFaWupRnbxR3SHRYtGiRWLQoEEiLi5OBAUFiaSkJHHnnXeKTZs2CSHcO0i1MJlM4vfffxdjxowRbdu2FZGRkUKlUono6Ghx2WWXidGjR4sZM2aI7Oxsm9dZ76SnTJnidB1CCDFq1Cil/JNPPumyfG2h0+nEN998I/r27SsaN24stFqtSEhIEIMGDRJz587120GCEOb9WFJSkgAg+vfv77K8Jwfo7h6g+rp9tXby5EnxzDPPiI4dO4qIiAgRFhYm2rZtKx555BGxb98+l6/35iB906ZNYuzYsaJly5YiODhYREdHi8svv1y8/vrrIiMjw6P6O+Lu989eULR3AsWXYy97TCaTzeUwycnJfv2cWvgjJJaWloq//vpLvPLKK+LGG28U7du3V47hIiMjRevWrcXIkSPF7NmzPTr5lJeXJ6ZPny4GDhwomjZtKoKDg4VGoxFxcXGid+/e4s0333R6eYgQgQuJQpi/Oy+//LLo1auXiIuLExqNRgQHB4vExEQxePBg8e233zptoBDCfBz21VdfiREjRohLLrlExMbGCq1WK5o2bSquv/56MW3aNJGbm+v1+6rI3X2cwWCw2b/YC4pCmLuRT5o0SXTp0kU0aNBAqNVqER4eLtq0aSOGDh0qpk6dKo4dO+ZRHfv27WtzkqCgoMCj1x8+fFh5/VtvveXRa52RhKgF4wsT1QPLli1TRrZ77LHHPB5EhXy3d+9eXHrppQDc/x+sXLkS/fv3B2Ceg+mTTz6pyioSBcTHH3+MJ554AiqVCidPnqy2qTCIiMi5l19+GW+88QbCwsJw6tQpv42KG/hZtokIwMU5OiMiIqr02kByzHqUQXevhfzyyy+V+3VhbkQiex5++GHEx8fDaDTi/fffD3R1iIgI5tGTp0+fDsA8roo/p01hSCSqISwh8YknnkBcXFyAa1P3rF+/3un8jNOnT1cGjmjatCluvvlml8vctWuXMlBLv379vJ5TjaimCwkJwauvvgoA+Oabb2wm2CYiosCYNm0asrOz0aBBAzzzzDN+XTa7mxLVAJmZmWjUqBEaNmyIY8eOVZoMmnzXunVrlJaWYsCAAejSpQvi4uKg1+tx7NgxLFy4EDt37lTKLlq0yGFI/Ouvv2AymXD48GG8//77uHDhAgDziJuWSauJ6iKTyYRu3bphx44dePTRR53OXUhERFUrPz8fLVq0QHZ2Nr766itl7mZ/YUgkonqhdevWOHbsmNMyISEh+PbbbzFq1CiHZaynKbFw9/rF5cuXo7i42HVl7WjYsKEyITYRERFRVWJIJKJ6YcuWLViwYAG2bNmCc+fOISsrC8XFxYiJiUHbtm3Rr18/jB8/3uXcaJaQGB4ejrZt22L8+PG477773JpXMTk5GadOnfKq/r1798aaNWu8ei0RERGRJ9SBrgARUXW46qqrcNVVV/m8HJ5XIyIiorqOLYlERERERESk4OimREREREREpGBIJCIiIiIiIgVDIhERERERESk4cA0REQWc0WhESUkJiouLlZv170VFRSgrK4NOp4NOp7O5b+93nU4Ho9EIk8lk89NyM5lMNs8B5pFrHd0so9fKsgyVSgW1Wg2NRqPcHP2u1WoRFBSEkJAQBAcHIzg4GKGhocp968dDQkIQHh6O0NBQqNXcPRMRUeBwL0RERH4hhEBBQQHy8/ORn59f6X5eXp7ymOVnUVERiouLUVpaGujq1yihoaEIDw+3uUVERNj8HhkZiejoaERFRSE6OhrR0dEICQmxO5cnERGRJzi6KREROWQymZCXl4fs7Gzk5ORU+lnxvtFo9Gl9KpUKoaGhNreQkBCEhYUhODgYK2asgyQAGCVASIBJAkyAZLLct/pdAED5TwFzecseT1x8XLI8ZvU0rHOWhPKCVr9LwnzBhiQgZMvvwuY5IZcvXGW+3TSuL0pLS1FSUoKSkhKUlpYqv1t+lpWV+fT302q1SmC0vsXExKBhw4Zo2LAhGjRogIYNGyIsLIyBkoiI7GJIJCKqp4xGI3JycpCeno6MjAxkZGRUup+ZmQmDweDRckNDQxEZGYmIiAhERkYiMjISa/+3BZJBAgwyJIMM6CXzT6MEySgBRvN9mAAJ9Te4iPJQKdQmQC0AlQlCLQB1+U+VwC2P36C0zObm5io/dTqdR+sKDg5WAqMlPDZo0ACNGjVCo0aNEB8fjwYNGihdbYmIqP5gSCQiqqOMRiMyMzNx4cKFSrfU1FRkZWW53fIXFRWF2NhYxMTEYNdf/0HSy4BehqS7+FN5TNTfkBcoAuUtmRoBoTFBaEyA1c9+91+DrKwsZGZmIjMzE4WFhW4tV61Wo1GjRmjcuDHi4+Mr/WzUqBE0Gk0VvzsiIqpuDIlERLVYWVkZzp07h9OnT+Ps2bM2QTAtLc1lK6BKpUKDBg0QFxeHRo0aYd3PW4EyGZJOBan8J3QMfnWNkAWgNUJoTeU3I4a/MFhpQU5LS0NmZqbLkwiyLKNx48Zo2rQpEhMTkZiYiKZNm6Jp06Zo0qQJgoKCqukdERGRPzEkEhHVcCaTCWlpaThz5kylW1paGpxtxlUqFeLj49GkSRPsWLwfUqnq4k0nmwNgPe7eSY4JCCDIBBFkVG4DJ/ZFamoq0tLSkJqa6rSLqyRJaNSokRIcmzVrhubNmyM5ORmNGjViN1YiohqMIZGIqIYwGo04f/48Tpw4YXM7d+6c04Px8PBwJCUlITExEau+23gxBJapzK2CDIFUBQSEuUtriBEi2Ig73xiCs2fP4ty5czh79iyKi4sdvjY4OBhJSUlITk5WgmPz5s2RkJDA6T+IiGoAhkQiompmaRk8efIkjh8/roTBU6dOOQyDGo1GaY3Z9L9/IZWqIRWrIJWoAYPEIEg1ijlACohgA0SIEXe9ORRnzpzByZMncebMGYfdoNVqNZo1a4aWLVuiVatWaNWqFVq3bo2GDRtyJFYiomrEkEhEVIUMBgNOnjyJI0eO4PDhwzhy5AiOHj3qsJUlKCgIycnJOLLuFKRiNaRiNeRiFVCmYhCkOkFAQAQbIUINEKFGXP/g1Th16hROnz6NkpISu6+JioqyCY2tWrVCcnIytFptNdeeiKh+YEgkIvKTkpISHD16FEeOHFFuJ06cgF6vr1RWrVYjKSkJJ7ecN7cIFqshF6uBUoZBqp8s10CaQg0QoQZcN+4qHD16FGfOnLE7gI5KpUJSUhLatWuH9u3bo3379mjVqhUHyyEi8gOGRCIiLxgMBpw4cQL//fcfDhw4gAMHDuDkyZN2B5EJDw9H69atsXfJYUhFakiFakglao4YSuQGIQlzq2OYAUOfvwHHjh3D0aNHUVBQUKmsSqVCy5YtldDYrl07tGzZktc5EhF5iCGRiMgFIQTS09Px33//KaHw0KFDKCsrq1Q2NjYWbdu2xT+/7IVUpIZcqGZXUSI/ExCA1gRTuB6j3huKgwcP4uDBg8jLy6tUVqvVonXr1rjkkkuQkpKClJQUNG7cOAC1JiKqPRgSiYgqMBgMOHz4MPbs2YO9e/di//79yM7OrlQuLCwM7du3x67fDkIqUEMu0EDSqwJQYyJSuquG6zH8jUE4dOgQDh06hMLCwkpl4+LikJKSgk6dOiElJQWtW7dmayMRkRWGRCKq94qLi7F//37s3bsXu3fvxn///VepldDSje3YurPmMFiggVTCFkKimkwZJCdCjyHP98fevXtx7NixStc4BgUFKS2NnTp1QqdOnRAeHh6gWhMRBR5DIhHVO3l5edi1axf27NmDPXv24OjRo5UOGiMiItCpUydsnb3HHAoLNZBMDIREtZ2QTRARBoz59Hbs27cP+/fvr3R9oyzLaNu2LTp37owuXbowNBJRvcOQSER1XnFxMfbs2YN///0XO3bswNGjRysNMNO4cWNk7M2DnK+BlK81jzjKVkKiOk9AQIQYISL1uOHxXti9ezfOnTtnU4ahkYjqG4ZEIqpzdDod/vvvP+zYsQP//vsv/vvvv0othc2bN8eZLemQ8zWQ87WQyngtIRGZCa0RpigdbnryWuzcudNhaOzWrRu6deuGjh07QqPRBKi2RET+x5BIRLWeEAKnTp3C1q1bsW3bNuzZs6fSNYXx8fFI35ULOU8LOVfLAWaIyG2uQmNISAi6dOmCbt26oXv37khMTIQksScCEdVeDIlEVCsVFxfj33//VYJhamqqzfMxMTHIO1wMObc8FJZx5EIi8g+hNcIUrUOfCd2xfft25Obm2jwfHx+vtDJeccUViIiICExFiYi8xJBIRLWCEAInTpzA1q1bsXXrVuzZswcGg0F5XqPR4LLLLsPOXw5Czg3iNYVEVC0EBESYAfd9dQf++ecf7N27F3q9XnlepVIhJSUFV199NXr27IlmzZqxlZGIajyGRCKqsQwGA3bt2oX169dj48aNSE9Pt3k+ISEBqdtzIOcEQc7TcvRRIgo4IQuYonQY+ko/bNu2DadPn7Z5vmnTpujZsyd69OiByy67jPMzElGNxJBIRDVKUVERtm7dig0bNmDLli02E2FrtVp06dIF2+f8BzlbC6mUrYVEVLOJICPG/zwKGzduxK5du2x6QISFhaF79+7o2bMnrrrqKkRGRgawpkREFzEkElHAZWZmYuPGjdiwYQN27Nhh01UrJiYGeQdKIGcHm68tZGshEdVSQmWCKVqH/k9cjc2bN9tcy6hSqdClSxf06dMH11xzDWJiYgJXUSKq9xgSiSgg0tPTsWbNGqxevRr79++3ea5Zs2Y4vzkLclYQpAINWwuJqM4REBAReoz88GZs3LgRx48fV56TZRmXXnopevfujWuvvRZxcXEBrCkR1UcMiURUbTIzM5VguHfvXpvnOnbsiINLTkHOCoJcwmt0iKh+MQUbcO83t2PdunU4ePCgzXMdO3ZEnz590Lt3b8THxweohkRUnzAkElGVysrKwtq1a7F69Wrs2bMHlk2OJEno1KkT/lt4wtxiqOO8hUREgPk6xnEzRmDt2rXYt2+fzXMdO3ZE//79cd1117FLKhFVGYZEIvK7oqIirFmzBsuXL8fu3bthMpmU51JSUnDgj1NQZTIYEhG5IrRGjJ89CuvWrcOuXbuUE20qlQpdu3ZF//790atXL4SGhga4pkRUlzAkEpFfGAwG/PPPP1i+fDnWr18PnU6nPNehQwccWnwaqsxgBkMiIi8JjREP/jQSK1eutOmSGhQUhF69eqFfv37o3r07NBpNAGtJRHUBQyIReU0IgcOHD2P58uVYtWoVsrOzleeaN2+Os2uzoMoIhlTGYEhE5E+mYANGfT4YK1euxNmzZ5XHIyMjcf3112PgwIFo27YtJIkDfxGR5xgSichjmZmZWLZsGZYtW4aTJ08qj0dHR6PgvzLI6SGQCtUclZSIqIoJCIhwA4a+dX2lk3WtWrXCwIED0b9/f0RHRweukkRU6zAkEpFbjEYjtm3bhsWLF2PTpk0wGo0AzBPcG85JkNNDzPMYCgZDIqJAEBAQ0Tpc+/gVNt3+1Wo1evbsiYEDB6Jbt25QqzmCNBE5x5BIRE6lpaVhyZIl+PPPP5Genq483rFjRxz67TTkzGBIRjmANSQiooqE2oQJc0dh6dKlOHTokPJ4w4YNceONN+Lmm29G06ZNA1hDIqrJGBKJqBKDwYBNmzZh0aJF2LZtmzKaXmRkJIoOGCCnhUAu5ploIqLawBSmx5C3+mLFihXIy8tTHr/yyisxdOhQXHXVVVCpeO04EV3EkEhEiszMTPzxxx/4448/bK5r6dKlC/bOPWZuNWR3UiKiWklIAi+uehSLFy/Gtm3blMcbN26MW265BYMGDUJsbGwAa0hENQVDIlE9J4TAf//9hwULFmDNmjUwGAwAgJiYGOTvKTO3Gpay1ZCIqC4RwQbc9mF//Pnnn8jPzwdgvnaxT58+GDp0KDp16sSRUYnqMYZEonpKp9Ph77//xv/93//ZzLfVqVMnHJh/GnJWEFsNiYjqOCELPLX4Afz222/477//lMdbtmyJYcOGoX///ggKCgpgDYkoEBgSieqZjIwM/Pbbb1i0aBFyc3MBlI9QekaG6nwo5CJOwkxEVB+ZwvS48aWrsWLFCpSVlQEw9yq59dZbMXToUE6jQVSPMCQS1RMnTpzA3LlzsWLFCqVLaVxcHLL/KYEqNQSSgSOUEhERIFQmPPDTHfj111+VUa21Wi1uvPFG3HHHHUhOTg5sBYmoyjEkEtVhQgjs3r0bc+bMwebNm5XHL7vsMuyfe9LcpZQT3hMRkR1CEnhu+XjMmzfP5rKEK6+8EiNGjMAVV1zB6xaJ6iiGRKI6yGg0YsOGDZgzZ45yjYkkSZAytFCdDYNcyC6lRETkHgEBEanHVY+kYMOGDcq0SG3atMGoUaPQu3dvTqFBVMcwJBLVITqdDkuXLsXcuXNx7tw5AOXXG55SQXUulKOUEhGRT0SwAYPf6YM///wTJSUlAIBmzZph1KhR6N+/PzQanoQkqgsYEonqgLKyMixevBj/+9//kJGRAQCIiIhA8X4TVBdCIel5vSEREfmPUJsw6uub8euvv6KgoAAA0KhRI9x55524+eabOSIqUS3HkEhUi5WWluKPP/7AnDlzkJWVBaB8MJqtpVClBkMyMRwSEVHVESoT7p81DPPmzUN2djYA84ioI0eOxK233org4OAA15CIvMGQSFQLlZSU4Pfff8fcuXOVnXLjxo2RtbEYcloI5zckIqJqJSSBif93D2bPno3U1FQAQGxsLO666y4MGTKELYtEtQxDIlEtotPp8Mcff+Cnn35CTk4OACA+Ph6Z64sgpzMcEhFRYAlJ4MnF92PmzJk4f/48AKBBgwa4++67MXjwYGi12gDXkIjcwZBIVAsYDAYsW7YMM2bMQFpaGgAgISEB6WsKIWcEMxwSEVGNIiSBSb+PxcyZM5X9VlxcHEaPHo1BgwZBreZAakQ1GUMiUQ1mMpmwdu1afP/99zh9+jQA8042Z1MpWw6JiKjGs3RDnTVrljKwWmJiIh588EH07t2b8ywS1VAMiUQ11Pbt2/HVV1/h8OHDAICoqCgU7jKaRys1cadKRES1h5AEHp43ErNmzUJubi4AoEOHDnj44YfRuXPngNaNiCpjSCSqYU6ePIkvvvgCW7ZsAQCEhoai7IAE1flQSEaOVkpERLWXUJlw19eDMG/ePGWexR49euChhx5Cy5YtA1w7IrJgSCSqIXJycvDjjz9i0aJFMBqNUKlUwBktVKfDIRkYDomIqO4QGiMGvtNL2efJsoyBAwdi3LhxiImJCXT1iOo9hkSiACsrK8P8+fPx888/o7i4GAAgZwVBdSIccikv7CciorrLFGxAz6c6Yc2aNQCAsLAwjBkzBrfffjs0Gk1gK0dUjzEkEgWIEAIbN27EZ599hgsXLgAA2rZtixO/ZkDO5xDhRERUf0zd/TI+++wzHDx4EIB5cJtHH30UPXr04OA2RAHAkEgUAGfPnsWnn36KrVu3AigfsXRDmXk6C3BnSERE9Y+AwJNL7sfXX3+N7OxsAEC3bt0wceJEJCcnB7ZyRPUMQyJRNSopKcHPP/+MuXPnQq/XQ61WQ5zQQnUmDJKJ1x0SEREJlQnDPuuP+fPnK/vKkSNHYvTo0QgODg509YjqBYZEomqybt06TJs2Denp6QAAKUcL9fEIyCW87pCIiKgiEWxA18faYdOmTQCA+Ph4TJ48GT169AhwzYjqPoZEoiqWkZGBTz75BOvXrwdg3sllri6BnBXErqVEREQuvLz2MXz66afKSdZrr70Wjz32GBo1ahTgmhHVXQyJRFXEZDLh999/x9dff43i4mLzlBYng8u7ljIcEhERuUvIJtz+WT/88ssvMBqNCAkJwf3334/bb7/dvH8lIr9iSCSqAidOnMAHH3yAffv2AQCkfA3URyMgF3M4byIiIm+ZQvVoP6Yp9u7dCwDo2LEjpkyZgubNmwe4ZkR1C0MikR8ZDAb89NNP+Omnn2AwGBASEgL9PjXkCyHsWkpEROQHAgITF96DL7/8EsXFxdBqtRg7dixGjhwJtZrX+RP5A0MikZ+cOHECb731Fg4fPgwAkLO0UB+LhKRjNxgiIiJ/E1ojukxspUwn1a5dO0yZMgWtWrUKcM2Iaj+GRCIfGY1GzJ07Fz/88AP0ej0iIiJQsl3inIdERERVTEDgqT8fwLRp01BYWAiVSoV7770Xo0aN4rWKRD5gSCTywZkzZ/D2229j//79AAA5Wwv1UbYeEhERVSehMeLKpy5RRhJPSUnBiy++iISEhADXjKh2Ykgk8oIQAosWLcJnn32GsrIyhIaGQrdLDTmdrYdERESBYGlV/OSTT1BcXIyQkBA8/vjjGDBgACSJ+2YiTzAkEnkoPz8f77//PtatWwcAkHK10ByJhFTG1kMiIqJAE0FGtL8/AXv27AFgnlfxqaeeQnR0dGArRlSLMCQSeWD37t144403kJ6ebr7W4WgIVOdC2XpIRERUgwgIjJ01FN9//z2MRiMaNGiAV155BZ07dw501YhqBYZEIjcYDAbMmjULs2bNgslkQtOmTZG+pARyIec9JCIiqqk+P/Am3njjDZw+fRqyLOO+++7D3XffDVmWA101ohqNIZHIhezsbLz22mvYuXMnAEBOC4b6eAQkI3cwRERENZ2QTbjutcuxbNkyAEC3bt3w4osvIiYmJsA1I6q5GBKJnNi7dy9eeeUVZGZmIiQkBPpdGqgyQgJdLSIiIvKAgMATi+/Dxx9/jLKyMjRs2BAvv/wyu58SOcCQSGSHEAILFizA9OnTYTQaIRWroD4QDblEHeiqERERkZdMoQYk3BqOU6dOQZZlTJgwAXfccQdHPyWqgCGRqILi4mJ88MEHWLVqFQBAzgiC+kgkJBO7lxIREdV2Qha47rUuSvfTG264AU8//TSCgoICXDOimoMhkcjKhQsX8Nxzz+H48ePm0UuPhEJ1PoSjlxIREdUhAgIP/zJS6THUtm1bvPXWW2jcuHGgq0ZUI7BphKjcnj178NBDD+H48eOIjY2FvCMS6vOc3oKIiKiukSDh6+HzMHXqVERFReHw4cMYN24cdu3aFeiqEdUIbEkkArB06VJ88MEHMBgMkArV0PwXDUmnCnS1iIiIqIqJICOa3xWDI0eOQKVS4cknn8TNN98c6GoRBRRDItVrRqMRX3/9NebOnQsAkDODoD4cBcnE1kMiIqL6QsgC1758KVauXAkAuPvuu/HAAw9wPkWqtxgSqd4qKyvD66+/jvXr1wMAVKfDoDodxu6lRERE9ZCAwJ3fDsDMmTMBAH379sVzzz3HAW2oXmJIpHopPz8fzz33HPbu3QuNRgOxNwSqTM5/SEREVN89seQ+vP/++zAajejUqRPeeustREdHB7paRNWKIZHqnbS0NDz11FM4deoUwsPDUbZJAzlfG+hqERERUQ3x7j9T8NJLL6GwsBCJiYmYOnUq4uPjA10tomrDkEj1yrFjx/D0008jMzMTKJOh2R8DuVgd6GoRERFRDWMKMaDBIA1SU1MRFxeHjz76CMnJyYGuFlG14NW4VG/s3bsXEydORGZmJqQiFbS7YxkQiYiIyC65RI3sPwxITk5GRkYGJk6ciAMHDgS6WkTVgiGR6oWdO3fiqaeeQmFhIaQ8DTR7YjnFBRERETkl6VQ4P7cIl1xyCfLy8jBp0iTs2LEj0NUiqnIMiVTnbdu2DU8//TRKSkog5Wih2R8DyciPPhEREbkmGWQc+yETl19+OUpKSvD0009j8+bNga4WUZXikTLVaRs3bsRzzz0HnU4HOVsLzX/RnAORiIiIPCIZZez77CyuueYa6PV6vPjiiwyKVKcxJFKdtW7dOrz44ovQ6/WQM4OgPhANSTAgEhERkeckIWHru4fQu3dvBkWq8zi6KdVJW7ZswfPPPw+DwQA5PRjqw5GQwIBIREREvhGSQI/nL8HatWuh0Wjw1ltv4aqrrgp0tYj8iiGR6pwdO3bgmWeeMXcxzQiC+lAUAyIRERH5jZAErnquPdatWwetVou3334b3bt3D3S1iPyGIZHqlL179+Kpp55CSUkJ5Cwt1AfZxZSIiIj8T0gCV05ph/Xr1yM4OBhTp05FSkpKoKtF5BcMiVRnHD58GJMmTTJPc5FTPkgNAyIRERFVESEJdHmiBbZu3YqIiAh8/vnnaNGiRaCrReQzhkSqEy5cuIDx48cjOzvbPA/i/hiOYkpERERVTsgCbcbFYf/+/WjYsCGmT5+OJk2aBLpaRD5hSKRaLz8/HxMmTMDp06chFamh2cN5EImIiKj6CLUJTe8Mx4kTJ5CYmIjp06cjJiYm0NUi8hqPpKlWKysrw3PPPYfTp08DpTI0+6MZEImIiKhaSQYZ5+YVID4+HmfPnsXzzz+PsrKyQFeLyGs8mqZay2Qy4a233sLevXsBgwTNfzGQdCrvFiaxayoREVG9J0leHxNIOhWyFusRERGB/fv349133wU77FFtxZBItdZ3332HNWvWQKPRQHMgGnKx2vOF+LAzICIiojrKy+MDuVSNN998EyqVCqtWrcKMGTP8XzeiasCQSLXS33//jZ9//hkAIPaHQs7Ter4QhkMiIiJyxotjhWeueBtPPvkkAODHH3/EypUr/V0roirHgWuo1jl69CgmTJiA0tJSqM6FQn0yEvDkY+xog8+vAhERUf3mLBR6eKxx62d9MHfuXGi1WkyfPh3t2rXzvX5E1YQhkWqV3NxcPPjgg0hNTS2fCzEGEiT3N9z+2vgTERFR3eOq5dCD4w0Bga5Pt8KmTZsQHx+P7777DpGRkb7XkagasLsp1RpGoxGvvfYaUlNTgRIVNIeizQHRHbz2kIiIiHzlzvFE+fMSJGyfehQJCQlITU3Fm2++CZPJVA2VJPIdQyLVGj///DP+/fdfhISEQHOgwlQXjjbYDIdERETkb24eX0hGGW+88Qa0Wi22bNmijKdAVNMxJFKtsHv3bvz4448AAP1uLeQSjesXMRwSERFRVXLjWGNC+xcwefJkAMD333+Pf//9t6prReQzXpNINV5eXh7uu+8+ZGRkQE4PhuZItP2Clo+yt+GQXwUiIqL6zZcTzC6OQ/q9fQWWLFmCBg0aYMaMGYiKivJ+XURVjC2JVKMJIfDOO+8gIyMDUokK6mMuLvj2ZePOlkciIqL6y9fjABevX/HidiQlJSErKwsfffQR2E5DNRlDItVoS5YswaZNm6DRaKA+FA3J5OQj64+Qx6BIRERUP0l+OCyWJEgqlf2nTBJeeuklqFQqrFmzBsuWLfN9fURVhCGRaqy0tDR8/vnnAADT4WDIRQ6uQ/THRp2IiIhIkv1yXOEoKD7a4SXcd999AIBPPvkEFy5c8HldRFWBR9dUIwkh8MEHH6C4uBhSvgaq86GVC/lpQ05ERERkw09B0V5YnDn2D3Tq1AnFxcV499132e2UaiQeYVON9Oeff2Lbtm2ACVAfjao8H2LFjTfDIhEREXlLttPy58XJaHuhsOJjEiQc+vECgoKCsHPnTvz1118erYOoOvDImmqczMxMpZup6lQE5BL1xSero/WQ1yUSERGRRRW0KkplaqXb6fTp05Gbm+vzOoj8iSGRapwvv/wSRUVFkAoqdDNlayEREREFgp+OQayD4vf3/B9at26N/Px8TJ8+3S/LJ/IXHnVTjbJr1y6sWLECkiRBfSzS3M3U3dZDhkgiIiKqKi6ORxwNVmOvnKRSQRISnnrqKUiShGXLlmH79u3+qimRz3hUTTWGwWDAJ598AgCQzpePZsrgR0RERFXJ3vWIzvixVfHxTq/itttuAwB89tlnMBgMflk2ka94BE41xm+//Ybjx48DegnqM1GBDYi8LpGIiIgc8eNUGYunbEJUVBROnDiBJUuW+KFyRL5jSKQaoaCgAD/88AMAQH06EpLBy48mWx6JiIjIXZ62IlZUftzhbldTu4swyhg7diwA4Pvvv0dRUZFvdSLyAx5RU40wZ84cFBYWQipWQ06zMyeimyRZ8l9QZGsiERERuSLJkNRq1+Wc+Oqu+UhKSkJubi5+/vlnP1WMyHsMiRRwWVlZ+PXXXwGYp7yoNCeim/waEImIiIjcJfsWFCUhYfz48QCA+fPnIz093V81I/IKj6gp4GbNmoXS0lJIRUFQFYZ7tQzrgCipVAyLRERE5JyvXU0ti9Fqyu/4FhRfu/FrXHbZZdDpdPjf//7nl7oReYtH0hRQFy5cwKJFiwAAmvOxHrciSrJUtaGQXU6JiIjIGVm2uS+p1V6FRUm6eG3i4sWLkZmZ6acKEnmOIZECat68eTAYDJALQqAqDPHotc66l7I1kYiIiBzydyuizYOy162Kz/WZhk6dOrE1kQKOR9EUMLm5ucpQz+rUaAAwn33TuN6oVuv1h2xNJCIiIntkJ8ciHgRFSas1/4SktCb+8ccfyMrK8rWGRF5hSKSAWbhwIcrKyiAVayEXBrv1mirvXkpERER1m59aEd1bl5vdT61OSL/Q93N07NgROp0O//d//1fFFSSyj0faFBClpaXKhk+dFm1zLaKj1kRPWw/9GibZmkhERERW7HY1tVvQefdTSyui8jskjBw5EoC5NbGsrMynehJ5gyGRAmLZsmXIy8uDVKaGKjfMZXlOb0FEREQ+82crorOupg7K2w2Kdk5Ev3XzD4iPj0deXh5WrFjhZQWJvMejbqp2Qgj88ccfAAB1RqTdEU0trYmSLPkUENmaSERERP7mditipRfadj+t2IpoIUHCrbfeCgD49ddfIYTwbn1EXmJIpGp34MABHDlyBDBJUGVHOCwnSeXh0MeQx2sYiYiIyG8jmoaFet6KaLMAq+6nTk5A/zj+TwQFBeH48eM4cOCA9+sj8gKPnKnaWVoRVblhkIz2N9iSVgspIgJyiHsD2lQLnsUjIiKqnSQJECbzzR9UvgdOKakppKbxjp83qtC7d28AwJ9//unz+og8wZBI1aq0tBSrV68GAKgyK7ciSlotpPAwQKsBZP917/S5NZEBkYiIqG7wISjanLz2NSiqZEAlQ2oa7zAsrpm+FwCwatUqlJaW+rY+Ig8wJFK12rhxI0pKSiCVqSEX2bYSSlqtORxaCwmGFBxUjTW0gwGRiIio9rLXpdPboFixm6lK5VVYlBKbWC3jYlistLrCYDRp0gRFRUVYv369x+sh8hZDIlWrVatWAQBUOeG2017YC4iW5/w0YIxXrYkMiERERHWTh0HR6SUwngZFlZ3jETtBUYKE/v37AwDWrFnj2TqIfMCQSNWmoKAAW7duBWAOiRbOAiIAv7YmehQUGRCJiIhqN1cnmt0MinJIsOvBatwMijatiJWWUTkoznvOfIJ969atKC4udmsdRL5iSKRqs3XrVuj1ekglGsilWvP1h6GhzgNiOSk0pPoGsRGCAZGIiKi2c7cnkjsD2rg7mqmLoCglNrHfimizDNvrFKVSLZo1awadTodNmza5Vw8iHzEkUrWxbNhUeWEXWw/9ODiNu5y2JjIcEhER1U8OgqLHJ6mdBUVXAdG6nCUsQkKfPn0AgNclUrVhSKRqYTAYLnY1LY50q/WwkqrudsqASEREVDd4O55BhaDoVjdTe+wMaOO0m6nD5ZiD4rwXzV1Ot2/fDqPR6PlyiDzEkEjVYv/+/SgoKAAMKsjGSK+XI4WGVM1opwyIREREdYOvA95ZB0VvAqK18qDoVjdTh8uQoYppjvDwcBQUFODgwYO+1YnIDQyJVC127twJAFCV2I5q6g2/j3bKgEhERETWhMl/YyGoVN4HxHKSSoWuXbsCgNIzi6gqMSRStbCERLkkzPeFBQX53pooTBCW7hp+Cp1ERERUA/jh5K8cFGRejh+6dhpTWkLfwPfjn27dugG4eExFVJUYEqnK6XQ67N+/HwAghyX6vkBZghTsw/WJwgRhYushERFRneWPXkImk/nmQ1A0prSE0MqASvI5KH7wxTYAwMGDB2EwGHxaFpErDIlU5Q4fPgydTgchaVHWJA6iSUPfFypL3nU7tRcQJZmtiURERHWNl0FRDqpwEtqHoCi0Vofa5UHRm7BY3CIaQhOByMhIlJWV4ejRo17Vh8hdDIlU5Q4dOmS+o46BUMkoaRrmn6DoabdTZy2IDIpERER1j4dBsVJAtPAiKBpTWlZ+UCV53KpY3CIaQiUBkoSOHTsCAPbu3etRXYg8xZBIVe7IkSPmO6ooAICQJQi1Hz56nnQ7daeLKYMiERFR3SOEW2HRYUC08CAoKt1MHfEgKArVxWOTSy65BIDVsRVRFWFIpCp3+PBh853ykAgApY1D/Nft1FVQ5DWIRERE5K/rFF0ERZcB0cKNoFicHG3z+/fz9gAAjh8/7nr5RD5gSKQqZTAYcPLkSfMvqovzIwpZQkmCn7qdOguKngZEtiYSERHVXQ6CostWRGtOgqLbAdHCSVAsTo6GUFc4Jik/ljp58iQHr6EqxZBIVSo1NRUGgwECMiCH2DwnVH4OihXDnbctiAyKREREdVeFoOhRQLRwEBQ9CogWdoKi3YAIAHIogoODodPpcP78ec/XReQmhkSqUmfPnjXfkcPsBi+h8tP1icDFgWzK50D0qYspgyIREVHdVR4UvQqIFpagWB4W7Q5U464KQdFuQAQASUJionk6MYZEqkoMiVSllJCoctznvrSRH69PVKsBlcr3ZREREVHdJvnhMLh8LkUpMd67VkRr5UGx4nWIFcXHxwMw99YiqioMiVSl0tLSzHfkUIdlDCEyClpHwJTU2LeV6fQQOh0klQqSr0FRmMw/2ZpIRERU98jm4wThh+v6pOaJECoV1LmlPi8r8+lSFEzIc1rGEhIvXLjg8/qIHGFIpCqVlZVlviMH233eqJVg0kgwaiQUJId6HxTLA6Kl+4ikUXsfFC0BkYiIiOo0YRI+BUWpeSKERm3+xSh8Corpk0vRLDoXTSPzUTDOcVCcv+Q/AFYn4omqAEMiVans7GzzHcm2z79RK0EfKsOkkSDKG+tMai+DYoWAaOFVULQXENmaSEREVHfItscG3gZFm4Bo4WVQTJ9ciuYxOcrviVF5KBiXZz8slh9T5eU5b3Ek8gVDIlUpJSTKF0OipfVQyFACooXHQdFBQFTIHgQ8Zy2IDIpERES1n2z/5LE3QbFSQLTwMChWDIgWiVF5SIzKQ/4D+bZPyFoADIlUtRgSqUoVFRWZ70gaAFYB0UnmcjsougqIgPvXJ7rTxZRBkYiIqPZyEBAtPAmKUvNE5wXcDIqOAqK1ZtG5ti2KEkMiVT2GRKpSJSUl5juS2q2AaGFSSzBpnHw83QiIFi67nXpyDSKDIhERUe3jIiBauBMU7XYztceNoOgqIFrYtCiWn3gvLCx067VE3mBIpCplCYlGrdrtgGhR1DTYfmuiBwHRwmFQ9GaQGgZFIiKi2sPNgGjhLCi6HRAtnATFtMmeXbvYLDrXHBTLp+7Q6/UevZ7IEwyJVGUMBgOM5RPMmrRqjwIi4KDbqRcB0aJSUPRlFFMGRSIioprPw4BoYS8oehwQLewExbTJpUh2sxXRWrPoXBSMMl/KYzAYILw4HiJyB0MiVRnrDZfwMlSZ1BIKm5cHRR8CooUSFP0xzQWDIhERUc3lZUC0sA6KXgdEC6ugmDqpzKuAaJEQefFaxIKCAu/rROQEQyJVGckmRHkf7IwaCYYwDaDV+BQQFZ6MeEpERET1ljAJSFqtbwHRwihw9E4NWsRm+7Ycq+MYS48tIn9jSKQqYxMSfch2IRl6aNMKIIWFQooI96lOwmgEjEalP79vC2MXDyIiohrL5HuAksNCAQBSaobPyzo0PgrqSB2OpMf5tBzrQ5jQ0FAfa0VkH0MiVRlZvvjxyuhb5tUyQjL0CD6XD+gNELLkU1C0BERhKg93vgRFBkQiIqKaz4egKIeFXjzhrdP7FBQPjY+CKsZ8LGTQq3wKim83WQTAfDJeq9V6vRwiZxgSqcpIkoSQkBAAwKwuPyBtgM6j11sHRAtvg2KlgKhU0ouvAAMiERFR7eFFULQJiBZeBkXrgGjhbVD8osWviNabj4FCQ+3UkchPGBKpSoWFhQEAGurDsKL3NI+ComwQNgHRQgmK5ct2xWFAtPAkKDIgEhER1T4eBEW7AdHCw6BoLyBaGPSeDazzRYtfkagOR3GpuW7sakpViSGRqpQlJBYVy2ilCceK3tOQPtB111PLdYiOCFmCFBHmskXRZUC0cCcoMiASERHVXm4ERacB0cLNoOgsIFq425poCYgAUFxiPmax9NYiqgoMiVSlIiIiAAB5heaPWitNOJZe+7nTFkV73UztcbfrqcuAaOEsKDIgEhER1X5OgqJbAdFC53wi+0MPuw6IgHvdTq0DIgDk5JmPV2JiYtyoKJF3/DCeL5FjcXHmDV9m9sUA1lYThr96f4aDPeIwafNINF568aJrdwOihSUoAoAoKLR9zjKSqSckufIcigyIREREdYfJWGkORY8CYjkpNQMivnLAO/RwFFSx7g/YZwmKbRrZtk5+0eJXALAJiACQlW2ue4MGDTyqL5En2JJIVcoSEjOybDfGbTVhuCWsGH/1/kxpVfQ0IFoIWYIUGmLTouh2N1N7/DE9BhEREdUK3gREAHa7nXoaEC0qtih+Xt56WDEgAkBmjvk4pWHDhh6vh8hdPBqmKmXZgFUMiRaWVsW0q+BVQLQQKlkJij4FRAtLUGQrIhERUd1T3u3U64BoYRUUvQ2IFpag+HmLX5FkJxxaZBYPAcCWRKpaDIlUpZo0aQIAOJ/meASv508PQfhpGWUJkT6tS6hkZUPvU0C0YIsiERFRneaXKSR0eogQjU8B0eLZTsuQYXQ+9+GZM2cAAImJiT6vj8gRHgVTlWrevDkA4PR5tcNGuQtFkVCVAHkttChrHuv1uqSiEpgKCiFJEmStBpLKs6GlKxEmgPMPERER1T3l+3dTcbFPixEtE803CUiY49vE9i9c/idaatNRJBwvR4iLIbFZs2Y+rY/IGYZEqlJNmzaFSqVCcYms9KG3Nvz49chbEw8AMGol34KiEDYD1Ugq2fugaD14DYMiERFR3SFJSm8hYRJeB0XRMhEmrQomrflYIzitxOsqWQKixb9l9keBz8qRUVJSApVKhaZNm3q9PiJXGBKpSmk0GiQkJAAATp21HUx3+PHrsX9JO2jyLz7mbVC0tCJWetyboFhxdFOAQZGIiKgusAqIFt4ERUtArMib1sQpXf6yCYgAUCS0doPiiTPmY6kmTZpAo9F4vC4idzEkUpVr3bo1AODQ8YsbM0tA1OZVLu9pUJSKSmDKL3A43YVPLYo2C2JQJCIiqrXsBEQLT8YycBQQAXNroidBcUqXv9AmKNXuc/aC4uHyY6l27dq5vQ4ibzAkUpVr3749AODQ0Ysh8VxhlN2AaOFuUHQVEJVy7gZFe62INguSGBaJiIhqE8u+28WAdO60JjoLiBbBaSVoMs91UHQWEC0qXp946NzNABgSqeoxJFKVu+SSSwAAB4+ZN3TDj1+P3LXxLl/nKii6GxCV8q6CoquAaLMwBkUiIqIazxIO3Rix3FW3U3cCokXIBedB0Z2AaLGr7OKoqQcPHgRw8QQ8UVVRuy5C5Ju2bdtClmWkZwG37uiNwxvtdzO1xxIUVU3jEXZeh+CT2RefrDBQjTskVfmF6hVf50lAVBYmcR5FIiKimsqN1sOKLEFRDg21fdyDgGgRcqEEgO1rpnT5CwDcDogAkC+CsKusDPH5oUhPT4dKpULbtm09qguRp9iSSFUuNDRU2Zid+r8ItwOihVErQRcuIT/5Yquio4Fq3OG3axQBtigSERHVRF4ERIuK1yeKFk09DogW1q2JT3dZjjZBqR4FRIt8EYQ/dpuPOdq1a4fQCiGWyN8YEqlaXH755QCA4IwMr5dhaVU0NI7yqJupPZJKNs+lKEvetSLaLIxBkYiIqMbwISBamIqLIVo0NQfEIO873lm6nT7dZTnaB533qU7Zp+8BAHTp0sWn5RC5gyGRqsUVV1wBAFAXZvjURdOolWAIUfmlJVAI4dFoZkRERFQL+BgQAQAqFaTTqT4FRGVRZcLngCgEsGPHDgAMiVQ9GBKpWnTq1AlarRayvgSq0nzXL3Ag8rQBIUczgKAgSFrP5yKyYQmI/tiZEBERUc1g8r6nEQBIGnMwFCUlPldFFxMEoQIe+3iCT8uZ8PVdSE9Ph1arxaWXXupzvYhc4dExVYvg4OCLrYn5FyB50ZoYedqA8H2pECWlgCyZg2J4mFdhUQhhO3iNL0GRg9cQERHVLF4GRUtAtFAdO+fVcnQxQeaAqDZfkhJ9XI/HPvEuKI7733hEHDNfx9i1a1cEBwd7tRwiTzAkUrXp1asXAECTfwEAPA6KKp3JHBAtZAlQqTxuVRRCQOgNlZ9giyIREVG9VTEgCiEgioo9DoqWcGgJiBbRx/Qe12nc/8Yj7BzQOcZ8zGQ5liKqajwqpmpz9dVXQ5IkqEpyIenM8xBJQrgVFiNPGxByON3+k5ZWRXeDorPrEN2cS0nBVkQiIqKayc3WREmjrhQQLSxB0V3WrYf2uNuaOO5/45WAKOmKlfkRr7rqKrfrQuQLhkSqNg0aNECnTp0AAJo827NyzoKiTTdTR9wMipW6mTriTlBkQCQiIqrZXARFR+GwIndaE10FRMDcmjjxU+dBcdwcczgMK1+lJu8sAKBz585o2LChW/Ul8hVDIlWr/v37AwA0uWcqPecoKKpKjc4DooWLoOiwm6kj7H5KRERUZ7kbEN3pdupOQLSIOeq42+m4OeMRdtb2sQ6h5mOgG264wa3lE/kDj4KpWvXt2xcajQaq0nzIJXmVnq8YFJXRTN3lbEAbb6a7cBQU2YpIRERUO9hpTXQ3IFo46nZacYAad02cVrk10V5AlEvzcPz4cWg0GvTu3dujdRD5giGRqlVERAR69OgBANDknLZbxvo6RbdbEa3ZGdDG7W6mdivErwkREVFd4WlAtGbdmuhogBp3xBy52Jo4bs54uwERADTZpwAAPXr0QEREhOcVJvKS7zOEEnlo0KBBWLduHbQ5p1EWfwkg2/8YRp42IORYJrxus7O0KgKeB82KLEFRmNiKSEREVNsIk8/zKwshgPLWRG9aDyuaOG0CShoJhNsJhwAAkwENytJRCOCWW27xaV1EnmITCVW77t27o0mTJpBMemhyHffvV5UaIYp9nMhWLt+ACxMk2beNOYTJt9cTERFRwHg0LoEdkmTuqaQ6leZzQASAJhsLEF55iAaFJvccCgsLkZCQgK5du/q8PiJPMCRStVOpVBgyZAgAQJt13G7LXMQZI0KOZ0GSJPNG2VtlZTCVlSm/+hwUAcCX+hAREVH1ki6eMPZ+EeWXssgyRHEJwnaf93pZwemlCE4vhaQzoMFeByfDhUDncHOr5S233AJZ5iE7VS9+4iggBg4cCK1WC1VpHlRFWZWeV5UaAatWRK+DokkAFa5FZFAkIiKqJyrsr71pTbQOiBamvHyvqmMJh5LOXA91QZndcqqiTBw6dAhBQUEYOHCgV+si8gVDIgVEdHQ0BgwYAAAIyjhs85ylFbEij4NihVZEm2V5GhTtnX2UJIZFIiKimsjRPtrD1kR7AdHC09ZES0CsqMG+yuMm9G5gPn4ZNGgQoqOjPVoPkT8wJFLA3HnnnVCpVFAXpkMuyVUer9iKaM2j7qd2WhFtliVLbFUkIiKqa1zsl91pTZQkCZJa7TAgAu63Jlp3L7VHnW8bEuWSXGzfvh0qlQojRoxwax1E/saQSAGTkJCAvn37AgCC0s2tiY5aESvy6TrFistyFRTdOevIoEhERBR47uyPXezXbVoPfbwWsGL3UkesWxMHNzO/h759+6JJkyY+rZ/IWwyJFFCjRo0CAKjzz0MuLXDailiR06DopKup3WX5q0WRYZGIiKj6ebgPdtSa6Kx7qT1hey44fC4ow3HrYUWW1kS5NB9r164FANx1111uvZaoKjAkUkC1bNkS11xzDSQAQWn/efx6h91PXXQ1tbsse91PvRkJjUGRiIio+niz362wf3ene6k9pty8So8FZZQiKKMUcpnng+Tc2KgMJpMJvXv3RqtWrTx+PZG/SEJwZnAKrJMnT2Ls2LEwmUwIzugAVZ7aq+UoH+WyMphKSj0OiTbLMgnLHa+XYW9qDyIiIvIjX07MSjIkjdrj1sOK5OgoFF1q7hbqbTgEAF1ECYzYClmWMXPmTDRv3tyr5RD5A1sSKeCSk5OV4Z114Sch4F24UloUvWhFrLQsdj8lIiKqufyxjxUmr1oPK7K0JvoSEAUEOl5qvtxm4MCBDIgUcAyJVCPce++9CAoKgimkGMYw7+YeAsqDoj8CHhEREdV9fhicBkajTwERAEyqLOzZswdarRb33nuvb/Uh8gOGRKoR4uLicMcddwAAdA0uQEjedfMUZTpzV1PJDx9tX7qaKstgl1MiIiK/89P+VZS4N1ieQ0YjYDJBdeyc93WAEQ1amUd2HzZsGOLi4nyrE5EfMCRSjTFq1Cg0aNAAQquDPuw8hMGLM3LCZO5uCvgUFJVrEomIiKjOEt5enmI0KgERAERRsVeLkc5nwlh2CBcuXEBcXBxGjx7tXX2I/IwhkWqMsLAwPProowAAfaMcGEWRd0HRmiR7FxbZikhERFSzBao10RIOTb4dK0jnM2E05EFKyAUAPPLIIwgNDfVpmUT+wpBINUrfvn3RtWtXQBbQJ6TDVFYGUVziVlhUupra40FQZCsiERFR/eF2a2KF1sOKpLNpbi1GOp8J6XwmRHExrhjXDDqdDl27dsV1113nbpWJqhxDItUokiRh8uTJ0Gg0MEWVwBRZAGE0QpTpXAdF666mdhfuZasiERER1W9utB660+XUEg5FcTGM0YXYtGkT1Go1Hn/8cfvzPhMFCI+YqcZp1qwZ7rrrLgCALjETQm3eMIsyndutik5VR1BkV1MiIqKqVx37Wyeth+6ybj0EAKE2IKRzGQDg7rvv5pQXVOMwJFKNdM8996BVq1aAxgRdswzz3Ikmk8NWRaddTe1xFhT9cT0iERER1Rp2r0t00b3UHntdTq1bDwHznIi6ZpnIy8tD69atcc8993hdb6KqwpBINZJWq8Xzzz8PlUoFU3QxjDFFF5+016roqqupPXa6n/J6RCIiovqn0nWJXg5OY93ltGLrobLomCKYoouhUqnw/PPPQ6PReF1voqrCkEg1Vps2bTB27FgAgD4xE0Jj1XropFXRY7xOkYiIiACvWg/tqdh6aCE0BgR3Mrdajh07Fq1bt/ZpPURVhUfHVKONGjUK7du3B9Qm6Jqnm7udWrO0Kur0vnUT5aA2REREtZO/rkv0w9QWwmCw23oImLuZtr0rGgUFBWjXrh1GjRrlS22JqpQkBEfYoJrt9OnTGDduHEpKSqC+EA1NamylMsJggNAbIMmS92FPmLyfVLfSsvi1IiIiqjb+GBlUkiFrve/6KQwGCJOAHBJs93l9k2wY4nMRGhqK7777DomJiV6vi6iqsemEarykpCQ8+eSTAABDfC6M4Y4nvRUmYQ56XrQq8npEIiKieszLHknCYFACoiPGiGIYm+QBAJ5++mkGRKrxGBKpVrjhhhswePBgQAJ0yekQaufXIQqT4CilREREVKUs4dBZQBRqA8K76yCEwODBg3H99ddXYw2JvMOQSLXGY489hpYtWwIaozkoVrw+sQJfWhV9wq6mRERE1aua973utB4CgJAE2twVhezsbLRo0QITJ06sphoS+YbXJFKtcurUKTz00EMoLi6GKiMC2rNxgNHo1oba1fWKfguU/EoRERFVPz9clygHBTl93jKiurNjDkmlgqTVQEBA3ywTxoYFCA8Px1dffYWkpCSf60hUHdiSSLVK8+bN8fLLL0OSJBjjCmBomA8hnHfzsGAXVCIiIvKWO11LgYtzLhob5sPYsACSJOHll19mQKRahSGRap2rr74aDz74IADz/InGiFK3XxuwLqhERERUK7nbtdSaMbwEpuRcAMBDDz2Eq666qopqR1Q1GBKpVrrrrrvQv39/QAL0rTMhgp0PZFMRWxWJiIjIFXdbD62Zgg0I6VoMo9GIfv364c4776zCGhJVDYZEqpUkScIzzzyD9u3bA2oTdJdkQWg8m+OQrYpERERkjzethwAgNEY0HKRCXl4e2rdvj2effRaSP+ZwJKpmHLiGarWsrCxMmDABFy5cgFSogWZfA0gmH859cOAaIiKi2skPYUxSqQB4N3eykE3Qp2RBhOvRtGlTfPHFF4iJifG5TkSBwJZEqtUaNGiADz/8EFFRURDheujb5UBIXoY0tigSERHVX+UD4XkVECVhPgYJ1yM6OhoffPABAyLVagyJVOs1a9YM7733HoKDgyFiymBoleNyDkUiIiIiAOYeQD70AhIQ5mOPmDIEBwfj3XffRWJioh8rSFT9GBKpTujQoQNef/11qFQqmBqVwtAiz7ug6OOOgoiIiGoRH/f5AgKGlrkwNSqFSqXCa6+9hg4dOvipckSBw5BIdcZVV12FKVOmQJIkmJoUw9g8D0J4NpiNgkGRiIio7vLDSWEhjDAm58EUXwJJkvD888+jR48efqogUWAxJFKdcuONN+Lpp58GABibFsPYvNAcFL253pCtikRERHWLP/btwmQOiEmFMCYUAwCeffZZ89RcRHUEQyLVOTfffDMmT54MADAmFsHYrND8hDAxLBIREdVXfgiHluMIY7MiGJsVAQCeeOIJDBw40NfaEdUoDIlUJ91666149NFHAQDGpCIYkgouXqPoKChKsvPhsxkUiYiIah93T/Y6PQYwHzsICBiSCmBMMp+AfvTRRzF06FA/VJKoZmFIpDpr+PDhePjhhwGUn/FLrhAU2apIRERUd3m6z5bsHBZbHS8ICBhbFCgtiBMmTMDw4cP9UVOiGkcSgke8VLctWLAAn376KQBATg2B+lgkJFQ4W2jZMQiThzsUO2cd+ZUiIiKqXtb7Y2/3w7LKahm2J5LN01zkwxRfAgCYPHkybr31Vu/WQ1QLMCRSvfDnn3/i/fffh8lkgpwRDPWRKEjCQbcSb74SFcMiv1ZERETVx7If9mX/K6vs9jISkoChdR5MjUohyzKeffZZDBgwwPv1ENUCDIlUb6xevRqvv/46jEYj5OwgqA9FQTI56HHtS1DkV4qIiKh2cXA9opBNMLTLhSlWB5VKhRdffBHXX399NVeOqPoxJFK9snnzZrz00kvQ6XSQCjTQHIiGpFdVLsivBRERUf1hJyQKjRH6DjkQ4QYEBQXhtddew9VXXx2AyhFVP4ZEqnf27duH5557Dnl5eUCJCpr/YiCXqi8W4FeCiIiofqkQEk3BBug75AAhRkRFReHdd99Fx44dA1Q5ourHkEj10pkzZ/DUU0/hwoULgF4yB8VCrflJfiWIiIjqF6uQaArXIfRaI/Ly8tCkSRN8+OGHaNasWQArR1T9GBKp3srOzsaUKVNw8OBBwCRBfTgKqqxg85P8WhAREdUPVgHR2LAEcqcS6HQ6tGvXDu+99x5iY2MDWDmiwGBIpHqtpKQEr776KjZv3gwAUJ0Og+pMOCR+K4iIiOoHSTLPgZhUqMyB2KNHD7zyyisIDQ0NcOWIAoMhkeo9g8GAr776Cr/88gsAQM4KgvpQpOORT4mIiKjOECoBQ9s8mBqUAQDuvPNOPPjgg1Cp7AxsR1RPMCQSlVu6dCk+/PBD6PV6SEVqaP6LhlTGHQQREVFdJYJN0F+SAxFmgEajwdNPP42bbrop0NUiCjiGRCIr+/btw4svvojs7GzzgDYHoyDnBQW6WkRERORnpugyhPYUyMvLQ2xsLN58802kpKQEulpENQJDIlEF6enpeOGFF3Do0CFAWK5TDIME+xPtEhERUe0hIGBsVgRTcjGEEGjXrh3efPNNNG7cONBVI6oxGBKJ7CgrK8O0adOwaNEiAICUo4XmUBQkA69TJCIiqq2E2gR9uzyIGB0A4JZbbsHEiRMRFMReQ0TWGBKJnFi6dCmmTp2KsrIyoFSG5lAU5AJtoKtFREREHjKF66FvnwsEmxAUFIQnn3yS1x8SOcCQSOTCsWPH8NJLL+Hs2bOACVCdCofqXCi7nxIREdUCAgLGpsVA6xIYjUYkJibijTfeQKtWrQJdNaIaiyGRyA1FRUV4//33sXr1agDl3U+PRELScfRTIiKimkpojdC3zYeINncv7dOnD5555hmEh4cHuGZENRtDIpGbhBBYtGgRPvvsM3P3U70E9ZFIqLKDA101IiIiqsAYW4qwHkBeXh6Cg4Px2GOPYdCgQZAk9gQicoUhkchDp06dwuuvv44jR44AAOQLIVCfiIBk4k6HiIgo0IQsYEgugCmhBADQpk0bvPLKK0hKSgpwzYhqD4ZEIi/odDp89913mDt3LgBAKlZBfSSSg9oQEREFkClCB0PbfIgQIwBgxIgRGDduHLRa7p+JPMGQSOSD7du346233kJWVpZ5TsVzoVCdCock2KpIRERUXYQkYGxeCFOzEgghEBcXh2effRbdu3cPdNWIaiWGRCIfFRQUYNq0aVi2bBmA8lbFw1GQCzUBrhkREVHdZwrXw9A2DyLU3Hp40003YeLEiYiIiAhwzYhqL4ZEIj/ZsGEDPvzwQ2RnZ5tbFc+GQnWarYpERERVQcgCxmaFEM1LYTKZEBsbi6eeegq9evUKdNWIaj2GRCI/ys/Px6effooVK1YAKG9VPBYJOY/XQhAREfmLKaoM+tYFQPm1h/369cPjjz+OqKioANeMqG5gSCSqAuvXr8fUqVPN1yoCkNOCzSOgGuQA14yIiKj2EmoTDC0KYGpcCgBo2LAhJk2ahGuvvTbANSOqWxgSiapIYWEhvvnmG/z+++8QQpjnVTwRATk9GBLYBZWIiMhdAgKmuFIYWhYAGgFJkjB06FA8+OCDCAsLC3T1iOochkSiKrZv3z588MEHOHHiBABAytVCfSwCcok6wDUjIiKq+UwhBhhaFUBE6wAALVq0wDPPPIOOHTsGuGZEdRdDIlE1MBgMmDt3LmbMmAGdTndxuowzYZCM7IJKRERUkVCZYEwqApLKYDQaodVqMXbsWIwcORJqNU+0ElUlhkSianT+/HlMmzYNmzZtMj+gk6E+Gc4uqEREROUEBEyNSmFILgS0JgDANddcg0ceeQQJCQkBrh1R/cCQSBQAW7ZswbRp03D27FkAgJSvgfp4BOdWJCKies0Upjd3LY3UAwCaNWuGxx9/HN27dw9wzYjqF4ZEogDR6/WYP38+Zs6ciZKSEkAAcnow1KfCIelUga4eERFRtRFaIwzJhTA1Mo9aGhISgrFjx2LYsGHQaHgClai6MSQSBVhmZia++uorLF++3PyACVCdC4PqbCivVyQiojpNqEwwJhZB1cpgvmYfwA033ICHHnoIcXFxAa4dUf3FkEhUQ/z333/44osvsGfPHvMDOgnqM+GQU0MgCV6vSEREdYeQBEyNS2BIKgS05kPRzp0745FHHkG7du0CXDsiYkgkqkGEENiwYQO++uornDlzBgAgFaugOhUOOSuIg9sQEVGtJiBgalAGY/NCiFAjACApKQkPP/wwevbsCUnifo6oJmBIJKqBDAYDFi1ahB9//BG5ubkAAKlAbb5eMVfLsEhERLWKgIApRmcOh+EGAEBUVBTuu+8+DB48mFNaENUwDIlENVhRURHmzJmD+fPnmwe3ASDlaaA+FQ45Xxvg2hEREblmitTB0LwQIso8YmloaCiGDx+OESNGICwsLMC1IyJ7GBKJaoHc3FzMnj0bCxcuVC7sl3K05rDIaTOIiKgGMoXrzeEwxrzf0mq1uO2223DXXXchOjo6sJUjIqcYEolqkYyMDPz0009YvHgxDAZzdx05WwvVmTDIBWxZJCKiwDNF6mBoVqSEQ5VKhZtvvhmjR4/miKVEtQRDIlEtdP78ecycORPLly+H0Wi+8F/K1UJ9JgxSnobXLBIRUbUSEBBROhiSipRupSqVCv3798fYsWORkJAQ4BoSkScYEolqsXPnzmH27NlYunTpxbCYpzGHRQ5wQ0REVUwZkKZZEUSkORyq1WoMGDAAo0aNYjgkqqUYEonqgLS0NMyePRtLliyBXm/eSUsFaqjOhUHO5NQZRETkX8pUFs2KlNFKtVotBg8ejJEjR6Jx48YBriER+YIhkagOyczMxNy5c/H777+jrKzM/GCpCupzoZDTgiGZ5MBWkIiIajUhC5gal8CQUAyEmHuwBAcHY+jQoRgxYgQaNGgQ4BoSkT8wJBLVQTk5OVi4cCEWLlyIvLw884N6CarUUKjOh0DSqwJbQSIiqlWExghjQgmM8cWAxnzoGBkZiaFDh2LYsGEcrZSojmFIJKrDSktL8ddff2HevHk4d+6c+UETIKcHm7uilnDyYiIicswUaoAxoQimRqVAeWeUpk2b4o477sCAAQMQEhIS2AoSUZVgSCSqB4xGIzZs2IC5c+di//79yuNSjhaq86GQczjIDRERmSmD0TQphojVKY+npKRg5MiR6NmzJ1Qq9kghqssYEonqmb1792Lu3LnYsGEDlK9/qQzVhVCo0kIgGXjdIhFRfSTUJhgbl8AYX6JcbyhJEq699lqMGDECKSkpAa4hEVUXhkSieur8+fP47bffsGTJEhQUFJgftHRFvRAKuUgT2AoSEVG1MIXpYUwohinuYpfS8PBwDBw4ELfeeiuaNm0a2AoSUbVjSCSq50pLS7Fq1Sr83//9H44cOaI8LuVroLoQAjkzGJJgV1QiorpESAKmhqUwJhRDRBiUx9u0aYNbb70V/fr1Q3BwcABrSESBxJBIRAAAIQT27duHhQsXYs2aNTAYyg8a9BJUGcGQU0MgF7N1kYioNjOF6mGKL4ExrlQZpVStVuO6667D0KFDkZKSAkniiUGi+o4hkYgqycrKwuLFi7F48WKkpaUpj0sFaqjSQiBnBEMy8tpFIqLaQKhMMMWVwti4xKbVsFGjRrjllltw8803IzY2NoA1JKKahiGRiBwyGo34999/sWTJEqxfv/5i66JRgpwZBFVqCKQCDUdGJSKqYQQERKQexsYlMDUsBcoHI1Wr1ejZsycGDRqEbt26cZRSIrKLIZGI3JKbm4tly5Zh8eLFOHXqlPK4VKyCnBEMVXoIpDIebBARBZIIMsIYVwpT4xKI8hFKASA5ORmDBg3CjTfeyInvicglhkQi8ogQAvv378fixYvx999/o7S0VHlOytOYr1/MDOZUGkRE1USoTeZBaOJKIaL0yuMhISHo27cvbr75ZnTo0IHXGhKR2xgSichrxcXFWLt2LVasWIF///334ryLJkDOCYKcHgw5O4ijoxIR+ZmQBEyxZTA1KoUppkyZukKSJHTp0gU33HAD+vTpg9DQ0MBWlIhqJYZEIvKLjIwMrFy5EitWrMDRo0cvPmGQIGcGQ5UZBClXy+sXiYi8JCAgonTm7qQNywD1xUO41q1bo3///rj++uvRqFGjANaSiOoChkQi8rtjx45h+fLlWLlyJTIyMi4+oZcgZ5UHxjwtWxiJiFwQEBDROhgblMHUoBTQXjxsa9y4Mfr164f+/fujZcuWAawlEdU1DIlEVGWMRiN27dqFv//+G+vWrUNeXt7FJ/US5KwgqDKDGRiJiKwIqbzFsGEpTA3KlPkMASAqKgrXXnst+vfvj0svvRSyzOu/icj/GBKJqFoYDAbs2rULq1evdhgY5axgyLkMjERU/whJwBStg6lhKUyxtsEwOjoa1157Lfr06YPOnTtDrVYHsKZEVB8wJBJRtTMYDNi9e7cSGHNzcy8+aSwf9CbbfOMoqURUVwm1yTz4TGwZTNE6m2sMY2NjlWB46aWXMhgSUbViSCSigLIExrVr12Ljxo221zAKQMrXKIFRLuFBEhHVXgICIsSoBEMRqYf1WF4NGzZUgmGnTp040T0RBQxDIhHVGEIIHD58GBs3bsTGjRtx5MgRm+elYpU5LOYEQcrXsFsqEdV4QhIQkfqLwdBqgnsAaNOmDXr27ImePXuibdu2nMuQiGoEhkQiqrHS0tKUwLhz504YDIaLTxolyLkac9fUHC2kMrYyElHNIIIMMMXozLco226kGo0GXbp0Qc+ePXH11VejcePGAawpEZF9DIlEVCsUFhZi27Zt2Lx5M7Zt24acnByb56USFaQcrTk05mkhmXg2noiqh5BNMEXrYYoug4jRVWotjI6OxpVXXomePXuie/funOCeiGo8hkQiqnVMJhOOHj2Kbdu2YevWrdi3bx+MRquDMhMg5Wsh52oh52kgFWgggaGRiPxDQECEG8yjkUaXX1toNcaWSqVCSkoKunfvju7du6NNmzacqoKIahWGRCKq9YqKirBjxw5s3boV27ZtQ2pqqm0BgwQ5XwMpzxwcpSI1QyMRuU1AQISZQ6GI0sEUqbfpQgoATZo0UULh5ZdfjrCwsADVlojIdwyJRFSnCCFw+vRpbN++HTt27MCuXbtQUFBgW8ggmbukWloaixkaiegiAQERagmF+krXFQJAeHg4OnfujCuuuALdu3dHYmIiB50hojqDIZGI6jRL19SdO3dix44d2L17N4qLi20LWVoa87Xmn4UaXtNIVI8ISUBE6GGK1ENE6mCK0NtMZg8AoaGhuOyyy9ClSxd06dIFrVu35hQVRFRnMSQSUb1iMBhw+PBh7NixAzt27MC+fftQWlpqW8gESIWa8uCogZyvhWTg9UREdYXQmGCK0JmnpojUQ4TbXlMIACEhIbj00kvRpUsXdO7cGW3btuWE9kRUbzAkElG9ZjAYcPToUezZswf79u3Dnj17kJ2dXamcVKyCVKCBXFDe0lik5jyNRLWAkMxdR0WEHqYIPUSkvtLoowAQGxuLTp06oVOnTkhJSWEoJKJ6jSGRiMiKEAIXLlzAnj17sHfvXuzduxcnT56sXNAEc1C0Do4lKl7bSBRAAgIixGgOhOF6iAg9RJihUishALRo0QIpKSlKMExISOA1hURE5RgSiYhcyMvLw3///YcDBw4ot/z8/MoFDZI5NBaqIRWVtzYyOBJVCQEBEWyECDdAhJeHwnBDpQFmACAiIgLt27dH+/btkZKSgpSUFERERASg1kREtQNDIhGRh4QQOH/+PA4cOICDBw/iwIEDOHToEHQ6XeXCRiiBUQmPxWoOjEPkASGXdxkN18MUZoAov0FV+RAmKCgI7dq1U0LhJZdcwlZCIiIPMSQSEfmBwWDAiRMncODAARw+fBhHjx7FsWPHUFZWVrmwgLmFsbA8MBarIBergVK2OlL9JiCAYCNMoUZzKAwzdxcVIUbY+2potVq0atUKbdq0UQJh8+bNeS0hEZGPGBKJiKqI0WjE2bNncfToURw5ckT5mZOT4+AFgFSiLg+ODI9UdyldRUMNEJZAGGqACDEADmaViI2NRevWrdG6dWu0adMGrVu3RmJiIqehICKqAgyJRETVSAiBrKwsHD16FEePHsWJEydw8uRJnDp1yn53VeBieCxRmX+Wqi7e59QcVIMJtQkixGAOhCFG8/0Qcyi0N5gMYG4dTEpKQnJystJK2KpVKzRo0KB6K09EVI8xJBIR1QBGoxEXLlzAiRMncOrUKffCIwDopcrBsVQFqVRlHkiHLZBUxYTKZA5+weUB0BIGg42VJqS3ptVq0bx5cyQnJ6NFixbK/SZNmrC7KBFRgDEkEhHVYJbwePLkSZw9exZnz57FmTNncPbsWWRkZDh/sUGCVKaCVCpDKlOZu62WqZQQKRnZCknOCQhAVd41NNgIEWQEgo0QQSaIIPNj9kYTtRYXF4fExETllpSUhBYtWqBx48bsKkpEVEMxJBIR1VIlJSU4f/68EhotP8+dO4fs7GzXC7CEyDIZ0Jl/Sjrr+2yNrMsEBKAWEFpz6IPWZL6vNQFBF4OgqxAImK8XtA6CiYmJaNasGRISEhASElIN74aIiPyJIZGIqA4qKytDamoqUlNTceHCBVy4cMHm99zcXPcWZIQ5NOrk8psK0MuQ9FL5z/JgqVdxWo8aQEAAsgA0JgiNMAc+jQlCU/6zPASaQ6HR4XWBFcXGxiI+Pl65NWnSBI0bN1Z+Dw4Orto3RkRE1YohkYioHiopKUFaWhpSU1ORmZmJjIyMSj/z8vI8W6gRF4OjXgYMMiSDOUwq9+39FAyX9ghZAGoThKr8p9r8E2oBYf2zPARagqCj0UEdiYqKQlxcHBo0aIC4uDg0bNgQcXFxiIuLU8IgQyARUf3CkEhERHaVlZUhKytLCY6ZmZnIzc1FTk6O8jMnJwfZ2dnOB9dxxQjAKANGCZJRAspvkkmq8Jhsvm8CYJLMNyFBsvndfF8ylZcT5Y+h4n3zD1ddacXFglY/hfmnBHOrnSQgZMv98p+ygLC6DxnmsCebzNf4qczX+kElzGHQ+vfyUOhuK589Wq0WsbGxiI6ORnR0NGJiYhAdHY0GDRooIdByX6vVer8iIiKqkxgSiYjIJ0IIlJSU2ATH3NxcFBQUKLf8/HwUFBSgsLBQ+b2wsBAB3wUJ2AZHmzAIuxO4VydZlhEeHo7w8HBEREQoN8vv4eHhSgi0BMHo6GiEhIRAkthCS0RE3mFIJCKigDCZTCgqKkJBQQFKSkpQXFxs92fF+2VlZdDpdNDr9TY/7T1mMpmq9D2oVCpotVpoNBrlZv275b5Wq0VoaChCQkKUW3BwMEJCQio9HhISooTA0NBQyDJHoSUiourFkEhERHWW0WiEEAJGoxEmk8nufeufkiRBlmXlp+VW8XFJkqBWqzmFAxER1UkMiURERERERKRgHxYiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSMCQSERERERGRgiGRiIiIiIiIFAyJREREREREpGBIJCIiIiIiIgVDIhERERERESkYEomIiIiIiEjBkEhEREREREQKhkQiIiIiIiJSqANdASIiTwghUFpaGuhqEBF5JDg4GJIkBboaRERuYUgkolqltLQUN954Y6CrQUTkkWXLliEkJCTQ1SAicgu7mxIREREREZGCLYlEVGtptzWCJMrPdUkyJFkCJBmQJUCSIMmW58oflyRAliBZyijPScprlBtg9Zhs+7z5hcpjQpIunnKzWobyuHRxXdaPCcm8GOU5+f/bu/eoKqv8j+OfA3I5Coqao5BkWqBO6aiQZiaZFhJlF9RW5Yw5TtNlVbZW01r6I83KiiZXZSvXdHGNOWVkU60011SWeUlHVDRTRwLJC+UF4qIgchPO+f1xeB4e4JwDHEC8vF9rsXjOs/f+PpvzHJWvez97u+K6ztvMMqONs/acWS7VxfCrrW+Uq/416rWp7b7Tz01Zvfqq18e6c7ZGZY3ayNqPBuXycN5DPE/9aNTGW1zzvLNxe0sbs9wSy1l7XpZ2rjKnpT+ucpu1zKxrlDnNmDZrfZvTLDM/YsZ5I1xtHddHwWm+Ntr41b52lbleG+3MMptTNtW186s9Z37Jabbzs6neeVd7R107GfUd8jfa1L6ui+Uw4/lb4vvLdd7fiGfWdcjfiCmjH466+qqL7YrpkJ9c13eVueL5156zySF/o72ljb/kaifXdYz3w3jtupaz9li1ZU751b4v/rLJT5J/7c32k632nE3+Npv85Cdb7Z07U+WvyX/tIwA435AkAjh/1dhqf12TK0lUbUJX+9t3XZlN8qvLiGyujKs2iJEt+KlRFlCXgdXPTIyYjbIGNThnvYbcnGvYTnXJoSVJbHTOktRZXzfsYv36btr4eSnz9GM06oeHH9tbmae3ytd4lpjuEsh2TRLdlavha6cZ29oP6zXdlZlJpSx1rPUbtXG6uZaz3pc1SaxLPGu/PJXJSCRdIa0JpZFMSkayJzPJspa5kkRHXZJlsyZZrmM/m82VwNV+l3lsM9u54qg2ptFWte1qz7srs7Txr01w/c1+Gkmis8kk0RrP33g/VP+cn6x9tNxDADiPMN0UAAAAAGAiSQQAAAAAmEgSAQAAAAAmkkQAAAAAgIkkEQAAAABgIkkEAAAAAJhIEgEAAAAAJvZJBHD+8nfK6XRtoO3a989m+W5rsMG98d1yLOs5p+W4GWWWTfPqtjz3dL7uu7Peseq1c0qS0zhfF9Mpm+SU2dZabsaot7mftS9uXjvrdanB++Hhq2Hd5uyF6K2s2ddqZpn1kl7bOZuI6fTQRw/7JDaIa7OWmXUb7HtoHBv1bdb9CY1zlvhmPKclnm/7JDpV185pc9b/kuu7q0z1zjtsTsnmqIsp41oOy36OtXVqy502hxlP9eLXfjeuVfvar7aO8V1So3MOyx9r49hhkxyq2yfRUXvOJk/7JNZufC/XfozGPTNe+9W2abj3op9ZZjP3dpRkxvKTzbXfo2yy1X5IzlS5+3MJAOc+kkQA562qkb91dBfah/E7uI8a5jiAwfrRcnRkR3xmzdKZDAUA7YW/YQEAAAAAJpvT6WzF/1cDwNnldDpVUVHR0d1AG6uoqNAdd9whSVq1apWCg4M7uEdoC9zXOsHBwbLZGNsHcH5guimA84rNZpPdbu/obqAdBQcHc48vQNxXADh/MN0UAAAAAGAiSQQAAAAAmEgSAQAAAAAmkkQAAAAAgInVTQEAAAAAJkYSAQAAAAAmkkQAAAAAgIkkEQAAAABgIkkEAAAAAJhIEgEAAAAAJpJEAAAAAICJJBEAAAAAYCJJBAAAAACYOnV0BwAA55eysjKtWLFCGzduVG5urvz8/BQZGanx48dr8uTJCggI8Dl2UVGRUlNTlZaWpry8PAUFBal///5KSEjQrbfeKpvN5rbdSy+9pK+//rrJ+OvWrVOnTvzT50573NdTp07pxx9/1P79+7V//35lZWWpqKhIkvR///d/uuWWW5oV5+jRo0pNTVV6erqKiopkt9sVHR2tSZMmady4cS3uFwDAO/6lBAA0W25urmbNmqXc3FxJUnBwsM6cOaPMzExlZmbq22+/1aJFixQaGtri2FlZWXrqqadUXFwsSbLb7SorK9OePXu0Z88ebdiwQSkpKV6TlcDAQIWEhHgs95RkXuza675u3rxZKSkprepbWlqa5s+fr4qKCklSly5ddOrUKaWnpys9PV2JiYmaPXs29xYA2hBJIgCgWaqrqzVnzhzl5uaqZ8+eevrppxUbGyuHw6H169dr4cKFys7O1oIFC/TKK6+0KHZpaalmz56t4uJiXXbZZZo7d64GDRqkM2fOaPXq1Vq8eLG2b9+uN998U08++aTHOOPHj1dycnJrf9SLSnveV0nq0aOHoqKiFB0drYEDB2ru3LnNbnvs2DE9++yzqqio0JAhQzRnzhxFRkaao57Lli3Tl19+qcsuu0z33Xdfi/sGAHCPJBEA0Cxff/21Dh48KElasGCBrr76akmSn5+fJkyYIKfTqeeff15bt27Vzp07FRMT0+zYK1asUFFRkYKCgvTKK68oIiJCkhQQEKCkpCSVlZXp3Xff1erVqzV16lRFRka2/Q94kWrP+xofH9/sKaXuLF26VOXl5erRo4defvllcySzc+fOmjlzpgoLC7V69Wp98MEHmjRpkk8j2ACAxli4BgDQLMYzf8OHDzcTCasJEyYoPDy8Xt3mWrNmjRnDSBCtkpKSZLfbVVNTo2+//balXYcX7Xlf/f39fe5XeXm5Nm7cKEm688473SaAf/zjHyVJp0+f1qZNm3y+FgCgPpJEAECTKioq9L///U+SdO2117qtY7PZNGrUKElSenp6s2P/8ssvysvLkySzfUOdO3fW0KFDWxwb3rXnfW2tvXv3qrKyUpLnz0V4eLj69et31vsGABc6ppsCAJqUk5Mjh8MhSerfv7/HekZZUVGRSkpK1LVr1yZjG1Mdm4o9YMAAbdu2TYcPH/ZYZ+fOnbrvvvv022+/qVOnTurdu7diYmJ01113MUXVjfa8r61l/VwMGDDAY70BAwYoJydHhw4davc+AcDFgpFEAECTCgoKzONevXp5rHfJJZe4beNNYWFhi2KfPn1aZWVlbuvk5+fr+PHjCgoKUmVlpQ4dOqRPP/1UM2bM0MqVK5vVn4tJe97X1jKuExoaqqCgII/1jL5ZP0cAgNZhJBEA0CRrUubtF/bg4GC3bdojdufOnc3X0dHRGjRokK677jr16tVL/v7+qqio0LZt2/T222/r6NGjeu211xQWFsa+ehbteV9bq7y8vNG13THKz1a/AOBiwEgiAOC8N2XKFCUlJalPnz7mYinBwcG64YYb9Pbbb5sLr/zjH/+Q0+nsyK4CAHDOI0kEADTJOmpnLCbijrHhecM2HRVbkrp166Y//elPklybxu/fv7/ZbS907f3et4bdbm90bXeM8rPVLwC4GJAkAgCaZH0mLT8/32M96/Nq1jbe9OzZs0Wxu3Tp0uKE4KqrrjKPjx8/3qK2F7L2vK+tZVzn1KlTXhNYo2/WzxEAoHVIEgEATerXr5/8/Fz/ZHhbRdIo69GjR7NXwLSuXOkttrHa5eWXX96suGhae97X1rJ+LqwrnTZklHlbnRUA0DIkiQCAJgUHB5sbrW/bts1tHafTqe3bt0uSrrnmmmbHjoyMVO/evb3GLi8v1549e1oc27Bv3z7z2Hg+Ee17X1tryJAh5mI6xvUbys3NVU5OzlnvGwBc6EgSAQDNkpCQIEnatWuXMjIyGpWvX79ex44dq1e3OWw2myZOnChJWrdundvpoJ9//rnKy8vl7++vm2++uV5ZUwvRlJSUaPny5ZKk3/3ud4qKimp23y4G7XVfW8tut+uGG26QJK1cuVKlpaWN6qSmpkpyPY84duzYs9Y3ALjQkSQCAJolISFBAwYMkNPp1Lx587Rz505JksPh0Pr167Vw4UJJ0qhRoxQTE1Ov7dKlSxUXF6e4uDi3SeA999yjHj16qKKiQrNnz1ZWVpYk6cyZM1q5cqX++c9/SpImTZqkyMjIem2/+eYbPf3009qwYYNOnDhhnq+srNSmTZv0yCOPmEnOI488Yk6vhEt73ldJOnnyZL0vQ1lZWb3z7haomTlzpux2uwoLCzVnzhz9+uuvklwjy8uWLdOqVaskSdOnT1doaGir3wsAgIvNyVrgAIBmOn78uJ544gnl5uZKck1XdDgcqqqqkiRFRUVp0aJFjX5hX7p0qZYtWyZJ+vjjj91O+czKytJTTz2l4uJiSa7RoaqqKlVXV0tyTSdMSUlRYGBgvXZfffWVUlJSzNd2u12BgYEqLS1VTU2NJCkwMFCPPvqo7rrrrjZ4Fy487Xlf4+LimtWHGTNmaObMmY3Op6Wlaf78+WYSGRISovLycvPeJiYmavbs2bLZbM37YQEATerU0R0AAJw/wsPDtWzZMq1YsUIbN25Ubm6uOnXqpP79+2vChAmaPHmyAgICfIo9cOBA/etf/1Jqaqq2bNmi3377TcHBwRowYIASEhKUmJjodhRw+PDh+utf/6p9+/YpJydHxcXFKi0tVefOnXXppZdqxIgRuv322xUREdHaH/+C1Z73tbVGjx6t9957T6mpqUpPT1dRUZFCQkIUFRWl22+/XePGjeuQfgHAhYyRRAAAAACAiQczAAAAAAAmkkQAAAAAgIkkEQAAAABgIkkEAAAAAJhIEgEAAAAAJpJEAAAAAICJJBEAAAAAYCJJBAAAAACYSBIBAAAAACaSRAAAAACAiSQRAAAAAGAiSQQAAAAAmEgSAQAAAAAmkkQAQLt54403FBcXp8cff7yju4IOVlpaqltvvVVxcXH6/vvvO7o7AAAvOnV0BwAAjZ0+fVrZ2dnKzMxUVlaWsrKydPToUTmdTknSxx9/rPDw8Ha5ttPp1JQpU5Sfn69p06bpoYce8ilOdna2Vq5cKUl68MEH27CHHevgwYPavn279u7dq4MHD6qwsFA1NTUKDQ3VFVdcodGjRyshIUEhISEd3dVzSkhIiO655x4tWbJEb775pkaNGqWgoKCO7hYAwA2SRAA4B82aNUvZ2dkdcu3MzEzl5+dLksaOHetznLfeeks1NTUaNWqUhgwZ0lbd61CzZs3Sjz/+6LasqKhIRUVFSk9P1/Lly5WcnKyRI0ee3Q6e46ZMmaJPPvlEeXl5+vTTTzVt2rSO7hIAwA2mmwLAOcgYMZRcIzDDhw9Xjx49zsq1N23aJEnq1auXBg8e7FOMPXv2aMeOHZJ0QSUCRvIcGhqqxMREJScna/HixVqyZImef/55jR49WpIrYUxOTtbu3bs7srvnHLvdrsmTJ0uSUlNTVVZW1sE9AgC4w0giAJyDEhMTFRYWpoEDB6pv376y2WyaNWuWioqK2v3aRpI4ZswY2Ww2n2J89NFHkqTw8HD94Q9/aLO+dbS+fftq+vTpmjBhggIDA+uVDRw4UOPGjdOHH36od955R1VVVXr11Vf1/vvvd1Bvz03x8fFaunSpTp06pf/85z+aOnVqR3cJANAAI4kAcA6aMmWKbrrpJkVGRvqcqPni119/VU5OjiTfp5rm5+crLS1NkjRx4sSz2v/2tnDhQt1yyy2NEkSradOmKSoqSpJ0+PBhHThw4Gx177wQHh6uoUOHSpK++OKLDu4NAMAdRhIBACZj1Uljiqsv1q5dK4fDIUkaP358s9pUV1dr3bp12rx5szIzM3Xy5EnV1NQoLCxMAwYMUGxsrG666Sb17NmzXru4uDhJUkJCgpKTk/XLL7/o008/VXp6ugoKCtSlSxdFR0frvvvu07Bhw8x2lZWV+uqrr7RmzRodOXJEFRUVioiI0M0336ypU6e2ekGVESNGmM+U/vrrr7riiit8jnX48GGtWrVKu3fv1vHjx1VRUaGQkBCFhoYqPDxcMTExuv7663XZZZf5FL+6ulrffPON1q9fr4MHD6q4uFg2m01du3ZVWFiYBg8erNjYWI0ZM0YBAQH12jZ8/w8fPqzPP/9cO3bsUEFBgcrLy/Xiiy82+g+H8ePHa/fu3crJyVFmZqYGDRrk25sDAGgXJIkAAJMx1XT06NHq1Mm3fyK2bNkiyfXcXr9+/Zqs//PPP+uZZ57RkSNHGpXl5+crPz9f27Zt04EDB5ScnOwxzoYNG/TSSy+poqLCPFdZWamtW7dq27ZteuqppzRp0iQVFBQoOTlZmZmZ9dofOnRI7777rrZu3apXX321VYlidXW1eezn5/uknVWrVmnRokWqqampd764uFjFxcU6cuSI0tPTdeDAAc2bN6/F8U+ePKm//e1vbhdJMt777OxsffHFF0pNTVXfvn09xvrqq6/06quvqqqqqsnrWhcy2rJlC0kiAJxjSBIBAJKkgoIC/fTTT5J8n2paVVWlffv2SZIGDx7c5FTT7OxsPfbYYyovL5ckDR8+XPHx8erXr58CAgJUWFiojIyMJvfVO3DggNatW6fu3bvrwQcfNK+9c+dOffDBB6qoqNDrr7+uYcOG6YUXXtDPP/+sO++8U9dff73CwsJ09OhRvf/++zpw4ID27Nmj1NRU/fnPf/bpPZCkH374wTzu37+/TzEOHjxoJohdu3bVpEmTNGzYMIWFhammpkaFhYXKysrS1q1bfZ7Su2jRIjNBjImJUXx8vMLDw9WlSxedPn1aOTk52r17tzl92JOsrCytXbtWXbt21dSpUzVkyBAFBATo8OHD6tOnT6P6/fv3l91uV3l5uX744QfNnDnTp/4DANoHSSIAQJK0efNmOZ1OBQYGatSoUT7FOHDggDmKNnDgQK91q6ur9cwzz5gJ4hNPPGGufGl13XXX6YEHHlBeXp7HWNnZ2YqKitKiRYsUGhpqnv/973+vvn37av78+aqurtZjjz2mkpISLVy4ULGxsWa96OhoXXPNNZo+fboKCgq0cuVKTZ8+Xf7+/i36+SXXlN1Dhw5JciXKkZGRLY4hSevXrzdHEF9//XXzOUersWPH6oEHHlBxcXGL41dWVprJ99ixY/XCCy80SjaHDRumO+64Q+Xl5V5HRA8dOqS+fftq8eLF9Vbh9bQ6rr+/v6Kjo7V7927t379fDoejVSOuAIC2xd/IAABJdVNNY2NjZbfbfYphnTLa1JYda9eu1dGjRyW5VnN1lyBa9e7d22v5nDlz6iWIhnHjxqlXr16SpBMnTigpKalegmgICQnRLbfcYtY7fPiw1+u5U1BQoNdee02SZLPZ9Mgjj7Q4hsFYyTYkJMRtgmjVrVu3Fsc/deqUmdAPGzbM62ik3W5vcvrtk08+2aJtWoy6FRUVKigoaHY7AED7I0kEAKi0tFS7du2S5PtUU0kqLCw0j7t27eq1rpGUStK9997r8zUl1/RFT4mUzWarVxYfH+8xjrXesWPHWtSHiooKJScnm8ldw8VyWspIbEtLS7V+/Xqf43jSrVs3c5XW7777rlV7Fvbq1ctt4u2N9fNh/dwAADoeSSIAQGlpaaqurpa/v7/GjBnjc5zKykrz2N2ontX+/fsluUaUmrPAjTdNtbf2xdsqoNZ6LUmazpw5o7lz55qL4Vx//fV64IEHmt3enfj4eHP0bv78+Xr00Uf14Ycfas+ePeYU3dYICAhQQkKCJCkjI0N33323Fi5cqO+++67FCbIvq7dak0TrYkMAgI7HM4kAAHNU7+qrr1ZYWJjPcazP8DW1yuXJkycl1Y2YtUZwcLDXcutUSm9Taa3PxRnbeDSlurpa8+bN0/bt2yVJI0eO1LPPPuvT84xWERERevnll/XSSy8pPz9fe/fu1d69eyW53udBgwYpLi5Ot912W5MJuSePP/64qqqqtGbNGpWUlGj16tVavXq1JFfyPnLkSCUmJjY5ItrUqLE71v9Q8HUlXQBA+2AkEQAuclVVVdq2bZuk1k01lVzPzxlKSkpaFet8UF1drfnz55vbfsTGxurFF180p3G2VkxMjD766CM999xzSkxMNLegqKmp0b59+/TWW2/p3nvvNRPUlgoKClJycrKWL1+uv/zlLxoxYoSZRBcVFenrr7/WrFmzNHfu3HpJXUO+LDpjXWzH+rkBAHQ8/usOAC5yO3bsMKcvtjZJtG530FSSGBYWpry8vPN20RIjQTRGYUeMGKGUlJRW7a/oTmBgoG688UbdeOONklwjsDt37tSaNWu0detWlZSUaN68eUpNTVXPnj19ukZkZKTuv/9+3X///aqpqVF2dra2bNmiVatW6cSJE/r++++1ZMkSPfbYY232c506dco8bmpRIgDA2cVIIgBc5IwkJyoqSuHh4a2KZd0T8JdffvFa19gio7CwsMm655qGCeLw4cP18ssvt3mC6E5YWJgmTJigV155RXfeeackqby8XJs3b26T+MZU1pkzZ+rtt982p/KuXbu2TeIbcnJyJEnh4eHq3Llzm8YGALQOSSIAXMQcDof++9//SnItttJavXv31iWXXCJJ+umnn7zWjYuLM49TU1Nbfe2zpbq6Ws8++6yZIA4bNkx///vfm3wusj2MHDnSPDae8WxL4eHh5j6PvuzF6MnJkyfN7U+uuuqqNosLAGgbJIkAcBHbu3evmVxYk7bWMBKXnJwcnT592mO98ePHmwnIl19+qc8++8xr3Ly8vDbpX2tUV1fr+eefNzehb88EcePGjU0mfsazpJJ06aWXtij+sWPHtGPHDq91jh8/bo74RUREtCi+NxkZGebxtdde22ZxAQBtg2cSAeAcdOTIEXMlS4Ox/54kbdiwod4qpHa7XePGjWvxdYzRsIiICJ+2MXDnxhtv1JdffimHw6EdO3bohhtucFuvU6dOeu655/Too4+qvLxcb7zxhr7//ntNnDhR/fr1U0BAgAoLC5WZmakNGzZo4MCBSk5ObpM++mrBggXasGGDJFdS9vDDD+v48eNe23Tv3l3du3dv8bU+++wzLViwQDExMYqJidHll1+ubt266cyZM8rLy9PatWvNUeA+ffq0eOuSvLw8Pfnkk4qIiNCYMWM0ePBg9e7dW0FBQSouLlZGRoZWrlxprlI7efLkFv8MnqSnp0tyPW85evToNosLAGgbJIkAcA7au3evUlJSPJa/9dZb9V736dOnVUliW0w1NcTGxqpXr17Kz8/XmjVrPCaJknTllVfqzTff1DPPPKNjx45p165d2rVrl9u6xjOMHcm6qf3Ro0f18MMPN9lmxowZmjlzpk/Xq6qqUlpamtLS0jzWufTSS5WSkuJ1aw9vjh07pk8++cRjuZ+fn+69917dddddPsVvqLq6Wt99950k1+i1r9t3AADaD0kiAFykfv75Z3MUrLWrmlr5+/srKSlJ77zzjrZu3aqTJ0963XsxOjpay5cv15o1a7Rp0yZlZ2ebz791795dV1xxha655hrddNNNbdbH88H8+fO1fft27d69WwcPHlRRUZE5/bRbt2668sorNXbsWMXHx/u05cbQoUO1ePFi7dixQxkZGcrLy9OJEyd0+vRpBQcHKyIiQkOHDtVtt93WZqPMkszPhCRNmTKlzeICANqOzel0Oju6EwCAs++9997Te++9p+7du+vzzz/3aa87T0pLS3XPPfeopKREDz30kKZNm9ZmsXF+mz17ttLS0hQTE6PXX3+9o7sDAHCDhWsA4CJlTDW97rrr2jRBlFyboxuJ4YoVK1RWVtam8XF+ysjIUFpammw2mx588MGO7g4AwAOSRAC4CJ05c0Zjx47VjBkzlJSU1C7XmDx5svr27avi4mL9+9//bpdr4PyyZMkSSdLEiRM1ePDgDu4NAMATppsCANrNTz/9pLS0NIWEhOjuu+/u6O6gA5WWluqTTz6R0+lUUlKS1+dUAQAdiyQRAAAAAGBiuikAAAAAwESSCAAAAAAwkSQCAAAAAEwkiQAAAAAAE0kiAAAAAMBEkggAAAAAMJEkAgAAAABMJIkAAAAAABNJIgAAAADARJIIAAAAADCRJAIAAAAATCSJAAAAAAATSSIAAAAAwESSCAAAAAAwkSQCAAAAAEz/D25mRw5YZJaJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAChcElEQVR4nOzdd3wT5QMG8OcuadJ0Ay2bUvaWJSCCgixRVERAVBBwIOLAjSK4cODG8XMrAooMkSEie4kgG9l7D1voorsZ9/7+SHNN2iRN27RJ2uf7+eTT9O69y5u0Se659733lYQQAkRERERERER+TvZ1BYiIiIiIiIg8wQBLREREREREAYEBloiIiIiIiAICAywREREREREFBAZYIiIiIiIiCggMsERERERERBQQGGCJiIiIiIgoIDDAEhERERERUUBggCUiIiIiIqKAwABLREREREREAYEBloiIiIiIiAICAywREREREREFBAZYIiIiIiIiCggMsERERERERBQQvBJgz5w5A0mSIEkSRo8e7Y1dVko9e/ZUX0ciIldGjx6tflacOXPG19VRzZgxQ63XjBkzfF0d8jJFUdCxY0dIkoQnn3zS19WhAMHPBaLCKnJ2slgsaNasGSRJwsSJE8vkMcqtBXbGjBl4/fXX8frrr5fXQ/rc4sWL1eecmprq6+pQntdff1390PDk5mlAOHDgAJ588kk0b94cYWFhiIyMRJs2bfDSSy/h7NmzZfukiKhSMBqN2LVrF7799ls88sgj6NixI3Q6XbkEhG+//Ra7d+9GcHCw24OSM2fO4LfffsPEiRPRr18/VKtWTa1fz549PX48++DjyW3Dhg1F7jMrKwvfffcdBgwYgLp16yI4OBjBwcGoXbs2+vXrh08//bRcvq8feeQRh7p7emx06dIlTJkyBTfccANiYmIQFBSEsLAwNGrUCEOHDsW8efNgsVg82ld8fDxee+01XHfddahWrRr0ej3q1q2Lm2++GdOnT4fZbC7FM/Qvbdq0UV/rtWvXFnv7v//+W92+ZcuWxd5eCIHNmzfjjTfeQP/+/VGvXj0EBwcjJCQE9evXx6BBg/DTTz8hNze3yH1t2LChWO+Loj4T0tLSsGHDBnz00Ue499570bRpU8iyXKYnSf/77z8sXboUr7/+Om677TbUqlVLfby4uLhi78+b7+ucnBx89dVX6N+/P2rWrAm9Xo+YmBh06dIF77zzDpKSkopdP3/15JNPqq/7K6+8Uuzts7KyEBkZCUmSoNVqcenSJQCARqPB5MmTAQAff/wxTpw44dV6AwCEF5w+fVoAEADEqFGjnJbp0aOHWqayGDVqlPqcT58+XWT5yvga+cJrr72mvs6e3Dz5233wwQciKCjI5T7Cw8PFnDlzyv7JUaVQ3M+W8vLjjz+q9frxxx99XZ0KqUOHDm4/r8rqdc/MzBQ1a9YUAMT48eNdlvvss8/c1q9Hjx4eP6b9/5Mnt/Xr17vd344dO0SDBg2K3E/16tXFypUrPa5nca1fv15IkuTwmK+99lqR282YMUOEhYUVWf+2bdsW+bkwa9YsERIS4nY/7du3FydPniz18/WHz4WPPvpIrcOIESOKvf2DDz6obv/+++8Xa9tDhw6J2rVre/Q/3LRpU7Fz5063+1u/fn2x3hfuXvPU1NRC/4slOQYqjt9//93t49WvX79Y+/Pm+3rnzp0iLi6uyP2sWLGiFK+AlSfZqazt2rVLrUNsbKxQFKVY28+aNUvd/tZbb3VYZzabRdOmTQUAcc8993iz2kIIIbTwgri4OAghvLGrSs2Ts8fkXW+++SZat27ttkz16tXdrv/666/xwgsvAACCgoJw//33o0ePHjCZTFi5ciUWLFiA9PR03H///YiKikL//v29Vn+qnGbMmMGueJVUwdY1WwtBWffy+PLLLxEfHw+NRoMJEyZ4XD+DwYAmTZpg3759pXr8J598Er169XJbxt1n+dmzZ9GnTx9cvXoVgPV1Gz16NJo0aQKtVotTp05h1qxZOH36NC5fvozbb78d27ZtQ7t27UpV74Kys7MxZswYCCEQGhqKzMxMj7ZbtGgRHnjgAfVYq127drj77rsRGxuLzMxMHDx4EDNmzEBaWhr27t2LXr16Yd++fQgLCyu0r59++gkjR45Uf+/Xrx8GDhyImJgYnD9/HnPmzMHOnTuxZ88e9OvXD//88w9iYmK88wL4yIgRI/Diiy/CbDZj4cKF+PLLLxEeHu7RtllZWfj1118BWFuW7r///mI9dlJSktoyFRoaij59+uD6669H3bp1AQD79u3DjBkzkJCQgGPHjqF3797YvHkzWrVqVeS+hw0bhnvuucdtmQ4dOrhcJ4RwOH6XJAmNGzdGYmIiUlJSPHl6xVbwMyIoKAitW7fGnj17ir0vb76vDx48iF69eiEtLQ0A0KpVK9x///1o0KABUlNTsXz5cixZsgSXL1/GoEGDsGbNGlx//fXFfwH8SIcOHXDNNddg3759OHfuHNatW4fevXt7vL39ccgDDzzgsM72XfHwww9j/vz5eOWVV0rUe8Elr0diFypj66K/tpJUdvYtsEWdsS/KpUuX1LPYWq1WrF69ulAZ+7PP9erVE9nZ2aV6TCJ/5Q8tLRXdM888I1599VWxZMkScfHiRSGE42daWbzuJpNJ1KtXTwAQ/fr1c1t20aJF4vHHHxfTp08Xe/fuFWaz2aGloaQtsKV9XvYtaDfffLPIysoqVMZkMomRI0eq5QYOHFiqx3RmwoQJAoCoU6eOeOaZZzxugW3YsKFa9tVXX3XaUpKYmCiuueYatdy0adMKlbl8+bJDK+5XX31VqIyiKOLpp59WyzzwwAMlfbpCCP/5XBg4cKBajx9++MHj7exbmW677bZiP+6mTZtEXFyc+Prrr0VaWprTMikpKQ7HyTfeeKPL/dm3wHrScu9Oenq6uOeee8QHH3wg1q1bJ1JTU4UQjsfs3j5+3bx5sxgzZoz4+uuvxY4dO0Rubq4QQpSoBdab7+suXbo4tNKbTKZCZRYsWCBkWRYARLNmzZyW8ZQ/tMAKIcS0adPUetx///0eb3f27Fm19b5atWrq39He1atXRXBwsAAgxowZ481qCwbYMsQA65+8GWDtv+RfeOEFl+WGDh2qlvvf//5Xqsck8lf+cqBa2ZR1gF20aJG6/1mzZhV7e38IsHXq1FH3dfDgQZflUlJShFarFQBE1apVS/WYBe3atUtoNBoBQPz2228Ofzd3QeT48eNquRo1agiLxeKy7NKlS9Wyd911V6H17777rrp+8ODBLvdjsVhEmzZtBAAhy7I4duxYsZ6rPX/5XFi8eLFajxtuuMHj7Xr16qVu99tvvxX7cdPT04XRaCyyXEJCgkO37lOnTjkt580A60pZBlhXShJgvfW+3rp1q7qfOnXquG1oeOyxx9Sy33//vcd1LchfAuzly5fVS+BCQ0NFenq6R9tNmTJFrf+TTz7pspzt+NdgMLg8gVMSZT4KsW1k3Y0bN6rLnF1k7moAA0VRMH/+fAwbNgwNGjRASEgIwsPD0bx5c4wbNw779+93Wzf7AXtsXXTXrl2Le++9Fw0aNEBwcHChi9TNZjNWrlyJ5557Dt27d0f16tWh0+kQHh6Opk2bYvTo0fjrr79cPqZthNCZM2eqyxo0aFDoObt6rTwZhXjbtm145JFH0KxZM4SHhyM0NBSNGjXCqFGjsG7duiK3LzigRmZmJj788ENce+21qFKlCkJDQ9GqVStMnDixzLqRBDohhNqtqKhROcePH6/enzdvXpnXzd4///yDcePGoWXLloiKikJwcDBiY2MxbNgwLFu2zO229oNF2N6j586dw3PPPYfmzZsjNDQUUVFRuP766/Hll196POhHRkYGPvnkE/Tt2xe1a9eGXq9H1apV0alTJ7z66qu4cuWK2+0LvlcsFgtmzJiBvn37ok6dOtBqtU4HgkhISMCECRPQsmVLhIaGomrVqujcuTM++ugjZGVlAbBeEuFsIIkVK1aoj2n/93Rn/Pjx6jbLly/3aBtPFDUKcVn93f744w/cfvvtqFmzJoKDgxEXF4fhw4fjn3/+KfZzMBqN+OGHH3DHHXeoA5pERUXhmmuuwXPPPedy4JCjR48iNDQUkiQhMjISp0+fdvkYKSkpiI2NhSRJ0Gg0bj+3ybWffvoJgLU78KBBg3xcm5K5fPmyer9JkyYuy0VFRandZT3t3usJs9mMhx9+GBaLBXfccQfuuusuj7e1r3ujRo0gy64P3Zo2bared1Z/++MDd11hZVnG8OHDAViPw+bOnetxfUtqx44diImJgSRJ0Ov1mD9/fqEypTkmHDBggHpJ0N9//41Tp04VWadz585h/fr1AIDo6GjcfvvtxX5eYWFhCAoKKrJc9erVceONN6q/F3V8S957X9u/L4YOHYrg4GCX+7Lvfv/LL78Uq74lceXKFXTq1En9Tn/22WedXrZZ0mO9mJgY3HbbbQCsr42z950z9hmnYPdhe7bPkezsbCxYsMCjfXvEGynY3VkE+7M47m7OziKdOHFCtGvXzu12siyLV155xWXd7M9wrlu3Tjz++ONO92N/hqlnz54e1XnUqFFOm8ztW16L2t7Va+WKyWQSY8aMKXLfd999t9OuFDa2cj169BAnT54ULVu2dLmv+vXrV6gWZG+1wO7fv1/dT+vWrd2WtVgsIiIiQv2f9eZZKFcyMjLEsGHDivxfGTBggMv6FDzTu3z5chEVFeVyX3379hU5OTlu6/Xnn3+K6tWru61TeHi4WLJkict92L9XkpKSRPfu3Z3+39pbt26dqFKlisvHbNOmjTh37pyoX7++0+0tFos6UESVKlWK7AqenZ2tPl5sbKzbVpPiKqp3h7f/bmaz2e3nmizL4r333vO4pcWTQTd0Op34+uuvnW7/7bffquW6du0qzGaz03JDhgxRy02aNMntaxrIyrIFNicnR20Vctet0R1/aIGtW7euui9PW2ratWtXqse0N3XqVAFAhIWFiXPnzgkhhMctsCdOnFDL1axZ0+1nyR9//KGWffrppwutt/+uP3z4sNs6L1y4UC173XXXefZEnfDk77hy5Uq1a3NYWJjTy3G8cUz47LPPqmVfffXVIutu38r01FNPefqUS8y+t9bcuXOdlmELbD5vva/tW1Wddau3l5ycrJbVaDQiMzPT4/ra86QF9vTp0+pASADE1KlTC5XxxrGe/cBannzO//XXX2r5tm3bui1rP1CYNy/LKPMAu2nTJrFo0SLRqlUrtcyiRYsK3Qp+kJ44cUJER0er23Tv3l28++67Ys6cOeLnn38WzzzzjMPBqKs3sf0XxC233KJ+Abz00kvi559/FjNmzBCPPfaYuHTpkrpNly5dRFhYmBg4cKCYMmWKmDVrlpg/f7749NNPxSOPPCJCQ0PdfqDt2rVLLFq0SNx0001quW+++abQc961a5fDdp4E2HvuuUctExwcLMaOHStmzpwpfv75Z/H000+L8PBwdf3NN9/sckQxW5n27duL5s2bC0mSxMCBA8VXX30l5s2bJ6ZOnSpiY2PVcsXpbuPv7P8nbrjhBtGwYUOh1+tFeHi4aNy4sRgxYoT4/fffixyNbc6cOUV++Niz//tu27bNS8/GuZycHHHdddepj9eoUSPx8ssvi59++knMnTtXvPXWWw4fir169XJ6UGT/RTlw4EAREhIiDAaDGDt2rJgxY4aYM2eOeO655xzeE+4OHhYsWKB2oQsKChKDBw8Wn3/+uZg/f774/vvvxfDhw9WuLLIsi7Vr1zrdj/1raXtft23bVrz77rti7ty54ttvvxVPPPGEWv7gwYMOXbPat28vPvroIzFv3jzx2WefiW7duqlhyNYlydmX6DvvvKPu4+eff3b7N/jpp5/Usm+88YbbssVVnADrjb+b/Ze7TqcTY8aMETNnzhQ//fSTePLJJ9XX9s477yzyQHXLli1qeUmSRP/+/cXHH38s5s2bJ2bMmCHGjh3r8LdytZ/Bgwe7rfv333/vcPBdmmuV/F1ZBti1a9eq+37++edLtA9vBNhOnTqJZs2aiZCQEBESEiLq168vhgwZIn7++WeP/rb2J6/dXStn/96aMWNGcZ6mS8eOHVOvA/vkk0/U5Z4GWCGEaN26tUPZoq6B1ev14siRI4XKtGjRQt1PcQJseHh4sUcotSkqwP7yyy/q535MTIzYsWNHoTLeOia0P/EcFxdX5HNq1KiRWv7ff/8tydMvFvsTDP/884/TMvaf761btxZt2rQRYWFhIjg4WNStW1fcdttt4quvvnLbiFGUQAmw3npfjxs3Tl1fnAALwOn/qyeKCrD79u1TR6/WaDROr9v21rGeyWQSNWrUUL+Xixp93P7aY/vPNFdsnzthYWEuTzgXl19Oo2OxWNSpAvR6vZg/f77TcvHx8erZOFmWxYEDBwqVKThlSvfu3cXVq1fdPv6aNWvcvvETExPVFh9Zll1ep+DtaXTmzp2rrq9Ro4bTs01nzpxxaNlwdb2l/Wui0+nE0qVLnT5P+32VJnRlZmY6PXFRklvB4F9cnk6j06VLF3HmzBmX+3njjTc8PvgQQjgMIvDTTz+V6jkUpeC1uc4O8IxGo0OdnH1oFxyuPzY21um1UNu2bVPPblapUsVpa965c+fUVujY2Fixb98+p3Xftm2biIyMFABE3bp1nV47VLBnx9NPP+22VcK+hfaxxx5zWrbg/4WzL9H4+Hj1QKuoA/Ebb7xR/eI5f/6827LFVZwAW9q/m/2Z1qioKKdTPBw5ckSdYsXdgWpaWpo6GFBUVJTYsGGD0+d3/Phx9QRaaGiouHLlSqEyycnJ6tl3jUYjNm3apK47evSoGs4jIiJKPRXI4cOHvfb55ey5lFZZBlj7kza//vprifbhjQDr7tasWTOxd+9et/u6cuWKaNy4sbpNzZo1xcSJE8X06dPFrFmzxGuvvaZ+38myLN58880SPdeCFEVRPwuuvfZah4O34gTYv//+2+GEU7t27cQ777wjZs+eLb799lvx1FNPqZ+vkZGRYtmyZU73Y39i3V0vFyEcr5cFIC5cuFDs5y+E+wD72Wefqa0z9evXF0ePHi20vTePCYUQ4tprr1Xrs27dOpf13rhxo1quffv2nj/hEtq0aZP6eDExMS4P9D2dRqdWrVpun587gRJgvfW+tj+ee+aZZ9w+pv31skDRJ7NdKarxz9ZrKjg4WCxevNjpPrx1rCeEEM8//7xaxl3vhMzMTLWxLCgoyKPvtNGjR6v7Luqz2lN+GWB/++03texnn33mtuzRo0fVFh1nI1zZf0GEhoaqozaW1smTJ9X9unpDeDvAtm/fXl3/559/utzPtm3bHL4QnH0I2r/5pkyZ4nJf3333nUflimL/P1LaW2kvdn/ttddEcHCwuOWWW8SUKVPETz/9JObNmyc+/fRTcdddd6n/TwBE7dq1XX5p248g+fnnnxf5uMUtX1KXLl0SOp1OAM4H8bBnNBrV0S2bNGlSaH3BL8q//vrL5b6GDx/uttyTTz4pAGvY2LNnj9t6/fDDD+q+Zs+eXWi9/XulY8eObsPrjh071LKtW7d2e/bPfr+uvkTtu3i5Gtjk6NGjapkBAwa4fa4lUdwAW5q/m/3Ine5apOy7Ljo7UBXCcS7G33//3e1ztG/5e/vtt52W2bBhgzoiZP369UVKSoowGo2iY8eO6rbeOFlU3Lmj3d1KO3BcUfXzdoC977771H27OulUlNIEWK1WK3r06CFeeeUVMXPmTPHrr7+KL7/8UowYMUJt1QSsLYRFHRglJSWJIUOGOHzGF7zdfffdRX4+FcfXX3+tfu7t3r3bYV1xAqwQQvz777+iU6dOLuuu1WrFpEmT3B7nTJ48WS0/ZMgQl+XsB3Gy3VwFwqK4CrCTJk1Sl7dq1crld603jwmFEOKLL75Q9zdy5EiX+3rggQc8ftzSys3NdRhB+oMPPnBZ1jaPcOfOncWLL74opk+fLn799Vfx3XffiUceeUQ9AWz7n1i1alWx6xMoAVYI77yv16xZo5atU6eO20tqCl6KWNKBOV1lpyVLlgiDwSAA68mojRs3Ot3em8d6Qlh7qtnq4653wsyZM9VyRT2uzXvvvefV72Qh/DTA2rqhRUREeDTlSNeuXV3+09t/Qbj7oCoJW4uDq2HVvRlg7V/jNm3aFLmv3r17q+WdtZza1mk0GpGcnOxyP/ZBvTQTEftTgN2/f79ISkpyuf7AgQMOZ/T69OnjtJz9tcjfffddkY/78ssvq+XfeeedEte/KJ988on6OFu2bCmy/MSJE13+n9oHoaLOQNuHzoLXLiqKIqpWrSqAoqfhEMJ6TYetZdDZ39v+vTJ9+nS3+7I/YCuqa5B9lzlXX6L2wWrChAlOy7zwwgtqmaJaOUqiOAG2NH+3nJwc9QuyRo0aRXb9se+e6CxI2VpHmjZtWuRzFEKo3afchR7799WwYcPUaUoAiOHDh3v0OEWpzAHW1r0eKHkLXEkD7PHjx92GsXPnzjkEuubNmxf5P3ry5Enx8MMPu/z76HQ6cffddztcVlRSFy5cUFtFn3322ULrixtghbB2wXd2zb/tVrVqVTFhwgSXo96ePHlS/Wx1991l3xpTnO8TZwoGWLPZ7PA3uP76690eh3jzmFAIa+8N28kPV6Ou2rcy6XQ6kZiY6PHzLYmHHnrI4TPb2fgqNpcuXXI7KnRycrK49dZb1f1Vq1atyJ6HBQVSgBWi9O9rs9nscNw3atQop58lixcvLhSUS3o85yw7/fDDD+r+a9as6bbbujeP9Ww6d+5c5HeVfS8OZ703nbEft+Ktt97yaJuiaOGHNm3aBACoVasWVqxYUWR5jUYDwDqhcXZ2NgwGg9NyN9xwg8d1SEtLw+zZs/Hnn39i//79SExMdDki4YULFzzeb0lt375dvd+vX78iy/fr1w9r164FYB2xuHPnzk7LNW3aFFWqVHG5nzp16qj3SzMacVxcnNNR03zB3WT3gHXy6hUrVqB169bIycnBmjVrsG3bNnTp0qWcalg6tvcPYP3fXLx4sdvy9n/Xw4cPOx29FwCuu+46t/tx979y8OBBJCcnAwDCw8OLrBNgHbkxNTUVhw8fdluuqPf1zp071fs33XST27K2Ubnduemmm9C0aVMcO3YMM2fOxFtvveUwwqTJZFJH56tduzYGDBhQ5D7LUmn+bnv37oXRaAQA9OjRQ/2sdaV3794u/15Xr17Fvn37AAA1atTw+H8AgNv/gTfeeANr167Ftm3bHEb4btCgAb788ssiH8MTr7/+usuR8is62/sWAKpWrVquj924cWO36+vVq4fly5ejdevWiI+Px5EjR7BgwQIMGzbMafmpU6di8uTJUBQFDz/8MB599FG0bNkSAHDo0CF8/fXX+P777zF//nxs3boVq1evdhjVt7gee+wxpKWloX79+pgyZUqJ9wNYRwcdOXIkFi5ciNDQUEydOhVDhgxBbGwssrKysG3bNkydOhUbN27E+++/j127duH3339HSEiIw34aNmyISZMm4Y033gAAjBkzBr/99hvuuOMOREdH4+LFi5gzZw62b9+OmJgY5OTkID09HQDcjn7sqZycHAwdOhSLFi0CANx666349ddfC9XTnrePCatUqYI777wTc+fORWZmJhYsWFBoVogFCxaoz/uOO+5AtWrVPH6OxfXBBx/ghx9+AABERkZi3rx50Ol0LsvXqlXL7f6qVKmC3377DZ07d8b+/fuRlJSEr776Ci+++KJX6+0vvPG+1mg0+Oqrr9C/f39YLBbMnDkTu3btwv33348GDRogNTUVK1aswKJFi9RZCmwj5XvjfQEA7733Hl566SUA1tHGV61ahYYNG7osXxbHeg8++KCaN2bMmFHomOjs2bPqjC41a9ZE//793T6mjf37x2szm3gjBXuzBTY9Pb1UZ7cLnq21P8PprtutvXXr1hW6nsvdrWHDhk73480WWPszLd98802R+7Kft2/ixImF1tvWeTI4k61scc6cVwRjx45Vn7uzQWL8tQuxfffJ4t4Kdte1b8lzN8hPwbIFWxPs5yYs7s1Zdxf790pRA1XYd8vyZC4+23Un7s4Cf/jhh+o+C84LuGDBAnVdWY18W5wW2NL83ew/R15++eUi62X/OVWwJdB+8JTi3oKCgtw+7smTJx0GsNNqtS4HQKmIyrIF1tbtTKPRlHgfJW2B9ZRthF8A4v7773daxr6l3l130E8//VQtd+2115a4TvPmzVP388cffzgt42kLrNlsFjfccIMArNeAbt++3Wk5i8XiMLiZq0G3FEUREydOVC81cnarUaOG2Lp1q8PASM6uT/WEfQusfffWESNGFDkAl7ePCW1Wrlzp9n/SvpXJ2bGju+vcV65c6fFr880336iPExoaKjZv3uzxtkWxH2iyuANxBkoLrLff1wsWLFBHw3Z20+l04ptvvhGDBg1Sl3lyTO6M/eei/fuibdu2Ij4+vsjtvXmsZ5Oamqp2X3bWO8H+WmFXPdCcWb16tbrdY4895vF27njntIEXXb16tVTb21oLnHHVMmvv+PHjGDBgAOLj4wEAzZo1w9NPP40vvvgCc+bMwaJFi9SbbU4pi8VSqjp7wnYmEABCQ0OLLG9ruSi4bUHeOnNUEdmfeTpy5Eih9VFRUer9xMTEIveXlJTkdFtvK817yN37pzT/K2VVJ6Do97Wt54RWq/VoLj5P3l+jR4+GXq8HAHz33XcO62y/S5KEhx56qMh9lbXS/N0yMjLU++5aSGzcvXal+R8wmUxu10dHRzu0DjZs2BAdO3Ys8eNRPtv/ucViUedK9jdFfVZfvHgRH3zwAQCgRYsWeOKJJ1zu68knn0SLFi0AWHtvbN26tdj1SU5OVucFHzp0aKl7Yfz2229qa8sDDzyATp06OS0nyzI+++wz9T3/zTffOH3vSJKEd955B3v27MHYsWPRrFkzhIaGIiQkBC1btsTLL7+MAwcOoGPHjkhLS1O3qVGjRqmeBwCHOaczMzOL7JlVVseEffr0Qd26dQEAf/31l8O80/atTLVr13ba623QoEEub4888ohHdZs1axYeffRRANbvsaVLl+L6668vxrNzr6j3RaAri/f14MGDceLECbzyyiu49tprERUVBZ1Oh/r16+PBBx/Ezp078cgjjzgcz9WsWbPUz8X+fZGdne1RriiL46rIyEh1ru/MzEz89ttv6johBGbNmqX+7m7u14Ls6+pJFvOE33Uhtg9eN954IzZu3Fiujz916lRkZ2cDACZNmoQ333wTkiQ5LTtmzJhyq1d4eLh635PJ1e0PPO239ZWsrCysWrXKK/uKjY1Fhw4dvLIvd+y7PKSmphZab98Fxf7Lz5WzZ8863dbbbO8hSZJgNpv94iSF/fv61VdfVbuvlQdbqDKbzTCZTEWGWE/eX9WqVcOQIUMwe/ZsrFq1CufOnUNsbCzOnj2L1atXA7AeIDVo0KD0T8CH7P9unoQXd6+d/b5GjhzpMAl6aT322GMO769jx45h8uTJeO+997yy/yNHjnjtALB79+6Ijo72yr7Kg/2JgeTkZI9OZJS3oj6rV61apQa53r17u/xOB6yfm7169VK7rW/fvr3IbvgFLV26FJcvXwYAxMTE4K233nJa7q+//nK4byvXpUsX9O3bV123bNky9X6fPn3cPnbt2rXRokULHDx4EOnp6Th8+DCuueYap2Xbtm2Lr7/+2uW+Dh48qB5IN2nSBJGRkW4f2xNTp07F3LlzsWXLFixatAjDhg3DvHnzXH4ul9UxoSzLGDVqFN5++20IITBz5ky89tprAICZM2eqwXrkyJFFXjpREnPmzMEDDzwAIQT0ej0WL15c5CUuxVXU+yLQldX7ukaNGpgyZYrbbv+HDh1S77s6oVQcQ4YMQUREBD7//HMcO3YMN910E9avX4/atWu73KasjvUeeOAB/PLLLwCs3YhHjRoFwNpl+eTJkwCslyY1b97c432WxaUofhdgIyMjERYWhoyMjHK5trSgNWvWAACqV6+OKVOmuHxDpKenO/xBypr9NQ/Hjx8vsrx9GXdvgPJy+fJl9axOaY0aNQozZszwyr7cKarF1P5a2l27drndl6Io2LNnDwDrF6ftTGBZqFOnDv79918IIXDx4kXUq1evzB6rOHWyKe/3de3atdVrL0+dOoVmzZq5LJuSkuLxF/2jjz6K2bNnQ1EUTJ8+Ha+//jqmT58ORVEAwOOz8P7M/rPjxIkTRZZ3V6as/gdmz56N2bNnAwA6duyIxMREnD17Fh9++CFuvvlm9OrVq9SPMXfuXK+ddFm/fr1H11r7i7i4OGzevBmA9SDE1mrlT4r6rL506ZJ6PyIiosj92Qc1T05oFWTfqujpddjr16/H+vXrAQBPPfWUQ4At7/rb2IfF4owh4k54eDhWrFiB/v37exRiy/KYcPTo0Xj77bcBWFtDX331VQBwOLlW8NpYm6Jajt359ddfcf/990NRFOh0OixYsMCjsU2Kq7x6ffmKr94Xhw4dUnvdNWrUqMhrkj312WefQZIkfPbZZx6F2LI61uvVqxdiY2Nx7tw5bNy4EWfOnEFcXBx+/PFHtUxxWl8BxwBbv359r9Sz3Jpm7M8MFPXGv/HGGwFYDzY9OWjypoSEBADWAUDcnc1Ys2aNeqDqSnGec1HsB2GytfC4Y9/a6WoAJ3LP/svbWYtpq1at1IO5gwcPuv1y3bJli9oVq1u3bmXaKt6jRw/1vrdavUurffv26hfM2rVri3zveNO1116r3rcdILpi6zbmie7du6NVq1YAgOnTp8NkMmH69OkArCfABg4cWPzK+pm2bduqg4ls3LixyG5NtoHjnImOjlYH1ti6dav6fiiN06dP47HHHgNgbWmfM2cOfv75Z2g0GiiKgpEjRzocxFHx2Z+oO3r0qA9r4lpRn9X2B7fnz58vcn/2rfllOXiPp4pb/3Pnzqn3S1N/+xPF3rwcwhZiu3XrBgBYtGgR7r77bpeXCpTVMWHjxo3VYH7q1Cls2rQJf/31F06dOgUAuP76692e8CyJxYsX47777oPFYoFWq8W8efNw2223efUxbIp6XwQ6X72v7YOcty8T+vTTT/HUU08BsPYk6tmzp0NQt1dWx3q23glAfrdh22BngLULsKuB8lyxH4jRVY+QYtfTK3vxgH03kKLOfNheOADqGbHyYusederUKZeh02Kx4J133ilyX8V5zkWJi4tTu83u3bvXbYjduXMn1q1bB8B6psMfrgWzjULsjVt5tL6ePHnS4SzsrbfeWqiMJEkYOnQoAOub/PPPP3e5v88++0y9X9w3fnHdc889auh47733Sv2/5w0ajQbDhw8HYP0S+f7778vtse2D5BdffOE2hH366afF2vfYsWMBWL88n376afUkxqhRozy63tbf6fV69X8/ISFB7VbkzPLly4scMdr22Z6VlYV33323VHWzWCwYPny4GoQ/++wzNGnSBN27d8fLL78MwHqN1MMPP1yqxwGsoxB76/MrkFpfATiMvr5t2zYf1sS55ORkh/ets89q+xC+bNkyt+NCpKWlYfny5erv9ifAPDV69GiP/hdsXVYB4LXXXlOXf/LJJy7rP3fuXLeP/ffff6ufQ1WqVEGjRo2KXX/AepC+Y8cOANaTrl27di3Rflyxhdju3bsDsAY7VyG2LI8J7VuSZsyY4XB8UdxWpqL8+eefGDZsGMxmMzQaDX755RfceeedXn0Mm9zcXIfjVGfvi0BX3u9rwHo5ie1YLyoqyivfLwV98sknePrppwFYe1O6CrFleaw3evRotQfqrFmz8Ouvv6qXJt51113FvpzA9t0RHh6unsguNW+MBOXJKMTjx49Xy7ialNfGYrE4zO321FNPuZ0TKysrS/z4449izpw5hdbZj/Lnyfx7ffv2Vct//PHHhdYbjUaHya3hZsS0jz/+WC0zc+bMIh+7qJGa7Uc1rFWrljh8+HChMmfPnhWNGjVSy7maYNm23pMRIYtT1t/9/vvv4tdff3U7V2DBeWB79uzpsuzFixdFSEiIAKwjn65Zs6ZQGfsRGOvVq+fRPHal9dxzz6mPedNNN4n//vvPZVmLxSJWr14t3nzzzULr3I1QW9yy58+fV0f41ev1Rb4nEhISxJQpU8TevXsLrSvOvNJCCId5Ex977DFhsVgKlSk416cnIyGmpqaqf3/7m7s5+ryhOKMQl/bvtmnTJnV9lSpVnE4Gf+zYMVGrVi2H18DZaLgZGRmifv36AoCQJEm8//77Tv8WNqmpqeLTTz8Vq1evLrTulVdeUR9ryJAhDutMJpM6FyRKMUpkoCjLUYhzcnJEaGioQAlGMrUpySjEW7ZsEd99953IyclxWeb8+fMO8xY2adLE6ai2RqNR1K1bVy03cOBAp6OXZ2VliTvuuEMt17p1a6EoSqFy9u+ZksxZaePpKMQHDhwQsiyrZV3NO3n27FmH7y5Xo30ePHhQXL582eXj/fzzz+r8z8HBweLIkSPFel4FFZwH1l56errD5/PAgQMLjRbvzWPCgtLT09X/77CwMHUE2pCQkGLPnerO6tWr1blnNRqN+OWXX0q0n+PHj4sPPvhApKWluSxTcB7YKlWqiJSUlGI9TklHIbb/Diju6MXFfU95+32dkJAgDh065PLxdu3aJerVq6fuZ8aMGR4/N2eKyk5PP/20w2ebs3m4vXWs54z9/4D997uz41x3UlNT1RHP77zzzmJt6065XQPbu3dvtRXqoYcewjPPPIP69eurF8c3btxYnfNNlmX89ttv6Nq1Ky5evIhPP/0U8+fPx9ChQ9G2bVtERkYiIyMD586dw86dO7F27VpkZmbizTffLHU9n3zySbV189lnn8WGDRtw8803o1q1ajh+/DhmzZqF48eP46abbsLx48fddhvt3bu3en/ChAm4cuUKmjVrBq3W+rLXqVMHbdq08bhud999NxYtWoS5c+fiv//+Q4cOHTB69Gh07doVGo0GO3fuxA8//KC2SPTr10/tXkdWJ0+exDPPPIOYmBj0798f7dq1Q82aNREUFISEhARs2LABS5YsUUeEq127ttvBZmrXro2PPvoI48aNg9lsxi233IKRI0eiR48eMJvNWL58udrtQqvV4ttvv0VwcLDL/dlfc3369GmXc7IWZerUqfj333+xdu1arF+/Hg0bNsTgwYPRtWtXxMTEwGg0Ij4+Xm3Nj4+PR+/evTF58uQSPZ4n6tati7lz5+KOO+5Abm4uRo0ahY8//hh33HEHmjRpAoPBgKtXr+LYsWPYunUrNm/eDIvF4pWBLb755ht06tQJWVlZ+PLLL/HPP/9gxIgRqFu3LhISEjBv3jxs3rwZXbt2xblz53Dx4kWPBkSIjIzEsGHDHLoU9ezZE02aNCl1nf1F9+7d8dhjj+HLL79ESkoKrrvuOowaNQrdu3eHLMvYvn07fvjhB2RmZuLOO+90OxddaGgoFi9ejB49eiAtLQ0TJkzAN998g8GDB6Nly5YICwtDWloaTp06he3bt2PDhg0wGo346aefHPbz999/q60LdevWxbfffuuwXqvVYvbs2WjXrh3S0tLwzDPPoEePHl7vDugLe/bscRgZEnAcDGjhwoWFulk+9NBDJR5QTK/Xo3///vjtt9+wc+dOZGRkOPQucqbg54j9CJSnT58utL5Dhw646667HJYlJCRgzJgxeO6553DzzTejY8eOqFOnDoKDg5GUlITNmzdjwYIF6qCL4eHhmDdvnvr9ai8oKAifffYZBg8eDCEElixZghYtWmDkyJHqeASHDx/GrFmz1G6GQUFB+N///ud2YJjy0qpVK4wfP15tmX355Zfx+++/q/PAZmdnY+vWrfj555/VVqh69eo5tPDa+/PPPzFp0iT06dMH3bt3V79nzpw5g8WLF6vzQOp0OsyZM6dM3zdhYWFYvnw5br31VmzatAlLlizB0KFD8euvv6q9WMrymDAsLAxDhw7FjBkzHAa/HDx4sEfXVXri33//xcCBA5GTk6Pu22AwFDlvZ/PmzQsNlJORkYEXXngBr7zyCvr27YtOnTqhfv36CA0NRWpqKnbs2IG5c+eq7zmtVotffvnF7TWwCxcuxO7dux2WnT59Wr3/0UcfFWpxczUwmac++ugjl/OBpqamFvqMaNCgQaHuut5+X587dw6dOnVC586d0bt3bzRv3hwGgwHx8fFYs2YNli1bpvbgmjBhgkPPgLIwbdo0SJKEadOmqblj/fr1DuNJlOWx3gMPPKB2Q//vv/8AWHt1FndciQ0bNqg9Wr3a48AbKdiTFliz2exwlq3gzdnZx0uXLonevXu73Mb+ptFoxHfffVdoH8VtgRVCiIkTJ7p9rG7duonLly+rLQnuzhbde++9LvdT8LXypFXJZDKJhx9+uMjXY8iQIW7nx7SVq2wtsNOmTfPo/wl5rQ1nzpzxaL8ffPCBCAoKcrmv8PBwj84G229T2rnXcnNzxRNPPCE0Go1Hz3fkyJGF9uHNljybf/75R51bsqhbWFiY2LdvX6F9FLcFVgjr/M62FmBnt9atW4tz586JOnXqCADimmuu8Wi/27Ztc9iPq/nVvKk8W2CFsH5+33///S5fO1mWxfvvv++2pcXekSNHRPv27T36H9Dr9WL58uXqtikpKepnryzLbj/Xf/75Z3U/7du3d9tqEyjsX2NPb55+97myePFidV+zZs0qsnxx6+fsuMF+DuKibq1bt3baU6Ogn3/+WURERBS5v+joaLFs2TKX+ynvFlghrK0nzz33nENLrKtb27Zt3c7Z+sEHHxS5j4YNG4q1a9eW+LnZ8+RzISMjQ9x4441quTvuuKNQS6w3jgmd2bhxY6Ht161bV9qnrSrJe9bV/8SePXs83j42Ntaj977994mnN1fsy7g7hrF9hnt6c3f86a339Y4dO4rcR3h4uNv5ZovDk+wkhBDPPvusWq5x48aFWmK9caznTEZGRqE5cV999dViP8+7775bABAGg8Ftz4HiKrcAK4QQ2dnZ4t133xVdu3YVVapUcXix3X14b9iwQYwdO1a0atVKREVFCY1GIyIiIkTLli3FsGHDxFdffSUuXbrkdNuSBFghhFi+fLkYMGCAiI6OFkFBQaJWrVqiV69e4rvvvlO7KHkSYM1ms/jqq69Ez549RXR0tNBqtS5fq+IclP/zzz/ioYceEo0bNxahoaHCYDCIBg0aiBEjRnj0pePJh0JJyvq7xMREMX/+fPHMM8+IG264QTRq1EhERkYKrVYrqlatKtq2bSvGjh1bogO+/fv3i8cff1w0bdpUhIaGivDwcNG6dWvx4osvehSEMzMz1ddap9OJpKSkEjzDwo4fPy5eeukl0aVLFxETEyO0Wq0ICQkRDRo0ELfeeqt45513nIZEIcomwAphPRHz888/i7vvvls0aNBAhIWFqX+Da6+9VowZM0bMmzdPZGRkON2+JAFWCCHi4+PF888/L5o1ayYMBoOIiooS1157rfjwww9FZmamUBRFncTbXddxe4qiqJOQV61a1W2XR28p7wBrs3TpUjFgwAARExMj9Hq9iI2NFffee6/YsmWLEMKzA1UbRVHEkiVLxKhRo0TTpk1FRESE0Gg0IioqSrRt21aMHDlSzJgxQyQnJztsN2zYMPUxXnrpJbePIYQQw4cPV8s/99xzRZb3d74IsGazWcTGxgoAom/fvkWWL279nB03pKeniyVLloiXXnpJ9OrVSzRt2lRUrVpVaLVaERUVJVq0aCFGjRolfv/9d7fd0AtKSEgQ7733nujdu7eoWbOm0Ov1Qq/Xi1q1aol+/fqJadOmFdnd0hcB1ubgwYPiueeeE507d1ZfD9vn+dChQ8W8efOcdqO2d/78efHJJ5+IgQMHiqZNm4rIyEgRHBwsYmNjxYABA8QPP/zg1UtdPP1ccBZinZ10Ks0xoTOKojhcehUXF+e0i2lJeTPA5uTkiBUrVojXXntN3HzzzaJ58+bqsWVERIRo3LixuOeee8Ts2bM9PmEX6AFWCO+8rzMyMsSMGTPEqFGjROvWrdXj/5o1a4pu3bqJd999120X3eLyNDsJ4dhV2FmIFaJ0x3quPPjgg+rjSpIkTp06Vaztr169qh5TjRkzpljbFkUSIq9dl4h8auXKlejfvz8AYPz48cUeUIhKb//+/eoIeZ7+DdasWaNOefHUU08VGoCFqCKYNm0ann32WWg0Gpw5c8Yvp9MhIiL/MX36dDz00EOQJAkHDhzw3gBOKMdRiInIPdscxOHh4WV6LSq59r///U+97+m1t1999ZV6vyLM/UrkzKOPPoqaNWvCYrHg/fff93V1iIjIj9l/VwwbNsyr4RVggCXyG7YA++yzzyImJsbHtal4Nm3a5Hb+2S+++EIdDKhOnToezc3377//qgNx9OnTx+sf0ET+wmAw4PXXXwcAfPvtty7nJiQiIpozZw6OHj0KnU7nlUF2C2IXYiI/kJiYiOrVqyM6OhonT55EeHi4r6tU4TRu3Bg5OTm45ZZb0L59e8TExMBkMuHkyZNYtGgR9uzZo5ZdunSpywC7YsUKKIqCY8eO4f3331dH5/v777/RrVu3cnkuRL6gKAo6deqE3bt344knnnA79zUREVVOFosFrVq1wtGjR/HSSy9h6tSpXn8MBlgiqhQaN26MkydPui1jMBjw3XffYfjw4S7LOBt+39PrZVetWoWsrKyiK+tEdHQ0unfvXqJtiYiIiCoKBlgiqhS2bt2K3377DVu3bsXFixeRlJSErKwsVKlSBU2bNkWfPn0wbtw41KhRw+1+bAE2LCwMTZs2xbhx4/Dggw96NG9sXFycOh9dcfXo0QMbNmwo0bZEREREFUXhGb+JiCqg6667Dtddd12p98NzfkRERES+wxZYIiIiIiIiCggchZiIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIHMSJiIgqFEVRkJ2djaysLJe3nJwcGI1GGI1G5Obmqved/W40GmGxWKAoisNPZ8sURQFgHa3a1c02YrUkSdBoNAgKClJvWq3W6X3bLTg4GAaDAcHBwS7vGwwGGAwGhIaGIjQ0FFotv+qJiKji4LcaERH5HSEEMjIykJaWhrS0NKSnpzu9b78sIyMD2dnZyM7O9nX1/YrBYEBYWBjCwsIQHh6u3re/RUREICoqyuFmMBiczntMRETkSxyFmIiIyoUQAlevXkVycjJSUlIcfqamphb63WQylerxNBoNDAYDQkJCCt0MBgNWz/gLkgCgSHY3QHL2uwCAvJ8CgLAts7svYN2fXVHbfTjcF/nLJFg3kq0/Rd5P+2WQASHnLdMAkAX6P3ITcnJykJ2djZycHJf3S0On0yEyMhJRUVHqz6ioKFStWhXR0dGoVq0aoqOjER0djbCwMIZdIiIqFwywRERUaoqiICUlBZcvX8aVK1dw5coVh/tXrlxBYmIijEZjsfZrMBgQERGBiIgIhIeHIyIiAn/N2QbJLAFm2e6nDJglSBYJsEiARbaGT1TeUCUkAWgEoFUgtALQ5P3UCgitAmgEBj59s9qinZqaqt5yc3OL9Vg6nU4Ns/bBNjo6GjVr1kT16tURHR0NjUZTRs+WiIgqCwZYIiIqkqIoSEpKwn///YdLly7hv//+U28JCQm4cuUKLBaLR/uKiIhAlSpVULVqVexddQiSSQaMmryfMiSTnH9fVN4A6ktCFkCQApF3s92HVkHfMTciMTERSUlJSEpKQlpamkf71Gg0iImJQc2aNVGjRo1CP2vUqAGdTlfGz4yIiAIdAywREQEAjEYjLl26hPPnz+PChQsOQTUhIaHI1lNZllGtWjXExMQgJiYGf/+ywxpCczWQ8n4ylFY8atjVWSB0CoRewd2TbkNiYiKuXLmC+Ph4j05wSJKEGjVqoE6dOuqtbt26qFu3LmrXrg29Xl9Oz4iIiPwZAywRUSWiKAquXLmC8+fP4/z58zh37hwuXLiA8+fPIz4+Xh1F1xmNRoPq1aujVq1a+PfPQ5ByNNZbriY/nFbiLrvkmoAAdApEsAVCb4HQKxgwvhcSEhIQHx+PhISEIq/ZjYmJQd26dVGnTh3Uq1cPcXFxqF+/PmrWrKmO7ExERBUfAywRUQWkKAr+++8/nD59Wr2dOXMG58+fd3t9Y0hICGJjY1G3bl2sn/6PNZzmBVXkMqBS2RAQQJCACDZDGCy47607cfHiRVy8eBEXLlxARkaGy211Oh3q16/vcIuLi0PdunU5hRARUQXEAEtEFMCEELh8+XKhoHrmzBmXLVparRa1a9dGvXr1sHXeHkjZGkjZWkjZGsDEkEr+RSBv4CmDGSLYghFT78K5c+dw9uxZnD9/3mXXdo1Ggzp16qBRo0Zo2LAhGjdujMaNG6N69eocMZmIKIAxwBIRBQiz2Yxz587h+PHjDjdXrVO2lqmTm89DytRCytJCztYAORqGVKoQBAQQbIESYoEwmNF3XHecPXsWZ86ccTkfcHh4OBo1aqTeGjdujAYNGvAaWyKiAMEAS0Tkh3Jzc3Hy5EkcP34cx44dw/Hjx3Hq1CmnrU0ajQb16tXDuR3/QcqyBlUpU2vt+sugSpWQes1tiBlKqBm9x16PEydO4OzZs04Hk5JlGfXq1UOzZs3QvHlzNGvWDE2aNEFwcLAPak9ERO4wwBIR+ZjFYsGZM2dw+PBhHD58GIcOHcKZM2ecHmgbDAY0adIEB1cch5QRpLascmRfoqIJSUCEmCFCzbhrcn+cPHkSJ06cwNWrVwuV1Wg0iIuLQ7NmzdCiRQs0a9YMDRs25FQ/REQ+xgBLRFTOrly5gkOHDqmB9ciRI067O0ZFRaFJkybYvfAgpMwgSBlsVSXyNltrrRJqxsiP7sKRI0dw5MgRJCcnFyobFBSERo0aoXnz5mjTpg1at26NmjVr8ppaIqJyxABLRFSGzGYzTp48ib1792L//v04dOgQrly5UqicwWBA8+bNsW/pUUjpQZDTgzgtDZGPqKE2zIR7p96BI0eO4OjRo0hLSytUtlq1amjdurV6a9KkCVtpiYjKEAMsEZEX5eTk4NChQ9i/fz/27t2LgwcPFmpdlWUZDRo0wOnNlyCnayGlB1m7ATOsEvktAQHoLVDCzRj0Sj8cOHAAx44dK9TVX6fToVmzZmqgbdu2LSIiInxUayKiiocBloioFNLT07F3717s27cP+/btw9GjRwsd0IaGhqJ169bYOe8g5LS8rsCK7KMaE5G3CFlAhJnw4Bd348CBAzhw4ECh62klSULjxo3Rrl07tGvXjoGWiKiUGGCJiIohJycH+/fvx+7du7Fr1y4cO3YMiqI4lImOjkby4XTIaTpIaXkDLbF1lajCExAQwRaICBNuea4H9u7di3PnzjmUKRho27Vrh/DwcB/VmIgo8DDAEhG5YTabcfjwYTWwHjx4ECaTyaFM3bp1cWlnEuSrQZDTdEAur10lIisRZIESacKAF3tiz549LgPttddei86dO6N169ack5aIyA0GWCKiAs6fP4/t27dj27Zt2Lt3b6FrWGNiYpB0IB3yVR3kVB0ko8ZHNSWiQFNUoNXr9WjXrh06deqEzp07o379+hzlmIjIDgMsEVV6OTk52LNnD7Zt24Zt27bh4sWLDusjIyORfjLHGlZTdZzKhoi8RgRZoEQZ0eep67Fjxw4kJSU5rI+JiUGnTp3QqVMndOzYEVFRUb6pKBGRn2CAJaJKRwiB8+fPY+vWrWorq9FoVNdrtVq0adMG+xYet4ZWXsNKROVAQECEmDHm+3uwY8eOQp9NkiShZcuW6NatG66//no0aNCArbNEVOkwwBJRpWA2m3HgwAFs2rQJmzdvxqVLlxzWV69eHYl70yGn6CBf1UGycJRgIvItIQuICCMGv9Uf27dvx6lTpxzW16xZE9dffz2uv/56tGvXjvPPElGlwABLRBVWdnY2duzYgU2bNuGff/5BWlqauk6r1aJt27b4d8FRyMl6SNnsFkxE/k3oLHhy3ihs3rwZu3fvdmidNRgM6NSpkxpo2dWYiCoqBlgiqlBSUlKwefNm/P3339i5c6fDAV5ERAQyjhshJ+shp+g4FysRBSwhCyhRubjlxRuxZcsWh2tnZVlG27ZtceONN6JHjx6Ijo72YU2JiLyLAZaIAl5SUhI2btyI9evXY9++fbD/WKtVqxYu77wKOUlvnZOVraxEVMEICIhQM4Z/ege2bNmCY8eOOaxv3bo1evTogR49eqBmzZo+qiURkXcwwBJRQEpJScFff/2FdevW4d9//3UIrc2aNcOJVResoTWLAzARUeUi9BaMmTEMGzZswMGDBx3WNW/eHDfeeCN69uyJunXr+qiGREQlxwBLRAEjNTUVf/31F9avX489e/ZAURR1XcuWLXH0j3PQJAVDyuW8rEREgPW62XGzh2Pjxo3Yt2+fw+dm8+bN0adPH/Tq1YvdjIkoYDDAEpFfy87OxqZNm7Bq1Srs2rULFotFXde8eXMcX34BmkSGViKiooggC56cPwobN27Enj171M9TSZLQoUMH9OnTBz169EBYWJiPa0pE5BoDLBH5HYvFgj179mDlypX466+/kJ2dra5r2rQpTq68BE2iHlKu1oe1JCIKXEKr4LG5w7FmzRocOHBAXa7T6XDdddehT58+6Nq1K/R6vQ9rSURUGAMsEfmNU6dOYeXKlVizZg2uXLmiLq9Tpw7it6RCvhIMOYehlYjIm4TeglHfDsLq1atx5swZdXloaChuuukm3HrrrWjVqhUkieMJEJHvMcASkU+lpqZi1apVWLlyJY4fP64uDw8PR+YxMzSXgyGlc/RgIqKyZhvNeMj7Nxc6kRgbG4sBAwagX79+qFatmg9rSUSVHQMsEZU7RVGwe/duLF26FJs2bYLZbAYAaLVaKAkayJeDISfrIQmGViIiXxAQEJEm9Hq+MzZs2IDc3FwAgEajQZcuXTBgwAB07doVWi17xRBR+WKAJaJyk5iYiOXLl2PZsmW4dOmSurxZs2Y4+eclyFeCIZllH9aQiIgKEhoFTy96AMuWLXOYlqdKlSro27cvbr/9dtSvX9+HNSSiyoQBlojKlMViwfbt27F06VL8888/6qiXoaGhyD6hQBNvgJwZ5ONaEhGRJxSDGUM+7IeVK1ciOTlZXd6+fXsMGjQI3bt3Z6ssEZUpBlgiKhOpqan4448/sHjxYly+fFld3rp1axxZeA5yYjAkhV2EiYgCkZAE3vjrGfzxxx/4559/1Pllq1Wrhttvvx233347YmJifFxLIqqIGGCJyKuOHj2KhQsXYu3atTAajQCAiIgIZB42Q04wQM7imXkioopE6C0Y9tkt+OOPP5CSkgLAeq1st27dMGjQIHTo0IEjGBOR1zDAElGpmc1mbNy4EQsXLsT+/fvV5c2bN8eJ3/OubeWATEREFZqQBCauGofFixdj79696vLY2FgMHjwY/fv3h8Fg8GENiagiYIAlohJLSUnB77//jiVLliAxMRGA9ay7+C8Imv8MnP6GiKiSUkLMGDDlBqxatQpZWVkArL1xBg4ciEGDBiE6OtrHNSSiQMUAS0TFdv78ecybNw8rVqxQuwlXrVoVV//NtQZXk8bHNSQiIn8gNArGzb0Pv/76qzr6vFarRe/evXH33XejSZMmPq4hEQUaBlgi8tihQ4cwZ84c/PXXX7B9dLRo0QLHF1+0DsrEbsJEROSEgMCrG8Zj/vz52Ldvn7q8Q4cOGDZsGLp06QJZ5jRqRFQ0BlgicktRFGzbtg2//PKLwzVNcrIOmguhkNLYTZiIiDynhJnQ4/kOWL9+vTq1Wv369TFixAj07t2b0/AQkVsMsETklNlsxurVqzF37lycPn0agLXbl3JRC82FUMjZPMAgIqKSE3oL7vqoD5YuXYrMzEwAQM2aNXHffffhlltugV6v93ENicgfMcASkQOTyYSVK1fip59+wn///QcACAkJQe4xQHMpBJKR17cSEZH3CI2C0T8Owvz585GamgrAOq7CsGHDMHDgQISEhPi2gkTkVxhgiQgAYDQasXz5cvz8889ISEgAAFSpUgVpu03QxBsgWXhtEhERlR0hC4ybdy/mzJmDy5cvAwDCw8Nx9913Y8iQIQgNDfVxDYnIHzDAElVyubm5WLZsGWbPno0rV64AyBtReKcRmvgQSAqvbyUiovIjJIFnlz6I2bNn4/z58wCsU/Dcc889uOuuu9giS1TJMcASVVJmsxl//vknZs6cqQbX6OhopG7LhZxgYHAlIiKfEhCYuHocfvzxR5w7dw4AEBkZifvuuw+DBg1CcHCwj2tIRL7AAEtUySiKgnXr1uGHH37AxYsXAQDVq1dH8pZsa3DlVDhERORHBAQmrHgEP/74o/q9VbVqVdx3330YOHAgB3siqmQYYIkqCSEEtmzZgu+//x4nT54EAERFRSF9l8V6jSuDKxER+TEBgeeWPYQZM2aogwzWrFkTDz30EPr27ct5ZIkqCQZYokpg//79+PLLL3Hw4EEAQFhYGLIPCOuowgq/8ImIKHAISWD8opEOl8A0btwYjz76KDp16gRJ4glZooqMAZaoArt48SK+/vprbNy4EQCg1+thPqGB5mIoJDODKxERBS4hCzwwcxBmz56NjIwMAECHDh0wbtw4NGvWzMe1I6KywgBLVAGlp6dj5syZWLhwIcxms7Vb1SU9tGdDIZk4jysREVUcQqvgzo9vwqJFi2AymQAAffv2xdixY1G9enUf146IvI0BlqgCMZlMWLx4MWbOnIm0tDQAgJSig/Z0OOQsrY9rR0REVHaE3oKbJnfEqlWrIIRAcHAwhg8fjnvuuYcDPRFVIAywRBXEjh078Omnn6pTDTRo0AAXlqZATuWXNhERVR7/O/wWPv/8c+zbtw+AdaCncePGoWfPnrw+lqgCYIAlCnAJCQn43//+p17nGhUVhYwdFuuUOOAXNRERVT62OWS/+uorXL58GQBwzTXX4KmnnkKTJk18XDsiKg0GWKIAZTQaMXfuXPz000/Izc2FRqMBzumhORcKycIBmoiIiIQsMPy7Afjll1+Qm5sLWZYxePBgPPTQQwgJCfF19YioBBhgiQLQ9u3bMW3aNHVCd+lqELQnwyFnBfm4ZkRERP5H6Czo9mIbrF+/HgAQHR2N8ePHo0ePHuxWTBRgGGCJAkhKSgo+//xzrFmzBgBQrVo1XN1ignwlmN2FiYiIivD21hccTgB36dIFTz/9NOrUqePjmhGRpxhgiQKAEAIrVqzAF198gbS0NMiyDOl8MLsLExERFZOQBO777lbMnj0bJpMJOp0Oo0aNwr333gutliP2E/k7BlgiP3fhwgV89NFH2LVrFwBAytBCeyICcga7CxMREZWUEmxG20cbYOfOnQCAJk2a4KWXXuIgT0R+jgGWyE9ZLBbMnz8fP/zwA4xGI3Q6HSxHddBcCoEk2F2YiIiotAQEJqx4BJ999hnS0tKg0WgwYsQI3H///dDpdL6uHhE5wQBL5IcuXLiAqVOnYv/+/QAAKVWHoBPhkHLYtYmIiMjbRJAFXSe0Uqeka9CgAV588UW0bNnSxzUjooIYYIn8iKIoWLRoEb755hvk5OTAYDDAtE/LOV2JiIjKwaR1j2PatGlISUmBLMu477778MADDyAoiJftEPkLBlgiPxEfH493330Xu3fvBgBIqUEIOh4JKVfj45oRERFVHkKr4MbJbdUR/5s2bYrJkycjLi7OtxUjIgAMsER+YdWqVfj444+RlZUFvV4PyyEd5P/Y6kpEROQrk9Y9jg8//BBpaWnQ6XQYN24c7rrrLs4bS+RjDLBEPpSVlYVp06Zh5cqVAAApLQjaYxGQea0rERGRzwmdBW0fb4AdO3YAsM4b++KLLyI6OtrHNSOqvBhgiXzkyJEjeOONN3Dx4kXrvK5nDNZ5XdnqSkRE5DcEBMb9ei+++uorGI1GREZGYtKkSbjuuut8XTWiSokBlqicKYqCefPm4bvvvoPZbEb16tWRssYEOY3D9RMREfmr7059gDfffBPHjx8HAAwfPhwPPfQQtFr2miIqTwywROUoLS0Nb731FrZu3QoAkBP10B6PgGSRfVwzIiIiKoqQBG794HosXrwYAHDNNdfg1VdfRfXq1X1bMaJKhAGWqJwcO3YMkydPRnx8PHQ6HZRDesjxHKiJiIgo0ExcMw7vv/8+srKyEBkZicmTJ6NLly6+rhZRpcAAS1QOli1bhmnTpsFoNAI5GgQdjoScyTnliIiIApUINqP+vVXVLsUPPvggRo4cCVlmryqissQAS1SGcnNz8emnn+KPP/4AAMjJOmiPRrLLMBERUQVQsEvxDTfcgEmTJiEkJMS3FSOqwBhgicpIYmIiJk2ahMOHD0OSJMinQ6C5wFGGiYiIKppn/ngAH330EUwmE+Li4vD222+jXr16vq4WUYXEZiCiMnD06FGMHTsWhw8fRkREBLT7I6G9EMbwSkREVAFNu+1HfP7554iOjsaZM2cwduxY/PPPP76uFlGFxBZYIi/bsGED3n77beTm5kLK0iDoUBSkHA6xT0REVNGJIAuaPlQTBw4cgCRJePzxxzF06FBIEk9gE3kLAyyRlwghMHPmTEyfPh0AICXrEMTrXYmIiCoVIQnc/G4XLF26FABw11134YknnuB8sURewgBL5AUmkwnvv/8+Vq5cCQDQXAyB5jS7DBMREVVGAgIPzR6Mr776CgDQtWtXvPbaaxzcicgLGGCJSikrKwuvvPIKduzYAY1GA+lICDQJ/IIiIiKq7CatexxvvfUWjEYjmjRpgvfeew/R0dG+rhZRQGOAJSqF5ORkTJgwAceOHUNwcDDMu4KhSdH7ulpERETkJz7Z/zomTpyI1NRUVK9eHR9//DFiY2N9XS2igMUAS1RC58+fxwsvvIBLly4BRhlBh6IgZwT5ulpERETkZ4TegpqDQ3Du3DlERkbiww8/RLNmzXxdLaKAxNFliErgxIkTePzxx63hNVsD3b4qDK9ERETklJSrQfz8bDRr1gxXr17FU089hX///dfX1SIKSAywRMV0+PBhjB8/HqmpqZAytNDtq8JpcoiIiMgtySzj9IxktG/fHllZWXj++eexefNmX1eLKOAwwBIVw/79+/HMM88gIyMDUloQgvZXgWTS+LpaREREFAAki4yD/7uIbt26wWg0YvLkyVi7dq2vq0UUUBhgiTy0e/duPP/888jKyoJ0NQhBB6M4xysREREViyQk7HjvOG6++WZYLBa8+eabDLFExcCjbyIP7NixAxMmTEB2djakFB2CDlZheCUiIqISkSBh/St7cOutt0JRFLz11ltYt26dr6tFFBA4CjFREfbu3Yvnn38eubm5kJN10B6OgiQkX1eLiIiIApyAQO+3O2L58uXQaDR49dVXcdNNN/m6WkR+jU1IRG4cOnQIL774IsMrEREReZ0ECWsn7UL//v1hsVgwZcoUbNiwwdfVIvJrbIElcuHEiRMYP368dcCm1CAEHaoCSWF4JSIiIu8SEOj1VgesWLECWq0W77//Pq699lpfV4vILzHAEjlx7tw5PPHEE9apctKCEHQgCpLCDgtERERUNgQEur3SCuvXr4fBYMC0adPQsmVLX1eLyO8wwBIVkJSUhHHjxiE+Ph5ShtY6VQ4HbCIiIqIyJiSBa56Kxc6dOxEZGYnPP/8ccXFxvq4WkV9hgCWyk5WVhfHjx+PYsWOQsjUI2lsVkpnhlYiIiMqHkBU0eigahw8fRkxMDL788kvUqFHD19Ui8hs8MifKYzab8dprr+HYsWOAUbbO88rwSkREROVIUmSc/DERsbGxuHLlCiZMmIDMzExfV4vIb/DonAiAEAIfffQRtm3bBlgkBB2KgpSj9XW1iIiIqBKSzDLiF2ShWrVqOH36NN544w1YLBZfV4vILzDAEgGYM2cOli1bBlmWoT0aCTkjyNdVIiIiokpMMmrwzjvvQKfTYevWrfjyyy99XSUiv8AAS5Xetm3b8M033wAA5OOh0CTrfVwjIiIiImB8q1cxadIkAMCvv/6KJUuW+LhGRL7HQZyoUjt//jzGjh2LjIwMyPEGaE+EQwLneiUiIiL/cf+M2/H9999Do9Fg2rRpaNeuna+rROQzDLBUaWVmZuLRRx/F2bNnrXO97q8CSTC8EhERkX8REOjxRlusXr0aVatWxffff4/o6GhfV4vIJ9iFmColIQTeeecdnD17FsiVEXQ4kuGViIiI/JIECRvf2IuGDRsiOTkZr7/+Osxms6+rReQTDLBUKS1cuBCbNm1CUFAQgg5HQTJpfF0lIiIiIpckRcKbb76JkJAQ7Nu3D99++62vq0TkEwywVOkcO3ZMHclPHAnmiMNEREQUEB6s/ywmTpwIAJg7dy7++usvH9eIqPzxGliqVLKysvDwww/jwoULkJP00B6O5KBNREREFFDu/Lwn5s2bh/DwcMyYMQMxMTG+rhJRuWELLFUq06ZNw4ULF4BcGdrjEQyvREREFHAWjV+PZs2aIT09HVOnToWiKL6uElG5YYClSmP9+vVYuXIlZFlG0NFISGb++xMREVHgkYSEyZMnQ6/XY+fOnVi4cKGvq0RUbngET5VCamoqpk2bBgCQzhggp+l8XCMiIiKiknu4wfN47LHHAABff/01zpw549sKEZUTBliqFD755BOkpqZCytRCcz7U19UhIiIiKrUvBs9Gly5dYDQa8fbbb3NqHaoUGGCpwtuwYQPWrVsHCEB7LILzvRIREVGFIEHCns9OIiwsDEePHmVXYqoUGGCpQktPT1e7DmvOh0LO5JQ5REREVHFIJg3GjRsHAPjhhx+QkJDg4xoRlS0GWKrQvv/+e6SkpEDK1LDrMBEREVVInw6ciWuuuQbZ2dmYNm0aOEsmVWQMsFRhHT9+HEuWLAEAaE+x6zARERFVTBIkPP/889BqtdiyZQs2btzo6yoRlRkGWKqQhBCYNm0aFEWBfEUP+SpHHSYiIqKKa0zDFzB8+HAAwJdffonc3Fwf14iobDDAUoW0cuVKHDhwALBI0J4O93V1iIiIiMrcnLHLERMTg/j4eCxYsMDX1SEqEwywVOHk5OTg22+/BQBozoVCMmp8XCMiIiKisicpEsaOHQsA+Omnn5CSkuLjGhF5HwMsVTgLFy5EYmIikCNDcynE19UhIiIiKjfv9/8WzZs3R1ZWFqZPn+7r6hB5HQMsVSjp6emYPXs2AEB7LowDNxEREVGlIkHCY489BgBYunQpzp496+MaEXkXAyxVKHPnzkV6ejqkTA3ky8G+rg4RERFRuXuhw9vo1q0bFEXBTz/95OvqEHkVAyxVGCkpKeqABZpzYZDA1lciIiKqnEaPHg0AWLNmDc6fP+/byhB5EQMsVRi//fYbsrOzIaVrISfpfV0dIiIiIp95osVkdO3ala2wVOEwwFKFkJWVhUWLFgEANBdC2fpKREREld6oUaMAAKtXr8bFixd9XBsi72CApQph2bJl1mtfszVsfSUiIiIC8FTr19ClSxdYLBbMmzfP19Uh8goGWAp4ZrMZ8+fPBwBoLoSw9ZWIiIgozz333AMAWLlyJdLT031cG6LSY4ClgLdx40YkJCQARhnyZYOvq0NERETkN17sNBUNGjRAdnY2li1b5uvqEJUaAywFvN9//x0AoIk3cN5XIiIiIjsSJAwdOhQAsHDhQlgsFh/XiKh0GGApoJ07dw579uwBhDXAEhEREZGjT+6cgfDwcMTHx2PXrl2+rg5RqTDAUkCztb7KKTpIRo3rghJbZomIiKhikrRaSFqt6/WKhL59+wIA/vzzz/KqFlGZYIClgGU2m7Fq1SoAgBwf4ryQJDG8EhERUaXgLsgufWUDAGDTpk1IS0srx1oReRcDLAWs3bt3IzU1FTBJkFN0hQsUDK4MskRERFTBOAuszpbJmUFo0qQJTCYT1q5dWx5VIyoTDLAUsNasWQMAkK8EFx68iWGViIiIKjFnIdbWjXjDhg3lXBsi72GApYCUm5uLTZs2AQA0icGOK92FVwZbIiIiqiDcXffqbP33D8wHAOzduxfJycllVi+issQASwFpz549yMzMBHJlSGlB1oWeXu/KEEtEREQBrqjwal/OVlbK1aBFixZQFAV//fVXWVaPqMwwwFJA2rJlCwBATtZDAgdqIiIiInLHFmJ79uwJAAywFLAYYCngCCEcAmyJwisDLxEREQUoT1tfnW33/cPWbsT79u1DTk6ON6tFVC4YYCngnDp1CpcvXwYsgJymL/mOGGKJiIgowJQ0vNrIJj2qV68Oo9GIvXv3eqlWROWHAZYCzp49ewAAUpoOksIQSkREROQpCRI6d+4MANi2bZuPa0NUfAywFHBsAVa+6mTu1+JiKywREREFCDk4GJKu9Mc/nTp1ApB/TEUUSBhgKaAoioJ9+/YBADRZod7ZKUMsERER+Tk5OBiQrYfupQ2x7w6dAQA4ffq0dVYHogDCAEsB5dy5c7h69SqgSNCYw71yFpKIiIjI78mOh+2STlei4yA5JASSEoRatWpBURQcPnzYWzUkKhcMsBRQjh07BgCQs4MhyTJkvd47IZatsEREROSn5OBgl+uKcxwkh4QAsvWYp3Xr1gCA/fv3l65yROWMAZYCSn6AzRt9WJYgeSt8MsQSERGRn7HvOuyKxyFWzj/WadGiBQDg+PHjJa4bkS8wwFJAUQNsTv70OSXtQuMUQywRERH5CU/Cq01Rx0JySIjD7988sxCAdXpCokDCAEsBQwiBkydPAgDkHLuuNLLkva7EAEMsERER+VxxwquNq2Mh+67D6rK8xoBLly4hKyurZJUk8gEGWAoYV69eRXp6OgBAyg1yXOntEEtERETkS8UMrzYFj4WchVcAkCwaVKtWDQBw5syZEj0WkS8wwFLAuHDhAgBAMmkhCSf/urweloiIiCoAd4M2ecIhxDoJrzb16tUDYG2FJQoUWl9XgMhTaoAt2PpqR9LpIAkBYTSWV7WIiIiIvEbSakvc+uqwH53Oui83atasCQCIj48v9eMRlRe2wFLASEhIAABIRtcBFrIE2RAMWa93XcYTQpRueyIiIqJikrRaQJIhTOZS7+vMC+1w+tnWbsvYAux///1X6scjKi8MsBQwkpKSAACS2c3ZREkGJBlSsL7kIZbhlYiIiMqZLbzalCbEnnmhHYyRCowRCk4/1cpluV/eWg4gv5GAKBAwwFLASE5OBuAiwOYFV/vfSxRiGV6JiIionBUMrzYlCbG28GpjjLSGWGdBVjJrAFgHyiQKFAywFDDyA6zGcYWTD3zb8mKFWIZXIiIi8gVXxzIoXog987xjeLUxRipqkHVgYYClwMMASwEjMzMTgHXYd5WbD3zbeo9CLMMrERER+UBRAy0BnoXYM8+3gzGqcHi1VzDESgywFIAYYClgZGdnW+8oecPBFxVebSTZ/Wh+DK9ERETkA666DjtTVIgtKryq5SIVnB5vDbG2AJudnQ2zufQDRxGVBwZYChi2ACspsufhNY+kC3LeCsvwSkRERD5QnPBq4yrEnnm+XbH2Y4zKC7Eif45YBlgKFAywFDByc3Otd4TGfUFnnHUlZnglIiIiHyhJeLUpGGI96TrsjDFKwZnH8rsTm0ymEtWHqLwxwFLAEGrglNyWc8k+xDK8EhERkQ+UJrza2ELs2edKFl5tjFXyj4c4FywFCgZYChiSZAuupQiftuthpRKGYCIiIqLSKGV4tUke3Ba5VUoeXq11YRdiCjwMsBQwJC+ETmE0QsnJte2w1PsjIiIiKg5hLn1X3dRhHWAKA8LOlvJQ3q5HWvXq1UtZK6LywQBLAUOjsV77ev6BBiXaXhiNULJzAGF3tpIhloiIiMqTEKUKsanDOsAYbj1+0RhFqULsnNs+V+8HBweXeD9E5YkBlgKGwWAAAEzt9xNOPdO8WNs6Da82DLFERERUnkoYYu3Dq01JQ+xvgz5FEyU/tIaEhBR7H0S+wABLASM0NBQAUNeix9z7P8Gpp1t4vrEQzsOrDUMsERERladihlhn4dVGYyze+CDzB32Gdno9srKt+zMYDJBlxgIKDPxPpYBhC7CZWRLa6fWYO3KaRy2xDte9usMQS0REROXJwxDrLrzahJ3z7LB+/qDP0FGvAwBk5eQHWKJAwQBLASM8PBwAcDXd+m/bTp/XEusmxLrtOuwMQywRERGVpyKm9vMkvAKAJlcUGWLnDPpcDa8AkJJqLV+lShUPKkrkHxhgKWDExMQAABKTNeoyW4i9c8vRQkG22OHVhiGWiIiIypGrVlhPw6uNqxA7Z9DnmDPoc3TWBzksT0qxHlNVq1atGLUl8i0GWAoYtgB7JUnjsLydXo9HIi9h9v2fqtfFlji82jDEEhERUXlx0pU49e7ihVebgiHWFlwLhlcASMwLsNHR0cV+HCJfYYClgGH7cL2S7PzftqNeh9kjP8HpJ1uULrzaMMQSERFRebELsal3d4AxouTHIbYQ66zV1V5i9ggAbIGlwMIASwGjVq1aAIBLCVqXZUbsfAj1/0yDHMqh4ImIiCjACAFJI5cqvNrc99BqBEsWt2XOnz8PAKhbt26pH4+ovDDAUsCoX78+AOBSvAZGFwP25SQZoIlPgRwRDjksrHQPWMSgCkRERETeIun1kPR6AECtP86Xal9Dxq3DTWGHkCM0bsvZAmy9evVK9XhE5YkBlgJGtWrVEBoaCkVIuBhfuBW2xeb70XR6tvUXSfJOiCUiIiIqY5JeD0mSIOVdvqRcSSzxvoaMW4c+4QfU3/cZc5yWy86RcOXKFQBAbGxsiR+PqLwxwFLAkCRJ/YA9e8ExwLbcMgKxHwDaS8n2G5Q8xLL1lYiIiMqBLbwWVJJW2ILhFQByhMZpiD2TdywVFRWFiIiIYj8Wka8wwFJAady4MQDg6Kn8AQlabhmBeu9LjuHVpiQhluGViIiIyoGr8ApYW2E9DbFCkpyGVxtnIfZY3rFUs2bNilFjIt9jgKWA0qKFdZqcoyfzA2x2Yojz8GpTnBDL8EpERETlwF14tfEkxApJwuBHXYdXm4LXwx69dC8ABlgKPAywFFCaN28OwBpgFcXa+tp0hvNrOxx4EmIZXomIiKgceBJebdyFWFt47Re+36N9HTRmq/ePHDkCgAGWAo/r+UiI/FBcXByCg4ORmZ2Da5YOQr2ZMrQXkjzb2BZiQ0MgsrJhSU8v28oSERERFVCc8GpjHdQpf6RgW3AF4HF4BYBMocVBYzZijSE4ffo0gPzebUSBgi2wFFC0Wi1at24NAKg5K8Xz8GojSYBWCyk8zLE1lq2vREREVMZKEl5tav15AYA1vN45dgP6he8vVni1yRRaLN0PCCEQGxuL6OjoEtWHyFcYYCngdOjQAQAgcuJLvhP7LsUMr0RERFSGbHO8ljS8AoCScAW1/ryAO8duwC0Re0tVn+TzTwAA2rdvX6r9EPkCAywFnI4dOwIALIYMCJQifEoSJA3fAkRERFS2hNFYqvCq7udqWqnDqyJk7N69GwADLAUmHr1TwGnatCnCwsIA2QLFkFXi/YjsbFjSMrxYMyIiIiInvNDbSwrWA5KMFx8dV+J9KELGC8+MxqlTpyDLstqrjSiQMMBSwNFoNOjatSsAwBJyFShBK6rIzoZyNQ1QLN6uHhEREVEhSm5uibaTgvVqeAUAw/aTeHHcY8V/fCHj+Rceg+HkcQBA69atERUVVaI6EfkSAywFpO7duwMAzIYUCFkqfoi1WCDM5jKoGREREZETQhQ7xKrBVXI8zjFsO1Gs/djCa+TueFzTJwYA0K1bt2Ltg8hfMMBSQOrSpQuCgoIgtLkQ2mxAloEgrUdBVmRnQ8nILIdaEhEREdkpRldi+1ZXZzxphVWEjGeff0INr0Iy499//wXAAEuBiwGWAlJISAg6deoEADCH2E2lI8tuQ6yt6zBbX4mIiMgXPGmFLSq8AtZW2AmPuQ6xipDx/ARrcI3cbZ25wWxIhtlsRuPGjREbG1u8ihP5CQZYClh9+/YFAJgNSY6jEbsLsew6TERERL5URFdiT8KrTchW512J1fC6y3HKweY9IgDkH0MRBSIGWApY3bt3R2hoKITWCEWX7rjSSYhl12EiIiLyC066EhccrMlTEx53bIVVhIznXiwcXhVNLvbt2wdJktCnT5/i15nIT2h9XQGiktLr9ejRowf+/PNPmEMSoTFGOBaQZetNUQCLwtZXIiIi8htKbi5kvR5A8VpdCwr5x9oKawuuABC1M75QOXPIFQDWuV9jYmJK9FhE/oABlgLagAED8gJsEnRXYyEJJ//SsgyRmcXWVyIiIvIfea2wpQmvNhOeeAymUA2idv7n/KGgIKJBLpKSgNtvv71Uj0Xka+xCTAGtdevWaNy4MSAJmEOvuC4oBISFc74SERGR/1CMplKHVwAwrN2PqB3OwysAWIJTkZSUhCpVquDGG28s9eMR+RIDLAU0SZJw5513AgBMoZcdB3PKIzKyoFxNs21gvRERERH5mmKBkp5edDkXRHa29WZRoCQmuyzXul8kAGvPtaCgoBI/HpE/YIClgNe3b1+EhYVBaHNhCU4tXECxFG59ZYglIiIiP1DS8TlswVVYFOvvOc5HNrYEZWLXrl3QaDS44447SlxPIn/BAEsBz2AwYODAgQAAU/glh1ZYh9bXghhiiYiIyA8UtxXWFl4L7cdJK2zXYdUBAL1790bNmjVLVkEiP8IASxXC0KFDodPpoOgyHafUcdb6ao9diomIiMjHPG2Fte8y7HR9gVZYRZODjRs3AgDuvffe0lWSyE8wwFKFULVqVQwYMAAAYAy/BKCI1teCGGKJiIjIjxXsMuyKfStsnzH1oSgKunbtikaNGpV1FYnKBQMsVRj33HMPNBoNlOA0WIIyim59LYghloiIiHzEXTdid62uhcrmtcIqmlysWLECAHDfffeVvoJEfoIBliqMWrVqoV+/fgAAY+R5pyMSF4ldiomIiMgHnHUjLqrLsDs3jqoJk8mEjh07om3btt6oIpFfYIClCuXBBx+0XgurT4dZSiz5jhhiiYiIqJzZt8J62mXYGXPGf1i1ahUA4JFHHvFa/Yj8AQMsVSg1atTAXXfdBQAw10stWSusDUMsERERlSNbK2xJW11tOj5QD0II9OzZEy1atPBW9Yj8AgMsVTgjRoywzgsbaoYSk+Pr6hARERF5rLThVQnPwZYtW6DRaDBmzBgv1ozIPzDAUoUTERGBESNGAADM9dMhNCX8EhClaL0lIiIiKgElN7foQi4ICNS9LRwAMGDAANSrV89b1SLyGwywVCENHjwYderUAfQKLPUyGEaJiIgoMJTwmEWYTTDHXMWpU6cQERGBhx9+2MsVI/IPDLBUIen1ejz99NMAAEvtLCghJoZYIiIiqpCE2QShNSO4jbXX2SOPPIKoqCjfVoqojDDAUoXVpUsX9OzZE5AAc6N064BOQngWZBl2iYiIyEeE2eRxOWG2nqTv+UoHZGZmonnz5hgwYEAZ15DIdxhgqUJ74oknYDAYICJNUGpk569gQCUiIiJ/5cFxii24QggoUblYtWoVJEnCs88+C41GUw6VJPINBliq0KpXr44HH3wQAGBukAGht+Sv9LQ1loiIiMhP2Le6AoDQKIi6KQgAcNddd6F58+a+rB5RmWOApQpvyJAhaN26NaAVMDVJKzw3bMEQy1BLREREPuasG7F9q6uNuWE6rly5gjp16uCRRx4pzyoS+QQDLFV4Go0GEydOhF6vh4gyQqmZXbgQW2OJiIjIn9gdlxRsdbWxVMmFUiMHkiRh4sSJMBgM5V1LonLHAEuVQr169fDoo48CyOtKHGx2XpAhloiIiPyIs1ZXABBaBZE3Wq91HTp0KK655hpfVI+o3DHAUqUxaNAgtG/fHtAImJpdhZAYVomIiMh/OWt1BQABgY7PNEZSUhJiY2MxZswYH9SOyDckIdjkRJVHQkICHnroIaSlpUFzyQDtqQhfV4mIiIioWMx1MmFpkAGdToevv/4ajRs39nWViMoNW2CpUqlRowZefvllAICldjYs1XJ8XCMiIiIizylhJqCxdTyPJ598kuGVKh0GWKp0rr/+etx7770AAHOTNMepdYiIiIj8lNAoqNZfB4vFgptuugl33HGHr6tEVO4YYKlSGjNmDFq1amWdWqdFKoTMnvRERETkvwQE2j/dEPHx8ahVqxZeeOEFSJLk62oRlTteA0uVVkJCAh5++GFcvXoV8hU9tEcjIYFfBEREROR/zHHpsNTNgl6vxxdffIGmTZv6ukpEPsEWWKq0atSogTfffBMajQZKTC4sdbN8XSUiIiKiQiwx2epxyksvvcTwSpUaAyxVau3atcPTTz8NALDUz4ClKgd1IiIiIv+hhJkgt7Een4wYMQK9e/f2cY2IfIsBliq9gQMH4s477wQkwNwsDUqIyddVIiIiIoLQWRDZR4bRaMT111+Phx9+2NdVIvI5BlgiAOPHj0f79u0BjYCpVSpHJiYiIiKfEhoFte8OQ2JiIuLi4jB58mTIMg/diTiIE1Ge9PR0PPHEEzh9+jSkLA2C9lWFZOYXBREREZUvIQmYWqdARJoQExODL7/8EjVq1PB1tYj8Ao/OifKEh4fj/fffR0xMDESIBaaWnF6HiIiIypeAgLnZVYhIE0JDQ/H+++8zvBLZYYAlslOjRg18+OGHCAsLg4gwWb9AwBBLREREZU9AwNwwHUp0LrRaLd5++200atTI19Ui8isMsEQFNGjQAFOnToVOp4NSLRfmpmkMsURERFSmBAQscRlQamcDAF5++WV06NDBx7Ui8j8MsEROtG3bFq+99pp1jtjqOTA3ZoglIiKismOpl6nO9frcc8+hT58+Pq4RkX9igCVy4YYbbsCrr74KWZah1MyBuVE6QywRERF5nblOJiz1MwEATzzxBAYOHOjjGhH5LwZYIjduuukmvPzyy5AkCUqtbFgaZDDEEhERkdeYa2fB0iADAPDII4/g7rvv9nGNiPwbAyxREfr164cJEyYAACx1smBpyJZYIiIiKj1znUxYGqYDAEaPHo0RI0b4uEZE/o8BlsgDAwYMwHPPPQcAsNTO5jWxREREVGICAubYDLXldeTIkXjggQd8XCuiwCAJIXgUTuSh5cuX47333oOiKJCv6KE9FglJSL6uFhEREQUI22jDtgGbHnnkEba8EhUDAyxRMW3YsAFTpkyB2WyGnKSD9kgUQywREREVSUDA3CgdSi3rVDnjx4/HkCFDfFwrosDCAEtUAlu3bsXkyZNhNBohpQYh6HAUJAt75BMREZFzQhIwN70KJSYXkiThhRdewG233ebrahEFHAZYohLas2cPJk6ciKysLEiZWgQdjIJk1Pi6WkRERORnhEaBqWUqRKQJWq0WkyZNQu/evX1dLaKAxABLVArHjx/HhAkTkJSUBOTKCDoYBTkryNfVIiIiIj8hdBaYWqVAhFoQGhqKt956Cx07dvR1tYgCFvs8EpVCkyZN8PXXXyMuLg7QKzBdkwIlMtfX1SIiIiI/oISYEHErIEItiI6Oxv/+9z+GV6JSYgsskRekp6fj5Zdfxt69ewEF0J6IgOaywdfVIiIiIh+xVM1FUMdcZGdnIy4uDh988AFq1Kjh62oRBTwGWCIvMRqNeOedd7Bu3ToAgOZiCDSnwyCBIxQTERFVFgICljpZUBpmQgiB9u3b46233kJ4eLivq0ZUITDAEnmRoiiYMWMGZsyYAQCQUnQIOhLJEYqJiIgqASEJmJukQameAwAYOHAgnnrqKWi1Wh/XjKjiYIAlKgMbNmzAO++8g5ycHEjZGmgPRUHO5pcXERFRRSWCLDC1uAoRYYJGo8H48eMxaNAgX1eLqMJhgCUqI8ePH8fLL7+MhIQEwCxBeywCmuRgX1eLiIiIvEyJMCLiJhlJSUkIDw/HlClTOFgTURlhgCUqQykpKXjllVewb98+AIDmQgg0Z3hdLBERUUVgu94VjbNhsVgQFxeHt99+G/Xq1fN11YgqLAZYojJmNpvx9ddfY/78+QAA6WqQ9bpYk8bHNSMiIqKSEhrFer1rtHX6vD59+uD5559HSEiIj2tGVLExwBKVkw0bNuDdd99FVlYWYJQRdDQS8lWdr6tFRERExaSEmGBucRXCYIFWq8WTTz6JO++8E5LEHlZEZY0BlqgcnT9/Hq+++ipOnjwJCEBzLhSa86HsUkxERBQABASUWtmQW+TCaDSievXqmDJlClq2bOnrqhFVGgywROUsJycH06ZNw/LlywHkdSk+Fgkpl12KiYiI/JXQKjA3uQqlmhEA0KVLF0yaNAlRUVG+rRhRJcMAS+Qjq1atwscff2ztUmyWoD0RDk2iwdfVIiIiogKUyFxE9NQgKSkJQUFBGDduHAYPHswuw0Q+wABL5EOXLl3Cm2++iYMHDwIA5MvB0J4Mh2SRfVwzIiIiEpKApX4GlHrZEEKgfv36eO2119C4cWNfV42o0mKAJfIxs9mMWbNmYdasWVAUBciREXScAzwRERH5khJqgrlpGkSoGQAwcOBAPP744wgO5pzuRL7EAEvkJ/bv348333wT8fHxAAD5kgHaM2GQFLbGEhERlRchCVjqZQINcmCxWBAVFYUXXngBN9xwg6+rRkRggCXyK1lZWfjqq6+wZMkS64IcDYKORUBOY2ssERFRWVNC8lpdw6ytrj179sSzzz7LgZqI/AgDLJEf2rlzJ9577z0kJCQAADSXDNCcCYekcLAIIiIibxOSgKVuJqRGuTCbzYiIiMAzzzyDXr16caAmIj/DAEvkpzIzM/Hll19i6dKl1gU5MrQnI6BJ0fu2YkRERBWIEm6EuXEaRKgFANCtWzc8//zzqFatmo9rRkTOMMAS+bnt27fjww8/zL829ooe2lPhkEycN5aIiKikhEaBOS4DSq1sAEBUVBSeeOIJ9O3bl62uRH6MAZYoAGRnZ2P69OlYsGABLBaLdd7YM2GQ4w2QwC9ZIiIiTwkIKNVyYW6YDugVAMCtt96KcePGITIy0se1I6KiMMASBZBjx47hww8/xJEjRwAAUloQtCfDIWcG+bhmRERE/k8Em2FumA6lqhEAULduXTz//PPo0KGDj2tGRJ5igCUKMBaLBYsWLcJ3332H7OxsQAByvAHas2GQzJxyh4iIqCAhWwdpkhsZYTKZoNVqcd999+H++++HXs+xJYgCCQMsUYC6fPkyvvjiC6xfv966wCRBe5bdiomIiGzU7sIN0oFga3fhTp06Yfz48ahfv76Pa0dEJcEASxTg9uzZg08++QSnT58GAEgZWmhPhXPuWCIiqtSUEGt3YRFl7S5cs2ZNPPnkk+jevTsHaSIKYAywRBWA2WzGkiVL8MMPPyAjIwNA3mjFZ8Ig5Wp9XDsiIqLyI4IsMMdmAnVyoSgKdDodhg8fjvvuu4/dhYkqAAZYogokNTUV3333Hf744w8IIQAF0PwXAs35UF4fS0REFZqQBSx1MqFrrljHiADQo0cPPPbYY6hVq5aPa0dE3sIAS1QBnThxAl999RV27NhhXWCWoDkfCs2lEEiC3aaIiKjiEBBQqufAXD9DnRanZcuWePzxx9GmTRsf146IvI0BlqgC2759O7788kucOnXKuiBHtg70dCWYAz0REVFAExBQqhhhicuACDUDsF7nOnbsWPTq1YvXuRJVUAywRBWcxWLBypUr8f333yMxMREAIGVqoTkXCjlJzyBLREQBR4k0wlw/AyLCBAAICwvDyJEjcdddd0Gn4yCGRBUZAyxRJZGTk4Nff/0Vc+bMUQd6ktK11vljU3UMskRE5PeUMJM1uFaxjiys1+sxePBg3HfffYiIiPBx7YioPDDAElUy6enpmDt3LhYsWKAOciFdDbJ2LebUO0RE5IeUUBMssZlQquUCALRaLe644w6MGDEC0dHRPq4dEZUnBliiSiolJQWzZ8/G4sWLYTRaz2RLqUHQng+DdDWILbJERORzSpgJlnoZUKpZv6dkWcbNN9+M0aNHc2RhokqKAZaokrty5QpmzZqFZcuWwWy2DoIhXQ2C9nwouxYTEZFPKBFGmOtlql2FJUnCTTfdhNGjRyMuLs63lSMin2KAJSIAQEJCAn755RcsW7Ysv0U2XQvN+VDIyRzsiYiIypaAgIg0wVwvAyLKOjiTRqNBnz59cP/99yM2NtbHNSQif8AAS0QOEhMTMXfuXPz+++/IyckBkDdq8YUQyInBnEeWiIi8Sp0Op16mOqqwVqvFLbfcguHDh6N27do+riER+RMGWCJyKjU1FfPmzcPChQvVwZ6QK0NzKQSaeAMki+zbChIRUUATkoBSPRuWOlkQIRYAgE6nw2233YZ7770XNWrU8HENicgfMcASkVvp6elYvHgxfvvtNyQnJ1sXmiVo4g3QXAqBZNT4toJERBRQhFaBpVYWLLWyAZ0CAAgNDcXtt9+Ou+++m6MKE5FbDLBE5BGj0YjVq1dj7ty5OHv2rHWhAsiJwdBcDIGcGeTbChIRkV9Tgs2w1MmCUj0H0FgPP2vUqIEhQ4bgtttuQ2hoqI9rSESBgAGWiIpFURRs27YNc+fOxZ49e9TlUmoQNP+FQE7igE9ERGRlHZjJCEvtbIhoI2yHnU2bNsU999yDnj17QqvV+riWRBRIGGCJqMSOHDmCefPmYcOGDbBYrNcvIVe2di+ON0AysXsxEVFlJDQKLNVzoNTKv74VAK6//noMGzYM7dq1gyTxZCcRFR8DLBGVWkJCAn7//XcsXboUqamp1oW27sX/GSClB7FVloioElBCTLDUynboJmwwGNC/f38MGjSIc7gSUakxwBKR1xiNRmzYsAGLFi3CwYMH1eVSutbavTgxGJLCIEtEVJEISUCplgtLrSyISJO6PC4uDoMGDcLNN9+MkJAQH9aQiCoSBlgiKhNHjhzBokWLsHbtWhiNRutCswT5SjA0CQZIGVq2yhIRBTDFYIZSIxuW6jnqaMIajQY33HADBg0axG7CRFQmGGCJqEylpqbizz//xNKlS3Hx4kV1uZSphSbeAPlKMCQz55QlIgoEQlagROfCUjMbIiK/tbVq1aq44447cPvttyMmJsaHNSSiio4BlojKhaIo2Lt3L/744w9s3Lgxv1XWdq1sggHSVV4rS0TkbwQERLgJlho5UGLyr23VaDTo0qULBgwYgK5du3I0YSIqFwywRFTu0tPTsWrVKixbtgwnTpzIX5GjgeZyMOTLwZBzeCBERORLQmeBJSYHSvVsiND8kYTr1KmDAQMGoH///oiOjvZhDYmoMmKAJSKfEULg2LFj+OOPP7BmzRpkZmaq66R0LTSXDdaBn0zsYkxEVB6ERrEOyFQ9ByLSCFunGL1ej549e2LAgAFo27Ytr20lIp9hgCUiv5CTk4O///4bq1atwo4dO/LnlRWAnKKztsomcxRjIiJvE5KAUiUXSkwOlGq5gN05w2uuuQZ9+/ZF7969ERYW5rtKEhHlYYAlIr+TnJyMdevWYdWqVThy5Ej+CosEOVEPOTEYcqoOkmCYJSIqCQEBEWGydhGOzgGC8g8H69evj379+qFPnz6oVauWD2tJRFQYAywR+bWzZ89i9erVWLVqFeLj4/NXmCXISQyzRESeEhAQkSZYquVAic5Vp74BgGrVqqF3797o168fmjRpwi7CROS3GGCJKCAIIXDgwAGsWbMGGzduRHJycv5KhlkiIqfU0Bqd1z3YLrSGhYXhhhtuQN++fdG+fXtoNBof1pSIyDMMsEQUcCwWC/bv348NGzZg48aNSEpKyl9pliAn661djVP1vGaWiCodIQmISCMs1XKhVMsBdPmHeuHh4bjhhhvQs2dPdOzYEUFBQT6sKRFR8THAElFAs1gsOHDgANavX184zFoA+arO2jqbrIdkYusCEVVMQqNAqZprvVUxAtr8w7vIyEg1tHbo0IHztRJRQGOAJaIKQ1EUtWV28+bNjtfMApDSgqyts8l6SFkaSGDrLBEFLhFshiUvtIpIE+w/0qpUqYLu3bvjpptuQrt27RhaiajCYIAlogpJCIFTp07h77//xubNmx1HMwaAbA00yXrIKTpIV3ndLBH5PwEBEW5SW1pFqMVhfYMGDdCtWzd069YNLVq0gCxzDm0iqngYYImoUkhMTMSWLVuwefNm7Nq1C0ajMX9lXldjKUVvHQQqm62zROQfhN4CJcraLViJcuwarNFo0LZtWzW01q5d24c1JSIqHwywRFTpZGVlYefOndiyZQu2b9+OxMRExwI5MuQUa+usfFUHycJWDCIqH0IWEBFGa2CtkgsR4tjKGhERgc6dO6Nbt27o3LkzwsPDfVRTIiLfYIAlokpNCIHTp09j27Zt2L59O/bt2weTyZRfQAGk9CDIqXlhNj2I3Y2JyGsEBESoGUqUtYVVRBoBu3NmsiyjZcuW6Ny5Mzp37oxmzZpxuhsiqtQYYImI7GRlZeHff/9VA+3FixcdC1gAKc0aZuVUHaQMLbsbE5HH1MAaaYSINEGJdOwWDAAxMTHo0qULOnfujI4dO7KVlYjIDgMsEZEbFy5cwM6dO7Fnzx7s3r0bV69edSxgliCnBUGytdBmMtASUT4BAWGwQEQZoURabwhyPPQKCQlB27Zt0bFjR3Tu3Bn169eHJPFzhIjIGQZYIiIPKYqC06dPq2H233//RUZGhmMhs2TtcpwWBDktr8uxwgNRospCSAIizAQlwgQRYYISbgR0jodaBoMBbdq0Qfv27dG+fXs0bdqU09wQEXmIAZaIqIQsFgtOnDiB3bt3Y8+ePdi3bx+ysrIcCymAlKm1htk0a7CVTLx+jaiiEFrFGlbDjXk/TQ7XsAKAXq9HmzZt0K5dO7Rv3x4tWrRgYCUiKiEGWCIiL7FYLDh16hT27duH/fv3Y//+/bhy5UrhgtkayOlB1pbaDC2kDA4MRRQIhCQgQszWFtZwM0SEsdAowQAQGRmJNm3aoE2bNmjdujWaNWsGnU7ngxoTEVU8DLBERGVECIGEhAQ1zO7fvx+nTp1CoY/dvFZaKSNIDbaci5bItwQERLAFItwEEWaGEm6CCDUBTjpQxMbGqoG1TZs2qFu3Lq9hJSIqIwywRETlKD09HYcOHcLhw4fVW2pqauGCZglShhZyRpAabhlqicqGgACCLVBCzdawGpbXFVhb+BApNDQUzZs3R/PmzdGqVSu0bt0aUVFR5V9pIqJKigGWiMiHbK209oH22LFjyM7OLlzYAkhZeS21mVprsM3UQlLkwmWJyCkh53UDDjVZA2vezVlY1el0aNKkCZo3b44WLVqgefPmqFu3LmSZ7zkiIl9hgCUi8jMWiwVnz57FoUOHcOzYMZw4cQInT550HmoFrC2zmVpruLXd2FpLlZyAAPQKlBBzXmC1hlYRYoGzt4ZOp0ODBg3QuHFjNaw2bNiQgy0REfkZBlgiogCgKAouXryIEydO4MSJEzh+/DiOHz+OpKQkFxsAUrYWUpYmP9RmaiHlMNhSxWINqhYooRYIQ15Yzbs5u14VsA6y1KRJEzRu3BiNGzdGkyZNUK9ePYZVIqIAwABLRBTAkpOT1VB7+vRpnDlzBmfPnkVOTo7zDWzBNluTd9OqP2GWGG7JbwmNAmHIC6nBFuv9EDOEwXVQ1Wq1qFevHuLi4hzCarVq1TjIEhFRgGKAJSKqYBRFQXx8PM6cOaOGWtstNzfX9YZmKT/U5mgc7jPcUnkQGiU/nNoHVYMZCHJ9uKLT6RAbG4u4uDjUr18fcXFxaNCgAWrXrs1WVSKiCoYBloiokrAF27Nnz+L8+fO4cOECLly4gPPnz+Py5cuFp/exZ5Eg5ciQcjVAjgZSrsYacvPuM+CSJ9SAqrdABCuA3pL/u97iNqQCQLVq1VC3bl31ZguttWrVYlAlIqokGGCJiAi5ubm4ePGiGmhtPy9evOj6Olt7ZskaZHNlSEYZklEDKVcGjBrr7wy5FZqAADQCQq8AOguEXoHQWSB0dr8HW5yO9FtQlSpVHEKq7VanTh2EhISUw7MhIiJ/xgBLRERu5ebm4vLly/jvv/8QHx+v/rTdT05O9mxHCqyB1hZyTTJgst6Hyfq7bRksDLv+QMgCCFIg8m62+9DlLdPnh1RX16EWFBUVhZo1a6JWrVqoWbOmw61GjRoMqURE5BYDLBERlUpOTg4SEhKQkJCAK1euIDEx0eHnlStXkJqaWrydWuAYas0yJLMEmB3vF/qpMPQ6IyQBaBUIreNPaAWE/c8CYdXTUGoTERGB6OhoxMTEoFq1aoiJiUF0dDSqV6+OWrVqoUaNGjAYDGXzJImIqFJggCUiojJnNBqRlJTkEG5TU1ORkpKClJQU9X5qaqrz+W49ZQFgkQBLXpg1S4AiQbJIectt9/NaeRUAirUMBKzb2P0ORbIuy7sP2zemyAvKAuqyolqMRX5Bu5/C+lMCIFvvC1mo95F3X9jdh5xXRiMAjWLtuqvJW2e7n3cTcl5QLWYQtafT6RAVFYUqVaogKipKvdkHVFtg1ev1JX8gIiIiDzDAEhGRX8nOznYItykpKUhPT0dGRgbS09ORlpaG9PR0h1tGRgYURfFtxe3CLAQKBFW7nz4iSRLCwsIQFhaG8PBwh5ttmX1ArVKlCqpUqQKDwcApZ4iIyG8wwBIRUcBTFAVZWVlIT09HVlYWsrKykJ2drd7sf7fdz8rKQm5uLkwmE4xGo/rTdjOZTA7LyjogazQaBAUFqTedTufyp8Fg8PhmC6ehoaGQZblMnwMREVFZY4AlIiLygMVigRBC/akoitP7FosFiqJAlmXIsgxJktzelyQJWq0WGk0p+vkSERFVEgywREREREREFBDYl4iIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCgtbXFSAi8hUhBHJycnxdDSKiYgkODoYkSb6uBhGRTzDAElGllZOTg5tvvtnX1SAiKpaVK1fCYDD4uhpERD7BLsREREREREQUENgCS0QEQLe9OiSRd05PkiHJEiDJgCwBkgRJtq3LWy5JgCxBspVR10nqNpDslqvL8veprkP+eiFJ+acWpfz9qMvttrNfJvJ2o66TAcC2XFLX2bYRecuE/Ta2fch55dVtHNer+wQgkLdMdrLOoTwc6pi/TCq0rtA2cNzGYT3yt3H1WA6/u6hHoW1c7NdxG+GwfcH9qevt9iXylqPAdpCE3fbW9ZL9OrWsULeR1HJ25fP2I0ki/18wb3n+n1qo62UI9XfrOkDO+926zvq7bTt1nSQgIX87OW+ZeoP9cjgsz99GUZfJEJAlBRrburzf1fV59wFAoy4T0MC6XCMpBbZToMm7D0C9r5ZH/v5kWLeXYX186zrbdtZlEhRobNvDVg8FGsC6HayPZ3tutt+tjyXy7iO/LrC+zTSQ1Le7RpIgQ8pbJuX9Luf960gwGTUYPKYmiIgqOwZYIiIAsEj5h5KSDAl5YTMvGeSvkwA5P61J1jSYtxNb2pFRIJ3YJRu5cLrKTxl2y1Fgmf1jwMmygtshP7jaBdhCywoth5NAXHA97IJ0/tNyuc7V03C2X1fbuVvu8WMVb59Fh14vB1hn61Hwd+FkuXB4TGfrbMEqf539emG3nd0yCCf7zL/ZB9j8UJx3g+vlanCUYBdQ84MuYAuiUAOg/TprgFXyA6BkDX/W7fKCoCRZw2Xectt9tTwku7AMaKT8nxrALmw6WZf3Mlp/F3kBWKiB1bqdKDLAOtufjPxl1t/t62j3NyQiqsTYhZiIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMB5YImIAEAjIIRivS/BOhGk+lPKP93nMI+q3X3YLxP59x2Wu1hnNymocDG5af7y/J/C4T4cthMAINTZONU1AhIgoG4rCm6Tt11hBZfZJj51qFKB18PFrWDZouZmhYvlRa1zN9eru3X2z9DtNs7mc3WyvlAdXcwDC8f1kv06tWz+PiX7OV5t5R3mZbX/93IxDyxKPg+sQP52QhKON9gvh8NyRd2fkv84EICk2M1XKxzWC0mBsKuHgMj7Pe+nrR55v8t5ZWS75fbLrPWw7k4GoEj5PxXkzwOr5C2T4GoeWAkyrPPLapD/N7P9LudtU3BuWVldJ9ntL39fMiT1d+ufRYLJ6Ox9SURU+TDAEhEBMHa+7OsqlA1bPiiFgtGZCHD811J8WZESs//PZoc0IqJAwU9sIiIiIiIiCgiSEKKU5+aJiAKTEAI5OTm+rkZAycnJwcCBAwEAS5YsQXBwsI9r5P/4mhUPX6+iBQcHQ5LYJ4KIKid2ISaiSkuSJBgMBl9XI2AFBwfz9SsmvmbFw9eLiIgKYhdiIiIiIiIiCggMsERERERERBQQGGCJiIiIiIgoIDDAEhERERERUUDgKMREREREREQUENgCS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigKD1dQWIiKhsZGVlYe7cudi4cSPi4+MhyzLq1auHXr16YfDgwQgKCirxvpOTk/HLL7/gn3/+QUJCAvR6PRo0aID+/ftjwIABkCTJ6XbvvPMOVqxYUeT+161bB622fL+iyuL1Sk9Px7///otjx47h2LFjOHr0KJKTkwEAEydOxC233OLRfi5evIhffvkFO3bsQHJyMgwGA5o2bYrbb78dPXv2LHa9vMUfXzN//h8jIqLS4yc3EVEFFB8fj/HjxyM+Ph4AEBwcDJPJhCNHjuDIkSNYvXo1PvnkE4SHhxd730ePHsXzzz+Pq1evAgAMBgOysrKwb98+7Nu3Dxs2bMDUqVPdhhedToewsDCX610F4LJSVq/X33//jalTp5aqbv/88w9ee+015OTkAABCQ0ORnp6OHTt2YMeOHbj11lvx4osv8jUrwN/+x4iIyDsYYImIKhiz2YyXXnoJ8fHxqFatGiZNmoRrr70WiqJg/fr1+OCDD3D8+HG8+eabeP/994u174yMDLz44ou4evUqYmNjMXnyZDRv3hwmkwlLly7F//73P2zfvh2ff/45nn32WZf76dWrF15++eXSPlWvKMvXCwCqVq2KJk2aoGnTpmjWrBkmT57s8baXLl3C66+/jpycHLRp0wYvvfQS6tWrp7Z8zpgxA3/++SdiY2Nx3333FbtuJeXPr5mNP/2PERGR9zDAEhFVMCtWrMCpU6cAAG+++SZat24NAJBlGb1794YQAlOmTMHWrVuxa9cudOzY0eN9z507F8nJydDr9Xj//fdRu3ZtAEBQUBDuuusuZGVl4dtvv8XSpUsxdOhQ1KtXz/tP0MvK8vXq16+fx92EnZk+fTqys7NRtWpVvPvuu2prZkhICB588EEkJSVh6dKl+H97dx5U1Xn/cfxNEAQFRQ1VEGvE4NJEi4IaF3ANEhpTRc1obI211sTRmJk0M2Zo1OwmdYxm4lRTp2oTQ5JqRkymsaQqbhURjEUqgoiCGxIWAUEWL/D7g7nnd4msl8tymc9rJjNXznO+5+HxjJnPfZ7znM8++4xZs2ZZNaNujY48ZiIi0rlpEycRkU7G/PzfqFGjjGBhafr06Xh5edVq21TR0dFGDXN4tRQeHo6rqyuVlZX8+9//bm7X20Vrjpejo6PV/SotLeXYsWMAzJ49u85w+pvf/AaAkpISTpw4YfW1mqujjpmIiHR+CrAiIp1IWVkZ//vf/wB44okn6mzj4ODAuHHjAIiPj29y7WvXrpGdnQ1gnP9T3bp1Y+TIkc2u3V5ac7xaKikpifLycqD+8fby8mLgwIFt2reOPGYiItL5aQmxiEgnkpmZSVVVFQCDBg2qt535WH5+PkVFRfTo0aPR2uYlo43V9vX1JS4ujoyMjHrbnD17lueee44ff/yRLl260LdvXwICApgzZ06bLjtuzfFqKcvx9vX1rbedr68vmZmZXL16tdX7BB17zCx1lHtMRERsSzOwIiKdSG5urvHZ09Oz3nYPP/xwnec0JC8vr1m1S0pKuHfvXp1tcnJyyMrKomvXrpSXl3P16lX27dvHkiVLiIqKalJ/bKE1x6ulzNdxd3ena9eu9bYz983y76ct+gUdb8wsdZR7TEREbEszsCIinYhlYGwo9Li4uNR5TmvU7tatm/HnIUOGMGzYMCZMmICnpyeOjo6UlZURFxfH9u3buXnzJh9++CEeHh5t8n7T1hyvliotLX3g2nUxH2+rfnXkMYOOd4+JiIhtaQZWRETazLx58wgPD6dfv37GZj0uLi5MnjyZ7du3Gxv//OUvf6G6uro9uyp2SveYiEjnpgArItKJWM52mjcAqktZWVmd57RXbYCePXvy29/+FoDbt29z6dKlJp9rrdb+nVrC1dX1gWvXxXy8rfrVkcesMe1xj4mIiG0pwIqIdCKWzx3m5OTU287ymUTLcxrSp0+fZtXu3r17s4PLY489ZnzOyspq1rnWaM3xainzde7evdtgUDT3zfLvpy36BR1vzJqire8xERGxLQVYEZFOZODAgTz0UM0/7Q3tSms+1rt37ybvDmu5E25Dtc275z7yyCNNqtueWnO8WspyvC13JP4p87GGdgS2pY48ZiIi0vkpwIqIdCIuLi48/vjjAMTFxdXZprq6mjNnzgAwZsyYJtceMGAAffv2bbB2aWkp58+fb3ZtswsXLhifzc8qtqbWHK+WGjFihLFJkvn6P3X79m0yMzPbtG8decyaoq3vMRERsS0FWBGRTiY0NBSAc+fOkZyc/MDxmJgYbt26VattUzg4ODBz5kwAjhw5Uufyy/3791NaWoqjoyNPPvlkrWONbZhTVFTEnj17APjZz36Gn59fk/vWEq01Xi3l6urK5MmTAYiKiqK4uPiBNpGRkUDNM6ZBQUFt1reOOmYd9R4TERHbUYAVEelkQkND8fX1pbq6mrVr13L27FkAqqqqiImJYePGjQCMGzeOgICAWufu3LmT4OBggoOD6wyoCxYsoHfv3pSVlbFmzRpSU1MBuH//PlFRUfztb38DYNasWQwYMKDWud9//z1/+tOfOHr0KHfu3DF+Xl5ezokTJ1ixYoURelasWGEsU21trTleAAUFBbX+M7t3716tn9e1WdPSpUtxdXUlLy+P1157jevXrwM1M927d+/mwIEDACxevBh3d/cWj0VTddQx66j3mIiI2I5DtfaQFxHpdLKysnj55Ze5ffs2ULPss6qqioqKCgD8/PzYsmXLA6Fn586d7N69G4CvvvqqziWWqampvPrqqxQWFgI1s38VFRWYTCagZsnohg0bcHZ2rnXewYMH2bBhg/FnV1dXnJ2dKS4uprKyEgBnZ2dWrlzJnDlzbDAKTdea4xUcHNykPixZsoSlS5c+8PPY2FjWr19vhDU3NzdKS0uNMQsLC2PNmjU4ODg07Ze1kY44Zh35HhMREdvo0t4dEBER2/Py8mL37t18+eWXHDt2jNu3b9OlSxcGDRrE9OnTmTt3Lk5OTlbVHjp0KH//+9+JjIzk1KlT/Pjjj7i4uODr60toaChhYWF1zmyNGjWKP/zhD1y4cIHMzEwKCwspLi6mW7du9O/fn9GjR/PMM8/g7e3d0l+/2VpzvFpq/Pjx7Nq1i8jISOLj48nPz8fNzQ0/Pz+eeeYZpkyZ0i796ohj1pHvMRERsQ3NwIqIiIiIiIhd0MMfIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRERERERE7IICrIiIiIiIiNgFBVgRERERERGxCwqwIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRETswkcffURwcDAvvfRSe3dF2llxcTG/+tWvCA4O5vjx4+3dHRERaUNd2rsDIiLSukpKSkhLSyMlJYXU1FRSU1O5efMm1dXVAHz11Vd4eXm1yrWrq6uZN28eOTk5LFq0iBdeeMGqOmlpaURFRQGwfPlyG/awfV25coUzZ86QlJTElStXyMvLo7KyEnd3dwYPHsz48eMJDQ3Fzc2tvbvaobi5ubFgwQJ27NjBxx9/zLhx4+jatWt7d0tERNqAAqyISCe3evVq0tLS2uXaKSkp5OTkABAUFGR1nW3btlFZWcm4ceMYMWKErbrXrlavXs1///vfOo/l5+eTn59PfHw8e/bsISIigrFjx7ZtBzu4efPmsXfvXrKzs9m3bx+LFi1q7y6JiEgb0BJiEZFOzjzTCjUzV6NGjaJ3795tcu0TJ04A4OnpyfDhw62qcf78eRISEgA6VUgxB3t3d3fCwsKIiIhg69at7Nixg7feeovx48cDNWE2IiKCxMTE9uxuh+Pq6srcuXMBiIyM5N69e+3cIxERaQuagRUR6eTCwsLw8PBg6NCh+Pj44ODgwOrVq8nPz2/1a5sD7MSJE3FwcLCqxhdffAGAl5cXv/zlL23Wt/bm4+PD4sWLmT59Os7OzrWODR06lClTpvD555/zySefUFFRwaZNm/j000/bqbcdU0hICDt37uTu3bv885//ZP78+e3dJRERaWWagRUR6eTmzZvHjBkzGDBggNUh0hrXr18nMzMTsH75cE5ODrGxsQDMnDmzTfvf2jZu3MhTTz31QHi1tGjRIvz8/ADIyMggPT29rbpnF7y8vBg5ciQA33zzTTv3RkRE2oJmYEVEpFWYd4c1L1u2xqFDh6iqqgJg2rRpTTrHZDJx5MgRTp48SUpKCgUFBVRWVuLh4YGvry+BgYHMmDGDPn361DovODgYgNDQUCIiIrh27Rr79u0jPj6e3NxcunfvzpAhQ3juuefw9/c3zisvL+fgwYNER0dz48YNysrK8Pb25sknn2T+/Pkt3lxo9OjRxjPM169fZ/DgwVbXysjI4MCBAyQmJpKVlUVZWRlubm64u7vj5eVFQEAAkyZN4uc//7lV9U0mE99//z0xMTFcuXKFwsJCHBwc6NGjBx4eHgwfPpzAwEAmTpyIk5NTrXN/Ov4ZGRns37+fhIQEcnNzKS0t5d13333gy5Bp06aRmJhIZmYmKSkpDBs2zLrBERERu6AAKyIircK8fHj8+PF06WLd/25OnToF1DwnOnDgwEbbX758mXXr1nHjxo0HjuXk5JCTk0NcXBzp6elERETUW+fo0aO89957lJWVGT8rLy/n9OnTxMXF8eqrrzJr1ixyc3OJiIggJSWl1vlXr17lr3/9K6dPn2bTpk0tCrEmk8n4/NBD1i+cOnDgAFu2bKGysrLWzwsLCyksLOTGjRvEx8eTnp7O2rVrm12/oKCAP/7xj3VuGGYe+7S0NL755hsiIyPx8fGpt9bBgwfZtGkTFRUVjV7XclOvU6dOKcCKiHRyCrAiImJzubm5XLx4EbB++XBFRQUXLlwAYPjw4Y0uH05LS2PVqlWUlpYCMGrUKEJCQhg4cCBOTk7k5eWRnJzc6HtD09PTOXLkCL169WL58uXGtc+ePctnn31GWVkZmzdvxt/fn3feeYfLly8ze/ZsJk2ahIeHBzdv3uTTTz8lPT2d8+fPExkZye9+9zurxgDghx9+MD4PGjTIqhpXrlwxwmuPHj2YNWsW/v7+eHh4UFlZSV5eHqmpqZw+fdrqZdpbtmwxwmtAQAAhISF4eXnRvXt3SkpKyMzMJDEx0VgSXp/U1FQOHTpEjx49mD9/PiNGjMDJyYmMjAz69ev3QPtBgwbh6upKaWkpP/zwA0uXLrWq/yIiYh8UYEVExOZOnjxJdXU1zs7OjBs3zqoa6enpxuzj0KFDG2xrMplYt26dEV5ffvllY4daSxMmTGDZsmVkZ2fXWystLQ0/Pz+2bNmCu7u78fNf/OIX+Pj4sH79ekwmE6tWraKoqIiNGzcSGBhotBsyZAhjxoxh8eLF5ObmEhUVxeLFi3F0dGzW7w81y7CvXr0K1IT4AQMGNLsGQExMjDHzunnzZuO5WktBQUEsW7aMwsLCZtcvLy83vhgICgrinXfeeSAI+/v78+tf/5rS0tIGZ5KvXr2Kj48PW7durbVbdn27WDs6OjJkyBASExO5dOkSVVVVLZqpFhGRjk3/wouIiM2Zlw8HBgbi6upqVQ3LZcCNvfbn0KFD3Lx5E6jZdbmu8Gqpb9++DR5/7bXXaoVXsylTpuDp6QnAnTt3CA8PrxVezdzc3HjqqaeMdhkZGQ1ery65ubl8+OGHADg4OLBixYpm1zAz7zjt5uZWZ3i11LNnz2bXv3v3rvFlg7+/f4OzuK6uro0uqX7llVea9aonc9uysjJyc3ObfJ6IiNgfBVgREbGp4uJizp07B1i/fBggLy/P+NyjR48G25oDM8DChQutvibULEmtL+Q5ODjUOhYSElJvHct2t27dalYfysrKiIiIMILnTzeOai5z6C4uLiYmJsbqOvXp2bOnsZvy4cOHW/ROVk9Pzzq/FGiI5f1hed+IiEjnowArIiI2FRsbi8lkwtHRkYkTJ1pdp7y83Phc12yopUuXLgE1M3FN2eypIY2db9mXhnbrtWzXnEB3//59Xn/9dWNjqEmTJrFs2bImn1+XkJAQY9Zz/fr1rFy5ks8//5zz588by65bwsnJidDQUACSk5N59tln2bhxI4cPH252eLdml2XLAGu58ZaIiHQ+egZWRERsyjwb+vjjj+Ph4WF1HctnRhvbjbagoAD4/5nGlnBxcWnwuOXy2IaWR1s+h2l+FVBjTCYTa9eu5cyZMwCMHTuWN954w6rnZy15e3vz/vvv895775GTk0NSUhJJSUlAzTgPGzaM4OBgnn766Ua/LKjPSy+9REVFBdHR0RQVFfHtt9/y7bffAjVfLIwdO5awsLBGZ5Ibm22vi+WXHdbueC0iIvZBM7AiImIzFRUVxMXFAS1bPgw1z2uaFRUVtaiWPTCZTKxfv954dVBgYCDvvvuusTS3pQICAvjiiy948803CQsLM15jU1lZyYULF9i2bRsLFy40wnNzde3alYiICPbs2cPvf/97Ro8ebQT8/Px8/vWvf7F69Wpef/31WoHzp6zZgMly4ynL+0ZERDoffU0pIiI2k5CQYCxJbWmAtXxlSmMB1sPDg+zsbLvdwMccXs2z16NHj2bDhg0ten9sXZydnZk6dSpTp04Famauz549S3R0NKdPn6aoqIi1a9cSGRlJnz59rLrGgAEDeP7553n++eeprKwkLS2NU6dOceDAAe7cucPx48fZsWMHq1atstnvdffuXeNzYxt0iYiIfdMMrIiI2Iw5gPn5+eHl5dWiWpbvPL127VqDbc2v2cnLy2u0bUfz0/A6atQo3n//fZuH17p4eHgwffp0/vznPzN79mwASktLOXnypE3qm5cnL126lO3btxvLsw8dOmST+maZmZkAeHl50a1bN5vWFhGRjkUBVkREbKKqqor//Oc/QM3GQy3Vt29fHn74YQAuXrzYYNvg4GDjc2RkZIuv3VZMJhNvvPGGEV79/f354IMPGn0OtzWMHTvW+Gx+ptiWvLy8jPfYWvOu2foUFBQYr1B67LHHbFZXREQ6JgVYERGxiaSkJCP4WAbKljCHqszMTEpKSuptN23aNCMcfffdd3z99dcN1s3OzrZJ/1rCZDLx1ltvcfz4caB1w+uxY8caDaXmZ5cB+vfv36z6t27dIiEhocE2WVlZxkypt7d3s+o3JDk52fj8xBNP2KyuiIh0THoGVkSkk7tx44ax46yZ+f2iAEePHq21W7CrqytTpkxp9nXMs4je3t5WvQqlLlOnTuW7776jqqqKhIQEJk+eXGe7Ll268Oabb7Jy5UpKS0v56KOPOH78ODNnzmTgwIE4OTmRl5dHSkoKR48eZejQoURERNikj9Z6++23OXr0KFATGF988UWysrIaPKdXr1706tWr2df6+uuvefvttwkICCAgIIBHHnmEnj17cv/+fbKzszl06JAxe96vX79mv/4oOzubV155BW9vbyZOnMjw4cPp27cvXbt2pbCwkOTkZKKioozdpOfOndvs36E+8fHxQM3zvePHj7dZXRER6ZgUYEVEOrmkpCQ2bNhQ7/Ft27bV+nO/fv1aFGBtsXzYLDAwEE9PT3JycoiOjq43wAI8+uijfPzxx6xbt45bt25x7tw5zp07V2db8zOz7SkmJsb4fPPmTV588cVGz1myZAlLly616noVFRXExsYSGxtbb5v+/fuzYcOGBl8P1JBbt26xd+/eeo8/9NBDLFy4kDlz5lhV/6dMJhOHDx8Gamb9rX0FkIiI2A8FWBERabHLly8bs4ct3X3YkqOjI+Hh4XzyySecPn2agoKCBt8tO2TIEPbs2UN0dDQnTpwgLS3NeN6yV69eDB48mDFjxjBjxgyb9dEerF+/njNnzpCYmMiVK1fIz883lhT37NmTRx99lKCgIEJCQqx6bc/IkSPZunUrCQkJJCcnk52dzZ07dygpKcHFxQVvb29GjhzJ008/bbPZecC4JwDmzZtns7oiItJxOVRXV1e3dydERMS+7dq1i127dtGrVy/2799v1bs861NcXMyCBQsoKirihRdeYNGiRTarLfZtzZo1xMbGEhAQwObNm9u7OyIi0ga0iZOIiLSYefnwhAkTbBpeAdzc3IzQ+uWXX3Lv3j2b1hf7lJycTGxsLA4ODixfvry9uyMiIm1EAVZERFrk/v37BAUFsWTJEsLDw1vlGnPnzsXHx4fCwkL+8Y9/tMo1xL7s2LEDgJkzZzJ8+PB27o2IiLQVLSEWERG7cPHiRWJjY3Fzc+PZZ59t7+5IOyouLmbv3r1UV1cTHh7e4HPRIiLSuSjAioiIiIiIiF3QEmIRERERERGxCwqwIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRERERERE7IICrIiIiIiIiNgFBVgRERERERGxCwqwIiIiIiIiYhcUYEVERERERMQuKMCKiIiIiIiIXVCAFREREREREbugACsiIiIiIiJ2QQFWRERERERE7ML/AaGY0i/Eb7FdAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAClpUlEQVR4nOzdd3xTVeMG8OfeJN2lpVA2peytIEuWILIRAUWGyHICCqK8ojgRJw74uX3llSXIFlEQ2SggQwQE2aOlrFK6RzqS3PP7I80labM607TP9/PJp2nuufeetBn3uefccyQhhAARERERERFRGSd7ugJERERERERE7mCAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCsUSYKOjoyFJEiRJwoQJE4pjkxVSz5491b8jEZEjEyZMUD8roqOjPV0d1eLFi9V6LV682NPVoWKmKAratWsHSZIwdepUT1eHvMTu3bvVz4XZs2d7ujpEZUZkZCQkSUJkZKSnq1LsnnjiCUiShC5dukAIUezbL7UW2MWLF2P27NkV6sPrp59+Up9zcnKyp6tDuWbPnq1+mbpzczcg/Pvvv5g6dSqaNWuGoKAghISEoHXr1nj55Zdx+fLlkn1SRFQhxMXFYenSpXjsscfQtm1bhIaGQqfToUqVKujQoQNmzJiB06dPl8i+v/32Wxw5cgR+fn6YNWuW3TJGoxHbt2/Hyy+/jF69eqFmzZrw9fVFUFAQGjZsiFGjRuGnn36CyWRyuT/rEyLu3Hbv3u10ewkJCdi6dSvee+89PPTQQ6hXr57N+iUhOjoa69atw6xZs9C3b19UqVJF3V/Pnj0LvL2kpCTMmzcPvXv3Ro0aNeDr64uAgABERERg8ODB+O6775CVleXWtlJSUvDRRx+hZ8+eqFatGnx8fFCzZk306NEDn332GfR6fYHrV1YNHjxY/bt/9913BV4/JiYGGo0GkiQhLCzM7b+xRWxsLFavXo0XX3wRvXr1QtOmTVGlShXodDpUrlwZbdq0weTJk7Fv3z63t2kymbB8+XIMHToUderUga+vL8LCwtCmTRu89tpriImJcXtbQghs2rQJjzzyCBo3boygoCDodDpUrVoVXbp0wSuvvIKLFy8W6Dk7c+PGDfzyyy+YPXs27r//ftSsWVP9/xQ2zF2+fBkvv/wyWrdujZCQEAQFBaFZs2aYOnUqTp486XJ9S5gs6M3V505Ztm7dOvV5dO/evVDb6N27t7qNVatWqY+/+uqr0Gq12L9/P5YtW1ZcVb5NFIOoqCgBQAAQ48ePt1umR48eapmKYvz48epzjoqKclm+Iv6NPOHNN99U/87u3Nz533300UdCp9M53EZwcLBYsWJFyT85qhAK+tlSWhYtWqTWa9GiRZ6uTrkzdepUodFoXH5mybIsZsyYIYxGY7HtOyMjQ9SoUUMAENOmTbNbZufOnSIsLMytz9UOHTqICxcuON2n9evJnduuXbscbuv48eMu1y9un332mdP99ejRo0Db27x5swgPD3f5POrXry/+/vtvp9v67bffRJUqVZxup0GDBuLw4cNF+AuY7dq1S93mm2++WeTtFca6devUOnTr1q3A68+ZM0ddf8qUKQVe/6WXXnL7dfzggw+KtLQ0p9u7cOGCuPPOO51uJygoSCxdutRl3W7duiV69uzpsl4+Pj5i7ty5BX7uef38889O91OvXr0Cb3PZsmUiKCjIad3nzZvndBv16tUr0OcNACFJkoiOji7kX+L2PgvznItDdna2zeeAq8/kvC5fviwkSRIAROXKlUVWVpbN8scee0x9ftnZ2cVZdaFFMYiMjCyR5uGKxpvP4nirt99+G61atXJaplq1ak6Xf/PNN3jxxRcBADqdDmPHjkWPHj1gMBiwZcsWrF27FmlpaRg7dixCQ0PRv3//Yqs/VUyLFy9mF90K6NSpU2rLZcuWLdGrVy+0bt0aoaGhiIuLw6ZNm7B582YoioJPPvkEKSkpWLBgQbHs+6uvvkJsbCw0Gg1mzpxpt8y1a9eQmJgIAAgLC0Pv3r1x9913o2bNmjAYDDh06BCWLl2K1NRU/PXXX7j33ntx6NAh1KhRw+X+p06dil69ejkt4+yzPG+Lr0ajQbNmzXDp0iVkZma63H9h5N2nv78/GjdujOPHjxd4W4cOHcKQIUOQk5MDAGjYsCHGjh2L+vXrw2g04vz581i4cCHi4uIQFRWF3r1748SJE6hdu3a+be3atQuDBw+GwWAAANx9990YOXIkatWqhbi4OKxfvx47d+7EpUuX0L9/f/z5559o3LhxIf4CZcfgwYNRtWpVxMfHY+/evbh48SIaNmzo9vpLlixR70+cOLFQddDpdGjXrh3at2+Pxo0bo1q1atBoNLh58yb27NmDH3/8EUajET/++CMSEhKwc+dOyHL+jpI3btxAz549cfXqVQBAREQEHnvsMTRr1gx6vR67du3CihUrkJ6ejgkTJiAgIAAPPfSQ3ToZjUYMGDAAhw8fBgD4+flh3LhxuPPOO1G5cmVcuXIFv/zyC/bu3YucnBy89NJLCAoKwpQpUwr1NwDyvy90Oh1atWqFo0ePFmp7mzZtwvjx42EymSBJEoYPH45+/fpBp9Ph999/x/fff4+cnBy88MILCA4OxhNPPGF3O99++61bvQ7Wr1+PpUuXAgDuvfde1KtXr1D1Lgt8fHwwZswYfPbZZwDMxxZvv/222+svWbJEzX+PPPIIfH19bZbPmjULCxcuxOXLl7Fw4UJMmjSp+CpfrHHYiYrYulhWW0kqOusWWGdn7N1x/fp1ERAQIAAIrVYrtm3blq+MdStC3bp1RWZmZpH2SVRWsQW2ZPXt21eMGTPGaavYmjVrhFarVf8PO3bsKPJ+DQaDqFu3rgAg+vbt67Dc999/L1q3bi1++OGHfGfiLa5evSpatmyp1m/cuHEOt1ecr6cLFy6IcePGiU8//VTs27dPZGRkCCFsW12K2/r168UzzzwjFi5cKP755x9hNBpteqwVpAW2V69e6noTJ04UBoMhX5mMjAzRu3dvtdxzzz2Xr0xWVpaIiIhQy7z88st29zd//ny1TK9evdyupz1loQVWCCGee+45tR6vv/662+v98ccf6nqtWrUq1L6joqJctqoeO3ZMVK1aVd3XypUr7ZYbMWKEWua+++4T6enp+crs3btXPTapUqWKSEpKsrutpUuX2hyfOGpN/Pbbb9VyVatWtfv6c9e+ffvEk08+Kb755hvx119/qS1zlu0XpDUyIyND1KpVS1138eLF+cps3bpV/UwMCgoSsbGxha67EEJ06tRJ3d+yZcuKtC1Pt8AKIcTRo0dt/vaKori9bsOGDdV1HX0vdenSRQAQTZs2LdC2XWGALUEMsGVTcQbY6dOnq9t68cUXHZZ7+OGH1XJffPFFkfZJVFYxwJasxMREt8rNmDHDrYDorvXr16vbc9YlMSkpya0DlBMnTqjb8/f3V8NkXqXxeirJAGtPYQJsVlaW2nVcq9WK5ORkh2Wt/7Z33XVXvuUrV65Ul7dv397p/2vgwIFq2e3bt7tVV3vKSoA9duxYoQ7ULd0gAYhPPvmkROs4b948dV9jx47Nt/z69etql01/f39x8+ZNh9v68MMP1W299tprdsuMGTNGLfPll186rVu7du3UssePHy/YE3NDYQLs//3f/6nrPfzwww7Lvfjii2q5//znP4Wu48mTJ9XthISECL1eX+htCVE2AqwQQrRp06bAJz2tT+y0bt3aYbkvv/xSLWevkaewSnwUYsvIur///rv6mL2LoB0N7qQoClavXo2RI0eifv36CAgIQHBwMJo1a4bJkyfjxIkTTutmPWCPpYvujh07MHr0aNSvXx9+fn75BuoxGo3YsmULZsyYgW7duqmDGwQHB6NJkyaYMGEC/vjjD4f7tIwQat3lpH79+vmes6O/lTuDSRw8eBBPPfUUmjZtiuDgYAQGBqJhw4YYP348du7c6XL9vINIZGRk4OOPP0b79u1RuXJlBAYGomXLlpg1axaSkpJcbq8iEkJgzZo1AOByVM5p06ap960vci8N+/fvx+TJk9GiRQuEhobCz88PERERGDlyJDZt2uR0XXujR8bExGDGjBlo1qwZAgMDERoaii5duuCrr76C0Wh0q07p6en4v//7P/Tp0we1atVSB5/o0KED3njjDdy6dcvp+nnfKyaTCYsXL0afPn1Qu3ZtaLVauwNB3Lx5EzNnzkSLFi0QGBiIsLAwdOzYEZ988onadcjRqIC//fabuk/r/6cz06ZNU9fZvHmzW+u4w9UoxCX1f9u4cSMGDx6MGjVqwM/PD5GRkRgzZgz2799f4OeQk5OD7777Dg888ADq1q0LPz8/hIaG4o477sCMGTMcDp529uxZBAYGQpIkhISEICoqyuE+kpKSEBERAUmSoNFonH5ue4PKlSu7Ve7hhx9W77v6jnTH999/D8DcBXbYsGEOy4WGhrr1/dWqVSs0a9YMAJCZmYkLFy4UuY7lWUJCgtrtslq1aggJCXFYtkmTJur9jIyMfMutjw8effRRp/+vcePGqfd/+OGHAtW5MCzdeiVJgizLmD9/vt1yv/32GyZMmIDGjRsjODgYAQEBaNiwISZMmIC9e/c63P6dd96Jtm3bAjAP+LNr1y6XddLr9er3vFarxaOPPlqIZ+a+Fi1aqPdjY2PzLd+9e7faZbNfv35OL3Gy/v+tWLHCbpm4uDj1vqtu4q5eW55gfTz13HPPOSw3depU9bW+evXqQu9v0aJF6v1Ro0bB39+/0Ntyl8lkUkf0tRy3p6Sk5CsXExODV199FR07dkR4eDh8fHxQo0YN9OnTB19//bV6+YE91t3i3b08ybqcs271I0eOhFZrvmLV8l1SLIojBTsbxMm65dXZzd5ZuQsXLticFbB3k2XZaVcQ69a2nTt3imeeecbudqxbSN25mN3yXO1dlGzd8upqfUd/K0cMBoN48sknXW57xIgRTs8MWcr16NFDXLx4UbRo0cLhturVq1euWpCLqwXW+ky3q25FJpNJVKpUSX3NpqamFnq/7kpPTxcjR450+VoZNGiQw/rkPXO+efNmERoa6nBbffr0cdh10OLXX38V1apVc1qn4OBgsWHDBofbsH6vJCQkiG7dutl93VrbuXOnqFy5ssN9tm7dWsTExDg8I2oymUT9+vUFYB6swFVX8MzMTHV/ERERwmQyOS1fEK56dxT3/81oNDr9XJNlWcydO9ftFrO//vpL/Vs6uvn4+IhvvvnG7vrW3dk6d+7scLCi4cOHq+VeffVVp3/T8sS6laBZs2ZF2lZWVpbaFfGee+4pphoK0aFDB7WOBw4csFuGLbBmmZmZahdInU7ntAX233//Vbc/dOjQfMutW1U3b97sdL9HjhxRy9aoUcOtutrjTgvskSNHRPXq1QVgbmX+/vvv85WJi4uz6Urt6Pb444+LnJwcu/uxHljLnd4J1l1shwwZUpCnXSjWrVX2WmCtW1Vfeukll9uzHHcAEGfOnMm3/NFHH1WXu2qBbd++vQAgNBqNSEhIcP9JucnRd7cjKSkpamt0SEiIy+9Y60sXTp48WeD6GQwG9TUKQBw8eLDA28jLVQtsZmameOCBB2ze0/aOPd577z3h6+vr9H3RuHFjcfbsWbv7iY+PFz4+PgKACAwMdNndPSMjQwQHB6ufSXFxcU7Lt23bVgAQYWFhxXYsVOIBds+ePWL9+vU2L5z169fnu50+fdpmvQsXLthcC9CtWzfxwQcfiBUrVohly5aJ559/3uZg1NGHonVYGTBggPpB/PLLL4tly5aJxYsXiylTpojr16+r63Tq1EkEBQWJIUOGiDlz5oilS5eK1atXi08//VQ89dRTIjAwUN2mvWtM/v77b7F+/Xpx7733quX++9//5nvOeUcJdCfAjho1Si3j5+cnnn76abFkyRKxbNkyMX36dPUFBUD069fPYRcZS5m2bduKZs2aCUmSxJAhQ8TXX38tVq1aJd5//32b62S6d+/usE7exvo10b17d9GgQQPh6+srgoODRaNGjcSjjz4qfv75Z5fdi1asWOHwdW+P9f+3OD74nMnKyhJ33323ur+GDRuKV155RXz//fdi5cqV4p133hFNmjRRl/fq1cvuh4r1gceQIUNEQECA8Pf3F08//bRYvHixWLFihZgxY4bNe8LZCaW1a9eqXeF0Op146KGHxOeffy5Wr14t/ve//4kxY8aooznLsuywK4v139Lyvr7zzjvFBx98IFauXCm+/fZb8eyzz6rlT548qR6EW173n3zyiVi1apX47LPPRNeuXdUwVLt2bYdfKO+99566DVfXvnz//fdq2bfeestp2YIqSIAtjv/blClTbILlk08+KZYsWSK+//57MXXqVPVvO3ToUJeB488//1TLS5Ik+vfvL+bNmydWrVolFi9eLJ5++mmb/5Wj7Tz00ENO6/6///1PXX733XcX6Zotb7Nq1Sqb74Gi2LFjh7qtonS9s5adnW1zQuXGjRt2y1kH2A4dOoimTZuKgIAAERAQIOrVqyeGDx8uli1bVqT/rTcEWCGEGDRokLreY4895vAa2D59+qjvLXsnaC2fl0DBAiwAcevWLbfra81VgN25c6catAICAsSvv/6ar0xCQoLN9XZ33nmneOutt8Ty5cvFihUrxKuvvqp+djv7Ti7ogbp1YP7pp58K8/TdduHCBZvnsH79+nxl5s6dqy4vaIBds2ZNvuVr1qxRl7t7DeyECRMK/NzcYdm+uwF2//79BXovWX9vrlq1qsD127Bhg7p+y5YtC7y+Pc4CbFJSkujevbu6z8cff9zuyVrrS9lCQ0PFpEmTxHfffafmFussUqNGDYeft9bfqQsXLnRab+sTO/ZOlOU1efJktbyjE5YFVSan0TGZTOKuu+4SAISvr69YvXq13XKxsbFqC60sy+Lff//NVybvlCndunUTKSkpTve/fft2p62X8fHxaouPLMvi0qVLdssV9zQ61teuVK9e3e4ZpOjoaJuWDUfXW1r/TXx8fMQvv/xi93lab6sooSsjI8PuiYvC3FxND+CKu9PodOrUyenw6G+99ZbTL+W8xo0bp5a3d3a5OOW9NtfewU5OTo5Nnb7++ut8ZawPPABzS+K5c+fylTt48KDaQmBvKHUhhIiJiVG/TCMiIhxeQ3Pw4EEREhIiAIg6derYPZOet2fH9OnTnZ7Vs26hnTJlit2yeV8X9r5QYmNj1YDt6gvznnvuEYD5bPWVK1ecli2oggTYov7frK9zCQ0NtTtQw5kzZ9QpViw3e8EzNTVVHQwoNDRU7N692+7zO3/+vHoCLTAw0O6Bc2JioqhTp476N96zZ4+67OzZs2o4r1Spkrh48aLd/bjr9OnTxfb5VdgQUBD33Xef+n/47LPPirQt65M29g6AC8P65I696zQt3J1Gp2nTpuKff/4pVF28JcCeO3fOpudKw4YNxezZs8XSpUvFwoULxcsvv6y2Dvn6+jo8AJ04caK6jU8//dTpPq2POQCIvXv3FuSpqpwF2LVr16otR2FhYeLPP/+0uw3LyTFJksT//d//2S2TlpYm+vbtq+7LUUC37pnh7EA9OjpabeGrVq1asZ0Ei4qKUj8P1q5dK7755hsxYcIE4e/vr9Zr4sSJdtddsmSJWmbYsGFO9xMbG2vz/3vnnXfylVEURQwbNkwt4+fnJ5566inx1VdfiRUrVogPP/zQ5vtz2LBhLkN/YTn77rXH+m/hTiPCG2+8oZZ/++23C1y/IUOGqOsX17XQjgLs9evXRevWrdX9ORps7aefflLL9O7dW8THx9st980336jlRo4cabfMxo0b1TKuettYh2JnveUsFi9e7PbnjrvKZIC1nq/L1Zfv2bNn1RadJ598Mt9y64PSwMBAce3aNbeekysXL150+UYo7gBraYIHYPcMpcXBgwfVD9169erZPWNj/aE2Z84ch9tasGCBW+VcsX6NFPXmzgeVM2+++abw8/MTAwYMEHPmzBHff/+9WLVqlfj000/Fgw8+aDPPYq1atcTVq1ftbuf5559Xy33++ecu91vQ8oV1/fp19Qzzgw8+6LRsTk6OaNCggQDM3UvyyhuE/vjjD4fbsh4Mwl65qVOnqmHj6NGjTuv13Xffqdtavnx5vuXW75V27do5Da9//fWXWrZVq1ZO58a03q6jL1HrAbnshUIhzJ9LljKDBg1y+lwLo6ABtij/N+svbXsjPFpYf/kB9gPsJ598oi7/+eefnT5H65a/d999126Z3bt3C1mW1f9XUlKSyMnJsRlspDhOFhV07mhnt6IOHOeKdc+Q6tWr2x2htCAeeeQRdXvFMXBLYmKiqFmzprpNZ6F40aJFQqvVih49eojXX39dLFmyRKxZs0Z89dVX4tFHHxV+fn7qdoKDgwsVYr0lwAphDlS9e/dWv9/t3SZPnizOnz/vcBvWPRM6dOjgtKeRdasvALFx48YC1dfCUYD95ptv1Pdv7dq1HXbr/Pvvv9X1X3jhBaf7SkxMVE+A9unTx26ZTZs2qdtzdqBufZLa1X4L4uuvv3b4/2vUqJHTrrwXLlxQywYEBDjtuvnRRx/ZbNtRDwqj0SheeeUVmx58eW933XWX2LhxY7GOIpuXq+/evD799FN1nRkzZhR7eWs3b9606cbvqsusu+wF2HPnzonIyEgBmE/YzJ8/3+H6d9xxhwDMreeuPuvHjh2rHoPFxMTkW240GtXPZkmSHJ74tT6xU716dbdO7Bw8eFD92z/++OMuy7ujTAZYy5m2SpUquTXlSOfOnR2+6K0PPIpjNEZrlhaH+++/3+7y4gyw1n9jZ6N9WVifgbfXcmpZptFonI5saR3UR40a5XK/jpSlAHvixAmn12/8+++/olGjRur+evfubbec9bXICxYscLnfV155RS3/3nvvFbr+rliPyufobLa1WbNmOXydWh94tG3b1ul2rENn3msXFUURYWFhAnA+DYdFenq6+mVh7/9t/V5x1dXltddeU8vaa2W29uOPP7r8ErUOVjNnzrRbxnrEQ3fOThZUQQJsUf5vWVlZ6smQ6tWrOw3/QgjRvHlzdVv2Aqylx0yTJk1cPkchhDo9grMDfev31ciRI8XMmTPV38eMGePWflzxlgB78uRJm4NQR72XCsLSvR6Aw5N57jIajTYtZK5O7pw/f97pSeeYmBiba2mbNWvm8jWalzcFWCGEOH78uM1Jpby3wMBA8eSTTzoc1yA5Odmm+7aj0Wk///zzfNv+4YcfClxfIewHWOtw2LRpU3H58mWH61t6FEmS5FYjxOjRowVgbom216vEaDSqny2SJNntRacoik2X5RMnTrj/hF1wFGB1Op2YPHmy02myhLBt/erTp4/dUbz3799vc4kIAPHUU0853GZSUpL46KOPnF5H2a1bN7Fv374iP39HXH335vXuu++q67gzxoF1N2hnfwt7Pv74Y3VdVy3fBZE3wB4+fFiEh4cLwPG14BbWo2q7c0y5ZcsWp9/PQgib709HPQut37vungg4d+6cy2PqgjIPC1XG7NmzBwBQs2ZN/Pbbby7LazQaAOZR5TIzMx2OCta9e3e365Camorly5fj119/xYkTJxAfH+9w1DXLZNIl6dChQ+r9vn37uizft29f7NixA4B5xOKOHTvaLdekSROnI1taT4JelNGIIyMj1ZHzPM3ZZPcA0LJlS/z2229o1aoVsrKysH37dhw8eBCdOnUqpRoWjeX9A5hfmz/99JPT8tb/19OnT9sdvRcwT3bvjLPXysmTJ5GYmAgACA4OdlknAAgKCkJycjJOnz7ttJyr97VlgnbAPOm4M5ZRuZ2599570aRJE5w7dw5LlizBO++8A51Opy43GAzqCOS1atXCoEGDXG6zJBXl//bPP/+oIxf26NFD/ax15L777nP4/0pJScHx48cBANWrV3f7NQDA6Wvgrbfewo4dO3Dw4EGbESnr16+Pr776yuU+3DF79myHI+WXFbGxsRg8eDDS0tIAAFOmTLEZjbiwLO9bAAgLCyvStp577jls3boVABAREeFytMtGjRo5XV63bl1s3rwZrVq1QmxsLM6cOYO1a9di5MiRRapnWWQ0GjF9+nR8+eWX0Gq1mDlzJsaNG4dGjRrBYDDg2LFjmDdvHtavX48FCxbg0KFD2Lp1a75RakNCQjB//nx11NB33nkHO3fuxIgRI1CrVi3cunUL69evx/bt2+Hv74/Q0FDcuHEDACDLRZ+4QlEUPPvss/jyyy8BAB06dMCvv/6KqlWrOlzH8p0WGhpqcyzkSHZ2tvrz0qVLaN68uc1yjUaDcePG4YMPPoAQAkuWLMn3/t6zZw8uXrwIAGjfvr3L44aCmDRpEiZNmgTAPBr7jRs3sGvXLnz44Yf4+uuv8d///hfvvPMOZs2aZXf9zz77DHfffTcyMjKwbds2tGzZEo899hiaNm0KvV6P3bt344cffoDBYECDBg1w6dIlAI7/f7/99htGjRqFlJQU9OzZE7NmzUKnTp3g7++PmJgYrFmzBu+++y727t2L++67DytXrsSQIUOK7e/hDaxHH37sscdKZB/bt2/HsGHDkJ6ejoCAAKxduxYDBgxwWN76WC87O9vld+q1a9fU+46+UydOnIgPP/wQALB06VK8+eabNiOVCyGwdOlSm/LuqFKlinq/uGY2KXMBNj09HQkJCQDM0yU4G7LfnqSkJIcB1vpAzZldu3bhkUcesTuEuT2pqalu16+wLF8ggO1Q5o5Yl7FeNy9nXxoA4Ovrq97Pyspyud/ywjIl0X//+18AwKZNm/IFWMvBNeDe3yYzM1O9HxwcXEw1zc96+pERI0YUaF1nHyxFea1Y12ndunVYt25dsdQJcP2+vn79unq/QYMGTstWrlwZoaGhSE5OdlhGkiQ89dRT+M9//oObN2/il19+wYMPPqgu//nnn9WpCSZOnOgy9JW0ovzfrP92rsKEqzJXrlyBoigAzF+81l++rjh7DWi1Wvzwww9o06aNGt4sj1WqVMntfXizxMRE9O3bVz1QHT58OD777LNi2bYlDGg0miJNGfHqq6+qoaV69erYtm2by9emO6pUqYLnnntOPdjftGlTuQyw48ePV6eyWbduHR544AF1ma+vL7p164Zu3brhhRdewPz58/HPP//gmWeeUaeAsTZhwgSkp6fjhRdegMFgwJ9//ok///zTpkxwcDCWL1+ON998Uz2GcHcaJ2c+++wzdQqQ3r17Y/369TbfpfZYvj+SkpIKdUxoz4QJE/DBBx8AsH+gbn1yxV5g2bp1qzr1mj1Dhw51q34+Pj6oV68eJkyYgFGjRuH+++/Hjh078MorryAkJARTpkzJt06rVq2wefNmDB8+HHFxcYiOjsYbb7xhU0aSJLzxxhtIS0tTpyOy9//77bffMGjQICiKguHDh2PVqlU2QbdRo0aYNWsW7rvvPtxzzz3IysrC2LFjce7cOdSoUcOt51hSSusY7NChQzh58iQAc8Oas1BZWDdv3sSgQYOQk5ODypUrY9OmTejcubPTdayPq956660C7c/R+6JZs2bo3Lkz9u/fj6ioKPz+++82J/atT+x07NgRLVu2dGt/1t/F1v+HoiiWeWCLk725jQrC2TxH7nz5nj9/HoMGDVLDa9OmTdWznitWrMD69evVW3h4OACo87OVJMuBGQAEBga6LG/9xrZeN6/iOKNaXlm/ac+cOZNveWhoqHo/Pj7e5fYsJ2byrlvcivIecvb+KcprpaTqBLh+X1t6Tmi1WpuWUkfceX9NmDBBDX4LFiywWWb5XZIkPP744y63VdKK8n9LT09X7wcEBLgs7+xvV5TXgMFgcLq8atWqNq2DDRo0QLt27Qq9P2+SkpKCvn37qvO9Dh48GD/88EOxnTixvM5NJpPTA3Zn3nnnHbz33nsAzP+r7du3u3Ui1l2uPqu93aFDh9Tw2r9/f5vwmte7776rBpV169bZnISy9uyzz+LMmTN4/vnn0bp1awQHB8PPzw+NGjXCtGnTcPz4cQwePNjme6s4Aov1nNMZGRlu9cwqie+Ppk2bokuXLgCAqKgomzmi9Xo91q5dCwDw8/PD6NGj863/1FNPYdiwYQ5vheHn54eFCxeqn9lvv/22etIvr+7du+PcuXOYO3cuunXrhrCwMOh0OtSqVQsjR47Enj178NZbb7n8/82YMQOKokCWZXz66acOvy86duyICRMmADAfU7o7V2hJKq1jMOvW13HjxpXISWkhhJolcnJyXB73ACV3XGXdqmrpTWbh7tyveVnXtbjmzi1zLbDWweuee+7B77//Xqr7f//999WzA6+++irefvtthxN9P/nkk6VWL+uzRe5MIG194FmSrX3u0uv1atexooqIiMBdd91VLNtyxrrLg70WOesDMOszYY5cvnzZ7rrFzfIekiQJRqOxTJyksH5fv/HGGwU+W1gUllBlNBphMBhchlh33l9VqlTB8OHDsXz5cmzduhUxMTGIiIjA5cuXsW3bNgDm1oX69esX/Ql4kPX/zZ3w4uxvZ72tcePG5ftiLIopU6bYvL/OnTuH1157DXPnzi2W7Z85c6bYglG3bt2KpeURMB9I9uvXD3///TcAoF+/flizZo1bJ2rcZX1iIDEx0a0TGdY+/PBDvP766wDMLUDbtm0r1u6YgOvPam+3adMm9X7v3r2dlvX390eXLl2wadMmCCFw+PBhh4G3QYMGmDdvnsNtpaen48qVKwDMJ7BatGhRiNrbeu6553D69GmsX78e+/fvR79+/bBlyxanxymWy0ksn7HFZeLEiWrL8+LFi9GjRw8AwNq1a9UT/0OHDi3RE855RUREoHnz5jh58iRiY2Nx9uzZfF2gLUJCQjBz5kzMnDnT4fZOnTql3u/QoYPNsqioKHV5ixYtUKtWLad16927t9orzZ2u3CWtNI7BsrKysHLlSvX3kuo+XKNGDcydOxdjxoxBRkYGBg0ahE2bNqmvSXusv1N37tzp8hIpd40cORLPPfccMjMzsXbtWnzxxRcIDAxERkaG2qPDz88Po0aNcnubxXkpikWZC7AhISEICgpCenp6qVxbmtf27dsBANWqVcOcOXMchte0tDSbf0hJq1mzpnr//PnzLstbl3H1oVQa4uLiCn1WMq/x48eXytk/V2frrA/CLAeQjiiKgqNHjwIwt4g5+kIqDrVr18axY8cghMC1a9dQt27dEttXQepkUdrv61q1aqnXXl66dAlNmzZ1WDYpKcntA+BJkyZh+fLlUBQFCxcuxOzZs7Fw4UL1jPlTTz1V5Lp7mvVnx4ULF1yWd1ampF4Dy5cvx/LlywEA7dq1Q3x8PC5fvoyPP/4Y/fr1Q69evYq8j5UrVxbbSZddu3a5da21K+np6RgwYAAOHjwIAOjVqxd++uknmy7hxSEyMhL79u0DYD4IqVOnjtvrzp8/Hy+99BIA83f7li1b0KZNm2KtH1B6vVs8xboV1Z1u8SEhIep9d07IOfLHH3+oLaSdO3eGVlv0Q0adTodVq1Zh1KhR+PHHH90KsbVr10ZycjLi4uLcOgnprhEjRuC5555TW1wtB+rWLW6OWpncCUyFZf13KMoJmaSkJPW7LzAwEG3btrVZ7qnXVXFp0aIFZFmGoig4duyY2pLsiPV4GO6eRPvxxx/V/0HXrl1LtPFh5MiRkCTJ7RBbUt+plSpVwkMPPYRly5YhPT0da9euxfjx47F27Vq1cWzYsGEF+qy1zkv16tUrlnqWWtOM9YvKVZeRe+65B4D5YNOdg6bidPPmTQDmAUCcvRG2b9/usGuHRUGesyvWgzBZWnicsW7tdDSAEzln3fpv70OrZcuW6sHcyZMnnX6A/Pnnn+q10l27di3RVnHrD7viavUuqrZt26pfkDt27HD53ilO7du3V+/v2rXLadndu3e7vd1u3bqp138sXLgQBoMBCxcuBGA+AVYeBrm488474ePjA8D8fnB1uYRl4Dh7qlatqrbgHDhwoFjGDoiKilKvEQsMDMSKFSuwbNkyaDQaKIqCcePG2YSb8kKv1+P+++9Xg+U999yDX375BX5+fsW+L+sDvbNnz7q93pdffokXXngBgPmAfPPmzflagIqLq89qb2cdLiwtos5YtzRZt04XlHWQK87LISwh9qGHHgIANcQ6+kywfKdlZWXZdPUtKsuBOmA+IbRu3TpER0err6c6deq4bPEubkII9RpDwPUYBs788MMPalfRMWPG5Pt88NTrqrhUqlRJHaQwJSUFBw4ccFj2ypUramtzRESE270JLN/pQMm1vlobMWIEli9fDq1Wi4yMDAwcONBhT9SSPNaz1424sN2HAdtBo+64446iVS5XqQVY66ZuV2duxo8fr97Pe2F6SbN0j7p06ZLD0GkymdTreZwpyHN2JTIyUu02+88//zgNsYcPH8bOnTsBmM90lIVrwSyjEBfHrTRaXy9evGjTxXHgwIH5ykiSpI7yKYTA559/7nB71gOqlPQAI6NGjVJDx9y5c8vEmVKNRoMxY8YAMH8J/u9//yu1fVsHyS+//NJpCPv0008LtO2nn34agPnLcfr06epJjPHjxxdrN05P8fX1VV/7N2/eVK/Ds2fz5s0uR4y2fLbr9Xp1AJXCMplMGDNmjHrQ+9lnn6Fx48bo1q0bXnnlFQDmURefeOKJIu0HMI9CXFyfX0Vtfc3KysKQIUPUg5quXbti06ZNBe7a6y7rwessrb2uLFiwAFOnTgVgPrHw66+/uhyQpLASExNt3rf2Pqu9nfVJhDVr1jj9DIuOjlb/T7IsF/pym127dqnXgTZo0EANesVFq9Vi5cqVGD58OABziO3fv7/dEDtu3Dj1/ltvvVWs445YH4gvXrwYS5YsUY/9xo8fX+qX4Pz000+4desWAPNgZw0bNizUduLi4tReIzqdDtOnT89XplGjRmqovXLlSr6BvPKy7kprfWLYk6yPp5x9f3/++efq/9XdwS0vX76sHksHBQUVeFDMwhoxYgR++OEHaLVa6PV6DBw40O7J9fbt26sn0VetWqUONFUc7r33XnVGit27d2P37t3qd07dunVx3333FWh71t8dxTajR3HMxePOPLDTpk1Ty/z+++9Ot2cymWzmdnvuuedEdna2w/J6vV4sWrRIrFixIt8y6/n73Jl/r0+fPmr5efPm5Vuek5MjJk6caDM3lqM5q+bNm6eWWbJkict9u5ord9WqVerymjVritOnT+crc/nyZZu5y7744gu727Isd2ceuoKULet+/vlnsWbNGqdzBeadB7Znz54Oy167dk0EBASoc3Zt3749X5lFixap26pbt65bcxsX1YwZM9R93nvvveLGjRsOy5pMJrFt2zbx9ttv51vmaAJ6e1yVvXLlijr/oK+vr8v3xM2bN8WcOXPEP//8k29ZQeaVFkKIbt26qeWnTJkiTCZTvjJ55/p0Zy665ORk9f9vfTt37pxb9SqsgswDW9T/2549e9TllStXFkePHs1X5ty5c+oE6JabvXnm0tPT1XnvJEkSH374od3/hUVycrL49NNPxbZt2/Ite/3119V9DR8+3GaZwWBQ5wcHIP773/86/Rt4i+zsbDFw4ED1eXXq1EmkpKSU6D6zsrLU+SS7d+/usvySJUvUSe4DAgIKPe/tn3/+KRYsWGB3Hk+LK1euiI4dO6p/j8aNGwuDwVCg/RRmHti885oXRGHmgb1165bNnJ6TJ0+2+x2WkJAgOnXqpJYbOHCg3e1dunTJ6byrW7duFSEhIer7tKhzFzv7jDEYDGL48OHq8rvvvtvua/qhhx5Sy4wcOdLp695gMIh169Y5PP6xpiiKiIyMVJ9r9erV1f2cP3++wM/VnvPnz4u5c+e6fK9u27bNZo5eR5/der1eHDx40OF2Lly4IO644w51O7Nnz3ZYduTIkWq5Ro0aOXxdWM+56uvrK65cuWK3nPX7wt53kzMF+e61yMjIUOf0BSAWL16cr8y2bdvUeeWDgoJEbGysW9uePXu2ut2JEye6XaeCyDsPrLU1a9ao9Xb0Wfrzzz+rdYyIiBCHDh1yur+TJ0+KSZMmuVU362Mi6+93R3NHO9O2bVsBQFSpUsXpd35BlNo1sPfdd5/aCvX444/j+eefR7169dTRvBo1aqROwSDLMtatW4fOnTvj2rVr+PTTT7F69Wo8/PDDuPPOOxESEoL09HTExMTg8OHD2LFjBzIyMvD2228XuZ5Tp05VWzdfeOEF7N69G/369UOVKlVw/vx5LF26FOfPn8e9996L8+fPO+02an2GYubMmbh16xaaNm2qXkdSu3ZttG7d2u26jRgxAuvXr8fKlStx48YN3HXXXZgwYQI6d+4MjUaDw4cP47vvvlPPYPbt29fuEOwV2cWLF/H8888jPDwc/fv3R5s2bVCjRg3odDrcvHkTu3fvxoYNG9SREmvVquV0sJlatWrhk08+weTJk2E0GjFgwACMGzcOPXr0gNFoxObNm9Wz2FqtFt9++63Tbn7W11xHRUU5nJPVlffffx/Hjh3Djh07sGvXLvUMeufOnREeHo6cnBzExsaqrfmxsbG477778NprrxVqf+6oU6cOVq5ciQceeADZ2dkYP3485s2bhwceeACNGzeGv78/UlJScO7cORw4cAD79u2DyWQqloEJ/vvf/6JDhw7Q6/X46quvsH//fjz66KOoU6cObt68iVWrVmHfvn3o3LkzYmJicO3aNbfOvIeEhGDkyJE2Xe169uyJxo0bF7nOZUW3bt0wZcoUfPXVV0hKSsLdd9+N8ePHo1u3bpBlGYcOHcJ3332HjIwMDB061OlcdIGBgfjpp5/Qo0cPpKamYubMmfjvf/+Lhx56CC1atEBQUBBSU1Nx6dIlHDp0CLt370ZOTg6+//57m+3s3btX7QVTp04dfPvttzbLtVotli9fjjZt2iA1NRXPP/88evTo4fT6Z28wYcIE/PrrrwDM3XInT56sthA44+6UHvb4+vqif//+WLduHQ4fPoz09HSH055s3rwZjz32mNrS8dhjjyE5Odnl/IR33XUXIiIibB67efMmnnzyScyYMQP9+vVDu3btULt2bfj5+SEhIQH79u3D2rVr1UEXg4ODsWrVKqfXaX733XeIioqyecz6GsO8n3+VK1fGjBkznNbdlbzbtB6NMyoqKt/yu+66y2ZaLsDcjfTdd99VW9G+/vpr/PHHH3jkkUds5oFdsmSJ2noXEhKCTz75xG6d/v77b4waNQrdu3dHz5490ahRI2i1Wly9ehWbN29WLwWQJAlffPFFsVyz7YhWq8WKFSsgSRLWrFmDAwcOqNfEWndxXbhwIc6dO4cTJ05g1apV2LJlC0aMGIH27dujcuXKyMzMxLVr13D06FFs27YNSUlJbnV7liQJEyZMUHtZWC4j6969u1tTh7kjPT0dL730Et58803cd999aN++PSIjIxEcHAy9Xo9Lly5h69atNi2gXbt2xcsvv2x3exkZGejUqRNatmyJ/v37o2XLlggODkZ8fDz++OMPrF+/Xp1WZvTo0U6/19977z1s27YNiYmJuHDhAlq1aoVHH30Ud999t808sNYtaG+++WaBroW355NPPnE4lUtycnK+OtevX9/u/zMgIADffvsthgwZApPJhIkTJ2LTpk0YMGAAtFotfv/9dyxdulQ9pps/fz6qV6/usn4id35gi9LoPpzX8OHDIUkSRo0aBb1ej0GDBmHjxo02x0SDBw/GG2+8gTlz5iAmJgadOnVC37590bt3b9SpUweSJCEhIQEnT57E7t27cerUKWg0Gnz99dcu9z9+/HjMmTMHQgib6Tgto1G7KyEhwWaU/GLr1VAcKdidFlij0WjTCpL3Zu9M0/Xr18V9993ncB3rm0ajEQsWLMi3jYK2wAohxKxZs5zuq2vXriIuLs7pmROL0aNHO9xO3r+VO61KBoNBPPHEEy7/HsOHDxd6vd7hdizlKloL7Pz58916PSG3tSE6Otqt7X700UdCp9M53FZwcLDdHgJ5Wa9T0LOXeWVnZ4tnn31WaDQat57vuHHj8m2jOFvyLPbv3y8aNGjgVp2CgoLE8ePH822joC2wQgixc+dOm7PbeW+tWrUSMTExonbt2gKAuOOOO9za7sGDB222s3z5crfrVFil2QIrhPnze+zYsQ7/drIsiw8//NCmt4G9FliLM2fOqGdkXd18fX3F5s2b1XWTkpLUz15Zlp1+ri9btkzdTtu2bZ325PEG1q2FBbkV1U8//aRua+nSpQ7L5e3F4O7N3mtl/fr1bq/fqlUruz018rL+3HDn5ui7vSAtsAX9Wzg6hhJCiI8//lj4+Pi43EZkZKQ4cOCAw+2sWbPG5TaqV68uVq1a5fJv6g53PmMMBoMYMWKEWs5e74KUlBSbFkNXt9dff92t+kVFRam9Biy3hQsXFvVpq44ePep2nWVZFk899ZRIT093uL1bt2653I6Pj4947bXX3Grt+vvvv0Xjxo1dblOr1Yp33nnH6basyzs7hinoZ5mr489ly5aJoKAgp38Pe70qHdmxY4e6bpMmTdxer6DcyRHr1q2zaYnduXNnvjILFiwQlSpVKtLnmj333nuvzbr33HNPgZ/jV199pa5vr5diYZVagBVCiMzMTPHBBx+Izp07i8qVK9scWDs7yNq9e7d4+umnRcuWLUVoaKjQaDSiUqVKokWLFmLkyJHi66+/FtevX7e7bmECrBBCbN68WQwaNEhUrVpV6HQ6UbNmTdGrVy+xYMECtYuSOy88o9Eovv76a9GzZ09RtWpV9UVo729VkIPy/fv3i8cff1w0atRIBAYGCn9/f1G/fn3x6KOPih07drhc390PhYKWLevi4+PF6tWrxfPPPy+6d+8uGjZsKEJCQoRWqxVhYWHizjvvFE8//XShukydOHFCPPPMM6JJkyYiMDBQBAcHi1atWomXXnrJrSCckZFh82GbkJBQiGeY3/nz58XLL78sOnXqJMLDw4VWqxUBAQGifv36YuDAgeK9996zGxKFKJkAK4T5YGXZsmVixIgRon79+iIoKEj9H7Rv3148+eSTYtWqVQ6/xAsTYIUQIjY2VvznP/8RTZs2Ff7+/iI0NFS0b99efPzxxyIjI0MoiiL8/f0F4LzruDVFUdTudmFhYU67PBaX0g6wFr/88osYNGiQCA8PF76+viIiIkKMHj1a/Pnnn0II4XaAFcL8d9uwYYMYP368aNKkiahUqZLQaDQiNDRU3HnnnWLcuHFi8eLFIjEx0WY96wPYl19+2ek+hBBizJgxavkZM2a4LF+WeSrAGo1GERERIQCIPn36OCxXnAE2LS1NbNiwQbz88suiV69eokmTJiIsLExotVoRGhoqmjdvLsaPHy9+/vlnt7ukeXuAFUKI6Oho8cYbb4hu3bqJ8PBwodPphJ+fn6hTp44YPHiwWLBggdOT10KYvwe/+eYbMXLkSNG8eXMRFhYmfHx8RO3atcV9990nPvvsM5GcnOx0GwXh7meM0Wi0eX876iJ/5MgRMX36dNG2bVtRpUoVodVqRVBQkGjcuLEYOnSomDdvnrh48WKB6tirVy91v4GBgSItLa2gT9MhRVHE33//LT744AMxbNgw0bx5cxEcHCw0Go0ICAgQtWvXFn369BFvvfWWuHDhgsvtGY1GsWrVKvH000+LNm3aiOrVqwudTifCw8NF+/btxeuvv+7WdqxlZmaKJUuWiGHDhonIyEgREBAgtFqtqFKlirj77rvFyy+/7Nbf1Pq1XJoBVgjze2PmzJmiZcuWIjg4WAQGBoomTZqIZ555Rvz7778F+GsI8eijj6r7fv/99wu0bkG4kyOEMIdYSyOJoxCblJQkPvnkE9G3b19Rq1Yt4evrK3x9fUWNGjXEPffcI1588UWxY8eOAnXhXbp0qcvPale6dOkiAIimTZsKRVEKvL4jkhBFHB6XiIrFli1b0L9/fwDAtGnTCjygEBXdiRMn1BHy3P0fbN++HX369AFgnuPw//7v/0qyikQeMX/+fLzwwgvQaDSIjo4uchdCIiIq3y5evKh2xf/6668xadKkYtt26Q6vRkQOWeYgDg4OLtFrUcmxL774Qr3v7rW31teSlIe5X4nsmTRpEmrUqAGTyYQPP/zQ09UhIqIy7v333wdgnhGluK8jZoAlKiMsAfaFF15AeHi4h2tT/uzZs8fp/LNffvmlOhhQ7dq1cf/997vc5rFjx9QBanr37u323HJE3sbf3x+zZ88GAHz77be4fv26ZytERERlVlRUFJYuXQoAePvtt9XpHYsLuxATlQHx8fGoVq0aqlatiosXLyI4ONjTVSp3GjVqhKysLAwYMABt27ZFeHg4DAYDLl68iPXr1+Po0aNq2V9++cVhgP3tt9+gKArOnTuHDz/8UB2db+/evejatWupPBciT1AUBR06dMCRI0fw7LPPOp37moiIKq4nnngC3333HTp37ox9+/bZzLJRHBhgiahCaNSoES5evOi0jL+/PxYsWIAxY8Y4LGPvQ9jd62W3bt0KvV7vurJ2VK1aFd26dSvUukRERETlBQMsEVUIBw4cwLp163DgwAFcu3YNCQkJ0Ov1qFy5Mpo0aYLevXtj8uTJLueIswTYoKAgNGnSBJMnT8Zjjz3m1txmkZGRuHz5cqHq36NHD+zevbtQ6xIRERGVF45n/CYiKkfuvvtu3H333UXeDs/5EREREXkOW2CJiIiIiIjIK3AUYiIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCtwECciIipXhBDIzMyEXq+3e8vMzERmZiays7ORk5Njc7P3WE5ODkwmE0wmExRFyXc/70/APFq1OzeNRgOdTgetVgudTqfeHP3u5+cHPz8/+Pv729zP+7ufnx+CgoIQGBgInU7n4f8IERFR8WGAJSKiMkcIAb1ej5SUFKSlpSE1NRWpqal271t+pqenqwGV4xPeZgmz9m7BwcHqz9DQUISEhCA0NBShoaEICgoq9snniYiIioqjEBMRUakQQiA9PR0JCQlISkpCYmIikpKS8t23/J6Tk1Ok/UmShICAALs3f39/bF+6B5ICQJGsboCU53cIyVwOEiCQe8u9D6v7ApAsj1kthnUGlAB1iWS5CfMFPZKAkADIwuYxyICw/C4LQCMwcNJ9yMzMRFZWFrKystRW5by/F4VWq7UJtNa3qlWrqrcqVaogJCSEYZeIiEoFAywRERWZEAIpKSmIi4vDrVu31Fve37Oysgq0XT8/PwQHByM4OBiVKlVCcHAw9q35C5JRBowyJINk/mmUAaMEmCRIJgkwyeYwioobqgQEoBWARoHQmu8LrQJocn9qBYY+3x/p6elISUlBcnKy+rOg4Ven06FKlSqoUqWKTbCtWrUqatSogerVqyM8PBxaLTt+ERFR0TDAEhGRS0IIJCUl4caNGza369evIzY2FvHx8W63mAYFBaFy5cqoXLky/t15FsiRIRlkSDkyYLDc15jvKxU3gHqSkAWgVSB0CqAz/7Tc7/d0TyQkJCAhIQHx8fFITk52a5uyLKNKlSpqoLX308/Pr2SfGBEReT0GWCIiAgAYjUbcuHEDV65cwdWrV3H9+nU1qMbGxrpsPZUkCZUrV0a1atUQHh6OfasOQ8rWQMqR1Z/I0TCUljNCEoCPAuFjgvBRAB8Fo94cgoSEBMTFxSE2NhZxcXEwGAwut1W1alXUqVMHtWvXRu3atW3uBwQElMKzISKiso4BloioAhFCICEhAVevXsWVK1cQExODK1eu4MqVK7h+/bo6iq49kiQhPDwcNWvWxImtZyFlaczBNPcncmRIguGU8hMQ5pZcPxOErwLha8Lg53vj5s2b6i0jI8PpNsLCwtRAW6dOHdSrVw+RkZGoVasWuyYTEVUgDLBEROWQEAJxcXGIiopSb9HR0YiJiYFer3e4nq+vL+rWrYu6devij6UHbUIqsjUMqFRihDY34PobMW7ucFy9ehXXrl3D1atXkZKS4nA9rVaLunXrqoG2Xr16qFevHurWrQtfX99SfAZERFQaGGCJiLyYEAKJiYmIjo7GpUuXbH46atGSZRk1a9ZEnTp1cPjHE5AyNbk3rbkVtQIPfERlk9BYwq0J4z8yh1vLCRlHA05ZXuf169dHo0aN0KBBAzRq1Ai1atWCLMul/AyIiKi4MMASEXkJRVFw7do1nDt3DufPn1dvjgbR0Wg0iIiIwOVD1yHptbdvWWxJpfJBQAC+CoS/EUqAEQOm9cTly5cRHR2NtLQ0u+v4+/ujQYMGaNiwIRo1aoSGDRuiYcOGvMaWiMhLMMASEZVBBoMBUVFRNkH1woULdlubJElC7dq1cf2fW5AyrIJqJoMqVUzqNbcBJigBRvSb2h0XL15EVFSUw9Gya9eujSZNmqBZs2Zo2rQpmjZtisDAwFKuORERucIAS0TkYUIIXL16FadPn8apU6dw6tQpXLx40e6orT4+PmjYsCHO7oyGnKGFlK4zh1WO7EvkkoCA8DdBBBox8u37ceHCBVy8eBHx8fF2y0dERKiBtlmzZmjcuDGn+iEi8jAGWCKiUpacnKyG1dOnT+P06dN2uzsGBQWhcePGOL7xLKR0LaQMHSS9hteoEhUzoVUgAg2Y+PkInD17FmfOnMHNmzfzlZNlGZGRkWjevDlatWqFVq1aISIiApLE9yQRUWlhgCUiKkGKoiA6OhonTpzAP//8g1OnTuH69ev5yvn4+KBx48Y4szUKUpoWcroOyGJYJfIUoVOgBBkw7pMHcebMGZw5cwaJiYn5ylWqVEkNs61atUKzZs3YSktEVIIYYImIipHBYMDZs2dx/PhxHD9+HP/++y9SU1PzlYuIiMDVv+Igp+nM3YAztLxelagMExCAjznUjnhnEP7991+cOXMm3zW1Go0GjRs3RsuWLdGqVSu0adMGVapU8VCtiYjKHwZYIqIiyMzMVFtXT5w4gVOnTuU7oPXz80OLFi3wz09nIafqIKXpIJk4jQeRtxOSgAg04un/PYKTJ0/ixIkTdq+njYiIQNu2bdGmTRsGWiKiImKAJSIqAIPBgFOnTuHIkSP4+++/cerUKRiNRpsyISEhSLuUBSlVBznFh62rRBWEZVofJdiAIa/2xvHjx3HhwgXkPdRioCUiKjwGWCIiJ0wmEy5cuIAjR47gyJEjOH78eL6pbKpVq4b4f1Mhp+ggpfqYp6/htatEBPMAUUqlHAx7sy+OHTvmMNB26NABHTp0QJs2bTgnLRGREwywRER5xMXF4dChQzh48CCOHDmSb4TgkJAQpF3IgpzsAznFh4MtEZHbXAVarVaL1q1bq4G2cePGkGVeckBEZMEAS0QVnsFgwIkTJ3Dw4EEcOHAAUVFRNssDAgKQddUIKdkHcrKPed5VBlYiKgZCq0AJycGgl3vi0KFDuHHjhs3ykJAQtG/fXg204eHhHqopEVHZwABLRBXSzZs3ceDAARw8eBB///23TbdgSZLQokULnPk12hxY03QMrERU4gQE4GfCM8vH4a+//sKRI0eg1+ttyjRu3BhdunRB586d0axZM7bOElGFwwBLRBWCoig4c+YM9u3bh7179+ZrZQ0NDUXquSzIiT6Qk30hGXlQSESeJSQBEWzA6I8H46+//sKZM2dsuhuHhYXh7rvvRteuXdG+fXv4+/t7sLZERKWDAZaIyi2DwYCjR49iz5492Ldvn830FrIso0WLFji9KQpyoq95pGC2shJRGSa0CmZseAL79+/HoUOHbFpnfXx80LZtW3Tp0gVdunRB9erVPVhTIqKSwwBLROVKeno6Dhw4gL179+LAgQM2B3j+/v7IvqJATvCFnMRWViLyXkISEJVy8MDs+/Dnn3/mu3a2efPm6NGjB3r06IHatWt7qJZERMWPAZaIvF5aWhr27t2LnTt34u+//7aZlzUsLAzJJzMhJ/qar2flfKxEVM4ICAh/Ex5f8DD+/PNPnDhxwqarcePGjXHPPfegR48eiIyM9FxFiYiKAQMsEXml9PR07N27F7t27cJff/1lE1rr1auHq3tvQU7wg5TOrsFEVLEInQlTV4/H77//jqNHj8JkMqnLIiMj1ZbZhg0bQpL4+UhE3oUBloi8hl6vV0ProUOHYDAY1GUNGjTA5V03Icf7Qc7UerCWRERlh9AqeH79Y9i9e3e+HioRERHo06cPevfuzW7GROQ1GGCJqEwzGAw4cOAAtmzZggMHDiAnJ0ddVq9ePVz9I56hlYjIDUKjYOamp7F7924cOnTI5vO0ZcuW6N27N+69916EhYV5sJZERM4xwBJRmSOEwKlTp7Blyxbs3LkTqamp6rK6devi+r5Ec2jVM7QSERWG0CiY8fMT2LZtG44cOQJFUQAAGo0G7dq1Q+/evdG9e3cEBgZ6uKZERLYYYImozLh+/Tq2bt2KrVu34urVq+rjVapUQfI/mZBv+XG6GyKiYiZ0Jjy9bDS2b9+O06dPq4/7+Pige/fuGDhwINq1awdZ5sjtROR5DLBE5FF6vR47duzAli1bcPz4cfVxPz8/5MQAmjg/SMk+DK1ERKVA+Bnx6FdDsG3bNly5ckV9vHr16ujfvz8GDBiAWrVqebCGRFTRMcASUakTQuD06dP45ZdfsHPnTmRmZgKAeTTMRB00cX6QE3whKTzbT0TkCQICIsiIQbPvwfbt25Genq4ua9u2LQYNGoR77rkHfn5+HqwlEVVEDLBEVGrS0tKwdetW/PLLL7h06ZL6eEREBK79ngjNLT9IORoP1pCIiPISksCsrZOxadMm/P333+ocs4GBgejVqxfuv/9+NG/e3MO1JKKKggGWiEqUEAL//PMPNm7ciN27d6ujXvr4+MB4VYYm1h9Sqo5dhImIvIDwNeHRrx/A5s2bcePGDfXxZs2aYejQoejVqxdbZYmoRDHAElGJ0Ov1+O233/Djjz8iJiZGfbxhw4a4vDUOcpwfJBO7CBMReSMBgQ8Pv4KNGzfi999/V+flDg4OxoABAzBkyBDUrVvXw7UkovKIAZaIitWVK1fw448/YvPmzdDr9QAAf39/ZEfB3NqazlGEiYjKE6FVMHHRg9iwYQNiY2PVx9u3b49hw4ahc+fO0Go57RkRFQ8GWCIqMkVRcPDgQfz44484ePCg+nhERASu70piaysRUQUgIPD2vhn46aefcODAAfVa2fDwcAwbNgwPPPAAKlWq5OFaEpG3Y4AlokLLyMjAr7/+ih9//BHXrl0DYB5JWErQQXM9gNPfEBFVUMLXhIf/rx82btyIlJQUAObp0QYMGICHH34YderU8XANichbMcASUYHFx8djzZo1+Pnnn5GRkQEACAoKQuZZBZob/pCy2FWMiIjMIxjP2Pg4Vq9ejYsXLwIwn+js1q0bHn74Ydx5553mKdSIiNzEAEtEbouOjsbKlSuxdetWGI1GAEC9evVwbUeiuZsw520lIiI7BATm/jULq1evxv79+9XHmzVrhhEjRqBnz568TpaI3MIAS0ROCSFw4sQJ/PDDD/jzzz/Vx6UUHTRXAyEnsZswERG5T/E3YsBbXfHbb7+pU6tVq1YNo0ePxv333w9fX18P15CIyjIGWCKyS1EU7Nu3Dz/88ANOnjwJIPf61ls+0FwLgJzm4+EaEhGRNxNaBWMXPID169cjMTERAFC5cmU8/PDDGDp0KIKCgjxcQyIqixhgiciGoij4448/sGTJEvV6JR8fHxgva8zBlde3EhFRMRKSwNQfx2L58uXqNDxBQUF48MEHMXz4cISGhnq2gkRUpjDAEhEAwGQyYffu3ViyZAmio6MBAIGBgcg6A2iu+0MyaDxbQSIiKteEJPDir09i2bJluHz5MgDzyMUPPPAAxowZg8qVK3u4hkRUFjDAElVwRqMRO3fuxNKlSxETEwMgd0ThUwKaawGcv5WIiEqVgMAbu6fh+++/x9mzZwGYg+ywYcMwevRotsgSVXAMsEQVlKIo+P333/Hdd9+pwTU4OBj6fxXzHK4MrkRE5EECAu/ufxELFy7E6dOnAQD+/v4YPnw4Ro4ciUqVKnm4hkTkCQywRBWMEAIHDx7EggULcP78eQBASEgI0v8xmedwZXAlIqIyREDg7X0z8N133+HcuXMAzJe4PPzwwxg5ciQCAwM9XEMiKk0MsEQVyPHjx/Htt9/i+PHjAICAgABkn5bY4kpERGWegMCbvz+HhQsXqoMMhoSEYPz48RgyZAh0Op2Ha0hEpYEBlqgCuHTpEr755hscOHAAgHlUYdMlLTRXAyEZGVyJiMh7CAi8uuMZm0tgatWqhSeffBL33nsvZJnfa0TlGQMsUTmWkJCAhQsXYtOmTVAUBRqNBuKqD7RXAiHlcFRhIiLyXgIC034ah4ULF6rzyDZt2hSTJk1Cu3btPFw7IiopDLBE5VBWVhZWr16N5cuXIzMzEwAgx/tCEx3EeVyJiKhcEbLA2O8GY8WKFdDr9QCATp064dlnn0W9evU8XDsiKm4MsETliKIo2LZtG7799lvcunULACClaaGNCoac6uPh2hEREZUcoVUw+KN7sGHDBhiNRmg0Gjz44IOYMGECgoODPV09IiomDLBE5cSZM2cwf/58daqB6tWrI+H3TMjxfpAgebh2REREpWNRzHx8+eWX2LdvHwDzQE9PPPEE7r//fmg0vHyGyNsxwBJ5uZSUFHz77bfYuHEjhBDw9/dHzmmNeWRhhcGViIgqpvcOzsTnn3+O6OhoAEDDhg0xbdo0tG3b1rMVI6IiYYAl8lImkwkbN27EggULkJqaCgCQ4/ygjQqCZOAZZiIiIgGByWtGY+HChUhLSwMA9O3bF1OmTEFYWJiHa0dEhcEAS+SFTp06hXnz5qkTuksZWmgv8jpXIiIie4RWwcAPumLDhg0QQiAoKAhPP/00Bg8ezGl3iLwMAyyRF9Hr9ViwYAF+/PFH9Qs46x8J8g1/XudKRETkwmcn5+CTTz5RTwA3b94cM2bMQJMmTTxcMyJyFwMskZf4888/MW/ePMTFxQFgd2EiIqLCsHQrXrBgAfR6PWRZxkMPPYQnnngC/v7+nq4eEbnAAEtUxiUkJOCzzz7Drl27zA9kaaC7EAw52dezFSMiIvJiwseEbi/fgZ07dwIAatWqhZkzZ+Kuu+7ycM2IyBkGWKIySgiBLVu24LPPPkN6ejpkWYYU4wdNTBBHFyYiIiom7+z/Dz766CO1h9OQIUMwadIkBAYGerhmRGQPAyxRGZSQkICPP/5YncNOStdCe74S5Aydh2tGRERU/giNgoFzu+Knn34CAFSrVg0vvvgiOnXq5NmKEVE+DLBEZczOnTsxf/58pKSkQKvVQlzwg+ZqAAdpIiIiKmFzD8/Chx9+iOvXrwMABg0ahKlTpyIgIMDDNSMiCwZYojIiJSUF8+fPV6/FkdK10J6rBFnPVlciIqLSImSBIfN7YO3atRBCoFatWnjttdfQqlUrT1eNiMAAS1Qm/PXXX3j33XeRmJgIjUYDRPlBcyUQkmCrKxERkSd8dORVvPvuu7h58yZkWcbYsWMxfvx4aLVaT1eNqEJjgCXyIIPBgP/9739YsWIFAEDSa6A9FwI5na2uREREniY0Cnq+2RZbt24FADRr1gyvv/466tat6+GaEVVcDLBEHnL16lXMmTMHZ86cAQDIN/yhjQrmCMNERERlzMvbJuGTTz5Beno6/Pz88Pzzz2PAgAGerhZRhcQAS+QBW7Zswbx585CZmYng4GBkHpKhSfDzdLWIiIjIgeWxX+K9997DkSNHAAADBgzA9OnT4e/v7+GaEVUsDLBEpSg7Oxvz58/Hr7/+CgCQUnTQnQ2BlKPxcM2IiIjIFQGBsYsGY9GiRVAUBZGRkZgzZw4iIyM9XTWiCoMBlqiUXL9+Ha+//jrOnz8PWZYhRfmbB2ri9DhEREReZe7hWZgzZw4SExPh5+eHF154Af379/d0tYgqBAZYolKwf/9+vP3220hPTwcMEnRnQiCn+Hq6WkRERFRIQmfCHc9E4vDhwwCABx54AM899xx0Og7ESFSSGGCJSpDJZMLixYuxZMkSAICUqoPuDLsMExERlQeWLsULFy6EEAKtW7fGnDlzUKVKFU9XjajcYoAlKiEZGRmYM2cO9u/fDwCQr+eOMsy5XYmIiMqVOfteUHtahYeH4+2330aLFi08XS2icokBlqgEXL9+HbNmzUJUVBR8fHygnPCD5hZHKSQiIiqvFl6eh1deeQWXL1+GTqfDjBkzMHDgQE9Xi6jcYYAlKmbHjh3D66+/jpSUFCBbhu50KOR0Xg9DRERU3gmNgk4zm2HPnj0AgJEjR2Ly5MmQZdnDNSMqPxhgiYrRxo0bMW/ePBiNRkhpWuhOh/J6VyIiogpEQGDMd4OwaNEiAMA999yD1157DX5+nO+dqDgwwBIVAyEEvv32WyxfvhwAIN/yhfZ8CCSF17sSERFVRC9tfRrvv/8+DAYDmjdvjvfffx9hYWGerhaR12OAJSoio9GIuXPnYsuWLQAATUwgNDGc35WIiKii+/joa3j11VeRmpqKGjVq4MMPP0RkZKSnq0Xk1RhgiYpAr9fjjTfewKFDh6DRaCCdCYTmJgdrIiIiIrOFl+dh5syZuHbtGoKCgjB37ly0bt3a09Ui8loMsESFlJSUhJdeeglnzpwBTBK0Z0KgSfL1dLWIiIiojBFaBU2eqI5///0Xvr6+eOedd9CpUydPV4vIK3FINKJCiI2NxZQpU8zh1SBBd6IywysRERHZJRllnPs2Dp06dUJ2djZmzZqFHTt2eLpaRF6JLbBEBXTt2jVMnz4dN2/eBLJk6P6tDDlL6+lqERERURknJIHub7TGjh07IEkSZsyYgQceeMDT1SLyKgywRAVw+fJlPP/884iPj4ek10D3b2VOk0NERERuExAY8FFnbNiwAQAwefJkjB492sO1IvIe7EJM5KaLFy9i2rRp5vCaoYHuBMMrERERFYwECZtf3I+xY8cCAL7++musXLnSw7Ui8h5sgSVyw4ULFzB9+nSkpqZCSteaW16NPP9DREREhTf6fwOwePFiAMAzzzyDkSNHerZCRF6AAZbIhejoaEybNg3JycmQ0nLDq4nhlYiIiIrOOsQ+++yzGDFihGcrRFTG8SicyIlr167hhRdeMIfXdIZXIiIiKl4/PPErxo8fDwD44osvsGbNGg/XiKhs45E4kQM3b968PWBThobhlYiIiIqdBAkrntyshtjPP/8cv/32m4drRVR28WicyI7ExEQ8//zziI2NhZSp4TWvREREVGIsIdZyDezcuXOxb98+D9eKqGziNbBEeej1ejz33HM4e/YskCXD53gYRxsmIiKiEicg0Oudu/Dbb7/Bx8cHH3/8Mdq0aePpahGVKQywRFaMRiNmzZqFgwcPAgYJPv+EQcrSerpaREREVEEICHR4qTH27duHwMBAfPbZZ2jcuLGnq0VUZrBPJFEuIQTmzZtnDq8mCbqTlRleiYiIqFRJkPDXR+dx5513IiMjAy+99BJu3brl6WoRlRkMsES5li5dio0bNwIC0J6tBDld5+kqERERUQUkKRJOf3Md9evXR3x8PGbNmoXMzExPV4uoTGCAJQKwY8cOfPfddwAA7cVgaBL9PFwjIiIiqsgkk4z3338fISEhOHfuHN555x0oiuLpahF5HAMsVXjnz5/HBx98AADQXA2AJjbAwzUiIiIiAsbXeQ7vvfcedDod9uzZgwULFni6SkQexwBLFVpycjJeffVVZGdnQ0rygSY6yNNVIiIiIlK9cOccvPTSSwCA5cuXY+vWrR6uEZFnMcBShWU0GvHmm2/enuv1TAgkSJ6uFhEREZGNj/ovwNixYwEAH3/8MS5duuThGhF5DgMsVVhff/01jh49CpgkaE+HQjLx7UBERERl06qnt6B9+/bIysrC66+/joyMDE9XicgjeMROFdLevXuxZs0aALkjDus5XQ4RERGVXRIkvPHGGwgPD8eVK1cwd+5cCCE8XS2iUscASxXOzZs3bw/adC2AIw4TERGRV3g47EnMmTMHWq0Wu3fvVk/GE1UkDLBUoRiNRrz99ttITU2FlKbloE1ERETkVaa3no1nnnkGAPDNN9/gwoULHq4RUeligKUKZcmSJTh+/DhglKA7GwJJcNAmIiIi8i5fP7wCXbt2VU/MZ2dne7pKRKWGAZYqjJMnT+L7778HAGgvBEPK4nWvRERE5H0kSJg5cyYqV66MqKgozg9LFQoDLFUI2dnZeP/996EoCuQ4P2ji/T1dJSIiIqJCG1HlKbz88ssAgNWrV+Pvv//2cI2ISgcDLFUIixYtQkxMDJAjQ3sp2NPVISIiIiqyN7rOw5AhQwAA77//PvR6vYdrRFTyGGCp3Dt16hRWrlwJILfrsJEveyIiIiofNr+0H7Vq1UJcXBz+97//ebo6RCWOR/JUrhkMBnzwwQe3uw5zyhwiIiIqRyRFwowZMwAAP/74I86cOePhGhGVLAZYKtfWrl2L6OhoIEdi12EiIiIql17p9CH69OkDRVHw0UcfwWg0erpKRCWGAZbKrfj4eCxevBgAoI1m12EiIiIqv5599llUqlQJ58+fx9q1az1dHaISwyN6Kre++uorZGZmQkrVQY5j12EiIiIqv0ZUeQqTJ08GACxevBhJSUkerhFRyWCApXLp2LFj2L59OyAA7cVgSJA8XSUiIiKiEjV/8CI0a9YMer0eCxcu9HR1iEoEAyyVO4qi4IsvvgAAyLH+kDN0Hq4RERERUcmTIOGZZ54BAPzyyy+IiorycI2Iih8DLJU7u3fvxrlz5wCjBO3lIE9Xh4iIiKjU/KftO7jnnnugKAq++uorT1eHqNgxwFK5YjQa8d133wEANNcCOHATERERVTiTJk2CVqvFwYMHcfjwYU9Xh6hY8eieypXffvsNV65cAQwSNNcDPF0dIiIiolI3MeJ5DBkyBIB5QCchhIdrRFR8GGCp3MjJycGiRYsAAJorgZBMfHkTERFRxTRmzBj4+Pjg+PHjOHr0qKerQ1RseIRP5cbWrVtx69YtIFuG5gZbX4mIiKjiGl1tMgYNGgTA3ApLVF4wwFK5oCgKVq5cCQDQXA+AJDhtDhEREVVsY8aMgU6nw7Fjx3Ds2DFPV4eoWDDAUrmwb98+xMTEAEYJmlh/T1eHiIiIyOPG1HgGAwcOBAD88MMPHq4NUfFggKVyYcWKFQAAzQ1/XvtKRERElGvEiBGQJAkHDhwwD3RJ5OV4pE9e79SpU/j3338BBRx5mIiIiMjKY/VeQOfOnQEA69at83BtiIqOAZa83oYNGwAA8i0/SAaNh2tDREREVLYMHz4cALB582akp6d7uDZERcMAS14tLS0NO3fuBABe+0pERERkx8sdP0C9evWQmZmpHjcReSsGWPJqW7duRXZ2NqQMLaQ0naerQ0RERFT6ZI355oAESZ1S59dffy2tWhGVCAZY8mqbN28GYG59lcCpc4iIiKgCcxJk/zd+NTQaDU6dOoXo6OjSrRdRMWKAJa8VExODc+fOAYr5+lciIiKiCsdeYLXzmGTQoEuXLgBuNwAQeSMGWPJa27dvBwDIyT6QjHwpExEREanshNg+ffoAAHbt2gUhRGnXiKhY8KifvJIQAjt27ADA1lciIiKqoJxc92pv+Tu9v4Cfnx9iY2Nx9uzZEqwYUclhgCWvdPnyZfNk3AogJ/p6ujpEREREpctVeLUul1tWUiR1Tthdu3aVVM2IShQDLHml/fv3AwCkZB9IJr6MiYiIiJzKDbE9e/YEAOzZs8eDlSEqPB75k1fat28fAEDD1lciIiKqaNxtfbWz3rt9v4BGo8HVq1dx/fr14q0XUSlggCWvk5aWhn///RcAICcxwBIREVEFUtjwmksSOrRs2RIA8NdffxVHjYhKFQMseZ1//vkHiqJA0msgZRftQ5yIiIioounYsSMA4ODBgx6uCVHBMcCS1zl27BgAQErx8WxFiIiIiEqRpPOBpNMWeTsdOnQAYD6mUhSlyNsjKk0MsOR1LAFWk87pc4iIiKhikHQ+gCzl3i9aiH2u/bvw8/NDeno6YmJiiqN6RKWGAZa8il6vx4ULFwAAGn0AJG3Rz0ISERERlXm54dVC0mkLFWRlHx0kSYPmzZsDgDquCJG3YIAlr3LhwgXz9a85GkgmH0haLUMsERERlWuSzvFlUwUJsbKPDpDNh/+tWrUCAJw4caJolSMqZQyw5FXOnTsHAJD0uaMPyzIg8WVMRERE5ZN112HHZdwMsfLtYyZLC+z58+cLXTciT+CRP3kVS4CV9bfPREoama2wREREVO64E15vl3V+LCT76Gx+f+uBrwAAly9fhtFoLFwFiTyAAZa8ysWLFwEAcqZVVxpZZldiIiIiKlcKEl5vr2P/WMi667BaNkcLf39/GAwGXL16tdD1JCptDLDkNYQQ6geslGV7FpEhloiIiMqVAoZXi7wh1l54BQAJEho0aADgdgMBkTdggCWvkZCQgMzMTEAAUo4ufwFeD0tERETlgLNBm9xb3yrE2gmvFnXr1gUA3Lhxo0j7IypNbK4ir6G2vuZoIQn7ZyUljQwILQSv5SAiIiJvJGsK3fpqTdJpIUnOt1OjRg0ADLDkXdhcRV4jLi4OACBlOznvIsuQfHzYlZiIiIi8j6wx/zSZirypa9Pa4eq0u5yWqVmzJgAGWPIuDLDkNRISEgAAkkHjsixDLBEREXkV+fbxjVBEkULstWntkFNJICdY4OozbRyW+2TiIgC3GwmIvAEDLHkNNcAa3QumDLFERETkFeT8J+cLG2It4dUip5I5xNoLspLRvN+UlJQC74fIUxhgyWskJiaa77jRAmvBEEtERETeqqAhNm94tcipJNQga00ymqNAamoqTMXQbZmoNDDAktfIyMgAAEimgr1sGWKJiIiozLLT+mrN3RDrKLxayxdiTeZ9CyGQnp7uch9EZQEDLHmNzMxM8x2lECPzcXodIiIiKmtchFcLd0Ksq/BqXe7qlDYAYJ7VwWQ+rmKAJW/Bo3ryGllZWQAK3gIL5A4lz1ZYIiIiKivcDK8WzkLstantCrStnJDbIRa5UxMaDIYCbYPIUxhgyWtYAmyhWmDBrsRERERURhQwvFrYC7HXprZDToh7ra/W1BCrMMCSd2GAJa8hRME/nPNiiCUiIiKPKmR4tbAOsYUNrxY5IQLwMW/r6NGjRaoXUWlhgCWvIUmFa3nNvyG+7ImIiMi7pQ9uU6TwmpfRaCy2bRGVJB7Jk9cojgArTCYIowEorjBMREREVBBK0aarkWQJ6UPaISdQRnBM0asjSeYQ3LJly6JvjKgUMMCS19BozF1ubo5oUKj1hckEkZNz+wGGWCIiIvKEQoZYNbwGmQ/h5RwUKcR+/+hnCK2kAAACAwMLvyGiUsQAS14jICAAAPB8958Q/WKbAq2bL7xaMMQSERGRJxQwxOYNrxaFDbHfP/oZOvrqoM80b89ynEVU1jHAktewfLBWM/hg2YT/Q/R/2ri/suLkGhGGWCIiIvIEobhVzFF4tZDtnKN3ZsmYL9DRVwejCcjOMR8HMcCSt2CAJa8RFBQEAMjQy2jn64NlE/8P0TPbuFxPve7VGYZYIiIiKm1CuAyxrsKrhbutsEvGfIG7/cyXZWVm3T7+YYAlb8EAS17DEmBT0s0ftu18fbBs/P857U7ssOuwPQyxREREVNqcTBMoyRIyHnAdXgH3uhIvHPOlGl4BICnFvN3AwED4+Pi4V18iD2OAJa8RHh4OAIhPvP3B287X3J14yOHL+YJsgcKrBUMsERERlTY7rbCW8Jod7P7huqMQu3DMl1g45kt09bPdVkLuMVWVKlUKVl8iD2KAJa9hCbC3EmwnAG/n64NJoddsrostVHi1YIglIiKi0pSnK3FhwqtF3hBrCa55wysAxCeZH2OAJW/CAEteQw2wiRq7yy3XxV6e0abw4dWCIZaIiIhKU26ILUp4tbCEWHutrtbic14GAFStWrXQ+yIqbQyw5DVq1qwJALgRp4HJwXgHow8+gXrrEyH7+pZizYiIiIiKgRCAJBcpvFqMfG4rwjWZTstcuXIFAFC7du0i74+otDDAkteoXr06fHx8YDBIiI2z3wprTPCHdCMOkr9/0UKskwEViIiIiIqbpNVC0moBAOFbLhVpWw/9Zzv6BZ1ElrB/vGRx9epVAEBERESR9kdUmhhgyWtoNBrUrVsXABBzXZtveZM/xqHpf1PMv8hS0UMsERERUSmQtFpAks03AKaEpEJv66H/bMeA4BPq7+cMGQ7LxsSYL5a1HF8ReQMGWPIqljOEl6/aBtime8ah4fsGSNfibj9Y2BDL1lciIiIqJWp4zaMwrbB5wysAZAmN3RCblCIjOTkZkiQxwJJXYYAlr9K4cWMAwNlLOvWxpnvGocF7BkhXb+ZfoaAhluGViIiISomj8AqYW2ELEmLthVcLeyH2XO6xVN26dREQEOD2fog8jQGWvEqzZs0AAGcv3g6whnh/++HVwt0Qy/BKREREpcRZeLUwJSQhfGuUy20NnbHTYXi1yHs97Lm4FwHcPrYi8hYMsORVmjZtCgC4flOLlDQJTfeMQ9NvU12v6CrEMrwSERFRKXEnvFqY4hOdhtihM3bi/kr/uLUt61bY06dPA7h9bEXkLfKPhENUhgUHB6Nu3bq4cuUKuv3YHw1WOug6bE9uiNX4+UJkZUPJzi7ZyhIRERHlUZDwamGKTwRQ3+axoTN2AoDb4RW43ZW4kSYQ//77LwCgRYsWBaoLkaexBZa8Tps2bQAA1dcnuB9eLWQJ0GhsW2PZ+kpERESloDDh1cK6FfaBGbtwf6V/ChReLbKEBrsuGZCamgp/f3+2wJLXYYAlr3PXXXcBAExKnIuSTnCaHSIiIiol6hyvhQyvwO2uxA/M2IUHKh0rUn2Srn8IALjjjjug1bJDJnkXBljyOm3btgUACL9sCI2x8BuSJUDmW4CIiIhKljCZihReLZSU1CKHVwA4cuQIgNvHVETehEfv5HXCwsLQoEEDAIApKLPQ2xFZ2VCyeB0sERERlbBiuFxJ0mkBScLzjz9TpO1MmzIFf//9NwCgQ4cORa4XUWljgCWv1LVrVwCAqVIaIGtclM5PZGVDycwCFFNxV42IiIgoH2E0FGo9SadVwysA+Bw4g+lPFC7ETn12GnzPnEZ2djaqVauGRo0aFWo7RJ7EAEteqVu3bgAAU0CaeSztgoZYIRheiYiIqPQIUeAQqwbX3PBq4bv/TIF3P/XZaQg6fBl9n24NwNwYIOXZLpE3YIAlr9S0aVOEh4cDsgKTfzokjQxotW4FWXYdJiIiIo8oQFdi61ZXe9xthZ367DQ1vAoI7N27F8Dt3mxE3oYBlrySLMvo3r07AMAYnAwAkCTJHGSdhFh2HSYiIiJPcqcV1lV4BcytsNOfetZpmWefMwfXoMOXAQCmgHQkJSUhJCREndWByNswwJLX6tu3LwDAFJgCId0OpE5DLLsOExERkSe56ErsTni18N132uGyZ5+bhuCDl20e6zmxCQCgV69enD6HvBYDLHmt5s2bo06dOoAsYAxKtVlmL8Sy6zARERGVCXa6EucdrMldzz2dvxX22en5w6uQFPzxxx8AgD59+hRoH0RlCQMseS1JktCvXz8AgDE4Mf/yvNfFsvWViIiIygjrVlhHgzW5w2/v7VbYZ6dPM4fXA5fzlTMGJSMzMxO1atVCy5YtC1dpojKAfQfIq/Xv3x+LFi2CEpABRZcF2eBns1ySJEAjQWSz9ZWIiIjKkNxW2MK0uub13KSpMPrLqHQg2mGZBj2CcOYMMHjwYI4+TF6NLbDk1apXr44uXboAAAwhCQ7LCba+EhERURkjjIYih1cA8N3xDyrtj3a43OSrx5kzZ6DVajFo0KAi74/IkxhgyesNHToUAGAMTrIZzMlCZGVBydCXcq2IiIiIXBDCPDtCYVfPMUDkGAChQElOcVjuvklNAQA9e/ZEaGhoofdHVBYwwJLXa9++vXkwJ40CY6WkfMuFSWHrKxEREZVNhTxGsQRXCMX8u9Fof/MaA7Zu3QoAGDZsWOHqSFSGMMCS15NlGSNHjgQAGEJvQUBRl7H1lYiIiMq6grbCquE173bstMIOfaUNDAYD7rjjDrRu3brQdSQqKxhgqVzo378/qlSpAqEzwBicrD7O1lciIiIq89w8VrHuMmx3eZ5WWCGbsGHDBgDAI488UrQ6EpURDLBULvj6+mLEiBEAAEPlOAgItr4SERFRuZG3y7Aj1q2wj37QFXq9HvXr18fdd99d0lUkKhUMsFRuDBkyBMHBwRA+OTAFpbD1lYiIiLyGs27Ezlpd85XNbYUVkgmrVq0CYG59lWUe9lP5wFcylRsBAQEYPnw4ACAnLBYCwsM1IiIiInKTnZPurroMOzPi7Q5ISUlB3bp1cd999xVHDYnKBAZYKldGjhyJypUrQ/jkwBgU7+nqEBEREbnNuhXW3S7D9pjSE9XW1yeffBJarbbY6kjkaQywVK4EBARg/PjxAABj3TQIueAf+kREREQekdsKW9hWV4uBczoiMzMTzZo1Q48ePYqrdkRlAgMslTuDBw9G7dq1AR8FptocxImIiIi8R1HDq+JrxM8//wwAePrppyFJUnFVjahMYIClcken0+HJJ58EAJjq6CF8OZATEREReQdhNBR+XQi0nRQJo9GIjh07ol27dsVYM6KygQGWyqV7770Xd9xxB6ARMNZP83R1iIiIiNwjCjcIpTCZYArR4+DBg9BqtZg2bVoxV4yobGCApXJJkiS88MIL0Gg0UKpmw1Q529NVIiIiIioRwmSCkBRUvdcPADBq1ChERER4uFZEJYMBlsqtBg0a4OGHHwYAGBukQcicVoeIiIjKPmFy7/InYTKZywqBUd/0R2xsLKpXr46xY8eWcA2JPIcBlsq1CRMmIDw8HPA3wVQnw9PVISIiInLNjW7EluAKIaAEGPDDDz8AAKZOnQp/f/+SriGRxzDAUrkWEBCgXgNiqpsBJajwAyMQEREReZp1qysACEkgcmQVGI1GdO3aFd27d/dwDYlKFgMslXs9evTAfffdB0iAsUkKhMSuxERERFS22etGbN3qamGqk4Hz58+jUqVK+M9//sNpc6jcY4ClCmH69OkICwuDCDDBVC/d09UhIiIics4qpOZtdbVQAg1AgywA5mOdKlWqlGoViTyBAZYqhJCQELz44osAAFNtPZRKOR6uEREREZFr9lpdAXPX4YjhlWEymXDPPfeYe5sRVQAMsFRhdO3aFQMGDAAkwNAkBUKreLpKRERERA7Za3W1GPRxV1y8eBEhISF44YUX2HWYKgxJiELOlkzkhTIyMvDEE0/g2rVrkBN8oT0dAgn8wCciIiLvYaqSBWPzFADARx99hE6dOnm4RkSlhy2wVKEEBgZi9uzZ0Ol0UKpkw1RL7+kqEREREblN+Brh294IAHjkkUcYXqnCYYClCqdp06Z49tlnAQCmyHROrUNEREReQUgCDcaGIyMjAy1btsQTTzzh6SoRlToGWKqQhg4dip49ewIyYGiWzOthiYiIqEwTEOj3QSecOXMGwcHBePPNN6HVaj1dLaJSx2tgqcJKT0/Hk08+iWvXrkFK0UH3b2VIgtfDEhERUdljqqGHsVEaJEnCBx98gM6dO3u6SkQewRZYqrCCgoLw/vvvIzAwECLEAGPDNAjwfA4RERGVLUpIDkRT87gdTz/9NMMrVWgMsFShRUZG4o033oAkSVBqZEKpmenpKhERERGphK8JAd0UmEwm9O7dG6NHj/Z0lYg8igGWKrzOnTtj0qRJAABjgzQoodkerhERERERIDQKao8IRkpKCpo0aYKXXnqJ871ShccASwRg1KhR6NevHyABhmYpUAI5MjERERF5jpAEWk6pg6ioKISFheHdd9+Fr6+vp6tF5HEcxIkoV05ODl588UUcPXoUyJHh808YpGyNp6tFREREFYyAgLFpCpTwbAQEBODzzz9H48aNPV0tojKBLbBEuXx8fPDuu++iYcOGgI8CQ6skTq9DREREpc4UmQ4lPBsajQbvvPMOwyuRFQZYIitBQUH46KOPUL16dQh/EwwtkyBkdlIgIiKi0mGsnQFTHfOIw7NmzUL79u09XCOisoUBliiPqlWr4uOPP0alSpUggo0wtEhmiCUiIqISZ6qhh6l+OgDzdDl9+/b1cI2Iyh4GWCI76tWrh7lz58Lf3x8iNAeGZskQEkMsERERlQxTtUwYG6UBAMaMGYNHHnnEwzUiKpsYYIkcaNmyJT788EP4+flBhOXAyBBLREREJcBUNROmpubw+vDDD+Opp57idDlEDjDAEjlx55134v3334ePjw+UKjkwNk2BAEMsERERFQ9TlSyIlhkQQmDIkCF49tlnGV6JnGCAJXKhXbt2ePfdd6HT6aBUzYaxWQpbYomIiKjITOGZEK3SYTKZMGDAADz//PMMr0QuMMASuaFTp06YM2fO7RDbnAM7ERERUeGZquthapYGk8mE/v37Y+bMmZBlHpoTuSIJIXgUTuSmQ4cO4dVXX0V2djakFB10p0IhmfhlQ0RERO4z1tTD1NB8zevQoUMxffp0hlciNzHAEhXQ8ePH8dJLLyEjIwNSqg66kwyxRERE5B5jnQyYIs1T5YwcORJTpkxht2GiAmCAJSqEs2fPYsaMGUhNTYWUoTWH2ByNp6tFREREZZSAgKl+Oky19QCACRMmYOLEiQyvRAXEAEtUSJcuXcKMGTOQkJAAZMvQnawMWa/1dLWIiIiojBGSgLFJCpTwbADA5MmTMXr0aA/Xisg7McASFUFsbCxefPFFXL58GTBK0J0OhZzi4+lqERERURkhNAoMLZIhQgzQarWYNWsW+vTp4+lqEXktXrhHVAQ1atTAl19+iTvuuAPQChhaJsEUnunpahEREVEZIHxNqDU6ECLEgMDAQHz00UcMr0RFxBZYomKQnZ2N9957D7t27QIAaC4HQnMlEBJ4XQsREVFFpATnIPheCYmJiahatSo++ugjNGzY0NPVIvJ6DLBExURRFHz11VdYvXo1AEC+5Qvt+RBICkMsERFRRWIKz4TcOgs5OTmoX78+PvzwQ1SvXt3T1SIqFxhgiYrZzz//jPnz58NkMkFK15rniuUIxUREROWegICpXjpMdc0jDXfr1g2vvfYaAgICPFwzovKDAZaoBBw7dgyvv/46UlJSgBwZutMhkNM4uBMREVF5JTSKeaThKjkAgLFjx+Lxxx+HLHPIGaLixABLVEJu3LiBV155BRcvXgQUQHsxGPJNf14XS0REVM4oAUbUHBqImJgY+Pj44KWXXuJgTUQlhAGWqATp9Xq8//77+P333wEAcpwftBcq8bpYIiKicsIUngntnTnIyspCeHg43n77bbRo0cLT1SIqtxhgiUqYEAIrVqzAggULzNfFZmigPRMKOVPr6aoRERFRIQlJwFg/DUot8/R57du3xxtvvIHQ0FDPVoyonGOAJSolx44dw+zZs5GYmAiYJGjPV4Im3s/T1SIiIqICEr4mGJolQwQbAQDjxo3DxIkTodFw0EaiksYAS1SKEhISMGfOHBw9ehQAIN/whzYqmF2KiYiIvISpShb8OpiQnp6O4OBgvPbaa+jcubOnq0VUYTDAEpUyo9GIRYsW4fvvvwcASHoNtGdDIGfoPFwzIiIickTIAsYGqVBqZAEAmjdvjtmzZ6NmzZoerhlRxcIAS+Qhhw4dwnvvvWfuUqwAmuggaK4HcJRiIiKiMkYJNKDGA4G4cuUKJEnCo48+iokTJ0Kr5XgWRKWNAZbIg5KTk/HBBx/gzz//BABIST7QnasEycBraIiIiDxNQMBUSw+pSRaMRiPCw8Px6quv4q677vJ01YgqLAZYIg8TQmDDhg344osvkJOTAxgkaC9UgiaBAzwRERF5ivAzwtA4FSLEAADo3r07Zs6ciZCQEA/XjKhiY4AlKiOio6MxZ84cXLhwAQAg3/KF9mIlSEbZwzUjIiKqOAQElBqZ0LYyICsrC/7+/njmmWcwePBgSBIv8yHyNAZYojLEYDBg6dKlWLZsGUwmE5AjQ3sxmK2xREREpUD4msytrqE5AIC2bdvipZdeQq1atTxcMyKyYIAlKoPOnj2L9957D1FRUQDYGktERFSSLK2uutZGZGZmwtfXF5MmTcKwYcMgy/zuJSpLGGCJyqicnBwsWbIEP/zwg7k11iBBGxUMOc6PIxUTEREVEyXACGOjVIhK5mtdW7dujVmzZqFOnToerhkR2cMAS1TGnTlzBh988AEuXboEAJCSfaC9EAw5i0P3ExERFZaQBEx1MyA1yIbRaIS/vz+eeOIJPPjgg9BoOBsAUVnFAEvkBYxGI1atWoVFixaZRypWAM2VQGiuBkISbI0lIiIqCCUkB8aGqRABJgBAly5d8Pzzz6N69eoerhkRucIAS+RFrl+/jk8++QR//fUXAEDSa6C9WAlyio+Ha0ZERFT2CZ0Jxsh0KNWzAABhYWGYPn06evTowRGGibwEAyyRlxFCYPv27fjiiy+QlJQEIHeQp6hgSDns8kRERJSXkARMNfXwbaVAr9cDAIYMGYKnnnoKwcHBHq4dERUEAyyRl0pNTcX//vc//Pzzz1AUBTBJ0FwJgOYauxUTERFZKCHZMDZIgwg0dxdu1qwZpk+fjhYtWni4ZkRUGAywRF7u/Pnz+PTTT3H8+HHzA1kaaC8FQU705WjFRERUYQlfE4yRaVDCswEAISEhePrppzFw4EBOjUPkxRhgicoBIQR27NiBr776CvHx8QAAKckH2uggyBk6D9eOiIio9AiNAlOdDGgaGpGTkwNZljFs2DA89thj7C5MVA4wwBKVI3q9HsuWLcOqVatgMBgAAchxftBeDuL1sUREVK4JSUCpkYnAu2SkpKQAANq2bYtp06ahYcOGHq4dERUXBliicuj69ev49ttvsXPnTvMDCqC5FgjN1QBIJnabIiKi8kNAQAnLhikyXZ0WJyIiAlOmTEHnzp05ujBROcMAS1SOnTp1Cl999dXt62NzJGivBEGO9edAT0RE5PWUSjkw1kuHCDEAAEJDQ/H4449j0KBB0Gq1Hq4dEZUEBliick4Igb179+Kbb77BlStXzA9mydDGBEGO8+NAT0RE5HWUQANM9dKhhOUAAHx8fDBy5Eg88sgjCAwM9HDtiKgkMcASVRBGoxEbN27EkiVLkJCQAACQ9BpoYoIgx3PEYiIiKvsUf6M5uFY1jyys0WgwcOBAjB8/HtWqVfNw7YioNDDAElUwWVlZ+Omnn7B8+XJ1kAspQwvN5UBOvUNERGWS8DPCWDcDqJkDRVEgSRJ69+6NiRMnok6dOp6uHhGVIgZYogpKr9djzZo1WLlyJTIyMgAAUroWmiuBkBMYZImIyPMUfyNMdTMg1TTAZDIP0NStWzc8/vjjHFmYqIJigCWq4FJTU7Fy5UqsW7cOmZmZAHJbZK8EsmsxERF5hBJggKluBkS1HFgOVTt27IjHHnsMLVq08HDtiMiTGGCJCACQnJyMNWvW4Mcff7zdIqvXQHM1kIM9ERFRqVACDTBFZECpkq0+1q1bN4wdOxbNmzf3YM2IqKxggCUiG2lpaVi3bh3WrFmDtLQ084NZGmivBUC+6Q9JYZAlIqLiIyAgKhlgqpOhjiosSRJ69uyJsWPHolGjRh6uIRGVJQywRGSXXq/H+vXrsWrVKiQnJ5sfNEjQ3AiA5oY/JIPGo/UjIiLvJiCgVM2GqXYGRLARACDLMnr37o1HH30UkZGRnq0gEZVJDLBE5FRWVhZ+/fVXrF69GtevXzc/qABynD801wIgZ3KieCIicp/QKDBVz4KpVgbgpwAwz+Par18/jB49mqMKE5FTDLBE5BaTyYQ9e/ZgxYoVOH36tPq4nOADzbVASKk6XidLREQOCR8TTDX1MNXMBLTmw8+QkBAMGzYMw4YNQ+XKlT1cQyLyBgywRFQgQgicOHECK1euxL59+9TRIaV0LTTXAyDH+/E6WSIiUilBBphq6SHXMsJoNHcVrlOnDkaOHIn+/fvD19fXwzUkIm/CAEtEhRYTE4PVq1fjt99+Q06OeeANGCRobvpDcyMAUjavkyUiqoiELKBUzYKppl69vhUA7rjjDowaNQpdunSBLMserCEReSsGWCIqsuTkZGzatAkbNmxAbGys+UEByIm+5gGfkn3YvZiIqAIQvrndhKtnAjrzIaZOp0OvXr0wbNgwzuFKREXGAEtExcZkMmH//v348ccfcfjwYfVxSa+BHBsAzU0/SCaecSciKk8EBJTKOVBq6iGqGNRLS2rUqIEHHngA999/P0JDQz1bSSIqNxhgiahExMTEYP369di8eTP0er35QQWQ4/2guekPKYWDPhEReTPha4KpWqa5tTV3NGEA6NChA4YNG4bOnTtDo+GlJERUvBhgiahE6fV6bN26FRs2bMDFixdvL8jUmK+VjfODlMMDHCIibyAkASUsG6YamUDY7dbWoKAgDBgwAEOHDkXdunU9XEsiKs8YYImoVAghcPbsWWzcuBHbt2+/3SorADnRB/JNf8iJvmyVJSIqg5QAI5TqmTBVu31tKwC0bdsWgwYNQo8ePTiaMBGVCgZYIip1mZmZ2L17NzZt2oTjx4/fXpAjQ3PLD3KcH6QMLcMsEZEHCa1iHkm4WhZEJYP6eNWqVTFgwAAMHDgQtWvX9mANiagiYoAlIo+6fPkyfv31V2zevBnJycnq41KGBvItf2hu+XE6HiKiUiJkcxdhJTwLSuVsIHfcPY1Ggy5duuD+++9Hhw4doNVqPVtRIqqwGGCJqEwwGAw4dOgQtm7din379t2eVxaAlKKDJs4PcjxHMSYiKm4CAiIkB6ZqWVCqZAPa24eGjRs3Rp8+fdC3b1+EhYV5sJZERGYMsERU5qSnp+P333/H1q1bcfTo0dsLFPPcsvItP8hJvpAUdjEmIioMAQERaIQSngVTeBbge3sU4Ro1aqBPnz7o06cPIiMjPVdJIiI7GGCJqEy7efMmtm/fjq1btyIqKur2ApMEOckHcryfefAnhlkiIqcEBESQ0Xxda9VswM+kLgsODsa9996LPn36oHXr1pBl9nYhorKJAZaIvIIQAhcuXMD27duxa9cuxMbG3l5oAuQk39ww6wNJ4YEXERGQN7Rm2czX6uvri86dO6NPnz7o1KkTfHx8PFhTIiL3MMASkdexTMmza9cu7N69Gzdu3Li90BJmE3zNLbO8ZpaIKhgBARFsgFI1G6YqtqHV398fnTt3Rs+ePdGpUyf4+/t7sKZERAXHAEtEXk0IgXPnzqlh9vr167cXKoCU6gM5wReaRF+OZkxE5ZaQBZTQbChVsqFUzgF8bENr165d0bNnT3Ts2BF+fn4erCkRUdEwwBJRuWEJs7t378a+ffsQHR1ts1zK0N5umU3nPLNE5N2Ej8k85U1YNpTQHHXKGwAICgpCly5d0KNHD3Ts2BG+vr6eqygRUTFigCWicuvKlSv4888/sW/fPhw/fhyKcrtFAtmyeUTjJB/IKT7sakxEZZ46cnBuaBXBRpvlNWvWRLdu3dClSxfceeednKuViMolBlgiqhBSUlJw8OBB7N27FwcPHkRmZubthQogperM184m+0DKYOssEZUNQqeYuwZXzjG3slp1DZYkCS1atEDXrl3RtWtXREZGQpL42UVE5RsDLBFVODk5OTh27Bj27duHQ4cO4dq1a3kKyOaWWUugNbJ1lohKh5ByB2CqbA6tIsi2ldXf3x/t2rVD165d0blzZ4SFhXmopkREnsEAS0QV3tWrV3Ho0CEcOnQIR44cQVZW1u2FApDStZCTc7sap/pwzlkiKjYCAiLABBFibmFVQnIAre2hWePGjdGxY0d07NgRrVq1gk6n81BtiYg8jwGWiMhKTk4OTpw4gYMHD+LQoUO4dOmSbQEFkNJ0kFN8zK2zaTpIgoGWiNwjICD8cwNrSA6UEINNt2AACAkJUQNrhw4d2MpKRGSFAZaIyIm4uDgcPnwYR48exZEjR3Dr1i3bAqbcqXpSfCCn6CClM9AS0W0CAvA1QQk15AbWHMDXNrD6+PigdevWuOuuu9CxY0c0btwYssxLF4iI7GGAJSJykxACV69eVcPs0aNHkZSUZFvIBEjp5hZaKU0HOVXHEY6JKhDLSMGikgFKpRwolQz5AqtOp0PLli3Rtm1btG3bFi1atICPj4+HakxE5F0YYImICkkIgcuXL+Pvv//G0aNHcezYMaSmpuYpBEh6rXmU41Qd5FQfIFvmKMdE5YTQKOZBlyoZoAQbIIIN+a5h1Wq1aN68uRpYW7VqxXlZiYgKiQGWiKiYKIqCmJgY/Pvvvzh+/DhOnDiRf4RjwDwHbaq5u7GcpoOUroWksJWWqKxTr18NNkAJMkBUMkAEGpH3fFRgYCBatWqFVq1aoXXr1mjevDn8/f09U2kionKGAZaIqAQlJCTgxIkTaqg9f/48TCaTbSFLK22aFnK6zjwwlF7La2mJPMh87apiDqqWwBpkzNe6CgA1atRA69at1VtkZCQ0Go0Hak1EVP4xwBIRlaLMzEycPn3a5pZvYCjAfC1thg5yutY8MFSGlqGWqIQICMBHgRJkhAi0BFZjvtGBAcDPzw9NmjRBs2bN0LJlS7Ru3RpVq1b1QK2JiComBlgiIg+Lj4/HmTNn1EB75swZpKen5y+o5LbUZmhvh9sMLQeJIioAIQkIfyNEkBEi0AglMLcbsC7/4ZBGo0HDhg3RrFkzNGvWDM2bN0e9evWg1Wo9UHMiIgIYYImIyhxFUXDt2jWcPn0aZ8+exYULF3D+/Hn7oRYAsmTIGVattHotpEwNW2upQrO0qooAI5QAc1gVgUaIACNg55yPRqNBvXr10LhxYzWwNmrUiIMtERGVMQywREReQAiBmzdv4vz587hw4YIaamNjYx2sAHOI1Wttbwy2VM7kC6oBRogAkzmo2rleFTAPstSoUSM0atQIjRs3RqNGjRAZGcmpbIiIvAADLBGRF0tLS1PDbFRUFKKjoxEdHY2MjAz7KyiAlKWBlJkbZjNz72dpgBxO70Nll5AV8wjA/iYIP+Pt+06CqkajQe3atVGvXj00bNhQDas1atSAJPG1TkTkjRhgiYjKGSEEbt26pYZZS7CNioqCXq93vKJJyhdqpUyNOdwaGG6p5AlZ3A6nfibztaq5QdXegEoWGo0GderUQf369REZGYl69eohMjISdevWZasqEVE5wwBLRFRBWAfbK1eu4OrVq+rtxo0bUBTHAQEmQMrWANnmQCtlaSBl3/4Jg8SASy4JWYHwUyB8TYCfCcI3N6j6mm/wcX5IEhISgjp16qi3iIgI1K9fH7Vr14ZOpyulZ0FERJ7EAEtERDAYDLhx44YabK0Dbnx8vPNwC9gG3BwZUo4GUrZs7pac+xhbccs3oVEgfBTAxwTha74vfEyAr/mn8DPZHek3r+DgYJuQan0LDg4uhWdCRERlGQMsERE5ZTAYcOvWLdy4cQOxsbHqT8v9+Ph4uPVVosAcaHNyA22ODMlgvsHyM/cxmNiiWxYISQA6BUKXG05z70NnFVB9cpc5uA41r+DgYNSoUQM1atRAzZo1UaNGDVSvXh01a9ZE9erVGVKJiMgpBlgiIiqSnJwcxMXFITY2Frdu3UJ8fLz603I/MTHRvZBrocA21BplwCi5+CmbB6li8M1HSALQCgitAmgVCK0AtAqgsTyW+1MnzGE1N6S6G0otgoKCULVqVfUWHh6u3q9VqxaqV6+OoKCgEnqWRERUETDAEhFRiTMajUhISFADbUJCApKSkpCUlITk5GSb+w5HUHaHAsAkmVtwTbLVfcn2vmJ1X+T+rgCSYvkduY9JkBTcLmP5xhQAkPt77mOugrO4XTDPT2G+LwlANg9kBDn3MVkAkoCQb9+HDHPw1AhAIwCNYl4n93ehyV3fcl+rAJrC/0m1Wi0qV66M0NBQhIaGqvfDwsLyhVR/f//C74iIiMgNDLBERFSmZGdn5wu1qampSEtLc3ozmUyerbh1uLXcl5A/sHpQUFAQgoKCEBwcrP60vh8SEoLKlSvbBNagoCBOOUNERGUGAywREXk9IQQyMzORlpaGjIwMZGZmIjMzE3q93uV9g8Gg3nJyctRb3sdKOiDLsgydTgedTgcfHx/4+PjY/G5939/f3+2bJZwGBgZCoylCUywREVEZwABLRETkBkVR3LqZTCYoigJZliFJEmRZVm/Wv1vuS5IEjUYDrVbr6adIRERU5jHAEhERERERkVeQPV0BIiIiIiIiIncwwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCswwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCswwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCtoPV0BIiJPEUIgKyvL09UgIioQPz8/SJLk6WoQEXkEAywRVVhZWVno16+fp6tBRFQgW7Zsgb+/v6erQUTkEexCTERERERERF6BLbBERAB8DlUDTBIkWQIkWf0JWQJyu+pJsmy+L+X+lCVIUu55QEu53MfV+0Cex2y3af55e7mwPC7j9jYsj1tOOeZ9TJIgLL0JpdzfZfMvQoLVvqCuIyQp9/fb2xS5VTHXBVbr2C63WcdSRrazzLq8zTLrx/LWw8E6uP2Y9XIAah0c7cumvIN65N2myt7+1HWE7Tp5tqcuR97l4nYZ3C57e9tCXSblK2+9zHz/9s/b25EkcfslaP24usy8XIb5vvU6cu5y8zLzvtTHrH/i9npy3lvuMvPvyPe4eR1FfUyG+XcA0Ei3f5cl22WyJKyWC2hgLmNeT7FaT4HGepu59y3lrdeTIXLXVaDJXWbel7m8RhKQoECT+7v1OhrAvB7M+7M8N8vv5n0JdZks5dZFvS+pb2uNJEGGlPuYBE3uH1+GDAkSDDkaPPRkDRARVXQMsEREgDm8KuYDRUi3f95OBjAfakoSIN9Oa+rhp00SkoG8CeV2OkS+1CNZrWuToNx5HA6WIzfowibA2jxmswmr3/MF4rzL7ayT7ynnKW+vunbr4eDmaJmjP1Vht2e1TYeBOW9Atfdvtl6OvMsdBNi8y/Msyxtgbz8ubPZpb5klpN5eZr3c3jrCzr5sb9YBNt/N0TJ7wRZC/V1dhtvLNbBdZg6wyu0AmLvMHABzf0qSOVzmvvYt9y3lNZCgUQMsoJFu/9TAsi/zfbvL1N9Fbpi1Dqm3Q6uzAGvZ3u0Am7tdq+2b92Upb/U/JCKqwNiFmIiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiKi/2/v3qOiLhM/jr9H5DIKipqroGRqoG7pqqBmKnkLkbILaqdy11y37XIqO8f1HP2RpmWFq8e0o2e1PKtuGdlWJ82zlWXibUVFM3UlkLxQXiAuCiIMMDC/P3C+DTrcZrg4+nmd43GY5/k+32fmO8r5zPN8n0dExCNoH1gREQAvGzYqKjdqNHHN38aGjNfso2q6Zt9T+x/bb4/rUuawCamtms1NnT3/23P23TWp+rPN2I3TKLFhAhvGsbZrj7l63PWqec7mUFRlb1OTY/dr2H/VVEPZNad1paymvV5rKrM/rPE4Z/u5Oim/ro/V7APL9ceZrqvvWOawx6vJoS72/VcdP17V7AOL6/vA2vjtONu1f66W2a7uhXvt8xUmG5gqfjsPV3+2vy6qltuultkczm0zyhz6cfXnFlcft7haZn/s+HeFwz/rCtNvf1dcfcktrj6uuPoRdb4PrIkWVO4vay8zXX3eC4e9ZB3atO/zauxje7Wsch9b029tXv0/onJXahNlpc7+DYqI3HoUYEVEgNLBvzZ3FxqHPR+4wXTN3yLw28fKxm+hz7M4frI1IU1ExFPof2wRERERERHxCCabzebmd/MiIp7JZrNhsViauxvSgCwWCw8//DAAmzdvxs/Pr5l7JO7Q9XTOz88Pk0lzIkTk1qQpxCJyyzKZTJjN5ubuhjQSPz8/Xd+biK6niIiAphCLiIiIiIiIh1CAFREREREREY+gACsiIiIiIiIeQQFWREREREREPIJWIRYRERERERGPoBFYERERERER8QgKsCIiIiIiIuIRFGBFRERERETEIyjAioiIiIiIiEdQgBURERERERGPoAArIiIiIiIiHkEBVkRERERERDyCAqyIiIiIiIh4hJbN3QEREbn1FBUVsXHjRnbu3ElmZiYtWrQgJCSE0aNHM3HiRLy9vV1uOy8vj4SEBJKSksjKysLX15fu3bsTHR3NAw88gMlkcnrcW2+9xddff11r+9u3b6dlS/36vFZjXNPLly/zww8/cOLECU6cOEFaWhp5eXkA/N///R/jx4+vUzvnzp0jISGB5ORk8vLyMJvNhIWFMWHCBEaOHFnvfomISPPRb2AREWlSmZmZzJgxg8zMTAD8/PwoKysjNTWV1NRUvv32W5YvX05AQEC9205LS2PWrFnk5+cDYDabKSoq4ujRoxw9epQdO3YQHx9fY5jy8fHB39+/2vLqAvCtrLGu6Z49e4iPj3erb0lJScyfPx+LxQJA69atuXz5MsnJySQnJxMTE8Ps2bN1XUVEPIQCrIiINBmr1cqcOXPIzMykQ4cOvPLKK0RERFBRUUFiYiJLliwhPT2dhQsXsnjx4nq1XVhYyOzZs8nPz+f2229n7ty59O7dm7KyMrZs2cLKlSs5cOAAK1asYObMmdW2M3r0aOLi4tx9qbeMxrymAO3btyc0NJSwsDB69erF3Llz63zs+fPnWbBgARaLhb59+zJnzhxCQkKM0eL169fz5Zdfcvvtt/Pkk0/Wu28iItL0FGBFRKTJfP3115w6dQqAhQsXcvfddwPQokULxowZg81m4/XXX2ffvn0cOnSI8PDwOre9ceNG8vLy8PX1ZfHixQQHBwPg7e1NbGwsRUVFvPfee2zZsoXJkycTEhLS8C/wFtSY1zQqKqrO04SdWbt2LcXFxbRv355FixYZI8CtWrVi+vTp5ObmsmXLFj744AMmTJjg0qi/iIg0LS3iJCIiTcZ+j+mAAQOMoONozJgxBAUFValbV1u3bjXasIdXR7GxsZjNZsrLy/n222/r23WpRmNeUy8vL5f7VVxczM6dOwF45JFHnIbTP/7xjwBcuXKF3bt3u3wuERFpOgqwIiLSJCwWC//73/8AuOeee5zWMZlMDBkyBIDk5OQ6t/3zzz+TlZUFYBx/rVatWtGvX796ty3Va8xr6q5jx45RUlICVP+ZCAoKolu3bk3eNxERcZ2mEIuISJPIyMigoqICgO7du1dbz16Wl5dHQUEBbdq0qbVt+xTW2tru0aMH+/fv58yZM9XWOXToEE8++SS//vorLVu2pFOnToSHh/Poo49q2vE1GvOausvxM9GjR49q6/Xo0YOMjAxOnz7d6H0SERH3aQRWRESaRE5OjvG4Y8eO1da77bbbnB5Tk9zc3Hq1feXKFYqKipzWyc7O5sKFC/j6+lJSUsLp06f59NNPmTZtGps2bapTf24VjXlN3WU/T0BAAL6+vtXWs/fN8TMkIiI3Lo3AiohIk3AMjDUFCj8/P6fHNEbbrVq1Mn4OCwujd+/e3HvvvXTs2BEvLy8sFgv79+9n9erVnDt3jrfffpvAwEDtHXpVY15TdxUXF193bmfs5U3VLxERcY9GYEVERIBJkyYRGxtL586djcWD/Pz8uO+++1i9erWxENE//vEPbDZbc3ZVRETklqUAKyIiTcJxtNO+uI4zFovF6THN1TZA27Zt+dOf/gRAZmYmJ06cqPOxN7PGft/dYTabrzu3M/bypuqXiIi4RwFWRESahON9kNnZ2dXWc7xH0vGYmnTo0KFebbdu3bregeWuu+4yHl+4cKFex96sGvOaust+nsuXL9cYru19c/wMiYjIjUsBVkREmkS3bt1o0aLy105NK77ay9q3b1/n1WodV5mtqW37yrR33HFHndqVmjXmNXWX42fCcUXia9nLalpFWUREbhwKsCIi0iT8/Py4++67Adi/f7/TOjabjQMHDgAwaNCgOrcdEhJCp06damy7uLiYo0eP1rttu+PHjxuP7ffD3uoa85q6q2/fvsbCUvbzXyszM5OMjIwm75uIiLhOAVZERJpMdHQ0AIcPHyYlJeW68sTERM6fP1+lbl2YTCbGjRsHwPbt251O8f38888pLi7Gy8uL+++/v0pZbYsyFRQUsGHDBgB+97vfERoaWue+3ewa65q6y2w2c9999wGwadMmCgsLr6uTkJAAVN7/OmLEiCbrm4iIuE4BVkREmkx0dDQ9evTAZrMxb948Dh06BEBFRQWJiYksWbIEgCFDhhAeHl7l2LVr1xIZGUlkZKTTgPr444/Tvn17LBYLs2fPJi0tDYCysjI2bdrEP//5TwAmTJhASEhIlWO/+eYbXnnlFXbs2MHFixeN50tKSti9ezfPP/+8EcKef/55Y9qsNO41Bbh06VKVP3ZFRUVVnne2WNP06dMxm83k5uYyZ84cfvnlF6ByNH79+vVs3rwZgKlTpxIQEOD2eyEiIo3PZNNeACIi0oQuXLjAyy+/TGZmJlA5DbWiooLS0lIAQkNDWb58+XWBYu3ataxfvx6Ajz/+2Ok03rS0NGbNmkV+fj5QObJWWlqK1WoFKqeJxsfH4+PjU+W4r776ivj4eONns9mMj48PhYWFlJeXA+Dj48MLL7zAo48+2gDvws2lMa9pZGRknfowbdo0pk+fft3zSUlJzJ8/3wi4/v7+FBcXG9c1JiaG2bNnYzKZ6vZiRUSkWbVs7g6IiMitJSgoiPXr17Nx40Z27txJZmYmLVu2pHv37owZM4aJEyfi7e3tUtu9evXiX//6FwkJCezdu5dff/0VPz8/evToQXR0NDExMU5HTwcMGMBf//pXjh8/TkZGBvn5+RQWFtKqVSu6dOnCwIEDeeihhwgODnb35d+UGvOaumvo0KGsW7eOhIQEkpOTycvLw9/fn9DQUB566CFGjhzZLP0SERHXaARWREREREREPIJu4hERERERERGPoAArIiIiIiIiHkEBVkRERERERDyCAqyIiIiIiIh4BAVYERERERER8QgKsCIiIiIiIuIRFGBFRERERETEIyjAioiIiIiIiEdQgBURERERERGPoAArIiIiIiIiHkEBVkRERERERDyCAqyIiIiIiIh4BAVYERERERER8QgKsCIi4hHeeecdIiMjeemll5q7K9LMCgsLeeCBB4iMjGTXrl3N3R0REWlCLZu7AyIi0riuXLlCeno6qamppKWlkZaWxrlz57DZbAB8/PHHBAUFNcq5bTYbkyZNIjs7mylTpvDss8+61E56ejqbNm0C4JlnnmnAHjavU6dOceDAAY4dO8apU6fIzc2lvLycgIAAevbsydChQ4mOjsbf37+5u3pD8ff35/HHH2fNmjWsWLGCIUOG4Ovr29zdEhGRJqAAKyJyk5sxYwbp6enNcu7U1FSys7MBGDFihMvtrFq1ivLycoYMGULfvn0bqnvNasaMGfzwww9Oy/Ly8sjLyyM5OZkNGzYQFxfH4MGDm7aDN7hJkybxySefkJWVxaeffsqUKVOau0siItIENIVYROQmZx9phcqRqwEDBtC+ffsmOffu3bsB6NixI3369HGpjaNHj3Lw4EGAmyqk2IN9QEAAMTExxMXFsXLlStasWcPrr7/O0KFDgcowGxcXx5EjR5qzuzccs9nMxIkTAUhISKCoqKiZeyQiIk1BI7AiIje5mJgYAgMD6dWrF127dsVkMjFjxgzy8vIa/dz2ADts2DBMJpNLbXz00UcABAUF8Yc//KHB+tbcunbtytSpUxkzZgw+Pj5Vynr16sXIkSP58MMPeffddyktLWXp0qW8//77zdTbG1NUVBRr167l8uXL/Oc//2Hy5MnN3SUREWlkGoEVEbnJTZo0ibFjxxISEuJyiHTFL7/8QkZGBuD69OHs7GySkpIAGDduXJP2v7EtWbKE8ePHXxdeHU2ZMoXQ0FAAzpw5w8mTJ5uqex4hKCiIfv36AfDFF180c29ERKQpaARWREQahX11WPu0ZVds27aNiooKAEaPHl2nY6xWK9u3b2fPnj2kpqZy6dIlysvLCQwMpEePHkRERDB27Fg6dOhQ5bjIyEgAoqOjiYuL4+eff+bTTz8lOTmZnJwcWrduTVhYGE8++ST9+/c3jispKeGrr75i69atnD17FovFQnBwMPfffz+TJ092e3GhgQMHGvcw//LLL/Ts2dPlts6cOcPmzZs5cuQIFy5cwGKx4O/vT0BAAEFBQYSHhzN8+HBuv/12l9q3Wq188803JCYmcurUKfLz8zGZTLRp04bAwED69OlDREQEw4YNw9vbu8qx177/Z86c4fPPP+fgwYPk5ORQXFzMm2++ed2XIaNHj+bIkSNkZGSQmppK7969XXtzRETEIyjAiohIo7BPHx46dCgtW7r262bv3r1A5X2i3bp1q7X+Tz/9xKuvvsrZs2evK8vOziY7O5v9+/dz8uRJ4uLiqm1nx44dvPXWW1gsFuO5kpIS9u3bx/79+5k1axYTJkwgJyeHuLg4UlNTqxx/+vRp3nvvPfbt28fSpUvdCrFWq9V43KKF6xOnNm/ezPLlyykvL6/yfH5+Pvn5+Zw9e5bk5GROnjzJvHnz6t3+pUuX+Nvf/uZ0wTD7e5+ens4XX3xBQkICXbt2rbatr776iqVLl1JaWlrreR0X9dq7d68CrIjITU4BVkREGlxOTg4//vgj4Pr04dLSUo4fPw5Anz59ap0+nJ6ezosvvkhxcTEAAwYMICoqim7duuHt7U1ubi4pKSm17ht68uRJtm/fTrt27XjmmWeMcx86dIgPPvgAi8XCsmXL6N+/P2+88QY//fQTjzzyCMOHDycwMJBz587x/vvvc/LkSY4ePUpCQgJ//vOfXXoPAL7//nvjcffu3V1q49SpU0Z4bdOmDRMmTKB///4EBgZSXl5Obm4uaWlp7Nu3z+Vp2suXLzfCa3h4OFFRUQQFBdG6dWuuXLlCRkYGR44cMaaEVyctLY1t27bRpk0bJk+eTN++ffH29ubMmTN07tz5uvrdu3fHbDZTXFzM999/z/Tp013qv4iIeAYFWBERaXB79uzBZrPh4+PDkCFDXGrj5MmTxuhjr169aqxrtVp59dVXjfD68ssvGyvUOrr33nt5+umnycrKqrat9PR0QkNDWb58OQEBAcbzv//97+natSvz58/HarXy4osvUlBQwJIlS4iIiDDqhYWFMWjQIKZOnUpOTg6bNm1i6tSpeHl51ev1Q+U07NOnTwOVIT4kJKTebQAkJiYaI6/Lli0z7qt1NGLECJ5++mny8/Pr3X5JSYnxxcCIESN44403rgvC/fv35+GHH6a4uLjGkeTTp0/TtWtXVq5cWWW17OpWsfby8iIsLIwjR45w4sQJKioq3BqpFhGRG5v+hxcRkQZnnz4cERGB2Wx2qQ3HacC1bfuzbds2zp07B1SuuuwsvDrq1KlTjeVz5sypEl7tRo4cSceOHQG4ePEisbGxVcKrnb+/P+PHjzfqnTlzpsbzOZOTk8Pbb78NgMlk4vnnn693G3b2Faf9/f2dhldHbdu2rXf7ly9fNr5s6N+/f42juGazudYp1TNnzqzXVk/2uhaLhZycnDofJyIinkcBVkREGlRhYSGHDx8GXJ8+DJCbm2s8btOmTY117YEZ4IknnnD5nFA5JbW6kGcymaqURUVFVduOY73z58/Xqw8Wi4W4uDgjeF67cFR92UN3YWEhiYmJLrdTnbZt2xqrKX/33Xdu7cnasWNHp18K1MTx8+H4uRERkZuPAqyIiDSopKQkrFYrXl5eDBs2zOV2SkpKjMfORkMdnThxAqgciavLYk81qe14x77UtFqvY736BLqysjLmzp1rLAw1fPhwnn766Tof70xUVJQx6jl//nxeeOEFPvzwQ44ePWpMu3aHt7c30dHRAKSkpPDYY4+xZMkSvvvuu3qHd1dWWXYMsI4Lb4mIyM1H98CKiEiDso+G3n333QQGBrrcjuM9o7WtRnvp0iXgt5FGd/j5+dVY7jg9tqbp0Y73Ydq3AqqN1Wpl3rx5HDhwAIDBgwezYMECl+6fdRQcHMyiRYt46623yM7O5tixYxw7dgyofJ979+5NZGQkDz74YK1fFlTnpZdeorS0lK1bt1JQUMCWLVvYsmULUPnFwuDBg4mJial1JLm20XZnHL/scHXFaxER8QwagRURkQZTWlrK/v37AfemD0Pl/Zp2BQUFbrXlCaxWK/Pnzze2DoqIiODNN980pua6Kzw8nI8++ojXXnuNmJgYYxub8vJyjh8/zqpVq3jiiSeM8Fxfvr6+xMXFsWHDBv7yl78wcOBAI+Dn5eXx9ddfM2PGDObOnVslcF7LlQWYHBeecvzciIjIzUdfU4qISIM5ePCgMSXV3QDruGVKbQE2MDCQrKwsj13Axx5e7aPXAwcOJD4+3q39Y53x8fFh1KhRjBo1CqgcuT506BBbt25l3759FBQUMG/ePBISEujQoYNL5wgJCeGpp57iqaeeory8nPT0dPbu3cvmzZu5ePEiu3btYs2aNbz44osN9rouX75sPK5tgS4REfFsGoEVEZEGYw9goaGhBAUFudWW456nP//8c4117dvs5Obm1lr3RnNteB0wYACLFi1q8PDqTGBgIGPGjGHx4sU88sgjABQXF7Nnz54Gad8+PXn69OmsXr3amJ69bdu2BmnfLiMjA4CgoCBatWrVoG2LiMiNRQFWREQaREVFBf/973+ByoWH3NWpUyduu+02AH788cca60ZGRhqPExIS3D53U7FarSxYsMAIr/379+fvf/97rffhNobBgwcbj+33FDekoKAgYx9bV/aarc6lS5eMLZTuuuuuBmtXRERuTAqwIiLSII4dO2YEH8dA6Q57qMrIyODKlSvV1hs9erQRjr788ks+++yzGtvNyspqkP65w2q18vrrr7Nr1y6gccPrzp07aw2l9nuXAbp06VKv9s+fP8/BgwdrrHPhwgVjpDQ4OLhe7dckJSXFeHzPPfc0WLsiInJj0j2wIiI3ubNnzxorztrZ9xcF2LFjR5XVgs1mMyNHjqz3eeyjiMHBwS5theLMqFGj+PLLL6moqODgwYPcd999Tuu1bNmS1157jRdeeIHi4mLeeecddu3axbhx4+jWrRve3t7k5uaSmprKjh076NWrF3FxcQ3SR1ctXLiQHTt2AJWB8bnnnuPChQs1HtOuXTvatWtX73N99tlnLFy4kPDwcMLDw7njjjto27YtZWVlZGVlsW3bNmP0vHPnzvXe/igrK4uZM2cSHBzMsGHD6NOnD506dcLX15f8/HxSUlLYtGmTsZr0xIkT6/0aqpOcnAxU3t87dOjQBmtXRERuTAqwIiI3uWPHjhEfH19t+apVq6r83LlzZ7cCbENMH7aLiIigY8eOZGdns3Xr1moDLMCdd97JihUrePXVVzl//jyHDx/m8OHDTuva75ltTomJicbjc+fO8dxzz9V6zLRp05g+fbpL5ystLSUpKYmkpKRq63Tp0oX4+Pgatweqyfnz5/nkk0+qLW/RogVPPPEEjz76qEvtX8tqtfLdd98BlaP+rm4BJCIinkMBVkRE3PbTTz8Zo4furj7syMvLi9jYWN5991327dvHpUuXatxbNiwsjA0bNrB161Z2795Nenq6cb9lu3bt6NmzJ4MGDWLs2LEN1kdPMH/+fA4cOMCRI0c4deoUeXl5xpTitm3bcueddzJixAiioqJc2ranX79+rFy5koMHD5KSkkJWVhYXL17kypUr+Pn5ERwcTL9+/XjwwQcbbHQeMD4TAJMmTWqwdkVE5MZlstlstubuhIiIeLZ169axbt062rVrx+eff+7SXp7VKSws5PHHH6egoIBnn32WKVOmNFjb4tlmz55NUlIS4eHhLFu2rLm7IyIiTUCLOImIiNvs04fvvffeBg2vAP7+/kZo3bhxI0VFRQ3avnimlJQUkpKSMJlMPPPMM83dHRERaSIKsCIi4paysjJGjBjBtGnTiI2NbZRzTJw4ka5du5Kfn8+///3vRjmHeJY1a9YAMG7cOPr06dPMvRERkaaiKcQiIuIRfvzxR5KSkvD39+exxx5r7u5IMyosLOSTTz7BZrMRGxtb433RIiJyc1GAFREREREREY+gKcQiIiIiIiLiERRgRURERERExCMowIqIiIiIiIhHUIAVERERERERj6AAKyIiIiIiIh5BAVZEREREREQ8ggKsiIiIiIiIeAQFWBEREREREfEICrAiIiIiIiLiERRgRURERERExCMowIqIiIiIiIhHUIAVERERERERj6AAKyIiIiIiIh5BAVZEREREREQ8ggKsiIiIiIiIeIT/B2Ip3L+2Nh8DAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACp5ElEQVR4nOzdd3hTZcMG8PucjO7BKC1QoOwtIEOWgiyVIagI+qogbv0EGYqoICIuREVw40JAGYqAqCAgoIBsUGaZbYFCB3TvJnm+P0IOSZvZpE3T3r/rytU0OeNJm+Sc+zxLEkIIEBEREREREVVysrcLQEREREREROQMBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/gkQAbHx8PSZIgSRIefvhhT2yyWurbt6/ydyQisuXhhx9Wvivi4+O9XRzFokWLlHItWrTI28UhDzMYDOjcuTMkScL48eO9XRzyETxHJLKush7LPWHp0qWQJAnh4eFISUnx+PYrrAZ20aJFeO211/Daa69V1C69bs2aNcprzsjI8HZx6JrXXntN+cJw5ubsl8rRo0cxfvx4tGrVCsHBwQgLC0P79u0xbdo0JCQklO+LIqIqr7i4GFu2bMGcOXMwcuRIdOjQAfXr14e/vz+CgoIQExODESNG4Ntvv0V+fr7H979w4UIcPHgQ/v7+eOmll6wuc+LECXz99dd46qmn0KNHDzRp0gShoaHQarWoU6cObr75ZsyYMQPnzp1zer+ZmZmYO3cu+vbtizp16kCr1aJu3bro06cPFixYgLy8PKe3lZeXhy+//BJDhgxBdHQ0/P394e/vj3r16mHQoEGYP3++x47XQgicOnUKP/zwA6ZMmYK+ffsiNDTU7TC3a9cuPPLII2jatCkCAwNRs2ZNdO7cGW+88QauXLlid13zMOnqzZeNHz9eeR0zZsxwef28vDyEhYVBkiSo1WpcunTJrfIUFBTg22+/xZ133onGjRsjMDAQ4eHhaNWqFe666y589NFHSExMtFmWDRs2YPbs2bjzzjvRrl07REVFQavVIiQkBM2bN8fo0aPx448/Qq/XO12m4uJifPnll+jfvz/q1q0LPz8/REdHY9iwYVixYgWEEG695pL0ej2+//57jBgxAtHR0fDz80PNmjXRsWNHTJ8+HefPn3dqO668h+195szDpCs3X841ycnJ0Gg0kCQJQUFByM7Odnkbb7zxhvK3ePrpp5XH77//frRo0QKZmZk2jxduER4QFxcnAAgAYuzYsVaX6dOnj7JMdTF27FjlNcfFxTlcvjr+jbxh5syZyt/ZmZsz/7u5c+cKjUZjcxshISFi2bJl5f/iqFpw9bulonz77bdKub799ltvF6fKOXHihNPfWzExMWLnzp0e23dubq6IiooSAMSECRNsLnfTTTc5VT6NRiNmzZrlcL8bNmwQtWrVsrutJk2aiP379zvc1r59+0Tjxo0dlq1OnTrijz/+cOnvY83kyZPt7sfW+ZItBoNBTJo0SUiSZHObkZGR4s8//7S5DfPzNVdujRs3LvPfwZlzxPJ24MABpQwNGzYUBoPBpfUXL16srD948GC3yrJ582bRpEkTh3/zefPmWV1//fr1Tv/fbrjhBnHixAmHZYqLixOdOnWyu60BAwaI9PR0t167yZkzZ0SHDh3s7i84OFgsXrzY4bZceR/be/+ZH1dduX333Xdl/jtUhmP5sGHDlDJ89dVXLq/ftGlTZf29e/daPGf63MiyLI4fP+6pIgshhFDDA2JiYjx+ZaY62rZtm7eLUO3Mnj0b7dq1s7tMnTp17D7/+eef44UXXgAAaDQaPPTQQ+jTpw+Ki4vxxx9/4KeffkJ2djYeeughhIeH4/bbb/dY+al6WrRoEZvoVmNNmjTBTTfdhLZt26Jhw4YIDAxEdnY2jhw5ghUrViAxMRHx8fEYOHAg9uzZ4/A7zhmffvopkpKSoFKpMHXqVLvLhoWFoVu3bujUqROaNm2KGjVqQK/XIyEhAb///jv+/vtvFBcXY+bMmdDpdHj99detbmfr1q0YNmwYiouLAQDdu3fH6NGjUa9ePaSkpGD16tXYsmULzp07h9tvvx3//PMPmjdvbnVbCQkJGDBgADIzMwEAUVFRePjhh9G8eXOo1WqcO3cOixcvRlxcHFJSUjBs2DDs2bMHHTt2LPPfrGTtV0hICBo0aIDjx4+XaXsvvfQS5s2bBwAICgrCo48+im7duiEnJwerVq3Cpk2bkJycjOHDh2P79u1Wy16nTh2sXr3aqf3Nnj0bBw8eBACMGzeuTGWuLG688UbccMMNOHz4MM6fP48tW7agf//+Tq9v/n3rzt/i559/xn333Yfi4mLIsow77rgD/fr1Q7169SCEQGJiIvbs2YMNGzY43FabNm3QrVs3tGrVSmlNkJGRgYMHD2L58uVIS0vD4cOH0adPH/z333+Iioqyup2MjAzccccdiI2NBQC0bt0ajzzyCKKjo3HmzBksXLgQFy5cwObNm3H33Xdj48aNUKvLHh8uX76Mvn374uLFiwCAhg0b4pFHHkGrVq2Ql5eHrVu3YtmyZcjJycHDDz+MwMBA3HPPPQ6327ZtW7zxxht2l2nYsKHN5yZMmIARI0Y43M/p06eV78CQkBCMHDnS4TqV2bhx47Bu3ToAxvf5o48+6vS627dvx9mzZwEY//5du3a1eP5///sfZsyYgYSEBMyaNQvLly/3XME9GoftqI61i5XhygqVZl4Du3XrVre2denSJREYGCgACLVaLTZt2lRqGfNaqQYNGoj8/Hy39klUWbEGtnzl5OSIc+fO2V0mLy9P3Hnnncr/4fbbb3d7v8XFxaJBgwYCgBg0aJDdZY8fPy6Ki4vtLrN06VKlFlGtVouLFy+WWqagoEA0bNhQeR3Tpk2zuq158+Ypy/Tr18/mPh955BFludtuu03k5eVZfZ1jxoxRlhs+fLjd1+HIF198ISZNmiS+//57ERsbKwwGg9i6dWuZaiMPHjyo/M3CwsLEf//9V2oZ82Nb165dXa5lNJeeni78/f2V2pPz58+XeVuVoQZWCMv3ykMPPeT0egkJCcrfvlatWqKwsLBM+z969Kjw8/MTgLHVgLX/oUlBQYFITk62+tyVK1fEpUuX7O7r6tWrFq0hnnrqKZvLTpw40eL7ouQ5ytWrVy1qZz/++GO7+3Zk1KhRyrb69+8vcnJySi2zY8cO5dyqVq1admt+Tdvq06ePW+Vy1osvvqjs87HHHnNrW5UhJxQVFYnatWsr5Thz5ozT65p/r7733ntWl3n55ZcFAKFSqURCQoKnii0YYMtRZXhjUmmeDLDmX/wvvPCCzeXuvfdej335E1VWDLCVQ0pKilCpVEpALOsJt8nq1auV/6szTfqcYR6yv/7661LPL1++XHm+S5cudsPY4MGDlWU3b95sdZn69esryxw7dszmttLT04VarRYARM2aNV1/YQ6UNcCOGDFCWe+TTz6xuozBYBDdunVTlvv111/LXM5PPvlE2c7AgQPLvB0hKk+ATUlJUbr6BAUFiezsbKfWe/3115Xyjx8/vsz77969uwAgQkNDPXoib8vBgwctLp5bk5ycLLRarfI3sRWajxw5ooT4qKgoodPpylSmS5cuKdsJCAiwuT8hhHj33XeV8k+fPt3mchUZYHU6nahbt66yT3e7aVSWnGB+Ljtjxgyn1snNzRUhISHKcSYpKcnqcseOHVO2/corr3iszOU+CrFpZN2//vpLecyVTtAGgwErV67E6NGjlY7uISEhaNWqFZ5++mkcOXLEbtnMB+wxNdH9888/cf/996Nx48bw9/cvNVCPTqfDH3/8gSlTpqB3797KoBEhISFo0aIFHn74Yfz9998292nqCP7dd98pjzVu3NhhZ3JXRiHes2cPnnjiCbRs2RIhISEICgpC06ZNMXbsWGzZssXh+qb99O3bFwCQm5uL9957D126dEGNGjUQFBSEtm3b4qWXXkJ6errD7VVHQgj8+OOPAOBwVM4JEyYo91esWFHuZTO3a9cuPP3002jTpg3Cw8Ph7++Phg0bYvTo0fjtt9/srrtt27ZSn9Hz589jypQpaNWqFYKCghAeHo6ePXvi008/hU6nc6pMOTk5+PDDDzFw4EDUq1dPGbyha9euePXVV5Gammp3/ZKfFb1ej0WLFmHgwIGoX78+1Go1YmJiSq2XnJyMqVOnok2bNggKCkLNmjXRrVs3vP/++8pAMDExMZAkqdT6GzZsUPZp/v+0Z8KECco669evd2odZzgaubC8/m+//vorhg0bhqioKPj7+yMmJgYPPPAAdu3a5fJrKCoqwtdff40777wTDRo0gL+/P8LDw3HDDTdgypQpNgdPO3nyJIKCgiBJEsLCwhAXF2dzH+np6WjYsCEkSYJKpbL7vV2VREREICIiAoDxeOZoYB9HlixZAgAICAjAXXfd5Xb5AGPzR5OkpKRSz5sfxx588EG7x8UxY8Yo93/44Qery5iPgmmrmTEAhIeHK3+73Nxcm8tVpOzsbOX7IzQ01OZANCWPQ+4ca7799lvl/iOPPFLm7bgiNTUVXbt2Vb67Jk+ebLV7WlmPaRERERg6dCgA4/925cqVTpXL/FyurM2Ht2/fjt27dwMApkyZYrcpq6c4+owBxsFGi4qKABgH3bHVZapdu3bo16+fsi3zc3pXbNu2Tfmf3nbbbXa7aJl/rpctW1am/Xnahg0bcPnyZQBAq1at0LNnzwrZ71dffQW1Wg1JkhAdHY1jx46VWsad8yrz9/XixYud6ha6atUqZdCnwYMHIzIy0upybdq0UbozLF261HNdTj2Rgu1dXTOvebV3mzlzZqntnjlzRnTs2NHuerIs271aYF7btmXLFvF///d/VrdjfuWjb9++TpV57NixVq9sO9sR3N7fypbi4mLx+OOPO9z2qFGjrDaRMjEt16dPH3H27FnRpk0bm9tq1KhRlapB9lQN7JEjR5TttGvXzu6yer1ehIaGKu/ZrKysMu/XWTk5OWL06NEO3ytDhgyxWR7z2oKZM2eK9evXi/DwcJvbGjhwoCgoKLBbrt9//13UqVPHbplCQkLE2rVrbW7D/LNy9epV0bt3b6vvW3NbtmwRNWrUsLnP9u3bi/Pnz4tGjRpZXV+v1ysDwNSoUcNhU/D8/Hxlfw0bNhR6vd7u8q5wdNXW0/83nU5n93tNlmUxZ84cp2tgnRlMR6vVis8//9zq+gsXLlSW69Gjh83agJEjRyrLefLKb2WXkZGh1DRpNBq3ui0UFBQoTfluueUWj5XRvFWKtRpY81rV9evX292WeU1TVFSU1WWio6OVZZytge3YsaNrL8oJZamBXbdunbLO0KFD7S6bkpKiLBsREVGmMpof22rUqOHwO90RZ2pg4+LiRIsWLZTl3n777VLLeOKY9ssvvyjLOfN+/vvvv5XlO3To4MrLtjBu3DhlO2fPni3zdlxhXvNlqwb2nnvuUZb56aef7G5v7ty5yrL2WpzZY16r+uKLLzpc3nTeBEDExsZaXcb8fLa83X333cr+5syZ4/b2nKmBffPNN5VlWrZsabX23hPnVTfeeKOy7JYtWxyWvV+/fsryq1evtrvspEmTlGUPHTrkcNvO8MggTvaYhnWfPn26csXA2gACrVq1svj97Nmz6N69u3LluHfv3hg6dCgaNWoEvV6PAwcOYNGiRUhPT8fs2bMhy7LDoaznzp2L9evXK4M3tGvXDjqdDnv37oWfn5+yXH5+PoKDg9G/f3907twZMTEx8Pf3x+XLl3Hs2DF8//33yM3NxXfffYfw8HB8+OGHFvsxdQRfsGABtm7dCgD44osvSl1pKssVuIceekjpBO3v74+xY8eiZ8+eUKlU2L9/P77++mtkZ2dj5cqVyMzMxPr16+1euc7KysKQIUNw8uRJDB8+HLfffjtq1qyJc+fO4bPPPsP58+eRkJCAMWPGVMnai1dffRWJiYlITEyEVqtFZGQkunfvjlGjRmHo0KF2/3ZHjx5V7nfu3NnufmRZRqdOnfDXX3/BYDDgxIkT6Natm8deR0mFhYUYMGCAcsW3adOmGD16NFq3bg2NRoMzZ85g8eLFOHXqFH777TeMGDECmzZtgizbbpTx77//Yu7cuRBC4Mknn0SPHj3g5+eH/fv34/PPP0dubi42bdqEN9980+agLKtWrcLo0aOh1+uh0Whw5513om/fvoiMjERWVha2bt2KlStXIjs7G3fddRc2bdqkXPW15cEHH8SOHTvQoUMH3H///YiJiUFWVhYOHz6sLHP8+HEMHTpUqWXt1KkTHnzwQURHRyM5ORkrVqzAzp07MXr0aJu1kbIs4/HHH8fLL7+M9PR0rFq1Cg888IDNcv30009K64VHH33U7t+2PHni/zZhwgSlFkKr1WLs2LHo3bs3ZFnG3r178fXXX+PFF190agCMXbt2YcCAAcjLy4MkSbjtttswaNAg1K9fH/n5+di1axeWLFmCvLw8PPXUU/Dz8ytV4/T444/jjz/+wKpVq7Br1y7MmjWrVNm//vpr/PTTTwCMg//48lQHrtDpdHj22WeVgY8GDx4Mf3//Mm9v586dyufGU99Zv/32G37++WcAxuPY4MGDSy0jyniVPikpCVeuXEHt2rUtHh8+fDg++eQTAMDkyZOxevVqBAQEWCyj0+kwceJE5Ttg4sSJZSqDp7lyrImIiECjRo2QkJCA1NRUpKSkOByIsKRvvvlGuf+///3P4vyoPBw5cgS33347Ll26BJVKhYULF5aq9fXUMe2OO+5AZGQkkpOTsX37dpw7dw5NmjSxWTZPDd5kOn+qVasWmjRpgkuXLmH+/Pn45ZdfkJCQAK1Wi5iYGAwaNAgTJkxAdHR0mfcFGGuYzVsK3X333VaXc+W91aVLF6vruaKsn2vA+D5p2bKlzedPnjyJ3r1748SJE8jOzkaNGjXQsmVL9O/fH08++aTNQaycdeXKFWWwI7VabVFDXB6EEJg4cSIWLFgAAOjatSt+//33Ut9tnjqvGjdunDJo26JFi3DrrbfaLFtCQoKSbyIiIjBkyBC7r6V79+7K/T/++MOtwfEUnkjBnp5GR6/XK1cC/Pz8xMqVK60ul5SUpNTQyrIsjh49WmqZklOm9O7dW2RmZtrd/+bNm+3WXl65ckWp8ZFl2eagGp6eRse8T1BkZKTVq8jx8fEWNRu2+lua/020Wq1Yt26d1ddpvq09e/Y4fA225ObmitWrV3vkduDAgTKXQwjnp9G56aabRHx8vM3tzJo1S1nWWguCkswHB1myZIlbr8GRkn1zrQ2qUlRUZFGmzz77rNQy5rUFgLEm8dSpU6WW27Nnj1JrYeuK/fnz55WrqQ0bNhSHDx+2WvY9e/aIsLAwAUBER0eLoqKiUsuUbNkxceJEuzWc5jW0zzzzjNVlS74vStbACmH8zjHVbDm62nvLLbcIwDhwwYULF+wu6ypXamDd/b+Z10CEh4dbna4kNjZWmWLFdLNWA5uVlaUMBhQeHi62bdtm9fWdPn1aGcAnKChIpKamllomLS1NqVVTqVRi+/btynMnT54UQUFBAjD2N3O3xuPEiRMe+/6y9lrKQq/XW2x3yZIl4uWXX7aY0iAmJsbud5gz3nrrLWV7P/74o0vr7tu3TynfihUrxAcffCDuuOMOZXsqlcpq7asQljVW8+fPt7sf82MjALFjx45Sy6SmpopmzZopy0RFRYmXXnpJfPPNN2Lx4sVi5syZyvFOlmUxe/Zsl16rs8pSA2v+t3Cmb7npuweAxefCGUVFRSIiIkJZ393jrRD2zxG3b9+utA7x9/cXa9assboNTx3ThBDi+eefV5Z59dVXbZbbvI+fRqMp82c3PT1d2V/Hjh3FH3/8Ybc1kL+/v9NTs2RnZyufsZ9//lksWrRITJ482aKfZseOHa0OgqTX65Xvf5VK5XDwtXPnzinbbNq0aVn+FOK7775TtnHXXXfZXTYpKcni7/LGG29YXc6Z8zk/Pz/x4YcflqnMJuaDgA0bNsytbZnYOpYXFRWJ+++/X3lu4MCBVvtse/K86urVq8ogY476iJuf/06aNMnh64yPj3f6/+6sShlgV61apSy7YMECu8uePHlSGazi8ccfL/W8+UlpUFCQSExMdOo1OXL27Fllu7YOdJ4OsOajwP3+++82t7Nnzx6lk3yjRo2sNq8z/2C//vrrNrf15ZdfOrWcI2Wde87azd1BIGbOnCn8/f3FHXfcIV5//XWxZMkSsWLFCjF//nxx9913K+8nAKJevXpWR8gUwrJJxEcffeRwv64uX1aXLl1SBmW4++677S5bVFSkzEfXvHnzUs+XDEJ///23zW098MADdpcbP368cqB01ITk66+/Vrb1/fffl3re/LPSuXNnu+F13759yrLt2rWzO/iE+XatBVghLJs+WguFQhi/l0zLDBkyxO5rLQtXA6w7/7fhw4crzy9atMjmdn799VeLfVo70X7//feV53/55Re7r/HPP/9Uln3zzTetLrNt2zYhy7Ly/0pPTxdFRUWic+fOyrqeuFjk6tzR9m7uDhxnkp+fb3MfwcHB4pFHHvFIWP7f//6nbNfWyZEt9pp79urVy+58pV999ZWyrKMRdYcMGWKxbVuDF129elWMHDnS4ju+5G3UqFEea+JmTVkC7F133aWsY+1is7vLm/v555+Vdd1pMmvO1jni2rVrRUBAgACMIyv/9ddfVtf35DFNCMumtTExMTbfW+Zhy9F+7TGfv7l+/frKxbUbb7xRvP/++2LFihXiww8/FD169LB4L65atcqlbZe81axZU0yaNEnk5uZaXTczM1NZtlatWg735ery1pw5c0bZRmBgoEhJSbG5rHmTZQDi+eeft7ocYAzUTz/9tPjss8/EypUrxXfffSemTp1aar5dexcsHLnhhhuU7ThqMussa8fynJwcMWjQIOXx0aNH2xyIz5PnVUJYnt988803VpcxGAwWF0qdPS6YPutlvfhRUqUMsKbR9kJDQ53qu2P60Fs74TQ/8RgzZozDbbnCVONgq0+KJwOs+d+4ffv2DrfVv39/ZXlrNaem51QqlUhLS7O5HfOgft999zncry2VKcAeOXJEXL161ebzR48etbhSP2DAAKvLmfdF/vLLLx3u1zSUOADx1ltvlbn8jnz44YfKfv755x+Hy7/00ks236fmJ1udOnWyux3zL8eSfRcNBoOoWbOmABxPwyGE8QvcdGXY2v/b/LNi60vWZPr06cqytq7Im5ifvNkKsObBaurUqVaXeeGFF5Rl7PU5KStXAqw7/7eCggLlxDEyMtLhyJOtW7dWtmUtwJpazLRo0cLhaxRCiHr16gnAfm23+edq9OjRYurUqcrvDzzwgFP7ccTXAmzv3r3F0qVLrV5ld1WvXr2U7dq6mGeLrQAbGRkpZs2aZbdlQkZGhkW/bVujkH700Ueltv/DDz/Y3O7Zs2fFY489ZvNvp9VqxahRoxxOU1JWZQmwAwcOVNaxNlVbSeYXHez9LawZOnSosq6jmm9nWTtH/Prrr5ULCVFRUeLff/+1ub4nj2km5qM12/pM3nrrrcoyrl4IMLdr165S7zNbLYGmTZumLFOrVi2rU8yYsxdghw4dKtasWWMzoCcmJirL1q9f3+HrKCoqsviclJX533XgwIFWA/auXbuUoG+6PfHEE1a3Z+vChxDG8RvMzwEA11slCCHE/v37lfXr1KnjsLbaWSWP5ampqRbvzf/7v/+zeYHe0+dVQhj70pr2beu4+9dffynLdO7c2dmXqhzPtVqtW1N8mZR7H9iy2L59OwCgbt26Tk3mrFKpABjbZOfn55fq12Jy8803O12GrKwsfP/99/j9999x5MgRXLlyxeaIhKbJmMvT3r17lfuDBg1yuPygQYPw559/AjCOWGyr71KLFi1Qo0YNm9upX7++ct+d0YhjYmI8N/KYm9q1a2f3+bZt22LDhg1o164dCgoKsHnzZuzZswc33XRTBZXQPabPD2B8b65Zs8bu8ub/1xMnTlgdvRew7MNgjb33yrFjx5CWlgbAOPG3ozIBQHBwMDIyMnDixAm7yzn6XO/fv1+5b69PBwBlVG57br31VrRo0QKnTp3Cd999hzfeeAMajUZ5vri4WOkvWq9ePYd9Q8qbO/+3//77Txmhsk+fPsp3rS39+/e3+f/KzMxU+iVHRkY6/R4AYPc9MGvWLPz555/Ys2ePxairjRs3xqeffupwH8547bXXKl0fWn9/f+U7VQiB9PR0/Pvvv/jqq6+wbNky7NixAwsXLsRPP/2kjKpbFqbPLQDUrFnTpXWXL1+ujNmQl5eHuLg4rFu3Du+++y5mzpyJefPmYfny5bjttttKrRsWFoZ58+Yp/Q7feOMNbNmyBaNGjUK9evWQmpqK1atXY/PmzQgICEB4eLgyOqit/uZvv/02pk+fDoPBgMceewxPPfWUMlLr8ePH8fnnn+Orr77CypUrsXv3bmzatAktWrRw6TX7sqSkJOWcS6vV2u3j7445c+Zg2rRpAIx9WTdu3Gi3H2p5HNMeeeQR5bxq0aJFpb77ExISlJkroqKicPvtt9vdpz0Gg8Hi99atW2P+/PlW36dvvfUW/vzzT+zbtw9Xr17F999/jyeeeMLmtlu1aqV8D+j1ely9ehV79+7Fxx9/jF9//RW//vorRo4ciUWLFiEoKKjMr8GTFixYgO7duyvjL7Rt2xaPPPIIWrZsiby8PGzbtg0//PADiouL0aRJE5w7dw6A7c/1LbfcYnNfKpUKs2fPRnJyMr788ksAwJtvvunyrADmo3I/9NBDUKs9H5/Onz+PJ554AidPngQAzJw50+5xpzzOq0zjUSQmJuLvv/9GXFwcGjdubLFMWfuF16pVC5cuXUJRURFyc3OV43uZuR2BhWdrYLOzs926ul2yibD5lXN7zW7NbdmypVR/Lnu3Jk2aWN2OJ2tgza9AfvHFFw63ZT5v30svvVTqedNzN998s8NtmZatqEmiK4snn3xSee3WRrqurE2IzZtPunor2azEvLbA0dxgJUe+NWc+iqarN2vNwMw/K/b6qwth2ezHmRopU62PrRpYIYR47733lG2WbOb1008/Kc+V18i3rtTAuvN/M/8eefnllx2Wy/x7qmQNrPnIpq7eNBqN3f2ePXtW6asGGOek27Vrl8PyVlXmXT9uuukmt652m5rgqVQqj5UvPj5emZdVo9HYrX376KOPlH7n1m4hISHil19+sehi88cff5TajnlNvb2uSfPnz1eW69Kli0der7nK3IR4zpw5ynr33nuv0+s5Yn6OaOqHBxibKNuaO9KcJ49pJhkZGUqTRmv9/cz7+FlrabN9+3a7fd3NaxUPHz5sUaZ3333X7uv94osvlGVHjRrl8O9ji3nNo7X/pzeaEJv8/fffdkfNlSRJvPrqqxbnTdbOZZ2VmJiodK3z8/NzeN5grqCgwKLPsr1RzF1lfiw3fTYkSRKffvqpw3U9fV5lYt6CoeQ5gXm/cD8/P7stOEsyb81jr+m4s7wzLKYdmZmZbq1vqi2wxlbNrLnTp09jyJAhypxZLVu2xMSJE/HJJ59g2bJlWL16tXIzXdXW6/VuldkZprmWADh1Fc38yob5uiV5a2RUX2B+RTY2NrbU8+Hh4cp9Z+ZZvHr1qtV1Pc2dz5C9z48775XyKhPg+HNtajmhVqstakptcebz9fDDDysjc5qu6pqYfpckCY8++qjDbZU3d/5vOTk5yv3AwECHy9v727nzHjCNqGtL7dq1LWoHmzRp4nBEzarsscceQ//+/QEYW+A405LJFtP7XK/XK6MRu6tRo0Z45513ABj/t2+99ZbNZZ999lnExsZi0qRJaN++PUJCQuDv749mzZphwoQJOHz4MIYNG2bx/VpytNHExETMnTsXgLH269lnn7W5v/Hjx6N169YAjK03TKPeelNFHWsqYu5X81He8/PznTp/Ko/jR1hYmDKncW5uLlatWqU8J4TA4sWLld+t1TJNnz4dd911l82b+bzDJf8Hjr6bzJ8/e/as3WXtmTVrltKC4Mcff8Tx48ctng8ODlZqEjMyMhzOB+7Jc5ibb74Zp06dwpw5c9C7d2/UrFkTGo0G9erVw+jRo7F9+3bMmjXL7ufaFfXq1VP+FoWFhXbnDy9pzZo1Sq3+TTfdZDG/rieZ/v5CCKfmoC6v8yrzUf9Lzgn7008/KZlixIgRdltwlmReXmfymCOVrgmxefC65ZZbyjxZclm9/fbbyM/PBwC88sormD17ts2pVB5//PEKK1dISIhy35k3tvmJp/m63pKXl4eNGzd6ZFsNGzbEjTfe6JFt2VOrVi3lfkZGRqnnzZuWxcfHO9xeQkKC1XU9zfQZkiQJOp2uUlykMP9cv/rqq5g1a1aF7dsUqnQ6HYqLix2GWGc+X7Vq1cLIkSPx/fffY+PGjTh//jwaNmyIhIQEbNq0CQAwYMCAUk1vfI35/82Z8GLvb2e+rTFjxijNrD3hmWeesfh8nTp1CtOnT8ecOXM8sv3Y2FirF7HKonfv3qWmQSgPt99+u9KNZNu2bbjjjjvKtB3zCwNpaWlOXchwtnwmpqaatjRp0gQffPCBzedzcnJw4cIFAMYLLSVPMDdu3KhcBOnfv7/d6dEkSUK/fv2UJnZ79+512Ay/vFXEsWbXrl3Kezw6OtqprkplMXLkSISGhuKjjz7CqVOncOutt2Lr1q2oV6+ezXXK65g2btw4/PDDDwCMzSLHjh0LwNhk2RQcu3fvXmqaR1dFR0cjKChI+X4MCwuzu7z58+6EFFmWMXDgQJw6dQoA8Ndff1l8NmRZRtOmTXHy5Eno9XpcvHjRZhciwPPnMGFhYZg6dSqmTp1qcxnz0N21a1e39ufonM4W82mlyuvCDgCsXLkS48aNQ0pKCl544QUAwPPPP29z+fI6r2rRogV69eqFnTt3Ii4uDn///Tf69OkDwL1ppUzNnbVarUeas1e6ABsWFobg4GDk5ORUSN/SkjZv3gwAqFOnDl5//XWbB7rs7GyLvkHlrW7dusr906dPO1zefBl7B4aKkpKSolztdNfYsWMtPkTlxdHVRvO+tAcOHLC7LYPBgEOHDgEwHjRMV/jLQ/369fHvv/9CCIHExEQ0aNCg3PblSplMKvpzXa9ePaXv5blz5+zOI5eenu70ge2pp57C999/D4PBgG+++QavvfYavvnmG6W/k71+S77C/LvjzJkzDpe3t0x5vQe+//57fP/99wCMNRdXrlxBQkIC3nvvPdx2220O5xF2xvLlyz12crB161an+lq7y/zCpSsnayXFxMRg586dAIwnIO7OT2niqfIBxjk2TbUEPXr0KNU/7dKlS8r90NBQh9szDxDOXNAqb64ca1JTU5WgERER4fQcsOa1r2PHji3XC58LFiyAJElYsGCBUyG2vI5p/fr1Q8OGDXH+/Hn89ddfiI+PR0xMjMXfwtZJuqOLLuYkSUK7du2wZ88eAI5DqfnzjsKuI44+Z+3atVP6XB44cMBugDUfT8LRWCKekJ6erhy7g4KC0KlTJ7e2V5Ya5IsXLyq5IDAwEPfdd59bZbCnTZs22Lp1K/r164fk5GSHIbY8z6vGjRunfO8vWrQIffr0QXx8vPK+j46OxsCBA13apikzNWzY0O5FRGdVWNWM+ZehcDCYj6lD9rlz55w6afKk5ORkAMYBQOx9gW/evLlUx/ySXHnNjpgPwmSq4bHHvLbTU5PPVzfmtf/Wrja2bdtWOZk7duyY3S+Qf/75B1lZWQCAXr16lWutuOlKGQCP1Xq7q1OnTsqJ459//unws+NJ5pOvmybetsWVk5LevXujbdu2AIxXaIuLi5UrtXXq1MHw4cNdL2wl06FDB2i1WgDGz4Oj5n6mGj9rateurVz93717t/J5cEdcXByeeeYZAMYTnGXLlmHp0qVQqVQwGAwYM2aMxUlLdWJ+7HSnxtf8RNV0ousJniofYBm+rDXbNw+tpppae8xrmsxrbbylb9++SlPuv//+W2klZs0ff/yh3Hd24KG8vDxlADRJklyuWSmL+fPn47nnngNgbDHRt29fiwsN5srrmCbLslLramo2nJubi59++gmAsZnj6NGjPbIv8xYQji5CmD/vbk2no8+Z+QBq5u8da8y7IrgzqJWzfvjhB6Wp6wMPPAB/f/8yb+vy5ctKTbRWq0WjRo2cWm/RokXK+co999zj1AUwd5hCbGRkJADghRdeULo/lFSe51WjRo1SWtv89NNPyM3NxXfffadkmTFjxrh0kSs+Ph4FBQUAgBtuuMEjZaywAGte1e3oiqbpCwUwVotXJNM/7Ny5czZDp16vt9tnx8SV1+xITEyM0mz2v//+sxti9+/fjy1btgAw9jWqDH3BTKMQe+JWEbWvZ8+etWjiOHjw4FLLSJKEe++9F4Dx4PfRRx/Z3N6CBQuU+546INpy3333KaFjzpw5laIGQaVSKSNaJiQk4KuvvqqwfZsHyU8++cRuCJs/f75L237yyScBGE+KJ06cqFzEGDt2rFP9bSs7Pz8/5b2fnJysNLezZv369Q5HjDZ9t+fl5Sl9IMtKr9fjgQceUILwggUL0Lx5c/Tu3Rsvv/wyAGPfx8cee8yt/QDGUYg99f1VEbWvOTk5Fv+rnj17lnlb5qOvm2qQPGHhwoXKfXfKt3XrViVwNGnSBPfcc0+pZcxD+G+//WZ3XIisrCyLEUrNL4B5S3BwsPI5zMrKsnkMFELg448/Vn539lizatUq5XN0yy23oGnTpu4V2EkffvghJk6cCMDYasxWiC3PY9rDDz+s1AYtXrwYP/74o9IF6+6773a7BtTkvvvuU/bz7bff2uxvKoSwOD66ExQvXryI33//Xfnd2udsxIgRyt922bJlFn13zR09elQ5r4yKirK4qFAeUlJSlFYvGo1GeZ+Ulek7HDBeEHG2Cav5Z608mw+ba926NbZu3ar0+Z06darVEFue51UhISEYOXIkAOPx5KeffrLoF27eT9YZ5scOj83o4fYwUMK5UYgnTJigLGNvziYhhNDr9aJr167K8s8995zNSXyFECIvL098++23YtmyZaWeMx+F2Jn598znW/vggw9KPV9UVCTGjRtnMZqXrdFKP/jgA2WZ7777zuG+HY3UvGLFCuX5unXrihMnTpRaJiEhwWKC4Y8//tjqtkzPOzOysCvLVna//PKL+PHHH+3OZ1lyHti+ffvaXDYxMVEEBgYKwDjy6ebNm0st8+233yrbatCggVNzG7trypQpyj5vvfVWcfnyZZvL6vV6sWnTJjF79uxSz9kbodbVZS9cuKCM8Ovn5+fwM5GcnCxef/118d9//5V6zpV5pYUQonfv3srytubfKznXp71RiE0yMjKU/7/57dSpU06Vq6xcGYXY3f/b9u3bledr1KhhdbL0U6dOibp161r8DazNA5uTkyMaNWqkjLT47rvv2pzjTgjj33f+/PlW576cMWOGsq+RI0daPFdcXKzMDw44N3K7L3j99dfF0aNH7S6TlJRkMQ948+bN7R4/HSkoKFDmY3Q0av3atWvFypUr7c6RqNfrxXvvvaeMCApAbNmyxeqy586dEwkJCTa3tXHjRouRO20d44uKikR0dLSyv+HDh1sdhTQvL0/ceeedynLt2rWzOoKz+WfGme8JW+u6Mqf5wYMHlb9ZWFiY1e/F1157Tdl2165dnd523759XTpXcZWjc8SJEydavF+tzTfsqWOaNebHE/PvMWvHc3c89NBDFscha+8t8xFgGzRoYPWzO3XqVBEfH293X2fOnBEdOnRw6vzN/O9/xx13lDpHSUtLsxjl29Z5pRCWf0trxwAhjJ+zPXv22C27+ewBr732ms1lp02bZvc7QqfTWRwrAIht27bZXN7ctm3blHWaNm3qkblLS7J3LD9x4oTFjChz5swptb4nz6tKMv+uMv9c9O7d26XXKITlLBz2Rp13RYX1ge3fv79SC/Xoo49i0qRJaNSokTKvYLNmzdCsWTMAxmYdq1atQo8ePZCYmIj58+dj5cqVuPfee9GhQweEhYUhJycH58+fx/79+/Hnn38iNzcXs2fPdruc48ePV2o3J0+ejG3btuG2225DrVq1cPr0aSxevBinT5/GrbfeitOnT9ttNmoaBRIwXkFJTU1Fy5Ytlf459evXR/v27Z0u26hRo7B69WosX74cly9fxo033oiHH34YPXr0gEqlwv79+/H1118rV1IHDRqkNK8jo7Nnz2LSpEmIiIjA7bffjo4dOyIqKgoajQbJycnYtm0b1q5dq1wdrVevnt3BZurVq4f3338fTz/9NHQ6He644w6MGTMGffr0gU6nw/r165XaAbVajYULF9ptBmPeLyAuLs5ufxR73n77bfz777/4888/sXXrVqVmokePHoiIiEBRURGSkpKU2vykpCT0798f06dPL9P+nBEdHY3ly5fjzjvvRGFhIcaOHYsPPvgAd955J5o3b46AgABkZmbi1KlT2L17N3bu3Am9Xu9w7lZnfPHFF+jatSvy8vLw6aefYteuXXjwwQcRHR2N5ORkrFixAjt37kSPHj1w/vx5JCYmOtU8JiwsDKNHj7Zowti3b180b97c7TJXFr1798YzzzyDTz/9FOnp6ejevTvGjh2L3r17Q5Zl7N27F19//TVyc3MxYsQIu3PRBQUFYc2aNejTpw+ysrIwdepUfPHFF7jnnnvQpk0bBAcHIysrC+fOncPevXuxbds2FBUVYcmSJRbb2bFjh9IKJjo62qI2DzB+1r7//nt07NgRWVlZmDRpEvr06WO3/7MvWLVqFV599VV06NABt9xyC9q0aYOaNWtCCIHk5GTs2bMHa9euVWqogoOD8d133yk1LGXh5+eH22+/HatWrcL+/fuRk5Njc/6+c+fOYdKkSahduzYGDRqEjh07om7duspn+/jx41izZo3FyKpTpkyx+Rk/cOAA7rvvPtx8883o27cvmjVrBrVajYsXL2L9+vVKk3VJkvDxxx/brN3WaDRYsGAB7rnnHgghsHbtWrRu3RpjxoxRxiM4ceIEFi9erDQf1mg0+Pjjj93qq5WRkYH33nvP4jHz5smHDh0q9Z3br18/q/22O3XqhKlTp2LOnDnIzMxEz5498dhjj6Fbt27IycnBqlWrlOa1wcHBpT4TtsTFxSndZUJDQ5Val4o0b948SJKEefPmKedXW7dutejjV57HtHHjxil/A9Ncwo0aNfJI/3lzc+fOxY4dOxAXF4dPP/0Uu3fvVo5DSUlJWLZsGXbt2gXA+B22ZMkSq5/dL774AnPnzkX37t3Rs2dPtGzZEuHh4dDpdLh06RJ27NiB33//XWl+GxUVZbd2bubMmdiwYQNiY2Oxfv163HjjjXjsscdQv359nDlzBl988YXS9L5v375uj++Qm5uLm266CW3btsXtt9+Otm3bIiQkBFeuXMHff/+N1atXK81N77//frv/w88++wxz5sxBz5490atXL7Ro0QJhYWHIz8/H8ePHsXLlSmUeWcA4OKuztcfmx3XzmvqK0qpVK2zbtg233norLl++jBdffBEALAa9Ks/zqj59+qBx48aIi4tTPheA64M3Ade7b8XExKBDhw4ur2+VJ1KwMzWwOp3Oohak5M3alf9Lly5ZXEm2d1OpVOLLL78stQ1Xa2CFsLwCZu3Wq1cvkZKSotQk2LsCe//999vcTsm/lTO1SsXFxeKxxx5z+PcYOXKk3XmuTMtVtxrYefPmOfV+wrXaBkdXOU3mzp3rcK5Cay0ESjJfx5m5g+0pLCwUzz77rFCpVE693jFjxpTahidr8kx27dqlzC3p6BYcHCwOHz5cahuu1sAKYZzf2XSl0tqtXbt24vz588r8lDfccINT292zZ4/FdmzNO+hJFVkDK4Tx+9u89qDkTZZl8e6771q0NrB19V0IIWJjYy2u6Nu7+fn5ifXr1yvrpqenK9+9sizb/V5funSpsp1OnTq5VRNZGZjXqDi6dezYURw4cMAj+12zZo2y3cWLF9tczpXv15CQEPHhhx/a3e+PP/7ocDuRkZFixYoVTr2OpUuXitDQUIfbrF27tvjtt99sbsfZGljzcyNnb/Y+rwaDQUycONGi9rrkrU6dOuLPP/906u8hhGVLhscff9zp9VzhzDmiEEJMnjxZWa5Zs2alamI9cUyzJicnRwQHB1us++qrr7rzkm06ffq0w89xjRo1xIYNG2xuw3wuXUe3vn37ijNnzjgsV1xcnMPv5AEDBoj09HS723GmBjY1NdVhubVarZg+fbrdFjqu/C0CAwPFRx995PDvYJKVlaW0PJFlWVy4cMHpdV3h6FguhPF4aV4D+s4775RaxhPnVdaYz4cMWJ8z2ZHjx48r60+fPt2lde2psAArhBD5+fninXfeET169BA1atSw+BKy96W9bds28eSTT4q2bduK8PBwoVKpRGhoqGjTpo0YPXq0+Oyzz8SlS5esrluWACuEEOvXrxdDhgwRtWvXFhqNRtStW1f069dPfPnll0rzKGcCrE6nE5999pno27evqF27tlCr1Tb/Vq6clO/atUs8+uijolmzZiIoKEgEBASIxo0biwcffNCpg5dpP9UtwF65ckWsXLlSTJo0Sdx8882iadOmIiwsTKjValGzZk3RoUMH8eSTT7r0XjE5cuSI+L//+z/RokULERQUJEJCQkS7du3Eiy++6FQQzs3Ntfjyvnr1ahleYWmnT58W06ZNEzfddJOIiIgQarVaBAYGisaNG4vBgweLt956y+aXWXkEWCGMF2KWLl0qRo0aJRo3biyCg4OV/0GXLl3E448/LlasWCFycnKsrl+WACuEsXnl888/L1q2bCkCAgJEeHi46NKli3jvvfdEbm6uMBgMyuT29pqOmzMYDMpBtGbNmqKgoMClMpVFRQdYk3Xr1okhQ4aIiIgI4efnJxo2bCjuv/9+8c8//wghhNMBVgjj323t2rVi7NixokWLFiI0NFSoVCoRHh4uOnToIMaMGSMWLVpUaqL00aNHK/uYNm2a3X0IIcQDDzygLD9lyhSHy1dmly9fFosWLRKPP/646Natm4iIiBAajUZotVpRu3Zt0blzZ/HEE0+IP/74w+GJnyt0Op1o2LChACAGDhxoc7mCggKxadMm8fLLL4uBAweKmJgYERgYqByzmzZtKu666y7x6aefOvX9duXKFfH555+L0aNHi9atW4uaNWsKrVYr6tevL/r37y8WLFggMjIyXHotycnJYs6cOaJ///4iKipK+Pn5CT8/P1G3bl0xaNAgMW/ePIcn6d4KsCb//POPePjhh0WTJk2Ev7+/CA8PFzfeeKN4/fXXRWpqqtN/C71er/xfAYhdu3Y5va4rnD1HFMKyqbC1ECuEe8c0Wx555BFlv5IkiXPnzrm0viuKiorEV199JQYOHCjq1asnNBqNqFmzpujRo4d48803Hb7/4uLixOeffy7GjBkjOnXqJGrVqiXUarXw8/MTderUET169BATJkwQO3bscLlcCxcuFP369RORkZFCq9WKevXqiSFDhojly5c71YTWmQCr0+nEihUrxJNPPik6duwoIiMjhUajEREREaJLly5ixowZToVuIYTYvXu3eP/998XIkSPFDTfcIOrWrSu0Wq0ICAgQ0dHRYvDgweL99993+Xzqq6++Ul7Hbbfd5tK6rnAmwAohxMmTJ0W9evXshlh3z6usiY+PF7IsO/35tebll18WgLGi0V5zb1dJQrg5PC4RecQff/yhDNgwYcIElwcUIvcdOXJEGSHP2f/B5s2bleHkn3vuOXz44YflWUQir5g3bx4mT54MlUqF+Ph4j02nQ0REVZNer0ezZs0QHx+P0aNHY/ny5R7bdoWNQkxE9pnmGgsJCSnXvqhkm/kIns72vf3ss8+U+1Vh7lcia5566ilERUVBr9fj3Xff9XZxiIioklu2bBni4+MhyzJmzpzp0W0zwBJVEqYAO3nyZERERHi5NFXP9u3b7c6T9sknnygDn9SvXx9Dhw51uM1///1XGbRowIAByjynRFVNQEAAXnvtNQDGKXBszdlJRESk1+vxxhtvADAOgmUaMM9T2ISYqBK4cuUK6tSpg9q1a+Ps2bMICQnxdpGqnGbNmqGgoAB33HEHOnXqhIiICBQXF+Ps2bNYvXo1Dh06pCy7bt06mwF2w4YNMBgMOHXqFN59911ldL4dO3agV69eFfJaiLzBYDCga9euOHjwIJ599lm7c18TEVH1tXTpUjz00EMICwvDqVOnUKdOHY9unwGWiKqFZs2aWUzfYU1AQAC+/PJLZXJwa6wNpe9sf9mNGzciLy/PcWGtqF27Nnr37l2mdYmIiIiqCgZYIqoWdu/ejVWrVmH37t1ITEzE1atXkZeXhxo1aqBFixYYMGAAnn76aURGRtrdjinABgcHo0WLFnj66afxyCOPODVvbExMjMU8kK7o06cPtm3bVqZ1iYiIiKoKtbcLQERUEbp3747u3bu7vR1e8yMiIiLyHtbAEhERERERkU/gKMRERERERETkExhgiYiIiIiIyCcwwBIREREREZFP4CBORERUpQghUFBQgLy8POWWn59f6veioiIUFhaiqKhIuZX83XTT6XQwGAzQ6/XKzWAwKI+ZP2ciyzIkSbJ7k2UZGo0GarUaGo1GuanVami1WuVx0+9+fn7w9/dHQECAxU9r94OCghAcHAytVuvF/wYREZFnMcASEVGllJ+fj6ysLGRmZiI7OxtZWVnIysqyeT8nJ0cJqgaDwdvFrzS0Wi2Cg4MRHByMkJAQ5b75LSQkBOHh4Ra34OBgp6aHIiIiqkgchZiIiCpMbm4u0tLSkJaWhvT09FI/ze8XFBS4vb/AwECLW0BAgPJzy9KdgAGQDBKg3K79LiRAD+NPgwRJXLsvcO1mnA/Y4ncBSKbHzJ423YdyX5jdByBfW1EWxs2a/Q5JADIgrv2ELACVwOCn+qOgoAAFBQXIz88vdd8U5N2hUqkQGhpqEWrDwsJQo0YN1K5dG7Vr10atWrVQu3ZthIeHM+wSEVGFYIAlIiK3CSGQk5ODlJQUpKSkIDU1VbmZ/+5qqNJoNAgNDUVoaChCQkIQGhqKf1bth1QsAzoZkk4y/iyWAL0M6CVIegm4dpMs0mP1ImAMu1ALCLXB+FN17adaACoD7n5+MHJycpCZmYnMzExkZGQgIyMDubm5Lu1LpVKhZs2aFqG2Vq1aiIiIQGRkJCIjI1GnTh02ZyYiIrcxwBIRkUNCCGRlZeHy5ctWb6mpqU7XmAYEBKBmzZqoUaMGjm87DRTLkIplSEWy8X6R8XcUycbaz2ocQr1FSALQGCA0BkBt/Ck0xscG/18/XL16FVeuXMGVK1eQnp4OZ08latWqhaioKNSpUwdRUVGIjIxUftatWxeBgYHl/MqIiMjXMcASEREAQK/XIyUlBRcuXMCFCxdw6dIli5DqTO1pWFgY6tSpg4iICOxedQhSoQypSAWpUAau/ZQMbGpalQgIQGuA0BogtHpAa8ADs+/GlStXkJqaiqSkJCQnJ6OwsNDhtmrUqIH69eujfv36iI6ORnR0tPJ7SEhIBbwaIiKq7BhgiYiqmYyMDCWkmt8SExNRVFRkd91atWqhbt26OL7lDKQCFaRC1bWfMlCogiRYW0qlCVxryuyvh/Az3ka8cBuSk5ORnJyMpKQkZGdn291GWFiYRbht1KgRYmJiEB0dzabJRETVCAMsEVEVJIRAWloa4uPjce7cOeXnhQsXkJWVZXM9jUaj1Hz9s+wApAKVMZiawqqBAZXKh1AZjAE3QI9x749CYmIiLl68iMTERFy9etXmeiqVCvXq1UOjRo2UUNuoUSM0bNiQTZKJiKogBlgiIh+XlZVlEVLj4+MRFxeHzMxMm+tERkaiQYMGOPjLMUj5asj5Kkj5aqBQZp9TqnSEbIAI0EP46/Hoh/fhwoULSEhIQEJCAnJycmyuFxkZiZiYGDRr1gzNmjVD06ZNER0dDbWaswgSEfkqBlgiIh8hhEBSUhJOnz5tcUtNTbW6vCzLqFevHi79mwopT33tpoJUoGZNKlUJSv/bAB1EoB5Dp/RHQkIC4uPjkZ6ebnUdrVaLxo0bo2nTpmjatKkSbtnHlojINzDAEhFVQnq9HhcuXMCpU6dw6tQpnD59GmfOnLHZTzAqKgopx9Mg5aqvh9V8BlWqvoTaABGogwjUYciUfjhz5gzOnTuH/Px8q8vXqVMHLVq0QMuWLdG6dWu0bNkSYWFhFVxqIiJyhAGWiMjLhBBITk7G8ePHceLECZw4cQInT560OmqrWq1G48aNcXbHBcg5GmNgzVVD0nNkXyJHBATgr4chSIcH59yFM2fO4MyZM0hKSrK6fN26ddGqVSu0bNkSrVq1QosWLRAcHFzBpSYiInMMsEREFSwnJwexsbE4fvw4jh8/jtjYWKSlpZVaLiAgAE2bNsXxjWch52og5VyrWeVIv0QeJVQGiCAdnlz4AGJjYxEbG4uLFy9aXbZhw4Zo1aoV2rVrh3bt2qFx48ZQqVQVXGIiouqLAZaIqBwJIZCYmIjDhw/j8OHDOHr0KM6fP19qOZVKhaZNm+LMXxcgZ2sgZWsg5as4oBKRlwiVASK4GI98PBqxsbE4efKk1ZrawMBAtGnTRgm0bdq0YS0tEVE5YoAlIvIgvV6PM2fO4MiRI0potVa7GhUVhZQj6ZCyNcbAmqthf1WiSk6oDTCEFOPBuSNw9OhRHD9+HHl5eRbLSJKExo0bK4G2Y8eOiIqK8lKJiYiqHgZYIiI3FBUV4fjx4/jvv/9w+PBhHDt2rNQJrVqtRqtWrXBi/TlI2VrI2WpIxWxySOTrBAREoA7jlz6Mo0eP4ujRo7h06VKp5aKiotCpUyd07NgRnTp1YqAlInIDAywRkQv0ej1Onz6NAwcO4ODBgzh8+HCpwZaCgoKQd6EYcpYWcpYGUg5rV4mqC6HRwxBajJGz7sDhw4dx8uRJ6PV6i2UYaImIyo4BlojIDiEEEhISlMB66NAh5OTkWCxTo0YNZJ7Kg5ylhZR1bWRg9l0lIgBCNkCEFmPU20Pw77//IjY21mqg7dKlC7p27YrOnTsjNDTUS6UlIqr8GGCJiErIyMjA3r17sXfvXuzfv79UH9agoCDkn9dBytRCztBCyuNgS0TkHKEyQITYDrSyLKNVq1bo2rUrunbtijZt2kCtVnuxxERElQsDLBFVe3q9HrGxsdizZw92796NkydPwvyrUavVojgZkE2BNYc1rETkGUJlgCG0GHe9NhD79u1DfHy8xfNBQUG48cYblUBbv3597xSUiKiSYIAlomopLS0Ne/fuxZ49e7Bv3z5kZWVZPN+sWTPEbb0EOcPP2CyYc68SUQUQWj0m//wY9u3bh/379yMzM9Pi+QYNGqBnz57o1asX2rVrx9pZIqp2GGCJqFoQQiAuLg47duzAjh07EBsba/F8cHAw8uKLIaf7QU7XQiriKMFE5F0CAiJYh4c/uQf79u3DkSNHLJobBwcHo3v37ujRowe6d++OkJAQL5aWiKhiMMASUZWl1+tx9OhRbN++HTt37kRiYqLF882bN8e5LZeMgTVLw2bBRFSpCZUBr2x8Fv/88w92795tUTurUqnQvn179OjRA71790aDBg28WFIiovLDAEtEVUpBQQH27duHnTt3YufOnRYneFqtFrokQL7qBznNj3OxEpHPEhDGwaDeHYx//vkHcXFxFs83btwYffr0QZ8+fdCkSRNIEi/QEVHVwABLRD4vPz8fu3fvxpYtW7B7926LeVlDQkKQe7bYGFrTtZAMshdLSkRUPoSfHk8vfQA7d+7Ev//+C51OpzwXHR2Nvn37ok+fPmjRogXDLBH5NAZYIvJJBQUF2L17N7Zu3Ypdu3ahoKBAeS4qKgqpBzMhX/XnAExEVO0IlQHPr3scf/31F/bt24eioiLluaioKKVmtk2bNpBlXtQjIt/CAEtEPqOwsBB79+7F1q1bsXPnTuTn5yvP1atXD8l7MiBf8YeUy2luiIgAY5h9acMz+Ouvv7B7926Li32RkZHo378/Bg4ciKZNm3qxlEREzmOAJaJKTa/X4+DBg9i4cSO2b9+OvLw85bmoqCik7s+CnMrQSkTkiJAFZvw5Hn/99Rf++ecfi+/Txo0bY+DAgRgwYACioqK8WEoiIvsYYImoUjp79iw2btyITZs24cqVK8rjderUwdWDOcaa1hyGViKishCywPTNz2LTpk3YvXs3iouLlefat2+PgQMHom/fvggPD/deIYmIrGCAJaJK4+rVq9i8eTM2btyI06dPK4+HhIQg95QOqhR/SNmc7oaIyJOEyoCJq8dh06ZN+Pfff2E6NVSpVLjpppswePBg9OjRAxqNxsslJSJigCUiLyssLMT27dvxxx9/YN++fTAYDAAAtVoNQ5IKcqq/ccobDsRERFTuhFaPxxaNwubNm3Hq1Cnl8fDwcAwaNAiDBw9GkyZNvFhCIqruGGCJyCvi4uKwbt06bNy4EVlZWcrjUpYGqhR/YxNhHUfHJCLyFkOADve+fxs2bNiAtLQ05fFWrVph8ODB6N+/P0JCQrxYQiKqjhhgiajC5OfnY+vWrVi3bh2OHTumPF6nTh1c3Z8LOcUfcoHaiyUkIqKSBARe3zEZv/32G/755x/o9XoAgFarxS233IIhQ4bgxhtv5PyyRFQhGGCJqNydOnUKv/76KzZt2oTc3FwAxr5VIkUNOSkAcrqW/VqJiHyA0BjwxJLR+O233xAXF6c83rBhQ4wYMQK33XYba2WJqFwxwBJRuSgqKsKWLVvw888/IzY2Vnm8Xr16SP4nC6pkf0jFKi+WkIiIykpA4KNjs/Hbb79h06ZNyrzc/v7+GDBgAEaMGIEWLVp4uZREVBUxwBKRR6WmpmLt2rX45ZdfkJGRAQDQaDTQX5KhSgqAlMnaViKiqkSoDHj2x4ewevVqi1rZtm3bYsSIEejbty/8/Py8WEIiqkoYYInIbUIIHDlyBKtWrcLff/+t9I+KiIhA2r58Y3DlgExERFWagMD7h2ZgzZo1+Ouvv6DT6QAAYWFhGDZsGO6++27Url3by6UkIl/HAEtEZVZYWIjNmzfj559/tpi3VcrUQHUpEPJVP9a2EhFVQ0Kjx9iv7sLatWuRkpICwDg9Wv/+/TFq1Cg0b97cyyUkIl/FAEtELsvOzsaaNWuwatUqZWoFPz8/FCfIUF0OgJzLye6JiMhYK/vqtglYuXIlDh8+rDzeqVMnjB49Gt27d4css4UOETmPAZaInJacnIyVK1fi119/VQbsiIyMxJXduVAls5kwERHZtuDY6/jxxx+xdetWpatJgwYNMGrUKNx2223w9/f3cgmJyBcwwBKRQ2fPnsWyZcvw559/KicdUo4aqsRAyFf8IQk2EyYiIucIrR73zBuIdevWIScnB4Cxn+zIkSNx9913cxoeIrKLAZaIrBJC4NChQ/jhhx+wd+9e5XEpQwv1xUBIGRxNmIiIyk6oDHhq2f348ccfcfnyZQBAYGAg7rrrLtx7772oWbOml0tIRJURAywRWRBCYP/+/fjuu++U/kqyLAPJGqguBrF/KxEReZSAwLSNT2HJkiXKNDxarRZDhw7F/fffj8jISC+XkIgqEwZYIgJgDK579+7FokWLcOzYMQDGEwhdvArqxCBIhSovl5CIiKoyAYFZ2ydhyZIlOH78OABApVLhtttuw5gxY1CvXj0vl5CIKgMGWKJqTgiBXbt2YdGiRYiNjQVgDK76OGMfV6mIwZWIiCqOgMCcfS9h6dKlOHDgAABjkB08eDDGjBnDGlmiao4BlqiaEkLgwIEDWLhwoRJc/fz8oDurMgbXYgZXIiLyrnmHZ+Lbb7/Fvn37AAAajQZDhw7Fgw8+iIiICC+Xjoi8gQGWqBo6duwYFi5ciEOHDgEAAgICUHRagioxCFIxp8IhIqLK5f1/Z+Cbb77BwYMHARhbCt1555148MEHOdgTUTXDAEtUjZw9exZfffUVdu7cCcB4JdsQr4HqImtciYio8nv3wMv4+uuvlUEGAwICcN9992H06NEIDAz0cumIqCIwwBJVA0lJSfjyyy+xefNmCCGMowpf0kJ9IZiDMxERkU8REHhn7zSLLjA1atTAww8/jGHDhkGtVnu5hERUnhhgiaqwnJwcLF26FD/99BOKiooAAHKqH1TngyHn8wBPRES+S0DglT//DwsXLkRiYiIAIDo6Gk888QT69OkDSeJc5URVEQMsURWk0+mwbt06fPPNN8jMzAQASBkaqONCOI8rERFVKUIS+L+fHsCiRYuQnp4OAGjbti3Gjx+PNm3aeLl0RORpDLBEVYgQArt378ann36KhIQEAICUp4IqPgRymhYSeDWaiIiqJqEy4H9fDMGKFSuQn58PALjtttvw5JNPonbt2l4uHRF5CgMsURVx4cIFLFiwAHv27AEAhIWFIfegAXJSACTB4EpERNXDspTP8NVXX+H3338HYBzo6cEHH8SoUaPg5+fn5dIRkbsYYIl8XH5+PpYsWYIVK1aguLgYarUaIl4L1YUgSHpOiUNERNXTgmOvY8GCBTh27BgAICoqCs888wz7xxL5OAZYIh8lhMC2bdvw8ccfIzU1FQAgpWmhPhcCuYADNBEREQkIvPjHk/j888+VY+VNN92EiRMnon79+l4uHRGVBQMskQ86f/485s2bhwMHDhgfKJCNwTXNj/1ciYiIShCywP1f3IEffvgBxcXF0Gq1eOihh3D//fdDq9V6u3hE5AIGWCIfUlxcjB9++AGLFy9WDsD6MxqoLgZBMjC4EhER2fNNwgeYN28e9u/fDwBo2LAhJk+ejBtvvNHLJSMiZzHAEvmIo0ePYu7cuYiLiwNgbC6sORsCqZDNhYmIiJwlIDBt41P4+OOPkZaWBgAYNGgQnn32WYSHh3u3cETkEAMsUSWXm5uLhQsXYs2aNRBCAEWSsbnwFX82FyYiIiojoTJgyLu9leNreHg4Jk2ahFtvvdXbRSMiOxhgiSqx3bt3Y+7cucrAE3KyP9RxIZB0HF2YiIjIE+YfnYU5c+YoLZz69OmDiRMnolatWl4uGRFZwwBLVAnl5ubik08+wa+//mp8IF8FzZkQyJmcv46IiMjThCTwvy8HY8mSJdDr9QgNDcWECRMwcOBATrlDVMkwwBJVMgcOHMA777yD5ORkAIAqMRCqhGAO0kRERFTOPj35Ft555x2cPn0aANCzZ0+8+OKLqFGjhpdLRkQmDLBElUR+fj6++OIL/Pzzz8YHClTQnAqFnMXh/YmIiCqKkATGLhqORYsWobi4GOHh4XjxxRfRq1cvbxeNiMAAS1QpnDx5Eq+//jouXLgAAJAvB0AdHwxJz76uRERE3vD56Xcwe/ZsnDt3DgAwbNgwPPvsswgICPByyYiqNwZYIi8yGAxYuXIlFi5cCJ1OBxTK0JwOhZzBvq5ERETeJiSBEfP7YuXKlQCA6OhoTJ8+HW3atPFuwYiqMQZYIi9JS0vDW2+9hb179wIA5Ct+UJ8J5QjDRERElcw7+6bhrbfeQmpqKlQqFR577DHcf//9kGUes4kqGgMskRfs3bsXb775JtLT06HVamE47gc5KYDzuhIREVVSP2d+g/fffx9btmwBANx000145ZVXEB4e7t2CEVUzDLBEFUiv1+Obb77BkiVLAABSrhrqk2GQ89ReLhkRERE5IiDw3NqxmD9/PoqKihAREYHXXnsN7du393bRiKoNBliiCpKRkYHXX38d+/fvB3BtoKa4EE6PQ0RE5GM+O/U2Zs6ciQsXLkClUuHxxx/HfffdxybFRBWAAZaoAhw/fhyvvvoqUlJSAL0E9ZkQqFI5iiEREZGvEioDbpnRAZs3bwYA9OrVC9OnT0dQUJCXS0ZUtTHAEpUjIQTWrFmDjz76CDqdDlKeCurYcDYZJiIiqgJKNilu1KgR3nrrLTRo0MDbRSOqshhgicpJcXExPvjgA/z2228Aro0yfDqUc7sSERFVMfOPzsKMGTOQmpqK4OBgzJgxAz169PB2sYiqJAZYonKQkZGB6dOn4/Dhw5BlGdLZQKgSAznKMBERURW1PPVzvPrqqzhy5AgkScKjjz6Khx56CJLEYz+RJzHAEnnYuXPnMG3aNCQlJQE6CeqTYVCl+3m7WERERFTOhCRwx7s9sHbtWgBA//79MW3aNPj58TyAyFMYYIk8aNeuXZg1axby8vKAfBU0x8Mh57O/KxERUXUyYe0YfPDBB9Dr9bjhhhvwxhtvcL5YIg9hgCXykNWrV+PDDz+EEAJSpgaaE+GQdOzvSkREVB29s28aZsyYgZycHNSvXx/vvvsuB3ci8gAGWCI3CSHw1VdfYcmSJQAAOckf6rOhkAT7vBAREVVnX56bi6lTpyIpKQlhYWF48803ccMNN3i7WEQ+jQGWyA06nQ5z587F+vXrAQCqhCCoLgRxsCYiIiICAKy48gWmTZuG2NhYaDQazJw5E7fccou3i0XksxhgicooPz8fr776Kvbs2QMIQH0mBKrkQG8Xi4iIiCoZIQvc9GJLbN++HbIsY+rUqRg8eLC3i0XkkxhgicogOzsbL7zwAo4fPw7oJahjOdIwERER2SYgMOCtLvj9998BAM8++yxGjRrl5VIR+R4GWCIXZWRkYMqUKTh9+jRQLBlHGs7WertYREREVMkJCNz9cT8sX74cAPDQQw/hscce41yxRC5ggCVywdWrVzFp0iTEx8cDRTI0R2tAzuM0OUREROQcAYGHF4/AwoULAQB33303nnvuOYZYIidxjg8iJ6WkpGDChAnG8FooQ3OE4ZWIiIhcI0HCd2PWYsqUKZAkCT///DPmz58P1ikROYc1sEROSE5OxoQJE3D58mWgQIb2aA1IBQyvREREVHYT1z2Md999F0II3HPPPZgwYQJrYokcYA0skQOmZsOXL18G8lXQHqnJ8EpERERu+3DYIkydOhUAsGrVKixYsIA1sUQOMMAS2ZGRkYHJkyfj4sWLxprXIzUgFaq8XSwiIiKqIkqG2I8//pghlsgOBlgiG7KzszFlyhTExcUBhdfCaxHDKxEREXnW/Du/U0Lsjz/+iMWLF3u5RESVFwMskRX5+fmYOnWqcaqca6MNS4VsNkxERETlY/6d3+G5554DAHz99ddYs2aNdwtEVEkxwBKVoNPp8Nprr+HYsWPGeV6PhkPOZ3glIiKi8vX5vcvx8MMPAwDmzZuHLVu2eLdARJUQAyyRGSEE5s2bh127dgF6CZrj4ZDzNN4uFhEREVUTPzz2O0aMGAEhBN544w3s3bvX20UiqlQYYInMLFmyBOvWrQMEoD4ZCjlb6+0iERERUTUiQcLvz/+Dfv36QafTYcaMGTh79qy3i0VUaTDAEl2zYcMGfPXVVwAA9bkQqNL8vVwiIiIiqo4kSNgx+yg6deqE/Px8TJs2DWlpad4uFlGlwABLBODw4cN49913AQCqi4FQXQ70comIiIioOpOEhNmzZyM6OhrJycl45ZVXUFhY6O1iEXkdAyxVe8nJyZgxYwZ0Oh3kVD+o4oO9XSQiIiIi3BP+KObMmYOQkBAcO3YM77zzDueIpWqPAZaqtcLCQkyfPh3p6emQctRQnw6DBMnbxSIiIiICADzSaDJmz54NlUqFP//8E0uWLPF2kYi8igGWqi0hBObOnYuTJ08ap8s5EQ7JwPBKRERElcuLXd7G5MmTAQDffPMN9u/f7+USEXkPAyxVWz/99BM2btwICEATGw6pUOXtIhERERFZtWD4YgwZMgQGgwGzZs1CSkqKt4tE5BUMsFQtxcbG4rPPPgMAqOJCIGdyuhwiIiKq3CZOnIjmzZsjMzMTM2fORHFxsbeLRFThGGCp2snNzcWsWbOMgzZd8YPqUoC3i0RERETk0NCABzF79mwEBwfj2LFjysV4ouqEAZaqFSEE3n//fSQmJgIFMtSnQzloExEREfmMsdHP4ZVXXgFg7A61e/duL5eIqGIxwFK18vvvv2Pz5s3Gfq8nwyDp+REgIiIi3/LazR/innvuAQC88847yMjI8G6BiCoQz96p2rh06RIWLFgAAFAlBEPOttLvVZKMNyIiIqKy8tS5hJ3tPPXUU4iJiUFaWhrmzp3L+WGp2mCApWrBYDBgzpw5yM/Ph5SpgepiYOmFGFyJiIjIUzx1UdzGNoYGPIjp06dDrVZj+/btWL9+vfv7IvIBDLBULaxbtw6HDh0C9BI0Jfu9staViIiIyounQqyV7fxfq1fw6KOPAgDmz5+P5ORk9/dFVMkxwFKVd/nyZXz66acAjE2HpQL19SdtHVQYaImIiMhTynKx3NryVh779qHVaNeuHfLz8zF//vwyFpDIdzDAUpUmhMDcuXOvNx02TZnDWlciIiIqD/bOL8qhNlaChBdeeAFqtRo7duzA33//7f4+iCoxBliq0v766y/s378fMOD6lDkMrkREROQt5TDA0xNNp+L+++8HYGxKnJub65l9EFVCDLBUZeXn5+Pjjz8GAKguBkEu1Lh20GDQJSIiovLgqCWYs+cgZtsZM2YM6tevj9TUVHz55ZceKCRR5cQAS1XW0qVLkZKSAhTIUCUGe7s4RERERJY8WBs7NOBBPP/88wCANWvWIC4uzjPbJqpkGGCpSrpw4QKWL18OAFDHhUIysDaViIiIyllZAqkHp9uZ1m0O+vTpA4PBoAxgSVTVMMBSlfT555+juLgYUroWcppf2TfEZsRERERUEUznHG6eezz11FNQq9XYs2cP9uzZ44GCEVUuDLBU5Rw/fhzbt28HxLXaVzCEEhERUTnz2AjD7p2eP9xwEu6++24AwKeffgqdTud+uYgqEQZYqnIWLlwIAJBTAiDnqx0sTURERFTJuBlix44di9DQUMTFxWHDhg0eKhRR5cAAS1XK/v37cfDgQeO0ORc8NHATmxETERGRPR4bjEm2ft9Fd9d4HGPGjAEALF68mLWwVKUwwFKVIYRQal9VSUGQClVeLhERERGRGyS5zEH2zjvvRI0aNZCUlISNGzd6uGBE3sMAS1XGwYMHERsbC+glz0+bw1pYIiIisqY8al9dec6GYcEP47777gMALFmyhLWwVGUwwFKV8cMPPwAA5JRASMUqt/uPEBEREVUazp7XmC03YsQIhIWFITExEZs2bSqnghFVLJ7hU5Vw+vRp7Nu3zzjy8KUgbxeHiIiIqoOKbqHlYpPiO0PGKbWwy5cvhxCivEpGVGEYYKlKWLZsGQBAvhIAqdBs5GFP1sKyGTERERGVB1fPV2wtb+Xx4cOHIyAgAHFxcThw4EAZCkdUuTDAks9LSUnB1q1bAQCqSx7u+0pERERkjbcvbDsZeu8Kfwx33HEHAOCnn34qzxIRVQgGWPJ5v/32G/R6PaRMLeRcTekFWAtLREREVZF5k2I75zv33HMPAGDXrl24ePFiRZSMqNwwwJJP0+l0+PXXXwEAquRA2wsyxBIREZGneHLkYU+cozjYxiONX8BNN90EIQR+//139/dH5EUMsOTT9uzZg9TUVKBYhnw1wOoykixBkiWOSkxERESeIYTxVknIWg1krZVWaGaGDBkCANiwYQOn1CGfxjN68mnr168HAKhSAyAJy6uhSnAtD6yFJSIiIndCrCcvrMsyIMt2g+wbAz9DWFgYrly5Ypy5gchHMcCSz8rJycHu3bsBGOd+NWctuLIWloiIiDzOyzWxFoHVLMiWJAkJgwYNAmCshSXyVTybJ5+1fft2FBUVQcpTQ8q7PnVOudW6lsRaWCIiIgJcD7Gern218pi1EGsKsLt27UJ+fr7nykBUgRhgyWdt3rwZwLW5X2EMk47Cq8drYRliiYiICHA+xHrwPMRuv1crIfb/2r6KunXroqCgAHv27PFYOYgqEgMs+aScnBwcPHgQwLUA60J/VzYlJiIionJRgYM7yVqN9dpXi4Us+8VKkNC3b18AwNatW8u5hETlg2fx5JP27dtnnPs1Tw1Vkf1R98oda2GJiIjInK0QW95Nh20tZ1Ybawqwu3fvRnFxsefKQ1RBGGDJJ/3zzz8AADnDv0zrsykxERERlauSIbaimg7bXMkYYse3fw01a9ZEfn4+jhw54rEyEVUUBljyOQaDQRl9WJVetgALsCkxERERlbNyaE7sVNNhmyvLUGm16Nq1KwBg7969HiwZUcXg2Tv5nLi4OGRmZgJ6CVKO1tvFuY61sERERFSSEN5pOmxnfQZY8mUMsORzDh06BACQs7WQhHuhkU2JiYiIqFx58NxAFRYKyc/P7e2YAuyZM2eQlZXl9vaIKhIDLPmcf//9FwAg5wd5ZHtsSkxERETlxkPnGKrQYECWAFlyO8Te3+oVNGjQAABw7NgxTxSPqMLwrJ18ihBCGXBAVRQOKSDAyyWygrWwREREBHj2nEClun7/WogtS5CVgoIAWUL79u0BAEePHvVUCYkqBAMs+ZTU1FSkp6cDApCLAyD5+3skxLIpMREREXmU5LlzC1VocOkHy1AbawqvANCuXTsADLDkexhgyaecOnUKACAV+UMSsvGL20NhkSGWiIiIPMLT4dW89rUkV0KsfP3cpHXr1gCA06dPQ5TDaMlE5YUBlnyKKcDKhWa1rn5+HmtKzP6wRERE5LaKCq8mToRYKchy7JBner8HlUqFnJwcpKSkuFNMogrFM3XyKWfPngUAyIVm87/KkseaEgMeDrGshSUiIqpePHTsdzq8mtgJseZNh5XHIKNhw4YAgHPnzpW5nEQVjQGWfMrFixcBAHJRiS9oD4dYj2KIJSIiqh482HTYpfBqYiXEWguvJk2bNgXAAEu+hQGWfIbBYEBiYiIAQCrWll6A/WGJiIjIW8p70CZnlQyxNsIrAERHRwMALl26VPb9EVUwtbcLQOSs1NRUFBUVAcJGgAWM/WGFgMjPr9jCERERUfXlwfAq+/uVrfbVYiPXQqza/ql+3bp1AQBJSUnu7Y+oArEGlnxGcnIyAGN4lWDjaqIsQQoM8FxTYk/VwnJ0PyIioqrJ1MpKGNzelOzvB0gSRFGx29s6N6kVzo1vZneZqKgoAMDly5fd3h9RRWGAJZ9x9epVAICkt301UZKMzYjdDbHCYBY43Q2xDK9ERETVgxsh1hReAQAGg1sh9tyEVigOFSgOFTj3f01tLvfinZ8CAFJSUjiVDvkMBljyGWlpaQAASVc6wJqCq8XvZQyxFuFV2WAZPyo8GBAREVVd1sa4KEOItQivJmUMsecmtEJx2PUymEKstSBrqhQoKipCPrtfkY9ggCWfoQTYEjWwtgZuKkuItRpey4rhlYiIqOqyN0CjqyHW1rZcDLElw6uJUhv7TIkmxUICDMZ9Z2ZmOr0fIm9igCWfkZOTY7xjFmAdjTrsSoh1GF5dqYVleCUiIqq6nJldwMkQK/tbn7tV4WSItRVezRWHGSxCrAQJksE4YFRWVpbjwhJVAgyw5DNMTVskYXzbOjtlTsnmxdY4XfPqTIhleCUiIqq6XJkaz0GItdp02BonQqyj8Gq+nEVNrN4YYJWKAqJKjgGWfEZBQYHxjkF2fb7XAH+btbAuNxu2F2IZXomIiKqusszrbiPEOh1eTeyE2LjxrVwqknmINVUMFBUVubQNIm9hgCWfYQqwpi9aV9hqSlzmPq/WQizDKxERUdVVlvBqUiLEuhxeTayE2LjxrVAU7vrAUUqIFcZy6HQ618tD5AUMsOQz3B3evWSIdXvAJvMQy/BKRERUdbkTXk2uhdgyh1cTsxBb1vBqUhxmgCEgDwCwYcOGspeJqAIxwJLPcLnZsI1tSCq+7YmIiMhLPBGGDQYkj2zpVngtiU2IyVfwTJ58hiy7/3YVhUUQBYWASgVJdvMAYt4cyBMHIyIiIqqcPNHSSpIhyRJEYaHbm0p54AYUhUjwT3b/3Cgiylibe+utt7q9LaKKwABLPsMUYFP71SrT+qKwCCI//3pTZHdCrLUBGRhiiYiIqi53Quy18Kpsyo0Qm/LADSgKNW5LLoZbIXbV8PmoHWx8XSEhIWXeDlFFYoAlnxEYGAgAGHPDFpwZ38SldUuFV5OyhFh7Q+IzxBIREVVdZQmxJcKrsqkyhFjz8GpS1hC7avh8dPTzQ16+cXtBQUEub4PIGxhgyWeYAmxYkRYr/vchzjzrQogVBtuDQLkSYp2ZlJwhloiIqOpyJcTaCK/KphzM7WrOWng1kZ3fDABg5fAF6OjnBwDIKzDGAdN5FlFlxwBLPiM4OBgAkJsno6OfH1Y88KFTNbFKv1d7nAmxzoRXE4ZYIiKiqsuZEOsgvBq3Y3tuV3P2wquJs7WwK4cvQGc/rfK7qQaWAZZ8BQMs+QxT34zMbOPbtqOfn7Em1k6Itdl02BpPDOxkjiGWiIio6rJ3buFMeFW2Y/8Ceer/HIdXwLmmxCXDa2GRsWIAAGrUqOFEYYm8jwGWfEbt2rUBAFfSr79tTSF2+NYjpYKsS+HVxFaIdaX21RxDLBERUdVl7RzDlfBq2oyNWtjU/92AwjDnt2UrxK4cvqBUeAWAtAwVAECr1Sot3YgqOwZY8hkREREAgNSrKovHO/r54YmwS/jhf/OVfrFlCq8mJUNsWcOrCUMsERFR9VCG8ArAalNiV8OrSckQu2z4R+jspy0VXgHgSppxuVq1akHi+Qr5CAZY8hmmAHslTWX1gmdnPy1+eGA+zj3VtOzh1cQUYt0NryY8KBAREVVNpvONsoZXZTvXQ2xZw6uJKcQuG/4RuvlpbC53Rf8RgOut3Ih8AQMs+Yw6depApVKhsEjC1XTrb92xh8ahwaY8SJzLjIiIiCqQR8bREAZIGrVb4dVk5rjv0Vxtf4CoixcvAgDq16/v9v6IKgoDLPkMjUaDunXrAgASEtVWl8lNC4A6NRsIC4YcGlr2nRkEhMGNGtyS3KkNJiIiosrrWisrode7tRk5MBByYCAgyWiwNsmtbb3y+DL0C7gEPeyff1y4cAEA0LBhQ7f2R1SRGGDJpzRq1AgAcN5KgG23+wE0W3Lt4CHL7oVYU9NhSTbe3MHwSkREVDWV6CJU1hArBwYCKpXxBgBX0stcpFceX4YBgReV39P1eTaXPX/+PACgQYMGZd4fUUVjgCWfYrpCmHDRMsC23/M/1J2vheZy1vUHyxpirdW+ljXEMrwSERFVTTbGt3A1xCrhtYQGvyS7XKRpj6+wCK8AoIewGmL1BiAhIQHA9QoCIl/AAEs+pXnz5gCAk3HXByRov+d/iPrQzzK8mrgaYg3C9oHH3ZpYIiIiqho8NDijrfAKAEhNcynETnt8BW4LPG/1OWsh9uIlNfLz8xEQEMAaWPIpPCMnn9KqVSsAwJl4DYp1xsdyrgZaD68mzoZYe+HVxJUQy9pXIiKiqkWSnAqvztTC2g2vJk6GWHvh1aRkf9hTVz8EYKwcUDkqB1ElwgBLPqV+/foICQlBcbGEuPNq3LD3fjRd6sRUN45CrDPh1cSZEMvwSkREVLW4WOtq77zCqfBq4iDEOhNeTcxrYWNjYwEALVu2dK4cRJWE9aFciSopSZLQqlUr7Nu3D//7oxfqbA+A9lKmcytfC7Gq4ECInDwYssxqbV2d71WSba/D8EpERFS1lLHJsNDrIZUIqi6FV5PUNACRFg9Ne3wFADgdXoHrTYlrqAJx+PBhAECbNm1cKwuRl7EGlnxOx44dAQAh2zKdD68msgyhUVvWxpZ1yhz2iSUiIqr6PNTfFShjeL3GvBb2hcdW4rbA8y6FVxM9BM5nFuDMmTMAgA4dOpSpPETewjNw8jk33ngjAEDor0I4mN/MJlOT4uAg9+ZtKxliWftKRERUdXggvAq9/vocr+70Nb3WlPiFx1ZicFCCW2W6kPIDhBBo2LAhateu7da2iCoaAyz5nJYtWyIwMBCQdRDq3LJvSJYBtQda0bMmloiIiOww5Be4F16vkbJz3Q6vAHDw4EEA1ysFiHwJz7zJ56jVaqUZsd7fxSbEZqTsXIjMLEiy55oGebKZEREREXmZJ1pWSbJ7rb1Mm/HTArKMu8dPcms7Q6dNxj///AMA6Nq1q9vlIqpoDLDkk3r37g0A0PmlAWrXr2hK2bkwpGdA6Ixz8UiyVPYgW3IwJ4ZYIiKiqsOdEGvWSsuQU7ZWY5Kf1hher9Xghuy7iLsmTC7Ttoa8/DzCjl/C5cuXodVq0aVLlzJth8ibGGDJJ/Xs2ROSJEGosmHQFLscYoXBoIRXcy6HWFsjETPEEhERVW8luhgJvd7lEKsE1xLNj0P3XnC5OENefh41D2dgzMROAIDOnTsjICDA5e0QeRsDLPmkmjVrom3btgAAveYqhFqG0GqcCrKmpsM2n/dUk2InJzsnIiKiSs7VWlgb42O40pTYvNbVGmdrYYe8/LwSXgHg77//BmCsDCDyRQyw5LNuueUWAIBek2wMiioJQi3bDbElmw7bXM6ZEOvs3LEMsURERL7PmRAryQ4Hd3SmFtZReAWMtbB3PWc/xA55xRhcTeHVIOXh5MmTUKlU6NOnj8NyEFVGDLDkswYMGABZlmFQZcEg5RsflOyHWFtNh62xG2KdDa/KxhhiiYiIqjQnZyVw1JTYmfBqErrHdlPiIa88j5r/ZVg8dt//tQYAdOvWDeHh4U7tg6iyYYAln1W7dm1l+He95vrk3rZCrKOmw9a4NbhTqY0xxBIREfk0W7WwLk6pZ60pccnBmpw1YmLpWtjBM0qHVwGBzZs3AwAGDhzo0j6IKhMPTIJJ5D233XYb9u/fD70mCeqiRpBwLSSaQqwsQzIYAJ3epdrXkiRZgjBcO2i5WvtqsSHJM0PyExERUeVQxvngDTm5kIODjJsoQ3A1Cdt9vRZ28IznAQC1DmWU3p8qA4mJiQgICECvXr3KtC+iyoA1sOTTbrnlFgQHB0PIBTCo0iyfNOsXK+UXulz7WhIHdyIiIiKLC9FlDK/A9VpYd8KryYhJk3HHq8+j1qEMq+EVAHoNqQkAGDRoEEcfJp/GAEs+LSAgALfffjsAQKe9ZH2ha7WeQu9GzSkRERGROTfCq4khL8/t8AoAoZtjUftghs3nhVSojD48fPhwt/dH5E0MsOTzRowYAQAwqK5eH8zJjJyZC0NauvEXJ0YHtEUYhHvNhy02xmbEREREPslDragkWQL0ehiupjle2AaRm2u86Q2QLl2xudwDz7WBXq9H27Zt0axZszLvj6gyYIAln9ewYUN06dIFkACdNrH0AsU6iOISfV89cNWUiIiIqhnz8OrGRW3zbkllHZ/DFFxNLcxEQYH15aDHqlWrAAB33313mfZFVJnwLJ6qhPvuuw8AoNdcgpCKlMflTOO8r1a5EGJZ+0pERFTNebLmtQRXa2FN4bXUtq3Uwj79ahdkZGQgKioKt956q0v7IaqMGGCpSujatStatGgBSAboNGa1sNZqX8250aSYiIiIqgF7gy+6eHHb1oCQztbCmjcZtvp8iVpYAQOWL18OABg9ejTUak5AQr6PZ+5UJUiShAcffBCAsRmxgM5+7WupDVTQR4G1r0RERL7Dg7Wu7s5mULLJsM19mdXCTp3bF5cvX0ZYWBiGDBni1v6JKgsGWKoybr75ZjRo0ACQdMYRiR3VvpZkI8R6tPkwERER+QZnw6uDcwRng6u9ZsQiL9/p2RRMtbACAosXLwYAjBw5Ev7+/k6tT1TZMcBSlaFSqcxqYc9DyGUYFKE8mxSz9pWIiKjy8+B87a7UulprRizy8o23Mgz0NPHNHoiPj0doaCjuuecel9cnqqwYYKlKGTRoEBo3bgxIOhT5nS/7hq6FWNa+EhERVSNlDa4lzhXK2mTYvBbWFFzLNErx5RR88803AIAHHngAwcHBrm+DqJJigKUqRaVS4amnngIA6OpkQWjLNjQ9AA7uREREVJ14oda1JFNYLWutq8m4D/siJSUFERERnDqHqhyeoVOV0717d3To0AGQBXTRmd4uDhEREVVmHmoy7JGBmgzC7fAqVHosXboUAPDII4/Az8/PrTIRVTYMsFTlSJKEp59+GgCgr50HQ1Bh2TYkDJz7lYiIqKrz0DFa6PXurW8wlsOQk+vWdm6f3gFZWVmIiYnBbbfd5ta2iCojBliqktq0aYOBAwcCElAckw4h3DuoEBEREZUHYRBKeAXKHoRFQSH0cjbWrl0LAJg4cSLnfaUqiQGWqqxnnnkGwcHBEMHF0Efkem8wJta+EhERVW5eqoU1D65u7begEAa9Ds1G14IQAgMGDMCNN97okW0TVTYMsFRl1apVC4899hgAQNcoCwaVznhgcSbICoPbTYGIiIiIrClZ61rq+QLnuj+JgkLjTa/HxDUP4fjx4wgMDMQzzzzjqaISVToMsFSlDR8+HC1atADUArqYLACcGoeIiIi8x5laV2cuopuCq9DrITR6fPbZZwCMAzfVrl3b7XISVVYMsFSlqVQqTJkyBbIswxCRD33NfADXrnw6WxtLREREVV8FdPnxRJNh81pXABAQ6PJcU2RnZ6NFixacNoeqPAZYqvJat26N+++/HwCga5IJob5+VdNqbawnmw+z/ysREVG1Yu0cwlGTYavbsdKM2LzW1cQQkY9//vkHarUaL7/8MgduoiqPAZaqhXHjxqFx48aA1mAMsTAb7Y+1sURERFROylrrah5SS9a6Ko9r9fDvZJwz9pFHHkGTJk3KXlAiH8EAS9WCVqvFyy+/DJVKBUPtAhhq55dahn1jiYiIyFPKUutqdTtWal0BY9PhTv8Xg5ycHLRq1Qr33Xef2/si8gUMsFRttGzZEmPGjAFwrSmxn67UMp462BAREZEP8tR0Op44lxAGq7WuJo8uGYE9e/YoF+nZdJiqCwZYqlYeeughtG3bFlALFLdMh5CsHGA8VQvL/q9ERETVk7vnEtfWtxVeDcFFWLhwIQBgwoQJiImJcW9/RD6EAZaqFbVajddeew2hoaEQwcXQN8rydpGIiIioqhDi+q1M6xschl+hMqDmQBX0ej369euHYcOGlW1fRD6KAZaqncjISLz88ssAAH29XGVqHSIiIqIyc7fllRO1tgICNz3fHMnJyahfvz5eeOEFSJLk3n6JfAwDLFVLPXv2VAY70DXLgMG/dH9YIiIiqoZcDaLu1LgCTtW6mjy8aBi2b9+utCgLCgoq+36JfJQkBDvqUfWk0+nw3HPP4ciRI5Dy1NAcqQ1JL7MPLBERUXXnbK2mvWO9rHKwrpPnG5KxvklfowD6NukQQmDKlCkYPny4c+sTVTGsgaVqS61W4/XXX0dERAREoA7FLdIhhPXBEoiIiIgUnqh1dYEhoBjazgUQQmDEiBEMr1StMcBStVarVi289dZb8PPzg6hRCH1MtreLRERERJVZBTUXVlZRGRA5zA95eXno0KEDxo8fX/b9E1UBDLBU7bVs2RIvvfQSAEBfPw/6OnleLhERERFVOhVc6woAQhJo/0x9XLx4EZGRkZg9ezY0Gk3Zy0BUBTDAEgHo168fxo4dCwDQNcuCIbzQyyUiIiKiSqECB2myWA0CfWbegAMHDiAgIABvvfUWwsPDy14OoiqCgzgRXWMwGPDmm29i06ZNgF6C5mhNyDluXOXkR4uIiMg3mQZxcudY7ub0NrpG2dBH50KlUmHOnDno1q2bW9sjqipYA0t0jSzLmDZtGrp06QKoBIrbpEOUdXodhlciIiLf5W6tq5v0dXOhj84FAEydOpXhlcgMAyyRGY1GgzfeeAMtWrQANAYUtUmH0HBkYiIiIqoY+lr50DfNAQA8/vjjuOOOO7xcIqLKhQGWqITAwEDMmTMHdevWBQL0KG6bDqH20NywRERERDboa+RDtM2BEALDhw/Hgw8+6O0iEVU6DLBEVtSqVQvvv/8+atWqBRGkQ3HbNAiZNbFERERUDoSAIawAUoc86PV6DBgwABMnToTkZj9aoqqIAZbIhujoaMybNw81atSACNahuF26McSyfysRERF5wrW+toawIkg35qG4uBh9+vTByy+/DJVK5e3SEVVKDLBEdsTExOCDDz5AaGgoRIgOxW0zIGSD1wd3ICIiIh9mdh5hCCmCulsBioqK0LNnT7z66qtQq9VeLiBR5cVpdIiccPLkSUyaNAk5OTmQMjXQHA+HpL92/cdW8x5+tIiIiKone01/zc4PDGHG8Jqfn48uXbrg7bffhp+fXwUUkMh3sQaWyAktW7bEe++9h+DgYIiwYmNzYtPATqyNJSIiIkdKnC/oaxRC6pyL/Px8dO3aFW+99RbDK5ETWANL5IJTp05hypQpyMzMhJSrguZoDUjFJfqoeGLycyIiIvJd5jWwVs4H9LUKgPa50Ol06NWrF2bNmgWtVluBBSTyXQywRC6Kj4/H5MmTceXKFUj510JsIQdaICIiomskyeaFbH1EPkSbXOj1evTr1w/Tp09nn1ciFzDAEpXBpUuXMGnSJFy+fBkolKE5VgNyHg8+RERE1Z6N8CogoK+fB33jHADAHXfcgalTp3K0YSIXMcASlVFqaiomTZqE8+fPAzoJmhPhkDPZ/IeIiIgsCQjoG+dAXz8PAHDPPfdg/PjxkGUOR0PkKgZYIjdkZWXhpZdewpEjRwADoD4VBtUVf28Xi4iIiCoJIQnoWmTCEFEIAHj66adx3333QbI3UjER2cTLPkRuCA0NxQcffIA+ffoAMqBrlQld/VwI8LoQERFRdSdUBrR+pi4MEYVQq9WYMWMG7r//foZXIjewBpbIAwwGAz755BP8+OOPAAD5cgDU50IgCR6giIiIqiODvw5RdwXiwoULCAoKwhtvvIHOnTt7u1hEPo8BlsiDVq5ciU8++QRCCEgZGmhiwyHp2NCBiIioOjGEF8Kvuw45OTmoU6cO5syZg6ZNm3q7WERVAgMskYft2LEDs2fPRn5+PlCgguZ4OEcoJiIiqgYEBPR18yGa58JgMKBt27Z48803UbNmTW8XjajKYIAlKgdxcXF46aWXcOnSJUAvQX0yFKo0Du5ERERUVQlJQNc0G4aofADA7bffjueffx5aLWcoIPIkBliicpKZmYmZM2fi4MGDAABVQhBUF4Iggf1iiYiIqhKh1aP5uEgcO3YMkiTh6aefxujRozlYE1E5YIAlKkc6nQ4ff/wxfv75ZwCAlK6F5mQY+8USERFVEYawQgT2FsjMzERwcDBmzJiBHj16eLtYRFUWAyxRBdiwYQPef/99FBYWAoUyNLFhkLPZpIiIiMhXCQjoG+TCEJMHIQSaN2+O2bNno169et4uGlGVxgBLVEHOnj2LV199FRcuXAAEoIoLgepSAJsUExER+RihNkDXIhOGmkUAgCFDhmDixInw8/PzcsmIqj4GWKIKlJubi3fffRdbt24FAMhX/KA+E8omxURERD7CEFaE8H5qpKamQqvVYvLkyRg8eLC3i0VUbTDAElUwIQR+/vlnfPLJJ9DpdMYmxafCIGeySTEREVFlJSQBfcNcGBoamwxHR0dj1qxZaN68ubeLRlStMMASecnJkyfx+uuvX29SfDEQqvPBkASbFBMREVUmwk+HZmMjcfz4cQDGJsPjx49HYGCgl0tGVP0wwBJ5UX5+Pj766CP8+uuvAAApWw31yTDIBWovl4yIiIgEBAwRBdB20iEvLw/BwcF4/vnn0a9fP28XjajaYoAlqgS2bduGuXPnIjs7G9BLUMcFQ07iAE9ERETeIjQG6JpmwVC7EABwww03YPr06YiKivJyyYiqNwZYokoiJSUFb775Jg4dOgQAkDI00JwOg1So8nLJiIiIqhd9rQIEdQcyMzOhUqnw8MMP44EHHoBazRZSRN7GAEtUiRgMBqxevRpffPEFCgoKWBtLRERUgYT6Wq1rhLHWtWnTpnjllVfQrFkzL5eMiEwYYIkqocTERLz99ts4fPgwAEDK0EJzOpS1sUREROVAQMBQqxAhPWWkp6dDpVLhwQcfxJgxY6DRaLxdPCIywwBLVEkZDAb8/PPP+OKLL1BYWAjoJagSgqC6FMjaWCIiIg8RWr2x1rVWEQAgJiYGL7/8Mlq1auXlkhGRNQywRJXchQsX8O677+K///4DAEg5aqjPhELO4RVhIiKishIQ0NfNh7adDvn5+VCr1fjf//6Hhx56CH5+ft4uHhHZwABL5AMMBgN+//13fPbZZ8aRigWguhQI1fkgSHrZ28UjIiLyKYagYuiaZUGE6AAA7dq1wwsvvIDGjRt7uWRE5AgDLJEPSUtLw8cff4zNmzcbHyiUoT4XAvmqH5sVExEROSBUBugb5gINC6HX6xEUFISnnnoKw4YNgyzzgjCRL2CAJfJBe/fuxQcffIBLly4BAKR0rTHI5nN4fyIiopIEBAx1ChDaXY20tDQAQJ8+ffDcc8+hdu3aXi4dEbmCAZbIRxUUFGDp0qVYvnw5ioqK2KyYiIjICkNQMXRNsyFCiwEADRo0wHPPPYdu3bp5uWREVBYMsEQ+7tKlS/j444+xY8cO4wNFMtTxwZBT/NmsmIiIqi2hNkDXKAeiXgGEEAgICMDYsWNx7733cmocIh/GAEtURezZswcfffQRzp8/DwCQstVQx4dAztR6uWREREQVR0gC+np58G8nkJubCwAYMGAAnn76aURERHi5dETkLgZYoiqkuLgYP/30E7777jvk5eUBAOSrWqji2T+WiIiqNgEBQ+0C1O4biKSkJABA8+bNMX78eHTs2NG7hSMij2GAJaqC0tLSsGjRIqxbtw56vR4QgJwUAPX5IEjFKm8Xj4iIyKMMoUXQNc5WpsWJiIjAE088gYEDB3J0YaIqhgGWqApLSEjAF198cb1/rF6C6mIgVJcCOdATERH5PENgMfSNcmGoVQgACAgIwIMPPoh7770X/v7+Xi4dEZUHBliiauDff//Fp59+itjYWOMDxRJUF4KgSgqEZOBAT0RE5FuEvw66hrkQkYUQQkClUmHo0KEYN24catas6e3iEVE5YoAlqiYMBgO2bt2Kr7/+GhcvXjQ+WChDfSEIcnIAJMEgS0RElZvQ6qFrmAupfpGxiwyAW2+9FY888ggaNWrk5dIRUUVggCWqZnQ6HTZs2IDvvvsOycnJxgcLVFCfD+LUO0REVCkJjR766DyoGuuMc58D6N69Ox577DG0aNHCy6UjoorEAEtUTRUVFWHdunVYsmQJ0tLSAABSvgqqC0GQU/1ZI0tERF4ntHroonOhjtErwbVDhw544okn0L59ey+Xjoi8gQGWqJorKCjA6tWr8cMPPyAzM/PagzLUF9m0mIiIvEP4GYOr3KAYOp1xZOG2bdti3Lhx6Nq1KySJxyai6ooBlogAAHl5eVi7di1WrFih1MiiUIbqYhBUyQEc7ImIiMqdwV8HfYNcSPWKlT6uHTt2xNixY3HjjTcyuBIRAywRWSosLMS6deuwbNkypKamGh8skqG6FAhVUgAkHaffISIizzIEFUMfnQtEFsNgMAAAunbtijFjxqBDhw5eLh0RVSYMsERkVVFREdavX4/vv/8eSUlJxgf1ElTJ/lAlBkEqVHm3gERE5NMEBER4EXT18yBqFCmP9+zZE2PGjEGbNm28WDoiqqwYYInILp1Ohy1btmDZsmU4e/as8UEByFf8oEoMgpyj8W4BiYjIpwhJwBBRAH39PIggY/9WlUqFPn364IEHHkDz5s29XEIiqswYYInIKUII7N+/H8uXL8e+ffuUx6VMDVQXgyCnazkFDxER2STUBuij8qGvlwdojc2EAwICMHToUIwcORJ169b1cgmJyBcwwBKRy86cOYMVK1Zg8+bNyiAbUp4K8uVAqFL8IenZT5aIiIwMATro6+ZB20SgoKAAABAREYF77rkHw4YNQ0hIiJdLSES+hAGWiMosJSUFq1atwi+//ILc3Fzjg3oJcoo/VJcDIeepvVtAIiLyCgEBQ61C6OvmQYQXK483a9YMo0ePRr9+/aDRsAsKEbmOAZaI3JaXl4eNGzfi559/Rnx8vPK4lKExBtmrfmxeTERUDQiN3thMOCof8DM2E5ZlGb169cLdd9/NqXCIyG0MsETkMUII/Pvvv/j555+xY8cOpXkxCmWokgKM0/AUc/RiIqKqREBAhBZDXzcPcl09dDrjwEzh4eEYNmwY7rzzTkRGRnq5lERUVTDAElG5SE5Oxi+//IJ169YhIyPD+KAA5DQ/yMkBkNM46BMRkS8TagP0dfJhiMyHCNIrj7dt2xZ33XUX+vbtC61W68USElFVxABLROWqqKgI27Ztw9q1a3HkyJHrTxTKUKX4Q5UcAKmAfWWJiHyBgIChRhEMkfmQo67Xtvr5+WHAgAG466670KJFCy+XkoiqMgZYIqowCQkJ+O2337Bhw4brtbK41lc2OQDyVX9IBtbKEhFVNsJPD31kPvSR1/u2AkCrVq0wZMgQ9O/fH8HBwV4sIRFVFwywRFThiouLsXPnTvz222/Yu3cvlK8hnQQ51R+qVH9IWRo2MSYi8iIhG4wjCUcWQIQXKY+HhoZi4MCBGDp0KJo2berFEhJRdcQAS0RelZycjPXr1+P3339HUlLS9ScKZKhSAiCn+kPOZxNjIqKKICQBQ3gRDBEFMNQqBFTXTxO7dOmCIUOGoHfv3vDz8/NiKYmoOmOAJaJKwWAw4NChQ9i0aRO2bduGvLw85TkpW329ZpajGBMReZSAgAgphj6iAIaIAkBz/dQwOjoaAwcOxO233466det6sZREREYMsERU6RQUFGDnzp3YtGkT9uzZc306HgFIGVqoUv2Nc8vqZe8WlIjIhxkCdDBEFEAfUQAEXB9FuEaNGujXrx8GDRqEVq1acd5WIqpUGGCJqFLLyMjAn3/+iU2bNuH48ePXnzAAcoYW8hWGWSIiZxkCdDDULoChdoHF1Df+/v645ZZbMHDgQHTu3BlqNbtuEFHlxABLRD7jwoUL2Lx5M7Zt24a4uLjrT5iH2TQ/SDqGWSIi4Frz4EAdDLULjaE18HpoVavV6Ny5MwYOHIjevXsjMDDQiyUlInIOAywR+aT4+Hhs27YNW7duLRVmpQwtVFf9jGGWfWaJqJoREBBBOhhqlQ6tGo0GXbt2Rd++fdGrVy+EhIR4saRERK5jgCUin5eQkKCE2XPnzl1/QgBStgZymp+xmXG+ilPzEFGVJCQBEVYEfc1CGGoWAv7X52rVarXo1q0b+vbti549e3K+ViLyaQywRFSlmMLsjh07cPLkScsn81VQmcIs55klIh8n1AYYahQaa1rDiwD19VM6Pz8/dOvWDbfeeit69OiBoKAgL5aUiMhzGGCJqMpKSUnBrl27sGPHDhw8eBDFxcXXnyyWIKcbmxnLGVr2myWiSk9AQAToYbhWyypCi2F+Ha5WrVro2bMnevXqhc6dO3OuViKqkhhgiahayMvLw969e7Fz507s2rULWVlZ1580NTXO0EJO10LKZu0sEVUOQmWAIbwIhhpFMIRbNg0GgGbNmqFXr17o1asXWrRoAVnmxTgiqtoYYImo2tHpdDh27Bh27tyJPXv2WA4CBRhrZzO0xhraDC2kIg4ERUQVQ0BABOuMTYNrFEGEWNayarVadOjQAb169ULPnj0RFRXlvcISEXkBAywRVXspKSnYt28f9u7di3379iEnJ8fieSlXbQyymVrImRrOOUtEHiMgAH89DGFFxprW8CJAY3lq1rBhQ3Tr1g3dunVDx44d4e/v76XSEhF5HwMsEZEZnU6HEydOYO/evdi7dy9iY2Nh8TUpACnHGGjlTC2kLC0kA5sbE5HzhN+1wHrtVrJZcFBQEDp37qyEVtayEhFdxwBLRGRHRkYGDhw4gIMHD+LgwYNITEy0XMBwrf9s5rVAm61hoCUiC0JrHliLgQC9xfMqlQpt2rRBp06d0K1bN7Rp0wZqtdpLpSUiqtwYYImIXJCcnIxDhw7h0KFDOHjwIJKTky0XMABSjgZylgZSlgZyFkc4JqpOTCMFi9AiGEKLIUKLIawE1pYtW6JTp07o1KkT2rdvj4CAAC+VmIjItzDAEhGVkRACly9fVmpnDx06hKtXr5ZaTspTGcNsthZSpgZSgYqjHBNVEUIWEMHF18JqEQwhxaX6sMqyjObNmyuB9YYbbuC8rEREZcQAS0TkIaZAe+TIERw+fBhHjx4tPcIxABRJxjCbrYacozE2O+bAUESVnjLgUrAOIqQYhpBiiOBioMTH18/PD23atEG7du3Qvn17tG3bFiEhId4pNBFRFcMAS0RUjrKysnDs2DEcPnwYR44cQWxsLIqKikotJ+WrjEE2WwM5Rw0pRwNJsJaWyJuERg9DiM5Yw2oKq5rSp021atVC+/btlcDavHlz9mElIionDLBERBWoqKgIJ0+exIkTJxAbG4sTJ06UHhgKMPalzTUGWTlHDSlXAylPzQGiiMqJ0OghgnTG2tVrgRV+hlLLaTQaNG3aFK1bt0abNm3Qvn171K1bF5LEzyYRUUVggCUi8rLMzEzExsYqgfb48ePIyMgovaC4VlObozHOTXst4HKQKCLnKYMsBekggoqNgTVIB2hLh1VJkhATE4NWrVqhdevWaNWqFZo0aQKtVuuFkhMREcAAS0RU6QghkJycrNTSnjlzBqdPn7YeagGgUDaG2Vy1sZY2Tw0pn7W1REJjgAjUQQTqYAg01qyKQB2gKr2sJElo0KABmjVrhpYtW6J169Zo0aIFAgMDK77gRERkEwMsEZEPEELg6tWrOHPmjBJoT58+jcTERFj9GhcAClSQ89TGUZAZbKmKEhCAxgARqL8eVK/drPVXBQB/f380bdoUzZo1Q7NmzdC8eXM0btyYU9kQEfkABlgiIh+Wl5eHs2fP4vTp04iPj0dcXBzi4+ORmZlpfQVTsM1XGcNsvsp4K1ADhTKn96FKS8gCwl8PEaC79vPafTtBVZIk1K1bF40aNVICa/PmzVGvXj2oVFaqYYmIqNJjgCUiqmKEEEhPT7cItKafWVlZtlfUwzhHbb76+s98FaQCFVDEcEvlT0hmITVAfz2o+uuMAyrZeAtKkoR69eohJiYGjRs3RkxMDBo1aoSGDRuyVpWIqIphgCUiqibMg+2FCxdw4cIFXLx4ERcvXsSlS5eg0+lsr2wAUKiCVGgMtFKBfP1+IQMuOUfIAsJPD/hdC6fKT8O1x0sPpGQuODgY0dHRyq1BgwZo3LgxGjRoAD8/vwp6FURE5E0MsEREBJ1Oh+TkZFy8eFEJthcuXEBiYiKSk5Oh1+vtb8AAY5AtlCEVqSBd+4mia0G3SGbIreKELCC0xhAqtHoIrcEYVLUG481fb3Wk35ICAwMRHR2N+vXrlwqrYWFhnK6GiKiaY4AlIiK7dDodrl69isuXLyMpKUn5abqfmprqOOACxv63RTKkIrNwW2y8me7D9LtOYtitBIR0bYAkjUH5qdy/FkyhNdagQu3c6URAQADq1q2LqKgo5WdkZKRyPzQ0lCGViIhsYoAlIiK36HQ6pKamIikpCampqbhy5QpSU1Mt7qelpTkXck0MuB5mi2VIOgnQycY5b3WSzZ/QM/haIyAAtYBQXwuaagOErZ8aA6C99tPJUGoSEBCA2rVro3bt2oiIiECtWrUQERGBiIgIJbCGhIQwoBIRUZkxwBIRUbnT6/VIT09XAu2VK1eQnp6OjIwMpKenW9xycnLKviMDAP21IKuXAL1svG+QSjxudl9IgEEyNoM2mH7HtcckSOL6fZiOmAIArv1+7TFHwVnA7HAr4fqARJK49rsAZGNTXNN9XLsvlPvXfqqEcTnVtfsqAagMNh4XLgdRcyqVCmFhYahRowbCw8MtfpqCqulnYGAgwykREZUrBlgiIqpUiouLlWCbkZGBtLQ0ZGVlIScnB9nZ2cjOzkZWVpZyPycnB1lZWfYHoaooAhah9npIhc0RdCtSQEAAQkJCLG7BwcHK/dDQ0FJBNSQkBLIse7voREREABhgiYioChBCoKCgANnZ2cjLy0NeXh7y8/OVn+b3zR/Lz89HcXExiouLUVRUhKKiIuV+ycfKOyBLkgSNRgOtVgutVguNRqPczH/XarUICAhw6ubv768E1ODgYKjV6nJ9DUREROWNAZaIiMgJBoPBpZskSZAkCbIsQ5IkqFQqi99lWbZ4zvQ8ERER2cYAS0RERERERD6BnVqIiIiIiIjIJzDAEhERERERkU9ggCUiIiIiIiKfwABLREREREREPoEBloiIiIiIiHwCAywRERERERH5BAZYIiIiIiIi8gkMsEREREREROQTGGCJiIiIiIjIJzDAEhERERERkU9ggCUiIiIiIiKfwABLREREREREPoEBloiIiIiIiHwCAywRERERERH5BAZYIiIiIiIi8gkMsEREREREROQTGGCJiIiIiIjIJzDAEhERERERkU9ggCUiIiIiIiKfwABLREREREREPoEBloiIiIiIiHwCAywRERERERH5BAZYIiIiIiIi8gkMsEREREREROQTGGCJiIiIiIjIJ6i9XQAiIm8RQqCgoMDbxSAicom/vz8kSfJ2MYjo/9u7+6io6jyO4587IwqEipmrEGRqam7lYpBmBmtaSFanUutknrXWWqvNbLe1bDmppZmpx9TNPW15tra2yN3qpLmVuKZmJj5gihZphGL5AMuDoijIw8z+McxlBhiQAYSL79c5nLlzf/f3vT/m0sNn7sMPLYIAC+CCVVJSolGjRrX0MACgQZKTkxUUFNTSwwCAFsElxAAAAAAAS+AMLABIar/9F1KFIcNmSIbNfJWt8jI9w5Bhs0lG5XrDMNsM93aGUbXeqOrnta5aTdd2Ve1Odz+bR7uP9U7DqHovyVlZSoYhp02SDNc6c18y+zgr31f1M6r626raXH282z1rOt3b2OSznlnXY4xVr9XHUb296hjV1i7JHIOvfXmt9zEO79+rap+1tVX1cXrtr8Z+3O2q3u706uPetmpcTrPN8NzeMH/byjZntVd3TacMw+n15+Wu6To0Ve22ynpe6yqXq9o81nm8uupVvff8kVy1Xe9V1eaxP5vhMNe5tnVIkuxG1XvPPu73Ve1O2eWobHPKbjg8+jlk9+hnr1xvl6NGP5vcfR2ye7W5trcbThlyyO4enxxmH7vk6id3m+vzsMu9T6c5Dtf7ylepctmo/Kwku2HIJkN2Vb4a7jabDBkqK7Vr7O96CAAudARYAJBc4dXh+h9FGVWvZtIwDBlyB9fK9ZXpxHAlQlWlHY9+NRKUrVpS8koZHv1UbZ2v9fL96hEOzeXqr2Y5w6OsUWOI3u3Va6oySPuqV/PjqFG31ra6+p3DR+VvvcpXX+G22QKsUTPAerZVD7BV653Vxu+s0Wa4a9bWXmsfZy37qvYjmQG2+o/PNjNUegRbj6BrtqmqvSqIyiPAOrwDoOEOgJWvhiG73PVcy65Xw6ufq5ZkN2S+VvVzLXu2SaoMre5t3QHYM6S6xlxfgPXal+d+5L0/m7m9xzEEgAsYlxADAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEpgHFgAkye6UUw7X5I+GvF8l13ylNlWbR9Xd5vHeMCrnyfToV1+bx0SkTh+Tm9a2vmqd69Xp0e6UJKfhtc61jSE55VXP6dmnsl9NPtY5PZq85jY1PIdfx/yrhv9zvdbVVl+9+trcL3X2qz7/qo/2GmP0MQ+sai4bNfbj2eas9uqu6Z531fPPy8c8sGY9/+aBdcq17Kz2425zVs6Fa7ZV1nQYTslweOyn8r0qfx9Vb5echsNVu7KO06vNe73NY1/u5eqvrnG4/rH2fHVUfky2ymVH5Z9o7fPAGrLJqJpXVq7P3C733LNVc716vreZy65+5vy1lbVsMmQ33G2GDBkqK63tn0EAuPAQYAFAUung/7X0EJqHs9qrH6rnU8DNHSEd9W3YarkTPhekAYBV8G9sAAAAAIAlGE6nsxHfywOAdTmdTpWUlLT0MOCnkpIS3XnnnZKkVatWKTAwsIVHhHPFsWucwMBAGQbXRAC4MHEJMYALlmEYCgoKaulhoAkEBgZyLC2KYwcAaAguIQYAAAAAWAIBFgAAAABgCQRYAAAAAIAlEGABAAAAAJbAU4gBAAAAAJbAGVgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJ7Vp6AACAtu/MmTNasWKFvvzyS2VnZ8tmsykyMlIjRozQ2LFjFRAQ4HftgoICJSUlKSUlRTk5OerQoYN69eqlhIQE3XbbbTIMo9Z+hw8f1ubNm7V7925lZmaqoKBAdrtdl1xyiQYOHKi7775b/fv393tcbUVrPHa+PP3009q2bZskKSoqSn/5y1/8HhsAoHUynE6ns6UHAQBou7KzszV16lRlZ2dLkgIDA+VwOFRaWipJ6tu3r5YsWaKOHTs2uPb+/fs1bdo0FRYWSpKCgoJUWlqqiooKSdLgwYM1b968GiFr7969evzxx73WBQcHq6ysTGVlZZIkm82m3/zmN3rooYcaPK62ojUeO18+//xzzZs3z3xPgAWAtolLiAEAzaa8vFzPPvussrOz1bVrV73yyitau3at1q5dq1mzZik4OFgZGRmaM2dOg2sXFRVp+vTpKiws1GWXXaY33nhDycnJWrt2rf7whz+oXbt22r59u1599dVax2W32xUbG6vZs2dr9erVWrNmjdauXavXX39dAwcOlMPh0Ntvv63//Oc/TfFRWE5rPXa1yc/P17JlyxQSEqKePXs2eDwAAOsgwAIAms2aNWt04MABSdKcOXMUExMjyXV2c+TIkZo2bZokaevWrdq5c2eDaq9YsUIFBQXq0KGDFixYoCuvvFKSFBAQoDFjxmjSpEmSpNWrV+vnn3/26nvppZfqnXfe0dy5czV8+HB17txZkmS32zVgwAAtXrxYffr0kSS99957fv721tZaj11tXnnlFZ06dUq///3v1aVLlwaNBQBgLQRYAECzWbNmjSRp0KBBuvrqq2u0jxw5UmFhYV7bnqvk5GSzRnh4eI32MWPGKCgoSBUVFfrvf//r1faLX/xCkZGRPmsHBAQoPj5eknTkyBGdOnWqQWNrC1rrsatu/fr1+uqrrxQVFaXbbrutQeMAAFgPARYA0CxKSkr07bffSpKuv/76WrcxDENDhgyRJO3YseOca//000/KycmRJLN/dcHBwRo4cGCDa7u1b9/eXHbfl3mhsMqxKyws1NKlS9W+fXs9/fTTDX7oEwDAegiwAIBmcejQITkcDklSr169fG7nbisoKNDJkyfPqbb70tb6avfu3VuSlJWVdU51Pe3atUuS1LVrV/MS4wuFVY7d0qVLdfz4cU2cOLHOM+oAgLaDAAsAaBZ5eXnmcrdu3Xxud8kll9Tapy75+fkNqn369GmdOXPmnGpL0rfffqvNmzdLkm6//fYL7syeFY7d119/rXXr1qlXr166//77z2nfAADrI8ACAJqFZ+jo0KGDz+0CAwNr7dNStU+cOKHZs2fL4XAoIiJC48ePP6d+bUlrP3ZFRUVatGiRbDabnnnmGbVrx7T2AHChIMACAFDpzJkz+vOf/6zs7GwFBwdr9uzZCg4ObulhoZq//vWvysvL01133aWrrrqqpYcDADiPCLAAgGbhGfzOnj3rc7uSkpJa+5zv2sXFxZo+fbq+++47BQUFacGCBbriiivOaTxtTWs+dqmpqfr000/VrVs3TZ48+Zz2CQBoOwiwAIBm4Xl/ZG5urs/tPO+d9OxTl65duzao9kUXXVRnwHKH17S0NAUFBWn+/PnmU3AvRK352C1YsECS9Nhjj0lynTX3/HE/fMrhcJjrLrSnSANAW8ZNIwCAZtGzZ0/ZbDY5HA4dPHjQ53QsBw8elCRdfPHF6tSp0znVdj+h1t3/8ssvr3U79xNvfbVLVeF19+7dCgwM1Pz58xUVFXVO42irWvOxy87OliTNnj27zv3s2bNHCQkJkqS5c+cqNjb2nMYHAGjdOAMLAGgWgYGBuvrqqyVJ27Ztq3Ubp9Op7du3S5Kuu+66c64dGRmp7t2711m7uLhYe/bsqbN2cXGxnnnmGe3evdu8bPhCD6+SNY4dAODCRIAFADQb9xmwXbt2KT09vUb7hg0bdPToUa9tz4VhGBo1apQkaf369Tp27FiNbT7++GMVFxfLbrfrlltuqdHuDq+elw0TXqu01mO3adOmOn/cxzAqKspcx9lXAGg7CLAAgGaTkJCg3r17y+l0asaMGdq5c6ck1/2JGzZs0MKFCyVJQ4YMUXR0tFffN998U3FxcYqLi6s15Nx33326+OKLVVJSounTp2v//v2SpLKyMq1cuVJ///vfJUl33HGHIiMjvfqWlJTo2WefNcMrZ15raq3HDgBwYeMeWABAs2nXrp3mzZunJ598UtnZ2frjH/+owMBAORwOlZaWSpL69u2rmTNnNrh2SEiI5s+fr2nTpikrK0u/+93vFBwcrNLSUpWXl0tyXX46ZcqUGn03btyoXbt2SZIqKio0a9asOvc1Z84cXXPNNQ0eo5W11mMHALiwEWABAM0qLCxM//jHP7RixQp9+eWXys7OVrt27dSrVy+NHDlSY8eOVUBAgF+1+/fvr7fffltJSUnasmWL/ve//ykwMFC9e/dWQkKCRo8eLZut5sVGTqfTXC4tLVVBQUGd+3GHqgtNazx2AIALm+H0/K84AAAAAACtFF9tAgAAAAAsgQALAAAAALAEAiwAAAAAwBIIsAAAAAAASyDAAgAAAAAsgQALAAAAALAEAiwAAAAAwBIIsAAAAAAASyDAAgAAAAAsgQALAAAAALAEAiwAAAAAwBIIsAAAAAAASyDAAgAAAAAsgQALALCEpUuXKi4uTk888URLDwUtrKioSLfddpvi4uK0adOmlh4OAOA8atfSAwAANK/Tp08rIyND+/bt0/79+7V//34dOXJETqdTkvSvf/1LYWFhzbJvp9OpcePGKTc3VxMmTNAjjzziV52MjAytXLlSkjR58uQmHGHLOnDggLZv3669e/fqwIEDys/PV0VFhTp27Kg+ffpo6NChSkhIUEhISEsPtVUJCQnRfffdp+XLl+vVV1/VkCFD1KFDh5YeFgDgPCDAAkAbN3XqVGVkZLTIvvft26fc3FxJUmxsrN91XnvtNVVUVGjIkCG65pprmmp4LWrq1KnavXt3rW0FBQUqKCjQjh079O677yoxMVGDBw8+vwNs5caNG6cPPvhAOTk5+vDDDzVhwoSWHhIA4DzgEmIAaOPcZ1ol15mrQYMG6eKLLz4v+/7qq68kSd26ddOAAQP8qrFnzx6lpqZKUpsKKe5g37FjR40ePVqJiYlatmyZli9frtmzZ2vo0KGSXGE2MTFRaWlpLTncVicoKEhjx46VJCUlJenMmTMtPCIAwPnAGVgAaONGjx6t0NBQ9e/fXxERETIMQ1OnTlVBQUGz79sdYIcNGybDMPyq8f7770uSwsLC9Ktf/arJxtbSIiIiNHHiRI0cOVLt27f3auvfv7+GDx+u9957T6+//rpKS0u1aNEivfPOOy002tYpPj5eb775pk6dOqVPP/1U99xzT0sPCQDQzDgDCwBt3Lhx43TzzTcrMjLS7xDpj59//lmHDh2S5P/lw7m5uUpJSZEkjRo16ryOv7ktXLhQt956a43w6mnChAnq27evJCkrK0uZmZnna3iWEBYWpoEDB0qSPvnkkxYeDQDgfOAMLACgWbifDuu+bNkf69atk8PhkCSNGDHinPqUl5dr/fr12rx5s/bt26cTJ06ooqJCoaGh6t27t2JiYnTzzTera9euXv3i4uIkSQkJCUpMTNRPP/2kDz/8UDt27FBeXp4uuugi9evXT/fff7+ioqLMfmfPntXnn3+u5ORkHT58WCUlJQoPD9ctt9yie+65p9EPF7r22mvNe5h//vln9enTx+9aWVlZWrVqldLS0nTs2DGVlJQoJCREHTt2VFhYmKKjo3XjjTfqsssu86t+eXm51q5dqw0bNujAgQMqLCyUYRjq1KmTQkNDNWDAAMXExGjYsGEKCAjw6lv988/KytLHH3+s1NRU5eXlqbi4WHPnzq3xZciIESOUlpamQ4cOad++fbryyiv9+3AAAJZAgAUANAv35cNDhw5Vu3b+/edmy5Ytklz3ifbs2bPe7X/88UfNnDlThw8frtGWm5ur3Nxcbdu2TZmZmUpMTPRZZ+PGjXrppZdUUlJirjt79qy2bt2qbdu2adq0abrjjjuUl5enxMRE7du3z6v/wYMH9cYbb2jr1q1atGhRo0JseXm5uWyz+X/h1KpVq7RkyRJVVFR4rS8sLFRhYaEOHz6sHTt2KDMzUzNmzGhw/RMnTuhPf/pTrQ8Mc3/2GRkZ+uSTT5SUlKSIiAiftT7//HMtWrRIpaWl9e7X86FeW7ZsIcACQBtHgAUANLm8vDx9//33kvy/fLi0tFTfffedJGnAgAH1Xj6ckZGhKVOmqLi4WJI0aNAgxcfHq2fPngoICFB+fr7S09PrnTc0MzNT69evV5cuXTR58mRz3zt37tQ///lPlZSUaPHixYqKitKLL76oH3/8UXfddZduvPFGhYaG6siRI3rnnXeUmZmpPXv2KCkpSb/97W/9+gwk6ZtvvjGXe/Xq5VeNAwcOmOG1U6dOuuOOOxQVFaXQ0FBVVFQoPz9f+/fv19atW/2+THvJkiVmeI2OjlZ8fLzCwsJ00UUX6fTp0zp06JDS0tLMS8J92b9/v9atW6dOnTrpnnvu0TXXXKOAgABlZWWpR48eNbbv1auXgoKCVFxcrG+++UaTJk3ya/wAAGsgwAIAmtzmzZvldDrVvn17DRkyxK8amZmZ5tnH/v3717lteXm5Zs6caYbXJ5980nxCracbbrhBDz/8sHJycnzWysjIUN++fbVkyRJ17NjRXP/LX/5SERERmjVrlsrLyzVlyhSdPHlSCxcuVExMjLldv379dN1112nixInKy8vTypUrNXHiRNnt9gb9/pLrMuyDBw9KcoX4yMjIBteQpA0bNphnXhcvXmzeV+spNjZWDz/8sAoLCxtc/+zZs+YXA7GxsXrxxRdrBOGoqCjdeeedKi4urvNM8sGDBxUREaFly5Z5PS3b11Os7Xa7+vXrp7S0NP3www9yOByNOlMNAGjd+Dc8AKDJuS8fjomJUVBQkF81PC8Drm/an3Xr1unIkSOSXE9dri28eurevXud7c8++6xXeHUbPny4unXrJkk6fvy4xowZ4xVe3UJCQnTrrbea22VlZdW5v9rk5eXplVdekSQZhqHHHnuswTXc3E+cDgkJqTW8eurcuXOD6586dcr8siEqKqrOs7hBQUH1XlL91FNPNWiqJ/e2JSUlysvLO+d+AADrIcACAJpUUVGRdu3aJcn/y4clKT8/31zu1KlTndu6A7MkjR8/3u99Sq5LUn2FPMMwvNri4+N91vHc7ujRow0aQ0lJiRITE83gWf3BUQ3lDt1FRUXasGGD33V86dy5s/k05S+++KJRc7J269at1i8F6uL59+H5dwMAaHsIsACAJpWSkqLy8nLZ7XYNGzbM7zpnz541l2s7G+rphx9+kOQ6E3cuD3uqS339PcdS19N6PbdrSKArKyvTc889Zz4Y6sYbb9TDDz98zv1rEx8fb571nDVrlh5//HG999572rNnj3nZdWMEBAQoISFBkpSenq57771XCxcu1BdffNHg8O7PU5Y9A6zng7cAAG0P98ACAJqU+2zo1VdfrdDQUL/reN4zWt/TaE+cOCGp6kxjYwQGBtbZ7nl5bF2XR3veh+meCqg+5eXlmjFjhrZv3y5JGjx4sJ5//nm/7p/1FB4erpdfflkvvfSScnNztXfvXu3du1eS63O+8sorFRcXp9tvv73eLwt8eeKJJ1RaWqrk5GSdPHlSq1ev1urVqyW5vlgYPHiwRo8eXe+Z5PrOttfG88sOf594DQCwBs7AAgCaTGlpqbZt2yapcZcPS677Nd1OnjzZqFpWUF5erlmzZplTB8XExGju3LnmpbmNFR0drffff18vvPCCRo8ebU5jU1FRoe+++06vvfaaxo8fb4bnhurQoYMSExP17rvv6qGHHtK1115rBvyCggKtWbNGU6dO1XPPPecVOKvz5wFMng+e8vy7AQC0PXxNCQBoMqmpqeYlqY0NsJ5TptQXYENDQ5WTk2PZB/i4w6v77PW1116refPmNWr+2Nq0b99eN910k2666SZJrjPXO3fuVHJysrZu3aqTJ09qxowZSkpKUteuXf3aR2RkpB544AE98MADqqioUEZGhrZs2aJVq1bp+PHj2rRpk5YvX64pU6Y02e916tQpc7m+B3QBAKyNM7AAgCbjDmB9+/ZVWFhYo2p5znn6008/1bmte5qd/Pz8erdtbaqH10GDBunll19u8vBam9DQUI0cOVILFizQXXfdJUkqLi7W5s2bm6S++/LkSZMm6W9/+5t5efa6deuapL7boUOHJElhYWEKDg5u0toAgNaFAAsAaBIOh0Nff/21JNeDhxqre/fuuuSSSyRJ33//fZ3bxsXFmctJSUmN3vf5Ul5erueff94Mr1FRUZo/f3699+E2h8GDB5vL7nuKm1JYWJg5j60/c836cuLECXMKpauuuqrJ6gIAWicCLACgSezdu9cMPp6BsjHcoerQoUM6ffq0z+1GjBhhhqPPPvtMH330UZ11c3JymmR8jVFeXq7Zs2dr06ZNkpo3vH755Zf1hlL3vcuSdOmllzao/tGjR5WamlrnNseOHTPPlIaHhzeofl3S09PN5euvv77J6gIAWifugQWANu7w4cPmE2fd3POLStLGjRu9nhYcFBSk4cOHN3g/7rOI4eHhfk2FUpubbrpJn332mRwOh1JTU/XrX/+61u3atWunF154QY8//riKi4u1dOlSbdq0SaNGjVLPnj0VEBCg/Px87du3Txs3blT//v2VmJjYJGP015w5c7Rx40ZJrsD46KOP6tixY3X26dKli7p06dLgfX300UeaM2eOoqOjFR0drcsvv1ydO3dWWVmZcnJytG7dOvPseY8ePRo8/VFOTo6eeuophYeHa9iwYRowYIC6d++uDh06qLCwUOnp6Vq5cqX5NOmxY8c2+HfwZceOHZJc9/cOHTq0yeoCAFonAiwAtHF79+7VvHnzfLa/9tprXu979OjRqADbFJcPu8XExKhbt27Kzc1VcnKyzwArSVdccYVeffVVzZw5U0ePHtWuXbu0a9euWrd13zPbkjZs2GAuHzlyRI8++mi9fR588EFNmjTJr/2VlpYqJSVFKSkpPre59NJLNW/evDqnB6rL0aNH9cEHH/hst9lsGj9+vO6++26/6ldXXl6uL774QpLrrL+/UwABAKyDAAsAaLQff/zRPHvY2KcPe7Lb7RozZoxef/11bd26VSdOnKhzbtl+/frp3XffVXJysr766itlZGSY91t26dJFffr00XXXXaebb765ycZoBbNmzdL27duVlpamAwcOqKCgwLykuHPnzrriiisUGxur+Ph4v6btGThwoJYtW6bU1FSlp6crJydHx48f1+nTpxUYGKjw8HANHDhQt99+e5OdnZdk/k1I0rhx45qsLgCg9TKcTqezpQcBALC2t956S2+99Za6dOmijz/+2K+5PH0pKirSfffdp5MnT+qRRx7RhAkTmqw2rG369OlKSUlRdHS0Fi9e3NLDAQCcBzzECQDQaO7Lh2+44YYmDa+SFBISYobWFStW6MyZM01aH9aUnp6ulJQUGYahyZMnt/RwAADnCQEWANAoZWVlio2N1YMPPqgxY8Y0yz7Gjh2riIgIFRYW6t///nez7APWsnz5cknSqFGjNGDAgBYeDQDgfOESYgCAJXz//fdKSUlRSEiI7r333pYeDlpQUVGRPvjgAzmdTo0ZM6bO+6IBAG0LARYAAAAAYAlcQgwAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEgiwAAAAAABL+D+FRaHKNmgFXwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACyNUlEQVR4nOzdd5gT1cIG8HcmZXuFZWkLLL2K0pGm0hTsolgQLFc/yxUbXiuKXS9iQQWvCgKiiICgiIigoIAISFGklwWWsrss22va+f4IGZLd9Ew22d339zx5yCaTMychmZl3zplzJCGEABEREREREVEQyKGuABEREREREdVdDJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNAydREREREREFDQMnURERERERBQ0DJ1EREREREQUNKqEzqNHj0KSJEiShDvuuEONIuulSy65RPkciYhcueOOO5RtxdGjR0NdHcWcOXOUes2ZMyfU1SGVWSwW9OzZE5Ik4aGHHgp1dagWsW0XLrnkklBXhSggdflY/ZVXXoEkSWjdujUqKipUL7/GWjrnzJmDKVOmYMqUKTW1ypBbtmyZ8p4LCgpCXR06Z8qUKcoGw5ubtwf1//zzDx566CF07NgRsbGxSEhIQLdu3fDUU0/h2LFjwX1TRFSvGQwGdO3a1WHbtW7dOlXX8fHHH2P79u2IjIzE008/7dVrDh8+jClTpqBv375o3LgxIiIi0KRJE/To0QP3338/Fi1aBLPZ7PS1R48exfz58/Hwww9j8ODBaNeuHZKSkqDT6dCgQQP06dMHjz32GP7++2+f3sexY8fw1FNPoVu3bkhISEBsbCw6duyIhx56CLt37/apLG9kZWXhhRdeQL9+/dCgQQNERESgefPmGDlyJGbPng2TyeSxDPsTOt7c3P3f+1KOP/vCcDRt2jTlfdx+++1+ldGuXTuljM2bN/v8+rKyMmzatAnvv/8+7rjjDnTt2hVarTag36vRaMQnn3yCoUOHokmTJsp366qrrsLChQshhPC6LCEEFi5ciCuvvBLNmzdXfqtDhw7Fp59+6tX31N6PP/6IsWPHomXLloiMjESjRo0wYMAAvPPOOygtLfX1rXqk5mcRzrZt26Z8Z1q2bOnX+/rXv/6llPHmm28qj0+cOBFJSUnIyMjA1KlT1ay2lVBBRkaGACAAiAkTJjhdZsiQIcoy9cWECROU95yRkeFx+fr4GYXCCy+8oHzO3ty8+b+bOnWq0Ol0LsuIi4sTCxYsCP6bo3rB121LTfnss8+Uen322Wehrk69MmXKlGrbnbVr16pWfmlpqWjcuLEAICZOnOhxeZPJJJ577jmh1+s9bmPz8/OdljF27FivttGSJIn7779fGI1Gj/WaP3++iI2NdVmWXq8Xb7/9tq8fj0vz5s0T0dHRbut/0UUXicOHD7stx/635c3N3f+9L+XYbrGxsaK0tNTvz8FWzpAhQ/wuIxBZWVlCq9UKACI6OloUFRX59PrffvtNeQ+dO3f2qw7Jycl+/585k5GRIS666CK3ZQ4bNszl78teXl6euOyyy9yW1aNHD3Hs2DGPZVVUVIibb77ZbVlt2rQRf/31l0/v1x01PwtPwuFYvVu3bkod1qxZ49NrS0tLRVxcnAAgNBqNOHXqlMPzL730knLceubMGTWrLbRQQatWrerMGYRQUvusNHn28ssvo2vXrm6XadSokdvnP/roIzzxxBMAAJ1Oh9tvvx1DhgyB0WjEqlWrsHjxYhQXF+P2229HYmIiLr/8ctXqT/XTnDlz2H2VFHv27MFrr70GAIiJiQlKK8KMGTOQlZUFjUaD//znP26XNZlMGDduHBYuXAgASElJwQ033IAePXogKSkJJSUlOHjwINasWYOtW7e6LSs6Ohq9evVCz5490a5dOyQnJ0OSJJw8eRJr1qzBypUrIYTAzJkzUVJSgnnz5rksa8WKFZgwYQLMZjMkScKYMWMwcuRI6HQ6/Prrr/j8889hMBjw2GOPIS4uDv/61798/6DsfP755xg/frzy94gRI3DNNdcgJSUFmZmZWLBgAf7880/s2LEDI0aMwKZNm5CSkuKx3IceegiXXXaZ22Xc7deWLl3qVf3/97//4ccffwQA3HTTTYiOjvbqdeEoNTUVo0aNwnfffYeysjJ8/fXXuPvuu71+vf329s477/SrDlVb9Fu0aAGDwYCsrCyfyyooKMAVV1yBffv2AQA6deqEu+66C82bN8ehQ4fw8ccfIzMzE2vWrMH111+Pn376CVqt80N+g8GAa665BuvXrwcApKWl4d5770Xbtm1x4sQJzJ49G3v37sX27dtxxRVXYNOmTYiPj3dZtwkTJii//QYNGuDee+9Ft27dkJubi/nz52PLli04fPgwLr/8cmzevBlpaWk+v/9gfRa1xZ133onHHnsMgPW7OXToUK9fu2TJEhQXFwMALr/8cjRp0sTh+YcffhhvvvkmiouL8dZbb+GNN95Qr+KqRlg3wuHMQE0L19aI+s6+pTPQloBTp04pZ7G1Wq1YvXp1tWXsz1CnpaWJ8vLygNZJFK7Y0lnzzGaz6NevnwAgrrrqKod9rVotnUajUaSlpQkAYsSIER6Xf/bZZ5U63HnnnaK4uNjlsqdOnXLZQnngwAFRUVHhdl0///yziIiIUNb3xx9/OF2utLRUNG3aVFluzpw51Zb56aeflNaw2NhYkZWV5Xbd7uTk5Di0qM6cObPaMhaLRTzyyCMOn5UrNf3bMplMDp/Xhg0bAirPVk6oWjqFEGLp0qVKPQYNGuT16+xbhrRard/fi/Hjx4tXX31V/Pjjj0oLkv1xoi+/V/vvzeWXX17tuOLs2bMOLX8ffPCBy7Leffddh9bMvLw8h+fLy8vFyJEjlWUmTZrksqxly5Ypy7Vo0aJay6jZbBZ33nmnssyYMWO8fs+uqPlZeCMc8kxOTo7Su87Xlnv7Fu3Fixc7XebWW28VAERSUpIoKSlRq9qCoTOIGDrDk5qh035j98QTT7hc7sYbb1Rtg0cUrhg6a957770nAIiYmBhx7NixoIRO+4P1efPmuV12165dSnC79tprVVm/JxMnTlTqN3nyZKfL2B9Y33jjjS7LeuKJJ7w6uPbkjTfeUMq54YYbXC5nNpuVrnKyLIsDBw44Xa6mf1srVqxQ1te+ffuAywuH0GkwGERKSooArF2yPXVptpk3b55S/6uuukrVOvkTOrOzs5Vu6zExMSI7O9vpcrt27RKSJAkAonHjxsJkMlVbxmg0Onwm//zzj8t1xsTECAAiIiJC5ObmOl3uwgsvVN7PihUrnC5TVlYmWrRooSy3a9cur963q3qp9Vl4K1zyzLXXXqvUY9asWV695tixY8rn0KBBA1FZWel0Ofvf/yeffKJanYM+eq1tlKdff/1VeczZBequBhiyWCz4+uuvMXbsWKSnpyM6OhpxcXHo2LEj7r//fuzatctt3ewHjbF1X/35559xyy23ID09HZGRkdUukDeZTFi1ahUef/xxDBw4EI0aNYJer0dcXBzat2+PO+64A7/99pvLddpGlpw7d67yWHp6erX37Oqz8mZErM2bN+Pee+9Fhw4dEBcXh5iYGLRp0wYTJkzAL7/84vH1VUeSKy0txVtvvYVevXohKSkJMTEx6NKlC55++mnk5+d7LK8+EkJg0aJFAOBxNMeJEycq923dTmrKpk2bcP/996Nz585ITExEZGQkWrRogbFjx2LFihVuX7tu3bpqv9Hjx4/j8ccfR8eOHRETE4PExERcfPHFmDFjhtcDDZSUlODdd9/F8OHD0bRpU0RERCA5ORm9e/fG888/jzNnzrh9fdXfitlsxpw5czB8+HA0a9YMWq0WrVq1qva67Oxs/Oc//0Hnzp0RExOD5ORk9OnTB9OmTUNZWRkA6+UCkiRVe/2PP/6orNP+/9OdiRMnKq9ZuXKlV6/xhqfRa4P1//b999/jqquuQuPGjREZGYlWrVrhtttuw6ZNm3x+DwaDAbNmzcLVV1+NtLQ0REZGIjExERdccAEef/xxl4OW7N+/HzExMZAkCQkJCcjIyHC5jvz8fLRo0QKSJEGj0bjdbtdGx44dw7PPPgvAeqlAixYtgrKezz//HAAQFRWF6667zu2y77zzDkwmEyRJwjvvvBOU+lTVuXNn5b6rror2292HH37YZVkPPfSQsl35+uuv/a6T/X7Y3cA1sizjtttuA2A93vnqq6/8XqeaPvvsM+W+v91JfVVWVobRo0cr266xY8fCYDBUW2737t147LHHcOGFFyI5ORkRERFo1qwZrr76anzxxRewWCxOy9fpdBg3bhwA6/7b20sU1Ohaq6Zly5Ypn8stt9zi8hKgrl27Kt2ws7KyHI7DbX755Rdlfzt06FB06dLFaVmNGjXCzTffDACorKzEt99+W22ZgwcPYufOnQCsgy6NGjXKaVlRUVG45557lL8D+Z2p+VmozT5/dO3aFSdPnqy2TG5uLl599VUMGjQIjRs3hl6vR0pKCgYNGoT//ve/KCkpcVm+/XfR2+/y3Llzlcshb7vtNuj1eqfLjRgxQunqb9v+q0KN5OpuICH7MwLubi+88EK1cg8dOuRw1sTZTZZll2c2hXBs1frll1/Egw8+6LQc+5bISy65xKs6T5gwwelZAvszV55e7+qzcsVoNIp77rnHY9k33XSTKCsrc1mObbkhQ4aIw4cPi86dO7ssq2XLlnWqpVatls5du3Yp5XTt2tXtsmazWcTHxyvfWV8HMfBHSUmJVwNxjB492mV91q5d6/AbXblypUhMTHRZ1vDhwz12h/vhhx9Eo0aN3NYpLi5OfPvtty7LsP+tnD17VgwcONDp99beL7/8IpKSklyus1u3buL48eOiZcuWTl9vNptFenq6AKxdTjx1ky4vL1fW16JFC2E2m90u7wtPvSjU/n8zmUxut2uyLIs333zT69aYrVu3Kp+lq5terxcfffSR09d//PHHynL9+/d3edZ6zJgxynLPPvus28+0NrJ1eevRo4fyGajd0llRUaFcQjB48GC3y5aVlSnL+tJ9MVD2rZPOjgcKCwuVs/sJCQkef4tdunRRytu9e7dfdbLfp+7du9ftst98842ybL9+/ZwuU5Mtnbm5uUrrkbOBRvxhf8zhzNmzZ5Vu4gDEgw8+WO3/yWg0iokTJwpZlt1uO/r27StOnz7tdD1///23slyrVq2ExWJxW2/7lqGGDRsKg8Hg1/t3xZ+WzhtuuEF5javukTZTp05VlnXWG+vxxx9Xnn/rrbfclrVo0SJlWWe9Bd5//33l+X//+99uy9q6dauybO/evd0u646an4W3PB2rm81mcd999ynLXHzxxdW6LAth/U3bum27uqWmporff//d6XqMRqNITU0VgPct923atFHK3rFjh9tlr7vuOmX/7qpl21dBv5L2lVdeQW5uLp577jllKHJnF7F37NjR4e/Dhw+jX79+yM3NBQAMHDgQV155JVq2bAmz2Yxt27Zhzpw5yM/Px8svvwxZlj1OxzJ16lSsXLkSjRs3VoarNplM2LJlCyIiIpTlysvLERsbi6FDh6Jnz55o1aoVIiMjcfr0aezevRtffPEFSktLMXfuXCQmJuLdd991WM/EiRNx7bXXYvr06Vi7di0A6wX5Vc/A+HNW+vbbb1fOhEZGRmLChAm4+OKLodFo8Oeff2LWrFkoLi7G119/jcLCQqxcudJty2lRURFGjx6N/fv345prrsHll1+O5ORkHDlyBDNnzsTx48dx7NgxjB8/vs61EgDA888/j5MnT+LkyZPQ6/VITU1Fv379cNNNN+HKK690+9n9888/yv2ePXu6XY8sy7jooovw66+/wmKxYO/evejTp49q76OqyspKDBs2DH/88QcAoE2bNhg7diw6deoEnU6HQ4cOYd68eThw4ABWrFiBa6+9FqtXr4Ysu+78sHPnTkydOhVCCPzf//0f+vfvj4iICPz555/46KOPUFpaitWrV+PVV1/FSy+95LSMJUuWYOzYsTCbzdDpdLj66qtxySWXIDU1FUVFRVi7di2+/vprFBcX47rrrsPq1as9Dpgxbtw4bNiwAd27d8ctt9yCVq1aoaioyGEahT179uDKK69UWjMvuugijBs3Ds2bN0d2djYWLlyIjRs3YuzYsS5b/WRZxj333INnnnkG+fn5WLJkidJC4czixYuVXgJ333232882mNT4f5s4caLSc0Ov12PChAkYOHAgZFnGli1bMGvWLDz55JO49tprPdZn06ZNGDZsGMrKyiBJEkaOHIkRI0agWbNmKC8vx6ZNm/D555+jrKwM9913HyIiIqr1CrnnnnuwatUqLFmyBJs2bcKLL75Yre6zZs3C4sWLAQD9+vWrc9N1ff7551i1ahU0Gg0+/vhjaDSaoKxn48aNyu/G0zZr27Zt1Zb95ZdfMGPGDGzatAm5ublISkpC9+7dceONN2LChAnQ6XQB1e/PP//EzJkzAVh7nDhrid2zZ49ydv/CCy/0+Fvs1auXcrzyzz//OLSkesu2Pl/t3r0bQgi3+54ZM2bgjTfeQGZmJgDrQE29e/fGtddei7FjxwY8SMoXX3yhtB45G2hEbZmZmRg5ciT27t0LAHjhhReq/V6FELjpppuU48cmTZrg5ptvRvfu3REdHY1jx47hq6++wrZt27B582YMHToUW7durTb4Ubdu3dCzZ09s27YNR48exbp163DppZe6rJt9y9C4ceMC/r6qwZdjj169ejl9XajLuvDCC6HRaGA2m5Xfpz/zXqpZfzVUVlbitttuw5IlSwAAo0aNwqJFi6p9D9977z088sgjAKyDpY0ZMwYXX3wxGjRogNzcXPz444/47rvvkJ2djWHDhmHr1q3VtkNarRbjxo3DtGnTIITA3Llz8eKLL7qs2/r163H48GEA1s//wgsvdPte+vXrh6VLl8JisWDNmjUYO3asj5+GE2okV7WnTDGbzaJHjx4CsPYd//rrr50ul5WVpbSEyrLstC961ekxBg4cKAoLC92uf82aNW5bCXNzc5WWFVmWxZEjR5wup/aUKV999ZXD2Q9nZ2CPHj3q0ILg6vpB+89Er9eL5cuXO32f9mVt3rzZ43twpbS0VCxdulSV27Zt2/yuhxDeT5nSt29fcfToUZflvPjii8qyzlrqqxo/fryy/Oeffx7Qe/Ck6rWmzgbqMBgMDnVyNtCFfYsZYG2xc3bN0ebNm5XruJKSkpy2mh0/flxp7W3RooX4+++/ndZ98+bNIiEhQQAQzZs3d3pmuWoPikceecRt64V9S+gDDzzgdNmq34uqLZ1CWLc5tov3PV2bNHjwYKWlIDMz0+2yvvKlpTPQ/zf7qQISExPFn3/+WW2Zffv2KdNp2G7OWmOKioqUAWkSExPFunXrnL6/gwcPKtf8xMTEOB22PS8vTzRv3lz5jNevX688t3//fuX6o/j4eK+v3XJl7969qm2/1BiCPicnRzRo0EAAEI8++qjDc2q3dL722mtKeYsWLXK77DvvvKMs+84774h///vfbrexXbp0cbn/rGr37t3KZ7ho0SLx/vvvixtvvFH5/gIQU6ZMcfrauXPnejxGsff8888ry7/88ste1a+qSy+9VCnDXa8NIRyv/wQgTpw4UW0Zb6dM6dChQ8BTUdj3MFuyZElAZdnYyqu63dyzZ4+yTZBlWcyYMcPp6+2vyR03bpzT6VssFot45plnlOWefPJJp2V98MEHyjLjx493WWeLxeLQMqTmFB82vrZ0ms1m5Tuv0Wg8ThN05MgRpfw2bdpUe97+GM/TcarRaBQajUYA1gGVqrYS23/nvXkv9td1+rOPVPuz8JarY/XCwkKHz+D22293WqetW7cq9b7wwgtdTkOzfPly5Xijb9++Tpf5559/lPV5arm3H8Dpvffe8/g+161bpyxfdT/jr7AMnUuWLFGWnT59uttl9+/fr/wI7rnnnmrP2x9IxsTEiJMnT3r1njw5fPiwx52S2qHTfvStH374wWU5mzdvVrqDtGzZ0mnXM/ud1EsvveSyrE8++cSr5Tyx/44EevPmoMGdF154QURGRoorrrhCvPTSS+Lzzz8XCxcuFO+99564/vrrle8TANG0aVOnBwBCCPHoo48qy73//vse1+vr8v46deqU0jXq+uuvd7uswWAQrVu3FgBEu3btqj1fNbz89ttvLsu67bbb3C730EMPKTsHT906Zs2apZT1xRdfVHve/rfSs2dPt4HTvhtP165d3Q4gYF+us9AphOOgUK4G/di/f7+yzOjRo92+V3/4GjoD+X+75pprlOedjfhp8/333zus01nonDZtmvL8d9995/Y9/vzzz8qyr776qtNl1q1bp3S1a9mypcjPzxcGg0H07NlTea0aJ3h8ndvX3U2NIGibAy8tLa3ayLBqh07bKIYAXJ4osnnyySeVZdu3b6/83seNGydmz54tvvzyS/H000+Lhg0bOvzOnHU9c1d21Vv37t3FwoULXb7WNtgSAPH44497XJevyzvz3HPPKWW4G6HTfiAh283ZCfTPPvtMaLVaMWTIEDF58mQxd+5csWjRIjFjxgwxbtw4ERkZqbw+Li7O74C0fft2pZyUlBTVupPayrQPnZs2bVLmrtTr9S4bGMrLy5VLMnr37u2xe/SgQYMEYD3h5OwyiLy8PGXE45iYGJejK//6669KvXv06OH9m/WBr6GzsLBQWb5BgwYBL29/yYm7Uaa9Wd7+GNWbwYF8Xb4qtT8Lbzk7Vs/OznZ4P4899pjLAHjVVVcpv1NXx5c2kydPVsrcuHGj02V69+6tLPPLL784XcZ+BGa9Xu9Vd9ns7Gyl3KFDh3pc3huh6e/lge2i1fj4eIeLjZ1p37690o3np59+crvsDTfcgKZNm6pSx9atW6Nx48YArIP6BNvRo0exY8cOANbuIVdccYXLZfv06aN0STx27Bi2bdvmclmNRoN///vfLp+379q4Z88eX6sdlsaMGYOTJ0/ihx9+wOTJkzFu3DjcdNNNmDhxIpYsWYK//voLbdu2BQCcOnWqWtc+G/sLvCMjIz2uNyoqSrlvmyMpGL7++mula9SkSZPcLqvT6ZQuEwcPHnQ5eAtg7ZI6aNAgl8+7+64IIfDFF18AsA5W4Klbh30XMU+/6wcffNBtdzn7AQ8efPBBt90Q3Q0wYnPfffcp9z/99FOny9g/fu+993osM5gC+X+rrKxUBkBKTU1VBuFwZvTo0ejUqZPbuti27e3bt8dVV13ldtnLLrtM2V67+g4MGTIETz31FADrtu6+++7Dc889p2zzbrvtNrd1ro2+//575RKLDz/8ELGxsUFd37Fjx5T7ycnJbpctKChQ7h84cACRkZFYs2YNPv/8c9x555245ZZb8Nprr2HPnj3o1q2bUv4zzzzjd/3i4uIwYsQIdO/e3eUyodhW33nnnco2bPHixS63FU8++WS1ARGLioqqLTdw4EAcO3YM69atw0svvYTx48djzJgxuP/++/H555/jwIED6N27t1Jn22UMvpo9e7ZyP5jdSX/88UcMHToUeXl5iI2NxYoVK3DjjTc6XXbVqlXIyckBADz66KMeu0fbfvNFRUXKJSb2kpKScM011wCwDqJo64ZfVbgNIASo/11Ws7ya/p2FyzHYkSNHMGDAAOUY/fXXX8e0adOcdhfOz89XBnC85ZZb0KxZM7dl2++/XO0H7b+b9gOY2rPNFw8AV111FRo0aOB2vYD1d2Jjvx8IRFjOjmqboLZJkybKxMTu2A4ijx07hvLycocvlj13B15VFRUV4YsvvsAPP/yAXbt2ITc31+WE2ydOnPC6XH9t2bJFuT9ixAiPy48YMQI///wzAGsodnUtTvv27R2+WFXZ/yACGcW2VatWfl/jojZ3k2YDQJcuXfDjjz+ia9euqKiowJo1a7B582b07du3hmoYGNvvB7B+N5ctW+Z2efv/17179zod9RWw9u93x913Zffu3cjLywNgPUj0VCcAiI2NRUFBgXKdjyueftd//vmnct/dtTsAlNGc3bn00kvRvn17HDhwAHPnzsUrr7zicGBmNBqVDX/Tpk0xevRoj2UGUyD/b3/99ZdyAmPIkCEerxscOnSoy/+vwsJC5Trb1NRUr78DANx+B1588UX8/PPP2Lx5s8MIpenp6ZgxY4bHdXhjypQpYXFNaHFxMe6//34A1pOonoK7Gmy/W8Bz6Kw6auhzzz3n9DeVkpKCL774At27d4cQAp999hnefPNNtxPOv/HGG8ok5ZWVlTh+/DhWrVqFN998E1OnTsX06dPxv//9DxMmTPDh3QVP69at8eyzzyrXWN1zzz1YsmQJrr76ajRs2BAnT57EggULsGXLFqSkpKCiokI5KHQWqmwnQl1JS0vDypUr0bVrV2RlZWHfvn1YvHixT9dhVVZW4ssvv1T+vuuuu7x+rS/mz5+Pu+66C0ajESkpKfjhhx8crreryn6flp+f73HbYT9K6N69e51+B++66y5l1NQ5c+ZUO7lcVlamhNGIiAjceuutHt4V1Ud//fUXLr/8cmRlZSnX17v73WzcuFHZTmo0Go/fZaPRqNx3tR+85ZZb8Nhjj6GiogKLFy/GBx98UO1kpD8nUHQ6HeLi4lBcXKzaLBZhFzpLSkpw9uxZANah8T0Nz15Vfn6+y9Dp6YyCzdq1a3Hrrbe6HHq9KmdnJdV2+vRp5X779u09Lm+/jP1rq2rYsKHbcuwHWKqoqPC43rrCNv3M//73PwDAihUrqoVO+x+1N59NeXm5cj8uLk6lmlZn31p50003+fRadxuWQL4r9nVasmSJcpF9oHUCPP+uT506pdxv3bq122WTkpKQmJjo0GJTlSRJuPfeezFp0iRkZ2dj+fLluP7665Xnv/vuO+Ws/J133hm0AV68Fcj/m/1n5+mg19MymZmZys52/fr1DgeSnrj7Dmi1Wnz55Ze48MILlYN222PuQkxt9OSTT+LEiROIj4/H9OnTa2SdlZWVAKwHSK72rTZVt2vueip169YN/fr1w6ZNm1BZWYmNGze67cFjLyIiAu3atUO7du1w2223YciQIdi1axfuuOMOpKSkVJuqIVTb6hdeeAEGgwFvvPEGhBD48ccfq51IT01Nxbfffuvw3t2dCHanQYMGePjhh/H0008DsO63fAmd3377rXKSoXfv3h5P0Ppj+/btGD9+PIQQaNGiBVavXu3xmMZ+//Hggw/6tD5X247hw4ejefPmOHHiBH777TdkZGQgPT1ded6+Zeiaa66pdsJl+/btOH78uMv1Dhw40OO21x9qf5djY2OVz6iiosJjzwl35dX07ywcjsGGDBmCwsJCREREYOHChUoLuiv23+WZM2cqg6B5w9V3OTExEddddx0WLFigtNzbn0Sx9ZAArI15l19+udfrjI+PR3FxscNnF4iw615bWFgY0Oudzelk42mHCVi7GI4ePVoJnB06dMAjjzyCDz/8EAsWLMDSpUuVm20OG3+6sPjKvitATEyMx+Xtf4zuuhGEakTN2sD+7Oi+ffuqPZ+YmKjct42y7I7tZErV16otkN+Qu99PIN+VYNUJ8Py7tvVQ0Gq1XnUV8+b3dccddyhh7ZNPPnF4zva3JEm4++67PZYVbIH8v9l3X6o6+p4z7j67QL4D9md7nWnYsKHDQWHr1q09jmRY26xfvx4fffQRAGv3LbUuFfHE9j03m83KyLSu2G/X0tLSXM6ZZ2P/f2QbVdFXSUlJDi3azkZvDNW2WpIkvPbaa9ixYwf+7//+Dx06dEBMTAyio6PRuXNnPPPMM/jnn3/Qs2dP5eS1JElITU31e52e9lvu2M/NGaxWTrPZrPR6qqio8GqO4GDsP2RZxvjx4wFYL/+YN2+ew/OeWoamT5+O6667zuUtWKOjxsbGKt22CwoKPH5+nr7Lvvw2TCaT8j3V6XTVtvc1/TtT+7Pwh22dJpPJq+AbrGMhd11s7UdgHj9+vE8nwm319SY/eSPsWjrtw9LgwYNrZAJXe6+//rqS6J999lm8/PLLLodx9nS9qZrsz8q46uZrz/5gMZitat4qKyvzeG2et1q0aIEePXqoUpY79n3enbV82Z+ddXctpI19n3hvWqv9ZfsNSZIEk8kUFicW7H/Xzz//vNthvdVm2zGaTCYYjUaPwdOb31eDBg0wZswYfPHFF/jpp59w/PhxtGjRAseOHcPq1asBAMOGDXM4c14b2f+/eQocgPvPzr6s8ePHu7z2xB8PPPCAw+/rwIEDeO655/Dmm2+qUv6+fft8PoB3xd8WkNmzZ0MIgaioKOTm5uKVV15xupz95/D5559jw4YNAKy9HvzZ7tiH+by8PLcnHzp06KDcT0hI8Fi2/TKBHIwNGDBA6Qa2detWlJaWOhwQh3pb3b17d+WEgTO7d+9WTl63a9fOq8/OFU/7LVdOnjyp7KOjoqJwyy23+F0Hd3r37o0rr7wSTzzxBHJycnDppZdi7dq1bqelsd92HDlyRLXt6h133IHXXnsNADBv3jw8//zzkCRJmUoFsPakGT58uCrrU4Msy2jTpg32798Ps9mMEydOuLwkBvD8XW7fvj0yMjIAWH8b7so6ceKE8j1t27ZttWPj9u3bK9MEevqdmUwmpRt0TEyM1z0R7an9WfhjxYoVGD16NEpLS5Up1Nz1LrD/Ls+ePVu1a4WHDh2KtLQ0ZGZm4tdff1X+L8W5qVRsXI1R4ozRaFSyhKdLK7wVdqEzISEBsbGxKCkpqZFrJatas2YNAKBRo0Z46aWXXAbO4uJih2tdgs1+nqyDBw96XN5+mZo6I+5OTk6Oz12lXZkwYYLDWchg8XRWzL7rkbvBmgDrtU62i8xlWfY44EogmjVrhp07d0IIgZMnTyItLS1o6/KlTjY1/btu2rSpci3hkSNHHA6Mq8rPz/f6QO2+++7DF198AYvFgtmzZ2PKlCmYPXu20oU01AMIqcF+23Ho0CGPy7tbJljfgS+++EIZpKpnz57Izc3FsWPH8NZbb2HkyJEe53n1xldffaXaiZK1a9d6de1wVbYz1eXl5XjhhRe8eo39oDBdu3b160CrVatW2LhxIwBr6GzevLnLZS+44ALlvjch0n6ZQIKWJEmIiYlBcXExhBAoKipyCJ2dO3eGLMuwWCzYuXMnLBaL25Nx9teBB6OLaVX2J9d9GXvCGX9bc+bOnatsu66//vqA/j88mTRpEiRJwqRJk5Tg+csvv6BLly5Ol6+67VArdLZr1w4DBw7Ehg0bcOTIEfz2228YMmSIVy1Dc+bMqZHjEGe6du2K/fv3A7Aee7gLWp6+y127dsWqVauUstxtm7wpy2bbtm1uA87OnTuVANu5c2e/5ui0rVOtz8IfQ4YMwQ8//IBRo0YpwVMIgZtvvtnp8sHaD8qyjAkTJuCVV15RguYLL7yA3377DUeOHAEA9O/fHx07dvS6TPuM07JlS3XqqUop3qzIbgPvaUCZwYMHA7AeIHpzoKOm7OxsANZBKNztlNasWVNt0ISqfHnPntgPBGRrSXHHvlXR04Te5Jz9gYCzg7UuXbooB2C7d+92uwH5/ffflW4ptrPywTJkyBDlvlqty4G66KKLlOvrfv75Z4+/HTXZD1BhOwvriu3stjcGDhyoHCTNnj0bRqNROchv1KiRx2s7aoPu3btDr9cDsP4ePF1KYBu8zJmGDRsqrRl//PGHKtfCZ2Rk4IEHHgBgPVu+YMECzJ8/HxqNBhaLBePHj3c4CCff2R+c2Q7uXOnYsaMSCDIzM5Vrm12xP1kXSMtDYWEhzpw5A8AaQKuOzBgfH68MqFVYWOh0RFObzMxMZRTnFi1auG2BU4t9eAm0S76n/ZY3dQhW11p7jz/+OKZNmwbAelL6sssuw+7du50uG8x9WtVuiVW72vrSMlRTRo4cqdy3BUZX7K8hdnYtX7iW5a1QrLOqwYMHY+XKlYiNjYXZbMa4ceOUEcadLWsL2Gp/l+2/q/PmzYMQIqARmO0HLrI/oRgQNeZd8WaeTtu8NPBiLqCFCxcqy95yyy0B1c1+fjVv5kBKTExU5qdyNceOyWQSvXr1cphnzBnbvITwcg4iT/N09ujRQ3n+p59+clnO1q1bHeauczdPp6cJ7n1dtq44dOiQiIqK8jg/kv3cm//5z39clmc/t+MHH3wQrGoLIYQ4fvy4Mk9nu3btRElJid9l2c/3+MILLwS07P333688/7///c/vOgnh27y/as/TaW/69OnK8g888IBy/4knnvDl7fjMl3k6A/1/u/baa5Xn582b57KcH374QVkOcD5P55tvvqk8//TTT3t4l+6ZTCbRv39/pbxZs2Ypz9nPbXbttdcGtJ7aRu15On/55RelPG/mrHz66aeV5V955RWXy/3999/KfNKxsbGitLTU7zq+/fbbyjp79erldBn7uTdvuukml2U98cQTynKTJk3yu07emj17trK+AQMGBFTW2bNnRZMmTZTynM1x7Mxvv/2mvCY9Pd3tBPP+cnUcYf9/16hRI6dzlJaUlChzuyYnJ4tTp06pVq/i4mIRExMjcG7eRPvtWKD/H97wdZ5OIYTIyclR9vGxsbEiOzvb6XK7du1SfmONGzd2uu8zGo0iJSVFABCSJDn9/IWwztlo+5wiIyNdzvPozXzy5eXlokWLFj4dH7ui5mfhLVfHH7/99puIjY0VgHV+4i+//NLp66+44grl9atWrfK7Hs4MHjzY4fO31ScqKkoUFhb6VNYbb7yhlOVuHmRf1FjonDhxorLMr7/+6rY8s9nsMNnpww8/LCorK10uX1ZWJj777DOxYMGCas/5GjqHDx+uLP/2229Xe95gMIg777zT4eDK1cGp/cZ07ty5Htft6UDaPow3adJE7N27t9oyx44dE23atPEYcOpr6Pzuu+/EokWL3G5w/vnnH9G2bVvlfV9yySUulz158qSIjo4WAIRWqxVr1qyptsxnn32mlJWWluZ0smq1Pf7448o6L730UnH69GmXy5rNZrF69Wrx8ssvV3tOzfCSmZmpnNSJiIjw+JvIzs4WL730ktNJzn0JnUIIMXDgQIdw6Gxycftthbehs6CgQPn/t78dOHDAq3r5qyZD5/r165Xnk5KSxI4dO6otc+DAAYeDXVehs6SkRLRs2VI5wPnvf//rdqL3goIC8d5774nVq1dXe84+WI4ZM8bhOaPR6BBIAz3JUZuoHTorKiqUg81BgwZ5XD43N1f5nUdGRjqtQ05OjujWrZtST2cn7DZu3Cg+/vhjj9vLL774QkRERLj93glhnRy9adOmynJz5syptszq1auFVqtVDmCzsrKclmV/zONuG7R7926Rk5Pj8vn58+crB8yRkZFi3759Tpf7/fffxSeffCIqKipclpWZmSn69Omj1Kldu3bCaDS6XN7eHXfcobzuxRdf9Oo1vnJ3HPHOO+8oz6ekpDgNPu+//76yzAUXXOBxG/vHH394ffLPfntqvx379NNPvXp9IPwJnUII8cgjjyivu+KKK6r9TvLy8hwCoLuT3e+++66yXI8ePUReXp7D8+Xl5eLyyy9XlnF3MmbZsmUO+9Bjx445PG82m8Vdd93lctttz36f7CpbqP1ZeMPd8cf69es9Bs9t27YJnU6n7FNXrlzpdn1Hjx4Vjz/+uMtAbc/+eNP+uzxu3Djv3+A51113nQAgZFkWZ8+e9fn1ztRY6Pz222+VZdq2bSs+/PBD8f3334uVK1eKlStXioMHDzosf/z4cdGsWTOHD2/ixIli1qxZYvHixWLOnDnipZdeEldffbWyQ3R20Oxr6Pzuu+8cdiZXX321+PDDD8VXX30lXn75ZdGuXTvlQL558+ZuD07/+usvpZzU1FTx1ltvieXLlyvv+e+//3ZY3psD6ZtvvllZJioqStx///1i3rx54osvvhCPPvqoiI+PV54fMWKEyzOW9TV02nZuKSkp4vbbbxfTpk0TX3zxhfj666/F+++/L2644QbloAOAaNq0abWNZlUzZ85UltfpdOLuu+8W8+bNE7NnzxY33nijcnZNq9V63LjYf/echQlvGQwGMXToUIfvyrhx48SHH34ovv76azF//nzx1ltvidtvv100btxYABBDhw6tVo6a4UUIIX788UflIAuA6N69u5g8ebKYN2+eWLRokfj000/Ff/7zHzF48GCh0WgEALF+/fpq5fgaOnfv3u0QDi+66CIxbdo0sXDhQjF9+nQxYMAAAUD0799f2e6kp6d7VXbVk1DuTlKopSZDpxDCoRU3IiJC3HvvvWLevHli/vz5YuLEico22L5V1NXB/44dOxy2U23atBH/+c9/xJw5c8TixYvF7NmzxXPPPSdGjBihfFc+//xzhzLWr1+vfD+aN29e7SBJCCGOHDmirCc6OtrlAX1do3boFEKIG264QdmOeOqpJIQQCxYsULZ7Go1G3H777cqJ4WeeeUZpWbFtA8rKyqqVsXTpUgFYW59uuOEG8eqrr4q5c+cq+/9nnnlGdO/e3eG3N2bMGLetdN9//73yvZEkSdx4441i9uzZYt68eeLuu+9WDgQBiE8++cRlOd6GzqlTpwq9Xi9GjRolXnvtNfHll1+KL7/8Urz22msOAVGv14ulS5e6LMf2WcTHx4sbb7xRvPHGG+Lzzz8XixYtEh999JG4/fbbHXrmxMXFie3bt7ssz559S58syx73d/7ydBxhH3xSUlKctn6NHz9eWUar1Yrrr79evPvuu2LhwoXiyy+/FO+9957417/+JdLT05VtizfWrVvn8P9p22YUFRUF8par+fnnn8Wzzz7rcLvgggscgkHV5/Pz852WlZ+fLzp27Ki8tlOnTmLatGniq6++Eq+88opIS0tz2CcZDAaX9aqsrBSDBg1Slk9LSxOvvPKK+Oqrr8Rbb70lOnXqpDzXuXNnUVBQ4PZ9jh07Vlm+QYMG4plnnhELFiwQH3zwgcP3vkmTJuL48eMuy/E2dKr5WXjD0/HHhg0bPAbPTz/9VNlGAtZW9VdeeUU5Hv3oo4/EI4884tCrMjMz02PdSkpKlHXb337++Wef3qN9C7iaxzQ1FjpNJpNDa0PVm7ODnVOnTjkcOLu7aTQapzsJX0OnEI7dg5zdBgwYIHJycpQz9u5aRG655RaX5VT9rLw5kDYajeJf//qXx89jzJgxTnfkNp52AP4uG+7sz6h6ug0aNEgcPXrUq3KnTp3qcMBS9RYXF+e0Jb4q+9cEEjqFsO5I/v3vfysHWZ5u48ePr1aG2uFFCCE2bdokWrdu7VWdYmNjq52cEcL30CmEtZugrQXG2a1r164OJ7suuOACr8rdvHmzQznedmkLRE2HTpPJJG6//XaXn50sy+K///2vw1lWV6FTCCH27dvncObZ3S0iIsLhZE1+fr6y7ZVl2e12ff78+Uo5F110kdseM3VFMEKnfeuFuy7W9j777DMlzLi6DRkyRJw5c8bp621By5ubXq8Xzz77rFcte/Pnz3d6UGZflrNeTvZ8CZ2e6t66dWuPB4S+fBZdu3Z12jvElVmzZimvHT58uNev85X9/7kr9l2gnQVPi8UiXn75ZYeWbU/fL29YLJZq+yRn+8NAVe1N483N3XFARkaGx+3osGHDXAZXe3l5eeKyyy5zW1aPHj28OilRUVHh0EDi7NamTRuP31NvQ6fan4Un3hx/bNiwQcTFxQnAmk+cHRd89913IjU11avvQYMGDVxuK6uqeiK8VatWPneZt+9mrmaLf42FTiGsTfRvvPGG6N+/v0hKSnI4GHZ3YLRu3Trxf//3f6JLly4iMTFRaDQaER8fLzp37izGjh0rZs6c6bKPvz+hUwghVq5cKUaPHi0aNmwodDqdaNKkibjsssvEJ598ouzYvAmdJpNJzJw5U1xyySWiYcOGDq1o/oROm02bNom7775btG3bVsTExIioqCiRnp4uxo0b59UZDV82yr5uwMNZbm6u+Prrr8Wjjz4qBg0aJNq0aSMSEhKEVqsVycnJonv37uL//u///DpY27Vrl3jwwQdF+/btRUxMjIiLixNdu3YVTz75pFfhtbS01OHAR63uDAcPHhRPPfWU6Nu3r0hJSRFarVZER0eL9PR05Qy8s2AnRHBCpxDWkyfz588XN910k0hPTxexsbHK/0GvXr3EPffcIxYuXOjyelR/QqcQQmRlZYlJkyaJDh06iKioKJGYmCh69eol3nrrLVFaWiosFovSYuDt2T2LxSISEhIEYL3eyF0XOLXUdOi0Wb58uRg9erRISUkRERERokWLFuKWW24Rv//+uxBCeB06hbB+bt9++62YMGGCaN++vYiPjxcajUYkJiaK7t27i/Hjx4s5c+ZUa8W0P4v+1FNPuV2HEELcdtttyvLeXJNY2wUjdJpMJuUaLF+CydGjR8XTTz8tLrjgApGYmCj0er1o1qyZuP7668U333zj9kDIZDKJDRs2iBdffFGMHj1atG3bVsTGxgpZlkVsbKxo2bKlGD16tJg6dao4efKkT+/n6NGj4j//+Y/o0qWLiIuLEzExMaJ9+/biwQcfdHlNmz1vQ2dmZqZ49913xTXXXCPat28vEhISRGRkpGjRooUYPXq0mDVrlleXWxQXF4tvv/1WPPXUU+Kyyy4T7du3F8nJyUKr1YrExETRqVMnMWHCBPHdd9+57a7ujH1jgDcnRv3l7XGE/XXyrlo8T506JV566SUxZMgQ0bhxY6HX60VkZKRo3ry5GDZsmJg8ebLYtGmTT/V76aWXHP5P1frt2FM7dAph7dX08ccfi8suu0ykpqYKvV4vmjZtKkaPHi2++uorn8KGxWIRX331lRg9erRo2rSp0Ov1IjU1VVx22WXi448/9rq7ts3KlSvFjTfeKNLS0kRERIRo2LCh6N+/v3j77be9GmvCl9AphLqfhTveHn9s3LjRY/AsKysTH330kbj66qtFWlqaiIqKEnq9XqSkpIj+/fuLhx56SCxfvtynE6b212h7s1935tZbbxWAtftvIOOCVCUJEeCwqkSkilWrVikjqk2cOBHvvfdeiGtU/+zatUsZpc3b/4M1a9Yo87g9/PDDePfdd4NZRaKQeOedd/DYY49Bo9Hg6NGjbqdOISKi2qmoqAhNmzZFaWkpnnzySbzxxhuqlR36WeOJCMD5OWLj4uLw3HPPhbg29dMHH3yg3L/00ku9es3MmTOV+3Vhbk4iZ+677z40btwYZrMZ//3vf0NdHSIiCoLp06ejtLQUcXFxmDRpkqplM3QShQlb6HzssceQkpIS4trUPevXr3c7P+iHH36Ijz/+GIB1Aucrr7zSY5k7d+7EsmXLAADDhg2rkTn9iEIhKioKU6ZMAQB8/PHHOHXqVGgrREREqioqKsI777wDAHjiiSfQsGFDVctn91qiMJCbm4tGjRqhYcOGOHz4MOLi4kJdpTqnbdu2qKiowBVXXIGLLroIKSkpMBqNOHz4MJYuXYodO3Yoyy5fvtxl6Pzxxx9hsVhw4MAB/Pe//8Xp06cBABs2bMCAAQNq5L0QhYLFYkHv3r2xfft2/Pvf/8b7778f6ioREZFKXnnlFUyePBnp6enYs2cPIiMjVS2foZOI6oW2bdvi8OHDbpeJiorCJ598gttuu83lMpIkVXvM2+s/f/rpJ5SVlXmurBMNGzbEwIED/XotERERUSgxdBJRvfDHH39gyZIl+OOPP3Dy5EmcPXsWZWVlSEpKQvv27TFs2DDcf//9SE1NdVuOLXTGxsaiffv2uP/++3HXXXdBlj1frdCqVSscO3bMr/oPGTIE69at8+u1RERERKGkDXUFiIhqQr9+/dCvX7+Ay+F5OiIiIiLfsKWTiIiIiIiIgoaj1xIREREREVHQMHQSERERERFR0DB0EhERERERUdBwICEiIqo1TCYTysrK3N4qKythMBhgMBgc7jt7zGQywWQywWKxwGw2V/vX/r5tCARJkpTRiu3vy7KsjG4syzK0Wi20Wi10Op3DzfaYVquFXq9X/o2KikJkZCQiIyOd3o+KilJusbGxiIqK8mrUZCIiolBj6CQiohplMplQVFSEoqIiFBcXu71v+7e0tBTl5eUwGAyhrn7YkGUZMTExiI2NdbjFxcU5/J2QkIDExEQkJiYq9/V6fairT0RE9QhHryUiooCZTCbk5eUhPz+/2r9V7xcWFgY89YytZTA6OhrR0dGIiYlR/o6MjMSq2esgWSTAAsAiKTfJ/m9x7m8BQFhbKJX74tx9WO9Lyt/KQ4BkVyHlvjh/XwIgW/8W8rlCbI/JACRhXa0srDeNgJAFRt59CSoqKlBeXo6KigpUVFSgrKzM4b7JZAro84uOjlaCqH0gbdCgARo2bIiGDRsq9yMiIgJaFxEREUMnERG5ZTAYkJubizNnzii3nJwc5OTkKH/n5eX5FCQlSUJsbCzi4+MRFxeH+Ph4xMfH45d5GyGZZMAkWf81ypBMEmCWIJllwHzuvpA8r6SOEjgXWjUWCK0AtBZrYD13X2gFoLFg9IPDUFxcjIKCAhQUFKCwsBCFhYUwm80+rS82NrZaEG3YsCFSUlKQmpqKxo0bIz4+XulaTEREVBVDJxFRPWcwGJCdnY3Tp0/j9OnTOHXqFLKysnD69GlkZ2cjPz/fq3I0Gg0SExORnJyMpKQk/Ln8b0jGc8HRIFvvG2RIRg1glCCBIaWmCZxrUdVZAJ3F7l8B6CwYcns/5Obm4uzZs8jNzUVlZaVX5UZFRSE1NVUJoVX/bdCgAa8/JSKqxxg6iYjqgeLiYmRmZuLEiRM4ceKEEjBPnz6N3Nxcj62Uer0eKSkpaNSoEVJSUvDzrA2QDBqgUoZUqYFkOBcuGSTrDCWg6i2A3gyht0DoLbh20kjk5uYiJycH2dnZyMvL81iWXq9H06ZN0axZMzRv3hzNmzdHs2bN0KxZMzRq1AgajaYG3hEREYUKQycRUR1hMBhw6tQpZGZmIjMzE8ePH8eJEyeQmZnpsbUyKioKjRs3RpMmTbB58Q6gQgOpQmMNlJUaa3dXBkpyQsgCQm8GIs0QEWaICAuG3TMQWVlZyM7OxpkzZ9x26dVqtWjatKkSRFu0aIGWLVuiVatWSExMrLk3QkREQcPQSURUy1RWVuL48ePIyMhQbkePHkVWVhYsFovL1zVs2BBpaWlo1qwZVn6wzhoqzwVLdnelYBEQQIQZIsoMEWnG9c9cgRMnTuDkyZM4deoUjEajy9cmJCSgZcuWSgi1/ZuSksJrSImIahGGTiKiMGUymZCZmekQLjMyMnDy5EmX4TI6OhotWrRA8+bNsXbWJkjlWkjl58KlmdfUUXixBlILRKQJIsqMG54dhWPHjuHYsWPIyspy2e07OjoaLVu2ROvWrdG2bVu0adMGbdq0QVxcXA2/AyIi8gZDJxFRGCgrK8Phw4dx4MABHDx4EAcPHkRGRobLqTHi4+ORnp6OXSsPQC7TWsNlmYbXVVKdIWQBEWWCiLYG0gHjeuLYsWM4ceKEy+66qampaNOmDdq2bauE0WbNmnEQIyKiEGPoJCKqYQUFBQ7h8uDBgzhx4oTTVp2oqCi0bt0ae38+AqlMA7lUC6lMy3BJ9ZaQBESk2RpGY0zoe3N3HDlyBFlZWU6Xj4yMRJs2bdCxY0d06NABHTt2RFpaGgcvIiKqQQydRERBVF5ejv3792Pv3r3Yu3cv9uzZg5ycHKfLNmzYEO3atcOWhX9DKtVCLtFZR4dluCTySGgsEDHWIDpy4mAcPnwYR44cgcFgqLZsVFQU2rdvj44dOyphtFmzZrxOlIgoSBg6iYhUYjabcezYMezZs0cJmRkZGU67AjZv3hzt2rXDb59thVyihVSqs85jSUSqERDWAYxijbjuuZHYv38/Dhw4gIqKimrLxsbGomPHjujSpQu6du2Kzp078xpRIiKVMHQSEfmprKwM//zzD/7++2/s2rUL+/btQ3l5ebXlGjZsiE6dOuH3eTsgl+gglWg5qA9RiAgIiGhrEL3yP5dh//79OHTokNNRdNPT09G1a1fl1rx5c7aGEhH5gaGTiMhLZ8+exa5du/D333/j77//xqFDh6qNIhsVFYUOHTpg1/cHIBXrIBfrIBl47RhROBOSsF4jGmfE0Acvxj///IOTJ09WWy4hIUFpCe3evTs6duwInU4XghoTEdUuDJ1ERC6cOnUKO3bswK5du/DXX385PQht3LgxLrjgAvwyYxOkIh2kMi2vwSSqA4TOAkucATe+PAq7d+/Gvn37ql0fGhERgW7duuHCCy/ERRddxBBKROQCQycR0Tlnz57F9u3bsX37dmzbtq3aaJiSJKF169bIWH8KcpEechFbMYnqCyEJiBgTLPEGDLyzJ3bu3InCwkKHZRhCiYicY+gkonqruLgYO3fuVELm0aNHHZ7XaDTo1KkT9q48AskWMnktJhHB7trQBAMG3t0TO3bscBpCL7jgAvTu3Ru9e/dG69ateU0oEdVLDJ1EVG+YTCbs3bsXf/zxB7Zu3YoDBw44XJMpSRLatm2LI2tPQipkyCQi73kTQhs0aIBevXqhT58+6NWrF5KSkkJUWyKimsXQSUR1Wm5uLrZs2YLNmzdj69atKCkpcXg+LS0NJ7fkQi7QQy7UQzIxZBJR4Gwh1JJYiV63dMHOnTtRWVnpsEy7du2UVtBu3bpBr9eHqLZERMHF0ElEdYrJZMI///yDzZs3Y/PmzTh06JDD83FxcejTpw9+nbkVcoGe12QSUY0QkoCIN2LMa5fjzz//xMGDBx2ej4qKQq9evTBgwAD079+fraBEVKcwdBJRrVdSUoLNmzdj/fr12LJlS7XWzI4dO+LgT5mQ8/WQinUcXZaIQk7ozLAkGjB0Yn9s3boVeXl5ynOSJKFTp064+OKLcfHFF6NNmza8FpSIajWGTiKqlXJycrBx40Zs2LABO3bsgMlkUp5LSEhA7969se7DLZALIiAZ2WWWiMKXgICINeG2d6/G77//jgMHDjg8n5qaiv79++Piiy9Gjx492A2XiGodhk4iqhWEEMjIyMD69euxceNG7Nu3z+H5Fi1a4OTGXMh5EWzNJKJaTejNsCRVos+Ebti2bZvDtaAxMTHo378/hgwZgr59+yIyMjKENSUi8g5DJxGFLSEEDh06hLVr12Lt2rU4efKk8pwkSejSpQv2Lj8KOS8Ccrk2hDUlIgoOIQtYEgwY9fRg/P7778jNzVWei4yMRL9+/TBkyBD0798f0dHRIawpEZFrDJ1EFFaEEDhy5IgSNDMzM5Xn9Ho9evXqhS1zd1lbNI0cBIiI6g8BARFnxHWvDsdvv/2GrKws5Tm9Xo/evXtjyJAhGDBgAOLi4kJYUyIiRwydRBQWjh49il9++QW//PILjh8/rjyu1+vRr18//P7xX5Dz9JAsvD6TiEhAQMSYcNNbV+DXX3/FiRMnlOd0Oh369euHYcOG4eKLL0ZEREQIa0pExNBJRCGUnZ2N1atXY/Xq1cjIyFAe1+v16Nu3LzZ98hfk/AhIZgZNIiJXrHOCmnDb9Kuxbt06HD16VHkuOjoagwcPxrBhw9CjRw9otbwUgYhqHkMnEdWo0tJS/Prrr1i1ahV27twJ2yZIq9WiT58+2PLZP9auswyaRER+sUQbcdO0K7BmzRpkZ2crjycnJ+PSSy/F8OHD0alTJ07DQkQ1hqGTiILOZDLhzz//xKpVq7BhwwaHkRgvuugi7Pr6MORcBk0iIjUJCIh4I0Y/PwRr165FYWGh8lyzZs1w+eWX4/LLL0dqamoIa0lE9QFDJxEFzeHDh7Fy5UqsWbPGYeLzFi1a4ORvedCciYRUycGAiIiCTUgClkQDLnm4FzZs2ICKigoA1pHAe/XqhVGjRmHgwIG8/pOIgoKhk4hUVVZWhl9++QXLly/H3r17lccTEhJQstcAOScKUomW82gSEYWIkC2wNKxEt7FtsGPHDuXxuLg4DB8+HKNGjUL79u1DWEMiqmsYOokoYEII7N+/H8uXL8eaNWtQXl4OANBoNBgwYAB+/+hvyPl6SIJBk4gonIhIE26ePhorV67EmTNnlMfbtm2LUaNGYeTIkZx+hYgCxtBJRH4rKSnB6tWr8f333+PgwYPK482aNUPWhkJociI5lyYRUS0gICASDRg0sQfWr18Po9EIAIiIiMCwYcNw7bXXokOHDiGuJRHVVgydROSzw4cPY8mSJVi9erUyKJBer8fgwYPx6zvbIBXq2H2WiKiWEloL7l9wK5YvX44jR44oj3fq1AnXXnstLrvsMl77SUQ+YegkIq+YTCZs2LABS5YswV9//aU8np6ejuM/51pbNU0cfZaIqK4QEBBxRgx5vCfWrVsHk8kEAIiPj8cVV1yBa665Bs2bNw9xLYmoNmDoJCK3CgoKsHz5cixbtky53kej0WDw4MHY8N5OSEVs1SQiquuEzoI7Zl2H7777DllZWcrjffv2xY033ojevXtz3k8icomhk4icOnDgAJYsWYKff/4ZBoMBAJCYmIjiv43QZEVBMvBaTSKi+kZAwJJkQM+7OmDLli2wHUamp6fjpptuwrBhw9j1loiqYegkIoUQAlu3bsWXX36J7du3K4937NgRh747BflMJEegJSIiANaRb69+41KsWLFCGbU8KSkJ1113Ha699lokJiaGtoJEFDYYOokIJpMJv/zyCxYsWIDDhw8DsHahvfTSS/HrtG2QitmFloiInBMaC+6eNwaLFy9WLsPQ6/UYOXIkbrzxRrRq1Sq0FSSikGPoJKrHysrK8P3332PRokXIzs4GAERFRcFwSILmVDSkSnahJSIi7whJwNKgEm2vbYJ9+/Ypj1988cUYP348OnfuHMLaEVEoMXQS1UMFBQVYtGgRli1bhuLiYgBAcnIyCrcboDkdBcnMUWiJiMg/AgIi3oh+D3bFhg0blOs+e/Togdtvvx09evTgoENE9QxDJ1E9kpeXhwULFuDbb79FRUUFACAtLQ2nfymAnBPF6zWJiEhVligThk/ui1WrVsFsNgMAOnfujHHjxuHiiy+GLPMkJ1F9wNBJVA/k5uYqYdM2Em3Hjh1xaOlpyGcjeL0mEREFlYgw46o3hmD58uXKfqh169a44447MHjwYIZPojqOoZOoDsvJycGXX36J77//XtnJd+nSBQcWnoRUoGfYJCKiGiV0Ztw4fSSWLl2KsrIyAECbNm1w1113YeDAgex2S1RHMXQS1UH5+fn4/PPP8e2338JoNAIAunXrhn0LMhk2iYgo5ITGglv/NxqLFi1CaWkpAKB9+/a4++670a9fP4ZPojqGoZOoDikuLsbChQuxaNEiZc607t27Y8/845AKOe0JERGFF6G1YOyHl2Px4sXKfqtTp064++670bt3b4ZPojqCoZOoDqioqMCSJUvw5ZdfKqPRduzYEYcXZUEqZMsmERGFN6G14Ib3hmHp0qXKQHc9e/bEfffdhw4dOoS4dkQUKIZOolrMZDJhxYoV+Oyzz5CXlwcAaNWqFU6szOcAQUREVOsInRnXvHUpli1bplweMmzYMPzrX/9C06ZNQ1w7IvIXQydRLSSEwB9//IGZM2fi6NGjAIDGjRsj97cyyDmRDJtERFSriQgzLnm2B1avXg0hBLRaLa655hpMmDABiYmJoa4eEfmIoZOoljl8+DA+/PBD/PnnnwCAhIQElGy3QJPFeTaJiKhuscQYcdH/tcWWLVsAANHR0Rg/fjzGjBkDvV4f4toRkbcYOolqidzcXMyaNQsrV66ExWKBTqeDJUMHTWYMJDPnNyMiorrLklCJ9Bsa4cCBAwCAZs2a4YEHHuA0K0S1BEMnUZgzGo1YvHgx5syZo4zsd+mll2Ljf/+GVKkNce2IiIhqhoDAEyvvwUcffYSzZ88CAHr16oV///vfaN26dYhrR0TuMHQShbFt27bhnXfewfHjxwFYh5E/9FUW5GJ2KSIiovpJyBaMnXk5Fi5cCIPBAI1Gg6uvvhp333034uPjQ109InKCoZMoDGVnZ2PGjBlYu3YtACAxMRElWywcJIiIiOgcEWFCv8e74LfffgNg3Vc+8MADGDlyJLvcEoUZhk6iMGI0GrFw4ULMmzcPFRUVkGUZ0okIaI7F8rpNIiIiJywJBjS7KkEZzf3CCy/EY489hlatWoW0XkR0HkMnUZjYvXs3/vvf/yIjIwMAcMEFF2Dv3BOQS3UhrhkREVF4E5LAnfOuw5w5c1BZWQmtVoubb74Z48ePR2RkZKirR1TvMXQShVhZWRk+/vhjLF26FEIIJCQkoHSLgHyGXWmJiIh8ISLM6PVwe/z+++8ArHNYT5o0CX369AlxzYjqN4ZOohDauHEj3n77bZw5cwYAIOdEQnskDpKJXWmJiIj8ZW5QieQheuTk5AAARo0ahQcffBBxcXEhrhlR/cTQSRQCBQUFeOedd5SBgpo2bYozP5VDLowA+JMkIiIKjCRByBZcPW0wlixZAiEEGjRogMcffxwDBw4Mde2I6h2GTqIatn79erz11lvIz8+HRqMBjkVCkxkLySIxcBIREanl3Ai2ljgDGo+OQWZmJgBg2LBhmDhxIhITE0NYOaL6haGTqIYUFxdj+vTpWLVqFQAgPT0dJ5YWOQ4UxJ8jERGROuymTRGywJj3h+Krr76CxWJBYmIinnjiCQwaNCiEFSSqPxg6iWrAli1b8Oabb+LMmTPWaVCOR0FzPBaSqDJQEH+ORERE6nAyV6cl1ojm18YrI8VfeeWV+Pe//43o6Oiarh1RvcLQSRRElZWVmDFjBpYuXQoAaNasGXJWlkMu1jt/AX+ORERE6nASOgHr9CrXT78UCxcuhBACzZo1w3PPPYcuXbrUcAWJ6g+GTqIgycjIwJQpU5SzqZpT0dAci4VkcTMyLX+ORERE6nAROm0sCZVIukyHnJwcaDQa3H777Rg/fjy0Wm0NVZCo/mDoJFKZEALfffcd3n//fRgMBiQlJaFkAyAXRHjz4uBXkIiIqD7wEDoBQGgsGPzcBVizZg0AoEuXLpgyZQpSU1ODXTuieoWhk0hFRUVFePPNN7F+/XoAQJ8+fbDzgwxIRo13BfDnSEREpA4vQqfNk6vuxdtvv42SkhLEx8fjmWeewcUXXxzEyhHVLwydRCrZu3cvnn/+eWRnZ0Or1UIcjILmVDQkeL/TY+gkIiJSiQ+hEwBEhAmtxzXEvn37AAA333wz7r33Xna3JVIBQydRgGzdaadPnw6j0WgdLGhFheNUKN4VFJwKEhER1VZSgHNY+xo8JYGrpg3EkiVLALC7LZFaGDqJAlBRUYG3334bP/74IwBAPhsB7cEESGY3gwW5w58jERHRebbQ6O/+0cfQaWNOrkBkbxNKSkqQkJCAKVOmoGfPnv7VgYgYOon8dfLkSUyePBmHDh2yzr15JBqakzG+dae1x58iERFRdfbB0Z99pZ/BU0SYkH5bA+zfvx8ajQb3338/brzxRkh+lkdUnzF0Evnhzz//xPPPP4+SkhLr6LTrAbnQi9Fp3eFPkYiIqDpnIc+XfWYAIVHIApdOuRCrVq0CAIwcORKTJk1CRESA+3yieoahk8hHS5cuxfTp02E2m9GlSxccnJMDyeDl6LSu8GdIRETkmqvg6O3+M5DgCYH/++omzJgxA2azGR06dMArr7zC6zyJfMDQSeQlk8mE6dOnY9myZQAAOScS2kMJkIQK3Wz4MyQiInLNU2j0tB9VoUusJaES0QMsKCwsRFJSEl5//XV07tw54HKJ6gOGTiIvFBcX4/nnn8e2bdsgSRLkjJjArt+sij9DIiIi17wJje72pSpdhykiTGhxcyIOHTqEiIgITJ48GYMHD1albKK6jKGTyIPTp0/jiSeewPHjxxEVFQXj9gho8iLVWwF/gkRERJ55Gxxd7VfVCp4aCy56OB2bN2+GJEl44IEHcNNNN3GAISI3GDqJ3Dh48CCeeOIJ5OXlISUlBQU/WSCX+Tj/pif8CRIREXnma6irun9VMRQKCIya2l+55Obaa6/FxIkTodVqVVsHUV3i52SCRHXftm3b8NBDDyEvLw/p6eko/AHqB04iIiIKDklSNWg6FA0JPzyxCQ8++CAkScKyZcswefJkVFZWBmV9RLUdWzqJnPj555/x6quvwmQyQSrUQbc3CZI5COdo+PMjIiLyTiAB0ra/DUIINSdXQO5eBoPBgIsuugivvfYaYmJiVF8PUW3G0ElUxTfffIN3330XACDnRkJ7QKURap0J5OcnSQytRERUf4TxNZOWeAN0fStQVlaGDh06YOrUqUhMTAx1tYjCBkMnkZ0FCxZg5syZAADNqWhoMuLUG6HWGX9/fgycRERUH4Vz8IwxIuYSMwoKCtCiRQtMmzaNc3kSncPQSXTO3LlzMWvWLACAJjMGmuOxwQ2cgO/B0X5ny58uERHVN2EcOgHAEmVC0uUycnJykJqaivfeew9NmzYNdbWIQo4DCVG9J4TAJ598cj5wHouF9niQWzj9EeY7WiIiovpOLteiYIVAixYtkJ2djYkTJ+LUqVOhrhZRyLGlk+o1IQRmzpyJr776CgCgyYiD9lQNXfzv7U/PVdjkT5eIiOqbWnICVujMaDwmCsePH2eLJxHY0kn13OzZs5XAqT1cg4HTG0Ec6p2IiIiCRzJqkLW4XGnxfPjhh9niSfUaQyfVW/Pnz8fcuXMBWAOnJivMAicRERHVWrbgmZaWhuzsbDzyyCPIysoKdbWIQoKhk+qlxYsX4+OPPwYAaI7Ghk/gZOsmERFRnSEZNcj+pgJpaWnIysrC448/joKCglBXi6jGMXRSvbNixQpMnz4dAKA5HgPtydgQ1wgMm0RERHWUZLAGz9TUVGRmZuKJJ55AWVlZqKtFVKMYOqle+f333zF16lQAgOZkNDSZYRI4iYiIqM6SDBrk/WBGQkIC9u/fj2eeeQaVlZWhrhZRjWHopHpj7969mDJlCiwWC+TsKGiOhnhaFLZuEhER1RtyhRZlv2oRFRWF7du34+WXX4bZbA51tYhqBEMn1QunTp3CU089hYqKCkj5emgPx4ffPJxERERUp8mlOpi2RkKn0+G3337DjBkzQl0lohrB0El1XkFBASZNmoT8/HxIJVro9idCEn4GTok/GSIionpPkv0+JpALIyB2WQcwXLRoEb799ls1a0YUlngETXWayWTC5MmTceLECaSmpkK3JwmS2Y+vfQA7FyIiIqqj/Dw+0JyNxL/+9S8AwLvvvos///xT7ZoRhRUeRVOdNn36dPz111+Ijo5G3o8WSEaN74UwbBIREZE7fhwrzLtzOUaMGAGz2Yznn38ex44dC0LFiMIDj6apzvr++++xbNkySJIEw7ZIyOU63woI99ZNDkJERET1Sbjv93w8bpAgYd2Lu9CtWzeUlJTgqaeeQnFxcRArSBQ6YXxETeS/Xbt24e233wYAyMdiocmP9K2AcA6bREREFL58CZ5Cwv5ZOWjcuDFOnjyJ119/HUKIIFaOKDR4ZE11ztmzZzF58mSYTCbIZyOhOWE3F6enHUG4t24SERFR+PPmeOLc85JJg7OrTNDpdNiwYQMWLFhQAxUkqlk8uqY6xWKx4JVXXkFeXh7S09OhPZjo3dQoDJtERESkNi+PL+RSPSZOnAgA+Pjjj7Fjx45g14yoRvEom+qUL7/8Etu2bUNkZCROfFMCyeLFV5xhk4iIiILJi2ON92/4EiNHjoTFYsGLL76I3NzcGqgYUc3g0TbVGbt27cKsWbMAAKZ/vBg4qC60bob7oApERERqqAv7Ow/HHRIkrH3xL7Ru3Rp5eXl48803eX0n1Rm1/IibyKq4uBgvvfQSzGYz5DNRkHOi3L8gkLBZ24MqERER+S/Q4wB3wdMiI3NJMfR6PTZv3oylS5cGti6iMMGjZ6oT3n33XWRnZ6NZs2bQHklweh2nJEuQZEmd0BguwZNnQImIiLyj0r5bklVodZVkSBrnc4fL5Trcd999AIAZM2Zw/k6qE8LkyJnIf+vXr8fq1ashyzJyVlZCMlf/Wquygwg3DJxERFQfqNm1VqVLa5QT2YGW4yJ4fnTzIvTu3RsGgwGvvPIKjEZjwOsiCiWGTqrVioqKMG3aNACAlBkNuUTv8LxaO4Www8BJRETkvzBq9ZQ0mmrhU4KEv2YcR3x8PPbv34/58+cHvB6iUGLopFrt/fffR15eHqQyLTTH4xyec7UjUC2EhqKLrRAMnERERGrwo9XTWcukPye4nZZTNXgaNSjban1s/vz57GZLtRpDJ9VamzZtwqpVqyDLMrSHEiEJ6wafrZtERER1hFpda92FyzBu9ZTPRqJfv34wGo2YNm0aR7OlWouhk2qlyspKvPfeewAAKTNK6VZbZ8MmdzJERETBo+K1nmqwBU8JErZ/eASRkZHYuXMnfvjhB1XKJ6ppDJ1UK3311Vc4deoUUlJSoMmM87l1s9aEU4ZNIiKimlMDgwy5GjzI2XKSRgOpUou77roLgHU02/z8/IDrSFTTGDqp1jl9+jQ+//xzAED+BhNkeLfxDopgXtfJwElERPVZTXSt9WF5b8Pi+WLUa/X8dNxStGvXDsXFxZg9e7Yq5RLVJIZOqnU++OADGAwGyIV6aPKjQl0d9bE7LRERUWiF2dQqskaLY98WAgCWL1+OjIyMgMskqkkMnVSr7Ny5E+vXr4dGo4H2aCIk+L8hD8tRbBk2iYiIQtfK6eL1vrZyVi9GCrgcuTgCQ4YMgcViwYwZMwKqD1FNY+ikWkMIgf/973/WP05GQi7X+V9YKKY7ISIiotpHzdFtAzzhvem9A9Bqtdi8eTM2b96sSr2IagKPvKnW+P3337F7925ERERAezLO8wtcUTtwCot6Zal1ZpeIiKg2U+tSE2FRdz8dIEkKLHjKlVpcf/31AICZM2fCYgmf90bkDkMn1QoWiwWffPIJAMB8NAKSRe9fQfaBU5LV6WLLVlMiIqLgUOuykwCCp2qX49imQQkweH739O+IiYnBkSNH8Ntvv6lTN6Ig49Ey1Qo///wzjhw5gtjYWGiz4n0vQKUBAYiIiKiGhUHwVINk15tJCZ5+hE/JrMGYMWMAAHPnzmVrJ9UKPAqnsCeEwPz58wEAFfs1kMw+XoTvLmyGY2snu9gSERE5UjN4+hA+1W7ldChbkvxu9Vz4yM+Ijo7G4cOHsXHjRjVqSBRUDJ0U9jZv3oyMjAxERUVBm2O9llOSJKcb8Gpqa+smgycREZEjNacUq+FWT8nNft2X4Clpzo2ma9bghhtuAADMmTMHgqPfU5irpUfkVJ8sWLAAAGDM0HrfyhmK7rS1NeASERHVJjUUPFVr5fSCP91tFz2+FlFRUTh48CD+/PPPINaOKHA8SqawtmfPHuzYscM6L2e247WcLls7fQ1/anWxVRtbO4mIiJwLUXdbv3g5N6en7ra2Vk7lb5MGo0aNAgAsXrw4sDoSBRlDJ4W1RYsWWe9kR0Iyaj2/INStjaFePxERUX2hZpfSKsFTzZPR7rrWulzey/V/P2UTJEnCpk2bkJmZ6U/1iGoEj5ApbOXn5+PXX38FgGqtnDZKa2eg3WnZ2klERFT7hPt1nl62clZVtbtt1VZOG7lSh379+gEAvvnmG//qSFQDGDopbK1cuRImkwlSqR5yuZ/zcvoiHEeyJSIiIs9UDJ5qnYSW9HqfWzkdXu/l6Lbb5h4GAKxatQqVlZV+r48omHh0TGHJYrFg+fLlAADtmVjXC2o01o26izOAIRHiecCIiIjqHbV6Bql94lgOvDw5Ph5SXJzr54sikZqaipKSEmzYsCHg9REFQxgdqROdt2vXLpw8eRIwS9DkxVRfQKMBdLrzG3MVNuoAAm/tDEbgZBdbIiIi11TcT6rZyqkI9BjlXDdbKS7OafiUIOHsjgoAwIoVKwJbF1GQMHRSWFqzZg0AQJMfDclS5Wuq0VTfgGs0oW/tZAsnERFR7RXMy2Nk2a/w6RAy7cJnVZpc6wn6bdu2IScnx+9qEgULQyeFHZPJhHXr1gFA9VZOZ4HTJpStncEOnGztJCIiqi7cWzmr8vVYxVmdnARP2aDDBRdcACGEMggjUThh6KSw8+eff6KwsBAwypCLIs8/4S5wnntetdZOX4JnTbVwMngSERGdp+Z+UaVWTreB08bL4OnuOk5nwXPv99YpU2wn7onCCUMnhZ3169cDONe1FlL16zfd0elqrpttTUwoTURERMEVimnTPBzTSHFxnufqrHKdpyY/GoB1XIwzZ86oUk0itTB0UlgRQmDTpk0AAE1BtOfWTWdqopttqMImWzuJiIhqX7daZ9wdr3hbJ/tBhoxadO3aFQA4ii2FHYZOCisHDhxAbm4uYJYgl8X4FyCD3c021K2bDJ5ERFSf1dZutc44GWDIbbdal+VYg+e+H08AALZs2eJffYiChKGTwsoff/wBAJCLoyBJGv8LClY321AHTiIiIlJHKLrVunIueHrVrdZlGRK0pgYAgO3bt8NoNKpVO6KAMXRSWNm+fTsAQFPsZG5OX6ndzTacAidbO4mIqD4Kx261Wq0q5VhbPQOrk2SMQmJiIsrLy/HPP/+oUy8iFTB0UtgwGAzYvXs3AEAujQq8QEkKvLXTfrCgYM7fRURERDVHkiEsIvByNOd6ZVkCPzEtp6ZAiokOqAwJEnr16gUA2LFjR8B1IlILj6IpbOzduxcGgwGw6KCJSA68QFkO7PrOcGrZtCeE9UZERFSfqNXKaXcSOdDgKdnXKYDgKaemQGhkCFkKOHj+uvQIALClk8IKQyeFjV27dgEANMYEIDYGcrwfF9JX5W8XWyeBU5Kl0Ld2MmwSEVF9FITAaeN38NQ4GXvCz+Ap7E6Q24KnX+EzMR4aSyIAYM+ePTCbzX7Vh0htDJ0UNvbv3w8AkM1xgEaGiI1WJ3j62trppoUzpMGTgZOIiMh/bvbfPgdPjcaxldOej8FTTk2pXh9Z8r3VMzEe0MiQzNGIjo5GWVkZMjIyfKoLUbAwdFLYOHDgAABANsVaH9DI6pzZ9KWbrRddakMSPBk4iYiovqqhwfOERXgXPt0FThsvg6etW63LOvkSPM+VI0FChw4dAAAHDx707rVEQcbQSWGhuLgYp0+fBgDI5ljlcRETpV43W0/BM5yv4SQiIqqPgtit1hVPwdNj4LTxEDw9BU6lPt4Ez8R4hz93bcoGABw+fNhj+UQ1gaGTwoJtoyiZIyAJu6HH1exm6y54+hg4a6y1k4GTiIjqqxAEThuXwdPZdZzuuAie3gZOpT7ugue5brUO5ZutU88dOXLE63UQBRNDJ4WFEydOAAAks5MNqtrBsyo/WziDHjwZOImIqL4KYeC0qRY8velW64yT4OlL4FRe4yx4OgmcACCZGDopvDB0UljIzMwEAMiWSOcLqHV9J3C+tdN+Dk4/BS14MnASEREFRoX9sxI8/Q2cNhaLEj6dDRzkdX2qBk8X4VW2WOc7z8vLQ0VFhd/rI1ILQyeFhfMtnVEulxExUZBjYwJfmSxbb6Ge/sQVBk4iIqrPamjgIF8EFDjtyPFxfrVy2lOCZ5XrOO1JQovYWOsYGVlZWQGtj0gNYXrUTfVNTk4OADctnYC1m21iXODdbM1m69lGFVoplTOgagbYMNzZEhER1Ri1Tr6qMECgJFv3ycIceFlyYoK1xbTCEHBZe/7TCHsfTXa7TOPGjQFAGaiRKJQYOiksnD17FgAgWfSuF5IkQJYhEmL9D57nAqew7dACCJ5+TybtDQZPIiKqz8IoeNrKCSR42gKntSwRUPDc+3gKdAmV0CVUYu/ERJfLZezJA3D+xD5RKDF0UshZLBbk5+ef+8NJ6JQkxxAmSf4Fz6qB08aP4Ok0cKrdXZfBk4iI6rMQB09bK6d9Of4ET4fAqZTlX/Dc+3gKdImVyt+24Ok0fJ47piooKPB5PURqY+ikkCsqKoLZbAYASELn+KSr4OVr8HQVOP3gtoWTwZOIiEg9IQqe1QKnXTk+B09X06z4GDyrBk4bpdXzoUSHx21T0BUWFnq9DqJgYeikkCspKbHeERpI9l9JT4HL2+DpTeD0srXTqy61DJ5ERETqqeHg6TJw2pXjbfCUExM8lOVd8HQVOO3pEh2Dp+1EflFRkcfyiYKNoZNCrry83HpH+BA47ZdzNvemjS8tnB6Cp0/XcDJ4EhERqaeGgqfHwGlXjqfg6bRbrdOyPAdPT4HTfjlb8LS1dCon94lCiKGTQs42f5Qkzm2YfQxYIjbKeWunP11qXQRPvwYNYvAkIiJST5CDp9eB064cV8HT68CplOU6eO59zLd5PZXgee5kvsEQ+Gi5RIFi6KSQUyYtFhr/gpUsQ8THOAbPQK7hrBI8AxqllsGTiIhIPUEKnj4HTrtyqgZPnwOnUlb14Ln3sRTokrxr5bSnS6zEycut83SaTCbf60KkMoZOCjk1BvdxCJ5qDBp0LniqMi0KgycREZF6VA6efgdOu3JswdPvwKmUdT54+hs4baLzswEAO3fu9L8+RCph6KSQk9QKUbIMaDWARqNOkIUKO6LzBalTDhEREYUfYbGGzUACp1KWwNFbmgQUOAHwJDWFFR4JU8jJ5wYCqkwObEMtlVVAlJZB0moh6Z3M9+krtSaUVrssIiKi+kytMHXuhLAavZpsxx2iOPBBezLuaAVjnIA5KyqgcgxNEgEATZs2DbhORIFi6KSQs4XOtNhcHLgzya8ypLIK64ZeCECWAg+e5+YNBdTpdqMqtboVERER1TYqB06bQIKnpNcr9RJmc0DBM+OOVjAmWOsiG6WAgucT7VcDAFJTU/0ug0gtDJ0UctHR0QAAc4UG3455x+fg6RA4bQIJnnaBU1lHAAMMqIqBk4iI6qsgBU4bf4KnfeBUyvEzeNoHTht/g+f3F89AgjESwPnjLKJQYuikkLNtDMvKJXTRR+GbMe/6FjyFcB7G/AmeTgKnjT9DqauKgZOIiOqrIAdOG1+Cp7PAqZTjY/B0FjhtZKNv7/3b/jPRXheDsnLre2XopHDA0EkhFxtrHdK7rFyG2QJcoI+0Bs+7PAdP63Wc5a4X8CV4ugmcyvp8mDRaVQycRERUX9VQ4LTxJni6C5xKOV4GT3eB08bb1s5v+89EJ/35k/kAQyeFB4ZOCjlb6ASA4hLrBvICfSS+ucF9i6dUVgFRUgZYPIRFb4KnL2c2PQVPBk4iIiJ11HDgtHEXPL0JnEo5Hk5oH53gOXAC3nWztQ+cAJBfaH3PSUn+jZdBpCaGTgo5nU6HxMREAEBu3vkRbG0tnjcv+bla+PQ6cNp4Cp4+BkWXwZOBk4iISB0hCpw2zoKnL4FTKcdFa+fRCa1gSPR+P+8qeH7bf2a1wAkAZ/Otx1QNGjTwobZEwcHQSWEhJSUFAHAmz3HalAv0kRgfn+twnafPgdPGVfD0olutM6rN4ekKAycREdVXIQ6cTovyI3ACzrvZ+ho4bWSjBHP2+eC5tP9H6KSPrhY4ASA33/reGTopHDB0UlhQQudZ53N12lo9D92W7F/gtKkaPP0MnDYOwVPVeT0ZOImIqJ4Ko8Bpa+30N3Aq5dgFT38Dp41ssAbPpf0/Qhe96y63Z/IbAwAaNmzo97qI1MLQSWGhSZMmAIBT2c5DJwD8a/ftaLzZDCTGBbYyW1BUYTJooAZaPImIiCi0VAjCwmwGdNqAAqfNx1d9gnSt62Om0jIJeXl5AIBmzZoFvD6iQDF0Ulho0aIFAODYCa3LZfIKYhGRZ4QpJQ5ITvR/ZUYTYDRaw6dGE/CZUOWaDxW78Kh2lpeIiKi2Uau3jwo9kGwnloXBGFA5cnIS5OQkQJLQerHvc3ja+/D6T9E3ohQWuH5/J7KsgTQpKQlxcQGerCdSAUMnhYWWLVsCAI6fch46++y4EU2WWLvECo0cUPAUQkDY79BkSb1BBhg8iYiIwkcAwbPqJTT+Bk85OQnQaqw3ANozRX7X6cPrP8XFkcXK32UWg9PlMs8dT6Wlpfm9LiI1MXRSWLC1dJ7O1qCyyvaz384x0M9ORuSZ80/4HTxtrZxV+RE8XQ6nzuBJREQUGDXHNvAjeDq9dMaP4KkEzipaf1Pqc53ev362Q+AEAAssToNnxnEdgPMn9YlCjaGTwkKDBg2QlJQEi5Bw6KhOebzfzjHQzmqAqJzqG1Sfg6fRBGEwOLZy2gugxbMaBk8iIqLAhCh4uh2rwYdyXAVOANBmF/oUPN+/fjYGRhY6fc5Z8DyQYT2Wat++vdfrIAomhk4KC5IkoWPHjgCA/YfPh87c/DingdPG6+DpKXDaeBk83U0arZBkFUMsgycREdVDNTiauyRLXg0O6E1rp7vAaeNt8HQXOG3sr+8UAtifYZ0VwHZsRRRqDJ0UNmwbxn3nQme/nWPQ+Bu9u5cA8CJ4ehs4bTwET68Cpz0GTyIiIv/VwMBCPo1E76GbrTeB08ZT8PQmcNrYWjtP52hQVFQEnU6H9PR0r15LFGyuhwolqmGdOnUCAPyzX48+O26Efnay21ZOe7bgKSXFQJNfCuQVnH+u6sBB3pAlwCJX20H5HDhtpOpl+VeOxDk8iYiI/CUs1U4G+zX12bngKel1Dg/7EjhttNmFAGIcHnv/+tkA4HXgBM53s921LwEA0K5dO+j1nk/eE9UEtnRS2OjWrRs0Gg1OZWuh/zTS68BpIzQyLBFax1ZPVwMHeUPNazwBdVs82epJRET1SZCu7wxoru0qJ5P9CZw26UvLlPvvXv8ZBkYW+hQ4bSywYOs/1jalCy+80K+6EAUDQyeFjZiYGHTo0AEAEHEm2+9ylFbP+DjfutU6YzeXp9+tnMHC4ElERPWJysEzoMBpK8ZgPD8Hp5+BEwB0WQVIX1qGd6//DEMiCwKq0z/72wIAevToEVA5RGpi6KSw0rNnTwCARc4LqByhkSH0OkBW4StuEep0jQXUbTklIiKqT8LxZKsswVJQGFDgtNEWVQQcOLOytcjKyoJGo0HXrl0DrhORWngETGHFdlZOWM7ArPV/56LNLwdy8wCNBpIm8B0BEGAXHBu1wqtNOO6AiYiI1Kb2/k6NHkznji+EwbfLgZwR0ZEQGglDn340oHJunToagPWSpejo6IDrRaQWhk4KK927d0dsbCwAAyyaAlh0vn9FtfnlkE7nnB9ZTqOBpNf7Fz6rtHKqee2Hahg8iYioLgtC4LTxO3hWOaaw5PrXQ0tERyqBEwCS/8rH0Gf8C54Dpj6G6NOnrPcHDPCrDKJgYeiksKLVatGvXz/rH+ZsWHSSz8FTMpqcD2Xua6uni261qrR4qo3Bk4iI6iI1929qzZ/t5FhCGAw+B09b2LQFTpvknfk+V2nA1MeQtK8MGlhfe/HFF/tcBlEwMXRS2Bk0aJD1jikLAoBFJ8EcpfEqfOryyqzdal1RqbuttxNIK4LVymmPwZOIiOoKtUdqV2P+bY3GaeBUyvGhm61966Yz3rZ2Dpj6GAZMfQzJ+42AKRtmsxktWrRAWlqa13UhqgkMnRR2+vbti4iICECUAZZCQJIgZMljq6c2vxzIOuN2wmYA3gVPLwcP8ip41kTgtOF0KkREVNsFsTutKx6Dp5cnrL1p7fQUOAFra+dlz7oPngPesobN5P3njntMJwEAl112mVd1JapJDJ0UdqKjozFw4EDrH6YT55+Q3AdPl91qnXEXPH0crZbdbYmIiFQSgsDpkQ89pDx1s/UmcNo02OG6m+2Atx5D8r7zxzzCUgkNrOsdPny4l7UlqjkMnRSWRowYYb1jOgVhHwBdBE9ltFpfBDLAUBUug2dNtnJWxeBJRES1SYgDp9PWTj+OEZx1s606YJC3LnuuemvngGmOgRMAYDoFs9mMTp06sWsthSVtqCtA5Ezv3r2RlJSE/Px8wJwDaBuff1KSYNEBQquBZBKQjRbfWjmr0mggARBmc0BzckqyFPjw62qTJHUn0yYiIgqGGrp+0ycBnJS25OZBbpgMwLfWzaoabD/f2jlg2mMAgOS9jsc7QgjAdByA3Ul7ojDD0ElhSavV4vLLL8eCBQsA4zHH0AlYr/OUAKED9HmVwFnfR3pzYAueFlNAxdhaPEUA4VV1DJ5ERBTOwihwCouApAv88NjW2hlI4LS5dPKjqEyS0GCvi5PrlnzAUoyIiAiGTgpb7F5LYevqq6+GJEmA+QyEpdT5QpIEWCyAv62cQRB2rZ1ERET1gVotnGZzwEVIGg1EfkHAgRMAGq07hQZ73BznGI8BAIYOHYq4uLiA10cUDAydFLaaNWuGPn36WP84t0GtKiK3HFJ2HiBLkDSyNaT6w2yGMJ5r5VRrp6VWOYFiKycREYUztfZTKvUwCvTksW2sCGEwQjqZ43c5cnE55OJywGRG1BHn41YIUQm9fAaA9WQ9UbgKk6NiIueuv/566x3jcQhR/SyfZDABlZXnH5Al/4OnQ8H+/TSq7ajCJXgSERGR9/xs7aw6OKEor/CrHFvYhMlaD6m80vmChqMwGAzo2LEjOnXq5Ne6iGoCj4gprPXt2xetWrUCYKrW2qm0clbla/C0b+W0p2aLZ6jCJ1s5iYioNqgDrZ2uRsP3tbVTCZxVVG3tFMKEuMgsAMCtt96qzkl3oiBh6KSwJssybrvtNusfxiMQ4vxGuForp8MLA+xuq6zE+8DocQfFVk8iIqLaw8vWTsnd3N/wvrXTvjut0/VUbe00HkdxcTGaN2+OQYMGebUOolDhUTCFvaFDh6Jx48aAMADGTABuWjmrCnF326CV4w22chIRUW1SC1s71ZjrG6jendaVqAzraP1CWJCSYL2W89Zbb4VGpXoQBQtDJ4U9rVaLm2++2fqH8TCEMLtv5azKXfB01bXWGTeB0aduOKHsbktERFQfqDVtmZvWTl8Cp7sutu5aN6uVU3au1dSUiTNnzqBBgwacJoVqBR75Uq0wevRoNGjQABDlLkeydSsE3W29KitY2MpJRES1UZjtv5ydVPbUndZpOU662HrqTuuyLGFCcsxJAMC4ceOg1+t9ej1RKDB0Uq0QERGBO++80/pH5UHgzBn/CrJv9fSllbMqu8AY0NDqbPEkIiIKb3atnYF0p7Vv7fS2O60zupw9yMvLQ5MmTThNCtUaPOKlWmPUqFFo0aIFIBlhjMvyvyA1r/OUZEhyGLWeEhER1XZheG2nP62b1co519rpT+umUoZsgr7RWQDA3XffDZ1OF1CdiGoKj3Sp1tBqtbj33nsBAKaG+bBo/WylBIBAgyIRERHVCwGfXLaxWAIKnABgSDiN0tJStG3bFsOGDVOnXkQ1gKGTapVBgwahS5cugCxgbORnF1sAwmiC8HPiZ8eCLIF1r7UrRzVhdj0MERGRT9ScbzLA/astcPp9OY6NxVoPS64XI++7KkJXDpFkbeX8v//7P8gyD+Op9uC3lWoVSZLw0EMPQZIkmJOLYYoohjD7uUNRIywSERGRetQMnAGQZMmxhdPf8GqxKIETAGA0+ldMYSEq4zNgNpsxcOBA9O3b17/6EIUIQyfVOp07d1YunDc2z4Uwm/wPnoFgKycREZE6JCl4gdPH/ayr7rQ+t3ZaVLqmtLAIprhCWGLLodfr8dBDD6lSLlFNYuikWunee+9FYmIiRJQRpkaFyki03oRPYTRBmALsJkNERETqCJPWTcDD9ZvehteqrZtVny4o9KoYUVgEUVgEi8WA+F7W8m6//XY0adLEu3oQhRGGTqqV4uLicP/99wMATE0KYNEbra18ZrN3rZ7sWktERBR6YRI4q3Wn9Zc3rZtedLEVhUUQJutJcmOzPJw9exbNmjXDLbfcEngdiUKAoZNqrcsvvxzdu3cHNALGlrkQOBckfWj1DDl2rSUiovoomN1pnXGzv1VzdNpA2Vo3bT2yzHHlMKcUAwAmTZoEvV4f8DqIQoGhk2otSZLw1FNPITIyEpa4CphTis4/6aLVU7WutWpdz0lERFTf1OLWTafXdXroTuu0nMIip4/ZWjcBQMgWGFtYR+q/9tpr0bNnT5/WQRROGDqpVmvWrJnSzdbYLB+WiCpdVpy1ejIsEhERhUYYBU6/VG0x9bN1UxgM5+9Xad20MTbPg4gwo0mTJrjvvvv8Wg9RuGDopFrvmmuuQa9evaxzd7Y8c76brY0v13rWVuxaS0RE4aymu9O6qoaa126q1Z3WVL0Xljm+DOaG1m61Tz/9NKKjowNeF1EoMXRSrSfLMp588knExMTAElsJU5MC5wuazdYbERER1ZwwCJuqUiNsmi1OWzcBQOhMiOpZAQC44YYbcOGFFwa8PqJQY+ikOiE1NRWPPfYYAMDUuADmuHKnywkhAh+8Jxyv56xrO3QiIiK1qTR4X6BjQwizxXos4SxwQsDQ6gwKCwvRrl07dqulOoOhk+qM4cOH46qrrgIkwNDqDITWzU5BWNQdOTYchEnXJSIiorpIWIRy8+v1ZosSOF0xNSmAJa4CUVFRmDJlCiIiIvytLlFYYeikOmXixIlo3bo1oDPDkO7k+s6q6lrwBBg8iYiIVBZoDyclbLo57jDHlsPctBCAdXqUtLS0gNZJFE4YOqlOiYiIwEsvvYSoqChY4ipgaprv+UWhavUM5joZPImIKFyE0WB3vobHQFo2Ae9aNwHAojciqnc5hBAYPXo0hg8f7vc6icIRQyfVOS1atMCkSZMAAKbGhTAllQAAhKeBhOpal1t2tyUiInLkw35etbDpYp22OT+FbIGhdQ4KCwvRvn17PPzww36vlyhcMXRSnTR8+HDccsstAABjy1xYoiq9f3FdCp4AgycREZEP1Gjd9OpEtrBAQMDYMhci2oCkpCS8+uqriIyM9HvdROGKoZPqrHvvvRf9+vUDZIHKNtkQOh+mS2GrJxERUb1TE11p7ZlSC2FOKoVWq8XLL7+M1NRUv9dPFM4YOqnO0mg0eP7559GyZUtAb4ah7RkIycedSV0KngCDJxERkRM11rppx5xcDnPzAgDAo48+igsuuMDv9ROFO4ZOqtNiY2Px+uuvIy4uDiLWAGO7PM8j2lbFVk8iIqLAhNFgQvZqaqCgqixxlZC6lkAIgeuvv9465RtRHcbQSXVe8+bN8eqrr0Kv18OSXAFTeoHvwROom+GTiIiongr2QEGuWKKMMHQ4C4PBgEGDBuGhhx7yux5EtQVDJ9ULF154ISZPngxJkmBOLYO5WbHfZQU6VxcRERGFTqCtm+cK8etEtNCZYeh4FtAKdO3aFc8//zw0Gk1gdSGqBRg6qd4YMmQIHnnkEQCAKa0YppTS0FaIiIiI6g2hscDQMReIMKNFixZ4/fXXEREREepqEdUIhk6qV6677jrcfvvtAABT6wKYG5SFuEZERERU1wmNBYZOuRAxJiQnJ2Pq1KlISEgIdbWIagxDJ9U7//rXv6wX7EuAsW0+TIkMnkRERBQcFphh6HAWItaIhIQEvP3222jSpEmoq0VUoxg6qd6RJAmPP/44Lr/8ckACTB3yYUoo57WaREREpBphEbDAAmOnPIh4A2JjYzFt2jS0bt061FUjqnEMnVQvybKMJ598EkOHDj0XPPNgSaxQZ3ABIiIiqrdsxxJCEjB2yINIMCA6OhpvvfUW2rdvH+rqEYUEQyfVWxqNBs8++ywGDx4MyICxYx7MSRUA3I9QK8mcaoSIiKi+cnccYDt+ELIFxk5nIZIqERkZif/+97/o3LlzTVWRKOwwdFK9ptVq8cILL2DgwIGADJg65sHcoByASkOqExERUZ1nf8wgNBYYO+dBJBoQFRWFN998ExdccEGIa0gUWpIQgkfVVO+ZTCa8+uqr+PnnnwEBaA8lQnMm2mEZ+zObqoRRP+b3Uh1//kREVFOkMOgpJAXe3uLueEBoLTB2tg4aFBsbi6lTp6JLly4Br5OotmPoJDrHbDZj2rRp+P777wEA2iMJ0GTFVFtOkiX1WkBDHTz58ycioppSh0Kns+MAoTNbA2eMCQkJCXjrrbfQoUOHgNdHVBcwdBLZEULggw8+wKJFiwAAmuNx0JyIhYQg7ChDHTgBhk4iIqo5dSB0ugqclkgTjJ3PApFmJCcn45133kF6enpA6yKqSxg6iaoQQmD27NmYO3cuAEDOjob2cILz4Cks/u/AGDqJiKg+qe2h08U+3xJrgLFTHqCzoEmTJnjrrbeQlpYWQCWJ6h6GTiIXli1bhnfffRcWiwVyfgS0+5MgWex2NlVDoz87MgZPIiKqL2pr6LTfV1d5vTmpAqb2+YBGoEOHDnjzzTeRnJwcYCWJ6h6GTiI3NmzYgBdffBGVlZWQSnTQ7U2GZNScX8BZaPRlh8bQSURE9UWoQ6evgdPDyWVzaiks7YphsVjQt29fvPjii4iOdhyEkIisGDqJPNizZw+efPJJFBYWAhUa6PYlQy7TWZ90Fxq92bkxdBIRUX0Q6sAJeB86Xe2bz71eQMDcqgjmpqUAgFGjRmHSpEnQarVq1JKoTmLoJPLCiRMn8MQTT+DkyZOAWYL2QCI0+VHehUZPOzkGTyIiqutqQ+j0tD+WZAiNBab2+bAkVQIA7rjjDtx5552QwuH9EYUxhk4iLxUWFuL555/Hjh07AACaY3HQnIyF5M1PyN2OjqGTiIjqulCHMjUCZ6QJxo55ENEmRERE4Omnn8Zll12mXh2J6jCGTiIfmEwmfPDBB/jmm28AAHJuJLQHEyBZvNyZOtvpMXQSEVFdF66h08t9sCXBCGPHPEArkJKSgtdee41zcBL5gKGTyA/fffcd3nnnHZjNZusAQ/sSIFX6cC1H1Z1fqIMnNwNERBQsoQ6cgN/7XQEBc7MyoE0ZzGYzOnXqhFdffRUNGzYMQiWJ6i6GTiI//fXXX5g8eTIKCgoAkwTtwQRo8iJ9K8S2Ewx16AQYPImIKDhCHTolN9OduSE0FpjaFcHSoAIAMHLkSEyaNAkRERFq15CozmPoJApAdnY2pkyZgt27dwMANCdioDkWCwk+7mAlOfTBk5sCIiIKhnAInT7uYy0xRhg7FABRZuh0OkycOBFXX301Bwwi8hNDJ1GAjEYjZs6cicWLFwMApEIddPsTHefzrA24KSAiIrXVwpBmblQGU5tiQBZo3LgxXnrpJXTs2DHU1SKq1Rg6iVSydu1avPnmmygrKwMMMnQHEyAX1KIuONwUEBGR2mpR6BQaC0yti2BpZO1O27dvXzz33HNISEgIcc2Iaj+GTiIVZWZmYvLkyThy5AgAQHMqGpqjcZBEDe50hfBvJ89NARERqa2WhE5LrAHGDoVApBkajQZ33nknxo0bB1n2MNUKEXmFoZNIZZWVlZgxYwaWLl0KAJBKtNAeSIRc7sPotoGw/aQZPImIKNQC2RfVQGAVEDA3LwVal8NsNqNx48aYPHkyunXrFvR1E9UnDJ1EQfL777/j9ddfR2FhIWCRoM2Ig5wV5fsgQ76q+pP2ZafNzQEREakl0JOfQQ6dQm+GsX0BRIIRADBs2DA89thjiI2NDep6ieojhk6iIDp79ixef/11bNmyBQAg50VAezgekiGIgww5+0l7u+Pm5oCIiNQS6EnPIIVOAQFLo3KY0osBrUBUVBQeffRRjBw5kqPTEgUJQydRkFksFixevBj/+9//YDQarXN6HomHfCYyOK2e7n7Snnam3BwQEZFaAj3hGYQAKPRmmNoUwZJcCQDo0qULnn32WTRv3lz1dRHReQydRDXk6NGjeO2117Bv3z4AQW719PSzdrcj5yaBiIjUEMiJTpUDp4CAJaUCptZFgFZAr9fj7rvvxk033QSNppZNcUZUCzF0EtUgk8mEr776Cp999llwWz29+Vm72qFzk0BERIEK9OSmiqFT6M3WqVAaWFs3O3bsiGeeeQatWrVSbR1E5B5DJ1EIZGRk4LXXXsP+/fsBAFK+HrrD8ZAqVRrh1pefddUdOzcJREQUqEBPbKoQOgUELI3LYGpZAmgFtFot7rzzTtxyyy3QamtoRHkiAsDQSRQyJpMJCxYswNy5c2EwGACzBE1mDDSnYgKf19Ofn7X9Dp6bBSIiCkSgJzQDDJ2WaCNMbYog4q0j03bu3BlPPPEE2rRpE1C5ROQfhk6iEMvMzMRbb72FHTt2AACkUi20h+Ihl+j9LzSQn7UkMXQSEZH/1DiJ6WfoFLKAuXmJde5NCYiOjsa9996La665htduEoUQQydRGBBC4Mcff8SMGTOs83oKQM6KgvZ4HCST7E+B6leSiIjIG4GevPQzcJqTKqzToESZAQCDBg3Cww8/jEaNGvlfFyJSBUMnURgpKCjAjBkz8OOPP1ofMErQHouDnB3l20BD/FkTEVFt5WPoFJEmmNKLlWlQGjZsiEceeQSDBw8ORu2IyA8MnURhaPv27XjvvfeQkZEBAJBKtNZRbou97HLLnzUREdVWXoZOIVtgbl4Kc7NSQAa0Wi1uvPFGTJgwAdHR0UGuJBH5gqGTKEyZTCYsW7YMs2fPRklJCQBAzomE9lic57k9+bMmIqLaykPoFBCwNDjXlTbCAgDo3bs3Hn74YbRo0aImakhEPmLoJApz+fn5+OSTT7BixQoIIayj3J6IgeZUNCSLi+s9+bMmIqLayk3otMQZYGpVrIxK27hxYzz00EMYOHAgJBXn9iQidTF0EtUSe/fuxXvvvYc9e/ZYH6iUoT0eCznHyfWe/FkTEVFt5SQ8iggTTK1KYGlYAQCIjIzELbfcgltvvRURERE1XUMi8hFDJ1EtYrFYsHbtWvzvf/9DVlYWgHNTrByNg1xQZafLnzYREdU2VQKn0FqsU6A0KQNkQJIkjBo1CnfffTcaNmwYokoSka8YOolqIYPBgG+++Qbz5s1TrveU8vXWkW5LddaF+NMmIqLa5lzoFLKAucm5QYJ01v1Z79698cADD6BNmzahrCER+YGhk6gWKyoqwrx587B06VIYjdbrW+TcCGiOx0Eu4yTYRERUuwgZsKSWwZRWCuitgwSlp6fjwQcfRJ8+fUJcOyLyF0MnUR1w6tQpzJo1C2vWrLEONiQA+UwktMdjIFVoQ109IiIitwQELI0qYGpRCkSaAVgHCbrrrrswfPhwaDQ8kUpUmzF0EtUhR44cwezZs/Hbb79ZHxCAnBUFbWaM52lWiIiIapiAgKVhJcwtSiCirWGzQYMGGD9+PK688krodLoQ15CI1MDQSVQH7d+/H59++ik2b95sfcACyNlR0J6IgVTJ8ElERKElIGBJqYA5rVQJm/Hx8bjttttw3XXXITIyMsQ1JCI1MXQS1WF///03Pv30U+zcudP6gADknEhryye73RIRUQ0T0rlutM1LgShr2IyNjcWYMWNw0003ITY2NsQ1JKJgYOgkqgd27tyJefPm4c8//7Q+cO6aT01mDORyhk8iIgouIQlYUsutYTPSOkBQQkICbrrpJlx33XUMm0R1HEMnUT2ye/duzJs3D5s2bbI+IAD5bAQ0J6MhF+tDWzkiIqpzhMYCc2o5zM3KgAhr2ExOTsbNN9+Mq6++GtHR0SGuIRHVBIZOonpo//79mDdvHtavX688JhXqrOEzLwISJDevJiIick/ozTA3LYO5cTmgtR5qpqSk4NZbb8WVV16JiIiIENeQiGoSQydRPZaRkYGFCxfip59+gslkAgBI5Rpr+MyJgmRh+CQiIu9Zoo0wNyuDJaUCkK2PpaWl4eabb8bIkSOh17NXDVF9xNBJRMjNzcU333yDZcuWoaSkxPqgUYLmVDQ0p6MhmeTQVpCIiMKWgIBINMDUrAwiyaA83r17d4wdOxYXX3wxZJn7EaL6jKGTiBRlZWVYsWIFFi1ahKysLOuDFuuIt5rT0ZBLOV8aERFZCVnAklIOc9NyiBhrbxlZlnHJJZdg7Nix6NSpU4hrSEThgqGTiKoxmUz49ddf8dVXX2H//v3K41KRDprTUZBzIyEJdr0lIqqPLJEmWJqUw5x6/nrNqKgoXHnllRgzZgyaNGkS4hoSUbhh6CQil4QQ+Oeff7B06VKsW7dOue4TBhmarChosqIgGTShrSQREQWdgIAluRLmJuUOXWibNWuGa665BqNHj0ZcXFwIa0hE4Yyhk4i8cvbsWXz//ff49ttvkZuba33QNuXK6WhIhTqOektEVMcIrQXmxuUwNy5T5teUJAn9+vXDddddhz59+vB6TSLyiKGTiHxiMpmwfv16LF26FDt37jz/RLkGmuwoaHIi2fpJRFSL2QYGMqeWw9KgUhmFNj4+HqNHj8Y111yDpk2bhraSRFSrMHQSkd8OHz6MpUuXYs2aNSgrK7M+KAA5Tw85O4pzfhIR1SIiwgxzajnMjcqVVk0A6NixI6677jpcdtllnF+TiPzC0ElEASsvL8e6deuwYsUK/P333+efqJShyYmEJjsKUoU2dBUkIiKnhCRgaVAJc2o5RKIBtvOEsbGxGDFiBEaPHo127dqFtpJEVOsxdBKRqo4dO4YVK1bgxx9/REFBgfK4VKiDJifSOvKtmdf/EBGFioCAiDXB0qgc5pQKQHf+ULBHjx648sorMWjQILZqEpFqGDqJKCiMRiN+//13fP/999iyZQuUTY0FkPMiIOdEQs6P4NQrREQ1RESaYE6pgCWlAiLarDyekpKCK664AqNGjeK1mkQUFAydRBR0OTk5WLNmDVatWoWMjIzzTxglyLmR0JyJhFTE0W+JiNQmtBZYUipgTqmAiDcqj0dERGDQoEEYMWIEevfuDY2GA8ARUfAwdBJRjTp06BB++uknrFmz5vzUKwBQIUNzJgpybgSkUi0DKBGRn4RsgSW5EpZGFbAkGpTRZ2VZRs+ePTFixAgMGjQI0dHRoa0oEdUbDJ1EFBJmsxk7d+7EqlWr8Ouvv6K8vFx5TirXQM6NsF7/yQBKROSR0JwLmg0rYUmsBOwaLjt06IDhw4dj6NChaNCgQegqSUT1FkMnEYVcRUUFNm7ciF9++QWbN2+GwWBQnmMAJSJyziFoJp2fTxMAmjVrhqFDh2L48OFo2bJl6CpJRASGTiIKM2VlZfj999+xdu3aagEU5RpociMgn42EVMIASkT1j9DagqZj11kAaNGiBS655BJccsklaNOmDSSJ20giCg8MnUQUtsrKyrBp0yasXbsWf/zxh2MANcjWUXDPRkAu1EOy8OCKiOomS6TJGjQbVFoHA7Lb3LVq1UoJmunp6QyaRBSWGDqJqFawBdDffvsNmzdvRllZ2fknzYBccC6A5kdAMnIeUCKqvQQERLzRGjSTKx2mNwGA1q1bK0GzVatWoakkEZEPGDqJqNYxGAzYuXMnNm7ciI0bNyInJ+f8kwKQinXWVtB8Pa8DJaJaQWgssCQalKAJ3fnDM41Gg4suuggDBgzAxRdfjCZNmoSwpkREvmPoJKJaTQiBQ4cOYcOGDdi4cSMOHDjguIBBhpyvh5wfAblAD8nEVlAiCj0BARFrgiWxEpYkQ7Vus7Gxsejfvz8GDBiAPn36IDY2NnSVJSIKEEMnEdUp2dnZ+P3337F582Zs374dFRUV558UgFSitQbQfD2kYh1bQYmoxgidGZYkg7VFM8mxNRMA0tLSlKDZrVs3aLXaENWUiEhdDJ1EVGcZDAbs2rULmzdvxubNm5GRkeG4gFGCXKi3toAW6iGVaxhCiUg1QhYQ8edCZqIBItbk8Hx0dDR69uyJPn36oHfv3mjatGmIakpEFFwMnURUb+Tk5GDr1q3YsmULtm7dipKSEscFKmVrCC3UQy7QAZUMoUTkPSELiDgDLAnGcyHT6DClCQB06NBBCZldu3ZlayYR1QsMnURUL5lMJuzduxfbt2/H9u3bsXv3bscpWQCgQlZaQuVCPSSDJjSVJaKwJCQBEWcNmJYEA0Rc9ZCZmpqKiy66CL169ULv3r2RlJQUmsoSEYUQQycREYDKykrs3r0b27dvx44dO7Bnzx6YzY7TFKBChlykh1yks14PypFxieoVobXAEme0dpmNN1pbMquci0pJScFFF12k3Jo0acK5M4mo3mPoJCJyoqysDP/884/SEnrw4MHqIdQkQSrSQS7WQS46NzCRhQeXRHWBgAAizbDEG60BM84AEWOutlxycrJDyGzevDlDJhFRFQydREReKCsrw969e/H3339j165d2L17N8rLyx0XssDa+llsDaJSiY6DExHVEkJjsU5hEmu0dpmNNwJ6S7Xl0tLS0K1bN+WWlpbGkElE5AFDJxGRH0wmE44cOYJdu3Zh165d+Pvvv5Gbm+tkQckaQkt0kIq11n95bShRSAlJQMSYrOHyXMgUUWZUPT+k0+nQoUMHdOvWDV27dkW3bt2QmJgYkjoTEdVmDJ1ERCoQQiArKwu7d+/G3r17sW/fPuzfv7/64ESAdZTcYh2kEi2kUh3kUi1gkNkiShQEQhIQ0abzrZixRogYU7UBfwDroD8dO3ZEp06d0K1bN7Rv3x4RERE1X2kiojqGoZOIKEhMJhMyMjKwd+9e5Xb06FFYLNW77MEoQSqxBlCpVMuuuUR+EFoLRIwRlliTtSUzxgQR5TxgJiQkKAGzU6dO6NChA5KTk2u+0kRE9QBDJxFRDSovL8eBAwewd+9eHDx4EIcOHcLx48erD1IEAGZAKrO2hkplWsilGkjlbBUlEpKAiDJBRJvPtWIaYYkxARFOTugAiI+PR9u2bdG+fXt07NgRHTt25KiyREQ1iKGTiCjEKisrkZGRgUOHDuHgwYM4ePAgDh8+XH2gIhuTZG0NLdNCKj8XRsu0gJFhlOoWpWtstAkiyuxw39VXvVmzZmjbti3atm2Ldu3aoU2bNmjUqBEDJhFRCDF0EhGFIYvFgpMnT+LQoUM4dOgQjh49iqNHj+LkyZPOu+cC1i665Vprt1zbvxXn7nMqFwpTAgLQW6yhMvJcuLQFzEjX4TI2NhYtW7ZEenq6EjBbt26NmJiYmn0DRETkEUMnEVEtUllZiczMTBw9ehQZGRnKv6dOnXIdRgGgUj4fRis05wLpufsMpBRkAgLQWc4HSvtwGWkC3AzoHBcXh/T0dLRs2RKtWrVCeno6WrVqhQYNGrD1koiolmDoJCKqA2xh9NixYzhx4oRyy8zMRFFRkfsXGyRIledaRc/9C/u/GUrJAyVURpohIswQkZZz/5qBCOtj7oKlRqNB48aN0bx5c+XWqlUrtGrVCsnJyQyXRES1HEMnEVEdV1hY6BBCbf+ePn0aJSUlngswyJAqZev8ouf+Vf62PWdxMjwo1QlK91e9BUJvtt6PsN4XegtwLmg6GyHWnizLSE1NdQiWtluTJk2g1Wpr5g0REVGNY+gkIqrHiouLkZWVhaysLJw+fRqnT592+LusrMy7gkwSJINsbSE1yJCMsnVgI6Nsfdxo95hgq1WoCQhAI6yhUWeB0J3/V+gsgH2o1FtcXldpT5ZlNGrUCI0bN3Z6a9SoEYMlEVE9xdBJREROCSFQXFyM06dPIycnB7m5uThz5gzOnDmj3M/NzfU+mNrYAqpRhmSSrQMgmWTr4w7/VnmMI/NWYwuP0AoIrcUaJLWW83/b/6tzDJieWibtybKM5ORkNGzYECkpKWjYsKFys4XKlJQUhkoiInKKoZOIiAJSVlamhNEzZ84gPz8feXl5KCgoQH5+vvJvfn6+8/lIvWWSALMEySwBFrv7Ztt92e6+BAgJsMC6rEWCZMG5x84/LtmWERJg2xs63Lf+4ynwivML2v0rrP9KAGQByAJCBiCJc39b7wtZOC6jORckNXb3qz4uC+BcyPQlPFYVExODxMREJCUlISkpCYmJiUhMTHQIlSkpKUhKSoJG4+aiTCIiIjcYOomIqEYIIVBSUqIE0Pz8fBQWFqK4uBjFxcUoKipS7tvffG5JDUrl4RhE7cNlGDTAarVaxMXFKbfY2FiHf+Pi4hxCpe2+Xq8PddWJiKgeYOgkIqKwZjKZUFJSguLiYpSXl6O8vBxlZWUe7xsMBhgMBhiNxmr37R8zGAxBfw9arRY6nQ56vR56vR46nU7523Zfp9MhMjISUVFRXt9sgTIyMpIjvBIRUdhi6CQionpNCAGLxeLTTZZlh5skScq/Go3G4W+tVgtZ5ui+RERUfzF0EhERERERUdDw1CsREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycREREREREFDUMnERERERERBQ1DJxEREREREQUNQycR/X979x5VVZ3/f/y1QRQUFDRTUDQtb2OaBmpmmpfyVk6FVpYz5jj9ypnK1mpcS4fJtLGyyWXZ0jXWuMacSrLbUrMpnSxvjahohpZBeMMLwnCRqxwRzvn9cdjbc7gc4MAJ5Pt8rOVisz+fz/vzOZ+2xpvP3vsDAAAA+AxJJwAAAADAZ0g6AQAAAAA+Q9IJAAAAAPAZkk4AAAAAgM+QdAIAAAAAfIakEwAAAADgMySdAAAAAACfIekEAAAAAPgMSScAAAAAwGdaNPYAAMAXHA6HbDZbYw8DAOokMDBQhmE09jAAoEGRdAJolmw2myZMmNDYwwCAOtm2bZuCgoIaexgA0KC4vRYAAAAA4DOsdAJo9loeuF6Gw08y/GT4ld+2ZvhJfoZkGDL8/CTDcJ6TnMd+hgyXOq7nnXWNq9+bZa71DUNSeVn5OYdhOH/VZ7jHrHjeYZb5meXloQxDDutXheZ5QzLk1sZhnXNpr/IYfkZ5rKvlkqw+rDZmfcnZZ8V4ZplbO7n15T6Oatq4fH+1XflXeWhXRX+VxlFFTDce2zgq9+PWl6PCZ73aTi7tZDis7hzG1XLDtcyKbZY5rL6MCvUNw+F2OZp9GOV1jfKYzkvKYZ1zXqoOK6azzHnOMBzuZYZDhtzP+5Uf+5W3dR7LvcxqY7/aTmZ9u/yNq8dWO12tb5abZf4yz9tdztudscyYLvGs+uVf/eRs6xyHs39nmV3+5d87p98u//JzZhv/8v9mfiqvW/7ZzOOrY3SUj0FXz0vl3xvyk+RvGPIr/w/qPGeUn/OTIUP+hp9slw1N/X+dBQDNFUkngOavzHD++Gc4f8iTVJ5gliedKk86/cyMzplFGM4MTu7ZS3m7KrMeP/eMyHAtq5S1eDh2zY4qlpuHZvLo8tWqbriEMiqEN9yTQLd2VbSXypPfasqMKv5UOY4a2tRlquoZs3aJagMmna79upVXnXS6tqlUv4oyw4rjqBDT4d7GtZ5bXw73Mpek82oS65LAVlfmkoy6JZ0u5/zknqyaCdvVpNNMSMsTNMNM2pz8DUN+hiF/ye2r5FJfRnksyd/sq/zY34pdTZl1fHX8/tY4ryaZruOvKumsGM8av9s5c4xXfzEBAM0Vt9cCAAAAAHyGpBMAAAAA4DMknQAAAAAAnyHpBAAAAAD4DEknAAAAAMBnSDoBAAAAAD5D0gkAAAAA8Bn26QTQ/Pk75HDYnfsSmpsEmsdG+SZ6bvtZGhX2wTRczjtcymsoq7BRpKOazScrnr/6vVlexbHDPHbWtdo4rh47KrWXy4aSV2NWZjgbGxWqVdx70+18pY+lWu3TKS/LPMWsoT/rY3lsU3G/zYrxHJXjV9nOZfZd2hke9uk0XGIbFeo798Q0yyr0UXGfTnm/T6ejvK2j/Lyj/NhRXuZw2afU9bzdcEiG3eVzm33Zy/f1LC93GYfDsDv7Mfstj6nyfiqe9yv/3vWrs6er5+zlf63tLntx2g3JLudfe7tLmaGq9uk0ytsZzn0/y+fbPJZc9vt0OTb7svYZlbnPqDOe85xhnTPKj22Xq/p7CADNB0kngGavZOj/GnsIvlH+M7y3KuaUgMm8tOyNPRCvmRk5N3QBQFPAv8YAAAAAAJ8xHA5HPX5PDgBNk8PhkM1ma+xhXDNsNpvuu+8+SdLmzZsVGBjYyCNq+pizumG+aicwMFCGwb0HAJoXbq8F0CwZhqGgoKDGHsY1KTAwkLmrI+asbpgvAPi/hdtrAQAAAAA+Q9IJAAAAAPAZkk4AAAAAgM+QdAIAAAAAfIa31wIAAAAAfIaVTgAAAACAz5B0AgAAAAB8hqQTAAAAAOAzJJ0AAAAAAJ8h6QQAAAAA+AxJJwAAAADAZ0g6AQAAAAA+Q9IJAAAAAPCZFo09AACAu0uXLmnDhg3atWuX0tPT5efnp8jISI0dO1ZTp05VQECA17FzcnIUFxen+Ph4ZWRkqFWrVurRo4cmTpyoe+65R4ZheGx//vx5xcXFKSEhQTk5OQoKClLv3r01ZcoUjR49utp2c+fO1ffff+8xdseOHfXpp5968ama5pxlZ2crMTFRP//8s/UnPz9fkvTmm29q8ODBteo/OTlZH330kb7//nvl5uYqJCRE/fv3V0xMjKKiorz6TM1xvnx9jQEAvEfSCQBNSHp6uubOnav09HRJUmBgoK5cuaKkpCQlJSXpq6++0ooVKxQSElLn2MnJyZo3b57y8vIkSUFBQbp06ZKOHDmiI0eOaOfOnVq6dGm1CUd8fLwWLVokm80mSWrTpo0KCgqUkJCghIQETZ48WfPnz/eYuAYFBSkoKKjKstDQ0Dp/JqnpztnmzZu1bt06rz6T6fPPP9fy5ctVVlYmSQoODtbFixe1Z88e7dmzR7NmzdLs2bPrFLM5z5fZZ0NfYwCA+iHpBIAmorS0VAsWLFB6ero6dOigv/zlL4qOjpbdbteOHTu0bNkypaSkaMmSJXrttdfqFLuwsFDz589XXl6eunXrpueff159+/bVlStXtGXLFq1atUoHDhzQypUr9dxzz1Vqn5aWpsWLF8tms2nAgAFasGCBIiMjrRWzdevW6YsvvlC3bt306KOPVjuOhx9+uM5JkidNec4Mw9D111+v3r17q0+fPurQoUOdxvDDDz9YCefIkSP17LPP6vrrr1deXp7WrFmjzz77TOvWrdMNN9ygsWPH1ipmc54vU0NfYwCA+uOZTgBoIrZu3aqTJ09KkpYsWaLo6GhJkp+fn8aNG6d58+ZJkvbt26dDhw7VKfaGDRuUk5OjVq1a6bXXXlPfvn0lSQEBAYqJibF+SN+yZYvOnj1bqf3atWtVXFys9u3b69VXX1VkZKQkqXXr1po9e7amTJkiSXrvvfdUUFDgxaf3TlOes5kzZ+qTTz7RK6+8oscee6zOt8K+9dZbKisrU8+ePfXiiy/q+uuvlyS1a9dO8+bN09ChQ93q1UZzni8AQNNF0gkATcTWrVslSYMHD9bNN99cqXzcuHEKDw93q1tb27Zts2JERERUKo+JiVFQUJDKysr01VdfuZUVFxdr165dkqT777+/ytsuf/Ob30iSioqKtGfPnjqNrT6a6pxJkr+/f536c5WWlqYjR45IkqZPn64WLSrfmGTOeXp6uhITE2sVt7nOFwCgaSPpBIAmwGaz6YcffpAk3XbbbVXWMQxDw4YNkyQlJCTUOvaZM2eUkZEhSVb7ilq3bq2BAwdWGfvo0aO6fPmyx/bh4eHq3r17ncdWH015zurLNV51/Q8YMECtW7eudf/Neb4AAE0bz3QCQBOQmpoqu90uSerRo0e19cyynJwc5efnq23btjXGNm+nrCl2z549tX//fp0+fbra9j179vTYPjU1VadOnaq2zldffaWtW7cqOztbrVq1UpcuXTR06FA98MADuu6662r8LK6a8pzVlzmHYWFhCgsLq7KOv7+/unXrpqSkJI9zbmrO8+WqIa8xAEDDYKUTAJqArKws67hjx47V1nP9odm1jSfZ2dl1il1UVKRLly5V6ickJEStWrWqsb1rfxWdP39eWVlZCgwMVFFRkZKTk/Xee+/pt7/9rXbv3l2rz1NxXFLTm7P6MsdZU5Jkjs3TnFeM6dquKtfifLlqyGsMANAwWOkEgCbA9QdwT4ldYGBglW18Edu8dbO4uLhSuaf2VY1r0KBBmjRpkoYMGaIOHTrIMAwVFhZqz549euutt3Tx4kUtXrxYK1euVP/+/X36uXwZ25yz+jL7r2nOzbHV5nM15/mSfHONAQAaBiudAACfmz17tiZNmqTrrrvO2sczODhYkyZN0t///ncFBwertLRUq1evbuSR4lrFNQYATRdJJwA0Aa4rPuZLe6pis9mqbOPL2EFBQZXKPbWv6+pVly5d9MADD0hyvrQoLy+vVu2a8pzVlxmrpjk3x1abvpvzfNXE22sMANAwSDoBoAlwfY4uMzOz2nquz9jV9qUoHTp0qFPsNm3auCUEZj8FBQUeEwqzvWt/tWVu3+FwOHThwoVatWnKc1Zf5jhreqbSHFtt5rw5z1dteHONAQAaBkknADQB3bt3l5+f859kT28iNcvat29fq7eKSu5vnPUU23wD6Q033FBte9e3lFbX3tPbSxtSU56z+jLn8OLFi8rNza2yTllZmc6cOeNW35PmPF8AgKaNpBMAmoDAwEBrJWb//v1V1nE4HDpw4IAkaciQIbWOHRkZqU6dOnmMXVxcrCNHjlQZe8CAAdbLYcz+K0pPT1dqamqdx2b68ccfJTn3iezcuXOt2jTlOasv13jV9X/06FHrBT616b85z1dteHONAQAaBkknADQREydOlCQdPnxYx44dq1S+Y8cOpaWludWtDcMwNGHCBEnSN998U+WthRs3blRxcbH8/f119913u5UFBQXpzjvvlCRt2rRJhYWFldrHxcVJcj6nN3LkSLcyh8PhcXxpaWnauHGjJOctkKGhobX7YGq6c1ZfERERGjhwoCTpww8/VGlpaaU669evlyR17txZt9xyS63iNtf58uU1BgCoP5JOAGgiJk6cqJ49e8rhcGjhwoU6dOiQJMlut2vHjh1atmyZJGnYsGGKiopya7t27VqNGjVKo0aNqvIH/unTp6t9+/ay2WyaP3++kpOTJUlXrlzRpk2b9M9//lOSNGXKFEVGRlZqP3v2bAUFBSk7O1sLFizQ2bNnJTlXr9atW6fNmzdLkmbOnKmQkBC3tuvXr9fLL7+sffv2qaCgwDpfVFSkrVu36o9//KMKCgrUokULzZkzp9nMmd1uV25urvXH9bMXFha6lZWUlFRq/+STT8rf31/Hjx/X4sWLrWcl8/Pz9frrr1srinPmzJG/v///6fny5TUGAKg/w1HTrwcBAL+YCxcu6Nlnn1V6erok5y2Rdrvd+iG7V69eWrFiRaXEbu3atVq3bp0k58pYeHh4pdjJycmaN2+e9ebO1q1bq6SkxFpFGzJkiJYuXaqWLVtWObb4+HgtWrTIegNpcHCwiouLVVZWJkmaPHmy5s+fb21XUdXYzH5btGihwsJC2e12K9b8+fOtFdW6aKpzduHCBT388MO1+gx//vOfNWnSpErnP//8cy1fvtya4+DgYBUVFVkre7NmzdLs2bNr1YfruJrbfPn6GgMA1E+Lxh4AAOCq8PBwrVu3Ths2bNCuXbuUnp6uFi1aqEePHho3bpymTp2qgIAAr2L36dNH//rXvxQXF6e9e/fqf//7nwIDA9WzZ09NnDhRkydPtl40U5Xhw4frnXfeUVxcnBISEpSTk6Pg4GD16tVLv/71rzV69Ogq240ZM0aS9MMPP+j8+fPKz89XUVGRQkJC1L17dw0ZMkRTpkxR+/btvfpcTXnO6uvee+9Vr1699OGHHyoxMVG5ubkKCwtT//79FRMTU2k1sjaa43z5+hoDANQPK50AAAAAAJ/hmU4AAAAAgM+QdAIAAAAAfIakEwAAAADgMySdAAAAAACfIekEAAAAAPgMSScAAAAAwGdIOgEAAAAAPkPSCQAAAADwGZJOAAAAAIDPkHQCAAAAAHyGpBMAAAAA4DMknQAAAAAAnyHpBAAAAAD4DEknAKDRvfnmmxo1apSeeeaZxh4KGllhYaHuuecejRo1Srt3727s4QAAGkCLxh4AAMB7RUVFSklJUVJSkpKTk5WcnKzz58/L4XBIkj788EOFh4f7pG+Hw6Fp06YpMzNTM2bM0JNPPulVnJSUFG3atEmS9MQTTzTgCBvXyZMndeDAAR09elQnT55Udna2ysrKFBISohtvvFHDhw/XxIkTFRwc3NhDbVKCg4M1ffp0rVmzRitXrtSwYcPUqlWrxh4WAKAeSDoB4Bo2d+5cpaSkNErfSUlJyszMlCSNHDnS6zirV69WWVmZhg0bpgEDBjTU8BrV3Llz9f3331dZlpOTo5ycHCUkJOj9999XbGyshg4d+ssOsImbNm2aPv74Y2VkZOiTTz7RjBkzGntIAIB64PZaALiGmSuaknOFaPDgwWrfvv0v0veePXskSR07dlS/fv28inHkyBEdPHhQkppVYmEm4yEhIZo8ebJiY2O1atUqrVmzRn/96181fPhwSc4ENDY2VomJiY053CYnKChIU6dOlSTFxcXp0qVLjTwiAEB9sNIJANewyZMnKzQ0VH369FHXrl1lGIbmzp2rnJwcn/dtJp0jRoyQYRhexfjggw8kSeHh4brlllsabGyNrWvXrpo5c6bGjRunli1bupX16dNHo0eP1vr16/X222+rpKREy5cv17vvvttIo22axo8fr7Vr16qgoED//ve/9eCDDzb2kAAAXmKlEwCuYdOmTdNdd92lyMhIrxM/b5w9e1apqamSvL+1NjMzU/Hx8ZKkCRMm/KLj97Vly5Zp0qRJlRJOVzNmzFCvXr0kSadPn9aJEyd+qeFdE8LDwzVw4EBJ0meffdbIowEA1AcrnQCAOjPfKmre0uuN7du3y263S5LGjh1bqzalpaX65ptv9O233yopKUm5ubkqKytTaGioevbsqejoaN11113q0KGDW7tRo0ZJkiZOnKjY2FidOXNGn3zyiRISEpSVlaU2bdqod+/eevTRRzVo0CCr3eXLl/Xll19q27ZtOnfunGw2myIiInT33XfrwQcfrPcLbm699VbrmdyzZ8/qxhtv9DrW6dOntXnzZiUmJurChQuy2WwKDg5WSEiIwsPDFRUVpTvuuEPdunXzKn5paan+85//aMeOHTp58qTy8vJkGIbatm2r0NBQ9evXT9HR0RoxYoQCAgLc2lac/9OnT2vjxo06ePCgsrKyVFxcrJdffrnSLzDGjh2rxMREpaamKikpSX379vVucgAAjYqkEwBQZ+attcOHD1eLFt79r2Tv3r2SnM89du/evcb6x48f1wsvvKBz585VKsvMzFRmZqb279+vEydOKDY2tto4O3fu1CuvvCKbzWadu3z5svbt26f9+/dr3rx5mjJlirKyshQbG6ukpCS39qdOndI//vEP7du3T8uXL69X4llaWmod+/l5f/PR5s2btWLFCpWVlbmdz8vLU15ens6dO6eEhASdOHFCCxcurHP83Nxc/elPf6rypVXm3KekpOizzz5TXFycunbtWm2sL7/8UsuXL1dJSUmN/bq+WGrv3r0knQBwjSLpBADUSVZWln766SdJ3t9aW1JSoh9//FGS1K9fvxpvrU1JSdHTTz+t4uJiSdLgwYM1fvx4de/eXQEBAcrOztaxY8dq3NfxxIkT+uabbxQWFqYnnnjC6vvQoUN67733ZLPZ9MYbb2jQoEF66aWXdPz4cd1///264447FBoaqvPnz+vdd9/ViRMndOTIEcXFxel3v/udV3MgSd9995113KNHD69inDx50ko427ZtqylTpmjQoEEKDQ1VWVmZsrOzlZycrH379nl9C/OKFSushDMqKkrjx49XeHi42rRpo6KiIqWmpioxMdG6Xbo6ycnJ2r59u9q2basHH3xQAwYMUEBAgE6fPq3OnTtXqt+jRw8FBQWpuLhY3333nWbPnu3V+AEAjYukEwBQJ99++60cDodatmypYcOGeRXjxIkT1ipfnz59PNYtLS3VCy+8YCWczz77rPVmU1e33367Hn/8cWVkZFQbKyUlRb169dKKFSsUEhJinf/Vr36lrl27atGiRSotLdXTTz+t/Px8LVu2TNHR0Va93r17a8iQIZo5c6aysrK0adMmzZw5U/7+/nX6/JLzFuVTp05JcibekZGRdY4hSTt27LBWON944w3rOVFXI0eO1OOPP668vLw6x798+bKVzI8cOVIvvfRSpeR10KBBuu+++1RcXOxxxfbUqVPq2rWrVq1a5faW5erefuzv76/evXsrMTFRP//8s+x2e71WhAEAjYN/uQEAdWLeWhsdHa2goCCvYrjeIlvTFi/bt2/X+fPnJTnf1ltVwumqU6dOHssXLFjglnCaRo8erY4dO0qSLl68qJiYGLeE0xQcHKxJkyZZ9U6fPu2xv6pkZWXp9ddflyQZhqE//OEPdY5hMt9UHBwcXGXC6apdu3Z1jl9QUGD9gmDQoEEeV0uDgoJqvN34ueeeq9O2PmZdm82mrKysWrcDADQdJJ0AgForLCzU4cOHJXl/a60kZWdnW8dt27b1WNdMciXpkUce8bpPyXm7ZnWJmWEYbmXjx4+vNo5rvbS0tDqNwWazKTY21koWK768qK7MRLmwsFA7duzwOk512rVrZ72F9+uvv67XnpkdO3asMpH3xPX6cL1uAADXDpJOAECtxcfHq7S0VP7+/hoxYoTXcS5fvmwdV7Xq6Ornn3+W5Fzxqs0Lhzypqb3rWDy95dW1Xl2SsCtXruj555+3Xk50xx136PHHH691+6qMHz/eWl1ctGiRnnrqKa1fv15Hjhyxbkmuj4CAAE2cOFGSdOzYMT300ENatmyZvv766zon3N68ndc16XR9+RMA4NrBM50AgFozVx1vvvlmhYaGeh3H9RnImt5impubK+nqil59BAYGeix3vXXU063Drs8Vmtu+1KS0tFQLFy7UgQMHJElDhw7V4sWLvXoe1FVERIReffVVvfLKK8rMzNTRo0d19OhRSc557tu3r0aNGqV77723xgS/Os8884xKSkq0bds25efna8uWLdqyZYsk5y8Dhg4dqsmTJ9e4YlvTqnZVXH9B4e2bkgEAjYuVTgBArZSUlGj//v2S6ndrreR8/tCUn59fr1jXgtLSUi1atMjaJiY6Olovv/yyddtqfUVFRemDDz7Qiy++qMmTJ1tblpSVlenHH3/U6tWr9cgjj1gJb121atVKsbGxev/99/X73/9et956q5WU5+TkaOvWrZo7d66ef/55tySxIm9eAuT68iPX6wYAcO3gV4YAgFo5ePCgdbtmfZNO1+0xako6Q0NDlZGRcc2+RMZMOM1V4ltvvVVLly6t1/6eVWnZsqXGjBmjMWPGSHKuEB86dEjbtm3Tvn37lJ+fr4ULFyouLk4dOnTwqo/IyEg99thjeuyxx1RWVqaUlBTt3btXmzdv1sWLF7V7926tWbNGTz/9dIN9roKCAuu4ppdEAQCaJlY6AQC1YiZNvXr1Unh4eL1iue5JeebMGY91zS1VsrOza6zb1FRMOAcPHqxXX321wRPOqoSGhmrcuHF67bXXdP/990uSiouL9e233zZIfPPW3dmzZ+utt96ybl3evn17g8Q3paamSpLCw8PVunXrBo0NAPhlkHQCAGpkt9v13//+V5Lz5Tf11alTJ1133XWSpJ9++slj3VGjRlnHcXFx9e77l1JaWqrFixdbCeegQYP0t7/9rcbnSn1h6NCh1rH5jGxDCg8Pt/YZ9WYv0Ork5uZa2+X079+/weICAH5ZJJ0AgBodPXrUSlZck8D6MBOh1NRUFRUVVVtv7NixVkLzxRdf6NNPP/UYNyMjo0HGVx+lpaX661//qt27d0vybcK5a9euGhNJ81lcSerSpUud4qelpengwYMe61y4cMFakYyIiKhTfE+OHTtmHd92220NFhcA8MvimU4AuIadO3fOelOpydz/UZJ27tzp9pbZoKAgjR49us79mKt1ERERXm17UZUxY8boiy++kN1u18GDB3XnnXdWWa9FixZ68cUX9dRTT6m4uFhvvvmmdu/erQkTJqh79+4KCAhQdna2kpKStHPnTvXp00exsbENMkZvLVmyRDt37pTkTPLmzJmjCxcueGwTFhamsLCwOvf16aefasmSJYqKilJUVJRuuOEGtWvXTleuXFFGRoa2b99urVJ37ty5zlvdZGRk6LnnnlNERIRGjBihfv36qVOnTmrVqpXy8vJ07Ngxbdq0yXoL8dSpU+v8GaqTkJAgyfm86vDhwxssLgDgl0XSCQDXsKNHj2rp0qXVlq9evdrt+86dO9cr6WyIW2tN0dHR6tixozIzM7Vt27Zqk05Juummm7Ry5Uq98MILSktL0+HDh3X48OEq65rPgDamHTt2WMfnz5/XnDlzamwza9YszZ4926v+SkpKFB8fr/j4+GrrdOnSRUuXLvW4FYwnaWlp+vjjj6st9/Pz0yOPPKIHHnjAq/gVlZaW6uuvv5bkXF33drsXAEDjI+kEAHh0/Phxa5Wuvm+tdeXv76+YmBi9/fbb2rdvn3Jzcz3u/dm7d2+9//772rZtm/bs2aOUlBTr+cGwsDDdeOONGjJkiO66664GG+O1YNGiRTpw4IASExN18uRJ5eTkWLfbtmvXTjfddJNGjhyp8ePHe7VFy8CBA7Vq1SodPHhQx44dU0ZGhi5evKiioiIFBgYqIiJCAwcO1L333ttgq+CSrGtCkqZNm9ZgcQEAvzzD4XA4GnsQAICm65133tE777yjsLAwbdy40au9FqtTWFio6dOnKz8/X08++aRmzJjRYLFxbZs/f77i4+MVFRWlN954o7GHAwCoB14kBADwyLy19vbbb2/QhFOSgoODrURzw4YNunTpUoPGx7Xp2LFjio+Pl2EYeuKJJxp7OACAeiLpBABU68qVKxo5cqRmzZqlmJgYn/QxdepUde3aVXl5efroo4980geuLWvWrJEkTZgwQf369Wvk0QAA6ovbawEAje6nn35SfHy8goOD9dBDDzX2cNCICgsL9fHHH8vhcCgmJsbjc74AgGsDSScAAAAAwGe4vRYAAAAA4DMknQAAAAAAnyHpBAAAAAD4DEknAAAAAMBnSDoBAAAAAD5D0gkAAAAA8BmSTgAAAACAz5B0AgAAAAB8hqQTAAAAAOAzJJ0AAAAAAJ8h6QQAAAAA+AxJJwAAAADAZ0g6AQAAAAA+Q9IJAAAAAPAZkk4AAAAAgM/8f9sPo8gAPcBpAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADAYElEQVR4nOzdd5gT1cIG8HcmyfbGsgtL77AUFRCkCwIqiopevGJF7FevXOv1s/eL9Ypg7xS9iA0siCBNQQVUOtLbIri07TVlzvdHNkOymzJJJpv2/p5nH5bN5MwkuznnvHPOnJGEEAJEREREREREISCH+wCIiIiIiIgodjF0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcgwdBIREREREVHIMHQSERERERFRyDB0EhERERERUcjoEjr3798PSZIgSRImTZqkR5FxacSIEer7SETkyaRJk9S6Yv/+/eE+HNWMGTPU45oxY0a4D4d0pigKTj/9dEiShMmTJ4f7cCiEVqxYoX6WH3/88XAfDlFEiOW8Y7PZ0K1bN0iShAceeCAk+2i0kc4ZM2bg8ccfj6vKa/78+eprLikpCffhUJ3HH39crTS0fGnt1G/ZsgWTJ09Gfn4+0tLSkJmZiVNOOQX3338/Dhw4ENoXRURxoX379prrrhEjRui677fffhvr1q1DUlKS107J/v378fnnn+OBBx7AOeecg6ZNmwZ9THrWrwcOHMD999+PU045BZmZmUhLS0N+fj4mT56MrVu3+lXWsWPH8NRTT+H0009HdnY2UlJS0KlTJ1x//fVYvXq1X2VpFS9tzYUXXqj+3bz33nt+P7+goAAGgwGSJCE7Oxs1NTV+l3HixAksXrwYU6ZMwfjx49GuXTuXz5hWzmFFy5eWvrIQAgsWLMCVV16JLl26IC0tDSaTCTk5ORg8eDAefPBB7Nmzx+/X7FBcXIy8vLyA+kNaVFVV4Z133sHYsWPRunVrJCUlISkpCS1btsQ555yDadOmae4719TU4I033sCYMWOQl5eHxMRE5ObmYsCAAZgyZQpOnDih23GH2+TJk9XfxyOPPOL386uqqpCZmQlJkmA0GnH48GEAgMFgwMMPPwwAeOmll7B7925djxsAIHSwb98+AUAAENdee63bbYYPH65uEy+uvfZa9TXv27fP5/bx+B6Fw2OPPaa+z1q+tPzuXnjhBWEymTyWkZ6eLubMmRP6F0dxwd+6pbF88MEH6nF98MEH4T6cmNSuXTvNddfw4cN1229lZaXIy8sTAMS//vUvj9tNnz5d92PSs3798MMPRVpamseyEhISxEsvvaSprO+//140a9bMY1mSJIl7773X79frTWO1NcuXL1fLfOyxx4I/8AB8/vnn6jEMHTrU7+c/+eST6vNvu+02v5+/adMmn58xrZz7yVq+fL3nx44dEyNGjPBZTkJCgnjuuef8fu1CCDFp0qSA+kNa/Prrr6JDhw4+j79Zs2Zi0aJFXsv67bffRPv27X2W89133wV93FryTqj9/vvv6jG0bdtWKIri1/NnzZqlPv/88893ecxqtYquXbsKAOLyyy/X87CFEEIYoYP27dtDCKFHUXFtxYoV4T6EuPPUU0+hV69eXrdp1qyZ18fffPNN/Pvf/wYAmEwmXHPNNRg+fDgsFgsWLVqEzz77DOXl5bjmmmuQlZWFMWPG6Hb8FJ9mzJjB6atxLjc3F2+//bbXbXJycnTb3+uvv47CwkIYDAbcd999Hrez2Wwu/09OTkaXLl2wadOmgParZ/26YMECXHvttbDZbJAkCZdeeinOPfdcmEwm/PDDD5g9ezbMZjPuvvtupKen48Ybb/RY1u+//45x48ahqqoKAHD22Wdj/PjxSEtLw9q1a/Hee++hsrISL774IhITE/H0008H9PpD9V5EgwsvvBA5OTk4fvw4Vq1ahT179qBTp06anz9z5kz1++uuu87v/df/WzYYDMjPz8fevXtRXV3td3kOZ511Fv71r3953SY/P9/jY1arFeeddx5+++03AEBSUhImTpyI0047DU2aNMHBgwfx9ddfY9WqVTCbzfi///s/pKWl4bbbbtN8jN9//z1mzJgBWZaRkJAQ0CixJwcOHMDo0aNRWloKAMjLy8OkSZPQpUsXGI1G7N27F7NmzcK+fftw9OhRXHjhhVizZg169+7doKytW7di5MiRKCsrAwD07NkT11xzDTp06ICSkhIsXLgQX375JY4ePYpLLrkES5YsweDBg3V7LeHQt29fnHrqqdi0aRMKCgqwbNkyjBo1SvPznfsO9T8Xjvr9xhtvxCeffIJHHnkEPXr00OvQG29ILR5H8SJ1NCLeOY90Ll++PKiyDh8+LFJSUgQAYTQaxffff99gG+fRnzZt2ojq6uqg9kkUqTjSGXqOkc527do12j4tFoto06aNACDOOeccr9vOmzdP/POf/xTvv/++2Lhxo7BarS6jA/6MdOpZv1ZWVoqWLVuq286YMaPBNosXLxZGo1EAEGlpaaKwsNBtWYqiiL59+6plPf744w222bBhg8jIyBAAhCzLYtOmTZpftzuN3dZEwkinEELccccd6nE88sgjmp/3448/qs/r1atXQPvevXu3mDhxopg2bZr46aefRGVlpRDCdbaBVnqOkDmPVLVp00bs37/f7XZvv/22ul1OTo6wWCyayq+srFRHISdPnuzyevXoy15//fVqeeeee66oqqpqsI3FYhETJ05Utxs3bpzbsgYMGKBuc/XVV7t9jZ999pmQZVkAEN26ddP8PrgTCSOdQggxdepU9TiuueYazc87cOCAkCRJABBNmzYVtbW1DbYpLS0VSUlJAoC46aab9DxswdAZQgydkUnP0HnnnXeqZf373//2uN3f//53dbtXX301qH0SRSqGztALR+icN2+e+nudNWuW388PNHTqWb++/PLL6jZ///vfPZb173//W93O09TY+fPnq9sMGDDA4/S21157Td3u0ksv9fJKfWvstiZSQueGDRvU42jXrp3mqYTOwea///2vrscU7tB51VVXqWW99tprXrc9/fTT1W21nvi46667BADRqlUrUVZWpnvobNWqlVre1q1bPW5XXFysngTKzs5u8Pjq1avVclq1auX1JMttt92mbvvuu+8GfOyREjqPHj2qTrNPTU0V5eXlmp7nPOV88uTJHrdz1CPJycmirKxMr8MWIV+91rEi6w8//KD+zJ+LphVFwSeffIIJEyagQ4cOSElJQXp6OvLz83Hrrbdi8+bNXo/NedEYx/TVpUuX4oorrkCHDh2QlJTU4OJoq9WKRYsW4Z577sHQoUPRrFkzJCQkID09HV27dsWkSZPw448/etynY2VJ56kdHTp0aPCaPb1XWi5OX7NmDW6++WZ069YN6enpSE1NRadOnXDttddi2bJlPp9ff1EHxzSgfv36oUmTJkhNTUXPnj3xwAMPoLi42Gd58UgIgU8//RQAfK7m6DyVZu7cuSE/Nme//PILbr31VvTo0QNZWVlISkpC27ZtMWHCBCxYsMDrc92tYFhQUIB77rkH+fn5SE1NRVZWFgYPHozXX38dVqtV0zFVVFTg5Zdfxtlnn42WLVsiMTER2dnZ6N+/Px599FEcO3bM6/Prf1ZsNhtmzJiBs88+G61atYLRaET79u0bPO/IkSO477770KNHD6SmpiI7OxtnnHEG/vvf/6rT5BwLtdR//nfffafu09fUKId//etf6nMWLlyo6Tla+Fq9NlS/t2+++QYXXngh8vLykJSUhPbt2+Oqq67CL7/84vdrMJvNeO+993DRRRehTZs2SEpKQlZWFk499VTcc889Hhes2LFjB1JTUyFJEjIzM7Fv3z6P+yguLkbbtm0hSRIMBoPXeps8mz17NgD7VNlLLrmkUfapd/3q/PM77rjDY1mORToA4JNPPvFZlvP29U2aNAkZGRkA7FN7KysrPe7Xm0huaxxTXiVJgizLmDp1qtvtvvvuO3UKZXp6urrg0qRJk7Bq1SqP5Z922mno06cPAPu0zOXLl/s8pqqqKvX9MhqNuPrqqwN4ZZHr6NGj6vddunTxum3Xrl3V77X8/a1duxbTpk0DALzyyitIT08P8Cg903r8WVlZyM3NBeD+2J37un//+9+RlJTksayJEyeq3//vf//z63gDcezYMfTv319th++++263lyEG2j/Lzc3FBRdcAMD+3niqq+rTOuX8qquuAgBUV1fjs88+01S2JnokV2/J33mE09uXuzNpu3fvFr179/b6PFmWvU65cB7VWrZsmfjnP//pthznszdaLs52vFZ3Q9POI5y+nu/pvfLEYrGIm266yWfZl112mdspCw6O7YYPHy727NkjevTo4bGsdu3axdRIrV4jnZs3b1bL8TV9x2azuUy10vPMkScVFRViwoQJPv9Wxo4d6/F46p/tXrhwocjKyvJY1tlnny1qamq8Hte3337rdfENwL4YxpdffumxDOfPyokTJ8TQoUPd/t06W7ZsmWjSpInHfZ5yyimioKDA40iSzWZTpxw1adLE59S16upqdX9t27YVNpvN6/b+8DWLQu/fm9Vq9VqvybIsnnvuOc0jnVoWkUhISBBvvvmm2+c7TxsbNGiQsFqtbre79NJL1e0eeughr+9ptGjskc6amhp1WueZZ54ZUBmBjHTqWb+WlpaqU8oyMzN9fhZ79uyp7tvdSEzTpk3Vx48dO+a1rLFjx6rbLliwwOu2noSjrdEy0rlu3TrRvHlzAdin/M6ePbvBNkePHhUjR4702Q7dcMMNwmw2u92P8+JUEydO9HnsztNPPU3LDEa4RzqvvvpqtSxfI539+vUTAITBYBAnTpzwuq3ZbBannHJKg/dN75HO1q1be/18OTiPdPbu3bvB486jl2+88YbXfRYVFanbGgwGdaq0v7T8Hvft26cuxgNAPPPMMw220aN/9tVXX6nbaambnaecn3baaV63LSkpUetMPT9DIQ+dK1euFPPmzXOpxOfNm9fga9u2bS7P2717t8jJyVGfM3ToUPHss8+KOXPmiA8//FDcddddLh1IT5Wic8A477zzBACRl5cn7r//fvHhhx+KGTNmiNtuu00cPnxYfc6AAQNEWlqaGDdunHjyySfFrFmzxCeffCKmTZsmbr75ZpGamqqWeccddzTY5++//y7mzZsnzjrrLHW7t956q8Fr/v33312epyV0Xn755eo2SUlJ4pZbbhEzZ84UH374objzzjtFenq6+vi5557rcSqKY5s+ffqI/Px8IUmSGDdunHjjjTfE3LlzxTPPPCPatm2rbjds2DCPxxRtnP8mhg0bJjp27CgSExNFenq66Ny5s7j66qvFV1995XMaz5w5c/xqRJx/v2vWrNHp1bhXU1MjBg4cqO6vU6dO4sEHHxSzZ88WH3/8sXj66addKsWRI0e67Yg5dzzGjRsnUlJSRHJysrjlllvEjBkzxJw5c8Q999zj8pnwdhLos88+EwaDQQAQJpNJjB8/Xrzyyivik08+Ee+++6646qqr1CkjsiyLpUuXui3H+b10fK5PO+008eyzz4qPP/5YvP322+L2229Xt9+6davacXb83f/3v/8Vc+fOFdOnTxdDhgxRA4xj6o+7Tv2UKVPUMj788EOvv4PZs2er2z7xxBNet/WXP6FTj9+bc+OekJAgbrrpJjFz5kwxe/ZsMXnyZPW9vfjii9XtPIXOn3/+Wd1ekiQxZswY8dJLL4m5c+eKGTNmiFtuucXld+WpnPHjx3s99nfffVd9fODAgUFdxxNJHB3AtLQ0MWrUKJGbmytMJpPIyckR/fv3F/fdd5/YvXu3bvtbunSp+j4GuhJrIKFTz/r1l19+8Wv/zp+vuXPnujz2119/qY9pCf7O7U2gq4iGo63xFTqXLVumhtuUlBTx7bffNtjmxIkTolOnTi4d3SeeeEJ89NFHYs6cOeKhhx5ymWrp6bUdP35cJCQkCEDbVELnkDt//vxAXr5XwYbOjh07in79+onMzEyRkJAgWrRoIc4++2zxwgsviJKSEp9lffrpp2pZWq/pnDRpks9yHVMv09PTxcGDB92+Xj1Cp/Pgj7drOp0/h+6uwb711lvVx/0JnQDEr7/+GtCx+wqdmzZtUq8dNxgM4r333muwjV79M4vFop70kSRJ7Nmzx+uxO085f/nll32+1u7du6ttjacTu/6KyFum2Gw29SL9xMRE8cknn7jdrrCwUB0JlWVZbNmypcE29W+PMXToUFFaWup1/0uWLPE6Snj8+HF1ZEWWZbF371632+l9y5SPP/5Yfbx58+ZuzxDt37/fZQTB0zUdzu9JQkKC+Prrr92+TueygglKlZWVbk82BPJVP6z7S+stUwYMGOCxMhdCiCeeeMJro1yf80Xx7s4I66n+9T/uOtxms9nlmNxV2s4dD8A+Yrdz584G261Zs0Y9I9mkSRO3o2YFBQVqJ6Vt27Yery9Zs2aNyMzMFABE69at3Z79rj+D4s477/Q6euE8Enrbbbe53bb+34W7DmVhYaEain11Xs8880y14XFuwPXgT+gM9vfmfHY0KytL/Pbbbw222b59u3o7DceXu7BYVlamLkiTlZUlVqxY4fb17dq1Sz3plZqa6nY0qaioSD1jbjAYxMqVK9XHduzYoQbqjIwMn42xL9u2bdOt/vI1MuaLllumGAwGcf/99+vSUXA+0fLpp58GVEYgoVPP+nXmzJk++yjOHn30UXX7p556yuWxH374wa/X8v7776vb33DDDT63dyccbY230PnZZ5+JxMREAdivtfv555/dluE4CSVJksdObnl5uTjnnHPUfS1cuNDtds6zFt5//32Px71//351hKZZs2YhOdkUbOj09pWZmdngREd9iqKISy65RH1OUlKSuPnmm8Xrr78u5syZI55//nmXNu+SSy7xGdT/+OMP9Xc6bdo0j69Xj9B57Ngx0blzZ7XMvLw88cADD4j3339fzJo1Szz22GNq31OW5QafQQfnz8Vdd93ldZ/O138Cvk8ae+JrkM0xoygpKcnjCQ+9+mdCCHHvvfeq2zz66KMej7uyslIdlDKZTJraIedb5mzcuNHn9lpEZOh0vjfT9OnTvW67Y8cOdeTE3SpLzh3J1NRUcejQIU2vyZc9e/Z4bJQc9A6dffr0UR93d1bRYc2aNWql265dO7cdD+cP35NPPumxrHfeeUfTdr74e48qb1/BTk157LHHRFJSkjjvvPPEk08+KWbPni3mzp0rpk2bJv72t7+pf08ARMuWLcWff/7pthzHxfYAxCuvvOJzv/5uH6jDhw+rZ4X/9re/ed3WbDaLjh07CgCiS5cuDR6vH15+/PFHj2U5L27gbrvJkyerHeL169d7Pa733ntPLeujjz5q8LjzZ+X000/3Gjh//fVXddtevXp57Yg7l+tpFMN5oQ53QU4Ie73k2Gbs2LFeX2sg/A2dwfzexo0bpz7u7myzwzfffOOyT3eh87///a/6+FdffeX1NTqPsP3nP/9xu82KFSvUVQnbtWsniouLhdlsdlk8Q48TPP7e29fbV7CLl7Vr1060bNlSXH/99WL69Oli7ty5Yvbs2eKxxx5Tp8bpVVcKIcSVV16plhfoCqyBhE4969dp06apj91zzz0+y/K2/Zdffqk+Nn78eJ9l+bu9O+FoazyFzjfffFP9zLVq1crj9EjnewnefffdXvdVVFSknmg8++yz3W6zYMECtTxvUwmdg4iv/QYqmNDZq1cvceedd4p33nlHfPrpp+L9998Xd9xxhzpi5fjyFqyFsF/y8OCDD7rMbqv/1bdvX/HNN9/4nLVls9nE4MGDBQDRr1+/Bu2p3qFTCPso+KWXXurS36r/ddlll3ntKyxZskTdtlWrVl4vEal/aV2gi2x5yjtffvmlSE5OFoD9xMEPP/zg9vl69s+EsM/ichxP+/btPf6unU+8+dqvw3PPPadrOypEhIZOx9mxjIwMTUt+Dxo0yGMn0bmzoOVaAH84zuxfcMEFbh/XM3Q6v8ennHKKz7JGjRqlbu9uhNLxmMFgEEVFRR7LcQ7XwdwoNpJC5+bNm71e27BlyxaXs3CjR492u53ztbXvvPOOz/0++OCD6vZTpkwJ+Ph9cV6l0dMZaGcPPPCAx79T545Hnz59vJbjHBTrX4unKIrIzs4WgO9bLghhv97BMQLn7vft/Fnx1Tg//PDD6ra+puB88cUX6raeQqdzGLrvvvvcbuO8Aqa3a1MD5U/oDOb3VlNTozaQzZs39zly5piOA7gPnY6ZKV27dvX5GoUQ6jQlb0HF+XM1YcIEcd9996n/v+qqqzTtx5dICp0rV670epLl9ddfV0MBEPgZfQfH1HMAHk/A+RJI6NSzfv3Pf/6jPqbl2l7naYk333yzy2MfffSRX39fixcvVrfXUve5E462xl3odA503bp1EwcOHPD4fMdojiRJmk72X3HFFQKwz25zFx6sVqtaH0iS5HaGmaIoLtN5N2/erP0F+yGQ0FlWVibWrVvn8fGqqipx3XXXqeUmJCR4nEXnUFxcLF544QV1hNLd19ChQ8VPP/3ktZxXXnlF7Q+6O8ZQhE4h7P3LG2+80eOxJyQkiMsuu8zl8jdnVqvVpa927bXXum2j5s+f3yDcBvq5cJd33nvvPbX8vLw8sWHDBo/P17N/5nDGGWf4bF+cL/dzN7PRHed68Omnn9b0HF+MiEArV64EALRo0QLfffedz+0NBgMA+8pm1dXVSE5OdrvdsGHDNB9DWVkZPvroI3z77bfYvHkzjh8/7nHlrz///FNzuYFau3at+v0555zjc/tzzjkHS5cuBWBf6faMM85wu13Xrl3RpEkTj+W0atVK/T6YVWzbt2/vduWucOjVq5fXx3v27InvvvsOvXr1Qk1NDZYsWYI1a9ZgwIABjXSEwXF8fgD73+b8+fO9bu/8e922bZvbVV8BYODAgV7L8fa3snXrVhQVFQEA0tPTfR4TAKSlpaGkpATbtm3zup2vz7XjBtqA/abc3jhWc/bmrLPOQteuXbFz507MnDkTTz/9NEwmk/q4xWJRV4hr2bIlxo4d67PMUArm97Zx40aYzWYAwPDhw9W61pNRo0Z5/H2VlpZi06ZNAIDmzZtr/hsA4PVv4IknnsDSpUuxZs0al9U6O3TogNdff93nPrR4/PHHPa6w3tiGDh3q9fFbb70VxcXFeOihhwAATz/9tLoSYSAcn1sAyM7ODrgcil6KouD222/Ha6+9BgDo378/vv32W+Tk5Hh8jqMdysrKcum/eFJbW6v+u3fvXnTv3t3lcYPBgIkTJ+LZZ5+FEAIzZ85s8JlcuXIl9uzZAwDo16+fz7a+MaWnp6ur8LqTnJyM9957D4cPH8aiRYtgNpvx/PPP44033nC7/XfffYfLL78cpaWlGDFiBB544AEMGDAAycnJKCgowKeffor//Oc/WLVqFUaNGoWPP/4Y48aNa1BOQUEBHnjgAQDAnXfe6fUY9fTMM8/g4YcfhqIouPHGG/GPf/wDPXr0AAD88ccfePPNN/Huu+/ik08+werVq/H999+7rMQL2P8m3njjDYwZMwY2mw0zZ87E77//jmuuuQYdOnRASUkJvvvuO8ybN09dkd6xKros63LzDjz33HO4//77AQCdOnXC4sWL0bFjR4/bh6J/dv3116ufsRkzZjToxxw4cEC9e0deXh7GjBnjdZ8OTZs2dXscwYi40FlRUYETJ04AsC+N7+/y7MXFxR5Dp3Pnypvly5fjyiuvRGFhoabty8rKNB9foP766y/1+/ofPHect3F+bn3eGg0ASExMVL+vqanxud9Y4bj9zFtvvQXAvtx9/dDp6BAD2t6b6upq9ftQLEPu4Hyricsuu8yv53qrWIL5W3E+ps8//xyff/65LscE+P5cHz58WP3eW2MAAE2aNEFWVhZKSko8biNJEm6++Wbce++9OHLkCL7++mv87W9/Ux//6quv1CXhr7vuOp9BLdSC+b05v3edO3f2uS9v2xw8eBCKogCwN7zOja8v3v4GjEYj/ve//6F3794oLy93+ZnjdhXx5u6778bzzz+P0tJSbN++HXv37vX5t++JIwwYDAaPbWso6Fm/RmpZWoW7rZk+fTpKS0sBAKNHj8a8efNcjskdR51fXFwcUD/OnUmTJuHZZ58FAMyaNQuPPfaYy+1qZsyYoX5//fXXN3j+4sWL1VtjuXPxxRf7dZx6c9ziatGiRQDg8ZYZ3333HcaOHQtFUXDppZdi7ty5LiGqc+fOeOCBBzBq1CiceeaZqKmpwTXXXIOdO3ciLy/Ppaxbb70VFRUVaNeuHZ544onQvTgnDz30EKZMmQLA/rdV/xZAp59+Ot555x2ccsopuOOOO1BQUICrrroKv/76a4OyRo8ejblz52LSpEmoqKjAli1b8H//938u2yQkJOCVV17Bd999p/5dehts0Wr+/PnqCebTTjsNixYtQvPmzb0+JxT9s8svvxx33XWXenuTV1991eXzOXPmTHXQZ+LEiTAatUU/5/bTuU4Jhj5RX0eOii1QjrPy7mhpMHft2oWxY8eqgbNbt26488478dprr2HOnDmYN2+e+uW4f5DNZgvqmLVwdKYAIDU11ef2zn9wzs+tT6+zPbHI+WzR9u3bGzyelZWlfn/8+HGf5TlOptR/rt6C+Qx5+/wE87cSqmMCfH+uHTMUjEajy4ikJ1o+X5MmTVLD2jvvvOPymOP/kiThhhtu8FlWqAXze6uoqFC/T0lJ8bm9t/cumL8Bi8Xi9fGcnByXUbiOHTvi9NNPD3h/0S4pKcllhNtd/aWV4+/cZrN57bDrTc/6NVLL0ircbY3zfXwrKys1zVoKRZ3frVs3DB48GACwb98+l/vuVlVVqfcTTEpKwhVXXNHg+TfffDMuueQSj1+R4IwzzlDbtIMHD7r9zN1zzz1QFAWyLGPatGke6/gzzjhDvR98eXm5SygHoM7mA4DXX39dU9sXrEOHDuGFF14AAHTv3h233367x20nT56sjnj/9ttvWL16tdvtxo8fj927d+ORRx5Bv379kJWVhYSEBLRr1w7XX389fvvtN9x8880un4v64TsQzp+L6upqTVkgFJ+LzMxM9e+3srLS5aS+EAKzZs1S/+/t3pz1OR+rXiccI26k0zksnXnmmfjhhx8adf/PPPOMmugfeughPPXUUx5v/HzTTTc12nE5n63UcoNf585iKEfVtKqqqsLixYt1Katt27bo27evLmV54zy1wN3Il/Nosqcb2Ts7cOCA2+fqzfEZkiQJVqs1Ik4sOH+uH3300UY7owqcDEJWqxUWi8Vn8NTy+WratCkuvfRSfPTRR1i8eDEKCgrQtm1bHDhwAN9//z0A+xnYDh06BP8Cwsj596YlcHh775zLmjhxostNqoN12223uXy+du7ciYcffhjPPfecLuVv3749qODmbOjQoT5Hn/Xgq/7SyjnMFxUVaTr5oAc969dILUurcLc1d9xxB7Zt24Z58+bhl19+wbnnnotFixZ57Vs4Lo9w1It6ue666/Dzzz8DsI9sDh8+HADw2WefqSfYL7744pCe2A0lWZbRpEkTtR9aUlLi8pnbt28f/vjjDwBAjx490LJlS6/ljR49Wp2xVX+a87vvvgvAHsDWrVuHdevWuS3DOXy8+uqr6nt70003+RzZq2/x4sXqScRRo0Z57F8D9j7MyJEj1csr1q5d6/FykebNm+PJJ5/Ek08+6bE8x/sG2KeIB+vSSy9FRkYGXnnlFezcuRNnnXUWli9f7vV3Eqr+2XXXXYf//e9/AOyfi2uvvRaA65TzgQMHIj8/X3OZobi0IuJCZ2ZmJtLS0lBRUdEo10rWt2TJEgBAs2bN8OSTT3r8QJSXl7v8QkKtRYsW6ve7du3yub3zNr4qpcZw9OhR3c4kXnvttQ3O2IWCr7PFzteL/P77717LUhQF69evB2BvVOpfr6KnVq1aYcOGDRBC4NChQ2jTpk3I9uXPMTk09ue6ZcuW6rWEe/fuRbdu3TxuW1xcrLmD/o9//AMfffQRFEXB+++/j8cffxzvv/++OoX05ptvDvrYw8257ti9e7fP7b1tE6q/gY8++ggfffQRAPu0rOPHj+PAgQN48cUXce6552LkyJFB7+Pjjz/W7UTJ8uXLNV07HCy9Rrvat2+Pn376CYC9E9K6detgD00TPevXHj16QJZlKIqCDRs2qKNEnjhfB17/usC8vDw0bdoUJ06cQEFBAY4fP+71JIK3srQKd1tjMpkwd+5cXH755fjiiy80Bc9WrVqhpKQER48e1XSyT6vLLrsMd9xxhzqy+eqrryI1NRUffPCBuo2n0RwtgT3cFEVxmUZZ/7PrfMmDlssHMjMz1e/rnxR0jFgXFhbikUce0XR8//3vf9XvL7jgAr9Dp57H748//vhDnSXQqVMnlz51MKZPnw5JkjB9+nRNwTNU/bORI0eibdu2KCgowA8//ID9+/ejffv2mj4XnjhnnHbt2ulynI02BOJcwfuamnHmmWcCsHcQtXR09HTkyBEA9kUovDVKS5YsUTuXnvjzmn1xXgjIMZLijfOooqdFhMg751F2d2eLe/bsqXbAtm7d6rUj/fPPP6vX/g4ZMiSko8+OM78AdBtdDlafPn3UBmbp0qU+Pzt66tevn/r98uXLvW7ruNhei6FDh6Jnz54AgPfffx8WiwXvv/8+APtJK3eLNkSb0047DQkJCQDsnwdf04cci5e5k5OToy4UsXr1al2uhd+3bx9uu+02APYR7Tlz5uDDDz+EwWCAoiiYOHGiS/iKF7W1tS5T0YIZ7XIOPDt27AjquPyhZ/2akZGhjpCUlpZ6nKYH2Kc0OkZE2rZtq/7NOjv33HMB2Nt1b3VsVVWVeu1ycnKyS93sj0hoaxzBc/z48QCgBk9Pn2PHa62pqXGZBhusjIwM9RgqKirw+eefY//+/Wp73bp1a4wePVq3/TW2X3/9VR3lbNWqVYOZBc5B7eDBgz7Lcx5ldp79EC7hOn7n8KX3ZS/Tpk3DHXfcAcA+y2bEiBEu4dpZqPpnsiyro5uOKbWVlZXqlPPk5GRMmDDBrzKdF/A79dRT9TlOXUrRwHlqla+zFY43DrBPxWtMjg/43r17PQZFm82mXgTtjT+v2Zf27durU0o3btzoNXj+9ttvWLZsGQD72YlIuLbJsXqtHl+NMcq5Z88el+l/559/foNtJEnC3//+dwD2D/krr7zisbzp06er3/v7wffX5ZdfrgaF5557Lui/PT0YDAZ1Bc0DBw6o03oag3P4e+2117wGp2nTpvlV9i233ALA3njeeeedamfw2muv1e3MfjglJiaqf/tHjhxRp++4s3DhQp8rDTvq9qqqKnVBkEDZbDZcddVVaqd3+vTp6NKlC4YOHYoHH3wQgP36oRtvvDGo/QD21Wv1qr8aY5TzpZdeUqfEdenSRdMiUJ44L6C2Zs2aoI9NK73rV+efe/ucv/LKK2rb72mhD+eypk+f7rGvMGPGDPXvc+zYsQFfMxcpbY3RaMTHH3+MSy+9FIA9eI4ZM8Zt8Jw4caL6/RNPPKHr2hfOIzYzZsxwWSjl2muvjYhLSgIhhMBjjz2m/t9dv6Nz585ISkoCYG93HFONPfn444/V751PwAL2k6xa6iznUa59+/apP+/du7ffr9H5JNaCBQu8rjlSVlaGhQsXejx+rbZv365+ZrKysnRpE+p7+eWXceeddwKwzzT0FDxD2T+bNGmSOjtz1qxZ+PTTT9VL7f72t7+5jBpr4ajv09PT3Z58C0iQt1wRQmi7T+e//vUvdRtPN011sNlson///ur2d9xxh6itrfW4fVVVlfjggw/EnDlzGjzmfH81LfdHO/vss9XtX3rppQaPm81ml3spAZ7v5/fSSy+p28ycOdPnvn3dy3Tu3Lnq4y1atBDbtm1rsM2BAwdc7lPl6Qa4jse13DPNn20j3VdffSU+/fRTr/cbrH+fzhEjRnjc9tChQyIlJUUAEEajUSxZsqTBNh988IFaVps2bTTdezZY99xzj7rPs846S/z1118et7XZbOL7778XTz31VIPHPN0g3B1f2x48eFBkZWWp92Lz9Zk4cuSIePLJJ8XGjRsbPObPfX+FEGLo0KHq9rfddpvb+xzWvxejp8+1s5KSEvX37/y1c+dOTccVKH/u0xns723lypXq402aNHF7s+6dO3eKFi1auLwH7u7TWVFRod7zTZIk8fzzz3u952RJSYmYNm2a+P777xs89sgjj6j7uvTSS10es1gs6v2bAYi33nrL63sQLZ5++mnxxx9/eN3mjTfecLkn3YwZM4LaZ01NjUhNTRUAxLBhwwIqI5D7dAqhb/1aWVmp3ufR0/vy/fffq/cHTktLE4WFhW7LUhRF9O3bVy3riSeeaLDNxo0bRWZmpgAgZFkWmzZt8vg6nT83nu7F19htjbd6wWKxiEsvvVR9fODAgaK0tLRBGePHj1e3mTBhgtttnMv8/PPPPfZZnCmKItq3b6/WI82bN1f3s2vXLr9fq7/8vU9neXm5eOihh8SxY8c8blNdXS2uv/56tVyTyeTxtUyYMEHdrnPnzh7vl+p8f9rExERx8OBBTcdbnz/36XTe1l2f22w2i9atW6vbjBs3TlRVVTXYrqqqSlx00UXqdr169RKKojTY7siRI17rxN9//120adNGt/rQV95x3J8WgOjSpYvbexvr1T9zx7lv5Nwmu6svvCkpKRGSJAkA4uKLL/brud402jWdo0aNUs/A3XDDDbjrrrvQrl079XYCnTt3Vs/GyrKMzz//HIMGDcKhQ4cwbdo0fPLJJ/j73/+O0047DZmZmaioqEBBQQF+++03LF26FJWVlXjqqaeCPs7Jkyero4h33303VqxYgXPPPRdNmzbFrl27MGvWLOzatQtnnXUWdu3a5XWay6hRo9Tv77vvPhw7dgzdunVTlytu1aoVTjnlFM3Hdtlll2HevHn4+OOP8ddff6Fv376YNGkSBg0aBIPBgN9++w3vvfeeetbxnHPOUaeekd2ePXtw1113ITc3F2PGjEHv3r2Rl5cHk8mEI0eOYMWKFfjyyy/VVclatmzpdcGTli1b4r///S9uvfVWWK1WnHfeeZg4cSKGDx8Oq9WKhQsXqtMbjEYj3n77bfUspTvO1xDv27fP4z0zfXnmmWewYcMGLF26FMuXL0fHjh0xfvx4DBo0CLm5uTCbzSgsLFRHzQsLCzFq1Cg8/PDDAe1Pi9atW+Pjjz/GRRddhNraWlx77bV46aWXcNFFF6FLly5ITk5GaWkpdu7cidWrV+Onn36CzWbzeW9NLd566y30798fVVVVeP311/HLL7/g6quvRuvWrXHkyBHMnTsXP/30EwYNGoSCggIcOnRI09nyzMxMTJgwwWXqzogRI9ClS5egjzlSDB06FLfddhtef/11FBcXY+DAgbj22msxdOhQyLKMtWvX4r333kNlZSUuvvhir/cdS01Nxfz58zF8+HCUlZXhvvvuw1tvvYXx48ejR48eSEtLQ1lZGfbu3Yu1a9dixYoVMJvNmD17tks5q1atUmebtG7dGm+//bbL40ajER999BF69+6NsrIy3HXXXRg+fLjX63mjwaeffoqHH34Yffr0wfDhw9G9e3c0adIEZrMZu3fvxhdffKFevwwAV199tcvMoUAkJiZizJgx+Pzzz/Hbb7+hoqLC5+0y6tcjzguR7Nu3r8Hjffv2dbntkIOe9WtKSgrefvttjBs3DjabDddddx0WLFiA8847D0ajET/88ANmzZql1v1Tp071eL2aJEl4++23ceaZZ6KqqgqPPfYYfvrpJ1x66aVITU3F2rVr8e6776qjGA888IBfbb07erc1wTAajZgzZw4kScKnn36K1atXq9d4Ok+ffP/997Fz505s3rwZc+fOxaJFi3DZZZehX79+6mI5hw4dwvr16/H999+juLhY09RHSZIwadIkdQaC47KoYcOGBTWq7857772Hffv2ufzM+br/+n/LTZo0wT333OPyM6vViv/85z947rnnMGLECAwcOBAdO3ZERkYGysvLsXHjRnz88ccut+l7/fXXPb6WKVOm4Pvvv0dRURF2796NXr164eqrr8bAgQNd7tPpPDPhsccea7Trsb0xmUyYPn06xo8fDyEEvvzyS3Tv3h0TJ05Urz/etm0bZs2apU6tNZlMePXVV92usVJQUID+/fvjjDPOwKhRo5Cfn4/k5GQUFhZiyZIlWLBggTrKft999wVdH/oydepUSJKEqVOnqllh+fLlLmsahLJ/dt1116lTzR23S2zXrp3faxs4RsEBnW8lpEdy1TLSabVaXUYb6n+5O8N++PBhMWrUKI/Pcf4yGAzinXfeaVCGvyOdQgjxwAMPeN3XkCFDxNGjR9UzOt5GRK644gqP5dR/r7SM3lgsFnHjjTf6fD8uvfRSt2ePHBzbxdtI59SpUzX9PaHurP7+/fs1lfvCCy8Ik8nksaz09HS3I/H1OT/H1xlFX2pra8Xtt9/uMurh7WvixIkNytBzxMzhl19+ER07dtR0TGlpaW5HCPwd6RRCiGXLlqkjre6+evXqJQoKCkSrVq0EAHHqqadqKnfNmjUu5Xz00UeajylQjTnSKYS9/r7mmms8vneyLIvnn3/eZaTF3Uinw/bt20WfPn00/Q0kJiaKhQsXqs8tLi5W615Zlr3W6x9++KFaTp8+fbzOmIkGp512mqb3zGg0iocfflhYLBZd9jt//ny17FmzZvncXmsd66ktrE+v+lUI+99EWlqax7ISEhLcznJy5/vvvxe5ubkey5IkSdxzzz1uR2g8vV++6n093wtvtNQLFotFXHbZZep2AwYMaDCaWVpa6jIy5+vrkUce0XR8+/btU0diHF/vv/9+sC+7Aee2RsuXu/5gcXGx5uc3bdpUfPrppz6P6/fffxddunTRVBc8/fTTQb0Heo50Onz44YciIyPD5/Hn5OSIBQsWeCzn119/9VlGenq6mD59eoCv3pWWvCOEEHfffbe6XefOnRuMeOrRP3OnoqKiQf326KOP+v06HZ/r5ORkUVZW5vfzPWm00CmEffrAs88+KwYNGiSaNGni8mZ76xitWLFC3HLLLaJnz54iKytLGAwGkZGRIXr06CEmTJgg3njjDXH48GG3zw0kdAohxMKFC8XYsWNFTk6OMJlMokWLFmLkyJHinXfeURtyLaHTarWKN954Q4wYMULk5OSoU3fcvVf+dKR/+eUXccMNN4jOnTuL1NRUkZycLDp06CCuvvpqsXTpUp/Pd+wn3kLn8ePHxSeffCLuuusuMWzYMNGpUyeRmZkpjEajyM7OFqeddpq45ZZb/Ppbcdi8ebP45z//Kbp27SpSU1NFenq66NWrl/i///s/TeG1srLSpeNz4sSJAF5hQ7t27RL333+/GDBggMjNzRVGo1GkpKSIDh06iPPPP19MmTLF49SvUIROIeydlQ8//FBcdtllokOHDiItLU39HfTr10/cdNNNYu7cuaKiosLt8wMJnUIIUVhYKO69917RrVs3kZycLLKyskS/fv3Eiy++KCorK4WiKCI5OVkA3qdVO1MURZ1Gl52dLWpqavw6pkA0duh0+Prrr8XYsWNFbm6uSExMFG3bthVXXHGF+Pnnn4UQQnPoFML+vn355Zfi2muvFV27dhUZGRnCYDCIrKwscdppp4mJEyeKGTNmiKKiIpfnOXdg77//fq/7EEKIq666St3+nnvu8bl9JNu0aZN49dVXxVVXXSV69+4tWrduLZKTk0ViYqJo0aKFGDVqlHjyySfdTukKhtVqFW3bthUAxNlnn+1ze3866b76DQ7B1q/O9u/fL+677z7Rs2dPkZ6eLlJTU0XXrl3FP//5T7Flyxa/yjp69Kh44oknRN++fUVWVpZISkoSHTt2FJMmTVI/F744vxdaTjbq+V54orVesFqtLp9Jd8FTCCHWrVsn7rzzTtGnTx/RtGlTYTQaRVpamujSpYu4+OKLxUsvvST27Nnj1zGOHDlS3W9qaqooLy/392X6pEfotNlsYvny5WLKlCnioosuEj179hTNmzcXJpNJpKWlifbt24tLLrlEvPnmmx7bPHeqq6vFzJkzxSWXXCLat28vUlJShNFoFE2bNhUDBw4U999/v9/vqTuhCJ1C2KfGPvfcc2LUqFEiLy9PJCYmqnXZOeecI6ZOnSqKi4u9llFRUSFmzJghrr32WtGrVy+1z56XlyeGDBkinn32Wa/TV/2lNe8I4TqN1l3wFCK4/pknztO0JUkSe/fu9ev5paWlaj/opptu8uu5vkhCeLgCnoga1aJFizBmzBgAwL/+9S+/F7Wh4G3evFldpU3r72DJkiU4++yzAdjvZ/fyyy+H8hCJwmLq1Km4++67YTAYsH///oiYqkdERPp6//33ccMNN0CSJGzZskW/RYTQiKvXEpF3jnvEpqenh/TaSvLs1VdfVb/Xei3pG2+8oX4fC/fmJHLnH//4B/Ly8mCz2fD888+H+3CIiEhnzvX7hAkTdA2cAEMnUcRwhM67774bubm5YT6a2LNy5Uqv9wd97bXX1AVpWrVqhQsuuMBnmRs2bFAXzhk9erTuFTRRpEhOTsbjjz8OAHj77bc93oeOiIii05w5c7Bjxw4kJCTosjhrfZxeSxQBjh8/jmbNmiEnJwd79uzR7YbedFLnzp1RU1OD8847D3369EFubi4sFgv27NmDefPmYf369eq2X3/9tcfQ+d1330FRFOzcuRPPP/+8ukLcqlWrMGTIkEZ5LUThoCgK+vfvj3Xr1uH222/3er9IIiKKHjabDT179sSOHTtw//3345lnntF9HwydRBQXOnfujD179njdJjk5Ge+88w6uuuoqj9u4W7Zd6/WfixcvRlVVle+DdSMnJwdDhw4N6LlERERE4cTQSURxYfXq1fj888+xevVqHDp0CCdOnEBVVRWaNGmCrl27YvTo0bj11ls93pvPwRE609LS0LVrV9x66624/vrrNd3Xs3379uq9x/w1fPhwrFixIqDnEhEREYWTMdwHQETUGAYOHIiBAwcGXQ7P0xERERH5hyOdREREREREFDJcvZaIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGCwkREVHUMJvNqKqq8vhVXV2N2tpamM1m9V/nr/o/s1qtsNlssNlsUBTF7b+O7x1LIEiSpK5WLMsyJElq8CXLMgwGAxISEmA0GmEymWA0Gl3+7/gyGo1ITExEUlISkpOTkZSU5PZ7x/9TUlKQlpaGpKQkt7fwISIiijQMnURE1KjMZjPKysrUr/LycrffO/5fXl6uhkqr1Rruw48YBoMBaWlpSEtLQ3p6uvq981d6ejoyMzORlZWFrKwsZGZmIjMzE0Yjm38iImo8XL2WiIiCVltbi6KiIhQXFzf4t/7PKioqgt5fYmIiUlJS3H4lJibiu/dWQFIAKBJQ96/k9L3jSxIAhAQI2L9Q7//CPpIoOf5fN7AocPJ7qN8Lp+/r/pUFIAkIua6Qev+qPzfYv4QscPakM1FTU4OamhpUV1c3+Le6uho2my2o9y89PV0Nos5fTZs2RdOmTZGTk4OcnBxkZ2fDZDIFtS8iIiKGTiIi8qq6uhrHjx/H0aNHcfToURw7dszl6+jRoygtLfWrTIPBgPT0dGRkZKj/ZmRkYMkHKwGrDMkiATYZsMiQrPbvJZsE1H1JcDOtNFabs3pTaAWEPcwaBYRRsYdVowIYBWBQIIwCMCo475aRKCsrQ0lJCUpKSlBaWoqysjK/7zWblZWFnJwclzCak5ODZs2aoXnz5sjLy0NKSoqer5iIiGIMQycRUZyrrq7GX3/95fbr6NGjKC8v11ROQkICmjRpgiZNmiA7Oxur562HZK4Ljha57nsDJIsMWD0ERy3YbDUIoloJ1IVVkwKYFJd/hUnB0An9cOLECZw4cQLHjx/XPJ05PT0deXl5aN68uRpEHd+3aNECmZmZvP6UiCiOMXQSEcU4IQSKi4tx8OBBHDx4EIcOHXIJliUlJT7LSE5ORrNmzZCbm4tmzZph0Vs/QKo1AGYDpFoZktkQXJD0/gL0LzPWhCDQqQE1wQYkKBAJNogEBRfeMVod4S4sLNR0UiIlJQWtWrVC69at0apVK5fvmzZtykBKRBTjGDqJiGJEdXW1Giz//PNPFBQUqN/7uo4yPT0dLVq0QIsWLbDqf79CqjECNScDpWRrxDtssVkKXiOGOGFQIBJtEIk2INH+/fCJA3DkyBEUFhbixIkTXp+flJSkBtFWrVqhffv2aNeuHdq1a4fU1NRGehVERBRKDJ1ERFGmsrIS+/fvx759+7B3717s378fBw4cwLFjxzw+R5Ik5OXloU2bNmjVqhW+emkJpBoDpFqD/d/GDJX1sRkKvTCOJApJQCTZIJKsEMk2XHjXKBw6dAiHDh1CYWEhFEXx+Nzc3Fw1gDrCaPv27ZGVldV4L4CIiILG0ElEFKFqampw4MAB7Nu3zyVgHjlyxONzsrKy0KZNG7Rp0waLXv8RUrURUrUBUo0RkoigKYxsesIngqayCknYR0mT7aH0ontGo6CgAPv37/c6QpqZmYn27dujU6dO6Ny5Mzp16oQOHTogKSmpEY+eiIi0YugkIooAJSUl2LVrl8vXwYMHPa40mpOTgw4dOmDd/K2Qqoz2rxojJGsYRyx9YXMTeSIogNYnDApEihUi2QqRYkX/8afiwIEDKCwsdPu5kGUZrVu3dgminTp1QrNmzXjNKBFRmDF0EhE1IiEEjh49ip07d7oEzKNHj7rdPjMzEx07dsTGBTsgVxshVdYFzHBOh/UHm5joESXBTMhCDaIi1YI+43pgz549KC4udrt9eno6unTpgm7duqF79+7o1q0b8vLyGESJiBoRQycRUQiVlZVh27Zt+OOPP7Bt2zZs27bN4z0tW7Vqha5du+LHD36FXGmyB0yLoZGPWCdsWqJXlIYxYbJBpFqhpFpw1o0DsWfPHhQUFMBmszXYNjMzE/n5+ejWrRvy8/ORn5+PnJycMBw1EVF8YOgkItKJ2WzG7t271ZD5xx9/4NChQw22MxgMaN++Pbp06YLvX//pZMCMltFLT9icxJ4oDaAOQhL2EdE0C867azh27NiBPXv2uA2iOTk56NatG3r27IlTTjkF+fn5SExMDMNRExHFHoZOIqIAFRcXY/Pmzdi0aRM2b96M3bt3w2KxNNiuVatW6NGjB5a/tRpSuQlSpSmyFvUJFpuR2Bfl4dOZkAREqgUizYqzbx+C7du348CBAw1W0TUYDOjatSt69eqlfuXm5obpqImIohtDJxGRBkIIHD58GJs2bVJDZkFBQYPtHNP2fvt0K+RyE6QKU2Qv7hMMNh/xJ4bCpzMhK/apuekWDJ3UF5s3b0ZRUVGD7Zo3b64G0NNOOw0dO3aELMfo55uISEcMnUREbiiKgn379mHDhg1q0HR3C4cOHTrglFNOwbcv/gC53ATUGCAhNjvmKjYbFKPh00FAAIk2KOkWXHj/SGzZsgV79uxpMBqanp6O3r17o3fv3ujTpw9DKBGRBwydRESwj2QeOnQI69atw++//47169ejpKTEZRuj0Yhu3bph+6L9kMpMkMsTYncU0x02F1RfjIdPZ0JWINItUNItOP3vPbB582ZUV1e7bMMQSkTkHkMnEcWt48ePY926dWrQPHLkiMvjSUlJOOWUU7Dus22QyxLsU2WV+Olkq9hMkC9xFD4dHNeGKplm9JvQE5s2bWoQQjMyMtCnTx/0798f/fv3R4sWLcJ0tERE4cXQSURxo7a2FuvXr8eaNWvw66+/Nrgm02g0okePHtj6zV7IpQn2RX9iacEff7F5IH/FYfh00BJCW7dujTPOOAP9+/dHnz59kJKSEqajJSJqXAydRBSzhBD4888/sXr1aqxZswYbNmyA2WxWH5ckCV27dsXupX/aQ2aZCZISx1Ph2ByQXuI4fDqoITTLjJ4XdsTWrVtdbtViMBjQq1cvdRS0W7dunIpLRDGLoZOIYkp1dTXWr1+P1atXY+3atTh8+LDL47m5uRg4cCAWPr/SPmU2nq7JdMaqnxoDw6dKGBQomWZc8MAI/Prrrw3u4ZuVlYVBgwZh0KBBOOOMMzgKSkQxhaGTiKLe8ePH8dNPP2HVqlVYv369y2im0WjEqaeeio2f74JcnACp2hj7q8u6w6qewonhswGRZIWSZcagSadh3bp1qKysVB8zmUzo3bs3Bg8ejMGDB/NaUCKKegydRBR1hBA4cOAAVq1ahVWrVuGPP/5webx58+YYMGAAvn3uR/u0WVscjmayaqdIw+DpkZAERIYZlzx5Nn766acGo6AdOnRQA2jPnj05DZeIog5DJxFFBZvNhj/++AMrV67EqlWr8Oeff7o83qNHD+z4tgByUWL8jWayGqdowvDplYCASLZBaVKLXhd3xJYtW1yuBc3OzsaZZ56J4cOH47TTToPRaAzj0RIRacPQSUQRy2azYdOmTVi+fDl++OEHFBcXq4+ZTCb07dsXv3+0DXJxIiSzIYxHGgasuinaMXxqIowKlKxajPhnf6xevRoVFRXqY5mZmRg2bBiGDx+Ovn37wmQyhfFIiYg8Y+gkooiiKAo2b96M5cuXY8WKFSgqKlIfS0tLw6BBg7D8lV8hl8TZtFlW1RSLGDz9IiQBJdOMc+8bjFWrVqG0tFR9LC0tDUOGDMHw4cPRv39/JCYmhvFIiYhcMXQSUdgpioKtW7di2bJl+OGHH3D8+HH1sfT0dAwbNgzfv/ALpNKE+LlvJqtmiicMn34TEBCZZox9eDh+/PFHlxN0qampGD58OEaPHo0+ffrAYIizmSBEFHEYOokobPbs2YNFixZh6dKlOHbsmPrztLQ0e9B8cbV9IaB4CZoAwybFLwbPgAkIiAwLxj0xEj/88INLfZqdnY1Ro0Zh9OjRyM/Ph8T3mYjCgKGTiBrV8ePHsWTJEixevBi7d+9Wf56SkoJhw4Zh6dQ1kEsS4ytoOrA6JmL4DJIjgJ730FCsWLECZWVl6mOtW7fG6NGjcfbZZ6NNmzZhPEoiijcMnUQUctXV1Vi5ciUWL16M3377DYqiALDfQ3Pw4MH4+a1N9sWA4jFoOrAqJjqJwVMXQhJQsmoxfPLpWLVqFWpra9XH8vPzcd5552H06NFIT08P41ESUTxg6CSikBBCYMOGDVi4cCF++OEHVFdXq4/16tUL278sgHw8CZI1jhYDcodVMJF7DJ66EgYFSnYtTr8mH7/99pt6G5aEhASceeaZOO+883D66afzHqBEFBIMnUSkq6KiIixcuBDffPONyw3OW7RogaNrymA4lgyphveVA8DASaQFw6fuhMkGW04N2o3Oxd69e9WfN2/eHOeddx7GjBmDli1bhvEIiSjWMHQSUdAURcFvv/2Gr7/+GqtWrVLPoCcnJ2P06NH47j8/QSo3QQI7jypWvUTaMXiGhICASLNi7GPDsGTJEpd7gPbp0wdjx47F8OHDefsVIgoaQycRBezYsWP49ttvsWDBAhQWFqo/79GjB3Z++ad9+qzCqVoNsNol8h+DZ0gJWUDJrkHvq7rg999/h6N7mJmZifPPPx/jxo3j6CcRBYyhk4j8IoTAunXr8MUXX+Cnn35SFwVKS0vDueeei68eXgG5yhTmo4xgrHKJAsfg2ShEog1XvXYBFixYgKNHjwIAJEnCgAEDcMkll+CMM87gvT+JyC8MnUSkSXV1NRYvXowvvvgC+/btU39+2mmnYeun+yGfSIKksEPoFatbIn0wfDYKAQEluxZ9JnbBr7/+qv48Ly8PF110ES644AJkZWWF7wCJKGowdBKRV4cOHcK8efPw7bffqtf7JCcn49xzz8WCR1dBruaiQJqwqiXSF4Nno1KSrPjb86Pw7bffory8HABgMplw1lln4bLLLkPXrl3DfIREFMkYOomoASEEfv31V3z++edYvXq1em1Pq1atULiyDIajyZBsvFZTM1azRKHB4NnohCyg5FSj84UtsX37dvXnffr0wYQJEzBw4EDedoWIGmDoJCKV1WrF0qVLMWfOHJdl9AcMGIDf398JuSSBK9D6i1UsUWgxeIaNkmbB8Hv6YPny5eqq5W3atMFll12Gc889F0lJSWE+QiKKFAydRISqqip88803+OSTT9RFI5KTk3H++efjqwd/gMz7agaG1StR42DwDCuRYMP4l0bj66+/Vi/DyMjIwLhx43DJJZcgJycnzEdIROHG0EkUx06cOIHPP/8c8+fPVzsK2dnZKF1nhqEwhVNog8GqlahxMXiGnTAoUJpVo9nQdBw+fBgAYDQaMWbMGFx55ZVo3bp1mI+QiMKFoZMoDh08eBAff/wxvvvuO1gsFgBA27ZtcXhpCeRjyZAEO29BYbVKFD4Mn2HnWPW2+2VtsHnzZgCALMsYOXIkrrrqKnTq1CnMR0hEjY2hkyiOHDhwALNnz8aSJUvU+2v26tUL2z/9E3JRIq/X1AOrVKLwY/CMGEq6Gaff3BWrV69WfzZkyBBcc8016NGjRxiPjIgaE0MnURzYt28fZs2ahWXLlqkr0Q4ePBi/vrkdcnlCmI8uhrA6JYocDJ4RRUm1YOhdp2LFihVqO3T66afjuuuuw6mnnhrmoyOiUGPoJIphe/bswaxZs1wa+WHDhmH1K39ArjSF+ehiDKtSosjD4BlxlGQrzn74DCxatEhd8bZ///64/vrr0bNnzzAfHRGFCkMnUQwqKCjAe++9h+XLl6s/Gz58OH6etoVhMxRYjRJFLgbPiCQSbRjz5CAsWLBADZ8DBw7E9ddfj/z8/DAfHRHpjaGTKIYcOXIEM2bMwHfffQebzQZJkjBixAisemkT5KoAw6ZUt4KtUPQ70FjDapQosjF4eibJwdfvQZQhEq0Y/ajryOeQIUNwww03oHPnzsEdFxFFDIZOohhQXFyM2bNn48svv1RXox0yZAjWvrYTcqXB/wKlerdKYeD0jFUoUXRg8HTPub4Ppq4PshyRZMVZD56O77//HoqiQJIknHPOObjhhhuQl5cX+HERUURg6CSKYlVVVZgzZw4++eQTVFdXAwD69OmDLTMPQq5I8L/hrx82HRg63WP1SRRdGDzd0+NEo7v2I4BylGQFw+7thWXLlgEATCYT/va3v+Hqq69GZmam/8dFRBGBoZMoCtlsNixcuBDvvvsuioqKAAD5+fnY8/kxSKUJJ2994k+D7ylw+ltOvGDVSRR9GDrd0+OEo14nLevKUVLNOOW6tli3bh0AIC0tDVdddRUuvfRSJCYm+lcmEYUdQydRlFm7di1ef/117N27FwDQqlUrHFlaBbkoqeF9NrU09t7CptYy4g2rTaLoxeDpnh4nHnUuQ0BAZNWi7YVNsGfPHgBAbm4u/vGPf2D06NGQ+LskihoMnURRYt++fXj99dexZs0aAEB6ejqqNkkwFKZCEh4aXm+NvK+wqaWMeMVqkyi6Maw0pKVN8NUehKgMAQEltxpNhybiyJEjAIBevXph8uTJ6N69u+99ElHYMXQSRbjy8nK8//77mD9/Pmw2G4xGIy655BJ8+e+VkKwBnFXWGjZ9lROvWGUSxQYGT1f+tA16tC8BnBQVksCkDy7E7Nmz1XUMzjvvPNx0003IycnRvm8ianQMnUQRSlEULFq0CG+++SaKi4sBAMOGDcPqaTsg1xh9F1C/Qfc3bLorI96xuiSKLQyervQ4KdkIZQiTDWc93BuLFi0CACQnJ+Oaa67BZZddhoSEBP/2T0SNgqGTKALt2LEDL7/8MrZu3QoAaNu2Lf5aWAG5NEl7IY6GPJCwWb8MYuAkilUMnicF2l44txWNWIaSZkaXy5vhjz/+AGBvK++++2707ds3sGMgopBh6CSKIOXl5XjnnXfw5ZdfQgiB5ORkmLeZYPjLy3WbocTQeRKrSqLYxeB5UrAnKoN5fgBlOK73zBggq6u5n3POObjtttuQnZ0d3LEQkW4YOokigBACP/zwA15++WW10Rw9ejR+fHYzJLMhTAfFwOmCVSVR7GLoPCnY0BgmwqBg7LODMH/+fAghkJaWhltuuQUXXnghZDk6XxNRLGHoJAqzo0ePYurUqfjpp58AAG3atEHhwirIZWG+DxlD50mBVJOOTiyrWKLowOB5UpQGT8A+5bbDpdnYuXMnAKB79+6477770KlTpzAfGVF8Y+gkChObzYb58+fjnXfeQVVVFYxGI8S+JBj+TA/PVNr6Agmdjo5KLAVWf6tI544rq1ei6MLgaRfFoROom3KbV4mEXla1fb3mmmtw9dVXw2QyhfvwiOISQydRGBQUFOCZZ55RFwrq2bMndn54FHJ1hDSG/obG+h2UWAmd/lSP9TurrFqJohODZ9SHTgdhsuGMu7pg1apVAIBOnTrh/vvvR7du3cJ8ZETxh6GTqBEpioLPPvsMb7/9NsxmM1JSUmDeYoJcmAIJEdTR8Sc0xmrgBLQFR3cdVFarRNGNwTN2gicElKY1SD1DQWlpKQwGA6644gpce+21SEwM82UsRHGEoZOokRw+fBjPPPMMNm7cCADo168fNr15MHwLBXmjJTh66pDESuj0VTV665SyWiWKbgydMRM6HYTRhqH398SyZcsAAO3atcPDDz/MUU+iRsLQSRRiQgh89dVXeP3111FdXY3k5GRYtiRAPhJho5sOvkKjr45ILIROT9Wilo4oq1Si2BDvwTPGQqeDLbsaGYMlFBUVwWAw4IYbbsAVV1wBgyECTwATxRCGTqIQKi4uxpQpU7BmzRoAwKmnnortHxRCqjWG+ci88BQatXRAYiFwAg2Do9bOJ6tTotjC4BnuIwgJYVQw8N6u+PHHHwHY2+YHH3wQLVu2DPOREcUuhk6iEFm7di2mTJmCoqIiJCQkwLYjCYa/UiNzdNOZu+CoteMRC6HTuUr0p8PJqpQoNsVz8IzR0AnUXeuZWw3TqbWorq5GSkoK7rjjDowZMwZSPP/OiUKEoZNIZxaLBe+++y7mzJkDAOjQoQP+nFcBuSpCVqb1xTk4+tPhiIXACdjDYyAdDlalRLEp3gNIDAdPABCJVnSb1BybN28GAIwaNQr//ve/kZKSEuYjI4otsV2TEDWygwcP4p///KcaOC+++GIcmlMTfYFTkmO+o+ERAycROePnO6ZJtUbseOs4brrpJhgMBixduhQ33ngjdu/eHe5DI4opHOkk0smKFSvwzDPPoLq6Gunp6aj+1QhDUXK4D8s/Qgk8bMbKSKe/WIUSxYd4HfGMoxOQSroZWSMlHDt2DAkJCZg8eTIuuugiTrcl0gFDJ1GQrFYr3nrrLcydOxdA3WJB7x+JzFuhhEq8Bk6AoZMoXsRz8Ahj8JRkCUJpvHpWGBWcfkcH/PLLLwCA0aNH49577+V0W6IgMXQSBeHEiRN4/PHH1XtvGg6lwnAgw+/Fghq7UdVdPIZOVp1E8YWhM0y7tr/vgbaRgTxfQMDWshLoVAmbzYa2bdtiypQpaNu2bUDHQEQMnUQB27hxIx577DEUFRUhJSUFlvVJkE8k+VVGsI1pxIi30Mlqkyj+MHSGcfcn3/tA2stAn+883TY1NRWPPvooBg0a5Pf+iYihkyggX375JV5++WXYbDZ06NABh+ZVQqrSfu9N5wYQYOiMGqwuieIXQ2cYd9/wvfen3Qzm+cJkQ/4NzbFp0yZIkoTrr78e11xzDWQ5fq51JdIDQyeRH6xWK1577TV8/vnnAOxLq6965g/Aqq0zEmzDGZHiJXACDJ1E8SyeQycQkcET0N6GBvN8IQmc/9wAzJ8/HwBw5pln4sEHH+R1nkR+YOgk0qi8vByPP/44fv31VwCAsSADhsNpkOD7ekxPjR3A0BkVWE0SEUNnmHfv/f0Pph3W+nxrbiWk/EpYLBZ07NgRzz33HJo3b+71eURkx9BJpMHBgwfxwAMPoKCgAElJSbBtTIGh2H47lFA3dBEvlkMnq0cicmDoDPPufb//3trTYJ/vKENJMyPtTBuKioqQk5ODZ599Fl27dvVZNlG844R0Ih82b96MW2+9FQUFBcjNzYWyNl0NnN5IshT7gTOWMXASkUO8B84IoKW99NbuBvt8B7kiAZVLTOjQoQOOHz+OyZMn4+eff/ZZNlG8Y+gk8mLlypW46667UFZWhu7du6PsOwPkqgSvz9HSaFGEY+AkIopawbbDvp4vmY04/EkN+vXrh+rqajz44IP44osvAt4fUTzg9FoiD7788ktMnToViqJg8ODB+P3lfZAU1/M0zmdOA2ngYmKkM9am17JKJKL6ONIZ9um19kMI7PfgaGuDfX79MoQkMPrJPliwYAEA4Morr8Qtt9wCiX8vRA0wdBLVI4TABx98gBkzZgAADEdTYNybBQnuV57VoxGLarESOlkVEpEnDBFRHTqB4IOno4wGtzyDgK1lBaxtywAAF154Ie6++24YDIaA90MUixg6iZwoioKpU6fiyy+/BAAY/kyH8c90t4EzWDEROmMlcAIMnUTkGUOnXRQsJtQIB+G27bPmVkLpUgZFUXDWWWfhoYceQkKC98txiOIJQydRHZvNhueeew7fffcdJEmCYU8mjEdTQ7rPqA+eDJ1EFC8YPMMeOu2HEOTvwfEagmm/PARPW3Y10LMcFosF/fv3x9NPP43kZN8LDxLFA4ZOIgBWqxVPP/00li1bBoPBAHl7Bgwn3Nz0WY/GyknUhs5YCpsOrAqJyJd4D56xFDqBwNsyL2XYMmtg7FuF6upq9OzZEy+++CJSU0N7ApsoGjB0Utwzm8144oknsHLlShiNRkhbMxreEqV+Q6tD6GLgjDCsColIi3gOnrEQOu2FuP7f33bN3fvgVIaSZkbioBqUl5czeBLVYeikuGY2m/Hwww9j9erVSEhIgNiUDkNJ0skNPDWw8Rg6YzVsOmN1SERaxWP4jNXQ6aC1nfP2PtSVoaSYkTjEHjx79eqFF198ESkpbmZQEcWJ8NceRGFitVrxxBNPYPXq1UhMTITY0HiBM+rE42smIvIm3k5SRUDgDDlJ1vY6vbWJdc+XqxJQ+1MS0tLSsGXLFtx7772oqqrS6UCJok8c1CBEDdlsNkyZMgUrV65EQkIClPVpMJTVBU6tjU48EAoDJxGRJ/EWPONFsH2Aun6EXJUA8y/JavD897//jerqan2OkSjKsGdNcUdRFLz44otYsmQJDAYDxKa6wMmw6Soew2Y8TpcjouAweMYmPfoEkgy5KkkNnps3b8YjjzwCi8WizzESRRH2sCmuCCHwyiuvYMGCBZBlGfK2TBhKUxk2nXF0k4jIP0IwfMYqHcKnXJUE85oUJCUlYe3atZgyZQoUhe0sxRf2tCmu/O9//8Pnn38OADDszIShmKvJuWDYJCIKHINn7Ao2eFYkwrYhDUajEUuXLsW0adPAtTwpnjB0UtxYvHgx3nrrLQCAcX8WDCfSwnxEEYaBk4goeAwSsSvIUU9DaTKkbZmQJAnz5s3DjBkz9Ds2ogjH0Elx4ffff8ezzz4LADD8lQ7jkfQwH1EE4XRaIiJ9MXjGtmCCZ1EKDHszAQAffPABFi5cqNdREUU0hk6KeXv27MHDDz8Mq9UK+UQyjAWZgRcmS7z+M5axo0hEeom16zxj6eSkLNm/giAZZEiGwPoDxqPpMBzKAAC88MIL2LBhQ1DHQhQN2HummFZcXIz7778flZWVOPXUU2Ha0xQSAmhodGigIhZDtF0sdQ6JKHLEUt0SazNjdGjXAw2fxj8zcNZZZ8FqteLhhx/Gn3/+GfSxEEUySfAqZopRVqsVd911FzZu3IjWrVvj2FcCkiWAgFW/UVKELo2uUCLooxdLnYhAsBokolCLtVsyhemEpaTHCWCDoeHP/GyT3QVNYfOvLRWygg7XpGP79u1o27Yt3njjDaSn8/Ifik0c4qCY9corr2Djxo1ISUnBse8USDY3jYw3sTy6SScxcBJRY4i1uiYMJyt1CZyehGHKraTI2D+3HLm5uSgoKMATTzwBm80W1DEQRSqGTopJ33zzDebNmwcAsG5MhVxj8q8Ahs3YF2vXWxFR5Iu1eifWptsCuk251bytxYiyFUYkJiZi7dq1mDlzZtD7J4pEDJ0Uc/744w9MnToVAGA8lAlDaQoAQJI0nMXk6GZ8iKVOHxFFn1irg2IxeDbCqKfjcbk6Aco2+23cZs6ciTVr1gS1b6JIxNBJMaW8vByPP/44LBYLhg0bBuNfGleqDUPYDOk0IX/F02JCsdbZI6LoFGt1UbSMevrT3jXiQkPGojSMGzcOQgg89dRTKCwsDHrfRJEkjnqaFOuEEHjxxRdRWFiIFi1a4Nfp+7WtVBtJ4Y9CK9Y6eUQU3WKxTor04Olvm6/TSWktwXPRo+uRn5+PsrIyPProozCbzUHvlyhSMHRSzPj666+xfPlyGAwGFC0TkGw+/rw5lTa+xGLnjoiiXyzWTSEInmGfHdQIo56SkLDvk3JkZGRg+/bteP/994PeJ1GkYOikmLB3715Mnz4dACDtT4dcmej9CcE0HrIUm9NRY/E1AbG3cAcRxZ5YrKeiZbqtP+pOVgdyX05n3p4vm42oWWfvw8yZMwcbNmwIal9EkSJGe5kUT6xWK55++mmYzWacccYZMB7JcL+hLEMyGPQZ3dTpjGvYz9wSERHFC3f35wyEHHz3WTLIgMn9yvqGkhScf/75EEJgypQpqKioCHp/ROHG0ElR78MPP8Tu3buRkZGBTW8fdn8dpyzH3o25iYgotsTaaKdOIvIErSzrEj49Bc9lT29Gy5YtUVhYiGnTpgW/H6IwY+ikqLZ79271nlbVGxIgWeudxZRl+5lNBk5tYnGKLX/3RBRNYil4xmKbUp9ewbNe+JQUGceX2iDLMhYtWoSVK1cGvx+iMIqD2oBildVqxTPPPAObzQa5OBmGohTXDdyNbkqSfYqtHuKhMY0VDJ5EFE1iKXjGGLd9iEBGPd2NcNb7maEyCfIh+/07X375ZVRVVfm3D6IIwl4zRa05c+Zg165dyMjIQMKBpien1TbW6Cav6yQiolCJxcWFAqBbG6nXCWdvQjDqaTyciVatWuHYsWN45513gi+fKEwYOikqFRYWYtasWQCA6g2mk9Nqee1m8GJ1BJd/F0QUjaI1eMZqW+KLHsETUIOnJGQcW2YBAHzxxRfYtm2bPuUTNbI4rREo2r366quora1F7969YShK9W90U88ptkRERKEWrcEzXvmabuth8SC325lMMJQn45xzzoEQAi+88AKsVqs+x0nUiBg6KeqsXbsWP/74IwwGA7Z9eASSHMaFgnQ6kxtxU2xj9Qw1RzuJKFpFU/CMtLZRpxPNfp+w1nHU88fn/0BGRgZ2796NBQsW6FMuUSOK0Z4lxSqLxYLp06fb/3M4FbIlObxBItLCIhERxa5oCp5kp9OtVSQpCdV/JAAA3nvvPVRWVgZdJlFjYuikqDJ//nwUFBQgOzsbpsLswAuKwFVsOdrZSDjaSUTRLNIXGIq0NjFco5z1OYKn1qm1bhhOZKJt27YoKSnBhx9+GNzxEDWyGO1VUiyqqqrC7NmzAQDlG2RIShB/vnpNeQFid7RTKOE+AiIi8iSSgye5J8uQEgIPnRIkFP5gX1To008/xV9//aXXkRGFHEMnRY1PP/0UJSUlaNWqFQwn0gMvyBE49RrxUvRr+CNutDMWsaNGRLEgUmdt6HTCUigCItj2VZLtbbQe7bQk6fOeS1JQwVMuS0Hfvn1hNpvx7rvvBn88RI2EoZOiQmlpKT7++GMAwLG1gBzo9BTnEU5Z1meKrSzF1lRUocTuKCcDJxHFgkgNnA46tiNBB0+HIMqRjEan/wT+3kvJSWoZgQZPCRL++LwYALB06VIcPHgw4OMhakwx1FOmWPa///0PlZWV6NKlCwwVWf6HPE8X8kd6w93YYjVsAgycRESNLYaCp4tARz2dn1MXPAMJn7I5FYMHD4aiKOo9y4kiHUMnRbzy8nLMnz8fAFCwvBYS/KzovV2/GYGjnWGbYhurgTPSF90gIvJHtJ0sDVfw9NQm+znd1mWUs8GD2n8X6ihn/ecHOOr5+/+OAACWLFmCP//80+/nEzU2hk6KeF9++SWqq6vRoUMHyJV113IaZEgmLw2Bg5YFgyKwAW/04BnLgZOIiMKrsa/z1HISWM9Rz2C38yN4Son226YYapMxcOBA2Gw2dZFFokjG0EkRrba2Fp999hkA4NDP5pOjnJLsvVHR6b5YfonGazt5/SYRUfSIwJOkmkXhdZ5eRzldNtRhkSGt022d+hnr5x4FACxevBjHjh0Lbv9EIRZlPWSKN4sXL0ZRURGaNWsGQ1mW64OeRjv9DZt6TbHVWchHO2M1bAIMnEQUe6I5cDoLdfD09+SvXqvbAh5/R26n1np6vpdRT8cop4OhJgWnnnoqbDabehkSUaRi6KSIJYTA3LlzAQDFW+SG13K6G+0MdHRTr8Y8WkY7GTiJiChcIm3EE2gQPDWPctbnrj/hbx/DU/B007/YvtC+ku1XX32F2tpa//ZD1IiioHdM8Wrjxo0oKChAcnIyjKVN3G/kGO0MdjptPI12MnASEUWXWBnldBaK6zyDPekbghFPzaOcbspwnm5bf5TTwVCRgebNm6O0tBRLliwJbF9EjYChkyLWV199BQAw/5UESfEQCH1d2+kPgyHiVrLVHQMnERFFCh3bJD2v8wx4lNOZJEFKTwvuhIHzdFsP/QoJEoq22L//5ptvAt8XUYhFaM+Y4l1JSQl++OEHAICpJNvjdpJBhpSS7PEMYFjodcaV/BOLIwFERABv/aSBJEu6hFjJZNTt/ZYkCdDjZHZONpCd6fFhY2kWDAYDtm7div379we/P6IQYK+YItLSpUthsVgg1SRBrk1u8LhkkO1n/ozGujOBETLaqef1JXV0nWLLIExEFL1iLXiG4v7Wes7oCeL9ltJS7f/qETwNsv0rO9Nt+JRsJqAkBQCwcOHC4PZFFCLsgVJEclyXYCzNavCYZJBPhk3HzxJM4R/tdBc4IzHkReIx6YWjnUQU62IleIayLQrw9ixuV8QP8P2WnPsojuAZSPhs6rSmhXP4rMdQZt9u0aJFsNls/u+HKMRiuPdJ0erw4cPYunUrZFmGsdy1YlUDZ33hHu0MwQins5DfPiWWMHgSUayLleCpA6/to16jnn6+345RTpefSVJgo54GN30bN8HTUJGO9PR0FBUVYfPmzf7tg6gRMHRSxFm2bJn9m/Jk+5SROh4Dp+NxPUc7/QmevgJnKKYPBV+YfmVFIgZPIop10Rw8G7Nd1Bg83Y5yupSj7f2W0lJdRjkbPO5P8GzqYeV+oEHwlCCh6k97ucuXL9dWPlEjivGeJ0WjlStXAoA6yuly/aY3kgQpMbHxptn6c0PpSAx5kXhMRESkXTQGz3C0PT6Cp8/AqZbje4Ehb4HTZRtfwbNpE/ejnM7qXefp6Df98MMPnGJLEYe9ToooRUVF2LZtGwD7VBF312961VjTbEM8ndYTTrP1A0c7iSgeRGPw1IHf7WEjLDDkblqtJz6Dp6/A6bxdXfiUK1ORlpaGoqIi/PHHH5qPhagxMHRSRPnll18AAHJ1MmQk+h7ddCPk02wDDZycZtv4GDyJKB5ES/AMdzvoZoEhzaOcDcpyfc99Tat1x+MCQ96m1XpikCFlN0H1Yft7/Ouvv/pfBlEIxXiPk6KNI3QaqjICCpwAQjvNNtgRzkgMeZF4THpi8CSieBDpwTOS2pq64Blw4FTLOfme+xs4nZ/nMuqpZVqtJwYZBqkZAGDt2rWBlUEUIhFUA1C8UxQFGzZsAAAYarOCKywU02zDNKXWHU6zJSKiBiI9eOpAt/ZPx5Vt/ZlW68nJUc/g+i6yNRsAsG3bNpSWlgZ9XER6YeikiLFv3z6UlZUhOTkZsjkluMKEgGQ0BD/aqShA3cX4UpANgZ6EngFYz+tcIlEcdMKIiABE9swOndoa3do/gwFCh8V2pOQkwGaDsFqDLsvWIQ/WrOSgypBFItq3bw8hBDZu3Bj0MRHpJXJ60RT3HKOcNTWpENkZgRfkCBmyDMkUxPWdihJxgUUogoHTHxH2+yMiims6Bs+g2kKnayiDDp5OQT+Y4Glt3xyKUYaQpaCD54ED9te0devWoMoh0hNDJ0WMTZs22b+Rs2FpmgIlO92/AtwtZS4H+CfuLnDKsj6jnQFO+9U1bNoL1Le8SMPASUTxJJJHOZ3p2PYE1C66WTE20OApJSc1LCvA4KkYT/YNHMEzkPBpbpYGyPaFiLZs2RLQsRCFAkMnRYydO3cCACQpC0KS/AueXgKG36Od3kY4wxQ8GTj9xMBJRPEkWgKnQ7iCp5dblPgbPKXkJI/vu7/B09q+ecMyZMnvUU9zszQIWYJUFzp37NgBs9ns17EQhQpDJ0WE8vJyHDp0yP4fyT61VkiStpFKXwHDn2m2WqbUNnLwZOD0EwMnEcWTaAucDuEe8XRXjs2mKXx6C5xqWRqDp2Narcdy/AieQl1kKQXp6ekwm804cOCApucShRpDJ0WE3bt3132XDEk6GQ4tTZK8j3ZqDRhagmeEXsOpc4H6lhdpIuz3R0QUUtEaOB0aM3h6GeVsUJav4KnxffcVPH0FTrUcDcHT3CzN6fAklFeYAAB79+7VcKREocfQSRFhz5499m8k1wWEhCTBku1hmq2/AcNb8PQ3cDbCaCcDp58YOIkonkR74HRojODpR+BUy/IQPN1dx+m1HA/BU2vgVMvxEjwd02qdSZK938TQSZGCoZMiwsGDBwEAktTwXldCdhM8Aw0Y7qbrBjrCGcLgycDpJwZOIoonsRI4HUIZPAMInGpZ9YKnlmm1bstxEzz9CZxqOW6Cp7vACQBg6KQIw9BJEeHPP/+0f+MmdAJ11yk4AmOQAUMd7VSU4KfUhiB4MnD6iYGTiCj6hSJ4BhE41bIc9+oOMHCq5Vitavh0t3CQ5nLqBU+3gRMnT+IfPnw44H0R6YmhkyKCI3S6G+l0sGQlQcny8zYq7sgyYDBAMhgiK7AEeCsVrxg4iYhiS6yNcjqLwMWFANjDq07vu9KsSUCjnM4cwdP5Os4GJHswPXLkCBQlxvsCFBUYOinsFEXB0aNH7f+RPF8oLwwSLLkpUJpmeNxGC2G1AlYrYDJCMhqDKguKAiEE4OFMo38HFoJGIRRBNpLEcueLiMidWD7ZpmObJckSoEPwVPsJZkvQZYm8XECWYagMvqyCOxUc+qe3cpJgMBhgNptRVFQU9P6IghXjPVKKBmVlZbCp100kut+oLlsIue7+nQEGTzVwOgQTPB2B0yGY4OkUOCU9AqwzBk8iotgSi8FT78AJ2NvWYINn3aU9QoiggqfIywXqRjglIYIKngWTFTTLrEBuRgUO/cP9fTglSYbNZl/B9siRIwHvi0gvMd4bpWhw4sSJuu8SINVvdCSogdMh0ODZIHA6BBI86wfOYLgZ4WTw9BODJxHFm1gKnqEInA5BBM/6fYNAg6dz4FTLDjB4FkxW0DyrXP1/s0x78HQbPiX7ifzS0lK/90OktxjviVI0UKd9SPVuZeIlR6jBs4m24OkxcAbIY+D0Nyx6mVLL4OknBk8iijexEDxDGTgdAgiektHodsX7gIKnh2s4/Q2e9QOnQ7PMCjV8urKPdDJ0UiSI8V4oRYPKysq670wnf6ghPwhZ2zWemgKn1tFORfF902itYVHDNZwMnn5i8CSieBPNwbMxAqeDH8HTU+BUi/IjeIq8XO/70hg8PQVOZ/WDp1R3Mp+hkyJBjPdAKRpUV1fXfVcX+vzIDS63UnH3uD8jnL6Cpz9TarU0fhrpHjxjHYMnEcWbaA6eOtDcTmoInr4Cp1qUhuDpblqt230KAUO197J8BU6HZpkV+PMWR1n2k/kVFRWanksUSgydFHYnQ6fBr8DpYGmS5Ha0M6AptZ6CZyDXcHqb5uMnXYNnrI92AgyeRBR/oi146tQW+d0+egmeWgOnWpSX4Kk1cKr7tnkOngdu96/f0DyrvC542vdvsQS/Wi5RsOKg90mRrra2FgAgSYHdxNndwkJBXcNZP3gGs2iQuwUNAsTg6ScGTyKKN9ESPMMVOB3cBE9/A6dalJvg6W/gVI/BTfA8cLuCvCbaRjmdNc8qR3kf+2tk6KRIEAc9T4p0eqwC67ywkC6LBjmCpx6r1Dov3R4kBk8iIvIq0oNnuAOng1PwDDRwqkU5Bc9AA6eDc/AMNHA6pG4qAAB89tlnAZdBpBf2OinsJJ1GpIQsQSQFcd/N+nxcL+p3WURERBQ5HCeDdWjrhRCQTKagAqeDZBPYc3liUIGTKNIwdFLYOUJnebvggpmx0gK5vAYiORFSUlJwB2WzQdgUQJIgGQKb9utCERxZJCKixhHJo506zPrRjaN912H6qZyaYv/3RFnQZe24Ph3IsODwiczgCurTDAAwcuTIoI+JKFjsBVPYyXVnGM/K24a9fw8s4BkrLTAUVwGKPSgGFTwdgVOpaxiDDZ7O140EGTxFgDe49lCYfmVFokjudBERhVok14E6tD9Bt4dO7boQIqjgKaemnFxHwGoNKnjuuD4dyLIfi2KVgwqeFzT/AwDQtGnTgMsg0gtDJ4VdSor97KCh1oRF5031O3i6BE6HQINn/cDpVF5AwdNdoxhg8GTg9EMkd7aIiBpLJNeF4QyebtrzQIOnS+B0CDB4OgdOh0CD54fdZ8NYmwgASE1N9fv5RHpj6KSwc1SGVdUSuppS8e2Yl/0KnpJNNAyJgP/B01PgdCrPr+DprTH0M3gycPohkjtZRESNLcbrRL/bRy/tuL/B023gdPAzeO64LqNB4HRQrP71GWbmz0ZbYxqqqu3Hlpyc7NfziUKBoZPCzhE6K6vsf47dE1I0B09jpQVyWbXnDbQGT1+B06k8TcFTSyOoMXjqGjhjXYx3roiIAhKpdaNOJ0E1t5Ma2m+twdNr4HTQGDx3XJcBNDF73UbraOfM/NnoYEoDAFRV2/sZjhllROHE0Elhl56eDgAoLT/556gleLqdVuuO1uDpqxyn8rwGT39Coo/gqXvgjOVRzkjtVBERRYJIrSMbK3j6MVPJV/DUFDgdfNzCTUvgBLRNs3UOnABQXGrvYzRp0kTDgRKFFkMnhV1ubi4AoKhEhtV28ueO4HnLG581CJ+aA6eDt+DpGOX0h6fgGUhI9BA8GTj9EKmdKSKiSBKpdWWog2cAazJ4Cp5+BU7HczyMdmoNnA6egufM/NkNAicAnCi29y+4kBBFAoZOCrsmTZrAYDBAUST1rJxD94QUXJZWim/GTFODp9+B08Fd8NQ6rdZDebrcTgVoEDwZOP0QqZ0oIqJIFKl1ZqiCZxDttKj3XgUSOAG4nWa7c5J/gdNBscr4yyl4OsJm/cCpKMCJYvtrz8nJ8f+YiXTG0ElhZzAYkJ2dDQA4dsJ949AzIRnfjJmG/WNNgQVOB+fgGUzgdCpPDZ7BBsW64MnA6YdI7TwREZH/9A6eepwYrhvtDDhwOjgFz52TMiCy/Q+cDra64OludNOhpEyG1SZBkiS1j0UUTgydFBFatGgBADh8xHMDcfeev6PJNgmWXPcVrGaSdLLhCCZwEhERkX6CvJd1KKijncEETgerFUqSMajA6fDpoLfQ1uh5gaA//7L3p5o3bw6TyRT0/oiCFXmfbopL7dq1AwAc+NPocZvC8nSYKgSqWibB0jwj4H1JNWaImhrAYICUkBDcFFnhdLsWOcgGqe4MrxRsOfVFYCOuGz06AURE8SRS600d2yq1HdVh5pBktPdLRLWXlfI1sLXKga1VDoQsofXnnvs6Wnw67E30TDBCgefXd/Av+z7atGkT1L6I9BLDvVGKJo7QWXDYfUU8ZvtYGBZlAQAUA4ILnkKcnJYpS4DJGFjwrAucLtd8BBoY600pYvD0Q6R2oIiIIk2k1pehCJyAvW0NInhKRiMg1136YlMCDp62VjlQTAYoJgMggKRjtQEf06fD3sSpCSf7LDYPU5IP1vWn2rZtG/C+iPQUwz1RiiaOStHdSOeY7WNx5LN2SCw52XAoBqCqRaLfwVMd5azP3+DpLnA6+BsYPTQYDJ5+iNSOFBFRpIjUejJUgdMhwODpHDjVogIIno7AWV8go531AycAKBBug+e+gwydFFliuBdK0aRz584AgIJDRlTXnGw0HIEzqbhhhaoYJb+Cp1RjtjcWnhaf8TN4ug2cDloDo49FExg8/RCpHSoionCL1Pox1IHTwc/g6S5wqkX5cYs1T4HTMdrpT/B0Fzgd6gdPIYCde+3XcXbr1k3zPohCKYZ7oBRNcnJykJubC0VI2LXvZCX8V1mG28DpoDV4+gycDlqCp/N1nN7IUvDXeYLB0y+R2rEiIgqXSK0XGytwOmhYGVcyGr0GTrUoDaOdHgOnWkhd8PzCd/D8eNhbHgOng/P1ncdOyCguNcBgMKBTp04+yydqDDHc+6Rok5+fDwDYvicBAHD+jvMhL27i83m+gqfmwOngLXh6m1briafG0I+l4Rk8/RCpHSwiosYWqfVhYwdOBy+jnWrY9BE4Ad/TbH0GTrUgIOmo9+D58bC30CdB2/vlGO109KM6duyIxMRETc8lCrXgls8i0lH37t2xcuVKbNlhwvudPU+rdccRPOXcXCQdq4XpiNNNmJ0XDtLKZIQEQNhsruX4GzgdZMm1sQvgXmSSLOl7D09Jjt17eEoS7+FJRPGNgbMhoQCK3OBksJbRzQZF2RSguhpScrLLzzUHTrUge/AEXJ/z8bC3AEBz4ATqRjuFgs3b7VNru3fvrv04iEIshoc7KNqcdtppAIAfN6fhyKdtNQdOB8UowZrkOurpceEgLdyMeAYUOB0cjVwQQU+SJX1HPTniSUQUeyK1/tOpzQmqLax3fWcggVMtqt71nX4HTifOo52O0U1/AqeDAoH1W+0jnX369AnoWIhCIYZ7nBRtunfvjuTkZKDKhuSjJQGX4xj1tDVJ9W9arTsmI6SEBHuDpOU6zkbC4KlRpHa8iIhCJVLrPR0DZ9DqgmcwgVMtqrpavQdnoIHTeZqtP9Np3SmrkLDngH1Kbe/evQMuh0hvMdzbpGhjNBrV0U7JcjyoshSjBCXRqN7UOShC0S9w6n1tJvkWqR0wIiK9sb7TTpaCDpwAAIMBhr+KAg+czkVVK0EFTgDYuDURQgi0a9cOTZs2DfqYiPTC0EkR5fTTTwcASDVHoJgCbzxTjlpg+qsEMBohmUz6HJzBACnYBl0RsT2yGIl4bScRxYNID5w6rSGgy9oGjktnLJagipESTIAkQdTWBnc8EmBNM0HIEvq9MDmoou6f2xcA0L9//+COiUhn7P1SRBk8eDAAwFB1HDaDOaDgmXzMgsQDRZBqLfZG2GiElJwcWPi02SAs1pP/Nxj8upenC+eGUpKDCp+6LigUq4sJAQycRBQfIj1wOoS7vTEYTgZO1K3TEGDwdAROB9PBAGZoSYA13QRrmgmKwV5Wkx0W9HsxsODZ64N/IqmwEAAwZMiQgMogChWGTooobdq0Qfv27SFBwFh5BLYE+B08DRbFHjgdJOlk+PQneNYPnE7lBRw8G5Tl/0eQgVMjBk4iigfREjh1FFA76KHdDmSBwPqBEwBETY1/wbNudFMxSGrgdGiy3f8g3GvG7cjcVgTZZkZaWpp6uRJRpGDopIgzbNgwAICx/C9AAmwJgDVZ0hQ+U45aYDpU4v7BQIKnJ3XBU3P49NZAcrotEREFIhoDZzim2fpqqzWOdkoJJreBUz0mravlOwVOT7SOdvaacTt6zbgd6fvr+k0ABgwYAKMea1oQ6Yi9XYo4Z555JgDAUFEI2CyABAgDYDN5H/VMOeo0rdYTrcHT0yhn/bK0jHpqaRg1Bk+OcmrEUU4iinXRGDgdGrP90XByWMs0WzVs+njffY52agicgH208/T/eg+ePWfaw2b6fgBCwFj2JwBg5MiR3o+BKAwYOinidO3aFW3btoUkFBjLD598QIbX6bayWfEeOB18BU8tgbNeebpMt/URPBk4NWLgJKJYF82BU0c+20U/2mZv02y9jW42KMfbNFuNgdMhe5vnPk3PmbcjY9/J/xuqjkO21iA9PR0DBgzQVD5RY2LopIgjSRLOPfdcAICx9GC9B92PeCYfs8BUWOrPToJbYMhNeW6Dp79BMcgFhuIeAycRxbpYCZyhnGZbb8EgzdyMdvoTONVjqj/N1s2CQVqd/lLD0c6es1wDJ3CyvzRixAgkJCT4tQ+ixsDeLUWks88+G4D9zJ1krnR9ULYHT+frPA21CqQas387cbfAkL+jnPXKC9UCQxzlJCKimAmcDqFoj4Joh+uPdgYSOB3U0U4vCwZpkf3HySDcc9bt9sC5t95GNguMZYcAAOecc05Ax0sUarzKmCJSXl4e+vXrh99++w2mkv0wN+vpuoEMCAA2CUg+ZvNvlLM+R/AEIGy2YA77ZPBUFAhbkI2pJANCYeDUiqOcRBSrYi1s6kwoApIsBRU4VRYLpNQU+/dBvO+ipsbv6bSe9J06GbU5omHYrGMsPQhJ2NCuXTuceuqpQe2LKFQ40kkR65JLLgEAmEoOAIqHMCgDsk1AMgd3g2dIkv0MpyIAOfiPRSBLsHsiyTp2NmJ56i47ZUQUq2L1pFqEtkmipjboNkUyGmE6XBx04ASAFj9VImOPhweFgKlkPwBg3LhxkNgWUoSKzE87EYBBgwahWbNmkGxmGMsPud0m9S8bkg6W2hsHgwwEGtAsFqC2FoD9mlI9gmfAx+LgNCopyZJ+4TNCG3ldsLElolgVa8FTp7bIpX0McmaQ2v4H+V5LRqO9Pao1I2WXH/furCehxIyEEjNkiw1Zu2rdbiNXF8FQW4bExER1PQyiSBTDvU+KdkajERdddBEAwHRij9tGwGCuu5bTcX2mJAUU9tRRzjoBB08hXKfo6jlKCR1HPRk8iYgoXHQMnC6CuISkfrsvqjXec7N+OY7A6fh/ZXVA5TjCpmyx9ymMFe7XrUg4sQuA/VrO9PT0gPZF1BhiuOdJsWDcuHFITk6GobYUhsqjLo+po5zOAgmeTqOcrkXpOOLpb1j00nAyeGrA4ElEsSgWRjtDFTgd/BztlCTJfXsfwHtdP3A6+Dva6Qic9dUf7ZRrymCsKIQkSbj88sv9O1iiRhbDvU6KBZmZmbjwwgsBAAnHd7o8po5y1ucInhqn29Yf5XQtqq4h0hI+649y1qfjqKeuwTNWwyeDJxHFomgNnjq2N17bQD9GO3218VpHOyWj0WPgBLSPdjpPp3Wn/minqcg+ynnmmWeiTZs2mvZBFC4x2tukWDJhwgQYjUYYqk9ArjoBAEgtdDPK6SzI6bauRXk4CxoILceiscHkdZ4aMHgSEYVfKK7f9EbDaKemdl1DwFfDZpDtTf3ptJ44RjslSxWSKg4DAK688sqg9k3UGGK0p0mxJDc3F2PGjAEAJBzfAcCP+3L6Cp4epta6L8pLA+VrlNOZt+m2AVyPwuDpgw6dASKiiBJNo52NMbpZn1C8zmDy50Syt9FOb6Ob9aXsPuHxMW+jm/U5RjsTju+EzWZD37590b17d03PJQqnGO1lUqy58sorYTAYYKw8CrnSz5XgvEy39Ta11n1Rfky39SVSp9vGKgZPIqLGFY7A6eDmJG5AbbibgO9rOq07UkVVg5/5mk7rsazaCiSVHwQAXH/99X49lyhcYriHSbGkdevW6rWdyYe2IPFPL1Nr3XE33daPUU7XouqdJfVnlLO+SA2esRo+GTyJKFZE8mhnY12/6U85QVwm4zzaGcx0WufRTq3Tad1J27cFNpsNgwYNwqmnnur384nCIUZ7lhSLrr32WiQnJ0OylUARhYEV4hQ8/R3lbFhUGFe39UC34GkvTL+yIgmDJxHFikgMno19/aY3itBnXQYhAhrdrM8x2hnI6KaDIpVBCPuKtTfffHPAx0LU2GK0V0mxqGnTppgwYQIAwJxxEAIB3o+rLnhKOoQPKQKvF9Q1eMaqCPudEREFhHWZb3pcEuM8WyoIwmoLKnAKCFiNuwHY78vZqVOnoI6HqDExdFJUufzyy5GVlQVhqoU1OcDRTgCwWCFqNSxE5IOw2QCbLfgAG8SIa31Cx7JiGjtrRBTNIrUOC2BBPPfFBNmW1Y24Bnz5i1qO/X0WlQ2vyfSHsNqPw/Sn5wWFfFHko1AMxUhISOC1nBR1GDopqqSkpKjTScxZh6FYKgBrAA1KXVjUkxTs6KlODbVuIu14QiECR6qJiLxiveVd/etJAw2v9d7nQMOrsNrUwAkAosb/tSQAQD5eBKtsX8H/yiuvRIsWLQIqhyhcGDop6px//vno2bMnICswNz1kXxAokOAZJOEhuPodPDnKGX7swBFRNIiWuipco50erif1OzB6eJ/9He0UOvVNDMdKYU45CGG0oEWLFrjqqqt0KZeoMTF0UtSRZRn33HMPZFmGLb0U1uQye/CsqdUWPs0WXabWeuN38Iy0UcVIO57GEC2dOSKKT6yjvPO2gJE/4dXL+6w1vNYf3azPcKREUzmGY6UwHCuFzVYKkVsMALjjjjuQmJio6flEkYShk6JS586dMX78eACAOfcwFNggFEXbqGcIpta6E/R0W2p8/H0RUSSKxrqpsU5e6nV7Fp2mLWsZ3dQyxdZwrBSiphZKTQ3MzQ/BZrNhyJAhGDx4cNDHSBQODJ0Uta6//nrk5uZCJJhhaWpfVEgI4d+oZyPwGjwjcWptPI5yOovGzh0Rxa44r5O8tm1+hE2vo5Q6vcd6TKd1jG46gqk16ziU5CokJyfjjjvuCLp8onBh6KSolZqaivvuuw8AYG1yArbkCgD24Olx1FOnqbWeruf0xOuoZ7yHvEgU5508IooAXDDIs0BGN92F1wDeY3fXdfqaTuuOuym2jrDpCJyKqQaWpkcAALfffjvy8vL82gdRJGHopKg2YMAAXHjhhQAAc/M/ISSnFeLcjXo20tRaTzjdNoqww0dE4RIrdU8oTqrqMZUWCPg9rj9iGujopvMU2/qjm4D9npzm5n8CskD//v1xwQUXBLQfokjB0ElR75///Cfy8vIgTBZYcl3v3el11DNMQnGtJ6fWhlCsdP6IKDqwzmlAbeMi7NpNvabTOo9uOlibHIOSXK3O6uJJa4p2DJ0U9VJSUnD//fcDAKyZRbCmljbYxjHqKazWxj48IiIibRgsPNMhcAZ6r80G5ehxEttibjC66WBLqoTS/DgAYPLkyWjevHnw+yMKM4ZOigl9+/bFFVdcAcA+zVYxNrxuUwgB2JSgGx17OTqOmuo1VUgPeq0CGGvYESSiUIrF6fw6tieSrNN7E+ysICEAISBqaoIrx2KGsCluA6eQrTDnHYTNZsPo0aNx3nnnBbcvogjB3iXFjJtuugk9e/YEDArMLQog4HmqqLDZ7OExEEoEX6Oil0g7nkgQax1CIooMsVi36NiGqIEz3Jd/OPcZAj3xbDGrgdPtLuqu4xQmC1q1aoV77rmH02opZrBnSTHDaDTi8ccfR0ZGBpSkalhyCr0/QQl+1FNXATbSul3PWR+DZ0Ns/IlIT7FYp+g4uqnbCGcw6kY3g+YY3fQQOAHAmnUCtrRymEwmPP7440hNTQ1+v0QRgr1KiinNmzfHgw8+CMB+GxVrWonP5zhGPQMe+QyAEMLD8u0RNr010o4nEsTiNDgianyxVo9E4nRaN/xa20GnsOltdNPBllwBJe8oAOC2225Dt27dgt83UQRhb5JizuDBg12v70ystj9gs3lubBTFPvLZiMHTq0gLepF2PJEg1jqMRNR4Yq3+CMV02lDRMjtIj9FNp7DpMXDW1t2P02hGbYsC2Gw2jBo1Cn/729+C2zdRBGJPkmLSzTffjAEDBgCyQG2LAxAGC2BTfF+PGUlTbiNtlDHSjicSxFrHkYhCK9ZmSug8uhkx02mDpWEqLQD7NpKC2pYHAIMNXbt2xf/93//xOk6KSexBUkwyGAx49NFH0bZtWwiTBbUtCiAk7YsQBLXQkN4iLehF2vGEGzsHRKRFrNUV4RjdDOViQjqPbmrapWPhoMQaNGnSBP/5z3+QlJQU3DEQRSj2Hilmpaen45lnnkFaWhqU5CqYWxRCwI8GJQpGPUO2iJAvDJ6uYq0zSUT6irU6IpZGNxtxoaD6rM2LYEsvhdFoxFNPPcX7cVJMY8+RYlqbNm3w+OOPQ5Zl2JqUwZpX7HcZHPX0gNNtXcVap5KI9BFLdUOULBakWSMuFFSfNbtU7ZPcfffdOPXUU4M/FqIIxh4jxbwzzjgDd999NwDA2qIE1qZl/hdSN+op9DojGoxIC3uRdCzhFmvXaxFR4GKtPuDopistCwV5YMuohKX1MQDApEmTcMEFFwR3LERRgL1FigsXXXQRJk2aBACwtDkOW2ZlYAXVLUQUKSOfYW+4iYiINIqZNktRAgqbAKCk1MDcrhCQgPPPPx/XXXddCA6QKPIwdFLcuO6663DhhRcCEmBufxS2lOqgymvse3t6EhFnjYmI6KRYGuGkk4K8vZqSaEZt+8OALDBgwADce++9XKmW4gZDJ8UNSZJw1113YciQIYAsYO5cCCW5JuhyIyF4AjF0BpmIKJoxRMSmurAZcOBMMKO24yHApCA/Px9PPPEEjEajzgdJFLkYOimuGI1GPPbYYzjttNMAg0Bt50IoSTVBX9vBUU9SRcDfARGFCQNn7AlydBMAFEMNzB0PAQk2dOjQAc8//zxSUlJ0PEiiyMfQSXEnKSkJzz33HHr27AkYFdR2KYSSUKPLwgIMn0REcSjWFg0il7AZcLtus0HItTB3LoRItKFt27aYOnUqsrKydD1UomjA0ElxKSUlBS+88ALy8/PtwbPbESgJtfZGRqfwGQkYPImIQoxhM/boEDbtgdOC2s5/QSRZ0bJlS0ydOhXZ2dn6HitRlGDopLiVlpaGF198EV26dAFMCmq7HoGSZFbPbnoMnpKk6cL/uBn1FP6v3hezIuD3TUSNKJ4CZzzU9Rqn0krersW02QBFgWIwoza/ECLZimbNmuHll19Gbm6uzgdMFD0YOimuZWRk4L///S86duwIJNhQm38ESkqt/UFvo56y9o9OJIVPIiLSSTwFzljn71Rad32AutFNKAqUBAvM+YUQSVbk5eVh2rRpyMvL0/+4iaIIQyfFvaysLEyfPh3du3dXp9ra0upWtXUe9YyB6z15rScRUZB4/WZUkwxOXV+drtt0hE0oCpQkC2rzj0Ak2tCqVSu88soraNWqlT4HTxTFGDqJYB/xnDp1Knr37g0YBMxdj8KW7nQfT53DpyRJQBjDH4MnEVEAGDajn2OUUuewCQBKshm13QqBBBvat2+PV155Bc2bN9fpwImiG0MnUZ2UlBQ8//zzGDBggP0+nl2Owdak0nUjp8YlmBs6h3vEE2Dw1F0E/E6JKIQYOMNP0qHbGuQtUCSjsUHYBABbeg1q8wsBk4IuXbpg+vTpyMnJCf54iWIEQyeRk6SkJEyZMgUjRoywB8+Ox2FtXtZwwyDv2WUvQ9gXZgh0cQY9Gl89RMpxhBs7pESxi5/v6K/r69rboEY3lbrZTopru21tUglz1yOAQeDUU0/Fyy+/zNuiENUjiUgYciGKMDabDa+88gq++OILAIDhSDpMB5tAwsmOhxDC3gABgU+VdQRPILAGXSgQdccQyMil47lBi4dVDbVilUoUexg6dQmdQc+wCfQYHG2UwRDY853aSudrQgUErM3LYW1TDAAYMWIEHnroISQmJga2H6IYxtBJ5IEQAh9//DHeeOMNAIBclIKEfU0hCacGx1YvbPnboDqHTgd/GlWn0Gl/qn/7Z+gMEVarRLGFoTM6Q2f9tsnf0Fm/jZRP3jJNQMDSphi25uUAgPHjx+P222+HIdBgSxTjGDqJfFi6dCmmTJkCi8UCuSIRCbtzIVntjYrLaGd9WhpXd6HTQUvjWi90nnyqtoadoTOEWLUSxQ6GzugKnZ7aJK2B0EPb6BjlFLICc8fjULLsCw7edtttmDBhQlBrPRDFOoZOIg3Wr1+Phx56CBUVFZBqDUjY3QxydYL30AkEHzwB741s3fM8hUctDbwuwZOh0zNWsUSxId4DRZChs1ECp7e2SEvg9NEeSgbZfg/OLscgki1ISEjAAw88gFGjRvkumyjOMXQSaVRQUIAHHngABw8eBBQJCfuawlCc2nCKbX2+GlpfoRPwGTx9BUdvjT1DZyNgNUsU/Rg6g3x6iEOnr3bIV+j01RbKEpT0Wpg7HwOMCpo2bYr//Oc/6NGjh/fnEREArl5LpFnbtm3x5ptv4owzzrCvbNvpOCwtSyB8fYoUcfIrUMGscgsdp9FSYOK9s0pEFCpBto9a22dbbgXM3Y4ARgXdunXD22+/zcBJ5AeOdBL5yWq14q233sLcuXMBAHJxMkx7siHZNJ7DcXe2V8topzPnM74+ptg2fKrr/nldZyNidUsUveL55FG4r+d0t39/2hx3o5wa2z4hCVg7FMOWa79v98iRI3H//fcjKSlJ+/6JiKGTKFALFy7Eiy++CIvFAqnGCNOuppCrEvwrxNEI+xs6HRwNsYYptg2f6nT7F06xbVysdomiD0NnEE/XcWptIG2Nc+j0o71TEq2wdDkOkWqBJEm44YYbcM0113DBIKIAMHQSBWH79u149NFHUVhYCCgSjPuzYDiW6nI/T5+CDZ5OAg2eDJ1hwKqXKLrEc9AIZ+h0OrkaEEfg9LOds2VVw9LpBGAUyMzMxKOPPor+/fsHdgxExNBJFKyysjL85z//wS+//AIAkI+lwLS/CSQlgEa6kUOnrhg6/cfqlyh6MHQG8fQgQ2cw7Yufxy4gYG1dClsr+/03e/TogSeeeALNmzcP/BiIiKGTSA+KouB///sf3n33XSiKAqnKBNPubMjVfk63jebQaT+A8O4/GrEKJooO8Ro6wxg4hSIgGQyBty3+Bs4EK8ydT0CkmwEA48ePx2233QaTyRTY/olIxdBJpKP169fjiSeeQFFRkX26bUEmDEfStE+31SG0cbQzCrEaJgo9SQr8sxavgRMIS+h0tGONcm/POrbsKlg6FAFGgZSUFPz73//m/TeJdMTQSaSzoqIiPPPMM1izZg0AQC5OgmlvNiSrhhtT1y0IFOyZ4bBh6Awcq2Ki0HEOjf5+1uI5cAKNHjqd27DGCJ1CVmBtVwJbM/vqtD179sQjjzyCli1bBrdvInLB0EkUAkIIfPHFF3jjjTdgNpsBswzT3mwYSpN9PFEJ+gwvp9hGKVbFRKFRPzQydGrXiIHTXdsV6tCppJph6XQCItkKSZJwzTXXYNKkSTAajcHtl4gaYOgkCqE9e/bgySefxL59+wAAhiNpMBZkel5kyM2tT4I5SxwWDJ2BY3VMpD93oVHrZy2eAyfQaKHTU7sVqtApJAFrqzLYWpYBEpCbm4tHHnkEvXv3Dm5/ROQRQydRiNXW1uKNN97AF198AQCQagww7s2GodzNjaU93G8z2LPFjY7BM3Cskon04y00+vqsMXDqUIT399BXexWK0KmkmGHpWASRagEAjBw5EnfffTcyMjKC2xcRecXQSdRIfv/9dzz77LM4cuQIAMBQmAbjwXqjnh5Cp0OwZ40bDUNncFgtEwXPV2j09jmL98AJhDR0ammjgg6c9kJO7lMSsLUog7W1fXQzMzMTd999N84666zg90NEPjF0EjWiqqoqvP766/jqq68A2Ec9TXuzITtGPX2ETkBbQ8zQGQNYNRMFTmto9PQ5Y+gM2dRare2TnqFTSTHD0qEIIs0+ujls2DDcc889yM7ODn4fRKQJQydRGPz666947rnncPToUQCA4WgqjAVZkKz2x4M9Cxz20Gk/iHAfQfRj9UzkP38DY/3PGQNnSEY5/W2X9AidwgD7tZstygEJSE9Px5133onRo0dD4u+ZqFExdBKFSWVlJV5//XV8/fXX9h9YZJgOZEE+ngT4kdfcNcwMnTGC1TORfwIJEs6fMwYROx1DZ6DtUbCh05ZlhrV9EUSSDQAwfPhw3HHHHcjJyQmqXCIKDEMnUZht3LgRL774Ig4cOAAAkEsSYdyTCalW+5LtwZ5RDgmGTn2wiibSLtDQKAQDpzMdptYG2w4FfNswow2WdqVQcqsB2FemveuuuzB06NCgjoeIgsPQSRQBzGYz5syZg9mzZ9vv66lIMBxMg+FwGiShveEN9syy7hg89cFqmsg3hkZ96DDKqQe/bxcGAVuzKljblAEmBZIkYfz48bjxxhuRkpISoqMkIq0YOokiyMGDB/Hiiy9i/fr1AACp2gDDvkwYStzcXiUaMHTqh1U1kXsMm/qKgNDpb+BU0mph6VCq3galc+fOuPfee9GjR49QHB4RBYChkyjCCCGwePFivPHGGygqKgIAyEWJMO7PhFSjfcptxGDw1A+rayJXDJz6ioDACfhxezCTDZa2J6fSpqWl4YYbbsC4ceNgNEZhe0kUwxg6iSJUZWUlZs6ciU8//RQ2mw1QAMPhNBj+THO9t2ekY+jUF6tsIjsGTv1FSegUkoCteQWsbcoBg4AkSTj//PNx8803o0mTJo10lETkD4ZOogh34MABvPLKK1i7dq39B2YZxoJ0yEdTICFKOl0MnvpitU3xjoFTfxESOAEv9/iEgNKkBta2pRDJ9lVp8/Pzceedd3IqLVGEY+gkigJCCPz000949dVXcfjwYQCAVGmE8UAG5Gi43pOhU3+suileMXCGRoSHTiXNDEvbUogMMwAgOzsbN954I84//3zIcuQcOxG5x9BJFEXMZjO++OILzJo1CxUVFQAAqSQRxv0ZkKtMYT46Lxg6Q4PVN8UbBs7QiZDQWT9wKolWWNuUQcmxX7eZmJiIK664ApdffjlXpSWKIgydRFGorKwMs2bNwrx582CxWAAByMeSYTyY7tf9PRsVg2dosAqneMHAGToREjgBp1t/GW2wtiqHrXklIAOSJOG8887DDTfcgNzc3DAfJRH5i6GTKIodPnwYb7/9NpYtW2b/gQLIR1Jh/DMNksUQ3oOrj6EzdFiNU6xj4AytCAqdMAlYW1TA1qICMNjrtn79+uG2225D586dw3xwRBQohk6iGPDHH3/g7bffxrp16+w/sEkwFKbAcCgdkjWCOhMMnqHDqpxiFQNnaEVI4BSyAluLSthaVQBGe32Wn5+PG2+8Ef3794fEvwOiqMbQSRRDfv/9d7z77rvYunWr/QdWCYa/UmE4nAbJFgEdC4bO0GJ1TrGGQSP0whw6hSxga1YJW+sKIMHeRnTo0AE33HADhg0bxrBJFCMYOolijBACq1evxrvvvotdu3bZf2iV7Pf4/Cs1vOGToTP0WKVTrGDYCD09AqdQAipHyApseVWwtTwZNlu2bInrr78eo0aNgsEQYZeIEFFQGDqJYpSiKPjxxx/x3nvv4cCBA/YfWiUYClNhOJwKyepngx5gx8JtORRarNYpFjB0hl4wdbpzXe5HOcKgwJZXCVvLSsBkL6N58+a4+uqrcf7558NkiuCV2IkoYAydRDHOZrPhxx9/xKxZs7Bnz566H0owHEmB4ZCfCw45Ohl6dVQoNFitU7Rj4GwcgdTl9etwjWUIowJbiwrYWlSq12y2atUKV111Fc4991yGTaIYx9BJFCcURcFPP/2EWbNmYceOHXU/BOSjKTAcToNco+FWKwF2NnyWQ6HB6p2iDcNm4/G3/vZUb/soR5hs9gWCWlSqq9G2bdsWEydOxMiRI2E0RuhtvohIVwydRHFGCIG1a9di5syZ2LJlS90PAbkoyR4+yxO8PDmwTofmckh/rOIpWjBwNi6t9bav+tpDOUqKBbYWFVByq4G6TTp16oSJEyfizDPP5DWbRHGGoZMoTgkhsHHjRsyZMwe//PKL+nOpzGQPn0VJkOCmE+itA+JP+GTwbDys5inSMXA2Ll91tdb6uV45AgIi0wxrywqIJrXqz3v16oUrrrgCQ4YMgSxHwErqRNToGDqJCPv378fcuXOxePFiWCwWAIBUbbCHz2PJkBSnTkKAnZEGGDobF6t6ilQMnI3PU/3sb71cV46QBJSm1bC1qoBItQIAZFnGsGHDMGHCBPTq1SuYoyWiGMDQSUSqEydO4IsvvsD8+fNRXl5u/6FFguFoKgyFKZBq66698adj4i18Mng2Llb3FGkYOBufuzo5kLpYkiGMNtiaV8GWVwkk2stISkrC2LFj8fe//x0tW7YM8mCJKFYwdBJRA1VVVVi4cCE++eQT/PXXX/YfCkAuToLhrxRIJSb3U2+90aujQ8FjtU/hxrAZPo66OMD6V0BApFlga1ENJefk9ZrZ2dkYP348xo0bh4yMDJ0OlohiBUMnEXlks9nwyy+/4IsvvsBvv/2m/lyqNkD+KwWGo8mQbAFcnyMFMF2X9MWqn8KFgTN8JDnwsCkLKDnVsLWogkizqj/Pz8/HJZdcglGjRiEhwctCdEQU1xg6iUiTgoICzJs3DwsXLkRVVZX9hzYJ8tEkGApTIFfxHmtRh9U/NTYGzqgjkqyw5VXB1qwaMNnrjISEBIwcORKXXHIJunfvHuYjJKJowNBJRH6pqqrC4sWL8cUXX2D//v3qz6VyEwxHkiEfTwps9JPCg00ANRYGzqhhXxioBrbm1RBZZvXneXl5uPjii3H++ecjKysrfAdIRFGHoZOIAiKEwIYNGzBv3jysWrUKVmvddCubBPl4EgxHkiGVB3DtJzUeVv/U2Bg8I5qSaoGtWbX93pp1o5qSJOGMM87AJZdcggEDBvD+mkQUEIZOIgpaSUkJFi1ahG+++QYHDhxQfy5VGSAfSYHhWBIkCzsqEYfVPzU2hs6IIwwKlNwa2Jq7XqvZrFkznH/++TjvvPPQokWLMB4hEcUChk4i0o0QAlu2bMGCBQuwbNky1NTU2B9QALk4EfKxZMhFiZAEO55hx6qfwoXBM+wEBESWGbbcaig5NeoKtEajEcOGDcPYsWNx+umnc1STiHTD0ElEIVFZWYlly5bhm2++wbZt204+YK2bfnssGVIZp9+GBat9CjcGz0Znv9WJFUpuNWw5NUDCyVVsO3TogLFjx+Kcc87htZpEFBIMnUQUcvv27cPixYvx/fff4+jRoycfqJVhOJYM+WgS5GquftsoWOVTpGDwbBQi0Qpbbg2U3GqIFJv688zMTJx11lkYM2YMunfvDom/DyIKIYZOImo0iqJg48aNWLx4MVasWIHKykr1ManCCPl4MgzHEyHVGsN4lDGM1T1FGgadkBAmG5SmtbDlVkNkWNSfJyQkYOjQoTjnnHPQv39/mEw82UdEjYOhk4jCora2Fj///DMWL16M1atXw2Y7eQZeKjdCPpEEw/EkBlA9sbqnSMPQqRs1aDatgcg0w3HlgizL6Nu3L84++2yceeaZSE1NDe+BElFcYugkorArKSnBihUrsHz5cmzcuBGKcvJaI/sIKANo0FjVU6Ri8AyYSLBBya6BLafGPqLp9Fbm5+dj1KhRGDVqFHJycsJ3kEREYOgkoghTVFSEH3/80WsAlYuSIFUbuAhRIFjlU6Rg2AyISLDB1rQGStOGQbNHjx4YPnw4RowYwducEFFEYegkoohVVFSElStXYvny5diwYYNrAK02QC5KtAdQroLrH1b7FG4MnJoJCIhUK5TsGijZtS730gSAXr16YcSIERg+fDiaN28epqMkIvKOoZOIokJxcTF+/PFHrFy5EuvWrYPV6tTxskj2+4AWJUEuToCkyOE70GjC6p8aG8OmJkISULLM9qDZpBZIPHnCTZZlNWieeeaZaNasWRiPlIhIG4ZOIoo6lZWVWLt2LX766Sf88ssvKC8vP/mgAsglCZCL6wIorwP1jc0AhRrDpk/CZIPSpBZKdi2ULDNgOPm5TE5ORv/+/TFkyBAMGjSI99IkoqjD0ElEUc1qtWLLli1YtWoVfvrpJxw6dMjlcanaALk4EVJJAuRSjoJ6xKaAQoWB0y0hCYgMs31EM6vhtNnc3FwMGTIEQ4YMQe/evZGYmBimIyUiCh5DJxHFDCEEDhw4gFWrVmHNmjXYsmWLy61YoABSWYJ9Km5JAqQqI68FrY9NAumFYbMBkWSFklULpYkZSqbraCYAdOvWDYMHD8aQIUPQpUsXSHwPiShGMHQSUcyqrKzEunXrsGbNGqxZswZHjhxx3aBWhlySCLm0bhTUbAjPgUYiNg0UKAYllTAqUDLNUDLrpswm21wez87ORv/+/XHGGWegf//+nDZLRDGLoZOI4oIQAgUFBVizZg3Wrl2LDRs2wGw2u2wjVRsg1QVQuTQBkoUhlOGT/BLngVMY7CFTZNpHMkWq65RZo9GIU045Bf3798eAAQPQqVMnyDKn/BNR7GPoJKK4VFtbi40bN+L333/H+vXrsXPnTpdbsgCAVGm0h8/SBMhlCZCscdw5ZFNB3sRp2BQGBUpGvZBZ763o0KED+vTpg379+qFv375ISUkJz8ESEYURQycREYDy8nJs3LgR69evx/r167F79+4G20hVBvs1oWUJkMtNQI0h/q4JZZNBzuIsbIoEmz1kplvs/7oJmW3btkWfPn3UryZNmoTnYImIIghDJxGRGyUlJdiwYQPWrVuH9evX48CBAw03MsuQy0yQyutGQiuNkEScdMLZdMS3OAibAgIixQqRYQ+YSroZSFIabNeqVSuXkJmTkxOGoyUiimwMnUREGpSUlGDLli3YvHkzNm/ejO3bt8Nqdb1eCzYJUoUJcrlJ/RdmObZHQ9mExJcYDpvCZIOSZoFIs0BJt0CkWwCj69+3LMvo1KkTTj31VPTq1QunnHIKmjVrFqYjJiKKHgydREQBqK2txY4dO7Bp0yZs3rwZW7ZsQXl5ecMNzbJLCJUqTJBsMXhtKJuS2BZjYVMYFIhUC5R0K0SaGUqaxe0oZkpKCnr06IFTTjkFp5xyCnr06MFrMomIAsDQSUSkA0VRcODAAWzduhXbtm3D9u3bsXfvXtf7hNaRqg2Qyk2QKk2QK42QKk2xs0gRm5TYEgNhUxgU+zTZVIt9JDPdCpHc8FpMSZLQpk0bdO/eHd27d8cpp5yCjh07wmDgKtZERMFi6CQiCpGamhrs2rVLDaHbtm3DoUOH3G9cK0OuNEGqMKphFLVRvlARm5foFKVBU0AACQqUVAtEqj1kilQrRHLDEz8A0Lx5c+Tn5yM/Px/du3dHt27dkJqa2shHTUQUHxg6iYgaUWlpKXbs2IFt27Zh165d2L17Nw4fPux+Y6tkv21LpQlSldH+VW2MnlFRNi/RJYrCppAViBQbRIoFIsUKpS5kwuT+by43NxedOnVSQ2Z+fj6ys7Mb+aiJiOIXQycRUZhVVFRgz5492L17N3bt2oVdu3Zh//79sFgs7p9gliFVGSE7gqjjK1KvFWUzE7kiPGgKgwKRbLVPj02xT4tVUqxur78EAIPBgLZt26JLly7o3LkzunTpgk6dOiErK6txD5yIiFwwdBIRRSCLxYKCggLs3LkTe/fuxf79+7F//34cOXLE85PqwqhUY7CPiFYbINXU/d/XrVzqNwWhCiNscsIvwoKmgACSbBBJNnvATLJBqQuaSHQfLgEgOzsb7dq1Q4cOHdSQ2b59e/x/e/ceHFV5+H/8c3aTkIUEEi5CkIiogLRKQW5SDUVAQNRiQVqtHW2tP2unFlrrVL+pglYqVoaKrTPWMlVsNdVaRyjTWiwIXmoQUARaBCKEcAsh9wvsJtns+f2xuye7yWaT3eSwEN6vmZ095zznec6zj8HsJ+fy9OjR4wz2HgDQEYROADiHnD592gqghYWF1vvJkyfbrmRK8jhleJxyuJtDqTxOGfUtAmlHfiV0VWjh18+Zk+CgacqUegSDZXO4NF1emT2apCgn6fv166dhw4Zp6NChuvjii61Xnz59ztwHAAB0CqETALqBU6dOqaioSIcPH9bRo0d15MgRHT16VEePHpXb7W67oin/GdJ6fyi13j0OGR6n1NCBs6Sh4g03/CrqWmc4ZPpDpU9mjyb/KzX8XSnRg2VKSoouvPBCDRkyREOGDFF2drYVMtPT08/cBwEA2ILQCQDdmGmaKi8vtwJoMIweOXJExcXFqq+vb6cBSfUOGQ1OGYF3K6Q2OGTUO2ILph0NQ/xqio2NIdM0/E+FNVOaZAbelRIImCmBUNnD12oKkpaSk5OVlZUVFiyDywMGDJDDcZbekwwA6DRCJwCcp0zTVFVVlYqLi3XixAnrPXS5oaGhY401GlYwVYNDRqNDavS/Gw3Ny2p0tD8NTKQAxa+qtsUROE2ZUpIpMzkQIJN8UrLPHyqTfWEhUylt31cZKjk5WQMHDtSgQYOUlZWlQYMGaeDAgdZyv379CJYAcJ4idAIAIvL5fKqsrNSJEydUWlqqkydPqqysTGVlZSotLbXeOxxMJf+ZU6/RHES9DsnrkOE1Wr83Nq+ryTi35yztaoGgacqUnKaU5JOZFOHdGQyUZnOwTPa/xzKcycnJ6tevn/r3768BAwaof//+1isYMvv27UuoBABEROgEAMTNNE3V1taqtLTUCqIVFRWqrKxUVVWVKisrreXq6mr5fB07a9b6QJKaDH/4DLw3LwdCqa/Fdp8h+SSZ/mXDJ/82s7nMCK6bgWNIzeuB43Yk7JrBCsFdDUlGYJvDlByBy1Qdge2O5mUzuOzwbzedgSAZuuyMsD3J51/vRBbv3bu3MjIylJmZqczMTGVkZCgjIyMsWA4YMEC9e/cmUAIA4kboBACcEU1NTaqtrVVlZaUVTGtqalRbW9vqVVNTo7q6OtXW1srj8SS6682hNPgbMyxcJqRHYVJSUpSenm690tLSwtbT09NbBcs+ffooKSkp0V0HAJwHCJ0AgLNaQ0ODamtrVVdXJ4/Ho9OnT8vtdsvtdkddbmhoUGNjY9h7pG2NjY22f4aUlBQlJydbr9D10OXU1FT17NlTLper1Ss1NVUul8sq79mzpxUwmZsSAHA2I3QCAM5rpmmqqalJpmnK5/NFXG5qapLP55NpmjJNUw6HQw6HQ4ZhWO9OpzNsPbhPUlKSjATPkwkAQCIROgEAAAAAtuGpAAAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2IbQCQAAAACwDaETAAAAAGAbQicAAAAAwDaETgAAAACAbQidAAAAAADbEDoBAAAAALYhdAIAAAAAbEPoBAAAAADYhtAJAAAAALANoRMAAAAAYBtCJwAAAADANoROAAAAAIBtCJ0AAAAAANsQOgEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA2hEwAAAABgG0InAAAAAMA2hE4AAAAAgG0InQAAAAAA2yQlugMAYAfTNOXxeBLdDQCISWpqqgzDSHQ3AKBLEToBdEsej0ezZs1KdDcAICbr16+Xy+VKdDcAoEtxeS0AAAAAwDac6QTQ7aVsvUCG6ZAMhwyHIRmBv7c5DMkwZDgckhHYHryszWHIMBzWPjIM/7LUvB7cFqzTcn+F1zENw/+nvtD6Uqvt1rpVz9+UDEOmQ4EVBbYbkqGwOqa1rUV96zOrdblabAuuOyKUhdYPKwt9N1qVRayj8PLQ9WAf2jpW2HIb/WjZpiVqHbNVv1q2J8OM0Cezue1IbQXqyfrxMMPbVLAs5D3QXnB/wzBDf3SsY/j/0zSXS5JDZtg2R2C5uax5W1iZYcpQ83ZHyHaHYcqh4HaFl1l1fNZ68FgOwyenVdfXXC9k3RnStiQ5FdzuC9nPFygLtGm9+6x+BOs5FKwbqGOV+fd3GqYMq8y/LVjHKTXXk/84RqC+M6yPZmA90KfAfxb/uiGHJKdhyCFDzsB/aIeMwDaHDBlyGg411Dv1jf93gQCguyJ0Auj+mgz/1z/D/yXPCp2Bb/P+MkNyOBSaUgw5WiSPkHoRU0+L/Y3QskjLoeuRtkeqp5CQKyt0Wu8K3dZiOVAWFqDC6kWo0+ojG627aUR6GW2XtVmng0PVyTbbD6pdHDqN1qEztKxl6Gze3rI9M2JZczgNKQ9bN8PrtzqWGV4WEjqDL0nN622VtQijVuhssS00rDpD1v2h02f9ncYpwx/ejJDwFvi5ckpyGEbIuxE4lr+evy3JaTT/CDuNYD3/e8Qya7m5//6wagYCrdmh0NmyPUegzwrbFuxj87EAoLvi8loAAAAAgG0InQAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2IbQCQAAAACwDaETAAAAAGAb5ukE0P05TZmmLzDvZMi8lA7DP5+kQ+HzXarFuvUyQ8pavKTAXIeh28InhDTbmHyy5fbm9WC9FstmsF6wTqCNwI6mwsvDZgA0Q9turt9qm9miKHT+zQ7Nj2m0XaYo9TtaFq3Ndo5nqL06kebbbNmeGaGNNubpVOt6Rth8nIEyBctC3gN1g/v758ZsHt7wY7SYp1Pxz9NpBuqagZcka9lUcLvCy2TKZ5iS4Qu0FXosX+DzhJb7y0zD528npO3msvDtwfkxzcBcmaHvkqxlX+CfdfBdgWWf/P/sfYH14FC1nqfTkCNQ6pR/PlDDaF5unks0fO7P4LEcVhvBeUZD5hKVYW0zAssN9ZH+HQJA90HoBNDtNUw8megu2CP0e30cjBbvQFDwR8uX6I7ELZjmuaALAM4G/N8YAAAAAGAbwzTNTvydHADOTqZpyuPxJLob5wSPx6O5c+dKktauXavU1NQE9+jcwLjFjjFrX2pqqgyD6w8AdC9cXgugWzIMQy6XK9HdOOekpqYybnFg3GLHmAHA+YPLawEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA1PrwUAAAAA2IYznQAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2IbQCQAAAACwDaETAAAAAGAbQicAAAAAwDaETgAAAACAbZIS3QEAQLPTp0/rtdde03vvvacTJ07I4XAoOztb06ZN0/z585WcnBx32xUVFcrLy1N+fr5KSkrUo0cPDRs2TLNnz9aNN94owzCi1j927Jjy8vK0bds2VVRUyOVyacSIEbr55ps1derUNusVFxdr9+7d2rdvn/bv36+CggKdPn1akvT6668rKysr7s8kdc8xO3DggP7zn/9o586dKiwsVFVVlZKTkzVo0CBdddVVmjdvnrKzs+P+XFL3HLd33nlHn3/+ufbv36/S0lJVVVXJ5/MpIyNDI0eO1PXXXx+1PgDAHoZpmmaiOwEAkE6cOKGFCxfqxIkTkqTU1FT5fD41NDRIkoYPH66VK1cqPT095rb37dunBx98UNXV1ZIkl8ulhoYGNTU1SZImTpyoZcuWtRk08vPztWTJEnk8HklSr1695Ha75fP5JElz5szRQw89FDFMPPnkk/rXv/4Vsd3Ohs7uOGbvvPOOli5dGrYtLS1NbrfbOnZycrIWLlyouXPnxvy5pO45bpI0a9Ysud1uaz0tLU319fVqbGy0tk2YMEFLly6Vy+WK+bMBAOJD6ASAs4DX69U999yjgwcPql+/fvrFL36h8ePHy+fzadOmTVq+fLlOnz6tq6++Wk8//XRMbdfV1ek73/mOKioqdNFFF+mRRx7R5ZdfrsbGRq1bt07PPfecvF6vbrnlFj3wwAOt6h8/flzf+9735Ha7deWVV+rhhx9Wdna2daZs9erVkqT77rtP3/72t1vVf+qpp7Rz506NGDFCI0aMkGma+sMf/iCpc6Gzu47Z22+/rRUrVmjq1KmaPn26Ro8erV69eqmxsVG7du3Sb3/7WxUWFsowDK1YsULjx49n3AJ++9vfasSIEbriiit0wQUXKCUlRaZpqri4WG+88YbefPNNSdLXv/51PfjggzF9NgBAJ5gAgIRbt26dmZOTY+bk5Ji7d+9uVf7vf//bKt++fXtMba9atcrMyckxZ8yYYR47dqxV+Z///GczJyfHnDp1qnn48OFW5U888YSZk5Njzp0716ypqWlV/vTTT5s5OTnm7NmzI5Z7vd6w9U8//dT6LMePH4/ps4TqrmNWVFRklpaWttm3mpoac+7cuWZOTo75k5/8JKbPZZrdd9w64vHHH7f619jYGHN9AEB8eJAQAJwFgpefjh07VldccUWr8unTp1tnBNu6VLUt69evt9oYPHhwq/J58+bJ5XKpqalJ//73v8PK3G633nvvPUnSLbfcEvFyy+985zuSpFOnTumDDz5oVe50OmPqb0d11zG76KKL1L9//zb7lp6erilTpkiS9u7dG8On8uuu49YRX/rSlyRJ9fX1qqmpibk+ACA+hE4ASDCPx6P//ve/kqSrr7464j6GYWjSpEmSpG3btnW47cOHD6ukpESSrPot9ezZU6NHj47Y9u7du1VfXx+1flZWloYOHRpz3zrjfB+zlJQUSbLuc+yo833cdu3aJcl/n2lmZmbM9QEA8SF0AkCCFRUVWeFh2LBhbe4XLKuoqOjwWZqDBw+2qh/JJZdcIkk6dOhQm/WD+0SrX1hY2KF+ddb5PmafffZZu+1Hcj6OW11dnfbu3aunnnpKmzdvliR961vfavcJugCArsOUKQCQYGVlZdbygAED2twv9JLLsrIy9e7du922y8vLY2r71KlTOn36tHr27BnWt/T0dPXo0aPd+qHHs9P5PGYbN27U/v37JUk33XRTTHXPl3HbuHGjHn/88VbbU1JStGDBAt11111RPgkAoKtxphMAEiw4Z6WkqF+2U1NTI9axs+3g9BOh5dHqd7RfnXW+jtmRI0e0YsUKSdLo0aN1ww03dLhuy2N153FLSUlR37591bdvX+ueYqfTqdtvv13f+ta3bLvPGAAQGWc6AQA4B5SXl+vnP/+56urq1L9/fy1evFgOB387jiQnJ0c5OTmS/FPEFBUV6dVXX9XLL7+sdevWaenSpREfogQAsAe/rQAgwYKXF0qyHqQSicfjiVjHzrZdLler8mj1O9qvzjrfxqyyslI//elPdezYMfXt21fPPPOMLrjggnbrtXS+jZskJSUl6dJLL9XixYs1f/58VVRU6LHHHovaRwBA1yJ0AkCChd4/V1pa2uZ+offjRZtSI1S/fv1iartXr15hX+aDx6mtrY36JT1YP/R4djqfxqyyslI/+clPdOjQIWVmZmrlypXWE1xjdT6NWyQLFiyQJJ08eVJbtmyJuT4AID6ETgBIsKFDh1qXSUZ7ImewrG/fvh16sIsU/hTQaG0Hnxx68cUXt1k/9OmibdWP9tTSrnS+jFllZaUWLVqkwsJCK3C2PF4szpdxa0voA46OHTsWc30AQHwInQCQYKmpqdb9ZR9//HHEfUzT1NatWyVJEyZM6HDb2dnZGjhwYNS23W63NX9hy7avvPJK66EwweO3dOLECRUVFcXct844H8asoqJCixYtCjvD2dlQfz6MWzTHjx+3ls/UpeAAAEInAJwVZs+eLUnasWOH9uzZ06p806ZN1hfm4L4dYRiGZs2aJUl69913VVxc3Gqft956S263W06nU9dff31Ymcvl0te+9jVJ0po1a1RXV9eqfl5eniT/l/jgw1vOhO48ZqGX1Pbt21fPPvtsl51F7q7j5vV62+3jK6+8Yi2PGTOm3f0BAF2D0AkAZ4HZs2frkksukWmaevTRR/XJJ59Iknw+nzZt2qTly5dLkiZNmqRx48aF1X3xxRc1ZcoUTZkyJeIX/dtuu019+/aVx+PRQw89pH379kmSGhsbtWbNGv3xj3+UJN18883Kzs5uVf/uu++Wy+VSeXm5Hn74YR05ckSS/6zV6tWrtXbtWknSnXfeqfT09Fb1vV6vqqqqrFdomKitrQ0r60hw6O5jVlVVFRY4O3tJbUvdddxeffVVPfHEE9qyZYtqa2ut7V6vV3v27NEvfvELrV+/XpI0Y8aMLh1TAEB0hmmaZqI7AQCQiouLtWjRIp04cUKS/1JIn8+nhoYGSdLw4cO1cuXKVl+2X3zxRa1evVqS9PrrrysrK6tV2/v27dODDz6o6upqSf4zRQ0NDVbImzBhgpYtW6aUlJSIfcvPz9eSJUusJ4empaXJ7XarqalJkjRnzhw99NBDMgyjVd0dO3Zo0aJFHRqDZ599VmPHju3QvlL3HLPVq1frxRdflOQ/+xd8qmtbXnjhBeuy1o7qjuMW2jfJP3YpKSmqq6uz6krStGnT9H//939R5xIFAHQt5ukEgLNEVlaWVq9erddee03vvfeeTpw4oaSkJA0bNkzTp0/X/PnzlZycHFfbI0eO1Msvv6y8vDx99NFHOnnypFJTU3XJJZdo9uzZmjNnTtQ5HydPnqyXXnpJeXl52rZtmyoqKpSWlqbhw4fr61//uqZOnRrnp+6c7jhmPp/PWna73XK73VH7Gbp/R3XHcbvxxhvVp08fffbZZyosLLTOqrtcLl1wwQX68pe/rFmzZmn06NFxfS4AQPw40wkAAAAAsA33dAIAAAAAbEPoBAAAAADYhtAJAAAAALANoRMAAAAAYBtCJwAAAADANoROAAAAAIBtCJ0AAAAAANsQOgEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA2hEwAAAABgG0InAAAAAMA2hE4AQMI9++yzmjJlin784x8nuitIsLq6Ot14442aMmWK3n///UR3BwDQBZIS3QEAQPxOnTqlgoIC7d27V/v27dO+fft07NgxmaYpSXr99deVlZVly7FN09Stt96q0tJS3XHHHfrBD34QVzsFBQVas2aNJOnee+/twh4m1sGDB7V161bt3r1bBw8eVHl5uZqampSenq5LL71UkydP1uzZs5WWlpborp5V0tLSdNttt2nVqlX63e9+p0mTJqlHjx6J7hYAoBMInQBwDlu4cKEKCgoScuy9e/eqtLRUkpSTkxN3O88//7yampo0adIkXXnllV3VvYRauHChPvvss4hlFRUVqqio0LZt2/TKK68oNzdXEydOPLMdPMvdeuuteuONN1RSUqK//e1vuuOOOxLdJQBAJ3B5LQCcw4JnNCX/GaKxY8eqb9++Z+TYH3zwgSRpwIABGjVqVFxt7Nq1S9u3b5ekbhUsgmE8PT1dc+bMUW5urp577jmtWrVKv/zlLzV58mRJ/gCam5urnTt3JrK7Zx2Xy6X58+dLkvLy8nT69OkE9wgA0Bmc6QSAc9icOXOUkZGhkSNHasiQITIMQwsXLlRFRYXtxw6GzmuuuUaGYcTVxl/+8hdJUlZWlr7yla90Wd8SbciQIbrzzjs1ffp0paSkhJWNHDlSU6dO1auvvqoXXnhBDQ0NWrFihf70pz8lqLdnp5kzZ+rFF19UbW2t/vGPf2jBggWJ7hIAIE6c6QSAc9itt96qGTNmKDs7O+7gF48jR46oqKhIUvyX1paWlio/P1+SNGvWrDPaf7stX75cN9xwQ6vAGeqOO+7Q8OHDJUmHDh3SgQMHzlT3zglZWVkaPXq0JOnvf/97gnsDAOgMznQCAGIWfKpo8JLeeGzYsEE+n0+SNG3atA7V8Xq9evfdd/Xhhx9q7969qqqqUlNTkzIyMnTJJZdo/PjxmjFjhvr16xdWb8qUKZKk2bNnKzc3V4cPH9bf/vY3bdu2TWVlZerVq5dGjBihb3/72xozZoxVr76+Xm+//bbWr1+vo0ePyuPxaPDgwbr++uu1YMGCTj/g5qqrrrLuyT1y5IguvfTSuNs6dOiQ1q5dq507d6q4uFgej0dpaWlKT09XVlaWxo0bp2uvvVYXXXRRXO17vV6988472rRpkw4ePKjq6moZhqHevXsrIyNDo0aN0vjx43XNNdcoOTk5rG7L8T906JDeeustbd++XWVlZXK73frVr37V6g8Y06ZN086dO1VUVKS9e/fq8ssvj29wAAAJRegEAMQseGnt5MmTlZQU36+Sjz76SJL/vsehQ4e2u/8XX3yhxYsX6+jRo63KSktLVVpaqo8//lgHDhxQbm5um+1s3rxZTz75pDwej7Wtvr5eW7Zs0ccff6wHH3xQN998s8rKypSbm6u9e/eG1S8sLNQf/vAHbdmyRStWrOhU8PR6vdaywxH/xUdr167VypUr1dTUFLa9urpa1dXVOnr0qLZt26YDBw7o0Ucfjbn9qqoq/exnP4v40Krg2BcUFOjvf/+78vLyNGTIkDbbevvtt7VixQo1NDS0e9zQB0t99NFHhE4AOEcROgEAMSkrK9Pnn38uKf5LaxsaGvS///1PkjRq1Kh2L60tKCjQ/fffL7fbLUkaO3asZs6cqaFDhyo5OVnl5eXas2dPu/M6HjhwQO+++64yMzN17733Wsf+5JNP9Oc//1kej0fPPPOMxowZo6VLl+qLL77QLbfcomuvvVYZGRk6duyY/vSnP+nAgQPatWuX8vLy9L3vfS+uMZCkTz/91FoeNmxYXG0cPHjQCpy9e/fWzTffrDFjxigjI0NNTU0qLy/Xvn37tGXLlrgvYV65cqUVOMeNG6eZM2cqKytLvXr10qlTp1RUVKSdO3dal0u3Zd++fdqwYYN69+6tBQsW6Morr1RycrIOHTqkQYMGtdp/2LBhcrlccrvd+vTTT3X33XfH1X8AQGIROgEAMfnwww9lmqZSUlI0adKkuNo4cOCAdZZv5MiRUff1er1avHixFTgXLVpkPdk01Fe/+lXdc889KikpabOtgoICDR8+XCtXrlR6erq1/Utf+pKGDBmiJUuWyOv16v7771dNTY2WL1+u8ePHW/uNGDFCEyZM0J133qmysjKtWbNGd955p5xOZ0yfX/JfolxYWCjJH7yzs7NjbkOSNm3aZJ3hfOaZZ6z7REPl5OTonnvuUXV1dczt19fXW2E+JydHS5cubRVex4wZo7lz58rtdkc9Y1tYWKghQ4boueeeC3vKcltPP3Y6nRoxYoR27typ/fv3y+fzdeqMMAAgMfg/NwAgJsFLa8ePHy+XyxVXG6GXyLY3xcuGDRt07NgxSf6n9UYKnKEGDhwYtfzhhx8OC5xBU6dO1YABAyRJlZWVmjdvXljgDEpLS9MNN9xg7Xfo0KGox4ukrKxMv/nNbyRJhmHohz/8YcxtBAWfVJyWlhYxcIbq06dPzO3X1tZafyAYM2ZM1LOlLper3cuNH3jggZim9Qnu6/F4VFZW1uF6AICzB6ETANBhdXV12rFjh6T4L62VpPLycmu5d+/eUfcNhlxJuv322+M+puS/XLOtYGYYRljZzJkz22wndL/jx4/H1AePx6Pc3FwrLLZ8eFGsgkG5rq5OmzZtirudtvTp08d6Cu/GjRs7NWfmgAEDIgb5aEJ/PkJ/bgAA5w5CJwCgw/Lz8+X1euV0OnXNNdfE3U59fb21HOmsY6j9+/dL8p/x6sgDh6Jpr35oX6I95TV0v1hCWGNjox555BHr4UTXXnut7rnnng7Xj2TmzJnW2cUlS5boRz/6kV599VXt2rXLuiS5M5KTkzV79mxJ0p49e/TNb35Ty5cv18aNG2MO3PE8nTc0dIY+/AkAcO7gnk4AQIcFzzpeccUVysjIiLud0Hsg23uKaVVVlaTmM3qdkZqaGrU89NLRaJcOh95XGJz2pT1er1ePPvqotm7dKkmaOHGiHnvssbjuBw01ePBgPfXUU3ryySdVWlqq3bt3a/fu3ZL843z55ZdrypQpuummm9oN+G358Y9/rIaGBq1fv141NTVat26d1q1bJ8n/x4CJEydqzpw57Z6xbe+sdiShf6CI90nJAIDE4kwnAKBDGhoa9PHHH0vq3KW1kv/+w6CamppOtXUu8Hq9WrJkiTVNzPjx4/WrX/3Kumy1s8aNG6e//OUvevzxxzVnzhxrypKmpib973//0/PPP6/bb7/dCryx6tGjh3Jzc/XKK6/o+9//vq666iorlFdUVOhf//qXFi5cqEceeSQsJLYUz0OAQh9+FPpzAwA4d/AnQwBAh2zfvt26XLOzoTN0eoz2QmdGRoZKSkrO2YfIBANn8CzxVVddpWXLlnVqfs9IUlJSdN111+m6666T5D9D/Mknn2j9+vXasmWLampq9OijjyovL0/9+vWL6xjZ2dm66667dNddd6mpqUkFBQX66KOPtHbtWlVWVur999/XqlWrdP/993fZ56qtrbWW23tIFADg7MSZTgBAhwRD0/Dhw5WVldWptkLnpDx8+HDUfYNTqpSXl7e779mmZeAcO3asnnrqqS4PnJFkZGRo+vTpevrpp3XLLbdIktxutz788MMuaT946e7dd9+t3//+99alyxs2bOiS9oOKiookSVlZWerZs2eXtg0AODMInQCAdvl8Pv3nP/+R5H/4TWcNHDhQ/fv3lyR9/vnnUfedMmWKtZyXl9fpY58pXq9Xjz32mBU4x4wZo1//+tft3ldqh4kTJ1rLwXtku1JWVpY1z2g8c4G2paqqypou58tf/nKXtQsAOLMInQCAdu3evdsKK6EhsDOCQaioqEinTp1qc79p06ZZgeaf//yn3nzzzajtlpSUdEn/OsPr9eqXv/yl3n//fUn2Bs733nuv3SAZvBdXki688MKY2j9+/Li2b98edZ/i4mLrjOTgwYNjaj+aPXv2WMtXX311l7ULADizuKcTAM5hR48etZ5UGhSc/1GSNm/eHPaUWZfLpalTp8Z8nODZusGDB8c17UUk1113nf75z3/K5/Np+/bt+trXvhZxv6SkJD3++OP60Y9+JLfbrWeffVbvv/++Zs2apaFDhyo5OVnl5eXau3evNm/erJEjRyo3N7dL+hivJ554Qps3b5bkD3n33XefiouLo9bJzMxUZmZmzMd688039cQTT2jcuHEaN26cLr74YvXp00eNjY0qKSnRhg0brLPUgwYNinmqm5KSEj3wwAMaPHiwrrnmGo0aNUoDBw5Ujx49VF1drT179mjNmjXWU4jnz58f82doy7Zt2yT571edPHlyl7ULADizCJ0AcA7bvXu3li1b1mb5888/H7Y+aNCgToXOrri0Nmj8+PEaMGCASktLtX79+jZDpyRddtll+t3vfqfFixfr+PHj2rFjh3bs2BFx3+A9oIm0adMma/nYsWO677772q3z3e9+V3fffXdcx2toaFB+fr7y8/Pb3OfCCy/UsmXLok4FE83x48f1xhtvtFnucDh0++236xvf+EZc7bfk9Xq1ceNGSf6z6/FO9wIASDxCJwAgqi+++MI6S9fZp9aGcjqdmjdvnl544QVt2bJFVVVVUef+HDFihF555RWtX79eH3zwgQoKCqz7BzMzM3XppZdqwoQJmjFjRpf18VywZMkSbd26VTt37tTBgwdVUVFhXW7bp08fXXbZZcrJydHMmTPjmqJl9OjReu6557R9+3bt2bNHJSUlqqys1KlTp5SamqrBgwdr9OjRuummm7rsLLgk62dCkm699dYuaxcAcOYZpmmaie4EAODs9dJLL+mll15SZmam3nrrrbjmWmxLXV2dbrvtNtXU1OgHP/iB7rjjji5rG+e2hx56SPn5+Ro3bpyeeeaZRHcHANAJPEgIABBV8NLar371q10aOCUpLS3NCpqvvfaaTp8+3aXt49y0Z88e5efnyzAM3XvvvYnuDgCgkwidAIA2NTY2KicnR9/97nc1b948W44xf/58DRkyRNXV1frrX/9qyzFwblm1apUkadasWRo1alSCewMA6CwurwUAJNznn3+u/Px8paWl6Zvf/Gaiu4MEqqur0xtvvCHTNDVv3ryo9/kCAM4NhE4AAAAAgG24vBYAAAAAYBtCJwAAAADANoROAAAAAIBtCJ0AAAAAANsQOgEAAAAAtiF0AgAAAABsQ+gEAAAAANiG0AkAAAAAsA2hEwAAAABgG0InAAAAAMA2hE4AAAAAgG0InQAAAAAA2xA6AQAAAAC2IXQCAAAAAGxD6AQAAAAA2Ob/A0buYGXquHfGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADiu0lEQVR4nOydd3wUxfvHP7vX0hMgoRN6FUVQxIKiFBsqNsSCYG9fe++9Nyw/xS5WwAbYKBZAVEBQBESa9JYAgZCey93O74/LbvYu23eT27s879crL0Jud3bubndn3vs8M8MxxhgIgiAIgiAIgiAIwuXw8a4AQRAEQRAEQRAEQRiBBJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICEhgCYIgCIIgCIIgiISABJYgCIIgCIIgCIJICBwR2M2bN4PjOHAch0suucSJIpskxx9/vPQ5EgRBqHHJJZdI94rNmzfHuzoSkyZNkuo1adKkeFeHcBhBEHDYYYeB4zjccMMN8a4OkSDQfYEg6pPM7hQOh9GzZ09wHId77rmnQY7RaBHYSZMm4eGHH8bDDz/cWIeMO9OnT5fec3FxcbyrQ9Ty8MMPSzcNIz9GBeGff/7BDTfcgF69eiEjIwPZ2dk4+OCDcffdd2PLli0N+6YIgmiSzJw5E5dddhl69eqF7OxspKeno0uXLhg6dCgeffRR/P33344d66233sJff/2FlJQUzU7J5s2b8eWXX+Kee+7BiSeeiBYtWkj30+OPP97w8eTiY+Rn3rx5umVWVFTg7bffxsiRI9G+fXukpKQgJSUFbdu2xYknnoiXX37ZVnv966+/gud5qU6dOnWyXJYSO3fuxKOPPopjjz0WeXl58Pl8yMjIQNeuXTF69GhMnToV4XDYUFkFBQV46KGHcOSRR6JFixYIBAJo3749TjrpJLz33nsIhUKO1j2eHHzwwdJ38tNPP5ne/9dff5X279Onj+n9GWP47bff8Mgjj+Dkk09Ghw4dkJKSgrS0NHTs2BFnnXUWPvroI1RXV+uWNW/ePFPXhd5Dg5KSEsybNw8vvPACLrjgAvTo0SPqHDbzkLSiogILFy7Eq6++iksuuQR9+/aF1+s1dY1awcnruqqqChMnTsTJJ5+M1q1bIxAIIC8vD4MGDcKTTz6JoqKiBnkP8eCGG26QvpsHHnjA9P4VFRXIzs4Gx3Hwer3YuXMnAMDj8eD+++8HALz44ov477//HK03AIA5wKZNmxgABoCNHz9ecZshQ4ZI2zQVxo8fL73nTZs26W7fFD+jePDQQw9Jn7ORHyPf3XPPPcd8Pp9qGZmZmWzy5MkN/+aIJoHZe0tj8f7770v1ev/99+NdnaRm48aN7IQTTtC9f40aNcqR45WXl7PWrVszAOzGG29U3e6VV17RrM+QIUMMH1N+Phn5mTt3rmZ5S5YsYZ07d9Ytp2XLlmz27NmG6ylSVVXFevXqFVVWx44dTZejxqRJk1hGRoZu/fv166d7X/jwww9ZWlqaZjn9+/dnGzZssF1vN9wXXnjhBakOY8eONb3/ZZddJu3/7LPPmtr333//ZW3btjV0Dvfo0YMtXbpUs7y5c+eaui60PvPi4mLGcZztPpBI8+bNbV2jVnDyul66dCnr1KmTbjmzZs2yXW8j7tTQ/Pnnn1Id8vPzmSAIpvb/8MMPpf1PPfXUqNdCoRDr0aMHA8DOP/98J6vNGGPMCwfo1KkTGGNOFNWkaagnU4Q6jz32GPr27au5TcuWLTVff+ONN3DHHXcAAHw+Hy6++GIMGTIENTU1mD17Nr744guUlpbi4osvRk5ODk4++WTH6k80TSZNmkSpeE2YtWvXYujQodLT7sMPPxynn346OnfujJSUFOzevRvLly/Hd99959gxX3/9dRQUFMDj8eDOO+9U3S42+peamoru3btjxYoVto5/ww03YOjQoZrbaN3Lt2zZguHDh+PAgQMAgNatW+OSSy5B9+7d4fV6sXHjRnz44YfYtGkTdu/ejdNPPx2LFy/GoYceariOjz32GNasWYP09HSUl5cb3s8I06ZNw6WXXir1tQ499FCcd955yM/PR3l5OVatWoVJkyahpKQEy5cvx9ChQ7FixQpkZGTUK+ujjz7CuHHjpP+feOKJGDVqFPLy8rBt2zZMnjwZS5cuxbJly3DiiSdi4cKFyMvLc/T9NDZjx47FXXfdhVAohK+++gqvv/46MjMzDe1bUVGBzz//HEAksnTxxRebOnZRUZF0raanp2P48OE4+uij0b59ewDAihUrMGnSJBQWFmLdunUYNmwYfvvtNxx00EG6ZY8ZMwbnn3++5jYDBgxQfY0xFtV/5zgO3bp1w969e7F//34jby+K2Os/Pz8fwWAQBQUFpssygpPX9apVqzB06FCUlJQAAA466CBcfPHF6Ny5M4qLizFz5kzMmDEDu3fvxllnnYUff/wRRx99dIO8r8ZiwIABOOSQQ7BixQps3boVP//8M4YNG2Z4f3k/5NJLL416TWwrrrjiCnz22Wd44IEHLGUvqOK4EqvQFKOLbo2SNHXkEVi7TwN37twpPcX2er3shx9+qLeN/Olzhw4dWGVlpa1jEoRbcUOkJdmpqKhg3bt3ZwBYWloa++yzz1S3FQSBbdu2zfYxa2pqWIcOHRgAduKJJ2puO23aNPa///2Pvffee2z58uUsFApFRRqsRmDtnk/yCNpJJ53EKioq6m1TU1PDxo0bJ21nJnq9fPlyKQtHHu1zKgLbpUsXqcwHH3xQMVKyd+9edsghh0jbTZgwod42u3fvjoriTpw4sd42giCwm2++Wdrm0ksvtVV3t9wXRo0aJdXj3XffNbyfPMp02mmnmT7uggULWKdOndgbb7zBSkpKFLfZv39/VD/5uOOOUy1PHoF96KGHTNdHTmlpKTv//PPZc889x37++WdWXFzMGIvus5vpv44bN4498cQTbNasWWzPnj2Msei+sNMRWCev60GDBkVF6Wtqaupt88UXXzCe5xkA1rNnT8VtjOKGCCxjjE2YMEGqx8UXX2x4vy1btkjR+xYtWrDq6up62xw4cIClpKQwAOzKK690stqMBLYBIYF1J04KrLyRv+OOO1S3Gz16tLTd//3f/9k6JkG4Fbd0VJOZu+66S/qMp02b1ijHnDZtmnTMDz/80PT+bhDYdu3aSWWtWrVKdbv9+/czr9fLALDmzZsbKjsUCrHDDz+cAWCnn3561Pt1QmDXr18vldeqVSsWDodVt/3mm2+kbc8+++x6rz/99NPS6+ecc45qOeFwmB188MEMAON5nq1bt85y/d1yX5g+fbpUj2OPPdbwfkOHDpX2+/LLL00ft7S0lAWDQd3tCgsLo9K6N27cqLidkwKrhlWBVaIhBdap63rRokVSOe3atdMMNFx33XXStu+8847lurtFYHfv3i09fEtPT2elpaWG9nv00Uel+t9www2q24n939TUVNUHOFZo8FmIxZl158+fL/1NaZC52uROgiDgs88+w5gxY9C5c2ekpaUhMzMTvXr1wrXXXouVK1dq1k0+YY+YovvTTz/hggsukNKtYgeph0IhzJ49G7fddhsGDx6Mli1bwu/3IzMzEz169MAll1yCX375RfWY4gyhH3zwgfS3zp0713vPap+VkVmIFy9ejKuuugo9e/ZEZmYm0tPT0bVrV4wfPx4///yz7v6xE2qUl5fj+eefx+GHH45mzZohPT0dBx10EO655x5LaSRNAcaYlFakNyvnjTfeKP0+derUBq+bnIULF+Laa69Fnz59kJOTg5SUFOTn52PMmDG6KYbyySLEa3Tr1q247bbb0KtXL6SnpyMnJwdHH300Xn/9dcOTfpSVleGll17CiBEj0LZtWwQCATRv3hwDBw7Egw8+iD179mjuH3uthMNhTJo0CSNGjEC7du3g9XoVJ08pLCzEnXfeiT59+iA9PR3NmzfHEUccgRdeeAEVFRUAIkMilCZfmTVrlnRM+fepxY033ijtM3PmTEP7GEFvFuKG+t6+/fZbnH766WjdujVSUlLQqVMnXHTRRVi4cKHp9xAMBvHuu+/ijDPOkCY0ycnJwSGHHILbbrtNdeKQtWvXIj09HRzHITs7G5s2bVI9xv79+5Gfnw+O4+DxeDTv24lAeXk5Jk6cCAA44YQTcOaZZzbKcT/66CMAkXTgs846q1GO6TS7d++Wfu/evbvqdjk5OVK6rNE04JdeeglLly5FRkYGXnvtNXsVVUBe965du4Ln1btuPXr0kH5Xqr+8f6CVCsvzPC666CIAkX7YlClTTNXZCkuWLEFeXh44jkMgEMBnn31Wbxs7fcKRI0dKQ4J+/fVXbNy4UbdOW7duxdy5cwEAubm5OP30002/r4yMDPh8Pt3tWrZsieOOO076v17/lnDuupZfF6NHj0ZKSopqWfL0+08//dRUfa2wZ88eDBw4UGrTb731VsVhm1b7enl5eTjttNMARD4bpetOCbnjxKYPyxHvI5WVlfjiiy8MlW0IJyxY6ymC/CmO1o/SU6T//vuPHXrooZr78TzPHnjgAdW6yaNtP//8M/vf//6nWI78CdPxxx9vqM7jx49XDJnLnzbp7a/2WalRU1PDrrzySt2yzzvvPMVUChFxuyFDhrANGzawPn36qJbVsWPHpIogOxWBXblypVRO3759NbcNh8MsKytLOmedfAqlRllZGRszZozuuTJy5EjV+sQ+6Z05cybLyclRLWvEiBGsqqpKs17ff/89a9mypWadMjMz2YwZM1TLkF8rRUVFbPDgwYrnrZyff/6ZNWvWTPWYBx98MNu6dSvr2LGj4v7hcFiaKKJZs2a6qeCVlZXS8fLz8zWjJmbRy+5w+nsLhUKa9zWe59kzzzxjONJiZNINv9/P3njjDcX933rrLWm7o446ioVCIcXtzj33XGm7++67T/MzTQQ++OAD6f2YSYG0Q1VVlRQV0kpr1MINEdj27dtLZRmN1Bx66KG65W7YsEH6fMSUXacjsP/9959UXuvWrTXvJd9++6207c0331zvdXlbv3r1as3jfvXVV9K2Rx55pOX6G/keZ8+eLaU2Z2RkKA7HcaJPeOutt0rbPvjgg7p1l0eZbrrpJqNv2TLybK0pU6YobkMR2Dqcuq7lUVWltHo5+/btk7b1eDysvLzcUt2NRGA3bdokTYQEgD311FP1tnGir/f1119L2xm5z//yyy/S9v369dPcVj5RmFOTCjLmUAqx1pewYMECNm3aNHbQQQdJ20ybNq3eT+yN9L///mO5ubnSPoMHD2ZPP/00mzx5Mvv444/ZLbfcEtUZVbuI5bJyyimnSA3A3XffzT7++GM2adIkdt1117GdO3dK+wwaNIhlZGSwUaNGsUcffZR9+OGH7LPPPmMvv/wyu+qqq1h6errmDe3PP/9k06ZNi5oh8s0336z3nv/888+o/YwI7Pnnny9tk5KSwq6++mr2wQcfsI8//pjdfPPNLDMzU3r9pJNOUp1RTNymf//+rFevXozjODZq1Cg2ceJENnXqVPbUU0+x/Px8aTsz6TZuR35OHHvssaxLly4sEAiwzMxM1q1bNzZ27Fj29ddf687GNnnyZN2bjxz597t48WKH3o0yVVVV7Mgjj5SO17VrV3bvvfeyjz76iE2ZMoU9/vjjUTfFoUOHKnaK5A3lqFGjWFpaGktNTWVXX301mzRpEps8eTK77bbboq4Jrc7DF198wTweDwPAfD4fO+ecc9irr77KPvvsM/bOO++wiy66SEpl4Xme/fTTT4rlyD9L8bru168fe/rpp9mUKVPYW2+9xa6//npp+1WrVkWlZvXv35+98MILbOrUqeyVV15hxxxzjCRDYkqSUsfzySeflMr4+OOPNb+Djz76SNr2kUce0dzWLGYE1onvTd64+/1+duWVV7IPPviAffTRR+yGG26QPtszzzxTt6P6+++/S9tzHMdOPvlk9uKLL7KpU6eySZMmsauvvjrqu1Ir55xzztGs+zvvvBPV+bYzVsktXH755dJ7WrlyJauqqmIvvfQSO+KII1h2djZLS0tjXbt2ZZdeeqlj95iffvpJOubtt99uqQwnBHbgwIGsZ8+eLC0tjaWlpbGOHTuyc889l3388ceGvlv5w2utsXLya2vSpEm65Q4bNowBYIcddpj0IMVpgWWMsb59+0b1d/TGwAYCAbZmzZp62/Tu3Vsqx4zAZmZmmp6hVERPYD/99FPpvp+Xl8eWLFlSbxun+oTyB8+dOnXSfU9du3aVtv/777+tvH1TyB8wLFy4UHEb+f29b9++7OCDD2YZGRksJSWFtW/fnp122mls4sSJmkEMPRJFYJ26rq+99lrpdTMCC0DxfDWCnsCuWLFCmr3a4/EoPrR0qq9XU1PDWrVqJbXLerOPy8cev/TSS7rvVbzvZGRkqD5wNosrl9EJh8NswIAB0k1YbZKKgoIC6Wkcz/Psn3/+qbdN7JIpgwcPZgcOHNA8/o8//qh54e/du1eK+PA8rzpOwelldKZMmSK93qpVK8WnTZs3b46KbKiNt5R/Jn6/n33zzTeK71Nelp0OUXl5ueKDCys/seJvFqPL6AwaNIht3rxZtZxHHnlEt7GUI59E4KOPPrL1HvSIHZur1MELBoNRdVK6acdO15+fn684Fmrx4sXS081mzZopRvO2bt0qRaHz8/PZihUrFOu+ePFilp2dzQCw9u3bK44dis3suPnmmzWjEvII7XXXXae4bex5odTxLCgokDpaeh3x4447Tmp4nJhIR44ZgbX7vcmftObk5Cgu8bBmzRppiRWtjmpJSYk0GVBOTg6bN2+e4vtbv3699AAtPT1dmgxEzr59+6Sn7x6Phy1YsEB6be3atZKcZ2Vl2V4KZPXq1Y7dv5Tei1H69esX1ZmWPxhW+rn++uttdxbkD20+//xzS2U4IbBaPz179mTLly/XLGvPnj2sW7du0j6tW7dm99xzD3vvvffYhx9+yB566CGpveN5nj322GO69Xv33Xel80/eLjWEwP76669RD5wOPfRQ9uSTT7JPPvmEvfXWW+ymm26S7q/Z2dnsu+++UyxH/mBdK8uFsejxsgDY9u3bLdVdS2BfeeUVKTrTsWNHtnbt2nr7O9knZIxJ45WBSGaeGvPnz5e269+/v/E3bJEFCxZIx8vLy1O9do0uo9OmTRvN96dFogisU9e1vD93yy23aB5TPl4W0H+YrYZe8E/MmkpJSWHTp09XLMOpvh5jjN1+++3SNlrZCeXl5VKwzOfzGWrTLrnkEqlsvXu1UVwpsF9++aW07SuvvKK57dq1a6WIjtIMV/JOaXp6OtuxY4eh96THhg0bpHLVLginBbZ///7S699//71qOYsXL45qEJRugvKL79FHH1Ut6+233za0nR7yc8Tuj93B7g899BBLSUlhp5xyCnv00UfZRx99xKZOncpefvlldvbZZ0vnEwDWtm1b1Ub7lltukbZ79dVXdY9rdnur7Ny5k/n9fgYoT+IhJxgMSrNbdu/evd7rsQ3lL7/8olrWRRddpLndDTfcIHX2li1bplkvsWMIgH3yySf1XpdfK4cddpimvC5ZskTatm/fvpodenm5ah1PeYqX2sQma9eulbYZOXKk5nu1glmBtfO9yWfu1IpIyVMXlTqqjEWvxfj1119rvkd55O+JJ55Q3GbevHnSjJAdO3Zk+/fvZ8FgkB122GHSvk48LDK7drTWj50OnPiEHID0VL1t27bsgQceYJMnT2bvvPMOGz16dNS6jlqTaxjhwgsvlMpSe+ikhx2B9Xq9bMiQIeyBBx5gH3zwAfv888/Z66+/zsaOHSvNbglEIoR6HaOioiJ27rnnRt3jY3/OO+883fsTY4zt2rVLivjFdngbQmAZY+zvv/9mAwcOVK271+tl9913n2Y/5/7775e2P/fcc1W3k0/iJP6oCaEeagJ73333SX8/6KCDVNtaJ/uEjDH22muvSeWNGzdOtaxLL73U8HHtUl1dHTWD9HPPPae67dy5cxnHceyII45gd911F3vvvffY559/zt5++2121VVXSQ+AxXNizpw5puuTKALLmDPX9Y8//iht265dO80hNbFDEa1OzKnmTjNmzGCpqakMiDyMmj9/vuL+Tvb1GItkqon10cpOkA9l0TuuyDPPPONom8yYSwVWTEPLysoytOTIUUcdpdpQyDseWjcqK4gRB7Vp1Z0UWPlnfPDBB+uWJaY1AcqRU/E1j8fD9u3bp1qOXNTtLETsJoFduXIlKyoqUn39n3/+iXqiN3z4cMXt5GOR3377bd3j3nvvvdL2Tz75pOX66/HSSy9Jx/n99991t7/nnntUz1O5COk9gZZLZ+zYRUEQpAXO9ZbhYCwypkOMDCp93/Jr5b333tMsS95h00sNkqfMqXU85WJ15513Km5zxx13SNvoRTmsYEZg7XxvVVVVUgPZqlUr3WiePD1RSWDF6EiPHj103yNjTEqf0pIe+XU1ZswYduedd0r/v+iiiwwdRw+3CGwgEIgqa9CgQdKyF3K++eYb6foB1FMRjSCm1wPWI3BWBXb9+vWaMrZ169YooevVq5fuObphwwZ2xRVXqH4/fr+fnXfeeVHDipQQU9jz8/NZWVmZ6vt1UmAZi6TgK435F3+aN2/O7rzzTtVZbzds2BB1bqi1XfJojJn2RIlYgQ2FQlHfwdFHH63ZD3GyT8hYJHtDfPihNuuqPMrk9/vZ3r17Db9fK8iHB/Tv319xfhWRnTt3as4KvW/fPnbqqadK5bVo0UI38zCWRBJYxuxf16FQKKrfN378eMV7yfTp0+uJstX+nJI7vfvuu1L5rVu31kxbd7KvJ3LEEUfoflfyLA6l7E0l5PNWPP7444b20cMLF7JgwQIAQJs2bTBr1izd7T0eD4DIgsaVlZVITU1V3O7YY481XIeSkhJ88skn+P7777Fy5Urs3btXdUbC7du3Gy7XKn/88Yf0+4knnqi7/YknnoiffvoJQGTG4iOOOEJxux49eqBZs2aq5bRr10763c5sxJ06dVKcNS0eaC12D0QWr541axb69u2Lqqoq/Pjjj1i8eDEGDRrUSDW0h3j9AJFzc/r06Zrby7/X1atXK87eCwBHHnmkZjla58qqVauwb98+AEBmZqZunYDIzI3FxcVYvXq15nZ61/XSpUul30844QTNbcVZubU44YQT0KNHD6xbtw4ffPABHn/88agZJmtqaqTZ+dq2bYuRI0fqltmQ2Pneli9fjmAwCAAYMmSIdK9VY9iwYarf14EDB7BixQoAQKtWrQyfAwA0z4FHHnkEP/30ExYvXhw1w3fnzp3x+uuv6x7DCA8//LDqTPmNiSAI0u8+nw9TpkxBdnZ2ve1OO+003HTTTXjhhRcAAK+88orueaCGeN0CQPPmzS2VYZVu3bppvt6hQwfMnDkTffv2RUFBAdasWYMvvvgCY8aMUdz+qaeewv333w9BEHDFFVfgmmuuQZ8+fQAA//77L9544w288847+Oyzz7Bo0SL88MMPUbP6ikybNg1ffvklAOC1115Denq6zXeqT3l5OcaNG4evvvoK6enpeOqpp3DuueciPz8fFRUVWLx4MZ566inMnz8fzz77LP788098/fXXSEtLiyqnS5cuuO+++/DII48AAK688kp8+eWXOOOMM5Cbm4sdO3Zg8uTJ+OOPP5CXl4eqqiqUlpYCgObsx0apqqrC6NGjMW3aNADAqaeeis8//7xePeU43Sds1qwZzjzzTEyZMgXl5eX44osv6q0K8cUXX0jv+4wzzkCLFi0Mv0ezPPfcc3j33XcBANnZ2Zg6dSr8fr/q9m3atNEsr1mzZvjyyy9xxBFHYOXKlSgqKsLEiRNx1113OVpvt+DEde3xeDBx4kScfPLJCIfD+OCDD/Dnn3/i4osvRufOnVFcXIxZs2Zh2rRp0ioF4kz5TlwXAPDMM8/g7rvvBhCZbXzOnDno0qWL6vYN0de77LLLJN+YNGlSvT7Rli1bpBVdWrdujZNPPlnzmCLy68exlU2csGAnI7ClpaW2nm7HPq2VPznXSruV8/PPP9cbz6X106VLF8VynIzAyp+0vPnmm7plydftu+eee+q9Lr5mZHImcVszT86Tgauvvlp670qTxLg1hViePmn2JzZdVx7J05rkJ3bb2DHB8rUJzf4opbvIrxW9iSrkaVlG1uITx51oRU6ef/55qczYdQG/+OIL6bWGmvnWTATWzvcmv4/ce++9uvWS36diI7DyyVPM/vh8Ps3jbtiwIWoCO6/Xayvq6FbELAYA7NRTT9XcVp7G3qpVK8vHFNPOPB6P5TKsRmCN8tRTT0nlX3zxxYrbyCP1WumgL7/8srTd4YcfXu/1/fv3szZt2jBAPQXX6QhsKBRixx57LAMiY0D/+OMPxe3C4XDU5GZqk24JgsDuueeeqFTz2J9WrVqxRYsWRU2MpDQ+1QjyCKw8vXXs2LG6E3A53ScUmT17tuY5KY8yKfUdtca5z5492/Bn8+abb0rHSU9PZ7/99pvhffWQTzRpdiLORInAOnVdi3zxxRfSbNhKP36/n7355pvsrLPOkv5mpE+uhPw+Ib8u+vXrxwoKCnT3d7KvJ1JcXCylLytlJ8jHCqtloCnxww8/SPtdd911hvfTwpnHBg5y4MABW/uL0QIl1CKzctavX4+RI0eioKAAANCzZ0/cfPPNeO211zB58mRMmzZN+hHXlAqHw7bqbATxSSAAQ097xchF7L6xOPXkKBmRP3las2ZNvddzcnKk3/fu3atbXlFRkeK+TmPnGtK6fuycKw1VJ0D/uhYzJ7xer6G1+IxcX5dccgkCgQAA4O233456Tfw/x3G4/PLLdctqaOx8b2VlZdLvWhESEa3Pzs45UFNTo/l6bm5uVHSwS5cuOOywwywfz63I7xt6769Hjx5SO1BYWBj1XZpBPM/D4bC0VrLb0LtX79ixA8899xwAoHfv3rj++utVy7rhhhvQu3dvAJHsjUWLFkW9fscdd2DXrl3Izs7GK6+84kDt9fnyyy+laMull16KgQMHKm7H8zxeeeUV6Zp/8803Fa8djuPw5JNPYtmyZbj66qvRs2dPpKenIy0tDX369MG9996Lf/75B4cddhhKSkqkfVq1amX7vcjXnC4vL9fNzGqoPuHw4cPRvn17AMAvv/wSte60PMrUtm1bxay3s846S/XnqquuMlS3Dz/8ENdccw2ASDv2zTff4Oijjzbx7rTRuy4SHSeva5FzzjkH//33Hx544AEcfvjhyMnJgd/vR8eOHXHZZZdh6dKluOqqq6L6c61bt7b9XuTXRWVlpSGvaIh+VXZ2trTWd3l5uZRpAgCMMXz44YfS/7XWfo1FXlcjLmYE16UQy8XruOOOw/z58xv1+E899RQqKysBAPfddx8ee+wxcBynuO2VV17ZaPXKzMyUfjeyuLq8syLfN15UVFRgzpw5jpSVn5+PAQMGOFKWFvKUh+Li4nqvy1NQ5I2fGlu2bFHc12nEa4jjOIRCIVc8pJBf1w8++KCUvtYYiFIVCoVQU1OjK7FGrq8WLVrg3HPPxSeffII5c+Zg69atyM/Px5YtW/DDDz8AiHSQOnfubP8NxBH592ZEXrQ+O3lZ48aNi1oE3S7XXXdd1PW1bt063H///XjmmWccKX/NmjWOdQAHDx6M3NxcS/v27NkTGzduBADF1OFYsrOzpbbgwIEDUd+BUeQPBvbt22foQUZjo3evnjNnjiRyw4YNU23Tgch9c+jQoVLa+h9//BGVfv3OO+8AAPr06SOlfcYir8OBAwfw+OOPAwBSUlJw++23G3tTMr777jvp9+HDh2tu27ZtW/Tu3RurVq1CaWkpVq9ejUMOOURx2379+uGNN95QLWvVqlVSR7p79+6Gzjk9nnrqKUyZMgW///47pk2bhjFjxmDq1Kmq9+WG6hPyPI/x48fjiSeeAGMMH3zwAR566CEAwAcffCCJ9bhx43SHTlhh8uTJuPTSS8EYQyAQwPTp03WHuJhF77pIdJy8ruW0atUKjz76KB599FHV8v7991/pd7UHSmY499xzkZWVhVdffRXr1q3DCSecgLlz56Jt27aq+zRUX+/SSy/Fp59+CiCSRjx+/HgAkZTlDRs2AIgMTerVq5fhMhtiKIrrBDY7OxsZGRkoKytrlLGlsfz4448AgJYtW+LRRx9VvSBKS0ujvpCGRj7mYf369brby7fRugAai927d0tPdewyfvx4TJo0yZGytNCLmMrH0v7555+aZQmCgGXLlgGINJzik8CGoF27dvj777/BGMOOHTvQoUOHBjuWmTqJNPZ13bZtW2ns5caNG9GzZ0/Vbffv32+4ob/mmmvwySefQBAEvPfee3j44Yfx3nvvSeMUjT6FdzPye8d///2nu73WNg11DnzyySf45JNPAESiknv37sWWLVvw/PPP46STTsLQoUNtH2PKlCmOPXSZO3euobHWShxyyCGYOXMmAGNP38XoGWBMeJXo1KkTfvvtNwCRTogYtXITevfqnTt3Sr9nZWXplif/rNQeyixcuBALFy7ULau4uBgPPPCAVK4VgW2I+htBLotm5hDRIjMzE7NmzcLJJ59sSGIbsk94ySWX4IknngAQiYY++OCDABD1cC12bKyIXuRYi88//xwXX3wxBEGA3+/HF198YWhuE7M0VtZXvIjXdfHvv/9KWXddu3bVHZNslFdeeQUcx+GVV14xJLEN1dcbOnQo8vPzsXXrVsyfPx+bN29Gp06d8P7770vbmIm+AtEC27FjR0fq2WihGfmTAb0L/7jjjgMQ6Wwa6TQ5SWFhIYDIBCBaTzN+/PHHqAk1lDDznvWQT8IkRni0kEc71SZwIrSRN95KEdODDjpI6sytWrVKs3H9/fffpc7kMccc06BR8SFDhki/OxX1tkv//v2lBuann37SvXac5PDDD5d+nzt3rua2YtqYEQYPHoyDDjoIAPDee++hpqYG7733HoDIA7BRo0aZr6zL6NevnzSZyPz583XTmsSJ45TIzc2VJtZYtGhRlFxZZdOmTbjuuusARCLtkydPxscffwyPxwNBEDBu3LioTlyic8opp0i/6z00W7dunTR8pE2bNpair0D0g7q1a9daKqOh0btXyzu327Zt0y1PHs1vyMl7jGK2/lu3bpV+t1N/+YNiJ4dDiBJ7zDHHAIhMinXeeeepDhVoqD5ht27dJDHfuHEjFixYgF9++UXKcjj66KM1H3haYfr06bjwwgsRDofh9XoxdepUnHbaaY4eQ0Tvukh04nVdy0XO6WFCL7/8Mm666SYAkXv48ccfHyXqchqqrydmJwB1acPiZGdAJAVYbaI8NeQTMaplhJiupyOlGEDeeOo9+RA/OADSE7HGQkyP2rhxo6p0hsNhPPnkk7plmXnPenTq1ElKm12+fLmmxC5duhQ///wzgMiTDjeMBRNnIXbipzGirxs2bIh6CnvqqafW24bjOIwePRpA5CJ/9dVXVcuTj5Uye+Gb5fzzz5ek45lnnrF97jmBx+PBRRddBCDSiIhpeI2BXCRfe+01TQl7+eWXTZV99dVXA4g0njfffLP0EGP8+PGGxtu6nUAgIJ37hYWFUlqREjNnztSdMVq8t1dUVODpp5+2VbdwOIyLLrpIEuFXXnkF3bt3x+DBg3HvvfcCiIyRuuKKK2wdB4jMQuzU/ctq9BWIRMHEh2Y//PCD5tCFt956S/rd6EyRSshnX1+8eLHlchqKffv2RV23SvdquYR/9913mvNClJSUSFFuIPoBGABD3/GmTZuk7Tt27Cj93Woap7z+U6ZM0dz2119/le5DzZo1Q9euXS0d8/3338eSJUsARB66HnXUUZbKUUOU2MGDBwOIiJ2axDZkn1AeSZo0aVJU/8JslEmP77//HmPGjEEoFILH48Gnn36KM88809FjiFRXV0f1U5Wui0THyevaKGvWrJH6ejk5OY60L7G89NJLuPnmmwFEsinVJLYh+3qXXHKJlIH64Ycf4vPPP5eGo5x99tmmM3rEtiMzM1N6kG0bJ2aCMjIL8Y033ihto7Yor0g4HI5a2+2mm27SXBOroqKCvf/++2zy5Mn1XpPPQmxk9rMRI0ZI27/44ov1Xg8Gg1GLW0NjlsEXX3xR2uaDDz7QPbbeTM1Tp06VXm/Tpg1bvXp1vW22bNnCunbtKm2ntsCy+LqRGSHNbOt2vv76a/b5559rrhUYuw7s8ccfr7rtjh07WFpaGgMiM5/++OOP9baRz8DYoUMHQ+vY2eW2226TjnnCCSewXbt2qW4bDofZDz/8wB577LF6r2nNUGt2223btkkz/AYCAd1rorCwkD366KNs+fLl9V4zs640Yyxq3cTrrruOhcPhetvErvVpZPbQ4uJi6fuX/2it0ecEZmYhtvu9LViwQHq9WbNmiovBr1u3TpqZVfxRWge2rKyMdezYkQFgHMexZ599VvG7ECkuLmYvv/wy++GHH+q99sADD0jHip0NtqamRloLEjZmiXQj8nV7jzzySN11YHmeZytXrrR8vKqqKpaens5gYSZTESuzEP/+++/s7bffZlVVVarbbNu2LWrdwu7duyvOahsMBln79u2l7UaNGqU4e3lFRQU744wzpO369u3LBEEw/D5FzMxCHLtGuhL//PMP43le2kZt3cktW7ZEtV1qs32uWrWK7d69W7VOH3/8sbT+c0pKCluzZo3me9Ajdh1YOaWlpVH351GjRtWbLd7JPmEspaWl0vmdkZEhzUCblpZmeu1ULX744Qdp7VmPx8M+/fRTS+WsX7+ePffcc6ykpER1m9h1YJs1a8b2799v6jhumIVYbCvU9nP6ui4sLGT//vuvan3+/PNP1qFDB6mcSZMmGX4vSui508033xx1b1Nah9upvp4S8nNA3r4r9XO1KC4ulmY8P/PMM03tq0WjjYEdNmyYFIW6/PLLccstt6Bjx47S4Phu3bpJa77xPI8vv/wSRx11FHbs2IGXX34Zn332GUaPHo1+/fpJE1Ns3boVS5cuxU8//YTy8nI89thjtut5ww03SNHNW2+9FfPmzcNJJ52EFi1aYP369fjwww+xfv16nHDCCVi/fr1m2uiwYcOk3++8807s2bMHPXv2hNcb+djbtWuHgw8+2HDdzjvvPEybNg1TpkzBrl27MGDAAFxyySU46qij4PF4sHTpUrz77rtSROLEE0+U0uuICBs2bMAtt9yCvLw8nHzyyTj00EPRunVr+Hw+FBYWYt68eZgxY4Y0I1zbtm01J5tp27YtXnjhBVx77bUIhUI45ZRTMG7cOAwZMgShUAgzZ86U0i68Xi/eeustpKSkqJYnH3O9adMm1TVZ9Xjqqafw999/46effsLcuXPRpUsXnHPOOTjqqKOQl5eHYDCIgoICKZpfUFCAYcOG4f7777d0PCO0b98eU6ZMwRlnnIHq6mqMHz8eL774Is444wx0794dqampOHDgANatW4dFixbht99+QzgcdmRiizfffBMDBw5ERUUFXn/9dSxcuBBjx45F+/btUVhYiKlTp+K3337DUUcdha1bt2LHjh2GJkTIzs7GmDFjolKKjj/+eHTv3t12nd3C4MGDcd111+H111/H/v37ceSRR2L8+PEYPHgweJ7HH3/8gXfffRfl5eU488wzNdeiS09Px/Tp0zFkyBCUlJTgzjvvxJtvvolzzjkHffr0QUZGBkpKSrBx40b88ccfmDdvHoLBID766KOocn799VcputC+ffuoaCMQudY++eQTHHrooSgpKcEtt9yCIUOGOJ4OGA8uueQSTJs2Dd9++y0WLVqEPn364IorrkCfPn1QXl6O2bNn4/PPP5cyiB577DHdta+1CAQCOPnkk/Hll19i6dKlKCsr001Hjr2PyMfrbtq0qd7rAwYMwNlnnx31t8LCQlx55ZW47bbbcNJJJ+Gwww5Du3btkJKSgqKiIvz222/44osvpEkXMzMzMXXqVKl9lePz+fDKK6/gnHPOAWMMM2bMQO/evTFu3DhpPoLVq1fjww8/lNIMfT4f/u///k9zYpjG4qCDDsKNN96Il156CQBw77334uuvv5bWga2srMSiRYvw8ccfS1GoDh06SJMSxfL999/jvvvuw/DhwzF48GCpndm8eTOmT58urQPp9/sxefLkBr1uMjIyMHPmTJx66qlYsGABZsyYgdGjR+Pzzz+Xslgask+YkZGB0aNHY9KkSVGTX55zzjmGxlUa4e+//8aoUaNQVVUllZ2amqq7bmevXr3qTZRTVlaGO+64Aw888ABGjBiBgQMHomPHjkhPT0dxcTGWLFmCKVOmSNec1+vFp59+qjkG9quvvsJff/0V9Td5FsELL7xQL+ImTkwWy88//yxlAIqI838AwLvvvivNNSNy++23Wxqj6/R1vXXrVgwcOBBHHHEEhg0bhl69eiE1NRUFBQX48ccf8d1330kZXHfeeWdUZkBDMGHCBHAchwkTJkjeMXfu3Kj5JBqyr3fppZdKaei7du0CEMkoMTuvxLx586T2yNGMAycs2EgENhQKRT1li/1RevK/c+dONmzYMNV95D8ej4e9/fbb9cowG4FljLF77rlH81jHHHMM2717t/R0SOsJ6wUXXKBaTuxnZSSqVFNTw6644grdz+Pcc8/VXB9T3K6pRWAnTJhg6HxCbbRh8+bNhsp97rnnmM/nUy0rMzPT0NNg+T52n3pWV1ez66+/nnk8HkPvd9y4cfXKcDKSJ7Jw4UJpbUm9n4yMDLZixYp6ZZiNwDIWWd9ZjAAr/fTt25dt3bqVtWvXjgFghxxyiKFyFy9eHFWO2vpqTtKYEVjGIvfviy++WPWz43mePfvss5qRFjlr1qxh/fv3N3QOBAIBNnPmTGnf/fv3S/denuc17+sff/yxVE7//v01ozaJREVFBRs9erRum6gWqTPL9OnTpXI//PBD3e2N3mPV2kLGotcg1vvp27evYqZGLB9//DHLysrSLS83N5d99913Vj4qxpjzEVjGItGT2267LSoSq/bTr18/zTVbn3vuOd0yunTpwn766SerH0EURu4LZWVl7LjjjpO2O+OMM+pFYp3oEyoxf/78evv//PPPdt+2hPz9m/lRuh8vW7bM8P75+fmG+r3y9sTojxqxmUxGftT6OnoRWBGnruslS5bolpGZmam53qwZjLgTY4zdeuut0nbdunWrF4l1oq+nRFlZWb01cR988EHT7/O8885jAFhqaqpm5oBZGk1gGWOssrKSPf300+yoo45izZo1i/qwtTpZ8+bNY1dffTU76KCDWE5ODvN4PCwrK4v16dOHjRkzhk2cOJHt3LlTcV8rAssYYzNnzmQjR45kubm5zOfzsTZt2rChQ4eyt99+W0pRMiKwoVCITZw4kR1//PEsNzdXSutS+qzMdMoXLlzILr/8ctatWzeWnp7OUlNTWefOndnYsWMNNTricZqawO7du5d99tln7JZbbmHHHnss69q1K8vOzmZer5c1b96c9evXj1199dWWFtteuXIl+9///sd69OjB0tPTWWZmJuvbty+76667DIlweXm59Fn7/X5WVFRk4R3WZ/369ezuu+9mgwYNYnl5eczr9bK0tDTWuXNnduqpp7Inn3xSURIZaxiBZSzyIObjjz9m5513HuvcuTPLyMiQvoPDDz+cXXnllWzq1KmsrKxMcX8rAssYYwUFBez2229nPXv2ZKmpqSwnJ4cdfvjh7Pnnn2fl5eVMEARpEW+t1HE5giBIi5A3b95cM+XRKRpbYEW++eYbNnLkSJaXl8cCgQDLz89nF1xwAfv9998ZY8Y6qiKCILAZM2aw8ePHsx49erCsrCzm8XhYTk4O69evHxs3bhybNGkS27dvX9R+Y8aMkY5x9913ax6DMcYuuugiafvbbrtNd/tEYtasWeyCCy5gnTp1YikpKSwzM5MddNBB7MYbb3Q0jT0UCrH8/HwGgI0YMUJ3e7MdWKV+Q2lpKZsxYwa7++672dChQ1mPHj1Y8+bNmdfrZTk5Oax3795s/Pjx7Ouvv9ZMQ4+lsLCQPfPMM2zYsGGsdevWLBAIsEAgwNq0acNOPPFENmHCBNPplrE0hMCKrFq1it12223siCOOkD4P8X4+evRoNnXqVMU0ajnbtm1jL730Ehs1ahTr0aMHy87OZikpKSw/P5+NHDmSvfvuu44OdTF6X1CSWKWHTnb6hEoIghA19KpTp06WUsfVcFJgq6qq2KxZs9hDDz3ETjrpJNarVy+pb5mVlcW6devGzj//fPbJJ58YfmCX6ALLmDPXdVlZGZs0aRIbP34869u3r9T/b926NTvmmGPY008/rZmiaxaj7sRYdKqwksQyZq+vp8Zll10mHZfjOLZx40ZT+x84cEDqU1155ZWm9tWDY0xlpiKCIBqV2bNnS5Ot3HjjjaYnFCLss3LlSmmGPKPfwY8//ogRI0YAAG666SYpzY8gkokJEybg1ltvhcfjwebNm125nA5BEAThHt577z1cfvnl4DgO//zzj3MTOKERZyEmCEIbcVxIZmZmg45FJdT5v//7P+l3o2NvJ06cKP2eDGu/EoQS11xzDVq3bo1wOIxnn3023tUhCIIgXIy8rRgzZoyj8gqQwBKEaxAF9tZbb0VeXl6ca5N8LFiwQHP92ddee02aDKhdu3aG1ub7+++/pYk4hg8f7vgNmiDcQmpqKh5++GEAkSV61NYmJAiCIIjJkydj7dq18Pv9jkyyGwulEBOEC9i7dy9atmyJ3NxcbNiwAZmZmfGuUtLRrVs3VFVV4ZRTTkH//v2Rl5eHmpoabNiwAdOmTYuaKfGbb75RFdhZs2ZBEASsW7cOzz77rDQ736+//opjjjmmUd4LQcQDQRAwcOBA/PXXX7j++us1174mCIIgmibhcBgHHXQQ1q5di7vvvhtPPfWU48cggSUIoknQrVs3bNiwQXOb1NRUvP3227joootUt1Gaft/oeNk5c+agoqJCv7IK5ObmYvDgwZb2JQiCIAiCSBZIYAmCaBIsWrQIX375JRYtWoQdO3agqKgIFRUVaNasGXr06IHhw4fj2muvRatWrTTLEQU2IyMDPXr0wLXXXovLLrvM0LqxnTp1ktajM8uQIUMwb948S/sSBEEQBEEkC/VX/CYIgkhCjjzySBx55JG2y6FnfgRBEARBEPGDIrAEQRAEQRAEQRBEQkCzEBMEQRAEQRAEQRAJAQksQRAEQRAEQRAEkRCQwBIEQRAEQRAEQRAJAU3iRBAEQSQVgiCgsrISFRUVqj9VVVUIBoMIBoOorq6Wflf6fzAYRDgchiAIUf8q/U0QBACR2arVfsQZqzmOg8fjgc/nk368Xq/i7+JPSkoKUlNTkZKSovp7amoqUlNTkZ6ejvT0dHi91NQTBEEQyQO1agRBEITrYIyhrKwMJSUlKCkpQWlpqeLv8r+VlZWhsrISlZWV8a6+q0hNTUVGRgYyMjKQmZkp/S7/ycrKQk5OTtRPamqq4rrHBEEQBBFPaBZigiAIolFgjOHAgQPYt28f9u/fH/VvcXFxvf/X1NTYOp7H40FqairS0tLq/aSmpuKHD34BJ3CAwAECav/lwLGY/wscILaUrPZ3Jvtd9ndO/L/sJcgdkJM1uZz4U7sjD7DafyP/Z9LrjEfk/zwDPAwnX3kCqqqqUFlZiaqqKtXf7eD3+5GdnY2cnBzp35ycHDRv3hy5ublo0aIFcnNzkZubi4yMDJJdgiAIolEggSUIgiBsIwgC9u/fj927d2PPnj3Ys2dP1O979uzB3r17EQwGTZWbmpqKrKwsZGVlITMzE1lZWfhlymJwIR4I8eBCHFDDgwtzkf+HOSDMAWEeEAAOTVeqGBeRXXgFMC8DPDH/egWMuukkKaJdXFws/VRXV5s6lt/vl2RWLra5ublo3bo1WrZsidzcXHg8ngZ6twRBEERTgQSWIAiC0EUQBBQVFWHXrl3YuXMndu3aJf0UFhZiz549CIfDhsrKyspCs2bN0Lx5cyyfsxpcDR+R0GDtvzWeut9Z0xXQeMJ4AfAJYD4G5hMiEuyL/G3EFcdi7969KCoqQlFREUpKSgyV6fF4kJeXh9atW6NVq1b1/m3VqhX8fn8DvzOCIAgi0SGBJQiCIAAAwWAQO3fuxLZt27B9+/YoUS0sLNSNnvI8jxYtWiAvLw95eXn4dfISoDoio1ztvwh6SEqTDMYzwBcG8wu1P2Gcd99p2Lt3L/bs2YOCggJDDzg4jkOrVq3Qrl076ad9+/Zo37492rZti0Ag0EjviCAIgnAzJLAEQRBNCEEQsGfPHmzbtg3btm3D1q1bsX37dmzbtg0FBQXSLLpKeDwetGzZEm3atMHfM1eDq/JEfqojPwjyTTpll1CHgQF+ASwQln5G3jgUhYWFKCgoQGFhoe6Y3by8PLRv3x7t2rVDhw4d0KlTJ3Ts2BGtW7eWZnYmCIIgkh8SWIIgiCREEATs2rULmzZtkn42b96Mbdu2aY5vTEtLQ35+Ptq3b4+57y+sE9QqTySaSoJKNAAMLJKynBIGSwnjwsdHYceOHdixYwe2b9+OsrIy1X39fj86duwY9dOpUye0b9+elhAiCIJIQkhgCYIgEhjGGHbv3l1PVDdv3qwa0fJ6vWjbti06dOiARZ8tA1fprf3xRMadkqQSLoKBAV4GlhICSw1j7JNnYevWrdiyZQu2bdummtru8XjQrl07dO3aFV26dEG3bt3QrVs3tGzZkmZMJgiCSGBIYAmCIBKEUCiErVu3Yv369VE/atEpMTK14bdt4Cq84Cq84Cu9QBVFUonkgIEBKWEIqSGwtBBGXDMYW7ZswebNm1XXA87MzETXrl2ln27duqFz5840xpYgCCJBIIElCIJwIdXV1diwYQPWr1+PdevWYf369di4caNitMnj8aBDhw7YurQAXLlXklWORJVookhjbtNCENJCGHb1Ufjvv/+wZcsWxcmkeJ5Hhw4d0LNnT/Tq1Qs9e/ZE9+7dkZKSEofaEwRBEFqQwBIEQcSZcDiMzZs3Y/Xq1Vi9ejX+/fdfbN68WbGjnZqaiu7du2PVrP8islrui8gqzexLELowjoGlhsDSQzj7/pOwYcMG/Pfffzhw4EC9bT0eDzp16oSePXuid+/e6NmzJ7p06UJL/RAEQcQZEliCIIhGZs+ePfj3338lYV2zZo1iumNOTg66d++Ov6b9C66sVlYpqkoQjiJGa4X0Gox7/mysWbMGa9aswb59++pt6/P50LVrV/Tq1QsHH3ww+vbti9atW9OYWoIgiEaEBJYgCKIBCYVC2LBhA5YvX46VK1fi33//xZ49e+ptl5qail69emHFN+vAlfrAl/loWRqCiBOS1GbU4IInT8eaNWuwdu1alJSU1Nu2RYsW6Nu3r/TTvXt3itISBEE0ICSwBEEQDlJVVYV///0XK1euxPLly7Fq1ap60VWe59G5c2ds+m0n+DIfuNLaNGCSVYJwLQwMCIQhZNbgrPtPxD///IN169bVS/X3+/3o2bOnJLT9+vVDVlZWnGpNEASRfJDAEgRB2KC0tBTLly/HihUrsGLFCqxdu7ZehzY9PR19+/bF0qmrwJf6I+nAAh+nGhME4RSMZ2AZNbjs/0bjn3/+wT///FNvPC3HcejWrRsOPfRQHHrooSS0BEEQNiGBJQiCMEFVVRVWrlyJv/76C3/++SfWrVsHQRCitsnNzcW+1WXgS3zgSvwUXSWIJgIDA0sJg2XW4JTbjsPy5cuxdevWqG1ihfbQQw9FZmZmnGpMEASReJDAEgRBaBAKhbB69WpJWFetWoWampqobdq3b4+dS4vAl/jBl/iAappoiSCICMwXhpAdxMg7j8eyZctUhfbwww/HEUccgb59+9KatARBEBqQwBIEQcSwbds2/PHHH1i8eDGWL19ebwxrXl4eilaVgi8OgD/gBxf0xKmmBEEkGnpCGwgEcOihh2LgwIE44ogj0LFjR5rlmCAIQgYJLEEQTZ6qqiosW7YMixcvxuLFi7Fjx46o17Ozs1G6oQr8gQC4Yr/9pWy4mPGvTFDejiAI9yG/fh24dpkvDCEniOE3HoUlS5agqKgo6vW8vDwMHDgQAwcOxGGHHYacnBzbxyQIgkhkSGAJgmhyMMawbds2LFq0SIqyBoNB6XWv14uDDz4YK6b9B744BVy5zeVsYoU1qjIkrwSRcKhd0zavZwYGli7gyrdGY8mSJfXuTRzHoU+fPjjmmGNw9NFHo3PnzhSdJQiiyUECSxBEkyAUCuGff/7BggUL8Ntvv2Hnzp1Rr7ds2RJ7V5RF0oKLA3WzBFvpkGoJqwiJK0EkPnrXutXrvLZcxjOwzGqc89iJ+OOPP7Bx48aozVq3bo2jjz4aRx99NA499FBaf5YgiCYBCSxBEElLZWUllixZggULFmDhwoUoKSmRXvN6vejXrx/+/nI9+P0BcJUKMwUb7XwaEVYr5RIE4X7MXP9mrn2Fcpk/jBsmj8Vvv/2Gv/76Kyo6m5qaioEDB0pCS6nGBEEkKySwBEEkFfv378dvv/2GX3/9FUuXLo3q4GVlZaHsvxrw+1Kio6xK6HU0zUqr0XIJgkg8rNwPjNwLNMplvAAhO4hT7jwGv//+e9TYWZ7n0a9fPxx33HEYMmQIcnNzzdePIAjCpZDAEgSR8BQVFWH+/PmYO3cuVqxYAfltrU2bNtj9Zwn4fSmRNVmNjmWN7VxaFVatMgmCSB7s3iOU7g8Gy4yMna3BRRNOw++//45169ZFvd63b18MGTIEQ4YMQevWre3VkyAIIs6QwBIEkZDs378fv/zyC37++Wf8/fffUdLas2dP/PfDzoi0ViikBushdiSdkNbYMgmCSF6cumfI7xcWymSBEK58bzTmzZuHVatWRb3Wq1cvHHfccTj++OPRvn17uzUlCIJodEhgCYJIGIqLi/HLL79g7ty5WLZsGQShrpPXp08frP1uOzxFKeCC3jjWUgGSV4JoOjj54AuI3D9slMn8YVz70fmYP38+VqxYEXXf7NWrF4YPH46hQ4dSmjFBEAkDCSxBEK6msrISCxYswJw5c/Dnn38iHA5Lr/Xq1QvrZ+2MSGu1y6RVhOSVIJoeTkusQzBfGDdMGYv58+dj2bJl0v2U4zgMGDAAw4cPx5AhQ5CRkRHnmhIEQahDAksQhOsIh8NYtmwZZs+ejV9++QWVlZXSaz169MDGHwvA77EvrRxfl1rMhAa4FZK8EkTTxWGJdfp+xbxhXPfpBfjxxx/xzz//SH/3+/048sgjMXz4cBx11FEIBAK2j0UQBOEkJLAEQbiGjRs3Yvbs2fjxxx+xZ88e6e/t2rVD4aIS8EVp4Ku8tjpv8k6gCMkrQRANQgNKrIjd+xfHcxACIYx//Qz88MMP2Lx5s/Raeno6TjjhBJx66qk46KCDwHEm5xMgCIJoAEhgCYKIK8XFxZgzZw5mz56N9evXS3/PzMxExX8CPHtSwZVFzx5stsOm1OmzWpYhSF4JghBpBIkVsXI/i4rsgoGlhXDOU8PqPUjMz8/HyJEjceKJJ6JFixamj0MQBOEUJLAEQTQ6giDgr7/+wjfffIMFCxYgFAoBALxeL4TdXnj2pIEvTgHHrEcbtDp5ZssyBckrQRCxNKLEipi5vylGdsEgZAUx9JbDMG/ePFRXVwMAPB4PBg0ahJEjR+Koo46C1+vS+QcIgkhaSGAJgmg09u7di5kzZ+K7777Dzp07pb/37NkTG2YVwFOUCi7k0SxDq1NmpFNnpBzLkLwSBKFGHCRWRO9+p1cW8wi46fOL8d1330Uty9OsWTOMGDECp59+Ojp27Gi4PgRBEHYggSUIokEJh8P4448/8M0332DhwoXSrJfp6emo2gB4dqeBr/AbKkupE2amE6dXli1IXgmC0MNBiXX63me0PCGlBuc8MwyzZ8/Gvn37pL/3798fZ511FgYPHkxRWYIgGhQSWIIgGoTi4mJ8++23mD59Onbv3i39vW/fvlgzY3sk2iqY68zJO15WO2+x5TgGCSxBEHrEMQqrhJ17KuMYHv75Bnz77bdYuHChtL5sixYtcPrpp+P0009HXl6erfoRBEEoQQJLEISjrF27Fl999RV++uknBINBAEBWVhbK14bh2Z0OvtJnqVwmMNudNbEcxyF5JQjCKC6TWBE791jmD+G8CSfi22+/xf79+wFExsoec8wxOOusszBgwACawZggCMcggSUIwjahUAjz58/HV199hZUrV0p/79WrFzZ8Wwi+KFVxQqZ44ajEkrwSBGEWF6QSaxRo+b7GOIa7v78S06dPx/Lly6W/5+fn45xzzsHJJ5+M1NRUp2pKEEQThQSWIAjL7N+/H19//TVmzJiBvXv3Aog8dWeFAXgL0sGV+aKWvzGF2MFzWBCdWDNRKsdu3RroPRIEkQC4VWLl9bJxbxJSa3DqQ0djzpw5qKioABDJxhk1ahTOOuss5Obm2q0pQRBNFBJYgiBMs23bNkydOhWzZs2S0oSbN2+OAytC8O7OAFfjsdbxie3QuUReYzuHtuS1gd8jQRAJRCJIrIjFezrjBVzz8bn4/PPPpdnnvV4vhg0bhvPOOw/du3e3WVmCIJoaJLAEQRjm33//xeTJk/HLL79AvHX07t0b/31TCH5fWl2asNmOjlonLo4Cq9YZtCSvjfT+CIJIQByS2AYXWBGL9z8Ghgd+uAafffYZVqxYIb08YMAAjBkzBoMGDQLPOzs+mCCI5IQEliAITQRBwOLFi/Hpp59GjWni96fAuysLXKm/fpqw0Q6Ok50kHYzKq1Yn0JS86nVKSV4JghBJNIkFbN0LhfRqHHfzIZg7d660tFrHjh0xduxYDBs2jJbhIQhCExJYgiAUCYVC+OGHHzBlyhRs2rQJQCTti+0MwFOQqT6bsF6nxmhHzUHB05NXo50+QwJr5P2RvBIEIceNqcRm6mTxvsj8IZz1zBB88803KC8vBwC0bt0aF154IU455RQEAgHjdSAIoslAAksQRBQ1NTWYPXs2PvroI+zatQsAkJaWhur/PPAWZICr0XkyrtaRcbIzZBI1gTXT0dOU1zi+N4IgkoREjMLGYvEeyTwCxr81Ep999hmKi4sBROZVGDNmDEaNGoW0tDRz9SAIIqkhgSUIAgAQDAYxc+ZMfPzxxygsLAQANGvWDKXLBXh2Z4ALW4ycWumUNWD01UrnTlFe4/y+CIJIQtwmsVbrY/F+KU74NHnyZOzevRsAkJmZifPOOw/nnnsu0tPTrdWHIIikggSWIJo41dXV+O677/DJJ59gz549ACJPvkuWCfDsTgcnWIwuOtXxsYFcXq126OrJqwveF0EQSUyySCxg+d7JOIZbvhqLTz75BNu2bQMQWYLn/PPPx9lnn00RWYJo4pDAEkQTJRQK4fvvv8cHH3wgiWtubi6Kl4Yi4sosRhjtdr5cJnp2142tLcR+GQRBNA2SSWBFLLYNDAx3f3853n//fWzduhUAkJ2djQsvvBBnnXUWUlJS7NeNIIiEgwSWIJoYgiDg559/xrvvvosdO3YAAFq2bIl9i2vg2ZNetxSOGcSOkhtkj+MbdQIoEwU5Uw7RsDAGcA50/J0qh2iauE1iPR7b93fOw4OFrd0HGRju+OYSvP/++1K71bx5c1x44YUYNWoUTfZEEE0MEliCaCIwxvD777/jnXfewYYNGwAAOTk5KF/BgS+wIK6xHSM7nRu5AFsVPXmHzyFZJHltYojNoR3xlDepJLCEHRyQWEcFVsTGfZHz1L0nKzLLwHDr9IsxadIkaZLB1q1b4/LLL8eIESNoHVmCaCKQwBJEE2DlypV4/fXXsWrVKgBARkYGqtZ64S3MBGpMFqbWIbLSqZGXZVVeYzt5JK+EWWKbQavi6VQ5BCHiVokFLN3z5QIrYikq6+Vw/eTzoobAdOvWDddccw0GDhwIjq49gkhqSGAJIonZsWMH3njjDcyfPx8AEAgEEN4cgLcgC1w40hkx1XnQ6giZ6cwolWNGYNU6dW5LHSZ5dT9qTaCZDrATZRCEEm5KJY4VWBET90olgQXMS6xYDuMFjH/zVHzyyScoKysDAAwYMADXXnstevbsaapMgiASBxJYgkhCSktL8cEHH+Crr75CKBQCz/PgCtPg25ldbx1XQx0Hvc6P0Q6MVvTWiOzpdebcFH0leXU3ek2fEfl0ogyC0MPNUVg5Bu+bahILGBfZ2DKYJ4wznjoa06ZNQ01NJK1oxIgRuPrqq9GyZUtDZRIEkTiQwBJEElFTU4Pp06fjgw8+QElJCQCAP5AC37Zm4Kv8ivtodhiMdnr0Oi5GBFhL+Ix04Nwkr5GCnCmHcB4jzZ6efDpRBkEYxS0SqyWwIjr3UC2BFdETWbUyBH8Ix9/RF3PmzAFjDCkpKbjoootw/vnn00RPBJFEkMASRJKwZMkSvPzyy9JSA507d8aO2eXwlKSq7qPaSTDb0VHrsJgRYCXhM9Npc5PAkry6EzPNnZp8OlEGQZglkQRWROVeakRgRbREVqucV5bdj1dffRUrVqwAEJno6dprr8Xxxx9P42MJIgkggSWIBKewsBD/93//J41zzcnJQfnfPDx7M8BBu6Gu1zmw0sFR6qSYKUdJXs121kheCT3MNnVKnVwnyiAIqySixAKKbYQZiQWURVavDAaGu765FBMnTsTu3bsBAIcccghuuukmdO/e3dTxCYJwFySwBJGgBINBTJkyBR999BGqq6vh8XiAnWnw7cwBFzbWOZA6BXY6NfLOiVUBFqXPagfNAWkkeU1SrDZxcvl0ogyCcAKbEhsXgRWR3WPNCqyIXGSNlsF4ARe8OhyffvopqqurwfM8zjnnHFx++eVIS0uzVA+CIOILCSxBJCB//PEHJkyYIC3ozpcG4NvaHHyl8jhXNRy5/AVmXYBFebXTKaPoK6GGnfNblE8nyiAIp0jUKKwcgVkWWBEWFkyXIfhCOPrmHpg7dy4AIDc3FzfeeCOGDBlCacUEkWCQwBJEArF//368+uqr+PHHHwEALVq0QMkSDp59abrpwkrE/fJ3yYRJJK9JSLzPbYAElmgY4h2F5Xh7WTtiMXG6Ph6bd0PUA+BBgwbh5ptvRrt27eJSH4IgzEMCSxAJAGMMs2bNwmuvvYaSkpLIsji70uHbkQNOMNmZ4WvXzwuHLddH7HjYvn24RBxtC6ydOnA8ya+TuK1JI4klnMYNUVgHJJbzeADB5r3P4wEstGWMYzj/1aH45JNPUFNTA7/fj/Hjx+OCCy6A1+vVL4AgiLhCAksQLmf79u144YUX8OeffwIAuEo//FtzwZf6zBXEx6ybZ6HRj31ingwCGzd5FTuhJK/O4PamjESWcJIkiMJy8jRkqyIrL8NCmyakMxx8cUssXboUANC9e3fcfffdNMkTQbgcEliCcCnhcBifffYZ3n33XQSDQfj9fgibM+HdkwNOYOYaa75+Z8eMwCqlejk2ftYO8ZZXK3WQdzxJXp0hUZoxkljCSeIpsU6lEceOpTUrsrH7m5VYnw8MDLd/fgFeeeUVlJSUwOPxYOzYsbj44ovh95ubV4IgiMaBBJYgXMj27dvx1FNPYeXKlQAAvjQVvu0twQd9kQbeaCOtIK4iRgRWa4wSRV9NHj+2s0ny6gyJ2ISRyBJOkGxRWDlGRVZtfzMi64tkMzFvCIOu6ygtSde5c2fcdddd6NOnj/GyCIJoFEhgCcJFCIKAadOm4c0330RVVRVSU1MRWpcBz76sukmajAishriK6Ams3gQbcRfYRJFXtU4mCax9Ern5IoklnCDBo7CqAgsYk1i92ZCNiKwvejjOPTPGYcKECdi/fz94nseFF16ISy+9FD6fyWE7BEE0GCSwBOESCgoK8PTTT+Ovv/4CUBt13dYSfE1Mo6knsDbl1cjMkJQ+rHN8vU4lyas9kqXZIokl7JLgAgvoSCygL7J2JVZBTJknjME3d5Vm/O/Rowfuv/9+dOrUSbssgiAaBRJYgnABc+bMwYsvvoiKigoEAgEIGzLhKcpWXhpHTWANiKuIksCaWdKAoq8qxzfSmSR5tUcyNlkksoQdElxidQVWRE1kje6vJrIakdV7ZozD888/j5KSEvj9flx77bU4++yzad1YgogzJLAEEUcqKiowYcIEzJ49GwDAl6fAt7Ul+KDGxBFKAmtCXoH6Amu2MSaBjTm+0Q4kyas9krm5og4xYZWmIrCAssSa2V9JYnVSg5k3hIMvycOSJUsARNaNveuuu5Cbm2v8uARBOAoJLEHEiTVr1uCRRx7Bjh07wPM8+J3Z8BY2V466ypELrElxFREF1upTZFu3jWSSV7MdRxJY6zSFpooklrBKAkusKYEVkYuslf3lImtgbCsDw9XvnYaJEyciGAwiOzsb9913H4488kjzxyYIwjYksATRyAiCgKlTp+Ltt99GKBRCy5YtUfy7D57yVKMFRBpfi/IKRAQ2LvIKJLbAise20lkkebVOU2umSGQJsySwwAI2JdbKvkCdxJqYnOnN5Q/isccew/r16wEAF110ES6//HJ4vV5rdSAIwhIksATRiJSUlODxxx/HokWLAAB8cTr821uCC5tMobIVAbUpgPEU2HhHX60fOD7HTQaaahNFEkuYJZ4Sa1UixWPb2V8Q7B3f7BAcTsDJDx6C6dOnAwAOOeQQPPjgg2jZsqX1OhAEYQoSWIJoJNatW4f7778fBQUF8Pv9YBuyo5fHMYIdeRU7xGYXehepbeSNrB+rSiJHX+0dOD7HTQaachNFEkuYId7rwtqQSFsCC4Dzeu21TRYymu6aNhbPPvssKioqkJ2djfvvvx+DBg2yXgeCIAxDAksQjcB3332HCRMmIBgMgqv2wr+lDfjKgKkyOA8PFjawBqzizlykgTayhmwssobdSgdBTFVmjDVNgSV5tQ41TySxhHESWGABexLL1abwWpVYzifub+5+LfiDyD8jIKUUX3bZZRg3bhx4G0N8CILQhwSWIBqQ6upqvPzyy/j2228BAHxJGvxbW5lKGeY8YuTTgnyK4grYltdIHYzvHzvGNt4CS/KaYFDTVAdJLGEUGxKbyAIL1EksYPFhq0++v/F7d2xK8bHHHov77rsPaWlpputAEIQxSGAJooHYu3cv7rvvPqxevRocx8G7qzk8hTmGU4ZFcRUxJbBycRUxI7AqT4+NdgqUJoiyLbCJFH0lcbUHNUvRkMASRmmq42ARLbAiph66+pT2N34vv2nyuXjhhRdQU1ODTp064YknnkCHDh0M708QhHEox4EgGoC1a9fi6quvxurVq5GVlQX/hjbwFjYzJK+ch7curxwX6URYlVeetyWvHMc1jLwmEiSv9iB5rQ99JkQiYGcMKmzOrwCAhUL1/sZ5PIbFmNUo7V+/PVbj5Qu+wKuvvorc3Fxs3rwZV199NRYuXGhoX4IgzEERWIJwmHnz5uGJJ55AdXU1uGo/Alvbg6/06M7eq9VI6gqsUsRVjhGB1Rmzo9e50FqWJ97pw5HdG+FWR/JqD2qOtKFILKFHEx4HCyhHYeXotmMKUdjo/bXv8ZzXC+YNoes5Kfjnn3/AcRz+97//YfTo0ZaXriMIoj4ksAThEIwxfPDBB3jvvfcAAHxpOgLb24Kr0V96Ru8Jr6bA6skroC2wBiebUGv4jTTKSS+wJK72oabIGNQJJrQggdXdRkti9QQ2sr8BieUYht/VA9988w0A4Oyzz8b1119P68UShEOQwBKEA9TU1ODZZ5/F7NmzAQDeombwFbSMpAyHw6oCayQ1SVVejYgroC6vZte+iynDzNPkpBZYklf7UDNkHBJYQosmLrCAMYkFNB7KGpDYyP7K935pRmQwXPJ/QzFx4kQAwFFHHYWHHnqIJnciCAcggSUIm1RUVOCBBx7AkiVL4PF44NmWB+/+nLoNFATW6JgaQEFgjYqrSKzAWpneXxCi3oPZVKikFViSV/tQE2QeklhCjQQXWKBxorBy6j2cNSiwdftHtwOxx7/7ywvx+OOPIxgMonv37njmmWeQm5tr6hgEQURDkzgRhA327duHG2+8EUuWLEFKSgq8G9toyquZCSHqoTZBkxks7iu+B7VJmpokJK/2IXm1Bn1uBOEYZiZ6Ut4/ul2PnUzq6XM+xcsvv4ycnBysX78e11xzDbZu3Wr5eARBUASWICyzbds23HHHHdi5cycQ8iCwpT08VanRG9UKrFVplaKvZqOucgTBdoeXhcO2xDWpIrAkrs5ATY996GESEQtFYE1HYOWI0VizUdjoMgTFOgi+IFoOD2Hr1q3Izs7G888/j549e1o+DkE0ZSgCSxAW+O+///C///0PO3fuBBf0IWVTx/ryynOAz2s94oraVN04RV3r1cMiSbWEDsmrM5C8OgN9joTbsLkUjiPYkHC70dhIGTygILB8jR975vjRs2dPHDhwADfddBP+/vtvW8ciiKYKCSxBmGT16tW48cYbUVxcDK4ygJSNHcEH/dEbiQ2oncac4201xBJu6FC4ANuRBcIZSLqcxe7nSd9HcpEMD9k4zlZ2AasJ2W87vV5FCTVMTVBxfy7sxdbpAvr374+Kigrcfvvt+O2332xUlCCaJiSwBGGClStX4pZbbkFZWRn4ilSkbM4HF5Y1UjwHeHj7qX1208BorCrhRkiW3IX4fdD3klwkg8QC1ttR8XzmOWdE1u7+MWVwggdrPinHMcccg2AwiPvvvx8//fSTveMQRBODBJYgDPLXX3/h9ttvR0VFBfjyVAS2tAcn1KYaOSmuorwyQXe9OcUiSFwJN0KS1HBY+Wxj96HvJ7lgQnKIrM1oLABrEhusqfvdbjRWoQyO8fjrrb046aSTEA6H8dhjj5HEEoQJSGAJwgBLlizBnXfeicrKSvBl6Qhs6RCR14YQV6tFUNS14bH5HTVZSI4aHic+Y/qeko9kkFjAGYmNd1pxTBkcOPzy4maceuqpEAQBjz/+OH7++Wd75RNEE4F6YwShw/Lly3HvvfciGAyCL01HYGs7cKx2fKpao8qYsbGnTUBcOc6BjgORuJAUNR5GP2ut7ej7Sj4aU2IdmIVYFaeisY0lsjVB7TIQkdi5z23AKaecIkVi586da69+BNEEIIElCA3+/fdf3HXXXaiuro7I67b24DiPK8a5ApQuTLgckqHGhyKxhBLJklIMOLN8lBMPVR2KxnLgMO/5jTj55JMRDofx6KOPYt68efbrRxBJDAksQajw33//1Y15LUtDYEd7cLyH0oXjhRPC70SnhdKIjUESFD+ciLDS95ecaEhsQs3UnmjRWJ0yOK8P81/YFCWxS5cutVcuQSQx1BMjCAW2bt2KW2+9VZptOLAjHxxspkaRuBJNBZKf+KP0HZj9Xuh7TE6SLRqbJCLLeX2Y//I2nHDCCQiFQrjvvvvw77//2qsXQSQpJLAEEUNRURFuv/322nVeUxDYnh8Z82oHShcmmgokPe6B0okJLZJFYoGkSSvmwGHRm4U4/PDDUVlZibvuugubN2+2Xy+CSDJIYAlCRkVFBe666y4UFBSAC/qRsj2/bqkcK1DUlWhKkOy4FzvfDX2vyUuySWwSRGM5xmPVp+Xo3bs3Dhw4gNtuuw2FhYX26kQQSQYJLEHUEgqF8NBDD2HdunVAyIPAtnxwYRtPUynq6kpoHGwDQZLjThijSCyhTTJJLJAU0ViOebD5G4b8/Hzs2bMHd955J8rLy+3XiSCSBOqFEQQAxhheeOEFLF68GBA4BLbng6/xmy/I4wHn89lLI5LWlnXJ5Sk41LlxwQQhTGBgghOd+STq8NkVHKcEiXA/9D0nNbbvjRwPOHJ/daAMB7Kf4PHYXhaIC/jBBSz0JQBwYS92z01BixYtsGnTJjzyyCMIG1mejyCaAC7pIRNEfJk8eTK+++478DwP/8728FSlmiugVlw53uYlpbW2bLyw8Z4YY2Au6fQ6Jq7JJq/x3J8gCFfhyH1SYJZFlhOF0akHY048CHZgbVurIsuH/HjyySfh9/uxaNEivP7667brQhDJAAks0eRZvHgx3nzzTQCAt7ANvGWZ5grweJwRVyfWlnURbhFXwEF5TSZivx+aoZYwAn3vSY9jmSoUja1fFQsSe8vxr+K+++4DAHz++eeYMWOG7XoQRKJDAks0abZt24ZHHnkEjDF4S3PhLWlhfGcnoq4NLK4cxznS6JqlweTVZCeEUoZVoMgrYQf6/pMLlfuqqyTWxDnH+VSG8DgVjY1DWvGzl3yNK664AgDw0ksv4e+//7ZVB4JIdEhgiSZLeXk57r333shar1Xp8O/rAA4GRdKpqGsSRVwBAynDjTgO1pHOV6QgZ8pxC1rfj5FOIskLAdB50EQwfB/VkkMbKcXRlXGgLk5EY4G4RGM/feAvjBgxAuFwGA8//DD27t1ruw4EkaiQwBJNEsYYnnzySWzZsgVcyIfA3q7gwANeb2QSJjUSIOoaL5IyZbgpyauRbVz0HRMugM6HJoHrUordNDa2EaKx4uscOPz27l506dIF+/btw8MPP4xQKGTr+ASRqJDAEk2Sr776CgsWLIDP50NgT1fwYQ1pBeIzSZOHj0v6ryIa77vRJ2rS6HhQyrAGlDZMNAR0XiQ2JkSuoSd44sy0dw09NjYQMF5OQ0/yJOszcIzHY489hrS0NKxYsQJvvfWW7WMTRCJCAks0OdatWyfN5McVtoYnmK69A03SpIolcW2gNGJKGVbBSsTC7gRPRNOCzo8mg+J91ko00y0TPAGuicYCxtKKrxr8Iu655x4AwJQpU/DLL7/YPi5BJBoksESToqKiAg8//DBqamrgqciGtzRPfeMkWRqnoSZySrqU4UhBzpTjFuyu72q3DKLpQOdJk8HNKcWqEzjp4dS664205M7T46ZjzJgxAIBnnnkGe/bssX1cgkgkSGCJJsWECROwffv2yLjXok7qkzbZjLpyPA/4fckVda39PFyxtquss0HyqoIT31G8v2cisaDzJbGwKW1OphSbSh9WrExtXey8JycnePJ4wKWk2CpGT2K/eXY9evbsidLSUjz11FMQhCRrwwhCAxJYoskwd+5czJ49GzzPI7C3MzhB4Umt1wME/A5EXflI5NMuTo2DTbaGrVY2SV4JgiAs4qb7nhNtFGOOvCe74ilhNRosgwv4wdKU68OBw/33349AIIClS5fiq6++sn08gkgUSGCJJkFxcTEmTJgAAPDsbwlPdWb9jbweMK9NWeRrhdNFUVfGWKReduvkFgmWdVC4RlyWJ+Fw0TlIEATcGaF2QmKdmrHdZhvDeb2RiK4TEstxzjyE9nntiyzPqUrsNce9hOuuuw4A8MYbb2Dz5s32jkUQCQIJLNEkeOmll1BcXAwumAJfcZvoF70esBS/M/LqMmlwJNVXEKI6FrYadbvrATZUxMCp8U8E0ZRx2f3PlTi1DIyTOHVftVgO55Hdf2PaG0s4JLGAzfZOjkMSqySyb948H4MGDUIwGMQTTzxBS+sQTQLqtRFJz7x58/Dzzz8DDLXjXmWnvULUlfm8gJkFxtWirl5v5IlwHHBsnKqTUVe76b4qHRLHorDJKLEkFERjQeeaNm6f2duC8Cnee52SYackNk7RWC5VIWJqIRrL0lPr/sNzitFYDhxWfFmJjIwMrF27llKJiSZBEvbYCKKO0tJSKXXYVyJbMieRoq4mx8GqiqvZurpFXp1KT2uqkFgQhDtxo8QmaEqx4sNiMePHRF20Jk4yJbFa25qRWKWHBArRWD7sw7XXXgsAePfdd1FYWGj8GASRgJDAEknNO++8g/3790enDjsx1hVwXcqwo1FXnY6D4Ya8kVKGKQpLEHHERfdBV6J1X3abxAKG7ruG7rlGyvHo3HOdTCl229hYOyhEY1+7/icccsghqKysxIQJE+K/WgBBNCDUWyOSlvXr12PGjBkAgMC+fHBen+Goq2YasVsnanICt0RdAYq6OomLzlUiyaBzyz5uFI04j4uthxMS67axsTopxVHpw2rIorEcONx+++3wer34/fffMX/+fPt1JAiXQgJLJCWMMUyYMAGCIMBT3gyecE58oq5OjYPVSCM2Ja9a9TfZQdBswOMgrxSF1YFEg3AaOqf0MXp/TiCJNX2vVStHL/oai0obZaqN1ZBYvXVX622vcv4rjn/VQk1ijX7OsmjstUNexkUXXQQAeP3111FdXW2uLgSRICRpT41o6syePRv//PMPIPDwVXRO2uVxGitl2Fx5NN6VIAjCtJS6dYZit42LdXtKsZV+goPL7Xz2/Frk5eWhoKAAX3zxhb0yCcKlkMASSUdVVRXeeustAICvvD14IWCpHCmN2O5Y1waIwtoSV/n7sbvunvxzccESORSF1cFFD2CIBIfOpYbDbRILSPdn2/dYsRyz0ddYatsuy21rTEqx2ehrLGJbaDr6GkutxBpKH1aC58DxXlx99dUAgI8++gj79++3VyeCcCFJ2ksjmjJfffUV9u7dCy4cgLeijf4OanCc6yZqApJ0vKtDMJfUgyCSGpfdE12J3fu0W6OxbirHiTbM6XGxDo2NFTKsPXgXeeGWuejVqxcqKirw3nvv2a8TQbgMElgiqSgtLcUnn3wCAPCVtY9e89UMHBeJeDqBE50QWWfGqSfX4OnyV4XSmAlCHbeJlRtxSvLd9FlzvDMPCTnemQexHo/9oTQ8B/j8jg3JYR4ezIm+A8dBSLMeFebA4brrrgMAfPPNN9iyZYv9OhGEi6AeLJFUTJkyBaWlpeCEdPBcO2uFyOSV+byA32e9QmKD6PGYWsu1Xhl203NFnIy6ugzHoq8krwShj5vEyq0ko8Qicq+1fb8VmAPyWdeFtS2ftW2srXLS6tJ+7UhsuHlG5BebEnvn1V/jmGOOgSAI+OijjyyXQxBuhASWSBr2798vTVjgCXcFB5OdB44DvJ7oyKvV8T4K6V+Wpt1nDokrUF9exRRpm3AcZ/1ziirIWl0c6UzVFeZMOW6G0j8Jp3CZWLmSZJFYhfuzpfuuvBw70qjwQNiZSQ2tSyyLaQctR2Pl50ytxFoRWcYBl1xyCQDgxx9/xLZt28zXhSBcCgkskTR8+eWXqKysBCdkgWd55nbWSBk2HYVVa/zMRGFFAVbqIHC8Y8sPuA6TEuuouDYFeRUhiSWcIt5ilQg4KbHx+Lw17suO3IOtSKPKw1dzy8pF0ofV6mOqrDT1SZfMSKwUfZVTO7bWisReP34qjjrqKIrCEkkHCSyRFFRUVGDatGkAAE+4IzhwEFJ8YKkGbvh6413NRBd1GjxDUVgjKcNGJVZvyQG3RWFNQFFXm5DEEk5BEquPk9ebyz5vw/dirQeUZiRW50GwIflUk1dZfczUKTb6Wu91oxKrdZ6YkFgho2425PHjxwMAfvjhB+zYscNYPQjC5ZDAEknBd999Fxn7ytLAs5bGdlJKGbaK0SfjelHYhkwZbmAaM5WY5JUgXIbLpMqVODVLLdB4n7fBrBjde7KRcoxGPg0+dG20lGKN6GtUfZyY4MlgSjGTnWY3XfYFBg0ahHA4jKlTp9o7PkG4BBJYIuEJhUL47LPPAACecH7U2FfVKKzJWYY104hNNpKKUVitlGHVgjSisGbk1aEorKM0dMpapCBnyklkKApLOAlJrDESRWItDOlwYnInTWk0ORmiYjl60VeFOmmJtV70td72Ku22YvqwEjopxfLoq8j5558PAJg9ezZKS0uNHYcgXIzLeq0EYZ758+ejsLAQYH7wgoF1X60skaPWQFmdfELeCDs5yzAQ1/GuDZ1KTPLaAJDEEk5CEmuMRJFYC9S7T1uZoE9NYi08bHUqEqtYJ4PR13p1UuqDmD0nVCSWKRRz1/++RefOnVFZWYnvvvvO3HEIwoWQwBIJz9dffw0A8AjtwKH+01kpCmszZbheFNZGoyhFYe2mDMujsHrjXbUr5OooLM003MCQxBJO4kKpciVulliLs8KLNMjkTlaXooNsXKzZ6KtOncxGX6PqJOuLGI6+xhKTUqwUfQUi68KOHj0aAPDVV18hHA5bOx5BuASX9VgJwhxbt27FsmXLAACesMa6rzxvf6wrz0Uk1ue132EQo7Buiro61JlyOgrrmLhGCnOurGSDJJZwEpJYY7hZYm3CBGZbhKOE0YGHrCzsQBsg1sli9DWqPh4eNa1z7J0HspRipeiryEuPL0FmZiYKCgrw559/Wj8eQbgAElgioRGjr7yQCw7KTx6Zz4OanBQI6QF7B3NSNsWnn05MICUwZ6KnDnWAmFMTUZFsNi4u7AATCQw9EDGGk9edk8vsOHD/5XjOmfu42J44EDXkvF5AcKCc1BSAMXBOCDHPQfBbjy6LlHXKQHmHNNXXOXgwYsQIAMD3339v+3gEEU9IYImEJRQKYc6cOQAAXiH6ynwehNN9EPx8JM3HTodKJmSm14WNKkcA5JNB2H06Xds54OymADvwhJsxFnm67bC8ck6OqbX7eScrJK8E0fg01HXnIomVyrFRVtQwGRsSy3m9ddlBdiVW1p+wI7GhvCypPLsSyzwcmIdDeYc0VZH9Zup2AMCCBQtQUlJi63gEEU+oN0ckLH/99ReKi4sB5gPPWkS9xnyeiLhyHFhtQxPK8JmPwipNrmRVhGPlFYg0plaisGKHwBFZjCnD6iQZDThG1VGJJaIheSWchqKv8SfOEqt4z7ZQVr2Z9u1IbGydhLAlkeXS66cOW5ZYeZ1qJdaKyJZ1TJd+l4tsvcOxLHTv3h01NTX46aefLFWZINwACSyRsPz4448AAF5oBU52KsvlVQ4zuwafhpCZjsIqyauI2aigKK4x9bMUhXWgk9PQ8uo4FIWtg+SVcBqSV2M0xrUXJ4nVfODoSEqxeYnlvF6N8kxKrMo5blZipehrbNkWorHMU79OahIrphHPmzfP1DEIwk1QT45ISKqrq7FgwQIAgEdoLf1dTV5FQukGo7C6i7JzxiVWS14Bc1FYnairKYnV6tyYWSjeqZRhnY4NpRI7DMkr4TQkr8ZozGvPSYk1IJ+G7tMGJVZ1nXPAlMRGpQ6rlmewLIXoa9TrBiU2lJelXScTEiuPvsaiJLHvvLQcALB8+XLs27fP0DEIwm1QL45ISJYtW4by8nKABcCx7OjxrhqdKMZzCGX4tSXWqJDpddbEBlZLXkU8Bpb3cTJl2EinRkdi4zFZE0msQ5C8Ek5D8mqMeFx7jk4U5eC4WA005VVEbGP1RNZou6EjsVx6qqHznAsL+iJrpE4GJLasY7pi9FVO7LhYDqno3bs3BEHAL7/8ol8PgnAhTbgHRyQyv//+O4DI7MPweeuNd9WC8Zz62m0mhUw1CiuLuhpeRF1LqEzIq2YUNglmGqbxsDYheSWchuTVGPG89hpBYk3fm51KJ9aIxmqmDiuWpyGxJs9zNYlVTB3WOKaWxOrJq3w7eTT2+OOPBwASWCJhIYElEg7GWJ3A8q10o65KhNNiUomVJmsyglIqsV7KsBpKqcQWJ2tSlFgrHRgFEU6qZXKaWhSW5JVwGpLXxKEBJdbyg0WlSfusTGyoILGGUocVy6o/uZNe6rAasRKrmzqsWIjy5E5aqcNqiBL7zst/AwBWrFiBqqoq0+UQRLxpYr03IhnYuHEjdu/eDYAH8+WallcgJpXYrozJj29VXkXkqcQqkzVZwk7HpVZipWiyC+SVUoktQPJKOA3Jq3Hccv01gMTavh/LxtdakleRWIm1W69aiTWaOqxGlMRarVPM5E5GUofVYB4Ole1z0bJlSwSDQSxfvtxanQgijjSRnhuRTCxbtgwAwHHNAd5kepAM22vDysvyeQGf1568RhVof7yrFIV1ssPi1GzDDkCpxARBJARukVcRN46JdYpaiTWdOqxaXtiRfgIXFhDOzbRfn1qJtSqvIszL44gjjgAALF682H69CKKRIYElEg5RYMG30N5QB44xhNO8EDJMrg0biyCAC9U2ck41mk5GBe02voLDHRQHOjxMYGAukmmCaJK4Tczcitsi1U7Wh+MdvRc78gDY47G+VmwMnN8P1IRslxNungEuzMAH7ddr30FpqGxu/zscOHAgAFmfiiASCBJYIqEQBAErVqwAAASbtbRcDscYwCJrw4bT/NYlVpDNNmh2nVklxEbXw0caYYvUmzzKar1q5VUqy4lUMZs4Kq4Gl4ZICtzWiSaSA5JYYyTj9Sd70Gr7viyWJdjMYvJF5qNgjEXE04Z8cn5/XRaTXYnlOGkFADsSu69PKsK+yESUdiX25s8XAQA2bdoUWdWBIBIIElgiodi6dSsOHDgAxntQ3qE5KvMMrMMqg2MMnBCRVxHmsSiegsJU+V4POJ+5OknEPjG2KLH1Gn+j68LGEiuvUnnOTdZhvogkTn1rDJKxE03EH5JYY7jh+nOqDgpZQpbvz7Fl2ZVYsT7ig1wL8inJa11hliU23DwjtmKWJTbsq/v+RIm1IrLlrXgIqSlo06YNBEHA6tWrLdWHIOIFCSyRUKxbtw4AEErLAfPyqGjFG5ZYMeqqRDjVZy4KqySvQKRz4POal1i1dCeTEqvZ6JvpuKjJq0gclksgeXUIN3SiieSDJNYYTmTq2Dl2A2P6Pq02XMaKxKq0u2Yltp681hVkWmLDzTOUP3cLEruvT/2ZkMVlAc1IbHkrHqx2tFPfvn0BACtXrjRVF4KINySwREIhCmw4LQcAwDyRHz205DVSjolUYjV5lQ5mQmIdXIRds7EXG2MjHRg9eTVTL4dSdGm8q8OQxBINAUmscRr7GnR43KsWhuco0JvrwYzE6rS3piRWK2vJRGpyOEdFXmVlGZVYMXVYtSgTEstkU3X07t0bALB+/XpD+xKEWyCBJRIKSWDTs6W/VeZqR2H15FXEkMTqyat0UANP2Y1OMsFxulFYQ428EYk1Kq9GcCjKSWNeCSKBIIk1TmNJbCPKqxxH7t1GJNZgxpMRieX8fiMFGYvGGpkp2IDE6smrVJQBiS1vFf39PTH7LwCR5QkJIpEggSUSBsYYNmzYAKAuAgtEIrBqqcRG5bWuLA2JNSqvIlrjYc3OkKiRSmxKNrUk1oq8qkVh3SqvRB0UhSUaCpJY4zT0dRgneRVRvYebKUtLYk0O19GSWNXUYfXCVMsK52Qo/l2tHDWJ3dfbmLxKRWlIrDx1WCScmgUA2LlzJyoqKgwfhyDiDQkskTAcOHAApaWlAIBwID3qNSWJNSuvdWUpRE/NyiugnkpsdXp/BYm1FClVaqDtRF5jJZbkNXEgiSUaCpJY4zTUdRhneRWpdy+3UpZDEzsByhJrWl7rCqtXVjgnw1j0NaYcJYkN+81/h0oSqySvAMB8AbRoEVmScPPmzaaPRRDxggSWSBi2b98OABB8qYCn/p1YPh7WqryKSJM6CQK4mpB5eRWJlVi7a9PJJNZ2Yy52bpxIGxYlluQ18SCJJRoKkljjuPk6dGBdcumebqesWIm1OuM/oiXWsrzWFSaVZUleZeXwwbAksvt615+0yXBRMRKrJK8iHTp0ABCJwhJEokACSyQMosCGU9JVt6nM5VGV67Mlr0AkCiv4vYBP465vFI4DPDw4BzsotuVVbKydHPNKJC5u7jwTBGGeZL2mRYm1I5y1SBLrQFlgDMzntS6vsnLAGErzUyxFX6OKqpXY2HGvsbRu3RoAUFBQYOt4BNGYkMASCUNhYSEAQAioCyzzAGVteFS0MjARgwZ8MAy+Jgwh4ANLsVcWBAEIC4DHA85rU4gZA5hgX4YFIVKWEw03ADjxdL0Wir4SRJLgVonieEfuVY7i9ENEJ8tz4D7KOZilI7V/djOaAMDnBauutl0MS0sBAPDl9ssq6ZYBwcvBV27/O+x18Rr0veBfzW1Egd21a5ft4xFEY+GyOzhBqFNUVAQAEHwpqtswLiKx5a2tS6yUwsMYwMOexAoCEKptZO125hira7B5zrrEivIqwtuMDjsxvqkWWi4nTlAEnnAaN8ur0u/xpKGuP5dILOfgPAmch49+8GpDYjl/bQoyY/YlVpJqwZbElnTLkCZt4gTYktieF61Bl/S96JRWhIPOXa263WvzVgCoCxIQRCLgkrs3Qeizb98+AABTEFjGRX6k/1uU2Ch5lf5oUWLl8ipiNQorl1epXhYkNlZepbIsSqyDwum4vFL01Rgkr4TTJIK8av2tMWno688lEutEWfXkVcSCxEryKtXHusSK0de6+liTWLm8iliV2J4XrUG39D3S/7uk78VB565WFFnBF1l14cCBA6aPQxDxggSWSBhEgRVvtiJMpa9kVmIV5VV6EeY6ZUryCkhrupqSWCV5leplQmLV5FUqy6TEagmnyU4hyWucIHklnCaR5NXIaw1JY11/cZTYetFXi2WpyquICYmtJ69SfcxLLEtLUT7nLUis2nI5ZiU2Vl5FuqTvlURWDvNG+kgksEQiQQJLJAzl5eUA6m62gLq8Sq8blFhNea1F8HuNRWHV5FXEjMRqyauIEYnVk1epLIMSa0Q4DXYKSV7jBMkr0VQwci9qbIlt7OsvDhKrKa8mytKVVxEDEqsqr1J9jEusqrxK9TEusSXdtNeNNSqxavIqJ1ZiSWCJRIQElkgYKisrAQCMr11GxuCDfvnyOkoYkdfIhgZSifXkVcSIxBqRV6luGhJrVF6NYkY4dTqFJK9xguSVaAjcGH01I6bxTiduaBpRYg3Jq5GyeM7cZIMabaauvEr10ZdYXXmV6qMvsSVd66cOK2FEYvXkVaRL+l70PncNAIB5Ip9LZWUlQqGQ1m4E4RqS/G5NJBOSwHq8huVVpCJPOQprWF6lHTQk1qi8imhJrBl5leqmILFW5FUrCmtFOFU6hSSvcYLklWgIEl1e7exjlnheg40gsabkVa8sK+eVQttpWF6l+qhLrGF5leqjLrElXTNMLZejJbHdL1xrvE6IyG7vc9dIQQEAJLBEwkACSyQM1bWNCfNohFNVUEolNi2v0o4KEmtWXkWUJNaKvEp1k0msncirksTaEc6YTiHJa5wgeSUagmSRVyf21cMN12ADSqwleVUry2jqsBKyNtS0vEr1qS+xpuVVqk99iTUrryJKEtv9wrXokbHbdFnd0veg1znrpf/X1NSYLoMg4gEJLJEwMKnRtdZAMg9Q0SoisZblVUQusVblVUQusXbkVaqbuN6ezU6KXGKdEM7aTiHJa5xwQ8eZSD6STV6dLCMWN12DDSCxtuQ1tiw78ioSDluXV6k+dRJrWV6l+tRJrFV5FZFLrFV5FemWVZd2TGvBEokCCSyRMNRFBK03vIIXCKVyEAIeBwQPYDzvTAeO49zZEXQ7JK8EET/ceM9yUjyTfUysWzE77rWhEfsKTpzvYQHhFK8teRXhBCBw2m5b8gpEp2lTCjGRKLjoDkEQ2kg3WRve6S9h8JcKqMnwIpQZ0N9Bqz41YXDBGjCvB/CaT2uOIhwGC4UB3gNYSJGOQnCosRWEuqi3k0/WnShLhDqYxnGjbBCJixvPJ7ffD9z2mTkVhXUyu0Ysy24mEhBpS2vsCxnnjwwX4iqtrRMrJ5SbAXAcMnYG7Zd1XhFap5diXVlLW+Uw2XnQsqW9sgiisXD53Z4g6vCIYnd4saX9/SUMKfsF8GEG5gFqMq1LLFcTBldVI3UAmM9rXWJFeRWxI7ECizRGQm1k0mqHSS6vUr0cHNtEEhsf3NaBJhITN55HDXUfcLpct312diXWyfkNOD6qnbElsbVtKGPMlsRyfn9dNFgQbElsKDcDzBMpiw8KtiQ2dF4ROmRFlr0Jhr22JPa6rD+k31NSUiyXQxCNCfX8iIQhNTUVAPBSly+A4/ab2lcuryJWJTZWXqXyrEhsrLyKWJHYWHmVKmyyw6Qkr1K9HJxdkiQ2PritA00kFm48fxr6+ieJVcbJGeZj5FUqy4rExrSdViU2Sl5FLEqsXF5FrEqsXF5FrErszS0WIS1YtwZtWlqa6TIIIh5Qr49IGNLT0wEAWcF0fDvgbVMSy4URJa8iZiVWTV6l8sxIbDgMFiubcsxIrJq8ijjZYXJqfT+QxMYNt3WgicTAjedNY133yX5/MSuxTq7xrSKvllBpM81KrKK8ipiUWCV5FTErsUryKhIMa6wrr8DNLRYh15OOisrIZ5+amgreTWOPCUIDOlOJhEEU2PIKDvneDHw74G1wBiTWX8IQKFEXKaMSqyevUnlGJFaUV71G3ojE6smriJHOp1b0NapeBsoyOMESSWyccKOMEO7FjedLY1/vjk4Q5cLP06jEGvwcDEmsAXk1HIXVaSuNSqymvIoYlFgteRUxKrFa8ipiNAoryisAVFTVCSxBJArU2yMShszMTADAgdLIaZvvzcD0/tqRWKXUYSUMSawAww28psQalVcRLYk1Kq8iWp0mo/Iq1UujLJOzA5PExgk3dqIJwgjxus6busSafP+aEmsi8qorsQazlfQk1pC8iuhIrBF5FeGD2m1mzeh9uvIKGEsllssrAOwvjtSxWbNmBmpKEO6AenpEwpCXlwcA2LuvrqHq7MvAjP5vY8L/3qwnskblVURLYsUZh82gKLFm5VVESWLNyquIUqfJrLxK9XKuA0YSGyfc2Ikm3IXbzpF4X99NVWKdXqLI5D1fVWJNzhehJrGm5FVERWLNyKuIWhS2ZvQ+5GcXGy5HTWJvbrGonrwCQNH+yOfXokUL45UliDhDvTwiYRAFdk9RdGPV2ZeBYalhzJBFY83Kq4iSxBpNHVYsT0lirc7SKJdYq/IqIu80WZVXqV4xnRAba7OSxMYJN3aiCXfgtnPDLdd1U5NYG++3XhTWxpjXehJrccb+WIm1JK8iMe2wFXkFlFOJzcqrSDDsxX/ledL/RXGNlVcA2FsrsLm5uaaPQxDxwiUtAUHoI95c9+xTPm3FaGz5gEpL8ioil1g78iqVJ0qs3qRNRuA9AMfbk1cRjrMvr1K9xDV6bdYJJLEE4RrcKFbJihs/a7FtcOA+KkmsAxM2SRJrc810UWJtyWstYhTWqryKyCXWqryKVIV8+K88TzHqKmdv5VgAFIElEgvq3REJQ5s2bQAAOwvVZ9p7ee/xwO4AKvLsndrMAzCeMzXuVROxc+LEQu88B86pzg7PO1eWA/LqOG6sk1txYweaiB9uPB/c9kDKbfVJBBx4QMnZFNcoPB7b8gpAeqBsR15F+KCAcAC25FXk2Q5fa8orAGzbtg0A0L59e9vHI4jGgu6+RMLQsWNHAMDOAg/UhqMWVGXBE+RQ3h4oa229kfOWheErDYL5PGDpKYDfZ7ksLhSOpCrxPDi7jRurHT/Lc/YbcVHMnZBYJ8S8FktrCBLO4EZpIeKDEw/unMSNsujkAzK3fd5A3f3AycwaK+u6ysuRt3t2y/J6AZ4Dqza/rmssLC0FAOArKrdVzoEuKTjQJQWMB/77vqutsl7p/CXyvRm624kC26FDB1vHI4jGxIUtAkEo06JFC6Snp0NgHHYU1I/C3rZrAP74qzsAgHlhS2I5AZEnqjzAPBwEv9eSxEryCkQ6Ax6PdYllAhAW6joTTkisiB2JFRogzcwJKPpqDZJYQsQtUkXy2vjE3gecnNvAong6GXkV5RUAwJgtiWVpKXWfVyhsWWIPdElBOACEa6fgCOy3fl4YldfKKg579uwBAOTn51s+HkE0Ni5sFQhCGY7jpBvslu3RAnvbrgGY9vtAeMvrTmnmBcrbmZdYb1kY3rKY2QB5mJZYLizUn+nQqsTGyqtUL4sSq9RhsiKxSpNzWITk1UWQxBIi8ZYrktfGR+36t/C+Vec0MCmxqu2cBRmOklcRixLLUgP1P69QGL59FabKEeU1lv9mmo/CGpVXANhc25fKyclBVlaW6WMRRLxwYctAEOp069YNALB2Y51IKsmrCPOZk1hvWRi+kmBEPmMxK7GqSxGYlFg1eZXqZVJitTpMTqQTW+hwkry6EJJYQiRekkXy2vjoXfcm3r9TE/Lptm8mJFZRXkVMSixLDaiPn9VYazYWNXkFgMA+ZkpizcgrAKyr7Uv17NnT8D4E4QZc2DoQhDq9e/cGAKzdUCeRO6pyFOVVxKjEasqriEGJVYy+Rm1QK7F+n77IMqbfaTAqsUY6TEYlVm+BeoOQvLoYklhCpLFli+S18TF6vet8DhzPGZNXA+Jp+OGskbK05FXEwPfCUgPa8lqLkSislryKGJXYCZ3MySsArN15AQASWCLxcGELQRDq9OrVC0BEYAWhdtzrsu66++lJrCF5FdGRWC4UhuosU1EbcvrRWHHSJiPoSayZDpOexBqpE8c3bieU5LVhIIklRBpLupJZXhlLbHnVK8Zs1FVDPE0Pj9Eqy4i81qIVhZXE1cjMxTUhTYk1Iq8iehI7odOX6OwzJ68AsGbNGgAksETiob4eCUG4kE6dOiElJQXllVW4ftnBmLVlILxlxjo7osRWtvQidTdDRkFdY8cJMCavIrUSywNRsho1aZNRRIkFwOR10EsdVqwXBw6e+ou9W4HnwSmtE2s2Ysrxqu/BsegryWvDwnHu7HQTjQ9jDftQI9nl1Y1Y+T6ZUO+7spwyHA7XW9O1wSZsMkJtKjEXiLZLI1HXetRKbE3ztKg/m5FXkcC++ufPhE5fAoAleS0t47Bp0yYAddltBJEouLClIAh1vF4v+vbtCwD49YfWhuVVhPmAcBqLisYqTtpkBAsTO6kSG4m1Iq9SvThwPm90B8Bqxyk2EmtVOBU6pbRcToJBkVhCpKFEjOS18bFzXcs+G9vjXWUPXW3Jq7wcr9e8vIrEjIe1JK8iMQ+1rciryPpZdVFYMepqRV4BYPlqPxhjyM/PR25urrUKEUSccGFrQRDaDBgwAACQuqPIchliNLY6y2M8dViJWoll6SmRxs1s9FVOrcSC56zLa1TduEid7HacnJjYCYjqnNK41wSFJJYQcVrISF4bF3EIi12Y4NhkTYBDkVdBqBNXO3WrlVhb8lqLb1+FtMarVXkFgJQihvWzulpOGZbz96arAAD9+/e3VQ5BxAMXthgEoc1hhx0GAAjs22urY8B8QE0awHw2G0wekTVjBQGwusarCMdFZNGJDoG0PqtDnQsnpNONnVTCHCSxBODseZDs9wW3XTPJ/t3xvOW1ZmOJiLADa5z7PMjeWGVLXkU8QWspw7H89ddfAEhgicTEhXcegtCmR48eyMjIAF9TA2+J9Shs6i4OmdvDCKd4IKTYTAMWEJFpj8eexIbDkXGwYjTWKex0WMRxsE5IdW1Ew8kn9q7sQCU7buuQE41LsguQiJN1c8s10wDfne2MGtmEf7bnb/B4nMkYAsD5fJGHyhVVtsphaQEwDwdPhYWhSjHUZHJgHqDLF1fbKqf3t6OxceNG8DwvZbURRCLh4paDIJTxeDw46qijAAAphQUQvOYbz9QCDjkbQvBUhcE4IJziQSgrYElkuZowuOpIw8R4zrrEhsNgoXBd2hrHAV6vNZEVWN3kS+LTYyuNeuwkTnZSsmLS8UhiExy3dMiJxqWpyKtIItTRKA343VmWWI6v165YlthYebU4pIfz+SLyCkQeTIfDliVWlFeR5mutlVOTyUnyCgDp2z3o8qU1ie25YBx8Kw8AAPr27YucnBxL5RBEPEmiOzPRlBg8eDAAIHXnLgheZlpiPdUMnqq6RpJxgODhTEdjuZowuMpgVCqzZYlVW+/VbDRWLq8idiRWCbPyqTKWjCQ2wSGJbVo0NXkVcaqu8bxeGuG7My2xorw6gVrk1aTESuIqp1ZizRIrrwDgKQuallhRXFlMNyB9m/mH2z0XjENNYSpO9ERymY855hjTZRCEG0igFoQg6hg0aBB8Ph98ZeXwlZZA8AHhFGMim7qLQ+Y25cZIjMYalVgurLymnySxfp8xkRVTh1UP5EBKsVxijXRmlJbQiSovTusGahfmXFmEMUhimwZNVV6dJh7Xixu/Ox15NRyF9XgcSxtWlFf56wajsCwtoCivIh4Tqx7Io65KGE0l7rlgnCSvfHUQf//9NwASWCJxacKtCJHIpKWlYeDAgZHft+4AOAbGMwg+aEps6q661GE1jEosVxOOWgO2Xjk8ZywaG5s6rHpAAxKrFH2VI1+AXavB15NXqTwDnQYDM3lyPOecyDblznG8IIlNbtwoQI1Noo6HdepYsnGqWhiKwhqMvOpKbK246sqrgSisnrwaTSUWxVVNXkWMRGH15BUwlkrc69eLUVOYiprCVABA2vadCIVC6NatG/Lz83XrQRBuJEFbEoIARowYAQBI37K9LgrKaUusJ8g05VVET2KVUodVy9KTWLXUYcUDa0isnrzKcTKlWKsjYnIZCpLYBMapZTkId9HIAuRqEk1infzuTKApsU6lDZuNumpIrK68iuikEmtFXWPRSyU2Iq8iWqnEvX69GMGCtKi/HV/73F3sQxFEIpLgrQnRlBk8eDDS09PhrahEYO++uhdUJDa1IDLrsFG0JndSSx1WLUtNYvVSh5WwM7mTHDWJNRp9jSpLodG2uIYiSWyCQxKbPMRJgFxNoryXOH93ihJrQV4Vo7AOpgwbllf5fgpRWDPyKqKUShw7WZNRunxVPwqrJK+e8gqsWLECHMdh+PDh5g5CEC4iQe7EBFGfQCCAIUOGAADSN22NfrFWYuXjYj3VDJ5KcxMxKE3upJc6rFqWksSaib7GIo/Gmom+yomVWCvyKpXl4GL2JLGJDUls4kPyqo7bJ3Vy23cnRt8t3tejJNaOvMqisFbENVKZ+lFYK/IqIo/Cqk3WZIT0rXU79fr1YkV5BYCM2r5S//79kZeXZ/5ABOESkrBlIZoSI0eOBACkb9sBvjrmaaZsXGxgr7noayzylGKz0deockSJ9Xkj/zcbfY2F4wCOty6dgPPpxG6b3CkZO9CJAEls4uI2AUpmHB1f7GAavwPfHROY4jI5lnEi8loTsi6vMriKKt3JmowgRmFrMsxHXWPpMu1q9P4tIq5K8gpBQJfCIgDA6aefbu9gBBFnqHUhEpq+ffuiW7du4MIC0jdvU96IY+BDAB+0J4uMQ23ElNVJn5VyeK7uKa6TM/Dawcb7qYfdRe2J5IEkNvGg74xwCKceQorS6kTasO2hN1I5PLiySlvyCgBCwIvszTVgXvtVav43j+pdCuJaS+rOAhQVFaFZs2Y47rjj7B+QIOIICSyR0HAchzPPPBMAkLFhk2JkNG2nB5nbwmA8B8HHW25wvJVheEqqI8fw8Pakr7aenN3lcWpTkA3NxKiFIEhpUY50EgDbT/BNrymoXpAz5RDWICFKHGi2YX2Y4Pw9xYnP3enrzOZ7lOTVbjny4S0hc2u6RlG73A54zl45HBdZHo/jwIWsZ3UBEXllPAdPRQgt/jE/LEkksJ8hsJ+BrwGy16r3J06ujrSpI0eOhM+BKDRBxJMkbWGIpsSIESOQkZEBX1kFUncW1HvdUwV4KwWAA8DVLm9jRWIFBi5qLI41ieVCYUBs+ETxtD0hUyRFyyn5tFwORV8JJUhi3Q/Jqz4N+TDMzufvsuurXuTVYrtQrx0SLH7+teIqZTxZHXIjk1cR/kCFpaJEeRXxlVgTWFFc+drdfeXK7823rxh//vknPB4PzjjjDEvHIgg3kaStDNGUSE1NxahRowAAWavXRzVOYvQ1CgsS660Mw1NaXf8FKxLLWHRDXCuxnNmZhZWm9LcisbLoqxxHZNjJGSytFeRMOYR9XNbJJmSQvOrTGPcSK99DQ15XFpZBU0wbtvDZqbU/pqOnorzaKYfjgIC/nrwCsBSFjZVXEbNRWFFeY8leV78fcWE48rdhw4ahdevWpo5DEG4kSVsaoqkxevRo+P1+BPYVI7B7r/R3KfoaS63EGk4pjo2+yvHwtY2k/uUUFX2NeoFzNBrrZCTWcFlq0mly/UeS1ySGJNZ9kLzq49Z7SWNcTwbfu+54V4P3dd02x0wUVkVeARiPwsqjrir1MhqFFQJeVXkFjEdh5SnDiuWURb83b2kZ5s+fDwC44IILDB2DINxOkrY2RFOjefPm0ozEWWvWA1CJvsqxm1Ish+eMRWNjo6/16mRQYnUWVBclVlc+VaKv9avlQOckWTu3hDlIYt0Dyas+jS2vRr8TF11HhiZrYoJuO2H0Yalu9FQ23tVWOQopw4qbGYjCiuKqJq9GiU0ZVkMehb3amw5BEHDUUUeha9euto5PEG4hSVscoily/vnnw+PxILVwL/xF+9Wjr7HoSKxq+rASGhKrGn2tt6FOSrGevIq4ZVxsVCHatxyKvjYRXNT5brKQvOoTr/uI3nfT2NePxudgaqZhrXLMvCeth8Cx410168OUJZbjAJ8P8HoNf9ZaUVitqGssWmnEWlHXWMQorKe8ArNmzQIAXHjhhcZ2JogEIElbHaIp0qZNG5x44okAgJwV/5qbqEErpVgrfVgJtZRivehrVH0aIaXYYPQ1ulpK5ZiUTpXOrmPySiQGJLHxg+RVHzc+BHNynVezKHwelpbJUbjPW3k4qiieBqKu9QuKqQ/HRcTVw0d+DKIUhdVLGVZCKY1YL2VYi8tCHtTU1OCwww5Dv379zBdAEC4lSVseoqly2WWXwe/3I2VPEbI27DK3s0JKsanoq5yYlGLD0dd6dWpAibU4E6PtJXuAhu30urHjSShDEtv4kLzq44Z7SOz35KJrRXWyJiPIPltbbUnsw2Ar8hqLXF4tII/C2kkZlkdhjaYMK9FseRnmzJkDALjqqqvMF0AQLiZJWx+iqdKqVSucffbZAABPickorIhcYs1GX2MRo7EcZ30JAHlKMcebjppKxI6LtVofqVoOSGyydoAJ47ioY570kLzq4wZ5jcUt1wgTrIurHIE5MiSFhUKGx7vqliOmDFuUVyDyoNpK1DUWMQprNeoqclKLKjDGcPzxx6N3797WCyIIF5KkLRDRlBk7diwyMjIAoRSo2W6tkFqJBe9AyhbPgVlcM7auPg6ljsnHBtmpj5Mka0eYMI5bOugE4TbcdG247V7NccbHu+phMmVYEZ53ZKImPhi2La985V78/vvv8Hg8uPLKK23VhyDciMvuRgRhn6ysLIwdOzbyn6o1ADO5blwtvooQPGXV9uUxFAZXE6ptbK1fckwQACFsvxMhyMbiukFiayMejjzZjxTkTDlE4+Kmjnoy4vTn68ZIpRO47f5hcaiH49R+LrbnKhDLsfu+xHkmaqy173X14SJ1qrIwVEhOrbz6isrtFRMMg2NAznob9WEC+gR2AgBGjhyJDh062KoTQbgRl92pCcIZzjnnHLRr1w5ANfjSNfBUW1hIPcTAhWr3EyXWSieQMSAsK8fgmrH1EFjdBBg20m+ljgMni8RaqI9UjlPiCYcl1m0dUYKIF/RwIPFwk7g6cS+NLceqCEspwzZFWGrTa8sJW3wgU9t+SlFXi0LNB8OSvAKAt9xa+DVzWxDpm9dj48aNyMrKwhVXXGGpHIJwO9TDI5KSQCCAm2++GQAgYAu4qmJLEhuFFYkVo69KZZmQRin6Wq8ck5ewEDMTsvz92InGWk3jUpnZkqKxTRQSrcSCorDOw1h9eY2XzDo1Y7xaOWbflyiusW2VWWkUxTW2XmajsCopw7596kvqKBZTK66cza85c1sQfEU50lK2AohM3JSTk2OvUIJwKdS7I5KWQYMG4fjjjwfAEMa/4KtC8JWGDImsr7w2fVgJMyIrj74qlWNUGuXR13rlmBBhtQ6DSYlVLcet0VgicSCJdZaG/jxJYp3DLVFXwLn3r1WOGRHWyFwyJcKyqGu9csxEYeVR11iCxqKnsVHXWLI2GxPqzG1BZG4LwlMRwgmnBFBeXo5evXph5MiRhvYniESEenZEUnP99dcjNTUVjCuGwLaDCwnwVIV1JTYqfVhxAxspxbHlWE0pjirHgTQvmynFEkbF00DHlyS2iUIS6wyN9Tkmq8Q2JnoS1phya+B+aSgKa6QcvfcVkzJsmZiUYcvEpgxbLcZA1NVIGrEorp6KEATsxZw5c8BxHG699VZ47C6/RxAuhnp1RFLTsmVLXHbZZQCAML8WDJWAwOCpChuOxmri1OzAGtFY1fRhxXJ0nnbrLZ1jIKXY0NNuisQSdiGJtQd9fvZprHuGWyKvDTXeVQstEVZLGVZCK41YLWVYCa00YgdnGXYiXViUVwBgqEGz1tsAAGeffTZ69epl7wAE4XKoR0ckPeeeey769u0LIIwQvwoMkXRctWisZvqwEmrRWLXxr1rlKD1p1kofVixHuaE2nWYFNNy4WJMRG8fGxdLkTokFSZg14vG5URTWGmbuyw0puhbui4pRWKfuryajrortm4Woq2IasYWoq9I4WL2UYSWU0ojlUVeRMLcWe/bsQbt27XDVVVcZPwBBJCjUkyOSHo/Hg3vuuQeBQACM2weB21b3okI0Vjd9WAklidUa/6pXlhPL2yRaSrEBKBrbBCGJNUc8P69klNiGvFdYEdKGkNjGGO+qQZR8Opoy7MADS6tR15hxsFYnapKnEcdGXUUE7IHA7wTHcbjnnnuQmppq7iAEkYBQL45oEnTo0AHXXHMNACDMrweD7OmoRjTWNG4cGwsYSx9Wq4dMZC0vWUASS9iBJNYY9Dk1DE7fK5RmGo4XjZ0yrIQYyTWTMqyEmPHksrGuTqUMx0ZdAYAhiOyWkVmHR48ejUMOOcTegQgiQaAeHNFkOOuss9C/f39EUolXgCFG6GqjsXxVjTXZE3FqXCwQqYfdqAbH2xfI2vfD2XlfVpfaUaoOSWzTg+RMG/p8Gg4nI8tuEVfAXfc/Jx7YAs7Ia3XQ0bGuduSVL69Gxvb6UVcAYGA4fHA1ioqKkJ+fjyuvvNJGbQkisXDR3YsgGhae53HvvfciKysLjCtBmFtXf6PaaCxCYXsSWxMyN/5VDbGz44T8OdE5cAmm1yEkkgOSNHXcJEZEw+Dkw1HAtpg78SCR8/DgPLzt81d6uGpHXmvbWWan7QfAhQVwYQGeYnPrwdarTnk1EArDW67clxC4LVi4cCH8fj8efvhhBAIBW8cjiEQieXq0BGGAVq1a4d577wUACPxWCChU3pCxiMTWhKyJrCBYG/+qhthxsdJhYEJdipbN8ayWU4gJwilIYt2LmyJ6TuH0uF6r56+LznunJtXjPLLzxaI0chwXnRlUE7RWGaeyg8KClCLOGVwPtl5VyqsleVVDQDHg2wAAuOGGG9CtWzdLxyKIRCUJWxuC0Oboo4/GBRdcAAAIeVZFj4eVw2rHjdqNxjqJRYmtJ57xisa6LXKajJPONAVc1Jl3FfF8wETy2nC46HxXFFcLn1OUvFqti9LnYqWNcULGa6Oudq9BSVw15JWhBrnttiIcDuOEE07AGWecYeuYBJGIJGGLQxD6XHnllTjooIMAhBDil4NBY51Vu9FYq4TDylP6ixLbmCnFzOIkUIpl2SuH0ocJAK7q1LuKeEgsyas5zJy7LjrPHU0ZViJscL1z2JyPQUSjHeUqjS+lJ4+6Wq6KgagrEBn3OuDoChQUFKBNmza44447nPksCCLB4BjlBBJNlMLCQlxxxRU4cOAAeKE1POzgyCROFdXqDamYyuvRScWtDoKrspjKJBIKgYV0xtEyA2vEMkFZhOXoySljYCY6F+rHYe4RWLdEVwh7UBOmTGN1akleLR7DwHnrku/QkLgaOA8MRV19Pu0yjHwmRsaCGnlPmenadRHbVY3vMpyXrV2N8lpR1hJXnxehrJTIZtw6CPxmBAIBvPbaa+jRo4dm+QSRrCRhy0MQxmjVqhUee+wxeDweCHwBBG4TOEHQfgrstrTieERjrUKRU6IhoOhD/CB5tY7Weev0ZE02MBx11fjcNKOuZurSwFFXU3VxKOqqly4MQFoeKMztgsBvBgDcfffdJK9EkyYJWx+CMM6hhx6Km2++GQAQ5v9D2LPX2I7xSitWQmuCJ/kETnrYnODJEG6JvhLJhUs6+66ioSPTJK8Ng4vOZccnarJTjpnPRW0iJ5eMdTWaLixHwAF4UtYCAMaOHYthw4ZZPj5BJANJ2AIRhDlGjRqFM888EwAQTF0NwVtubMcEicaaHiWQRMvtqOKGjirhLC7q+LuGhpLYZJNX5sB6204Qr3M45r03yCzDVsuInWXYCLEPOh2IukaJa2NEXWUIfDVyWm1AMBjE0UcfjSuuuMLy8QkiWUiyVoggrHHjjTeif//+ABdGdbM1EHjjEzgkTDTWDPJorJMTOBFEQ0ISWx+nJTYZ5TVeyM9Xl5y7DT5Rkx6yITyOpQzbpDEnaYqFcSG0PrwIe/fuRadOnXD//feDbwoPmQlCB5rEiSBqKS0txfXXX49NmzaBC6UipeggcMxrrpBageRqQtK4FcsYmcRJi9oJnmyVAdTOhkwTOBEJBDVr0TgpR8kksHQfqIPjnZFXr8k2Uwmfz768pqbYrgaXlhr5xcb9hKXV1sOkuAIAg4DqnH8h+EuQl5eH119/Ha1atbJcF4JIJpKoJSIIe2RmZuLZZ59FXl4emLcS1c3WgMFkB0eMVtp8WusItR0A2x2B2hQuR56Gu6Xz65Z6EA2DS6JZroDkVRmS1zqc+F453n45tZk/rlgWRmD223ExVdiSvDIEs9ZD8JcgPT0dzz77LMkrQchIotaIIOzTqlUrPP/888jIyIDgL0Mwex0YLDZgbhFZWBxHJKc2ZSneEutEhMCJehBEkySZpI+u/whOyatd3JIWKxhYmk4PUVotZi4xMNSkbUA4pQherxdPPPEEunbtaq9OBJFkuOSOQRDuoXPnznjqqafg9/sRTi1GMOs/exIr2Jux0ElIYp2rB+Fy3BDFiTf0GRBakLxG48QQFVFcbchrKHUTQhm7AQD33nsvBgwYYL9eBJFkuOSuQRDuol+/fnjooYfg8XgQTitCTcYGyw0SgOSJxsok1n5qsvWUM8cllkQ2OWnKAtdQ752isImPE/c8B1OG444Loq4AwAVrEApsQU1mAQDgtttuw/Dhw+3ViyCSFBfcOQjCnRx77LF48MEHwfM8Qhl7EczaDNTURGYktII8GpvIIivrdMQzGuvUUg9260G4nKYosU3xPRPG0LjPGZ4kL1mirk6Lq0V55YI14II1CKbtQE32TgDA9ddfj1GjRtmrG0EkMQ5MF0cQycsJJ5yAmpoaPPHEEwhl7gEY4N/fAZwQkThmZakAcUkanndFR5PjOPNrxQKR+guCJLG2JjQXO0QWojsczzk3OzHHJ1eEiYjAca54aNQoNMY9hQn0wCfRoHThaJxMF7YIF6yRyqnJ3I2a5hF5veqqq3DeeefZrx9BJDEuuZMQhHs58cQTceeddwIAQll7EGy2LbKsTCisHo3leUBvOYGmFI1t4Cf7jkZjKaU4OXHBw6IGpzHfY7I86GkK13ojyqvmg0w3yGtjpgtrLOXDBWukcoJZBQi22A4AuOSSSzB27Fh79SOIJgBFYAnCACNHjkQoFMILL7yAUNYegBPgL8oHFwI4QagXjWU8F1nIXW8JVnk0Foh7J5uisTH1SJZOOhEhmSOxTUHQCfM4MdbVDAIDPDHnolvE1S7icjgGo67M66n3N3nUlYGhJmcXanIiY17HjRuHSy+91H49CaIJQAJLEAYZNWoU/H4/nnnmGYQyi8B4AYE9ncCFOUBgiiJrGCWR9XginW07k0dZwLKEinWvFVlbEgtYFkiSWEKTZJTYeMkrpRK7F0oZrsNCe8ClBOr+Y1JcFcuTiStQu85rsx0IZUdmG77qqqso8koQJiCBJQgTnHLKKUhNTcWjjz6KUPp+VHMCAns6g2M8EGZRImuJmPGxHM9H0pXjgGuisRYlFjAxKYleHSKF2S+LIAj3kWwPqtwgrwkqrhLig2gHx7mKMDAEm29DKGsvAODGG2/Eueeea/kYBNEU4ZjtMAlBND0WLVqE+++/H8FgEHxlBlL2dAEnyJ4HcVykAQwLQEgvj1gFngfCYTCr+wORSJNgL4rL7ESBBSGyv12RtNG5dCwam0wdXCJ5orBuSB1OhihsslzfNr8LzlM/7dV0GT57sRFOb/4IPfw++59DwB/5xWrbl5oSeSAdit6fcQKqczcjnF4MjuNwxx134LTTTrNVV4JoiiRBq0MQjc+RRx6J5557DmlpaRBSy1DZeh0ET7BuA8Yi8ioIYIL1ZXeYOMmT1c52vDu3PB+JxNqdYMlGZ8TRyZ2I5MH2OsZuEEc31CEJrotkkVcXwFkZQuN4JWzUQQhHfmwsi8PEJfNi5ZUPoarVfwinF8Pr9eLBBx8keSUIi7jgTkMQiUn//v3x6quvokWLFmD+KlS1WQvBV1G3gRi5DIfBQmFLIhuRP09deYmIUxJLOAPNslyHVQEU97MjkEkh0ElwHpG8SjjysM8NqcNWEcKRYUA+n6XdmfjAunaVgqiiPcHIg+6UMqSnp+O5557DsGHDnKg1QTRJEvhOQxDxp3v37njjjTfQqVMnMG8NKtusRzilpG4Dj6d2MibBmsiK4iemwbpk2R3L8CSycUUuHMkgH04QTxG0K9DxJBnOH5JXAqiLuortrMnrK0pcw+F6Aiz4KpDevwDMX4Xc3Fz83//9Hw477DCnak8QTZIkaIEIIr60atUKr732Gvr16wfwYVS12oCajKLIi7Hrq1oVWSB6/bpGFFmO45zvMCeiyCZjZzcZJMQJzJzfsdtauTbiGbl1gkQ/b5iQnNdzMuDAGFzDyMXVwlwJseIqIXsPodRioNsW7N27F506dcLEiRPRtWtXBypPEE2bBG+FCMIdZGZm4oUXXsDQoUMBjiGYuwXVzbaDQaVRNCGyHMcB8kktzIqsE7LYUGlhiSaxyUiiy0hjoiaPjS3A8STRzxcSV1fD2b0ejEwgpSWufv30YVVxlW8DhmBWAYKtN6GyshL9+/fHa6+9hlatWhl5FwRB6ECzEBOEgwiCgEmTJmHSpEkAAE9lJgK7OwFBaE8I4fGA05BEJgiAOB1/LLyB8XhhIX4zEQN1E1JpbqPzerxnIk70jq+eeCT6+3MCvXNU6xoz2pSqlWFk/3jLLsmr+7E74Z3d2XvjPQNxIKD9ujxVWOn4Kdr7S+Kqtr/PB+blUN1iK8IZ+wBE1pC/6aab4LX73giCkCCBJYgGYN68eXjyySdRVVUFriaAlJ0dwVXqNF4cD/CcoshqCiwQHclU6uQmgsAC2hJLAmsPIx3TRH+PTqB2nhqRx4YUYJJXezSVc5sEVvnvQm37pdMWqAmslCml0w6ydA+qW26AEKiAx+PBjTfeiLPOOktzH4IgzEMCSxANxPr163HvvfeisLAQEHj4CzrAW5Kuv6OSyDIGZmRNWTWRFQXUhsixcNj6uNvaxt/w7UapniSw9jDaMU309+kEseepGXlsCAEmebVHUzqn4yiwnIe3N9zE47GXQuzz1s3aL2JQXAEAfl+9B8hGxRUAhMxqpB9SjKKiImRmZuLRRx+lyZoIooEggSWIBmT//v144IEHsGLFCgCAd18ufLvzwMFAIx0jsrpRWDlKIpsoUVhp+5htSWDtYaZjmujv1S52BNbu/krXSFxnSiZ5TSgsfl/SEjp2BNZN0Vcz4ioeXxZ9NSOuDAzh3GKEW+1GOBxGp06d8MQTT6BDhw6Gj00QhDlIYAmigQmFQnjjjTfw2WefAQD4ijQEdrQDFza41pwoshxnLAorJ3aSJBtR2EYXWGk/2T4WO6MksDDfMU3092sX8Vy1Io9OCizJq3Wa2jnclNOHxeirBXEFIEVfzYgrADA+jGCbnQhnlgIAhg8fjttvvx1paWnmjk8QhClIYAmikZg3bx6efvppVFRUACEPAjvbw1NhIKVYhONrZy+20CkTRVawJ6F204gt326kWZfjGIVN5M6w1Y5pIr9nJ2DMukA6IcAkr9ZoqudtIgus3fThQEB3giZNxNmHTbSPQqAK1e22g/mD8Hq9uOGGG3DmmWfan0mZIAhdSGAJohHZtm0bHnzwQWzYsAFggG9vHrxFucZSikWYtTXrwHORpXvCguUGNm5RWCDynm12TJusxNrpmCbqeybskagC25TP10Qd/yoI4Px+y8dmjIHz+6zLq8dcvRkYQjn7weXvQzAYRMuWLfHoo4+iT58+1o5PEIRpSGAJopGpqqrChAkTMHPmTAAAX5EK/6524GsMNuBhoa6TZqXDEQ5LEmlWZOMqsIBtiW2yAgvYFxKr713MHCASi0QU2KZ8niVq9LU2ZdeKwErtmIe3Vn/xfDGRusw8IQRb70Q4swwAMGjQINx3333Iyckxf3yCICxDAksQcWLOnDl48cUXIynFYR7+gjbwlmbr7yifjMlKx4MJkbG0tZiRWMZYpMMRjzRigKKwdomHxIrHTOTPrSlCAptYJJrACrLvyuMB5/Gob6uAvB2xNHaWCXURW7+x+SjCaWXI6F+OoqIi+Hw+XHvttTjnnHMoZZgg4gAJLEHEkZ07d+Kxxx7DqlWrAACeA9nwF7YGJ2g05rGzCZudPTJGYEWMNsJNPgobKcR+GfHACSkx895jj5eon1tTJNEEtimfW/GWVzPpw4JC22Mi+qrUdpgSWPE8kbcDOgLLOAE1uXsQzt0Hxhg6duyIhx56CN26dTN+XIIgHIUEliDiTCgUwocffogPP/wQgiCAC/rgL2irPsGT2nI4RjsiKgILGJPYRBdYgKKwtjH6/pWOlcifXVMjUSS2qZ9T8RZYo9FXBXkFjAusWrthWGDlUVc5GgIrBCpR3WYnWEo1AGDUqFH43//+h5SUFGPHJAiiQSCBJQiXsHLlSjz22GMoKCgAAHj3N4NvdytwLKZzobWeq5ForIbAimiJrG2BBeIusU06Cgs0nsSqHSeRP7umRCIIbFM/l+Itr0airyriKpWhI7B6bYWuwCpFXeUoCCwDQ03uHrBW+xEOh5GTk4M77rgDxx57rPaxCIJoFEhgCcJFVFRUYOLEiZgxYwYARKKxu9rCUymLxmoJrIhex0Q2kZMWSiJrexwsEHeBBZp4FBZoeInVKz/RP7+mgNsFls6h+AusVvRVR1wBaI5/NdRG6U3gpBZ1lRMjsEKgqjbqWgUAOP7443HrrbfSRE0E4SJIYAnChSxduhTPPPMMCgsLAQDefc3h29MyEo01IrCAdjTWQBRWRFVi45lGDFAU1gkaUmINprMTLsetEkvnTtzlFVARWCPiKu6vEn012j6oRl/1oq5yagWWgSHUYi9Ym/0IhULIysrCLbfcgqFDh9JETQThMkhgCcKllJeX4/XXX8c333wDAOBqfPAXtIanLCMij0YFTElkTQisiLwBT4Y0YoAkFkDDSayJScUIF+NGgaVzJkK8o69K6cMm5BWoL7Bm24R6AmtGXAHA5wU4DuHUCgRb7wILRMa6HnPMMbj99tvRokULU/UhCKJxIIElCJfzxx9/4Pnnn5fGxnpKsuDf1RJctcknwvIOiwWBFeE4zh1pxABFYZ3CaYm1syYj4S7cJrB0nkRwW/TVpLgCiEofttoWRAmskXThGFgKj5q83Qg12w8AyMnJwfXXX48RI0ZQ1JUgXAwJLEEkAJWVlXjvvffwxRdfIBwOA2Eevl0t4N2XDQ4mGlleFkW1KLBRJHgaMUASK+GkxFotKxk+x2SDBNZ92I2cOimwVsRV3N/vt90GcF6v+agrIunC4awy1LTbC+YLAQBOPfVUXHvttcjONrAeO0EQcYUEliASiHXr1uH555/HmjVrAAB8eQr8O1qCrwqYLsu+PNqMwNaWQRLrItwgK8nwOSYbbjgvADo3RFwQfQXP2Y9Q+rTXX9WD47jIQ1mT92/BH0Sw7R4IWRUAgPbt2+P222/HgAEDbNWHIIjGgwSWIBKMcDiMadOm4e2330ZlZSXAAG9RNnyFLcCFlWdzVEJKAza6AL0SbkgjBuyPxwVJrIQbZCUZPsdkgc4Hd2FXXm2WIZXlsVmGx2O77VGbvVgNxgmoabkPXPsy1NTUwOv14sILL8TFF1+MQMD8Q2CCIOIHCSxBJCi7d+/Ga6+9hrlz50b+EOLhKzCeVixNxCQ+RbfSmRBqZ0S22RFxJAoL0HhYpyBpIUTifS7QeRCNhe+Dkw0dSfjoq5iyzJj++q+1MDCEs8tQ02YvmD+SLjxw4EDceOON6Nixo7V6EAQRV0hgCSLBWbZsGV566SVs2rQJAMBV+uHf0RKeilTN/erNJGxFZEWBFbEowY7chuQCarHTSxIrI97iIpIsn2ei4Ybvn777aEx+J1HiarEMxXLtRl8B8wIrE1epHgYEVghUR9KFMysBAK1bt8YNN9yAwYMH0yRNBJHAkMASRBIQCoUwY8YMvPvuuygrKwMAeIoz4CvIBR9U7iioLoVjRmTFFOLYiTzMiqyTUVg5FjrAJLEy3CAx/9/enYdHVR56HP+emWyTBRIWIciqsqlREIRaBFEUKIKtgFZLr+VSb/XeWuzTeq99aC1aW7W1Kj71uba113qtIi69ggsKRQGrooAiRBFkjawxC9kzmcycc/+YzMlMMplkJhOSSX6f55lnZs457zvvvJPl/OY95z3QffozUXSFz12feagoPpOwwTXKOloUj9HXaA4fDhNcAyIFWCvJS/2AEsz+VZimSUpKCosWLeI73/mODhcW6QYUYEW6kbKyMp544glee+01fyC0IKk4m+Sv+jQ7P7bVS+G0Ncg2HYUNFsVOStxHYYNFsTMclwAb5Wt2aV0hzED36c+urit83vqsm2vD59JicI2ijlZf43SNvkYIroD/EjxhgrRlmHj7nyJpRK1/jgjgsssu4z/+4z/Izc2NtcUi0sUowIp0Q/v37+fxxx9n27Zt/gU+B8mFfUgq6Y1hNe6AtDgKG6y1IBspwAa0IQR3aIANaOOOsUZhm+gKoQa6V592RV3hc9Zn3Fwrn0urwbUNdbS5KR0dYFsLroF2NBl9tbDw5VRQP7AEK9n//+jcc8/lhz/8IXl5ee1qroh0PQqwIt3Y1q1b+e///m8OHjwIgOFJIvlkX5xlWRgYbQuwAS0F2ZYOIw4nUpA9XSEW2rSTrBDbRFcINwHdqV+7gq7y2epzba6Fz6ZNobUN9USlIw8fbmNwDQgEWAsLM6saz8ASLJcH8J/nesstt3DFFVfoPFeRbkoBVqSb8/l8rFu3jr/85S8UFxcD/omekgv74ihPx/BFudNoGOFDbDSXsmlhB+a0BdhgLew061DiFijsdC9d4fPUZ9myJp9P1ME1TB0xN6WjRl9juBybkZSEL6OG+oElmBluADIzM7npppuYP38+KSkp7W+riHRZCrAiPYTb7ebFF1/kueeesyd6MmpSST6eg6MirU2X3rE1HY2NNsAGhAnCnRJiIexOtEJsC7pC6Anobn17unSVz1CfX8uCPqOYgmuTOtolHqOvEBpgoxx1tYtl1lOfW2LPLJyamsqCBQv4zne+Q69evdrfRhHp8hRgRXqYyspKVq1axUsvvWRPcuGoTCXpRA7OqsiX3mkmeIemrYcRhxMUhOP2JynW8Nlkh1ohtgVdJQBB9+vbjtZVPjt9bi0zHLGH1ib1xENcRl+doRMJRh1cXXXU55ZhZtcAkJSUxDXXXMN3v/td+vXr1/72iUjCUIAV6aFOnTrFs88+y+rVq/F4/OcOOSrTSDqRjaMqyhHZgFgDbJBOD7DBGnawdT5sBPHYQbbM9tfTXfs33uLRz/qsOlYXC6/xGH21LMt/3moMf9/N9DrqBzYGV4fDwaxZs1i8eLFmFhbpoRRgRXq4oqIinn76aV5//XW8Xi8AjqpUkk5m46hwtT3INoyexuMwM8tnQnt34EwrdEc51p05y9QobGviFWjaU0937dt40ueUEIymI5UxV9T5o6/Bu5jRvi9fhhvvwDLM3v4jhQzD4PLLL2fx4sUMHz485jaJSOJTgBURAAoLC1m5ciWvv/66PSJrVKeQfDLbP9lTW4Js0CHA7Qmy/mvUNvxpak+QbRpiIfqduniOwgbV1y2140uCdtfTnfs1XvT5dH3dZPS16a6lEW7yv3DlsDAz3XhzyzCz/JMzOZ1OrrzySv7lX/6FoUOHRt0WEel+FGBFJERxcTGrVq3ilVdewe3270AYtckkFfbGeSoTw4qwMxPmHNZYg6zVdHbkWHfqwoXYgLbu5CnEtl2MXxB0WD0SqjM+H302bdPVwivRj762tEvZ2uirhYXZq9Y/4ppZB/jPcf3GN77BokWLGDRoUFTtEJHuTQFWRMIqKyvj+eef5//+7//syZ7wOEn6qjdJxVkYZnSXwok2yIaMwgaLdgcvUoANaMsOn0Js28Uz3ETx2UgbRPmlTYfXI37xCq8NdcVFFKOvre1KthRgLcPE16ca74ByrLR6AFJSUpg7dy433ngjAwYMiK7NItIjKMCKSESVlZWsXr2av//975SWlvoX+gySirNwftUbR31SaIFWZhKOJsg2G4Vtqq07fG0JsQGRdv7ieT5sQ33dWms70vH4TKKpR+L7hUArvyvSdl3tvFdoffS1rbuP4Q4ftpw+vP0r8PavgGT/z0pGRgbz5s3j+uuv16zCIhKRAqyItInH4+Ef//gHq1atoqCgwL/QAmdpBklf9cZRm+pfFsWlcFoLsy2OwjbVliAbTYiF8DuC8R6FDaqz24pnyGmpru7eh/Gkz6Pr6YKHDkcafY12tzE4nJup9XjPKMfXtwoc/noGDBjAwoULmTt3LhkZGbG3WUR6DAVYEYmKaZp8+OGHrFq1ih07dtjLHZVpJBX1wlGWjmFaUe3kRAqyrY7CNtXSjmC0ATZY8I6hQmz0InwZ0Kl19VQd+Xnos4hOVzx0mPCjr7HsLhqGgeUwMLPcePtXYOXU2vWMGjWKG264genTp5OUlNRKTSIijRRgRSRme/bs4fnnn2fTpk34fD4ADI8TZ1Emzq8yMbzRHRYXLsi2eRS2qXA7he0JsQGGQyE2VmG+CGh3XT2h3+JNn0PX0EXDa/Doa3t2ES2nidm/Bm//Svv8VoCvf/3rfPvb32bcuHFxueyaiPQ8CrAi0m6FhYW88sorvPrqq5SVlfkXmuA4lU5SYRZGdUrbryfbIHjHJupR2KYCO4mBwBnHnW2F2Cgp8HS+oC9hulRdPUlXDa/4R1/bs2toujz4zqjC17canP56XC4Xs2fP5tprr9U1XEWk3RRgRSRuPB4PmzZt4uWXX+azzz6zlxvVKTi/ysRZmh5+9uLWxDMkQtx3uBViRaTN4hleG+qLmxjbZRkWZk4N3jOqsLLq7OXDhw/n2muvZdasWaSnp8erlSLSwynAikiH2LNnDy+//DJvvfUWHo/Hv9Bn4CzJwFmUgVET5aisQqyIJLp4h9eGOmMW+FsTqCPKtplp9fj6VeHrV23PJux0Opk6dSrXXnutDhMWkQ6hACsiHaqsrIy1a9fy6quvcuzYMXu5UZPsP1e2JB3D14ZzZYPPX43HiENXDrD+CuNbn4h0urhdLseuMMa/heH+vrSxbZbDxNenBl+/Kqwsj728T58+XHPNNcybN4/+/fvH1i4RkTZQgBWR08I0TXbu3Mlrr73G5s2bG0dlTQPHKRfOokwclamRR2WbTsLU3iCrECsip0tnHzoc6e+J4Yg4+mphYWV48PWvwtenxj631el0MnnyZK6++mouueQSzSYsIqeFAqyInHaVlZWsX7+e119/nf3799vLDbcTR0kGzpIMHHXJzQtGmkU4ljDbAQFRIVZEmumsQ4fb+vejhdFXK9mLr28Nvn7VWK7GmYTPPPNMrr76ambPnk2/fv3a9hoiInGiACsincayLL744gtee+01NmzYQHV1tb3OqErxny9bmh56OZ62XAonmjCrECsiHel0h9do/140GX21nCa+nBrMvtWYWXUEDopJTU1l+vTpXH311Vx44YU6t1VEOo0CrIh0CW63m3fffZf169ezbds2+7qyWOAoT/OPypa5MLxGdDto8RyliELcQ6y/0vjXKSIdp6uHVwCn0z+LcO9afH1rMLNrIOglLrjgAq666ipmzJhBZmZm9PWLiMSZAqyIdDmlpaW8/fbbrF+/nj179jSu8Bk4TqXjLHbhKE/BsKLcMYz3jl8rFGJFerDTFV5j/JtgYWH18uLrV+M/rzWpsZ5hw4Yxc+ZMrrzySnJzc2NtrYhIh1CAFZEuraCggH/84x+sX7+ekydPNq7wNkz+VOLCUZ4anzCrECsi8dDR4bUdodXs5cHsU4uvTy2kNNbTt29fZsyYwcyZMxk5cqQOERaRLksBVkQSgmVZfPrpp2zYsIHNmzdTWlrauNJr4DiV1hBm02IPs4kSYP0Vd0y9ItI+cQ6vlmm1q75IoTUzM5OpU6dy1VVXMX78eJzxvsyPiEgHUIAVkYTj8/nIz89n06ZNbN68mZKSksaVgTBb2jAya8bhmrHt1GEh1l95x9UtEivLgp44ghen8Br8NyOW+izDwuxV1xBa3ZDc+HciKyuLqVOnMn36dCZMmEBycpgZ30VEujAFWBFJaD6fj08//ZSNGzc2D7OmfwIox6k0nKfSMOrbProQ2IGM10iKQqz0CE13KXpSiG1neA33NyKa+iyniZntxpfjxsx2Q1Jjfb1797ZD60UXXaTrtYpIQlOAFZFuwzRNe2T2vffeCz1nFjAqk3GecuE4lYZRm4RByzuH7d2ZbGudcaMQK50p0q5ETwixMYTXtvw9aK1OM9WLmePGzKnF7OUh+E9aTk4Ol156KZdffjnjxo1TaBWRbkMBVkS6JcuyOHjwIO+++y7vvfde6GzGgOF24jiVhqMsDUdF+EmgWtvBjOnQPoVY6U7asgvR3QNsFOE1mt//cHVaWFiZHv8oa44bK90bsn7EiBFMmTKFKVOmMHbsWByOzj+FQkQk3hRgRaRHKC4u5v333+e9997jo48+wuPxNK70GTgqUvyHG5elYrgbR2fbusMZ1aF+HRli/S/QsfWLRLvr0F1DbCvhNdbf9eA6rRQvvuw6zN5uzN51IYcGO51OLrzwQju0Dho0KKbXExFJJAqwItLj1NTUsH37dt5//322bt1KcXFxyHrD7bTDrKM8FbzR73y3FmgVYiUhtWeXoTuF2IaZy5v+nsfl99qJfwKmbDdmdh2WK3SUtVevXkyaNIkpU6YwadIksrKy2v+aIiIJRAFWRHo0y7I4dOgQH374IVu3bmXXrl3U19c3bmCCUZXSEGZTMKpSor9MDy0HWgVZSQjx2lXoDiE2aNQ1Hr+/FhZWRj1mbw9Wdh1mrzoIOvLX4XBw7rnnMmnSJCZNmsTo0aN1uRsR6dEUYEVEgtTU1PDJJ5/YgfbYsWOhG/gMjIqUhkOOUzGqkiNOBtWSeO4AR6QAK+0R712ERA+wRvvPKbWwsNK9mL3rsHp7/IE1KbSf+/fvz+TJk5k0aRITJkzQKKuISBAFWBGRCI4ePcr27dvZsWMHH3/8MeXl5aEbeP3nzxrlqf7JoKojz27cKRRiJVodsWvQQ8OrhYXl8vrDau86/2zByaG/k+np6Vx44YVMmDCBSZMmMWzYMIxE7y8RkQ6iACsi0kamaXLo0CE7zH7yySdUVVWFbuQ1MCpTcFT6R2mNqmQMs4vMBKogK61RcA0vivBqGQ2HBPfyYGV5wgZWl8tFXl4e48ePZ/z48YwaNUqXuRERaSMFWBGRGPl8Pvbv38/HH3/Mjh072LVrFzU1NaEbmWBUJ+OoTPEfelyZglHfieevKcRKUx21G9Adgiu0Gl6tJBMzqzGsWpmekHNYAVJTU8nLy2PcuHGMHz+esWPHKrCKiMRIAVZEJE58Ph8HDx5k165d5Ofnk5+fT1FRUfMNa504qlIwKpP999XJMU0M1S4KsqLgGlmY4GoZDYcDZ3ows+qxsjzNrsUK0Lt3b/Ly8sjLy+P8889n9OjRpKSknI5Wi4h0ewqwIiIdxLIsCgsL7TCbn5/PwYMHafZn1wSjJhmjqmGktioZo/Y0nUurINuzdOS//O4SXAEMh//c1TQfVqYHK7MeM9ODlVEPYQ6gGDp0qB1Y8/LyGDx4sM5hFRHpIAqwIiKnUWVlJbt37+bzzz+3b2VlZc039Bn+QFuV7B+hre7AUKsQ27119L/5bhDULCxI82FmeLEyvf6wmlnfbHZggIyMDMaMGcOYMWM477zzOP/888nOzj79jRYR6aEUYEVEOlFglDY40H7xxRfU1tY239jXMFJbnYwjEGprkuI3SZSCbPeh0Noiy+G/jI2VUe8PrOn1WBnesGE1JSWFkSNHMmbMGMaOHcuYMWMYPHgwDkcXmZhNRKQHUoAVEelifD4fBQUF7N69my+++IL9+/dz4MCB8KHWAsPtbAizDYG2Jtm/LNbRWgXZxHQ6/p0nUHC1sCDVh5nus0OqleHFcnkJ96uRkpLCiBEjOOecc+ywetZZZ2myJRGRLkYBVkQkAZimybFjx9i/fz/79+9n37597Nu3j5KSkhYK4D/kuKbh0ONog61CbOLpoZMyNQZVr39kNXBz+cAZvk969+7NyJEjOeecczjnnHMYOXIkQ4YMUVgVEUkACrAiIgmstLTUDrWHDh3i8OHDFBQU4Ha7wxcIBNvaJAx34N6JUZsEXkfzcKsgmzji+e+8C4ZWy2liuXxYad7G+/SGEdUWrkyVlJTEkCFDGD58eEhY7du3ryZZEhFJUAqwIiLdjGmanDx5ksOHD9uhNnCrq6truaDXaAy2DaE28Jh6Ts+syNI+7fmX3gUCneU0/TP/urzN7klu+b2lpKQwdOhQhg8fzrBhwxg+fDgjRoxg0KBBGlUVEelmFGBFRHqIQLAtKCjgyJEjHD16lKNHj3LkyBG++uqr5pf3CeYzMOqc/jDrdvofNzw36pz+8KuA2zW09d96JwRWy2lipfr8oTTVBw33gVukkArQt29fBg8ebN8CoTU3N1dBVUSkh1CAFRER6urqOHbsmB1oA/fHjh1r+TzbYF5/wMXjwPA4Mer8943PFXJPu6b/3jswsFpY4LT8ITTFxErxYTXck9rwPM0XdqbfpnJyckJCauB25plnkp6e3mHvQUREEoMCrIiIRFRXV8dXX33FiRMnOHnypH0feFxaWtq2ikwgEG7rnRgeB9Q7MOob7wOP8SnsdgWWw4RkE6vhRvB9UFAlxdfieahNZWdnM3DgQHJzcxk4cGDIbcCAAQqpIiISkQKsiIi0i9vtprCwkMLCQoqKiiguLg65LyoqoqysLLpKfTSEWqc/1HoNDK//Hq/Dfmzf+xz+5aZCbziWYUGSiZUUuDf9o6HO4GVWs7Da0iy+LenVqxf9+vWjf//+9O3bl/79+9OvXz/OOOMMcnNzGTBgAC6Xq4PepYiI9AQKsCIi0uE8Hg8lJSUh4basrIxTp05x6tQp+3FZWVn46922lQ/wNYzgmgb4/DfDZ4RfbhoQuFkEPQcs/2Mj6DGB/5gWQMPzhmWtjRhbjRsG3Vv+ewNwWGBYWI7GxzhoWNb4GIeF5fQfsouj4dBd+7nZ+NhebrZ5dDSclJQUsrOzycnJITs7274FB9RAYE1NTY39hURERNpAAVZERLqU2trakHB76tQpKisrqaqqorKykoqKCiorK0NuVVVVmGYnX/InKMxi0SSoBt13EsMwyMzMJDMzk6ysrJBbYFlwQM3JySEnJweXy6VLzoiISJehACsiIgnPNE1qamqorKykpqaGmpoaamtr7Vvw88Djmpoa6urqqK+vx+Px2PeBW319fciyjg7ITqeT5ORk+5aSktLivcvlavMtEE4zMjJwOBwd+h5EREQ6mgKsiIhIG/h8PizLsu9N0wz72OfzYZomDocDh8OBYRgRHxuGQVJSEk5nO47zFRER6SEUYEVERERERCQh6FgiERERERERSQgKsCIiIiIiIpIQFGBFREREREQkISjAioiIiIiISEJQgBUREREREZGEoAArIiIiIiIiCUEBVkRERERERBKCAqyIiIiIiIgkBAVYERERERERSQgKsCIiIiIiIpIQFGBFREREREQkISjAioiIiIiISEJQgBUREREREZGEoAArIiIiIiIiCUEBVkRERERERBKCAqyIiIiIiIgkBAVYERERERERSQgKsCIiIiIiIpIQFGBFREREREQkISjAioiIiIiISEJQgBUREREREZGEoAArIiIiIiIiCUEBVkRERERERBKCAqyIiIiIiIgkBAVYERERERERSQhJnd0AEZHOYlkWbre7s5shIhKVtLQ0DMPo7GaIiHQKBVgR6bHcbjezZs3q7GaIiERl3bp1uFyuzm6GiEin0CHEIiIiIiIikhA0AisiAqRsPQPDavhOz3BgOAwwHOAwwDAwHIF1DcsNAxwGRmAbe51hl8EIWm4va6zTXkfjesswGr9aNBrrsZcHlQteZjVUY69zAASWG/a6QBmrYZkVXCZQh6Nhe7tM6Hq7TsCiYZkjzLqQ7QlpY+Oypu0IU4bQMiHriVAuqM5wZVuqM0TEMlZI+ab12euD6rIaltOkHIYVVN6/3gheZ29r2WUMe7ug7RvqMQyr8UewYXnjR23Z6x1Y9nP/OnA0PPev8z8PlLPXGRYGjeUcDcvsG8HLCVneWMa0lzmwcBgmzsC6huf2+obHAE57mYUT/3KnYTYpZ+JseAzYj+3taazPgb+8A//r+9cFyvmXGZg4A+UJtMPECf5y+F8v8N4Cz/2vZTU8prEt+H/NnBj2r7vTMHBgNCwzGp47Gn50DOo9Thb820BERHo6BVgREQCf0bgraTgwaAibDcmgcZ0Bjsa0ZvjTYEMlgbTjoEk6CUo2jubpqjFlBC2nybLg1yDMsqblaAyuQQG22bJmywkTiJuuJyhIN76tFte19DbCtqMtZdrQVXGos/XQG+cAG249TZ9bYZZbIa8Zbl0gWDWuC15vBZULWoYVps7GW3CAbQzFDTdaXm4HR4OggNoYdCEQRLEDYPA6f4A1GwOg4Q9//nINQdAw/OGyYXngsb09RlBYBqfReO+EoLAZZl1DN/qfWw0B2LIDq7+c1WqADVefg8Zl/ufBbQz6DEVEejAdQiwiIiIiIiIJQQFWREREREREEoICrIiIiIiIiCQEBVgRERERERFJCAqwIiIiIiIikhAUYEVERERERCQhKMCKiIiIiIhIQtB1YEVEAJwWlmX6Hxv4LwRp3xuNX/eFXEc16DHBy6zGxyHLW1gXdFFQq4WLmzYub7y3Qh4TUs4CsOyrcdprLAywsMtaTcs0lGuu6bLAhU9DmtSkP1q4Nd22Pdd6jbQuUp1teD0j3PqQZeGu5xpmfbM2tnAdWELXG8Hr7G0b6zSCr/Ea2D7kuqzBP14tXAeW2K8Da9FYzjKs0BvBywlZbtr1mY2vgwWGGXS9WitkvWWYWEHtsLAanjfcB9rR8NzRsI0jaHnwMn87/NU5ANNovDdpvA6s2bDMoKXrwBo48F9f1knjZxZ47mgo0/Tasg57nRFUX2NdDgz7uf9jMaj3hPu9FBHpeRRgRUQAz6SvOrsJHSOQD9qhaXQWgdAfLbMzGxKz4J9sHZAmIpIo9BdbREREREREEoJhWVY7v5sXEUlMlmXhdrs7uxkdyu12881vfhOANWvWkJaW1skt6rrUV22nvmq7juirtLQ0DEPHRIhIz6RDiEWkxzIMA5fL1dnNOG3S0tJ61PttD/VV26mv2k59JSLSfjqEWERERERERBKCAqyIiIiIiIgkBAVYERERERERSQgKsCIiIiIiIpIQNAuxiIiIiIiIJASNwIqIiIiIiEhCUIAVERERERGRhKAAKyIiIiIiIglBAVZEREREREQSggKsiIiIiIiIJAQFWBEREREREUkICrAiIiIiIiKSEBRgRUREREREJCEkdXYDRES6i5qaGlatWsXmzZs5efIkDoeDIUOGcMUVV7BgwQKSk5Njrru0tJSVK1eyZcsWCgsLSU1NZcSIEcyePZurr74awzAilj927BgrV65k27ZtlJaW4nK5GDVqFPPmzWP69Omtvv7evXt54YUX+OSTTygrKyMrK4vzzjuP+fPnM2HChBbLFRQU8Omnn7J371727dvH/v37qaurA2Dx4sXqqwaWZfHZZ5+xZcsW8vPzKSgooKKigrS0NHJzc3G5XJSXl1NUVNTj+8rr9fLGG2+wZ88e9u/fT3FxMeXl5RiGQU5ODi6Xi9raWsrLy3t8X7WksrKSm266iZKSEsD/u7hkyZKo6hAR6SyGZVlWZzdCRCTRnTx5kqVLl3Ly5EkA0tLSME0Tj8cDwMiRI1mxYgVZWVlR1713717uuOMOysvLAXC5XHg8Hnw+HwCTJk3i/vvvb3HnfMuWLSxfvhy32w1ARkYGtbW1mKYJwJw5c7jzzjtb3AF/7bXXeOihh+zXy8zMpLq6msC/j0g7v0uXLuWTTz6J+P7UV/D000/zl7/8xX5uGAYZGRlUVVWFbJecnIxhGD26r8rKyrjmmmvs54Zh2GUDrw3gdDpxOBzU19cDPbOvWnLffffx5ptv2s8VYEUkkegQYhGRdvJ6vfzsZz/j5MmT9O3bl4cffpj169ezfv16li9fTnp6Ovv27ePee++Nuu6qqiruvPNOysvLGTp0KH/+859Zt24d69ev58c//jFJSUls3bqVP/zhD2HLHz9+nLvvvhu3201eXh7PPvssb7zxBmvXrmXx4sUArF27lueeey5s+U8//dTecZ46dSovvfQSa9eu5ZVXXrFDxFNPPcXbb78dtrzT6WT48OHMnDmT2267jYULF9rr1FeNvF4vGRkZfPOb32TFihWsX7+eV155hREjRgDgcDT+u/7zn//co/sqJSWFBQsWcPfdd/PCCy/w1ltvsWbNGoYPH26vB/D5fCxevLhH91U4W7du5c033+T888+Pui9ERLoCBVgRkXZ68803OXjwIAD33nsvEydOBPyhY8aMGdxxxx0AfPDBB3z00UdR1b1q1SpKS0tJTU3ld7/7HWPGjAH8I3Hz58+3R01effVVjhw50qz8k08+SW1tLX369OGBBx5gyJAhAKSnp7NkyRLmzZsHwN/+9jcqKyublf/jH/+Iz+fjrLPO4p577uGMM84AoHfv3txxxx1MmjQpZLumfv/73/P000/zi1/8guuvv56amhp7nfqq0dSpU3nhhRf46U9/ykUXXURqaipvvvkmhw4dAuDuu+8mNTWV+vp6XnzxxR7dV+np6dx+++1cccUVDBw4kKSkpJDfwUceecQOZ2vXru3RfdVUTU0NDz74IMnJyfzXf/1XVP0gItJVKMCKiLRT4FC88ePHhx3VmDFjBrm5uSHbttW6devsOgYNGtRs/fz583G5XPh8Pv7xj3+ErKutrWXz5s0AfOtb3wp76OR3v/tdAKqrq/nnP/8Zsu748ePs2rULgBtuuIGkpObTJgTKnzx5kp07dzZb73Q6Q57n5+fbj9VXjUaOHNnsNYN/rqZPn8748eMB2LNnj/0+e2JfhRPcV3l5eZx77rkAFBUV2e9TfeUPuYWFhSxatMgesRYRSTQKsCIi7eB2u/n0008B+NrXvhZ2G8MwmDx5MgDbtm1rc91ffvklhYWFAHb5ptLT07ngggvC1p2fn29PmNRS+dzcXIYNGxa2fPDzlsrn5eWRnp4etnxTbrebo0ePRtxGfeUX7ucqcGhs4LxJ9ZVf074yTdN+fuaZZwLqK4BPPvmENWvWMHToUDv0iogkIgVYEZF2KCgosANF4HzFcALrSktLqaioaFPdgUMiW6v7rLPOAuDw4cMtlg9sE6l84HDVgMDznJwccnJywpZ1Op0MHTo0bPmmCgoKaMu8geqr5j9XXq/XDmXB7VNfhfaVZVn8/Oc/Z/fu3QB8+9vftrfryX1VV1fHb3/7WwD+8z//0/4yREQkESnAioi0Q3Fxsf24f//+LW7Xr1+/sGUiCVzioq11V1dXh5xjGnidrKwsUlNTWy0f/HrB5YPbHk6gbU3LN9XW962+av5z9fzzz1NaWgrA3Llzm7WnaZlIulNfPfPMM/zbv/2b/fyPf/wj7733Hi6Xi9tuu405c+Y0a09wG1rTXfrqiSee4NixY8ydO5cLL7wwYl0iIl2dAqyISDsE76xG2kFNS0sLW6Yj666trW22PlL5pu0KPG+tfKBtrb2vtr5v9VXo+sOHD/Pkk08CcOWVV4Zc87On95XL5SIjI6PZ637/+98PCfpNX68n9dXu3bt56aWX6Nu3L7feemvEekREEoECrIiISBf28MMPU19fz4gRI+zZdMVvwYIF/OQnP7Gf33PPPeTl5fHYY49x88038+WXX3Zi6zpffX09DzzwAKZpcvvtt8d0DVwRka5GAVZEpB0Ck6cA9mQt4bjd7rBlOrJul8vVbH2k8k3bFXjeWvlA21p7X2193+qr0PWVlZUMHTqUhx9+uFk59VXo+qFDh/L73/+eKVOmcPToUX7961/b5133xL566qmnOHz4MJdeeinTp0+PWIeISKJQgBURaYfgc9MCl+wIJ/icu9bOZwvo27dvVHVnZGSE7MAGXqeysjLiznegfPDrBZdv7XzBQNualm+qre9bfUXI9Tz79evHihUrwpZRXzX/HTQMg+uuuw7wX3Loiy++aPZ6PaGvjh49ysqVK3G5XNx6663U1NQ0uwV4vd5my0REuioFWBGRdhg2bBgOh/9PaaTZUgPr+vTpQ69evdpUd/CspZHqDsx02vS6jsHlg2dDbal801lWA89PnTpFWVlZ2LI+n88+TDPSLK3g7yvDMCJuA+qrI0eO8Mgjj9jP58yZ02Lg6ul9BeF/B4MnXDp27FjIup7SV0VFRfh8Pmpra/nud7/L7Nmzm90CnnnmGXtZZWVli+0UEekKFGBFRNohLS2N888/H4APP/ww7DaWZbF161YALr744jbXPWTIEAYMGBCx7traWnbt2hW27ry8PHtyl8DrN3Xy5EkKCgrClg9+3tLr5+fn26M2rb23tLQ0Bg8eHHGbnt5XR44cYenSpZSUlNjtCVw+p6me3lcB4X4Hjx8/bq9PT09XX4mIdCMKsCIi7RQYydixY4d9/clgGzdutHeog0c9WmMYBrNmzQLg7bff5sSJE822efnll6mtrcXpdHLVVVeFrHO5XFx22WUArF69mqqqqmblV65cCfh38qdOnRqybtCgQVxwwQUAPP/883i93mbln332WQAGDhzYpstz5OXl2Y/VV6GCw+uQIUP4/ve/D+jnqmlfhds++HcwPz+f5557DoDk5GTOO++8HtlX48eP55133ol4C1i8eLG9TBM9iUhXpwArItJOs2fP5qyzzsKyLO666y4++ugjAEzTZOPGjTz44IMATJ48OeQSKABPPvkk06ZNY9q0aWF3jm+44Qb69OmD2+3mzjvvZO/evYB/dtHVq1fzP//zPwDMmzePIUOGNCu/ZMkSXC4XJSUl/OxnP+PIkSOAf9ToqaeeYs2aNQDcdNNNYXdcb7nlFpxOJ/v37+fuu++2z7WrqKjg4YcftkeFbr31VpxOZ7PyHo+HsrIy+3b22Wfb637+85+zefNmysrKKC0t5e233+6xfXX06FFuv/12SkpKGDp0KI8++igLFy7Uz1WYvnr00Ud56KGH2LFjhz3yOHv2bEaMGIFlWfz4xz/m448/BuDb3/4227dv77F9JSLSHRlWYHo+ERGJ2YkTJ7j99ts5efIk4D+s0TRNPB4PACNHjmTFihXNdlCffPJJnnrqKcA/wpKbm9us7r1793LHHXdQXl4O+EdqPB6PPRpz8cUXc//995OSkhK2bVu2bGH58uX2TKaZmZnU1tbaEwXNmTOHO++8s8XzU1977TUeeughe/vMzEyqq6vt2V0XL17MkiVLwpZ94403uP/++8Oua0lP7KsHHniAtWvXAv6JgAKHnfp8PiorKzFNU33V4L777uPNN98E/COk6enpJCUlNesnp9OJ0+ns8b+DkUybNq1d5UVEOkNSZzdARKQ7yM3N5amnnmLVqlVs3ryZkydPkpSUxIgRI5gxYwYLFiwgOTk5prpHjx7N//7v/7Jy5Uref/99vvrqK9LS0jjrrLOYPXs2c+bMsSexCeeSSy7hr3/9KytXrmTbtm2UlpaSmZnJyJEjueaaa1q9vMbcuXMZOXIkzz//PDt37qSsrIycnBzOO+885s+f32xEK1aB99MT+yo4eFVXV1NdXd3q++ypP1eLFi1ixIgR7Ny5ky+//JKysjKqqqrIyMhg4MCBJCUlUVFRQWlpKYZh6HdQRKSb0QisiIiIiIiIJASdAysiIiIiIiIJQQFWREREREREEoICrIiIiIiIiCQEBVgRERERERFJCAqwIiIiIiIikhAUYEVERERERCQhKMCKiIiIiIhIQlCAFRERERERkYSgACsiIiIiIiIJQQFWREREREREEoICrIiIiIiIiCQEBVgRERERERFJCAqwIiIiIiIikhAUYEVEJCE8+uijTJs2jR/96Eed3RTpZFVVVVx99dVMmzaNd955p7ObIyIip1FSZzdAREQ6VnV1Nfv27WPPnj3s3buXvXv3cuzYMSzLAuD5558nNze3Q17bsiwWLlxIUVERixYt4pZbbompnn379rF69WoAfvCDH8SxhZ3r4MGDbN26lfz8fA4ePEhJSQk+n4+srCzOPvtsLrnkEmbPnk1mZmZnN7VLyczM5IYbbuCJJ57gD3/4A5MnTyY1NbWzmyUiIqeBAqyISDe3dOlS9u3b1ymvvWfPHoqKigCYOnVqzPU8/vjj+Hw+Jk+eTF5eXrya16mWLl3KJ598EnZdaWkppaWlbNu2jWeeeYZly5YxadKk09vALm7hwoW8+OKLFBYW8tJLL7Fo0aLObpKIiJwGOoRYRKSbC4y0gn/kavz48fTp0+e0vPY///lPAPr378/YsWNjqmPXrl1s374doFuFlECwz8rKYs6cOSxbtozHHnuMJ554gl/96ldccsklgD/MLlu2jJ07d3Zmc7scl8vFggULAFi5ciU1NTWd3CIRETkdNAIrItLNzZkzh+zsbEaPHs3gwYMxDIOlS5dSWlra4a8dCLBTpkzBMIyY6njuuecAyM3N5cILL4xb2zrb4MGDuemmm5gxYwYpKSkh60aPHs306dN59tln+dOf/oTH4+Ghhx7i6aef7qTWdk0zZ87kySefpLKyktdff53rrruus5skIiIdTCOwIiLd3MKFC7nyyisZMmRIzCEyFkeOHKGgoACI/fDhoqIitmzZAsCsWbNOa/s72oMPPsg3vvGNZuE12KJFixg5ciQAhw8f5sCBA6ereQkhNzeXCy64AIBXXnmlk1sjIiKng0ZgRUSkQwRmhw0cthyLDRs2YJomAFdccUWbyni9Xt5++23effdd9uzZQ1lZGT6fj+zsbM466ywmTpzIlVdeSd++fUPKTZs2DYDZs2ezbNkyvvzyS1566SW2bdtGcXExGRkZjBo1iu985zuMGzfOLldXV8cbb7zBunXrOHr0KG63m0GDBnHVVVdx3XXXtXtyoYsuusg+h/nIkSOcffbZMdd1+PBh1qxZw86dOzlx4gRut5vMzEyysrLIzc1lwoQJXHrppQwdOjSm+r1eL+vXr2fjxo0cPHiQ8vJyDMOgV69eZGdnM3bsWCZOnMiUKVNITk4OKdu0/w8fPszLL7/M9u3bKS4upra2lt/85jfNvgy54oor2LlzJwUFBezZs4cxY8bE1jkiIpIQFGBFRKRDBA4fvuSSS0hKiu3fzfvvvw/4zxMdNmxYq9vv37+fX/7ylxw9erTZuqKiIoqKivjwww85cOAAy5Yta7GeTZs2cd999+F2u+1ldXV1fPDBB3z44YfccccdzJs3j+LiYpYtW8aePXtCyh86dIg///nPfPDBBzz00EPtCrFer9d+7HDEfuDUmjVrWLFiBT6fL2R5eXk55eXlHD16lG3btnHgwAHuuuuuqOsvKyvjpz/9adgJwwJ9v2/fPl555RVWrlzJ4MGDW6zrjTfe4KGHHsLj8bT6usGTer3//vsKsCIi3ZwCrIiIxF1xcTGff/45EPvhwx6Ph88++wyAsWPHtnr48L59+7jtttuora0FYPz48cycOZNhw4aRnJxMSUkJu3fvbvW6oQcOHODtt98mJyeHH/zgB/Zrf/TRR/ztb3/D7XbzyCOPMG7cOH7961+zf/9+vvWtb3HppZeSnZ3NsWPHePrppzlw4AC7du1i5cqV/Ou//mtMfQDw8ccf249HjBgRUx0HDx60w2uvXr2YN28e48aNIzs7G5/PR0lJCXv37uWDDz6I+TDtFStW2OF1woQJzJw5k9zcXDIyMqiurqagoICdO3fah4S3ZO/evWzYsIFevXpx3XXXkZeXR3JyMocPH2bgwIHNth8xYgQul4va2lo+/vhjlixZElP7RUQkMSjAiohI3L377rtYlkVKSgqTJ0+OqY4DBw7Yo4+jR4+OuK3X6+WXv/ylHV5vv/12e4baYF//+te5+eabKSwsbLGuffv2MXLkSFasWEFWVpa9/Nxzz2Xw4MEsX74cr9fLbbfdRkVFBQ8++CATJ060txs1ahQXX3wxN910E8XFxaxevZqbbroJp9MZ1fsH/2HYhw4dAvwhfsiQIVHXAbBx40Z75PWRRx6xz6sNNnXqVG6++WbKy8ujrr+urs7+YmDq1Kn8+te/bhaEx40bxze/+U1qa2sjjiQfOnSIwYMH89hjj4XMlt3SLNZOp5NRo0axc+dOvvjiC0zTbNdItYiIdG36Cy8iInEXOHx44sSJuFyumOoIPgy4tcv+bNiwgWPHjgH+WZfDhddgAwYMiLj+Zz/7WUh4DZg+fTr9+/cH4NSpU8yfPz8kvAZkZmbyjW98w97u8OHDEV8vnOLiYh5++GEADMPg3//936OuIyAw43RmZmbY8Bqsd+/eUddfWVlpf9kwbty4iKO4Lper1UOqf/KTn0R1qafAtm63m+Li4jaXExGRxKMAKyIicVVVVcWOHTuA2A8fBigpKbEf9+rVK+K2gcAMcOONN8b8muA/JLWlkGcYRsi6mTNntlhP8HbHjx+Pqg1ut5tly5bZwbPpxFHRCoTuqqoqNm7cGHM9Lendu7c9m/Jbb73Vrmuy9u/fP+yXApEE/3wE/9yIiEj3owArIiJxtWXLFrxeL06nkylTpsRcT11dnf043GhosC+++ALwj8S1ZbKnSForH9yWSLP1Bm8XTaCrr6/nF7/4hT0x1KWXXsrNN9/c5vLhzJw50x71XL58OT/84Q959tln2bVrl33YdXskJycze/ZsAHbv3s3111/Pgw8+yFtvvRV1eI9lluXgABs88ZaIiHQ/OgdWRETiKjAaev7555OdnR1zPcHnjLY2G21ZWRnQONLYHmlpaRHXBx8eG+nw6ODzMAOXAmqN1+vlrrvuYuvWrQBMmjSJu+++O6bzZ4MNGjSIBx54gPvuu4+ioiLy8/PJz88H/P08ZswYpk2bxty5c1v9sqAlP/rRj/B4PKxbt46KigpeffVVXn31VcD/xcKkSZOYM2dOqyPJrY22hxP8ZUesM16LiEhi0AisiIjEjcfj4cMPPwTad/gw+M/XDKioqGhXXYnA6/WyfPly+9JBEydO5De/+Y19aG57TZgwgeeee4577rmHOXPm2Jex8fl8fPbZZzz++OPceOONdniOVmpqKsuWLeOZZ57h+9//PhdddJEd8EtLS3nzzTdZunQpv/jFL0ICZ1OxTMAUPPFU8M+NiIh0P/qaUkRE4mb79u32IantDbDBl0xpLcBmZ2dTWFiYsBP4BMJrYPT6oosu4v7772/X9WPDSUlJ4fLLL+fyyy8H/CPXH330EevWreODDz6goqKCu+66i5UrV9K3b9+YXmPIkCF873vf43vf+x4+n499+/bx/vvvs2bNGk6dOsU777zDE088wW233Ra391VZWWk/bm2CLhERSWwagRURkbgJBLCRI0eSm5vbrrqCr3n65ZdfRtw2cJmdkpKSVrftapqG1/Hjx/PAAw/EPbyGk52dzYwZM/jd737Ht771LQBqa2t5991341J/4PDkJUuW8Mc//tE+PHvDhg1xqT+goKAAgNzcXNLT0+Nat4iIdC0KsCIiEhemafLee+8B/omH2mvAgAH069cPgM8//zzittOmTbMfr1y5st2vfbp4vV7uvvtuO7yOGzeO3/72t62eh9sRJk2aZD8OnFMcT7m5ufZ1bGO51mxLysrK7EsonXfeeXGrV0REuiYFWBERiYv8/Hw7+AQHyvYIhKqCggKqq6tb3O6KK66ww9HatWv5+9//HrHewsLCuLSvPbxeL7/61a945513gI4Nr5s3b241lAbOXQY488wzo6r/+PHjbN++PeI2J06csEdKBw0aFFX9kezevdt+/LWvfS1u9YqISNekc2BFRLq5o0eP2jPOBgSuLwqwadOmkNmCXS4X06dPj/p1AqOIgwYNiulSKOFcfvnlrF27FtM02b59O5dddlnY7ZKSkrjnnnv44Q9/SG1tLY8++ijvvPMOs2bNYtiwYSQnJ1NSUsKePXvYtGkTo0ePZtmyZXFpY6zuvfdeNm3aBPgD46233sqJEycilsnJySEnJyfq1/r73//Ovffey4QJE5gwYQLDhw+nd+/e1NfXU1hYyIYNG+zR84EDB0Z9+aPCwkJ+8pOfMGjQIKZMmcLYsWMZMGAAqamplJeXs3v3blavXm3PJr1gwYKo30NLtm3bBvjP773kkkviVq+IiHRNCrAiIt1cfn4+999/f4vrH3/88ZDnAwcObFeAjcfhwwETJ06kf//+FBUVsW7duhYDLMA555zDH/7wB375y19y/PhxduzYwY4dO8JuGzhntjNt3LjRfnzs2DFuvfXWVsssXryYJUuWxPR6Ho+HLVu2sGXLlha3OfPMM7n//vsjXh4okuPHj/Piiy+2uN7hcHDjjTdy7bXXxlR/U16vl7feegvwj/rHegkgERFJHAqwIiLSbvv377dHD9s7+3Awp9PJ/Pnz+dOf/sQHH3xAWVlZxGvLjho1imeeeYZ169bxz3/+k3379tnnW+bk5HD22Wdz8cUXc+WVV8atjYlg+fLlbN26lZ07d3Lw4EFKS0vtQ4p79+7NOeecw9SpU5k5c2ZMl+254IILeOyxx9i+fTu7d++msLCQU6dOUV1dTVpaGoMGDeKCCy5g7ty5cRudB+yfCYCFCxfGrV4REem6DMuyrM5uhIiIJLa//vWv/PWvfyUnJ4eXX345pmt5tqSqqoobbriBiooKbrnlFhYtWhS3uiWx3XnnnWzZsoUJEybwyCOPdHZzRETkNNAkTiIi0m6Bw4e//vWvxzW8AmRmZtqhddWqVdTU1MS1fklMu3fvZsuWLRiGwQ9+8IPObo6IiJwmCrAiItIu9fX1TJ06lcWLFzN//vwOeY0FCxYwePBgysvLeeGFFzrkNSSxPPHEEwDMmjWLsWPHdnJrRETkdNEhxCIikhA+//xztmzZQmZmJtdff31nN0c6UVVVFS+++CKWZTF//vyI50WLiEj3ogArIiIiIiIiCUGHEIuIiIiIiEhCUIAVERERERGRhKAAKyIiIiIiIglBAVZEREREREQSggKsiIiIiIiIJAQFWBEREREREUkICrAiIiIiIiKSEBRgRUREREREJCEowIqIiIiIiEhCUIAVERERERGRhKAAKyIiIiIiIglBAVZEREREREQSggKsiIiIiIiIJAQFWBEREREREUkICrAiIiIiIiKSEP4fnCphdvUMcbsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5jUVNuHf8mU7bu0pXcQUFCwoKIIKNgLKL5ix95RUV/ba0U/e8WCBRWwotgVUWkqKFWliAjSe13YXmZyvj9mk83MpOfMbGb2ua9rL1c2eXJmJpOcO89zzhEYYwwEQRAEQRAEQRAE4XHE+m4AQRAEQRAEQRAEQViBBJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICUhgCYIgCIIgCIIgiJSABJYgCIIgCIIgCIJICbgI7Pr16yEIAgRBwGWXXcYjZINk0KBByvtIEAShx2WXXaZcK9avX1/fzVGYMGGC0q4JEybUd3OIBDBs2DAIgoAzzzyzvptCpAjURyQIbdK53//oo49CEAR07twZlZWV3OMnLQM7YcIEPPTQQ3jooYeSdch654svvlBe8759++q7OUQtDz30kHLBsPJjVRCWL1+OUaNGoUePHsjNzUVBQQEOPvhg3H333diwYUNiXxRBEGmP+sGFnR9e993vv/8eX375JQDoxmSMYe7cuXj44YdxyimnoF27dsjMzER2djY6dOiAs88+G++++y6qqqpMjzd79mxbr9PsoUlxcTFmz56NZ599FhdccAG6desGURQdPQwqLy/Hb7/9hpdeegmXXXYZevXqBb/fr8SaPXu25Vh2KC8vx5tvvonTTz8dbdu2RWZmJjIzM9G6dWucdNJJePHFFy33NyorKzFu3DiccsopaNmyJTIyMlBYWIijjjoKjz32GPbs2ZOQ11AfjBo1Svls7r//ftv7l5eXo6CgAIIgwO/3Y+vWrbb2Lyoqwpdffon77rsPp5xyCg466CA0b94cgUAABQUF6NmzJy677DJMmzbNVtxvvvkG559/Pjp27IisrCwUFBTgoIMOwujRo7FixQpbsX7++WdceeWV6NmzJ/Lz8xEIBNCkSRMcccQRuPXWW7F06VLTGNXV1Vi8eDHeeOMNXHPNNTj88MMRDAaT8mBz165deOSRR3D44YejSZMmyM7ORpcuXXDFFVdg3rx5pvurZZLndcfLLF68WHkdHTp0AGPMdoyrrrpKifHkk08q/37zzTejcePGWLduHZ5++mmezY7AOLBu3ToGgAFgI0eO1Nxm4MCByjYNhZEjRyqved26dabbN8T3qD548MEHlffZyo+Vz+7pp59mgUBAN0ZeXh778MMPE//iiAaB3WtLsnjnnXeUdr3zzjv13Zy0Q/252/mZOHGi62NLksR69+7NALCzzjpLc5sVK1aw1q1bW2pTt27d2KJFiwyPOWvWLFuv0+ic27dvHxMEwfW1XqZJkyaGsWbNmmU5llUWLlzIOnXqZPo+NG/enH3//feGsRYtWsQ6duxoGmfatGmu222lj5hoFi9erLShffv2TJIkW/tPmjRJ2f+0006zffxx48ZZPo8HDBjAtm3bZhhvx44d7IQTTjCMEwgE2JNPPmnatvLycnbeeeeZtksURXbLLbewcDisG+uwww5z/B11w48//siaN2+ue1xBENgdd9xhGEPdB7fz89NPPzlutxf6/QcffLDShunTp9vat6ysjOXl5TEAzOfzsa1bt0b9fcyYMQyI9IF37drFs9nMDw507NjRkbUT0STqiS2hzyOPPIJevXoZbtO8eXPDv7/22mv473//CwAIBAK45JJLMHDgQNTU1OD777/HlClTUFJSgksuuQSNGjXCKaecwq39RMNkwoQJKf3Ul3DGzTffjGHDhplut3r1atx5550AgLy8PJx77rmuj/3pp59iyZIlAIB7771Xc5s9e/YomamcnBwMGTIExxxzDNq2bQsAWLp0KSZMmIAdO3Zg1apVGDx4MObOnYuePXuaHn/EiBE4//zzDbc57LDDdP/GGIvqpwiCgK5du2L37t0oKioyPX4s4XA46v/bt2+P6upqbN++3XYsK2zYsAFDhgzB/v37AQAtW7bEZZddhgMOOAB+vx9r167FpEmTsG7dOuzcuRNnnnkm5s+fjz59+sTF+uuvv3DCCSeguLgYANCzZ09ccskl6NSpE/bt24fvvvsOX375JXbu3Imzzz4b06dPxzHHHJOQ15UsDjvsMBxyyCFYunQpNm7ciJkzZ2Lw4MGW91dfby+//HJHbRBFEb1790bfvn3RvXt3tGzZEsFgELt378aCBQswefJklJeX4+eff8bxxx+PxYsXIzs7Oy5OaWkpTjrpJOX72KxZM1x55ZXo3bs3QqEQfvvtN0yYMAEVFRW46667EAgEMHr0aN12XXjhhfjiiy8AAD6fDyNGjMBRRx2F5s2bY+vWrZgxYwamTp0KSZLw4osvIhgM4qmnntKMFfu9kDP7iaxCW7x4MYYOHYry8nIAwIknnojhw4cjNzcXCxYswFtvvYWysjI888wzyMjIwKOPPqoZ59FHH8Xu3btNjzd37lw888wzAIAuXbrguOOO4/di6oHLL78ct912G4DIeW7ne/Hpp5+ipKQEAHDKKaegVatWUX+/5ZZb8OSTT6KkpATPPPMMnnjiCX4N56rDBnjhKUOy8WqWpKGjzsC6fUq+detWlp2dzQAwv9/Pfvzxx7ht1Fmpdu3asYqKClfHJAivQhlYb3DXXXcpn8NVV13FJebRRx/NALDu3bvrbvPLL7+wjh07stdee40VFxdrblNUVBTVHxgwYIBuPHUG9sEHH3TV/pKSEnb++eezp59+ms2cOZPt27ePMRbdN7Fzn7700kvZ//3f/7Fp06YpmQX1PZ93BvaKK65QYp988smsvLw8bpuamhp26aWXKtsNHTpUM9ZRRx2lbHPxxRezmpqauG2mTJnCRFFUPnOtbazihQwsY4w9//zzSjsuueQSy/tt2LBByd43bdqUVVVV2T72li1b2J49e0yP07VrV6WNTzzxhOZ2d955p7LNIYccwnbu3Bm3zd9//81atGjBALBgMMhWr16tGevnn39WYuXn57M//vhDc7vvvvuO+Xw+pa+jl00bPXo0e+CBB9iXX37JtmzZwhiL7nPxvi9IkhSV9X3ooYfitvnzzz9Zfn6+kkVeunSpq2OOGDFCOd6jjz7qKpYX3Gjnzp1KBWF2drbutVsLdRXAlClTNLe58MILGQDWuHFjVlpayqvZjAQ2gZDAehOeAnvrrbcqsf773//qbvef//xH2e7ll192dUyC8CoksPVPKBRirVq1Uj6HuXPnuo75xx9/KPHGjBmju11JSQmrrq42jbdjxw7lwR8AtnbtWs3teAqsHk4FVotECmybNm2U2H/99ZfudkVFRczv9zMArEmTJnF/nzdvnhKnTZs2hg9Ub7jhBmXb8ePHO267VwRW3VHPyclhJSUllvaTyyABsFGjRiW0jZ999plyrOOOOy7u79XV1UrJpiAIhjL28ccfRz2o0OJ///ufpT4MY4wNHz5c2farr76y/JoSKbBffPGFEvuoo47SLQ1/5ZVXlO3OPfdcx8fbu3cvy8jIUGR406ZNjmMx5h03GjZsmNKOt956y9I+Vh/sfPvtt0rsN998k1ubEz4LsTwo+qefflL+zc4kE5Ik4eOPP8aIESPQqVMnZGdnIy8vDz169MD111+PZcuWGbZNPWGPXKI7Y8YMXHDBBejUqRMyMzPjJm8IhUL4/vvvcfvtt6N///5o3rw5gsEg8vLy0K1bN1x22WX4+eefdY8pT7QxceJE5d86deoU95r13isrs5HNnz8f11xzDbp37468vDzk5OSgS5cuGDlyJGbOnGm6v3ycQYMGAYBSXnHEEUegcePGyMnJQc+ePXHPPfc4Kq9qCDDG8MknnwCIvJ+jRo3S3fbmm29Wfp88eXLC26bmt99+w/XXX4+DDjoIjRo1QmZmJtq3b48RI0bg22+/NdxXPYmK/B3duHEjbr/9dvTo0QM5OTlo1KgRjjnmGLz66qsIhUKW2lRaWooXXngBJ554Ilq3bo2MjAw0adIEffv2xQMPPIBdu3YZ7h/7XQmHw5gwYQJOPPFEtGnTBn6/Hx07dozbb8eOHbjzzjtx0EEHIScnB02aNMGRRx6JZ599Vik/6tixIwRBiNt/2rRpyjHVn6cRN998s7LPd999Z2kfK5jNQpyoz+2bb77BmWeeiZYtWyIzMxMdO3bERRddhN9++832a6iursZbb72Fs846S5nop1GjRjjkkENw++23606o888//yAnJweCIKCgoADr1q3TPUZRURHat28PQRDg8/kMr9vpwrRp07Bt2zYAQI8ePbiUfr777rvK7xdddJHudrm5uQgEAqbxmjdvjgEDBij/b3YfJ4CdO3cqvx9wwAG62zVq1AiFhYUAIvf1WNT9g//85z/IzMzUjXXppZcqv3/wwQe22uuEXbt2oW/fvsq167bbbtMcnub0nlZYWIgzzjgDQOS9+fjjjy21S92Xc1o+bJWDDjpI+V2rHH3RokVKyWbv3r1x8MEH68Y655xzkJubCyAyqWhFRUXcNlbPKwDo1q2b8rvWuVUfqPtT8kRdWlx22WXIz88HAHz77beO2//BBx8oE9CdeOKJyvCIRKN2mV69emHLli1x2+zevRv/93//h+OOO04pTy8sLMRxxx2Hp556CqWlpbrx1ee11eFJEydOVL6fF110EYLBoOZ2J510knJNUt9LXMPDgo2erlkdFK31dPXff/9lffr0MdxPFEV2//3367ZN/eRn5syZ7MYbb9SMo37yOmjQIEttHjlypOYTB6sTbRi9V3rU1NSwq6++2jT2eeedp1liJCNvN3DgQLZmzRp20EEH6cbq0KFDWmWQeWVgly1bpsTp1auX4bbhcDiqhMVOiYZTSktLo0pd9H5OP/103fbEZkC+++471qhRI91YJ554IqusrDRs19SpUw0nWwAiA/6//PJL3Rjq78qePXtY//79Nc9bNTNnzmSNGzfWPebBBx/MNm7cyDp06KC5fzgcViZQady4sWkpeEVFhXK89u3bG058YRez6g7en1soFDK8romiyJ588knLGVgrk9EEg0H22muvae7/xhtvKNv169ePhUIhze3OPfdcZbv//e9/hu9punDOOecor9nKBC5W6NKli3Ie80JdlfLRRx9pbkMZ2Dratm2rxLaage3Tp0/c39VZ1XHjxhkec+/evcq2Pp+PlZWVOWq7lQzsunXrWLdu3ZTtHn/88bhteNzTvvrqK2U7o/J1GXWJbe/eve28bEeos1VaGVh1VnXEiBGm8Q455BBle60Jue677z7l72YZWPX19M8//7T8mhKZgW3atKkS22ySoNNPP13Z9ttvv3V0PHW58uTJkx3FUGPW7w+Hw+y6665TtjnmmGPY3r1747Z75513lMy83k+LFi3Yr7/+qnmcmpoapeRcEAS2Zs0a07bL9wUAuqXnMmeffbbSV9i9e7dpbCskXGB/+eUX9vnnn7OePXsq23z++edxP3///XfUfv/++y9r1qyZsk///v3ZE088wT788EP23nvvsdGjR0d1RvVubuovzqmnnsoAsJYtW7K7776bvffee2zChAnshhtuiJo566ijjmK5ubls6NChbMyYMWzSpEns448/Zi+++CK75pprWE5OjhLzlltuiTvm4sWL2eeff86OP/54ZbvXX3897jUvXrw4aj8rAnv++ecr22RmZrJrr72WTZw4kb333nvs1ltvjTqBTz75ZN1yCnmbQw89lPXo0YMJgsCGDh3Kxo0bxyZPnswef/xx1r59e8MLaaqiPieOO+441rlzZ5aRkcHy8vJY165d2cUXX8y++uor01kKP/zwQ9Obshr15zt//nxOr0abyspKZcwaANalSxd27733snfffZd99NFH7NFHH43qLJxwwgmagqXuQA4dOpRlZ2ezrKwsdu2117IJEyawDz/8kN1+++1R3wmjB0pTpkxRxtEEAgE2fPhw9tJLL7GPP/6YjR8/nl100UVKiZcoimzGjBmacdTvpfy97t27N3viiSfYRx99xN544w120003Kdv/9ddfUSWLhx56KHv22WfZ5MmT2dixY9mxxx6ryJBcqhcrsIwx9thjjykx3nvvPcPP4N1331W2ffjhhw23tYsdgeXxuak7vcFgkF199dVs4sSJ7N1332WjRo1S3lt1GZJeR+XXX39VthcEgZ1yyinsueeeY5MnT2YTJkxg1157bdRnpRdHXc6m1fbx48crfz/66KNdjeFLFXbt2qV8f/x+v+lMplZYs2aN8j66Kb2LRf3Q9LffftPcRn0e9+rVix188MEsNzeXZWZmsrZt27IzzjiDjRs3zvBhrRmpIrDqh+9GY2DVbZgwYULcNtdff73ydzsCC4AtXLjQUdvNBHbp0qXK7NU+n0+zhJHXPc1uR1099viFF15w9PqtsnPnzqgZYZ9//vm4bSZPnqz83a7APv3003F/X7hwofJ3q2NgBw0aZOt1JUpgt23bpsTVul8btcPJw70lS5Yo+zdp0sT0Yb0VjPr9lZWVUfe50047TfMh0gsvvKBsk52dzS699FL22muvsU8++YSNGzeODR06VCn1zc7O1n0AdvvttytxHnjgAcN2qx/saD0oi+XJJ59Uttd7YGkXTy6jEw6HlaccGRkZ7OOPP9bcbvv27UqGVhRFtnz58rhtYpdM6d+/P9u/f7/h8adPn254Q9y9e7eS8RFFUXf8Du9ldD766CPl7y1atNA8CdevXx+V2dAbb6l+T4LBIPv66681X6c6lhvpKisr03xw4eQnVvztYnUZnaOOOoqtX79eN87DDz+sbGslO6CeXOPdd9919RrMiB2bq9V5r66ujmqTVmcmdhmL9u3bs1WrVsVtN3/+fOWpf+PGjTUv7Bs3blSy0O3bt9cduzN//nxWUFDAALC2bdtqjqmLrey49dZbDTOc6gztDTfcoLlt7HmhdUPcvn27IggDBw7UPR5jjA0YMEDpkLkdJxOLHYF1+7mpb1SNGjXSXPpk5cqVrGXLllHH1OqoFBcXs3bt2imxZs+erfn6Vq9erTxAy8nJ0XyyvnfvXiUr5fP52C+//KL87Z9//lHkPD8/39LTZCP+/vtvbtcv3ksJqFFPUnPmmWdyifnBBx8YdoCd8MsvvygxCwsLdTPoVpfRadWqFZs5c6ajtqSKwO7atStqgp+WLVuye+65h7399tts0qRJ7MEHH1Tu16IoskceeUQzjvq+NXr0aMNjqsfLAuYP7fQwS3LI1SGZmZnsiy++0IzB657GGGN33HGHpY66eomQQCDA7bu7Y8cO5Xrw6aefsvHjx7Prr78+qkrmpJNO0rz3/fTTT8o2hx56qOFxQqEQy83NVbbXm9BN/d76fD524YUXsrFjx7KPPvqIPffcc1GZy/79+7MdO3bYer2JElj1e2F2P2aMsbffflvZ/sorr7R9vFtuuUXZn9dYaL1+//79+6OSYJdcconmOb9w4cKoiosNGzZoHufrr79W+i5HHXWU5jbLly9XjtexY0fDJM7ll1+ubPviiy+avs7Zs2dbvu5YxZMC++mnnyrbjh071nDbf/75R3kqdPXVV8f9Xf3FycnJUWZFc4v6qbTejYK3wB566KHK36dOnaobZ/78+crTlg4dOmh2DtQ3JaNJOd58801L25mhPkfc/ridBOLBBx9kmZmZ7NRTT2Vjxoxh7777Lps8eTJ78cUX2TnnnKOcTwBY69at2ebNmzXjjB49WtnupZdeMj2u3e2dsnXrVhYMBhkAds455xhuW11dzTp37swAsAMOOCDu77EdyJ9//lk31kUXXWS43ahRo5QbpFm5yVtvvaXEev/99+P+rv6uHH744Ybyqn7C3KtXL93OcmxcvSe66tJHLSlkLHJdkrc5/fTTDV+rE+wKrJvPbejQocrftTI6Mt98803UMbU6Ks8++6zyd7NJQGbMmKFs+3//93+a28yePVuZKbVDhw6sqKiIVVdXs8MPP1zZl8fDIrtrRxv9JGJ9UBl1tuXzzz/nEvPee++1/JlZoaqqyjQrJDNr1iwmCAI78sgj2V133cXefvtt9sknn7A333yTXXPNNcqDLiCScf7hhx9stydVBJYxxvbs2cPOPffcqHtU7M95551neH2dPn26sm2bNm0Ms0ixQ66cTkCo10f88ssvWVZWFgPACgoKdNfT5HlPYyxSkSO3x6ijPnHiRGU7s+Pa4bvvvtP9/Nq0acPGjBmje58qKytT3gtBENiyZct0j/PJJ59ExTaqoHjhhRdYYWGhbrs6d+7MPvzwQ0uTtMWSKIH98ssvlbjDhw/nvr2a6urqqKpQsz6MVbT6/Tt27Ijq799222265+iZZ57JgMiwK72+qsz999+vxNSb3K9v377KNnoPBdUPdoLBoKWS4B07dihxBw8ebLq9FTwpsHIZWn5+vqUlR/r166fb4VR/cS699FLTWHaQMw5nnHGG5t95Cqz6PT744INNYw0ePFjZXitzKv/N5/Np1tPLqEX9/PPPNz2uHl4S2GXLlhlOZ798+fKoJ91DhgzR3E49FtnKzGrqjuBjjz3muP1mqMtJ9MY7qLnnnnt0z1O1CJk97VVLZ+zYRUmSWJMmTRgQebJsRmlpqfJUUevzVn9X3n77bcNY6jE+ZiVz6hkg9QRWLVZ33nmn5jb//e9/lW2MxvI6xY7AuvncKisrlc5SixYtDOWfMcYOPPBAw46KXDHTrVs309fIGFPKCo2erqu/VyNGjIhaYuKiiy6ydBwzUkFgFy1apByjefPm3Eqm1Q845syZ4zrelVdeGXVuGi1JsnXrVt2HRIxFsvCnnXaaEq9p06amFVaxpJLAMha5J1911VW651cwGGTnnXde1LAoNaFQKOr+NnLkSM3v9RdffBEnyk7vW1p9xLfeekuJ37JlS8MxlTzvaTJHHnmk6WelzoBpVak5RU9gBUFgF110kWk1gTr71adPH83M8D///BM1G7nZvbesrIyNHz/ecK6E3r17O3qIlSiBff/9921d63/44QdL74UWU6ZMsXxPtUNsv3/NmjVR30+tseAye/fuVR7gXnPNNabHUj9Y16safPXVV0372uoHO1YfBFRXVyv7dO3a1dI+ZvjhQX755RcAQKtWrTBt2jTT7X0+H4DIQt8VFRXIysrS3M7OYsPFxcV4//33MXXqVCxbtgy7d+/WnbVs8+bNluM6ZcGCBcrvJ510kun2J510EmbMmAEgMmPxkUceqbldt27d0LhxY904bdq0UX53Mxtxx44dNWcTrA969epl+PeePXti2rRp6NWrFyorKzF9+nTMnz8fRx11VJJa6A75+wNEzk15gXI91J/r33//rTl7LwAcffTRhnGMzpW//voLe/fuBQDk5eWZtgmIzGi6b98+/P3334bbmX2vFy1apPx+/PHHG24rz8ptxPHHH49u3bph1apVmDhxIh599NGomVdramqUWStbt26N008/3TRmInHzuS1ZsgTV1dUAgIEDByrXWj0GDx6s+3nt378fS5cuBQC0aNHC8jkAwPAcePjhhzFjxgzMnz8/akbKTp064dVXXzU9hhUeeugh3ZnyvcI777yj/H7JJZfA7+dze5e/twDQpEkTV7GefvppvPXWWwCAgoICTJ48WXfmSiDSBzCicePG+PTTT3HkkUdi2bJl2LNnD8aNG4e77rrLVTu9yuOPP4777rsPkiThqquuwnXXXafMWrtixQq89tprGD9+PD7++GPMmzcPP/74Y9TMsUCkvzRu3DiccsopCIfDmDhxIhYvXoxLLrkEnTp1wr59+zBt2jR8/vnnymzs8ozgoshl4Qo8+eSTuPvuuwEAXbp0wQ8//IDOnTvrbp+Ie9oVV1yh9KsmTJgQd+3fsGGDsnJFy5Ytccoppxge0w6nnHKK0h8KhULYuXMn5syZg+eeew7vv/8+3n//fdx00014/vnnNb/H//d//6fMNv7nn3/ioIMOwpVXXonevXsjFAph3rx5eOedd1BeXo7OnTtj7dq1APQ/v0WLFmHYsGHYsmUL+vTpgwceeADHHXccCgoKsG3bNnzzzTd46KGHsGTJEgwbNgwvv/wyrr/+em7vRyqgvr5eccUVCTnGkiVLcMopp2D79u3w+Xx44403DI81d+5cSJIEIPK9Nvte1NTUKL/r3VMvuOAC3HbbbaisrMSUKVPw8ssvK/dhGfUsxVZn5Q4EAsjLy0NJSQm3lU08J7ClpaXYs2cPgMhyCWeffbat/YuKinQFVt1RM2LWrFm48MILNacw16K4uNhy+5wiL4sAIO6GpIV6G/W+sTRr1swwTkZGhvJ7ZWWl6XHTBXlJotdffx1AZNr1WIFVf6mtvDfqKezz8vI4tTQe9fIj5513nq19jS4sbs4VdZs+/fRTfPrpp1zaBJh/r7du3ar8btRJAiId4kaNGmHfvn262wiCgGuuuQZ33HEHduzYga+//hrnnHOO8vevvvpKWZrg8ssvN5W+ROPmc1O/d127djU9ltE2mzZtUm62v/zyS1Sn1Ayjc8Dv9+ODDz5Anz59lOUl5H+Tl01Id6qqqqKWOeHZwZKXjADcXbfeeOMN3HnnnQCAnJwcTJ061XTZDitkZmbi3nvvxQUXXAAgcq1OR4H93//+h8ceewwAMHbs2Lhl2w4//HC8+eabOPjgg3HLLbdg48aNuOiii7Bw4cK4WEOGDMHkyZNx2WWXobS0FMuXL497z4LBIF566SVMmzZNuX4bPey2yhdffKE84Ovduze+//57tGjRwnCfRNzTzj//fIwePRoVFRWaHXX1EiGXXnppnEjOmTMHu3fv1j3uSSedhOzsbNP2+f1+tG7dGueddx7OPfdcXH755Zg0aRJefvllZGVl4amnnorbp1WrVvjxxx8xbNgw/Pvvv9i1axeeeOKJuO0uv/xyHHLIIRg9ejQA7c9v6dKlGDBgACoqKnDMMcdgxowZUUsrtW/fHjfccANOOeUUHHnkkdizZw9GjRqFY445Br179zZ9fYkkWX2wbdu2Kcm0jIwMw6XE3DBw4EDs378fGRkZmDx5MoYOHWq4vfp7MW7cOIwbN87ysfS+F40aNcLZZ5+NDz/8EGVlZZgyZUrUkp/qBzutWrWy9WAnPz8fJSUlmss5OYHP4zSO7N+/39X+crZACz2xVbN69Wqcfvrpirx2794dt956K1555RV8+OGH+Pzzz5UfeV2jcDjsqs1WkDtmQOTmb4b6i63eNxZeT1TTEfUT2ZUrV8b9vVGjRsrvRjcyGfnBTOy+vHHzHTL6/rg5VxLVJsD8ey1XTvj9fktrVFr5fl122WWK+L355ptRf5P/XxAEXHnllaaxEo2bz029bpyVzpjRe+fmHFA/OdaiWbNmUdnBzp074/DDD3d8vFTjiy++UDokRx11VNRakm5RP+Bw+rB20qRJuO666wBEvq9ff/01l/VpZcyu1anOli1b8PTTTwMADjzwQNx00026244aNQoHHngggEhmbd68eZrbDR8+HP/++y/uv/9+HHHEEWjUqBGCwSA6dOiAK664AosWLcI111wTdd9q2bKl69eiXnO6oqLCUv8pEfePgoICJUFSVlYW9VCVMYZJkyYp/6+VZbrvvvtw9tln6/6o11e1iiiKeOWVV1BQUAAg8qBCTzR69uyJZcuW4dVXX8XgwYNRWFiIQCCAFi1a4IwzzsA333yDt99+O2p/rc/v7rvvVoTiueee010XuHPnzrjjjjsARPq8dmQpUSSrDzZp0iTlPB02bBiXBzlayN+NUChkScgT1a9Sn+/qNZDl/1c/2LHzgF5urxUXs4LnMrBq8RowYAB++umnpB7/8ccfV77M//vf//DII4/oLox89dVXJ61d6qdFVhZgVnc8E5nts0p5eTl++OEHLrHat2+Pww47jEssI5o2bar8rpWRU2e51U/C9NiwYYPmvryRv0OCICAUCnniIYX6e/3AAw/g4YcfTtqxZakKhUKoqakxlVgr36+mTZvi3HPPxfvvv48ffvgBGzduRPv27bFhwwb8+OOPACJZjk6dOrl/AfWI+nMrLy833d7ovVPHuvTSS+NujG644YYbor5fq1atwn333Ycnn3ySS/yVK1dyE6P+/fubZsXt8vbbbyu/8y5vUz8YUJcTW+XDDz/E5ZdfDsYYMjIy8MUXX5iW8tvF7Fqd6vzwww/KQ5zBgwfr9kmAyHX/hBNOUEoEFyxYoDuMoEWLFhgzZgzGjBmjG2/FihXK73379nXS/CjOPfdc5Ofn46WXXsKqVatw/PHHY9asWWjdurXuPom6p11++eVK5cKECRMwcuRIAJEKkTVr1gCIDMHo0aMHl+NZITc3F/3798e3336LqqoqzJs3D6eeeqrmtpmZmbj++usNy3mNPr+qqipMnz4dQKSfqDfUTGbIkCG45557AEQPa6svktUHS0b5MBCpHjn99NNRVlamZHlHjBihu736nvr2229bLuc1Y/DgwWjXrh02bdqEn376CevXr1eGAarv2+rMrBk1NTWKl7gdiiLjOYEtKChAbm4uSktLkzK2NBb5y9y8eXOMGTNG90ZRUlLi6GbuFPVYoNWrV5tur97G6MaQLHbu3Gm7HFyPkSNHRtXgJwqzp3XqsbSLFy82jCVJEv744w8Akaes8hPyRNCmTRv8+eefYIxhy5YtaNeuXcKOZadNMsn+Xrdu3VoZe7l27Vp0795dd9uioiLLHeDrrrsO77//PiRJwttvv42HHnoIb7/9tlIme80117hue32jvnb8+++/ptsbbZOoc0AeMwZEyih3796NDRs24JlnnsHJJ5+ME044wfUxPvroI24PXWbNmmVprLVVNm/erNy3srOzcf7553OLDSBq/KDde94nn3yCSy65BJIkIRgMYsqUKZbmcLBLsqpb6gt1Kb+Vsng5gwdYeyCnx4oVK5TMVpcuXUzHJFtl7NixEAQBY8eOtSSxibqnnXDCCWjfvj02btwY1VFXC4ueFMhllIlAnXRw80BGkiTMmTMHQET+jz322Ki/7969W3kwkpeXZ/hgBOB3XvGiZcuWaNq0Kfbs2YONGzdi9+7dhg8H1fNhmM2FIvPrr7/in3/+ARBJngwZMsRdow0YOHAgpk6ditNOO02RWMaY7jU9UfdUURQxcuRIPProo4q0Pvjgg/j555+V8dT9+vWz9WBHfe/o0KEDn3ZyiWLlQKonZmaT+QwYMABApLNppdPEkx07dgCITABi9JRv+vTpSkdVDzuv2Qz1kzE5w2OEOttp9lSN0Ead/dd6WtezZ0+0bdsWQGSSIqMLyK+//qqU3x177LEJzYoPHDhQ+Z1X1tsthx56qNLxmjFjhul3hydHHHGE8vusWbMMt7XTKenfvz969uwJIPL0s6amRsmENW/e3HT8SirQu3dvZZKdn376ybTcT544TotmzZoppa3z5s3jMnfAunXrcMMNNwCIZNo//PBDvPfee/D5fJAkCZdeemmU3KQjEyZMUL5Pw4cP5z7uV93RkztyVvjiiy9w4YUXIhwOw+/3Y/LkyTjjjDO4tk3G7Fqd6qg/002bNplur840qbPTdlGLHO/hEC+++CJuueUWAJGKiUGDBkWJuppE3dPkjjpQVzYsj/sDIqWORhmwRKHu97qp1vjuu++U4XAnnngi2rdvH/V39Xm1e/du07JVXucVT04++WQAkc/P6NwoLy9X5l3IysqKOqeMUFe3jBw5MuEVbQMGDMB3332H3NxchMNhXHzxxfjoo490t5UfOvDu66mzq5MmTQJjzNHkTTLqSaMOOeQQt80DkESBVae6zZ7cyBcUIFJumEzkcV5r167Vlc5wOKxMpmCEnddsRseOHZWy2SVLlhhK7KJFizBz5kwAkScdXhgLJpcf8PhJRvZ1zZo1UaUSp512Wtw2giDgP//5D4DIxfOll17SjTd27Fjl90TfEM8//3xFOp588klPPCn1+XxKScyGDRswfvz4pB1bLZKvvPKKoYS9+OKLtmJfe+21ACKdyltvvVV5iDFy5EhL4229TkZGhnLu79ixI2qioFi+++470xmj5Wt7eXm55qQjdgiHw7jooosUER47diwOOOAA9O/fH/feey+AyNjBq666ytVxgMgsxLyuXzyzr0D0jJCJKG9TT143f/58S/tMnToVI0aMQCgUgs/nwwcffIBhw4ZxbxsQKYNU34+1rtWpjvohwrfffms4r0VxcTG+++475f/VD/DssHLlSuWe1qhRIy7fo1heeOEF3HrrrQAiVWN6EpvIe9pll12mSMCkSZPwySefKKWO55xzTlTWMRn8/vvvSkVXIBBwXLZdXl6O//73v8r/q3+XycvLU6S2uroan332mWFMtUg5Pa94o+5PjR07VrffPmHCBOVecfrpp1ua66K8vBwff/wxgEh/j1eJrhnHHXccpk6dGiWxH374Ydx2zZs3VyZRmjNnDleJ7dKlS1Qycdq0aa4e7KjvHdxW9OCxFo+VdWBvvvlmZRu9xaplwuFw1GK6t9xyi+FaceXl5eydd95hH374Ydzf1OtPWVmX7cQTT1S2f+655+L+Xl1dHbUGF6C/XuRzzz2nbDNx4kTTY5utlTt58mTl761atWJ///133DYbNmxgXbp0UbbTW3hc/rvR+opOtvU6X331Ffvkk08M17OMXQd20KBButtu2bKFZWdnMwDM7/ez6dOnx23zzjvvKLHatWtnaW1jt9x+++3KMY8//ni2bds23W3D4TD78ccf2SOPPBL3N/V6onrrhlnddtOmTcoacxkZGabfiR07drAxY8awJUuWxP3NzrrSjDHWv39/ZfsbbriBhcPhuG1i1/rU+16r2bdvn/L5q3+M1q7kgZ11YN1+br/88ovy98aNG2su4L5q1aq4NQe11vsrLS1lHTp0YKhd8/Cpp57S/Cxk9u3bx1588UX2448/xv1NvSj7ueeeG/W3mpoaZX1wAOz11183fA9SldmzZyuvsUuXLrqL3btFvqe0a9fOdNsff/yRZWZmMiCyzvgHH3zg6JirV69mTz/9NCsuLtbdJnYd2MaNG7OioiJbx/HCOrDyd0Jvv+rqata2bVtlm6FDh7Ly8vK47crLy9lZZ52lbNerVy/Nc2LHjh1sxYoVuu1ZvHgxa9eunRJnwoQJll+LFmZ9xFtvvVX5+wEHHMA2b94ctw2ve5oW6nNAfR3Tup87oaSkhN1zzz1s586dhtstXryYtW/f3rQ/zRgz7Edv376dnXDCCUqcyy67THfbu+66S9muWbNmmvdbxhh79913mSAIyrYLFiwwfC1qnK4Dq/5c9PaTJIkddthhynYPP/xw3DZLlixhBQUFDAATRZEtXbrU0vEnTJgQdc4lAqO+zC+//MJyc3MNr6WLFy9mgUBAuf599913hsdbv349u/3229mOHTtM26buu6q/FxdffLH1F1jL2Wefrbz/e/bssb2/FkkbAzt48GAlC3XllVdi9OjR6NChgzKDVdeuXZUlGERRxKeffop+/fphy5YtePHFF/Hxxx/jP//5D3r37o2CggKUlpZi48aNWLRoEWbMmIGysjI88sgjrts5atQoJbt52223Yfbs2Tj55JPRtGlTrF69GpMmTcLq1atx/PHHY/Xq1YZlo4MHD1Z+v/POO7Fr1y50795dmY69TZs2OPjggy237bzzzsPnn3+Ojz76CNu2bcNhhx2Gyy67DP369YPP58OiRYvw1ltvKU+ZTjrpJKW8joiwZs0ajB49GoWFhTjllFPQp08ftGzZEoFAADt27MDs2bPx5ZdfKrPBtW7d2nCymdatW+PZZ5/F9ddfj1AohFNPPRWXXnopBg4ciFAohO+++055auX3+/HGG2/ozvIHIGoMyrp163TXZDXj8ccfx59//okZM2Zg1qxZ6Ny5M4YPH45+/fqhsLAQ1dXV2L59u5LN3759OwYPHoz77rvP0fGs0LZtW3z00Uc466yzUFVVhZEjR+K5557DWWedhQMOOABZWVnYv38/Vq1ahXnz5mHu3LkIh8NcJnx5/fXX0bdvX5SXl+PVV1/Fb7/9hosvvhht27bFjh07MHnyZMydOxf9+vXDxo0bsWXLFkulQgUFBRgxYkRUqd2gQYO4LA/iFfr3748bbrgBr776KoqKinD00Udj5MiR6N+/P0RRxIIFC/DWW2+hrKwMw4YNM1yLLicnB1988QUGDhyI4uJi3HnnnXj99dcxfPhwHHTQQcjNzUVxcTHWrl2LBQsWYPbs2aiursa7774bFWfOnDlK1q1t27Z44403ov7u9/vx/vvvo0+fPiguLsbo0aMxcOBAw/HPqYj6vFNnkngzbNgwPPvss9i0aRPWrl2ruxzVn3/+iaFDhyqliMOHD0dWVpbp+oQ9evSIG09VWlqK//73v7j//vtx4oknom/fvujQoQNycnKwb98+LFy4EB999JEys6W8dJLRGNjPPvsMv//+e9S/rVu3Tvn92Wefjcu4Pfroo5qxZs6cqVQ6ycjzHADAW2+9pYxNlrnjjjscjdENBAIYO3Yshg8fDsYYvvzySxx44IG49NJLlfkU/v77b0yaNEkp8wwEAnj55Zc1z4mNGzeib9++OPLIIzF48GD06NEDWVlZ2L59O6ZPn45vv/1WqVS58847o6riEsHzzz8PQRDw/PPPK/2rWbNmRY3xS+Q97fLLL1fK0OVlBzt06MBl/DwQmUDw8ccfx9NPP40BAwbgqKOOQteuXZGfn4+qqips3LgRs2fPjhqa1qNHDzzzzDO6MU877TS0aNECp512Gg455BA0btwYRUVFmD9/Pj755BOlH3j88cfj5Zdf1o1z11134eOPP8a6deuwe/duHHnkkRgxYgQGDhyI/Px8ZR1YdXbvmmuu0c0M//HHH3HL5P3888/K75999lnc0MArr7zS8YSHgiDgjTfewIABA1BeXo4HH3wQc+fOxbnnnoucnBwsWLAA48ePV7L299xzj+V+d7Imb9Kjf//+mDZtGk455RSUlpbikksuAQBlyTAAOOywwzBu3DhcffXVKCoqwqmnnopjjz0Wp556Kjp16oRAIIC9e/di5cqVmDNnjjIOWK58MOI///kPRo0ahdLS0qjlOO1mokOhkDIWe8CAAdwmcUpaBjYUCkVlQWJ/tJ78b926lQ0ePFh3H/WPz+djb775ZlwMuxlYxhi75557DI917LHHsp07dypPTY0yNRdccIFunNj3ykpWqaamhl111VWm78e5556r+YRWRt6uoWVgn3/+eUvnEwB23HHHsfXr11uK+/TTTytPwbR+8vLyNCsEYlHv4zYbUFVVxW666Sbm8/ksvd5LL700LgbPTJ7Mb7/9xjp37mypTbm5uZpPS+1mYBljbObMmUoGWOunV69ebOPGjaxNmzYMADvkkEMsxZ0/f35UnPfff99ym5ySzAwsY5Hr9yWXXKL73omiyJ566qmoJ7ZGT9pXrlzJDj30UEvnQEZGRtRT5aKiIuXaK4qi4XX9vffeU+IceuihhpU8qUZxcTHLyclR3odNmzYl7Fh//vmn8j6OGTNGdzv152/nR+u8++OPPyzv3759e0v3d/X3xuqPHrEVG1Z+9K7pZhlYmffee4/l5+ebHqdZs2bs22+/1Y2zcOFC0xh5eXls7Nixpu+pFaz0ERlj7LbbblO269q1a1wmlsc9TYvS0lIl0yX/PPDAA25echRFRUW2zpPhw4ebZsjk777RNfm6664z7AfKrF27lh1xxBGW2nbTTTexmpoa3VhOrgF657yVDKzMjz/+yAoLC3WPIQgCu/322y1Xqfz7779KxrmgoMDS++gEK32ZOXPmsLy8PAZEXEerj/HVV1+xFi1aWHq/mzZtynbt2mWpfbEVpx07drRd6TN16lRl//Hjx9va14ikCSxjjFVUVLAnnniC9evXjzVu3DjqImTUyZo9eza79tprWc+ePVmjRo2Yz+dj+fn57KCDDmIjRoxg48aNY1u3btXc14nAMsbYd999x04//XTWrFkzFggEWKtWrdgJJ5zA3nzzTeXLa0VgQ6EQGzduHBs0aBBr1qwZ8/v9uu+VnU75b7/9xq688krWtWtXlpOTw7KyslinTp3YxRdfzGbMmGG6v3ychiawu3fvZh9//DEbPXo0O+6441iXLl1YQUEB8/v9rEmTJqx3797s2muvtXWuyCxbtozdeOONrFu3biwnJ4fl5eWxXr16sbvuusuSCJeVlSnvdTAY5FZmsXr1anb33Xezo446ihUWFjK/38+ys7NZp06d2GmnncYee+wx3ZKaRAgsY5EHMe+99x4777zzWKdOnVhubq7yGRxxxBHs6quvZpMnT2alpaWa+zsRWMYipVV33HEH6969O8vKymKNGjViRxxxBHvmmWdYWVkZkySJZWVlMcC4dFyNJElKeVKTJk1YZWWlrTY5IdkCK/P111+z008/nRUWFrKMjAzWvn17dsEFF7Bff/2VMcYsCyxjkfftyy+/ZCNHjmTdunVj+fn5zOfzsUaNGrHevXuzSy+9lE2YMIHt3bs3ar8RI0Yox7j77rsNj8EYYxdddJGy/e233266faowfvx45XWdfPLJCT/eMcccwwCwbt266W7DU2ArKyvZtGnT2IMPPshOPvlk1qNHD+Uemp+fz7p27crOP/989v7771t+MJHqAstYpPz3ySefZIMHD2YtW7ZkGRkZLCMjg7Vq1YqddNJJ7Pnnnzctoy4tLWUTJkxgI0eOZL169VL6OS1btmTHHnsse+KJJwxLdO1itY/IWHSpsJbEMubunqbHFVdcESU7a9eutbW/GStWrGAvvPACO//889nBBx+s9GUzMzNZy5Yt2cCBA9ldd92lW8IbyzfffMNuueUW1rdvX9a6dWsWDAZZkyZN2CGHHMJuv/12y3FkQqEQ++yzz9j555/PunbtynJzc5Xr8WGHHcZuvvlmSzHrS2AZY2znzp3s4YcfZocddhhr1KgRy8zMZJ07d2aXXXaZco+yyn333acc+9prr7W1rx2s9mXmzp1rKrHl5eXstddeY2eddRZr164dy8rKYsFgkBUWFrJ+/fqxUaNGsa+//trWg9yff/7Z9FptxoUXXsiASImzXp/OCQJjLqfHJQiCC99//70yIP/mm2+2PaEQ4Z5ly5YpM+RZ/QymT5+OE088EQBwyy234IUXXkhkEwmiXvj8889xzjnnAIjMqt6vX796bhFBEAThZYqLi9G6dWuUlZXhrrvucj15o5qkzUJMEIQx6gXFEzkWldBHPVbI6tjbcePGKb+nw9qvBKHFsGHD0KdPHwCR8YgEQRAEYcTYsWNRVlaGvLw83HHHHVxjk8AShEeQBfa2225DYWFhPbcm/fjll18M15995ZVXlMmA2rRpY2nNyj///FOZoGbIkCHKOqcEkW4IgqA8Pf/666+VpT4IgiAIIpbi4mI8//zzACLLOLlZ01gLKiEmCA+we/duNG/eHM2aNcOaNWuQl5dX301KO7p27YrKykqceuqpOPTQQ1FYWIiamhqsWbMGn3/+edQMol9//bWuwE6bNg2SJGHVqlV46qmnlNn55syZg2OPPTYpr4Ug6othw4bhyy+/xBlnnIGvv/66vptDEARBeJBHH30U999/Pzp16oQVK1YYrsDhBBJYgiAaBF27dsWaNWsMt8nKysKbb76Jiy66SHcbrWUprI6X/eGHH1BeXm7eWA2aNWuG/v37O9qXIAiCIAgiXSCBJQiiQTBv3jx8+umnmDdvHrZs2YI9e/agvLwcjRs3Rrdu3TBkyBBcf/31aNGihWEcWWBzc3PRrVs3XH/99bjiiissrRvbsWNHZZ1GuwwcOBCzZ892tC9BEARBEES64K/vBhAEQSSDo48+GkcffbTrOPTMjyAIgiAIov6gDCxBEARBEARBEASREtAsxARBEARBEARBEERKQAJLEARBEARBEARBpAQksARBEARBEARBEERKQJM4EQRBEGkFYwyVlZUoKytDRUUFysvL434qKipQXV2t/FRVVRn+fzgchiRJCIfDyo/8/7H/lRFFEYIgGP6IoohAIKD8+P1+w//PyMhAVlYWsrKykJmZiczMTN3fc3NzkZubi0AgUI+fBkEQBEHwhQSWIAiC8ByMMVRUVGD//v0oLi5GSUlJ1H+1fi8tLVXkVJKk+n4JniEjI0ORWfknLy8v7v8bNWoU9ZObm6u57jFBEARB1Cc0CzFBEASRFBhjKC0tRVFREfbu3Rv1X61/q6qqcnU8QRCQlZWFnJwcZGVlITs7W/nJysrCjHfnAJIAQRIABkAS6v5fqvt/SAIE+U7Jardltb9D9TsDBPn/VX+C2gEF1S1X/nexdkeBgcm/R/2XgYm1+/oA+BhOu/YEVFRUoLKyEpWVlXG/yz9u8Pl8KCgoUIRW/r1JkyZo2rQpmjVrpvy3oKDA0lrIBEEQBOEWEliCIAjCNYwxFBcXY9euXdi1axd27tyJnTt3Kv8v/9iVqmAwiPz8fOTl5SE/Px/5+fmYO2URhJAA1IgQQiIQEiP/HxaBkAAhLADhWvFEA8kgCvHyyMAAHwP8EpifAT4JzC8BPhb5r1/C2aNPQUlJCUpKSrBv3z7lp7y83NbhfT5fnNTKPy1atEDLli1RWFhI5cwEQRCEa0hgCYIgCFMYY9i/fz+2bt2Kbdu2Rf1s374dO3fuRHV1taVYOTk5aNy4MZo0aYLlM/8BanwQakQI1WJEStW/S5TVc4yG1FqFCQwISGABCfCHwZTfJZxy3UDs2bMHe/bswe7du7Fv3z5Y6UoIgoBmzZqhefPmaNmypSK28n9btmyJrKwsx20mCIIgGgYksARBEAQAIBwOY/v27di0aRM2bdoUJavbt2+3lD1t3LgxCgsLUVhYiN+m/AGhSoRQ7YsIaZUv8ruUoKyo+nbmhbGbaoFk9TQm14XEWkWR3WAYLBgGghIuePAs7NmzBzt37sSOHTuwY8cOSw84mjRpgrZt26JNmzbKf+Xfc3JyEv5aCIIgCO9DAksQBNGAYIxh37592LhxoyKqamGtqanR3VfOoLVq1QrLp6+GUClCqPJBqPRDqBKBah8ElkRxNLt91bfEWpHHRIptEuTVKgy1kpsRVn6G3jYE27dvVwS3tLTUMEajRo0UmW3bti06dOiAjh07ok2bNlSaTBAE0YAggSUIgkhDGGPYs2cP1q5di3Xr1mHdunVYv349Nm7caCgKwWBQEYS5H/1eK6e+2h8/EEb9ZROd3q7qS2SdCCSP99ZD4moFwecDADCfBJYZAssI4dInhmHLli3YsmULNm/ejKKiIt39fT4f2rRpg44dO6JDhw6K2LZv3x6ZmZnJehkEQRBEkiCBJQiCSHH27duHdevWKbK6fv16rF27VldUBUFAy5Yt0a5dOyz+8q+IpFb6IVb4I1lUjYmPmMTqR1x53aLqQ2J5iaSd9z3F5FWNLLJaMJ8ElhECywzh8qeHY+PGjdiwYQPWr1+vW9oun+edOnVCly5d0KVLF3Tt2hVt2rSBz+BYBEEQhLchgSUIgkgRGGPYunUrVq9ejdWrV2PVqlVYvXo19u7dq7m9nJna/MdOCBUBiOUBCBURWbVa6lsv4pqo21KyJTYRMmn0WaSwvKoxEtlYGBgQDEPKCoFl1uC0mwdg/fr12LBhA/bv36+5T2ZmJjp16oSuXbuic+fO6Nq1K7p06YLc3FxeL4EgCIJIICSwBEEQHiQUCmHDhg2KpK5evRr//vsvysrKNLdv3bo1ti/fC6HCXyuqtbLqcExq0sU1GbeidBDYWNSfUZoIrIwdkdWC+cNgWTWQsmtw6qjj8O+//2Lt2rW66wu3bNkS3bp1Q48ePdCjRw90794deXl5rtpAEARB8IcEliAIop5hjGHbtm1YsWIFVqxYgb///hurV6/WnLU1EAigc+fO+PfnTRDKAxDLAhDKA9yWm0mauNbHrSeZAptmMhmLIAqRcyUZx+JY7svAIuNss2tw/pjTsGbNGvz777/YuXOn5vZt2rSJEtpu3bohOzubW3sIgiAI+5DAEgRBJJni4mKsXLkySli1yh2zs7PRtWtX/PX9mlpZDbrKqqrRlI9EiGt932KSJa0awiqI0cdOlvAlm2S9Tp4iGwvzhSHl1OCqsedi5cqV+Oeff7B169b4NggCOnTogAMPPBC9evVCr1690KFDB4hiej+wIAiC8BIksARBEAmEMYaNGzdi2bJlWLJkCf766y9s3rw5bju/34+uXbti9U+bIZZlQCgNQqjwQeBwiTYVCh7i6qVbSTKk1UKGNVbsYkk3oU3W602kyCqIQq3UVmPk00Pxzz//YOXKldi1a1fcprm5uejZs6citAceeCBlaQmCIBIICSxBEARHQqEQVq1ahWXLlmHp0qVYunSpZna1TZs22La0CGJpRiSzWh6Mzqw6LOW1LQlO5NWLtw2PSGv05tbblE4ya+d1A85ee7IkNhYWCEPKrsL5j5yK5cuX4++//0ZlZWX0bqKILl26KFLbp08fNG/ePPHtJQiCaCCQwBIEQbigqqoKy5cvx5IlS7Bs2TL89ddfcR3aYDCIAw88EMu/WxcR1tIghLBOB9yGuLqSHqvi6uVbhAelNXpXFxNopQFOXz9g/T2oL5GVYWBg2TW4/o0R+Ouvv7B8+XJs3749brs2bdrg0EMPRZ8+fXDooYeisLAwkS0mCIJIa0hgCYIgbBAKhfDPP/9g8eLF+P3337F8+fK4yZZyc3NRvjkEsSQTYmkGhLKgtXGrBvLKTWqMxDVVbgeJFldOEzC5ETiZdJBZHu8DYPxeJFxk7WTTAyFIudU4+94TsHTpUqxatQqSFP29I6ElCIJwDgksQRCEAZIkYd26dYqw/vnnnygvL4/apmnTpihaVQGxJCMirBUBCLDZaY+R14SIi1peU+3SnyLSGh2Sb5tTXWZ5vx9A9HviJYlVw3wSpNwqDH9gMP78809doe3bty/69u2LQw89lNakJQiCMIAEliAIIoY9e/ZgwYIFmD9/Pn7//Xfs27cv6u95eXko21CbYS3OhFDpty+saiQGFg67a7Rh/ATGTjQpKK51oRPTdhJZ0wMkLjaPrLqJ0Pp8Phx00EHo27cvjjzySHTv3h2+ZJRKEwRBpAgksARBNHhCoRD++usvzJ8/H/Pnz8fq1auj/p6ZmYnq7agT1nIHGVY9SF61SaC4ypm6RIhglJzJIpXgdXV5vw75NSRalBMqsol8MOGri82jC8V8EqS8Spx51wAsXLgQmzZtivp7bm4ujjjiCCVD27JlS9fHJAiCSGVIYAmCaJDs2rVLybIuWrQIpaWlUX/v3r071szeAXF/7ZI2HNZejSOR8kriGh1WI4PFbVkXPRHTkiiPy6zWayGR1Qjr047LRWizJIyacD4WLlyIxYsXx12bOnXqhGOOOQbHHHMMDjroIMrOEgTR4CCBJQiiQcAYw+rVqzFnzhzMnTs3Lsuan5+PsvVhiMVZ8BVnQwj5AEni0iGNg7Ku8SRRXNW4kTNT8TKSJ4+KrNFrSlmRTVI2Vgun1w+lSgAMLLsKFz11KhYuXIgVK1YgrLp2FBQU4Oijj8YxxxyDI488Ejk5OY6ORxAEkUqQwBIEkbaEQiEsWbIEc+bMwZw5c7Bjxw7lb4IgoHv37vh31nb49mdBKM+ILgtORXklca0LazErZVfKbEmWVXFKoMzaeX1WX1siRTadsrFa2LmmaFYN+ML475SR+O233zBv3ryo7Kzf70fv3r1xzDHH4Nhjj0Xr1q0tH4sgCCKVIIElCCKtKC8vx4IFCzBnzhz8+uuvUR28jIwM1Ozwwbcvuy7LqgXJa+KpZ3GVsbzeqBOxsitM9Syydl9jSoqsByRWxso1xuh8ZmCQcitx9v0D8euvv8aNnT3ggAMwcOBADBw4EB06dLDdPoIgCK9CAksQRMpTVlaGuXPnYtasWVi4cGHUuqwFBQUoXROGb382xOIsCMxCRzMRAkvyGsEj4ipjuLaoW4lyI0sJklm91+vmtaacyHpIYtVoXXPsnNdSRg2uenUofv31VyxdujSq1Lhjx44YNGgQBg4ciM6dO0NI9OzeBEEQCYQEliCIlKS8vBy//fYbZs6cifnz50dJa5s2bbDj9xKI+3IglmXYmzGY5DUxeExc1cQKGDdp4iFKSRJZHq85USLbkCRWRn0NcnKOM18YN79/Pn766ScsXrwYoVBI+Vvbtm2VzGz37t1JZgmCSDlIYAmCSBkqKiowb948zJw5E7/99luUtLZr1w7bFpTAV5QDodLhMjepJK8krtxiyeLFXZR4SlICRTYRgpjwJYr4BeUfkpPEyjDGXJ3vzBfG7R9fgp9++gkLFiyIe9g3ZMgQDBkyhMqMCYJIGUhgCYLwNKFQCAsXLsQPP/yAuXPnorKyUvlbmzZtsGNRKXz7ciFUuF+blbtocpZXQRQiYtCA5ZWnuEYCJmCt1gTOeqvAu70JEOSUkVj5nOLYXiHgr43J6X0VxUg7XV5PmCjhrs8vw88//4zffvst6nrarVs3DBkyBIMHD0ZhYaHbFhMEQSQMEliCIDwHYwyrVq3C999/jxkzZqCoqEj5W+vWrbHz93L4irIhVARdS2vUcXkKLCd5VXfYU0ZeU0lcZXgIXDLENRa37U7E+xBDSohs7PnFoc2KxCoxXby3ssCq4SCz//30UkyfPh0LFixQxswKgoA+ffrgxBNPxMCBA5GXl+fqOARBELwhgSUIwjPs2LEDP/74I3744QesX79e+fdGjRqhZDWDvygPQlkAQgKuWl6RV72OeUrIayqKqxqn8lYf4hoL77angMgmXGLVOF1XN1ZilXgO3l8tiZVxcf0S/H4wXxjXvzUM06dPx9KlS5W/BQIB9OvXD6effjr69u0Lv1/n9RAEQSQREliCIOqVyspKzJo1C99//z3++OMPZQxqMBhEeEcQvqI8iCXZdZlWSQI4X7bqW16NOuIpIa4Ad3lNqrjK2JU2L4hrLHZeQyLeE9NwHpdYwFhkAdsyqyuxSjwb77GRxMrYvf7ESKkUqMGlz5+EH3/8EevWrVP+vWnTpjj55JNx2mmnoX379raOQRAEwRMSWIIg6oVVq1bhm2++wY8//oiysjLl38XSTPiK8uHblwNBii3rSx95tdLxTgl5TQdxlbEia16UVi14v5aGJrJWz0Or6wibSawSz8L7bEViZaxej3Qyq1JmFc6672h8//332L9/v/LvBx98ME477TQcf/zxyM7OttYWgiAITpDAEgSRNMrKyjB9+nR88803+Oeff5R/b9WqFXb9XhXJttYE9ANwFthky6udTjbJK4+ANmXTSNJSRVzVmEknz/fHAWkjsTImr8eyxCrxDN5vOxIrY3B90hNYGSYw3PvFSEydOhXz58+HVNu2rKwsDBo0CGeccQZ69epFS/IQBJEUSGAJgkgojDH8/fff+OqrrzBr1ixUVFQAAPx+P9juTPj25EMszTKfjMnL2VcDeXXSqfa8vKabuMpoCVoqimssvF+Xh0W23iVWRuc12ZZYJV7Me+5EYNVoXK/MJFZpij+EkS+ehKlTp2LTpk3Kv3fp0gXDhg3DiSeeSFlZgiASCgksQRAJobKyEj/++CM+++wzrFmzRvn39u3bY+u8Mvj35kMI2+iApVD21U0nmuTVTTAOsinLWTqIayxq8XT7+khiraN6bY4FNipe7XvvVmKBKJG1KrAyDAzP/DIa3377LWbMmIGqqioAQHZ2Nk4++WQMGzYMnTp1ctc+giAIDUhgCYLgyrZt2/DFF1/gm2++QUlJCYDaCZm2Z8C3Nx9iWab9pW9SQF55dJobkrx6TlxlmJSe8qqG52vkKLKeLinmdb5KjI/EquHVtnDYtsTKMF8YV447DV988QU2b96s/HufPn0wdOhQDBgwAIGAwfAQgiAIG5DAEgThGsYYfv/9d3z66af49ddflfFRrVq1wq7F1fazrbUIghCZlZiXcNYKGAuFOITiF0uGZyyueFVcAb6yKQpc1v9UYgF84vGMJcfjvTarR0XWkxILvt8Dwe8Hz66c4Pc7vuYyMPzf9BvwxRdfYO7cucrask2aNMHQoUMxbNgwNG7cmFtbCYJomJDAEgThmIqKCvzwww/49NNPo9ZtFUuz4d9VALE42362FbVyWNvxZGHJncAKQqTUDgAkyZUkChxjxeI6liyZibqkc5BYz2Zd1ZLjVp70hMlN3NiYPNvIU2RJYm3BW2Jl3HbrorKwLq69UqAG5z85CF999RX27t0LIFKNc9JJJ+G8885Dx44dXbWTIIiGCwksQRC2KSoqwmeffYbPP/8cxcXFACKzUdZszoB/b2OIVYGIeNpALa0yjuVVLZoyDoVT4BhLD8exYqUy0ZdzhxKbEuIq41ScrEqSk/i8pZjn69aCk8iSxNqMpVH+67SLp1lK7ORaHPCDgeHOj0Zg8uTJWLlypfKno446Cueddx6OOOIImr2YIAhbkMASBGGZzZs34+OPP8bUqVNRXV0NAGjTpg12LqqBf19BZN1WJtmSVy1xlbEtsFqyKWNDOjWl1UEcK9iOpdfRS8al3EEn05PyaiQzdqXJqRjZOY7ZMXjF8qDERkLxaVe6S6zR+FW7XT3DsbB2RbZ2zC8DwzMzR2Hy5Mn45ZdflDZ17twZI0aMwODBgxEMBu3FJgiiQUICSxCEKX///Tc+/PBD/Pzzz8r4VrE8E/7dTeAryYsuE7YosEbiCtiQVyPZlLEonYbiaiOOVSzHMhPHZF7GbUgsN3lNdNZVjVVZ4iVDVo5n5Vg8281LZEliLZMMiZWx2u0zjWVVZDUmrZIC1Tj9rj6YOnWqsrRakyZNMGLECAwdOpSW4SEIwhASWIIgNGGMYcGCBfjggw/wxx9/KP8uluQgsLspxHKNtVtN5NVMWqNCmQmsFXEFTKXTVFptxLKDaRwrolgfl28L7Uq5rGssZrLEe5kWo+PZPRavtnswG+vJkmJe4pngUmItzLp/tmYkNpNZnZmXmRjGZS8MxpQpU7Br1y4AQF5eHoYPH45zzz0X+fn51ttAEESDgQSWIIgoGGP49ddfMXHiRGW8ks/nA3bnILCnKcSqDIOdtQXWjrgCiCxNoyV4dmRTiaUtnbbE1SCOE3Tj2CnRrc9Lt0E7UzLrGoueKPEWVyvHdXLMZAqxVUhiTUlmFjYWva6g7Vh6ImuydBADwy0Th+H999/Hpk2bAETmVRg6dCjOO+88NGvWzF47CIJIa0hgCYIAAEiShLlz52LChAlYvXo1ACAzMxOhzVnw72kCMWRhDb8YgbUtrnKY2OyrE3EF4qTTtrTqxHFDXBwnk5fU92Vbp82ek1de41MTLa5Gx3dzbF6vgyTWnDSQWCBeZJ3GiRNZi2vfMjDc/fEFeO+995T7UDAYxGmnnYZLLrkEhYWFztpDEERaQQJLEA0cSZLw888/Y+LEiVizZg2A2hmFN2YhsKcJhLDFDoxKXp2Ka6RBquyrU+EEoqTTsbjGxHFLVByns2565ZKtan/aiKuMLEjJFletdvBoA6/Xk6YiSxIbj7pr6CZOlMhalFggIrIPfXU53n33XSxfvhxARGTPPPNMXHzxxWjatKnzNhEEkfKQwBJEA4Uxht9++w1vvvmmIq7Z2dmo3pCFwJ7G1sVVCShx6XCzsARIknPhlJEkPrLHSWBZKOR+LVUvXa5rX0vaySvATxy9BG8ZdgtJrC5eEFgZxhiXOAiHbQmscnwwPPHD9XjrrbewdOlSAEBGRgaGDRuGCy+8EI0bN3bfNoIgUg4SWIJogPzxxx9444038NdffwEAcnJyULUuE4G9TSCEHXSe5M6fi0XvAQCC6FoW5fUEuWVNa5cLcowg1manXb43gPcEVhD5dPy9JK8eRBAEx+t5JiJOOkqslwQWqJVPHp95MMDn8woGAJtre2vGcHhdZmB4bNq1GD9+vHLfyszMxDnnnIMLL7yQJnsiiAYGCSxBNCD+/vtvvPnmm1i0aBGAyJPs8NY8BHY1ti+uogCItftIYXfyKnf69CZvsoAgCHVxwmHnAitnSRlzLq+CGCX16SqvgMuOP8+JmmTSUGKVhzIuzgFBlf3nEYcxxkeMPCCxXJfWAfhKrIzDz0wIquYucPN5qeO4EVl1HAfXaAaGMd9cibfeekuZZDA3NxcXXXQRzj33XGRkGEwySBBE2kACSxANgE2bNuH111/Hzz//DADw+/3A7nwEdhdCqLLZeVOLq4xTgVV39BzKa5S4As7lVV3e61Re1eIqtyWN5VX5JycCkAh5BdJaYGWc3LZ5xIiNkw4Sy11eZRJVBuzksw/GTMDn9DOLjeNEZGNjAM6ysgE/HphyUdQQmMLCQlx55ZU4+eSTIzPnEwSRtpDAEkQas3//fkyYMAFffPEFwuEwBEGAuL8AgT0tIIaCkY6Mnc6DlrwC9gVWq3NhQ2DjpFXGibxqjUu1I7Cx0qpuCw95rW1PvaMhrsqf7EpAouQVSDuBjRVPGbu3bh5xtGJwk1iAi8jakdiEyasMj/GweuNP7X7+WuII2Pvs9GLYEVm9GDav20IgEoeBYfQ7Z2H8+PHYsWMHAKBTp0649tpr0a9fP93zniCI1IYEliDSkOrqanz22WeYNGkSSktLAQBiWR6Cu1tCrM6s29CqwOqJK2BPXvU6dBblVVdcZawKrFGnxqq86omr3I4GIq/KJlZlIJHyCjQYgZWxegs3iuM2RqpKbMIFFkisxMpY+Px0BVbG6udnFMeqyBrFsPoQMxAdgwkSLnt2AN59912UlJQAAA499FCMGjUKXbt2tdYugiBSBhJYgkgjGGP46aef8Nprr2Hr1q0AAKEqE8FdreCryI3fwUxgjcRViWFBYM06cSYCayqugDV5NXsabyavRtIa25Z0KR22IK+ABRlItLiqSSOJtZJBMruNW81CuY3jpZJiM4lNirwCiSsl1sLo8xMECFZmATb7/MxEGDAXWSsxTK7lsQIrw8QQht3XB1OmTEF1dTVEUcQZZ5yBq666Co0aNTI/LkEQKQEJLEGkCWvXrsULL7yAP//8EwDQtGlTlKzIhK+4MQRodNaM5NWKuCpxDATWaudNR2AtiauMkcBaLSPTE1ir4iq3o4HJq7K53nuUTHkFGpzAyujdzpMZIxUkNmnyKpOMLKwavc/QijjK6H2GdmLoiaydGEYPNnUkFgAm/HE/XnvtNcyYMQNAZKKnyy67DGeffTYCBvsRBJEakMASRIpTWlqKt99+G59//jnC4XDtzMIFCBQ1g8AMOk5aAmtHXAF9ebXTYdOQV1viCujLq53xT1ryakdc5XY0UHkFdMQg2fIKNFiBBbQFNNkxvC6xSRdYIPkSC2heR2xJLKD9OdqNoSWydmNoPeC0IKJPfHc1xo4di9WrVwMA2rVrh1GjRuHoo4+2d3yCIDwFCSxBpCiSJOGHH37Aa6+9hr179wIAfKX5COxqFZmgyTSASmDtiqsSI0ZgnXTSVAJrW1xlYgXW7sQdsfJqV1zlNjRgeVV2Vb9v9SGvQIMWWBn1rd1JjNiugSMJ9qDE1ou8ytSHxAJR1xTbAiuj/iydxlCLrNMYquu8FYEFIhM93fTGqXjzzTdRVFQEABgwYABuvvlmNG/e3Fk7CIKoV0hgCSIFWbNmDZ599lksX74cACBUBxHc1Rq+8jzrQSQWEVAn4qrECEfiOO0U1sqrY3EFouXV6YyTjIHVhNyJDw+B9cLl2IW8AipBqC95BUhga5Fv725juJJoj0lsgxRYGcasj4XVQ/48nQooEBFZN/sDQChkWWBlmBDGmff2wpQpUxAOh5GVlYUrrrgCw4cPjywtRxBEykACSxApRFVVFSZMmICPPvpIuQGHNhXAX9QUAhwIg5vOJZPcCxePzq1bcWTMvXhKDCxU4y5GbVvqFR7yWp/iKpMmApsuS4BwEVlOa8XWK04qO7TCuJQtVwIrw0P4XAq90+/Hy7+MxnPPPYdly5YBALp27YrbbrsNvXr1ctUegiCSBwksQaQIixcvxjPPPIMtW7YAkMuFW0MM2XsKLd/0mZNF6GXkTpiTBegjjYj8100bAIBJkcypU0QRkCT7a8eqcSOvatmTOC2745R0yLzKeEBgle+Zi1tsuggskEYSK5/fTtvCQWLdCizASWIDQVefiZCR4e7aC0AIBoEa+9dfuaz4tddeQ3FxMQDgzDPPxPXXX4/cXI0Z+wmC8BQksAThcfbv349x48Zh6tSpAAAhFEBwT1v4iu3dZKPKdMNhZwIrCtEdc7udj5g2OBZYuQMYDjsTWLG2E1pf8horeekir5H/4dAgh3hIXGOxe6tNJ3mVSTuJBZy1xwMSy01gZRy8D0JGRt3uDq/DQlDVBicimyVg0NVtlPtrYWEh7rjjDvTr189RewiCSA4ksAThYWbPno3nnnsO+/btgyAI8BU3Q7CoDYSwYOuGHzfG1K7AqsQVcCCvWmNcnQisutPnRF5FdcbTubyqs9i2BFZL7tJJXuv+0UWDHOJheZWxc7tNR4EF0lRiAXttSpdS4oDGZIE2Pxu1xAL2RTZKYAH7EpsR2f/xzy/Fk08+qVQ4nXzyyRg1ahTy8/PtxSMIIimQwBKEBykuLsYLL7yA6dOnAwCE6kxk7O0AX1WuLfHSnRzJqsDGiKuMLYHlIa9anT07AitqiaM9gY19H2zJq57QpaO8Rv7gOKYj6lleeSxT4zZmKpG2EgtYb1c6ZmFlbHw2sQKrhLB6j4sVWBk7IlsrsUwI48zbu+GTTz6BJElo0qQJRo8ejYEDB1qPRRBEUiCBJQiP8euvv+Kpp57C3r17IYoifEXNEdjXqm6SJgviZTqrrxWB1ZFXwKLAGrXBqsDqdfCsyquWuAL2HwLEYFlezUSuPgU2UfIa+aPjuLZJMXmVMbv1prPAAmkisUbnuZW2pYPEagmsjIX3QE9gAWsSqyuwMlZENiM6xjPfXIknnngCGzZsAAAMHjwYt912G/LybMzyTxBEQiGBJQiPUFpaipdffrlurGtNJjJ2d4SvOid6QxP5ci2vBuIKWJBXK0vimAmsWafOTGD1xFXG6kMAHQwF1qq8pau81m3kOL4lUqBk2Ayj22+6CyzQACRWRq+N6S6wMiafkZHEAuYi61piM+L3Z5Aw/N6e+OCDDxAOh1FYWIh7770Xhx9+uHEsgiCSAgksQXiAZcuWYcyYMdixY0dkrOv+QgT3tYHArJe+Wl5LVU9gTcRVRldgbRxfV16tdOaM5NVMXAFrDwAM0JVXO8KW7vIa2dDxMUxJ0ayrHlq34YYgsEADklhAu50NRWIB3c/JTGCV3XWu26YCK6MnshoCK/Pst1fh0UcfxebNmwEA5513Hq6++mpkWGwzQRCJgQSWIOqRcDiMd999FxMmTIAkSRBqgsjY0xG+KoNSJQ0BsyyvkYPGC6xFeQV0BNbm8TUF1monTktgrYirjNEDAAvECaxdUWsI8hrZ2PFxDEkzeZWJvRU3FIEFGpjEAtFtbUgCC2h+TlYFFtCWWMsCC2hLrIHAApGxsUNuaIevvvoKANCpUyc88MAD6NKli/XjEgTBFRJYgqgnduzYgUcffRRLliwBAPhKmyBjb3sIzEQEVQJmS1xl1AJrQ1xlogTW7vG15NVO5y0B8mrn9UfJq1NBqy+BTaa81u3k+HiapKm8yqhvxw1JYIE0kFgn57rc3oYmsUDUZ2VHYJXdVddxWwIroxZZE4GVue+94XjyySexb98+BAIB3HjjjTj77LMb3HeVILwACSxB1AM//fQTnnrqKZSUlCArKwvhTS0QKGtqbedaCXMkr0CdwLqRVxfHhkqeneyvCKwdcZWJlX8bKPLqRspSNPvqSF4jOzrbT4t6lNdkd1AZYw2yU+xaYlMpC6uGSa4lNuUEVqb2M3MjsY4EFqiTWIsCCwAf/H4/nnzySfz6668AgEGDBuHOO+9Ebq69ddkJgnAHCSxBJJGamhq8+uqr+PTTTwEAYlU2MnZ3ghjKtB6EsciPE8JhV51jxlhEQp3IKxDpnDqVOLtr18Yd27m8ApHXbnvd2ajjp6a8Ah4Q2AYkrw2dBiuxQGpnYZ0KLAAwyZHAKruHQs4lFrD9vjMwXPFkP4wbNw7hcBitW7fGww8/jO7duztvA0EQtiCBJYgksWvXLjz44INYvnw5ACCwvwUC+1rXLY9jBTfyKnfEbS4UH7s/kxx2EN3Ia+3+dhe5j95flbm2iSzuzGnHmknOPze31Je8RnZ2vq9MmpcNE/GQxDo8rM9Xd513sn99ZWEBCBlBV9dIlpUBocrG2q+xOHjfn/32Kjz00EPYvn07AoEAbrrpJgwbNoyuGQSRBEhgCSIJ/P7773j44YdRVFQESD5k7O4If0Uj6wF8YqRkNhwGQg4kUBAiMcKSfYGVy4XDYcfyKghCJHtazwKLsL3jK5dHiYHZ3Dc6UD0JrLoj5aBT3dDlFXCerXezf0NH/b1zHiSFJRZwdO4LcmWMw3OuPgUWqJVYwNG1kmVFMrhOJbZu/2p7+wkhHHZ+LubMmQMAGDJkCO68805kZtqoqiIIwjZJXG2eIBoejDF88MEHuO2221BUVASxJhtZ23pYl1efCAT8EXmVJPvyKgiA3+deXh0iCPbH2SYEN/KaigiCq0wMQPIqY/c8iN0+pc+jeiDq/XJ7DiZ6LWIj3Aq0A3lXHrK5qdTxAg6uXUJFFQCAZQTAMgL2968VV5YRBLMxJlZgfvz+YQVuuukm+Hw+TJ8+HTfeeCO2b99uuw0EQViHMrAEkSAqKyvx+OOPY9asWQAAf3kzBHe3017bNRY546rGTvZVzrhG7W9DYLXE1WYGNlZcXWVgk5x9jbssplIGVq/zZ6MzT/Iaja2Zqhvwmq480OySpPLsxEBSS4qF2Ou2zXOv3sbBQpWBVWPjuilnUaNi2sjIau9vPSP72GeX4IEHHsD+/ftRUFCAMWPG4NBDD7W8P0EQ1iGBJYgEsGvXLvzvf//DypUr4ff7Ie5uC//+JhBg0pnQElcgImBWJhDSElfAurzqZVxtyKtWZz1Vyod1L4epIrBGnVWLnWiSV22sSKjR7ZQk1hpG30F3gVNYYgHL34s4gVX+YHF/r5QRx2Lx+qkloYBFkRUF3eyrVZGdMO8u3HvvvVi9ejV8Ph9uvPFGDB8+nL7/BMEZEliC4MzKlStxzz33YM+ePYDkR8b+7vBX5BoLqJ64yphlX/XEVdnfgsAalQtbFFi9m3QqCKzhpTAVBNasg2ShA03yaoxRJ9TKrZQ6scaYvockseaHMBryYeH886zAApauoXoCq8Q3EVnz/Y1FlmUEwRDGcRcX4IcffgAAnHnmmRg9ejT8LmeJJgiiDhoDSxAcmTFjBm666Sbs2bMHQigLmXsPcS+vZpjJq5X9/f70GOvqAMZY6o9TtPLem3TeSV6dY/X8SfnzrL5xe47U55hYoPZBlpulwNzOzpwGY2Nd3mecjI+N3t9Y0IWqagjw4Zf3SnDjjTdCFEV8/fXXuOuuu1BWVubq2ARB1EEZWILgAGMM77//Pt544w0AgFjVCBnF3SAwP4RQWFtgrYqrXvmwVXHVy77amaBJJwNrVVq9moG1fPlzm4EFEpeFtdOh0+nAk7xaR7NE3sbnmqoPepKBne+juwPVcyYWSFg21jADG7Whzv5ezsDGonO+mGVRlWNpZWMNyojj99fOxqr3v2/8GRgzZgwqKyvRuXNnPPnkk2jRooWl+ARB6EMZWIJwSTgcxgsvvKDIq7+8FTL2HwiB6XQE1DMLWyH2Jq2eWdgJdjOuLuXVq9h6dicK1juGyYJDNgIgebWL21mG6ZmxNna/j66o7xmKgXqZpTj6+N7MxjI7y9i4vAZqzlhs4321MmPxo1d9g5deeglNmjTB2rVrcd111+Gff/5x0lyCIFSQwBKEC6qqqvDQQw/h888/hyAICJR0RLC0kzJZU1T21a64xuJWXOUYLkUslcuFgQZUMqxFTKeZ5NUdTs+jlD//vACPcycdJJaHyKY6HMqK3ZQWx4psbGb2lqHv4PXXX0enTp2wZ88e3HzzzVi4cKHj4xEEQSXEBOGYkpIS3HvvvViyZAnABASLD4C/qlnUNkIoHClfdSqtcvmwm3Gu4dryWafiqsrAOhVXr5QQu7rceWUiJ7cPDwTRnbjWxnBNisurIAiuzqdUfgiUCNx+N90dPH1Kil1VighCvZcQAzbLiGNhzHIJseaxq2pslRFrx6jW3J8JIfQ8VcKiRYvg9/vxwAMPYNCgQY6PQxANGcrAEoQD9u7di1GjRkXkVfIhY99BcfIKnwjmJuMK8CkX9onusq6i6Crr6lpeAS4dzLR4VucFeeWBF9rgErfnU1qcj5xw/V544YGMW+q7pBjg84CtxkYJcCLgUVbsUuJZRhAsK15gBebHX1P9OP744xEKhfDQQw/hm2++cXUsgmioeOCqTRCpxa5du3DzzTdj7dq1EMIBZBb1gq+mIHojnwhIDIKVtVs1YD4RzO8Dc1suDEQysKkKjxI5KZL5dJWZkJi7Dqa8b31m3Wo76czt+5mk9SwbAiSxEbhko+m8iryPFtfr1oOFpchDR1dBXO7vUkKFiir3ZcWZAbBM52XFQkW1tsRCxLzJlTjzzDMhSRKeeuopfPjhh26aShANEhJYgrDB9u3bMWrUKGzcuBFCOIiMfb0ghnPqNnA7zhUReYUoOr8BC0Ld/vXYQXY91pRHRkFyWbYrsUj5NQ95dYPbCZt4ZZhIXrlDEhuhXiXWCyXEPHEpsQD4SCwPkXW7v5v7qCC4klgIAlhWfDZWgIDpb+3GhRdeCAAYN24cxo8fT9cCgrABCSxBWGTz5s246aabsHXrVgjhDGQU9YIYzor8USWuTBDAHNw05ayrIr/hsP0MLqeZad3i+kbMI+vKQ17ddsB4yaur/eMv846ysCSvCYM6rhEoE8sR+RroAtcSC9R7NlaJYXeXskplX1fZWFmEY0RWgIAvXliP6667DgAwadIkvPXWW3QtIAiLkMAShAU2bdqEUaNGYefOnRBCWRF5lTL5iyuPrGs9wiXryqlkOBHyann8KI/sA5AQea2XOCQVhEUarMQmahyuV0qK0yQby1tkJ41Ziptuuiny+6RJePvtt0liCcICJLAEYcK2bdtw6623Ys+ePRBC2cgs6glRyojIq464CjUh0+xpOokrYJBFEgVAtDD+lFfJsKv9k1AybPWzInltUFCntY6kSmy6lQ9rkcySYr/BBEheycYmSWSF8ir9GCqJffuB3xWJnThxIt555x1n7SOIBgQJLEEYsGvXLowePRq7du2CEMpCZtFBEMTMqKyrE1yPcwU8VS7siayr3Elz2havlAwDSZFX0zJiQSR5TTIksXVwWW+azr86OJUUp0U21m2MBIyPffuB33HjjTcCACZMmEASSxAmkMAShA5FRUUYPXp03ZjXkl4Q/Nl8x7k6IRWyrlaxKq6CCEFvRma1uJq0R3cmYhvyqltG7AV55SGdchy3kDw4giQ2Gi4S6/VzkcP3Tff6GIuRxFqcqT2txsa6FFmeZcXvPPgHbrjhBgDAO++8gylTpjhvG0GkOSSwBKFBSUkJbrvtttrZhjOQUdobIrJonGstaZV15VEybHd/rc+wHmYa1szCkrzWOySx0SSspLghlA9rkW7Z2BQqKzaMkRXEO0+uwJVXXgkAGDt2LH744QdnMQkizSGBJYgYqqurce+992LNmjWAFEBG6SEQWBaVC9dS7zMMA7ayrobtaEAlw0mLQ/LKBZLYaBrs5E6JxAvL7QDemPDObQxOZcUQBLz/wr8YPnw4AODxxx/HvHnznMckiDSFBJYgVEiShMceewxLliwBmA+ZpQdDYNmOYqVbuTDgQXl10476llf5M61neVWysCSvhMfhKrENNfsaS7pJbKqXFQMQBBHfTtiNE088EeFwGPfffz+WLVvmvE0EkYaQwBKEitdeew0zZ84EmIBgWU8IUp6zQF7JunISX9clw0ziI691DXK8qyAI3um8euDBhCAKJK8ehbKwCcJL52oyx7/qIUmur0WeKSkG0iIbKwgifvm8GkcffTSqqqpwzz33YPPmzc7bRBBpBgksQdTy6aef4qOPPgIABMq7wxdqbD+IXwTL9IP5XXy1RCEiwB6QGwBcntBDECOvySlqAXaVeZVcSwHjkb3lBa/SYR6vh+cDCkLB9fnq9uFTOiKxxK27ahcO0sbtM3Z5rRf8fnfXZ07tiDSGQybVL7q7lwsCwjlBhHOC5ttq7Q4Rf04P4sADD0RxcTHuvvtulJSUOG8PQaQRHrmCE0T9Mm/ePIwdOxYA4K/oBH9NC3sB1OLq5sYpeqhkWB5fKorOS/d4TNbEK3vLS14Bb3R+eWRueGeiSGITgtPzVr0fSawGXvgey3B4iOQFiY0Mz3A+N4GQkVHXDl4i6xJXEluLU5EV4MP//d//obCwEBs3bsSDDz6IUMh4jXmCaAh46OpNEPXDpk2bMGbMGDDG4Au1hr+qnb0A8lNat+Iqlx17gdjOh93XxUtcw+HEyKvF5SKim+MhAUiEvHolq0xoYldOtLZPdYnlI2ix1zaPXHMBb0msG3mUr/9eEGqAy3Ac19nYWpxI7EUnvYQnnngCWVlZWLRoEV544YWU/y4ThFs8dOUmiORTVlaGe++9F6WlpRBYI/hD3SHA4o0uNuvqBLW4JiLrKgiA34asuZnVV4aH6OlkXQVBsCeftR0xbpnX+obDOq+CKPDPvKrxynuVhlg9j422o46vBrzWT+aBXYnV+C7bLinWXR+bUzbWLTaFmmVlaP+BUzbWrcg6ycZef/lk3H///RAEAV999RU+//xzV20giFTHI1dsgkg+kiThkUcewYYNGwCWAT/rDcHqV4JX1tUr5cIAH3E1kher42A5lwy76bAzienLa7I7vMkoGaYsrOfhIaCpKLEJyb7G4iWJ9VI21gKC36+zv7uSYidtMYTTknT1kY196O7ZuO666wAAL7/8MlasWOG6DQSRqnjkak0QyWfixIn49ddfAYjwsz4QkAEp6APLMMjw8c66egEvZV0TVTKshUkm1zNZVyC5411pQqeUhkeW1mskta1ekVjAWxLrpZJiD42NTUY2NpxdN5vx+Ff+xcCBAxEKhfDAAw9g3759ro5PEKmKh67UBJE8fv/9d0yYMAEA4JMOhIiCuj9q3djqY5Imvw8soPNUmxdWOxR6EznxGOsK2Mq6GpYRJ7tkOBmdXS9O1mQFktiEoXd+8xgnm7bYOR9TRWItfq8NK1HsDslwg0k2VpnAKRltAfTv5YIAKS/TcphkTvIkQMDdd9+Ndu3aYefOnXjkkUcQDoddH58gUg0PXaUJIjns27cPjz76KBhjEFkb+NDGeIf6mqSJU6mTLnY7r7FtcSIoWmXE9VkyrNF5S6fMq+PxrlRK7Hliz3MeMxV7kXprX6pIrJ0wCSrj1S0f1tzfYxM8AZ7JxgLWyoqHnvw8xowZg4yMDCxcuBATJ050fVyCSDU8dIUmiMQjSRIee+wx7N69G2A58LHu+hvzKBcG6n+sa+xETg21ZNhSkxxKeSLgIK+uoFJiz8NL7rwqsdza5fQ89LLEOvx+e6KkGEhYSbHuBE5mcLo/Jysbe+3ID/Hf//4XADBp0iQsW7bM9XEJIpXw0NWZIBLPJ598gnnz5iEy7vUQCNB5cuwy68oCPrCsoLfGugLuOgxyGXGSS4a1iCojdiuvgmg8WVN9UN/yyhMvva9piNuJytRxCA28JrE8x8U6WE4sCo4lxbbKhxPRFoDrBE/MLzpaMkeN2f5PjVmAk08+GZIk4dFHH0VZWZmr4xFEKuGhKzNBJJa1a9fi9ddfBwD4pO4QkRe3jRT0Icwh68pEAczH4WboE/mMgw1LHLKufLKcAFx3ChljtdlbDm3yWrmsVzrMXmkH0SDxlFBz+i5we0jGS2I5vMeClZnljZDfEx7jODlN8GRn/KsugoBwpvt7dzgniOoCfZG95ZZb0LJlS2zbtg0vvfSS6+MRRKpAPRSiQRAKhfDEE08gFApBYM0gom3cNlLQBynobqwrEwDmE8Dc3tQBPuVVchy5jNkpEgcBZhIghV3HYYxF2iO4fE0Av2yyh+CSffWavPKaLEyOQ1nhODQnaSMicPyOc5NYl8IXqabhcF0HuGWG3b4mpXzYrcTKfQAO34lwhg9ho5UNLLUHuhI77JQX8L///Q+CIGDq1Kn46aef3B2LIFIEj/VSCCIxfPTRR1i5ciUAP/zsIAiouzFJQR9C2f6IvLogIq8iGI+OIE95BZzfiKXacaq1cQRBcDb2ivHpKCnyygOJKZ0uxxMdJUJeXcT0rLy66bSr9+UVh4jCa/LKPfvq5nvBawIl1fnHbcgCr6wlt/uNg/dKFAD1JFDhML/XxQNO3w1eEqslsrff+DUuvPBCAMAzzzxDS+sQDQISWCLtWb9+Pd555x0AkdJhAXXlQUrWVdXBCWeItkp/9LKuLOCDFLRZQsRrwXcuEzXxfDofE0c0WApHL4yWvAoCBLvjuJRZMKNj2ZI/j2VdAQ/Lq4yTDjsv6dSKQ0LrSRJWOuylceG1cJNYm8IX98DC4bVe89rr4Nqo+QDFQyXFtrOxgoBQXrxoOsnGVufXrQELAbrZ2I/f3YHOnTtj//79ePXVV20dgyBSERJYIq2RJAlPPPEEampqakuHW0f+3SjraqOjY5R1ZYJg7xum14Gwux6sXhw7ZcQeKxlmteNdXSOLqxsBTYa82jyG5+XVCXqde7udfqPtSWI9lX1N+LhXu9+TBGRf7fzNFm6FT77m2/kM9N7P+igpzjCY8MjGvcNw/KuN74pRJZYtidUKo5GNFSDizjvvhCAImDZtGhYvXmz9GASRgnisx0IQfJk6dSpWrFgBdemwVtbVCbK8uiZZWVcrN9+YkmHtMBbKiK2UDFvIwloqGbaahdXIusaFsvK6PEZKyavVzrrZdrzi2ImVhnhJXpNGumZiAUvCZ/iZyxlLC/cjS9dcs+tlbPmwFhYzzMzsc7WajTX7TnAcG+sKjWzszdd8hmHDhgEAnn32WVRVVbk7BkF4GBJYIm0pLi5WzTrcBSyYY3msazhD1L3BeHaiJrcksmTYSZgEjXd13qAky6uF46WUvMokS07tSEEDlFivyWtSZx228r1JQvbVyXamJGtcrNVrj9lDQ6vnIY/XBXhqbKxZSXFU+bBuO6Kzsddccw2aNWuGzZs3491333XdRoLwKiSwRNoyfvx47N+/HwLLBQIdIfltTEAkaj9ltTtRk+E4WDsdNqMyYrslX1plxDblVTcLa1dedbKwtuXVKAtrU141pbC+Mq8Gx01JeZVJdHlwfY63TQEatLzKGH1/kiyvTrfXRSeOrc/d4J5ge94BrffTSvY1Fj2JNSof1kLn3mJ7+Ryt91Nn/KsRuhJr9eNSZWOHnvw8brnlFgCRySu3bdtmqy0EkSqQwBJpyapVq/DVV19F/ifYEyzgc1U65jTrqjkOtj4natKavMOkZNhaWzw63tVt5jVRMw27QBAF9/IqiN4b80oQycaj5cSuRZbVXtfdxtEbF8tp1nZHD1I0SopNy4e10CopdtIejZJiJysR8Fxu5/4n5+Hwww9HdXU13njjDXcxCcKjUA+GSDsYY3jllVcgSRIgtoIQaObohivPRux2eZyoLKwbwVNnYd3EkbOwLkuGlSys25Lh2iys65JhdRbW5WRNgvy6vICqHSmddY0ltnPttLPNK47bfVMEyr7GIMZUk9RT9pX3/rVBlHPa8eceMy7WdvZVq01Osq+xyBJrN/saS+09x3b2NZZakbWbfY1FllhL5cOa7QAgCrjxxhshCAJmzJiB5cuXu2oTQXgRj/RkCIIfCxcuxB9//AFAhBA80HEc5hfB/O7HuipZWK+MdxUEfllgHu0BajtaHhrv6kE8J6882iNnyV1nijjFkWOlKV6TV8/hEXnlGkclsa6QJZbH9z4c5nMuhsPOsq+xSBK39V55rAMfzvChusDdg4Irbv0Mp556KgDglVdeqf8HRQTBGRJYIq1gjOHNN9+M/I+/AwQxy1kcUQAT3d+MBMYgMAbw6BeFIzdZ5ndxY2NMiWN3HVZdRJdxJF5P9mszuBw6NNzGovFAEL0rrx4swXRNOr6mWrzYiU1Lqeb4AI3LtUgU3H/2ohiplAlzeG1+P1go5D5ORhBCKAwh5G6CJ5adAaEmDKHG/URRzC+A+d0O8QCYCFTnu7snXnXVVcjKysJff/2Fn376yV2bCMJjkMASacVPP/2Ef/75B0zwQ8o/wFEMWV6BSBmxlOnsJiKoOgwsIELKcFgSBESk0y2MU4YKtWNV3XaIJFY7/pbXa4vEEVzKudJh9EKprZflNR1J59dWC0msBhyrNpTrh1ckVnUt5PXZs7DERWRZKOReZGuriVxJrOr8cyOx1Y0y6prlVGIFoKIw0ldwK7Gn3zoRI0aMAABMmDAhMqyKINIED/TQCIIP4XAY48ePj/ye3wXMZ29MCxMFSL46eQUQeRJqs3OlZF3VuOkYJ0pea5+o2w+l8drsZmG1OoyixfVcoxtTO1mJt0r/uJAq8pou0pcur8MCJLEqeMurOpZXJFYdx8nDR517hSOJ1Rj76khiY8e+upVYFY4lNuYa4jQbq+6DyBLrRGSZAPznP/9BdnY21q5dizlz5tiOQRBehQSWSBt++eUXbNy4EUwMIJTfxda+StZV415jJwsbJ67qY9jNwoYlbXn1+eyVEXPOvLrGqMNoR2INJn2ym4XVnfmzvrKwqSKvVv6WCqR6+x1AEgv+4+W1YnGWWFsia3ANtPz5mzzo5FJSDIcSGxfEvsSy7AzNf7dbUlxToB0HsJeNlbOvUfuLzrOxg294A8OHDwcATJw40ZPfe4JwAgkskRYwxvDBBx8AAMJ5nQAxgFCWgFC2+SmuLhnWxGIW1kheAdjrJJt1CqxIrDze1ajDYyMLa3jjs5qF5dVhdDtjsTqUWYcw2RKbavJqZxsvkqrt5oAXO7P1Xk7sEMPrCOdJ5XhmY7nEsSqxJjMPW5ZYo5mHayXWisiy7AzTyZusSizzGcexJLECDPsidiS2qlHddueddx6ysrKwevVqysISaQMJLJEWLFmyBCtXrgQTRITyOgOIlM8YiadmybADNEuG9Y5pJQubquNdzSTWqryaZWEtyquVLKynSoaB1JVXJ9t6gVRrbwJosBKbyNJh7Y2SW1LM5cGkjQecZvcti8vmJHVcrMXzzExijbKvUc3iMMGT1ZJipjrMiTeNxznnnAMA+PDDD10dnyC8AgkskRYo2dec9oCv7mail4U1KhnWQq+M2Kq4Khh1mPVKhvXQy8LalVeDTgq3kmG7kzXpSazNzKuRxNqS12RkYVNdXlONdH5tNmlwEpuM0mEe25qG0vncbM4loPn5O5gjgdfkToBBNtbOuq8GEqtXOqyHUUmxWfY1bnsdidUqH9bc36SkWJ19lRk+fDj8fj+WL1+OlStXWm8sQXgUElgi5Vm/fj3mzZsHIDJ5kxqtLKxpybAWGnFsy6t8fK0sLKebfr2Pd43NwvLsKCazbFiLREpsOslrKohhKrQxyTQ4ieWEo2uJRyd34kWcxFrMvsbFSeS4WIfnVqzEWs2+xhInsSblw5oxdCSWaby000ZPxAknnAAAmDJlir0DEYQHIYElUp6vv/4aABDOagkWyI37u5yFdVsyrM7COpVXAPGdZzfyKmdhrYx3NWyTyH+5BbfyKmdhXc40HJuFddXh4y2xggjB50sfeeW1fyLxctvqmQYhsckuHdbfmUsblHbIuFlCTB4u4nCG+qhYicjE2sm+RgWJHhdrN/sai1pi7WZfo5olS6xgPfsaFyOmpFgr+ypz7rnnAgBmzpyJPXv2ODoeQXgFElgipamqqsK0adMAAOG8jprbMAF14uqmLyQAoUyf43Vho9oUEMGCfn6ZVx5P4QUBEHgseB+Jw6ODxjhlXQVBAATRe2NevQgvwSNRTEm8KLFc8YK8cm5LJBRzLZ1KrDCf5WhYWHKcfY2KEwq5f23qcbEcHooINWHH2deoZvkFlLYJupqLQ11SrJV9lbn0/75Fz549EQqF8P333zs/IEF4ABJYIqWZPXs2SkpKwHxZkDKba24TDgqoaCq6WhBcgUeiLMwg1EhgggAWcHlzlzubdpbV0YvDq+Mq1cZymxGUauVVdBeHMRbpADGJT6aTFzwzprxieen9IeqNtJVY3g+weHzvOE3uJIhCpFKFg3wKPh+fOH6OD2kBgMM6rywj6HydV3VTGmVCkBjEGvevT/JF+ilu2d9JREl743Py9NNPBwBMnTo1fb/nRIOABJZIab777jsAQCi3Q9xT1XBQQE2uAClY94SSB6FMH8KZzsRTCDMgxH9MKPOJziVWLa+i6LxkT56sSeLw9F5idVkAQXAssUwuP+YFr4yJquPrOitM8moPysJbwiudW27tkD93Dt+XqO8sr+8fz0mlXFzzoibP43XttDtBYQxCQFVe60JiWWZG5DrHmGuJZarrpRuJLWsZeW1McC+xzBf5KWmvL7JjPlyOzMxMbNy4EcuXL3d1PIKoT0hgiZRl9+7d+OOPPwAAUk7bqL+Fg7XiKtRNaFCdJ/DLwjq4z2jKq1+0n4V1OSY0LlZsB9Hnsy+xEouIqzqWKDjr3KnlVcaBxOrJq+MsbALktS60w0661+XVq1JMEmuJ+pbYhB3fxfdG87tazxKreU1zIJ+aM787lFhBq3TYgcQKgUD8td+pxKrfp1qJdSKyoUaZ8aEdSqykestliXUissUdVA9FVSIbhxjA8ccfDwDK8CuCSEVIYImUZebMmWCMQcpoAhbIUf5dLa9qmINZ/vSwm4XVy7warVOricGYUNtZWKOyYTvtkuVVC7sSqyWvDjDLvNqW2ATKa90hbHbWvS6vyYrvFJJYS9SXxHI9LifpNPyO1pPEGl7LuGVQ7cXRlFclls1rqd6DS5sSyzI1xqvK42JtSizTec/tSqycfY2KLTjLxjKtVed0JPakk04CAPz8888I8ZjpmSDqARJYImWZMWMGACCc3Ub5Nz15leGZhQ1lWZNY07Jhq1lYCxMaWZZYszGvVkuJjeRViWVBYiUGVhMylleLWVirZcOWJJbT+LTaA1o4nIVOuyCmjrwm+zh2IYm1RLIlNuHyKmPju2T5u8kDi9cdS9cwi/KpmX2NjWPlumpl0iaLEhtVOqyFRYlVSod1N7AusVrZVzVWJbasZSAq+xrXJBsSq86+xsXRkNjrn5+JgoIC7N+/H3/++aelYxCE1yCBJVKSXbt24e+//wYDEM5pHT3e1eg+JQBVBckpJRbCDEJV2HTMKxMEc4nltQaqHMdKB9GslNiKvFrBTtbVRGK5jnnlOSaNV8fWS0vleP14ViGJtUR9lxM7wupn68UJ1QB+1yCTa6KpvNqIZT2O8WvTLB3WIhQ2F1lLDyvNJTbUKFM3+xp1uBrJVGSN5FVpkgWJLe4gamZfo+LEjosVRAwYMAAAMGvWLPOGEIQHIYElUpJ58+YBAFiwMcJZWXHjXY1IRimx3cmaDEuJbcqrbhbWyUzDeu2yK696WVgnJcM6EutEXnUzGPUor7qZnlSW1/o+rhkksZZIhsRyn7TJKl4s748cXOcQNr9LOtdGW/JqFsvukjlGEmt34j4didUsHdbDRGKtyKsaPYnVKh3WPaaJxJrJq3o7dTZ20KBBAIA5c+ZA4vFwnCCSDAkskZLMnTsXABDKa2maddUikaXEjmcajs3CupisKU5inS6To1VK7DTzGiuxnMa7Au4yr3EdQQ9kXuM6zOkgr145vh4ksZZIiUwsx0nR6n2CtUgjYkI7/A7xnJE9JpZteVXixF9vTUuH9YiRWNPSYS10JncyKx3WI1ZizUqHNZukM7mTUemwbqxaib3xxdnIyspCUVER/v33X9txCKK+IYElUo6qqiosXrwYAFDTqKVteQUSV0rsZpmcqFJiXiXDgHN5lZFLiXkskyNLrFt5VWVheZQNKx1CD8irjNJxTid5lfFKO2IhibVEoiTWE3LsxSWuAOXa5Hota9W10lH2VSOWY3lV4tQts2O5dFgPtcQ6nnE+enInq6XDeqgl1q68Kk2KmdzJSumwbiwfUNLBj0MPPRQAsGDBAmeBCKIeIYElUo6///4bVVVVkPwZCGfmO47Du5RYCvhcr/HKBAECJ3llPhHwie7kVUbOwvKIxSQ+mVe5TV4b88pzkiWeeFUaiZSEt2zWW+mwDq7lNRFwHBPrWl5VsbghiO7kVSYUtlc6rEetxLqRVxkhxGyVDus2qVZincqrEscHHHnkkQBIYInUxIO9LIIwRp41L5zTzN5yLzEIDKjJEVCd5+5OIIQZfNUSpIAIKcvdk2hBFlcOnQtB7oC57RBIEhivbLDEIj9u28QYWCgU6fRykEUm8YnDE9eZlli81CH3UlvUkORbxvZa0cmK56XPkGdFBwAIIh+x9vnAwmE+DxJ9Pn4SKwpgPJZ1CQYg1PBZHkbKyYCvwn2sisIAxBCDv8r951d0EFDd2P251bdvXwDAX3/9haqqKtfxCCKZeKvHRhAWkAW2snkzxzGE2nsIE4DqfOcSK4QZxBoGyPckN0ItSUC4NpDf51hiBYlBCIXrZhsWrS0/o4laXkUBEF2ItcTqyuAsLomjCeM3dhaIybS4lVhOEhwlrzw7wV4QRy+0QQsviY/H4S2v3OO6/Cy5SGIC5LUuNL/vkKtrae09isvs76oyZFcSGwwo92GhqgZCVY3jUFJuZmSIksRcSywTEeknMLiS2H0HAlKQgfncS+xxX32Exo0bo6amBqtWrXIViyCSDQkskVKEQiH89ddfAICSrk1QWWivoyKwOnmFSmKdlBIr8qpCCjrLwsryKqjL6BxIrCCplslxW5KnlXl1KrGyvKo6Xo4kVkterawzqxdOqyPoVEITIa8y6SKxJK8pT6LklXt8h58pl4djCZTXukM4/C5p3FMcveaYOK4k1u+P+7wcS6zG+eNEYhV5Vf7BucSWNw9G/4MLiZWCdfvJEutEZCtbhsH8QK9evQAAy5cvd9QegqgvSGCJlGLjxo2141/9qGmcg8oWYcsSGyWuMfeOmlx7EzppySsQGcMqZfhsSaymvMrYkNgoeY3FbhbWqGzYrsRqyKsjjDKvDiTWsANoJxbHMa+GZcOpLrEkrylPouWV+3FsfrY8Kzu4wXN5H4N7CY/X7khiNeRViWdXYoP6Y0ztSGycvCp/sC+x5c2D2g/IHUjsvgM1wvhgOxtb2TIM5oscmwSWSFVIYImUQi5zqW6SDwgCmI9ZmswgNusaCxNql9axUEoshBnEkP6Nx6rECpIUmeVQT15lLHTCDOVVHceKxFoZ82pFYuVZiw3k1XIW1krZsA2JtdTxsxKL47hZS2NeU1ViSV5TnmTJK/fjWfxecZPXJM9kblliLTwItfweGImwLLFWYhnIqxLPqsSqSof1sCqxhisb1EqsFZHVlVflQNYldl+P6OxrXCgbEivLKwAceGDEilevXm1pX4LwCiSwREpRJ7AFyr9VNTPOwprJq4yV8bCKvJrGEgxvpuqsq6G8AhHBM+gwWJJXJZaJMPKasEmddTXpYJlKrJ0xrxYkltv4sWTLqwzv8sREQ/Ka8iRbXrkf16Sygds1oZ6+m6bttzEUxfRaa0WEGbOWjbX4HTSVWAvyKmMmsVKuhfVea+9rZhJraWiSBYnd1wOQMszPUSsSW9ky+jM5++dvAQDbt29HWVmZ6TEIwiuQwBIpxZo1awAA1Y3rBJb5WKSUuJnG2BeL8qrEMpBYq/Iqozce1rBkWA+dUmJb8iqjJ7F25VUvC+ugZFhXYp1M2GQgsbY7qnqSWl/yKsOro5xoufSqvBKWqS955X58nbHlnpVXXkMiHEwGqHvNtRnLUGJtrh2rK7E25FVGT2J1S4f1MJDYuHGvRhhIrFV5VUIZSGxli3BU9hUApIwgCgsLAQBr1661fByCqG9IYImUYvPmzQCAmvzcqH9nPobKltESa1delVgakzrZlddInPhSYkfyKhMjsY7kVQ+nmddYiXUx3jVOYt3MNqwhsY47qrEdyfqWVxmvS6yX5ZWyr5aob3mVSYjEppG81jUj5vW4WI4t7trrMJamxFooHdaMpSWxDs+NWIm1La/KjvESa1o6rIWOxNqRVyWUhsRWtgiD+bVjde7cGQAJLJFakMASKUNlZSV27doFAAjl5cT9nfkYWK0rOpVXmZrcSBZWCDP4qiTb8qq0SSWxruRVplZiXcurOgvrtmxYllgOkzUpEpvIpXKcIHcovSKvvOEtmySvKY9X5FWmvmcn1sUj8iqTkCV2XK5LHiWxDuVViaWWWINJm6wgS6xjeZVRSWxFoQN5lamVWFlk9/Vw3qRYidWTVwBo164dAGDr1q3OD0gQSYYElkgZtmzZAgAIBwOQMrTLc6qaqbKwLu7jTABCmQKkoKg5a7G9WAKYTwQTRXfyqgT0QOZVNx6nzhOPNtVmYXl26DyHV8fDelUSvdouj+E1eZXhKbHpfF1gEnMtnbxh8v2Kw3eQhUKRzCuP86Em5E5eZSSGcIYPktu3vfZtKm0vOMq+RoWqldjKFsYPg1u2bAkgMg6WIFIFElgiZdixYwcAIJSbrbsN8zNUtA6horm7O5JYA/hqGGqyRYSy3d2RxLAEISSBBURIQftrxEahdAJcfnXlDC44dAolBkjhSMeE55N6t9RmhLlmOjkKI5cONMeMMEHIMB4Px7yMxPhcFxLxAIlDTEEU+F1HAS6xBDnz6nR9V3WsQO241xr3sRAMQKy0v05sLNWNM8AEIKPY5XslAPu6ipACDP4y9+foFSfOwrWDZhpu06pVKwDAtm3bXB+PIJIF9X6IlGHPnj0AgHCWziyBAiK1wz6GilYhVLRwdvEXa2rHorDIWNiaHOcSK4YlCNVSJPMqCu6+cYwBocjNkfmMZyY2RCWvEEVAEJxLrCyvMi4kNkpeRdGdWMvlzLW47qyqO5VeyXrylNdEZCa9mO1M46wbb7wqsVweuAGAIHqrjF+Ni2tM1GtyKZ6C+lruIpYQWzbsQmIVeZVxIbEsMxi5/4WZa4ll8uuTXEisLK/ycjkM8JU7P0evPGEWOmfsRIfgblzXf5budpfP+R4AsHPnTsfHIohkQwJLpAx79+4FAIQzM6L/IAAQmWrgKxxLrFpeZZxKbJS8yrF8DrOwKnkFULsGrgOJVcur0lCHEhsrry7QzLw6ldgYeZVx3FnV6kxyklhuE0u5IZGdeC8KAkmsZdJOYmM/ezcSm+gHWQ7ia74Wh+IpaN1b3EyqF4sDiY2TVxkHEivLqxLbhcRWN47pkziR2Fh5lf9ZciaxsrzKyBKrJbJSZmRI1v79+z37nSeIWEhgiZRBzsBKaoGVs65a2JRYLXmVYWJkPIlVtOQ18gfBfilxrLzK2JVYLXlV2mVTYo3k1WYW1rBs2K7E6sirjO3OqlEnsr4kNlXkNZnHsAtJrGW82qF19MBNM5ADiU1WFYaN4xi+BpviqSmvTmMZLZdjQ2J15VXGhsTGyqtyDAcSW904oy77qsaBxMbKq9IumxIbK68yHYK7NbOx4do5RcLhMEpLS220mCDqDxJYImWQF9kOZ9TOPGgkrzIWJdZIXmVCmSJCOeZipiuvygY2JFZPXmWsSqyRvCrtsiixVjKvFiXW2mL3FiXWRF5lLHdWrXQeky2xqSav9XEsq5DEWiblJdbss7YjsckeQsDrmmZRPA3l1W4sKzMOW5BYU3mVsSCxevKqHMuGxOrKq4xVia3NvhpuYlFi9eRVTZzE+nyQaj/34uJi8/YShAcggSVShoqKCgAA8/usyauMj0EycEUr8grUlhKbTOpkKq/KhhYk1kxeZcwk1oq8Ku0SjTsKdsqGTSTW1oRNZhJrUV5lTDt89TDO1VRiU1VevQxJrGVSVmJtPBzy4nXB7Li2sscm11tL8mo1lp3lcswk1k623UBizeRVOZwFiTWVVxkziRWA/V3iS4c1N7UgsWbyKtMhuBtXH/tTXTNrlySiDCyRKpDAEilDZWUlAIAF/NbltZaqQu0srFV5lTEaD2tZXpUdDCTWqrzK6EmsHXmNCqdVEuVgzKuOxDqabVhPYm3Kq4xux89urGTMTJwO8upVaSaJtUzKSayD8nxu1wXe8BrXr3PdtSWvZrGcrPWqI7FCwMFarxoSa1VeleMaSKxleZXRk9haeQ3bWC7HSGIvP2G29TYhIruyxDJf5B5TXV1tKwZB1BcksETKIAus5Hdw2mqUEtuVVxktibUtr8qOGhJrV15lYiXWobxqlhK7mbApRmJdLZUTK7EO5VUmrgPoNFYiJTYd5NUrx9eDJNYyKSOxLiZI43Zd4A2vmdVjrr+O5FUvlhN5lYmRWMulw1qoJNauvCrH15BY2/IqEyuxDuRV2VVDYi8/YTa6ZuywHUuWWFa7NF+IwzJHBJEMSGCJlEHpODm9oakk1qm8Km1RSaxjeZVRS6xTeZWRJVYUncmr0iaVxPKabdjn47POqyyxLuU1DrexEiGx6SSvMl5pRywksZbxvMS6/SzVEusVeZXhtbZ17XXYlbzGxnIjrzK1AuVKXmVqQo7lVUYtsY7lVUaWWBfyqrRLJbFO5VWmc8ZOBIsjpcNz5sxxHIcgkgkJLJEyKJ0TN50nH0NNDkM4A47lVYaJgBQQwATBubzKiALgE9zfsAE+MYCIxAJ8OnCi4L2OYC2Ch9vGDa9Joyh4r00EoYbnw6MGgCDw+04LAqd7YSSY+xDhyDruruRVRgJqsgRX8qq0SwJOPfYPV/IaS02Nu/VwCSJZ0BWaSBlE0f3p6ivxIVAqoLpAQHW+u5uRv4rBVykhnCFCynD3FFsISRBCEphfBPwun4hLUkTy3b5fkhTJtAgmEztZisXqsiKuY9W2SxS4dDKZxPh1VjmJMNfsj5dF0cttI3RxvA6rHhyu7YAqM8zjvJK/e14TWUF0vn60mtrMK3NbEaOK5WQ91jjkZXd4iFTAD1S7jxPOiSwzEyx2H6uspR8Qgeyt7s/RAScuRbvMvdha09h1rLy8yHnQt29f17EIIhl47MpMEPrIAtu19XZH+/tKfAjuEyGEI9nTqkbOJdZfxeCrkCJzSQkCQpk+xxIry6ucWWYBn3OJlSQIoXCtwArOO4aSBCZJKul0IbFSpGy4rnPpJpYUXb7oUmKjOoIekViu4+9SQRC90kavtMPjJExeXUpsXFmzm8+TSYm5NrhF1Q5XEhtTNuxKYn2+6HPCjcT6/TGxXAhjwB/JmDLmSmLDOUHlXBLCkiuJLWvpB6v1c18NcyWxA05ciq7ZkRmHa5jPlcSemrMVBbmR+0xeXp7jOASRTDxyVSYIc7KzswEAI3J/R9+ea23tq5ZXGacSGyWvMg4lNlZelbY5kVi1vMo4kdhYeVUa60A8Y+VVaZeTWJL22DuHEqvZAaxnieU6A2oqCVl9t7W+j58iJDzz6lBidcfkOvlcY+VVpr4lVuP4jiRWZ8yrI4mNlVcZJxIbK69KLAfCKMurjEOJVcurjFOJVcurjFOJVcurjFOJPTVnK3KFDFRURs4vuZ9FEF6HBJZIGeQLq68yEy+2/9KWxAphIUpeZexKrKa8KgexJ7F68qq0zY7EasmrjF2JZUx/EhQ7Eqsnr0q77MTSkVcllj2JNez41ZPEcl2DMhWFjJb38TRJKxu2KbGmE0rZ+Xz15FWmviTW4Li2JNZkwiZbEqsnrzJ2JFZPXp0QK68yNiVWS15l7EqslrzK2JVYLXmVqWH2HnrL8goA5RWRNpDAEqkCCSyRMuTm5gIAysoFNPdlW5ZYX4kPgRL9G4RViTWUVxmLEmsmr0rbrEiskbzKWJVYM1EErEmsmbwq7bISy0KbAMsSa6nDl2SJtTyrqJV4qSxkyW57Kr9XSSTpY14tSqzl2ZCtfM5m8iqTbInldU2zONuwJYk1k1cZKxJrRV6tZmH15FXGosQayauMVYk1klcZqxJrJK8yVrOwanmVJKCyigSWSC1IYImUQR6bUVwaOW2tSKxW6bAWliSWwVheZUwk1qq8Koc1klgr8ipjJrF6pcNaGEmsVXlV2mUUy6K8KrGMJdZWtiJJEmt7SQyjeOkgZMl6DenwXiWBepuwyWQ720v5GIqNRXmVSZbE8qoqsblUjqHEWpVXGSOJtZN5NZNYM3mVMZFYK/IqYyaxVuRVxldjfP71H7LMVF4Ba6XEankFgH3FIhiLLJuXn59vrcEEUc+QwBIpQ7NmzQAAu/fW3YxliZ1y0itxImtVXmWMJFaecdgyOhJrV16VtmlJrB15ldGTWDvyKqMnscymdALaEmtXXpVY2hLraLxYgiXW8XqOWvHSScgS/VrS6b1KIPU+27DO9o7XodUsLbUprzKJllhe4/odrvOqKbF25dUIJ2XDehJrVV5ldCTWjrzK6EmsHXmV0cvC9h+yDN1yrC+Voyexp+ZsjZNXANhTFDlHGjduDL/fZqMJop4ggSVShsLCQgDA7j3RN+Tmvmz0CfqjsrF25VVGS2ItlQ5roZeJddj5ipJYJ/IqEyuxTuRVJlZi1cvl2G6XKpZTeVViRUusqxk7PTI7sWG8dBSyRL2mdHyvEkC9y6vOfq6uC0D05+9UXhMNr5nVHcqrEkstsW7kNTYL62bMa6zE2pVXmRiJdSKvMkI4+tpe3sK+vALapcR25VUmVmJlcY2VVwDYUxQ535o2bWr7OARRX5DAEimDLLC79mrflOVsbLuOux3Jq4xaYh3Lq4xKYpXsqwtYwAcIgnN5lZEl1o28ysgSa7d0WLNdHNacVWIJ/NZMTIDEOs6+xsZLZyHj/drS+b3iiGfkldf+cfEEPvKaiCwsr7WtXcprFDwyr7LE8piwSZZYp/IqUyuxbuRVRs7ClrfwQwo4j6OWWKfyKiNLrFbWVc3e0OMA6qrcCCIVIIElUoZWrVoBAPbu86GiUvtm83VZN+yvyERVM5eiKAKSv3btN7f+IwiRm6wguJNOGb+PX4dOFPl1Vp2UDmvB67VJjH/W02sIoruHD6kAL+kkeU1teEqsxOp/WZwEIogC4GZt19h4HB9ocIlVW+bqSl5lAn4u1wY5C+tGXmV8NQzhTOZKXmUuL1iOAjHLcJtNmzYBANq0aeP6eASRLNL3Ck6kHfn5+WjUqBEAYNNW7fqc3TV5CEsi/K3KUdncubwESoFgMUM4KKCqwIdwpvMbnFgtQayWIPnFSAbVDWEGhMJgfp+7J+wSi0w9CEServtcXAqYBNTevLl0TsJhrmLNLdPJA15lzbGQxCZ2fzVuyuRTAO7ZV57wfODGg0Q8IHMZk8v1To5Ve49xtEZsLHIsJ+u6qvH7lSodwcl6s2qCAUAQIJZXu4sDoCY/CADI3unuvSruEvlhIvDavEGuYl3Z6E809pnPKrx582YAQPv27V0djyCSCQkskVJ06NABALBxS7zAvlXcFl9sOgQAEAiE4W/tXGIFCRDDDEwEmA8IZYqOJFasluCrqi33FQAp4HMusWEWuWHXZjldS6wapxIry6vc6RIFdx1MdUfJTWc1JvvqqlOXAHmtC81xbG4aSxUA5xLKW161fk8TEiaHEkfRcyuxqs9NcHP9TGR1h8PYcdc5F+IZ9d4w5k5ifb6o76FjiVXJKwB338FaeQUAIcxcSWxNfhCSLxJLrGaOJba4CxAOMoSDkdclljg/P69s9Cea+XKU//cZVBxs3LgRANCuXTvHxyOIZEMCS6QU8hPCDVui63TeKm6L8WuPRXlVUPk3pxIrZ1/VMNG+xEbJq4xTiY2RV6VdTiRWnX1VY1diY+VVxqnEanWQnHRWdUqHHUlsAuW17hAcZ0BNQ6mKoj7LgLXe2zR6vxOe2fSCxGp8Xo4kNhlDE2weQ/f65kA8Nd8TpxIbI69KOLsSGyuvtTjKwqrkVYnjUGLV8irjRGKLO0MRVzWvzR9ou02x8iqjJbGVVQK2bdsGoC5BQBCpAAkskVIccMABAIDVa+sEVkteZRSJbWGtMxAoBTL2MYjh+BuJXYkVGNMe82pXYnXkVWmXHYnVk1cZJxKrhV2JNeoY2emsmox75VleZxkLY+24rkGZRlKliZ3PkNfnbfSepsH7nbSyXJ4Sa/vY+p+TLYn14Lh60+uaDfE0fC/sSqyOvNpGR14BABKzJ7Ea8ipjV2K15FVGrLZ+XSjuDIQztLcXi/22JFZPXmViJXbNhgDC4TCaNGlCkzgRKQUJLJFS9OjRAwCwck1Q8bndNXma8ioTCIQjY2JNJDZQpi+vMlYlVh73qkutxEpZAVOR1RVhdbusSKyZvMpYkVjVuFddRAGCz4J8WukQWZFYi5M2WZZYHh1VGxPFWJJYq/HSQKoMsfIZJkNe7WzjUZI+ppSXxNp9sGWCJYlNtrzyvJ5ZuM5aew8sSKzPZ0leLWVhjeRVxqrEGsirjGBw/5epyQ8ayquMlSyskbzKWJVYM3nVYs3uRwHU9a0IIlUggSVSii5duiAQCKCkVMS2nT68VdwWX20+2HQ/M4kNlAIZRcbyKmMmsZqlw1oIkVkUDbOxtZM2WcFQYq3Kq4yRxOqVDuvhdlysEsegw2pzxmHTTl89ZVkMJdburKkpLFWWMPoMkymvTrb1CPU2IVIyJdbG52KcfaynzCvPihID8bSXhTZ4T2Vxtdg2Q4m1Iq8yZhJrQV5ljLKwsriayStgXkpsRV6VWCYSa0de1VnYlStXAgC6d+9uaV+C8AoksERKEQgE0LVrVwDAq0ta4u11x6C0Un99s+h9IxJb1asiTmTlSZusoiexluU16uA6JcUmpcOa7Ur0xE525VVGT2LtjqnS6rA6XC5Ht/OXhHGvRmhKrNMlP1JQqmyh9RnWh7y62aeeqPfZfJMhsQ4+D+3xn/VcNsxrTD+gec11Mg5YMwvrsGRYU2LtyKuM3udtQ14B/VJiK1nXWPQk1o68KrGK4yevvLLRn44yr7LELl26FABw0EEH2dqfIOobElgi5ejTpw8A4JdFzS3Lq0wgEEZmVnVUNlZr0iYraEmslXJfTWIl1oG8Ku3y+8CCgTqRtZt9VaOWWKfyKhMrsU5ntUzkEjv1LK91zVBP/OXyMp1CUuUI9WfohbVeU+D9rnd55Y3egy2HRM/A65Exr7xmVY/B8UzMsaXELse7RkmsE3mtJSoLGwzYllclTozEOpFXmdjxsE7kVUadhZXF1a68yuzaHcC2bdvg8/lw8MHmlWwE4SVIYImU47DDDgMACOuKHceQs7GhHGY67tUIWWKrCnxgPhiPezVDllhRdCyvdbGESDZWFN1nOmIl1g2yxLpdV1DdYeW1bqJH5FWG1om1gY2SRUu4fb88/H57Sl4TNTMxr/ffK/IqwyQ+8hoOQ/D53C0jBNRJLK/JmgBX8gqgrpRYFlcXsWSJdSOvMtk7wyju7E5egdpS4gUDHWVdY1my+XkAkfGv2dnm68UShJcggSVSjkMOOQQ+nw++4kqI+yocxwkEwghnMUgB822NYCIghhiEEAPzu7yJCwB8AuBkTdZYJCkiwaLHvuaiu05FHJyEkVscL+KFzGRDw8MSm84krDrDC3C81rla11WNKHK7vjDG+NwbfD7AyfI6GrCAz7W8AkA4Q0T+GnfyqiAJruUVAH7//XcAwKGHHuo6FkEkmzTusRHpSlZWFnr27Bn5feMux3HKtucga7uIULaAkI31XbUQJEBgQDggggWcf63EGglCTRjMLwJ+DmNZGavNTrn4qksSmDzjsN/vfoytVCvVrp6yS5HODlArxB6RWI4S7MkOdEOhPsfRJhjmprKDNzwfrvHM5sqZVy891Kpti+vKDKFOOF1LrHwvcCuLoi/yAwB214eNJRAZJyqYzZJvASnTD4gigvvsrw+rpibPB8kHBMrcf/ekvDDgl3DYohGu4oxYczzmzZsHAOjbt6/rdhFEsvHQ1ZkgrHPssccCADLW7ELQb//mWbY9B7nr/PBV1ZYBZwuobCQ6EllfFYO/ovZmKQqOJVaskSBU15UOM78YGcvqRGQlCYJ69mKnEitJYHIcQaz9EZxLrMRU4ulSYtW4kNi4DqEHOq1R8sqhbJtwAElsYkmgvNpayzqW2LGmHrgexLbBscQK/LKl6nsAY8y5xIrRsxZHYjmU2EDMJEfVzuJImX5FXgFADEmOJVaWV5nGK5y9/1JeWJFXACjak4vDF5/nKNaF647Hlr992L9/P/Ly8mj8K5GSeODKTBD26d+/PwBA2FCMjHClbYkVq0T4qur+n4kA88N2NtZXxRAokyCoOxQuJDZu3KsI+9lYWV7jYjmQWK2OrlOJVcur0iYHEqvOvkbFst/Z1O0IOum0curoamZeXUycRbiAJDYxJCHz6khi9Wb7rU+J1Tm2bYnVkVdHWViNa78jiRW1x846Ojdj5RW1WVibEquIa8w5KobsX4Nj5RWIZGHtSqwirv7oNuzdnWe7TReuOx4bShrjkppDAABHH300/P74944gvA4JLJGStGvXDh07doQgMfj+3YuMQAi5mVWWRLZ8Wy6yt+p0CkR7EitIiJZXmVqJDWf5LYmskn3VwbbE6nUARCESx0oHUl06HIsDidXtlNiRWD15VWLVUzlxMjq4DpYuIjhAEsuXJJYN25JYnuut8oLntczgNdiSWINrvq3zSUdeFaxmYQN+TXmVsVNKrM66amE1C1uT59OUVxk7pcTqrKsWVrOwF647XpFXMIaff/4ZAHDMMcdYbgtBeAkSWCJlGTBgAABA/Gs3RIHBJ0rICIQMJbZsew5y1vuisq+xWJXYqNJhLUQBzGeejY0tHdZtlxWJjS0dNmibYUdSXTqshx2JNeu8i2IkjpHImsmrEsuaxFrKYMhl02bbcMK0o8wsLmNE8soXej/5UA9jXk0l1up3KplZWCvXHdi4hlk4f00l1mdxjXErWVgzeYXFUmIDcY3CQhbWTF4Ba6XEsrjqyauMlSysmbwCkSysmcTK4rqhpDEAQNhaii1btiAzMxP9+vUzbQdBeBESWCJlOemkkwAA4pp9QGnkpiIKzFBiY0uH9TCTWM3SYT2slBRbfHJtKLF6pcMG7dK9YVuNYUVitUqHddvEaVysicQ6Kr+z8+8OsJXlMepwk2wlBh7va0PNwmqUZLrC5oRNuhJro6ohaaXEvIZByLF4nLd2K22MJNaCvEbF0sOqvMK8lNiKvMoYlRIbZV1jMSsltiKvMkalxErWVcWI4u4AgOOOO46WzyFSFhJYImVp3749evToATBAXLFH+Xc9iS3bnqNbOqyF0eROuqXDeuhIrBAyLh3WbJfR5E52O6NaEmtUOqyFkcTakVelTRoSazX7GhVHu8PpagKUBOGoRNFra1Q2BEhi7cN7GS9esw07+P4kXGJ5TUQnx7J5vmpmYR1M2KcrsTbkVUErC2tDXmW0SoljJ2uyilYW1o68ymiVEsdO1mSVvr/HZ2G15BUSw8yZMwEAJ554oq1jEISXIIElUpqTTz4ZACAu3RUlb7LEqsfFWs2+qtGa3Mm0dFgPDYkVGOxLJxA/uZPV0mGddik3cCulw1rIEhuzzI7jjrFaYp3IqxKHc4dTHSuRkzZZJbYTTtnXxEMSax0PyWtUFtbFw5+ESSzv65TD8zRKYl0smRZ1PsnL5DhoU1wpsQN5VVBlYfUma7JCbBbWibzKNP677j3Rm6zJCrt31WVho8a7xiCs2ouioiI0btwYRxxxhLNGE4QHIIElUpohQ4YgGAxC2F4GYUtp1N/U42LLdmXbyr7Goi4ptp19jW6UMrkTBMF29jWuXf6I6NkqHdZpF0TRXQz1MjuC6L6TXiuxrjvWcodTEN2voQhYHp+WNOTOOMlr8iCJTT4cMq+CT+RSucB9UicO1xMmsbprk8v2sXDY/XrfQCQLG7NMjqP2yOely7XR5VJiJ1nXWIL7q00na7JCoDTy2pxkXWPp+/t5uHj9oKjxrrEcvT4fAHDaaafR7MNESuOhXhhB2KegoAAnnHACAEBcvF1zG1FggCRAdLnWOhPrSocln4sOgihACDMIYQmMR4bCx2ncqAyvzhmnOAKv18ak+ptNVAeu7fGgEKUt9F6bwzv7ygHGWP3MUp4EBFGIyDmHawq3a67PB0gOK4NUCKIYeYDBo11WZ+E3gflEZOwLuZJXAAhlCchbL7qWVwDY+28TrCtuYrBBBRYtWgRBEHDmmWe6Ph5B1CfeugIThAOGDRsGABBW7AHK4sfLbN3aBFlb/JD8QDgIMIc3nEApQ0axBEECmE9wJbECY5FOsF8Ec/GkWwgzIBQG84lgARdPlSUGhCKGLwjunpbXNU50thajmton74IgOO9USSwq6+I1iXWNuiNNYpV4eL3HHjwPuYlLInApHUy+5gKu5JNJjE8lR3RQV7tHXdOcrOsqx5Gvs6LoKg4ACHJ2z+V7JajLfG2u6aqGZQTAMgKRiqUK53EAIJzpB/MJEKvdfW6hLAFMBPzlDPlLMxzHEfcHIO4PQAgBW9c2093u4j2RyZuOPPJItG7d2vHxCMILkMASKc9BBx2EHj16QAgz7SxstWrsqwBIfmcSK4QBsUbuADmXWLFaglgV6RwwAe4klrHIjyBEym19Lmb7VJUPOpZYJgHqyTLcSKwkxZUN8upge0ViE9IZJolNHGn83nKV10RlXx3GjZJXF8R9V3lmYR1KLK9rmSKuHD47IbY0NeSs/EmIbY/DEndZXOUMruCiHF2WV5msPc5emyyvMoESZ69NFlehthm+cp3PryKEr776CgBwzjnnODoWQXgJElgiLRgxYgQAQFy4Haiue3K8dWsTZG2OH+dhV2IDpQwZJTE3PYcSK8R0phSJDfptiaycfY3+RwcSq8q+Rofim4m1LbI6nRVbHe2Y7Gt0s7whsUACZkZOY9GqN3i+px4694AUkVeH8XXllddyNfUosbrXMJvZU0Ve3cbx++PlFXD03YmTVxmbWVhFXmPj28zChjP9cfIKwFEWNlZeZfKW2cvCyvIai1YW9obiPqioqECnTp1w9NFH2zoOQXgRElgiLRg0aBDatGkDoSIE8fcddX+o1p952E5JcVT2NeoPEYkNB0VLIqvOvqphAsBEwV42Vs6+xrXJgcQayKLgszgpSGz2NSqQaC8bGw4bTtpiqcNtIK91zfKOSHBbm1aGJJYfJK/WSNa4V4vHMc28WpRP7lUSHDC9dlmUT115tRvHbEIgi1lYQRT15RWwlYXVk1fAXhZWFtdYeZWxmoUNZQm68goAwWJrr00oDujKK6CRha0JY8qUKQCAiy66yNtDBQjCIiSwRFrg8/lw0UUXAQDE+VuBkISt2xprZl+jcFFSrI5hNRsbm32NxWpJsWb2NWoDwdq4WJ3sa3w4k2yskbxGBbIgsRqlw7pt4kBKS6wZHux4pxwkr9bw2KRNCSsb1iLJWVjuZcNu41iZzdbCvUYRV7M2mWRh1eNdDY9nIQurlXWNxUoWVhZXPXm1irg/ALEGuvIqs3VdXRb2rpr+KCoqQsuWLZVJLwki1fHWHYcgXHDSSSehWbNmEEpqIC7ZBVT5LK/7aiSxmuXDWphIrF72NRazkmIhXLtIvNmTaKvjYi0+0U7a5E42nrDrdsAtZF+jmyR4RmS5d5hJYr2BR84vmZSXV4Nj2pJXg++SrQdKSZBY29cpg+ypLXk1imNnKRaD99Mw6xqLwT0idryrEYIk6UqsXsmwHkZZWKOsayxGZcRCsX7WNRZfWe0BQxLef/99AJGhVrR0DpEukMASaUMwGMQFF1wAABDnbIJgc+IIvZJi3fJhLWSJDcSLrFn2VY1hSbFe6bBum3Qk1mL2NTqUhsRazb5GBdKRWJPSYb02pVs21rDj7KSjTBLrjDSdcTjl5dXg2I4yrxrfKa+VDfPMujrKvGpIrC15ldGab8HJ5FEaWVgrWde4Y2vcb8xKhrXQysKalQxroVVGLBQHImXDDiZPHl3aFzt27EBhYSHOOOMM+wEIwqOQwBJpxdChQ9GyZUsIJTVosmCD/QAxJcWWs68xMZgoRGVjrWZfY3E9S7HSJg2JtSvCSigb42INA8VM7mSxdNioXZE49rKv8c3yhmxodqDdZHk81iH3PCSv5nihbFjVBldlw6rvFvdJ1ZzAa+kvlXjymmlYd7ImK6jeW9PxrkbE3LucyKsWdrKusaizsG5KhtVZWFlcncjrtn8K8O677wIALr/8cmRkOF+qhyC8hgfuPgTBj2AwiKuuugoAkLNhFYQaizXEMcgSayv7GosqG8tEwXHHSl1SDEEwHvtq2B7VuFhBcL/On9xZsJt9jQpSO7mTIDheIiEOl2sqAh6XWDeQxFqD5NUcL8iriqSOeTWCp8SC07UoHOYz3jUcdi6uakIh6+NdjaiusTze1QihosZ2ybAWYrXkKOsai5yFdZp1lbkvqzn279+P9u3b45RTTnEeiCA8iLfuQATBgSFDhuCAAw6AEA4ha8s/juNI/lqRdfMtkbOxIlx1ZpWSYrcdUHlsEKfJOyByGhfL47WhtoPOuQNZ3ygd6jR7XUBdOaNbseIVR4GXeHrsgQHj9ZDIi3jsvfYUAp/1XXlco5U4PNrjEy2PdzVEhO2SYS0kP6eJmkLu5VWsqMDHH38MALj66qtp7CuRdqRfj4ho8IiiiGuvvRYAkLl9LcSKEkdxAiUMGSWsTkCdtqeGwVclRQTURcdYqJEgVIdc37CFsBTJ4goC4LY0WWK1nREXN34mgYWlSIfGZXuUDrpL2fPS+DclA8Mhs8wzI+hWGGP3dRqLV5w4SGKNcVHuzxW5HW4/r9rvl+uMJ4/vaaQhteE4ZIRFAcxlxY0inW7j1A4ZYTbXc43D7wMEAUJltaswzB+RYH+Js2otGckfEeCcHe7eH7EGECSg4B9397BLwxIqKyvRs2dPDBgwwFUsgvAiJLBEWtK3b1/069cPAmPIW/0nxCr7nQAxVFc+HBnT6uzJqiAxCLWix0QhcsN00EkS5DGrcrZSFJ2JrCJ5tXH8fkfiyJhqrKkgRDombjt/ssQ6FVl1Z6+2PDmt4NU5dolaErlmPgnCKjFj5h2fg0zi973iEYfXdUuO43quguiKHccPQHyiIq+RQA7fK79PkVcAjh+kML+oyCsACCFncSS/AMkfeYgrMGtL6mghj3MVat/eYKmz9zlnk4iCFXswffp0CIKAW2+9la7PRFqSZr07goggCAJuueUWBINB+Mt2I3PnZojuHtSCyQJq41sj1jD4KlRPZOWlbWxmY5XsqxJYqBNZGzcnJfsa0x5H2VjNSYZsZmPl7KsaeVyUzfbodqxsdgY9mX1V47TDneDxmHY6SXrb2u1o8YqjC2VhjamvLKzece1+XgbL1diGl7xqhnYwq7LGPcZ2FlZv0ie7cXSWTbOdhZXFNbbqwmYWVhHXmDh2s7CyuMa+z9m77L0/srgKLr+WOZtEBMrCOLh6M4DIpJbdu3d3F5QgPAoJLJG2tG7dGpdeeikAIGPbMvjLqhEoZZZENlDCkKExnT1gLxurZF/j/mBPYgW9GYPtSqyu5NmT2Kjsq1YsLuNibUos76Vn6hnTTrSdDjPn0mEnf7O6jVX55BXHFJJYY5ItsQbHs7VWtcn3x5bEJlBeHcXhsl63/jhVW+eO4ZrfNt43ddY1FhvnoDrrGoudLKwir7ExGOCrtBYnNusaS95aa+dEziYxIq/lDHee0Bbr169HQUGBMqElQaQjqderIwgbnH/++WjXrh3EcBUydqyAGAL8leYSqy4f1sJJNjYOlyXFCm5LilXtsVxSbNYZt9KR1Mq+xmJRYi11qCx0EL2UfbVEkkuK3QpqsuWUJNaYlJNYC8ex9Jnz/N4kSV4tXZssyKulLKyVSZasxDGSV7k9ZlnY2JJhh8SWDDtFXTLsBitZVytlxLK4BsoZhOoyvPPOOwCA66+/Hvn5+a7aSBBehgSWSGuCwSBuu+22yO9F6+Ar2wVBikis1WysETwk1iwbG1c+rIWFkuK48mGD9hhlYw2zr7GxkjUu1qoYpEgmlmv2px6WcuEhjokuM7YNSWz9YkeSjT4rG8LJtQpC/yDuY8hxOI93NcLwvIkd72oYyOA91CkZ1sKojFivZFjzkKX6cfRKhu0ihviUC8vyCgBgDMfm7UJFRQX69OlDy+YQaU9q9OYIwgWHH344hg4dCgDI2PY7EK6BIEE3G2tUPqyFXklx3PhXIwyysbrlw1oYZWPtdFSdjovVixV7w7eSfVVjMC7WdgdcZ5KUlMu+qtHrBCapdNjK9k5Ekpd8ksQmgURmYW3G1i0lTsHMa/QhtYaj2J+sSTMLqzfe1QitOFbF1Qy7WVeNc8RJ1lWoiX9NTrKuWuNgxVCtvNo4dbTKiNVZV5lA0Vr8+eefyMrKwt133w3RY+s0EwRv6AwnGgTXX389WrVqBbGmAhk7lyv/rpWNNSsf1kKrpFh3/KseDid4isPhBE967YkrKXbS+U7kuFinMuDRbKzjZTwSWE7sdokbXsvt8Fy2xzFpKLGeLiV2GDPu8/aSvLqYaZjFzrTOYy1ui1nXuLbEnjcO5TWqjJhjybDreyCcZV21xsHK4mpHXoHoMuKczSJyNotR4goAQnUp8vetAhDp67Ru3dreQQgiBfFmD44gOJOdnY177rkHgiAgsG8DfKU7lL8ZZWPt4ma5nboGcR4bKwjWyod12qLOxlouH9aLxbOkGBw63rzWWuQE1zUoOYmWW/HjVU6cyLJk29RDWXai8WQpsVsh5rCGctx3koe88sBlybCShXUor1HYKRnWbEzte2qjZFgLuYzYU2NdHWRdtcjZLCJQxhAoi/meMglHZW1HVVUVDj/8cJx11lnuDkQQKQIJLNFg6NOnD84991wAQMbW3yHUVEb9Xc7G+isYxJDzzpySjXVz31PEk2mWNFlG5JTVldvDqyzJrTDaLXUzwqOZWCIxkMSmCByyuVzXv+SxXqxH5BWofW94yCuvzDaHrCvAR1595TX8xro6yLqqCZZKirxqcX3fAixfvhzZ2dm46667qHSYaDDQmU40KK655hp06dIlMivx1kVx40IFCRDDgBB2J7G+Kgn+8rC9cadayONf3dyQ1eXEbm7IjIFJkqvyN3WbXHUuJQmQJHvLZujBJPx/e/cdH0d55w/8M7NFWlnN2MaWO8YVY7DB2AGDMRhsMDW0hBA6IQklhfxyJH4d7QKBu0BC5wgXyCsQA0cI+EKJOQgEA+424HPDvcpGcpHVVrs78/z+mJ3R7GrblC0jfd6vl16SdnaeeXZ2V5rPfp95RpIl59XPUuNSVbkkK3NUmkrs4NmN164xOsPp3zwXwqtbf6eMv70O948kSY7/zkh+PyS/394IITNZ1j6odfB/RcgyhCxrI5Yc0I8fKr7OMvliFsEWFXI0RdU1ztfyNV566SUAwL/8y79gwIABjrZH5CWl9d+GKM/Kyspw3333IRQKwd/WiGDj+tR3FNo/IV9EtRVkJUV0/hN0PMzV4fmsigopZh4u5tY5tu6EWFeGqLo1XNbrITb5OWGITakkqrAl9lpzvE/cDK8uVF+FEJ2vfzfON3XCpfBqcDIk2vw8Ozi/2JUh/X5/5y+5XJYnlfhoHBHfP1K7vfOAhEuvX0kRgABg4XqwyYItqhFe024nGsbAlnUQQuDCCy/EmWeeabPHRN7EAEs9ztChQ/Gzn/0MABBs3ABfa0PqOwoAqvNqrNaWhZmE07EbYpO37UY1FrAXYoVIPFCJh+GihdgUB4LFCrF5264qXAmyDLFp2HneGF7TcxhehRCJ4dVuO+lm/LXCjdEqSPO3wcbjy9t55DHrlcaE8GpXPLgK2VkodyO8ah9ax8OrA3pwzTiRpBA4rfprHDx4ECNGjMDtt9/ubKNEHsQASz3SrFmzcP755wMAyncvhxRtS39nh9XYxLZyX1+KKl2v/+q0GpvcVq4H0qqa+hNyPcQWckhxmr5IkgTJjUmi4NFKbLbngCG2i6KE2BJ7bXW38Jr2AxsLf6Ncqby6dL5r2r9FVq5nm6liaqHymbYNC/vLGDKcStRCEDZVXe3ShwynEjiceyXXXHW1K5eqq+57kyqwcuVKlJeX47777kNZWZn9DRN5FAMs9Vg//vGPMXLkSEhKB8p3LQHUGPztAoHWFAcGpmqs4yCbYzVWUuOf6HZZkIcQm8OBQNrw4tUhxVkOAAsZYgu2LYbYLgoaYhle03MrvDqUNbzm8ncu3+FVl8Pjzfoc57Df8zJkOJVcwnTSkGG7MlZdVeQ0eaIbVVdzcE0XXssPdj5H/qadePnllwEAd955J4YNG2Z/40QexgBLPVZZWRkeeOAB1NTUwBduQtmeVZCjAlKmcOr2sGIn3Aqybg8pTnfwljx8OF0bxRxSnNyOVyZ3snLAzBCbP5leKyX2OuqR4TXL+6RUKq85/93J9iFcIS89lWEYccaqqxWphgxblKnqaoVbVdesw4UB+Dq05XL7QVQ3rgYAfPe738XMmTPtb5zI4xhgqUerq6vD/fffD5/Ph0DzbsjNX+W2olvDip2eG5stxJoncMqlrRKb4KmLdEOZU5DceDx6W3kMH0UJyAyxCVy93IoH9MjwmqkNVVgLr+n+vuXrfFerbVitmKb5m2qpjTT7z63gaqXqmm4ip1I519XKcGFju7EwhrWuRSQSwcknn4wbb7zRfgeIugEGWOrxjj/+eNxxxx0AAP/h9UC0PrcVS2mSp3RB1mq7xZzgKUUbToeuGesnPx4bs3iWbCXW7n5miE2Q16HEJfTa6fHhNen9UrIzDecqqf+2nt+k56FgQ4ZzYafqmvR43Ki6JgTXAlRdE4gYTgrsQENDA4YOHYq77roLPp/PfieIugEGWCIAF1xwAS699FLtl/AqIHYg95WLNMlTF/k6N9ZC1TOBGxM8leCQYjcVPRQzxCbIS4gt9nNsUlKV5hKpvNqm/13L50zDuTB9GFfQIcOZ2nAyZFifyKkQ57rmqNCTNCUQKqYd04S1a9eiqqoKDz74ICorK+13hKibYIAlirv11ltxyimnAFCB8DJAac595SJM8pSWOcg6ORgxtWE7pJiH8Nq9zl+8HddCrMMDIrfOiy16eKWUXA2xJfQcu/K43Kq+Fju8SrL3znfN1IZbFVOnbSiq86qrqpbMua6FmqQpLSGAttX47LPPEAwG8dBDD2HIkCH2O0PUjTDAEsX5/X7ce++9GD9+PCCiQPsSQG231ogeZFXn14NzxK1KbLwtVw6QXJqZ08lBtPEYSuBcNdeGLjpVKv2gnqHY4RWwdQpByZJk56MgZNnx8wI3hrT6fK5UXd343+dG1dXXodgLrrrwRkiRHZAkCXfffTcmTJhgvzNE3QwDLJFJeXk5HnroIQwdOhQQYaBtCSByvx6cmSRE8YMs4N6QYjj4hN483M6NvjitBLlxji66SRXVhepPd9KdhkSbufK4nIYcwJ0qrpPXbDy8dov3rv43zEmgl2Xn/yN8PucjDkrknE5JCEgO3yu+DgW+DsXR8yIf3gYpvAGAdsm/6dOnO+oTUXfDAEuUpKamBg8//DD69OkDiBagdalWkbVK1SoFkiiREOvG5XbgQmBhiDU4rsK6VdUm8gDHIbybVV4dczO8Om3DDQ7/zzkNrgA6g6uj8LoDUP8PAHDVVVfhkksucdwvou6GRz9EKQwYMAAPP/wwqqurAXEIaF0KKWKvEquH2G5RjTWFWEdB1o2JTyTJGHJmmxsTTcHZeWxFHUrM6muC7lp91Xm5Ctul71ZfuynCqyersG787YxPkOTo/4HP5zy86m24wWFwLYWqq79Vga95F2T8H4QQuPjii3HzzTc76hdRd8UAS5TG0UcfjUceeUSb8U8cBDqWw9cegRy1cQBnqsYWPci6NbkTCliNVUX6g28L1diUbbh17VrYPyC2fB1KbWO2tkWpdffwqvPi43TUZ6GWdOXVlevPwsI+0oNrir/dObdRSkOGHfw/cz242gyv/lYF/lYFiOyFJL6EoiiYM2cOfvKTn3S7DwmJ3MIjIKIMxowZg4cffhihUAgCB6DGVkCOROEPK46DbElUY50GWRSwGpup8uNmNdahog4ptoLVV7KrgFXYjKEq22u4hIOrZdn+NmX725FL1TXb81pKVdduMFxYD65yVAUiX0MOrIaiKDjrrLPw85//HLKb11wm6mb47iDK4phjjsFvfvMblJeXQ2A/FHUlEI3BF1XThlglKEMty3A5gVKpxgL5r8aqAlBzuIROKZwb6+KQYrtKZnbiHsSLVUknSmYocQZCZBh1kVMDufWv5IcRuzVk2OkHljlWXUUslrkNN3hkuHC0Jph2mR5c5agKVXwNOfAFotEopk+fjrlz58JXIpNaEZUqBliiHBx33HF46KGHOkMslkMoWohNVY0VsgThz/JPtrsNK0aGamyuocytc2OdhlgXqrF5PS+2yMOHu1P1taeF15KS5n3a0yZrSvt+L4WJmqxWXVM9dyVQdS3GcGE10LWvCVVXAKqoB3yd4fWee+6B3+m1dIl6AAZYohydcMIJeOSRR9CrVy8IHISCZRBKBFJMpA2yOUkTZNWAD2qwwP/IvHZubKa+eHxIcV4rsaVedaK8K9UqrOV+Jb+WPRZe0yqViZpK6VxXu6vaeK3HKjurp26e5yqbRm6pYjeErA0bPvvss3HvvfciEAjYap+op2GAJbJgwoQJePTRR1FTUwOBJsSwFEJ0ACpcDbIQACQAviIEjVI6N9Ypjw8pLsXhxKy+dh8l8fhN789iVV5LahhxqQ0ZdrK+h6uualDrez6CKwAoYgcUrIaqqjj//PMxd+5cVl6JLGCAJbJozJgxeOKJJ7TrxKIFMSyBEG3aQlOQFZKU+TzYdBKqsQ4P6Pw+CL/NgwiXqrGO6AdzTg6k4iHW9sGxi0OK7egyQ7Hjg1tnz0tJhB4XdJfHUXQuVWEdPR+y1D0qrw7f20KI0rk8jhtsPg4RChb9sjjR6kDK4CqEgCI2QsVaAMBll12Gn//85zznlcgiBlgiG4YPH44nn3wSAwYMANCGGBZDFU2dd1ABWVEhKaoWRK3SP/FVoR0g2v1n7EY11WF4lHwy4Pc7H7bqcEbGUqgcunJerNMD9RKs6vZIfB40qur8wwTuy86/r07+zsmysyHDkgTJ6RBY/X+W3cehh3i7m48qkKLOqq5yJAY5KrrOjSFUKPg/qNgMALj22mtx++23l8T/JiKvYYAlsmnQoEF45plnMHr0aAARKFgKVXzdeQcVkGIqpKgCOaLYC7J+GSLg0/4pO5qR04Vqrl16CHYahoHO87rs9AEOQ6xLw4kBe9XYhHXcCLEODvq9Xr0smf47DV4uBLeingsbX8/2+9Lh69isWMOInXyoZZAlZ6ds2P27aqZv20kl0cnf5/j/OFv/Z/XNRxVAVaGG7IVwORyDHI5BinW9QoEQMShYCYHdkGUZP/vZz3DjjTcyvBLZxABL5ECfPn3w+OOPY+rUqQAUKFgJRewwlouATwugqr0gKyR0HlgI4awaq7dRTHqItRPgzAdoTj5hd3puLlD068UCcGfIZA8MsSXRb/N+t/sc6Ot5tfrodOhx8uMu8szcdrgRXPXwar8NF4KrK6eLOAuvkmo/vHZWXVVAkqAGrIVwORIPrqoKSVWhVCRePkeIDhw9ZicEGlFWVoYHHngAF110ka2+EpHGe3/xiUpMRUUFHnzwQcyZMwcAoGItFLFBu46hLEHoBynxAOqoImtqx3YYtVqNlSRtCLBbJMlxkAXguGpg+aAvDwfMroTYIg4pLokw6DVuBE6XQ2vBq7Buh1cPSvnet/JeLnbV1c3gam4nYOF/jcOqa0JwtfGaNIJrTAuuRrf85onJDqNP/7XYsGEDampq8Nhjj2HatGm2+ktEnSTBIxAiVwgh8Mc//hEvvPACAEBCP/hwPHwRQA5Hu64Q/8ct/HJnyE1BEoDUEdX+0aa8Q5YDCSGAaAxSNM0F5nM5CFFVIJLiMeRIqCqgpOm/yGEYoFBT3sf485XLwUea7ef8JzBdH12aPCbbjMNZw24RJ3fyyjC4kvh3l+55znX/O10/DVeew1wCUYb3ak7PT6b3icP3YqFm/c74Xs7lfZyp6prLEN4Mz5MUzGH4bIbXilRWln39DO2IUA7rx18nqYKrCJVpo54ybVb/X5ritaj2KstagZUj2v9SKZb69RarLtfaEvsQDK1He3s7Bg0ahP/4j//AkCFDMrZNRLlhBZbIJZIk4frrr8fdd9+NYDAIgQbEsAhqIAyR6nqupopspk+QE4YRp7xDlopqLgG3mAf2Ra7GunK5nzxXY3Oq1LISW/oy7eMiVxUL8hzmu/JapJnCrbTvaBtOhwyXatU1V6aKa7r/mTmF13QV1xyGD8uReMU1TXhVKoLxmYY3Q8EqtLe3Y/LkyXj22WcZXolcxABL5LKzzjoLTz75JPr16wegFVFpCRTfgfQrCFH8YcV6G8ViHlZseVX3zo11pFSGFDvRjUNs0fuX76HDpTCsNlNA7eHDhktioiYnihlcAXfPc7VBjsSM8JqJ6hNQ8AVUbAQAXHrppfiP//gPVFdX29ouEaXGIcREedLY2Ii77roLa9asASDBHz0a/vaBkJBp+FjqYcVZhxGnaceQbRhxqvXNhABiSvphwNkIAaHkeL6mMSzY9KcpzRDirquaJ8dJ2paFvqf8s5jrgZMLQ4qThzJaPvjlcOIuivqvzspBd7p9n0sbLlQQHT9/qYKShdDg6L0HlOQwYkvv3+T3rmxxBvXkIcQWg2uXIcQWXg9SIJB+e7m0E/B3vW55huHCyVINH840XDhZquHD2YYLm8UqYhg2Zi82bdoEn8+Hn/zkJ5ysiShPGGCJ8qijowOPPPII/v73vwMAZKUfgq2jISHLRBUpgqwcUSB1WDwP1RxkozFIVs9jNR905PM82JQrCFshVls1xbmxFsN3lz+NVg9sXQyytqo3DLGGov+bs/raSd73bgTgHLl+LqzFilex33duBljH71s7w4XNAdZqeE2+XrfFbac8/9VCGwnnv1oIrjq1uqJzsxaCq7aChFhNyPjVSnAFgGjFIZTXbEJLSwtqa2tx3333YdKkSbltm4gsY4AlyjMhBObPn48nnngC0WgUklqOYNt4yGpl9pVNQRaSZK0Km9wOYK0Km7xuoQMskFiNtRBgtVWTqrH6MGtLm3d4uROXQqyj4YdOgmw3CbGeqb7qihhgARersDaGaxb7PedWgLX9ntXfr3bCqyzHT8WwOR+AXn21+fx3CbAW2zECrI2ZhfXqq+XgGqdXX60GVwEVseBWxMp2AgCOPfZY3HffffFTiIgoXxhgiQpk3bp1uPvuu7Fv3z5AyAiER8IfrcttZb2SGlMh2R3GK0lATLFehTVzMIzYVoA1VhbaujYOLhOqsXb7nstMyWlXdmeWYkd6cIj1XHjV6fvdjQBskSsB1sE5r8V8v7kRYB194BSvoNp6Dnw+Z/MABAOOznU1AqydNgJ+CJ/WdzvnuarVFY7OcVXj127NNbgCgJA6EClfC9XfBAC4/PLL8cMf/hB+Ny87R0QpMcASFVBTUxMeeOABLF68GADgi/RHIDwy+5BinQrtenN237YxxXoF1kxRgZj99R2FWMVpAHWwbfTgEFvsMOSQZwOsE0WuwgohbK/v6H0GFD3AOg2vjt4vgRwugZOGJElALpfQSbd+IJDbJXxSEQIiVOZoEkNRUW47vAqfD/BZ2++Kbz96DdqFgwcPIhQK4Re/+AXOOOMMW9snIusYYIkKTFVVzJs3D//1X/8FVVW1IcXt4yAruc1SKMVUIBrTPuX2WQwlqtACrN3qiMMACyEg7K6vH9g6DbE2hhIbbSgODo57cIgFihdkHf2L0w+o7T7+Ys6cW6QPHvT9bWd9I7wK1d5rVaiOhtwXNbwifg6qXTarr8bzFPA7q76Wl9tbUX9/lgVtrysCfuv/CwFtRJEkQYRy37aAgmjZFijB3QCAESNG4N/+7d8wdOhQ69snItt4GR2iApNlGd/97nfx+OOPo3///hByGB0VnyMa3A6BHA6ghICkxK9jZzVQyZI2TMvutV99sv1P2Z2yeZmdztVN54bZHWZXrHNRi82FIFaMz0pd26bqsCroJUW6lFJCeLXbRrzvdoJoscOr47+rVidsSr4kT6E/YDL/DwrYCO7m15rd8Grxw0xVbsXgSfVGeL300kvx7LPPMrwSFQErsERF1NzcjN/+9rf44IMPAAByrAaB9rGQRfpPs6Vo52zEQpY6z4/N9Z948nmwVg9cijmM2M0qrM7OxE5FHOLoWJHOhzU2X8ADZcf/3lI9z1b2QbFDr9Xny9xfi5MIpdrXua6fNrxaea3Gq6+dq1qcQMjLQ4ctVl+7bMtp9dXK8OFU70kr1dcU64tyC+vHlC7tiF6Zq8cCAkqgHnLNdnR0dKC2tha//OUvcfLJJ+e+XSJyFQMsUZEJIbBgwQL87ne/Q3t7OyB8CIRHwhftn/KaseYAa7Qhx6uLuYTYdBM55XoAU8xhxPH14eA8XiHSBGAr16rsqUOJAU+F2LwEWCD3feClAJvcVwsBNt1+zmX9jJXXXF+nSeG1c/Uc++/locNAzue+pn0+HJz7ClgYPpzu/ZhrgE2zfs4BVq+6Jq+fIcAKKYxI+Qao/oMAgJNOOgm//OUv0bdv39y2SUR5wQBLVCJ2796N+++/H2vWrAEAyNEjEAyPhiQSL02QKsACFqqxmWYizuWA1WmARQlWYc1yCLKer8ICPSLE5i3A6rLtB68E2DSV5pwDaBrZ1s86bDiX12ia8NrZRJY+lMDQ4XxXXzO2X4jqa7b3YbYAm2X9rAFWUTOeNpMqwAoIKP69KOu3Gy0tLQgGg7j55ptx2WWXQXYw0zMRuYMBlqiExGIxvPrqq3j++ecRjUYB4Y9XY480qrHpAqwuazVWn8gpUwDMdkDj4HI6WidLtAprliXIOqrCAgyxyH+IzXuABTLvBy8E2Ex9zBJic9m/6dbP+ZzXTK/RLOFVWz1D/4sdXpHf6mtO7698Vl9zef8F/OkDeA7rZ53AKU3VNaGNpACrXR7nK6j+/QCAY445Br/85S8xbNiwrP0hosJggCUqQVu3bsWDDz6I9evXAwDkaB8Ew6MgibKsARbIoRqb6/Vg0x0AlcIw4nxWYc3SBFnHVViAIRb5C7Gu/GvrzgE2x8eWMYDmINX6liZsSvf6zCG8djaRog/Fvt4rkLfqa85tOqy+AmkCrJX3Xrrqa45tpK2+6h8w5jKiJh5gtarrPpQfuRvNzc0IBAK4/vrr8e1vf5vXdiUqMQywRCUqFovhlVdewfPPP49YLBY/N3YEfB11kKO5Xc81bZDNNcACqQ9wij2MGChMFdYsxYFQtxhKDBQ9xALuB9mCBVhdqv1Q7AALOOtXigBrdb+mXN/qbMPJr08L4VVbPakP3SG8Al2qr5bbc1p9TTV82Or7LjnAWly/S4C1EFz17Qu/DFVqQ7T8K6j+QwCA0aNHY+7cuRgxYoSl/hBRYTDAEpW4LVu24KGHHuqsxsaqEWw5Gr42C9euSx5WbCXA6pIPjkphGHGhqrDJTAdH3WIoMdDtQmzBAyzQdT+UYoC1GMrNz4ndfaq3YftSOebXpsXw2tmE6XF0h6HDpuqrrfeN29VXO68N8/Bhm6+thACrX17OArVXELHgTshVuxGJRBAMBnHdddex6kpU4hhgiTxAURS8+eab+P3vfx+fqVhCoKUOgeZBkHK8nHNCNVYI6wFWpx/0FHsYcbwNx1VYuyEWAFS1+wwlBrpViC1KgNXp+6LUAqyd/sRDrJP9aazv5Dqvkmw7vGqrx0N0CYRXt4YOO2rDYfUViAdYJ++zsqCz9REPsFarrnFKoBmR2m0QvlYAwIknnoif/exnGDx4sKM+EVH+McASecjXX3+Nxx57DAsXLgQASLEyBJuGw99Rm3MbIn4AJtn4tDqBKoo/jBjQDl4ctGF5KHEyhthOJRRiCzKBkxfIkvPH4sbz6iS8xrkx9NeJkgivAKSgheuepuJG9dXvz/3ar+k4DdGSBOH3Wb+WtxRFtGonlF4NEEKgpqYGt956K2bPnl3Q61QTkX0MsEQetHDhQjz66KNoaGgAAPjCtQg2DYOs5Hg9PkD75DumODs4dRgeS6EKCwBCyT5TZUYMsV05vTamzQNJ1/6ldYcAK9TiPpcuhFag+MFVVxLnvfp8kIodHAFIZWXZ75SJP/vlfzKKKRBl1h6HgEAs9DVCQ/bj8OHDAIDZs2fj1ltvRW1trf2+EFHBMcASeVRbWxuef/55vP7661AUpXNYcctASCKHAxxV1QKsfkBl5+DMaYCFi1VYodoOHY6rsIAWYot4PqxQhTsVIl0JhFjAepDtFgHW/Dqw+zw4bSN5favPZTy86uHT7muz24RXuHDeK0qg+irJkHxy8aqvsfjfaSGyX//VRAk0I1K9FSLQBgAYMWIEfvKTn2DixIn2+kFERcUAS+Rx27Ztw+OPP47ly5cDACQlgGDTMPjCRxjXjk1JD7A6O0HWfB6s3YMit6qw5gBq46DXy1VY80F+Tw+xng+wyc+/1ecg1evHjTasBJak8Kp1wfrroDuF125TfZVkSC5UcC33wxRcdbkEWCFHEKnaASXUCACorKzEjTfeiIsuuoiTNBF5GAMsUTcghMAnn3yCJ554Anv37gUAyB2VCB4eBl+0MvVKyQFWZzXIJs9GbOMgzdUqrJnFA2CvhtjkA/2eHGI9G2DTPedW9n8+28g1OKUIr53dsPBBBMNr1zachtdSqb5aGT6cIrjqMgVYISmIVdTDf+R+tLe3Q5IknHfeebj55ps5XJioG2CAJepGOjo68Morr+Cll15CR0cHAMDXfgSCh4ekPj9WUTpncEyWa5BNNxuxlQOlfFRhzXI8GHZtKHEBQ2y6A/2eGmI9GWAzPde57Ptsr5Vcn79s/cj2HGYIr1oTOX4IwfDatS9Ohw4D3qq+ZgiuAICAH8LX9XUtIKCEGlA1ogn79+8HAIwfPx633347jjnmGLs9JqISwwBL1A19/fXX+MMf/oC///3v2gG9kOBv7Y9g8yBIwjRsKl0V1ixbkM12OZ1cDt7cCLB6XzIdhOdwYOy4Cgu4cz4skDWYZDvQL7kQC+Q1yLr676wQISqXDymy7fdCtQGkr7yZJmty+prsVuEV7pz3WhLVV6AwATZbcI1LVX1VgocQqdphnOc6cOBAfP/738eMGTM4uzBRN8MAS9SNbdq0Cc888wyWLVum3aD6EGweBH9rf+36sbkEWF2mIJs8jDjT+mm4Mow41wpqloPkkhlKDGQMF7kc7PekEOupAJtraEy3z62eK+1GO6lCVJaqa9dupH/uu1t4LZmhw4A71dd8Dh/OMbjqzAFW8bcgWrUTalkTAKCqqgrXXnstLr74YgTdqFwTUclhgCXqAZYuXYqnn34aW7ZsAaBN9BRoHgR/Sx9IMYt/AiSpawDJVoVNXj+VQlVhk6U4aC6pocRAysdj5WDf1RCrNehsfRf7Yw4Inhg+7EbwtDNbdXI7dtswP3cWw2tnM4nPf6kEV123Gzpc6tXXmPUPDEV5EKq/DdHKXVDKDwAA/H4/LrnkElxzzTWorq523lciKlkMsEQ9hKIoWLBgAV544QXs27cPACDFyhBoqoO/uXfmGYuTJVdjrQTY5DZMXKnC6v2xeoCedBDt2lDiPJwPa+eAvyeE2JIOsE6uh6rvazfacNqOXoGzGV61rpg+dGB4zdxOqQwddqP6CiQGWItVV51aHkOkZg/Uiv0QQkCSJMyaNQvXX389Bg4c6LyPRFTyGGCJephIJIK33noLf/rTn3DggPbJtRQtQ/DgQPjaau0FWUAbjmwnfJrbcKsK66SCajqgLsUQ6+SAv+RCLOBqkHWN26HKSWAEtP3sRhsu98Xpa5HhNUs7pTB0GHCv+ur3Jb63rAZXXwTRmr0QvQ9q1z4HMH36dNx444046qijnPePiDyDAZaohwqHw3jjjTcwb948NDVp5w5JkXIEmwbA12qxIgs4C42AFmSF0CY/cnqQDdirwiZTRclN6uT0oL8kQyzgTpBVhTvtKIo7j8uN17FLhCpcee5LLXS6paQmbQoE3AnBblRfEX9MTsO0ogCBgK2/paq/A9GavUDvJsTiH3BOmTIFN910E8aOHeusX0TkSQywRD1ca2sr/vKXv+DVV19FS0sLAK0iGzg0AP7WI3IPsoqiDQFG7tfsTEUI0Tkc2cnBlxBA1FTNtXuAqrpTFRaK4tr5sCVVhdUadba+UHO7TEsm5n3itB09eLrxuBxyI3jqrxdX2tGfK2cNId4h5204bcdoonSqr66c9ypLgBthGoBUVmZ/5fiHmkIISAFrVVzVH0a0di9ETZNRcZ00aRKuv/56TJw40X6fiMjzGGCJCADQ3NyMv/71r3jttddw+PBhAIAUDSLQNAD+liO0WYsziVdghaIaAcLuwZxQVEA1VXPttKMP202uCls9UFWFO5M6ofghNi/hNXED9tZLDjR2+pkqXDlpx8zp47LJafBMfo04bsdp8Ey1P6y2lW6fOgixJRNeZdl5O/pj8fmKW301BVcAkOTcz6FVA+2I1O6FWnnIWH/KlCm45pprcNxxx1nvCxF1OwywRJSgra0Nb775Jl599VUcPHgQACDFAggcPhL+5r6QRIaDEEWBMF+Wx2aQTajCmlk9IEsXYpP6l1U3CbF5D7DaRqzdP12osdLX5ICV3A+rbbkVkmwGWKfBM9PrwlZbbgR6N/Zppv1pM8B2m/BqfhwuhVfARvU1Kbga7eRQfVWCrYjW7IXSq8m4bdq0abj66qtxzDHHWOsHEXVrDLBElFI4HMbf/vY3vPzyy2hsbNRuVGUEmvvCf/hIyEqKYW7JAVZnI8h2qcImy7Wt5KHEqeRyEOvxEFuQ8Nq5sdzvmy3Y5PjcuNJOtraS28zGYoBN91xaee6yvR5ybatL1bVrQzn3yZX9mcu+tBhiPR9e0/XfraHDVqqvaYKr0VaaACsgoISaEK35Gmp5/BQWScLpp5+Oq6++GqNGjbLecSLq9hhgiSijjo4O/O///i9eeeUV7NixQ7tRSPC39oa/6Uj4ohWddzYPI07FdMCV7WAtbRU2WbaDvmxV2GSZDmpdOh8WcDfEat/cq7q5JlugyDWUZOt/ttCZazU2l/Caqs10cmzLjdDp5gcZKauuXRvKvjG39qWVDwJyDLElE14BQJatTf6Uqe+FrL6a/qZmOpRMNXxYSCpilfsRrf4aItABQLuO68yZM3HVVVdh+PDhtvtNRN0fAywR5URVVSxevBgvv/wyvvjiC+N2X3sVAk39IYertAmf0lVhk+VQlc1ahU2Wri2rIdbUvwQuVmEBF0MskLYaW7Tw2tmB9MusBpx0jyXX4OlWO6naTCWHttwInlaGkufUjhvB0639aGcYdoZ+ufZ+cDG85tRWLv12M7xmqr5mqbZ2actUfRVyFNHqBkSrGgGf9mFgZWUlLrroIlxyySXo16+fs44TUY/AAEtElq1duxavvvoq/vnPf0LVZx6OlCNwuB/8Lb0hxZD7ZWMyBNmcq7DJUh3E5TKUOB3zwaPHQmzRA6zWia632Q0myY/HSehK1ZbdiZcsPkY3zl+2Oxt12rZKKXQ6mQArTb88GV6t9NmlocNAmuqrxeAKdFZflWAbYlUNkPs0IxKJAAAGDBiAK664AnPmzEFFRUWWloiIOjHAEpFte/bswWuvvYa3334b4XBYu1GV4T98BPwHekOOWpgAJM3wYstV2GR6W3aqsKnIkmdCbEmEVzNzsHAaFPXHZjd0pgqyTgJsqnZTtOVG6HTzWsCWq65dG+v82a1958b1c5NCrKfCq52+5qv6muMw4VQEVKi1rYhWNUAtbzVuHzt2LK688kqcdtpp8LsYuomo52CAJSLHmpub8e677+KNN97A7t27jdvl1koEDh4BubUq9+vJAglVWdtV2HTcCLFxpRxiS5ZbIcWt4ORm5S+5XVNbboROp22kbKuUQqfb4n3zRHh10kcXwysQr77aqLbqVH8EsZoDiFUfBPyxeBd9OP3003HJJZdgwoQJ7uxHIuqxGGCJyDWqqmL58uX461//ikWLFnVeAzASgP/QEfAf7g1JsTFZiaJoFVRXOule6ATcDbFQ1dyHXmdTioGilMXDjlAUVyvXboVO1/WE14ckl3Z4datvblUxhQBkHySfbKPaKqCGWhGr3Q/UtEKJ/03s27cvLrzwQpx//vno27evO/0koh6PAZaI8mLPnj1488038fbbb6O5uVm7UUjwtVTBf6g35LZKa1VZoboXYt2sdqKEQyxQkkFFqMK1YOFmW3p7gDtVu5ILr/l4LQjhavXPFaVWeZVNVX6fFhBd47T6av6bKvssh2rhiyJWfRCx6oMQwYhx+6RJk/DNb34Tp556KocJE5HrGGCJKK/C4TA++OADzJ8/H+vXrzdul6IB+Jpq4W/qDTmW4pqyyYQKmIOd04NTF0OsqwEW6NYh1u1JpsztudmWG22WTIDNV3A1K5UQ62bVNT5pmK3wKqeZSCqY+nqotjgJr/rzp79GZSnnSq6AgNKrGUr1AaCmzai2hkIhzJ49G9/85jdx1FFH2esXEVEOGGCJqGA2b96Mt956C++9956pKgvIbZXwH+oNX0sVJGS5NEdysLN7sFrKQ4mBbhli0wU6t0Oi3fbcvpZu0QNsvp7zdIcNxQ6xxQ6vaUKrwe3qq9XKpvl5S35t+rpeqzWZGugwqq36ua0AcOyxx+K8887DGWecwdmEiaggGGCJqOA6OjqwcOFCvPXWW1i5cmXngpgP/uYa+A7XQg6Hug4xThVgzawevJbyUGKg24XYbIHOavgodHtW2yxqgC1E1TVZMQNsscJrttCqK9bQ4UyhVZeh+ipkBUplE2LVB6GG2ozbe/fujdmzZ2POnDkYPny4hY4TETnHAEtERbVnzx68/fbbePfdd9HY2GjcLkWC8B+uhe9wTeLleLKFWF2uB7M9LcQCRQmyuYY5twNiPgNntraLEmALXXVNVugQ6/b5rrmE11xDq67Q4TWX0JrQXmL1VUgqlIpmKFWHoPRqBmStDVmWMXXqVJx33nk45ZRTeG4rERUNAywRlYRYLIYVK1bgvffew8KFCzuvKwtAbg/Bd7gW/uYaSDE5twBrlu3g1gMhFoCnq7Fuh0OrbbrdXi5tFzTAFju46goZYPNQdQWQ5tqsNgNoocKr1dCqi1dfBQTU8jYo1YcQq2wCfJ1/v4YPH45Zs2Zh9uzZ6Nevn4POExG5gwGWiEpOW1sbFi5ciPfeew8rVqyAGg9wEICvtQq+w9XwNVVAUjOfs5VSugPeUg+xgGeHFDsJcm6Hw0yBx41rtbrZXk5KJbiaFSLE5nvIsN3Aapbv8Go3tOqrQ0BURBGr0aqtIhA1lvXt2xdnnXUWzj77bIwcOZLXbSWiksIAS0QlrbGxER988AHee+89bNy4sXOBKsHX0gu+w1XwNVc6D7MuT+oEeCTEAnkNsm6FOLfDYT7Dpt52XgNsKQZXs3wFnnwOGXYjtOrcDq+Adp6qG6G1vAOx6mYo1c0QZZ2XvunVqxdOP/10nH322Zg4cSJ8WSZ1IiIqFgZYIvKMrVu34v3338dHH32EnTt3di5wI8wCWihwOXQIRXEvFOg8FGLdDnGSLHkvbLoh39Vyt1+jeQiwktuBSg+vbrfrZnjVX5e++DVaHYXWw/HQ2llpDQaDmDJlCs4++2yccsopKCsry9ASEVFpYIAlIs8RQmDLli348MMP8dFHH2HHjh2dC81htqUXJMXqpSa8E2K1tks7yJZ8MNQJ1ajulRQGV/eGC5ufX/1811IMr8nvGVmy/NrUzmkNQ6mJV1qDiaF16tSpOOOMM3DyySejV69ezvpLRFRgDLBE5GkZw6wA5LYQfM2V8DVXQY4Ec2zUIyEW8Ew1tuSDrPkxl0KQZXDVmnUSMNM8j5JPdne4sM5JeM10iZscX49CUqH2aoNS1QKlqgUi0Hmt1rKyMpx88smYMWMGvvGNb/B6rUTkaQywRNRt6GH2o48+wieffILNmzcnLJc6gvAdroSvuRJye4rrzJq5fe4qPBZigZ4TZNM9zkIH2UJMquWR4Gq76prlOSuZ8Jrr+yBLgBe+mBFYlcpW45I3ABAKhfCNb3wDZ5xxBqZOnYpQKJR7/4iIShgDLBF1W/X19fjss8/w6aefYtWqVVDMoTTmi1dme8HX2qvrebN5qMICHgyxQPcPsrk8vnyGWQZXU7sWgqvV5yQf57sCuYdXq6/5FNVXAQFR1gGlqhVKVTPUUBjmz+GOPPJITJs2DdOmTcPEiRMRDOY46oSIyEMYYImoR2hpacGSJUvw6aefYvHixWhpaelcqA81bukFuaUX5HC5Vp31YIjV2vdGNVZrtgT+BVl5bG4F2UJdh9crwRU5DBe2u+/zdb4rkDm8Onltm8Kr8ClQerVCqWyFWtmaMDQYAMaOHYtp06bhlFNO4SVviKhHYIAloh4nFovhiy++wKeffoqlS5cmnjcLaNXZll7aV3MIUtT9A18hhBY4WY2NN1vEf0V2H5OdQMXgmqLtNFVXNz4syGPVFUBieHXpNSxkQK3oMAJrcpW1rKwMkyZNMkJrv379XNkuEZFXMMASUY9XX1+PpUuXYunSpVixYgXa2toSlkvtZfA1V8DXGoLcGoKkujec1JPVWKD7BFk3Hke2oFWo0Ap4N7i6PUS7EFVXtwIrBERZFEqvNqhV7VAq2wBf4mvmqKOOwtSpUzFlyhRMmDCBl7shoh6NAZaIyCQWi+H//u//sHTpUixZsgQbN25MvIMA5LZyyC0h+ForILeWQxLODr7zFmKB/FZjAe8HWbf7bw5iXq22AoUJrnk6rzhvEzUBWnh1uG8EBEQwCrWyHUqvdqiVbRCBxEnjqqqqMHnyZEydOhUnnXQSq6xERCYMsEREGezfvx8rVqzAypUrsXLlSuzduzfxDqoEua0cvpYQ5JYKyO1llgNtXocTA/mvxgLenOipkJXRfPBYcDWqofmaEEuWtHCZr/Aq2R+OrAb0wNoGtbIdIph4HmsgEMD48eMxadIkTJ06FWPGjIEvH9VjIqJugAGWiMiCPXv2YNWqVVi1ahVWrlyJxsbGxDuoEuT2MsitIfhayyG3hSAp2Q9E8x5iEa/0eiQUFqQCywCrMYfWPFSQ8x5ckeeqK2ApvAoIiPIIlIp2qL3CUHt1Daw+nw/HHHMMJk2ahEmTJuHYY4/lsGAiohwxwBIR2SSEwK5du4zq7Oeff46DBw92uZ8UDkJuLdfOoW0LQYr4U16DthAhFqoa305pB1lWX3Pk5LUiZTn/1Ok+yvNQYcA0iVIRw6uQVKgVWlBVeoWhVoS7nMPq8/kwZswYI7BOmDCB12UlIrKJAZaIyCV6oF29erXx1WWGYwCI+uBrK9fOpW0r14Ydx69Da4RY7Zf8dbaEgyyrrxZYfY2kq7ambd/GfupGwVXbVmd4Nc5frQhDreiAWtEONdSB5M+jQqEQxo8fj2OPPRYTJkzA+PHjUVFRkb++EhH1IAywRER5dOjQoYRAu2HDBsRiicMJIQCpIwi5rQxyuxZqpfYgJEXkN8SiQMOKgZyDEMOrDdleI1ZDa5f2c9xfBQiuQAGGCwNG1VX1x+JhNQw1pIXW5OoqAPTr1w8TJkwwvkaMGAG/35/fPhIR9VAMsEREBdTR0YH169dj7dq1WL9+PdatW9d1YigAUCVI7fFQ2xaE3BaEFA44nvE4pUJVY4GMYcizMw8XW/K/8eSJmNwIlJn2WSGDK5CX8CoggIACNRSBWhGB6BWBWhHuMjswAASDQYwaNQpjx47F+PHjMWHCBPTv39/1PhERUWoMsERERXbw4EEjzK5btw7r169HU1NT1zsKQAoHtDDbHg+27cGcJonKSSGHFUuyEYoKeu3X7hZe08lHmDTvu3j7hQiubs8urE2yFIUaikBURKCGOqCGIkCg62vD5/Nh+PDhGDduHMaOHYuxY8eyukpEVGQMsEREJUYIgfr6eiPMbtq0CZs2bUodagFIER+ktjLI4YBWtQ0HnFVri1CRLWiINW23W8l3kEQ8sBZoW06Dq4AA/ArUUBSiPKJVV0MRiFAUkLu+3mRZxtChQzFy5EiMHTsW48aNw6hRo1BeXu70kRARkYsYYImIPEAIgYaGBmzatAkbN240vu/ZsyfNCoDUoQVZuT2gzYQcDkIK+3MPtkUaWlzwMJu0fU8pZGgt1PYsDhU2hv+Wx4NqeRQipH2HP/XzGgqFMHLkSIwcORKjRo3CyJEjcdRRR/FSNkREHsAAS0TkYS0tLdi8eTM2bdqELVu2YNu2bdi6dStaWlpSr2AOth1+088BIOpLeXmfggZZgGE2k0JUPlH40Aoga8VVSCpEeQyiLAq1LApRFtWGAmcIqpIkYeDAgRg+fDiOPvpoI7DW1dVBzvdEUERElBcMsERE3YwQAvv37zfC7LZt27IHW0CbOCocgNThhxwPtlJHAHLEr4VbVRQ2yALFD7Mp+lFw3Tm0AgnBVUgqRJkppJoCK4JdJ1TS+Xw+DBo0CMOGDcPw4cMxfPhwHHXUURgyZAirqkRE3QwDLBFRD2EOtrt27cLOnTuN7/X19VCU9AEBKiBF/NpXhx9Shw9S2Bf/2Q9E5dTVW1cfgJr0azcMtAUMjgmBtUDbFrIKEVS0kFquAGUKRLkCNRiDCMaAFLP+mlVXV2Pw4MHG15AhQzB8+HAMGTIEwWAw7/0nIqLiY4AlIiLEYjHU19cnBFv9q6GhIXO4BbTqbYcPUsQHRLTvUjT+PeKDFMlDyC2lQNvZCWv370aB1QinQQUIKhABxfhdD62pZvpNVllZmRBSzV/V1dWu9pmIiLyHAZaIiDKKxWJoaGjA3r17sXfvXtTX16O+vt74ubGxEaqaQ3AT0MKtHmyjsjY0OSprt8V8WsiN+gBFsh52Sy3QprjsTCG5EViFpE2QJPyqdk3UgArhVyAC8d9NARW+3PZ3r169UFdXhwEDBnT5qqurQ2VlpTakmIiIKAUGWCIiciQajaKhocEIsw0NDV2+HzhwILeQq1MBxDrDLWIyJEXWvsck43cpJicsg2oKvimqoUUPtXnSJaxqNxo/CkkAPhXCr5q+C+27X4Xwxb8nBVX4re2viooK9O3bF/369UPfvn2NryOPPNIIqVVVVU4fLhER9WAMsERElHexWAwHDx40Qm1jYyMOHTqEAwcO4ODBgzh06JDxPeNEU9moAJR4kFVkrZKrStptigRJkeLLpM77qRKEoq0rCW05VAkQknab6WcIPRwDgKR9j/8XzVYxFjD9u5XiX/ptMgBJALLQNiFrP2u3ASL+s+SL/ywLLYDKWjCFD1oINW6PB1Sfvtz+v3qfz4fa2lr07t0btbW1xs+9e/c2gqr+vaKiwvZ2iIiIcsEAS0REJSUSiSQE2gMHDqC5uTnh6/Dhw2hpaUn4Pet5uoUgkBBqO4Oq6XsRVVRUoKqqyviqrKxM+K4HVHNI5ZBeIiIqJQywRETkeUIItLe3o7m5GW1tbWhvbze+61/pbo9Go4hGo4hEIsaX/rv59nwHZFmWEQgEEAgEEAwGjZ+Tfw8Gg6ioqEAoFEr4Ki8vN37Wl5eXlxvhtFevXvD7/Xl9DERERPnGAEtERJQDVVUtfUmSdn1TWZaNL/138+2SJMHn8zFcEhER5YABloiIiIiIiDyh8PP6ExEREREREdnAAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7gL3YHiIiKRQiBcDhc7G4QEVlSXl4OSZKK3Q0ioqJggCWiHiscDmP27NnF7gYRkSULFixAKBQqdjeIiIqCQ4iJiIiIiIjIE1iBJSICEFx6JKBIkGQJkGTjO2QJiA/Vk2RZ+1mKf5clSFL8c0D9fvHb9XW63Ka3aV6GzuVCX082Lddv1z9yTL5NkiD00YRS/HdZ+6XzdgmQYKwj4r8D0O6jtyHpj6WzveTl5jaFfh85xTLz/ROWmW9L7keaddIsB2D0Id22Eu6fph9d1kGK9busIxL6kdyesRzJy0XnfdB5387HKIxlUpf7C2MdKX5753e9PQFJEgkvL7197ansXC5D+xnG7YAcX64t05o0bjN919rr/N38BWhta7+jcxk6tyVLqnGbdl8VAOCTOn+XpcRlsiRMywV8UI3t+STVtJ4KX3xb+s/ad9VYT29Phoivq8KXsEy7v08SkKDCF/9df2za79DWQ+f2pHgbPqOP8f5B2xc+CMhA/Gcp3h7gkyTIkOBD/LukL5MhQUI04sOl3xsAIqKejgGWiAjQwquqHShC6vxuTgYS9ODamdYkPVUmJKH48vhaiclG7pquJNO6qdJTxtuRZjmM0Jrwc/J3Y3XJ1GxyIE5entwm4kE6zbJ03U3Zj1zWyWFX2W3TtPuyh16XA2zy8qRlyQG28/bk9kSXZXpITb1cmG433yZStCkS1tEDbPJX2mVGqDQFW1PQNZahc7ke/PRlWoBVjQCoL9MCYPy7JMEHfR3tZ+27lBActbYAnwTje+d62s8plxm/6wFYmAKz9nO2AJuqPRmIh2Ltd22Zfn/Tc0hE1INxCDERERERERF5AgMsEREREREReQIDLBEREREREXkCAywRERERERF5AgMsEREREREReQIDLBEREREREXkCAywRERERERF5Aq8DS0QEAD4BAVW7+KOEpO/GBRmTrqOafJ1V/Ut0rpNwe5plpguRijQXN011e+dt+tU1kfi7MN+u3VdAAgQS2hPmdeLrdZXmNmFalHAtUsnc/QzXX5XS3J60Trrl2ZZlajPT7fq3jOukup5riuVd+pjmOrDoup7U5f6d95PM13g1vUxhXHfV/PJKcx1YOLsOrIivL5K+9GUifi1cY1m8/6okAEnt3A7ivyP+eJC4XMSXifi29baBzu2Zb5dN29J/Tv6u9UN7W5u/q/GHLMd/VuMv0dTXgZUgQ7u+rL5Mit/uQ+e1ZAEk/C4bP0um9jrbkiHBJ+nLJEiQEI2keg8SEfU8DLBERAAiU74udhfyQyR9tyEp1xEZ9PipZrtjydITPgekERF5Bf9iExERERERkSdIQggHn8sTEXmXEALhcLiofQiHw7jooosAAPPnz0d5eXlR+9PdcX8XFvd3fpSXl0OSOCaCiHomDiEmoh5LkiSEQqFid8NQXl5eUv3p7ri/C4v7m4iI3MAhxEREREREROQJDLBERERERETkCQywRERERERE5AkMsEREREREROQJnIWYiIiIiIiIPIEVWCIiIiIiIvIEBlgiIiIiIiLyBAZYIiIiIiIi8gQGWCIiIiIiIvIEBlgiIiIiIiLyBAZYIiIiIiIi8gQGWCIiIiIiIvIEBlgiIiIiIiLyBH+xO0BE5HVNTU349NNPsWLFCnz11VfYt28fFEVBbW0txowZg3POOQfTp0+31fa7776LBx98MOv9fvvb32Ly5Mm2tuE1hdgnu3fvxrx587Bs2TIcOHAAoVAIo0ePxgUXXIAZM2bYatOrrLx2J02ahMcee8xS+88//zz++Mc/Zr3fvHnzMHjwYEttExFR98MAS0Tk0MUXXwxFUYzfg8Eg/H4/Ghoa0NDQgE8++QRTp07Fr371K5SXl9vahizLqK2tTbs8EAjYatfL8rVPFi1ahHvuuQfhcBgA0KtXLzQ3N2PZsmVYtmwZ5syZgzvvvBOSJNlq32uOOOKIjMtjsRgOHz4MABg7dqzt7fj9flRXV6dd7vP5bLdNRETdBwMsEZFDiqJg3LhxOPfcczFlyhQMHDgQAFBfX48//elPePvtt7FkyRI8/PDD+Nd//Vdb2zjyyCPx3//932522/PysU/27NmDe++9F+FwGBMmTMAvfvELDBkyBG1tbXjllVfwxz/+Ee+88w6GDh2K73znO65uu1S9+eabGZe/8sorePrppwEA5513nu3tHHvssXj88cdtr09ERD0Dz4ElInLo0UcfxbPPPouLL77YCK8AUFdXhzvvvBMXXnghAOC9997Dvn37itVNysHzzz+P9vZ2HHHEEXjooYcwZMgQAEBFRQVuuOEGXHDBBQCAF198Ec3NzcXsasl4++23AQDHHXcchg4dWuTeEBFRd8cAS0Tk0AknnJBxubkqtWHDhnx3h2xqb2/HP//5TwDasPCqqqou9/nud78LAGhtbcXChQsL2r9StHr1amzfvh2As+orERFRrhhgiYjyLBgMGj+rqlrEnlAmq1evRkdHBwBg6tSpKe9TV1eHYcOGAQCWLVtWsL6VKr36WllZiTPOOKPIvSEiop6A58ASEeXZ559/bvw8YsQIW20cOnQIN910E3bu3AlFUdCnTx8ce+yxOP/88zFp0iSXeuotbu+TLVu2GD9nep5GjBiB7du3Y+vWrbb63V20tbXhww8/BADMnDnT9gRluq1bt+Laa6/Fnj17IMsy+vbti+OPPx4XX3wxRo8e7UaXiYioG2AFlogoj5qbm/HSSy8BcHaOYDgcxldffQW/3w8hBOrr6/G///u/+PGPf4yHHnoIsVjMzW57gtv7pLGxEQBQVVWFsrKytPfr27cvAGD//v32O98N/OMf/0B7ezsA4Pzzz3fcXlNTE7Zv346ysjJEIhHs3LkTb731Fr73ve/hueeec9w+ERF1D6zAEhHliaqqeOCBB7B//34Eg0H89Kc/tdxGnz59cN111+H000/HkCFDEAwGoSgK1q5dixdeeAHLly/HO++8g/LycvzkJz9x/0GUoHztEz2MZask6svb2tpsP4bu4K233gIAjBw5EmPGjLHdzuDBg/HDH/4Qp556Kurq6uD3+xGNRrFq1So899xz2LBhA1588UVUVVXh29/+tlvdJyIij2IFlogoTx5//HF89tlnAICf/vSnOProoy23MWXKFNxwww04+uijjXNpfT4fJkyYgIcffhinnnoqAO1SJzt37nSv8yWM+6T4tm7dirVr1wJwPnnTrFmzcOWVV2LIkCHw+7XP1QOBAKZMmYInn3zSuLbsCy+8gJaWFmcdJyIiz2OAJSLKg6eeegp//etfAQC33XZbXmZolWUZt9xyCwCt2quH5Z7MyT4JhUIAtKHJmejLKyoqbPbS+/TqazAYxKxZs/K2nbKyMtx8880AtAr5ihUr8rYtIiLyBgZYIiKXPfPMM3j11VcBALfccguuuOKKvG1r8ODBqKmpAQDs2bMnb9vxErv7RD+3tbm52ZiNOBX9XNk+ffo46KV3RaNRvPfeewCA008/PeXlhtw0fvx442e+xomIiAGWiMhFTz/9NF5++WUAwA9/+EOes+ch5pmHzTMSJ9OXHXXUUXnvUyn65JNP0NTUBMCdyZuIiIisYIAlInLJU089hVdeeQWAFl6vvPLKvG9z9+7dRpioq6vL+/a8wO4+mTBhgjH78NKlS1PeZ+/evdi+fTsA4KSTTnLYU2/Shw8PGjQIEydOzPv29HNtAb7GiYiIAZaIyBVPPfVUwrBhN8KrECLr8qeffhqAdu7nKaec4nibpS6f+yQUCuH0008HoE0AlWrCoHnz5gHQzn897bTTcm67u9i3b59xHup5550HSZIctZft+YxEIsYldEKhEE488URH2yMiIu9jgCUicsh8zuttt91madjwu+++i+nTp2P69OlYtWpVwrK9e/fi5ptvxvz587Fnzx7jYF9VVaxZswY///nPsXDhQgDAhRdeaPsas17idJ/8+te/NvZ3KjfccANCoRD279+PX/ziF8Ysxu3t7fjjH/+I+fPnAwCuueaavJ/7WYrefvttqKoKn8+Hc845J6d1nn/+eWOf19fXJyz74osv8NOf/hQLFizA119/bdwei8WwYsUK3HbbbUYF9tprr+2R+5yIiBLxOrBERA7s27fPOOdVlmXMmzfPqNKl8q1vfctSdXb9+vVYv349AG3G11AohPb2dkQiEeM+c+bMwY9+9CObj8B78rlPBg4ciHvvvRf33HMPvvzyS1x11VWorKxEe3s7FEUx2i7E8PBSo6oq3n33XQDAN77xDWPSKyeEEFixYoVR1S0rK0N5eTlaW1sRi8UAaO+rq666Ct/5znccb4+IiLyPAZaIyAFVVRN+PnDgQMb7t7e359z2EUccgR//+MdYs2YNNm3ahEOHDqG5uRnBYBBDhw7Fsccei/POOw8TJkyw3X+vKcQ+Ofnkk/HCCy9g3rx5WLZsGQ4cOIDKykqMGjUKF154IWbMmOHeA/KQ5cuXY9++fQDcm7xpxIgRuOWWW7BmzRps2bIFTU1NaGlpQXl5OYYPH47jjjsOF1xwga1rKBMRUfckiWwnoBARERERERGVAJ4DS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESewABLREREREREnsAAS0RERERERJ7AAEtERERERESe4C92B4iIiIhyEQ6H8fnnn2PDhg346quv8NVXX2Hfvn0AgOuuuw433HBDkXuYu/r6enzrW9/Ker+rr74a3/ve9wrQIyIib2CAJSIiIk9Yt24d/uVf/qXY3XBdTU0NfD5fymUVFRUF7g0RUWljgCUiIk947LHH8Prrr+P444/HE088UezuUJFUVVXh6KOPxpo1axCNRlFZWYmWlpZid8uR3//+96irqyt2N4iIPIEBloiom2ttbcXGjRuxfv16bNiwARs2bMDu3bshhAAAvPrqq3k7eBZC4LLLLkNDQwOuuuoqfP/737fVzsaNG/Hmm28CAG6++WYXe1hcW7ZswdKlS7F69Wps2bIF+/fvh6IoRkg7+eSTcc4556CysrLYXS0Jxx13HN5++20AwIsvvojnnnsObW1tRe4VEREVEgMsEVE396Mf/QgbN24syrbXr1+PhoYGAMBpp51mu51nnnkGiqJg6tSpmDBhglvdK6of/ehH+Pzzz1MuO3DgAA4cOIBly5bhpZdewty5czFlypTCdrAEmYfZXnbZZXjttddw6NAhS21s2bIFr7/+OlauXInGxkbIsoy6ujpMmzYNl19+OWpra93tNBERuYoBloiom9MrrQBQWVmJUaNGYfv27Thw4EDet71w4UIAQL9+/TBu3DhbbXz55ZdYvnw5AOCqq65yrW/Fpgf7qqoqnHbaaZg4cSIGDhyIsrIy1NfX491338WiRYtw4MABzJ07F4888giOP/74Ive6dIRCIVx66aX4wx/+AACIRqNZ15k3bx5+//vfQ1VVAEB5eTlisRi2bNmCLVu24J133sG///u/Y/To0XntOxER2ccAS0TUzc2ZMwe1tbUYM2YMBg8eDEmS8KMf/aigAXbatGmQJMlWGy+//DIAoK6urlsFuMGDB+Oaa67BzJkzEQwGE5aNGTMGM2bMwJ///Gc8++yziEQieOSRR/CnP/2pSL0tTbNmzTICbLZRBm+99Rb+8z//E6FQCN/97ncxZ84c9OnTB4qiYNOmTXjmmWewcuVK/PKXv8SLL75Y0MmT7r33XuzatQvt7e2orq7G6NGjMXPmTMycORN+Pw/ViIjMeB1YIqJu7rLLLsNZZ52FIUOG2A6RduzcuRPbt28HYH/4cENDAxYtWgQAmD17dkH7n2+/+c1vcO6553YJr2ZXXXUVRo0aBQDYtm0bNm/eXKjueUJdXR0CgQAAYMOGDWnv19bWhqeffhoA8Ktf/QpXX301+vTpA0AbljxmzBg8/PDDGDNmDBoaGvDWW2/lv/Mm69atg6Io8Pv9OHDgABYvXowHHngAt956KxobGwvaFyKiUseP9YiIKC8+/vhjANqw5UmTJtlq4/333zeGe5555pk5rROLxfCPf/wDn3zyCdavX49Dhw5BURTU1tZixIgRmDx5Ms466ywjwOimT58OADjnnHMwd+5c7NixA3/5y1+wbNkyNDY2olevXhg9ejS+853vYOLEicZ6HR0dePfdd7FgwQLs2rUL4XAYAwcOxNlnn43LL78cZWVlth677oQTTjCqizt37sTRRx9tu61t27Zh/vz5+OKLL1BfX49wOIzKykpUVVWhrq4OJ554Ik499VQMHTrUVvuxWAzvvfcePvzwQ2zZsgVNTU2QJAnV1dWora3FuHHjMHnyZEybNs0Inrrk/b9t2za88cYbWL58ORobG9He3o4HHnigy4choVAI0WgUTU1NWL9+PcaOHdulX//85z/R0tKCUaNGpT2X2O/3Y+bMmdiwYQOWLVuGK664wtY+yFUwGMTFF1+MM888E6NHjzYqvjt37sRrr72G+fPnY926dbjzzjvx7LPPshJLRBTHv4ZERJQX+vDhk08+2fbB92effQZAO0902LBhWe+/adMm3H333di1a1eXZQ0NDWhoaMCSJUuwefNmzJ07N207H330EX79618jHA4bt3V0dGDx4sVYsmQJ/t//+3+44IIL0NjYiLlz52L9+vUJ62/duhW///3vsXjxYjzyyCOOQmwsFjN+lmX7A6fmz5+PRx99FIqiJNze1NSEpqYm7Nq1C8uWLcPmzZtx1113WW7/0KFD+NnPfpZyKK++7zdu3Ij/+Z//wbx58zB48OC0bb377rt45JFHEIlEsm7XHIQ/++yzlAF29erVAIDt27fj4osvTttWR0cHAGDv3r0Jt9fX1+Nb3/pW1r6k853vfAc/+MEPEm7r06cP7rjjji73HTJkCO644w4MGjQITz31FDZu3IgFCxbgvPPOs719IqLuhAGWiIhc19jYiHXr1gGwP3w4EolgzZo1AIBx48ZlHT68ceNG3HbbbWhvbwcATJo0CbNmzcKwYcMQCASwf/9+rF271qgMp7N582b84x//QO/evXHzzTcb216xYgVefPFFhMNh/O53v8PEiRNx//33Y9OmTbj44otx6qmnora2Frt378af/vQnbN68GV9++SXmzZuH66+/3tY+AICVK1caPx911FG22tiyZYsRXqurq3HBBRdg4sSJqK2thaIo2L9/PzZs2IDFixfbHqb96KOPGuH1xBNPxKxZs1BXV4devXqhtbUV27dvxxdffGEMCU9nw4YNeP/991FdXY3LL78cEyZMQCAQwLZt2zBgwIAu9zd/OLJy5UrccMMNXe6jD8ONRCI5nfutB9liuvzyy/GXv/wFLO4d6QAAC4VJREFU+/btw8KFCxlgiYjiGGCJiMh1n3zyCYQQCAaDmDp1qq02Nm/ebFQfx4wZk/G+sVgMd999txFef/zjH+PSSy/tcr9TTjkFN910E/bt25e2rY0bN2LUqFF49NFHUVVVZdx+zDHHYPDgwbjnnnsQi8Vw22234fDhw/jNb36DyZMnG/cbPXo0TjrpJFxzzTVobGzEm2++iWuuuSbhEjC5+vjjj7F161YAWogfMmSI5TYA4MMPPzQqr7/73e+M82rNTjvtNNx0001oamqy3H5HR4fxwcBpp52G+++/v0sQnjhxIi666CK0t7dnrCRv3boVgwcPxpNPPokjjjjCuD3dLNbm7Xz11VdQVbVL++Zh6Pfee6+lxwYA/fv3x//8z/9YXk9XXl5ueR1ZljFu3Djs27cP9fX1trdNRNTdMMASEZHr9OHDkydPRigUstWGeRiwOcik8v7772P37t0AtFmXU4VXs/79+2dc/otf/CIhvOpmzJiBfv36oaGhAQcPHsTll1+eEF51lZWVOPfcc/Hiiy/i4MGD2LZtm+VzVxsbG/Hb3/4WgBbSfvjDH1pa30yvOuqXUcqkpqbGcvvNzc3Ghw0TJ07MWMXN5fVwxx13ZH3OUwmHw2hsbMSRRx6ZcLveVqYPLjKRZZnXhyUiKhGchZiIiFzV0tKCVatWAbA/fBgA9u/fb/xcXV2d8b56YAaAK6+80vY2AW2YbrqQJ0lSwrJZs2albcd8vz179ljqQzgcxty5c43gmTxxlFX9+vUDoD03H374oe120qmpqTFmU/7ggw/Q1tZmu61+/fql/FAgV+bXjW7ChAkAtOHJXpnVV1VVYxh+XV1dkXtDRFQ6GGCJiMhVixYtQiwWg8/nw7Rp02y3Yz4PMVU11Oyrr74CoFXacpnsKZNs65v7kmm2XvP9rAS6aDSKf/3XfzUmhjr11FNx00035bx+KrNmzTImkrrnnntw66234s9//jO+/PJLY9i1E4FAAOeccw4AYO3atbjiiivwm9/8Bh988IHl8O5klmUACRNv6WbMmIHKykrEYjE89dRTEEKkXV9VVTQ3NzvqQy4y9QGAcf4roL0GiIhIwyHERETkKr0aeuyxxzoadmk+ZzTbbLSHDh0C0FlpdCLb+Yrm4bGZhsOaz8PUz8HMJhaL4a677sLSpUsBAFOmTMG9995r6/xZs4EDB+Khhx7Cr3/9azQ0NGD16tXGzLw+nw9jx47F9OnTcf7552f9sCCd22+/HZFIBAsWLMDhw4fxt7/9DX/7298AaB8sTJkyBXPmzMlaSc5WbW9ubk6YSTl534bDYRw6dAjBYNC4NE1VVRVuv/12PPjgg/jggw/Q0tKC66+/HmPHjoUsy1BVFTt27MDixYvx1ltv4ZprrslYXXfD7bffjpNOOgmnnHIKjjrqKGMyqt27d+Mvf/kL/vrXvwLQAr3+4QARETHAEhGRiyKRCJYsWQLA2fBhQDtfU3f48GFHbXlBLBbDPffcY1w6aPLkyXjggQeMoblOnXjiiXj55Zfx6aefYsmSJfjyyy+xa9cuKIqCNWvWYM2aNfjzn/+Mu+++O+21UjMpKyvD3LlzcfXVV+Mf//gHVq1ahXXr1qG9vR0HDhzA3//+d/z973/H9OnTcdddd6W9tFC2SwXdeOONXS5zY3bnnXcC6LyerO7cc89FJBLB448/jiVLlmDJkiUIBoMIhUJobW1NuFxRIXz99df4wx/+gD/84Q/w+Xzo1asXotFoQkX8mGOOwf33389rwBIRmfAvIhERuWb58uXGAbjTAGu+ZEq2AFtbW4t9+/Z55vzGZHp41avXJ5xwAh588EFH149NJRgM4owzzsAZZ5wBQKtcr1ixAgsWLMDixYtx+PBh3HXXXZg3bx769OljaxtDhgzBtddei2uvvRaKomDjxo347LPPMH/+fBw8eBAff/wxnnvuOdx2221uPrScXHTRRZgyZQreeOMNLF++HPX19WhpaUFFRQUGDRqE8ePHY9q0aTjhhBPy3pdbbrkFK1aswPr167F//37jNd6/f3+MHj0aZ555JmbMmOG4+k5E1N0wwBIRkWv0ADZq1CjHE8+Yr3m6Y8eOjPcdM2YM9u3bh/3792PHjh0Zz00tNcnhddKkSXjooYdcD6+p1NbWYubMmZg5cyZ++9vf4s0330R7ezs++eQTXHTRRY7b14cnjx07Fueeey6uvfZahMNhvP/++7YD7H//9393ue3KK6/E7t27UVdXh1dffTXj+nV1dbjllltsbdtNM2bMwIwZM4rdDSIiz+EkTkRE5ApVVfHpp58CcGfSmf79+6Nv374AYMzGms706dONn+fNm+d424USi8Vw7733GuF14sSJ+Pd//3db1w11yjxsWD+n2E11dXXGdWztXGs2nUOHDhmXUBo/frxr7RIRUWligCUiIlesXr3aCD7mQOmEHqq2b9+O1tbWtPc788wzjXD0zjvv4PXXX8/Yrt3rgbopFovh3/7t3/Dxxx8DyG94/ec//5k1lOrnLgPAoEGDLLW/Z88eLF++PON96uvrsX37dgDapFJuWbt2rfHzN77xDdfaJSKi0sQhxERE3dyuXbuMGWd1+vVFAeCjjz5KmC04FArZGtqoVxEHDhzo+FIoujPOOAPvvPMOVFXF8uXLcfrpp6e8n9/vx3333Ydbb70V7e3teOyxx/Dxxx9j9uzZGDZsGAKBAPbv34/169fjo48+wpgxYxIm+CmGX/3qV/joo48AaIHxBz/4Aerr6zOu07t3b/Tu3dvytl5//XX86le/woknnogTTzwRw4cPR01NDaLRKPbt24f333/fqJ4PGDDA8uWP9u3bhzvuuAMDBw7EtGnTMG7cOPTv3x9lZWVoamrC2rVr8eabbxqzSV966aWWH0M6y5YtA6Cd33vyySe71i4REZUmBlgiom5u9erVePDBB9Muf+aZZxJ+HzBggKMA6+Y1KydPnox+/fqhoaEBCxYsSBtgAWDkyJF44okncPfdd2PPnj1YtWoVVq1alfK+Y8aMca2Pdn344YfGz7t378YPfvCDrOtcd911uOGGG2xtLxKJYNGiRVi0aFHa+wwaNAgPPvhgxssDZbJnzx689tpraZfLsowrr7wS3/zmN221nywWi+GDDz4AoFX97V4CiIiIvIMBloiIHNu0aZNRPXQ6+7CZz+fDJZdcgmeffRaLFy/GoUOHMl5bdvTo0XjppZewYMECLFy4EBs3bjTOt+zduzeOPvponHTSSTjrrLNc66MX3HPPPVi6dCm++OILbNmyBQcOHDCGFNfU1GDkyJE47bTTMGvWLFuX7TnuuOPw5JNPYvny5Vi7di327duHgwcPorW1FeXl5Rg4cCCOO+44nH/++a5V5wEYrwkAuOyyy1xrl4iISpckhBDF7gQREXnbCy+8gBdeeAG9e/fGG2+8kfVanla0tLTg29/+Ng4fPozvf//7uOqqq1xrm7ztzjvvxKJFi3DiiSfid7/7XbG7Q0REBcBJnIiIyDF9+PApp5ziangFgMrKSiO0vvLKK2hra3O1ffKmtWvXYtGiRZAkCTfffHOxu0NERAXCAEtERI5Eo1GcdtppuO6663DJJZfkZRuXXnopBg8ejKamppTXAaWe57nnngMAzJ49G+PGjStyb4iIqFA4hJiIiDxh3bp1WLRoESorK3HFFVcUuztURC0tLXjttdcghMAll1yS8bxoIiLqXhhgiYiIiIiIyBM4hJiIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDyBAZaIiIiIiIg8gQGWiIiIiIiIPIEBloiIiIiIiDzh/wMqAgWFcVhh2AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5gURfrHv9UzszmQlpyjIp6ioqIoBsyncD9UPDF7BkwY7ox3nunMYlYUA5gAw8EZQFRUlBwEBARBcs5pd9ndme76/THbvT0zHSr07s4u9XmefVh2uqtrOtan37eqCKWUQqFQKBQKhUKhUCgUijRHq+0KKBQKhUKhUCgUCoVCwYISWIVCoVAoFAqFQqFQ1AmUwCoUCoVCoVAoFAqFok6gBFahUCgUCoVCoVAoFHUCJbAKhUKhUCgUCoVCoagTKIFVKBQKhUKhUCgUCkWdQAmsQqFQKBQKhUKhUCjqBEpgFQqFQqFQKBQKhUJRJ1ACq1AoFAqFQqFQKBSKOoESWIVCoVAoFAqFQqFQ1AmUwCoUCoVCoVAoFAqFok6gBFahUCgUCoVCoVAoFHUCJbAKhUKhUCgUCoVCoagTKIFVKBQKhUKhUCgUCkWdIBCBXbNmDQghIITgqquuCqLIg5JTTjnF2o8KhULhxlVXXWXdK9asWVPb1bEYOXKkVa+RI0fWdnUUAVNcXIzWrVuDEILnnnuutqujqCP8+OOP1n3hoYcequ3qKBRpQ31u9z/22GMghKBjx44oKysLvPwai8COHDkSDz300EF18xo/frz1nffs2VPb1VFU8tBDD1k3DJYfVkFYvHgxbr31VhxyyCHIy8tDYWEhDj/8cNx7771Yu3Zt9X4phUJxUPHTTz/h2muvxWGHHYaCggJEIhE0atQIxxxzDG6//Xb8+uuvgW/zsccew8aNG9GsWTMMGTLEcZlffvkFr732Gq655hr06tUL7du3R15eHrKystCiRQucfvrpePLJJ7Flyxbm7W7ZsgX//ve/cfzxx6Nx48bIzMxE69atcdZZZ+Gdd95BLBZjLmv37t0YNmwY+vXrh+bNmyMzMxM5OTlo27Ytzj//fLz99ttMja3Nmzfjiy++wEMPPYQ///nPaNGihfXMaN++PXN9RPj6668xaNAgtGvXDllZWWjatClOPPFEPP/88ygpKfFc1y6TPD/V/Z2qm/PPP9/6Lm+//Tb3+uvWrUMoFAIhBI0aNZJukO/duxevvvoqzjzzTLRt2xZZWVlo3Lgxunfvjr/+9a8YMWIEdu3a5bju7t278b///Q///Oc/cfbZZ6N79+5o2rQpIpEICgsLcdhhh+Gqq67C119/zVWnkpISDBs2DCeeeCKaNm2KrKwstGvXDoMGDcKkSZO4yvr5559x1VVXoUuXLsjLy0NeXh66du2K66+/HrNmzeIqywt7AI3lx8tB7DLJ81OXX9bOmzfP+h7t2rUDpZS7jL/97W9WGU899ZT199tuuw0NGzbE6tWr8cwzzwRZ7Tg0AFavXk0BUAD0yiuvdFymb9++1jIHC1deeaX1nVevXu27/MG4j2qDf//739Z+ZvlhOXbPPPMMjUQirmXk5+fT0aNHV/+XUxwU8N5baop3333Xqte7775b29Wpl5SWltKLL77Y976laRodOnQo1XU9kO1u2LCBZmVlUQB02LBhrss1a9aM6b6al5dH33jjDd/tvvfeezQnJ8ezrJ49e9KVK1f6ljVx4kRaVFTkW7cOHTrQefPmuZbz+eefe67frl0737qIUFZWRi+55BLPbXfq1IkuXLjQtYwffviB6/ln/px66qnC9bZv89///rdwOTJ89tlnVh369OnDvf4jjzxirX/TTTdJ1WXMmDFM18m4ceMc13/99deZj9vJJ59MN2/e7FunX375hXbs2NGzrMGDB9Py8nLPcoqLi33PUUJIYPcmu3+w/Hidf/Y2OM/PlClThOufDu3+ww8/3KrDd999x7VuSUkJzc/PpwBoKBSimzZtSvjcvG7y8/Pp9u3bg6w2DSMA2rdvL2TtikR+/PHH2q7CQcejjz6KHj16eC7TtGlTz8+HDx+Of/zjHwCASCSCyy+/HH379kU0GsWkSZPw6aefYv/+/bj88svRoEEDnH322YHVX3FwMnLkyDr91lchzqWXXorx48cDAEKhEAYNGoTjjjsOTZs2xaZNmzB58mRMmDABhmHgxRdfREZGBp5++mnp7T7xxBMoKytDw4YNceONN3ou26RJExx//PE44ogj0KFDBxQWFqKiogJ//PEHxo8fj/nz56O4uBg33HADwuEwrrnmGsdy3n//fVxxxRXW/88880z0798fRUVFWL9+PUaPHo25c+di/vz5OPPMMzFjxgwUFRU5ljV79mz0798fFRUVAIBOnTrh8ssvR4cOHRCLxbBixQq888472LZtG1avXo1+/fph0aJFaNWqVUpZuq4n/D8SiaBHjx6YP3++536R5corr8TYsWMBAI0bN8b111+Pww8/HDt27MAHH3yA2bNnY+XKlTj77LMxa9YstGnTJqWMHj16YNy4cUzbu/XWW7FhwwYAwNVXXx3cF6kFzj//fDRp0gQ7duzA1KlTsXLlSnTq1Il5/VGjRlm/y+yLl19+GbfddhsAICMjAwMGDECfPn3QrFkzxGIxrFmzBtOmTcPkyZM9y9E0DUcccQR69eqFbt26oXnz5sjIyMCOHTswe/ZsjB07FqWlpfjpp59w6qmnYt68ecjJyXEsa+3atTjnnHOwdetWAMCxxx6Lyy67DE2aNMGiRYvw5ptvYufOnfjwww9BCMH777/vWI6u6xg4cKAVrc3NzcXVV1+N4447DpqmYf78+Xj77bexe/duvPjii6CU4sUXXxTdlSmceuqp1r5145BDDnH97LHHHsOOHTt8tzNt2jQ8++yzAOL3kZNOOomvomnG1VdfjTvvvBNAvG1x+umnM6/72WefYf/+/QCAs88+Gy1atEj4fOjQoXjqqaewf/9+PPvss3jyySeDq3igOuxBOrxlqGnSNUpysGOPwP7www9SZW3atMmKDoTDYfrtt9+mLGOPSrVp04YeOHBAapsKRbqiIrDVy08//WTt34KCAjp//nzH5SZOnEhDoZB1X5J9871z507rPnf99dd7Lrt48WJqGIbnMo8//rj1PRo0aEDLyspSltm2bRvNy8uzlnv99ddTljEMg95+++3WMldffbXrNk877bSE5aLRaMoyJSUltF+/ftZyQ4cOdSxr2rRp9LrrrqPDhw+nc+bMsaJS5nrVEYEdP368VX7btm3p2rVrEz7XdZ1effXV1jIXXnih1PaWLl2acK6VlJQIl5UOEVhKKR06dKhVj3/961/M69mvux49eghv/9tvv7XKOeaYYzzbhfv376e7du1y/Gzjxo10586dnttau3Yt7dy5s7W9J5980nXZAQMGWMtdc801KZHRNWvW0LZt21rLfPnll47lvPbaa9YyrVu3pitWrEhZZtOmTfSQQw4JJHpJKVsGaNAMGjTI2uZjjz0mVVY6uNG2bdusDMKcnBy6b98+5nXt99VPP/3UcZlLL72UAqANGzakxcXFQVWbKoGtRpTApidBCqy98fSPf/zDdbmLLrrIWu6VV16R2qZCka4oga1eHnjgAab7DaWUDhw40Fr2888/l9ru888/b5X1008/SZVl8qc//ckqc/LkySmfP/nkk9bnAwcOdC1H13UrBU7TNLp8+fKUZcrKyhKEfs+ePa7lLVq0yNruUUcdxfWdqlNgjzzySKv8r776ynGZ0tLSBNFYtGiR8Pb+8Y9/WOVcd911wuVQmj4Cu2DBgoRj5PeixeSaa66x1nvuueeEtl1WVkbbtWtnvYDYu3evUDk8/Pe//7XqfdJJJzkuY98nbdu2dX3B/tVXXyXItxN2Mf3iiy9c6zVr1ixrOZF0bjs1LbC7du2imZmZ1v1m/fr1UuWlixvZX2K8/fbbTOusXbuWEkIoANq4cWPX9HL7uTNixIjA6lztoxCbnaKnTJli/Y2nY7VhGPj4448xaNAgdOjQATk5OcjPz8chhxyCIUOGYNGiRZ51sw/YY6boTp48GX/961/RoUMHZGVlpQzUE4vFMGnSJNx1113o06cPmjZtioyMDOTn56Nr16646qqr8NNPP7lu0xwh1J5y0qFDh5Tv7LavWEYjmzVrFq6//np069YN+fn5yM3NRadOnXDllVfi+++/913f3M4pp5wCIN55/9lnn8UxxxyDhg0bIjc3F4cddhjuu+8+7N6927e8gxFKKT755BMA8f156623ui5rT2sxU8BqihkzZmDIkCHo3r07GjRogKysLLRt2xaDBg3CV1995bmu0+iR69atw1133YVDDjkEubm5aNCgAU444QS89tprzIOpFBcX44UXXsAZZ5yBli1bIjMzE40aNUKvXr3w4IMPYvv27Z7rJ18ruq5j5MiROOOMM9CqVSuEw2HHQUe2bt2Ku+++G927d0dubi4aNWqEY489Fs899xxKS0sBxLtEOA1a8vXXX1vb9EtTMrntttusdSZOnMi0Dgt+oxBX13H78ssvcf7556N58+bIyspC+/btMXjwYMyYMYP7O1RUVODtt9/GBRdcgDZt2iArKwsNGjTAn/70J9x1112ug6f9/vvvyM3NBSEEhYWFWL16tes2du/ejbZt24IQglAo5Hnfrgts27bN+r1Lly6ey3bt2tX63W9gHz/MlMG2bduiT58+UmWZdO/e3frdaUAn+3Ps8ssvdy1H0zQMHjwYQLy9MGbMmJRldu7caaX9Nm3aFIWFha7lBbnfgmLFihVYsGABgPhxP/fccx2Xy87OxnXXXWf9/+OPPxbanq7rCWmibineQWOm9RJCoGkann/+ecflvv76a2uAoPz8fOTk5KBTp0646qqrMHXqVNfyjzjiCPTs2RNAPG32hx9+8K1TaWmp9ZwPh8O47LLLBL5Z/FiYgzk++uijKCgoECqHB79rDEhsj1x//fXIyspyXO6cc85B586dAQBz587FqlWrEj7fvHkzli1bBgBo1KgRzjvvPNd6HXvssVYq77Rp07Bu3TqGb5MefPTRRygvLwcAnHHGGWjdunWNbNfuMj169MDGjRtTltmxYwf+85//4KSTTrJSyouKinDSSSfh6aefRnFxsWv59rR41u5Jo0aNsrqPDh48GBkZGY7LnXnmmVbXDrf0cyGCsGCvNyCsnaKd3sr98ccfCW8dnX40TfNMBbFH277//nt68803O5Zjj5CecsopTHW+8sorHd842COvfuu77Ss3otEove6663zLvvjii2lpaalrOeZyffv2pStXrqTdu3d3Latdu3b1KoIcVATW/qbeL61I13VaUFBgnbM8KRqiFBcXJ6S6uP2cd955rvVJfnM+ceJE2qBBA9eyzjjjDMd0QDsTJkygTZs29axTfn4+/d///udahv1a2blzJ+3Tp4/jeWvn+++/pw0bNnTd5uGHH07XrVtnvSVPXl/XddqhQwcKxFNh/FLBDxw4YG2vbdu2gQ2mQ6l/dkfQxy0Wi3ne1zRNo0899RRzBHbOnDnWvnT7ycjIoMOHD3dc/80337SW6927N43FYo7LXXjhhdZyDzzwgOc+rQv885//tL6PXwTW/t0XLFggvM1169ZZ5VxxxRXC5STTq1cvq1ynCKz9mbR06VLPsuyRpuOPPz7l8wMHDtBwOEwB0Egk4hmBXbx4sVXWgAEDuL6T271Hlpdfftkq+5ZbbvFcds6cOdayvXr1EtqefZCq7t27C5VhhyUC+8svv1gDG4XDYfr++++nLLNt27aElEW3n2uvvZZWVFQ4buell17iOp/fe+89a/n+/fvzfO0ETj31VAqAZmZmerbNgsQe+XKLwB599NHWMnPnzvUsz95+fvXVVxM+mz17tvXZcccd51u3Cy64wFre7T7PQk1HYI866ihre2PHjpUuz6/dr+s6vfHGG61lTjjhBMfU8nfffdcaTMntp1mzZnT69OmO24lGo9b1RwhhGhSvU6dOVtlu3VlM/vKXv1hthR07dviWzUK1C+zPP/9Mx40bRw877DBrmXHjxqX8JD+g/vjjD9qkSRNrnT59+tAnn3ySjh49mn7wwQf0jjvuSGiMut0U7bJyzjnnUAC0efPm9N5776UffPABHTlyJL3pppsSRs467rjjaF5eHu3fvz995JFH6HvvvUc//vhj+uKLL9Lrr7+e5ubmWmU69ZGZN28eHTdunHXDAkDfeOONlO+cPMohi8DaR3fLysqiN9xwAx01ahT94IMP6O23355wAp911lmuKTLmMj179qSHHHIIJYTQ/v3709dff52OHTuWPvHEEwmpSG43v7qI/Zw46aSTaMeOHWlmZibNz8+nnTt3ppdddhn9/PPPfdOLRo8ezXXjtB/fWbNmBfRtnCkrK6PHH3+8tb1OnTrR+++/n77//vt0zJgx9LHHHqNdu3a1Pj/ttNMcBcve8Ojfvz/Nycmh2dnZ9IYbbqAjR46ko0ePpnfddVfCNeH1QunTTz+1UvkikQgdOHAgffnll+nHH39M33rrLTp48GCrL4amaY4NW0oT96V5XR9xxBH0ySefpGPGjKFvvvlmQkNvyZIlCSOZ9uzZkz733HN07Nix9KWXXqInnniiJUOtWrVybYTa++598MEHnsfg/ffft5Z9+OGHPZflhUdggzhuN910k7VcRkYGve666+ioUaPo+++/T2+99VZr39rTkNwEdvr06dbyhBB69tln02HDhtGxY8fSkSNH0htuuCHhWLmVY0+Rdar7W2+9lSA1Tn0e6xp2OWHtA3vKKadIbfPtt9+2thlU9wf7KKrNmjVzfHly6KGHWsvwCGx+fr7jvfu8886zlrnmmmtc+8CeccYZ1rnJ+4LTLD9ogb3hhht8rweTaDRqHfvc3FzmNFk7ZmMTAH3mmWcEa12Fn8B+//331gvenJwcOmHChJRldu7cmdBgPuKII+jDDz9MP/zwQzp69Gj6wAMPWPdur2fyjh07aEZGhrV/9u/f71l3uzCPHz9e5OvTiooKmp2dTQHQo48+mlJK6e+//05vuukm2qlTJ5qZmUkbNWpEjz32WPrQQw/59m9lYdu2bQmjyz7//PMpy+i6btUrHA773iPtLyiHDBmS8Jk9LZhXYG+++Wau72bH7h8dO3akxxxzDC0sLKQZGRm0RYsW9IwzzqDPPPOM50srVhYuXGhtq1GjRr4v61nwaveXlZUlPOfOPfdcx77oL7zwgrVMTk4OveKKK+jw4cPpJ598Ql9//XXav39/K9U3JyeHLlmyxLEud911l1XOgw8+6Flve7/wI4880vd7PvXUU9byY8aM8V2ehbScRkfXdestR2ZmJv34448dl9uyZYsVodU0jS5evDhlmeQpU/r06ePb9+C7777zfEO2Y8cOK+KjaRpdtWqV43JBT6MzZsyYhIe+00m4Zs2ahMiGW4PDvk8yMjIc+yvs2LEjoSwZ6SopKXF8cSHy4zW9AQus0+gcd9xxdM2aNa7lPPzww54P5WSuuOIKa3mnt8tBktw31+nBVFFRkVAnp0FSkqdcaNu2rWMfs1mzZlkRjoYNGzre2NetW2c1Utq2bUt//fVXx7rPmjWLFhYWUiA+EITTm/TkzI7bb7/dM8Jpj9DedNNNjssmnxdOjdAtW7ZYgt23b1/X7VFK6cknn0yB+NDysv1kkuERWNnjZn9QNWjQwPEt/bJly2jz5s0TtunU0N63bx9t06aNVdaPP/7o+P1WrFhhvUDLzc11HIRo165dtHXr1tY+/vnnn63Pfv/9d0vOCwoKmN4me7F06dLA7l+yAyrZr+1QKEQvvfRS+tJLL9ExY8bQYcOGJYhanz596NatW6W2d/3111vlzZkzh2vdKVOmWN97zJgx9Mknn0y4FrOzsx1lhVKa8ALYKxuD0sT+sgDohg0bUpZZvnx5QuZHp06d6EMPPUTfe+89+s4779B7773XikBkZmbSd955h+u7Ulp9AmvfFyxSbX/5zHvvsQ/oEg6H6ZYtWwRrXYWXwH766adWn8JGjRq5RojMl2OEEPrCCy84LrN//3565plnWtuaOHGi43L27ASv47xmzRqr4d+0aVPhl2Dz58+3tjdgwAD63nvvWeLo9NOgQQM6adIkprK3bt1qXWOfffYZfeutt+iQIUMSMm7OPPNMx+fo2rVruc7Z77//3lr+9NNPdy2rUaNGvi9O7P1l+/Xrx/RdnWCdRqewsFA6YmofBOzWW2+VKsvErd2/d+/ehOv+8ssvdzz/5syZYz3DjzzyyJTB3Uy++OIL67p2e8Fgzz5p37695zG0Dxj34osv+n7PH3/80Vr+jjvu8F2ehbQUWPt8XS+99JLnsr///rv1ttFpoAF7ozQ3N5du3LiR6Tv5sXLlSqvcRx991HGZoAW2Z8+e1uduD31K441S86bbrl07x/Q6+4X9yCOPuJY1YsQIpuX84J2ry+tHNk3k3//+N83KyqLnnHMOfeSRR+j7779Px44dS1988UX6f//3f9b5BIC2bNnSsTFEKaV33HGHtdzLL7/su13e5UXZtGmT9Yb5//7v/zyXraiosOZ+69KlS8rnySLkNYDL4MGDPZe79dZbrUa3X7qJPerz4Ycfpnxuv1aOPvpoT3m1R6169Ojhmm6aXK7bA90+IJeTFFIavy+Zy5x33nme31UEXoGVOW79+/e3Ph85cqRrOV9++WXCNp0E9rnnnrM+9xtYaPLkyday//nPfxyX+fHHH6mmadbx2r17N62oqEhIiwviZRHv3NFeP7IDx1Eaf+PuNZ9px44d6ejRo13TKHk44YQTrHJ5uz4cd9xxjvULhUL0rLPOor/88ovruvZ0aa8Rde2DOJk/Ti+zKY0LSb9+/azno9PPkCFDHEdPZcHv3iGK/dnPMjAT7/J2hg0bZq0rkzJrx01ghw8fbl2/rVq1co0MzZs3z1r/zjvv9NzWrl27rBegZ5xxhuMy9tTak08+2bUs+0tqv+16MXHiRKucTp06JWRHvPLKK3Ts2LH0qaeeSshUjEQidObMmVxlJ/+0atWKPvLII67PPHtE0YwMe+G3vPlCEXAfqZjSxGcy4D4oFAtm27JHjx709ttvpyNGjKCffPIJfeedd+jQoUNT5tsVeTFFabytZM8K9WvDsOLU7t+6dWvCNXznnXe6yuT5559PgXjmiVtb1eRf//qXVea0adMcl7F37fj+++8dl7HP/ZqRkcGUErx161ar3OSXH6KkpcCab9oKCgqYphzp3bu360PD3vAIsv8OpdSKOPz5z392/DxIgbXv48MPP9y3rNNPP91a3ilyam9IuA3VTmmiqF9yySW+23UjnQR20aJFnik6ixcvThh+3u3toL0vMsvIavfff7+1/OOPPy5cfz/s6SRub7Pt3Hfffa7nqb3h0bNnT89y7NKZ3KfFMAzaqFEjCsTfBvtRXFxsvVV0Ot72a8XvgWRvCDtFme3YUxHdGqF2sbr77rsdl7GP4OkXPRKBR2BljltZWZn1MqRZs2ae8k9pYtqnk8CaGTNdu3b1/Y6UUtqyZUsKeEe77dfVoEGD6N133239f/DgwUzb8SPdBLakpIS+9dZbnv2ajzjiCOnRhymlVlpmJBLhXtdNYDt27Eife+45z4bPypUrrXuA1z3273//e0r5Xve9X3/9NeGlTPJPbm4uve6664TGKfC7d4jSpUsXq2wWuba/dGB5BtixvwwI6t7lJLB2OezWrZtr5IjSqqwDQghTEOKvf/0rBeKRdKesklgsZt1bCCGOWXSGYSSkLMuM6GzvbmT+OE1rE41GE14oHnroob6RTDeBJYTQwYMHu0oIpfHpoMzlTzzxRN/vsXz5cmt5p3u4/Zi2adPGMfNly5YtKWOusD4PnNi3b5/ni7DS0tKEaGFGRoZr1qQXn376KfMzlYfkdv/KlSsT2p9PPPGE67q7du2yXgD5TW9GaeKLdbesQftUSG5t7VGjRlnLeI0Qb6eiosJap3Pnzkzr+BFGGvLzzz8DAFq0aIGvv/7ad/lQKAQgPqrcgQMHkJ2d7bgcz2TD+/btw4cffogJEyZg0aJF2LFjh+uIhOZE39XJ7Nmzrd/PPPNM3+XPPPNMayLsWbNm4dhjj3VcrmvXrmjYsKFrOfZJ3GVGI27fvr01Wllt06NHD8/PDzvsMHz99dfo0aMHysrK8N1332HWrFk47rjjaqiGcpjXDxA/N8ePH++5vP24Ll261HH0XgA4/vjjPcvxOleWLFmCXbt2AQDy8/N96wQAeXl52LNnD5YuXeq5nN91PXfuXOv3U0891XNZc1RuL0499VR07doVy5cvx6hRo/DYY48hEolYn0ejUWsE8pYtW3qOxlgTyBy3hQsXoqKiAgDQt29f617rxumnn+56vPbu3Ytff/0VANCsWTPmcwCA5znw8MMPY/LkyZg1a1bCiJodOnTAa6+95rsNFh566CHXkfJrmrlz52LAgAHYuHEjjjzySDz44IM46aSTUFhYiM2bN+PLL7/EQw89hIULF2LAgAF45ZVXMGTIEOHtmdet13PCjZkzZ1q/l5SU4Pfff8cnn3yCF198EXfddReef/55jB8/HkcffXTKuh07dsQDDzyAhx9+GABw3XXX4bPPPsMFF1yAJk2aYOPGjRg9ejRmz56NoqIilJWVYf/+/QDiIxMnE4vFcPvtt+PVV19FOBzG3XffjSuuuAKdO3dGNBrFggULMGzYMIwbNw4jRozA7Nmz8c0336Bp06bc37uuMnfuXGtmh+bNm7uOdiyDYRi45ZZb8OqrrwIAevXqhQkTJqBJkyau65jPtAYNGiS0hdwwR4ktLy/HqlWrcOihhyZ8HgqFcMUVV+DJJ58EpRSjRo1Kub5//vlnrFy5EgBwzDHH+LYbvDAMI+H//fr1wz333JOyXDgcxogRIzBlyhRs2LABS5cuxbfffuvZ5jv77LOttlUsFsO2bdswdepUDBs2DB9++CE+/PBD3HLLLXj++ecRDldvk//OO+/Exx9/jCVLlmD9+vU48sgjcfXVV+PYY4+FpmlYsGAB3nrrLezatQsdO3a0RjJ2ul5Zyc/Pt0aWdiI7Oxtvv/02Nm3ahEmTJqGiogJPP/00Xn/9da7tvPvuu9bv1TUq98KFC3H22Wdjy5YtCIVCePPNNz23NW3aNOvcCoVCvs/UaDRq/e72TP3rX/+KO++8E2VlZfj000/xyiuvWM9hE/soxfbRi72IRCLIz8/H/v37g5vZJAgLDjICu3//fqm328lv5+xvzr3Sbu18//33Kf25vH46duzoWE6QEVh7VO2NN97wLWvcuHHW8vfdd1/K5+ZnLIMzmcv69fmrb9gHznAaJCZdU4jt6ZO8P8npuvY3534Tv3v1c/riiy+E6+SU2my/VvxGdLTPN8mSUmlGtbyiKM8++6xV5meffZbwmf1NbXWNfMsTgZU5bvb7yP333+9bL/t9KjkCax+1m/fHL/q3cuXKhAHswuEwnTFjhm996xoLFy60+s6dcMIJrhlKK1eupI0bN6ZAPMtGZhRi8w1/p06dhMtI5pdffrGOV4MGDVyjaoZh0Pvuu88z5bdZs2Z05syZCYM6/v777yllXXrppdbnXpFF+33aK3XZCXO9uppCPGTIEGs9v1GuebDfY8z0XiCe3eQ3iBKl1DqXRX7cUiWXLVtmLdOhQ4eUSKc9avfaa6+lrD9p0iTPvu527KM6A3Ad18XEnhXlluXjh67rCWNcOB3PoFOIKaV0/fr19JhjjvE8JmeffXbCmC69e/cW+o48zJgxw9pemzZtuNbdtGmTlfadmZnpmbXIi70tY14bmZmZTAOG2Ucn5/1xS6+ntCqDwek5bu8X3qJFC9+sLDtmNk9OTg7zOl4EMg9skOzdu1dqfTNa4IRbZNbOihUrcN5551lzZnXr1s16azt69GiMGzfO+jHnNTLnl6tOzDfLAJCbm+u7vP2NiX3dZGTefNV37NE4c34zOw0aNLB+37Fjh295O3fudFw3aGSuIa/rR+Zcqa46Af7XtZk5EQ6HEyKlbrBcX1dddRUyMzMBACNGjEj4zPw/IQTXXnutb1nVjcxxs88bl5OT47u8176TOQfsb46daNKkCRo1amT9v2PHjo5RvbrOvffeiwMHDgAAhg0b5jpnY8eOHfH3v/8dQPz5xBttsGOe5/v27RMuI5mePXvi7rvvBgDs2bMHL774ouNyhBA8/vjjmD9/Pm644QZ069YNubm5yMnJQffu3XH//fdj8eLFOProo636EULQrFmzhHJmz56Njz76CEA8YnXBBRe41u0///mPFW3+7LPPsGnTJunvK0tNPGvKysowevRo6//VFWWyzzldUlLClJlVHc+Pbt264YQTTgAArF69OmGO6NLSUnz66acAgKysLPz1r39NWf/666/HX/7yF9cfO8nHwO/eZP/cjALzomkaXn31VWvO45deeikl8lUd51Xr1q0xc+ZMfPDBB/jzn/9szUfauHFjnHbaafjggw8wYcIEa951IB7tr26OPfZYq62wfv36hO378d5771nt/AEDBghlo7BgXhuxWAxlZWW+y1dXu8oeVTWzyez/N6/ZK664wjcry45ZXxYXYyHtUojt4nXyySdjypQpNbr9J554wmogPPDAA3j00UdBCHFc1j5heHWTn59v/c4yubq94Wlft7YoLS3FN998E0hZbdu2xVFHHRVIWV40btzY+n3Pnj0pn9snvF+zZo1veeYk5snrBo15DRFCEIvF0uIlhf26fvDBB620wJrAlKpYLIZoNOorsSzXV+PGjXHhhRfiww8/xDfffIN169ahbdu2WLt2Lb799lsA8TSxDh06yH+BWsR+3Fge+F77zl7WFVdckfJglOGmm25KuL6WL1+Of/7zn3jqqacCKX/ZsmWOL7FE6NOnj2e6pBvl5eX47rvvAMTv6W7dQkz69euH++67DwCY0i7daNSoETZu3Bhc2lclZ599Nv71r38BAH788UfPZY844ggMHz7c9fMlS5ZYDcwuXbpYjXaTr776yvq9X79+ntvKzs7GCSecgK+++gqUUsydO9dTeGuCrl274ocffgDg/6yJxWLYuHEjgPi9z95FwItx48ZZz7nevXvjkEMOEa6vF0OHDsXSpUsxbtw4zJgxA2eddRYmTZrk2U4xu5OY99iguPrqqzF9+nQA8bTIvn37AgA+/fRT68X/gAEDpF84d+vWLeH/yednMvbPZSQlLy8Pffr0wVdffYXy8nLMnDkT55xzjvV569atkZ2djQMHDmDjxo2IxWKeacasbZhQKITBgwdj8ODBrsv89ttv1u+9evVi/UrCaJqGhg0bWu37PXv2ML2UBWomfRiI36fOO+88lJSUWPtu0KBBrsvbn6nvvPMOczqvH6effjratGmD9evXY8qUKVizZo3VDdD+3L7qqquYy4xGo5aX2F82y5B2AltYWIi8vDwUFxfXSN/SZMwGQtOmTfHII4+4yuv+/futvkE1QYsWLazfV6xY4bu8fZmWLVtWS5142LZtW8pbSVGuvPLKhBz86sLvbaO9T8y8efM8yzIMA/PnzwcQv5Em98kJklatWmHBggWglGLjxo1o06ZNtW2Lp04mNX1dt2zZ0up7uWrVqpTGhJ3du3c7vqxw4sYbb8SHH34IwzDwzjvv4KGHHsI777xj9Um5/vrrpete29jvHX/88Yfv8l7LVNc5YPbzAuKRix07dmDt2rV49tlncdZZZ+G0006T3saYMWMCe+nyww8/MPW1TmbHjh1WJDo/P9/12WRibwSzvJRxo3379lbjdt++fSgoKBAuy45dWFivOTfsL7qd+sTbo6gs9Q9q3wVF8rPGq+G4YMECS+a7d+/ue56Y1FQjPRKJYOzYsbjkkkvw3//+l0liW7VqhT179mDbtm1MLyFZufjiizF06FAr4vrKK68gNzc3YV+4SQHLS2uTpk2bolmzZti6dSuAuJTaX5AnY5dWP9n1w+s60zQN3bt3x7x58xCLxbBw4ULP6LB9PAmZPsGA/zUbNIZhJLyEY30pMX36dPz+++8A4sETvxdgMvTt2xcTJkzAueeea0kspRSXXHKJ4/LV9UzVNA1XXnklHnvsMUta//3vf+Onn36y+i3zvuSy+1K7du2CqWcgpbBsyBYF8ksZOfnkkwHEG5ssjaYgMW8wHTp08Ixcfffddykd85Ph+c5+2N+2mxEeL+zRTr839Qpn7DdYp7eNhx12GFq3bg0gHgHwuoFMnz7dSnE78cQTqzUqbr5FBhBY1FuWnj17Wg3HyZMn+147QXLMMcdYv5tRDDf8IkF2+vTpg8MOOwxA/O1nNBrFO++8AyDeYOnfvz9/ZdOMI444AhkZGQDi14Nfdwlz4DgnmjRpgu7duwOID+4TRErq6tWrcdNNNwGIR5tGjx6NDz74AKFQCIZh4Iorrkh4EVWXsYvXjh07fFPM7NESr8ayH/aGqtmQCwL7s10kIm3H/kLTKW3fvu/Wr1/vW15Q+y4ozjrrLOv3SZMmeS5rH/jy7LPPZip/3bp11rWbm5vrGfUJAlNiBw4cCACWxLrdE8xnWllZWUKqrywFBQVWHYqLi/HZZ59hzZo11rO/devWgQmLPfLp98Lb/rlstpbfdcZ6blFKEz5nPbecWLJkCebMmQMgHp3u06ePcFmszJkzx4q+tmrVijn6aj7TgXjwpLoz2k4++WRMnDgReXl50HUdl112GcaMGeO6rPmCKui2nv0l2XvvvQdKqdDgTSb2QaP+9Kc/yVYPQA0KrD3U7fdG88orr7R+f/DBB6utTk6YJ/WqVatcpVPXdTz++OO+ZfF8Zz/at29vpc0uXLjQU2Lnzp2L77//HkD8TUc69AUz0w+C+KmJ6OvKlSsTUiWcRmMkhOCiiy4CEL+5v/zyy67lvfTSS9bv1d04uOSSSyzpeOqpp9IigmCmFAHxxuFbb71VY9u2i+Srr77qKWFuffHcuOGGGwDEG8W333679RLjyiuvDCxKUJtkZmZa5/7WrVutfoROTJw40XfEaPPeXlpaiieffFKqbrquY/DgwVaj96WXXkKXLl3Qp08f3H///QCAjRs34m9/+5vUdoD4KMRB3b9Eoq9APJLStm1bAPH+S//97389l7c3euwvcXixj74+a9Ys4XKSefPNN63fzb6IIrz77rtWY/jEE09E7969U5axS/gnn3zieQ9Ys2aN9T01TauR7ip+dOnSxRppdcWKFZg4caLjcmVlZQl98i+++GKm8keNGmW9VLzwwgtrpNtROBzGmDFjcOGFFwKIS+zZZ5/tKLFXXHGF9fvDDz8c6Lgj9ob4yJEjE/r4BSks9n609nM/mQMHDuD999+3/i8jir/88oslw5FIxDFV136OvPHGG64vxiZOnGjJ8DHHHIOOHTsK1UnXddx2223W/82++tUJpRT//ve/rf+zjq5dWlqKjz/+GEC8vRdUiq4fJ510EiZMmJAgsfb+6SZNmza1zo+pU6cGKrGdOnVKCCZ+/fXXVr/w7Oxs7nas/dkR2IweQYwExTIK8W233WYtM2XKFM/ydF1PmEx36NChtLy83HX50tJS+u6779LRo0enfGYfhZhl/r0zzjjDWn7YsGEpn1dUVCSMTgePEQftE4KPGjXKd9t+IzWPHTvW+rxFixZ06dKlKcusXbs2Ye6yV155xbEs83OWkYV5lk13Pv/8c/rJJ594jpyWPA/sKaec4rrsxo0baU5ODkXlyKffffddyjLvvvtuwuh3LHMby3LXXXdZ2zz11FPp5s2bXZfVdZ1+++239NFHH035zGuEWt5l169fb43wm5mZ6XtNbN26lT7yyCN04cKFKZ/xzCtNKaV9+vSxlr/pppuoruspyyTP9ckykuiePXus42//Wb58OVO9ROEZhVj2uP3888/W5w0bNnScwH358uW0RYsWCfvAaR7Y4uJi2q5dOwrE5yl8+umnHY+FyZ49e+iLL75Iv/3225TP7JOyJ48WG41GrfnBAbaR2+sC99xzj/WdmjRp4nhtUErp+++/nzBy7+zZs4W3uX79equcyy+/3HPZd999l06aNMlz7sry8vKE+1NGRgZdtmyZ47JLliyh27Ztcy3rgw8+sOYpzsrKci1n+/btNDc319rmkCFDHJ8BO3fuTJi79txzz/X8vsnw3DtM7Nef13rjx49PWC553lRd1+k111zjek24YRgG7dixI3P7TASve0w0GqUXXnih9fnxxx9P9+7dm1LGwIEDrWUGDRrkuIy9zM8++8y1/WPHMAzavn17657UrFkzazssc+7ycNJJJ1llO80DG4vF6GWXXWYtc+yxx6Yss3//fnrfffd5XheUUjpv3jzatm1b37Y5pZQOGDDAWu7aa69NuSevXbs2oawvv/zStayff/7ZtX21d+9eeskllyS0TbzuFfbnvNPzZP/+/fSBBx6g27dvdy3jwIEDCddFJBJhPq4jR45MqGt14NWW+fnnn2leXh4F4qPJf/TRRynLzJs3j0YiEev5PHHiRM/trVmzht51111069atvnWzt13tz/fLLruM/QtW8pe//IUCoJqm0Z07d3Kv70SN9YE9/fTTrSjUtddeizvuuAPt2rWzRrDq3LkzOnfuDCD+1vOzzz5D7969sXHjRrz44ov4+OOPcdFFF+GII45AYWEhiouLsW7dOsydOxeTJ09GSUkJHn30Uel63nrrrVZ0884778SPP/6Is846C40bN8aKFSvw3nvvYcWKFTj11FOxYsUKz7TR008/3fr97rvvxvbt29GtWzerk3yrVq1w+OGHM9ft4osvxrhx4zBmzBhs3rwZRx11FK666ir07t0boVAIc+fOxdtvv229wTzzzDOt9DpFnJUrV+KOO+5AUVERzj77bBx55JFo3rw5IpEItm7dih9//BH/+9//rNHgWrZs6TnYTMuWLfHcc89hyJAhiMViOOecc3DFFVegb9++iMVimDhxovXWKhwO480333QdORRAQn+l1atXu87J6scTTzyBBQsWYPLkyfjhhx/QsWNHDBw4EL1790ZRUREqKiqwZcsWK5q/ZcsWnH766fjnP/8ptD0WWrdujTFjxuCCCy5AeXk5rrzySgwbNgwXXHABunTpguzsbOzduxfLly/HzJkzMW3aNOi67jt3KwtvvPEGevXqhdLSUrz22muYMWMGLrvsMrRu3Rpbt27F2LFjMW3aNPTu3Rvr1q3Dxo0bmd68FxYWYtCgQQl9pk455RR06dJFus7pQp8+fXDTTTfhtddew+7du3H88cfjyiuvRJ8+faBpGmbPno23334bJSUlGDBggOdcdLm5uRg/fjz69u2Lffv24e6778Ybb7yBgQMHonv37sjLy8O+ffuwatUqzJ49Gz/++CMqKioSIhJA/G2zmQXTunXrlIhGOBzGhx9+iCOPPBL79u3DHXfcgb59+3r2f64L3HPPPfj444+xevVq7NixA8ceeywGDRqEvn37oqCgwJoH1v4m/vrrr5caJKV169Y4+uijMW/ePEyZMgWUUtd+lQsWLMDVV1+N1q1b44wzzsCf/vQnNG3aFBkZGdi1axd+/fVXjBs3LqFP6rPPPut6XCZMmIAHHngA/fr1Q58+faz74Zo1azB+/HhrcKqMjAyMHj3atZwmTZrgP//5D26//XYAwOuvv46ffvoJl156acI8sKNGjcL27dsBxK/t5557znW/PPfcc64DW+3ZsyflXtqhQwepUcn79++PQYMGYezYsVi7di2OOuoo3HDDDTj88MOxc+dOvPfee9b+aNGiBYYNG8ZU7pQpU6x+bZ07d7aiLjVFOBzG6NGjQQjBJ598gpkzZ1p9Yu2p3++88w6WL1+ORYsWYezYsZg0aRIuvvhiHHPMMdbgPBs3bsT8+fPx7bffYvfu3Uz7mxCCq666ysqyMLuRnXTSSVabNCjefPNNnHjiidi1axfuvfdefP3117joootQVFSEtWvXYtSoUVi8eDGAeMaFU9sjFovhiSeewDPPPIOTTz4Zxx13HDp37oyCggKUl5dj3bp1+PHHHxO6uR1yyCF49tlnXev1wgsvYMaMGdi6dSvefvttLF68GJdffjkaN26MRYsW4Y033rC6YgwePNhzbvMbb7wRu3btwnnnnYejjjoKRUVF2LdvHxYsWICxY8di27ZtAOJZEWPGjGHuo+1ELBbDf/7zHzz11FM45ZRTcPzxx6Njx44oKCjA/v37sXDhQowZM8aaVQQAXnvtNebjWlP9wt3o06cPvv76a5x99tkoLi7G5ZdfDiAxmn/UUUfh9ddfx3XXXYfdu3fjnHPOwYknnohzzjkHHTp0QCQSwa5du7Bs2TJMnTrV6sds3gu9uOiii3DrrbeiuLgYmzdvtv7OG4mOxWKYOnUqgHjac1CDONVYBDYWiyVEQZJ/nN78b9q0iZ5++umu69h/QqEQHTFiREoZvBFYShPn4HL6OfHEE+m2bdusSILXW1P7fErJP8n7iiWqFI1G6d/+9jff/XHhhRd6zo9pLnewRWCff/55pvMJiM+Ru2bNGqZyn3nmGestmNNPfn6+Y4ZAMvZ1WOYO9qK8vJzecsst1vxlfj9XXHFFShlBRvJMZsyYkfDG3+snLy+P/vrrryll8EZgKY3P72xGgJ1+evToQdetW2fNVfanP/2JqdxZs2YllJM8l251UJMRWErj9+/LL7/cdd9pmkaffvrphDe2Tm/MTZYtW5YwV6XXT2ZmZsJb5d27d1v3Xk3TPO/rH3zwgVVOz549PTN56gqrVq3ynWfR/LnllltoNBqV3qZ9ft+ffvrJdbmhQ4cy31+bNm3qe0985plnfMvp2LEjnTx5MtP3ePbZZ62IrddP+/bt6cyZMz3LMs9B1h+35ydrBJZSSsvKyhIiWE4/nTp1co3MO2G/rv/zn/8wr8cDyz0mGo3Siy++2FruuOOOS4my7t27lw4aNIh5n/vNgW2yevXqlLmG33nnHdmv7cjs2bNphw4dPOvdpk0bOnfuXMf1d+/ezXXeDRw4kCna9ssvv/g+ly+99FLfe+hhhx3GVCevqKmJXwSWZ180btyYfvLJJ77bNPnjjz+sc6KwsNB3vnlRWNoyU6dOtebNDoVCjm2Mzz//PCF7wG9fsOx/SmlKxmn79u09o+ZOTJgwwVr/rbfe4lrXixoTWErjofwnn3yS9u7dmzZs2DChYe3VyPrxxx/pDTfcQA877DDaoEEDGgqFaEFBAe3evTsdNGgQff311+mmTZsc1xURWEopnThxIj3vvPNokyZNaCQSoS1atKCnnXYaHTFihNUgYBHYWCxGX3/9dXrKKafQJk2a0HA47LqveBrlM2bMoNdeey3t3Lkzzc3NpdnZ2bRDhw70sssuY3qY+z1URZdNd3bs2EE//vhjescdd9CTTjqJdurUiRYWFtJwOEwbNWpEjzjiCHrDDTdwnSsmixYtojfffDPt2rUrzc3Npfn5+bRHjx70nnvuYRLhkpISa19nZGQElmaxYsUKeu+999LjjjuOFhUV0XA4THNycmiHDh3oueeeSx9//HFHSaS0egSW0nhj5YMPPqAXX3wx7dChA83Ly7OOwTHHHEOvu+46OnbsWFpcXOy4vojAUkrpli1b6N///nfarVs3mp2dTRs0aECPOeYY+uyzz9KSkhJqGAbNzs6mgHfquB3DMKwJyBs1akTLysq46iRCTQusyRdffEHPO+88WlRURDMzM2nbtm3pX//6Vzp9+nRKKWUWWErj++1///sfvfLKK2nXrl1pQUEBDYVCtEGDBvSII46gV1xxBR05cmTKpPH2Buy9997ruQ1KKR08eLC1/F133eW7fF0gFovR//73v/SSSy6hnTt3pnl5eda+O+qoo+htt93GJTF+7N6920rBve6661yXKy4upp9//jm988476SmnnEJbt25Ns7KyaCgUooWFhfSQQw6hl1xyCR01apTrtW1n/fr19IUXXqD9+/enXbt2pYWFhTQrK4u2bduWnnfeefTtt9/m7pKxZs0a+uCDD9I+ffrQoqIiGolEaFZWFm3dujU9//zz6YgRI5gaq7UhsCYTJ06kF110EW3Tpg3NzMykTZo0ob1796bDhg1j2q8m+/bts7pAaJpGN2zYwLwuD6z3mFgslnB9O0kspXHZuv3222nPnj1p48aNaTgcpnl5ebRLly50wIABdNiwYXTlypVcdTzttNOs7ebm5tL9+/fzfk1miouL6QsvvEBPOukk2qxZMxqJRGiTJk3oqaeeSl988UXf8++3336jL7zwAr3kkkvo4YcfbrWLs7KyaPPmzWnfvn3pPffcw30PKC4ups899xzt3bs3bdKkCc3MzKRt2rShF110kW9qqsmUKVPoPffcQ0888UTr/CwsLKSHHnooHTJkCJ06dSpzffwEVtd1+sMPP9DHH3+cXnDBBfSwww6z9mdeXh5t3749/ctf/kKHDx/OdV1QSuk///lPa9s33HAD17o8sLZlpk2b5iuxpaWldPjw4fSCCy6gbdq0odnZ2TQjI4MWFRXR3r1701tvvZV+8cUXXC9yf/rpp4T7mF8bwYlLL72UAvEUZ97j4AWhVHJ4XIVCEQiTJk2yOuTfdttt3AMKKeRZtGiRNUIe6zH47rvvcMYZZwCIz3H4wgsvVGcVFYpaYejQoXjppZfQoEEDbNq0KbDJ6BUKhUJRP9m3bx9atmyJkpIS3HPPPdKDN9qpsVGIFQqFN+YcxPn5+dXaF1XhziuvvGL9ztr39vXXX7d+rw9zvyoUTtxzzz3Izs7Gnj17Es55hUKhUCiceOmll1BSUoL8/PzAR5xWAqtQpAmmwN55550oKiqq5drUP37++WfP+WdfffVVazCgVq1a4c9//rNvmQsWLLAGLerXr581z6lCUd9o2bIlhg4dCgB4+umnUVpaWss1UigUCkW6sm/fPjz//PMAgH/84x/S830no1KIFYo0YMeOHWjatCmaNGmClStX1sg8fAcbnTt3RllZGc455xz07NkTRUVFiEajWLlyJcaNG4f58+dby37xxReuAvv111/DMAwsX74cTz/9tDU639SpU3HiiSfWyHdRKGqDkpISdOvWDRs3bsSzzz6Lu+66q7arpFAoFIo05LHHHsO//vUvdOjQAb/99pvnDBwiKIFVKBQHBZ07d8bKlSs9l8nOzsaIESMwePBg12Wchv1n7S/7zTffCEeumjRpgj59+gitq1AoFAqFQlFfUAKrUCgOCmbOnInPPvsMM2fOxMaNG7Fz506UlpaiYcOG6Nq1K/r164chQ4agWbNmnuWYApuXl4euXbtiyJAhuOaaa5jmjW3fvj3Wrl0rVP++ffvixx9/FFpXoVAoFAqFor4Qru0KKBQKRU1w/PHH4/jjj5cuR73zUygUCoVCoag9VARWoVAoFAqFQqFQKBR1AjUKsUKhUCgUCoVCoVAo6gRKYBUKhUKhUCgUCoVCUSdQAqtQKBQKhUKhUCgUijqBGsRJoVAoFPUKSinKyspQUlKCAwcOoLS0NOXnwIEDqKiosH7Ky8s9/6/rOgzDgK7r1o/5/+R/TTRNAyHE80fTNEQiEesnHA57/j8zMxPZ2dnIzs5GVlYWsrKyXH/Py8tDXl4eIpFILR4NhUKhUCiCRQmsQqFQKNIOSikOHDiAvXv3Yt++fdi/f3/Cv06/FxcXW3JqGEZtf4W0ITMz05JZ8yc/Pz/l/w0aNEj4ycvLc5z3WKFQKBSK2kSNQqxQKBSKGoFSiuLiYuzevRu7du1K+Nfpb+Xl5VLbI4QgOzsbubm5yM7ORk5OjvWTnZ2N78fMAqEEMDRAp4BBAEpADJL4OzV/zC9CQGj8X/P/1r80oQKIL2j+P2FvWP+nhAIajS9L4n9P/RsF1SgQ0QBi4Jyr++DAgQMoKytDWVlZyu/mjwyhUAiFhYWW0Jq/N2rUCI0bN0aTJk2sfwsLC5nmQlYoFAqFQhYlsAqFQqGQhlKKffv2Yfv27di+fTu2bduGbdu2Wf83f3ilKiMjAwUFBcjPz0dBQQEKCgow/X8LQXQNJBYC9FD8dz0E6Fr8d0OLS6lBQBKtETQWC/Jre1OD0UuSkZHyNwoKaAZoSAdCBqimg4YMIKSDVv59wE2nYv/+/di/fz/27Nlj/ZSWlnJtPxQKpUit+dOsWTM0b94cRUVFKp1ZoVAoFNIogVUoFAqFL5RS7N27F5s2bcLmzZsTfrZs2YJt27ahoqKCqazc3Fw0bNgQjRo1wpKfVoHEQnEZjYWt30ksDBINgVDxqF6NyqoTtZx+6yS1rFBSKb5hHTSkg4Zjlf/qOOuq47Fz507s3LkTO3bswJ49e8DSlCCEoEmTJmjatCmaN29uia35b/PmzZGdnS1cZ4VCoVAcHCiBVSgUCgUAQNd1bNmyBevXr8f69esTZHXLli1M0dOGDRuiqKgIRUVFmPW/xSDRcOqPhJTaobYBk0ApaLRSWDUCEgoFsg0uDMNR5AghQG3UBwBs9SEZSdFPEtBxAI0LbiQW/zccwyX3nImdO3di27Zt2Lp1K7Zu3cr0gqNRo0Zo3bo1WrVqZf1r/p6bmxtIfRUKhUJRt1ECq1AoFAcRlFLs2bMH69ats0TVLqzRaNR1XTOC1qJFCyz5aQ1IeRhaRQSkIgxSEYlHTqtDTp2/SJWwOlGdEusiqrxUu9j61DFFaB0XCk5yEdJhZERBI/Gf8286CVu2bLEEt7i42LOMBg0aWDLbunVrtGvXDu3bt0erVq1UarJCoVAcRCiBVSgUinoIpRQ7d+7EqlWrsHr1aqxevRpr1qzBunXrPEUhIyPDEoTp/10CEo1Ai0ZAzB+dAH5yyVI/3jL8hNWNIEQ2IGH1IzChFawrk9CmrBSA4IbiZVBNh5FRARqpwOUPno2NGzdi48aN2LBhA3bv3u2+eiiEVq1aoX379mjXrp0ltm3btkVWVpZ8/RQKhUKRViiBVSgUijrOnj17sHr1aktW16xZg1WrVrmKKiEEzZs3R5s2bfDL1ytAKjKgVWSAlGfG+57Coe+mQbnFlVtSUwoQlNZkeCS2hmSVBxLmmPEuoLoLyWxKIZxyG3Jfnmo6aKQCRkYUVz18LtatW4e1a9dizZo1rqnt5nneoUMHdOrUCZ06dULnzp3RqlUrhGorpVuhUCgU0iiBVSgUijoCpRSbNm3CihUrsGLFCixfvhwrVqzArl27HJc3I1MbF+8GKc+EVvlDohH2VF8fcZWW1JQCA5LWZLwkNg2l1Q1Pma2m7xCIzKYU6nH+eYhsMlb/24xyGJnlOOe647BmzRqsXbsWe/fudVwnKysLHTp0QOfOndGxY0d07twZnTp1Ql5eHu+3UCgUCkUtoARWoVAo0pBYLIa1a9dakrpixQr88ccfKCkpcVy+ZcuW2Pr7vkRRrcgQ75NqE9fAJTWZ6pJWO3aBrUPC6keC0NZEmnN1yGzKRirPWQ6RdYKGYjAqxfbs63rhjz/+wKpVq1znF27evDm6du2KQw45BIcccgi6deuG/Px8qTooFAqFIniUwCoUCkUtQynF5s2b8dtvv+G3337D0qVLsWLFCsdRWyORCDp27Ig/Zm6Ni2pZFrSyrGAGT6qU1hoRVl2Pb48agQ0UxIRWu1PbVCc1OfKyJc41sT8jGfHzJAAoKGhGBYzMMgy69zSsXLkSf/zxB7Zt2+a4fKtWrRKEtmvXrsjJyQmkLgqFQqEQQwmsQqFQ1DD79u3DsmXLEoTVKd0xJycHnTt3xm8/rq8S1fJM5z6qPJjimPS3akkHTi7TadsmNSWy9VhiTWpFZu1Uxz6OOMxrG5TYajqMrDJc88S5WLZsGX7//Xds2rQpZTlCCNq1a4dDDz0UPXr0QI8ePdCuXTtoWg2+hFEoFIqDHCWwCoVCUY1QSrFu3TosWrQICxcuxJIlS7Bhw4aU5cLhMDp37ow/ZmyDVpYD7UB2fHoa2Tu0lzBWfh7IYEt+ZfjVw6QmJPYgEFg7NSWzTINNBbHvnUTWThBSGwqBajEYWQdw+b/74ffff8eyZcuwffv2lEXz8vJw2GGHWUJ76KGHqiitQqFQVCNKYBUKhSJAYrEYli9fjkWLFuHXX3/Fr7/+6hhdbdWqFbYsLYZ2IAdaWTa08qQ0YGrw92lklUTb8kLT2fCsw1snQElsNVITMss1ajIgdiz8JDYZEal12Fc0FIWedQCD7jkZixcvxtKlS1FWVpawjKZp6NSpkyW1Rx55JJo2bcq/fYVCoVA4ogRWoVAoJCgvL8fixYuxcOFCLFq0CEuWLElp0GZkZODQQw/Fku83IXSgMrpquDTyWcVVRAxt6zJJKK+sJm1DKhJW3RJ7kAqsneqWWW6RtcN6fHhF1g7r+emxnygoaGYZbnjuPCxZsgSLFy/Gli1bUpZr1aoVevbsiSOPPBI9e/ZEUVGRaK0VCoXioEcJrEKhUHAQi8Xw+++/Y968efjll1+wePHilMGW8vLyULqFxGW1NDc1uuqGm7zKyqCtHFchlZHVpG0E1S9RSWzNkNYia8freMmIrB23c5djHxmhKIzsUgwYejx+/fVXLF++HIaRWK4SWoVCoRBHCaxCoVB4YBgGVq9ebQnrggULUFpamrBM48aNsWd1DNqBHIRKc0EqBAZasstrkBJoYpfXoGQ1qfzA66wEtsapTpkNTGTt2I9hUBJrx35OC+6b+ABRJfjLXb2xYMECV6Ht1asXevXqhZ49e6o5aRUKhcIDJbAKhUKRxM6dOzF79mzMmjULv/zyC/bs2ZPweX5+Pko3EWiluQiV5sXnW5UZGZgaQKx65kGlugHqMB1PYFSHuNpRElsr1DmRNdFI9YisvXxJ/IQ2FAqhe/fu6NWrF4499lh069YNoRocVVqhUCjSHSWwCoXioCcWi2HJkiWYNWsWZs2ahRUrViR8npWVhYodYYRMYS3Pkp/KxmwI63rw8mrEb+tU10GrqWxQIyGKG7TwUKPq0RS4TFWTtBLiXm7Qj1r7tqrzMR7ovrdHHTWt+kRWI4C97IBfgpBw1T6hhvzLG6rp0LNL8OdbjsacOXOwfv36hM/z8vJwzDHHWBHa5s2bS29ToVAo6jJKYBUKxUHJ9u3brSjr3LlzUVxcnPB5t27dsGrGboRK80FKMkEg2Qh2kqag5NVIvI0HJq6Gw+MhSVztBCE71GmbQZRdC9LqRhCPXbftVtcjXXr/u4leTYqsSQBCa5dYO7JCSwiBkaXj5hfOwZw5czBv3ryUe1OHDh1wwgkn4IQTTkD37t1VdFahUBx0KIFVKBQHBZRSrFixAlOnTsW0adNSoqwFBQUo2aghVJqP8IF8ED1S2VdUsEHqJUwy4uoieCZS8upVtoe42hEVHTdxlS03ncQ1GdHHL8u200pkWaSuukTWTWKTEZRaN5E1ERFaQqrqTEFhZJbi0gdOxJw5c/Dbb79Bt12HhYWFOP7443HCCSfg2GOPRW5uLvf2FAqFoq6hBFahUNRbYrEYFi5ciKlTp2Lq1KnYunWr9RkhBN26dcPK6fEoq1aek5gWzCuvrKLEK68+YmciJK6MZbPKqwmP5PiJq2i51SGuQUirGzyPYp561LrI8ghcbURj3eAQWj+JtcMqtHaJTVhfi+GuEf0xY8YMzJw5MyE6Gw6HccQRR+CEE07AiSeeiJYtWzLXS6FQKOoSSmAVCkW9orS0FLNnz8bUqVMxffr0hAZeZmYmYrsyESopRLikwGMuVkZ55ZUkVnnlkDqAUV45y4wXzCeuJixywyOuPOXWNXFNhuWRXFtpy074HhORlNrajsYmwyCzPBJr4iezbhJrrQ8KI7MY/W8/CtOnT0/pO9ulSxf07dsXffv2Rbt27bjrp1AoFOmKEliFQlHnKSkpwbRp0/DDDz9gzpw5CfOyFhYWomS9hlBJIUIH8hnnY3URWBk58pJXEbmsxFNeRcsVFFc7bmIjIq4s5QYtrjUprW64PZ5l6lajIis7wFF1iKyoxNpxEVoRibWTLLR+ApuMES7DNU+ciunTp+PXX39NSDVu3749TjnlFPTt2xcdO3ZMi/NboVAoRFECq1Ao6iSlpaWYMWMGvv/+e8yaNStBWlu1aoWtSyoQLimAVpbLN2JwsrwGIUbJ8iopcSYp8hpEuQHIq4ldamTF1alMAPVSXJOxP6aDql+1i2wAo/MCSF+JtWMTWlmJNTFllldirfW1GG555WxMmTIF8+bNQ8x2n2jdurUVme3WrVtanvMKhULhhRJYhUJRZzhw4ABmzpyJ77//HjNmzEiQ1jZt2mDLwgqESwpBKgSnuTHlNUgpMuU1IIEDbOIaYJlBimsC1TCPKwmFDgpxTYZSGng9q01kg96fdUFkAYBogUmsBaVS9aRaDHe8cT6mTJmC2bNnp7zs69evH/r166fSjBUKRZ1BCaxCoUhrYrEY5syZg2+++QbTpk1DWVmZ9VmrVq2wbXEU4eIG4tIKAJoGEAIajQZUa4BoGmhMB8rLAysTGgHVDdCygMqkRuU/FDAq5TVo8QhQYIlGgICnDKmOiGFKHYM6ryrPUwDxFyNBoWmBv7yoDoEFUD19YzMz4//SgM4BACQrK/5LUPtV04BIGIjJlUeJjn+8MwA//fQTZsyYkXA/7dq1K/r164fTTz8dRUVFsjVWKBSKakMJrEKhSDsopVi+fDkmTZqEyZMnY/fu3dZnLVu2xPZlBkJ786FVZMtJq2aTK0qlBZbYygtMXm2RRml5TWqgJ4irSXVEIiUllmikqoyAIq8pqcgB9Nf0lWtZkbULrImsIGmJxyYIka2WaHZSPQMXWVNiTQKQWUtiTWT2rSmwdgKQ2bveugDfffcdZs+ebfWZJYTgyCOPxBlnnIG+ffsiPz9fajsKhUIRNEpgFQpF2rB161Z8++23+Oabb7BmzRrr7w0aNEDx+kyESxtBq8gBqRCc5zRZWk0k5JU4lCclry6CJiyvLg1xR3k1SROJrRFxtSM4Yi53VFjkXHOSVzuicuR0PUBcZGtCXq1tVbfE2hEU2hSJNRHZv04SayIjs5EwqBbFjc+ciu+++w6//vpr1UeRCHr37o3zzjsPvXr1Qri6pjlSKBQKDpTAKhSKWqWsrAw//PADJk2ahPnz51t98jIyMqDvyUO4tDFCZQUgqGzEUgpUcAiAm7SaCMirk7RaxYnIq4eccYsrQ0PbU15NajGVOGhxJYR4nwMmnHOWSqcz85x3fgJrwiNGDPuEV2SrK3XYdXvVmVLsBqfMukqsCe8xc5NYE16ZTSrPCJXj8gePw7fffovVq1dbf2/cuDHOOussnHvuuWjbti3fNhQKhSJAlMAqFIpaYfny5fjyyy/x7bffoqSkxPq7Vp6PcEljhA80BKFJDTVWefWTVlt5rPLqJa1WcTzyyiBmzPLK2KBmElc7NSyxtSauJn4CG4S0uuF3HrIKrAmLFHHsGxaRrWl5Tdh2TUZj7TBee74Sa8J63Pwk1oRVZl3KM8KlOP/W7pg0aRL27t1r/f3www/Hueeei1NPPRU5OTls21AoFIqAUAKrUChqjJKSEnz33Xf48ssv8fvvv1t/b9GiBXYs0xAubQxN90rj8xBYVmm1leUnryzSahXHIq8cUuYprwLpjNzyahKklHgIrCWvQaUK88or4C6w1Smuybidk7wCC/jLEOf+8ZPYQAWW99ihFiXWxOe6ZJZYE6/9zSOxJl4y61MWhYH73umPCRMmYNasWTAqr5Xs7Gyccsop+POf/4wePXrUidG8FQpF3UcJrEKhqFYopVi6dCk+//xz/PDDDzhw4AAAIBwOg+7LR6SkKbTyfP/BmJzklVdak8pzElgeabWK8pJXASFzlFeJQWWE5RWo9ihsrUdd7SQLbE2KazLJ56aIwJo4iZDoPoKzyNZm9DWhHrUtsSYu1yu3xJok73MRgbXjJLOM5RlaBa546DhMmDAB69evt/7eqVMnDBgwAGeccYaKyioUimpFCaxCoagWysrK8O233+K///0vVq5caf29bdu22PIrRbi0MYgRYS/QLrAy4lpZll1eRaQ1obhkgZUQsQR5DWAkVCl5NakmiQ0y6iolrnYMo3bFNZloVE5e7dglSPact5WVLvJqkjYSa2K7joUF1o6572UlFkgUWc6yKCieGX8VvvrqK0yePBnllffAnJwcnHXWWRgwYAA6dOggVz+FQqFwQAmsQqEIlM2bN2P8+PH48ssvsX//fgDxAZmM3fkIlxRBq8jjn/qG0nhDKwhBqZRXWWm1ijPlNQAJo7oBWhmhli4rCHG1E6CkkFAosKhrYOJqJ13k1UTXg32JoAd0LSEusrWdOuxGoCIrK7Em1AhGYq3yqLzEmsR04bIoieGax0/A+PHjsWHDBuvvRx55JPr374+TTz4ZkQjHC0uFQqHwQAmsQqGQhlKKX375BZ999hmmT59u9Y9q0aIFdi4NI1zSJHVAJhY0DVQjIOWS82eahCojWTJzqZpoGmAEJ5wwKIzS0mDKAkBjglMNuRGEpBCtahqboPq6hsPxRrx0QQQkFEJQj0QS0gCiBXYcSEgDjQZ0TDVNfv7YZGTn0TUJ8mUEISCRMGAE1MwJSmI1AhKgzNGsDBDJOWETysvMAOEZ6d2+LigeG/tXjB8/HtOmTbPmlm3UqBH69++PAQMGoGHDhoHVVaFQHJwogVUoFMIcOHAA33zzDT777LOEeVu1ikJE9jVFqKyQP9oKxMU1XCk6hiEnsCENtDKqQGK6nLxqGmDWqyIqL6+mzEVj8vJqRjSpEby8WtuQkE67vALykVd7dE3mMWZKDgAYVFpgScgmYLb+vrLHxF6urMiax4FSGqzIykpswPJq/WqPKsrKbBpLrImszNJMW1mCIgvE+8oOuu9IfP7559i1axeAeDbOmWeeiYsvvhjt27eXqqdCoTh4UQKrUCi42b17N/773/9i3Lhx2LdvH4D4aJTR3Q0QLmsJrSKTv+Fjl1YTUXm1SauJsLzapdVERl6T01Nl5DV5VN/qlFdrm5zimSyuJoIC65gWKvIYs4uriYTAJoir9cfUv4keH6fyRUU2+XikhchWk7xaf3JKjRWV2XSV2OzKetnOYVGZtUusVZaAzNLsTFAYuPvFfhg7diyWLVtmfXbcccfh4osvxjHHHKNGL1YoFFwogVUoFMxs2LABH3/8MSZMmICKigoAQKtWrbBteSbCFc3iacIxna+h4ySuJrwC6yCuJlwC6yStJiLy6tanUkRe3aaiqQl5BfgE1k1eTTgl1rNPI+ujzElcTQQE1lFcrQ/dP+M9Vl7b4RFZt+NR6xJbzQILuEisCa/MpqHEWgKb8Mf49+IVWSeBNeG6vxNiRYcpKJ4d/VeMHTsWP//8s3WtdezYEYMGDcLpp5+OjAz37SoUCoWJEliFQuHL0qVLMXr0aPz0009W/1YtlofwgTYIRRsnpgmzCqyXuALs8uohrSbM8uolrgCfvPoNBMQjrx4iBKDm5NWERWL95BVgFlimwXhYHmVe8gpwCaynuFoL+S/Detz8tscqsX7HJFCRZZXYGpBX62OWQYpYZbauSCzAH5UlBDTDu06sIutUJ0M7gPOubYcJEyZYU6s1atQIgwYNQv/+/dU0PAqFwhMlsAqFwhFKKWbPno2PPvoI8+fPt/6uVTRCpKwVtJhD/9aYDhKNucuEn7Ta8RNYBnEFGOTVT1rtsAgsywi2LPLKID81Lq4mXpLAIq52fCSWeSRZr0eZn7jaYZBYJnkF2I4h/CWWeXvwF1mWY1Pj0digBJYjO4DnfPAkCImtrlRi1wXYorJeUdhkPGXWFoVN2QaJ4ar7j8Snn36K7du3AwDy8/MxcOBAXHjhhSgoKGCug0KhOHhQAqtQKBKglGL69OkYNWqU1V8pFAoBpY0RKWsNTc91X9kt+sojroC7vDJKqx1XgeURV8BbXnmEzUteGYUHQO3Jq4mTLPDKK+AqsNxToLg9ynjkFfAUWB6RjK/At7zb8eTdrpfE8hyfGonG1oK8WqvwThnjJrNpJrG+Amst6BOVZYjCpqziIrJ+daIwMPTpk/Dhhx9i/fr1AOLjKvTv3x8XX3wxmjRpwlUPhUJRv1ECq1AoAACGYWDatGkYOXIkVqxYAQDIyspCbHdjhMtaQaMMjaJkgeUV16rKJAqsgLgCDvLKK60mTvIqMleok7xySg6A2pdXIFUYROTVJElihefvtD/OeMXVxEFgucXVWlFsveRjK7r9ZJEVOT7VLrG1KLCAgMSaJMtsXZVYawXnqCxPFNZOssiy1oeC4t6Xz8AHH3xgPYcyMjJw7rnn4vLLL0dRUZFQfRQKRf1CCaxCcZBjGAZ++uknjBo1CitXrgRQOaLwrsaIlLUCoYwNGHv6sKi4xitUJa+C4gokyauouAKp8ioqacnyKig3aSGvJoTIiatJpcAKi6sJpeLiamITWGFxNRE9xpWYx1m2HqbIyhynahHZWpZXa3XJ88WirksskCqyAlFYO5bIeqQRO1YDFA+NOB/vv/8+Fi9eDCAusueffz4uu+wyNG7cWLhOCoWi7qMEVqE4SKGUYsaMGRgxYoQlrjk5OajYaYorZ6MlpoPEdHFxNTGMeDkyjUoARDeCaXDHdNCyMrkyTHmVFJq0klcA0ELy8grEG+2y8lqJlIwAlsBKyysgf7wRl9gg6kKjMeljFbjEBiGwAU2/In3eAHGZlZXY2hZYa+UqkRWNwtohFVGh+lBQPPn+RXj77bfx66+/AgAyMzMxYMAAXHrppWjYsKF03RQKRd1DCaxCcRAyf/58vPnmm1iyZAkAIDc3F+U7GiNS1pJfXAFQTQM0gJSJT3qPcAhU00DKK8TLAOKNYo2AlEpKZ2XDmO4vli+HUhj7JMrRSFysopL7JkgIiQuRrKRpZjm1GEVLKEgDqMA8psllmGnRonON2tFIMOJINOlyAh/gKQiCkFhNi79EkT32mZnyx1wjIBkZYvMbJ0FzsuTKqcxqQEYEEJxT1sTIyYQmMq834iL7+KiBeOutt6znVlZWFv7v//4Pl156qRrsSaE4yFACq1AcRCxduhQjRozA3LlzAcTfZOv7myFSwi+uVNNAM+MRHRLVQco9Rh/2IhwCzaiUj5ghLrCaBpoZrqqPiMASYkV+STQmLq+EVKUax2IwikvEGrUaASEEVDfqn7ya4morU7g6QcorIC4xdnEFqr4TpXJSY5YpI472YxWAgKadyMpKbGU02MoEkBFZexRW9LibEmsi2FSjOVnSZQDxvrDEXF9CZI2cqn0jIrMUFI+83R9vv/22NchgXl4eBg8ejAsvvBCZQU1tpFAo0holsArFQcD69evxxhtv4KeffgIAhMNh0LLmiJS3hVbOl1ZoF1cTEtX5o692cQXE5dUmrlZdeOXVJq7xMgTl1S6ugJi8VkqrSdrKq/V/AYlNltfKcoWqE4S8mt+hMtItJC/J8gokficZiU0uV0Qck4+TktgqklKZU9LZRc6HZJESfYGVkZS+K9BkS5BYwTKAqgGdZETWLrAmIiKr50Tw8AtnJnSBKSoqwrXXXouzzjorPnK+QqGotyiBVSjqMXv37sXIkSMxfvx46LoOQghIrBnCsY7QaDZIzACpYO9T6SSvAKfAJourCY/AJklrQj145DVJXKvK4RDYZGk14ZXXJHE1SRuBTRbXhM84JNZJXm3bYK5OkFFXuyCax4tVWpzE1frM4e+8IutWNq84uh2j+pZSzCuxDv1wXftj84qsWzSQ556QLLBWXfiabikSK1BOcl9YEZF1EliAX2KNnHhdKCj+/mhvvPXWW9i6dSsAoEOHDrjhhhvQu3dvx3uqQqGo+yiBVSjqIRUVFfjvf/+L9957D8XFcRHT9MYIxzpDo3nWcqwC6yauAEf6sJu4Auzy6iKuCXXxE1gXaa0qg1Fe3cQVYJdXF2k1qRPyCrALrJe8Vm6HqTpBR12TYYnCeomrtYzH56wi67cNVnn0OkYHq8R6DCLlO6gYq8x6pbQyHn9XibXq4l+Oq8BylAE4T6vDK7JuEguwi6wpsFa9oOPaO7vj/fffx/79+wEAPXv2xK233orOnTszlalQKOoOSmAVinoEpRRTpkzB8OHDsWnTJgAAMfIQjnVByGiUsryfwHqJq1WGX/TVS1xN/ATWR1ytenjJq4+4xsvwkVcvabUTi3kP2uQjrkAdkldrOQ9B8hNX27Y8P66uqGsyfgLLIq+Av0ixSCzLdvzkkfUFQ30SWRaJ9RkFmWlkbD+RZe2T6XUesEgs4CuhvhLLUobHiMSsIuslsCZ+IpsssCYUUQy8pjU+/fRTVFRUQNM0/PnPf8bf/vY3NGjQwHe7CoWibqAEVqGoJ6xatQovvPACFixYAABo3Lgx9m5pipDeAgSpjTkveWURV6scN4FlEVcTN4FlENeEejgJLIO4VpXhIrCs4gq4R18ZpNWkzskr4C5JrPJq26bjn6s76mrHTWBZxdVannFZL5Hl2Z6bPPKkeB8sEss4hQ/X9E5uMsszsJDTecAqsFY9nM8lJoH1K4NhSh0/kWURWBMvkXWTWAB4/4sbMXz4cEyePBlAfKCnq666Cn/5y18QCWiaIoVCUXsogVUo6jjFxcV45513MG7cOOi6jszMTMRKWiIcawsCj1RZB4HlEVfAJX2YR1wBZ3nlEFerHsnyyiGu8TIc5JVHXAFneeUQV6COyqu1TpIU8Mpr5XZT/hSUvLLKoJPA8sorwNcf001iebfpJI+8A23Vd4nlnH+We45iJ5HlHR3X6QUYj8QCjhLKJbFuZTDOC+slsjwSCziLrJfAmjwzYgBeeuklrFixAgDQpk0b3HrrrTj++OO5tq9QKNILJbAKRR3FMAx88803GD58OHbt2gUA0PQiRKJdQJDtu75dYHnF1SrDHn3lFVcTu8ByimtCPUyB5RTX+PpJ8sorrkCqvHKKK1DH5RVIFCURea3cdsJ/ZeWVNepqxy6wIuJqbVtgvWSRFd22XSBFRoquzxLLKbCAgMQCqSIrMsVL8sswXokFEiSUW2CdymAUWBMnkeUVWBO7yLIILBAf6Gnog8dgxIgR2L17NwDg5JNPxm233YamTZsK1UOhUNQuSmAVijrIypUr8dxzz2Hx4sUAAGLkIBzripDRmLkMEjOAmCEkrlYZUR0kZoiJK1Alr4LiatWhtExIXKvKiIEWl/BLq51KgRUd9bLOy6u1viYur/Y61HTU1Y4psDLyCohP62KXWJntmwIpM1+vhISmpcQKyKtVhIjEmlBDTGCT6yAisFYd4ueUsMTay+CUWCBRZEUF1kQrjzILrAlFDAOubI5PP/0Uuq4jOzsb11xzDQYOHIiwzLFVKBQ1jhJYhaIOUV5ejpEjR2LMmDHWAzi6ryVCelsQCDTMZC5/w9YgEYVSuToAIDoFKvjnEbTWj+mgpQek6oBYDLSkVKqItBDYAORVPmJay/IaJEFM4SF7jYnOPWunvkRjCak9gTXJkO9/KSWxGhGSz2SoxPcglIISAhqRnKs1JHZ9vT76MgwbNgyLFi0CAHTu3Bl33nknevToIVcfhUJRYyiBVSjqCPPmzcOzzz6LjRs3AjDThbuCgO9tOg1roIRA45j/NaWMUFwOtDKxMmhYi4uKwAT2FpoGUApSWi62PiFAOBSX3/0lgkWQuHhWTtvAjabFo766DuPAAXlZkUSqga7kNakOAW5f5rwgBNA55y91QjYSK1lGYMi8oEEwEksyMyDT9CJZldFL0ZcTGgHNypS+39CcTCAmfm4ZeRkg5XLnhJ6XgdAB/ueImVY8fPhw7Nu3DwBw/vnnY8iQIcjLy/NZW6FQ1DZKYBWKNGfv3r14/fXXMWHChMq/ZCJMD0W4nD1dGIhLoxGORx+IToUEloY0GBnxBqAWM7gFloZt60cNMYHVtLgAw0wf5hRYU1wBYXkllX1kaUVUTF5NcQXi8lpW+R2oUWsSWy/kNakPbq0QpLjaET0v7PUREVlzPxriUdSEZoaS2HgZlVFQ0SaYJbEAv8iaAmsiWAdqTwMWEFkjryoSLCqyuq0MEZGN5gJnnZVpPV+Liorw97//Hb179xaqj0KhqBmUwCoUacyPP/6IYcOGYc+ePZV9K9tA07oiFAtBK2eXR7u8AvwCaxdXgF9e7eJqlcErsDZxBSEgFTE+ebWLK8Atr8RhYCdugbWLK5Aor0CtCWy9k1egdgS2uuTVDu/5kVwnXom170cBiXVsYtS2xEoKLCAvscQhjZe3OZYgsQCfyCZLbLwCXNunTv1YOUXWLrEAv8jqSevzSmyscv1hw87BU089ZWU4nXXWWbj11ltRUFDAVZ5CoagZlMAqFGnIvn378MILL+C7776r/EseQqEeIKQhtKgBrUJnamwki6sJq8Ami6sJj8BKy2uSuJowC2yyuJowCqyTuAKc8posrkCqvFoF16zE1qq8BpkynExNCmxNiKsdnvPDqW48Epu8Hw2+dGDXJoaSWEeJBdhFNkVgTVhE1klgqyrAtH0QAprt8B04JDZZYK2iGUU2WWBNeETWlFhKdVx4YUN88sknMAwDjRo1wh133IG+ffsyl6VQKGoGJbAKRZoxffp0PP3009i1axc0TQOlHaBpnUBIVeqtX/TVTVxNWATWTV4BNoF1EldrfRaBdRFXgFFe3cQVYJJXN3EFOOTVSVxN3AQWqDGJrbfyalITElvT8mrCcn541Y1VYt32IWM01rOJUcclNshUYidYmmeuEgv4i6yXxMYr4Lt9xyisCYPIugkswCaxbgJrwiKysaQyXn75Ajz55JNYu3YtAOD000/HnXfeifz8fN+yFApFzaAEVqFIE4qLi/HKK6/Y+rrmIhT6EwhpkLCcn8DKyquXuAL+8uolrlYZXgLrIa4mngLrJa4mHgLrJa4mngLrJa0mXvIK1IjA1nl5ZZkaproFtrbk1Y7XecJSPy+R9dt/PhLL1Lw4yCXWS2BNvPajp8CauImsn8BWVcD9I5bpcHxE1ktiAX+RlZXYZIEF4tHYSy9tho8++gi6rqOoqAj3338/jj76aM+yFApFzaAEVqFIAxYtWoRHHnkEW7durezr2g6a1tWKutpxE1g/cTVxE1g/cbW27yKwLOIKeMgrg7gCHvLKIq6Aq7yyiCvgIa8s4gr4y6u1oWqUWC0EIip3dUVegeoT2HQQVztu5wlrPd0klmX/eUgsc/NCSSzTcm77k0liAWeRZZXYeAUcNu6SRuyEi8j6Cay1KReR9RNYEzeRdRJYk1de6Y/HHnsMGzZsAABcfPHFuO6665AZwJy+CoVCHCWwCkUtous63n//fYwcORKGYQDIroy6NnJdx0lgWeUVcBZYVnkFnAWWVV4BF4E15ZWhwZ0isKziapIksKziapIisKziCrDLq7WxapDYg0VegeoR2HSTVxMXuWDGSWJZ95+LxHI1Lw5iiWUVWJPk/cossCZ2keUR2PjGU//EEoU1cZBYVoEFnCWWVWABZ4n1ElgAoDSG887Lxueffw4A6NChAx588EF06tSJebsKhSJYlMAqFLXE1q1b8dhjj2HhwoUAAEJaQtO6gxDvCeLtAssjriZ2geURV2v7NoHlEVfAQV4Zo64mQcorr7gCSfLKI64mtS2wB5O8AsELbLrKq0nyucJbX7vE8u67JIkValrUpsTWkSisHfs+rlGJjW+86neeKKyJTWR5BNbapE1keQTWxC6yfgJr8uijJ+Opp57Cnj17EIlEcPPNN+Mvf/lLZdaUQqGoSZTAKhS1wJQpU/D0009j//79yM7ORnl5F2haK6Z1TYEVkVegSmBl5JVXXK31TYHlFFcTS2B5xdWkUmCl5FVEXAF+ebU2HJzECjey66K8mgQhsXWpgWqeK6J1NiVWZL/ZJFa4aaEklgtzP3MLrIlBxQS2qgLxf3iisHYqRVZGYkUEFqiSWFaBBYDPPrsRTz31FKZPnw4AOOWUU3D33XcjLy9PqA4KhUIMJbAKRQ0SjUbx2muv4bPPPqv8SyFCoSNASC5zGYRSQBe7bIlOQXRDSD6BuMCSmPj6xKAg5pt3zgY2qYiBlEWBkKDIVERBikuFG6k0FgMtPSC2bVF5BYITWNHoa12WV0BeYOuSvAaFbojvt0qJlWpaHIwSqxGQiHf2jReUUnGJNcuQWJ87AmsnZggJrAkp14UlFgBoiO9cp5RiyJDOeP3116HrOlq2bImHH34Y3bp1E66DQqHgQ6JVoFAoeNi+fTuGDh1qySshHRAKHc8vr3zzxFvQsAY9OywsnzSsQc8SX58YFESncSEQkAIa1sTl1aQ25BUADMGDBsTlTUaiCJFKHSYy+7y25VX2fKkteSWa3PeWXV92v9XkHLxBI3OtAuLybVDQKPvcpckQQtjmf60myIEK8ZUFs4lMaGYIsRzxFw+E84UwIQTDh6/Eq6++iubNm2PTpk246aabMG7cOLkXNwqFghkVgVUoaoBffvkFDz/8MHbv3g0gDE37EzStGfP6NERgRLTK9GH+BhKNaDAiGkiMQqvgWz+eqkyg6VRs2xoBDVfWnXPbVhkhAhLVoXFMTp9YAAWiMZADAlFQwwCN6aBlZWLb1nXAMGBUiNa9skEteqvW4g07EYG1okmaQOMyCHk1XziINsxNERPZd1qoat+LYAqkSBl2+eRdX2ZdexmikX+DWtulrHPNJiMTgTUFVOScBapeWgiub/WHFHlZppGq61XkJYIZwRXKtCCgAinMdozKNGIicN5QQqDnxuuvMcwfm7xutDADoBThUrFzJ1oQv1eFSzifjzSK3r3LMHXqVABAv379cPfddyMrK0uoHgqFgg0VgVUoqhFKKT766CPceeedcXnV8hEKncAsrzREoGeFquS1gvPBHtag54Sl5VUEqhEYGSGrrysVKIaGCHd6V2IBNP4T04XlVQrZVEgZgdJCVmNYhIRUSN79EKS8Cq8vk3ZcuW3RKKZ9Pd4ykpeXjcTKrCsZgRaSsKDShw1D7vqt5WtfSP7NCK5BazUaSwkB5e0iYpNe7oEJKUVkbwVACGK5YaFobKQ4BkoIYrkhxHLZ1yckghkz8nDLLbcgFArhu+++w80334wtW7Zw10GhULCjBFahqCbKysrw0EMPYfjw4fEpcsKtESK9mVKG7eKa+AFbo8QS1wyxSzyeLhySklcqkRIGJPZLEoq+2veVUCRJogGr63INWGrIy6sEUoPRVIe88kaUksXpYOnH6iSsMgLNK7G26KtVhGw6siyyEluL9wHhCLYJj8RSClIukQbsVKTEdWfIpBWLiKyZ6FIp3zwiSwjB8DdWYtiwYSgsLMSKFStw3XXXYf78+QKVVygULKgUYoWiGti+fTseeOABLFu2DOFwGLHQoQjFWvkOt2+mCidjRV99LlczVTgZ1uirW8SVNX3YTVxJzECIMf3YKeLKJbBO+4gnfdihwcqVQuzUYOVJIXYTV9ZbtYu8sqYQu8orS0pldUZeWRvjbsIks/94Xia4CSNLGV6yWRPru5XBmk7sILBWEawyJhuBdRNO1pRgt3s04/qu93iWjAJbCnFKuawvAtwGgmK5/gNMI04pmuH8sacRJ8OSVmylEif8Mb5dptRiDajIT9y+WW+m1GICjP7oGtx///1YsWIFQqEQbr75ZgwcOFBNtaNQBIwSWIUiYJYtW4b77rsPO3fuBEgENLcXNDRCqMz9AegmriZ+fV/dxNWERWC90oVZBNYr6soqsG7pwswC63Y7YxVYl8Yvs8C6Nb5ZBdZLMlhu1R6RVxaB9Y28ejXiayJt2E9i/Rr5fvvQK3ItK5B+ZbBESqtzfb8y/CTWQ16tIvwkNoj0Ya+IKeNLGJn1PUXF7/z2EFiAUWK9RjL2uwdUo8ACbBLrNaWNn8Q6Cqz1IZvIVhQ67z9WkY3mhwGq46xjY/jmm28AAOeffz7uuOMOhCWnWVIoFFWoFGKFIkAmT56MW265BTt37gTV8kDzT5KWVz/85NV3/QDShe19XYXKCKqvqyi1nCoIgEEufPaPT9ow9ZG/tEsb5l5fduRcye2zCKRMn9TaXr+2+sTy4HcN+33u9/2C6BcrmVIslVZcB/vG2pFNKwYhwqMV21OLvYgUxwASwqTZGbj55puhaRq++OIL3HPPPSgpKRHatkKhSEUJrEIRAJRSfPDBB3j44YdRUVEBGm4KFPQBQu79XV37uSbhNngTjVQN0OSFW/Q1HcQV4J+DL7UAyQZZTQzWomnQMlwiI7L9XYH61+fVDbcIEqsYSU1HVI2Py5oUU7dlWQU83SXWD9nr3eNlF3OaaG0M8GSnFiUWqD6RtQZz8qJSYt1ENmO/d6aMb/9Yc9cSglc+WofHHnsMWVlZmDNnDm6++WZs3brVu34KhYIJJbAKhSS6ruOFF17Am2++CQCgmR2BvGMB4iwsrOKauFJVg4NVXF2L4hRXp/ThoAZpqtWoK8DcmCUhDcRpWoTaHGUYkB5pGOCU1+T9VR8irwD7PpSRP7dlZUcpFiHoSCxD+nBCEU7HLKjRh1mQzbgwy5Ah+fv6pA8nE4jEpoHIJhMqYR+sTzgia4vGpogsw27lGejpvmdm4OWXX0ajRo2watUq3Hjjjfj999/566xQKBJQAqtQSFBeXo6HHnoI48aNAyEENPswIOcwq4GnRamVPiwkrjZkxRWQmxYHSJN0YSAYceVpgDpFC9JBXrk3mbjf6kzk1Y7IHJd2ko9lTaQOB7GO2/q1IbTpGIkVEcp0k1hOpFOKgbSQWLvIiswhG0RasUhqsZvIRopjCcv97e7P8cYbb6BDhw7YuXMnbrvtNsyZM0eszgqFAoAaxEmhEGb//v24//77sXDhQgAaaG5PIKNlwjJalEKLGsLSaaYP07B4P1kSoyAGFRZXMwIrE3U1B3ESFVdrECfR25V9ECfBRqc1kJNoo9M+kJOMvFIqN7+rRuTEVdNqP/JqNrplJEhmP9qPn6hAUqN605JZ6wDIfQddLgXeErDqGn2YBU1SyCsHd5IaaTYSlruuzWvBaxAnP0JatQ7i5Icpr14DOfmWoVP3gZz8oDQ+yJPDaMRM27YN9BTNd7g/0ih6dd6BuXPnIhwO48EHH8Qpp5wiVleF4iBHCaxCIcCuXbtw5513YtWqVQAJg+b2AiJNEpYxIgTEoAiVSVxilILIrK4RUBIXYVEIjTcKhNePGUxTIHiWEdWhlUrMURiNgZQckKoDjUZBSyXKMAwY5YxT+XghIT3S8goAmgbi1p+XFdm0YUA6Aljr8lhfoAYQi/kv51UE6xRTXshGQwM4J4lMGRoBInLyCAAkS1wgAYDmOHSV4ERGYqEBerbc/SVaGAERfR9S2SSWyXQilKK8IISMYodzkuo4recB/PDDD9A0DX//+9/x5z//WXhbCsXBinqCKxScbN++HbfddhtWrVoFSjJB8050lVetXEz8aAjQswioZLqvlLxq8VRfWpvT1xkURKdSAm1F6yQiC9SQbKQb8VQ/qQZuEBANUu8sNU1egOuLvMqmMgdVRm1iTq0juz9lzwlZeQUC6YNLZcowqPSLAJIRqfWRkgGxNOAEQiT+I0hkXwxU9JSqTCuO5mqI5gp29yEEGfsNVOQ5rE9C+H5+Ls4//3wYhoGnn34ao0ePFqysQnHwogRWoeBgy5YtuPXWW7Fu3TpQLRvIPxEIF1ifGxGCWHZVP1OR6CkNxcsRhWoERoSIP8CBuLzWdtvakIs+m2VITVthGKAVFYHIa2AIpmta8iza562+yGsQmOIpI6BBlJEOmOeToMRa10YtvtyhlMZ/YrEA+qVKinAsJi2y6SD0hNJgRFaEyu3SEOSeg4CwxAIACFCRp6WKLCH4/GeKSy+9FADw+uuv46233pJ7uahQHGQogVUoGNmwYQNuueUWbNq0CVTLAfJOsKbJSRZXEcyoqymvJBbvQ8tVhhaAuNZ21BWQl1eDAlG5xqh01BUIXl4FSY78cjeU6pO8ykYLk4VTRECDKKO2MaOvdmojEhuErNmgVO6lFxCAxALBSGwtDzIF1H40FhCT2Ix9Vd9dJhoLAmeRJQQfTtyPG2+8EQDw3nvv4e2331YSq1AwogRWoWBg/fr1uPXWW7Ft2zZQLRfIPwEI5VSLuJrwPPjrVdRVD0BeZRugTvIaCrH3/TQM0GgsLeUVAF8U1kleeaO49UVe3eAR0Looq244nQcc+9jx+qjtNHsEJ7FcIuv0vWUlFkiblOJai8ZWwhuNdXoGVYfIvj52I2655RYAcYl95513lMQqFAwogVUofNi8eTNuv/127Ny5E1TLj6cNa9kwIsRVXLWof/9XN3HlITBxrcaoK2Wdq+9gSBkmWjD9YBnTiKW3pSKviVSnfNYlsXWKvtqp7T6xHLjJQhASCxx8KcU0232sgXSJxgaRVswishn7HPa7TWRNXv5wrSWxo0aNwrvvvitXQYXiIEAJrELhwfbt23HHHXdg+/btoFoekN8bRmaWb9SV+IweLNvPFQggXRioX1FXlTKcgJ+8er7l1zSQjAxveWWJwh5M8soioEGUUduY8up3/H32ue91Egr5nz8Bpw8nkzYSC6RPSnE9iMYC8hILBNs/9uUP1+Lmm28GAIwcOVJJrELhgxJYhcKF3bt344477rD6vBoNeyOWm10t6cJcZdSBqCszjFFXGtZAM13SdxmjrjQcch2JmFlevdKI00ReSSjEFnl1E5Agoq7AwSWvLMsFUUa6wJpCHsS+r+WU4hqRWNbv6HGP4une4Arr3M71qG9sTUVjHUlKK37lo3W46aabAADvvvsuPv30U7nKKRT1GCWwCoUD+/fvx5133mmNNhxrciKMzBzh8pS4JsEbdXUSmYCiroGkDPP0d63GNGLeclOisLzy6iYyB6O8ei0fRBnpgF/qsBMOx4D7RY9jP275l0WsfQ0tia3pfrFOBJVS7LD/KM95l07R2Hokss9/sRHXXnstAOCll17CN998I1cxhaKeogRWoUiioqIC999/P1auXAmqZSLW5AQgLCevKl3YRhr0dQUOvpRhR+wCqiKvqdSmSKarxIpMw1RPIrH1KqUYSIvpdoAAorFAvUkrBgFem7QdAwcOBAA88cQTmDlzpnzFFIp6hhJYhcKGYRh4/PHHsXDhQlASRqxxbyCcJ1SWiro6oOQ1TsBRWJmyKKVy8moXmnSR19rGLp/pKqK8iERf7VRKrNQLH2su45qLvjqupyQ2kXSS2LoejQUAjeCjWVGcccYZ0HUd//rXv7Bo0SK5SikU9QwlsAqFjeHDh+P7778HQKA3OhaIFAqVY4TkxBUAjHAAUVeC9BBXQHqgJkpIXG5kUobDISAjItfwC4VAwuH0iLwGJML1KvIKpEf0VSPBlJEOsA7c5Ec9iMQCAUus7PeJxdj7v7phGEBI8tgElVKsq2gsAEAj+HJZFo4//niUl5fjvvvuw4YNG+QrpVDUE5TAKhSVfPbZZxgzZgwAINagJ2hmEXcZegSoyCXQM8QfoEaIQM/QQCUewlSrnOIniEzMIKakCxEYGRItAsMAkW0c6QZIWQVQXiFeiK6DVkRBZSMf1ACVlQEARCPMU+o4opG4jMtEPzQSjJjUJ3kFQAL4PoQEIMFBEsR+kRUlIBCJlT0+lFK5iLRJEH1rYzH5exLi90gpMjOAmPyLPRKT36+UkPhLTwmMSPxHhoo8goo8wXoQDVM2NMahhx6Kffv24d5778X+/fvlKqRQ1BOUwCoUAGbOnImXXnoJAKDnHwqa04Zr/RRxFXxeGaG4eMpETalGQIPwCRr/oSEiLNOBDNJhGCBRHZBoFxHdACqicg1OXY9HXQ0DIASEdcROO9SoSvuVFD/5OV6JfOTV/A7pIllpJq/1QmJlU4eTIZq8xGparUssISR+L9B14f2TcA0HEdGVfrFGpSTWEsaYISyyem58pHgSo4GJrMy6lBA5ibUGaBIUWS2M//znPygqKsK6devw73//G7EgUscVijqOEljFQc/69evxyCOPgFKKWH47GHlduNbXI5CKuAJVUVepKXoqo65Byat8GQGIa3k0OHk1CYVAIpwtEru8iiITKU0iRV55y06WV8Pgj8IGKa/1aNCmZCkSlST7erUmsU7yGsjxrh8Sa2EEJPkiEpv0EioQiY3p8tFYoN5EY02JDUpkeTnv9lF48sknkZ2djblz5+KFF16Qy5pRKOoBSmAVBzUlJSW4//77UVxcDD27ESqKjmBuTAeZLlxdUVcjTEA5pNiMusoSaNTV1gaimhbvw8pSBzNl2C6vIlSjvHJHYYPo85pukdd6JK9B4SRVtR6JtVMPJZZHZB2XrS2JdTgW3CnFTtkkktFYi4AklkdkK/KdnxFBRWNlRVYkGnvxsC/wr3/9C4QQfP755xg3bpxEJRSKuo8SWMVBi2EYePTRR7F27VoY4SwcaHMsc0M4qKhrEOKablFXN3mlYcZ+sOmUMlwRdZdX1jTigCKvJBSKC6/MdrzklTUKq+TVFTcJkpYj+2c1JbF+qcP1TGKBAKKxHBLr+SIqgH6xQA2nFGdmuH8mkVJsJ12isUGmFfNw64ezceONNwIAXnnlFfz2228SlVAo6jZKYBUHLaNGjcL06dNBiYYDbY8DjWRBzwRiWe4PlaCjrjIE3ddVvpw0TRl2wi+N2B51rea0YZYobCBT7rBEXv0ktj7Ka0D4yQ+LHAWSzhoErP1eD0KJ9T1GQUViAX+JZcikqKmUYiYprIVorBuyAzzVZDTW/vnTUzahb9++iMViePDBB7Fnzx6JCigUdZf0eforFDXIL7/8gpEjRwIAyloeCSO7YfwDl2lnghBXgC/qaoQJ9MzUS7Q2oq5eAzkFPlCTTxvHLY24VlKGvaKwAUZemXHbpkobdqcGRxyuF4M6JXMQSqwvPhLLdU17SSzjvvdMKWYdjC7IlGIXkdVz2G2wuqOxZQ38j1GNDfJk/zMhuPfee9GmTRts27YNjz76KPQg5hRWKOoYSmAVBx179uzBY489BkopKhq0RaxBW8/la2uQJifJDSrqCtRO1NUxjTiolOFojC/y4RSFDaq/K6e8ukVhA+nvmhHhk1enKKySV1d4ZSewNOPqkliRUYfTTWKraXAnrmNtSmx19YsVeCFVbSnFXunDbjhJLO+1FIDEAs7RWMpxTtf0IE99/v4GHnnkEWRmZmLOnDkYNWqUxIYVirqJEljFQYVhGHj88cexY8cO6Bl5KG/xJ9dlayPq6oWovCYP5FQvU4Z55dUJUXm1R2Grc6RhVsw6yERd7RKr5NWVIEYYFi2nWiRWZsqcdJLYdBmh2OyCYNunwtd1ssQK7u/qSCkWTsethpTiaJ7YPS+IlGLpaCzAnFZ84bP/wz/+8Q8AwHvvvYdFixZJblihqFsogVUcVHzyySeYOXMmKNFQ1qYXoDk/7GSjrrFMgoo8LbC+rukwUJOZRlzTKcOOdalMI5aW11AICIe9B2tirpRcY8wehU2LkYYry1HyWr1Iz0WaRt8lbSQWCFxipWQ2yBGKdV0o+mrHkliRuaytQoJNKeZJH3bClNggBmiSwR6NLS8ULIsxGnvPuMU466yzYBgGHnvsMZSUlIhtT6GogyiBVRw0rFq1Cm+88QYAoLz54TCyClOW0TMIonnyUVcaQiBRVz2DeA4qxV6hYKKuCKAMShCXGZmoq1HZ31U28mpUDvgkO1gTEIhccU+r41ZOkIMB1Td5DQjZfcw7dYtnPeqbxCLAc1hLs+spCIyARiiWFVBKg+t3bMg/XEiMgujy5ZQ1lPtOpgjHciTPm0qJLW/oXs7QoUPRvHlzbN68GS+//LLc9hSKOkR6tQgUimoiFovhySefRCwWQyyvGaIN26cso2cQ6FlIHDCBExoCjIz4v1KQeBlUg3TjnxhVUVwpZBsYOoVWrkOTTBsjRjzqSjUiF0EwDNCo5IBPtrICa7hLlmNFXmXEXgsoCgakp7xKnsvpJjSBSSzRgjle6SCx9hdSshJrpiUHIMNMU1WxIJkKTCKR+D0igCgq0XWQAAYSko3oRivnf5WVWNkorAUBYtkEsWyJ8ioHlnST2JP+8SYeeOABEEIwYcIETJkyRXxbCkUdQgms4qBgzJgxWLZsGagWQVnLIxMaaXoGQUVBMPIqLa6I1yGwgZrM9oDM89igVoOfaoAhIjY6lRZXoEpe4/+Ra9xa8hrSQDIEBiEBrJQ+q1Fay1HChLRh0YhysrzKNEzTUV4lIYTEv5eSWG9E65KUii8lsXZZFJXP5PVEyzG/R2X/cmGRtUc8ZfuzAsFIbOUzQlRiDVv6MNENYZG1ZzwFEYkNhMp0YCmJRZXEOonsVcMn49JLLwUAPPvss2pqHcVBQXq1DBSKamDNmjV49913AQBlLQ4HjWRbnyVEXSufC7FscKX+uEVd/eaUTcEedZWEGDZ5lSGAtC4neaVhDTSLL3qaIK9mOSHnKXVcMQzQ8vLUyKuIxFaKa0JDtBZTOR37vHKPJusSeRVpmKa7vAqc2yRZXJXEesNbF1Nek44Nt8S6vbwJIIIqVE7y8pVdFrglNhRK3aexGLfIpoy+LiixNHn0YVGJdThPguhfS/RgUopFKGuU9J0Eo7F2YaUe0djhv+xHx44dsXfvXrz22mtCdVYo6hJKYBX1GsMw8OSTTyIajSKW1wyxwjYAfKKuxOFvLvhGXVmfVR5RVyPMN6CUm7hypxGnUcowKa9Ikdf4hzzfJ8CUYXvUNaVONX9bdR2wiWfwGL+0YZ6GabrLqwnHOZ4ir1UfBFgheeqsxLrIq1Ud1rqY8up23vPIp9eyPOW41Z1XYr32ZQCjCyOmBxKNrY2UYjN92Lkc9n1c3iColxxOFQF3NNZxOj2naKym4e677wYhBF9//TXmzZvHXWWFoi6hBFZRr5kwYQJ+++03UC1spQ47RV1FCCRlmDXqytB48426sn5XW8qwE0xpxAwpwzSsgWZ670CnqGtKOSxRWBZ5ZY3CeskrUONRWN/RhllSiet7n1cvGCTWVV6rFgiwQvLUWYn1ORbMEusnhTUZifVbhlViWQZLYpDYlOhrMozR2JToqx2OlGLDZ/Rh1pRivwETWaOxgfV/9axMMCnFydHYwS9/jQEDBgAAnnvuOZSXl0ttQ6FIZ5TAKuot+/btqxp1uOkhiOXmMPd19UojDnSgpqD7uspSTSnDrng0Fljk1a8MADUXeU2oU83cWpmnyvEUbg559WuQ1jV5NfE4733ltWrBACskT52SWI4pqDwllqfft59Yskqu33Is+45FYlmPZbr0iwXYJJbxewUyZQ/Sq2+sX0qx1+jDJsnR2Ouvvx5NmjTBhg0b8P777wdWXYUi3VACq6i3vPXWW9i7dy/0zAKUNe/EF3V1WY436uraD5ZTXr3SiHnk1TONmENeXaOwnIM1ufWFZZZXsxy3KCyvvHpFYVnlFaiaP7Ua4Zrn1S2VWCTy6tYgravyauJw/jPLa9UKAVZInjohsT6pw47VcaqLX+qwY31czjfZPq4mPFPMeEks71Q1LhLrG3214yGxntHXZDwk1i/6moybxHqlDzuX47yfg0ofTun/6loReEZjWafhs0dj+/z9DQwdOhRAfPDKzZs3sxWiUNQxlMAq6iXLly/H559/DgAo7vQn6NmadLqwcNSVJP4uPFBTUqNNaKAmp33gkzLMRE30d/VcMemLuQ3WJELySMOsVFMqMQmH+eTVJGlaERIJB5M2nIYj8gZGff1etYnmINWCA2qliKzIyL4BTY+TUo5ImW4jFIvcSwQGd0rBqV+syDXh1i9W4Hs5pRSLzLfulFIcWPow76EXHOApGVNih3w9D0cffTQqKirw5ptvSpWpUKQrSmAV9Q5KKV599VUYhoHyxq0Ra1AkJK9mGrFsX1c9ozIKK5kybI/CyqQMJ0RhJcTVisJKTpFjRmF5o64p5ZhRWNmUYXsU1mmkYR4CjigKiasdSoPp72o2RIMUvHSYLsd2PQhP35Jm0pt2UVgTjXClDrtBCBGfMiqhPlriv7LliO6r5BGKeaOvyVRKLFf0NRlbNJbyjPpuJ6lfLG/0NRlTYnmjr6nlxPdzjUdfUyqChGgsS/qwE5TEn/E333wzCCGYPHkyFi9eLFYnhSKNSYMWg0IRLHPmzMH8+fNBiYbS9ocJlxN0X9e06e9qPhcD6O9KjGDmd4VOpeQ1XhkSbH9XQFxcTYKMwso2ZCuRmlezukgHebXBnTqcWkBwlQmAtJVYogXT717TxKKvyQR0jQVWjlO0WoR07BcbwPciuiEUfU0th9Ze9DWZSoktbyR3Pp//7hc455xzAACvvvqq/LNMoUgz0qvVoFBIQinFiBEjAABlzTvAyMwRK6dSOIN4OAYGBYwwgZ4pXykaIjAy5C5/QiujuRG5xhrRKQilfPO5OpZjALohF2kAAN0ADaLBBwTTOAeCETxNC76BrhpF7qSRxAbWeKUc0zKxoJH0k8Y0Om4AxOZgTiYcDkZiI2H5+mgENDMCUi7/vfTsMEIVBkIVcmJdURCCFqPQYvLnttkfVYrKMioaytXnb3/7G7Kzs7FkyRJMmTJFslIKRXqhBFZRr5gyZQp+//13GKEw9nfpJlSGPVqqZ7qPRsyDkQHEZMQzjTyB0MoosFknwbsI0Sm0shhINN6QkXkDTnQDqKiMvIZC4hJrl1dNk0vZNeVVVj7N9Q2JVGabvFIq2ec5KFGwE0AqaSBotn6VQYhaGshQwjkjE/UKWl5NJCU24fvJnJv2Y1Xb0ffkNH8Zaay8h1FKA5FYYlBrXACpcigFKdelRJYSEn8OUchJLKl8rlFISWxZE2KlAstIbGnzeB1kJfa4ke9h0KBBAICRI0fCCCLVXqFIE5TAKuoNuq7jrbfeAgAUd+4EIzOTa/14n86kVN8g3qbKUk3yKhKFJTS1PkZI447CEp1a4moRZpjPNaUcA6SsokpeZajOyKuoxCavJyKxDpFXYYl1EoT6EoXVAhoUKJlalFjHc6WG5ylmQlBiHb+fiMQ6HSOR41adxzqASKwlsSL3Odu9mRi0SmR5qIy+WuVQaoksL3p20stFWYm16iQusU5tB5H2g70cU2JFRJYS4KKLLkJOTg5WrVqFqVOn8ldGoUhTlMAq6g0///wz1q1bByMSwf5OnbnWtaKuDg+bWovCOsgiAOiRYNKIeXGSVwuOO4mjvFZCIyFmibWiri6NWOYorG6Allc4y6umgfA2iKs7bZhHYj3Shrkl1ms/BCF6tRmFdZJXkzousY7wSmx1RV/tcEqs5zXAc816HZvaOG5eg6zxRj4dMkisQel4JNblniwksU7lCEisY8aOgMRWFKSeK6bE8ohsWROnlyDgfgluRl/tmCIsIrFHvDkCAwcOBACMGjVK9YVV1BuUwCrqBZRSfPTRRwCA4g4dQCMR6NkUMYYusL4DLNVGFNbnGROUxLJGYT3lFexRWC95terE0GhMSBmWgSXqGgqxS6yXEPJEYdO1z6sXdVViveQ1SGpYhnwbqqwSWxPyalKX+8RWR+qwG0FGYyVhltik6GtKORwSmxJ9tVMpsSwiW1EQcp2hgDelOKg2hFc5PBJrX+7iiy9GdnY2VqxYoaKwinqDElhFvWDhwoVYtmwZqKahuGMnAP7pO44pw9UMUxQ2jV6QpvR39cCIeEssi7wC8E0lZpZXvygsT8qwX+OUdS5dFjFlWcYvCssor0xRWB4RqGsSyyqvQQlcDUkse4Te715Ug/JqwiCxzN/P79wNSk5rI1LrJ40M/feZJJYhI8ZXYn3k1SqHsV+s70tO1n6xDIeNRWIdo68O2wpigCfWlGL7dnq+9Tb+7//+DwAwevRouQooFGmCElhFvcCMvpa0bZfQ99UtCuuVMuxEUGnEnvhEOZOp7iisX9TVEYc7CtErGyUs8mrWySWVmDvy6iaxvP1dvQZ0CiplGOCLvLpJLGfk1VNiq2PAJhZqQmJ5I691RGL5+0i7pU7XgryaeEgs9/dzO4d5j0N1S6rI/Mxu0sgx+JynxHKMSRDo4E4e0VjP6GsyHhLrlDrsXifvlGLml+A+KcVO6cOO2/NJKXb6+8CBAxEOh7F48WIsW7aMscIKRfqiBFZR51mzZg1mzpwJCmB/p04Jnzm98RSakzXANGLHKGwaRV0BQXlFaiqxGXUlAg3h5LfsNZo27IRTf1gReXWT1FpMG3aUWFF5rQt9rETThtP8u4mPUp1mfXQBR4kV/n7VmU5ck6nDTqRZOnFKNJYx+ppSlovEco9W7yaxvO8vXFKKyxqLDPbl3J7gbZdQAlQ0cO4zm8yxo97DaaedBgD49NNP+TakUKQhSmAVdZ4vvvgCAFDWvDn0vLyUz80orGzKcLVFYSXaxIFGYSPxHSMqrxaV+5c5ZdiNylRi6ZGG7VFY2ZGG7f1hZSKvdlklmri82qOwkn1eEyRWtsGfzqnEsn1e03RQJ+nBWewSW5vRVzs2iZX+fvZzWnaaHHP92pZXE7swCk79lTJCscS83NU1uBNX9NVOUr9Ynuhrap0SJZaKFpUksazR12SoFpdYU2S9UosvvPBCAMD333+PnTt3Cm1PoUgXlMAq6jTl5eX4+uuvAQAl7ds7LkMJYIQoV8qwIwSIZQU3IrGeQdIq8kpDBDQkXycjpIGGNDl5tSpF3Uca5iEUAkKh6psmRwQZcXWqS7oNfpNuEquR4AZsSlOJlcaU2HSQV5OgB3YKar8HVU5Qc3PqurC8mgiNUOyCKbEi0deEciolloY0qbnCE/rFSh46U2KFoq8JBcXbJ8VtDamxOMyssooG1DNT7NyvJuCwww5DLBbDpEmTxDeoUKQBSmAVdZoff/wR+/fvRyw7G2VNmzkuY2QaqCjSUVEo3yijWgCpxBQgejwabETkCiO0UtAlywGtbHAEADEoQGm8H6sMMQOIxoCIXKMMug5aVgbouns/VlYMI/6TTimXGolHXyUbwoRUikKQfXplIZolnlIEfbzSRYKDxjz2QXy/gAVdOkoJBCeLAUKCuuZCoUD6oAIAIpFgysmIxO/jkhAaFzOtQr5O0fwQQhVy+5sSoKyxBmIAmmyvFgLQMIWRKb+fQh2KEWpb4rnMeeedBwCYMGGCmlJHUadRAquo00ycOBEAUNKuXUqDycg0oOfroJkGoFHpt66muOoyUVhzVF9Aul+tNUIwIXIybJPXeCqxWDnEoAiVxaxGhpToxwyQypRhGg6JS6yug0YD6DcLxBu/lY06QgKQqiDQSFVKM6XCDXRLXk0CiTDLRie0xH0sur+T1pNutKWhvAbSELUfc6Klj8RaUi2Zapuu8moie83Z97WEfJKMjKr6yEosIfEIalSXElk9N8P6XUZiowWheBSXQl5ibaeijMSWtK7cLwTSEhsKGQiHdYTbuYvs0MVLkJWVhXXr1mHx4sVS21MoahMlsIo6y44dOzB//nwAQGnrNgmfGZlGirjGCsSisMkDQQkPhW+XV7OeYX7xJBTQ9KSyCJGoU+I+EZFYYtCUhgUNaWJRWFNebY1yIYl1kteQx2jCXtjkNW2wy6sEKfJqItXHN2B5NeGVWJflhYXvYJBXExmJta8ns8+S6yUrsemO6DXndP0K3K8sebXXR/C+R7MSyyKUCkmsnpuR8mwTldiEFORKieUVWTP6moyoxNKw/cVRvO0iIrJ2YTVF1kliaSSCU089FQCs7lcKRV2kHj8JFPWd77//HpRSlDdqBD031/q7Ja/J7SaBKKybFHJHYR3kFQB3FJa4lYPKQap4xDOgtGEneY1/ABhhTol1kNeq8ji+m1fklVdiXeS1VqOwbvLKGYV1lVcToVGWq0leTVj3uc9y3OJ3MMmriYjEBjVSr1u9RCQ23aOvdnivOa9+vUG8dBOQWJqV4VgnEYl1ez7ySmw03+l+CaForFt/VV6JtaKvdgiEorHhcOr+cJPYM888EwDw008/IRbUuBAKRQ2jBFZRZ5k8eTIAoLRVa+tvrvJaSaxAR0UB+1xrXp/Fshkl1kM6AfYorJe8xhfgSCX2kVfWKKyrvFoLMEpszAApLXeXV8QjukxRWJa0YRaJNQwgGvVsvNW4xGoEJBL2jrwySixz3Vkb1PbRWUXxk1cTv2UYjwmzAB6M8mrCI7Fey/GcH3714pHYuiSvJobDtFZOsAxKxSifKdHX5Pow9q91k1drOxwSa08ddoJVYqP5IVCvewKjxLpFXxPqxCixJa2NxOhrMhwS69Xv1UliL/r+BxQWFmLv3r1YsGAB0zYUinRDCayiTrJ9+3YsXboUFMCBli0T+7t6Pc81ilgD/1Rilqiobypx5WBNntIJAATQI97i6Suv1oI+qcQU8eltGBpHfhLrK6/Wgj77yR519WmU+6YSB9XnlSNluMYklidl2EdirToHMQpyvMAAymCU14DxFcE0HC24xgdfYZHYICSXBxaJrYvyasdX5Bn3pc+9zFNe7XVhicYy1IlFYp1Sh53QKnTf55CnvFoLeUusKa8sowVrUX+R9ZRXEwaJDbUtcYy+2jEl1hJZTcPJJ58MAPjhhx/866FQpCFKYBV1kpkzZwIAKho2RKwwg2+gJo16PoR4UnpdU4lZhdPEQ/KY5dXctFsqccAjDfOkcLn2h/VKGXYry01ieeXVLQor0N+12iVWpL+ri8QKyatnmmktyavb8gLHwVUIg5KtAIUzMHnlvRd4SWwQacYmPPXykti6Lq8mbvuDtyyXexqTvCbXx6Ws5H6vXvhJLO+YDm7PI8fUYdeN+kgsZ4vZTWIdU4fd8JFYP3m1L2ePxp5yyikAgKlTp8JIw2tFofBDCayiTjJt2jQAwIFWzfyjrg7o+alRWJHBmRxTiXnltZLkVGLHwZpYcEolFpRXpygsr7zGV3JIJRaQ16rykg6UaOQ1WWLr22BNSRIrFXl1HOinliOvyetJvERIEUMlr6k4SWwQAz2ZCPW5dpDY+tYgT94vovPZBnVvc5BYv9RhJ9wk1i912I3k55Jv6rATDoM7saQOu9Yp6bHkmzrshMvgTn5T5jhhSuygH6cgOzsbu3fvxh9//MFdjkJR2yiBVdQ5ysvLMW/ePABAafum3PIKIJ5KXFglsTJTviSIr6C8AkhIJeaNuqaWRZLqJN7wNSWWGBShcv90Lfc62SRWRl6R1B9WNm3YlFhJea2WKGxAIw0DAaUNJ0y1kiZpw+b6Aex7SxCVvLpjl1jpPs+29aVGvU7/0Ymlr2Nz/4jKq4ntHscdfU2uT2VZIvJq1cGU2EqRZU0ddsP+fOKWV2tFWCLLkzrsWifb44lbXk2SBndiSR12IxzWEWp/AD179gQAzJ49W6xOCkUtkt53fIXCgaVLl6K8vByx7ExEG+aLF1SZSiw1X2kleiYQyyZy0glYMi5dDipTicMkuLRhhj6q/oUAMOTk1YSGQ0BIC6bPKw0m8hq0xJKgBg8yjPTr8woEt6/SYU7eaqTG+7z6EdQ8sUAwg38BVRIbVPQ1wH0e1EsoGDSYfaXrcvJqr4+uS9eJUApCKWhYC+R5rFXofKnDblAgXO7d5YgVEuNMHXYtKC6xovJqEg7rOPbYYwEogVXUTZTAKuoc5qh55c0aSz849XwdUcZRid0gRvzHyIhLrGxZlMTTiWUhlV+LhiTrpFNo0YAkOGaAxAwgLNe4IDEd5EA5ENPF5nW1QysHJwmqkRkUQUqZpslH3kyMAF5kAHEJCqpOAWG9MAji+wUkQGknryZEC+aFiFmObASVGvHzSQuwWRPEvte04I5hKBRInUg4DMRi8R9JaCQMRAOaioUQhMrlXyTqOWFonFPjuFFeoCFcIl/WgeYUJEaglcmfn627bUPzwv3S5fTq1QsAsGTJEpSXl0uXp1DUJEpgFXUOU2CNDhLRVyCeJkTiqcSiEmvKK1AZyZVwDmIApPLZbYSJsMQSg0KL0YSyRCXWLq9UI6AR8VsGiRnQymNA5Zt2pilxHMvRgQAiuADiZVQ2vkgoJC2xVkM1oLRYyjmvqyOV34lShhFEWZGVWLv4pInEBhLtrgsEHa2WkVj7ujISa8orzCwIWRmmzr/zYquHtMSGQlXHTjoTxnYOSEgszYzEy7LdR0UxsiPW7zISq+eEQbV4N5xQmYFQmfj9s7wwnjpMKKQlloYqB2SkkJLY1l23ISdSgYimS0vs31Y+g4YNGyIajWL58uVSZSkUNY0SWEWdIhaLYcmSJQCAoh4E2Y0O8BdS2b/FgoilCNnl1UTPEovC2uUVMKOw/BJLjEpxDSJAlhR5pYQIS6xdXq3yBCTWklc7oZBYFNah0SUjsSkN1IAGJpKS2KTvEqjEiuIkPLUssY7yKiMJ6R59TSeJTS6HV2Jt8moVIyOxTvtc5Dg4bF/4eNrlVaZOgPO9UkBiLXm110dQYo3spLIgLrH2fq+mMIpIrCmv9rJEJba0RdL5KSGxOZEK63dTYkVEtl2j3cgMGejRowcAYPHixUL1UShqCyWwijrFunXr4qkumRoym0bQvvEuPol1ef7wphI7ySsQF089m09ik+XVXhaPxFry6gBvFNYtbVhEYp3ktepDjjo5yasJr8R6NLZ4JZZS6t4wDWhqGCGJdfkOgUmsSBTWS3RqSWI9I68ikpDu8mpS2xLrtjyPxDrIq1WMiMR67fMAjyvXsXWSV8E6kXDY/Z7LK7FuL304JdZJXk14JVbPcX4G8Epssrzay+GV2NIWFNThViwisa27bkv5W0TTuaOx7RrtRoYW37dKYBV1FSWwijqFmeYSapENohFkaDpCIcYHk9dzhyOV2E1erc0wSiwx4qMTukmnWRbLoBZe8mrCKrF+fV5ZJZbEDIRKKtzlFZX9cxmisEQ33OXVhFViGRpZrBIbqGT4CAWXxPrUvVYklkVwalhimdKGeY5xXZFXk9qSWL/lWCTWQ16tYngklmWfsx4Xhm0yHWMveeWsk6e8mjBKLM2MeHxI4/dqBpH1klcTVok1U4fd4JFYr4wsU2JZRNZNXu1lsUqsmTrsBo/EmvIKAIceeigAYMWKFUzrKhTpghJYRZ3CFNhwy2zrb20a7PGPwrI84xkk1k9erc359Id1i7o6lhXyjsKyyKuJn8SyDthEfRodCVFXnwaWXyoxielAufuDOwE/ieWJEPg0Qpklg0USGEWCSWJrejAqFonlic7VkMRy9XkNUm58i6nhSHRNSyyP5AYwNQ6TxAb5koIj6ut7rFmPjU85TPJq4iOxKanDXnXyu9cy1slPYv3k1docg8SWF/ofPzM12U9iveTVXpafxPrJqwmLxLZrtDvh///cNhwAsGXLFpSU8M8rq1DUFkpgFXWKlStXAgBCLbKsv2VouncqMU970ENiWeXVxK0/LI+8At6pxDzyauImsbyjDbtFYT1Tht3KcpFYz7RhN9wkljO9jRDinYbLg1fjilMgPCWWM/W5RgZ1EukfmSYDOyVQQ+mltUJNSaxImrGTxDJEXxOK8ZLYQLMo+M9112PO+yLKpRwueTVxkVhmebXXyeWeax+0iQW3+cdZ5dXES2LdUoe9ygqXOu/35H6vfuW4SWzLLtuZ5NXES2LtqcMmWnYYRUVFAIBVq1Yxb0ehqG2UwCrqFBs2bAAAaE0yE/7uKrEibROHQZ145RVwTiXmlVd7WckSKyKvVnnJ309gqhynVGIRebXKS5JYIXk1SZZYwQFGnFKJhSXDqZElKA6OEisQea12iZUZ3KcaJVZ4xOGgBvhxLLqWpb26JVb0XEiWWE55tYpxkljRfe60nsTIxynHniV12LmghP8KyatJksRyy6u9Tkn3XpbU4WQIdZZYHnm1l5UssbzyapVlpEqsX+qwW52cJDYvg396GyeJdZJXk44dOwJQAquoWyiBVdQZysrKsH37dgCpAgsgtT+sRHtQz9cRzafxfqoxfnm1qmCTWFF5tZdlSqyMvAKV0dPKKKzMPK+WxIY0KXm1yquUWCl5TSlUTF5N7BIrLRn2xlaQwiCRNlxtEhvEyLTVILHS0+UENcVKQpFpEnGuLomVPRdMiRWUV6uYIKbYMbEfswDKtM4BUXmtKqjqd9lzvVJiheXVXqfKe7CIvJokS6zboE2sZZkSKyqvVlk2iRWRV3udtDLNEtmWXbYL1ylZYt3kFQDatGkDANi0aZPw9hSKmkYJrKLOsHHjRgAAyQ5Bc3lwWf1hZduDhELPNaBn+S/qByUADbP1h2EpC1ROhO3IyGtVnSpFWHZuUDuyc58C8YZgKCQ9PyGA4Bq9QLxxGoAoWFHYoPq80gD2eZoT2FyvDH272YtKE3k1qe3Rib3KCeBctyQ2qHmkgySgewMoFZtazAmNyIswAFAaf2kqWZYlsSEiFH1NLitUZkjJq1WWAcSy5Z/zZv/a/Db7hKKvdkyJTe73mkzz5s0BxPvBKhR1BSWwijrD1q1bAQBawwzXZbJCUXQu2oGcJqVS2yIxDSRKEMuhiOVIFRUfaTgG6BkEhnvV2crS41Fh2YekFqMgMQoQAhqWawRoUQNaVI+XFZGrGIkZIAfkHtoWuh7/kWz0WhFKTQtGgAwaSGTRaogHIfsmshJrb+ymmRAHJq8BknbyGjRBCRkQP5+CPIZBlGWWEcA1SMw06SCyIbRQoOcWCeAlIM2MP/xIhXxZRmYYlBDhuWLtxHI1RATnd7VT1oSAakDGHvnzKrvrHmRGYthTlu2/sA+PdByPB9p96blMixYtAACbN2+W3p5CUVMogVXUGXbu3AkAIPnOb5Y1YkAjFBlaDJ2a7BSWWBLTQMoJCAWgUSmJ1WKVAksBME6J41qWTqFVZtUaISIssaa8kspnNtXEJdaSV4PGv5umCUtsgrzKpvrpOqjZhyskHrlJSa+VldiAUmITUiFF5ohNKcv2nUTF0ylSkyYSe1DIa0AvRgJL2w4yXd5+HjFMu+VZlLnfNS1YIZa5BpMHqpKRWK3yXmdQUFmxzqgcaIlSKYmlmRlVrU1KpSRWzwpXDUJI+eeKtRPN1UBJPHtIVmIN8xFD5SQ2q8teZEUq060pkZLY+9t/haLQARSFDuAfbSa6LvfEppEAgG3bUueZVSjSFSWwijrDrl27AABafuLohRoxENZ0aKTqASQqsQnyam1ATGK1GKBVIKEsIyIWhbXLq1WWgMQmy6uJiMTa5dUqR/C5nRJ5JSQuniISa5dXEwGJde0bKiqxyWIgKAqug9EINFZT5NUqj7MsrzRDWYmVFKqDRl6dfpcpR4YAByxLOX8I29zRjkUl73cZiXVaT+QadJsqSERitaR7nIzEZiSNEiwjsclfUVBiE+TVKktMYqO5if1eZSS2rHFqnUQkNqvLXmRnJD7oRSX2/vZfoXmoalocU2KdRFbLjV9Pe/furf9ZIYp6gxJYRZ3BisDmVTVezKirE7wS6yiv1oYoqMZ+Y3eS1/hG+FOJNZ1Cc3nW80ism7ya8Eisk7xWfcgXhXVNGxaRWCd5NeGQWN+BjXgl1k0MOIXBdzoQjsaqq7xa5TGWxdJHrpYk9qCTV6+/iZQjQoBTRrmeNwIS67rfRSTWa3mea9BvnlseiU2WV6s+AhKbLK8mAhJrpg47lsUhsY7yapXFJ7HJ8moiIrFljV3maReQ2GR5NeGV2GR5NXGLxpKc+Lmj6zqKi4s5aqxQ1B5KYBV1BnOSbZIdv9l6yasJq8R6ymslehaYorBa1EVerY2xS6wlrx71YpFYP3k1YZFYT3kFuFKJffu88kisl7yaMEgs86i8rBLrJwaM4sA0giqjxPrKq1WeT1lBDfDCgojspxk1Iq8sn8ksKwurxPqdexwS67vfeSSW6ZpnuAb95NWE6V7kc6/lkVg3eTXhkNiE1GG3shgk1lNerbLYJNZNXk14JNZVXm11YpXYrC57PT9nlVg3ebWTLLEkogGReD337dvHUFuFovZRAquoMxw4EJ/jlWRoTPJqkqHFEA65P7xZ5BUAUyqxFrX1efWCQWJZ5NXES2JZ5ZUFP3k1YZFYEjNAyhgmaGeRWBZ5NfGQ2ECnlAHYxcBnOa7pP3wklllerfJcyuKV1yD6w/LIfppRo/Ia9DKssJ5XfsuxnisMEsu831kklivrIsD+357ZIIzZLiwS6yevJgwS6yuv9rJ8JNZXXq0FvSXWT15NWCTWV15tdfKTWKfUYSdYJNZPXk2KQgdwZ5tJ1v9JdvzLqAisoq6gBFZRZygrKwMAaJmEWV5N2jXc7RiFZZZXEw+JZZZXa+PuEssjryZOEisir25RWFZ5tcrxkFhLXlkbl14SyyOvJg4SKySvXlFYXjFwWV5o7koXieWWV6u8pLJEI681ILFKXjmWrQ159Vue9xzxkFju/e4lsUL93p2/C3P01Y5jf3zOQRC8JJZVXk08JJZZXu1luUisnsXZ39lFYlnl1cRLYpnl1VYnN4lllVcTL4m9v/1XHJWKy64psaTymV9RwfBSWaFIA5TAKuoMlsBm8DcknFKJueXVxEFiueXVqkSqxIrIq4ldYmUir8kSyyuvVjkOEsstr9aKDhIrIq8mNomVirw6SayoGCStJySvJkkSKyyvVnmVZcmmDVejxCp55VinNuXVbT3Rc8NBYoX3u5PESo08nvidhOTVJGFEdMFh6J0klldeTRwkllte7WUlSSxT6rBjWYkSyyuvJk4Syy2vtjolSyyvvJo4SSxL6rATlsRW7ueY6PNUoahhlMAq6gxWg0SwLWGXWGF5NbFJbMJUOSLYJFZGXk3Myd1l04ZNiRWVV6scm8QKy6uJXWJl5NUkpMUb0bJpw3aJlRWDyvWl5NWkUmKl5dVOEJJYDRKr5JVj3XSQ1+T1Zc8Jm8RK73e7xAYy93P8u0nJq4mui8urVR+bxIrKq4lNYoXl1V5WpcQKy6tVVlxiReXVxC6xwvJqq5MpsaLyamKXWFF5NWkeKoGxPT4WxdSpU4XLUShqEiWwijqD1UCVaJtkaDEU5JSBZhjyfUI1CiNCQTUJeTUhtiloJMsyywmizyvRKYhuSDd4KQFgAIjp4vJqVSr+BQOTAxLQbVBWNqsLSuvv1Ag1OfhQbRLkHK/pJK9BE+SLGk18/ug6gUGDu2dRWrnvgymLhoicvFplQUpeTYhBQUOQk1cTCsTydCl5NTEowXWtf5aS12SiUfl6KRQ1QZq2uBSKVDTzYSvR/tpWmo+9JdmI5JdDz5eLumkVBKFyAj0TiGVJFQUtGp/n1QhJvuGFGcWl3HPEJkNiBrQKAyAEVDJyQHQDWnkUCGmgYdnogQHEYvEXGrINTDN1OIiGalCRTs0m6EEMBGN+tyDERSPyLyCAAF8aVO3rdJP0wOqTrpIeoLwSgXmaHdENgGjBRDpNgpA8s4wgjmUoBBjyA80R8z6sy99jaGUUl5TLp58aWfGyNIG5XZOJZYcQPiC/z8sL4scvc7d8WQda6oAGbN9cKF3WnZ2/Q1F4H7br/PPEJlNQ2R7q1auXdFkKRU2gBFZRZzAF9vCcDULrbyvNx479uTAMAk2jiBSIS6xWQRAqIyAG4inAWeISq0Vp1bQ7BDDC4hKr6RRaNP6QpYR9jthkSMxAqNyIvw0nADRxiSW6Ae1AtEp8wiFxiTUMoKKqLCmJpRSoTH2TluGg+pomrSctsbbvFC9LogFm3z8yclYN8mqSLhKr5JUdM7NG+hq0i1g6Saxt3UCvQQmJJeFQVb0olZJYmhGpSrOmVEpijayIdW4RSqUkNpYdAki8HBmJLS/QrJaypstJ7IGWOmikcv2YJiWxd3b+Di0juwEAOjQpie0QzkJhXrxe+fn5wuUoFDWJElhFnSEnJz5q0tFkG/o1Xsq1rl1eTUQlNkFeTQQlNkFebWWJSKwpr1a9iJjE2uXVRFRiU+TVRERik+TV2oZIw9cmr1LlmPVKQkhiXZYXlliH7yLcgHbaLyKSVo3yalLbEqvklZ3kfsvC16CTgKWDxDqsE+g1KCCxCfJaVSkhiU2QV1tZIhJrl1cTUYk15TVeH3GJtcuriajEJsirVVExibXLq4moxHYIZyFCQigti+8ws52lUKQ7SmAVdQbzxqqXZeKygpVcEqtTkiCvJppGEcmvgJ7H9pDUog7yasIpsY7yaiuLR2JT5NVWDq/EEgpHOeGVWFd5NeGRWBd5tbbF0/B1kFehcnzgklif5bgl1uM7cDegvfYHj6zVgLya1JbEKnllx23QLe5r0Eu8alNiPZblPk+89geHxDrKa1WluCTWUV5tZfFIrJO8mhDOfZUgr1Z9+CXWSV5NeCXWUV5NOCXWSV5NdM4mvSmvAFB6QAmsom6hBFZRZ8jLywMAlJQS5GlZzBK7rTQfu4vdb8payECkoMI3EqtVEIQOuMirCaPEesqrrSwWiXWVV1s5rBJr9Xt1gVViSdRHXk1YJNZHXq1tsjR8PeSVqxx73fzK8mv0M0oBs8Qy1J1ZYln2Q03KIodA1bTEKnllx2/EaOZrkEW4akNiWZZhPc4s+4FBYj3l1YRRYj3l1VYWi8R6yasJaxTWUV6t+rBLrJe8WnVilFhPeTVhlFgveTVhjcLa5dUwgLJyJbCKuoUSWEWdweybsXd//LRlkVin1GEntJARj8R6SSyFt7ya+Egsk7zayvKSWF95tZXjJ7FOqcNO+EksiVYO2MTaoPeSWEZ5tbbt1fBlkFemcux1Yy3LrYHGKQW+EssRufKVWJ4omN/xCSL6KiBQNSWxtZ22XO3UoLwmLOd1DvKkvNakxDJGaZleIvFcgx4SyySvVRXz3LdM8mory0tiaaa/vAJsqcSe8mpt0F9iWeTVxE9imeTVJOa9URZ5BdhSie3yCgB79mmglIAQgoKCArb6KhS1jBJYRZ2hSZMmAIAdu6puvKbEvtBufIrIssqriZfEmiMOM+MisVzyaivLSWKZ5dVWjpvEssqriW8klrdB7ySxnPJq4tjw5ZBXz3LsdeMtK7mhJigFrhIrkPrs2ogWSaN2O061JK8m1S2XgZafjtHXWpDXhOWdzkWRQYdqQmI5+8l6SqxQf/zUZxeXvFZVzHEfc8mrvSynP2dGuKbK8ZJYJnm1NuwusTzyauImsVzyWsn2Lc5RWFZ5NXGT2A7hrBR5BYCdu+NfumHDhgiHg5grSKGofpTAKuoMRUVFAIDtuxJP2zwtC63DeQnRWF55NbEk1tYn1nHQJhacJJYKzs+aJLHc8morJ1lieeXVxElirelyRLBLrKC8WvWwN3wF5NWxHBPBUYEDmWKnkhSJlei3m9KIlukDnHy8alleTapLYpW8ssMrrwnr2c9JmWlfgpZYO4IjFTtKrNSI6FXPLiF5rapYwr4WklezHklRWF55tcpxkFguebUqkCqxIvJqoiV5tYi8AgCiWorE8sqrSbLEmuKaLK8AsGN3/G+NGzfm3o5CUVsogVXUGSyB3en8cDejsV3ztgnJq4nVJzZPF5dXE5vEmnO9ClMpsSAQk1dbOabEisqriV1ifQdtYsGUWINK960khMQFSlBeE8oJ2cRatiwtGJG1JDaAQacsEQtiACuzrKAGbQqIoCVWySs7ovKasH5Ag6sFKrGmHErOFZsgsYFcg4acvFZVLP6PhLya5ZgSKyqvJnaJFZJXq05VEisjryaZe+L7SlheTWwSKyqvJqbEOkVd7eyI/gdAVZabQlEXSK8WhkLhQYsWLQAAu/ZUDfmezMKKDERpCE0LiqW2pYUMIBx/CAmLoglB/EoTjb4mlUU1iD+07XUy4t9NpjEBxCWWUAoS1YMZ0EeysWsSbxTqgTbEg0C2MZ9QjqZJS3VVgfX7cRDUfg+cdJTXAAn0fA/qHK0OiZUk0BcioVBwg6sREsw92ZRhyecNANAMLf4MC6BaehYJpCWsVb4nlZJXk6iGjJAuJa8m3SIHEKXe/YfXr18PAGjVqpX09hSKmqJ+t1gU9YqCggI0aNAAALB+k/PbxBIjEwYl6N5wC5o32C+8rfKSDJDiMIwMiooCCj1L/KGkVQChA5UpwBHhYuJlRSlCFRRGiH9+VztEpwhVjjZMNQIaFr8VaDEDWlnl23XZ6IFugERjQEgDguiLY9B4o1e2D6UpiQE0VgNPZxWdJ9YGCWkANYKRqSBFMaCXD9Uhr4GUqevx/R4EQZUTIEHud0pp/HwI4r6QrvvKoPFzQgYtfg8O5D5T2aWDSGaxAJVRXMB6VohiZIZAK+8LoTKZdHIglq2BagSRYvl9Vd4wXqesTXLnZ6NWe9Co1R5ohGLY+rOkyuoeKUEWCcGA937asGEDAKBt27ZS21MoahIlsIo6Rbt27QAA6zamPiSmlRmYVtIVAJCtVchJrBFPG6YaQMNxgRWRWK0CCJdWRnEJoEfEJVaLUoTLKVBZDSmJpbDKAcQl1pJXSuPioklIrCmvZsMrHBJurFJKgZitoSQosZa82huDEhIblLxa0deqgsX75tojUbISaxcWWUlIY3kNpGy7qMjuK3P9IMVM8mVG4PJqIiuxtn1Ubf1hOUnYVzISq4USrxsZGQ6Hqq5nSqUklmZEqlqbhiEssXZ5BcA9R2zVilXyCsT7sMpIbHlDAqPysadFxSW2Uas9yM2IIjcj3tdoV5n4lDamvJqUGhWuy65btw4A0KZNG+HtKRQ1TXrcvRUKRsw3hGs3JFrgzDId3+w/HMWxTOtvohJrRl/tUA3cEpsgryaCEpssr1X14pdYe/Q1pSwOiU2QV6twQYlNllcTAYm15DW5Ac4psY7yaiIgsdUmr1Ub4B8d2akBLyqxTsIiKlRplvbthZCoOYmF6L5KXi8NJLba5NVEVGId9k1tS6zjvhKR2GR5ReW+E5FYu7xWFSYksQnyaiIgscnyasIdhU2SVxNRibXLq1WWgMSa8pqMSBQ2WV4BwIDhKLFl5cDmzZsBVAUIFIq6gBJYRZ2iS5cuAIDfV1U9HGaW6Zi4/08J8mrCK7HlJRkg+yKO/V55JZYYLv1nOSXWTV6BeP9THoklOq0ctMn5c+5IrFPjkldi3eTVhENiXeXVqhtnJNZLOjkkttrltWpDfPPTupbDKbF+ZfGQRoMHVct2vIQiDVNbeSW22uXVhPc88di3tSWxge0rB3k14ZZYJ3mtKoxLYh3l1YTjZZubvALxKCyzxLrIqwmvxDrJq1UWx4CNbvIKxKOwPBLrJK8mThK7cm0Euq6jUaNGahAnRZ1CCayiTnHIIYcAAH5fmWG5xT4jy1FeTVgl1kteTVglVqsAQmUeC1RKbCwbviJLktJ9U+rEKLF+8mqVxyCx9n6vzhurlNhIyFtk/eTVhEFifeXVqpu/xLrOtZoMg8TWmLz+f3tvHiZHVbfvP6equ2fJTBaSSCYkIYQlIRBMWBJ2WQOyCLIoiLIIoixuuKB5BVHkBQUUAeUL/gRfwQCiAgpCEGQnCSSENQsJIZBlsmcmmczS3VXn90d31VRXV1XX1tPdk+e+rrky6e46dbq6prvufj7nnN4d+ux7iYtnvxLr5yLcr5jVoLwG2p8fkQgisW6PjVuEfUpsn8mrgd8U1sfx6GuJLXms/KawHvJq4FtiveS1t7GSEitTSW95zeMnhfWSVwNfEltCXs0++ThMPUOEp7wa+ElhveTVwK/EesmrgX087AcbrgfQe21FSK1AgSU1xe67745kMomtHQpa16uY062Z4169KCWxfuTVoJTEOpYOO5EXT6801pi0qWSfSkisX3k12/OQWMfSYcedCn9prF/B85BY3/Jq9s1dYj1Lh51QlNhmInXDt7walJBY3xfrpSQ2iLCUkogalldf+w2SgvkR0FKP6WOJ7XN5BfyVEgc4Dn0hsUII/8eqlMT6kFeDkhLrR157G3O/yxBXP4eyRCmxH3k18JRYn/Jq4JXCGuJaSl6B0qXEfuTVoJTE+pFXA2sKu3jxYgDA+PHjfW1LSLVAgSU1RTKZxB577AEAePS9hGvpsBOGxB4yZkWxyOrB1np1k1jf8mrFpaTYq3TYsU9eElsixXVsz0FifcurFTeJNdLXIDhIbGB5NftVLLGB5dWKg2DGkb4GltfenTtKbOCL9LhmJzbacqIfyKvn/sOMQ/QSL79S1kcSWxF5NfCS2BDPv5wSG+o4uUlsAHk1cJXYIPKax+m920/qWoSLxAaRV7NPjkNagskr4F5K7Cd1LWrLRWKDyKuB06ROE5PbA8krUFhK/M477+TamTgxUF8IqTQUWFJzTJ48GQDw8jsjfMurQYOSxk7J7QVprNOkTX5wkljXca+lsElsUHk1+5SXWD3ZK7Jukzb5as8isaHk1cAusX5Lh51wSmLDCpZFYiPJq4FFNCsqr72dKJDY0BfnThIbVlrsUtGP5NWgoB9RZoJ1ErCgUlZmia2ovBo4SWyE510OiY10nOwSG0JeDYqOcQh5zTdUILGh5NXAJrFh5NVA7cm/7gLINiqB5dXALrFh5NVsy+apYeTVwJrCGuIaRF4NdOj4aJ2G1tZWqKqKSZMmheoPIZWCAktqjv333x8AsHlJ+AtDI41NpbK+S4edMCQ2PVBCihLjXkuRl1gAoeTV7JPoFVlIBCoddmzPkFhdRpO7vMQCCC+vBgkVqEsBqlq4XE6ofuUlNqq8GihK/Gu9RiEvsZEvyq0SG1VaDLnoh/JaQNQ1Pe3ENVNxVPLnQVXIq4FVYqtsMqxYjpMhsRHk1UTT8l8EhpRXg7zERpJXg/wXbVHkFQCEnhsuY4hrlLYMiY0irwb1rQlzjdew8gr0lhIHTV2d+GDN7wDkxr82NoZfsoeQSkCBJTXHfvvtB1VVkd6soWdjeHlpUNJoru+BTEa72JEKoGRz37LKaGuYAyI3tibKh67ZlCahZHNiHbktKSHiKCM1EsU4L+him8kzvrfDOC5YY5MD45jHVQZchVSlvOoy9+VIVKTe+1MN7QDxL3MU5+sXU3oaVwob30zDIveFXRzHXlUBTY/luEtVie9KUpexfPbpSQVqdzzvd1oqurwCgJ6S2LJ8p0jyatCtJSLLKwC8+eabAIApU6ZEbouQvoYCS2qOhoYG7LPPPgCA9kU9odt5r20k1m0eCDRo0OuiXdQJPTdbsJYC9FT4dtR0rnRYVwGpRvsgFzoAKSFVARnhL13RdCg9OVGUSTXYMjt2NAlksvmLnijt6EAmk0ttVDX6Rashd0HXr3VDUSJduJZDyHIl0lES9IBLEPkhBqmuRnmVmuX9JKrEyoiVD45tRni/y58DsX7BAkBE/QKpDF/QRJXY2OUViJzqCzOllkA2Wlsyn+CKnmhVMDKVgEzl+qV2RWtLq1MhFcTyhWu2PvfZ2bAxWlvZJgmpAomu6OdDYzKNhKLje2uOjtTO7zdPxJw5cwAABx10UOR+EdLXUGBJTXLYYYcBANrfDVez+17bSHy4bhj0tJq7fqrXoQ/MhhJZtVsgsT3/wSTCS6yalkh0yZx45pPY3FjWEON3shJKpvdDN6zEmvKqy96yZEUJJbEiq0OkM+bFeFSJLSg5jCKx+QtC82KzwhJbtE2A9RIdGiselxvmws4ur1GFyip1ES40q15eDcJKrPU4V4PElklezf+GfT+wnkNC8b+8jg/CSmxZ5BXInQchJVbEeFyktfxY10NLrEwlzBnrhQSgy9ASa8irQaIz3Htntl4gW9+bvIosUL8p3N+fIa8Gq5Z8KlQ7jcm0Ka8AsLpzcGiJvadtIpYvaUB7ezuam5s5/pXUJBRYUpMcfvjhAIBtS9PQu4J/mHdlk9DTvZ8qQpEQqsyJbACJVbsFkttsMxiHlVj7BFAiV54cNI1VshJqT3FqE0pidRQJhhQILLEiqwMO415DSWw+fS0ijMTaLgQrLbGujw0jsS4TQAWWWLfkNaxQOclcCImtGXk1CCqxTse3khJbZnk1bw76fuB07lRYYssmrwYhJNZRXkOmsNJp7GwIiTXl1YIhsUGxyyuQS2GDSqwhrvayYftETL7asskrACQ6lcASa4irIa8GqzsHB+7TPW0T0ZoehCnrc5NBHXzwwUjE+LdCSF9BgSU1yejRozF27FhIHWh/vweKkFCEvw+999pGYs2mQY73CSWYxArNZdbhvMRmB/gTWaN02HknwSTWKB12QqoCMuFPZBVNh5JxvrgJI7HufQogsdbSYSeCSKzLxXulJdaVIBJbYvbiyOXEvQ0Fe7yXxPXjMbqB8TqulZggrI/kNTCeaxTHK7F+Kbu8GgQ4DzyT14AS6yivBgHeo5zk1UBI/6XEWp3qKK9mWwHeV6ypqxN+U9hsk3SUV4NEp//PTWvq6oTfFPaetommvEop8dJLLwEADj30UN99IaSaoMCSmuXII48EAGya31tGXEpiraXDbviVWLVbINHpcbGST1BLpbEFpcMebfmRWHvpsBNSlE5jraXDXu34ktj8uFfPPqlK7sLIS2RLyauBX4n1eG4FEhuHyPqQWF8Xvrpe+iLR59I7viTWz7hXvxfSfhJInxebNZe+Gvg5Bn6OZ5wSWyqFrYC8+kph/ZwrMUqsnxQ2lmNkiKuf9x0fKayvsmEfEisTqre8GvvzkcJ6yauJj1JiQ1xLfSHrJ4UtJa9Afk3XEhJriKubvBr4SWFLySuQS2F/2HqU52MMcW1N57643/5xBqtXr0Z9fT0OOeSQkv0gpBqhwJKaZfr06QCA9sU9yGzt/fD1klh76bAbpSTWsXTYtbESEut37dgSEutWOuyGp8Q6lA47tlFKYjVZMO7VEyFKprG+l9ooJbF+LvyEiDeN9ZDYwBe+bhIbcN1YT4kNMmlTqYmGgpTPljjvalZeDbyORRAx7QuJjVNe8+McfT/c6zwOWgLfBxIbq7wG+bvzeC+La8yrKa4+v2Tzklhf8orSpcReqWtRWyVKif3Iq4FXKbFX6mqnVCmxH3k1+GT7ENf7DHm1MvHjXGp7xBFHcPkcUrNQYEnNMmbMGEyYMAHQgc0LCidzcpJYr9JhJ0yJbS6e3Mm1dNi1MWeJ9SwddmnHbXInr9JhN5wk1qt02LENN4kNIq8FfXKQWLdxr164SWzQsWNlltjQF75RJney4CixYWccdnqtw0xg5HLhWvPyauB0TMIIaTklNm55DbOZk8RWuNTcSWJjk9cwfysuEhtYXl1SWD+paxEuEutXXq0o3cV9CiKvBk6lxPbJmvzilMIGkVcDp1Ji+2RNfnFKYZ3kVWoS//3vfwEAxx9/fKB9EFJNUGBJTXPCCbmJCDbO7SpK5+zjYv2mr1aEIiEShWlsydJh18YcJNZv+mprxz65k5/SYTesEuundNixDUNiLcvsiAjLfxRIrN/SYSfsEhty+ZBySWzkC1+rxAZMX60USGzU5XKsr1OUJWRs52C/kVcD67GJIqLlkNgqkFdzc+s5HVZeyzipU6zyGvbvznYOhE5ebRIbSl4NLO9N5jI5AdsSEhCaXiCxYeTVwJrCuk3W5Ad7ChtGXg2sKazbZE1+sKaw1vGudtre68GWLVswZMgQHHjggeE6TUgVQIElNc1xxx2HVCqFzlVZbF/hnNApQuL99pZA6asda0lx4PS1oKH85E75qp1A6atDW7qan/AiQOmwE6bE+iwddmzDsswOgJLjXkv3yWgnpLwaqGru4lVV4lmyJZYL1pgmdgJ6LxQjrqNpSmwca73GJVX516vfyWtBQxWYTMuzrdzzqgZ5NZtRov3t5huJfVKn+MYFx7DGsqZBJBLRy4bzEhtJXvOInmzBMjmh2shLLBBNXoHeUuIwqaud+k2y5GRNfjBS2DCpq50fth5VNN7VzuC39wAAnHTSSZx9mNQ0FFhS0wwaNAjHHHMMAGD9K52uj+vOJqFnIi5Kr0gITUDJRvzwE4CSzZUPy6gXLfk0NsqHutmUni+zitonXc9N3BR2XdaCToW/8ClCRn9uwkg5Y5LYWDD6E1NJcaVLNJ2I9AVGGagqeY27rSipeUE7MX7pEOdximl28VhnG47jSyNVDb0+bAFC5N6743h+qgKRjvhFpgBkUoXIylg+5/RkdHkFcpM01W0SkeQVALSUxMoVwyLLKwDMWz/aVVwBoHtDFvPmzYMQAqeeemrk/RFSSSiwpOY5/fTTAeTGwWa2FX8IvNs2Eqs3Ds79R8j87BAh6Egg2aYAMvfhFelDUM/96AlAT4S/UFCygJLJibBMFI+L9d+OhJLWAJmX6igXVHq+fFhRgET4gyS0/NqxipJLFsIKny4BPV8WHTHpKBCpuCQ2isjaZTqCxObkPN9W5LQr5Hg+O5bXqlokNjZ51WOQDTtRj5Hxmuky2vEuh7xGlTyp97YV1xJZUYnr7y2fpMkQ68OaCJF7v87LqwixPmwByQSkouQ+60JiyKvxRW+iM3yftDoFWp0CCCDVEe1vWKvPVS2p6UjNQEtJQAGULhXvLx0Vup3125uwfnsTMlkVs9fv5vq4iR8cCwCYOnUqRo4cGXp/hFQDFFhS80ycOBETJkyAzDqnsJ2ZFDR7+hpGYvPpa2778BKr9gCJrtz+pYgosVJC5D/TpRA5kQ0jsbJwkouwEis0HcI6AVQUibWPoVWUaBJrdjKcxJoX9PZxp3EQVxoLhJJYU16t0hl6vGFM8upApSU2vuQ1pnYc244wTtRKlNc/LizPpeALlsDt6NHl3kD3sfyUH6zPRerh27SVgYb6G7GmrsbrF+V4GfJqNN8TcAI+FMsrAAgtXJ8McUW+KSWCmxvyalC/Ptw5acirgbI93OekIa6ZbG777T3Oyx1kO3X885//BACcccYZofZFSDVBgSX9gi9+8YsAgHUvbofW03tx+G7bSLS6jX0NIrEdCSS32j6owkqsDlM6gV6JzdaJQCJrlCHbCSqxZvrq0E7gC0YjfS3YgQIkE4FE1kxfizobUGKN9LVoB8Ek1lFezbYqJLFepcwBJNZRXs12Al4wximvLq9PpSQ2NnkF4i2JjaN9l9cs8LEuc9lwKIl1k9cwKWxc5fVOzyGMxLqNYQySwnqUDAdOYZOJInkFEDiFdZJXg6AprCmvNoKmsFp9sbwCCJXC2uXVIGgKa8irHacU9sAPT0NXVxd22203HHzwwYH2Q0g1QoEl/YKjjjoKu+yyC7ROiQ2vdpm3O6avVvyWFFvT14Lt8xKb9Cey1vTVijRmFg6SxlrS16K7gkisLX0tbsef7BWlrwV3Ct9prNB0wGv5Hb8Say0ddtxRwCTWSwrjGqvrV2L9jMP1IbGe8mq2UwFhLPG69LXExiqv5SgddsLvMSrx2vs+1n005jWQxJZKXoNIbFypq1ffgyTzHhPw+C4lLjXeVUr/EpsX1yJ5NXblI4WVAtBTqqu8AsFSWDd5BYKlsIa4un2m+k1htZR0lVfAfwprLRl2wp7C6mmJv/3tbwCA8847ryonxSMkKBRY0i9QVRXnnXceAGDt89uhZ6R3+mon7LhYoHciJT9prC19teO3pNgtfS1oy8e4WLf0tQBROo0Vmg7RoxWnr0U79CGxfpbfCSKxXviQ2ECyVE2TOwH+klg/iamfi/cyjHv1oq8kNtb99JW8GpTqu8/XvuQx6OMJm3xdgMddNhwVv9LtZ18+Zo/19Zr5mazJzzF0Sl3t6N4Sa01dS01uWCqFtY539SK1vfRzc0pd7fhJYU1xjfgWaS8ZdsOawn5mzXnYsmULRowYYU56SUitQ4El/Ybp06dj2LBhyLTr2Ph6V+n01Y6bxDqVDztu7y2xbumrnVIlxUoWUHt0TxHubavEuFiP9LXooV4S61Q67IaHxLqWDru04yqxbqXDjjtVckmMw3PzLB12ba/MEht0FmSXvgcux/Q6T/pYXg36RGLjSqD7Wl5LEeT18pLYSs02XCrJ9NtWqRS2L+UV8C4lTiSCLQXklsIGnGnYM4X1I68GLm+jXiXDjv3xSGHt4129ULLSVWLdSobd8EphvVJXO15lxF6pqx0jhdUzEn/5y18A5IZacekc0l+gwJJ+QyqVwrnnngsAWPN0B+BWzuqFU0mxW/mw4/YeJcUl0lcrniXFHqXDru05SKyv9NWhHfvFmGfpsBsOEluydNilHdcZigOP33RJY8PM7FsuiQ27hI/tOfgqHXZsx+GYlnHSJj+UU2KresZhvzgdnzCvl9trHxcBX0fXL2DCJK9uEtvX8mrgVEocQjyK/jZsMw0HaMhZYoPIq9EFWwobVF4NnFJYP6mrHSVb/BqXKhl2wimFLVUy7NgfhzLiUiXDXhzy0dlYt24dhg8fjlNOOSXw9oRUKxRY0q847bTTMGLECGTadWx7vi18Q4bE+k1fC7YtLin2m77aiTxLsbUtu8QGSF+L27HIXpD01Yp9cic/pcMebZkSGyR9tWOR2MhiFLfERl1/Ni+xoeXVbMe2lFCZJ23yQzkktl/Iq0HB8k/hX6/Yl5HqbTjUZkUSG6Vs2C6xlZJXp/1HSc2MFNZppuEgWI+r22RNfsj/WfkZ7+qFPYUNI69OBEld7VhT2Cglw9YU1m/JsBOzPxmN+++/HwBw0UUXoa6uLnhnCKlSKLCkX5FKpXDJJZcAAJrf/AhKd4SF2oQMlr4Wbd+bxkrhP321Yy0pBkqPffVsKz8uVkgETl8LyI+LFRLB09eCdkSvpPktHXZDUXIXtF4TN/nqk1XOI0pMtY6JjSqdcU/sFHWNT8QnsVLK/iWvBlLG8rpLKatCXg3M8bC1OubVDSOFjVjyaU7oFDR1dUBktZKTNflqJ531Pd7Vi0SnBj0lIstrarsMXDLshJoOl7raMVLYsKmrwVfX74329naMGTMGJ554YvgOEVKFUGBJv+O4447DnnvuCSWTxcAFH1a2M5Y0Vob/HDJLimUM141SiFw7MVyESoF43kUUJXeBFZW4ZgOuYEmsI3FKbJxU2XGKKrGxJrlxrfUa17qjQCx9EkKUfxmgoCgx9Uko1SGvRl/i+qJAVWN6XxSRxNUgJ8AxfP6oeQGO43MxYMmwE3oSsUzUJLLR5VV09OCvf/0rAOBrX/sax76Sfkd1XX0QEgOKouDrX/86AKB54cdItHWEa6gjieS26J+MufLh6BKrpoFEj8yX8IZvR2gSSkbmP7AjfIuuS4iMDihKtA9+XYfIZH0vs+PVjtT1/KRMEd/aNC1fnhiTVFcLxvOJKjKKJfWKShwX+xbCSmjvhF0xCExcaaC1L7H0S0Z7zQrKdWPqT+Qm8m0oEd47rIRZH9ZKlPJ8eztA5NfdHFoRdE3Xov7kpFOkSy+H44VMqoACqN3RKm70lAIpgERntPcgPSEgFaCuLWI7+Uqr+nXRXnuRBYQusPGjnSK1c8bSJnR3d2OfffbBkUceGaktQqoRCizplxx00EE45JBDIHSJnV5cBNkd4lTP5suHI15fC713vI5ZUhziGklYJm/KlQKHbad37KtUBWRSCSeyuuwd+6ookImQIqtbxr7ax8WGaQvoldiIIiuEgFDV6CIbl8RGGScMS7mlni8rjCqgMj/eOGw7MctrZGJLOqssoYyJWNePjCEtL/iyIuq5FPW1Nya4iyqvqlqYmIb82xLGvADml1bh5xeANTENOaxCJlVTXqO0o6cUU14BQGRDtpPIzfIvBQCZm90/VDvJXnkFcl9Yh0Fke+UVANTOcOdRW+tAdC1I49lnn4UQAt/5zne47ivpl1BgSb9ECIFvf/vbSKVSqF+/EQOWtkL2RIktEUpk1R4g0VncVtA0Vk0Die7CC5DeJXL8tyM0CSVd+IEvhQicxgpd5mYNLrhRBE9jjfTVoZ1AEmukrwXtKOHSWIelJ2JJY+MqbwbCXYy6zdQc9ALZcebXiMlezARNYau2dNjPbUEJ+1q5ve6h9l+mUu8wKaxTiXbQFNYQV6u8hhFZQ1zt7xMBX3dTXO1/80FT2Ly42st9g6awprjauhM0hTXE1T6UJmgKa4irvZ2gKawhrvZ2gqawhrga8hqWttaBULYDBy9rBZCb1HL8+PGR2iSkWqHAkn7LyJEjcf755wMAhrz1PpStGrAt6U9k3cqHg05IbElf7QSRWGv6WtROAIm1pq/F/Qkgsbp0X4sviMTqHhezgSXWbZ3KeMbXVl1JcdDlhtz2G0RiPdfeDChGZU5f/Upp1ZcOB7nPLyFeK9fzJ8jzjbNk2AlFBJNYr2PpV2K9UtcgEus1TjXAayWcxNVsJ9h7hus41QDpaUHqGqEda+pqJ0gKa6audgKmsNbU1Y7fFNaeutppXznIVzttrQNz8tql4MaW0VixYgUGDRpkTmhJSH+EAkv6Neeccw5Gjx4NtbsHg99ZDJEREN1KaYnNesw+HDKNdSJKSXFBOxFKigv7U7qk2DF9teNHYp3SV4d2SkqsU/pqx6/EOqSvBc3UqMSWLCELk8S69cdPO31UOlxKYmtOXoM8phQBXquS54+f511ueTXwe27FNVlTHONd/Uyy5KO/nvJq4CeF9THJkp8U1lNe85RKYe0lw2EpKBmO0k7SW1794id19VNGbIir0qVA7diO++67DwBw2WWXYeDAgdE6SUgVQ4El/ZpUKoWrrroKANC8/CPUrd8AoeUk1nca60Zc1+AlSoqdyoedKFVS7FQ+7NqOVxrrlb5aKTUu1it9tbVTclysn4vRHTWJ9dvXUhLrVwxKiVEfj3t1k56aldcwj3XDx2sVy/i5vpJXg1IprN9j55XC+pXXUo/xO0NwiS8bfMkr4P1a2Me7euHxpWHReNeQ7biVDDvhVUbsVjLsRKrd/fi4lQwHxSt19Ys1dQUASImT1m1EV1cXJk+ezGVzSL+HAkv6PQcccABOO+00AMBO8xdAZDI5iXVLY4PMPuzxMMfxrx64pbFe5cOO7biksV7lw879iTZLcW6nLuNi/aSvDu0USayf9LWgHY/JnUqkr4XdqRGJ9SoddsJNYoNKZ5WPia15eY2yjV+CyqvbMehreQW8S4lrLXm14tD3osma/OCUwrqMd/XCKYV1G+8alKCpq1MZceDUVQJqpvgYh0ldncbBlioZdqJ9VXEZsTV1NWj6cDneeustNDQ04Ec/+hGUal16jZCY4BlOdgguu+wytLS0INHZhcHvvG/e7pjGepUPO+FSUuw1/tWrrajL7QDhJnhybMdWUuyrfNgJu8T6TV8d2imW2KDH2GFypwDyajZTjTMUFzUddlZoy2scNjF1ktgKzjpcJEG1Lq9x4fI6hTp37MeiEvJq4HSuhTnO9hQ2jLzaH2+fadgvUi94Dq6TNZVsx3Ycwq7Lavvy0HfqasNaRqwnFejJeEqG40hLw6au9nGwYSdqUrf3HtCi1DVPYlsHRixeCiB3rTNy5MhgnSWkBqHAkh2CxsZG/PjHP4YQAk0rPkb92nXmfZ5pbBDiXGEizrGxqv/yYcc2rCXFfsuHnYiy1I6tHSTU4OmrnWoqKS6HxEbpUznGxFbBkjlFS69EbzB6G1HlNe5S4lotG3bCmsJGOU6qGu8yOVFmJM+/ToFTVztGChtWXq1dClIy7ET+fVxPKpAKIEO2Y5QRV91Y15hKhu2pKwBA13H8mnXo6enBAQccgM997nOR9kNIrUCBJTsMkydPxllnnQUA2GneAihd3QX3G2lsolNAhF2rPcYJniBysyKq6WjNSEXE0iepCshETKIWRTyBvMQmol9oCyUWsYrlgt+4qI2jraClw0705zVR40pfq6EfcbaDGM7lGJbJiQ2jlDiONV7ty+QEReTes+L4+44sr0Dv8I6I739C1+MpGc7LaySkjEVek9tkrGNdo8hrcptwTF0NZjQNxnvvvYfGxkZcffXVLB0mOww808kOxaWXXordd98dak8Phr4xv+hCS2gCIguoGYSXWOTHv24HIPM/YZEApMyVFUf5a82LdZSLFZHVIbJ6Po2N8MmuAxARx9dKmZNgISAitZOXECNhiUKcFw4xXOTGkjTaShZDIUQ87cRJ1Nc6rtLhOIlyfEVMYzr7I8a5EvWciaHawyw9jpxM5/sS9YvEGPpipLdKOvgwjoJ21NyXf1Gk0/icVbLRnpPQcj8N66O95sltuesRN3mtW7ceDzzwAADghz/8IUaMGBFpf4TUEvzEIjsUdXV1+NnPfoaGhgbUb9iIgYuWOD9Q5iRW7Q4nskLLfQgKmZs8KZLEIj8GJ2RplZKVUIyJKfISG0ZkzUmg8ilhHKXAMqGGE1lDYIHoEmtc+EdIY01ZrLTE2raJJLHGsYgin9b+RGlHl/ELcOixvf1g3KsVm7zGWmIdkVgqGxSRSz7DbhsHcclrHFjfo8LMZ2D0JYYv/WRSNT+PgkwwWNCG8YVq/lxJbg85VEaNaYZhDebnvtpd+vFOJLcJU17dULq6Mf79xZBS4nOf+xyOOeaYcDsjpEahwJIdjjFjxuB73/seAGDgoiWoW7/B+YEy92EUNY0FLBIbVWRDSKywj1uNIY3NtRNCYnUdwjphkjlLcfRyuMAS6yQicZQUx1HeZ/YnRF9s+w417tN+DOJKUMO0Y318pSW22uU18IRmDsmrHvM44YjEIrFhcDo3gp4vbjOeB8Umr1LKUBPPxfK+ZB0PbDRbYi1XJwx5jYIprpZzJEx6ashrFIzUVUT80zHE1UteISVOXbsBW7Zswbhx4/DNb34z2k4JqUEosGSHZPr06TjllFMgAAx9fT7Uzi73B0dMYw2CprFKGkh2FT9YKoheUgwEkliR1SEyDhdM5gRPPj/9dTh/6x9EYqV0XgZCCIiEGkxknS74A0qs68V+X0tsicdFlpKg8unWn6gyXEmJrWZ5Ddq+V9lwtaTDcRE0hY0jeY1DXIF4klePL9WE03upV18cZ3f2n3oaJcNOnz1qT4B2VBHuC76CNtzltW6L/78Ba+oaFj+pq8EP6wbgzTffRH19PX72s5+hrq4u/I4JqVEosGSH5dvf/jb22GMPqD09GDZ7LkQ2C7VLINHp8GlmSWPjEFk/aazXMjxRSooLd+KvpNhzDdm+Lim2lg+79KekxJZK0mKa3KnPJbbE/nxJrNfz9iufpfrrtx23x1RCsKpp0qao+/Ex5nWHTWFL/d37eV/oA3n1ncKWeg/yU0ZchpJhJ/ws0WYvGQ7dlxIlw2q69PkfR+pqFVc3eU1t6X0NGz9ZiQcffBAAcPXVV2PXXXcNv3NCahgKLNlhqaurww033IBBgwYh1daOneYvgMhKKJ6lO/GUFcc2NjaONDbmkmJXkbWXD7u00WclxSUv8pWSF23+hLAPJDbAxZxnn/2cA31VTlxqH3HKYKnnHUfpcLWkmn4nbOpvpcR+UthqSV4NYYxKmUqGHXflUUbslboGwalkOHgbMZYMx5C6liwXBqDkrzWSW7ag5e33AABf/vKXceyxx4bfOSE1DgWW7NC0tLTgF7/4BVRVReOqNWha/oG/DWMsK446NtYrjS2YwKlkZ8JP8NTbhkca61Y+7ISbxLqVD7v0RahKtAmegPjGxcaB18VbgH2UtZw4yMVlNZUTu73G1TjjsB8cy+MDzjZcLdJdbnwIWtHjnaiWyZoCjsN3LSMOkrq6VMWUSl39EDR1dZvIKY6JmuJOXf2idHdj0ruLkE6nccghh+Diiy8O3wFC+gEUWLLD8+lPfxpXXXUVAKB52SKkNq32t2E50tgoIuuQxhZN4FSyM6jcBE92nEqKS5UPO/TDMY0NKiTVJLFA4YVcyDSiSGLDTGhUriQ2SLvllNhqn7QpyH5DLpXT71PYGp5p2LGMOMz7jP2LxZhLhiO1ESJ1tU/kFEfqahXXvkhdC9CyOP6jldiwYQPGjBmDa665Bmpcs1ITUqNQYAkBcOqpp+LMM88EADQtm4fE1k3+N67QJE+OXSnD2FihSecJnEq2EXCCJ5c2Yi8pDiteNokNdWFfrhmKQ7YZexIbx1jFMK9NuSS2luXVuv8o67xWWSlxrESRK2PbMs00HIo+LBn2IkrJsDGRU1+NdfVDX0/SVIDUcRo2YeHChWhubsaNN96Ipqam8B0hpJ9AgSUkzxVXXIFDDz0UQtfRvGQ21M6t/je2TfLkOY62BIbERvmw7E1jo3xq53/gMYFTyTZ6L0BKjn/1Ik6JjXKh6GNcrC/iEtkYhFFKGe35GBIbpS9xpLlxi2ItTdpUirDyalAtzwMxprD9abxrXO8nEd/blO5s5JJhoelVM9a1ryZpckVKNC17G6+99hpSqRRuuukmjB49OnxnCOlHUGAJyZNIJHDddddhn332gZLNoHnRa1B6PJbXcSIvsiKbm0U4LLFM8GSksVGv0xRAJpToZcVAtAs+44ImyHIYTm1E7YfZVJXMUhxHG1EFJY5S27gk1viJ0kY1TNok9d6fqOgRvjwyuuN3/LpXGzEkuVWTBsfx9y+UeL4cyEb4xhQAEmruS8pI41RVSBF9DgWpxJC6ihhSVz166qp2y3Dimqdx5RI0rF0BIQSuvfZaTJo0KXxnCOlnUGAJsVBfX4+bbroJY8aMgZruwsBFr0Fk04HbETGJbGQEACVfyhvyw1wKASlyJWVxTPAUWR5VJZrEAvkkNWI/FFF5iY1BXs3nEOVC2rgQj0NiK4khr0C0i2hTgiM+H0PGo7Rj/M3GIbERXl9j2zjaiIRxnkd5feOS16hNGP2IclwS0UuXparmriYjDheJ+mVrVGkF8uIa8c9W7ZY5eY3wJzdgxQoM+HgRgNySf0ceeWS0ThHSz6DAEmJj0KBBuOWWWzB06FCoXVsxcOFrENkQg1tl/sNQq6zEmh/qSrQLhFgkFqgOiVVE/5HYOIkjAa0Wia1k2av1OYR5PpUWeTdCHtOqSV4LxmuH/JurNnmNQpzyGoWY5DUqsaWu+dLjsAz4eCUGrHoLAHDeeefhjDPOCN8YIf2UKrlqIqS6GDFiBG655RYMHDgQie1bMHDhbM917jypkjRWxpTGQhHRS4oNiY0ikKoCpJLhRdaQ2EQiWj+U/HI9kcfmBRzHFmf6aiWopNgvxmtVYp2SzjCvaRylw/Z2wqawTrMqRySoSDo9Po42AuO2rJBfIo7JzLWhRJZXIWL40iyhRpZXqarR5dVYdi3SF6vxpa6RxLVHQu2JlrqmtgGNK1ejefUCSClx+umn49JLLw3fICH9GAosIS7svvvuuPXWW9HU1ITE9k1o/mA2Eh1Zc1HxQFjT2AqKbEEaG1JkK1JSLKXzWoXG9j4lVtqX4DFm2wySxrpJQH9KY3e0JNZLEIO8pm7t+H0uTvJaqm03nP42pYxeShzg3KiK5NVrTLRfmSx36urzmHq+v/gdB+slrhl/bZjiGlFeo8hn3OIaVl5NcY0w1jW1LfeT3NyKgSvnQ9M0nHTSSfjOd74Tz2cKIf2QKrhSIqR6GT9+PG655RY0NDQgsX0jBiyfC7Uri0QnootsjZcV93ka63UhG1cauwOVFJfsp5/JkEpdlNeSxHrh5zUtJZilnouXvAYlrrVNXfAjlaUe4+f+WOQ1KrVSMlzqWJVKXaUsOdt8NaWuUYmlXDgmcVUyEskt6zCoNSevxx13HH7wgx9AqYYvMwmpUvjXQUgJJk6ciJtvvhn19fVIbF+PxhVzoaQzUHukq8RqKUCr92i0n5QV+0pjNQlkSzzJOCZ4CpjGFhFnSXG5JbYvL2wiz+hb5RLrN9ksKRA+2nB7jF959dNXP/Iaw+RSXnIZVTzLVjLshNfrWgXyGlvJcER8pa5SQunysLkqS13DYk1dvUgPcu+sIa5KRkLd1opBa95AJpPBkUceiRkzZkCNY11gQvoxFFhCfLDffvvhpptuMiW24ePZEJmcxDqlsbk16Epd8FZhWXEZ0lghJYS9dNeNuMbGRpFYrzTW74V/nONiqwHH8YM++1bNEhu0LNft9Ywj6fPbhlef/SavZRTEIPIZx/hYR4K8Hm7ncV+Pd3XoczVM1BQ0dXV8r6+C1LUS5cJaXfFt1tQVABLtq9C8ep4prz/96U+RiDrLPiE7AFVydURI9bP//vvj1ltvxYABA5Do3ITGj1+FSKehZKWryPrCRWT1FKDV9d34l5ocG+tGfyopLoPEhupTf09io7QXpG/2x8b1vIL+zZVhQqeaSl69iENeI3chYh9UJRZ57TdjXQOIqxRAjyU9jWOca7Ij92OkrgCQaPsEA9a8CU3TcPzxx+O6665DMpkMtwNCdjAosIQEYNKkSbjtttswaNAgqF1taFzxCkS2G0JHvCKrA1IB9ETfTuBQlWNjo27fH0qKrTMUVzKVNdfQDNGHapJYIPzMvtbXMmwbxjZhx73a9xvm70xGXF/W6IfZXLQldioqr8ZrGtdMw1E2j6tkOGIb/WGsa5RyYT2V23lc4qqmJdR0b0eSmz9Cw+o3oes6TjnlFMyYMYPJKyEBoMASEpDx48fjjjvuyK0T27MVjR+9DJHeDgAFIitFiXGwbljHx0adMDQhoCeD/5lb01hETWMjLm4PVYl2MaYqgKoWz0DshzCzFLu0Uy2TO1V0Vsu4JDYO8YrShnEMo7QRddKmqM8BiKWUOI7JliqevIqI7zHWdqJsHrUPuh65aiSuiZoqmbpmmtVYy4XDkB4kHMUVUiK1fhHqW98GAJx11ln4wQ9+wDGvhASEAktICMaOHYs777wTI0aMgJLejsblL0Lp2mLeb4iskgbUTIhP0Hwaq2gSSoTxsVLkxuOG+RCPo3RLCgGZVKHXJcNfIBqpSESJFUqEMamGxEa5QM1LbM0vixBVnGKR2Ih9kHq0PkgJaDEsRxPHckVhqxz0/HPwu/yKG1G3j+s4RCHOZL9SGAIU4X1Wqkq0kmFFgd6QjGWW4LAICeghP/OA/BfQmWipa6I7N8FjgbgCgNRRv2YB6jYsAQBccMEF+OY3v1n7nwmEVAAKLCEh2WWXXXDXXXdhr732gqKl0bjiFajb1pr35yQWUNO5D7QwIqslBfSkgJKV0SZ50iWEJiPNvBgWKQSg5hPZKB/UQuQSyNASmts20sWCInIXimFFNp/ohu1DVQlwrUqsVV7D9MGQ14jSFDW5NLf3uXZnAcaXEJG/jMhLfFiZN/Yftg9xyG9/kdew7695cY003AMAFAVSCOiJylxWmmmrDP85Z3zOZhrDPYdEt8zJq+Ygr1oWDZ/MRbLtEyiKgu9973u4+OKLq+f9nJAagwJLSASGDh2K22+/HdOmTYPQNTR+MhfJzR+Z9+up3JI6SlaGElmp5L5NBvKJbsg01vxw1ysjsQAAJZ/IRpFQIFoaa0hs2DTW2LeRyIYlYklxxS96DGmohMRatwm6vVPyGqYPxvOPUv5r7j54G9ZtIkmsQZgUVbdIa9hjGPX8iUqty6uq9sprGER+wr2o76l5ea0UhriG/VIs99na+yWxFnAeJau4KhqQabTNxJ/txoFyKRId61BXV4cbbrgBp512Wqi+EkJyUGAJiUhjYyNuvPFGnHTSSQAk6lvfRmrt+4CUeQE1xsvJ0CJrIHQZWWSDprG6KiBTMb1V5MvTIotslDTWmBApSJppv9iuUYmNVXwrKbFW4pAQv31wKh0OMQFT1OTVz21e+y84ZmFEUndIXIOksE77DHIc40hdq1BeA72OcaWuMYhrnPKqNfqfyMiauobBKq5hPk/t4mqgWwRY6W7H7m0LsGTJEgwaNAi//e1vcdhhh4XqLyGkFyFjmT2BECKlxJ/+9Cfcd999AIBs087oGnUg1EwSyU7ntfF0NTdGVUu6XwAIHUh2Sag9xW1IRUAquaTWa/tEtw61u3B7c5ySjxmH1bQOpTv8mD8lo0GkHVIeHRB+vjnXdAi3lMnP9lICWYf+67lEruTboNtFvpSxJUl+3ordBNTv23hZkluj9DCizPu6kHZ7nsLHlwmlxr2W2r9X6XCA8kupOZ8rfl8bt9daCAEkS1z8W0uHrVhn3C6Fk7wa+Nre4+/Fz0Q21V4yHHUiJz+TMHmlrqXOAWvq6oBsSJXev0fiqg2ItgxMprn09uaXrw5/C5kmFbrH5ymQE1fAWVrTTUrJBDbRndtecflTMJbgSWxdg502vouuri7ssssu+NWvfoXRo0d7N04I8QUTWEJiQgiBiy66CNdeey1SqRQSHevQ+NFLkOhwXs/Vksh6pbHWMuKifeqy5PhYt+V4CsqKKzQ+tirS2KglxX00Ltbr/orPLAxUNomNY0kYP/t3kye/UuXxOD9fQng9xveXME598PsljJe8+qHSZcNVmLoGIkrJcMypayUoSFxdznc/8uqVuPqRV3viaiXTKHIzDW9YgoaVr6OrqwsHHngg7r77bsorITFCgSUkZo477jjceeedGD58ONSebWhc8SLQs8F9AxmtrBio8fGxlrLiioyNDVNS7LTfKi8pLqvk9oXE+knZ3fbvd9Zht8f4mXW4lFyVoXS4CLcqBS95teI1FtaPvHodIz/y6tU/ymu0kuEYxrrGXS4chLjHuQbFWi7sha5qqF81D3XrFwEAzjzzTPzqV7/CwIEDw+2YEOIIS4gJKRMbN27ENddcg/fffx+AQGbIRKBunPcFhEtZsVcZsR2nsmK3MuKibV3KioUmoWZ0iHS4T38hJURGg8iU+vTvfXzBhYpXCbET9u3dSoiL9q+bjy94a/SbHMVUUuz0thxLiWm5KWc5sd+PKqdy4qDL5lj3H3TWYady4gDy6vQ6BfmYFilbhORXXoFc35MOJaRBklenMuIgfxNOZcS1JK9xlxAHXR7HWkJsiGuA7YtKiPNrT/sRV70+EWndb60x0TtnRB6vcmE7TuXDXuXCdpzKh0uVC1vJJrZjv8QKLFu2DKqq4jvf+Q4nayKkTFBgCSkjPT09uPXWW/H0008DALTGFujNkwGlRJ2Sg8gmuqXzWFoX7CKrpiWSHf4uRJ1EtmzjYJ2wj42VMiexfiTUwL59kG3tY2ODXICH2aZo/8XjYoMIaBQBjkw5JDbox5RVYsOs+Wrfd5AvTxwE1m3cq/vuC9sIJLDWsbBB5BVwHgsbtGxYiEIJDfp3YBfYWpJXIF6BDVMubLz2Jca6OpJKFgpowHLhOMe/BhFXg54hvedtEHE16BrSe+yDiCsA6PpaDNv6Pjo6OjB48GD87Gc/w5QpU/zvnBASCAosIWVGSonHH38cd9xxBzKZDKTaiOyQg4DkoNIbW0RWV4XvFLZg/3mRBfylsAXbCpgS26cCCxSnsUFTWAPL9mbC6mv/FokNI6Mxp7FBBdT+1t6n42TjltgwH1OGxIYRWGP7sGu+WiU2ROmw9bUK8xEtUsng8mpgTWHDjnlN2AQ6CELpPX5R5LVSJcNxCWwYeU2oOekMmLoamOlrgNTVSlwCG2ZmYSN9DSOuQG/6GlRcIXWo7YugdiwDAOy777742c9+huHDhwfrACEkEBRYQvqIRYsW4dprr8W6desAoSA7cD/IxjH+Ns6LrJqRUEKOk9UTuQ93vymsgZHACgko2fBlxEpWh+jJBN/QSGOzWjiBBfIyqQdLYQFTeKWuB1smpGC/8UhsWAENK8CRiUtio2BIaBTCnnOKiDTuVQgRaVuoarhz1khhoxz7RCLaea+qtSmvQHSBNUrAw/y9ppKRJmmSDalIkzRFEVitMdEr3iHO+54hiUhjXDMNuX37FlcA0LqR2DQPSnoTAODss8/GZZddhoSf2bgJIZGgwBLSh7S3t+OGG27AnDlzAAB6wyhoA/cDFH8feEICQsvNPhwGJSuhdulAiOsTKfITYfSES2V8j4N1QgeEpgGZbOjnDl0PLyO6XnGJrUnikFhrO32J7mPiphJE+njVdTMJC4NQldDnjZSyeCytX4x9+lkOxo0o54uuRZsMTsqIk8lFeM0Sqr+lhFyQ9alIs7nLxrrQ8hp1/Gu2KRn6yyYhgfRANbS86gnhuRSd4z671uFT+hJs2bIFDQ0N+NGPfoSjjz46XAcIIYGhwBLSx+i6jpkzZ+L/+//+P+i6Dqk2Qht8AGRqiK/t1YyEkpaAcF4exwuhAUpG701xA15vCC28wAIRUlggJ7GZrCkVoURW04KnsJZtpdcsrV7syBILRJuhWerhE0HrMQ8qBro0X++o6Xdg8uXroWTG+PsImQJJY/v6uuAbW8uWwwqwccyUEM/dKHkOK3HG32mF5FvU+ViD1Y1UEjJCv2VDCjLE+SakhBQidPpqjHXNNAU/X41ttTql5PI5Thifo5kBAY6b1KC2L4TasRwAMG7cOPz85z/HmDE+q6kIIbHAZXQI6WMURcGXv/xl3H777dh5550htE4kNr0CZdsHvr+BFnpeRrPBLpClmhsTK6TMjy0N1nepCMhExLeN0Ms4oODCMje2N6iBR1hGwj45TdBtY1hmp2aJOqFVmLGc1u3CpqlGCbl9Vupyoeu98hoGTTPbkCGer9S08PsO+zoVdED2vl5RCPMcpGW/YY9B1PQ1AlHkNbdGbLD9m58h+d8D71JaBLQ+jDj3/h5WXkV+DXTfZLZhYsNiU17PPPNM3H333ZRXQioAE1hCKsi2bdvw61//Gs899xwAQE8NhTZ4CqA2um6jZiTU7t4/W6kgUBqrpCUSlsmYzJIxn9cAUVJYs4w427tcTSBsKazZbpALXk3LTegU5q0vSikx0DspUBR2pCTWKkRBx2Y6SasS4EsIXUKm05Ztc/2OOhu0+/4czskgUmHIq4GiBEphC+RViNz2flNUJ3lV1WBJprSJqyKCpbD2CaeCflFlnyk6qBBWsHQ4UvoqBGQqCZn0t38nWdUakr7Lh53WGg+Svjpv7//YKWljkqfehtIDS2wvJZTtH2NA12L09PRg8ODB+PGPf4xDDjnE934JIfFCgSWkwkgpMWvWLPzmN79BV1cXpEhAG7gvZMNox4swu8Ca7aj+JNYusOb2QviS2FjKiO2zEQdZJiSrA2nnMmRfImufzCnoWyBLiaMRRGKdBNSvxLqlrn4l1i6wQGCJ9f3x6pa6+pUau7wCgQTWMXkVwl8ZsVfy6leA7fJq4FfA3WZL9iuxTvsPOhlSpUqHAciGEOXe5s4F9AH1/h7qcj5nm/z130k+Af8C6769v78TI3W14ymw2S4ktrwFpWc9AOCggw7Cj3/8YwwbNszXPgkh5YECS0iVsHr1avziF7/A+++/DwDQ63aGNujTgFp4ceEmsIC/NNZNYAF/aWxUgS1KYc2d+73Yd05hC/ZRSvKMFDbU/mNIYSmx/i743QTUj8R6lQ37kVgngQUKJlYqJbIlP171EpUIfgTWSV4B3wLrWjbsR2BLlQ37EVg3eQX8CWyppX5KSajX/v1KbD9PX71KhP2kr27iaVBKYEtv791/Y84Ht3JhR4GVEkrnSgzOLEVHRwdSqRQuvfRSnHXWWVAiTK5GCIkHCiwhVUQ2m8XDDz+Me++9N7dmrEjm09hR5oWUl8AaeKWxQsuv6ZpxFyhPkZW5iaCKBDQAjims2X7ptySvFLbgcW4Xpl5L6vh5S4ySwhr7oMR6X/h7iZF1dmM3kS017tXYzk0e3ATW3L50Guv58epnrKuX2BjPzW1t4xICa46RdeuDEBCqCiRd2vAz5rVUGbGXPAKly4j9rFPrJaCl9g+ULiWOumxOFaevfsa2eqWvpcQTyI1/df2s8rN9iQmclEzpca5FAqt151LX7nUAgIkTJ+LHP/4xdt1119IdIoT0CRRYQqqQjz76CDfeeCMWL14MoDCN9SOwgHca65XCFrThUlZcljLiop17XfyXTmGtOIqsUwrre/8RU1ij/R15PCzgLbF+jo1bGhtkQiG3NLaUwAIlJdb149XvRE1uAuuWujpsLxza8D1Zk1sKG+T4uqWwfuQRcE9h/cirgdPr43f/XilsVHmt0vQ1yKRMTgLrRzwN3NJXv224pa+lUlcrpsBKCaVzFYZkl2Lbtm1IJpO46KKLcM4553BtV0KqDAosIVVKNpvFQw89hHvvvRfZbBZSJKA3T4Ss3xVq2v8MxE4i61dgAec0tmxlxI4dcH6eflPYgm2sF6xeKayP/VdFKTHQPyQWKJYBv8fVSWKDzjrsJLF+BBbwLCku+ngtVTJsx0lu/Mprvm/2FDbQTMN2gbWer37POyeB9SuPgHMKG0RegWIBDbJ/ow9OElvJ0mHEn74GnU3YqXw4iLwCxQIbfPvCYxhEXAEg25BPcLMdSGx5G0rPRgDAXnvthRkzZmDcuHHBOkQI6RMosIRUOcuXL8dNN93Um8YmhwAD9oOabQ7UjrWsOIjAmttbRbbcZcSOHbDLQLAU1oopsqVSWK/957eveCkxUPsSCxSnsUEF1CqxYZbNsZcU+xVYc/viNLbg4zXM8jhWwSlVMuzSJ6vABl4mxyqwYZfJsZcRB5VHoDCFDSqvBlYB9fs3b8WedFa4dDjO9DXMMjhAYfoaVDyBwvLhMNsDhQLrp1zYTrpZQNm2DI3dHyKdTiOVSuHCCy9k6kpIlUOBJaQG0DQNjz32GO655x50dXUBEEBydyC1J4Tw/y2+kcZCR2CBNdvIXwgKvQ/KiB070PuWFSaFtSIM0Ql6QWvpg8yGk+iCtnb08bAGhoiGESV7khv2NTH6oGnB11K1pbFSyuCpq5X8cjaBUldbf0QiUXq8q8f+hZpPCqOs8WqksGHkFehNYcPKK9ArsFH6IFyqBYJ2pZKlw4CZvoYVV4NsUyq0eAK59DXK9rk21MCpq0l2C/TMu1AyWwEABxxwAL73ve9h1KhR0TpFCCk7FFhCaoj169fjt7/9LV5++eXcDaIRqNsXIvGpwG0pGT3Y+qk2hC4h0uGlK1AZsRNS5lJYTQMy4VNQoenht8+/fUaWWCC/Ni0lFoqI9lysKWyENmSEc8oU2TCpqxNh5NVAVaP1QQiIZCLa8VTV+F7XqER6Hkrl5RXRS4dlKgkkoj0PvT4RTaIBZAdESzh1VUAmRHBx1dNAzxKI7CeQUmLQoEG44oorcMIJJwRa55kQUjkosITUIC+//DJuu+02bNiwIXeDujNQNxFCGeC7DZHVc+Now35ey1wbgS8eLIROYS2IrA70BCj1tG9vpLBZzd+SGU7kJ2SKXE5c4UmdjI+DKBdxUsqKXwTG8jyM1zLKc4nw8WqkplFfCwCOEzn5RtchUuHLXc0+RCnHNL7YCfs84vhyp9SMyD6IQ16jlg4DgGwML8BGBY7e6HONXxe0OhXSx7rlbigZHdmGgMdSSiDzCQamPsbWrbnU9YQTTsAVV1yBwYMHh+4LIaTvocASUqN0dnbi3nvvxd///ndomgZAAZLjgNQeEKL0xaKS0aGkdUBxn224FCIroWS03vGxQbePmsICQL6NyCmsvRQ56HPSNMhM+HLmXBsRU1gg0sW69eMgjDhF3T62NowvAhQl/PMwXktFifbFRpjNNC33OioiwjHIn0tCySWoQcmnvlJKCFUNJaBmCbXPNWmdG7H8PYSRv7gqE+JIX6OOe0XI9NU6Ljtk+mp9j5d1asXSVyWj57481SQyzQHayG4Gut8D9Jy4jhs3Dt/5zncwefLkUP0ghFQWCiwhNc6KFStw++23Y968ebkbRD2Q2htIjPS8+DUF1rwhuMgaAmsQRmSrLoUtutPnc4ojhQUqJrFOHwVB5Cnq9m7thGrDmmT7WK/VsQ/WLyOMkuCgfQn48Wr223j9QgisNMZzG+dQGIHV9aIvEoKmsAXjf4HesbSBGnH4OwjSRqXl1foaVCJ9dTh3gqavTu/podNX45wSIrDAGuuWC8vs+74EVu8GehYDmVUAgKamJlx88cU47bTTOEkTITUMBZaQfoCUEq+88gruuOMOrF27NnejMiRXVqwOcdymSGDNOwKIrDEbsW0SpCAiG0sKq8noY2G9JBbwJy81LLFuHwV+BSrq9l7tBJc4h9cwQBpbJLCWNgJJbICPVzN1LdhfMIGVTudNUIG1ySsQXGDt8gogeArrdv77lcBKyqu175WQV7d1iQOkr27v4aHSV+v5JAT0lAI96a8NJ3E18BRYmQXSy9GgrERXVxeEEDj55JNx6aWXslyYkH4ABZaQfkRPTw8eeughPPDAA+jp6cndmGgBUhOKxscKXeaXwnF5C/ApsvYU1opfka2GFBZwKSUuelCJ51SDElvqY6CUREXd3k87wUTO5UsIn2msq8Ba2vD9hUaph9hT14J9+RPYotTVShCBdZBXsxmfZcSO8mppw5fIlTrvS7VRKXl1+vIgDnmFz9LhUue1j/S11Ht2oPTV6Vzymb56iSsAaA1qwdrmBfvMrMTQAauxadMmAMA+++yDb37zm5g4caL/vhNCqhoKLCH9kPXr1+OPf/wjnn766fwFqQCSY/PL7vQmKa4prJUSIuslsAalLoriENg+SWGLNnB5XnGMhwX6TGL9fAx4iZTfj5GoIuy7jVKz9pZIYz0F1tKGry8zvO52Sl0L9lFaYB1TVyv59XE9J3KyjHd1baZECmtu63Xs/aSwfs53z+fSx/Ja4tjHMe61ZPrq50uOEumr3y8bfQms13lfQmBLiauBY/qa3QB0LwT0bQCAkSNH4utf/zqOOuqoik8sRwiJFwosIf2YZcuW4a677sIbb7yRvyUJpPYAkmMhhOpPYA3cRNaljNgJt4ukWMqIEVMKG1RigeILyLhSWKDsEhvkI8DpIjDoR0i5Rdj32q0eaawvgbW04SoQLs/HM3UtaN9dYD1TVzteKaxH6lrQhIfA+vrSwGjHK4UNcp47tdGX8lqqr+UuHQ5aVu+SvgYZ7lGyfLjUeeRRPuxXXA0KBFZrA7qXAFpuVv7m5mZccMEFOP3005GKMIM2IaR6ocASsgPw+uuv4/e//z2WL1+eu0HUAak9ochRUAMGhVItllg/KWxBGw4XTdWSwgI+S4ldN84/t7gkNo7ldQDHi/uwb/9WqQrTRhwi7NpO0GPlkMbKbDbY2qtuImt7Tr7FtaDtYoktmbracRJYH6lrUTMOZcRB5BWAcwob9gsaqxzGJa9ey+X47Wc5S4fDTGpmS1/Dzhrvmr76PYdc0lfPoSwuZJoTgLYN6FkCZHPzPiQSCZxxxhk4//zzMXDgwEDtEUJqCwosITsImqZh1qxZuO+++7Bu3brcjaIBirIHFK0FIshYL1saG1RgDawXUnGlsBUpJXZsRFTXeFig6CI/ytu/ECLy9nH0pVjuQrxmljTWd/rq1o61P5bnVLJc2LXNXoENlLpasQusz9S1qBlbChtYXo12rClslPPaaCMueQWc09egXxbEJK8F6WvY5ZQs8hpWXAGX9DXoOWQT2KCpq0G2rgdS+wAiu8Zcd3r69Om46KKLMHLkyGB9IoTUJBRYQnYw0uk0nnjiCfz5z3/G5s2b87cOgIo9IDAi2Fghy/WMyEpfZcROGBdWsaSwqGApsRtVKLHV8tZvylkMMhxWqEyMJDXK+GVrGitluNS1oL2cwAZOXa1Yx8GGlFegV2B9jXf1wkhh4zifI67NWoBVXsP0LW55TcSQ4DbWRRJXg4L0Ncz5ky8fLrgpoLhK2QUdyyHUNfm1z4EjjzwSF198MXbbbbfgfSKE1CwUWEJ2ULq7u/Hoo49i5syZaG9vz9/aBBW7BxdZ5IRPZLRcCV5Y9JwER05h82lu1FJiABCZbHSJ1fXqmdQJAHRZNQIbK1Hk1YLMZqNP+qIo4VNXx05Ff24ikYj8ugtVDZ0GFrUT5b3CbCgmgTXkNcpxjnPSpjjktT4JGVGmhZTQ6xO59DXKl0xZHdqAZGBpBQApO6FhOdTEWmTzXwROnToVl1xyCSZMmBC6T4SQ2oUCS8gOzvbt2/G3v/0NDz/8MDo6OvK3NuZF1n9psdB0KGkNEAJSIPTFqbCmsBEulEXWNo41bOoUZTysBZnNxjOWtT9KrCGeSgQZ0fXcaxxVriypaVSJlSErEnobiEfITeJIBoFg67l6tRNkfVrPhiJKrCLikfJkMvwxto4r97Nkjo/2dB/L5rhubrw3SAltQHgpN76MFLqE1hBgCR4AUnZAw3Io6jozcZ0yZQouuugiTJ48OXSfCCG1DwWWEAIA2LZtG/7xj3/gkUcewdatW/O3NkDFOAjsUlpkpYSS1nLCJ0R4kdUlREbPjWM1CHNxaaSw9vQ0zNi/TDYvjtHeLqtRYoEqKCe2J6dhRFa3vT5hhURKyEy24LwNK7KhBTZucTWoMoGFokB4zWrrhjXVNl6nsBJbaXm17zuZiJa+GuX0dYlQ6atVXAFAr0tAeiy/49qORVwBQE+VmMHYgpTboOFDQKwz35umTp2K888/H/vtt1/gvhBC+h8UWEJIAZ2dnXjsscfw8MMPY8uWLflb66FgVygYDSHcL16FpkPpsZTthhRZ4TYWNuiFppvEWu733SdDYgNuV7TLapNYoLJprFvZbxCJ1T1elxDnjLSWnkcQ2cACWy5xNciPhY3cTExlxECIFNapJFsR4QS2UvLqts8o8mpNcEPIq11cDYKmr3ZxNdvxkb7qsg06PoLEOvO2ww47DF/5ylcwceLEQP0ghPRvKLCEEEe6u7vxr3/9Cw8++CA2btyYvzUBBaOhYFcIUV+0TZHAmncEFFmnFNapTR8UlRI74Xf9UavEBty2YBNKrGW/JfrvR2Tt6audIJJiF1izH8FF1rfAlltcrdRyCus2njhMCtvX8lpqX2Hk1aVNv6XDwvo34/D3EyR9dRNXAzeBlVJCYj10rIBE7gtTIQQ+85nP4Ctf+Qr23HNPX/snhOxYUGAJIZ709PTgP//5Dx566CF88skn+VsFBFqgYiyEsKy3Zy0jdkL0XjSWklnXFNapTS9KpbAOj3fdlaZ7TwwV4O00NomVMndhX4vjYv1OulRKYksJrIEfYdE0b/HMn7N+JNaXwPalvALxCWxfp7ClJsPyK7Hm4/pIXv1+2RFk3KtHm37SV7e01U6p9NU62Z6buALO5cNSatCxGjpWAOgEkFvH9dhjj8V5552HsWPHeu6bELJjQ4ElhPhC13XMmTMHDz74IN5++23zdoGhULAbBIbmltlwS2HtlEpl/aSwTm06EVRi89s47sIphfW5bdHD4pJYoDYndwo6a7CbyPoVWMBbKNzS16J++EtjPQW2r8XVICaBBfowhfU7k3MpiY0pdQVKyGvQffhJX/18YeIhr6XSVjte6WuptNWONX2Vsgc6PoGOTwDkKmOamppw2mmn4YwzzsDw4cN9tUkI2bGhwBJCArNw4UI8/PDDePHFF6GbEtIEBWOgoAVqWvhfE9ZDZH2nsE5t2m/yU0rshu1t0pfEumxbdHeVSixQ5smdIqwh6thO0L46CYFfgTX74i2yjgJbKXE1iGkcLNAHKWyYJYjcxsOWW17Dtl1KXgO061Q67DdtteOUvgYVV6A3fZVyKzR8gmRqPdLp3BrdI0aMwBe+8AWcdNJJaGxsDNQ/QsiODQWWEBKaNWvW4JFHHsGTTz6J7u7u/K0JKHIkEj0jocgAFyVO5cVhUlindoFwKawT+bfMQBJr27bo5mqUWKC8aWzUNVsNkQ2SvjphFYSgAmv2xVlkCwS20uJqpRZS2LDr5zqlsOWS16htuslriHat6WvQtNWONX31Wybs2CfoyNZvgo5PINFm3j5hwgSce+65OOKII5CI6/whhOxQUGAJIZHZtm0bnnrqKTz66KNYvXq1ebui7QQ1OwqKPhQCAS7KLKms0GW4FNat6TgkFsgLcQiJtWxf8N8dTWKjCqyVOPonRHiBNbCJrIzzdYiTahRYoFdiw8qr2Y5FYuOW17ier11eI/RRJhOAtdw34t+DNiAVKm01d49uZBOroamrAZGrelFVFZ/5zGdwxhlnYNKkSZHXWCaE7NhQYAkhsaHrOubNm4d//OMfmD17tik+Qq+Hqu0CNdsCgQDLMuQvckRGAzQJhFzqsaBJTYYvJbYjJUQ2vlTXnEAoDumRMj4hBuIX2bgENuaPMKlp8QlUnMc/Tqq1jDhGsYYicqIeR9+EApFQ45fXmI6bbEjF83egScikCplUQqStErqyBZq6CiK1GVr+3B82bBg+97nPnd94nAAAOWFJREFU4ZRTTsGwYcOi95EQQkCBJYSUiTVr1uCxxx7Dk08+iW3btuVulAKKPgxqdiQUfSf/qawOCE3LyScAKUR4mc23FUsKC8Qnsfm2imbBjSKzFjGOhFGOqWnxp7FRRbYcAgtEl1igOtNXIBaBLUjQYhDP2OTVEFcgmiBaSpBFKhlsXWI3FJFLS+MU9YTqe6kbRzTLeZ5QArcl0QNNbYWmroFUuszbp0yZgs9//vM4/PDDWSZMCIkdCiwhpKx0d3fjueeew+OPP47Fixf33qHXQdVakNBaIGRDyXaEZiklNsfKhhRZ3RjDqsWznIYWYYIoO04Sa94XoVw5rMTaJ8SpNomNORUuem5RRDYOgRVKfCJsHxcathn734yiRPo7il1ew/bFfq4rIlciHVVeLcda1gdYLqcUUeRVM6pj8ueWENBd1mq1I6FDVzZBU9dApLaYaWtDQwNOOOEEfP7zn8duu+0Wrl+EEOIDCiwhpM/48MMP8cQTT+CZZ57pTWVhjJUdCUUfBuFmpEYKa5lUxHqhGlRmhSaBnrTtxpAXvnGmsPn2Sq5HGlRqwkqs04yuUi/P2NigIluu9NWJMCIbRTztxz3OtgwCSqznuMUwEqso8Y2FDCuvHscmkrw6HNu401dZ7084TSxpq9AL30dlsrQM66ITmroGmtoKiN73zn333Rcnn3wyjj76aM4mTAjpEyiwhJA+p6enBy+//DKeeOIJvPnmm713yCRUbWeo2Z0h5MCiEuOCFNZOUJm1prAl2vNFJSS24PE+HhdUYt0u7g0qncb2pcAaBBHZMNLpdszjbMsggMD6Es0Aclax8a6ljkm+vVDy6nE8K1Y67CatVjzSV4kMNHUDNLUVUmkzbx8yZAhOOOEEnHTSSRg7dmyAjhNCSHQosISQirJmzRo8+eSTeOqpp7Bx40bzdqE3QNVGQNF27l2OxymFdcKvzJaSWIf2PKm0xJrbeSW3PsfF+rnQN/ZVqTS2EgJrpZTMBpHOUsc7qMD6FLWSzQT5IsdPCluO1BXw3q/fcznfZiB59XEM+1xe/Uir+YDi9LW3RLgVurIJELk2FEXBtGnTcPLJJ+PQQw/l2FZCSMWgwBJCqoJsNov58+fjmWeewcsvv2xZVxYQ2kCo2gio2qegaMlgy+qUklm/EuvQniPlkNj8WqeBRdZsw2k8rUcaG+SC36AcaSzgLrJl2FdggTVwE9lS0hnkOPsV2KCvnYuAhZZMD1Hrs9Q1zPmrCAhFyYlrKXkNkFz3mbwGkVYr+fRVQkKKNmjqWmjqekD0vseOHTsW06dPxwknnIDhw4dH6T0hhMQCBZYQUnV0dnbi5ZdfxjPPPIP58+dDNy7IpICiDYWaHoZE9xAIBEwA3GQ2qMQ6tFdA3BKbbzNUGlvUjnWGYweJDXPxb227r9aNLUPiG7nfdpF1k84wxzhOGbZik7HI6ahTChtn6go4y2uU89ZP6hpi0quyy2tYac0jIaHX9yCbWg9NXQeI3i8Nhw0bhuOOOw7HH3889thjD67bSgipKiiwhJCqZuPGjXjuuefwzDPPYOnSpb13SAE1sxPU9DCo6Z0iy6yQDpM6hWwv12gVS6zZnl5cUhxFBKztllNkqyl9dcIQWbt0Rj22ThIbx+uliJgFMy+x5RJXAFDim7nYUV4jLjMUu7wiP2lTDNIq1e3IpjZCS22EVHuXvhkwYAA+85nP4Pjjj8fkyZOhxtx/QgiJCwosIaRm+Oijj/Dss8/ihRdewMqVK3vvkAJqZgjU9PDwMitlTjajrktqtAf0SqwWo3TFLbFAr8jGsfaplXKWFVdjAmsnzi8FDAyJjavNuOU1j0il4m3QkNe4xDXfZoG8RpRWg1jlVcrcT0KFVNWI0rohL629SWsqlcLUqVNx/PHH49BDD0VdXYzL/BBCSJmgwBJCag4pJZYvX47nn38eL7zwAj755BPLnYbMDoOa2QlCBlhqQsqcbMYhsRZMibXuJyqaFm1crBPlENlypLF6zMfS1m5sfY3zOBpyFVeb+fZil9dk7u9NqEo8fY0zdbUIqjAmIErEnJLGIa+GtBooCqAG+8JCQkJXO6CZSWuhtE6bNg1HH300DjnkEAwYMCBafwkhpI+hwBJCahpvmQWU7EComaFQ00Oh6A1+GuwbibXvMyyaBmn0NS650bX409gdUWTjErg42+wLcbUSpb9RU1eHRFWIfJtximv+WMqEGl5e7dIqpVmG7VdeJTToyXZoyU3QUpshld4hEXV1dTjkkENw1FFH4eCDD+Z6rYSQmoYCSwjpNxgy+8ILL+CVV17Bhx9+WHC/0BqgpodCzQyFkm0uWmfW0hCQCTDTsU88Jda+/yBYJdZKFHkoV1lxDYpsrtkQ7UaVtzjb7WtxtRK0v1FSV4/jFpu8OhzDwPJqF1bjNvt+kt7DIaRIQ0tuhpbaDC25xVzyBgAaGhpw8MEH4+ijj8a0adPQ0ODjCzxCCKkBKLCEkH5La2srXnvtNbz66qtYsGABNOtEPXoyPwnUTlCzgyGk5UKxTCksEEBirX3xg5vEGoSVKYpsQduB+htG3OJut5LiauC3v0HFNcCY1UjyWuLY+ZZXp5TVa58O6WtuPGtnXlo3QVe3wfo93Kc+9SkcdthhOOywwzB58mSk4h6LTAghVQAFlhCyQ9DR0YG5c+fi1VdfxZw5c9DR0dF7p1lqPARKZggUrQlConok1orXW3Ze0D1F1koQESpHWTFQsyKba7pE20HELVAffLRbDeJqpVSf/ZQLh5hkyRRXIJi8+jxunvLqJ2V127dFXqXIQEtugZZsg57cUlAaDAATJkzAYYcdhkMPPZRL3hBCdggosISQHY5sNou3334br776Kl5//fXCcbMAoCfyE0ENgdo9EEILOKuxD4QxM3EckzDZ38ZLpbFulJKMcqWxRtu1JLKW9l377HWcosx466PdqhFXK0799kpdI84KHCh1DXi8pNGmVV7DCqutH1IR0Os6oCW3QE+2FaWsdXV1mDJliimtw4cPD7YPQgipcSiwhJAdntbWVrz++ut4/fXXMX/+fHR2dhbcLzIDoPYMhJoeCCUzEELGNwFMpDTWjfxSO0CANNYJN1GqZZEF+i6VdRO2WPZpnaXWMrtuNYqrFaPfdnGN67jAR+oa8RiZqWscwgqjLLgbWt1W6HVboSXbAKVwXeLddtsN06ZNw9SpUzFp0iQud0MI2aGhwBJCiIVsNov33nsPr7/+OubOnYulS5cWPkAKKJkBUNKDckKbboZAtIv7skgs0LtmbJxl0FZxqjWRBfpWZo3XNEY5c6IsJaNxi6sVYwmbuNZKtSCEyLVv7Xecx0dRIK1thxbWHuiprdBS7dBTWyHVTMFjmpubceCBB2LatGk46KCDmLISQogFCiwhhHiwadMmzJ8/H2+++SbefPNNrF27tvABUkBJN+dldiCUTFNgoRW6zIlPGSUWiJjGuqHLsk/0BMS4Nqsd45iUoX2paaUfFBBhlb5yvJ41Jq4F8l6mtV1NFAUy5JcRupIX1jpDWAvHsSaTSeyzzz6YMmUKpk2bhvHjx0Mtg+ATQkh/gAJLCCEBWLNmDRYsWIAFCxbgzTffxMaNGwsfIAWUTFNOajPNuYRW+htDK6yTRsUug2VIY630kcgCZZLZMoyXjUtgC6TVKmxxCXJeWgFAJKyzccd0rsQkro5Js3Fb3Gu72gkgrxISMtEJLbkNeqoDenIbZKKn4DGqqmLixImYMmUKpkyZgn333ZdlwYQQ4hMKLCGEhERKiVWrVpnp7FtvvYUtW7YUPU5kGqBkmqGmm6FkmiG0Otc1aEVWcxaoOKTQGLOn67UpskDfprK5nYRuJorAukprwQ5ktBTWSFsTLl+wRBXYCOLqKatWwswwHJQS8iqFBj2ZE1UttQ16sqNoDKuqqhg/frwprJMmTeK6rIQQEhIKLCGExIQhtO+++675UzTDMQBoSaiZplxSm2mCkhlQkNIKo5S4lJyEXtu1f4ksUJ0yG1RgfUmrnaCS7Ja2uhFGYgOKq29ZtdJH4gqgQF6NCZf05PactKa2QU9sh/37qIaGBuyzzz7Yd999MWnSJOyzzz5obGwsX18JIWQHggJLCCFlpK2trUBolyxZgmw2W/ggCQitIT85VF5qs41Qsg6znJYiiCyWu6zY6E85RRaoWpn1I7ChpLVgJz5S2KDSWrQPn+eHD3ENJat2yl0uDJipq66k8+lqhymt9nQVAIYPH45JkyaZP+PGjUMizLEmhBBSEgosIYT0IT09PVi8eDEWLlyIxYsXY9GiRcUTQwH5sbSNUNIDoKQboKQboWQaws147CWOfZHGGn0ot8gClZHZ3I6Ku+IgsMIud3HMkOskylGl1Y6XxDqIq+vMyFGebxlTVwkJqWSgpzqhp7qgp3Kyap8dGABSqRT23HNPTJgwAfvssw8mTZqEnXfeOfY+EUIIcYYCSwghFWbLli2mzC5atAiLFy9Ge3t78QOlMZ62AWq6MSe4mUYIPYSgOEmkrpdfZIFe4eovMgs4Cq3UtPIIqx0jhY1bWov2Y3mORvtCcZ6xOM7nGbO45iZZ6oae7ISe6oSW7ISe7ATUbNFjVVXF2LFjsffee2PChAmYMGEC01VCCKkwFFhCCKkypJRobW01ZXbZsmVYtmyZs9QCENkUlLzYKpmGvOTWh09rDRkzlt8p58eEIbPlWELIiiGziijP+rJ29HzaXA5htVAgyH2x7Epe3ExpLefziyiuuVQ1C5nsgp7syglrshN6sgsQxa+/oigYM2YM9thjD0yYMAF777039txzT9TX10d5FoQQQmKGAksIITWAlBIbNmzAsmXLsHTpUvPfNWvWuGwAiGxdr9hm6/Ny61NsddlbXuwxljO2jxDrPsots0BhmlguoS1Dkl0grIoARBnWa7VjSRtFuceeWvfncy1ao/zXFNVEd15YuxzHqwK5SZb22GMP7LHHHthzzz2xxx57YLfdduNSNoQQUgNQYAkhpIbp6OjAhx9+iGXLlmH58uVYsWIFPvroI3R0dDhvYIhtth4iWw8lUw8lWweRrYfQksXL+/gUWcddhf146WuZBXqFNk6ZjUlgTWntK2EF+l5agVziKoSruEqhQSZ6coKa6MmVASe6oCe7XUVVCIGRI0di7Nix2H333U1hbWlpgaL00bEkhBASKxRYQgjpZ0gpsWnTJlNmV6xYUVpsAUBXTJk1/83U5datzSRyVZchRNatj76opMwahJXaEAJbNGa2v0srUCCuErpFUrvN32WiGzJRPKFSbxMqdtllF+y6664YO3Ysxo4di9122w2jR49mqkoIIf0MCiwhhOwgWMV21apVWLlypflva2srNC8xlQIim8qNt83WQWSSUNKJ3G2ZFISWKE5vI/a1CHv/+kpogXAlxz4EtiIlwQa2iYj6Qlql0CETaejJNGQq2/t7Ig2p9kA6TKRkZeDAgRg1apT5M3r0aIwdOxajR49GKpUqe/8JIYRUHgosIYQQZLNZtLa2Foit8bNhwwZvuQUA3RDcJJRsEiKbyJUkZy0/MUqudEqCKyW0BnaxtQhsUbIK9DthzZX4ZiATGehqBjKRhVQz+dvS0JMZx5l+7TQ1NRVIqvVn4MCBsfaZEEJI7UGBJYQQ4kk2m8WGDRuwdu1arF27Fq2trWhtbTV/37hxI3Q/5bISeZG1CK6mWn5P5P6vJQBdDSS7FRdasyOFSS2AvhdVY59KoaCGEVYJHVLNFvzA+D2RzYtq7geKv+M9YMAAtLS0YMSIEUU/LS0taGpqcl9HlhBCyA4PBZYQQkgkMpkMNmzYYMrshg0biv7dvHmzP8k1kMIitwlAz8utnvuB8Xv+X+R/h1RM8ZV2gZV6ZaS23DjIKhQBYZmkSEICigaparmlZRQNUDVIRbP9bpfVYMersbERw4YNw/DhwzFs2DDz51Of+pQpqc3NzXE8a0IIITsoFFhCCCFlJ5vNYsuWLabUbty4EW1tbdi8eTO2bNmCtrY281/PiaZKIQWgKxC6kpNaqZj/F7oCaPn/W26HDkDLbSukAHSRE2Ep8u2J3vukkQwKQFr/RcnEWMLycStsv4vcv1Lo+f9LSCEBRfb+X82vYyskpKIDim7+CzW/raLlbhO65TGa73TUCVVVMXjwYAwZMgSDBw82fx8yZIgpqsa/jY2NofdDCCGE+IECSwghpKpIp9MFQrt582Zs27at4Gfr1q3o6Ogo+H/Jcbp9gYRFcvMI03ArTmNjI5qbm82fpqamgn8NQbVKKkt6CSGEVBMUWEIIITWPlBJdXV3Ytm0bOjs70dXVZf5r/LjdnslkkMlkkE6nzR/j/9bbyy3IiqIgmUwimUwilUqZv9v/n0ql0NjYiIaGhoKf+vp683fj/vr6elNOBwwYgIRtIidCCCGk1qDAEkIIIT7QdT3QjxACQggoimL+GP+33i6EgKqqlEtCCCHEBxRYQgghhBBCCCE1QR/P608IIYQQQgghhISDAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJogUekOEEJIpZBSoru7u9LdIISQQNTX10MIUeluEEJIRaDAEkJ2WLq7u3HCCSdUuhuEEBKIWbNmoaGhodLdIISQisASYkIIIYQQQgghNQETWEIIAZB6/VOAJiAUAQjF/BeKAPKlekJRcr+L/L+KgBD57wGNx+VvN7Ypus1o03ofeu+XxnaK5X7jduMrR/ttQkAa1YQi/38l95/e2wUgYG4j8/8HkHuM0YYwnktve/b7rW1K4zGKw33WxxfcZ73N3g+XbVzuB2D2wW1fBY936UfRNnDYvmgbWdAPe3vm/bDfL3sfg97H9j5Had4nih4vzW1E/vbef432JISQBaeX0X7upey9X0Hud5i3A0r+/tx9uSbN2yz/5trr/b/1B8i1nfs/eu9D774UoZu35R6rAwBU0ft/RRTepwhpuV9ChW7uTxW6ZTsdan5fxu+5f3VzO6M9BTK/rQ614L7c41UhIaBDzf/feG65/yO3HXr3J/JtqGYf8/1D7liokFCA/O8i3x6gCgEFAiry/wrjPgUCApm0ijO/NgKEELKjQ4ElhBAgJ6967kIRovdfqxkIGOLaa2vCsMoCE8rfn9+q0GyUYrsSlm2d7MnzdrjcD1NaC363/2tuLizN2oXYfr+9TeRF2uU+t+469sPPNj4OVdg2LYevtPTGLLD2+2332QW293Z7e7LoPkNSne+Xltutt0mHNmXBNobA2n9c7zOl0iK2FtE170Pv/Yb4GfflBFY3BdC4LyeA+X+FgApjm9zvuX9FgTjm2gJUAfPf3u1yvzveZ/7fEGBpEebc76UE1qk9BchLce7/ufuMx1teQ0II2YFhCTEhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCbgOLCGEAIAqIaHnFn8UsP1rLshoW0fVvs6q8SN7tym43eU+y0Kk0mVxU6fbe28zVtdE4f+l9fbcYyUEIFHQnrRuk9+uGJfbpOWugrVIhbX7HuuvCpfbbdu43V/qPq82vW43/vHcxmk9V4f7i/rosg4sircTRY/vfZywrvFqOU1hrrtqPb1c1oFFtHVgZX57afsx7pP5tXDN+/L914UEhN67H+T/j/zzQeH9Mn+fzO/baBvo3Z/1dsWyL+N3+7+5fuT+rK3/6vmnrOR/1/OnqPM6sAIKcuvLGveJ/O0qeteSBVDwf8X8XVja621LgYAqjPsEBAQyaae/QUII2fGgwBJCCID01PWV7kJ5kLZ/Q2DzOkJMDP3USz2wajEMnwVphBBSK/AdmxBCCCGEEEJITSCklBG+lyeEkNpFSonu7u5KdyM2uru7cdpppwEAHn/8cdTX11e4R9UNj1dweMyCU45jVl9fDyFYE0EI2TFhCTEhZIdFCIGGhoZKd6Ms1NfX99vnVg54vILDYxYcHjNCCIkOS4gJIYQQQgghhNQEFFhCCCGEEEIIITUBBZYQQgghhBBCSE1AgSWEEEIIIYQQUhNwFmJCCCGEEEIIITUBE1hCCCGEEEIIITUBBZYQQgghhBBCSE1AgSWEEEIIIYQQUhNQYAkhhBBCCCGE1AQUWEIIIYQQQgghNQEFlhBCCCGEEEJITUCBJYQQQgghhBBSE1BgCSGEEEIIIYTUBIlKd4AQQkgv3d3deOutt7BkyRJ88MEH+OCDD7Bu3ToAwIUXXoivfvWrodu+99578ac//ank42bOnIlRo0aF3k9f0t7ejldffRXz5883j5WmaRg8eDDGjx+PE088EUceeWSkfXR2duKhhx7Ciy++iLVr10JRFIwePRrHHHMMzjzzTCSTyZieTd9QzmP21FNP4cYbbyz5uF//+tc48MADQ+2jEixZsgSvvfYalixZglWrVqGtrQ3bt2/HgAEDMGbMGBx88ME4/fTTMXDgwND72Lx5M2bOnInZs2dj3bp1qKurw2677YYTTzwRJ598MoQQMT4jQgipXSiwhBBSRSxatAg//OEPy7qPRCLheaGtqmpZ9x8np59+OjRNM/+fSqWQSCSwYcMGbNiwAa+88gqmTZuG66+/HvX19YHbX7t2Lb71rW9h7dq1AID6+npkMhksXrwYixcvxn/+8x/cdtttaG5uju05lZtyHzMAUBQFgwcPdr2/1qT/3//+Nx599FHz/6lUCnV1ddi6dSvee+89vPfee3jkkUdw4403Yt999w3c/pIlS/D9738f7e3tAICGhgZ0dnbinXfewTvvvIMXXngBN954Y80dN0IIKQcUWEIIqTKam5ux1157mT933HEHNm/eHFv7++67L26//fbY2qskmqZh7733xmc/+1lMnToVI0eOBAC0trbiz3/+M5588knMnTsXt9xyC37yk58EajubzeJHP/oR1q5di6FDh+J//ud/cOCBB0LXdTz//PO4+eabsXTpUlx//fX41a9+VY6nVxbKecwMPvWpT+Gvf/1rnN2uKHvvvTdGjBiB/fbbD2PGjDG/sOjs7MRLL72E3//+92hra8P//M//4C9/+Quampp8t93R0YGrr74a7e3tGDNmDH7yk59gwoQJyGQy+Ne//oU777wTr7/+Ou644w5cddVV5XqKhBBSM1BgCSGkithvv/3w5JNPFtx29913V6g31c9tt92G/fffv+j2lpYWXH311VBVFf/85z/xzDPP4Gtf+xp23nln320//fTTWL58OQDg+uuvN5M1RVFw7LHHQkqJn//855gzZw7mz5+PAw44IJ4nVWbKecz6KyeeeKLj7Y2NjTjxxBOx00474fvf/z62bNmC1157DdOnT/fd9kMPPYTNmzejrq4Ov/rVr8wvFJLJJM444wx0dnbinnvuwb/+9S+cffbZGD16dCzPiRBCahVO4kQIIVVELZXvVgNOImbl5JNPNn9fsmRJoLaffvppAMCUKVMcy0KPPfZYtLS0FDy2FijnMdtR2WeffczfN2zYEGjbWbNmAcidT4a8WjnjjDPQ0NAATdPwn//8J1pHCSGkH0CBJYQQ0m9JpVLm77qu+96uu7sb7733HgDg4IMPdnyMEALTpk0DALzxxhsRelldhD1mOzLvvPOO+fsuu+zie7tPPvnEnKTNOJfsNDY2Yr/99gPQv84zQggJC0uICSFkB+Ojjz7CBRdcgDVr1kBRFAwbNgyf/vSncfrpp2OvvfaqdPdi5a233jJ/HzdunO/tPv74Y1PedtttN9fHGfdt3rwZW7dujTQLbbUQ9phZaWtrwyWXXIKVK1dC0zQMHToU++67L0455RRMmTIlpp5WlnQ6jU2bNuG1117DvffeCyAnr4ceeqjvNowSdcD7PBs3bhzmzp2LFStWhO4vIYT0FyiwhBCyg9He3o5t27ahqakJ27dvx8qVK7Fy5Uo8+eST+PKXv4yvfe1rle5iLGzbtg0PPPAAAJiT7/hl48aN5u/Dhw93fdywYcMKtql1gY1yzKx0d3fjgw8+QHNzM7LZLFpbW9Ha2or//Oc/OOmkk/D9738fiURtXoIcd9xxSKfTRbdPmjQJ1157bUGCXYpNmzaZv/s5z7Zv347Ozk40NjYG6DEhhPQvavPTgxBCSGBGjRqFyy67DIcffjhaWlqQSCSQyWSwYMEC/OEPf8CSJUtw//33o7m5Geecc06luxsJXddxww03YNOmTUilUvjud78baPvOzk7z97q6OtfHWZeZsW5Ti0Q9ZgAwdOhQXHjhhfjMZz6D0aNHI5VKQdM0LFy4EPfddx/mzZuHf//736ivr8d3vvOd+J9EH7DTTjshnU6jq6sLXV1dAHLjpC+77LLAE16FPc8osISQHRmOgSWEkB2E6dOn49xzz8Xo0aPN9CuZTGLq1Km48847MWHCBADAfffdh46Ojkp2NTK33347XnvtNQDAd7/7Xey+++4V7lH1E8cxmzp1Kr761a9i9913N5NIVVUxadIk3HLLLTj88MMBAI899hhWrlwZX+f7kL/+9a947LHHMGvWLDz++OO4/PLLsWzZMnz961/HH//4x0p3jxBC+j0UWEIIIairq8Oll14KAOjq6sL8+fMr3KPw/O53v8M//vEPAMCVV15ZMKuuX6wJV09Pj+vjuru7HbepNeI4ZqVQFAWXX345gFzaa8hyLTNkyBCcc845uPnmmyGEwP/93/8Fel472nlGCCFxQIElhBACoHApkDVr1lSwJ+G566678PDDDwMALr/8cnzhC18I1Y51bKvXsijWsbLWbWqJuI6ZH0aNGoVBgwYBqN1zzImJEydi0qRJAIB//vOfvrcbOnSo+buf82zAgAEUWELIDg8FlhBCSL/g97//PR588EEAwGWXXRZpHO+uu+4KRcl9RH700UeujzPu22mnnWpyAqc4j9mOjjEJ0+rVq31vY53l2es8M2YrHjt2bLjOEUJIP4ICSwghBACwcOFC8/eWlpYK9iQ4v/vd7/DQQw8ByInYueeeG6m9+vp67LvvvgCAuXPnOj5GSonXX38dAHDQQQdF2l8liPuY+WH16tVob28HUHvnWCmMRDlIQjp69Ghz4ie386yrq8tcZ7YWzzNCCIkbCiwhhOwASCk970+n0/jDH/4AAGhoaMABBxzQF92Khd/97ncFJbBxidiJJ54IAFiwYEGB3Bs8//zzprQYj60VynHMSp1jUkr8/ve/B5AbDxtkvdRKomlayec2f/58LFq0CAAwefJk320LIXDCCScAAP773/+itbW16DGPPvoourq6oKoqjj/+eP8dJ4SQfgoFlhBCqoxt27ahra3N/NF1HUBukhfr7fZlW+69914ceeSROPLII4suhN9++21897vfxaxZs7B+/Xrz9mw2i/nz5+PKK680Je2CCy5Ac3NzmZ9lPFjHb1555ZWBSmCfeuop83gtWLCg6P4TTzwR48aNg5QS11xzjTmxla7reP7553HzzTcDAKZNm1ZTwl+uY7Z27VpceumlePzxx7FmzRpT+nRdx/vvv48f/OAHePnllwEAn/vc50KvMdvXrF+/HhdffHHR8wKAdevW4YEHHsCMGTMgpcTAgQOLxhB7/V0CwDnnnIOddtoJ3d3duPrqq7FkyRIAQCaTwWOPPWbObHzqqadi9OjRZXymhBBSG3AdWEIIqTIuvvhirF27tuj2Bx980ByvCOQEa8aMGb7alFJi/vz5poTV1dWhvr4e27dvRzabBZBLxc477zx86UtfiuFZlJ9169aZx0NRFMycORMzZ850ffwXv/jFQEljIpHAjTfeiG9/+9tYu3Ytvvvd76K+vh66riOdTgMA9txzT1x77bXRnkgfUu5jtnjxYixevBgAkEql0NDQgK6uLvN4AcBJJ52Eb33rWyGfQWVYtmwZbr31VgC5pacaGxvNtWANWlpacP311xdMzOSHpqYm/PKXv8T3v/99rFixAl/72tfM9o2/zYMOOghXXnllfE+IEEJqGAosIYTsAIwbNw6XX3453n//fSxfvhzt7e3o6OhAfX09xo4di/322w+nnnpqTa2XaiTTxu+bN2/2fLxVNvzS0tKCP/3pT3jooYfw4osvYu3atUgkEthtt91w7LHH4swzz0QymQzcbqUo5zHbaaed8O1vfxvvv/8+li1bhra2Nmzbtg2pVApjxozBvvvui5NPPtmcrbdWGDZsGH7+859jwYIFWLRoETZu3Ij29nYoioKdd94Zu+++Ow4//HAcf/zxqKurC7WP8ePH4//+7/8wc+ZMvPbaa1i/fj3q6+sxbtw4nHjiiTjppJPMScUIIWRHR8hSAzsIIYQQQgghhJAqgF/nEUIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmiBR6Q4QQgghhPihu7sbb731FpYsWYIPPvgAH3zwAdatWwcAuPDCC/HVr361wj30T2trK774xS+WfNxXvvIVfO1rX+uDHhFCSG1AgSWEEEJITbBo0SL88Ic/rHQ3YmfQoEFQVdXxvsbGxj7uDSGEVDcUWEIIITXBb3/7W/z973/Hpz/9adxxxx2V7g6pEM3Nzdh9993x/vvvI5PJoKmpCR0dHZXuViTuuecetLS0VLobhBBSE1BgCSGkn7N9+3YsXboUixcvxpIlS7BkyRKsXr0aUkoAwMMPP1y2i2cpJc466yxs2LAB5513Hr7+9a+Hamfp0qV47LHHAACXXnppjD2sLMuXL8frr7+Od999F8uXL8emTZugaZopaYcccghOPPFENDU1VbqrVcF+++2HJ598EgBw//334w9/+AM6Ozsr3CtCCCF9CQWWEEL6Od/61rewdOnSiux78eLF2LBhAwDgiCOOCN3OXXfdBU3TMG3aNEyaNCmu7lWUb33rW3jrrbcc79u8eTM2b96MN954Aw888ABmzJiBqVOn9m0HqxBrme1ZZ52FRx55BG1tbYHaWL58Of7+97/jzTffxMaNG6EoClpaWnDYYYfh7LPPxuDBg+PtNCGEkFihwBJCSD/HSFoBoKmpCXvuuSc+/vhjbN68uez7fvnllwEAw4cPx9577x2qjXfeeQfz5s0DAJx33nmx9a3SGGLf3NyMI444ApMnT8bIkSNRV1eH1tZWPPXUU5g9ezY2b96MGTNm4NZbb8WnP/3pCve6emhoaMCZZ56JP/7xjwCATCZTcpuZM2finnvuga7rAID6+npks1ksX74cy5cvx7///W/88pe/xF577VXWvhNCCAkPBZYQQvo5J510EgYPHozx48dj1KhREELgW9/6Vp8K7GGHHQYhRKg2HnzwQQBAS0tLvxK4UaNG4fzzz8exxx6LVCpVcN/48eNx1FFH4S9/+QvuvvtupNNp3Hrrrfjzn/9cod5WJ9OnTzcFtlSVwRNPPIH/9//+HxoaGvDlL38ZJ510EoYOHQpN07Bs2TLcddddePPNN/HjH/8Y999/f59OnnTddddh1apV6OrqwsCBA7HXXnvh2GOPxbHHHotEgpdqhBBihevAEkJIP+ess87Ccccdh9GjR4eWyDCsXLkSH3/8MYDw5cMbNmzA7NmzAQAnnHBCn/a/3Nx888347Gc/WySvVs477zzsueeeAIAVK1bgww8/7Kvu1QQtLS1IJpMAgCVLlrg+rrOzE7///e8BANdffz2+8pWvYOjQoQByZcnjx4/HLbfcgvHjx2PDhg144oknyt95C4sWLYKmaUgkEti8eTPmzJmDG264AVdccQU2btzYp30hhJBqh1/rEUIIKQsvvfQSgFzZ8pQpU0K18eyzz5rlnsccc4yvbbLZLP773//ilVdeweLFi9HW1gZN0zB48GCMGzcOBx54II477jhTYAyOPPJIAMCJJ56IGTNm4JNPPsHf/vY3vPHGG9i4cSMGDBiAvfbaC1/60pcwefJkc7uenh489dRTmDVrFlatWoXu7m6MHDkSxx9/PM4++2zU1dWFeu4G+++/v5kurly5ErvvvnvotlasWIHHH38cb7/9NlpbW9Hd3Y2mpiY0NzejpaUFBxxwAA4//HCMGTMmVPvZbBbPPPMMnn/+eSxfvhzt7e0QQmDgwIEYPHgw9t57bxx44IE47LDDTPE0sB//FStW4NFHH8W8efOwceNGdHV14YYbbij6MqShoQGZTAbt7e1YvHgxJkyYUNSvF198ER0dHdhzzz1dxxInEgkce+yxWLJkCd544w184QtfCHUM/JJKpXD66afjmGOOwV577WUmvitXrsQjjzyCxx9/HIsWLcLVV1+Nu+++m0ksIYTk4bshIYSQsmCUDx9yyCGhL75fe+01ALlxorvuumvJxy9btgzXXnstVq1aVXTfhg0bsGHDBsydOxcffvghZsyY4drOCy+8gP/93/9Fd3e3eVtPTw/mzJmDuXPn4vvf/z5OPfVUbNy4ETNmzMDixYsLtv/oo49wzz33YM6cObj11lsjSWw2mzV/V5TwhVOPP/44brvtNmiaVnB7e3s72tvbsWrVKrzxxhv48MMPcc011wRuv62tDd/73vccS3mNY7906VL885//xMyZMzFq1CjXtp566inceuutSKfTJfdrFeHXXnvNUWDfffddAMDHH3+M008/3bWtnp4eAMDatWsLbm9tbcUXv/jFkn1x40tf+hK+8Y1vFNw2dOhQXHXVVUWPHT16NK666irssssu+N3vfoelS5di1qxZOPnkk0PvnxBC+hMUWEIIIbGzceNGLFq0CED48uF0Oo33338fALD33nuXLB9eunQprrzySnR1dQEApkyZgunTp2PXXXdFMpnEpk2bsHDhQjMZduPDDz/Ef//7XwwZMgSXXnqpue/58+fj/vvvR3d3N37zm99g8uTJ+MUvfoFly5bh9NNPx+GHH47Bgwdj9erV+POf/4wPP/wQ77zzDmbOnImLLroo1DEAgDfffNP8fbfddgvVxvLly015HThwIE499VRMnjwZgwcPhqZp2LRpE5YsWYI5c+aELtO+7bbbTHk94IADMH36dLS0tGDAgAHYvn07Pv74Y7z99ttmSbgbS5YswbPPPouBAwfi7LPPxqRJk5BMJrFixQqMGDGi6PHWL0fefPNNfPWrXy16jFGGm06nfY39NkS2kpx99tn429/+hnXr1uHll1+mwBJCSB4KLCGEkNh55ZVXIKVEKpXCtGnTQrXx4Ycfmunj+PHjPR+bzWZx7bXXmvL67W9/G2eeeWbR4w499FBccsklWLdunWtbS5cuxZ577onbbrsNzc3N5u0TJ07EqFGj8NOf/hTZbBZXXnkltm7diptvvhkHHnig+bi99toLBx10EM4//3xs3LgRjz32GM4///yCJWD88tJLL+Gjjz4CkJP40aNHB24DAJ5//nkzef3Nb35jjqu1csQRR+CSSy5Be3t74PZ7enrMLwaOOOII/OIXvygS4cmTJ+O0005DV1eXZ5L80UcfYdSoUbjzzjux0047mbe7zWJt3c8HH3wAXdeL2reWoV933XWBnhsA7LzzzvjnP/8ZeDuD+vr6wNsoioK9994b69atQ2tra+h9E0JIf4MCSwghJHaM8uEDDzwQDQ0NodqwlgFbRcaJZ599FqtXrwaQm3XZSV6t7Lzzzp73/+hHPyqQV4OjjjoKw4cPx4YNG7BlyxacffbZBfJq0NTUhM9+9rO4//77sWXLFqxYsSLw2NWNGzfi17/+NYCcpF122WWBtrdipI7GMkpeDBo0KHD727ZtM79smDx5smeK6+d8uOqqq0q+5k50d3dj48aN+NSnPlVwu9GW1xcXXiiKwvVhCSGkSuAsxIQQQmKlo6MDCxYsABC+fBgANm3aZP4+cOBAz8cawgwA5557buh9ArkyXTfJE0IU3Dd9+nTXdqyPW7NmTaA+dHd3Y8aMGaZ42ieOCsrw4cMB5F6b559/PnQ7bgwaNMicTfm5555DZ2dn6LaGDx/u+KWAX6znjcGkSZMA5MqTa2VWX13XzTL8lpaWCveGEEKqBwosIYSQWJk9ezay2SxUVcVhhx0Wuh3rOESnNNTKBx98ACCXtPmZ7MmLUttb++I1W6/1cUGELpPJ4Cc/+Yk5MdThhx+OSy65xPf2TkyfPt2cSOqnP/0prrjiCvzlL3/BO++8Y5ZdRyGZTOLEE08EACxcuBBf+MIXcPPNN+O5554LLO9RZlkGUDDxlsFRRx2FpqYmZLNZ/O53v4OU0nV7Xdexbdu2SH3wg1cfAJjjX4HcOUAIISQHS4gJIYTEipGG7rvvvpHKLq1jRkvNRtvW1gagN2mMQqnxitbyWK9yWOs4TGMMZimy2SyuueYavP766wCAqVOn4rrrrgs1ftbKyJEjcdNNN+F///d/sWHDBrz77rvmzLyqqmLChAk48sgjccopp5T8ssCNb37zm0in05g1axa2bt2Kf/3rX/jXv/4FIPfFwtSpU3HSSSeVTJJLpe3btm0rmEnZfmy7u7vR1taGVCplLk3T3NyMb37zm7jxxhvx3HPPoaOjAxdddBEmTJgARVGg6zo++eQTzJkzB0888QTOP/98z3Q9Dr75zW/ioIMOwqGHHorddtvNnIxq9erV+Nvf/oZ//OMfAHJCb3w5QAghhAJLCCEkRtLpNObOnQsgWvkwkBuvabB169ZIbdUC2WwWP/3pT82lgw488EDccMMNZmluVA444AA8+OCDePXVVzF37ly88847WLVqFTRNw/vvv4/3338ff/nLX3Dttde6rpXqRV1dHWbMmIGvfOUr+O9//4sFCxZg0aJF6OrqwubNm/H000/j6aefxpFHHolrrrnGdWmhUksFXXzxxUXL3Fi5+uqrAfSuJ2vw2c9+Ful0Grfffjvmzp2LuXPnIpVKoaGhAdu3by9YrqgvWL9+Pf74xz/ij3/8I1RVxYABA5DJZAoS8YkTJ+IXv/gF14AlhBALfEckhBASG/PmzTMvwKMKrHXJlFICO3jwYKxbt65mxjfaMeTVSK/3339/3HjjjZHWj3UilUrh6KOPxtFHHw0gl1zPnz8fs2bNwpw5c7B161Zcc801mDlzJoYOHRpqH6NHj8YFF1yACy64AJqmYenSpXjttdfw+OOPY8uWLXjppZfwhz/8AVdeeWWcT80Xp512GqZOnYpHH30U8+bNQ2trKzo6OtDY2IhddtkF++yzDw477DDsv//+Ze/L5Zdfjvnz52Px4sXYtGmTeY7vvPPO2GuvvXDMMcfgqKOOipy+E0JIf4MCSwghJDYMAdtzzz0jTzxjXfP0k08+8Xzs+PHjsW7dOmzatAmffPKJ59jUasMur1OmTMFNN90Uu7w6MXjwYBx77LE49thj8etf/xqPPfYYurq68Morr+C0006L3L5RnjxhwgR89rOfxQUXXIDu7m48++yzoQX2r3/9a9Ft5557LlavXo2WlhY8/PDDntu3tLTg8ssvD7XvODnqqKNw1FFHVbobhBBSc3ASJ0IIIbGg6zpeffVVAPFMOrPzzjtj2LBhAGDOxurGkUceaf4+c+bMyPvuK7LZLK677jpTXidPnoxf/vKXodYNjYq1bNgYUxwnLS0t5jq2YdaadaOtrc1cQmmfffaJrV1CCCHVCQWWEEJILLz77rum+FiFMgqGVH388cfYvn276+OOOeYYU47+/e9/4+9//7tnu2HXA42TbDaLn//853jppZcAlFdeX3zxxZJSaoxdBoBddtklUPtr1qzBvHnzPB/T2tqKjz/+GEBuUqm4WLhwofn7wQcfHFu7hBBCqhOWEBNCSD9n1apV5oyzBsb6ogDwwgsvFMwW3NDQEKq00UgRR44cGXkpFIOjjz4a//73v6HrOubNm4fPfOYzjo9LJBL42c9+hiuuuAJdXV347W9/i5deegknnHACdt11VySTSWzatAmLFy/GCy+8gPHjxxdM8FMJrr/+erzwwgsAcsL4jW98A62trZ7bDBkyBEOGDAm8r7///e+4/vrrccABB+CAAw7A2LFjMWjQIGQyGaxbtw7PPvusmZ6PGDEi8PJH69atw1VXXYWRI0fisMMOw957742dd94ZdXV1aG9vx8KFC/HYY4+Zs0mfeeaZgZ+DG2+88QaA3PjeQw45JLZ2CSGEVCcUWEII6ee8++67uPHGG13vv+uuuwr+P2LEiEgCG+ealQceeCCGDx+ODRs2YNasWa4CCwB77LEH7rjjDlx77bVYs2YNFixYgAULFjg+dvz48bH1MSzPP/+8+fvq1avxjW98o+Q2F154Ib761a+G2l86ncbs2bMxe/Zs18fssssuuPHGGz2XB/JizZo1eOSRR1zvVxQF5557Lj7/+c+Hat9ONpvFc889ByCX+oddAogQQkjtQIElhBASmWXLlpnpYdTZh62oqoozzjgDd999N+bMmYO2tjbPtWX32msvPPDAA5g1axZefvllLF261BxvOWTIEOy+++446KCDcNxxx8XWx1rgpz/9KV5//XW8/fbbWL58OTZv3myWFA8aNAh77LEHjjjiCEyfPj3Usj377bcf7rzzTsybNw8LFy7EunXrsGXLFmzfvh319fUYOXIk9ttvP5xyyimxpfMAzHMCAM4666zY2iWEEFK9CCmlrHQnCCGE1Db33Xcf7rvvPgwZMgSPPvpoybU8g9DR0YFzzjkHW7duxde//nWcd955sbVNapurr74as2fPxgEHHIDf/OY3le4OIYSQPoCTOBFCCImMUT586KGHxiqvANDU1GRK60MPPYTOzs5Y2ye1ycKFCzF79mwIIXDppZdWujuEEEL6CAosIYSQSGQyGRxxxBG48MILccYZZ5RlH2eeeSZGjRqF9vZ2x3VAyY7HH/7wBwDACSecgL333rvCvSGEENJXsISYEEJITbBo0SLMnj0bTU1N+MIXvlDp7pAK0tHRgUceeQRSSpxxxhme46IJIYT0LyiwhBBCCCGEEEJqApYQE0IIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCagAJLCCGEEEIIIaQmoMASQgghhBBCCKkJKLCEEEIIIYQQQmoCCiwhhBBCCCGEkJqAAksIIYQQQgghpCagwBJCCCGEEEIIqQkosIQQQgghhBBCagIKLCGEEEIIIYSQmoACSwghhBBCCCGkJqDAEkIIIYQQQgipCSiwhBBCCCGEEEJqAgosIYQQQgghhJCa4P8Hjbg3nhs8ZMgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5wURfqHv9U9YXOCJUcJIsGAYjhRFLMYMIGcCIbTk1MxnRmzdz/jeeYzIRLMnjmCoiKSBD0QRDIiSE6bZ6a7fn/Mdm/PTIeq6t4E9Xw+q8tO99s1PTM99fT7VhWhlFJIJBKJRCKRSCQSiUTSxFEauwESiUQikUgkEolEIpGwIAVWIpFIJBKJRCKRSCTNAimwEolEIpFIJBKJRCJpFkiBlUgkEolEIpFIJBJJs0AKrEQikUgkEolEIpFImgVSYCUSiUQikUgkEolE0iyQAiuRSCQSiUQikUgkkmaBFFiJRCKRSCQSiUQikTQLpMBKJBKJRCKRSCQSiaRZIAVWIpFIJBKJRCKRSCTNAimwEolEIpFIJBKJRCJpFkiBlUgkEolEIpFIJBJJs0AKrEQikUgkEolEIpFImgVSYCUSiUQikUgkEolE0iwIRGDXrFkDQggIIbjooouCCLlXcswxx5jnUSKRSJy46KKLzGvFmjVrGrs5JhMmTDDbNWHChMZujiRgdF3HwQcfDEIIrr766sZujqQZYVwXjjnmmMZuikTSZGiq3+VBMHnyZBBCUFRUhM2bNwcev8EysBMmTMDdd9+Nu+++u6EO2ei899575nPeuXNnYzdHUsvdd99tXjBYflgvKj///DOuvvpq9OrVC3l5eSgsLES/fv1wyy23YO3atfX7pCQSyV7FjBkzcNFFF6FHjx7Iy8tDXl4eevbsicsvvxxz5sypl2M+//zzWLBgAbKysnDrrbcy7bNy5UrcfffdOOyww9CmTRtEo1G0bdsW/fv3x5gxY/DWW29B0zTbfdesWYPJkyfjmmuuwdFHH40ePXqguLgY4XAYLVq0wKGHHorrr78eCxcu5Hoea9euxS233IJ+/fqhsLAQeXl56NWrF66++mosXryYOY6maZgyZQqGDh2KDh06IBqNoqSkBAceeCDGjRuH3377jatdblhvDrH8fP31146xeOKIfBc2RR599FHzeVx44YVCMXr06GHGEPmMVVZWYtasWXjyySdx0UUXoW/fvgiFQkyvmRPxeBwvvPACjjvuOLRt2xbRaBQdOnTA6aefjjfeeAOUUuZYlFK88cYbOO2008z3c9u2bXHcccfhxRdfRCKR4GrbZ599huHDh6Nz587IyspCq1atcOSRR+Kxxx5DRUUFV6xZs2bhkksuQbdu3ZCTk4OSkhIcfPDBuP/++7F161auWCwEfS6aKps2bUI4HAYhBLm5uSgrK+OOcf/995vv4TFjxph/HzFiBHr27Ildu3Yxf19wQQNg9erVFAAFQEePHm27zaBBg8xt9hZGjx5tPufVq1d7br83nqPG4K677jLPM8sPy2v38MMP03A47BgjPz+fvvbaa/X/5CR7BbzXlobi5ZdfNtv18ssvN3Zz9kjKy8vp+eef73rNIoTQa665hmqaFthxKyoqaJs2bSgAOnbsWM/tE4kEHTduHI1EIp7X2B07dtjGGD58ONM1mhBCx4wZQ+PxuGe7Jk+eTPPy8hxjRSIR+q9//cszzooVK+gBBxzg2q68vDw6ceJEz1gsWD9bLD/Tp093jMUTx/pcKioqhNtvxBk0aJBwDD9s3LiRhkIhCoDm5OTQ3bt3c+3/7bffms+hd+/eQm0oKSkRfs3sWL16NT3ooINcYx5//PGOny8r27dvp4MHD3aN1b9/f7p27VrPWNXV1Z7XqG7dutH//e9/nrF0XafXXXcdJYQ4xmrdujX98ssvWU4ZE0GeCy+awnf56aefbrbhxRdf5N6/W7du5v5z585NeWzixIkUAFUUhS5ZsiSoJlNKKQ0hALp06cJ1l0dij8jdN4k/7rvvPvTt29d1m1atWrk+/p///Ac33ngjACAcDuPCCy/EoEGDEI/H8fnnn+Ptt99GWVkZLrzwQhQVFeHkk08OrP2SvZMJEybIEt29EE3TcM455+Dzzz8HAOTm5uLiiy/GYYcdBkVR8OOPP+Kll17Cjh078Pjjj4NSiscffzyQYz/zzDPYuHEjVFXFTTfd5LptIpHAyJEj8cYbbwAASktLcc4556B///4oLi5GeXk5li9fjmnTpmHevHmusXJycnDIIYfg4IMPRo8ePVBSUgJCCNavX49p06bh008/BaUUzz77LMrLyzFx4kTHWB9//DFGjx4NTdNACMG5556Lk046CeFwGN988w0mTZqEWCyG66+/Hvn5+fjLX/5iG+ePP/7AMcccg99//x0A0KlTJ1xyySXo1asXKisrMX36dLz22msoLy/HRRddhJycHJxzzjmuz5OHq6++GoMHD3bdxu177d1332U6znPPPYfPPvsMADBs2DDk5OSwN7KJ0bp1a5x66qn44IMPUFlZiTfffBOXXnop8/7W6+3FF18s1Ib0SoNOnTohFoth48aN3LF27tyJU045BUuXLgUA7LfffrjkkkvQoUMHrFixAs8//zzWrVuHadOm4eyzz8YXX3yBUMi+yx+LxXDmmWdixowZAICOHTvi8ssvR/fu3fH7779j/Pjx+OWXX7BgwQKccsopmDVrFgoKChzbNnr0aPOz36JFC1x++eXo168ftm7dismTJ2Pu3LlYuXIlTj75ZMyZMwcdO3Z0jHXrrbfiscceA5C83l166aU49NBDUV5ejnfeeQdTp07Fpk2bzPYfeOCB3OeyPs9Fc+Diiy/Ghx9+CCD5Puf5XMyYMQMrV64EAPTp0wcDBgxIefzPf/4z7rjjDqxduxb33HMPXn/99eAaHqgOu7A3Zhebwp0VSSbWDCzvHc90NmzYQHNycigAGgqF6NSpUzO2sd4579ixI62qqvJ1TImkqSIzsPXLM888Y57fDh060OXLl2dss2HDBtqrVy9zu2+++cb3cePxOO3YsSMFQE888UTP7W+//Xbz+BdffDEtKytz3HbDhg2OmdNly5bR6upq12N9+eWXNBqNmsebPXu27XYVFRW0Xbt25nYTJkzI2OaLL74ws3R5eXl048aNtrGGDRtmxjnuuONoeXl5xjbfffed+d3QokULpiyYGw392UokEinn67vvvvMVz4jTWBlYSil99913zXYcddRRzPtVVFTQ/Px883ve6X3hxahRo+g//vEP+tlnn9EtW7ZQSlP7iTz9kWuvvdbc7+STT87oV2zbti0lO/vUU085xvr3v/+dklncvn17yuNVVVX0pJNOMrf5+9//7hjrvffeM7fr1KlTRpZS0zR68cUXm9uce+65jrEWLFhgZl4LCwttM7bW/tyAAQOoruuO8VgI8lyw0BQ8IRaL0ZYtW5rtWLFiBfO+l1xyibnfI488YrvNbbfdRgFQVVUDyVobSIGtR5rCG1OSSZACa/0SufHGGx23O++885i+SCSS5owU2PrFKqYffvih43Zz5swxtxs4cKDv41o7/l4lsYsWLTIlcOjQob6PzcLYsWPN9t1xxx2221g7puedd55jrBtvvNG1c7phwwazU52dnU03bdrkGOuhhx4yY40bN47/iVlo6M/Wxx9/bB6vZ8+evuM1BYGNxWK0tLSUAsmy85UrVzLtZ5RBAqCnn356oG0SEdhNmzaZpfm5ubmO78FFixaZ79U2bdrQRCKRsU08Hk85Jz///LPjMXNzcykAGo1G6datW223O/DAA83n8/HHH9tuU1lZSTt16mRut2jRItvthg4dam7z9NNP226j6zo99NBDze0++ugj2+1YCPpcsNBUPMHal3W6hqbDemNn8eLFZuzbb789sDbX+yzExsy633zzjfk3u8kBnCZ30nUdb775JoYPH46uXbsiJycH+fn56NWrF8aMGYNFixa5ts06YY9Rovvll19ixIgR6Nq1K7KysjImJ0gkEvj8889xww03YODAgWjVqhUikQjy8/PRs2dPXHTRRfj2228dj2nMKvbKK6+Yf+vatWvGc3Y6VyyzEM+ZMweXX3459t13X+Tn5yM3NxfdunXD6NGj8dVXX3nunz4jYEVFBR555BEccsghKC4uRm5uLvr06YNbb70VO3bs8Iy3N0IpxVtvvQUAnrNyjh071vzdKK1pKGbNmoUxY8agd+/eKCoqQlZWFjp16oThw4fj448/dt3366+/zviM/vbbb7jhhhvQq1cv5ObmoqioCH/605/wzDPPME9sUF5ejn//+9844YQT0K5dO3PykwEDBuDOO+/Eli1bXPdP/6xomoYJEybghBNOQPv27REKhdClS5eM/TZt2oSbbroJvXv3Rm5uLkpKSnDooYfi0UcfRWVlJYDkkAhCSMb+n332mXlM6+vpxtixY819Pv30U6Z9WPCaubC+XrePPvoIp59+Otq0aYOsrCx06dIFF1xwAWbNmsX9HGKxGF566SWcccYZ6NixI7KyslBUVIT9998fN9xwg+OEMb/++ityc3NBCEFhYSFWr17teIwdO3agU6dOIIRAVVXX63ZT548//jDLBUtKSjBkyBDHbQ899FD06tULADBz5kzfkwlNmjQJAJCdnY2zzjrLddvHHnsMiUQChBCz9K++6d27t/m7Uzmm9bp7zTXXOMa6+uqrzevKm2++mfH4119/bQ6ZOumkk1yHmIwaNcr8/bXXXnPcriny8ssvm7+LlszyUllZiSFDhpjXruHDhyMWi2Vst3jxYlx//fU48MADUVJSgmg0ivbt2+OMM87AlClToOu6bfxwOIyRI0cCSH5/sw7DCKJ8OEjee+8987yMGDHC8T3Yt29fs9R848aNKf1wg6+++sr8vj3uuOPQp08f21itWrXC+eefDwCoqanB+++/n7HN8uXL8dNPPwFITnh16qmn2sbKzs7GZZddZv7b7nNWVlZmfmcWFBQ4rnCS3vfy078K8lwEzYsvvmhO+NWhQwfbyeb89Kus7+uJEycyDQt95513zEmfTj31VLRu3dp2u969e5ul3ZMnTw5uyGkQFuw2iZM18+r2c9ddd2XEXbFiRcrdHLsfRVFc7xZYs21fffUVvfLKK23jWO98HHPMMUxtHj16NK2pqck4pvWOitf+TufKiXg8Ti+77DLP2MOGDaOVlZWOcYztBg0aRFeuXEl79+7tGKtz5857VAY5qAzsokWLzDh9+/Z13VbTNFpQUGC+Z3knkBChvLycaRKUIUOGOLZn+vTpKZ/RTz/9lBYVFTnGOuGEEzxL/j755BPaqlUr1zbl5+fT999/3zGG9bOybds2OnDgQNv3rZWvvvqKFhcXOx6zX79+9LfffqOdO3e23V/TNNq1a1cKgBYXF3uWgldVVZnH69SpU6AT6njdtQ36dUskEq7XNUVR6IMPPsicJZo3b555Lp1+IpEI/c9//mO7//PPP29ud8QRR9hmFiil9NxzzzW3C/LOb2Mwd+5c87kcdthhntufccYZ5vZO55GF6upqsxT26KOPdt22srLS3JanRNMv1qypXX9g165dKaWIXp/FPn36mPEWL16c8pg1q3rzzTd7ts247gOgS5cu5XtiFhoyA7t161Yzw6eqKt2wYYPvmNY+hx3btm2jhx9+uLndlVdemfE6xeNxOnbsWKooiuu147DDDqN//PGH7XEWLlxobtelSxfPktO1a9ea752WLVvSWCwm9PydEMnAnnPOOeY+b7/9tuu2Dz/8sLmtXZXYDTfcYD7uVAJq8NZbb5nb2lUxPPnkk+bjV111lWusefPmmdsOGDAg4/EPP/zQfPy0005zjbV582Zz29LSUtdt3QjyXLDCkoH9xz/+YW6z77772pbhBtGv6t+/v7ntV1995dl260RX7777ruu21113nbntjz/+6BmbhUAmcXLDmOJ63Lhx5h0DuwkEjLvFBitXrsThhx9uTo89cOBAnHbaaejcuTM0TcP8+fMxYcIE7NixA/fddx8URfFcoufhhx/Gp59+ijZt2phTmCcSCcydOxfRaNTcrqqqCnl5eTjuuONw8MEHo0uXLsjKysIff/yBxYsXY8qUKaioqMArr7yCoqIi/Pvf/045ztixYzF06FA88cQTmD59OoDkZAjpd8k6derEdA6tXHjhheYg6KysLIwePRp/+tOfoKoqfvjhB7z00ksoKyvDm2++iV27duHTTz91zeju3r0bQ4YMwa+//oozzzwTJ598MkpKSrBq1So8++yz+O2337B27VqMGjWqWWcvnLjzzjuxfv16rF+/HpFIBK1bt8bhhx+OYcOG4bTTTnM9dz///LP5+8EHH+x6HEVRcNBBB+Gbb76Bruv45ZdfcOihhwb2PNKpqanB8ccfj9mzZwMAunXrhuHDh2O//fZDOBzGihUrMHHiRCxbtgwff/wxhg4diqlTp0JRnIsyfvrpJzz88MOglOKvf/0rjjjiCESjUfzwww/4z3/+g4qKCkydOhX/+Mc/cO+999rGeOeddzB8+HBomoZwOIwzzjgDxxxzDFq3bo3du3dj+vTpePPNN1FWVoazzjoLU6dO9ZysZOTIkfjuu+9wwAEHYMSIEejSpQt2796dsrTGkiVLcNppp5lZ1oMOOggjR45Ehw4dsGnTJrzxxhuYOXMmhg8f7piNVBQFl112GW677Tbs2LED77zzDi644ALHdr399ttm9cKll17qem7rkyBet7Fjx5oVJZFIBKNHj8bAgQOhKArmzp2Ll156CTfffDOGDh3q2Z5Zs2bh+OOPR2VlJQghOOmkk3DiiSeiffv2qKqqwqxZszBp0iRUVlbiiiuuQDQazbj7ftlll+Hzzz/HO++8g1mzZuGee+7JaPtLL72Et99+GwBw+OGHN/sl3KiPu9ZelUpuzJw50/zceF2z5s+fn7HtV199hWeeeQazZs3C1q1bUVxcjAMOOADnnXceRo8ejXA4LNw2APjhhx/w7LPPAkhmY+wyxEuWLDHP34EHHuj5WTzkkEPM/srPP/+ckuH1+zrsu+++wvsbPPPMM3jggQewbt06AMlJsgYMGIChQ4di+PDhjpP1sDJlyhQzw3fyySejbdu2vtvsxrp163DSSSfhl19+AQDcddddGZ9XSimGDRtm9h/btm2L888/HwcccABycnKwdu1avP7665g/fz7mzJmD4447DvPmzcuYeKpfv344+OCDMX/+fKxZswZff/01jj32WMe2vfLKK+ZrPnLkSN/v1yDg6Xsccsghtvs1dqwDDzwQqqpC0zTz82ntb/HEKi0tRefOnbF27Vps2bIFmzdv9px8044gz0UQUEpx7bXX4oknngAADBgwAJ988glatmyZsl1Q/aqLL74YCxYsAJCsOnD7XKxdu9b0m9LSUteKICD5HWzw+eef+55sCwCa5DI6mqaZdwKi0Sh98803bbfbuHGjmaFVFMW2Xj19yZSBAwfSXbt2uR5/2rRprtnLrVu3mhkfRVHoqlWrbLcLehmd119/3Xy8devWGXeGKaV0zZo1KZkNp/GW1nMSiURsx1Nt3bo1JdacOXM8n4MTFRUV9N133w3kZ/78+cLtoJR9GZ3DDjuMrlmzxjHOPffcY25rV0GQzqhRo8ztJ02a5Os5eJE+NtdukpRYLJbSpmeffTZjG2smD0hmEpctW5ax3Zw5c8xxb8XFxbbZvN9++83MRnTq1IkuXLjQtu1z5syhhYWFFEhOVGN3xzu9suPaa691zapYM7R/+9vfbLdNf1+kZ2ApTV5zjOWSvMZyHX300WYGY926da7b8sKTgfX7ulmXjygqKqI//PBDxjZLly41l1gxfuyyRLt37zYnAyoqKqJff/217fNbvny5OUYqNzfXnPDEyvbt22mHDh3MczxjxgzzsV9//dUco1RQUMA81s2JX375JbDrl91zYWHt2rXmuS0pKfHMHFnHyx5//PFCx6SU0n/+859mnLfeest128cee8zc9rHHHqNXXXWV6zW2T58+jt+f6SxevNg8h2+99RZ98skn6XnnnWe+fwHQu+++23bfV155xbOPYuXOO+80t7/vvvscY5111lmucTZu3JjyfO+//36m52oH6zI6++67L9PyJG5YK9/eeecdX7EMjHjp180lS5aY1wRFUegzzzxju791DPPIkSNtl/TRdd2cMAZwzpA/9dRT5jajRo1ybLOu6ylLhPg9r3bwZmA1TTPf86qqei4dtWrVKjN+t27dMh639vG8+qnxeJyqqkqB5JjH9GvQsccey/VcrONg078jrRM9sVQcGN+3AFK+C3gI8lyw4vRdHovF6IgRI8zHTjjhBNvJ8ILsV23bts2cEC83N9d18j1r//e6667zfJ5r1qxhvm6y0iQF9p133jG3feKJJ1y3/fXXX8030WWXXZbxuLVTmpubS9evX8/0nLxYuXKl4xecQdACa51R7pNPPnGMM2fOHLPkpXPnzrblddYvvHvvvdcx1gsvvMC0nRfW94jfH5YOiBt33XUXzcrKoqeccgq999576aRJk+gbb7xBH3/8cXr22Web7ycAtF27dvT333+3jWMtiXjyySc9j8u7vSgbNmwwy7/OPvts121jsRjdZ599KADao0ePjMfTRejbb791jHXBBRe4bnf11VebX7peJSQvvfSSGWvKlCkZj1s/KwcffLCrvFpLlfr27etYbpoe105gKU2dkMtOCilNXpeMbYYMGeL6XEXgFVg/r9uZZ55pPm43c6vBRx99lHJMu07Ho48+aj7+wQcfuD7HL7/80tz2H//4h+02X3/9tVlO2LlzZ7pjxw4ai8XowQcfbO4bxM0i3rWj3X78DFswhB1wn6zE+p4HQA855BDhY/75z3824zh1jgxuvvlmc9uePXuan/eRI0fS8ePH01dffZXeeuutKTNedu7cOWOmT6/Y6T8HHHAAfeONNxz3ffzxx81tb7jhBs9juW2/YsUK87GcnBy6efNmxzjW8k3A34ylL7/8Mg2FQnTQoEH0jjvuoK+88gp966236DPPPENHjhxJs7KyzOPk5+cLy9aCBQvMOKWlpYGVzBoxrQI7a9Ysc23USCTimKyoqqoyyyMHDBjgWQJ+1FFHUSB588puqMf27duZOurffPON2e7+/fuzP1kOeAV2165d5vYtWrTwvb11WI2bsLBsb+2jOk3MxLr9WWedZT7mNmGd6PZ2BHkuWLH7Li8vL6cnnnii+ffhw4fbDlekNNh+FaWp/Zvx48fbbpN+Y8fre8EgOzubAvY3UkRonJo2D4wJIwoKClIGetvRs2dPs1Tpiy++cN32nHPOQbt27QJp4z777IM2bdoASE6oVN+sWbMGP/74I4BkCcwpp5ziuO2hhx5qlgesXbsW8+fPd9xWVVVcddVVjo9bywyWLFnC2+wmybnnnov169fjk08+wR133IGRI0di2LBhGDt2LN555x3873//Q/fu3QEAGzZscJw8oLy83Pw9KyvL87jZ2dnm78bA9/rgzTffNMu//v73v7tuGw6HMXz4cADJCRicJs4BkmW3Rx11lOPjbu8VSimmTJkCIDk5glf5iLUMzutzfeWVV7qWBFonWLjyyiuhqqrjtm6TuxhcccUV5u8vvvii7TbWv19++eWeMesTP69bTU2NOZFG69atzQlQ7BgyZAj2228/17YY1/aePXvi9NNPd9128ODB5vXa6T0waNAg3HLLLQCS17orrrgC48aNM695F1xwgWubmxvW78MxY8Zg1apVGdts2rQJo0ePTvnb7t27hY+5du1a8/eSkhLXbXfu3Gn+vmzZMmRlZWHatGmYNGkSLr74YowYMQL//Oc/sWTJEvTr18+Mf9tttwm3Lz8/HyeeeCIOOOAAx22CvFZ369bNLK2rrKzEBRdcYJZNW5k9e3ZGGayf12HgwIFYu3Ytvv76a9x7770YNWoUzj33XIwZMwaTJk3CsmXLzDUYy8rKzJJCXsaPH2/+Xp8ls5999hmOO+44bN++HXl5efj4449x3nnn2W77+eefY/PmzQCA6667zrME3PjM79692xxGY6W4uBhnnnkmgOQElsZQg3Sa2uRNQPD9jiDjNdVYrDSFPt3WrVsxePBg8zvvyiuvxKuvvopIJJKxbX30q6zvc+tEtFasa78efPDB5rXci+LiYgDJIQM0gImc6n0MrAjGAsJt27Y1F9F2w+iQrl27FlVVVSlvKitunbh0du/ejSlTpuCTTz7BokWLsHXrVlRUVNhuayxmXp/MnTvX/P3EE0/03P7EE0/El19+CSAp2E5jl3r27Gm+qexo3769+buf2Yi7dOkS3MxjPnFb4B1ILsb82WefoW/fvqiursa0adMwZ84cHHbYYQ3UQn8Ynx8g+d587733XLe3vq6//PKL7ey9QOoYBjvc3iuLFy/G9u3bASQ7nF5tAoC8vDzs3LnTHBflhNfn+ocffjB/dxvTAcCclduNY489Fj179sSyZcvwyiuv4P7770/p5MXjcfPC365dO8+xIfWNn9ftf//7n3kzZNCgQa7yDyS/RJ1er127dpnjklu3bs38HgDg+h6455578OWXX2LOnDkpM1B27doVzzzzjOcxWLj77rubxBja66+/Hm+++SYWL16MdevW4cADD8TFF1+MQw89FIqi4KeffsKLL76I7du3Y5999jEF18/4a+NzC3gLbPrsr+PGjbP9TJWWlmLKlCk44IADQCnFyy+/jAcffBAFBQWOsR944AE88MADAJI3Vn777Td8/vnnePDBB/Hwww/jiSeewHPPPZch7/XBE088gcMPP9wcP96nTx9ccskl2HfffVFZWYmvv/4ar776KuLxeGCvg3FT1YmOHTvi008/Rd++fbFx40YsXboUb7/9tnmDkoWamhq8+uqr5r8vueQS4fa6MXnyZFxyySWIx+MoLS3FJ598kjKmMB3rd9qOHTs8rx3r1683f//ll19s34OXXHKJOfvthAkTMm5UV1ZWmmIbjUbx5z//2eNZSST++O2333D55Zfj119/BWA/FtxKffSrjPko1q9fj2+//RarV69G165dU7YRvbHTokULbNiwAbFYDBUVFeb3uyhNTmDLy8uxbds2AMnlErym7E9nx44djgJr7ai5MX36dPz5z392nI4/HT93VVn5448/zN979uzpub11G+u+6aQPBk/HOrlVdXW153H3FIwliZ577jkAwMcff5whsNYPH8u5qaqqMn/Pz88PqKWZWLOow4YN49rX7SaFn/eKtU3vvPMO3nnnnUDaBHh/rjds2GD+vs8++7huW1xcjKKiopRMUjqEEFx++eX4+9//jk2bNuHDDz/E2WefbT7+wQcfmNmCiy++2FP66hs/r5v13Hl1oL22WbdunSk4M2bMSOmUeuH2HgiFQnj11Vdx4IEHmnfBjb+5CVFzJC8vD5999hnOOuss/PDDDygrKzMn+LBy8skn46KLLjKXenC7SelFTU0NgOSNYqfvVoP065pbBVW/fv1w+OGHY9asWaipqcHMmTNdK4usRKNR9OjRAz169MAFF1yAQYMGYdGiRbjoootQWlqasXxH0Nfqvn374tNPP8W5556LzZs3Y82aNbjzzjtTtiGE4M4770RZWZm5nJCf14GFFi1a4JprrsGtt94KIPm9xSOw77//vtkhHjBggOfNXhEWLFiAUaNGgVKKTp06YerUqZ59Guv3x5VXXsl1PKdrxwknnIAOHTrg999/t+2ov/322+b15Mwzz8y4ebNgwQLX5akGDhzoee0VIej3cl5ennmOqqurPaXCLV6QbWuM/lWQ50KEM844A7t27QIhBE8//TTGjBnjun199KtUVcWoUaPwf//3f6CU4pVXXkmRaD83dqzfx8ZkuX5ociXEu3bt8rW/3ZphBl5fvkCyjHLIkCGmvO6777649tpr8fTTT+O1117Du+++a/6UlpYCgFCZDi/W8oTc3FzP7a1vDLfShsaaGbU5YL1ra6y/aKWoqMj83Zgt2w3jxkz6vkHj5zPk9vnx816przYB3p9ro3IiFAoxlcOxfL4uuugiU/xeeOGFlMeMfxNCcOmll3rGqm/8vG7Wkqr02TztcDt3ft4D8Xjc9fGWLVumdDD32Wcfz1kkmysdOnTA7NmzMXnyZJx22mlo06YNIpEIWrRogcGDB2Py5Mn45JNPUspajeEuIhjvc03TbEtlrVivax07dvScCdT6GhklabwUFxenZNrvuece13YFda0+6qijsGzZMjz44IMYOHAgSkpKEA6H0a5dOwwfPhwzZszAPffckxLLz+vAitf3lhvWtV/rK/uqaZpZjVVdXc20BnV9fH8oimKu00spxcSJE1Me98oyPfHEEzjrrLMcf+prZtq8vDyzDHTnzp2e58/rvczz2UgkEmbCJhwOZ1zvg/ycNUb/KshzIYLxWlJKHSs+rdRXv8pajZC+Jqz1xs7QoUO5bspZ28viY140uQysVbyOPvpo24WX65P/+7//M++q3H777bjvvvscl1LxGp8bJNa7OyxvbGvHsz6zfaxUVlZ6jmVkpVOnTujfv38gsdxo0aKF+btdRs5619ht7KiBdSwZSxZdFOMzRAhBIpFoEjcprJ/rO++807aTWV8YXyyJRALxeNxTYlk+Xy1atMC5556LKVOm4IsvvsBvv/2GTp06Ye3atZg6dSoA4Pjjj88ovWluWF83L3kB3M+dNdaoUaMcx9eI8Le//S3l87Vs2TKMGzcODz74YCDxly5dyi0DTgSRmVFVFRdccIHrMk7W8czG2EgRrDcGtm/f7nojw7pETGFhoWds6zZ+OmNHHnkk8vPzUVZWhnnz5qGioiKlQ1lf1+rCwkLcdNNNuOmmmxy3Cep1YMXre8uJ9evXm9/R2dnZGDFiRNBNA5A8B6eddhpuvPFGbN68GcceeyymT5+eslRROtZrx6pVqwK7rl500UX45z//CSDZUb/zzjtBCDGX1wGSFT4nnHBCIMcLAkVR0K1bN/z666/QNA2///6747AfwPu93LNnT6xevRpA8rPhFuv33383Ezbdu3fP6Bv37NnTXFrF63OWSCTMUu/c3NyMSqrG6F8FeS5EePPNN3HxxRdj8+bNuPHGGwG4z2NSX/2qnj174sgjj8TMmTOxevVqfPvttxg0aBAAf+PCjeqOSCQSiPA3OYEtLCxEXl4eysvLG2RsaTrTpk0DALRq1Qr33nuv45uyrKwsZWxQfWNdh2358uWe21u3CWriKj9s3ryZuxzcidGjR6d8iOoLrzt61vIqt4mygOTYMGMSLkVRPCe78UP79u3x008/gVKK9evXo2PHjvV2LJ42GTT057pdu3bm2MtVq1a5rsO4Y8cO5k7fFVdcgSlTpkDXdYwfPx533303xo8fb5bJNvbkTUFgvXasWLHCc3u3berrPTBlyhRzIouDDz4YW7duxdq1a/HII4/gpJNO8lxHmIXXX389sM7B9OnTmcZa+8V685dn/od0unTpgpkzZwJIdkA6dOjguO3+++9v/s4ipNZtWITXCUIIcnNzUVZWBkopdu/endJB6t27NxRFga7r+Omnn6DruuuNPeu4eT9ltDt27DCvPbm5uTjooIOEY7Eimol65ZVXzGvX2Wef7ev18OLvf/87CCH4+9//bkrsV199hT59+thun37tCEpge/TogYEDB+K7777DqlWrzI66de3XUaNG2Q4DmTBhQoP0Q+zo27evOU5y/vz5rqLl9V7u27cvPv/8czOW27WJJZbB/PnzHSfABJLrkxsC2Lt374y+Nk//asuWLabAlpaWCq0BaxwzqHMhQu/evTF9+nQMHjwYmzZt8pTY+uxXXXzxxeZ1f8KECRg0aFDKjZ0OHTpw39gxnKlTp06BCH+DpWasXxZek/kcffTRAJKdTZZOU5Bs2rQJQHICELcvuGnTpmVMWJEOz3P2wjoJk5HhccOa7fRafF5ij7UDaHdHr0+fPmZnbvHixa4XkO+//94sNzGyBfWFcacM8J7Bt6E46KCDzPEPX375pednJ0isk4MYd4edMC7OLAwcONDscI0fPx7xeNycwbNVq1bmLJfNmQMOOMCc/fCbb77xHC5hTBxnR8uWLc0sy+zZswOZO2D16tX429/+BiApCK+99homT54MVVWh6zpGjRqV0qHfW1i8eDHmzZsHIJkVHThwoHAsa+fM6DQ70atXL1Mu1q1bZ44Fd8LaMfVTlbJr1y5s2bIFQFJmrVlIIDn2ypjMbNeuXbYz0xqsW7fOzJp26tTJNTPoxauvvmqW6l1wwQVMM5v6xet7ywmrjNVX+bCVG264AY8++iiA5A3uwYMHY/Hixbbb1ud3Wvqsq+nlxG4S1licdNJJ5u+GcDlhnQj15JNPbjaxjjnmGHP4wrfffpsy3jQd67HsYrESZPtFMSS2devWAIAbb7wRDz/8sO229dmvGjZsmFlt8/bbb6OioiLjxg5Pdd+aNWvMsczWG52+CGItHpZ1YE8//XTm9ZLeeOMNc9sRI0b4apt1/T6WNbaKiorM9c+cFiZOJBL0kEMOSVnHzg5jfSYwronltQ5s//79zce/+OILxzjz5s1LWRvRbR3Y9EXF7eDZdk9hxYoV5ppVAOjMmTNtt7Ou7XrTTTc5xrOurfXUU0/VV7MppcmFrY11YHv06EHLy8uFY1nXE73rrrt8bTtmzBjz8eeee064TZTyrSsd9DqwVp544glz+7/97W/m7zfeeCPP0+GGZx1Yv6/b0KFDzccnTpzoGOeTTz4xtwPs14F98MEHzcdvvfVWj2fpTiKRoEcccYQZ76WXXjIfu+OOO8y/Dx061NdxmhuJRIIOHjzYfP4vvPCCr3hfffWVGYtlDdVbb73V3P7+++933G7hwoXmeuV5eXm0oqJCuI3/+te/zGM6rXlrXdt12LBhjrFuvPFGczs/67Zu2rSJlpaWUgA0HA7TJUuWCMdiZdu2bbRt27aeaz2m8+2335r7dO3a1bHv4wenfoT1tWvVqhX9+eefM/YtLy831w4uKSmhGzZsCKxdZWVlNDc3lwLJ9XOt17EjjzwysOM4wbsOLKWUbt682fyOz8vLo5s2bbLdbtGiReZnrE2bNrbfffF43HyfEkJszz+lyfezcZ6ysrLo1q1bbbezru36ySef2G5TVVVFO3Xq5Nk/tq7t+swzz9huo+s6Peyww8zt3NbH9iLoc8GC03f5kiVLaJs2bczHHnroIdv9g+xXpTNq1Cgz9oQJE+g+++xj/nvZsmVcsV5//XVz3wcffDCQ9jWYwI4dO9bc5ptvvnGNp2kaHTBggLn9Nddc47iIL6WUVlZW0pdffpm+9tprGY/xCuwJJ5xgbv+vf/0r4/FYLEYvvvjilI6aU0fXemF+5ZVXPI/t1Sm3in3btm3pL7/8krHN2rVrUxYYdpKlvVVgP/jgA/rWW2+5SszPP/9Mu3fvbj7vY445xnHb9evX05ycHAqAhkIhOm3atIxtXn75ZTNWx44dbRdWD5obbrjBPOaxxx5L//jjD8dtNU2jU6dOpffdd1/GY0GK0Lp168wbRNFo1PMzsWnTJnrvvffS//3vfxmP8QgspZQOHDgwRTQ1TcvYxnqtYBXYnTt3mq+/9Yf34s5LQwrsjBkzzMeLi4ttF0tftmxZSsfZSWDLy8tp586dzQ7CQw89ZPtaGOzcuZM+/vjjdOrUqRmPWSX13HPPTXksHo+nyG3QX+yNyYwZMxyvX7t27aLnn39+ymffr4xUV1ebnbWjjjrKc/utW7ean/OsrCzb793NmzfTfv36me20u/k3c+ZM+vzzz3teL6dMmUKj0ajr+45SSisqKmi7du1SOmTpTJ06lYZCIVMMNm7caBursrKSzpkzx7FNK1asoPvvv795rLvvvtv1OVg/N3af5++//56+8MILtLq62jHGunXr6KGHHmrG6dGjB43H467HNbjooovM/e655x6mfXhx60c89thj5uOlpaW24vDkk0+a2+y///6e19jZs2cz30i0Xk+t17EXX3yRaX8/iAgspZRee+215n6nnHJKxudk+/btKTLpduP83//+t7ld//796fbt21Mer6qqoieffLK5jduNnffeey/lO3Tt2rUpj2uaRi+55BLHa7eVBQsWmAJeWFho2xe4++67zVgDBgxwjGXth7n1ZYM8Fyy4fZf/8ssvKRJrJ35B9qvSsfYNrJ+LgQMHcj1HSlOTPT/99BP3/nY0mMC+//775jbdu3enTz/9NP3oo4/op59+Sj/99FO6fPnylO1/++032r59+5STN3bsWPrSSy/Rt99+m06YMIHee++99IwzzjC/XO064LwC+8EHH6R8mZxxxhn06aefpq+//jq97777aI8ePcyOQYcOHVw7uv/73//MOK1bt6aPPPII/fDDD83nvHDhwpTtWTrl1s5JdnY2HTNmDJ04cSKdMmUKve6662hBQYH5+IknnujYeeGRUp5tmzrGF2VpaSm98MIL6aOPPkqnTJlC33zzTfrkk0/Sc845x+zAAKDt2rXLuACn8+yzz5rbh8Nheumll9KJEyfS8ePH0/POO8+8AIdCIfrpp5+6xvLqyLASi8Xocccdl/JeGTlyJH366afpm2++SSdPnkwfeeQReuGFF5oXyOOOOy4jTpAiRCmln332mXnnGAA94IAD6B133EEnTpxI33rrLfriiy/Sm266iR599NFUVVUKgM6YMSMjDq/ALl68OEU0DzroIProo4/SN954gz7xxBP0yCOPpADoEUccYV53unbtyhQ7/YaW2w2PoGhIgaWUpmSXo9Eovfzyy+nEiRPp5MmT6dixY81rsDVb6yQSP/74Y8p1qlu3bvSmm26iEyZMoG+//TYdP348HTduHD3xxBPN98qkSZNSYsyYMcN8f3To0CGjk0EppatWrTKPk5OTQ5cuXep6HpoLffr0oW3btqV/+ctf6DPPPEPfeust+tJLL9Grr76atmrVyjyvffv2dczM8HLOOeeY1xGvCipKKX3ttdfM656qqvTCCy80bzLfdtttZpbDuAZUVlZmxHj33XcpkMyKnXPOOfQf//gHfeWVV8zv/9tuu40ecMABKZ+9c88911XYP/roI/N9Qwih5513Hh0/fjydOHEivfTSS2k4HDZjuWWut2zZQgHQPn360BtuuIGOHz+evvXWW/TZZ5+lI0aMoFlZWWacESNGuN4wpdT7um+ci4KCAnreeefRBx54gE6aNIm+9dZb9D//+Q+98MILUyqG8vPz6YIFC1yPaWDNQCqK4vl9J4pXP8IqDqWlpbZZOWtGKBQK0bPPPpv++9//pm+88QZ99dVX6eOPP07/8pe/0K5du5rXFha+/vrrlNfAuGbs3r3bz1PO4Msvv6S33357yo/1RsfIkSMzHt+xY4dtrB07dtBevXqZ++6333700Ucfpa+//jq9//77aceOHVO+k2KxmGO7ampq6FFHHWVu37FjR3r//ffT119/nT7yyCN0v/32Mx/r3bs33blzp+vzHD58uLl9ixYt6G233UZfe+01+tRTT6XcZGnbti397bffXGPdfPPN5va5ubn0mmuuoVOmTKHPPfccPfHEE83H8vLybG+uGrAKbNDnwguv7/KlS5emyKOdxAbVr0pH13Xzs2T9sVY7sXLggQdSALRLly7c+zrRYAKbSCRSsiDpP3Ydpw0bNqR0wt1+VFW1/cLhFVhKU0ug7H6OPPJIunnzZjOT4JapGTFihGOc9HPF0imPx+P0L3/5i+f5OPfcc207BQYsH2SRbZs61ju9Xj9HHXUUXbNmDVPchx9+OKXzk/6Tn59vWyGQjldHhoeamhp61VVXmRcsr59Ro0ZlxAhahCildNasWSmlKG4/eXl5GTd6KOUXWEqTpZDGnUq7n759+6bcONt///2Z4s6ZMyclDmvZnh8aWmATiQS98MILHc+doij0oYceSukkOAkspckvZWt2wO0nGo2m3PjZsWOHee1VFMX1uj558mQzzkEHHeRaydNc6NOnj+c5O+ecc+iWLVsCO6Y1q+JWRm7l5ZdfNsXI6WfQoEGO7TSkjeUnEonQ22+/nSnjOHnyZJqXl+cay676yoohsF5tGjdunGuFgYHXdZ/nXPTt25cpu2Lw0ksvmfuecMIJzPvxYn3NnbCWedtJrK7r9L777kvJuHu9v1jQdT3jO8nu+9Av6VU+LD9u/YDVq1d7XkePP/54Rwm2sn379pShB3Y//fv3Z7rBUV1dnZJssfvp1q0b0/tU13V67bXXmjfE7H5atWpFv/zyS9c4rAIb9Lnwwuu7nNJMiX3ggQcytgmiX2XHPffck7Jvbm4u001MK0uWLDH3HzduHNe+bjSYwFKaTL0/8MAD9IgjjqDFxcUpHWu3TtbXX39N//rXv9I+ffrQoqIiqqoqLSgooL1796bDhw+nzz77rOOYCBGBpZTSTz/9lA4ZMoS2bNmShsNh2rZtWzp48GD6wgsvmF+SLAKbSCTos88+S4855hjasmXLlOyeiMAazJo1i1566aW0e/fuNDc3l2ZnZ9OuXbvSkSNHen6QKd17BXbr1q30zTffpNdddx096qijaLdu3WhhYSENhUK0pKSEHnDAAfSvf/0r13vFYNGiRfTKK6+kPXv2pLm5uTQ/P5/27duX3nzzzUwiXFFRkdL52bZtm8AzzGT58uX0lltuoYcddhgtLS2loVCI5uTk0K5du9JTTz2V/vOf/3S8mNWHwFKavBEzefJkOmzYMNq1a1eal5dnvgaHHHIIveyyy+gbb7zhOH5XRGAppXTjxo3073//O913331pdnY2LSoqoocccgh95JFHaEVFBdV13cxksGZSdV2nhYWFFEiOz3Ir8wuKhhZYgw8//JAOGTKElpaW0mg0Sjt16kRHjBhBv//+e0opZRZYSpPn7f3336ejR4+mPXv2pAUFBVRVVVpUVEQPOOAAOmrUKDphwoSM7Kr17v4tt9ziegxKKb3gggvM7VnGcDZ1vvnmG3rzzTfTI488knbs2JFGo1FaWFhI99tvPzpmzBj63XffBX7MRCJhjlnjkZw1a9bQW2+9le6///60qKiIRiIR2r59e3r22WfT//73v67Z0kQiQb/77jt6zz330CFDhtDu3bvTvLw8qigKzcvLo507d6ZDhgyhDz/8MF2/fj3X81mzZg296aabaJ8+fWh+fj7Nzc2lPXv2pFdeeaXjuLf0tr3xxhv0r3/9Kz3wwANp69ataTgcpqWlpfSQQw6hd9xxB12xYgVze7yEpaysjL7//vv0lltuoYMHD6Y9e/akJSUlNBQK0aKiIrrffvvR0aNH0w8++IBJmK1YEwssN1lFYe1HWOcVcMrEbtiwgd5777100KBBtE2bNjQSidCsrCzaoUMHevzxx9M77riDzpo1i6t99957b8rrINIH8CJogaU0WW31/PPP08GDB9PWrVvTSCRC27VrR4cMGUJff/11riEEuq7T119/nQ4ZMoS2a9eORiIR2rp1azp48GD6/PPPM5ekG3z66af0vPPOM69TLVu2pEcccQT917/+xT03x/fff08vuugius8++9CsrCxaVFRE+/fvT++9916mm3U8Aktp8OfCCRaBpZTSX3/9NWUIhJ3E+u1X2bFmzRpzTh0vx3Pitttuo0Ay0RhkhQeh1Of0uBKJJBA+//xzcza7sWPH4vHHH2/kFu19LFq0yJwhj/U1mDZtmjmd/DXXXIN///vf9dlEiaRReOyxx3D99ddDVVWsWbPGdTkdiUQikUg0TUP37t2xZs0aDB8+HK+//npgsRtsGR2JROKOsQZxfn4+xo0b18it2Tt56qmnzN+PPfZYpn2effZZ8/c9Ye1XicSOK664Am3atIGmaXjooYcauzkSiUQiaeK89tprWLNmDRRFwV133RVobCmwEkkTwRDY66+/HqWlpY3cmj2PGTNmuK6T9vTTT+P5558HkFwg/LTTTvOM+dNPP+G9994DABx//PG+1oyUSJoy2dnZuPvuuwEAzz//PDZs2NC4DZJIJBJJk0XTNNx///0Akusp77fffoHGlyXEEkkTYOvWrWjVqhVatmyJlStXIj8/v7GbtMfRvXt3VFdX45RTTsFBBx2E0tJSxONxrFy5Eu+++y5+/PFHc9sPP/zQUWA/++wz6LqOZcuW4aGHHsIff/wBAPjuu+9w5JFHNshzkUgaA13XMWDAACxYsABXXXUVnnzyycZukkQikUiaIJMnT8aFF16IwsJCLFu2DK1atQo0vhRYiUSyV9C9e3esXLnSdZvs7Gy88MILuOCCCxy3IYRk/I11vOwXX3yByspK78ba0LJlSwwcOFBoX4lEIpFIJJI9BSmwEolkr2D27Nl45513MHv2bKxfvx7btm1DZWUliouL0bNnTxx//PEYM2YMWrdu7RrHENi8vDz07NkTY8aMwSWXXAJF8R6R0aVLF6xdu1ao/YMGDcLXX38ttK9EIpFIJBLJnkKosRsgkUgkDcHhhx+Oww8/3Hccec9PIpFIJBKJpPGQGViJRCKRSCQSiUQikTQL5CzEEolEIpFIJBKJRCJpFkiBlUgkEolEIpFIJBJJs0AKrEQikUgkEolEIpFImgVyEieJRCKR7FFQSlFdXY3Kykrzp6qqKuPfsVgMNTU1iMVi5k/6v42fRCIBXdehaZr5o+u6+TfrYwaKooAQ4vqjKArC4TBCoRDC4bD5EwqFEIlEzL8b/45Go8jKykJ2dnbK/+1+z83NRV5eHiKRSCO+GhKJRCKRBIsUWIlEIpE0SaqqqrB7927s2rULZWVl2L17N3bv3u34e3l5uSmquq43dvObDJFIBHl5ecjLy0N+fr75u/UnPz8fRUVFKT95eXlMy0NJJBKJRNKQyFmIJRKJRNJgVFRUYPv27di+fTt27NiR8X/r79XV1b6Pl5OTk/KTnZ1t/n/6h4tAoAA6QGI6QBUQqgCU1P6e/D8oSf6O2h+K2v8n1wQ2HzP+bqDrtf9M+5olyX+b/yV1P5RQgOjJ39MfUyhoVgggGk4ZdjCqq6tRXV2NqqqqjN8NkfeDqqooKChIkdrCwkIUFxejZcuWaNmyJVq0aIGWLVuiqKhIyq5EIpFIGgQpsBKJRCLxDaUU5eXl2Lx5MzZv3owtW7aYP9Z/80pVOBxGQUEBCgoKkJ+fj4KCAsyaugyEhkBoCNBDIDQMoocAqoJQNfX/aUJJKv1LMTMNlQVWFNCC3Iw/JwVYAyUJgCRASQKUaICSqP2bhqGjD0N5eTl27dqFXbt2YefOndi5cycqKiq4mqCqKkpKSlKktkWLFigtLUXr1q3RunVrtGrVSpYzSyQSicQ3UmAlEolE4gmlFLt378Yff/xh+7NlyxbmjGl2djZKSkpQXFyMX+ZvANEjgB4G0cMgeqT2/8nfASVVQllpaFl1aEOj4SC1rFDooEocIHFQJQFK4qBKHJTEccrwA7Ft2zZs3boVW7duxY4dO8DalWjRogXatGmDVq1aoU2bNmjdurX5/7Zt2yInJ0e4zRKJRCLZO5ACK5FIJBIAgKZp2Lx5M9atW4d169Zhw4YNKZLKkj0tLCxEq1atUFpairlfrkoKqRatFdPa36H6b6yug8TilsbroBW17VMVkGjU/zEE2qSXV6T8GwCgKFDyxGVSGEpBa2K1bSAg+Xl1jxECmhVMNpSCgioxUBJL/l+J4c9XDsTWrVuxZcsWbNy4EZs2bUJNTY1nrOLiYrRv3x7t27dHhw4d0KFDB/Pf+fn5gbRXIpFIJM0bKbASiUSyl7Fz505TUq0/69evRywWc923RYsWaNu2LX6ZvwkkEYWiZyWlVIuC6NHkmFK/pMupHVZhtaM+JTZdVF22c6U+xdYqr7bHThNapzDZwZzDZDlzArpSDarWgCo1OGNUf2zatAmbNm3Cxo0bUVZW5hqjsLAwRW47d+6MLl26oEOHDrI0WSKRSPYipMBKJBLJHgilFNu3b8eaNWuwatUq8//r1q3D7t27HfcLh8Nm5mvWF6tA9KxaSc1KCipVAN3n1waLoKbjJaxOBCGyrMJqsx8XQQitl7g6HptNaDMOF4Tg1k7+RJEAVaugK9UYfd1ArF+/Hr///jvWr1+Pbdu2Oe6uqiratWuHzp07m1LbuXNndOrUSZYkSyQSyR6IFFiJRCJp5uzevTtFUtesWYPVq1dj165djvu0bt0aHTt2xE/frQfRsqHoOSBadm0W1WbMKaV84ioiqemISms6PBIrKqsOsXzDI7Wi8ppxTDGZzWgOr9y6zGJModXKbRUuvuForFu3DmvXrsXatWtRXl7uuF/r1q3RpUsXdO/eHd27d0e3bt3QoUMHhEJyFUGJRCJprkiBlUgkkmYCpRQbN27E8uXLU362bNliu72iKGjXrh3+WFUFouVA0XKhaDnJbCrrOFQ3cQ1CUtMJSlrTcZPYIKU1LW6guMlsUPKaccxgZDYdV7nlWI6HgibH3qqV0NVKDPlzP6xduxZr1qzBjh07bPeJRCLo2rUrunXrhm7duplyK8fYSiQSSfNACqxEIpE0QTRNw7p167Bs2TIsW7YMy5cvx4oVKxzHCbZp0wabf4tB0XJqf3KTGVXRCZMMca0PSU2nvqTVilVg60tY06nvWYitQltfAptyvPqR2XRMufW5riwlcehKJXS1Aqf+uQ9WrFiBVatWoaqqynb7Vq1aoWfPnth3332x3377Yd9990VhYaGvNkgkEokkeKTASiQSSSNDKcWmTZuwZMkS/PLLL/jll1/w66+/2s7aGgqF0LVrV6z6eTeURC4ULQ9KIhcEAZREUgoktIYR1poYoGug1TUgDTEBD9VBq2uAcLj+jwWAxmKApjXMbMiUgsYTDTPTMdVBNR1KQW22Mlz/pbg0O+pbZs1YoKBKNXS1HH++6jCsWLECK1aswMaNG223b9u2LXr16oV9990XvXr1Qs+ePZGXV/8SL5FIJBJnpMBKJBJJA1NeXo6lS5diyZIlWLJkCZYuXYrt27dnbJednY1u3bph6Q/boCTyoGh5IFqO/5l+7cqC66scOD0rqGv22VZVDV5kDWlNpz4kNp567iilgKZlbBa40FKalOWUg9TD7MZUB40nMv+uKHUya6UexNa27DgwsU1AD5XjsluPxtKlS7F06VL8/vvvttt26tQJvXr1Qt++fdG3b1907doVqhrA0lASiUQiYUIKrEQikdQjlFKsX78eCxcuxMKFC/Hzzz/jt99+y9hOVVV069YNK38uh6IVQNHzk5MrJXxeor0mXwpqsiWv8lUncbUShMQ6SauVIAQ27n7OnAQ2Hd9CayewKQcIYmZjB3m14iSy6QQgtp6TQwUgtZQQUJKArpbh4huOwNKlS/Hrr7/aZmpzcnLQu3dvU2h79+4ts7QSiURSj0iBlUgkkgDRNA0rVqzAokWLTGm1y662adMGW9ZpULQCEL0gmV21jlelFCTBOYayIWYKZpHVlGMwiKsVEYllkdZ0RCTWQ1qtsAqsFW6Z9ZLXjAMIyCyLvFphFVkrAlIb5AzHjscgmbNxUxKDrpbhz1cdgp9//hlLlixBZWXq+5sQgq5du5pCe+CBB6JNmzbcx5dIJBKJPVJgJRKJxAexWAxLlizB//73PyxcuBCLFy/O6NCGQiH06tULS+fvgqIVQtELQKiDpLGKK6+sWmEVV15ZTTkGp7haYZFYEWm1wiqwHNJqRURgrTDJLK/AphyAQWZ55dWKiMhaYZRaX+vQMkqtnciaj4GCKhW48u5B+Pnnn/Hzzz9jw4YNGdu1adMGBx10EA488EAcdNBBUmglEonEB1JgJRKJhANN07B8+XLMnz8fCxYswMKFCzMmW8rNzUXVrmhSVrVCKFo+22zATvLqR1atuImrH1lNOYYPcbXiJLF+xdWKk8QKSqsVvwJrxVZm/chrSnAHkfUjr1b8iqwVF6n1JbJWHKTWTWIzt41BD+3G2Zf2w8KFC/Hrr79CS3svSKGVSCQScaTASiQSiQuUUqxdu9YU1h9//BHl5eUp2xQXF2P35pAprETPAwF7h7f2QHXyGpSwWrHKa1CymhI/IHE1sApskNJqxSqwAUirlSAF1oops0EJbEpw67I8AQmsQZAia8UitYFJrBWL0PJIrBUKDXpoF8776/746aefsHTpUluhPeSQQzBgwAAcfPDBKCgo8NVsiUQi2ZORAiuRSCRp7Ny5E3PnzsXcuXPxww8/ZIxhzc3NRdXOLKhaMRStCETP5RdWKxoFCVIWLJB4ArSsHtc8DVpc9xDqS2Abinpb/qe+RNaAEND8nHoLTwOYbTg54/FuR6FVFAW9evXCgAEDMGDAAPTu3RuhUP0vVySRSCTNBSmwEolkr0fTNCxduhRz5szB7Nmz8euvv8J6aYxEIkhU5kLRiqAmimszrOIznVJFAUK1+yd0KJUBZhct7SYJLXh5pbVZYk2HXlZWeyAFRA1mORMDvTZbTBQCEmDnnaZlt4NsN03PilpfiyCfg07rXgcAJOAlXGjt+SEKqZdlf5LBCZR8y0y9QT4HQlKzsaGAz0/E8lpq/rtQSaHdhTMv3g/z5s3DmjVrUh7Pzc1F//79TaFt376972NKJBJJc0YKrEQi2SvZvn075s6dizlz5mDevHnYvXt3yuPdu3fH6qVxKHoJ1Jo8tjGsDqQIq5Ug5NXmEh6YuFKb8bhWcU05aDASq9uM0fUrsenSmhLbZ5szpDX1Qftj+pTZdIFNie1TBKnNeQpMZO3OR7rIWvErtekiaxCA0KZIrBW/QqsAeiiO6+49GvPmzcMPP/yAXbt2pWzSsWNH/OlPf8KRRx6Jvn37yuysRCLZ65ACK5FI9goopVi9ejW+++47fPfdd1i6dGnK43l5eajclQNFbwFVbwmCaHJcapy/DNRRWA1ExZXhcu1LXh2kCICzuKYcXExiKaWu4y1FBdZNXFPii7bZawyqx+sl9Jxc5DUltqD82QmsGdOPyHq9d91E1kDkOTlJbDqCUusosgYiQqvUlSonZzkuw+ixB2HevHlYtGhRSrlxXl4eDj/8cBxxxBE4/PDDkZ9fj+XZEolE0kSQAiuRSPZYNE3Dzz//jBkzZmDmzJlYv359yuM9evTAql/iSWGlBallwRzy6imsVnjklePyLCSuDCIEgE1ezYawS6yXuKaGZZdYVnE1Y/O0l2fiJJ7Xj/W5MQqsGZdD+tzkNSUmr8iyngcWibXCI7SsImvAIbSeEmuFVWgtEptyLCRw2yPH4fvvv8fs2bNTsrOqqqJfv3444ogjMHDgQHTs2JG9XRKJRNKMkAIrkUj2KKqrqzFv3jzMnDkTM2fOTOngRSIRJKryoeit6rKsdjDIK5e0GrDIq8AlmUleOaTHhEdczcZ4CyyPuNaF9RZYXnE1Y7O0V2TGX5HX0us5cgqsGZdB9lgF1ozJKrK854FXZK24PU9eiTVgkFkuiTXwklkHiTWPCQqq7MJ5f9kP33//PVavXp3yeNeuXTFo0CAMGjQI++yzD4jgLMoSiUTS1JACK5FImj1VVVWYPXs2vvrqK8yePTtlXdb8/HxU7MyFqpdC0VuAgKGjaSOwQsJqxUlefV6CXeVVRFoBMXFNaZS9xIqIa2pYe4kVFVczrlNb/S5T4/e1tXuuggJrxnQQIl55TYnpJrJ+zoEfkQXsZVZUYq04CK2QxFqxEVoaZs8E66QKY249FDNnzsRPP/2ERKLus9ahQwccc8wxGDRoEHr27CllViKRNGukwEokkmZJdXU1Zs+ejenTp2PWrFmorq42H2vTpg22/B6GopdCoUV8MwZb5NW3tBpY5TXAS26GvPoQGxO/8mpgkVi/4loXMlVg/YprSmxrW4NaXzWg19p4zn7lNSVmmtz5EVgzZrrIBvH8/UqsFeM5ByGxVixC61tiDQyZ9cjCOkERxw3/OArffPMN5s2bh5jlPd2mTRszM9u7d28oSgDXOIlEImlApMBKJJJmQ01NDebOnYvp06dj5syZqKqqMh9r164dNv0Wgaq3AqH5YuuyUprsOAYhrQYJHUpFtfd2HJjiGpDMAAhOXNMIQoysEIUkRSTguFBIcOJqEPTXq6IG+5ojKbL18RqRSCTQmIGKrEEoFKzIAkBIDU5iDSj1tf4sRQK3PHQsvvnmG8yePTvlZl/r1q1x3HHH4YQTTkC3bt2CaK1EIpHUO1JgJRJJk0bTNCxYsABffPEFZsyYgcrKSvOxZKY1ClVvLS6tAPSwAj2iIlSRuYSLULyQAj1LhVKtIbStPJCYUBXoWREoNXFg87ZgYgIAUYBEAtqu3bX/DKa00MwWkmCzO0QhwcasFUKq8c827YjRPkM2g/yaVdTU2AEQtMQaNxkCXZ9WVUEIAcnNSf47qHNKCGhBXjJegDH1/Kzkr4ngXictLwql0t81ikLDuH8dj2+++Qbff/99yvW0a9euOOGEE3D88cejTZs2fpsrkUgk9YYUWIlE0iRZuXIlvvjiC0ydOhVbt241/96qVSts3ZKDUE1p7czB4tKayAub/1biOkLl4p1DQ1rNeEHIa620mjGDkFer/FnEte5hfwJrW+YagHBmtMtvzLQ2BiKw6W1KPw9BfN0qaVLoU2SDLiU2M+QuxxDCEiNFZA18jrWlBZbsbhAya5FY808+ZVbLS80W+5ZZRcPtDx+HqVOnYvbs2YjH6+L169cPJ5xwAo455hgUFRX5Oo5EIpEEjRRYiUTSZNi2bRumTZuGL774AsuXLzf/np+fj7LKYhC1PdREAUJVYrKRLq0GovKaLq1mPFF5TRPWlJh+5NVO9mzktW5zfon1HJ8pKJyObREVWJc2CkusU1ucjiX6tZsuryzH8iDISZ3s5JXlWJ7Y7GcrsQYi5zddYtPRBc6vjcSaDwnKbLrEGgjLrAIk8qOgNI4bbuiPqVOn4qeffoLRNVRVFYcddhhOPfVUHHHEEQiHM6+fEolE0tBIgZVIJI1KTU0NZsyYgc8//xzz5s2DXttRDIVCSOgtQNT2gFIKQpKdWDWuQ61knxDISVoNeOXVSVrNeLzy6iKtgKC4esmdi7zWhWCXWKbJhTiFk+n4PDEZBI9bYL2O73VM3q9fN4FlPaaFoJfW8RJY1mOm4CbEbhJrhec8e4kswCezLhJrbsIps04Sa8Als7UCa4XSavz1r/th2rRpWLZsmfn3oqIinHjiiTj11FOxzz77cLVZIpFIgkQKrEQiaRRWr16NDz/8EF988QV277bIFClKSqvaFoSkih2rvOoRFYlc74lUlJjONO7VS1rNeKzy6iGtZjweeWWROQZxTQ3pLpHcs+IytJEr+8vynDnaxySwAUtz3bYMX8UsAstxbB6Z9BJZFnnlPjZjPGaRBdjOM4vEGrDILIPEmpsyyqyXxBowyayNxBpQWo7hwzvis88+w/bt282/9+rVC6eeeiqOO+445OfnM7VFIpFIgkIKrEQiaTCqqqowffp0fPjhh1i8eLH591atWmHztgIQtT2Ikuu4v5vAskqrgZe8skqrGc9LXkMq9Ch7+Z2nvPKW0HLKa91h7IVSaEkXjzZzly77zYCmb+4msCIlyyJlvW5fyTwCy3B83myom8TyCqzn8Xlj8UisFafzzSOxBm4yyyGx5i4eMssqsQaOMusisAaU6vjHP47Fxx9/jO+//x5a7WclEong6KOPxpAhQ9C/f3+5vqxEImkQpMBKJJJ6Z9myZfjoo48wdepUVFQk1y1VVRUabQmidqwtEXbv+NjJK6+0WrETWF5pNWM5ySuntJrxnORVdNynoLwmD5n6uvhei9TmOfiaOMrunAi2z1Zg/UwW5ec82X018wqsSzv8TKyULrIi8urZFoF4whJrkH7ORSTWwE5mBSTW3NVGZnkF1kqGzDJIrAGlNRgzpjc+/vhjrF692vx7p06dMHToUJx00kkyKyuRSOoVKbASiaReiMVi+Oqrr/Df//4XS5cuNf/erl07/LE5D1A7gBD2zpxVYP2IK5Aqr6LSmhLPKrCC0mrGSpdXv7Pt+pDXuiYkBdO3vNYFzIgdRKwg2mZKbBBL9QRxroyvaFF5TYlV1x6/MwMbEutXXm3b40eG/UqsgXHe/UisgSGzPgTWilVm/UgsYBFZDoE1oJTimWfOwscff4ypU6ea63JnZWXh+OOPx9ChQ9GzZ09f7ZNIJBI7pMBKJJJA2bJlC95//3188MEH2LlzJwAgHA4jrhnZ1hbcZWZqXAdJUF/SaqDEdCg1mm9pNeNVawjtqvIlrWasmjiwZUcArUIg4ppBUGuPEiWw9WZBlEDXRKWaFtw6s0G1i9JgBNaMpwe+RmsQEFUNLlZQIluLb4k1A9FAJNaAJHTfEmugVMe5JdaA0gSuuaYf3n333ZSsbJ8+fTB06FAcc8wxiEaDaadEIpFIgZVIJL6hlGLRokV455138O2335rjo0pLS7F1RzGgdgQh/J0XLUuFFiWIlAWwRicALaogkUWQvdXf+onJWCr0EEH2+grfsWg4KUzq6o2+YxFVAQiBtnV7MGubAoEKYqDiBCSFJ6A1XImqQI/5f29Ys5I0FvMdL9k2NbDXk6hqYJl0EgkDlAbSNkIISCSCILolhBAgEgaJRsWWwElHUUDzghNivSA7mHYRgnhhFGp1QJ91APH8sHA8Sin+/e8heO+99/DNN98gkUhWzRQWFuL000/H2WefjZYtWwbWVolEsnciBVYikQhTU1ODadOm4b///W/Kuq003AIKOgFKaxCBbJaWpSKWXyt1MepLYLWoguqipEyEqnVf8qpFVdQUJmOFK3Rf8krDChL5yZmIQxVxqCv/EI5FVAWI1s5qHItD216bxdUDEIumKq/WWH6eY624GvgR2PRyWqPSgFLqT2SJAhKurT4I4DVNeR18jmcmkdrKA58Sa8ir2SwfXRNDXs1/WzN/fqSxPiTW/Ief1yEpsQZ+ZTaeX3fu/MSiqMElF3fD+++/j82bNwNILo923HHHYdiwYejRo4evdkokkr0XKbASiYSbsrIyvPfee3jnnXfMpRWi0SgqQ22g5XWFSgsQ3s2+ViuQKq0AAAKoNWLyapVWI1aoSkxerdJqICqvVmk1CJXFhDKvKdJqYJVXAz/CE5C81nu5qsjzSxNXAxGBdRoHml4qLyyyVoE18PG62r4eIq+1VWDNOPztSpfXulD83ZN0eTX/ble+KiKN9Smx5h9FXotUiTUQFVCrxArHIkBNUTJD/3/XHoY333wTCxcuNB8+6KCDMHz4cBx++OFQlIDK9iUSyV6BFFiJRMLMpk2b8Oabb+Kjjz4yJ+xo3bo11le3gJbbGVAjCNVQLnlNEde0YZG8ApsirmmxeATWTloNeOXVTlrNNnHKq620GtjJKyAmOs0h65oO63N0EFcDHoH1msDIaaw3t8jaCawB5+vr+npwrumbIa9mHM42OQhsXTj2boqTwAIOEmvAI40NIbHmg4ztchBYA175tBNYoViGxNby4v1D8NZbb2H69OnmUJOOHTti2LBhOOmkk5CVFdz4YIlEsuciBVYikXiycuVKvPbaa/jyyy/NToceLoCW3wN6TruUSW9YBdZNXAF2ebXLtqbDKq9u4gqwy6ubtJptYpRXV2k1cJJXAx7JaYryyhKH5fl5yCvAJrCsM+96TVbGLLJuAgtwvb5MrwnLe8BNYAFmifWS17pw3l0VN3k1t2GZSIhFGhtSYgG2NnlIrAGrgLpJLHOcNIE10aow8qSW+PDDD1FenpzBvbCwEOeeey7OPvtsuQyPRCJxRQqsRCKxhVKKH3/8Ea+++irmzp1r/l2PtkSioAdotBRI66B7yatdmbATXgLrlm1NaZOHvHpJqxUvgWURV8BbXpmkFfAWVysskhPUxD5BzTAMsM9K6/bcGMTVipvE8iwbwzLbtqfEesmrFYbXmPmmgtt7wUteU+K4t4lVYJOhnLsrLPKasj3rjLhu4higxHoKbMrGbq8Nm8QC3gLqJbDMsZwkFgD0BK67oDveeust/PFHch6AnJwcnHXWWTjvvPNQUlLC3AaJRLL3IAVWIpGkQCnFDz/8gFdeecUcr6QoCuJZbaHldweNFDnu6ySwXtnWdJzklSXbmtEmB4HlEVfAWV5pWEEiL8LeHgd5ZZZWAx55NXATnKYmr7zZW6fnxSmvgL3Aiqx3yrNclKPI8ggs4Cmx3Flxu/cFj8ACjhLLI691oTK7LLzyau7Hu6yLnTg2lsQ6tYdDYK04CSiPxDrGcRNYA6rjnr/1x6RJk8xleCKRCE477TSMGDECrVu35mqHRCLZs5ECK5FIACQ7hnPnzsWECROwePFiAMkORFWkHRL53YFQrmeMdIHlFVeDdIFlzbZmtCdNXnml1SBdXnml1WxPmrxyS6uBiLwCznLT3OXVwPrcBMTVwCqwIuJq7su53jFgI7K8Amtg81oLl3Rb3x+88mrGsGmPgMAmQ6V2W0QFFhCQWAOrPDamxNq1R1BigUwB5RVY2zgsAmtAKR664U+YNGkSlixZkoylqjjppJMwatQotGvXTqg9Eolkz0IKrESyl0MpxaxZszBhwgQsXboUQFJcKyMdoBV0B1S2DpVVXkXFFUiV10S2gpoCfnEFUuVVVFyBVHk1xVXA06zyKiyugLi8GljFZk8RVwNN8yWuBnos7ktcDUQE1sAUWVGBNbC83r7HJFNdXGDNGMn2iMpraijqS14NhCUWqBPHpiCx1vb4kFggVUBFJTYlDo/EAgCleOL2wZg8eTLmz5+fjKWqOPXUUzFq1CiZkZVI9nKkwEokeymUUsyfPx/PP/+8Ka7RaBQVkQ7Q8rsDKt9skKEaCiVGhcXVQK2hUBJUWFwNiEah8K3kY9+eGEVkV8JXW0JlMYR+2ywurQZ+5dVAp6AJ8fVOTZqSvAKATn3LKwDQRCKQ9vgRWKBWYuMJfwILmBIb1KRavgQWACgFdN23wEIhQMjnuanFl8RaCEJifQms0Q4CpvH4XqjVmi+BNePUaHwCa+G5e07Gyy+/jHnz5gEAwuEwTjvtNIwcORKlpaW+2yaRSJofUmAlkr2QxYsX4/nnn8ePP/4IAMjOzkZZqH2tuPJ35BJZBHoEiOymwpIXzyFIZBNEd9ZekgTjJLKT7cnd6C+7qEUJdBUo+E1g3U4LelgB0Smyf90kHqRWPPSNm8XXdDUbFJC8AsEJbBCZTlUVWw/WiqIAqiq2Vmt6e8K1nfV4AOc6HPbdJgAgkQhodY14AIWABCWMQc1QHQ5lTCYnAgmHk5nchL/3EC3IBXSf3SqFQCvMBtH8xaEEiJVkQYn7r7SIFYQQqvIXp7pERahK/Dk9e9eJGD9+PBYsWAAgWSl0xhlnYOTIkXKyJ4lkL0MKrESyF7Fy5Uq8+OKLmDlzJoDkneyKvI6g2T24M66JLIJYQbLjGKqmiJSJXUriOQQ1Jck4ajXqBJaTRDZQXRsnVAkhgdWiBDVFyRjhcoqCtWLSoIcVxPOSmcBwmYacXzcns068qCpoVgSkOgZ905bk3zjX2ExtWBOT16CynNY4oudGUUBCIf41WtPbEg6n/hu1YzZ9iCyJRHy1CwCU2gwjpVRcYpuawFoz0z4kllheM7McWVRkCQHNt2RhRWW2VmLNsAIyawisGdKHyMYK6s61qMhSAtQU173uojL71Ljj8NJLL5mTDGZnZ+P888/H8OHDkZMT3NJGEomk6SIFViLZC9i4cSNeeOEFTJs2DZRSKIqC6qKOiJfsi1ANX7maVVwNRATWKq6UAKEqMXm1iisIEKrgl1eruFICRMrE5NUqrpQA0V0aspdxymuttBqkyKuBiMQGLK91v4rWiteDvAL8Alsrrgaiopgur+bfLHFFJdZaaivaPsVSIisssQEJbKDZ15TA/O9FErYpa00vkRaQWVqQNumdiMimSSzAL7LpEguIiSwlQDw/9XyLiGx1SeZrLyKyVcUEz18xKGUITHFxMS666CKcfvrpCAV0o0UikTRNpMBKJHsw5eXlmDx5Mt5++23Eaju9saL2qGmzH/SsfKjVFOEK9kuAnbwCfAKbLq5mDA6BTZFWwCw35pXXdHE14BFYq7Ra40R2c2Ze08TVwFZgAT6JDXDMa+afBAQ2qJJhO3gENk1eDXgk0U5cUx6zic0jsnbjREUkVrEZ48klsk05+5oSnP39aCuvgPOkUDwim56JtcIhs1qxfQwekbWTWAMembVmYa3wiKydwCZj8HVFq0pqr0WU4tEL+uP555/H+vXrAQAdOnTA5ZdfjkGDBvkehy6RSJomUmAlkj2QRCKBDz/8EOPHj8euXbuSf8triap2/aDnFJnbsQqsk7gC7PLqJK4Au7ymZ1sz2sIgsFZptWsLq7ymZ1tTYrDKq4O0GjjKK8AusPUor3UP8ayRVI/yCrAJrIO4GrAIopu4pmzjcgwWkXWb6IhHZO0E1ozBIrFNKfvqNakVo7Q4CizgPbMxi8y6SSzAJrI2WdiMw3jIrJvAmodhEFm7LKwVFpFNLyPOjMHWJTUF1gys444h3TBhwgTs2JGc6K5Pnz64+uqr0bt3b6aYEomk+SAFViLZg6CUYvbs2XjmmWewdu1aAIAWzUN1u75IFLTJ6Nh5CaybuBp4CaybuJoxPATWS1yBWnndpAMOYRJZBLFC93Z4yatTtjWd6C7NfdImD3EFPOTVbICHxDaAvCYfZhCG+hZXK27nxENeAW8xZJFXczuP43hJrNdMvSwS6ySvGXHcRLY5CSzgKbGu8mrAMtuyh8hmlBI74SazDBILuIssi8QC3iLrlIW14iWyTlnY1BjuXdMMgTXQ47jqyFK88cYbqKqqAgCcdNJJ+Otf/4qWLVt6HlcikTQPpMBKJHsI69atwxNPPIE5c+YAAAoLC7ExrwtiLbvYCoibvLKIq4GTwLKIqxnDQWDjOUBNsbu4mjEcsq8s4moQ2U1tZx12y7ZmxnDIvjJIqwGTvBo4SWwDyWvdZi4npiHlFbAXWAZxNXCSQlZxTdme8XhOIsu61IybyLIIrBnDTmKbm7yaB7Q//0zyasCzZJCdzHplYdNxEFmnUmI77ESWVWANnESWRWANnESWRWDrYjh3UR0lFsAX/zcKL774Ij755BMAyYmeRo4ciWHDhiEa0JJJEomk8ZACK5E0c6qqqjBp0iS88cYbiMfjCIVCqCjpiupWPYGQc+fXTmAT2QSxfPZyUDt55RFXwF5eecQVsM++8ogrYJ995RFXwEFeOcQV4JRXwF5gG1hek5s6nKCGllcgU2A55BWwl0FeeTX34TimncTyrJXqJLGsAmvGSJfY5iqwgK3EcgkswCexQKbI8koskCmyjFnYlMOmiSyvxAKZIutVRmxHush6lRHbx8jsqroJrMGU60/BE088gcWLFwMA2rRpg7/97W9yfKxE0syRAiuRNFMopfj666/x1FNPYcuWpPDE81ujun0/6Fn5nvtbBZZXXA2sAssrrmYMi8DyiqsZw5J95RVXIFNeecUVsJlxmFNcAQF5NbBKbCPIa90uaSerMeQVqBNYTnE1sIqgiLgaiHSQ00WWR2CtMawiyyOw5v5WiQ1AYBtFXs2D170O3PJqwCuxQKrIikgskCqyAhIL1ImsiMCah7aILE8W1opVZHmysKkx6s4Hi8ACACjFg8P3x3/+8x/zu/Kwww7Dtddei/bt2wu1QyKRNC5SYCWSZshvv/2Gxx57DPPnzwcA6JEcVLXvh0RBW+YJTNRqCqJDSFwNQtUURIOQuAJ18ioqrkBd9jUR5RdXg8huityNCSRyvce3OhHdpSF7xVZuaTUQllegTmAbUV6Tu1lOmg9hERZXA00TllegTgD9yCsgJrDG8Q2JFRFYI4YhsbwCmx6j2WZfUxqQfC2EBRYQk1iDhMY+HtYJnXKVEqdDNOpLYoGkyIpkYa2EqnRhga2LQdkF1kBP4Mo/tcCrr76KeDyOSCSCCy+8ECNGjEBE8HMmkUgaBymwEkkzIh6P49VXX8XEiRPNL+DdxfugpnVPQOHrEFACUDFPSe6vAjRUF0sIYtlXMIaSANRq8XaEqimytusgVPx5hMt15Py2m2+91zR8CSwAaBr0GoG1PTMaIv6mIIpP8UQA8gok5dVneWAQX417Soki95rDNvgWWD/yarTBr6T4EVggmYXN9jn+khBoBeICSglBvNC/rCWyfXx5AABJVsv4IZ4ttv/7d56Hxx57DD/88AMAoFOnTrj++uvRv39/X+2RSCQNhxRYiaSZ8PPPP+Phhx/G6tWrASTLhas6HAAa5burH88F9DAQLhNvSyIXSORShHeLdSASuRSJHIrodvFOUCKbgoaB7D/E2qBHgFgBRWQ3QcEasQ46VQmUOEXB0p1C8krDKrTcCNTKOMi6jexrcmYEqsu2CcsGUUAUAsqxRmXq7nVlpqJfK4QQkEjEnzApCoiqcK21mbp/UqBpTDyTnczc1gpXPCEcBwoBwhFA9MaEcUPBTxtq41AfMYhxLkRfEyD5PETWHDaofW8SxYd4WYYFENHzQQj0vBwQ4c8pQaI2C0s09vVXrQQhsZQAsQIVakzwNSVAVQuFax1yuzZUlygIVQrEoBQPnX8AnnrqKWzfvh0AcOKJJ+Kqq65CUVGRcJskEknDIAVWImniVFRU4Pnnn8d7770HSim0cAQV++wPmtWBuVwYSIprvCD5cVeriJDAxvOAWEmy06RWE26BTeRS1LRMdtzUSkVIYBPZFPHiZBtC5Qq3wBriCkBYXqlKEM8miO7WheTVEFcASXldX5t51TV+iU0b7ygkf7XyasbgFA2SNkZS5GuFEAKSVZud0hnXuLViiKuBiCylZZB5JTZFXK2fTUr5JVIhQLTufAhJrEJMcRNqgxGjFlGJJdbsqcjrYs3eikqs5f0pJLGKYr6m1mECQiJbK7EAxETWIrHJGHwiG1QWtqaw7nXhFtlagTUQEVlDYA1ERLamOI6/tI2Y369FRUW47rrrcOyxx3LHkkgkDYcUWImkCTN79mw8/PDD5sQTle06oaxHXyh6FBEOATXk1SiRDVXyCaxVXClJymtkF3tH0iquRqmwWsEnsFZxBQHUMgU5HPJqFVeAX14NabUS3a2j4Jcd7DEs4gpCoFbE6uQVCERgAU6JTZNXgE9g0+W1rlkcMazyCvALbLq81sZg39++bJlHYFPkNfmHtGCcAmkVWANekbUKrEgbjBgWeCWW2JX+8kps+mvDK7Fp708hgU1rQ/pYdy6RJQR6Qa2AWtyTS2bTJDa5P7vIBiGxVoE14BLZNIkF+EQ2XWABfomtLk2+l94eeRIefPBBs8Jp0KBBuPbaa9GiRQuueBKJpGGQAiuRNEEqKirw9NNP46OPPgIAJLJzsXu/AxFr0QpqNZjl1Zp1tY7vZBXYdHE1969iz76a8mqd34dDXtPF1WxDGVv2NV1cDVgF1k5cAXBlX9PFFUCmvJoN5pBYh2VTmOXPRl7NGAyS4SSvyaYx7J8urgY8Amsnr7Ux2PZ3HnPLIrAZ4lr3gP0OrBJpJ7AAn8SmCyzP8a0xbGAVWVuBBdhfH6exszwSa/Me5ZJYS/bVit2Ebcwia5VYA+Myx/LetxFY8yEGkQ2yjDgdZom1EVgDFpG1E1gDZpElQHXL2tdW1/D3niWYNGkSNE1DQUEBxo4dixNOOGGPGc8ukewpSIGVSJoY8+fPxwMPPIBNmzYBACo6dUNZ996AmuyEsQisk7gasAisIa+2+zMIrF3W1YBFYJ3EFWCTVz0KxPLtL28s8uokrgC7vNqJq4GjwAJsEktpUiKofWfVUwBd5BXwFlg3eU02z2N/J3kF2AXWSV4tcdz3d58wyktgHeU1+aDzjiwS6SSwAJvE2skrz/GtcRxgkVhHgQXYJNZt8icWiXV5jzJJrIO8AvYCa8ZmOb92Eguwi6yLxCb3dxfZ+srCGniKrIvAAt4S6yawBiwia2RhDd6/+DQ88MADWL58OQDgT3/6E26++WYUFxd7xpJIJA2DFFiJpIlQVVWF5557Dv/9738BAInsHOzqfTDiJS1TtvMS2PRy4XRCxvhXh0++U9Y1ZX8XeXUTVwM3gXUTV7MNLgLrJq4GbgLrJq4GWbt05C+1Lx1OkVbAtvPrKq+At8B6yCvgIbAe8mrGcBAML3mta6bD/m7yauAmsV7iaolhvz/bTMduAusqr8kNPIJ7SKSbwBq4iaybwPK0wQM3iXWVVwM3iWWZudirjR7nwFNiPdrAsmyWo8w6CayBl8h6CKy5mYPI1rfAGriKrIfEAu4iG4TEpgssAEDXcWufVpgwYQLi8TiKiopw880348gjj3SNJZFIGgYpsBJJE+DXX3/Fvffei3Xr1gEAKtt3QVnPvqChzGUbnATWK+tq4JR99RJXc38HgWURV8BZXlnEFXCWVxZxBZzllUVcAefsq1u21YqnvBo4SSyDvJqb2nV8GeUVsBdYVnkF7AWWSV4BZ4FlldfaGJn7sy/TYyewnuJatyHTMRwlkkVgAWeJZRFYt+MbMRhwklgmgQWcJZZ16R2ndjK+Tx0l1iX7aoV17WdbkfWSWMBdZBklNrl/5jXDr8Q6lRHbYSuyDAJrYCeyLAJr4CSytgJby4eXnoH77rsPq1atAgCcfvrpuOqqq5Cdnc10TIlEUj/4XMhLIpH4Qdd1vP766xgzZgzWrVsHLZqF7Qf9Cbt7H2Qrr05Ys64ia5lay4VF9k8Z5yqyvyGvAvvrUaC6JWWSVzuoShDLU5jXFCQUKfJKwyoSRdlJeSUkGHkFAEXNFD0OeQWQufYmh7zaxuOQV9v9WeXVCR55td2fXV7tYJZXvqD+YrKKbn0dHxyi6oSf5XEAewHmeJ9S3ebzxCivAECqM8eh2x4nHAIVOVdK8oeqKqiP9y9VFVA/nx8bCMdlV4v4e53juf72T+Tw73/6Sx9gbpu+GDZsGADgww8/xKWXXoolS5b4aotEIvGHzMBKJI3E9u3b8c9//hNz584FAFS3aotdvfuDht3vhlszsKxZVyvWDCxr1jVlf0sGljXrarY9LfuayKGIF3lnXc1jp2VfWbOuBpHdBAVr9aQIMmZcrVizr6wZVytcAgtkZmEdJm1yw8xiCsqrkYUVlVfjK0ZIXq1ZWBF5tYqNgLxaM7Dc8so76Ut6JpRXTNMzsawZWLfjc2LNxApJrfX1EhE1a5s536sZWVje9wpjFjblmMb5YsnCWknPyHJkYc1jW7KxDZmFNTCzsRwZWCtGNpYnA2vFmo11y8BamXTO0fjnP/+JLVu2QFVV/OUvf8GIESOg+FlbWCKRCCE/dRJJIzB37lxcfPHFmDt3LiKRCHb1OhA79z/MU16tNEbW1ZDXRC5FReeEcNY1kUNR1U5LymtDZ119yisNKcwZVyvc8gqkZmGN7CsnGVlYAZpt5tUQGh+ZV0IISCQcfOY180CAn+NYhZdXXo3jN/dMrIHIjRZrFlZASFizsCnHNDKylELZXcm+oyUjK0qQ2VieLKyBFiHJjCwFsrfxrWMLNE429sJ3vsWECRMwePBgaJqG5557DjfffDN27tzpqy0SiYQfmYGVSBoQTdMwfvx4TJo0CQAQzyvArn4DkMgrYI5BFWreeuIV11AVAXT+rKt1f6IhY1kcZihA9NodeY9dpiCygyCeJ3bJiuwmyFuvIxEV6/hEKihyf69K/oMzuyYkrwa6BlpVzVU6nA7Vqb/SYR/yCkBcXnUKSqm/smE/Ah9PiEudn2U3KAU0zV9pMM+aounHjid8ySSNJ/zJLPFZJu7nZoui+HrPiGRizX1zBF5vIxur69xZ2NQ4VDgLK5KBtaLGqVAW1iBUSYWysAaJXM4dKMWDf+qBxx9/HLFYDKWlpbj77rvRr18/4TZIJBI+pMBKJA3Ezp07ce+99+KHH34AAFR26IrdPftxdZaoQkEF+wlaDoWepUOtUIQytnqODpKTAC0PicuryIEB0JAOUILIFsEnT4BQBUHORkH5raDIXV8tdui4BnVnJbBjt9D+RhkxZV37M2hUVXwNREVJym9QmTUeiAKoCtM6vfb712ZtE/xZb3N/UYgCEgmDih4byZsOwu8ZQ6CFD64I32wx9/dDhH3+gIxDh0L+XrtIGFT0/U4IaLa4AOtZYdCwuEjG88XPm1+JrS4hUMTf7qhsRRARvMSCAAkB9//gktNx1113Yd26dVBVFZdddhnOP/98WVIskTQAUmAlkgZgyZIluPPOO7F582ZQVcWu/Q5CdduOzPtr2RSJAg1KtQK1kr9zpOVQ0KI4aI0CpYKvk6Hn6IgUVyMRU6GXC3RwsjTkFFSjuioCuou/c0ZDOki2BloZEhPY2hLlUDm/wBI9mR0IVVNkb+KXARLXoFTGQWJxMYHVNSCeANU0MRmxioCIUNTeXBES2CDkVVWT4yJF2k6UukycziljJFkyTSkVE1jr/iIiSBSQaCRZNi5wfBIOJ/cVFVjjfRPnL4tN2V9UYv0IrKok9xd835nVBqISWyvPwhIbjYASIjTAS8+qPbagxPoV2Jri2uuFyL0PAlQXJ88Zr8hSAlS1SpYjC0ksAapaJb8bwuV8rxtJxDE8rxrTpk0DABx55JEYN24ccnN507oSiYQHeZtIIqlHKKV49913cdVVV2Hz5s2I5+Zh26HHMMurlk1R0zqBRIEGUsMvr1oORaJdzLe8EpFBTlkaclpVIKegmmeoqAkN6UB+HCRbEzs+QfIKZ2RfN4nJa7IxAoevlVdhauVVCGLpxIt2pC2VAdz3OYOSV1Gs8sq9b914X0LExpKm7M/7PAx5TYvFDSEgoiXIxuvGMSbfvg0CXQy/2Vdjf526rzHrhc97+8THsQmlZmkwD0p18npD4hpI3EcG3SdUBX+lEE1OJkUJgc77kaNA9mYKECBWkPzhPXbWFgIQIJ5HuYap0FAYr1fl4cYbb0QkEsHMmTNxxRVXmEviSSSS+kEKrERST8TjcTz00EN47LHHkEgkUNm2LbYfegzTeNdETp24glDuWTKs4iqyv56jI9S+EtGSKnF5FRRXoC7rSggFIRR6RRiRrRw9ovSJoSi4JDRFXjkhcQ1qWbW4vOpacjZZP/LqR1wBf/IYtLwqhE9q7ORV8T+RVXOBhC1ZNBGJNc61qMSmv1Z+hdQvfiXWh8gSnQqLrKjEpsTglNhwmY8bbjaIDncxJJZXZAGY135ekTW/5mr35xJZQnDT7BV44oknUFpairVr1+Kvf/0rZs2axdl4iUTCiiwhlkjqgZ07d2LcuHFYuHAhFEXB9l77obpdD0+bS+RQaPnG0gh1H01SrSJU4S0EWg6FXhhPHsayP61WmbKvRsYVQIq4xmtCbOXDteKa3L/uz9VVEeg7vTvChrimH1+vCLOVDzvMaMxaPuwkrqEqiuzN3uWYTllX5hJih6wrcwmxU+kkTxmug7wylRHXV+aVtf1umVeWMmKHjCdzKbHb/iylxNbsa2oA5lLiFIG17s9aTpx+/g0BYy0ndhJW1vefX+F1ev0Z35OOGW/WO3EO42+ZS4ptXn+ekmKjjDgjBmNZcVBlxOkwlRUToCptMiZS20VlKSs2S4lT/pj8H0tpMVWA6lZp1//af7KUFlMCfHf9KNx5551YtGgRCCG49NJLceGFF4rPIyCRSGyRGViJJGBWrVqFyy+/HAsXLoQeDmHjwAEo7+Eur0bGVcsXz7jG2yYzrkSx2Z9h8iRruXBTyLpyI7AcT8ruPrKuQCOXDAO+xv2ZuGRePe911mfZMEsW1qts2CsL61Kuy1RK7LW/V1bbSV49YqdsZievxv4smVi7c8yTiXV7jVjEtD6ztX4ysUCzLClOidGIJcUAYzbW5hSJlhWbcGRkbb92ODKyhAIHv/EyPu7VGWeeeSYopXjxxRdx7733oqaxJuGTSPZQpMBKJAEya9Ys/O1vf8PGjRsRz83BxuOPQqy4LUIuY1fNrKuAuAJ1EzTZiisDRrlwUGNdeQlyrKsIRAdCNbTxSoYBT3klquouIF7yyiKATalsmBc/Y14Bf2NNGfcXGg/LeQzP/b0k1un1a8wxsTx4LbfkIZGe5zcAifVTUkw0fyLbLMfGGvv6KSsGUkTWz/5eEpu9XgVUBU9mU9x4441QVRVffvklbrjhBrlerEQSIFJgJZKAePfdd3HLLbegsrIS1aUtsOnEo5EozHfcPiPr6oBT+bA16+q2P61WoVRmftT1XC1FXLnl0eckTcAelHX16FTSSBgosnkv+B3vCtR75tWThpJXJwnnkVcfY2GFJnRiDu6SfWUN4ZR9TdnIRWK95LI5SCxL7CAysU4iy7j2rczGiomsNRtrJ7KEAtlbPM6tWzaWAlmbPa5jHtlY69fY1et+xSOPPIK8vDwsXLgQY8aMkZM7SSQBIQVWIvEJpRQvvPACHnvsMVBKUb5PJ2w+5gjoDh3Sei8Xzmhg6heyKa5FNUziGK8JQa9I6xwHUC7cmFlXgE9eE9kEVa1SO/7cJcPpJyqIkuEGlteMMuLmnnkFuDKbthLLu3/68+WRV79ZWCOGncSyvIZuEss70Zaf/f3id4ZiwF5iOS6GthLL+D4ISmKbgsimk73d+4m5iizLy+pSVsz0dcRRVnzOnOl45pln0KZNG6xfvx5/+9vfsHDhQoaDSCQSN6TASiQ+SCQSeOCBBzBp0iQAwM6++2L7gAPMUjalSjHLh/2KayKXU1xt0HN0ZnFNwdg04HLhxsq6CpUMW47ZZMa78oijXQazOWReU47JOSOxbQzLMRugdDhzl+BLiZmyr64xOc5pU83EepUP29HMx8X6LSkGmmA2ludrqQHHx7rtny6y2etTP9/HfPI2/vOf/6BXr17YtWsXrrvuOnz77beCjZZIJADkLMQSiShVVVW48847MWfOHFBCsP2Q/VHRrXPKNkpVslNlN7MwC0b5cCKXAoXupcJO0KoQQCgiRclJJHil0ZyB2JJ15aW6KgKtPCSccTWX0RF0JWMWYj8lw6FqipzfK5NrLQp0Gs2ZiH3IK9U00FhcXBqN2Xx9CBQhpHEzr8Zz8Jt9pbqwvJqzEgsKsDkrsZ/S4dqZiYXl1TozschrYZ2d2I+MGrMT19fswywo/m9kAHCcgZgFqhDmDGzGvpZZip1mIWaKE1brbRZiFoyZiqta8L8XjNmKiWYzEzErNDlbse1sxIz7A8kZiys7ZN4YIIkE/rypDDNmzICiKLjppptw6qmnirVVItnLkQIrkQhQVlaGG2+8EUuWLAFVVWz508Gobt8mZRuao4GEdNDKkJB4AgBUCqg0Y1kc5t3DOiLROBIJVSzbiWTfTFF083deEgkF8ZoQKCXCbdArwohsE+8YhcsI8n/zl6qIlOnIWc2wFoMDpCYGbNrqqw2UUtAY43Im9QQhBCQSabyyYQOfa7sSkYxd0NTXmFpWKPV/QwRgW2KovvF5LokP+UwGIL4EFgBoNueaven7EwI9x0cbFIJYkd82+JNYAKgu8vfZrGkBrkxuCrX7aTl+1g8G4h1rgDKb10LXcUW5jk8++QQAcNVVV2HYsGHix5JI9lKawDe4RNK82LlzJ6699losWbIEWiSMTcceYSuvSlgDrVKFxJNkacgqqUYoJyFcLqyGdUSz4tA0RUgcI5EEWhRUIC+7Rnisq6LoCIUM+RXIHlMCqininREAJEGS6wO2FL/cKXGKcJl4J51oGkh1DCQnWzgGpRSI+ylbrs36saxH6gAhBAiHG19e/WbbImGxN3RQbQCSx29siSYEJOTz9dA1/+Ow/aIq7OvMOsC6zq4txgXSz7AAANDFn4Nvea1FiesgCfF2EJocpuGvEfDVO41uh/gwE6MsOF9HPF/wiRAgtD4K5NtcrxUF/8lXcf755wMAnnrqKbzwwgvey5RJJJIUpMBKJBxs27YNY8eOxfLly6FFI9g8+EjEWpaYj9McDZFWlYjmia/5RrI0RHPiwmNE1bCOvMIqZOeItyESSSA/q0a4D6AoOqLhOKIhcVmilAC6v44xSRCo1bXxRAQ8TpG1XUOkzEeHTtNAyquEx8uZWddaeSUi4mWU3frAlFcAVBOMparBiaNfaVIU8baEawVYVGKt2brGlFhKk+XgSgBtaGyJBcTf47Vtp4mEP5EF/EmsTpMS60Nkg4BQ+JJYICmxgYisCMal1ud8CQCEJZbQ2mPnxzNFlhA8RCtw+eWXAwAmTZqExx9/XEqsRMKBFFiJhJHNmzdj7NixWLNmDRLZWdh03JGIFyVnfrCKq2i20si6GvKaiKtIxPiyI2pYR3ZOjfD3tpF19S2vIc1Xf9avvJIEQai8Tl5FUOI0Ka5uy2Z4tSMAefWVdQXs5ZUzC2uVV2Gs8ioqjunCyPsm8zvWEUg9DyISa1dq2hgSa31PikisTpPZVyuNIbHp587njRrAZzYWCEBi6R4hsUDjZ2OTjeDfJWtL3XdvPF/3nG3Y9dh2IksIxu3eiBtuuAGEEPz3v/+VEiuRcCAFViJhYNOmTbj66quxbt06JHKysXnwkUgU5NeLuPrNuop2Ia1ZV5EYQWVdqab4llc/4gqkyWstWlRBogVbCTDRNCi7ypumvHLiJK9cWdggM6+i2MmrnyysAY/EBjBOst6QmdjUEEFILIfI0vQ1ZJuIxPotKQYaORtrNgJ8X2zpl21C60Vkr1m/HDfddJMpsU888YSUWImEASmwEokH27Ztw3XXXYc//vgD8bwcbDruSCTyc0FzNEdxjdWEoFe6d2rrQ1ybYtY1Go4jK8d74qGgS4ZFSCkZtulEUAbZScm6pscIhZjGwXrJK1MZcT3KKxdO8sojjm6CyLh+qWPmlUdi63PSpYbMwjp1kFkl1i77mhKnGUmsS1uZJNbrzuVeVlJcU+hcNdRksrF+3p4cIhtabzMhllVka7ly7S+46aabAADvvPOOlFiJhAEpsBKJCzt37sT111+P33//PZl5PfZIJEqjCJdWmfJqi8d3j99xroD/cmGgYbKuikf/Lqis655QMgw0YObVpYzYnGnYQ149s7BemVcWcayPzKsIoZBze1mysCzZ18ae1AnwllgveTXjNIDEep2vppCJBfaYkmKmbKzHy94ksrGA77GxINRTYl2fZ1o2Nl1in3rqKSmxEokLTeDbUiJpmpSVleGGG27A6tWrk2NeTz0cShcgmlcDRaGBlAuLEFS5cHMa60qyNcSK7TvNrFlXLdt5JmK7kmHbGC5lxE1CXo2Zhn103APJugINWzbs9CZklVevLKybvBq4SSxP6XB9SyzL+3NPKyduzBmKDVwkNqN82A4XiQ1kBmKFIJHrHWOPGxvbQNlY1+PXiuxVvy01Jfatt97CxIkTfTROItmzkQIrkdhQVVWFm266KTnbcFYE28/uD7WdGpi4ishrKKIFXi7crMa6pm3Km3WlJHMmYq+SYfs4qUG4x7valBGnzzTMQkYZsUjJcFoWVkRebbOwPPLqtB1v1jRdlngzr04SyyKvBnYSKzLutb4klufmip3EsmZfU+LUk8TyniO7zwZH22xnKOad+IBzXGwGTaikuEmNjW0KIpvnnZH1PH5+HFftWIRrrrkGAPDSSy/hvffe89EwiWTPRQqsRJJGIpHA3XffjcWLF0OLhLHj7INAW+YIJ5OCKBcORTRkZccatVwYaBozDAP1MFFTECXDPDEsb6amPlkTN011wibRdvh9LqI0h3Ji5jhNIBMLyJLigGky2Vig8cuKCWUqK/Y8PgFuqFyGiy66CADw2GOP4auvvvLRMIlkz6QJfENKJE0HSikee+wxzJo1CzSkYOeZB0IrzReKFUS5sJF1NeRVhCDKhYE6efVDk5RX0XbEE+Ilw6oKkpPtW14JIf7lVdN8y6uZhRWVV+s+fsQz6LVhRZ+L8Rya0qzDou91Q2JFsq8pcQKUWD9yb3xWfLSHJhL82dd0/EgsICXWDgUBjG31GcNvNra2DfeGNmLo0KGglOL+++/H3LlzfTRKItnzkAIrkViYNGkSPvzwQ1AC7Dq5LxLtCoXiRLISvrOukWjCd9Y1Go77zrqGVC2AkmH4nqgJCgUl8CWvWjZQU0B8yasWVaAVREEqqxt9siZK/WdeQRTfmVdCiP/MKyGAwrfusS1+s6+KknwufmIYNwT8ymtQWVi/k8EoCkgomNemSRBEJtZv1QQAxBNs41+dqJVY3+NfASR8xGhSJcUETScbm+/jySgET5RWY/DgwUgkErjjjjuwcuVKH42SSPYspMBKJLV89tlnePHFFwEAZYP2RU23Vtwx8rJr0LnFdhTlVQqLazScQMv8CuT5yJhGwwmU5FYiPyqeubXip9+p6QQhVUeEYSkdJ2hMgVLhrwMdqgayN1FEd4mXDKsxHdFt1VB31/iTAk0DamrE90etvOrBzFJJY+KvDYCk8PltCwnm6yiQ0uEgyoZDalKG/aAoyTh+IMR/O4xQfm50GDcofGbYSVbUXzuQfB6BlEY3EYhOQfx8/owLvI8QlACxwhCUhP9rEgkghl8oAaDW/vggFEkgFBHMthOCCV3DOOigg1BVVYVbbrkF27dv99cgiWQPYc+5gkskPli4cCEeeughAEDFwZ1RdUBHrv0NcS3NLUdIEb/rGg0nUJhdDUVQfo0YuZGYrxhWVEIRUvmzr5pOEEuo0HR/lxkaU6CUq/DzdELVQGQnNW6MC6HGdITKYgCloFEVtDCPP4imgVZVJYVRVZNL1QgQmLwGII0pwui1rA4LPp5Xk5JXA7+iRIi4xBKSlBPFp8QaparCEwHUZuiNtgTwOvmVWAC+JFb0s2uFZtusEyoUKHlTzpfEmrF87Fv79lASVFhkawpIbVkybRIiC8CXxBqV5sIiqyq477770KFDB2zatAm33347anze/JRI9gSkwEr2ejZt2oQ77rgDiUQC8X1bovzI7lz752XXmOIqKo1ZkTha5legMFu8PtbIugYlrwqh5g8vmk4CEVeyPRyovAJAIkpQU8TXgbbKq9k+3s68pmVmOgVS2xnyKiqh1v10KpSFDUQY09tS255GaUv6ayqSZbeTTRFRsu4jIrGGvJrxBCU2bZxlEOIoJLEKyZBGkbak79OomVi/N0sUAj3Hck6ClNgAwghJbO0pMW42NimJDUhkedn/g6fx4IMPIj8/H4sXL8YDDzwg14iV7PVIgZXs1dTU1GDcuHHYsWMH0DoH1af2ZO5UWLOufsW1IKsmsKyrNY6q6EIZYT9tCUpeDXG1NkWPUsTz2doWqgZyNtIUeQXAPUmHnbxyYyevAFcWllKanCypKWZerfBmYeuzLVxBHN4UjdFRtJMqHolNl1czbgDlxITwi6Pda9zEMrE8IhtE9rXeqJVYHpHVsh1eh8aSWAsi2diaIl+HdCcAkRXJxo5c9jjuu+8+qKqKL7/8EpMmTRJvhESyByAFVrLXQinFww8/jF9//RXIDgHn9wAibN9MQWVdgxDX+si6iuBVMhyJJJjGwTalkuHotmpHeWUuI3aSVwOGLKxnyTCPBDpty5GFrbfMa1p7GqwtXjetWCXWTTBZBcltOz/lxGZ8Dol1muWWR2KdZNpoC8vrZ5N9TTkEY1u8tmvIbGxg5cO2wTlKihXiXk3CEMIY/+p4CB8lxYBANrYh5gprhGzsdTtexfXXXw8AGD9+PH744QfxRkgkzRwpsJK9lrfffhtffPFF8lNwXneQoijyozHkZDmPLwk66+oHp6yrKPWddSVw94T6Khm2w6uMOCXr6iIvnmXEXvIKeGZhg5ysyVN0GSSWSRhZsrAs0u3xvAMTaRa8JJZFLL0EKQiBchNG8zgMEuu1RAuLxBLi/Tp7SayHvJqHCui94CWxgWVfgy4ftqMhS4oZnk5jZGPrlQbKxnZovcP8/ZGcbzBkyBDouo577rkHmzdvFm+ARNKMkQIr2StZunQpnn322eQ/TugE0rUAABxnDk6fpKkhsq5ZoQSyI5lLNTRG1tVpIqf6mKjJ6ynpUYqEzRp7jiXDdriUEfOUDLtmYVnk1cBBOLjk1UsUGrpU101im0rZMBD8pE1e1OekTizyarajnsuJDXllaU8Q5cTEffkknlLj+s7E1mv2NeNg7iXFjuXDtrH8N8ctG1tT4P1eaYixsZQANa04Ji6s50me1LRhQNdeey169OiBXbt24a677kI8iCWdJJJmhhRYyV5HRUUF7rnnHiQSCWC/YuCw1q7bBzlJU3PNutptJzLWNRzOLCMWKRmmaf0ckZJhuyysyHjXjCysdaZhVmyysIHONMwjjA5Z2AYpG3ZoT/21hVNe7d4XIiW9doLEI012Essjr+YxHSTWK/uadlxHOeRpj53EMmZf09sSxPvDTmKbVfbVilNJsVf5sG2stH96lA87YSuxHE2p9wmeeF+iBpzk6cTvbsd9992HvLw8LF68uO5mvESyFyEFVrJXQSnFo48+ivXr1wOFEeD0riAOX+BBlAsDwYx1BcSXx3GayKkxJmqylhHTGgVkR8OUDDs3pu6fopM1pWRhebKu6Vg6+8Lymi6HopnONIkVFoL0LKyP9vhuSzqiEmF9f/gZj2oVJJGMXxDjYYFMieWRV0tbUiSWpXTYqS3G68srr+ntsbxPRCd6qo9MbINmXzMOXk8lxYIfpfooKa7XCZxYCGDZZpay4hG//Au33347gORwqNmzZ/s7sETSzJACK9mr+OSTTzBt2rTkO/+cbiAO5VN+s67FWVVoW7Q7sKxrU5ioSSUUqqIHUzJco0CpUEF0sUmWjNmIheW1lkSUIJGruk7WxAIlxJ+8AmYWtimt8QoEIIyGxO5JZcNBzkzsR5IMiRXJvqa0IcByYp7SYae2BDQxV5CZ2CaTfQX4sq/pGBKrEL7yYdtY/nYH6kqKWcqH7cgoKW6ICZy8qM3GhkrFlsVjzcbeVv0uzjnnHADAAw88gJ07dwodTyJpjkiBlew1bNiwAU888UTyH8d0AOmYn7FN65wy9Gm50XfWNS9cg+JopW/hLIxWo2VORZOYqCmhK6iJ++8Q6joBdOIr66rUEGRvIb7kFQDUGEVkV8JzsibvBiGYTjfgX155S4adwhDiWJ3AH8xne5RgZCTZlgCeU1DZTzWAGEFmYv3GIQQkK8ufTNe2hWRl+YthtCc723+YgDKxQWVfiebzGkEpSEIPJBubyAvgvQdA4V8eNYW6bKy/OJQAsRKBKoSMOBSK6i+OIbFtc3Y7bnPFFVegS5cu2L59Ox5++GG5Pqxkr0EKrGSvQNd1PPjgg6iqqgI65QMD22Zs0zqnDJ1ztiNMxMe65oRiaJ+zE8WRSl/tzQrFUZJVgfxIdSDiKroerEFMU1ETD0FPH3zKQXVNGLu35SJW7i+TodQQRHYT6GEgni/eHrWGIrpT851FIHENSrnYnXYTnQLxZM+LRHyua6mQuh8fMUgk4l9EAP9iv6fKqzVeEAQxORQhgN/3n8g6sU7t8Sv4kbD/jK6iAFnR5GsegOAHhS+JJQRadvI1UnjXbbZBSVAQjjmPHOP4mIuIEiBWlDy/viVWoYCG5I9PCKGOk0Oy7Z+88ewksSd+dzvGjRuHUCiEGTNm4NNPPxU+lkTSnJACK9kr+PDDD/Hjjz8CIQU4M3Xca+ucMhzS4jd0ztkOFeJf5jmhGIojlclSWz9jZkNx5IX9j5kNgpimoqw6amZeRdtUXRNOimtt9lUUQ15Bkx0WUZ9WayiiuzQQCugRBYkC/swIiWtQd1Qk5ZVSIKSKZXt0Cmh1PSWiquISG4RwKgRKNFrXNuqjgyvl1T2W3e9+EJXY9LaIvv8M4fQpsSn7BpGlFpVYRck8F4Kvf1DZV5pddwPQl8Rah2AHILGEiktsTX5dY5S4uMhavw/8SqxJABILOK9wwIohsXYie9m653HppZcCAB5//HFs2rTJ17EkkuaAFFjJHs8ff/yBZ555JvmP4zqAlNSVptVlXTVTXltGy1GaVc4c35p1tYpri2gFWmazxzGyrnlhf2Nmg8LIuvolRV4NQhRaNl+nySqvBnoUiHGMnVJrKHI2J5Lyajm8FlW5JNbMuqaXHvOKSJq8+sJOXgVmpTXl1UBUYqW8usdi+ZsIQa0lyyuxqpohwiISa7uPiMSmtz+osbWA2PsggNfXKq9mWI3yiawl+2pFRGLj+annQVhi7S5dAawMQxIBiSxnNpYSikiLzKockWzsAe3Xm78bQ4nsJPa5VgvQt29fVFVV4fHHH+c6hkTSHJECK9mjoZTi4Ycfrisdrl0yxy3rqkKHwlhXmheuccy68mRh3bKuWWoc2SH/3+Yqx4RUQchrSsmwXdaVdbnKGoLoViVDXgG+LKyZddWRIq91sdgCpchrOjxZWBd55c7Cuokqx7qgGfJqwCuxUl7dY4k8xgPvkjxOf+d5DzpIOdf6q27b8kisU7t5JNYu+2qF4/3QEDMPc0msw9tD0XQ+kbV7yWsltiFLiq3lw3awSqzn+FeO5+QmqjwSG1EyD2qXjSUKwY033ohQKITvvvsO3377LXtjJZJmiBRYyR7NN998gx9++AFQCXBGsnTYLusqQl64BoXhKt/lwk0t62otGbaDRYKZSoYZsrBG1pXocByrypKFtcqrEyylxK7yam7EICH1nXnlhKiKs7zyIuXVPVYQ27DAIrFex2KVWDe5DGpMrNdxWGmMTGw9ZV8zDuMlsQ7Z13RYJDY9+5pyGEqZs7HW8mHbtjCWFHvdyGTNxlLF4xwGODbWD3bZ2ItWPY0RI0YASJYSV1RU+DqGRNKUkQIr2WOpqqrCU089lfzHwLZo0zHOPNbVrYw4L1yD9jk7A5HXpjLWFajnkmEn3BKHNiXDdnhlYVnktS6Wy118FnkFvLOwjPLKlIXlyK46H0dhWyKEJQsr5dU9Vn1s64abxLIew0ti00uHHWJ4SSyz5HpJLItwe0msV/bVisf7o6HXffWUWMZen6fEslzeWSSW9RIWQEkx0LTGxnqVFFvLh51Iz8aOGjUK7du3x5YtW/DCCy/4b6RE0kSRAivZY5k8eTI2b94MFEXQ+oR8rqyrUxmxNevKIq8tohUoycq8C2rIKyv1XUbMK69O0s0lr4BjFpZVXg2csrA88go4Z2GZ5dUgHLKXWM7Mq6vECoxvzYzPKK8GbhIr5dU9VkPsY4edxPLGdpJYFnm1xHCSVO4MrZPE8pbd273feOTVwOF9QrOjDZZ9tWIrsYzZVytOEuuWfc04rIvExvL4uqB2EutVPmzbJhuJFVo+x+Z5OY1/dW2Pw/epXfmwHdZs7Inf3Y6///3vAID33nsPq1ev5mqLRNJckAIr2SNZt24dXn/9dQBA93Nz0KVwp+9y4bbZu7mzrmra+q1NsWS4vCZS/+Nd3bBs7jbe1Y30LKzTZE1sseoCZcw0zIO142oskxNE2bDfJXJQWzKcncUnr06EQsGVZEqaLkFMPFUrsYGUFKuq/5JipVbMg3j/2i2zE+CyObzYTu4k0OOzHRfL+7I7jIulIu2xKSkWmY3erqTYs3zYDpuSYpHyYL/L7QB12diHY89h0KBB0HW9bgJLiWQPQwqsZI/kP//5D+LxOAr3i6B0/5CQvBplxEbWNaxoQiXDxmzEfkuGg87CGllXKrgWjfE8fC+RU5uFZRnv6oaRhfWarMkzTm0W1nGmYVaMUmKf411TsrB+x7sqhD/rmo41CxuUuMrsa/D7WrFmYf3EtGYmReWxdr1ZQ2J9y6zRDj/r1xrZWJHsazq175v6WDZHBKJRoexrOobE8mRfU9qRNi6WN/ua0Z54bda00OfNvIRg9jUdTSz7mtGe2u9VlvJhO4xs7BVXXIFQKIQ5c+Zgzpw5vtokkTRFpMBK9jiWLFmCGTNmAAToelZuypqvPJSEKtApe7vvsa4qocgJxZpM1hUA4roSyHjXmlhILOuahlLDn3VNhxJAifGVDLtBNEFxtaIqAa3NqoCoAV2ug5gIB0g+tyCQ8lr/MYCknPmNZZQS85QOu8Qi2Vne27GQFYAsKgQ0V2Ad53QIAc3LbpTSYUc0Gkhvj+iUO/uaEaNWYkWyr+mosWDiKHHB7GsaJEF8Z1GBpMQWRyp9xbhx3d04++yzAQDPPPMMEomgBv9KJE0DKbCSPY7nn38eAFB6aBQ5bcU6xoWhKhSqlVDANtbVCQUUESWBcABGpVOCiJJAVBX/ItJ0BTWJ5DkJh/yVs8Y1FbqmQIn4i0NiCtRqAs1nX1atBsIVQDzX32VNrdEQ2hnAzQZdB62u8d2RpTS4GYtJ0LO4iqwPa0dQMzIHgUL837ggBFRVQIO4eVEbL5AYQcRRFCAcUMltkDcLAlr/lgbx3AgJ5AYPJYR5eS+3GHpOOCmxPknkqIFMghTPIYFMypSsuAFUn5frWBGFEiNQYgHcdKBEuKrJwHjJc0P+ntjo0aNRUFCA1atX47PPPvMVSyJpakiBlexR/PDDD1iwYAGUEHDAGWIxTHklFK3Du1AaKROKo4AiVDsJQ364GoVh8dIi3ecXIpCU17jOusKtM3FNRUVVBLGYv44niSkIbwshVKYAVGwck4FaDWRtT5aoaRGCmMfSDI5xauWV6DpoSBEvAzTkVacAEe/wp8iroghXEwAWeaUUVFQYg1yCxIiHACU9iIy5EUc0FiEp4upXYqlSGy+IUmS/EmvdN8gstZ9Y1s+WD4ml0YjZHmGJJQQ0ai2z9tEeS/ZVVGINeTWvrX4lltRmUBmXpPGKw7pEjnuc5I8fiaUKzIkU/EhsqLTuO15UYgkBDu+4xvy3H4l964+TMWrUKADAxIkTZRZWskchBVayx0ApNbOvvQclkNeSb//CUBU6RbeZ8grUjifhVD4j6xpinEHQiyDl1UpY1bizsHFNTYqrZdYkNaRDyeL7YiQxJSmuOmAMT9bDFBpnBZ9aDeT+QU15TQaHUCfdKq91DRU491Z5NVBUbom1lTpBic3IvIpIrJO8imZhg8pOpiMqnumyISKxafJqhhJ8rhkiHMRsxkFlYgFx8bSb7Egklt1nSkBiaTSSek5EJNaQ1/RzKyix6dIqLrFpf9CokMjGc+vOhzmeVcCHYpYKGSOOiMSmzzrvV2JNfEgsSStDFs3GRpTUE5sbqhES2SwSxxlnnIHi4mJs3LgRX3zxBXcMiaSpIgVWssewYMECLF26FKEIRf8hfN+s1qxr+iRLPFlYa9Y1Hd4srE6JrbxGFI2rjNhOXkVIkVcfpMhrGlqEXWLNrKtukVcjThjMWVi1RkN0U2WmvAL8WVg7eTXg6IC6ZiQ5JdaxbJhHYr0yr7wSayd5AZZKc+MkGTwS6yCvZihOiXUU4cYqJ3banlc8nbbnlVg3weSQ2Ax5tbRHRGJt4ZRYp7GvPCXFZumwExwSG88N2Y59FZJYhzjcEmsbh19iY0U256FWYnlE1pp9zQjH+J2Znn1NR0Ri/7vuaJx//vkAgEmTJsksrGSPQQqsZI/h1VdfBQD0GqghpxAoDZWhZbjccz+rvNrBmoV1k1de3LKuCtGZJNYY7+omr6xZWC95Zc3CusmrAct3fagKqVnXjAOBqYNuzbqmy6vZnrDKJrFu8gowlxI36TGvbrBKrJvkNUYpcRCTUXnIqwGrxHqKMMfaq66PBREHYBdPr+0aY0ysxzliktj00mE7GN9nNDviKansEuuxAavEup0iDomNucxPwCOxdmt+18UB87jYWBF1ngSKs6Q4PfuaEY5RYtOzr+mwSuzxJUvM34cOHYrCwkKsX78eU6dOZdpfImnqSIGV7BEsX74c8+bNA1GA/U9MdoBV6FBcJk+yKxkWgadkmCULy1Iy7Pa8gHoa7+rRLi+JZZFXwLuUWK0Gojtd5LUWryysbcmwE24dRl0Hraxyl1cDj1JiZoFjyMIyyatXFpZ3zKuXxLJIXkNKLItUeGVhGeXVDBdA6TSTxLJIDovEskqul3iyiimLxLJmRj0k1hz36tEeV4l1Kh22Q1U833M8GVa3x1yzr1Y8JNZaOuwEi8TGchXPGYyZx8V6xmHLxjLNYMwgsW7Z15RQAUzwBLCVFGeRupP47u+DzCzs66+/nrzGSiTNHCmwkj2C1157DQDQbYCGgtK6i7NTFtatZNgOpzLioLOuPONdnbKwvCXDTllYu/GuntiVdcUUhIzJmhiTdE6lxGo1kLUjWTbM0hanCZ245BUupcTWrCtLmwDHji63uLlILFfm1Uli62nCJrYmNYDE8mRenSSWU17NcAGUGrtKLE95sJvE8pYZN8TETrxlvQ4S61g67NAeL4nlwuG9x7tsjp3EZkzcxIKDxDqVDtvhNrkTJYQvjks21i37mhnLWWJtS4ed8Cgp9sq+ZoSzeXG8yoftcJJYa/bV4Mwzz0R2djZWr16N+fPncx1HImmKSIGVNHs2b96M6dOnAwAOPCn129MuC+tVMmyHXRmxqLzaZWFFJmqyy8I29nhXVU3NwhpZV2KZrImV9ENzyavZAGR0Lnnl1WxPeimxV8mwY5syS4kbvWw4XWL9yKtdFra+JmxiwU48RcqG/cxMzHoIkXGydpM08VLfEzuJiK2dxIrODmwnsQJjgDMklqV02Im09yBL6bAd9hIr0B47ieU9RQ6TO8Vz+BvkKLHcbbKXWO71Yx1KilmzrxnhbOe34B+faiex1uyrwQd/DMYpp5wCAHj77be5jyORNDWkwEqaPR9//DE0TUPbnjpads78EjaysH5Lhq1Z2IYa7+qFkYVlGe/qhjUL63uyptrdWEuGnTBKiUNVtTMN88prLdZSYlF5NTAlVlReDWpLiSmloImEuLymZWF9jXk1JDaIzKtVYkVn4A1yUierePoZ82qVWMHsqxkqbV9fMxVbl8kRJV1i/cSyiqefrKxVYv2uz2qRWKbSYYf20HAoKbI8pcNO1L4XReXVwNiXq3TYDssMxSylw05YJZYn+2oXxyqxPNnX1Dip42K5sq/ppEksb/Y1JVTtd6xI9tWKtaTYLvtqcM455wAAZs2ahd9//134eBJJU0AKrKRZk0gk8NFHHwFILp1jhwodJaFyrpJhOxRC0TW6BV2zt/iW1/xwNfLDNb6XyFGIDp2SQMa7JjQFVTVh3zMNq2pSXvzIq4FSUzveVReTVwBmKbEeJr7k1UTzKa9muwLKeCkKiKoGNGGT0mhlw3YEPjNxEBM21UpsYGNZIS6v1jg0iPJdQpLvgSDemyE1mJJiQvzLq4Gi8JUOO7WHEOh5WcGcJ1XxJa8GQqXDTmhUWDoNDIkVyb6mx1HiQCJLXISTcepEljv7mk6txIpmX1NCUYJ9W20Wyr6mkxuqsc2+GsyoPgeHHXYYKKX45JNPfB9PImlMpMBKmjVz5szBli1bkJVHsc/B9mLSMbwNg3NWoVf0D1/HyiIx5CvVCBN/HeqErqIiEYUCiiyO5XDsqNbCqNFCUH1MQgUA1fEQqmoiyTvCPntAiZgKUq1AD/trU6iKIFIGaILJEgO1hiJnSwKhSs1fdgIANAoST4BEfDaK6kAiIbSma71BCIiqAJpPwQ8QElRpKyHByGttrEBk0YgVVLuAQGJRJZg20ZAa2HkKJBYhoFmRYN8HYf/PT88OB9ITM65tPr8KAACJ3JDvm48AEM+tHT4SBARQYv7DxAuSw1H8orWIQ0soSMT8vwciagK74pyLoNtwRsmPKFHdV14YMmQIAOCzzz6TS+pImjVSYCXNmk8//RQA0PNPGtQ0N+kY3oY/Za/DPqFKZBHiOXOvG1kkhtzab8924R3oFN0uFCehq6jRQ2bm1c/sx4a8AoCq6MISWx0PobI6CkoBQqhwSVQipiKxLQvYHYbfdHCoiiC6A4CezJ4mssQkRq2hiO5IgCQoQH26uUZBqmtr0MIhkCyO9WGt1MorgGSGMojMqV8IATGyXFT3L7Gk9qvFR5Y6RV79ZM2bsLza/u4zlh/5tGaCfUmstT0+z5d1f+FY6WNV/Wa8s+pKh/1IrJ5tbZOvJqXgR2ITucnyaELhX2JJbeZTS/6IQAlBPK/u334kNlYIUIUmM7E+JZao1JxV2I/E7tdmE4DkUCK/EptF4lCJjhK13FFk17W+CYWFhdi6dSvmzZvn63gSSWMiBVbSbCkvL8fs2bMBJAXWSsfwNlNc1dqOxj6hcvSMbOQ6RhaJoUitMOUVAFRQIRlOl1cAiCoJ7ixstRbGrlg2arSQ7xJkq7waiEhsoiaUFFcdprzqIUCP8PekrPJqICKxprxa4ugRFVoev3iShA5SXZNaxizSCbbKqxFbVRpXYq3yauBHYon/rxXbzKuIxDYHeXX7m2AsEfm0K2MWldj0/UTPm91+gb0GomOOLfIahMSmtklsN7vKEhGJNeQ1JYbgZSCWV3dOjPJdXok15DX9vcm6XmxGPMv3miGxIiKrtUy1aD8SG7F8/xsSKyKyZ5T8aP6uEt0U2XTUEHDiiScCSGZhJZLmihRYSbNlxowZiMViKG6no0WHui8mQ17VtI5dhDMLa2RdVZt0Im8W1k5eDXiysEbW1W7JHd4srJ28ipCoCQFlocysK6HQw3wSayevdfHY22QnrwZalE9iSUIHamKZY3BVlS8LayOv5jEaS2Lt5NWAV2KJYi+vnFlY17JhHoltTvLK8hjn9jzy6bqsD+c5dDpPvGXAbttyvRZuMwXzzvqcZTNpk6DE6o5t4grjOiyCW2Jt3k8iEhvLU22v10ISa/caUf5MbKzQoT0C2ViiZp5YEYk1sq9WjO92Xom1G/vqJLGGwM6aNQtVVVVcx5FImgpSYCXNlmnTpgEAuh+qmd+7TvJqwJqFtZYM26GCokNkG5PEuskrwJ6FtcqrY7sYJdZLXlmzsImaEFBuI69mIDaJDVUR5PzhIq8AtDBbFtZNXs1YLBKrUZCKant5NWAtJXaRV4MGl1g3eTVglVivrCujxDKNeWWR2OYorzzbMG7HIp8sE0ixSizLeWrIbZiWuVEIk8jayqvlOAC7xOpRj3GvCph6Z3q29+RWrBKbcJl12JRYho+ek7xaY7FIbHrpsB2smVijdNitTawSm559tcIjsfu12ZSSfU2HR2KHFP/P8TE7if2BXIi2bduiuroac+bMYTqGRNLUkAIraZaUl5djwYIFAIBuh+op412d5BVIZmG7h3e7SqyXvBp4lRIbkzW5yatBthp3lVgWeWWhOh7CjvIcpsyrl8Sa8urVqSHuM1oaWVeiwTOWVykxi7wauJ7K2vGuTLMfe0ksg7waNNikTizyyhyL8WvE4zxyTdjkdyZpVoKUV87j+nq8HvCS2KCyqzy4xuFdo9VLYhlfEy+J9ZTXlDZ5PM74PvCS2PTSYacYTNlYlns0HhLrVDqcuWEyE+slsm7yam2Tl8RqLWO22deUY9VKrJfIusmrAYvEDin+H3IVm4VuLaSPiyUEOOaYYwAA06dP92yHRNIUkQIraZbMmzcPmqahqK2Ofh22Zox3dcOtlJhVXg2cSomtWVdW6XQqJeaVV6csrJF11XUSTNkwi7zW4jQe1rVk2AEnieWRV8B5PKzteFcvnCSWQ14BNMykTrzy6paF5R3v6nBOA5ttOBksmOxr0PIaVHkwZxw38eRdvscplsh5cis19h2HV14NHM4HzWKM5SGxXPJqtsn+zyzZVytOEssirxlxHC4H1nGvLHFcJZbnvUmdJdaudNitTW4S6yWvZnM8JneyKx12wktiveTVIH1crCGws2fPRjwuOKhYImlEpMBKmiXff/89AKDfQRWeWVc70kuJ7SZrYsGulNirZNiJ9FJiP5M1pUus6HhXuywsr7wmA2WWEovIa1281H/yyqtBeimx43hXFtI7XLzyarShPkuJRTOvdhIrOllT2rkVlle7LOyeIq9O+wnGsRNP0bVng5qgyW7fQCZ7EpVXg7Tz4lo6bIebxIq+NdP207P5pNPAVmJF46R9/LxKh53ipEssS+mwLTYS61U67NQmu8md3EqHHZtkI7FepcN2OE3u5FY67IQhsQuU0SgpKUFVVRUWLVrEHUciaWykwEqaHbqum7MPH3vwTm55BVJLid0ma2LBWkosKq8GRimx22RNvPidrMmQ2ERNCIntWfzyagaqk1hf8orU8bCi8mrGqpVYX/IKpE7qJCivBvUisX7Lhq0S63em4dpz7DvzapXYPU1e0/f3GccqnqLymh4riPNkxAhyuR3f1J4fbnk1sJFYx0mbmNtUG0dQXg2sEus27pUpTu3HT0RerXGMZXaYS4edSJNYXnlNaZMlG8tSOuzYpDSJ5ZVXg/TJnVhKh51QiY4W4XIMGDAAADB37lyhOBJJYyIFVtLsWL16NXbt2oWsLB29eopdwIGkxOYr1dxZVzvahXegVbjMl7waxHQ1kPGuqqIjrqnBzDQcV0ErVYBhnKorhEKt8SevBlqEgBLiS15NdOpPXg3CIZBoxJe8GhASYDlxUGNeqQ7fbyYrQZQNGxIbkLxCCXJBzoDKogNqE1UV3/JqjRUIhIBmC66pnAYNqf6yrwaEQM+J+nv9LBIrVDpsh4LA3lO8pcN2mBLr9x5NrTBqUf83VwyJ5SkddmuXWs1eOuzYpFqJ3bfNZt9tMiRWVF4NVKJLgZU0a6TASpodP/6YXO9s355VCPnok2uUokSJoU1op6/27NRysDbWEgBQEPI3JX2FFkFZLMtXDIPqRAg18RAUxZ/dxWMh6OVhEJ9CDQBqlYJQOYEW8RmnhiJni4ZwpQ496u8ypsR1qFVxIBJAx1evzbz6eWMC3EvPsEBF13W1QpRk23TOtTCcCEKGFSUYwauV16AED4oSjGwElIEFEOy5ioQBvzdFCAHCIVBF8f/5IwQ0JwoaCWhyMpWAqv6z53p2GDQawI0oQqDlREBDPrPnJBh5NdCyFSiJgK5XBFDi/mPF8/iX2XGMVaKDVvp/T5UUV2B7VQ42lPs368ElS7ElUeA7jiGwK1aswO7du33Hk0gaEimwkmbHTz/9BADYv7f4HUiNUsQBqARop1YKS+xOLQdbE/mI68kvOJ41XdOp0CLYUZ0DHQQKocKxqhMh7KzMRmVNBBSAqupQVTF5MeQVtLYcy0c/TK1SENlJQHQkS4kFky5qDUXWLh2KlrxDTn10xJS4DrU82dOhYRU0y4dZ6zpQXQNKaTJzKiqxtfJKDbnzm4U1zo+u+5NYa9mwX4k1SjQp9SexViHzI/31Ia/W2EHhJ5bRJr9Z5lrphFH+LSqxhrwamUpDigVj0exIXdbTj8TWSqcZ14fE6lnJ50cJ4V4nNr1NWnZdFtevxAaWxc1RkrO5U/iW2Fhesk2E+pPYeD7MNqnVBGq1+HONlejJ7z0K3xIbUjVolECjxJfEHt/iF+QqNdCg+JfYqn7o2LEjAGDx4sX+YkkkDYwUWEmzglJqTjhwUO8Yopxj8TRKUV0rrwYqgdD4V0NeNVrXhsJQFYrCldyxrPJqICKx1YkQKmsi0ChJeUYi/RWrvBqISqxVXg20CL/EGvJqjaNHCLRs/kuZIa/EEKjaTqaQxFrl1WysgMSmy6s1lgjpL7yoxPod82olfZIcUYm1yyaKSGx9yqv1GCLY7ScSK71NohJrldf0vwmQfvNJSGLT5NWXxBrymvb8RCTWkFcDYYlNk1cznoDEmtnXADDl1QwuLrGxPJJShuxHYtPbZIgsd5tKdFBr6bAPiW1RkroOqx+JtZYOGxIrIrKHRMuRRULo168fAODnn38Wao9E0lhIgZU0K7Zs2YIdO3ZAUSh6dI0hi4SYJVZLE1crrdUqriysnbwCgAKK4nAll8TayasZj0NiDXm121pR+LKwdvJqwCuxdvJqxuLoV9jJq4EWVbgkNkNeDXglVteByqpMeTXjcVxineTVgFdinUSHV2KdnoNIFtZpmRJeiXUrheWR2IaQV+uxeHDbnieWU5t4JdZOXtMf441lA5fEpsurNT44JdZOXq3H4ZRYu8oQQ2KZRdZBXs14HBIbdOmw7bVbQGLT5dVARGLj+Q4PcEpshrxa4vBKbIuScoTUzOukiMQe3+KXzDhQuLOxhrwCQN++fQFIgZU0P6TASpoVy5YtAwB07hBHhCNR5iavAF8psZO8GrBKbIUWwfrKQkd55cFNXg1YS4nd5NWAEm+JVasUZG9UHeUVSJYSawxDft3k1YBVYh3l1YBVYi1ZV0fpVAhbFtZLXg1YJdark8oqsV4CziOxHpLILLEs4zhZJLYh5dV6TBZYtmPZxqtNrBLrJq/p2zDGciv9Z5JYJ3m1HgeMEusmr9bjMUqsnuV8TOaSYg95NeMxSGzQ8prIcWlUrcSyiKyTvBrwSKxZOuzSLlaJtZVXSxxaGWISWSd5NeCRWKN02DEWh8Qa8goA++23HwBg+fLl3t8/EkkTQgqspFlhCGz3rnUzNHhlYb3k1YBFYr3k1UCBe+a0LBHFjuocaFTxlFevLCyLvBp4SSyLvALwnHXSzLpq8Jwh2EtiWeTVwEtiPeXVwGt5F7uSYSe8SolZ5dUaz42gxlyyZo9ZJJZREj0llmcSIjeJbQx5tR7bz+Os27K2yUtiWeQ1fVuPx1nGrbNKLMvjrhLLIq+Wbb0kNr102AkmiWV8Cd0ktj7k1bNyprZ011NiWU45g8R6yqulXV4SGyth+KKpfX5eEusmrwYsEuslr2YsBok9JJpazlwaOQ6qqqK8vBybN/ufJVkiaSikwEqaFStXrgQAdOuSqqROEssqrwZuEssqrwZO42HLElHsqsnmyro6SSyPvBo4SSyzvNbilIV1Kxl2wmlSJx55NXCSWGZ5rYWGFPssLI+8GjhJLK+8WuPZwdNJdcvC8o55dZNYTkl0lFiRGXRdJLZR5NXAI2vY4DhJLI+8pu/j8HeeSdccJdbIvrK2Bw4SyyOv1mM7SCyrvBo4SqyRfeXATmIbRV5TGuAsscakTSy4SSyzvFra5CSxjqXDLrGcJDZ93KsbbhLLKq9mLBeJtZYOG4RDQKdOnQAAq1atYj6ORNLYSIGVNCt+//13AECHdplami6xvPJqoBIgTFI747zyCtiXEovIqxkvTWJF5NUgvT/DK6/JIJkSKyKvBumTOonIqxkrTWJ55RWAfSmxiLwapEusqLxa41kR6aTaSazohE12EisoiRkSG9TyL4D/WXit+J3N1+3fonEAcalOnz2ZV17T9037t8iM4RkS61U67NQepEmsiLxa25AmsbzyapAhsYylw7axLBLb6PJqNiRTYr1Kh+1wkljRNqVLLLe8WmKlS6xX6bAdThIrst6rncTayatBt27dAEiBlTQvpMBKmg26rmP9+vUAgPZtEq7bisqrQalSgzahndip5WBVrJRbXg2sEluhRYTl1YxXK7F+5BVIndRJSF4NLBLrR14NDIn1I68GRmdSSF4NrBLrR14NDIn1K6827RTGKrF+Zxu2SqzPDKcpsX7l1ZqFDbJ0OKj1VK3/9xsH8C/Vxvq1ovJqjWXEEJRXA1NiReTV2h5kSqwwFokVlVcDU2J9yKsZy/rebmx5NbBIrIi8GqRLrOOkTYxtMiRWWF4tsQyJFZFXA0NiDZG1m7SJOVaaxDrJKwB06NABALBhwwbh40kkDY0UWEmzYcuWLYjFYlBVital9gKbRUJQAF/yCtQtrROnKuJ6SEheDZTaOJWJiO/JmgCgxqe8GiQSKmp2R8Xl1YAA/9/emcfLUZV5/3eqerlrFpJAEggEIQmLyBJgRgLIDoq+OCI6joLiOI4bOq8z6sg74ILLOA4ur8w44OssLriiIi4wgqCyg6wDJIQlIevNnpu79FJV5/2j6lRXV9dylrpLJ8/388nn3tzueup0377d/e3fc85hdYbyiJm8hnhAeZwb1/LKDF6Z6curQMyHzVqsSame/1gqpJZtF/Mm1SviFydqcYAXWK+Q2xfc10XJa5GtvtMtWWYMvKopiUm1eitGcifgjMGb0Wsu1fAl1lNs0U2r5/aWC7t9br+ZvAIALD+JdfuK2S7H7WFm8irggFvRl1eBkFi3RzN9jY3JrjEzeY3UKlcdbXkViL1iD+nboZW+ttUKJDY+7zXOggULAACbN282Oh9BTCYksETXMDQ0BADYf66TOgWwBBuzrV7MtAw2jQew2a3iJWc/DNo1zCyp7+saZUtzEJtrM1BiLqp2dnKcx1izjN3jPfAMX7nr9TIao0FrrOJes3GscQuVYf8Tes/wPZNdA6q7uJlQi3E1OUo1F7xq9liA4wH1BmBZYCpLXyfhcaDZACwGVoQguK7eHqpJFCWeQhBdszdyjDH1fXTTsApsG85b4Eu1VvSrSR3bMk69Qyxo7X0aR6SKKKKWbrtvHMbg9lXg6ewTG8Or2L6QFfEZS9UOVyg2xa3axUgnfLEu4oPJZpDiWqafLgNoDvhSbZm9nPq1ZnDYI4avEQDKs2uwLI7do73Gtf5k/7UoMxfP1uYb13pV7zrYOQ/Q+fP982zatMn4fAQxWZDAEl3D9u3bAQD7zU5+Y1yCDZtZsJmFmQYSu9mtYl1zDjxuwYaHWfaYtsRuaQ5i4/hMOJ75n9pYs4zh8R5wzsJ/OoTyKt6U2Byw9CRIyKuoxW19iRXyyjy/jlsxaLVucFT2NAEP8EpW5rYWmTgeWK0O5nH/zXPJ1pdYIa9F4bqt5NRQYpn4RMhUYq2Y3GlKbIe8mty+qLxy7v8udZkIeU37v0qdqLiatm5H5q6aSGx8XqeJxPLeMjjzEzfpPVRTcHvLoXR6hrXaMLjbeaX99cFEYtvk1fB5we1pjcNEYpt9FsImJm4msY1B1l7LQGKbMzk482+bqcTatpgWwowk9k/2X4s+y3+daHq2kcSe1bsWfZYNFxxNnv5cPMt6IwBgy5YttJUO0TWQwBJdw44dOwAA+81sfyUtwUaVlWHH5u/pSKyQ1yZvHacrsUnyWrEcrRQ2Kq8CHYntkFeBhsTG5dWEqLwCQbtgSU9io/IKwF+sRUdio/Iq0JXYJHk1SWGj8moosSzezqArsXF5FShKbGryqnP7kpJXXYmdSHnN+3lWnSRh1V08q1zqeFegI7FpK+vqSKyQ1/D/BhIbyms4Jn2J9SpJt1G9Dq9YicKqI7GJyavm84LfOtxeTFdiO2bgaEpsm7xGa2lIrJBXgYnElmfX2oekKbFReQ3HqSmxQl4FQmKTRHbWDP8X22g0MD4+rnwugpgKSGCJrkEI7KxZrSdgkbqmMdPqxaDkwjRJ8iqw4cFWMLWs5FVVYpPkVaAisanyKlCQWGvcQnlPsryqprBxeQ3raEis1eAojzid41KV2CR5jdRSktis5FVHYqPyGp5DT2I75DWspyixafIqkJTY3LZhlduX1TasI7ETLa86dbJEVXX7ogR5DS9TEM9MuVSU2Li8hj/XkNgOeQ3HpC6xifIaqSdLmryGlys8VjLbhhWfF5LkVaAqsc2+tAeVmsQmymu0loLExuVVoCOx5Vn1MH1tG5KGxMblVdD0bDxXO0C6TlxeBS54YhpbrXKUy/5t2L17t8KICWLqIIEluoaREX8hgsEB/xU0T14Fs+2+3CQ2S14FsvNhZdqGZSU2S14FMhKbK68CCYkV8soynERWYtPkNayjILFCXpmbMn5Zic2S10gtKYmVaRtWkdgkeQ3PpSaxqfIa1pOU2Dx5lUR6zqvM7ZOZ86oisZMpr7LXkRFUSYnNktfwOgXMYwUgLbFp8hperiCxqfIajkleYjPlNVIvjzx5Da8ncR2pOa+SzwtZ8iqQldi21uHEMclJbKa8RmtJSGyavApUJLY8qw67lH5nqEjsSfNeyry87pWkJDZNXqPEJZYxYMaA///h4WGJ0RLE1EMCS3QNorWlp+pJy6sMMvIKyLUSq8x5zZNYGXkVZEmstLwKskIdCXkNx5QjsXnyGtaRkNhceRXkSayMvEZqZQqCypxXGYnNktfwnHISmyuvYb0ciVWR14wUVnnBpqzbp7Jgk4zEFtU6rLFvaeplKulqznVl5DW8bo54SqeiORKbJ6/h9SQkNldewzHlS6yUvEbqZaGSrmZdV2nBppznBRl5FeQ9b+fKazimfImV3gQgR2Lz5FXAPMAezT5pnryGQ5KQ2JPmvYQBO3/FYRmJzZNXQVxiB/r92yKCAoKY7pDAEl1DrebPM+nvYcrymjYfVlZeBVkSq7NgU5rEqsirIElileUV8BPYhBRWRV7DMaVIrKy8hnUyJFZaXgVpEqsir+HJU1Ym1lmwKUtiZeQ1PHe2xErLa1gvRWJ1ktcEidVebTjp9umsNpwlsVMhr1nHqMqrIOUYFXkNj0kRT+V5qSkSKyuv4fUzJFZaXsMxpUuskrxG6iURX7RJhiSx1FptOOV5QUVeBWnP39LyGo4pXWIbg4o3MEViZeVVwFyWKrGy8hoOKUNiZeVVkCWxZ/Wula4DtEtspRLs09socKFBgphASGCJrkEIbF9V7/i4xKrKqyBJYk1WG45LrI68CqISqyWvglgrsY68hmOKSayqvIZ1EiRWWV4FcYnVkdegTkcrsclqw0kSqyKv4RiSJVZZXsN6MYk1aRt2o61rmvIqiN4+k61ykiR2KuU16VhdeRXEjtWR1/BYO15L83EVk1hVeQ2PS5BYZXkNx9QpsVryGqkXRbZ1OInocUZb5cSeF3TkVRB/HleW13BMnRIr1TqcVisisaryKkiSWFV5DYeUILGq8ipIkliZ1uEkhMSKp2HHKWBvIoKYBEhgia5BLO9u8n5QLOqkK6+CqMQWsVWOkFgTeRVwzlCrGcirIJBYE3kNxxRIrK68hnUiEqstr4JAYnnJ0pPXSJ1QYovYKicqsTryKohJrLa8hvUCiS1izqvrFrfPK+fF7PMaldjpIK/RGqbyKghqmMirQEis6bY2/t+PpS2v4XgiEqstr+GYWhJrJK+ReoCZvAo4Y8Xs8xo8L5jIq0A8n2vLazimlsRqy2u0lqMvr4KoxOrKazgkzjA81gNAX14FUYnVlVeBC45nnvWTgVtvvVW7DkFMJiSwRNcg3tSbblM2yj3scAe05VVgw8OYV8GORl8h+7yOO2WM1KpG8irgXjHb2zDHQmmcGcmrwHKA8qi+vAo4Y8EbHU9fXgWBHBjtDSrqWExt5d48TORVYHp8EtNxNd6iakVrTieKkNeAIuRV4FUK+AAC/t90AU974AxwBqtm8iqwGJxBzT2f4zAGr2obi6JfC4XcV/4HeObyKnCrhsIp4P4HlEXVKuK+Yh4Dyp6RvAo8z8LMas1IXgV1r4QDSzuN5DUOtRAT3QIJLNE1WEHCYiKwm5wRrHd60cOa6LPMXkA2Nmdj7fhcVC0XPRp7u0bZ0+zBrvEeWIzDssxeJBsNG07dNn4Tx+o2SnuC+7xkJnh2Hajs5kGyYTYuu8lRHvXAbQa3avYUxhwPrN4ErxoOynWBegOwbfNU0ePgrhtIseFTtGWFMlbYBvWu+Zs4Ju4jxT1iOwtFksmCbh/zeDHiX5QEi8S7gHrcNIWP17LMVyfmjMHrKxeSdLp9ZfASM68lUk7LF0/TWl7F8p+PTX+FDPDKBbxtC+QVDLAc878bp8f/AKKIWs1+f1wF+B2cvgLqMMCZ5QAMqI2Yf6Bx0H67YDGOlXvkt8VJ4/TBVSgzB881zf92DlzgR99nnnmmcS2CmAxIYImuQQis4+q9C9jkjGCt04sGbFjMwwyrpi2xG5uz8cL4PNSDyZ39pYa2xO5p9mDHWC+8IMW1DSS20bDRHC+3PnbWfMMUyqsXtObZ+hIr5JVFaulKrN3kKI94YDyQ4YqlLbHM8WCP+Z82c9vWl9hAXkNBNJFYIa/hIA0kNiKvfm3PTGItBojF0wwklpVK7ePSlVghr9FaJrcvUsdYYouW1wLqtsmraRdEIK+t/+vP6fT6yuDB7TQRT7cv0jbMDFp/A3kN235NJFbIa9vP9EoJeTVOFCPyKjART6enPS01qdXsZ+HjinEz+XT6AFh+eqpdR8ir2OfVY0YSe9B+u1C2/Oe7mls2ktjTB1dh0PJ3ZqjxkpHE9rEKBvv92zg4OKhdhyAmExJYomvo6+sDAIyOqx8blVeBrsTG5VWgI7FxeRXoSGyqvCq+4YnKq0BXYqPyGq+lKrFt8hoOVk9iQ3kVtSxNiY3LazhYDYmNy2s4WA2JjctreA5NiY3Kq0BDYjvkNaylKLFJ8irQuX0JdbQldqLk1aB+YvKqOw89Jq+tn6uNq01eBZoS2yavYS0NiY3JazhWHYlNktfI2NRqTZy8CnTEMy6vJrWi8irQlVghr2EdHYmNy6tAU2Kj8irQldiovIa1NCW2j1VggWFs3H9Q9Pf3K9cgiKmABJboGloCy+AqzjVsAm3yKlCV2DR5FahIbJq8ClQktkNeBToSy5H45lZVYpPkNV5LVmIT5VWgKLEd8irQlNhUIVSR2DR5FahIbJq8hudSlNgkeRUoSGyqvIa1JCU2S14FKrcvo46yxE60vGqcJ7NtWHUl8BR5bV0uN65EeRUoSmyivIa1FCQ2RV4FShKbJa+qTIK8ClTEM01ew1oK6xMkyauAKbpwXF7DOioSmyavAkWJTZJXgarEJslrWIurfWgq5BUAxmv+V/E+iyCmOySwRNcwMDAAABgd8x+2shK7yRnBRid9I3FZiV3X3C9TXgUyEpsnrwIZiU2VV4GCxLK6jdJI+phkJTZLXuO18iQ2U17DgctJbKq8ClQkVsx7zUJGYvPkVSAjsXnyGp5TUmKz5FUgK7Ey48q7H2TkVSBz+yTqSEvsZMmrwvmk5rzK7sWcI6+yZMqrQFJiM+U1rCUhsTnyKpCSWFl5lXm4TKK8CmQkNk9eAQSrAOfXypJXgax4psmrQEpi8+RVICmxWfIqkJXYLHkVyKawUXkFgLFx/44jgSW6BRJYomsQczOG97QetnkSm9Q6nISMxDa9Uq68CrIkVlZeBVkSmyuvAgmJTWodTiJPYmXkNV4rTWKl5FWQI7G58iqQkdi01uEksiRWVl4FWRIrK6/huXMkVkZeBTkSy1TaqdPuDxV5FWR+6FGQcE5lrYzrKi3YlPc3ryCvWSmslLwKciTW6y3Jd5ZkSaykvAoyJVY1ec065xTIqyBLPKXkNVorI4mVkVdArpU4T17DWlkSKyuvghyJXTh7d668Cmpu9oemMvIKyLUSx+W10WgFA7Nnz5YYLUFMPSSwRNcwd+5cAMC2HbEN67mXKLKy8irIkth1zf2wsT5LabxJEqsqr4IkiZWWV0GGxMrKqyBLYhmH0lY5aRKrJK/hyZMlVlpeBVkSqyKvgiSJVZVXQZLEqsprOIYUiVWRV0GKxOa2DifWit0vOvIqSGw7V6uTmcIWKa862+UknF9rteGUm6eTvCZJrJK8ClIk1ustqdUBkiVWUV4FiRKr2zacdO4plFdBksSqyisAf0pKArLyKsiSWFl5DWslSayqvApSJHbh7N2oKq6JkZbCysqrIE1i+1ilQ14BYPsu/7qVSiXsdCOI6Q4JLNE1zJs3D0CnwAqiEqsqr4IkiRXb5cimr1HiEut4lrK8CqISqyyvggSJVZVXQZLE2nWgPKy+gEdcYrXkVRCTWGV5FSRJrI68CorYYkcQlVhdeRXEJVZHXgUxidWS17BWILEm8ipoW/hLr06ixBYtr7r1IscZbZUTu3kmbcNRidWSVwFj4OXWbdKS17BWRGI15VXQufiUwdsp1v79VMtrWCKyP7aWvAbEU1hVeQ3HkyCxqvIa1opKrK68Crz2O1lHXoHkVmJVeQ1rxSRWiGtcXgFge/Ceas6cOWDTbQ9sgkiBBJboGloCa6W6iMs9bXkVRCU2b9EmGYTE7mn2YLhW1a4D+BLrOJaevAoiEqsrr4KoxKq0DmfV8soAOPTkVRBILC8xPXkVRCXWRF4FQmJ109coQmKLeMMhxMxEXgWBxBrJa1grIrGmcG5cp01ip4u8ChgrZp/X4OYVMeeV28xMXkUdK5BYixnVARBKrIm8CryqbS6vkXEVJq+AsbwCrU4aE3kF4M+HDSRWV17DMUUkVldew1qBxBrJa0B91E9hdeVVEJVYXXkNawUSm5S6RtnhXQeg1eVGEN0ACSzRNey///6wbRv1hoXtO5Mfutu9cWx0K3ANX7kt5mGHO4CX6vsZyatgzKlg17h663ASnDN9eRUwAA0L1lgB42GA1WAoj6i1DqfVYp6fwJpiNTzYo01zMRB3keOayWuEQuqIGkWOyVReo0yzT/J5yTaXn4mgCHkFAMbMPvQJxwP/g5EiHgqMwe03k1cBLzE0Z+jvwRnF6bfh9hTw3GcxOL0FfGgAP6XmFitEXnmpyDnZMJNXAQe8Egp5XDl9wQedhdTixvIKANxlsCzPSF4FYj6sibwKbHC86NQyr7N+/XoAwIEHHmh8PoKYLEhgia6hXC5jwYIFAICXNiQveNDgHE1uwwaHrRsrAljTmItnx+fDhof+Uh1VS/9FaXu9D0Nj/rwS1b1d49QaZT99NaVhwR61wHjgwgbPBKVxhspuANz8jY7VBErjHNwCvLJhWsb9xIzbCXNGVeo0XbCxmi8IBnUA+Ilio+m3aZnWilKQxCrvx5qExQDOwZ0CaomWa8Pbx0t+UgZmluBxK/J7K0QWWTG1IgJsJLFCXgHtrozWQBjcngJSeACwAKfHhmczuIZpp9Nnh7JoCrcZuM3glc3GxJmflnIGMIXtZxJrBfJaxIcZXtkX6lLdvJZb9cdlG9Zq9rdeZ6ycReBzaw144BbARsw/pK4O+rHwht0zjeosnbEFS2dsAQD8buRIo1r9rAmLcdR49ocs69atAwAcfPDBRucjiMmEBJboKg455BAAwEsbO19wtnvjGHJbn9CbSGyNV8Lk1YaHqtXUktjt9T5sGp0Bx/VfQPz3v5pjapRRH62AewW8IfT89ikA4RsnnWeD0jhDZRfAAlfhlsE8qSZQHuO+dDK/BU5XYq26h9Ke4N0NY9oSG8qrmNtp2/oSG8hrWNtEYpPenJq+YRVzYU0kNioFnmsmsdH5wh7Xvn2hvAo05aVNXsMfmshibAy6tRIEUUteovIqauhK7ATIq/idcUtfYoW8CmT3jk7Cb48Ovg9af7XqRORVoCuxHcmrwcNTPPeKRflMJNatRpJlT19io/IKwOj2CXkF/NcvE4mtDtZh2/4fi+Na2hK7dMYW9FkN9AVmPuLqTzkS8ip43klPc1966SUAwKJFi7TPRxCTDQks0VWITwjXrm9/sdnujWOdU0Yz9kmjjsSuaczFmlrnXBBViY3Lq0BHYguV14YFO946rCGxcXkV6EhsVF7DOpoSa9U9lIcbbbV0JLZDXgU6EhuT19awNCQ2S06mUmKTpFBXYpPmcupKbAESlSiv4YU6spgypqKSdFVi8irQktgJlFeBjsTG5TWsoyGxUXkNf6YhsUnyKlCV2KS2Yca5luQlPudyPYltk9fwBOoS2yGvATopbFReBboSG5VXgY7ECnmNo5PCxuUVAGrcTpRY1wPWrl0LoBUQEEQ3QAJLdBVLliwBAKx+oZW0psmrQEVi1zTmYuX4wtR5ryoS63C7Q14FKhJbuLyOWK30NYqqxHqd8ipQkdgkeQ3rKEpsorwKVCXW4+n7m6pIbIq8toalMCYZwZkKic1KNFUl1rbT5UdRYnkpfb9O2RQ2U17DKync53nnVdo2Kr2WdAqbIq9tdWQldhLkNXouWZLkVaAqsUnyGl6mILFZ8qpK1pxXVYlNe65lHMoSmyiv4Ynkx5Qmr4A/JhWJTZJXgarEJsmrwFVY7yJNXgE/hVWR2CR5FSRJ7PqNJYyPj6O3t5cSWKKrIIEluoojjjgCAPDc2jKagUeKea9ZyEhsnrwKZCR2e70PW8f6M69jMaBke7ki63ls4uVVICmxpXGGynD2dbjF/BWKM2plyWtYR1JiM+VVICmxrOmC1dJ2uw+QkdgceW0Nq2BJmkyJlRFBWYnNktewlpzEdrQOx5GQWCl5Da8scZ/Lti7L1JIQuFyJzZHXtjp5wjGZ8gr/eUEmhc2S17CWpMRmyWt0XHkSKyuvMimszIJNshKb9xwrK7FulWXLa4BMCpsprwJJic2SV4HMQoTVwXqmvAL+n7BMCpslrwJZic2SV0F8PuzzO/4vAD8csItYxZwgJgkSWKKrOPDAAzE4OIhmk+HFl8od816zyJJYWXkVZElsWutwGllpbKGLNuXJqyBHYtNah5MIV9ZM+8SbI1s4wzrZEislr+FJsyU2tXU4CdsGK5XMF3dCjsTqCOlkSKzKXNI8iZWR17BWtsTmyqsgQ2KV5DU8KOM+V513m1VLQRJTJVZSXtvqpP1JTLK8CvJaiWXkta1WhsTKyGt43dSENni8KSSvWRKrstpwnsTKdrkIiU1DiKvU7ctpJZaSV0GOxMrIq6iTlcIKcc2SV0FeK7GMvAryJFZGXgXRFHblypUAgGXLlkkdSxDTBRJYoqtgjIUp7EOrWGbrcBI2OCpwO0Q2umiTLEkSqyqvgiSJnbBFm2RIkVgVeY2SJLFixWHpGikSqySvghSJVZLXSK3ENFYyfW0vlSBNJiI6HRZ2aquXIrEq8hrWSpZYaXkVJEislryGByfc57or3ibV0pDEDolVlNe2OvE/jSmSV0GaxKrIa1utBIlVkVdBPIWNpq6qtZIkVmernDSJVV1ngKWksDKpa+fJkyVWSV4FKU930vIakNZKnJe6JpEmsSryKkha1KmfNZXkFWhvJX7iiScAAEcddZTSWAhiqiGBJbqO4447DgDw0P/0KclrlGgam7ZokwxxiW14JWV5FUQldsIXbZIhJrG68iqISqxM63BijQSJlU1xO4hJrJa8RolKrIa8toYVkaci94vVJU1idaUsLrE68hrWapdYZXkVFLStSmsgkfu8yLoGkhhKrKa8ttURfyJTLK+CuMQ6very2lYrIrE68gq0txIXMd81KrEm+7zGP8zQXek9vjKxlryGg2iXWC15DYg6YXPAU5ZXQVxideRVEJ8PqyOvgmgKK8RVRV4FNW7jiV11PPfccwCAY489Vms8BDFVkMASXccJJ5wAAHjumV54BnsV2uBY15yj1DqcRNVqor9Ux+5mD7aP9+kPCP573XqzNDmLNskQldiMRZtk4RYDc/XkNawRSKzTY/nzsfYYbAYoJNaDmbwKbNsXUE15bQ3LIAFMomiJNZUyIbEm8hrW8iVWW14FYbt7gfd9EfIqfndFSCJQyG0TEjQd5FXgi6fty6vh/R5u2aMpr2EdIbGG8ipgLjeS19bAfHE13ms7kFgjeRUET70m8gogbCUW4mpSi7kAG7WN5BXw/4Q3Dc8I93jVlVeg1UqsmromMbbte+Cc4+CDD8bcuXof4hPEVEECS3Qdy5YtQ19fH8ZHLWx6yWx+aJPb2ilulB2NPmyvZS/apEIhu2k0LFhjlvk7JwawJlBK30ZOuR4Mh8QZYDkcpXEX3DZ8GmMM0NwntnNg3Be9sv4HIm0UJS1AcRLLDSU/HI9X0AMdgGVpfyDSRtEfHBQxJsD8g5UAxjngmNfijMGrFievzYGSeQLOgOaABaevmN9fc8AuRDo9W3/f2o5amnvNRuHMX1yviL8XzgC3XIC8RuoZyWuA28NhNYr4xADgFW4kr4D/Z1IuuXhq1wIjeRU0uW0srwDwyCOPAGiFAgTRTZDAEl1HqVQK24ifeGxAu86a5lysrc/VbsGJ4ng2XM9C2fJQsvVjyvFGGfXxsv++0PQFigcrKjJu9AbDqgOVPX4LnNsDeAafGVgOh10HPNtPN3SxGxyVYQfM4+AlC15Z/0MI5nhgtaaf4JmIJ+fgTtBOXioZ1eKcI2wvmC4SK8TOK2BOLGNg5eCBZNJGAQBiqxzOwUxFr6j7OlrHVBTcQPR19tNNwFRiOWPwRPJq+gGEBTQGy/BKzCxZZECz34JnF9AKzgCv4ndmuL1mb5HEgk1g5vIpklydfV3D8QTyKj5ANJFYfxVof1qIzv6wUdweBrfHH1RpzKgU3F4ObsmtJpwJA7xeD7A4xnb36pdhQF+1AdvyMNY0X5CxajmwmYffjZotuvR8Yy7uvfdeAMBJJ51kPC6CmGxIYImu5NRTTwUAPP1ID4a9HuXjX3L2w6raAtS9Emx4sBhHyfK0RHZrYwBba75IW4xrS+xYvYzx0Qq4G8zJZACzuJ7INixY45E/b02JDeXVa306zkt6Ems3OUrjrTdNJhLLvMibLwvaEsscD2y8EUqUscRG0ZTYNnkVTLXERlJJf3wGEpskr7oSG9/n1URiJ0JeBbqiEL0t00BiQ3kNJNFfkVbztgXyykvwky5Lc24nA5w+q9X2yxDKkE4tr9xaRZdb+hIbymukti6hvIbFNcYTk1cTovIqxqMrsW4Pa2v1ZZ6+xAp5Fdg1vceT1+eF8goAcJiWxEblVfDQjkPUxwRfXIW8AsBut1dbYl9ozsWmdRVs2rQJlUoFJ554olYdgphKSGCJruSUU04BYwxb19hYv61fWWJrXrlt3qsNLxRZFYnd2hjAprGZaEYWbtKVWM5ZKK9RlNPYoHW44xNoDYllHutYdZQzdYm1mxx2rfMTfx2JtRsc5ZHYFkYaEhuXV4GWxEbT1yiKEpsor4KpktiEllptiY3Kq0BXYuPy2hqcusROpLwKVCU26TZMocTG5bVVB+oSG5XXsJCGxAby6sWeQzybqUtsRF4FuhLbIa9iXBopbIe8hidRGE+GvOospNcmr5HxqEqskNfOMSmV8WvF5FXUUZLYSOoayqvAUXs8JcmrxxnGmmVliRXiasfumN2uulS/0JyLmlfGzPUfAAAsX74cvb36CTNBTBUksERXst9+++Hoo48GALzwaAm7vD5scGZLieya5ly8WN8/8TJViXU8u01eBUJie8tNKZEdq/utw2koSSzPeAMQSKyMyFp1oDyacgpVic1YKVhFYqOtw50DVpTYDFlUktg0eRUYthO3MdVJbNvhihKbJK8CVYmdJiv7ThhZAl6gxMqSJq8CFYnlNuuU17CQwhzIFHkVKElsgryG42VQaktOk9fWeeTfdqXKqwIyyausxKbKa3gF+XGlyatANoV1e3mivAqkZTgqrynIpLCMAf09jQ55FQiJlSWauiYhm8K+0JwbyisA/P73vwfghwEE0Y2QwBJdy+mnnw4AWP2ADY9baHIbu7y+TIld05wbtg6nISux0dbhJESNvDR2vFFGbaySmL5GkZLYeOtwYiGem8ZGW4fTkJVYMe81C88O3kBmiGymvIYnk5NYMe81C16ywXsq2fIpu0eqhMRmpq9RGCtOuvKkI2dBI2mJzZJXgYrE5i20JJvCFimvMrVkREFm3AVJrEwKmyevrVrIfTxxm/kLNuV8npObwubIqyBXYllrNd68D/VkUthMeW07Z3Ytr2zJyWvOw0mlbTjreZUzwKmybHkNkElh8+TVH0++xApxzatl1/MfT3nyCiC3lTiauibJaxSZFDZPXgG5VmIhrkJed21mWLVqFWzbxqte9arccRDEdIQEluhazjnnHFiWhaHnLOze4r9AedzKlNgaL0ttmZMnsUmtw2nkSaznJbcOJ5EpsWmtw6nF0iU2qXU4iTyJ9VcKlvuEn7PsNLZt3msWORKb1jqcfGWWnsYG8splk8wMiZWW19jYCiFt/JKr8YYS23SSRVZGXgV5Emux9NbhzoFlS+xky6sg6zGs0vo8CRIrK6+tWkh8PHGboTmjJCWvua3EkvIqSJVYkbpKLNQu00osJa9t506uFYqrbK2Uh1NRc16jqatUOp7TSiwjr4Ks17Ks1LWjjpshsbLyKkhpJU5qGU5DppVYRl4FWa3E0dQ1rP3suwEAJ598MmbNmiV1DoKYbpDAEl3L3Llzw+XfV9/feiinSaxYdViWrMWd0lqH00iTWLHqsAqpiztltQ6nFuuUWKuutohGmsSqyGuUJIlNnPeaRYrEKslrhDSJlZZXQYLEasmrYKIkVnErGS62D4qnsSryKkiTWJ39WdMkdqrkVZD0N6Gz+NQESqyqvLZqoe3xJFJXr8zy5TUskiKxivIajiF+G5i/l7TKmgBZEqskr5ExxNFuGY6/FGjKa/y5OrdlOGM8SRKrIq+CpNciFXkVdOxhzhIWa5JkbLj9vYWKvArSWonjizXJkpTCJskr58Dtt98OADj33HOVzkEQ0wkSWKKrOf/88wEAz95rt21PKSQ2Oi9WNn2NkrS4U17rcBpJEquSvsZpS2NlWodTC7Uk1qoD5RHW+WKfg5DY6DY70olpAlGJlWodTiJJYg1ksU1iZVuHk4hIrJG8CoqWWIN9UI1XKBbEJVZHXluDapfYqZZXQfTxbLL9zwRIrK68tmoFQ5NsGU4uEpNYTXkF0L4ysZBXjYdTksRqyWtANIUtYr4rYJ68iudZbXkNB9L6VmyTo1Mr3kqsI6+CMIWNpq6K8goAaLYGoCOvUaIpbNpiTTJEU9j4fNcoG1dZ2LBhA3p7e7FixQqtMRPEdIAEluhqTj/9dAwMDGB4q4V1T7U/nKPzYp+oL1JKX+NEJVY1fY0SXdyp4djK6WscxgA0mVrrcGIhX2KZpy6vgug2OwBy573m1rMAy4WevAoCiXWDfSvz5r3mjqlk+y2sKq3DSRS5sBMwrRYiCiXW42Alg9so5JVzI6kWGO8R21GwgPvc42byKjDdjzWABR+omMhrFG15DQfkPw94FaYtrwLPZnB6mba8CqKLOpnIK4CwlbgoefVKBW2Vww3lNcBudG6To4N4bTORV6DVSqyTusYZG+7JXKxJhmgKq5O6xvnd6LKO+a5xRh72P/Q/77zzaPVhoqshgSW6mt7eXlxwwQUAgKfuTJZKj1vY7fZixK0ancuGh6H6IDaNzYCns6lqgMU4RuoVjI5Vwb1CPnLX2iq2Y1xNwK7B+FnBagJ2nRcy98rgbo4MyE8VWMMpZvVaywJsvQ8w2ihaOouoV5AIAQAsBl6EnNmW+bjE8UXdviKSc8CvUeSYTEswBl62jWWfM8DpL/lCbAoD3KqZvAq8MoNbLebvzu0pRjphoTB5VZo7m1nLTDijdeyG+WPArfoSW9SYTOUVAJjNsWtPr7a8CnpKDv5neKGxvALADqc/VVwBYGx3a/Xhiy66yPh8BDGVkMASXc/rX/96AMDaJ2wMb+t89d7szMSWxgw0uY0xr4Im15OP9bVZWDcyGw3XhsuZkcQ6ngXuijcc+i+mvGHBqlm+6Bm8ebEazG8d5sGbBJNnhmAurs4er1HsBkd51INnM3glS2kriyis6cEebQBukOTJLgKUhGgdtizDdJEDjgPGgtbYAhJGAOYSy5ixmDHG/HSZMYB74LrtrdH7hXMzQYveL6biGR2HSa3osaaiZ0fuJ004Y+BV2+9U8DhYU+/3xhngDJT95xEOWE2z2+ZWLL+W6QdiwZ89t3yR1YGJdQa4n756FdO/N/9+N71tXtm8BuBLsC/CDJbCkgNJhAmu4Z+bW4X/ISQHSqMGCXzF/wfGYY2ZfQDJelwwi8N1zOr0lZuwGMe4U8bDO/NXJU7D5RbcwO7XNtI7zcpPvR+u6+Loo4/G4Ycfrn0+gpgOkMASXc/BBx+ME088EeDAk7d3vqA0uY26V4IXSGeT21oS2/BKaERah3UldrhWxdiYnwYzxs0kNrJacJhYarzG+/NVW//XlVi7AZTGW7fFRGIZ9xddAsQKxUxPYjl8eUXwZlFXYjkHazqtuYu6EutxoNkI6zDGWiJbBLoSW4DktcmrwEhio3U0JTYylrAVXVc8JzIt1a1tW7H7W71OVF4FOk9JbfIa/lBfYkN5DQelVQbxp3utuZgciYslaUuskFeYSWyR8sqt1nOsSVdPvP24VNP8/QfyKrA0n0a8CsAtDh4kr8xAzoW8Crbv7teqI+RVMOpUtOq4sQdzWgLrNICbbroJAPCGN7xB61wEMZ0ggSX2Cv78z/8cAPDM72yM72n9XKSvUXQkdn1tFobGBjt+riOxYfoaEEps0srCGYj0tePnihJrNRhKY50HaEks71ztUWaP1zj+qsMJm8ArSixrerDHGu1D1JHYuLwKdCSWe4mr0E6pxCZdv8iVkVUlNi2VVpXYhLFoS2zaeXXup7RaqvIZl1eNOknyKmqopLCJ8mpAh7wKFB/aaU/zKilskryG9XU+MGKdx+lIbNHyGkc1hXUrKXvFavyJxOVVoJrCCnmNo5rCsh63Q14BKKewFuMd8ipQTWHj8ipISmEHn/04du3ahfnz5+PMM89UOg9BTEdIYIm9gpNOOglLly6F02D4nztaQiHS1zhCYmVbiuPpaxSXMzieJSWy0fQ1CmNcPY3N2KtVRWLj6WtbHSt4AyjxTBFPX+PjkU1j7QZHZY8Xpq9xZCW2rXW4YzxqEsuCRYkSsSywcllOZIPW4dTzTIXEZl1PQc7C9DUNWYkV8pr2O5aV2IzbpSyxeedTkdi868rKZ5q8KtRJldcA2VbiXHlVTGFT5TUcmFydrKd22VbiLHkVSKewwfNymvSqyPBEyyvg33ZZic3bK1Y2hXWr6fIKqKWwafIKqKWwQlzj8iqQSWGFuPaUnNT95WVT2GjLcBLxFNZzge9///sAgDe/+c0omUx/IYhpAgkssVfAGMPb3vY2AMCTd9hojCenr1FMW4qj+F2q+WlsPH2NIyuxaelr23Uk5sWmpa/tg8pPY+0GUBrjuSsYy0hstHU4vY6ExEZahxMvlpVYmS1zglqZEhtrHU4vNQ3aiaNIyFli63ASeRKbJ69hnRyJlbjdxu3EcWTqFHWuPHkVZNxHefIqyJNY6eRVUmJz5VUSmaf0vPPIyCsg2UociGuupEr8WidDXsPhSNx+qRWLvXyJDcU1p1ZeCivmu6bJq0AmhU1KXePkpbAW46G4psmrLFniGiWaws5f/zls2rQJM2fOxIUXXmh0foKYLpDAEnsNp512GhYtWoTGGMNTd9qp6WucPIndVJ+Z2D6cRJbEpqWvcfJainnD8l94Jd4L582LzUpfO2plvbFIaB1OI0ti01qHk+tkJAcJrcNJhBJbKSeLbFrrcBpZEpvSOpzEpEmsrOBmiJe0vArSJFZWXsM6hgs7QVJiVc6RVUdFXrPOKSuvWeUl5VWQJrFitWFp4cyRWCV5zQqfFT6PTEthZeU1PGfm35l8uprVSuyV2aTKqyArhVXabifjTyArde0YT8ZrTXy+axbMSZfYtJbhNNJS2Ki8yvDIrkWpl8nKK9BKYT0P+Na3vgUAeOMb34ienh7pGgQxnSGBJfYabNsOU9jHfl1Cc1T+3UdWS/G4W05tH04iraU4L32NktlSnNE6nEaSxEqlr/E6CRKb1TqcRpLE5rUOJ9dJWaE4J31tu6pIRRLS2MzW4TSSJDandTiJCZdYVQlKEDBleRWkSqxqnQSJVRxLpsTqCHJSnaLmyerIa6yOqrwK4k9DobyqLtKWIrFayWvS9F/FZpqkVmJVeRUkyrCCvIZjSrh+KK6G8ipWGlZaSyCllVhnr9ikFFZFXsM6CSmsTOoaJ6mVOK9lOIl4CivTMpzEnmanYOa1DGex3/OfxJo1azBjxgxcfPHFWjUIYjpCAkvsVZx33nk49NBDUR9jeOJXag/vpJZilfQ1SrylWDZ9jWO8SnF0TLE3Pyrpa1ud+LxYhfQ1SnxxJ+bltw4njoe1p7Gy6WtnnZjEyrQOpxGVWMnW4SQmTGJ1E7wkEdOtFZVYk62EohKrOZZEiTVJd6N1TNqGo2MwSV6DOrryKmqIFFZbXlMwahuODEF3JkhUYnXl1a/D2iVWQ16jxwomaqVhpeFE7pPUxZqkBhGpkzPfNYt4Cqsjr0mopK5xRApr2jIcTWF1xRUAXhidg3//938HALz1rW/FwMCAdi2CmG6QwBJ7FbZt4z3veQ8AYOh3o2jsVF8vPyqxqulrHJHGNl1bOn2NE20p5s38ua9ZCIm1murpa/ug/Dd9lqOevsbH49n+m5HyqNn8QM/2k+m0hZvkxtOSWK30NYqQWIXW4SSm65zY3EWbZOAeuOeptQ4n1im4nbiI7XI8r5g5r5wX0jYMQF9eA5jHwVzPXF55K/mazDmvmcdbhXxO2JJDE3lF69ipaBlOw3LyF2uSoVTj0vNdM+uMMun5rllYY7Zyy3ASrmNrpa5xRAprIq8AcPjKt2PLli2YN28ebZ1D7HWQwBJ7HX/6p3+KY489FtwBhn49rFVDSKzjmf+JFPCeqNVS7OmlnW3jYcGgChlYATUQmatrioVC5gcCKG7BnaKYThILALaZDAmYZRUjjEXdroLqMNcDcwt6DBVUR2VbnOQCDF7ZhuUUkHRxDresmeJF4Axweor5nTlVVsjzolu1jORV4FUKklfdPbRjmIprOJ4SCnn3yW35+a55qLYMJ2HbXiELNVngxvLaHPPwne98BwDwzne+E9WqegcYQUxnSGCJvQ7GGN773vcCAHY+NIaxl9TbSQFgc20GtowNKu/zGmekVsX4uN4m5VG8WslfcCJ5bSdprAZDaZwFCYFBnSZg13irpVgTu8lRHvfAbQavrP+UZDkc1rjjJ0Ml/TrM88DqzaCoWSrIHQdglnlSKTCVWJNW3UgNZgc1TFPPctkfD+dmkmaZj4dbrFB5TfpeG84BlX10U2AuB2uod6X4BzO4PX7yylwOu25wuxjg9AZz1w0eQpy1EkFXYV/XtFrcAtyq4WOAJc+rVR5PSXLV4hw823+uZybdJPA7ZcCAUt2wTtm/Xfa4URm4Ff9+NuokgrifAW+4nH/lDGzbA7M4Nu1O3/lABiv4g3hyeKFRnbn3nInh4WEsXrwY559/vlEtgpiOkMASeyVHHXUUzj33XIADa384jJGGukA2XBvNIIH1MlYXzsPjTLt9uA2XtdJXHswZ1XgvwaJzVoM3W1o3LRhD6w2bnsj6c1+DkjaDV7G0RJZxHsoCtxl42dYTWc5b6StjfvumjsjySAuyZfsrHRchsgVJqFENFhzrBeKpI44sNoYiUtgi63Tr+ZOISpDJlNxI27CWEDHA6bPg9Fq+WOmOg/lpaXQepm5gFe/+8HQ/jAumZ4S1dKcrl1ryaoJns1Bezeq05BXQWzcB8F8fvHKrxVq3k8ittOQVAJijdwNb93NQp6n3ALJtL5RXAGg29R5AFngorwCwp6G3WvDzY3PxzLMDuPnmmwEAf/M3f0P7vhJ7JSSwxF7L+973PgwMDKC5voZt945h1DFvoVGV2ELT1/GEP1fFNDZ15WHFNNZPX9uPD2VY4fXbbnKUx9rfEXGLKaexIn1t/yGU09i29LXtAqYmsSJ9bath+SKrKLE8TYhUBTTp+ho1wvQ1iqc+B5UlbVukk1YW0FpdaPqaIHbTKoXlGilskL62jwdqKWyQuoZiFaslSzR1jUuragqb9pynnMKyThHmTD2FTUtdVWU2FNfYYaofOoTiGqujmsIKcY23MaumsEJc47935dX0S8nTVlRTWCGu8dZj1RTWKmQ+jy+vo40y9vvNIDjnOOecc3DCCScUUpsgphsksMRey5w5c/Cud70LALDn1i0Y3m1hW31ASmS31AexbTx5xT6VNHZC0tc4ChLblr52XKggsRywkhZKUpTYaPracQoFiY2mr0l1pCU2mr52nERSYjkHbzbTF25SkNhUeQ1ryW6cmHE9hRrMtlrpaxwFiQ1bh+OothKnjV1BpieqdVjlMml0JDbhtim1Ekdah5PqSElsRF5TkfiVReU18XKFVuKs5zrPVpDYjOdNlVbiIlJXAIWkrn4dpNZRSWGjqWtHHYWHcjR17aijkMJGU9eOOgopbDR1jSObwsZT1ziybcTPj83F82NzMeZU8Je7X4unn34afX19eN/73id1PEF0IySwxF7NRRddhKVLl4LXPAzfsgUNz8aoW8mV2Gj7cBqmc2MLxaCluA2JluKO9DWtRs5reFL6GkdGYhPT14Q6eRKbmr62XUlCYqOtw2loJLHptQp4GpetkSavAgmJTZVXgazE5o1ZQmInS15VrpOLisRm3DYpic2Q12idTImVkVcJ8uQ1vJ7EQ1nmqVuqlVjmQz+Zz7wk5FVGbmXkVSaFzZJXgUwKmyWvgrwUNt4yrEu8ZViXeMuwLjKpq0wbsRDXMacCb7iJr3/96wD8hZvmzp1rNEaCmM6QwBJ7NbZt42//9m9hWRbqj+1G/alhOJ6FUbcincZmMRkSm9o+nERGGpvaPpxE1huztPQ1frwVvGFIeSOYlb62nS5nXmxW+hqvkymxWelr2wkzJDapdTiNHInNTV/bahWTsGZdltg6nESWxMbnvaaRJ7GytynjPpxsedW5bioyEitx2zIlVkJew6umSZGqvKaUkZVXQVYKq/KUnZnCSnas5LUST6fkNT7fNYusFDY+3zWzTsbDOK1lOIms17a0luEkstqI01qGVSmiZTiaugL+68URv5uLPXv2YOnSpbRtDrHXQwJL7PUceeSReMtb3gIAGPnZRnijDhzPSk1js9qHk0hrKS5q/mtm+3ASKWlsZvtwEorzYhOPt5LTWJn0NUravFiZ9LWtTsriTlLpa9sBKRIrk75GmegktqB5spmtw0mkSGzivNc0TFcmjtaJ/2iK5NXkmA6yJFbltiUNRUFe/bEkzIfVTV5jvy5VeQXSW4lVn89SU1jV58a0z7sU5TXpujqLNSV94JA23zWLpBQ2bb6rKqqpa1IbsU7qmtRGrJO6Js2DzWsZTiKpjTiaugrqj+7Gvffei1KphCuvvJIWbiL2ekhgiX2Cyy+/HIceeij4iIuRn20K062kNFamfTiJuMQWNv9VF8PtdgB0tBTntg9n1Yi8GZRNX+Nwm4FH5FM2fW0jtrgT8zywWkN939f4CsUq6WvbeDolVil9batVcDuxjrwKYhKb2zqcRJLE6tzGCVoZ2EREC9sjtqOw2nNOx6JOqvIqDou2Epu2DQe/Lh15DUvEjtH9MK4jhdX4YC+ewpqsNBw9Jm2xJlVkU9c48RRWNnWNE20jLqxl2JZPXTPHppm6xufB6qau0TbieOoqcHc3gV/vBuC3Dr/sZS/TOhdBdBMksMQ+QaVSwZVXXgnbttH4n2E0Hh8OL8tKY1Ux2W5nQggkVql9OAnxRkCmfTjt+JyWYlm8ki+xqulrnFBiZVuH0xBprGr6GkVss2Pb+vIa1rLav5rUAPTkVSAkVrZ1OImoxJrcpuB+LSx9nQ7b5cRTWM3bFbYSa8prWMfjkz7nNQuRwpo8JYcLOgWiqF1LfM5V8P6uuogUVlde28ai0DKcOJbgIazSMpyEeI3jtrkAFznXtaiW4XjqCgDc41h652yMjIzgiCOOwJ//+Z8bn4sgugESWGKfYdmyZbjssssAACM3b4S7o9F2uUhj9zR74LhmluVxBl6AyHp1G1bN9KPo4JNy08DH9JP+QGKZC9gNsxd0r8TglTLmokrCbQZuGxp1OCjDO5hZgK0w1zSLgpJYVlCbrenvyejDgVgdrf1LJ6hOYa3ETcdcyr0gsTIUT6+UsE2OZh3jFM4CnB7zsbhlZpzmcQa4PebiChQz35WzYuTVcqemZTgRzgqRV2+kPG3mug43qompq+BN61+FBx54IPyQnlqHiX0FElhin+LSSy/F0UcfDV7zsOfGdeBO+xtIx7PQdG00HNtIYkdqVYyPVsBdC9wzeGF3mS+eBbSJIWd14dzDm0Grl+FrMuN+DW7wOms5HHbTA7ctf06r7lhcDuZ54JUyeAFzUY3lM0grC5HYIrAYwE3FnPny6RruYWqalEfqGImjkNciEljTsURrNBTmcCeVie/zqgoDnD7/b9Fumt03psmrGE8RHR88kEVTEeZJ+98qwjj3/5k+ZMSUEMM/Sc9mxq8HXsX/Zzfyr5uJBYBxs8eNxQGLK23LkwQPnh427J5pVGe4UYXj2qny2nxpDDfccAMA4IMf/CAWL15sdD6C6CamybskgpgcSqUSPvnJT2LGjBlwNtQw+uuhxOtxAA3HRq1R1hJZ17XgOZb/QuYxM4lFZC6PRhnLYbDr4h1L+5xWFZjni6M/IPXj24sFi49UmJ7Icg4WjMVIYsU7DdtvcdWSWNHialkAY/ryKUTRYtNCYpkQT0BfYiPzZ7nr6UusSK1cb2olNi6vJhIrHnsmEhtNgg3G4vWWwwTNqmv8jgJ59Up+DeZybYl1K610UVvUWGsOJKCwp2sMbreSV5NkWtQBAE/zcwIWnU9u8Ltue+7XrKOzcFRinUjLsNICg1EstD6c5QylUc1BGaatAs4RvmA3GnqvS8ONaiivaXjjLnp+MgbXdXHWWWfhda97neaICaI7IYEl9jkOOOAAXHnllQCA2r07UH9qOPF6HIDLmXEaCwQSa5rGQlNivdgbQQbjNNYfjPohVhMojfNwHNzy3wyZpLGAnsQyl4M1I++aLGYmsUBLYku2uoBG30xOscS2tQ7rSmxwG6JoSWy85XKqJDYtedWRAB6TYB2JjbUxM49rpbBeT6mt/ZO5nprExuS1bTyKtMmreJpQuVuEuEae3zjTS2Gj0ilQTWH9KQrtdXRabZOEVUf4ilieIb5wFONAqab+u/aKaBm20NHabeksi1CAvIZ/0oZ3shDXrPccnHMcfec8DA0N4cADD8RHPvKR4qZ7EESXQAJL7JOccsop4WIHIz/eAHdrPfW6pmlsWEcxjfXqNlit83yhxE5iS3HYPtwxGCiJLPMSFoFiahJrORylWue7N25b8ColeZHlCTKiKrFpq+SqprFJcjhNklgAehKb8obKKIkVTKHEKv087bpJEqxYI0kQVVuJvZ4SeMLjS/o+SZFXf4xqrcRReQ3Lq3hFVF4T/mRUUtgkeVVNYaPpbRyVFDYtbVVJYbPm76oIX1rqqiLTomW443fEgZLKCvdFfAgbtAx3wIHGLvkFHaOpqy4yqavg4jWn4g9/+EPYUdbf3699XoLoVqbBOyOCmBre/e5345hjjgGveRj+9kvwxl3sbvRiuNb5whVNY41FVjaNzdj/1aSluA3JluK29uHEARmOQ6WlONI+3IHFpNLYjvQ1VkNZYhPrKEhsao3Jl9jUT/JVJDZn6x1pic1KFQqUWJnr5CaKknWyricrjlljkZXYNHkV5KawWfIajkWulThJXtvq5N0tLPt5TCWFTZLXKDIpbF4N2RQ2T1JlxDHXqSQetxPRMpyElAhHW4ZNyEldk/aDjVNE6hoV17T3FZtHW3vK1p/Zg2984xsAgA996ENYtmyZ9rkJopshgSX2WUqlEj796U9j3rx5cLc2sOf769FsWnAy9oAtqq24yLmxRawOXFhLccZ7grb24ZRxTFpLcV7iJSQ2a3GnpPS1o46ExOYJ4SRKbG4bmozEJrQOJ5ErsTItcQVJbKY4qizalHWdvMecbCux6TiQL69ATiuxhLyGV80R/1x5zWslZtlS1HaunBQ2VzwlUti8GoKsFFYs1pRH3nUmomU4eRzZbcSpqasqCS3D6jVSUldFikpd89qFAaDu+A8WZ0sd7o+3gXOO17/+9bjooou0z00Q3Q4JLLFPM2fOHHzuc59DtVpF89kR4PaXpI4rrK24gLmxWWls2wJOeRgs8NQ+oOQfJ7YPJ14xXWKZm9w+nDgM1ZbiOBbLX9xJRibyJFaqRiCxpdLUtxTnSazCXKxp006cJo4FrzgsdZ0siZXcvidrPqyMvIZ1ksahIK8AMluJ8+Q1PGXaTVaQ16wUNmmuahZpKaxKjbQU1mSBprC2olelJZ8qqWtqDcO9XQGopa5ZCzlNk7muKu3CAm/cxcCPahgbG8Oxxx6LK664Qvv8BLE3QAJL7PMsW7YMH//4x/3/3L8ZlSc3SR1XeBpbgMh2fFIeX8ApjyLTWBNSWoqZl9E+nERCS3Fm+3BKDe3FncIaKRKrMqfUYhOaxiotApImsZLpa5REiVVdkGQiJFZXXpOurzFHtkMeFfeeTWolVpFXgdWI/G5U5VUcljBuWXltrxP9j54YxVPYrLmqSaSlsCrymoaOvMbFUW+F+fbzFt0ybIRG6toxr7eA1LVNXCchdW3D9XDoL/uxfv16HHDAAbjmmmtQLpe1x0AQewMksAQB4KyzzsLb3/52AED/b55F+cXt0sdO1SJPiTUmYG5s6gJOuYOBmchOVEux6oI5QKfEyrQPd9RIWKFYJ22ZLos7JUms5kqYPHo/6K6mOUESq1un7XsdCY7V0FnVNyqxOvIKAMzx2iRWVV4BdKSwWvIavfma8hpPYU2kU6SwqultlGgbsW7yGj1uslqGc2votgxHF3KapLmuMkz2Ik3xk7/+sT788Y9/RG9vLz73uc9h1qxZ2uMgiL0FEliCCLj88stx7rnngnkcAz9/Gvbm5O11kogv8uS6+n9aIo01ebEscm4seM4CTrmDAaxGzvzXnHEUJbHGLcXBvFjYtqZ8tlYohsZ2Gm1jKVBitbdgiEpVzsJNuXVMW4mBQiVWRxjjdbTkNQJzPW15jaIrr+E4HC9MX7VrBAs66chrWx1u3pLqVvWlE2ilsKrpbQeMSc93zR1PkfKqgZgHa9oyzFxMm7muk7VIUxblu9bgN7/5DWzbxjXXXIMlS5Zoj4Ug9iZIYAkiwLIs/P3f/z1OPPFEsKaLwZuehLVzTKmGEFnumb36FjLlrogkFvDfTNhmbxgZ99vU9N/otb71KiYDAcC5mcQK2SsZ7A1sWWBCZLVrBBJruP8fM5Vpj6u1QqfAOS9mVWHXAxwDGeaBTJsKteOaj6PRBKur7+0alrAYULJ9AS0ArfQ1erwN4+ck4/mUKEb4jJ7PwoFwXxpNSjCmNk0kqYbF/BcvA6F3y8H9avC7ie/hq12niNc9D8YPlOZ4WVtcAaD08AZUHlgPAPjoRz+Kk08+WXssBLG3QQJLEBHK5TI+85nPYOnSpbDGmxj48ZNgow29YgW0HRWB6RD8NyUs+GcwkEC0TO8Or2zpS6zoerVtfYkVny5Ylr7Eeh645/lJrkn6yT3AYtoS23acrsRazL8dgL7IRm/DZC2YlHYc5+3Jsg6O26ql2moeH4/nAU2FzTrjMAbWdGHV9Wt41ZLf3jmuf1u8sv/hj6WwN2wU0f7LLcV5/RFYZFqD7LY6iXW8ImpwfzxGz81+Yqq0X268hmVWg7OgFTpo+dUeh/hww+T+sDi4xc0+JBGPERNxrZXQrJUAV79G/ZHd6LnjRQDAX/3VX+HVr361di2C2BshgSWIGH19ffjCF76ABQsWoLR7HAM/fAJsXDMFMX0xLCpFNRhCSCiyJjXMJZYzQ4kFglTZQGKBoA3YQGIFJhIrMJDYNnHVldjouXUlVtTwvGIkVjf9FPLqaSbChm3DIdHxa9TjFgMiC4/pprBetRQuWmQ1NWuUWbjqro58RuVVl1BehcDqPtS91rxT7TZZIa8GCHk1qmGZ1WiTV5NxFJLMc/PXywI+dA7F1UBea0/swbw7ngLnHBdddBHe9ra3adciiL0VEliCSGDOnDm49tprMWfOHJS3j6D/B0/A2WM2D9TohbFAiTUSWSGxJm8mIxJrMgfNK1twe2x9kRUSazIvVkhsuSQvsiJ9jWLbgKUgskltu4oSm3pdFYmNpq9RFFdX7hhLERLLuZrEJomnjsQmrB6snMKKBDdaQyGFDeW17YMFrpzCRuXVr6GewkblFfBFUiWFTZNXFRGOy2tYW+HPnnnt8qpXgxvLK2fMWF5FR41py7CpvHLbXF73ptR190gPak+NYP5vnoLrujjnnHPwN3/zN8bTRAhib4QEliBSOOigg/DlL38Zs2fPRmXbHsz66WOo7bLRbGquJhR9kdTa6wDTQ2SLaClmDCppLHMBqx5748j8OXnSaSznsOLb51gAL1nyaWyS0AiJNU1jhQwazotlTEFk02RVRWLTzqUisUk1JlNis1qHVSQ2Lp7R+rISm1ZDspU4UV4DVFqJO+Q1QCWFjctrOA7JEqbJqz/3HonyKupL1QnENWmxJdmxCXFNklfZebChuCZcXfo+tdJryCzWN11ahtvEVfcp0/Q1GTFx1ZTX3SM92D3Sg9LaXVhw21NoNpt41atehSuvvBJ20geEBEGQwBJEFosXL8aXvvQlzJgxA5UtuzHnlj/CGQXGx6rFiKwO06WteBLTWJaxEqt0GsuRLkSyLcVZK8JOl5biYL/YLImVElyx72zW5XlvrvIkNi81nkyJzZr3KiOxaeIZHUeexMrUyCBLXgUyrcRp8uqfRC6FTZNXID+FFZKU99ySJW1tqavBQygpdVWvkZO6Svw55qWueamuTOqadX9Ot9R1b2gXFuLqNm3Y64ZxyO3/g0ajgVNOOQVXX301SiXDpfcJYi+GBJYgcjjssMNw7bXXYmBgANWhXZj7i4fBxxw0G6VUiS1XHNg9OW+a94a2Yok01nIAu57x7koxjU1COY1NosiW4jSJTWofTiJLYmVX/c2TQ9mUNet6MiKcNlYxvrwaEy2xsnNWsyS2iHmvefIqzpOSwnLZBD+nlThTXgOshpcpsVnyKkiTpWjqapK8yoprVguwrLxm15geLcNGaadC6pq1XVqhqasuBbQLO3W5duG+2ekbqAtxdZs2qhu2Y/F/P4Hx8XGceOKJ+NSnPoVyuaw9PoLYFyCBJQgJli1bhn/+53/2JXbzLuz/i4fARhtoNkqJaaxte7AsCcmYZm3F2mSkscwDLJmpiAXOjTWS2LSWYtlWUp15sUlM9eJOsTod/1dpbUuTWOk5vxMksUWtOizbHpyVwsrevoRW4jB5ldzrNS2FlZFXQVorsYy8Askp7EQs1pRH2nONSvKaNF7V+a5JbcRZLcOyTPZcVyvhs5FpkboW0C4sxJU7cqlrX7Vz8cdo6goAPS9txUH//TjGx8dx0kkn4XOf+xyq1arW+AhiX4IEliAkOeqoo/CVr3wFM2fORGXbMPa/5UGwPTV4LksVWWmSXlzLHnhF8t1PQSLbbXNjkyh0gaeoxGa1D8cpal7sBEhsIasV+4XUjo9KrI5YT5TEqshr0ocYMslpfAxxiVVdMTlyPunkNXZ8PIVVkVe/Rmcrsay8CqIprK68RmuoymtWTZO24az5rukHtf93OizUNO3mumoPAuovbrNa2+c59RKcury4JhEVVyGvvS9sxoLfPI5Go4EVK1bg85//PHp6erTqE8S+BgksQSiwdOlSfO1rX8PcuXNR3jmC/X/+IOw94+AeihdZi4Pbim+ipnkaK19jH2kpliG6QrFs+3CcuDCa7Pmqmr5GiY5dR6SLkljxVadWVGJV5TU6BtegRryVWDJ5jRJd0ElZXgOiKayqvAKtFHYqktco4rxpKw0rjWNvaxnWHcN0S10VKVX8D5WEuHKnOHEFgL5nN+KA3z4Jx3Fw1lln4ZprrkGlUtE6B0Hsi5DAEoQiixcvxnXXXYcFCxagPDyG/W9+AKUdewCgTWTBeP482DQKWuTJK3F4Vb13U9MijYWZTIs0lpdY5wrEMkRaiqN7aioRSWOl5r8mjiOQRg1RidYobDsGwzpG4yhCYoU06rYOC4k1GYdIg3VreB7guvofJgCAy7XlFUCYwurIq4B5BchrxkrDMnALmSsNS9Wwi5FXE2FjnlnLMFDcQk1Tmbo6fbyQduEwddWgb/Z4oriCcww+/iLm3PkEXNfFq1/9alx11VW0YBNBKEICSxAaLFy4ENdddx0OPvhglEZrOODmB1DduD283BdZG27NBhqaf2YcYA6DVWdgOi+izH9jxhnAND06OhatN4cMcCtAs4/pvY8IWoq5gfBwIdOloKVXh1BkdVeVYYBtgZVKYLpjAABmmQmLSXoaHYORuGlKfBTX9f/p4nnqbbtROAfqDcBR21e1rUSzCd7snCOnhOOafagBwB43HIPHteU1HEPWIm95cMBqwqht2G6Ypa52w5/7aSKvdt2sTZZ5HJZrVoMzGLUMcwtoDpgJNAAj+bUcBl7i2uJq1xnsOjNKXdm4jWZcXAGAc8y6dyVm3b8KAHDxxRfjYx/7GG2VQxAakMAShCbz5s3Dv/7rv+KYY46B1XAw75d/RO9zm8LLuQegacGqWWCjeiLLKx68KvffHGlKLBAspNQsSGRVD7GZ/4m+SaILtM2PVR4D8xMiz0RiAT9FLdl6IiuSWNs2k1jLLkZCma7MB78D3Tf8zAIvYtVezvUklvNWeqmTiHPuy6frgcsu3pQ0Btf15U9XggOJZ6PpK51mwpifODYMJDxIbsujZk8sUou8dZzcf04zFseGL3+6Amw3AOZyMFevgF3nsOsK8+sTCMevm0CL52ajdl/R8aJfw+RDCMthsBwGeDCSV+YBzoDe45mN2/4/h3XKq+Nizu2PY/B/1gIA3vve9+KDH/wgLJPXAoLYh6G/HIIwYMaMGfjSl76EV73qVWCeh7l3PI7Bx14M35yzHhe8wmE1mJ7I2hy8xH0BdaCdxooFRZg3dWmseIMk3uhoY9J+ygCvZPlzWnXfOAQiapbGTpHEMqt9f1ddiRVot79yfYk1bduNtv7qSmxUNjQENJRW7um1MUfFvd7Ql1gA8IDSSCP/ejG43eqqyNrTNbOGwdxGy2nNWRX/VyWUV02EvGofH4ir7hjCY43alvWPBRBud2Rax1Re4cH/p4FIXcMFwSpqhaLiyhwGb7D9wcjqTbz24S3oe2EzSqUSrrrqKrzlLW8pbkoHQeyDkMAShCHVahWf+tSncMkllwAAZj2wCrPvfhpwPTDbCxdiYi70RRYIt6MxFlnFNNYrAW5vwgWaEluIyBqksWJ+rkoay1wOFp9DOx0ktlRSE9loq6eOxCZdV0Uoo8ebSGz03KopbPx8KhIbpK9tP3I9JYnlzWbHmJVS2KTb21BsA46uSq2RwkblFQDgceUUtu14nr1/aPuBLXmNopLC2o3pI69RVD4IKCx11SQqrkbyGr0NDHCSXmtSaEtdNYiKa9q+xFnExTUcV7X1t1DaNYpX3vEsHn/8cfT39+OLX/wizj33XL0BEwQRQgJLEAVgWRauuOIKfOADHwBjDANPr8O8Xz0Ma7wz2VAVWV7x4PS23qWoiqxXbn9TEE1jZUSW28GiHokXwlxkpziNlZLYtP07ZSVWJH9t5w8k1mReLLPMWopVJTZtruNkJbFJ15OV2KTfQTgOmT2bA3lNkB7pVuKksQYprHYrcVBXOoVN+ptRSGE75DVARb4Sj5fx3xR5VUGIq5a88oj8FiyvgLxQT4vU1fS5G0i8DV45/4a1iWvssdAczD8+S1ybM/IfiGniGqe6bhuW/PJRrFu3Dvvvvz+uu+46LF++PLc+QRD5kMASRIG86U1vwmc/+1n09vaiZ+MOHPDT+1AZ2wWvN+HNSkRkMyW2xMETXtSjIpv1IspLPPFNgarIZjKVbcWGaaxxS7HsvNikN6cq82Kz3tzKSGyapHZzO3H03LISm/ZzGYnN+h1ICGiqpMq2EmfdRpkUNuXvRDaFTZNXFYpoG866PIvc1DXrV8ABu5kz3zXnV2g639W0ZbjI1NUIzdeLLHEVeDl7p+cmrjntw3ni6g06AOcYeHIN5t/6CEZGRnD00UfjhhtuwGGHHZZZmyAIeUhgCaJgTj31VPzbv/0bFi5ciNKecRxwy73o2bQx9frMhdFCT9NufqzqIVOdxmq0FCeeezq0FGdJbNZKsTISKyO4WRKadbyMxOYJbpbEyghqVitxQutwx1VyWomTWoc7rpMlwXmCnpfC5v195KSwufIq0UaceXxWG7Fk8prVRmzUMhyRV12KmO9q2jJsQuHtwooUPs9VkWjqmoVVamL275/C7HtXwvM8XHDBBfjqV7+K/fbbT+/EBEEkQgJLEBPAoYceiuuvvx4nnHACrKaL/e96GAPPrUx9E57XVhxvI+44PtZWbDXbX2TjbcSJNTLS2NR5sEkkvEnx8WFRqgAAWMBJREFUyoDTk/3Cv9eksdNZYjOPzZFY2a1SpmsSK1M3SWIzWoc7TpEisTLymtlKLDvPNy2FlfibyEphZZPXrDZiqeOTbmaBbcNaFCivOnRT6ur2ZlxJYvxJr1Eq81yT2odV5rkmtQ/LtgsDALP24IL7NmBg5XowxvC+970PH//4x1GpVPIHTxCEEoxz070MCIJIw3EcXHfddfjJT34CABifPw87j18Or1rNPI7bALeD1uGgpYmN2SgPy8lN+IbDas0psscZKsNy72TEmxVu+WMBALsOlPdIHd4icjq7zlEelZzjFUiwSFSYx2E1udp+kZGnNqvJYdcU5hhywHK8UGaY44HVFBbKCUSMibmRnMvvOyokzvPAozKl8gbYS9gnVVZsxXni+7WqinFUmlTaky3mr84ZPV71ZSr4MCA8NrrysMyxpcikb87B62qr9LJq5A0r5+D1usLBFlgltheJykJVPVXwvp5IPXl74YyB95TgDLTGr9o27FUtNPvbHyvSxzOgMRD9vSvKKwPc2F2nLK/i9IG4AoryGnvOA9TO71Zbfys64ur0to5XElcGOFUGHn3oK36Y2JyRcGXZ8TOgMSPynC1kUeF3X9+vdWW77h+v8sFHc27rOZ6N+49h2a6myp7NWPrASuzevRsDAwO46qqr8MpXvlL+5ARBKEECSxCTwK233oprr70W9XodTm8Pdpx0EhoSLUVtImtxWKM2SuMKb0hF21fwfrI0xlBS2HGDs5bEagmsgKkJLBBpBwxE1mpylMb19u1kLoflcFgNBRGISKyywAo8z5dYFYENz++niaHEqiY43GtPJFUENC6xYvsdVYQ8qc6vjUuszsuUkFidlYrtIIVXSF/bTm1boQRLpa9tB/v3NRMSrTp2xsBnzwi/V4XbDM39+sLvldM7i6E+q2VBqseH3Ro6yWtEYO3gMwfl5JPBLHUNbq9u6ioEVkde3QrTn6fMgGa/fyAP/lxV63QIrMr4IwKrs7Jwc5DDq3AtcQWC9LXiKYsrOMeMlc9i1jOrwDnHkiVLcM0112DhwoVqAyAIQgkSWIKYJJ5//nlcffXVWLduHThj2P3yozHyspdJvckUIms1WPgCrYKQUOZAOoUNj21LFAC7pnx6/9iGmsAKRBprNzQFFgA4V09hgUCe/S10rBGFFC2K54E5rrrAAu0Sq9sC6bn+saoCGpVY3bZkIGjr1miLDsarvVeiWCBLJX2NYtu+DCqmryHi/lYVUKCVwuocC7RSWB2BDVLY5syqnghFBFZXpBr9TLttmFvBfH6TLXJMWoaZWcuwVxYf2qgf6/RaBtMvfIE1mcIRCqzO2PvQSq9Vf+9B+moyx9XpF9028jfeajSw34N/RO/QFgDAhRdeiL/5m79BNafDiiAIc0hgCWISGR0dxT/90z/hzjvvBACMLViAnccfBy47R4YzWK7eYkvc8tuqSqOtRFbpeOanGqVRDq6RxjGPo1SDWhuwOFYksGOe0n6PUaymB3vMaWvxkz6/x2HVHLCEbZGkcF2wukaCCwTprSO/VUtiDU2JE2/CddJXgWUgv8G5jSTW4CXO6D4HOtuwFWGltP2r8g5k4PvNNDp3bcGA9rFe2UJjhv7v3enRExHG/WkGbkXv8cI4UB7z4Nn6j3e7oS+v3GJh+qlDs0//YMaB+kz9VabdXpa+3VoOlgM0ZkJ7gSbmAs2ZXFtevRJXfk2sbt2Go595Flu3bkWlUsGHP/xhvOY1r9EbAEEQypDAEsQkwznHT37yE/zLv/wLHMeB09ODnctPQH3ePKnjrSZDacx/s8BLiq2Nrj8X1m60z2+Vxa4D5REOz4aWxNp1jkqQwqq+UWIeUKp7sMS8MtVnLs5h1z1Y9cD+Fc9vNVxYezTjZwCs6QBNjb0+xZxY150aiTXFVGCDBFhXYrnj+Imm4uJanHN/USSL6d8GXYENfs9tc2llThf8fpll6Qus4wK2hdrCQa3DmQeAAeNzy7nX7TiWA3bDF0hVGWOco1Tjvsz06a3GXh71YDV52zxSFXTlVXwg6VZ1Phj0n8vdqgVP42EqnkebfQyuxlpDYuGt+iy9v0/LAeAFAqtzLACnl4OrP9xg13xhb85Q+Dv1PMx8eiVmPvscOOc46KCD8KlPfQpLlixRHwBBENrQKsQEMckwxnDxxRfj61//OhYtWoRSrYa599yLGU89LbUXJfP8VmCrodbuBAStyCX/DZPlqCe5Yn6av+KxZtIgFmbiahLKLcArtW6v8uqazJ8fxjgH4+rzy3jJAu8pa0sgL5eAskZEIc5n28oSBiAQMM02XkCrDbVwXBc6n7Vyxwk+APD05d/jQRu26R5TEnAeyqv6oa37h3te9pY6aTiu0YcczPNFUuvYQF6Z44ugVo3gV1RS7PII5bXBw+kKqujIKxPdNJy3PbdJHx9d4011jTXx/BsMWVVeLTeQ10gNpeOdlrw6fXrHi3Pryqt4HZQ+ZmQU5696HjNWrQbnHBdeeCH+3//7fySvBDEFUAJLEFPI+Pg4vva1r+EXv/gFAKAxaxZ2nLgczkB6+55dZyiNRBbbsKCUxto11lqMSSzSpJDGihRWEC70JJHIWi6HXQNKNWGxrctkZDSewoY/l30WC1JYMReWh4sMyR3OPA5rvNlqJVaVO88Dqym0Ice3lfE8cNW5tOL34nG9FNZ0ISVdcRZEU0yFJJYHrdfxsch+CBAmsFFU01iVBDZBXGUT2KSXceUUNiqvjMEbqKIxuyf7mOj5YvLq9NpoDMrdV1F5FbhV+RQ2mr4KVFJYxoHqzsjBDMopbKkm/7sOxxncX17ZUuqGiYqrTvrKYtLZ7JdPX8OtjmLHe7LHi99x5DaopK/h8dHzz5R/brKCNSSi4hpdvTgRztG3bj0WPbUSY2NjGBgYwN/93d/hrLPOkj4vQRDFQgJLENOAu+66C1/84hexZ88eeLaN3UcfjdFDFycKUlRgBdwCvIqcxLYJrIAFEizxJigusALZtmK7zlGJHy8cSeI9p93kKI0mv+GQEVmr6aE02i4mKiJrNVxYw7F0S0FklVqJkxJ5lVbi+O9DVWLjt0v15aKI9uE4khLbIbCAksQmCiygJrGyApvy+5QR2LSXcCWBTUpeS7Z0G3FS8sotJtVGnCSv/gVAbVb+/Zwkr4D/XOZItOS2pa/R40tMei6tbPoaF1eB2yMp6gkPE27Jz32Nruze+iFQk2z/DRPXGPXZkscHiWscWYENU9cYsgJr1Vli4polsFatjtmPPo6+jZsAAK94xSvwD//wD5g/f77UOQmCmBiohZggpgFnnHEG/uM//gPHH388LNfF7CeewNx77oU9OiZ1PPP8lmK7lr/ZeiI8aOlq6i0QBUC6rZiXgm0yYucH5NqKPZvBS3ljKtNW7JUY3J72Vt62tuKc8/OSBd4bE4t4Upp1vGwrcVo7uWwrcdKHCaKV2GRRpKlGs50YgHk7MVBsS7FBy7B/eAGfP+uu0hxQVNuw3vH+ok1Jz1nMzW8FFos2xeUVAJjDpVqJZeQ12iocv6+9spm8RveNTT022i4cG6pMUt3WLhxDbL2TebyTLq8yhMdrPkytOkuV1yx612/AUXffh76Nm2DbNv7yL/8SX/nKV0heCWIaQAksQUwjPM/DT3/6U1x//fWo1WrwSiXsPvoojC5eHMpDUgIbJS+NFQs5pe4Hm9NWzFygNJ69mnBeW3FiChs5f7RO4vEZKWxbqZRTJKWwUfIS2cQUtu3EEslPVhIrI8R5SWxWGi6bxKbdDpmXjaLbhzvqW5krFCcmsAljS/swIDWBjZKXxmaNX0Jc0xJYmZft3ARWfECSNg7G4A32oDErfUuQPHnNaiOWkdesNmIhr3lSkiZoobxmzZfNaSXOktc2qc64j/LS16yVdfPS18TEte0K2elrUrtwnKz0NaldOI7T56+tkHl8xvmdvuwFnGTENZ7AWvU6Zj/2JPrWbwAAHHbYYfg//+f/4PDDD88uRBDEpEECSxDTkA0bNuDzn/88nnjiCQBAbd5c7Dz+eLh9fbkCC+TPjU1sI46T0Vac1kbcMY4Ukc0U2Mj5o3XaLkqZC5taKn612FzYNNJEtmMubObJU35XWfNhJRbzApAusTIrROdJbJ6E5710TET7cBIpLcXhAk5ZZLQUSwkskC2xabdBMnVNEliVl2zW2wPe39t5gefJjSGjjVgmeU1rI5ZOXlPaiGXlFfCfw+KtwFLyGpDVSpw07zWtTThxbBlzX/O2hMma+5orrgFpc19lxFWQJLAy4ipIax+WTVzT2oeT5rqmEQos5+jduAlLVj2HnTt3wrZtvO1tb8Nll12GclljpSiCICYMEliCmKZ4noef/OQnuP7661Gv1+HZNoaPPAKjhxwGu2HDltjRJU1kpQQWSE1jZQU2vC2x+bEdiznljEEQFVnZFLatVOR0eSlslCSRVZJYIFEIE1NYWXkVJEms7BZHWRIr0y6c9fIxWQILdEhsZvoaJ0VipQUWaN3f8dscvw2ct/bWlRlaTGBVX64TU1hZeQUSBVaIlUzbcJLAqrYNuz0MzUgKqiKvgmgKqyKvgiSJjaevKuIKpMur7F6mSemrrLj6V+5MX1XEFUhevEm1VTgusDKpa9sYYgKrIq4A0Ozn8Koc9tg4Zj/2BHo3bQYALF68GFdeeSWOOOIIuUIEQUwqJLAEMc1Zt24d/umf/gmPP/44AKAxcyaGjz4O3N5Puka8rVhaYAUxkZVpI+4YQyyNlUphY2OI1lJNYdtKcUinsFF4VOqYRCtx4sljaVBUYhXm0obEVyZW3Z83SWJV5rqmye9Etg8nEZFYJYEFEluKlQRWEE9jo7dBY66rEFjdl+kOgVWRV6BDYHXmu0bbiLXmvEZSWB15BdpTWOYB1V2K85djrcRReVUVV0G8dVhWXIHO9FVJXAOi6auquAqi6atK6iqItg+riqsgKrA681zrs10MPP8CFj77PMbHx1EqlfAXf/EXuPTSS1GtprfPEwQxtZDAEkQX4HkefvWrX+HrX/869uzZAw6G8YUvw9ghR4KX5FqbhHxy23+zoCSwgojIWo5aChuOI6hhNaEmsJExCCxHPYVtK+WpS6yAMwbmerDqjnwK23bySCokJFY1fRVEU1hVgQU6JVZ1sab4y4hp+gqoCywQzosFoCaw4fGsVcNxlNLSkGgaK+5TnToAYFuArX9fhgKbN981tUBrHqzuYk0ihTVZsMntYXB6mJa8Cpp9TCt9FYgUVsirrrgCrfRVRVrDcUTkVUdcAYTpq664CuqzmZa4Choz9cVV0JzJlVNXQWlkN/qfewTVnbsAAC9/+cvxkY98BIceeqjeYAiCmDRIYAmii9ixYweuu+463H777QAAt9KLkcOOQWPOQmnp4Jb/xsdqqL/ghzCRwho8fXC/FVlmpc/UMXj+m2KdN6QCuyHfSpyIx/UlFvB/b5z7Equa+EUREqsjsEBLYnWJyu9kp69xmKW/SrD4OzJZqRjwfw+64hqloj/3jjEGPnuG2W0p2ajPH9ReaRgAnB4bXpVprzYM5q9crv18BfHBHTd6roCln7iG4ygxqe3GUo+3Immw5k1xeoLWX4O7wq0GNQweWk6/2RhEZ5Hq44I5TfS/+AwGN62B67ro7+/He97zHrzuda+DZdHmHATRDZDAEkQX8uCDD+JLX/oSNm7cCABozJqHkZe9Am7/DOkaluMLJNd9veZ+G7DVhPaGXFYDqIx64BaT2gM2CbvJUR5xg2RXvQjzOEo1F9a4YyR/Vq0JVjMRYQ9svK5/fFCD66a4YQ1DkTWVV8BcYE3SaDGE4MMEVpLY8qhouNeS394eo1KsUgHvNWiFtC005svtB9sB99vsucXQmJW/p20SjHNYTQ7OAKdPL41mnKM05oG5HG5F//Eps9drGpbD4fZYRvLKPA6n14Jn69UQiW19hsEYXAAMaAzq17DcoH3YoFGjNA40VR+WnKNnaB0WD72IHTt2AABe9apX4UMf+hDmzp2rPxiCICYdEliC6FJqtRq+853v4Pvf/z4ajQY4C9qKD5ZrK7aa/puAaFuwKlYjSGHF/quKNZjrL+Rk14MaGiLLPI7SOIddc4HgeNU3iXbDQ3m40X5uxRqs6cLaI7GyVhoihU3bWid3ACxoV51iiZ3q9BVotQ9HW4pV8Dh4ve7fp5Y1uRIr9qn1PP/cfQmrCMsgZMtiwExNAQX8NuK+KpyM7XQSCeSVOR64baE+R12iGeew6h4sl4MzhsZM9d+DkFer4T+unF5dCYZy6mo5wfW5P47mgMb4o9LMkbotUWaNsNXYF+CklYdza7itWs0+lrr1TRZhy7KXvvpwHmL7N6sJ1OWXgUBpzy4MPvs4ysO+uC5atAgf+tCHcPLJJ+sNhCCIKYUEliC6nI0bN+K6667D3XffDQDwylWMLD4a9QMOzmwrtppAaSz4D4OWyIYCK9AQWbsOlCPzWLkFgKmJrN3gqAz70uKfX01kmcdRGnPb5sKG51dY0dc4hTWRWPG7nmqJnU4CC7TGoyKyQmCBUGKBCU5jg9SVB78/AHoCG08JTQUWUE9hI/IqxuD2lJQELiqvArdqZ+7LmlQjKq8AwG2mnMKqyqvl8FBaBU6PDV6SfwyG4iqGHiwk5anUiIiroD5T8bZHxLVVQ+1Doai4ClQFNiqu4TgkBJY16uh/8Rn0b1oDzjl6e3vx9re/HZdccgltjUMQXQwJLEHsJTzwwAP42te+hpdeegkA0ByYhdFDX47mrHmJ128TWIGiyDIvaCOOT/9UENm2FDaCisiKFLY03pr3qCqySRIb1gGk91adEomNf1AxVRI7HdqHgeQFnFTS2KjAhsdPYBobTV2jqApsUovrZAtsXF7FjxVS2CR5BaCUwibJq0AlhVWR1yRxBdTktUNcAWV5TRJXAErpa5K4Amrpa5K4Au2rD+eRJK6CTIF1XfStfx4HDK3B6OgoAOCcc87Be9/7Xsybl/yaSBBE90ACSxB7Ec1mEz/+8Y/xX//1Xxgb8+20vt98jB56NNy+9vmxjAN2DZ3yCSiJbEcKG6sjI7LxFDaKrMhGU9i24xVEVrQSJ45DVmSnQmKTkvapkNjpkL4C6SsQy6axSQILFJ/GJqWuUWQFNmtuZhECK9tGnCKvYhwyKWyavApkUtgseQXkU1gZeY23CceRlddEcQ0vlGsdThNXgUz6miaurRr5tyVNXAUy6WuWuAJAcwAde9ACADhHdct6LNuxHps3+3u6LlmyBFdccQWOO+64/BMTBNEVkMASxF7Ijh078J//+Z+45ZZb4LouOGOoHbAYo4ccAV5pLQqTmMJGkRDZTIGN1MkS2SyBFeSJbFIK23a8hMimpbAddQRpdUznwwLyEpu1+vRkSux0SV9dT26sWRKbJrDh8QWksWmpaxQZgZVYWIj1VM0WcgKyU1gOWE1/y6BEeRVXy0lh8+QVyE9h8+S1NZZsic2T17S0NU6WsLfNb00bLvP3jHXL6Y/XPHEF8tPXPHEVZAlsnrgKsgQ2T1zDcSSkr+Vd2zDw3P+gvGcnAGDevHl497vfjXPPPZdWFyaIvQwSWILYi1m7di2uv/76cH4st0sYO2gJxhceBl4q5wusIENkU9uIU+okiWxaG3ESWSKblsK2HR+IrPg+LrMyEttWC+iUoSJSWCBfYmW2TposiZ0uAiu7/2tWGpsnsIB+GpuXukbJEliVFXEnso04K3VNGIfbW0Kzv/P+kpFXQVoKKyuvgrRW4jR5zUtbO+qnpK+ZaWvbFdPltU00JcaSlr7KiisAOL2AW+kci6y4Auntw7LiKogKrD2yGwMvPo3qNj9x7e3txdve9jZccskl6OkxW8WbIIjpCQksQewDPPbYY/jXf/1XrFy5EgDglSoYW7QU9XkvQ6mmsKol8/dTjEusVAobrxMTWZkUNko4hojM5qWwHTVSUtmsVuLUOgJRpyiJzdpeR3Lv30IlFugUzekir4C8wAoS0ljeaAKu5D6yIo1lDLAz/pZUxFUgUt74XrCq27kU1UY8UIUzI5KgqsirOCSWwoptcuBxKXkVxCVWVV79sSSnsPHtcoS4qmyjE5dXqbS1YyCdrcMyaWvHWGLpK4s8tGXEVRBPX1XEVZCUvpbG5cU1HMt+gD02gv41z6B3ywZwzmHbNl772tfi8ssvx377KSxRTBBE10ECSxD7CJ7n4c4778Q3v/lNrF+/HgDgVnpQm38EnBmHhGlSLglprLLARmoJkVVJYeNEU1lViQU6RVYlhU2sBb/ehM6HlZXXSJ1CJBboTGO7WWCB9jRWJn1NrMHAbDtZYmXahdOIprC6+5AWIbBAewqrIa9iLCKFVUld40RbiXXkNawTk1iRvoZpK9TEFWiXV+m0NU4sfdURV6BdXlXS1s46rfRVR1wFUYFVTV0FXmkMPRtXYWDLOrjBB01nnnkm3vnOd+KQQw5RHxRBEF0HCSxB7GM4joNbb70V//Vf/4WhoSEAgFfpQ23/I9Ccnb31ThuByAqspmQbcUotzgC7qZbCxhEiazXzW4kTj4+0F8PjsOuelsSGteC/WWT1giVWVV4jdQqX2CLkFZi8+a9ZBLdFS2CBzjRWJ3WNIwRWV17F0IqaB3vAoNR81yy4baGxX0VbXgVu1Ybbw7TltTUeX2KZmMsLdWkVOD12+xQJnWEF8tq26rDmW7X6TMtIXFt1mJG4AoDb257+qoora9ZQ3fIsBofXodHwX2z+9E//FO9617uwdOlSvUERBNGVkMASxD5Ko9HALbfcgm9/+9vYscPf3N2t9KO+/zI0Zy9SExPmC2ypBngKHckdZXiQwja40j6wSXXsmge7bvCmlok6LqyGfJqbiOPBGi1oUSfHcCxFS2wRTGX6mgBvGLZ9R+bHaourwLLAiprHN3tG/nWyYAy8twKvYvBHDgAWg1eywMvmH354ZctIXgXcjiWmygUA5nI0Z5S0Bc8fAOBWLXhlpi2tArfK4JaZkbhaDve3zqkwo9tVqnE0ZjBlaQUA1hhDdctqDO5ZH4rrsccei3e/+9045phj9AdFEETXQgJLEPs4tVoNP/3pT3HjjTdi9+7dAACv3If6/kvRmH0wYMm9WbUbHOUxHrQWM22RFXUAtFqMNeuURqOTvfTqWI4HezTyrksn/eQcrOaAmYpRURILAK5rJLEsuB/8dNHwZaQIgRXjKKCWscAC+il5FLFIlKnAiqTcVGA5BxiDO6vPqAxzPcBD/rY8mWMBrLr/d+BVDYUa0Ht+4GhLob2qLbU9T+Lpxd8QY2gM6os9E8NhQGNAv05r3i9Qm6VfR0wtsZtcahufKKw+iuqWZ9E/vB5O8OHU0UcfjcsvvxwnnXRS+BxEEMS+BwksQRAAgLGxMdx88834wQ9+ECayXrkH9XlL0dhvca7IWi6HXfPFsTVHVl1kLddf1dhuRJ6aNESWeUBp3IMdvMnl4s2O6nseDtg1B1bdaZcSjTmo00ZiWZDuGKSx0TeP4cuIdnpVoMAWUG/KBTY2H11bYMX9wLn/96srsOL3yzlgWdoCy9ygPTdoG/Z6SnB7FbciCsSVcQ7WDAS2UjKTWI3nBCGuQjzd3pKWvIrjRUrq9GVvmZNah/vjEjg9zE9xFQnFNXh6afazxJWH8yjV/G2G7KZfz+mVr2PV96A69Cx6hzeEc1yPO+44vP3tb8cJJ5xA4koQBAksQRDt1Ot13HLLLfje976HrVu3AgC8UhWNuYehsd+h4KX0zQTtBkd5NCaeGiLblsJGURTZuMQCEZEN6kkRlVigU04UVgOecomNj5Vz5TQ27Q2kVhpbVPuwm1BHs/aUCWzKQmrKAhsV18h4WE8PeJ9qLd5Rh1cr8PoS9kLJgLleKK5hacbUUtjg71CIa3RMzkDGJqeZA5M/dzRtjbYaq8pr9Nhoe6+qvLYWdmr/uY68xsXV/496+hoXV4FM+mqN70Z1y7PoGd4IL3g+Oumkk3DZZZfh2GOPVRoHQRB7NySwBEEk0mg08Otf/xrf/e53sXmzv78et2w0Zi9Gfd5h4JX+jmM6BFagKLKJKWxSTYn3aHaDozySPDdSKZWNS2w4DkWZnWqJTRqfosRmJSDKElt0+lrAOSZdYHNWAFcSWO6lz51USWGjqWtHHbUUNkleBdIpbJq8ijo6KWzeryhDWgWy8pomrQIVeY2nrXFkW5DbVlpOuFubfQxuVW5MpVrQKpzynJ0qsJyjtGcLKltXozyyNfzxKaecgssuuwxHHXWU1PkJgti3IIElCCITx3Hw29/+Ft/73vfw/PPPA/DfOzVnHojGvCVw+2aH121rI06CtbbeyZPZ1BQ2qWbGe6ykFDaObCprOR7skYyllmVbjIuUWLE9i4zI5oxJRmJl2vekW4qLSl9lpFnyXNz15PeAzUJWYCW2r2KlElDKkbyk1LXjXJICG09dOwYkl8LGW4YTTyWTwubIq0BJYtN+PRLSKpCR13iLcOIpGdCYkT3utLQ1jkz6mpi2dpwwP30V0gpkPOcjpX3Yc1HetR7Vrc/Brg37NWwbr3rVq/DWt74VS5YsyTw3QRD7NiSwBEFIwTnHww8/jO9///t46KGHwp87/XNQn7cEzuB8gLH0FDZOTiorlcIm1Ux47yYjsYLMVDYthe04oUQqW5TEilp5aayMUElIrMr8s9w0djIFVvKchaSvQP79LbvvsiiXlcJmpa5t58wR2KzUtaNWdgqblbrGyUxhJeU1rJUnsSl/17LSKsiS17y0NY6/V2vy4yUvbW2rkyGveWlrnKz0NS9tjRNNX5nTQGX7i6hsex6W429X1dvbi9e+9rV44xvfiAULFkjVJAhi34YEliAIZZ577jn84Ac/wO233x4usuFWBtCY+zI4MxbBbpblxTNDZKVT2KSasfdeWa3ESaSmsrISGx6bIbOTJbEq7awZizvpLJ6SKrFFySuQPP81i4xzT7jAKoprWC5JYGVS19iYUufB5qWuCbXSUlgVeQVSUtiExZpkx5U6Hzb2d6wqrYIkeVWVVkGSvMqmrXGSWoel0tY4KemrqrgCrfTVqg2jsu1FzBzdiFrN31Js3rx5uPjii/G6170Og4ODCgMkCGJfhwSWIAhttmzZgptuugk///nPMTo6CsCfJ+vMOBi8ZzF4WWHV04T2Yq0UNqkuU0th43TIrKrEhscmyOxkSKzm1j/xNFZ39c/EluKpSF87ju0cw4QJrKa4huWiAqsqrm3jiKWwKqlrR632FFamZTiNthRWMXXtqJWUwgZ/t7rSKojKq660CqLyqiutYa1I+qqatsaJpq+ybcKJcA8uhlDd/gJKI9vCHx9++OF485vfjLPOOgvlstpiYARBEAAJLEEQBTA2Nob//u//xk9+8hOsWbMm/LlXnQt34FB4vfMBpvAGPpLKMlczhU0qyznsGteSWIGQWcY5rLqrLrHhYGJJbN2dGIk12XIiIrFFbF3RlsZOB4ENa7TGUrjAGoprWK6nx0xcBUJgTcQ1rNUSWNXUNQmvpwS3p+T/XTU0/65ErYjEmkqrwO0twSu1/g50pFXg9Frt7b4GtdwqCz/8A/SktXWwn77qpK0hTg32yFqU9qwBc/201bIsrFixAm94wxtoKxyCIIwhgSUIojA453jsscfwk5/8BHfffXfYXsztHrj9i+EOHALYCiuqBu9x7DqH5XBwy/xNj9UMWomLeP8UtDlaTddMBEQSW3d9+TR9WuYczHHN9oqN1ALn/hgdM6nwywW3rYiFkgD19uEsuFfcIk4AYBvsTRqBMQZUyuaPC78YWH8feFlx/9WUWqiU4fWUjOUVAMA53L6KsbyKsbk9/m00kVaBV7XhViwjafULcbi9tp9wFvHr9Py9Wo2kNcBucjhVP31VT1s5WH0HSnteRLU+BCd4rpg1axZe97rX4X/9r/+FAw44wHyQBEEQIIElCGKCGBoaws9//nPccsst2LVrV/BTBrfnAHgDh8Dr2V86lWWenwSI1jiRzurAPA675sGuR8THQGaZx8Eani+xAt2nVQ9gzUBiTWsBvsRybi6y4r52vUIkFihQZIsUWKBYiS1AYBlj/v1fhAxbQSJZssH7e83G5Ym/RQY+YFYLgL+StgfAZuAls9Sa2xZgMbMPvMSfHfPl1SsbjCm6Z2yPLb01TRpW8GEBZwxeCW2psCrR/Vo9m8FT7eh167BH1sEeeQlWc0/446OPPhp/9md/hjPOOAOViuYevQRBECmQwBIEMaE0Gg3cdddduPnmm/Hkk0+GP+dWFW7/wXD7DwbKA7l17CZHaTzS6mkxbZFNlNjwQuVyYE0Pdi1F7FSfYpMkVrdWgNZ+sQKLtdphOS9UYv2S3EwWixZYwG/V9bj52Ayks6PF0rZbHySoEoirOJ5ZlpHAxhNNXi2DVw3mMgp5FRhILC/b+uKa8Ofl9WjKa8L8WM6Axky95NuKJtzis58K05ZXIa7R5LbZL1mLc1jjW2CPrEW1sTVMW6vVKs455xz82Z/9GZYuXao1LoIgCBlIYAmCmDTWrl2LX/7yl7j11lsjqWwwV7b/YHi9C1tvtmOIFNZutAuLeLOqKrN2w0NpNEdOJMslprBJyD7dZkmsaq0AbYm1Y2/ehcQCU5/GFjH/NbO+ochqCGzq3ECdFDYmrm3nKKtLZ1YrrpbEigXC4p9BWL6IqqIlrxkPH69qw8vZ57X9gOxFnZxetfQ1SVqjNPvUxDqatsZbjt1KfvrKmqOwR16CPfJSOLcVAI444ghceOGFOPvsszEwkP9hJEEQhCkksARBTDrNZhP33HMPfvnLX+LBBx8MBYazMry+hXD7F4FX9utYgCiewsZRkdnMFDbxgJyLZSVWkPfUKyOxKvWgIbHR9DXpfFOdxk5E+pqErsgqCGfuojaqAmtlJ7aqKWzePFLlVuJ46hqnZIHbCnsOy8qr7GdIssmr5ErEsvKaJ60C2fQ1S1qjpKavngNrbJMvrrXWSsIzZszAueeei9e+9rU47LDDcsdBEARRJCSwBEFMKUNDQ/j1r3+NX/3qV9i8eXP4c273we0/CF7fQeBlf4/AtBQ2CRmZVZbY8MCUH6tKrCDtaVhVYvPqQWFebJa8Rs8zlWnsZAmsIBBZQFK2c4RTaSVWWYFNSV07zi0psCoLIEmlsGmpaxISEis131W1iz9PXhW3z8mTV1lpFeTJq6y0ttWL/tq4B2t8K+zRdbDGNoPxVpETTzwRF154IU499VRUq9XOYgRBEJMACSxBENMCz/Pw6KOP4je/+Q3uuusujI2NtS4rz4TXvwhu34GwvWpmCptElsxqS2xYIPZfXYkVxJ+SPYC5biCzmpKY8DSfmcbKyGu8/kSksUC6JE50+3AeMqlsinBqbSGSJ7CS4to2how2Yp2Ve3NT2LzUNYkMiU1NXXXXUAu23UlsG9bc8zVNXlWlVZAmr6rSGqXZL1ZB3wl7dD3s0Q1gXiO8/KCDDsK5556LCy64AAsWLFArThAEMQGQwBIEMe2o1Wq455578Jvf/AYPPPBAazseALy6P1BZCIvtDzD11S2TZNZYYgXB+0pjiY0inqJ109i0ekiRWFV5jdYtOI31y6aI7GSnr2lkiWxMOI33vkxayElRXNvGk5DCmm45k5jCqqSuSSRIbIe8Gr6T6ZjvGrsfdLbPicurrrQK4vJqIq1hTTYCq74B1uh6WM5o+PPZs2fjrLPOwnnnnYcjjjiC9m0lCGJaQQJLEMS0ZteuXbjjjjvwm9/8Bk8//XTkEgaU5gHlBUD5AGOZtRyev6iTAowXKLEClxcjsQKxX2y0pTi+aJNGzQkX2alOX5NIEtlAYAt78x9NYQ3EVRBNYYvYK1UQSqypuAoiizqFLcMFClUor5opaxJCXk2lNUqzzypEWuHsAatv9P+5ra1venp6cPrpp+Pcc8/F8uXLUSoVsFcwQRDEBEACSxBE17Bu3TrcfvvtuOuuu/Diiy9GLmFAaS5QXgiUDgAsvX0Hrbrnv+Es6FlxQiXWdYuTOCGyrquXvqbULLqt2C8byGvBdWFbxaS6kXmyhWIxoFRq7Z1sssdpAGNBzYrBFjgJcIuB91XNxTVKyYJXsX2BLQoG8LIFN5jvaiqtgL9Vjlex4FXE1lPmNZkL8GC/Vy1p5Rxwo9I6El5UKpWwfPlynHvuuTj11FPR19dnPmCCIIgJhgSWIIiuZM2aNbjrrrtw5513psjsgkBmFRYa4X4SazW9tp+ZMCESyzmY4/kyG21bNREnzgHP85M4r0DzcL0g4S1IOAPB5iIxLqpupdxKTqeTyApxBYz2lY0SiivgiztjgFWMGPKS7dcr2cWkpBbAK/5YPY2tddqIdhyXLXDGlFY6ziOU13IBHy5Eny4Y1Pd75RxwhwNp3dQmreVyGSeddBLOOOMMrFixAoODg8bjJQiCmExIYAmC6HrWrl0byuwLL7zQfqE9CyjN99uMrQGJlXV9iWWO/9TIuHkL4IRILOCLbNP1ZTbpqVxHoEQaayqx8fs5bFU2EM6E310hImtb7XJYhMiaCuxkiGvrAmOBDcU1VtdIYgN51RbXpFMzBq+stkVPFjxSxlReo9IqWrq5Lbddjn9lF2huB6tvBmsMgXnj4UWVSgUnn3wyzjjjDJxyyim0XytBEF0NCSxBEHsVQmbvvvturFq1qv1Cq68ls/bsVjtmDOYCVsJWPSz+dKnw7DkpEhv7eRsqMsVbKSxT2TdWkCUtJiKbUddIZNNaaKPptqrM6ghsVFqBiRfX9itpSWyiuMbqKkusSeqadaoC5JWnHKojr/F24KR5yG4153fiNXxZrW8GmlvatrypVqs4+eSTceaZZ+KVr3wl+vv7lcZHEAQxXSGBJQhir2XLli247777cPfdd+ORRx5Bs9lsXcjKQGn/4N+89nmzsRQ2DdV0dtIlNnJ5InmCpdtWLCMsqiIrKUFaIiszB1Q1lVUR2AlIWwFJcW1dWUlgc8U1el3ZuqriquKLmvKaJqxRVOQ1KWVNPXdS+so54I740trYDNbc0XbxnDlzcMopp2DFihVYvnw57dVKEMReCQksQRD7BGNjY3jwwQdxzz334L777sPw8HD7FexZvsiW9ve/B5OSWIFsOjuhEhu0EqeKbOz6HaS9oVZpK1ZN22RFVrGuksiqLGIkm8rmCewEpa2Aori2H5grsSriGq2bm8LKtAvrBKeMgZeY0nxXGWkV5MmrTMqaOIaovHpNoLkVrLEVrLGlrTUYAA4//HCsWLECK1aswNKlS2EVNJ+ZIAhiukICSxDEPofjOHjqqadwzz334IEHHogtAoUgnZ0L2PuDYS4sTz3FyBJaxgMx9vjkp7EZx3UQfbMtk8aazHfMElmDurkiG5//qkJWKpsmsBOUtgIG4toqkCqwWuIaq50osWKLHMY65dV0mqpk6qoirAKxZ2xcXnWFtW08FuBhty+rjS1gzi5En0AqlQqOPfZYrFixAqeccgrmz5+vfA6CIIhuhgSWIIh9ni1btuChhx7Cgw8+iIceeggjIyPtV2CDYGwOmDUHYPuBMfVtR5KEdtqksSk1EnG9ZJEtavudJJEtoDaPzuWN1i5iC5mkVDYqsJOVtgLm+/jGJNZYXGO1Q4mNi2txiwFnpq46shonmroWIazgHOBjgLMd3N0GOFvBeLPtKgcffDBOPvlknHzyyTjuuOPQ09OjO3yCIIiuhwSWIAgiguM4eOaZZ/Dggw/iwQcfxMqVK9HxNMlmRoR2NhgrJRfLIBRaDlgNF1ajYIkF9NPYjHohQmA5Byti25k4RW+TE6FNZgvYT7UNN+X3OJ2lNY5lgZeD+qViU2JuWeA9pTAdLZxY6lqEsEbhJattXqqWsAKANw442wB3O+BsB3h7W3B/fz+WL18eSiulrARBEC1IYAmCIDLYtWsX/vjHP+KRRx7BI488gg0bNsSuwQA2KyK0s8CY2pt+xrm/6rHX2rqnSOkMa7mRrYGKeurnPNzrVWvF4jREUhdIMhrN7OurYln+v+C+4BMgykUTiqtIRIt++WYMXCTS5VKx9RmDJ8S1UqAUR9J5IcTKe6ZmlRefMzFfXrmuc3s1wN3my6qz3U9cI9i2jaOOOgrHH388Tj75ZBx11FEoldQ/GCMIgtgXIIElCIJQYGhoCI8++igeffRRPPLIIxgaGopdgwUJ7Wwwa3aQ0MrNoWUeB3N5kGq2npoLE1qXgwkhjJUzltqiRZYxcJEsRmsWJbOW5UuaqBm2/k4vmW1LWxlrT0RN9+oNavJIG3X0e1ZQ/cLENWkf4OBHvGzBK2BvV5byJ+CV5BeB8v++RgB3B+Du9L96ncK6bNkyHH/88Tj++ONxzDHHoLe313D0BEEQ+wYksARBEJpwzrFp06YwnX300Uexffv2hGv2t2TWmu3/P2Vep+V6HXIZF1rAQGpFChuXk6KktgiRZQzcYslzX0VdE5EV6WtS6+00kNlMaY1i8qFDRFx5yjxgow81TMU1Q1bbfiZSVw15TZPVOLnyyl3A3dWSVWcngPbHpmVZWLJkSSisr3jFK2hfVoIgCE1IYAmCIApCCO2TTz6JJ554Av/zP//TucIxAKDitxpbs8DYzKDtOJp8BZLpZjw9m0ptmsjGzqEttboimyWvsfraqWw0fc05x2TJrLS0xlHcnzctbU09RFVidcRVUlbbLlcUV1lZjSJakdvkVSy45O4C3N1Byrob8X2zqtUqjjrqKLz85S/HMcccg6OPPhqDg4PqgyAIgiA6IIElCIKYQIaHh/HUU0/hiSeewJNPPomVK1ei0WgkXLMPzJoVyOxMgM2A7bHONDYLHakVbcUK51CSWhWRlZXXhHNIy2xW+ppzjqJlVlta4+PKehnXkNaOEjISKyuuGrLacf2cdmEdWY0Tpq5eLRDVXf4/bxfAOx9fc+bMwTHHHBMK65IlS2gOK0EQxARBAksQBDGJNBoNrFq1Cs888wxWrlyJZ555JmFhKMCfSzsICzPB+AwAg2AYVF4gSkpqZdLYnHMkiXab+OSJrK68JowlU2Zl09ecc7Tt/SoptB2rB+tKa5z4760AaY2TKrFp4pryezRZFTgpdS1CVsP6vA7wYXgYBnggrbzWcb1yuYzDDjsMRx55JI466igcc8wxWLBgQeq0AIIgCKJYSGAJgiCmmN27d2PlypWh0D799NPYtWtXyrX7wTAj+Dfof2UVtRMmSC0AWI4H1nSLXaE4Ka0Vc1iDLXi42MqmaAGIy6zj6qWvEudJEtoJE9ak8wOFS2uc6F7GXk8rOfaqnR8IFLl9DS/5vy/pRZTy6nEO8FFwPgzwYXBvGOB7ANQ7rssYw+LFi3HEEUfgyCOPxBFHHIGXvexlqFQU/+YIgiCIwiCBJQiCmGZwzjE0NBSmtM899xxWr16dIbXVQGgHAqntBzCgndYy1/OTrSClLWQ12th54AVCJGoXuQVPyjmZx/2VjYve8ifhXHC9iRNWAWPg1UBUPd7au3UC4YG4Cmktep9VoJWqim1xTMTVT1VHwPkewNsTSOseJLUMMMawaNEiHH744Vi2bBmOPPJILF26FH19fdrnJwiCIIqHBJYgCKIL4Jxj+/bteO6550KhXb16NTZs2ID0p/G+QGr7A7EdgL8CsoRUCZnlHKyeLnuFyG20pVkkpRNBdNuc6DkmSmiLTpSjwhrAKxFpzVr0SxcLbed0q8UIeVbrLw8WT/JKckm5//hvAHwPOB8BvBH/Kx/xf55AT08PDjvsMBx++OE4/PDDsWTJEhx66KG0lQ1BEEQXQAJLEATRxYyNjeH555/H6tWrsWbNGrz44otYs2YNdu/enXFUXyC1fUDw1U9tezrn8UVFNi5InGdKk5bcTpTMZrUOR89TpMwWIbAxaW0T1jgpc5GVsSLnYUxbWjPnpya89QjnuKaIK+euvwIwHwXnowAfi4hq8sJdjDEsWLAAhxxySCisS5YswcKFC2HbE5iOEwRBEBMGCSxBEMReBuccO3fubBNa8XV4eDjjSAtRufWltg8MvQCqsFwki2zyIMzltiiZVZn3mnQeXalVFdiEhBXIkdaOK2tKrKa0qkpqZwHWlrj6kjoekdRR8EBagc4FlVplGBYuXIjFixfj0EMPxeLFi3HIIYfg4IMPplSVIAhiL4MEliAIYh8hKrbr1q3DunXrsH79eqxfvx4bN26Ek7mSLgPQC4YeMK8XjPfA8nrAeC8Y7wVQAYOksOXILZAguPGVk2WE1gqk1XTRJt2W4zyBzWsJ1kW8rGeJrBU7V4q05q7yq/gWgsMFUAPHODy7BmAcnNXA+bgvrgkLKUUZGBjAQQcdFP5btGgRDj30UCxatAjValVpLARBEER3QgJLEARBwHEcDA0NYf369aHYrlu3Dhs2bMDQ0BBcN0fYOPNlFlWAV8HEP/SE3/uSKyGTMoLLOVgjItxxyZyI1YbTzhX5eZvYstbqyknJKlCQsKYRTWMThDVzv9ZoDdnTwQFQBw/+ATVwFvke4wBLnpMapa+vDwcddBAOPPDADlmdOXMmbVdDEASxj0MCSxAEQWTiOA62b9+OTZs2YfPmzeFX8f3WrVvzBRcAOABE5bYC8AoYr4DB/4rwayk70Y1Jrr89T2Brgbe2JbaTQVxsIysQT6ioJsEYeNlurfKctN2NxMs/hwegAY5G+1fWhC+rNQhpBcvfCxcAent7sWDBAsyfPz/8esABB4Tfz5gxgySVIAiCSIUEliAIgjDCcRxs3boVmzdvxtatW7Ft2zZs3bq17fsdO3bISa6AMwDlUG7By2AoA7yU+JXxMoASANsXX879PW3bavJJlVpenqRFgoSsxhDb0ABCRB0AzSApbX0FmuBM/KyJqKjKSqmgt7cXc+fOxdy5czFv3jzMmTMH8+bNw7x580JhHRwcJEElCIIgtCGBJQiCICYc13Wxc+fOUGi3bduGnTt3YteuXdi5c2fbv5GREf0TcYZQZLntf0UJEN+7FhhsgLcuB2dgLvO/wgK4BcAC41ZQz/+ZnwgH/8INUMXP0JEYx6WSg4ffdX7lAPMC0fS/BzxwFvzf3zgXvCRk1AWYG8wpdcBt/2e+lLrB9/5lgAMw/ZWVbdvGzJkzMXv2bMyaNavtqxBV8bWvr4/klCAIgphQSGAJgiCIaUWz2QzFdteuXdixYweGh4cxMjKCPXv2YM+ePRgeHg6/HxkZwfDwcM4iVJMEB6JS2yap08Drent7MTg42PZvYGAg/H7GjBkdojo4OAjLmqD5xARBEAShCAksQRAE0fVwzlGr1bBnzx6MjY1hbGwM4+Pj4dfo99GfjY+Po9lsotlsotFooNFohN/HfzbRgswYQ7lcRqVSQaVSQblcDv9F/1+pVNDb2yv1r6enJxTUgYEBlEqTPBeXIAiCIAqGBJYgCIIgJPA8T+kfYwyMMViWBcYYbNtu+79lWW2XicsJgiAIgkiHBJYgCIIgCIIgCILoCmhSC0EQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVkMASBEEQBEEQBEEQXQEJLEEQBEEQBEEQBNEVlKZ6AARBEFMF5xy1Wm2qh0EQBKFET08PGGNTPQyCIIgpgQSWIIh9llqthvPPP3+qh0EQBKHEbbfdht7e3qkeBkEQxJRALcQEQRAEQRAEQRBEV0AJLEEQBIDKg/sDLgOzGMCs8CusoE2PMTDLAljwc8bCy5i4HmOtn7PWcW0/i9X0r9e6nIvjrMjlKT/njLX+D4AHpcAYuAUAzP9ZeC6Ex/Dg/63jWOt4q3WZf0z75dGaXFzHQmq9sG5kjK2v8XHEL2/9jpIuBxCOIe1cbT9PGUf77WqdM+my1jG87Xwd5xGXI345bztGXLc1Lh5exqLXZ+GtDS7jsa+iJgdjvO3hJWr6v5rW5VZQr+1nwfetyyI/i3z167X+H/0H+LX9/6N1WeR8FvPCn/nX9QAANmv9P3qM+H/rcg4bXnAZh828yHEe7MhxdvBzG17HcRbEsR7stsv869uMg8GDLcYHLzzGBvzjIC7z7w8b4pw8HIf//+ArEHzPgvsKsBmDBQYbwVcmLrPAwNBs2Lj4r+aDIAhiX4cEliAIAvDl1fPfKIK1voamwRgYhLgGPw/shPlGiJbtRI7rMCgrZkptlhE5DrGfpf0c6V8jchh+H/8almORsqxjiO2Xx2siEOm0ep13R0fdxMuyjpO4q3TrBV/T5HbCBJZ1Cmz0srjAtn7OY+PnHZcxUTPp8sRjeMK5Yv+AUGDj/1IvC6UyIrYR0Q0vQ+vylogiIrBeuwAyIYDBV8ZgQ9Tzv/e/srbj/FqAzRB+bR3nfx+9DEAgreK6QoCjkuqPOU9g284VPQ/az2eF14/8DgmCIPZhqIWYIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApoH1iCIAgAsDk4PH/zR4b2r4C/X6mF2D6q4rLI/xkL9smMHJd3WWQjUp6yuWnSz1s/87/yyOUcADhr+5l/HQZwtNXj0WOC4zpJ+RmPXNS2tymLDj9j/1Wmv9dr1mV59fIuE18yj4vvv5pyeccYU/aBRef3rOM80ct47KuoKfZdjT68UvaBDevp7QPL4X/PY//EZTzYCze8LKjpMQ4wL3Ke4P8Ibg/ilwOceX7toA5vu6z951bkXOL7+Fd/HP6fdfSrF9xNVvC9FzxEk/eBZbDAWvvKwr/PbYi9Z1t7vUb/b4Xf+8eF+9cGtSww2ExcxsDA0Gwk/Q0SBEHse5DAEgRBAGicvGWqhzAx8NhXDeJ+ShACoZBe3hWnLcLwqSGNIAiiW6BnbIIgCIIgCIIgCKIrYJxzg8/lCYIguhfOOWq12lQPo6up1Wq46KKLAAA333wzenp6pnhEhA70e+wuenp6wBj1RBAEsW9CLcQEQeyzMMbQ29s71cPYa+jp6aH7cy+Afo8EQRDEdIZaiAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApoFWKCIAiCIAiCIAiiK6AEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIroAEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIroAEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIroAEliAIgiAIgiAIgugKSGAJgiAIgiAIgiCIrqA01QMgCIIgpo5arYbHHnsMq1atwrPPPotnn30WQ0NDAIB3vOMdeOc736lde+vWrbj77rvx6KOPYvXq1di6dSsAYL/99sPRRx+N1772tVi+fHkht2NfZyJ/j2n88z//M37+858DAObPn48f/vCHhZ+DIAiCIOKQwBIEQezDPPPMM/joRz9aeN2hoSG86U1vAuc8/FlPTw8459i8eTM2b96MO+64A695zWvwkY98BLZtFz6GfYmJ+j2m8cgjj+CWW26ZtPMRBEEQhIAEliAIYh9ncHAQS5cuDf997Wtfw44dO4xqep4HzjmWL1+O888/HyeeeCLmzp0Lz/Pw0ksv4YYbbsDdd9+NX/3qV5g7dy7e9a53FXRr9l0m4veYRK1Wwxe/+EXYto3DDz8cK1euLPwcBEEQBJEGCSxBEMQ+zCte8Qr88pe/bPvZ9ddfb1x3cHAQ3/jGN7Bs2bK2n1uWhcWLF+Ozn/0sPvrRj+KBBx7Aj370I1x66aWoVqvG591XmajfYxLf+MY3sGHDBlx66aXYunUrCSxBEAQxqdAiTgRBEPswE9W6OzAw0CGvURhjeM1rXgMAGB8fx9q1aydkHPsKk9WC/dRTT+Gmm27CokWLcNlll03KOQmCIAgiCgksQRAEMSVUKpXwe8/zpnAkhAyNRgP/+I//CM45PvKRj1BiThAEQUwJJLAEQRDElPDoo48CAMrlMhYtWjTFoyHy+K//+i+sXbsWF154IY477ripHg5BEASxj0ICSxAEQUw6GzduDLdgOeuss9Df3z/FIyKyePbZZ3HjjTdiv/32w3vf+96pHg5BEASxD0MCSxAEQUwq9Xodn/jEJ1Cr1TBz5kz89V//9VQPicjAcRx84QtfgOu6+OAHP4jBwcGpHhJBEASxD0MCSxAEQUwajuPg05/+NFatWoVSqYSrrroKc+fOnephERl897vfxerVq3HKKafgrLPOmurhEARBEPs4JLAEQRDEpOC6Lq655hr84Q9/gG3buPrqq3HyySdP9bCIDNasWYNvfetb6O3txf/+3/97qodDEARBELQPLEEQBDHxuK6Lz3zmM7jzzjth2zb+4R/+AWecccZUD4vI4ctf/jKazSYuv/xyDA4OYmxsrO1y13UBAJzz8LJKpYJSid5eEARBEBMDvcIQBEEQE4pIXn/729+G8nr22WdP9bAICTZt2gQAuOGGG3DDDTekXm9oaAgXXHABAOADH/gA3vSmN03K+AiCIIh9DxJYgiAIYsJwXRef/vSn25JXkleCIAiCIHQhgSUIgiAmBJG8krx2Lz/84Q8zL//c5z6HW2+9FfPnz8+9LkEQBEEUAQksQRDEPs6ePXvCuYwA4HkeAH+7m127doU/r1Qq6OvrC///7//+7/jP//xPAMAPfvADLFiwILxMzHkVbcNXX301zjzzzIm9Ifs4E/F7JAiCIIjpBgksQRDEPs5f/uVfYvPmzR0//973vofvfe974f8vuOACXHnllVI1n3zySdxxxx0AAMYYvvrVr+KrX/1q6vWvuOIKSmcNmYjfI0EQBEFMN0hgCYIgiMLhnIffO46DHTt2ZF6/0WhM9JAIgiAIgtgLYDz6LoMgCIIgCIIgCIIgpinWVA+AIAiCIAiCIAiCIGQggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisggSUIgiAIgiAIgiC6AhJYgiAIgiAIgiAIoisoTfUACIIgCIIgZKjVanjsscewatUqPPvss3j22WcxNDQEAHjHO96Bd77znVM8Qnk2bdqEN7/5zbnXu/TSS/FXf/VXkzAigiCI7oAEliAIgiCIruCZZ57BRz/60akeRuHMnDkTtm0nXtbX1zfJoyEIgpjekMASBEEQXcFXv/pV3HTTTTj22GPxta99baqHQ0wRg4ODOOyww/DUU0+h2WxiYGAAIyMjUz0sI2644QYsWLBgqodBEATRFZDAEgRB7OWMjo5i9erVWLlyJVatWoVVq1Zhw4YN4JwDAH7wgx9M2Jtnzjne+MY3YuvWrXjrW9+Kv/7rv9aqs3r1avzsZz8DALz73e8ucIRTywsvvIAHH3wQTz75JF544QVs374druuGkvbKV74SF1xwAQYGBqZ6qNOCV7ziFfjlL38JAPj2t7+Nb3zjGxgbG5viUREEQRCTCQksQRDEXs4HP/hBrF69ekrOvXLlSmzduhUAcNppp2nX+frXvw7XdfEnf/InOOaYY4oa3pTywQ9+EI899ljiZTt27MCOHTvw0EMP4Tvf+Q6uvPJKnHzyyZM7wGlItM32jW98I370ox9h165dSjVeeOEF3HTTTXjkkUewbds2WJaFBQsWYMWKFbjkkkswa9asYgdNEARBFAoJLEEQxF6OSFoBYGBgAEuWLMHatWuxY8eOCT/3H/7wBwDAvHnzcOSRR2rVeOKJJ/Dwww8DAN761rcWNrapRoj94OAgTjvtNBx33HFYuHAhqtUqNm3ahF//+te47777sGPHDlx55ZW49tprceyxx07xqKcPvb29uPjii/HNb34TANBsNnOPufHGG3HDDTfA8zwAQE9PDxzHwQsvvIAXXngBv/rVr/CFL3wBS5cundCxEwRBEPqQwBIEQezlvOY1r8GsWbOwbNkyHHTQQWCM4YMf/OCkCuyKFSvAGNOq8b3vfQ8AsGDBgr1K4A466CBcdtllOPvss1GpVNouW7ZsGc444wx897vfxfXXX49Go4Frr70W3/rWt6ZotNOT8847LxTYvC6DX/ziF/i3f/s39Pb24m1vexte85rXYM6cOXBdF8899xy+/vWv45FHHsHHP/5xfPvb357UxZM++clPYv369RgfH8eMGTOwdOlSnH322Tj77LNRKtFbNYIgiCi0DyxBEMRezhvf+Eacc845WLRokbZE6rBu3TqsXbsWgH778NatW3HfffcBAM4///xJHf9E88UvfhGvfvWrO+Q1ylvf+lYsWbIEALBmzRo8//zzkzW8rmDBggUol8sAgFWrVqVeb2xsDP/6r/8KALjmmmtw6aWXYs6cOQD8tuRly5bhn//5n7Fs2TJs3boVv/jFLyZ+8BGeeeYZuK6LUqmEHTt24P7778dnP/tZvP/978e2bdsmdSwEQRDTHfpYjyAIgpgQfv/73wPw25aPP/54rRq333572O551llnSR3jOA5++9vf4u6778bKlSuxa9cuuK6LWbNm4WUvexlOPPFEnHPOOaHACE4//XQAwAUXXIArr7wSL730En784x/joYcewrZt29Df34+lS5fiL/7iL3DccceFx9Xrdfz617/GbbfdhvXr16NWq2HhwoU499xzcckll6BarWrddsEJJ5wQpovr1q3DYYcdpl1rzZo1uPnmm/H4449j06ZNqNVqGBgYwODgIBYsWIDly5fj1FNPxcEHH6xV33Ec/Pd//zfuvPNOvPDCC9i9ezcYY5gxYwZmzZqFI488EieeeCJWrFgRiqcgfv+vWbMGP/3pT/Hwww9j27ZtGB8fx2c/+9mOD0N6e3vRbDaxe/durFy5EkcccUTHuH73u99hZGQES5YsSZ1LXCqVcPbZZ2PVqlV46KGH8KY3vUnrPpClUqng9a9/Pc466ywsXbo0THzXrVuHH/3oR7j55pvxzDPP4GMf+xiuv/56SmIJgiAC6NmQIAiCmBBE+/ArX/lK7Tff9957LwB/nughhxySe/3nnnsOV199NdavX99x2datW7F161Y88MADeP7553HllVem1rnrrrvwuc99DrVaLfxZvV7H/fffjwceeAB/93d/h9e97nXYtm0brrzySqxcubLt+BdffBE33HAD7r//flx77bVGEus4Tvi9Zek3Tt188834yle+Atd1236+e/du7N69G+vXr8dDDz2E559/HldddZVy/V27duFv//ZvE1t5xX2/evVq/PznP8eNN96Igw46KLXWr3/9a1x77bVoNBq5542K8L333psosE8++SQAYO3atXj961+fWqterwMANm/e3PbzTZs24c1vfnPuWNL4i7/4C7znPe9p+9mcOXPw4Q9/uOO6ixYtwoc//GEceOCB+Jd/+ResXr0at912Gy688ELt8xMEQexNkMASBEEQhbNt2zY888wzAPTbhxuNBp566ikAwJFHHpnbPrx69Wp84AMfwPj4OADg+OOPx3nnnYdDDjkE5XIZ27dvx9NPPx0mw2k8//zz+O1vf4vZs2fj3e9+d3juP/7xj/j2t7+NWq2GL3/5yzjuuOPwmc98Bs899xxe//rX49RTT8WsWbOwYcMGfOtb38Lzzz+PJ554AjfeeCMuv/xyrfsAAB555JHw+0MPPVSrxgsvvBDK64wZM/C6170Oxx13HGbNmgXXdbF9+3asWrUK999/v3ab9le+8pVQXpcvX47zzjsPCxYsQH9/P0ZHR7F27Vo8/vjjYUt4GqtWrcLtt9+OGTNm4JJLLsExxxyDcrmMNWvWYP78+R3Xj3448sgjj+Cd73xnx3VEG26j0ZCa+y1Ediq55JJL8OMf/xhDQ0P4wx/+QAJLEAQRQAJLEARBFM7dd98NzjkqlQr+5E/+RKvG888/H6aPy5Yty7yu4zi4+uqrQ3n90Ic+hIsvvrjjeqeccgre9a53YWhoKLXW6tWrsWTJEnzlK1/B4OBg+POjjjoKBx10ED7xiU/AcRx84AMfwPDwML74xS/ixBNPDK+3dOlSnHTSSbjsssuwbds2/OxnP8Nll13WtgWMLL///e/x4osvAvAlftGiRco1AODOO+8Mk9cvf/nL4bzaKKeddhre9a53Yffu3cr16/V6+MHAaaedhs985jMdInzcccfhoosuwvj4eGaS/OKLL+Kggw7Cddddh/322y/8edoq1tHzPPvss/A8r6N+tA39k5/8pNJtA4ADDjgAP//5z5WPE/T09CgfY1kWjjzySAwNDWHTpk3a5yYIgtjbIIElCIIgCke0D5944ono7e3VqhFtA46KTBK33347NmzYAMBfdTlJXqMccMABmZf//d//fZu8Cs444wzMmzcPW7duxc6dO3HJJZe0yatgYGAAr371q/Htb38bO3fuxJo1a5Tnrm7btg1f+tKXAPiS9t73vlfp+CgidRTbKGUxc+ZM5fp79uwJP2w47rjjMlNcmcfDhz/84dzfeRK1Wg3btm3D/vvv3/ZzUSvrg4ssLMui/WEJgiCmCbQKMUEQBFEoIyMjePTRRwHotw8DwPbt28PvZ8yYkXldIcwA8Ja3vEX7nIDfppsmeYyxtsvOO++81DrR623cuFFpDLVaDVdeeWUonvGFo1SZN28eAP93c+edd2rXSWPmzJnhasp33HEHxsbGtGvNmzcv8UMBWaKPG8ExxxwDwG9P7pZVfT3PC9vwFyxYMMWjIQiCmD6QwBIEQRCFct9998FxHNi2jRUrVmjXic5DTEpDozz77LMA/KRNZrGnLPKOj44la7Xe6PVUhK7ZbOIf/uEfwoWhTj31VLzrXe+SPj6J8847L1xI6hOf+ATe//7347vf/S6eeOKJsO3ahHK5jAsuuAAA8PTTT+NNb3oTvvjFL+KOO+5QlneTVZYBtC28JTjjjDMwMDAAx3HwL//yL+Ccpx7veR727NljNAYZssYAIJz/CviPAYIgCMKHWogJgiCIQhFp6Mtf/nKjtsvonNG81Wh37doFoJU0mpA3XzHaHpvVDhudhynmYObhOA6uuuoqPPjggwCAk08+GZ/85Ce15s9GWbhwIf7xH/8Rn/vc57B161Y8+eST4cq8tm3jiCOOwOmnn47Xvva1uR8WpHHFFVeg0Wjgtttuw/DwMG655RbccsstAPwPFk4++WS85jWvyU2S89L2PXv2tK2kHL9va7Uadu3ahUqlEm5NMzg4iCuuuAKf//zncccdd2BkZASXX345jjjiCFiWBc/z8NJLL+H+++/HL37xC1x22WWZ6XoRXHHFFTjppJNwyimn4NBDDw0Xo9qwYQN+/OMf4yc/+QkAX+jFhwMEQRAECSxBEARRII1GAw888AAAs/ZhwJ+vKRgeHjaq1Q04joNPfOIT4dZBJ554Ij772c+GrbmmLF++HN/73vdwzz334IEHHsATTzyB9evXw3VdPPXUU3jqqafw3e9+F1dffXXqXqlZVKtVXHnllbj00kvx29/+Fo8++iieeeYZjI+PY8eOHbj11ltx66234vTTT8dVV12VurVQ3lZBf/mXf9mxzU2Uj33sYwBa+8kKXv3qV6PRaOD//t//iwceeAAPPPAAKpUKent7MTo62rZd0WSwZcsWfPOb38Q3v/lN2LaN/v5+NJvNtkT8qKOOwmc+8xnaA5YgCCICPSMSBEEQhfHwww+Hb8BNBTa6ZUqewM6aNQtDQ0NdM78xjpBXkV6fcMIJ+PznP2+0f2wSlUoFZ555Js4880wAfnL9xz/+Ebfddhvuv/9+DA8P46qrrsKNN96IOXPmaJ1j0aJFePvb3463v/3tcF0Xq1evxr333oubb74ZO3fuxO9//3t84xvfwAc+8IEib5oUF110EU4++WT89Kc/xcMPP4xNmzZhZGQEfX19OPDAA3H00UdjxYoVOOGEEyZ8LO973/vwxz/+EStXrsT27dvDx/gBBxyApUuX4qyzzsIZZ5xhnL4TBEHsbZDAEgRBEIUhBGzJkiXGC89E9zx96aWXMq+7bNkyDA0NYfv27XjppZcy56ZON+Lyevzxx+Mf//EfC5fXJGbNmoWzzz4bZ599Nr70pS/hZz/7GcbHx3H33XfjoosuMq4v2pOPOOIIvPrVr8bb3/521Go13H777doC+8Mf/rDjZ295y1uwYcMGLFiwAD/4wQ8yj1+wYAHe9773aZ27SM444wycccYZUz0MgiCIroMWcSIIgiAKwfM83HPPPQCKWXTmgAMOwNy5cwEgXI01jdNPPz38/sYbbzQ+92ThOA4++clPhvJ63HHH4Qtf+ILWvqGmRNuGxZziIlmwYEG4j63OXrNp7Nq1K9xC6eijjy6sLkEQBDE9IYElCIIgCuHJJ58MxScqlCYIqVq7di1GR0dTr3fWWWeFcvSrX/0KN910U2Zd3f1Ai8RxHHz605/G73//ewATK6+/+93vcqVUzF0GgAMPPFCp/saNG/Hwww9nXmfTpk1Yu3YtAH9RqaJ4+umnw+//9E//tLC6BEEQxPSEWogJgiD2ctavXx+uOCsQ+4sCwF133dW2WnBvb69Wa6NIERcuXGi8FYrgzDPPxK9+9St4noeHH34Yr3rVqxKvVyqV8KlPfQrvf//7MT4+jq9+9av4/e9/j/PPPx+HHHIIyuUytm/fjpUrV+Kuu+7CsmXL2hb4mQquueYa3HXXXQB8YXzPe96DTZs2ZR4ze/ZszJ49W/lcN910E6655hosX74cy5cvx+LFizFz5kw0m00MDQ3h9ttvD9Pz+fPnK29/NDQ0hA9/+MNYuHAhVqxYgSOPPBIHHHAAqtUqdu/ejaeffho/+9nPwtWkL774YuXbkMZDDz0EwJ/f+8pXvrKwugRBEMT0hASWIAhiL+fJJ5/E5z//+dTLv/71r7f9f/78+UYCW+SelSeeeCLmzZuHrVu34rbbbksVWAA4/PDD8bWvfQ1XX301Nm7ciEcffRSPPvpo4nWXLVtW2Bh1ufPOO8PvN2zYgPe85z25x7zjHe/AO9/5Tq3zNRoN3HfffbjvvvtSr3PggQfi85//fOb2QFls3LgRP/rRj1IvtywLb3nLW/Bnf/ZnWvXjOI6DO+64A4Cf+utuAUQQBEF0DySwBEEQhDHPPfdcmB6arj4cxbZtvOENb8D111+P+++/H7t27crcW3bp0qX4zne+g9tuuw1/+MMfsHr16nC+5ezZs3HYYYfhpJNOwjnnnFPYGLuBT3ziE3jwwQfx+OOP44UXXsCOHTvCluKZM2fi8MMPx2mnnYbzzjtPa9ueV7ziFbjuuuvw8MMP4+mnn8bQ0BB27tyJ0dFR9PT0YOHChXjFK16B1772tYWl8wDCxwQAvPGNbyysLkEQBDF9YZxzPtWDIAiCILqb//iP/8B//Md/YPbs2fjpT3+au5enCiMjI/jzP/9zDA8P46//+q/x1re+tbDaRHfzsY99DPfddx+WL1+OL3/5y1M9HIIgCGISoEWcCIIgCGNE+/App5xSqLwCwMDAQCit3//+9zE2NlZofaI7efrpp3HfffeBMYZ3v/vdUz0cgiAIYpIggSUIgiCMaDabOO200/COd7wDb3jDGybkHBdffDEOOugg7N69O3EfUGLf4xvf+AYA4Pzzz8eRRx45xaMhCIIgJgtqISYIgiC6gmeeeQb33XcfBgYG8KY3vWmqh0NMISMjI/jRj34Ezjne8IY3ZM6LJgiCIPYuSGAJgiAIgiAIgiCIroBaiAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiugASWIAiCIAiCIAiC6ApIYAmCIAiCIAiCIIiu4P8DxBLX6aAglzgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 49\n", + "\n", + "plot_reconstructed_image(all_results[iteration])" + ] + }, + { + "cell_type": "markdown", + "id": "a2a944e3-335b-4400-b9b5-cbee3d29d249", + "metadata": {}, + "source": [ + "## Integrated flux over the sky\n", + "\n", + "Define the Crab spectral model" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "b491129a-09dc-403b-8513-aedd289dc1be", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG5CAYAAACTEQDKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyddXgURx/HvxclIQESgru7W3EowYq2tEhxKU5fSouWUlpaChWKS4GipUBxKMXd3SG4EyTucjfvH9PdnT3d3dtLQjqf58mTk72dvbu9ne/81EAIIeBwOBwOh8Ph2MUtvQ+Aw+FwOBwO522AiyYOh8PhcDgcBXDRxOFwOBwOh6MALpo4HA6Hw+FwFMBFE4fD4XA4HI4CuGjicDgcDofDUQAXTRwOh8PhcDgK4KJJRxITExESEoLExMT0PhQOh8PhcDg6w0WTjjx69AiffPIJHj16lN6HwuFwOBwOR2e4aOJwOBwOh8NRABdNHA6Hw+FwOArwSO8DyAzs27cP+/btQ2xsbHofCofD4XA4HBfBRZMOBAcHIzg4GCEhIfjkk0/S+3A4HA6Hw+G4AO6e43A4HA6Hw1EAF00cDofD4XA4CuCiicPhcDgcDkcBXDRxOBwOh8PhKICLJg6Hw+FwOBwFcNHE4XA4HA6HowAumjgcDofD4XAUwEUTh8PhcDgcjgK4aOJwOBwOh8NRABdNHA6Hw+FwOArgoonDMePhw4dYtmwZIiIi0vtQOBwOh5OB4L3ndIA37M08mEwmtGjRAnfu3MGuXbuwbt269D4kDofD4WQQDIQQkt4HkVkQGvYuXrwYZcqUSe/D4Wjg7NmzqF27NgAgW7ZsiIiIgJsbN8hyOBwOh7vnOJmI169fIywszKl9/P333+Lt6Oho3Llzx9nD4nA4HE4mgYsmTqbg8uXLKFmyJIoWLYrr169r3s/OnTtl98+ePevsoXE4HA4nk8BFEydTMHnyZERHRyM2Nhbz58/XtI+XL19aiCRXi6aoqCi8++67aNiwIQ88z0D8+uuv+PDDD/HgwYP0PhQOh5OB4KKJk67s3bsX9erVw4IFCzTvIyQkBFu3bhXvb968GSaTSfV+du3aZfGYq0XTokWLcPDgQRw7dgy//fabS8fiKOPatWsYNWoUNm7ciG+//Ta9D4fD4WQguGjipBuPHj1Cp06dcPLkSQwbNgw3btzQtJ9ffvkFbD7DixcvcPLkSdX7YeOZPD09AQAXL15ESkqKpuNSwqZNm8TbBw4ccNk4Ai9evMCUKVNw7tw5l4/1tsIK8OPHj6fJmEajETwnh8PJ+HDRxNHEvXv3cODAAc0XepPJhH79+iEmJgYAQAjBpEmTVO8nNDQUK1assHh848aNqvaTkpKC3bt3AwACAwPRsWNHAEBiYqJmMeeIp0+f4vTp0+L9o0ePIjk52SVjCfTp0weTJk1C69atkZSU5NKx3la2bdsm3r5z5w7Cw8NdOt758+eRO3du1K1bF4mJiS4di8PhOAcXTRzVXLp0CZUrV0azZs0wcuRITftYsGCBhWVl48aNOH/+vKr9zJ49WxQaAwcOhIcHLT22adMmVYLuxIkTiI6OBgC0bNkSderUEZ9zlYuOtTIBQEJCgkxE6c3du3exZ88eAMCbN29w+PBhl40FUOtJ//79UbFiRVy5csWlY+nF8+fPcebMGdljrnbRTps2DeHh4Th9+rRFIoIruHjxIsaNG4eQkBCXj8XhZDa4aOKoIjo6Gp07d0Z8fDwAKloWLVqkah937tzBmDFjxPtdu3YVb0+cOFHxfmJiYsSgb09PT3z99dd49913AVDXnxoBxrrm2rRpg1q1aon300o0AcD+/ftdMhYA/P7777L727dvd9lYALBlyxb8/vvvuH79uuz7dhVhYWHo27cvpk+frtkCumPHDovHXClkExIS8M8//4j3Dx065LKxAGpRbdeuHaZPn46ePXu6dCyBlStXYvbs2TAajWkyHofjUghHN27dukUaNmxIbt26ld6H4hJMJhPp0qULASD78/DwIPv371e0j9TUVFKvXj3xtUOHDiVJSUmkaNGi4mOHDx9WtK8ZM2aIr+nXrx8hhJBFixaJj40bN07xeytfvjwBQAwGA3nz5g2JiYkhbm5uBACpVq2a4v0o5eXLl+L+8+TJIx5zw4YNdR+LEEJSUlJIvnz5ZN9b0aJFiclkcsl4hBBSv3592TkSFhbmsrEIIbJzc8+ePZr20aZNG4vzu02bNjofqcTWrVtlY1WqVMllYxFCyI4dO2TjPXv2LM3GW7x4sUvHIoSQ27dvk48++oisXr3a5WMRQq9nKSkpaTIWJ2PARZOOZHbRNH/+fPECmC1bNtKrVy/xfkBAALl9+7bDffz444/ia0qUKEFiYmIIIYQsX75cfLxBgwYOJ/Pk5GRSsGBB8TU3btwghMjFSMmSJRWJggcPHoj7qVu3rvh4hQoVxAk/ISHB4X7UwIq78ePHk5IlSxIAxNPTk8TGxuo6FiGEbNu2zUIMACBXr17VfSxCCDlz5ozFWEuXLnXJWIQQcvPmTWIwGMSxevTooXofsbGxxNvbmwAg+fPnJzlz5iQASFBQkMvEZZ8+fSw+p9evX7tkLEKIxaJn2bJlLhuLEEJatWoljtWiRQuXjmUymUj16tUJAOLu7u5yQZiUlESaNm1KDAYD2bRpk0vHIoQKtLlz55LNmze7fCx2TI4cLpp0JDOLpgsXLhAvLy/xArhhwwaSmpoqW5mXKVOGRERE2NzHtWvXxH0YDAZy9OhR8bnU1FRStmxZcV///POP3eNZuXKluG27du1kzzVp0kR87vLlyw7f27x588Ttv/vuO/FxdkI7efKkw/2ooWXLluK+z549SwYNGiTe37Vrl65jEUJIhw4dZJOXcPuHH37QfSxCCOnWrZuFGGjZsqVLxiKEkJ49e8rG8vX1FQW5UjZv3iy+fvDgwaR169bi/Xv37ul+zMnJySQwMNDic9q4caPuYxFCSGRkJMmSJYtsrK5du7pkLELoYoQVsp6eniQqKspl4x05ckT23ubOneuysQghZNmyZeJYFSpUcOlYhBAyceJEcbzjx4+7fLwvvviCACBfffWVy8cymUxkxowZZPz48SQxMdHl4zkDF006kllFU2RkJClRooT4g/3000/F56KiokSLjDAhWzNXJycni6tAAOSLL76w2Oavv/4Sn69WrRoxGo1Wj8dkMpFKlSqJ27LiixBC5syZIz43adIkh+/vvffeE7e/cOGC+DgrpubMmeNwP0oJDw8nHh4eBAApXLgwMZlMZN26deJYY8aM0W0sQgh5/vw5cXd3Fy0ot2/fFseqV6+ermMRQsiTJ0/E9xcUFEQKFSokWuzevHmj+3h3794V3x/7t2LFClX76du3r/janTt3kq+//lq8/+eff+p+3Pv27RP3nzdvXvH2iBEjdB+LEEKWLl1q8RkFBga6zJowYcIEi/H++usvl4xFCCGdOnWSjdWkSROXjWU0Gkm5cuVk4125csVl471584b4+fmJYwnhCK7i7Nmz4lgeHh7k5cuXLh1vyZIlqq7Z6QkXTTqSGUWTyWQiH330kXhC16pVy2IlcO/ePdGVYS6qBCZPniw+X65cOavuLqPRSKpVq+bwAvvPP/+I29StW9fCdfL06VPFK8D4+Hhx9Z0/f37Zvk6fPi3up1evXnb3owbWSjZy5EhCCHUrCo/VrFlTt7EIIWTatGnividMmEAIkcdw6e0OGjt2rDjexIkTxRUrALJkyRJdxyKEkP79+4v7b9u2rXi7WbNmiveRmppKcuXKRQCQrFmzkoSEBLJz506L70lPhg0bJu7/t99+E93KroprYi2wgjsYADl9+rTuYyUnJ8uEoPDXs2dP3ccihFq1hM9P+HNzc3PZZL9lyxaL9zZ+/HiXjEUIIV9++aVsLH9/fxIXF+ey8Zo3by4b7+eff3bZWDExMbJ4y7x585Lk5GSXjecsXDTpwN69e8nYsWPJsGHDMp1omjt3rngyZ8+endy/f9/qdocPHyaenp7itosWLRKfO3funGh5cHd3J2fPnrU5HjtRlS1b1uoquGnTpuI2tmIJ6tatK25j7/v4+++/xe0GDBggey4xMVF8T+XKlbO5D7WwrjLWSiZYz9zc3Eh4eLguY5lMJlKqVClxvLt37xJC5MJGrUXGHrGxsSQgIIAA1B3z/PlzmfjU20X38OFD8dzKnj07iYiIEK2iBoOBPHnyRNF+jh8/Lh7jBx98QAihq3tXWeSMRiPJnz8/AUC8vLxIdHQ0qVmzpjie3kL24cOH4r5Lly4ti6n79ttvdR2LEEI2btwoE7L+/v4EAMmZM6dLAqdZYZ47d26r1yG9MJlM5J133rEQTcWKFXNJ7FtYWJj4+bF/f/zxh+5jEULIgQMHLMYqW7asy+L62AW18Ld+/XqXjKUHXDTpyNtgaTp37pw4cSrZlo1jchTsyJpYPTw8yIEDB0hCQoLMfefI9GoymUiDBg3E7ZcvXy57njUbly5d2qZr4eeffxa3+/77722ON3ToULvvr0aNGuIEHB0dbffYlRATEyNatvLmzStzQY4cOVI8Fr2CPQ8fPizus2nTpuLjR48eFR//8MMPdRmLELlLs3fv3oQQ+p0WKVJEPC/0dNENGTJEHE+IvWAvwtOmTVO0H1ZEsuecIMCyZMmi6+r35MmTMlFBiHzi1zuu6fvvvxf3PWXKFJmIql+/vq5jEUJkcXO7d+8mH374oXj/yJEjuo4VExNDsmfPTgAQb29vmSXaFcHn7G+qUqVKMquM3rGPhMhjmVhh7Yr3ZjKZSJ06dWQLZeH2sWPHdB/v2bNnxNfX10I0sdeqjAYXTTqS0UXT4sWLxZOyevXq5McffySPHj2yum1kZCQpXry4uL1S98Rnn30mviYwMFAWoFutWjWSlJTkcB/sRalo0aKy13Tu3Fl87rfffrO5j/v378veqzVMJpNY6sDT09OqKBo8eLC4n4MHDzr+ABywfv16cX+DBw+WPcdmuOkV18JmOLIr09TUVDEI2d/fX9H34gij0Sizal26dEl8zhUuuqdPn4qi3s/PTyxpcO/ePXGs8uXLK1ohC/Epbm5u5NWrV+LjH3/8sbiv8+fP63LchBAyZswYcb9CViGbnq9nXJPJZJIlWTx48IAQQsTH3N3d7SZwqIX9/IsXL06MRqPMJW0tntEZWKHer18/2e/aFaUu2ASB1atXywLCrYUmOANrZfL09CQPHjwgxYoVE8/Vp0+f6joe63asWLGi7L316dNH17EIkbvWR4wYQUqXLi3ev3nzpu7j6QEXTTqS0UVT+/btLRS9sNKcM2cOCQ0NJYTQiywbVFm7dm3Fk2pqaqossFr48/LyUhUoyWaXzZs3jxBCA37Z2kaOygAIViLAevbT9evXxeeDg4Ot7oMNnv3xxx8VH78t2JTvvXv3yp6LjIwU358e2TiRkZHEx8eHACA5cuQg8fHxsud79Ohh81i0sH37dpsrRVe46P73v/+J+xw7dqzsObZGlCOxwwbGN2jQQPbczJkzxefmz5+vy3GbTCYxpsjNzU10xUVFRbkkrom1zrJ1wNjPb8OGDbqNN378eHG/QnbmmzdvxPdWpkwZ3cYyGo2yiVbIlv3888/Fx/Qsq3Dp0iVxv0WKFCEpKSkkMjJSLFWRJ08eXd2PX331lTjewIEDCSFElqAwffp03cZKTU2VeQW2bt1K4uLiRGuTr6+vrtmPly9fFrMrs2fPTl6/fi2rvfe///1Pt7H0hIsmHcnooonNgLP25+bmRoKDg8knn3wiPpYjRw5xZaqUqKgoMdBY+FPqJhE4d+6c+Nq8efOSuLg4mSvNnstNYOrUqeL2P/30k8XzbM2oGTNmWN3HlStXxG06d+6s6j2Yk5CQIGbABAQEWHX3sKbxFy9eODXeggULxH0NHz7c4nk2Y0+PC9S7774r7m/btm2y51gXnbu7u9MuuhcvXohuTh8fH4uAXzZmx9F7++WXX2wKY9aNJrgbneXq1aviPs0zvGrVqiU+p1dc06effiruk7XOsvGDn3zyiS5jJScni8VaPTw8xIUYIYQ0bNhQHE+vayT7HlihfuLECfFxPYuTsqU02Iza999/X9cFCCE0yzZbtmziZylch+/evSuOpdSSqgTWGvjOO++I+2Vd4HrGiLEuXOF3FxYWJv6uc+TI4dJgd61w0aQjGVk0xcXFiaq+Zs2a5Pbt22TKlCkW4sb8b8uWLZrGYzPq6tWrpymt+YMPPhCPY/To0aLVJGvWrIoCpUNCQmQXAXPYbKKQkBCr+0hJSRHHLVasmOr3wMK632yZutlV+po1a5waj7W0Xbx40eL5yMhIMYi6ePHiTl182RV4qVKlrJaL0NNFx+7rs88+s3g+PDxcXP3nzp3bbjxS48aNbU7mCQkJuicDfPPNN+J4s2fPlj03evRo8Tk94pqSk5PFrEBvb2+ZGy4uLk78jITSF87Clg0xj5X76aef7C5itMBOvOy1ymg0kgIFChCAWrkjIyOdHuvevXuitSwoKEg2obNud73KAUyaNMmmqGXjPs+dO+f0WElJSaLbDwA5cOCA+Nz58+fFx2vVquX0WIQQsmvXLnGfRYsWlXkN2Pp4riyIqxUumnQkI4sm1nJjvmK+cuUKmTBhgiyGCQAZNWqUU2M+fPiQLFmyRHMA9fXr12XF8YQ/NenfFStWFF/HZlKxgqFkyZJ298G6epxZ/ffu3Vvcz/bt261us3fvXnEb82w+NVy8eFHcT40aNWxux1qHhKrqWmAvdLaKCrJVwp1x0b1+/ZpkzZpVFALPnz+3uh0bfLxjxw6r27x580as8VS6dGmr2wjBtwaDQZfJt0qVKuJxPX78WPYcm82pR1wTGyf10UcfWTzPBjE78/0LBAcH27S4sIuYRo0aOT0W614vXry4xcJsxIgR4vN6tFVhLd3mGYfx8fGiFTl79uxOF2iMiIgQ3WKslUngt99+E49FjzgqNku6efPmFs+zpWCUFAy2R2pqquy6bF4DjXXl611+RQ+4aNKRjCyaVqxY4XCVZzKZyOnTp8n48ePJ9OnTM0StDPNKz+7u7jaD163B+v/ZVT27MnR00WGz2hxVKrdFcnKymIrv5+dnMx4rLi5ODG52xrI1fPhw8ZjtxeKwMQRa4yNevHghHnOOHDlsVuJmA3SdcdGxRROHDRtmczvWsmfLtbpq1SpxG1sBymw9pX379mk6ZgE2SNraqp2Na6pYsaJTYxEij6Ezd5kSIs8y/fXXX50a686dO+K+SpQoYdXaKMQfubm5Oe2iZavoWzt2NqGkY8eOTo318uVL0W2UNWtWq8HlbIygVgu9AHvdsrZ4ioiIEK2EQUFBTiVyxMbGyvpfWisJw4oqZ0Uam5BUu3ZtCwsn2w7H1vGkJ1w06UhGFk1sts7OnTvT+3AUc+/ePdEiBKjvKcbGJDVu3Fh8nLWM7N692+4+/vjjD5srTKXs2bNH3Iej1hWs29BWXSx7JCQkiALNx8fHbmYUO9FpbRbMBqs6qmbOup+0uOjCw8Nl2UTmlhqW5ORkEhQUJFqkrH0ObOFWW6nw7IJDSSydPViRYquFDRvXxGbyqYUNUA4KCrK6CGLjq1q1aqV5LELkZRtsCXDWrbpq1SrNY4WFhYluc39/f6sByqmpqaIYyJIli+q2OixscUlbFnjWStilSxfNY5lbmWxdA1hBvHXrVs3jsbGfnTp1srpNeHi4KBoDAgI09+KMiYmRFT017+YgwAorV1c/VwsXTTqSkUUTm9GmxlKTERCsJu7u7qpNwyaTSba6DQ0NJUajUSyA5+vr6/ACwGZXmfe5UwpbusBRK4lvv/1W3FaLT3/NmjXi65VUYC5Tpozm1X98fLwoTNzd3e2KGELkLjotdWbYGkxCNpE9WBfN4sWLZc8lJiYqKrp469YtcR8dOnRQfcws9erVE/dlK46OFZbOZLWxddOsJQIQQn8fQuyPj4+PRYalUpKSksTflKenp81K3Gx/OGvuQqWwVe7tWT7Y3926des0jRUVFUVy5MghvjdbBVOTk5PFOE4fHx/NIo09x+0JBlakCQVZ1RIeHi6+Nzc3N7suWtaSpjXeko3TsnfMsbGxonB0tPBLa7ho0pGMLJqEzCV/f3+XVXZ1FcnJyWTu3Llk//79ml7PBlcvXLhQNnG3b9/e4etNJpN4YcmXL5/q8dWueI8dOyYeX/fu3VWPx8YpHT582OH27OpfbewHuyJU0vzVGRcdO3m5u7srssKx37V5HM3u3bvF5+y1yTEajeIFPG/evJp/P8+fPxdj9MqXL29zO3YytCV2lMAGuNtrldKvXz/FVldbsJmY9rJMU1JSnK4PlpycTAoWLEgAGmd2584dm9uy/f20Zr+yAex9+/a1uy0r0rRU7I6IiJCd4/YaRaekpIjXFU9PT031qMaNG6f4vR06dEjcVk2LIoGnT5+K1kEPDw9y+/Ztu9uzC55Zs2apHs9VcNGkIxlVNEVHR4snn7UssswOGwTfvHlz2UpOaQotG+CqtqAcu7pWEluRnJwsBjqrnaTZmJlSpUopei17MVTjVjCZTLK6Lkp7mGl10bFuBKWF9swLO7JCi41VcmTRYQOmtVpq2RIQEydOtLmdHnFNbMXvMmXK2D0PWMGjNfmDFeqOFjdsnOKePXtUj8UeryPLb0pKimj9yZo1q2pLWmJiotjuxmAwOAyWZ+OotJQ6YDMrHYkYQggZNWqUuL1Qz04pz58/F0WMl5eXw/OarS8GWK99Zw+2IbaSEifXrl0Tty9XrlyGWexz0aQjGVU0nTp1Sjz5+vfvn96Hk+aYWzfYSdSRO0mAXZGpbXHCBpKvXLlS0WvYqsNqsprY2AultbFSUlLE1W327NkVJwCwlho1rTi0uOhiYmLEyc/Nzc3hKpWFFVtCTJrJZCKFChUSJwxHGZ5sKwtH7lVbsOnxjgpuOhvXxLZN+e677+xuGxYW5lRRVdZ9rUSos2UJtFjSWBenEuszW3Va7W+XdXEqWfAYjUbRCqa2ZVBkZKTMyqSk3dXly5fF46tTp47isQiRZwMqrdP2ww8/iK/58ssvFY916dIl0cqaI0cOxZ9Lo0aNxPH06MigB1w06UhGFU1sVWtbRRwzO+yKTPirXLmy4tezDUgnTJig+HUmk4kULlxYNKEr9c2zLgFbKfzmpKSkiPEp7u7uqopjskX72Bot9mjVqpViSw2LWhedyWSSZcx9/PHHiscihJBHjx5ZTOpsSYbWrVs73AebiaelDUh4eLiY0FCkSBGHwsKZuCZbbVPswTagVdrk2NqxKqm/FBUVJda+UlsfihXclSpVUvRathedGnd3amqqrNq40r5ybDVyNcUgp0yZIr5OTcsStoSF0rmHTbDJmjWrzRg0c54/fy6W6ChQoICi6ucmk0lmqf/5558VjUUIIX/++af4OmeLC+sFF006klFFEysYtJjDMwNsF3vhb/z48Ypf//jxY/F11uqY2IJtYaEmO+nChQvi695//31Fr2Fr8qgNWGaDx60VizSHrSdVtGhR1cVL2YnWPECbJSkpSVah3mAwkOvXr6saixBCmjZtKpv8WBftggULHL4+NDRU3F5LjSG22rKSz9eZuCZ7cVy2YFPc1bhMExMTxUQALy8vxXXMWKubmuSO7t27qz7OpKQkMSYtW7ZsimsosQsl88rt9mDDAZS+LioqSsx4dXd3txunZQ5bNkTJgs5kMskWSUKja6Ww7bhs1T8TMBqN5LvvvpNdK9TUsGITDDw8PJzukqAHXDTpSEYVTewF6tmzZ+l9OOmC0WgUYxOEP1vprtYwmUxi0GVAQIDi1THr1rPXYNja8QoX0YCAAIeixGQykbZt24pj2SqeaYvw8HBxBVmqVCm7265fv16sywRoq+/DiklbLrpXr17JWm8A2ks+/P777+I+hg4dKqsDo9SyIiRT+Pr6qu4vxrbZsFXagMWZuCZ7GYO2YNuOqMlqYy0BShIBBNi6P1OmTFH0mmfPnonWkaCgIFXxSWzjakcTPSH098S6SNXUZzOZTGLjaoPB4DAGMiUlRbYwUNuuJzQ0VPztFipUyGp9LIHo6GjStWtXcazAwEDVBVtZq6s9l+WzZ89Is2bNZL/ftWvXqhqLEHkijyNXc1rARZOOZFTRJLhscuTIkWGC6dIDtuBjQECA6omPFSVK4g3Yi6ebm5tiE7gA20bGUQwMG3OTL18+TU1D7bUTEZg3b56sSnvbtm01ZUCZu+jMLRSXLl0SRQpA6yw5U9cnKipKVtdH2K+9aunmdO7cWZN1JDY2Vhw7d+7ciq1yWuKa7LVNsUdKSooqkS7A1hRTE3PCBqorbc3BxuupiachhJCtW7eKr3Xk+jIajTIXW5UqVVRfN9nUenshEW/evJG5rtzd3VXF6wm0adNG3IetOK+rV6+K5UXUimqWlJQUki9fPvF4rVl/tm/fLlogBfE4adIkTfPPgwcPxGtO4cKFNbXk0hNNounZs2dk+/btZOrUqeSzzz4j/fr1I0OGDCHjx48nixcvJmfPns0Q1aTTmowomiIiIsQT17yD+38NNkusW7duql/PZraYl/63Bls4kC2sqRR2NW4vVoSNhQC0Fw1k46jM4w5MJpOsiCVAs3uc6ejOFlxlL94bN24kvr6+MhGoNDPPHh9//LHs+AGQb775RvHr2ca+aqyGrJtHSW0pAS1xTdu3bxdfozYGhC30qSR+h61f5ShDzxpsLI6tVjgCK1euFK0pHh4eqi3mSpplE0IFbseOHWXnyKZNm1SNRQghN2/edCgKL1++LOv35uHhobknI5tRaK18xvLly0XhDlA3pTM1wFjrD1vINCEhQWbpBEDy58+vOE7SFqwotFbZPi1RLJpMJhPZu3cvGT58OGncuDFp3LgxadSokdW/xo0bk7Zt25K5c+f+p9xBGVE0sTV/Bg0alN6Hk66YTCYycuRI0qBBA5uFBe3BxpkoSc1ms3bMG7Mqgb3w2oqHYoUOoDxo3BrsJMiKvNTUVDJw4EDZOOPHj3faamnuojMajTJhKkw4el1D2IBg4c9aI2NbHD16VHydmixUtiigGjePlrgm1hqm1kXLZop9/fXXdrd9/fq1TPT88ssvqsYiRG4dtSdC2ZgdQHsbD9YtZa0e1fPnz2VNrt3d3e22IHJE1apVxX2Zxyj99ddfsoVBrly5FNVUs0VCQoIYt5U1a1axFlx8fDwZMGCA7POrUqWKqpgpa7CdBITkihs3bpDKlSvLxmrfvr1T/ToF2MWAksQNV6JINJ06dYr07t2bNGrUiLRr1478+OOP5O+//yZ3794l4eHhJCUlhcTFxZEXL16Q06dPk+XLl5Nhw4aRxo0bk2bNmpE5c+Zobtr6NrB3714yduxYMmzYsAwnmhYtWuTUxM2RePXqlfhZOmo5wk5A9prK2sNkMolm8KxZs1q4wWbPni27QGmZuMzHE+qwuLu7k/DwcJKQkCCLxwFAZs6c6dQ47HjCStvd3V0WYArQljlaK1RbIyUlRdbCoVChQqqEX1xcnGjtqFSpkqLXmAchq3Flqo1runTpktg2JVeuXKqt/U+ePBE/G3v13F69ekUqVaokblugQAESHh6uaixC5AHrbdu2tXjeZDLJYgIBGo+m1T2zYcMGmxa/y5cviyUoAOrC3bVrl6ZxBH788Udxf0LcVmpqqsxKA1AXsdLSJ/ZgFzYrVqwgd+7ckQk3gPax0+s3xSZXjBgxQmbJ8vb2JvPmzdMtHCQ1NVV01xsMBk3tpfRCkWhq1KgRGTZsGDl+/Lgqc/yLFy/Ib7/9Rlq3bk2WLVum9RjfGjKipenTTz8VT2RnTaQcKRg4a9asNi/ep0+flgVKO3Pus9lCx44dEx9nxTDgfE80gc8++0zc54IFC2R1Ujw9PTW3T7AF66IT/gwGA5k+fbpL4u/YTFJ7zX5tIUxCbm5uitpk7Nq1SxxPbakEQpTHNd27d0/WdFVLWQRCiFis1M3NzaoQevnypaxDff78+TVZbQmhsUPCoiBLliwkLi5OfC4lJUVWqRwAmTx5slPnRFxcnGjdyZUrl/j73blzp+i6A2jczNWrVzWPI8CWuihXrhyJiIiQ1V8DaJsjvUQM61UoXbo0yZYtm3jfx8eHrFixQpdxBNienOxfhQoVyJUrV3QdixB57bGxY8fqvn+lKBJN586dc2qQ6OhozT+st4mMKJrY7AW1gcgcSz788EPx87R2YQ0NDRUD77VOzCxs1pcQf7N8+XJZMLbalGF77N+/3+qFMGvWrC4pV8G66IQVvpLsJq3cu3ePZM+enWTJkkV1H0NCCBk0aJB4rIcOHXK4PZvarSWGRElc04sXL0jx4sXF7erWrUtiY2NVj0WIXFSuX79e9lxoaCgpX768+HzBggWddvOwWWNC09n4+HjSoUMHmYh2xk3G0qlTJ3G/Bw8eJHPnzhWteQBI7dq1dU1rb9CggezzEm67u7uTmTNn6rowMJlMpESJEha/3TJlyugiAs2Jj48Xi3EKf0OGDNHVOswSGhoq1vfSYknVC549pyMZUTQJq8+goKD0PpRMwfTp021akJKTk2Up8g0aNNCUWcbCZhk1btyY/Pnnn7KL/OjRo3W98CYnJ8tWqMK5c/bsWd3GYDGZTGL6f8mSJVVVP9dKTEyM5gagbKFYNgDWGqzg9fPz0yRkdu7cKe7DWlxTZGSkLLaofPnymnqQCbBV3tlmsc+fP5cVzCxUqJCiDFJHsLEq/fv3J5GRkRbWTXPx5gxsiQTWHQeAdOrUSWbt0oN58+ZZiJicOXOSffv26TqOgHlMYNeuXV0aGiNkCQYEBKiutq6FgQMHkuHDh5Nr1665fCxbcNGkIxlNNL1580b88agpzsaxzYEDB8TPdOjQobLn2KyRAgUKkNDQUF3GFKwIHh4eYkwNQANiXeHCYoOJixYt6nIr8atXr8iWLVs0d4VPS9h+WJ06dbK53dmzZ8X4IgBk6dKlmsaLiooSv3PzuKb4+HiZwChcuLDqat7mJCQkiLEpBQoUICaTiTx79kyWql64cGHVfcdsER8fLyvHwApAPz8/snfvXl3GEYiOjpZ9L8LfuHHj7NY30sqrV69kv9kqVaq4NB7nxYsXJH/+/MTX11fXmCJbpKamklOnTmlehLyNuEw0RUVF6TZpvC1kNNHENo901k3EoURGRoqfKZtKvHz5cvFxLy8vcurUKd3GNM9+AWgmpKsuiJcuXSKFChUi7777rqYA9sxMamqqWOepYMGCVrd5+fKlzIoxZMgQp8asXbu2uC8hriklJUXmwgoKCtLtusO2x9m9e7dYawygLWCUtGVRg3kCgKutm+x4zqT5K2X06NHE3d2d9OzZU7PbVA3JyclpMs5/FZeJpqlTp/7nrBsZTTSxpmG9YgI4RFx1e3l5kaSkJHLu3DnZ6lXvizDrUgBocT5XrIo5ymCzhszLIaSkpMgKPtarV89pFy0bLL9hwwZiMplkQdJ+fn66Coxff/1VJipYq+PDhw91G0eAzTQVhJkrrZsHDx4kbm5uLnWTmePsOcDJOLjBhRBCXLl7jgOuX78u3q5YsWI6HknmolatWgCA5ORk7N+/H++//z6SkpIAAIMHD0b//v11Ha9FixbImTMnAKBr165YsmQJ3Nxc+tPl2KFOnTri7TNnzsieGzNmDA4dOgQAyJcvHzZs2AAvLy+nxmvSpIl4+9ChQxg/fjx+//13AICXlxc2b96MmjVrOjUGS8uWLcXbqampAIDixYvj8OHDKFKkiG7jCLRr1w5Zs2YFAFSoUAHHjx9H6dKldR9HoEmTJnj58iUeP36MZs2auWwcFmfPAU7GwSO9D4DjOljRVKFChXQ8ksxFrVq1sHr1agBAly5dEBMTAwCoV68eZs2apft4gYGBOHfuHO7fv48mTZpwwZTO1K5dW7x9+vRpdOzYEQDwxx9/4NdffwUAeHp6YsOGDciXL5/T49WvXx/u7u4wGo1YunQpEhISAAAGgwGrV69GcHCw02OwlC1bFoULF8bjx48BACVKlMDBgwdRqFAhXccRyJ07N/bu3Ytz586hV69eyJ49u0vGYQkKCnL5GJzMiWLR1KVLF1U7joqKUn0wHP0ghODatWsAgLx58yIwMDCdjyjzIFiaAIiCSS+rgi2KFi2KokWLumTfHHVYszRdunQJn3zyifj47NmzUa9ePV3Gy5YtG2rUqIEzZ86IggkA5s+fj48++kiXMVgMBgOGDh2KcePGoVy5ctizZw8KFiyo+zgsdevWRd26dV06BoejB4pFU2hoKNzc3ODu7q5oe6PRqPmgOM7z6tUrhIWFAeCuOb2pWrWquPIH9LUqcDI++fPnR8GCBfH06VOcPXsWr1+/xvvvvy8Kmv79+2PQoEG6jtmkSROZK/Dbb7/F4MGDdR2DZcyYMejcuTMKFSoEDw/ukOBwBBT/GoKCgpAtWzYsW7ZM0fZTp07Fnj17NB8Yxzm4a851+Pj4oEqVKrhw4QIAYM6cObpZFThvB7Vr18bTp08RExODZs2a4eHDh+Ljc+fOhcFg0HW8jh074scffwQADB8+HBMnTtR1/+YYDAYUK1bMpWNwOG8jioMjSpcujUePHiE5OVnR9npfNDjqEFxzABdNrmD69OmoVq0afvjhBwwcODC9D4eTxrAuuqtXrwKgsTkbN25ElixZdB+vbt262LVrFzZs2IBZs2bx6yuHk04otjSVKlUKJ06cwN27d1G+fHmH2xNazsCpg+Noh2fOuZbg4GDR0sT578EGgwOAh4cH/vrrL5fG/rBZbRwOJ31QLJpatWqFfPnyISAgQNH2w4YNQ79+/TQfGMc5WNGkRORyOBzl1KxZE25ubjCZTACAX375BY0aNUrno+JwOK5GsXsuf/78aN26teJg1+zZsyNv3ryaD4yjHUKIKJoKFiyYJim8HM5/CT8/P7Ee1/DhwzFixIh0PiIOh5MW8IIvmZDnz58jMjISAHfNcTiu4rfffkNkZCTmzJnDY4w4nP8IuoimS5cuYfny5XrsiqMDPHOOw0kbuBWXw/lvoYtounjxIhdNGQgumjgcDofD0R/unsuEsOUGuHuOw+FwOBx94KIpE8JamsqVK5eOR8LhcDgcTuaBi6ZMBps5V7RoUfj5+aXzEXE4HA6HkznQRTSVLFmSF17LIDx+/BixsbEAuGuOw+FwOBw90aUTY8OGDdGwYUM9dsVxEh4EzuFwOByOa9C1ffWLFy9w7tw5eHl5oWHDhvD19dVz9xmWffv2Yd++faKFJz3hoonD4XA4HNegSTStWrUK27dvx9KlS+Hv7w+Alh0YN24ckpKSAAArVqzAwoULkS1bNv2ONoMSHByM4OBghISE4JNPPknXY+GNejkcDofDcQ2aYpqOHj2KfPnyiYIJABYuXAiTyYS+ffuiQ4cOePbsGf766y/dDpSjDMHSZDAYeOYch8PhcDg6okk0hYaGokiRIuL9N2/e4NatW3j//ffRu3dvfPbZZ6hRowaOHDmi24FyHGMymXDz5k0AQIkSJeDj45POR8ThcDgcTuZBk2iKj4+XWZkuX74Mg8GAevXqiY+VKlUKr169cv4IOYp5+PAh4uPjAXDXnLMkJ6f3EXA4HA4no6FJNAUEBCA0NFS8f/bsWXh6eqJ8+fLiY8nJybyJZRrDK4Hrw7BhgL8/MH9+eh8Jh8PhcDISmkRT2bJlcezYMZw4cQLnzp3DwYMHUa1aNXh5eYnbvHjxAjlz5tTtQDmO4ZlzzhMXByxYQC1NXDRxOBwOh0VT9lyPHj1w8uRJTJgwAQANOu7Zs6f4fHJyMq5cucJrN6UxjkRTbCyweDFQsSLQvHlaHtnbw/XrACH09qNH9DY3mHI4HA4H0CiaypQpg4ULF2L37t0AgKZNm8pcc3fu3EG1atUQHBysz1FyFCG459zd3VGmTBmL53/9FZg0CXB3By5fBjKTMSo+HujZEzAagT/+ALJm1bafq1el27GxQFQUkCOHLofI4XA4nLcczcUtS5YsiZIlS1p9rkKFCvj+++81HxRHPUajEbdu3QJAg/C9vb0ttrl4UdiWCqglS9LyCF3L0qXApk309urVwKBB2vbDhIUBAJ48ca1oiosDOnUCUlLo8WfP7rqxOBwOh+McvGFvJuHevXtiYVFb8UxPn0q3V68GXr7UPt7t28CePZIrSyvnzlHRIAgerezaJd2+cEH7flhLEwA8fqx9X0r4809g927gwAFgzRrXjsVRztKlwIABwLNn6X0kHA4nI8FFUyZBSeYcK5qSkmjAsxbu3gVq1gRatgRmzNC2DwAwmYAePahg6tmTWl20kJQEHDok3b90SfsxWbM0uZLLl6XbISGuHQugIvfOHSA11fVjva08fgwMHEiF0/Tp6X00HA4nI8FFUybBURB4SgrAVIkAQLPDEhLUjzVpEhATQ2///LP2mkb790tCIT6e3tfCsWP09QJXr1IXpFpev7a0vrna0sRatu7ede1YADB5MlC6NE0EcNZKmFm5cIEKegC4ccP140VEAEOGUJc5h8PJ2HDRlElwJJpevLCcJF+/pm46NVy+TF1KAqGhwIYN6vYhMG+e/P6OHdr2828+gkhCArWmqMXcygS41tJEiFw03bvnurEEVq6k/w8dAt68cf141sR6Rof5Kcmss65i9mxg4UJg1Ci55dFVpKTQcQRhyOFwlMNFUybhypUrAABPT0+UKlXK4nn24l+3rnT711/VXTwnTrR8bM4c5a8XePwY2L5d/tjff2uzfpiLJkDb5GMezwS41tIUGgqEh0v379/XZiFTyps3wMOH0v1/8wZcRmIiULkykD8/8Da1oWTF85MnrrfInT1rfWxX8eGHQNWqwODBrh8LoJ8fF2iczAIXTZmAmJgYMXOucuXK8PT0tNiGFU0dOwJCCa2bN62LDmscPy5ZgwoWlEoWnDpFA7rVsHChdCF1d6f/nz9XH4/04gXwr16EB5MLqpdocqWlyXy85GTXBh6bf0euFk1Hj9IxCKFlIFxNUhK12vzzj3P7YS1N8fHUfeZKWBfg/fuuHSs2VlqsbNni2rEAWrKjYkWgSBG5YOdw3la4aMoEXLhwAeTf5XCtWrWsbsNOxgULUleAgJJgbkKAf2uZAgC+/hr49FPp/ty5yo83KUkqd+DhAYwfLz2n1kW3Z490++OPpdtagsHZVX7x4vT/06euWyVbsyq40kWX1qLp+HHpdlpYUGbOBP73P6BtW+3xYamplgH5rhTOcXHAgwfSffa2K7h6VbKcvX5NRY0rWb+eisKnT4FVq1w7FkCvH/nyya9NrsaV1mFOxoOLpkzAOWY2rFmzptVtWEtTgQJAu3ZAiRL0/r59krXGFnv2AEeO0NulSwN9+gDdu0s1jNaupRdhJfz1l7Rtp040tVvg77+V7YM9LoEBA4CAAHpbraXJZJIm9qJFJStaSopzpRnsYc2y5cpgcNYNBLheNJ04Id2+f197dqRSBAuKyUSTA7Rw965lYoMrRZP5d+Bq0WS+mHB18gEr1F19vgHAd99Rt/ecOa6PpTOZgA4d6DVn507XjiUQGiol4XDSB1WiKTIyEjNnzkSfPn3Qv39/LFq0CNHR0Va3XbZsGZo2barLQXLsc5aZDW1ZmljRVLAgdYmNHCk9Zi9zx9zKNGUKtRBlzQr0708fS0qiLVqUwAaADxtGTfeVKtH7Z84oFykmkySa/P2Bd94BqlSh958/Vy7iABq7FBtLb1eqBBQqJH/OFWRmS5PRSN22AoRQV7CriIuj546A1oBq1jUn4ErRZD5eZhNNrFB3dUmNxER5jTZXZz5evAhs20ZFjJa4TrUcOkTjA4sVS5skjtBQYMUKddfR/wKKRVNsbCyGDBmCLVu24MGDB7h79y7WrFmD3r1745INXwjhOc1pgmBpypIli6ydDYu5pQmg1iLBUvTHHzQ+yBobN0oXo6pVaSCpwNChUm+2BQsc1/+5cEGaTCtXBho0oLfbtKH/CVEek3LxonTxaNYM8PSkxyegZuJkrT4VKwKFC0v3XTFpGo3ShOnrKz3uqkns+XP6x/LgAZ1oXMHVq5YrYle66E6coFZBAa21utI6g9J8Yn/yRP4+9CYtRVNiovx3FRLi2qD6Cxfkn52rRdPRo9Jta1ZjvVm6lH5+YWHK41CdoVMnOkd06+b6sQihpWwGDsz4ljTFomn16tV4/vw52rdvj02bNmHbtm0YNGgQ4uPjMXr0aJxil5WcNCM8PBz3/jVPVKtWDR5sNDSDIJqCgoAsWehtPz+p3UhKCq3bZE5qqjxjbupUwI05a4oXlwTP06fA1q32j9fcyiQIrrZtpceVuujYC0fLlvS/YGkC1E2c7GSZFpam+/elGlnNmknB8K6yNFkL1CfEdZMm65oTcKVoYoubAvS71zJBp7elyWRy3XipqZZueC2lOZRy+bJ8ERUbaync9eTkSfn9tBRNz565NmGAEODgQem+q0tTPH0q/YYPHXLd4krg77+pB2PxYu1Fl9MKxaLp2LFjKF26NEaNGoWcOXMie/bs+PjjjzF37lz4+/tj4sSJOGHtSslxKefPnxdv23LNGY3SxapgQflzw4dLWWcLFsiLRAI0eFMwqzdsCLRqZbn/ESOk2/bM1OHhUquQ7NlpTJTAO+8AgYH09u7dygpmWhNNb4uliRUQ1apRFyVARZMrVuOsm4T9jFzlomODwAXSUjRFRmoTu4KIYdceaWlpAlznort923LyS8sYOsC1Lrq0FE2EWMbNudLadO+ePJnH1aKJLTRsNLreksYulK1dOzISikVTaGgoqrJX238pVaoU5s6di4CAAEyaNAnHtEZgcjShJAj81StpxWcumgoWBLp0obfDwuQZLklJtIK0wNSpkmWIJTgYKFOG3j582HZQ+bJl0kW7Tx8aEyXg7g60bk1vx8TIV3HWiI6WVkIlS1I/PwCUKydNeGosTcJFwcODvhdXW5rYi1ClSvQ9APS9uyKGgLU09ewp3Xa1aPLxkVzArhJN5vFMAmonluRkKiwAeh4JzZNdVeAyPt66QHKVaLL2e0hr0eSq842QtBVNd+7Q6yqLK4UFa2UCnGsVpYR9++T3nenn6QhC5L1D1ZavSWsUiyYfHx+bMUr58+fHrFmzEBAQgMmTJ+OooxmPoxtagsDNYcsPsMUuFy6UBMN770nxR+a4uVGLlYC18gMmk9zsOnSo5Tasi85R6YGDByUhKFiZAMDbGxDCum7dosLPEcnJ0sW8TBnAy4sGXApuSFeIJlZAVKwoZTIC+rvoCJEmsKAgoEUL6TlXTGLPngGPHtHbtWvT2DXhcVe4ME6ckM6FPHmkx9VOLGxPvgoVJOH89KlrrH9CDSsAyJtXejwtRJOwsHj5ki5AXEFaWpqePLF0/b1+7bogZmtTnCtFk7kl9dUr12UHEpK2oun2bXkNL2vxlxkJxaIpb968uGPHAW4unM5a+8VwdEewNPn7+6N06dJWtzGv0WRO9epAkyb0dkgIDcSOjQW+/17ahr1tjV69aIwUQFuzmE+Ou3dLYqB5c1q2wJyWLaXYHkdxTWypAVY0AVJcU2qqstXm7dvSZClk8Xl60novgGvcM8IF1tubWpkESxOg/+r/0SNqRQSAWrXoWIIgdIVoYr309epRUShgLWbIWdhVOCvG1YomVsiyoikpyTWTL/tZCHGBQNqIpuBg6bYr4uhiYqRzi3V1u0o0sSG1wjUEcJ21yZpocpUl1TyeScBV1qYbNywFmStFE2tlEsjI1ibFoqlKlSq4evUqwtm+D2YIwikwMFDWC43jGl6+fIkn/87oNWrUgJub9a/TWuacOebFLmfOlCaKLl3kcTDWyJaNutwAGuD8++/y580DwK0RECBZs+7ckVwl1hDimTw9AfPKFuyxKrmwmAeBCwgX+5cvlVmslJKYKAXgCu5EV1qa2PVLzZo0EUBwZ7LWDr1gYxLq15eLJldMLOwqvH9/ye2rdlJhL1kVK8pdtK4QzuyELrimAdeIJkJotikA5M4ttxq7wkV34YJ0XrVuLbk6XeWeY11z770n3Xa1aPLykqyE1665xiJ5+7aU2cw2e3BVXNPevZaPXbniuqxOa6IpI9tcFIumxo0bI1u2bNjtINdREE55WDs5xyUoiWcCHLvnALrSFVrWHThA45cAumqbMkXZ8bAuunnzpEq5Dx5Ixd8KF5a74awdh4AtF929e5KwqF9fsnAJsBl0Si4s5kHgAuykqWdcy61b0mcjiDTW0qS3aGJXbYIHt2xZ+j8uTv/WLaylqW5d14qm2FjpAlu2LF0UCO7ABw/UVbxmRRNraQJcL5qqV6cuYcA1oun5c6k8R9Wq0m8dcE0GHTvp1aolxTw+fixljeoJK5r69ZNuu0I0PX8utbupXZt+dwA911xxnrCLAiH+FHCdpYl1zQnXp+Rk13yWCQnS+/P3lx7PFKKpUqVK2LJlC7opKNqQP39+rF+/HofMHbEcXWFdoM6KJjc34LPPpPvCha1fP/kF1h5lykjxMqxQWrBAWoENHiw3n5ujpPSAtaw5FrVlBxxZmgB945qsiTShbQug/8rf3NIESKIJ0Hf1Hx8vWTTKlaMZkUJ1dUB/0cTGMwkuZvb7d1TpnkUQTVmy0O/D1aKJrdNVpIhk/Xv5Uv/q6ezvwFw0ucLSZC6ahPONEP1FGlvUskwZuRXNFRM9m+vUsKH8muGKuCbWNTd4MLVuAa6xNKWkSCImTx4adiHgChfdkSNSctBHHwG5ctHb5865vlG2VngblbcY1tJkKwgcUOaeA+gPREj7B2i8zaRJ6o6JLT8wdy4VX0uX0vteXvKWKdYoW1YSEEeOWLcUOBJNQUHS+7x82fGPT7jQZc0qpf4Drps0rYk0Hx/J0qCnpclkAoSqFAUKSHFarhJNZ85IIqZ+ffo/MFB6b3q7MNgJRRBNat2zAL1wC+KhbFkq7F0pmhISJGtFuXJ00SKIJkD/5rbs51Ctmtwd7ArRJFyafHxoYoZgaQL0d9GxRS3r1qW/f2HydYVoYuOZXC2aCJFbYurUkRZaISH6W+1On5YEe3AwUKOG9BxT3UY3WNdc69bSoi4sLOM2eNZFNB09ehTTpk3TY1cchRBCRNEUGBiIYuwV1wxBNGXPLjeBmpM1K13JCAwbZtsyZYvWrSXRs2cP8O23tD4TAHTuLF3MbGEwSC661FR5wDdAzcQHDtDbuXPLrQoswuOO6vXExEjukIoV5YU708LSxF5wBRfd69f6ZTTduSPtizVGuko0sa45QTQB0oU+LEzfXn6sMbtxY/pfi2gKCZFcpoJljD339RZNbCyZMB77E9bbRWduacqWjf5+AP0tP2FhkiCsXl0q4yGgdzA465qrW5f+FzJoQ0Ol649eCKLJYKDjsb9hvS2pt25Jv5eGDelnKVzb2H6ZesHGMwUHU4Et4ApLk7AAdnen47Fr/4zqotNFNN29exe7rEVzcVzG06dP8fLfX1PNmjVhsFZACfTCLIgmJQJo3Dgqbjp3Br7+Wv1xubvLM5hYLW0rANwcey66kyelHnEtWshFDovSIpfsSpSNvQFcb2nKnl1u+XNFMLi1eCbAdaKJDQKvV0+67Yq4JjaeqVw5KSC3UiXpvFDqwjAPAgdcK5rY806Y4NNCNPn4SK454X9oqPSb0gP2nHO1OxiwL5oAfXseRkZKLt/KlWkNsjJlpJADvS1N1iypamM21cDGMzVrRt+fsAi+dElaWOjBo0fSd1OnDh2LXdhl1Aw67p57S1EaBB4eLmV+KRFN/v7AunX0L1s2bcfWr5+8nxpAV5x16ih7fePGUgbUzp3yHyrrmmPrDZmjNK7JltUHcI2lKTJSmoArVZIXC3VF2QFr8UwAdWHkzElv6zWJmUySpSlXLnncjCtE0/Hj0rkhTCgAPfeEsa9dU5b1Yx4ELuxH+Iz0LnBpbTxXiaboaOl8qlxZmuBdlXxgHs8kjCUIWT0tTWxRS39/SSyxcXR6uuhOnpQshA0b0v/e3pIl7eZNfbPMWEuqkCWsxZKqhOho6p4D5AV+hUD3hAR9vzv2Wi50mvjPWJo4aY+SopaAsiBwvQkIAHr0kD/G9plzhLe3JIhev5b/eFh3nT3RpNTSZF5kkoXt06eXpcHeeK62NJlra2H1/+yZPk0yb92iohCgVib2+3aFaLK2ChcQvv+kJGUXemsiBpAmjmfP9F1lp6WliQ2GZ38XrGjS00Vnzbrp7Q0ULUpv69m49+lTqRBi7dqSIGQtTXpWvzGPZxIQFlwpKfZLpaiBjWfKlk367oTsUEBfS9Phw9I53ry59LggmgB9XXSsc0oQTXnzSvPU+fNSoeWMBBdNbylayg3YCwLXG7b8QEAA0LWrutdbKz3w+rX0o61aVV792ZwSJSRrl1ZLk8EgTZp6WZpsZeoB+q/8U1Olz6t4cclqIsC6TPRYQZrXZ2JhJzG9RBO7CrclmgB1GZS+vtLkDkjff2qqvrFYwkTu4yONV7CgVKlbT9FkHgQu4KoMOmGRky2b/JwWzjc9G/dac80B8vNNT0sTK5rYLD1XBIPfuCHVymvUSDo3AgKkhJXLl/UTFubxTAKuEE0pKZIrMChIHnAuTGcxMfoJUD3RRTRVq1YNvXv31mNXbyX79u3DuHHjMMdet1odYYPA8+bNiwJ21FB6WJoAehH54guaOTVrlqW7zhFsgTohrmnvXmmFai1rjsXdXVqR3b9vO7BamCxz55YCY1kEF11MjLqaP7awJ9L0zmi6eVPKrrGmq/WOM7EVzwRQd6tgSbl+3fkLfUyMZNEoX97yu1MjmuLjpcDl8uXlcXKuiGuzljkH0HNWON8ePNDPGmMeBC7gCncw2wKjZk35Z+mKYHBboil3bikTWC/RlJgo9TgsXlzKCAVcI5rsWVKF8IOYGP2yzAQR4+YmH88VweAnT0rWbfPY1IzuotNFNFWtWhV9+/bVY1dvJcHBwZg2bRpGsPn2LuT+/fuI+LdPib0gcCD9RBMA/PQTzaRhG8QqJV8+aaK/dIm+D0elBsxh45qsXchevZKabpq7ygT0btxrzz2XI4d0odfD0mQttoRFb0uTEM/k5SVfOQoI7zc21vnP0lY8k4CaYFlrmWwCrhBNISGSaDQfTwi6jY7Wr0+fIJrc3KxnawL6uedsJR4ArhdN77wj3TYYJGvTs2f6LHjOnqXZu4DcNQe4JoPOWjyTgN5xTc+eSUHZtWtLFdwBKkCFuePiRX0sW9ZccwIZPRicu+feQpS65oD0FU3OYu6iE+KZsma1dP9Yw9GFxZ7VR4ANBnd20iREGrNAAWpmN0eYyJ4+lYq+acVePBOgb+2cV6+kiVdo1WKOnnFN9lbhAI2NEKxPly7Zt9rYimcCXCOarMUzCegd15SSIp1zpUvLLb7Zs0slQFyReGBPNOlh2TQvasnWmAP0z6AzL2rJUqSIlLyih6XJZJJEU44clqVV9M6g279fus3GMwkILrroaMlK6gysaDKPTWWvVRnR0uSh9YXPnz/Hhg0bcO/ePbx58wapQkU7BoPBgLVr1zp1gBxLlAaBA2+3aGrbFvjmG3r7l1+kJpJNm0pVce3h6MJiz+ojoKel6flzyXpga7wSJagLgBA6aZYrp3084TQxGORxCQLFitFeVikpzk9i7Irf3DUnYC6a7LXTcYS1+kwsBgMVzXv20PYhz5/bjulLa9Fkbzxz0WTNYqeGW7ck64i1/pElS9K4mefPaVFDYeLXiq1sTUB/y6Z5UUtzzOOaWEuUFmwFgQPUilexIs0+e/CAup7s1cRzxLVrUpPtRo0suyio7XrgCFvxTALVqwPbttHbFy7IrZRqCQ2VugZUr24ZmxoYSK+D9+7R7VJS5D330htNlqbTp0+jV69e2LhxI65du4bExEQQQiz+TBkx9D0ToMXS5OtLVyxvE9WrS7V32JWwEtccIE/pzwiWJntB4AJ6xZkkJUlCsUwZ6+UjPDykYODbt53LDrMXBC6gl6UpOlqqTlyhgvVYNEC5C4M9FnMR44paTUotTXqs6G3FMwmwweDOuoQJkURTrlzy3w5AJ0fhPNRDNNmKZxLQs+yA0Sid47lzW28txf6mnc3Ys+eaA+h5IogyZy1NhEjxTFmzWheXegaDsxnQ5q45AWFaS0x0XdNlrWiyNC1cuBBubm6YPHkyGjduDDdbFQY5umM0GnH+3xmjcOHCyG1rxvgXoRlrwYLKU/4zCm5u1EUntGERUCqa/PyoCLlzhwqk1FQpAwWQT5bmk5eAnpYmW42BWfQqO3D1qrQKt2eMLFuWXpSSk2lAKTu+GuwFgQsIRQCNRudEk6N4JgHzshOsu5dFmOD8/CwnetY6pbdoYjPnBPR2z9nKnBMwF+lsOrtaHj6Uqm/XqmV5vTEY6Dlw9iwtbJiQQD8DrTgSTXpm0F29KiWTNGhg/VpqHgzujGXLkfvZzY1+V8eP088yIsK6u18JN25IVvzGja1b8fUUTdbqM5lTqxatFQjQ88VW54f0QJPaefLkCYKDg9G0aVMumNKY27dvI/bf8r2OrEzR0VKGwtvmmhMwn+iKFlVnGhZ+bImJ8mBXtgUBu2ozR0/RpNbS5IxochTPJKBHBl1SkjReyZK2LT/e3jSuBqAxJlY8+oqwV2qARYkLIzZWyj6qUMFyMvT2ltwHehS4tNbjjsWVosnaxKNnBp2jxANA38a9p07R/2xRS5Z8+aSAZmctP/ZccwJ6ZdCZTLRmEkCFkC0hyy4K1DSmNoetAm7NNQfQTEHhd33hgvbMTqNREk3ZstkWluz5k9GCwTUpnsDAQHgpCSrh6I7SJr1A+tVo0pPgYPnKp2VLdRYzW0UuHz2SGlPasvoA1PogrOCctTQIF1I3N9uxSnqVHVAygQH6iKbz56W4GUcB+sJnnZys/f2xq3Br8UwCpUtLAem2RBMbIGzumhMQhPOLF9qFnsDt21L2kbWJPlcuKVjbWdFEiBQ7ki+f9bpmrJvJWRFjL55JQK8MuidPJCs6W9SShc2ge/zYuQKu9oLABfRyP1+5IsU+Nm5su1WUXsHgjuKZAHlcZFiY9mvhhQtSrFZwsO1YpWrVpOt8RgsG1ySamjdvjtOnTyNJ6M/BSTPYIPDMnDkn4O8vtyYodc0J2LI2KIlnEhBcNk+fak+3NRolF0HJkrbdEnnySMG4elia3N3tm7b1EE1K4pkEnJ1Y2HimihXtN4D28JC+27t3rfdXsxeULSCIJpPJ+aKMjsYzGCRr08OHzqV3P3kiTb7W4pkAfWuDKRHqemXQOXLNCbDCVOt4hEiWJj8/27+nXLkkYXr1qnZrjKN4JgE9yg6kpEjj5cljfwGph4uOzZqzdy3395cWlleuOJ9JrCeaRFPfvn1RuHBhfPHFF7h69Sri4+P1Pi6ODVhLUw0HqTWZQTQBwMiRdAIsV069aLJlaVIjmoRJMyVFe1Xoe/ekH7698QwGaSJ78ECbZSM+XpqcK1a0X1hUj0lMqM8E2I5nEnBWNB07JgkJe645AeH7Z8s9sKjNoHTW2mgvCFxAEE3JydS6pRVHQeAAtaIKleKdsTSZTJKYLVTIdrV+vTLotIgmrXFN9+9L30PduvK4SHOE3/abN9qvFawl1Z5oqlhRfWNqc06flizuwcH2rfjsdONq0QRI1srUVOfcj3qjSTR5eHigU6dOuH//PkaMGIH33nsPTZo0sfhrau8b56gmJSUFF/+1t5csWRIBDiL/Motoat2aXoSuXlVfWbxAAal+CzuJKJksBfRo3KskCFxAEE2pqdomabYbuQNjJLJlkyobaxFNhEiWphw5HJdIYN+7ljgTpfFMAo7imtRYmgDnRZOS8fSKa3IUBC4guOiePaOCWwshIZIlz547uGRJaWLWSzTZC7jWQzQpiWcScDauyWiU4ply5rR9jgDUWi3ECCptTG2OkngmAWctTRERUhxauXJSKxhbZNTK4JpE0/79+zF27FjExsYiX758qFixIqpUqWLxV9mZVAyOBTdu3EDiv+YKR645IPOIJoAGdFqLW3CEUK8HoBkiQgVw4YLm6SldeGyhx6SpJAhcwNngXKXxTALC6v/NG/qnhrt3pf5Y9erZjr8QKFGCBlcD2ixNSuOZBBy5MAQRkz27vC0GiyssTVmyyMURiytEky1LEyA/37SWOVASzwTQ9y1kDLKV2NXgqKgly9smmi5flqqXN2ni+PckfK/JydpEKBvP1KyZ/W2LFJHiO7WIpn37JCuxraw5lowaDK6p5MCKFSuQNWtW/PTTTyjnTPU9jirUFLUEpEBJ4O0XTc5QpQpw4AC9ffkynWyFC0yZMo4LZeptaXIkmszLDlir0GsPLaJJ+HxCQmgDTaWocc0BVPiWL08DlO/coROgterh1oiKki7WlSopO0523WYumqKjJRFkLXNOQK9aTUlJ9jPnBPQWTVmz2i8lYd5OxZEl1BpqzrmyZen7io2lbi9bYtUWjopashQqROOQYmO1iyYhCNzTE6hTx/62zrZTcVRqwJwqVQChfvSlS+q+u+ho6p4D6HWQXRxYQwgG37+ffm8vXtAEA6XYa51ijSpVqCs0NTUTWJpevHiBd999lwumNEZNUUtAsjR5eambCDMb5taGkBApVsiRgAH0KXApXECzZHFcC8nZsgPCaeLlpewi6kwwuJogcAHhmIxGdatjtfFMAA0oFT7Pq1flBTzZSdSeG0QvSxNbQNRWPBOgj2iKjJReW6WKfYsFm0GnNRhcaYkLwPkMOqXxTIA8g+7BA/Xux5cv6fcG0PflqK5U+fKS+NZiaVIaBC5gK2ZTCYcPS+ej0oUZ66ITMjOVQIgkmnx8aJVzR2TJIl2fb960nsiRHmgSTblz5+bVvtMBQTQZDAZUt9YXwwxBNBUo4NjMm5kxT81VE88EOF+rKSFBCrItX96xm9GZjKaoKGkiqlpVWbsZZ4LBBdHk7k5Tv5WgNRhcbTyTgPD9s9+D+dj2zoP8+aXfjzO1mpTEMwH6iCZ2ArXnmgOcdwenpEhWrVKlHHcecDb5QIiLARyLJkASTYSoH48tNdCggePtfX2l3+/16+qq7KemAkeO0Nu5ctkX1gLOtFNRE88koDWu6fp1KfO0SRPl1mVBgJtM6kSaK9E0lbZt2xYnTpxAtFAileNykpKScOXfFIJy5crBz8/P7vbx8VJ13re1RpNelCsn1QO5dEmdqwyQT5paLA03b0oWEqUiTThetZYm9kKmwBgJQHtGU0SEZK2pVk15kL5W0aQ2nknAVlyTUhHj4SG5IZyxNCnJnANocL6Q0aZVNCkNAgcs3XNquXZNygxVcs45m0EnWJpsFbU0x5m4JjXxTALCNSUhQV2M2MWLUtXxJk2U1aNjG1NfvqwuRkyIZ3JzU74I0Sqa1LrmBDJiMLgm0dSkSROUK1cOQ4cOxZ49e3D//n28fPnS6h9HH65cuYKUfx35SlxzPJ5JwstLunDeuiX/8SkRTZ6e0qSpxdKkJggcoFYbwdpw7566C6HaeCaAnh+C4FGzEmfdJEpdc4A20RQZKa00K1eWRIUSnBVNgGRtfPmSxiZpQc14wvf/5IlUOFQNSoPAARpILQRTa7E0sa45JeecM+45JUUtzdFLNCk9x7UGg6t1zQFUWAnWptevpXYojnj2TCrsWru2VDndESVL0hgxQCoxoYTMJJo0BYJ37doVBoMBhBBMnTrV5nYGgwEH2eUhRzNqg8AzU+acHlSpQldiRqNksbDWa8wWhQvTC40waQoZYEpQU25AoEQJGksRH08vhEoDLtXElgi4udGJ7OJFujJW+v60xDMBVID4+9MKzUpFk5Z4JgFbcR+CiAkMtF1XSKBQIckt9OwZULy4umMApAnb29vx64sVo98lIVSoq+0qL4gmd3fHAg2g+z9zhooStT3h1Ar1vHml71+tu0xNPJOAVtEUEyN9jhUr2s/SYzEXTR98oOx1aoPABapUkaxGly4pu1bs3y/dVpNo4uZGLZdHj9Lz8s0bx/GysbGS+CxWzHqzY1tUqEBdeYmJGSeDTpNoatmyJQxvW/fXtxytQeAAF00AnThXrqS3hTgDtjicIwoVki7YT5+qa2yr1tIEWMaZKBVNwgTm6+u4ZhJL2bJUNBmN1LqlxO2hNnNOwGCgn/3Jk7TqdUyM7d5/AlpW4QIFClDLVFiYNAlGREgxFhUrOnaFmAeDqxVNSUmS68te5pyAeVyTGtGUnCwJwrJllQmgUqWoaAKocFYitASEc06YUB1hMNDj0tK4V4toKlKE/h7i49WJppMnJaGu1DUHaLOkpqZKwiJPHrkL0xHmi4LWrR2/Rks8k0D16tKxXrzoWHQdOCBZS1u1UtcGy9OTvr9Tp+h10JnGxHqhSTRNmDBB7+PgOECwNHl4eKCKgpbP3D0nx9pHpiY91zyDTo1oEixNAQHK06vNyw4ouWi/eSM1n61eXV1dK/MMOkeiKSVFSlcuUkR93JwgmgA6kdlL5Q4PB5Yvp7cNBnUTmPAaoexEaCj9Y91QSgSCsxl0d+4oy5wTcCYY/MYNKSXfkWtOwFykKxVNCQnS+V2+vNQCyBFlylDRRAgdT+liQmlRSxah1+P581JlfiWByKxrTkkQuEDJktSamJSk3D13/ryUHaY0nklAbTC4ySSJpqxZlX+OAuZxTfZEU1ISwMoFNa45gZo1JSvv+fPqRZ7e/Idzqt4e4uLicOPfJVLFihXho2BZxi1NcqyJJqUXakB7Bl1EhCRglVg0BLSUHVAbW8KituzAxYt0wgTUueYE1KzGJ0yQmnx27aounknAfDWuJr4IcL5Wk9LyBgLOiCY1QeACWjPoBJc3oO6c05JBp6aopTmCUDWZpBICjtASBA7QxAFhvDt3pN+JPZyxpJYpI7nTlZQdWLJEagvTuLGyDFsWNcHgkydLv7WqVZVZwczJaHFNmkTTw4cPsWHDBkRGRlp9PiIiAhs2bMBDYdnLcYpLly6JJR6UxDMBrhVNJmLC7xd/x4T9E/Aq7pW+O3cROXNafg5aLU1qRJMW1xygreyAlngmAbWiafZs6baaVbiAUtF09izw22/0tp8f8PPP6scCnBdNzlqa2PFcbWlSEwQuwMaZqMmg05J4AGjLoFNT1NIctXFNSUlyS6qjwo/mCL91k0kKuLZFcrJkSQXUx+x5ekrnsBAHaYvnz4HRo6X7o0apGwug351gqbMnmk6dAn78UTrGlSulrGA1ZArR9Mcff2DNmjXIli2b1eezZcuGP//8E3/++adTB8ehsEHgSuKZAEk0ubvTwEu9CIsPQ9s1bdF/W3/8cOwH1FtaD/fCNVRgTAfMJxCtliY1k6aWIHCATpqCVUqppUnrBAbQSVMYz5FounAB+OMPejtnTuDjj9WNBSgTTUYjMHSolD34zTfqq0cLmGfQpbVoUmtpKlJE+j6cEU0KPPkAtFuatJ5zWjLo1NZnYmFFk5Keh8ePS2UU1LqDAXUZdDNnSr+5d95x3NbJGsL5bTLZX4QMHy6VNejTx3HrFGt4eEjn1d27UtsXloQEun8hJmzyZHXXW5bSpaWMvYwQDK5JNF2+fBk1atSAm40oWnd3d9SoUQOXtbZe5shgg8DVWpry5tXWs80aJ5+cRLVF1fDP3X/Ex+5F3EO93+vh4osMUnnMDuwEkjs3LSCnlLS2NHl7SxO1kkksNVWaVLJnVxdzBdBAXCU9wQiRr1QnTVKerszCfv62LvJLlkgXyYoVgREj1I8jULas5Ia4dEkaU+l5kCeP1N1eS4FLYaL28lIWRO7tLQlENaKJEEk0FSyovBNAYKBUlFKLaPL0VHd+s417lbrntASBC6ixNBECfPWVdF9tGyNAuSX1yRPg22/pbTc3YN48dfFMAkrimjZtAjZvprdz59ZutQXkLjpr4335pSSGa9cGxozRPpa7O1CjBr395AnNYE5PNImm8PBw5BYqatkgV65cCBMCEThOIViavL29UUHBMjU5WTqx9HDNEULw68lf0Wh5IzyJpsvsXL65UDaI2thfxb1C4+WNceDBAdX73XJrC3pt7oWdd3Y6f6AOYK0N9i7wL2Je4K/rfyEmKUZ8LChIMkmnhaUJkIRPRIRUqNQWa9ZIzYgbN9ZWAV5wmcTESDEP5uzaJfWpK1ECGDxY/TgCwucRGmrZKPjNG2D8eOn+vHnaTPsCrAvj1i3ps1Ia8OzuLgW7q7U0JSfLM+c8FKbfCC6616+Vt5B4+FBa+St1zQF0ohZcdI8fS1YWe0RHSxNjlSrqynCwIj0kxHEtsrg4KSVfaVFLlmLFpONzJJrWr5cyQ8uWBbp1UzcWoNzSNGoUfW8AMGSIXIyowbzrgTmRkdTKJDB7trbYQAF7cU1Hj1LrGUA/8+XLlZ/ztshIzXs1iSYfHx9ERETY3SYiIgJeaiPMOBZERUXh9r+Ri1WqVFH0mQqp1IDzoikyMRKd1nfCqD2jkGqiDdsaFm6IS4Mv4Xi/46hfiEYBxyTHoPUfrbH++npF+7315hZa/dEK7697H6uurEKHtR1w9aWGZk0qqFtXsjbYqihtNBnx7sp30XlDZwz+W1IEBoNk+VFqaSJEWmUWLOi4vYQ5SoPBjUaALZfGWoLU4CiuyWiUrxh/+EF9ECkLKyLNXSbjx1OxCAA9eijrVeUIQUSwE7Sa1Hrh+w8LU9fD7M4dqdehmsmejWtSGh6qJZ5JQDjfCFFm3bpwQfos1bqDAclFFxPjuCjj7NlSMsB776m3nru7S+f3nTu2C4YmJgJjx0r3f/5Zm1jPn19KjbclmvbsATZsoLdz5QKmTFE/joAj0TR2rLQQatsW6NxZ+1iAbdEUG0vdcsJ5MXWqutIntmCjUtI7rkmTaCpVqhSOHj2KmJgYq8/HxMTg6NGjKK3FOcuRERsbix49eqBMmTKorbC5l15B4Oefn0f1RdWx+dZm8bFx9cfhQO8DyO+fH4E+gdjTcw/alW4HAEg2JqPrhq6Ye2auzX1GJ0Xjiz1foNKCSthzb4/4eKopFQO2D4DRpKJZE8PL2Jd474/30GZNG0QlWnGyg1oK/vkHmDXLdgDknnt7cOsNVQxbb21FijFFfE6YNGNirPvxzXn2jK7wAG3+fPOyA7bYuFFa8TdurC0wG3Cc0bRypSQCa9cGPvxQ2zgCrGBhXRinTlHXHEBbivz0k3PjCFgTEVpEE6DORac2nklASzC4lsw5AbVxTWxfNmdEE2DfRRceDkyfTm+7udH4GC0IgtVotB3s/uuvtHYUQN1y772nbSyDQfrNP39uaSlOSpJbfn76ybn6Qzly0Dg4gIomtjXs4cPyZIr587W5AFkqVJDEJCuaxo6VWsc0aAD873/OjSOQkYLBNYmm999/H9HR0Rg5ciQumTk0L126hP/973+IiYnBB0pLoXJsUqBAAaxatQq3bt3CrFmzFL3G2RpNhBAsOLsA9X6vhweR9GodkCUAO7rtwA/BP8DDTbK1+nr6YlOXTehXtR99LQhG/DMCXx34CoRZ0hNCsOryKpSZWwa/nPxFtFoVzl4YxQNokMeZZ2cw+zSTlqUQEzGhx+Ye+OfuP9h5Zyd+PmHbWf/uu8Cnn9quJ7P04lLxdlxKHM6/kHoFqI1rcsY1ByizNJlMwHffSfcnTlQ/joA9S1N8vDzO46efnL/wWov7EIK/Bb79Vr9EBmdrdWkNBlebOSfAxj4p7WHmjKVJTQZdYiKdfAW0BEsrzaD78UdpkdKnj7rCjyysYLXmogsNlSy2bm7AjBnOneP2XHQ//yx9xvXrAz17ah9HQPi+Y2MlkZ2YCHzyibTNtGnqMwGt4e0t/XZu3aIuxv37pXPC15e65fSKpy1WTCoxIVTKTy80iaaGDRvio48+wt27dzFy5Eg0b94cXbp0QfPmzTFy5Ejcu3cPXbp0QUMtvySOTWwF3pvjjKXJaDKi5+aeGLpzKJKN1IZdu0BtXBx0EW1Kt7H6Gg83DyxpvwQTGkhVzL47+h0Gbh+IVFMqLry4gAbLGqDXll4IjaV2eG93b3zV6CvcHHYTKzuuhAH06jTx4EQ8iFCXLjT92HTsuy+VuF1ycYl47Gp4Hfca20K2yR47/PCweFvtpKm2MbA5SsoObN8ujVOnjrZsGAF7omnWLEmMt2+vj7vMmqVp0SJ5j7lhw5wfR8CaaFJj+dFaqyk9LE3ZskkxQ0pRY2n6/XfJ3fP+++rbvADKMuhevJDKW3h5AV9/rX4cAUfB4F99JcWOffKJtoUOiy3R9PAh8P339La7OxUaWmIQzbEWDD5liiTO6talcVN6IbjoTCZqdezXT3ruxx/VJ6PYw2CQXHSvXjnXONtZNH9Vw4cPxw8//IBatWohS5YseP36NXx8fFCnTh1Mnz4dQ/T8djiqcEY0Lbu0DH9c/UO8P7LOSBztexRFchSx+zqDwYDvm32PWa1miQJoycUlqLaoGmr+VhMnnkg9NzqW7Ygbw27g26bfwtfTF/UL18fQWtS8EJ8Sj0E7BsmsVPY4/vg4vjr4leyx0NhQbLm1RdHrWVZfWY0UU4rsscOPJNGk1tK0jdFfSlO/WRy55wiRW5m++sq5lXHu3FLcFTuJvX5N45cAenGfNk37GCw5ckjn57Vr9GL45ZfS8/PmOR9Aaj4eKyTy5VPnEnHW0uTlpW4iUSuaQkOl87JKFfUTsVLRlJwsucsA7dZNJe65KVOk4pBDhyrvFWkNe6Lp8mVg6b9G5mzZpIw2Z7CVQTdypPSeRoygiwM9MK9FdvmyvE7SkiX6iDMBNq6pd2/p3Hv3XX3FmUBGcdE5dUmqV68e6qlpOsVJE5wRTauvrJZuv78a3St3V/X6T+t8itxZc6PX5l5IMaXg2ivpalEmZxnMbj0bLUq0sHjd1GZTsTVkK55GP8Xe+3ux8vJK9K7a2+5Y4Qnh6LaxG4yExkG1KtkKu+7SdtoLzi1A5wrKox0JITLXnJ+XH2KTY3H08VGkmlLh4eZh0UrFHteuSQ1tK1SwbWkihGDGyRlINaVidP3RcDNIVzV/fypkXr2yPont2SNlklStqj3+QkDoCXbqFL0AxsVRN+Z339E4LgAYMECfwE6BihXp+RoZCfTqJcWA9e6tPTbLHlWrSkHVaqw+gDbRlJIiVaAuU0adCMyfn052KSnKRJMQtwJo++yCgmj5iKgo++65VaukCfK997RnfOXLJzXutWZpuncPWLyY3vbzk7fj0EKJEtLnybpMCaExjsI6beJE+rtzFlY0CZamv/8Gtm6lt/Pm1R6fZQ12YXb+PI3fFBIQJkxQn3HoCPZ7F7K1/f2pFVJPcSbABoOfOwd06qT/GErgbVQyIaxoUlMM8Gn0Uxx5dAQAFTgfV9JQtRBA14pdsbP7Tvh50Ypkfl5++Kn5T7gy5IpVwQQA2byzYWGbheL9z3Z/hpextgtyEELQf1t/sQRCw8INsb3bdpTJSZevhx4ewo3Xyrtznnl2Btdf0ytp/UL10aYUdUXGJseKNajUtFJZtEi6PXiwbQvQkgtL8MXeLzBu/zgsvbDU4nnBMvHihZSaDNALPJttM3Gi8zFGgNxFd/s2FWtsnIKeF3lAPrHs3k3/Z88ut2ToCbsaTwvRpDVzDqCuGyG498ED+3EcSUnS9+TmBgwapG4sgJ4/grXp8WO6T3NSU+WZml99ZbmNmvEEa9PDh5ZlDiZNkj67zz9XV1fNGh4e0ni3b0vVxbdvl8poFC9OYx71IHt2yTJ27Rq1LrG1xn75RVuNM1sULUqtZACwc6e0oCpXTl6+Qy8qV7YURzNmSOes3mQUSxMXTZkQQTTlzq0uJXzdtXUgoFfmbhW7weDELBxcPBiXB1/G4naLcXv4bXxR7wt4uds/mDal26BbRVoUJSIxAp/usn31mntmruiCy+mTE2s6rYGHmweG1JTswgvPLbTxakt+v/i7eLt/tf5oUrSJeF9w0SmdNOPi6GocoPVoevSwvh0hBLNOS8H9q66sstiGdZmwwcCHD0uWrPLlaVyJHpjHNX35pTRxffEFtQ7oibW4ke+/p8UkXQHb18tWXJaJmDDs72Govqi6rGhrrlxSrR+l2XOsG0jLSl9w0cXGSin31vjzT2m136mT9olLCAY3mayXOVi7VjoPg4PVN3s1RxAxhMitW1eu0PcE0HpCWtp9WEP4DlJSqCUrOZme1wI//qiu3pQjBAtzdDSNzxMshk2aaKv/ZA83N0tXn8FA3XJ6vicBX1+51bl1a6B/f/3HEcifnwrDOnVo9m56wUVTJsNolAI01brm/rwmtb3pVsn5X3TxgOIYUH0A8vkrn2lntZqFnD606tr66+stArMB4MKLC/hir3SlW95xOQpmo2+2d9Xe8PGgDY1XXF6B2GTHVQHjkuPE9+7n5YePKnyExkWkQk6HHh6iz/lJMTD2LE3r1knZPl272q7PdPDhQdG6BQBHHx/F4yj5jm3FNbGxTF9+qc4c/iTqic1AeVY0rVxJC/0BVICzk4temIumatWcK5jpiEaN6MS/dKltobn77m7MPzcfF0Mv4pvD34iPGwzSb0qppUlrELiAkrgmQmiqvMBnn6kfR4AV6eYuOqNRCmAGnMvUFLCVQffll5JlbcIEyYLiLOZxTfPnS++zUSNA74Rv1i2/bBn97+EBzJ2rj2XYHPPYyaFDAVdG0HTsSP8HBVFXqivek4DBQK+Bp07JrZ1pDRdNmYyXL6Wu42pE0+2w22J6fY18NVA6Z/rU2MqVNRd+bSnNAEP+HiKruxSTFIMuG7qIk/5n73yGtqXbis/nyJJDdCtGJ0Xjz6uO+x9uuLEBMck0aKdLhS7w8/JD2aCyyJ2VBjYcfXxUrB8lmNufPpXXQmExd83ZYs6ZORaPrbu2TnbfWtmBkydpeq/wvJpCdRMPTEThmYXx3h/vwUQs3wA7ie3aJd2ePJnGK+hNuXLyC+28efqlKduiSxea6WPrAv/rKen8O/DggNVaXVFRUpyXPdgAYFuWJkIIdt/djSsvr1g8p0Q0HTxILTMAXYWrbTHCYi8YfONGKWC7YUPbBWLVYC0Y/PhxYMcOertgQXkJCmdhv4OjR2k/Q4CeC86WGLCGNUvqyJHaBLQSWPdzwYKuFxdffUXjtK5elSrmuxJXxEqpPob0PgCOvmgNAmfFheAiSy96VO6BliVaAgCexzzHuH3jANDJZcjfQ3A3nF7Na+aviWnBlqlcrItu/rn5DjPxfr8kd80BNBtQsDZFJ0XjUuglANKkmZJivQfSxYvAmTP0dtWqtov+PYp8JFrRArJIKVystQ+wXnaAXe2PH688uPjii4uYepReRfc/2I/dd3dbbFO8uOX+SpemAeCuwNdXMul/+aVzE74eXHt1DXvv7xXvxyTH4NRTqVOsmrim+HhJePr52U7Ln3d2Hlr90Qr1ltYTz20BJaJJaFkB0AnZGWzVajKvB+ZMLBOLedkBQuTxN19/LbUv0gNWrMyeLU88EPqb6Yl5AkiBAjRWy1W0b0/dmVmzUmuqXhY6W3h702QAPZvCZ3S4aMpkaBFNhBBxsjbAgC4Vu7jgyJRjMBiwqO0iZPWkFSgXnl+II4+OYPml5WI5BH8vf6zttNZqnFSN/DVQuwB1el8KvYTTz07bHOtO2B0x+L1sUFm8U1AK0mBddEJck6OyA0oDwOefnS9aej575zPUzE9TQy6GXkTIG8lPYW5punCBruyEY7EVL2UOIQSf7vpUjFkDgJmnZ1ps5+lpOblPm6atlUSyMRldNnRBqTmlcPqp7e9g8WI6ebGTcnox89RMi8d235PEpZpaTRs3Staozp2tf4YpxhRMO0aFf1xKHFZeXil73pFounNHbpVRklF0P+I+fjr+E57HPLd4zpalia0HVrs2jWfSg1KlpN9ISAgVmUeP0vulS9NilnpSsqS0KBAsxVmzyhciemLea3DGDNdYbAVy56bn5cOHQAvrOTccJ+GiKZOhRTRdCr2EkDA6UTcs0lCMD0pPiuQogqnNJNtyny19MPwfqe/A4naLUSLQdtEbmbXp7Hyb25kHgLPB742LWoome5aGmBjgj39LXPn5AR/bSD5MSEnAkou0T4iXuxcG1hiIjytKG7PWppw5pdXi3bvyi/u4ccoD/ddeW4tjj4/JHttzbw+uv7pusS3roqtfX4pbUMuE/ROw/vp63A2/i/7b+tttkaNHFpGJmLA9ZDsuh1ppvqWAV3GvxJIbQuYnAFm7HzWWpt+lU0tW+I9l081NeBYjlfD/89qfMsuoI9E0a5YU+zNihGNxG5sci4bLGmLMvjHosLaDhRU2Vy5pUhdEk7P1wF7FvbIq0ACaKCEErQuJBwLffadvnS6A/l5YaxpAW3+oyTJWO57gPv/wQ+Cjj1wzDouPD40x4rgGLpoyGVpE05qra8Tb7OSd3gyrNQx1CtQBADyIfID4FNol9ZPqnzi0hnWp0EV0e62/vh5v4t9YbJNqSsWKyysA0Krmvar0kj1fPld5BPnSq8+RR0dgNBntWprWrJEqCnfvbntFuebqGoQn0GZUnSt0Rh6/POhSsYtYFHTN1TXiZMamgT98CGzaRG/nywf07Wv3IxCJTY7F6L1SF9/2ZdqLt61ZVgQXmcGgvV3K7ru78cvJX8T7119ft3A96gkhBMP+Hob2a9uj9pLasqw3pSw8txBJRppnP6jGIFTOQ1ORzj0/J54/SkXTvXvAoUP0dunStoNxza19d8Pvylr3BAVJLX/MRVNEhBRc7Osrb5dhixknZ4gC5tzzczj+5LjseYNBEhUPH9Lsst275fXA2lhvDGCViy8uovSc0ig2q5isuj4L27hXqAZfvbq2OjyEEJx7fg6RiZE2t2HjmgoWpOUMXMmyZTS2bd061wZKc9IGzaLp3LlzGD16NNq1a4emTZuiSZMmFn9N2fxeTprAiiYlgXkmYsLa62sBUOHwYXknu7DqiLubO5a2XwpPN2n5XCFXBcxsNdPha308fdC3KlUVScYkLLu4zGKbXXd34UUsTTVsV7qdGPgt4GZwQ6MiNC89MjESV19dtTlpEgIsZCoc2KqTQwiRBYCPqE0Lt+T3zy9atu6E38GFF1IXTCGuiTUKjB6tPNbjh6M/iNaMtqXbYvX7q5HNm5qvVl1Zhddxr2XbjxhB4z127tQWY/Qy9iV6bell8fjXh77W1N5GCbNOz8LC8/QLSDYmY9jOYVYD3W2RlJokWiTdDG4YXnu4GFdHQMQ2PUpF0/Ll0u2+fa1Plqefnhbjpdh+jmuvrRVvGwyStenhQynJA6Buzfh4aQxH1c1fxr7Ej8d/lD1mzQoriHSTiQo1rfXAUowp6Lu1L6KSopBsTMb4/eOtxheycU0CU6dqC/odvGMwai2uhbpL6yIhJcHqNmyRxGnTqODUyoEHB/D9ke8RnRRtcxsvLxpLlRGCmDnOo+lrPHToEEaPHo0zZ87Ax8cHFSpUQJUqVSz+KutVH56jGLWi6fjj43gaTV/UokQL5PTN6aIj00aF3BXwTROa4uLv5Y91H66Dr6eyq9zgmlLq2sLzCy0mUbYCeL9q1v0nsrimh4dtWprOnpX6PdWqZbvD/LHHx3D5JXUf1S5QW4y9AuQB+KxVxrz1RlAQMHCg9f2bcy/8Hn4+SRsYe7l74deWv8Lf2x8DqtHI7iRjkkU9Kx8fKpxatVI2BouJmNBnax+8insFAHiv1HsILk4DYO5H3LdawNNZdtzegVG75YV8Tj49aREfZI+119biZRyN7P+g3AcomqOorBCr4KJjRZOtWk1GI7CCGjDh5kYrnVuDrdE19d2p4uJg3fV1snNVaNybkgI8fy7dnvOv9jYYlHWT//bwt4hLiZM9tuHGBosismxc05IlwIl/OyCprQf204mfxHMdoN+JED/IYt6At3FjbfE4qy6vwm8XaFn0W29uYe6ZuVa3GzKEBszPmGHbha6EXXd3ofmq5ph4cCK6b1LXOUELJ5+cRPFZxdFwWUO7ljS9uBd+D9OOTcOjyEcuHwsAElMTFZWISW80iaYVK1bAy8sLM2bMwPr16zF37lzMmjXL6h8nbREu5AEBklnfHrLaTOmcNWeL8Q3H43i/47g29Boq5Faeq1sqZyk0L94cAJ2w2diUl7EvseM2jaDN55cPrUpaVwhskctDjw4hf35ppc1aGlgrk9IyA4KVSaBTuU6ixYGdOM0Dsz//XNl3CwCj9owSrTuj3hmFkoF0ZyPqjBBbtsw/Nx9JqVbKP2tg5qmZYiubPFnzYFmHZZj6rhSbNuXIFNHNqgdXXl5Bt43dxAB31vU4Zu8YRZMLIURWZuCzd2ihowaFG4g1v3bf2w1CCAICJMuELUvT/v3Sc61bW4+XeRb9DH/d+AsAEOQbRC1bJall62n0U1n8mbW4po0bpd9627aWcTrmhLwJwaLzNEvBz8tPtMKmmFKw5MIS2bbsvtj6T2rqgd16c0tW40rg+6OWEdfmlqYfflDvxgp5E4Ihf8sbnv1w7Aer33/27PR9ffaZdndZyJsQdN3QVfyN7ri9A//c+UfbzhRw8/VNtFnTBg8iH+DY42NiRrGruPryKmovqY3x+8ej8fLGiElSUF/DCc4/P4/is4ojz895sP/+fpeO5SyaRNOTJ0/QrFkz1HBFjiZHM4RIneiVxDOlGFOw/jqtXujj4YMOZTq48Oico16heiicXX23TjYgfMG5BeLtVVdWIdVES133qdpH5h5hqZi7IgJ9AgHQuCZ3D5M4CQqWpshIWjARoEHbXWyEWz2NfopNN2lQUu6sufFReXlUaE7fnKJ4YydO1tKUI4fyujW77u4Syxrk98+PLxtJUbZFcxTFB+VoJb/Q2FCsu77O6j7UcP75ednFfNX7q5A7a27UKlAL75elJooXsS8w78w8p8cC6HG3XdNWXJ12qdAFW7psQadyNBjmdfxrTDroOL/70MNDMutf3YLUJ5nFI4voMn0e8xw3Xt+AwSBZm548sd7aREkA+IJzC8Tzb1CNQfDx9EHXCl3F59kSIOaiSUsxywkHJog9GkfXG41JjSeJMXQLzy8UjwWQi3TBHViqlO3z2hwTMWHAtgGyWmrFA6i5bO/9vTj7TN4Do3JlKaGhQwf1LuHE1ER02dBFtKIJrueIxAgLd6QeRCZGosPaDohKipI9PnL3SJe4n5/HPEerP1ohIjFCfGzR+UU4/vi4nVdpJ+RNCIJXBYtxl4+iHsliIvXm9NPTaLayGV7EvkB8Sjx6bO5hETKQkdAkmrJlywZvV9Rl5zjFmzc0cBNQJpr23d+HsATam6FdmXbw93ZhLmw60a5MOxTwp37KHbd34HHUY4vmvLZccwCNb2lYuCEA2iD4+qvr4qT58iXtz7VqldS1vFcv21aghecWihPXoBqD4O1h+RtirX1CgH6NGlK8itLqyMnGZIzcNVK8/2Pwj7KMMAAYWUd6/tdTvzqsZ2WP2ORYdNvYDSkmWghydL3RaF6iufj8lKZTxEl62vFpsoKlWkhISUCHtR3E3oO1C9TGsg7LYDAYMKPlDNGFO+/sPIfZdOZWJjaDUohrAqTSA8L3Hxcn1fkRCA8HNm+mt4OCqBXI2rELLlEPNw8MrUVVcIeyHUTL1l83/hKLapqLppMnpVpgVarQlhz2OPnkpCjW8/rlxai6o1A0R1G0KU0jup9GPxWtroD1elLjxysvOrrg7AIxwLxEQAl89+53GFt/rPj8D8d+kG0fFEQtZ+PGSYHtavhizxei6C0XVA4n+58US5HMPDUTL2JeqN+pDYwmI7pt7CZmG1fMXVEsU3I77DbmnLYsWOsMUYlRaP1Ha7FTgLCAA4CBOwbqLtIeRDxAs5XNRPe6wKLzi2SWer04/vg4mq9qLhOgobGh6L+tv1PXI1eiSTQ1btwY58+fR2pqquONOWmG2sy5t8E15ywebh4YWIMGAJmICb+d/w0nn57ErTe0/HCjIo1El5UtZC66h4dkcU1Pn8prM9kKAE9MTcRv538Tj4mNt2JpX6a9OHFuuLEBKcYU+PvTis+HDilvZTLn9Bzxwl6vUD2rzZfrFaqHWvlp9c1LoZfEsgpaGPHPCNwJp9UQa+avie/elRddqpC7AnpUpkWlwhPCMePkDM1jmYgJvbf0xplnVDkUzl4YW7tuhY+nj3j/y4ZfitsO/2e4zQvwnbA7omAomK2gaKUSsCeaAEsX3Zo10sKlZ0/rJSHWXF0jLlY6V+iM/P7UdOnn5Yd2ZdoBAMISwsTgc3PRZG5lsudiIoTIrATfNPlGFM/Dag0TH2cDwvPkoSUzBIoWVV4P7FHkI4zbL1kbF7dbDF9PX/Su0hv5/Gg7pc23Nls0027blrrlHAWzm7Pp5ibMO0stl1k8smDdh+tQPld50cKckJqAKUem2NuFKsbvHy+6n3P65MS2rtswt/VccUHw7ZFv7TYaV0OyMRkfrP9ArBRfNEdRXBl8RazpduP1Dfx0/CddxgKoeH535bti0kjVvFVlrvUB2wY4vdhhOfzwMFqubil2Y2hcpDFy+dKuzNtvb1fVOzQt0SSaBg4cCD8/P0yePBkvrZVF5qQLakRTfEo8Nt+iS+Ls3tnRumRrFx5Z+jKg+gDR/bbkwhLZj1GoAG4P8yKXrGj680/g+r+ljurXt942AaBlD17HU5Nzp3KdxInSHD8vPzEuJywhTKxOXbAgDZBVEoMRGhsqxpMYYMCc1nOsNl82GAxi/A4gt7io4c+rf2L5peXi8f/Z6U+rRUcnN5ksfg8zTs3QbIL/+uDXYjyQn5cftnfbjrx+8pLEn9f9HKUCaXDOscfHxPpL5sw6PUuMhxpRewQ83eWFjsoGlRXrlh15dAQJKQl2C1yylhJrrjnzJs3/qyOP4LaWDMCKpuPHpbITefLQ3ob22BqyVbT6lA0qK7OqtijRAiUCqO937/29uB12G4C8zAVALUBKipsSQjD478Giu3Rg9YFoWoxmUHt7eOOLepLiFwp6OsPDyIfov036/c5sOROV8tAS3F82/FIUh4svLLaotK6FVZdX4acTVKS4G9zx10d/oVhAMdTIX0P8XKOTojFh/wSnxzIRE/pu7YsDDw4AoAJtV/ddKJCtAH5r+5sYjzjlyBTcCbtjb1eKeBn7Es1WNsPDyIcAaLmVPT32YGyDsWhWrBkA4En0E3y+R5/6DPvv70frP1qLLtUWJVrgn+7/4PcOkm971J5RFuI6I6BINHXp0kX216dPH7x8+RLHjh1Dly5d0LZtW4ttunTpgq6OftEcXVEjmv6+/bd4cetUrpNVV1FmIb9/fnQs2xEA8DLuJVZdWQWAxj4oKbFQOU9lZPem1RcPPzqMggUlq8XPP0vb2SszMPv0bPG+eQC4Obay6JQyfv94cfX2SfVPUD1fdZvbflj+Q9F9uT1ku+rJ5X7EfQz+W7KazX9vvk3LXfGA4vikOi0mFJscq2niXH1lNb47Sq1YbgY3rO20VqynxOLt4Y3ZraXPfPTe0Rar5IiECCy7RFWOr6eveGwsBoNBtDYlpibi6OOjNi1Nly7Riu0ATWu3JqAPPjyIq69oae26BevKsicBoHXJ1uK5tvnWZiSkJMDPTypWeO+eVMl62DD73etTTamyGLNpzabJYvfcDG7ymL+zUsyfUIupXDnlVbn/uPqHaIXJ758fPzaXxxMNrDFQdC+tuboGDyJs9IVRQIoxBd02dhMDvT8q/5FoUQZoD8sv6lKRlmpKxVcHnev7cubZGXyyXTo/ZreeLQpCAJjabKoYS7Xs0jKce37OqfHG7Rsnuud9PHyw4+MdKBNEI+ar5asmutaTjEkY8vcQp1xZYfFhCF4VLIrmkoElsa/nPuTKmgtuBjcsbb9UFKBLLy51OuB9191daPtnWySk0piGNqXaiJbitqXbYmhN6q5OTE3Exxs/1i1JRS8UiSZCiMWfu7s7cufOjdy5c8PX19fqNiZbHU05LkFNuQGZa65S5nTNsQg/RJZuFbspKl/g7uYu1mt6E/8GhjzS6ifq33k4IIBW/LXGqaenxIKF1fJWQ71C9tuOtyrZCjmy5AAAbL65WVW22emnp0WrT44sOSzcZOZ4untieG1aaZ1ALu4ckWJMwccbPxZr1HSv1B09q/S0+5qJjSYiiwctMDXv7Dyx3IUSjj8+LrMszGgxQ4zLsUarkq1kYnnyocmy5xdfWCx+tn2q9EGAj3XfkHnpAVuiyZGVCYBdKxNAxZ4QoB+bHIudd3YCkFubACqW7GVpAsDSC0tFF22Dwg1kmYUCfav1Fb+PZZeWIS6ZrvynTAFOn6blBpSEr76Ke4X/7ZLez8I2C5E9i7zMu5+XnzjZG4lRtNpoYdLBSWKNq2I5imFxu8UW1tRRdUeJxWnXXlurqeApQAOxO67tKBY+HVh9oExsAjSxY3LjyQDo7+jTfz7VLGRmnZolfjZuBjes/XCtrL0TAHzT9BsxMWb/g/02LamOiEyMRIvVLXDtFe0sXTh7YezvtR/5/POJ2xTJUQQzWkju9AHbByAiIcJiX0rYcXsHOqztgMTURABAx7IdsanLJvEcBICfW/yM8rloBdLLLy/rYrnTFcLRjVu3bpGGDRuSW7dupcv4vXoRQnNrCLl2zfZ2EQkRxHuKN8FkkDw/5SGpxtS0O8h0wmQykbJzyxJMhvh3+ulpxa//+fjP4uvGbpgnfs7C32ef2X5ttw3dxNcuu7hM0Xj9t/YXX7Pu2jpFrzGajKTWb7XE180+NVvR68Liw4jv974Ek0Gyfp+VRCREKHrdhH0TxLGKzypOohKjFL1u9J7R4usGbhuo6DU3Xt0gQT8Gia8bvH0wMZlMDl/3IOIByfJdFoLJIO7fuJMroVcIIYQkpyaTgjMKivsLeRNicx9h8WHEMNlAMBmk4vyK5No16Xvv2ZNuk5hISGAgfSxLFkIiIiz3czfsrrifAr8UIMmpyVbH23N3j3hcndZ1IoQQ0rmz/HwbMMD++45JiiF5fsoj7ufkk5M2t+27pa+43eLzi+3v2AZd/uoi7qPrhq42twuPDyd+U/0IJoN4T/Emz6Ofqx5r993d4lge33rY/R3PPDlT3LbV6laqx0pISSC1F9cW99Hw94YkKTXJ6rbJqcmya8yqy6tUj7f+2nrxHMFkkEXnFtncdkfIDnG7oB+DyOu416rGikmKIXWX1BX3ke/nfORO2B2r25pMJtJyVUtx296be6saixBCNt3YRDy/9RT38dH6j2z+Bi6HXiZeU7zEbXff3a16PFfBa5RmIoRyA4B999zmm5vFVVOXCl3g7qYwLeYtxmAwyFaHFXNXFIOglcD2obuZcMjieVvFJl/EvJDV4+laUZnLWouLbsWlFTj7nKZzV8hVAUNqDXHwCkqgTyB6V+kNgDaNNa/bY05cchxG7R4lZkF5uHngz05/iu4JR4ytPxb+XjRTc+nFpXZdghEJERi1exSqLKwitjJpXrw5ZreebTVOy5yiOYpiQgO6UjUSoxgUvunmJtHK1bZ0W5TOWdrmPgJ9AlGrAD1Xrr26BvcA6YcmWHe3baOZcwDwwQe0NIQ5c87MEeOnhtcebhE/JdC0WFOxOv2O2zsQnRRtYWlyVMxyxskZYrHOTuU6WVgqWITsPYBa/4hKC8m2kG1iyYqcPjkxq5Xt+nwBPgGi1TfJmKQ6ji40NhQ9N0vWzGnNplm4OFkG1xyMItlpc7tdd3fh0MNDiscihGDg9oGyhIMNnTdYjdcDqNV2ZsuZ4v2x+8aqKtZ4+OFh9NjcQzxHJjWaJHM5mtOmdBuxbMmb+DeqygIkpCSg/Z/tcfLpSQD02rSv1z6brnWDwYAl7ZeIruMVl1dge8h2xeOtv74eH/31kZhd261iN6zptMbmb6BynsqYHjxdvN97S+8MU4bAadEUFRWF8+fP48iRIzh//jyiovSLrueoQ7iA+/nZT0v/r7nmBHpX6Y2yQWVhgAHfNPlG0aQrUDVvVVEUnAo9DO8s0sTSpIllVWOBRecXiTVwPqn+icwMbY8mRZuIwc077+x0WKRx+aXlGLpTmvxmt55ts/aUNVhX0Zwzc2R1e1j23d+HSgsq0RIF/17cpzSdYnfiMienb04xKNhIjPj60NcW2yQbkzHz1EyUmF0Cv576VbzYVshVAes/Wm/zYmuN0fVHiwHPRx4dwZ/X/rRazNIebBbdqVd7xd+X4J5z5JqLTooWm0P7ePhYjZ8S8HDzECfDJGMSttzaIhNNzZvbTjgA5O1SPNw8ZI2vrVEzf01ZFqXg9lJCVGKUrKjkzFYzLdoRmfNZ3c/g7U59fgvOLRDrATnCaDKix6Yesmrzn9W1/915e3jj26bfivfH7RunWBTOODlDjH/09fTF1q5bHb63liVbol1pmgH5POY5fjj6g93tBQ49PIQOazuIJQT6Ve2HyU0mO3zdrFazRCGz/NJyHHxw0OFrTj09hearmuPgQ7ptjiw5sLfnXtElZouC2QrKWlgN3DHQ4Xd35eUV9NjUA902dhPLrfSs3BOr3l/l8Pr0aZ1Pxd9daGwoBmwfkCHKEGgWTS9evMD48ePRsWNHfP7555g0aRI+//xzdOzYERMmTMCLF/rVxkgrkpOTMW3aNHz44Ydo1aoVBg8ejGvXrqX3YSmCEEk0FSxoO8vqZexL7H9AK64Wy1FMbIj7XyB7luw4+8lZvPj8hRg3ohQPNw80KNwAAI3fyFshRHzOVgB4sjFZrMLsbnC3iIOwh7ubOzqX7yzuZ/PNzTbHGPr3UPTd2leME+hWsRveLfau4rEAoExQGbQpReODHkc9Fuv6CEQkRKDf1n5ovqo5HkTSAN4sHlkwPXi6rAaPUj575zMx3uTPq3+KadWEEGy+uRkV5lfAZ7s/Ewv6+Xj4YGLDiTjZ/6QY76WULB5ZZNaPIX8PwelnpwHQFW3Too57ZJqXHhDimp4+pX+7aTUCFCkCWGu5ueziMjE4v2flng7bFZlbGlu2pO1tPD2Bry01poxvDn8jZiUNqjHIrhVNQFZ+4JxlPzpbjNk7RmwA3Lpka3Sv5LidSF6/vGLWamxyrKLaRinGFIzeO1q8duX3z48VHVeIWWT26F6pOyrkop0ETj87ja0hW+1u/yz6GXpu7okv9krZfis6rkDVvFUdjgUAM1rOEK1Rv5z8Bfcj7tvc9srLK2i7pi2armgq1ip6r9R7WNh2oaJFXT7/fJgWLCVUDP57sHgdMOfkk5Noubol6i6tK2ZU+nn5YVf3XYrfW+8qvcXrRGhsKD7951OLbQghOProKNqsaYMqC6vgj6t/iJXT+1frj2UdlinybrgZ3LCswzLxOrEtZJt4PU1PNImmZ8+eYciQIThx4gTy58+PVq1aoVu3bmjVqhUKFCiA48ePY8iQIXguNEp6SzAajcibNy/mzZuHnTt34qOPPsL48eMRH688EDe9iIqixfYA+665v278JZ7AXSt2VWVtyQz4efkhj18eTa9lSw/kfecQAKBwYdv9uJZdXIbQ2FAANOCxUPZC1je0AVtbac21NRbPP4t+hsbLG8sqnQ+uMRjLOmioEAhg5DsjxdszT80Ub2+8sRHl55cXM80A+llcGXwFY+qP0XQO+Xv7Y3yD8QBo4OxXB7/Cuefn0GRFE3yw/gOZy65XlV64PeI2prw7RXMB1jal24gWALa5qnkxS1vULlBbtDTuvbcXBQvR31BiIvDLL1JGW58+lq1GjCajrH3Op3UsJxpz6haqKwb67r23F1lzvcbDh7Rpb/36tl8X8iZErAfm5+WHSY0dV0QHaL0oIbNt/fX1FsUNzSGEYPH5xWKvNz8vP8UTPUCtf+4GOnHOOj3LbpuOM8/OoObimqJ10M3ghjUfrBEnU0e4u7nLrG0T9k+A0WS02C4hJQHfH/kepeeWlgVWf9XoK1WNzEsGlhStl0nGJKtp+g8iHqDn5p6ourAq/r7zt/h4/UL1sf5DdZbUgTUGilXsb4fdtrBunXhyAi1WtUC93+vJClQWyV4Eu7rvQp2CyhfOBoMBv7X7TVy4/HH1D3FBZyImbAvZhgbLGqDR8kZiEgNA3bbTg6fjt3a/qQoHyeefT3Y9G7V7FG6+vqn49a5Ak2hauHAhIiMj8fnnn2P16tUYN24cBg0ahHHjxmHVqlUYNWoUIiMjsXBhxixOZQsfHx/06dMHefLkgZubG5o1awYPDw88sdfOPIOgtNyAkMYKwGrBQ45t2CKXBRscxvLltOCkteyif+78g+H/DBfvOyozYI3aBWqL7ScOPDggCjCAxj9U/6266ErxdvfG7+1/x4K2CzSXj2hWrBkq5aZ1bk4+PYktt7ag0/pO+PCvD8Wxs3lnw8I2C3Gg9wGUyumg4ZkDhtQcIpY72BayDbUW15I1dG1cpDHOfXIOKzquEGslOcPMVjNFtxBAM56UFnX1dPcU69WEJYQhS7EL4nPsZc5aev7OOztxL+IeACC4eLCi/oluBjexrYqRGLHhxgbkzm29j50AIQRj940V3SBj6o1x6E4S8PH0Ea0/ycZk0ZVojYiECHTZ0AUDd0jxNtODp6tqc1Q0R1F0r0ytUhGJEaLQY4lNjsXIXSNRd2ld0RLpZnDDjBYzZDGGSmhXup2YtXrzzU3R7QbQz01YGEw8OFHMqAz0CcT89+aLDcPV8GXDL8VinltubRELlb6Ke4VP//kUZeaWweorq0UXd6FshbCswzIc7nMYWb0UNpb8FzeDG35r95vo7vrh2A+4+fqmWG27/u/1xXpvAP3sF7dbjNsjbqN+YTsK3Ab5/fNjTmtpETD478H47fxvqLSgEjqs7YATT06IzxXOXhizW83Go5GPMKb+GEWWQXPYMgQJqQnotrFbupYh0CSazp8/j/r166N9+/YWKwuDwYAOHTqgbt26OHdOW62K+Ph4/P777/jiiy/Qpk0bNGrUCP/8Y702RHJyMhYsWID3338fwcHBGDRoEM6ePWt1W7U8efIEMTExKOAofz8DoKTcwMPIh2LgX8XcFVExt53ACI4F1fNVF+uVHH92CL16EYsAXQA4+ugoOq3vJMYFDaw+UPVFHqC/JWHiNBET/rr+F20ue/JXWauDItmL4Hi/4+hbra/GdyaNx1qb3l/3vsxN175Me9wYegODag7SdPEzx8fTB183tvQ1lQoshS1dtuBg74OokV+//pbFA4pjXAOpbtHQmkNVCUy29EBMnt3i7cR/vSHNmtHq2ebMPD1TvM22rnEEG2+49vpau9smpiai5+aeoutJaJeihsE1B0v96M4ttGqNOfroKKosrCImNwBU/NqqcG+PcfXHieP9cvIXmVtp552dqDC/AmadniVaxqvmrYrTA07jf+84iIK3gsFgwLRmkhtr0sFJSExNxJWXV/Duynfx4V8fioUd3Q3uGFF7BO6MuIMhtYZotqSybrP/7fofvj74NYrPKo45Z+aIMXqBPoH4pcUvuD3iNvpU7aM5Kadi7ooYXY8GgqeYUlDv93posKyBKNYAGo6xpN0S3B5+GwOqD7AZ0K6E7pW6i71KX8W9wqAdg2SFKCvmrohV76/C3RF3MaLOCNVC0JyfW/yMckHlANAyBF8e+NLBK1yHpiufyWRCUWtXB4bixYtrrtMUFRWF5cuX49GjRyhprRESww8//ID169ejefPm+PTTT+Hm5oYxY8bgypUrmsYWSEpKwnfffYfu3bvDj+0pkEFRYmkSmvMCmbdtiivxcPNA/UJ0ZRYaGyq2DWG5+OKirHBb5wqdMb+N8hgRc9iJc+WVlfh408cYtWeUaE0ILh6McwPP6SYuPq70sdjKQCCXby6s+3AdtnTZggLZ9F1A9KnaB1XyVAFAJ5BZrWbh2tBr6FC2g0tcxxMaTsC4+uPwvzr/kwkoJbBxTU+9LftwWQsAv/ryqljVuVRgKbQupbzyfpU8VVA2iGYYHH101GZNq1dxr9BsZTP8cfUPALQK/MyWM1VPVMUDiovH9yjqkcy9kmpKxaSDk9BkRROx319AlgBs+GgD5reZr0lEl8tVTowtfBH7AisurcCruFf4eOPHaLOmjdhvTYidOzPgjNhCRAsNizTEe6XeA0CrWzdd0RTVFlWTZdQFFw/G5cGXMbv1bFmfNy30qNxDjBm98foGvj3yrRhr5uvpi4kNJ+L+p/cxqu4oxQki9viq0VdiwgObOFI8oDh+b/87QoaHoH/1/qpcf7YwGAxY2HahxWfUoHAD7Oi2A1cGX0GPyj10GQugCyy208Caq2t0bemiBk2iqXTp0nj48KHdbR48eIAyZcpo2T1y5syJzZs346+//sKQIbaDZ2/cuIH9+/dj4MCBGDp0KNq3b4+ZM2cib968WLBggWzbYcOGoVGjRlb/Fi9eLNs2NTUVkyZNQoECBdBHaTncdEZJuQEhdRaA2HWeow7WRXf4obxXW8ibELRc3VKMmWlVshVWvb/KqZIOrEXw3PNzWHtNsjiMbzAeu7rvUhzboYQsHllk2WS9qvTCzWE30blCZ5eIGE93TxzpewS7uu/CvU/v4dM6nzq1AnaEl7sXfgj+gbrqVLoxiwUUE1Oy7yWfALyl2Kjs2S1j21JNqbI+bJ/W+VSVuDAYDOLihoBg3bV1Fttce3UNdZbUEV0ivp6+2NRlE7pU7KJ4HBa2CKwQEP4g4gEaLWuEKUemiFafxkUa4/Lgy+hUvpPV/ShFiGsDgMmHJ6PcvHKy7N5mxZrh2pBrGFN/jC4TMNtL7dTTU+L7KR5QHFu6bMGeHnsUuU+V4GZwk1WlB/5t0FxzKO59eg9T3p1iUQDUGXw8fbCo7SIxVqxEQAks67AMt4bdQt9qfXUTMAJ5/fJi/YfrUT5XeXQo0wFH+x7F0b5H0aZ0G5dcK6rkrYJpzaahXel2uDz4sq6fnSq0FHe6cuUKadasGdm+fbvV57du3UqaNWtGrly5omX3Mm7evEkaNmxIdu7cafHc/PnzSZMmTUhsbKzs8VWrVpGGDRuS0NBQ1eMZjUby9ddfk7Fjx5KUlBRVr03P4pYDBkiF7y5etL5N5QWVxYJwKUZ1741DOfH4hFhw7eONH4uPP4p8RArNKCQ+V39pfRKXHKfLmFOPTJUV5fSf6k823diky76tkWpMJX9e/ZOceHzCZWO8rQz7e5j0XZTZKv7mhgyRb2c0GUnPTT3FbQOmBZDoxGjV44W8CRH3UWNRDdlz/9z5h/hP9RefL/BLAXLh+QVn3h5JNaaSYjOLifucfmw6yfZDNvG++zfu5Psj3+taEJctmij8BU4PJMsuLlNUwFQtH2/8WBzHb6ofmXZ0GklMSdR9HIFpR6eR3D/lJt02dLNZPFJPzj8/T3bf3Z0pr/Emk8kl54QalBdyYTh//jyqVauGn3/+GWvXrkWlSpUQGBiI8PBwXL16FU+fPkWtWrVw/vx5nD9/XnydwWBA7969dRN8d+7cQcGCBZE1q9wMXa4c9X3evXsXefKoy5T6+eefERYWhp9//hkeHvY/njdv3iAsLEy8/+jRI1Vj6Ykj9xwhRMxIKpajmKoaPhyJmvlrwtfTF/Ep8Tj88DAIIXgd/xrNVzUX3RZV81bFjo93KGrRooSPK32Mbw5/gyRjEsoGlcXmLptFt40rcHdzV1yE879GyxItMe/sPHqnxG4ghLYmYV1zhBCM2DlCDDb2cvfCug/Xacr8K52zNKrnq44LLy7g/IvzuBN2B6VylsKc03MwcvdI0VJSI18NbOu2zWYjaKW4u7ljcM3BGLuPlpEQ/gPUGrPmgzWqsq2UMKHhBOy+J8WIdavYTVG9J63MbT0Xvh6+yOadDV/U+0LWMsQVjG0wFmMbqC/LoRV7vSbfdjJCtremmXMZU8ntyZMnVrPLzpw5gzNnzsge01s0hYWFIWdOy3onwmNv3rxRtb/Q0FDs2LEDXl5eaN9e6tP0448/okqVKhbbb9u2DcuXL1d30C5CqO7g5QVY+UjwPOa5mBXibNbTfxlPd0/UL0SzUZ7FPMOFFxcwYPsAsdllqcBS2NV9l+paQvYokqMI9vfaj6uvrqJ7pe6a0+45ztOkaBN4uHkg1ZQKz3K7kbITqFYNqMGElH154EvRteVucMfaTmvRvERzzWN2q9gNF17QbL1VV1YhLD5MVkupU7lOWPn+St1Eer9q/TDp4CSxawBAa0vNfW+u4qrvamhYuCGmNJ2CI4+OYOQ7I8W4I1cR4BOAxe0XO96Qw7GCJtE0a5btMvlpSVJSEjw9Lf20Xl5e4vNqyJs3L44cOeJ4w39p37496jNFUx49eoTvvrPfINVVCAavnDmtF7Zkg5ZLBXLR5AyNizQWU3iDVwWLQZcFsxXEvl77NNeBskf9wvU1pQdz9MXf2x/1C9XH4UeHkeJ/D4PH38Pn/UqIv7kfjv4gtpcBgOUdl+P9cs7FD3ap0EVskTHlyBTZcxMaTMCUd6foks0oEOQbhAHVB2De2Xnw9/LHgjYLxPIArsBgMGBio4ku2z+HoyeaRFPVqlV1PgxteHt7IyUlxeLx5ORk8XlXEhQUhKAg/YJwnUEQTbYO504YF016wZYPEARTkG8Q9vbcq6pWDeftpEWJFjj8iCYBVH5/D0qWpMkq887Mw4QDUkf2+e/NR4/KPZwer1D2QmhYuCGOPj4qPubp5okl7ZegV5VeTu/fGjNazkC70u1QNW9VlywCOJy3lbe6YW/OnDllMUUCwmMZRdC4mvh4qVaMNdccYGZp4u45p6iVvxZ8PHzE+9m8s2F3j90ujTPiZBzY0gN77tPSAysvr5QVM50ePF1xw2QlsIVoc/rkxP5e+10mmAAah9WyZEsumDgcMxSJpuvXrzs1SEJCAh48eODUPqxRsmRJPH36FHFC/5B/uXHjhvj8fwFWNyoSTdzS5BTeHt5oWZJOnFk8smB7t+2ZOviSI6davmpimYf99/dj/fX16LtVKiw6ocEEjKk/Rtcx+1bti+6VuqNd6XY4PeA0GhZpqOv+ORyOMhSJpqFDh2LMmDG4dOmSqp2Hh4dj9erV6NKlCw4fPuz4BSpp0qQJjEYjtm3bJj6WnJyMnTt3onz58qoz595W2Hh3W6JJyJzzcvfiLiQdWNBmAX4M/hFnBpxBoyKN0vtwOGmIm8ENzYvTwO6Y5Bh02dBFzGIbXms4vntX/7hGbw9vrP5gNbZ124YSgSV03z+Hw1GGopim7777DgsXLsTIkSORO3duNG7cGOXLl0eZMmUQEBAAHx8fGI1GxMTE4PHjx7hx4wbOnTuHCxdoxkfbtm3RsWNHVQe2ceNGxMbGiq6248eP49Ur2jaiU6dO8PPzQ/ny5dG0aVP89ttviIyMRIECBbBr1y6EhoZi7Ni0S/FMbxxZmkzEJIqm4gHFnSq2yKHk9cuL0fVHp/dhcNKJliVayoowArQD/KzWszJEWjSHw3ENikRTw4YNUbduXezevRtbt27F+vXrZRcGNzc3WcsUQgh8fX3Rtm1bfPTRRyhUSF13dwBYt24dQkOlBqVHjhwRM9tatGghtjaZMGEC8uTJg927dyM2NhbFixfH9OnTM0ywelrgSDQ9i34m9nXirjkOx3nMSwh0KtcJS9ov0TWLjcPhZDwUZ895eHigTZs2aNOmDR48eIDz58/j6tWreP36NaKjo+Ht7Y3s2bOjePHiqFq1KmrUqAEfHx/HO7bB+vXrHW8EmiE3dOhQDB061PHGmRRHoonHM3E4+pLfPz86lOmArSFb0bZ0W/zxwR+8YCyH8x9A06+8WLFiKFasGD788EO9j+etZN++fdi3bx9iY2PTZXyHoimMZ86p4sED4J9/gK5dgUDnmnZyMi8bOm/AvfB7KJ2zNHfJcTj/EfjSSAeCg4MRHByMkJAQfPLJJ2k+Prc06citW0C9ekBEBPDnn8CRI9arhXL+83i4eaBMkLam5BwO5+2EO+AzAapEU2a1ND17BvToQf9evtS2j5cvgdatqWACgGPHgI0b9TtGDofD4bzVcNGUCVDqnsvikQUFs1np5vu2c/o0ULMm8Mcf9K9JE6kZn1Li44H27YGHD+WPjx8P/FthnsPhcDj/bbhoygQIoslgAAIC5M8ZTUbci7gHACgRUCLzZfesXAk0bgwwmZa4dYs+ZqWRtFWMRqB7d0BoMF2wIFDn307ud+8Cixbpe8wcDofDeSvJZDPofxNBNAUEAO5mJZieRD9BspFaSkoGZqIK6UYj8MUXQO/egNCYuWFDoFgxevvuXaBRIxrU7YgvvgC2bKG3/f2Bv/8G5s6Vnv/mGyAqStfD53A4HM7bBxdNmQChIrjDzLnMEgQeGQm0bQv88ov02KBBwL59wOHDQKl/3+fDh1Q43bljbS+U2bOBmTPpbQ8PGsNUuTJ193XrRh8PCwOmT3fBG+FwOBzO2wQXTW85qamSEeQ/EQQeEkJdZ7t20fvu7sD8+cDChYCXF1CoEBVO5crR558+pcLp5k3LfW3dCowcKd1fuBBozhQt/P57uk8A+PVX5e4+DofD4WRKNImm5wqDbE+ePKll9xwVhIdLt99KS1NsLLBqFbB5M3DxIn1DhFjfdvduKphu36b3c+YE9u4Fhph1k8+XDzh0CKhUid4PDaUxTleuSNucOUMtScJYX34J9O8v30+xYsDwfzvXJyYCX33l1Fu1SkwMdQUuWEAVMIfD4XAyLJrqNPXv3x+fffYZWrRoYfX5lJQUzJ8/H5s3b8ahQ4ecOT6OA97qcgNxccC77wJnz8of9/cHihQBihal/4sUAaKjgalTAaFdT8WK1FJUvLj1fefODRw8CLRoAVy4ALx+DTRtSkVWQADQrh2QkEC3/fhjYMoU6/v58kvg99+pS3DlSuCzz4AqVZx/74mJ1LL1/feSf/XECWDFCsCNG4A5HA4nI6JJNPn6+mLq1Kk4c+YMRo0aBV9fX/G5hw8f4ttvv8W9e/dQRY/J5S0gPSuCKxVNPh4+yO+fP42OSgFGI7X0mAsmgFpfrl2jf9bo0IFap/z97Y+RMyewfz/QqhUtSxAeTkVarlzAv82f0agRFUW2ClgGBgITJ9JgcUKAMWOoxUsrqalUfE2ebOnuW70a8PGh2Xq8oCaHw+FkODQtaZctW4Z69eph79696N+/P27cuAEA2Lp1KwYNGoSHDx+if//+mDVrlq4Hm1EJDg7GtGnTMGLEiDQf255oSjWl4n7EfQA0cy7DlBsgBPj0U2D7dno/WzZg0iTqHgsOBkqWlGKJzJk4Edi0ybFgEsiRg1qXGjak96OiaGYdAJQpQ92C3t729zFsGLV2AcCePfRPLYTQIPNKlej7ZAVTmzY0CB0AFi+m1ixbLkpnuXYNmDFD7qrkcDgcjiI0WZqyZcuGqVOnYvPmzViwYAGGDx+OMmXK4ObNm8ibNy8mTZqE8uXL632sHCvYE02PIh8h1UTjZDKUa+6XX2jwNkDFwqZNQLNm8m1MJhqL9OgRzYJ78QKoX1+qn6QGf3/aS659e+DAAfpY7tz0MSW95bJkoa7B7t3p/dGj6fGa13ewBiE0q2/CBODcOflzbdpQ91yVKsC6ddRNaDIBs2YBWbPS5/QgJgZYuxZYupRa3AAqShcvBnr10meMzER8PBW2588Dy5fTtjocDocDAMRJNmzYQBo1akQaNWpE2rVrR8LCwpzd5VvLrVu3SMOGDcmtW7fSbMwffySEzsyErF8vf+6fO/8QTAbBZJCxe8em2THZZf166YABQpYvT7ux4+MJGTGCkHffJeTCBXWvNRoJqVFDOu5lyxxv/88/hDRtKn+/ACENGhBy9Kjla5Ytk2/33XfqjpHFZCLk+HFC+vUjJGtWy2MQ/saNo8fqKpKSCImIcN3+9SYuTv6dFSlCSGxseh8Vh8PJIGj21xiNRixatAhz586Fj48PKlWqhKioKIwcORL37t3TU9dx7GDP0pThMueOHQN69pTuf/MNLU6ZVvj40LpM+/cD1aqpe62bG/DTT9L9iROlQHKW2Fhg3jygfHnax+7gQem5KlVo4cwjR4AGDSxf26cPfS07xq+/qjvO16+pJa9CBWqZ+/13GnAvULUq0KmTdH/aNOCDD+hx60VUFG123KULPSlz5gRGjaLB7xmZ+HiaIMB+Z48eAV9/nX7HxOFwMhZalNazZ8/IoEGDSKNGjcjAgQPJs2fPCCGE/Pnnn6RZs2akWbNmZN26dbqqu7eB9LA0DRggLYovXZI/N2LnCNHSdPjh4TQ7JqvcukVIYKB0sH37UmvI20abNtJ7mDpVevzePUI++4yQbNksrTklShCyZo1yi87PP8tfv2CB/e1fvyZk6VJC2rYlxNPTcvxs2QgZMoSQ8+fp9iYTIXPmEOLmJm1TpQohjx5p+kgIIYQ8fUrI/PmEtGhh/RgAQipVIuTKFe1jOCI2llrX/r0eqSIujpBmzeSfmbc3ve3urt4yyeFwMiWaRFPLli1JkyZNyKJFi0hKSorsuZCQENK9e3fSuHFj8sUXX+hykG8L6SGaOnaUrvNPn8qfa7W6lSiankc/T7NjsuDlS0KKFZMOtHlzQpKT0+94nOH6dUls+PsTsmkTIe3bE2IwWIqEJk0I2byZkNRU9eN8+618XytWyJ9//JiQ2bOpK4kVP+xfw4b0dXFx1sfYvZuQ7Nml7XPnJuTECWXHZzIRcvUqFY61a9t2/wUGSuIDIMTLi5AZM/RxCZpMdKUwfToVPF5eksj5/HNCoqOV7Sc+npDgYOkY/f0JOXmSukeFx2rW1PY9cjicTIUm0fTBBx+QC3ZWXgkJCWTatGmkcePGWo/rrSQ9RFPDhtJ1PSFB/lyJWSUIJoP4TfUjpvSy6sTFySfVypUJiYpKn2PRi08+sS0SsmQhpH9/S7OfWkwmQsaOlfbr5kYtOdOm2Rcp+fMTMmYMtewp4eZNagkTXu/tTcjq1da3ffyYxl11705I3ry2j6FIEUL+9z9CDh4kJCWFWpcqVZJv06wZIU+eqP9cQkMJWbWKkB49CMmTx/YxAIQUKEDIhg32LZq2BBMhNB6rQgXpuVmz1B+vI0wmQv76i36nXbq8XfFfHM5/EE2iKUrhpHfo0CEtu39rSQ/RVL48vZ77+sofT05NJu7fuBNMBqm6sGqaHY+M1FRCOnSQT2JaJsqMxvPn9AM3n6CnTqWuMr0wmWjguj1hABBSsiQVSidParPgvHlDrWLsPidMoI9v3Ehde6VL2z+GKlUI+fprQi5etC5SEhKo9Yd9TUCAZfaCOU+eELJ2Lf0cqlSxfwxFihDy0UdyyxZASKtWhNy9a7nv+Hhq9WQFk7ml7dgx6Xk/Pyoc9SIkhLozzT/H0FD9xjDnyRPqRq5Zk5Dffks7F/nb6IrncKygSTRxrJMeoklYbBcqJH885E2I6Jr7aP1HaXY8IiYTIcOGySeky5fT/jhcxYoVdNKvX5+Qdetc5240GqnlyppI+eYbasXRY0JKTiZk4EDHAk34y5qVkPfeI+TXX2k8l1L27aMCk91Xr17U+piaSs+RefMI+fhjKoIcHUPbttRNGRIifQ5371KhxG7r7U0/L8Ecm5AgFyx+fjQeyhqDBknbdezozKdMiYsj5MsvJXei+V+pUoQ8fOj8OCy3btFMSvN4sz59qHh0BY8eETJxIr045cvnWCDrQVgYFfrOxOdxOHbgoklH0lo0mUyEeHjQa19VM2PSjpAdomiasG9CmhyP7MDGjJEuzB4ehOzZk7bHkJlITaWTbKtWNEhcjUhRg8lEXVDWYqQ8PKhA/PprWi4hKUn7OGFh1CLE7j9PHutB9OyfwUBI9eqEjB9PXX/2jsFkopNnwYKWVrnt2wlp2VIumI4ds72v8HC5K3DzZm3v22QiZMsWSzFYqBAN9i9USHqsYEHqOnWWc+cI+fBD6zF3wl+NGvqJtJQUQrZupYLa2pg9exISGanPWALx8VSQdeggicIsWQj5/nvnzlN7REZSN/YHHxBSqxYtneLK0h2EUAv32rWEHDqUNpY7k8l1n99bjCbR1KhRI9K4cWOHf02aNNH7eDMke/fuJWPHjiXDhg1LU9EUFSVdi5o1kz/368lfRdG07OKyNDkeka+/ll8ozYOYORmbXbuoO65SJerK2bFDeVC1UkwmQlaupBZIW5O5jw8hjRtTV+HOndrifWJiCBk9WlpdWLNWWauZZc7atdJrChRQH5d39y4VEuzYnp5UAAp1oB49krtBg4Ko6FGLyUTIgQNy16Pwlz07FeBLl8pdzEFBhOzfr34sgSdP6O/eXKQKYpe9X7gwIYedzOZNTaXH26+ffbFdsaJtC6JawsJoTF+bNtathLVq6TcWIfR7vHiRWkhr1pSPVa8eIUeO6DeWQGQkjQMcMED6LuvVo0kjrhBqRiPN6p0+nS4K27Shix1XC1An0CSaRowYQT799FOLv379+pEWLVqQRo0akX79+pFPP/1U7+PN0KS1pen+fek31Lmz/LmhO4aKounYIzuraL2ZOlX+4164MO3G5rx9PHhASKNGkrXpgw8I+eUXQk6f1neVe/UqLSqqRTARQieM1q2l144Yoex1MTFUTJjHWTVrZt2S9PIlNRsL2/n7KxcYcXFU3NWpYzmh58lDJyZW7F25Qkjx4tI2bm7Ukql0ckxMpFa7du2sWycLFyZkyhRaAmLlSrm4MRiomE1MVDYWIVK25BdfWLp4hb98+eg5ZH48gwdrE90vXxKyaBF15doS3uZ/H3+sPfYtMZEWxR0yRG55tPX33nvOhT0YjbScxvff06wid3fbY9Wtq494un+fxtN17kxIzpzWxypThgr7DGjp0iSa7JGQkEBmzpxJunXrRiL+Y5kgaS2azp6VzrEhQ+TPNV/ZXBRNL2NfpsnxkBkz5Cf+zJlpMy7n7cZkokHnrnY5mEzUjVKgAM0yVLtSf/BAss4YDIScOWN728ePqYs6Rw75byJ/fhoDZ++9RkbKBV6WLNTaZ43kZPpc9+7UzWg++RQrRl1/5qm1AuHhcjEIENK1q+0q6C9fEvL774S8/771SvNublRE/f23ZYmGhw+p5ZDdvkoVKmht8fo1/bwGDLAd4+bvT2Oz9u6Vxjx/Xl7BH6AZn44++9hYGkrw5ZfUHW2rnEeBAlQ4Hz5Mt69YUf68jw8hkyfbLvchkJxMz6Nff7X9mQp/VatSoVmunPxxg4F+/0rc9kYjITduUItZ7972M1C9vanwNX/8nXeoNVrJ79Vkose1di2NmWRFupK/AgXoIkpvS7cT6C6aBD755BMylS3+9x8grUXTrl3SuTVxovy5YjOLEUwGyfZDtrQpNzBvnvxknz7d9WNyOFowmWjsjRZ++kk+iZnv59QpWjrAfMXu4UEtJEov/nFxcjHj4UELpBJChcHBg3QSYgvGsn+VKhHyxx/K3mdqKr2AmL/+7l36WV2+TGtW1aljOzaqQAFqUXNkYUlNpZ8h697y8qITo9FIxd2+fbTcRvXqtsfz8KDibN0624HsKSlUjJgLkffeowKYEGp5+/tvOt4779i3JhUtSjNAT5ywdB+lpNBroLnlpFAhQv78UxIYYWHUOjd+PBWQPj62x/Pyoi6refPkge2pqVS4mluiPD0JGT5cnn354gWNo5swgVo3HcUNli5Ny4X88w89B41G+hkLadrsX506dDvhvZlMVBhv2EDbMzVvTpNl7I2XPTtNrpg3jyYr7NplmckL0P189RUhr145Pp9djMtE05w5c0i7du1ctfsMSVqLpj/+kM6pX3+VHk9KTSJu37gRTAapsaiG6w9k6VL5Cf7NN64fk8NJD5KT5aUPfvqJTpjr11P3hbWJr08furpXS1ISFWCsRaFbN2qtsjYB5chBMy337dNmtdu8WR5jlj27dUuD8JcrF31v27apF6GXL1taZ0qXti8ivL3pxD9/vrrSHo8f0wK07L58fakos2VJEv7KlKEC59w5ZZ9peDgVHeaiuXp1QsqWtT8W+5lu2kRdu/ZISKBi01w4Z81KBaW978582/nz7VuqjEZ6jrN1y4S/2rVpYkVQkOPxPD2pKPruO7rAsHXenDwpr9ws/Pn4UAuf3tmlKnCZaJoyZQoJDg521e4zJGktmmbNks6llSulx2++vim65rpu6Orag1i9Wr4aHD+e12ThZG5On5bOeV9f65NTrlyETJpEV/rOkJoqL3lg/ufrS91pW7eqiw+yxc2bVCjYGq9iRfobP3HC+QrpCQmEjBplf5IVXFK7dzt2ddlDyKa0JTiFv7Jl6ee9Zo22djwCN25Ylr2w9le0KHWtzZtH47W0fKaRkdRSaF47ztpf/vzUDThtGrVWqj1njEZajNVc8Nr6y5OHBnd//TW1Sqltfn39OhWR5hbAwEB9zncN6C6ajEYj2bVrF2natCkZPHiw3rvP0KS1aJo0STqHdu6UHt92a5somr468JXrDmD9evlKbeRILpg4/w1sFR2tWJGQJUtsxxBpwWSi7g52td6uHZ3Y1U5CSoiKohOrMFbz5rQWluDS0pv9+yVXU8GCtC/lmjU0fkpvIiOpC0sQvRUr0npy69e7pqjo339LItTDg1plRo6kwsMZUWaNFy/oexEERtas1AU4Zgx1melZWNhopPtkK/0HBVGX8sSJ1CX49Kl+88GjR9SCJwjDMWP02a8GDIQQorbJb5cuXaw+bjQaERkZidTUVHh4eODnn39G1apVne0p/NYQEhKCTz75BIsXL0aZMmVcPt7w4cC8efT26dNA7dr09oyTM/D5ns8BACs7rkTPKj31H3zbNqBTJyA1ld4fMoQejMGg/1gcTkYjOhqoVAl4/Jjef+894LPPgGbNXPcb2LULCAsDWrcGAgNdM4YAIcCdO0DevEC2bK4dCwCSkoBXr4CCBdPmGhIfDyQmuv5zBACjkZ4nefIAvr6uHy88nH6WJUsCHh6uHctkAm7eBPz9gUKFXP/dvXkDzJ0LDBoE5Mvn2rFsoOkTtaWzPDw8UKxYMZQtWxYffPABihUr5tTBcewTFibdzplTun0n7I54u2RgSf0HfvAA6NJFEkx9+9ITmQsmzn+FbNmAEyeAv/8GGjUCypZ1/ZitWrl+DAGDAShdOu3G8/amk25a4eubNgIGANzdgbScCwMD00YMAoCbG1ChQtqMBQBBQcDkyWk3nhU0iab169frfRwcDdgUTeGSaCqVs5T+A0+eTFdpANC1K7B4Mf3xcDj/JQoUAAYOTO+j4HA4aQif6d5iBNHk7g5kzy49LoimHFlyIKdPTiuvdIKbN4HVq+ntgABg4UJ6ABwOh8PhZHK4aHqLEURTYKDkGUtMTcSTqCcAgFKBpWDQ22U2aRL1YwPAmDFytcbhcDgcTiZGkXtu2rRpmgcYN26c5tdy7COIJtY1dy/8HghozJnurrmLF4ENG+jtPHmAESP03T+Hw+FwOBkYRaLpn3/+0bRzg8HwnxBN+/btw759+xAbG5tmYyYnA8JwNuOZAnUWTRMnSre//BLImlXf/XM4HA6Hk4FRJJrWrVvn6uN4qwkODkZwcLBYciAtUJI5p6toOnEC2LmT3i5cmAfAcjgcDuc/hyLRdPfuXRQpUgSF0jIllGOXN2+k2y7PnCOEWpYEJk2iKcIcDofD4fyHUBQIPnHiROzfv1+836VLF2wQYls46YKicgN6WZr27wcOHfp3p6WA3r312S+Hw+FwOG8RikSTh4cHUoVChgBCQ0PTNH6HYwkrmoKCpNuCey6nT04E+AQ4P5C5lembb1xfZZbD4XA4nAyIItGUO3duXL16FUajUXxM91R2jiqsWZriU+LxLOYZAB1dc9u3A2fO0NuVKtFK4BwOh8Ph/AdRZDIIDg7GihUr0LZtW2T7tw/R+vXrsVMIDLaBwWDA2rVrnT9KjgXWRNPd8LviY7q45kwm4KuvpPtTpvDK3xwOh8P5z6JINPXq1QteXl44deoU3rx5A4PBAEKIzR50Ahp6AXMUYk006Z45t349cOUKvV27NtC+vfP75HA4HA7nLUWRaPLw8ECPHj3Qo0cPAEDjxo3RuXNn9OnTx5XHxrGDVdGkZ+Zcairw9dfS/e++4w15ORwOh/OfRpOvpU+fPqhatarOh8JRg8stTStXArdv09uNGwPBwc7tj8PhcDictxxNaVB9+/bV+zg4KmFFU2Ag/a+bpSkpiWbJCXz/PbcycTgcDuc/D4/qfUsRRJO/P+DlRW8Loil31tzI5p1N+84XLwYeP6a3W7cG6td34kg5HA6Hw8kccNH0liJUBBdcczFJMQiNDQXgpGsuPp5algS++077vjgcDofDyURw0fQWYjIBERH0ttVyA8645hYuBEKp+EKnTkD16tr3xeFwOBxOJoKLpreQyEgqnAAbmXNaLU1JScDPP0v32bgmDofD4XD+43DR9BZirYWKLplzy5cDL17Q2++/D1SooG0/HA6Hw+FkQngTMR3Yt28f9u3bl2b9+FxSoyk1FZg+Xbo/YYLGo+NwOBwOJ3PCRZMOBAcHIzg4GCEhIfjkk09cPp6jFiolA0uq3+natcCDB/R2ixZAzZpOHCGHw+FwOJkPRaKpcePGmhr0GgwGHDx4UPXrOPaxJpoeR9ESAUG+QfDz8lO3Q5MJ+OEH6f6XXzp5hBwOh8PhZD4UiaYqVapYiKaYmBjcu3cPbm5uyJ07NwIDAxEeHo5Xr17BZDKhRIkS8Pf3d8lB/9cxF01GkxHPY54DAAplK6R+h1u3Ajdu0Nv16wMNG+pwlBwOh8PhZC4UiabZs2fL7r969QrDhg1DcHAwBg4ciDx58ojPvXz5EosWLcK1a9cwbdo0fY+WA8BSNIXGhsJIjACAgtkKqtsZIfK6TF9+yat/czgcDodjBU3Zc/Pnz0fOnDnx1VdfyQQTAOTJkweTJk1CYGAgFixYoMtBcuSYi6an0U/F+6otTXv3AufP09vVqgGtWulwhBwOh8PhZD40iabz58+jRo0adrepXr06zp07p+mgOPYRqoEDVDQ9iX4i3v9/e/ceF1WdP378dWa4DMP9JoioSCgKykWx1mtZRGa77Vaapa1FKWZltN0st59a2261tetlt5uatuW2+d2tbS3L1LLU1FKTJC94AbwDgsAwA8MwM+f3x8AIchW5iLyfj8c85sy5vuegM+/5XC+6pKl2KdPcuVLKJIQQQjSiVUmTxWKhqHZxRwMKCwuxWCytCko0rcmSJt+LKGnauhU2b3YsDxwIt9/eRhEKIYQQV55WJU0DBgzgq6++4ueff25we2ZmJl9//TUDBw68pOBEw2qSJldX8PKqmzRdVEnTn/50fvmZZ0AjY50KUWa18lx2NhN//pmMsrLODkcIcRlp1ThNM2bM4He/+x2zZ89m5MiRDBkyBH9/f4qLi9m7dy/bt29Hq9Uyffr0to5XcD5pCgx01Ka1qnpuzx744gvHct++MGVKG0cpRNeztqiIWYcOcaKyEoDPz51j5cCBTO7Ro5MjE0JcDlqVNMXFxfHnP/+ZV199la1bt7J161YURUFVVQB69uzJU089xZAhQ9o0WOFQkzTVTKHSqpKm2qVMTz/tKLYSopvKt1hIP3yY1WfP1llfYbdz1/79/GQ08mK/fmikzZ8Q3VqrRwQfNmwY//rXv9i7dy9HjhzBZDLh6elJVFQUcXFxrRoMUzSvvBzMZsdyzcCWNUlTkD4InYuu+ZMcOAAffeRYDgmB++9vh0iFuPypqsrKvDyePHqUYqvVuT7Z35+ebm68n58PwEvHj5NpMrFq0CB8XWQiBSG6q0v6368oCvHx8cTHx7dVPKIZDQ1secpwCriI4QZeecUxPhPAE0+ArgWJlhAXQVVVTlZWstdkotRqZbCnJzF6PS6X0G7OpqoUWCycsVg4XVnJ6Qae8ywWglxd+YWPj/MxUK9vsITocHk5aYcO8U1JiXNdoIsLf42K4rfVQ6kM8/bmiSNHsAGfFRXxix9/5H+DBzNAr2/1+xBCdF2X/JMpNzeXY8eOYTabuemmm9oiJtGEC5OmfFP+xQ1smZsLq1Y5lv394cEH2z5I0a0YrVZ+NpnYazKx12hkr8lEpslESa2SGwCdRkO8pyfDvL2djxi9HtcLEqlzVVVklZdzsLzc+XywvJyjZjPWmmS/CWcsFjJNJpadOQOAj1bL1bWSqKFeXqzMy+OF3Fwqa51vao8eLIyKItjNzbkuPTycWL2eO/fvp9hq5WB5OVfv3s2HMTGMrynqbYTJZmOHwcCusjKsqoqLouCqKLhUPy5cTvDyYqCnZ7PvTwjReVqdNB04cIBXX32V7Oxs57qapCkjI4OnnnqK+fPnM3r06EuPUjhdmDSdKL3IRuCvvgo2R5LFo4+CTHXTbZyprGR9cTHfGwz0cHUlzsuLIZ6eRHp4oG1Bdbqqqpy2WNhTVsYeo5EMo5GfjEaO1tQXN8Nst/N9WRnf1+qR5q4oxHl5McDDg+OVlRwsL+dsVVWr3p8W6OHmRoHFgq3WeoPNxsbiYjYWFzd4XIROx1sDBnBTQECD25MDAtg5bBi/zsxkX3k5pTYbt2Rm8kpkJE/07u1silBcVcXW0lK2lJayuaSE3UZji5K82m4JCODZvn0Z5et7UccJITpGq5KmnJwcHnvsMTQaDZMmTeL48eN8//33zu3x8fH4+vryzTffSNLUxi5pNPAzZ+CddxzLnp6OpElcsSrtdraWlvLluXN8ee4ce02mBvfz0GgY7OnJEE9PZyI12NOTYqvVmSDVJEktTWjC3d2Jqz6nn4sLGUYju41GjlRU1I1RVdlZVsbOZrr26zQa+nt40FenI8zNjTB393rPQa6uaBUFk83G7rIydhgMzseZBsaM0wC/Cw/n+X798NRqm7z+VR4ebB86lGkHD/JJYSF24KnsbH4oK6OHqytbSkvJNJm4uBSpvrXnzrH23DnG+PrybJ8+jA8IuKT2oaqqYrbbMdpslNlszme7qjLM2xt9M+9bCFFXq5KmFStWALBs2TLCw8NZuXJlnaRJURRiY2M5ePBg20QpnJpKmpotaXrzTajuSs2sWdDIL2vRNamqyuGKCmeStKmkhHK7vdnjKuz2FiUuDdFXJ1xxXl7E1Uq6AhrpjVlSVcUeo5HdZWXsrn4+XCuR6unmRrRez8DqR7SHBwP1evrodC3uueap1TLWz4+xfn7A+fZVNQnUzrIyglxd+X3fvgy7iJJWbxcXPoqN5fncXF44dgyAf1/Q2662QXo9Y3x9Ge3ri7+LC1ZVpUpVG3w+V1XFsjNnnEMdbCktZUtmJgleXjzTpw8Tg4MbLQ08XVnJrrIyxz0tK+Oo2exIjqxWjDZbnVK3OvdJo+G24GCm9OhBsr9/vWrSS2W12zHYbBisVrxdXAiUHrriCtCqpCkjI4Nrr72W8PDGv6RDQkL44YcfWh2YaNiFU6jsu5gxmtauPb/82GNtG5i4aGabjbXnzvGfs2cx2WwM8/bmam9vhnt7E1SrXU1jVFXlYHk5m6urgzaXlnKyJim+gIKjUfNN/v6M8/enuKqKzOq2R3uNRrLN5mZLSYJcXUn08jr/8PYmqoVVezX8XF0ZVx1DDYPVynGzmd46Xbv0TFMUhd46Hb11OiZd4nhLGkXh+X79iPPy4t4DBzBVJ6UaIMHLy5GsVSdKwS34G9Y2p08fPsjP55UTJzhYXg5AhtHIXfv309/Dg6d79yYlIICfqpPNXdWJZ14rZ14w2e2sys9nVX4+wa6u3BkczJSQEEb4+DRZunW2us1YpsnEPpOJAovFmRzVfq64IGG/2tubXwYG8qvAQOK9vC65h7VdVSm/oATNWH3daA8PIjw8Lun8QjSkVZ9QFRUV+Nf60GtIZWUl9hb8yhUXp15J05kWTqFSWOgY0BIgPh569WqnCEVTbKrKtyUl/DM/n4/OnqXUdr4c4NNaf9xInY6rfXy42tubq318SPTywl2jIdNoZHNpKd+WlLCltLTJ6rJQNzdu8vfnpoAAbvT3r5eITay1bLRa2VdeTmZ1Q+4D5eV4a7V1EqQwN7d2GUrEx8WFwV5ebX7e9nRHcDBDPD35tKiIWL2ekb6++Fxiwuem0XBfz55MCw3lk8JCXjp+nF3VpX+HKyqYcehQi86j12jwc3HBS6vFW6t1PFe/rllXbLXySWGhs7H+2aoqXj99mtdPnyZCp+PuHj2Y3KMHVXa7M0HKNJnINBrJb2Wbsx/KyvihrIx5ubmEu7s7E6hxfn54XFBNqKoqZ6uqOFCrI8DB8nKyKyowVJeimZr5frlKp+PGgACS/f253s8P/4so6VJVlXyLhYKqKkw2G+V2OyabrcFlLXCNjw+j2uDfgLj8teovHBwcXKcBeEMOHTpEWFhYq4LqajZu3MjGjRsxGo3tfq16DcGzzpc09fJuIhH6+uvzwwzceGM7RXdlsKsqhVVVBLu6tkmSoKoqGUYj/8zP518FBZxuQclAttlMttnMhwUFgKORs16rpczWWGWL48typK8vN1YnSnGeni2O38vFhWt8fLjGx6dF+wsYoNfzRDsMPaBRFG4PDua2oCC+Ki7mpePH+brWsAi1+bm4MMzLi2He3iRV90jsp9O16O/+lt3OF0VFfFBQwKdFRZirk5Bcs5mXjh/npePHLy5uwNfFBR+tFp9az95aLQfLy+u0qTtZWclbp0/z1unT6DUakv39SfL2JsdsdiZIxRf0vrxYR81mjlZfQ4OjpDXZ358b/f0Z6euLm6JQUFXF4fJyjlRUcLjW40hFBcYm/q819v4Tq0sbr/XzY7Svb5NVknZV5XRlpeP/ekUFuWYzZdUlZeU1z3Y7FdXJWUX1coibGyN8fBjh68sIHx96XGSJ5oVsqkqFzYa55hq1rmUDBur1UrVaS6uSppEjR/LRRx+xa9cukpKS6m3/+uuv2b9/P/fee+8lB9gVJCcnk5ycTFZWFjNmzGjXazXWpilIH4SHaxPF0Rs3nl9OTm6n6Lo+i93OrZmZfFlcTKxeT1pYGL8NCbmoX6k1DpeX839nz/LP/HwOVFe31Oal1XJ7UBBTQ0KI1OnYVf1L/AeDgd1Go/NLDMAG9RImX62WMdXVQWP9/Bjq5dXm7VJE51EUheSAAJIDAvjeYOD1U6cosFiI9/K66ASpIe4aDb8JDuY3wcEYqkue/pmfz8biYhorwwl0cWFIdfu1IZ6eDPHyore7O74uLug1miZjOWY2s7aoiE+Livi6uBhL9Y+4crudNUVFrGlmEnhw/J8JqE7EvBopRdMA2w0GthsMVFVfww7OdnsvHT+Oh0aDi6I0+SPkYtnB0U7PaGThScfn8mBPT6719SXJ25siq5WcigpnkpRjNjvvwcXIqqhgc2kpnHD8YI7y8GCEjw8jqxOpwZ6eaBUFu6qSZ7GQazaTazZzrPq5ZjnPYqHcbnfeo6ZcpdMx3MeH4dVNCBK9vZvtPFFpt3OyspLjZjPHKysptVqdiZm5OimrnaiZ7Xb0Gg0JXl4M9fYm0cvroqu4O4Kiqhf/VyspKeGBBx6guLiY8ePHc+7cOXbs2EF6ejr79u3jq6++okePHrzzzjt4dbFi90tRkzQtW7aM6OjodrnGNdfADz845pyrMNvwekWH1W4lITSBPTP3NH5gZCTk5ICbGxQXgwzO16BZhw7x1unTddbpNBruDA5mZlhYs+09DppM/OfsWf599myDvdVcFIWbAwKYGhLCrwIDG+29VGW3s89k4ofqD/rvDQZKrVau9vFxJkk1H45CtKV8i4X/KyhgY3Ex/tVJ0pDqJCm0japojVYrX5WU8GlhIZ8VFdWr8uvt7s5AvZ5BtToFDNLrCbmI6xutVraUlrKheriJzEZ6j15Ii2MYiv56Pb3c3PDSavGsfug1GudyzesSq9VZZd7Sa7SGm6LgrtE0m+h5abWEuLpyorKyVUlZS2hwJITDq5N3i6o6k6Oa59a2tautt7s7idVJ1NDq5/ZqJtBSrUqaAE6fPs2LL77Ivn376m2LiYlh3rx59OzZ85ID7Eo6ImmKioKjRx3jUv587DS9/uqokvvlgF/y6d2fNnzQ0aOOAwHGjXNU1Yl6lp4+zczqdiMaaPDX9mBPT9J69uSeWqVP+2oSpYIC9jVQogQw2teXqT16MKlHDynqFqIWu6qyu6yMXLOZSA8Poj088GqHtkF5lZV8XVLChuJiNldXd/b38CDKw4P+er1zOUKnw62VJbbnqqqc43R9W1LCHqOxwc8RvUZDpIcHkTodkR4e9NPp6KfTEeDqiodGg16jwaM6KfOoXq75gZRXWcl2g4FtBgPbSkvZXVZWZ5DWlvDUaOjl7o6nVouHRoOu1nU8qpd1Gg02VWWP0ciPF5R8d6ZgV1fGBwTw3qBBnXL9Vv/LDAsL44033uDw4cPs378fg8GAXq8nJiaGQZ30ZrqDmhLsixqjqXbVnLRnatC20lIeOXzY+XrlwIEM8/Zm2enT/CM/39lg9meTiUePHOHp7Gx+GRjIvupG0w25xtubicHBTAwOlp48QjRCoyiOqp92bk8X6u7OlJAQplRPkdMeAlxd+XVQEL+unk3dYLWyrbSUfeXlhLq5OZOkHpfQXjLU3Z3bgoO5LTgYcFSD7SkrY1t1leT20lIMNht9dToiaj36urs7lwMv8voXlnz/YDCwz2RqcDgLBcfQIX10Ovq4u9NHp6N39ThquloJmfO5VuJ2tqqKH8vK+NFo5MfqMeIuLFk7W1XFuVZ2RmgLl5zO9+/fn/79+7dFLKIZVivUtAe9qDGaNmw4vyztmeo5XVnJHfv2Oev203v1YlpoKACL+vfnpchI/n32LEtPn+Y7gwFwjG79nwbG6Bnp48PE4GDuCA6mj8zpJ0S35uPiwvjAwGan3LkU7hoNv/D15RftOIq8q0ZDgrc3Cd7epFWvK7fZ2FM9K4C3VutMknq5u7e6pK6Hmxuxnp78tvq1XVXJrqiok0TtLitjaCfOZNGqpGny5MlMmjSJiRMnNrrPxx9/zOrVq1m9enWrgxN11Z4F4sIpVBotabLZzlfH+fvD0KHtGGHXU2m3c8e+fc769+v8/Hj1qqvq7OOh1TItNJRpoaH8bDSy7MwZ3qsufVJwVL3VJEq93N074V0IIUTH0mu1jPL1bdcpfzSKQpReT5Rez53VY6yp1YPCdpZWJU15eXnNdq83Go3k5+e3KijRsFaNBv7jj+ezreuvB5k2wUlVVR4+dIgd1aVHfdzd+b+YmCZ7oA328mJxdenTXqORvjodPSVREkKIDqEoCm6d2BC83UbiMplMuEqD1zZ14WjgJ1oyGrgMNdCot06f5p28PMDRQ+6/gwe3uIurXqtt1+JwIYQQl58WJ00ZGRl1Xufl5dVbB2C32ykoKGDDhg307t3MBLLiolxY0rSzJSVNtdszSSNwpy0lJTx65Ijz9fLo6E6tJxdCCHH5a3HSlJ6e7mxtrygK69atY926dQ3uq6oqiqIwc+bMtolSAI1XzwV6BDY8sGV5OXz3nWM5IsIxVpPgpNnMxH37sFbXiz8eHs7UduxRI4QQ4srQ4qTp3nvvRVEUVFXlH//4BwkJCSQkJNTbT6PR4OPjQ2JiIhEREW0YqqidNPkH2Dh16BTQRCnTli1QM8DYjTc6RsTs5sw2G7ft20dBdZfVG/z8eEWSSSGEEC3Q4qTp/vvvdy7/9NNP3HzzzYwfP75dghINq500aXwKsNodYwc1OlGvtGfCareTW2s+qy/OnXNOghqh07E6NhYXmXpECCFEC7SqIfjixYvbOg7RArWTpiqPWu2ZvJtpz6Qojp5zV7gTZjPflpTUmRX9cEVFg1MJeGg0fDJ4sIzOLYQQosXarfecaHu1k6Zyl1pjNDVU0lRQAD/95FhOTITqEWqvVP89e5a79u9v0VxLvlotKwcOJL4bzYsohBDi0rU6acrPz+e9995j9+7dFBYWYq2eZqI2RVHYtGnTJQUozqudNBlopufcV1+dX77Ce81tLinh7gYSJjdFob+Hh2OyT09P58SfA/X6ZmfoFkIIIS7UqqTp9OnTzJw5E6PRSEREBFVVVYSEhODm5saZM2ewWq1ERUXhJb/k21RN0uThAXnlzYzR1E3aM2UajdyamemcsPL2oCBSQ0MZqNcTodNJeyUhhBBtplVJ08qVKzGZTCxcuJCEhASuvfZaJkyYwH333UdhYSF//etfyc3N5a9//Wtbx9ut1Zmst6yJyXpV9Xx7Jp0ORo/uoAg71nGzmZv37qW0ekLH8QEBfNjMiN5CCCFEa7Xq22X37t384he/qDPkgFr9Sz8oKIgFCxYAsHTp0ksOUDio6vkRwS+cQqWXT6+6Ox8+DCeqS6JGj3YkTleYoqoqbtq7l1PVQyoM9/bm35IwCSGEaEet+oYpLS2lT58+ztdarRaz2ex87ebmRlJSEtu3b7/0CAUAZWVQ02ys9mS9AR4B6F31dXe+wkcBL7fZ+FVmJgfLywHo7+HB2iFD8HKRfg1CCCHaT6uSJl9f3zpJkq+vL3nVc3jV0Gq1zU7qK1qudiPwgEA7p8ocA1vWq5qDK7o9k9VuZ/L+/WyvnmQ31M2NL+PiWjxnnBBCCNFarUqawsPDOXXqlPP1oEGD2LlzJ6dPnwagpKSEb7/9lrCwsLaJUtRJmvTB5we2rNcI3GqFmh6LgYHQwKjtXZWqqsw8dIjPqm+Gt1bLF0OG0M+jgSlkhBBCiDbWqvqMa665hpUrV1JWVoa3tzeTJk1i27ZtpKam0rdvX06ePEl5eTmpqaltHW+3VTtp0gbUGqPpwpKmXbugtNSxfMMNcAW18ZmXm8uK6hJNN0Xhk8GDSZBJdoUQF8Fms1FVPY2S6H5cXV3RXsKQM61Kmn7zm9+QmJjovHBiYiLz589n5cqVZGdnExoayvTp0/nVr37V6sBEXbWTJtX7JFQ4luuVNNWumruC2jO9ceoULx47BoACvD9oENf7+3duUEKILsVoNHLy5ElnxyXR/SiKQnh4eKuHRGpV0uTp6UlMTEyddePGjWPcuHGtCqKr27hxIxs3bmzXNlx1p1A50XjSVLsR+BXQnulMZSUvHz/O32pVBy+OiuLOHj06MSohRFdjs9k4efIker2e4OBgFJnAvNtRVZWzZ89y8uRJ+vfv36oSp1YlTenp6QwZMoTp06e35vArTnJyMsnJyWRlZTFjxox2uUbtpMnsVmuMptpTqBiNUNNjMSoKIiLaJZaOkFdZySsnTvDW6dOY7Xbn+mf79GF2eCNz7QkhRCOqqqpQVZXg4GA8pB1ktxUcHExubi5VVVUdlzQdOHCA2NjY1hwqWql20lSmNDKFyubNUFNX30VLmQosFv58/DhvnD5NRa1kyUOjYU6fPszr27cToxNCdHVSwtS9Xerfv1VJU58+feoNMSDaV+2k6Zy1kSlUunB7prMWC6+eOMHrp05RXitZ0mk0PBQWxtN9+hAiwwoIIYToRK3qWnXHHXfw3XffkZub28bhiMbUjAYOUFDpKGmqN7BlTXsmjQa6SPsyg9XKM0eP0m/HDl49ccKZMOk0Gh4LDyfnmmv4S1SUJExCiCvOggUL6ox52JhFixa1uKDivvvuY9GiRZcYmWhMq0qaevbsSUJCAg8++CC33norAwcOJCAgoMF9E66gcYI6U01Jk6Kxc8boaBRdp5QpLw9+/tmxnJQEXaBnWanVyg0ZGeyu1YDeXVGYGRbGM3360NPdvROjE0KI9vX888/z2GOPoWtmqqtFixZx3XXXERoa2kGRica0uiG4oiioqsrq1aubrCP85ptvWhubqKUmafIPL+Cc3dFuqc4YTV1sFPCaqVBqEiY3RWFGz54827cvvSRZEkK0s6SkpHZtZhIaGsquXbsa3f7ggw8CMGbMGLRaLevXr+fBBx/k8OHDqKrK7NmzmTlzJi+88AKnT59m8uTJeHh48O6771JUVMRzzz2H2WzGYrHw+OOP88ADD7TbexHntSppuvfee6UxXQerSZq8e53kXPW6rtqeyWK3M3HfPrZUD8IZ6OLCt4mJxHp6dnJkQojuIi8vr87MFh3trbfe4u2332bLli34+fkxefJkoqOj+fjjjykoKGDYsGHEx8czb948VqxYwerVq501N8XFxWzduhWtVsu5c+dITEzkpptuIlx6Fre7ViVN999/f1vHIZpgsThGEwDQhTTSCHzr1uoddDBiRAdGd3Fsqsq0Awf44pwj9fPWavkyPl4SJiFEh2rvqq6LPf/GjRvZvXs3AD169OD2229n48aN/OIXv6i3b1FREQ888ACHDh3CxcWFoqIifv75Z0maOoBMC98F1O455xpQa4ymmuq5khI4etSxnJAAl2n1lqqqzDp0iNVnzwKOxt6fDRnCMJkKRQjRwZqqOrscNFWb8+CDDzJhwgQ++ugjFEVh6NChLWpQLi7dlTMx2RWsdtKEbwNjNO3Zc377sGEdE9RFUlWVp7OzWXbmDAAuisJHsbGM9fPr3MCEEKKTeHt7U1rdTCE5OZlly5YBcPbsWT7++GNurG5q4ePj49wPHNVzffv2RVEUNm/ezE8//dTxwXdTrSppuvbaa5tt06QoCnq9nj59+jBmzBjuuOMO3C/TEpDLXe2kyaqvNVlvzWjg1UW6AAwd2kFRXZyXjh/ntROO2BVg1aBBTAgM7NyghBCiEz3xxBPceOON6PV6vvzyS2bNmsWQIUNQVZXf//73XHPNNQA8+uijzJgxA71ez7vvvsvLL7/MQw89xB/+8AcSEhKc+4n216qkKT4+HpPJxJEjR9BoNISEhODv709xcTH5+fnY7XauuuoqbDYbR48e5cCBA2zYsIG///3veErblYtWbwqV6rkme3n3ciz8+OP5HS7DkqbXT53i9zk5ztdvDRjAZJk7TgjRzc2fP5/58+c7X3/88ccN7jd9+vR605YdPny4wX3ffffdNotP1NeqpOm5557jkUce4aabbmL69On0qPUFePbsWZYvX86ePXt4/fXX8fT05I033uDTTz/l/fffd3azFC1XZwoVzQmwgb/OH0+36gS0pqTJ3R0umEi5s63Ky+ORWv+5/xwZSVpYWCdGJIQQQrROq9o0vfHGGwQGBjJ37tw6CRM4JsN79tlnCQoK4o033kCv1/P4448TERHBli1b2iTo7sY5Grhip9Tu6CLrrJozGODQIcdyXBy4unZ8gI3479mz3HfwoPP13D59eKpPn06MSAghhGi9ViVNu3fvZmgzbWcSEhKcvRM0Gg1xcXHk5+e35nLdnrOkSX8Wq+oY2NLZCDwj4/yOl0l7Jqvdzu+zs7lj3z5s1eseCgvjxX79OjUuIYQQ4lK0qnrOYrFQVKdLV31FRUVYLBbna71ej1arbc3luj3nrfat1Qi8ZriBy6w900mzmbsPHGBrrZ4e94SE8Lf+/WVAVCGEEF1aq0qa+vfvz1dffcXPNXOdXWD//v18/fXXDBgwwLnu9OnTjc5PJ5rmTJp8GhhuoHbPuU5OmtYWFZGwa5czYXJRFP4cGck/Bg5EIwmTEEKILq5VJU3Tp0/n8ccfZ/bs2YwcOZIhQ4Y4e89lZmaybds2NBqNcy6c8vJyfvjhB8aNG9emwXcXTSZNNSVNrq4QG9uxgVWrstuZm5PjHFIAoI+7Ox/GxDDC17dTYhJCCCHaWquSpoSEBF5++WVee+01tm7dytatW50T+AKEhITwxBNPOOfJ0Wg0vP766wQFBbVZ4N1JTdLkGnSCqup1vX16g8kENQ2thwzplJHAcysquGv/fr4vK3Ou+3VgICsGDiTgMmqULoQQouUURaG4uBi/dhyAOCgoiF27dhEREdEm53vxxRdZuXIlAHfddRd//OMf2+S8tbV6GpWrr76aDz/8kL1793L06FFMJhOenp5cddVVxMXFodGcr/nT6XRERUW1ScDdkTNpCjzpTJrCfcLhp5/Abnes6IRG4J+cPUtqVhYlVqsjPkXh1auu4tFevaT9khBCdDKr1YqLS/eYLW3z5s3861//Yu/evbi4uDBq1ChGjhzJLbfc0qbXuaRpVDQaDQkJCdxxxx1MmzaNO+64g4SEhDoJk7g0djtUz22Lxu+CyXo7qT2TTVV5/MgRbtu3z5kw9dPp+C4xkfTwcEmYhBCiBXbu3Mn1119PUlISiYmJ/Pvf/wYgNzcXPz8/5s+fz7Bhw4iKiuLzzz9v8XFz5sxh6NCh/P3vf+fgwYOMGDGC2NhYbr/9dlJSUnj33Xc5ffo0ISEhlJeXO887ZcoU3nzzTefr1157jcTERAYMGMA///lP5/qpU6eSlJREXFwct9xyC3l5eS2Ke82aNQwaNIi4uDiefvrpNr2Xq1ev5re//S2enp64u7tz//33869//atNrwFtMGFvbm4ux44dw2w2c9NNN7VFTKKW0tLzhUk2T0ebJufAlrV7znVQSVOV3c60gwf5sKDAuW5icDDLo6Px7Sa/aIQQXV9SElR/17eL0FBoak7gkpIS0tLS+Pzzz+nZsyeFhYUMHTqUkSNHAlBaWkpcXBzPP/8869atIz09nQkTJrTouNjYWF555RUAhg8fzkMPPURqaioHDhwgMTGRKVOmEBYWRnJyMqtWrSItLY38/Hw2btzI0qVLnTEqisKePXvIzs4mKSmJUaNGERERwaJFiwgODgbg5ZdfZsGCBbz11ltNxl1QUEBqaipbtmwhJiaGpUuXNtoLPysri8mTJze4LTEx0VkFV9vx48cZPXq083VERAQffvhh43+AVmr1t9yBAwd49dVXyc7Odq6rSZoyMjJ46qmnmD9/fp03IS6enx+UlUHBWTuDVp0CewM957Rax8CW7azCZmPSvn2srS76clEUFkdFMSssTEqXhBBdSl4enDrVedfftm0b2dnZ3HzzzXXWZ2VlERkZiU6n4/bbbwdgxIgRHD16tEXHubq6cs899wBgMBjIyMhg2rRpAAwaNKjOd/Kjjz5KWloaM+6fwdK3lnLXnXfh4eKBrcIxwl7q3anYKmxE9I5g7NixbN68mYiICD744APef/99zGYzZrO5TntlnU7Hbb++DZvZxvDY4Rw9epTKvEq2rNvC4OjBXOVzFeaTZqamTGW222wqT1ViVsyOgxVQXBT6+fdj59c7UVwVFJdaj8vge6ZVSVNOTg6PPfYYGo2GSZMmcfz4cb7//nvn9vj4eHx9ffnmm28kabpEigJeXmDiLBa7Y9yr3r69oaIC9u937BQbCzpdu8ZhsFq5NTOTb6uHE9BpNPwnNpZbZNJdIUQXFBrauedXVZXY2Fi2bdvmeG1THQ+7Sm52Lu7u7lhLrWADm8GGzWaj8nQlliILMQNi2LxuM4qLAlpQtAqKVuHYyWPo9XoURcFusWMzOpIfS74FxaagWlTs5XbMJ8yU7S4jRhuDu+rO58s/Z+mbS/nf6/+j/Ofz1XUVRyuc1XfWEivmY2bW/2M9i/+ymK9Xf01ISAhrN63lhb+8QHlWOaZcE+4u7pgyTI7rlluw2WxYTlqwFllRLSqWPMf3mN1uBxWqiqqocq+qfWs4nHuY++beV/+mKRA3KI7li5ej61v3O69Pnz4cO3bM+To3N5c+7TADRauSphUrVgCwbNkywsPDWblyZZ2kSVEUYmNjOVhrCg1xaU4aag034B0Oe/eCrXq87XZuz1RUVcXNe/eys7qHnJdWy6eDB3Odv3+7XlcIIdpLU1VnDVFVFeygWquTG6vjgR3QOBIXtKBoHAkMGlDtClQXjqg21ZG0VNpRLSpD+wwl+0g2n73zGdcOuxassDdrLwMjB1JxtgJsYD7iKIGpLK8EwHLawtBeQ8nJyeGLD79g3DWOYXxqjjOdNYENjD8aQQUXXBjSfwj/WPoPpv5yKodzD7P9x+3ceeOdzonfZ901i5nzZxIdGU3/vv3rvOdVn65ibtpcjp0+xraMbbz8+MvsP7IfL50Xfho/yvPLWbZyGVjBVmZDrVQbvX9Xx13NrD/M4lDuIQZEDOD9Ne9jqbI0uG//iP5898F3jZ7LXmWvt27SpEk8/PDDzJ49GxcXF1asWMGCBQsaPUdrtSppysjI4NprryU8PLzRfUJCQvjhhx9aHZioq07S5BPeYe2ZzlRWcuNPP7Gv+tdGgIsL6+LiGO7j027XFEKIjqSq5xMae6UdtbI6ualS6yRJNJ4TNE6pflzwPe+FF//+6795bvFzPFv6LFXWKsJDwvnXa003Xvb38effixzH/X7x7xs+rlacby94m4f+8BBL3l9CZO9IhsYMxdfPF42HBjRwx6138PgrjzPrvlm4+Ls4Yq3py6WD0feOpry8nNfmvkZEvwjCeoax+ovVDJ04lADfAMZdPY4zBWcc+2sc71XrrUVxVXD1dgw7o4vU0Vvbm+VvLuee39+Dq5srNyXfRGBAIB5RHuj76kEB1X4+GVWt6vn7f8E6xaV+Nd11113H5MmTGTJkCACTJ0/ml7/8ZYv/TC3VqqSpoqIC/2ZKGSorKx3Fb6JNnDDUmkLFtzfs3np+YzuVNOVUVJD8009kmx2/dnq6ubE+Lo7BXl7tcj0hhGiKqqpYz1mx5FkafxRYULQKWk8tGr0Grd7xrPRSqPp1FRYPC4qbgmqtmyS1KiFqUdA0eu6EgQl89uZnKG4KGjeNs7rNO9ybvAN5zlIrd407liILisYxHuIvIn7Bhhs3nK/Ss6pgA88gT07tOOVoG+TqOGekXyTfbfoOjbuGY6eOMeq6UYyeOBrP3p4A7Nq1i+CQYG6fcXudnu814y6+xEv14v7P+v/Uue7L2pfRuGoYrB1MiaHEuZ8HHs7zANx+9+3cfvftztevLny1dbdUbfiGzps3j3nz5rXqnC3VqqQpODi4TgPwhhw6dIiwsLBWBSXqq1fSVNMIXKOB+Pg2v95+k4kbf/qJ09XzB0bodGyMj+cqD482v5YQQtRQVZWqwirKs8qpyKqgPKvc+TBnm1GrWpfdaPpq8L7em6rCKhQuokGxhvMNkbVKvWVHNZwjeXA+V7dNcq6zO5IYxd2RyGjcNM5lxa19GzhvXr+Zp556CgCbzcbChQvp3dsxd+n06dNZv349y5cvv6ihghSl+r13UofpzmwQ3qq3PHLkSD766CN27dpFUlJSve1ff/01+/fv5957773kAIVD7ZKmPu4hUDPv36BBoNe36bV2l5Vx008/UVQ9BtMgvZ4N8fH06oQRx4UQlze71Y4lz0LlyUoqT1ZiOXV+ufJkJZWnKrGV25wlPlq9Fo2Hpu5rvQZ7pZ2KQxWUHyzHWmxtdTyKm+Jse9QiGtC4Vycx7hrnw5nUaDq/x9alSElJISUlpcFty5cv7+Bour5WJU2//e1v+eabb3j66acZP34856q7oP/3v/9l3759fPXVV4SGhnLnnXe2abDdWZ2SpuPFUJ3QtGXVXIHFwqKTJ1ly8iSm6qrVYV5erIuLI8jNrc2uI4ToemwmG6YDJsr3lWP62eR47DdRebKyXnudhlRR1fxOTdDoNHhEeeAe7o5bqFujD62P1tF7rMqOvdyOrdyGvdxOuamcPHse7uHuuLu4o2gdSZLienl0ZRddQ6uSJj8/P/72t7/x4osvsnbtWuf6RYsWARATE8O8efPwkrYvbaYmafLT+aHPrNUrsQ0agR83m3ntxAmWnTmDuVY7tDG+vnw6ZIgMWilEF6KqKtZSK5bTFipPOUp6LlyuKqpCq9ei9dXi4uOCi69L3WUfLVq9lorsCkdytM+EOdvcqnY/Lv4uaL212CvOJzBNncc93B2PaA/00XrHY6Dj2b23+0WV+mhcNWh8Nbj4Oj6/FLOCJkeDi5cLrjqZF1O0Tqu/DcPCwnjjjTc4fPgw+/fvx2AwoNfriYmJYdCgQW0ZY7dnV+3OpKm3T+82mz7lUHk5rxw/znv5+VhrNaxzVRSm9+zJa1ddhV6rbfX5hRANU1UVe4Uda4kVa6njofXUouurw8Wn5R/LNpMN414jxh+NlO0pw/ijkfKsckdi0gFc/FycpT81D7debo7lXo6HVl/3M0RVqxtgV9QtCUIBj6s80HrKZ464fF1yEUL//v3p379/8zuKVissL8RiczTIrjPcgKJAQsJFny+jrIyXjh/n32fP1vnBp9domBkWxuPh4YS382CZQlzOitYWYdhpwCvBC98RvriFXFz1tL3KjnGPkdItpRh2GqgqrMJaYsVWanMmSo01aNb6OpInXV8d7n3cHct9dLj3dcdeYXckSD+WYdzjSJBaUjVWhwIuAS7Yyx2JS0toPDV4xnjiObjuw62n20VXbSmKglanRavTggz1JrqYViVNkydPZtKkSUycOLHRfT7++GNWr17N6tWrWx1cV7Fx40Y2btyI0Whsl/PXbs/U16Mn7P3K8SI62jFceAudqqxkZlaWcxqUGn4uLszu1YtHe/WStkuiW7Nb7Bx98iin/lZ3fg1dPx0+I3zwGeGD7whfPOM80bie721kLbNi2G6gdGsppVtLMewwtDghuZCt1IZprwnTXtPFH6zBUfLTu7qkJ6y65KfWsluoGxoXR+z2Kjs2g81Z2lVn2WjDPdwdz8Ge6PrqunyDaCHaQquSpry8vGYTBKPRSH5+fquC6mqSk5NJTk4mKyuLGTNmtPn5T5Se7zmXeM4dqocBuJj2TGctFm7IyCCrosK5LsTVlcd79+bBsDB8pN2S6OYqT1Wyb9I+DNsN9baZc8yYc8wUfOCYqFrjocE7yRuPAR4Y9xgxZhibL/HROKqzXHxdHM+1lrU+WqylViqPVWI+bqbyRGWzXesVVwXPIZ54JXrhPdQbr0QvvOK8Lqp6S+OqQROowTVQ2viIuhRFobi4GD8/v3a7RlBQELt27SIiIuKSz7Vz507S09PJyMggJSWFTz755JLP2ZB2+6Y0mUy4usp/xLZQu6Qp5sT5pKel7ZnKrFYmZGY6E6YwNzfm9u3L/aGheEibJSEo/qaY/ZP3U1Xg6OGluCn0/X99sZXZMGw3ULazDLv5fFZkr7BTuqWU0i2lDZ7PvY87vmN88R3ti+8oX3T9dGg9tS2uylJtKpZ8C+ZjZszHzFQer8R8zIyiVfBK8MJrqBeeMZ5o3Fo+to7ofqxWKy7d5Adxz549WbRoEXv27OGLL75ot+u0+G5mZGTUeZ2Xl1dvHTgm4SsoKGDDhg3OAbTEpak9RlPf7KLzG1pQ0lRpt3Pbzz+zq3reuDA3N75LTCRCBqkUAlVVOfGXE2Q/kw3VUzm693En9qNYfJLOTxVkr7Jj/MmIYbvB+TDnnp+Z3XOwZ90kqc+ltQlUtAruYY4qNd8Rvpd0LtGwpKVJ5Bnz2u38oV6h7EpreoK7nTt3MmfOHAwGAzabjblz5zJp0iRyc3NJSEggPT2dzz77jNLSUpYsWcKECRNadNzMmTPZsGED06ZNY/z48aSmpmIwGIiOjsZoNDJlyhRSUlJITEwkJycHffVYf1OmTGHMmDHMmjULgNdee421a9diMpmYP38+U6dOBWDq1KlkZWVhsVjo3bs377zzDqGhoc3GvWbNGubMmYOrqyvjx49v0/sdHh5OeHg4+2smsm8nLU6a0tPTnb+SFEVh3bp1rFu3rsF9VVVFURRmzpzZNlF2c7VLmoIOnJ/FmcTEJo+zqSpT9+/nq5ISAPxdXFgfHy8JkxA42iEdTD1I4UeFznX+Kf4M+ucg3ILqtu3TuGrwSfJxJFKzHesq8yoxZ5vRD9Lj6i+l6l1NnjGPU2Wnmt+xnZSUlJCWlsbnn39Oz549KSwsZOjQoYwcORKA0tJS4uLieP7551m3bh3p6elMmDChRcfFxsbyyiuvADB8+HAeeughUlNTOXDgAImJiUyZMoWwsDCSk5NZtWoVaWlp5Ofns3HjRpYuXeqMUVEU9uzZQ3Z2NklJSYwaNYqIiAgWLVpEcHAwAC+//DILFizgrbfeajLugoICUlNT2bJlCzExMSxdupSioiIakpWVxeTJkxvclpiYyMqVK9vmj9AKLU6a7r33XhTFMe/NP/7xDxISEkhooOeWRqPBx8eHxMTENqmnFOeTJq0NdPsOOVZGRYFv479AVVXloUOH+KjQ8YWg12hYO2QIsZ6e7R6vEJc7034TP9/+MxVZ56u7+z7Xl4gFEY4Z6lvAPdQd91AZJb+rCvUK7dTzb9u2jezsbG6++eY667OysoiMjESn03H77Y552kaMGMHRo0dbdJyrqyv33HMPAAaDgYyMDKZNmwbAoEGDGD16tPOY9PR0ZsyYQVpaGsuWLePuu++uM77i9OnTAYiMjGTs2LFs3ryZiIgIPvjgA95//33MZjNms5mgoCDnMY3FvWPHDuLi4oiJiQHggQceYPbs2Q3em+jo6AZrsi4HLU6a7r//fufyTz/9xM0339zmxWuiYTXVc9eUeaOYHdVszbVnei4nh6VnHDNPuygKH8XGMqKJJEuIK52twkbF0QpKt5Zy9Mmj2E2ONkpaXy2D3h9E0K+CmjmDuJI0V3XW3lRVJTY2lm3bttXblpubi7u7u7N2R6vVYrPZWnScXq9vch652u3qrr76avR6PZs2bWLp0qVs3LixyZgVRWHr1q0sWbKE7du306NHD9asWVNnktzG4m4qjgtdESVNtS1evLit4xCNUFXVWdJ03TkfoDppaqI908ITJ/jT8eMAKMB7AwcyPjCwnSMVovPZrXbMuWbHHGaHyqk4XOFcrjxRWW8kas84T2I/ikUf1bbzNwrRnJEjR5KTk8PGjRtJTk4GHG2Ha0pi2uI4Hx8f4uPjWbVqFffeey9ZWVls3brV2TYJHKVN06ZNIyYmhgEDBtQ5fuXKlSxYsIDc3Fy2bNnCokWLyMzMxNvbm8DAQCwWC2+//XaL3u+IESNITU3l4MGDDBw4kBUrVmCp6Ql+gSuipKkxFRUVGI1G7PaG+9uGhIRc6iW6tbPlZ50DW16dV6unWyMlTe/l5fF4dXEowN/69+du+RuIK5SqqpQfKOfc+nMUry+m5JuSFo+PFPLbEAa8NaDeiNVCdAR/f3/Wrl3Lk08+yRNPPEFVVRV9+vRptqv8xR733nvvcf/99/Pqq68SFRXF8OHD6wwjMHHiRGbNmsUjjzxS71ibzUZiYiImk4klS5YQERFBr169WLVqFdHR0QQGBpKcnMypU823DQsODmbFihXcdtttuLm5MX78eALb8Md8VlYWN9xwA+Xl5VRUVBAeHs7cuXN56KGH2uwaAIqqqq2YTQg+++wzVq9ezYkTJxrdR1EUNm3a1OrgupqacZqWLVtGdHR0m5zTZreRU5LDScNJht6Zjs/OvY4N586Bf93hdD8tLOS2n3+u6QTEgogI5ku7MnGFqSqqovirYs596UiUKk9WNnuMi58LHgM80A/Q49HfA5+RPvjf4C8TtXYjZrOZnJwc+vXrh64bzXhgNBrx9PREURRycnIYMWIEO3fudPZu37VrF1OmTOHgwYNNVutdKS7130GrSpo++eQTFi5ciFarJT4+nuDgYLQy3k+70Gq0RAVEEeXbD/Ydcazs169ewvRdaSl37t/vTJge6dWLeX37dmywQrQx1aY6Jo3NNFH2YxnFG4op21nW6ISvbmFu+IzwcSRHNUnSAA9cA10lQRLd0rZt23jqqacAR8nRwoULnQnT9OnTWb9+PcuXL+8WCVNbaFXS9O9//xtfX19ef/11GYupoxw6BOXljuULquYsdjv3HjiAubqK9O4ePVgcFSVfEqJLsRRYMGWaMGYaMWWaHI99piYnn9XoNPiO9SXgpgD8U/zxjPWUf/dC1JKSkkJKSkqD25YvX97B0XR9rUqa8vPzueWWWyRh6ki7d59fvqAR+DtnznDU7Bhob5SPD+8OHIhGvjjEZUa1qVSerKQip8I5LYk5x0xFTgUVhyuco3E3x3OIJ/4p/gSkBOA7xheth5RyCyE6RquSpoCAgEYbfot2UjtpqlXSVG6z8cKx8wNe/jUqCjcpZhWdzGa2YfjOwLn15yjbXYY5xzEViGq9iCaUCugidXjFeeE5xBPPIZ74jvTFPUzGRhJCdI5WJU3jx49n3bp1VFRU4CGjS3eMH388v1yrpGnJyZPkVXfbvD0oiKt9fC48Uoh2p6oqpp9NFG8o5tz6c5RuLm1xLzYA1x6ueMY6EiNnkhTreVGTzwohRHtrVdI0bdo0cnNzefzxx5k5cyYDBgxwzl0j2oHdDnv2OJb79IHq0VeLq6p4pbr3ogZ4sV+/TgpQdDeqqmI5baHkmxJHd/8NxVjONDzmCoDWR4uunw6Pfh7o+umcD49+Hrj3dcfFq3tMKiqE6Npa9UlVM6CWqqo89thjje7X3YYcaDdHjkBZ/UEt/3ziBCVWKwD3hoYySKZIEe1AVVXMOWbKfizDuMeI8UcjZT+WNdkGyT3cHf8Uf/xv9Md/nD+uPaT3mhBdiaIoFBcX1xnTqa0FBQWxa9euNply7cMPP+Tll1/GWv2dmJqayhNPPHHJ571Qq5KmuLg4+QDsSA20ZzpTWcnik46Rwt0UhQUyHpNoJdWuYi22UlVURVVhleP5bBWmfSZHgrSnDFtpw1Mh1NDoNfiN8yPgRkcvNv1AvXxGCNHJrFYrLi7doxS3d+/erFu3jtDQUEpLSxk2bBjDhg3juuuua9PrtOpuLlmypE2DEM1ooD3TH44do6K6Mf5DvXrRpxsN1iYunr3KTtnuMkq/LcXwvQFLnsWRHBVVYT1nbXTco8a4BLrgneiN99Xe+N/oj+8IXzTu0gFBiIuxc+dO5syZg8FgwGazMXfuXCZNmkRubi4JCQmkp6fz2WefUVpaypIlS5gwYUKLjps5cyYbNmxg2rRpjB8/ntTUVAwGA9HR0RiNRqZMmUJKSgqJiYnk5OQ4m9dMmTKFMWPGMGvWLABee+011q5di8lkYv78+c7pV6ZOnUpWVhYWi4XevXvzzjvvEBoa2mzca9asYc6cObi6urb53LWjRo1yLvv6+jJw4EByc3Pb9BrQBtOoiA5wQUnT0YoKllVPxuul1TK3T59OCkxcruwWO2U7yyj5toSSb0so/a7UOUHtxXLr5Yb3UG+8Er2cz+693aUkSXRtSUmQl9d+5w8NhV2NTwpcUlJCWloan3/+OT179qSwsJChQ4cycuRIAEpLS4mLi+P5559n3bp1pKenM2HChBYdFxsbyyuvvALA8OHDeeihh0hNTeXAgQMkJiYyZcoUwsLCSE5OZtWqVaSlpZGfn8/GjRtZunSpM0ZFUdizZw/Z2dkkJSUxatQoIiIiWLRoEcHBwQC8/PLLLFiwgLfeeqvJuAsKCkhNTWXLli3ExMSwdOlSioqKGrw3lzph7/79+9m+fbszprYkSdPlTlXPlzSFhUFICPP278daPfvNE+HhBLu5dWKA4nJgNVgp21lG6XellHxbgmG7odnea1ofLa5BrrgGVj+CXHEJdHG+1kXq8B7qjVsP+fclrkB5edCCOdPay7Zt28jOzubmm2+usz4rK4vIyEh0Oh2333474Jjs9mj1nKLNHefq6so999wDgMFgICMjg2nTpgEwaNAgRo8e7TwmPT2dGTNmkJaWxrJly7j77rvx8vJybp8+fToAkZGRjB07ls2bNxMREcEHH3zA+++/j9lsxmw2E1TdOQloNO4dO3YQFxfnnFj4gQceYPbs2Q3em0uZsPfkyZP8+te/5q233iI8PLxV52hKi5Kml19+GYC0tDQCAgKcr1vimWeeaV1kwiE7G0pLHcvDhpFRVsYHBQUABLm68rgMMNrtqDYV0z4Thu8NGHYYMHxvoHx/eZNVbG693PC71g+/a/3wHeuLx1UeaFylOk10Y6GhnXp+VVWJjY1l27Zt9bbl5ubi7n6+NFer1WKz2Vp0nF6vb3JKlNolxFdffTV6vZ5NmzaxdOlSNm7c2GTMiqKwdetWlixZwvbt2+nRowdr1qxh3rx5zn0ai7upOC7U2pKm06dPk5yczHPPPcekSZOafC+t1aKk6YsvvkBRFKZOnUpAQABffPFFi06uKIokTZeqTx9HEe/u3RAWxu9zcpybft+nDz7dpJHflcRWYcO0z4Rpr2OqEONeIzaDDY1eg9ZT63zW6rVoPDVo9Vq0nlqqiqso+76Msl1l2IxNN8x27+vuTJL8rvVDF6mT6jQhamui6qwjjBw5kpycHDZu3OjskZ6RkeEsiWmL43x8fIiPj2fVqlXce++9ZGVlsXXrVmfbJHCUNk2bNo2YmBgGDBhQ5/iVK1eyYMECcnNz2bJlC4sWLSIzMxNvb28CAwOxWCy8/fbbLXq/I0aMIDU1lYMHDzJw4EBWrFiBxdLwMCWtKWk6c+YMN9xwA3PmzOHee++9qGMvRou+cVevXg3gLIKreS06gKuro8fcsGFsKSnh8+p/SL3d3XkwLKxzYxPNMh83O7rp7zU6E6SKwxXQhgPqKy4KnvGe+PzCB59rfPAd44tHhAw6K8TlzN/fn7Vr1/Lkk0/yxBNPUFVVRZ8+ffjkk0/a9Lj33nuP+++/n1dffZWoqCiGDx9eZxiBiRMnMmvWLB555JF6x9psNhITEzGZTCxZsoSIiAh69erFqlWriI6OJjAwkOTkZE61oJozODiYFStWcNttt+Hm5sb48eMJDAxs9riWmjdvHsePH2fx4sUsXrwYcCSEqampbXYNAEVV1YvsNyMak5WVxYwZM1i2bBnR0dFtem5VVRmzZw/fGQwArIiOJrVnzza9hnAo3V7K2Y/Ooh+gx3u4N56DPVtclVVVUkXJ1yWOkbE3nMN81Nyyiyq0uAebe293Z4Lk8wsfvIZ6yfxrQjTDbDaTk5NDv3790HWj3sZGoxFPT8dE1jk5OYwYMYKdO3c6547dtWsXU6ZM4eDBg01W610pLvXfgdTtdBGfnzvnTJgG6vX8NiSkkyO6MhX+r5B9d+5DtZzPYDQ6jaPn2HBvfK72wXu4Nx5RHigaBXuVHcMOA8XrHUlS2c6yJkuRNDoN+li9Y6qQuPNThrgGuWKvtGMvt2Mz2ZzPtZcVFwXvYd6495K514QQLbNt2zaeeuopwFFytHDhQmfCNH36dNavX8/y5cu7RcLUFiRp6gLsqsrc7Gzn6z/264eL/ANvcwX/LuDAlAP1JpW1m+0YthswbDdwCkcxtNZXi+cgT0w/mxptX6S4KviM9MF3tC9e8V54xXk5ki1tw22LtDotWp0W1wDXtn1jQohuKyUlhZSUlAa3LV++vIOj6fokaeoCPiwoYK/JBMBwb29uq9W9U7SNvFV5HLz3oLOUqMddPfAe7k3ZzjIMOw31qtlspTYMOwz1zqOP0ROQEuAY8HGsr8ypJoQQVxD5RL/MWex2/l+tHnMvRUZKL6g2dmbFGbKmZznbFIU+EEr029F1SoSqiqoo2+VIoMp+KKNsZxmWPAuuPVzxv9HfMX1Isr9UnQkhxBVMkqbL3LclJeSYHaUcyf7+3ODv38kRXVlOvXmKww8ddr4OeyiM/n/rj6Kpm5i6BroScFMAATcFAI6G+TaDDa23tt6+QgghrkzSMOYyd2NAAHuSkrglIIA/9evX2eFcUU4sPFEnYQr/XTj9/14/YWqIoii4+LpIwiSEEN2IlDR1AQMNrnwaO6TRBsTi4h17+Rg5z56v9uzzbB/6/bGfVH0KIYRolJQ0dQGZt2byXdB3/Hzbz5z8+0lMB03I8Fqto6oqOQty6iRMES9ESMIkhBC1KIpCSUlJu14jKCiI3NzcNjnXf//7X+Li4khISCAmJobf//737fI9KSVNl7mqc1UYfzSCCoWfFFL4SSEAbmFu+Cf743+D4yENkB1UVcVaaqXqbBVVhdWPWsvlWeUUrTk/s3bkK5H0ebpPJ0YshBDtw2q14tJNptpKTk7m17/+NRqNBovFwujRo0lKSuK2225r0+t0j7vZhVlLrQRPDKb462KsRVbnestpC/nv5ZP/Xj4A+oF6/G7wI2xmGF5DvBo73RWrbE8Zh2YdwrjbWG+cpcZELY4i/NG2nwVbCHH5S9q1i7xG5j5rC6FubuxKSmpyn507dzJnzhwMBgM2m425c+cyadIkcnNzSUhIID09nc8++4zS0lKWLFnChAkTWnTczJkz2bBhA9OmTWP8+PGkpqZiMBiIjo7GaDQyZcoUUlJSSExMJCcnB71eD8CUKVMYM2YMs2bNAuC1115j7dq1mEwm5s+f75yzburUqWRlZWGxWOjduzfvvPMOoaGhzca9Zs0a5syZg6urK+PHj2/T++3t7e1cNpvNVFZWtkvtgSRNlzmPfh7E/l8sql3F+JOR4q+KKd5YTOmWUuzl54eeLj9YTvnBcs4sPUPknyMJTw/vFtVNqqpy6vVTHH3iaJ1RvJui0WuIWhhFWJrM3SdEd5VnsXCqHZOm5pSUlJCWlsbnn39Oz549KSwsZOjQoYwcORKA0tJS4uLieP7551m3bh3p6elMmDChRcfFxsbyyiuvADB8+HAeeughUlNTOXDgAImJiUyZMoWwsDCSk5NZtWoVaWlp5Ofns3HjRpYuXeqMUVEU9uzZQ3Z2NklJSYwaNYqIiAgWLVpEcHAwAC+//DILFizgrbfeajLugoICUlNT2bJlCzExMSxdupSioiIakpWVxeTJkxvclpiYyMqVKxvctm3bNmbOnMnhw4eZNWsWv/71r1vxl2maJE1dhKJR8E70xjvRmz5P9sFeacfwvYHijcUUf1WM4XsD2ECtUjn6u6OUfFVC9Mpo3ILcOjv0dlNVXEXWA1kU/rfQuU4XocOjvweuwa64BlU/ai27Bbvh3scdF2/5py9Edxbq1r6fjc2df9u2bWRnZ3PzzTfXWZ+VlUVkZCQ6nY7bb78dgBEjRnD06NEWHefq6so999wDgMFgICMjg2nTpgEwaNAgRo8e7TwmPT2dGTNmkJaWxrJly7j77rvx8jpfUzF9+nQAIiMjGTt2LJs3byYiIoIPPviA999/H7PZjNlsJqjWgMuNxb1jxw7i4uKIiYkB4IEHHmD27NkN3pvo6GgyqienvxgjR44kMzOTs2fPcscdd7BlyxbGjh170edpinxzdFEadw1+Y/3wG+tHvxf6YTVYOfaHY5x47QQARZ8VsSt+FzEfxOB3rV/nBtsOSneUsv+u/VQeq3SuC388nMiXItG4Sf8GIUTTmqs6a2+qqhIbG8u2bdvqbcvNzcXd3d1ZW6DVarHZbC06Tq/XNzmPXO0aiKuvvhq9Xs+mTZtYunQpGzdubDJmRVHYunUrS5YsYfv27fTo0YM1a9Ywb9485z6Nxd1UHBdqbUlTjeDgYCZMmMC///3vNk+a5NvlCuHi48JVr17FkM+H4BrsmLvMctpCxvUZ5CzIQbVdGb3tVLvK8deOkzEmw5kwuQS4MHjNYKL+EiUJkxCiSxg5ciQ5OTl1EpWMjAwszVQZXsxxPj4+xMfHs2rVKsCRjGzdurXOPunp6UybNo1BgwYxYMCAOttqkpPc3Fy2bNnCmDFjKC4uxtvbm8DAQCwWC2+//XaL3u+IESPYu3cvBw8eBGDFihWNvteakqaGHo0lTAcPHsRudzRZKSsrY+3atcTFxbUotosh3zBXmMCbA0nKSMLvej/HCjsce/4YGddnYD5pbvLYy52l0ELmrzLJfirb2djbZ5QPSRlJBP1K5uMTQnQd/v7+rF27lj/96U/Ex8cTExPDM8884/zib6vj3nvvPd58800GDx7MnDlzGD58OH5+fs7tEydOxGg08sgjj9Q71mazkZiYSEpKCkuWLCEiIoLx48cTHR1NdHQ0Y8aMISEhoUXvNzg4mBUrVnDbbbcRHx/P4cOHCQwMbNGxLbF69WoGDx5MfHw8I0aM4IYbbnBWL7YlRZUBf9pMVlYWM2bMYNmyZURHR3dqLKpN5fjLx8mZl+OchNYl0IWB7w4k6JddL8Eo+baE/VP2Yzld/ctEcQxIGfF8BBoXyf2FEE0zm83k5OTQr18/dDpdZ4fTYYxGI56eniiKQk5ODiNGjGDnzp307t0bgF27djFlyhQOHjzYZLXeleJS/x1Im6YrlKJV6Pv7vvhe68uBKQeoPFGJtcjKz7/6mfDfhRP5SiQa18vvP4jNbKP8QDmmvSaMmUZMe02YMk1Y8s4X47oGuzJo1SACUgI6MVIhhLj8bdu2jaeeegpwlBwtXLjQmTBNnz6d9evXs3z58m6RMLUFSZqucH6j/UjKSHL0MqseGPPkwpOU7Soj5v9icA/t3EExzSfM5K/Kx5hhxJRpovxQOTTcbhAAv3F+DPrnINx7ymCeQgjRnJSUFFJSUhrctnz58g6OpuuTpKkbcA1wJfbj2DrjGZVuKWX3sN3E/icW3xG+HR5T5ZlKjr90nNNvn252fCWXQBe8hngR9Jsgej3SS+bgE0II0SkkaeomFEUh/JFwvJO82TdxH5ZTFkfvumsz6P+3/vRM69khg2Fazlo48ecTnHr9FPaKug0XFTcFzxhPPId44hnnidcQLzyHeOLW061bDNQphBDi8iZJUzfj+wtfknYnse/OfZRuLkWtUjn04CEMPxjo/3p/tDptu1y3qriKE6+d4OTik9hN55MljV5D+KPhhNwTgscAj8uynZUQQggBkjR1S24hbsRvjCf76WxOLjoJQN6KPEx7TcR+FIuuT9v1LLEarJxcdJITfz2BrfR8YyWNTkPYQ2H0mdMHtx5X7qjlQgghrhySNHVTGlfH/Gvew73Jmp6FvcJO2a4ydg/bTcz/xeA/zr9F51FVFes5K5VnKrGctmA5Y6HydKXzuWRTCdZz5ycaVlwVeqb1pO/cvriHSWNuIYQQXYckTd1cyJQQPGM9+fm2nzHnmKkqrOKn5J/o9VAvtF5abCYbtnIb9nI7NlP1c/XrquIqLGcsLZsoVws9U3vS97m+6Pp2nzFShBCiK1IUheLi4joDYba1oKAgdu3aRURERJuds6KigmHDhuHm5taq+euaI0mTwCvei2G7hnFg6gHOrTsHdjj191Ntcm7FVaHHXT3oO68v+ih9m5xTCCFE86xWKy4u3etrfs6cOYwaNYqdO3e2y/m7190UjXINcGXIZ0PIXZDLsRePNbu/4qbg4uOCW0833MLccO/pjluYG2493XAPcz//HOqGxl0adwshLi+7knbVGTS3rbmFupG0q+lJgXfu3MmcOXMwGAzYbDbmzp3LpEmTyM3NJSEhgfT0dD777DNKS0tZsmQJEyZMaNFxM2fOZMOGDUybNo3x48eTmpqKwWAgOjoao9HIlClTSElJITExkZycHPR6xw/aKVOmMGbMGGbNmgXAa6+9xtq1azGZTMyfP5+pU6cCMHXqVLKysrBYLPTu3Zt33nmH0NDQZuNes2YNc+bMwdXVlfHjx7f5Pd+4cSOnTp1i9uzZkjR1lFdffZXvvvsOs9lMSEgIaWlpjBo1qrPD6hCKVqHfH/oRmhpK+YFyNJ4atHotWk8tGr1jWaPXoPHQyNQlQoguzZJnwXKq/ZKm5pSUlJCWlsbnn39Oz549KSwsZOjQoYwcORKA0tJS4uLieP7551m3bh3p6elMmDChRcfFxsbyyiuvADB8+HAeeughUlNTOXDgAImJiUyZMoWwsDCSk5NZtWoVaWlp5Ofns3HjRpYuXeqMUVEU9uzZQ3Z2NklJSYwaNYqIiAgWLVpEcHAwAC+//DILFizgrbfeajLugoICUlNT2bJlCzExMSxdupSioqIG701WVhaTJ09ucFtiYmKDk/aWlJTw9NNPs27dOvbv39/Kv0rzJGm6wJ133kl6ejpubm4cOHCAxx9/nA8//BBf344fALKzeER64BHp0dlhCCFEu3ELbd9eu82df9u2bWRnZ3PzzTfXWZ+VlUVkZCQ6nY7bb78dgBEjRnD06NEWHefq6so999wDgMFgICMjg2nTpgEwaNAgRo8e7TwmPT2dGTNmkJaWxrJly7j77rvx8vJybq+Z8DYyMpKxY8eyefNmIiIiHb6hsAAAFiNJREFU+OCDD3j//fcxm82YzWaCgs7PZ9pY3Dt27CAuLo6YmBgAHnjgAWbPnt3gvYmOjr7o9kiPPPIIc+fOpUePHpI0daS+ffs6lxVFoaqqisLCwm6VNAkhxJWuuaqz9qaqKrGxsWzbtq3ettzcXNzd3Z2D+mq1Wmw2W4uO0+v1Tc4jV3ug4Kuvvhq9Xs+mTZtYunQpGzdubDJmRVHYunUrS5YsYfv27fTo0YM1a9Ywb9485z6Nxd1UHBdqTUnT1q1b2bp1K08++SRms5lz584RHR1NVlZWk+/pYl2WdSzl5eWsWLGCJ598kltuuYWxY8fyxRdfNLivxWLhzTff5LbbbiM5OZmZM2decl3mX//6V5KTk0lLS2Po0KFERkZe0vmEEEKI2kaOHElOTk6dRCUjIwOLpekqw4s5zsfHh/j4eFatWgU4kpGtW7fW2Sc9PZ1p06YxaNAgBgwYUGdbTXKSm5vLli1bGDNmDMXFxXh7exMYGIjFYuHtt99u0fsdMWIEe/fu5eDBgwCsWLGi0fdaU9LU0KOhhKkmxprHhx9+SExMTJsnTHCZJk2lpaW8++67HDt2jKioqCb3femll/i///s/brzxRh599FE0Gg1PP/00e/fubfX1H3/8cb788ksWLlzI8OHDZQoPIYQQbcrf35+1a9fypz/9ifj4eGJiYnjmmWew2+1tetx7773Hm2++yeDBg5kzZw7Dhw+vM4zAxIkTMRqNPPLII/WOtdlsJCYmkpKSwpIlS4iIiGD8+PFER0cTHR3NmDFjSEhIaNH7DQ4OZsWKFdx2223Ex8dz+PBhAgMDW3Ts5URRVbUFg+x0LIvFQllZGYGBgRw8eJC0tDSeffbZenW4+/fv58EHH2TWrFncfffdAFRWVnLffffh5+fHm2++6dz34YcfJjMzs8Hr/fa3v2XGjBkNbnvmmWf49a9/zYgRI5qNOysrixkzZrBs2TKio6Nb+naFEEK0M7PZTE5ODv369UOn6z5jxRmNRjw9PVEUhZycHEaMGMHOnTvp3bs3ALt27WLKlCkcPHiwyWq9K8Wl/ju4LNs0ubm5tSgD/fbbb9Fqtdx6663Ode7u7txyyy0sXbqU/Px8QkJCAHj99ddbFYvNZuPUqbYZs0gIIYToSNu2beOpp54CHN9nCxcudCZM06dPZ/369SxfvrxbJExt4bJMmlrq8OHDhIeH4+npWWf9oEGDADhy5IgzaWoJo9HI9u3bGTVqFG5ubmzZsoU9e/aQlpbW4P6FhYV1ukweO9b8+EZCCCFER0lJSSElJaXBbcuXL+/gaLq+Lp00FRUVNVgiVbOusLDwos6nKAqfffYZCxcuRFVVevXqxf/7f/+P/v37N7j/mjVrePfddy86biGEEJ3jMmyRIjrQpf79u3TSVFlZiaura731bm5uzu0Xw9PTk8WLF7d4/1tvvbXOwJfHjh3jxRdfvKhrCiGEaH+urq4oisLZs2cJDg6WDj7dkKqqnD17FkVRGswdWqJLJ03u7u5UVVXVW1/TjdHd3b1drx8UFFRnUC8hhBCXJ61WS3h4OCdPniQ3N7ezwxGdRFEUwsPD0Wq1rTq+SydNgYGBnD17tt76mnZGktAIIYSo4eXlRf/+/Rv8sS26B1dX11YnTNDFk6aoqCj27NmDyWSq0xi8Zgj15sZ4EkII0b1otdpL+tIU3VuX7mN43XXXYbPZWLNmjXOdxWLh888/JyYm5qJ6zgkhhBBCNOWyLWn66KOPMBqNzqq27777joKCAgDuuOMOvLy8iImJYdy4cSxdupSSkhJ69erFunXryMvLY86cOZ0ZvhBCCCGuMJdt0rR69Wry8vKcrzdv3szmzZsBx7gTNTMxz507l5CQEL788kuMRiORkZG88sorLR7avS3V9NaT8ZqEEEKIrqdv375NjhR+WU6j0lWtX79ehhwQQgghuqjmpkGTpKkNlZSU8MMPP9CzZ0/nWFHNqRnb6bnnnqNv377tHKGQ+92x5H53LLnfHUvud8fqiPvdXEnTZVs91xX5+fk1Olx9c/r27SuT/HYgud8dS+53x5L73bHkfneszrzfXbr3nBBCCCFER5GkSQghhBCiBSRp6mSBgYHcd999DU48LNqe3O+OJfe7Y8n97lhyvzvW5XC/pSG4EEIIIUQLSEmTEEIIIUQLSNIkhBBCCNECkjQJIYQQQrSAJE1CCCGEEC0gg1t2EovFwjvvvMP69espKyvjqquuYvr06QwfPryzQ+vyysvL+fDDD9m/fz8HDhygrKyMZ599lptvvrnevrm5ufz9738nMzMTFxcXRowYwSOPPIKfn1/HB94FHThwgHXr1rFnzx7y8vLw8fEhNjaW6dOn07t37zr7yr2+dDk5OaxcuZKsrCzOnTuHTqejb9++3H333YwaNarOvnK/28d7773H8uXL6devH//4xz/qbMvMzOStt97i0KFDeHp6Mm7cOGbMmIFer++kaLuWPXv2kJ6e3uC2N998k9jYWOfrzrrXkjR1kpdeeolvvvmGSZMmER4ezhdffMHTTz/N4sWLiYuL6+zwurTS0lLeffddQkJCiIqKYs+ePQ3uV1BQwOzZs/Hy8mLGjBlUVFTw4Ycfkp2dzdtvv42rq2sHR971fPDBB2RmZjJu3DiuuuoqioqK+O9//8v06dN58803iYyMBORet5W8vDzKy8sZP348QUFBmM1mvv32W5599lmefPJJbr31VkDud3spKChg1apVeHh41Nt2+PBhfve739G3b18eeeQRCgoKWL16NSdPnuTVV1/thGi7rjvuuINBgwbVWderVy/ncqfea1V0uH379qljxoxRP/jgA+c6s9ms3nXXXeqDDz7YiZFdGSorK9XCwkJVVVX1wIED6pgxY9TPP/+83n5/+ctf1OTkZDUvL8+5bufOneqYMWPU//3vfx0Wb1e2d+9e1WKx1Fl3/Phx9YYbblBfeOEF5zq51+3HarWqqamp6tSpU53r5H63j/nz56vp6enq7Nmz1WnTptXZ9uSTT6q/+c1vVKPR6Fz36aefqmPGjFG///77jg61S/rxxx/VMWPGqJs2bWpyv86819KmqRN8++23aLVa569CAHd3d2655Rb27dtHfn5+J0bX9bm5ubVo8LNvv/2WkSNHEhIS4lyXlJRE79692bRpU3uGeMUYMmRIvVKL3r17ExERwbFjx5zr5F63H61WS48ePTAajc51cr/bXkZGBt9++y2zZ8+ut81kMrFr1y5SUlLw9PR0rr/pppvw8PCQe94K5eXlWK3Weus7+15L9VwnOHz4MOHh4XX+4ICzOPLIkSN1PuxE2zt79izFxcUNTvo4aNAgduzY0QlRXRlUVaW4uJiIiAhA7nV7qKiooLKyEpPJxHfffcf333/PuHHjALnf7cFms7F48WJuueUWrrrqqnrbs7Ozsdls9e65q6sr/fv35/Dhwx0V6hXhpZdeoqKiAq1WS1xcHLNmzWLgwIFA599rSZo6QVFRUYMlITXrCgsLOzqkbqeoqAig0b+DwWDAYrHg5ubW0aF1eRs2bODs2bPcf//9gNzr9vD666+zZs0aADQaDWPHjuV3v/sdIPe7Pfzvf/8jPz+fhQsXNri9uXv+008/tWt8VwoXFxeuvfZafvGLX+Dr60tubi6rV6/mkUce4Y033mDAgAGdfq8laeoElZWVDTbErPkQq6ys7OiQup2ae9zc30G+WC7OsWPHWLhwIbGxsYwfPx6Qe90eJk2axHXXXUdhYSGbNm3CZrNRVVUFyP1ua6WlpaxYsYJp06Y12vOwuXtusVjaM8QrxpAhQxgyZIjz9ejRo7nuuutITU1l6dKlvPbaa51+r6VNUydwd3d3fsDVVvPHdnd37+iQup2aeyx/h7ZTVFTEnDlz8PT05A9/+ANarRaQe90e+vbtS1JSEuPHj+eVV16hoqKCZ555BlVV5X63seXLl+Pt7c0dd9zR6D7N3XNJUFsvPDyc0aNHs2fPHmw2W6ffa0maOkFgYKCziLG2mnVBQUEdHVK3U1O029jfwcfHRz7oLoLRaOTpp5/GaDTy2muv1fk3LPe6/V133XUcPHiQEydOyP1uQydOnODTTz9l4sSJFBYWcubMGc6cOYPFYsFqtXLmzBkMBkOz91w+0y9Njx49qKqqwmw2d/q9lqSpE0RFRXHy5ElMJlOd9fv373duF+0rODgYPz8/srKy6m07cOCA/A0uQmVlJc888wwnTpzg5ZdfdjYAryH3uv3VVFkYjUa5322osLAQu93O4sWLmTx5svOxf/9+Tpw4weTJk3n33Xfp168fWq223j2vqqri8OHDcs8v0enTp3Fzc8PDw6PT77UkTZ3guuuuw2azORtygqNY8fPPPycmJkZ6znWQa6+9lm3bttUZ4mH37t2cOHHC2RNJNM1ms7FgwQL27dvH888/z+DBgxvcT+512yguLq63zmq18uWXX+Lu7u5MWOV+t41+/frxxz/+sd6jX79+hISE8Mc//pFbbrkFLy8vkpKSWL9+PeXl5c7jv/zySyoqKuSet1BJSUm9dUeOHOG7775j+PDhaDSaTr/XiqqqarteQTRo/vz5bN68mTvvvJNevXqxbt06Dhw4wMKFC0lISOjs8Lq8jz76CKPRSFFREZ988gljx46lf//+gGO0WS8vL/Lz85k+fTpeXl5MnDiRiooK/vWvfxEcHMzSpUulCqMFlixZwn/+8x9GjhzJ9ddfX297SkoKgNzrNvL73/8ek8lEfHw8wcHBFBUVsWHDBo4fP87DDz/M5MmTAbnf7e3RRx+ltLS0zjQqWVlZPPzww/Tt25dbb73VOUp1fHw8f/nLXzox2q4jPT0dd3d3Bg8ejL+/P7m5uXz66ae4uLjwxhtvOH8UdOa9lqSpk1RWVjrnnjMajURGRjJ9+nSuvvrqzg7tinDnnXeSl5fX4LbVq1fTs2dPwDGX14Xzcz388MMEBAR0ZLhd1qOPPkpGRkaj2zdv3uxclnt96b766ivWrl1LdnY2paWl6PV6oqOjuf322xk9enSdfeV+t5+GkiaAvXv3OudD0+v1jBs3jpkzZ8rccy30n//8hw0bNnDq1ClMJhN+fn4MGzaM++67j/Dw8Dr7dta9lqRJCCGEEKIFpE2TEEIIIUQLSNIkhBBCCNECkjQJIYQQQrSAJE1CCCGEEC0gSZMQQgghRAtI0iSEEEII0QKSNAkhhBBCtIAkTUIIIYQQLSBJkxBCCCFEC0jSJIS4bJw5c4axY8fypz/9qbNDaRNffPEFY8eO5YsvvujsUIQQbUCSJiHEZe3RRx9l7NixnR1Gg660JE8I0TSXzg5ACCFqBAcH8/777+Pp6dnZobSJMWPGEBMTQ2BgYGeHIoRoA5I0CSEuGy4uLvTt27ezw2gzXl5eeHl5dXYYQog2oqiqqnZ2EEIIAY7qrsmTJzN+/Hjmzp3baLVczfYaR48e5f333ycjIwODwUBgYCCjRo0iNTUVX1/fBs8/ZcoUli1bxk8//YTBYGD16tX07NmTzZs3s2nTJg4ePEhhYSEuLi5cddVVTJw4keuuu855ri+++IKXXnqpwfgWL15MYmKic59nn32Wm2++uc4+mZmZvP/+++zbt4/KykpCQ0O5/vrrmTJlCjqdrs6+Y8eOJSEhgQULFvDmm2+yY8cOKioqiIqKYubMmSQmJl7srRZCtIKUNAkhLlv33Xcf69atIy8vj/vuu8+5vn///s7lrVu3smDBAhRFYfTo0fTo0YPc3Fw+/vhjfvjhB95++228vb3rnPfUqVPMmjWLyMhIxo8fj8FgwNXVFYClS5fi4uLCkCFDCAwMpKSkhO+++4558+aRnp7OHXfcAUBUVBQTJ07kP//5D1FRUYwePdp5/tDQ0Cbf16ZNm3jhhRdwdXXl+uuvx8/Pj507d/Luu+/yww8/sHjxYtzd3escYzQaefjhh/Hy8iIlJYXi4mI2bdrEk08+ybJly4iMjGzVPRZCtJwkTUKIy9b9999PRkYGeXl53H///fW2l5aW8sc//hFfX19ef/31OsnKV199xfPPP88777zDY489Vue4zMxM7rvvvgbP+ec//5mwsLA668rLy3nooYd45513uOWWW9DpdPTv3x8vLy9n0tTQuRpiMpl49dVX0Wq1vPnmm1x11VUApKWl8cILL/D111/z4Ycfcu+999Y57siRI/zmN7/hscceQ6Nx9OEZOnQof/7zn/n444958sknW3R9IUTrSe85IUSX9eWXX2IymUhLS6tXunPDDTcwYMAAvvrqq3rHBQQE8Nvf/rbBc16YMAHo9XpuvvlmjEYjBw8evKSYt27ditFoZMKECc6ECUCj0TBr1iy0Wm2DQxR4eHjw4IMPOhMmcFRTarXaS45JCNEyUtIkhOiy9u3bB8D+/fs5depUve0Wi4XS0lJKSkrw8/Nzro+KinJWx12ouLiYf/7zn+zYsYP8/HwqKyvrbC8sLLykmA8fPgxAQkJCvW0hISGEhYVx4sQJysvL0ev1zm3h4eF1XoOj4XxAQABGo/GSYhJCtIwkTUKILqusrAyA//73v03uZzab67z29/dvcD+DwUBaWhr5+fkMGTKEpKQkvLy80Gg0HDlyhK1bt1JVVXVJMZtMJsBR2tWQwMBATpw4gclkqpMkNTYMg1arxW63X1JMQoiWkaRJCNFl1SQV77777kU1hFYUpcH1a9euJT8/nwceeKBem6JVq1axdevW1gdbrSb5OXfuXIPba9ZfKWNVCXElkTZNQojLWk0bHpvNVm9bTEwMcL6a7lLVVPHV7glXY+/evY3GdjElPTU9/zIyMupty8/P59SpU4SFhdWrihNCdD5JmoQQlzUfHx8ACgoK6m2bMGECer2eZcuWkZOTU2+72Wy+qISqpjF5ZmZmnfUbNmxgx44d9fb39vZGUZQGY2vM6NGj8fLy4vPPP68Ts6qqvP3229hstnpjOgkhLg9SPSeEuKwNHTqUb775hv/3//4f11xzDW5ubkRFRTFq1Cj8/PyYP38+8+bN4/777+fqq6+mT58+VFVVkZeXR0ZGBoMHD+a1115r0bVSUlL44IMPWLx4MXv27CEkJIQjR47w448/MnbsWDZv3lxnf71ez8CBA/npp5948cUXCQ8PR1EUbrrppkbHavL09OSpp57ihRde4MEHH2TcuHH4+fmxe/dusrKyGDRoEHfdddcl3zchRNuTpEkIcVn75S9/yZkzZ/j666/54IMPsNlsjB8/nlGjRgEwYsQI3nnnHf71r3+xe/dudu3ahU6nIzg4mJtvvpmUlJQWX6tHjx4sWbKEN998k127dmGz2RgwYAB/+ctfKCgoqJc0ATz33HP87W9/Y9u2bZhMJlRVJS4urskBLseNG0dAQACrVq1i8+bNzhHB7733XqZMmVJvYEshxOVBplERQgghhGgBadMkhBBCCNECkjQJIYQQQrSAJE1CCCGEEC0gSZMQQgghRAtI0iSEEEII0QKSNAkhhBBCtIAkTUIIIYQQLSBJkxBCCCFEC0jSJIQQQgjRApI0CSGEEEK0gCRNQgghhBAtIEmTEEIIIUQL/H/XJZf0r10NGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = []\n", + "integrated_flux = []\n", + "integrated_flux_each_band = [[],[],[],[],[]]\n", + "\n", + "for _ in all_results:\n", + " iteration.append(_['iteration'])\n", + " image = _['model_map']\n", + " pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr\n", + "\n", + " integrated_flux.append(np.sum(image) * pixelarea)\n", + "\n", + " for energy_band in range(5):\n", + " integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)\n", + " \n", + "plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"integrated flux (ph cm-2 s-1)\")\n", + "plt.yscale(\"log\")\n", + "\n", + "colors = ['b', 'g', 'r', 'c', 'm']\n", + "for energy_band in range(5):\n", + " plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = \"energyband = {}\".format(energy_band))\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "8f62377a-c250-4dd5-832a-6316f39e21d0", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at the 50th iteration. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixels at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "af9db65d-4a85-4ba6-973f-8e3e2d5ddc6a", + "metadata": {}, + "outputs": [], + "source": [ + "energy_truth = []\n", + "flux_truth = []\n", + "\n", + "with open(\"crab_spec.dat\", \"r\") as f:\n", + " for line in f:\n", + " data = line.split('\\t')\n", + " if data[0] == 'DP':\n", + " energy_truth.append(float(data[1]))# * u.keV)\n", + " flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "16411a3e-a899-4692-9120-6c52110ecec0", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "0584d5fe-0ea1-4d22-b4dd-af3c7f753b63", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLA0lEQVR4nOzdd1RURxsG8Gd36V1QQUWpimBUNGo0Khawklhi19i7xt5TNTGfLXYTjSZKNIklaqJRrKhoLLEEI0qxUKx0KUtb2L3fH4SNBKQsF5by/M7JiTt3duZd4OrLzNwZiSAIAoiIiIioxKTaDoCIiIiosmIiRURERKQhJlJEREREGmIiRURERKQhJlJEREREGmIiRURERKQhJlJEREREGmIiRURERKQhJlJEREREGmIiRURUDUgkEnTu3FnbYRBVOUykiMqAUqnEjh070KlTJ1haWkJXVxe1a9dGs2bNMGHCBBw9elTbIRbqwoULkEgkWLp0qbZDKVedO3eGRCLBhQsX8pTb29vD3t5eKzEVV2WIsTzlfi9f919GRkaB7wsKCsLgwYNRu3ZtGBgYwMXFBZ999hnS09PL+RNQZaGj7QCIqhqlUol33nkHJ0+ehIWFBby9vWFrawuFQoF79+7h559/RkhICPr06aPtUKkaCQ4OhpGRkbbDKHefffZZgeU6Ovn/+fvzzz/RtWtXZGVlYeDAgahfvz7OnTuHzz//HH5+fvDz84O+vn5Zh0yVDBMpIpHt3bsXJ0+eRPPmzeHv7w9zc/M819PS0vDnn39qKTqqrho3bqztELSiuKOqSqUSY8eORVpaGo4cOaL+RUelUmHw4ME4dOgQ1q9fj8WLF5dhtFQZcWqPSGRXrlwBAIwZMyZfEgUARkZG6NKlS54yHx8fSCQS+Pj44Pjx43j77bdhbGyMGjVqYODAgXjw4EGBfaWlpWHFihVwd3eHsbExTExM0K5dO+zdu/e18Z0+fRrvvvsuateuDX19fdSvXx99+/bF2bNn1XHnxrds2bI80yG5U16vxnvy5El07twZ5ubmkEgkAICIiAhIJBKMGTOmwBhyp11e9ep04s2bN9GzZ0+Ym5ujRo0aGDBgAJ48eQIACAsLw9ChQ1GrVi0YGhqiS5cu+Pvvv1/7eUsjN6bIyEhERkbm+Vr897OFhIRgzJgxqF+/PvT09GBtbY3hw4cjNDQ0X7tjxoyBRCJBWFgYNm/ejGbNmsHQ0FC9hkmhUGDLli3o3bs37OzsoK+vD0tLS3h5eeHEiRMaxfi6NVJJSUlYsmQJXFxcYGBggBo1aqBHjx7qn4eC+lq6dClu374Nb29vWFhYwMjICJ06dVL/7FdG/v7+CA4OhoeHR57RYqlUitWrVwMAtm3bBkEQtBUiVVAckSISmZWVFQDg/v37JX7v4cOHceLECfTv3x+dO3fG7du3cejQIZw/fx5XrlyBi4uLum5iYiK6du2KgIAAtGzZEuPGjYNKpcKpU6cwfPhw3Lt3D8uXL8/T/meffYbPP/8cJiYm6NevH+rXr4/nz5/jypUr+PHHH+Hl5YV+/foBAH744Qd06tQpzz++/12Dc/DgQZw8eRK9evXClClTEBkZWeLP/F83btzAqlWr0KlTJ0ycOBGBgYE4fPgw7t69iyNHjqBDhw5o3LgxRo0ahcjISBw+fBjdunVDWFgYTExMSt3/q+zt7fHZZ59hw4YNAIDZs2err7m7u6v/fPLkSbz33nvIysrCu+++C2dnZzx9+hSHDx/G8ePHcf78ebRs2TJf+7NmzcKlS5fg7e2N3r17QyaTAQASEhIwa9YsvP322+jWrRtq1aqFFy9e4Pfff0fv3r2xY8cOTJgwoUQxFiQxMRHt27dHUFAQWrdujdmzZyMuLg4HDhxA9+7dsXXrVkyePDnf+27evInVq1ejXbt2mDBhAh4/foxDhw7B09MTt2/fzvNzqm379+9HeHg49PT04Orqiq5duxY4PXfu3DkAQM+ePfNdc3R0RKNGjXD//n2EhYXBycmpzOOmSkQgIlH99ddfgq6uriCRSIT3339fOHTokBAREVHoe3bt2iUAEAAIv//+e55rGzZsEAAIXbt2zVM+evRoAYCwatWqPOXp6elCjx49BIlEIgQEBKjLT506JQAQHBwchKdPn+aL4cmTJ+o/nz9/XgAgfPbZZ4XGK5FIhBMnTuS7Hh4eLgAQRo8eXeD7O3XqJPz3r5/cPgEIP/74Y55r48aNEwAINWrUEJYvX57n2ueffy4AEDZs2FBgXyWRG9f58+fzlNvZ2Ql2dnYFvichIUGwsLAQrKyshHv37uW5FhgYKBgbGwstWrTIU577vatbt64QFhaWr82MjIw8349ciYmJQpMmTYQaNWoIaWlpxY5REAQBgNCpU6c8ZZMmTRIACJMmTRJUKpW6/P79+4KZmZmgp6cnhIeHq8tf/R7t2rUrT1vbtm0TAAhTp059bQz/tX79euGzzz4r9n+//vprsdvO/V7+97/atWsLv/zyS776AwcOFAAIBw8eLLA9b29vAYDg6+tb7BioemAiRVQG9u/fL9jY2OT5C9zS0lLo16+fcPTo0Xz1cxOT/yZLgiAI2dnZgpOTkwBAnZDFxcUJMplMaNWqVYH93759WwAgLFiwQF32zjvvCACEw4cPFxl/cROpfv36FXi9NIlUhw4d8tX39/cXAAj29vZCdnZ2nmsRERECAGHMmDFFfq6iaJJI5Sa6W7ZsKfD67NmzBQB5kqzcREqT5G/t2rUCAMHf37/YMQpC/kQqMzNTMDIyEkxMTIT4+Ph89T/++GMBgLBs2TJ1We73qH379vnqKxQKQUdHR3jzzTeL/Vns7OwKTHZe99/rfp4Ksm7dOuH3338Xnj59KqSnpwshISHCkiVLBD09PUEqleb7BaBbt24CAOHMmTMFtjd8+HABgPDzzz8XOwaqHji1R1QGBg8ejP79++P8+fP4448/EBAQgD/++AO//fYbfvvtN4waNUq9zuhVnTp1yteWTCZDhw4d8OjRIwQEBMDOzg43btyAUql87RYFWVlZAHKe1Mp17do1SCSSAqcuNNWmTRvR2srVqlWrfGV169YFkDNVlTv9latevXoAgKdPn4oeS3FcvXoVAPD3338X+L3IneINDg6Gm5tbnmuFff3u3buHNWvW4OLFi3jx4kW+x/WfPXtWqrhDQ0ORlpaG9u3bw9LSMt/1rl27Yvny5QgICMh3raDvka6uLqytrfHy5ctixxAREVGimEtizpw5eV67uLjgf//7H+rWrYsZM2ZgyZIlot4LVH0xkSIqI7q6uujevTu6d+8OIOepoEOHDmHcuHHYvXs3+vfvr16PlMva2rrAtmxsbADkLAwGgPj4eAA564lu3Ljx2hjkcrn6z4mJiahRowYMDQ01/kyvi0tMBS3Qz31UvbBrucljecv9XuzYsaPQeq9+L3K97ut37do1dO3aFdnZ2fD09ESfPn1gZmYGqVSK27dv48iRI8jMzCxV3Lk/S3Xq1Cnwem55YmJivmsWFhYFvkdHRwdKpbJUcZW1CRMmYM6cObh9+zZSUlJgamoK4N+frdyvy3/llr/us1P1xUSKqJzIZDIMHjwYgYGBWL58Oc6dO5cvkYqOji7wvVFRUQD+/cs+9/9z5szBunXritW/hYUF4uPjkZ6eLloy9d8RtVxSac4DwdnZ2QVeL+gf58oq93vx999/o1mzZiV67+u+fsuXL0d6ejrOnz+f70m7FStW4MiRIxrF+qrcuHN/tv7rxYsXeeqVhQ0bNpToZ8Hd3T3fPVNSBgYGMDU1xcuXL5GamqpOpHIXyL/uIZHcJ2cbNWpUqv6p6mEiRVTOcv/iFgp4jNrf3z9fmVKpxB9//AEAaNGiBYCcKSGpVIpLly4Vu9+2bdvi2LFjOHnyJPr3719o3dzpM01HF2rUqAEA6i0LXpWcnKzRE43aJJPJoFAoCrzWtm1bHDp0CJcuXSpxIvU6Dx8+hKWlZYHbFRT0M1JUjAVxcXGBkZER/v77byQmJuYbaTl//jwAFPi0oVg2bNhQoic9R48eXepEKjQ0FC9fvoSpqSlq1qypLu/atSu+/PJLnDx5EkuWLMnznrCwMNy/fx92dnZwdHQsVf9U9XAfKSKR7d27F2fOnIFKpcp3LSoqSj0F5OHhke/6uXPncOzYsTxlW7ZswaNHj9ClSxfY2dkBAGrXro0RI0bg5s2b+OKLLwpMeB49eoTw8HD16xkzZgAA5s2bV+D6mlfLcrdwePz4cZGftyCmpqZo3LgxLl++jKCgIHW5UqnE3Llzy+W4jdy9rMQ4NsXKygqxsbEFxj127FhYWFhg2bJluH79er7rKpUq35EzRbG3t0dCQgLu3LmTp/z777/HqVOnShxjQfT09DBixAikpKTgk08+yXPt0aNH2LRpE3R1dTFy5MgSxV4SEREREHIeeirWfz4+PsVqNzw8HAkJCfnKY2NjMXbsWADA0KFD8+xu3qlTJ7i6uuLixYt5jnBSqVRYtGgRAGDKlCmvHUWk6osjUkQi+/PPP7Fx40bY2NigQ4cOcHBwAJDzl/vx48eRnp6Ovn37YuDAgfne++6776J///7o378/nJ2dcfv2bZw4cQKWlpb45ptv8tTdsmULHjx4gE8//RR79uxBhw4dYG1tjefPnyM4OBg3btzA3r171f13794dH3/8MZYvXw5XV1f1PlLR0dH4448/0LZtW/U/VC4uLqhXrx727dsHXV1d2NnZQSKRYOTIkepkrigLFizA+PHj0b59ewwaNAgGBgY4f/48srKy0Lx58zLbRDNXbiJb0FEgJeXp6YkbN26gZ8+e8PDwgL6+Ppo3b453330XVlZWOHjwIPr374+2bdvC09MTTZo0gUQiwZMnT3D16lXEx8e/9my3gsyePRunTp1Chw4dMHjwYJibm+PmzZv4448/MHDgQBw8eLBEMb7OypUrcenSJWzZsgU3btxAly5d1PtIpaSkYMuWLeqfn8rE398fU6ZMQYcOHeDo6AhLS0s8fvwYvr6+SEpKQqtWrdSbbOaSyWTYtWsXunbtioEDB2LgwIFo0KAB/Pz8cPPmTbRv3z7fAnYiANxHikhsjx8/FrZs2SL069dPaNSokWBqairo6uoKNjY2Qq9evYQ9e/YISqUyz3tytxPYtWuX8Pvvvwtt27YVjIyMBHNzc+G9994TQkNDC+wrMzNT2Lx5s9CuXTv1vj/169cXunbtKqxfv16Ii4vL957jx48LPXr0EGrUqCHo6ekJtra2Qr9+/QQ/P7889a5fvy507dpVMDMzEyQSSZ5tAV6NtzDfffed4ObmJujp6QnW1tbCpEmThLi4uEK3Pyhoy4WitlNAAXsk/fbbbwIA4aOPPio0xle9bvsDuVwuTJkyRahXr54gk8kKjCU8PFyYPn264OzsLOjr6wumpqaCi4uL8P777+fb/yh3+4NX92j6r99//1146623BBMTE8Hc3Fzo1q2b4O/v/9qvfVExFvQ1EgRBePnypbBw4ULB2dlZ0NPTE8zNzQUvLy/h1KlT+eoWtS1GUVswlJc7d+4Io0ePFt544w3B0tJS0NHREWrUqCF06NBB2LRpk5CZmfna9967d08YOHCgYGVlJejp6QkNGzYUPv3003z7dhHlkggC97sn0jYfHx+MHTsWu3bteu2xKlQyc+fOxbfffovIyMg8a2GIiMTEqb1iWLNmDS5fvoyMjAxYW1tj0qRJaN++vbbDIqJC+Pv7Y+LEiUyiiKhMMZEqhsGDB2PWrFnQ09NDcHAw5s6di3379pXpY8FEVDq3bt3SdghEVA3wqb1isLOzg56eHoCcfV+ysrIQFxen5aiIiIhI2yrNGqm0tDTs27cPQUFBCA4ORkpKCpYsWYJevXrlq6tQKPD999/j9OnTSElJgZOTEyZMmIDWrVtr3P+6devg6+sLhUKBtm3bYtWqVXwMloiIqJqrNCNSSUlJ8PHxQWRkJJydnQutu2LFChw4cADdunXDzJkzIZVKsXDhwnx7spTE3LlzcerUKaxfvx6tW7dmEkVERESVZ42UlZUVfv31V1hZWSEkJASTJk0qsF5QUBD8/PwwdepUDBs2DADQo0cPjBkzBlu3bsXWrVvVdadPn47AwMAC2xk5ciQmTpyYp0wmk+HNN9/EL7/8AltbW7Rr106kT0dERESVUaVJpPT09NS7LRfG398fMpkMffr0UZfp6+vD29sb27dvR3R0tPpg2K+//lqjWJRKZbFPXs/IyEBkZCTs7OxgYGCgUX9ERERUMVWaqb3ievDgAWxtbWFsbJyn3NXVFUDOGVYlIZfLcebMGaSlpSE7Oxvnz59HQEAAmjdvXqz3R0ZGYuLEiSU6T6q4Hj16JHqbRFQyvA+JtEvb92ClGZEqrvj4+AJHrnLLSvq0nUQiwbFjx7B+/XoIgoB69erhk08+QcOGDQusHxcXh/j4ePXrskigcmVmZpZZ20RUPLwPibRL2/dglUukMjMzoaurm688d/uCkn7BjY2NsXHjxmLXP3r0aIEHa4aHhxd4sGxpyOXyPAfCElH5431IpF1leQ+6ubkVWafKJVL6+vrIysrKV65QKNTXy1KfPn3y7HoeGRmJ5cuXw8HBAS4uLqL2FRQUVKxvMhGVHd6HRNql7XuwyiVSVlZWiI2NzVeeO91W1sdF1KxZk0dSEBERVRNVLpFydnZGQEAAUlNT8yw4zx32K2oPKrGcPXsWZ8+ehVwuL5f+iIio/CiVygJnP6j8qVQqZGRkaPx+XV1dyGQyjd9f5RKpzp07Y9++fTh69Kh6HymFQgFfX1+4ubmptz4oa15eXvDy8kJoaGi+/aiIiKjyksvlePr0KSrJwSBVnkqlQnh4uMbvl0gksLW1hYmJiUbvr1SJ1KFDhyCXy9XTdJcvX0ZMTAwAYMCAATAxMYGbmxu6dOmC7du3IzExEfXq1cPJkycRFRWFRYsWaTN8IiKq5JRKJZ4+fQojIyPUqlWLp1xUABkZGRrv0ygIAmJjY/H06VM0bNhQo5GpSpVI7d+/H1FRUerXFy9exMWLFwEA3bt3V2eTH374IaytrXHq1CnI5XI4Ojpi1apVcHd310bYRERURWRlZUEQBNSqVQuGhobaDoeQkwyVZsPrWrVqISIiAllZWVU/kTpw4ECx6unr62PatGmYNm1aGUf0elwjRURUdXEkquoo7feyyu1sXlF4eXlh5cqVmDFjhrZDISKiKm7p0qUaL7jesGFDntmepUuXYvbs2SJFVvUxkSIiIqrkli1bVmAilZ2dXeR7/5tIUclUqqk9IiIiymvKlCkAgI4dO0Imk6Fu3bqwsbHBw4cPERMTg5CQEEgkErx8+RIWFhYAcvY8vHnzJnbv3o3nz59jyJAhMDQ0VJ/M8eLFC7z77rt49OgRbGxscPDgQVhaWmrpE1ZsTKTKCNdIERFVfcOC1yEuK6XM2q+pa4q9rnMLrbNt2zZ8++23uHTpEiwsLDBmzBjcunULf/zxB0xNTQt976effoqdO3di//796geyfvvtN/z555+4desWrKysMHToUHz77bdYsmSJWB+rSmEiVUbKYx8ppaAqk3aJiKh44rJSEJOVpO0w8hk0aFCRSVRhevbsCSsrKwBAu3btEBgYKFZoVQ4TqUrqj6Rg/C/zMNamWcDVyFbb4RARVUs1dTVPVsqy/f9uLimTyaBUKtWvi1qY/up2AjKZrFhrraorJlKVUEKWHJ9G7EO8kIL3QzZiet2eGG3dBTIJnx0gIipPRU27lRdTU1MkJSWp10D9l7OzM/7880/07t0bhw8fRmpqqvqamZkZkpIq3qhaZcF/eSuhNFUmauuZAwCyBSU2PjuOSfe34oXipZYjIyIibZg3bx66desGd3d39Ykfr1q/fj1mzZqFli1bIiAgQD1tBwAzZ87ExIkT4e7ujtu3b5dj1FWDROBhQWXi1cXmd+7cwY4dO+Di4iJa+1mqbHwe+BN+z74DATnfQlOZAT5qMAi9LFuI1g8RFS4oKAhubm7aDoPKSUZGBsLDw+Hg4FCq3bRJPOnp6aXaZb6031OOSJWRst6QU1eqg2G6rfFdo6moo1cDAJCizMDi8D1YEv4jUpTpZdIvERER/YuJVCXXytQZB1zno7dlS3WZb8JfGBT0FW6lPNJiZERERFUfE6kqwEzHECsc3scKhxEwleUMS75QvMT4+99g07PjyFLxaQsiIqKywESqCult+SYOuM7HmyaOAAABAr6P8sOo0E2IyMi/+JCIiIhKh4lUFVNX3xI7Gk3DrHre0JHIAABBaU8xJHgdDsVeBZ8tICIiEg/3kSoj2jwiRiaRYpyNJ9qZuWBJ+I8Iz4hBhkqBzx//gkvJwfjMbjBq6JgU3RAREREViiNSZaSsn9orDlcjW+x1nYtBNd9Wl51PvItBQV/hWvJ9rcVFRFTdqFQCngfF49GV53geFA+VirMDVQUTqSrOUKqHj+0GYoPTOFjIjAEAsVnJmPxgG9Y+PQoFF6ITEZWp8OtR2D/zAnyXX8f5LX/Dd/l17J95AeHXo7QdWplZunRpkcfQaMLHxwchISEavXfLli0YM2aMuAGBiVS10cXiDRxssgDtzP7dFHR39AW8H7IRYenRWoyMiKjqCr8eBb8NAUhNyJtUpCZkwG9DgOjJVEU5E2/ZsmWvTaRKE2NpEqmywkSqGqmla4ZvnCdigW1f6P6zED00/RmGBq/FgdjLXIhORCQilUrAtd3Bhda5tie41NN8EokEn332GVq3bo0lS5YgJSUFEydORJs2bdCsWTNMmjQJCoUCAPDs2TMMHDgQTZs2RbNmzfDJJ58AAGJiYvDee++hadOmeOONN/Dtt9+q27e3t8enn36Kdu3awcHBAcuXL1dfW758OVxdXeHu7g53d3dERkZiypQpAICOHTuqj6wZM2YMxo0bBw8PD7zxxhvquBMTE9Vt1axZExEREQCA4OBg9OjRA82aNUOzZs2wbds2fPfdd7h58ybmzJkDd3d3+Pr6AgA2bNiANm3aoGXLlujZsyciIyMBACkpKRgyZAhcXFzQoUMHBAYGlurr/DpcbF7NSCVSvG/dCa1NnbE4/EeEZUQjU8jGl48P4XJSCJbaD+FCdCIiEVz1uZdvJOq/UuMz8NNUP7j3cUJTbweN+5LJZLhx4wYAYNKkSejYsSN27NgBQRAwceJEbNy4EQsWLMD777+P7t274+DBgwCA2NhYAMCMGTPg4uKCw4cPIyYmBm+++SaaN2+Otm3bAgASExNx9epVxMXFwcnJCWPHjoWRkRG++uorvHjxAoaGhkhLS4NUKsW2bdvw7bff4tKlS3kOUb516xb++OMPmJqaFvpZsrOz0bdvXyxbtgzDhg0DAMTFxaFmzZr48ccfMXv2bPTr1w8A8PPPP+P+/fu4evUqZDIZ9uzZg2nTpuH48eP4/PPPoa+vj5CQECQnJ6Nt27Z46623NP4avw4TqWrKxage9rrOwfqnx7Av9g8AwIWkexgU9BWW2w9HW7NGWo6QiKhyS0tSFKteZkoWFOmlm5IbN26c+s+//fYbrl69inXr1gHIOYtOJpNBLpfjjz/+wKlTp9R1a9WqBSDnSfNbt24BAGrXro333nsPZ8+eVSdSw4cPB5AzauTo6Ijw8HC0a9cODRs2VCdn3t7esLW1fW2MgwYNKjKJAoDQ0FBkZGSok6jcfgvy22+/4fr163jzzTcBAEqlUn3Nz88P69evh0Qigbm5OYYPH45Hj8Q/8YOJVBnR5vYHxWUg1cOSBu/hbTMXfBa5Dy+zU9UL0cdYd8EHdXtBV8ofESIiTRiZ6xWrnr6pLvQMS/d3rYnJvzMJgiDg0KFDaNQo7y/EJfn3SCKR5Hn96mG+MpkM2dnZkMlkuHbtGq5cuYILFy6gbdu22Lt3Lzp27FhkjLntvJr4aLI4XRAEzJ8/Hx988EGRdf/7mcTCNVJlpCJsf1BcnSya4Be3vAvRfaLPc0d0IqJSaDemCYwtDQqtY2xlgBFbPUs1rfdf/fr1w6pVq9SLul++fImHDx/CxMQEHh4eWLt2rbpu7tSel5cXduzYoS47fPgwunXrVmg/KSkpiI6ORseOHfHJJ5+gQ4cOCAgIAACYmpoiKSmp0Pc7Ozvjzz//BAAcPnwYqampAAAXFxcYGRlh79696rpxcXEAADMzszzt9uvXD9999x0SEhIAAFlZWeoYvLy8sGvXLgiCgOTk5DztiYmJFAH4dyH6PNs++XZE/zXuTy5EJyIqIalUgrajXAut03akK6RScUdK1q9fD0NDQ7i7u6NZs2bw9PRUL+Les2cPbt68iSZNmsDd3R1btmwBAGzatAnBwcFo2rQpunTpgo8++qjI9URJSUnqBerNmjVDVlYWRo8eDQCYN28eunXrpl5s/ro4Z82ahZYtWyIgIABWVlYAAB0dHRw5cgS7du1C06ZN0bx5cxw6dAhAzvqv//3vf+rF5iNGjMDIkSPRpUsXNG/eHO7u7jh37hwA4JNPPkF6ejoaN26M3r17o0OHDqX+2hZEIvBfyDIVGhqKiRMnYseOHXBxcSn6DSUQFBQENzc3UdsEgOC0p1gc9iMiMv/94e9ewx2fNBgIMx0j0fsjqszK6j6kiikjIwPh4eFwcHDIM91VmPDrUbi2OzjPwnNjKwO0HekKhzY2ZRVqtZGeng5DQ0ON36/J9/RVXABD+eTsiD4HXz09gkNx1wAAp1/exh15BFY4vI+Wpo5ajpCIqPJwaGMDu1bWiApJQHpiJgwt9GHT2FL0kSjSDk7tUYGMZPr41G4w1jqOhpksJ9OPykrE+PtfY9vzU8gWlEW0QEREuaRSCeq6WcHp7bqo62bFJKoKYSJFhfKq0Ry/uM1HKxMnAIAKAra+OIWJ97ciSvFSy9ERERFpFxMpKpKNXg1sbzQV0+v2guyfH5m/5GEYFPQVzr68o+XoiIjKH5cXVx2l/V5yjRQVi0wixaQ63dDa1BlLwn/EC8VLJCvTMS/MBwNrtsP8+n1hKC3enilERJWVrq4uJBIJYmNjUatWrTLbm4iKLzMzU+PvgyAIiI2NhUQiga6urkZtMJEqI5VhQ05NtDBxwAHX+fji8QGcfvk3AOBg3FUEyMOxynEkGhrW0XKERERlRyaTwdbWFk+fPlVvKUDalZWVpXESBORs1GlrawuZTKbZ+7n9QdmqjNsfFIcgCPg1/k+sevwrMoQsAIC+RAfzbPticK23+VsaVRvc/qB6UiqVyMrK0nYYBODhw4dwdnbW+P26uroaJ1EAR6ToP1QqoViP6EokErxXsy3cjR2wKHw37qe/QKaQjf89OYSrKaFYZjcE5jrGWvgERERlTyaTleofXxKPVCrVaP8nsYiSSP3111+4desW7t69i5iYGCQlJcHAwAAWFhZwdHSEu7s72rVrp961lCqmAjeNszRA21Gv3zTO0dAaPzaejfVPf8fefw4/Pp94F8GpT7HScSRamIh37AEREVFFo3EilZ6ejkOHDuH3339HdHS0etW7np4ezMzMkJmZifDwcDx69AhnzpyBjo4O3n77bQwePBhNmzYV7QOQOMKvR8FvQ0C+8tSEDPhtCIDn7BavTab0pbpY3OA9tDVzwacRe5GkTMvZcyr0a0yt2wPjbDwhk/ABUSIiqno0SqRyz8B5+fIlnJycMH78eDRp0gSNGzeGkdG/R4gIgoCnT58iKCgIN27cwB9//IFLly6hffv2mD59OurWrSvaByHNqVQCru0OLrTOtT3BsGtlXegmcp0tmuAXt/lYEv4jbsnDoIQKW56fwPWUh/ifwwjU0jUTO3QiIiKt0iiR2rBhA7y8vDBs2DA4Or7+uBCJRIL69eujfv366NGjBzIzM3HmzBn8+OOPOH36NMaMGaNp3ATg+bVk3P7mXKnbUWapkJlS+KLJ1PgM/DTVDzLdokeWukpcYdBchivNH0CQAtdTHqDPn/9D70vucHpWG017OYh60jkREZG2aJRI7d69G/Xr1y/x+/T19fHOO++gV69eiI6O1qRrekV2pgppCZnl1l9RydarWp6zR+37Zjjd+y5STTORZqjAwe7X0eKGHZzSORJJRERVg0aJlCZJ1KtkMhmn9USgoy+FkaV+qdspzogUAOib6hZrRCpXo7Q6sP3dCr4db+NR/RgAQEDrSKxU/IbNmRNhq8+HD4iIqHLj9geVWN22ZvAa17bU7ahUAvbPvJDnab3/MrYywJCNnTU6aHO80AM/xVzE+mfHkC0oEaYXgyFBa7HUfgi61WheisiJiIi0i49SEaRSCdqOci20TtuRrhqfVi6RSPC+dSfscZmJ+v+MQslVGZgf9gO+fHwQmSpuakdERJWTqIlUSkoKTp48KWaTVE4c2tjAc3YLGFvm3dTM2Mqg0K0PSsLNuD72uc5Drxot1GUHYq9gZMhGRGTElLp9IiKi8ibq1F50dDRWrlyJnj17itkslROHNjawa2VdrJ3NNWUiM8AKh/fRxqwhVj4+jEwhG6HpzzE0eB0+aTAI3lZvitYXERFRWStRIlXUk3ZxcXGlCqYqqayHFkulEtR1K9tF4LnHyzQ1boAFYbsRnhGDdJUCH0b8hBspD7GoQX8YSvXKNAYiIiIxlCiRGjx4cKGH0QqCwMNq/+Hl5QUvLy/1ocWUX0PDuvi58RyseHIYR+NvAAB+jf8Td1IjscZxFJwMSz+dSEREVJZKlEiZmppi/PjxcHd3L/B6ZGQkli5dKkJYVF0YyfTxhf0wtDF1xvLHh5ChUuBRRhSGB6/HkgYD0NeqNZNzIiKqsEqUSDVq1AgpKSlwcCh4V2qlUqk+c4+oJN61ao03/pnqe5D+AhlCFj6L3IcbKQ/xUYMBMJKVfr8sIiIisZXoqb1+/frBxub10y3W1tZYvHhxqYOi6snBwBo/Np6FATX/3RvrWMJNDA9ZjwfpL7QYGRERUcFKlEh5eHige/fur71uamqKXr16lTooqr4MpHr41G4wVjq8DyNpzihUeEYM3g/egMNx1zjiSUREFQo35KQKqZdlS+x1nQMXw5yjhDKELCyLPICPIn5GmrL8zhckIiIqTKkTqc6dO+PJkydixEKUh71BbexpPAuDa72tLjuecAvDgtfjQfpzLUZGRESUo9SJFKdaqCzpS3XxUYOBWO0wCsb/TPVFZMZgBKf6iIioAuDUHlUKPSzdsc91Lhob1gMAZArZWBZ5AB9G/IRU5esPWyYiIipLTKSo0mhgUAu7G8/EkFrt1WW+CX9hWPB6hKY902JkRERUXTGRokpFX6qLDxsMwBrHUTCR5hywHJkZi/dDNuJg7FVO9RERUbliIkWVUvca7tjrOgeuRrYAAIWQjS8e/4LF4T9Czqk+IiIqJ0ykiunu3bvo1KkTfvjhB22HQv9oYFALu11mYqhVB9R7UgMNg20QeCcCw+6tQ3DaU22HR0RE1UCJjoiprlQqFbZs2YLGjRtrOxT6j2c342C/uwZqJbRSl6WYZOCzrj9joGd7DKr5Ns/qIyKiMlPqRGr48OEwMzMTI5YK6/fff4erqytSU1O1HQq9Ivx6FPw2BOQrN5Hro9vRN7APl3CjzSN8ZjcYJjIDLURIRERVXamn9iZPngxzc3MxYnmttLQ07Ny5E/Pnz4e3tzc8PDxw4sSJAusqFAps3boV/fv3h5eXFyZPnowbN25o3HdSUhJ++eUXjBs3TuM2SHwqlYBru4MLvCZBzghUx/ONcCb+NoYGr+VUHxERlQmNR6QUCgX09PTEjOW1kpKS4OPjA2trazg7OyMgIP8oRK4VK1bgwoULGDRoEGxtbXHixAksXLgQGzduRLNmzUrc944dOzBo0CCYmpqW5iPQKwKPhyPwRHip2lBmqZCZkvXa6xJIYJpiiLrPauBJ/XiMuLsBXa+7oUWInTrRKommvRzQ1NuhNCETEVEVpHEilTvi07t3b7i4uIgZUz5WVlb49ddfYWVlhZCQEEyaNKnAekFBQfDz88PUqVMxbNgwAECPHj0wZswYbN26FVu3blXXnT59OgIDAwtsZ+TIkZg4cSLu37+PkJAQzJkzR/wPVY0p0rORllA+5+XVeWqBZ/VfQilT4Uy7uwi3jEHX027QV+iWqB1FenYZRUhERJVZqUakfvvtNxw5cgROTk7w9vZGt27dymTkRk9PD1ZWVkXW8/f3h0wmQ58+fdRl+vr68Pb2xvbt2xEdHQ1ra2sAwNdff11ke7dv38aTJ08wYMAAAIBcLodMJsPz58+xZMkSDT8N6RnqwMhSv1RtFDUilcvjrgtgBtxskjMC9tAlBnF15Oh7oSVs4i2K3Z+eIZ/LICKi/DT+1+HIkSM4c+YMfH19ERISgk2bNmHr1q3o2LEjvL298eabb4oZZ7E8ePAAtra2MDY2zlPu6uoKAHj48KE6kSqOPn36wNPTU/1606ZNqFOnDkaMGCFOwNVUU+/ST5OpVAL2z7yA1ITX7xllbGWAIRs7Y7S0O84lBuLTiH1IUaYj0SwNP/e9inm2fTC0Vgc+1UdERBrTOJEyMjJC37590bdvX0REROD48eM4c+YM/Pz8cO7cOdSuXRve3t7o2bNniZKX0oiPjy9w5Cq3LC4urkTtGRgYwMDg36e99PX1YWhoWOioW1xcHOLj49WvIyMjS9QnFY9UKkHbUa4FPrWXq+1IV0ilOUlSV4umcHGth4Vhu3E37TGyBCVWPvkVN1IeYqndUJjpGJZX6EREVIWIMl9hb2+P6dOnY8qUKbhy5QqOHz+O69evY+fOnfDx8UGrVq3g7e2NDh06QEen7KZIMjMzoaubf+1L7qL4zMzSrcv58MMPi6xz9OhR+Pj45CsPDw+HUqksVf//JZfLERQUJGqblYoJ4DKwFsJPJUCR8u/XVs9MBofulkg3SUBQUEKetywSPLFX5wZ8s+8CAPwSAxGYFIGZel3hJK1VruFT1VDt70MiLSvLe9DNza3IOqJmNTKZDB07dkTHjh2RkJCAU6dOwdfXF9evX8eNGzdgZmaGo0ePitllHvr6+sjKyr9uRqFQqK+XtT59+qB9+38P1Y2MjMTy5cvh4OAg+qL8oKCgYn2TqzQ3oH0/AVEhCUhPzIShhT5sGluqR6IK0gxN0SPxLj6J2ItkZTpihBQsVRzDXNt3MbxWR071UYnwPiTSLm3fg2U2PGRpaYlhw4ahTZs2WL9+PQIDA5GcnFxW3QHImcKLjY3NV5471VazZs0y7T+3j/Loh/4llUpQ163ohxFe1dniDex3nYdF4XtwJzUS2YISq5/8hpspj7CMU31ERFRMZZJIpaWl4cyZMzh+/Dju378PQRBgYGCALl26lEV3arl7TKWmpuZZcJ475Ofs7Fym/b/q7NmzOHv2LORyebn1SSVTV98SO10+wOZnx/FD9AUAwLnEQISkPcNqx5Foamyn3QCJiKjCEzWR+uuvv+Dr64tLly4hMzMTgiDAzc0N3t7e6Nq1K4yMjMTsLp/OnTtj3759OHr0qHofKYVCAV9fX7i5uZXboncA8PLygpeXF0JDQzFx4sRy65dKRlciw1zbPnjTxAmfROxFkjINzxUJGBO6BXPqvYMRtT041UdERK9V6kQqJiYGJ06cwIkTJxAVFQVBEGBhYYE+ffrA29sb9vb2IoQJHDp0CHK5XD1Nd/nyZcTExAAABgwYABMTE7i5uaFLly7Yvn07EhMTUa9ePZw8eRJRUVFYtGiRKHFQ1dTJogn2u83DorA9+Ds1AtmCEmueHsHNlEf43H4ozHTK9pcAIiKqnDROpPz8/ODr64u//voLKpUKUqkUrVu3LrOn8/bv34+oqCj164sXL+LixYsAgO7du8PExARAzpN11tbWOHXqFORyORwdHbFq1Sq4u7uLGg9VPXX0auB7l+nY8swXPtHnAQDnk+5iSPBarHIchWac6iMiov+QCIIgaPLGTp06AQDq1KmDXr16oVevXqhdu7aowVVmr66RunPnDnbs2MGn9iqRi0lB+Dj8ZyQp0wAAOpBilu07GFm7E6f6KA/eh0Tape17UONhI09PT63tYF4ZcI1U5eZh7oYD/0z13U6NQDZUWPv0KG79M9VnrmNcdCNERFTlSTV946effsokiqo0G70a+M5lOsZad1WXXUi6hyHB63BHHqG9wIiIqMLQOJH6r+zsbBw4cACTJk1Cz54982x18ODBA6xbtw5PnjwRqzuicqErkWG27TvY4jwBFrKcUagXipcYG7oFP0RfgIYz40REVEWIsiI8MzMT8+bNw927d2Fubg5jY2NkZPx7mGydOnXg6+sLU1PTajPNxX2kqpaO/0z1LQzbg9up4ciGCuueHsXNlIf4wn4YLDjVR0RULYkyIrVnzx4EBgZi0qRJ+O233+Dt7Z3nuomJCdzd3XHjxg0xuqsUvLy8sHLlSsyYMUPboZBIrPUs8L3LNIy38VSXXUwKwpCgtbgtD9diZEREpC2iJFLnzp1DixYtMHz4cEgkkgKfaqpbty6io6PF6I5Ia3QkMsys541vnCeixj+jUFFZiRgX+jV8os5BJai0HCEREZUnURKpmJiYIh/tNzQ0RGpqqhjdEWlde3NX7Hedh5YmjgAAJVRY/+wYZj78Hi+zOZ1LRFRdiJJIGRoaIjExsdA6z58/h7m5uRjdEVUI1noW2NFoKibYeKnLLiUHY0jQOgRwqo+IqFoQZbF5kyZNcOXKFaSkpMDU1DTf9ejoaFy7dg0dO3YUo7tKgYvNqwcdiQwz6vVGSxNHfBTxM15myxGdlYjxoV/jg3q9MMa6C6QS0R6OJSKiCkaUv+GHDh2KlJQUzJkzB4GBgVAqlQCAjIwM3Lp1C/Pnz4dSqcSQIUPE6K5S4GLz6qW9eWMccJ2HViZOAHKm+jY+O44ZD7/jVB8RURUmyoiUu7s7Zs+ejU2bNuVJHHr27AkAkEqlmDt3ruhHpBBVJLX1zPFtoynY9vw0vos6CwEC/kgOweCgtVjlMBItTR21HSIREYlMtJOF+/XrB3d3dxw5cgTBwcFITk6GsbExXF1d0b9/fzg4OIjVFVGFpSOR4YN6vfCmqSOWhP+El9lyxGQlYcL9bzC9bk+MtenKqT4ioipEtEQKAOzt7TFr1qzXXlcqlZDJZGJ2SVQhtTNzwS9u87E4bA9uyh9BCRU2PffFTfkjfGk/AhYyY0SFJCA9MROGFvqwaWwJqZSHIRMRVTaiJFKHDx/Ge++9V2gdpVKJZcuW4fPPPxejywqPi82plq4Ztjeaiu0vTuPbF2cgQMCV5FDM/e17dLnghqyX2eq6xpYGaDvKFQ5tbLQYMRERlZQocwybNm3ChQsXXntdpVJh2bJluHjxohjdVQpcbE4AIJNIMbVuT3zbcDKsdEzh9KA22v/aEIqXWXnqpSZkwG9DAMKvR2kpUiIi0oQoiVTTpk2xfPly/PXXX/mu5SZR/v7+6N+/vxjdEVU6b5k1wv7Gc+F5oQkAQIKCp/Gu7QmGSsWDkImIKgtRpvZWrlyJDz74AB9//DE2btyIhg0bAshJor744gtcuHAB/fr1K3T9FFFFFng8HIEnSrfJpjJLBf2Uwm+51PgM/DTVDzLd0v+O07SXA5p68yEPIqKyJEoiZWxsjK+++gpTp07FggUL8M0336BOnTr4/PPPcf78efTt2xdz5swRoysirVCkZyMtIbNc+spMySq6UjEo0rOLrkRERKUi2lN7VlZWWLt2LaZPn4558+ahYcOG8Pf3xzvvvIO5c+eK1Q2RVugZ6sDIUr9UbSizVMVKkgQrwFgoXV9ATsxERFS2RP2btn79+li9ejVmz56Nixcv4p133sGCBQvE7IJIK5p6l36aTKUSsH/mBaQmZBR4XYAAuWkGjo/7G186vY+3zBqWqj8iIip7GiVSPj4+hV53dXXFw4cPYWVllaeuRCLB6NGjNemSqNKTSiVoO8oVfhsCXlvnUpf7iFWlYPKDbZhSpzsm1ukGGTfwJCKqsDRKpHbt2lWsej/88EOe19UpkeI+UlQQhzY28JzdAtd2B+cZmTK2MkCT4fa4afUYj1JiIEDA1hencEsehhUOI1BT10yLURMR0etolEht3LhR7DiqHC8vL3h5eSE0NBQTJ07UdjhUgTi0sYFdK+sCdzbfKkzC91F++Ob5Sagg4HrKAwwOWosVDiPwllkjbYdORET/oVEi5e7uLnIYRNWLVCpBXTer/OUSKSbW6YYWJg5YHP4jYrOSEZ+dgskPvsWkOt0wuU53TvUREVUg/BuZqAJqZeqMA67z8baZC4CchejfvjiNyQ+2ITYrWcvRERFRLiZSRBWUpa4JvnaeiJl1e0P6z07oN1IeYnDQV7iWfF/L0REREcBEiqhCk0qkGF/HC983mo7auuYAgIRsOaY8+BZbnp1AtqDUcoRERNUbEymiSqClqSMOuM1DB7PGAHKm+nZEncHk+9sQo0jScnRERNUXEymiSqKGjgk2O0/ArHrekP1z696UP8Lg4LW4khyq5eiIiKonJlJElYhUIsU4G0987zId1roWAICX2XJMe7AdW575cqqPiKic8TCuMsINOakstTBxwAG3efg4/GdcSg7+Z6rvLG7Jw7DS4X1Y61loO0QiomqhxCNSKpUKYWFhiIuLy3ctOzsbt2/fFiOuSs/LywsrV67EjBkztB0KVVEWOsbY5Dwec+q9o57q+0sehiHBa3E5KUTL0RERVQ8lSqSioqIwZswYjB07FgMHDsTixYuRlPTvQtfk5GTMnj1b7BiJ6DWkEinG2HTFTpfpsFFP9aVi2sPt2MypPiKiMleiRGrr1q2oWbMm9u3bhx07diAzMxPTp0/PMzolCILoQRJR4dxNHLDfbR46mrupy76LOouJ97ciWpGovcCIiKq4EiVSf//9N6ZNm4Y6deqgYcOGWLt2LZo1a4YPPvgA0dHRAHIOJiai8mehY4xNTuMwt9670Mk31Res5eiIiKqmEiVSGRkZ0NXV/ffNUikWLlyI1q1bY8aMGXj27JnoARJR8UklUoy26YKdLh/8Z6pvBzY+O8apPiIikZUokWrQoAFCQ/PvVzNv3jy0bdsWixcvFi0wItJccxN7HHCbh07mTdRlO6POYXzoN4hSvNRiZEREVUuJEikPDw+cOXOmwGtz586Fp6cn10gRVRDmOsbY6DQO82z7qKf6bqeGY0jQOlxKCtJydEREVUOJEqn3338fa9asee31uXPnwt/fv9RBEZE4JBIJRll3xi6XD1BXrwYAIFGZig8efof1T39HFqf6iIhKhTubE1UDzUzssd91HrqYv6Eu84k+j/GhX+MFp/qIiDTGRIqomjDTMcJ6p7FYYNsXOhIZAODv1AgMCVoL/8R7Wo6OiKhyKnUi1blzZzx58kSMWIiojEkkErxv3Qk+Lh+grp4lACBJmYaZj77H2qdHOdVHRFRCpT5rj4vLC8az9qgia2psh/2uc/Fp5D6cT7wLANgdfQG35eFY5TASdfUttRwhEVHlwKm9MsKz9qiiM9MxwnrHsVho20891XcnNRJDgtfiwj/JFRERFY6JFFE1JpFIMMLaAz+4zFBP9SUr0zHr0U589eQIslTZ6roqlYDnQfF4dOU5ngfFQ6XiaDQRUamn9oio8nvDuAH2u87D0sh98EsMBADsifFHgDwcqx1HQfG3Atd2ByM1IUP9HmNLA7Qd5QqHNjbaCpuISOs4IkVEAAAzHUOsdRyDxfX7Q/efqb67aY+x4IgP/DYE5EmiACA1IQN+GwIQfj1KG+ESEVUITKSISE0ikWBY7Y7Y7TITtnpWkKiA1mcdIOD103jX9gRzmo+Iqi1O7RFVUYHHwxF4Ilzj9w/UbYVrjR7BVG5QaL3U+Az8NNUPMt3S/17WtJcDmno7lLodIqLyUupEavjw4TAzMxMjFiISkSI9G2kJmaVqo1W0fbHqZaZklaqfXIr07KIrERFVIKVOpCZPnixGHEQkMj1DHRhZ6peqDWWWqlhJkr6prigjUnqGHCQnosqFf2sRVVFNvUs/TaZSCdg/80K+hea5BAgwtNTH8E1dIZVKStUXEVFlJGoipVQqERsbi7i4OGRnFzxE7+7uLmaXRFSGpFIJ2o5yhd+GgHzXcheg+3a8DZukmvCq0by8wyMi0jpREimVSoU9e/bg4MGDSElJKbTuhQsXxOiSiMqJQxsbeM5ukW8fqXSzLFzoHIxHzjGYF/YDhtbqgHm2faAn5UA3EVUfovyN9+2332Lfvn2oUaMGevXqBSsrK8hkMjGaJqIKwKGNDexaWSMqJAHpiZkwtNCHSUMjPHuSjEcvYwAA+2L/wN+pEVjjOAr19WtqOWIiovIhSiJ16tQp1K9fH9u3b4eRkZEYTRJRBSOVSlDXzSpP2UqH99Ha1BmrnvwKhZCN4LSnGBq0Dp/ZD0b3Gu7aCZSIqByJkkilp6ejW7duVTaJmjlzJoKCgtSjbM2aNcOaNWu0HBWR9kkkEgys1Q5NjRtgQdhuRGbGQq7KwIKw3bhZ6xHm2faBvlRX22ESEZUZURIpR0dHxMfHi9FUhbVw4UJ0795d22EQVUguRvWw13UOvoj8BSde5ixM3x97GX/Lc6b6GhjU0nKERERlQ5QjYkaNGoVLly4hNDRUjOaIqBIylhlghcP7+LTBIOhLcn5HC0l/hqHB63AyIf9Tf0REVYEoI1Lt2rXDkiVLsHDhQrRv3x5OTk4wNjYusG7Pnj016iMtLQ379u1DUFAQgoODkZKSgiVLlqBXr1756ioUCnz//fc4ffo0UlJS4OTkhAkTJqB169Ya9Q0AmzdvxubNm9GwYUNMnz4dTk5OGrdFVFVJJBIMqNUOTY3tMD/sB0RmxiJVlYlF4XtwS/4I8237cqqPiKoUURIphUKBK1euICkpCcePHweQ8xfqqwRBgEQi0TiRSkpKgo+PD6ytreHs7IyAgNf/hrtixQpcuHABgwYNgq2tLU6cOIGFCxdi48aNaNasWYn7njJlCuzt7SGTyXDo0CEsWLAAP/74Y5VdE0ZUWo2M6mKv6xwsf3wQvgl/AQAOxF7B3/JIrHEcBTtO9RFRFSFKIrVlyxacOXMGTk5O6NSpU5lsf2BlZYVff/0VVlZWCAkJwaRJkwqsFxQUBD8/P0ydOhXDhg0DAPTo0QNjxozB1q1bsXXrVnXd6dOnIzAwsMB2Ro4ciYkTJwIA3Nzc1OXDhw+Hr68v7t27V6oRLqKqzlhmgP/Zj0BrU2esfHwYmUI2Qv+Z6vvUbjB6WbbQdohERKUmSiJ14cIFuLi44JtvvoGOTtlsxqenpwcrK6si6/n7+0Mmk6FPnz7qMn19fXh7e2P79u2Ijo6GtbU1AODrr7/WKBaJRAJBEDR6L1F1IpFI8F7Ntuqn+sIzYpCmysTi8D24mfIQC+r3hYFUT9thEhFpTJTF5gqFAi1atCizJKokHjx4AFtb23xrtFxdXQEADx8+LFF7KSkpuHHjBhQKBbKysnDgwAGkpKTkGaV6VVxcHEJDQ9X/RUZGavZBiKqQhoZ18XPjOXjHspW67GDcVYwK2YSIjBgtRkZEVDqiZD4uLi54+vSpGE2VWnx8fIEjV7llcXFxJWpPqVRi+/btePz4MXR0dODs7IxVq1bBxMSkwPpHjx6Fj49PvvLw8HAolcoS9V0UuVyOoKAgUdskKkvDheaop2uEXVmXoYASoenPMeTeWkzQ7YD2OpXzAQ7eh0TaVZb34OsGTV4lSiI1ceJEzJkzB1euXMHbb78tRpMay8zMhK5u/qeC9PT01NdLwsLCAjt27Ch2/T59+qB9+/bq15GRkVi+fDkcHBzg4uJSor6LEhQUVKxvMlFF0gRN0D29LRaE/YCwjGhkIAtbss7jhXk6FtbvV+mm+ngfEmmXtu9BURKpmzdvwt3dHR9++CFatmz52u0PJBIJRo8eLUaXr6Wvr4+srKx85QqFQn29LNWsWRM1a/KcMaLCOBva4KfGs7HiyWEcjb8BADgUdw2BqZFY4zga9ga1tRwhEVHxiJJI7dq1S/3nW7du4datWwXWK49EysrKCrGxsfnKc3deZ5JDVDEYyfTxhf0wtDJxwv8eH0KGkIX76S8wNHgdPmkwCN5Wb2o7RCKiIomSSG3cuFGMZkSRu8dUampqnlGx3PlTZ2fnconj7NmzOHv2LORyebn0R1RZ9a3ZBk2MG6in+tJVCnwY8RNupDzEogb9YVjJpvqIqHoRJZFyd3cXoxlRdO7cGfv27cPRo0fV+0gpFAr4+vrCzc1NvfVBWfPy8oKXlxdCQ0PV+1ERUcFyp/pWPvkVR+KvAwB+jf8TgamR+MppNBwMyue+JSIqKe3vV1AChw4dglwuV0/TXb58GTExOY9ODxgwACYmJnBzc0OXLl2wfft2JCYmol69ejh58iSioqKwaNEibYZPRIUwkunjc/uhaG3qhOWPDyFDpcDDjCgMC16PjxoMxLtWrYpuhIionImSSAUGBsLf3x/Dhg0rcOuBuLg47Nu3D126dEGTJk007mf//v2IiopSv7548SIuXrwIAOjevbt6S4IPP/wQ1tbWOHXqFORyORwdHbFq1apyHTnj1B6RZt61ao0mRjlTfQ8zopCuUuDjiJ9xI+UhljR4j1N9RFShSAQRtuj++OOP8ejRI+zdu/e1dYYPH46GDRti2bJlpe2uUsmd2tuxYwe3PyAqgXSVAqse/4pf4/9UlzkZ2GCN4yg4GdpoMbK8eB8SaZe270FRdjYPCQkp8jDg5s2bc9M6Iio2Q6keltoPwZf2w9WjUI8yojA8ZIN6ywQiIm0TJZFKTEwsclsBS0tLvHz5UozuiKgaeceqFfa6zoGzQc4oVIZKgU8i9uKTiL1IU5Zsg10iIrGJkkiZmJioF32/TnR0NAwNDcXojoiqGQcDa/zoOhvv1XxLXXY0/gZGhGzAg/QXr32fSiXgeVA8Hl15judB8VCpeNg4EYlLlMXmbm5uuHjxIiZMmFDg9gLR0dG4dOkSWrZsKUZ3lQIXmxOJy1Cqh8/shqCViTO+ePwL0lUKhGVE4/3gDVjSYAD6WrWGRCJR1w+/HoVru4ORmpChLjO2NEDbUa5waFNx1lgRUeUmyojU4MGDkZmZienTp+PkyZPqg4Hj4uJw4sQJTJs2DQqFAkOGDBGju0rBy8sLK1euxIwZM7QdClGV4m31Jva5zkVDwzoAgAwhC59F7sPHr0z1hV+Pgt+GgDxJFACkJmTAb0MAwq9H5WuXiEgTom3IOX36dHzzzTdYuXIlgJzjYHIfCJRIJJgxY0aF2riTiCove4Pa+LHxLKx5cgQH464CAI4l3MS9tMdYbT8Kt3aHFvr+a3uCYdfKGlKppNB6RERFEW1DzkGDBqFly5Y4cuQIQkJCIJfLYWJiAldXV/Tt2xeOjo5idUVEVVTg8XAEnggvdn0nWOFdhxY41f4OFLpKhGfEYN7JneibUPg5fanxGfhpqh9kuqUflK/d0gjc/YCo+hJ1Z3MnJyfMnTtXzCYrLa6RIio5RXo20hJK9iSefUJNDA57CyffuYO42nLopxdvw87MlCxNQswnO9NAlHaIqHKqVEfEVCY8a4+o5PQMdWBkqV/i9xlBH6NPdoRfmyDEmiQX6z36prqijEjp6Iuy1JSIKikmUkRUYTT1dkBTbweN3z8K3XAyLgAhvpEwlutBgoLXQBlbGWDIxs6irJHiRsNE1Rt/lSKiKqVnzRZoPzpn0ZKAgveNajvSlQvNiUgUTKSIqMpp3b4ROs9qDpV53kQqzUwB16l23EeKiETDqT0iqpIavlUPTq3r4tiN6zjw6DISjFLxvN5L7JFdxqLY/hhQs22eDTyJiDTBRKqM8Kk9Iu2TSiXo89ZbcG/uiIXhe/As7SUUQja+ePwLbqQ8xCd2g2Ai41N3RKQ5Tu2VEe5sTlRxNDCohd0uMzG0Vgd12cmXARgWvB4hac+0GBkRVXaiJlIpKSk4efKkmE0SEYlCT6qDJQ3ew1eOo2EizRmFepwZi5EhG3Eg9rL6JAYiopIQNZGKjo5WHxFDRFQRdavRHPvc5sLNyBYAoBCy8eXjQ1gYvgdyZUYR7yYiyqtEa6Sio6MLvZ57WDERUUVWX78mfnCZiXVPj2Jv7B8AgNMvbyM47QnWOI6G6z9JFhFRUUqUSA0ePLjQp1wEQeBTMERUKehJdbC4wXtoZeqMpZH7kKLMwJPMeIwM2YgFtv0wuNbb/PuMiIpUokTK1NQU48ePh7u7e4HXIyMjsXTpUhHCIiIqH141mqGxUT0sDNuNe2lPkCUo8b8nh3Aj5SE+sx8MU5mhtkMkogqsRIlUo0aNkJKSAgeHgo9wUCqVXLD5D25/QFR52Opb4QeXGdjw7Bh+jLkIADiT+DeCg55ijeMouBnX13KERFRRlWixeb9+/WBj8/odga2trbF48eJSB1UVcPsDospFV6qDBfX7Yb3TWPUo1FNFPEaFbsLemEv8JZGIClSiRMrDwwPdu3d/7XVTU1P06tWr1EEREWlLV4um2O86D28YNQAAZAlKrHzyK+aH/YAUZbqWoyOiioYbchIR/Uc9fUv4uHyA92t3UpedTbyDIUFrcS/1iRYjI6KKhokUEVEBcqb6+mKj0ziY/TPV90yRgFGhm/BTzEVO9RERABESqc6dO+PJE/6GRkRVU2eLN7DfdR6aGdsBALIFJVY/+Q1zw3yQnM2pPqLqrtSJFH8rI6Kqrq6+JXY2mo5R1p3VZecSAzEkeC0eqmK0FxgRaR2n9oiIikFXqoN5tn2w0Wk8zGVGAIDnigQszTyGn6I51UdUXTGRIiIqgc4WTbDfbR6aG9sDAJRQYfXT3zAnbBeSs9O0GxwRlbsSbchJxccNOYmqrjp6NfC9y3RseeYLn+jzAIDziXcxJG0tVjuOQtN/1lMRUdXHEakywg05iao2XYkMc2zfxQK97q9M9b3EmJDN2BPtz6k+omqCiRQRUSm0lDXAAbd5cP9nqi8bKnz19AhmP9qJpOxU7QZHRGWOiRQRUSnZ6NXAdy7TMda6q7rsQtI9DAlehzvyCO0FRkRlrtSJ1PDhw2FmZiZGLERElZauRIbZtu9gi/MEWMiMAQAvFC8xNnQLfoi+wKk+oiqq1InU5MmTYW5uLkYsRESVXkdzt3+m+hwA5Ez1rXt6FDMffY9ETvURVTllOrUnCAKePHmC6OjosuyGiKhCsdazwPcu0zDexlNddjEpCEOC1uK2PFyLkRGR2ERJpPz9/fHll18iJSVFXfbixQuMGTMGI0eOxJAhQ7B06VIolUoxuiMiqvB0JDLMrOeNb5wnooZOzlRfVFYixoV+DZ+oc1AJKi1HSERiECWROnLkCB48eABTU1N12ZYtWxAREYEWLVrAyckJFy5cgK+vrxjdERFVGu3NXbHfdR5amjgCyNnAc/2zY5j58Hu8zOY+c0SVnSiJVEREBFxdXdWv09LScPXqVXTt2hXr16/Ht99+Czs7OyZSRFQtWetZYEejqZho4wUJJACAS8nBGBK0DgGc6iOq1ERJpJKTk2Fpaal+fefOHSiVSnh65qwP0NHRQatWrfDs2TMxuiMiqnR0JDJ8UK83vmk4CTV0TAAA0VmJGB/6Nb6P8uNUH1ElJUoiZWxsjOTkZPXrgIAASKVSNG/eXF2mo6ODjIwMMbojIqq03jZzwQHXeWhl4gQgZ6pv07Pj+ODhd0jI4lQfUWUjSiLVoEEDXLlyBUlJSUhJScHZs2fRqFGjPGumoqKiUKNGDTG6IyKq1GrrmePbRlMw0aabeqrvcnIIhgSvxV8pYVqOjohKQpRDiwcMGIDPPvsMAwYMUI88TZgwIU+doKAgNGrUSIzuKgUeWkxEhcmZ6uuFVqZOWBL+IxKy5YjJSsLEkG8wNaM7OkmbwLiGAWwaW0IqlWg7XCJ6DVESqc6dO2POnDk4fvw4AKBr167o1auX+vrt27eRmpqKNm3aiNFdpeDl5QUvLy+EhoZi4sSJ2g6HiCqotmaNcMBtPhaH7cHLgBR0POcCyJXwxx0AgLGlAdqOcoVDGxstR0pEBRElkQKAfv36oV+/fgVec3d35xN7RESvUUvXDB8mvYdzR28DyHuUTGpCBvw2BMBzdgsmU0QVEA8tJiLSMpVKwPXdIZAA6jVTrxIAXNsdDJWK5/URVTSijUgREVVHz68l4/Y350rVhjJLhcyUrNdelyBnZOr7WSdhLOiXqi8AaNrLAU29HUrdDhFpmEjNnz8f48ePz7MJZ3Glp6fj0KFDMDIywnvvvadJ90REFUZ2pgppCZnl0pe/exCcQ21g+9Sy6MqFUKRnixQREWmUSCUmJmLq1Klo3rw5evToAQ8PD5iYmBT6nnv37uH06dM4d+4cMjMz8eGHH2oUMBFRRaKjL4WRZelGiYoakcqVYJWG3wbdQvvbjdDuTkNIBc2e5tMz5GQEkVg0upu+++47nDhxAj4+Pli1ahXWrFmD+vXrw8XFBTVq1ICJiQkUCgWSk5Px5MkThIaGIi0tDVKpFJ6enpgwYQKsra3F/ixEROWublszeI1rW6o2VCoB+2deQGrC6zctzjTLxvN6LyFIgT9a3kd2J+B/DiNgpWv62vcQUdnT+NeSXr16oWfPnrh27Rp8fX1x+/ZtnD59Ol89qVQKR0dHeHh4wNvbGzVr1ixVwEREVY1UKkHbUa7w2xDw2jo9x7WCjq0+tj0/BRUEXEu5j8FBX2GF4/toY9qwHKMloleVanxXIpGgXbt2aNeuHYCcw4tjY2ORnJwMPT09WFhYwMHBochpPyKi6s6hjQ08Z7fAtd3BeUamjK0M0HZkzj5STqiDliaOWBy2B3HZKYjLTsHk+9swuU53TKzTDTIJH8QmKm+iTpTb29vD3t5ezCaJiKoNhzY2sGtljaiQBKQnZsLQQj/fzuatTZ1xwG0+Pgz/CddS7kMFAVtfnMIteRhWOIxATV0zLX4CouqHv74QEVUgUqkEdd2s4PR2XdR1syrweBgrXVNsbTgJ0+v2gvSffaeupzzA4KC1+DP5QXmHTFStMZEiIqqEpBIpJtXphh2NpqLWP6NQ8dkpmPxgG755fhJKQaXlCImqByZSxfTzzz9jwIAB6NGjB8aPH4+0tDRth0REhFamztjvOg/tzFwAAAIEfPviNCY/2IbYrGQtR0dU9TGRKobDhw/jzz//xDfffIOTJ0/iww8/hI4O92EhoorBStcU3zhPxIy6vdVTfTdSHmJw0Fe4lnxfy9ERVW1MpIqgVCqxZ88eLFy4ENbW1pBIJHBycoKenp62QyMiUpNKpJhQxwvfN5qO2rrmAICEbDmmPPgWXz8/wak+ojJSaRKptLQ07Ny5E/Pnz4e3tzc8PDxw4sSJAusqFAps3boV/fv3h5eXFyZPnowbN25o1G9sbCwyMzNx4cIF9O3bFyNGjMDvv/9emo9CRFRmWpo6Yr/rPLQ3awwgZ6pv+4szmHR/K2IUSVqOjqjqESWROn/+fJF1lEoltm7dqnEfSUlJ8PHxQWRkJJydnQutu2LFChw4cADdunXDzJkzIZVKsXDhQty5c6fE/cbGxkIul+PJkyc4cOAAPv/8c2zfvh1///23ph+FiKhMWeqaYIvzBMyq5w3ZP3/N35Q/wuDgtbiSHKrl6IiqFlESqaVLl2LVqlXIyCj4eIOnT59i6tSp2L9/v8Z9WFlZ4ddff8Uvv/yCqVOnvrZeUFAQ/Pz8MGnSJEybNg19+vTBhg0bYGNjky+Rmz59Ojw8PAr8b8eOHQAAff2cM7TGjBkDfX19ODk5wdPTE9euXdP4sxARlTWpRIpxNp743mU6rHUtAAAvs+WY9mA7tjzzRbag1G6ARFWEKCum27RpA19fXwQGBuKzzz5Dw4b/Hldw4sQJbNy4EZmZmXj//fc17kNPTw9WVlZF1vP394dMJkOfPn3UZfr6+vD29sb27dsRHR2tPufv66+/LrK9+vXrQ1dXFxLJv3u5vPpnIqKKrIWJA/a7zcUn4XtxKTkYAgTsiDqLv+RhWOkwErX1zLUdIlGlJsqI1Jo1azB9+nRERUVh6tSp2LdvH1JSUrBs2TKsWrUKpqam2LBhAyZMmCBGd4V68OABbG1tYWxsnKfc1dUVAPDw4cMStWdoaIhOnTph9+7dUCgUiIiIwLlz59C2bekOKSUiKi81dEywyXk85tR7Rz3Vd0sehsHBa3E5KUTL0RFVbqI9wz948GC0aNECn3/+ObZt24adO3dCoVDAw8MDCxYsgKlp+ZxQHh8fX+DIVW5ZXFxciducM2cOVq1ahXfffRfm5uYYP348mjdvXmDduLg4xMfHq19HRkaWuD8iIrFJJVKMsekKdxMHLArbg6isxJypvofbMcHGC1Pr9oCORKbtMIkqHVE3Q3J2dsbbb7+Nffv2ITMzE+bm5hg3bly5JVEAkJmZCV1d3XzludsVZGZmlrhNU1NTLF++vFh1jx49Ch8fn3zl4eHhUCrFXZMgl8sRFBQkaptEVDKV7T7UA/C57B1sVfojQPUEAPBd1Fn8EXMXH+h1gZXEuPAGiCqYsrwH3dzciqwjWiIVHR2NL774Anfv3oWzszPatm2LvXv3YtKkSZg+fTr69u0rVleF0tfXR1ZWVr5yhUKhvl6W+vTpg/bt26tfR0ZGYvny5XBwcICLi4uofQUFBRXrm0xEZaey3oetBXfsifbHpmfHkQ0VQlRR+DjrKL50GI4O5q7aDo+o2LR9D4qSSJ0/fx5fffUVUlNTMXDgQEyePBm6urpo3749Pv/8c6xfvx7Xr1/HokWLYGZWtieTW1lZITY2Nl957nRbzZo1y7T/mjVrlnkfRESlJZVIMdqmC9xNHLAwbDeishKRqEzF9Ic7MM6mK6bX7cWpPqJiEG37A11dXaxevRoffPCBemrNzc0NO3fuhJeXF/744w+MHTtWjO4K5ezsjKdPnyI1NTVPee6wX1F7UInl7NmzWLx4MTZv3lwu/RERaaK5iT0OuM1DJ/Mm6rKdUecwPvQbRCleajEyospBlETqrbfewq5du9CmTZt814yMjPDxxx/jo48+Qnp6uhjdFapz585QKpU4evSoukyhUMDX1xdubm7qrQ/KmpeXF1auXIkZM2aUS39ERJoy1zHGRqdxmG/bFzr//LNwOzUcg4PW4mJS5Vn/RaQNokztrV69usg63bt3R9OmTUvVz6FDhyCXy9XTdJcvX0ZMTAwAYMCAATAxMYGbmxu6dOmC7du3IzExEfXq1cPJkycRFRWFRYsWlap/IqKqSiKRYKR1JzQ3sceisN14rniJJGUaZjz8DmOsu+CDer2hy6k+onxEfWqvKHXq1CnV+/fv34+oqCj164sXL+LixYsAchI1ExMTAMCHH34Ia2trnDp1CnK5HI6Ojli1ahXc3d1L1T8RUVXXzNgO+13n4dOIfTifdBcA4BN9HgHycKxyHIk6ejW0HCFRxSIRBEHQdhBV0dmzZ3H27FnI5XLcuXMHO3bs4FN7RFVQVb0PBUHAzzGXsO7Z7+rjZMxlRvjcfhg6WzQp4t1E5Ufb96AoI1IF7ZtUEIlEgtGjR4vRZYXn5eUFLy8vhIaGYuLEidoOh4ioRCQSCUZYe6C5iT0WhO3Gc0UCkpRpmPXoe4yy7oyZ9bw51UcEkRKpXbt2FXpdIpFAEIRqlUgREVUFbxg3wH7Xefgsch/OJQYCAHZHX8BteThWOYxEXX1LLUdIpF2iJFIbN24ssFwul+P+/fs4dOgQWrVqhf79+4vRHRERlSMzHUOscxyDvbF/YO3To8gWlLiTGokhwWvxhf0wdLZ4Q9shEmmNKIlUYYu4O3TogG7dumHChAnw8PAQo7tK4dU1UkRElZ1EIsHw2h3RzNgOC8N245kiAcnKdMx6tBMja3fCrHre0JWW6/NLRBWCKPtIFaV+/frw8PDAzz//XB7dVQjcR4qIqqI3jBtgn+s8eFr8u53Nnhh/jL2/Bc8zE7QYGZF2lEsiBQAWFhZ4/PhxeXVHRERlxEzHEGsdx2Bx/f7qBeeBqY8xOHgtzife1XJ0ROWrXBIphUKB69evq/d5IiKiyk0ikWBY7Y7Y7TITtnpWAIAUZTpmP9qJNU9+Q5YqW8sREpUPUSa0T548WWC5UqlEXFwc/Pz88PjxYwwYMECM7oiIqIJwM66PfW5zsSziAM4k/g0A+DHmIm7LI7DKcSRs9a20HCFR2RIlkVqxYgUkEkm+8ty9PiUSCTw9PTF58mQxuqsUuNiciKoLU5kh1jiOwv7Yy/jq6RFkCUrcTXuMocFrscxuKDxrNNN2iERlRpREavHixQWWS6VSmJqaolGjRqhZs6YYXVUa3JCTiKoTiUSCobU7/LOB5w94khmPFGUG5ob5YETtjphT710+1UdVkig/1b169RKjGSIiqqRUKgFRIQnQS5Rio9lYbDM/g9NJOVN9P8Vcwm15BFY7juJUH1U5/PWAiIhKJfx6FK7tDkZqQoa6rKVlfbj3s8MGS18ohGzcS3uCIUFrscx+CLxqNNditETi0iiRWrlypcYdvm4akIiIKp/w61Hw2xCQrzw1IRPYCayfOhqrahzB48w4yFUZmBf2A4bW6oB5tn2gx6k+qgI0+ik+ceKERp1JJBImUkREVYRKJeDa7uBC6zw5EIOf1s3B8ie/4NTL2wCAfbF/4O/UCKxxHIX6+tVr/SxVPRolUvv37xc7jiqHT+0RUUUVeDwcgSfCS92OMkuFzJSsQuukxmfgyAeX0Vy3HuCixNk296DUUSE47Sne+2s1el1uhsYRdYvsq2kvBzT1dih1zERi0yiRsrGxETuOKodP7RFRRaVIz0ZaQma59ZebbDW6aoMaD41x8p07SLRMg0IvG0e6/IWw2zHocKERdJSy17ahSOcGn1QxaTxBnZqaCj09Pejq6ooZDxERlTE9Qx0YWeqXup3ijEgBgL6pLmS6OQdp2Cn1Mea4B069fQfBTs8BAIHuTxFTPxl9z7+JGinGr42ZqCLS+CfT29sbY8eOxejRo9VlQUFBCAoKwsCBA0UJjoiIxNfUW5xpMpVKwP6ZF/I8rfdfxlYGGLKxM6TSvJs2jxG64XDcNax68isyhWxEWyXjp8FX8KndYPS0bFHq2IjKi8Zn7QmCoN65PNeff/6JLVu2lDooIiKq+KRSCdqOci20TtuRrvmSKCDn4aMBtdrhx8azYadfCwCQqsrEovA9+PLxQWSqih7pIqoIyuXQYiIiqpoc2tjAc3YLGFsa5Ck3tjKA5+wWcGhT+JraRkZ1sdd1DnpbtlSXHYi9gpEhmxCZEVsmMROJiZPORERUKg5tbGDXyhpRIQlIT8yEoYU+bBpbFjgSVRBjmQH+Zz8CrU2dsfLxYWQK2QhNf4ahwevwqd1g9OJUH1VgTKTKCLc/IKLqRCqVoK6b5se/SCQSvFezLZoaN8CCsN0Iz4hBmioTi8P34GbKQyyo3xcGUj0RIyYSB6f2yoiXlxdWrlyJGTNmaDsUIqJKo6FhXfzceA7esWylLjsYdxUjQzYiIiNGi5ERFaxUI1KnT5/GvXv31K+fPXsGAFiwYEGB9SUSCVavXl2aLomIqIozkuljuf0wtDZ1xorHh5AhZOF++gsMC16PT+wGorflm9oOkUitVInUs2fP1MnTq65fv15gfYmkePPlRERUvUkkEvSr2QZvGDfAgrAfEJYRjTRVJpaE/4QbKQ+xqH5/TvVRhaBxIsVjYoiIqKw5G9rgp8azseLJYRyNvwEAOBz3JwJTH2ON4yg4GFhrOUKq7jROpHhMDBERlQcjmT6+sB+GViZO+N+Tw8hQKfDgn6m+jxsMxDtWrYpuhKiMcLE5ERFVCn1rtsHPjWfD8Z9RqHSVAh9F/IzPIvYhXaXQcnRUXTGRIiKiSsPpn6m+vlZt1GW/xV/H+8EbEJYercXIqLpiIkVERJWKkUwfn9sPxXL7YeoF5w8zojAsZD1+/2cdFVF54YacZYQbchIRla13rVqjiVEDzA/7AY8yopChUuDjiL24kfIISxq8B0M+1UflgCNSZYQbchIRlT1HQ2v85Dob/a3eUpcdib+OEcEb8Cg9SouRUXXBRIqIiCo1Q6keltoPwZf2w9WjUI8yojA8ZIN6ywSissJEioiIqoR3rFphr+scNDSsAwDIUCnwScRefBKxF2nKTC1HR1UVEykiIqoyHAys8WPjWRhQs6267Gj8DYwI2YCHnOqjMiDaYvOsrCxcunQJISEhkMvlUKlUBdZbvHixWF0SERHlYyDVw6d2g9HK1AlfRB5EmioTYRnRGBG8Hh82GIC+NdsU3QhRMYmSSEVFRWHu3Ll4/vw5BEF4bT2JRMJEioiIykVvyzfhZlQfC8J+wP30F8gQsvBp5D7cSHmIDxsMgJFMX9shUhUgSiK1efNmPHv2DN27d4e3tzdq1aoFmUwmRtNEREQaszeojT2NZ2HNkyM4GHcVAPB7wk3cS3uC1Y6j1OupiDQlSiIVEBCAN998Ex999JEYzREREYnGQKqHT+wGoZWpEz6P/EU91fd+8AYsatAf/a3egkQi0XaYVEmJsthcpVKhYcOGYjRFRERUJnpZtsRe1zlwMawLAMgQsrAs8gA+iviZT/WRxkRJpNzc3BAZGSlGU0RERGUmd6pvUM231WXHE25hWPB6PEh/rsXIqLISJZGaPHky/vrrL1y4cEGM5oiIiMqMvlQXH9sNxCqHkTCW5iw4j8iMwYjgDTgcd63Qh6aI/kuUNVJXr15FixYtsHTpUjRv3hyNGjWCsbFxvnoSiQSjR48Wo0siIqJS6W7hDuvHZvB5dA4P9KLwvN5LLIs8gBspD/Fxg4EwlhloO0SqBERJpHbt2qX+8+3bt3H79u0C61WnRIqHFhMRVVzh16NwbXcwUhMy0BS2aApbpJhk4FLXUPg2/Av3Up9gjeMouBjV03aoVMGJkkht3LhRjGaqFC8vL3h5eSE0NBQTJ07UdjhERPSP8OtR8NsQkK/cVG6AXkeb4USfO3jUMAbvh2zEovr9MaBmWz7VR68lSiLl7u4uRjNERERlSqUScG138GuvSyBB1wtuCHOKgUKajS8e/4IbKQ/xid0gmHCqjwog2hExREREZSXweDgCT4SXuh1llgqZKVmF1jFI1kWny6640DEn4Tr5MgB/Roai7/k3YZ1gXuy+mvZyQFNvh1LFSxWfqIlUYGAgTpw4gYcPHyI1NRXGxsZo2LAhevTogWbNmonZFRERVSOK9GykJZTfXk9Nr9vC8KUu/HoEQaGfjZdmadjjfRkdLzTCG3/bQoKip/oU6dnlEClpm2iJ1ObNm3Ho0CH1Y6MSiQSCICA0NBTHjx/HwIED8cEHH4jVHRERVSN6hjowsiz92XjFGZECAH1TXTSLb4D6v1vhaOe/EFUzCUodFS54hSDKKQk9LzeDfpZukTFT1SfKd/nEiRM4ePAg6tevjzFjxqBFixawtLTEy5cvERAQgF27duHgwYNwdnZGz549xeiSiIiqkabe4kyTqVQC9s+8gNSEjNfWMbYywJCNnSGV5ow6TVT1wrqnR7E39g8AQIjDC6Q2VmCN42i4GtmWOiaq3ETZkPPIkSOoVasWtm3bBi8vL1hZWUEikcDS0hKenp7Ytm0batasid9++02M7oiIiDQilUrQdpRroXXajnRVJ1EAoCfVweIG72Gt4xiY/rPg/ElmPEaGbMT+mMvcwLOaEyWRCg8PR6dOnWBiYlLgdRMTE3Tq1Anh4aVfKEhERFQaDm1s4Dm7BYwt8z6FZ2xlAM/ZLeDQxqbA93nVaIZ9rvPQxKg+ACBLUOJ/Tw5hQdhupCjTyzxuqpjKbQKXe3AQEVFF4dDGBnatrBEVkoD0xEwYWujDprFlnpGogtjqW+EHlxnY8OwYfoy5CAA4k/g3goOeYo3jKLgZ1y+P8KkCEWVEysHBAf7+/khLSyvwelpaGvz9/eHgwMdAiYioYpBKJajrZgWnt+uirptVkUlULl2pDhbU74f1TmNhKjMEADxVxGNU6CbsjbnEqb5qRpREqk+fPoiNjcXUqVNx4cIFJCYmAgASExNx4cIFTJ06FbGxsejbt68Y3REREWldV4um2O86D28YNQCQM9W38smvmBfmg+RsTvVVF6JM7fXu3RsPHjzA4cOHsXTpUgD/bn8AAIIg4L333kOvXr3E6I6IiKhCqKdvCR+XD7Dx2XHsifEHAPglBiIk7RnWOI5GE071VXmirZGaNWsWOnfuXOCGnD179kTz5s3F6qrc9ejRI8/rjIwMTJ06FUOHDtVSREREVFHoSnUwv35ftDJ1wicRe5GsTMczRQJGhW7CXNt3MbxWR64TrsJESaSio6NhYmKC5s2bvzZhSktLQ0pKCqytrcXoslydOnVK/ee4uDgMGjQIHh4eWoyIiIgqms4Wb2C/6zwsCt+DO6mRyBaUWP3kN9xMeYRldkNgpmOk7RCpDIiyRmrIkCH45ZdfCq1z8OBBDBkyRIzutOrMmTNo0qQJ6tatq+1QiIiogqmrb4mdLh9gtHVnddm5xEAMCV6HwNRI7QVGZUaURKo4TyiU9imGtLQ07Ny5E/Pnz4e3tzc8PDxw4sSJAusqFAps3boV/fv3h5eXFyZPnowbN26Uqv9cp0+fzjfVR0RElEtXIsNc2z7Y5DQe5rKcUajnigSMCd2CH6P9+VRfFSNKIlUcsbGxMDLSfFgzKSkJPj4+iIyMhLOzc6F1V6xYgQMHDqBbt26YOXMmpFIpFi5ciDt37mjcPwA8evQIT548QefOnUvVDhERVX2dLJpgv9s8NDe2BwBkC0qseXoEcx7tQnJ2wdsFUeWj8RopHx+fPK8DAgIKrKdSqRATEwM/Pz+4ublp2h2srKzw66+/wsrKCiEhIZg0aVKB9YKCguDn54epU6di2LBhAHIWi48ZMwZbt27F1q1b1XWnT5+OwMDAAtsZOXIkJk6cmKfs1KlTaN++PUxNTTX+HEREVH3U0auB712mY8szX/hEnwcAnE+6iyHBa7HKYSSamdhrN0AqNY0TqV27dqn/LJFIcPv2bdy+ffu19WvWrIkpU6Zo2h309PRgZWVVZD1/f3/IZDL06dNHXaavrw9vb29s374d0dHR6gXvX3/9dbH7V6lUOHv2LObNm1fy4ImIqNrSlcgwx/ZdvGnqhI/Df0aSMg3PFS8xNnQLZtm+g5G1O/GpvkpM40Rq48aNAHLWPs2ePRu9evVCz54989WTSqUwMzNDgwYNIJWW/UzigwcPYGtrC2Nj4zzlrq45h1Q+fPhQoycHb926hezsbLz11luixElERNWLh7kbDrjNw6KwH3E7NRzZUGHt06O4mfIIX9gPhbmOcdGNUIWjcSLl7u6u/vOYMWPQokWLPGXaEh8fX+DIVW5ZXFycRu2ePn0anp6e0NEp/EsWFxeH+Ph49evISD6lQUREOWz0auA7l2n4+tkJ7Io+BwDwT7qHIcHrsMphJJpzqq/SEWUfqbFjx4rRjCgyMzOhq6ubr1xPT099XRMfffRRseodPXo03/oxAAgPD4dSqdSo79eRy+UICgoStU0iKhneh6SJ7nBELT1dfKO4ADky8ULxEmNDN2OoTmv01mkKKaf6iq0s78HirO0WbWdzAAgMDCxwZ/MePXqgWbNmYnb1Wvr6+sjKyspXrlAo1NfLUp8+fdC+fXv168jISCxfvhwODg5wcXERta+goKBSLeAnotLjfUiacoMbvBRvYVH4HgTIw6GEgJ+yr+OJsRxf2A+DBaf6ikXb96BoidTmzZtx6NAh9f4YuWfthYaG4vjx4xg4cCA++OADsbp7LSsrK8TGxuYrz51uq1mzZpn2X7NmzTLvg4iIqgZrPQt812gavnl+Et9H+QEALiYFYUjQWqx2HMWpvkpAlETqxIkTOHjwIOrXr69eL2VpaYmXL18iICAAu3btwsGDB+Hs7FzggnQxOTs7IyAgQD0ilit32K+oPajEcvbsWZw9exZyubxc+iMiospJRyLDzHreeNPEER9F/IyX2amIykrE2NAtmFmvN0ZZd4ZUUm7bPlIJifKdOXLkCGrVqoVt27bBy8sLVlZWkEgksLS0hKenJ7Zt24aaNWvit99+E6O7QnXu3BlKpRJHjx5VlykUCvj6+sLNza3czvrz8vLCypUrMWPGjHLpj4iIKrf25q7Y7zoPLU0cAQBKqLD+2THMfLQTL7NzfilXqQQ8D4rHoyvP8TwoHioVd0nXNlFGpMLDw/HOO+/AxMSkwOsmJibo1KkTjh07Vqp+Dh06BLlcrp6mu3z5MmJiYgAAAwYMgImJCdzc3NClSxds374diYmJqFevHk6ePImoqCgsWrSoVP0TERGVJWs9C+xoNBXbnp/Cd1F+ECDgUlIQhgStw+LEfog+EI/UhAx1fWNLA7Qd5QqHNjZajLp6E3WxeWHE2Gxs//79iIqKUr++ePEiLl68CADo3r27OpH78MMPYW1tjVOnTkEul8PR0RGrVq2qENszEBERFUZHIsMH9XqjpakTPgz/CS+z5TAJ0sOjo08hQd5/S1MTMuC3IQCes1swmdISURIpBwcH+Pv7Y/z48QWep5eWlgZ/f384ODiUqp8DBw4Uq56+vj6mTZuGadOmlaq/0uAaKSIiKo23zVxwwHUeljz6EW+cq1to3Wt7gmHXyhpSKbdNKG+iJFJ9+vTBqlWrMHXqVIwdOxbu7u6wsLBAYmIibt++jV27diE2Nhbjxo0To7tKwcvLC15eXggNDc13Zh8REVV9gcfDEXgivNTteGQ3RJa88H0IU+Mz8NNUP8h0S7f0uWkvBzT1Lt2gR3UjSiLVu3dvPHjwAIcPH8bSpUsB/Lv9AZBzjMx7772HXr16idEdERFRhadIz0ZagmabQGsiMyX/HoolpUjPFiGS6kW0NVKzZs1C586dC9yQs2fPnmjevLlYXREREVV4eoY6MLIs/SbQyixVsZIkfVPdUo9I6RmW29LpKkPUr1jz5s2ZMP2Da6SIiKq3pt7iTJOpVAL2z7yQ52m9VwkQkGaqgPvqhmhlXj57JdK/uMNXGeE+UkREJAapVIK2o1wLvCYgZwmNf5cQTHy4FTtenIFKUJVneNUeEykiIqIKzqGNDTxnt4CxpUGeciNLfTwYHItHDWOggoAtz09g2sMdiM9K0VKk1Y9oU3tZWVm4dOkSQkJCIJfLoVIVnBEvXrxYrC6JiIiqDYc2NrBrZY2okASkJ2bC0EIfNo0tMVQiwPGFDba9OA0BAq4mh2JI8FqscHgfrU051VfWREmkoqKiMHfuXDx//lz9pF5BJBIJEykiIiINSaUS1HWz+k+pBFPq9kALE0csCf8R8dkpiM1KxqT7WzGlbg9MsPGCjGf1lRlREqnNmzfj2bNn6N69O7y9vVGrVi3IZDIxmq60uNiciIjK01tmDXHAbR4+DP8Jf6Y8gAoCvnl+En+lhOF/DiNgpWuq7RCrJFESqYCAALz55pv46KOPxGiuSuCGnEREVN5q6ppha8PJ+C7qLLY9PwUVBFxLuY/BQV9hheP7aGPaUNshVjmijPWpVCo0bMhvDhERkbbJJFJMrtMd2xtNRU2dnFGouOwUTL6/Dduen4KST/WJSpREys3NDZGRkWI0RURERCJobeqMA27z0da0EQBABQFbX5zClAffIi4rWcvRVR2iJFKTJ0/GX3/9hQsXLojRHBEREYnAStcUWxtOwgd1e0GKnAONr6c8wOCgtfgz+b6Wo6saNFoj5ePjk6+sRYsWWLp0KZo3b45GjRrB2Ng4Xx2JRILRo0dr0iURERFpQCqRYmKdbmhh4oDF4T8iNisZ8dkpmPzgW0yq0w2T63TnU32loFEitWvXrtdeu337Nm7fvl3gteqUSPGpPSIiqkhamTpjv+s8fBTxM64mh0KAgG9fnMZf8jCscHgftXTNtB1ipaRRIrVx40ax46hy+NQeERFVNFa6pvjGeSJ2RZ3DlucnoIKAGykPc57qc3gfbc0aid6nSiXk20RUKpWI3o+2aJRIubu7ixwGERERlQepRIrxdbzQwsQRi8L3ICYrCQnZckx58C0m1vHClDo9RJvqC78ehWu7g/McuGxsaYC2o1zh0MZGlD60rVRfqbt372LWrFno0aMHevbsiblz5yIoKEis2IiIiKiMtDR1xH7XeWhv1hhAzgHI21+cwaT7WxGjSCp1++HXo+C3ISBPEgUAqQkZ8NsQgPDrUaXuoyLQOJF69OgRZs+ejdu3byMjIwPp6em4desWZs+ejfDwcDFjJCIiojJgqWuCLc4TMKueN2T/pAQ35Y8wOHgtriSHatyuSiXg2u7gQutc2xMMler1x8pVFhrvbP7TTz8hKysLI0eOxIABAwAAv/76K3744Qf8/PPP3OWciIioEpBKpBhn44kWJo6YG7QLCTI5XmbLMfX+t2h3xxkdAhpBKpRs3EWZpUJmSlahdVLjM/DTVD/IdEs3jVi7pRHc3ErVRKlonEjduXMHTZs2xYQJE9Rl48aNQ0BAwGuf2iMiIqKKqYWJAz57OhDrlMcQ6RgHSICrzR8i0ioOPY43hYncQPQ+i0q2iiM7U/y4SkLjROrly5fw9PTMV+7m5obg4MKH86oDbn9ARESVjZW+KYaceAvX48Pg/2YIBKmA57aJ2Df6T7zj7w7H57WL1U5xRqQAQN9Ut9QjUjr62t0DS+NEKjs7G4aGhvnKDQwMkJ2dXaqgqgJuf0BERJVNU28HNPV2wAh44rY8HIvC9iAqKxHpBgr80uM6xtt4YlrdntCRyAptR6USsH/mhXwLzV9lbGWAIRs7l3orBG0/5MatTImIiCgfdxMH7Hebh47m/y5A+j7KDxPuf4NoRWKh75VKJWg7yrXQOm1HulaJ/aQ0HpECgNOnT+PevXt5yp49ewYAWLBgQb76EokEq1evLk2XREREVE4sdIyxyWkc9kT7Y9Oz48iGCgHycAwOWosvHYajg/nrkyWHNjbwnN0i/z5SVgZoO7Lq7CNVqkTq2bNn6sTpv65fv56vTCKp/JknERFRdSKVSDHapgvcTRywMGw3orISkahMxfSHOzDOpium1+312qk+hzY2sGtlzZ3NC7J//34x4yAiIqIKrLmJPQ64zcMnEfvgn5QzG7Uz6hz+SgnHKsf3YaNXo8D3SaUS1HWzKs9Qy5XGiZSNTdUYkiMiIqLiMdcxxkancdgT44+NT48hGyrcTg3HkKB1WO4wLM96quqCi82JiIio2CQSCUZZd8Yulw9Q959RqERlKj54+B3WP/0dWYJSyxGWLyZSREREVGLNTOyx33Ueupi/oS7ziT6P8aFf44XipRYjK1+lWmxOr8cNOYmIqKoz0zHCeqex+CnmItY/O4ZsQYm/UyMwJGgtvrAfhk4WTbQdYpnjiFQZ8fLywsqVKzFjxgxth0JERFRmJBIJ3rfuBB+XD1BXzxIAkKRMw8xH32Pd06NVfqqPiRQRERGVWlNjO+x3nYuuFk3VZT9EX8C40C14npmgxcjKFhMpIiIiEoWZjhHWOY7Bwvr91HtL3UmNxJDgtbiQeK+Id1dOTKSIiIhINBKJBCNqe+AHlxmo989UX7IyHbMefY+vnhxBlqpqncfLRIqIiIhE94ZxA+xznQfPV6b69sT4Y+z9qjXVx0SKiIiIyoSZjiHWOo7B4vr9ofvPVF9g6mMMDl6L84l3tRydOJhIERERUZmRSCQYVrsjdrvMhK1ezlExKcp0zH60E2ue/Fbpp/qYSBEREVGZczOuj31uc9HNorm67MeYixgduhlPM+O1GFnpMJEiIiKicmEqM8Qax1FYUv899VTfvbQnGBq8Fn4v72g5Os0wkSIiIqJyI5FIMLR2B+xpPAv19XOn+jIwN8wHq578CkUlm+pjIkVERETlztXIFvtc56F7DXd12c8xlzA6dFOlmupjIkVERERaYSIzwGqHkfiowUDoSXKO/w1Ke4ohQWtx9uXfWo6ueHhocRnhocVERERFk0gkGFzrbTQ1boCFYbvxODMOclUG5oX9gKG1OmCebR/oSStuusIRqTLCQ4uJiIiKz9XIFntd56LHK1N9+2L/wKjQTXiSGae9wIrARIqIiIgqBBOZAVY5jMTHr0z1Bac9xdCgdTj98rZ2g3sNJlJERERUYUgkEgyq9TZ+bDwLDfRrAQDkqgwsCNuN/z0+hExVlpYjzIuJFBEREVU4Lkb1sM91DnrVaKEu2x97GaNCNuFxRqwWI8uLiRQRERFVSMYyA6xweB+fNhgE/X+m+kLSn2Fo8DqcTAjQcnQ5mEgRERFRhSWRSDCgVjv82Hg27P6Z6ktVZWJR+B58+fggFIJ2N/BkIkVEREQVXiOjutjrOge9LVuqyw7EXsGnmb8jUotTfUykiIiIqFIwlhngf/Yj8JndYPVUX6QQj6HB6/AsM0ErMTGRIiIiokpDIpHgvZpt8ZPrbDgY1AYAeNVohnr6llqJh4kUERERVToNDevi58Zz0FenOZbUf09rcTCRIiIiokrJSKaPobqtYSTT11oMTKSIiIiINFRxTwGsQB48eID169cjLCwM5ubmGDlyJN555x1th0VERERaxhGpYli+fDnatGkDX19ffP7559i8eTMiIiK0HRYRERFpGROpYoiKioKnpyekUilcXFxgZ2eHx48fazssIiIi0rJKk0ilpaVh586dmD9/Pry9veHh4YETJ04UWFehUGDr1q3o378/vLy8MHnyZNy4cUPjvgcMGIAzZ84gOzsbQUFBiImJgZubm8btERERUdVQaRKppKQk+Pj4IDIyEs7OzoXWXbFiBQ4cOIBu3bph5syZkEqlWLhwIe7cuaNR32+99RZOnjyJbt26Yfr06Zg8eTJq1qypUVtERERUdVSaxeZWVlb49ddfYWVlhZCQEEyaNKnAekFBQfDz88PUqVMxbNgwAECPHj0wZswYbN26FVu3blXXnT59OgIDAwtsZ+TIkZg4cSKSk5OxaNEiLF68GB07dkRERATmz58PR0dHuLi4iP9BiYiIqNKoNImUnp4erKysiqzn7+8PmUyGPn36qMv09fXh7e2N7du3Izo6GtbW1gCAr7/+usj2nj17BgMDA3Tu3BkA4OTkhDfeeAN///03EykiIqJqrtJM7RXXgwcPYGtrC2Nj4zzlrq6uAICHDx+WqL369esjMzMTly5dgiAIiIiIwJ07d+Do6Fhg/bi4OISGhqr/i4yM1OyDEBERUYVXaUakiis+Pr7Akavcsri4uBK1Z2JigmXLlmHbtm1Yvnw5zMzMMHjwYLRq1arA+kePHoWPj0++8vDwcCiVyhL1XRS5XI6goCBR2ySikuF9SKRdZXkPFufBsiqXSGVmZkJXVzdfuZ6envp6SbVp0wZt2rQpVt0+ffqgffv26teRkZFYvnw5HBwcRJ8KDAoK4tODRFrG+5BIu7R9D1a5REpfXx9ZWVn5yhUKhfp6WapZsyaf6CMiIqomqtwaKSsrK8THx+crzy1jkkNERERiqXIjUs7OzggICEBqamqeBee586dF7UEllrNnz+Ls2bNITk4GgDJZdP748WPIZDLR2yWi4uN9SKRdZX0P2tnZwcDA4LXXq1wi1blzZ+zbtw9Hjx5V7yOlUCjg6+sLNzc39dYHZc3LywteXl44ffo07t69i+XLl5dLv0RERCSeHTt2FLrGuVIlUocOHYJcLldP012+fBkxMTEAco5xMTExgZubG7p06YLt27cjMTER9erVw8mTJxEVFYVFixaVe8xt2rTBxx9/jN9++w2zZs0q1ns2b96MGTNmFFondxH7xx9/DDs7OzFCrfSK83XTpvKOr6z6E6vd0rSjyXtL+h7eh5rhfVg+/YnRbnnfgyV9X0W5B4tqt1IlUvv370dUVJT69cWLF3Hx4kUAQPfu3WFiYgIA+PDDD2FtbY1Tp05BLpfD0dERq1atgru7e7nHbGFhge7du+PcuXPFfmrPxMSk2HXt7Oy4Meg/SvJ104byjq+s+hOr3dK0o8l7S/oe3oea4X1YPv2J0W5534MlfV9luQcrVSJ14MCBYtXT19fHtGnTMG3atDKOqPi8vLzKpC79q6J/3co7vrLqT6x2S9OOJu8t6Xsq+s9TRVXRv268D8VpQ9P3VsV/CyWCIAjaDoJKLjQ0FBMnTixy7paIyg7vQyLtqgj3YJXb/qC6sLKywpgxY4p1/iARlQ3eh0TaVRHuQY5IEREREWmII1JEREREGmIiRURERKQhJlJVmEKhwMqVKzFw4ED07NkTU6ZMwd27d7UdFlG1smbNGvTr1w89e/bE6NGjcfnyZW2HRFQt3b17F506dcIPP/wgartcI1WFpaenY//+/ejVqxdq1aqF8+fPY8OGDdi/fz+MjIy0HR5RtRAZGYk6depAT08PwcHBmDt3Lvbt2wdzc3Nth0ZUbahUKkybNg2CIODtt9/G6NGjRWubI1JVmKGhIcaMGQNra2tIpVJ4enpCR0cHT5480XZoRNWGnZ0d9PT0AAASiQRZWVmIi4vTclRE1cvvv/8OV1fXMtn9vFJtyFnVpaWlYd++fQgKCkJwcDBSUlKwZMkS9OrVK19dhUKB77//HqdPn0ZKSgqcnJwwYcIEtG7d+rXtP3nyBCkpKahXr15ZfgyiSqus7sF169bB19cXCoUCbdu2haOjY3l8HKJKpyzuwaSkJPzyyy/YunUrNm/eLHrMHJGqQJKSkuDj44PIyEg4OzsXWnfFihU4cOAAunXrhpkzZ0IqlWLhwoW4c+dOgfUzMzOxfPlyjBgxQn2UDhHlVVb34Ny5c3Hq1CmsX78erVu3hkQiKauPQFSplcU9uGPHDgwaNAimpqZlE7RAFUZmZqYQFxcnCIIgBAcHCx07dhR8fX3z1bt3757QsWNH4eeff1aXZWRkCEOHDhWmTJmSr35WVpawcOFCYdmyZYJKpSq7D0BUyZXVPfiqRYsWCVeuXBE3cKIqQux7MDQ0VBg/fryQnZ0tCIIgfPnll4KPj4+oMXNEqgLR09Mr1u6s/v7+kMlk6NOnj7pMX18f3t7euHfvHqKjo9XlKpUKy5cvh0QiwYcffsjfhIkKURb34H8plUo8e/ZMlHiJqhqx78Hbt2/jyZMnGDBgAPr164dz587h559/xooVK0SLmWukKqEHDx7A1tYWxsbGecpdXV0BAA8fPoS1tTUA4KuvvkJ8fDy++uor6Ojw200khuLeg3K5HFevXkX79u2hp6eHS5cuISAgAJMmTdJG2ERVRnHvwT59+sDT01N9fdOmTahTpw5GjBghWiz8l7USio+PLzBjzy3LfSIoKioKx44dg56eXp6sffXq1WjevHn5BEtUBRX3HpRIJDh27BjWr18PQRBQr149fPLJJ2jYsGG5xktU1RT3HjQwMICBgYH6ur6+PgwNDUVdL8VEqhLKzMyErq5uvvLcR6wzMzMBADY2Nrh48WK5xkZUHRT3HjQ2NsbGjRvLNTai6qC49+B/ffjhh6LHwjVSlZC+vj6ysrLylSsUCvV1Iio7vAeJtKsi3YNMpCohKysrxMfH5yvPLatZs2Z5h0RUrfAeJNKuinQPMpGqhJydnfH06VOkpqbmKQ8KClJfJ6Kyw3uQSLsq0j3IRKoS6ty5M5RKJY4ePaouUygU8PX1hZubm/qJPSIqG7wHibSrIt2DXGxewRw6dAhyuVw9PHn58mXExMQAAAYMGAATExO4ubmhS5cu2L59OxITE1GvXj2cPHkSUVFRWLRokTbDJ6r0eA8SaVdluwclgiAI5dojFWrw4MGIiooq8Nr+/ftRp04dADlPJOSeMSSXy+Ho6IgJEyagTZs25RkuUZXDe5BIuyrbPchEioiIiEhDXCNFREREpCEmUkREREQaYiJFREREpCEmUkREREQaYiJFREREpCEmUkREREQaYiJFREREpCEmUkREREQaYiJFREREpCEmUkREWnLgwAF07doVL168UJedOHECHh4eOHHihBYj+9exY8fQuXNnPHr0SNuhEFVITKSISBQvXryAh4dHof8NHjxY22FWGCkpKdi9ezd69+6tPjusrFy/fh0eHh6YN29ekXU///xzeHh44MyZMwCAnj17wtraGlu3bi3TGIkqKx1tB0BEVUu9evXQrVu3Aq+ZmJiUczQV14EDB5CcnIxhw4aVeV+tWrWCtbU1bt26hejoaFhbWxdYTy6X49KlSzAxMYGHhwcAQEdHB4MHD8bGjRsRGBiIpk2blnm8RJUJEykiElW9evUwbtw4bYdRoWVnZ+PYsWNo2rQp6tWrV+b9SaVS9OrVCz4+Pjh58iRGjx5dYL2zZ88iMzMTvXv3hr6+vrrc09MTW7ZswZEjR5hIEf0Hp/aISGs8PDwwc+ZMJCQk4Msvv8S7774LLy8vTJkyBQEBAQW+Jy0tDTt37sSoUaPg5eWF3r17Y968ebhz506+ujNnzoSHhwcyMzOxY8cODB06FF26dMHOnTvVdfz9/TFx4kR4eXmhb9++WL16NVJSUjB48OA8U5FffPEFPDw8EBQUVGBc33//PTw8PHD27NkiP/f169cRHx+Pzp07F1k3V0xMDEaPHg0vLy9cuHBBXf7y5Uts3rwZw4YNg6enJ9599118/PHHCAsLy/P+3r17QyKR4MSJExAEocA+fH19AQDe3t55yi0sLNCiRQtcuHABaWlpxY6ZqDpgIkVEWiWXyzF9+nRERESge/fu8PDwQGhoKObPn58vGUhOTsbUqVPh4+MDU1NT9O3bFx4eHrh//z5mzZqFS5cuFdjHJ598gpMnT6JFixYYOHCgek3S8ePH8cknn+Dp06fo0aMHevbsiXv37mHu3LnIzs7O00afPn3U7/kvpVIJX19fmJubq6fECnPr1i0AQJMmTYr+AgGIiIjAtGnTEBMTgzVr1qgTsGfPnmHChAn45ZdfULduXbz33nto27Ytrl+/jqlTp+ZJ+mxsbPDmm2/i+fPnBSapYWFhCAkJQcOGDdGoUaN815s0aQKFQoG7d+8WK2ai6oJTe0QkqmfPnuUZ8XlVkyZN8NZbb+Upe/jwIfr164fZs2dDKs353a5ly5ZYvXo1Dh8+jPnz56vrbtiwAeHh4Vi4cCHeeecddfnLly8xceJErFmzBm3atMkzLQUA8fHx2LVrF8zMzNRlKSkp2LRpEwwNDbF9+3bUr18fADBx4kTMnz8foaGhsLGxUddv3rw57O3t4efnhw8++ACGhobqa9evX0dsbCwGDRoEPT29Ir9GgYGBkEqlcHZ2LrLuvXv3sGjRIujo6GDz5s153vPll18iISEBX331Fdq0aaMuHzVqFCZOnIjVq1fDx8dHXe7t7Y2bN2/C19cXLVu2zNPP60ajcrm4uAAA7t69m6cvouqOI1JEJKpnz57Bx8enwP/+/PPPfPUNDQ0xZcoUdRIF5DwpJpPJEBISoi5LTEzE+fPn0bJlyzxJFADUqFEDw4YNQ2Jionq051Vjx47Nk0QBwB9//IH09HT07t1bnUQBOYurJ0yYUOBn69OnD9LS0uDn55en/NixYwCAd99993VfljxiY2NhYmJSZNJ19epVzJkzB6ampvjmm2/yJFH379/H3bt30aNHj3yJTf369fHOO+8gLCwsz6hex44dYW5uDn9/f6SmpqrLs7Ozcfr0aejp6b32QQFLS0sAOVOMRPQvjkgRkajatGmDr776qtj1bW1tYWRklKdMR0cHlpaWkMvl6rKQkBAolUpkZWUVOOL19OlTAEBkZCTefvvtPNdcXV3z1c/dF6lZs2b5rrm5uUEmk+Ur79GjB7799lscO3ZMncwlJCTgypUreOONN2Bvb1/Ep82RnJyMWrVqFVrn/PnzuHHjBpycnLBmzRrUqFEjz/XcabuXL18W+PV4/Pix+v+Ojo4AoE6UDh48iLNnz6Jv374AgMuXLyMxMRFeXl4wNTUtMJ7c8qSkpGJ9RqLqgokUEWmVsbFxgeUymQwqlUr9Ojk5GUDOtFhgYOBr28vIyMhXljua8qrcEZn/JihAzlNu5ubm+cpNTU3RpUsXnDx5EmFhYXB0dMSJEyegVCqLPRoFAPr6+lAoFIXWuXfvHpRKJZo1a1ZgjLlfj6tXr+Lq1auvbSc9PT3Pa29vbxw8eBC+vr7qRKqoaT0A6ngNDAwKjZuoumEiRUSVQm7CNWTIEEyf/v/27i+kqT+M4/h7hqs4rSIj0AihFYleFIWI/4gNkyAsIhRJyG4KoXLVdSiiQdFlf292UxdiDQ1q5rQkyAuVDIPVuvNiC3QLdHVVpPtdyOQnO1t66kf12+d1ufM953zPrh6e5znPObeqc202W9rrzc7OphxbWFggHo+bZo2OHTvGwMAAT548wePx4Pf7MQwDl8u14v1s2rSJWCyWcc3Zs2cZGRnB5/OxZs2alGdO7t/j8XDixIkV39vpdFJUVEQoFGJqagqHw8H4+Dj5+fkpfVP/lgzcNm/evOJ7iWQD9UiJyF+hqKgIm83Gu3fvfsn1nE4ngGl2KxQKMT8/b3peSUkJTqeToaEhxsfHiUQiHDp0aFWZmp07d/Lt2zdmZmbSrrHb7Vy9epXy8nJ6enq4devWsuPJcqWV/yOZefL7/QQCAebn55fGI6STLBUmy4QiskiBlIj8FfLy8nC5XASDQbq7u01nIb1//960tGemqqqK9evX4/f7+fjx49Lv379/x+v1Zjz36NGjfP78mWvXrgGkNL//yL59+5b2m4ndbqerq4uKigoePnzIzZs3l44VFxdTXFzMixcvUprfYTGrNjk5aXrdmpoa1q1bx+DgIP39/eTk5HD48OGMewmFQsv2LiKLVNoTkV8q0/gDgKamppTxBCt1+fJlwuEwd+/eJRAIUFJSwoYNG4jFYnz48IFIJEJfX9+KskMOh4Pz589z48YNzpw5g9vtxjAMRkdHsdvtbN26NW2Gpra2lnv37vHp0yf27NljOncpk6qqKm7fvs3r169/WBLMzc2ls7OTtrY2Hj16RCKRoLW1FYC2tjYuXrxIR0cHPp+P3bt3s3btWqLRKMFgkHg8bjog1DAMDh48SCAQYG5ujrKysrSfjQFIJBJMTExQWFi47A1HEVEgJSK/WHL8QTr19fWWA6mNGzdy584dent7GR4e5vnz5ywsLLBlyxZ27dpFc3OzaZN4OnV1dTgcDh48eMDAwACGYVBZWUlLSwv19fVpP99iGAbV1dUMDg6uOhsFkJ+fT2lpKS9fvsTj8fxwDEIymGpvb8fn85FIJPB4PBQUFOD1eunp6eHVq1c8e/aMnJwc8vLy2Lt3b8bJ6UeOHCEQCACLU88zefv2LTMzM1y4cGHVzyryf2dLpPtWgIhIlopEIpw8eRKXy0VHR4fpmubmZqanp+nt7U375mEmExMTXLp0iStXrlBbW/uzW/5PdXZ2MjY2Rnd3d9rxCCLZSj1SIpK1vnz5kjKG4OvXr0uN3dXV1abnjY6OMjU1RU1NjaUgCuDAgQOUlZVx//79ZWMe/jThcJjh4WFOnTqlIErEhEp7IpK1JicnuX79OqWlpWzbto14PM6bN2+Ynp5m//79uN3uZesfP35MNBrl6dOn2O12mpqafur+ra2tDA0NEYvFMvYo/U7RaJTTp09z/Pjx370VkT+SSnsikrXC4TBer5dgMMjc3BwA27dvx+1209jYmNLL1dDQQCwWY8eOHbS0tKRMUBeR7KNASkRERMQi9UiJiIiIWKRASkRERMQiBVIiIiIiFimQEhEREbFIgZSIiIiIRQqkRERERCxSICUiIiJikQIpEREREYsUSImIiIhY9A+2R070H3rPGwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 49\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "11cfade8-5e53-4aa5-b329-f7bf68049a43", + "metadata": {}, + "source": [ + "## Plot All" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "8fb8fde3-9997-48cd-ae09-300abc3a9eca", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAATBCAYAAADddYOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVfrw8e8zfSbJpPdKekIVkN5BUcSCK2tX7A2xd117111dfd1VWRF7F0SqSJHepBN6Cum9T2YmM+f948kMDAmQZFH3t3s+15Xr2nnqmWfGnZv7nHMfRQghkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ+o1o/ugGSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0300OUpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6TclBylJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSbkoOUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TclBSpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/abkICVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkn5TcpCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEm/KTlISZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk35QcpCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0m9KDlKSJOm/2lNPPYWiKKxYseKPbookSZIkSZLUDR9++CGKovDhhx/+0U2RJEmSJEn6r5eXl4eiKEybNu2PbookSZIkSdJ/PUVRGDNmzB/dDEn6XclBStJ/jW+++YY777yTkSNHYrVaURSFq6666pTnrV27lkmTJhESEoLZbKZPnz688cYbuFyuE57z448/MmbMGAIDA/H392fw4MHMnj27y212Op28+eabXHfddfTr1w+DwYCiKMycOfOE53g6aU70989//rPD83bu3MmVV15JamoqZrOZ2NhYxo4dy5dffonb7e5y2z3279+Pn5/fSZ+3y+Xi008/ZeTIkURFRWGxWEhPT+e6665j9+7dHZ5TVlbGnXfeSY8ePTAajYSHhzNlyhR+/fXXbrf1dBo+fDiKorBgwYJTHpuRkYGiKGzduvV3aJkkSZIkHdXV+MjTIXGiv8suu6zD88rLy3nwwQfp1asXAQEBhIaGMmDAAF599VUaGhq63X673U6vXr1QFIW4uLgTHrd69WouvPBCkpKSMJlMJCQkMGnSJBYtWtTh8Q6Hg1deeYW+fftisViwWq2MGDGCr776qsttPHDgAC+//DLjxo0jPj4eg8FAZGQkF154IcuXL+/wnO7Ecxs3buSRRx7h3HPPJSoq6pTP5GS6e6358+dz9tlnExcXh9lsJjk5malTp7Ju3boOj29oaOCxxx4jMzMTk8lEcHAwEydO5Oeff+5Wu0+3K6+8EkVReOedd0557Nlnn42iKHz//fe/Q8skSZKk/4uqqqqYOXMmU6ZM8eZeAgMDGTFiBP/61786zL10J/YqLCzk+eefZ+rUqaSmpqLRaFAUhYMHD3a5zd29VldzTEII3n//fQYPHoy/vz9+fn4MHDiQf/7zn13OSdXX13P33XczcuRIYmJiMJlMREREMGjQIN544w2ampo6PK87eabTlUvrbuxVWFjI9ddfT0xMDEajkaSkJO6++25qamraHeuZpHeyv5SUlE63+bfw/vvvoygKf/7zn0957AsvvICiKNx1112/Q8skSZKk/4seeughxo8fT3x8PGazmZCQEM444wyefvppqqqqOjynO3mK3Nxcbr31VjIzM7FYLERGRjJ06FDee+89HA5Hp9ubk5PDk08+yYUXXkhCQoL397m1tfWk51VXV3P33XeTlJSE0WgkJiaG66+/nsLCwnbHnirfpCgKWq22020+1s8//8yUKVOIiorytmPixInt+siOHDnC7bffzuDBg32OHTlyJLNmzcLpdJ7wHrNnz2bQoEH4+/sTGBjImDFj+PHHH7vc1q7GfdOmTTvpM9u7d6/P8b/lcz5dfvrpJxRFYdCgQac89rPPPkNRFC688MLfoWWSpNL90Q2QpNPlueeeY/v27fj7+xMXF9fuR6Mjc+fO5U9/+hMmk4lLL72UkJAQ5s2bxz333MOaNWv4+uuv253z9ttvc+eddxIaGspVV12FwWDgm2++Ydq0aezcuZPXXnut021uamri7rvvBiAyMpKoqCiOHDnSqXMvvPBC+vXr1277wIED222bN28eF198MRqNhgsuuIBLLrmEyspKvv/+ey677DKWLl3K+++/3+l2e7S2tnL11Vej0Zx8vOMVV1zBV199RVxcHBdffDEBAQHs3LmT2bNn89lnn7Fw4ULGjRvnPT4vL49hw4ZRUlLCoEGDuPjii6moqOC7775j/vz5zJs3j4kTJ3a5vafTTTfdxNq1a5k5cyaTJk064XErV65k//79DBw4kDPOOON3bKEkSZIkdS8+Aujbty8XXXRRu+29evVqty0vL4/BgwdTXl7OmDFjOPfcc2lpaWHJkiU8+OCDfPLJJ6xfvx6z2dzl9j/66KPk5+ef9Jh//OMf3H777fj5+TFlyhTi4uIoLCzku+++Y+HChTz33HM89thj3uMdDgcTJ05kxYoVJCUlcd111+F2u1mwYAGXXnopu3bt4plnnul0G5944gm+/PJLsrOzvQPf9+3bxw8//MAPP/zAm2++yYwZMzo8tyvx3Geffcabb76JXq8nOzubsrKyTrfxdFzroYce4pVXXiE0NJSLLrqIsLAwDh48yNy5c/n222/56KOPfAbA1dTUMGLECPbs2UPPnj259dZbaWxsZO7cuUyYMIGZM2dyww03dPs9nA433XQTn332GTNnzuT2228/4XF5eXksXbqU6Ohozj///N+xhZIkSdL/JV9//TW33XYb0dHRjB07loSEBMrKyvjuu++48cYbWbhwIV9//TWKorQ7tyux1+bNm3n88cdRFIUePXoQGBhIbW1tt9rcnWt1J8d01VVX8dlnnxEREcHll1+OxWLhp59+4rbbbmPt2rV89NFHnW5zdXU17733HoMGDeK8884jPDycuro6li1bxj333MP777/PunXrsFqt3nO6k2c6nbm07sRehw4dYtiwYZSXl3PhhReSmZnJxo0befPNN1m0aBFr1qwhNDTUe/zJZt/PmzePX3/9lXPPPbdT7f2tXH755dx7773MnTuXyspKwsLCOjxOCMG//vUvAG6++ebfs4mSJEnS/yF/+9vf6N+/P2eddRYRERE0NTWxfv16nnrqKd577z3Wr19PfHy89/ju5Ck2bdrE2LFjsdlsnHPOOVx44YXU19czb948brnlFr799lsWLVrUYXx3vMWLF/PMM8+g1WpJS0vDZDLR0tJy0nOqqqoYNmwY+/fvZ9y4cVx22WXs3buXWbNmMX/+fNatW0dycrL3+H79+vHkk092eK1Vq1axbNmybsUDDz74IK+++ipxcXFccMEFhIWFUVFRwZYtW1ixYoVPH9mhQ4f49NNPGTx4MBdddBEhISFUVVWxcOFCrr/+ej7++GOWLFmCTuc7ROH+++/n9ddfJy4ujptuugmHw8EXX3zB+eefz1tvvcX06dM71dZ/p3/xrrvuIigoqN3242OW3+o5n04TJkygR48ebNq0iZ07d9K7d+8THuuJaWXcJf2uhCT9l1i2bJnYv3+/cLvdYvny5QIQV1555QmPr6urE+Hh4cJgMIhNmzZ5t9tsNjF06FABiM8//9znnNzcXGE0GkVISIjIzc31bq+urhYpKSkCEGvXru10m+12u1iwYIEoLi4WQgjx5JNPCkC8//77Jzxn1qxZAhCzZs3q9H2ys7MFIFasWOGzvaSkRERERAhA5Ofnd/p6Hk8//bQwGAzizTffPOHz3rhxowBEz549RVNTk8++Dz74QABi7NixPtsvuOACAYgZM2YIt9vt3b5v3z4REBAgoqOjRWNjY6fa6Hmmy5cv7/L7O5nm5mYRGBgo9Hq9KC0tPeFxV111lQDEe++9d1rvL0mSJEmd0dX4KDc3VwDi2muv7fQ9br/9dgGIp556ymd7a2urGDdunADE7Nmzu9z25cuXC0VRxD/+8Q8BiNjY2HbHOBwOERgYKEwmk9i7d6/Pvj179gij0SjMZrNoaWnxbv/rX/8qADF06FCfeKKhoUEMGDBAKIriExueyqxZs8Svv/7abvuKFSuEXq8XBoPBG+sde05X47mtW7eKX3/9VdjtdiGEOOEz+S2uVVJSIjQajYiMjBRlZWU++5YtWyYA0aNHD5/tM2bMEIC4+OKLhdPp9G4vKysT8fHxwmw2iyNHjnSqvd15Xp2Vnp4uALFly5YTHvP4448LQDz66KOn/f6SJEnSf4+ff/5Z/PDDD8LlcvlsLykpEfHx8QIQ33zzjc++7sReR44cEb/88ouoq6sTQggxevRoAYgDBw50uc3duVZXc0zfffedN1aoqKjwbrfb7WLy5MkCEN9++22n29za2iocDkeH+6688koBiJdfftlne3fyTKczl9adOO7ss88WgPj73//us/2ee+4RgLjllls6de/W1lYRFxcnALF9+/ZOndOd72Vn3XTTTQIQr7/++gmPWbp0qQDEsGHDTvv9JUmSpP8eNputw+2PPvqoAMRtt93ms707eYpJkyYJQHz44Yc+2xsbG72xwsqVKzvV3r1794r169eL5uZmIYQQiYmJAvBpy/FuvvlmAYh7773XZ7unT27ixImdurcQQgwZMkQAYu7cuZ0+Rwgh3nvvPW9c4IlljnV8XGa329vFw57jxowZIwDx5Zdf+uxbs2aNAERKSoqorq72bs/NzRUhISHCaDT69MmeTHfivmuvvVYAnb7HyXTnOQNi9OjR//a9j/f8888LQNx5550nPObAgQNCURQRHx/f4ecmSb8Vudyb9F9j7NixpKWldWrEMqjLn1RUVHDZZZf5zFY3mUw899xzgDoz/1gffPABdrud6dOnk5SU5N0eHBzMo48+CnDC5dY6YjAYOPfcc4mOju70Od1x+PBhrFYro0eP9tkeFRXF4MGDAaioqOjSNTdv3syzzz7LE088QZ8+fU56b4Dx48djsVh89nlKBx5775aWFhYuXIhGo+G5557z+TzT09O5/vrrKSkp4dtvv+1Se49XUFBAz549MRgMfPzxx97tzc3NvPjii/Tr1w8/Pz/8/f0ZOnQon3/+uc/5ZrOZq666CqfTyYcfftjhPWpra/nmm2/w9/fn8ssv/7faK0mSJEnd0dX4qDs8v/UXXHCBz3atVst5550HdD3OqK+vZ9q0aYwfP55bb731hMdVV1dTV1dHeno6GRkZPvuysrJIT0/HZrPR2Njo3e5Zruuxxx7Dz8/Pu93f35/HH38cIUSnlv/ymDZtWofVEkePHs2YMWNwOBysXbu209c7kX79+nHGGWdgMBh+92vl5+fjdrsZPHgwERERPvvGjh1LQEBAu8/Y85yfeeYZn9lxERER3HvvvdhsNj744IN/633U1NQwatQoNBoNL774ond7a2sr77zzDkOGDMFqtWKxWDjjjDN4++232y3NctNNNwGcsBKCy+Vi1qxZKIrCjTfe+G+1V5IkSfrvNm7cOM4///x21aajoqK88cyKFSv+7fvExcV5l/L9I67V1RyTJya47777fGahGwwGnn32WUCtWt5ZWq0WvV7f4b6pU6cC6nK8Ht3NM53OXFpXY69Dhw6xZMkSkpKSuOOOO3z2Pf300/j5+fHxxx+fcGm7Yy1YsIDCwkKGDBly0vxdZ7jdbu666y4UReHiiy/GZrN59y1evJhJkyYRFhaG0WgkJSWFBx54oF1lLs8M/ZkzZ57wPnI2vyRJktQZJpOpw+2eZUWPjQege3mKE+W8/Pz8GD9+PND5eCAjI4PBgwd3utJ4Y2MjH3/8MX5+fjz11FM++6ZPn05iYiKLFy/2tvFkdu7cyfr164mNjfXm6jrDbrfz2GOPkZCQwHvvvddhLHN8XGYwGDpcfUWv13srhx7/2Xj6VR977DGCg4O92z2xkN1uZ9asWads7+/Vv3gi3X3OJ/Lqq6+i0WgYPnw41dXV3u0bNmzgkksuISoqCoPBQHx8PLfccgvFxcU+519//fXodDo++eSTE1btmjlzJkIIbrjhhlOumiNJp5P8tkn/s5YtWwbAOeec027fqFGjsFgsrF27Frvd3qlzPKX7PMf81rZt28Ybb7zBSy+9xMcff9zh+rMePXv2pL6+ntWrV/tsLy8vZ+PGjURHR5Odnd3pe9tsNq6++mr69evHww8/fNJje/bsCajP5djkBeBdS3bChAnebdXV1TidTsLCwggICGh3PU/pypOtEXwq27dvZ+jQoRw5coQFCxZw9dVXA+qgohEjRvDoo4+i1Wq5/vrrufbaa6moqOCKK67g8ccf97mOp1PLU4L6eJ4f/ssvvxx/f/9ut1eSJEmSfm/FxcW8++67vPDCC7z77rvs2LHjhMd6fuvnz5/vs93tdnsTA8cu69oZM2bMoKam5oS/sR4RERGEh4ezf//+dgkOz7Z+/fr5LIVRWloK4FMO2+N0xBnH8iRqji9h7dGVeO6PlJaWhsFgYOPGjVRWVvrs++WXX2hoaPCJ5+C3f84FBQUMHz6c9evX89FHH/HII48A4HQ6mTx5MnfccQe1tbVcccUV3Hzzzbjdbu68806uvfZan+tce+21GAwGPv/8c5qbm9vdZ+HChRQVFXnLZEuSJElSd5wqJuhK7PVH62qOqTMxwapVq3A4HP922+bNmwfgMxinu3mm051L64rly5cDcPbZZ7frLAoICGD48OE0Nzezfv36U17rvffeA/79AT8tLS1MnTqVv//979xxxx1888033k7Wp59+mnPOOYcNGzZw3nnnMWPGDFJTU3nttdcYPnw49fX13usMHDiQfv36kZOTw5o1a9rdp6qqijlz5hAYGOjtZJYkSZKkrugoHoDu5SlOlPNqbm5m2bJlWCwWhg4denoafpz169djs9kYPnx4uxhGo9F4lyzzxA0n44kHbrjhBrRabafb8NNPP1FRUeFdAnf+/Pm8/PLLvPnmm6xbt64L70adBLZgwQKg/Wdzuvpe/93+xYULF/Lyyy/z2muvMWfOHJ8YpjO6+5yP53a7mTFjBg8++CBTpkzh559/JiQkBFCLaQwfPpyFCxcyduxY7r77bgYOHMjMmTMZOHAgBQUF3utERUUxefJkampqOhyY1drayuzZs739oZL0u/qjSzlJ0m+hM8uZDBw4UABi8+bNHe7v2bOnAMSePXu828LCwgQgKisrOzzHz89PAO2WNeusriz3dvyfVqsVt9xyS4clLn/55RdhtVqF0WgUf/7zn8XDDz8sbrzxRhEWFiZSU1PFxo0bu9TOGTNmCKPRKHbv3i2EOPXz9pSiTkhIELfffrt46KGHxOTJk4VOpxOXXXaZT2nF5uZmodVqhUajEQ0NDe2udddddwlADB48uFNtPX65t59++klYrVYRHR0ttm3b5nOsp6Tj8WXBbTabmDhxolAURWzdutVn36BBg064nFzfvn0F0KUlYyRJkiTpt9KV5d46+hszZkyHS1qUlZWJjIwMAYhx48aJ+++/X8yYMUNkZmaKoKAg8cEHH3SpnZ4lQWbOnOndxkmWxPjqq6+EwWAQAQEB4pprrhEPP/ywuPrqq4W/v78YMGBAu+VKPMv6zp8/v921vv/+e+/79ZTf7q68vDxhNBqFxWLxKVUtRPfiueOd7Jl0VWeu9be//U0oiiLCw8PFTTfdJB5++GExdepUYTQaxVlnndVuGbjo6GgBeOPF468FiMjIyE617/jl3rZt2yaio6OF1WoVP/30k8+xnthv+vTporW11bu9tbVVXH/99QIQc+bM8Tnnz3/+8wmXk/OUCf/666871VZJkiRJOp7T6RS9evUSgFi0aJHPvu7EXsf7d5Z76861uppjuvzyywUg/t//+3/trrV161bv+83JyelSW51Op3jyySfFk08+Ke68807Rr18/AYixY8f6xFLdzTOd7lzasU4Ve91///0CEK+99lqH+++44w4BiHfeeeek9zly5IjQarUiMDCwS7nK45d7q6qqEsOHDxeKooiXXnrJ51jP0r9Dhw4VNTU1Pvs8Mdzdd9/ts/2dd9454XJynqWZ77jjjk63V5IkSfrf9uqrr4onn3xS3H333WLEiBECEH369BHl5eU+x3UnT5GTkyOio6OFVqsV559/vnjooYfEbbfdJuLj40V0dLRYsGBBt9t9quXe3n77bW9+oyOvvvqqAMSDDz540vs0NzeLoKAgodVqRUFBQZfa+Je//EUA4uGHH/bGs8f+jRo1qt1z9qioqBBPPvmk+Mtf/iJuu+02kZqaKgBxxRVX+BzX2NgoAOHv73/C6wAiIiLilO3tbtzn6Rs8/i8gIEC8/fbbp7yv597dfc4cs9ybzWYTF198sfezP3YJtn379gm9Xi9SUlJEYWGhzzWWLl0qNBqNuOiii3y2L1iw4ITLyXlysOedd16X2itJp4McpCT9V+pMJ1xaWtpJEy/Dhg0TgFi7dq13m16vP2nQEBMTIwBRXFzcrXZ3ZpDSihUrxFtvvSX27dsnmpqaRHFxsfjqq69ESkqKAMTll1/e4Xm7d+/2Drw69gf2+eef71RHmMfSpUuFoig+A3k687z/+c9/CrPZ7HP/AQMGiIULF7Y7dsKECQIQ99xzj8/2AwcOiICAAAGI9PT0TrX32EFKH3/8sdDr9SIrK6tdoq+yslJotVoxcODADq+zbds2AYgHHnjAZ/vMmTM7fO8bN24UgDjjjDM61U5JkiRJ+q115ve6rKxMPPHEE2LLli2ipqZG1NTUiJUrV4qxY8cKQKSmprZbt10IIWpqasSUKVN8fucVRRE333xzl/5hXlpaKsLCwsS5557rs/1UHTmrV68W8fHxPvePjIwUb7/9drv11J977jkBiGHDhvkMRGpsbBRnnnmm9/zuxnNCCNHS0iKGDx8uAPHKK6+029/deO5Yv/cgJSHUQVzBwcE+zzk1NVV8+umn7Y698cYbBSAuueQSn8FC5eXlIiEhQQDCYDB0qn3HDlJasmSJCAgIEDExMe0GnLtcLhESEiKioqI6jNdramqEoihi6tSpPtuXLl0qADF8+HCf7cXFxUKn04mIiAjhcDg61VZJkiRJOt59990nADFp0qR2+7obex3r9x6kJETXckyffPKJAERKSoqoqqrybnc4HN7BwMfn3zrDZrO160i6+uqrO+yQ6m6e6XTl0o53qtjrpptuOml+8NFHHxWAeOGFF056n6eeeqpbA36OHaSUl5cnMjMzhV6vF5988km7Yy+66CIBiF27dnV4rX79+onw8HCfbXV1dcLPz09YLBZRV1fnsy87O1sAYvv27V1qsyRJkvS/KzIy0ue3+pxzzhGlpaXtjutunqKwsFCMHDnS5x56vV488MAD7SaldcWpBik9//zzAhCPPfZYh/vfe+89AYibb775pPf58MMPuz0Q5dZbbxWgTqrr3bu3WLVqlWhoaBA7duwQZ5999gkHvwihDvA6Pk94//33t8uvFBUVnTQ2cjgcXcohdSfu+9e//iW+/PJLkZ+fL2w2mzh06JB47bXXvMe/++67p7zvv/OcPc/x2IHhxxdTEEKIu+++WwDixx9/7PA6F110kdBqtaK+vt67zeVyeb9r+/fv9zl+0qRJAhBz587tcpsl6d/VcY1hSZJOixUrVrBixQqfbUlJSUybNq3b1xw9ejSjR4/2vrZYLEydOpUhQ4bQt29fPv/8cx566CH69u3rPeann37isssuY+DAgXz00UdkZmZSWlrK22+/zWOPPcb8+fNZuXLlCcuOe9TW1jJt2jQGDx7Mfffd16n2CiG46667eOedd3juuee46qqrCAoKYtu2bdxzzz2ce+65vP3229xxxx3ec9544w2GDx/O3/72N9atW8fw4cOpqKjg22+/JS0tjW3btnV5bdQ333yTuXPnMnz4cH744QefdW0BNm3ahMvlQlGUduv7grp0CEBOTo7P9ssuu4x77rmHb7/9lrfeest73ffffx84uiScJEmSJP1fEBERwTPPPOOzbdSoUSxZsoQRI0awYcMGZs6cyV133eXdn5eXxwUXXIDNZmPBggXe5Sfmzp3Lfffdx9y5c1m3bl2nlsq66aabaG1tZebMmZ1u8yeffMJNN93ExRdfzBNPPEFiYiL5+fk8++yzTJ8+nZUrV/LVV195j7/rrrv4+uuvWbt2LT179mTSpEkIIZg/fz6KohAYGEhdXZ031uhqPOdyubj66qtZs2YNl156Kffff3+7Y7oTz/3RXnnlFR599FFmzJjB9OnTiYqKYu/evTzyyCNceeWVbNu2jVdeecV7/DPPPMPixYv55ptv6NevH+PHj6epqYm5c+cSGxtLQUFBl+O5b775hiVLlpCWlsbChQtJSEjw2b9//36qq6tJS0vjueee6/AaZrO5XTw3btw4UlJSWLNmDTk5OWRlZQEwa9YsWltbmTZtmneZHkmSJEnqir///e+8/vrrZGZm8vHHH7fb353Y64/W1RzTZZddxscff8zixYvJzs7mwgsvxGQysXTpUkpKSkhISPCJC7Zt28acOXN87hkUFMTdd9/ts81kMiHUCbgUFxezdOlSHnnkEQYOHMiiRYtISkryHtudPNPpyqX9Udxut3fp5FtuuaVb19i3bx9Dhw6lqamJhQsXMn78+HbHrFu3Dr1ez9dff83XX3/dbr/D4aCiooKqqirvEsxWq5VLL72UDz74gE8//ZTbbrsNgLVr17Jnzx4GDRrUbhkYSZIkSToRzzJuZWVlrF27locffpgzzjiDH3/8kf79+3uP606eYuvWrVx00UVERESwatUq+vXrR21tLZ988gmPP/44c+bMYdOmTQQGBv6u77krPEuQdRQP5OXl8eGHH7bb7ukjc7vdgLpk8Q8//OCNr3r37s33339PRkYGK1euZN26de2WvcvMzEQIgcvloqioiO+//56//OUvrF69mvnz53uXLzvduhP3Hb/UWXJyMvfddx8ZGRmcf/75PPbYY6dcwu1kz7kzysrKGD58OIcPH+aTTz7hiiuuaHeMZ4m9lStXsmnTpnb7y8vLcblc7N+/nwEDBgDq0oA33HADf/nLX5g5cyYvv/wyAIWFhSxatIiYmBjOO++8brVZkv4tf+gQKUn6jfynLPfmqeJz7N+JRhUfe/zJKimdzJVXXikA8fe//927raqqSgQHB4vY2NgOSzt7Zjx1tLzF8a677jphNpvF3r17fbaf7Hl7Zr4fP2pZCCFKSkqE2WwW/v7+7Wa6HTx4UFxzzTUiOjpa6PV6kZiYKB5//HGxatUqQVsZyc7wPNOQkBABiCeffLLD4zwz+071N2bMmHbn3nLLLT7PvbGxUQQEBAg/P792M8IkSZIk6Y/SmfjoZN5//30BiIsvvthnu2fGfUeznd944w3vLOxTmT17tgDE7Nmz2+3jBDOqPGWOBwwY0K5iksvlEgMGDPBWVDxWQ0ODeOSRR0RaWpowGAwiNDRUXH311aKwsFD4+/sLnU7nndnVlXiutbVVXHbZZQIQf/7zn084G+5kOornOnKiZ9Idp7qW57szZcqUdvuamppEbGys0Gg04tChQz77SktLxR133CESExOFXq8X0dHRYvr06eLAgQMC1KWAO8MTT3riueuuu0643e52x61evbpT8VxSUlK7c1988UUBiHvvvVcIIYTb7RbJyclCUZTTUplCkiRJ+t/z1ltvCUBkZ2eLkpKSLp9/otjreL9nJaXu5pgcDod46aWXRK9evYTRaBSBgYHiwgsvFDk5Od782+HDh4UQHS+Lm5iY2Kn2r1u37oQz2LuSZzqdubSOnCr2Oh3Lvf34448CEEOGDOly+zyVlDyxV79+/U5YKUKn03Uq/srLy/M5z/NZ9e/f37vtuuuuE+C77LMkSZIkdVVeXp4wGAyiZ8+e7fZ1JU/hdDpFamqqMJvNHcZynqo2J+pzOpXfY7m3Xbt2CUDExcX5VI/y8OR7jv/zePDBB08aT9xwww0CEG+88cbJ3qrX559/LsC3yuPpXO7N43T1LwohRGxsrADEjh07TnjMqZ7zqQAiKChIaDQakZCQcMIlnz1L5p3qb8WKFT7nFRYWCq1WKyIjI735zqeffloA4vHHH+9yeyXpdOja1FVJ+i+SkZEBqDOuj9fa2kpubi46nY7k5OROnVNSUkJTUxNxcXFYLBZAHW0s2mZ1ef6On4l/OoWHhwPQ1NTk3bZ27VpqamoYPHiwt13HGjt2LABbtmw55fV//fVXbDYbmZmZKIri/fNc49NPP0VRFPr16+c958cff/S5z7GioqLIzMyksbGRffv2+exLSUlh9uzZFBcX43A4yMvL49lnn/U++zPPPPOU7T3Wv/71LwYPHszTTz/NX/7yl3b7PSPd77nnnnaf2bF/y5cvb3fuzTffDOCt+vDFF1/Q0NDApZdeitVq7VI7JUmSJOk/VUdxRkNDAytXriQkJKTD2c5djTMArr32Wp84Q1EUAIqKiryva2trAViyZAlOp5PRo0e3mwWl0WgYNWpUh/f39/fnhRdeYP/+/djtdiorK/noo4+w2+00NjbSt29fb+WczsZzTqeTyy+/nC+++IIrrriCzz77rFsz6zt6zn+0k8VzFouFQYMG4Xa72bp1q8++yMhI3n77bfLy8nA4HBQXF/PWW29RUFAAdD2ee+GFF7jggguYNWsW119/vXdGn4cnnpsyZcpJ47nc3Nx2177uuuvQ6/V89NFHOBwOli1bxuHDhxk7diypqaldaqckSZIkvfHGG9x555306tWL5cuXExUV1eVr/CfGBN3NMen1eh566CF27txJS0sLtbW1zJkzh6SkJA4cOEBYWJi36ua0adPa/Xbn5eV1qn1DhgwhKCiow1itK3mm05lL646T5R8BDhw4AEB6evoJr/HvzuYHOP/883nhhRfYtm0b48ePp6qqqt0xgYGBBAcHnzT2EkKQmJjoc96QIUPo06cPv/76K7/++isNDQ189dVXWK1WLrvssm63WZIkSZISExPJzs5m9+7dVFZW+uzrSp5i7969HDx4kKysrA5juf9L8cCJqgCNGTOmw9/t49sQFBTU4fU9K4vYbLZTvBvVueeeC+ATq/n5+REbG0tjYyMlJSXtzunM+zze6exf7ExMfqrn3Bl9+/Zl9uzZFBUVMWrUKA4fPtzuGE/eq66u7qRx17HV2wFiY2OZNGkSZWVlzJs3D7fbzQcffIBGo+HGG2/sVnsl6d/1n1mPVpJ+B+PGjePTTz9l0aJFXH755T77fvnlF5qbmxk1ahRGo9HnnDVr1rBo0aJ2pQsXLlzoPeaPsmHDBgCfgVV2ux2AioqKDs/xbDcYDKe8/sUXX8zAgQPbbS8pKWHBggWkpKQwZswYn6U3Tuf9AW959I5KHZ5MUFAQP/30E+eddx7PPvssLS0tPkuSDBo0CI1Gw6pVq7p0XYD+/fszYMAAtmzZwsaNG72DlTyDlyRJkiTpv8H69esB3zjD4XAAUF9fj8PhaPd73pXf+aFDh9LY2Njhvn/9619YLBZvzOaJz053nPHRRx8BXY8zHA4Hf/7zn5k7dy7XXHMNs2bN6vJSZh4dxXN/tP+U52w0Gvnmm2+48sor+fDDD7Hb7Xz00UfewWCZmZkEBQWxfv16nE5nl5Zoi4yM5IILLuDbb79lzpw5fP/994CM5yRJkqSue/nll3n44Yfp168fP/30E2FhYd26Tkex1x/tdMcEX3zxBQ6Ho11errsaGhqor68nICCg0+d0lGc63e+zqzydnkuWLMHtdvvElQ0NDaxZswaLxcKQIUM6PL+4uJj58+cTGBjIpZde+m+15ZFHHsFsNnPPPfcwZswYli5dSmRkpHf/kCFDmD9/Prt376Znz55duvZNN93EnXfeycyZM+nbty9NTU3ceuut+Pn5/VttliRJkqTi4mKATg8Y6ShP4YkHjh/o5PFbxwNDhgzBbDazZs0aGhoafOIbt9vNkiVLgI4nlAG0tLTw8ccfo9VqueGGG7rVhvHjx6MoCnv27GkXkwDs2rULwDvY/FSKiooA2k3qGzduHB9//DGLFi3iuuuu89l3Ovteu9q/WFdXx969e1EU5YTv8XQ8Z4+rrroKk8nEFVdcwahRo1i2bJnP4KwhQ4awZcsWVq1a1eUl2m6++WbmzZvHzJkz8fPzIz8/n3POOafdQHJJ+t38FuWZJOmP1pnlTOrq6kRYWJgwGAxi06ZN3u02m00MHTpUAOLzzz/3Oefw4cPCaDSKkJAQkZub691eXV0tUlJSBCDWrl3b7XZ3Zrm3Y9vq4XK5xAsvvCAAERYW5rPEWFFRkdDpdEKj0YjFixf7nFdQUCDCw8MFIObPn++z7+DBgyInJ8db+u9kTva8X375ZQGInj17itraWp99//jHPwQgoqKifEogtrS0iJaWFp9j3W63eO655wQgLr300lO2ycPzTD3LvDQ1NYnx48cLQMyYMcPn2KuvvloA4plnnumwJOPBgwe95ceP989//lMAYuTIkQIQffr06XQbJUmSJOn30Jn4aMuWLe2WTRNCiKVLlwqj0SgAsWbNGp99WVlZHZYHttlsYsyYMQIQDzzwgM++4uJikZOT0y42OBFOsCTGhg0bBCDMZnO75ea2bt0qTCaTUBRF7Nq1y2dfR8uxLlmyRJhMJpGSkiIaGxs71S4h1Lhl0qRJAhA33HBDh8/veF2N5zpyomdyrM7Gc6e61pdffikAERkZKQoLC332LViwQCiKIkwmk8+SyC6Xq91yvkII8dFHHwlFUcSwYcM69ayEOLrsi2dJldbWVnHVVVd5l8A59v098cQTAhC33nqraG5ubnet4uJisXv37g7vs2jRIgGIQYMGCaPRKMLCwoTdbu9UGyVJkiRJCCGeeeYZAYgBAwaIqqqqUx7fndjreJ1Z7q2zsdeprtXdHFNHcc3WrVtFWFiYCA4OFkVFRSdt17F27NghbDZbu+12u11cc801AhBXXHGFz76u5pl+61xaZ+K4s88+u8MlgO+55x4BiFtuueWE53q+hydaHuZUPMu9Hbtk8z/+8Q+hKIrIyMjw+byWLl0qADF06NAOP8fGxkaxbt26Du9TU1MjzGazCAwMFH369BGA2LJlS7faLEmSJP1v2bdvX4dxjcvlEo8++qgAxLBhw9rt60qeoqWlRQQFBXXYZ1dTUyMyMzMFIP7f//t/Pvvy8/NFTk5Oh0vGHutUy70JIcTNN9/sszS9x5tvvikAMXHixBOe+9FHHwlATJ48+aTtOJULLrhAAOKvf/2rz/bFixcLRVFEUFCQz2exZcuWDvvXGhoaxIQJEwQgHn30UZ99a9asEYBISUnxWWI2NzdXhISECKPR6NMnK4S6DFxOTo6oqKjw2d7VuK+kpEQcOXKkw/Z6lvg966yzOngyqtPxnAExevRo7+u5c+cKo9EooqKifHKaOTk5Qq/Xi7S0NLFv375217Hb7eKXX37p8B6tra0iLi5OaDQaMWzYMAGIb7/9ttttlqR/lyLEMXXbJOn/sDlz5jBnzhwASktLWbx4McnJyYwcORKAsLAwXnvttXbnXHLJJZhMJi677DJCQkL44Ycf2LdvH5dccglfffWVd4kRj7feeosZM2YQGhrKpZdeisFg4JtvvqGwsJD77ruv3T1O5aWXXmLv3r0AbNu2je3btzNs2DDS0tIAGDFihE+5PUVR6NWrF3379iU2Npa6ujrWrFnDrl27sFgsfP/995x99tk+93jmmWd48skn0Wg0TJ48mczMTEpLS/nuu+9obGxkypQpfPfddz7nJCUlkZ+fT25uLklJSSd9DytWrGDs2LFceeWVfPLJJz77GhsbGT58ODt27CAiIoILLriAoKAgfv31V5YtW4ZWq+Wrr77i4osv9p6za9cuRo4cyVlnnUVSUhJOp5Off/6ZnTt3MmLECObPn9/pZdSeeuopnn76aZYvX86YMWMAdWTzn/70JxYsWMDNN9/MP//5TxRFob6+nokTJ7J+/XrS0tIYMWIEkZGRFBcXk5OTw6ZNm/j88887LDvd0NBATEyMtwLEW2+9xfTp0zvVRkmSJEn6rXQ1PhozZgwHDhxg2LBhxMXFAbBjxw6WLVsGwLPPPsvjjz/uc4+lS5dy3nnn4XA4GDx4MMOGDcNms7Fw4ULy8/NJTU1l/fr1hIaGes+ZNm0as2fPZtasWUybNu2U70NRFGJjYyksLGy37/rrr2fWrFkYDAamTJlCYmIieXl5zJkzB4fDwd13383f/vY3n3NiYmLo06cPmZmZmEwmfv31V5YuXUpUVBQ//fRTl2aBX3fddXz44YeEhYVx++23t4sdQX2unjjE8366Gs/t3buXl156yft69uzZWCwWpk6d6t322muv+VRrOFE819Vrud1uJk6cyNKlSwkICGDKlClERUWRk5PDjz/+iBCCN954g7vuust7fmNjI5GRkZx11lmkpKSg0WhYs2YN69atIysri6VLlxITE9OpZ/zhhx9y3XXX+Xxf3G43t9xyCzNnzmTy5Ml88803GI1GnE4nl1xyCT/88AOxsbGMGzeO2NhYysvLOXDgAGvWrOH555/n4YcfbncfIQTJycneJWW6E9tLkiRJ/7tmz57NtGnT0Gq13Hnnnd7lGI6VlJTkE/t0J/YCfK6xaNEiysrKuPjii70z7G+88UZGjBjhc/yJYq+uXqs7OabBgwdjNpvp1asXAQEB5OTkMH/+fMxmM/PmzWu3JMXJ3H333cyaNYvhw4eTmJhIUFAQxcXFLFmyhNLSUjIyMli+fDnR0dHec7qTZzqdubTuxHGHDh1i2LBhlJeXc+GFF5KVlcWGDRtYvnw56enprF271ie+9nC73SQnJ5Ofn8+OHTvo3bt3p5+tR15eHj169ODaa6/lww8/9G7/8MMPueGGG+jRowfLli3zVlJ/+eWXvRWXJk2aRI8ePWhsbCQ/P5+VK1cyYsQIFi1a1OG9rr32Wm/1igEDBrB58+Yut1eSJEn63/PGG2/wyCOPMGLECHr06EFoaChlZWWsXLmSw4cPExUVxc8//0x2drb3nO7kKWbPns11112HEILx48dzxhlnUFNTww8//EBFRQVDhgxhxYoVPiuyjBkzhpUrV/r0SYFaken+++/3vv7mm29oamrimmuu8eaSHn74YTIzM73HVFVVMWzYMPbv38+4ceMYNGgQOTk5zJ07l4iICNauXUtKSkqHz2jkyJGsXr2aH374gfPPP7/bz7qwsJBhw4Zx5MgR7zPIzc1lzpw5KIrCF198wZ/+9Cfv8RdddBFr1qxh2LBhJCQkYLFYOHLkCAsXLqS2tpZhw4axePFi/P39fe5z33338de//pW4uDguueQSHA4HX375JVVVVR32t3n6/p588kmeeuop7/auxn0rVqxgwoQJDB06lPT0dCIiIigqKuKnn36itLSU5ORkli9f7rOCzOl+zoqiMHr0aJ9l8BYvXsyUKVPw8/Nj6dKl9O3bF4BPPvmE66+/HiEE55xzDunp6TidTgoKCli1ahXh4eHePufjPfnkkzzzzDMAREVFceTIkXZVrSTpd/NHjpCSpNPJUzHnRH+JiYkdnrd69Wpx7rnniqCgIGEymUSvXr3EX//61w5H+nr88MMPYtSoUcLf319YLBYxcOBA8eGHH3ar3Z5Zaif6O3bWkhBC3H///WLUqFEiOjpaGI1GYTabRUZGhrjjjjvEoUOHTnifOXPmiHPOOUeEhYUJrVYrAgICxNChQ8U777zT4Xv1jOI+fnRyR05VmaGhoUE8/fTTom/fvsJisQidTieio6PF1KlTxYYNG9odX15eLq644grRo0cPYTKZREBAgBg8eLB4++23TzqqvCPHV1LysNvtYsqUKd5n7Bkhb7fbxVtvvSWGDh0qrFarMBgMIj4+XowbN0787W9/86kQcLwbb7zRW82hpqamS+2UJEmSpN9CV+OjmTNnivPOO08kJiYKPz8/7+/gn//85xPOxBFCiO3bt4urrrpKxMfHC71eL0wmk8jOzhaPPPJIh7+J1157rU9lnFPhJLPN3W63mDVrlhg9erQICgoSWq1WBAcHi3HjxrWriulx//33i169eomAgABhMplERkaGeOihhzpV8eB4p4rlAPHkk0+2u39X4zlPvHWyv+PjthPFc925lsPhEH/729/E4MGDRUBAgNBqtSI8PFycd9557SoMeI6//vrrRXp6urBYLMJisYi+ffuK559//pSzCY93fCUlD7fbLaZPny4AcfbZZ3srJ7ndbvHRRx+JcePGieDgYKHX60VMTIwYPny4eP7550VBQcEJ7+WZWQeIvXv3dqmdkiRJ0v+2U8VdHDdDWojux16nus/xv5kni726ei0hup5jeuWVV0T//v1FYGCgMBgMokePHuL222/vcNb6qaxevVrccMMNIjs72yf2Gz58uHj11Vc7jDO6m2c6Xbm07sReQqhVm6ZNmyaioqKEXq8XCQkJ4q677vKpMHC8BQsWCEAMGTLkxA/xFDqqpOTx2WefCZ1OJxITE33i1lWrVompU6eK6OhoodfrRVhYmOjbt6+45557Oqwi6rF69WrvM3j33Xe73WZJkiTpf8vOnTvFHXfcIfr27StCQ0OFVqsVVqtVDBw4UDz55JMd5ne6m6dYuXKlmDJlioiKihI6nU74+fmJ/v37ixdffLHD6o6ePNHxfVKe39eT/R1/jhBCVFVViRkzZoiEhASh1+tFVFSUuO66604aR+3Zs0cAIi4u7qR9nZ1VXl4upk+f7m1DaGiouOiiizrs3/vxxx/FlVdeKdLS0oTVahU6nU6Eh4eL8ePHi3ffffeksdesWbPEwIEDhcViEf7+/mLUqFFi3rx5HR7rib2Pz7l1Ne4rKCgQN998szjjjDNEWFiY0Ol0wmq1ijPPPFM899xzor6+/oTtPV3PuaN/JwihxpD+/v4iODhYbNy40bt9x44d4tprrxUJCQnCYDCI4OBg0bNnT3HzzTeLn3/++YT3KSgoEBqNRgDikUce6XZ7Jel0kJWUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TWn+6AZIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvTfTQ5SkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpNyUHKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9JuSg5QkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfpNyUFKkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9puQgJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSflO6P7oBkiT952hububJJ59k48aNREVFkZ6ezrPPPvtHN0uSJEmSJOm/0pNPPsnBgwcpLS2lf//+PPPMM5jN5j+6WZIkSZIkSf91WlpaePbZZ9m6dSsREREkJiby9NNP/9HNkiRJkiRJ+q/07rvvsn37dkpKSsjOzuYvf/kLRqPxj26WJEn/IRQhhPijGyFJkq/m5mb++c9/8uOPP3Lw4EFqa2sxGAwEBASQn5+PEILU1FQcDgcFBQUYDAbi4+OprKykrq6OsLAwjEYjRUVFAISHh+Nyuaiurkar1WI2m3G5XNhsNvR6PW63G5fLdcL2aDQatFotTqcTAH9/fxRFoaGhAX9/f8xmM83NzTQ1NREZGYler6ewsBCA1NRUXC4Xubm5BAUFkZqaSkFBAeXl5WRkZBAUFMSOHTvw9/cnNTWVpKQk7r//fvr37//bP2hJkiRJkiRg06ZNzJo1iy1btlBUVER9fT0hISE0NjZSXV2N1WolJiaG3NxcWlpaiIuLQ6vVkp+fD0BsbCwOh4OKigr8/f0xmUw0NTVhs9kICAjA7XbT1NQEgF6vx+Vy4Xa7T9genU6Hoig4nU4sFgtarZaGhgYAQkND0Wg0VFRUoCiK997l5eVEREQQHBzMwYMHcblc9OzZE71ez7Zt29BoNAwePJiKigqqq6uJiIggJSWF8ePHc+utt8rBUZIkSZIk/S5aWlr47rvvmDdvHjk5OZSVlSGEwN/fn/z8fFwuF8nJybhcLvLy8tBoNCQnJ1NVVUVNTQ2hoaGYTCaKi4sRQhAWFobb7aa6uhqAgIAAWltbvTkvIQStra0nbM/xOS8/Pz80Gg0NDQ34+flhNptxOBzU19e3y3mlpKQghODw4cMEBASQkZFBcXExpaWlpKamEhwczIEDBwgMDCQhIYH09HRuv/12+vXr95s/Z0mSJEmSJIBDhw7xxRdfsGHDBvLy8qiursZgMGCz2aiqqsJsNhMbG0tBQQFNTU3Exsai0+l8cl5Op5Py8nIsFgsWiwWbzUZTUxMBAQEIIWhsbAQ6l/PSarVoNBqcTidmsxmdTkdzczMul4uQkBC0Wi0VFRXee7e2tlJWVkZYWBihoaEUFBRgs9nIysrCZDKxY8cOdDod/fr1o66uDrvd7h2QPnHiRK688ko5OEqS/gPJQUqS9DtYuHAhr7/+Ojt37qS1tZW6ujpcLhd+fn4YDAZqamoAsFgsOByOkyZPPCwWC3q9nrq6OvR6PXFxcQghyMvLIyMjA5PJxK6du3C5XZx55ploNBo2bNgAwKhRo3C5XKxZs4Zhw4YREBDAzp07KS4uZtKk8ygrKyUwMJB9e/dRVFzExIkTEUKwZMkSNIqGUaNH4XA4WLt2Lf369cNoNFJcVMyRwiP07dsXIQQ7duwA1EFKLS0tFBYWegc3eQKOk1EUBT8/P1qdrbTYWwgLCyMwMJBDhw4B0KdPHwBaW1sZP34806ZNkwObJEmSJEnCZrPx4osvMm/ePIqKinA4HNTV1QHqAJ+mpiZaWlrQ6/To9DpsNtspr6nT6TCbzd4Or7i4OEwmEwcPHgSOxiU7duwguUcy4RHhNDU1sWvXLoYNG4Zer2flypUAnHXWWSiKwpIlS8jIyCAmJobGxkbCw8NZsGABPbN7Ep8QT11dHevWrWPkyJFoNBrv+UOGDMHlcrFp0yZCgkNISEzAZrOxb98+kpOTATh8+DAAgYGBOJ1OmpubT/kejUYjRqOR+vp6AHr06IHNZqO0tJTQ0FDS0tIoKSmhf//+XHbZZUyYMIGQkJCufDSSJEmSJP0X2rhxI2+99RYbN26krq6O2tpaHA4HZrMZk8nkHTxkMVtwtjq9g4FO5ticF6hxCUBubi5paWlYLBby8/Opra3tMOcl3IJVq1cxZMgQAgMDKSosYtfuXZx77iQqKsqxWq0UFxezd+9en5wXwJgxY3A6naxZs4bevXtjsVioqqri4MGDHea87HY7R44c8Q5ustlsp8zreXNera20tLQQEhJCcHAwhw4dQlEUevXq5Y0/x40bx5VXXklmZmb3PiBJkiRJkv5r2O12PvjgA+bNm8e+fftoaGigurraO8DHZrNhs9nQ6XTo9fpO5by0Wi0Wi8U7wS42Nhaz2eyT81IUhe3btxMXF0dsbCw2m40dO3YwdOhQDAYDq35ZhVu4mTBhAhqNhp+W/ERUVBRZ2Vnegd4L5i+gR3IP0tPTaWxoZPWa1YwYMQKtVuuT83K73WzcuBGdVkev3r1oaWlh79699OjRA0VRKCwsxOFwEBQUhMPh6FTOy2AwYDKZvDmvxMREnE4npaWlBAcHk5qaSnNzM0OGDOH8889n9OjRWK3Wf+OTkiTpVORyb5LUTc3Nzbz88svMnj2bkpISHA4HoP7Y6fV672x5rVZ7wgE5Go2GgIAA7yClnj17YjKZWLVqFaGhoUycOBGn08mCrxdz9a1XEBgYyJ6Fh7DthKH3ZaEoCmuf3QMGGHZ1Nm63m/XP7+XMKWnoDXpGDxrHnplHGHqOemzAxngAho5WX5vXRmM5oKHfbZn06tGb7e/m4VgI5z1xHo4GJ5rlIYwZHEjKoFhstS24f7KSNS2e4PgAGiubsKyLYcjkTDQaDVv/sYcMZTDDLswGIGJnOoTBsCuOtmvQjHT0ej2VJZVsfS+X0Y/0xeFw8P7rH2KnmUuvmUptbS0//PADffr0wWq1cvjwYYqKivDz8/MJNjwJIYA9e/bwzjvvoCgKra2tBAcHExgYSF5eHgAZGRkoikJiYiJvvPGGTOxIkiRJ0v9BBw8e5N5772XNmjXU19d7O3/8/f2x2+04nU40Gg1CCE40D0Ov1xMaGkpRURFRUVEkJiVSUVbBvgP7uOCCCwgMDOSbj7/DTADX3XclOp2O1S/vYvDtGQQEB+BwONj00gGGTFPjn7XP7gFg2EXZCCGI2JmO2c/MGRN74Gp1EbU7k74DeuAXbCYjtDeHvy+lX1YKpgADwSUxVO1q5Mzz0tH761j77B4mKJfQd3QSfmEW1r6uvh42Vr22/pdw9V5nq68DNyfS9yr12nabnS2vHWLIFce16y712HXP5RAzNYDoHhFUV1fzxfvfMPnyc1AUhS8+/wK3cDNkyBBsNhsbN25EURTcbrc39qqqqqKqqgqA/Px8vv/+ewwGgzf+TUhIoKWlhfLycgIDA+nRowctLS3ceuut3HXXXb/dl0KSJEmSpN/M+++/zz//+U8OHjxIU1MTbrcbnU6H0Wj0zpY/Vc7L39+fmpoahBD07HU056VVtFx6+aW4XC4Wf7mMqTddREhICIX7Symb0+Sb88I359V/cgqmACN15U3sfjefoROzUDTH5bxQMK6JhO0w6L5sGuKaiNqTiXMRTHpiEvY6J1uWH6B31mAy+sfTUu/A/ZOVHudFEN0/jMZKG+a10QyenIFWr+XXLw+TpPRj6AVquyJ2pqvtOibndeaMNAwGA/VV9Wx6+wAjHu6F0+nko9e/pJl6/nTNRdTX1zNnzhwyMzMJCwujoKCA/Px8AgICvJ2IQgh27tzpfY5r167lhRde8FZ7CgoKIjg4mNzcXBRFISUlBYvFQnZ2Ni+++CJJSUm/1VdCkiRJkqTfSGFhIS+88AJLly6lpKQEm83mLXTgdDpxOBwoigJwwpyXQW/AYrFQWFhIWFgYqampVFdXk7Mnh/MmTyY4OIi5H8/Hgj9X3jcVvV7Pmpd2k31pAlFpYTidTja+uJ8h17Xlll7ZA3Y15wUQviMNYwMMmJiNy+kiYmc6mamxhPQIJDOkN4fmlJIdl4A1ykJgYQw1OY30Pb8HflFm1j63h/HKn8gYHEdwcgBb385hgnIJQ8dkg3JczsstsG5KIO3P0YSnBWO3OYjbd5AhVx6T81Jg2IyjOS+/LMg8P4Xa2lq+efcHJlw6Cq1Wy9KfllJRUcGQIUOw2+3eQe2g9vG63W6fnNfOnTt5//33fXJe8fHx3urpVquVpKQkzGYzN9xwA1dddZWs0iRJ3SQHKUnSCRQUFDB9+nRWrVpFfX09iqJ4Ey86nQ6Xy9VhMKDX6wkJCfEOUhoyZAgWi4WlP/1MWFAYV067Ar1ez9bXchk8IwOdTsfBlQWUrWzwDiYyro6EanVGltvtpkYRBPoFYTIZSR4Sz+6dR3xv2qwGJp4gJffnYtLPTcTsb1J3V7XgF2YmclAgZRvraCprwRCoIzDNQt2BZrb9Yy/9bstk0P0ZbHxtn/eygWkWUibG4mhwsvVtdUa+waLF5XCz4x9qqUcF9Z62SsCinucp5ZhxdiwALXV29VhFQQjBvvfLsCjqrDi9Xs8gZSzmOEhKSsLlctE8z8Cg89LR6XSkBWdTUFzF0GuOJqiaRTPDH+hJWVkZn370KQMGDiAoJIhdu3ZRXFxMQEAAdrvd+z727VPf0969e8nKysLf3x+n04ndbicyMpLQ0FAOHz5McnIy1157LQ8++GA3vjGSJEmSJP07Pv74Y15//XUOHDjg00mj0WjQaDQnnJHu5+dHgH8AJaUlREdHk53dk9KSEnJ27eXq664iNDSUda/lYFbMDLv5aAIjY0IsoQmBOB1ONr18gD591GTHcOVc73UBzIqZHTMLGHZ/NhpFA4CjqRVTgIH48aEc+bkK4RIo2raYaLcNpoDiVl9vfzuXQQ9mYAlWkxZb3zrEmfekkzElga2Vh33ey6D7M9CZtax9bQ/YICTLgqPJSXO5mhiJGxUGQF1h29JxRvWfc3u+UZf49cRax/K8Do9Ul0YJMAQyWBlPamoqiqIwjovV5M5o9dlYNyWQ8udIojKPJqj6P5BMS0sL7/79fZzYOfucs2lsbGT16tVoNBoURfF+ZnV1dWzbtg2Au+++m/vvvx8/Pz9vJYSsrCwaGxtxOp0MHz6cl156idTU1M5+TSRJkiRJOg1qa2t58MEHWbJkCaWlpbhcLm+sdbKcl06nIzg4mKamJoQQDBo0iIAAKz8v+RkDJm6+6waMRiO/vnqYQXemozfoKd5dQe635b45L9SclxCCKsWFn9aKyWQiIjKMMpoQ7qOxFfjmvPZ8W0T/ackYzXoAqnMbCE2xEjM0hOJ11dQcaMQv2khQmpnaAzbWvb6HYQ9kc+Y96Wz6237vNU0RJrKmJmKvc7LtHTUms4SacDa3suMfuepBLkALLftbADXWcrvU5xI3Vq0o2VKrxmkaoQ6W3/mvI5gUEwaDAYPBQF9lCKDmvNxuN41zdZw5OQ29WU/FoVoOFBT75LxaRAtDH8iisrKST2d9Rna/LCIjI9mbs5f8AnVAU0tLi/e5eKoc7Nixgy+++AI/Pz/cbjc2m42wsDAiIyMpLCwkOzubq6++mttuu+3f+epIkiRJktQNixcv5s0332Tr1q1UV1fT2tqK2+1GURS0Wu1Jc15arZaSkhLCw8Pp27cvVVVV7Pl1L3++5hIiIyNZ/+pejIqRYbcczXlFZQaRPCoGp72VmJxs+vbJQKvTMjJiHPaKozkvo2Lk0OdlRD4RiuJSY62GkmYCY/1JHBtJ/qIyXHY3WqMGjGCvB3erUGMkYO8nRQyYYcHgp8Zle2YX0PfGHmT9KYEdHx7yeS9n3J6COcTIlr/vxV4P/nFGWmpaaK5UY6nQnlYQUJvbAIAl0AzA4XnqMruK6CDn1baqXHy/GEwmE366AM5QhpOWloZGo6H8c4ea8xqjPpuAjfGEDPQja1ISrc5WNry4jzPu74HT6eTLD76msr6S8eeMpampiVWrVgHqoHybzYbb7aa2ttab81q3bh233nqrT84rIyMDu92O0Whk5MiRPPzww6SkpHT9CyNJ/wPkICXpf9ratWu55ZZb2Ldv3ynLTXvWUgV1zXmr1cqmTZuwaC3cNP0mzGYzm18+yKC71GpBuauOULy8nqHj1ESDWBoIdWC1Wr2DeFoaHPgH6wjPCKZsZUOH9/UkYfYtL6bP5CTvwCNbrR1LsAlrtoX6Pc24nG60erXjrHJzEylnuTBY1P/Et/8jl6GPZZE8IYayjXXseD+XYU9kk/3nRNY9n0NzpZuaw41U7q7xuXfdgWYaS2wcXFACQNrFsfiH+XmDhJQLo1E0CmU71FHGaeeog5KKN5YD4B9lQQjBtg9yve/l+CDC3ao+i8QxcQA0V6uJFo1GfS8F86ranRvWNwyLxUJ8XDxjlSkMPjsDnV5HSH00lSVNDL3Wd0DTiAd7UVBQwJdffElWZhbWICu7d+/GbrfT0NBAeXk5Qgj27NnDQw89xOOPP47T6cSgN6gVFioq0Gg0TJ06leeee46wsLCTflckSZIkSWrPZrPx+OOP8+mnn1JRUeGzPv3xMYKiKOj1ehwOBxazhazsLCrKKyjIP8LlV15GTEwMW19T44tjkzCJg8KI6xOJw+YgcncGsTGxaLQazBYz2I5eG2DfV0UMuz8QrUartq/ejl+QmYSJ4RQsrsDtEmg8nWM2386xnC8K6XdjD0IzrRz5uYrS7VVEnxFGwoQICpaWU7anmsieIcSNDadweQXN5Xas8X7e/bu+OkLy+AhspS0+zyh/RRnWRD9vWzMvTgIFNn9yAID4EeG4HW72fFgAqIOUXHYXtryj13G2qImtyKFBgJpcAjWWFUJwYG7BCT8j0dbp5h9p8TnXaDRiMpkYqZwHwKBB6jM3rYkidWokkZlhOGwONr16gAEPpmCz2fjH39/FiZ3BgwdTW1tLXV0diqJw6NAh72y0b7/9lu+//977XYiMjMTf35/i4mL69OnD448/zuTJk0/YXkmSJEmSTmzbtm3cd999bN68mYaGhhPOugd18JFHcnIyQUFBbNq4CQNmbplxIxaLhc0vH2Tg9DSMFgMlOys4/H05Qyeo+Rf3TwGAutSscKv3aShuJiQpEGu4Gle4WwVavdL+5sDBuUfof1MmerMBgLojTQQnBRA+wErFlnocTa3eHFfLkRZaW1wYTOrrfZ8VMviBDBJGR1C8rpq9Xx5h2GPZZF2SxLoXc6AFyrbXUJvX6HPPlvIWag42kLu8AoC40WEEJQVQc0jNecWMCEVr0lKyXc1LxY8NAwHFm9XjQzMCEUKw99M8ABSNor73Y8I7l1ONceLGqXmk5mo1yFN0as7rwHfF6mvl6HMxmU2YzWZio2MZpZzPwLPUZx6tT6LwSBVDp/lWmTrj/h6Ulpby2cdfkJqWTEhYCHtz9mKz2WhubmbPnj1qrLxuHevWrWPGjBm0trai0+lISkqipqYGPz8/LrnkEh544AGioqJO+D2RJEmSJOnE3n77bd555x3y8vJ8llnrqF/MU6nHZDLRq1cvqqqqOHK4kIsvnUJCQsLRgUe3Hs15BUWb6DksBYfNQcjWZGKj4jCY9Vh7WLHn2X3yVqUra0keFeN9XVfQSEhyINGDI8j7sRxnSyt609H4z+0SoFGP3f1pAUMfyCIo0UI+kLeyhOTxMSQMD6dgWQVFG8qJHxZJ3OgwCldWUpfbSOQZISSMU/fvnVNM0thwGgvtPu/58JISQjOs2OvV+Kjn5UloDVq2tg0WTzknGpfdRc5n6qAkY4AeZ5OLmn1HgytHo9qP699DnQhYX9TYdqxRzXktVfsyEQocF/p6BpqHpwUB0FimfkYGvRGz2UzPhqGgHM15GVdHEj7Qj/RJSThanGx6RZ3EZ7fbmf32R9S76jnzzDNpaGjwDlLKy8vzFlDYt28fH3zwgbfie0R4BAFWdWWdwYMHc9999zF+/PiTfKMk6b+bHKQk/dcrKCjgqquuYtOmTd6ZRtA+MNBoNJjNZm8FpNGjR+NwOPh13Tam3XQNkdGR5G0oo3hJFUP/rCYEAjcngltNwngHHtXY0YXrCE4JoXh5vU9gcOy9AQ6tLqPP5CRMfuoPqr3OgSnISGCmibq9LWpHkZq3oHFrM0zGO5OsaHUFaefHE9kzmPo9zTQV2whM8sc/2ULj4WZam1wY/DXee9rrHBwbB+WvKKO58miglPNpxx1WO2bmev/3ge+KQAsHvlZn69fnNxKeHcShn8oAMAboQEDBmmoAtBqNWmmpbZU2jaLB5VCfU8QQdaR2Y4n6mVhC1Gdw6Af1Wp4KTcfydJwl9AlFCEFjVduFFbXjsHJD09Fj295sQt8QTCYTyUnJjFf+xKCL1QpN4VVx2BrVZfNcLhf/74X3aaSaiZMmkpeXx549ezAajZSUlHjLmL/77rvMmjXL27GWmppKa2srDoeDp556iptuuqnDZyhJkiRJ/0v+9a9/8dxzz1FYWOgzE+z42MtkMuF2u3E4HKSlppHUI4llS5YTSBi3PHIdWq1Wnf01IIjkMTE4ba1sem0/SYlJaHVaCAGqfctc58+pJLZ3hHewc3NtC/6hFpLGRZI3v6zdwCO1YW3nLi4l+9IeBCX5UUAFzWUt+MeYMaeYsR2y4XYePddW2oIiFHQa9Z9TucvKiT4jDHOw2rFWvKKcsLQgGtuSJbs+zCPlomgKlqoDuW1FNnZ/lN/u2ZVtrqVsc6339b65BWgMR+O5lloHLrvb55yWWjVBE5JlQVEUag6q9wyK9wcg72e1I03RqgkaW5Hb+3l44rKo4cEANFaocZneoEMIQd4Phe3a6OGJyyyhfgghvIkhvV6P0WhktHI+AMPGq8md6D1ZpFweTWRqMAX5BXw5+2uGjh0MCixbtgwAp9NJXl4eLpeLDRs2cMEFF3gHqwUFBREXF0d+fj4jRozgk08+ISQk5ITtkyRJkqT/BbW1tdx2220sWbKE2tpan0Hgx1IUBT8/P2/Oa9SoUbjdbrau3sHUqy4mITmB0r2VHP66nKGXqjkv66YEAIKCgrzXrc1rICIrBL8wdWa72yXQ6o7L37S9zP2hkOA7rehM6sz6htJmguL9CR8URMXGWlptLnQmdbB4S6kb3KBpy5flL68g+LoAghL8qdhST83BBqL6hnirI9kq7fhFmry3bCqzozUdjZn2zTuC23H0WRz6oaTD55Lz+dFK5YUrK9H7a8mdr+almkqaaG1xUfKLGkuZAg0IAQW/VAKgVbTgVmipbbuPwBun+aeaQEBjsRpwBiepObD8Jeq1NUpbx1kHA5oSRqsDmpraBjR5ljMunF/lPdYb/waB2WwmPjaBscqFDLwwHYNFR7KSTdm6Oobel4Xb7eb95z+ilgomTBpHQUEBu3btwmQyUVpaSmNjI1VVVfz1r3/l7bff9ua8UlJSvBMHHn/8ca644ooOn6EkSZIk/S+ZP38+zz33HLt27fIuFwYd57yEENjtdpKTk0lJSeGXJasJIoLrHrkcnU7HuudyMIbCgHOzcTS3svn1/STFqdUiw1MCqT/c4nPN2h0tiAuFt8p3XVEjYSlBxPYK4nBeGa12l8/AI+E+2heZu6SSkFsCCYhQY7jag02E9wwktKeJqt0tOBta0bcNCMcOwnn0PmXb6ugxNgajVY3pyjdXEdkvlIYitX/u4LwSHC2tFCxTYyZ7pZ19X7fPJ9UdbKbuYLP3dc5XeRiDjo3nbPh0pQq1vxXAHG0EFOoOqbFsSKpadamwLU5TDBqEC2z7jw6McjarOUlrknqPxrK2iXgBBrUa5crj4rJjuNqKKwSlqIPSGwrVcw06AyaTiYHu8WqFprPUnFfU7kzCR1hJGxtHcUEx33w4h76je6LT6fj5558BaHW1enNeCxcuZNGiRd6cl9VqJS4ujtraWs466yxeffVVwsPD2z1DSfpvIgcpSf81mpubufLKK1m9ejWNjY0+A5I8FEVBp9PhdDoJDgqmT98+FB8ppvpQIzc/PA2dTsfuL/KoO9DsXfLCb0cspla10yciK5DiJVXegUfBWRZqcpqPDkSywMEFR+h3bSaWtk4qe70Dc5CJmAlWipfW424VKFowhx0deKQ1qkmZ8l11JIyIIHF0FDv25uFodGIMNBA+0I+KzU24nQK9Wf3PtmJbAynnCsLSrRygiN0fFzDwvjSy/xTPxlf3se/HYqIHWOk/PYVf3z5EyeZq3G43fW7swYE5uej9ddjzIW1qLOEZgVTur2H/V0eTNhr90eTOoIcy0Gg0rH8xh6INNSSdG4lfmJHC9ZXk/lxM9BnB4FLPKd5SRWCshYA4C1qjhtJdVWCBrCkJoEB1Xj0AicPUqktlOWoQYQxQn1dzbVsJbY3i7fwK7K3OumtpUBMlllD1WG8A0kH1BU/Vq/C+oQA0VarBiSewsh08eqxWq+VMZTQREwJIOzOBPr36EpOTzeAZagnMH17/iT1NWxlz9ihqqmvYtHmTev/CQu/37Oabb+bee++lpaWF1tZWUlNTiYqK4umnn2bcuHGn/P5KkiRJ0v81CxYs4K677qKqqora2lpvPHTsb7Jer6e1tRUhBL179SYkNITtG3YyIGEgwy8bgtPRysaX9nHmxekYTHqiW+MpWl7nnc1vjjVTuqqW5DEx3oqRTRV2rNEWMs6LZd/HRQiXQKPT4Jdopinfpt5fDa3IW1RGryt7EJziTx5l2Krs+EWYCB1ooWpzs3quVgNmqN2vdgRZQtSEzaGlpfS9pgfZk2PZ8uZBjqwvJWlUDClTojn0fQl5q4pJHBFNeH8rFb/WU/BLOWG9Awjt5U9zcSMlW6rR+StkTI2jYlc1tio1jhnycBatjlZyl5RQtevojH5zCNiqIW5CGAlDIijaWEn+knKih4YQOcSfsPRQts46RMLwCMwhGjIv7cHBxYUYrWqyJfW8eJqrW6g7rF4zNM2Ky+HCbRdgBr1Z5+38CusTgKIoOO1tA5ySrQDUHFBnfnkGedmqj37ennPDzwwCoLlGjYGM/m1VDL5X48gOl5zzVGgKM6EoCqbmAIYr5zJ0hNoJqlmuDjYaNj0bp9PJzBdnE5qpJmh2bN9BeUU5TqeTPXv24Ha7WbhwIREREfj5+VFfX49er+fMM88kKiqKTz75BLPZ3IlvsCRJkiT939HS0sK9997L3Llzqa2tpbm5ud0xngElTqeTQGsg/c7oR0VZBdV7G7nu4SvR6/Xs/uwwdYdavEtemLZEYajzUyfixfgD5bgcbnRGrXdAkCfGMwXBwR9LicgKwRik5mWaipuxJviTeE4Y+YsqabW1ojVpMQVp1ME7AnV5EKB0YzVB8f5E9VYHKdmq7Vjj/IgeaqVkXT0OmxODvx5M0FzYgrO5lbDsIA58X8zheaUExltIuyCeTa/v58DCUiL7BdD3ph5sfz+Xsh1qZfCsy+PJXViEOdhI9aFG4seGETc0goq9NRz87tic19EesAH3pqHTa9nw8l5KNtURNzoMc6iBip01HJxfRGBqIOZGBwarnvyVZQTGmtD56TEE6ijZWgkm6DEmEo1eQ+U+tR0p42NAgcp9amxlCVXjNXvV0erhntn8pij1+bTUq7GiNV4d0FS8Rh3crmhpn/PyVCUf2jagqW0SoqZtwFjZujrvsVqtlj7KYExJJgacmUKfnn2J2p3JwNvUCk0rPl7L5sMbGHbWYOrq6ti4caN6/+JibxWIK6+8kptvvhmHw4HT6SQlJYW4uDieeOIJWQFAkiRJ+q+0bds27rjjDg4cOEB1dTUul6tdvkOnUyftu4Wbntk9CQsPY8/6fSSQyqQHx9Jqd7HxlX2ccW4yllAzMdoeFC6qQqfRoSgK5mgjtqK2fqu22KT+cCPhvYOJHRFG/eFCWm1u9BYt/nFGGgvt6pK4OgWMkL+kirDbgrAmqLFDfV4zoZlWwoZYqVxfT6utFZ1Zpy7TVqHexxKu5ksKfi4hvFcgCWNiqdp9iNzlRWRelETyBVEc/qGUA/PzSD0vifC+gVRsr+PwT+rxoT2tVB2sp3hdJW7FRer50ZTvqMZRpw4IGnhPOu5WN4cWFqsDkhRAAaNVg73eTegZVtLOiaV4QyUFyyoItRoJ6eNHeEYwuz8pIGZoCMYwI2nnRrJ/SQmWtpxT1sXxNFXYqDrYVvGyfyjOllbsjW0T6IKMtNrVNvjHGdFoFex2tY8wrGcQAHW56gAnrVEDAuyH1GciAJdDPdY/US2mYGuL2fyC1Rgu95ej1S/brRbjVF+HJKu5Nl2zhYHKGIYMz0Sj06AsUycGDpueTWtrK5+88DWa+FbSMlPZtWsXJSUltLa2snfvXtxuN7Nnz+aTTz7x5rx0Oh1nnnkmqampvP/++xiNxi59lyXpP5UcpCT9n/TSSy/xwgsv0NDQ8RJpno6VsLAwMjMzqamu4cieEu589DZ0Oh17v88jJDOI8MxAANY+uwdNW8mijAvj2fjaPu91YgeEkru2in7xAVjaOoEcjU5MViPpFyawIUf94dDpdPQYG0nu/DKEEN4Ry6W/1tBjXDSJg2LVQUpuN3q9jvjxsez/sgghhLfTrXB5JQkjIvBrCxTK9laROCSGhJExVGw+0Pbjpw6GollNPnh+EIOzLBj9DN6R25nnx2JoG9nsn2yhx1nRagCjUeh5dRrGAAPBPfxpqXOCAuGZIey3lHirHnlms4G6lIjnuunnRuEXaVYHcEWZ0Ro0KBoFd6tAo1PwjzYTnhWIrdqBolGI7hNGY4ENW7WdoB5+hGcEcYBiDi8vImNyIj1GxlGxYR/CrXYSxg0Ow9mkdph5qkaljI4GwOSvJsGM/gYURSEsI5i6vSUoiuIdER7aWw3IPIOR/KLUAWatLWqQoWg6Li0OEJWpdpC5W4XPsWHNsYxSYhkyRE3iBW5JpMdF4cT0iaCoqIgPZ37EwCH9cbvcbNykJnMOHjzIwYMHvcma2NhYnE4n1dXV9OrVi88//5zMzMwTtkWSJEmS/lNUV1czefJktmzZ4p1ZfTxP7NW7V2+CQ4JZt3IDV1x1GQnJCbhdgvUv5DD0oiw0Gg19Ewew+6N8hBDo9Gq8UV/cTGgPKwnDYihaXte2HIiG9HOj2T5TLfus1WvBDMVrS7H+KZnQpECgiKbKFqzRfqSfH8PWt9X17nU6HeZYM/WH1Y4Vc6D6D/jSLdWknBtD2lkJVG3ei6NZjelih4RStLxKjUfaOnea8j2dPep7C4j0V5MNFrXNCcOiULQKIanqIKWE0REApJwTS2VOPdEDQnA5Q9HoFAKT/NCZtBSvUge7G/z0pJ4XR9WuvSgGNY6JHRPDwe+Kie4bAgro2xIxPSZEeTsHE4aHED8snMAeFsxhRlLOiUWj0VC4vAKdUYvOrCVtchyVO3JwtrRi8NOTcm4Uu77Iw+V0qc8QCE6zqh2TbdU8/aPVwUNhmcEUraxBZ9KqsZUZ/CLMagdXW8IsNEN9Dp5YV9GpSRprtPq8j60gGjkkyOd7YvZX79dQrCaGjq82CqDVaumrDOPMC9MwmAxkxmSz9+Niht6bhRCCt5/7J/VUM2LECI4cOUJ9fT2tra2sXbsWAIvFgp+fH2FhYRQUFBASEsK9997Lo48+2uF3V5IkSZL+03z22Wc88MADlJaWdlgZyRN3hYSEkJWVRX1dPUW7yrnt0RvR6XQcXFCM1k8haZS6bNfaZ/cgnIAe0i9IYNPf9oNQrxM/NIzi1WVEnRGKuS3n1VJtxz/aQvqUBDa+sg+3y41OryN6+NGcl6GtOlLRhiqsCf5E9w9XBynZXegtepLOj2Hvx4UIBDqDGn9U72mEP4F/dFvn2LpSek1NIWZQBCXr6tt1+OjNOkTbtHZTkAZLmNl7TPrkaAJiLAghCEozk3puDCgKihYsV6dgCjYQmmmlobgZRQORvUIo3lhDc2Fb1UjL0ZS40U/vvW7S2HBCM9Q4KSjRH41eg1avwdncit5fR2CiH/Y6J/VHmtDoNcSeGY6jthVbrVNdxqNnMAe/L+HwsmJ6X5ZMwrAIyjbU4nYLdIpC5JkR1B6uBw1o2nJOyRPi1PfYNnnPEqLGZUHJQVTtsqHRarwxkynK8x1QXwenqJ1hngFP2mMmHHp43lt820Bz1PQY2rZqnfrcQIYqZzN0aDYA1k0JmNJNDLgshYryCj74x2z6DOqJoihs2qRO2jt06BCHDh1i5cqVAMTExOByuaivr2fIkCF88MEHJCUltWuLJEmSJP2nsdvtXHPNNSxevJiGhoaTxl49e/YkLCyMTSt+5cJLzic1OwWXw82Gl/cy5KJMtDotfeP6s7tt1RK9SR0gVJ1bjznERPyACAoXVeG0t2L0M5B6TjQ7Z+Wpxxp0GMONHFhWQnjvYIIT1Mlk9UcaCc0IJPX8WLb947AaU+i1BMZbvFWJPIOhSzZXEpppJWVMDJXr62mpt2P115M4LoL8heW0Olzo2gomeJZc8xQr8AvzQ9EoGPzUGClpQjxag4agZH8qtteRek4MaMAcYkTvp6XHWdE4bU50Rh3WRD9MQQZKN9aAAFOQgfQL49n0+j40BjWOSRgXxYE5xcSfGYZGp6Azq+1ImxyLolHzQ+H9rfQ4K5rAtHqsCf5kxljQGDQUr6tG76fFFGwg44I41ufspaXWgV+kmdSJkez+ugB7oxOT1YDRCiFZVoT7aGGE4GR1WeLgHgEULq/CHGhE0Sj4xxlx1tvRaBU0WrU94b2C1M/DrMa6hkB1QJklwIKdRm+fJYC1bUCTZzWcgDC12IK9rfrTscd6aDVa0pW+nHFBCpYwE9kJvdn9QQFD71NzXjOfm00V5QwfMZTCokLq6+txuVzeZXs//vhjLBYLERERFBYWEh8fz/3338/tt99+0u+5JP0nkoOUpP94Dz/8MH//+9991nA9ltFoxGAw0NDQQFhIGFP+NIVAv0C2vZnH4Bsz0Ro07JuTT7TShFarxe12U3WoiapDTYRlWGltGyFrq7HjF26mfJ9aPlm41aXWirZUeQfueGaBl+2oJWF4BE016o6WWieWEA2lG44uVeZJApSsUQcpeXIth1cUknZWAoqhbWT0kUZMEQbvwCOX0427bUZU4eoaEgZHY2irnnR4cRGpk+MYelcW617MoXhzFW7RSs+rE9j9bQHlObWUbFFnbeUuKyYkLYjaw/U0Hm6mcG0FbrdAtAqKtlSRdl4s5dtqqDvQTGCahYh+wd73CXifC0B5Ti2Vu9TrHvyplOgBwdgq7RQuryR2ZChas5aCJeUEZ1kIywqm+kAtVTubsCRYiB0cjN3ZSnCgnrzlpRitBpInRxF1RghNlS0Ur6sgeXIUGp2Gljo7VTsrCe8bjhCC8rYZaE2VNrQmLQW/lHnb5LA5KVlTRni/tkoALeoo6Yje6kCjirbZarjB7XZzZHnl0ffWtvRMRH810LM3qx2uep2amCpYcfQ+xyfJPBWazMFquU6Tw48xygUMnZCFolGwblbLofe6K479+/ezYMECzGaz+r2rrMLldrFt2zb69OmD06kOxkpLSyM8PJy5c+cSFhaGJEmSJP1RioqKmDx5Mjt37vT+5h1LURQCAgJobGjELdxMnHgO2dlZHPyiAltpC8OmZON2CfS/hBNAEAD1peqAFLfTjWJQyFtZ7r2eJ/lTtrGKsORA7E3qb3JLgx1LsImStvjD5XSpg4VsUL2nBTFFeGdI1exrJCDKgq2tso+jwYnRaqBtJTZamhwY2zrSyjbXkjA6goZytdpQwZpKUs+OPiYebFFnt40MpXhVFU3lNvwizMSNCqPgl0o1oWPWYo41k7u0FFOIgfwl6vsp2aLOrCtYXIE5RIOih+JfygjuGYyzyekdhL7h5b0kTYzEVtU2Y8shEAZB0Vq1bFHuTyUExPmRu6BU/Uw2VNLS4oBmKNtdi97fSPGmWizBagIlqIeabFn7/B7ixobjanGRfVUiuz7fT8ygaEq31jL0niyEgLKd6vMMy1BjoLy22Mptd+NUWsn9qQRziIbmKhtuN2CD+CFhCLegaIdawTIw1h8hBIcWqMv/6jQ63C439SU2MKuxU0ud+t5CM9VOvsLNnthKjZHLttYf/Q60xdexY9uqX5a3xfwuBbfbTf78o7PVAAYqYzCHaDhjdCbOFiebXj1A79sSaXDUMefbOVTWVBIUGOSt7lVVVcVjjz3Gs88+S0tLC2azmZ49ezJ+/Hheeumldt9xSZIkSfo9vfPOOzz99NNUVFS0yz8AGAwGTEYT9Q31WP2s/PnyP+NvDGDXO0cYMC0Vo7+BfT/mE6k0oVHUZcHKdtVACySOjPTGOPWFzYSlB3qrW7fa1aXWKrZW0lKLWgXApcZlR9aWkXlxkje2qj/STFCSPyU71DyLcEHbvDBq9ja1bVPbvn9RLr2nZiDawsjKPXVY4y2YgqClVs3l0Nb3V5fbgnALbyfQoR+LyJyaxJC7M1n/0l7yfi5FGCDz0nj2fnmE4i2VVO5S25D7UwlhvQKpPdRI7QEbucvL0CjgtLmo2FtHj/GRVO+to+5QC6Vba4nsG+gdoAR4c0gAJZuqqDmkPpe8lRXYGx3Y6p2UrqomvH8gxgA9hSsrCUozE9TDSl1BIzV7mziypproMwNpqGgmqncIB38sxhSsJ2ZoCEkToqgvbqJkUzVRQ0LQW3Q0V7dQtqmSgOQA3K2C8j1qXGarbsEUauDIyqPVwu2NDorW12CJUwcsOdom80X3iwSgIqdWbbzQ4Ha5yV2knosbXG2jkAIS26o3tVUlNwWor/PXtN1HKGru8xieKgIxGerSJjqbgRHKuQwal4HOoCVgYzwo0PvueA4dOsQPP/yAwaB2AFZVVdHa2sry5ctJT0/35rySk5OJj4/niy++ICoqCkmSJEn6o9TX13PFFVewYsUK7xK4x7NarTQ3NeNyuRg/YQK9evXk0FcV2ErsDLs4G5fThW5lGKZ6Na/SWK52qjmbXGisGvLblhBTcx1usEPpxgZiB0Rgb6ua2Fxux5Ckp7KtmrWj0YnerPNWO3I53bS2xSrlO+sIzQj05pCayluwxlgQWjWgaqpsxhyo/sbX57bQUuPwtil/WRnZl1qwVav3rT/STEhqALEjQilaXUXN4XqCe1iJHRFK+a9VKHrQmTT4xxk5vLgES6iRotVqf2n+yjK1v/SXKoxWOBKoo2xrPYGJZhwNTgJi1AE6m9/YT8zwEOz1avvdDrfa57ZGvU7uslICE/y8S8Pl/VyKy+0GJ1TsrcccWk7FrnqK/aoQThdB6epz3vDKPqIGBuEWkHp+NDmf5xE5OJTqnHrOnJ6BRqtwZF059nqI7KP2EeYtVatoOpqcaAwK+T+XgBHqixvVZXkr7CSMCsfldFOyXW2Pp9L4oQVtuSih4G51U9NWtdzd6sZWoz7PsN5BCCHUypoAQs15lW9U36uCgqtt+eGgTLW4QkPp0U5Yt9vNwXmF3nM1ikIvZTAYYdjobJy2Vja9tp+0K6JptbSw8MdFFJYcIShIzXm1traSm5vLHXfcwX333UdLSwsmk4m+ffsyefJkHn/88Q6/45L0n0IOUpL+ozz55JO88sorHS7V5hEUFERWVhZb120ni0FMfnAkAOueywE7REdHe//x7mhyYDGa1ZKGqAkXjVbjMxjHM4G7al8DfuFmzAHmtnNbMQboMVvA1gytjlaUtixM0fIqEkdEQqt6cnOFHf8wM3FjYznwdRF1RxoJTPD3DjyqP9KMy6X+KFduaCL9LAW9tm3Ztp11pJ4Xx4AbUtny1kE2/H0vg6dnkjA+nIKfK8j5Jo+aHLXBFdsaiB/h9C63kbewjEEPZKAzabEEmTjwtdpZNOSRLBpLbexqG4UNagKmZE2N9/WBr4sITLMQOzKUolVV1B3wLRXutrt9jrWEaehxnjpr7sBh32ML2jrnanKacdqh9+WJ5PmVUrK+hgMFzQx5JAuNTmHfD4XQDOH9AojoHcz22YehWX1fdfkNVO1UA8PoAaEUbaxSr2uB0LQgXA43ZRvrsISpI69tlQ6aK90EJKsdaft/VIM/a5wfwiU4+I0aRBgseoRb0Fzcon4eAuzV6mcRnBmgdrK1BSuexFjlVrVCl0aj8VZVChugdgA2lqrfTXOwOkp677dFbd8j31HRVquVvtn9cCy00PuqJAKiLRRvqWDe/B/JGpNCQ30DW37doj7fAwc4cOAA4eHhaDVaEpMSqa2tJSoqipUrV8qBS5IkSdJvorq6mvHjx7Njx44OZ4p5ZGVlYTFZKNtaw+SLzyOiZzCVB+rY/0UR/fumozfpsJUe8R7v+UUsXFtMcLIVfVt1xqbqFgIiLbhRB6EIl/DORqvdry4lotWpx5ZuqaTHuFgsoepvs73WiTnEeMw9FPRtA48Kf6kkfkQ4ARHqP/gPLSwifnQkpgAtTYCr3g0mwAzY1MpIIUlBQDEVm2qxBBtIGBJB2Zpatr2TS0iWheq22Gv/17n0uSmTxtImbKUtFP9Sxhl3ZBIY6+etvBkzMpTEkRFs+yAXW1ucYKt201hiw1btxrZKTU5UUE/SxEjKNpWRt/jogGgPz7mVOxqo3NFA3KgwavKbvIOgQH0PjYU2bEU2bGoIQszgcAbdn8HG1/ZRuLwCa7KZHhOi6Dk1jc1vHgCgucoOAg7NUWOedS/kEJRupna/jaSJkSgahY0vq+9n4J1pGIL07Po0FwCdRYuCQsE8NelSX9gILoXa/TbMUSbQQOXeerBB1mXxaDQaqnLU5I1Go0ERCoU/eWJQgbPZBTZ1KT+Allo10RYY5w9A8Tr1eWl0CgjfJefcbTFwaN9QFEXxLudrtBgICIuhX+0YUGDoDeoMtAXPreWQbisDR/dn9+7dlJaW0tLSwubNm9m8eTMvv/wyISEhBAUFUVFRwbPPPstdd93V7rORJEmSpNPh/fff5+GHH6ampqbDAUmg5hJ69uzJ3k37SWk9g3MeGIKiKKx7Pgea1Yo19sa2Dq4qO6YAI0Y/E9BEq8OF3qgDT0rNDUpbiFexvZaw9ED0BjV+stU5CDCZwWQCWnA0tXqXGanZY4OLFFwOtY2NRTZCkq0kDgpl35EiKnJqiewV7F3SrWpPnTfD3HjADUJB2xbjlW6pJrxnENmXp/LrPw6y+bUDDJiRRsK4cAqWVbD7c3X5OYDaAzaaSmzeYLJ4XTX970jFFGIgINFE7nw1fjrznnSaq+zs/ijf+9xcLS5Kt9V5X+fOL8MSZyJmaAjF66rJLfTNM7rtR59/7qIyTEF425Q73/fYwpWV3va11An6XZ9E3opyStdXkzu/hTPvSUfvr+PI8lIqtrkJTDHR2uLi4Lf56gAwoKXKRu0BNQbuNSqCovUV3sl00QPCaLW5qNhWByY1T9lS6aSlvIXgTD/qCpsobBtYHpJuxe10e5euMwcZwQ0tbXGkcAtsbR2cwen+CLegcI16rinQgBCCio1qoxSNxptfNMerA83ri9UY2L+to/HICjW3plHUuMwjICCArJSeNCsG0s6PJrxnMKXbqln8wxISR0Vhs9m8VZcOHz7M4cOHiY6ORlEUkpKSaGxsJDU1lQULFhAUFIQkSZIknW6eAUnLli07YQEEgIz0DPwD/Knc0siQwUPJmJhA5b469n9VRL/0FCxWI7YSdSCJcAkUoQYqBb9UEDck3Fuxuv5II+HZwWj8DICd1haXNx9mr7SDGzRtOa+CtWVY4/0wBahxWVOJHWuCFoyAHXALDBZ1X01OI63NLvwj1d/mQwtK6DEhAm3bzDxbuROz1YTRCvZ6dXWQsPQg9huLqT/cQt7PpcQPDqd8Qy17Pz+CtYeJ+lw1bsj5ppCBd6TTWGrDXu+m4JcKhj2QTUhKIJvf2E8NjYT2tJJ6XjQ7Ps7DVqLGGPZ6sJU7sFfaKW/Ly9TubyJmeAhVO2spXnNMIkeof54BWHUHm6k72EzEgCCay2xq9aVjNJXasZXY8XxikQMMDLw7nc1v7Kd0cy3GMCOp58ZgTfDj1/93EICGomZ0Bg0FP6kDjTa9vg9ropH6fDtRA4Mw+OnZ9PZ+sEPvaxMJiPVj9+d5YG9btQWFgoVqLqo2vwFNoVatUmVUP7OKnBqwQ8JZ6uddc6it/9CkRbigYJEa0ykasDc4sdeDUR3rhK2tqlJIWzWnss216rl6DcIN9oqj+VjPajChqVYURaG5Qn0KfgFmLBHBZNYMJlMZzNBpWaDA4uc3cEjZTr9xvdi7dy9FRUU47A42bNjAhg0beOKJJwgOCiYkNITm5maeffZZbrjhho7+M5CkP0T7GrCS9DspKCggJSXFu1SXoig888wz3gFKnpk4iqJw1VVXcf9dDzJBuYRpU2/grLPO4uIRlxGqhHkHkQBHlyozti21tq0SIQShGeqybrZqu+867ijo9OqxhW3JAc+I3+LNlbhaXfinqj8euBSfssnCLbBGq51hB74uor60CU1b+b7aw00IlyAwVr2W0aojOMnqXYpsx2d5mEPU91f+az11eY1s+Zf6g2qxaNAaNYRlqb9iNTnNDHogg0EPZADw69sH2f7uYW87Nv6/fRSurVAH4QBYQKNVMAb4jkHsMS6aIY9k+WxLmxRL4phILGGn/r+CvjdnEN0/1GdbwvhwEsdE0vv6JO82vVENhAIS/bzb1r+ZQ8Hqcu/nU7GtgfUvqgm26OHBDHsi2xvMWRIsaI0aQtt+tGmGkl+rOLxY7YnrcW4cNYcbvAOwks+KwRJqprlAvXirrdU7OhmL2vF1aIV6bq+piSgahfLtauDjF6IuX1K3Qz3X5XRha5v5b4lRR583t609G5mtrhtbtVtNemkURZ0p6BmvpRytPhU7Uu0484xQ17eVyMxbUEFvZTAjR45k0nmTmKBcwgS/S5g+fTqDzxystsnfj8rKSqqrq9mzZw9RUVFERESoJSUtFu65555TflaSJEmS1JGXXnqJgIAAb9wVGhrKtm3bvMvWattKGw88YyB33nmn+julXMIll1zCpEmTyFT6U7SirUMkUI1jHDWtKIpCSJYa87Q6XN7lUhty3Qi38P7G1x5sVpc1GxADQFNli9oJpY5VoaXeTqtT/S0t3VavViiMUuOJyn0NKFqF1IvVcw8tL6S52u59b612F44mdRBy7X4bAVEW0s5Tl87YPvMwtYcbyZisvs77uZSC1RXec0NSA9BbdJjViVbo/QwMezybsD4B2KrVyke1+9XEgK3aTcHKcu8AJQBrjEV9z8eUce57czIpZ8cQ3la10SNmUCh9bjr1cq9+iWYSx0SSdm60z/ah92SRcm6Mzzajv867XAdA/WEbBasrvAOUALa/e5jt76nx46AHMhh4V5r3PQWn+qtLy7V9DptnHqB6f8PRpfKCDGz9UB2wFDkwiOBkK4ZANVlmCdMhXIKafWr1AbdbUJ1XT8HScu+z8VRKAtBoNbjb4rTgVCMup4sjv6jH+keaQEDVLnWAk1avPdoZ1lahqb5txllQDz+1QtNa9XPUGdrPvXG1uAlRQpgy/lKGDx/OxaMvZYJyCfdMv5err776aJs0GvLz82loaODuu+8mMDCQoKAgtFot/fr14+DBgx19RJIkSZJ0UrW1tQwfPhy9Xu+NvW6++Waqq6vV5dLacl6gcNlll3HP7fcyQbmEKyZcy1lnncX5o/5EkBJEq+24ypYCbx6rZIOa8wpMUuOw+qJmNedlajvULdC25cdq9jYh3OoSrwCFv5TjsrsISlYHgbtaji4LC+oscc8A4iPLK6k8UIe7repOzf4G3K1uTOHquYZAPaHpgYT3U3NvW2cd9k7sashvoXJ3Hb/Oavs9NYHRqic4Tc351B1qof8dqZx5bzoAO2flsfODPG87fv1/B8lbXkZD/tGBQ1qjBmNbp55H2uRYhjzsG2OlnhNNj7OiscSZTvg5efS5MYO44eE+28L7BZJ2Xiy9r0vybtMY1HjGGmP2btv0t/3kLS2lpdbtfU8bX91HSy2EZPsz9LFs9H7q520K0mDw1xOSdjRGzFteRu5StYJm2jkx1BxoYNdH6jNIvyCewDg/70AuR4PT24EF0FRh4+BSdbJA8vlRaPQaKvepHWfWaHWJ3vK22MrV6sJW3fYcTWpHWlOF+jq6X5SaH8tVYy2tVp2015DfthSMVkOrXb1vUJqaS3PUqBNETSHq8y1eVUqa0odRI0ZxzsRzvP+WmDFjBsOGDgPAz8+P6upqKioqWLduHWFhYd6cV0hICI888sgpPytJkiRJ6sinn35KbGwsWq26fH1gYCDz58/HZrOh1WrRtRUN6Nu7L9OnT2eCyZPzmso5Z59LmtKbqu1qhR1PnNFc3qLmz3qrv9uOJufRJbzsag5Mo1NfV+9rAgUi0tX4SV1yVsFoVfM19SVN3t/SxkN2NIrirbhdvrsWrUFD6tlqDmjfgkIaStRBMgBOWyuOtipMthI7QQkBpE+OBWD/t0WU76olfrR67qFFxeQtL1UHOwGhaQEYrXqMbXGbRq9lyCNZ6nuyw+a/7vcuG4cdDi4sZvM/9nufq3+cCY1Og97g3UTG1DjSLoglamCQz2eQNCaKPjemnvKzMlo1pE6KIXmib35r4L3pZFwY57PNFKRXl6hrexb2SjuHFxXz68yjuZq9XxxhV9vg9f53pNL/jlTq89UHEJZlVd9/2/k7v8hXV5hpe89+4Ua1mAJg7WEisk8IpmD18/cPN+JyuKhrK9qg0Wqo2FvjHQwVlhqIaD06yEhr0OJuUV/7J/nhtLVyZH1bVfIEtbhCxXa1f1Fv0sIx+TLhFtQXqUUcglL9EG5B2Ta1H1Pnp1MrkbZ9pkIBh60Vq2JlXJ9zGT58OBcO/5Mad91wN9dccw06RX0PWp2W/Px8SkpKuPHGG7FarYSEhGA0Ghk5ciTbt28/5eclSb8VOUhJ+t08++yzmEwmb3ImMTGRw4fV//NXFIWw0DBMBhN+WHnkwUd4+OGHmaBcwnj+RHJyMiY/9VekaLNaAju0h5r8aG1WO8dQczK4W4V3sFDJ6nqES3jXN7XVOFEUhR7nqeWRGyuPztACaLW5aK5RO2Tq9tah1WlJGKQee2hxIcItiBurVrWpL2ii/sjRkpABERZCU9VgpWhVFS3VDlLbOpFyPjtM1YF6b6WgpJHh6P103mvt/raAwdMzCe3tR3Olm7Wv7+HXtw+d8FmG9vZj2BPZJE+OgmYo+PloRxvNsPa5PWz5u2+HSsXuOoo3Vvps2/P1EaoO1NNceeLqCR4Fq8rVgUbHbvu5AluFnZ1f5Hm31eQ0s/bZPez/stCnTZ5BYEMfy6L/9KOBiilIjW4aK9WOxeaCZta+voet/1Tf/6D7M1AUhYptbUmWBD/vGrIAe77Kp6Jt4FBobz/0/nr2zVUTNL2mJmIKMmIyqd+d8p01OJtaKVmv/rgbAvQ0lR8d3KU369C1jWb3jzXgsrup2FELgF+kWQ0MNrYFERa9z3dHuAVNxZ7OPrVCU8lO9Xl5Rr17jxXCm1SKPiOYkJAQhvQexgTlEm67/nbuvvtuUpVsFDRkpGd4z7PZbLzxxhuYzWpCyGq1MmzYMAoKCpAkSZKkY1VXV9OvXz+1kk1b7PXII4/Q2Kh2UhiNRiIiItCipbdlII8++ih333wfE5RLGDlwNMHBwUcHHtldCEX9h7Onqo1nXfeKvWrnWHgvdYRPY2mLd6kQUAeEm/zVYwuXVyBcAmvbgPDKnHqcza2EtC1FodVqMVnbsh42tYS1KfTouc7GVqrblrawBFmwhBpJ+5OalDkw7wimYIO3Ok/Zzhq2f3J0dn1wagDBqUdnLRn9dQy8Kw2Are8cYu1re7zvzV6v/qvfFHS0clP/6anewd6Fv/jGU3u/PMLa5/ZgKzo6M2//N4dpLLZR8Wu9z7EFqyvI+7m0g0/MV1O+jcqcOvZ9leezvWhjFcVtZaM9Nr95gHUv5PhsK1yuxoYp50cz7PFsrMlHO9JQ8A4kA9j6/9T3jw3C+1sZdEcGe39QY6nEsyPQ++uIG6J+vmWba6naV8/2j9QYvsfYaBpKbFTuUOO00HQrwfFH47S6gibvDLPEsyMQbsGB+erg8dj+EWj1WqoOqd/J5poWHHVqZ5dnwFRdW4Im9dwYdRZZ26w9jV7B5XRTv0995hqt4k32mWPbOs4a1djSGm1BCMGRX9Tn5me10COph7fj7Pbbb+e+GffjTxCREZFERUXR1NSE2+1m+/btZGdne/8bysjI4KmnnjrBpyZJkiT9L/vwww8JDQ31/mYEBwezdu1aWlvVnFVoSCh+Zj8CCeWBGQ96c14TlD+RnpqOxarGR4Vr1CpL1mj1taPeiaJRMEWp8ZKzpVVdAheo3WfD5XChNaqvbaV2FI1C8lnqklo1BY1q2qJtjI692uEd5F2T14TWqCV2QAQABxcUIVxu4tvyVNUH6qk93OB9fyFJAYRlB6n79jRSX9hM8gQ1Dtv5WR4Vu2rVSkBA7KBgjEF677X2LyjizNvSCe0TAC2w9rU9PpPvFI3ik18JSDQx9LFsepyj5uOKV/vGPutf2uudOe9RtKGSwnW+Mdr+b/Ip31Hjs8zbieQuLSVvuW+ly4ptddTnN3Pg+zzvtubCFtY+v4f93xX5HFu8Tg0kBz+USb9bU7zbTZ6B/Q3qc2+pdavvv23weP87UjFYdN5nF5JhJSQz0Hv+9o/yKPlVff+WOBPmMCMH5qlxWsoF0fhHmrEEqYFT9d467LVO7/MyRxhoKGr2VtYyBRm9VUuD4kw4GpxU7lFjVWusH26n8J5rCjT6VAx3udzUF6oddOE9g9WKTHvajm3ryPVUjUIBZ7MahwWlmQkKCuLMrCFMUC7hpstv5a677qKfeQh69GSkZ6Bpq1pfU1PDSy+95JPzGj16NHl5R5+/JEmSJAHY7XYmT57s09941VVXUVxcjNvtxmg0EhkRiQETWcoAHnv0MWZcfzcTlEsYlj6KkJAQQtuWEXPUOVE8Y0XstA1SaiswsLsS4RaEtOWT6g43+ea8hPqbCVC1ux5Xiwv/aPV3uXJnPfY6J6a2gc16gw5LiNE72Kb6UAOm0LZzd9bTXN5CZdsEMJNJjzXOj7S2/sUDPxRiDDVi7dE22HxdhVoJqE1E72BC24oe1O5vQlEUzmiLR3Z/WsDa1/Z4KxnZG9TfaKP16GSvXtckMvhBtR+qfEutdzAMQP7icta9kOMd9AOw74dCag40UtpWFcjj4KJi8n5uXzn8ePZ6N8Wbqtg3t9hne+Ev5d7JaB47P8hj/cs5Pm0q3ay2MXZEKEMeyfI+F8AnpgTY9XHb+69XByENuDmNg0vUCZgRA4Kw/H/23ju8sfJO+/8c9WZ1ufduT/X0mdBDJwRCJyEEAgQIkAAhtCS7v2STLAkpmwALG9IgDdIJJaGHNo0ZT3fv3ZaLLNsqtiX9/nikI8mSBrLvvu9usrqvi2uwjs45Tzt6vuf73M995+oo3irEGby9AUb2TdHxW7HeVnFmAfPDfplYlL/ejr0yHqdNtc0y1eaVrxUJhemOii0Ubc5FrVfh6xPx08KUn0BU1AAAhYSnX+TDCj9gR6FKED0wKFkOhJg8JI6r1Iq4VbEWFApJzp/Zyo2EQxHGDkbjP4uOstJyTuECkfO66dPccfOdOCnAYXNQWFDI/Pw8i4uLvP3222zevFl+hurr63nwwQczdVsWWfyXI2v3lsX/Ndx1111873vfY3l5Oe3xgoIC8l35LByO0LRmHXUXljE94KXtiSGWfWHUOjA4FfgmwywGllFGF1NmDvqQzpcwOsXEM9YyRdn2AspPzqPvz+P4p4NoElSEJKWEKVcEAh1PD2G5q1Y+1z+xiNGuw1Cok5WIzIXCps03Gabr1SHMuYL5PNW9IBSCogtrE0dmqDm/hNrLi+l4eoj2Z/qZ6o6TlrQ2DdH3bHyTYUKBMFs+X8feB9s5+kQ/pkoD81EGrqPKiFKroGhbLlNHesEHuRvM5G9wcPiHvex9ML5bHyC4EIEIsmIAgN4JTTc1MnHUQ9cfkyd3gM4VCRQA30iA9qeGUj5Ph+G3ptJ+HiMTpcAA229vYGEiwOEf9sY/DyPLSYOQ4I5JdltqDFScls/BWLLKACq9EketmR7Egt6ur7ViKBV9UHNpEbYyk6xmkLfOITPXAY4+0U/uBjMT0QXC6vOKCc7GAwGFUkIVVR5w1eYwvHccd4xIdkoBSq1CJjQtB5aRlHGyUXg5wmSbSEI1fKwUhVLB4oJYHAstLxNejjC1T/SvpBBsdxBjWqFQsBQUf+cU6QiHw/S+Kto3Rmgqp5FyqZEdlzQSWgzz+jeamSzrxlXslNnNc3Nz7Nq1i7KyMnFOeTkul4sXXnghaxGXRRZZZPG/DNPT02zfvp2Ojo60xzVqDfV19cwMz1I6s5pT7mhCoZQEuSXKrdGaxRw0uGeC+g+XYa4QtmeRQASFTiHbpS35llFqxALHyNteSj4QJhyOzoF+sQu/8rwCep4fZaJtCnuVVS5HOBQhFN1VNLJvivJT8qg6p5Tptg6OPj2Ic5VBtiFTaRQoVQkqlssR6i8qZ+fXWuh9YYy5oQWZHKPUKFFqFBRttdH1ez/dL46y+dO1uI/O0vfiOId+1stCf5xEZK8R6kmxOuGHdTdW0vHcKJ4OPzu/2pLUfuFloQqViHU3VqK3atj9jbaU9vZPw+Ef9aZ8HiMPvR+0/yY1RospFKVD9UWF5DZY2fmdFrlPl/whiMCSL172vd+Mx5Vrrqtg8K0xWVWpcJMTlV6JMVfPQr+f/pcmmGyfk9tuy+frGD80I19fnaNCoY/30c5vt2AtEXF348dKsZQaOfpL0Q7GXD2SQsI7Kk6e7ppjdmReWL/ZwVxoZNEjkizmAkEOnx8W8bnWpGZxfkm2vjO5EkhXiB1kMWuTwg1WiMDwAdHWRrtIWsbs9MKhMMs+MV5j5K1Fb4ht0uk0nFuCrTSHA4/30D56jPyTcpiYmKCtTfRxR0cHX/7yl/nyl7+MTqejsbGRM844gwceeCBjv2SRRRZZZPGPie9///t84QtfkAngK5GXm0dRQRH+Qwqq8uvZcEMlU91e2n85RNCzjN4qyDhz/QEC3iDKqB1IILpj3+gUc9TIwUlq80spWG+h9y8B5of9GPPjCzEKlZKcqPLkwGtuHKssaE3R3f+jAWylJnLydLISkbXMhM4qCCVtzw5giZ47Nx5AUiowRvNnY83TrLmqkrqLi2j/3TCtv+3DMxiPpYx5urjaeAACnkU231HLu9/toPtPo4w2x8lBBqcOtUlF4UYHU4fnIACWKh3FH8jj2JP97H8orv4IsOQHwhERx8Sgg+13NDJ+dJqeZ1MJ3/0vp8ZIAU+YzjT5sXRwJ1jFJSKmaJQOWz9fh28yyJGfxL8TCUUILcbLPbJrWiYw6fJ11JyTH/++TmzcczaY6XtJ5MX2fKNNJqSVnuYid62VfY+J9slvsqLSKVFEFa+6/zTKTNcc0y1iDDZcWkFwJp7zUqoUqKLjylKlo/+tMabaRJ6q6pwSNDlqxg6KsoX8IcKmBLuRpWUm2zwAlJ+Zh0qjJBTdbBeKhFgOhBh7NxqHaxUszi/JdVIoFYQC4m9LhYlwKMzQbtE/eqsWIuAMFHOyVMy2CxsILYd468HDjOS3UlhdwJHDRwgEAszNzfHmm29SUVEBQFlZGUVFRfzud78jPz8/Y79kkUUWWWTxjwev18sFF1zA22+/nXa9UaVSUV9bj98dpNBdz44bV6M2qtj9gNjQFQ5H0EY3xQ28NY2jxoKxSMvUEVheWEZv16I1Kwh6w/hmAnIs5WkLsji/TDgk5sDFhWVUWhWV5+bT88IYI/umyFtrl8uxHAyzHF0Hmjrmpe4jxVR9sIDmti5afjuEo86ApcTAbJcPtVYhr00BhJbD1F9cyu5/bWVsn4eAdwlPR3y9UWNQ4Vplw9s7ysBrbppurmKqy8vAy24O/KhHJiEBuBot6GKEqKD4r/HKUgbeGmd+KChcThKwvBhOdqwB6i4rxlJqZO9D7UkEIRDXa30qdeP8xH5Pmt5Lj76/pJKZVpKeElFyiouibU4O/Hsrweh+wCV/CMKwFIiXvfnhOJG97tJixg5My6pJBZudaC1qzIXC8m5iv4e5Eb9sY7fxthomjngIekVMZHBoCSWoHe3+bivmqANL2Vm5OBsttPxabJA05euQVAq80XXmme55BvZMiGtpwVlnxT8l7qN1agkvhfFNiL+NLh2+mSD9L4p4yVpqSlJrD8wvEZgSMV7hBjuRcISxoyKGM+caUSgkvJ3iWuFwhIAnmkszK0CCxdll1ksfoPKkPPLXOjj6s246+3qwnaRmamqKY8eOAdDe3s7dd9/N3XffjUajYdWqVVx44YX80z/9U8Z+ySKL/xNkSUpZ/Jfhhhtu4Kc//WlGUpLD5uD0M09n6rkF8OnYdm0DkUiEPUfahMLQheIHFWDk8CTlJ+ZjqjHim5xDgSQvhoFQPIolcIZ3zlC6NV8mBIUCITR5eopPdTL0+iQDOyewJFiPqfUqpFzxA9/5+2Gc95up+3ARBx7rZmT/lGBFR9UNK04oRKlV0PXSiFAo+pcWqi8U7GX3wTmqz40QDooJa6p7gR13NhLwBGl+uDtloreUGFDplDLxar7HR9NNVbT/tpepIwvs7G6JW4cBFWcWioSPgfjnBjA4Bblp5eKZqThHTDi+5PZfd2MlxlwdBx5twZ+wqaxgm43y0/LpemFIVil6L2y6XSgO7Pu35ATSps/WoMlRJ5fJB0jIO/pi2JXQLo41RlldCqDughJUeiWGUoOwb/OJxa5Y/dfeUEHPq+MyuctaYpRVsgBafh4PjPROaLq5kdm+eUFSMghyVIyNnLfFIohl0ftXnl2EUq2g/y1Rh+Hdk7gao6xog9hxNtkpop+iEwUZSpKivr/TQTzqiEwEs5UlW7uElyIsz4tANn9bLkRg4F0RhFlLzSgUCtmuLrQckhfODKUG0acLSxgkA6d/4Cyc1VZcY1XML/iouM5Gd083r732GiAsFPv6+nC5XKhUKmpqalhaWuLVV1+ltLSULLLIIoss/nHQ1dXF6aefTn9/f8bvbN26lbUNa+l9YgZnYw61Hy5hpHmSvhcmWJxfQm/XorcLQk3Auxi3re3yo1AosFda6WOSoYNuKk8qpHCTg5G3plhaCMVtuAClWoGr3kYno7T/egjl1Qo5HlGpNKi0Spxrc5g8PMds34K8Aw0/LIwHGDsUlTDy+ynZWsHSmmXe/XYH+x/qwrk2B8dqE1NH5/HPLqJIiCvyNzio/XAJO7/dwtTReXYeTY6N1AYVtmoTfS+Os9Dvx1qrp2hbLsee7Ofd73TECUqAtVaPMVdHw0eKkhIa9gZB1Dr4WA8roVBKIEkpn+/4YiP+qSAHHk0mcm++o5blYIgD/55ZLTMReZusVJxeQMcz/Uy3xoNEY5medR+vwNO3QEuCWlSM/GUu0MtWbQOvTMSt1yr1giAUrbPeDjmFemo/XCoTvg/9oEduF2OZnorT8mSLXWOZHpVOiaUkHlcnKjhtuLUanUXDzq+Jflj0C9J2rCzB2UV2flWUV5+vI2+9DXt1DpP75/D7YX7ELwhQQNVZhURCEbnsxlydkPeOYnZ0gekOEb9WnJuP1qjG0ysW6MKhCJFwhMm94rhCo2Bxbkk+V6lRxtuqXEdoOcTIPnGfnFxBhPePBSiVqti6vY5IGPa2t6PKA9upat568y2GhocIhUI0NzfT3NzMN77xDfLz87HZbJxzzjl8+9vffu8OziKLLLLI4u8KX/nKV/jGN76Bz+dLe9xqsXLGmWcw90aEZTdsvqoWSSmx93A7gShR1pwv5pmRA25yCvTkFGuY6w8goUCti6doAzOLMrlkcv881WeEZfvUxYVl7Dkays7Ipf/lCXpeG8VeZZLP1eVoUEVJ3oOvT1K4yUHlmQUceryXwV1u8tbaCESVdSpOLEBrVTPaPEtgIsCur7XI6kVz/QFCS2GWooQbT6ef7fc14J9Z5OBj3bz77WRivKXEhNqowlCswzcUwDcUYNXVZXS/NC7Uhx5skRV9AGo/XIrapJIJU6LwyISqXStyajl5OpDi8U4M9ZeXYKvO4cCPeuR2BqHgU/eRMnpeGs1IQFqJdZ+qRKVVppCm1t1QgSFXz66vJceaSBIKdXLOK9ES2Fqjx9MZJ3bVX1iEwaXFUqUT9m2BaM4rWuyGK0sY2euWrd1sNTloTPHNcj3PjsUJWjrY8blGPH3zMklp2b+M3yMWqOyNJjr+NCQfqzlfkJKmDoo6DLwzQf46m3xvU5GBqbZZ+Vy1XiXbCi76lpnqnKXzD4LwlddohwRVzmV/3HY5f72dSAhGDogEpK3SjEKpYLZX3Ci0GGLJH7WJswp1TP/MMjpJx6lNZ1K40UXhTDXTLfNUXGOjd7CXV155BYDBwUH6+/spKChAqVRSW1uLUqnk2Wefpby8nCyyyCKLLP5x4Ha7Oe+882hubiYUCqX9zsaNG1nX0MTALzyYCrSs+Uglo/sn6XvRTWAmiNYqLM6C7iALE3451gq6gyjUChzlZgZwM/Cum4YCA861NobfnmJxZhmlMp5/UOmUuBptdP9pjIHX3GisagJRUrCEhMakwrXOgvvQLFMdXvLX22VykKd7HneLmF+Dc0HKT60iOLfE/u91cuSJfswVOmwNJmZa5/G7g2jMavlcV6OFhktKaX64lfmhYMp6oM6mwV6RwwBugu4g+gItpSe6aP/1EAd/0BMnKAFalxZrlQmtRZ0kOmCuEGSdtqcGU9pXpVGINdcVBKVt9zTgmwykbMxbf30lESIc+mHqhr10sFQbqLughO6/jDJ1LK5CrjVD0y0NeHrnk8q15FsGCXS5BoJeEY9P7PfIxCitSyuU0WPl1YKjzoypSM/+6Hpm+6+H5HbRmhVUnVdMy68GovdVoMlRYyk1ELvrngTxiNVXl2EqNLD7u1HiWzBCaDEsE6CWFkLsjuXItFBygovg7BL7j3ZCEKY6vMxElcSrzhDx9sBrYnNdTpEBTYKV8XTvHJ5esW6Zv8mK0aFjIaberhAbKd2HRJspjUr80/FO0prUBGbEe4O5QsdyIMTIYZF3tUaVz739QfKkIjZurEFCoqClAbRB8i+x8Pbbb9PX10ckEuHAgQMcOHCAf/7nfyY3N5fc3FwuvfTSLGkpi/8yZElKWfyn8dRTT3HttdcSCAQyfueyyy6jqqiad/+tg9KNLopqnHStHcK9e47wUjiJYOKfCRCOKuzMdQdRnqKkeGMeE7vm6HtriIpTSrA1GJiJLdLE8hI+IAL5a+30Pj9O9/P91F9SxdQR8ULsrDZjzNNT8AEbo+/MsPNfWlj18QTChgREizH0+iRFW51suLWa5oe76PrzIMZcg0yS2fiZarQWDbN9c7gPzrHr663onfFyhEMRFufjQVPDx0rJKdCz91vt7H8oWYo6d4MZvUtLw0crhTVbAhEJH+z5fhuOKmMScWn77Q1ISomd/7IiMYIgTbkPpn6+7BMLRP5k1WtyyoxISgm/N32Qlw4qffqfjODcEsqEvoxh19da03xbYONt1WitGjqVgzJJau+32sndYJYJO4Bcf4NTgSlfT+PFJbKy1Lvf6ZBt/opPdVK0xcmeh9rABxqbgUg4wnRUnlxvgD0PxJUOKs8oRFJI7Dwi2uzwD9soPqkIfOJeZSfnMbJfqBu5asXkvegViRSNWUXns/FyF250JMlIjh2cFj6xQPk5eSi1CqaiBKfY5+6o8kMkHGFuLF5flU4lTGUBY77EUnCZoXfEwpmtRJCfYiQtp9WFa2MuitftGAp1VF3m4s/P/5m2jjY0ag0dHR2EQiHKysqw2Wy4XC6cTifvvPNOxn7JIossssjifyb8fj9nn302b731FpFIJO13Kioqufiiizj4aB/4YctJdYQWQ/Qyw+ThOWovAFedlb4XJhja5abs1DzUeXr8035UamU8LvPD3KhPTuDMHvPAyYWyFdvswAIFG+3kbbLK9l/+hF3b1jITlmIjQ6+7aXt6ENcGMzqHDpiTrR/MlYJI4x3yUXV6IeOHPfinhU1b94uj8rVqLyghvBRh6mgrx6L+8jFilXfIhylfj96uxz/sR2+HtTfU0/fqGOP7PLKFmXytC0sF0SVBPSkGT4efjmcGZWUmgLytVqrOLGRhNMChH6aSlNKSjfTJpOhEKLVKJFUqqSkTQoshFGoJS4U5iaS00O8nvBwhFEyO4XpfGKP3hQxWcnpY/bEKQoth9kSVn/zT0P6HAaaOzsvfSWyXhguL0ZjVsrLVQr8/qU0331nLdM8c3X8U/bW4sJwU2w//dYSu30cXs7ZayVtvw1So59B/9OAfCzC0a1K2kdlwXTUqnZLx2K45iSQC2Pyon5ZfiMRR2Zm5WItMRIIw+tY0Y7snMBcb6PqzuFf+epu8kBtDbEega4OZ5UCIzteESlXeKgdKlZLpTtG+Ae8iEW9Ebg+lViknH521VioqC6BDj3vEy/qbKhicGODpp58GxM7OsbExWltb+e53v0tlZSWLi4s89thjnHvuuen7JYssssgii/+xePXVV7nsssuYnp7O+J2LLrqE8vxyDj/ah6M8h5rqInqHRhl3z7LkD2FwaYXVWgC8wwvEEgeeLj9KrZLcNS5G3vHS+cogdeeU4libw9ThOSIr57FQhIKNdvpfnqD7pVEMDi3j70ZJIKUm7JVmik92MvTGJLu+3kL9ZcXxk6U4qdp9cJbyU/NYf00VBx/rpuNPg1jKTQQmRF5vzSfLySkyMD8RwN08y55vtqGzxi+1vBiKK+YAFefl4ag2s+97nUJxKFpXEMo9ljIjjRcXC2u2WOow+p13v9uBrd4YJygBW26tQ6VTpizCgSBN7fp66uehYIjwUjiJoARgKc9BqVEkqRq9FzQmlWyll4jA9CJaiyapfgB7vpmqphnDmk+Uk1NqoPP5YdzNYnHy4GPd2BtNMglJXDz6r07YE5uK9Lz7LUEAO/QfPfI9XestVJyez+EfthPwgM6qE9a3UQs2nVW0aQw1HypGqVWws0W02b7HOqn4YJ5obx1Un1XIyD6R88op00WVN6MK4C4d7c8MCtUroPQEV1K7DO50o7WIhTTXegsas1pegNWZ1SDBbJTwJEkwO7gg11Nr0bAUteRVu3QE5xYZ2iUW6Jy1ViQFMrHKarCzea0LXrWCDtbfXM4Lf3mBlpYWNJp4zquiogKr1UpeXh5lZWU888wz6HQJti9ZZJFFFln8XeCaa67hV7/6FYuLqfkUgLLCMi669CI6fjlBcDJI07YqIpEIA3iYHxKWt45aK30vuhnaPYnWosHglAi6QaVWorNq5GtNdc6ij9q0zXaLuVRlFPmM6e45KqtM5G+xMbZ3htEDUywvxOMJZ50FaiyM7Jpm4DU3swMLGPPEvBOz4IqpJXn65qk6uxBv7xxBb5ihnW7G98UVtld/tJLQYog9re10PStyK1ozBIPg6V0QKuDmKPlGCxtvrGHwHTcT+z3s+nayBVrDxSXorBpZESrxWNAdpOXX/UnKTJZqA6uuKGducIEjT6RugDz281SlJBDWwwFPah+pcv42usHiQgiVTompWJdEUgp6RXy3vJAsxjC2d4axvTMZr7fhhkpCwTB7vx0lFgXh6C96ZGWjRFUpgNpLSskpNGCtNeLpWCDoDSfFmk03VTE7uEDP8yLPFpxbRhcMyedPNLsZ/KvoS0u1gZITXVgrjRz5cR8EoecvI/imojH2J8rQ2DSCJAVIyuQ9j96BBbn/XessuOqtKBVKJt71MNPhYabGzMBrIudVtM1FJBSvB2HktXJzmZbg/BL9bwoxhbx1LlQ6Jb5hMS79M0EC8/G+05rU+CfFhSxVNsqKSsClo7rfw/prKhlZGOJXv3yKCGEWFhY4evQoR48e5Z//+Z+prKxEkiQeeeQRzjrrrIz9kkUWx0OWpJTF+8bAwABbt25lbCzD4gdw5qlnsu3EbTKJpqaqVt657D7kpniHi9Itebh3zzGyfwrXWgt6J/gnQZujla26fCMBprs8qDTipTc4FUGpVpDf5GCm1cfg2xOUfzAfS42B2U4fi/NL8mKEfxJ0Dg3rP9XArq+3cvBnPZSfnMfoO2ICW/PJcszFRsrPEfZwu77WSt6WuI+oQiGhjMosTh1ZwHG5jaZbqjjwSDctv+yi5IPFMjmlYJuNijMKmO2b59jPBlLUk3IK9EmLNYBc5olmL5JqmPG98R1d1RcWkrvGytCeSQZemkhSGQIY3jOJudSY9BkG2H5HA6PN0/T9OVUi8djP0gcTHU8Pkd4QJjNW1i+GIz/uy3ySAbbeVs/8iC+pLK3PjNBwYWGKilPMmm37FxogHFde8k2Gk4hBsgpTdM0ud5UFpUaBwaDA5wsz2+lLIkk13dzIsj8k72o78qt+8tZY5GtVnVXM3n8Xx+xr7CCBPxpEKDSKpCRZwQYHbHDIpLCDj7WJcxCkpPwmu5zsWZoXJLGBaNLFWmLEPxOUy602qpCiyhWONUZ8kwE6XhIBR8VJxai0ShaGxDjwji2g0avldlUbVLJ9nSlfg8loYnPuiRR3rmbLrXX4l3x8/9++TwgRRHd0dNDR0YEkSZSXl7O0tMR1113Hl7/85cz9l0UWWWSRxX8bvvKVr/C1r30tY4JGhYY7PvdZpEUlzQ93UVqdi16nx1oiSCXhpbBYUIliYTSAf068fPqmltAY1FSdVsiB1m7anh2g4pQCjGXC5ktv16KKWkn4p8E/FcRebaIHGNs9Qe4aK+GweAte8oUo3u4kOLfI+B4PA29MMHU0zo6uObcYIsLqrPvZUbqfHcW5VhCAl+bFTqi8VYLwNPLmOJtvqqXl94Ms9PsZPzjDyLvxJMSWu+KLV4kqQQDo9Sg1CnLX2QTZJUqmiakh7X2oHXu5IYmctP3+BiJh2P1AaxJBCWB8j4fCTQ46ft+X9Pnqa8oxOLVJO+Vl+JFJQCsRkxl/v5g8PMfk4dTFuPe6VsW5+eSttSV/xy9IXe4WT9J3YwSlinPzKdhoZ2jXpNym+77XiWuDWVjB6ZEt4ADQizjEmqCqdDTB6mT1teWYiw20/baP6VYf43s8WEtNtD8nEjJNN1cxO+CTVZaUaoUcDwEMvj0h90fV+QXYqnKou6yY9l8PyZZvsX/X3yTUjmL9GvAsytZ8zrU5SJJE/1/F+4ur0YZKp2TRHX1v8CwxO7Qgn2vK1bMctTLR5+nwTfkZjSbBije4kJQS7misKoUVVJVWc7p0CeiFmsGbr77FX3e+jtFgZGRkBL/fz3nnnUdOTg6FhYWEQiH27NmD3R6Xg88iiyyyyOJ/BjweDyeddBJHjx7NQAiXOGnrKZxyxomy+k1dea2sIDN1eI66CxQUbXQxvnuW4d2TFGy1obMqCIyF0du0wmoWIABjB6bQmESctjglcgOuBitTh+foe32M2g+XYKs3MtO2QGA6iKSMW6sZXDrW31TL7gfaaHt6kJJTBUEJoPaiIhz1FirOXqL3L+Ps+WYb9sa40pKkiue85voDOOosrLuhgkOP93Lkl33UnF0ok2qsNXoar6jA0ztPy88HUtSTbKVRpZ8YeSeAUFKaDDDbHUgiugAUn+yk9KRcht5xM/Cam5m25JxX72tjcUXrBGy9u57RfVPybvNECDu3VEu3/pcn0lrAHQ/vfid9lqz9d8PHPW/zHbUsTARkQjVA5zMD1F1eLrdlDDECzta765EUsDu2mS4ALU/1ypZ6sgpTdF0td62wekMnGjswFkgiSW24pZEl37JMVDr00z4KNoi2NBTraLiohGNPCoK9q94CCilOFjKq2PWv8ZizZIcLFBK7DifkvBpE7JK3yUbpSbmM7JmSv78cCMmkOXtNDr4Jv0w+01k1qAxKuRxzwz563xRxWeVphWhzNPinRd54dnge/axWvq7eoSUQJf5binTotDq25J5EYWsj66+pAl2Yh777MEH8SJJER0cH7e3t6PV6ysrKALj55pu55557jtd9WWSRRRZZ/Dfhpz/9Kbfffjuzs+kVD3UYuPHWT6EJaTnwWDcOpxmDzoDeriI4GWQ5ECKn0CCTT6a75liO2o0GJgLobBrKTy5iprWblmeGqDw1T1YOMrr0ceWaIMwNLWCvyqGfCcYOzVB8gotQ1EFlybtM+QfziYQijOyapuelUWY746SahkvFnDPyzrRs82prELFX0LsMSrDUmJnY72HgHTdN11bR/eIw3t4Ag++4mWyPX6vp5ip0Ni27vt6C+9As7kPxttFqFWhz1OQ2imvFSCqxOjU/3IWl2iBblYHYXKZQSez5ZnsSQQlgtsvH3IiPjueT13trLizEXGpk/390ptq8Afu/15n6IbDvu3/baqN/NCgrca9EppgMoHC7nZITXOz5frIN3VS7F29/ch29USXH/C02Ks8sYPDtOLHoyI/7sDWY5HYxFWuZH0pQJLJpsCQQiTr/EI8Hay4sxLXaSvsfhpg65mW2y8fw3knGdonYc9VVpcy7A7J9nVKrRKmME75H9k8z0zov1yevyY5Co6Djd8O4D82iNigZaRYbJdbdUIekQLa480/4kaLkcVOxFpVOQddrYl3YudqG1qQmOCPGQNC7xMiBKYJRIpKtMkdWvte6wDuywER0jJVuy0WpUTLTIcq8FFimJLeMD0oXAbDt9gZ2v7GX195+Bb1Rx9jYGD6fj7PPPhuTyURhYSEGg4GXXnoJl8uVsf+yyCIRqdtDssgiAXfddRcKhQJJkigrK0shKOkxcf999/P5W+7hdOkSqlwNREIRDFFfzvBiGL1dvGD6J4XNg/vYbPRvP3qzlvrLqwDoeXGYgXcmZGUcW4VFJuTMdvpo/W0fy1GlpcWFRSSFhGuVFYD250ZQG1SYKsXJwdkl2d8TH+SusrLtvgZATD6jzVMyoaf0zFyqzipi9SdEMLHr661Jk6C9MiepDh1PD8n1G909QygYZrI9HiyUnpnLhltFnfZ+qz1Z9cgAq64oZ+vd9QBJBCWAscMewssRJpuTZY8qzssDAwy86k5aAALIW21BSiBWJaLppirKz8lL+TxWlv800pxrcCrY+JlqYVGWCJ9YeIq1ofzxgE8oSAFVFxSkXG/Ru4RvOjkKSiSH1V1YRtNNVfKx5oe72fntFnyTYRxrjGy+vTblejE1I0OhjvkeH93PCHZy6Yn5qPRKTFHp9aHXJ9n5Ly1y/1SdVSSPH4CDP+qh/6/jctnX31yPfzJqZTKzSHg5Qt8b4nh+k02oOUVJSUqtQk5MmioNTHV6ZWWospPzMTh1KCKiL3tfGWG0eQrfpBj3trIcdAmLzUHPIuNHPOLck/KRFJJMxlsOLGPQGjlV+ginS5dw2223ceEZHwEkTEYTU1NTDA8P85WvfAWj0Uh1dTWlpaUZpeuzyCKLLLL4v4/p6WnKy8uRJAlJkvjnf/7nJIKShIJLz7ucf/riP3G6dAmnSB9GrdKw7BekCnfzBJJSovw0YU07cWwWnzsgFHIQJG5nrVisWOj3M7J3ioHofKVWKzHm6qg8PR+Avd9sZ6rTi94u5iR1jkpWVPRPh/H0zlO8Vbx0ju4aJbQYJhQtR3B+kaZPN1J8kpCb7HtjnAOPxhdRtt/fQO2HSwAYenOSnV9tkRV09Hk61CYVFaeK+KX72VH8YwH0+SL2mu6ZS5IxBmE7a64Uako7v9XCkQTJ6aZPV1F/STmO1Sbwk6RIJOoSlHcNydBD+Vni/gce6cY/nWwrordpkqzHYrA3GGj6dBX6dPwTfZrP3i8ynFt+Vh5rrqtI+VylV6JQS9gbkmOyoz/pY3yPB/RQenpu0rGxQ7OEFsO4j3qTPo8RcrZ+pp51V1fEy+KHnV9tkZVCmz5dRcH2eMXdLR6WFpbl9tbn62j/zVDcas6hxdkYt8d997sdMrlrzXUV1F5QQt4mKyDGwMi+KXnH2bZ7G3DVxRcwfVNBeUzYG4S9cvsfxWKlrcaMQi3hmxFjc9G3xKEne/FH1Ras5UYc0WdCb4f+N8foek4Ie9efV4TBocc7Kq49cWw2aazoHVqW/FFlsAI94eUIVTkNnC5dws2fuIU7PnsHBkQdtVotnZ2ddHV14XA4KCkpoaSkhAceeIAsssgiiyz++/D9738fnU6HJEnYbDaOHDmSRFDKwcp9d9/P5z71eU6XLqbaVE9oKSysxxA2WLGd8wALY34mjnoAmBsLYso1UHdBOQCdfxqk59VRWZnI2WCVLXADEwGOPNnDoi+6y9kTQqlRYK8V80jHs2Oo9UqsNWIi9rkDLEzE1Xhc9VY5z9Tx+2GGdrnp/YuI8VzrLdRfXMqqq0XOa++D7ez/fnxxybXagjE3OsEHBOlHlyvq5On0s+hdklVyQJBU1t0g4o/mR7vE4lKCGtD6ayrZcmsdQBJBCWCydZ7lQIiJluTPi092gg7czbO0rNi1b60RJHS1KXWf7aqryyg9LcMiyP+JkE6ac3VWYQdnqUo9qNIpU3JeAU9YKCGBKOOK03zjyX0IyKQkW72Rxisq5HYGOPZkPzu/1UJgLEBOmY4Nt1QnnbvgDjDVJeI2Xa6OwERAHgPlJ+eitajRuUQZ3Qdn2fW1FkZ2icWv+o+Usu3eevlaBx5tp/dVkf8t3G6n6ZZGggtibC75llj2hxjbK65duNnOTNccAY+Il9VGlbzoq7MqmGyblcltFaflkVNkQK0ScfTAG+MMvj2Bb0i0Q26jDX20jOhgfsTHWNQKuPy0AhRqBZOHRL405A+hVqo5UTqP06VLuPWW27j47MtQoMKgNzAzM0N/fz/33nsvBoOBmpoa6urq8Hg8Kf2XRRZZZJHF/xsEg0G2b9+OUqlEkiSuvfbaJIKSChUfPvEjfPH+L3G6dAknSOeiU+hZis5BU0e8KNVKyk4S+YzxQx7mBuOkFKNLR+5qkZcIesP0vT5Gzyti/UetAFuFidITxLnND3cxdmAafYGYd7RWDZqoAwZBcB/zkL/RBsBI8zSL88uCcAQEpgM03VIn4heg+4URDjweV9/edGctDRcJJ5epY152f71VtiTT27XonVpKdohyDP7VjX80iNYZnaNbZlkYT9hZh7BRM1foCHrD7PxWC0cThABWfayU1R+rxLFKxIwx67EY5kb8+MZTnXBiZT/y4z6ZwBKDwRkl1q9IlWldWtZ8shytOQ2tQJv60ftGhnMLt9tpuKI05XOlVolSo8RWaUr6vON3w4IUpIXCDyQn5mbaZln0LScRwgCZKLTxthrWXlOVVJbd/9rKgUcFwXv1x0vJ32KTj022ewnOLskKUFqnlv4XJ2QiUU6JEVejVf7+wR/0yApPNRcW0nBJ/Hoju6bpe22MjigpftOdteSts8ntPzfsZyHah/oCLRqLhq6/iHFtqzaj1ChZmhdfXl4McfRn3TLZytloIbc+Wg4tdL04TNdz4j7VZ5ViLjISmBbXdh/2MDfik+tgKTPJeV6tU0s4GKbUUMlp0ke4/iM38plPfxY7eYCETquju7ubgwcPkpubS1FRERUVFXznO99Z2X1ZZJGErJJSFknw+XysWrWKvr4+dDqdbOWmUqkoKChgZHCEay+/loLaApZ9Id79TgdKpRKVQ0XNRUUMvz6Kq97C+usq2fkvLcwO+7BXm9hyVx17v9WOUqukeIcLY56O1l8OsnzOMnqbVia9lH4gl+LtTnZ/rY2W3/Sz6vJyVn28lGM/G6D+4jIkSWK4cIqpIwssnbGMo95MFyNojRIqnZLGS4rZ+80OPH3z5K+3k7fDyvhODwqtlCSfl7fOhmuNhT3/Gt8BP9ktXnw33laNxqImML3IgX/vRpKQFz4KPmCj4jRBqJk44iGnSI9CJclklm33NUSl+iRyN5ipPreYob1CFWndjZUYnFr87iDDe91svbeekD/Evu91Un9lIfYqK2MHp9n9r62s+WQ5pgI9u74m7OQKNjjIb7Kz66utGAp1rP9kJe72WTp/MyzkJSPIhJstn6+DiCBI6V1a8Z9dS+svBmj4aAm2yhx2fqeFHZ9rJBwOE16MyCSZHV9sxBsN7JRaJTu+2MjBJ/vwDfgE61qtQKlREJxdRJOjZmE8wOEf9lJxXh4FTcLyrPrMPNQGJWqjWlZeioQjMvO89IMuire76H5JqEhtvKMGrUmNtczI/u93sf2+BoJzi+x/qIuCbTZ2fLERvyfAgYd7aPp0FTqrhl1fb6VwiwOtTcPGz1Sz//tdONYYqbugjJH9UzhqclDnqNj+hQZZTUmpV2KvyKGbUdZfVyn3YdcfR1jyhdDZIsz3+DA4Fay7qY7wUoQ932iT7fyCUeWJjZ+tRmvWyOSz2C6/mOpVxRkFeHrnwQe1lxejtWhQRhcyt9wlrhtr7zUfFWPa1mDAUWdFZ9XS//Y48z0+Nt1egyZHTWgxTO/z42z/QgPLgWWGd09Rfk4ehZsc0ftOsvEz1agMSnmRevv9whbQNxGg6EQHZSfnEYlEyDeVcPdtd6O1aoiE4KGvP0Z+nZ35uXn6+/tZXl7GYrFQXCyk4e+//35uuOGGv+UnJIssssgii78RP/rRj/j0pz9NOBwmEokQConfcpvNhl6rZ3Esws1fuB5JKdH+hwHsegsRKcLWe+rZ8402Fr1LmAr1rPtUJYd+0MNyMITBqSVvqxV36xzF251s/1wDu77ayvCuSUpOcNF0cxUHHu0mf4ONwi0OBuwTDL05ie/kAMboopRrgxlHnRlbtYndX2+j448DNF5aQfm5efS9MI69JgdJIYIr/zREQhEqzi5g8vAc89OLIIFztZmhNyexlhopPzmPgXfcDL3uFgpM4WhgFlWgiRBh17dbca22QxiOPt0HiJ3pKqMSKSKx82st5DZY8fRFPdwvLCBvlQ0UUHF6AWq9EoVaISscbb+/gbkJP0wFySkyUndBKS2/6cXT4WfrvfUQiasebbuvAd9EgMM/6mXzrbWodSrC4TADL7tpurkKjVktf1epVcqSzXlbrVSdXkjva2PkrrGid2hZf5NQ8wTYek89i3NLKNUKNGY1hBGKma9MsOa6Ckx5Onn+3nJ3HSF/iP0PdWEs07PuqgpCyyGUGiWevgUsJQb5ulvuqkOpExsJ9HYFTTfXM9Hqoev3IyhVCgjHCVmb76yFSNwCZMddjQAMvDNBzblFuOotHHi0hT3faGPzHbVIaomx5hkGXplg+/0NzA746Ht1jJKTXOy4s5FDP+9lod/PpttqUOgU7H24Hb1DS/kH83DUmzn6kz60ORrUehX2BgOORhuuRgvh5YgcG4aXIwSjMuib7qxBY1TT/ecRxvd5UGokIpGITFzb/sUG2XLNtUGQjmJvses+XYnBqpXbpe6iMjEulYKk5aq3MLxnEv+wn9XXlGMuMeCoMbPnG21s+Xwdi94lWv84hL5IT9MnxULg0V/00nhVGTqLhtn+BfzDfjZ/rha1QcWidwm9XSh0hpbCeHoXqLusGEedGcLQ/9YEm++oRWlQEFmGHdKZ7PhCIxEpQs+hQd4++DpKlZKZ6RlmPDPcd999fOMb3yA3NxeNRsPevXvR6/9PGG1ZZJFFFlkcD4FAgNNOO43du3ej1WrlnJdSqaSwsJCxwXEuPftKqjaXsji7zP6HOpGQMObpqbmwkM6/jFC8w8Waj1ey81steHrm0Ts1bLq9hn3/1olSo6T0pFyMTi3tvxsm4FnEYNeiy9URWoxQ+cECIqfks+vrrRz9VT9rryqn4coSWn81yKqPlqNQKcQCQX8A32QQR63IYSg0oDGrqb2ghL3f6mCqc46yk/IoOtHB8FtTqC1KWZkcIH+DnfyNNvY80C62p0ZgqscDCHVxU6Ee33iAQ4/3IiklFtyiHWz1RpF7U8D4oRmhgqNXympAm++qRaUVC4s5NTpWX1LByL4p+l+eoOHKEixlRmYHFpg47GHzHbWEFsM0P9JF6RlOija7GDs0zd4H26m7uAh7rVkoZ+ug9KRcSk50seur4u/tdzQw2TZL5x9GcDRYiYQidL8kcl4bb6tBUsK+f+vEUmrEUmbE4NLR9vQgFWcLZesDP+llww2VhENhQoGwvBFx2731eAdFfKTQSmy/r4HW3/bh6fSz7sZKtDlqVHolgelF1EYVvvEAR57oI3+bnYpT85BUEqUn5SOdKqGzaeTcTng5zFKUYOZab6H6nEJ6Xx9nbPc0a2+swJSrx9lgofmRLrbcVUdwbolD/9GDtUbP9vsaWJgOcvg/emi8qhRzsYHdD7SxMB5AY1az4eZqmh/twlCsY93HKxjdP01OkR6dXcO2+xrk2EpjVGErzwHGaLq+Ekkp+rD7T6Ms+0NEliOCBKWD7Xc1sBwM8e6D8Q2agahK9+rryjHnG2h+RMS9RSc4kRQw1SGIZbUXluDpmSfggfIz8zDm62Xl1qZPVxEOxdu76ZY6JIXEdPccepsWc5GB/rfGmGlbYN2nKjFG4+DB1yfZenc9wflFRndPk7fJRtXZBSBBx/NjrL2uHL1TR3B2iYBH5D1VOiXzIz4ca3OoPa+YSCSCQ5PLZz5xOznFesJLYX70zZ9hqdUzvzBPX18fy8vLuFwuioqKUCqVfOlLX+Kaa675P/5dySKLLLLIIjOef/55Pv7xj+P1CuZDLOdltVoxGAyERzR88u6PodQo6fjTEAaVFkmBvJ7ocwex1ZhY84kyjjzRT2BuCYNLR/4WGzNtM1SfWyhyXl9vZeDNCSrPzmftdRUc/lEvhZudaHJU9L8+zvDbU8wOzGEqEAuR5jIthZsd5K23seeBNo49NUjTdRWUneOi/89u8tfbUGqim9OCEF4KU3FWHlPHvHhHAihUEo66HIbemCSnSE/1eYUM7Jpg+PUpIMLSYtyqbNu9DaCAAw+342owE14K0/WiIPuu/1Ql+lwtkZAgxRRtdeDpFetMhR+wU3pCLgq1grJT8uFU0Jo17Ps3Mc9uuauOuTE/cyM+1HoF2+6pp/1PQ8y0zrPpjhqQJPZF5+TNd9bidwc4+rMB1n+6CoNDi1KnoP/FCVZ9rBRjvl4m0ahz1DJRylJtoOHiUgbenCCn2EBOkYH1N9XKao4bP1vD8sIy4XCEnEID4aUww3umGPyrm5qLirBXm2RVxI231RBeCnPgsW60ZgVNN9eyvBRCY1AzfnAG1yoLu6N5tw23VKO1qpGiVsnb7qnHfWyW7udGUeoUhJfD+IZFbrDppioUagX7HxIk/O2fb0CSJKaOTJO7wUXRVgeHnuxl33c6WH99JUqTkrF90wy/PcXWz9fh6V+g+8URyk/PY9vt9bT8ug9vb0AQsiwa9n23g5wSEzllRuxVObT8agC1QYXaoMSxyozBpaXkRBehxbCcN1wOhgjMiPXEtTdUYMrT0/XnESb2e1CbVIRDEdm6btv9DfgmAwy/PYW5QofGqCIYEmupDR8vwVxoiG/qu7oclUaJWicRdmkp2upgaJcbb3+Qmo8U4VptoWC9nT0PtrPh1moCM4t0PjuE1gwbbmtEUkDL0/1UnpdPTpGBqQ4v3t6A2HCZoGC57Z56loMhpnvnKDsrl8JNTiLhCON7plj/qUq0dg2RpQgbpBPZencdkkrBYPMofz30CkqtAs+sh5GRET73uc/x5S9/mcLCQmw2G6+//jpa7f8Joy2LfzRklZSyYOfOnej1eiRJwmg00tfXB4BarcZisVAklXPfffdx7bXXcqr0Ecxmm9jhH12YmndHmb1KYcmVuOtsaNc0kiSJxQRgbiz63ShjSFJKROcZJpq9YoEu0S5eAmOBWCybH/dBguK2Uq9AqY7bshGBwIxICiiNCpCg7ESxCz7kT72uUqXEUmNAoZQgAmFf/BgQl+GWBOlI7wSFQgERCC2FGXl7DEmKlt8gFHUkSSj2HExQC1AoJZpuqULvFC/tBx7rFlZvkiTbWtirrSAhe7xLSqGgAEK9KRKKk3wSr7vxtmrU1mSuoVwmYOejLRABhUI+KP41CBWeSAj5PvELS0ntIF9XIfo8OLuIuy25/LFr9L89xuEf9spjI7G9UcKm22vQ2kVwp4gVKhQhEonIqkqx9gZxDhIY7HpWf0IkymLl2v/9LiSEFdv2+xtQW6JtpxDHfDMiyWZwKig/J09cM3pL35RfrpPeKc6J3dO5wZnaJhEIROWnZRnQ2KEQct9YaqJBbon4VxkdW0eeEgGeQiuh1Cpk4pOERHB+kZlWn2gzCQrW2+WyRcIRRg9My+2i0qmYbp0S7YAIdvyTyHWTlSUkiEQiBOeWkFTR8RCGrpdG5LpJCtgsncxll1zGJ6/7JJecdik2s43iomKmp6fp6+vjU5/6FCaTicbGRs444wyyyCKLLLL4r8FFF10kqyVdf/31LC4uEgqFcDldqFDz8bM/ya233sqV51/FeukD8rwqKSSGXhc7XmILUYtzy0QiEfk7ywFhn6ZQKPAP+wUhKBo/TXUvICklNBYRO3gGxAs90flcZ9XI13U3ewmHIiwvRHfN2FSgANcqQc6dG/PLnucASp0CtVYlFI8CQBjmo2o1RGOToi2CYBtZFmqbiZAkScyBiVOwHjGnhWGmO2HHvUKi/Kw8OQ5pf36EQz/oEW2gAH2RXhB2JQlCCNJ59LsKpcSa6ypS7MUkCfnv0WaRKJBVOaNxgmO1iaZbqpJilVg8I6kkDv2gJ0UFMhYzu1tnCc4tRvsxVg0p7XcBlNFcmH9mEZ87iCIhNoyVadkXSlLslMsU7cPik5ysv6lSbhcZYUSyxC9sjldCpVVSvM2ZUCYY3+dhpkeMl8ZLSlh9bTmSKlpePxx4vAcpIqFQSFSeVyDH/pJSwdDuaRHjRy3Y9PZo7BUtk5z4S6hHJJrPi9m1acyqeHuHYWy/6CODXSv6LcrrEeSnRfzDflCLdsprskXLIol46HmhyKTUCuJYOBhBoQIisORbFhZ00fEQex+QFBLhcBhPbJemQrTz2O4xuQ3Dy2GhFBUdL7N98R2dkiRhN9o4d8uFXHXVVdx0/c24KKS8rBy9Xk93dzdHjx7FYDBQVlZGXV0dR44cSembLLLIIoss/na0tbXhcDhEXkevZ9euXUQiEVRKFXarnXxKue+e+7j2mms5WfowNpM1mu8Q53v65kV8IgEB5PkMYPzdCSRJQqkXX47FVjELBqVGId7JEdZq4VCYUFQhPLwICrWCnGKRP5ju9hIJI+YkQOdQCxVLHfiGAoSXwvinRCyhUIvyFUXn68DMEuHFeLkUKgmlWom90YRCoSAShkggljMR5dGYRG4jlkPSWaPHIsLeYXjvTDxW0QlCioRE0LNE8w96YBGIxrONV5ViKTMiSRLHnuzHfXBWzIfR2Kp4Sy6SUkKhjMVNinh+KgChxRBLvvhiHpKIKdZeV44xVxv/LrEYQvy986stItcXO6xE/u78qJ/QYjgpP5WUx4Kk6yqiOZmF8QDuFo+IU6JjQCGJ7w68PcaRn/Ql5exiX5CUCrE5sUCUV77tcoRIKELzj7piVYvnZZQKUEiYcnU0XlUaz5OBiG0lCUkryFU6u0a0twKO/KQPz9A8EhI6a1SpKTZGgenu2WguUAJdtJrRe+attsnvITFEIhCIji1Trj4pbgwHI6JvAkKhSaGUsJYb5b6IhKD1mX4AtFY1aoNKVuKKhCIEPEGmDs+JflNJFKx3RM+ViIQijO4XtnEKtYTWpGG614ekkohEx2FgLCDykUoIepbkfoyEIyzOLUfbUfw9/OYokgo5v7pa2sLFF17CJz/5SS4/5SrsJgfFRcV4PB56enq49tprMRgMNDQ0cPHFF5NFFllkkcV/DW6//XY0Gg2SJPGhD32ImZkZwuEwTqcTLTou3X4lt912G5edcSWrpU1iXkXMW4O73GIOi677Bb2LIucVzTEEvYtIKgmFUiLoFbmlWGzm7Z1FqVGKORNwt3qIhOPxiCHXIG8m9/YHWfIvsxidW1QGsc6U2yjyB9Pd84SX4rGV1qJGY1RjKhYEi/BShPmRWM5L3KOwScxx4WCEcCBhIVMSdbPVW0Q9orGX1hzNNSyFme6I2spHY5XC7XZURhEvdb4wzJGf9KFUKEABWrOCLXfVidgKoYaEQpLn+poLhZ1qovNKbG0PYPAtN5Ew+CfjOSpJIazD1l1fkfTdaKFAAe2/GcIzOE/iIm3su+6jsyxM+uVYBYjmsRKCCgXJuSlJwjcZZG5wQeSxkuI9iaB3iZ3fapG/GzusiNbVXG9mzSfKxDUTihtZBt9kkKAXJDVJ10UBGpOKspPzEvpGgadjAffhWZAkqs4tYtVVpSgU8Xs2P9xGOBhGoRIqVApt/LoTzVOEl8JEQqJdtGaR74u1odqoEvdJWHaNRN8HTMVaFEopSZEzvBSRc17mQiNKjUJWrwoHI/jdQdnGTqFRyIpfSOLcjqhSktqoQu+MXzcSihD0LuHpWEChkFBoFLJ6WCwui20KlVQKFBoF4we9cswYWQ4T9IbFuFNJco5QkiQUkoQpx8RpdefwsY9+jBs+cSMVUi3lZeWYTCY6OzvZtWsXOp2OkpISVq1axcGDB8kiCymS3mg9i39wPP7443z6059meXk55ZiEgrM2XsTaHdU0Pyxeond8qZHg7KJMJFl/YyXTXXMMvOpmw63V6Gwadn67BXxCbaigyU7zw0IKb8cXG/EO+Tj60z4A1t1YyUzvPAMvTbD2+goMLp288ydvi4XibS75Plvvrsfd4qHnuTH5vv7ZRdqfGqL0zFzsFSYORuWTXetzqDyriD0PtYEPGj5WSv+LQ7JVVmxXVGx3va3BwEx0h7nBqWD9TfXM9s9zLEEuMYaGj5Zgq8qh/6/jDL81lXJ86731KNUKDjzagn8y5TBb761HoZRkVZ+VKDrRweywn/meZDnG2suL6Xh6KO05GITywLI/JNdp5XH+k85dO77UyOLcEvv+Lb2/7Hsizb1tDQYaLinHPx3kwCPdaU8r/aCL2YEFZjuTT665qIjO3w+nPSfWN53PDsp2cInYek89So2Cg4+2yWMhEdu/IGzc0vaNAXbc2Yinbz5JctyxxsjUkQUKPmCj7KR8Dv+iH9+AKHPdFcUM7pzGN+Cj6ZYqlnwh2aKv+FQnuass8rOx5a46ul8cEiQ7A2y5pY6pDi/dz4xSc2kRuhy1CDKB1Z8oI6fQIHYaAhs/U83Am+O4D86hd0LTTY14h30c/UkflR/Kx5irk8/d+JlqtJa4+tPGz1QztNvN+N5ZTJUG1n6snLlhH0d+3EfVBQUYXTp+8PgPmGcWm82Gx+ORyYfV1dW4XC527tyZtj+yyCKLLLJIj02bNrF///60x2y4uOb6a5jtX2DglQl5Z/GBR9rwT4fJ22qloMnBwcfisdWCOyBbSKy+thxP3wJDr7tZe10FxjydrCzj2mCmeKtLlijedl8DM91zsnXW6mvLWRgP0PvCGNUXFWIrM/HuYx3gB8dqE5VnFMoKPE03VzHSPCUsw6LnKhQSh3/Ui7VWj6POSvezYpe7uVJP42XldD43yNTReRyrTUwdnZfr3HhVGdYyY0b/+R1faCQcjivvJMJYpmfd1RUsLSyn9anP22Sl6pxCxg/OyOVZiarzC1KO2RsMaK06RqPWFyvRdEsVeruWAz/uFSSYROiRrcz+Vmy+oxa1SZVsEfy3IMO9t9xVh0qvFEmdDGWrurCA7j+mtoPaqJGVjFZi+/3R3fffTm37mCJRpr4pPV2opmbqm9XXlpNToGfXd1vlMtsbDEmqUL7JIMeeFIth+nwdpSc6af/NEHo7rLmujo5nBvB0iJPX3VjJxGEPo7umqb+8BJVeKb+TVJ1fgL02R67Hxtuq6Xt9TIxTvbC48/Yv0PrUIOVn5WEq0Mvnrr6mHHORQR6/TTdXMbTHjbvZK5SWPt3I3KifIz/qpezMXHKKDHI8uOm2GjQWNTu/Gj3301UceL2d11qeRa1RoVKrWFgQBCeTyURVVRV33HEHn/jEJ9L2RxZZZJFFFqn485//zKWXXir/niZCiZpT685j3Sm1HPqBiKW2f6GR4PQizY+KXFTjVaV4B30MvTHJ6qvLySkxcOCRFgIecKzNoXirk0OPC3vZ7fc1MDuwQMsvRM6g8WOlzI34GHx9kvrLijGXGdn7ULts41V+ar4cl22+o5bJ1lnZlqvxY6Us+0N0/H6YvE02ctda5Pd6S5WO2gtKOfLjDgIesQA1uHOaQNQyrOHKEoy5OvZ9T+RxrDV6oZwDoINttwsVoVg5E1Fxdh4Fmx0MvDnB0BupSa1Nn61BY1bT/HgPgRgJPQGb76hFqVWw+4G2lGMg1IWWFhbj5Ynd97w8ep8fT3sOOqH+uLSwLMeiK4+TWpT3BZHjXEqyvfubkObeunwdG26oZGEiHqOvRN4mG8HZQGo7nJ0nj4GVqDg7j4JNDjqfGxbkrxWI9c3Bn/TItmmJ2HZvPZIkybmkldh+XwMzPfO0PT0ofxYbO/ZGEzUfKqbl6T7m+gNyeSZbZ5nrD7D66nLC4bCcL3NtsFC40S4/Gxs/U0PPSyPMtC2ADjZ+qoaZ3jl6nh2j7IxcjHk6+dyajxRirzHLygzrbqhgaM+ksAyMjt+5ET/Hnuyn8AQH1nKjfK5QozewKxqXrb2+gtHmadzNs+isCjbcWs/coI8jT/RRfLITS5mRXzzxSyYZxWazMTs7KzZ2AJWVlRQXF/Piiy+i0/2feAZmkUUWWfzvwkc+8hH+9Kc/yb+niXBSwOWXXc7CRIChNyapvbgIZ72FAz/uxj8axNZgoniLgyNPiPf8bfc1sDDm50j0Hbr24iLmx/yMvDNNzUVFOGpyOPBoG0GvUPopPSlXjpc2f64OT/ccnVEL+NqLiwh4Fxl42U3JKS5cqyw0/7ALgmCu0FF1ThEH/j1u6TXR4pWt2WouKkJjUHLs5wNoXVoKNlrpi87XWpeWNR8vo/flMaaOeDFX6GTiCEDVhwpwrbay+7utKbZpAFs/XwcS7Plm6rqe1qxg42fqRazyUGqsYqk2sOrycsYOTNPzwlja/ig9zcXAa+6kz0zFWkz5emGJlgarrirFUm7i6M+68fav9HojbT3eD9ZdX4ExXy/nQP5mZLh306dFjm7ngy0Zy1Z2Vi79L04kfWYq1qJ36HAfSo2rQPTN8lKY/WnWRrVm2PiZRoLe9HGka52FmvOLGGtO3zfV5xfgbLRw4NEOgl7xrJjLtHJ7N91Uhd+zSNtTg9H7KSg6MZee58dACxtvrKHrhWHZ1q/hilJmeuYY2ztD+dl56K1aWp8S8VHRCcKdJzaG1l5XweBOt2xxt+mOWuaGfLT/Zoj8LTaslSb5vjUfKcJRZ2b3AyJ+XP3xUkYPepg64gUtbLuzgfmhBY7+bID8TVZs1Wb5vms+WY4pXy/npVdfXUbb3n5ea32OsHIZnV7H/Lwog8FgoLa2lnvvvZfLL788bX9k8Y+NrN3b/yLce++9fPOb3yQdL02Lnot3XE7EL+E+OMf6k4TVlN4plHx2/ksLpWfmyt835OrQ5KgZeNVN88NdGJwKDE4DvgEfxVtdUZZm9NyvtmAojL/YGXN1aHPUDLw0weEf9kYvCPigaIsTrUWDpcbAbKdPfjlNvK8uyiodeGmCAeITjKnIgFKjoPK0fHqeG6N1ReJFZ9HIu7oBmaAEcQWoGEN7JfpfGsZ8XS0z3akJLoAjP+yg4AN5KQSlvC0WxvfOsidNosbgVLDmulr2PNSWlvhU8AEbzlozxluq0pN6fAjijS818HOsMVJ3YRme3mRyTQwNHy1BoZTSErLeCyuJZCux40uNhILhlL6bafVx+Bd9KUQsGQYo3uGicIszZUEyRlBa88lyJIUUHzdA6y/jiRS9EzQ2QxLJ6fCP2ig+qSgtQQlgYSKQpNCVCFO+2NG4OJ9M5otZuznrLILl7YsHoO1PxUllepsWnSVBWez1SYZeF4Ok/Jw8VHol9nqruJ4PWSocwFFtTpJrP/qbfpn45VhjRGvRULwtF/fBOSSNLinIc62yJjHlB9+eYKJZsPFNlQa0Fg1FW5yM751Fb1Zy7Kk+uc2cDRaUagXbJKGcVHtWMS8+/SLdtKJSqejr66OrqwtJkrBYLNTX1/PrX/+a0tJUf+Asssgii//N8Pv9NDQ00N/fn/b4amkDJ1x0Al2/F4mTnEI9OouagVcmOPSDHqy1erROLf5pP0WbnehsGvR2Bf7pMDu/2oJzbY58LXOxAb1Nw9Drbg7/SMyRse8Wb3Ohd2jRF+nxD/vFHJvgJmUuNmBwaul9YUwuSwy5q22oTSrytloZ3+ORF9RiyCmIX8jT4ZeJIQBLQbEjOne1jamj80kEJYAlv5hb9fk6/GkWuxbGAywFQimfAyz0+xk/MkP3i8kkF2utHs+gn/F9nrQEm3XXV7I4v0TrU4NpCTK1F5ShUEsZSUoHHunGWKZPJSghCC1KtSJj0qXplioG3hhPaYf3g8aPlxGcW0whE8WOWcuNaYlTR37cjt9PRoJSjHTl6ZpLKpcgBPlk0s+RH7XjT2iSWKIBBAnOHY0xAPzDfsYPzjDyTnpymLt1jvwmG92vpD8uKzsllHk6IWZX61UYHPFj/rEA7b8RsVfhSQWodEr0Dj2e6AUSFwmtFaak2Kr72VG6EeVwrDahtWoo2OyU2yImpw2Qu8aKSh9XfOr+y5g8bvVFevROLcVbXbibvShy9Bz49xa5zfLW2pLOHTvqYeh1d/xch5b1J9dBqwrXGjPL4SWePfA7AviIRCIcOnSIa665hmuuuYb6+no+9KEP8eCDD6ZtvyyyyCKL/814/PHHufXWW1lcXEw5ZiCHc9dcgFKhZurwHGtPEqRuXb6OwFiAXV9rofCE+ARjrTBhdOkYemOSo0/2obOCwqQDT4Diba7kc/+1VVaOAbBWmjDm6hh8fZK2KCmc6OHCLU70Ti22eiMzbQsp5BtLuYlwdGf1+L4ZxvfNyMd0Nj1qo4qCDwhiT2zxTa6jU4faGFd+TiLCREOtmJLRSvT+dRxno4XJ9vRxytEnOinYlpdCUHKszWHq8FxaEpHOCms+WcuRH3ekJdfYG00UbHBgLjamJ/UEYOe3WkjHE4kRgqY75+TFlERUnJeHNkeT9th7wVZvpPTkvIxEo+1faCQUTN0sGBgLZCQKxVB1TkHafFmMoFR3cREak5ojT/QlHZMJTDqwFOmY7Y7fY99/dFLxwbyM9/X0LqDWKdMei43bWFwunxMdO64GC0qNgqWEhb9EMpWpMLlz3M2zsjVg3iYbWosaV6NVkJQCJC3m5a6xxhXsgc4/j8AfxJjW5esw5usp3uZi6vAcOl0yAa5wo13YKEcxvHuS6RYxdnVWBaYCPYWbHbibZ9E6NBz7VY/cZvlNNjQ5atZLHwCg8sR8dj+7myPsR6FQMDAwQE9PD3q9npycHNasWcPvfvc78vPz07ZhFllkkcX/VgSDQU477bS0G5kllNRL69lx1laZIOKoNWMq1DP0xiQdvxtmpHgSjVGJHyjaZCenxIi+QIt/NMjuf23FWmuUr+dssJBTZGDknWk6fz9MJ6B1CuZK8VYnOYUGmejx7rfbBaklCkedmaVAiIGX3Qz+VfwXg7U6B71dS+F2OyO7pjm6Yq3MlpBDCLqDMkFJfLCERq/CUZvD1BFvEkEJoutJEdDbRZ1WwtOffp0RIOgNM7TTzfi+VJLRkjfIbJcv7Ya/ukuLiYQjdPxuOIWgBFB/aRkao4qxI560pJ5jPx+Q+2AlNn6qBnWOit1fb009EbFuN7RrUibA/C2oPr+A5aVwcvtGUfWhAvLW29ISpw78qBvtcchTq64qxVJhYn4kIMg1UcwPBZkfCsqkn6M/7ZYJQwB7EtbobA2mpDoFvTDw1gTuA+nzht7hAEHvEsNvT6Q9rtAohANKwv0S66W1qGUVVnG/sCAoAUWbHWjNaowunUxSihGDQDwn6oTc0/DbUwy/LdadTcVaTAV6ijbZRX20sC8hfi/c7EBn08h/D7w1SecfxJqs1gzmMhMqrYqpI160Zi0HHmmX61CwyZGk2OQ+OiuTBrVmMJcaaVRXsNz2ISyVBhS6CC8f+TMeJpEkiYMHD3LFFVdwxRVXUFtby+WXX85XvvKVtO2XxT8eskpK/+B45JFHuO2229ISk0xY2WY8XRAfoqo8sZdlvRP8Yn0CiO/EjqnRxEhEMSQSU2JWVjHCTtNNVehdWpmgknLuFxsJh6I75Q1gMChkQknpB10U73AxtGeSgZcmMBTq8I3EJ/yNt1WjtcYVYlYq+Gy/v4HlQCjtTm5bg4GGi8vFItczqQslpWfmUrzVmVGhp+FjpdgqTRmPx+rd+9ooo+/MZDx/4O0JmbiyEnVXFCeRXmJwrc/B7w1lJPxYagzUXVhC+x8HU1SJQKgHSQop44794ykprb2hAlO+nvY/9stknURs/Ew1vslgEnloJcrPyaPvz6lBR/WFhQy/PZJWjSpWbsigesR712vbfQ1Iisznb7uvgfBSOL0yVfT6/smgrN6VCEuNgVVXlDPaPJW8EzA6JmO+rolqW4njeccXG1kOhpKISoZSQfyLPQfjh+Nj1VCow+cJgE+Mc0mZXO/YcxYjrPndQQ5EFTgMToUgt/lEnRWq5HNNlQbme3yy+pWsomYAn2WavWNvshxeRqVSJamxbdy4kX379qVtuyyyyCKL/w3w+/1s2LCBtrZUcrKEgjVsJddQBP74rucDj/fgHwtgLNOz0B9fTNrxpUaWA2Je0Nuj14++A8fmlENP9rLQ78dcqRcWVbFzv9hIaCnqha4HvV4QlgBqLi7C1Wih8/kh3M3elPtuuasOlVYpJzxiZCcQhKKm6yuZHVgQSjYrFHwqzysgv8nGgR/2pCUerb+pEr1dm0RyScSWu8ROssS5MBE7vhCdKzPM0zu+1Eh4Ob36Uuz8TOpMsfrlb7DSm2a3U+npuQy8kj7JANBwRQlaq0ZWu0pE3lYrVWcWMtM5R2uaxbL3UlLa8cVovR5ILbdzbQ4VHyzg6K8H05KnQJC3FEopiewDgB6qzylMIafFUHZmLkVbM6sexVSRZvsXZGWjRMQUrSaOedLeI2+TlaqzC+l9dSwtMaz6okJyG6wc+nlv0hiNYfOdtSjUiiQyUeKY3PHFRqFm8IN43BYjxVWdLxJd3X8ekQltiYS57fdHY86EsRp7zhyrTdR9pBRP3wItP4sqOtkV+P3C7i2m4pnYn7FzYypgicqiejsymSzlXD105jTTP96DQlIQjoSFxUkkgtVq5e677+a+++5LaZssssgii/8teOaZZ7j88ssJBlNXJ6y42KQ/WSbo7PhSghK1DnQ6CHjEsXU3VmLM1ckkk5wynawcA9H39UDiuQoCHhEfNVxZgq06h9bf9DPTtpBy7rZ76wFkkoUuVyerH7nWW6j5UBEje6foe2k86RjAmmvLMRXGFWJWKvhsuauO8FJYVk9KhKFYx7qPVzJ+dJqeZ1Njm7xNNirPKqDr+fQKPZXn55O/zp5RwSdW777Xxxl5O3XjXcV5eRRscDD49gSDGXJelefn0/PyWIoqkbVGTyQcSSLjJEKXr2PVZSX0vjIqk1MSsfXuKHk8k2LncZSU6i4uwtFoofP5YZlwk4h1N1QQmF6k/Xfp1b5B2ICkU6QqOyOX8UPepD5OKvc99SgUmVWPtt5zfFL85jtqUemUGc/ffGctREivTIUYqwsTAXlhKRG6XB1NN1Qy+q4Yq/EDQECogFnKTRx4vEeun84af0623xfNzybc21CswzcUEM/B+UWMHYyPVZ1VQSAQhkDq+wkgP2eGYh3rr61kYTwe8+ms4jsBD2z+XC1qQ3KcHbuvLlfHhhsrCUwv0vxIF+ggaPWyd/wNguFgSs5r8+bN/OlPf8oSlrLIIov/1TjrrLN46aWXUj5XoWI123Hq8iAoSCs5RQaOPinIJSvJLzu+2Miib5l93+kALWi1Cpn00HhlKdZqE0d/3oO3N4CpWCtIJVFsu6+B8GKYvVFCkjZHS3BSHC8+2Unpibn0/GWEsX2elPtuuKUaTY5azq9onfFztWZouqWBuYEFjv1iIEXBp/ADdkpPzuPokz1J5Ymh4YpSzKX6tOpIIBSYlTplEjkkEVs/X0doOZLx+Lb7GoiEwhmvv/XuOiC9OlOsfrkbXElErRjyt9gY25u6hhlD5bn5GPN1aWMEc4WO1VdVMtXmlTeRJeK9lJS23ddAZDmcRA6Sr12mpfpDJXQ8M5i2zQH0BVo0RqVM3ElE+dl5aclPALkbrVSfUygUqZ5PjZUda8zUXVCMp3uell+lij3IilYH059vqTbQcGkZfa+OpW3b4pOdFG930fKrnlTlKmD9pypRm1TJa9sJY3LbfQ0sjPhkBTKIj+fC7XbKP5gvPwcgVJmCwTAERUyoVCvYnZBPiz1n+gItTddVMdM1L5OgtGbxnaAXNt5WgzZBHTzx3JgKmH8yvhYpnu8V58bUr7QwaGmhfbxFznXFYLPZ+Kd/+iduv/32lLbJ4h8HWSWlf0D84Q9/4LLLLktr5eakkPXSDgA23FqFzqaVbdomjngYflssIPgnRaCw5BNWDd0vDuFcZZPJQ446M6suL2fnd8S586N+3Ec98rlrb6hAqVRw4LFu+t4YpfqsYkJeMUnMdvpYf2MlHc+O4BsJEPAsxpVqfODzhWUSy8AuN0VbnYT8Yid9jNBhcAoiU8CziNqkjpOTVsxD4XCE8HJ6BZ2ZfvHlxJ3NiZgbnIctTlTG9I/J5LEZrGVGFobSs57bfttN45XVaQlKAK2/GJDrsRKlZ+Yy8NJEWoISQPV5xccl48x2+jIu8IEg6RhW7Hh6vzj8i6iKUQZBpEwKSzHEFmVn++aS1KwAuqI7AR1rjCwHIikEq4P/0ZqRwAQw2jyN1qLOeDwwHUSVYQcZCF/WTOMlRr5bzqDqYMjVQgQ8PSsIa9EqLC0so7Vo4gQlpyKJcLccCOGfFhGGY42R8HJEbh//VIDQYpjul8UC4epryxnd58YXXe+b6p5DF91FZqo0sOqSUtr+MBA9toB/Kkj7C+LczXfWIikkeYG3/Y/95Ef9kg2lBtZ/opypTi/tPT5mWn2MNk8xfkAk5mIqEYZ/sYMEU9pJpgt66R8UgdD+/fvR6/UEAgE2bNiQ0dYoiyyyyOIfDTt27GDXrl0pnytQsoWTMUmCZbTjS9HY6tsdtP5xCFulSSZFlG53Yrs6hwOPCAWWqXYvo/vEgo9/WiTYQ8EwzQ930fvKCKUn5rMwIdgYCpVI3h/5cSf+6TALYwHmRqNMDT8Ya4xUnGun5ef9DL0+iq3SxNL8EiBUiRyrTSz5Qnh7/ARmFtEk7Gr2T4dlopJ/LEB4ORKfC1fwRuZGF8hfb8OYq05LUloOholEyGhPFglFknzkV2LJt4xvKrO+9HTHHN6RzF63O7/WkqQiFYO9wcByMIK3x5+WoOTaYKZ4uxN7tYmDj6XfVZ+OfBTD+B4P3k6PIKL8J5CJ9AUweXiOycOpZPlENF5eQWgxzJ7WFeQ5PzJ5qPhUl6zuE0P/SxNM7JuUSWorMfDKBI7aHI79Jr1amHc0SHgpwuTR9LGw2qCCCHhH0jeMWiNitnQEJYDIUoSIYsVGjOhX9XYIL4WZjz4jiWMYIDi7RHgxLBOUVpLQ5kb9KKNqE+ZKPaUn5clWb77JZRa9S/S+LBJd62+qZHEhJBOWBt6cwFadI9+36eZ6Bna68fb4Wej3M9XuZWiPeLY33xldTIySoQ4/3kH+NqFeq88Xi4FrRio4ElVIm1s7RPOx/SyFlvB4PHzpS1/i/vvvR6PR8Ktf/YqLLroobVtlkUUWWfwj4e233+bss89Oa+WWRwlrpK0ArL66HHOZgeb/EKSJ4d2TjL8bfSEPwPrb61n2h9j3vU56/jJC/ga7rEZjKTex+qMVHHi0nYAnzHTXHDNd8/K55RcWoTEqOfyjPnpfd4td8tMiPprrD9D4sVL63pjANxRgYTRAKBSfSwMTAZnE4j44S+UZ+SzOLcnHIE7uWJgMYHBq0VmjhKoV4UAkFCG8mH7vqahLRJ5PV2JuzA8RknZcJ2KqxYOrwcrcSPrYq/UPg6y7ujItQQmg9/lxRt9xyySVRBSe4GDk7am05CmA2gtLUemUGXNegbHAca3a9nyzLUnd6m9B+/PD6F4dlglsKxGzMsuEtdcJYpl/JiisyhLQ/7KINXLKdCg1Uort257vtR3Xwq7/jQnMhWmC2SgWJgLo7dqMxyOhCJH0YR3oIBKB0GL6LxicKgiDd2UONFreJd8y4aVwWoISQNCzxOKCyP3mlOlQ6ZVCYQlYnAuytLDMyFuifeovL2HiyAyBKAFt4rBHVnDVWRWsubaajj+JnJdvMoC338fgO2Isrb+pCpVOIW+6bPvtAPkb7NFzYcOtjUy1ztI+NExgIkDf6+N4+kQ5Nt1Ug8akRvtVM0iwsOxhvKyHnn4R/7/77ruUl5ezuLjIiSeeyBtvvJGxrbPIIoss/pFw5ZVX8utf/zrFyk2NliZOxiwJBsO2+xtYWlhm//c66fjTKI46o0y+KGiykf9JO/v/o5vgZJCx5mkmj0VzBUFo/GQFkVCEgz/oofuVcaoV4E0SK6jh6FMDBN1BZrrnCMwuyudqCyVKTyqi8/fDDO2eJG+dDb9HHPePBjGXaUEh4e0NMD/mxxiKx07BSUGsCHrDBL2wHAzJ89VKhZ75oQUIg9amTUuYWQ4I9SStWRAyViK8FEahSq9qCRCYWWRxPv3aE8DYgWkWZ5cyHt/zzXaZTJIIU7EWhVrUPx1ByVympfLMAlyrLWlJSEBGWzkAb2+And/8T1q5AQce75GJYinX7g8KIvFx0PTJqowbGmMEpXQkrIn9HmY7vUmqRomYOuJlbsMCLb9P70YTmBAK8FPtaTobUOlFzss3nj5PqdIrIRLBO5a+7qHlMMrQijg/9lWtWE/0TYlxLo/haDsu+UIs+UNCNQtktbAYPL0LaE3iHUDr1FJ5ep5MSAovBPGNBRh8O2pHfWUpoVCY9qhCbN9r4zgbzXI5tt1ez+A7buaHggS9YUb2TTHdLtYT13+qEp1NI5Ohjj7RiavJKZ7bqHWet7+Ukp81AuCvn2B/z7sEFv3MzMzwuc99jjvuuAOz2czTTz/N2Wefnbatsvj7RVZJ6R8EAwMD1NfX40+z+mHBxWbpZECwK5fml9j/UBdFJzoo3Ozg6JMd+CehYJuN0pPyZNnhrXfXE5hdlCWOHWuMWMpy6HluTFZ26X15lNHd4sc9URXmeIo3uRvMVJ9XnLSDOBGb76xFbVRltAbb/oUGJElKy7zVO6HppkZx7X9Pvbah1MC6q8roe2MsPXnIAFtuqePoL/qTCCSJ2PiZalp/2ZPRPqzplirGDk5nJCetvaECvU2bIu8cQ0zBaX7Mz+EMyQ9bg4Hcdfa0JCZTpYHGi0po+f1gZmu198DxlJTeD1ZfU45ClWzLFoOh1ED5Sc60NnSJ948sRzLu/qq+sBDXKktGRSQQ4+jYk12Z++nTVQztnEirggWin6c659IqPoF4lryDC2nrYXAqWH9zPbN982kt9WIqWkM73Qy8mhoYplNGil88WfVsJRqvKsVaYZKVrmJqTDFsvbseFAgLQgM0XlQq18G1Pofqc4vp/sswE81e1t1YSSQckcdhw0dL0Nu1ND/cJT9rMSWyScMYihofh48cZjkkAnmr1YrH4+H666/n8ccfT9uOWWSRRRZ/r7jxxhv5wQ9+kPK5hIImTsEu2WUlmJ3faQG/iBG8wz7Ztmvd9ZUsL4Y49mQ/BdvtlJ2cR9vv+2TbtIYrSmTyy9Z76gkvhZN20MQs3N5LsSadskv8IrDjrkZBYvlG6rxSflYehVscjDXP0PN8qprOqqvLsJQaBek9DZek8aoyTAW6jOTpyvMKMJfoM5J/8jZZyV1nk0kaKcUv0rPqomL2PZQhZtHD9jsaGNk3Rf9L6ZWQjjvvJtSj94X+JNuzGNZeV8Hi/DJtT//tliLw3kpK7wVzpZ66C0o4+kRXWkJR3aXFjO6fSlLbSkRMPSJRVWgltt5Tz9ywn5afpyckFZ/kxF6TI9sNroS+SE/9hwtTLANjMJbpaby4JK36aez6xTtcHPpBe9o6Nt1Shd6qlZ+1lTieGlVMGSnTu0nMFq/l6d4kS0P52l9oJLScqFwWVz0rPNFB+cl5dL4glMsqzytgutMjX2fdpyrRxHbG6cV7SM9LI0wenkOfr2P1laX0vjrK5OE5Ntxajdqokp9T7/phRtyDDA2J9wG1Wo3JZCISidDd3Y3dbk/blllkkUUWf4/weDzU19czPp76fu4gnybpBECQthfnlzn4WDf2RhMVHyzg2NODBCYC2BtNVJ1VyLuPdkBAbKAKepc48pM+ACxVOmxVFvpeGsexNofa80vofXWMsd3iR11nhUAACIid7gqVIm3OwlKlY9VHK4WaXxoV5ti82/JUbwpJBcQ7u0KlYNfX08QFOhHX+KaDaa+tsypY96laBt+aSFqISMSmz9bQ8rvBjPZg626ooP3Z0RRrtxhWX13OdKc34/XrLy/BXGLIqHwZU82ZG/ZlXAjLKdOR32RPsbQDUcdVV1fR8cxgkmLV34LjKSm9H9ReVITapEqrJKmzQvlZJceNC0VcEk6yMEtEyalOirY62f1vmUlLG26upuUPQxn7adXVZYwdnE4hSsWw9voKZvsXZOLUSmy+s5a5YX/6euhg++ca8fTM0fqrNHZ7Z+dRsNnB0DvutHYzMbX+nQ+2pK1fkurZClSen0/+ejvtzwwKK7io7WIMmz5bg0KjkN896i4uklWvLFU66i8up++1ccb3zdBwZQkqjVK216s4Ly9uP6iD7Xc2Mn5EqDt5dB5CdVMcO3aMxSWxIGi1WpmdneXWW2/l+9//ftp2zCKLLLL4e8U3v/lN7r//fkKhZNKMCjUbOBGzZJeVYA78eytBL6y+ugzfZFAmtNRdJjbatz01iLXWSO2Hi4XzR1TxpupDBWJTdhA23l4DIdifkNvRurQE3UGh1POxSqHy/FxqXipFnWUFEsUYViJ/k5XKswsZa55OS8SpPr8A1xorzQ+3piUeVX2oAFt1Dvv+LX0uo3C7HUe9WY43V8JSbaBoszOtUg8I8knDFeUc/EH6nBmIuHTk3em0BCSIrrcaVBmVjGL1GNo9nZYsVHdpMeHliGz/9bfivZSU3gv6Ai31FxTT9sxQWiu68rPzmG71pFUjAjEOHXVmel4czagWtfG2GubH/TIRZyUca8zkr7NyLMOaptappfbDBRljW61Ty6rLS2j+YVfaMepYY6bqzAIOPdlH0J36hVVXlZJTbGT3d1vTnr/tnnoikUhaFa2YMpJvIpB2HK26Sqhhtvy6H09H6iaQrZ+PKnRFY6sYIQrAscpMzYeL6Ht5lLF9HopOcDA3vCDbH9ZfUYLRpZOf64231dD32jhTx7xozdBwRSXDe6ZwH5plzSfK0Dq0Ql0NmFs1wph3mP4BEW+rVCrMZjM6nY6DBw/icrlSGyKLvztklZT+ztHQ0JDWUsSIme3SmRhKDTRcWCir20gS8g714bemGH5rCluDAf+kD1OJAaVWQfGpToZen0whQNRdUAYS9Dw3xsCryeQK1/ocas4vkYk1u77bmqS003hVKdZyEzu/2sJEsxelJk5uAqj8UD7GXCEX2PrHIUq2OZIINqZKA+Fl8A34mB/1i532aeCfhHAowpIvA+N4OYyklHBUm9OSiAqabKh0SirPzJd3Sycib4sFrUVD3eUVaRcxMAif2dIP5GUkKeksGhTqzDIBAy9NYC01piX4xDDT6ktRIYqh/EQXKr0SrVEinQNs0YkOyk7Jo/+v4wy/lX7H23th6731REKRjAuOOUV6JCl9HX0DvuMSlABmuucYeTdz2TQmFZJCSrEOjKHgAzbURhXVHylLS/TSO0Hv0FJxRiHug2nqYACtRUPeGltakpLeCQqVhM6aXrVJYdYRCUfk3VgrMdY8SU6hXn6GCj5gSxovR57qp2iLWFgyFOpovLSEfY93ymphh3/RRzhK6N/4mWrURrVsXdPy84Ek28P1nyhPSu4kPtfrPl6JKU8vP/Pug3O4D8aTrAZn8g68iSPTssWftdoGEgSmRXLmxI9sYWlhGfuhSoboQdkQZHRcvDT88Ic/5LnnnkOr1fLjH/+Y0047LW27ZJFFFln8T8err77K2WefnaJWKSGxhm3kSkVUXViApJDo+v0IS1GlSEeViamj8xx4pBt7g0E+z5inIxyNaUZ3TSdZXlWcm4+91kzjx0pp+cVACoFITu7/Swvj+zyMH/MkkTO23dtAwBPk4GM9HH2qn3AwIXbSw6brazj2i06h2tTmZWBn8rybt9XK+B4PfS+O41plYTyqmLkScyN+zMUG9HZ9WrsxnVWNSqPMqJ7kWm1Bqc68k6zstDxU2szn151fgMaqxrk2J62ikKPKhKSQUJsyv/a0/6Efe4M143EgIzkHwJSvl/sxHbbcJV7oMy3WvRdKT8+leJuTjj8Npq2jMU+P2qSi+NQCOtNYj6ST207EoSd7aLykLCNBCUCpUmSMewCKtjtRajL3Y/2FhejtWqy1+rREn8rT81EbVRn70VppQqGSgPTk8yVfCLUxlHaMAMwOLBCOKgMYy/SEl5HH69TReaZXzdH/smi71deW4x30ycpKBx7pJm+TVZRbDzvubGSiNU4ITFToWv+JSgwunWzFOPLWFCMJ8XZ+k4389TbZriTRiq7sxFxUeiWGXD0wh96mSLJEUSiTY+uTd5xE2++HqZcCdLjeRWfV0tXVRTgcJj8/n9LSUpxOJ7t3707fKFlkkUUWfwc444wzeOWVV1I+z8HOVuk0dLk66i4sjP+eSvHfy+mWeaZbOrHW6AlMiLhLbVJRst3J4OuTKRZpjZdVICkk+l4aZ+rwHLsOJ1tLrbm6UibW7HmoPYlcUXl+Pnlr7Oz6Tguz3QE6n022SCs+2Ym5xEDLzwdof7qP0tMKkghKunwdCpVQP/J0z6HINKcGYHkpJMeYqQijVCuwVprSkojsjSY0ZjUVp+WlJdhYqnQY8/XUXVCYlgQFYC41YMjVZiQp6WwalOrMCtbug7M46s20/TEziWeuP8Bcf3o72qKT8tBa1Ogc2rQkJXujIB8Pvj2R1nLt/WDzHbVAZls0W00OCmX6Pgp4eE/i+vjhGaZaPRmPq00qFEoFtnKjrDaUCHujCZ1TQ825+ekXw3RgKTViyNVmJCkZ8/TorJr0JCUdqHQqtBliP51VRyQUZi6DGub40VkcdWaZoOTaYEmyzjv8835KttkhIEhdjVdW0/yTLvmZav6PHhQa8f9rrytH79DJuayeZ8eSLAI3XF/J0sKy3FeJz3X9ZcU46i34ZxYZeM3NbHcgKSdmLjEm9eNMh5fe50UO0FZuBJCftY1nNhAOhXEcqmKSMRYbp5mYmCASifDQQw/x61//GqPRyA9+8AM++MEPpm2XLLLIIov/6Th48CCnnHIKs7PJdqcKlKxhGy6pgJJTXKiNSnqeHyPoWQIJTCVmgse8HH2yH3NFXMnQWm6EaKrE07GQlBPJ32Qlf4MdtUlF21OD7F+xWb7p02Kz0M6vtgilnhUEpE131BKcXeTIj/s4+tQAChVJKjNrr6qg/ZkRgpNBRvZNMX7Ik3R9xxozU0e8jO3zULjVGVd1WoHZAR+OejMKoxa8qewQvU0t1uIyqCcVbHKgyVGnWMfFUHV2ITqrJuP5FecWYcjVyeVdCVOxFkmtQHOcnFfrr/vJXWvLeBxIS/6KwVZp4nhaJxtuqUZSSyl9+H6Ru9FK5ZkFdL8wgvtQqtWuxqhE79RStMlO17Op5cxk5xZD+6+HqLu0+Lh2diq9AsNx1CjLT8lDa87cj9Vn55FTaMDWYGKmNXVVtvREJzqbBkdt+n60V5lQapXy87ISiwshlhdDae8NQo1fir4DaV1aFCpkQpd/VCiXjR4Q9a+9uIiF8QDDUTXUYz8fwLHKLBOUtt3TwMTRGdnCbs+DwlYRooSvWjPHnupjtsvH1DEvU8fi9Sk5MRciyBsE2xJU53M3WtFa1BgLtUwdE4pkSaQppZS0prxjyw46nhulRtpMr/0wKqdEV1cX09PTFBYWUlZWRklJCa+//nr6Rsni7wJZJaW/Q9x22208/PDDKZ+r0LCF0zFIBlnVKKaqMrRnkoE0u8d3fFHIqMks1gRyg63BQMPF5bhbZun8/TBFJzqY6ffLqiyWGgPV58QJUJvvrKX/r2NMNMd/lGIqLtUXFpK72sqxp/vSkkq2f6HhuPZlO74U3f2cZpdazKLK0zufkfyy+fZaOp4fSntvEMSdGGEnUREqHRxrjDJRIx1MlYb/tILRStWbdNde+7Fy3G2zdP4mM3NZ7ySjLVrpmbkUb3HS+ru+jESn91JS2vL5OiKhSMbd7se7fwzbv9BAKBg+7oKdwanA5wtntJY7HjIRmGJ4r35MtOIr/aArreJRDBs/U83g2xNJYz9+IaF8lGmXYEyVLJNy1vobKzHk6uh6fijt9TfdXoNKr5KfjZVjaMOtVUx3z9P353FqLipCpVfS+ov4c1J1QQHdz4jgbscXG5P9YqPlxycW7MzFhozktpW/JbHnqC1yAJ91BhQwPS2SmFarlYqKCt5++20MBkPKtbLIIoss/ifB7/dTXl7OxERqHFVBI1VSo6xoBOL3MBKOyPZNiSg7M5eirc64T/sK4s36m6rQ2zXyuRXn5ifZjzV+rBT/zCK9L4xRcW4+5mJDEskhsRzb7m0g6F1MqyxZsN1Oxen5ePoWZIuqRMR2+Hc+L9RfVmLtdRWY8vUy0WIl8jZZKdzsyKiaA0JhZuStqRTlmXTIRGyJwVypz6gSdFzE3DKOc+qWu+pQahRp+zPpUvbMdXivha73UlJybTBTfXYRfa+PJxHZ3u/9Ib5z7MAjbRnt2yB5DP2teK9z7Q0GpjPEniDszfxjAdBD3lpBkksHx2oTpSfnpd8wgFD0NBcZOPBo+rpuu7cBhfo47x3vpbp0Qal4t3plIqXOeZuslGx3ycpeTbdU0fHciGxZZ67Uo7drGd/nof7yEuzVORz4aW/8Ggm/Ccf7Lak8r4D8DTaxk/TZUbkc/oifvbxCbpGT8fFxmVDZ0NDA6aefnt3ln0UWWfxd4Pvf/z533HFHiqWIBj1b+CA6SSerp1Scl0fBBgcje6boeyl1gWLbvfVISgW7YjGLDpncoMvX0XRtJZNtHjr/MIJrvYXATFAmvhiKddScFyfrbLi5msFd7iTyUawcxSc7KflALq2/yayOpFQrMsZOO74YVbVMo5assypo+nQ9nt70qjUgYsj+v46lJbRAlCTSMitIIbk62ZIrHaw1+rR1kMuzQrnmb8F7navL1bHhU5W4j4k+yfg9Kxnt2PI22ag4PY/OF4YzEnTeS0lp42dqADIeP979Y9h2bz3LgdDxFcpj67j/iebMKdMdV0nKUqVjtvs4bW2NK4Plb7PLimHpsO6GCkbenU4a+4nYfn8jc0M+jj7Zl3LMsTaHugtKMubE6q8owV6TQ/efRxnfl7p4uO5TleisGvnZWDmG1lxbjnfIR//LE5SdkYvOrJaVkwDKzsiViVjb7q3HNxlM3hQa/U2oubAQ1xorg29PMPh6akJz5W9JrBx9kXYmzYMo1UqmpkSuzGKxUFNTw1tvvYVO95+zHcwiiyyy+H+FYDDI5s2bOXLkyIojElWsokKqR+vUygo72+5pAIm078uudUItMbaeuJLQ0XhlKeZSg2z9FLO/jaHyvHyW/SEGXnNTuN2OvdrE0QSXipiyEsCmO2tZ8i5xKM1Gf2utkcbLypjpmpctrBIRy490vTDCxH5PyvHai4uw15rZ/Z30qjXWWiMlJ7gyquaAIGGNRTeCJSrPpIO5Qicrz6SDqTi9vdx7QgtabXryUwxNN1ehyVGlVeBJulQGEhUISy+FWpHRlu29lJTMZVoar6ig7/XxjESi490foPQMF8VbXBz4cXdatSX5Oglj6G+FvkB73Gu/Vz/Kz5EWXPWWtIQsEP1dfXYRB3+YfsNA9fkFOFdbOfDDnrR12XRnLZrjKGdtu6+ByHJYVkZaee/VV1UyvHuSwb+6U9rLWmuk/JQ8mVy05tpyel8elcen1qXFXKjDfWiW0jNcFG50cvTnPfHxm/CbsO2+BghH5N+DRORvsVF5VgHjB4R6WqwcwUiQZt7EWmhiwj3B0pKwP6ytreXDH/4wDz74YNo6Z/E/F1klpb8TTE5OUlZWhs+Xmthfzwk4pXz570SyQMvPB5LIGLYGA/UfKWN4zyQDr7qZ6vKm+NfXXl5Mx9NDMoFFpRO7SlYSEyrPLEBr0cjXX0lYSbTO6PrjCF0rZJq3fL4O32SQoz/p49DP+vFNJtet+FQnQ3smwQfeQR/jB9Mr6/gGfETCETLR7WwNBtQ5KqrPLmR/Z+pEaSjUUXZKHkXbnOx9sD0tQWn7FxogDLv+tTUtsaX8nDwKNzo4+GR6izoQSalQMJSyWy8GS42BVVeUE5gJ0vxw+kUXg1VFJBxh8mhm1i8cnyA08NJEWsLa34JMCkrv5/4xhBbDx9n9J4hO62+uzyjxDEKBqOLUgrTkt9jfGz9TjUqvSlGgiPVjzUVFuFZZGHh7gqGERESMoORan0PxDheuVRaZkJcIQ6EOrUVD2Sn5aUlEBqtQVfJHFYdWYuBVN456M4d/IQLq8nPyktSbDv5HT5xwZYDttzcwuMstlzUx4bX2+gpMBXq6XxxmfK8IchLHkrPeLDOqY4gRlDBAJBxhKShUyAo+YCO8FJav0/fGBHXnFcq/A9vua2Bh3C8H4zu/2oItqg7S8NESbFU5DO10w6tNEI233uEv+JknEAhw4MABjEaxM+3qq6/miSeeSNs+WWSRRRb/Xbjnnnv45je/mfJ5Dja2SvHdsSvt0Fp+nWwJtfa6CnQODXu/2U7/SxPYq3MYeCs63/iFYlF4KYy72UtoKUwkIW/Ru0Jq2lppImcxTO8LYynHCk90UH5KHjOdc7Q+NZiSMCo9PZfCTQ52P9DK6K5pFsb9KcSe4lNdDL3upuM3PdReVJmWoAQQ9C5hyNVlJMaUnpSL2qjKeDxGypkf9uHt8bPSrbj09FyKtzsZ3jNJ/0sTaQlKW++pJzi7yMHHetISlGJkks4/pydaAWy+WVgM7/xWeoswgMX5JdT6935lOh5BKBM56f3C3ezNWIf3c3+A6S4vtqoc9Hk6/NPpY9WYrdmBx3sEWSgNNn22BkkppSWq+4f9mCv1rL6ygt7XxlIIVTGC0vb7GwiHIimxWeyeW26rQ6VVMn7Yk7Zfyk/NR2vVZCRFhZfChMORjGSs7peGcdZaANDbFZhrzEmEqJ3fbkFvEQtKa66rQGdWy304dXSenUfjiZ6maysILcWtEsf3eWRFqrytVvR2LRWn5XE0Ku3u7Yk/dwqVRCQSketQc3FRkhLWRIuHSFi84FScm0/eWhuHftaHf9hPz/OjzPbPMXV0Xi5HjNB0MufDCLgioxxiJ1qdlra2NlpbW3nooYcoKipiz549FBUVpW2fLLLIIov/DgQCASorKxkdTd4dLSGxjg8k5by23VuPpBB2aL3Pj+PpnpfJOYZiHWs+Ws7YgWn6X55g/MgMkiLhHTgAVR8uoPtPws4sEgnLio4rCRjlp+RizNXhWm/BfXCW5keT8wFbPl+HSqNk59daGHpjMkW1Z+NtNQRmFzn2ZD+HftpHwJs8t7o2WJjrmSPgCTPVOou7Nf1CRcATJhwKZ1QU1+XrMLi0lJ+az0xbmlySDmrOK6L81Dze/XZHWoLSls/XoVBK7H6gLS1BKW+TjcozCzj6i56MxJhNn60hvBzJuECly9Wx4YbMNngAOotEaCnMdHd6clEMxyMIje+bSUt2+VvwXjZw70VQAqHyuLSwlPkLOmG5vDi3lDFP6FibQ+2HSmj7fX8KAS3WD2uvK0dn06bkzWIEpZJTnZSckMvAm8nKUrE65JTpqDwjn6LNjiSLHbmYVjDm6yk7OTctSUlnhXAojN+TftFu6vAcc00+Op/pA6DwBAcjb8fzu21PDSYRrrbeXc/wnvjzlLgho+7iIhyNFnpejtswJtrn5K23CQVW4vFUolJUJCxykSDaVqFSyApPgzunMeTqZILS5s/V4ncvysSr3Q+0YakS8WH5mXkUbhV2drwG5XNCNXU/bzCDm8XFRfbt24deL1Tmb775Zh555JG07ZNFFllk8d+FRx99lNtuuy3Fzs1KLpukk+S/V9qhtTzVk2SrVXdpMTnFBvZ9twP3oVny11sZ2hWdb4JgazChUCmYOuJlKRgSKtRRosLK2ClvnY1QMMzAa25Gdk0nqTbaGkw0XFzKVLvY9LdvRU4id6OV8lPy2PtwO56OBQ7/tDuF2FO43c7Irmnanxli1SWlaQlKAP6pRSLLYbQ5WoLBNPZip+RhyNUlkbcSseaT5eQUGvB7Fpnt8qUQlHI3Wqk+p5ChncIWNR2xZeNnalicX+LIj/vSEpTMZVoar6yk8/nhtMo8AE3XVqF3atn//ZaMBJ+gZyk5Vs6A4xGEjmdF937g7Q+mJaq83/sDeDq8FKy3o81RZSQSrf54KeYyU9qxEcPa6ypQG1RpYyL/aBCtS0vTJysYeDPVWjnWj5vvrEWhlFJIQLGxsuGGanRWDd7hQNrxU/HBfAz5Osxl2rQWduFwhMhyOCPZqvNPQ+SuiSpnaSF3tTVprO/+Titas5BGqrmoiJwCvRy/zw8Fk/LJTddXEl6KC014OhY42CH621yhI6fIQNkpebINXtAdxB0tl0qthEhEbuuys3LpfzEel43smZTVY/M3WSk9JY+23/Th7Q8ytncGn9svt2nTJytE2b/RxnbOgFEoikzTzJsotUo6Ozv51re+xbe+9S0qKip48803KS4uTts+WfzPQpak9D8c1157LT/96U9TPi+gjFXSZiBKPLqwjJ5XRxjfO4t3yEd4OT7xTR1ZkJWCZvp9SEoJc7EgE7Q/lWz/sPlTtahzVIxE1YBWsi23fL4OhUrB7n9t5cAj3SlqNaVn5hKYDDDR7MXTv4BSlXmCU2mVGBzix3ClepCp0kDpCbkUbnSw91vtKdZrhlID6z5exvihGXqeG2PX11KZ2+Xn5DH+7jgzrT4O/yIzecg3EsA76KPnpVTP2RgWvUvHtfHQWtTCRm85MyNaUkoojmNnMjvsY2lumd5XM0srTjR706v1RFF3RTGOGjO9Lyfb6SXC1mBgpt/3n1InSoRrfQ7ug5kTR9vvF6z6dH0D74/oFJxdZGR/Ztu35YVlkISMdSbVJKVGedxAa+LIDM56M9NH0q/uuQ/OUbDJT+cf09vv+UYCSeOr+sLCJEKebySQ1Abbv9Agdpg9EVeuiCkBmCoNFG5ykLvKmpRgitWtaKMDSSmhNqSXTh/eM0HlGUUysajxqtIkdbFdX2+ViUSlZ+ZSvNUZV2jykbRTv/zkfCSlJF9rvsfH/oeiyUaDkNBXG8QUYqkxsBREJjZOHJnGlB+3s9t6dz0L7gD85GzRJgEfna59uN0iKPn5z3/Ob3/7W5RKJWNjY1l1pSyyyOK/DdPT01RVVeHxeJI+V6JkG2ejl4T0zupry9HbNLz7nQ76XhzHWW9mMmrZ4OkQRI1QCBb6/aj0SvFiFsVKZaOqMwsJLQqS0pEfJc81eVutVJ1RSPfLI4zv8dDydG8KYaf+8hLanh5k5K0pijY5GN6bnimsNilRqCVcG8y4m70pxJ7NnxMe9VOHpvBPhzm0YsfOqqvLyCk0sPuB1oz2YZXnFdDz/CjvfqdDEEgyEGeOPtFFxXklGdWP3K1zFG5yMHEsc5whKaQU4m0icoqMIImESyaM7pvGtcpyXCWlg48dP9my4wuNhJbDKYQbGXqwlx9fQej9QG8HrTOzolTxSU5KT85lZO8UfS+mKkm8H6LT0C43xdtdGQlKgIhlM4ezhEKAJOyPMyHgWUzZJJGIY08PULrdmbFf9j/UhbFMEJT0+ToctSaG3oyP+5YExcjqiwpx1Vs4+Fi7TFpKbIs1n6xBpVfi7Q/E6+0Hv1/8v86qRq3L/Mo8O7BAcF6MsbytVpQapWzvNr7HQ3AmKPfZtnvqCS2GZcJTYjkdq024Gi2YcnWyAlnMTg7AmKtDoZJkQlPBdnsSCczTO094WbRp8UlOirY7OfqUHmd/AQTBt3acnYfeAmB4eJi6ujoWFha48847+fa3v52xfllkkUUW/7fxla98hf/v//v/UiwkiqmiXmoCBPFo9ZVlDL0tFqymO+aiFqACM20L5G2yMb5vBt9QAIVagTFXkAli1k0xrPtUJcY8HdMdXmbaFtj9QPL8vfG2GlQ6BXsebKfl5wMpajT52+yEAiHcB2eZbJtFa8pshSps6sX/ryQG6XJ11JxXxNK8sKlqX2HXqrMqWH9TLeNHZuh9fjxtnFG43c50t4/AWICDP+nBN5Rh/g7AVMssg3sy51b8E0EU2swTvN6uASk6z2eApJY43hpXYCLAwkSAwbcyb5rzdPozx1QIVZyibU76XhnLaDdnqdIRnAq8LyLR8WCt0eMZ9GdUOdpyVx1KtZJd/5p+l/p7DmvPdAABAABJREFUEZ0IwMK4n/Ej6clpAMsLURudAn1GlSxJpThuTOxunadws5PJ9lTrERBkp+nOOfr+kl6tPeCB5sd7ZPWi8jPzklTLAh6S+mzr3fV4BxeSVL+OPNEHiHFdfmoehZvsSRvuYgQlx9oclBoFalP6nNfIvimM+XqZoFR7UREdv4+Xe++D7TKRyLXBQvU5RXT9eVgmIiUqlVWdVYhKp5SPBSYCSYQolUaJKpp7MxSLa8Z+C6baZ7HX5Mh2dps+W4NvKgg/P1lcyx+gO7eZ0YkRIpEIjz32GE888QR6vZ7Ozk6sVmva+mWRRRZZ/N9GMBiksbGRnp7kPIcGLVs5E60UJy6Yiwzsf6iTsX0e8jfY5ZyXt18QNdRaQWhQ65WCIBolHh1JWPMAaLiolOVAiKkjXqGulABbg4m6C0voe3WMsb0zHPtFTwopo+pDBXQ/N8pM6zy+iQCj+9LnvFQ6BSqdUlaoWUlCabpJEHZm+hbwjwY59otkhaWaCwux1+Sw58F2Bv/qZvCvqa4aJae4GPyrm4M/6EFfkJ6gBNDx2z7Kzypmtit9Hmi208vSKXlMd2TO0ShUEipNZvtcQ54BJFj2ZxYBGHjHTeFm+3EJPi2/Su9ME8PWu+sIh+Ddb2dey7NUGzLW9X1DC+b89KQcAMcqM3UfKWZk31RaezdvfzCtMlAiBt4cp/IMFfPHUVJSqhVI6uMEtBFAIaGxZH4H8I0Hkt5VVuLYU4OUnujMOH6OPNEvqzZpzeBYZU+Ke3ueH5Ot2IpOcFC8w8nBn/TJpKXZLp/cHzGi2tyIP07eCiJ/15SrE3aEGTDVOktoSeTSrLVGdFaNrHbl7Q0kEb423VFLeDEsE556XhijJ7rBVl+gpWizE1uJSVaIisVRADnFBpQaBd4xcS3XumSlKfexWXlt3bHKTOVZ+bT/rh9z/4WwCMF6N2+1vgFAb28vdXV1BAIBvvCFL/CVr3wlY/2y+O9H1u7tfyB8Ph8ulytFNUmJkq2chUGKkgyiFlQGp4L1N9cz2zfPsZ+lTiqb7xS7xA8+0ZfWSmzjZ6oB2P/9LgyFOvI3WOl5Lk7YMRTqiCwG8E+Ka0lKKSPB5D1t2a6O28elQ8EHbIy+I37kVn28lJ4/D6RX5YlaaHkHFpLIHvLhaJuEgunlskEkFIDj2o01fLSE1l8e30v+/xUaPlaKWq9MliVegeJTnRRtcR43qbPjS40QIaPcX+w7x7N7a/hoCfZqM4O73RlVmZpuqgIlGa04APK2WCg9IS+jbdz/a+RuMKM2qtPamUFcuSmTVZ5rfQ4155cQnF1Mr7rkVLD+pnq8Q74U4l0MDR8rpf/1CXwjgaTnIR22f6GBuWF/2msVn+qk9IRc/O4V9m1RxCwYd36nBXxR8lpCnQxOBfnbcul5bkxWYOt4diCtkti2+xpQqI5v1xgbT5YaAwpVnNA0Xd3PHB46O8VY0+v1FBQUcOmll/LAAw9krHsWWWSRxX8lMqkmlVBNnbQeECQC30wI/7BfKAEZVOktO/RiV/RyIJQ2XnJtMFN1VhGHnhSKKBXn5jO2eyyJ0BOzN9PboenmRobfFYpCK9H06Sr0Di0dzwwymcbOYvU15eQU6o9rVZa3VdhqGcv0FG6yJym5JGLNdRXk5OvFvJGGPLLpszVozGqO/qL3uMpGHc+mLysIcsX82MJxrd3+X2LzHbX0vDwiq9WkQ9PNVSwFQrJSzkpUnV9AfpOd0f3T9Dyfnoj+XnZvIMhQQEabGPRCgaj/jfGMNmkg+tE/E0wiwPx3ou7S4oykNxDxeigYihOlV2DrPfUoNYqMalgx67dM41ZvV1B2RhFtT4t4P2+TVVZCSinrZcXYq3OSCE+JeC8buS131bHkX+bAI93o7QognPTcV55XQM9ro+AXz9NyMJSWJGet1dN4eQX+6WDaOHvV1WVYyoxymxSf5JRJXP6IH/+6Ubp6u/B6RaayqKgIlUpFa2srer0+5XpZZJFFFv/VCAQCVFRUMDaWvFFMjYatnIlOEoSA2G73mOLMTHd6u7OYTe2xX/aktbdae105Kp1KJMx1UH5SMslCZwVQEPCEWXdjJRqDKqMK4nvZsq2/qZapdm9Gq7KYKhMIgsXAa6MEPGk2u+lg+52NzPbPJ5FaE4/v+HzjcZWnm26uQqVTHlfRsebCQjr/+D8jJqg8Px+9TcuxJ1NzfDG4NliEItQjHRnJQ9vvawBJYtfXj5/zOp7dW/mZQm19ePdkWhtBEJvC1Holhx7PnKOz1RupPKMw7W78/w5Ya/QYnPqMBC97o4m6C0vTKjeBUF1ac3UlgenFtIpZOis03dzA7OBC0oa5RFR9uIDRZkEodG2wyCShdNh2bz3eQd//z957xsd1nGff/y3AFiy2dywWwDYUdoAFoEhJFItYVW1Ltpqr5CYXSS6y7OfJ73GK7bgkdmzFjp3ELZFjJ65ykSyrs4udBEkQlei9bkHZfT/M7gJL7NmFEsXJm+D6RAI35sy5zpyZOTPXXHfWd8Bco6PqTi9TvZGsz6B0mxVPvY2TTzYSHV2c/k5tBMcGkQpO7VSz5oFyrvwme4rA1GGOg395IWu7a3i8hunJGV77WhNqpxqNUZHmb7Ksh1HVEBcvJdPVqdW43W7uueee5U2zZSxjGX80fOc73+Ghhx5a5JpUThUB2UpAOPPE54TwaM27K9DY1Fn3+EDMh6bDs4vcjEC4q1TdUcbFnwhHlJItFgbPjGS4CaUdYlRQ/5Equo4MZRUF1bzVizGgo+kXXVlTYwVvL8Ec1OVMVWZZpWfo7Dgqq4qSTaa0uCNbWZZKPSe/cSlraraUO9L5p9qyCnLSzka/7GLofHZVkG2NgZnILKOXswuP/9hY+6CP9pf7GWmUXvNaca+XxJy0mMm50YR/t5ue40NpQcq1yJfuDcShLuQyyTYHUPfhIFdfGZB0wAKxxjQzNStZlz82fHudOeuy7n1+SJB1/w7EAQqVoYDXvnoxa7sM3ubGUm2QTE2o0kPpDS6u/FKsR6beh2zw3mTDvcHCyb9v/Xelkav9QIB4LM6pb7eg0gNkpjks2WJh8OIkscEYq99VQSKRyJoyUWVTUfeQn3B/NKtLV+CAC/tqE699TXCyMLViLBFjcm0Xra0tjI6Jn7ndboqKijh79iwqlfSBymX81yDHOdhl/LHxd3/3d+h0OoqKitICJZ1WR6hoJTtkb+K20D1U7SgDxMkUz2YbtvpiwoNxDn7pAhN9UbRW8Ug3PBZi/WMih3rLs12EhyPorPOngMv229G6xcJPoa4grZYMd0eZ6o/g2ChSIKCFte/yseqdQtBz/ied9J6eF004NhvY+LFKdD4hnJroiXDuF2JBQetW491lT8fqrEqQgUovruXdbsMQFH+ntcqpelsJFTe5qPtQANvaYoZbJtICJe92G6ZqLRsfq6TkJhPeLXYOfukC577bjmVVESVbLenreLZZ0bg0DDWNc+afLuLdZUdjFb8zVWvxbBP/kcmFs5FlVVH6Xr277GkOax/2Y/IX491uA4RAxba2OCO24fFqGj5VLZyfFtyrq96EvVYvntUnq6h7JJDmW+vNjHVsNNDwRDUbHgmJe91lR+vVLoo1eIvQuTS46k3pv/Xusqe517rVyAvkaYGSbW0xrusWxCb5Hrg4xmDzmCg3aVhzLYdA+iSWxsqi2NhkjInuMIPnxinZalnEocYqBta2P/Sk+c7GYelWkQ7GVK3FENSmuU7F2mv1eLZZ2fyZGmre7k1zeC3f/tucNDxRneY8G4fVbytl82dq8N3mmm/f13AY2Ouh7EZH+nf2Wn0G39ZqI8iEkl1rlWfwYltbjLJIyUjLJK99+8qi9u3dZSccjnPwTy/Q89oAJVstbHysEsdGA55t1rTDUdvvOrCu1GMIyqm4ycXGT1RmcJjiW+tWI5PJKChWpNv3Qg47nx9kvGeKzsNiU7v2gwHBYbJ9D5wfpfOoSKdoWVVE9ZvKqftoYP5ea630nhgVz2KTcHCKTSVP6G83ZnA42j7OeI+YXFvXFdPwRHWaN8dGA63P9qQFb9VvKqP6TeWgFW12rW8DZVfWsJm9mPQmbDYbra2tfP7zn0en03HDDTewjGUsYxn/WQgGg6hUqrRASSFXYDPZuY597JC9ie037UTv06AxQ+XtXlbd6wWNSN916ecdODYZAZFqreFT1RhXaSAi3FWGW0Yhud9vrtbi3SnG2fh0HLlSRtmNZgBan+/FssaGRvyXug8HqLmrQjjFDEPrH3qZuJpcMNBA9QNe1rzXB0Dz892Mdk2mRT+OTUYsK3Xp2AK9OHWlMUNRmQbPtvlx1rHeyKZPVuHf5QYNmHw6Ol8VIt1UrGOTkfUfDmKr1dN7ckgIZCIiLZymRNycpkTEHv9WE0MXxynUKXGsN6av49lmo6hMIyx8ZWBbOz+uWlbq0hwCeG+wizECIR7xbLOlObSs1BF8i5vNn6nBf8CFe6sFY0iTvr9UrGOTkYZPVVOxf8GcosGMOTnOooGat3vZ/OkabLV6jCEN7gVzIFeDWbja1Oop0CnxbrMnBSWg92nwXD8/Jjs2Gel4uS8tUPJss6FxqjM47D0zytjVKaKTEayrizN4SXF47ReZrVaPLTmnScUOt43Te2oEjVOd8Rytq4sF3xE4+oVLFGgLKCpL8bKYw2K3BnNA1MNzvRW9b3HshkdCNHyqGleDOX2da/mu+2ggLfjPxqG5WkvDp6rZ+PFKca/JooyheQ4r9jqxVhtY81BF+tmI2Hm+5QVy5Erxf8d64yIOm37ZRt/ZEYrsi9u3rVbPuX9s4+CfXcBTb6Nir526hwPpNgsQGY4z1DSGY71o6/49bvy3O+Y5XMB3gVaJTCZD78t8NikOz//oEqNXJ0Ej7nP9R4MZ7bv76BCtz4qN4FXvDrLuAzUZfURkOJYWUhUUKVHpC5O/BM+ueQ5FvaNc/pUoa/0jQeo+EkhzOHY1zMmvX4QI2OqK8d5gZ8NHxXdGeb2LYHw1Gyd2USGrpKKigvHxcdrb29FqtQSDQb74xS+yjGUsYxn/Gfj5z3+OXq9Hq9WmBUpFmiIqNWvYIXsT+8vfgm+rSEVZ93CQ8h1OXPXFEBWHrMauhlEnHZLWfcCf7vuanu5mojeMsmj+FLB7mwV1uYhVm1QUJtehiMJEbxjb2vnv2dqHa1j9LrF+dumn3XQdmz+0ZK7Rsf4jwbQ7y3DrOI2/bBPlGuW4t1hA/AqNU4NMIU87Djvrzem/UxuhYr+d4IESaj8QwBjUMNYRTguUnPVmjEEN697nx7nVjHu9hZPfuMCFHwo3J2f9/CDgWG/CWKqh58QQZ37UjnuLBbVRjJXFZWrcyfFbXiBHXijHVJVcr1GLVFspDle83Yt9tQnvTWKcs601YK7RzXO4xcKGR0PUf7IKtVMt7jUJy+piLMkxecNHQ9R+yI86OQdS2zNjzTU66j9ZTd2HgulyU8406Vg1WCr1GLxF2Grnn427wUxxWYpDwW1KoGQManCsn59XpvjueW2Y/sbhjGdjDGoyOASQpcwJUrwYxX8NfjUzMzOMtEzQf2EMW61hMYdGORd+0EHLMz1pvrNxWLbNjspYgGV1MVpPJi+2tQYsq4uxrTWw+Ykaqu71zHN4Dd+eGy3UP16d5iYbhxW7HWz+dA3l++0Z7du9xZLmsOrOcsp3ONO8mKoy+batNiCTgbxQjtrIIg61Ng0DZ0c58Z0ri9p3qr6H/qKRrkP9OOvN1H4ggK3WINpsUEx6mp/pwVhehNopJ7ivhI2PVWZymOQ79TwKDcrM9p28zvCFSYabxrl6VGxqr3pnOZX3eNLte6hpkvaX+4mOCiekFW/zUfshf/o65pUW+pKbdJ7NJhSFcuaSbhTu6/QZHA42jTLSPgFRUJeqqX+8Ot32zDU6rvyuKy1EW3Wfl+o3l6E2ijYbKl2Jp2MlW9iPpdiG3W6ntbWVz372s2g0Gm688UaWsYxlLOM/CzfccAMqlYp3v/vdzM3NJde8HGzlADtkb2LLhi3oy1SggpX3+am+uwxUcPrbrVx4qhXbGtEXWlbo2fSJqvQeUP/5EQYvjSWFCEKg494q+sWZaAKlRoFzk/ju7zo2hKnKgEov+vJV7y5n5f1+9BVqiEHTr7sZ70yKdlQQuN3JyneIPdDWF/oYbh5PC5QsK/QYQ0Xp+1MZlcjkclRWFSqbCufG+XmBqVrH+kdCVN7qQaWXY/Jp6Uo6wKRiTdU61r3XjzFUxPDlCQ5/rlGIHjaa0LiEmEFlFbFnf9hG70kh8rWsml8TcK43ovOoQC4DOVhXFAtXKYTDUIpDgMB+N1V3ekW5eiHwScXqK9SU3Wxn8xM1+PY6sa0xCI6SvDg3mlDphZvNpk9U4d05v/5hW2PAENBmcNjwqWrsdaJuzgVrdJZVgkN9mQqtXU3ZjXZUVlEJjSuTQ8sKPV1Hh9ICJedGEyqbKoPDkZYwg41jhAcjmKrn50ALOUSJyEKThDFUhGWFPiO2/8Io3ccHUenlGbwYAto036/9dRNyGYJvWBSrr1BjDhVjrhLx9jqjaN/X8L32QR+bPlGFvW6el2v5XvNQBXUfEXNXfdliDg0BsVe9/pFQ8tmI9q3zzHPoXG/EWWdm9bvLM+51Id/KIkWGQ9C1HF78VQfdx4dAVbCofVtW6Gn6WTeH/6IR5xoTrutMrH3Ql26zINLkDV4ax7JCL+ZKt3oo2+3IyqHKUAhyGTrnvJDHuX6ew7Pfv8zQ5TFQibqv/YAP2/r59t15eJCWZ8XB1xX3Baj7UBWqZDPVl6mYicyl3aPU5sJ5B3YVuLbOc1iggvGuKVqS62drHqqg9oOBdOxkXzQtUNKUqfDtcVP3cPI7Y6UNf2QV68d3UMk6KsormJqaoqmpCbVajd/vX17z+m+GZZHSfwOsW7cOmUzGgw8+yNTUFAa9AQUK7tn6Dh792KPsvGUHADV3leHZLN7qtheE8jFwk8ir6FhpoLTehm+/GOSUagWFGrEIM3R2Cq1Zg3+PWOyxNxjx1NpY9YAY7KcnZ5Ar5puCf1cJ/ptL0v+XyWTMzQiVdeUBF6X1trQown9TCUq1gsBOJwDFLg1VO8TfBvaJ2M2fqaFkqyV9/ZTri2ezjcpbSzEEtVTs8WAJGIlOTHPhn64Q2OOh4iZXug6ezTaC+0tRahR4Njoorbfh3SJEKsH93rSwpOFT1Xi32AnsK+XSU5241joprbfhuV5cO3TAm/67I1+4iFwpI5jkrKTOQmm9jbKbBadKlVhYSqWsqrjJRWCv+J0tVExpvY04caYnZ6i+xYNn0/ymVcVOV/p+FUo5ap2KylvE/6tvdVNaPz+J8O8qQSaXMRsVHJfW26i+1S343is41LqFcj0RT1CxcwEvm6xUJcsN3CJiXVvEIBzYu5jDyltLafpxFwq5gtJ6GyV1lkUcpqDUiBUbz/UllNbbqNjmSD7XUpxrrJz5divh7ihlNzoI7CsFoPwG8Ww820SdKm+b5zvN4R7BoWu1CVVRIWNXJxlpDFN5a2m6fadi/XtKGDo7SCKewOQtJrBX3E/VgZIMvh2rzMjkMoxBPVqrnNJ6G5X7k7G3CL77Lw+TmEvgXGnCv2u+fYtYwXdkPIZMJkuLlvx7SjL4LnZpmJmaZejsFP7bvJTW27BXZfLd+MMOCAu+V9xdjneXnbJdgkNvgy2Db6VGQclG0ZZDB0Q7dF8nnqO1xsF4xxRymQzvFnta8FR2o4Pgfi/h7iidhwbQmtR4d3hoeKKa6rd4MzjUu4pEm9WC2lSIyVuc7iNCB+bbbModqVAr+oyat5dSWm8jeEDwotGrkMlkIqWdFryb3fN9hBYsASOFyVQo5Tucoj8pFIut/l0lVOyY51CulIl0lGGhei6tt1F5twutTMsHP/RB3v72t+NMiDrG43Feeukl5HI5BQUFnDhxgmUsYxnL+I/i7NmzFBQUIJPJuHLlCjKZDKVCSSkBPvX4p3jfB9+LRqah/GYH3i02Qrd4iAzDTHiGApUSW7Xo94P7S/HvdKfLlSlkhPaK/mt6chbHCnF6F6DyzjI89Q7QkHbl0bvFh2f59Q7KttoJ3S0WzRUqMf5OtQu1QsUOJ8FbkmPEegvmsmKKbOLDuXJ3KcaS+Q9Y/043odtKqf9kNdZgMVqjmrGrYSLDUH2bB+8WUR+9T4N/txu5XMbQpXE0Zg1lW+0E94n+OrTPTdlWOyUbrBTqCwju8RBMjt9ooGyrncoDbspvdrDunRWUbbWj0ci59ONOgvs9+HfP8+LdYqPqthKRYq4zjLm8OC0YCh7I5BBgdlrMh8p2llC21Y5jtRGAwD4Ptkoj8ZkEvWdGKb/RQfCAmH+4r3dRttWO9zo7xjIdMoUM17oFc4odTgLJ2LKtdkzeYhKJBAON4wQPlFK+YA5UscNJYJ+HgRPjtL7UjdakoWxncl5zayneGxaIpHe5Cd0qyjVXaynbase3S5RVdUsJ3i02ptojnPuHNsq3ugnuFxxqnGrxzJN8K9RyZDJZWrCSwXeyzhqDipanewjuE/eaEjgt5FtTosG7xUb17eJvK/aVUrbVjsWvS8aWQkKImUCIwiqT9fduF8/cvd7CbGQO5IKLFMpvdBBKtkNXgwt1sQpFMi1M6FbvIg6Dt3iZmZhlNjYr2tKN7nQdUhy2/rqXRCKBxpRMy1Gtp2yrnYrkvYcOeJArZWkHCP/ueQ71PtFm3ZucNP+sh9B+N94tNjZ9okrE3uxOc6gxCw4d68yojIVUHkhyaJ7n23+zm/Pfb2a8M4xjpYXQfrd4T/Y4KdtqR+/TcO4f20gkEvh3uynbZWfzp2tEH3FAXKd0sweTtxhbtZ6K7W4KdQUZ7dt7g108AyAyEkUmk4k+QgOVt5dl8C1TyNKpjza+u5Kyejvubcn38xYvGrM63UcUFhVQmEw35F5vEe/CdnHd8uvF3zT/VrhV+XeJPgJg0+rN3H///dx74B0oUFBUVERzczOf/OQnkclkbNu2jWUsYxnLeCNw6623IpPJuO2225iYmEBfrEdJAbcG7+Wxjz/GzltvAmDFveWUJ9cdmn/bCQkou1GMwVqPmoqbnPh3i9+rTYWo9WJhO9wZRWfTEton+mO1U07FVidr31oOQGQ4hqJAnhY6hPZ5CO4vSYsvgLSzgG+nnYqbnGnxRegWD4XFBZQl+2CzT09wR3JOsd1FxU1ONj9ag+cGK6EDHmSy+XSevp1OggdKhbBiqxN3rY3ISIwLP2whdKsX/+7572TfTifBW0rRWFSUbrJScZMTV70jWQcvvuSa28aPVeLf4yJ0m5fWp/swODRU3OSkdJv4fejWUiFCQaQbUyjl6bmKqbyIipucVCQPNqk0hSQSiXSqhcC+EkK3JDm0C75lchnTY7NUHhD3mkJoXymh5DqQQiVHY1RTeUDcT3CPk4qbnGmxSOgWD/ICWTodSfk2B1XJsbNiu42Km5yYyos49sXLzM3ECe6ZX68p3+FM19+7U5Rbep1YxwrdtpjD0C1e2p7pIx5JiNgGseYRvKU0zWEKBUViDcOT5Nu9Vfw+uL+Usi1OLvygg3BnlODekvRYb6syUHGTk7LtyfWmt3jTfF/LocGvpsimZbRtkqEzE4T2l6Tbdzp2n4eBi2PE5xJYfAaCe5PPcZ+411QbLW2wI1fKMJaJjdmKm5wE94mx3r/bQcVNTsb6YsxNx3GutBDYt4DDbY70/GmidwqZTIYlVJx8NqUZfFuCBqYnZxg6M0Fpsn2714kJU6rNNv2sG6KC7xVv8+G9yYZjg3hvHBvsyXJFm1WbCynZaMW/20Xo1uT3zDqzeDb1TgbOjRKPxynf4UwLqYJ7SgjdUkp0FC7/opMiq4bym0vY9PEqVtxTnsGhya8nlJzvFbu1WP2GdB8R3OdOt9lwZxQSoNIJAXjFAcFZKLluqDGKNa/oQEy4rd3kIXhgnhfXGisqrfjbqv0uFAVyNPaC5L16CCzgsECtZG5mjugolO0UHFbd5kEtU/Pe9z3I2x94OxWJagDkcjkvvvgiCoUCtVrNqVOnWMYylrGM/yg6OzsxGo3IZDJeeuklZDIZqkIV5VTx8Uc+yXvf/xAqmQp3gxnfHrdYK4nB1FCUQm0BzjVC3BC61SvmS4g1ekWhHP9u8f/IwDQldVbstWJOseIeH+U3ukCFSCmVAH2JGLPsK434d7upulvsRSqTewjjrcKaLnSgJL0uYSjV4lhlQe8pAhVU7ivBvOCQUPCWEqrf7GXTxypR2VQYSnWMtU0RG4wR2u9Kr43oPCoqby1FWahg4NwosVgc/243oeQ4G9jlwL/bTUm9BY1VReVtpQRvme/LfbtchPa5cW40Ufc+P/7dbvRuNS1P94rYBWOEb7eb4C0exlujDJwZxVplxBJKrhve4skYk2UyGTPJ+ZBjkw3/bjfu9WKcDd5aSskGK7PROQYbRwnuLyGY5MVda8a/241jkw1DRRGKQjmeTfNrXoF9JQST8w9LSI9jlYUEMNY0SnC/B9+CNbrggRIqb/Uw3h6j8V9bKLJpKE8ezArtc+O7eX5uFbrNQ9Wdog4qvRz/bjeB5JpXcI8T/243sYkYl37cSfk2V/o5gli/CSTnaSp9oWiHSYFT5W2eRXzrXVo6nh3Au0M8x9Scp/LWUkJJvlVWIUgJJtc0SrbY8e8W2UJEfb3IkKUdvgJ73On1VHut4Ltkg4WZqVnkBTICexbwsr+E0G0i1rnGhM6hTR88COwvzeAwdKCE0K2lRIZjzEzN4N/txpuccwT2luDbJe679/goiThoTOK+dR4V/t1uypMHBAJ7XBRqC9JC59AtJVQmn6NKLzis2OKg7bd9BG4WbTZ1WLDylsy5iu9mF2VbHGjtaipuFrykhEiVtwq+L/+kjeErE5SstxDYW4LOo8J7k3iOloCepp92MTcdJ3TAg73OSP2nqvHtdhNIrmM5a+1Yq4w415iouNGB1qwmuEBHENjjJpic7411hZHJZdhXiHutvrsig29loYL4nFjzWvcuP75tbry7knPxWzzoS4rSfUSRXYPKKOZdhlKt4Du531iZXK9t+b3QS1Te7qH6LaIOAXsN9z9wP2+9+X7UaNFqtbS2tqbXvG699VaW8V8PZf6QZfxnIBwOY7fbmZrKtPbbsHIDVcVr6Tk8wvjFCcarJ7matOcnAXOzYuO/7+gYWpua6Oi0+J0KEokEcpWQpF75VSfG4PwA3n18CJM/qXQ+PYrvRif9F4RyuO35Hiw18yrMid4IereWlW8v59w/tjFwaYyBM0Il3PJMD56tVta8p5rDf91I56EBCo1yrvyrsD8evDzOULLcluf68Gw2Yy4XJ9E7XuqnQDff5AbOjxEnwYq7ywmPRBm4NMblX3ZCGNpe6kVtFB+A5XscDLWMMdI4wWTHJBQW4tlqZeCEcIhpf74XrUN8zM5G50AJnS+JRZbew/0oi5R0vSQ6qbm5ORTIsdfq6T8xTu/JYSIjQr053DhEkVtDkU1F9dtKaftDD4by+dPaPSeGmB4Xk4jJwQkGLo3RfWyYyZYwllVFmKuMGXynREcH//QCobs89J1Icvj7bmyr508JdR4SdU2JoTL4fq4HR+187NWDA2llLcDAxTGGL46SbiBAPC7aQMfL/RTqM/meic6w8bFKrh7pZ242Ttdr4oRg+0u96cEyhVT9uw4PISuQ0XckWc8X+tA61Kx5yMfcdJy+MyOE+8SA0Xesj0J9AV1JJ4aF4jcgg++eMyMUlxXReWgYjRVaf9+N0ZfZZmcmZ4kMwqGvNBI64KH7mOCl9Q/dGW2288gg8Zk4nc8PpjlM8d36nOB76PgUh4434t1uQ6aZl24PXBqbb7O/EXzHx6Ns+ngVV48NoFTM5/4duDjGaJM4aaVzaEgkEvRfHM/K91jnJHp3EYPnxhkE5uYSDJwWHLY/34vGqqL3cD/hwTj+W11onaK997zah0KtoOfVPsKDcRwbDeg8WlbcXc5sdE5wmFQcD5weQG1V0fnyIKaKYmYis4x3zOcy6TkxJPqIMJz8hwuUbvHQeXCYuocDzEzPMnp1vv9Z2GaNpcXE43Ha/iBOt17bR8xOzzHZm9w83+ZgtHOC7kOC+6afdeGoNdPzUtKCVUY6by1k9hGTPZPo7BqmBmYAGGoaZ3pilhWyDaxgA85teo5efoXLVy4zOzvLli1bMJvNPPTQQ3zmM59hGctYxjJeD/7f//t//N//+38zfqYuVPPmm95Gz4vjEIH2l/spdovxMCUQGEz2++ee6qRkk4mBRvH/BAmQifGk++Uh1PpCxpOOR52vDlFYrECRHG9GWiYoLtGmXVJ6Xhtmsle4ZvYdG8C1wUyRRVy39fc9FLvmT4Z1Hx3CVKljzYM+Lv+khSKnis7UePhcD4ayeZFS19FBrCsNKBRyBpsmMJ4boee1kXSsMVDMxo9XolQp6DwyyGxkju5kitO+cyP0nxKx0YkYE70RrvxbNxqzHMsaCyQ/HomI2MFzI8RnwVVnZuTqeDr9VfvL/WnnmxQKk84Grc/34aozMdwm7r39hT5UZiUbH6vk6Ncv0XdqhNFW4QrV/sogszNz9J0ZBaDjcC8qtYq234k5Z++JESaSLn7dh0eQyWUMnOgnMixcdLT2+Z3HnteGCfeLuUr/8UEKdEq6Dg5DBNqe713Ed2QiBhroOTpKkUVL15HkPOHZbowV83PDhRhuC9O3kO/fd2OqNLDyHeUk5hJ0vDogRLpApDeawfdcLI5cI0+3j46XM1P79Z0bITo+zYaPhmh7tY/wSIxIVyTNtzIpbLOEdMhkMiKj4l7bX+pnemqGoWbRLttf7KOwWMxVNE41fadGGGufTF5zkLm5OCPnh+h+eQjHJiMa4/zccCHfPYf6kKtkdL0g5gmtz/Wgc2ozORyK0Xd8FI0ZSm5005ec27b+vgd96YI2e2SQ6Ng0Nfd4kavk9J0bSfOdarMg3JmQQWxKzBnGeyIZfLf/oYfAgVJmpsRcvePgQLrNRobn22xsMIbKqsK1yYJphYXIy0OCb4WMyHCcc//QRuAON3qPlpX3VND6fC/RsWnGezL5VhTKIQF950cYbRJttvWFAaYjsww0jjNwYpzy3RYScQUas5zV7wkx1DTK0AURe+WXfZRsnmHo9ACr31aBTCFjrHN+Xrawj+g9M4RzjYXu50Xbj03GGGyct97uPjpEZFT831ZtIJFIMNoxlubQUKZjOJlmd24mjlwu+qXBpgmcVyfoPjjCNtntWHw6hp3dvPTSi8zNzfHCCy/gcrmYnp6ms7NzORXcMpaxjNeFaDSK3++nuzszldjaUB0rDLX0HR9hqjPKSOs4bS8m03vMydJiodGmCB0v9zMbE2NnQXHmmlfjj9owV82f3G1/qQ9b8kR2tDfOdGSGgfOjALQ914tttTHtWjTcPI6l0sDKt5Rz7ntt9J4aZvii6DfbXuxndnaOytvLOPPtJlp/34fWUUDr02Js7jk2xGhbclx9dYiZmTkcK4QLS8tzvagN825O3UeGmJ2dZdX9Pib7IvScHKL75V6io9D6+160yY0aZ72ZgfMjjLaEmWgT44R7q52ew4KXlud6KE6Os9MTs8Tn4rS/IOrTd26EIpeK7mPiXudm54ACHOtN9B0f4erBfqYnBKcjbVP0nBxCa1NR9RYPLb/vwhSaX4Npf7GP+GxyvjcdpefkEANnRploj2Lwq7HUGOdjX5hPW3H4cxfxHXAydCHJ9wtJvpNzr7YX+lGq5HS+KNYMek4MMXJZzKfbXx4gNjlDZGou+az6KCyeX4PpOTbEWIcYH1Nu38ka0vpcL5rkumGK75lwjLqHg1w91E3PSRkDSceDtuf60nynMBsR1xw8PUihXkl3Ml1uy7M96D1FVL+1FJlCxtVX+4mOifnHwMUxiks1ab4VSsV8hYCrr/Qzk7yXsS7BYe/JUVBD28vdmH0L2uyLfWKuEoXDn2vEd8DJQHLe2/5Cr+A7muK7DxQyul8R8/aek0PpNtvxYh+RkRjDjaMcOTmKs96Msnh+Lt5zYojR5Fyw+bf9uDdMM9QxwYaPhmg/2EdBQXa+zQExpxhuTM3hetGY5/keOD+CpdLISPMEM2PTKNRy+o6JZ9zyXA86h4a+Y4NER+N4b7Kh84h5xHDjMGprId1HRon2RzHX6DCUFbHqPh8z0dmMNjvcMinem2OjrHqbhtmpufT7l+I71Ucc/JsL+G900n9ylFXvKCcRj9Nzct4Vre2FvvTc0LXGIt6j53uS7SOzj4hNTDM5IMj33GBlpHWCniPi3i7/sgfnOiNtfxDvoFwpTx+ySHGYquNE7xSWSgNTQ6Ks3nMjxKNxfLIafNTg2FTE8e7DXLp0iVgsRn19PTabjQ9+8IN84hOfYBnLWMYyXg9++MMf8sADD2SkdFMpNNxRfxcDRyZBJvb2jBViTjE7HYcEwhkFuPjjLpx1BkYuprKoJNLuNyONk3S81M9UcmwfPDOC1qECheg3e04OYq00pq/b/mJfeuwcaxplbsZJkU2MA63P9KD3aDNiLZV6Vj1Qxtmn2uk8OsBQ0xjEoPWFXgwV8+s1HS/0YVttpECrJDYQo/PIAEPnRf3b/9CDqcpA7QcDqI2FtPyhG6ZJp4HqPDLASHLsnI7M0HlkgPbf9aPSyzEE9cgV8/tFnUcGGL0yQWwywVwszkjrBOPd4t5bn+2lQDc/dgLpLDWdR4aZnZljKDnPaX22F7WlgLqHg5z7bhNXXxlgsk+sLfSdHEcmlzF0VtSv/eU+1LrC9Hyp45V+IoNi73fo/DAFeiV9J8eJDcYY7wijc8x/n3e8NM/30OVxOo8M0HtijNi4EG8YvAs4fL6PmfAcKj2MtETpPDJA/5n59YPUGgwA8QSpRhAbj2fw3fFiL6Y+A6H9JcgL5LQ91yvcpBZwmOZ7YgalSpFOIdb6XB/KQnlG7PTkDOve66fjyADTUzOMtov5SOvv5/nWOYSoODYmeOk6OsLcXJyxptF0bGourrKqMvjuPzGEXCVj8MwIXa8MYarWUbRg3bD9xT6iI4LDkYsjdJoK6H1N1L/l2R6K3ZltNjY+K9KmqaDsRjuDyfeo9Q+Zbbb9D73MTsfx7RXi7YV8tz/fm56LG0NFyJQyYsPTSb4zObz6ch9qi4q5SGrOnMl319FBRi6PExuaRl5UwMzUDPryIiY7Y7Q800uBVkFsHC4+dRXvThuGUi2r3+6n5blupo/MMnRFtNmWZ3pQ6ZXi+cwl6DoxyFhLcm0qycfIxRF6j47gus6EXCYHFax/X4i+cyMMXxLfMp1/6GU2Mkv/iSGCt5egVCkYaZ1PM7ewj+g8PkD5VicdL4p5W3R8mqGL87Ftf+hlZlLct32tiUQiwURyvSzVR6RSFsYmp9NCyNhAjMFLY/QeGmaLbC96u4qwf5SXDj5POBLmF7/4BQ6Hg8LCQq5cubKcCu6/CLJEagdmGX8UnDhxgg0bNhCPZ+aPXE0DdllJxs/8t7pwrDYx0jxB4z9dXVSW1qulcq8rna9y42OVtP2hh/4Ti3NKrnx7OQZvEb2nh2n+ec+i39vWFlOxw53OZV++x0Hbb7LnXS/f48C93kLvyWFafrU4n6ZnmxXvFjuXftaedmjJhfUfCXLh37oIdyzO5YoWNj9aQ3w2IZmP1La2GPcmG6e/uTg/ZbbyVt5Vnk7LkQ2bP11DIp7g0J9nv57GCuveV8PM1CzHsuTdTWHDIyHCA1HOfz97vlYQz9hcUcyxb12GLLefrtNnapiNzKWfjxRM1VpGGqULCt3lwRrS0/5CH10vD0nGbf5MDdMTM+kUXVljPl1DIpHg0J9J54k1BLWMNeW4MUSqscrbypjqj+Z8hv5bXZj9xTk5NwS1VL+pjDM/bM/enhAp3AL7PEz2RDjz7cV56wECt7mxrzLSf3aUKz/rzhpjr9Wj9+okf78Qpmot5Te4JHPLpt6ZyEBMMmbd+/30nh6m59WRrL9fiPrHq5mLzHHsr7JztfnTNcTnpN8pU7UWuVLG0Nkpau71olQrJLna/JkaSCCdi/aDAUbbJmn5VS++/U4UhQqa/q1LsqzEXPZ3r8lzHJkC2traADAajWzcuJHf/e53WctaxjKWsYwUdu/evaiv0FLMZtnNi2IbPlWNTC6T7NMCd7iJjszQ+fwA/ttc6OwaTmfJjw2iryWBSJGWBavfVUF4JMaVf+vGurqYyNhs2hklW70AybnJho+GkClkeecJINJTmXw6zn4ne7++7v1+NBYVTU93MpBlTgmw5iEfV37bI1nfhQjc4Wa4cTQtkrgWwTtLsNUY6Dw0SMfv+7PGrHnQR5FDzbkftjLekv2axpBGbCj+oD0t4MmGDR8N0Xd2VPJaAGvf60drU3Hy71tzlgUirVsuHvI9u1SdCnRKDn42e1sBKL/ZgXujhe6jQ2mhVjbofRpJjlLY+FglSo0i5/XQwPoHg/SeGaXz+QHJsJr7ytAYC3jta1ckYzY8EqJAq+Tgly6khVjXouFT1chkMsn3BUgfoFgK1jzoo/2FHkYvZ79g/ePVyJUySQ70Pg2BvSWc+Bvp+0rBVqsnuNdD82+76UsugC6E/zYXjlUmmp/ppu/I4t8DeHfY021yw0dDND19NWvdg3eWYF9hpP/8KE3/ung+5VhvxLvVnnafEuLGtrSIcCFq7ivDWF5Ex4v9dKYOxSTRn+hipmqUjqsd6UM1K1eu5Ktf/eqyw9IylrGMnGhra6OmpoZIJLMPW81m7LJM90R3g5nyHU6GL09w8UeL17zURjnB272cTa7f1D0cpOPlfgZOjS2K9d/iwrnWTO+pYZp/sXjNy+BXE9hXymtfFWscnhus6U2ga+FYb8K/x0XPiSFan1485trWGgjsK+HyL68ylEy5mwtr3+un+TddTLRHs/5+86drmJuOc+QLF7P+3uBX493i5Ox32/JeC6DmHm/azSkbGh6vJpFIcPhz2a+HGjY/llwT+mvpNaF17/MTGZnm4lOLn10K7i0WnGtMnPjOlbTgJhs2fzq5xvYV6fUeEOm+pHgE8N5kw3Odjc5XB9IOUVmv95kaYmMz6faQDfWfFO6MkjwhHL7CnTluDJG6rfY9Pia7w5z5TptknOcGK47VpvRpeqmyVt9bxqWftjPWnP26Br9IbTbRGU6/O9mu5b3eTt/pkazvC4j0buYqAy2/XLzuey20HjX+XU7O/n3261lWF1N5aylTfVHJb6cV95cx0jKZFmLlwoaPhojPJSSfX75np/WoUeuVDF+YxHfAidak5tz3ste94VM1IINDEnPUVe8oZ7I/QuvTfSIVoKlAkrOGJ2pIzMWz1uuS9TjKIhmtbeIbTa/Xs3XrVn71q19lLWsZy1jGMlJ4//vfz5NPPpnxs2JMbJJtXxS76WOVyAsUHPrz7H2a9yYbc9Nxul4ZwnODFWNZEee+1541tv6T1SBDcn+h8s0eZsKztDzdK9JoxROMt8eyxq5/JISyQM7hz2fvt9e+24dSp+S4xF7HQtjWGLCvNHBeYi5U81YvxoCOK7/upv+1UcmYzoN9kvVdCO9NNsY7w4xezr4PWnqjjdItNq6+MsDVF7LPTSrf7MFSqefCv7RLlqNxqVhxdxkXf9zOZKd0vdY+6GPw0rjkPBeg6u5SzIFizv2wJe1WIwWdR5Xzeps+VolMLufw56XXvNa8u4Iip0ZyrRVEarbAHjddxwZp/530ep2+TJX3uax7n1jXzHU9VLD2Ph+DTbm5ChxwoXNpOCUxfwHBudam5rWvXSCWfRmVjY9WIi+Qc/hz0jyF7izh8q+6IH+zo+ruUnqODzF2Jfta6/pHQhRqlRz8ywtZy1PZVFTd6ua0xJ7fQugr1NTcXUHLMz1Z35mSLRbKbnTQ8kwPvUez7126G8x0HxLC93Xv9dPy+56sdffcYKXsBgf9Z0dp+uniNS9jqIiK7U5OPin2UGve6qX5931pAdxC+PY6cdaZ6Xipf9EzHk8MM1HVQ2dXJxMT4nuupqaGJ598kuuvvz43Ict4Q7HspPRHwpe//GUeffTRjJ/JkNPAbrSyeRXmQiFG8897MJRqaXsm+wd/9W1uVIZCLKuKGDo7tWhjyrffiSWk59iXL3PuH9sI3ObOKlACcG2wotQo0g5D1wqUyvc4cK0zc+jPG2n7TR9tL/ZJimqmkirGIruWIRYPqilRyljbJOe/3yEthNECYeg7M0LPq9KbMb5dJcJe2goRifFk48cq6T0xTMdzAzkFSgAHv5xj8EJcYzYyR9+50ZxxBUVKihS5Txyb/cXCYjq3jofoSIyR1sncQZBToARw+Ued5J/KLQ05B/kk8gmUQKQam9k5S//p3OKbNFfJdpENqmIlcqWMsi0WGv8pe1D/iXEqdsTpPSG98HHlZ910v9JLeHDxhs7CclKCwE0fr6L1991ZBYIAwX0iVaHWrSbcvXji1/n8IEUONZeeEqk4st3jyW80p3+3+dEaYqPTOTcEc+Hgn14Q10BMCgp0yoz+Y2E7MniL0icWs+HMD9swJFPOLOxzUli4uedYbUKmkEmKlAbOjxGfS6aJu9WFqULH8W81QRiCnesBCDNLP51MTU3x7LPPIpPJcLlci07oLmMZy1hGaWkpnZ2dGT/z4KNKVjv/g2uEGP1nR9N2s9lgX2FkbjpO5/MDNP/smjmVBja8N0TPa8N0vjRI24t9jDRJi7V1Lg0aq4ordDOYZYNrw0dDhIdinP9eO4e+0igp7lgK6h4OoDIUcvBPL9D5/EB20YkGiIjxJnCHW1KgVFSmociupvo2j+TGlWOTEe8WO8e+dJkr/5a7f2761y46n+/JKqJIoff0MN7r7DnFN+6NdhSFcgpU0lRpzHIKdEosweKcIqW+0yO415vzCpSAvEKtXOKk14O23/XlFCelkE+gBDDYOE5xSX5XnEJ9AbYafU6Rks6lRlmgkPw9wODFcSz+4pxt+NBX8vOUEiiV7bJjX2GU3MjUONUUOdQE95Vy7HL2mNP/0Ip9ddI9Itn2F2K8JZKew6x8ezl6j5bT32/N+ry1VnH6brwn+0pS8896aP5dT/oa9Z+spvPgQIYwKNUeXQ1mCnRKXLVWRi8v/gZs+tcu5qJxWp4W/c+1oru+46NpoZRjvZEih5rQHeWc/vbiBbXWp69S+ZbydD0WlmWXlcClEswJH4f4LYWqAs6dO8euXbuYnZ3le9/7Hvfdd1/W+13GMpbxvxM/+clPuOuuuzIO5ClQ0sBu1LL5U8oLhRjdh4ax1uhp+13278Pg7V6KPVpsaw0MnBpbJN7w3GDFscbEa19tovkXPcxF47Q9k32sdK61oDLMOwxdu1DtbjBTutXOkS9cpO/4CH3nRiRFNRO9or/XWlQMsXgOp/WoWfuAj5GWCRr/+SqnJA4ioQai0HlwgP5z0mKnwL5SVIYC1HZ12p3oWtQ9HKT/3AhXnx/MKVCCJYy5UYgOTadPVEtBbVKh1OSeA9hWGFAvcN+RwkRXmIklzLtyCZQAOv6QW5z0epBLnJRCPoESQLQ3SmQwRt/pxeK6hbBU6lEZC1Ab5WlHn2tRoAKlRoGrzspYc2fWmLHmKNPjM/SelF5j63xxkMHTw5LXAeFmNtoknsn6jwRpf6mfgRPZ76HqVg9qc6GkaGvozAS9ZcPz4p1k21+I8ws2wRueqCEyFJN+d/Lg8OcuplPlVb+1VGwcLhA0hTuj6SU3a6Uh7UqaDSe/3YLRJxbQ3A1mXOstvPZ3Ten6LxSCeRqsKFUKSZFS99HBtFPHtQK+ysH1MAhxVLRzkWgkytNPP41MJsPv93Plyr9v/W8Zy1jG/1w0NDRw+PDhjJ+VESIoWz3/AxWsua+CoaYJOl8cpOvoUIZj0LXwNNiYjc3R9coQnS8O0knmfGntgz4GLozR9coQzb/pZlJiXgJgChQzNx2n5enerEKYde/1Ex2dofGpDo5//fKShBlSWPVAGUUlWg5/qZGB02MMZBtzVUAMLvxzB+W7HZICJZVVhdGvQ2UqmN+PuQbGUBH+m9289rWmvPOOqy8M0H9iiNi49Jjbd3oEnVMjKVACcK0zUVikRKHOMfdSgdamxhonp/Bm4OwYan1BXoESkFOgBHDkL/MfllwK+l8blXwmC7EU4VjfmRHMPl3uoBhoHWqs8txc6b1FFOoLJH8P0HtqBFetWVKgBHD0b/LzdDl5EM253oh7k5UTX88+9qv0YA4UU2RTS4rbz377CrZ1ZvFeJdv+QsQGYmmBUuCAC/tqE+f+KbtoTWsRk6pwX/a5etcrQ3QdG0pfY8OjlXQdHEiLkoD0v42hIjRWFc5ac1aRUueLg8hksrSgb2GfAzB6eYqTl8V7qa9QY/TrCKnlWYX5Xa/0orXMu5MtFPDpZWb0l8xYEwGO8iyoEly4cIHt27eTSCT47ne/yz333JP1fpfxxmLZSek/GY899hhf+tKXMn6mQsNW2b6s8Rs+EqKgOHnSOIvGovaDfpTqeUGBbW0xA6eyL2bkK6v6baUUl2g5mhxIpAQUqViTv5imX17Nej3HRgO+nW5O/0OrZBkL0fCpanpODku6NTU8UQ2JPBs7C4QcKaFW1jC3mrXv8jE9Ln0KTOvVsvb+cjoPDaTTrmVDLiHUvxs5RDdLLsKrZe0D5QxcHKPpx9kX+F4PluKktFQ0PFHNbGQupwPSkrBUnl4Pn0uIrX+8mtjYtOSkNCW6C/dHOZXDCSr9rua5ZsrFqfv4UPb3Qwv1H65msHFsSS5OGx+rZDY6J+kEsOnjVcgLZDkdsVJ9g/9WF9ZKA0f+5mLWe9jwSIiCIuk+B0gLIUu2WvButXP2qXYmWxYH53N5mHIN0Dh1mtGxUVGu3Y5KpaKjI/eC7DKWsYz/2YhEIpSUlDAykrkov5JNOGWli/9AI06KR0ems/aTxpCG6jeV0/SrTgbPTGBdXZxVULSwrMhwjJNfXzxmaMyw6t2VdB8bpvP5ATRONZFe6TnT5idqmAlLnyhf9wE/crlsSYLVyjd7MJQXped816JirxNXnTmnm5G4CSBCbh6YdyI6/b3sog4Qjk0FOiVHv5DjQz2lo1mqQCuL2OTfFbMEbPhoCIVKkfMU1OspK5+T0lJR+RYPlpA+p2vRkvEGcZVRpFmkX5NC2S47JRusnHzyoqRwLc3XF6Xv0bJSx9C5pMA/z300fKqaRBzJZ1mx14l9lZEjEqc6F6KoTMPqe8q5/Iur89dfAMd6I/49bnpPjKSFRtdiYd+w8bFKhq6MLxZFJuPWvcdHZDCWPkV2LRa+qxseDREbneFMFhe1pZTVv6KJM+dOA6BUKiktLeXBBx/kk5/8ZNb4ZSxjGf878I1vfIMPfvCDLFxa1KDjOtnurPEpd8QT32zJKrhZeX85anNBei3CXKNj+EL2A1trHvRRZFdz4lvZy6rY58AaMqTnUrlEPhW7HbjWW2j6VVdWpyZTVRGVt5Vy5gdtSxKmbPxYJX2nRmh/Nvu8atPHq5DJ8whhFgg5TFVFjFyU2LhKOh/FxmYkNyrURjnr3ldF5+F+rj4vvailNkJ0VLpK/y5kEaS87iKMUPuBGgYujNL00//4AaWlOCktFZs+XsVsdO4NKWtJXL0ePlP6wBzxGx4NMT0xK+lwpPWoWft2H5O90m7ksOBdzVO/0m1WSrfY6To8KPl+bHgkxPCVCUmXp4VY9z4/8XhC0pm97kNBCosKOPQX0vPsVN/g3mKhZJOFs9+5nPU9WPOQ6HMO/uUFyXtM8WCu0RG6xUPjj9uyul6lvpekyppU93NJfTb9XWuz2dDpdFy4cAG1Wr34D5axjGX8r0EoFKKpKXPMWUUDjmuytKSw+YkawgPRrE4wGpeKVW8rp/X3vQycHsMYKpIWyqjEfEOqLFRQ92CQvjNCDK6yqogN5nDg+Xgls5G45Nxl5f1lFGiVklknFqL0RhuOtSaOP5ld7ORuMFO+3ZnTzSh1D8TAENBKOtQAVN/txRTQ5XQiWnGPF41DzfF8e2JZBCT/4djXU6YE1j7oQ2UoeENESEtxUloqvDttlGywcuLvWrK657wuvAE8LSpST06xknO9kfIdLk5+R7r+q99Vgc6p4bVvNku+Q/oK9Xzby3MfGx+tRKaAIxLrr+4GMyUN1iXt36qsKta+o5zLv+pKp1hbCENAy4q7ykUWpl9nF20v7BtqPxhgtGUya6xKD3UP1xDui3Iqy8G71PVS7+q69/uZHp/h/A+y7A+m+q8cZQ3VtHLy/GsAKBQKSktLefjhh3nkkUeyxi/jjcGyk9J/Eu677z5+8IMfZPzMgot1susWxTY8UU18JsGRL1zMm/ZLqVGiWJCv81rB0IZHQsjkIt3Hsb+6nFMQUWRTo1Qr0jHXiosq9jmwrzJx5HMXs6aby6iXSolMLsO6Uk+HhEhp0yeqGDg/SsuvevOeKo+OTjM3La0u9u134lxnTgs5cqWVC3dHc4omAIqdBSCDeFxas5cSo0z2Rjjzd9If5ivu8xIZmc6aCm8hKvY5hHV4LpFMUpDS/lJvzjRfOquSRDzBZHduxc2mT1Qhk8skbThfD1LCtVPfackpTIvPJJiNzUn+PoX1Hw4SHZ+RdrpK3pq9Vk9sYlbapSksxGQr7g3mFlklHYnypdGTyUGulD5hMHR2ioPNudsXzL+rmx/JnWpt4Pwo1mqDcCvLhnCmjWr949V0Hh6gU2KhUVEoRyaXrv9CS/mae73onJpFfKSer7GsCIVKjhSOfXm+z3FsNODfVULTrzKFjSm3KZO/GJlCxtx4duKOfvFS2u3JsdGA/+YS+s6MpN3ginpsrGcHYcIMhq7Q29tLf38/MpmMQCDAc889h9frlazrMpaxjP9ZiEQiWK1WwuH5PkWGjM3sRSPLdIwJ3OHGvsLIhR+1Mno5klPoEBtPIFPIsFQZGDwzsUiY41hvxH+zm4v/1sZwY5iTX78gKcCIRECpUmAJFdP5/EBWgdKGR0IMt0zQ/LOenGmvAAp1uU/yeHfYcdWZOfL5i1z6cfaT1in0Hu7HvsrIQKO08Kj+k9XI5EJAnkugBIhTz3mEIYoCOXKZ9PgEsPEDlSjVirwLGXUPB3jt21dyXs9cLQYVqbRzKax8RzkFGoWkODmF2egc5K4+5motVXeWi1Qav8y/yZIP9Z+sZm46t/B7aiCGyZ/AWKqRTHUG4N5qwdNgzS0SS/552S477c/kEK8B/gMulBoFl/5Fuq2lNnZype1LxAEZaN1aIsPZN6WPfeVy3vaVEgj59rlw1pqypjRLITwYy+mg1vrrXlqTCyb+21xYAnrJuaN9hQGZQiY591rodARibt51aDCjbqm+QWOWo1QrKHZmd72K9EYz+q9swvSF76pSpQB99nu8tqxNn6hCJpNlCLfs54PskAU5mXgVg1dDa2srjz/+OH/yJ3/CXXfdxXe/+93shS9jGcv4H4n/83/+D5/97GczfmbDwxpZ/aLYTR+vIhFPcPSLl4QQIoeIQWUoEOtUSVwrUFr7Xj8FGgXHvnI5b1nFLi0FWmXameZagZK7wYznOhtHv3iJ1t/20fpbacdCeaEcuVKOrVpPu4RIacNHQwxeHqP16T5JYXgKk72RnE4GqVR43UeGaHumT1qgBBBF9OE5hCEapwbkyXFWAsVlalbd72OiKyyZtgsgeLub2chcTr5AiFGuPj+YV1Cz4bEQV18ZpPewtIpZZVEzNxtnKs9m1PoPB1GoFJKp814PKnY7cNVZuPAvrWlHoWyYm55jNjKbt7w1D/qYCc9yIdvGSQpRkWYNkL5mFFDDunf4JYXFKWx+NPehBwC5Qo6iQHqdJ9wZzdu+YP5drf9IFYk4ks9goHESV52FvmPSYrmFc92Nj1XSfWxI0uWgQKeEHMevF4rHKvY5sAT0iw6wpvoGS6iYAo2SqMS9nv5mC2oj6edU/aZyrvymO0PYmOLBUqlHrpQTk/hsOvW3zen+K5Wir/fUvNuULmqnLrqdKFH6Q5fp7++ntbUVjUaD3+/nlVdewel0St/4MpaxjP9RiMVi+P1+urrmD6fLUVDPdrSyzI88zw1WvFvtNP5rByONk6IPlxg+41MxFCoFRp+OgdNjiwRKhoCW6ju9XPpFZ96yAAqLlZh8OjpfHMwqrlj3Xj9jV6doebpXUjCRgspQmLEPei2c6414tto5/pXLXH0ht/io+8Qw7norIzlcItd/NISyUKScyyVQAmh8qiOvMESukqPIMdcDwYfGosrL65p3V3DxX1pzil90HhVKrVI8wxxlBe8oQWMqzHp4aSFmwrMocjgNghCb1D7op++UtCDl9WD9IyESs9LpXAGmemPEZ+JoTMqcIiXLKj0V252SwjUg/XP3dWa6X81xmg6R0kxjKuRKjrW91KHBXOK1eAKx5mUtkKz/me+05m1fqfJTArz2F/rSbkPXYuzqFMoc71L3oeG001HJFgvOWrPkM7AEi1AUKpArs5c3diWcsZ5d9+EgPceHMvhN9w0qKCwuQOfKvuYVGyfj3Vj3fj+J2USGSHLhu1pYpJTeB40h6qVK1utDQZRqeUY/ZLlQwQ5ZBZcTpykoj9Pa2sqjjz7K448/zgMPPMC3vvWt7GUv4z+EZZHSG4xbbrmFX/7ylxk/c1HBClldxs8826x0HhmEsEgdNhtOijiuHf+uEVLkW+iQK+WwsH+4pry6hwMoVAqOfvFSztzyAAZPEYoCOTqfNqvTidYqZ+U7ghz9+iW6Xh6i62Xp9FkaqxBLmHLY7LmuM+Gus/DaV69kdSBYiN4To9hXmejPYZe87gN+NGYVp568mDNtF0Df0TH6jua2Xh5qnmI2Okf7C7kXYgzlOgxl5BQp2dYW46q1YPYX89pXpR0QvFvsyJUy1Mbc9tgLU4/lwlx0DnmOxYfXg8jINMa5BAVFuctb6uJQob4g78QHLQT2eZiLxXOWW76rlMLiAnz7ndLPIQwzE7MMXMr93HM5DC0sC8SCWKG+IKcoLjY+TWxCegFrrCmcFiEtfCeywbKqCLlShrFMt8h+NV3/BYLAde/1MzkUlXTb0jk1Oe3aF9bDdZ2J8hudXPiX9kzBWPKf+jIdyGCqfyZrWamULQCGoJYVd5cz3jHFue8uyHO9oNjEXIKeY0Ko591lpyO5WaqVafE2rcaaCHCQ3yCXy7hy5QrV1dVMT08zNjaGVjufUnMZy1jG/ywMDw/jcrmYnp5O/0yOnAb2LBInea630vnSID2vjWANGVAUJvu7a9b/V75DpHY6+XctYuM+h7vN5EAMZGCo0DPcGF4kULKs1BG6pTTtqpLPKadAq8RUJj1Xqnyzh4IiJef+sS2vq4uhrAhFoZyiMo2km9H6h4O0vdjL4JmJvOWFB6LIC6QXWDRmWPf+GsKDUU79bUteB55881CAgQtjOeeOIERnKmMhvptcks40AMFbvCgK5XmfQZFdjULiY3sh8m0KAcgUcuKzCcI5Tg++HohNsNzCb8l0ftdAa1OhVClwbDLSd2RUMi41txm8NJEztZ1jjSnnBhFA56v9+Ha5Ge+RLqfj9/253bxSiICmRMO6d1Yw3hmWFLn3nRvFttLA0DnpjbCFzgEL34lsMJXqxOa5hEhqoaBJY4aVbw9x7MnLWWPN1VoUhXL03iLIMo+LDMczBHobH6skNjGT6RSwoFyZQpZzk3HhnHDDoyEKNMpMAeCCsmJjM2mRvsYM+uB8O1knuw5aIZqI000bs7Oz/PCHP+T73/8+991337JYaRnL+B+OD33oQ3zta1/L+JkHP1WydRk/c6w3MXZlhOgoxMZniM8uWJO5Zs2+4YkaZqaEk7PUafoUFIVyZAsPEV1T1qp3lqM2FHLsK5dzur4A6MuKUKoVGIOarIIQtRFWPhDk3HebGDozwcEzOeYQalBqlRi9OiD7mpG5Rkf5DU5OPHklI7VVNgw3juLZYqP/gvR6Rc29XozlOk58u4VoDndOgJGLUxzKI4Cf6BNpwjoP5p5HWKsMIJPlFClpPWpKt9ix1RglU1UA2GoNFGiUaCy5xfdjzdElORrOhPOLhZaK8OA0czNxZIrc88KlOpBrLSrm8qQLAai5uyLvYbry6x1orCp8B5ySqcUAwkMxRppzHy5Y0ppdsnmtfncFOoeGE1+/IOm4FR6IEs++DCSK6o2m782yupiy6xyceDJ7G9F6xOFaQ1mR5JrXwnXymnu8zEzN0iThOm4qL6Ygx0GPheK8lBPSxX9tz+gfUvdtKC9GJpcxJTHPb/ppd9r1S21XU/uQj9GWycx0jEle5QUK5mJxek+Kwt0N5vRmoVqmxtu0GnsiyiF+R1w2S3NzM36/n0QiQXd3N0ajUfKelrGMZfz/G7FYDI/Hw+DgfB+opIAGdqOSqTJineuN9B4fZeD8BO71lgWFZJYZvM2NbaWRk99pJtIT49CfS88PoqNzoJBR7NEI15RrytKXqah+SzlXftvD0NnxvMYEKlMhhhzDqnenDZ1Vw4V/7sg7Jyz2FlGoVWY6ylyDVe8sp/vYMENnxzmeQ7ALMN4xhcqQY5xWQf0j1Uz1RcR4kWeZJ5fgO4W+0yPYVxhzllWyxUKRU0PJFmdOIVDl7V5UhgLh0JejPH2JVgh88yCrG801KFDDXGyO6Mh03tilYC48x+x07jWvobPjDJ3Nvw+q0isp1ClxrjHRe1Ta/GHVO8op9miZ6ovmFKeVXmcDmSynSKnr4ABFdjXjOQwdlprWjhio9HJqP1jJeMeU5PMYaprC3TDL4MXsh/yAjMOEq99VQdfRIUkOzcFiCnVKSUeohYImVFD77gDnv9+SNZ2hxqVCpStAX1pEN1lEYLFMM4Z17/czOzXL2YX7gwvasrxQDjm2jxe6fq17rx+VqZDDX27MfB+S/44MxCgsVqbvw77SmH4uIdkaaAESGpo5x9zcHN/5znf4zne+w0MPPcQ3vvEN6Uos43VjOd3bG4RszknlVBOQrVgUa1tbTPBAKbGx6Zzig5Q70MbHKpnoidAokVd+86drmJ5cWmqujR+rRFEgl5wwlGy14N5gmT+1ksOJKZWWKleKsYp9DsID0bwCIJhP75RLVBS4zc1Y24RkirtrY63VhpyuQavfI6zzTn23jXBHDoX060zJZghqpZ1+kqh+WyntLwwsKT1ePvj2O+k9MfqGlAVvbLo3AO92G2MdU3k5WQqWyluuFID/Hqz/SJBCXUFON4fQXR5MZbolC7NWvbM854Q19U6cfPLCktIM5itv82dqSMwllpRGsXyPA0tQWkRXc68XY4Uur5MWgM6nZfU95QxeHufyjxY7LOh8WlbeVcaln7Uz0hjOmcZSY4V176uRFKqFE2HCa7s5ffo0iUQCjUZDZWUlr7766rJYaRnL+B+ESCSCxWIhEplfMFagpJ6bF4mTQLiCKArlOV2TzNVahhvDWFcX49vt5uz32rO6HVXdVYo5WMzJb7fkTNcGIvXTmvsq6L8wypV/y75Yvv7hIN2nhul+eWhJaalkMllOl6Wa+8q48P3cG18wL/CYHp3heI7Fn6WWB4Ln/rOjaZHG4osK8X1kSDqlVCru9aQZSz27XNCUaPDUm2n61/94WlxjSIPWoRXP7A3AG5nuDUTqLvtqfV73o6WgqEyDq84k2X5T0Ps0ku5IWZHnGet9Gla+rYLR1ms2c67Bpk9U0fPa8JKETbZaPUU2DW2/y76pmnonYqPTS0qj6GowoyiQSzo0Vb7Fg6VSnzuN4gIeNnw0RNuLvQxIHDxo+FQyhXKexdVUWUqNQnLOV3OPF61VlRYLGkPSzlspoZpU+sZwsJ8roxfp7xf3WFFRwdatW5fFSstYxv8wZHNO8lGDT1azKFbrUbP2HT6iw9OSAhWDX51OgVT7gQDhgSgXJdz46j9ZxUx4aem06h4OUlCkkEyjZltrwLvVPr/xlcOJyXODFe/1dgbOSacYczeYmZtJ0HdcevMjhXXv86Oxqjjxd9KiIu9NNqYGowzlca0E4VTkWm/JeZix6i0ezEE9Z3/QwkR7jnnr60zJVlymzl0e4DvgpPfk6JLS4+VD6TYrA+cnJdP1vV68keneAJz1ZiID4axpvV4v/Le46Do6kld4JiWuk0SeZ7zmPRVo7RoOfUnaNalspx3HGlNOAdVCVN1dysWnpJ35a98XQG0tzPlOvJ7yGh6vIZGILymNorPejHudWVIg5b/FhWOViVPfbcnbhtV2NbXv8THYOMblf1v8raG2q1l1v5fmX3czfGEy97NTw+aPSbu+RxNRImt7OHnmJPF4HJVKRVVVFYcPH15OA7eMZfwPQiwWo6Kigp6eeUFEISo2sWuROAnE/EdlKOC1r16QdNtJpUXSl6kI3VHG+afaifQsVrOU3WzHXWfl1D80Z/39QggnHR/9Z0Zp/lV28caqd5Yz1DguhA1LSEslL5Tn3M8L3VnC5SWs66RSRUWGc68/LbU8EDwPXh6j/XfS6w/1n6wmMhjldB6x/OtBLiFWCiqripKNpjfE0UjnUaFzauhd4AL9H8Ebme4NxL1aq3SSzkGvt6yl8KbzqJjsfB0HEPO0dZVNxbr3+Bi5MpHTkXz9R0L0nhyWdJRcCENAi95TJOkqptLLqftQVf412SRM1To05kJJlynvThueTbbcaRQX8LD2QR9dR4YYkDAe2fhoJbOxTHdwKax5dwUai4rDEocYfPucGEqL0uki84kZi91aSQes6bIBrsSa6O4R34NlZWXs3r2bv/3bv81bz2XkxxtjqfK/GA8//DAymSxDoBRgNTtkb8oQKGndatZ/JAiItE/jV8MiLUUW2Gv1VN5Wxrr3+wGR9khKoAQwNxNnJsep6vUfDlL3oYAo6y8v5RQouOssFBQp0bqTHzZZ9nsq7/YAcOVn3Zx68qKkQAnAVWvBt9Mt+Xsgfa2jX7wkxEI5XI/sq4wE9nlylmdbW5yuX760ZpHRaXHCPYdAyV6rZ/OjNVS/rTRnWVqvFsdGA8CSxDiN/3Q1t7hDO89NPjjXmVn5trK8cZ5t1nQKrTcCtrXFGIK5C9S61Xg22wjsyd0OUshXXl7ekkgJlLy77HljN3+mho0fq8wZExmKMTeT25Hr8o8608IZe61EPo0k/Le6KC7RsvIB6eeWeicig8K5LF95ek8RK+6TTnF28EsXOPRXjen4rGWm0uqtNKIyFEq2lws/6ODgZy8Q7o5iqtbS8EQ1llVFWWNVRTIS8QQjEq5Vky3CPWqkMQxaCB4oZdPHq7LGRgZh4OIYLc+IfqfmXi/BO+ZzbmtlWqynA2znTuTI0Wq0nDp1iqKiInS63G4cy1jGMv77IxKJoNfr0Wq1aYGSkgJ2yN7ENtltGQKl4J0lBO8U/UPbc730vDYsKYrY9Ikqqt5UDoj0SEe/cElSgDTSPEEinqBAm91VyLq6mIZPVaMpEQ5GB//0gqTAQ2OWU2gswF1rTt5glpgSDWXJsezU3zbmFCitfEc5xvIiPNdbJWPQCGeUSFeEk3/fmlOgtOpdFfnLQ9wzwJHPX5QWKCUxNxNnoi/3hsrGD1ay+YnFm57XwrtD8JJPoATifvMJlPS+7BbD1yKwx0P5jQ4hMMkBY0iTTjP3hkAjhDH5sOreMko25X5m6SJLct/EVHskr0AJSAuUHJuMaMy55yw193jZ/FgNxpD0tcdbIsRnE0TynMg78vmLaQFQPq6Dezy4N1gkf596J1ICJY0z9zy8fJsD7/XS88xL/9LJya/P1y9wR5a5cPJV0Ps0FOiUeDbZJMs79OeNaYHS+g8HWfc+v2Ts9NRsznTLF37YkRYorfuAn5q7KiSfx/nvNzHaMpkWKNU9HMh4xtomO6sHrifAKux2O52dnXzve99DJpPxiU98QrIOy1jGMv7/ga9+9avIZLIMgVKINeyQvSlDoKQ2ytP9UrgzyvClcS78UFqgtOJtPtY85APgxNevSAqUQKRYnZ6QtmZZ854Kaj8g1rxe+1pTToGCe4MZlbGA4rJkH59luuc7IFIodb44yImvXZQUKAGU3+SkYodD8vcgBAogXBjziTE8DTaCe0skfw/z6cCuPj+Y1209MiLcgHIJigx+NZs/VkPVW3KvtamNcmy1Ys0rn0AJoOWXvfnFHXnG2hRKt9hZdU/+dO6O9SYhQnmDYAxqMPjzFKgG304n/t25+Ush3fYk0PyLniUJdlIiF88N+ed8DZ+qYcP7QzljJnojzOWYOwC0P9ufFs6Ya3Kvr7gbzJiDxay4X3rN68STV9LvhNpIzmeXKq/mXul2cOgvLnDqb8X7X7rNmr19Jal115lRWwrFdbOg+Rci/Xa4M4raqab+k1WS91yggfhcnJGW7C4G0f4ox754OZ0KruauCjY8JvE8otB1eJDmZ0S/47/Fhf8WV/rXapka0+kKbkrcQSEainXFnD59Go1Gg8lkorf3P745vYxlLOO/Fj6fD7VanRYoqVCzQ/YmrpcdyBAoeW+y4d8v+ocrv+mi8+CApECp7uEgK+4uBxWMt8c4/pXLkgKk0eZJ4rNzFKizr3npK9Rs+lglOo+K2GCMQ3/eKClQQiXS7zpTa15ZLqnSy9Nj2dG/uSScTyQQvM2NbYUx79in0suJjcNr32rOKcYI3l6CtcaQtzxjSOx5vPa1ppwCJRCujlN9ucfx2g8EqH+8OmcMgHOjCSCvQAlECq2lCG2WgopdLnx73Kj0udd2dB4VhsAbuOalAnudMW/YirtKKbsx9/w7XaRVlU7xlQ1L4Q1IC5RM1TpUttw8+vY62fyxmnS7yXrdgRiz0TkiI7mFT8f/6nJaoJSP66rbS4Xjk9Q1x+O89s35d0JlzX0fof0llN8onVq249kBXvvqxbRAqXx3lmeSyuxmVaG1q3FvkF7TPPqlS2mB0qp3lrPqneXS9zI5m1MT0fJ0b1qgtOIeLyvv8Uk+j7M/bGPg/Fj6PVvz7ooMbgrbbdT0bmYVDVitVnp6evjmN7+JTCbjT/7kTyTrsIylYTnd278TX/7yl3n00UczfualkpBsVdZ4304HhcUF6TRFC1MdpRC6y8PlH3XSf2Kc0i3TXJIY3LVeLWsfKGeqP8rpb7bktTwu0CpzZl/QerUEdjk48+1Wjv3VZbRWuaRQyLvdhiWoZ81DPk5/syVvGrWOV/oZPiudz/NaN6acbkZA6x96GGvNsbGVFDj4dsc5kuvkTBJNP+6iidwbVuHRWeKzCdrzKHNX3e1FoZLTd24sp+vSho8kT8vnUQ6vuruc4hItV57uzJvKrfv4EOE8G35ar5ayrQ5s1QZOfiO/UnYpCB4oZTY6l3NhLNwdZfDyOJ0v51f7NjxRjUwuy+sksPYhH1q7Om/cpo9XoVDJ6XilP+czmZmaZSrPibzz389vcZlCyVYLZTc6cG2IZqbkWIDmn/cQn43T+nTu9IGpd2Lt+6pyuiA1/7yHxFwiZ5rBNAdacKw2YasxSgr5jv7lJSFiCoNjowFz0CAplrSuNEnne0UIxg6dFddJOSFFhmLZ22EYJrrCDDeJk6PeXXaGr0xmpJxcKIw0lotFoqYsp9Vukt1BeDjMKdWLhGNTTE1N4XA4kMvlGSdRlrGMZfz/Aw6HI+3UASBHQQO7szonAdiqDSTiCZrooi/L6Z+FbjhdR4fQu6UFE+veL1LIHvzSBfqOj2YtLwWZUoZMIcOxUk9bV/axueYeL70nBhluDHPy6xeJDEvPp9Y+UI5MIaP9mf5F6eSuxbl/aKP8ZoekswtAw0fn3ZgiEvVL4ex3WinbZc9Z3tr3+tHaVMBVyRRZaURYUqqOyZ4oamPudBgapxpPgxXHKmNeZ5nNn65hrGMqb2qVlW+rID6b4PDncovcz/+kE/cGY163p9BtXpQqxRvmkLTunaId9pySFtyBmC+rDPkXn1wNZip2OBm6NJ7z5BYa2PxI/hOIGqca/y43M5vtOZ9J97EBij1aYuO5DX3zPYeFSLul5eD65D+2onPkblepd2IpLkinvtuGPs8iX+rdTr0nEx3hrP3HeEskoy9Y9a4Krvy0XbJvUGqUyFXS/cbCFHZr3+tHa1Vx8hvZ+5rLv+omuMeddlIK3OHOEKZFhkm7WVXsdaIyFlJyo3OReK1cVgkDlfTYmjnffxIQ38w/+tGP+OxnP8t9990nWd9lLGMZ//3w85//nNtvv52F5uvlVBGQrcwa795qR2NVUbbTTvuz/VlFR6nUVGPNUSZ7Ilz5bfZvMrVRTu0Hqpjsi3Dm2615HZ4LDQXI5dKbKGqjHP8tpZz/Xjun/64VtVFOdDR7H2pba8C51ozOoeHMt1sl41Jo+k0XE93SmwvXujHlE59c+uVVyZTpKdTcVcFsLPc6TArtz/bT/mzuzbTYBMxG5uh5LfeazYr7/agMBUx0xnI6Gq150IfWqubQl6UdeQBCd5RgXWGg+Tc9eZ2o2p7vIzaeJ5WIGvx7XDjrTJLrMK8XNXdXMBOe5diXcsw1o9B7apjuY6N5y9v08SrkBfK8qfeq31qKyVec83ACLEjL25jbZSoyHMubiqXll705U8cthLlGR9WdXiY3RyTTKnYfGkahlnP1+dztKvVOrHt/DYm4tAtS96FhlBoFHX/InY4wlY6t9Do7JZuskuWd+PqVZF8gxGjOdRZJsaRjlR658ppUkwsw0R6dv44aNj9WI9bsv5W9HQ5fHme8W8y7srlwLXxnbTUGZAo5zb9Y3F9eL9sHw3BU/Szj0TFGR0dZtWoVxcXFtLS8Me/AMpaxjD8e1q1bx6lTp9L/L6CQem7O6pwE4N5ohQQ0/6qHsSvhRamqNC4VhlItvUdH6HipH1NAJ+nssuJeL4YyHQe/eIGxK2GOfCH3HENRqMBcrWeyM3uf7NvnZKRlkpHGSV772sWsqaBSWP3uAAVaJZ2HB/OmUGv6WTfhwVhOB50Nj1aiSLoxxQZyF9j00y6m+iOSTjEgXPzMgWKaftkl6QCzEEtxaRxrn6I4xxokACrw7XJRssmaN/Vd/aeqGWuZovGp3PtXK+/zkZiNZ6TFyobLv+jBWWfI+dwAQreVojYWvmEOSSve7MXoK2asPUJMIp0qQMuzPWgt+de8jKEiat5SJpwO8xxarP9EFdGhaU59O8f4qYLqO73CjTPHM+k6NoK5Uk9sInca4uNfzr2WuRB1Hwmi0uVO53fqH9rQuXLzknonluKCdOqbTRiCuY0YUm2k+m4vpqCO6GAsqwNXbDDGa1+d7wsq3+yh7fkByeesMhSC9HZjhrNm9d1ejD4dJ/6uOes7f+WZPkJ7ZYxeFqYWZTfbM8WGMdEXgBAGFjk1lDaYF6X2c8hKcAyVMGLu4bWhVwH40z/9U/7xH/+RP/uzP+Oee+6RrvAyJLEsUnqdOHHiBHV1dRk/c1HBClndotjqe7zoPVqOfP4i577bjqlaK5xCsmDlA2UYynTM3TpH8897JFMsgRAtzM3EmeyV3p2o+1CA2Vic099s4VAeN6GVbylFqVGg9WoJd4SzCo80VuFg0vHcABqbiktPSW9kbPp4cpPgTy/Qmedj9Moz3ZiDxTQ9ncON6ToT5Tc4OfWtRnpezWOhnRQ49J/LHVf/eDUyORz6s/ybHymXl3w4+4M2yrbZ86aFm47MIlflNzHrPTFEoU6ZV6AE0Pab3EIXgPBgmJGWCfpOvzGpSQBGWiYZzZPfHsia4isbRlsnc4pdUgiPTqM2q3IK6gBanunCUF6c95kcex0TgpVvL0dfqqXxJ22S73PXy0M415q4/K+5FwVSAqW1D/koLC7IaZk91R8lPJx7Yp0SKK16pxC4SdYxDJ1HBhlrFae4Uu/3orAktxXb3ciVMsm0hwvFflqrnDXvqeTCT9olHcXmZuIMXZJu1wtT1nk2WfFstEpOdg/+6YW0+1boLg+mch1HvnYxXU+tTMvm6T2ECTNe00FreytTU1PIZDKuu+46XnnlFcl6LGMZy/jvgfr6eo4cOZL+vww5m9mzSJykMcPq98ynGzv3T60500/VvKUCEtD98hCdz+de7B5pnqRAKz1tNldrCd3i5fBXLzJwYpyBE9If6BozGH06dC4NRxsvSYoQNGYhDrj003ZURuljxdbVxYRuLWWkaYLGp65KprJKYfjKBApVjiTewIZHQkwNxLjw/fa8KcMu/UsrlW+pyClQStVx6OI4l36cf05w4Qf508tFeqP0nx+l/1TuOZ+mREN8NpH3JBuIech0JPciAgghS3MegRdA+4t96D3SJ6deLzpe7MNaY8wrjpJKF3Yteg4N46ozM5DjQAEAEZibjRObzM1NpDfKSNMEbc9Ip+EAGL0cWZJYLYXNT9SIzdgc86SOl/ox+XKf6I90RYh0RdCY5ax5qJIrT3dKttuO33ej92hzppFLlZdKYzgzNSspzjr1t80E7yxJC5RS73dGecm+wBjSUOzWUHOPTzLt3EIBV8qJRGpDdqI3TKFOKdnXTLVHOJU8YRa8swT7CiMymSyr81jrr3sZuTKWFjRt+kQVQ03jGYIl14Afl8xPh7WR2eIILS0t3H///XzgAx/g97//PRs3bsxaj2UsYxn/PdDW1kYgEGBubv5kqgc/VbJ1i2J9B5xYKw0c/eIlWn7Zy9CFUcl0V/5bXDjXmpHJZDT/okdS2AAQHY0zE55lokf6Qz51svbs37dx7Iu5v+dr3upDbS1Mp5jLJjxSG4W4YeDUGHqvNqsgIIW6h4Uw5NCXLjBwIvdmVeeLgzjXmrj6vLT4w1yjI3jAw+lvXl5Smrfhy+OMtORObS/Sfio59Of5N42i/dElpe86/70mvDeV5E25Nj0xg0pfkDd9XP/ZYbR29ZJS5XUvJZ1HFAbOjTLYmH8DcanoOz3CeGd+x86linsGGkcp1ORfip/qi6IvLULtVOcUtl362VVsq415n0lqnF8Kgre5sa0ycvFfO9LOP9di+MIkk5sjXP5J7jl7SqBU/dZSiuzqtItjNoy0TOR1ckoJlCrvLMFSbeDiv0nXseX3vUSHxHwl9X5fi1RfENxfSoFOKRmXIfZTw6aHK7n0sw7JlG0zU7OMXJF+lxeKoSpucoIMSeHa4c9dTLtvpdLtnfn2pYx6boztJEqU0ZVttLe3Mzg4iEwm4/rrr+fFF1+UrMcylrGM/x5461vfylNPPZX+vxIlDexZLE5SQd1DQQYviXRj537QkjP91JoHfCCD3qMjDJweyymwGbo4jtqqQqWCWJYidR4V1W8p48y3rzDeGs0tolWJrB/moJ7jjZclhS4qPcTGofFf2tG5tZLCC32ZipX3+hm8KIQm+VJ89Z0ZRmvJ7Vq47r1+IqPTXHzqak6BEkDrr69ScHtZTv5SdRw4P0rTz/I7UUs6Ty1EDK6+MsB4Z+45n0ovZzY6R3gk/5rXwNlREvHch8VACEryOUYBtD/fj6H8jXNSuvpqP9HRGWITuffARi9PMUpuXlJxE91h+k7nn2vOROaITuY+KEAMek8O03Ukd3mxAeFWtlRs+nglczOJnH/T8rsebDWGnEK+2GCM2GAMlR7WvKeS5t/2MHQ++/pgx0sDWEMGrh6SXg+Pjcfpf20UEGkMpydnJFOxNT7VQfluR1qglHq/ry0PRKo7S6VeHKaTOAi5kIuqu0sp0Cg4+w9tWWMnesJoHSpJUWJsIMbZ74o5q+cGK55NNgo1yqzvau/REcJ9YcbbRVl1Hwoy0jxBy9Pzc33TsIsdsjfRr2ol7BmjubmZe++9l/e973386le/4vrrr89aj2Vkx7JIaYkIh8MYDAZmZ+cX5804qJVtlfwbrbkQRaE8LQBYJBbQwoo7vZz/fgfnvttO9T1emn+efYCy1+oJ7PMw0jxB4z9dzesSpNIXUjCXe8Ap2Wqh6+Uhjn7jEq7VJkkXI0NQy4q7y4mOxDjxN805BUoAU30RtLbcE4E1D/kYujxO5xLsqU0VxcgUMtQ2LZFB6cWByrs9XHqqM0PgIIXwYJQCTe4NupTjy0jLZM50e+kyu6NLilvqia6BUxMMnMq/QLX+w0ESiUROYZuooEjR9UZiKfcLwg2nZL2FU99qzCqGSZf3T7k3tVJYquhpqRwCoE26BAzG0laA2dB3agidS0NsLLeSPLWp5Ko3MTc9l1NspjIUIi/ILc5a2G42PBLi3PcuS3I50jpJkUMjKaIC6EhuOqec2WKj09IbYX/RiOs6E4RFfIFKOqWh6zoHMqUMg7coa0xkkIz+a/NnapiemJE8Hdv0y6uoTOKjrGSrBZlStkj8mLpOsUONolCeVUillWnRNlahT3g5yK9RKBQcOnQIg8HA/fffz9e+9rWs11/GMpbxX4cPfOADfOMb38j42XXsk3ROikRAUSDH4BUfyNkESp5tNmJjMQZOjNPx6gCTXdkXtUFs7hQUCefDtt/15RT/6L3FyAvleOptkoInc7WWSF+UyHCc5me66TsyKlle3cMBVMZCTn79YjKVmXR/PnhmAv+eOMM5FsI1Zjkr7vFz/GtNuR1zkijQKCnKkznCscnI7NQsQ+cm8258RMZmmZuO0/Na7sWkde/3ozYW5kxNvBBLSUMW6Yos2ZHnwhLmNUVlGla9tZz2F/voOZR7MavvyGjO5/x6MXRukqFz0m12IdZ/OMjcdDxvnvml5HqHpTlgATQ+tbS5HAhHMWOFjoNfupBTeDU9OUN4OPfp/55Dw+nnEbyzJGdqvyJPEXKlDGOgWFKkFBmOp0XsZbvs6JwaaSeuiLB0H+3IvUiWqlPtBwOoTYWc/LuWrGklRy9HMvoIxyZjznakMamQ5Tj/0PyzHpoR35g195VhLC/iwo9a00Kja+soV8wLlGru8S56L1J/p3GqURTI0Zqyn9TzDlbDIIwSZpheJiYm2L59OzMzM4yMjKDRLC294jKWsYw/DqLRKA6Hg/Hx+e9WK27WyjZL/o3WpEapUqC2q4n2R7MKlKre4uHiv3TS/Ise5AqZpPjH4Fez4q0+hpsmuPijq3ldEovsahJ51rxstQYGToxx4skr2GoNkgIqtV1N7YM+woMxTv1tc06BEsD41SkMZUU5RTjVby1lsjfC1ecHcwozAEyBYtGfurVER6XHef8tLpp/0ZMzNV4KEz2R/CfM1dDwaA0jTeNLKjM6CpezOBhfi8Z/XtpcYLQpwqmm/OKZNQ/6UCjknHgy/5wlV2q+fw/ytYUUHOtNlN/k4PT32nKKipYqZur4w0BexyAQDj4T7UtP71X/ySoiw9OSDj8gNt9MwWKi47nF6SmhoamqCKVWmVOwp7Wpcx74gMwT8bXvC3Dhn1skncyGmycx+HSSAiWA3sNiXqg2yqn9YJVw85aYFx/7ymVstQaioyJebVNJCpDc6y0o1Ar0pbrsMVEy+q+GJ2qYHpd2XLjwoxaKXOJQg2V1MSp94SJRXiq9osGrRalSEM3SxNQyNc7zVRgT5bzK08gVcl5++WWMRiPvfOc7+fKXv5z1+stYxjL+6/A3f/M3PPzww+n/y5Cxhf2SzknEoKBIib5ErHllEyjZ64wkZhMMnB6j5dkeYmPS39Fr3l2Bxq7m8J830nt8NKv7SQo6p4YCrRLbOnM69dSiGI+KmZgQBFz6eSdDZ6X3QlY9UEZxaRGvfbOZyc5YTrHVeHuM6fAso23S39sqPVTf7ePUt1roeDb/+FmoVyIvyG0iYAwVoShQMHR+PC1wkEJsCqbDs/Sdzr1GVPNWL3qvlsN/dTGvaxQg6XCTce3x+JIdeZYijkoJXDpe7qf3aG4xztD5cUkRzL8H461RxluXNvda9c5yZDIZZ74jffABWNJeMSzNAQvIEKvkg2+fE/tqEye/3iiZihEgPBhjOs+hwJFG4UwGIq1a22+l16hVFjVKtQJjRZH084kJV0kQ/YY5WJwxF1sUPjqd0zQFSNdp5f1l6L1FnPnH5qzvdmwgxqWfdjJ0RdTNtsaQUwSoc2pQ5jD96HxxMN0v+fY5ca41c+HH7WnnpGtjC3XK9HMMHHBx5ZmejPcxJVBS6UWfK/VNZY9VQDPEEnCVK0xMTLB3714UCgX9/f2oVEtLr/i/HcsipSXg2vQiKjRsle3LGrvxsUpkShlHPndRcsM/hbp3B1AZCrGtLWbg1EROwUf/iXF8N+c+BV55t4dEQgg4Dn75Qk73mLoPiWtPT0wzcGqCnsPSA85YU5jZ6Bw9J6UHWY0Vat4W4LWvXuFcnkEbxIKSxqzK7bSUdG1ZirCm+m2lmAN6uJu8IiqAM3+Xe/ACUNu0kICJ7tynpmxriwkeKGWoaTzvtde930//2VG6Xs69SefdZce52sS5f2zKm1JPmedDP4XgHSUYy4tel2tQPlTe7UHv1HLsr3KXWaBRIFPIMFaaiAzmntysfKAMtbEw70IeWqh9Z4DW57pzinFApHnJa4cehkQ8wdxsbr6F8Gnp6UcqdrogAf05XDWOfGHBxp+EW1EK3l12CoqU+PeXZ00bCdD5/GD63fLf6qKwSCkpAAt3iPe7+1juNplyMVtzbxkyhXRKvuaf99D8bI+4By1seDDEsW9dzn5PWpiLxRnrkr5hITJLpn673o5MvliklMJCoZ53uw3PZtuidIlamZYdvImwc5R+dRtXmq/wN3/zN/z0pz/lL/7iL5ZTkSxjGf8N8Otf/5p9+zLnWWu5DqvMtSjWscmIf6eb5t9203d8NK/FsHeLjfh0nIET43ndkya6I7ntlzWw/t1Bjn+tSYiYXurLKbSoelM5c9Nxjnz+Yl7hSt/pUVx15pxp4KrvLmWiL0rn8wN5BSSB28soNBbkFTugASLkTS0B4N/hBhkcPJc/dqp9ac458ekE8TwbjgAbP16JskCRt57W1cWUNNg4/b2WvO5D6z8cZKInklfEZfLpkBfIJNM9XFvmSMskzb9c2iLLUrDhoyEGL43T+uvcCyP50oGloCnRsPKuUjoPDeYVXXmut2IOFuddBKq+uxRTsJjT32tlql2a+KmBKIayIorsmpxxeeeEC1Bzbxkmn47ZyJwkR4NnJhg8s6DtJNu9FFy1FuEomQML59e1Hwxw4jtXJMvsPT1CyXpLVoFSCgsFSv5dbpxrzJIbioc/1yjuAZGmbjYyJ9nmJntEv5ZNoJRC6h1wbDJi9OnSab6vRaQ3mtHnbvpEFXPRuUXPq1a2BYDx9R2cPXeWWCxGcXExGzdu5ODBg5L1WMYylvHHw+rVqzl79mz6/xp0XCfbnTW29gMBlBoFR794iXPfa8td7rvK0bm1abFQLgHJWHOU2ehczsXvit0OlBoFTT/tFps7OURCq95RTrFHbOINnBjLKaCI9keJjc/Qm8udUQ1r3+7n1N82L+mEvMlXjL60KHeqKzUQFUKYfGKYsp12nGvNFGiUXPxRfhFQrk2GFLRWNYm5OFMDuU/eaz1q1r7Dx9CFMS7lSZWx8v5yhpvG6c4zp3CsN1F6nZVzP7qaNwVeYbESuSK/G3nZTjvWKkPelCivBxW7HZj8xelNHCkoCmQoCuWYA0V057mf4O1uit3avGWihlVvK6fr8GBOMQ5Aw+PVzM7M5XUVi88miMdyzw8n2qNLSiWYQtWdZZAg5zuWsfGXbPdSsNUaUFsL0ykas2Hg1BgDp8T1PDdYKbKqJNtmdDRObHyGnpO51yJT9V/9nqBI1yzxXdn9yhDdx4fS91D7vgAn/uGK5D1NT8zkdMEYa54XeAZ2l6BQySWdw858py39b9taA4F9JVz5TVcG92qZmu3cyUzhIL2lPVy6fImvfOUr/PM//zNf+MIXlte8lrGM/wY4deoUdXV1xOPz/fFatmKVORbFGkNFVN3ppe3ZHnqPj+bN9hHY7WZueo6B02NpBxQpjLRPotQoQUV2wYwK1t7n49S3W4SI6exoTmHN6gf8aQfkXAIlgO7jI5TpCnKmY/PtdTI9NUvni4N5XWm820vQ2tU4N5pyC2uS95ovnR1A1e2lyBQyDi1BhBMbXJpzztxcnLnZRF6BUt3DQQqKlHkP3OnLVHhvcHLuR+15y1z9rgoiQ7G881hdmR6FSiEOgufB2nf7GO2cyimYeb1Y+6CP4SsTecXaKmPhkspT6eXU3FtBz/HhvKIr2xoD9pUGzuc5wFi+24F7vYXzT7UtSrO4EJO9UewrE6hMKmLj0g9oqUKq1LVLNopTpVK8L3I7k3rHk/Beb6cwzx7zQlOHVe8s5/JP2iSFVz0nRygsLsgpPkyJpwwBLcEDJTjrTJI8HP+ry+IeEKnaZDKZ5L2H+6JMR2azCpRSSAmUDAEt9jUmNDZV1mvHxsnoc+s+HCQ+E+fkNzJF75WytVSylol1Vzl36Rzj4+NotVrq6+t59dVXJeuxDIH8Pc3/Ytx3333IZDL6+/uRyWTIkHOL7S3cv/+dQkiAEKh4ti04ar7AnEdjhYp9DjTW+djyAzZq7vUCMHBxjJHWcbEJrxWxWqt4JJZVRdS83cvmz9RQvseBZ5uVlt910fHcwHysW7gVmaq1lO9xYAnqsQSKKdlqwbHSkK5HxT4H2qSrgCGopWKfg8Z/amGqP4qySImr3pQRq/OJ2PUfDVL74QCA+ECdE6nXFsam0ixV3uVDZSikZKsFAMdGQ/rfAOV7HJiqRazWrWbg8giH/1q84PZafQaH3l12TNVaNj9Sw6ZPVlGxz5HBt3e7LSPWsqqIxn+6ynDLONMTM2m+LauK8O6yz8dut9HwRDX1j1cv4jvFYQqebVYKNMI9ofPIYAbfKQ5TMPiLSMwluHpweBHfOt+CWC1oLCo8m+frv5BvrXc+1hIsRqlRYKjJfI4pvrVudZqXw3/RSOtz3dJ8W+VU7HNgLCuioEiZlW/LKnFqJ9VmU1jE93YbtrXF6VhjuY6CYmVWvj3brNhrRc7S5md76DkxxNilsax8l2y14Ngo7rXIqaFQXyDJt+s6E656EzqnFrWpEP9+T3a+ES5GrutMzIRnCQ/GJPkG0WY7Xu5PnwaT4htEm139UAWbP1ODY6MhK9+p2KHmMfrPzy8wZOM71War7ilh86M1+G91LeI71WYHTwzS+JM2el4bkOR7YR9hX2nE5C+W5Btg4MIoY90xNFaRCjF417wQIMV3CmOdk4z3TOXkOyVIqn2Xn4JiJf6drqx8l9RZOPKFizT9uIvyPQ42f7qGjY9VZuXbs83KqW820nlQ3HfpLhvBN5cs4jvVZguLCyABaqc6K9/abiN1Rdexec31qApVdHd38+CDD2I0GgmH89u5L2MZy3jjEYlEUKlUGQKlcqq4p/7drNhQnf5Z2S47mhKxIz8bEafC1GbxcepYb8SxyZgRW3N/KUVlGjQlGka7Jjn8VSGWsdXqcTWYM2I3fCxEw6eq0TjVREZiHPtbschgXV2Me8E4691hp/rNpRQaC/Df4aJsQX9sWanDc/38OOvZZsNcrWW0ZZLmZztE/ZOXNVdr8WwT46wxpKH+8WostTo6Xxrk2N9eTsbK07/37pi/jilYTGlD8jqaJC9OMXbqfZqMOg1eGKPz6EBa+LCQw6IyERu4w83mx2oI3uXGsT6Tw6IyEaspmS/34r+1MdA0tohvvW8+tuYBMZct22VfxLd3hx1jKBnrVFO2y87pH7Zw5PMXF/Gd4hCEK9Tc9BzR8ensfF9vxbJSpP3y3mCnyK5G75Iv4hvAvdWCdbUYZwuLCzD6dJJ8uxrM2Gr1dD4/wMEvXqBAo5Dk27HJiGO9kUJ9AaZyXVa+07HrjRmCJym+U7EFOiXG8qLFfCc5TIlVmp/p4urL84s6GXyb5fOxkQgFRUpc6+fH+ky+SbdZ90YLOrdGku9UOxxsGmJuOo6hXJrvVD1P/b0QMknxvZCX+k9Ws+kTVZJ8g0gVODUYoTd5Cisb3wvbbP2nqtn8SE1WvlNt9vBfN3LyH1pz8p1qs94ddtSmQmrf5c/ONxAbidHzmvhuWHF/GXWPBrLyDTAzPk1sYprT32+R5FtjlkNEtFlLSI9jtSkr32W77AycG+fI5y+i92nSc9nUfV7L93hnjO6jQ1z5bY/oS+/xojFn8p2KLSrTkEgkiCcSknzrj3t5U/3bKFLpUKvVHDp0CLVazfvf/36WsYxl/Nfg//yf/4NMJuPs2bPIZDIUKNmh2c/dN92L2ihijEEN7gXjt1wlg9SwpYbSbVbURnk6tmS7haq3eADoPz/O4MWkQCgVa09+5/vVBN/kZvOnayjf5cCx3kTzM93pU7Cl26yok+NscZma0m1WnLUWrFVGbLUGbFXz37Ol26xoPSJW6xGxZ/+5jYmOMMSF6GFhbCp10ur3+qj9oB8QIoqZ8AyOhePhDVYMfhFb/eZStDZVei3FXKPDWT/Pi3uLBWNQdPRqo5zuM4Mc+ZaYc5qqijI4dDeYMQY1NHy0mo2PVSY5XMD3lvk5kLPejKmqiPZn++k/N8JUfyTNt8GvxnODNSN20yeq2PTxqkV8pzhMwbHehMZcwOHPXeTq84MZfKc4TMFapWNuOk7vqaFFfKudmbH6Mi2erfNj/0K+1fZkrBosVcUU6gswBuYPBCzkW22Up2OPfekyTb/qzMG3uI7Rr0NlLMjKt6kqmX43yUsK2fg21+jSsZYV+vR3xrV8O9absCTH2e6Tw1x9tZ/h5IbItXzbag3Y1op2aPAWoTYVSvJtW2sQQh21nOISLb7dLkm+LauLcaw3ER2dZqo3Ksk3iDbb8coAZ7/blpNvEG226l4Pmz9dg7PenJXvVJvtPT1E35n5Na9sfKfabPleO5s/VoPvgDMr36XbrEx0xjj/Ty10vtonyTfM9xEl9VYsVQZJvgH6zybT9qlh48cqCdzuXMR3CsNXxhhpn8jJd0qQtOIdXiGo2uXKyrez3sxrX22i6afduLdYqH+8mvUfDmbl291g5shXL9L2fB/uBjOOTUaCt7kX8Z1qs2qTWPMqNCiy8l0QtbIyvoEdq3dRoCygv7+f97znPZjNZqLZrJiWsYxl/FFgt9tZt25dWqDkYyV3rXwnlauD6Rj3dWY0LrEjHwnPIgMKdAUAmKp12NYYMmIDt7nQV6hRWVUMNo1y6h+FAMcYKsJeZ5yPbTCz7mE/9Z+oEinCwnO89q0miInNeueCbzznRhP+PS60TjUV+x24rzOTMgXRVwgxUDp2vRFDQEvvqWGanukSsXrR7+vLVOkxWeNSsfFjlRhXCneXE9++ImKtomCdR4X7uvnx27HWREn9fB/svs6MyqZKl7UwdvjKBO0v9aVFKAs5VNlErOcGK5s/VoP/FieWVfqMcnWezFiAcz9spe/McCbfDWb0ZclYq4rAHS42P1FD6Y22RXw7N5rQV4iOXqWX477OzKWfd3LsS5cW853kUMTC7PQs0ZFYVr7tdUaMIdHvl97gQF9WhMGrXsQ3CNGNqVqMs1q7GmNAJ8m3ZZUeywo9Q2fHOfTnF0gkEpJ8W1aIWK1Djcmny8r3wljFgow2GXxbk7HJtmWq1qG1qzH7ihfzneQwFXvlV110vDhvLJLJd7K96CEWi6Mxq3DWLW6zIph0m/VcZ8VQocPZkJ3vVOxw8yTT4VnUlgJJvgGUajkn/76V8faYJN8LeVn/SIiNj1Vm5zvZZtt+28fY1Un6To9m5fvaPmLDYyHqH6nOyneqzR7/ymVO/n1zTr5Tbda2xkCxW0vVWyuy8g0wMzmdNkQIHHBR+0F/Vr4BEjNzTA1GufyTDkm+VVYVxESbda0z41xnzsq3+zozI+0Rjn/5MhqXiqq3lrD5iRpsawxZ+Z6emqPt+V4uP9OD+zoz/v0uVHp5Bt+pWJ1HBXFIJP+fje/ik6XcueYejEUmNBoNBw8eRKPR8Mgjj7AMaSyLlLLg4MGDyGQyfvCDHwBQV1fHRx9+hO2yOyi72YO7zopnkxgg/Xs8eLfY2fhYJQDKQgUkRdAlW9y466y46sXHj+/mEtxrbRgrdGitcjybbBhKRYfr3WIX5W53i3J3ezCW6kjEE8xG5/BusePfXQKAa7UJd50V304HllVFBA+UppWbh/6skbIbHfh2inIMQS3uOiuBmx0E31zCirvLcdVaCA/GOf3NFiq2uajYIQQJGiu466wE94j/F+oK0BhUaQFFxQ4XFdvmxQvuOiuBPeI68ekEMpksferNt9NN2Y3zggT3eguVt4mNKv9eJ/ZKc1pI5d9dgnfLArHFJivB/aXMTM4Sn5nDXWdN/96/x5Mh8vFsshK6RYi+YqMzuOuslGwRdQrsKU0/J0D8nQymJ6bxbLLirrNStktwGtwnOEzBu8WOf6/4nb1KL/i+WTzH0AEPrtr5WHuNGWTCkUbrFXyH9ojYyv2iDQBCuJEQqWgA0AoOQ3vdyVgX7jorWquck19vJhFPUHHDArFIrYXgPlGnwF4Ra/EXSfId3FcKQPlu0WY7jw5w8LMX8N28mG//brGI6NlWMl9fwLe7JJPvzTZ8yXbo3ORAWahg4OJYVr69W+z4bk622XWizZYnr3Mt32U3OvDtEDxc+fVVZDIZ/t3OZGxJBt8VN7ko3+5ksiVM87OdqDQFVO4XPFXuS/KdHPNSbfbYly9z7h/acNdZqdwvrhPa4xR8JwVOKQ61Xi31j1fjqrUQ2ifq67tZxNpC4n317y5BZ9eQmEswG5nN4PvaPsJUpse+0oLOp2XFfV48m6wE9ojYa/sIg0eUP3hhLM23f48nzWeqjxhpDOPf7cGzyUrDE9Xp32frIw59pZGZZB1TvEj1Ec5NDuRKGbbQAjHiNX2EqVxPgUoI01a9rQx3nVWyj9CY1ExPzdD88x4CNztw11nTwq9sbTZBgvBQDN9OEXttHxEZhI7nBvBssuLZaMVWZaB0pztrH3HlZ90c/NMLeOqsBPeJvqfyLf5FfcSOW29k68wB6tbUodFoGBsbw+l0smXLFpaxjGX88bBq1Sq0Wi3T09NoNBruvfdedsjeREC2Ev9ON/6bxXurMYuUauveWYHep6F0swuZXEb7y+LD1H+zWzj8JOGpt2EsK6bmzlICu52YPMUU2cUCe2B3CRXb5xeoSzZZUSjlzEbmqNjhwFNvwxoU/XJgr4fyG0SfFbjDjafBis6q4cKPWlEqFHjqbXg2iM4wsM+D9wbRJzV8qhrvFhuBfaVc+GEHxU49nnobzmS/H9hXineLGGetK03IlTKCN4sxwrPBKspN9qvB/aV4GqxpoQMJSCTnnLZqUW7FDlHH0AEPJZusbH6ihrXv9VOx3UlJcnwvKtPgqbcRSI6zof1uPPU2Ri6PMzcdxxYwpvlGIzhMzQ1D+1146m2Yq9QMN4axBQz4d87zXbLJSiA5f/LvdGAqKyYxl6D/+OAivj0N1vTYWXmHKNe90Sh42VNC+YIxwrtlfjwsudGJWq9isHF8Ed8ghEmpOdzQpQlkMhm2FY5FfAOU3+jAv0fEtj7Xi7JQgTfZfoL7knwnUbHdiT85b7T4dXjqbfh2JfneJ/hOwb/TjW+Xi4OfvcD5H1/FU28jlOJwr+A7HXuzG6V6fsHGU29Lzw1DewQvKTGUb5dwZ0yd2inZZJ2fq+wSbdbi1yXLlebbu0PUwbXWTGQY5qbjqI3zNsSpNgvgvk7Uwb7eztkftDMbm1vEdyBZB+91djz1NgxlRo58/iIl6y2L+A4k+XasMOKpt1F+o43qu0upenPZIr4DyXmNMSTabII4sbEZAntLFvG9sI8osmoI7XdRc28ZwX1JvjXzfC/sIxRKOXOJOQACu5146m1pkVi6zUZE2sCSTVZW3lNB4A63ZB/R8ft+Lv20A7VJRXB/KWjAu90t2UfoXBpU2sI0385656I+QlVcCBEhDvLeYCd4QLqPQAanf9Ca5ju4XzybbH2Ezq4hPptgoHE8g++FfUTb7/rSfYTRp2PlAyH8O9xZ+4ijX7jEXCyOp97Gxo9XUv94teB7QR9RsbWEDzz4QVZNbcJX4WNubo4nn3yS6upqXn75ZZaxjGX8cXDx4kXkcjmf/exnAVizZg0f+cAjbJPdRvn1ZXi3OrDXiv47eKCU8h1ONnw0BEChVmyMg/iG8251UHJ9cpzd66FsswNzpR61U41vuxNThegnLaFivFsdlN+YXEvb7cFWbWRuJs5sbA7fzS6CyfG7uEyNd6sD3w47xWVqQrd7KN1i5/T3Wjj0lQsEdpek16LURvBudRC42UnZTjtr3+HDu9WBWg1nv9tGYI873b8BlG6x49st/lZnVaMxq9OijuDeEnw3z3/Peq+3p+cfiZhY84oMiQ2j4H4Pvh3z42z5NgehO7w0PFFD2W4XJetsuFda0rHlC8bk8h1OggdKCQ/FmJ2ew7vVgXOjIxlbSvm2+TmQb4eTyttFvz/RHcW71UHpjQvmkdfPj8m+7U7kShnRsWnMPp3g+6bkc9wrOEzBv8dF6IC4N7VT8B3YlVyD2evGu3XBIaeNduRymXB7USf53p0ce/Y4Bd9JMVR8Jo6iYH5eU7rFnp4bVmy34d3qwFiq4cIPOpibjmeseXmvtxPYm5yr3OTCu9WBLXlwL7CvZBHfqfmH6zoH3q0Ohi+Nc/CzFwjsL6F8Rybfgf2iDp5N1ox7C+zzLOI7kFx3s9UYUBUVMng+uea19xq+b3al5zXGUo1oszvtydiSDL4De0rwJzk7991mZHIZweS6YWC3uNeUYCXVZqOjcc5+rwWVrpBgcm4Y2JXk25nZZk8+2cyFH3RQusWeHvvLbxJ8m31ibhjc78G33YnaKGfjY5WC7+T8o/RGUa5zrTkday7XMzcdZ3p8mvJtDjHPAJwbHRl9hDVkwLnOgtqupuquUsq3O9N1uLaPsIbE8xxOriP6FsQu7CPGmqP4d3vwXm+n4fHqNN/Z+ogjf32R8EhM8J3iUKKPcK41o1QrcKyypEU/1/YR9pVm0c8Ba99ZgXerQ7KPMHh0RCemaf5FD+U3irZlSa4bZusjkCeIjsxQcr3gMLUumu4josKpqXyHE99OF7ZVRlxb7Fn7iKvPD3Lozy9Qdp2T4AEhKFv51rJFfcTm2+q5Ye5W1q/egE6nY2RkBKvVyg033MAylrGMPx5uvfVWZDIZAwMDqFQq3vrWt7JD/SZ8siqC+93pPR+Aiu0u1r1bbOpXbLEjL5AzeEmsf4T2l+DfO/99Vb7NiX2VieCBUrxbrdiqTGitot8PHfDgX9BnlW93UqhRMhOew7XZRsV2F85VRgCCBzz4kt943p02fLtcGEt1nPt+MzMTc1Rsd2FbJ+Zwwf2lYm0C2PBICN8eN8EDHlqe7kVVqKRiu4uS5BgY2F+angNZQsUo1Qoqk2OPsayIiu0uvFuT38l7Syjf5kyLIhIAcTHp1LhUVGx3UbE9We4eFxXbXWz6WCWr31VBcF8JpQ3JtQeV4NC/M9kX3uygYruLqV4hLLFWGQjun+e7/CZn+t7LbxS8WNfpmeyMYas2ZvK93ZmeG5Y2mHGsNDM3E6f//DjB/SXz38mI9ZvUXKVif4m41y3Je91fkr4mgG+3Oz3/sKwyo3NoGW6aWMQ3CLes1Lym//QYMpkMS0g8R//ezDlnYN9822r8cTuF2gLKbkjNxd2C7ySC+0sI7BPXUVkF3/7k+kFgl5OK7a6M2OD+Eg7+2QVOfqOZiu2u9DzSv0PwnRI4Bfa5UBvmXY/Kt82vPXivt1Kx3YWhVOwXBfeWkIgnOPXtlnm+9ybXArfaRTtMHlQI7C8hsDuT79RcxbE++RxXWyAGsYkZtBb1fOzN7vT8w7nGJN6FBisXftBKdHQa34J79d/sTrcXS0BPxXYX9io9x798Gfc6awbf/r1uQslYfZngsHybDd9eJ6vu81F+UybfweQ+pUov2qxcISMyHEtzmHoXru0jDKU6AntcBA648O8VsSmR2LV9RIFGCQnxHnm3Cr5NvsV9RKQnRvl2Jyvv9+Pf75LsIwZOj3H+qTaKbBrBtwps66ySfYTBrxPrY8nvDucq46I+osiqJjYexxgqIrDXTeUd0n2EXCnnXPIQX2CfO/09k62PsASNwlnu4hjBffN8L+wjul8dJnCj4NCx1sTKB/wE9rmy9hGvfa2JyECMiu0uah8OsOnjlYv75O1O3nP/g9RO3UTAH2Bubo6vfOUrVFZW8txzz7GMxVhO93YNtFotkci8vbSXStaXbqbnZXHatf35fmYjc3QeGUz+v5eybQ5mkjkje08OM5lMD9b9Si8yuYzRK/0E7yih7fkedB4N4b4Y4cE4PSeGCCdtlQdO9KPSFTA1NMnmT9fQe3YEGSJ1EoBSrSA2Ik6M95wZQefW0nV8hLUPlAPQf3aUsSZx3c4jg8xMzQAw1hWm/9woPadGKFCBNaRnuG3eh63z0ADx5GAfGYT+c6NMR8V1zv+sDXvQRCTpTt3xaj9y+fxJ76HWMczletY+5OPKs7241prSaZs6XurPUMj2nx2l0CDH4Cmm+aV+Slaa6DsnPkrb/tCLyjQ/UI1dnaD/1CgDpybQutWU1FsYOCE2H1uf60Zrmx9Q4rNx5Eo5Wrea3sP9KAoVdL8i7Npaf9+Nzq1Nx/acGCI6NE3P4RE0VtCYVHQdHkrH6stE55wSXMxExDPtvziOoXyUruNCid3ybBfmoBEQafOmwzP0HBXtI9wxz7eI7cZanRR8aAWHaYQF3/1nU7E92FeZCIfj8xwusFUcOD/GcNOoiP1DH661JspucFJ5m4r2Qz0o5AUZfI+1TST57WcmPJe2Nm5/PpPvvjMjTFwVp726nu+BObCtMCT/tieD796Tw0z1i/ej90gfSpWSrpd60hwWlxalY7uPD8232ZMjlN/oxFihS8cayudPQC1ss0PNU4LDS6K+rc91p/kG6Dw4wNy04Kjv8Dh69yj9l5Mc/j7Jd9IIZyHfrnoT8XictoPC0jLVZsMd17TZcBS5UsZMeJaW54RddMtz/ZSsNzFwOcnpi72o9IW0/UbYCvb5Rhhvn0zyu7iPUFsKWfEWL4oCOb2nh5nszOwjeg+LerY930ORXcNYUxidT0vvhSGmrmb2Eek2+2w35TtdKJSKxXwv6CMIQ8vvurCsNLD50RoiQzHJPmKyJcxo9wTWClOas2x9RKrNTk/NoiiUS/YR/edGGWwUsanmaQoWM9YUztpHjDSPMXR2Cq1Xy5r7tLjXW+k7Oraoj+g7I/jW2DUMnhsnIU+gMirT7eXaNotShmOFkc6DvZh8xqx9hPF0ObfsWMvPDv+Y2fhsWqz6rW99i/e85z0sYxnL+M/Bk08+meGiIUfOPu+bKBo3AmJ86Xipn3jygyoyHGe4eQxjWTFyJbQ8041thTGdVqntpT7kMhn+21x0v9RD78lh5AUJmv6tl6IyDc7VxnRaqbbn+1CoFax7n3B96z0xwmjLGMONYTQlGmJj0wwmFwVan+9BVVyI/4ALx0oTkZEo7c/3MXo5Qmx8kNnoHP8fe+8d39hVp/+/JRcVy5KsYsu23OTucff0SW+ETEIKIYUQQnpISCB0CNnf67XswlJCXRZ2qQsEEnoIIaT36TOe4u5x77Yky7Kt4iL9/riSbCe27lE22e8G/PwVZz66Ovrccz/3lOc8j6tFKoa9z4yitUh1aHF2CVKh/xmp7owfmESZtFL3e58exVpnBOD0H0ZZDCzhi1hEuFqcqAwpjB6ejsUWXZzD7k9U0fwfbQwfcBKcler+VLsXfa6b0WOeSOwIRockU7zoW2LwNS/LAYmIMT/gZ7zZzfhJKXb0qJP0/DRcLXO4Wjqwn2WJ5Ru/VEenWqXY4YPjlF9WSPHefNwdXbF8RzFxfBpXpyeSswlstUZ6nh0DP/Q+N0aKdmWsMn5smpnIKeVQGMLhMKOnIp99bnyNdPPYUTezw/NobGospXqm+72xseHqfAOMHnIxP+UHDUwemSRZlcToaxOxHOqyV8aGIwedBNwLoIGx4260FtVKvp8ZxVCwMlYZfG2KRd8iux+sYsm/zHjzqnw/O0JGycpJpcGXJ1lelMYq/vHAmnz3PTeKudwYi+1/eQL7LgvJKumdON7sjuXw9DNj2GqNMVuw/hcmVsjukXxPn5bG073PTZLTuICrZy5ynUlytmVRfXMhLT/tX5PvwZedLPmXGTsujV/7nxuPqQSszjcQy93kkUn8buh7doy0rBXVg5GDTnzOlbFKiiYplsPl5WXCq1x7hvc7CXqkPjvR6kGXrWH0mIctV9lRKpRrbHai+QbwDK302ajq0uocvr5GjDe7mZ0KUHJhNgvzi9JY4HU1IorV+Xb3evFNBt5QI2L5bpkmqyqDxbklRg5Or1sjAFwtc4zlu8ko1bH7E1V0/KF3wxpx8CsdFL47i7kRH9ZG/bo1Itpn/VNBwqEwI4cmI9/zxhqhz9etsc5TRMZlG9WI3iekOjs9MEdGgQ5jmWQFt6bPPiP1Wb9ngdEjLuzbLGSU6dCYwO9eWyP6nhnDusVIeq6WFE0Sg0dc69YIncJEVjgXR1MpJ3ub6ezs5JxzzkGv1zM9HV+CfROb2MT/DNnZ2YyPr9hhFlBBk2U3Iy9I88zxQ1MolDB5TPq799kxHBdlE5yVavLQa5P4IkQdd4sLlS6Zqc4ZivZm0fPUKPqiNILTSwTGAwy+OklwJjLP75pl9JCTOWeAXZ+rZPyUm3A39D8tvWdCy2GWA9K7c3YiwOghJxMtM9Td6EChhLHDLnzD0vtm4IXx6J4VAQ+MHnLibJ9heRmym8y4uj0EPNK/970wwaopKmOHXSwuSGs9x3/dS1apgdkJ6bp9z06QpF55z46fdGGrNlN7WxFdfxkj6F3EFVkT6H16DJVhZVwzcsBJanoylnIDIwddLHiWcLdIOex5ehSteYUM7Ozw4OqcxXVyFrVRSfZOK+OHJPXDnqdG0dlW3rMLgUVSNSlo7WrGj7vRGFMYi1g79T49in7VGszgq5MEZxdjylWjh5yMRSyxep8dIaM4ciJYDYRg0SflITC+km+A/udGMZVK45q624sIzgUZjdpjBFbyDdJ6nqXSQGBSIjD1PTtBUspKwscOu5jukdYgB16ZIjC9gGdIek/1PjNGyipridGDLmYG5yK/xcWib4nMGiOle3MZfHUcQiv3ZuSAk9nI+uPYa1OwDFPNzti9SVs1Nhx+bYr5yFjFecJJiiaJ7G3mWGx67srYcPCVlT471TaDLlO9ku9nRjHkr5zWHnhpIpZDz5CfpYXlNWtesXwDA8+Ps7woddqAJyTlsEe6bt8zY1gqDTF1nr4XVuwrZgeke+MeiLTh+XGyqg0xi7zVfdZUpSO0HGb4oPR89784RdCzgLtXymnvs2Oo0lMIBELSGrN3gd6npXHA0D43S4FlxiNjw75nx1FnpMTsCodtU7FDqevViDSLmpob8knRJTN8ZJL5kbU1IprDnr9JfdbT7UedqWb0mJP5MSk2WiNiffbpERwX58bI/AMvTaxbIwhA31MjmKukNa/5Sf+GNWJ2IMC8y4el2EDAI6korVcj3N1SG3yuAKr0lA1rxOhBF56+yBp7pBzo87W4Ts6uWyO8Q/NMd8yjzlRjqTJgrdIz+qrrDTUi2mdV+lTcLdOS0p1OauTra8TQa5MokhTkbDUzfHiS+bHAujVCfyKPy85u4M/Nv2UxtMDLL7+8uea1iU38L+Cpp57i4osvjv2dTDIXGC5DM2mEoPTu7312fG0danZijewnDbw0iW8ygD9SK3ufHidJpSTvHCuTx1wMvTpFklpJ/98mUFlVBGcWmI7U/Z6nx1Dpkqm6Ph+tTc3gK5PMjviYOe1DZVERWggx3eWRYv82isaUSs4uE3m7Mpmf9NP//ATegSDB6UWUSQqmmqV3RM9To6RFyMkBzwLLS8sMPCf9lukuD0P6FCZOemOx0TWv4ZechAgRdEfenQPzDL06yUTEGq73mVFK9trZ9Ykqjv1XD/3PjrMcsSj1jwUZenWSqchhtYHnxjAW68msy2Bxfpn+E2Oxuk8Qhl6dxN0lxY4emcQ/E2S6M8CRzi6sdYY1Y5Xh16bwRMYqg4emMFfoKTg7C2ezl9N/GyNl1f7F0KtTMQvPoQNuFuaXGHxtCoLQ+9Q4Kv3KuGbwlUnmxiJz83CYcCiMu1PKYe9TY2hWrcEMvDiBzxVEpZcOo011zDBxxBXLoS57pe73vzhO0LMEKsmpR2NOjeW795kx9PaVsWHfs+Ms+pdBBTNDvjX57ntuDGPRyppX/zNjLC+G2fX5ShZ9y2tyOPDiOMZV45reZ9faFA+9OhnLYd+LE8xN+GNWfr1PjZN3thW1Xvq9w/um8PRF1qZekdaIZoakMV3P0xvne+TgNEv+5ZhgQv9L45RdYqf6xnxafjHIwIsTzE9K7+to7pwRpcfep8ek92zE9qz/xXH8bmltarpjmiFdMhMnvQS9IXqfHkOXu5LvgRfGCXqlPus67V2Tw6WFJYKzK32p/7lIvgHv+EqfLbnIBgoYObyidt7/zEqfDXpX+uzcsKS6ZBrxxyzaXl8jhl6dZH7KR/nlBQS8Cwy9OvmGGhGLfWUqthboHZpbt0ZEMXhgktwmCwtzS0y2eNetEQAzp30MvDiBqUzH7k9W0fqbXoZeXb9GHP1WNznnmAhOLZFRqVu3RkTH4v7pJZYXQgxH5kXr1QhDQfoaGzllRJl+oxoRtQ2cOOUmq9aEoUTLzGnf6/r3BLOjfvyuBbx9M+iLDFiq9aj0SoLe0Noa8eoUflcQXY4GQqkMvDy5bp9VKVSUz+6gpK6cY4OH6e7u5qKLLiIzM5Oxsfg23/9oUITD0V2If2zceOONMeUkADVpnKF497qxWouS+g9XEJxZ4Oh3ZDzEkeyTlMkK9j3UFiNPbASdQ0vtDYVMtc7Q/YeNvd61FiU+Zwj7uRaC00HJMm4DbP9kOS2/GYqRMd6qtkbjRw85JRu6DWCuScN1amMPyNUofV8u1goD0z2ztP9qSOgz9nMtDEcmzvHaGVoKJeSrLoJdD1QSDiHrB5x/vhX7biuTpzyclvF9bbinGI1JxfEf9+IbjS/Bm39RJlnVRg5/Q97zdtcDlSwviOVg94NVLMwucuRb3XHjor9r+KCTwacn48ZW3pCP2phC8/d64sbBqn74xfU94Ne09QtVhJbDsvcg90wzBedkMd7spvcv43FjE0Hhu6XTT51/Gojbz7UWJemOdCYOzWwYsxq7H6wiHAqz/1/j/64orPXpcesAiD2vUWz/ZDnJmiROPtzPXK98MWi6r4SJU564z2Ll+/Niz3W0hm2EXQ9UsjC7KFRjt3+qnGR1Esf/u1+2zmlz1NTf6mBuzB+z9nsDcr28OPY8S8tLJCcnU1NTw7Fjx2TbsYlNbEIcfr8fo9HIwsJC7P81ch4mhWnd+LrbHKRlq2n+Xht+d/xrG8s0VF1bxIJ3kSPfjv8eA9j60VKSNfG93jUmJX63VLPKr7HT+ZvhDWPzL8jEVJLO8R/Iv+9MlVoqri4kML3AsX+Xr3eF78ois9Yo+y43V+twtczJXg9g9wNVoIB9/yL/zgVJzWXipCdG+lg3ZquR4otz6H9pgtFXXBsHJojiy6STLZ1/HJT9fbs+L5263v8l+fdolHh06OvyY6T6u4qZm/Rz+g/xx3OOvdnYGjLo+dsoE0c8cWO33V9Gii5ZaNyz/dPlKBUKDnylQzZ22/1ljBxxyd6D6DPjHfLR8rP+uLGl783FWmWg+4lhpo5tYEAfwc7PSvcg3rP1ZrD9k+WghENfjX+/7GdZGH45/hwhiqoPFGAsSmPkoJMBmTFtFKZKLe72jccdBRdlklWXITT21pig4R7xfqh3aCi/PI/D39x4DpC11QhJMHHQs6aGrYfS9+ZirTTQ/B8dcePeTFu3frSU1PQUaX65Qd3oyj7M4OgAADk5OZx33nn84he/kL32JjaxCXH88z//M//f//f/xf7WoGOP4uL1g9Ww6xNVBN0LHPu+/Pgk+h479t22GDloI6gz1TTc7mDy1DQ9f954gVZtVBLwhCQbphBMHd94Ht10byldfx5idkDewiiRtoKkEDDe7I6RNdaDsVSDpzvOwGgV8s+zYt9jxd01S8ejYmteObtMjO6PPwDe9skyWCbue+HNYMenKwA4+NX44w5zbTrll+cxcSL+fQWouiEfo0NH6696JXWmOLDtNJG7zczR78qP6Xd8uoLQcojDD8nnYPeDVQRnFjn6nfjXtdYbKN2by8ghJwPPxB8fOC6zocvSbLzOsArb7i8jJS1ZaPy987PSPTjwb/HvgalKR8V78xk77KLvbxNxYxOBbacJx/k2Oh8fwnUyzpqTWlKfmjomtua164EqCIXZL7OWF0VGRRrTHfHXlrd9vIyJ49OxDal4qL+rGK1VRdsjfULPb+1tRbi7Z2OWlOuh9Mocuv8ozRGiNWwj7Ph0BYuzS0I1tvGeEtSmVE79vFe2zqmN0PiRKmaHfDFrv9djUe3hwPIrBBeCJCUlUVtby1//+ldsNtu68ZvYxCbeHCwWCy7Xylx8K2djVFjXjS1/nx1zmZ6j/9lD0BlcNyYKlVVF053F0jrS9+RrSM3NhWitKg7GmT9HN+MBHHtt9D6x8d5JZpORrDojp37SL/vdmmwVDbcW43cGaRZYI7Ntz8C+28qRb8V/l0eJBiLY8alylClKobUhkOybfCO+WD7Wg75IzZbrixh4YUJ2jJYIcs+Q9q86HxvGdSr+esu2j5eRlJoktN6y6/OVLPiWOCqz1wew5QP5+N0L9P41/v6ZbXsGRRdk0/f0KOMya151txWRZtMIjXsaP1JCiiaJgwLrKPV3OBg/Ph2z+dsIKouKpruKmembo/XhwbixeedYyTvDyuknR5k86okbu/X+MpKSFUJtTQSN95SgVCk5IrPnm9lklG1jFI5LbNgaTQwfnGLwGflxEkj93Nu38bjDttWI/YxM2ecVABXs/lQVC/NLHBGYr6isKqreZ48pya8HQ4kWlSGVyaOeNTVsPeSfZyVnp4UTP+2NEbreqrbW3FxIWraG5n9vJ7jBYzuQ3Ur3qPSs2mw2LrnkEn784x/LXvsfAf/wdm9Op3ONtRvAbi7ZkKAE4HOGWA6GmJuMPzHIPVM6mdP+uwEGXpzYmPSjlSYnOoeWuV4f+77YFpegtPNzldR/WJqkDr/gjEtMyN6ZQbImiZKLsjaMWY3ep0bwDs7HJSgZSrU4LpUmLge+3B6f8KCF8isK2BGZVMuh+7cjBD0LsgSlwndnUXy5JBknR1ACSXFpObgsG1d5Qz5Fe8VyBbD/X9tlyTEAfleA5WCI00/H39ACcHXPsji/JEtQAhh8elKIoASwHAyx5JfPQSKYn/QRXg6zLHDd9ocHhQhKADOD8/jdMi+LCAKe4AorPQ5GXnGx74ttwgQljUUi3sjB2Tkr+cDrU+PG+ZwhiaCkhYa7imWv6+mbY/BlsU2y3DPNlF6WR92djrhxsedVC+XX2ePGtvxmiPnJgBBBCS2oDKlrLPzWQ/S5rr/TQf2HK8hs1G8Yu/9f22MEpW0fK4v7XB76WieTpzwSQUkL2XsyNowFCC2FmTgZZwIxouec0BXoMWHKMNHc3IxCoVhz8mUTm9jEm8fFF18cs3YDMJPNBYqrNyQoAUx1zkRU9DYeumZHfMA9XX4mjk/HJSgVX5ZNwz1SLT7y7e64k/rsXSYa7qmg6sYCgLgEJQBbYwZaqypuTBTudh/zYwHaf9UbN678Gqlm9z81IUt4qL+rmPIr87HUpseNi2Jw3xRT7fKbCXV3OEAjER7iEZQA6VR8GKa75UnqDXcXr1jYyaDn8TH2fbFNiIA1O+rHNyk2lvBNBXH3xif6RnH8Bz2yBCWABd8SoaUwc1NibRDF4vwSSwGx8dzhb3YJkcQ8XX4W55Zw98jnYPg1F0v+ZRbnFmVjD/xbe0IEpaJLbJRclSMbF1oMEV6UP2cTJSgVX5FNzpnxxyhtvx/A7wwKE5R2fKaCiqsL48YMPD0Ze14de7PR5G7c0f1u8PTP0/Xn+AtmURRdkE2KLhlztW7DmIkjHul5BRrurmD7p8o3jO3+/Qj7/qUNvzuEqVIbszLfqK2Dr05x6pcSqShaezfC3HhAUpqIUzfKxraxh73k2HJwuVw8/PDDKJVK3O63bsF3E5v4R4XH4yElJWUNQekMLt2YoAQQgMW5ReYm4r/ws7ZK865Tvx6k/4WJjUk/aomUYSzVEJgMsP9f2+ISWbZ9vIzGe6Q1pKljM3EJShkVaaiMKWvsE+Kh68+DuLtn4xKU1DY1hZE1tMPf6IpLUAKourYobo1djcHnp5gf99PxWPw1L9tOU2wOLLL5FVoIxxSn48FxmWSLJ4qDX+2QJSgBLM0vSkqDB+TV8Nw9cwQ9i7IEJYDxA24hghJIY6SFiMr9W4V5Z5DlxVDsVHw89D4+LkRQAukkflSZSLYNYwG8Q/LrMu62OfZ9sU2coKSOjO9l4On1EQ6FUaWlxA8MEFPxqrm5UPa6zlZPzLJbDqYqHZXvK6D2tqK4cYe/0RUjKJVeGX9M2fFIH7ODPmGCoc6mIXtr/DFPlKBUcV0ejfdWSCTLDXDwqx0xglLdnQ6KLt54zevY904zdtgVIyhFa+/6ULIUWGaydeO6mRIwcubiZdjIx2Kx0NzcTHZ2Npdffnmc625iE5sQxb333otCoYgRlLKwc4Hi6g0JShBxN/HFf4eZa/SgguBUkKFXp+ISlHLPMFN/m1TjT/20Py5ByViWRtN9FVRcJ1ksxSMogWQln56tjVlRxYN/LIj79Cxtv4+/jlZ4cRaoYPzQtCzhofK6fLZcV4i1buMauxp9z08wGVEJjoeq6/NBBdPtc3HJDgApulTCy2Gm++XXvGpuLkS18RbIGoy86mLfv7TJEpQAPH3zzI2ICUN4B+eZ7hZb82r95aAsQQkie43BZXwu+fFcIljwLgqP547/V68sQQkg6AzimwzgEsjB5LEpgjOLBGcWZGOPfLMrIYJSzh4Tjkvk5yyL/iVCAuP6KEHJfraFHJl1md6/jjM7NC9MUGr6aCnVNzjiPufjRzyx5zX3DDM6e5zgIEy1eDj9xMa8h9UoPNeKxqTCvGXjh2fmtC+Wg4Z7ytn68bINYwefn+LAl9rxjwXRZKtourd0498WhO7HR+j4rbTmJVdrZsf8LM4ubUhQAigY28KZXEZ2VjYej4ef/vSnpKSkMDUldj/+nvEPraRUUVFBZ+dKEcmjlHJF3bqx2nwt9TcVMjviE2IJJ6JIlLXdQPG7cvEO+2j5qfy1y6+zozWp4rMIS7WS9ZpPans8dRFDqZaq9xVw4r864yqbRLHr85UoksRUbgBqby9i4oQ7roKMxgLWxkxZNZ5YGx6oRKEUb4Modn+hChBTEyi9Kjcumex/A40fKWbkkFNYnUcUokpKiaL2tiI8g/PC9/ntgKFUS7pdK0tuq76pAH1+GqNHXDFbt7cCjR8pRp2hou+ZMcYEFvDQQtG5WfQ9Eb8NTfeV0Par0zHrtXjY9nHp1F777/qZjqMAsPraoYVw3BMP2hx1jFgnp55mrU+n6IIcodP3aGH3J6pYCiwLKREkpAAVufb8ZIAT/7k+QcAX9nFI+TRLoSUUCgXl5eU8/PDDNDY2yrd9E5vYxBqMjIxgt68QJBUoOV9x1YbxdXc6SLOq46pvRJGoItH2T5WTrEoSVg/a9vEyuv8yhKdr44asVlWRUy1p+HAx4XCY4z+IT04CsDbqKd1rx+8Kxh37RaGxqam4Mpfm78ePLXxXFv1Pib3f7GdZyD87U3isKoqoMtJkq0eW+GM/y4KrZx7/iNhGwtuBgosyScvS0PaLgbf0uokoKSWCrK1GbI0mTvyXfD97O1F8RTY9f5KXM979hYiKpOAJR1HsfrCK0GJYmDBVcFGmtGkWp6tl7zKRUZIu1hc0sPuTVSwvhDgooIClydVQd2MhJ37RH7e/a3I10r9rIC1Ts8bm7fVo+HAxnoF5+gQWG2tvLUKXo6Hjd/1xlaJglaqS4Dit7jYHaTZ1XMWmXs1Jen3SQpfBYKCuro6XXnpJ9tqb2MQm3ogLL7yQZ599NvZ3ARWUKqrXjVUblTTcU8Hc8MbqG6sRnVPu+1pbzKZqIxhLNVRdV8TMwDytP5evmwUXZmIsTOPEDzcmfGjtasluNCCRiqL2V+tBbVNT98FCTvy8P25cFNE5pchvA4mQMH16jokjceb3asjbZZElPEWx4zMVJKUohceqotj1uUpQKtj/r/LXLdorvw7xdqPm5kLGm6fjEtXeDESVlBJFxXV5zE/4he/z2wGtXY0xTytLbnNcZsNWb2L0oCtmu/hWYMsHCzAUpNH/7LiwukT+eVZZ9aO624vofGxMshaUQd2dDtIy1XQ+JqP+FEHtrYUolIq4NWe1MpKcepqhWE3ppXlCqr4gqUot+ZaElNASUoCKqOLNjcXfy3hF8TjBUBCFQkFpaSmPPvoo9fX1Qm3fxCY2sQKv14vZbGZpSSJYJJHMbt6NSrH+TnjFdXlkOHTsf6g9Zuu0ERJVJGq8pwSVIZX9D7XJXhukw2O9T4/FVSdaraqisqjiKj5VXZ9PkkYptI+qL1BRfWMxvskAxwXWLlR6KLu6UPbaOXtMjB5xC/1+8xY95Vfa8Q7M0fILsYNDIsjZZaLwAhuTx6c5/Xj8NZHMJiO+Cf8aK6v/bdi2Z2AoSKPzt/FJZYkiESWlRJBRqSN3q+ktvWdvBiLjGHj71MZ3fV5yEYpHRlwN2/YMxk9Mx302zFv0WLboZQ/qRrH7gci60EPybVDpldTdXkrbo/1x+7vKqpJsA1Wgs6rixm75QD7zziD9AmT90qskhfj23w8y3S5zCDZBVaWy9+ZiKtfT/MPemOXh6zGs6qEj0AxAeno627dvXzNn/0fDP6SS0rFjx1AoFDGCUhLJXKC4ekOCEoBv0Ed4KUxwPj6LU5sjeS32PTeKs8sbl6BUfp0dtDBxaIbm77fF3fQpvjybnZ+TiljnI8PxN6m0sOW6QnZ+tDLW9niwVBlQJCkw1cRnW0Zx4md9DB+Un3DX3FIIwMkf9smSaGpvqcC+w4LWItYl93+zndNPyBfIbR8rY9vHNmZQvh77vtFG52Pyi2bVNxWQWW2MqTnFQ9HeLLZ+rBS0sqFkNuppuq9EKA86hxZ1hoqcRov8hZFs8UTakCis9elkVIpdWJetwVYXX+UmivLr7NTeHv+UVBSl78tl60dLhWK3XFdI/h75k4Mt/z3A6SeGhQlK+edb2fVAJRqZ23Hs33vECUrAjvsqyG40y967o9+RCErZOzNk++Xhb3QxecojRFACSE1PQZUhoxQVISjln2+l/IoCquOcnJs6PhsjKFW+Py8mIb/+hWHfQ22xja/K9+fFzUXLz7qZHfHFCErRmrwetFol4eUwM4NxbPoUWs4JX4GDavLz8uno6KCpqYm6uo3fF5vYxCbeiIaGhjUEpQqa4hKUAOZG/SwvhtDEUdnR2KRn3N3uwzvko/1XGxOUNCZiKi2HvtYpkZ/iYPunyym+TKqnh7/RFZegVHebg4qrC8naYQSQtUtSGVNRG+LX1SimjnmZOD4tS1Aqviwbc7UO/3hAlqCksanJ2W5m2yfExkjDLzvpeXpUlqCksanZ9flKWWWVKHoeH6PrsSEhZaL8szJp+JDYuGDrvaUUCZxOAomQUXyF/HgOIKs+A2NhmlCsqVKLSXB8lAg0JmRVgaLI2W4mLUuNRuB2aHI1NNxTjLFMXtZKY5IsvOxnyY9BS9+bi63WROl7c2VjO37fnxBBadv9ZTFFtHjofmJYeBEorUBD7g4L2+6K/2yM7XfHCErVHyqMf1E/jBx0cvKHYuqnmVvSUaYosFbGV0OLEph2frSSuhvjPxvN3++JEZR2fKYC+7kbn+I9+eM+mr/Xhrvdh8akjPt8+N3g6vRy+i+SIki0Jm+EgHeB5cVQ3Brp8NdygeJq8nPzCYVCvPzyyygUCk6fliegbmITm5AwPj6OUqmMLXamkMoFiqs3JCgBBDyS+nTAG//UsDpTes67Hx9iqsUTl8RTtDcLtVGJp9vPse+2xSUo2c+2xNSIBp6ZjEsWAKi/ycGO+6R5pBzxyFKuI0mlxFq5sfrcapz8UbekaizDhai6IR+AjkeG4hOUgKbbS8k7IxOtPX6djOLgVzro/LO8HVzdnQ7pJLAg9n+5nfbfyKv9FL8nm5wmC8XvkR8j5ewySXZURvnvNxSrqbvTgVrmfQGSbVW6XUvONrFxpW2nSagNicJYqsFYKib7aSpNx9Yk1t6ivVlUf7BQKLbgwkwaPyyv9A1Q90EHBQLKYr2Pj9Px+0FhglLW1gx2frYiVgM2QuvPB+h+fESYoLT1Y6XY91hlr3vih30EJgNkVKTFVR0COPGfvYwddgkRlAA0JhVqU3xJkChBydpooOq6orj3bqYnECMoFV2cJTvn2v9QW4yg5LjMFrcfdzzSg6d3LkZQipc3tRqWF5aZG41PZjozfBnV7KQgv4Curi4aGhrYsWNH3M9sYhObWIurr74ag8EQIyhVsZVzFVdsSFAC8A7NsxQMoVJtvA+kskif948FcbbP0ParOO9wVUSRCEmBTY6g1HRvaUzVpfk/euISlMrem0v1DQ5sW40AspZ02mw1WrOYwrh3QFKGkiMo2c+2YN6iJ+hFnvykgsJzbTR9WGyM5Gr10vnHYVmyi0oPOz5dHsuDHEb3u2l7dECWoATguDCb6hvlFQ5BWsfKP2/jOf1qlF9jj/ULOeRsN2MuF5N90heoMJS8DZuNKomwJYLsehP6Qh2abPm+ptIrqbmlEGOZwJqeSiJW5eyRH9PZz7aQd0YmpVfIq4K3PdrHgW+Kr3nV3+aIKaLFQ/vvBjn4bTGCkkqvxHFRNo23xx9Xulq9MYJSmcB6Xu8zY5wQOOgCkFGmJ1mThLE4/ppXlOSz9e4yam8qjqvq1PrLwRhBaev9ZeSesfG6afcfRjj6nTaJoLSqbq7fCBg57KTnb9K6dbQmbxg+t8hyYHlDghKAPVjMBYqrycvMR6lU8txzz5GUlERPj5gL0d8b/uFISoWFhTQ1NcX+rmUX5yquWDdW59Cy+wtVlF4lPYT7v9xO16MbE2N2fLqC+lsdMeJRvFhDqRZzqZ7td0uLMHLqJ+k2DcpkBdp8gcLvg/nJAAMvxz8pG71Wz2OSdUZcZRmtpA5lrU/HNxqQVcJpuKuY9FxtzPJODid/0sF0z6ysklPR3iyyd2aADyaPycseJmmSSNIkCbXBXJMGPuIqwETR8t8DuHtm6XlMfoBhKTWQmp4iq6gFkLvdisqQCqnyG5dzvT6Of7+Djt/JFy9rfToFZ2ZRc12hfCMSROlleZRdni8U2/pIv9ApawCTIx2dTWwhKKNAR6peRno6grFjLtp/3y8UG+1j1noxyxyFUoGpUr7PRwlKUSJfPLT+ZpCp1hmh/gOS/UdWrTwR7PSfpBfr9k+WUyIziFptayhXgwafm2JhdpGWR/uF2quzaUhSKeOTsCK/XefQklGcHqub64Y6Q7GJytaPlVJ/q2PDNvucIfZ/qT1GRNv9haoN5cMdigpKh7ahTpL65MmTJ6msrOTVV1+N/wM3sYl/cJw6dQqFQsHx48cBSEHFBYqrsSvWf9bqbnOw6/MSybrn8TEOfqUD/wbr28YyDQ23O6iPWGi2/Kx/w1iAmlvKydxiRGOKDH/jrdVqIDk1Cb3IuAvo+kM/fncwZq20EdIKpBpy4MvtHJBRVCl97woBt0dgQSOrPoOy9+QJtdc/HmCy1UOLjBc7SKehAdnfBmCt1qNIUhBalFfmjNrROQU3Dzp+38/gPgEZXA2kGlMwl4q9u3XZGizlYjLhh77aScvDYjYepe/Jl7UDezMou9pB0bk2WTIISJsYzd9ri/tcRKFKkzZocnbIE7n9fkjVp2Ctls9b9+9HcHbM0P17efXRqGpPPAuz1UhKVZKiSZaNm4qM53LONMcl5wDMD/hxdXo5/AMxQlH+BZno87Sx52QjDDw9id8dImurkR2fiW+DPfD0JPu+2Mbgs9J8S+5eD++biku4Xg29Q0NSqhK9PX5ti/aZ6g+VkFWTEbcNnb8ZjhCaoOF2B9vu33gjrvM3wzE1qfJr7Ox+oGrDa5eNbqdoeYVQ0djYyBlnnBG33ZvYxCZgz549ZGdnExVNr2U3Zyves26sOlPNrs9XxWyRDn29M2ZXtB6a7iul8Q4HaiN4uv1xY9WZarIbzVTfJI3T4tmrAaTnaEhWJZFeIEbime6dZUjGKiq6eT/8kpN9X2yTVbfZ/slyzLXpBDwhhl+KH1t5fR5Ghw772WKHxo7+sJupFg++4fjMp5wzzNh2ShsiIgSLVG0yyWqxpd2MCmlTRsTequfPY0yemo5ryxeFtcaI2pRKQEB1Kme7lbRMNSqB/aGAB459t43O38qPvdSZaoovyqb0ykL5CyeIqmuLKLtCbM3r1M97Ofx1sTGEtdKIPk9srmEu06O2pILA4zHw8oQQEQ0kiziQ7NTkEFoKoUxWYhLY3IsqX1VeLz83afnVEOPH3UIKSQDlV+SRvVV+3S1qe9d4T4ks2e7g1zpj4xM5At3UsRl8U0FOC1r06gvSSFYnx793kZ+uNiqx1ZuouXnjsVTAA22ROVztbUU03unAULz+xQMe6XBONBe7PldJzU2F68baFHZKBreSniSN7w8dOkR5eTkvvvhinIZvYhObmJqaIjk5md///vcAqNFygeJqchSF68aXv8/Ozs9Ia16jr7k5/FDnhtZiKquKpruKqYusVXf9fiSuDVnDLcXkbDWjskY20ePxiFSQokuWnRdG0fWXEebH/Ywf8cSNi5JFjnxD3gYr7xwrDXdL48ShF+XXeux7rJReKk8EASAozZPbHpWv1VEChqtVfq9RX2RAmZxESMCbKErg8XSJzdXbft3L4MtixGGdTYO5QoxMlFGcTuYWo1DssX8/zcmfiRElSq+QbPfeapS/x07p3lz0RfKDnp4nBjn67Q78YwLqU6kppOdoJTEAOQQhzaYhs9IoGzr8kpOxoy66/yR/+NLbF4AgQr8NIDk9mWSd/JqXp2segpIlpByxKugNMX7MTevPxQ6BWesMWKoMkh1iHIwfmiboDGIo0bL1/jJZm7h9/9IWm2/FatYG6Ht2HFe3V0gVTWVVkaJJQm+PP16NWrM13CzVzXhWdQNPTcYITU13Fsc9IDLw1CSHvyHNBfIvtLLzs5UbkujKp7ZTHpS4KqFQiLq6Os4555y47f57xD+M3VtHRweVlZWxv5NJ5ZwNFmpi0MLuj1cx3TtL+6/kTzAVvjsLc0k6R78b5wHXEttwL7kiJ0YU2Ail78ul+7dilmKV789DZ9PEHgI57H6wiuXFEAf/Td52IGpJN9M/R6ugfJ6INLT9XAsLMwtChCOI2LEpeMvtMJruLUFlTKXzTwNCJKWEseq+y4ZalEK2e4l+f+WV+YwecjLTLd+QROzeyq+z4x2aZ+w1MWUgUSSUhwTymygStTcURe3tRehsGoYPOoXt7ypvyKddZkPZXJNGaCksppIUsTtbnF8Sqhv551ux77biHZyn5b/lFcey92SQf2aWUI0ByD3TjM/pj9t2x6U2ep8fB59kExmP4Jm9MwP7TiuHZbysQbpW/Z2VePrmZOv9aLifubxJBociC0O1tZw4cUL2OzaxiX80NDQ0xMhJAPXswaKIv0Bc9YECDPla9n+zXdbiDSQ1l/4XxuMSXTQmacNdY4pYyz67cc01V+tQpipjpAY57PhMBT1PjggRbapvLkRv19Lz9KgQ4Wfbx8tI0SYLyyGbq3Us+pbx9sZPXMW1eXQ8Kj+uBXDszSa7yYS7y0v7I2KfEcXuB8Xtr94UNAj1IZC353szyN5lQpulErI5S8TuzVSpxVpjovPxYeHfJ4qE8pBAfhNB1lYjxe/OYW7Uz8kfi22wiWL3F6ogDPsELG6AmDKa3PNacFEmA4JjuagFSucfB3G1yMhKAzs/U4EyAbufbfeX4T49K0RsBAErPg0UnWtbsYmTue8N9xQzfmyaMQH1hMrrpA1+EfWsUxmv4l/y4fVKtXl4eJjcXPnTfJvYxD8SxsfHycnJiZGTVGg4U7FX9nM7P1vBdPcsnQJk0qytGdiaMja0ygakjfjIhnvBhRH7TBm1JVFLsaKLszCV6YUtunY9UEVoYVl2kwwkAk/l1QVM98zS/muxMU/eufL2bdZGA4QQtivb9blKFEqF8LtKFNUfLERfoKX78ZG33DoNWHPfZUNX2Wa9ld9f+u4cJk+6memRb0gidm9Fe7PwTSzIqmUlioTykEB+E0WiNtiiKH9vLpYtRob3TzHwjNg4qeyqXLr+EL8WpReoSdYkMd0htna764EqFucWhazXrI0GSvfm4umbo+2X8mvf5tp0ii/KiSmFi8SHFkJx224/24LzhJOAR1ITi0fwNFXpKDzXxrHvCWw0qmHnxyrw9M3LzgU9YSdT+X0MDg0SDofZvn07Bw8elP+OTWziHwxXX311jJwEUM+ZWBTxFWsce21Ytxg4/oPO2CZ5PNTf5mBovzMugUalj2y4qyB3m5mRV10bxuoLVKiMaqZOiI0Fmj5WSv9zE7hOyTe29IocrNVGev82KktmAknkQG1KFbK7A6ntKBUxy7mN4Nhro/cJeZtzkGyvHO/KxtXpFba1EsWuz1exvLAs/I5IGCqE8gaSek48gtubgblGT3quRsheKxG7N51dRWZdBr3Pjgv/PlEklIcE8psI9EVqqm9wMDs0zymB/bVEsPNzlRAWt5MzlqWRmp7C5FFP3LicPSZGXxNTyCy5LJvMugwxKzWkGpOqTWH/l8TGofV3OPAO++j9q9gznn+hlcFn4pMg886xrhAlZe57zU0FuLpmhRRDHZfYyKwxcuBbHbJ9qSVtP4HkeTweDwCnT5+muFheOf7vAf8QJKXt27dz+PDh2N/1nINFscFpJ61krzRy0BlfWSiC6g9JG05Ck7kIIWA5GOLgV+U3ZLbcmI+xKJ3JFg/dMpM0iEws1UnCZIqGe4pxdc8KEyREiCClV+WiSk8WIjBA4qQjbY4aQ75G1iqraG8WxgKdrDVK7Lr5Wsovy6b5e/LxOz5dgTJZIWZH8TaSZ7Z/shxFskKYAJIIEiEpJYLy6+yYS/WSxc7bkRfBfG+5MR9DoU6oHcWXZ6NMVQqTBbP3ZJDTZObod+QXCQrfnSVsJ1d/pwNtpprhfVMMPid/ukCbr2XLVXZ5gk6CfXT7J8tp+Vm3EIGs4a5iNFYVrY/0C5PjCCNUT7P3ZFB0XrYwcbL+Tgcai0oiPgj83h2frWDy1HTcBfPXlH/FvyxdrKqqiieffJL8fLETlpvYxN8z/H4/aWlpsU2yVNScpbh0w3jH3mwslXqxibsGdt1fycyQL2a1FA9RQkDXY0NCRKLdX6gCxOqQqVJLxdWFzAzMx7UviTU9V0P1NXkxKX8hCBBBtn60lNZf9AiRS4ousZGz1cx07xxtvxQbq4kSMJruLWHwtUlhglf5++z4pxfiksZAUpFpuN3BVJuYGs/bRZ7R5GpouLmI8eZpep8QI4CIIhGSUqLY8ZkKlgPLQhszbwqC+d71+UqW/MtC/b/+LgedfxrFL2PfsxJfzGSrh9FXNl6MBYl05O32ChOxdj9YRXg5LGxBV/2hQubG/PQ/JTO2S6CPFr4ri3S7llMihC3NKvK5QJ7Lr7FjqTAwftItRKbb8ZkKkkQJUxrpsI+rW2yxt+CiTLJqMzj0vc4Nc+PUjHHc9xoAOp2OM844gyeffFK+LZvYxD8Arr/+eh555JHY3/WcgUWxgd2TGrZ9uIzx425Zgg1A6ZU5WCqM7P9mmxBJYtcDVSwFl4TUZByX2chuMDN5ajquKlMUTfeWkqpPkexLBNqy5YMFzA77GHxeQIkRhIgg+edZ0WVrYkomctj52QqUyeJkU7VRSbojnalj8TcPc3aZsGwxcPJHYoRedaaasstsnPxxv2xs032lpGiTOCCy1vQ2kmca7ykhWZP0tmzuJUJSSgSFF2WRvc1M8497ZW0I3xQE8138Hklh+9h/9coqFNnPtqDJSBVSAACJaJO/J1PWXhrEiHxRVFybh7lcL0xqUmeqqXqfXZ6gk2Afbbq3lNZHh4SUnSqvzyOjOJ22R/uEFMp2PSDNNfcLkBBNVToq3pvP9Gkx4mTFdXkYC9OkjTCB37vt/jKmWmfi2v0dTnqOmSVp/b2iooInn3ySwsJC+YtvYhN/5wgGg+j1ehYWJItcDTr2KC7eMD5nj4nsrWaOiszJVbDjvnK8Q37aH5Efa0QJAZ2PDQsRiXZ+thKUcEBgjquzq6i9qRhP7xxtv5Zvi0qvpOqGIqH3w8qHkN28r7/NQftjI3Htk6KwbTXieHcO091zQvkDaUwlQjiouaWQ0cNuoTyDRI4ILYRl1TlRwa5PVDJ50kPPXwTWmt4m8gwq2PnxSsab3ULEo0SQCEkpUTR9tJTQQiixfpcIBPO97RPlLAeXOfbv8nuCWz6Qz+mnJoT6NMCWG/KZ7p+TJQqZt+iZmwjK2jFGkSipqfSKHILeRfm5VQJ91LY9A3NpOq2ic6vPVbIwuyiU5/zzrOSdkclEs1vIcrHp3lJS05OFiZM7P1OBq2uW7j/Kr1VnNhnJO9PK0e93b3htr8rLocDTAGi1Ws4991z+8pe/yDfkHY6/a7s3n8+HUqmMEZSSSOECxdUbE5QArVZJUooSa6WY7cNyxM5CaxFIpQ8WZhdxdYm9yFp/MYi7Z1aWoBS1Mjr0tU6JdBEv1qKk9nZJIrL5ez2yBKWtHy2VNuwEiQyWCj36fAHd5ghO/qqfwVflJ5/ZezIwlGrxjQZkCUoAmVsy0JhV8S2kVsE36BMiKAEsBZZYXhDb3Nhxb4VEvBBA9s4Mdj9YheNSee/4GASJv8WXZ7P9kxtbZP1PUHlDfsyORg7LgRCEwZArdmN2PVDJjk/Ht8SIoum+EnZ/okrons8M+wgvh8kokA/ueWxMmKAEYN8hWfaJ1IQoQUnObg3g+H/2MtU6I0RQAii/JJuU9GSytsvUsshzXXeng90PVqGRUas/9PVOfM4QmY16Kt8fX7q7+Qc97HuojZlun1A+Bl6coOdpsVyPNU+zvBCiT26gH4EiSSH9h0Ad0zm0JKUoMcjIQu4JXUIFjeTm5NLW1kZhYSE333yzUHs2sYm/V9x0001otdpVFiO74hKUAAz5WpLVSSs2bPEQWftVJiuE2jP06iRL/mWc3WKWYn3PjdP9V5kNdY2kyuRu97Hv622yBKXK6/IwVWrxj/hliQMam5rdX6ii6gMR6yiZte6cM82k6lMo2itm89b313HGT7qFCEqOvZLqlQhBKa1Ag8qYin1nfCut1ej87bAsQQlAa0kmvBzG0yd/DzUm2P3JKurukPdsB4l0sfOzlfKBQJo5GcKwFFwWit96bymlAr7tCUMjbSrkXyBvywYQDocJi2iRI6nq7H6wCmOZmN3u7ger2HbXxnYUq7EUXGbRvyQUe/wHvcIEJTSgtarIFbD9mDjowe8OSWpUjfLS6IOvTnH8v/vF2gHo7Vqy6uUtd/EjkXi+UBWzq9wI/U9NxAhKtbcWSQSnONfd91BbrM5ocuPfx87fDOPq9AoRlABc3V78brGVJo1J+u4lv9jzYipJJ1kd36Lb4s/mAsXVGDRGwuEwTz/9NMnJyfj9bwMrcRObeIcgEAigUqliBKXUiK3uhgQlQK2GlLRkTKViFhFLC9JzrDaK2RL4nAFcnWJrXr2PjzPV4pElKEXtl45+t1ueoKSWVIMAWn8+ILuIXntbkUQcECQy2JpMGAvFbEkBjv+sn/4X5Td6zLXpGIrVBDwhWYISQPY2M7psjZD9F0BgMiBEUAJYnF9kKSA43rmzNEbyl4OhWBrnFu2NrzIRRTgUJozYGMZ+tkWyXhDMRyIofk82jR8uEYpdCi5DKIzWJG/NAdIhSNG1upqbC9n9qSrURvlYT/8coaUQGlP8dytINiWiBCUA+04rGosKrV0+2VGCUuFF8ve849EhRo86hVWXis63ojalxuwRN0Tkua64No/dD1TFbCA3wtHvdhOYDGAs1VAuM5Zv//UQ+77ehqfbL90XmZR0PT5E71Ni4y537xyLc0sMi9hds2p+LFDH1EYlKdpkDDJrotuWz6eeM8jNzaWjo4Pi4mLuuOMOofZsYhN/r/jSl76EWq2OEZRq2BWXoARgzNeh0qVsaPmzBpHpllK+fAMwdMBN0Cu+39j9+Ajdj8uvvav0SuaGg+z7epssQclxiQ1jWRpBrzxRRKWHnZ+vpOK6yBqWzPQyo1KH1qam+AKxscP4EQ/Dr00JEZTyzpHWr0QISiq9kvQcLXk7xGx+AQafmZInKAF6m4rlhRCzYwLzWhXs/lQVNTcXCrWh6d5SdnxKbJyhs6ogFJb27wRQe2sRjr0J7GMmgIa7ioUtlQlBeFlsvJh7hpndD1Rh3iI2D9r1+Uqa7hDb91zyL7E4L7bm1frLQWGCEiowFOqwNciMd5AsC4POIDq7Sug39j49xon/jqOQ+zqYKw3YGuXbQRCJ9PbZSmkdKw7GD03HCErl19hRyTT7wDfaYwQlOZu4weenGDvqEiIoAUye8uCbDIjZyumlPYzlBbE5k7VSjyotBZVq470PfVDPBYqryUgyoVQqefLJJ1GpVASDbwcr8f8O/m6VlD772c/yla98JfZ3CbUUKjZeRJeYsFNCVl/aHDVbrssXtlWrva2IFE1SfBu4CDQWaLiripkBMXWQkityyKwxMtUxI0Sk2PpR6eSZqK1Z9YcKSctSJ2TFoXNomeuNzwQovjybseYZfINiEi5vxuZNm68Vuv7uL1ThdwZp/sFbz7Ytu9aOzqoWYnZm78mg8Gwbbb8dEFKdSQRN95WgMqQK5y8RJaUdn64gSaV8W07/b/t4GcsLyxz7d/l7k3++lcwaI62/7I5rAfZmYCjVsuW6QpxdXroeldm81kpkR1Gruqja0OCrk0LqbQBVH8gXkp42lGqF+5LjUhtZNRns/7aY0lCiNniJqBFE66Co1WZGpZbyKwo48cN2oXtfdq2d5BSlUA4BGu4upuM3PXGvfUj7NN55aUK4af+2iX9UaDQaAgFpVVRJEucprtw41qam7NIcTvxIbDJUdWMBfldwxXIoXjtMSmpvL6PlkQHmB+Qn+ZXXSSdg932jTVgRRqEQtOHQSKQZUVszjQnq7qhk+KCT4RfEFqT1Do2sxRtIkz1R+erCd2WRu8PCdN+ckGIVSPdUhFgSzXfzjxMgoghCY1Ky5cZihl6bYkJEXvzuYpRJCqExeqLY/WAVi3NiijaJKintfrCK+clAfLudNwFLbTrF784VtjBsuKcY76BP2FosEdTfVYzGlCo2bsjV4B8RJ6okqpCkd2jIKEmXJeylFWiEak4UOz5TgadvTui5jNrg+aaCHBeYs5RfY4+oETiFyIDVHyokPUcjbLXZ+JESAtMLwkoikuJbN34BhXBLbTqZNRlxrz1jH+PwkKSqZDAY+PCHP8yXv/xlobZsYhN/L/jZz3625oBEGXXkKzZeRK+4xs5kiwd3m7zsvtoIVTeUiFkIRa6tNqmE6lPUcsg75BOqIfazLeSflSlEZgJp/U2XrRG2NSu9MoeM4vSE1Hq0djW+4fhjmLxzLXh655gdEBvrJKq4BBJ5S0StZ+dnK/A5g8KqS4mg6OIs9AVpQmMSU5WOkr25nH5iRKgfJoKaWwpJz9UmNJYSVVJquq8UlT7lbTn93/DhYkLLYU78l3z+rI0G8nZZaXu49y23y1Nnqmm4zYG7c0bI+lGdqRZSGgJJ4cdcpmfwlQlhVaXSK3OEnvf0ArXwM5Zzhpm83VZO/FdHXAu1KLZ/spxkTRL7viaoIvf5KsKhkLAC2a77K3F3eYXyrbWrqb6+gJM/7Ba69wUXZqIxq+gQtOuuuamQ7ifH497TY7rncc9KA7nNNa9N/KMiJyeHsTFp7ptMCucoLt8wVqVXUnKZXVgdpPjSbJYWlxl4Sn7uptJDza1ldP1hAO+A/Oa14xIbmbUZNP9Hu5DF3PZPlKNMVXLgy2Lz5d0PVLEUWObQQwJjKRVs+0g5owedcW3pVkNnVzE3LP87iy/NFlMiQlI1KbkkMcUllV5JMBiSJTAUvCuT7EYzLb/oFWp3IlDpoeKaIiaOTwtZ6lXfmE+yJpnjAuOMRLHr85UszC5x9LvyY6lElZR2f6GK2VEfp37S/z9s5Vro7Coqry2k929jcS0Uo6i5qQDvuF/ouUwUVdfno8/XckBgrVhlVYmTmkhcIUllVWGtSpcl1WmyVfjHxNvR9NFSvAPzQmT4qA3e3JifkwJK4vkXWrHvsDL06tSKVVsclF6Rg7lcT/P3O4TqYM1NBSz4lun8rdg6ev0dDtr/MCKkYqUvUmNrNNMVZww4b5lh/9QzgKQkfu+99/KlL31JqC3vNIgd7XiHwWKx4HKtvOQuUFwdN15rUZKeq6XYbMd1Sv5lWrI3m5S0ZLL3ZDD2mryqT1qmGsQO/OP3SSeeFUqxD5x+ehRTaTrdT4ipjxz5dje5Z5plCUpRgk/Lz/qFrrv1Y6VM983R89iYLEEJIKs2g8xqI/v/VaxQdj42gKEgXSi29Kpcuv8wIkRQ0lik01miJ7sbP1LM0KuTTB0XU2SQJbSswthr00L9CQCtpEYkSkARsR57sxCxLlwDLehs8kQ2QJgICDD4nJgN2mrU3elgskU+7zPdPghDUpLAc+kDny+EzqHFWKCVJR41/6CHLTfmCxOUii/PJsORTvWHCmWfz5lun2Rh+ZEKWn83GDfnvX8Zp/cv0ua/CMHv+H+1o7OLPZMA85MBfIKn7xWp0vGzpUWxhbecrRaUyQqMJRn4nfLPkLkkXbjGZjbq0ZhVVF1fEncTe7vvIlo5zIJpjpMnT5KcnMyhQ4dobGwU+p5NbOKdjMOHD7N9+/bY33mUUK6oj/uZLe/LI9WYIkywMRakoc/VCpGUMrZkkJSqJGerie4B+fFRKKIyo9GAiCCHu3uWJBnFjxj80P3EMFPt8jOgKNFCZBJpLNNQ9p58Dn2vUyh/tbcWocvRYD/LwvDL8u+b/qcm0GSk0i6wsG0/y4KrZ16YJKJIUhAOh4UISjlnmsko0gnZ6QH43aGEbM1EbYEhQgYb8wvbdL0d5O03e21jmQZPl3zDnSdncZ4UH9eJqpBGYW3Uk7PVIrQRtxRcJhxCyBot2veKr8gWUgUaPzaNs90j3+AIqq8vAqW8qliUoFR8RTb6XK1sflYTF+WIVhNHPChTlIwJnPIEGHx2FL1dK0RQWgPB/q02pJKSJraUYD/XKim+vTtfiJDguDiHZFVS3HtvGJZUlQ5o/obP5+Ob3/wmv/71r+nv7xf7AZvYxDsctbW1nDp1CgAFCs5XvDf+B9RgKteTnqfF3SY/xy68yI7alErOGWZGBTaQ9PlpJKUIjo0S5CcPv+TEVp/B0AtiSi8nf9SHbadJlqAUJfiIECFAWjvwDs/T98SELEEJIG9PJvadVvYLbvC1/rofc7mYonvR3iz6npgQsxNTQziEsDJSzc2FjB514RIgKwP0JWAH4m6b41CbOBnMUKxmpkesw7zVm1irkbAlnBrSs8TIM4lYk0wdmxFS2VqNyuvzmO6bZ/xA/PFDYDJAOBRaUaCWQWAygNqmxlSklVWg6HhkiIpr7MIEpZxdJqzVRlTpqbT8vD9u7OxAIGZh2fXnwbj9ZfRVV6yeiRD8Dv17J+aydOGaNd07y7Lgc6aOKC6FBJUfshszSFYnYawwyt5LAFuDiaQUMfOM9AI16flaqt5r59j3N17zapw7j17a8JonOXnyJCqVildeeWXNOsAmNvH3iuHhYfLyVtSrCyinVFET9zNlV+aRnpeGsSwNT5e8UIC1xkh4KSREhtDl6UlNSyaz1oR3QH7+u7S4DGEgVcyDafykG61ZXJqw7bcD+Mflf2OUaHFYgMykyVZRdXU+R/+rW4joU3plLpk1RoKzi0LqRZNHPehzNEIKK5lNRmZH/cLkjKQkJYTCQu021+ixbjEIk0qDXjiRAOm8RUAEIwpNtkpSThbkoIge+nozSJQYLkpkmxsW639RnPpvsbXIKAwlWuw7LbQKHIxf9C8RWgqj0iNLmokSlPLPswrZWA+9MsnsiPwzGUX9hwpJSk2SfXaiz4D9bAvm0nTZvrja4lKOaOXtC0iHTE6IjXUHX57CUmZgaL/4fnA4HEZUlEibpUa9JDZOs9YZ0GaqKTzPKnQIsWSvHbUxlQH9GEHv+vufaU4DFyiuZn/K31hcXOShhx7ij3/8I+3tb99z9/8Kf1dKSj6fj7S0FXseI5lsVZy1YbzOoSXkDeBzhsjemSFrI5bZqGfymFQxRBRKRK4ZhTZfS0aBhpFXxBjEZdfa8U0GhIkNOz5TweyIT0w5RAu7PxFhQH9NoGgnGg9kbTcQWgjJkn20OWrCCwFhZZyaWwrR29MYPeqk74m31jtVa1FS/+EKFryLQhtg1R8qRJmi4OQPxQYOlTfkM/CKU4hc5bjURnajmcl2T0JWZKJIREnpzVw7HAoLE9SKL89mbszHxCEByfM9GeTtyhQ7BRnpt4uzSxz+ljgZShRRm79ENhIzKrVMt8vf/ygRTwRZ2w0UvysX75AY6TB7ZwZFF2YzN+4X6rtai5K6O8vpeXIkVh/l0PiRYiF1rCgcl9piBKqNG4KkAKUFc3FafCKmFrQWiYhlrpGJZW0tz9puiNsXfWEfbYZ9eGY8KBQKLrroIv72t7/Fb/smNvEOxiWXXMKTTz4Z+3sPe9EoNrYYsjbqmYrUitX/vS40YMyTyBUiCiXmah2unrmYlZLcZnvRJTYh0lMU9Xc5OP4DsdNHWTuMFJ2XzYFviamS1N/lQGtV0/nHQVwt8ifLq28uRG/X0vG7ftwC7w2A4suyhRRvRAktUez+QhWEEVOWShCJKgxtu7+M/pfG4/erCLK2GtGYVfQ/JTZe3P1ARNXzbThFn+jvTAQV1+ZhLtfT+8yYEMElrUCDfbtZ+LRQ3W0OgrOLdDwqv6gW+51fF1MtSwQlV+WQVZ2Bs2NGWDEsajHpd8cnRVsb9Sz7l4Sfte2fLic5NUm4r2z/dDnJqiThvFTdWEBaporDD4mNX/MvyCRZlUTvE2KnSu1nWXC1uGXzEkXWVqOsctlqQqqlNl1WqSv6foha1sUjcHnrRzjUvF+6tsXC8ePHyc19G6wWN7GJ/wMIBAKkpaURCknPp4lMGuOseUVt0gLjAcy16bLEE1OVLqZwI6JQYq03CKkVgWQvJLrBDpI91FJwWWijCaSDc3PjAbFNHrWkdLnoWxI+GLXrgSqWAkvCtTejIg1lqlI252qj9C4SVcYpvTKHzJqMt2XNC7VkIRL0LAqdii+7KhdVegqnBK1RS6/IYeSIW4jkZdtpoviibKZaPHQJrn0kgkSUlBLFrgeqCC8LKuogbTj53QtCz5K5Np3Cc2zC7X5bf+fnpbHx/gTmAKLEs6KLs4QJcMZSDVXXFeHpmxNa886oSKPyfQXMjogpNKiNUHdnBb3PjAmTxGpvLRS2VwRJ+UjW5i5qSamGjMI0pjtkDh9HFN8MxWpmRgJxyVar3w9y74pAOECH+QBOl1SbL7nkEp544on4bd/EJt7B+PjHP843v/nN2N9nchkqxcYWQxmVOqbbpbGUeYteVq1FX6TG2xcQUkrRF6nxjgZiVkpyZJLcM8zCakUgqe6IklqMZWmUX27n+H92b7jJvhoV1+VhKkmn84/DQgo2pVfmYt1ioP33g7F8ykGUwKEvUAkpUEWx83OVAMLKUomg/g4H2ky1pNon0KSGDxcz+OoUrlPyOcyo1JGWqRYeS+/4VDnKFOXbQj5KVEkpEeRfaCVvVyb9z48L9XeVVUXu9gx6nxBbDy6/xk5oMUz3H+XHo7W3SoquR7/TIfRcJIKcPSaKzs9mssUjvC+o0gOpKll1H0OJFmWKUvhZa7ynBJUhhf0PtQv128Z7SlAbU6U1L4H44kuzMTp0wuPXzCYjGkuqsOKVtc6AdzQgrE4lUstXE+VEyKnRa6r0SpRpKXFJkLNbRjnYsg8Ak8nEiRMnsNvtQm1/J0CMVv8OwBe/+MU1BKUGzolLUAKovaGQujskT045MlHhu7Mo2Wun+kOFALIEpa0fLaXowmwyKuP7O0dRd2MBBeeIeasCWMr05O22igVrISlVidYi4HsL4IPgzAKjRwQHMT7Y91CbEEHJfq4FtDBxaEZIjaj2piIaPizmbw/S6Sl3z6zQYo39XAv1dzqEr+1zhjj+415aHxYrjuk5GnRZG2/UroY2X0uGQ0flFTlC8ZNtXuYn/Iy8ILbZsOOzFbEB1VuN8uvs7H6wCkOpWF/39M0x2eIRvn5WbQYFZ4v525pLDSRrkshsFPCV9UHnnwYSIijlnmmm4e5iodjRIy7af9cvfO2m+0qovLpQKI/RgUjRXvmaMXFohubvtwmroo0dmGbJv0zvc2ILQppsDQqlAnOF2KnP8uvsqDNUlF0r9iJtuq8EW4NJ/p5GSvKuj1VSfkWBbGyUDFh+RYHssxF9PxTtzaL4Xbmx98B60Cq0bPVeQBIppKam8sILL6DT6eK3ZxObeIdCq9XGCEqpqLlAcXVcglLtrUWU7rWTc6YZQJZIsuv+SqqukbyrZS2UNFB+ZT477quQ/pYJz9phJLvJRJ3gOKDyujy0VjVFlwi+j0r0KJMV6LPFxgH9z4+x4F0UIigBtPy0n+bvtQmRJvIvyAQQIiiZq3VUXVtE3R3i46POPw0y+IrYRLD+LgdZW43C1z78zS46BN+lOWeaSdElYywSU/krODeLnO1m4baMH5/G1SlGxrXUprP7wSoce7OFr58Idn62ku2fLBeKHTrgxDviw9MnRrCpvMKOuUIvEf0EkGZTYyhMkw8EWn49SPP3OhIiKNXdKdZnTv9hFFenV5igBNBwTwU1t21sjRTF1DEv7nYfGhNk7zLJxh/6bif7HhJffBs/Ns38ZEA4L2kWFSlqcUFk+w4LtoYM4fj8szNjc2Q5WBv1FL87h/q74o+PowSlmluLKLs8TzaP0fdD/U2FNNxcFDdWfzyXRs4jNSUVp9NJXV0d3//+94Xav4lNvJPwq1/9Co1GEyMobeWcuAQlgMZbHdRH5i5yZJmsrRlUvDefLR+U5lJyBKXa24oovSwXc63Ye7fujjIcF4qNowCyt5nJ25MpHJ+iSSHNKnjqPwCzoz7GjooRpgD2P9TG4e/Jrx1kbc1AbYTpjnkhNaKaW0to/EiFcDu6/zjKVItHaM3LWm+g5pZC4WsTgGPf7aD1F2IHiozFOnR2sXUg1JJKRMXlYusAnl4fnv45BveJrUtuu7+MHZ8Wz2MiKLwoi91fqMJUJTavd7Z6GD8mqJIO2PdYKTxPbD3YWKhDZUjBtlN+PALQ9khfQgQla72B2lsLhWIHXp6g4/fiCgM1Nxey5f0OMirkx41RgpL9bItsrKfbz7HvtokdykV6NgPuBQZfEtucTDGoSUpRYi4RnGNcmIkuR0v5e8UI0zW3FJK704K1UWZNLVKSt3+knMr3FUikpTiIkgG3XOdg58fiPxvRWmXbaaL88rzYe2A9qBVq6t3noEGHWq3mmWeewWQS64+b2MQ7Dbm5uTGCkoY0LlBcHZegVHplLpXvzSdnj/RMyG1qb/14GdXvl9ZeRDbLq9/vYNtHIvM0mXBjWRoF52QJjwMK3pWJvlBH4cVi7yNTSTpJqUmozKlC8QMvTeJ3BoUISgDdfxzh6HfahEgT0XyLEJR0dhXVNxYnND5q+1Uvgy+K7ZNsuSEfa53YHgnA8f/qpeXhXiHihrEsDY1ZhalYbDxSdJ6N/DPFx9Ijh1xMnBAbv+jsKnZ9vkq4vySKrR8vo+mj8ms1ABMHXbi7ZnH3iK2nll2Wja3RhEpwrzzDkU6GQyznnb8d4OgPehIiKFVel09mk1E2bvQ1N2NHXcIEJYDGj1RRE+edHsXMaZ/0rKkQasux750WJigBDB9wMjs8Lxyvs6lJ0SZLZEwBFJ2fRU6T+Ppu6aW5sTmyHPQFKsqvtFN7a/x1qShBqfTKXKquKSBHZs0rWgvrbi+l4Zb462nprTls5yJSklNwu91/d2tefxckpYqKCv7pn/4JgBRlChcorsassKBzrEyWNRbW/K3N1zIzMk//89KkROfQSkoc68XmqJk8PEVwZoGW3/SviUX7xlitRUnbb4fwTwVZDBI/NkeaVZx+Yhhnt2fjWIsyFgvQ9/I4Jx7p2zg2f+VvnU1L8/fbJFUcmdiCi81oLJI92PALzjfkcHWsNl/Ljs9WkHumGXwyOczXorUoyT8jk10fqxTKIcDoISc+d0Aoh9F/a//joHwskNNkRpuplq4tk+9oe32jAfw+mXw7tGgskuThvh+0yeZQY5EIEwMvTjB02Bk3NpqXuV4fp58Zx+cLxc13FMvBZZYXlmXzHfutsX+Mn0OdQ4t/doHwchjUYjls++UgPc+MycZqImsRo0ddtP11aG3sOvkGaPlZPycf7o8p+myU7yiC8ytCcnI51Dm02HdZ0ZhV69aI18f2vzQhqSIJxKKF3mdGCXoWWF6lDr1evqPPguM9NnKaLFTfXLhhDqOx0T67/VPlFO3NiptDtND2hyHmen3oHFrMNWmyOdz3xTbafzUkm2+dQ0vnn4fpe36MoeeGZfONFo7+6DQzQ3P4PCuWjBvlEKD3lVFmJ3xrYzfIC1qYnfAxfGBKKHaqfZbA9AItP+uPm2+0cFnx9TQW7yAlJYX5+XmSk5MZHBSXWN3EJv4vw+12o1Ao8Pv9KBQKiqnmLMWlaExKNLaV5yKtQLNCdNBAz6vj+KYCjL7ikmJzNWtiNaaV2LQCDSOHXLi6vG+I1eSuio1+jx88/fP0PT8sH6uBiYMePANznP7b2OtilW+IBWh/bIiRI5Mx5SWNTb1hLBoYeHWKfV9sw9vrl2I3yEtauQZLQzqeLj9Hvt0dNxYNlF2Xy7b7yyL/I36+0wo01N5ahH2XhbwLzbL5BnC1zBGYDjJ0cGVxZ90cxv4NfNPLMQu5eDnU5ILWqo4tksSLXd0md7tPNt9pBRpGX3Gx7+ttDL/mks0LwKkfdzJyZEooFmBs/wSDrzjXxK6XQ4AkbZjQYliSyn597OtzaGLNjCxuvk3S38vBZRbnl+LnOxI7P+DnVMTPXSTfXY8PM/jaGBqNfCxA8y97OblKQSFeLAsLkJoqFKsxKTFt0ZKWqSZ3pyVuvqM1IqrmpCmOn8PoszA36mfipGvdGrE6h1HU31VJ0QW2dWPXtMkPGoOa/IstMTJZvN861eKl6zHJbihrqzF+XmxqWn49GFMuk8uhxqbmxC/7OPGLPvnYSF7Gj03T++J4nHyv5HDqmBefO0Dnkysb2hvFAvS/Oo5/OhhT9YqXb02uhuHDk7i6vLK/NTc7h3fpr6Cutg6Xy8Xdd9+9abm7ib8rvOtd7+KGG24AIFWZygWKqzEqLGjt6thGtdooKWdEoc5U4+yeoe9ZaVNldSzqN8bOnJ5hfiJAz58HZGPVmWq6ftfH7IgPv3tx41ijEnWm9Hfbo/1Mtk7Hj131Tu786ygtv+8VilXb1DR/vy2m/rM2ljWxuWdLJKJTP+ln+CVn/Bza1Gz7eJm0yBwArUUmL0YlxRdnU39XhVAOAQZfmsI74ROKjf5b119HZPMNYD/DQnquVlJrksmh1q5GbZQUnQKBUNwcqm1S7KGvdbL/oTaBWCUEoPvxEQYPOuPmO6YsNRmg7/kJAp5A3HxHsRBYXrG0i5dD1v6bXA61djX++QWWF0KEk8OysWojdP9plP6XJ4TyDdD/wgQdTwyuil0/3wA9fx7j+K96Y4pk8XIIsOAPx60Rq2O1djX5Z0kEGwRiR4+4JDWf9WJfn281dD85zvxkgODcyqLXejmMtte220T+WZlUf7BQNoeBgPR3072lFF2ctW6NiMYCdDw2zExPAHWmmvRyddzY5WXY9/U2On4zLJtvrV3NwCuTdD8xQucTI7I5RB05bNvtZX4yuDZ2g7x0PzPMzNBcjLQULxY1uPu9DO93yuYbNXiHfcyN+mj9zUDcfKOGC/OuYHvOdjRqDdPT0yQlJdHR0cEmNvH3gGAwSFJSEqOjo7E1rz2Kd6PSK1FZV3bNNdkqSakEQAXDx5x4B+cZfc39hliVdVVs5LODL00y1epBpUc2FhVMtXrofW5E+ntNrPINsZ6ueSZbpzn93Mqal8qyfizAwIuT9L80Tn+EJKqyqNaQOFbHooKx5mn2/WubpAIVJ1ZlV2Gs0eMfC9L8gx4pL3GuW/iuTBrvKYn8j/j51mSrKL0ql6Lzs7GfZ5bPIRKRYHZkntFVRPWNcij9GywuELM2jReLCgxFOvLPypTNd7T9gGwOo7Gernn2/Usbg8+Py8YCHPvRaQZfeWPs63MYxVSzm5FD0+vHsjZWoZH2GwPuhVV5WT9WpQeSV+xk4+ZbL/29NLfEwuyiUA6D3hDtjwwSWkQo36efHKP/dcIPG8UCNP+4kxOr1rzixUrJWXvdjfKt0itR2VVklOjI3WaWzaHKqoqpP6ns69eI1TkEcJ/2Mn7MLZQXgB33lVNycY5QrCpdRc4ZGTTdVyobOzPgpyvSdvMWffzr6pV0/GmUA/8mkaDkYlVWFcd/0k/rw70y+V6pswMvTdDz7JhsvgG8A0FmhufpX1VLN8o3wOBhJ3PjvljNiNt+i4r+l8eYPDktG2u1Wrko4xrq6+txu93cfffdnHHGGfw9QPwI5v9RpKSksLQkbV7fcMMNFOYXcfDfOih8dxa52ywxO6yam8tJViexOLuEUq0kKUVJaClM608GyN6TgeP8HDx9s7T+YpCaD5WTrEli3xfb2PHZCpJSlDF7qoxKLVXvK2J21MfJH/Wx9fZSUvUpkj2DFupvdcRiO3/XR8PdlficAZr/o4fGW0rQmFS89vVW8EH9LQ5QwPH/7mfq+Cxl78kn/TYtR79zmvobHaRlaTjxyz7men3U3VmOQqkgHApz6tcDFJ1lY3FekqauvqYQQ34a3X8ZYvKYl7o7ylEkKRg75iK7UWIQLvmXOfT1TiqvyMNUomfglQmGX3BSe3s5ymQF+77YRskVOWTWGMlpymT/v7ZTckUOWbUZjJ9w0/PYGLW3VJCkUsasKOpvKgQgoySdpFQleXsycXbN0PnIcCzfq2PDy2FGj7hI0SVT94EiZgbmaPnvAbbdVUZK2orFxeoczgzOk7cnk7obHZz4z16abitBbVTx2j+3SrG3SGzzff/Sxu5PVEmbpu4Ax/69h4abi9Ga1Rz7j1b8zrWxAMmaJIJzi+CD2tuLSM/W0vLrPma6V/IdbVPtDdJvHW92o8lIxViUTu/To4wdmKbu9nIUyWtjo9Z3ZefbsZYbGDowxeDTk9TdXhnLdzQvywshDn6lA5UhhcJGG/osLaf/NLpuvkNLYQ58uZ3G+0vQpKtw98zS/vDaPrs63/u/1I61Ph1VeiozQ5LE3LY7ykhJXz/f2nwtdR8oIuoCGS/fAHUfKCIwHWT/l9ppuKsYbaaa5h/14BsNrJvDhdlFBl+ewHFxDknJSXT8sR/XqflYn12Tw0if1ZpU1G210G8aZ+QV15o+G41dDoY4+NUOSq/KJbPaGJM+r71Nen7X5HsxtKZGhEIhwssQWgq9oc9G8x2rEcNztD4ywPa7X5fvVTlcXSOGXpug8mqp76ybb4uSug8UxWpE+Hwpp2tqxOvz7Qly9Dun0WdLjJj+lyT1ivXy/foaEQ6HMZfosdWZNsz36hqRf0Ym4XAYheJ1fTaS79fXiPq7Kt8QG81h/vnWNTVi+6ciNTnSxtV9Nmu7gZKL7bEaoTWpqb2hkODMAou+ZXTZmlgODaVaqq8vYm7Cz4n/7MXeYEVtlF7g0e8gHMmhVsrh62vE6T/0x+r36nsV/c6j3zlN7Q0rNQKg7q5yFAoFrY/0M9PtW5PDLe/Nj9QIFYp5HYO5JxkeGWbXrl3cfffdPPDAA2xiE+9UfPvb3+ZjH/sYIEmM3nPPPRz/aT/+ET/1d0XqULRmfbCIhblFUrUp+GYCpJk0dPxBOm1bd0eklq+KXZxbYuyom7wzrSiTlPS9ME7nb4bZ8ZkKklJXannDLUWx563+nhLSzCpGDjpp+8VA7LlfHRt9z9rPtVJwZiaL/iUOfa2TNIuaug8WrYkNLYQ48JUOsrYaKbkkl+XFZYKeRZLVSaTokhl4UlrgbbgtUsu/1I7eoaHmAw5mhubRZWlQJLOmFjZEa8u/tqExQf1NjljNqrumCIVCgbOjFfxrY0GK9bkCNH+vh5r3F6HP1RIOhUHD+vmOWNJWXZVPRnE6XX8ZwrqQQW5TJnk7XpfvSP0tvSSXzC1GBl6cYPhlJylpKVS8J499J1blOzKuKbrERs5WM2NH3aRna0jLlhau18t3zplmis614WyfofO3w1RfI5GrWv77tBR7c5H0jvi3diy16ZRfkc907xxtvxxg6x3S+Dr6Xlid77QCDfU3OZgd8XHyx31SLbeopbGKHxo+viqHGimH85MBjv+gh7obHehsGo79ezt+d4icBgu5TdY1eQlML3Ds309Tfa307mx9pJfQEmx5fyEK3thnD3+zi4r3SJZqp58aYeKgh8Kz7ShTFDEiRt0HiyRLmYe6KL4iG1utiaF9Uww+O0nNbZLVVxQNtxSxFFzm0Fc7KbgoE/tOK+PNbnoeH6PmlrXjj90PVsXynbXDSMm7cnF1eul4dIjqm1Ys5LZ8sABDQVrsnWyq1FL5viI8/XO0/nyApttKUBlTY8S66vcXkbfTxv4vtaOxqaU+O+rnxI96afhQMVqrmte+Fsn3Dev02ci4pvb9RaTnajn2496VGpEkrdh0PTZE2eV5LHgWOfLdbqquLiCjSEfHHwZwtczFakTLw314e/3sfrAqlu/yy+xYKgz0vTDO6Csuam8vi9WIqKVctEY49maT3WRi5KCT/qcmqLl1pUac/HEfux+swlZnWVMjJlqmOf2HUao/tHaOokhSEFqWxsjRGjHdM0vbw4PSfGaVZV/DbQ7CSGOorN0mSi7IZmZonpaf9tNwSzEak+oNNWJmaB5DQRoKhSJWI+pvcpCWqVnJ96oaEW1vcG6BI9/ojtWIU7/sxdv7xpoctSLu+F0/tkZLrEZMReaP0Zrc+8SYlO8zrCQlKXH3zWKtWKkRtbevrclak5qaa8oZeGGCoguzSUpRMnbUTe8Tb+yzNddINQKg/u4i0izalRpx0+tyuE6NWAoucfArnbEasSbfoTD+L4XIMbjwLntoaWmhurqalpYWNrGJdzIMBgNer0TWu+aaaygtLOXg1zqx1hsoe48dZ6uHzt+PsOXGUlTGFOYnAqgMKSSlJhFeDtH1mxEMxWqqbyiO1az6DxWjtapW6mZaMqElyZ5KbVTScEsx3qF5Tv20n9oPFJGeo+W1r7ZCABrvdBAOSRZPp37Sz55/2hKrWVuuKcBYqKP5Jz34hgPU31WGMkXJqZ/3MjsQoOaDGeiz0zj2vdNUXC69O9t/N4C7bY66O8pia29tv+mj4tIcyaaqs5vSi3PIrM2g75kxRve7qb2tlGR1Er3PjuO4wAYKYu+Iggszse+yMrx/ioFnJqm5eaW25JxhpuCsLPJ22zjw5XZydpkoujCb8eNuev48RvVNa2tL460OUIK5TE9wfpGKK/Jj79nGW0tQm1JX6tDtDsLLIfqfGyfVkETDLcWx92zdTQ50WZrYukrDbQ4Ih9n/5XYmWqYpuSSH2hske6ia9xeit6dx9DutBDzQcGsRKBTs/5K05oUSfFNBjv+gh6qr88lwpNPycA8zPVK+FUnKmP2WJkNF0LtIwBOi/L25WLYY6frzMFPHZ6i7vZQk1Yo1af3N0vtl7JgLhVJBdoOZvufHGX3VRe1tkXdnJLbxdkdsXJO/20reGZmMHnLS97eJNfkGaLzNIY1rvtaJMllJySU5ZORp6f7jKFs+WIrKsDbfy4vSWkPNbYXoc9JwdXnpeGSIxptLUFvemO8D/9aB2qZGZ1XjHZDWvOpuLEKXrV3Jd+Tduf/L0fFqcWzNq+baQvQFaRz9QQ+ByTfmsP5mB35nkINf7aDy+jxMpXpaf92Lp9tP3Z1lJCUrV8ZANzsIzizS8+Qw5VcVkKxK4vRfR5k4Mk3t7aWSteuqfEf7rEqXTNF5xQy+MsHQC05qbi0jRbs2h4uBJQ5/vQv72RYKzs6KrXlVf6iU1PSUNbHLweU1NSK0HCK0GGbJv4zKmLJuDqM1wtM/S+vPu6m/bqVGvCHfq2pE95PjNN7uQKFQxGrE6j4bzXe0Riz5l2m4pXhNjXh9vgPuBY597zTGPGlMNHpEmn9Fa8Tr8330Oys1IhwKYyrVY602vrHPrlMjcrZbQLF2zavxNoc09/l65xtqRMNH1q55re6z5tr0tTXiHqlGRNu4Oodau3pNjVAZUmm4pZjZkXnCIdBla2M1AjWxfzv5437sTVb09jTURqS6r08hHCaW7/qbHW+oEWMHJHJgw0fK18xn6m92xOwdy/eu1AgCUPdRaXzd9kgfnm4/9Tc7YnNNx4W2SI1II9SrZyDvBENDQ5x77rncf//9fPrTn5Z7tW1iE/9n8cQTT3DppZcCYNAb+Mi9H6HjN0PMnPZF3p0rdlgNtxYTmFkgNS2F2XEfxnwd3U9IROKaW0tI1SbHalbTncUEZxbpf3GC0r05JKUm0f/8ON1/GqXpPulZjj6bTXcUszC/xJFvdVHxfjvmEgPDB6fo/tOoVFsyUlfVt2KWgsscfqiTjEodVe8rYGF+kcMPdaGzami4sTgW23C7g/BSiINf60RnV1F3SwmLgSWC7gVCoTDpuVpGX5bWMKJjlQNf6UClh8bbS/D0zqKxqknRJKFMVnLkW60EvSt1/8C/RfJyW3HMUrPhgw6SkpWcmD7N3HCQ+jtLUSQrY9ZpDbcW45sMcPy/eil9d6SWL4dBReTd+bp8T0vviMJzs8jdbqHnb6MoFGCrM5O/K2ttvr1S/c09w0zheTYGX55k6MUpUnWplF9mj615Nd1RzIJviSPf7CKzyUjp3lzGjrhIUidh3WJY2VdAep8sB0MceqgTY1kaW64rjNlv1d8kjTdafj24ku/lEAe/2onKqqLx9hLcXbO0PzIojffy0lgKLHHwq51r8o1KyvdM/xwtPx9gy9X5GIvTOfKtdoLeEPV3laJIWpXD24qZH/Nz4kd9lL/HjqXSwKlf9ODtC5CzzYp9TxYHVuXQ75QIY8UXSopCHX8cYm4sSOOdDukd8a9tK/n2SOtjUUu16Fi8bG8+yeokxiOkpqY7iwnOLXL0W90xW7Kh/ZMMPjPFlg9KfZaIVkDj7cUsBpY48o0uzDV6Kq7MY/yYm56/jFH1/mI0FlUs3zs/X0loIcShr3eiL1JTc2MxU60eun4/Qt2NKxZypVfmYq0ysLy4LOXbIuXb0zNL68ODVF9bgKFQx2tfacU/FqTug0Xkn7HSZxtvL4nNfSqvzMdUls6R758mOBWk/ubX5fvWYnzjAY7/qJfSvdJeZMuv+lZqhFqJQqHg9JOjlLw7B787SPN/9OA430b2VjPdT4wwedQTqxEnf9bD3HCQ3V+IWPR+t5u8c6zkn7ViYVf9oZUaUXdbEWnZGhZmpRph255B8cU5DB+cYuCpSbbcuFIjOn8zzK7PV5HdZF5TIyZPTtP9p1Hqb4rYDUbyrUxRsrwsrddEa4SzY4bO3wxTc0Mh6bnaNWswiiQFCgWYqrVUXlWEp3eW1l8OUn1NPoai9DfUiKkWD1kRle9ojSi/XFrfO/GTN9YIa52B0vfkEpxd4Oi3TsdqRNtvB5hun1tTI4JO2P2FKsKEaf/NIEaHLlYjxg9NU3NrWawmj7zqkvI9t4hSqWCyxY19Z1asRlTfFJmjRPJiyE1Dc2U+p58YoexyOymaZMaOuOj96zhVH4is70VrxAelGgGSzaW5TL+mRqzO93o1IloTojXi9fPH4FeC5CimmUuf5sCBA38Xa17vWJKS0+nEal2xO6ugEWuKjclTUmGcbJ3FkJ/G2FHp7/ET0+hztWgyUlEoFMz0z+GflpieM50zzFVnxCY+o0ddmIrTJZu0FCWhpRDOdmlRaHrAx9yEn7FI7MgRJ5nV0oOVWSFR7xb9EmnK5wwxN+FnvFmSJx45NIWtwRyzJfJ7gmgyVGRuSad/ULruZERSb/Swk+xtFubGpWBnuxd9vgZVeipaYzJz435cHVKbxo5OkaRSMjvojfx2D6r0FHxTAcKhMPNTfjw985HrukhNT8HdKcnfTZx0ozVFWKR/GsVcmb6Ss5Me0rLUjDVLntsTp6bX2Jd5B+eZnw7Q9+cJtDlqMkrSGY+wkMePuTEUrEj4esfn8U8u0P/khKS2YlIxdswZa5O5YoW2ON0zS1qmit0PVtH55ABzE35GIyf6R4+6YvkGcJ32SpsFWlicXyKshJFD0es6sTWY8UcOvU91zqCMbIxoLUrmJwNMtki/deywE8UOKzMjUr6nWmdISVt5PPwzAdQ6FWMHxlFbtSRrk/GcjvS1NinfUcyO+NBla9j9hSpaH+1HY0zF2eKN5TvNsnISxTsk3fftnypneSnSX056pDYdd6PPXVGaWd1n1WmphEIhxo+t9NmMohXZQU/fHMHZRQDmhmfxewNMtq/k8PX5XgpIhdPnlNqTFjlZM3rIRWbdSr6d3WslOaN9Nmu7gckOJ5awGV/kpJuz3UuyeoWlG823Pl+HMklJYD6IK9Ivp9rW5ntuzI+7R5IbXvAtEAqFWFySThVNnppGk7FyCt877MMbuW9jx6fJKEsju9HM+MEJJk6s02edUvuiNSJZk8SSf5npvrkN8x2rEfunwAcT7S4M2StSz9O9cyzOS8/96hox3e4jtBRmMbgYi3V1e2MbXOvViKILs9l1fyX7/7V9w3zD2hqRUal9Q77XqxFdf+3FPwTFl2e/oc/ODLyxRuhztShSgBURozX5fn2NWF4MoVilBrE638722TfUiNxdFpIiG7Or+6y3d4a5CfMbaoQuS0NKWnhNn50Z8a1fI7SQrE4itBjCFelL+FiT79U1ImonF5xdiLU/Xo0IzCygMapYnJfasbrPjh5xxmqEVqFl77YrOZV/lAMHD/CFL3yBP/zhDxw9epRNbOKdhu3bt3P48GEAlCi5KO9y5sYC+N1+ACZPeSRiYATeYR9zE3PkNGbinwqw7A/jG42OP6bX1KGZgXmm++Yw5GpRKBXMTfmYbpWev4nja+u+p38e77D0LKZolITDYSZOS/VuvHkanW2l7nt655ifkuqQq32WvD0WklKkQjV2xL3GpsrdNbuqDnnwjmSQlqkmJS2Z4YNOaWwYgavLy+K8dArYO+bHO+Jj7LCTovOzIQmCMyuFc6pjhlBkkud3g3fEF6tDk+3TZBSmx2yeJlqnUSatFFLviC9Wh0YPTsEOK6f+2Ad+mDjhIUW7Nt/Ruj9+zEmKPom5fi9Tx7wUXWJ7Q75n+qW6P9HsRm1MJf/MTLKbTIw3u9fYpXj65pkblxo4fmIGXbaGiRYPy4vLqMwpzI0GYrHT3bP4IupB093zmMt8jB2VfutYqxuDLQ2/W8qFu3sl3/PDs1Jejkq1fOSQi/yzrARnpH93dXpjp+PnJ1fyDdJYJWtrBrsfrGK6e5bJdk+sPfgjOYy+O49IdV/v0FN/Vzbe0TkWZldkmGdH/St1/4gTRZICz5Cf4ndlo1Ao8E35V/I95IvV/fFmJym6ZLyR97az24PWvHLiZXWfHW/2oDWrmWqXPjtxfJrsJhPKZOUb8j3ZOos+Ly02Nhw96kZv16KxqdHb1Ux3z8bGKt5uL97qDMabo3MUV6zPGvIkovJk5DrufuldPn5MujfDh5xrxtfLi8ugkMbM/pnA2nwfjowNI6mYbPeQucXI9k+Vc+hrnWvzfdhJNpY1NSLFmIw+WyLbremzR6ZISlW+oUZEbcK8I/O4uyP/dlwaq6xXI6YH5rCU62MnIydaPKTZ1Ey0rF8j5iZ86LK0OPZmM3Z0mgyHjsnj0T6wcY3w+4ORHL4x37BSI3qfl05bZVYaVnJ4ZO18Jlojep4ao/4mB8uL4VVjQ6nPrlcjpnvnyNtjwXU6Mv6I1AjvmBT8+hrhdwfQmNSk5+kYP+YkSS3ViNX5jmJmYB5FigJ9jpZQcAnviA9X11wkh+vXCGu1EWWyVL8nItbO0T4bxeoakaJKIRwOr9SIo6/L9+tqRCgUYim4HMnL2vnM6hpRtbiTrMtUPP/y87S2tqJQKHC5XJtWJJt4xyEQCKDRrNSrChqxhrJjFmWz/bN4+ucYPx6pF4ddmIp1pOiSUQDONk9srDIzEsDTPxd73kYOOcmsNgKQrElmaWGZqVaP9L2eUOS67lisrV5SEjIUS8/+6jmTp38u9n4ZOyJd3xeZA86O+zDk6TCXG5gdCODpm8PVEXl3HnOSpFqp++PNbozFaaSZNaSmq5g+PRsbq4w3u0nVp+Duicz7j7pIs6oJeoKElkLMjM4z0xtZy2n3SmOVU5G58DF3rO6PvurCvtPCWKTGunt8ZJTOrby3DrnW1CFn+wxB/yIDT06iNkq/NVb3D7owV6zUfXevl4XpRenUrBrSMrWMHlr17ozkG2CyZZo0m4rdX6ii889Da/I9esRFaClMQEop4yfdsbofcC+gVClia15jRyRC0cxIIJLTaVLSpLqvNirx9M7FrC/Gj7tITktmtj+S/+Nr6/7s6Dxai5qxwzOkaCSCk7trfk2+Y7+1axZDoZZdn6+i+Se9pNu1TLRIawIjh11r6r6rfQb/9AJN95YSDocj/SXat1xrLEuc7TOxup9mURMOhRk/6oxdd3W+na2eWN0PeALMTflwdkbn+W4ya1fGdxMta239PP1zsfXKkcNOQuEwAa+Uw4nj02vmM56+OabaZjBV6Zju96JMUeIZirxnm1fyDcTyrc3SkpSqJDATZOa0lJfxo+418xl392xsbLjgX5SIRKHlyH11rxmruLu8sfmMs32O7CYT2Y1mJk7MMHrEvW6+YaVGpKQlsRwIMdXuXZvvdWrE6CEXAQ+MtzgxO4yx2MlT07H5zOoaERgPsOhfku5FIJrvtVYxr68R6Tka6m4skkh66+R7vRphKFYz3uxe02fXqxE9L0wQGAqQd67lDX02uo61ukakpiWjVClQrJI1XZ3v19eIhdlFkldZ7q7us/ODs2+oEUUX2WK/b3Wf9Tmj+V5bI9JzNIRDUo2I5psA69eIAKTqU1haWsbVvrJ2ODMwz2TLSr6jNcKQq0ahUBCYWVW/49SIuQk/BnuapMb1unxPnfTEaoRaoeaC0r305Lfx2oHX+MxnPsNjjz3Ga6+9xiY28U7DBz7wAR5++GEAkknmfMtlzPT6CExK9WP0iGtNHXK2zzDn9JO/O4vg9AKugJeZyJrA2GHXmro/1TbD7LCP9FwNyiQlM8NzOCP7c2OHXaStqvtTrZ5YHVLrUwmHwri6pPfJ6EEn+lV7bpMnp2N1yDcyx9LiMkkpUt0ZOejCVJa+JjZa9+emgri6vOjtGlJ0KfQ9N47Vt6J0N37cHatDQa80v504MY19l4XlhST8rgWCkdIzesy1Zh3L3T3LVGtkXHBgCmtNBnMRO7vRw+41705Xlxd3Z2Rt5ISbJHUSfc8NQVCqYa/Pd5SQ7GzxkGZTMd3rY/zQNDl7TGvq/lTrDPORdRVn5xzpdi85281YtxgYObCHXssAAQAASURBVOgkfdW7c/Lk9Moe0IAfV5eXyZPSuoGxKC1W+6RYz8qawPi8lJfIuHL8pAtDfjpBZ2QP68R0rO4HvVK+x49FavkhNypjKkGP9L3RsakULOVl6tTK2GqZME33VeBsn2Gs2b1hvseb3dLBsFTY8elyPP1zsXsO0rx5ulfqd1On3KTokpkbmMNcY5TWYidW1ryifRYk9WetWY3r9HwkD27Sc1f64ep8u7rm0ed5mYqswYwecpF/VmbsfTh1aiXfcwNzkd/qjv3WDIcOlV6JLk/H5ImVPusdDcT6IcDwQZdEIgNMJTrCwFizdJ3g7Np8jx2dZmkhFLMbW1pYRrlK3Wl1vseOuQgTJuiVgseOuMndZWXr/WUc+WbX2j7b7JLGfKtrhCmFjIJ0Fn1La/rs5MlpUvUpb6gRUZswV/cMM30RLkCnlzSbet0a4T49h8qYymhkvDHd68PV5cXVun6NcPfOYCo24LjExsir45EcRvL9uhoxsSrfpLC2zx52r1sjBl+ekvps9cq9GTniZmkx/IYa0f+3CTQZKSwthlf67DF3ZB/gjTXCOxIgvByOrRtGa4RvJJKX19WImaE59HYd6TlanC0e1MZUpiNzxNFDzjfUCGUqmEsNoFTg6vLi7PRG8rJ+jbBWGUhOTWJmeC6mfjR2yPW6mrxSI1TpyYRDYSZaXSv5Ll9Vk19XI5YWl1n0L0fa6479N6ytEVVsw3ZBGi8eei625jU5ObmGL/NOgiIcPT7yDsIjjzzC9ddfH/t7N5egVWzsg66xQPGlhbT8rF/o+hoL6B0GJg7NiDVICxotEhlGS4yEFC8+FiMS/2aQ4HXzz7cy+Jy8b2sUOz5dQdfjg5KdlQB2P1gVUz4RQckVOVirDDGm9FuN3Q9WxRR13g7U3lZEijaJo985LRS/63OVLC+FOPS1zrelPbsfrIqpIIjGL8wuShaBMtBYoPHuLTGlh7caWdsNFL8rl9EjLvqfnJCNzz3TTO5OCy2PDuEbfOsfLvu5FvLPyGS6Z5b2Xw3JfyBBNNxdTIo2mUNfF7tXZdfasZTpmTg5Tc9jY/IfAJruK2Fm0MfpP42KNUoLuU1mRl5xycdGP2JR4nOK+++KtiOh2rkqRpuvTag/2M+1MPyCUz4QMNekYdmSQecjw3Hj9oWfwscsSUlJNDQ0xMgem9jEOwGrT/EbMLFNcV7c+PJr7IwdccUIBnLIOdPMaAI1RpOrwT8SubaG2Ab+xh8QiPkfQGNSxsg3Isg508zoEZdwm8rfZ0dtSuXEf/YKxZe+VzpFNHbUHbOok8O2T5Thdy0Ij5cTQdWNBRgL0+h+YpipY175DyQIvUNDxVX59D49ivPkrGy8Y282toYMWn7VJ9xHE0HjRyInlyInjOQQVf8RjX+9Ythbje2flBSPDn5FbJzc+JESAjOLtP1i4G1pz47PRJQx/+Xt+b07P1fJ2FEXA09PCsXvfkBSJIqeMJSDuVqH4105HH6oS7hN9nOtDL8gPjfTmCQS5FuORGtnJF5jUuL3h4Q/m7XVyESrRzh+ywcLaP3tQNx4f9jPazwBgM1m45//+Z+5/fbbxb5gE5v4f4xXX32VM888M/b3GVyKWqHe+ANqqLwyj/ZfC85P1WCtMDB1XHDNSw1qtZKAJyRZAwVkP7HmswnFi17WSIzII4KcM8yMvio+1tz6sVJ6/jYq2VkJYNfnq1aUTwSQd66FnO0W4Xdtotj1QBXLC+JrQImi4ro81MZUjv9AbA1o+yfLCS+HOfxN8XdhIlituCgaH1W4EY2fnwwIj8UTQXqBmpoPOBg97KL/afk1L1OVjuJ35dDxh0FmB976h8tcm0755Xm4u2ZjVrpvJao+kI/WohJabwQouDCT3J0WJk5M0/NnsTWvmlsKCbgX6BZd81KDrd4Us9ET+ogxUhPfLojUzlUxapuawLh4f7DtFP+96QVqbI0muv8YP5/Hwq/gZgKlUkljY+Pmmtcm3lGoqKigs1N6ZxrJZKvirLjxhRdn4e6cwdsn9txlNhmZPOoRbo/KqiIY2bRHRYxcsfEHBGL+B1DplQS94jXPWmdgqmNGuE3551kxFKRx6qf9QvH2sy3kn5nJyGEnA0+JzeMb7i4mOL1I268H5YMThOMSG7ZGE6efHE3oPotCZVWx5do8Bl6axHVKfk0tZ5eJ/HOz6PzjENPtc295e6pvXKuUI4e621ZUj0TwesWwtxqN95SQpFJy+Bti48aamwtZmFui87fx937eLJo+WkpqWkpMFfGtxvZPlDN21M3Qi2JrTDs+Vb5G8UwO+gIVpe/Jj1lvi8C21cj4EY9w/NtW41ZfN4Faq9JDMCjepoxKHb6ROaHnBaD0ylwGnxuJGx8MB3mFxwHIzMzky1/+MrfccovYF/wfwjtOSen666/nkUceifyl4ALFe2U/E7XC0jm0zPXKb1LX31GJIkkhTFLa/fHIQvW/tAkRg3bdXwlhJAKOQPzOz1WiUCJM8Nnx6bU2YXLY+lFJ0np+0ofrlPwCjP1cC0kqJdlNFqbbxV7q0z2zhELifLjTfxoVJlCUX2fHmK/j4L93CBOz/FNB5lxig8jsnRlkbzVz7Cenha9/8kd9YoERiC5kvVlM987h6ZfftHsz8DthZnCesaPiGymJYOLQjDhhEBh5xZUQmQYkUlxallpowWn4BSc5TWacbR7h61d9IJ/0HC0Hvyq/ANn8H4kRvboeHcbwsTJGXxNbrAFQGVIxlyVzGrFnbNf9lSiUCuG8Nt0r2cacfLhfqOZW3pBPhkNHz1Mj8e915FKl78vFWmFgeN9UfHJlJH7LjfkYCnUMH3QyKLABGa2JfqdfqCaWXpovse9liFO7Fe+iK3wKv8nN0aNHUSqVhEJv46LWJjbxFiEpKSnWV0uooVBRHv8DGjCX6zEUpnHoq/IbI1lbjRSek0XmFgPHfyBfh4susZHdZGKqbYbu34/IbmoXXJRJ7g4Lo4dc9D8lv/CfvctE0QU2Jk5N0/Mn+dpqqtRScXUh82MBTvxIbOOi8Jws8nZbhTemDEVpJKcmyQdGMPzCGIYcrTBBCUiIQLH9U+VM985J+RfAVOs0aRaVMEGp7g4HMwPzQvcLwNvrFyb3AvQ+MUbvE+LvzUQx+PIEmTUZ8oFvEsMHnDHVy7cDieQS4Ni/i5Hyo9CYlFRcV8TgyxO4WuQXzDy9c6ToxKetGhPU3FrOVOuM0DMguvAShfv0LIvBJfnACGyNZlK0yVgb9ULPQNZWI/lnWLGUpwvVRDTQcE+Cm7MPVLG0uCxfoyP1ddfnKwmHiMmhy8U33F0Rs2iUhQaK351D4fk2oZportZhKEij8daSuH1Po9BwAVczXNpCd083d999Ny0tLXz729+Wb9MmNvH/EP/0T//EF7/4RQAUKDhfYM0rat+WUZEmRKrZfq9Edp3qmBEiEO38WMWKJZNA/I5PV6BQwoF/6xCK3/bJMpJTkoTXRWK2KF8Xa0/trYXocrQszi0JEbPMtemkpqeQVW8SJimNn3CRohJ/Vw294GRI8FBM4UVZWKsNnPpJlzAxa2ZgjsU5sXdVRkUa+Wdl0fmbfmHSRccjiZFXEh1bJIqJE9PMT759u7PuTm9MneatxuxAQJj4DOBum8PdlhjZK/88K4a8NE79d79srOvkLMGzF5larU4qg+L3ZGMqSRfa7Gv7ZWKbwwPPTGIu0TPysti8ACS7NLUpVT4wgmhNFCXt1NxUSHq+ltZf9TLTI1+EivZmkd1opufJMSaOTMvGR4lZQ69Oxq8Tka8ufk82WXUZjBxwMvCM/JpXtCYuB5aFamLF1fmkaJPpfnI0bs1tVJzJcLiXaesIR48eJTk5maUl8THzJjbx/wo6nY75eel9X0Y9+YqS+B9QQc5WM5YqA0cE6p6+SE3Ju3Ow1Wdw8sfye0a27Rk4Lspm8sQ0px8fk90Et2014ojYPQ0+I78/k1Gpo/KqfMaPu+l9Qn6+rMlW0XBrMbND85z6b7GDSaWX5lJ0oU34/W/dYiQ1XXwcNdXsxFKqFyYoQWJ7Lk33luLpm6PnL2LrRq4uL4b8NGGCUsV1ecyPB4RJI8GpYELrLqP73ZK659uEwVcnyZpbFiZcJIqBlycx5G8sSvI/xbHvJbaGJUqei0EF1dcWMHZ0GlerfJKm2jzoLBrZuNXXb7qjFGfXjNAzcOihxMbhE6c8KJUK+cAIrDUmVIYUYTKmvkiN4+IcMuvEaiLArk9UsjC7JEyE2vGpcpaXw/I1OlJft3+iHIUSDsod8IjEN3y4AkCyaBRA5VX5koiIwL3QZKuwbjGgy1LTHOdAiEqh4gKuZqjkFD19Pdx11120tLTwjW98Q6hN/1fwjiIpFRcX09srLdSmoOJsxWVCnzv09U7yz7cKbZYD9D47itGRLh8Ygad/LmYjJoKAZ4HwkjhhJ+AOkqRSygdG4OycwbhKYkwOR37YTfW1hUKb8SCRNNyn3AmppCSiOLPzc5WMHnUJkQkAdJlqKT8JiObEe7hfj5ztZlSGVEktS+A7olZaohNvjYWYJZ0Ics80U3BOljDhAqD94beeIb4aiaou7Pp8JaGlsBBpJwptjhrfqODphEY9udutwvfZUmlYI/Eoh0QX2DSmVKmPiiqcaWH73eXMDM/LqvMAHP5WYgtUx7/fkdDzO/jyJKl68dfF8MEpCs6yCdfcyZMujPlpzPaKEenGjk5jLtHjPCFGmup7cpjqD5UKPy+tD3dTemWRcE088O12shsyhO5tmaIGp8/JVPhFAPR6PS0tLeTn5wt91yY28b8Jt9uN2WyO/b2T89ApBOxy/ND/4oSkFCSAiSMeMusyOPUrsYlJ3wvjWMr1DL8gRpCZPOnF1mBi4oQY4dXT5yO0EGK82SMU7273sTi/xNBr4oSg8WPTzI6J1RiAQ1/tRGMSHwv63SGOCE7cKq/LQ5etESY3aExKklVJa+zM5DB1zJuQglJalhqVPkWYpFR3h4PhfZNChBcAjU2NP4GTxts/XY5CIa4s5Dw5K6To9GaRiOoYRIh9jSY6/zQonCM0oNGIq/NU3ZDP3ESAwWcF3rUaFRqzCvvOTKH2JHpaze+WLF8TWdQquCiTrPoMIWJloqoCrT8fSEhtbeKIB0uVQVIKEoEfFjyLTLaLk/qD3gUCM4vygdGvcAdZCoqPHb3DPgLeBflAAL9kwzJ5Uqxfu1rmGDRNMvyy2ATK3l3NpHYS97yb73znOxw+fJh9+/aJtW0Tm/hfxvnnn8/zzz8PgAotZyouEfrc8R/0kLNLnFDT9adBMmtMwgpHk60e1HrxDf/ZUR/JCaxhzY8FUOlT5AMjmDgxTWaVUbj9Jx/up/LKPGHlKNfJWY4NdiSkktL3hDiBYtsnyxg/6hYmKenzNKRokxNSjkqECGLfZSUtSw3qVESSGrXS6viN2PtZbYRAQOjSgESaqnxvASOHxAgXgLDCzpuF6G+NYvsnywmHwwkdAlBnqglMiiUpoyIN+y6r8KZZVl0GKWniazqJnIQH0FpUpGiSE1IXarq3lLlRH50Chx6OfT+xzcTm7yX2/PY8NUq6TXzcOLRvghKjXYigBDBxYobMLRnMDIpJRk6c8JJVn8FUq9i4feTlMYyFOgZeEXteTj7cz5ZrCoRr4uHvdcVsP+VgVzjImDAxqXiO5eVldDodLS0tFBYWCn3XJjbxv4lgMIhWq40dytvORegVeplPAUHofnxEInsLwNsn2VT1/03sXTJ+aJrsrSaGXhIbW0x3eVk4K5OJ42JrLr4RH4v+JZwt8qRJAP9YEL87yPAh8XWI/hfHWZxblg+M4Oh3u1HpxceOQS8cFz0keHEWGQ4dzT/uEVM9UUGKLhltpvia18xpH82nxfcbMxzp6LI1wiSlquvzGT3qwtMlNtZXWVQx2zkRNN1bijJVyWFBMou3L4C3T2xN9s3AdcorpBgVhW17BkUX2Dj9xChTgmu/EFHDEfya4kuzCc4uMvyS/PhdpQJ9fhoKBUIkJRFy4RoEITU9GX2u+NjFtj0D+x4rRwTWfvv/Jj6vAej5yxjDL08Iq615+wLSweMnxPvQ3Lif6R5xVTCfM8iSX3wsODviR5kAW8bV6SWUAMdj9KiLmQGx59c/FqT3b6PCSlN5p2uYTvMyOTfGN7/5TQ4fPswrr7wi3Lb/13jH2L3p9XpmZ6XFfhNZNCrOjBufvTODoguzhS2QtDlqam8q4uQPO4U372tvL+LkD8UVcxKxDwIwlGqZ6RZn3ogqRUWRsK0dkk1U+++GhckiOz5TgTJZIawCldmop2Sv/W2z0kILOz9aycDL44y9JjYQg8SsonZ9rhJFskLcsuOTktKXaHzumWbyz8zk9F+HmTouvwGmc2ipuiqPvmdHheIhMbs3gIZ7ilmcXxYmK23/ZDnLC8vCdniJ2po03VeCypAqTMZJhAAVxbaPlRGcX0yoBiSC3Q9WsTi/JCw7WX1zIXq7NiECUs0thbi7ZxNSnnq761ii8db6dOaH54V/c9HeLBa8S8K/ufEjJSzMLQn37d1fqGLRJ3/ffGEfzeoX8Af82Gw2XnjhBSoqKoS+YxOb+N/A4cOH2b59e+zvPexFo4h/qmPbx8tIVicJW7XW3FqEUqEQVh+yn2uF5bDwxrQmV4MqDTxd4l5FaQUa5gfE4/UOTUJ2YYna2uVfkEmaRUW74Gn1tAINdR8sSsieYdv9ZaSkJb9tMsp1dzhQpigStoQVJXXoHRqqbyhKSMlq94NVLHgXOfJtsXFO070lKJQK4fjqDxWiTFIInwhK1O4ta6uR/DMzafn1oBDZKmuHkaLzsjn9xLAweWr3g1UEPQsc/a7YWG33g1UsL4SEiVxrLBsFkHOmOSH1sUQRtSRse7RPuGbsfqCKRb/4WE2Tq6HiPTk0f1/8WcjaYWTipCchy7X/a3Ws+uZCWgQ3UTU2NbU3FXLyhx1CBLmSq3LI3GKk84/yBLzm8Gv4tTMsLS2RlZXF4ODbe4hjE5tIFCUlJfT0SPXBQjb1ij1x4zMq0qi8uoDxE256H5cnSquNUHtbOSd/PiBMhKj6QH5CZJdE7INAshBKxK5Ka1fjG05g3q4Ga5WBqWPia151txfR+fiYsG3S1o+WkqJNYf+Xxd7hhmI1W6534O5+e6y0QFo/GXxlKjHrqgSsohJdw2r8cAlqi7gNrqlKR+lldnqfGRO6d+pMNVuuy2Pw5Ulh0kWidm81NxWytLAsbKnYdG8poaWQ8Du/8Z4S1CbxHNXcXEi6Xcupn/cKPUNvxpqs7k4HoYVQ4uoBgtj1gLTuKHoPyq7KxbLFwPGf9grXgYpr7MxNBIQ2FKP4v1bHDMVqgvMIP585u0yQpBC2t6y5qZBQOEzrz8XI8Ts/W8Gib1novr2a8heCi0GsVitPPfUU9fX1Qt+xiU38b2B4eJi8vLzY32dyGSpFfFJK/R0O1BmpwsoZpVfmokpPpkXw+bLWGUjRJTH6mlgNUllUqI1JzJxOYP/QrmJuWJy8kmh8orZ2mU1GjIVpdAmqdKssKpruLJYIDn8U+0z9HQ40FpXwWmWiKL/GjkafKkyaikKUSKTSK2m6r4LZEZ/wO3n3F6oITC8IKwbV3FJIsjpJWG2q9MpcUtOSaBWcJyRq92Yo0eK4IJuOx4bxj8nnyFCipfyKPPqeGRcmKe3+QhV+V1B4rJbo+s8ay0YBmGv0FF1o48j3ut4WW7OoJWHbbwaEyW47Pl3OUiAkPFZTWVSUXZad0NgxURs0kJSGRPpFFG93HSu/xk6n4IEGlV5Jza0lnPrFgNDzbz/bQt6eTLoeG5YlvHWHT+JMG2FhYYG8vLzY2sL/dbwjlJRSUlJi8qAOqnEo5DdyZ07PED7fxtyY2Es6Z7sJZbKCrB1WoRNQlTfko7NpKH1fLt2/lX8hOi61YWswYSzQCW12Z1Rqqby6kODMgjCRo/aGQsLLgrL6QO0tki2ct3dGSMkne2cGKkMqZZflcFzQhz3gWSA1gdM6k8e8TB4T3yQruSKH00+PCqsoFZ6dhTJZQYo6sa4vSlACybrNXCOuZDXZ6iGjSCccn6idmbUynWRNEvoCnTBJKVFoTCpUenG+Y6JKRFNtHgx28Zy2/6oXUlOFiSuJEpRAYtQrU8UZ/gCF785i8sSM0PeJLk5FMdU6jc6mAa0aoQdCC+m5WrQWtXB/ilpJiiqplVyRQ2aNkamOGaE6qc3XsuW6woTIWaWX5SVU97IbzRBG+Derjamo0sVP9S4vhPBPyysHaBVa9gT3MlbZTmt7K5WVlfz617/muuuuE/6uTWzi7cKjjz66pi9eoLha6HOBmUUSMaDSZSVmV5W/2woKhElK9TcVolAqhCfB2z4ukXWav9cmtDlecW0eprJ0hvc7hdRjNLkaCs/JInerWVi1KLvJRFIC75qkJAgthIQVSQDhtoBEfsgoSBO+BwDqjNSEFEejEFWd8fb6af5JH/jFSRbzY9JJRlGIEnWi0GVrEpJGThTGIh0pumT0BWKKUBMHPUwc9CT0Hb6pAM428Rx1/K4fd7v4eDkRghKAKj2FpFQl2btMjInKlmug6FybkOVb2y8EVYtWYdG3hM8lvtBR8Z4cNBYVpkqtUK40uRqKL8ohf0+m8Lho1+crE6p7UYvb5p/0Cd2TmluLSM/RoFQohOpAxbV56O1aii/Lpudx+YNDOdsySEpVYm3MFKqr82MBwhVhfKPyJ+oaFHvw5zlpHjrE0NAQWq0Wny8BKd5NbOJthMlkYnpaOkQlZK0L+MfnCS2FmBdcoLXUWUjWJJHdaKDvbwL2RBdnYSzSUXZVLl1/kJ/L5ewyUXiBDXNZutBmt9qmpuaDDgJu8Q2UupschJdDko2cALbeKdW42dGg0Aa/sVRDmk1D+WXZnBA8jDQ/GUBrEQoFYKYnkBAxvODCTEkdRXDJImtrBsnqJFQJWKaAOAECpPUcY6m4JcX4cTeWKgFligjcbXMcbBMnJRvyNagMKRgL04RJSolCl6NNyKo9USWi8WNuzGXiOer+Yz+oxYlliRKUADQZqQmdEAepDniGfEIknP0JWNwBTJ5yk1GsI0ncARtTmR59fpowSanpvlJUhhQ8/T6h3NrPtpB/VibO1hmhOqk2Qv3NjoQOS2y5zkEogbpXcJ4NwgiTlNKyE5uTL/mXCXjE1DLPWLyUyS1dnGw5SUNDAw8//DDvf//7E/q+TWzi7cDqQ3kKlJyvuEroc/POIEkq8SJkLEojKUV8Paf44myJZChIUqq7SSKWiFqG1t/hQJup5uh/9giRJwrelUnuNgtDr04JKf6o9EpK3p1D3m6r8Hswb7cVlSGFLtWIGDFDAQv+JZyCKlYAx/9LnDyksqgwl6YlZJWmy5IULxOFqNJR0Bvi6A96YEFcCXn69BwzQ+KqM6d+0i8cC2AoSiM5gWchUejtaWgsKjIK04TIKDOnfQnvN870zeHqFt8rbflVL94+8fFyIgQlgBSVklRtMjmNJvH+p4K8XVah57P3r+P0CqyNrUbQs0jAK97vHBdkkZ6rxbxFL6QgpdJD5XvzpYMDgjVj+yfKUaqUHBA9IH1LIek5Wlp+0YN3QP6elF6Zi7XaQIomiRGBsVT+hVbM5Xoce21C9pnmGiOpaclYt6Qz/JJ8e/zOBUKLy8wJPM+lilpyDAWcmtlPb28vRqMRj8cj+7n/1/g/r6SkVCqJNrGeM7AobHHj88+34ncFxMkYq+2XRK2Yot91UaawfRBAw13FCdmMNd1XwuknR4VVRapvKiA4u0S3wMQIJEJA0dkWWn8hfjLOXJMmbIGUKByX2pgdnhe+dxoLNHy4SvJylPOKfJPY9rEyUtLFT7b/b8Ban47fu5yQalaiSFRJKWFowb4jMUWetxtv9702lEoEnETzWv2hwoTt9ESR6PNsrkkjs8aUkMrZ9k+Wc+pnncKWhk33ldD/wphwuyrfn4ezzSNcNzIb9cw5l8SJh/+Dd0TlDflCVovPhf9AmBAZGRlce+21fP/73xf/kk1s4i3GP/3TP/HFL34RACVJnKe4UvYziZwYAEBDQqogUaQVaFBpFcJEiKytRnR2DT1/ErN/sEasQo8LjtU0JiVbbiwWXmAGyVptcL8zIZUTUULDm0HVBwpo+6U4OSOq+NP8w96E7NISwe4HI6eZBE9w/W8ge5eJsePuN9VvRfD/s/fm8ZFVdd7/uyqV1JqqSi3ZU1WppJKqytZJ74FmB5FNaKBpaJpFQEAEFVmUZZ7n9Ty/mXmGcRxHh9HRQcd1UAfQURxFHdzofd/S3emks2+VpbLVkvX3x62qJE1355w4zaDm84eSzjm5937vOd9z7jmf8/nIKiktBWavHo1WvP9ccOih/qkg0X7xk2uyWPNMORptGts+e0z43TnrzBgcOlolvvFkINufg3e7Of3LXuH+Vn57IagQzsn2ShOuDTni70AP1XcVC6uEgaKC1/G2hHz5EseInFVWSGNRQl7fbCeH2A5AZWUlhw8flr/YMpbx3witVsvEhLLhW0092ar885Z31llghqWRMXQIk10A8i+2C290A1Te4+HIN1uEy9d8xEvr292EG8U6ve+WfJiFxh92CZXXZevwXO6UUiyy+vTC9yOLossdRAbiDIhawuqg/umEUq+EbZgMah4qxpijV8bKCzO1k0aW38hUdFpKnUYWskpK0tBBTmUWvXvEFdwvNGo+4sWYrbtg6qm6bB11D3uJh8U3mkAhNF8oVTHZ/mwo1FG4xi5EOEqi7rFSjn2nWZgIVv1gMR3bQgweE9s89t6Yy2h7VDjnW316JqKzcqpzSUiOEb5b8ml8Y/F8/JvZ/2CSCSwWC1u2bOHll1+Wv7dlLOO/Cd/5zne4++67AdCQwWWqmxatU3JDHk0/kbAV1TJHuJn/34tVc2rRZ2mEVU4spQbsZWZh4oG5WIf7slxhlROtGQKbvVIkH+91ufQfHRIiA8y/Lxnyhwx8txQIKy7BnOLPoX9tklJekcH654JE+2LSyksXEtkrrfQdCV8QBR+QV1JaCvR5WjKMcspiFxoX+l3XPVaKLiuDvV84JqxEZCk1YMrVCxFwlgLZ/lx6Yx7tOwaFSV2uq51ojenC34OmQi3F1+RJEfGCd7o49m8SasJrsujZJTHnX+IYYSk1oLdmLGoDNzI7wi7eAiAYDHL06FHxe/sfgJwMyHsMlUqVIijVc92iBCWAwnonvhuKFi2XRP2TQdZ9JqD8IJC/ah8poe5jJQBCBCV7lZHyzYUAwgSlwsuVY1h7v3BKiKBk8Snek0e+0SpGUDLM2ZeJEpTK7igEA8LEgcLLHax/LoDBJeGLWWvDd6P4u4v2Q8fOfpoE/XwN+TpMXvH7ARjrizIVFffPrXnYS/0LQYXMIHRTCjkmu078xFTp9YVUb/EIl38/onpLMe4NOVKKUyse9irtUBArnyhl/fMB4fLD3RHlXcs1EXLWWMT+fmOEgcYR9nxFgqB0vweLy4jngznCdWofKWHNU4ufvIW5/lx6cz4Gx+LDwcDh8RRBKSsgFqhdn1UISsk8tRj2fuEUA4fHMeTrcK7IXLR8w3fbCR0YxZCvo/Je96Ll+/aNEGmL4FyRqeT+xW4rkYJLPpRH/aeCwu8icFcRtpLMVP4/H65UbWRV3SrGx8f5yle+wqOPPip0jWUs478bjz32WIqglIFOiKAU3OLC4bfgvT5P6Bre6/OofyqoWLcJQG9TrGOtZYp9kcjmfnCrG70NeveEhQhKzjozehuE9o0IE5TMXj3RwRlhgpK1TDlt3vBquxBByejW474mG0CY0LDmqXIq7/cIlQUouTGPLK+J8k3iY+vuL5+k72hYmDDhlJjfAKCHyfEpwi3iBNr654OseMQrXL789kIq7/MIl89bb8N7dR6BD4nPUd+PqLyrmLKbFx8nk8hZZWXV4z7h8nqbmvoXggTvFrxGVHnXo71yG8Fmrx69TewTtvlnXbT8uleK8OK7rpCC1eKSGGavnnWfDgi39cGGCOih5GaxnHns261Ee2KYvWKKFSd+0JEiKInUGTgyliIo5W+wL36BKCmCkv+OIozuxa+RJCjVPlZCxT0C7SPxvtZ9OsD658Tn8iUfyKfk6vOTOwCyVQWs4wrcbjdHjhxBrX5fL4ks408cGo0mRVBaxVWLEpQASj9YQOl1BcLXWPdpP2ufSaiRCwzfgTuLqHlYGVdFCEqGQh1lG5X7ESUo5a6zAXDwK81CBIJMt6L00fhGl/CCdKZbR6wvJkx+KL4+B3QIExqcKyysfcafujcRFK7LpkxizYsYNP+ih6b/FCRlWdVS9wMw2hNlYnRSmJjgv6OI9c8H0VnFc2fdo6U4V4itmwCUfaiIqrvF53bvR5RfX0DpdfnkrMoSrhPc4sJ38+I5IInqBzys/4z4OBk+Paa8a7kmgr168XUZgFhfjJ4Dg+z9qvial++WfOzlZoqvFV/zCt7tYvUny4TKJvtz0eUODIWLP3ikI5YiKFlKxAK17+VTxMIzwn3v0L+cZvDYGDqrWGybf9xD6MAwOiv4Ny+eP8KNUSIdMSwlOtY8XY7OKnRb5F9sp/7pIJ5rxN6F55ocsquy8At8S16quonVdauJx+L88z//M0888YTYTS1jGf/N+NKXvpQiKBkwCRGUPNfmkFtnw3vd4vuSAPkX2ah/OkjhpYlvysU2n7Ww6skyLKUG4qG4EEHJd3M+WrOa4VMRIYKSpdSA1qFl5HRMmKBkKtQSHxFXITK7Fau85p/2CBGUtGY1RZcp64KihIa6x0oJ3ukSKguKul92lRXfRvF588FvnaZrz4AwQSkrIO6OAoAWYkNxhiRUjtY+U07Vhz3C5d0fyCawWTxOllIDvusLKL9JfG3w/Yia+7z4N4rPs61lRlY86FVIIiLQKmsUImNxErGhOCNdcqQpfZ4WrUPspk79tIPmt7qlrNICt7sp2pAtXF7r1LL6U+Vkr7QKlR85HQOt0g5FcOrH3cRDcfR5WqF30faLUOp70FS4eIWxjniKoCT6DEmCkufanFRuOx+SBKXKrS6xHJVIL6s+Wca6TyzuGpZE4FYXxdcsvpZoVpnZwI14i70cO3aMNBkZ0v8BvG9X5FSqOYuEeq7DoBLb4G79dS8Nr7UIXyc+MkEkJM7s09ky0FoyhMv7bnBh95mFiQ9VH/bgujgb1zVindjgUFOx2SNMSgBY81g5K+71oBdcfzfk63CUmVnzUfFrZBWbUKWpiPSLJ+ED32ih9deLW+3NR9tbfcLEqYpNLqq3iD83KAQIGanA6fgMszOzwmorBSvtpGdqsPvFF2w6dw/QdzgsXL76wWLqXwwKl18K1jxVLkUIav11L0PNoww0iW9CGrJ12LxiiyOQfBfCxTn5vQ7lXUvMG9Z9JkDJB8Qnuide7ZD6+0e+3kL3vgFa/lO8X6RnakjTiqd2k9dAdpWVintKheusebqcwG3ifcm5IpOKzZ4UwVMEKz7slSItVm5xY3YZMeSLLQzZ/BbUGhV5tWKLht27h5iZmqVP0Ne44bvt9DWElXcuAOt+D+oJDTMzM3z5y1/mttvE7LWWsYz/LjzwwAP80z/9EwAmrFyiukGo3rHvtNFzaJDmN8VOlfUeCTM9McPAQTFVDXuNk7QMNTafVai82avH6jFSsVWcXOG7rpAVj4iPYXUfK6VyS7EwaUCfqyN4RzGrPi5+T8FbiyhY6xAmYwBotGnozOL2lE0/7qZrz4CcClYUTr0utlEG4Lu+UGqOShR2f+6kkD1XEjNTM0yMixPKs0oyMReKM5LDJ8IMnhyh5Xfi6o/1zwdZ+bj4uCoLfa6O+heCBCQWR3qPDNH2e3F1IHvAQoY1HXul2KJbdFCZA89Mik++dn/upFR70hfoqdxSjH9zsVD5/kOjdElYJAO0/KaX/V8St5iZDMdRp6twlInP5dc8Vk5OVRZ6m1h5fa6Oyi1yOWTNU+VUbilWVIkE4L0+D89lOcKkRb1Nja0sk4rbxRc/9VYtpjxxe6Bof5yIoAQ+wMkft9P4U7F8ZlLZKGytBGB2dpasLPFN5GUs478LaWlpTE8r49fF3IBVZRWqd/LH7Rx/XVwFcbwvRqRXfM0rs8CAwSa6Wg8Vt7twVFiESStlGwvwXp0rvBGODqru8QqTEkDZxKq6x4suW+zbUGdVbMFXPyp+DVuJibQMNZPDYrZHAPu/dJzTv5KzWejZMSisuFK+yaM8d644C6X5xz1SqqAzkzPMTs8Iq8Zk+Y3oHBnY/eLE9fbf9tF9QHz8Lr+1QJo4JYvaR0ukCEGt7wzQfzTM8ClxxTOLx4RNwvJtMjLNzJT4vKv1F33Ku5YQq1j9yTLKJYj6zT/ukfr7jW900bE9xOmfia956SwZaHTimy06q5qii7MJ3ir+HCsf91Fxl3gOyXQr9pUrHhFf86p9NCBFWgxuKcXmyxQmQ2WVWNDo0rBVCpDQgcEjQ0zFpuk7JtZmW97qpWtvP8cFvyUt+93o45lMT0/zxS9+kU2bNgnVW8Yy/rvw0ksv8dGPfhSATLKoV10rVK/lZ720b+8TVisaODHORGSK0FEx1USn30KGQUNWqdieh9ahxVlppWKrOJk3cLub2gfFy1dudVF9XwmWUrF1E60ZKreWUPeY+BpIYLOHooudCjFBEOnGNHQ28X3Zru2DtPxXj7DrDABx5Z2LInCri1USc1TisP9LTbT+XHxtZnpylsmI+JqXM2jF6hUnTw23R+jZN0jndnH147VPl1MrMeYtBeueC1B2q/i+W+f2flp/LR5Xmy8TQ64Op+i+bFyZB0/Hxede+7/UJGWxpjVD7QMlBG4We+6R0zE5BR+g6add7P+quLJTfCSORpuG1SMuNlH7QAkFqx3CZKvkc9c9KJ5Daj9aQvV9JWjNYvP/3DVZlF6XL96mtJC/yo7vFvE1L2OuHmO++JrXaEeE8T7xifOxV09z8sdi+Uyr0lJwugKAmZkZrFYrIyMSbLb3EO9LuzdZglLeRVl4Ls3lwFcahC2Fiq/P4fSbcoSYFGQsf2RtrQxQe4+cLVztYyX07B2ke4dYQsquM1Ow3sn+l8Wv4flgDn0Hh4l0vT/0n8s3F2L3mWn49xaGBBUGnCsyyVvt4NBXxewJXNdkYy4wcESQYb5kSFpIySJwVxFWj4ntgj6dIG/3VvtYCRnGdHa+JL6pIwu9A+H+vVTkXZRFdmUWB/9ZbKD2fDAHfVaGnP3Z0+WkZajZ/pfi7+NCw7exQGrCnndRFjmVWRwQjBPI21eW3pxPbHhCKncWrLTTKbMZucS+lxUwoNaohAmSKx72kpGZLkR43Db7c6a1E2RkZHD11Vfz2muvyd/gMpYhic2bN/O9730PADNZrFFduWid1U+WMR6Kc+xbYptkjupMosNTUjZnKUha/xRe4qDjt+IDhuuqbFRqhO2dbAED7svzpOzIah720rk9RL+ovYceSq7Ko+nHEpLiFxjrnwswOT4ltZHlv6OIka6IMFGk+oFieg8O0buIdO0fCr0NooIW70vBmmfKiQ5McFjQEkva7k0P6z8ZoO9w+MK1kSVabsmi4h43g42jdG8XeyHVDxTTsa1XWGHMWWfGd10h3fsGpchvFxJmrx5zoVEqT614pIS233QLP3f+BjuOMrOULVvNg14OSsiQy+baP6RNua/JFs7RepuamofLOfVmx6I5Nzob5aDxN4yNj1FcXExz8/tHcn8Zf9pQq9Up1fCLuQGd6vybzragCd+NhRz855PC5JCiyx20L9VeXdYWbr2NLsE8DlB1r4fD32gRLl95j4f+kyP07BC7htWnx3VpLof+RTwH5q+3MdoVuaAWYzJwX51NwRoHx99oEyYpWX16CtZnc/SbYvPznFVZ2HwmGv7twlhtLYBkm5JB8fU55FRlsePzx4WvIWv3VnmPB70z44LZ7oFClouFL9ifBxQFsJzqLCnVM3O+Xsr+bOXjPtKNaez4fxdufVAWxdfmcPrXvcLtwxY0UbDOIWUNImtfWXS5g9kZ6PiNeJ7OXWcTzoPAkvudoVCHzqwRzj2BO4swZuuEvhP3zf6OcW2Y9PR0rrnmmuU1r2W8J/g//+f/8L/+1/8CwIqTVapLF61T+0gJsfAkDa+KuZCYi3UwMytlc5aChN0PgLPGQuj4sHCd3FVW0k3ptP9ajISyFHukwGYXfUfDDBwW3wR3XeGk7b8kbMEvMNY+Xc5kZJp9L58SruO9LpfY0ITwPNi/uYjQ0WGpOC0FWjNS6jqyWPm4j9hQnKPfFusfS7F7W/NUOf3HhqVIPtKQ7HtLgW9jAaMdEWEyUfmmQnr2DQrb1pndWiq2eOneNyhFsLuQ0Dq02H1Gqe/DirtddO4aELa7tFeYya21CrdBkLdxy15ppW9vWLj8H9Ke8i+y0fWOWLy0Zqh5qJymn3UzcHTxjr5N/1MikQhut5sTJ06g1YqTQ98LvO+UlOYTlK5S3SakoGTzZqJKU2HIE2PzVd7rJn+lg1JBGV1Dvo76F4Nztj0C+aHqwx5FDSmC8CZ7wQY7RMRt4ZIqJvtfbhImKGFQ7I5ECUpJe7SW/+wVJijVPOwVVjMBxRqu/sUgJR8Ssz0AmJmeZXZmVpigBBA6MCpMUALIW2GTOmmPASlbrhQkSRJrni7HdaWYTQ4oii4yBKWlYP/LTdIEpdWfKBOywkpiKQQli89A3kXiJ6OL1mdjFDwpBUq/kCEoAUxFp5mekJB4AupfmGdLKYjg3S5hG8EkQUnUkq37naE5gpJgF0naV4qqL536YZeSOw2IvcMICkEpYaEodF8RwKDEd8XDEidQbvNQ/iFxyxytJUNY3ape9QGqg9VEIhFef/11tm7dKnydZSxjKbj33ntTBCUrDiGCEkC6XoNR8EQEQNlNRdTcLaZ+AonTys8FxDe19aSsqUQ3zfPWKzImbb/sk9j8VuyahAlKiQMUB/+5WZigZPbqIYow+SRnrZXy2+Vkmdd9Rs5GCWB6YoZJCcUigOPfaxdXstGDKV9P0XrxOU7eepuQ3dSZkCEo+e8oovYxuRNiu146IUxQWhKisP2vGqQISu5rsln9pMQJvz+ATCKq3gNgcRspXCcuc3roldPCRB1QbBxnZ+TO5JRuzKf+xSAOQXsTSKg8CdoIjjRHU3lKtP0e+HJTyipOBF2/G0gRlEQVm5IEJSHbN+ZyrecDOQS3CJwuS7SpwOYi6l8ICt9X+e2FFK5zUrpR7NvdWGhErVGR5Vt8HqxX6akZv5SiwiJOnz69YC1iGcu4UJAlKAFklWaSlq7GkC/28eW9MRfXhhxh6yidFdY/H0zZtolsavvvKMJ1hTJmiy5AJ23eRAlKSZuiI99sEd+YT1i2iRKUkhZQXdsHhQlKwS0uKbUie3Um9S8G8d4oZhWTxMz0jDBJAJTnFiUoARTWO4SVGwDQKcSKJUGCKLHq4z6p65x+s1chxFxAftmRb7ZIE5RqHvbO9SkBLIWgZCjUSVnKFa13YnYbhC3fenYMShGUACZGJqVUBuAMW0pB+G7Ox1knpn5w+mcKQUlUhWjw2Njc5rxgrJL2laL2au1v96cISqLvMJkH6x4tFbuvGKBT4lv9oPi3eM09XsollAMMTh3pBo1Q2TrVBlb4VhCLxXj99de57777hK+zjGUsBS+99FKKoGQjR4igBJBh1mBwiq95Be8oJniXxNryZhfrnvWLb2prYcVHFGuq0EExgpKzxgJa6NkTFiYoac0L7ZFE7gug4dU2YeJN0qJJlKBkLTNScoP4viEoFnrrnpUbVyYj04otqgSaf9ojRcSwlWbiulh8zcteZRaytDoTMgQlz7U5iu2ZBPZ+sVGKHLIU7PrsCSmCUu4qq5SaF7AkQkn+epu4RRzgDFooWCs+rz3x/Q5hghLASGucmckZZiT2GwsvdVD/QlDJEYLQOrTCVnfx/niqX4iqpR39dptCUBKM7cDRkVQb1AoKkSYJSqLPnSQo5a7JElNgSrQnz7U5rPtMQFhJqugyJ8VX5lF6o1ie09p1aHRpZHnF+DD10evwuD20trai00n6Pr8HEJtBvkc4k6C0KBIqGEe/JZcQj3yjlaoPezgl6GWfblTDLERD4lkrs8CAKVdPm+Cm15qnytHo0xjujDLWvHgSMjjUrHjUL6V2U/OwF2O2jqOvtgirmVRv8TA7PStMcrH4DBizdQRuK2TvF8RYxxPDE8xMzdL0C/GNlsYfdNKI+IdyzcNetOZ0dv2tuHXbzpeOY68Sl7EL3OLCVpKJSo2wSte6zwSYnZ4VJvhYfAY0ujQsbiMgyH73GkhLQ/idLwkGyPab6dsnPgNKz9Rg0YjH13tDLrm1Nk692SF8nYrNHphVSDUiOPLdVmYn5Fa2yu4oxObNZMdfi/WRff8ozsZPIj4yISXraXCosRabMOXphWPlu70Ap99C76Ehmn4k1hfXPF2ORpcmrPyQFTAQuM1DdCAuvMG/7uMB1BqV8DssuTqP9EwNgVtcNHxHYGyIwOzMLNMS9jTd+waIDYjL+i/o3wLqTZYDbvSzjYwR5rXXXiMtLY1//dd/Fb7eMpYhik996lN885vfBCCLbFaqLlm8UoI0tO0vxU+/AJz+VQ9p6eLc+OmJGWamZ4WJEsHb3GRY0ym83EnH2wLjox6Kr8qlaIOTXS+JzQ1qHytBb9Oy/2uniXaK3Vj9p4JMjk+x++/FNjV8txbgDFro3NkvTJxyX5KjWB5IqJREQ3FUkl8BMva3AOue9dN3ZFjYCpAo7H9ZjvBcfGUuzIq3x/wNdjyX5tD22z5hMpu5yCBlKQGKclh/4+gFVSIye/VMxhFui1aPiXSjRkpFas0zilWfaB8p3ZhPTmUWaelpwu/9+L+3SJGOQPluGuuNCSu5yZL1O7cNYveZmZkUn3tVbioi3aRBn6sj2iM2l1z/XACVSiXcfu2VJspvcRE+Pc6xb4s9e0ql67PHhNqjLWDAc1kOOdVW4UMteSttqNTi5J7o0ATWmVnQiyWtEz/oQHNPmrA1YP+hUfoPzYvpIpfRq/SUd66lHeXgQSAQoKHh/aN4uow/LWg0GjmCUkIFo+k/umn6D/H1kuYf96A1pdMouOaFTsfs9AzRIfE1r6zSTKzFRuENphWPlGBwaokNRMWURnRQ97GE2s0Xxda8/HcUYSvLpOEHrQwdFzuFW3OPl9mZGWHVF122DqvXRNCaIXzSfjo6xVR0mq6dYaHyoFhztf5C3LLCv7mIzDy98JwTYO8XGrH6xJnFnktyKFjnIN2kUWy9BLD6KYUgvfuzYvels0KGOR2ry0Q7YnM1Xa6OdC0XVgVLBzavSYo0ZnToyBAkboCy6eW5IpfmX/UIk/Jq7lE2FXv3iK2XHPu3xGEziVB5rskhp8bKTsH1VBmVtCQioRgzMvvCOnBWWbEWmwjtE7MnK7rcQdHF2fQeHBLOpysf96E1pwvP1XS5Ouoe8jLeFxNWaF/9qTLSDRp6jwwJvZf8i+3oHBn4by7i+KsChyZjykHfmQlx0n7rb3uZjomvkS1QJBNQb8o8WoR9tote2vne975HWloar7zyivD1lrEMUbzyyis8++yzANjJo1Z10eKVEqShnYLfwEk0/rgTrVU8509PTjM9NStMkvBelYshW0fhOoewApvvxgLcV+aw53NiY3DFFheWYhNHvtUkrAi17skAE6OTwvsdhZc6cG3IpmNbSHgO6b06D11WBh2/7RYm34y2R8gwyS16ySgogUKECh0NS1m37f3CMcgQZ7j4rssHtUp438laZiRwm4u23/bR+XuxA4NZxSb0ElbPyeuEW8cvqAqRqVDL9DREu8UuYnYb0WVlYCrUMtYhVmfl4z5U6SrhPpJ/kY3iK5X2KEqgOvKdZkZOy81R6x4rZTwU44SgparoHC2Jjh395NbamIxOCdcpuymPzHyDVHzXPl2OSqMWbr+mQi3V95Yw2DQqNsdhTqVr7xeOEx9ZfO6iz9Piu7GAwvUOYbEY14bshACBGB8h1h+HmVnSdWJdpP3XIfT2DE4JHkQdOR1bODcVILuWtq2ihRYAysrKOHnywqnDyuJ9Q1I60+JtURiUjZ/p+IwwwcN7Qy4ao4aT3+uQkiscboxISdEB7P/SMVQSQlVH/rWRkptcQgQlgEj/DFPRabr3ijN1h9vG0VkypMgq4dNjTEt4nA83RhQSyXFxskrfvhEpcotvYwGkKUQlUWgz09Fo5TaYAGE7J4CWn7ehutYlZSM4MznDjAQ5YrgxIm4FkkDlHW7UGpV0PRmsfLAUnVVL376jwnVk72e8L8rszCxpGeLvsWf/INF+8dnSUuwMdZnpqDUqDPk64foWnwHvNXnCmz+ihL8kIv0znP6vbmFiDyj9yfqkke7d4nXGuqMYJJRUhhoiTEWn6dknnrda3+7BVCSuaNb0o276jw1L5TnZzctkH9c7IHhnKXu/KPZ+XFc6Kax3MtA4wolXzz/JXKe6ik7vMZo7mvj+979PdXU1Tz75pNR9LmMZ58NnP/tZPve5zwGQSZYQQSmwuYgsXyZNb3XRK7jJUvvREvZ/vUnYyikJGYsigGPfasXs1TPSLMrSgYHjI/Q3hIWv0bNviMJ1DmFSCMDE6CThdvG5RMeOQSyFBmGCEsCuvz1BzlqrFCFGxtIJYMUjXhr/s1vYrs9apkedoUabKfepER2UO3Xd9IsutJkZUnVmZ2YZ6xF/J7LkLH2ujvKbXRT0RDn4lQtnHVW5pZip+LQwgWgp9zIjeQr+1H92kZampnu7+Ea6LEEJQKNNw2CTe+++WwuYik4LWb5Fe2Ls/Bs5wtyRb5xCnyNOUAIYahqTUnkaODLG1HXTjLSJt9/ew2GcAbNwfhhsiDDSHqHpP1qEr3Hga6eJDos/d8vPe2n5uZwMeVIZxH9HEWPdUWGS4dpn/aRp1EKbixdxPZ2eoxw/fhytVks8foF135fxZwetVsv0tEJ+FFVQWv9kkOmJaeGxKH+9DVOeYs0kY+EV64lJWzNt/7tj6MziJzGPv9qE93qXsBUSMYgOxAkdEyMgAIy0jZNZqBcmKAH0HwtLES1jfTGOvXqaWEh84hVujErNJ9xXZ6PRp0kR0wx2LRq9/BKv8PsAenb1km5Io/kX4qfap6Nyc4lYWH6tqGqLi3SDhG3uElB1pwdzkZG9X24i1ic25ske6hjvizAzLRev9nf6iEuoPojaRc6HNlNDmjYNS4mO4SaxZzcU6ij9QC6HXmkRKi9aLoUYNL7ZKUxQAkW5yBm00ilotwIQbh3DUiR+uDLWEyMenqRnr/g1Tr3ZicNvESaOdf1+gNH2cSlSnsyB3eQ1ANApRDjR7whnnQXf9QUMHBvmxGvnX7OvUq3FXmjhdH8T3/3udwkEAjz11FNS97mMZZwPb7zxBg8++CCgqIaLEJQ81+aQv8pO88+66BG0oK+6183JN1qFLHfm4+QifeRMNL/ZQ9/BIWFyAEDHzhDjXeLlew6EybCkS1nWRUMxxiS+gUNHR3GUm6Vs3va9fAp7lVlKHejED8TIHUlU3O2i9de9wvHVOrSk69LQmeXWJZRnEI9v40+60GWlC5dPS09jZnKGyID4NfZ/SVApfh4qNnsYaR/n8NdbpOuKovreEiaiU8IEopOvdXJSQtQCYCo6hXpKfA+/651B9FlaOn8vPheWJSgBZJg0zM7IEcdcVzthWlChLA57Pi9HUjn8nRasbqNUDuo9HCZNIx7fsY448ZFJRlrFv+W6dg9SsNYuRFAChfTW3zBMq4RgysGvNgLic+iePWHhMSSJ5Jjg/kA2k2NTwtZvKx/3kW7SsONzDYumlqtUt3G6eD+NjY0YDAYikQsoaiIB1WzyGNf/INLS0piZUV5yPdcJWbwBrPqEj9Ge6KKbvUmsfz6ASi1O1gje7cJabJJSbln5RCltv+0ldEDM0gMDZLkNUrZl71cYHGoi/XIfvNUPFqPRqdn3j+KDoex7XApqP1qC3q69oNd4r+C6JhujQytlS1b/YlBKpStnjQVnMIsj/9qyxLt8/2DlE6VozRnSxEQZ1D5Sgt6ppfHH7cK5ovByBwWrHdK2ejLkqfc7suvk1LpWfdxH01udwvl17acTG1mC7z75HoUJYQZY+4Sf46+1CZOojjq20R1STkC/8sorfPjDHxaqt4xlnA9vvPEGGzduBECPiYtU1wrVswUMlN5YxK4vnhDa8C683InrYifDrePC1hP1zweZjE0J2yk4qjMp2pAtTPpM1hG1Xnu/Q0a1JYk1T5fT+tteYaJZ3nobxVflEm4ZF1auWQrqXwgS6Y9zQPAky/sWekXZq3f/AANHxE7bp9RuJOadsmSN9yv0Nqj9aJCRjsgFnUfWvxhkZnKWHf9PnJhc+9ES4iNTwqpFSehtamnC3fsRtoBBikSWs8pK/mq78CJnzlorJdfk03c0LKySJPseA5uL0NkyhBU8o7NRdqb9nKnpKTIyMpaJSsv4b0NmZiZjY8qYIEpQAqj5iJfYQHzRzd4k1j7jJy1D/HvGe2MuuStsUpv9NQ8V07V7kNABcXKA1aeXIsO8X6GzqqVJHv47itBa0qXIwrLvcSkIbnFh8ZjY//KxJdmMvZ+Qv96GMVdH4xuCymEo40l8eHKhAsx5kOU3krPCxvEftl9QW7n3AtUPFmPM0bNdkkQlA//mImy+TJr+s1tY5clZZ8FzWQ67BTcjk9Bl64SJY+932IJyal01D3tp+02vMDFz1Sd8pBvS2f5XYu8+cGcRWaWZtLzdO0dcOh90sPpjZTT+qF04559w7KE91ALA1772Ne6//36hestYxvlw4MABamtrATBhZZ3qKqF6pkIt5be52PulRiEeib3KTPmHCgk3jaVshBbDumf9TMan2Su452J2a/FclS91kM9aZlRsk/4EoHVoiUscQAdl0759Wyhl1bQYLKUGKjZ7GDo1RsOrF87CbN2nA4z3RaXEM96v8N1SQP/xYYYaxMaspNqNzNzWe10ukf44PRLk4vcr1n0mwGjbOEdFXD/+gGvMTs1IqSpVbnUxGZuRJvVpzWphUtD7GWa3lpGeuDBv0FpmpOhip3AftpYZCd7uVlQ8fyJGilr3XOI9Ch5I9Vybg6XQwEFBq/P4bJztaf/J1PQUer3+fUFUEqexXSBkZmamCEof8t+J3akQlPQOcK6Y80Y3eQ1YfMrv8i7Kwrkik2PfbuLEqx3nLQvK7wwONdv/voGGn7QsKGtwGcgKzJW1Vxkx5CsLRkPto8xOz6ZUgc5XFgPkX2pBa8nAc0UehnzdAquwrIABg2vhPWGANY+VE7jNQ+7FmYuWBYUIVP9ikJVPKP6aFp8Bk3dhWX3C4jIZF+eKTOpfDFL8oexFyyZR80gx9S8EMTjUC2KYfNYz450VMFD9UDn1LwbPW/bMGBqzdeis2oVlk896RgztVUYMLgPb/7KBE2+2nrfs/BhafAacqxfGcP49ZQXeHcPJ6BQzU7PvKnu+eK/7TIDKB+Y8u8/WDufHO/fiTPLWZZ2z7NliWPexEupfDJ63HZ4Z79H2sRRB6axlzxFDVZpqrh0uUnZidJLm/5pTfTizzZ4thqs+4VO8T+fFZbF4F16RRd4lllQMF+33LjVrP+2n/K5CoRwBMBmbViyG5sVw0Xgb5tqnSNn932yi6RcdC07JLdbvbX4TaVo12XXmRcvOtZdSVjzgxVFrXFD2XP3e4jOw8uOlrH8+sGjZ+TFc+4yfNc+UL5ojkii+KZf6F4OKKtoiOSIZw7XP+Cm9vhDnusVzBEDWCgMZ5nS8V+eftezZYhgdihMfmRDKERhg/5ebaPlNJ1Pjc9KY583JBmj+WSfDjRFMXgPZ663nzRHOFZlU9NeTRjoqlYoXX3yRffv2sYxl/CE4depUiqBk0Vq4Mbgx9TtrmR59wZzlg73SBHrl321BJZftekkhKJ2rLCgb9PZKEx1vhzj5o3baf9+H0b2wrN62sGwSE9FJIuH4OcqyoKzRrcdzZS56mxZ9gT5RNpGH9O8ua/bq0efqKPtQEaufKjtnWX2BHmvZ3P1WfthF/QtB5d/0ZzxrgR7bvJxlCxjQ5+pY/akyVn+ybGHZXN2CsmfGsP75IDUf8Z41LmeLtzmgp/YhL9UPFS8oa/bqzxnv/CtsaHRpmPL0C+Jyvnh3bx/k+L+30PrbvrOUPXsMcy+yLojh+com4z09OcPE6GQqhgvKniWG/juKWPNM+VxczlM2GcPCK7JSf/tsbfZsMax/IcjKT5Ses82+K94lJk6/2crAkbGzttlzxhCJsnoIHR1KEZTObLNnjaFNeZbqR4oXLzsvhsU35KSe/bz9PhHv8k2FrHmmXChHgGI9Nzszy8y8U0nnyxGpeOuV/14sRyRjeOKNNhp/0r5ojlh4D1pM+bpFc8T8GNa/GKT6Qd+iOSJ5D/mXWKl/Pkj57YWL5ohkDAsvcVD/QpCCS22Llk3GcPWnyqh/PrgwhmeNd+LnAj3+2zysetK3aI5IwnV5NnqHNvX7xfp9fDzO9MQMwy1jQjkCFHvAkz9qFcoRAN37+jn+I2XTOuci66I5wlZoY+30B9CkaZiammLNmjUsYxl/KDweT4qgdKP3NqxZSrvTWRXiQxKGQh2ZbqVtO+ssZPmNnPh+i0JQ0i0sq8vVYSmZIzpZfXp02Tp2vnScYz88rZTVnb8swHDnONMTM4SaFcKRLlu3wP7LUqJDlztX115rxJirx31pNjqresE9nVk2eQ91j5US3FxM7npL6neZbh2GwoVldVZScVn/fJC6x0qFymb5jRgKdax/PojnWmcqhnNlE7nljBiWby5g/XPB1D2fr2wyhlX3lypzwnkxTJVN/nhGDM0uAwanWNlkDHe+dJyGf29dWPaMeM+PS6ZbR1a1WNnks05NTKVUvc/VDs+My+pPlVFxj0uoLDqlvTjrLAtimMRZYwhU3OOm/vkglsAiZefFMNIfTRGUFrTDReKtSuOsbfZsMZyKTtP2+1CKoLSwHZ493jUf8bL++eBZ2+y5Ypi7NpPcdWahssl4r/5kGWW3FwjlCFDW72ampoVyxPwYJv/9fDkiWfb4q+2c/EkLE2MTi5ZNxtARyCTdqCFnVZZQvweovMdD3cNebLXWRcsmY1j9kWLWfyawIIYLnvUsMVz5hI/VnyoTKguQe3EW9c8H8d2cv2g7tPr06HJ1rHzCh/9WF7lrMxfNEclrGrN1FF+Zl4rhYv1+rC9GfHhCqKzOCg3/1k7jT9uI9s+RwM7X73U6OPWTTsKNUXTZOpxrrIvm5PL+VegxoVaree655zhw4ADLWMYfgpGRkRRByZxh4RrvDanfmd1atM45dRJLqQG0iv2PxacjTZemkIfiCmFJn7ewrFZJz2jNys8Dh0c49v1W2n7Xu2jZJKLhOLHB2BllE/1Cu7CsPk9L8bX5mPL0mN3a85bVOrWY3VrQQnCTm5Wf9KFNuh9o554VFOKPuXiub/o25lP/fBBrmXHRsskY1j5SwsrHfQvLmtUL7snsXhjDtc/6qbzPfdayZ4u3ya1l5SMlVN7vfldcTIVnj7e92ojWko45X3+esgtjOHwqwqF/baL5971KDOeXPTOGCThqzQvKmot1i8Z7MjbFxOjUwnZ4nnh7rs1h1SfL0Ba+u82eK4a59Vmpv72wHZ473us+HaD2sZJzttmzxbDtV90MNYwJlU3FW3WONnuOGA6cHKHn4JBQ2WRc1j0XoPJ+91nb7Flj6NBSeJk9dY/nLZuIofsD2az6ZJlQjkhiZnKGqYSi7mJlUzHUKu9psRyRjEvDD1o5/kb74jliXgxNBUYyiwyL9/t58V7/XICaj5QumiOScNQYWPesH98tBYvmiOQ92KvMrPtMgLx6a+p3i8V7xaMlrEvM786XI5Lx1prVVG4toe7h0kVzRBKeq3LJzJ/LC+fLEVqnlpn4FBPRKcKt40I5AuDYd5ppeKNFKEcADDaEU2te9irzojnCmm9m/fQHSUtLIxaLsXr1av6n8T9KUiopKUkt1qxTXcaKO8oIbC4BwH9HCWU3uVIbttV3eai4w0Ngi4viK/Lw3VhE4C5lI8d3SzFlN7lSm71Vd7qp2OxJXcd3YxFVD5RBBAqqnZTd5EqRQ2q2uAncNle2/GY3lVvcYIDMXCNqjRrXxdnKPZylbNVW5WfvFbkUX1rIQPMwuz93kqq7PZTf7E6VDdzmoXqL8nPh5Q7KbnIRuMVF40/amZmZwXt50YKyNXcrZZ0rMim7yUXlHcp1KrYqCzXRQeVDr2Kzh6o7lbIGl4Gym1yU36rEJXhXKWU3uTAVJMhdVQ6q70rcvwHKbnIRvFP5e/7blHgnCRUGhw5UpJSRfDcWEbxbeTdVmz2U3eRKbfhXbVbiMnBihGgoju/GIirv8yn3sNGlxPuirLPGUJWmYnoicY1rCyi7yUXx5TnK371nYQzLb3ZTdZeyIJKZY6LsJhe+6wsAqNziPme8g5vclH3QRXCjUrfyPh++GxfGOxnDrIASQ3Wa4pUZ3FKyoOyCeDvUlN3kwr+pBL0D1BoVloI5AkWyzSZRdpOL4F1KvMtv9VJyhQvvNfnkrLGctc1W3KOUrdykxDu7zkx8eJLZ2dl3t9m7lHsK3FxE2U0uCi93LIh3xVbXXAzvVuqWXpNP2U0uSq5WPmirti6Md7pBk4qha73Sb8pvKjxnvGvucZMVMJCzxqK02duV31fcU3rWGMZHJpmemqHsJhdliTYbuMtL2U1zi14Vd3gWtFn3xfkUX6q883PliPkxDNzsJS1djdVtXDRHJNvsTHyGtHT14jkCKLuxkLKbXKx61Ef5ze5Fc0TZTS5Kr8mHCHguyRfKEaC0WZPDwLb/e4y+fSPnzxF3z8W7c5ci7+i7Tvk758oR8+OtNWfALOA4f45YEEOVYr2yWI5IIq/GxuzsLFPxqUVzRLLNtv22l8nIFGXXiOUIS14mKpWKkW7l9Nb5ckTeRVmU3eRianyavV84JZQjqu8qBiC/NhvfjUWsebqcrIDhnDkCILA5EW8DVG/xUHpV/nlzRNlNLkxeA5erPsSVV1xJd3c3K1eufF8wnJfxx4loNIrPp+Q6NWoee+Jj+Of1t+AdxVQnckv+Bjv+jW7KbygkeHsx/lu9C8tuKqYmkd8c1Zn4N7oJ3prI+/eXUJ7IX/2HRqm8q5jqLUpZo1uPf6Mb3y1KH/LfWYx/ozu1aZyhT8eSm1gw1aPcQ6IPld3mxb/RndrIrt7iIcOYzsFvnibaGaX8Fldqblh5hwf/RndqY7t6i4fKu4qJ9sQY6YiQrtdQea/S3wIfKsK/0a1YpgHVd7sJ3lGcelZzgYlZZgmfjFLygTz8G924LlLmhlVbXAvi4r/NQ9U9blQqFWqtGv9GNyVXJcbZu93njHfeZTZUaSrSE/ZolfeWpmKYivc9Sl1bwIB/o5uiddlMhCdJN2oWlJ0fb32uDv9GN2UblbjklGehUqlo+qFygqPm7mIq75x7Vv9GN/7EXNx3i/Ju9AV6BhsiqRgmUX6Li4otStngbW78G93YK00468yUXFmwIIblt7hS8S6/sRD/Rjd5620L4r3zb45z7DttSgwTcfFeocTbc0ki72+di6HekYFGm5aKYeE6J/6Nbko/mJ+Ig+td8XZdlMeKDxeTs8qKf6ObwIeKzhrv+TGcnpxBZ9ZS8iHlZ/+dxQvL3llMzd3Ks+ptSgxrHvVjdOsp3+Rd0L7PGu8zfk4SQs4a762JeG904d/opvYx5b3WbPUQ3DTv79zmoTIxHvquK8C/0U1hpYPpyRmMNt2CdzM/3sWX5+Lf6MZ7hdJmq+/zkF/nwHVlYSqGZ8sRShyUeOttGWgy0s6fI7aWLIihSq3Ckq/0+3PmiDPiXf9UkOAmz6I5IhnDgSNjQjlifrwnx6fY9dKJRXOE/zYPlVuU55mMTaHRaRbNEQDuDdkUX1bALLOo01TnzxHrbUp7uamISCgCKnBfkjtX9iw5oiIxFw9u8ZJu0DAVVxbFzpcj/HeU4N/oJtoZZbw3RoY+XShHAGjS02BWIZ4lY3i2HAGJNnuz0u9D+0aEcgQodnT+2zxU3+eh7mOl580R82Pov6OIkivyF80RNXe70av0XLH6BnJzc9m7d+8yUWkZfxCuvvpqWlsVNbY6NlB7d5DyxPzfe4OL4CZPamO7+m4PlXd78VyTg+/6AgK3u1N5v/z6AoKbPDhXKISPmq1uKu70pq4T3FxM1b1KHrIVWwhu8pC/yp74u2cpe7cLdGC06tBo0yhel+hDW1wEN8/1+Yo7vVRvVXJJzqos/Dd6GDg1zJ5/aKTinhICt8/l54rN3lQeyvIblRx9cxHHf9TBzOQM3qsKUmUr7/ZSnViX0OXqCG7y4EuMs+WbvKjTVEQHFdJ65V1earbOu/9NHspvV+7R9yEPwU0e7H4lt+SucFB591zZwO1uAokcFriliOAmT2rD3+Y1o0pT7JmSZSvuSYwn1ynxzlmV+EZNxLv34BBj3RElhom8X3xZDsFNHorWKwsTVVsXxlCjTWMqrhxqKVzrILjJQ/GVOYlnK3pXvGsS8dYYNMqzJta8KrYujPf8GAY3ewje7CF4q3JP/s3F5yyrs6oJbvKgNWWw86XjlN1WTHCTJ0WKqNlaTOWWM+KdaLPpBg1WT2aKzJBss/PjHUzU9X+oCP+NHspuKCT/Yjs193io2LywHVZsVuZhvmvzCW7ykLvORiw8waxqlopbz2iziXi7N2QT3OTBvWFunA1uLsZ/R1Eqhqm5Sq2N4CYPJdco85rKOxfGO8OUnmqz9upMpc0m1ryCW7zvimHNfcUpUlxwk4eSm5Tfl9+htMNU2S1earYWEw9PKGsemzyU3ar83rdRKZsk0ZwZb+81RXivVu7hXDlifrwrtpagMWiwekyL5ojKO5UYTUSm0Gg1i+cIwFXvJLjJQ91DpUps73GfN0cEN3nwJcZZ94YCoRwBELzTS5bXzLa/PUbvnqFFc0Qy3u3vKHYr5YlrwtlzRJJ0VX23B1O2npmZWdCdP0fU3OshmGizKpXS/hfLEan3eHkes6pZJiPTi+aI4B1KvJvf6iI6FKfkAy6hHJGZr0WlUjHeo6x5nS9HWEqUGKpVKva9fEooR/huUX7Oq1XawMonfNiCpvPmiJKb3AQ3eTAU6qh9yIvvA/nnzRHBTR5sQUXZ+aqrrqK3t5e6ujpisT8NZaxl/M/AYlHyoAYNDz/0yIL2WrFlLg9Zy4xU3lWM7/oCau4ppmKzd8FeQeVWL9WJ71mtU0vlXcV4E+vr/juLU9+O4ZPjyhhxT6KvapXvLV9iDbr0RheVdxWjdSbIfJYMMgvmDmRU3OnBvykxntxUSOVdxakN6Oq7PejtOva/0sRIa5yKzR6CieuWXJ1H5V3F2KuUnfeqrW7l2ysOoWPDaI3pqXHWdYmTyruKya9Tvq8q73ZReddcXJxBK7OqWcInx8lfZaPyrmJclziVsne6zohhCVVb3aAGdYaKyruKU3tLwbuKF8QwuMVLVeK701yuzDm1FsUezb/Jfe54O5R4uy/JYaw7SlqGWol3YuO95p7iBbml8q7i1DibHbSjUqto36F8lFZv9VA5bx5ZsdlDIDGG+K4voPKuYiylBsY64tTc4aFiy8KywU2JMfmqXCrvKiZ7pRWzW0vZDYVUJsYEUMb+yjuV9lG0Xol3wWp74v6UGO79fCMnftBB5d0lVCX2JHJrspRnvUyZ11TcUZSKt8mpJcOkoTqRY+0VZqVtJca8wGbPu2LovTKP2g8XYypUYui5Vrn/sttcVNw5r+y8NjsZmcJg11Ga2CPyfSjRZs3njnfto2WKyte1SptNkjyq7z5LvOff413FZAWU9l99z8J4V27xUpGYz3kuz6HyrmJq7lfusepuN5V3nxHvxJpXwWo7lXcVU7TeyVR0GkO2bkGbrby7JLXmlb3SqvTlK3MTv3PhviQXV2Ld9lw5Yn68DVk6ZU35PDmi7NaF60tqjZosd+JA/LlyRIIYk2yz654MUHGnZ9EckRxXh09FxHLEvBhOjE2y53MnF80RlVu8VCbmhrHhCdIN6YvnCJJqc8WQpgLVIjmiWKf05RsKiPTHUWtUFF85N787W44ovTER71vcGJ06JsenQHv+HOG9zpXIJ+kMnRojXacRyhEAGXoNszOzKXW3c+UImGuzez53koHDI0I5AmCkNU7lphJq7vWw4iPe8+aIZLyr7/HgutpJ+c2Fi+aI6rs9aFVaLndfR1FREfv27ePiiy/mfxLyhuX/Tbjllltoblbkjr1UYsLBcPs4fQeVAaRze4jsGhvRhINB7+Eh1GlqGl/vpPaxEiajM4SOJMru6CNvlZPhTmXjtvfgEBqj8mgpZY8E2reFQK0ifEphYXYfGERrmfP1HG4Zw1RgoP5TQQ691kKGQUP/EUVJqWvvAEbnHEstfHqMscQGeFapidHeCO2/U/5u5+5+zAVzLLWhplHGE4138PAgVo+J7mP9hBsitP82RJZ3bnLSf3KEyTHFUzx0cpSc9nE6dygqNR3bQ9j9Fo59W5GGCx0fZjqqLDhH+iMMt4/Tu1+RYO3YEcJZkcXpN3s5/WYvpTfPdWoiLIh3x44+cmrtKVuovsNh1BlzsRvpiDDQMJy4hz4K1mUz0KTIRvYcHCTdlE7j64oEeeW9bgZOKTHr3NmPOl1N+IQSl54Dg+izlMlIzhoLwy1jDHco761zzxBaSzq9+5XrdO8ewJg7d2JkqHmMLK+JNU+Xc+Q7rZhy9XQnfL679gxgKZyL90DjCPFhJYZ9DUPYvWY6dyqNqX17H/ZS81njPdQaYbQ3wtTkZOr+7YG5E3+ho8Mp9ZtI/0wq3tF+OPVmB9k1NkjwB/qOhFGpVam6w+3jhI4q99u+rZeC+mxmpmbp3TWMMVtPmj5tLt7tEQaODyfuoQ9U2fQdH6Fv3wjF1+eQkTnXZkfaxhlqVsh+7TsGSNOmMXhYea9dewcoXOvAnPBQD58eYyTRT7r2hdFlZdCdjPeegZSyAsDM1Axde5W/039wALPLSOeuZJ/rx+qZO3UTDcfRW7XYy610/r6L4fasFEGmY2cIu29eDBNttvknPWBQNom69yTKJtpsquyxYWZnEqpGEYiNThAZVPrcuXJEKi4dEUJHh+jdNYy9ynjOHJGKd+Nw4t2E0GSq0eUo7fRsOSLcorT9rt2DZBg0DJwcJKfSwVDnGAbL2XNEz74wBqeOrn1h5Zq9EbJcJrw35NL8k56z5oiuXf2JNtCfyhEmr4HBlhHig+fIETuUHAHQu2sYs9u0aI5Iou+Icm+nfqiwb8+bI47M5Yidf3Ocyvs9i+aIVLzbxhk4NUL3O0NYfIZz5ohkvIc7InTvGGK4K473ymxGWs6dI5ILNH0Hh1M5ovaREsIdY6Rr5vrY/BwRPjHEcJkllSNmUdpc0sLyzBwx3D6earOdO/vJWWXFkKXHc2neOXMEQMe2PiVHRFX0nxxBZ04jOjCnwnRmjshb5WSsR2mzXoOfvZa9DIWHsNlsy4s2y1gSDIa5cfIK1UY6dvZjzp83dh4fSeWhoaNDWD0mOnYNMN4fx1psYCY+pzIXahhmYlTpF+MdowydHqNrl5KHknnb6NYz3hql98gQ01GlX4z3RRk6PUZPMu9vD5FTa6P+qSDjfTF6Dw0xmxRUicLQ6bG5PLRNyUPRwRny1tuYiEwSbhpnvFXp9+GW8VQe6trZx8y0k3C78ruuPQNobUreP/L1FoJbXHNzlV39qNLVjDSGAejeuzDvDzWOpsaPnv1htJkZhJJzwx0DGOedCB44McJ4T4yO3/YrKjRX56Ty/tniHR1SSOfhQ2GGijLpeEeJYdu2hXOVvmNhJseUfDHYElHivbOP8MkoOausC+YqvUeGmJlQ3kG0J8bQ6TF69w+gL9ATahjEPDb3d3sOLJRNHjo9lspDnTtDFF+tLHCc/FE73XsHSdPPjbPh0+OpuUrXTuW+B5rG0OvVxEbjjM2zXQg3j6XmKt17lLlK+EQ4Ef8BHEFzylpq8OQoI11KvLsPhNHZMug9mLzOXLz3v9xE+aZCxkNKmx1oGMVcaEjNDTu292N1z81VQseG0VrTGWmNMNIcZui0hc7EONu2rW/BXKXvWJipcWXs3PmF4wRvcy9os/PHzt5DQykFxuggxMcmyDCmY8rV0rEtlMj7c/FWzfs0Scbbc2lu6uckufas8U7MVbp2h7AUG9FblVh07Rl4V5sNJzzcu/YMkm7QMHBkkI7f9lN4uRNj8vQOMHhydG6ucnAYvV1L9wHl3bRvD5G/0kbbNmUcO1eOAOjYocxVjiXkq323FpwzR7S/MzdXAaXNGnP06G3qs+aIM+M9OwM6azpjvTFMefqz5ohkvNVpc3Px2ZlZdFZljnG2HJFumpsbhpvHUjlibCCK6rRYjjj2/Xbcl2QvmiMA+g6NYMzRc/q/+oh2RsnfYD93jjgRZqg0k67d/Yw0R2l6q0soRygxVL5nknaN58oRyrtJzFWAg19pxnt9HvNdqc7MEUq8F7ZZa5kezxX558wRAN375uKdVF5KHp86W444s82aPQblO+Y/O8+ZI1LxDsXpeDtEzaNeJsemz5sjknNDbaOGNavr+WHXv7N79242bdrE97//fZaxDBk899xz/PKXvwSghEpsqhwGG0cJHQsD0LUzxMzULMOdSk7o2jWAxphGy1u9ZBbqmRybYuCUYk/btWcAVbqa0cR3UOeueXk/2eQT07Se/WEyjOkMJmw+Onb0Y5x3mjV0JIyl2Ej9U0EOfacZQ7aO7oR1W/v2/tTJ82TZZN7PqbMSbh+la1vy26afLO9cH+o5NJjKQ0Mt4wycHCHU0E+kI0bTz7qxl8+ffwyk5oaxcIyBkyP0Hkh+d4ZwBq0cf1VRg+7eu9BiaODkCH2HEv14Z4ic+DTtv++n/Zf9uK/ORp0xl/cHG0cZSCijd+0KMTtLKu93bA8tyPuDJ0ZS8e7eO4A6Q83wqeHUu9FnZdD2XyHaCFG2sYCRrkTuOzCM1ppB6KiS3zq39afykL06k9DRcCrv9zeMYcrTp3JWx44BLPNU8HoPDZFdlcXqT5Zx+OsnGThppmuP8vxt7/RhL82cV3Yu3p17+8mpzKIrsQbTuaMfu39evPcOpOYqsfAMQ80jqZ87toXIrs5KKQR17x1cMFcZODmSarPHXj1N7koHkf65Njt/rjJ4cpSBE0q8u/eEUOtUzEzM0LVngLR01YJ1rIFjw4Rbk2uBg6Tp0ggfD9OzY4bo4MSCvN9/dDgV797DI+jtWnoPj6Se1XNlLtZipS3Ob7ODDWHMbiPd+xLf2O/0Y3XPjbPTk9N07lTiO942ysDJEbr3JtcNQ9h9czEcbh/F6s7E4bfQ+LMu5XR/omzHdqXNpuK9b4DZGWh5qxdQrM+SbbZzRz+T1dMpi72uPQML5iqR/hjRIeX+z5UjUvFOtNnQvmEy3ToK1jvPniPOiHfP/jAGpxatVWn/Z8sRqbnKkVEM2Tp6DocpWmVnsG0EY9bZc8TwqWEGTpro2af05aGWUXJrbJTclEfTf3SfNUd07w7NxbvcDDGFlBQ6McTEoFL2XDkCYLgpRtfOxXNEbER5nu69g6gzVJx+U3k358sRXbv6Uzlizz804t9UuGiOSCLZZnt2DKLL1Z0zRwCpHDF0fJzoYCeeK5wMt4wknvXdOSI5VxltHk7liOAWF+GOUdJ7NfPKzsV7uDO2oM2qNEr/1+XqiPXE3pUjFsR7W4i8tTYshSYK653nzRGd2/uYnpgh0h+je/cAhlwt0YE5leQzcwQqiHQpcSmY8mLPstM/2I/FYlm23F3GkpCensx7Ki5T3UzHO/2p8QGge99g6hs13DpO35EwvXv7CTeNYQtkLljz6trTn5qrxEfiStnEN9PsDMzOzmIu1jFyOkbXrv65day4smYeSqyxd+zsZ2pqmpUf8TPaHaFz58K8Hzo6zOCJRG7Z08/M9CwjXTGyAiYmxicZbBoj2q30h9CRMIOJ76neA4OoM9SMtSZy2PZ+dNlKHmp8vZPZyZm5sfPACNrMDAYalblh5+9DGHLm8lDP/kEivUqeHDgxjjEnTO8B5e+2bwstmBv2HhgkNjRB1/ZBtGZwXVWQyhdt74SwlcztcXbvHUjloZGWWCreAB3bB7CVz81ruvb0p75R4/1KvPsODTF8KoK1zIiz0pqyZOo8I+/3HQnT3zCM1qFlsGmEqYlp4iNK4Y5t/QvmKqGjwwyeVOLdu7cfQ7aWis0eGn/cSceO0IK5SuhImPBpJWZ9B4dI06Yx3DgCzDAeii7Ib70HhhhNrKv0HR1BZ8ug/3gy74dwVFtSqk09BwaJJNaxho4P01dooO9QYi7++xCWhPPDkW+14bk2h4lE3h9rH6HvSJjuxNywfXs/tnlzw+59A+jtGYy2RRkLLWyzHdv7ccxbN+za1Z/K+3u/0IhvY8G8NjtAfHya+MhcvOfn/fFQFINDhynfSPfufmamZhlLPE/H9rPE+9QohWvtqXcV6ZyLS8a8uUrfwSGG25J7d2Fy62zos5R22vFOCMO8uUrvgaHUHlD/8TEM2WH6jo7Q/usQ2SutZM7b4+zZP0gkOVdpHKHviJHu/co8oe3tPooucdKxvT8Rw7PnCFDmkbayTBrfUPbAXVc7z5kjOnb040i8t2S8Mwv1aJ1a4ol3Mz9HTESnU/ZpyRyRbtAQC09gyNadNUeA0j/nf89MxafRJuYjZ80R8+YqfQeHUjkiPjJB35GwUI449r0OXJc4Fs0RAGOtiTa7q5+xjjj2KvO5c0TXXI6Idsc58XqHUI4ApS84R6dS/IRz5Yjk30nmiIZX2yi42I4m89w5AmC4PZJ4r0qO0OdpKb027zw5ItFm5yknMQskpvFnyxHz9zh7DgySVZaJwakj0jVM35Gz5whQ+v3E8CRd2wfJzNMzMTZ93hyRXOumS8uaS9bT3v593nnnHbZu3cq3vvUt/iegmp2dnV282H8v3njjjZTViIN8VqjqF61j8RmwlZk5/dPeuX8UvPXkRrMofBsLyPKa2PXZE0Ll7VVGym92Ew9PsPeLp4TqrHyiFK0lgwOvNKc2/RfDmqfKmZ5QlD5EsfKJUnoPh+l4u1+4zqqP+2j7XS99+0aE66x/LkDo2HCK3LAY9A6ofTTI5OgUuz9/Uvg6a54qJzIQ58jXW4TryGLFw16MOXoaf9IuFYP3AnkXZTHaHWes+cIqqdS/GGRidJI9gv7IS4JBOUk4eHhQqn++F6h/IQgq2PZ/xX1ypWGAdR8P0LEjJNw/DQ41Kx71y70bA6x9ws9YZ4Sj32oTvr3ax0oYOD5C269CwtdZ/ZEymn/VycBhMd/rvIuy8FyWy8F/PiHcBtY8XY5Glyb8bpIxm4pOC+d015VOcuts7JLw8JUaZ1RzH6MYoOyGAk5+T8z7d3fmLxgeGaaqqopDhw4J398ylqHT6VILfVepbhOqU357ISd+0pEiWMhAb1OniAKLF1bsb1t/3UvvnrBQlTVPlaPRp7Hts8fE7k8P9U8FmRybYvffi807jG491Vs8nPpZJyHB+UDOKiv5a+3s/1qTcNzc12RjKTJy6BUx/2hQrDCMOTqpPLX6k2WkmzTiMQNcV2WTt9LGzr85LnydpaD+xSCz07Ns/6uGC3odWehzdViLDXRvH7yg10m9mws570Cx+dI7tfTuDF/Q68ii8BIH7styGGoe49i3Wy/YdaoeKEZr0LDni+Lz26X0m9KN+TjKLOz4f+LtOZU7Xm4SrlN4uROn38z+L4nXWfl4KSq1ij3/IBYDs1dP5ZZixntjHPxKs1CdVY/7yLAqKndJEuliWP3JMvqOhml9q2/xwgnobXOqTTLwXp9H94Ew0c7F7+3A7DuMZAyQmZnJV77yldQaxjKWsRgOHDiQshpxUkiNat2idXS5OnKqzLT+QrwfpOpaSZEeROC6womz0sreL4jlAkOhjhX3e4n2x4VzTtWHPWQWGDj8zWZGW8XWvOoeK2V2ZlYqr9V8xEvo2DBdvx9YvHCyzsNeunYOEEqQs0Sw9hk/oYYwzT/uEaugg/qng8SHJ4XjDFD3aCnx8UmOfvPCjYf+zUXYy8w0vdVNz44LO8eRhbPOQmwgLtxmlor6F+XfzVKQsyqL4bYosb4L+zyyWPdpP2qNmm3/34Wde655qpyu3QN0/EZwTTrZb8KT7JWZrz1Zxlh3lIZ/axeuU3mPh+H2MdpF18t1UHOvXO6wV2fiu66AQ99uIdIh1gZWPu5Da0lX5p4iVRIxk/nOda6w4Lk8h91fOil2DRSFpVh4CWu3OkUtrVFwv2CX6S1GRkeorKzk8OHD8tdbxp8t8vPz6e5WFKNF17w81+bQ8nZvivwiA61ZnSIViKDusVK6dvbTI7jmVfvREvQ2LXu/cFz4OuufCxIfmWDfP4rtHWodWlZ82MOp/+xm4LDYmpe5WIf3ynwOfKtZOG65q6zY/WaOflt8X6L0xjwsJSb2fqlR+Do1DxZjzNWz9wvHUgSbxZC90orr0mz2vHxySe1AFOs+E4CZWXZc4LU1WWjNaiw+s3Jw/QI+f/LdXOh5hz5Pi8GhFW7P7xWsZUYqNnsYPDlKw6vi/UAWZbcWYHTq2P9l8W+pFQ96MeTqpPpN0WVO8lbZhPfaQImBa0O21Np39korOTVWDn+tRbhO1f0eNLo04e9JrUOxlRztighfp+peN5lFRo58p5mR02ITqdpHShg4OULbfwnutSI/ziSRf5GNkdZxxjoW79SnZo/Qo2tBp9Pxyiuv/I+seb3ndm+RSCT1oOlohQhKAIHb3OTV2VJWWiJY95kAzhWZ4hvHib/d+HqnVAcbODzOiR+2ChOUAHoPh5kcnxImKAGkpavR6MTFr/QO0FoyyKu1LV44gayAgQxzOgXrnMJ17FVGVGmKrYkoov0w2hmhbVvv4oXnYddnT0gRlGo/WsLKx0ulrnHgW830NYTlSFrPBxRiiwRWPlFK5X0eqTrFV+RRdYd78YJ/BHCtd+LekIP7A4XCdbICBtY8XY5zRebihROovM9D/YtBTF7x5NH2Th+NPxZf3ABwXZOd8j0VQgR2/HWDFIEw0j9DpC9G668FF0YT10lLVy9gSi8KA+htWnIlcocp10B6pgb3pbmLF05gZnIGlVqFo84hXGewcTTFxhZBpH+GEz9slcrpbb8KzW38Czab5Diz+hNllG8Wb9NrPlqGo8yMwSV2oYqRi7Hb7Rw+fJiKigrh6yzjzxtVVVUpgtJFXC9Ux1qmx+43s+ojPuHrBLe4qH1MkY6VISgRVcZ3UYISKOWP/3uLOIEqCtHBOL2Hxa+RXWFRbGmjU4sXTiB/rR29TYteLz4nyqnOwjTv1IkI9BbFUksGLb/pYaQjIkU6a/tlnxxBSQ9rn/WnbJpEcfJH7TT/qlu4vLPOTP2LQcpvF8+3OausrH6yDKNbPNbea3LwXp2Ho1p83vF+RsVmDyVX5y9ecB4q7/Ow4pGSxQvOQ/0LQdY96xcu3/HbfnoODXLsNbkN2bqPlVJ5v0e4/OFXTksRlEA5ARc+PS7VbzL0GtQalVRbS+WOAvE6ebVZ6B3alJ2gCDQGDWk68dwx0hxlcmwqpYoggj1fbOTY98QJSgC7//6kFEEJFIKSs87MmmfKhevobZBbl0XVna7FCwMrVBdRW1PL4OAgt956K9HoEli7y/izQywWSxGUtBiECEoAVXe5KFjnSNlAiWD1U2XYqzOlCEoAbf8VkiJnRDpiHP1usxR5qGffEPHwpBTZRKNPI90oIfiuA2O2jvyV4vMOXa5OqbPGLlzHUKhDna4mQy9xbzFFNaRjm/j3PsC+L52SIihV3OOWHqeP/7Cdrr39UgSltc/4Wf+c3JpXzUPFBLeI5dskSj9YsMCO5I8ZtqCJ0uvy8Vwhvr5qKNSx6uO+lG2bCHw351P/YhBb0LR44QSa3urm+Otym2Q5q7JY81T5nHqbAHZ99oQ4QQkgBsOt47T8RmLNC9BoNeit2sULzoPZbSB3hUTu0KmV3LFWPHdMR6dQa9Q4A+bFCyfQe2iI8VBMmDxETFE5EyUoAYQODCvlYwi/zyRBqeZhL+W3FixSeg51D5TirLKmbAsXQ/XoJWRnZ3PkyBFWrFghfJ1l/HnjtttuSxGUNnCjUB2tU0v+Kju1D4iPoZ5rc1jxoGKzI7xxnEhN+14+JUxQAtj/T00c+U6z1Ab1aMc4oSPiBGy7z4hak8bMlPg1XBdnY8jVoTWL59y8VXYsHlMqFiLQO7Sk6zVSxJmWX/cydGpMmGgB0Lc3zJ7PyRGUVn2yjNw1WYsXnIeGH7TS9DPxNS99npb6F4L4bhHPt5ZSA3WPlWJ2iwe6YEM2vusLyK2yCtd5P6PyLg9lN4qvEwL4bimg6sMeqTrrnvWz9mnxdYjwyXHat/fR8Ibc3KvqXjcVEnPpk691ShGUAFrf6aO/YViq36Tp1KRlqFO2cyIoWG3HlKeXap/5K21k5htS1oMiyDClo9GLr3nF++NE+mL0HgwL1zn8jVYpghLA/i83zRGUBEMQH5nBUmpg1SfKhK+DFjyX5+K/XYxDUKqqpDq4guHhYW699db/ESXL99zuzWick1i8VH3T4mpICcWJg/9ynNw1OSkrrcVQeLkDtUZFVrmF0IFRoTprn/CTJnmSpPI+D00/aRFWDkmi4+1+KXICwPa/ljtdHu2H/V86RlRCdGeoISKl7gQKSWvbYXkWrAwDEhRll569g3TvGFq8cAJaS8YCOUIhRKDxB51SVca6o6Sly11Ia8lAY5Drgr2HhlISeKKofyFIJBTjwD+LnX5eKupfDDLaKc44bdsewpSnp/V34v0gIzMdjS5Nql+Hjg1hcGiZkQibbN8EMDq0qDUqctZY6N0l+EFggJqtXvqODNH9jli7Xsp7lFZmiMCh77RIKXaNNcvnjt5dw+KxSkBUrW0+kvk5cFcRXbsHGG4Ue67qB4sx5emlYpGeqcGSbly8YAK7/ukk3ityibRHlfFukTHRoDZgGchngAEaGhp45JFH+PKXvyx8vWX8+eEv/uIvOHLkCAB+VqJXie1mh09G6d47yOm3xReITQV6KeKMLWDAf5uHocZRGl4VI4baK01YSzNp+mE3gw1yqoIyCiUAp3/aw+mfyi2Q73+5CX2uTpykhbJ4L0NmAKSJFgChfSPCilAA+Rvs2Eozpcjh+avspGVIEmOB/kNiY3oS8fAkk2NTKetnEdhKM0k3akiT4Ha1/KaPovgM/Y3i91f9QDGmXD3b/vLCnhBb8YgXg10ndZ327f2kpasWLzgPxhwdaRq5Oe54KCY9X236ofiCXRI6SwYagxxZL2+9jewKKwf/RWw+1b19UFpJK2l5J4P9X2tCr5dQoAPl9DtIEaiWoooms+mVRPhkFL1NTfEHC6XiUf9CkMnoFLv/TuyajjILGm0aOausQkTX6CDSY1vmniJmZ3cCUFRURH+//HfCMv68MH/Na4PqOuF6u//pJO4N2cKEI+cKC+l6DQ6fmQHBcXTVJ3ykG9PZLjF2+DcV0vJWF8NNckowoQPDUkpFgNTBEgBiKGojMlV6Yuz74nFiMfF8G+mIScUsiePfkzv4VHWvh76jw/TuEV/zMji10sR1YqTsrkQx3DK2wE5CBAaHnumpaak6ndtDTE3InRhe/5kA431RDr3SIlVPFuufCzLaEeHIN8WuM9g8RuhIOGWNK4K0NMgwp2MrMQn3n9DRIcxFRibHxedeoX1yfRNAb8tAo08jd4VNiuAWvNvF4Kkx4TpLURHb/tfy/fPA15uF1Y1AIens++dmKVWscGNUWjWi4zf9csSuxHUAiq/PIdw0xtBxsT2K8lsLsActHP1us3CONzh0ZEiQSfe9cgr3hmzhv69T6cjtK6WPPg4dOsTDDz/MP//zPwtfbxl/fvjOd77Da6+9BkCQVWhVYru/8VCc1l/30rlbPEfbSjLJMKcvXjABfZ6W2gdK6G8Y5uRrYntNpkIt2dVZNP+0R2oDHOCIZP7s2j5Il+S37pFvtaF1aIn3i29k7/9yE/o8rRQR6PASXFSGT0UYPiX+7WmvMuOssHD8jXbhe8sKmMgwauZsnCTuTQYzUxDtj9N/XHy8zirNRJeVQZohHdEH6tw1hEqlokfiQGfZrQXYyszskNyrlkVgswuLxyilUN3+m140MgceUEjL6TIHEYDh1gjTk3Jz3LZfiCvoJGHI0TE9JWeEZa8wk1trFVYuG2oYY6hhTOoaLT/rpeVnct8SR78jnzsOfCOxbieRO2SUOFPXEVQNn4+R0zHF8vLKgpQFoAjWPetnMjbNXkF1c2uJiQyThuyVVvr2hhevEIfWX/fSf0h8bDPvL0Q9u4dppsjLy2Nw8L1V2n1P7d5MJhPj48pE+Sr17co/nu/yKhW+2/IZaR2nd/dZEvJit25AmNQEUHm/B505XVj+PitgIHCbR8qyrPj6HPLq7DT9vFN4c75ggx1H0MJBCXKCxWdgehopkoHBZWA2EiEq8S1k8hqwFRvFLaES9xbc5KblVz3ChKOkPdzEyKTw+1kK9A5Y8XCAngOD0os271esfy7AaFeUI//aIlxnKXZv658PMNw6zjEJ6c73M9Y+62dieFKafSwFA9R/St72cPWTZcxMzUhZP+odkLs2R7pdO1dkChPCkii83CFF9MpZYyG/ziEV67XP+FGlqYQnxIZ8HSse8DIVmxa2R8quM+P9QAGHvipuRyc07qjOvkFc+4iX/V9uXnRcBNgx8wvi6ePYbDaam5sxGCRkBpfxZ4PBwUHsduWkZxbZrFRdIlSv+oFiKfnVBUgoIwkVLdBTfbebhh+0MtIsVkna5g1FWXM6Ni210V7zsJeOd/oYOCL+oZa/wU7X78Q/AkAhXclcA8DzgRxaftsrRUxIqkrKqH6+VxZkKx4pId2YJkxKeL8juNWNudAgtWCzlFhX3u/BlKOXWrB5P8N7fR45NdYLbvm3FPu2/A123BuyOfDlE1IkosLLnQw0jBLtEV9c1tvUkJEhVcdapmcyjpRyUc1HvHTuCAkTBPPW2yi+KpfTv+wRJm0lY73/q83Cz7Pq4z7Ge2PCxFVAatyZj7z1NvQ2Lc1vihHkDmf/jr6+PioqKpbtR5ZxTng8HlpblQ0iYauRa3KIDk5IEVNS0CGutoGyIW3M1bPvZbH5gC5XR91DXilbrJxVWZRcm0fTz7qFn8kWNFGw2sHhb7QIlQdFcSZdixR5Spetg4kJKcsiXbYOW5lRyk5Ol61jxYc9tPy6T5zMsUSbq6Vg3af99OwbouWtP401r7XP+BntjMiRYpdg97b2WT/DLePS5LP3K1Z9wsfE2BSH/mWJ332CWEqsax9VlE1k1Nt0Vsiuc0rZaABk+Y3CpJ4kctfJEbWy/EYK651Sh3VXPuFDo0tj50uCBPMl2L5ZSnSU3+Lm0LdbiYnOPSXHnfmovMcjTPI7PLuTsLaPzMxMDh8+TG6uuGr7Mv58EI/H0ekUJQ87edSqLhKqF9jsWrrlkhbhDXOtWU3Vh0tp/EmHMEml7rFSdFkZ7P1yk/Bm/qony5idnJWaP1RscdG1b1CKnCC8ST4PllKDNEEn/yIbA4cHpZRdqj7sIU2jliIbJG2utv3tsQtqdRa804Xeqb3gFrPvFUpuyMMRMLNTcH8Flmb35rulgKwSk/whhvcp8i+yUXSRk53/cOKCtrfqB5RD9zL2bfYKM6XX5XH031qELMKSyF1lZbgzSrRbvI7WDGi1xEPidUyFCilQ5t78m4sIHR0Wtv7LCpjw31JE69u9wuTNZA459K9NwvdW/UAx0aEJGl+XEEmRGHfmIytgIrNQL0yQO5L9e3p6e6iqquLQoUPyF1wi3jO7t61bt6YISvXzrUbOtlmrUqX+3em3UHKNuC2B3gFrP+1XrHPkxj+OfL1FigAz1BCh7fd97P6K+KaKSqVidmaWXgnpxYJ1DozZOvTijkgEbnNTvcUjXgGoutNF7aNy8s2BmwsprHdiyBeXdnMELajUKmLD4j0rqQp19DsSg/kS9uytpVmo1CrUEifG7VVGqh8qlno/S4HBoWbN0+UUbBCXFgbY/lcNUgSlpWL7XzZIE5RWfdxHxVY5+e+lwHtDLgFJmXG1RiV9Oh+Qa3cROPpqixRBCUCjS5OyfgRY8ZEAeXVybWf1k2X4biySeqY1T5Ur0q8SOcF9aS56p1bqOlOxKWYmJU6/dsXo2NkvTFAC6Ns3wo6/bhAnKEFq3FnxsJfqB4uFq5VvLkDv0OK7LX/BGLgA8/5tnfpqfD4fvb29C05rL2MZ85EkKKlJEyYoBTYXYcrXU3yd+CJgzYPeOftSiY3iaGeUnX9zXJigBMoJ+7bf9EldZzo+zWRU/ISL3qZI+XslbLHMXj2ey3KkLGb1uTrKb5mzyBNF/ho7a58Qt9ICxeJJVr1x99+f5Mh3JDct5AShAEjXp5EmqQAQ2FyE+5ps+YtJIrjVTe1H5d7PsW+1XvATZaB8t8gSlAovcbD6UxIywUuE3qam6oFizF7xBpGmU6NSq7AFljCBl2h3R75xSoqgBDAdnUaVpsIpYU9rLdPjutiJX8IOAz3UPuan8i6JOasegncUU3G7eB19rg5jjg7P5eJ5PnxikNnpWSmruCPfOEnTW11ShKs9/9AoR1ACiCo5eM0z5VJtofiKXHJrxWX6i3sr0Ov1HDlyhI9//ONy97iMPwv8zd/8TYqgtIqrhOvlrbbjvSZP/EI6WP2pMjLdOumN4hOvdQoTlEBRHWp8s5Oj3xRfh0nTqZmZmmH4lDjpynN5Lpkug0IiEkTF7S4q7vJKWU9V3llE3eN+qTrlt+TjuTxH2KoIwBEwodaomY5JnLCOwba/PcbRb0kckpJ4jiSsPj2qNDVqrbiyYqZbR8U9bnTWC7yErFOIM/mStsE7Xzq+JBVDWez8m+PSBKWaj3jx31F0ge5oDkWXO6QsuEBZV0qX/D4ApNvd4W82S2/Mphs1ctaPQPWD5RReJG6tB8rBlMDtbqncU/toCd6rc5UcLAjv1flkFhik+tBkZIrpuFwOafllj9TBnOGmGLs+e0KcoJS4DihW71X3eoSrua/Oxuw2ULZRrJ1WqdZSXlZOf38/eXkSY+Qy/qyQXA/VkC5MUHJd7STLZ8JzbY7wdcpvLySwOfG9JbFRHB+ZYc/nT0qRdPa9fIrmt7ql1EamI9NMjE+K35gWLMUmiq8Q/x7UOrSUfjCfWhmLWa1iOb/iI17xOijzwuqHxK20QLF4Ss8UV7kCOPAvzRz61ya5zX85ASUAMjI1aHRycyjv9bkUXCy3j7MUlN6YR/UD4vsXAE0/6ZYiKC0VjW90ShOUnDUW6j5WKmUPthRozVC+qVDK7kytUaPSqMnyitvzzl1QvOiJH5yWIigBTEYmSMtIw1qSKX5LTi3ea/Mpv1Fu/rnyiSCVm+X2aavvKxG2LwPl/dhKM3FfIr5uPNQ8xszUDKo08W+kA99q5tR/dkmRpw69clqOoAQQV+K98uM+qbZdflMhBavF1zF9vasxmUwcPnyYJ598Uu4e/wC8J3ZvbW1tfPvb3wYgBxcG9XkWn8/YmD3wzVb0ZvGGUXRlIWnpamwlBiJtYhOANU+Vk5ahljq5W7DBTufvBqRtoZp/0kPzT+SsQ3b97QnsVUYphaMTP2wlb6Uca6ZjWwi7Xy6D7/7yScpvKpSyeGr6UTdNP5K3dJB5foC1j/tJy1BLnUrv3jEkZScH4NqQi8GhI81sgH6xNld2RyGOMjOn3uygT9B6JdObiUaXhtllpBPxU3wWn4Hhzog0aU8WhnzlVKIMoSPDnE6aVm5jct1nAqhUSPXXnBqFfCaD7X8pv8G48olStJYMqTYnaj02H0tRGWj5jVzeAejYGcIZtEq1naafd5BdbZfKCYe/fgJVhk7qOjIqUkm0vdUHzOVvUVTe68bsMir2mYJ5yODUMTsjLlR44tVOXFfGafvVvAssYv+Wf7yCYyhtrbKyMmXptYxlwBxBCeAK1S3C9RpebafwEgcdvxUfdA3Zcl/p+lwdtQ96GTgxwokfdAjXy1lrpXdnWOreAHZ/To4IGh2cYf/XThMdFGcxjDRHGWocpXOX+L1Fh2OMd8fo3CV32rfl171MyixAsTSLJ0CKQIYe6p8KMt4b46DE6bWlWEll+TKxTBhpTeR1Eax/LsD01Ay7XhJf5DDl6aQtVJaihLMk6MGcp5d6RxaPkXSDBrNXvF7+Bjuey3Lo2jVAy8/FFBeMhUbMBQaKLs7maLOY5Hzja500IvmhjnI6f3J8SrifyyghJdG7JyxkJTYf4ZNRBo6PcOIn4jmOKIx1Rek9IvEtEoVw8xgd28XzSLQnxvF/b5GyzIwOys8/o4MQ3RkG5vK3KNY/F2BidFJY/S2rNBONNo3iy3OFbTpP/rid8T7xXGpS2ciM2IkQ4Stf+QqPP/44paXixNRl/GkjHA7z6U9/GoAcirCqrMJ193+1GYNDfGnOvSGbdIMGq9fEaKvYWFP3aCkZFg07/p/4fMBZZyG0b1jaFqrr9wNSqkOgbMhZfXopG6Xjr7dRsNYhRdRq/V0fOZVZUnUOfqMZ37X5UopNS7FrAiCGlA3dqod9ZGSmS51KDzdGpa3rii7OxuoxYcg3EAuLKS64rnBSWO+k+Zc9woozmTk6MjLTMbuNUvYzmW4do72xJau7iGIpSlwGp44Ms9zS++pPlZGWrpbqr/mr7Im1NfG5lMzfT6Lqfg+ZhQZFdUIw3qJ5aj6WoprQ9FYX6Qa5Der23/VRsNpBbET8Hk/9tJP8VXap59r71UZ0Vp1U21mKwlWy3yTztyh8N+fjrLCy76vidnbmIrmDBa2/6GNybEqqb2cfKQOUk/zBYJBjxy6swu8y/rhQU1PD9LRC5LtM9SHhem2/CDExNEmPxPedxWVErRHfV9Caoe5jAfqPDdP4wy7hes4aC6GDw/TsktubknaBiMPeLzfBhPjGerw/Ts/+QfqPhaWuM3ByhP4GCbYEcOJHEt/QCSxVpUiGXACKYt1oZ0TKjm4pVlI5NVnMTM7QKTGnXvOpcmZmZtkjscZm8ZhIz5Sbp2jNashIlyLSLQlaMDm1Uu8os1CPzpqBocBEfERszmotMxK83U3nnn5afy62xqg2anH4LWjS1Rw9LUaUX+r3wfrnAkyMTQm3cRlyUhIjp2Nsk/w+iIfidO0ZoOVtOWXWwVOjDEjmhN4DQ4QOi88f4iNw5DvNcpaZcdgpsV6crJNUl0vmb1GsfbqcibEpYdVQi0uPNjOd3PXZwu302PdbiI+J709qVVqyxzyMcYSXX36ZBx98kGBQTtRmKXhPSEput8JyU6OmSr327IXOICeVby6gc9cQY80RKW7Fye91cFLS5m0qNg0y/AUDuC/LoejibKmT0muf9dO9fzC1US6C7DozfftGGDgsJz071BBhqEHuJFHn7wakNu4BiMCJV8UnDgaHGn2eXvp56l8MEh2Is/+fxCdd4dYxjA65Iz4Gh1pONQXY/09N2KuMUtZ6saEJZqZmGWsTl9Ts3TUsbBGYhL3KiP8WD6NdkQsu4bziAS/TEzNSG6FLsZCR3ZgFOPxvrYz1LIGllfzmFqwaOj5CdsAiZTWZtDKM9MU4IGHpiAFyKi3CbaL7HXn7gO53hqTrDRwel+7fCvEnphDdNGphgikGWPPRcgYaR4SJj3kXZeG+LIfsKqtwPgm3jZNZaCAjy0BUkIi47XPHpImBSYJS5f0ejiQ/dpJj4znISrVcTkvWAU6fPs0nP/lJ/v7v/17uosv4k8Szzz6b8g++aL565fmgh+Ctbo59u1WaBLT9rxqk1Cv0WWpmZ2YJnxYfA2sfK0Fv0zI1PiVsj1a6MZ8st0mKBGN065kZjRPtlPcOWor6x8F/kV+skLWUc9aZCQkSopNY8UgJBoeWbX8nrjij16uZCE/SJ+Fln2o3kuHe9tlj6G1ysk2To1NMTsh5xssQmpKofqhMmiS/FNTc48WUo2ffPzYIE2+OflOMMDQfw20RpidmiI+Iz7/6D40yM3laigSThN6mliISRQfjjIjOGxKofbQEvV0rtakLCXvGpjHh9ipDwkxiKVabS1GPSL4bR3WmsOUbKHaT2VVWqc3Ddc/6UWeopUhK05MzTMXF20HrW320/k5OZS/53NYyPfaglaYfLj6XrFKtRVeoprW9lWuuuYbmZvkcvow/TdhsivJLGhqqVOdY8zoDxdfnMHh8mOGmGDHxJSJaf5Fo7xJrrpOxKdL0cie4fdcX4L0yV+qk9OpPltF7cEjKbskWNDF4bIxwo9xkYLQ1xvFWuTy7FNIVMaQ2GNFBlkfePmr980EifVEOflV8HBg4MYLZJaeqq7OqpYgSoIwzVp9e6h3FR6aYik8z0iE+Ro+2xqTnTzqrmup7SxhpH5faMFwK6j7iZSoubh8PSBPCQFkvTNfKLdcf/rdWIv1LYGkll0wFq/YdHiZdp0GnU4sT6nSw/lNBxnuj0uuS9upMBgTnKaLl5mPw2BiDx+Sst0dbY5xolSTWxxRlOp1VjdqUQaRD3Fpt5UM+hlpGaf6xGAk7y2/Ed30B+avtHBRcYwy3jGP3m9FZVMLj0Y7PH5cmBiYJSv47ijj+o3ah+hdzAw327TQ3Ny+veS0jhe9///spK5o1XCNcz7exgMbXO6UISgC7/u6ElJJJulnLzOQMw+3iY2DFFhcWr4mZmVlhe6LCSx04Kyzsf0VcDUjr1MIsSyKYNL8pfwD6xPflv4lFnz+JrICJoeYxKUWkwGYXVq+Rff/YIE7q0MJYd5TQUYm5ZLLdSIZ7+981oLfJHQiNDsVhWpyQACzJYrjyvhK0ZjmS/FJQflMhjoCFw984xUirWACb3+yRbqfRnigT0SniQ+JrXtHuOIe/1SRHgklAa1YTHxGfi492RBiTOMgBSj4xu43SB83MxTriAxPC99fyM3nr6OOya+co6l2ySL4ba5mR8Enx77LcNVkUrHNIER9XfaKMDJOG0PFh4b4+GZ1mcnxK+Bp9e8P0HQlL5ZJkDPR5WnJqrELvy6vyM5k3Skd3G9dffz2nT19YTgG8B3Zv8yU5r1Df+u4CKvW7bW0MYC81U7lpEdmv+fUMiiKSDDkgiX3/eErqI5MIhI4P0/q2eMKzVxlJy1BjLhA/aZBdZ6b0+kI5GUWDQuipvFdc/gwUdZqqD3uk6qx5upy1z8rZjfg3F1N+sxuLTzwOegcKoSckl4xPvNrBvn+UU1tZ8aiftZ+WeyZAmpTR9lafvI3UEhDpHmesN0rnTolVzyVipD1C7yF5Iows9n7hlLSKzlizvJJU3ros6j8VpOJWcfnBtrf6FMtIiWtF+5X2HR+VI1+t/2SAkg/IySmW3VFI/YtBKWtCi8/A+ucDuGRsdQxQ/0JQLnehEN2q7pSQe4yARp9GlkdcJrP7nSHGeqLs/1dxwmPH2/1s/8sGOdWrRNHAFtdCq0H1+RU5XFc7MRfoWfHwGVKrKhWqtHfXtasdVHgriEajfP7znxe/v2X8ySIajfLSSy8Bykl+vUqMyFF7XwnWYiM5q6zC1wpucVG6MWGJJrGvNNgQYftfNUgpkxz/tyZG2iPCBCWALLdJ2iagcrOb2sfk5gG1j5ZQ/7zcyQLv9Xms+3QAfYE40UZfoKf+haCUFR+A7/pC1knO1+LhCaYmpuXs+wZn2PPFRrolTsdWbvZQ/1QQa5mkT1wUaSLZni82Ci/U/yHoPTDEUKP8JoksOreHGG4fJxq9sHPJ8VbFllHmvQJLIiite9ZP7Ufl2ur+l5to+rHcgkVkIK60b4lm56wz49/opnKzR+paa5/1s/qTchZ71Q8UK9ZlEqi8z0P9C3J5qPajJZR9qEiq/1mKjGj0aVK5q21biO69cu1n19+ekFJkAyCqkNxk4x24zUNOlbjtm69jNdnObE6fPk15udx7WsafJtauXcts4kDB5aqbhevl1doJ3O6RutbKx33orEhvDB/+eou0smTXzgFafydONtLl6kg3ajAXipNmLCU6/Le6qHlIzmZi/fNBgpJ27qufKqPyHo9UnZWP+5R1RglUbHIT3OTBXi1ul4BOsTOPhOR2sE7/rFc6V9Y95mfN0/K5S5ZE1rtniF1/e0KcjLFExGIzDDWP0rlzCcpVkhhoGKZ7j+TBziXg8Nda2PcluTWvSIe8kpSlREf900GCt4n3pd49Q+z70ik5olsMpuJTxIcmpO5v7dPllN8kZ5Xnvjqb9c8H0eWKH1jV5epY+4wfzzXi1k8A6z8TkM5ddR/zU7lZYr0+BlpzOlaX+JrX0PFxws1jnPieeG4IHRhmx/87LtfPE+3Ne2Mu/k2FwtWcKyzYyjKpvlssdjqVjkB+JRMTE3z+858nFrvAkmnL+KPAHXfcAUAuLsyqs7iCnLnXiEJKcVZYyJVY8/Jen4v3+sT6i8QQPdYRZ+ffnkgpbIjg6L+3MXBiRIqgYyvNRGfVSt1b5Z0uVkqu1wfvdLHu2YAUUSt3TRZrny7HVCheSWtW9ijdH5DYgwD8txSx9gm5uU18ZILJ6LSc6kxcOVQko3Tl+2A+9U8HsVdI+o/FFSKMDA5/rYXD35A/mCaL7t0DckStJaJn/yADJ0eID11Yxab4yAx7PndSWsFsKQSllZ/wsfJxuTWvI99slSYDjfZFmYxMS1mDmd1aKu/24vuQ+JgOsPIJH3WPySlMl91awCrJdRvfzfms+4xcHgre6SK4yY21TPz7NLPQgNacLmXld/oXPXTsDEnl4n3/eIojsgdJ44AWZc91fhzOMubNR+WdbvJX2c8eu7PULe9eTW5uLi0tLVRWVsrd4xJwQZWU3njjDXp6FCJPLZe/u4BKPff/s/M+cCLQ+JN2ohKMwsDNRWj0aRRfnsPpN8U6bdkdhdi8mez4hwZpAkPjD+ROTQwcHmdbk5yyRt++EQrWxznxH+LXshQYmJ2ZJTIg0SMMoE5TyXuRzyJlZwTQ9PNu3JflSG32R/uRUqwCcF3pxF5uVogIEjEf74tJLwytfy5AfGSCff8oTnoo2GBncnxS2OoNlOSjd2qlTpZF+3lPNuQAjvxri3SdNU+Vo9GlSTGv9Q7IvyiPpl90C7/brICBwK0eeg8PCSvudO8YomCtg9DRsPC9gXIi1lpkkpJalW3fAL0Hh1Br5Himkb4Y+MxkusxE+8Xa3nBnBJVahTlPYicvouSGKUnFirHuKD375Bb9tv2dvGLRIYnTqfNRsdWFqcDATglZ9Cyv6d158swxbx7afhFa8P+pKgmCkiotjdnphXHV7c9LbYwUFRXR3i7PSF/Gnw7M5rkvENGT/AD7v9RE4eVOKeKQNUEQPIX46fK1z/qVRVNJhZHooPw4s/vvT0qREABaftWDPWCRqjM9McP0lBxRRG/PQK1RSRFtzIXKibfRDjlidO+BISajcvlYWhUKqHnYy8DJUTreFt/QDB0Ok25II3xSPA6+Wwtw+i3sf6VZ3FJND55Lcmj5ba8U8ar++SCx4Qkp0ruoJdofiv5Do1IKOAB6G9R+NMhw27iUqpKzzow6XU4Jp/axEjJM6VIKm/2NI2hNcjYd6BVVqb5DYWEi1VJOc4b2jZBbG6HpLbn3Ozs9y4xkfkjTqdGky9kMRsNxTHl69Lk64X7R9LMuiq/Ik+p/74X6WxJ6m5rqh8roPTAk3K/yL8kh3aSh5MY8YfJaw7+3SN9bYchPH300NTXx+uuvs3HjRum/sYw/DRw4cIBdu3YBUMcGqbpH/02uPxVfm4PWmk7eReJrXq4rnOSutHHoq43S6jktkvku1hOTPlE93BRjtC1Cy6/FDwDqsnXMTM0QDcut22jS06TVpGanZpnVSK55vdVLyTWSqi4x2P13ciSynFVZZFdbOPzdFilyylDzKPExuQNSa54uJz48KUWIctZZmJmakYpD4M4isryZ7Hv5GLGwYKUYHPu2vKLgUnDiNXlb2tpHS9Bladn+V+J9Q2eF7DonbdtCwu9Wl62j9oFi+o6GafoPsfFvuCnGeF+M0BG5jcb8i+3YyzI5/LUW4Tq7Pytv79y5a4B0vdx8aKw3CjOQma8lJjgfivXEUKer0dszpK41PTXDdFwuPwyeGmXguJxCyLa/E7fWS2IpKpugbABmlWZKKWbmVGYhY08ROjBMukkjZQuqO+JENatilllKS0vp6JCfyy/jTwdJ9UoVKipVa95dILnhqlItUKVveLWN3DVZUipKzgoLqjS1lDLLyo/7GG4e45TkQRri8t+ph145LbVhD8o3YE6N+AENgKmJaWXNS2LqlZmvR52uZkxin02fa4SZWaL9cqTWjm390t/czT/toVnQJjyJ4J0uwm1jdL0jfgAndGwYvV3LwFHx3F94qYPCdQ6OvXpaWEEILRSucxDa3y9FvFr3rJ/48KTUPpaMbecfguFTEYZPyR9+W/9cgHDzOA2vio+F1jIj6XqNlF1X5VYX+mw9u/9OfMwMHQpjyJZz/kELFbe5GDgxIpy/2n4Retfe0mIYaY0zcGKEzm1y9WanZ5mVVPDKMGrQZKQp+UuwiUf649imZqQsAJt+0UtpGlJKSo2vd9L4ZqdUvhs4OsLAUfHyKWhh1aNlhBrCwhZu+ats6B1avFfmLsxhZ4x583Hk31rJMKa9+5nOMV4CFHdX0U03DQ0NfOMb3+Dee+8VfSppXFCSUnKxTo8Ju3qedIfq3AsDrqudhPaHCB0QPCmfCGDDd9sxeQ1SlluZ2TrFT1Yi16191k9aulpq8cV1pZPoQIzQAflT1ftflvOUHW6MsP0vJQkPEZYkz7cUj/DhxgiHGuUIAsG7XfQeHJBSK8qpyVLUEyTHsSURelSp/xGG+1LlhE7fPvG4x0Ym0GbJfTTbq4x4Ls/jxE+6pPrGUlB5v4fZqRmOfkt8AhAfnZQNHd4PurAWZxIbnBC2JxxqjYAK0nRyCxx7/kFe8jK7Ios0rbxIXeCuIvoODwq38+afyEusdrzdT8fbkicMI0uz5ZOVkwSWZkmYVCy6q4iG74pvqlc/WIwpT8+BLx0XVjTTWTNIS1dLKfYd+EbLnH3dfBWl5Dh4FrJSchJZ8qFcmn707vecJCzNJyvVcz2nsncTCoXYtGkT3//+98VucBl/UtiyZQtTU4pU6FWq24TreT6QQ8vPe6XIJQDb/vKYnBKQTU1auhqtWZyEYHTrqbmnmHDzmNRia/mmQmWBR9JGrHdPWIqoBUuzZ1qK7VbvzrAUSSQJWZUZR3UmWT4zjZIbMcZsHRkGjVQ7Wkq80zRqUCFOUEIhKBWsdZCmVwtZOiUxNTFNbFhuIy94t5vZqZklEb1kYC3TU3x1Pid/0sV4q1hDjw4q6o2xEblFP991hczOzEq3P9Uip3nOxKnXJex05sGYrSO3NktK7cleacIRtEotBB9eQl9fyveS7PcfQNMPu6XaNsBIc5SDS7Qrc9aZ0Wg1UjGvfyHIZGRKWM0lGp0hLV2NpUj81FvTD7vp2R8W7hNAiqSlt6mxV9qELE9tqmxcTjcd/e186lOfWiYp/RmjtrYWUNa8bCoxFY789TYGG8IMN8ntOp/+WS+9R4allGksbiOajDRxWyZg1cd9pBvTpUgVOauymJqYWpLd0uFvtEiVj/XFpAiwSWxfwsEgWTUbUAgPsvM83y359DcMS1nE5dZlYcyR3OQAGv5Nfn6iUqmk121KrslDlaZm+yG5Na/pyRlxghJgKNThuz6fll92SfcpWfg3FYJKxfHviccwFp5AI0m0yd+QS16tndnZWdoF129ifTFQq5R5sgSWsgaav9JGhsT3XBIlN+UxdGpU2F6t4zfy6lgDh0al2lwSS7Hlk3JkSGApFidJgpLvlnwa3xCfK/s3FWIrN3Pg683C44bOkkGaNk3KFnL/108LE8KSSBKUXFc4he1Br1Bt5GjuO/T19XHrrbfy2muvSV1zGX8aeOmllxgaUtROLuaGhb88z7dn4aUOOn7TL62UsvOlE4o9mii0kG7QoLeJ799ozWpWPuFn4MSI1GE+7/W5CnlKUmQmfHJcasMe4OQSSLqNP+ySs8tFubcdS5jjtf9abi3TXKzDEbBKk5SsJSb0Dq0USUmJt9w6gkafBmoVIz3iL9fpt+C+NAedOV2KIDcxPkU0LLc+VHpjHqp0NY2vy7cLGejztJR+MI/Wt3ukVIsmY9PEJde8/BsVVUkZkhIqFWrJLUAZS+wU4mApVpwCZEiW5mIdzoosKau0pRzo2/ey/PeStIIQ0Pn7ATolCM6g2FoeXcphhjhYSg3orRlSMV/3rJ/JyLS4jWJc6e/mXPG9la53BhlqHp9TWps/9iX/+wzCUbQ7ThRFrS7Ln3X2sfCMugaVGY+phPZIC3/xF3/xx0lSys6ek+W7SP3BuV+ch6AEULjWQcEqO9v/WnxACt7t4ti326RJGHu/KN+BogNx6RO+heudoILQAfGPnlUf96ExaKQUVgo22LGXm6U3+ktvzueU5KTBd3sBfQeGpBSRyjcXYvWY2PmF41LkIWuxCVOunoHD4h+Auz93EkO+3IKNb2MBpmydFHMYkCeFAaff7ibdKNeOZAgYSTgqstBZtdiKjRecpGQuNEgray1lQeT0r/ooWDdN516JQWmJRBvXNdk4y81SueLw105K2/gZHGqySjIxOnUMHBYnRlV92IPBoWPnS3IT+MAWFy0/byMqseaTFTCgs2jp3iH+QZd3URbZlVlS77liqwuL2yRFnKx9rAS9TUveuizh+wsdCWNw6sCgQzQhLWXMSBKUPB/MYbwnSujgGR+C51BVKr4uh9xqGwa77pwnFOerKhnUBsrz/bzT/3t+8IMfSN/nMv408N3vfhcAD+LSsTUPejHm6YiPTApvNjvrzGhNGXT8tl9KCSg6OLMkUvT0xAw9+8QTVuHlThx+C+n3acTVl/RQ/6kgoYZhKXJOzYNeuvb1E5JQRsxZayUaijPSLB47fYGewnU2aeLQmmfKGeuMShG8iq/MI92kofGnnVIkr23/9xh6m9TtUftYCb2HwlJKKzIbQ0n07u4lTa+m67dyqhBL2XywusUJFX8IbD4rBrsOp98sRcjY8f/k560dO/qJSy5cLYVoA4oi13DLuLgiVRT2f1VCVSuBkmsLpDcNk8o+oSPDNL8pvtBjLdNjL7dKEwa91+dJXQcUq7ju/QNSOWndpwPEwhMckPgG8l1fyOz0rBRJaXJ8inEZxdro0g7SjLdGQQ/lNxZKLbKteKQcVZpKiKQEUBZazXT+FC0tLXi9XpqXSPhaxh8vVq5cmfrvi1TXCtfzXJmL69Jsdkios/puyafxP7ukrbMOf71FqjzAWE8Mo5zLBsVX5aDWqNkmQQ6ofrAYvU0r9S1rr84kb4WdI99skbo/zzU50spQxdfmMNg4LEV88VyTQ3a1lUP/Iqdc5ay0YvWY2H1cXG3m4Fea0WXrpBRWXFc4sXiMUgo4gPR6A0DTz7rRWuTWvE6/2SusEpaEM2DGlKMnq8RywUlKWSWZi9opnImlkMK6ftfH7Mwsof1yJJ2lEG1y19nIqbFKrdkc+UajFJEMAJ1ymNTqNjF4THzNy7+pkMwig7TSWMlNeXTuGpIiz2S6dejsWkL7xDco7dWZ5NfapciWvpvzcVRY2S6hkBTc4iKrJJPxUFxYgahn/wBml9x3iSxpFEjFOH+9jfj4pDBZNWdVFoUXObEUGYWvW24K0Nf3G15//XVisRg6nTxRcxl/3Hj22WcBZc1Lq5pHHjpPbi67tQBnhZWZqRlhcoml1IDRqaNr+yBxme+X+BLcErTpTIxN0X9M/PvNXmEmb6UdfVaG1Ab8uk8H6D8aliKx+DcXETo6LGVDZ68wMzkWF1cBQtk8L9iQK6VaBYo172hXRIpI5bkiD1O+ns7f9xGXcPLZ9v8dQ2uWY6VU3esm1DAiRZBr+VmvtL1X6PgwensGvYfk1PpkVMOTsAfMqNRqGrmwJCVLkQFzoRFbuUWKpLRH0uIaoOW/eqQV6JdCtAFFkWu0OypFrtv75Sbi/XKMxJJrC9DbtVIkJbSw8lEfA8dHpNqgqVCLLWCWVm8quswpTTIsv72QwZOjUoSyVU+WEQ9PSH0DBTe5mZ2elSIpxQYmiA7LrZ0uxWEnSVAquSGPprPlzHOoKtU8pLganTcfzatbOlbLTNEkbW1t+P1+jh+X/yYUwQUhKe3bt49QSGlc9Vw/94tFCEoAHdtDTI5PCV8rb50Va7GJuo+VSNltrXyilL3/ckreJmgJSh8HvtmCwy/uHw2krHtkULDWoSy2S6h8lHwoj5zqLDJMGimJZKffgr3ULNWJDHatokIiGfMTP2xlKiYfj0iX3AKFzZdJWobcREPvgGgE6WfqfkeOuQ+QXWdmenJaSlHqxKsdnOC9kcFdCglI7wB7lUNK3SfSFVsyU9vgMsyp2gggO2ghI1NuYU2WoJSs07EtRNuv5AZlnTVDus0WbLBjK8kk41av1EJU4DYPszOzUiQl10U50qpSEzFlQiijjLf/602UXJ0ndW/dO4akys+Hb2MBpEnYfhogf5WdmalZQgfPMlE+i6rS6Z/2YnRoOfLN8+fl+UQl7aEcZmaUv5Gbm5uyW13GnweSC3QqVJSqxP2CD/5LM8EtLqmN5pJrClCni2/kgmLRNTk2JW2FNd4alT4t3/F2CK1JI0UIsHkMMAsToxKqOXow5unwXJorRQgouSofVHKb7+U35mNwahk8MczAEUG1UUCTkYbWKjeO7f77k+RvsEurUIGi1CMKvQ30Ni3ZFVYpkpK+QC9Fjkvel6zKDHold3ftGZAjay1hg2gpaH6zW5rAAoqCECDVjtp+KSY7fCb0NohGkYqfMVtHhlEjlStkCUoAJ/9D/jRVdHCGtAw1xly5DRH/rR7UGpVUTqq834OlyMjE6KRwrtXb1Jjy9bgM2VI5CaT3XOnY3k9IgjwKCQvOJUBvA//mEvb/k/i3ft0DpeiyMrAFDAw2iM0nW3/Xx+yU3DdnTmc5nXTS2trK4cOHqaqqkqq/jD9ehMNh9u3bB8AqrpKq2/Qzudxt9elxVloxZOukvt9qPuLlxPebpckESyEDH/jySRw1ckxl2bwD4LooG71DK6Xykb/eRsE6BwanVoq0nbfKTnZNltQ81JirQ6NLk7bWO/rdpZEcY31y4192lVVaAUdnTVwrLFWN0AE5CzGALL9CqJBRlGr9RR+tv1jaPEUWS1HjQge5K2z0HBgUJqTEwjPSZK3U5XJ1UsSc7EoLxmwdOqv4O5YmKAHEoOWXPdIWMdqsDDQ6ua0LW9BE7gobxmyd1Bp+1d1ehRwmQVLyXJarkPF0iL/f4QmYAWuRnnCj2CT52HfaKL42R8oiLdwYXZKiJyiExnSTRtg6EMBzVS7TsWkGDolds3fPEFleI8clCOWaU7bUfonb7aa3972x2V7G+wOFhYXAWda8FplQnHytk9npWSn1G98NhWSYNHTtGxRWKnJd7YRpeaWUeCjOns/LfScNHB2h1dFLxw7x7zF9nhZmZ5mIie+7AthKk4eqxb8vS6/LIy0jTWptpPi6IuxlZkY7olLkg3SjBoNdzvPu0CunyV1llSIoJSFbJ7PIiEqjliIpaZ1aOXIcQHxpKj3ZK60MN4alLOJ2vrS0sUUWPbuGpNXPQFEQUqWppazilnIdALSg1SIVP6tXUeSSIefIEpQAGn/cgTpd8oMrDhkGDUaHXJ/yb3KTYdBIkZRKb8wjp1YZ14XVM7VgLzdjcGjlVK/kqQWc/mUPQ5KiHwf+ZYkH17RQdZdH6oBR5VYXZo+JcMs4A0fPQhA/i6pS08+6SRexP59HVHK31dBGGydPnuS3v/0tl1xyifA9ikI1uxQ2zGJ/NBGAdLRcqr5JiJxkyEsn0iXf2QBKbsql6UfiE+fyzYXYfWb6DoeFFYQMLgM1W9yc+s+OJdm2vVewVxmlSCwwp0Qlex11mvp9GQvnikx8NxbRs39Q2hJL70BKXWblE6VoLRmKR7hgztI7oPpBP5075ay36l8IAks7USyL+heDTIxOsufz8nZnMqi8z4PFZaTxJ+30SWymrH6yjOjQBEckEve6zwRQa1RyZCoJwt98rH8uwPTEzJIXBC40iq/PkV70Kr05n9DRsJR6msFlYDYSkepT7zVWPlHKzPSslOJD/YtBZmdmpVTUvDfk0vzrkFh7OkNZyeAyEO1cfHycnZ4mMhPhuG078Xic//2//zdPPfWU8D0u448Xr7zyCg8++CAAF3E9epWYTOhSyB6gbBhnr8qm9S3xDYH65xNjmMQiRe1HS5idmeXAl9+/6hR6G5ChkyJJ2AIGzK5MacKW+xq5mL+XWPOUokCyFPsV9EiRWOpfDDIVnZYaYyvv96A1aaQU8QovceC+LIe+o2FpBStZrP5kGekmzZII37KofyExhknYsrquyia3LotdEotR+lwdtQ95Ge+LSW2q621yZDeAkpvzyKnKYv/XTi8pp11oOKozmRibklJPQw/lNxRKSf4DUqSc/wk468yUXJ3Pwa8eF37P5bcXYveb6d47yGlRSX69YvMom2dT1XPF8/oR6zv0DHXj9/tpaFjCBvYy/iiRlpbGzMwMGei4RHXD4hUAXbZOmlSShOsKJ23bQsKb4O6rsylY5yB0OCxstaGzKqcrT/28a0m2be8VrD7xjf0kfDfn0/izLinVoUy3jnSjRtia6r2ELldH3YNeuvcPSH/Xy5BRAKof8GDKN7Dvi8elyFernyqje/eglGXXuk/7FYu494DwXf9ikPjwJHu/cGHXvHw355NdncXpX3RLEXRqHy0hPjoptVa7pPmkBLlmPtY8Xc7s1OySCcgXGkWXO4St8pJwXeFkuHVUSpFLl62DidjSiFvvEaof8KBKU3PwK+Lz8fXPBWEWtv+1eFsqutxBaH//kmIhS67bb3ubSCTCCy+8wHPPPSd/wWX80eH3v/89GzZsAGADNyoqSgJsZ60jQ57sAaCFgtV2KWuhtc+Uo0pTSx3or9zqQqVRL0n58r2C1gxo5UgzpkItWaVmaYWUgovlYv5eovajJaTrNez6uyXs9WiRsuWrfz7IRGSKPRJjrG9jAUaHlgMSuT4rYCJ4u5u+w2Ea37iwa141DxZjzNW/J/ua6z4dgNlZKevA7JVWijY4OfK1RnHCkRbqnw4y2hWRUujRmuVITaD0Ddcl2Rz7fqsU+eq9gqXUwOz0jJTiFcyzrZSAuVgnfZ33EpZSA2U3FXLoW63CebPoMidFG5x07R6QUrAqvNRBx28Fc+YZNCCtQ0t8QED1aXaWBusuusLt+Hw+Tpz479/vlnRNXBy33HJL6r9FCUoANfcVU/98QOpaBpcBgKb/kGvIJ17t4NSbHVIWZwVrs1Bp5JiHzhWZ1L8YpOyOQql61Q8VY/IapOokIUtQAqQJSsnrSBGUDAo5RxbrPhNg1cd9UnU0Og2zM7OMdcknbFkyRe/hMNGBuBSRJdNlJi1dTWaeuNckQNfeAeX0lQSCd7sUctPSmpMUVj9ZxrrPyPXhlt/2Mdg0St9xuZE53ajBIMnoDR0LM9op2SaWOOZPT84wHZeTiMy7KIv6F4LkXZQlfb1kLhTFUk7lnfphlxRBCRSrs6USlCq2ushZY5GqU/9CkLXPiNtcAWRkpqM1i3uFg6LuJmvz2PxThaAk+64q7/ew4h43uWsXj4UqLQ2D2kDAFyASifD0009LXWsZf7xIEpSyyBYmKBVe4qD2w8WUb5Kbo+gL9EQHkSbLbPvLYxx/vUWqjtacgc4i1z/XPutn/XNyY1HOWivlt8vFIYnooLyKy2BDZEkb57IxN7rl5hmgWOXVPx/EUZ0pVW8qNs3MhPwpNEBasWmkI0LPAblTTga7VjrXDxwZZODECB075OZe6z4doPaxEqk6S4G+QE/980FKN+ZL1evZP0T77+UWC025ejTaNKk2Fe2JEQnFpOeusgQlgEhvnJmpWQxZcvZtqz7uY83T5dLX09tQyHWC6D80KkdQAogiTVAClkxQMnv1VN7nkarjv6OI+heDUu1Cna5GnaEmZ3WOcJ0TP+jg5I/axQlKAFFSeVZfIJcL618IUnN/sXD5yvBF5Obkcvz4cR5++GGpay3jjxN/8Rd/kVIvFSUoAdTc72F9grQtCl1Cua3tv8QJSqCoyxx/rU2YoASQXeckTZeGWiO+TGgo1ClrXhsLxG8Oxboo0700mx5ZghKgxEFyLXu0NSZHUNLNqQ7JYPWTZdQ9VipVx2DTMD05Q6RXzk4A5FVwuvcPMdYVkSIoGQp1pOs1mHLl8m/bb/ro2iW3gOC9MZf1zwVTfeVCouZhr/R6Q/uOQUJHwgw2hKXq6bK0GJ1yz9RzYJDwaUlS3RL3eKbjM0xEJNU4gibWfyZA/sV26evJvl9ZghIoeVbWMjDWt3SCku/mfJx1cmte6z7tZ81TcnNXvV2Hzir3HdTwg9NSBCVQYh4Ly78r3y351D3kJX+9uBpfwBUgFovx/PPPS11rGX+8uPTSSwGwkSNMULJXZLLy4RJFDV8CWqcW4kiTZXa+dIJjr8o5sOicOun9jZWP+xQShgSyAiZKb8yTqpNEfARpotdYR1yaoATyMdc65WIHYK8ys+7ZAPYqs1S9qfEppmJyez0pSPLk+o8P07NPbmEkM0+PTlJRKtI5RvfeASlFLlCss1Z8xCtVZ0nQKutrJTfItd323/fR8rbcmqspR4fWlI4+V8ImNQ7Dp8foPRiWupYsQQlgvC/GzOQMGq2cumT1A8Ws+mSZ9PUUcqJ4+eFTkSURh2QJSsCSCUr6PK30Hoj7A9nUvxDEXCw3t0k3aMhZIZ5j2n8d4tj3WqVtHpMEJdlcuO7TAVZ8WHDNS6UiEF5DXl4eJ0+e5KMf/ajUtUTw305S+uEPf4harebm624HlZosv4G1T/vIWaW8lMBdhax5cu4DfNUTJVQ/4GLg1BjjA1HWPlNOwQZlYlq2qYA1T811opWPl1DzsBI8g0PFinvcrH9O+UD0bSxY8LG48vFSaj+a2CAwwNpn/BRfn4O9yoj3hlyKr5pb0K99rIS6j83d09pn/JTerPzedU02a5/x0/F2J9v+7zEK1jpZ+cRc2TVPl6dISIWXO1j7jD+1CV24wanIlSVOy6x5qpzAXUUA5K3LYu0zfiw+pWzl/R5WP1mGIV+HKVdP5Z0uKra6AIXstPYZP84VyoZRxVbXgo+S1U+Wsf6FAOufC2DxGVj7jJ+8dVmJeBctWHxf9XEf1Q8pMSy/q4D6F4P4bs1V4n1H4YKyK58oZcXDyoCjdyhxcV2TzfrnA6x5pnxBvOs+VrpgQ2btM368Nyh/t/j6HNY/GaD20SAGl4Haj5aw8vGF8U5OGF1XOpUYOpSmqUoDjWluw2HN0+WUb1biXbDBztpn/ClCV/WDxaz6hI/uHUNs/8sGPFfkEdiixDBnjYW1z/ixVykDTeV9SrxTf/epcupfDFJ6cz72KiNrn/GTXae02eDdZ8T7E2VUfdgDQLg1QoYpPUUsKd/87hjWJGJoyNex9hk/uiwt2/7vMaYmZxa22SdKqX3k3W0WErZ8VVkpZai6j5VQ97GF8S75kDJgez6Yo/xdQ4IgqYKVD54R79uVeKfabL6SaKsfKn5X+0612YsWttmqD3tY/Ym5GKbp1SlOYnadeUGbrbzX/a42W3mfh7HmCD37+ln7MX+KkBLYsjDeqz7ho/pBpc2avEr7bv11L7v+9sRZ22wq3g51qs0CqNPUGBxzA8q5cgQoqjfJd7P++QDrnvcvmiOSJLwVD3uZjk+n1BrOlyOqHypOkfBGu+OggryVyoLNuXJE6t08VU7FVhfrPxNgxb2eRXNE5f0eACw+A+s+7af+xSAlH8o7b44wuJR4F16uPNzaT/tZ/8Lch9C5cgQoyktrn/ET2OKi/sUgKz9x/hyRbLOg5GSLx4T7ktxU2XPliJqHvak2OxmZQpXOojlifgzDLePs+OsGoRxRea97wf17blDay/lyRLLN5tVbKb7OyYqtRaz7/9n7z/g4jitrHD7TEzpMzgEDYDDAIJEgMkBAWaJytGRJlJWsHKlkisrP73nXz6432Guvw9peh7XX9q6zvc6WLAdZgRQp5hxAAASR4wCYAEz4f6iZAYYkgL4tCZb94nwRRVZPd9++davq1qlzn5l7hsZHg6i9n/2u5NOi9ekQii5yAioOoQ/7oHfwmI0k0L9nAg0Pl6Au0xYS0PKxMgQucwIASq9yoeVjZYyotL0QFosFAHDRRRdhBX/bWLeOlRjxeX04284kN2vvDc7FNzD/Lb2OjRG+c+xo2ViByOAUZqcS0Bo1efGt+anyHGHH3WRBy8YKmIJi7t/q7y5hpcDATutWrWdjhGONES0bK3KlpKpvLUJzZiFkq5LQ9HgInibmr5ZyES0bK+BusgAAKm7y59oCLD6v/mgAm//xAHZ9uwstGyvgzSQty673ofljc23rHynFmntYzBJtAKdWITHLEgfBK715fbPuwdLcGAGR2SVwqRvF57hhrzSxWJjZS6l9IIj6h06xYSap47/AidZnMnH0ai/W3FOSF9+aP1aeI45422xo2ViR2yTPjim5tk+W5xZJzgYTWjZWwFLO2lbfVoymx0MI3VCA9heq0fxUOaoz8xr7agNaNlbkyERV6wvzbNi0IYTaO0rQsol9v5aNFXC3Zux9oz8vvjU8WpYbI0S3DuAA3sUS2aXX5duw/uFS1N6bb8OidS5s//xRDB8Kn2LvIOoenEtctGysQMkVLK4XX+JC24tVueRa7b2L2PtcB7NhJuGt4lSwV8yRqJqfKkfoBjZGuFuZz2ZJE6vuKEbThhDe/uQhvPn3+9H8ZDkqby7Ms7etio0R830WAFbdXgpOyyF6MgpblYSWjRVwZuaGlTcXnuazq+7IxGcVK8eatXfohoI8e9c/UoqanM9yTIVKx5KspVefYu+HSlF7f769izPjrLfFDHBAOsVOw9Q+EETdg/k2DF7JbFi0zsVsaGNl4uzlpiVjRNbeq+8KQLBo8ebH92O6K7pojKi+vTjvcIFW1MBWwr7VYjECYPOP6tuLmb+/WI2Wp5eOEQAjoBSe5UTXHwcwsndqyRjRsrEC/gtYLFKL6ryytAvFCAAIXOpmz99gQP0j1Wh9rGLRGMHszX57zT0laH2+Iufvi8WI1R8N5NZJjjXswEvdQ+z5F4oRWTQ/yWJE2/NVWPtc1ZIxIuuzpqCIVR8JwFQoMQWnxWKER0DLxgr4zrFjcPcIUsk0Vt1cNGfvBWIEAJRc4UHxOW68+fH96PztwJIxomXjXEwuaHGi/qHSXH9dLEbUzIvJa5+rQv3dJUvGiPk2TMQSGNo7vmSMaHo8hOrbmA19mgA4jsPXv/51rOBvHx//+MehUqlw1brrAbAN2eYny+FuYjmB4NWevDVH7QNBrL4jgMFdYwifnEbzk+W5TfqSy9x5flV7XwlqMv0NAtBwXzBHvi660MnaZpa0NXcHcutkgPlv4BI3LCERvrPtKL3UlyPNrL4jMBffwNbYwatZf3M3WdH8ZDkG90/izY/vh7PKnDeeND4WQuhDLGY568xofrIc5lL2EMFLXEin0xjcw3JejRtCqMj0N2ulHs1PlsNWzeJ+xQ0FaNwQAgRW5mDVbQFUZuaRxmJmQ2cdywmErvPlxbe6B0vZHOrZypy9PWvZ3LDkSne+ve9n9gYA/0V2lue5PpMruSTf3mvuLcmt27I2LLqQrTebngrl2/uuAGrvy7d3yWVsjPC12bD2ySo0bKiGJSRi1R3F+fZ+PITSa7x59pb87IfVgho689yGw3x729cY0fxkOSwhFrMqby5EwyNlGN0/hS3/dBD+NgcqM/NIS0jMs3f59QVofGzOLg2PlrG56zVeSP6MvTMEidJrvHn2rn0gmBsjJnvi4E26HIGg5MpTfPb+IGruzNhQYHaxhwx48+P7ER2N59v7ngDW3JNv7+KL2RjhP8+BgrUOdP2ZkfJr7gzMzYGy9s7kazxrbWh+shyCS0A6lYaKAyo/NLcJ3fR4CKFMvsbZwHw2S4qruqUQDQ/NrX0aH5vzWVu1Ac1PlufKzlXe5Gc+m4Fo14HLHF41lzIb2jPjbOhDvjx71z9UiupbixDrj6H7zRHU3FW2ZIwAAMHCofnJcnS9NoCtnz68ZIzI+izAqhroncKSMQIAfGfbmQ0tLLex9rnKJWNElnxSfWsRkjOpnFLmYjGicn1hjoQX6Z2CSqOCq9YCYJEYkUHDI2WoXF+Ilo0VaLg3uGSMqL6NzUcEj4Dmj5Wj7QXm74vFCMHC7OI/j+W8mp4K5eW8FooRAFMOan6yHCVXudH+UjVqHwouGiOYvdnccNWdxXDWWFB8LvP/xWJE9a1FuTlnbHwWnFa1ZIzIonFDCBOdU9jyzweXjhEPlaHqFhaTZ6Jp1j+z+aZFYoTgYn3B12aDZ60NDfcF0frc3Hr3TDGiMJNjLL7YBUuJAfHxWYweGF0yRmRjsrDTA7uVjaMXXnghVvC3jaeeegqpVAoulwtt7osBlQoVN/mxZl7fbHi4FMHLWX+zrzKicUMZ4pEZRIZi4LTII1TUP1iaI+xYyvVo3BCCuSyTN76/BI0PlsJ3Fhvz6u4P5vLRpmIejRtCsK9iOYHglZ7cmtpUImDNPSXwNjHf5p2srbOWxaziS115ebeauwOoWl+Ebf96GDu/fAiNG0LwtLAxovB8Z14sXH1HMVZl4ht4QCOpkciUbCs4287aZvanV91ahJp5uevGDSEUXehE4Dw3XHVWND4WAm9icahqfVFefGt4tAzFl7L+5qw1o+mJENpfrEbwSg8qbvSjdt54Uv9wKYJXsjHCWmVA44YQTMXsIVqfrcTaZ+diQP2Dpbkx2VwmoXFDCJZyNs6WXe1F/UOl8J/nYJvmDwdRnhmTDf6MvTNkouAVnrz4tuaeEjQ+UIrmp8rBO1hbV6MFACu9N9+GNXcFUH1LZoxwaMHpVNBncl7+8xz59r69CKtvn1vfNm4IwX+eA3u+2YX+naN59q6+pWhuTM7a+2IWNz1NFrQ9X4XWzJ5L5frCfHs/UoZAZoyw15jQuCHESvJl4AjNERzqHyrNEXWyPpslTYSu86H+wVJs/8JRbP7EAeazmTmRqURA44YQrFUs7gev9OTlMCpvKoFW0iDaF4fozffZwGXuPHvX3D03b0+n0xAcPDyZfE3RhafY+85irLp1zmcbN4Sg0bP93ZzPZrDqtiKsviPfZwvPZzb0NdhYuTI1y3lVrc+3d8OjZTl7uxotaNwQAu/kcfL1EZgD+lweKGvvYCbXYF/F7G3wM3uHri+AyS/hzf+3H+OHpxeNEWVXe+f2b8GEFMzFzJ8XixEA89mKG/0outCJtuer0PjE0jECYISh0kt96PrTIEb2hZeMEY0bQijIrDV1Bg20evWSMQIAPC1W5ltBAY2PVaPp0fJFY0TW3gDLIbVuqsz5+2IxIvShglxMNhXz7JBY5v8XihFZ1N3LYkTr04ybsFSMyObbeQePuruCsFeYwDv4RWNE1oa+Nhv6t08gMZtE+bWFc/ZeIEYAgO8sG8ouL8Cb/7If3a8MLRkjGjeEwGeIqp4GG2ruDuT69mIxovyGAtRl8m5NT4bQ+EAQpZl9VuazZTAFMjHiWi/qHwgycq9Khbr7g5iZnkX/rlGYAgIaN5TBWmnI2bD+obnxsvaeACo+XACoVCiMV0CtVuMrX/kK3mu8pyQln48NOKuqVqF6NVtE6T0C1DoOxgLWkQ0uHhpxjnSiM2gg2ngc/kEv+t8Zh1rHwZBJ0hrdrJ57FrxJB9HKPoTWwtrMRtmgbPQJeUlmnUmbOykgSoCa52D0Sai4rhjuOitrm9kQF8w6VkM6A9aW/b7JJ0HNczAELaytjYfOONdWI6hhdAuZZ2Bt9Tb2zDq9DiqoEOlmJ1o1ohoGF/tdQ/Z3MyeLJAcPrV6DSG8MB37YCY7joHezf9N7M7/rZQ+sd4t5NtTqNUin04iNz8DgEdnv+rL2FvNsqDNqIWZYtXzmPTSC7oz21hm1EGysrUpiz2AqkIA0oNIgz968WTundpC1d+abG30SVCoV4uEZRLojEMw66Eyn2pvZ0ORn99Fa2f+nkwA3T41LI6hhcLF/MxSwd9U72G+JNh46gxZFFzkh+QRm79y30UPNcxAdGXs7mb1zvyuqkU6nER2JQ+/V59vQc4q9DZoc2aXiOh97fr8+Y0PxNJ8VrLqMjTj2u14x1zbPZ41a8Jm2koX5syHjA6aMD2TJLrxJl6cIoOY5mDL+YfSy35UsAg58pxupRDrPZ9U8B1PG70wF7Hd5M3sO8RSlAY2gzp3eMvqZXbJ1fiWHAK1xzoYcxyEZZ6frsv4turL2Fk7zWcnJQ3QA5dcWZXyA2dDgFk6JEVqIGT/UO7TMLovFiExbrVXI2CXTtoD9f5Z8tlCMYG2lXIxIzaahUqmWjBEqiV2bjRE5P1wkRoj2uXgylalxqua4PBueGiNy30ZUQ+8WMXw0jPjkzJIxInsyw+ARwWm53G8sFiP0NnWeXVTquXKe2bZnjBEAjD7mh71vDyM5k4JOv3iMUPMcxGxMNumQTqVzpXwWixGibc5nt/7rYXAct2SMmG/DbIwoaHMuGSOkTF/IxghfvR1VtxYtGiOMLj73rsd/NYRUKpV3Opk3aSFY+Nyf1brTY8S2f+sAIoDOqMnZUDJrWFtP1rdEqHVzv3vL+lsgCAKOHHl/5etX8JfHq6++Co7jcPP6mwGR+Y5g1+WdltSI6rwxQiOqARWHrZ8+DMnO56kVafWanF8Z/KytmGXkZ9y8988jc20z/qrP9AO9JxOHXKxExqo7ilH54QB0Ri30md8R7WIuhgHM17WGuf7Gm3QwZGKs3q5hz+/PPL9HhFaaayuYdRAz8Y0zilCpVZjuY8eUjP78vina5uaRWbsYfCLe/uQhREdjebFQtPK58Xt+WwAwZfpbMp5C7xsDEB08RMvc72olTU4t0eSX2LvaM8+sYuPlfHtn2xq9ehZr3FkbsjFCnYkZWkkDfSa+ic6svTPzSq+YF7N0Zi3SyTSG94UhOtncO/utDB4hr61g1kHKfJuRXUyhyGhnz2DySnk2FCw6CPbM2Glm47WpWILvHDtMvlPaWvlcfIPIbJh718zcMJkhlAl23Wn2Ns4bTzSiGrxJBXerBQavkG/veT5rLGDPINm1GRsKeXPOPP/2ZNo68302Z0OjFqbi7JjA2ho82blhflvepMt9m2O/PQkVp4IpMzc8ta1o4XNjMu9g34bjVJnnF0+xoQ5ixi6iyDG7ZOenNjFzP1byWrTyEG2n2nDOPzSiGhBFVNzkh+Thl4wRopXLvLv8GJH12VxbgwbmILPDQjFivr31Th7xiVmkU2k2B10kRmR9NhsjzGV6+M91LBkjNKI6N1eJjc3kzWsWihEAYMj44ciBKURH41Bx3KIxQiOqwRkzMc/BQ61W5+SVF4sRknNuXjN8hKnW6jL/v1CMmP9t9C4BsbEZzEzPLBkj5uIJD5VKhZFjE0B08RghWpkfmnysrFx8bAYafvEYkY0982OEKShCtC0eIzSiGqLI/FCws9+tvCGQs/eZYgTA5szZGDHewRQlKDEiNZvGsZ/3yYoRehe7z5qyOtTX1yOZTOLss8/GCv52cdZZZwEAQmUh1KxhGzCSTQOtQQODb27NN3/NIdl4SC4ex38zgO4/DEBr0MA0L7bMj2+inc+tOYQM0SCX8/JLeW0lR/7pe61BA2OBiKqbSlB8ngtagwacgf2I5OJz4wnA1tjGTNw3+dkzWMuya0kht6YG2BrFOH/8M2ggWDNzTiMPpFU5dSOdSQtDwdyaVGvQQJ9Zbxl8EutvMWDPf3VAhbm1jGDnmQ2z44tXzItvopVHOgVEhuMQLWr2rt7M+vAUe4s2HSR3JmZl3kMjMrsZC8RTbMjPHWQSMjb0s9Neag3H3lWYayvaT7c3wOIQp1EhOhrH+JEo9C4B0jwb6ozauXmYj9lQtLFnTkaTUM1LzfJG7dxYn7GhYJ+bw/EWRhgSPCx+6XP5AjFjw7m4z8+zIW/WsZzX6Az0Dv6U55fy7J31WQAov8bDfjc3X833Q9Gmg5hpKwhc3jOc1tYuQJx3cIz1hblYrjVoUHEt21gTXfnzGq1+rq0p01Ywq3D8lwOYjSUgzpvX6IzaeeNf1mfn8iH8vN/ljdq83J/WoMk9o94j5o0RKhWH2WnWH0Une7ds3zD6pDx7C1aejbMCsPqWIlkxAgC0Zh0pRrDfzdi7kD1TlsizUIwAWC4wGyOS8SRUnGrJGCFa2BiejRGetcwPF4sRBjfzWYCpeKVTgFrNZX5ngRiR/TYWHQweAYO7xzE9HF0yRmR/R7SooZU0UKkAtYZbNEZAEPL8W6NT580NF4wRme+oNWgwvH8Cs5EEBJNu0RihNWigzcyp9U4B6SSw7TMsX7NYjNC7hJz/7vzSMXAct2SMyH3HeTHCf45r8Rhh1eX+LRsjCpqdqLqlcNEYwRuRs2H/5lGkkqnc+jVr70VjhF6Ddz53BLFxeTFCMLF//8j6WyFJ0vtSdmQFHyx8+tOfhkqlwvqb10PI7F8YPELeQWTerMvl6fUuFpd4A4+d/3Eceme+wgxv0+XWEZKTB2/W5vY+1FoW53rfYORrwc7n1ie8RWBtM/HD5JUgWHiUXuXF6luDkFxCrh8LZjV4s3Yu5vqkvDW15OBzuQZOz2faZmJugZi3B6F3C7l1MXtGDlMZNW+Dj7XlM68neURIrvl20cLoE7HjS8cw3j0N3qSFNhNn9V4hT7FPMOty62S9V4DOoMVMJIHBXWMweMS8vilY5toa3OwZhEw+nVOr8vPeVl3OLqItY2/X3NpMsOpya0TBzOfiG2/OtPVkxm+vmJfDkBw8kokUBvaMgTeyfZvstzL7JPDzxhPJyUPKzBuH90wBaeTWoSaflGdvyS1Ccs3ZmzdrYSyS4GmysDmEWQs+s58neYXcOjnbNptX0XtYfjIxm8r8/yn2nm9DH/MtycbDUq6HrdwEYd74LVhP8W+zFpI9O3aKuf1EIOOzmbaCTciztylj7yxEpwBbyAjeBAgWLWvrndtnmG9vvVPIxe5DP+gGx6nm1vmn+KzkEiBlxmSeZ3ZR69g3Nvoz9s68nt4t5sbvnA0LsnviIpAGet5keUq9L9/eglkHs29u/sH2p9UovtQFW5lx4RjhZr7FZ8ZWo09+jDD6pTx7i04etnJGWF8oRuTs4mQxIjoyg1QiDd6weIzIfotsjDCXMD9cKkbwZm1urjLZF4UKqiVjRNYOvFmL1Ewakycj4LLk93n2nh8jeLMWolWTsT/bb8xWFFssRsy3d7iLiTZkD2wsFCNyz+BkMWKqL4rYeHzJGJGdI/NGFVScCiOHJxAfji8aI3gjewaDT0R8KI6p7mj+vP1MMcI7t5bIxgjRy8NQKC4aI3izFnxGvEvvEWAskLD6I8HTbTgvRjAbSrkYMXxgAkjjtDEw6/8Gn3RajEAK6Hp5CIKdB2+a57MF+TYUHXPjWpE7gKamJiQSiVz51fcKqnT6lGJ0ChGJRKDXM4u24iIY1fJqe626zQ9zkR67/vsEIifiSCdmlT+EjFepurUIM1OzOPa/fbJ/tv0lVouZUjOz6iOFEG08tn/+qOxrVpAPc0jCzBi9XFT7S9VIzqaw5R8Pvj8Pduq94ils+Wf592rcUAbeoqPVic/cKxFN5ogbspCtLEWs/ND+UjVmJmdzC2a5EB20knmSg0PdQ5WY6o9i91fkS6K2bKyARlSTbGgOSVh9SwkmeyPY/VWa/CoVrgYTQlcVKrqXq8GEwe0KdB9XAIApW3nWWEn9ZNXtRbCUGNG/a5Q0NjQ+VoYDP+xBpHcJmUmOVn4m71KBTRLq7y2AzqjB5n+S3yd7ynbhwIEDcLlcGBgYUPwMK/jgwu12Y3CQnTZep/qw7Ovanq9CdHQGO7907P16tBzEAhGV1/qw49/l36viRj8cVWb07x7FsZ/K75PNT5ajZ/Mw+t5SUC9qBQCYcsvwbkI5X7CTtAa3iJ3f7MB0V/R9erK5e+ldAnZ8YT+pLFj7i9WIT8zkVA4p96LO10Qbh+gorfRd85Pl0Bo05HvlSo4RzN6ysQIaQU1a10AE2jdWY6o3it1fkz+vaX2mEmodR38vBVj7TCU4BfcSbRw4I/++++7fMuofLkW4N0KK1+0vZtbXfy//e5Ve5wWn5nDkRyeVPCYJpqCI1R8pwcDeMdnvNSqO4iA2Y3Z2FjMz9BJMK/jrQHbzugnnw6KSl/MqudINT50de7/dgckuZfL0FJRe40UqmSKV+G57vhpQAW8R+mTJlW6YCvTY9R8dSh5zBWBl0VJTM6RSagCLocl4Elv+5f3fnG9/sRqJGC0PtfqOAExFEt785H5SObH2F6oxM03MQ2X3Tohdq/2lasQnZvHOZ2k5L8HC0b/XS9WYPBnBnq93yr6m/qFSiDaeNE4KFqBhQzUmeyLY85/y76UEkl9A/d2lCJ+YJt/LVm2glVJcQR7cTVb42x0k3w1e7YG33o7B3WOkMqC19wdx6Ge9iBHLmyvBmntLIDl4bCbk8vurD2Lvvr1wu93o7+9/H59uBX8ptLW1YfPmzVBBhYs4+Tmv1o3liIzEsec/u9hfvDfbn2cE7+BRfo2XFOP95zlQfJ4bAztGcfTn8tdQ9Q+Wom/7KPrfHlPwpCsAmMrI+OFp0jXZHOW+73aSr6Uie69dXz+KqZ647OvWPleF+NgMdhDyvBU3+WEvN+Gdz+4nlSDjTfSSZbX3lkDvEWl5KGCu5Jh8U6D+wVKIdtocCmDz0PCJaez9ry7Z1zRuCIE3a+nvpQBNT5RDZ9CQ78WbAK2JJ/nTCvKx+o5iRIbj6PiV/LnG2merABWw+RMHZF/jP88BnUEjrwyejLKnC1/LgXfyqL+rGMP7J2SPQ/FUHDsMv0c8Hsfk5CR4nl/6IhmgFTFcBA5HNkGjkk1QyiKdTiNyQn4nqVhfAFvQiF3fOI5IL61zHfhON6k9ABz6aRf0LmnphvNgyqjOUFB0iQv+Vgd63hxC96vy67bWP1yKie7pXCkwOTAEJRi9PPreoE1qii5yYmjXEImIYg5JqLi2EEd+eQJjB+SzZao+XAxOoyJvNvTvGEV0jOYXzjojpkeTOdUruXjz4/vniEAyMTUUy53kI9+LiJZHMhtRy7A5pIQ4FBlOKXq2yHCcXLN54kgEb3xyH5mwBQkoaLTj5J/l10Ue3B6Go3oSna/RGHbNT5RDa9Rg8OB+0nOuua8E6WSatCAClPVn0QE4G1zofnlQ9jWST0DVh/04+uteTByR/2Jtz1chnaYN5o5yEzv17hOWJg9lsO9b3ahY7ycRlADgnc8qI6E2PFwCnVGLzf90WPY1qWQKaVouFPZDFQAO5EgsK/jbQ/bbnoUr5V8kAulkmlxLfe2zVYgMxUgEBQCInoySCEoAcOgHPcCNIG14m4LsZKWj2kwiKa19rgrpVBpb/kl+MtS+2oCi89w4+D/HSWSUonUudL8xSCKUiB4B1pA+p14lFzX3lCA5k8L+b8lfXIs2DuXXFqLwrDh2fFH+Nzv6mz74W+1kkoe3zUYmlO36cgcj5hD5JLPRBKYHaXPDbAkLKuofqcRMeBbb/u39V7Jr31iN2akEtn5a/nhCIrtnEQUS8SSmB2kbFFs+e5D8rQBAXyyCl1QYJawbut8cylP0kYv6RyrJhwDsqw0IXuzD3m8eJcUA0cbBuspK7s/eNhvGu6OInpRvzOCVXhg8AilmBy51w9dix7Ff92Jg27js60Q7D42gxjHIj9k9m4cx3kEjRFLGhPkwBUWsWh9A/84xHJeZVAp3RJmil1a+T9miNkTTUaSRht1ux8gI7Tuv4IOPQCAAAFBBJZugBAAarRrpZIpEUCq+2AVvow27v92JSA8t9h77Gb2v7P9eB4x+A+kae5kpT1lDDpx1ZoSuLkDPG0Po/r38nNfqOwKY6o+i82X5xCvBI8DsFzGwjZbz8qy1YfzgOImIIrgErFpfiI6XezF2UP7m1aobixSRlLv/PIhEnLY4tFbqEZ9Kkv3pzf+3f44IJBPTg1GILh2ZOETdTAKAxvtC4DNlad9vNDxSBsFGP3Co5NmmB2LknHJsHHjzX2jEsCzcTVZSX4n0xDC4Zwwnt9Lm8rX3sU3K7b0HSX2scn0h1DoO+wgbh0CmP3dEEKPMYQWw3Pyf5CfKBAuHipsD6P7TACkGtGysgEqtIq1FHdUmdmq/WJA9rnT8vB9qNUciKAFQTEJdfUcAeo9AOtCbiCWRTqZZvJH5uSz7AgD2YmBgALFYDIJADFYr+MBj8+bNAIA2XEa6LplIIzVDIyY1PVmO2HAMe79F2zuMD8fJ+fiePw1DI6rR+Rv58xrewUN08HBUmkgkpaanysGpVHj7U/LXuwY/j5JLvDj8sz7Eh+XnUTwtVowdHCMTXqzlFvQT1p8AK3ekUqtw6Ps9hJsB1TcVY7o/il2EQ+WdfxxCIpokE5SctWYMHZwgEWwO/aAHh/ge0jUAEJ+YwdQAbQJAst08ND5WjehonJzrVYL2p6sRG58hCYFQiFrzEQ/PYoqY83rnP46QvxXASkIKZjUmjsrPeR1/tR+Cmbb2AoDGDdWYiSSwjZA3NBXzKL3cj4P/24Non/wXVNqf7TUmRIbjpHsVnG2HpViPfQS+h6fJguBlPnS83EeKo0wBTAdAPv+i83d9iIzQ/Iky95wP3sGj7qPFGNg7js7fyNsHjA/FkU7R1pM8x2NmahazmEVRUdF7JorwnpCUIpEIolGWND2bwGoGgP3/k59AUWm0S6op6SQtVCrV6QQllWpBZnTRRU7425w48osTGNpJS4iO7JnGCGiD0JZ/Pkgmr6RmU0gn0uh+S36yBsiUjDJoSSSlqmv80Bo1mDg0gciwfGf0tzvha3GQSAOeRhs0ohqCmQeFedH79nBOpowCih2yCF1VCKiUJQ+opJdD31U2AVCCof3juXIj7zcG943DUrQ899r7jU5lF1IJSgDWfKQERp+EmckZUuzY/206IbL7zQE4q63k6wxuEVRRPP8FDhSe5YKpSI+9hJNvdfdVQaVRkUhKol0N3qxD0Tku7Dki/14zU7NkYs72rx9V9J2V9svmp8rBabiFky9nUFFScSqoZOQbsypKALDrP+mbDZJkhiamQSKRQGtrK7Zs2UL+jRV8cGGz2QAAKnAQVYSxMgpsJiRBAQAioOIAlYbG0m/ZVIFEJKlIVfLQD2h9MtwRVTSGx8MzSNP4WvCvdbHyISIPCgPD3+aAt9FGSkKXX+VjErNjcYzslX/i2OihjwvRaArjndMY2EHbWJ/uiuJQF+17+c6xo+QCD8xFehz83gnStUpIL1s/JX8x/m4xPRDD0IGJ5blXXwwjx2jrGqV4+5+VkZuUoPb2EqRTabx1QP56g0r8yWL8+DTGiDbUe1h5D89al2zSCwDUPcg2oijPagqKKFnnQXSYRh50rjbnlYGVg4GtQ/DU0eehb35yP/lbd/9OGYHa3WRB6aU+HPutfCJVuCN6WhkbOXjrH+T7XxbtuAJbta8AAEZHR3Nj9Qr+NtDVxTbHSeRwAEd+2osjoG0Mi1YdVGqORChx1plRdkUBDv/iBEaIqogTx2KYOEZLom77tyNk8goAJGNJDG6nxWxTkQTJxZNIShXX+KB3C4gMRUkEseA6D1Lnu0hqHu5aRhoQHQLGCLnD7j8PwVpKI4cByhLYFdcVglNziohAVNLL8d8M4Dhh4/XdoG/HKOylxmW5V//2UdgrTctyr8M/VqgaqICgVHFDARyrLFBpVOjfLJ90dOQntLgGMIKdu86GWIyW6LEE9Hll2OTAWqlH6SVeTHROY+9/dcq+ruVRdgCT1M8EVvrZ3+okkZRi4zNQqWnvRSVqZUElKGVR92AptHo1aT2l0kBWzms+lORQBZUAXiUgnorhnHPOwdatW8m/sYIPLurr6wEAHNSQ1CZQEsSnKfItsmeYhVqjgkpLc9zGDSEk40nsVEDooxCUAEaGevP/7Z9TlpGJ2HCcnMvztTpYGVM9ECeEwuAlXsye7cTWf5UfL4rWFcC12oLkbBpDu+TnUaxBA1QcXUlkaN8Ehg/S8jXxoTiO/YKWl7eU61F+rR+2ciM5v6mE9LIchKEsxo9NYbxzeRQRR49OInzi/VWvyuKdzyk4aKhQnKj+3iCQSpPy8yN7lFVeGdw9hqk+WsJGa2CkSHetBZ198mNVzb3l0IkaEkmJN3GouNaPSH8MO78qP5Z66m15JdvkoH/POArPdSGVpOXL3/rUAfK3phK1sjCXSai6oQidr/Yv/BunzInjw3Go1Bx0ehn2mDdB2/JJ+n5NKy7HFt2vEI/HMTQ0BKfTSf6N0x7pvSj3JkkSolFW3/Biwx0AgFR08ZWRSq1G46MB9L4zir638jvY+1HyrWK9H/aQCW9+Sr5CSbYU1ciRMGkDm6Lg8V5BcnAkspFUJKH4bDsO/DdtYyhwuRuzUwmSqgy7IRQRB6iovq0IBq+It4my14HL3dDwahwlLNpC1xfAucqMQz/twsge+YNl0UVOxMbipJJe9ho9Kq4rxtDBCRz5wftf4kBpuTclaHuhCsl4inSCXXQAvrO86H2jj6QC1PJ05pQSIeFoDknwr3Wg49fdpHtV3VoEo4/ui4qgsH+tvrMYHb88QYodBefYoRbVJJISsPxxUcn92l+sxswUze9bNlZApVnEp96DUm85SED9R/wYOhjGid8v7oyqjNxiJBLBbsNvkU6nEQ6vlBH8W0E0GoUkMSb0WbhSNkmp+BIXrEEDdn5pecpytD5TiWQsSVKUaX6yHBpRTd4cVlJi691A9AiIEmXvi9a5EB+foSmUeAQEznfiwHeJRB5AkeKQErRsrMBoxySO/lj+HEq0cSi53I/jfxwiqcO0PlOJ1EyKpBwk2ji4m53ofG2AZI/mp8qhEei+qASKy70pQOXNhbCVG7HjKx0kH3Y2mKDVa0kEG3eTBaWX+dCzeZhESim9zov46Cx6iIqULRsrMHZ8alnKgSmB/1wHoFah5w+0AykVN/nR/dow6Xstd0wE6HEx64sUkpNo41D/cCUGdo3hGKE0glL4zrHDvcaCHV+Qn/QdqjmCXbt3wefz4eTJD6YvroCOoqIinDhxAhw4XKi6XvZ1tQ8EMbBrnLTxrxQll7nhabRjxxcICiUCU+Ub3j9BIkUILoGmTPIegFpmS3AJKDzLRiZS+M62A8k0ej+g5YNLr/HCVmokzYUAwNdmA2/TksoA+s9zoPBsFw7/nEZ886y1YTYyS7pGcAlouD+IoX3jisgvVCgt96YEa59lqo0klU0BKGp3YnD7CMnvGzeEoOY5Un5N8AgInOtA58u9pHsFr/bAXmYi+6IiENR15qPihgJ0/XmEFK+cdWbwZi2ZDLjccVFJ6cG1z1ZidjpJ2ohteKQMGkm9PLlNAGvuCWCsYwon/iDP/rF0DPusb2BmZgbDw8Mrakp/Q8gSE8/BteDVme+6BFHJ02SBs9qMPd/rOn1D+X0o+db4RAipmRSJIFJ7bwlEO08+PMg7eJKq0buFkvt5WqxIxlMkshFv4lB0oUcZkZKHYpIIBQ2PlmH8+JS8EkwZ8Cag8Dwv+neMkspsNT4eQjqRxvYvyCcP8CbAWe/A0I5hkopV/YOl0Jk02KLkQBoRisu9KUDRxU4UNDuw7zsdCHfJt72lXA/BpCWRS0wlAqrXl+DkW8M48Uf5eZ7C852YjSTIpRsbHinDRNc0mTSnCAr6l6vRAo2OI6+jgld4cHLrGOJDFNUmDvHw8ua8qHExcJkb3gY7tn+eUFKRB9Y+VYX+HaMLk1nfZam3+bDXGOFvtmHX17uWJgNnrh1efRg7d+2A3+/HiRMK9itOwXuipJRVUTpLpoqSSq2GoUSCzqCBZ43lNJLSYlh9RxEGdo9iaCeNralEJUPv1yOdSpPZmnX3BJFOpkmbGq4GE7zNDuz6VocisgGFZAAAke4IDvw3/Uadv1Z4Gop4K3eLGcXnebD/Rycw1SH/Yr1DgEagkwKUvFc6lQbSQKSP5h/+difSqTSJpJRKpJFOphEfnSHdK3R9AQSLliw7qgQF59jhrrWSFTNSs2nMTiVo9zrbB/cadtKbUqIrTWTJAqxM3MQR+okevYNX5Itr7iuBWsvRGPAKCYB7v0k/gUUmKGaglKBUdIkLJp9EUs8qvdYL9xor+neMkpTVkokUElGapIqisjkZrLmnCEd/3YdIr3xiLm/WwF1jRs/rYaRnlo4HkiQhHJ4EkIbH40F/P11pbgUfPJSUlACgqyi5VlmgNdCmfqagCH+7C/u/TY8XFMWgLGYiCfJp0tANBXBWm9H9p0ESqWHVHcUYOz6lSIGFSlAClCmHRPtjyghKAJmgVPdgKWamE6QScRABjaiGwUVLBkdHU9ivoARzOplGcpY25y26yAdHlRmJaJLkH7MRosRWBnUPlqJv2wiJjKYUq+8KYHogRlLziY3PIDWbBqj97HI/AJpiUXQ0DqTpJ6mVlvXSiGoY3DRftJSLCF1ViGO/7iGVl1MCKukqCyUy7IoJSiJTEe3+cz/GD8sPIm3PV0GlUpEUOiIjcVhmDTB5RYQ75N0rOppSnNh0rDHCUWUhqbd5aq0QrDoS6cuw2w9gF3p73/9N9hUsH7LJt3ZcIfsawcJB7xLgrrWQSErl1xdg+OAERvfTcl5K1GuMbgHJmRQiI7QMdP29QaRTKZLakLlUQOFZHuz9fqcisgF1Mz42GFNEdul9fXlKNVpCIsqu8OPIL06QVKwMHhFaPT2Vq4R0peIApNKIjtIOkpZc6AHSaby1m0D05oDkTArxCdq9ii92Qe8WFKmwUOGsM8PbZMNuQokYAEhEk5iZor2Xr8mOwrNd4E1a0sZtKpECR1TMiPXHcFDBXMPgzvgikUBUub4QOoOGZkeF3J9DCojrQzuVKaIqJSh51tpgLdHjwP/In5/42mwIrPMw0jahxGcynsLMNM0XKRvlp6Ly5kJ0vzFEUgU0+CRo9VrZJCVBJSA8NokkEigpKUFf3zJs3K7gfcdZZ50FgKko5QhKMuCpt0Ii5iZ4B4/i8xw4rCBevKPgcPfMVBIaPS3X4D/PgaJzXOj+8yCJQBn6UAEmT0bIRAgAighRiu4TTilWeqMSKFbdWoTEbIq8vuZNWuiJeYZ4GDiq4FBNOpFGipjzctY7UHyeGyqVikSUiU/MgiOqhwHA6juKMbBrnERGU4ryGwoQG5shlYmeGZtFklgWGQAqrvVDpeFIJKX4SAxI0fcbKd9pPnizFkYPrfKQ6OVRdX0hjv++H2MHCOtLBQTAwXfG6RcB6CDkNLNQTFDigcoPFaJ/+yiphGPzxyqg1nGkClOTJ6Nw1yTB2wXEwzLnQnGQ7jEf5jIRzioLKfZ4ay3QewSIHh7R/rgs1ULjrmIAO9DT895UjHrXJCWfz5f5kyp3qh8AOFE4TU1JpZ7bsJ86HsGOrx5F7Ay54MVKvpmK9NB7RQztXGBj+AzyjcGrmER+32baQDm0cxJDO+kOMXkygkSMNtkoPNsF3qyDJHGIROR3sPaXqjE7nSDJKAYud8NbZ8P+H3Zh4oj8ZHzzE+VIpVJ457O0BUr7S9WYHoxh15flKzc4KszQCGqoiRyPrZ+hn+CRiiSsvrkQXX/qx8Db8gfXoz/tJSkvZdH9+iDSCdrgNXYgQip5kYWjwkSW9FQKT70VgoWoOQqQapRncfL1Xqg4FXrfoE32KP1kPho3lCE+lSCVRSOdkpsHPXExlQU7CThD6p/+CxwobHNi138cIhEdGzeUQc2rSQSdrBrYROcU9hHqe/sa7eQk27FX+mAPmTB2jKYcRFHYyoMErL4pcDqRahEVJXeTCQaPiIprCrDjS52n/ftpKkoAEAF2f7sTkczeg0rHypacSlbKqihlcTZ3LV5P/TRHKF7BXz+yNX/bcTnpuq2fPgzRQ4sxpZf5INp5WMpF0oZ19e3F2P/DLjJRhjJXyGL00ATMfolMADAX66H3CCTSxeq7AjD5Jez4+nGSAlDzU+WYmU6Q3s8UFFF9UwDH/9CHgS3jsq9r2hCCzqwlb+RLdp5e3zyqrFTu6rsCUOs48vdWQgztfrUXiVgSPVtp/rFTQR17sUCE3iXAU2dbFpKSyS9BcvIkklLnbwfQ+Vs6Ob/ztQHy/DXcEVVUVsbdakHR2S7s/c/DiBL2VJX4Im/iodVrYKuykEhKtQ8EoXcJ5Hs2bihDKpUmKfPYqiSUX1tMjgXNT5ZDq9eQYoHeJcLgE1F8gRfjh+X3z/GOKag0tARn9+8GFZd987bZoNVraApdlxeQS+Bt/1pmXk0Yy0SVCGS6SltbG9566y3SPVfwwcO5556b+ZMKgkr+PCo2nsKb/0KPS45VZlhKDXh7v/wxz3+eA7PTSQxso+W8JrtiitbjY8cmkU4QScPneWAskCA5BNKGddsLTOWZonjjbrIicKEbh37ShfEj8jtw7QNBcJyKVF4TYIq8k70R0uEwW6UZOpMWOiMPCgNjl4KSMoIFWP3RELpeG8TQdvk5rxN/GJZNFJiPjpf7yHmoWL8yX3TVWqAV35Pzt0vCU2uF0SeRFXOU5IZ6t42AN2jQt5m2iUX13Sxq7g4gOZMikb2oZK0szEV6cESyPMBiQXx0Btu/KD/n5WwwI7jOiz3/3UmKOzV3B8AbtaRvJ3gENNwbxHjnFMmOhWc5oJVoPtz71ig8DTaMHqblvBSrXglA5XWFOEg4PGMuFWArN4I3a0lxa/uXO8iErzZchtfxC0xPL09JoBW8/3jzzTcBAGtxSf4/qLhFN1B3fuU4eAd/5s31BUq+lV3qhjlowOCecdKGdej6Ahz55UnyRv6B79JJteHOSUSrzOjZTBuTndVmmEv0JPJQ6DofnKst2PudDoSPy++L9Q+WIhFNYA/hQDRv4lB7XwidfxwgkRtq7grA4BXJqteGgrl1GgVK1LVD1xdAMGpI9gCUEUOHdgyDU6swuJ02Z9j/P8oI3uaAASq1allISo5KM2aiCRJJqX/buKJSWx0v95Pnr/EwyKpoAGCtMqDkQg/2ff8EST1IiS9qdYBg1cFWaiSRlCrXF8JWZiTnlmvuDkDNcaTSbQY/j6qbinHi9SFSvKq7PwjRwZPswvMcbGVGaCU1KeaPHJwgC1KM7AkrLtNnrzFBMGtx8tQDNIuoKJVdWQDeoF2YpHSGE6R7f3ACPI85padsm1PH2nnX8moemqQOCcygpaUFb7/99lKvsyje9Uouy1Bfy8k/USY52H8jCg6T7v7vLqiXyi2eMunw1NkAFUgkJUNQQvBCN3b/93GySokS1Zp3PnsU9ho9WREpEU1imjh5N7gEqDQqTJykvZhGVCMNWkeUHBySMylM9dN2KSkkhncLd40RGkENvUsEIH9wlYokpCMRUgkwAOhRkOQRHYApaCaRqADgrU8cgOgg304R3vmqstM1hqAEXq8ilcyLDgNHCHL082GtkjBGPCnPm3XQGogbtwrx1t8rY8om4ylERmhKW1pJDZVaBWuVFRHCJr1G1JCJQyN7ppG6Ko3IKG31tvd7XZjqJwbhiHKFI/8FDhi9IqkUZt3tQejdIrxnWdH3RmacWaLM28C2MDSiGif/TNtIyBKULCEJ4zJJppJkRpW/CgcPHcTFF1+MV155hXTPFXywcMEFF+T+TFFRypKMqApAO/79GLxtNhJBqWidC9YSA6pvKCYpMFXeXIixzknSJjwAjOydwsheevL/zU/uz4z98jE9EIPk5EkEJQBsIUNMhljLjOC0KnAcbVM9MhqHSkdP/CshkyiFwS0q2pwwBeUrrmQRHU0pKgtlX21AZCxJ+tbRk1G88S/7lqXMHgDs+MJ+EoknC2eDCVOdYdK1ShTHAEC0ARBFkh2NBRK0kgaWChui73O5nYFt44oIZdNDMfBGLbmsolavBbXaenQsBU6rgqXIQIqP00Nx6El3Aqa7ojj4w06yqpRixTcRWL0+gGO/7ieNTyXrPEgn0ySS0qGfdCEeJgbizLcVPQKiEzHZ37oBF+KgtHml3NvfCP785z8DAJpwnvyLBEAwKSv9s/3LHeCNtGv8bQ5wGo5EUhJcAoKXuLD/h91klRKKIlkWe77eCUtIJBEFAGAmPEvOeZn8ItQ6DjFC0h8AeKMWKo44PxGA2ekEpgZog3/Hz/vR8fPlUbk1l1mhM2phLBBJJCXBIwCxGGLjtPtRyXIAI1Lpi4ykEnEAsPWThyFYyLdThD3f7FRUdkzyC+ANaowdJBAoYiAro2VhLBYw2UXME7tFpBQojyuBEjIaAMxOz2J6kNbPOI6DWsfBHjKQYo/OoIVGpOW/Y/0xzEYTmB6g2X7f97oRGVYwVihUOHI2mGENGEglPiuvLYS93AT/eQ7ZKi4Tx2I49us+cjzIjpvmUkG2ypygErCqehX27duHdevW4Xe/+x3pniv4YOGpp57K/VlSm2RfZyrmEe6KkxWA9n2nG85aM2mz2l5jgmu1BRqdmkQ6Cl7hwdRAjKw2Eu6KY4eCQ1RvfnI/RBvtQPn0UAzmqQSJoAQAWr2GrMpjDpmgEdTQCLTrpgdj0CnYp1mOsmZZmIv10PD0ChtZP6YgHgaJxJO7V4mA2Vga0T7a/d74p33keynFO58jlMmaB2uVAZGTU6RrlZKueBMAnieRjSQ7D8Gqg71cj17ieoWKcFdckRr1VF8UepcA3gSSHXmzjlyNbGooDq2oISujT/ZGFRDLUmQSJgBSucc88EDFNX50vz5E6muhqwqAFPJJSksY9tAPT2CWtj0MxIF4POPHkP+t23AFdhpffU9yXqo0NUs6DzfeeCN++MMfAgAuMdx5xjapaCxPQQkAmh4rgVZSMyWlRea2C6kpycK815IcHKxVVlKZooZHyyBYdTjww04SoaH5iXJM9EVw+HvvjdTVCmhof6ka0SFlEzcq2l6ogopTkU9Qtz5TieGDE6QyZWvuK4HRK2H/D46TCTZK0P4SO624TYFsKRVK7djydAUmTkyTSjnWPcDIJLu+fZxURlAplKgbreC9gVQkYfVNhTjx+iCJoKrIHyXA3+rIJyAuQVJaDGdUUZqH5seKodaqsPlTnXl/n56ZOU1FKYsJUye29P6JtXsf6rCvYPmgykxI16ANLlWB7OuUKC++G/gvcKJn8xBp8779pWqkZtPY/I/yyZq+c+woaLJj7zePKi9vtALFUKLUohTuJgvKrijAWMcUmfxm9Inkk8PtL1YjlaD5o1I0P1kOrUGjSAmICnerBWWXFmDkUJi0yVx6nRf2MhOZBKykXytF/UOlEB38sthxBaej4iY/9C6BVPo526/DJyPY8zX5igy+c+wY2zeiiKRHhegRUH9fENGROKkc8zbT7zA+MY7HHnsM//Zv//Y+PuEK3k988pOfxNNPPw0AWKf6sOzrau8PQu8WFClCKIFgASyVNlJZuVV3FMMSMODgT7tJxJC6B0sxPRBVVEptBe8e7S9VY7o/il1fUaZiQ0HrpkqotRyZyN78ZDmGD0/g+C/lk2wqbiiAY5UFh3/RQyJSKQXL1dAUupRCqR0bHwthsidCI5PcXAh7hYncr5Wi/YVqxMZn3lVJsBUog2DhsOr2UpzcOkKK/a2bKqHWcbT1m8BKEC5XOcymx0PQmbSkOf24MIx3Yn9COp1eyXn9lSOb81qFtfCqi8/c6AxqSu0vVCEensU7n1siHr1H/uFqtGBw7zhJSant+SqkZlPY8i+EygSrTCg6z4n9P+ghkSBW8N6g5u4AjF5pWQ71Gfw8au8uw8jhMEm5LnCZG7YyI2kdDgBrn6tCOplaFvJW7b0l0HvEZckdmkoE1NxeiuEDEzj0A/n7hv7zHHDXWslzw7XPVSGdoPVrpai+pQiWUsOy2HEFp6P4UheshQaSSpSpmMfqO0oR7pzCXoIwi7PWjPDxyfyydlT213ycQUUpC94END5agchADDu/dkq+PZ1a8NrtplcwOjaKhx56CP/+7/+u+NHoRSfnIUtQCnBrzvjvKoP+NIISAPRsGUF0dGZRghLAyr5l4W42o/3FKgSv8pCfMzKcIhGUAGD754/i+Ct9ZEKI1qiBpZB2ZnX1XQG0v1QNyUdjCq66vQj+C+gyOZJDwWeXlm5yJgQud8N7lpV8XftL1WjZWEG6RnQAiVgS4ycItTXfBYb2TWCsg3gvCVDrOHLt0BOvD2CiexpjXTR/bNlYgdZNlaRrlCJ0fQHaX6yGVERzloFdYxjcM06+n0ZQw0AsjXZyyxCmBqJIht9/ghLAlM4miaeonHVGtL9UjaqPFJKuk3wCqm4tIl0zd7HCy4ixRHQwwh011rVsrEDbC1WkaxCJQSOq4VxtIV128MddePNTxIle5BSFNMKEoe25crRuKs/9P6df+mMM7Q9jqu90v1LpdFAV+c5wBWAOB3J/fvXVV2U/3wo+WHj99ddzf16QoLSA/4VPRNC3jbab2/pMJdY+R+x7GfT8gUZQApgqzMEfd5KucVaZoTVoEI3SCErtL1Sj6fEQ6RpTUMTqjwaYcgoBok3hdJt4n+w1FTf5yfesvq0Y7S9VQ19Mu2n4ZASz0wnSNUoR7ggjfDKC3rdp5aEMHgFaPV08dmDvGHq30dYPtioJ7S9Uo/gSF/l+StCyqQKNG8pI14SPjGOsYwq9xPJ3Jq9EPlEOAGNHJtG/YxmYJADCPcr8sfmpcrS/UE2+zneOHf5zFUqWKujfSmKJ/1wHKm7yk66xlItof7GafJ25SA/BoiNdM7BtHEd/dZJEUAKYspcSglLpdV60v1QNS7n8DxDtjyEyFGfE2zNApTlzfLFMsLzFZz/7WfqDruADg2eeeQYAUIzyJVrmo2fzEKb6oiSCkrlUQPtL1Si50k26FwDExkHapAaAff/VhcM/6yETGSQ7D3MxLecV+pAP7S9Uw1xKWweGPuSDr81GugZgm/f0i+iXAICvzQbPWvoztj1Pn4sCTFlqgpgXUoq+bSMYOUgnDGn1Ghi9tCRD77YRjBwKY2g/7X4ND5Wh+WO0/qkUhRc40PZcFdmPT24ZRt9OOrmDN2ph8NImDH3bhjDeOYXp7uUpexUPz2Kyl+aPkl9A+4vVqLyZlvMSLBxCH/Ip66sK+zc1lggWoPrWIhiLaTdseKQMbcR1dyyWAm/RwlklX2kGAA7+qBPbP0/MecWgmKDU+kwlWp6m5fd73x7B+EL59gUOBFpijhw56Sc/+Qnpfiv44KCnZ45QsBBBaSHFw6EDYfS9I2MuNC9n1vhECK2baP6ZxeA74+RSb9s/fwAHvt9JusZRbWJqSHGamEPrpgrUP1RKuoZ38Ki4yZ9T1JB9nUlhzosm8pRD8EoPK+tHueYKD5uLltHmJ+GTEUTHloccNhuOY+RwGH3EPJTRJ0Iw09bhAHDyrWH0vEnLC/FOHmufqUTRhU7y/ZSgcUMI9Q/S/DjcG8PgnnH0vU1TlzJ6JfAmLdkvB3ePoXfr8uS8Jk5MIzY2Q+6j9Q+WKsrvO2vNitZiABT1byWxxNVoQdnVXtp9HDzWPl+F0PXyD38DgK3ECImo9hTuiuPAD7tJBCWAKXvlEZRkwn+eHe0vVMFaaZj7y0UISgBTT5romsaJt84Qe1TcgoIKBWPMp7785S+Tn3M+FJd7Gx6eC2DlUv1p/64ysKQFZ7MgNTqe92/9W8Lo30LXaUsl0ujfLkMRYx4juu2FKiSmk9j6GbpyAEV9IwslJ3dnowmkk2lEemlkBnPAAKNfTyof5l1rRcnFXowfp9XIbro/BJ2RdooBAHyNdgCYK4EkE4lYEpER2gQgOgy8rYCx2rKxAhpBTWagHv2pgpODEWU+MnYggrEDnfT7Ae+SikhAZp3IEaNKxy+USeUpsePQzkkM7aSfJqt7IAjJJZDvqaTk2NDhSZQm0oiO0bT5gpd6YC7U55cck4HWTZVQ8xz53dpfyihMfEK+MoKlwgqjV0LwUg/2/men7OtmIwlARXOsyHBKcV9TAu9ZVpRc6EXPlmF0vzK0KMt4PhKRJGZjp2yoqtVAMrngNZ2/O/P3VRWziZWqyId09+nxyW3zYWC0F08//TS2b9++5LOt4IOHbKk3AyxnbpBNtpxS9hYA9n6jk3y/2PgMubRj6dVeuGutOPTTbozspRF5o6NAdJTGbNr1H/JPL8xHIp5ELExL8gQu8MBYIMEWkEilkGrvrwCnUZHnGe0bqzE7lSApABWf44Kj0gykQToxFB2Nw1ggYrqLZv9D31egHCqydxvvnMb+b8lXRIqOpshEBgDY9m/KTsgf+ym9RJwqU5Na9W5Ot1Dup1KRy9JER0FSospixxeVqZQqLQPW/kI1ZqZmSd/v2M/7cAz07xYdmyGXYwSAwHlupFNp9Lwmfy0m2oD6R6oRGYpjJ0H5ddUdxTAX67H/e8dJ5Tf9ZznJcXz8cBSpZBqJ6MJzkTNBaaldJeX2AKbUoRbUpLnoyP5xOCrMUOtohLuFvlWWoKTSaJBO5M/nylSrMWUfRjwex8mTJ1FQQEuAreAvj1gshlSKJQZDqjMfzFsII7snyeQfTqtGIprEKJEU0vpMJRLRpCJFmKGddAKKkpPkiWgSyURKdumeLJyrLLCVp9BLKP1pLhWw6iNBjB2dxIH/kT8GrbmtBAaviO2f208qb1Z0ngsqNUcmic1Mzira9FIyr2l4pAy8WYe3/oH27ZSUDgGg6HT3ZFcMB7sUzBm45Z13QaUCp6WNIXLLY50KJX1t4lgME8fo87zK9YWwlRnx5if3k8rZvfM5uj9GemJIxJOIjtL8v/B8D1w1VkRHZ0g2bXwsBN5Mz2e3vVDNFE8I5ekEpwhrqRGcmsPe/+qUfV1sYgZqHTF5G1OWF6XG4SyslXpU3lCM/ndGSKUIY+MzSM3SNtl63xo9c9zPEpQ4NZA6fZ5aYC7GyYku/N//+3/xoQ99iHTPFXwwUF/P9hgNOPOB9+zaV6VWI31K3vQIQXUui0h/HLyBlm/2tdlQfIEbh//3JEb20fY342EgHqbFPkpeZz5mp5OIj9NyXkXnOuCoNGP4QBjxPfLfreaeMmhFDXme0b6xOqN+JX8ssdeY4G20Q61T48hP5H/z2MQMZqIJTByl5f27fjuILtAOygEsnzF6bJKkiBQPg9Q+iz1f7yRfAwAn/kif53EasJyz8gISxBuCvrcZB8k3sqCUbpwPpWXA1j5TifjkLEmt+eTrI/nlv2RiajAGlZo+Xy693AekQVqLAUyZfqovit2EHG7pVV6466049OMeUmwtOs8FnajB0Z/LzwXGh+NIxlNsz5EApdWbxg4oE1Wpuz8I3qKdUztLp5cURxjaNwVPA51Ytu87Zx5rsgQlTuCRiuWPX261HwM2F6amp3Ds2DGUltIIhVkoJimVlJQAANRn+IksQelMaHwkgHQqje1flLdoUmm0SCdmMbB1AgNbZSRQTtmUSyXTmI3SnG31XQGY/BJ2fq2DTBxSAkq5qvnY+cWD0FqJdRoH44hPzKCbyJIdORKGvYxI0QRw4EedkBz0o8JKyEbes6zQO0UyeWhmchZQkNNofKwMI0cm0flrZXXiKSi7zgdLsZ6ckFK6WaAER35wEkdAnwCEbiyAySsuW0m0xsfKMHQwjO6X5U8wp0fjEGw8UxwizGXtNXq4amw48N+ECWYEpM2WLDp+3g1Hg4NMCBw9Pgmjm95HpwfZqXIK+t4YQ2o2hYG3aclwymTtvUDLxgqoeQ5v/b3879C3YwyB8z3QSvNm6TKISlv/be7d8lSUsiqEC5CV/OeaUdBowZYvd53RJ89EVKqduRibTT/BwYPyk2wr+GAhkdkAXatad/o/LjBJFT0Caj9aguN/6MPAlnHS/XZ9WQEBSA2kU2kyQan9hWrEwzNLS3O/R1AyPu7+2nE4G0wkghIADB+egGCin2qKjsQx3kk7Bd318iDSKWBoOy2JcvxX/Tj+K/rCuuImPwZ2jpBIE6LIITmTQoRY/iZwqRvWoEExWYaKhkfLMH58Gh2/lL/QHdk7hTf3Lp/s8pZ/UhbPmx4PYejABLoIcyGlUPrdEvEkYhP00t+l13kx1RMlEV8oxOn56PzTAKZO0uJBdBSYGZ/F8CFaQrtv6xB0Bg3iYRqb6uCPOhEfJsraQdlcVCks5SKqbyrByKEwKQk/G02QE23jh6OK+03jhjKkEukFfflMRKUCTwF27d2F5uZm9PaulMb6a0NtbS0AQA3tEi1Pue6+EnAajhz3xg5O4+2D9PlJaiaF2WlavAxd54NjlQX7v9uheMOaguO/GSBtamex/fP7wdtpOa/4JDA9EEPfNlrOa/hgGBqtmkRQAoB9/9MJPVE1CFBG7nDWmWEoEEhl1ABGEiATIMB8eezYlGKyEgWFFzjgrLaQy4YtZ5mx7t8PKbJF4BI3LEEDiZz8blB7XwlGj07iBOFAa3QkjoRfgiBwiMXkE0rMpQJca2zk8o9Kcr4n/tiL6BiNoAQAIwfDMAdo6m8AMNE5hViYdnhw/EhUUak9yiHi9wL1D5VCsOjwFmG+N3ZwGulkirwxrSinAMDZYEZwnRe7/uMwYuNn8MkzEJWqws2Ytkzg8OHlKXG/gvceWVGEtepLTvu3BQ/n8EDLI+Xofm0Q/XLXgJmDfUpICZyOQyqRwshR2nqudVMFZsIJxZvcVCgZH4/8+CSGD0yQN9QHd41BIla7AIDwiWmE+2jr6ZE9YRwTezFGJPX3vjGK3jfoajfBKzwYPjCO8HHCfJkHZiIJREZoc2xPixXO1WbFpCMqau4OYOLENDtsLRPRvjg2/+Py5QreUXjocM09bA6rhIhFha/NBnuVifzdZqYSiI3Sc16F5zsRGYljhEAkVELiBIBjv+5FfJy+Vpzqi2KY2EcHdo5CcvGIEEnsB7/fhVki+RMAtn5q+fbNeQeP+vuCGDkYJhHo4uEE1NIpE68liErx4Ti2fXpev5EhopBFzZ1FUKlV2P31M3N3zkRUKvAWYMfuHTj//PNx4oSyQ6qKSUpTU2ywauPymemLEZQAQCupyaVfnXUG+Ntd2PGNjsUJAmf44S3/SE9CJuNJRcpG7S9VIxFLkhZbkk+A/xwHDv+8h0R+AJhSCIZpF011RBSRQY7/cgDHQU8qjR2IYIz4YtYqCZagkZx4KTrbDbWOI5OUdipcMPFmHRzlJhJJKXR9AZyrzDj++z4SmcQaNCgqVfLXAGvAAI1Ap1+3PV+FdJq+icKbdXBVmUkkJaUErNJL/YpKo9hr9DAVGUh9IDKcIr1TFkd+oGySojTRQCUoZeFda4Vg15FsklWOGzs2SSKKzUYSUHG0zQhEgLf+4QzjjQyiUvBKFySngP0/kJ9s4zi2QPc3mdHz2plteiaiUjjMJrAbNmzA5z73Odn3W8FfHg888MDC/7jI5NRdawanVZFPL67+aADhngi6f0eLK8d+2qdIgSYxm0R8ikYqr769GJaAHgd/2EkiDgUudWN6KIqh7XRVTyXXHP2xso1ppQRN6jcDmE3Gj4dJZCMAsFeYoHcJ2H5Y/twyOppSRBJwVrPSflSsfa4K6VSafE/BqoNNrYKy0e6DDZ1JC1vISCIp+S9wouhsJ7pfH2LlHGVC6XdTSrR311hhCxrJ6jyBS90YOhgmqYn1EsuJZ7FNwcb06IEIRg/QYwK1T+cgAqErCtDzh5Oksmotmyqg0dEUascPR5FOpZGYpSk37fySst4p2oCKm4LoeLkP4Q759tHqtbkyIgvhVKKSYa8fwC709dHHxRX85ZHd5GzDpaTreLOOrHJnLBZQss6Dwz/qJJNkKIqLWSRmk0gn6cpGbS9UIxFLYOun5N9TsAAF53px7OU+kkILwMrYxYiJ8dhgTJHSZu/rI4rKGU12xTDZRXtGyS/AUW4kE16Kz3NBZ9KSc2X7v6OMAKH3iNAIGtJz+s62I3C+G51/HCDZ01ZugmCjk/r/GmALGRW9W8vGCqjUKvIcNvvdKCSlrlcG0fUKfQ1RcnEBJCdPJimZSwWYi2l9IDauTJWq82VlB0uV9hsqQSkL+xoj9A6BZBNLSET1+hKMHiGqdUzOQqOn5yo3K9hjAQD/eQ6Y/BLNpilArePgarAvbJMzEJXGxycApHHPPffga1/7mqLnXcFfBt/4xjcyfzp9DrXYvMpTY2H7CsS5V+j6AkQGY2RVkp4/DSuKRYloih2UJyB4pQeeehsO/YSmLOI7y4b4eIKs9AQoU/xQSmbe+1905T8A6H+bXv3Gd5YNU70RGtkIgKfBBnORnkYuiwPbFMzPXTUWcplXAGh6qhwqlYpMujB6JWhFDYmk9NcCg1cEp1aRSEr2GhMqrvHjxBtDpOsc1WZF300p0b7wbCfi4VkSSQnI9IGeaYS75BN6hnYp28ejKChlMdUTV0TQm+pRWI6RB4rPd6H/nQnEh+X/RsOjZeBNWrz1D/L3pOPDcaRmUkjGaTmvBYm0Sykq8cCqG4vQs3kIE8fkvxtv1S6pUHsqUcmwuxjAjrxyrVQoYj3MLxMjSXMnhhYiKHE2CwAgNTqOzf9CT64WnuWGYNVBckiIdJ9hE2qBZGHoxgIM7hzDxBEaSYakejIP8YkZREaUlWia7JkmkVaanghBI2rIBI36R0oxeTJKJvI0PFqGnjcHMUjYnPOeZUXgPA+O/qqHVGIreLEPvFmH438YIBG39vxPN2yl9BNsRZe4MLw3TCalKZHVjY7FkUqkMdlHC55b/1XZKZD2l6qRTqVJijBKUX6zH84KM05uHSYRt5ScoAKAmalZRaU5lHw3ACg4x46Jk1FMdch3ykP/ewKSnV6ANXRVETiNipx8bH6iHOl0mqy4VXN3AFMDUdL9JJ+Aqg/7ceJ1WlxYdXsRzMUGsgR8yTovoALpGfs2j6HoXDfCJ2hjgCJiQGYAr1hfgBOvDSPSO6+PpzPkkAXISu4ay8JKAAsoKnX/cQLdf2QTxWyZtzM+1ilEJa8qiL50B37xi1+skJT+yvCVr3wFAFCM8vx/WGjymPn7zt8OoPO39MSsqVCC3i2QCC/6YhGeeosiktLb/0wfC8Jd09C7eLKyka/ZjnQqTSMciUD7x6oxdGACR34kn9zpbrXA12THwf85RtroL7nCA9HGk8tyNT0eQjKRwo4v0OKYr8UOV62F/B2OvdyLqX7anMYUFKF3i+gjygUr2YQFgHh4BmnaOhCAsvlC6XVeeNbY0LN5aFlUitpfqAZALwei5N0i/dNIztgRnyDOYRV+N7FAhL1UTyqlBgCdfxzA2BGaAplYIKKg1QFzsZ60se1usqBknRdHfnGCpB7nbDDB1+wgE75Lr/PC4BCx66u069Y+W4V4eIY0vyk+xwXXKgs4TkVSN5o6GQVvIhK9AVKCZz5sVRKsZWYcI0h7i24JklNA0Xlu7O3olH3d/BOj2TJvZ8J8opKoEsHreCSTSezZswc1NTWy77eCvyzGx8dzfxZUtJPhSkiWhee4YPBJ4O0CiZRTcpkbY8fCGD9CIyQe/+UAea0JAJHBKOJElbvCC3xw1VgxMzlLIk3U3h+EYNGRSi0BQM2dAUwN09a2ALDmngBObh0hEQyslXqUX1OIjpf7SKXzSi/xwOQ34LswAAEAAElEQVTXY3DvJGIEZcm9/3MCliA95+Vrs2H0eASx/vc/5zU7lUAilkRkgDY/V3oIqu05Nhd66xPvv5Jl4QUOFJ3jRu/bwyRlMKWbULHxGUWlOZTmvNxNVkSGoiTS3eFfnITeRc95lX+oiG2MEje2ax8IQq3hyDatvLkQ0dE4iYglWICKm4Po3TqCoe3y+3dWqe6tT9FK54WuKIBKzZFsMn4kipnJWYS7aHPfd6PcVHKlGwO7JhDpkf9yvmY7+XDq0M6JubjKLXLtKUSlCtTiEHbid7/7Hel+K/jL46GHHgIAFKIs7+8XIiipMvnS/m3j8hWU5sFRaUKyxEAiKfEOHt4mCzoVqEMqUVCc7InCGpwlk42KznUDKZCvW/tsFYb3jZPKJlmrDPC3OXD4Z32kjX7fWTYYPCIOE/JrAFPI4VQq7CSuiQPnezATTWAbcY/t0E96yDkQ0cvD4BLIBA8lxA4AiI/EASXzBQVlZX1tNpRc7EXPliF0/fb9z3m1bqqASs2R98CVlB6ODMcxE0kgNkbb31f63XgHD2tQIpPujv66FxPdxMNoPBC40IPJkxESEchcJqH8WrbWoZCiLOV6+Nc6yETEwvOdMPlF7CPOU5qeKsdseBa7vir/WzgrzfC3OqHTa0lKU+PHp6B305Xj3lao3GTw87BVmU4nE2Y5MWfYF+JNPMzFjKszcUx+Pm/bZ+ZVfBEWnt/PJyrxah68mkcimcBrr72Gc889V/b9slBEUjr77LMBADowhuBS6klZ2FdJGNlHlAsCsOPL3TCV0ghKAHM0e5mJFMSkIgkFTVZFEmhKFIr2fq8TpRd7ySWalJAzAEC08dDptTgK+SQlZ50Roo2Hp8FOIiMY3BJUahVSSZp6w4Gf9qKgyUpXluqOnNlHloC/1QHPGuuylEbr+cMwegiJuXeLcE+ErJ6hFEO7R2F0Cxg+pOzUEBXLVR4OACABgQs8iI3HSfedOBIhkyQBoOsP/VArUGBScg0AGAskSC6abDwncODNOnJcSMymkE6nIfkEEjGw608DmOqnqwFQk9pZuBpM0HtFkk3czWY4QmaIZh12fvkMk6IFVJX2/LgHkaWGnAXISpaQhIkl5s6qIh+7fXcvavTnIClNYXqalsRawV8eWfWGkGoN+4slmO0AABEweUSSUkQWb358P8QC2kmQ8it8EB08hnaPk+5ZcoUHE8fDZLJRz2vDZAIDAOz//nHwVloy3eQVgTSQJJQ/AABPnQ2ijUeU+AlcNRZFZTk0ghpcmn5d958GEZ+iLcQBkEsIAkD51X7oTFoySUkpqIStd4OxQxMwFUjLNhca75pedC30XmL0QARbDixfudCaW4qgEdXkPq5E3Sh6Mor+HaPo3Upcj6kBTquCwSeRSEq+Zgf0LgGiR0CUsGHsqDArigtIp8lrx66XB6FSqcgkV6WqAxCBsst9OPnHfkRH5cfZ8muLwWlVJJLS6IEI9n7nuKKxEWDl6SY6FidpZElM6UQCNatqsG37Ntxyyy3Yu3evonuuYPlRV1cHANCBNl8wlwqKyqft/3Y3jMUCWZHH22SHa42VtOYRLBx857jQ8Uo/Wdlo11foSfgjP+lFfIJGUMpiKfWyM8FYKEFw0hR4BY8Ag0+Cr5GmgmLwiiwuE0PzkV/0w9tgJhGUAKYS1U+8BgAC6zzwTc5i22eUlcygII9YsAwYOxaWty56DzByZAq2chNGjyzP++0mbLS8Fyi93IvY6AyJABTpiZHIKll0vNwHXk8nNeuMGnAKvrctZEQiLpHVovQuAZ46K4mkNBtJAqk0jG5aTD/2ch9miBvhABT3a0tIhDlgJNnEXCrA22CHySeRxoPd3+4ikySzMBYLmByaXXy8ypKYUkkUqsoQdg/kKoCs4K8HsRj7yBXqBgCLqyfNh6mYJymDZPHWJw6Cd9LmecF1btjKjZjomiYpDhWcbcf0YAzjh2m52KFdE4qUTPZ+qwMisVwu7+CRTqWQIO4juWosMBZIZxLAWhTeJjt4oxaHiZUrdEYted4FAEd/00vO5wF0ohcAlF3uhcmvx9DBCUChyAsFe76pTJFKCcY6p2HvmSaX21OKkQNhqLQKPrgCRPviihSwlKL6w36IDp5MUhp8Z5x+szjQ88YQBojqS+lkChpeDb2TByXT5q61whwwwFQikNTLXDUW8Gb6/BBpemp0aNcEeIsWPZtpa9SOX/bTbjQPRRc6MbAnjPiQ/MBQeWMxdPpFFM/OoKoUH4pj9zc7MXVSWQAyBXhMLfGaWRJTKhZH7apavL3jbTzyyCPYs2cP+X6qtIJVf1by6WzuRuhdTtnXtd7vQDqZVqSmBADpxCnJwCUe3VlnhIpTkTbQ6x8sheQScPhn3ST1n6qPFCKZTOPw95TLWi0bJJAJQJKDQySSIl+3nGjdVInIcIwsCxe6sQATxyZJflJ0iQv+VgeOv9KHvs3yBxJzSIK5SI/uV2mnhVo2VkCt4xSfMqai/aVqzCxTEmv1ncUwFenx5qf2k/zLWiXB6KPbsvXZSqSTabKCU9VHCtG/YwRjhE10qUjCmluLMbB7VNFJ1eWCISiRFKJyUBBLlhvWKgklF/mw/fM0Ulv7i9WASuYpxHkTgdJrPTj2v0uM4qcQlTg94TTsPJJSySVWuGvMGOmZxdHN8i5Pd/fitcT3EIvF8Hd/93d46aWX5N97BX8x/J//83/w8Y9/HACwTvVh2Yn4qvWFsJYZWLkFhWWJqAhc6iZvare/VI10Mk0b40Sg7k56uZ6/CEQACh5RXyySSk8tN4JXeuFcbcburxwkqUTZVxtgqzCTFKkAoOXpCiBNV6jwX+BEuGuK5CeiR0D9vUGMHAqTVGSUovnJcmgNGsUn36loe74Ks5MJctkx/wVOjHVMkfzSf64DRee6cOyVXhKpzdlggqlATyKfAEDNPSUQLFpSKaLlhmhj/6X0G3YhFMWS5UbFjX4kkylSqUvfOXaUXODB2PEp7P+W/CSrs8GEZDRBJrkqRdvzVVBxKrz1j/L9KzI7iTfwSwDKCBcr+Msgl/PCVSQlpbYXqpFOphSXxKHCEhKhFjUkYk3l+kLYy004+qteDGyTn8sIXu2BWs3hCFGV+y8CAWQClmBh/6WW21tOND0RQnR0BvuIp5JLLnMj3Bsh+YmzwYyyywvQ9ft+9BKI5cZiAcZCPbl0XsNDZdCZNcvWd9pfqkZ8YhbvfPb9z3lllXV2fKWDRExTasvmJ8sBFV2RvfQaL0YPhzF2UP4mumAB1txXgcFd44rLqi0HJL+giEylJJYsN7LlQnd/p5P0rGufrQSn4chqE0UXOhWXdqLCs9aG4MUejBwM49CPZK4JUkm8yf8akdg0nnzySfzrv/7r+/uQK3hP8Mtf/hJXXXUVAGCd+mbZBKXiixzwtdjQ9cdBctm2HIjzc/95DnK5t7XPVyGdSGELUbl69R3F6P5TvyIS1rKChyIyjujlESVWG1lO+M6ywdfqwJ5vdZFIBaZiHo5VVnT8ikZmaHi0DCq1Cu8QK2R4miyIDEVpfsIDa5+qwsiBiWWZ29feWwK9R1SkcKQELR+rwOx0glamD8yWU/1RUgkxe40JoasK0PlqP4lwZCnXw1Qskcvtld9QAKNPUqTOtmzgAZ7nEA8TiYEKY8lyo/hSF9RqjtTHzWUSVn+kBGNHJrH/f+Qf7rOU65FOpTFxdImc16l7RQtUdFkKLU+VQa3jsOUz8teb0ekwXlf9L9LptKKcl6InValUsNlsOYJS3UesqPmwBQAgOYCmu+zwt7JN19KLDGi6yw4AGOuOI5lMoe7+QvZDEtDyVCkCl7J/L73SiZanSnP3qX+gCC1PlaDt2TI410ho3VSJsuu8AIDAZS60bqqE6Mi0fbAUjY/NyUG2bqqEJWTC4PYw/Bc40LqpEpKPJZfW3FeCpsdDubYtT1eg6iPsmfr3jiKVSGFmmm0Er74rgOan5kqrtGyswKrbiwAwpY3WTZVw1hlhDRrhKDehZWNFrm3zU+VYfVcAANsob91UCe9aKwCg6tYitGysQNsLVaj6SCGanghhzb0lzCxFrG3BOcwu5Tf72cZMBo2PlaF+QxAAIDrYuxZd4gIAlF3nQ+umylzbhkfLUP9Iac7erZsqEbzQAwAIXuVhbTP74/WPlKLh0Xwbll3HFDgcDQ60PloJycFcpu6BYJ69W56uQPnNfgCsLFbrpkpIReyH19xbgqYn5tl7YwWqbmU29K61onVTJaxVrO3qjwaw9oVK1NwdyLVdfWcxAEY6a91UCVeDCQArGzXf3mqeg97DvrE5dIq9P1KYZ8Omx0NYcx+z98k3RlCyzgf/BcyZQjcW5Nmw8bEy1D9YmmdvU5GEdCoNa6XhFHuXouHROR9u3VSJ0muZz5Zc6Ub1zcXwt7N+U/9wKRo35Ns7dD0r21R0kZPZMGNvlQ55vbXl6QpUrGf29p7FbGjIyH7X3B1A8xPlORu1PluJ6tuYvd0tZrRuqoS9Rp+z93wbtmyswOqPMtur1Cq0bqqEu8UMAKi+Ld/ezU+U576TISih9ZlKNDxZBmuVhIr1p/ts7QPMZyUHx3z2ImYHnUWbF7waN5Sh/uF8ny250g0AKL3Wm7N3+dVF8Lc7F/TZwOXuM8aIdJKdJm/dVInQjczecmIEAIwdiOR81hzK+OwiMcIS0IDTqGAsYmokq+8slhUjzCEJbS9UofXZOd+ixoi6B+THiNDl3jx7B6+SGSMenbN30SWuPJ9dNEass6P1WXqMaHuuCs1Ph06z92IxouJDRRBtPPwXOND8xJy9l4oRs/EEoplSC5JPQOumyoVjxIZS1D/I7N37Rj9aN1UgcFnW3l60bpr73YZHgmh4ODBnw03lCF5qQfMjfrQ+7kfzI/6cvWvv8KD+Lm+ubfMjfpRd5QDUavjPNcNRZUJ8Oom+Y0DNxSrUXTEXJBqvVSPUzv7sqQCartNA72SqSi0NrQCAv/u7v8MK/jrwiU98AgBwbssFgEoFd6sFLRvLYSphsWXVHcVomjeeND8RQuXNfpzcMoz45Az8ax2wrzYAAKpvLWKJ6wyaHg+h+jbWhyzlIpubPF+F5qfKUXGTP69t44ay3BihL2ZtvW1st73seh+anyrPEZTqHylFzT0sZok2Di0bK+C/gMX90qu9ebEwHp5BPJJR8RFZvy7OxKzApe68trUPBFH3YClKLvBA7xJRfXMxgleyfuK/wImWjRU5AsCae0rm5kAAmj9WjqYnQ2h9phK+c+ysbUYtavVdgbz41vxkOSpuZDHL3WRBy6YKmKpY2+rbi/PGiOYny1G1ns0j7asNaNlYkbN31fpCND94ir1vZ/Y2BZkN3U0WAGxjf358q7i6IBezxALW1peJ+2XX+9D8sbm29Y+UYk3O3sizd/DKfHvXPViaG5MBRt5d+1wVxAIRxZe4WNuMiFbt/UHUPzRnw5aNFSi9mtnbHJQyqi4s9tScau+nyhG6gY2z3jYbWjZWQF8sYmTvFHijNm8O1Pwk8zeAkQ5aNlbAlpkbVt/G7J1OpJFOptH8ZDmqM2OErUpCy8YKONYYAbBSDnn+vSGEorOdqLi2MOez7lZm79ANBXn2zvNZpxZppKExsVO5pdfl27D+4VLU3pux4Tyfta82oPGpUN54UvdgEHUPztm7ZWMFSq5g42zROle+f98bnJsDZe2dWfvkfDYz1119VwBNT4dydmt+ap7PtlrQsrECpuD8GDHns+CYIiIAONYY83x2sRhRdLYTa24PwJkZZ+XECNGjQzqVhqvGvLC9zxAjSi705ghK9Q+Vovb+0+0NnB4j9B4eWmlOLLhlY4WsGFFzTwnWvlCJsut9+faWGyPm2XupGFFzdwUk37wYcaq9F4oRV+XHiIZHy2THiMbHy3JrH7kxomp9IdY+W4WWjRUIXMrm4nJihL3SxKSzz3Vk7L10jEgn0kjOJtH1NjvNv/qjAVkxYmh7GJ5G52n2XipGuFstaH+pGs2byrHqDmZvOTEiEU9iaH8YoluD5idLUXAOm0eWXu1G8xNz71Z3fwBr7mbPIJmMsFlt4LjlOQG6gvcGKpUKVos1R1Cqva8ENZn+BoH5WWFmbVB8sSvXjwd2j2I2nsyt2wDWNnAJ60P+8xxofrI8R4ipuTOAxo+Vof3FajgbzGh+sjy39vWstbG2LvYM1bcVoe7BOT9rejwE5yorRnZPwlnHrjUWs7aV6wvR8MhcH2rcEEJFpr8NHhhDIp7ATEZBsfImPxrnjRENj5ShMhOzzKUCmp8sh7PODNcqC5yrLWh8bK5t/UOluf4meFhbdxPrF8GrPWh6IoTWTZWouKEAtQ8EsfoOZkPBwuziO5vFrMAl7rxYuObeEtQ+FMyzd9GFLGYVXehkbTPcsZq7A6i9L9/eJeczG/rOtmfszfrf6jsCeXOgpidCCF7NxmRzmRU1d5VDyIyz1bcW5cW3xsdCCH2IjRH2NUY0P1kOc2nG3jefbu/KTMyyVurR/GQ5bNUs7lfcUIC1L1TmYk/DQ2WouoXZ21icsXcDy8GErvPlxTedUQujjwVgwcXaetayQa3kynwb1t4fRM2dzN7H/ziA4EVe+M873WcBVupuzT2BPBvaK41IJ1MwFov59r7zDPa+LGPvNhtW31aCwAXs/1fdUZxv78dDKL2GjclZf5f87Ic1BjVUmrnkeuNjIZRn8mNZe1tC7N3n+2zoQz40P12OypuZDS0h9rz2TNwvv77gNJ/N2lvFIc/epdd48+xd+0Aw950EC4fmp8pR/3AQlpCIkstOsfciMYK3awFVOpfTq7k7ICtGlF9biMAF7rk5UNbeS8SIVCKNVCKNpsdDCGXyNXJihEbLYezgNGzVBjQ/WQ5rpf40ewP5MYK3C9AIaphLpNz3kBMjBI+Atc9VofnpeTYkxohsPlJOjMjlvHCKzy4VIx6cixHuJitrKydGNBnR/DF6jGh5ugKNT5bn23uJGFF1czGMBXoUn+NC3YOlufzvUjEiHk1gejiWZ0M5MaL790NofrIcxRezuXjhBQ5ZMaLp8RDWPl+V57NLxYjCdgemh2Po3TqGqvUFaHhw7ncbHw2i/HrW1r7agOYnSmEpEwBOjbObzwMAfP7zn8cK/jrw0Y9+FADQUtsGFaeCJSSi4eESmIPMV8qudqPuvuJc+9p7ixG6xo3BfZOYGojCU2+FtZKNs8ErPHl9s/aeACo+zMYT3smjcUMZWjdVoHFDGYovyd9XqLk7gKr1rA/xJg6NG0LwtLB5TdGFTjRuCOUISjV3FmNVpr+BZ/26IBOzCs62s36cEWqaHowiPjknvtC4IYTC81nM8rRY0bghBJ4tsVG1vgg1dwfgabLAHDCg8uYAii9l/c1Za2ZtMwpQFTf6UTtvPKl/uBR1j5Si+aly2FeZ0LghBFMxaxu6vgB188aT+gdLUZbN7ZRJaHwiBMtqfcbe3txeGADU3R/M7VkZ/DwaN4RgX2XK2bvh3jkbrrmnJLduY/YOwdVoYTa8ON/eZZd559mb2cWXyTEWnu/Mi4Wr75hnb+Tb23eWLc/eq24tQs2dc/7S/FQ5WjZVwODn4WmyZOzN4n7l+sK58QRsjAtkxghrqRE6vQbazLcpv6Eg394PlSJ4JRsjrFUGZu8SAeGuONS8+jR7Z8dkU4mAxg0hWMqZvUuv8qL+oVKW80qkUXdvEOWZebvozdi7hj1E4DJ33nhSc3cAwct9CF1TBN7B2nqa5uw934Y1dwVQfcucz6rUgM7Mcif+8xz59r69CKtvz7e3/zwHTMU8ah8MsrE+Y+/qW4rm5kCZtkUXM/92NTJ7Z+s5Vdzkz+Uus/YOZvJj9hrmswY/n7N34xNlOT+tf2jOZy3lejRuCMFclpl/XOfL81k1z0EjsXyeqZjZxVqViRFXevLybrX3luRyO8HLfKi5IwhnLRtniy91LRkjjEUi0skUrOWGfHsvESNKL/Wh+zVGUFp1WxFW3zHns4vFCEupIU9tqOHRMlkxovyGAqx9vjLns+QYMc9nl4wR94dgKJyLyfN9dtEYce4pMfmugOwYUXNfAKvuoMWI4BUetD5dwXw2M4+UEyN8TQ641lhz9ha9cz67UIzgtBxmo7Po2c5yXqEPnW7vM8WI8cPTcFSa88a1M8aI1WztE7jMhYZHSmEuFdD2bAWaHgui8ubMGOjQovHRIDxNzL+LLnKg8ZG5Z6i5swiz8SQG9kwCPFB/nx++FuZ4Be1m1N/nz7WtvsmD6pvYu4l6Exx2B1QqFYaG6ER2cqaspaUF6XQaq1atyv0dr1dDyCTxdUZArVXB4GKRx+DUQq1lC83Dv5mEWsNBMOkAAJIEqHUqGL1soWnwClDrVLkNWt6kBaflkE6mMbQ7wtr6RCCdhsEjQs1zUEmsMW/VMbm/DNQ8B3s5+zCmAglqnoNoZ88o2vm8thpBDX1mgmzwshJlUqamtt4pQKufS3RrRDX0bva8ei97Br1Xwpv/bz8SsSQ088otafUaSI7M73ikDIkm865uARpRDRWnglrLQWfQQrSztgaHBmqeg6mQvZvRLeTVbubNOkhWEYHL3VCb2O+afJm2BeyZ5tpqIZiZvevvKoWa52DI2Tu/rWDW5QU4Nc/BmEl4FzTboeY5cCZmJ8HGg898x6wNjZlajKZC9kx1dwbQ9nwVs7dhnr1FNQyZtvrMd9R72PNLTh4cx0G08bm2kjPT1puxYeb59W4xz94AkE6w/0ounr1rxoZ6V74NdUZmb2edETW3B5gNC1hbkyffLjqjFryVvatKYs+AJPDW3x8AL+ny7W3SzdlFytgw882NXgkqlQojHRM5e+tMp9g7k3Ay+tgz8Jl3V6U5qObpZmoENQyurL31zC4O9luSQ4DWwHzWHDBAreXy/FvNc9C75uw934bM3sz2Ko0q4y/zbDjfvw0aSI7Mt3FoodZxEI08vI0OGE6xN2/S5b4p7xTy3hXJzEnVDBlUZ5rzWUniWNvMMxiz30YCOv/Yh3Q6fbrPZn53oRjx9r8cwtufPMS+eebbyIkR5hI9ah8IwpDxbzkxgjey/4Y7oxl7C7JiBKdBLjZkISdGlF3nQ/tL1eDNOggZe8uKEVYd2l+qzvksJUa4aizMhj5JdowobnNDreVgcGjm7C0jRqjUKqh16tPsvViM4NQcdnzjOHr+MAytUQN9pu1SMULLa6DT6zLPp144RqhULEZYWFv/eW6odRxMGQKW0SfmlWbJxYh0itlbq4LByWN2Ool0Og21VoWMy0Iwa6Azzj2TWqvK2cXoEaDWqNC5K4XpIUAwqMFL8/qyloM+k2gz2gG1RgU9m3/gnPPPhclkQkFBAVbw14FEIgFBELC2lRHMjD4RGkEN0c78Tu/k88YTrV4Do1dE+HgUIwenWFtnpl+48mOWzqiFPhPPJLcEjahGKpXGTDgBo1fMa8ubdLmYJdm1rK9mYq65SIJWr8ltkIsWPtdWa2FjjSk7xhXkj986vRY6IdPfRNavjZn+ZvSzZ8puiItWHqJNh+O/6sfOb3aA07C5CsBiOWvL/l908LnxBAC0kgZqkYNaw8HoZc8gWdlzSM5T2ho0ufHb4BWh4dVYfUNJxob5Y4RWr8nFTb2HPUN2XmMNGXNj8qn2zs5jstcaPczeokdA+4vVECy63JgsWdXMLvPbziNiCGYd9G4B7S9Vw3OWi9nbPxf359tbtOkgZsvdiYBay4HTqIBoHMaMDcWcvXUQrPNiuajO2Ts+Opv7vgAgOXiIljm5dK1eA0MmiW/wZext16L2/iCMBWLeGJH1WQAwevXQiGoIjqzPMntv/fRhbP30YWj1mty8RvLoMzaci7l5/m3SIpVI4firfTBk5jw53zrFv0ULn+tTqXgCKpUKyalUxt5Sng0Fiw5Cpq1oZmO7wSPC2+SAYNDljSeChYcwr7wg6wtzz6sR1TlpdMGug2DJt7cp824mH3sG3sQaS04eOkELe7kpZ8NsXfTcd8zMBfQuAbp547cKKqQTjCBu8GbayogRUwMRqFQqGL36M9rwTDECSRXe+ocD0PCa0+y9VIxo/lg5TEERgnVuHrlUjEBSxQjp82woJ0aIVh04bv68XV6MaHu+CqWX+fLXiDJiRPk1hWjaEILhFBsuGiMybbPEJMEsL0aUXueFYOZzcyCIoqwYoRbV4DQq9ru5tkvHiMhYHG/9wwGYCllbuTGC03CQ9NpcW7kxwlQsnjYGLhUjBnaPIzWbhlY311ZOjFCpORz9WT94k5atx05Z22chWLS5OCuaNKirq0MqlcLll1+OFXzw8fDDDyOdTqOico68J9rnYpYgcCwGZGO5V2JjvQB0/LwfGq061xbIxIuCuTkFa8v8TnTx0PJaJGdSGNo/Aa1eMzdGeNm6XjCzuK93C3PjN9gYZ69mY4ChINM2u170CLn1SbatIfO7epsAtW5ezPLk9yHeosutOQQre169S8DmfzyI2MQM+HltBSufG3skmwZagwYm/1z+Q2dgOT21qIZo1eXW0JyBPa8pF8vFvPmS3iXA4BRzRAKtQZObcxp8+W0lh5BbJ6+6ozivrSnTljNk8gsuHpJtng0NWhh9EhoeKkPJxR6W47BpcvaeP37zRu3cN/ewb169Poi1z1ae0d7Z3J+Yyc9k7WTwSeA4DlLmmXmbLhdLBDvPnt+bzd+IeeNJOpFGMsHmJoJZxWyYe1cpP2bZdBBdPIzFApoeDmV+d17beTYUHcJcWRiB2VujYapGarWa+VaG3Cy6+Jy9s98mN0b4RKg4FUYy5dD0LiHf3kbt3JhWwL6NaNPm3g2puZwXP6+twS1m8k+n+6yz2gKtMDeeSA7W1uCe63O8Md9ns/ZWqTM2zDz/qfaWbHxujODtukz+hs33ss+fs+EiMQKzKqhUKsSyh6AcgqwYcfx3fUgl0hBt+ePhUjHinc8dwTufPZJnbzkxwlpuRM1dAejdWZ+VFyMAYOI4S+gZPZK8GBGbAadRQSvMs6GMGOE72472l6qZbznmVO6WihGSU0DbC9UQXAItRhi18NSxzTBT5hnkxIiKSwuhlTQQndKC9j5TjFBrOGhFLs+GS8UIjU6NHV8/hq5XBiFadbnDu0vFCF7U5PqGYBJkxwhPuw1agyZHTDNm2i4VI+Ljs0in0tAaNODZds3SMUKvQc8bI5jsjsHgzrchb9TOzSMz62gps56pb6iFzWaD2+3GCv46MDw8DK1Wi/aWswCw/Dlv0ub8zuAVc3szACBYdTD4RET74xjYPgHeNOcPpgIRgmWuD4kOIedXolUD3qRFKplCfHwGpgIpb42ndwrQZ/oXp9eCN8+Rg01FEniLNrdBLrkESNn8P8/y69nYYvRLeflz0cyDn5f35s1amAqyvs7acvrMGtDLxoj+bePY9sWj0GjVeTl9ttenztlFnBcLBQsPXq/NzPN48GYteEsmR+AVc2MAwPZJsuO33imAN2pRdU3R3DPNG3sEO5+zA29lv6t3s9/yNNggzGsrzbO3YFYzu2RFBXwZe/PA2ueqoPcI0GcOjIPP/G42DmXeNfdt3Kw0b/uL1Si8yMm+jX8uDvFmLfhMrl5yC5Bc88YISQMNP2cz3qyFNhNnDR5xbp0MluvJvuv0YAxIA1qdNnefPHtbdblxSu8SwJu1kOwCKtcXwlZhPM3eWf+Q7Kxtdo5h9LGcx44vHcP2LxyF4OBz44lk4zO+Na+tJd9nE7EkOn7XB16f8cOsDb35fig5eUgZ/+bB9hpnp5hQh/HUti4x599Axmd9Epw1NhhcIniTFrwxs873Crm8BMD29M2+uTU1b9bm1NEMPjFvDiRYdPNyJRmfNfNz39Wog2uNNWfv7FpdcrK22TzRqTEinQaS8cyc2cGeITs3NBVIeTYUHUJunB0+NAEVp8rFATkxQqtVY8s/HwIH1Sk2XDpGNNxXBnOZBL1bzM2XcvZeIEakZtNIzsxV2hDMOlkxQu8WwKm5XI5Rboxo+VgFqm8sZv6d+c5yYkTplYzIZPSJ4M2EGGHV5chdkpOXFSN8bTaYvPrcehcZey8VI9Q6DioNl2dvOTFieiiKzf94AHov68vZMWepGKHhNZCM8/qyzBjhXG2GOL/fLBQj0mn2Hc06TByLIRlPQiPOrUN5ic0xs/NIk088LUZotGp0vjrKfNaoycV6g4cHb5w3v3bqIDnnvmt9QwPS6TRuu+02UEEu95aVvQ7p2xE01sm+bs3NVqRTaez5wTgAIDU6TrktACA9r8wNUsmFG0J5Sae2F6owtG8CRz/AEtbmkISSCz3Y+a0OUqmlNfeWQHIK2PyJA6T7NT9VDk7HYQtRdrn+wVIkZpLk8mvLidD1BXCuMqP79UH0/EG+VKfoAFTgEBmm17JVAqlIAhIpRHppOsNSkQREYuTnVFruzRCUMNUfoZUAkwBrsUQqo/auIAGSQ0Kkm3a/9herkU4RyxEtM6xVEkJXFuLYb3swske+RHf5zX44Qibs/K9Okl1q7g5A7xbJMaX8Zj+SsSSO/W8f6brlxtrnqhAZjmH3V44v3nCenKL/AjuKznKh608DOPnnhWXxOX5uYgEtvdZuooGxygutU/BXabDt5QSp3+2d+C8MDg5iZmaGfO8VLC+i0SikDHNtHXej7OtED4+a24px/NV+DO3IlDN9H8vMFK1zwb/WgcM/O4FhQimJ2nuD4K1a8nxtuVF6tRdQA8d+Sotba5+twkTnFA5894Tsa2xVEiqvD6B32wipdJ5jjRElF3mx9/snED0ZJT3ncqLt+SoAII+nYoG4fO8lApZCEeOHifcTAb2LXqZPabk30cYBOh2i/bT5YVYdaLnsKdo4RKMpUqmywKVu+Frs6HlrGN2/G3z/Hu5dIksY2vufnaTrWp+pxMzULHZ8gSY/vvbZKoRPTGP/d+TLQ4s2DmUfKsbR3/R/oGND6IYCOCpM5NjQsqkCSNFLQVLBZcbimts9LK/xn/LjerR0AK8f/ANsNhtGRpan/OoKlEOn02F2dhYBVKJMtVr2davvCEClwbLlP5SWdFr7bCUG942j4+e0EhTLCcEjoPQSN4797ARi4/JzGZU3+WEOGLDln2m5q9oHguCNWnIcySqW7P+2/Ji83PCfx8qu9rwxRCvRJDCyDcX+7waCRwBSIJVDA5haDGZmyM+ptNyb5BcQGY6RS4CZSwVMnKRfpxSCR0CMOD9cm1HyXq6Se0ogeASsurEQx1/tw+j+KdnXFV3oREGrAwd+2InxI/LnQhU3FMBSaiTHlJIr3UASOP4b+Wu5vwSanypHbGQGe77ZKfsaW7UBFR8qwonXB8klryhQZXJmtgoBwXVu7PnvbsQGZ5e4ag4HvW+gr68PU1NTEARh6QtW8BdFdr/xYu16+RfxQMM9QXS9NoiRvSwe5O0dKsEiOTNnrRmlV/hw7Fe9GNo1IfsnK27yw+iTsO0zH9xy5ACbL6gFDl2/pa29m54qR7hrGod/dFL2NbyTR/3dJejbOUq6n6lEQOmlBTj2654PdAm85o9VQK1RYfM/0cYO3skjHo4vW7krUzGPcD/xfjwg2uhl+pSWe+NNHMBrSeX2AIB38IAK5OuUgqnupBAPy7/G1WhB2eU+nHh9CCf+uDxlVJWg/IYCqLVqHPgubb3T+HgIyWgSO/+jg3Rd01PlmDwRwaEf9Mi/iAeqPlSEE68PkEr1LTcKz3fC12zDFuIeSOOGEKAG3llqr55TL/7vS0BtZQoH5ZebwKlVOPAD+fPYuG0Yr/X8GhaLBaOj8kuFA++CpHT2Nf8M/dudsq9ruZedrH/7qywpJ5ekVHmTB52/70d04JRJxhIkJSWw1+hRcV0xhg+Hcfh78jvB6juLYSrUY8eX9iNKmZ9LoJE5VrAgSq/1wr3Gyjb0fv3+LwJbNlZAI6rJm0k1dwegM2jwzmePkq5rf7EaAJatbqtSkpISVN9WBGvQiM4/9OPkn+Un7UuudMO1ykpOFrRuqoSa58jfTin+GshNf1VQEDebnghBK2nI36D9xWrEwzPy+uupdV+XQB5JCQC0WvjPNiIZT6Fv69IEsyxJKVQxC7c7hZMHZ9GzV969p8useP1nzwJI4eqrr8bPfvYz0rOvYHlx2WWX4be//S1U4HCJ9S4kJ+SteAKXuuFrtqH7tUH0vJaJrTKmfFklpF5CPH43aHo8BK2e3j/bnq9CbHwGO/6dtsEPESSixAoWhlKykVK0v1SN2akEtn6akNwTgZZHKtD7zih6/iB/0R+41I2CVgf63hlFxy/ff0KtUpKSUiidmzRuKEN0dIZEkAHYt4uOxsmEHCUovdoLd50VnX8cWLY49jcPYtwUC0TUf7QEI4fDpMRS1fpCWMuM2PGfx5eFTCXaOBRd5JP9jFmSUusTxUingC2flL9O4gx6/HbsawAAYvplBX8BZHNel+jvQCoif+HRuqkSKo6+wR+6zocTf+xfFjKI4BFQf08QowcncIiwmRS6zgdHtQU7vt5BIz4IWDZSxt86fG02BNZ50Ld1ZFmID3UPlkJy8uS5SeVNfoh2Hju+SBvz256rAjgV3vr75ct5KSEpKUHJZW74Whw48fogiSjmO9uOgmY7tn7xMKkfNT0egs6kXbZ55V8DuemvCgriZu39QYg2HfkbrH22EjOTCWz/Ai1HrRSetTakE2kMbBtbsm2WpORtMSFwvhM9b46gW+bhYk7g8fvp7yKBGaxbtw6vvPLKu3ruFby/+Id/+Ae88MIL4KDBxZ77kRqRt7npbjQjeLEbJ94YRk/mkKgckpK9xgQtz6F/2/jp//g+zNNr7g5A7xTIhJWWj1UgPjGDXV9d4uDsqeCxbCSXv3W0fKwCnAKykVK0v5iZm3yONjdp3BBC3/YR9L4hnxjgarQgdGUB+t4ZQccv3/+DC0pJSkqx9plKQKXC5n+k5bxq7g4gPjFLIt0B7NtFh+PY8aX3P+fla7MhcJEH3X9+f8nC/38FYtzkTUD9w1UYOTiBIwSxm8Blbnjqbdj/3eMIH38fFsmnkJR4E1Bwlgsdv5ZHBs2SlJrucQNIY+vn5ed+VUYDftv/7wDoOS/N0k3eG2TJSVlwNsuSRCVvmwm2UiPUvBp7v3GKQTj1gkQl0QFEIyBvZI/smcabe+iBMp1KI51O0whKANY+XgVOoyIvHOsfKcVMeBb7vkXbIPCutWL86Bj5OQ1BCVMdRGNKQM36ALr/PIiJI/KvLTjHjuLz3RjcM05Ss5o8MQ17uQljR+WrN7wb9L4zkiuvQYHkYvK9VAwdks/Qn4+1z1UhPqFgE1cBDEEJNbcUo3/nKI7/Un7S7OSWYWhENcYOLL1InQ+zn5W5Ex0g+fTAnrFcuYjlQGw8jkScnnBuf7EayUSKrGBWfrMfsbEZdL9MVB2QWHk9quqWs86I6cFZkspXVvHpyC9PkBS0Gh4thWDl8ean9pPiO4vR8ttnQZo4p9N5RCWpaGG1rtMISgAwOwt/kwXpRHpJklKWoAQARw4BRw5xAAzQQv5JQqunGmP9e7F9+3bZ16zgL4NXX30VAFCorSRd1/nbgdNVeFSqJZMuRWe7wGlU5M19pSo32/5N2cZAKplGKknr2GKBiPq7SxDuiZBUTxxrjAhc4MGBn/aQFHLEAhGSVZ071Sf7OgWqMwBQfIkLGklNVntqfaYSnFpFJqxEBpc38xXuiWD8GM2WJm9+WSu5GNgbhsEnom/nOOm60qu9cNVYsPNLhxAdff83m+sfKoVWryErPwzuH0d6lj4w8mYdOB19HjvdF8PgvnHydUowfnwStpARsWFaB6q40Q97pQmHftJN6rOWchEFa13Y919d1EeFvpiuuiXaAEPAhKHthCN6AKpvK4ZWUGPXV2mn2NpfqkYinsTb/yzfx7JjQSpF8zGK4txpEFkVvyjhwFb59QEYfCKGqkYxusR8NEtQAoAtn2HfWqXTIU1QpOR5HqnU8iiSrOAvA+rhGQCwhES41lghmHUkJQvBAsRiIG9kx/pjikggqVQaSKfJyizNj5ZDK2jIGxI1dwYwG0vi4PdoccG+xojp7knExkmXMXWcHnqiuOqWQvS+PYSJY4S1cKUeVTcWY2jPOCmpHRmOYiY8i/FO2lxIKfq2jcJZbSZfZyyQoJHoqeb+HaNQaWkHfwBG9J6ZmsWupdSP3wMIFg51D5ZjYOcYiSjWt3MCooPH4H5avtLklzJl7mj+2fv2CCylBtK93g2m+2KK8i1rn61ESkEFhJIr3UhEkjhBUMMHoFgdzFqpR3Q8SYp/kl9A5bV+dP6hn6T4tOqOYpiL9dj+5Q6SqlgqkSKvjYF3RyxTEjeD6zxIzqSWJCmp5uXM+t4Oo+9t2rwXAILqWhxObsWBAysHRj/o+NSnPgUA8PIh0nUD70xg4J38/RKVWr0kUalknRs6SXNmktIiOTPeyStSZVGqsKkk5wUeaH+6GuGuKewl7BuainmUXu4nKxTxDh6CRY2Jo7R9Q97EIR5PkclUnhYreKuWrPbU+EQIWl6Dzf9EiwcTJ6ah5en5D6UYPjCBqV5afoA3sbJW5kIDeiF/MTxxJIzhgwYM7qLtxxWcbYe/zYHd3+4kqykpwarbiiA6BLISWe92ZQfW9K780r9yMXp0EqNHlmdfOnxiGrGxGUz10Xyl8HwnCs924sjPT5LU4Ax+Hr5WBw7/4iS5z4peuuoWbwIMhSaM7KON/WVXe8GbtdhHVLhte74Ks7EkthHUieNhIJ1KIU2M0Z2/GUCn0sMmPCsbuKBa1xlUlIrXeeGsNmOiJ4qRPYv7Z5agBADbvsaeUSUKSEflz/V0Op2inBdp5Xj77bdn/sQWjtMtAQAgKSrNx1JEpb5dYej0Ggy+Q5M7W3VbCDqjlryRrVTZiEoWymLs+GReTUu5EG08eBP9upKLvUic4yItAEUHUHtbCaKjcWz/vPyTFQWNdpj8evjXOjBxRL59ZiZnkIynMNFJC+qD28MYJCbrAaDxsTLwZh2ZKNbzh2FSebgsqISTLI78gMbezULFAWrt8kym1GpAxanICamJIxHsPkJPKO38Mm2TJQulSltKfWX755URxGYmZzETSZCvc5SbkEqkySSl9o9VIxFNkjY6JQeH8muKEB2Nkd5T75GgEdVwrLaSSEoDu8bhqbdClDJEVJmgKpflgTIuZIhKa5+tZATU/0db/PRsGUW4f3H56vkEJYa5ifOsywDt4MIJsOkya+7Pq1ruwI5X/38rstd/BUgkWByoMrQBANRmRpCVq6h0GpYgKu3/XicMBTRCBwDU311CjiEAFCsbbVFykikaR3Q0joFdNNlRZ7UFOpMWglEN+YU0gaoPFUCw6vDmXqrqYkiRWqO30Q5OrSKTlGIjM+B09E0hKtkhi/YXqzE9FMMu4jhOLacFAOGOqKJT5NGTUUX304hqqDi6LZVCI6jBKSC/H/2xsrLWSk+9vRtfiQzHsPNL8q8f2TuFkb10Kf3x7imYi/WYjdDUev1nuWEu1MNWJS1JdJmPhkfLWHygqrLeWwENr8bQdtp15iIppw5DwfRADFOD9CD95rtRwqAqN9k41D9SichQHDsJJxcP/6IX9iojiaB0KpYiKnEGfe7PFRUV2L17Nx566CF88YtflP2cK1hefOUrX8n8ifWX7PenKCpRMH4kiuO/78foYcoMAyj/cAkMXhHbP3eQtuGuUNno2M/6cOxndGXB4QMTMLjoB4QMBRJSSXqCs+LaQsxOJ8gl8OruCpJjiCUkwhYyQcWpMHFMfs4rEU1idiqB8W7aNx8/ElVE7l9zTwAGj0SOywPbxmSpnZwKkuLlPChVh+K0HNS6d1fagAKVmoNGpN0v1h9TVBLwoELybu9bo+h9i7beAZh6gNFL9xUKwXI+oqMzSCk40OetsyOZSJFJSu1PK1BlFYCqG4sxPUhbu/AGNQSbDo5KM4mk1L9zlPkXgQQNvMsyowrGBaUqsB2/68d03+LjqepMh/qy/6bVID27cJ6UE+auDQhV6FcfglZL32xewfIiWxYmJLUDADi7DQBkKyqdiqWISge/3w2DgsPLjfeXYmY6QS/bplDZSEl5OJ4HJk9GMLCbdtjdWmmG6ODBWwSAQFIKXe6GucSIbZ85gHhYfjyvvq0Eoo0n5xf8ZzuhEzVkktJUbxS8AuLJoe8Tyk3Nw9rnqjA9ECXHZqp6D8AIC0ryNPFwStH7qUUOKg0H9TJNvTSCGmoFJPbuV5SVT6MqL2WhdM6mxFemeuKKFBAneyOIT8xiZlp+6VQA8NTb4FxlwcjhSYzskb8XsfqOYpgDBmz7zD5SGbxVt2dyZftofm0JGaHh6Y453jGN6Dg9SG8hHOQ7DdRxIUNAneqLYvfX5O+jd/2uD1O9MYwclk9QOhVLEZVUxrmDEdXV1di5cyfuvPNOfPOb35T9nCQ2wfe//30AgNFWSrkMdbdYwRvV2PIftAVEejKJzt8uElAWUFPqe2cUrhoLmXDU/pSyklrOOiOGdtKZkoe+q2ygUyrZO9YxhXEi+ScaAaYHoujbQWOfnvzzCGanZzHZTdtEHdo5iaGd9I1Hd4sZpmIDmcwTDycUnfKq+kghNIL63S0ECah9IIiZqQQOEMtrvPX3y3diZOJIRJFvmkMSQlcU4NjLJ0mEFaXwnmWFr9FOJq4o9RV3ixnmEiOphCSgXF3k6C97MNVNP105PRgjK5FFhlOYODGNvm20iZ9Skt/JP4+QSgLOhyEoIRmOkFS3Vt9ZDFORHkd+fkJ+jE+nMXRgHJL9zOSfM6ooZdDz2jj7AzGJsrZtFhot8PprtOsSiQSOHXv/VdZW8JdB+4tVmJmYxbbP0WJduCOKcAd9QzrcE0H4BC2G+86xI3C+G0P7J3CEsBgXbRwg8mTlpuhoSlG5KaXqHl1/7Ie7zk6+rn/nGFn5BwB2ffkQJJ+C6xQSSEI3FGDsSBjDu2ljR3I2hdgYLfEu2oDKW0rR89YQWUFGCRxrjCg6140DP+xBlHBqWmkSSymUbgRWrS8Ep+MUqf8oweq7AohNzJDJUcnZFKKjNF8BlPnmwJZxDGwZJ9/r2P92Q/LRCEoAcHLrMNyrrUs3PAU9bw1D76ITjJWWZdz1H8riAwAycQtQVoowOppCZCiGvm20jYxofww9RFUYAOCtQP3dAUwPxrHnW/JJGxMnGSHhO9/5zgpJ6QOMl156CQBggo10Xc1dARj9ErZ/bj9Zxaf3dfr6pm/bKLyNVrIiyNonKqFSc2Q1JUtIxPgR+vyQorA8H2/9g7Kc18CuMUxTlR4FINwVwcBeGiFn/EgU+7/fiWg/zS6TXTFF47et2gBrmZFMFouNzUKw0gi4ABC82gPBrFNErlGC6luLkIwlSWUIAWUKZkoRG08pUiITPAIqrytA92sDJMKKUtjXGOFvc+LQ9zpI8Sg2NgPRtnC+YiEo9U2lc4wDP+oi9zsAGO+YQriHmHOMAaOHJ8mHXMYOTivKj47snsQIcW2VheARgNgMaVwovcYLd60VHa/0o3+z/Hfs3zkKo4KDTZR7zEf9fUUQLFq89S+0tfzMzAw6OzsV3XMFyw9+kXzpmdC6KYT4+Cx2/kcn6bqpk3FMnVxkrrDAwb7hgxOIDNPmGOYyCatuCZDVE3kTwOnpCiTxMLBHwWGrrt8Okok/AND9+iDc00kSQQkA+t4egaXMSL7fnq8eheihE8yU5mmKL3Uh3B3B2AHa2D0bSSA2RiOCgAdqbg2gd+soiQiiFKYSAYELvej4bS+meuT7WfcrQ4oJQEpALneYQfBKD3RGrWLyEBXlNxQgEU2i41e00nmKfAVA0cVOTPZESb45fnga7xym7zee+FMfhg+FMU48VHNy6wiSM2nEiUuzrtcGYS6izzEoSkjzceC7ytc65jKJrCS39pkqpNMpGskpDkwcn8Lg3gUIqGdQUQLYmNC7mX7oBABaH/JgcmAG+38sf+4WH2TCOj/72c9I9yLtuM9kmPyhhtvy/n66JbComtLU8CzU/JkZj5zNAgB5ikpZtnPzE6VIJdJ45/OLLFzOQFRSupEdPjENKDj9HLq6EMFLUuTFccOjpTj59jAG3lZWyosKKsEFABBRrlijRNnIWWeEqdiAY/9LW9wWn+uBRlTjCGgJjb3f6CS1z8JSYlB0Ur7t+SqkUmmyopLeJUCyv/d1kT8IsJUboTNpyao6was88NTb0PXHAVJ/99TYIFj4RctxnQlKfSVwvhdqngN1mFTaF5T0OwBkRYsslChNvBusubcE4ZMRkiKWOSRh9S0lmB6IkuLZwK5R8GYtpkdpSd2ciskpigWLEZQAwH+2GQUtNuz9cR+mO2N5ZKXTFZTmMDUNZA/5z7oYe/lURaX5KkpZxKmzxBUsO6LRhZOvarNpUTWl2akEJheSfs365imJF/tqA0JXFeL47/owcCbp60WgJBZMnYwgNjaDgR20ZGXlzSWQnAK2f34fqbRP4FI3JJeA/d9aHmIGU3Shb0R0/46eHALYRn10lH6/4JVejHdMkMkEzmozLEV6MklJiQqW3m+EZBfgXGUlkZSK1rngb3Og848DpBKGzmoLBKsOpmKBRFL6a4ElqGwe2/oMKztJ/YYmvwSDS8BR0EhKihTTwHzT7JPIvqmkLyjtd0pJUdRSnO8W7iYLPA028kZi6zOVUOs48gZduCeCRJS+mU5R25qPxg1lSKdxRsXghRSU4mNAIpbCVD+bR6l0LBFzqqLSfBUlACierkMXjmFycnlk4FegDENDLOleqT4r7+85SVpUTWnyZBSCRUcmKNU9WAqVCtjxRdrG69DOCQztpOeRRg9PklVgAKB6vTLFzJq7AujfMaboWZVAidoTYsDe/+pUdL+xg7RkPcAIX5YSEzpfphG4Aud5IDh05Hc8/GNlqtzOSjPUCk4jt2ysAFQgl/AyBwxIK1DP+muA0cdDcvJwVtFUdTxrbQiu86D7z4Po+ZP801bOagsMbhGSz4DYuPz7HfmJMqXNkou84C1asm8q7QtK+h0A7FeSEwfIZSffLSrXFyIyGEP37+VvAgsWpvIy1RchlT4c3DUGo09aUt3oVJBL7WXgrDMjeIkXh3924rTvuJiC0mRvLLd2UWnZVtapikrzVZSyiMXYOm58fBwWi0XRM6/gLwfObltUTSk+NoPJvjOv1VUZmZdTFZVEL4+aW4rR+acBDL6zyNzkDEQlJSo3sYkkJk9GMLh3nHRd6ZVFsIaM2P6VoySikq/NBoNPVPSsShA+HkP4OP1e/dvGz1xubwnEwynEw/QxwH+eA5MnI2QyQUGzA/bQDMYO0A5/vqPg4Dlv4mHy65GIpEgkJWetGWVXMiL0ScLBB0uZEQafCFOhnkRS+muBo9IMTkGpvsbHQ1BrOLz9Kdo81lZuQjqRIpOUlPgKAPhbnYiWxckEOiV9IR6Gon43dmCK/HwAMLInvCxEvSysVQYUNNlIJTIBoHFDCLxZSxa8GTkSBlL0ff59C81jFyAoZVHz0SKoNRx2frXztH9bTEEpFk5gKjP+qER2UPJURaX5KkoA4I7W4ADeRjhM+350WRAA0hkSdosRlY6+ouykiIZXIyWnqtkpRKXGx8owcmSSXNZp7zeVbVqFT0Qw3kV7R3NIgmgT4K23k0hKRRc54W93oufNIXS/Kn/B4l1rReHZLuz9/gkSMcN7lhW+Bjve+dpRkjJV1a1FsBTryad2S9b5oBHVZGLG3u+fgK2UzrC01+jBqTmyEpZShaJELInULD3xolQ9q/2laiRiSXKCSAnMIQmr1geY7ByB5Xz8lwOKTlhGh+NIJdKYJUoU7iBIuM+H5OBgq7GRFYAO/7wbgpl+Gi14SQHUPEfuC/UPl0Jn0JJJk+U3+yEYtaRvBzDSEKdWkcmMbc9VIZVMk5/T4BUh2nhSfJ84EsHUQBR9W2nfjim7KdhIkoDGe8swtG8C3b9n91yKoAQAnE4FlVoFa5HASEoysXf36QpK80u/nYmgBABFRUXo7u7Grbfeiu985zuy77eC5cODDz4IAFDhzAurxYhKWz9DX+gYC/TgFMjoFq1zwR4ykjfYwh1RUinZLHq3jsC52kIiKAGAu84KtY6+SFVKzKh9IIjZ6ST2f5s2v6y5pwSRwRiO/ZwW/1s2VSAyFCcTxjwNVtjLjRg9QKPTHnu5F9EhejLDd44dY/tGSN9vePckhnfvI98rPjmD5EwK8THacypVz6q9Pwi9W8COL+wn+6cStGxipb+o80Slqjqz0/QytIDyeaxjjRGJWALjh2mn5bv/NIiRw/T1p6fBCkuJHqOUJKQIrH28CkMHx0mlFkUbh8qbS9CzhaYOZgqKqLi2EB2v9JJIkIFL3fA123HkVz2k+/ma7ZCcAkQbSD598q1hGH30U66KDwVc6oalxEAq1QRAkUoqAGz7wukJovml304lKAGAKFqgV+thMpkU3XMFy4NUiq3VLYLltH9bjKjU+fIAeaMdAHQGTbayHAlr7i3BeMcUaRMbUE5YGdk/gcleWiwWLICpUA+VWkUiKdnXGFFxdSF63hoivZ+t2oCSi9jm92SX/LWUfY0R/lYHDv2gi6RAUnKlG65VVmz57EFSqaTART5ITp7sL/t/1KMo52UuFaDmNWQFny0Kc0gzU8rmCkoUigCmwDcbTWDrp5SdnqZAsAANG6ox2RMhKVUMbZ/A0HY6US8+HkcinkR8kpbzUqoaIFgAS6WNrHZz+GcnINjpOa/Sy/3gzVpyX6i+rQh6j4Ctn6R985LL2IEVqpJo5c2F0OrpSvotGysAgEzutJUZYfJLpPgXGwfGjk1iaB/Nzya7YuS5Uxa195Vg5PAkiUAHAGodB6NPIpHNjv7y9EM880u/nYmgBADFhQF0nejEHXfcQT7Vv4LlwTe+8Q0AALfAFuViRKWdX6Hv45kLRKh5NTi1jLzQPKKSp8kCZ40Fe/67k1SiJz4UV1SFo/edEaTSabKSkrfJDt6sxWHiIf7GDSFwWhW5XG7V+iKkkikc+gFNqajiRj9i4RmyelPjhhBio/GFN+sXQNE5LsQnZvHO52h50kM/6cHsFD3n5Wq0YOJImKQwFR+K442/o+e8ZqMJzMboajxKFZEqbvTDXmHC7m8cWxZyU8OjZRDMOnIpWirJKIuZ8RlFJP3Nn1CWYzOXSUj/f+y9d3RkV5X2/aucg0o55yx1zg7ggI0j7dyO5DTkZGxjzzvvDDOEGWBehuCB8QBDHJghG2wTDMbu5M65lVpSK8dSSaqgSt8ft0o51L6NhfmWnrW83JLOqXtr33P32Wef5zw7GsN3QXY4suXXPYx1ylUli67IIjAU4miLbO7f9pFqhs6N0fa0gIRlgsY9xfQcGRWRjkyZJuruKKDzT4MMn069X84WN6XX5XLhuV4RCTJnvQdXqQN7gUk0pi/uHcRVtDDvsxKaVa7H83Z6SK9xzl2DrEBQAjA6DWhVHFI9/t2F8d3s0m/zCUqgKCI6HI5F+UPLQV1WTojqG50Mnh9npHVphpjW4yY24p3DcN73GcHEOIuoZHIZyah2ijaxrRlaqu8ppe25XsaaZaxaNcnUsWY/R79yFr9fRliJTsWIR+MEhmWOK73aid6iw+LSiKrg5W70YE6TLzaNdj0anXzwn//ZRTxVcrlHf6dfRL5KourWIjRaDYPH1CVEpJAGe5eK0NgU4/2rowAwNeonPBlh+PzqMF1794/Sq1KuTg2q7yzFmmVmpFU21hR1KPnYbHuuG8sSJcOWg96sU0UySC93qHpnbdlmNBp5v2g4RnRKflL+xHfbmWiT21OtUlTdA0WE/VFZAOFX5qHMehedvxtEa07tOXb+3kvn770zvwiHwWBYVkUp0ZCaOhgZgoGBGcLSbKLSYsjNzaWzs5ODBw+mdH9rWH385Cc/AcChkZUMy9zoxFlkW5nkOO90WPuz/bQ/K99gy6p3YXTK67tX3J6HTqcVJzT6D3nFSk+gkIxsxfJN86hf7qsAbBlmYmny0xGOPAvWDJOYpKQ36DBY5YvpzhcH8ffJT8WoUYHJWOeg9Koc3CX2VVG0UqtWoxbD53wYLLpVISgBjF2YxKJiU0gt1JAKLwVVbygkNhVjv5Ag2PWCutPdPQeHGTwnjGMDoNVrMDlSOVkzA4PbhDXTTPZ6j4g0ZMk0YbDr8VS7RCSlgFch98cjMp907r+V5JV0TKt9Bp5aK0WvyeHYt9pAkHPLrHNhsMtTG0uRT5dSUUrCU2PBU2Gl5ZdzT6vOJiotBpfTxcTkK1/qZw2rj/Jbcxlp8okVPqSb10nYcy0YrHoZSckM6+4vofOFfnHpNmkJLlA2zQ9/Ub7ZEo/EVZX7TKtwYHIbMKebRCSlnA0e7LlWtHYjeFPvZ3IY0Rm0IoISQNMvu8lQkfMKDgTpGZDndmpuL0Zn0rH3zOrkvNQSHtRioi9AQFh+Ry2CXgiOTDEsjRVUYvTcJAfPvfIHDpMoeX0h6VVOQt6QyJeNdwRF71wSrb/uwpotJ94ZbHr0BvmaJ7PBjd4s7+cqtqHVyw+6RAJR4ipOyh/7Zhv+Lrk91SpFVe7OIxqN0fYLmfqDLceCzqgTkZSWUgFcTkUpidLrMvB1+xk+PZMPnE1UWgx5Gfl0XGzn7Fl1m8dreOXx2c9+FgCHXpbzcpWZcZfa6fjd8uNPo9PN2WsUK/gkcmaZ69w48qwighJA0dWZGKx6Wn8py+14mybFpZUADv9bM5ZceX5gajKM3qjGP1pV+TlPpYNIKCYmKektWgw2+Zqv7ZkeAl55GXkJQSIJU6aJypvyGWlyXlIZqVThbZpUXeZKDUaaxrGkGZlQcWBRDYabfTjz5LGCWpxUKWKiFrV3FROPxMSHAwYOe1Vdr/35Pnwdct+iNWoxOuR5f2exnXgsLiMp2TVYMkx4Ku2idzDgnSIaihENy3zS2Z90YjJpxWUrBw57VT0He4GJ4tdm0/LzLtE1s+rdWHNm7TGmQFACOPzFxddmy6koATgLDKSVm+n441wBh9lEpcXgcrnwer0p3dv0Z8bjixRZXapxYiP68ls/u+jfp+xa0n6/cCN4+zsyCPtjHPnO0tnN+LiSrIsFVTq4eOKBJr+OFREvoOi6LAp3ZDLUNMb5H6S+WZa1yUnxlTmc/nGXKpLMXwWEtvxLYNN7y9EZdWISUNE1mRgdBloEdYFBUVWIR+PipGLWJieh8YiYCLfzsVqmJsIc/uLqbA7teqKOqfEwh1QocUiRVGAaPD0mI4JYIXdjGt7zowQE+yBF12RSsDOT1ue6RSpmabVWcjZlcPYnnaL3oezmHLIa0zj+9bOi+1x1/BW855eChjeXoNVpxEpRu56oIx6Ny1UnkvZMBAxaozyQA6CiBIBI+nLEijCXXwlTU3Bw/9zrWP6+l7F/KVq0V3/nUZqPfR+NRjN9anwNry7odDpisRhbzTfjsWQv3kijJTov+Nv6wUoMdj17P7nCuE09BFwZFkQbyqDMbRqtRiyN2vjWUiKTEdVqN38VUGHP1YQl38K6B4rpPjhM1/OCDVILVN9SQO+hYXxtqX/BvCvSKbkym9Zne0QENYsHnJVuMVEpeTrs6FfOERh55f3j1g9VKe+sSsUhKba8rxK9VScm/7irLOjNenEZta0fqQIQqxyU35JLwDslLnG29UNVTI1HOP4f6gjKq4ZX+Xt+KXCWWai6qYC233aLyufVPVBMWpmdpl9eFJG3/py21BiMif8vnQDf/C5FVWH/59oX/K3pk+uo/vvF599nR58CQJCCWcMqI5nzus720JJtFlNT2vVEnXJC+4uv/Pp5GmZEBJnMDS6qbi1g+LxPVL7IXWmh7Np8mn/VpYqI8FcBoS3/Emh8YwlGp0GsApCzw4PFbeDCM7KDCFs+WAkgzgl56uxEQxHGWmUG3f6xasITUY58dfVyXqv1zprdWja+p4ah016ahbnHzE0uxtvGRKUkMze5qHh9Phd+3ydSRXIUm8nZ5KH51z2i9yHv8nQKdmZw4tsdBF/NZZL/Ct7zS0H1HfnobXqxUtTOT9QRj8bY/2lhmeU/lz0TObPl4i6AnQ+XExqLcOTf536/C49vouxTxxftEwyO80L0J2i1WqJRdQeP1vDKwuFwMDExQaPzWvKsVYu20Wg0RIfmrgfXv6UIa7aZfZ9afn05TaCJq1zTz47ZTYhJSts+Uo3OpBXnlKvvKiAWidP8k9Up2/YXgQp7riZMTmh8WxW9B4dFZdQwQdm1OQydGsXXkfoXTKu1U/2GQtp/K1OBMTnBXuxkuMknsmfR1Znkbc/g1LfbVkURaf3bSrHlWMT5X7VofEsJFo9JvHdrLzCht+rFJMGN7y5Hq9eK4/TC12YSngiLyx9ueEcZkUBEXKJs1fEqf88vBaZME7VvyKf9hX7ReCm7MYfcLem0PtND30GBAMdsWyYFIzRyEj2ANlG+TbOEEiVA4z3pWNMNHPjKQhL7+SeqqP7U4vnWZ/u+AshyXil/i9///vfL/n3KrnzU6NVlC/7WsX+c5hdSWxglJTrzr0hj1yeqqbwjd+VOiwUaws32zucGOPofrZz/uew0f1ZjGgaHHptHxjaue6CInZ+oVTayBbAWWcncID91dUlYReLCxr8pZ8sHKsX9DDYDeosK9YDfDYoJSgCozCtX3FRA3Z3F8svFUcVMr3ugiPwrZKcRLgUNbyoRj89oFIhDLCpbMBTtzKTsmjyKri0Q9Ysl7KjVypz46Fk/Z78rIygBWNKMaPUaNEKZu9KbstnxqNxHqMYqE5SsGVqyty3P2F0Mm99fodhFCEeeBXuOXEHl2Lfa1ZXFmWfP2FRqsqs7PlbGtg+VKj8kCEorw0DXRTh1Yu5vLX+vnNRxfXTxgDW7aCOAKiWsNawOkuSx5QhKADq3e86vT/1XC50vyE4kAex4pJZdn6gT9wNUbQ7v+6ezHFVBInDkWnCVLpQVXQnbP17DhnctjFNXQuYmJxaPusBfNVaJuGDJMbP94zUUXJkh6mdN06EzajGnCQmYATj/wy4RQQlAm/BTUkJl6Y3FVFyfT8Y6aWwSS8R6sutlrHNQ94A8zlOLvCvSqb5LFgcBRGMxVaFs7Z0lVN1aKO8YR1Xs3PqLXjFBCUBv0WF0yk9YbvlAJQ1vLhH3U41VJiilN9ix5MtiIUuOmV2fqKPi9jxRP3u+FaPbgKfWLep35n87OPKlszKCEqi2Zc09hex6og5PrRJwJwlKK6HluSFaFylP0/TJdQCc/9vlY9U1FctXJ4LB1HZbF1PaOv+zi7Q8LSNPp9XY2PVEHVW354v6TUO4OTx4bIzDXzzLuZ/J7jO91o05w4g1U+Y/ym7JYeejtZizZOrA5hwzaTVy6fxLwioSF+ofKmbTe1ZSyl0IU5oBg02e8+rbPyImKAGq5+7q24qovatEfrm4Ep9IUbk7j5wdHnE/tai5pxBPnXQdEoNYXIkvBUhf56Dq5gJKrhPmvCIxiMeRVnYY7wjS/BMZQQnA4jGiN+mwuGXjM2+nh20frRb7CNVYZYKS2a0lXbgGAVj31hK2faxa3C+t0oGzUO47j369TU5QAtX23PlYHdsfVsqpp6oCAND+h0HO/PdCghJA26PrF+1jNiv2XyOHv3oRCChB/HIEJQBdxty9jXP/00mbpFRkIne25YOV7HikJrU+88eNio32g587z5Gvy3NeaWV2PJXynNeWD1XR+JYS+fVq7Zicq5zzWi3iggm2fLCKvMtksYLWZsJo0WNJkykmE4K2p/tEBCVI7FPF40i3/3J3ZVNzWyE5jW5Rv1g0nohNZNdzVVipvE3l2kUFMte7KL85BX7APMQj8ek9QAlq7ymh9s7FD3svf0F5F4CLfxgUE5QATC4DJhXVj9a9tZS6e1V8P7VYZYKSq8KKKVNoFxNsf7iasptyRN3MLh3WHDOZdbL9zbbf9XHoKy0yghIsbssUCLhF12Sw67FqMtc7gRmC0kpo/cMIzb9ZeI/nn1Dm6/OPLr6/okGJ7X784x+ndB0QlHv7u7/7O+Ui2oVdkgSlJEavLpujqNR3YunRmFRQmg2t2YR/MEQkEGXk3ApKJ/MeRNU9BWRUOVWVBPL3yCPsUyol4LR6LRqtRkwMaLi7EL1FJy5PtvXDVegtOvb9o2yzfcsHK9Fb9OK6mmrVEUwuoyoC4FJS/Sth03vLmZqIikv2HfisuusNnh4jNCaXl1Rb19Rdaseea6FbxQaPFNY8M64iGwarjsFjqZ+wn2jzq2JRDx0fxp5r4eJeWf2JrueH6HpeLmmU3mij/PoCWp/tYvhk6uzY0yoZzbYMM1q9BnuOVeTL1r+zDFuWmWNfPYd/KPUkWMMbi3EW2sTPYsM7y7BmmcXqD41vqUJn0orUrAA0Wg1qKDVS35eEWoW8bR+rRqvXsn9W2dLYVHhFRaWgN8zURGQBQUk/rCzcl1JUar+wUEFpNlwf7VxUUcntduOeR3BZw18J5k2WOrd7WlEpMBKn64Vl/P4SSTpftx+DCsLvjo/XEJ2K8fIX5BLDARWnbdWevNFoNUrsJUTlTQWEJyLi77fr8Tq8HZOysmYW2PXhOoabfKIyeO4qC3X3lOJtmxBJ/duyDOiMWizCRdzwqQn2npI/h8xNTkpek8OZH19ksiN1VkHXC0Oqykd17R0gFo4x1CxT/mn5cQ8tyEnshVdkYVVRqlUtCnZmoDfJ39mjX1ZXiqX74DA6ozxQV1vuuOFNJej0WrEikipyMWC0G9Aa5N9v1+N1RMMx8XpkxyO1hMamOPpV2fPY9Yk6At6Q+DlW31ZEyDvF4X9LXaUiMBYEDeiEZU56/jSsimBGAAIB+SZ1eoOd6t1F9B4Z4cKvUi9XMtw8hiPPQsgfX0BQSpYPWexk/9giRMskQSmJ839bu0BRacOGDRw7doxPfepT0yVd1/DqwT/90z8BoGVlv6q1WucoKg0LFeYAQhNRQt4wwy0yUl7x67LI25bBuf/tEJeXC3rl71frz3tp/bmsTAkk/IZWQ9Ani/XqbivAnGEUry/Xv7MMq8fMvk8J+72jDLPbKM7xbPtoNTqTjn3/KLueNd2kquSUWpXrxjeWEI3ExKWgDv0/ddfrOThEdEo+ztSWPsxsdOMui4gUgy4F6dVOTC4DI2dSL90Z9MI+FTm94aZxBk956T0sm0+HT4yz74T8etYCM7W3F9L+hz6RT1PrI2zZZvRmHRaPjqDgfE3N3QV4qp2c/l6bSLGrcnceGXVu9n3+jIhgU7OnEE+5g73Cd73+oXJMLgN7T8j6aXRaVWtWVUQjlFKSarD5fZXozFoOCkvUTPT6CQeiCwhKy8VdAL0H586VSYJSEm2Prl9UUSk9PR2bbZWJr2tIGcspXM0/UKnLSJ9WVAr5oP/w0vnkRQ96a7SMXZjA5EzhoNW8nNmWD1URm4px5Mtytb+QirJYUsXjJDQa0KrwH7V3FCnqgkIVmB2P1eJtm+CcUOV8xyO1DJ8bE6kLmpxaNr+/RsmV/TD1XJnFY8Jo02PLlOVpAr0hsd8HcJaaKX99Pq3PdOO7kLp/HT7tU1VervewF51ey2iTV9Sv649DonKdSRRsz8Bd7qDzd73i8lhqUHh5JuY0o7hk4imhqmASF//YjzEVHzEPR1WWO668LR+TXSdWRJKWh0vCkm4k4pA/tx2P1BINx3j5c7LrbvlwFVNjYU48Jatssv3hakLeMMe+JssF1u8pITAckuXYQkrspRPmAsda1O1pE4JQSD4v2AtMNDxYRu+RYTqem1XRIB5bVlHJ2zpOeqWD0GhoAUEpnqhqtpiikr8/jr9/7n0mCUrTPz9atkBRaePGDRw5epinnnqK22+/PaXvljJJ6UyifrnR5Jzz+/kEpSSSRKWiXVZyai2c+uUwfgHBeaw9ysHPrzDxL8IUi4fjxGNxYsJESONbSrDnWlRvZEshJcUkcfHFAdIq5CcxwpMRVUl3Neo9AOM9AVWnvNSScdTC7DZhcqj4jipLY4nKmc2CJQMCfvk1W57uYmJo6frcf074e4K0PNOFr01GOoHE9xPGRf6hGGe+o1LSUMXzcxU70Ft0uIodIpKSWqglQI62jGNyGPD7ZQGH2nd9ajKCJSrv27VvEGehXCZqNUoQzsbG95RjdhrFScV4JE5sEQWOlYhKx75+UaCgNIOt28JotEq5t/kEpSQWIypFIhEGBwWlmtbw6sASwWeSqLT1g5VM+SMc/5psESAi08xCLBYnMiWXT9/xaC2TA0FOChcraqE2xhhpGme0Xbj5aIFYJM7UZGoqatPdLMqzlZ74CQ2FCE9ExBudQyfGGRImzi8FrhI7BrseZ55FRFICVJVz8rUF8LWpKwto8UBAuN917vsXsJfITzyqxcnvdmJNk8fbWMBikX+/zt/KFdpmX1P6/Bx5llVV+1OThAQIDIcIjMgPIRCPq6q6GY3ECE/Kfa63bYLBs15Zp4B6Yqha7EwkuyUlPcP+qJIDiMji38EjPgaP+FJWUErCVWah+qYsul4eoWf/+AKCUhLziUoTXmUNkcytrOHVhWeffRYAA6kRd5NEpZwdHoquyOT8jztEG+b+rqB4MwgUlZR4NEZoQuYHqu/IJ63SoXojW4rmn/QoqixCdLzUT2aNXHE3PBEh6pD7xngsrqoEsrdtAku68HQ9qCL1XwrseRZ1KiIqSzl1/EZdrGB2QzAov+bZH3UQ8K5eGadzP+1kslOeDzK7EZVsAyAITSpziGqen7PAisllwFVsU0W8lKL5pz3i8ncAwy3j2LIthIZlsVcs8a6bzVqCwdTjhanJMNGwfEOv88UB0lSsC44LN+QuFfUPFWPPtYjJ9pGpKFq9PE4/+Y12kYJSEg0P5GO06jnytY4FBKUkFiMqhcNhhobkG/Fr+MtiqTVgkqi0/q3FREMxTn1HttZv/nn/ysoTi8yZsXCMWEjuB7Z+uAr/QJDTavcvhFB7OKjvyAjj3XJp2mgoRnhCxb5TPE4sIsx5hWIEhkKMtaVOEgb1ZCO1cOTbsKSbsOdZRSQlQFVprNBgSEzgmb6cUyH8SdDyi06s+fZVISgBnP7hRcwuFTkvE5hM8u+nRtVo9jWlz89dakNnVPH9VOLAZ9WRm8a7JplSkYMirk7NMBKMEfLJfUv/sVG8F+Rx+mpzErY/XM1o6wRN/5t6nB/2hYlH48QX22ZYhqjkaw9x9MkLKSsoJWFKh/pbs+g5Ok7fscACglIS84lKgVHlBltaUif1auIpjhKr1UogEMCZXsm6y94OLE1Qmo2dliFc+UZO/mxoDklpMQWl2chab8VTYePMd5dgxqZSS1bwAqx/Zxm2TLM4CbvpvRWY3cZVT96uYS52PV5HLBpfNYey64k6YhH59Ta/vwL/UIiz35MF0bueqCMaiqlWcJJi1xN1TI2HV4UQYi2ysvFNpUz2Bzj276kvxq15ZhruK+bivgF6X0pdHi//inRKrsphpHVcKd/2CqPs5hxyNnroOjBE53OXsLm3hkvCxveUY0kziX315vdVYHQaZATWFBIuSxGV8nY6sZV5aD6wfP/5iko7Lwuj1cKR162cfJlNVHrx5w8Da/LXr1YkEzPXp7111i9Xjr22vTuHSCjKy5+f58NXeM7VdxXg7Zyg/4BXequqsPOxWvxDIXEidtfjdYz3BlaN3LSGhSi7KZecTWm0/6FfnVqKEPUPFeMusXP2RxcYOZs6y7jgygxyN3t4+ckmEUFmw7vKsWWZeemfT69KSa6tH6rCYNeLVSPUYvvHa9AZteLr1e4pxOQ2ckx4SmzHo7VodXKFVbXY8UgtGq16RaU1/Hmw6xN1TPYHxUpYuz5Rh7dTqEJ3Cai5p5Chcz6Gzyz/ss8+2Z9WZaH6lmwGz4zz68tWlrtPEpX2j/2SsVg/aWlpjIysjurHGlJHcXExnZ2duMhku+2G1Ptd5SB3Yzpn/vsC3ubUJ420GhuZdW71JAQhavYUklbmYN8/CRVw31iCPd8q7reGPy92PFJDPKZe1VuKXZ+oIxqRqwSuf3spwZEpzguS7qDE95FgVLWikhS7nqhTVCO+uAqHoMxw2cP1jPf4OfEfgvWLGTa/vZLul4dFSlHuSgv195Yx0uzj7PfVkfUlyNnhoex1OfQcGKZdUn5pDX9W1D+kqKNL1d0a31yCLdu8agTWzE0u3MV2mn+2vPLlfEWlze8uRm/W8QObe8VrzCYqPTf5X8BazuvViumcV87fLPjdcth0fxrRSIwjX567zljpAG7x6zLx9wcZPL7EAes/8zjZ/rFq/ANBTgoPIu/4eC3j3ZOrRm5aw0LkbEuj7LpcOv7QT/eLr3zOq/zmXHI2eWj6WdfS43MRpDc6KboskzPfuyAiDtXuKcJT5eDQV1tUqX1Jsf5tpdhyLKuWE9r8vkpFzVB4vbIbc7DlmDn5n+2ifls+XIXRol81QtyWD1eh02tUk47W8OfBjo/XMNEbECt37fh4Dd6OSZkKXSoHOJfYMyq/OZvR9iDe1uXf9dmKSqZ02HBXDgPnJ3nm8pVLLiaJSufH9tEeOEpmZiYDA6nthacsrRMOKwwoR3oxkBpBCWBfIIMDX5MRlAAKdqbjLrGhXURqajmCkjVDgzUj8cAEJ2+P/3ubKicZDceUGp5C7Hi0ll1P1In71T9YxMb3lIv7uSqtuCrlqiWo6AIKMaP0pmxxv52fqGXHo7XifiHfFMGR1StyOdEbYPi8XILR5DLiLJDLzE4OBBk4LaxTiTLOGt5YLO6nFjsfq6XqngJRH/+QH/9wkN6jsoDPkq5Db9GRXuFcufEsjLZOEhgJMXDilQ8wQWEaR0MxAgOyXc6K3XnseqKO3MvSRP3sZVbqHyzCkiHqBqCqD1bI2iR7BgBF12Wx7aPV4n6b31fBZX9bL+4XDcVUqUUd/rcWdQQlK9hLl3agsalFaM8VJRTsTCc9b+X5NVn+LYl9LxlSIiiBoqiUhMPhwGxevdJEa7hEpFgP9eBX+8QEJYD0GifFV8jnbmfZ4mUIV8K+fzqr6qRoPBYnGpSd4LB4tFz2t/Wsf9viNZOX7qgQSHJ3yurXA2SscyjqMVKo6GPxaKndU4glX9a56Nosdj1RR8FVmaJ+k/0BIoEoE93qSmJK0X9shMmBIIF+2fXSKh0Y7HosLpmf6z06zER/QExQqr67gB0fr5F1ugTUP1TMtoflc+nASS++i/Jn5yy2Yc2Q170fbvLh7XjlVSiTCIyECKhYF+x4pJbtKp5f6Y05FF+XJe4HqHrfnWUWbMXyjhveVU713bI4HZSN3G0fk4+zWDROOCQ/bbf3H8+oIihZPFosHplysMZpJL3aScGulYPgZBkSgNGmAPs/154SQQkURSUAj0uZS9Zir1cnxscV5RCrVqbi0/H8OHs/eUZEUAIouiKLzAa3ongigNmtxeyWq2Sf+8FFVUSjcCgqVikD2PqRKnY9Ls95Vd6Wx7q3lYr7WQvMOIpVvFsqX8fCqzIouloWP4GyYbn9Yflc4x8M4h9UV5ZJDUZaxxk84xX3s2ZZcJXK1WO8FyboPy7PeW39aBW19xaK+6nF9o9VU3lbnqxTEHxdk/QekZFTzU4zJrcBT4XMnsHBAOM9flX2VIPJXj/hiQjjfbLYsuA1Gco65DWyRJQ5x0z1Hfmq/KCq990Mnjr5mM7eksbm91WKr9n4xhIu+9t68feLBqPEo3JfffIb7aoJSmKfq9VR8ppsMhtWnmdnx10Ah7/akRJBCRRFpSScTidGo1z1bg1/GaSqonvku6NighJA/hYPxa/NWjy3tkzOzF5gIkWhzTk48M/nxQQlUFQzIyqUmy7723oaVewDbXxXOTnbZPsPAO4qmyq7mOTbCJicUHFLLpZc2QXTG53seryOwtfKYrbASIjQWJiJvlU4tQYMnh5lrH0CX7cs1vOU27FkmDAJ1T37jo/gbRsn5JPlTYqvz2LbR+S5AbWo3J3Hlg8truCyHHqPDDPSIleFTCt3YM+Rb4gPnBxluEm+V6wWkz1B/CrIZVs+XKVqPy7vMg/5l6eL+wGqfIS9wKT4XSHqHyii4paVCTXzsfOxOrZ8WD7OIuEYERVlrvd/5pwqgpLJqcHkXGaeXIQ3o7WYyV7vpjCFfY1k+TeA0DAceLIvJYISKIpKAGkmZZ1kMKReNjHlcm/JGrHZWetSJihdCs79z0VcZYssAlZQUGp8cxU6k5a9n0xsKms0f3YW9GwcFyi/zMZI2zhWtzxIdhTYVMmp1t1djEarEZ+Y3vVhJakkJXDlbFAG/YWnZadopsbD6ogEX5TXBAaFFBUNxcSntUSnn2ZB7Ql5teNMq9dgdKT8ml8yNDoNJpvwen44+mV53dbhk5PsPSm3p78nyJEvycdL7mVplF6dS++RYdG4Hjw2zuAx+YJ/cjBANOwUk++KdmXgLnXgqU2nW6Bu0fCmElxFNlqe6aL/YOqM/XX3l+LItRIav8BYc+pJqfQKpXyetNTf4JkxMuvl8v9q31kRZikobXtXBXqLjr3/uLRvWaz027kDcYymV/6EV7L0W1ZW1lq5t78WpEhQuhQ0/ewigTG5nGrD/aVMecMcUlGyRA3UqKMEAjH8w0EGTntF/Zy5Fgx2PZ5KB737Ut9YyN7ipuLGfDKbfKKSRQVXZVJ8RRYDp700C06gZ2/NxFPlZGoyQqtApts/ECASihIYlCVe+g956Vchg1y+O5fshjTO/W+7SBFJKUsnTzCoVdvqP+BVpShmdhpVlVdWC6NDj94gl4a+8KvlTy4vBamaQhKSsTwb2z5ajVanYb/wumrLZIR8UymJ9c5H7iYP8VicDqFi5q7H64jH4mKf1nBfqaLo+mlZP2umCaNTvi6Y7A8y0StPzkrv71Kx8T01hCcislJKAbjwfD/eVUgonv/bWoqeHOLC6FnS01Um+NbwiiIQUMa5S7M6z+f8jzpwVbjEJZnqHyzH5DasmvqeKIE6C0Onx7DnygmV7jI7BrPcVzXeV4LOoBWfYN7xwRo0Oq1YfSR/ewYanZbO38vWUoHRKTRaeU7vxFPt4j6gkGpikbi4zJza5y61YxJnVKpc6416jM7Uk+CXCq1Rh9kpz+VKT+QDBAeCqt7zoFdd/sNdaaHu7lJ6Dw9z4ZnUc17jHUFVZQz9g0HCgYiYfJe7wUVGvRv/SIiLz6eeTCq/NZecDR4u/KaXHsG6rubWAtJrXJz7aaeoDF56tQOT24Aj28x4R+rfceD0GFphSTqAcz9cohLFK4RN767AnGEUj9HT/9OtrnSPEMnSbzk5OXR1ra5t1qAOq1Hm+/QPO4gGF8m5rrB3uO5N5QSGQxz9qnz/Qg0Ofk6dOoqva5LB06nn9EEh/1gyTKRXOug7mDq51V5gon5PCUPnxjgv8D9ptXbq7ipm4MSoqOSns9RF9kYPsVictqdTz2eEfSFCE2ExoWOsxa+qLHPeZR6KX5NN08+6GT6d+hrTdyHIqQtyQpva0qmjZycYPSsrnQdgshvQmVYv52Vy6NGb5XNGz0sj9CBXLlbzzAE6f6Nub2Xj35RjsOrFe9Nnf6Aubg4OBtGoyFkWXZ4FGo1YVWzHI7UQj4tzeg0PlhGPxDjwzzK7OAptWLKigKwEordtAv+o/DDIIZUlNkWYNTdufl8NQe8UR5bbS1+k9FvzrweYUFHSU4rzj5ZR8nchNBoNbrc75X4pl3uzWCwEg0E++PDfiW7MZgCdDnxB0PnUGyJVWU6DTYvOqCU4Om+TbYX+tmwzGo1Gzo7VgkarIS6so7raMDr0aHQaQt7FihYuDXOastgPjsr66czKy7No4PcKwGDXEY/Fifhlizhrlol4PE5gUFbL3OwxEIvEmVJRG1MNzOkGolMxwuMqan+qgD3HQiwaU8XIFUMLFo+RqckI0cArX89WowNzmpGpibBofOrMGswuE6HJMJEJwXPQgslpUAh4q/H4tKA3a4kEYiB4/XRmDUa7geCoUt9U0s9g1RP0hmF1yhGrg1Yh0cXDMp9kzTSh1WlXnhvmLab1Ni36xeaiRbtqYInyb6lAkx/DHNCiRYvfIvNJT336q/h8PiKR1fFla5BBp9PhcDh4y93vFvVz5BqJRWNMDkSIR1/5Z2vNNBIORAhPyJyAq9BGZCrCZL9srtEYE3HXq9znWD1GAuNh4qHU/Y7GqMHqNuIfmxL1QwMGq5ZwILYqdtHoNJiceoJjMt9vdOowOYxMDAaJT6X+/fQWDSaHkcmh0Kp8P4NNi9FmYHJgdVQ67blmtDotvq7VUaYyufToDFr8Q7L4Vy3MaQY0Og0B4fVs2SY0Wg0TvbJkgcGuBY1m1eJmnUUDcfm6x5JuhDgERmR2saQZiUajTPlW5/uphUavUQ6fCN9ZZ4GVWCzGRI/suVszjYSD0ZSfuxqSQBLBAhuZQAQYFXyM3zvGt77wBVwuF16vV/X11/DKwOl0Mj4+zn1veIhMd+rKkvYcIzqTjrGOAPHYK/9eGp16DFY9k32yd8RZZEOr0+C9INyQULmOWm2YXHp0eh3+Ydncbc0wgQZx7kNn0QCaVclhgPLciceZEs5tzgIr8Vic8R5ZrtOaZSIejRMYXp1YwZZtJjoVFece1cJdaicWjq1a7GXPtRAanyIsySWphRbs2RaCYyFRjlRj0uDMsRL0hghJDq5oldgkOBZendy4FgxWHeHJqCjnpTFrsKWZmRwJytZnZg1Wl4nJweCrfv2pMWhka0jAkWdBb9Yz2iY7EGJ06DDaDEykOhddAgElWOYkgzh6oA/Z5/z4S//GyMjI9OH7Nby6oNPpsNlsvOn2v1m58SykFZmIRmL4esLEQpc4T6Ww52jPsxD2R8T7aunVTiLBKGNCVWGtWUNs6tWf87JlmwmNTcnmGoMGe7aFwEhQto+nAaNdz5Q/AqvwOmv0YEkz4R8Jia5nchuwZpgZ75kUfT+9VYvFY2aiz098FVL0BrsOs9vEeI9/VcaZq9iG3qxTVZlGDcxpBgwWg/L9VuN66Ub0Rp34cJezwIbWIF+fGR16tDqNsh+3CtBbFdKLdO/dlq0oLk72S3M7JmLROEFhrmy1oTVqlCpbQp+UXu0kGonhbV3huc+Lney5ZiL+CMEU43SNVj0pfKLWSVE0Rgjo18mIbd984m9FOa+USUo5OTn09/fzf/7P34luaC5e3UmNNaxhDWtYwxr+6nAJh42+/73vc/HiRfz+1Qna1yCD2WympKSEPXv2/KVvZQ1rWMMa1rCGNSShcqNtamqKT/3TP1FSUsKFC6ug8rkGEfLz8+np6eEjH/kIdru8tM8a1rCGNaxhDWt4BXAJBKcf/fCHtLS0EAqtzuGTNchgtVrJy8vjgQce+EvfyhrWsIY1rGENa0jiEmKvv/+//5fCwkI6OlJTh0tZQzlZDua2q3/PY9++VnRT1qZ5bPzRlRmT5delY7LpOfOTfuJTsxhzK2jw521zY/GYaX1mtuzfK0eOyt3ixuAw0Pm8TNItWX7t9A/aRf2qbytEp9dy5kcy+b/ia7LQ6bW0PSsr71BweTpavZbOP8i+X+WtBQA0/1wmqVq/p4R4LM6ZH8q+X0a9g8hUDG+zjJluzbUQi0QJCpWUNHYUVrNQBa72jmJCEyHxc8AsvxYo9gz7IzSpeA7ifiaov62EoDdE6zMyST0138/s0VN2bT7edh89AjlSAINLQ3hM7hecpTZ8PZMgWNtq7JBd7ab/vJe4gBSdt82Dp9zFSKtX9P0yGxxk1nro3DvIRHfqxBNnqY3MGidtf+oV3WdGvQNPuYum57pEz7Doqkwc2TbO/LJddL3yG/OwuEyc/sUFUT9PnR13oV3+7kmgmWEnZ29yYM+20vrr5WXSNZZZUvEZmVRsAqNZy5m9KzPT+26fO4XnpQvq5gGP5Zzgqf/wr4qk8hrUIRQK0dLSwl2v+x3/5z31or7xifmnN1b2eQ33lRLwhmj9lUwquPymfMY7xxk4uTonYkqvz2GkZZyx1tTnfFuehbKrc5kY9HNB4AcsORbKr85htN1H997UZW1NaXqKr8yh/9So6D5NaXoKdmTSd9zLpODEu7PURsG2THqPDjHalLpzLLg8g7QSJ/3Hh0TPz+DU4Klw0X/aK5oTMYEjx8a48CRh8pphn2zuztuZTlqxg9M/aZfdJyh104V9Km7Ox+wycuq7MvJB9e2FGCz6Ves3XRNe+P3Kb8jFYDNw7n+E0tIm5SRiXPjYzVnKqavggCxITKuygxZGz8lOozXcWwoaOPU9mT2rdhcQi8Rp+aWsrF3R1VlEAlF69skks8tvyGVqMsLFF2Trs/o9JYSDEZp+KlsXNNxfSjQc46xwfVZ8TTbB4SD9x2QlB9Si/IZcJvoD9B/xpt5JZ6ThnnwCoyFan1s5jhq7tnTOz/4CmU96S9qLwOqUs1iDHKOjypqrMu9ZnvvaLlHfeEged5W9PhdbhoWT35GVqMza4MaeY6FNuuZWicx1LizpZjqfT738E0DtPcXojTpOflv2/Sp3F2C0GDj9fZkvLrg8E6NdL7ZL7vZ09BYdF/8gK9lZflM+WoOGZqlPfaAM4nDquzK7uKvsEANvi2xuM2Uqc2lIWFJLY03kvIQHmGvuLGJqIiwfn8llsfB6jQ+WMTUZ5vyPZeXpGh8qY2pCXb/J4RBtTwtL2RoRfzeMUH9HCSNt4/QekMUKBoeG8Lg852UvtDLR75fdqxGy6tyMto6JrplR5yRvayZDTV5RLOSusJO3JYOL+wZFawpbnoXsdW669g0yJVCKcpbayF6XRscf+kT98nakk17hovk3PQQFCgIlr8vGmWen5blu/AI1UWepDU+Fg/bfvII5r1nIqHPiLHXI3gWNjrIbsrF5zJz87spx5fh1VXN+9ufK7vE/r3+ab31zLef1akYgEKC9vZ0Hb3qWh9++WdQ3Nj4v9kpBIb7hgWIl7n+6b94e4/K+q/T1ufgu+hkWllJTi+Jrshltn8S3ksrGLGgssO7eCnw9k1wQzMEGu4aa20sZafHRvTf1vLLGAuWvy2fojA9vS+pKbBoLlFyRw8DpMSYF5YcsWSZKr86l5/Aw3ubUr5e10U3uxgx6jw4xcNQrus/0CjfDLV7iEnEcA9iyLKLvNt3VriE8IZu7sza6yax10/SLLsLjQgkmAyAU4im9LgdHno0T320V9a24JR9rhpkT35CVTKy4NR+rx8yJb6ootaji+xVfm40lzcw54d47hkTOS/jYDW4jWoOGkFDR1VFsRWfQid49gPr7StHqNZz8L9k6pPyWfABafyGLf/N3ZRCLxOg9KCu9V3xtNtFQjK4/CTkXe0qIhKI0/UQe38fCMU5/v13UL/+yDKbGIwye8Ir6yTATw5S8Lhv/UGhlX6ab2aPUGEw03J3D5EiIC79deY95cPfcnFcoU6ae9bUtv+DvAa02dfWllElKScGlCW8Lv/iHHnZ+5F0p9cuy+smp0NH8pxnNq3gKmy5Hn5xZ6MeC817SZYhK1bsL0Jt1jLX4kzee0n0WXJWBu8TOqW+0p9Q+ibFmdeoTx7+hJFz8Qhn7aDAKJvl1bXdZ0Og04n7195SABsaaZY5Zb1ReBOn1eg4NE56IiPupfQ71e0qIR+Ls+9RZVf2l2P/p1blOEpFAFG/npCr7xKNxcb/IDVFG2yZUPw8JxoD+A6uzIQ6KjyjakcVIi4+z35NNdN6jcnuER4NErorT/Xwv/qHUJ4OsxjQ0Og1h35ToORRdkYXFbcYQ1zEoCPaLX5uNwaonOgkTbalfL7ghgj0zjve8HwTmOfL1Flz5VpU+QpZ4Bii6JhNnoY1T32xPrUNCRrH61jz0lllz0SLQ2W3MjpbjUTjya0hVZ7UnbWYKb+yL4BmxcLE+tWj455XPzNyyIGhYw+ojGo1SW97HD5/p48b6q1LqU3SFHf9AjP4D3plfphAP7f3kGVX3aHEb0eGk5Weyzav6h4oZaR6nd59ssXL8q3L1CV9bgMmeAL7eAAgWjWF/nPhr4wRHIvjaUu+Ysc6B0W7AkWXl4m9ST/TkXZGONd2CM2+K3hdTt4s934pWr4GYRnSfF/yDhHZE6PlTPwFhufbhY/K5re7BYtJK7Zwb7GD4lLDcjAr42mQbh5cKb+sk6VVa0TMApqWBpf18HX4cORb59VTi6JdliYxLRf2eEjRajdg3qbVH+wv9aPXy56c36onpY+J+zvtsxKJxzn1XNk4taWaMdvn1ouEYEX9U3O/o15XnHhCWljrZ1i5qn0TDm0oYPu8Tzw0Wjxm9UU/z/6SelNcYouz7TEvK7YewJP4VYLM9ylm09Fosy/ZJonXPk3zu3xWGoMGgvszvGl45JDcxA5M9/OgPv+eGitSISvYCM1kb3LT+fNbGcApx1/F/V6emVXWrA5PbwHiH7J3M3pJGerWDM9+VEU2l10nixDeVHJKUaBqZiKDTacXXddxtRWfUifvV3+tAo9NypkNmF4NVh1Yrv8+OP/YTi8TF/dQ+h4YHyohHY+z/9DlV/aV4+XNNq3KdJILDU4z3+lXZJx6V2zU0FsbbPK76eUixWs8NlINdZVfnMtzk49wPZDmv8WY5MSY8FgStht6Xx0R+wl1mR2fQEvXHRM8hZ5MHe7YVvdHAcEfq65D87RmYXUbiEdl4CVaFiUVjjLcHRd/v5Hc6cGSbVfmI7j/IyGygzA2eSjtnvy975pU3FmBON8ruU6vj+L+nvr8wGjJP/7vQEsRFjON6a0p9z7/1q4Cyn7WW83p1IxqNUlo4xI+eeZabNl2fUp/c9SZCxgiDJ2fe5Xh4ZYLG/s/MmqPm7y8uE7s5cqzoDTo6npXllStvy2f84iR9h7yifqe/JTwUlMDx/2xhYjAkPkgWC8cIjE4x0ZV6R0uuCavHjC1riq4/pJ7zclVYcRbYCY1F5uYsV4Deqkdn1KHVaET3GfYNEgnG6D8wTMgn22wfb5blOAHKbswhd0s6zU93M3DYK+4vxURXP22/kN+nWgyfH8dgMTBxQUaqiYfjEEf07ABGmsfRlMue+aXg9DfVvXtqsfXuYvRmPfv+SZbzUmuPtmd7MVh14v4Gsx408uumlTuJR2M0/1h2eMGRayMWjjHRJcuVRYJRwv6I+D6PfE3JeYWGZP3O/7fw0EIClbfnM9YxmbqPSOQpnPk2jDYDbb9c+p3X6HTAzHyoMcGB/5d67DUyfaoVNuj8tKBhwGRapscMWu9+kq6uEPF4HL0+ZepR6uXeDAYDkUiED7/Tzj//XQ5ASkSlq3JHMdv17P+fuScx4j0rO88F5KTZWEFRSWmTOvN028eq0Zt17P0HmUOo2J2HI8/C0a+oYHP+NSAZ+7/KKwFt+UAl0VCMo0/KnkPtfYUERqdoX0HtZD52PFpLeCLM4X9LPakN4Kq0Ep6MiclpOx+rJeidWrVxtuuJOqbGwxz61+ZX/FrWDC0b3lXDULOPpv+WTTzpjTaGWydF4zOt1krN7cX0HRvhwtOpP3drhpayW4po/+OAiIyTtclJ6XV5XHiuh4Ejq0eqUgNrhlZEiPprQulN2aSVOjjyJdk7q2puSNZ7tbLk2FQISosjXpS34iVaHjPP+fm+8xG0wOGrV14YziYo6XIVe6QYCqxhlZHcLIv2Vkz/LhWi0vb35hKdinHgs+fn/uGVes4WRMSfJHY9UceUL8yh/yebaza+p5zBk2N0vSBTD/trgcWDmDC02sje7qb4Ndk0/bQTb1PqD99dZSFvexYXnu4Qfceym3LJXu/m2H9ekBElLOApsTJyVhbIVt9dQHqlk72fP6NqbEux9UNVGOx68TpELTa+uxyj08CBz8g2viz5FrR6mOyQGWXTeyvQW3Qc/OfzKzeehZLrs9HbdLT8WKbutuFdZWi0mlf/+myG7/L/S2x4VxneC5O0PytbZ6mdGy4FGoNxxTYDb5s53e0hwJWZEUam4BdZK5cFa93zJABv/XAv3/z+JBaLZa3U7qsQ6enpjIyMcN/tNr79ZUWuIRWiUt1dWbiKbRz+ehvB2XPUqyy+3vSeCsweo3iuKbo6E3epjRNPtb8yN/aXRnJZtTqcE9VY/w6FbCR9DmW35BCZjNL5e9lJ5K0friLsj3JMmGNzFJsJh5j7LqSAbR+rJuSd4vjXV6cU5q4n6giNhTn8xVWYa8yw80O1DJ0bo/knspjGXWnBezEgGp/mLDMb3lJC35FR2p9LfQ42u6Hk9YX0vjzIWGvqF3SVm6naXUT78/0MHlkdlRG1MLsh6P1L38Urg7ydHjLXuTn+77JDBZvfV4nJbVC3DlGp+j+dM1sGow9um/PzdQXjGLTwPaNjxb5JghKs5bxe7Vgs55UKUWnrW9OJBKIc+nL7nN+nQlRadk9xqXGiQmUZYNfjdQRHpzjyZVkuuuGhYkZax+l56VWeGFIJk1MrJgytNtxVNspvyKPl6e5lDyDPhyXXRMHODDp/2yv6jnmXeSi8LJOz/92Or0Mw2EzgzDPjuyBzxsXXZ5G7wcPRrzatyrNY/7ZSbDkW1Ydjpai/vwhbjoWDn5PloEwZJgxmORmn8Y3FmNJMHPpXGVk/b6cHc5qRtl/JyN519xaht+o48dSrvIS8ShX3vxbU31+ErzvARWEVKlVzQwqqkBrd0vGVJgWiUde718+0J8Sd1hADEQ2/zlp6HzOJ1ruVnNePfu5jzzsHcDgc+Hyp7YWnTCU3GpXE3f7DM0yjfZ97ctk+aS/307x/iq7TC6ViNXnZaPKyl+zb8EAOuz5RjSVjiQaaFW5dGHye+kYzJ77bLuoD4Kl0YElPjUk2G+veXsrOR2vF/SwZCtFl1eBnVQlKG99Vzqb3lov7Gex6TGkrJ5fn4+z3LooJSqD4BI1OLhdbv6eEdW8sXbnhgguuPOQXQ+Vd+WRvc8k7qkTtfYWk1QrHZ8K3SNV3c3ekUXNbCQ13FYv66U06NFqNWO7XPxTj1DfaRQQlAFuuBZ1BiznDvHLjWci/Ip1tH6vGmifrdylYTYKSJQPsZXJfptZ3Zta5MavwESe/cV5clpNYQhJDBUFp23vz2XHb0i97y2PmBQQlgH0ZcNwFZ7tzlr212QSlNfx14lenn1/271Gvl/Y/9nP+p4uc/tBolnW2ux6vY9vD1fKbUrnBfua/L3Doa/KNAYvHRM7GNHG/HY/WUveAbM4AcJZZsHjE3VRjNQlKzjILWz9SReYmp6ifLcOC3qTDkp6agkgS3qYAZ74tIygBaE0aNFoNWpNs7m68r5Tau0pxlsnuU6tVVxLAU2ul+q4CVX3VIHuLm/JbhHUPALTqyk2tf7CE9Q/K41idQYtGhU3bn+0XE5QAzC4jZrd8zt/4N+U0vLlE3E81AqwqQUmtL9vxiDrfac00k1Ej8y0Ap757gdPfXh2CkrvKwq4n6qi5Z+n3aOBtm+cQlABGgHMTOk6N6XE1Lz+2kwQlgBOnlKSI1bqK6/k1pIy0NCW2ON8yk7z6dcveZfvEAgFanuvnwu/7F5IyVoi7au4uYNcTdbjKV2e9d+a7LWJpf4CMWhf2PPmYrbmnkO0P14j7md0K0WXVEGRVCUp1DxSx/h1l4n4WjxGLR557bPtFn5igBEq+S2eQJ6EaHyhj/UMl8utpNKAiVih9fTaZG1Yv51W5Ow93pSyuBECjEceXjmIz9feWUXdnkaif1gganRaNULQv6IVzP7goIigBmNMsGKx6bMKcV/o6B1s+WLmq7/tqEpTU+jK1vjNnkwdblvx6h7/ezOnvqVRLVeE7t36kip2PLp1zGH1w2wKCEsDhIQOnhw24VtjPm01QWsNfJ54+8uyyf4+Oeml9tp+mXy5U5tAY9GgMS6s37PhYFVs+VLn0hy8Vt6ncYD/xzVZOf1tGUAJwFtnIXi/PeW39cJWqfIQl14RJvmxTjdUkKJkyTWx6bwWZ62WxgtltxOQwYMuU+dVAb4jmH3eLv6NGo0nM3SuTOGej8oY8Gh8sJ6125YMz86+HRgNGWbDgLDZRduPyew9/TqTV2il6Xaa4n0arbi+18cFi1r1RvjetNWjRqtgr7tk3IiYoAVizzVjS5TmvhgeLqLtXFldeEkKsKkHJXqDOl6n1na5SOxl18gsefaqV08KS6CvxXZYiKJmcsPORKipvWfo96nr3+jkEJVCKoB7xGzk2ZcTatfzLlCQoAfz2BSXJabOtTGxKImXNJafTid/vp71rLiN53+eeXFRRKe1lhfgxOaD8J4W3YxKzawUnqdEuYD9X3Z1PRqWTY0+eE224+4diMCRn40hPBCehN2lVkVzWvaUGnUkrPuGw+f0VGB0G9v2jrNzY5vdXYLAZ2C8sh7bj0Vq0Onl5BrPHOLvMYsqQfq8k1r2tlFgknnopp+T1/knd9UbbJgiMyD2z2u+XWeMircRO/8FX/jSTNUOLp8KJ2W1k9Gzqp+38PUFVLGpvyyi+OhfdB2UJt8Fj4wwek18vc4ODktfmcvbnXSKi0oWn+0WKTUm4im3ozTos6Tr8gv25hjeX4CywcuK7MkJV/YNFOIts4rG24Z1lWDPN4mfY+KZq9Ba5ep3epFPlO9X66sAQBFTMDds+XIFGr+XAZ+cy6JcjKAH4h6fQm3UIOMQAXEifmc7PdudQmz8rwPX7+cHub2E9nc2MPJ6CrKwskfziGl4d+NXp5xdVVIp6vQD0/EkdyyUwGiI0JqxhDmz/eA1Rf5RD/ybbVJYo8MyGWrUZrVaD3iRfpTbcX0pgJMTRL8tOku96vI6xzklO/1fqsqoWD2x4Vy1D5300/2/qsrEZ6xxUvaGQ4fM+zv8wdVVCS6YJg1WPs8jGoEDtr+3pXtqelsn1gkLiKbs2n6anu0Qlp1p+3KOKrNJzYJDYpnSlzJ8AZ4UlLpIovjoXa7qZ86xOmbniq7PRm3S0/kL2LKRjOYneI8OYXfJEyMtfUFf6pf6hYuJxOPNtWdnp/UKFqCQsaSaMDnnCdNcn6oiEoxycr163AnZ8vIaAd0p84n3XJ+rwDwc59qSsX8P9pYQnI7z8ednz0OrV+U61vlpNuT5nmYWGe0vpPTrCBUGSLzQJ4ckI3tbUSx0rsHBu1m26mjWMVSaSRoEAh//+H9n8t5+g9c3fmtPLaNsIHKSsTE5QWMMrj4KCAlpbW+kdmOsHft2yd1FFpVhAGQTBviA9QtUYgNG2Sey5FkKTsn7Fr8sib2sGp77bJis95IWgV36f0tP/SehNOrQqSC4Nb6zE6JSreqx7awm2LAv7hLmrxreUYE03cUC4Xtz6kSr0Jnl5BnuuBZ1ebhe1Zb9q9hSi0SAu5aR2/Tx42ktwbGrlhvNw4LPqvl/u1nTCkxEGj62Ogk/WujSs2Wa8zYI5OIh4nACM9wcZafbRe0imHuvvCrLvH+XXcxSbqbyxgLbfduNtTn0u7j80Sv+hUfH1nIVWjA4D5nSTyJdV3pZHZoObc//byciZ1Mu2ld+aS2adi2NPnhORlWrvLcRd5hDbtGZPOdZMk6qcl1aFj1DrqwkiJqaBos6nt+g4+C8yXzHeFcDklpe9HQ6aSRazc7XAWMWsPwaDvPiFT5F5ys2MPJ6C3NxcYrFXt2LLGhbi6SOLl36LjnoB5pR5k2CyL8CUf4Wcl0azYDN48wcqiamo4KG2JJNatRmdQYvBIiO5AGx8azmBoZD4++14pJax9knO/kBWImv7w9UMn/XRIshjWHJNbHxrOYNnxmj+ceq5MpNdg9ltxFloZfB46rFC38FR+g7K5zZLronqm/Jp+12PSN2o+8Vhul+Ul+zsPzqMRqfB3y17J9qf6af9Gfl+VeEV2bjLHHS/OLAqZLPSq3Mwpxnp/I1s/+/Ut9WVbevZP6TsTwtx/D/UKRpV3paPVq/h/I9kOUSpYlMStlwL8ai8346P1xAJxzgkzCVt+VAVoZEQJ78ly+ltf7ga/1CIk//ZLuq37k3lilKqcH9CZ9BhMKvIean01YFe+dxgcmrZ+DfV9B4dpuO5ue/DcgpKAMHRKcYuSHNeJmbPCNYuLf6CWe98KMQfPvUvFB61w6wSce29tcBBiopSJ8OlvDO5Y8cOfvrTnzI0vND5zCcqJQlKALYsqHutmd7zQbqOL/zcpJrS7PJvsWCIzt+E6PxNCguxeUSleCwRRFjNSCSASm7IJneThzM/7GCs+ZWXDjryJZWbA8dGcObKT+3EpuIpVcibD41GI1a4AfAPBTGY5UGRWvKPWthzLKsq+Xr2u6tb17TzxQHGu1ZHCss/FOPiSwMMnZU6PHUIDCGeqC4FnhoXBoceT6lNrKakBme+o26s+Lr92DLNTPTJ7lGj16pSVYhMxWb8rgDdB4bwVK4s0zwf0nJtl4ptH1VOeEkTL/FYHM0837ISQQng1PeVIEPD3LJvi6knzcbdTRF8enimTJnWZxOV/ueWb2IOx4jV9UB7xZx+Xq8Xh0P+HNbwl8d8olKSoATQ+NYSzA4DLy9VsjP5rs8bo2qJCwAxFXPp1g9VEY/ExeQmtdirIlkP4OvyM3jSK+4Xj8WJhmTBV2AENFqNePNqsmuSSCCK76LM9/cf8NJ/wCvqcylwl7kwug14Kp2qiAhSDJ+aYPiUugSmGpz7aQ/p5amfFrlUNP20U6xmdSnoeE7FyZNLgKvQtqpxulofEfCGCPnkBE+NTq6qABCLxokE5Qs7b/sk3nb5+7BakuygEC4rby6g408D9Pwp9SStPqGyFo/KxkugOzCHtDW77Nt89aTZaLBOUmyJ8adhPb5E3b4kUenE//l7HOEwrZ98At48N+66cEFJXq5fv37BZ67hL4/777+fP/7xjwyPLszczicqJQlKAOYsE+seLKb38AgX/7BIDmuJuEvtxn48God4HJ1R5j9ydngoeW0WTT/vEm3sq8Wp/2pX1a/rwDDuEvlcGgnGiAl9AIBWp1F1CGa8O4BppYOVi0At+Uct0kplJ+svFc0/lZPKLwWtv+4lOLp6soQXftPLyIVVkpsPyslll4K0cgfmDCOuEoeIpKQWag/0jfcGcZdE8PfInoNOr0Wj04rVlKKhGPGoPO7q3j9EZoNc5Uut71SLTe+uQGPQiEsfqvG3AOf+e9aYnlX2bTH1pNm4Om8cf0TD/gHFp80mKr38z/+AOxQktmESzs1VwBgdHV1TsPwrxXyiUpKgBFD5hmzsmSaO/sfiufOkmtKc8m/xGCdTPUA2n6gUR1Xue+O7lPEoJf+ohdrDOkNnxxhtkceGsUiMyJSc8aDRatEIieyBkRChsbB4n8t3Qd3heLVw5Vuw5phJq3KKS7Cpga8jhK8jddLWpaLlmX7SSnyrpobV9LOLWLNXL+fVs291Syx6Ku1otCokn1TigPBgXRKTfQGmAvJ3XavVoFFBvI6G40QD8jE2eMrLeI88ht3/mdXjJNgLTNTfV8LFPw3KxpvJAPH4grloJYJSyAdH/719pv2ssm/z1ZNmo5wgNeYpXgyaGEuQkGYTlfb//afInpggtnUMTswcwmtN5LxKS1NX4dfEU8z8dnZ2UlysyLzPrhM7Gzs/8q45BCVQSEoN11gY6wtz7vmlk7dJklIsOMMiq7orj+EzXoZPpzD5JBk4KhPZZTfnkLPRQ+uz3SLVmWS/8z/tYPik8AjcGv5s2P5IDVqdRrXikBS7nqgjHouLr7fxXeUEfVOc/Z4s0bDriTqi4RgHVJ6ek2LXE3VMjYc5tNQG958RmRscVN1ahK9rUkQ6shZZqbs9n44/9DF4LHViVOVd+WTWuOg5NKyq1J8UDW8qwVlo5dhTbfh7VlFHfg1zsP3hGuLxuDgpvP2RGoipP9mZTLqkQlACqHqDh+GmIMNnlXkvSVRaiaT0wPkIIQ38qGou97g2v49fXPklhfQExGfN336/H0e5kkRezU3gNaSOJHFwqbgL4Mb6q+YQlAC2frgSg1nP3pWIv/Oee8Y6B+4KhyrFGjXY/vEa4tG4mAS47WPVxKNxsRrIGv588NRaqbmzhOFzPvGJHzUo351LdmMaXfuG6Pxt6kSZzE1Oii7L4sx32wiMpL7AXf+2Mux5Fo58rZWACnUMKbZ+qAqDXa9aeUaK7R+vQWeUK7PW7ilEZ9Fx6hvton67PlEHqCcBSbHrE3WEgxFe/tyaj/hLIXuLm/Lr8+j80wBdL6SuAJF3RTolr8mm/Y/9IpKSWiw27yWJSsuRlHY5x8k0wnNDegLMTZoe/cpHFo27APR5LcTjSgxmsaxesnUNqSEYDGKxWNBoINKzeOx1Q8WuOQQlAMyw6yO1jLROcG45Jb5F4u2yW3Lwtk6sCmkoZ4eH0mtyuPC7Pvr2p54Qzbs8neIrs2n5VfeqqdWsYSG2fLASg0UvVopSi2SJden16h8qJjIZ4bxAERQUBdJIKLpqJK5dT9QpJ62FxAw1MGeZ2fyucnwdk5z8Vnvq/dxaau8tpfOlAYZPpJ7zKnhNBkVXZtH78jAXVKgkSFF5Wx6Z9W7O/PeFVSE3rWFxbPlAJRqdRrxG3vqhKjQ6jXhNrhblt+Yy2jI+M+8lcmYrkZRuKBpnKgK/65l7yG6sApoeXzr20uW2oNFo1tSUXqUwGAxEIhH87YWYZm2czsZNm66fQ1AC2PCWIkxuPQc+v7yq3TRJKbFv6KqwkF7ppC3V/YBLzJVufn8laODw/5PNNZveW4FGoxGrgazhzwdTponN70goN/3klScB5e30UHJtDl37B0WqQa4KKyWvzebcz3oIDaauzlJ1Rz6Z9W5Ofe8CYy2vPPl6/dtKseVYVo0wtvmDlZjsBvH1ym7Kwew0cub7cnUwjU4rrkakFtsfriYSiol9yxr+fHCWmqnbU8rFPw2IVNDSau1U7y4U95uDxH7RSgQlAFeZGXepnY7fzeTlkkSl5UhKm/WTlBii/CZgwsfc+dlfEKPtAx9dNPayFrcQmoLTp09TV1eX0tdJWUkpFXmmYNpCVtzkABz4/sqLFE1eNvGuWRJ/VsiocuDINjN8OgUZXY0WYtHpvharorSSKtp+2UfbL+X1HyNTMYgrkmASVN1TQEaVk669g3T+LvWJJ2uTk6Irsznzw4tiwkNarZXRs6tz4ie90UZ6XRpN/y3buNr64SoMVr14ApnyhdEb5cpNajHRGyAakrNHLZkmTGlyycDAcIgJFZtk2z5WjX8wJC5npwaWDFj/9lr6T4yITkNNdk0S9IYYOCU7RZpRacPoMOCpcYlISiPnvLjyrQydXx3FJ/9QEHuuBb9QWn/je8qxeOTS0Lk70rBkmFT5MzWwFlnBHxSV1wRFVj8ejXNKKPe46/E64nE5QVDNiRdANTHQWmTF3+mHWBSdM/XatGklVmXeS/jqmNVA2wdX9m3fqZ6Zzq1D4xx/32cWb5g7o0T1xFsUlag1JaVXL3Q6HdFolJ/8aozbblz8FKbGZoV5JKWXP5/iImXe6bDS1+VisOpVkZQs+RYC3bKk9AGVp7yUCFjeTS1Rov6hYuLROGeEaogWjxaMxlUhuQCU3ZTLeO+kqGwbKJs0vi6/iHgSGI0RnYoxObQ6xcWHz3hxFdjwtsnm7sy6NExuI7YCG4GR1Pv2nRwhz5ROYEz27MpuyiWzwaV+bAvR8KYSLGlGcTm14WYflrTFk8DLwVVqR6tCbcLbuboHOcL+CAGvvNTMrsfrCIzKSztW3pHP4MkR1SUspXCWWcRKZLZiCzW35nPhtz2MCNaDZTflkrMpje4DQzIlrUToEg7JFKZ6/jSsipxk8UAgAAgfQclVORidhrkkJZ2W/jdvXLbfXt9M7GQJeHnxG/+weMXyZNylAU7l4/GkMzY2tkZQepXCbFYOBSy3H6WxmBODbRaCsDeVtcki5UNyNnhwF9kZOSNUizWD2YxIEaRv/4iInJRE2B9R7lt4CLbwqgwKL8+ie/8QHb9J3X+4Ky2UXpvH+V904++SzcOOYrOobNSlwFVuJqM+jdafy0qurn9nGdYMs7h0lH8ohNm1egdLRi+oI845C23EInIywFjnJIFReVy5+f2VBIZD4jhdLbZ9tJqBE17an0s95xX0BZnoD9B3UpbzsuZZsWSYyKx1i0hKY+0T+GtdjDSvDqlwcjBEWjBKcEw2PusfKsZVZBPnf9PXOXDkWEXP4FJgzjLD1BRBr2xc19xdgEanEathqSUIxmPK1ogUassym3PMBFWsc7PXp5FWZmfkjJKz0Oh0jNy3NDE8iV93zsRe5uAYf/jBP6AlzoIALG8m9vrVvyubZms5r1cv7HY7Xq+XL359ko+9d/H1adxph3kkpWP/mZrP1xj0c9SUyq7NxZJuSp2kNCt2M2WaRCQQQDURNh6LE1eR9Nr+sQRR4tMy/1F5Wz4aLTQJCcYmpxZMBrFd1CL/8nSCo2GGT8tyXjsfq8XXOclpQdWKkC/E1GQE/+DqxJWj7ZNk9gbwtshyXmkVDmy5FtKKLfQJnsPgmTFMLgPBAdn3y7vMQ962DE4+1URI9hhUofK2fBz5FnFljcETXhwqqhF5qp2qqgONNI2rKnOtFqGRMFOTcjXvHY/UEhwJcexrgrLFQPH1WYw2+VZFHQzAWWzC1yHzK6YMEzW78+h4YQBvU+o5yJwtbspen0fXARlBUGvQQSxOdEoWH46enWD/WTmZzeSEUAgIAfE4Gn1q1J6iyzOx51voeHFI6QtojEYuvrV22X6HIzYOzxpippCP/f/29+iIo9HMm5/yE++nFpxpmQwPD6dMUAIBSSlV9F6XS+5zskU6ME1Q0hoNxKbC4Ieug8MMHk2RaRSPTQcOuz5SR3gysion7DufG6BTRemDwRMjuHKtjAmT9mlVToWYUW0XkZTWvb0UR66Vcz9pFyk+bXpvORaPmZf+5bSkeh5l1+RjcOiRPoGgd0pV7e2jX1Enm7nto9VoDXKW6wmVdUbVnpBX+/30Zh0Wt5wUpQYaqxWtXoMtY3nFl/nwD8U4/EV5Ca/O38kIfkkMn5xk+KR8kVD3QBHuUjvHvnpORMhRS4AMesOYnPJnV/TabHQGrfiaOx+rRaPTiMfo+geL0Wjl/Rx5VlXqPRP9AWJheb/VOhWWxIY3lhAam+Lwly4QnZhMWUmp408jTI6GAYjWKOqFZf8aXZ6o5I+AdWY6v/nlk2hgms08G7N/v/eUQp6qrq5O6d7WsPrIyMigv7+fxz81uiRJCUCfn0ekW4X60bx3sPkXFzHY5WUrtnygEqPTsGoqMGrfZ1+3X5UsvdqSUxv/poZYJC5OEO16oo7oVExMdMnZlEa63yEmKUWnYgTHZISOQF9QFRHHWWah4b5S+k+N0vrT1NcL3qYAR5rkscKZ78iIsEmoLYNnzTShM2rBgpgsoQaWNCMGq3w5p1YtTe2psDPfVvccdjxSS2QyIi4JqXazJRKKEvKGZZ0skFXvxp5l5mhT6vG6rdjChjeWMXZxUkQQzN7upuL6fEaafJxdTrFlHrLqXZjcRpxFDhFJaaxjHE+FXUzuX+1Skg1vqsJgk6uRnf52K+kNnumftQmSSvY3jq5AVApAQkHp6tazaFkh7opD/JkAZrMFXQqn3dbw6obOk0Z0RF6mbTH2U/tv+xg56xV/1K6P1THlC3NIzelZMyDILw8eGWPwiJzsMNw8QWadG99FWc7LVeJIEDOcdAhIStV35JNR76bpl12i+61/qBh3iZ2j/9kqIkWVXJOHPcdC63O9InuGRqcw2uRzt9py8JveXYHBoRcrAy+rCrYMpOSrJE6nWoJnHowq1i6qYVZybNZMIdE7CMf/XbYZBDByZoK9Z+T2HO8IckxFaaHSm7LJ2ZDOqe+0ich+PS8O06PiJHhgNIQtW5Y/BCi7JheDXS8mKW37aDV6s05Milr/5hJ0eq34oIu7TF0Jl9ELE6oOBay24sqmt5cRHJniyJdla7TzP7tIZFKJt5PqlZ7vHV6BqBREmbwU7OpqVjbJWDi1auIzsdcXvpUGQHn53BJwa3j1oL6+npdeeolv/cjHx97rWbKdtriAWIdcwXmaoKTRQjxG8y+6MUn2SRIDrPEtJTjyrauW81K7DzTSMoHWIPcf6VUOlDdHRlLa+J5q4tGYuITUzsdqiYRivPw5Wb/i12YTmpCTlML+KIFR4SGmEBz6V3leweTUsvE91Qye9NL6y9RzXoHeEMdV7De2P9NPuwrVxNGzE4yelRPSbZlmjFY9mExMMx5eQdjSTRgd8liv8/fyPUOAQyr5BGrLHW/5cBVRf1RcEvLYf8jjSoDwZAT/sPy55W/NIK3QLruuCS77eD1jF8Y59e3U1zHOUjOND5YzdHZMpNyfVmLBlmvBXWYXkZT8gwH8fUG8TTK/4m2aVF1iUw1q95RhzTIrcaxGQzwaTUlJqemnF0mrdk+/rtoEcbvwqbMrEJVCMEtBaXv7BQzx2OKxVywRe8WUg19paWmSr/bnIylt/OTfTP97PlFp291mNDpNSopKs9H5GwFBKQmNBv9AkCHhoILEplAoJi/rYwWr2ywiDY2e9fPyWbnTO/8DdSU1uvcPkL8jC3+vLEE0cHqM7EZ5cNP0dBeuotQ25WdDUu5rNuxlVjKqHeLyXdGpKBqt/PuVvyEXnVknVopSi9r7iwhPRmgRTnirFTwD+Dv9qq5nzTNTdUseLb/pY6LtlVf6Sm+0kb89ixPfuyAi3kUjMeKxOH6/jB2b3mjDkmGh63mBtBtwVuVJwKafdWLLkddbH24dx6qC0DZ4egyDVb7Zolbe88TX1REEXZVWxppl48teZmXd/SVM9AZkxEQr+AeC9J+eSY6nSlTqOyJ/B17fBxnhCL/Pgp40PT+8YRcfavsdmS8q0UfSw01LMALxq028/PzLANx2223ia65hdfDBD36QRx99lJb2xU9H3LTtpul/zyYqZW50UnlTPsPnx0UBvaICImdW9BwZIaMqdcWwJNa/owxbtpm9/3JGfFk1SiJqVQXVlqgaaR4nqELNZbI/yESv/Dl0/nEAX5dcsUat6k/BlRlM9E2K1GPCfqV+dlzKA/FoKb+1iK69/auiVuOuslB0RQ7NP7lAQCA6sRrKlbOhloxTfksuerNuVUr1AVTfVUDIF6b9WVmcHovFiITlagzF12UxcHpcrO6mqsRMADr+0M9oh+zdi40H8A8HGTzpFfXzdQTxdfvpPiiLKy/8qo8Lv5KT5odPTTB8Sr7pZckxK0pkwtdVbSnC/hNeXMXytWdgJCYqR5fEGzIihOPj/GrYwdMNO3lN5zle134KWCLuuskC93no/kgLRuPqHCBZw58fNzZePf3v+USlrR+uRG/Ws2+lUrvz0LNPrmwEMNYxyWibfGNh1+OJcpj/Ipw/zGB2mkWnrf1dQfHmNUDHbwZEyktJ9BwaRm/TM94lS7wPnPCit+iITchOBjf/qgd3oVVEUAI490N1c685x0xmrZ2LwrxCNBJFF5MTJYquzsTkNKjedJGicncekWBUXJ5s3z+tXs6LoLo8htkNFbeWcPGlPsZaX/kT6K5yM/k7smh7ulOkthYPQzwaIyycu13lZmxZVrE/a/tFH22/kMcm537ciSNPnvMaPOXFrkJVofflYcwqcmX7VapyqyUIqlKSMyuk1/EuPyeF5Zx9HX5Vey8SVbAkNqZHybONc2zAQHfQzO8rtjCU+WMyfrJMzusuG/t+oeS8rrjiCvE117A6+PSnP80VV1xB2xI5rxtfe8f0v2cTlZyFJur3FDB0foLmn6c+b0x0h5joTjFOmLUL2/PyCFn+mLJfKwgzqu8qIL3GydH/aCXQK4tP7AUmJoQxjdqyZGo32geOjxL2yyuNeNsm8Y/K58OWX/cQHJLng9SQjQCyNrsJjgRF6jGhUIx4NEYkLLSLCapvLaD30NCqqNXYC0wUXp5N22/7CQkU0pt/2rNqsSGoJ+MUvjYTg01H29OrU2mk+PososEYXX+UxenxcJzIlPwdytvpYbR9UuxX1BKa257pYaJP/u75Lk4ycEYWK4SGgwydG6P3kMyWfYe89B3yivoA+DpCqsaZKcNEaDwk5uptfl8lJqdBvNfQc3iE9ErndKk3ICWiUsgHfS97ZTcJ7LaEiMRD/DKo7Pe8UL2eyQfM2L6j+KdFY683Obj4zYsYDDJioSqS0rlzfmpqZhYEswlKSfRelwtA7nO9+Mei6IyLE0HmlHhLQGtUvkTDg7lY0s0c+OwyE0l8YeL62NfUbWIHR0OMC0uoAez6SB3RcExcFqj2/iKC3pCoNJZaKOoxcrt0PT8kJlcAjDX7xYQAUEqGZa7PFCvk1N1eiN6iE5OU1Cj4AGQ1uNFoNWKlqO0P14BGviGYVmYnHo2LSUp/Dcje6MKWbSF3cxrNApJS+RtyyV6XxvmfdojUwQp3ZWPLtmDPsYpIUWoJghU3FKIzacXvUdYmJ/FYXFTKDhQCpJqyjmoJd6s6Jq2w4cEyLvy+T+RfsjY5qby5EF/XpIgIGQvGmPKF6T8h3DwI6jj29YUnQVciKtXckY4jx8z+3+mYr1ld9q9KwLqYotKgGVxh6DHBUzu+CcCZHYVYD/nZetfC5xN/Ng/WWYknSpA89thjqX6zNawyHnnkER599FEii+RrZhOUktDn5wEweK6H0qtzGO9b4j1ZShXIAtvfX8NIyzjNAplnteV5Bk56yTGkYbEsrJyyHNa/rQx7noUjT7WJSAieWiuFl+VwXOUiV4pz/60uwXxcKLubhJqNdoD0BjugkBEkKHpNFuGJCC83pR4NBfqC4g1cAHuJHVeRjVgkC29T6ifts7e4KX99Hp0vDdL1fOqxZe6mDBz5VpyVbgKrqAazWshqdKsi6W//eA2xqZiYHJVe4yQWjotJSgeFJzKTyN+eQUa1k8P/JojzLZC3JZ2eQ8NiYo2ady8wgrisHCjv0Mmn1K111aD0xhz0Fp1oTgBY/8YStCrIRsPNPrEqK0Dnb+WEBlDG9Hh3gHP/s3BsZn/jKMCiikoTUfBHlXfoyYe/CA/DieNZrHvDwvuI/y4f6iy8dEAZWOGwkKW5hlWFXq8nEonw82fGuPX1MyqWswlKSeg8ygnB6Mgo410BTO4lknHLqDHW3FOIs9AqVolUqzoz3u1nckhFzuujdURCUTGZs/zWXCKBqCrSkRTjHUFVdhk8NsbgMblSlL8rKC5HBwphxV3joe/YiIjgVHdbAeYMo5ikdFzlIZ/cLenojFrxRtSWD1SiNWjFYzqj3k08GhOTlP4a4Chz4SqxMTWRzlhr6vNp3uXpFL8mm5anu0VjNHdLJmnlDmxFDoLe1PNJ7c/1qyqhVnFTISaXQUxSSqtRciOj52RE7/GOoKqyjmrHllo1BrVofGMJF/f2421OPSA155hZ98ZyfB2TnPxWe+r9zDA5EGTgpNwHnvqv1K+TROXuPNIqHbz85IUF/s/zvcMAiyoqjQZ1pJtjdAfhP/7vFwDoJpPBtwepvXGhT4z/sQCqzAR/pKwFPvOZz4jvdQ2rg8svvxyA0CJnu2YTlJLQFhcA4OvoIjQWYbxn8fdkdom3aSTqIW75QDne1glafrGMys282G34pI/hk3JS3sApLyangZgw/K+6I5/MejenvneBsZbU89/OYhP5O7M5+5PO1RC5oU3FIRiAsz9QdzB74LBXVT9XhRWNViNSVwGouCGP0FhYRuwIIVaWArB4TGTUutDoNPgupJ5LdJaaqdtTStfeQRFBxlPrxFPlYKxjgh4BSemvBblbPOiMWjFJafP7KyEuJ/PkbkonHpGTlNSShkquySF7OMTRr8pySjlb3Iw2ecWl+tSQfwghJkCDQqo5r/JQhxrkXebB7DaKx0rDA0WY7AbxAYbB016c+XLS/MCRMQYWUQteiai06T1lTPQGaPnNwpx/4VNKfn4xRaXRqIapuJLzev4D/wyAnzT8bwmRefXCmD/+UiG+DOCb48RissOmIpKS3W5nYmKC3W/t59xLpSn3O/WsukScwaZHp18mgb4IQQmg6JoMsurdHPpiy7IJofk48iV1Uoq+Lj+TA3ImYVqZnXjEJiYp7fxELeGJiFjae/P7K/B2TNL6M0E5Piusf7CMgeOj9O5PXdI8vdFG5c1FdLzQR+9Lqfer3F2KI8/K5IBfRDxp/30vziJ7yu2nYUVMVgE4+f0OYvKyn8Rj8nIxAMe+1Q5+FcnEJ+qIBKKrUuoqrdZK7Z0ljLVPcFog4Xfh6X4Gz44zsdRm+hKIRxU1htCkzKbHvt1GerlN/MytGcpiRlLqDaDtuW5cJfL65+U35KPRahg8Jpvotn20mtB4WCwnvv6dZQydGaNbSDTY+uEqeo+OiEhY1iIrG95YwlCTT0SOKtiegS3bQv72DMaaUx9jE50TTPYH6NonS477e4LyEgpaHdX35GFNM3L0yfYFf16OqGSyG9DqFxKUVsLhPD2HF/n9hrf0LvgkDRC/qxfOl5ORkbG2Ufb/VwTg4OdUnBQKgM6gVVUmdP07y5joCdC6XKJnHnr3jdCrQkGga/8AedszZcwmIG97FvY8C+kNdhEhp+aeQjyVDvZ+Tqb4VHBVJtkNLhlRAkWhyF1mF6vyrH9HGQaLTuy3qncXEYvEGT4lIw/1HxtltEWe0LZ4lPk0MJL6fDp4xEc0cIGRdtncHQlGlNhLWObv7M8uYsuyMNkhG2MNbyrBWWjl6JfPib6fWmz7aDV6k058AufYk+fBIixVQiL2ishj2aP/qW6DVI1iGkDfkVG8bbKxmbvBQ+lVOTjzrCKCYcFVmeRvS+fUDzpE4yXvinQ8FQ5RqTeA8t25OHIsHHtSFudt+UAleoteXH4yZ0MaGq2GZqH0f9+xUawZ8jGmthThlvdV0n1oWDyn6AxajHb5ua3fjS6M7WvePLh43HV3L5wq42Ofyga610qOvMpRVlZGU1MTH/m7kTkkpZWgVh3HaNehM8lVabO3pJG/NZ0jX5XFGGoSxQAjTT78KjYwshvTiEVjYpLS9odrCE9GxEpM695awnh3QExGqHugiOFz4/QfSj13ZS0w07CnmK6XBkXkjKKr88lscBOdiorK0rX9tht3qVy5FNQprBxXQUAAiE3FFc1/IY4+1QZBuQLpzsfqiAQiqtUlJTC7tWx6Xw3etgnOCJSvB4+MMTkQwi8lCEbjihpDUJZ8PPezi7gLLSKSCyjfDyDolT2/1l93kVYuH5tVbyhUVUZt03sqCPsjYn9Wd38R3rYJMZlq47vL6T/plZW0M8POj9QxfHaMph+nHkN56uw4i23kTmXgbRYceAkG8bZP0CNU2gx61ZUiLH19NvY8i7gagtllRGfUiRXo2ifNtE8uJLGXv3Vk8djr3l44XEpWdjZ+vx+zWU6AX8OrH0e+po6wrTfrMC9FLIcl9xLr7i1iciRIx7OpxzRqS2r1HRpCZ9CJFCwBMhs9eKocZDW4RYSe4uuzyN2UztGvt4lUdbI2u8nb7OGY8KBd1mY3nkqHWDmuZk8hljSjmJhRe1exqrJ0F18cVKVWbnIq82nIl/p8GugNcfLbrfiEAhqxsBIrxCKyubvzhUEGT/nESjwVt+SStT6NE99sFSt9qcHGd5djchvZ/ylZHuP415rBJC8TF4vEQEUq7+h/tKFVIQdjyTURGJGr8Vx8cZDxHll+1FlqpvzGfAaLbTQJDqGlNzopvTaHpp92ilS+0hudZNa7OPeTi6LvV/CaDNLK7OI4b91bS7F4jBwQHqrJ356BwaIXk5R6Xx7Gli0nG6kiv2s0rHtLCQMnFleLWo6oZLDoMLlNgGwu+uPU4vvZaW/1Lh57PdTLAxXrgYvinJfo1fn0pz/Ne9/7XlraFEWHxRSU5iNZ+q3mKj3e3gh9swRkFlNRmo2jT6o7gZ5Z68LoNIAV8GtSJiplbXJSsCtTTFaSJpeTOP/TDoZb5RNdPKaUnpLC5DKSXqmjFQFJyQ+2LDN529JFJCWtTotWr8GeZwVS79fxx37ytqaL7TJwxMfAETmjfes7qjA49OJTvmrLkqklC/k71V0vEojiH3zlJSIBQmMxoqHYkqcYloMae7b9so+2X6pg7PsREeCSaHxbFTqD/ET44LFxsRoSQPf+IfQWecJab9ZJOS6A8p4bbXoRScmaZ8Zg05NZ7RKRlEw2hbA35ZMRZLqeH2K8y89Yt2y8+IdiHFOReKm6pwCdXpt66T2t8rzSSuxolyPYLoEjB1bezCv71+gCNaXXt0U474LHb/rOnN8bxpW5Lw6MbjCQdiyMBtD44kz6/Xi9XgoLC8X3uYa/DAKBABaLZVEFpfnQ5+fhTh8na72HM9+el7hZISZSW4rRlmXG5DCISEoAtXsKCY1HaHs69X5K+SF5oqf15+1oHXLiydSEQnSxeCwi5abMWicmtxEsiMhNuVs8GGzy1a3JaUBnlJfz6Ds6StAn3xSSPuskNr6nhrA/wstCIt2ICpXA4VMT7BOSrwAIIB4nAOM9fqwZJgKBV56gBMrJZ4tLTipUCFTy76c2jpWWXQPAAo0PlOEfDIqTkBJ/koT3/AhDBVY698rI2vYsMzqjVnx4IX9LOgYV5Jj0Cqeq+DA6FUNrkI/LfV84i6dEXlJFqpqVxIZ3ldP5x17R+27Jt2B0G8isc4lJSvv/ZeX4MPsbR+eoKVWYA3gMUQ6O63jy4a9P/944Mivu2mkgbV8i7hqOEQe6uvrRaDR89KMfFd3jGlYX3/72t9m+fTsXOpWc12IKSvORLP1WuTsPX5ef/tmJwxXirhNPtau6z6x6F+YMI+YcM8G+1Nf77koLRa/JkZWyRj0J68wPL+C9KJ8DYpEYURWlD+x5VkxOo5ik5C61Y3YZRSSlWERZe0vLR3XuHSYeizMuJNN6mwNi0gkoJHZ7joWX/v60qJ9kXM2GlDh3qdcLjU0pmzurgGAwRngiIt4UAlSpbvXsG1FXEjKIqrHS8KZyjA6DOOeldmx2/HEAs1O+gWh06FWtedxldqwZJplNzWDJMJFZ5xKRlMxuM/FojKkJWYA4cmaCo//ZKi4/GfSqU9gruS4bk0PPeaFiZkatS9V69dT3Viaje753eIGa0tbMCbrG9fzDo1+d83tjrxLbxgHvNUbcv5tSYq+eqPI7r5fs7Gzxfa5hdaHVaonFYgwOhsjMNC2qoLSgT3EBdgbJ3uCm+Wdz5/xFVZRmYf9n1JFaXaV2rNlmEUkJoOymHCJTUTp/k/rGtK8jhK9DrjbU+pte+o+NiMkjYV+EeCSGyQYhAdcxs8aJNcuslD0SkJvyNnuwZsnJg9Z0k6oDJhf/NEA0KI8rL/5BnZLe5vfXEJoIc/hfZQcI1ZR5m+gKqVJuIoSYoAQw0RvAVWInvDrbjUz0BhQnL4RCEJN/v6NfUSdiEhpUF4tufGs5/r6guNyYmrHp6wnSe2iYgROpr3cA7HlmjFY9Gp0s9srb6sGRbxU/hsw6F5Z0+YG3aChKNCwfLC9/uQlnntwf9bykrmx7w4NFdB0YTl3ZTaMBE9hzLcQjcbGq1cv/vvL+eeFTZ+eoKRUSIksf4XBEz/Mf+OKctvoLM7FX4A1GLD9LxF6tEU5FlPnx/vvvF92jJh4XSA0BmkTNu2hvRUokJQV+dqdHiExFOPy/yqhciaA0G6Z0CPTO28xeQkUJSJCT5v0uha+57u2l2HMs4vJRuTvSKLw8a1XUav4ScFVaVZVuW01kbXJSem0eLb++KHp2+Vekk1HnEp8caXhzCY5ci7xkiRWsbjN+ISt620ericfivPz5V/50GCgKTFPjYQ4Jgyk1KLomk/wdGTT9vFNGHrKC1aoVKxutf2cZFo9JzMAuvSkbW6ZFrGyx+f0VhANRTqiUWV8tWDJAg9yefw1ofEsJgPiU185P1KLRalJL0mnnbRguNg/Nwnw1pWhNMRZrnIA/NXJTkqhk9Ue482IMg2WSXXf/bE6bnetbMYzHeeFUHlit4PdzZUMPODRsLtJx7FQEs9lMQKhGs4bVhdVqJRAIcN1rTfz6+4UpkZQANtzjwGjVsvdzZ2e4CCmGfBaPUopIBCERJ4ldj9cRi8TF6h6Nby0lGoyKTjH/tUBRGorJn8EqY/3bytDoNRx7UraIr3+omLGLflH5NYAdH6/B1xNYSLxbAZYcM4GxoGh8Zm9xU3ZdLm2/66V/Fcq9bf1QFQa7nDR/KdeLx+Ji1S01tgTY8Wgt3rYJcQnExreWMnB8dO6G/wrI3OSk9Opcmn7eibfp1T2/qVWKerXD4oGGN1Zx4Xe9DJ1Inaifvd1NxfX5jDT5OCs8VatcGNHYtOSZCQn8bJKodGP6OCZdjCvv+RaWWdyEjZs7MXjjHDyVRbKO6baGAcJuDYZT5egSZXaF6Zc1/AUwO+eVCkkpie1/k6OUQU2uoQXP2uxWNplT74BYiQKg5u4C0mtcNP2yS6Ti46mzU3pNLqe/3Sy7z78SqFEaWm24ys1U3VpE2+96GRb41swNLrLWucUEhqrb80mrdHDgM+dWbjwbZjA7zWL1h03vqUCj03D4i698DgqUnFdoLLwq18vc5KL8ulxan+mVlRZUacvaewtxFljFJ8nzLk/HVWjl7Pdlc/C6t5USD8dFZcb+EjC7AbRipai/BtTcXYDOrBO/59sfrlEOYwrVrADxPKQxGEVz3QxRKcgtJSEsdh/X3fU/c9rU7uxBPxjj5KkMpXZdMEhjwxCaTB1ve42Fb3x/AqvVyuSk/KDqGlYPpaWltLe3c9VlJn77P4UpkZQA6q/VY0/XceTJ1unSRSsRlJIwOZWSQgv2F5eL3UyoKqG249FaVSo+VXfkE49Ds0CN7a8FitJQTFxyarVRfXcBRpterOhSeVs+k30BMdF4y4eqmOgNiBWmTE4toVBMND5dFVZqbiuk4/l+daW8hFj/tlJsORbVB2Ol2PCOMjRaDUeF+UpThonQuFzZaOtHqvG2TdD8E9n7WrOnkOGzPgaPpx4fOkvNVN5cSMuvu0XlIP8SsBeYVkVxa9Vhgo1vLqfzT4MMn07dkTlLzTQ8UMbweV9qJe008/YJV5iH5qspmXMcTAlCoCRR6XqTD5c+xlse/DqmeXyxtNf0o+uNMXTSAyYThEJkNI5Arh5dqzIHS3NeKkTIFKROUAKwcmrcT8uUnlzhG77jY2XEInEOfuECsakUVTcWezc1KysqnfjuBVWkh7QKB3qLjtwdaSK1ocq78smsdrH382eW3cxeDLmXpYnKqF0KVpugtO2j1Yy0jNPy09Tl/s0ZZnQmLa5ih4jo0v2nYXF5K1Bk0jQ6uVLKjg/UotWnSHqYBY1egyYmv17RdVmEvCH6D8rLsYhhhYrr8ug5OCIiYektOjRaDTqD7FT45rdVYHabxCcC9SYtWhXPTlqWMQmT04jBJt+M2PaxaoabfLLyjJeAwBCo0rNUgfRGG4HhqJist/XDVWj1Wg58VpYotedapjcbJNj3j2exl6WgHjCfoAQinx6tKSa7ME55HXiH45w5lPq9/tvV36GvNQ+9aaEKyr7j86QVrVZeaKsAoH3jEODlscceS/1G1/AXwbvf/W4+//nP8/sXoykTlADO/24cdKD35BHpTn0+rX+oGFexjVPfvSDbPFe5z37qe8LrJODItRBTUXZq28PVhCcjHP2ybKFqybdgsrEqpIfVKBM2G+W35OKpcIjLZFgyTGjkh5hVnfIF0Oq1GG2yWMHi0bLpHeVM9AdEhHStQYtGq8Fgki2VLPkWcje4aft9r+p3QoLsLW4MVj1dL8hKO2iNWuLCEngAG99eRiQY5aBw00ur06C3ytV/Tj4lJ3i7SuzoLTpMThOSh1Bxex7uQpu8zOslYDUJStnb3WLCnSXHzMa3ltF7dIQLv0pdvTR9fSYGux5XsV1EUuo/4MXXEVSIcGogMKfWbGb9Q6Vo9ZqU1JRm43X3fYOe5po5BCWAo4eL5v7CYuFga7Hy71B4+pT4Gv56ICEoAbQ+72XorHz87vxEHbFwTLbGUfmanPt5F+Y/DIlJD65SGya3AU9DukhNpPh1WeRtSefoUxfkJUs2uUREqkvBahOUNr+vktH2cdp+kbpvNTpMGOx6nIVWEUlp8NiYjBiTgN6qQ6uXB3pb/6YKg01OvNYZtapybHk7PYQDUVXfUQwzlFyZTd+JMZHyk8GkQ6PTiu3ZeF8JzgIbh794WkQONFh1aIX5NYCeF4fpQZ4ftWaYlj1HvBQ2v7+SkSafWPlMLRQbrs487Co3E5qUK4Stf2cZRrterDjrKrGjNcjf1wOfPYejWGUpNCFByV5opvH+AkYvTHLuv1PPc/7H//0qfd2ZaLULVVDO7sub+wuzmZMtBQA8vXUKmOCNb3xj6je6hr8IvvSlL3HzzTfz0svxlAlKAC0HI+gMEcJpBeBLXfGx/OZsste7Ofu/XYyem1xeCGE2VO6zn/p2m6pNek+Fk7gK57r5fZVEQ1FxCTZThgmTQ6NKzUcKSRm0PwcKXpNBVoNbXEbYkW9Fr0K5T0pUSUJv1GJQkTfZ8sFafF2TosPZGq0GjV6Lziy7ninDRFaDk4v7BlW/ExKk1doxOQz0HZTtg+tMOpCbks3vLGfKH+GQMD+qM2oxqnh2UkIagCPfhsllwOIxMSbYgCp8bSYZtU6xUvmlYDUJSumNToZPCpmPJtjxwRp6jgyL1O7SK5xYMky4S20ikpLvQpDDX21ViHArYbG9TIE5tQ4H9XdnYzBrOfhV2f7yh97877RdKF9AUAIY/eM8hUqTiaGmXAB0xQNEo3LVOrGX1WoTNaoP/Hj6d7n4yZh+IfyU6PxYEz9bEz+3TFkBK1znwmGaWTxmbbBiSlf+bc1Qfk7CWW4lODbF6AWFdJKzzYU1A4jHsGQo6jlJuCqspNXO9N3xSA07H6lJfHCibeLB2svmts3c4MCaZwY/+P0xpW3iz9YiK+mNtrlti6xzPvfMjzvZ+w9nGOsJkblhplZfeqNtQdvpz80zY7InSgMVK9eYvRk+v+3s77r5gxWUXZOHNUM73daSkbShdk7btForrkrlgza+q5xdT9RNt11gw8q5dsna5MSaoWXz+yvY8WjtnLbzbZi1yanYcNZ33fV4HTsercVetogN57WdbW+9RYcrYbfF7D27bdLenc8NcP6nHfSd8C1p79nPJq3Wir1Msc3m91dQfH3mTNtlbJj8rud+2MrefzizoK2rcmHb5HOyZMB4zwS+i/5l7b3Yszn9w06aftE5t+18G856Nkl7F2zPoOzavGXtPfvZzBmzmuVtOH/MVt6cT/a6NEquzlowZpP2nn3/yXHYt3+Alqe7psv1LWbvxcZ3z+FhAqPBZe292Pg+/MUW9n7yzJy2i9lwvo9Y/+4yqvcUrGjD+WO25Vdd7P9/Z6fbpuQjrIp0vLts7rNZyUcUXJXBrifqqHtjwZL2Xmx8N76tmJ2fqJ22Wao+YstHKtn1eN2ibZfzEVW3FLHhrWVz2qbiIzRaDRqdZkWfPN9H7PvHs+z9/JkVffJiPiJZinBO29k21OpIq7HiqlD+WH5rNrs+UU3+Va5EW8jaNPO5rgqlbXRiklgoRPo1RVitcSb9MBWCyXFI6pi6MuKkZc1sImflx7FalZ/rvxbhb20v4vdDTnkP0bCOnqaC6bYdJysY6lIepH/ISsfJCvyJabr/QjYulwu3280TTzzBGl7d+NznPgcoLHSLJ/FLC6RXzLSxZIC7eOZnTykQg0C/0jb7NXlgVsaOJd9CeoN9pm2tFUu+ZfpzJ4YCBL1ThEPKBvX8trbimV3ZjHUORbkCKL4hk11P1FFwpTLu3FWWBW2T92/xaJW+KJv07ioLzrKV24KiPOIss7D3c2fY/+mzibYJv+9hTltbsQV31dzP1Wo06PRasCxs65nls9Ib7FhyzNN22fiWUqpvK5624YK2s2w42y67PlHHpvfPEAbn23t226S9LfkWdj5WS91DhUva25JjnnP/7ioLdQ8VsuuJOjLWOVKyYRJplfbpslPzbegsW2jDpL2Pf+0szb+cSQYuZu/ZNkx+bvXdBax7Z8my9p7zXRP23vuPZzj2ZNuy9p4/Zi3ZZiaGAvQdHknJhkl79+4boennFxk+NbSoDZcas+XXZZO72UPRlZlL2nu5MbucvRcb32XX5VJ0Zday9p5twyRanu7i5Hc6lrT3Uj5irHOSse6JJe29lI/Y+8kztP66b0l7z7ah8l21FN+Yxcb3lGPJt4h8xMCxUU5998K0+lKqPsJdaMPoNCxpw6V8xI5Hatn5WO2iY3ZO23ljdvvHa9jwrvIVffL8Mbvr8Toa3lSyrL2TbZP376m1UnF9PuveVZqSDZNj1p5nBA0YXTrRmB0+PszefzhDz0u9K/rk+fYO9ClKXSv55NnfdcejtWx7uHpZe8+xy8Y0AEYvTOIfDWLJmyk1k9FgmWmblfg5gaoXzvF/9/wAiwXyKs/RfqackRHl7yMDLtrPzPj67tZCetuVRE0gAP/w3mJisRgNDQ2s4dUPm01Za7QZ907/zlmgw5Y3kyhMqzBjTCxJzG7l5yRBydngwVE0k9Hz1Nkxu7XTbT11M++8o9jMZL+fkSbfgraY57a1Fphxlc9sJm/7aDXbP14zt23iz+YcM+7KWXN9jQ1zjhmCEPQFF7RNq5lZX7krLUrbWZ974Xf97P2HM4w0TS5oay2Yuac5n5tlxujWg1aDLceAq9y8oK2ibAJmt3bOd133jhKqbi6Y/g5z2y60YdIudfcXsesTdUvae74NPXV2zFlm1r2tlG0fq17QdoENs+baZccjNWx/uGZpe89qO9veJrcBd5F9SXvPtmHS3oPHxjj9vTb6Z520ntN2ng1d5WYcxWbMOWbWv7OMwtdlLGlvR7F5DlHBU2en7Zdd7PvHM8vae9qGs+ztvTjBaMv4svae810TOP2jTpp+NpPzWszei43vkqtzKH99bko2TNp7uTE734az2xbsSid/RwZl12Qtae+5dlH+PXLWy/mfdE6XE1zM3ouN2b4jo0z0+zGlL952KR9x4ql29v3TmZRtmLR33ZuKqLwtb9G2y/mIpp93ceCL58T2NrkMuKuWtvdiPsJTZ2fXE3XU3FewpL0XG7PV9+Sz4xHlXV3OJ88fsxvfV87Ox+qWtPdSPqL69mI2vb1sZZ88+3PNoNNr0Wo1K/rk+eP7wGfPse9zZxa14Uo+IknSXM4nzx6zeTs97Hq8joJr0pe092wbpq9zYXZDJBwnMDLFxOAMAcKab8ZVOut+ay2YM5Vn4/nxYR6//6cEg5CTP0gspqOrdSbn1dlSzHCfcsNer5n2plKCPuWzBno92O12HA4HX/nKV1jDqxs33aQcxotEIpiSaWU9uPKYllcwOcGZM9PHqSyB8Q8rbdJ2FhDXKgoOpgzDnDHoLDFhyZmJy/xDISb7ggS9EUwZBtzVifEbj+MsNmHJnWnrrrJN31PWVic7H6ul4DVKzstZbMJesHhbk1OLu0p5jye6QtgLFmurnf5uybYAllwTzmIT+//1LAc+e15pm5Hoa1qk7ax3yFVhVQ666zUzbZNdMxe2NWXOfO7md5ZTc0fxdNtknhsU9Y/ZbWd/7o6P17D+3WVz2s634fQ9JOxicsL2h6upvjt/SXvPtiEoiizlt+Sw6/E6sja7l7WhvUCxYRLpNQ7MaUYwLW3vOfeQsPehrzRx7icX57adb8P5z8YEJa/PpvaBwmXtPccuGYq993/mHCf/s315G2aY5ty/s9iEt3OCnpdHVrTh7DHrbZrk3P92MnRieEl7LzZmC3d6KLoyi6LEe7CYvVMZ38vaMAFTponKm/Ipe13uyjacN2abf3mRU0nl/SXsPW2XWfYePDPG6IWJZe292Jjd/6mztPyia0l7z26btHfujjQa31IybetUfcRI6wSnvt06TdxK1Ue4y2xY0k2LjtmkDRcbs1s+VMWOR2qXtfdiPmLLh6pofEvJsvZO3v9sH7Hz0Vrq7i1a1t7JtsnvasowUXNbIY1vL0nJhskx68wxgUaDyWlMecy6q2xM9IeUPOdvelf0yfPtnVTqWtYnmzVz7LL1Q1Vs/XDljA1LFrdhPBrF6NGTtk55P4eb/UwMhTDPpKhxlZqm8xgmp/JzEnW/bua/7vwWJhOUlbbS3FLMWCK2Ghx20txSTChBlLrYncXFbmUyDoXg//x9GdFolPr6eqQQk5Te8Y53AODRz8gnbk+PcJlH+Tkf2JgWYZtL+fnKtAgb3BFKdH52p/vYnh6hdrfCtrJmQPl1udTsVoLMqtsKKb8ud3ojuO62HMxOI80/VWrZlV+XS+2eMtBoqb6jlMqbCqY3nOvuLqL2jpkdOq1eQ1yrbMg13FNC5U0FZG1UkqSNe4qpvbNkum3lLYU03Kf03fHBGipvLqRgu/Ig191fTPXu4jltG/coL0nFdXlU3lxI2dVKlNR4bxGVtxROt63eXcy6+5W+RZdnUXlzIdW3Kt+14f5inAV29n7yDKNn/VTvLqZxj9I2e5uLypsLabhL+bl+TxEVN80E4iaHkVgsht8fw1VppfLmQipvU5LOtfeVzWlbe0cJ9fco33UqGEaj0VC7R0mg1u4pp/LmwmlCQv09JdTeMWOXipsKqL2vLEEMgMqbC6cJIY33zrVhxU0F1Cfs0nBXMZU3FzIVCOMfDNK4Z6ENGxJ2qb61gMqbCym6PGva3gCHv9gyY++EUyq7OofKmwupuC4v8RyXtnfB9gwqby6kdrfy94b7iue0rb2zhMY9xbhK7ZhcRgq2Z9GQsFP9AxVzbXhnCXV3K59rLVLsXX1H2bS9K2+e+dz6e2bsjVWxWc0epW3N3eW4i520Paeclqu7e6EN6x5Qnk3FrSVU3lw4TcaYP2YrbiqYHrN1txdReXMhuZcpCfeGe2bs3XVgCI1OM23vypvyqby5kNKrlHew8b6iOc+mencxjfcp9tYatcrYuilf+dz7ixfYu+EepW/uZWlk1bgJjoVo//0ADfcVL7BhcnynN9qUz92tjNm6B8qXtneGcg81dyt2qdmTsLcVel8axewyzdgbxd619yn2rr5DaTvjIxYZsw9VJGym2DtJPFnMR9gyzHjKHNTuLnzlfYQfIsEoJrtx7rNZwUeERkNEQzHcRU4a71X+loqPcOTappWGKm8uTNlHGK0G4glCTeVtpSn7iNDEFBqNhuxtrml7p+IjkiU1F9g7FR/hl/uIdfeXkFZrJWuTU7H3Yj4iFqX2jkLq7lJ+1hrjaDQaMqvcCRuWUXlj/vTn1t9dSP3dhWgMesVHNELNZpgY1hCNQEEpWBOBQt0mqN043ZWKBqjbpvy7fBO0H9nOyz+6l70/fAPn/nQVzfuunG7bfmQb5154DQDnDu6g/ch2es8qybVjv72K3t5edDoVRwrW8BeDVqul4molsVm500rFlW6yG5VnWH+Dk6qrXdNtK17rovb1Ttbf5WDr3U4qrnRTcmXC799fRPVtM2oPNXeWsO6BxHuxI5OCLZn4uv0EugM03Lew7bQf2uKmencRtW9Q3pusmrQ591t3dynr7i8BFDJC9e4iyt+g/Fx7XxlViX6Zm5zU3VNKw32Kj7J4oHp3EVV3JXz53SVU7y6a3jRuuLeUhntLpxUzqncXUXOv0rfitlKqdxdNb9qvu7+EurtnNuWr3lBIJBjl0P9rpu6OYqp3F5GZ9Pv3llAzy79V31ZEQ2I+rLwxH41Gg69LIc2ve6CYmjvntk36odKrcqjeXUTpVYrfj2vimF0zAf8ce2/NoHp3EdU3J2LDhL0D3QE0Wg3uYgeN9yrXyVjnoHp3EXWJWLf+nsJpGybt7SqwEwlE0Tn0VO8uoiLh92vuVeySxLQNASxgshvxJ+qnV91VRvXuomlCQv2ehTZMzrPltyrPJkk6WMzeDQm71L6hkOrdRWRvceOpcGDPsi6wYcP9ibnzhjyqdxdRdJkSGzbeX7TQ3om2xVdkKWPrWiVp0fhA8YIxa3YY6T/kJXenR7H3LQl731u0wIaN9ynXSW+wU727iLKbE7HW/WUL2tbvUdpacszKmL29jNbn+gkFpijcnrW4vUmM2XuUn6tuV+ydXJEtZu/6+5U5ufQmZcwmCS2N95ag0WrofGFggb2rbymgencRuTsVFsqiYzYxDsuvzaV6d1FKPmKs009GhZuKG5R5VuIjFrP3cj4if3MGFo8Je7aBurtnbJiyj5ht7xR8RFJBqf4e5R5T9RH+wSDRSIzq3UUUbM1Y2t7zfIRWr0GjVWLDJX3yIj4CDYQnlXV2zR0lKfmIQL+feDyOzaMkF2zFlpR8xOARH3s/d4aMSjfVCTu90j5i60erFHvvWWjDpXyERgd6k25O2+V8RNXNyr+bfzaA1WOmMRHD5Wx1UHljHlWvV96FujuKqbghd/pza2/L5djvr+fZbz7E+UObOX/wCs6/pMRax/9wLecPXj7d9tSfruLkC9co9h/1MJzwsddeey1rePXjS1/6EgCu3JmkYc3NmdTdrIw5sxuqr0+j4nrFx5a/Lp3q69NwlujY9q4cGt6QTcP9M5s1tXcWU313CaCs82vvLJ7eRK6/twRbtpXmhIp0zR1F1CX61ryhkNo7i6c3fxvvK6F+z8zn6i06NInNu8rX51F7ZzE5G2b8ft09M+9b7V3F035o63urqL2zmOIrEvPsfUXU3jWzvqq7p3TaD+Vt9FB7Z7GSpwMa7i2c23b23LnOQe2dxdQkcl51dxWQWeNm3z+eYfjEOHV7ylj3gNLWUWxWPvfWxJrvHsUuSdgyrcRjcYKDATArNqxK+ODK25W2yc30hvtKqbtHsUt4MgJaqE7M0WU3F1F7Z/H05vq6B0qom2XDmjuKqL+nUFF2NmqpvbOYzA2uaXvPt2HDvYpfLXtdDrV3FhMORpjsCy5u70QcWbQrk9o7i2fm2cRzSJ7mr7unlHUPKt89Z4Ni78rEPFu/Z6696/eUTds7rcam2Duxnq27t4yaO2Z8ed2eMurvLcGRY8KWZaZoZzYVtyp9q++ea++G+8toSPjupL2rE9etvC1h76yZMTvfhrWJebb0hkKyatPoPaSQvBvvX9zeAFU35iv23qTYu+HeRWyY8OWl12RTe2cxhTszEp9bRN0epW37H/vRGrQ0PqC0LdieQe2dxZReo9i74b7CBeO7IZEr0Ro0ythKrNfr7ylcYMPkmHVXWii+PAf/aJC23w1Qs6d0UXuDQvCovbOYytuUn6vuLFbsnXApDfeVpuQjBo+NYUkzLbBhqj6i9q5i6vco9k7FR7gL7aRXOym5MntVfERwZArLrHVSKj4iGooQnoiQVuqcXj+m4iPSK11odFqCfUFq7iiiOpHbWclHWNwmSOwt1NxakLKP8A8G0Wg05G1JX9Lei/mII19uIRaJL7R3Kj4iKPMR9XvKaHyojPR1Dsw5ir1T8hF65QBhepVih5V8RPUb8qm5q4hgX4jgWJii7Rm4K5S2DffkU3tXwZy2dXckfMQNORx/6Wqe/cFD/PZ/bufw89dz+IXrptse/dM1HHj+9QC0ntjE8ZeupvmckvP63Q9vore3F71edQGRNfwFoNFoKN+h5Kbza6H2SjN5iT3Z2tcYqb1yxl/UvtZE3WuN1F2jZ8sbjNReaaYkcVCo/u4C6u+ZPXeW0JDwhel1dsquzWFyIEigL0Td7fnU3VmYvAHq7pvxQ/YCE/V7Sih5vTJGs9d50Og0xKYUFaC6e8touF95r01O5ToVtyZySG8oUPIFJmWTfd2by2l8qGzOPVXdmZjjbiykfk/JNEFh3QMl1N1XNq2YUXd3MbW3K/NU5Q151O8pIa1W8fsN95VQP2vtW7+nhNhUjKNfaaXkqmzq95SQ0+gGlHXQ9Hs8bZfE3LkjA41Og69HyXk17Cmaznco1ymbzh9kNbip31NC2TVKzkuj12DLmImZ6++d8fvuKhv1e0qm8+K1e5Q9n5APNFotnkrXtL0tuYq9y25U7qnqznn38EAZmfVphMbChAJTyucm/FvFLUrbJMmg/r6EDROwZVmY6A1ACEquV55NknQwbW9m7F13p/LMK67LpX5PCemNzsR3K6b+3rk2TM6zRVdmUr+nhLxNHrLq3aSVOhbaO+H387Z4qN9TQtFlyphtuHehvesTsUrmehf1e0ooTxB16u4smN43AyVXZcswM3zSh7PUTP2eEopfp9i75u7iuW3vK6M+8WxMGYq9y29K2Pu2wrn3cH8ZDQ/MG7N3FHFx3wiTwwEKd2RPEyrm27vu7mJqE3FN0bX51O8pQWtSnk3jfSXU3z/3c5N7KmXX5lC/p4TM9Yl59sFi9CYdbb/pnbFhYswW7lTsnb81fUkbNib2gHLWpyl2ea0S19TfM/e71t9bNh0bjjSNk7MujYrrlrD3Mj6i6s4i6mb5npV8RNl1eTjyrdjzrDTcX7rQ3iv5iNn2TsFHJJW2krF4qj5ivMtPOBCmfk8JhTsTYzYFH6EzKcTrursL5tl7eR+h0WuYmggvsPdyPiI0HiIWjWNLTyQGTaTkI3wdIfZ/+iyZda7ptc8r7SO2vEeZ2BruL1raR2xOo/6eYop2KfbWm7UYrDMxTcN9pdP7rJnrXdTfU0z563JAo6XujnxqblTi/c4Xx7FnmGjYrfhrZ4GR2pvTKb5CeeaVN2RQc5Nn+nNr3pDJ08/cxNe+8WZOnqnht3+4nj++eBUAf3rxNfz2D9dPt33mNzfyzHMzFT9On1Vse9lllyGFOFr76le/ypNPPsmxY8eo3nQXcY2GnpCGUKIU1SgwNAUtPuWjz4/rKbBGGIgCxAj6Qoz1xNC4nATC4Ov2T58E6nl5mMx613SZnIFTY2j0Gja8vZCR1nHGLk4ycNILwMWXBsndnI5/SGncf8KLbpa0qa9zkuHEabTu/QOwLZOBc8rPvUdHMDpnTkyOtU8w0qac9IkEY2gsGkZOKuzTnsPDWDwzRIHRtgnGe5Rr9hzxYnYb6TviZdvHqtEaNIy2Tcy0bR1nsl85ITB0ZAhnnpXugyOJexrCVazsRLsqrQw1+ZjyKS+fr22Msc40Lu5VJMa69g6SXj2jUDJ4boyIPwJ+GOv2M9Y5Se/hRNv9g2TWzWwUDpzyTtcAPP3NThreVEL/MYUhe/HFAbI3pCfKPEH/ydE5JZF8F/0Mnhml/+AY6Y02cjdnMtatfPe+YyPoZ70Yvs5Jhs8r9r24dxA0Glp/2U5gCEpuyJ5jb++FCcY6lKCn++AIBrOeoSPKTfQcHMKWPRPYzLZ33xEv1gwzPUe8St+Xh3DkzS3FlJTQHzk5grvYzsX9ie+6bwBP2cxJ3qS9O58boPPFARruLqH7wMC0DefY+/QY0SlFpsw/pNhba4yz64k6Bk57CflmCHuz7Y1fOXE+cGIk8RwHKLgyk9o7Czj8xRb6j4+iM84k1JP2BujaN0D+9iyGWxOl6+apu80es90HhtDqtXjPK31nj9nO5wawZ5ln7H1gFJPNQP9R5Z3rfXl4rr0TY7ZgVyaxcIyx/km6DyifO3vMAgw3+wiMKCWmvOdHGat0cfGlAfw9wQX2nh6zwHDrJGOdk9P2TpJcrBlKqcW59o4x1jk5PWa79g6Qtc4DfqVc4lQwgrdl5p2bbe+Le/vJ3Zw54yMS9t71eB3xeHzOmO3ePwDxrBV9RO/RUew5VnRGXUo+wtsxTlajG0uW8vfug3PHbKo+AkjJRwweG2fw2Dkq78qftneqPiJZVm62vVP1EUkbpuojWn/dS+FlWfjaxha192I+wts2hDVDK/YReVs87HqijmNPtc0Zsyv5iND4FCaHkdGzfkV1ad3k0j7izBjRxCK1+VcDmGwmeg8lPnfvIFmJYA9g4PRYUigJ/ODrnqR/xMbm18QZH4PwFPgTr31/N8zmEflGoXccQplmOnoCxHM1OGw6TNoYmSUthEMzJ/PsGQO4c5TNjrzqc3RHdaQXt/PBf343o898lampKYLBmRNsa3h1w263MzExwf/87/9SbbiVrtN+tAbwXVR8Zc/pABbXzPs22hHGNxgiu9JCLAJjHRPTsVbXviEcuTNjZficb9oPDR8fxplvhXiMjX9TTte+IVxFM35o4LSXqcSc52vzMtrmovug4iA6/zRAerVzuuxU/6lRIn7l/rwXA4y2TdCX8EMX9w5M+6HBsz4qb2T6RGVgRHmv5/uhJCmp9+gIGo1GUQ66u5TQ+BRd+5TP7d7bT3RzJpMDSuOeQ8NzNq69bRMMn/dhyTHTdVh5nyfafdNtjc4ZG440jTPWOZn42wgGi572XyuSzd375vqh4fM+xnuVa/Yd8WLxmOhL2LvjjwNz7D14ZmzaDw2fGsFZZKPr4PD0s3En/P7eT56h4va8aXsPNY+T1TZB117lvi++NNcP9R8fJToVo/3ZfkVpq9Q5Y+8/JebOBPqOjc7EKgHF3tOxyksJv58oOdd7eATdLHlr74XJab+vNSkKX96hWfaeJW882jzOyIVErHJwCI1ei6/Ny74veCnYkTln7pxt797DoxitBgZPJZ7NfiVW2fUJZf4ePudjvE+55sAJH7Ysy7Tfv/jS4JwxO3hmDEeBmbKbcund18touYOuA4q9O/cO4Cmd8fuzx2xUEyUej6OzKHNe50sDc+bOpL0BAn3B6TEb6A7Q/mzfHHsnx+y0XWbZ++JLfeRszsSWSO4sZu/hc4l10oEBiMNw68S0vQ123fQ7N9veXQeG0Rl1eM97E/afG6uAkkwEZT1jchlT8hFZDU4mBv30Hh6dbruSj4hMhdn1RB2+ixNMDsxcPxUfcSah9uTMHyWWKE+3ko+IRmOKWtose0/HKin6CGD6XVvJR/TuG8FWbKH4iiyGTyViuBR8xIXnBwh0B8i7Il3sI87/SFEwGzjjTclHBEag/9jMmJ0cmGfvJXyEs8yCry0g9hHuEhtbPlBJy6+7iEWy8F5MzUe4y+xEgsqY6Jo3ZpfzERdfGJxr7xR8RPE1HlyFFobOjRMcU+w92jpOWpmNrkNj0/fgLrWhSdR1G2yaxJZlwOoykl92hqDPQ2GNohxRUneC/o6S6XvILmlFp1fi9n974GqOdX8JjUbDF77wBdbw6seb3vQm3vzmN3Py1Emu8mwnHg7Tf2aC6JTih4JeGLngZyChnNRzdJLMqgi+9ijEYWIwgK99Rnp/+LyPgZNJv9lPJJSBfyjR9+AwOqOWdW8twXthkpHzPoablPei95Dyjo4kckzdB4bm+KHhM2OMXEj87dAIOpMO7zmvcp39Q3PeocFTXsZ7lWuG/VF0Bh39x5P5myEcswhZg6e8035/5KwXZ5GN3iOjbH5fJQa7gaHTM0o+fSdGpv3QZOc4w+d9dB9Q5qWLLw2SXqXMs45iM33Hhqf9/nh/kP+PvfeOb+wq8//fkmyrWpYlS+6yLXfZnl4d0nshmfRJJiSUEMKG3tN+3/1uY/e7yxbKAssCy8KygQAhCwmQkBAgmd6rZzzj8bjbcpGbZNmW9PvjSrI9bve5kCGw83m98nplZs7Rvfe5z33OOc/5nOczcHKEnkQeqGNHAHetI/W73XsGiMfjKYmrgZMj9B5K5lUC5K6Mpv6ta+9Aapxt/nEXBqOBwAnlH7t2BYhNxRlNPE/nrv45cShp78DBYTJLTBRucjPaOrygvfuPDTPcllh3HgiSYUmn9RedTARjFGx2zolDs+3dd3QUi9tEz2Hld9t3zLV37+GhmbxKU5CBEiudidPwba/34SybqVCCjpT0y1Crsr5O+kn7jhl7A/TsGyA6GVPk3pqGqbmtOGXv9tf78DTMzGu69w7MzA0nFHujV3JevUeGmApFU3J9SZ9N2fDU6Iy9dwdIsxkouSqfYHMLXbvn2nu2z3bvG0Cfrmc0kRM4X0J4tr279w1jtGUQOJbw9+0z42zX6wNYc4wzeZUTY9jyzHTvS9j79f5UpfbZ9i69MpfYVFyx4b7E3PCNufae7bPB9nDK3hM9E8pcZZbPJu0NMBGMzfHZuC5OPB4nq9DE8JmJOT4Li8eI0utymQpNM3hqRt5PTYzY9JkadDq9phjRc3AQk8OEKTtDXYw4G6Q0noc5R8nntL8x195qY8T59l4sRgyfmWDPP52i9LrceT67XIxofUmRlZvjsypjRPLf0OlUxYiWX/bivSTG4NHEe30jsHyMODWMyWMSx4jiS9w0Punn2DMtc+y9XIwY6wth81hSzzfb3kvFiK7fDmIvsM7y2QC5y8SI/lOjrHx3MaO9IQabxwh2JNom1tlJDJwaI3gujC4jne5D4+jT9GQWmrDZY5TVHGF8fGb9m1fcgsOjzHuLK5uIhCwUeFt4fNNtnLO8SDgcvkhS+iNCZWUlzc3N/OBHz1Lrvp/+c5OYbJMMJFSzOo9NYnXO+FXP6UnCI3Fc3jTikzECJ0foOzaKTq+jY8cAmYUz66uufYNMjSrfxVjHGH1Hg0yOT9HwTi9tr/fjrJhZz3btHUjl08cCEfqOBGftSfSTU5NF146ZvH3yu4iMQN+RYOq7aN/RT2QsChEYORchPh1PrU9AadufWucHiEZijCUONbRvD5BmMWDMMbLmER8Tw5O0v6F8m917B0CnI9SZHA8DpM+KQ70HhxhpD2G06+lvDpJuTmMosT/a8ds+LJ6Z2NJzYJCxhCRl4NgoZqeRttf7U/dgy5tp27VvgIlEHBpuHqHviJXuA8qznvqfTrJLrXPaTiXiUPCcspfbm4wtb/TjrFTG2Z1/ewLvVe6ZvMrgXHu3vx7AXTeV+t2kvTt+3Z+yYeBYUHm2Xf1MhqIpGbmO7f1z4lDg6HDK3t27A8Sm44z0zLV36t0cGmKoVVl3Gix64vE4kRGlbcfrAUyzxs6kvZX/H8Foy2CgeZyu/YPkNTjm2nv/IKFEnBw4OY7VE6Q3IU3V9ps+7MUWNn6qGp1ON8feI2eH6Ttio/dgIu6/EZhr7z39OMsz8V7rpu03gTn2bnsjQE7NzIHWrl39KXszOaXkvKyKndp39OOetcfZsTMwZ66StHekP0LLi13krnLN2GWevYMMNis+2ruvH+JgyclItJ3rs7Pt3b1f2bsbSea1EvZOVgya7bN9x0YwZWfQ36Rcp/2NuT4LYMhI8BWahukrtNCXnIu/HsBePDNX6drXn/LZgk1OhjvG6DmQsPdvAymfBeja25+aqyRjRHhogsan/ARbRwkcnVknqYkRSWnANLNhnr0XixHT01EyZu0pz7a32hgB0HtIXYzo2xfEmGPEe2kOfcdm9v+XixEdO/sJd0dwNdjFMeL0T7oTz96vLkZElLlWam4YURcjbEVGxjoi4hjhqstizWMVnHq+HV2anrFzCRsuEyPy17iYSowxna8Hlo8RiZzX6Re7sRfPGtf2DzAxmNgnPjtM3xErvQnp67btA2SXWshdZcbpM9NzZJSpkPLcI4FJAifH6TuqfHMde0dxlZvQWZTf7jkaxparx5ZjpKToLIMDBZT7TgHQUHcYW+JbBaj3HyGe4AQ9fOfD7D35D+h0Or761a8ihS6eenOCTsmKG3d9GIvHS3whfbwFkP/D0/P+Lj48smy/TZ/0MRWKsuef5vdfSje28FInujQdHb8aAPljirD60XLSbWmpSh9qsfnJWnR6nVivffWflROLxjn01RZRv6xKC2kmHQNHxpdvPBvJuK1e5hKL10LZ5Tkc+3bb8o1nYcMnqzFk6Nnx1yfE/UL9EY5+s1XUTws8a+yUXJHHiR93pOSg1GDthyowZmWI33fdO7xkWNM58BWZZujaD1UQm4yL+zU+7WdydIq9/9ysuo9njZ2yawpoeamTwMHR5Tsk4L3aTe7KbPb84ynRPW56vBZ9mvzbWfFwGejg8NfOivppgc1nof7eErr2DdD2Ut/yHRJY8XAZtnwzB758PEUQUoOym3OJTsVF1wJF6izUJSeseK/ziK/larBSfkMRZ37eIYpDq97nw+IxceIHrQpxSCUq7y4kp8LOjs/K4okYemWy4t9WxPHnOhaNlbr0+UkS82WVrNoE4XE48PrS42nEbZr3d3/xha+pusWP/P37ARh+8Qu0tbXx8ssvc9VVV6nqexF/WLz44oupEtg3+D6u/OXU9BI9ZjDdIddCX/1YOWankQNfOk54UH0/sxO81xRx8vsdyzf+PWDTZ2rpPTzE2Rd7VPfJXeeg4qZChs6Mcvy/1M9P3GvslF6Zx9Fn2gl3hpfvMAtFl+WkiCQSmPNMivSRAN5rlJNBbb9UH5vtPjP128oYPDVK0/fU66GXXp9L7qpsDn/tVIqw8GZixXvKmI7EUsQVtWh82s/0RJTdfy+Yo5th3SOVtO8M0LsrqLpb7joHJVfmcur5NoKn1PvJ+o9WkW5LE89pVj3qA3QcFM7zVj3qIzwwmSK7qIE5z8SaR8oZ6wpz6N/Vrz8cVWYqbiyi5aVOBgXjt1bUv6sUsyODPf8km1c2PulnKjQt62dWKgC1vhaQfavJ3IIslOCqtzExGmX8nKzjyod9xONxDn9dNvdtfNpPbCrOzr8Vrsk+UU1o4MKsyYouy2EqMi36TgHWf7yadIuBnX+/vC8nSUqz8ef7X1J1nf971V2Ede283vpDMjMzGRoaEt3nRfzhoNcrmxJrst+Ox+QlPjW1fCcgOiCYOM1C49N+JkemUlXd1MK9Jot0oyG1YfZmwv+AF6vbJI6vGz9VgyFdz/a/lo1x9Q+WotPBkW+1ivpllphIMxsYahLmvJLLLEE4N3lMlFzq4uQLnaJ+az9YSYYtnR2fldlk7YcqCQ9GOP4dWY5NCxyVZnzXFXLm5x0Mn1H/cA3vKsVebGXfV86kSAtqULmlALMrg8NfbxXd54qHy4jH4qnT4WrR+LSfyPAU+z6v/pvLKjdRdZuX1ld7CRwcXr5DAu41WRRvdrP/66dFfrL+41WkW+Tzw5p7i0kzGjj6n62iflpgcuhZ8XAlPfsHaXs1oLpf9Z2FuGqzOPLtlpTcmBokZZaSm9Sq79NjEvljEgWbneL4asozUb+1mLOv9jBwWH1utObeYlzVdk79T4fIv0qvU9Zku/5fk+g+taLy9gLaf9WVIoGpgdmdwepHKwj1RTj0jaXXm7qM9Hl/93fHXlF1ncc33QbAacsvONNyhu9///vcdddd6m/0Iv5gOHPmDBUVitrBdaueBkAXnlTVN9YyPz8Qjy29D1i3rYisEiv7vtZKpG+BtdVi+4hGKL82nzM/7VZ1b78r1n+sit4jQ7S9rD6+2kuM1D9YzmDzKE3PqM/v2MtMVNxUxOmftjNyLiK6z7x1DnoScusSGHOMRPqF19qQjT5dR9cb6mOz0a5nzQdqGGweEeVA8jZkU9To5tj3zhHult2nFlTfUwRxRPcISi5jMjzNXuHe2qpHfPTsHxS9u6wKCxU3FnLmF10ET6mfa698uAxrnpntfyWb0/jv82Iw68XzvLptXiIjUymyi1o0Pu1ntCPEEUEuw5xvpPrthbS+1iuyiVZU3VmILc+cqsqqFhs/Vc3UeFTcr+Lt+bTvHCQSEHwDycJ3ws/GXmYiNhVnrEPWsWZrMQaDjmOCPD8o+8vx6Ri7JPliFG5GZGiK4//9Jq/JdDo8a7OIT0Pg0BJzw/NPe6DwVczONHZ9aflvIElSmo1v7XxW1S2+45aHiURG2HHmy1gsFk05L02U8uLiYtrb22l+7kusfN/foUsM3GrISiWXWgicCBFKrCd0WQoLfimy0uFvtjDWtUhSSKdflKhUcnku8WhcISkJkFVpweIy0r1TvUGlJJAk+k+NkDaL+agWpuyMmWocAtRtLSU2HWfgiPpkc3athdq7ShnvmxCRonxXecjyWsnflC2y5eTIFBmZ8xcly0G0+TQLm5+sZXJ0KiUxpwZ9+0fo2788we58SK4xG1KiVxIZmelL8fh+r7AVWDAY9ZhdJkD9QrztlQBtr6ifbCex87MnZshzAhz+dzk5yVJgYtV7fASahml+Vv2G/1hLSLlPISZGp7C4TSKCEkD+aqXEpZQ4tOo9PqKRmCipkbshi+JNbhxeq8imOXXZpJkM6A0ytdGuPf0UNbpFBCWA5mc7aUZO0ii9MZfWn/WK+pTd5Ca7zIb/9iKO/9f8BcVCBCWA8G+a2T5cueC/JbEQOam6OEy7inVLkpyURCAQID8//yJB6Y8IN9100/y/TPrTMmQls1OPZ10O5wRx4cA3zog3z0GR9snyWhnZHKJbmMwtuc4jukdAvHEOKLJf61ypU6JqYbRlkG5JI3+VgxYBSWnl+3zYcs0MnRsXEQs2froGQ4ZevClRtCmHeCwuIimNtISJTcWJjKrbgE2i9Re9SuUmIWruLcZZmcn2zx0X+ZmUYJHE9n+QXQeAMOKNYgBrrpk0kwFLrkVEUtIKk8O40Fp0WRz8iuyQAygVo974i2PifsFTYfaektty7QcrSLemi79zrcSYqYlpwkPqEuFJeC/x4KyyMz0Vo/mH6ucaqx4qx+I2cuBLTSKCX+UtxejT5QR9i8eo6bzOUPMokVF1hNjZkB7aAcjd6GCkIyImgRa/zY1OrxOTlPZ87iTWgvlzq9k4n5xkzgWnz0rnjuUTj//3qpkNsbNTO4lGo9TV1Ynu8SL+sLj66qv55S9/ycGhn3Fd/vvQpSv5CTVkpYK3uRg8Pc6EgLy4/wtNTATlC/fKGwuJRWPiTXRLkQmrx0hgv/qNcK3EmN6DQxgz5alHa74Jlech56DhHT6ikSi7mtTHIpNDz5oP1jDWFRKRZIobneTUORjtnaDrdfV5x/BgBJ0G5W0JoWY2Nn6qhsnRKQ58WX3eMtgcZn+zPH8l2dSZjaTkoRSWHOMFy3mZ3RbSrWlYPSYCqP92AvuHRd9aEns+d2qGPCeA5NBBCibY/HE/AyeGOfUj9XOaiWBM07gfGZ0mOhkTEZQAijbnoDPoxSSlNY/4lEMLgnu1FJkouzYfV61dtDmatyKLjMx00i2yvHbP/n4yMtNEBCWA1pd6U1WiJCi+Mof2X8nsmLsuG09DNumWNNGBn3Bgkh1/e3pJf16InFR0iZ3+Y8vn3pPkpCT6An3k5uZeJCj9EaG8vDz1/5FIBKPRSNysVKNYjqxktENOfTad22f2nnR6ZQKxGFnp2A8SydSJRQYQnW5BolLFdfnkrnYSHoqISDKgjfQoPdANSuWmkdYxevbLrqVPN2DKzsBZ62DknPqYUn1PETk1WUyMTIkIGms/WIkxK11MWim9Kg/icZH9IyMxpiammRiRrfd7dg+lqvhIUHK9h/w1Lg58rUVEwtJ64HP7PxwXk0EADv6bPC9kdhoxZqVj9ZguCCHHkm/CkCZfEEjJKklIcy0A4e6IJls2vKsUS45RTJA5Jcg9zcbk2HSq+o5auOrs5K52okvTp6o+qUHN7Ure9+h/nhGRHqtu85JhSxPHBXuRRVNutO/wENMJRR8JDvyrnAviqrMTGY6ICVilV+SSZjQsTlJa5MEPfOUMlmL7gv+W6noeOcloB2epke7Dy9/jO255OPX/reM/YXJyknXr1i3bbyFoIik1NTVhtVohOjdpqYvHFyQqJSsouaoM5PutOAqNHHpmboBfiqy0KEEp1TnxIs5bmXbs6lcms8KsbN3WUuKxuIhYA5B/STbp1nQRQUBCeJgNaZWhJAaaRxhplQ0gQydCRIYn6TkgI3u1/LSN7FoZQQngoLA6VBI2n4Wc6kwxsSAeIyUhIUH9QyVK6Vzh82lB/iXZOH2ZYrKSVj/Rgpaf9tDyU/XVLJIoujKHzAILJ7RMHjQcyK9/Vyl9hwZFJLN0q554LJ7SnVYLV4MVc46ZDuHC/9T3tE1Kj32vFYvLuHzD8zDWE05JpqlF79FhXFVZtG2XPdvJZ7Q9myZioAVqb/dy4rk2ka9U3lGIp95Bhj1d/buIRTn7okK2O/vaXNLdYuSkOW0ONRNfWTXv7xciJykIU+CGXBf8fx98L7BwRaXzCUonnvl7JsfHiUTe/BMgF/H7RVpaGtPT0+zq/B4bC++d+Yf0tAWJSskKSmsTZBcRAUgjt+LM/7ThXpMjJij5t3nJLs8kOhWn41cC0qoZam4tFifipVVnADp+06+pGtK5X3WTu8qVkpdSi8DRYcyujOUbnoczL3cx1iP/vrUQvkCpYjLWMy4i5ExPRYnH4pizTITD6jcmctc5cFXbRQlxQLM/124tZvDsqIj80PJCNy0vXJhTlaD9vfkfKCFwfIiABsK9FPmbnWR5reLvNBaNo6HgLyXXeeg7Niomu+z5nDwB3PbLPqYjUYaOydZI3XsHyF/nElcgO/urbjIL5Qz9HX+jzU9OCE7eJlFynYeJwUl6hSdpy68pAB3iZNTBb7XiKrcu33ABjHdNoDfNn2ctVDkJoPp6D0a7gaG2cf58zXXAwhWVZhOUANralJj18ssva7rPi/jD4OWXX0an0xHjvJxXevqCRKVkBSVLkYnSK3Px1EdE8w0tBCWA1ld7GDwrXxSvfMgHsbiYOOFelYUpO120sa1l8xxg199pqwrSc2iQUeEYMBGMMdYdTsmZqkX7a12M9kzQs1M29xXPZRIw5Zlw19rExIJ4LK4p51V1RyHDbSF69775OS/XikzctQ7xfGHn316Y6jEAPTsHxe8alEpKzjIbJ7VsKmlQaK+5pyglY6gWJruJeDTG9JRsoyar3ITVYxFvvGsl1hz+TitWjzznNXRmlJCwWkeof4K+I0MpyVu10PpsweYwwWb5oYyqOwo59aKsmlvB21x4L83F4jSK/LJ37xDpVgP9h+Tr4vjUJDrmr28XIiclUbQxm/xVWXy67mpg4YpK5xOUDg6+zEhkhIkJDR/PRfxBkZOTQ39/P4favseGygdTfx83ZyxIVEpWUKr7gA+jLW0OSSmJRclKEZZUZ1E6J/Y4Z61JT7/UTWhQTlAqud5D0UY3aWaDqOocRvBdk0fLL3tEJJSjGg67B0+Ni9dioMhhTYeiBM/J9hu79w9oWts2/6STyLA85yWtMpSEZ62DicEJRs6qjynRiRjxaIx0k4w75Kiy4q530CwgCwOaCEoA5bfkM9odpm9fUHUfrcQtrdD63irenq/Inh5583Nerjo7zkqbmHAfm4oR1TA/L9jsZKh1XFzdSwuxZuDYCKfSOlISfGrRe2iIdLNBXJXt7Ms9ZBYvnI9ZCloI8wAtL8j3svM2ZDMVjop9q+LmfPRpell+Lh7n0LfOke1bIFaqYGWF2kcwZM0nKi1UOQmg7BIrWQUZjA9GeGjT3cDCFZVmE5QAzrUpfI5XX3112XtaCJpIShbLjFFGO1vILPSl/rwYUQlg4FQUl2+CU7+ROTVA45PVTI1Ns+dflviYzquq1PZyQJPMW+DYMMOt8nssuyof4vIqJms+UMHk6BRHvyWTr9ACrQQBLRWAQv0xQr+VJe2T8F7nob9pjFCb+oSb/85i0kwGMUlJS6UbALvXillYcSv/kmzKrsyn7Y0+EXGleLOHNLOGo3Z/BChcn4PBKKe6bnq8lmgkKj5VYC+yYMxMExFehptDmghf5TcUkWYyiElK3us8DJ4eE0kJgnKfw83yJLUm6buQ9tO0Ylhgw2PVnPt1D7271SfaarcU4yzPVErxPq9+07j5550YM9M49RNhvJxFVEpiOYKSyQWr31POeF+EQwckFzNztivM5BIFDs4nKAEYp8aZBL7//e9LLnYRbwF84xvf4MEHH2QosoBfLkJUAmh9pQc0DB8r3+fD6jGJqtCEB2OiCj5JnP1ZG7Fri+nYKauqV31LEa5qO76b80XEkNyNDrxv82giJUgRPBUmeEo+99JKdJFWE0nC7jNjL7HJSGKA93KPIk8jqJRz+kddnEZ+Wt57qYd0m3zpsv6jVegMOvGiNbsyE1u+WbNN38pwlFkxZ6eLSEol13koXJ/DqZ+00y+QrijanEO6Vf7etCRQAAo35uCuzRJVwrKWmMn2yf0foEvDWqd3b1BM4gHl++5F3k8L6h4sIc1k4JDwRGDhhhyII36+5p91kJkvJxuFO8N0CMkI6z9aRbpVfjrv4LN9lF+eRWiJnPH5BKVhZtbQ5kXITxfx1oVOpyMej9MdPkO+eeaE/2JEJYBQxwS9h4Y485J8HN/8pD9R4Vl9/NIq89a9Z4DRHvm6seKmQgAxSabhXaVMT0Q58d8aKrwI0fITebIZtFVcngiiibQCCkkg2DpOqEP9plfd3cUYHTKSGGhP3OfUZWEvtohISk6/jeotXjp29Inu03uJB3OOnHzyxwDv2zwYs9JBSFJa/7EqYtNxcQUtZ7Udi9skIilN9E1oInxV3KT4pDQWFbzNxWj7uLiSUqhjQvTNJKEp9kxA83PaKnxpwbqPVHLuN30i8mjpdbm46x3EY3HR5mjX3gFsHhNtr8qJc9IqVpig8ZN+RjtDHP22zJ5nXg4seWjhfIISwIS5DyLwxS9+UXafF/EHx8svv8zq1asJji8g37YIUQng7C97SDfJ15vV9xThqsxk3xdOEFlqWTy7qlIEMUEJ4NxrfWSY02h7Q7beLN7sJn+tC+LQ8qL6+U12rY2yq/PY/7XTmgksahHujmiSv1PsKLflgIrqagvBnG8kq9giJthU3FjAxNCkSCKr49f98liJUiU4s9AiJimtesRHmiWNvf8sy3HmrsrGUWYTkZT+WOBZmU1moUVEJPGsdeC7Np/mFzpF/YovycHiMYlJSsc07quVXp1HntAnjW4j2WVy/4dlZMYWwdCJMYZOjIn7DRwb0fyNS1G5pQCjPZ2j/ynjZJRemQt6nZikdPLHHdiL5MTMSGCCnvOJ9ssQlFa9pwSz28SOv5WtAZteHce7OsrIEtsY5xOURiKBVN7EaNS2ltNQBEtBdXU1AC3/8+V5/6ZbYgJ56uejS1a00GXZU1WVAGKTSvJnOhxlpEdFAvK8F7TxMzWs/9j86hRLoflHnZqkvNpe7+OgBs1vU3YGtgK5gzY+7WfthypEfVwNVjZ+ugb3qkxRP+91HtZ9ZGk5ooWw/mNV4n7ZtRaKN7mpvDFP1O/cr3voOaAtQZRVKbf/mV90cvQ/ZYN/bEoh0en1sjKFR797jpM/lpPYNj1ey+YnasX9tKB6axGNT/txNcg2GI584xTNP5EnDOLxOGg4cHryx+c48QPZhrElR485R36tMz/vIHBMPpAXbcyh7m6vqE/+JdlsfqIWz5qly/idj+qtRax+tHz5hudh/UeqaHh3qbhf49N+8fVKL88lzWTA6pFt7pz4bjs9hwZFBCUAQiikUUHePqvSQuPTfrzXzjiKmgpKeksG0UicgVOj6A7NxJOI27REFSUFrT1muvoXtslCBKVQKEAsFqO4uJjbb7992Xu7iLcW3vGOd6T+PxxeYD60iL/17g1qIlkMnRljKjSN2SybKpbdlEfjU37MTvX9woMJWQJhxZuTP+2gY2dATOixF1lJt6SRu9Eh6rf6/eU0Pu0X9QFoeE8Zqx+Tx9lVj/oo35Iv6pO70cHmJ2px1dtE/WrvLsH7NreoD0DvkSFO/0xOwjI79SIfATj6/XaaftAqvpZWnHq+naPfkpH0czc6aHzaT9lNsjmsVmx+opYNn6oW9zv5XBvHn5W9N13iEMr0hEz+6+h/nOLU8/J5nt2njdDRvW+Qs6/IYkLljQWUXOoR++T6j1ax5gOytRjAug9Xkr/ZKeqTu9HBhk9Ui+2y7sOVND4lj1uZ+Wasy8xDFsKhb5/l7KtygkBg/4g4lq//aBUbPiH3/9GuMFPjih/HZp2y15nNi1ZRAiAMZ36++Lz+fIISwJhVIXlddtll4vu8iD887rzzTgAOBX8x79+S8m8L4cz/dGuqfjI5MsVoh5w4tP6jVaz9kCzn0vpSLwMCwmkSLS91c+g/5ZWvbfkWTUnZxqf8rHlMFmczS0ys/2gV7jVZon55m5ziawGserSctR+U2d/k0FN2VR4V18vmCy0vd9G5U77pBYpdpGj6YRtHvyUjyEQj0xCfmTeoxYkfdnLiWXnOa/3Hq9j0mRpxPy0ovS6Xxqf8Yt869p9naPqhho2oeOI/IY4/c5bjP5TN80wOPSaHfIvg9IvtdO+RE7ZLr8il9u4SUZ/sGiubPlMjtn/ZzbmseE+pqA8oh3bqHpTdIyg5r5XvLRP1yV2XTUZmujhOtr7US9tve2n+uZBMNQGnftTJRFB9F5NDz+Yn/Xivkq0ZTSY9k6NTDJ0ZIz41QzLRZaQvWUUJIHAkRP/RhZMECxKUJiaIx+MUFBTw3ve+V3SfF/GHx6pVq1L/H1mANZSUfzsfQ00h+g4uvY+n0+tSVZWUH4sxeHKUyPAUqNlUnTWm5W3IZtPjtdiKBJuxkYSsqZAw1P5agHO/7hURlACsHhMmRwYFa2RrTv99Xk1rx6o7C1n1sG/5hgtcr/SGXFEfR5WVDZ+oxtUg2//w3+3Fd50svwbQsT3A6RflOS+jHYx22bh66n+6OfodDQozMYhrmDAce6aVo9+SHQ6zl5lofNIvfm9aseHj1az7qGxvH+Dof7VwXLj/p9cB8TixadmG44lnWjihYZ4niiGzcO61XlpeluVOyq72UH5DAfYS2TVXPlzGqkfk3/bKh8vIW+cQ9cmqsLD2Q5XYy2RrloZ3l9L4pDxuZZXZsGmo5nbgG2dp0XAgKXhqXFZJD4WAuPZ8boWKCkrBjhATQWXOFZ2lXKazmBetogRABNp2Lp7IOJ+gBBAx7iIej/9OOS9NlZRAkXzT6XSLlkZMVlRKSr3NxoaHXUTGYvMk3+b0z7LPkX7b/Y+CTYJkRaV4XLwwTt3jJ6qJTcVEp3Cl1VKS0KJ1CTA9EWW0V5b90hv0GDL0ZFdnETioPimVU2UnIzMdcw6EBY9pMBrEUg1DJ0IMnh7h3Ouyha5SYUVOCNn4qRoMRr34PUgquszuo6VfqGuCkIYDPFNjU6DtExAjPDhJbDpOeFj2vkP9MUL98gTpLo1lvQeOyPVy699ZSZrZIPaRgSPjmq7XvX+AiQGZTrIt14LOoGMqLNs8zC7LRK9B2zfdloY+QzbZtuTomZ6IEmyXMalbf9YrrpCWhJSg5GqwUnWrl9ZXekRV0rK8CjlvvEt5NjUEJYBQ+yS7/2XuAmQ5clIaYS5dA71DcPzszMTi//vge/mLL3xtQYISQPO3PwfRKUpLS1Xd20W89ZCdnc3Q0BBv9HyDa8oem98gUVEpKfWWRPU9Rbiq7KKqEW2/7NNUFSk0oMxL7JV2wgJyVMGlLkou9XDwW63qZZrCyGTsEmj+YSfNGuQWhttCSlVDMyJClSXHiN4gj7MWt4kMWzpnEMSxqJKAsxVYGDiqPta2vtaDMVODvNyPtVV8Wv1YjXIa7Yvq5/fhzjBhDSoZe/5JW8UsSbWgJCJDEaKTMSaGZGO4VkyNTzM1IddPl/hGEq2/6KX1F/KxODwI4UG5Leu3lSlVdIXv76wwgQvQ/LMuCtY5xfJr+gw9OuEcylpiJsOeTo4/SySNmV2aSZrZwJQwsT3aHcYuPBwBsFOjzNL4uTDj52SM03UfroQY7P2CbCNcKxaSElqSnASsetBDukXPnq/M9a8/X3Mdf77/pQUJSgDHjh3DYrHw61//WvsNX8QfDM8++2win7Tw+jZZUSkp9TYbGz9ZzcTIFIcEUvb7LtA3kMSa91eAHtEpXK2yXzv+RlvOKzIyJZYln4ooa9XsUpuoIklOlR2TMwNLkUlUqSXdYkAnnOdNBGP0HByke7/MnkNN4ww1yfML6z5cSYY9XZzPGDwuny8Mn5lgx2fl73uib4IJ+bSeiaFJ0o2aU9sihAcnmZ6IMimUmZkIxpgIym2pdQ4bbJZrHdfeV4Y5xyj2keEzEwyfkbMy237bR2R04Yp0i8GWb0Zv0IsPK+ZUZWmq6mnOziCWKdz0NSmE0+FzsrjVu3dIc3yVVlazFJlY8UApra/1iSrBZfqUw87hQdk6ZyIYY+8/zx3fliMnYYKNj5YwcHKM0z+b2Rv4dN3V/N2xVxYkKAHsCH6fSHyU/Hw5EeEi3hpYtWoVBw8eZPupr3Flw8fn/XuyolJS6i0J71Uu8tc62fX55iWJQDq9LiX9Fjg0LKsQkqioFAooMdaWZ2asQ/144KqzU3FTPid+cE4kHaalIo/WSj7BtjFMzgyMdpauLnUeMgstpFvkcTarzIol10Trz9XnGWKRaQwZBqxuI5Kdw9ZXejE65PcoJRUksfZDfsL9EQ4I5J8j/REiGraXD/67BmITMHxafjgiMhZnMjTNhHAs0IrwUAQ0SKJJvrEkevYG6dFQ8ToyApER+TxvxTvLiQxPideAncI9c4Czr/QxOTIlll9Ls6bNJXiqgNEO1jwzOf6YyJ6OchtGezo6g2y/caQzRLpZ/m3v1TjPjgQi9AVkdlz5cBn6NL0oHiShI1HNT6dTRVACaP1FgFbOU3tZipwE1Nxkw5ptYN9/zR0XH9p0N9/a+eyCBCWAg4cOYjabf6ecly4uZZDMgl6vJx6PYymsoPK2hTdF859rmUdS2fAeF5HxpUlKALGBwTmasf5tRejT9Rz9DxXMxCR5SuPjbXq8lng0zq7/J0vQbvxMDdGJ6LwJ+B89LIiqivxBYIGNH6hh8PSoqCyi9zoP9kILR7/ZKrrcuo9Uok/Ty0tnJwmaAnuW35aPp87BoX87SahfQ/kgIRqfVkrNXwg/XvuhCgwZBrEdpYQ5gNIbc8lf7eT4s+dEsmhFV+bgrMgUy6Jt/FQNQ+fGOPU9bTKLFwx/DN+3EFmVFuruLaVjd79IgrNiSwGeBgfHnmnVJJ2XPF2jy1h+s99SnIH/tgKOP99FqH0y1S982dInQfOdYWpK4WyXUk0pCXPHGL2NjkX7HfpXZYE/Pj4+R7b1Iv54EA6HU+/uBt/8hE0S061tc+Y/pdfnUrDOxfFnzxI8pT5pbS0xU7uliGPfbiasrVCharjX2Km8uYiOHf0iclTy2Q58uUlMMHjLQ0iG+kOg+p4i7EUWsfRqw3vK6Ds6JKry5aq3Ufn2Ytpe7xNLbJmdiH14/ceqmApFOahhESnF+o9WkW5L03xwQQJriZmG+0rp2NUvkzfT6I/rP1bF9ERULN9W/85SBs+Mit515Z2FZJfZNMvaXMTvBq3Sihs/XUM8Hmf3/3vz31v9O0uJjE7NI6oasrOX7LfyHW7SLQb2fnUuSSk2No6haOGNsJ0dzxCc7MRgMDA9LTtEcBFvHZjNZiYmJnCkFbDJvXAl0ume+RsrGz5RTWRURlICKL81H2NmOsf/682X1V7/iSp0yL/Z9R9NSFBdYFLVmw4TmipgXWis/2gVg2dGlYpdKlGw2YnDZxP71cpHfKSbDaLDmykI7Vl0eQ6FG3M48t1WTXJeUjQ+7Vc2hoRSalqw4uEyMqxpYjuaHIgq3YBSEazkcg+nnm8XEdrca7Lw1Ds4JpS8WPeRSobPjV9QWTRN+CP5viUweUysfthH586AaBO96PIcvJd6OPk/7Zoq6klgcoB/WwVNz3fM+a711qUr8NtLTNTelkvX/iDtr89slsUjEQw5rkX7/bz7SwAMDQ3hcDh+p3u/iD8MIpEIJpNycPO6VU8v2i5+/MycwgmeVXbKrsnl5PMdyxI149GZQz5Gt5Ha2wo48XwXETWbztq3UbEVGWl4sJyO7QHaX1P/zeZtyKb0qjyOfqdFRIr6o4CRN12O7ndFyfUecqqyxPPe6nuKGDozJpJSsxUZ8W8tpeONgFhGVUosA1j9aDnTk1GOfKNV1lEDVj5chjXPLJZc1wKjXc/KRyrp2jMgI+sliwwJfXL1o+XEpmMcEkpHV95RyGhHSCTB5r3KjbvOwb5/W5qQ+ZbAH8H3LcXKh8tIs6axTzinX/vBSnTpOvYKc+cpJAvxqCApVd6eT2wqxpmfzuQodHodhlzPkv1qbrJhcRjY/925JKXYyCj4fyMduAABAABJREFUihbsc7LjJc717yI9PZ3JSe3ERc1ybwBf/epXAQh1LnzyKv85JSGj0+nmVDTa/fUBVQQlmFuOMctrwV4gLP2v02HxWii/Tcai3/nZE2KCknI5Hfo0uVkbn/az4ZPCcvUWpZyZVLpNE35XAoNwP7z+oRK5PUJgMOqx5ctKwrW91CcmKIFSJUqfruFdf9zP+kdkZQozrGnoDDr0dtmzuRqs5G9aOun++4LFa8F7tVwqJs2UhkGDHVe/36+cvBbAmJWOzqAjKiw60PGrfjFBCRL+6JaVUay9v5iNn9JQrvx34ZxcIILSiofLxP5o8ykyavUPycpsZ3mtoINwn2xH9fSPu9j+l8dFBKXUGCOs3Ff6NhfpFgM2Vzq6jIwUscn8m6XHnu5BM7/ab04RlMwdY5g7FMZ+7vbggn0Mh55Hp9PhdDovEpT+iGGeVenhaO/LC7aZbk1sPuh0KZ9s/UUv2//6uIigBMq8K8OeTuEVBeJ7LX97vkg6KbB/hO1/eVxcvSkcjIBOqdwkQf27Sml82o9ZVv2a/M1O/O+Ql/3XhN+FoCRVyjIrG6rlb5fNl60ek6YTc0e+flaTDKHeoMNkl1V8Wv/RKlY/Ji/9m2YykG4xiPsVXZaDOU8uqaIFuRsdOKpkL9uclYY+TYfRJntv6x+t0iR3aMgwkGaS2/Hof7SKyWi2PJNS7UyIDZ+opvqehRfdi0KbGt0FRe46hxKvhPe64VPVmsr8o0NTBdddf9ckJij5bs7X9J3Ziyy4quaPF9GhpXMTh74dmENQio2NExtTNn+jHQsTBbLy00hLS+PZZ58V3+dFvHWQPBEYnF54A34hghLA7n84KSYoAeTUZpFVKpNsBWWzuvQ6mezCnn84pY3UqfFb3/ykn/UfF8o1mKBmazGuFRcg5/W7EhiEIany9gLWa5CvSLemYcuXBfauHYOaiG/pZgMGo3xcbXzaz9pHZLmadLMBQ7oeo012vaxyk1j+SytMHhMFQrlWUPJ5Bg1zoTUf9MulBO3pGDTkpAP7h8UEJYAMazrWXJk/lt2cq/i+dBj/XabXF4igVLO1mNx1spyXyaGn8Wk//ge8on6ZRUYl5xWUbQp1/Lqf7X91XERQMjn0lGmQ9im4NA+TM4PMvLk+EhtfmkA3cm6CXZ8/lyIoxSMR4hFlpzPav/D6YDjnJHq9HqfTeZGg9EcMo9FIekJS92jbiwu2iR9PHH7R6VMbtn0HR9j1D80ighKAOTsNS66J4k3y2F50eQ5GQc5/rCPCjr85LiIoAYQHlZyXLU8Wayu3FND4lB9zvmxfwlVnp/pu4dpYK34XAoMGpay1H6zEd5NMajcz14zRvkz1twVw8vsdIoISQDQKhgw9GVmy6618uIy1H9aQ87IYyLDKny1vnUPk+78LXHV2sfyX3pqu2FFYRXHVO3w0flJDzstsIE1DXrT5R50ighJAZkHCH4XfzprHKqjcIszt/66v+AIQlLIqLFTdWSi+1zWPVbD5iVrx9fRpenFlKVAqJksJSqkxRrjf6KrIJKdGyXnN5tZEe5feb2l6cWwOQSk2MqoQlABaFi7Aoc/sQ6/X881vflN0j+fjd6qJ+973vpdHHnkEgN6DvyF3lXrdOUcZ5NXbafqJeornof/qINSmYuP4PAm6le8oQafXiWV/sEDRxhyRjNvOz56QXSOBydEpxoVlwiwOE5mFFjJsaSLptoZ3l5JZaOHgt1rV2TOBjZ+uQW/QseNv1D+jq8FK9ZYSxrrDHBawSc0uo6YNDS0n0C05emrv99G1e0Ak77RLowxCeDDCQJOM2nziu/NlCdSg6u1edAad6Lm0oubWfMxOE4FDAVGFIy1kQFDsGDguk847+Yy2ikZrPlDBSEeI0z+WnQ7T5o9GDEZt5LdoJCayZ+39xWSXZ3Lyx+dEsnSbn6hFp9eJ2e+2fDMmR4bIHw0GRdqy95DsBEHbKwHaXpEt/CxeC7acNPr2y75P/x2FZGSm0398JFUqNT45uWw1peP/3Y2lOINQ+/JtkyjICeO0w9EWkOw6thw7jMFg4KGHHlLd5yLemvjsZz/L448/Tsf4Yeq5VtS3+p4i+o8HVUs9df12gKGWkHr5tQRyVmSSuypbmWsIq9DkrnMw0jKiuipS766gJrJL4HgQc3YGmGXlYYovcWsiQTQ+5Sc6FRPNHXLXOSi/sYCe/UO0vKB+DrvhU9WkGYUSpWFIMxvILJQlviRybbNRviUfW65ZtIE7cHSM7Ufl42r3wSFclfLNTcl8NwlHlZmSK3JxlNs0EeClKL+ugOikzK/6D4/Sf1hux94jQbI1bJzv/Fu5HQsudZG7wsGBb5wRkfUOfElb1as0kwFLjiyrsfJBH1aPiQNfayHco37na/MTtUxPREXVx5y1FmruKmXw1OiCUmWLofgSNxkaEqpjnWGMDnk/aUU1UEh9HXv6xaTMvDXZuOuzxOux7X91HLMwztXclk3H/mHG2tVX6zszsIv20XbKysq4/faFq+9cxB8HNmzYgE6nIx6Pc2ZkP+X2Nar7ZpaYKNzkFn23h77VyoQgpiSx4qES0kwGWl8SynKaoGC1U3RaW8u3DhDqn2CiX56tdlZmYsk2ijbUq+4oJKcui+PPnBVJX637sCLzvlMgLW/ymFjzPh+jnSHRSXSLRqK3phPoJlj5kI/eQ0GRvJOmCkrAaFuIoVaZ7MXZn/dyViD3kkT17YrvS6T9tMJ3nYdsXyajXSFGz6n/TjXbsSPEQLOs0k3rS73yOICSJx7rDXP2BVnf7X8t98fMPLMivyYMdY2f8DM1Mc2ef1Afg0qvy6Vgg4vmn3YSOKjeRzZ8shpDhoEdwudzVmaSmW+WSbeZMpgcmRLnNwP7h8V+b3LoySzNFNkCoOquEmz5ZobbxkUykC0/6aFrT1A0rjkqTORUWufIvKnByc796HQ67rvvPlG/i3jr4bnnnuOWW26ha3Af9d6bRH1LrnUz0j7OUJO6/a7gqXH2/VuLuIqSrciI9zKPorrwddmhZkeVlfDQtLprokhyadlvDBwfJrNQfkjVe7kbs1POTtj06Vpi0zF2f049Ad5eZqLuPh+9BwdpEci2r/1gJcasdPGcKCMzHavwoMtRDQRegOIr3GR5LaL+4e6IpjxU94Eh3BPCE/lom9Mb7VB+UyHBllGOfefNr/xadVsh0YjMr7TasefgIK4a2QFY0CYb5mqwU7DeyakftBEZUZ9n0GrzDHs61ojM96tvLcJVbefof7WI5PM2frKa6UhMVK3U6Day9n3l9J8Y5tQPBQpJl3rILLJw7uVuIhH1dgy2jpEpPPQBaJJr86x10Hc0KCZted/moWC9i92fm+Vf8diy1ZR2/v0pMYmw7DIzgZNhxgTLgMDIWdrb2/F6vWzbtk10vfPxOwt333TTTbz44ov0bH9+DkkpWUVpNpLVlOLxOBVXuDCk6xaUGUpWUZrTV68j3KEkFyxey+Lkmvh8Z2x9tYfpCXmJ9c0frkWXphORlJL3l1NjE0kMaZHVCnVNcPqFDvGGet/RIU2TjanxaQwZMvLEwJFxpq6dJnA0KOqnNfGlCRkZGLMy8KzMviBkHq0bKFrQviMgZg1rxdlXuslb7RJLsGnFhbSjKTtD06a0Fuz7vLYN3/BghFEhkWByfJp4NC4iKAGMdodJ13Ci8uDXW0B4qm+4OcTuv5ed8LUUmPCszKL1Z7IEW90dRaRnpjHW00KoS5J0PE3l7QXztJyXIipZ8nSEeuKEexeWhjP/pmlB2bfyQkgzKIN3esfCyaHc7cE5sm99R7YTDAYB+Md//Ed1D3URb1l85jOf4fHHHwegZ+w0ebaK1L+lqijNRmLuZc7W4aq2Yy+0MHBU/RibJCiZ80yqN+L7D4+S5RvizI9l5HBHlZnyGwsID7jE0lCl1+fSu6dXtaSXVnLTsWfbiI3KN9hC/RNEglOiPr3HgpRdk890RJZsGDw9itUpP2p8IaTGknBV2UnTMI5oQcevAjJZs98BwfYw/SeG6d4n14jXgu59g0wMaS+pK0HbL/toQ1bpTCs8dQ5lrXKB5A61bPj2HQ5SsM4pIigBTIejTI7L1qXTkThTY9P0HJBNsvf+SzM5KzLFdtRSbcN7jYfA0RGxPbyXeyjcnCMmGzW/ID94YC40E+4ML0q8jQ4NzZN9y8iErGITFlcG+7/Rm6qeNK9vR/cc2bfm4dcBuPzyy8X3eRFvPTz11FP85V/+Jc3jO+aQlBaropRE1W3FGLPSRZJNyY1cU55JtKl75hfapJY2fKCaNLNBLClh8pjIqbWJJBS0VJZiApp+2CbaFAfoOzJIZpGF6KRMliUyMiVWcpnomyDcH6HvsGzTX5M9fgdYPSY89VkikpJWHPlW65t+jSTOvdaHKVtOrNWC9t/2MTU2zWjvhSnLc+QCEN6TyCywYHJkiElKWnD4662a+o22hxjrl01qpiNRopMxAk2y73O4ZUwTYXv/F5rQ22RVXyd6JjRJAXrWuEUybwDV95RizTUxORph+Ix6Pz7872cpuzlXFItNHhMTfROLjmWx8fEFZd/KrnBhtKfRsWOAcO/C6+5o/8Ac2bfgRA+DQ0ps++IXv6j6Hi/irYmbb7459f/dg0fJd9an/pyqojQbyQ3bjBgFa7NxVdgYappPHDq/ilISSbKQMcdIZDEy9XmTg7GOCB1vyKQWk9fw31NCqGeCg/8umwcUbHYy0Dy++D2eh+Cpcfafku8xHH+2AzSo2o12jDMZluWuRs5OEI3I18d9R4LYi+QEgx1/c+FyXu66LEzZsvFAK/r2BcVVm7QiMgLdewfoP/bm76ECtP2mjymhX2lFz94gPXuDF+RanjqHJhKhVmghOvY3jWDOzhARlAAiw1NMayDNhfvlBSmOfLMVR5VVRPQCaHlBPSkyibwN2QydDakmmCZRcWMBJZd7xHyHY99vJc24wL7+EkQlo9tIJBBhcmBywYpP0d6++bJvRnCXG7HnpXPo+yMz1ZPOR0vHHNm3gy3fJU7s95Lz0sXjv4OYavJHEhtgvtseI7PQByxMUpoNS0EcvQFGF8iBLkRSSmLFw16sbhPHvtc+b0MYWJCkNL+Nukf2Xu3GYNKLF2mbn0xUGRFu9tS/q5TJ0DSnvqet2stFwPqPVJGemXZBNtrq31mKvdjCsWdaRdJQ1VuLSDcaOPot9Uzq/EuyKbsqn6Ezo5qrKknQ+LSfydEpTeQ5LdeSVgHwrLFT1Oim6ZmzhPrVD0Kbn6xFp5NXANKC9R+rIt16YXzxTxYWWPdIJWd+0cnQCfXf2JoPlGN2mjj1P22iKnMWrwXflW7136aKcouLkZQ2fdyHzqBj5z8v/j0vRFKCMCV50Ld36cnebJLS0E//hba2Nq6++mp++ctfLnvPF/HWx5VXXslrr72GTqfj+rKPpf5+QZLSLORvyqZbuAkF2qoAaYX/gRLOvtiuupISKBJsvmvzGW4fF1WvcdXbKL0yj31f0EYOvQgFjU/7CQ9GLgh5uPEpP7HpuKg6jznPRPWWAlpf7RZJHm78dA2GdP2FmTN8tIp024WZM/gfKMFRZqXpB60MCsZW/ztKiIxOisiHyWpgA00jnHz2zV/fND7tJzwQEZMcL2IG1XcXYcjQi4lKjU8nvk1h8qvspjwmhiY1jU0S5KzIpOq2YoJnxzn+ncXneeeTlACyfRlMDE8yfm5pUn+SpDROKzvanicajRKLyZJlF/HWRTLntTr7JnJNZcDyJCWTx4QpSyeq5ANQc28xzqpMTeQcKXLXZWPKTufcyzISqtYxsuaeIqKTMZqFFYovYgYrH1Eq+V2I+UnllgLcDQ6afyKrQlN2cy7GzAyanlGfu3JUmvFvLRNXDdSKxqf9RIanRKe8tWLzk36ikahIXtFRacZ7WS6nftLDRJ/g9PqnatCn68UVgLRg5ft8WN0Xxhf/lLH6/eW0/qqHoSb1hwf9D3jJ9mVy+sUuUdUmk8dE6ZWyCn9aseGT1aRlGJastrUQSQnAs9pK7zKEytkkpZOmFzl79ixXXXUVr7zyirYbvoi3FD72sY/xT//0T+j1eq5Z8WTq7xckKc2Ce4WVwKGF88CLkZQANn2mhthkjN2LbSL/7tunKVRuKaDt9QHVZCNQJI3q7y9j+OwoR7+tfp1mLzNRdnU+hwTqJhcxH5uf8BPun+Dgv735BPNNn64hHouzS3Bg22jXU3lbER27BgieUj+WrP1wJenWNHZqqDokxcqHy7DmmS/InMF3Ux55a5ycfL6DgSPqi3tUbilgaiJKq6Cyp73ESP07ygkcG6b5OfUVgLSi8Uk/oV45yfEiZlByvYcMazrNP5K9r81PKNXidv0/WTGFgkucxCIx9QQ4NfJuC5CU7F4j9Q+UMnhmjJPPLr7WnkdSAixuiMYgfHaZfdQESWk8MsKeM19mamrq95LzkmsKLYDq6moAWp7/ErA8QQkg1KVjrD1RSUlAGmx9rZ/J0WmmR2SJnsq7Cmh8qhabz6Jax6/tlYCmUyTt2wOc+YU8KNmLLLjKZXIUNp+Fxqf91L1Dpl2dvymbtR+qWL7hefBe7aboyhxRH88aO+s/UiW+VuPTfjZ8slrUZ6QnxPQFYtcONA0zNT7NlLCggrM8E7t34YXYYhg+G2Y6HCXYIktS1m7zsu4jMg17rai8o5ANn5C9L4DI8CRjXeo3yQDy1rowO02kZ8sqRYx2hRkPXJhTb2O9E2JftHiV77n+naWifvUPlVD/UImoDyiJDbPsc6Z6a5H4/kD5ntd8oFzUp/zafDIy03FWZYn67f/GGfpPDYsISgChtpCYoLTpMzVs/LTM73UZGQy2hhhb5FTYYrDowpg7ossSlECppgTQf3IPvb29lJSUXCQo/QnhV7/6FaBUpgyMtwLLE5QApVqgTofZKbveWHeYwFG5hMLGT9eIx/Hj3zknIigBdO8YpP/EMEefaRX1y6l1YHRkUHSZLBCufqycxiflOuX17yyl/O35yzecBbNTT829xeJr+d9RQvU9Rcs3nIWG95TR+LRfoiQJKJU2R7svTMmb8Z4JhoXyIfYiE1aPmfw1svc82hkm1C+fM6z/WBWl1+eK+2nBug9XUnlnoahP8NwYU2PTDLbK5l6OEivuGoeoT3gwwuTIFP0ngqJ+mmBWfHGkXfZcGz5ZTeNTwu/ZDOs+WImzVnbyreiyHAoudS3f8Dys+UCFUhFJgPp3ltL4lB+zU7bcd1Zm4tAg63fmZ12ce02+bj77Yo+IoOSsVebK0m9svG+KyZEpzv5ScI+JWDhweGhZghIo1ZQA2mP7iEajXHHFFaJ7vIi3Nm699VYADgy9CCxPUAKlwk6KoCRYtrb+KsDE4CShftmpcu9Vbhqf8uOoVD+Q9+4dEhOUAFpf6aX5p/KcV3aFXSyjYHLo2fykH/82Wc7L6bex6lHZ+hMgb5OTgs2yybKj0sya91eI3jMo5JX1H5PlykbaxpkcnRJfSwv6m4aZGJxkYki2bvXUZeMU5jaD7WEiw1MEVcTb2Si/NZ81j8lzm1rgvcrNug/L82vjPSHx/CRvtYvMQivWPFk1n+HWMcY6ZNfSitGukOKLEpiU3FDdg7L8VdUdhdRsla+Jqu4oxOSQzYXKbsgVxxtQNrFXvs8n6lOw2Yk5x0hOjSzndfwHbfQdHpLJyqGMS1KC0vqPVYnX9AB9h4JivzdmQTwSWZagBEo1JVCqKPX09FBUVHSRoPQnhGQV+FgsRm9Q2RBejqAEEDg8Djo9RqFi01DLGL1H5ZVh1n6kknUflY3jzT/uEhGUQJF86947wNHvyw6S2L02rHlmii6X5ULq3+Fl0+O1oj6g7A2V3iBbpxntUH6LLE8GCqGkckuBrM8dhTQ+5RdLIU0MRRjpvDBja/DcOINnZDmvdHs6WWWZ5K6af+BmKQy3jDGuIZe3+v3leK9yi/tpwcqHy/DdnCfqM3wuRHgwwli37Dtz1WaR2+AQ9YmEINQ3Qb+wYqNWhIciBDtkc+U1j1Ww+Qn597zqYR+OKtketmetg7x1DvG1Gt5diqtOFrgr3p7PpsdrMefLvufc+mxc1XJZv6bn2jn7ijzn1fXGoIigZM43svnxWrzXyL6xyZFJxnsm6NguqOxvVP4bOzO6PEEJlGpKQGf4eSYnJ39vlcN/LzpQTU1NqZNlwbZT5Kv8WYsL6u/IITIW5eB3lYnAUlWUAEZOh9j3xUVIUEtUURpsGianyo7FkcYYKBvMKljQvlvyyFvt5ODX1cv/SOXhkjj4rdbFZewWwVhLiHgszvSUbEMvb5UTY1YGWZUWURWgokY38Vhc9Iw5fgfpmWnkX5JN9xvqJ3xTo9OM9ckGypPPaDulvf5jVaSZDez4a/XM4e6dQ5rk4Q5+9YRYEi3UNSE6dZVEZoGZNNOFkVPJKrZokkTTIm92+GtnseToRVWUAFGFjSTq31WKvcjCgS8fF723ExqkMkCRARkQTmzsxbIJA0D5bflk+zKJX1csqs7l9GWiM6gjeqZggdh0nMiwLIF15vluug8Mi+MiIXks2PDJaoij7jubRXSNRqJLlsFdTPKt+SfLJ11mS75ZLGE21sBEFRwU5F06X3kGAK9XnmS7iLc2LrnkEt544w329f6QG3wfV91vzWPlmLIz2P4Px1VLAB3+urZTV7HJGNOTcuLwhk9UE4/G2SPQ9dZSpeXksx0iGbskJkenybDJy//biy1Yc02c+Yn6SjS+W4pxlNoouiyHjt+oH4QcJVbiMdlpv4FTI5js6ZjNesJh9eOrFolec6GZ1e8qY+DUCCe/r/7dHdJwWqh3b5CRlqBqKcAklqq2shTSrWk4yuTjshZk2NPJKpIRZbp+O0DXb+VydNv/6riY4DjSEhbLV4ByQikyMsX+LwrmiGFtvjjaHsLkkpVh917iIcORTnZFlqgalfdSD+gQ2d+9xo4pOwPPSif9h9WTr6fDUWLTcTHpc8ffnMBcKC+d3yssi273mam/v4y2N2RyjOn2DOLROIEmmdx5WKWUymzJtzX35pJu07PjX06rHi97xk7T2teK0Wjk1VdfFd3jRby18fzzz6dyXt3hM7hRSeYzQeMnEhVbvqAuHk70TbD/S/I1cv+pUQo2uEjPzECi81jwNhcll+dy9DstjJ5TNyeSbownceAbLSIZO4CJYIzYVEx8AMizIhuL24jTbxNVpCq7Og9icZEEXnaVHVNOBkUbc0QSeKH+CSaEG5Vnf97LWcEJ7yRWPVqOyZHOzr9VXxl1qGmcoSa5Lx76tybVEocpTKCpqlFWsfWCyak4fDYy7PI1gBZ5s6bvd2BydIjt2CSYVydReXsBOX4HB74u+z5bftJDCzK5DJPdRGR4ioFTsgNlzqpMdAYZ2ahgsxN3vQN9hl5U1ctd79CUR41ORpkckeW8unYMMng2JI6LTCCuSLf2Q5XoDTrRGhtgcnyatAy5PVpfWj5OzZF8M8Hq95QQ7p/k4NdaVV9n59CPgDilpaXie7yItzbe//738+Uvf5lDrc9y3aqnVPer21aAvcjC/n89RSSxZFiqihKwdE5iif3D6FhUUwmINY9VgA7RerflRbk8Ucev+wkcHxXLE00EpzDlRJUNbEFXV7Wd2GRMVImm8FKl6k1kdEo0h3JVZwFxmlEfCwdPjmLLk7O8D3xZXqnZaIfVj9UycHJEVLFFMl4lMdYRYe8/nxBLXp0W5CZnw+wy4iiz0YZM7lALLB4zBqNsDBo4NsLAMVm+ABRJNCnBMRKIaKqwtfGT1USGp8R9tVQND54dw14gyxu6V2ZhyTPhqrKLqnOVXZWLPt0gks2zFRnJLLDgaYiJ3tv0lLJGDAvJaLs/d1JMVAQYOiEjDxpzjKx+r4/23/bR+bqKHGAi12DKSic2HSV4eom58gKSb5EROPwfy+9Hz5Z8819rw+ZO48A3R1Pj5XIYiQRobW0lPT09dYj+d8XvRe4NoK6ujuPHlXJtN+Q/prrf6geyCZyaoH2XkuBdjqSUxIaPVzA1Ps2Br7TObMKokXo7H8s8vmeNnYqbizj3Wi+dgoRy3Tu8ZJXa3rpSTxYwWxCTZbxXu+k/NCAmh2ABLgzhmIotBUyGpml7Sf2JwDUfKCfdmi6WsvE/4GWsO0zbK2/+oFy9tYiR9nER0UsrLqTcW/1DJXTuDojkvLRi5ft8dGzvZeCI+sG1dpsXR6lVRGADhdzU8kqfnGCjEVpIW2U353L2V73ib9PitVyw55Ji/ceqMBgNYrmRjZ+qIR6Ps3u5cqoqK/HN6ZIgKekyMrB4YMV9xXQdGKbtN8uP/kmSknlwjLWXQudp6FE5Hx3OOMyu3c8DSsWdi/jTQ3KzrJ6N5OnVEdGKLnORu8LBvq+fgZB6vyi9PpeCdS62/6N6cpNWaCEpAWx6vJbIyOQFkR3TAnOhmXCnzHhmJ7hWukWb+Eo/vZicoBXWEjMll3k4/m0ZqWfzE7UEmoY5/SP1SaWcFZnkrXVpIh1L4aq34anP5oSGJJEUF1LuLX+zE0uuUSTbphXeazyYszPEJMKNn64h3B8RESS913jQG3S0/kK+casJZsSx0JxnIrvSKiaJmZ0QDsuvd0FghsaP+xk4KZP0K7rSjfcSN8e/f1Ykw6gFaz5QgSFDr5rEliQpFa4z4q7NZP+X1ce2PeYXCQ4Hueyyy/j1r3+t6X4v4q2Lu+++mx/84AcAXKO7S3W/1e8vJ3B8WLTxAkq1vOlIjINfeXPnNVnlJvxbfZz7dS9dahKoCVRuKSCnzsGOzx2HC1OsWAYTmEyISR55m5wEW0Iiia3k9S6UHbxXuYlF4yKfanioFLPbKD78VrmlgPDQpNh/taDs5lxCvZOaSXASXEi5t+o7C+k7FhTJeWmF/wEv3XsHRNfyvT0PT51DRGADqNlaTNvrAUIdF8bxTQ49E0HZ+qbgbS4Gjw6I44ApzyQnDl0grHq0HGOWPH+tlaQkhgk2f7SWzl39tL26/Bo2SVKK6yKserCU3sNBuncGVV1qwjPE610vEY/HL+a8/kSRzHn52URhhrpKZU6/leLNLg59pw0mlJixHEkJIG9DNqVXeDjwlVNERmb505vgW2seq0Cn16kmsCex/mNVTI1NXxDZMS0wuo1iQhRGKFjnpOsN2akyo10vJuVohdFtxHtpjlgeauMnqwkcH6blBfUEM3uZiYKNbk1kJSnsJUZyV7suiAzzhZR7czXYySw0i8hyWpG3zoE1z8yZn8rya2s/VElkKCKSb8zbkE26JY321978fWhATFIE5bvMrrKLSEpKP4hE5Ne7UNj0eC39R4MiYp97ZRblNxXQ9MO25YleGvYbkyQlnV5H/QPFZNjT2P+v6nKoSZJSTlmUvIZMDn9H/bey1/A8g0ODXHHFFb83ktLvRe4N4NixY6n/H848gSVZ2c8C7hpDStLNkgOuypnLtu4YYrAjjE6nQ6fT4Vltm2mbn6b8OYHsGgu2MuUf9QYd6ZY0TDnKi7B6dHjWzFAds2stZFXMMAQ9a+yYcxRCRN07i2fa6nRkVVrJqpzb1pKj3ONo2winX+hIEZRsPgvZtee1LTClnjX5uxMjU8RjcYqumSmn6F6VOb9t8lm9FlwNVjZ+pobGp/1KW69l0bbuVTOlk10NVmofLCL/kuz5bQtM89rafBYIKQSl89ueb0Obb+6zBg4FCPXHsOTo57TNqrQsakNzDnhq5radZ8PZbRO/a86BVY/5KLjKNbftAvZOvhtXgxVPg4PCdS5V9k6i/fU+jvx328JtF7Bh8t04ymwUbMgR2dD/oJfGp/zzbJhdO9+GSSkuS44eV6Wd4kaPOnuvkds7aUM1/r2QDZez90I2tBSYyCqx4bu+YHmfnXVP6z9WxabHa1XZO2lDz2YbtlwzhRs9quyd/N0T/9XG8e+fU21vm89C1d35ZBVbKb0sR5XPJrHyz8oou8W9qA3n2XtWjLB5bcva+/zfPftCLxbH8vY+37+TBKWl7D3bhvXvKiW30SHy2dUf8NH4tB+bzyLy2bhuVnJiGXvP9tldX2yi9ZXuxe29OhNLiXXmdzfa2fDxKmw+C5YCI+5VM2OVq36WvYHctQ50DoWo5FmZCTqIjCjyDY4KE9aSmRMBngYLRkfShlCiH8PcMQYhOHMIQrNI1B4vGJP3a1H+nITdA4ODxzEYDFx11VVcxJ8mrr/+egCO6/bMkQKyl5lxVM1UwshZkYnZqUx4O/YMcO43fcpmt06HtdQyp62r3oY5ebLIrPTFDJOhadBB2dW5c9smK27MagsKIcdVb8PuM7P+o1U4ay2Lt80z4aqf+YZOv9DO8R/NLMjPbzv7WR1VZqwlyj/GY3H06TNydmanfl5bu2+uXTzrbTQ+7cf/oHeuDX0L2TARh5xQdKUT/wOKTIG1ZIG259sQCHeGsZaY50hELWbvpA3NuZYUQUmNvZMw55pU23u2DYuudLPivSUzbVXYsOzqXLLLbBRcmjXPhue3nW3D5p92pAhKy9k7+btFjW6yiq3krLXMbbuAvYGUvTd+uobVj5Uva+/Z76b06jycVXZVNnTWWlI2TN6TGp9NtUW9vRfz7+XsnWxbfKmb3IbsRe29kA1z1lpofNJP+ZZ8kQ0L1rtmZH2W8dnZMWLX55vo2tMvsnfhBhcF612q7J20Ye4mG6v+rCx1naXtPdcu9nx1Ppu0oaPKTLhngq7fDqjy2SRc9TbIMCkxexl7J2NEwaUufLfmq7Z38ncbn/Kz/uNVS8aI5LMmf9ddb4U4jPdOqLDhjM92/CrA0e+eJTZLzWopG9p9ZhreW0ptQupFjb2TSLMYMKQv7t/n29BoDRMbG6d91yBtrwdm2dCIs2bmd501ZsyFxtTvTtcGCIVDFBYWXiQo/Yni2WefTf1/IPcclqKZk9hOvy0lv2XymJQ/J9DyUucc2Qan34bJkWjr0M9pm1VuIrNE+SF9hp50m2HRtpklM21nfldP9Z2F1N5fPKetpchEVvl5bT3Kn4c7Jzj5XFuKoGQpMs2RjMuusabaYpp51vH+CMTi5G/Mnts2b35bUDb9s2usrPtIJY1PKrJ0i7b1KG2TcFSaqbgjn7xNzvn2XsCGliITTCgEpaXsvZANg01BJvomMDmY13aeDRMyUiYHOH3q7J161sT/17+7hIIrZkoVLmbvpA0dlWaKNrsp2pyztL3Ps2H79l6OPjNDulzKZ1M2RKkqU7gpR5XPJn+3fEsum5/w4yhV57NJG+avceG93K3O3kv494I2ZK4N57RdxmeTkPps0oY5dQ5Kr81TZe/ks656v48Nn6xWZe/ku3FUmMj2ZVLUOGPDpeyd/N2Wn/Rw+Dut6nwWxd7F1+TgqrJTcqlblc8mUfcuLyU3uDXZ21JgUWXv5P1jIhHXFokRC9gwae8kQUmtDWvuLSZnnUPks/6HvDQ+7Se7xrqsvefIeBqYOay9jL1n+/e+f2vmzC+6RDZc+8FKMktMqnw2acP8dQ50eh2ToWiq7WI+a3LoyfYZiEciMAGnf97D6CwVC2etZVZb5szZbF4TfbZWAK6++mou4k8Tn/rUpwA4zk4clTN+ZM4zYi+dqYSR5TNidCnf2+CZcSXnBYr0m8eMvXSmb1aFeaaKhhFFzsgIkZEpdAYdeY0ze3n2UtOCbUGpkpFVYcGcb2T1o+XYq01zZIfObztbNun0T9s5/oO2OW2TFVyMdv2ctrYiI7Yi5Ydi0TjxNKWN0pZ5be0lc+8hq9JE41N+au4rmtPWnD+/rTFn5llz12dReUfhTNuy2Ta0zGmbsmEggtG9QNvFbOg2klVsSRGU7GWmORVOFrJ3Esbs9Hn2XsyG9pIZG3rWOvC/w6vK3snfLX6bE0+9g7xLHMvae/a7Ofl8R4qgtJy9k7+bv14ZXz0bZ2RAF7N3yoYVFtZ9pIpVD/vm2nARn02i5Jo8PCuyU7+9lM/aS4ya7J36Xb16ey/m3wva0J784Zm2JZd7KFjnUuWzSRvay0xs+kwtvpvzlvfZWTYsuswzI7O3jL3tZTMxYt/nm+nYNSCyd/GlHoovcYts6KgxUv+uktS7Ws5n59jbqc5nYSZGREZi9OwNqrJ3ElkVFjAaFYLSMvZO+rerwY73WvfS9l7Ahpser2XthytV+WzSZtnVJuKxOBOJaplqfTZwaJij324hFplevG21LUVQMucbqbm3MCVjuZy9s3wmdHqlb7o9jbRkxTGjMqebY0PfjL3tpUbSjaPERkbpawrRtj0409bBnLHV7jVi8szsW0ZKegmFQ+Tl5f3eCErweyQpAWzZsgWA3qlW/Dcpi+yiFWZ8l2VTcUli4n5zNuVXzCQxKq9yUXejkw3vdZG3IkrFjYX4b1cGwLp7Syi/YUZbtOb2IurvUf7t5P90kmYyUHWbsitbe28ZFTcVptrW3llC3b3K5pE5BypvLqLmHh/2Ygv2QiuVNxelNqPr7i2h7t7SmXu6pZja+xV2dtWdPipvKaZmWyFlN+fScF8JtXfNtK24uYi6rco91N9TSuUtxeRuyOLM890QB+9mz8zvvr2Y+m3KPVXfWkTlLcV4NyuLsxXbSqjeUsJ4zwSR4CSVby+mIfG75dfmU3lLMeXXKvqsDVu9VL59Rou7eksJ2SV2vG/LxbvZrdz/FuXf67eVzGvbsFW5h1UfVJ6t4T7leeq2eqm4uWjGhneV0nCf0tbms1B5SzFVd/rY9HgtDY9UUnnLzO/W3Vs6Y0OLYsOarYoNa+4tp/KWYhqf9gPgv2e+Df3byhUbbSmj8pZismstWPKtWF1mSi/JndO2/n7lnuru9FJ5SzH5mxR/arhXseHZV7s5+G8n5ti76u2KvUsvV36r4X4v1VtmNNAr317MivtLsBSYKLsyl8pbiqm8QfGnhgdK59lwReJ3AyeDGNL11N6e8IH7S+bbMGFv96pMKm8pxppYePofLJ/X1n+P0tZSYFJseJdil9r7fOh0Oo4mtMPn2JuEz96XsPddir0tXgsr3ltG3dbS+T77QAUA5W9XfDZJUmnYOv/dJO1de7ti78JLFdJY0mdn23Dlu8uU/7+hkMpbivFdlZey90I2DHVNMNg6gslupOrtii0W9NnEt5y/KZvKW4oxmPSL2zvhs9m1is9W3q7ck3dDPvF4nOYfn021TdrQnJPw2XsVe9dsVfwQC+Rfkr2wvc+LEUmyTsN9JeTUZNPyShdnf962aIxI2nu2Da0uM3mrlMXQYjFitr0btnpZ/7EqGj/uXzZGJH02GSMaP+6n/Lb8JWOEZ42dyluKqb9HefaV7y5TFSMAau/3pXzLXmSh/OqCZWNEkojkv6cEc7aJaCTGWEto0RiRtPdsn82wpBOfVhI2i8WI2Tas31bC6j8rp+rWZWLELcU03KfYqeyKXCqvKyLNbMBZbqVhW+mceFi9xcuK+5V3Xnipk/Jrcqi5XnmvOeXKDKf3oEL0qrnFTf1tynvL8VsovyaHyhuUcaPm9nx8q3SsuxHW3Qg1G3TUbkyY0A7lq/XUJP5cvVn5c8oOOWc4feY0ubm5vPKKQB/uIv6o8POf/xyAWDxG5npDahO5bmsJ/rtLU+2qbi2i7gHlG/Lf4aX6tmI2frKadR+uoGFrCf57ylJtq2/3Un+f4r/VtxRRvcVLwToXXb8dIDoVI3+1a07bhkRb31X5VG/xUnblTNyvvt1LTq2DdFsaNXeVsiJB6ilan0P1Fi+ViXlbfaJtEjV3ltJwXykrH/bhXmOneosX/x3Kv9fdW0zVbTPfm/+eMlZsU571xLPnMNmNVCTifs19ZVRvmfld/91l1N+XeFaz8q0WrPUwHY5idmVQvcWb2kyvv68M/90zdqm6rZiaRN/y20opuTQfR5kVa4mZFdtK59iw6rbilA39d3ip3uIlN6HJvfLBMmpmxazq273UJ+JFxY0FVG/xUrQpEfcfKKHmrlLKt+TT+KRfsXeibelluVRv8eK7KhH37zvPhneVsvrdZax+rJyCdS6qt3ipTo6z57X131OWmgsWbcohM9+G/67EXGtb+Tx7121V2poLzVRv8aI36Dj9Yie5DTlz7F1/33x719yr/LnqLp/yrFcp8blu63wb+rcpY4TvlhKqt3hx1lo4+f1WYtMxqm4sndM2ae+aW4sVe29U7F2/tWSevRsSflh+veKzJZcqMbdhm3dOW6M9IyVX6L3EQ/UWL+XXK/au3zbf3vWJsbPxKb/yrLcWp+y9mM86ay1Ub/FiMCvxu/Z+3+L2duqp3uKl6i7FLtX3KP7tf0fJfHuTsPfWxLzsdqWttcTMkf9qIx6Nz7N33TsSMeJOxd5JIkfDfaUz9o4uHiNgxmeT0KfpmI4oNlwsRsy24YoHSjAXmqm8qUBVjABSMWK4Y5wzP+9aMkbYfYrPJmNE6VWFWHMsmLMSc/MFYkT1PYn53t2+VIxofNpP/balY0T1Fm+KrLNiWyn+e8vY8KnqVNvFYkTDfaUpG1pLzFTf7mXlu5Q/LxYjUu88ESOKG93krcxeNkYkY3IyRkSnoox2hJeMEa56m+J3iRhRsqkA9KTkKBeKEcm5eM1WxQ/Lbsqj5DqPqhiRJHPVbS0lM89CdnlmyoYLxQiAhvvnxpM0o4HopHLKVk2MqL+/hM2fqqDh/kKqbinE26gMDPX3FFK9ZSbfUL2lMJWbKN7opG2shenpaS699FIu4k8XTz/9NAADhu7UOsi9Kovau0qovjmZxyqm5s5Z39BWHyveUcbmJ/y419qpvasE3y2JOHpv6dy29/qov1/x38NfO0mGJZ3KO0oBqLrTS+1dJakN5vr7y6jfNlNVoPauEqrvLcVZZcdRZqP2rpLUxvCKB0rxb51pW3OnF//dyryg5tYiau8qoeqeAkqu9cz7hmrvLqE+sQ4qvy6f2rtKKFjtpOt1ZW5Ydmn+nLbJuWHJpR5q7yqh9LLE+uo+L7V3lzDSFmK8fwL/vWWpOJS3ykntXSVUJvJ/dVuLqb17Zi3mv6cMT1023kvdOP3Ks9UkYr1/m2++vR9QbFbzgPJsFYl5cfW9pYoNE6jfNmNvTIoNq+4qYf0nqlj1/hpq7ypJkQzq7ptvw+Q467tZeTeNT/kXtXfdvcr9Vt9cSO1dJbjXZGFymLAXWim9NG+uve9PrDuvzqX2rhKKNipryYYHvPjvLaP5hU4OfuWUYu9tyrMXb86h9q4Syq5I2Hubd64N7y2jYVsppjwTueuylWdNjLN1W+f7bENi7Gx9vYc0o4GyG5V7qr2vbF7busQYYfKYqL2rBEdpJsSh5Kayufa+3zffZxO5hsrbStHpdDT/vHtRe/sTOa/SG4qpvauE7BorNfcWs+pdPupmta29u4S6BKm18sYCau8qIXedMudc8Y4S/PfO9e+kz5ZdodjbmyD5NNx/ng23lrHmvcp1Cta5lG/5WuXd1d9XPN/eiRjRtb8fS7Zp6RiR8NmscsWGxkxFVm6pGGFyKDZMxgjv5cq9NL/YlrD3wjECoPzWklSMcK/JUhUjXMm54f2lFG/0cOp/Ojj7s85FYwQoc5XZ9s4qslGwTvHnxWLEbBuueKCEle/z0fhx/7IxouF+5dmSMaLxE37Kbs5dMkZYihR7V9yq/Hn1Y9WqYgRA5e1KPMn2m3FWZVJ5Q/6yMSJJYlrxQCmOIhtTY9MMNY0vGiMUu8y1ocVpJDalzGsWixGpd56IEQ0PlVJ8xfIxoj7hs8kYYXSk46rOWjJGOCrNyu8mYkRegwv00LNzMNX2/BhReZvy5+q7S6i5vZg17y9j3Qd91G/1Ur911nz19mKq7lDuqeLtxdTcXpwiXdkb4zQ3N+PxePjlL3/JRfxp4u/+7u/Q65Vx2LYhniIq1d9TiP/uWWu+u4upvTOZs83Bf1cxa99byupHSqi/N3/mO0bZU6lPjBHFm3Oou7eEok0uhprGmBybpnDtDEmp/v6yVP4gr8FB3dZSSq/MTfxOMXVbS8kqtmDOMVJ3l4/6RBzKrrVRt7WUyhuVmFV7R2FqzwfAf78Sh+q2ebEVGanbWkrZTco9Vd3lTa2nAOof8FG/Tbn/fV9pxpZjpvI2JT5X3Kq0TW6m128rS42VAP57S/BemkdkeApjZjp1W0tTpIMVD5Tiv39W23tK8N+V+N3r8qm4sQh3XRZZFRbq7yuhbtbv1m0tTcWskis81G0tJW9lQjL7fT7qH5jbNrn2LVzvom5rKd5LlHG2fqty/0WX57DpM7XU3++jIZHfcK/Mom5rKb5r8hLvuGiOXeq2+Vj9cDmrHvGRVWFRfvcaZZytvad0nr3rEu/Ge6mH7LJMym9W7qnqzoXsPff+zY4Mmp5rx+m1K/ZOEAfq7p9vw5rEdUuuLVSeLVF8oWFbaWr9mrJ3Ypwtvzafuq2luFdm0frzDqbGp6i4ZmbdOduG3kvc1G0tpWBdYo16/6z71yfnWkrbgjVOxS6XuRO/UzznWW15VqbC00T6I7galGeruE6Z1/vvKlrQZ0GpfF23tZTS65X7r767BP+9C9vbaNdTt7UUU7Zis8otiXtI8CDqt5XN85equxJ55puUZ/M/qPjaQj5bm3ieypsUezuqrBz7XjvRSIy6WfkxJeeo3K/v6jzqtpbiqXco7+aBEurv9ylV0+IJe29Nzq8VexdtUuJC0meTyDCnMRVWSCiLxYjUPdxXRv39iv8UXelSFSOAVIwY7Q5x8n86lowRGJX7T8aIyptLyCq2pYjFC8WIpL1LbyhKxYjNT9Sy6l2+JWNE3dZSXHWJAgX3lVD/gI91H6tK2XuxGNGwLWFvEv5xXymrEnvKi8WI1LMmYkTplbkUbXQvGyOSc8NkjIhOxhhpCy0ZI4xuxd7JGFHUmEea0ZCqKrtQjKi6PTEPvlm53+JrXBRf4V4+RtxbkiLRNtxfgrPSjqvanngeL/67lThQfm0edfeW4F6ZlbimN8V9ATDZ05meSOSvN7vw3+2lYG0i335PIf57ZuZWdfeW4L8tnw0fKKb6Bhe1t+XiTZAia2/Pw3/bDJ/Fv8VD/e2KfV21JnonW4hEIlx55ZX8PpH2+/yx5557Dp1OR8vZFn70/R9TNLqGwWbI9KTTdUw5OdZ9JIQ9b0YvfLA1gsEYIyvfTBwY6QjRsWsYdHrad/Tjqpw56dh/coSpBBN/qC3ESOc4xqx0sED7jgBuvyPVNnBsmFhMmbSH+2G4bZzeQwOM901h9aSTu9KlSBzF4/QeGUqVjwSlbeC4Ul64Y3sv+WvdOH1ZxKNxeg4OkmacMdtI2zgDJxXJnvY3+gAPIy3DyrMeGMTtzyJ3Qxa9u4cJnh1j+JxS2qtz9yDppjT6Dymn1bp292PNNXHiuwoJpXabl9EuZRO7e88Q5mwj3QeU3+3c00/mLB3JgeYR0swGjn3zHJYcPfZiK+07ld/t3NmPo3SGZdd/aiSlkd17bIjSzUb6m0cTzxpIfQRJG0YTmzNjPSGG28bp3heg6u1epiMxxrtmypT1HQ3OVC8JKTbsO6wsSDre6KP06jwMGWlggd5DQxhm6VmPtIdS9m5/o5fCjR6GzoUgBEOrhpmamCmrOdw6xmBL4n539qMz6AmeVvp27hvA7MxIyaHNtnfXnkEyzGn0HUq8mz0DWHNnGIRD50ZxltqpuaOIph91YHWb6UyUmO7YESCrZMaGA80jhAcnlX97tQujJYP2HUqQat/Rh9M347OBpmGmQ8pAFTg1Sm7bOJ27+hg6ESJ3QxZu/wxhb7a9Q10Tis8eHEjYpQ/PCmeqgs1CPpu0d9sbPeSvdRPqDxEZncLqMdF/YkZWaqQ9xEBTwpd29kHcQyChB999YJB0Wxrumqx59m7f0Y8hXc/QCcUuXQl7JxGdjKaYn517hzDa0+nZH1T+vGuuzw6dGU2duD73YieGWwx07RlM3FP/HHvP9tng6SGGa7Jof6OP4eYQ+Zuy5/rsLHsPnZvx2eS7cfuzUxKHgWPDxKLnxYikvV/vI3eVEiPKrsonNh2bY8OFYsRYj/JukjEi6YfLxYgMe3rqd4NtY4SHFMmLxWJEyoYtY4x2hXCWZ6LP0DPeM7FkjEj6bP+hAZy1mViyTUyNTS8ZI/qaRvCsGE/cN0yGpkifFf8WixFJG3pWOAkcHCXN1I2t2ExscvEYkbvKlZKrS8aIZBnVRWNE0t4W5Z5Wvc/HaO84/Qn92sViRMreZ8fQG3XYC6xMTU0r97RYjDgzymi38m56Dwaxuk30HB6g/8AY0Yno3BhxeoTwgGLvwRODZPsyad8fpP4+DyO9IQx6w6y240yFFRv2t4bI7QzTuScIU1N07hwgp9aOJUFs7O+ME02Qr0MjMDIQo7dV+XNnM7i9MTitJCR/eOKHAPz5n/85F/GnjX/+53/mIx/5CN/5zne4RHczxKF7/9BM1Qgg2DLGwCnlu+jao3yjtgITOp2Orr0DZNhnvuuh5lEGzybG2d0DGIwGho4lvqHdA7iqbPgfKOH4d84xcHIk9V10Hwxiys5Ixf2Onf1k5ptpeaGb7n1DeC/NScX9gaOD2L1WuvYmYsCOfrK8M99Q3/Eg9mIz1nwTRlc6Qy1jdOxIxJY35s5Veo8OMZ2YG450hxnpHsOQoU/8bmDOONtzcGhmrhJW4mjvwQEGjo7hqreRu8pFOFFhuvvA4JxxNnh2Ju537ewjHnfTe3SQ8XNhuvYOkGaZ+a6DLWOpuN+xIwA6HSMtil2mItMwNfP+Bk+NMtymzFW69w2RYUlnIBH3O3cocT8ZO0c6xxlsVubTvYeGsbhNdB9M2HuXYu8kAseHcVZmEhmeZujYEI4Sm3JKB2jb3oezbGau0nc8yGSiutvxH7dSvMFD1y4l7rfvOM/eh4ZSm/3hwTBDLWP07AsweCJEdDKKZ8VMJYCF7J2K+9v7qLq1GO8l+XS8OkT3vsHUezvf3p07+4jHYLA1BGHm2Xu2z3bt6UefrmekWbFL524l7jf/UBlPau4tTtm7a08Qoy2DvsOJb2Pn3Lg/0DSS8tnA0RFseWa69iTsvX2uzwaOD6fG2elIFOJxpRLQAvae7bODrSGGWsaw5hnRm/W0b++b47Nz7R1L+SxA18E+yq8pYiJx3fN9dq69e8lb62a8Lwxh5tt7ls927VbefXJ9kIwRyapXGda0JWPE7HFWTYw4397+OwoxOjIYOju2ZIxI+uxY64gSI7YHGGlRrrVUjEj6LEDLz7vJX+8knDgtv1iMgJm5CuiJTsYIByOMzZI3OT9GxKbcjCSevWvvALmrs1PvZ6kYMTsmGy064tE4gcS8fbEYcb69u347gPc6FzaPbckYkfTZZIw499s+xs+Fyd3oWDRGDJwZY6hljK7dfeRvdjI1NUWoZaYm92IxAmbmhnmrstHpdfQcWDpG5K5ypd5N0me79iTXeYvECKB7nxIjzE49NfeWqYoRSQyeGiVuiOPy2QkcGyEaihM4mnw3g1hnnewdODXKeCBCfGqSX+57gbaBsxgMBv77v/+bi/jTxV/8xV/wV3/1V3R0dvCD7/2QYuoZbR1m4KSdrr2Jcfa3fbiqZr6hnoMDGEx63DVKif6BkyP07FfGiI4dAdy1jlTb7r0Dqe9iIqh812ZPBiaHnvY3AuSujKYkxbr2DsyJ+wMnRwicCDLeM4UpS0femhxGE+NY567+OWPn4MkRBhI5gM5d/aDTkVPpIBaN0bGjf87csP/YMMOJPET3/iHSzWkMnggq9/9GgLx1TnLXZdO7d4jA0SCj3co1ew+NYHYa6TmsxLD2Hf1k5ptofk4ZT8pvzU/FoWBTkIESK52JuN/2eh/OspmqHT2HB0m3GDj5vU4wKc/avXfW3HC2vfcNpOJQ7+EhHMWZDJxK3MNv+/A0zIyzs+3NhPK7fUeGqLipkOlwlGDLeEpeqmv3wJyxc/DUKIGEHTp39mHKTifNlIbJoZ9n74HjwwyeHZt5b2l6RluGmQhC39Eh4tFU07n23jeM0ZZB/wmlb+cbStwPHFSeJ3AkODNXOTaG1WOmO/Fvbb8NkDWrum/vkSFyV2RTs6WQpmfOMHDSRve+gYXtfXAgNXZ27RzEnmtN2bvtjb45Pjvb3hN9EwycHKH30CBDTeM4/bY59u7a2z/PZ/uOJNb523vJm8gheGZ0YXvP8tnuPQGIw1DrOFleG7HpOIETMxJxs+3duWcQQ4aB4dOKXTp29GN2ZpCb2CiZ7bPdB4cxZmXQdzSRA9uu+GwSkdGp1D0NHh3CXmih50BQaftG/xx79xwaTI2d3a/3YrRmLBkjkvYe7pxIxYhgcxjXisxlY0TvocHEPSgxYqIn4bOLxAiAzh19RCMxRnsnaHjQx3QkSuDIwIL2TsaI8baZP2fY01J+uFyMmD1X6W8KMjmayEkvEiOS6D08RHhwEnuhhQxbGqMd4SVjRNLegy1jBNvHsBdYiYZjS8aIUP/EnJg8HpjAnD0z1i8WI0CJ37mhKEPHwzTRRpbPAtMz9j4/RsSm4wx3zo3JZ19Q5DUWixFJuyTnKnUPljDUOspgIiYsFiOSCBwJos/Q4arOIqaLK7FzsRiRsDfA8OkhBk7aCJwYYuDwGOP9E4vGiGB7OBWTa7YWM9oTSv3O+faeHSNA8VlPQzbWPBPodXTvG0xVBVBsOELfseS3GyAvnE24fwym4XvP/ph4PM4TTzzBRfxp48UXX+SGG27gu9/9LpcatkAUOnYOkpE5M872HRsh2Kqs83sOjZJmNJBZZEan19GxvR+Tcyb33nNgiLHecKLfKCZHBoHEvmX79gBuv52qOws59cNOeg4MEkrIvw6dGqGv2ErvoaDS9vUA9mILPbuHGGoJkbc2i6lEHAp1jtF3JEj33uS+Tj/OyplvqGtvP3avlSyfjaz2cfqOBGfWnTv6yamZSRp17uyfiUMRGDw9TJpJefaOnf1MjkeJJLYsOnbOHWcDR4fpbxpm6MQY9jITuatcjPREUs86e64SOBpM5Zt6DgyiN+oZOjvK8OkQnTv6SZ81N+w9OMRIuxL3+w4Pk2FJZyixZo2MTMEshbyeA4OMJdZ0/U1jWNxBeo+MpO7Blmdiejyxl9MyylCi+ujI2VHFhvuVmNv2eoDsWfsXXfsG8DQ4CA9NMtweUmy4P7k/d569d/Wn4tCx585RvD6Hnn3JdxPAXbeIvYG+I0ECx4IET40zHZ5maiJKpF+xYcf2/jlzlcAxxd4APXv7cfhseBtz6Xh1gI4dc+3dd2iIoYTP9h4cVNaoZ4eJjCjx2TRrjTrb3r1HRjBmZTBwMrHH/EYAi8dEy4tKxSbfTXkpnx1oHseaF6T3YMLev1V8NonufQOpfNLYuRH6jgTpOZDcXzzP3nv7U3F/anya6UiU7t2B1HvMqZmp/DTb3pGRGH1HgtgKTJizjXTs7CcyOp2S9TrfZ5P2Bujc1UdWmZVQILEPu+M8e8/y2eS7D54bh4iSe5jts7Pt3X1gCIPRwHBzIifzhmLvlDycjpTP9h0bwZSdQeBYcm6o+GwSamJEyi77BpgamabypjyySm0ETiwdI5L2HgtEUjFi5OwEsenYkjGi70gwNVc59XwHhZtzGDo+saC9kzECoHtPP7GpOCNDEaZCUcJDE4x2hRe0d8+BQXRpesbaFRt27uinYLMLXUKCbKkY0fF6X2qvK92eTnQylsrtLBYjZttwYnCSnt1D5F/iwOaxLhkjkjF5dowYORfBVWdfNEZERmbsnV1rIzqt+PCC9uY8n93Tz9RElPxVOaQZDZz7de+SMSIeg5GuMKCjY4cyN0x+r32HgzMx4sAQ+jQlRgB0vJEY14zQcG8xvUeGGe1IxIhjYxjtaQycTMzbdw5gcWekqnD2HBwCA3jqsxluGyMaidN7IvG7u4exz7J39+ERIsFpYuMh9p7cTXOwibS0NL773e/y+4Qu/nsW7f3Wt77FO9/5TgDepr8bi8WCPtO2dCcgOrCA5ng8tmSf4iudFG3KYaQ9xNFvnVuy7fnwXp1D2yv9qnVl8zdl071zgXtcApYcPaveX8N0OCrSfc/dkEXpFfns+mKTQqS6CBFyN2Thu7aA1td6UkQRNah/Z2mKQKQWde/wYvda2fHXJ2Q3mRyfBO937YcUveK9/yzTK9aCxqf9TI5OvenX8l7tpnBDDsd/cI7hZvXGsBSYCM0qAawGaz5QTkZmBjs/K3tX1VuLGGkfF/nSxs/UMDU2zf4vnhZd6yIUrP6zcqKTMQ7/+1nVfWw+Cyu2lTI5MsXef5H5bf4l2erfr05H0ZUuZbNfGJ8bn6olHo2z6wsdSzecmpr/d9Vl8//ufCQISoPVx9i7by8ul4v+/n7ZTV7EHyX0ej3xeJw0MrhCd6vyl2r0jDVMATc9XoveoJPriJshf5WT7h2DqrvkrnPQK9SxXv/RKtJtaRz4UhPhwaXnkbOx4j1lxIEjX1cfdy5iBqsfKyfdnCaa7+ZvdmLNN6XIL2qx8dM1hPsjHBa+K3OeKUV4UIOcFZlU3FjI2Vd6xH4oRdJvt/+l8LvSgHUfriQ6GePAl8+o75TktoSXbDUPm5+oZbB5lJPPLjPuzYKr3kbuSifH/6tt+cYJeK/xULjBxcnnzjEomMdfhAKzExreU82Zn3UycHRs+Q4JbPhENWlmA9v/4bjMN8zgrrUT2D+yfNsECi5VKvpJ0PCeMjILzJz5WZemb1iXnrFsm/jUJOF4mNO5ewkGg7zwwgsXJUf+F2D37t1s3KiUM30bt2DSmZbpoR3uVVlUvr2Q4XPjHPtPWc4rb5MzVclCDVwrMhVSgmSZbYLGT/qZGptmzz+dUt0tu8ZKxU2FHPnGKSaCgutdBKBULqm5s4SOHf2pU71qUHNPEb2HhxhqGl++cQKVWwpw1djZ+bdNsptMfhYCf1r53jIMGQb2f+nNz6M0Pu0nMjzFvs+/uTkv95osfFfn0fxCJ4PH1Y+xJo+JiT5Zzqv+wVIsuUZ2/736+TiA7+15jHdH6N2rPue1/qNVTIamOfTVFtG1LkJB3YMl6NBx9D9bVfcxOfSs+WANkeAU+74g81v3qqwUqUwNctdl03t0SDYeAI1P+olOx9j1d8J4AejSlj9HH59WNhtHVrexe/9ucnJyCAQC4mtdxB8frFYroVCIDIxcZtgCgM5gWLoTEJ9eIL+6DNZ9tJIMcxrb/1q4NjeCp95B376g6i6uBjsDR9SviUDJXdnyzez76hkigcjyHRKovruItAw9xwTr7IuYQf2DJRizM9gn2HNwNdjJLDTPkF9UYt1Hqgj3T3DsO7J3ZcwxpghUamAvMVJ9Zwntv+mj503Oea18uAxrnlmeS9Z4rVgszpFvtKrvlOQnqzcfABs/Wc1A0winf9Ktuk+SMNj8XKfqPu6VWfiuz+PUTzoZOqF+PnkRCRhh7SOVtPyyW2S/1Y+WY84xsu/zx1NkULXIrrWpv5ZOR946h/g7rNxSgLs+i5aXeundt/Q8LyUVPAt6q2WBlnMRG1dyrMdzf0t/fz/PPPMMt99+u+g+l8PvVe4N4KGHHiItMbF8PfYDAGKjY8RGl38h3qudrP/wrI1YnV75bxG0/2qQ0y90yglK17opbvTQ8O5S1X2SBCVLgfoEVKg/xplfdIo2bAAsbhMGoz4lO6QWGz9dw+Yna2XXKjCx9kMVKZkltbD5LORfkr18w1lwNVipvb94+YazUHl3IY1P+0X3N94/hU6vw+o2L994Fo7+R6uIoASgT9crpzyW/57noPHjftY+XCHqk25NJ80sLH5mISV19WbD1WAlq1JmCFOOEV2aDr3wsVa9x8f6RPlAtdCn6ZcKJ4vi5DMdIoISgF6vm8OSVYONn6ph46drRH3yN2Wn9KEl8N2St3yj87Di4TLKbpbFpOqtRTQ+7cezxr5841kwZWekZBHVYqwlxIkftHLsv9QvFpLxXPp+vZd42Pwh2bsCOPAf7Rz50RIbtVNTcwhKlbe5WfN+7+LtkzjdliIo9Yba2H9gP1lZWbz++uvie7yIP060tytVGKeZZDCe2IyKx1WRkNZ9uJLS69V/20e+28r2z8kXlZs/WkvZNbLYk9xUNuepjwdHv3WaQ/95VkRQArDmmsRxJ3ejg8an/SL7AZTdlJeS6JL2k6J8S35KtkstNn66hvUflY2xaRkGdAYVxLhZ6N4xKCYoAegNOgxG2Ri7/mNVrH6vb/mGs2DIMKDP0KdO+KiFo8qMo0o2B9UEs0LkQ3ipNHMa6VbZxGv9o1U0fsIv6mPOU/TR9UK/GDg6JiIoARiz0tHpdYR71c/j7T4zjU/Jv9/qe4rE7zd/sxNzoayPtcTMqkfLMTtlvr75iVrxHDl/cz5pJgMZmcuTcmZj9z+cpPmFDhFByZxngjAigtLKR3yUXpGbksRTiyNfP8vJ59pEBKX1H6ui4FLXsu3iU5PEp5QTnW/wAr29vdTU1FwkKP0vwYYNG3A6lcqBr/NTUd+8TU7WfbhSdfvAwWFOPHtOTFByr8rCd20eDQm5SDUYOKwQlEyScW8CTj7fLiIoAWTYMki3ppG3QRaD1324kk2fka3DTA49Kx4uS8kcqO6XkEWTIKvcROXtBaI+3qvcbH7SL7q/iUAYnUGvVJYXoOn7HSKCEijzLp1BL/MLFPLamvfIcl4ZmeniOQomxd9587iCKWSVm1JyXWphcRkxGA1zqsmrwZr3+USxAsBg0ovnXQAtP+kREZQAdGk60oyyZ1r7oUo2fKJa1Mfpt4nzUAAl13qWb3QearYWi/t5r3LT+JQ/Jc2mFrZ8MzbB/gLARDDGwW+2cOzb6g8aJL9bCUEJoPyGfDZ9RJ7z2v654xz5r1bV7b1XuVnz2PJxIj49nSIoBeNB9h7cS2ZmJr/97W/F93gRf5wYHFTyXJNEGIwqlX/j0SjxaHSpbgCseHcp3mvcqq915Dtt7Pui8DA6sP4D1VTcKJsDJAlKSfkwNTj57FmOfltGUALIKrFiE65JHVVWGp/0U3K9LDYWXOKkOiFlJkHh25Zfh50P71VusmuXL5AxG2s/VMnaD8rG2DSTYU7FejUYODIiJigBGNJ1qWpZarHqER9rHy0XXyvNlIbRJcsD2IqM2MsuwMQLFDkx9Z8HoFTnMWbJnqlhWymNn5LlvDCCLk2PXrgHOHJ2QkRQAmWvTJemJ9SvnnhptOvZ9Hgt3mvVxz9QqnFJ36+rwY45X/aijHY9De8qFcU/UIhhaz8k+34L1jgxZqXPqaKtBge+coYTP2wTEZSSzyMhQ1XfVYjvhnzyNsjWns0/7uL499qWJCjFY/E5BKXVj5aRt8Gx7G/HxkMpgtJr0R/R1dVFdXX1752gBL9nubckpqamEmXD4pwOHaLCshJQyEpLVVXKqcokzWzAkq8n1D1rcynJLFigslLgsLLALrspl7Mvqgv6bS8HcHitHHmmVVX7JPwPeHGU2Tj3Wi+dKk9y9u5WHMSSo09JGS2Hsy/0cvZXveIqHVPj02JiRFaZGWNWBmU3FnHs2+o3BFZsKyUei4s29ytuLBZvKkUGJ4nH4ti8NkL96qLBWEtI00n08tvycVXZRaeORIzcWZgYiqRK1qqFtAIQQN2dXhwJuQZpJTApqm9TNlwljOhT3+tAls5UEA5ECJyU2U9LVaj6d5ZiykoXV+bZ8TfydxWPxUGYT/JelovBqE/JoqlB9dYicqqyMJgNND+rvp8t34zFbUqVo1aDqbFp4tE4fYKNKECpTCbhu1lQ5CGFJMNV7/YRj8fFldC69w+m9IbVwLPGTmRkmtEeILhAg4UqJwFZXitppmVi5um5cftQ7FcA5OfnU1MjTypdxB8nCgsLqampoampif28yjXcNfOP8fjiVZXMkGFPJ6fGTusv1H3b4+eU3WhnrfKRqq1akpRFlaLxSb/ynaqMq+HBGAyGxZVfdvzTCXGVmN7DQcquzGd6UkaIyl2RjT5NFvBrtxbjrLITj8ZVvyvMkNuQjbMsk/7Do6qvFY/GiU/LqmxJNyeTWPfhSsZ6Jmj6XrvqPlrG2N7DQRyzZDlV9dkb1FR9xX9PGfGYep/VipJLPRRtcmMrMnPmx+pPbe38W/l9de8bxFUjIxyHeyY0nZLb8Ilqeg8Pce6lPtV9mn/YSTOyJI/ZbYQ4jAckDBtFSs5eaGHPKfU+X3ZVHuhkc+SyK3OxuI2Yc02EB9XPb6bDUSZH1c9RAFpe6Kbl1W4Z2cipJzwYE5GNSq7zULgxh94jQyKfPfTtFurvLRV9jyXXeTj3Up+oMpTdZybdmkZOlX3Jqk1JchLA6fjR1P8fPHhQ9bUu4o8fAwMzMkqn40ep0NWr6ueutpNhTyezxMToOXUlKpKkkuIrc2j/lbr5VODgMO66LI7/UEb6LLs5l/w1Ltpf71N9rYHEHMPk0Kek0ZZD794hTVU6IsEpcSFQc54ZW76Z0ss9IhLs6vf4II6IvFFxczHGrHSaf9al+tnG+ycgFsfqMRLqUNdpIgg7pBUeUHwob5VTNG87+cNOEI6xAKMdIQaaZHmAPf8on0/6rs0jf7ULY1a6qKqUFtTeXYrOoBfZ/tzLfZx7Wf2cJonRthBDrbKT8of+TV7VqOqOQmz5ZnH1Kmm1JoD4VJy4QfYBl12dj9GRztlXelV/U96r3BRtdmOypyf8Vx2yyzPJ8lpF72t6MpaQKZHlJ3f9XZOMWJdoqzZGJLHq3aXo9Hp2/I0sXrS+JttUd1Qqi+9gc1h0jzm1WZiyM5TnW2T6miQnJbFP9wrxWJzi4uKLOa//RTAajWzZsoUf//jH7OdXXMO9qX+LR6NLVlWy5ppIMxlo+6W6qltJ8o+tyIjBZGD4tLq12LnXepfP4S6AjZ+qRqfTs/Pv1K3TIyOKHBGgkDdUcpV2f+GkuEpM8NQ40xNRpseXJ4PNRsHGHDKEB+1LrvdQtNFNmtXAuV+oj8NFjW6lMuIJ9Xs38WiceFQ2Hh3UMMaCUvkqPDgpIqXs0jDG9uwfxFkpy9mMnIuIxweA+geUObJan9UKV4OdmtuL6T0wKKpUtFfDfLL3UJCYMLdLRNt+7doPVtJ7eEg0b21/LUD7a7LKgeY8M/FojMkhWUW5vDVOssszRVUbK27MR5+mF+VBiy/PJbPIgi1fVgEsMjzF9IQsJnXtGKRr/6AoBhrteiIjMRHZyLPWQcWNBfQcGKTlhR7V/U7+pJNqoGe3+nVnQaOTru2DDLcsPO9aqHKSMUcharlr7PTsDi7620lyEkBPtI1pFB/as2eP6vuT4Pcu95bEzTffzIsvvgjAdbaH5vzbQkSllNxbYrN5USxAVFrzZ6UYszI4/WKnbDM8Hl/+erNgzoGGd1Zz9D+aVROOYFYp/M8dFxGPLAUmzC4DA0dkJ52kyKq0iKS2QCH0jJwbI3BQ/aaXq0HZHHqznycJ6XOt/rNyzC4jB758nLA0tyHwowsJm89C6aVuzrxwTvRMWuTefLfkoTPoOPO8+knDBYWGd7TxUzUYjHoR6c3itRDqD10Yf7CA920e2gQbeVgU8pqElJjsZ8mxEGp7cx+s8FKXahJoEhs+WU2aSR5j/Q940afpOfofreo6JH1IjYzWLGx+ogadXsfOf15gE34RgtK8ay4k93YeQWm0/hS7du/CYrEwOqo+Nl/Enw6Sm2U2HGzSXXP+P87vEI8rZB4hOQeUcSI2FddEeJBcs/6dpURGp2gWJJjNTj2rH6vRJv+4WSZJpwXWEnOK7KUaZqi5tVhE5gEoutJNx68uUAl8M5idZsKd6p+t8Sk/U+MyiZjktbT47YWA7+Z8olNREclGi9ybOc9E2dUezr4WENn8gkHDO7KWmFn5YJlY1sjuMzPScmFs4Kq3MRWKiq6XsyITW75FPcEwgQvxXK56G6GuMcKCsJeMsRNDkyJpY3Oeifr7vOz5yin1vqHBj/I3Oym7Jo/x7gkO/bswmTzregvJvc0mKAE0F++ho7ODhx56iK9//euya13EHz2eeOIJPvvZzwJwje6uZVrPggkxOafhXaVkFlk487NuccUT0fVMSin8Y8+0i6SmVj1ajsVtZP8Xjovk20wOPeY8s7i6jxQSUlgS3qvcjPWERRJdmSUm0syGN/15Zl9P8lz+bV4cPhsHv9kiJjto8dsLAVOeidLLcmh9rV/ks1rk3oqvzMGQbqD1JXlVhAsCDe9o7YcqMWami2SNTHkmJoITF8wfCt7mout1WY6o6o5CTr3YKb5HS5FJ/m0IkbsuWxzH1zxWgcmZwf4vNKkmgwKU35qPMTNdPUFT43e+8VM1GDL02mR8EtdcSO7tfIJSaF03u/bvxGw2X8x5/S+FwWAgFouRiZONhmvn/NtCRKX49JSIyDMbjU/UEp2Ksuv/yQkjkmtW3l5IbCrGmZ8K9lOM0PgJP+GhCAf+VSDjjiIbFTgkI1ZKYXQbFSKV0O4Vb8/n9Evdon55G7LpOTSk6R2LYQSj3SiqYrXp8VqmxqbFMp1a/fZCoOjyHOLROJ2CsVmL3JvRDt6rCujYNUC4+y1oDA3vyGiHtR/yM3x2TCS9aCsyMtZxYWxgLzNBLM7IOfXXy6qwkFloER8YuBDPZS8zERmNi4hQGJWqsOH+CAe+oj7GGu16/PeXcfy7Z9RXX0r6kWC/0VFlxX+3l9HOEEe/PV+1ZSGC0rzrsbDc22yCEkBLyR5aW1t56KGH+MY3vqH6HiV400hKMLNZpkPHtbYH5/37bLJSiqQEuFdYKNjg4tC/L7ERkyArxaNRzDngu1G+6b76fT7MbiMHv95CqOvNW4R4r3bjrsti3+dlJ1Man/YrJ7EFVT6yay1U3lwslpgD3rJEGyzguyqPlp+qZx+u/VAFxqwMMWlBCxqf9jM9ERWdJKq8oxCzM4PD/35WdZ/UM2moEiWFFpKSFqTIJYJnKrzURe5KB/u/cUb1u7UUmFj1Hh/hgGxg0YJNj9eiT9OJnil3QxaTo1PiSkAXDBpiQ/27SolOxjghmHCV35ZP3kong2dGRf1Kb8zFVZkpjrFSpEhrfyUjZWTXWsipcdD8XBd6W2LcW4KclLvGimeFgyP/MYuUMZukdHq+bfpDPRzWv4LJZOLzn/8873rXu0T3eBF/Gnjuuee44447AFjDVTh1zvmNZk96Z00BVz7io/23PaorI1XcUUD3viEx2UYzKUWI1Y+VEzgyTMdv1C+Q6h4swVGqVMyU9PNv8xKPxjnxjIxA9FYm2rjqbej0OlEFpsan/UxHouzWksQTYPX7FU3w7f9wXLX9zE6ovqec7r0DomosjU/7mRp78/1VC0lJKxqf9jPeOyE6bb/iPWWMdoc5+6L6ubiWOZ4WmAvNrH53mZiQUnp9rpg0dMGgMTas/2gVJ59vFxGbGp/0i6s8YYbV7y6na5fse5JCK2kNwP9ACcd/eE61HVe+z8e5X3UTPDXTYTZJ6XxyEsAr8R8SJ47f7+fYsWOi+7uIPx0YjUYmJyfRo+cq3R2q+2WVm/Benqe+MrMJam4toun7S0hHL4Da+4rJrsjURkoRwL0qi4KNLg59q0W0wb35ST/E4uwQnELOLDFRdWuxfLMH3rJEG1BIUW2vqieWNzxUSqbXwv6vtTDR8+Y+VONTfqZC06JKRyXXerDlm0Xxu+HdpWQWWi7YfEhKUtKCtR+sxJiVLhpn3auyyF/n5NQPzqon/ZmUzZTxnjCHvqY+z6gF6z9RRbpZNm91+m3EpqIEm9+iix8NsaH6zkIAUbWmgs1Oyq7NZ7B5hBP/rX7tWLDZiXuFg0Nf1VbJQy3WfbiSdFu6uFKbpchE3moHLT9Rt1ZwVJopflsuR77Zmvq72SSl88lJAOPxIHvSXiMjI4PPfe5zPProo6J7vIg/DRw/fpy6ujoANnANdsN8ebDZZKX49EzutWZrEb0Hgww1qSAfx+N4r3ITPDMi2qiH34GUIkTDu0oZaBqhS3DIzndzHvlrXZz7da+ITOC7OQ9DhkEsUfVWJtrYy0wYTGmiKimNT/qZDE9rqtQjgf8+L44KG/v+pYnIiEpiqhHq7/HSe3hYRELb/EQtkZEp0eEjLdBCUtKKxqf8jHaG5owxy6H6niLC/RHRXHzNYxWYsjPe9Gcy2mHth/2MdsieqfBtLjr3DLw1v0GNsWH1o+Wc+VmHKC5v/GQ1+nSDuGpYw7tKCRwJ0vMm5ryMOUbWPlpO8MwYx4V7CrNJnclxbylykv++Ijp39zN8ZmbCO5ukdD45CeA30R8zSYTq6mqamppE9yeBvAahAOPjyumhOHGOh3bN+/fYqDIIzCYogVLO1ZJjxJSzxI/rZm493E+KoGTzqdcI6jk4SDQSg8n5ScelsPaDFWx+slZ1+7ZXApo2z4daxmh5uUvUx7PSSZrZgPc6mVZs49N+Njwm0wZf+6EKNn5GVlp1xXvLaHxKpu+59uEK8lY7sQj0ujt2BhgXnKL6XRAejNB/QsZAd1XbseXLdICH20JMh2Wl7CxeC+s/VkXuBpk+uhas+UAFtdu8oj5j3WEmR4UlB1dnY8o2ykgzk5NEgpP0HHxzq2MA9B0ZYqRDxujxXVNA7V2loj5rPySLQ6CQ4zY/WSuKkzafhcaP+6l/p+z+7IUWHKUyaZ0zz3cz3hsWEZQAWn/WK4qx9Q+V0PiUXxRTAMa6Q0yOCPzVolTgGzoRovm5WbF8mepJxZe4sbqNGGevtU8mEo0LEJQA9sd+wfT0NNnZ2RcJSv+Lcfvtt1NUpOi+7+fVhRsliUmzCErmQjPWXBO+6wpVX+v0j7oYPxfGnGeakVZTgcnRKXGMtJaYaXzST+Wd6u/vwJfOiIhGAMeePcdIZ0jcz1Fqw+FbXM54ITS8p4zGT/gxO9VPxZ21Fhqf9OO9RjbH2/xELSvf5xP1qb7dS/mN6u0NMHxunJ79b660LEDPwSHCkhMwAOixekzkrVmAuLcEJkfk/urf5mXlIzJ7a0HuRgfrPlwp8iHMihRrUCgfYisw466TzSX7j48w3n0B5uLhMOPdE3TsVF+5ylFlpnBjjvi7aHzKj/8dJaI+Gz9dw6pHy0V9NnygWrxe8t2cT7otTVzi/cwvu+g7HhT1IazEWAlBafMTteLvIhaJMx2J0r1HfaLQWqIMSMe/o56gZM4zYfWYqLy5eM7fJ4lJCxGUmuL7iaOMo3v37lV9fxfxp4fhYSUPECPGifh+1f0qbioms9CCyaNyPTJBiqBkKVK/hune289UaJqYLOVFw7tK2STI9QQODiub58Kw33dkiNM/k+W8ssszMTrSKb0uV9Rv85N+1r+/StRnxcNlbPikLE9Ws7VYIV9JrvOeUorf5iGrXJDz2hVgtC0EE2/+WDvaHiJwVJbz8jQ4yBJK7QbPjhEZnhLJYJkcetY8VoF7zZuf82p4dyk19xSJ+oy0jzMxJPsA81Znk1lgQZqyH+8J03MgKOqjBd17Bhk6LatiU3FTIf6tC1SHXgIN75bFIVCqO2x+vDYlP6YGJoeexk/6qXtQNsfLrszEWS3zu64dgwRbxzjxnGwjqmvHoIigVH5rPpuf8IvGC1DWc5GgwF9Niv1CHROqCUoAvusKySyyYMqbub8kMWkhghLADn7J9PQ0OTk5FwlK/4vh9/u57LLLANjNLxdsE48qeyezCUpGOzjLMym7Sv3coe3VACPnIhjtKBvqKhEOTDAsXG8bc4xs+nQNlVsKVPc58s1WEUEJoOWFHgZPjYqrnXjqHbiqMkV9Km8vpPGTfsz56o1nzjey8VPVeK9yi6618ZPVNLyrVNSn/n4flTfJcl6BE8N075ZV9tOC3sNBRtvGAYH8WATspTby1mSLrhXqm2C4VVYB1HdzHvXCMVMLsmttrHrEh9Et+ABR9mqDZ2XP5Kq041kps13voSHxt64FkQgMNo/SsVP9d2vMMVJyZS4N20pF19r0mVqqhXPdtR+ppOHdsuusebiCzU/I9jULNjsx5xhx1jpE/U79tJNeDXvCR77ZKiIobfxkNQ0PCb+LySkiw1P0HlZ/nWRMPf2TuVXnliIoGe3gKLNSccPcMSZJTFqIoNQePcNk4gK7d+9WfX9aIBMHFcJisXDXXXfxgx/8gI5YE6WhBiyWuZvjsdGxedqxu796BluuhYllvrvkpCOJDR+vIs1s4OA3Wgh1Lb950b1ziO6d8s2U6GQMNNSfUpjUU+z7grrNdOlGPcDJZzoUuSmhJNPk6BSjPbITLXq9Hr1Q9ig6ESUej2POQbX8WMvLXeTUZouqXfXuHqZ3t7x05eYnayGOSD/zwJfklXl2/ssJcWWa0z+WJe8AsgqMpFvTcFZmabKHBKbsDNJtspBy/DtyH9/3+dOYlyIwLoBQf0z1d5eE75Y88lY76dgeoO0V9ZsjkopfSZx+sQOHT7apFIvGF1K/XBLGzDR0eh1jLTLnm56I0r1PJhe0/a+OY/GqJ0MlcVCQeLHk6Fn1aA3dBwY4+4KgGoJeRzweF1fQS1XrUxn3Nj5WrVRe+seZ7z02NobeuPTkeu8XWsmptxCZte6JTU6hX4SgNOxvgt1gMploa5N/Uxfxp4X29vZUJcvfxH/KZbpb5jc6r4hmuDPMyefaGDgqW1yZnXpWv9cnqjQjlV8DUtWaDGmyRL3v5nzyVmWz/R9VVtwJw5Gvy08eH/iPs2K5rZ4DA5iy8iAjA7U7eoOtIdCBOXu+BNFSiMcgNi2buPYeGWLopGzeIK10AlB2Ux75a520vtZLl0qpz+4dg2JJvvBgjP1fPCaStAJt/movsqBPf1PPgQCQU51Fhj2ddIeR8KBK/wujqSrU9r88LiIjArS8IJf/3fxELfEYIhnJ8CBiSa/gqTC9R4fo3qd+HWguNBOPxZkcl5HrdXoduvnKA0tipC2EOUf2nbe80E33waA4FvXuCtJLUHX7NR+oIM1sEFWQxazEoSnhYYtwz4SoMluy8pJUhi7cM8Hx752dU0UpiYUISuF4mGh+mLRAGo888ghms/DjuIg/KZhMJv7v//2//J//83/opIWyuB+TbvlN4X1faCar3CSSp4IZWTW1lZGCzWH2fE4e96fCUWWtKawusv5jVUyFohxUWb34zP/Ix4q2VwP0HR8VVw8K9U8QFshzAOgMOnR6Wc5rcnyKeDSmSGKpvMfTv+ghb7VjzsnW5TDUNK5JVm7jp2rQ6WHn36o/DXvkW63i6+z511Ni0lr7r/pp/5Vs4zQ9KwOTMwNXlZ3A/jc352XLtxCdlI1lzRryeEe+2YrJgUg6kQnEFZTyNjnxXZtH585+zr2snuwt3dwGOPV8G9lVwpzXtDznZc7OAL2OYLtgPpSRweTIlPhQ486/bZpDslEL0ZrJBJs/5qd774BIZtCQpod4XFxBT+qvax9RKoVJZej2f+k02TXWeTFyMYLS+PpOdHt0mEwmzp2Trzkv4k8Lv/71r1Oyb69Hf8rbDPNzXufvGUZG4Nj3Whk+rSI2zM6XGRVppsjwlOrKSIcEqhmp++uPEI/HQTjnKLjEiffSXA7860nVFXdOPCPPGx/4xlmRxBlA78EBMgtl66RwdwSdQY/Rni7qF43GiU3JBoyOHQGG22TzqOYfCStJocjR+a7L59xrvarl0QaOjTBwTK1W1Az2/ctx9RJTCWjx1+zKTDIsbyqtQLmOz4bFY8LmkUnsSSUQAUX2VsaFovP1AZHkHcD6j1ej18MuST4lAk3CKjuR/ggdbwQInlHvEEY7xKMxpkOyua5er8Ogl+VAB8+MklUk2zfs2jHIwOlxcSwaOjEmqpjW8FAJRqeRvcLcaSwG0xFZ7j0yEpsZW1TsNxpzjP8/e98Z3sZ1Zn1QZwaN6I0gKgESYBE7KVpucrfsWJZjW467LfcuF0Uu34/Npuwm2U0vm806cZqT2HFP4tiOExf1XkhJFIso9l5RSAL4flwAJCVKuJe7cpyE53nyPJF5BzPzzp333nnvueeg/A4vIoMx7P5Bqg6aTJL5k/jUhcfYGLDvp22YOHHDbzKxIEEpFo8h7OiFpFuC++67DxoN2xyeFWfU7i0NmUyGmdRE82LVrSf9PRGZnZTOJSspbGL4LrFj/08WlrSey4gGAEt1Dhy1Ruz8DmUiSt16+f0+8Do5k63aYrD86SCmJ2eYFjx8V9lgKdWh8aU2NisoBaCyKpjJCP9ICFzvgMYmMFmWVT6cj8RUkskSzFyhQd4K8xm3mhKMgPviPBzfMnjGn+snZffmX5OLid4wuj8+s8oLwRudEIvBZAlpq9PBeZ4F+19ooyaz5K+2Q+dVYfsPjnw6rRM/IRhKlBjczzbRr9sYRDKexNZ/py+W2s7SwbPShua3O88oCa/4Njc0DgX2/OAQwgMJapJS7tl6mEu02P29+YunpyIpWavVyHEqcPjl2eJTYmp2nBMLJxfAGsJb0S1qgkajweuvv44VK1ZQXdsS/rGxf/9+lJaWAgA8CMEnot/NHVybh969g9S2b+X3+dCxtR/9u+g/fIRcAeW3eTB4ZAyHf8tmW8ICxzlGOM8x48jrx5lsy2o3FCKZTDLblumDCuq4/UNCAKru9qPv4Cja36Vb6NB4BRR+1omWP3YxPaPQTS5Mhadx9HfsCz8ssC3XQ9BziyLcsOCTsnvTeAXYKg04/GbHmbUaTNmBtf+1l4n8WHYvUdrZ8wN60lHVI34Mt0yg+Y0z+4w+zdB4BYx1R5ieqalCA/8qBzo2D1C/rwCJt4SXYOu/nTmpZ4BI6Y/3RJiJo+UP+HDsz93UubjkTg+OvnIMkSH6ovaf8TskkgmUlpZi7969TNe3hH9caLXajKrShaLPUh/Ha8XwfSaPetFa6xfgWmljtvwpusUFTa6CyVZtMah5sgAz4Th2fZe+NuI41wjn2WYc+l07hhoYCPM8oLbwGD/2KfVv+wTgudQCnU/NFO/SO90AgH0/bqM+RleohPNcC7OdHzN4wH+pHT27h874c/2k7N7cF1sQGZpC744zW/PyXmmFXCHDoV/TL2LpQyr4LrPj0Evt1PHOO98IU0iLXT8++qm1TvwkoPULzNZ1NU8QVbZtX6P/xtSHVCi42onW93rQs+XMKcP7V9thDGmx+3/Y7CMNpWo4ao3UBDmtX4ClVM9kkXc8eRRHJfuhVCrxy1/+EqtWraI+dgn/uOjv74fZTBSmvSiCV1J8cqNTsBy9l1kw3Dp5atu3E5ZKi292onvPCAb3syz2i1F+XwCDR8bZLdIYYCjSwP+ZXDS92cl0fZUP+SGSiZhtyzQeHmOt/8TJnwPKbvVi4PAYNWGXM3IovsmJtnd6mYhH+VfakIgn0fJ79s3wLDCUaKA0cUw2Z4vBJ2X3Jtg42Mp16Pyoh5mwxYqSO9w4/lE/Ro7Qr4GFbnBCwouZbNuWrfNg5Pgkjr1NX7f5R4Ng4xAZijFZxGlcHIpu9OH4x31MBPvSOz3gtXJs+zrbmgArap8qwERnBAd/wSaKUHKLCx3bBjHceEIN/RQkpYJr7Wh7vx+xgTlcmrnjo+hkgtl78d8giSSKi4uxf/9+quv63+DMb/MFMD3H2uYvE785bdu5TOei61xQWXko8uhojL3bRzMEpaxKK3MmHBllJEbRj/L7fSh/gF6+f/OXGpl3ZA80jCKZSILPYaNy1j8eQslaNnkx/7W5mY8maiiAgrVsEnBQAEU3s9mCBa53MFtbafOUkKvZmNc7v3WUiaAEEIs9LkcOUxm97KXtLB3qnwvBeQG9fKU2Xwd9vgbuc9hsXj7NMBXlwHWOlemY5RuDqH6UTaZd61Yix81mxdO9ZRhbv3KISW1H61ZCppQyEZQqH8pnlpD3rLIwW/g5zjfCXMHGevWvSeUEhtzoWWVBwWoXgp/Ly954DhLTCcRjbEzt7o+HsekLDdQEJYVTgbqNQeT42ZK9SAyivDSQGsCzcXsV5H+dHw6dRFA6HZwrjNB5lZl4zyUoLYRwOIyOxCHE43GsWLFiiaC0hAxKSkpw2WWXAQBa0YBIkq6AKujJjpj8VfTv7+7vNxOCEsMGqbTSh0TONg3VBgTUbiiktrfq+GAAm/61gYn8AhDVx0SEbRdW6CYXCj/rhv1sQ/bGaQiEnOK+hM2uxFKlhW05m22ZpVYLx/lsktk1Txaw2TNFALlGBoOffj401hLBtn8/zPyMtG4ljAG2cbD6sQBqN7BZRrjOtTDLZX+a4T7fCmMwBxoGy2HP5VbUPxOCoZh+HmWvMkDQczAyyjDv+UELE0EJIH1OxzjHW/50EN5VNqZjQjc6mdWkCq5l/EYCUSFhvbaitW7UP85mLSRTypCMJ9F/gK1yt+ObTUwEpfL7fShmlN4X9GTeNT2x8G76Ux0DEIVbWoKSNiBAbRcQupE+z32QfBOJVEFniaC0hLkYGRnJ/P8Pk29RHxe8wYMcl5La5mukKZIhKPFa+uubmZxBMplkOgYAQjexWZhu++phJsIMAAw0TiAxk4Bcw6Ygt/zxEIpucDMd477YgqpH/EzHAGCyXwEA8GC2BXNfbGG2ttJ51OAZFTb3/biNiaAEAMZgDrHNLaOff+oKlVj+dAiui+jrV2oLD3OpDq5z2WpEn2bYawxwM9gLAYTMUvkQWz81hbTQ5bNZ8Qw1TGD7148wEcL0+WrwejkTQankdjeq17PV8OwrDMwWfpYqHUxlbMc4V5pQ+bCfyWLQWqdHaK0Hhdez1bxmJuOYYVSVHGqYwOYvNlATlHitGDVPFDBZRwLkuzyZSLAp1PHA4L5xJgUv/xV5MIRyqMeiaDKKw9iDeDyOs88+e4mgtIQMTCYTnnrqKQBACw4iFqdcueYAa4Uevkvpv7cO/KydEIA4UCutxMYSSCaTC639nhYqB4eqxwLU9laDB8ew5cuNTAQlAJgOzyDOqJbivdyK4pu8sJ/FUIvigPJ7fcz2bdqAEuZKLdMxuqCK7dpAVIKZbMtigMLMM9W8YgMx7PxGE7MykrFYC1Mx25hWts6LKsbx1nOhFY7lbM/n0wzHciNsVQYoculrRNYqLeo2BmEool830waUUOcqYCrWMl1fw6/amQhKAKC0CNB72eZ4tU8WwHUJ2xpy/pU2ZjUp96UW5mPK7/PBeRFbnyv5nBvLH2fjBshUHBIzcQweYas37/txKxNBqegmJ4puZOM6gAOScWBmas7aQ5b1Ri7VPfe/cOxkgtKpjjFxMPjVCF0zx9oyi0zp1vi7SKZsxD4JghJwhu3e5uK9997DBRdcgClEcDS8F/mKZQDmqyilkSYqbf9mK6y1GoSPs0l4VT7kA5cjp7Z927cIWTsA4LVsxQAAgAKoub8ATW8dp1JGGm0KL0rhaawjjLFOtt38ObkKSAUJWSCnPLTijnzwOkLQ6d9D93KU3uiB2qaA43wjOiilnCVSMURiEXL8Cow20V0cy+6UuQh+Lg8jLRPUVoAHft1G/g9DuKNDMSAJiBkWaLu3DEOmlKJ/Lxuzuf65EMY7w9j/P21Mx7Gi/rkQIv0xJpJX89udmInQL0AAhE+YSLAtHm/+YiMUdraP9OLb3eje0c+kCLQY5SkJJ4GE0RbGVm4ARGBSD8qrN0EkFqFvFz1jXetWkpzA0Ld7tvZC71Oj8VU2GUrW97XqET/6GkfR/id6FrlrhQFiqQhyJZvvCuu7k7F5+1e23L3tP1thrVYjMbIwOSkRic5TUxoI7AcOARzH4fXXX2c61xL+8fH73/8ePM8jFovhY7yFC5F9V39kCGj+Uxd6t46wnUwA6p8IMdm+bfoi++4ZTsdBIhfDfpaFSTXFdbEZer+a2p51MRZfDS8fQ/kdPnTtYJD6jQAylRS6fBXa3qaX7/ddZkdiOslkeea7yI5kIomO9+nnEBKZGDKBLV8uRgnIUKyCpcyAhp/TS/fv/u8WRBhtXpKJJJJxNgHZpjePM9u8lN3rg8LALaqPs2DZOi+UVp5pJ1rTK60wLDNhrIV+53faPjLcRT8Z6PpwEMMHBxFh2GBuW66Hyi6giWFnNcDe5wzFKmLBxjD1cl9ClCqCV+WhkVJm27ZcD2MwB/I7ZdRqQIJeDJlSCk0eo+z1jkEo9GyVoa4PB6ktFgGivOQ624Id/9XEpNjEa+WQq9neu8gQm/V22uZtsjeKvf9FT3IbORJhGvMihUOQHhNDnODxwQcfUJ9nCf88aGxsRDAYRAwRHE0eQL5ogV39J2D395thqshhsvkCyKK/2qGgtn1jUa2YC5VNgFjCNg6CByruzEfb+z1UykjRviiT9Vgaw01jmOxni1uOSwG5WgZeK6a2Jiq6xQWtW4WR9klqO7HCzzhgKMyBc2WMeme6SAyIJGLoCpXUNm67vr84NW/fZ2yY6IpSq/s0/aELTX/oYiKmRHoiQHJ2HkGD8WNRtP65B0MH2Kwzlj8TwvjxMA680MZ0HCuWbwxhsj/CVEM+9Lt2JBNs42AynkSS0ap5678dAm9mq3kVXp+H3r1DTLaBrJZyACBTSJk3p7jONkMkFjFZ+LkvsEAiE6N/D/0xOr+a2Aox9O2ePUOwLNPi0GtsNS/W93XZPV4MHRljskC0nWWCVJBArubAclOHfsOmblz5sB+cRoZNX2tgit32/zwCU0UOtZXhUKgFaABUKhXefPNNpmtcwj8+/u3f/g0///nP0dXVhY/Fr2Mlrp3946kWYWPA4Vc7MHiQbdEaAJY/HsTU+Ay17dtWRmVuAJDwEsiVUuRW65gUdKw1OphLtNhH+d1J224uWt7rgdLKY3A/g6pbDBAMHPT5aialnuBnXUjMxNG3c4T6mILVeUAS6PqY/vqkvIS5RrQYJSCNh4el3MBkF7f7Ry2InWjNlAXxRAJSRpvUI6+2Q8KzUQRCNzihcSux5QwrtAauyYU+oGE6T/u7nRhvn2Sy9xJzYiCRRGyUPt4jRyax6d8Za1FFGuS4FMzqWKy1RZWDg0gqJtavlDBXamEp10MiSHCYck6Qk69Abo0RKjOPA7RWthzA6zjoXCq0gz4ntH/YBzWjPRyrbaLGxcF3mQO7n29mUmxSWhl3MwJADExEKM7IofIeL1njZyC5xfpjOPxqJwYbJk49LiYTGTWlKecQkv0xcNMc3n33Xerz/G/xidi9pVFXV4etW7cCAFaIV0OhyFmQpDQXIgkhzZTf4sTuH8y3ajrR7i0NW50WeWeZse3rp1koW+C2S+5wQ2Hi6XeHMpB50sjxK1C01s1M5gh+Lg9KE7+ohbMzCYVRDGudGS1vMiRXBeA+14K2P9AvyH2SqH8uhJlIfNEkp08blj8TxEjbJBp/0Z69cQqLsXtb/nQQ451hHPjp378/uMIoRtl9hYiNTp1xG7/FQGHnoS9QUZP80sdYynPQ+hbje7eIPMeC3LMNyK01Yv9PDiNCeTuCESi/L4TpyRlsZ5SmZbkf31U2mENa7P3R4VkVpTROU2z1XWWFzqXCjlP0nRPt3vxXmTA1MYNj7w1nVU9Kk5TemfgZkkjA6/WiuZnda3kJ/zxILwxIIMX5otXUx3kuJzuYWyk/nqoeYbP5AgDBymPZbR50bB2gJ88IYLapql4fgEwpJUVUymMFvRjFt+ej9Z1uZpUfJiziftyXWNC7vZ/JnshxjhGDB4aYjvmkUPWIH/J0kftMWpB9Qii+zQ2lheF7Aouzewvd5ILGocCWr5zZwtAnhZonCiAVJGfc8m6xcF9iYSITAoB3lQ0tf+7+1PXrqkf8GD42geZX6cme5ff5IBg57P4RO0GQJc/VbijEeEcYDQzfLQDJ881/6KBWUSq714c9DN/iE8khbBW9D4lEgosuugi///3vma5vCf88uPPOO/E///M/AIAqXAitSEt3IA8su9lDTQDQFSrhu8TOXB8qvM4BjVNJX+vgwWzpxJt5VNzjxWRPhInQ4Fllgc7NZl32iYAH3OdY0PYntjHAudJ0xq0zFov659g2F3zaUftUIUaPTTJZnS3G7q3myQKMd4TR+Cs2csqnEjxQ/2QI0YGpRZPdziR4rRj6oBZdDJsyeK0Y5goD+3u3iDzHAkOpGp6VVhz4STM1ORI82QQ0NT7Nvg7AcD/2FQbk1Zuw9ydtiPbRB8FxrhHmYi11vk4rqh17h75W8EHyTUwhCpfLhba2NurjlvDPh3TNSwYO50pWk/+YRSkCAOzLdZAqpWh/94SccYql0tI7PRg6Os5kG8RpxChdl4/unUP0x3FgWiAHiFqRYOCw89sN1BZXnAYI3eRDx8cD6N9LT+5kxiLux36WHoOHJ5lIOuZKLUaPRZiJPZ8E0psLdn7zEGJjn76aHCv8q+3Q+dRMJIvF2L35rrDBGNRg61f/MdZoKx4gYh9n2vJusbAv16Nr1xDT+5q7woCBfcOfun5deqcHE90RJkJY6AYntD4Vdv+4GZFuxjzCkOcqH/FjvCOMIwttIjrNemP5fT60/7Xv1MSrE+zeim/Ow4HfHCfXlW1MFIkRi8fwkeg1iMViXHrppZ8oOfwTsXtLY8uWLeB5ssD6UeJVqmOS8TiKrskFr5XDdRGdhUb3lpEMQUlhpN+1I1dJiaIJLSkvVQMN3eRE4Ho6KefRpjD2fP8Qs6WYOlcBuYbNusx9mQX1z4WYrY1sdToojHRdIzyQYCMoAUAYiyYo5bLYqACo2xhE/bNs9getf+5mJijVPlXIbCECBZifTc2TBSi/l95iECAqQiwEpcVi85camQhKKq8CyzcGmSzvoCCWXSzwXmFF/XMhJnu08EACh189hsaX6HcTldzhZn7fzBWa7NaUC11fV5SJoJQ+hoWglHkuDASl2s8XMltGWpbpiFoTAyIDwKavN2D7D+iLqtXrA8yEK41NAZFUhHCYbqKVHm+aX+s5JUFpIRj8atjKdVkJSmkc4j5EEuSa3n//ferzLOGfE01NpKgZxwx2Jv9KfZytQg9rGb3N1Y5vNmUISgKtwvJUFGKpCFqXkvo8iBACEYtVx/bvH2EnwMjlkCmksFezJenqxwNseTB1TY5z6M/T9nYvM9mo44OBRRGUBD2YbL5MFRrUPxdisj9ofLUDDb9uZXo+9rMNqH82xGavB6K4wmLZ5brYjLrPB+n7NIADP2ljIigtFg0/P8ZMUCq714vqx9jkvzVe9l1BtRsKmW09tn33MJr/1MV0TP2zIeZ5B6tVYhqsBCUAaHmLnqAk5AowlrJJeBtL1ezvgUAs8vQetnPt/n4zdn/3EDVBqeA6B/LXpOyRqMmhKQU3Ff1OzrT95/b/OEJNUPJdaYPCxKGAwYpph/QDJJNJKBSKJYLSEk6LH//4x7BaCdF7B+h3H/ovs0NpFeC+mM4WavjQZGbhmtfSl/VkKikknITe9i31ynuvtMJ/NZ3lWbQvil3fPsSsuKL3aohaOaPt0vJnQtCH2Gw/9SEVeCvliaJgJigBWDRByVLFZjNb/VgAy59hq3k1vdWJ7d9nIyhVPeJnHnMBQO1iU/epfMiP0jvdTMds/fdDTASlxWLbVw8zEZR4rRi1TxUi73yG7wkeUDjYYpZ+D6x1DHOcKHDwly049AZ9zSuwJhf1z4VgYJiv6AqVzDaTABAdSTARlNLHsLx39vSckIGgVP1YgNky0lZmgFwtA+QMbgxRYNPXGrDjh/QEpYoH8sl4wHA/WpeSrINM0R2UfpYdfx1gIpTaKvWw19C/B8dNjZhK3cgf//hH6uOW8M+J0VFCsJlGDLvi9GqnznMssFfSf0ft+3FrhmjEaejmXrFYAhJOAo2dYS0jRghEZQx2u7ufb8amr9ETlNIQ9Bwsy7RMx5Tf60Plowx5MLVwb62iP0/Xx0PMZKO+nSOLIihxGmLdRQuVg0P9syEE5tonZcGRN7tx4OctTEQOXVCFuo1BZgs7zsQx2W9Zq7SoXh+AYKM/qOnVLiaC0mLR/GY3M0EpdIMTFQ/kMx2jcrDFDCCKgqzWvLu+exSHX2NTLqz7fBBVj7LV1kzL2GwC0+jazEZQAoDOjwap+zWnETNZ6gHk2dRtDM7O2SihMPPQetm+Dxt+1Y6d3zpETVByXWKG74qUdSht3DhAJkjB5dDzPDiNCEgmsft7R6mVoex1OmicCvgvt1GRdgFgi/QtJJNJaLXaT1y98hOze0sjEolkGM5/mvgpLpRcn/WYAz9ph602Bz076GXaAKDoZidyXEq0f9yHjvfnyAWfghG9WMUUrUfFJN+bVuQovcuDfZSFm23fPcysZjJ8dBz2SgPUDnqLtBy/Ap6LbJiqM1Kr6KRVTSKDMez+Hh35ylSmhv/KPPQfHKWWOiy9i9jEJaYT1FZsk70RyJVs3bz7Y7rfngtW+WYAqF8fAkRsNhVSjo3MAcySesLtZ1AOB4ChRMlkjaY2cxBJReRjnRIla93QOJRoevM4+nYxzLyTwHgLmxIGy70AwHh3BAojT/2uAUD+5Q7mPlD/bAixMQaFJwVQ/3gIEz0R6nyjMIrhqDfBWqHHNpbJYJL9Xdj1naNM5KHA9Q4MHx6ltpcEAP+1uZAppfBfmssmrXo6MmkyeRK7ueyeQiSTSWz+Etvi9O7/OgzeSPfB2i87hJHpAfA8j6effhpOJ6Pn7RL+6ZCfn4/nnnsOX/jCFzCMfnQkW+EQebIed+jlNgy1sY8b9c+EUu9BdvJEZGhxUsnOC+2Qa2RwXWzGMRrLx9QCualCA02uksoqLtITXZyyTwJIitjyYM2TBZDyEnRsH6A+37K7vVCa2ay+qh7yQ6aWMtkold8fQjKRxOYDdMf07xqD54I4xhiswSaPscvMhHvDSCaSEDPIFzvOMcJ1ngUDh0ap5YvlahnEMhEEiwKRIcp7EgC9W0FNmFgshFwBiCeZVG3kKhmz3Ubx5zykDzD0m8RMAslpxrlxBMxWk9GRKUSHp6jbO843wXW2GVqXktq2reA6BwwBDQ78spXaJq/8fh8EPYdNX6fPIcXX5UGmkmKy4xA1oVBhFoAkMNzEMGeNpOadDNyz4tvdOPB8GxPRUZ+vhkgkwlHQE89YxwTXxWbk1hrRd3AER39Hf57mN7ox0R1B744RqvZdwQbMNMxArVZnFkGWsITTobu7GxKJBIlEAu8mX8KFouyWu02vdGGkdZLJpggg5CFrmR7HP+qjsgRarAW8pVSPZDyBJsp3Oq0WErrJiYaf022Y2vmjJmY1k5GWMLASUJh4DIGuXshrxSi8xonYyDS1ZQt4YPnjIYT76W0l1S4exTd5MdAwgqZX6OJWeB2xiZPwYnR9RGd5Nt4ZBqdjID8ATBZaaSSmkgDYCO91ny+ESCLGZgabCplSArGUzWIwTTiLsir9MULrFzByPELdT3kTsapmqXkFLs+FqViL1ne6qUk6YqkIyXgCkX62uSerzeRYVwQ5biUGGVRmC1bnQSwRM1mV1H2+ELHRaez+Pv3m3vpnQhjvYrDA4AH3hVbkLjcyqXMnE8lTLSmcEgdeaGNSN/KssmDseJgpznnnG8Hr5cg730qdbwAwK1eW3VsIkViMzV9i+4bf8o1D0ObRTT77kl3om+4Cx3F46qmnUFjIuCF4Cf900Gg0+PWvf43rr78eQ+hGZ7wZueLsNa+GF1sRG2YntdQ+RQi7VHZuMSzKEstSZYLCzMN5kQnt71CQL1O3kZOvgNanwrG3s9fJYmPApq82MJMSkokk63QgoyAzfGSEmkhVcJ0D+nwNU74pud0NpZnHFoZNY+UPBIFEkvqYiY4YYqPTmOiir2PF+mOIMXLXw51hIJFkss3VBpQoWutG/8GRhVVaFoBMJYOUl0Kh55jUYzQeHmOtZ3bexZkIcyjWT39dvF4OOcOmJwAovtnL1AcAIDGdABbhTzW4n41JONkdRmxihrq9oUiDwFUO6AvU1HVP50oT7LVGNP72GEaP0s0li250Qu1UYvd3G6nf6cLrXFBaBeweolcqUlhIzWvsONs67ZYvNzIRzwquc+DwbzqYiITWUh1EUjGa36RXKEcMp99sesJ6o7kiB/mX2dG7Z5jpPF1bhhEbm6K2Nu0tbMD0wWloNBoMDLAJY/xf4BMnKQHA5OQklErCUH0//jucL1mT9ZjureQjumZ9Pto/7kcvBWGp9Q/HUXybHx1b2fzM/WtyYSig97s8+GIbEzEhfQ61TYHgjU46lZvUzzsvMEHCi6kUUUabwsyLf6NNYYwdD6P5zTbqYyIDQGImidgYnQoIAPTvGUf+KrZMfvStbvgutaJ7Hz2JaDFFONtZOnjOt6H1/W5qwtJirOH6D49CJGYrvixmMbfsVjcSM8kz6hPrON8I19kWDJWOU6s2dW8ZpiabpdG1vR9SXsJEUGp5s4dZ7atuYxAz4RkmWeW2P/QyK4R1bO4Hp2crKCbiSUwxTE4URgUSM0mMMywYhwcSGDgyhuHDbMVLVuWIZfd4sfeHLUwETGNAA0O+Gv176Ptz02870ecfps7TRTc7obIpsPXf2e5ntH0SYhn94m/Vgy60/aUXfbumERnIfm2D8QHsHt4KsViM+vp6PPfcc0zXt4R/XvzLv/wLXn/9dezduxeHsBPaZA5UotPvQkgTLCy1WuTVmajz4URPhGk+AAAQgJqHCjDcPIEmig/pw7/pgMYrUBMG0vBfRoihNCQlABlyQcmdHuz/MR3JczG2Ga3vdUNtUzIRoib6IuB1cgh6MTVxYDoSh1hgI6gMHh7DWAfbHJeJ3JpC1SN+iGVi6vnUyJEIE2kGADq2D8AQ0KB3D/13QdPLnVR9ci6KrnVB61bh0O+OYfAA2wYLFpTd6oZILGKaGy5mvjp4eAzT4TjTMdtPZ7m9ABznm+CsN+HIG8eZ7BV3fYdtg0nHln5o3Uo0vkavgpCIJ5FMJJnyTWxshqgBMbzTB356FJ7LHExEoPZ3+5gsNj2XWxEdnkL35iHqayu6hdgKOi80M51r85caiXIZJeo+H0TvvmFqi1EA6NsxAHOJFkf/QLcYZ1uuR26VATu+3URNUPpL8jXMNEzDZrNh+/bt1Ne2hCVMTk5CEMg78Nfk6zhX9Jmsx6QJShX35aNz+yB6d2T/Vm55pwd6nxr9u9mKia6LzLCW6ah3J+/9aQvCHWwLEY5zjdB6VChcm4dDNMTQ1M9bqnTgdTIqW6BoX5R5sTw6ksDQ4TG0saj3RYGZ6Axio/Rz3PFjUSTjCSTi9HWvQ693ICQXo2sH/VzlEOUCxFzoQyoUXJWHYx/2UZOhFmMJ1rNrGDIF20a7LV9hV6OsuNOL+EzijCpZ6gqVCF3nxlDTGLWa0khThLmG17t3EJxahq7d9CpCXR8NUj/HNKofCyA+lWBSw+nZMoSeLWzqRq3v9kJlZ1OGis8kMMMw9+S1YszE4pjoY5h4RYGurYMY72H7zmG1Xiu6xYWDLxxjImBaywywluqxeR/9t87x9wcw0jKB8WN0J/J9xga9X43t3z3CdG2Dh8bAaehrmBUP5OP45n707xrFSFP25xNNRrEPmyAaEWHFihX4l3/5F/qLW8I/Na677jr85je/wcsvv4xG7IA6YYBGfHrFjrFjZJFcV6iC+1wzdv+QjoQ83DyBxBS7SnXlQ36Mtk3gKEU9qv3P/Rg6MoaJDjYGUeHVeRDLJFQkJQAZghL1XA3AHkqy9lw0v90FrU/FpPQ03hmG2qEAZ+KoSSqxsWlwWrZ1lu5dg4gN0m98AkBPcp+D0js9kKtl2PENulpJbCzBRJoBgJEjkxhpHkfPLvo5wfG/9OP4X9gYVL4rbLBW6HHktY4zahVYcrMLckHKRHRejG10965B5k33LERqADCUaOC/PBdNv+9kIirtZ3CtAYDBo2PoPziCYwy2lACQjCeoCUoAEB2dhhCNM73Th37TCucFuUxkuL6dI+jbOULd3n6WHolYAj07RqgJmN5VVhgLcxBZGWNS5Nz61cNEhYsSVesD6NszTH+OZBJ9B0bgWG5Exwd0a866QiXc55iw+4ct1ASlzYk/YfLgKMxmMw4cOEB3bf/H+ETt3tKYK5MexzQ2x/8IKIDaJwPwriI+xd5VZtQ+GchYr5Xf50blw15IBQlyqw2oWe/NyE07LzKh9qmCjNVO2T0eVD7kQ3ggiW1fO4LaBwpQfAexncg9W4/aDYVQeckPl67zoHqOZFrNkwXQ+ZQQS0VwXWpA7YZC6IKkbfHt7nnyxjVPFKD4VhdGm8IwlalRtzGI0K3kPEU3O+e1rV4fQMkdbgBErUjvV2P4GCF0BD+Xh5onZ9tWPeLHsnuIpKPCzqN2Q2HGeslRb4KtYlaKsvLhfJTfn7L/UhB7BfdlRCI8f7UdtRsK4VllQdUjflQ8mI+KB2etwmo3FMJ3FZEk86yyELsyBbGpKLzOh8qHZ6Xxap8qhP9aImPovMCE2g2FUKQ+NMvu8WImPJPZIVfzZAGCnyNxsJ2lOzneKfuHzV9shM6rQugmogRiqclB7YZCGEoIga34tvnxLv6ci6iThYlqT+2GwoyFV+imE+L9aACl6whrPrDWjuXPBDNWcQVrHSfFuywdb6MYzrMtgAgQdBz81+ai9qnZXRuVD+ej/IH58fasIvEO3epA7edn21Y86EPFg3NiuKEQ+atJn3VfZoHeq8bx90hBqfzek+OdthB0nG8k8U4pIi27x4uqObKaNU8WIHijc16805ZjJXe4kZhJoGcPKSTUPFGAoptJW3OFBrUbCmEqI1LNxbe65sVQqpSg+HY3AEAXVKB2QyFsdUR6PHijc14MreU6TMem0bVtAAonaetISVoHrnecHMOUZZ1gnN9n/Wty59nmVT40P975l+dhtJ0wZ71XWDN9FgDKH/Ch8qET+uyaXDjON8J5iZnEMGVjWHaP96R4F6wl8c492wCRBICE5JOFckQm3nUk3t7PWFB+vw/F6xbOEQBRD6vdUAhzBflIKrrZCWu5Hk2/JYufJ+aI2g2FsJ2VivecHLHly43g1LJT5ogT4x1cbUdsdIoQG0+RI9KYmyOO/LoD3ktyF8wRAFEJSMfQfZkFy58NnjZHzJXErnmyAFXr86GyCCi923XKHJGO4dwcEZ9OoGMnmWidmCNqnihA8W0khukcUbmeXGNurfGUOULlJfFO5wi1QwEJNzs8npgjajcUwnkxGav8n7WjLhXDgz9rh1wpQfn9KUleBdlh47mcxNt3lRW1TxUgMTUNtVMGqSCBZ46lQ+2TAeRfRewh3JeYUPtkIGMHWHRHLjrN+wEAHMfhww8/xBKWwII9e/ZAoSDv2Rb8GZFkBKEbnfOsn6oe8aPoFpKzNF4BNU8WwLnCDLlGhsKb8ua9m5UP5aPkTvIOCbmkrf1sA/b9uBXxeAI1TxRAn5o/lT/gw7J15L0Q9CQHOC9Mz/dsqHmwAFK5BCorj7J7fSi7d1bWuubJAnguJ++F62IzyYUCMNYSwbJ7vKjdOD8H+FaTnOU434SaJwsyVkCld3oQm5zC7ucJ2aj68QD8KXlm23I9ap4syCyoF9/mRlVKtje4Ng+aXAUqUuOLqUKDmidn7y10k2teDKsfCyB0swtVD/nhvcqKmicLYErl/cLr806Kd/FtbvTvGsNA4whqniyApVYLACi41oHqx2fbVjw4J95WHga/Bp2biYWbb7VtXn4rv9+HZWlpcIHE0HWxGXv/uwX9B0bnjd9l93pRNsdGtubJAnhXkRg6LzQjx61Ed2oOsexu7+yYnIp32s7JcY6RxNvKQ9ADtRsKUPXYbN6vXh9AwbVknLXUalHzZEHGRqzoFhekKknmq6T6sQCCa8k80liqRs2TBRnLuXl9NnVvoZtJn9UGSD+0pGTEC6+f32er1vkRn0lg5EgEShdpm7b+8l+TOz+GD/hQmo63XoyaJwvgOJ+Ms74rT4j3fb7MmAwBUFkFRMdiCHdNwH2JJdNnATKHK79v4Xin/522llu27tTxtp9tQDKZxPAx8tFZfLt73hyoen0gY2VlqSLx1gbIRYRuds0bk6sfCyCUmtcYilWoebIgYzsWutEJjUNBbMuwcI5Ix7vgOgeq1weg8QrQBxWnzBEAkL/GPi+GtmodIAYmO8YXzhHz+izJESV3euC80HzKHJGJ9/1zYvhAASLDMSCycI6YG+90jmh6uRNt7/eeMkekY5i2ODRVaKCy8Tj6BinyLpgjbiIx1AcVmRwRGUogMZNcMEfMi3cqR9R+vhA1G2bjcmKOqHmyIGMjmc4RtnI9PBdYT5kjAEJkmhtvmUKCqcnpDEHpxBwxL953e1H9VCDzrhRd61wwRwCE/Jn+TtIGBIhlIhgKSL9bKEec2GeL17kQGUqg9Z1u1Dx4ihyB2ZwMALn1Bsi1MtjPJTE8KUc8NBtvpUuA8jNxzIAQEn7zm98gN5de0n8JS+B5Hrt37wYATGMKW5LvACB90nMpmf/bVxhQvT6QsWsrvsWNsvu84A1y5NYaUPWoH77PkPfNUqVD9fpAxgYqdKMTFfflA1FgxzeaUHyrH8FbUnmoLAfV6wPI8ZG2hWvz5tkRVD7khyGUAwkngf0cParXBzJ2aQXX5KLy4dm2FQ/kI3hDHsIdUahdPGqeKkDoZnIe/2r7vHez7F5fZozgzTxslXoMNo/i0IvH4VllmfduLrvHi5JUrQE8GbfSlli+S23IrZu1BSpd55ln/1W9PgDXRSRn5Z1vRPX6AOwrDai4Lx8lt7tn81s63ql6jX05uVfezOPQbzrg+0zevDlQ1aN++FP1GlMFiWHaqix4Qx7i0UTGUqzyYT8Ca0hOMJSqUb0+AK2f5KzC62fjveUrh6B1qTJjhNYvoHp9IGOXFVhzQrxvzye7sqPE8qt6fSBj/+b7jG1eHWjZPV4U30Li4rzISKwQVpBx9qR43+3N1BrAA75L7RCJReBypHBdZJ6XC0vvdGPZXbMKFNXrAxkbwvyrrKh+PJCxfCq51T07B0rF23slGZOtdXqYinNwPEVqKbrFNW8OVPWIP1PTTffZufGea9VR+bAfhal5ja5Qier1AegKSd2w8DoHZmbi6N5OFuQqHshHYWoemeMjMTSVkbqh/+r5fVamkmRqDbyVtE1bpnmvtM6LofN8C6YjM+ja1g9eS+LiOJf0U/fFlnkxXHbXnD6b6t/OlWRsdK40kbYp3k7JHfPjHfiMExO9RK1poRwxN97pHGGp0sGy/BQ5Yk68033WVJYDqVICkZzUvBbKESfGO+8iI0rvdKPg+oVzBEDUw6rXB2CqSMV7tR15ZxnR/DqZR56YI6rXBzL2HXP77PavHYGYF58yR5wY78BnXYgOxzKbeRfKEZl4z8kRbX/qhfcC24I5AiB9Np0jLFU61D1TCP+aU+eIE/ts2f0+aN0qlNzhPGWOyMR7To6Yic6gcxepeZ2UI+7Lz8zb0zkiXcMzL9OdMkfwWjGJdypH6PwqyBTSDEHpxBwxN96ui8yZeXvTq10Qy3DKHOE415jqs+QZ83o5fJfMfuucmCOq1wcySmiBG3LRYt8FAFCpVPjgA3rbriUsAQBeeukluN1uAMA2vI1YIgbvZRZUzPnGW3anG4Wp+j9n4lD5UD7cK80QjBzyV1tROWcdp+QON0I3kPeN05D32r5cjyMvdyI2PoPKh/3QeEj/Lb7FheKbZ5XuKx/2Z8YI+1l6VD7sh0wphcomoOhG52x+A8kBzovIGGGt0aHyYT84jRgTHTEE1zpR++T8ur07NY80LctB5cP+jE1XwbUOTIVnsOd5Qp4ov9+XsSLSBVXzrtd/dW5mbcZ5kQmGgAZl95HcqPHwqHzYD12QzA19V9jmfVOX3e1FwbUOlN7pgetiMyof9sNQQmpe3sut89bCSu/0ILjWidGjYfRsHkDlw/6M7ZvzItO8XFhyuxtFqfwGDrBVGtC1dQCx/hgc5xrn5cLim50oTo0n6XjnnWfCkZc70bVlIBVD8reiG52z+S0Vb9clZIwwV2phLMjBcBshURauzcOydbP5reKBfHhTtQZDiQaVD/sz1mBVjwUydUKA1IXyryTx1gaUqHzYj5x8Ujf0r7ZDYeYyNa+yu73wp8ZkjYsjMUzZYHlXWWfHEw6oeDg/U9sRbKRt2s7LfallfgzvcCMRB8Zao+A0YhLvGjKPdK48Id63ulB002y8Kx/2Izc1RuSuMJB4p/gXRTc5UXLrbLy1+SpM9kcw1hmd02fJ30I3nBzvdJ+FiJwnrZBUcJ3j5HivSsW7SAORGBhsIiQo/5rceRaI5ff6MvP2nHwFKh/2Z2z78q+0zZtzlt3tzdjzqRzcSX3WkK/JKJYtW+fJzCM5E2lrrtQCIPZelQ+Rdy4nX3HKHAEAeeeZ5vVZ13kmiGUiTPQQ5sxCOSIT71SOKLjWQZ7FKXIEAATXOjO1SwCouCsfU5MziA3EFswR82KYyhHtf+7HkTc6T5kjMvG+OtVnPcRKrfmPZMPHqXIEMNtnDSUaxMaAeCy+YI4gMRTPyxFVj/lR/cTsfO/EHFH5sD9jh5jOEc4VZngutp0yRwBkvje3zwpaOSLD0Qx56MQcUfmwH5yRxLBwbR4qH83PnDdwVd7COQJA4JrZPsuZOMiVUhiLybu7UI7IxDuZRNldHoRuygNiwNE3jqP4Nt/COQJA2TovyRHJBJxnGyCYOOSeQ95796Xm+ePa7a5MvZ3TiKBbA4RFhGn28ssvw2Qy4W+BvwlJCQAuu+wybNiwAQAwiVEcDu+ERC6CykYm7SqbAIlcBCG1IM5r5JArpdjzfAt2fqcFErkYKht5aTQ2ARK5GGINOZbXcfPkdCWcGBq7CpUP+aBxKCCRi6HQEhEpQc+Rna4pSHkJktNEBl/GE2lepZVchMLIQSrM7gKSChIoTOQaBLMAsVQErZMUG5QWYV5bmUIKhZG0VZjJ76Z3JavzFJDys23lahn4lFyzYJCk7pXc21R4/s4tuVoGLoe0VWh50tZK2qqtJC6moBZyjQycRja740EBSORiqFNtVRbSVqEgXYLXy8nvKmZjqLakftdO2nI5pC2nk0OulsF5sRmVD+dDykugSL24aoeSxNAom423Yk68BQnUDnISpZn8rtJ8mnhbOCx/JghLhSEVl/Sx/Px4q6QQ9OQaDN4ciMQiKO2pezXzJ8c71Vam4yGRiTHaNoGWN3ugtvDzyApytQx8KoYKhZjE0KaAYAS0Tg3x8k7FjNPIwWnm9MO58U49m+JbA9AFFZkYZtpyYqhTH8ZqO+mzQo4I1Y8GoDTzkKtm20p5CZSpwV2Vaqswk38LBg5iqTij8CMVJFCmnqMy9d4oUzFUmObHUCwWZ56jwphqm75+0wkxVMggghijTWGojNJUXFL9ZYEYcjo5ap4oQPl9IfIcLem48PNsSOQaGficWQa8RC6GMUQSsip1/fNyhGZ+DFU2Hs4VZtgr9akcQWLK60/OEapUvDV5CohEIrT/hezkXihHqFLvvTL1HA0FORAMHBS60+cIEm9yrxqXMmuOUKU8q5WpeFc8mA/BePocoTbPxtuzykLe/Sw5Ig1OIwOnlaP+2VDWHMHlzPZZUzAHIpEoa46YG8PkDHD84z5ER+NZc4TSzCP3bAM0bgUkMjFEqTS4cE4mfVZpJu8Cp5TDvyb3tDlCaST2N+kcMT05X6nqpBwhF0NtSb2fVh5imQg1KTLB/BwhmvcupN97KIDRo2Ek40mI5wzDErkI6tS4lh4DRSlSyTsf/xF9fX0wm80Ih8+shdAS/nExOTkJsZj0uY/xFpRmHrI5lqhytSzzDgkmDlJegqEj49j9oxYoddy8tpxGDsGQ6us6CaS8ZE7eJ3Ogws+6AQHgc+TgU20hCCSPptvmkn9v+tcG7P5uM3idHLw29WUmYH5bO5kvCSk1IIWRg0QqgS9VCJAKkkzOUltI3pSlfkswcuCUckQ6IxByBcgUUqhSBVGVnVyDwiDL/G56PGl88TiSySTEKeVDlZVcg8KUnn/Mj4tMKYXSxEGulUHvV6fG6Nkxbl68VbLMOCvoSbxd55GPd4V5fi7kc2bjzWlEJN4OAeUP+KDzqublN14rnx0jBDGJoXV+vGfbcuDn7DSb+xxVNtJ22W1e1DxRQJ7NnDFZKkgyeT/dVtCJAUGARC6ZN1eRKaVQWvj5bdM52MxDDDG2peTS08U7gIyzUl4CIRXDuX225oGCeXMghYU8G+WcOcXcGMo1MqjsAkrv9EDIkZK42GfbzothjhxC6tmUP1AIKS+BJt3WPn+Oz+vkELTpeJM5RWx0BpEhQnqdG29Bx2WeTSbeucK8f4vVqe8ZwwLxnjN+i6Vi9O0mKhsKIzdvV7NMIT352RgE1D8XgsYpzBuTZUoplOb0vCYVQ2t6rsiT8TJ1jQvliMy3m4U8m4Kr8lD4WTdVjsjcm1SC+FQCkSGcMkfMjTev5aC2C7CW606bIwStPNO/nRea5313LJQjhHTuScVQn6+C+xLLaXNEOobpfOK50EaVIwBAYSLX61/lQPFtbqococ5VQNCLIZGJIZWf0GdPzBH2dH9RQCpIsPv7DWj6fcfpc4RtNt7uSyzgtRyk8vnz4BNzhJDDZ56NjJPCeRYpbJwyRwAQ5vTvkSOkKJxIWQQulCPm5ROVFBqbkhCJTpMjTox31zayUM6rTp0j0vE+Or0P7733DjQaDb7xjW9gxYoVWMISWFFWVobnn38eADCBURxIboNMJc2MPRq7AJlSCln6W83Mgc+RY9d/tWDXd49CrpLN5lg76du8hvRZpZmfZ/ElV8mgc6lRcV9+5j0QUnlIZeHn5Sy5RgZRMqXSnBClclj6PIp5YwSXI8/8jddxkHISaF2pmpd1/ngi6OSZMYLPIb+bTC2A6wPqee+moJsdZ3kNP+8aJgfny3oIeg6CYVaJRaaUQp2qYaisJIaWoBa8UQ6FkYMwR6l4XlsbacuRy4c6V0Gul5+NoSL9jZdL2vI6LnMeLkcOa50eZff6wKlnn43SSK5fYUnl/RPizWlkyPGQRRPeQH5XNSc3cnPjrZNDaeVR+1Qhcuv0pK19dv40Nxcq9Fym7mMtNUAsFc35RhXm1TAEvRwKQyrePInLSNsEWt/qzcQlHQfBwGe+fTMxTM0DzKV6kjf5VI3DxEHQnRDvzHhC4lK01gF9SAWFaf6cU66Wzfa71PjHGzgsu8sDXb56nhKCXC2brWNZhNS8cvbfEqkks7DAaeVQWdLjkjBvjFZbFfNiKJaIM3MgQStJXX+qrU0xv8/myIFkyiKNn99n0/0l09ZA+mzFffmofyJEfjc1/1Cl3vtUCKEwcBAMc+KtksJYRBYwFsoRwgnvvcomwHeZDZ7zLFlzRKbPmnmIRCJ0bibEroVyRHouKKT6tzmkhcqugMpy+hxB5vHk5oxFOfN+d6EckZnDpeK97C4PeK34tDlCbZuNt325HkoLnzVH8KlaoGAk783yZ0Intz0hR8yNt7VSR2qkWXJEJi5qGcQiEVrf6cZoW+S0OUKukUFl5WGqyIHGrYRMIYUoIcpc00k5It1n9bLMNQTW5J42R8hy5OReU9c/NTJ/bWGhHKG2z/ZZqSDJkMhOlyPS8QbPI9oXxUw0Ps8OZ6EcIWjJvPPDfX9GV1cXbDYbxsbY7HCWsIQ0WltboVIRcs2HeJ28Q3O+kwUDl3mHOKUInEaG0bYwdv6wBYKGm7eOozByUFjTkwTyN6VtNg9xOTIU3+gFZ+SgMPPEihsAODL2Z+ZwVgGcRobd3zuMPf/VAsHCZ745AIDLkUGTqb3zpDavI9ehdgqQ8OIMcYPPkWe+8RRWck28VjZ7HrUcke4YOCOpO2TaGkhbhSE9p5gdI9rf6UdiJpGxFVMY+FTb1NqeXZg3fvN6DiqrAJVNgKFQQ+7Vnq4n8PNqGCSG5Hc4nQxcjgzOVM1Lk4rL3LZCKkdxnJj8rlVA8S0uGEPkPGkSh8IsZNZbABLvzDeqgzwbqFLf0SfGWzMn3lZyr/7PWFD5iD81nsx9NvI5tSku9Ww4cBwgV0kz9X9yf3Koc9NrbKRt+nuW/IYIO1L2oryBy1wvp03FOzU+amwKcv0Ayu/wgc+RZ+aNnFpK7jV3Tj88IYYaNyHCiZVkLThTE7ALmd8lMeShSL0L9U+EwOXIZutj9hN+1yJk2gIAp5JheowQYdSptmJlqsZhPTne6XtN/1vQkTFcZRHmjd9cjgwa22wMZbwUQ4cnMvfKz302utn5h6DnMjGsfzYEY3HOvHkkb+Ayz5HTpd7lVL/UuBXg9fIMsUQwcJnaJacSpfphas0w1Wf9l9tRdIM7e46YE0MpJ8VMJE5UwU6RI7jUel66zxoCGtiqDafNEco58TYtywGvkyPHk4rhAjli7vjNa+XQBVTIO8902hyRiXdqfpe/KpcqR5BzkH5YcJUDoRuc2XNEOi4cmbvKBOm8tgvlCBJvBTiNDFu+fwhHXus8bY5Qpp+NnEPuCgMECz/vPAvlCE5N8qPSwoNTy+E8l+SxU+UIEsPZeMf6Y0SlfYpMihbKEXPjrTDz0HrU0Hj40+YIAOCNXCZHHPtLP5AEOCX5LfVJeZaHMtVnj4la8Paf3oZSqcTXv/71v2nNS5RMsrop/9/iwgsvxHvvvQcA8KIEXkmI6riK+z2QKaWzcr5Z/DkrH/Kh8bVuhNvDoDWQTtt+7XmhjRyXBaYyNfqPjDNZFxXd7ITWo0Zf40hGUYUGpjI1pibjdPZFKRIHy3V5VllgKdVj309bEe6i036teaIAUkGCTV9voD5X/bPkedNKICuMYpTdV4jh5nE0/pJOhlLhVFA9vxPhvMCE9vfoJd6Kb3Whc1s/hhvpzmWr08FzkY3pXvzX5kLnUjHZdYRuckKmlBJbLUrUPxfC1Pg0dnyDTr4y92wDbBV67PhRE/WzD34uDyqrwOT/Xv9ciNm6rmCtAyMt4+jdRic/aanJwVjLKCKM9psqrwITLfT9rP7ZVIwp5aKLbnYix61C+0d96Hif7uIy7+QX6GUxS9d5wOvkzHY9CqMY4QE6uVv3ZRZma7z650JAkj5XpGE7S0dt21jzRAHiU3Hs/BalNGhq3Cm/34uOTX3o33MaW5/UuONZZYG1TI+9P21FuIvCLiCZwLuJ3wIA7HY7OjvZbIeWsISFMNfT/ELRZ6mOEXIFlN/mQdsHvej6MLt0sKVKC8syHfZR2qSlkd7dTJsbLbVa9G4dYToH69wjDRa7IxYbtjRqnijARE8UDT+nlPMVSDFhamQaOyjlpj2XW2Gr1KPv4AiO/o7O5qT6sQCkgoTJXk3pEjB5LELdHiAxUzqU1HZfllot1LkK6vsAiKWUWMpmkVb9WABDreNofrWbqr1g5RH8rAPHN/Whn9KetvqxAGQqKdN4vWydF+HhGJMdXfVjAQwcHqO21Ard5ILWo8SBX7RS250ZilUwF+vQSCkXDxBlKJq8Mg8CIOTwiPTQfaeEbnRC61GR7xTKrln/bGruQSkvLujFKH+gEJGhGHZ/l07+W8gVUHqTC+0f9BEbNlqk63wU96IPKpCIJzNkIBoE1+ZBH9CgZ98Qdd8HiFqeYFFkLENPB21AQOhaD7PNn8YrwHuxHXt+QBfj2g2FCA/EqG07W5OH0IwDEIvFuPLKK/Hqq69SX9sSlrAQ7r//fnz/+98HAPhQDI+oMMsRBEW3uKA089Tf/qXrPGh9p5va7geYtf1q+E0rIV9kgdYvINofQXSE+hTwrLLAXmlE/4ERHPkd/ZiV4+MhEouoLILSBBsmS6U6PZxnm7DvZ8cQpRxLlt3jhdLMY9e3DyE6QjfPW74xCIhF2ExrVcED9Y+HMNQ0Rm3lxpt5RMeiTPcPkBiw2HcVXJOLvoMjGD40SdVe7eJRcosXQ0fGMypU2eC6yAxjMAc7v0VvpeL7jA0KHYf9P22jPqb+uRBio9PU5zGUqpFXb8ahF1upn71nlQV6r4bJFmb5MyEkphNM1vPeK60Y74ygfxddzUsfUiHcFaa+jzQUDp7J9rHu84WYnoxT37/3SiusZXp0fNxPbYVRcV8+eKMcm77aQN3/C6/Pg9ouMNt081oxdcwc5xrRwWi1kiZOUeeKFEwVOdTPPr3zntUOp/gWN7r3DGKQYr5mrdPDc74Fu59vpc6t7yZfBpCExWJBTw/dd8oSlnA6SKVSxONxACJcKLom67ohAHBGDmW3u3H8wz50UXyX5eQr4Kgz4mDKWYQWJXe4IeUl2P09um8ZQ4mGyR4KAOo2BCGSgKmGAxDiJ829A0T1JDbGNo5UPJCPyb4oDv+W3qq2/tkQIoMxansta5UW3svs6NszTGWtBxD1HMHAMdmrCTaOybYKIGo7ilwVhhtPs34wB7qgCjkuJdr+SL+GUvVYADLG+l3Z3V6MdYTRQmu9zgGlN3nQvWOI2u5t2ToPlFaBqRZXuDYP0xMzaH6Tvh5Rfq8Pg81jGWWkbPBeboW1Qo/Dr3Rg8CDde6ZxcbCUG9D0Kn0t0lqlJRZkjOCMHGIDdP3Me7kVljI9dn3nEPW7WbchCIiALV+h7C8cUP9kCJGBGHZT1mM4I4eSm13o2jaAro8Zal5pPhXF7ascHCS8hMmyznmRCXnLzejdPUSdK9LXlZOnoDoXZ+JQfocHTb/vYsrjnIlD4Aob9j/fRtW+8mE/YsNTOEA5HvUk2nEAWyESiXD11Vfj5Zdfpr62M4G/OUkJAFwuF9rbSQALUQmHJD/LEUD1oz6yYPLFOS8QxYRDF1RArpJSERZsZ+ngWWljIgUAhHyi96tx8Gd0naL4VhcOMPpLLoasYa7QQGVXoOXNMzThXwQZylCixOB+ugLHJ4niW13Icalw/OM+JqLSpxHLnw5CJBExLXyxkpTK7vFCYeax5/uHqIkqn1YsdvH6k4CpTI3+PfSLOACxg6MlGi4Gxbe5ceAnbdTtnReY4Kg3YbIvykScs9XpIBEkVLlYYedRsDqX+oMvjbqNQSTjSeqCoG+1Dc2vUeTTOcNs6CaySLrn+ZbsJKVkAr1Fh7B/P7F5m5yczNh1LWEJ/xtEIpFMXxJBhAtE12Q9RukSsOxmD/oa6MktaXgut1KTImo3FCKZTGZUdWhRdq8Xh3/TQpRYssBxvgnRwSjTonjZvT4oTBya3uqgJp4AxFqr4WdsczwWCFZ6kkYahmIVBg/QFUU+SbASQj6t0AcVKPysGyNtk9TPfjEkpfpnQ4hPJ2Y3bPydwrvKBlulHr0HhplzyxmHAGjzBCZyDwt5aDHwrrJhpGWUigSURt3GFDmPoX8BhNjV8Au679nQzS707R1iyqvOC81w1Blx5HU6kpKlVouJnhgzAXL500FER6eoiGPjeYNoGN6B8fFxFBcXZ+ZgS1jC/xbnnXce/vrXvwIAClEBh8ib5QhCiBF0cmz5ClueVzh4KM0c1aK1PqRC4dVOUvNiWFDXh1Qwl+pwiJKQWnidg5pwk8ZixjmtX4DWo0Hbn9g2xFBjEWSoHB+P0U52AtGZhu8zNkII2dyPY+/QkfA/rah5klhHs8whWUlKhWvzoPer0fBiKx1x7lMMZuLcJwhdoZKaBJcGbyaqPWcKhWvzqHMdQOz0/FfmYqI7gn3/Tb9hRx9Sgddz6PooO3Gf1wKBa9zY9+M26t8HiJ0xRMRSjwaui8zM+cF7pRWWUj32/rSFitTWX9qEvXv3AiB1Cj4tM7aEJfwvEIvFMn1JBDEuEK3Jum7IGTmUr/Ogf/8IEykCYCMmVj7kh0g2q6pDi6IbnTj6di8VYcFcqUU8mqAmXQCz41zLH7qYyBT+q3PR9MqZ21DLQtJIIyefjkDwSaPu80EADISQTyk4I4fK+3wYbppA44t09YLFkJTqNgaRmEpg29fZ6sOfNlirtPBdnou+fcNMxKZPChoPj7FWhnkUA3loMchdYcBkXxQjR+jng1XrA5ArpMzruf7Vdupn4l9tx1DTBFNeNVdq4bvEhiNvdFKRlHRBFeLhaYwdYwtu7ZMFiI1OY8+Pss87Y8Yx7IttwejoKKqqqrB9+3amc50JfCpISgBgNBoxOEgm4mVYAaPYBoiyuNEliF2aYMR81ZPTTDrqnyWDAWuRlgWLIYUAgPNiM9r/RDf5D34uD8e3DDIrt0DEdu8VD+ZDJAJ2fpt+l0WOX4HpyQQTMeKkZ5gFhhIlJDIJ+mh3qK8PQKakX/xRGMXwXuFE85tt1NflON8IR50JW77ZyETUYoICCF7tRM+uAWrFpsWAlaS0GLAqHC0GxOM0iV3foSerOC82QyZI0Pwa3QdJ5UP54LRyJgWx/NV2HGWYlLC+HwCbghBAlKBKrnfhyJvt1MTB0rs8UNsUOL6lnzp3AUDx7W4coGQC555tQOfOQaZ3qvLhfHA5cjS9cZyZ1EWL0nUeqO0KdO8eOjXxc87wOu8ZiiULt88cR4h+7yZ+C5FIBIfDgV27dsFoNP4fXPkSlkAwNDQEg4H4jWeKNgwQ9KAiBOWvscNSrMPg4THqHdSssFRp4bvMjsneKPb+Fz35UdADGj+lEpMAhK5x0ascYZZ8MXRkjFpVxliqRv7lDuz9SSsT+WgxilK0zzANFrKZYOVRfpcXE10RajUt35U2REammBR1yu/3ITGTZHrurFiMYhMrFkNSYoU+qICpWM+0a5EVQq6AkhudOPbnXvRSFjYFvRjeK/Jw8LfHmBSOIsP0akWWKi1iYzEmshHr+6F0pWyKGAg05Q/4kJhm67+LIfNpAwKMxTrqPuw434SO99k2adQ/F0J86syS5tiVrdieYV+yE03CHkxPT6O0tBQ7d+5c5JUuYQkLo7S0NEN8K0U9zCI79bG8FtTqRcufDkEkOrOk35onCyDlJMyFYPsKA9UCPEAWugcbRqgUntJYvjEIkVjEdO8lt7shlouZNtAoHGThk0VVhuUZAoTcJFdz6N9DuUP9Hi+URp7+3nkgeHUeWv/QSa0OYyrLgftCC/b/vJ1aIYUZPOC/1I7+g8NnlAzESlJaDFgVjhaDktvdEMvETHMJa50eglaGVkplhuJb3NA4Fdj1HXoFMVZyC+v7AbApCAGEzLTsNjeOvH6cmghVeJ0DhsIcdG4ZYCI/Fl6fh0OvHaciJ5oqcjDeMsp0/yW3u6F2KND0Rid1jmBFYE0uTMVadO8eRMsb2b8BF/MM30++hoRoBna7HTt27IDVal3UtS5hCQthLlFJAinOF60mf8gmcpCq5XIaIEax7JS7wgD3SisGGkfP2Ld2Tr4CRWvdGO8MUytrAAA4wFSYQ6d2wwH+VbloYlC9tNbo4LvUjoFDozhMSUbXeHgUXO3EgV8dY1IiWoyiFO0zTCPvPBOO/4XyO5gDlj8exHhHGAdeoKsT5p1nwnR4Bj3b6Ndrim92AiIR9TkWA0ORBuo8gUmxiRWLISmxQuPiYCzWoeXdnjNGoAEHVN0XQPuHfejbOUJ3iAZwXpCL9ve66RWONgYRHYxhD+X8ThtQIjEdZyIbsb4fnJGDjAcmOuiDW3KrC8kkmPpv3cYgkGQj8wk2DrZyHbUamLVGx/QeAuQbOz4VZ3I4YkXdxhSRkVKYZt4zpBjbxpJjOCB8hNhUDOXl5Z8KghIASLM3+WQwMDAAtVqNiYkJ7MFHKEucD6M4tSB7GrKS82IzHLVGDDaN4fCLqcEwvTC8wINp/7gP8Uic6drSFmMTPRHso2Cj7WVYwErDs8oCW4UBmlwF1eJ92h5M5VUgPhamIjC0vt+N0eOsMoSyef7R2SAYgaK1bsxE49R2UcW3u6FxKND4Uhs18aZgtQvJeJKapBTuj0IpEbI3TLcfSDCpwwCAoOMgloqQW2lAJ+UCW80TBZBw4vmKYKeByqqA3qcGp5JiuPHMLch9EjD4NdA6VdQkpdK7PFBZBSYy0FzPTVqwkG0AIDwYg1SQUl+T82IzLKU6KIwc9a6qsnuCEIno7Wl0QQU8K22wVxqorctya/QQSbOr0c3Fvh+1wnuFlTpmaSUoWoISALjOs8B5tplJpnTnt47CVqejIigp7DzK7vRitG2CWv0OAPb9uA1FNzsXJigtwP0tvy+1E/h0O6GTsxPV9xJEZlEkEuHVV19dIigt4f8cer0eTU1N8Pv9SCKBPydfwUrR1VTH1m4ohEQmpspJR3/XBZlcwkxQKrrFhRynEru/15B1kTlNhqAlRaRRdi8hlVOReyLIEJRolYha3upGYiaBtrfpP/RFUhHEMhFslTq0vEVHlq16xA+5RoaxjhginXSLOazqBMvu9kJlFRDui1LFOdITxUwsjslB+g/kZhZ53RR4rRyJOP1EVbDyKF/nxUjrBLVCjPs8KyRy8adP5YcRrvNsUJh4HBY66MlAz4QQHZ3Cru/QzSXMRWpIOQlkavr5V2QogYMsBTcBmI7MYIJhcdR7sY1pA0ma+Dh4eIy62Fp0vZMs2H+N3k6Oz2HrvwBw4Jet4LR08RX0YkAux8iRCDVBa9k6L5Q2HomZBBNh8MAvWjE9QvedmVlI/w/6WAFA63s9SEzTFfVCNzqh9arQ/Kcuqhw/lOzDPmwGIsRed4mgtIQzgX379sHtduPYsWPYh02oSJ4NvciS9ThTRQ78q3IxdJjO/uvoHzshFmfZ8HcieGD5+hAmesLY/z9tWZvv+1ETZDlyplNY6/Rwn2+B3qvGgReynyO9KM6beWBqioocceStDkSGKCy150AwkDoONXig7HYvpidnqK3r/VfbYSrW4vBrx6nskgCg6AYvEjMJagLCRHcEMkFC1J5ohsgo0Pgrtvm5TCWFTJDCWKBCB+U4XHavD4KOw+Yv0y9KmUt1UJg4jDSx2UZ/2mAt08NYEKcm0hRenwddvhq7f9RCrQwkGDmIJWx1HBaLPwCYHIxAMMmZyGyO5SZoHArqxfTSuwogkUuo1Z14Kw//qlzkLTdRW5dZy3Ig4cQQy+nz46HfdMC5MkZtP5dWgmL59vVfnovEjI1JNW//820wleVQ5QdeC5Q/EMJIyzjTO3/kd50QiUBFUALIOeJT9GsBf02+jjimIYIIP//5z5cISkv4PwfHcejr64PZbEYcM/hL8jWcJ7rqtOuGaVQ+4odMIaVaKO78aBCCTs5mFwQg/0objMVa7P5RS1aloNGjYSY7qjRqHiyAlJfQkZRiyBCUaJWIerYNQyIXo5OSgJ6GTCGFZZkWbd10tbKSO9xQ2xU4MNZMrTBSt6EQiXiSmlBQcK0DxmAOPYkoBkyNzyDMoPJETYCaA4WZfj0TAMABdY8HMXx0nLqW4V5pAZcjO6MkpU8CjnoLdH41uncNUxPgap8qQGxkmpoMZCrMgVwlBcdQ84qNgVltbGpsGhPd9MUS/5UOyAT6DSQaD4/iG73obxilJiYWXZ8HXifHzm81UJObeAMHEYX71Vzs/u8WqKxc9oYgJB1wxHqxpZtuvuJfkwtTUQ7EMhGT/dyuH9GLYBSuzYPWo8Lu7x5mssVser0TEp5unpq2Kmz5U/fpc1ZqzBtLjmEb/gREALfb/akhKAGfIpISAIyPj4PnecRiMezB+yhLpBSVkolTEpXaP+qDrVyP45sW6FDJ5EkTjo73yaApGIHiWwJURYXwQALJeBLTYTpyU7idDOIqrwLB1Q6qc7S+1UsGWxY2tAIovdGdfeE7hbSqisKpgIwDRpuyTzZYvWsjA8B4ZxjtH9ITPdr+2ofQmjzERulf2P6Do+jeQ892ZCEfpOG+zAJbuZ46Bk2/62RimwPA1Pg0ODF9cW+iJYzjH/ehfy/9pGbZPV4oTfwZZSpXPpwPuVpGTbYCgKNvdWA6MkPdfjocR3ImyaSow9p/Kx/Kh0gswo5v0u+mSxMGadH+pz4oTTwaX6Hvk2Ptk5Ap6NP1cGMYE90RHGXY6ZUheVIi92xCxqO1j8w92wDXeRbYqunInmn07B5CZJhuYulfkwsuR4YDz7ehewtlfpiaQjKRxHgvXREweKMT8ZkEjvymc+G8cgpxwtjoFMZON7mcQ1DqLzoC0UFAIpbir3/9KyoqKqiubQlLYEV+fj4+/PBDnH322UggTk1UGmmdgKCnH7vSKkKF1+dhOjaD5lezF2/CAzFoHPT2hmniTMmdHowdn8QxCvLk8Y/6Acaiftm9XihMPI6I6eyJ0gQl23I9ujdn//jp3zWG/l1s4/XRP3TAXmOmJigBwGRfFNGRKer2R15qg+N8GxMRjNWyDyCEq+lonFrNgHme2hNFYiaJ2CT9AmbT6+0QSdgWe+ufCWFygM3WlBX1z4YwcozeUu7Qr5thKDYykUJmpuOYmqCfqx37Ux/Vu5eBANQ9EkTHpn50fEApGRkBtn+dTRr/4IttMAa11O0n+mOYnpxB+7v0xLQjr7bDXmtmii9L/9UHFYgMJzDWEgHtSZbdFYBYLmZS6Nr73y0ovs1NTVCqesSPgy91pK6LDtOTccS1CepYVT3ix47/aqLKoWl0bO6HyiZQEZT6kp3otbRA1CeCSqVCZ+eZsytYwhLa2tpgsVjQ19eHXfgQpcnsikr9u0bhPteCzq10eTJDiOCBijvz6Rbwo0B8Oo7pSbqaV3QkgehIFLyVR+gaB9U5erYMQe9TUZOE06i424uZGN3Cd5oAxJt58DkiKiUe5t2wUWCoaRzd2+lrMsff70GOU8lEoOraNojBw/QKKc2vs5O97cv1yDvbjK3fOkRFbOr6aJBaCSuNqfFpyJRZlITnIgq0vtONoUb6nF+4Ng86n/qM2peV3OGGyiJgM+XOZgBo/O0xJOP0dc7YxBQS0wkm6zJaQkgaJXe4IROk1MQegNSrW9+iry317xmFxqlA5wf0xwwfHQevpf++jPZEMXRkHN076N/Dtj/1MqkhWap06N0xTE1Q0odUKLzGiYmuMJMNW9tfegFK0nre+UZo8pQ4+MIxJgWlZDxBvZDuWWWBjJPiyO86cfhl+jnRZE8YkSG678u+kiNIHIxDKpLi/fffx4oVK6jPs4QlsMBkMuHo0aPIz8/HDKbxl+SrOC+tqLTAumEa/Q0jyMlTUp8nTVByXWKGRCKmUvMID8TIGDFFNzdIE5T8a3IRG5miyk3Nf+oGn8O2gbvgOgcMAQ1RaqMgN6UJSqZldIpNY61R5jWqI290w32eickCafRYGNMMdZ/Dr3cwqxzt/Da7GmPpnR4kZxLY/1O6Og6z1VkMiEfjmGao4zS93g4xx0YTqH2yAOGBGJuyFyPqPh/ESNsEteVq81vt0AW0TApdM5EEYmP0serfO0pH+puD6scL0LmpH10M9QyWeRoAHPhlG0xBDXX72HgSkaEYOjbTW7ccee047LVGJvUl2g0dAFHCioWBWH8MsX66Z1h8hx+cSoZNX22gVs9q+l0nxFJ6glLZ3V4cfqOTqV9NjU8jMZWgJiiV3e1F44stTETUzu3D0OWr0bOXjqDUYT8AUbcIOp0Ora2fro0gjNurzjyi0WhGinEPPkJPIlXASCbmLeICIJY5YWDrvx1CuD0MQ4kS3itOYN4nk7P/mwPfKhdkSincl2XfuQaQInJjqpiiMNKFzX+pDTKlFOYKugSRXrh3X2YBaNblwmSRqe3PbMWIslvdCF3nYjqm+DY39X3s/582KgJUGhMtYWz72mEme7im33UyWd0BRMWl8qF86vYyQQqRRARLTQ7TeViw54ct2PrvbLYI7e/1M1l/xacSONOujomZ5EmvZzb07Rpjsqxr/EU7U0FoMZCpZJAp6Sdl/mtzEbzRyXyexl+0M5GtDv6sHXsYFzr3/XdrhjCZDeX3+qCw0/u+56+2w3WeBaGb6O+988NBxEan0PQK3SCYzuUtb/ZQ29YZCzVMpAaFUYzwQAKbv9hIrQal86hg9J+QC08xzkCBTIx2fusomn7bebLV2wlj27uJ32Lv/r0wm8342c9+hvr6eur7WcISFoMVK1bgww8/BAAkEMd7yd9lPebwbzqw5wckJwXX5lGfS+9XwxzSUrVt/X0PNn+pEZGhlBoIJdR2AdZyPVXbjg8GMpZG7kvo5oOHX+1CZCBGRVBKo+gWFzwXWuG80Ex9jNIloPROD1XbkSMRJhs6ANj7Xy3Uu6oAonbTxFCkTiN0oxPeVTbq9jIl246kxWDLVxqpiHJpDDWGqZSz5iIRTyIxc2bnXslEEokp+slXZAj0RKAUtv37YWZlURbYqwwQy0RMO9rL7/dBG2DbTTjWEqFWJgOIZdv2/ziCyBB9fEeORKgJY5ZaLQqvp8+dAFC4xo3ydV6mY1r/0oPRY3R2JoJeDMc5RLWR9pnblush18jgu4guf6ZzecPPj1GruHlX2SDXyOC/PJe6vcYrYKwlQkU86Ekexz5sRn9/PyorKzE2xrY7eQlLWAx6e3thsZD3Zh82oSuZnbSz/T+PYPxYFGoXD/fFdO+c/1I7eL2cuv22rx7OqH/wWsodnBeYwevlsFTpqNqnCUr25Xrqcww3j6P1PbqNMWmU3+VF8LNupmMCa3JhqqCr/Rx68TiTDV10JIEd32xisodr+1Mvxo+xWarl+Hgsu5t+rBDLxZDIxbCW0c2dF4OGX7Qzk4u7Ng8x2UYlphJMZKDFIDGTZFY/HD40yWRZ1/pWL3N9kBV8jhxyNX3Ny32xBYXXOZjP0/x6N7XyEgA0vdLFvNB56Nf072HxLe6MTSMNHOca4bvMhuAN9PO1oYYJTPZEcIRSeci50gQgRf6jXLi0VRqQ46QnTvBaMaIjwJavHKK237OU6GAI0tfBC64hc7R9P25D0yvZCf7vJ1/Dvn37oNfr8cILLywRlJZwxuHz+XD0KFnwn8EM3k++OvvHhWq5IhHa3+nPKEv6rrABdKIesJUbYC7RUrXt2jyErf9OVDY4Df33sKFQAwtlzWtw/1iGRJS7wkB1TNsfOzDeFWYiYviusMH/mVzknWeiPoYzcgjdQLeuEOuPMVvpNb7YzqZuFQNa3mKbbwKAd5UVzovo75vXysHpKTvUIrH9P45Q214BwNixGEaO0NUN0ojH2epRi0EynkCc4RyxMaCHUWF/57eb0Pgiu7gFLXRBFWS8BFKBnrBfcqsLOfn061sAEOmmV30EgNhADLu/18xEvJnoiOEIZV1YG1DCfzVdDSeN4HVuVNzlYzqm5e1uDB4ZoyMoceQbFAB1PVwbUEJh5uFdSfc9nc7lLW/1UBMM7cv1UJh5OFfSWcHnrjBA4+ER648R2+oYTibczhnbRpL92IY/obu7GxUVFRgcZNtw8klAlDzT7IVFQqFQIBIhH3OFqIRDfMKHdlpZKTG702v5Myn/+VPtFp37sJJJ5PgVTGQaAKj9fMrihHJHqsqrYCLTKJwKlN3qxkyE0d9QASgUZME9G4Kfy8PgoVFqq7S03R2LhVvgegeMAQ2ThVvNEwWYnpjB7h/QSadVPpQPuYZevaf8Xh8EE4fDrx7D4H62gZcWVY/6IVfLmHYs287SIToUo45T1aN+iCDC9m+wFXpYUP9cCFPj09jxDXZGOA0c5xuRt9yEI2+0Uz8LzyoLerf2U/VxAKh5kkiasjwLVmTNOSeg9C4PVBYBu3/QQEU0E4xA2d1BtH/YR20huPzpIJJJeu9SU5ka/ivzEBudoraGA8j7RPuusubaHD/x2maR0E9D4VRQkbMqHswHr5Oz5wMFoNDyCM+dxJ1iGK18OB9cjhxH3+qYzbdpktICrL7OggNobCTPbefOnUsKSkv4RLF9+3bU1NQAAEQQ4QLRNVmPsS3Xw3OhFZPdUez97+xESiFXQGQowqQ0YqrQwL/KgfGuCPb/ODvJUekSMHmM4QQAqtcHIFNKsft/WpnUiNIL4VkhAMtu9FLFKI20hdveF1qp76fu80Ekk0nqxX/H+SY4ao3Y8s1GqmciWHmU3+nFSBu9VVr9cyEkphLYQnlNi0H9cyFMjU1TqyAKejFMFUa0v0tpVVqhge/iXLS+281sKUiL6scCkKmkZ3TOUv1YADOxOHZ/j27s1gcVkCnlTPdc/1wIkYEYdn+fXgaZBZZaLXwX2zHSRq8gVf9MCJP9UeyllO8uu9cHKSem7k/pHNW9cwitlIXAmqcKmK3hLFVaqJ0KKttBwcojMhplyrU1TxRAKkiw+7vZLTbngjrnCkD9EyH2b1ww5Fqkcs50Elu+kn0ePJXfj23HtyIajUKv138qizVL+MdGXl4eOjpIgbQQFXCIspNLap8qhEROZ7kLAGoXz0x0qX6MzIs2fa2BSl1H4eCZyDe8Fqh4KITpiRls/0+Gbz0e4DU8lcqM90orxo9H6JVGeKD+yRCmwzPUhBrXRWbk1hpx+HV6C7eKB/IxE4tT276X3O6Gykqv3lO4Ng96v5qoHzCorLBg2V0eKK0C05zFVJaD6ckpasLOsru9kHKSRSkU0KL+uRBio9OkuH8GYCrLgfdiG47+sZO6fzjONWJg7xA1uafigXzwevkZnT/WPlkACUdvH1J4nQM6nwa7f0xpWccDtQ8X4vimfmqVrponCiASi6gJXQoHj7LbvYgOTGHX9+lrXiW3urH/p21UbVlzLW/lUXGXd1F9kDbnFt3iQo5LyWQzSS4O4LU8ohSWjiW3u6F2KND8h2707si+ubA71IiDBw8CALZu3ZqpPyxhCZ8EOjo6kJdHiIciSHDBQiri6bXDVJ1XG1AidJ0L451hKiIlZ+QQG49RK3oAs7ZLY+2TOEBhg86ZOGqVkTTK7vZCYeax7yfNmOigP1bl4Kjbh25wouFX9GSPktvdUOcqcPDFNiprOQCoeiwAkViE7ZSL/6ZlOfBcZMXe/zpMpf7CaYDy+wox3DpBTWKo2xhEciaBrYzKhiyofyaEyHCMupbDacQwlGiplWI0Hh4Fa1w49pde9O0c+V9c6amxbF1q/ngGnV7K1nmRRBJ7KefZGhcHmYbD4H76jUr1z4Yw2ROhPgcr0vlg+OgENXmq9qkChHuj1OpcoRuc4LQy6rqdxsWh+CYfOrb1o/0dOiJUxYP54LVy7PzWIWo1IW1ACX2+mopgx2nEiMUSTLm24gGyFrjzh81MOVSwcdRkruVPBzEVnsFOxjV1lly7/OkQEtPx+TnnhLErjZhpAjsnPkA4HIbNZkNXF71a/CeJT52SUhrhcBhqtRoAcAg7cSixe36DtPrEHFWK/b86hmN/OY1061y1C5Eos2hetzGImicKqK5roHEU0WF6e4yJljCgIOew1WXfXRZuD2O4ZQLbvsc2sNU/HsKyu+nuofGXx8mCuYJOFSo8kEDz251MMsJd24eQjCch5ehZohJODBnDjp7paBxIgk51CsDuF5qx56dtzASlHD89c3W4dQLT4zPU1wQAnpU2+FfR786RClJIGNi3ACHLnUkonAqme1ZaeIgkIsQmKTmSCsBWYUDoRno27Uj7JKbG6GU9FxOjzV9sRONLbdTtk/EkkokktRKWpdoCkUSERIKeNT41Mc0kZ9q/ZxxH3+qgJiil3wdagpL3CiuK1roR/Bx9Hx9tCmO4eRwHXqArENduKET+asI2plWPOv5RL2Yicap8YKvTof65EMnhYRCC0qnUk+Zg57eOom//yHyC0kKqgAC2Kd9GY2MjTCYTGhsblwhKS/jEUV1djX379gEAkkji3eRLWY/p3jyEnl3D1OSbSCchKNnPNqD+2RCMpeqsx/TvGsP05AyOf0i3+J9eLM9fY0f14wGqYw785Cj6Do4wEZRCN7lQfKMnozxyWkSQiZHGS6cAs+ObTTj8SjsT4Wp6cppp3BNLRBDLRLBR7p6P9ESZlRkbft26KIKS0kWvlDM1No3hFnqlo+Jb8+FYTvHcUkjOJCGWiaC0MKj3CIQocsYgENIfCySchMk61ne5A77L6HbypK9pamwag030iyC070MavVtHsPeFVjS8RFd8EfRE1Wp6kl6+W66WQsoQJ4CoK/TsGqFuv+3fD6PprQ5qciAEYmlJQ1ACgLI7PKh/PER9PQCw/3+a0N8wSkVQsp9tQO2GQkAAfY6KAJGhGHoo7bqrHw9kvs9ZrOTa/9qHvT/JXjA8lNyD3T27MDMzA5vNtkRQWsLfBMePH4fHQ1QTD2EXDif3ZD1m70/a0MagKpReNK9+LICqR/1Ux3TvGsJkf5SKoASALJbzhDhgrcs+p4iOAP37R7D/eTYbg+WPh1B2h5uqbcsbPYSkwxPrt+wXBRx+7TiT4k/v3jHEp9l2kMvVUnAaesXI6ckZJOJJ8Fq69odePY49z7cwE5TULvo5y+CRcUSHpgCGaY7/ylzkX06vxiNXSpl2nAOE9MFyTazgzWy/rzTzkMjFSDIoazrPMaPoZvqa13DzOKID9PVpFiWhNLZ+9TAO/opN1TuZpLessxTrIJGLIWaw4I6NTmFqnP6bJ9wRReNvj1ETlNLvAy1Byb5cj5JbvEyKU9GeKHr3DuPgC3R1tapH/fBeSdTGaUmhHR/3krk5BUFJH1Jh+TMhksOjoCIoAcD+59vQtXWQiqC0ifs9GhoaYDQasXv37iWC0hI+cTgcDvT1kY1KScTxbvLlkxvNWTcEgJEjkzj+UT+10ltsgBCUDEUa1G0MwlCU3ZVkrDWKyGAMxzfRLf6nF9fzzjOh8mG6uV3jiy3o2TXERFDyXm5F6W0+agWmNEFJ5aBTCdr/fBsafnOMmqAEALGRKUSH6e8hkSBrk7pCOsXP2BipHyQZlBMbftmyKIKSYKNXU5roiWComb7OUnCtC+6VVmoFsOkoiZPCxKDwxBHC3JkES4wAQKqRQqain2f7LnOg4CoGtUgOCPdEmWpetO9DGmOtUez8YTMaX6Ek/HFEw2UqQmfZDQC8gU1VUySTYCYaR/8BejLXru8cRePL7VQEJU4jBjiSb2kVwJbd5cfyx4PU1wMAu/77KHp2D1ERlAxFGlStDwAcmNSmxjvC6N1NV/Mqv9eHqsfIugVLbj76Vif2/bxt9j+IRAuuUR5PNmNvdBNisRg8Hs+nlqAEfIqVlNKw2Wzo6SGdUwcLKsXnnNxoAYud5Y8FMdQ8jsMvZme91m4oRCKWYFamCX4uD42/zO6JmVYFGe8MZ6QiaWA7SweZUkZlQ1R6lwdjHWG0/YHeX7v+uRASM0lqxRUA8F1lQ/M73UxWVX/PKL7VBY1Tiea3O9G77czsRAt+Lg9d2weZVb1Yfl+fr8GxD3vR8T4dO4ZVSan+WbIQcibZ0Pmr7RhtG0f/HoYdQAz4JO7h0wbW99l9mQX2KgNGWifQ8HPKyZICqLm/gBAvKc5TfJubyVomrfQWG5nCzm9nLzrlr7aja9sQk72krU4Hz4U2NL15PHv/S40/A0fGiL3bXCzgdR5OhLEJbwEA1Go1tm3bhsLCQuprW8IS/q/R2dkJh2P2I+0srIIgyk4kKLjOAX2+Gpv/M7sqj6VKC98ldhx+rZ3JRkvpEmAq1KDt7exznaqH/JDnyLDp6/RKJQAQutlFp9AiAFV3+6nVVoDZ3ayt7/agm9aLXADc51io7vkfBfXPhpBMJLH5S2fG4tVYqobaoaRWvVkM6p8NAUlg0xfp5hSsSkqey62wVxnQtWPwjN2HNiDAWKyjJsawwnG+Cc4VJvQ3jC7KSvDvEYIeMFeZcYzSYhYgO7FEYhHT/NRzuRWCgaPKZa6LzZjsiTBZWC5b54XSxlOrzxVc62CW569+LACIQKWoGVybB61XRZ0zdiY/wDDIM6iqqsL27duZrm0JS/i/RmVlJXbt2gUAMMCKchGd9U3d5wsxdGQcR36XPYdWPeJHMglmxQ7/ajuaXs0+DvBWHhXrvBg/HqZe2AfIwrjSwuM4RZ2icG0eIoMxassiAFj+TAjJeAJbvkJPmM4734j+3QNMdmN/z/B9xgbLMh3a3u2htpxihfdKKwYbRpgs8ljgvtiC3DojOjb3U/cPViWl5RuDgEiEzV86c/Ui10VmjHeGMdTAZjNMi7rPF0IkEWMz5fz0HwHOlSa0b+qnJl1aqnTwXWbD8NFxNP4qe70/jYoH8rHrx0epzlO4Ng+HXqT/bfCEpBkdolMrda40YeDIOJPCna5QicI1Lhz9PYUKGw/UPVqIwcNjVPZuADIboFQqFT788EOUlZVRX9sSlvB/jbGxMeTkzFoano0rwYmyEwmcF5lgK9dj6zcPZ1XvyMlXIPhZF5re6MTgQfqFfc7IwVyswfG/ZCcsldzqgipXgV3fOUytVAIA/qtz0fQKxfc3B5Tf7sPu55up1Up8V9hgKdOh7T2GOQUHOOqM6PgrmzX93zPqPh8Ekskzpjiek6+AxqGk6keLRd2GQkAkolIwBtiVlKxVWvguz0X3jkEm6zoWqBwcjMVatP3xzNRbDUUaFKxxoH//CNX31D8EFvE+V60PQMZLmGrA9uV6qPMUVIpn1hodpiNxJsWsgmsdMAQ02PdTOvU57+VW5n5ats4LiUJC9S3ivtQCS6mWavwBgMPJPTgOsk5aU1ODrVu3Ml3bJ41PrZJSGt3d3ZnJ6zB68XHiD1mPUSjEEIlEkFGq+Gz9t0MZglLu2XTsYMf5Ruh8apTfm32Xy2hTGJu+0MBEUAKIwo6jlm6n974ftWYISqay7MoEABDui6JrJ/2uUVOZGpZSHSrX5VMfU3SzE7WfZ1twX3ZPdpnzDBRA+QM+arWjtCJKwVo6lmzL+/2IDk9hnIVpfoUVxbe7qds3/vL4GSMoAUDX9kFM9kYw1HzmzjF4dAwDTfSJfjE4+moXNUHJUpODsnu8TOpOA01jGGmjLwbVPxeiVmADgLJ7vLDU0Pu6Bz+XR/0uA0DBWgd51yjvWTACllIdah+kfz/b/krUhxp+R0dQMldogDCIrQcNQel2NzR5CnhW0fm8AkTpbdMXGqgISlAA5hItSm/1UP22oUQJhVGM7i3D2PSvDVT9T6EQQyQWQc5nH3/CiTC6PbOT856eniWC0hL+5sjNzUU4PPvCfoy3EElmX4SWKaQQLUDEWwi9O0aw6YsNGDwwASFXoFZTKbnBDXsN3Txtx7ebyMcvA0HJt9oGnUeFAppdsBFkCEo0ilAA0PLmMUyNTdMTlEDsD+w1BoBScEbQE/K953Ir9TlMFRrkr6FXzLHUapnmOTVPFGSIwDQYaZ1A3/4R6vaCntiCGIpVVO0H9o2fUYISAAweHkPvQbrdM4tB38FRTHRF0LP3zBDoAWDkSISJoFR8mxvOC83U7QePTCAyGEPH+3QEpdBNLtQ/F4I+SDfRMZaqUXon3XgPABDA1K8B8q75r8mlbl98awC5tUYmpbDunUMY66Cbw6ffgdbf91Db4eXWGBG4kl7tEiDKcJu+0EBFUCq/3wdDoQamiuy7iAFiIwoA2//zCLXlr4SXQCQSQaAQhRspb0OEH4NYLMZ55523RFBawqcCO3fuxJo1awAAg+jBpuTbWY/htYBIJKZWm9nxzaZMAdRSRbeb3FCqhqlEi2V3Zc+l0Z4oNv1rAxNBCQAKrnLCUU83dhx68XiGgKIrVFIdM9o2ga5t9DUvhYNH3gozim6mUyYACMmHpS4AAKGbnEyqPMW3uKnvWesXUP9cCIXX0+X2zg+6MdkbxVArfb3Ica4RoRud1O1b3ug5YwQlAOjZN4qxY5PobzxzNaneA8MYaBg5Y78PAMfe6aMmKOkKlSi53U2tsgUAvXuGMcxQt1v+TIiQhikRuskJUwV9zct7pRUGyu8ogJC4ap4ooL9nHnCcZULNg/TvZ++OYUSHptD6BzoSkT5E5l67vktHUPJfbYchoGGqeSEKbP5iA7Uti6PehJLPuana5vh48FYew4cmsflLDdQqbCKxmEqhNZqMos27J/Pv/v7+JYLSEv7m0Gg0SCaTEIvJsuiHeAOxZPZ1H04pg0giBsdlX04dPRrGlq80YvDgGDiNGBoP3aBfcosLeStMVAo4+396DJu/1MhEULKfpYe5RAv/Gopv2FjKRSFGbJho0PxON1lv3EVf86q82w/n2WZwdJ+LAAdUPuKH+1L6PJqTr4CXoUamC6oQXEs/zym/34flT9OruvQfGEH3HgZiOAcE1zqhC9LVvEaPhs8oQQkAuvcMoYflHhgxfCyCoSPj6Nt35upqEx0xJoKSf00utbIYAEz0xjB2bBLtH9N9i3gvt6L+2RCVAhtAbNiKbnJSK2YBhCjNgspH/fBdYaNuX3KjG86zzcjJp1+U7fioHyMtdM5H6d/t2jxEbcnovsAK/xX0dTsAOPzbDmz6YgMVQSl0gxPWSj3MlVqq3zYtI3PlPf/dQr1ZQsZLIBLTjT/jpR0YVHRBLBbjsssu+9QTlACATcv+b4Tdu3fj2muvxUsvvYQIJvDnxMtYKb7mlO3DA4l5rEzvFVa0vJl9McK/JhemohxonEo0/uL0i/Ad7w9AMHInK2VkQc2TBZDIxFTMwOa3OzE5QC9hC6R220pE6N+TnZW654ezkr0KO59VWaR/zziMRRNZYzMXXI4cEpmYECcoah6+q2xQWQSEbnJSKbXk5Cog6Dn4LrFhV1P2D7buLcNwnmvBZC9dgSTcHsau77DJkJtLdBBL6aWKnReYYK8xYss3G6lilO6nHZv60f5e9gnHaFMYe5rY5JlZQaNYNhesKgmVDxNiHK0lmaPWBE4rh6AAIpS1tiO/ZruH6fEZTPRRrn4rAIWZh+tcK7Uil86nhtajQv8euhipzDx51yjvNzIA9OwewuBhuiKVyqvAREuYEI4oUPlwPrgcOeLTx6gtFg883wbvFVa0vpV9gui/NhemwhwcfpX+9xEGunYMoo9yUbdgtYv00y9mfwY5fgV4nQy920aplDA6Ei04hJ1AK1BUVIQDBw5QXdMSlvBJQBCETNEmmUziY7yF4mQtrKJTf8zMVUCz1Gox1hGjW8C+zQOI6FTs9v+qDToXXXEkDVOFBv7LHejaPphVjaj51W7EIwkm1SJLlRa+y+zIrYti73+dfqyNDM0Sm5Qugcomqen1diisSmqyVWQIkMjE0OTRfxD6L3MAIlATUlznWCClIGKmMdEdAaell1xuYJhnAgAEAUoLj9xaE7UyV8WD+YhPJ7D3h3Tzo3TBiXbewqoaw4rJYxFqm0UA8K6ywVqhQ8fmAbS/m11hQMgVUHqTC21/6UHv1hGqc2jyFFCYOarfB4j94+7v0S22AMBYZxgqK4+hRrqJjvMcC3idHIKVR4TCsqL4ejc0DgUc5xjR8UH2XV+Clcy7eK2c6noAYPsPjqDgCgfVuy/kCoh0RujzkQAUXO1EfFUCWxl2ZB56uQ0iCd2+peVPBzETiWP7f9KrD+/+XjN8q23o35V9vhm62QWtWwm5WkqlNuW+hKjM0Spw/jn5ChK74tBoNFi9ejV+9atfUR23hCV8Enj55Zfx9NNP48tf/jLCGMf7yddwvuiqU7aPjgCbvzw7d3KuNKH9z9lrA3nnG5G3wgxdviqrksfgvnF05w1SfZvNReVDfsiUEir1okOvHEMyzmaZVvNEAaS8BJu+1pCVFDB3TsFb+awWRuGOKNnt/Ed6kq6g5SDhJODNPJXFlX25HlqPCqFrnFRzHt7MQ+NSQKqwYvhQ9nFzpCmC6YkZjHXSjZfREWSdw54IW5UeMoG+nGyqyIFnpRX7fn6MykbKca4RznPM6NwyQKWMFO2JMhPkWNHyBhvBffnGIJLJJLWKV+mdbohlEuz5Ad3cKLfGBLVDAfA8aGWCWhmVAiKDMUSH6Ddsaj0qKE08+nfR1VuspXpYinXYvI9ufq3JU0DKSehVzqJA2/u9CPfSvQsKB49wR5QQjihQcrsbaocCTXIK9aEUml7pQmx0mipfO1ea4FhuwuE3jlNZtqXR9l4PRo7T3XNorRdIJLGZwmGBt/JQ2zn07xqlUhQbSPZgDz4CmoFgMIiGhn8eBa8l/H0gHo9DEAREo1F8iDey1ryaXu3KqKHogipMj09TLWCX3eOHWCahem/2v3AMBr+SWrkIADQeHkU3eNC5fQDt75w+t3R9PASRSITOj+gJ3BoPj9B1Lox3UTjExIA9qTmFYOOobJIOv9KOHLcKMVoObYxsklTb6Df+FF6dB4lcQq104llpBa+TE/IHxbMYPTaJ5BS9WVHzm93UbQGA4wBdvgpSToThRrqaV8ntbiCRxP6f0m1eqnm8AGKZmFoZ6djb9Mqmi0GsP4bGF+lrg9YqLbyX2sl6KcUYy2mAknUBdHzQh54dI1TnMBbmYNqtpH5/YgMxHHiBLv4AMNEbRWxsmlp9zXmuFRqnEioTR5WL8q+0wRDQwHEupdIRB8gEKQQ9fc1r//+0wbvKSmXjyBk5xAZi6Nk2jJ5tdGS0ouvdmInGse3r9BaLB37WApmariZd83gBZqJx6rkgQKwunReZ0LdzJGtb7yorrBV6CAY5VT/NXWFA50eDZPxB9u/Tj5K/R3RvGCqVCjfccAN+/vOf09zC3xx/FyQlAPjtb3+LL3zhC/h//+//IYEE3k38FheKryV/TPvuLYCye7xQmHnMROJZCR1Nv+uEyspTk3DSBKXg5/KgtiuoFu9nGPwh02QGlVeBws/kUllvde8egqCjTxwAm81VOja2Oh26t2RPHqwEn+bXujE9MUNFvgEIAYeJpAAwFe4BoiDlu8yBxpeOUSkeHfj1MUy00O9C43LkEEtFsJXr0P1x9pj27R+GzqvCZB/9OSofykd/wyh1XFlR+XA++g+NUVkTAkBkIIaZKfp3Qa6UAfS8L+z89lHoggpEKJUFq9cHEBmewgFKj2kAbPaQYWDP9w8Bcvp3c89P2yDk0N80LYELIFaS3R8PU5E3AbIjTutRoWvHILWlZONLHShck0v1bnqvsEJp5rH/f9qoryk2NIVkIonB5uy/nyECfrmRyRJzsGkMY210uaXoejcgwqlJaHMUZkaLO9B6+AAQA+Ry+RJBaQmfWiQSCfA8j1gshgPYisFkD4pE1VmP811sRzJOR0Rt/7APXA7dx8LksUhmcb92QyEVgWKibQLJRBKREboqT5oQUHKnB8NN41nJCr07RmCrMuDIS21Uvw/MEkZ69w+j+dXTFyeGGsMZUoalSoteio9nVtvSI28cx2QfPSl+/y/bgQi9RBUz6QhE0UaulFLNIyOdETT8uhUjR+ividPIkIjTF5HGuxkkuUAstHReFfb84MyQxMnvq6kXssaOT8AQUFN7yBsCKkjkYsgU9OSyTV9rgKCnKxQaS9XwXmrHoZfaMdZCF9uO9/vR8T79PHbXd45CH1RQEZQAQrSkJSgBQCSlGkKL9PtLS2Arv93DZnsYAUZaJjDcQle0rHrIj4O/PU5N+gKA+FQCsTG6XFHzRAEGD4+h+Y3urHkujYafHcOyu73UBKXcWiMUJh4NP89e+OsIHEDiMPn2+MpXvoL77ruP6pqWsIRPEl/60pdQUVGBa6+9FnFM493kS7hQ9NmsxxWuzYMhQHbcZit2Hn9/AFp3doJSGmmCkudSC4zBHCqSYmx0mnrT1vAh8q3FW3mErnZg1/ezj/vH/tIHnVdJbd8EsNlcpRcgTWU5VMSDAy+00V8IkLE/obVBifZF0fBiK0aa6OciLGRSgKipBFY70fyHLioln/2/aEd0hP4ByBRSSHkJ9PlKdFGMywOHJ2BZpsM4JdEKAErXeTDcPE5lHbgYsP7+6HH6GiUA8DqOabPjgRfakOPLTrxLo+xeH6Ympqk2g6ZBO89MY9e3G1KkKcr2P2qBwki/LMHiTpB+f7soFxI9qyywVRjQtXUQbX+iqxk1vdKOwGddVHnCvsIAnVeFgy8co1qUAoDIyBQS8QQm27P3pTQRcNvXDjPZNvbsHERkhG5uV3abG2KJmIqENl7QjcPHdgERQKFQLBGUlvCpRSQSgd1uR3d3Nw5gK0aS/SgUVWQ9rmB1HpAEFaHj6B+7obLT5cbYQAxdA6R2VfVoAB0fZSdQjHVFkZhJYGqY7l1OEywC1+RisjealXAx1hrF2LEJNDHU0+3L9XBfYEXvnuGshJyJjliGYGEo0VBZMm2hIFbOxaFXjiM6Sr8OdfDXx4GpaWqyWMtb7ErdgWtyoTBwGVLX6RAbAw78rBljx+jZa4KeQ/IU6+ULYaRtAlI5/WZEa40OpqCGmgTFCtbfDw9GERmIYegI5WZ8lwZyQQqZir7mtfnrDRD0dLJFKgeHws+60PRmBxVhBwD6do5QEV3SOPDCMWg8PBVBCQCOvtGNie4INSkLMbZ3zVCkweDBMer3oTylfM5ie9izZwjRoSmqtsvWeXDkra5UfOhiNBONY2qcLpeW3+/DaNskWn7fk5UgmkbLWz0QtHQEJWuVFq7zLdA4lFSEvc7Cg4im6nvf+MY3cOedd1Jd06cBn3q7t7l47rnnsHPnzsy/3038FuFE6iU/hcXInh+2YOx4mJqckd7R61+TSy3ZrLYriMw2xab1Xd85im1fJWQmWx2dzHbgcjvkahkMJdnVA9r+0IvGX5KCk+8qOim2sY4wBo/SS/6aKzTwXGRD5UP0tm++q2zUFgrpZ6WjtHNIkyBoLd8AkkSKbqaTbUzEExBLRbBWUngIAEwEJYCQ4zZ9oYGKoAQQYta2rx1mImZxWjnMJVqm62IBlyOHOUgv67z7B81MBYbNX25k8iUFgGGGRReZQgqlibKYoiCKaNRWbApAYRQjPJDIqlYGEBs2hVGMcHuY6hkr7DyqHvUz2bx5VtpQ+xSDzduf+zATiVMRfExlapjK1Ah3RbHrO3RFLXOJDupcuhswV2gABckTm79Ipz5m8Gsgloqg8mY/h/MCUyY2h1/soCJjAkD7x31o/+gUi2pzxqcPEm9g76GdkEgk8Hq9iMUYtscsYQl/A0SjUXg85MOhG8eoLEg6Ng/g6B/plCY7PhhA8xukaFHzVAEstdqsx2gDAiRyMYwF2cedyFACm7/USMhMAuisogRAbRdgr6OT8d3zg2ZEhhIwVWiorOta3iKE7K4P6HdP1W4ohO8yO7XtGwRCQqCxPxrYN45ITxRCrkD1+5HOCCJDREmG9npMFRpUr6e3i1CaefA59MReFoISQBSRWEjrB55vYyIym4u0UNDOKxYB8vv0ms4D+8ax/T+PUBN2Ot7vx6YvNDCRghABlXoaAJhCWkg5CaYph8DQzS6UMFi3pd9DWgKONkDa0xKUim9zw3UxvbVd1UN++C6zU1tbAsDw0XEMHaXbNZ+2d2z4RTuVnaSlSgu5Vgb/KrpvRUuVFgCx793349bsBwiAlJdA66ZTvqteH8jEk1bNo+3tXgy3TGQlKEWSEXwgfR2HDh+Cw+FAU1PTEkFpCZ9qfPazn0V39+z84N3kS4gmT5+7D714HIOHx6gXvvenxjPnShOqHqGzNdN51JAqpFQWZQdeaMuQZExldDWC/Iut4I1yqva9O4ZxKCXv77qILhcPHh7DYCO9RaraxcN/ZS4q7qOveeWdT2+BliYR5Pjo5gppgpLaRT+3KLrFRW3pEJskNRETZU0n2hNlIol1fTSITf/aQE0YifZEsfNbTdTWZwCgsgkwF9PVWBcD1t9v+Hk7EyFo29cOU6supcFioSfo5FBZ6echVY/46a3YeKL4FR0BHWmKTymb9UWpnjGvBXkXabs/D/ivpK/pA0D3x/2IjU5TEZTULh6GUjWiIwns+2+KeRGA3DoDcpxKqnvQFZJ2/btGseUrhxAdya42ZyzQQMpLqHKKqSIH1Y+T77LWP/aiZwsdqan5j92nrnnNwdbkn7GndQeSySSCwSAmJ9kIe0tYwieNrq4urFy5EgDQgRZsSb6b9ZiWP3Wj+Q90qouD+8cyqjOVD/lhTX1bnQ6CjYNcKYXeT2H7FAO2/vthQjzg6K3ZDAUa2Groal4HftaO2EAMOfkKKhunrs1DiAzE0EGZXwASm4KrHEy2b8vWecAZs9dFRo+GEeuPgdOIqX4/NhBDbCwBTiOmttLKyVeg4sF86vZquwI8JeEFABNBCQC2ff0wtX06ABx5uRMNv6Kft5hLtFDnsSnds8BSyvb7Y61R7P5BMzVhZ3D/GDZ9sYHNFi8GKnUwADAWayFXSZGcpiPH+VfbUcRgpaxykL4z1ko3F9S4SHtagpJ/TS4c5xqpr6fkVhcKrnYw2bz17B2mdnhJX0vLWz1UZGyNh4fSKsB3EZ3NY9pib9d3j9KpX3FkPTyH0u2h/D4fnCtNAICDlBt5e3aMoP/AaFaCUiwZw18lr6GxsRF2ux0HDx78uyIoAYAoyUKp/JQgHA5DqZztAF6UwCsuPKWaUhrl9/vAa+VUZIeaJwogFSTY9PUGavskgM42DZjdpTHWEaZa9NAFFUyki/IHfBD0HFr/3E1NfmE5T9k9Xhx+uYVaqWb5M0GIxCIqGyRgNv67v99AdY7apwoh4cTUv1//XAiJmSQz85oWtU8VQiwVMRNraJG/2o5kMonm1ygXOCnt9tKofy6EqfFpKvUuVijsPHyXWtH8xx6qd4UVgesdMAY0aHrjOPr30Esi0yJ/tR3mEi06tg5QKUdVrw9AppRiz/cPITyQvbiQ6cuUuWfZPV4ozTya3+6ktpIrvtWF3r1DVPFhzT31z4aIdRPlu5hG2k4u6+8/F0Jyhk6OmjYfz0XFgz7wOg57ftqGcPvpryd0kxNatwqb/iPLs0qRlPZo38fAEEloV111FV599VWma1vCEv6WWLt2LX79618DAEQQ4QLRqW130xD0QPl9IfQ1jmS1EtMGBISu92C8K4L9NIvgc89DaeeUtsSlyU8ar0Ct8JJG/XMhagWpNLQBgYpgY6nSQutRUauw2M82wH2eBSOtk1QqI4JejPIHCjE9MUO1+17IFVB+hweRwRiVZZfvShssZTq0f8SmhkMLS60Wvovt6Nw6QKXCwgohV4DvIguaX29DhL7ORo3qxwKQqaRsY6cAahtA35U2JOJJtFLKm7Ni+dNBzETjTEUwFtRtDEIsFmEThQIGBKD+iRB9X7byKL/Li6mRaez4Nt28t/7Z1HcEpRS6YOWRv8pGldv0QQWTupHzQjMcy40YOx6mtj0D6HPPsnVeKG08Wt/toSJA0ebj2QOA+sdDiI1OYee3syioCMDyx4IY74pQ3WskMICPD/8FAKDRaNDa2gq9nm7TyRKW8GmARCJBIkG+H30ohkeUfZNJ6EYnNHkKbPnGoawkkvL7SM1o09ez26bNBa2tmaVKB99lNowdC1OpDeX4eCbSRehGJ7ReFdo/6KOzLEhB6xeoVImKbnGh+Y+9VPcKpL7jZWK6sQqEdMEb5dj1wxaqc1Q+7AeXI8Omr9I9r+Ubg0gkksxK4rSoesQPqUBn67cYuC4yQywR0VuU0bueASDz9tjoNHZ+6/++5sVrAe8qJ1re66NWOmKBc6UJjnoTmn7fSW2txgL7CgPc51uoVYXSNaldP2qhut90X971bToCTuH1edAH1Gh5p4eaUOO/2o6R1kkqlSPW3FP3+UKIpWJm9Vq1i8f4seznIfPMBNW7RZuP56LoFhdynEoc/FVL1vv2XmmFpUSP3d9roLLZ22f4AH0D5Fts9erVeOWVV5iubQlL+Fvi//2//4cvfOELAAAxJFgpujr7QRxQ92gh+g+OZlUM4kwcKu/2Yax9Agd+xqY2nbZFyobq9QHIBCnVXITWjm0ulj8dRDKeZFI+0bg4KoJNTr4C5mJtRtEyG3RBFYLXODF0dJxOIZQD6p9Mjf0U3/2cRozKhwsR7otSqR2l1aPaP2Sbl9IiJ1+B0HUudO0cPCNWa5yRg+tcI479dYCqr7Fi2ToPlFaBbeyktNsDgLzzCAGEiXTEgJrHCxCfSlD1ncWgan0AUk5CvVZd/yxLXwYqHw6R+u336QQF6jYGkZxJYOtX6WzVOA3gvdxJpfhDmxPSMJRoULDagdHWCRxk2ABAex7/mlyYQjloe4+OAEWbj2cPAOoeDyI2NIXdFCqlNY8XYKIrQkUaHLcOY1vPn5FMJqFWq9Hc3AyTyUR/bZ8S/F0pKaWhUCiQTCYhT1kntWA/NiX+iJonC1C6juyyNZWpUbcxmFErKr7VBX6Of2LNEwVYdo8XAFHgqdsYhON8wsgL3ugki1gpkkD1EwGUP+Aj57bzqNsYhPsyCwBCiKjbGCR/cypQdqcXdc+kikcK8kKnFY3yV9szbVvf6kU8HgennpW2rdsYhP/aXACExFS3MQghRVj0XGBD1aN+LH86iOCNTtR+vhDBz5FdUc4LTKjbGITCSZiK5ff6IOUkGGufRPfHw6h9qjCjGmQ7S4e6jcGMSlHpXZ7M7pLaDYUIftaN4nVuAIClJgd1G4NEuQTEeqPmSdJ2zw9bUHJbAcoeJPE2lChJvM8i8S662TlPqSUeSyA8EM3EqW5jEM4LyAsT/Fweaj8/27b60QDiiTgm+6IQQYy6jUF4VpF4+6/NzcQQIDZjlQ/lo+/gMCZ6I6jbGET+ajsAot5UtzGYUZipfCgflQ+TnXCbvt6QeX4A4L6MxFthJK9E+QM+VD86u+O/dkMhQrc4IRgBx/lG1G0MZlRZyu7xztuhU/tUISBJIj6VgK2OxDutglW6zjOvbc2TBSi+3Y3aDYWofy6Euo1BWGrI7rXi22bjDZA+W3oXibe5RAtLqQ65ZxPGe+im+fGuXh9A+b2+2Xg/EoQztUO5YK1jXryrHvWj4kHSVjBiXnz9axaI98OzuwnrNgbhX0P6rPcK67x4VzyYP29nZu3nC1Gw1oG8c4zQOJRYdpsHipTcafn9vnkKC7VPFSKYYg9XPe5H/XMhaMvJDy87Id41Txag+FYXANJnDT41kokk+veMo+SOE2K4QI7wXEHiUnyra14MT5Ujjr7aheG2CdjKZxc5qh8NoPz+hXNEbHIKyWQyQ1CqesRPmPXAgjlCLBUh0h8DwqeI9wk54sjLLTj4Yhtya4xEUWlOvE/MEY6V5JplghTulbO750+VI2qeKEDwsyfHMK2KtlCOmJmOo2f3UCaG6XiflCNudWL5s7P3HlqTh7JUvE+XI0ZaJzAzE5/NycaFc4ShRImyO72ofbpgVvUtFe+FcoStTofKh/IJmfLrDQi3h1G3MXjaHKF2kD6pUIhJ/kz12RNzhP9WC9q8uzEwNAC5XI6f/OQnSwSlJfzd4cUXX8QLL7wAAEgiiXeTL8G+UovaDYUZtZ6ye73zVBZL1xUAYiARS8Jxvom0zSU7eJet884bIwKfcWKoeRz7f9wK23I96jYGM+omxbe7Uf3Y7BhR/XgAoZtI3q9a70f5XV7Yz9ECIIorc8eT6scCKL7NDQDoaxxGMp7MqIIE1+bNG0+qHwugNKXWEo+Tsb/kLg+WPx1EwfWOebmw6iF/ZowQ9CQHjPeE0fhSG/LX2FG7YXY8KX/Ah/L7SM6CQH7Xc7kVGi8hZi1/NphRJCq/z5fJb0BKQWm1Db07RhAdnULthkJY6lQkhvd4UfXQbAxrnipAwbUkZ4lFIsSnEjj2ISlelN7pmRfDmicKEEztrrfUalF6VwCRkRha3+tG8W0nxHt9AKGbSbyNpWrUbiiEyiJDZDCGeDx+crxTY4Q2IKB2QyFsy/VofqMbwy3jsM9Rpax6xI9l61IxzCVtHeeQiW/BtQ7UPFWQUZ6pfCgfZfem403iklZe8V1pg/s8K5LxJJKJVLzvnx9Db0oxxnO5FbUbCqEsEFD/XAi1ny+YHZNTbfPXkDHCeaGZ9FkrD3u1FjlOJUrWzR8PC64j8bafbUDthsLM9ZYsEO+0uoKlirw3hmLyHItvc0OimP0kq14fQNEtJN6GYhVqNxTClBpnQzc6Z/tshMQ7rTCk8c7GGwAKrnNk2lpKdbBV6rHs7lQMrTyJ9/lknPVfk4uap2bvrf650Oz3TKrPui+xZOI9r3/f70NSlMTU5Ewmhr4rSbzdl1hOzhGP5Gf+XfNUAfzXkHnN6XLEli83YmYqjsLrSZ+1LdejdkPhwjkiQlRQZ6bI9ZgqNPPifWKOKL7BifhUHK3vd0MfVJB3LEuO2PT1Bhx9u2N+n71u4RyhDQjA1BQURg7OC0mfPVWOEPRiFH7WjeXPBjPqSN5VqXifIkfYKvWIjU/hwE/a4Lo41Wf1pD+dmCOWPx3E8mfIvF5lVZJ3wUV++FQ5Yu8vWhAdj8F5jjmjRHeqHFH9WADld3nn99mbFsjJt7sh6AHbuXrUPlyI1o96sPPbR0+K90k54uFCQASIJKJMjkjjxBwhuTiMfV07IZVKoVKpMDo6ukRQWsLfHeLxeKbfNuMAtiTfQeVDfhTf4gYAKBw8ap4ogLWOtPFfbYfGmdrMFyUkmJI7SFveTNqmd6F6r7RCppRmCErlD/kytQbwJAekVYrcF1sy7yavFaPiHi/qnp7/3Zz+Fss734iaJwrAa4niUTwWh0w1ax1R/XgA/tS3mH25nrS1kpqAc4UVFQ/ko/apQhRen4fqxwIoSI0Rpooc1DxRkFEJCd3khGDgMHR4DB1/HUDVI/6MapA+pELNEwXQh0jeL1yblxlPqh7xI7TWg6JbyZis9QuoeaIApgpSgym4JjeT3w6+cAyhax0ouTsVQyuJoT01zvpX2zNqJAAwNTmN8Z5wKk4kLnmpGqNnlWVeflt2jxdJSRLjnWFEx6KoeaIA7otJDF0XmUnblCDKsrs8WHaPF93bBzF2LIyaBwvgvZKMEY5z0/Emeb/kDndG/WnzfzYiMZ2A/2oSb2sdibfCQX64+BY3KueMEdWPBVC41gFeK4apjMRb6ydjROhGJyofnm1b9YgfYrkYM5E4dIVK1DxRkFHdKbw+b15dovIhP0I3OVH1iB/1z4ZQ80QBLFWkJhBYkztvPKl4IB8lt5J426uNsFUbYF9Bal6+z9hQ/cRs2/L7fCi90z0b7wcLMjuUPZeeHO/0HAjAvL85V5rmxbt0nQdl986Os9VPBOD7DJnX2FcYSLzNpHHJ7W5UPDA7j6x+LIDAmlxYqs3Q+dRYdps7o35VdItrXryrHvVn5jXL7vGg/rkQbPUkLsEb8uZ9J1U+7M/MI7V+AbZqAxLxJPobRlF4nWNeDBfKEe5LU/O9q+3zxuRT5YiujwbRs3cI5lLtvBimazsn5ojoWAzJRDJDUFp2tzfznZSO99wcIeHFGO8KIzqSQOmd7tnvJCycI9r+2o/9L7TAVKA5Kd4n5gj7uamal1IK5zmzSmunyhFl9/pQ9DkvqtafEO+bTp0j4tMJdG0jqmAVD+Rn4n1SjlhjJ3O61L3nX547G2/tqXNE775hTEdnsOyEnHxijlD4eJKPNxaeFO+FcoSpLAcld7jBKWXY9LUGjDZHUb0+cNocYShMSY7wPMkRqW+fE3OE/3objgf2o2+gD3K5HM8///wSQWkJf3f4l3/5F3z44YcAgATieDf5EtTlHKoeC4BLqRiHbnCibM54UnmPHyKpGPGZBEzLclD1WCCjWFJwnWNefiu6Pg/9h0dx4Gft0AVJHkqrHvnX5M7Lb+X3+zK1ndK7Pai8zwfH+WQ8zL/SNm88Kb/Xh+BakrM6tvYjHo9n1Jq8l1vnjd9l67woSuW3xOQ0qh4LkJr7UwVwXWpG1Zy1sJI73ChJrbeAA6oeC2D0+AQaX25H3nkmVD0WyKgGldzqyuQ3gFjVOS8ygTNyKL7Zh+XPBIkqEYCim5woWzcnho/44b3citGjYYx3hFH1WADmanL9wbXOzPoWQMa4/FStQSwVYyo8g66thJRScK1jXh2o4oH8zJqVNqBE1f0BTPRG0PJuN/xX586rA5Xf58vUdjQu8sw1HjXGj08iFp6ZF++yu70I3UBiyJlIW2uNDl2bh9CzZwiW8lnVxWXrPChOrbdwGhJD+1lkjHCuJDFMK+KU3OFGyRwXmqrHAhniTe4KA/xXOpCYTiAeTaD4FlemdpmOt+sSMubZl+tR9VgASieH+mdDqH6iYH6ffdgP7yoyRpgrtZlrMPiVMBVpUZp+5ql4p8dkQ5EGVY8FMko5gWvm99mKB/IRSI3JOfkKVD0WyKjT+FfboTDPKv2V3+vLjMkqB4mhuVILAPCumtNnYyTeaYUhzjgbbwBwXWJGZWrOmVtrQN4KE4pvmd9nc1PzyEyfTaH+2RDqnp5d86x6LJCZR+auMJD3PjUEFt/shFgmwtQEsQGrfNQP96VkTLbW6E7OEfd6M/298iE/fFeQPnu6HLHjP45ganwa/qtJDHVBFaoeC5wyR8Sn4piJkZqXxsPPi/eJOSL0OR+mJmfQ/lE/BFsqhllyxJb/aETjy8fm9VnXJQvnCI2HRywGKG185lvzlDmCA8kJzwbhvIjE236WPhXvhXOEe6UF4cEYDv68HdYq0mcFG/nhE3NEzYYC8lw5QKZJv8uk750qRzS91YnJ/gjsdUboguT78VQ5omydF5X3+lC1PgDTMjI39F1hWzhHcIC5MgdV9wfQ9kEPdv+gmcR7znfSQjlCJBNBLJ3NEfPiPSdH8JfHcGhyB8RiMXQ6HcbGxv4uCUrA3ylJKY1YLIaysjIAQBjj+PMH74HXEiISl/LzFlKSf7xODpFoVtlGKkjA61Jt1VKIpaJMslQY5JDIxRllDJkgzbSVKcWkrYH8rtIw6xsebg8Tr88E+bdCQdqmvSoVplTbFIlDlBRDrpLBfZkF5ff6IJaKoEy1VRp5iKUiiBSksUwlg0wphUgsAqeSQiITQ0iRrpQW0lbIIeeVa2SQChIcSHl2SjgxeEOqrUmAWCrC/2fvP8Mjqc6tb/zXsapzVlYrx9HMaKSJImcDxsZggk0yBgMGg0nGxOd9r8vH4Tm2jyMH+zgdHMEGHMgwGNvA5BwkzWgUR2GUs7pbofv/obpb0oxUteU/nPfY1vpia9gq7bpr17133XvttWRXPC5uM0ZZKRq1b1EmdYtTaWvxKdeV/UpcLJ7ZtqDI+Fs9FtbdX4zZaVb6H1A+UCxeCYOkn9dWcphJP81D3rk+pb/x5G3xShhMc9raDBjNRvb/sAmsSh9s8T7YvPN92s12Eya7ieaXuznwy2bl2cSfuTX+bCzxeJvsJswJn9EJFPuneEHM5lfa6p3Kz2aHCaNt9l4NZj3uHDvlnyzEmqL0yeo2zsZ7TlwMkp6ZUJQd3ziCNf5sZLd8SryTMfRJjHZMMBWeVvrri8fbe2rbxPjuPqiQQBJWIhaveX68LQbMTuVeJZtyrxlrvcl7nRtvk82I2aFcV2eW58U3OWbnxNtsm/Vq1Rt1OHIs1DxejivfqsQlvtFmdihjNhkXkx6rT+LIM+2M9oyjM+iQXPrkdY2W+TG0xsfsdFiRRZRM8fs5Kd5G2YDFk3jHZHQGHccTY9krzW8rGU7JEelr/Ky7vxjZYz51zCZiGM8RzhyLYt/mieeIRFubAbPDFI/n/BxhMBjQzbH7UuKttF0oR+gMOvb+vDHeds6Yjcd7oRwx3DCRzBFz431yjgielsa6e4uTOWJuvBM5bm6OaHy9nWg0ilE6Od6n5ohVt+YpY9ZsoOmlE8m2iXifkiN8MjqdDkP8+RhlA1Lc2sfmNczLEdaU2TFb+8s2jObZeC+WI/oPjjMdmkGv08/zF14oRxR9OIO8C9Ixu+LxnpgTb08i3vEckSJTfXchZocJvUHHln+rZaIvisGsxxqP99wccSS2n6ef/SnHjh2juLiYhoYGbrrpJpaxjH9E3HDDDUxMzCp8PPvuLxgaHQSz8v5JLvPsuwkYJAMTvWGaXu7CFpAwmPVI8b0zyT0/Z83NLZkblHVCarXyMWnxmDFZZ9uaLMbkHDHaofRHj/LfbX5pflurMXndiROT6AzKem/dfcVYU+fPESarEcmt9N/iMmIw6zHblbWXNeWktg4jkktpq3co9zY9OsPQ0RC2VHneHCE5zMk52WJR1hRWv8RIU4iZqZl5c4TZaUJyzJLqDWY9dr+SN20B5boFFwSxpMlILhOmOWR3o2TAEp97LPF4yw4DK2/JQz4phkbZkFwjW33KdTt39NN3YPTUeFuNyfwmx9tavDJ7/7MRs2xaNN6SU0reK8yugRKkCJNtTrydOgxmPbbU+LrGZ8YoGai4Tim8mB2m5ByBRbH7S9i02lKUPm39Sh1tm63MeSwAAQAASURBVHuUeCfGYSLeKfG4+JQ+RXsjTI1Po9Pp549Zsz45n1jjbU1WHY2vdzEdnsFgnDP3S4bkvVni3w5muxILi9+MyW5Mkl2MsiE5Jyf6IMXnF4vHjF4/Z11mMSbXEJInEcN4n+LrmvUPlrDugWJMViNyfBxKbpPSNjX+XP2zY3bvU/XEZmLJMSsl4h2Y03bOXB+LxdDFdPFw6+MxjD8bv9KnBGlGcphgRqes22FeW2t8zJ6cI9bcVa5YgkmGZB8WyxH++KanUTJg8ZuT/TWY9UjO2RjOHYd6vR6DUbkfi3d2zMLCOSI6GaP/0BiSWz7lXue99zajcuglBMwo9yon+uQ7NUdYAxLl1+RhzZLjYyt+r96Fc0RoIKoc0tDNWavE45JAIkfYciyUX5+j5J6xaDyG8eta4uPnpByhM+jQ6ePPdU6OAE7NERYD9kwLhGDw6LjyLiS+ERfJEe3b+pgMTc2Lt9V3aluLx0zlHWXknZGmxNsRzxE+8ynxltwmci9KJfdsLwaznoGjCpk1kSOScZmTI14ffpE333yN6elpzj77bEZH339l1WUs438K/f39XHHFFQCMMczmd95A9iq5XHYalXpCYDY36vW6pPqG5DElrUFNltnaAyjfkkbZkFSesbil5Bwsy/F5yzf7LWaUDSBDeChKLDpb8wKlrc03u1ZR2irXikZjSE4TaRu9rLolF5PFmFx/2FKVtrJDuZbsNWN2GNEbdJjtBoxWI7J/fn/NrtnvOLPdlLR9MztMyblejs+VCQsNq09Kfg82vdkFMZL1MJMjvjaJz7OyX1Js7eKQnCYcqVbWfr4Ii9ugxCVRx/JLmCxz2jpMyB4zvlUOss9PV66bWKv4LPPym+wyY7IYOfjTlmQMrYH583c8hEguM7LLTOfWAQ79vGVef23xtnp7fJ3mMWN2xfsUVtYU9jj51xpQ7lV2GuNxMiXXLQBGq2IrU35dfrIWJbkS6zJpXl3CZDcxE46y6zsNWDzSvLFl9UqY5tSMzHYTVp/EYPMYkdFJpW187rQE5s/JZocxebi05R3lWc1dq5jkOfF2mZDjaynMMkaLgYwNysaINUWeH2+nKbleSsQ7gURbWVbmWtltTq6XAEyyEWfQwqZHy/GXOuK1TZJtzY6T5riAROubPfQfHcZg1GOOX8viMc+Lt8lmwhofo5EJZdMrsfay+uV5NQyz3ZSsGck+CwaTns7tfRBWns3cMWu2G0/JERnrAlTfU6TEcM6YNbvm1LrjOcKeLSO7weaTTxmzidrOyTkiWfNKjlnTPNvmU3KE2UDDy0rNSPKcFO+Tc4RFyRGjreFkjkhed4EckXumstlmXWDMJsbo3BzR+GoH0ZkoJsvC8Z6bI0qvzcaSKmGUjUmFKclpwhL/Lj05R1gDSs3LJBln45I4PC3L83NEhiVZo2v8UxdGsxHJPT+GJ+eIaH+Y8MAk0ZnYqfE+KUeknean6LJMbKkWJUeEZ+M9u+aczRGrP5OH7DVhNBrY+pVawifCGK3G2W/NOTnieOwYP3/xpxw5coT8/HyOHDnCpz71KZaxjH9EnH766YTDYQwG5X186eBvGR4fRIrvLVn8UrKGAUrOHeuaoOW1biw+Jc+b7InvWxnJOftumh2mZE0/c5Mfo8VAWpy0a0+RkzUjAMlpTr6bg43xb5nEfmOKjMk+fz5M5IeJ7ggGgwHJZ6bytnzsWZZ5uVDymJJ5U28zYbYaMTuN6Ax67BkWzHNqdBaPhBR/5wHMViPTE1GGj01gi9vRJa/rk5J7MwBmmxG730KkL8Lk+DQ6dCDF5ya/hOSZE0ObKTnXy34Js91I4UUZWNIlrAFp/hxhN85+q3vNmC1GJKdEydVZStu58Xaakt/fstuM2Wqk79Awg3Vj2ALSvDqQ5DIn87HJLmG2GrH4zBx8uhWjWT9v7pHcpuQ8Jdl1mK1z8qjHjNlqShKPZI8ZOb7Ph1m57mwdy4LZbmTVpwpAAtkjIcXnZCQl3om1rTVFxmw1su+HDbT/tQ/ZJyXn72S8A3PWbFYjuiiE+iNA7JQxa4vHUPYqY8DkMNG5Z4DwyOS8mpfJPntvskdpm/jmtmdZkL3mJNnF7DAl701yKfGW48/Z6lf2u2bjPTsnmxzKdRNrF1uKjNlupOquQkV50W1CTrSV43GJjxd7QEaKrzn3PlXPzORMsq0k6eMxjNclUpS4JEgz0WgM5og5mq1GbCmJNbMSb8yJtZdMbCaWtMw2W03Y58zJZqtxXo6w+CSq7ylFcipjZ7YeqcTl5ByRICIpMYy3jY/ZxNrr5Byh0+vRG5RnJTnjYzZRm1ogR8SmY/QfHMFsMyj9TXIF5q+XZL8Za5oMEZgKxZQYJvYivfIpOcKeZaXiunwsadL8dyEQj3eiD4kcEYGBY6Po0CVr3VZv4tnMzxGSX6L4ykzMNhMz8UORcjze5vi+/ck5wmgyoE/UvLxKDBN1w5NzhOwx4wxaIALde4eUGLrnxGWBHNH6Xg/h4UnMFmNy/WdNkRbMEevvLqHwQ5lKXBJ98Ck5Ym4fZJ9M2noPmeekYrYaGagf4dAv2pQcMSeGc3PEO7zEq6+9QmQywgUXXMDAwAcg+f8/iH9Iu7eT8eSTT/K5z30u+fMGzsahU/dMrHmiHGIIScyVfTKb0a4Q7W+LS/VZ/Xoqbi5ih4Ak2sZHytAbxa3Qkn8jaNW0I3IVWVlxbS7ToRl2fENMng0g8wwfHe9o+8WvuauAhle7hGyaYOlWUAkVHxGpO4sfKm8vY6wrlCz2qKH67kIkt5nDz7Qw3KDd/6rPFdKxo1fYUit9owdrqixuyfYBYsNDpcSiMeExsBS7t+CFKWSt99Pw0gdjr7YUWDNkcs5Joe73bWL2dlZYfUM+PYcGhWwRl2IVhBVq7i9nsHmMOgGv0dyLU8lY66P1L91C796qW/Owp1uEbedAeV+b3ujSHO++lTZC/TPCVmlLzTNLtWGrvqcQyWWm7rkWTeu5hCLU4SVK51Z9rpA939ewGYlf35Vrp/vAoOa73b+qkSMNR5iYmMBqtTI+Pr6kPi1jGf+b4XA4GBsbA0DCwhm6S1XbF12pyKf2HNa2fsMClTcVsE9ABnUuVtyYw+T4NA3Pd6i2869yUPzRbMa7wuz/sbZsc7JbmRZCHSHNdgmbz70/ahK2PbLlWDAY0LSY85ZZyapJ5YCgJV7+pemkV3vpPzJC/bPaEtgJ6yhRa6fy6+K2l4LWJjVPlDMzGRWyHsk604873y5uYWWB0o9k0/rm8Q/Ekm0pSN3gpuD8DBo3d9K9fUiz/VLt3tbdXwwxhOzMPmjkX5rOaNc4vXvEvORT17pJq/YmSU1qSLyrY50hoTG/+tZ8LH6Jbd+pE7LC2/hIGdGpqPj6+PH496PgeHcXW8g5M10oz2Sc4aNTYP2XQIKkJpJnRHPX7C8olnlC6zoLrPtsMTufOipsPwhKrjHZDTT+Qfs7STTuA7EBRgraONaorOeeeeYZrrnmGvFOLWMZ/4vx6quvcskllyR/Xsv5uHVu1d/Z9Eg56GGrQM7KuzSVqbGZpdlTyLD29iJ2/bBB02Zr3X3K2mjLN5ZoLZcma9pHySmKmsjkyBS7viNuwZC20StkHbXyplza3j0hbAe16ZEyRZ1XcK5Yd38xepNezJZNhg33lDLRHebg0y2azStuzMWZY6X++TYGasc026/8dC4n9gwKWWQB+FY5cKRZhSzBPmhU31OETofwGFiK3VugykXhRRkce73zA7FXWwpkNwTPzeToKx3C71L5dUGGmsaELCzWf6EEo2QQtmPZ9EgZg42jScKgGlLXeij4ULqwFU7JlZn4V7jp2NYnPMYqbsylfWu3pqWjI0dmZgYm2sWCuNQ8I5K75mLlTbk4gmLvasFH0jHbjNT9RsDeaA5W3ZrHgV82a46b/MvSSKv00r1/kMY/adS8VjbT0HSEsbExXC4XQ0NDS+rTMpbxvxl5eXm0tLQAYMVBje4i1fZZZ/kJnpFCz/5Bjr2o/Y1TcWMOh37euqQ+FV2eQXQ6pmkt58xRFIxGj49z8GnxvyFqY7TmjgIsfokD/93IWLuY7ZHkl5AcOkaa1ZOQPUsi5+xUYVuntPUe8i9Kp79+hCO/056LUqrdFH4og5Y/i1k75V+aRkqFh23frhOyHtv0aDkzkRl2fFO7xuBb6SSwwkX974+L2ZpJkH9+Gh3bBz8QS7alwF1so/Rj2bS83c2JHdp7aku1e1tzRwE6o05or+aDRtZZfkJ9k/QfFqt5ecrsZK7zCb3f9iyJVZ8qYKRtXKh9yVVZuHNt7PvhESIC3Vkbrx3uEqwdbnykDGKw7Wvae/Gg2Ebmnyf2vgZWu+jdL76OXkqekQISkd6l21dOhWaEYlN1VyGHf9FEZETbpjiBlGo39lSZpldOaLbd+MUy0GtzICKxCN1FRzjaoPT52Wef5eqrrxbu0/9WGLWb/O/HXXfdxTXXXJOUs9rOX/DGUqnSnbHo7+z7SRP6+EkZ30ob/QcX3zyu+3V84W+FTfeV0Xt4mGMa/qh5F2dhlA0EL0zRJBBs+2pd0qoNK0LkirWfL8LsNHHgVy2qBKHhhglh0kMCCfKD2Wmk+WX1D8G9TyobiPZ8K9FwVJN4cOyVdsbatIsjCUyNTyVP/GohFP/GnasSpNqX1zrJPTdNiKAELHlSzDs/HXQIk5TKrgsyPTlDw+/UN1dBse/K3Oin/oVWTdIGwPZ/F/cKXira3ugRJsmAUvSITcXY+W3tCcDih7JrCzj6ihgRruiyDOypFlIrXGJksgmENskSOL61F3dCQl8DnhzlnY4MTwq1j04qp1I7dou9qwd+3EzwvABtb2l77aauV+KReF+1UHK5Io0pulk63DBB85+7hIheGx4qxSDpk3aaqojnw93fPYY93yo0Blw5dqE+Y4VN95Yx0DTKkWfaNd/vxDxx+BdtpG/00LVt8XudiE2whVdgP7jdbjZu3Mhbb70l1q9lLOMfBKOjo5x//vm89dZbRAixOfYcp3EpFp1lwfYNz3cw0jpO964hQCHbDCw2f4VIEpTKrwvizLYJkQ5c2TZisRgNqM+jfQdGCQ03M94av6AFzWtbvLDm03lMjU1rEkN2/sdRUte6hQlKAKtvyBPbhK+bYKBOIWsEqpyaxJCml7uYHJ2i/W9im469e3rIXO8T6zQwGVJOs9hyLLPxVMFQyzj9R8U+Stv/1ifcb4CsjQF8JU70phxqf6n9ce8utpB7boYwGS5hpSFCDOrePiRETvp7sfM/xMlJqWvd5F+YTtNbXUJ9Kroyk1gspk0mjCOtykPqjFuYpNS9ayiZB7TQ1zBKZneYhpfF1tI6I6BDmCwzE55hKj6GRbD3Z81YPQbNdpZMC8zEGDoaYuio9jqz4PJ0Uld6cGZYhciEADu/eZTUDdp5xltmpfTjuUz0htn3A4E1bzwf7v1psxCxKe8cxTKq8OIMzTFTdGUm/hJnUvVMC+5iC0NHQ9T+tplIn3pf9sbeo58udE06SkpK2Lt3LxbLwvPRMpbxj4iLL76YUCiE1WolFouxi834Y+lU6k5b9Hf2PlWLFD+97SqQVUk2c+s+Gx8upbd2WHNzOv+CNMxOEzlnpND6pvo7vfNbRxVbtzCK2orAEilRl6p9plmVcBDuCdPwcseSyCPFV2TiX+HC4jbR/Jp6zStBBpJTZNCjSTyo/30boaEZ4b5ERqbmqduoIoxieynY/NhrJyi6NI2BJrEanMhhv7kouiQTvUEvTCDJvywNnU6nObZAIQYVXJhO42tdQqQpEbLR34vePcNLGl8Jy4fd3xPr06pb82h9u0uICJd7UTa+EidjPWE63xWrHdUKHJpLoPmtE/iKnEJtFVswXfJ7QATR6Sh9+8XW90ee72C0MyS0iexb5aD/wCiHft4idO2KT+YtiUwY7gnT8GKH0Fhc+/kizA4Te75fS3hIo3E8Hx58ugVrlixEmgqUu9DpBerecVLjUOMoR57v4MCP1Qn/7iILQw0hml48wejxkOq9hmNh3uUlOABOp5MLLriAN954Q7tPy1jGPxCam5u5++67+f73v88Eo2yOPccZXIakkxZs3/7XvnlEBmeerErISRAScj+USkqFmx3fO6JJVPGVKPlZi6Q00hph708aCXXFLyihTYKRoPr2AiIjU5rz194fNOJb6RQmKAGs+Yxi36S1CT/WHkkSHjxldgbr1NcwJ3YMQjTGCcEaQ8+hIfLOTSU6JUY2iAxPgQ6caRIjrdr321c7xPBxsb3G/oMj9B8Uq6MA+AqdpFf7MDtM1D+jXTewpEsUnJ9Kwx/bhAgtlbfmo5f07HlSew906Og420QI9n8n9i7h0KozT6bsqhxa/9wtNA6CFwQUJ5CXtckjAFk1AYjGhElKg3VjmuM2gbH2CAPHRml/V2xv1WDUgw6h5wkwNTKlqEYJYu+TR7CkaddRJL8EOgh1RYQIShmneck9Nw1PoZ2jGgeLk30RzDOWdIk1txQw2jkh9i0Tz4d7ftQkRGxKW+9B9pjJOjNVM/dmnx0gY72X7d85Qs/uIbSeqjNHySv7f95EdEq97dHYftpogAYoLi5m586dOJ1ia/b/7finICkB+P1+YrEYHo+HoaEhBujmrdjznKe7csH2STKNVdmQn7k0yvavqSdWV6YVnV6HQdb+GDj8i7Z5SkdaG+wTbRNYM2Qqb8knPDipuWHe9k43OWenCW3aJwhKJddm4cq2aao7HfhxM5W352sSlOZi1XW5xKZjbNVYaPTENzA8ZVbc+Q7Nv7H7u0sjBm39shjLExRixf4GcYIKkPSFFzk507y5i+FO8cWaJ99OLKq9uQowMxlFp9dhS7MKkZRg6eo1wojz64SUi1A8g6OILQSzzszE4pVJKXcKjfX9P2wi79JUIYKSb6WN4suCHHulXVgBqv3tPtoRK6gM1k0Is8MB2t7qFSIcgUJoq/tVm1D7hEJToNwjrEbRvqV3nh2c2rXTKr1s+2qdEEEJoGvfAIESp+Z4SagzjZ0IceBHzZrP31Wk2N7t/UEtIcGxqNPrsMyRxV4MWef4CZ6ewtiGEAd+3KxKUBrL76Rp9BiJVcjLL79MTU2NWIeWsYx/MGzevJl3332XM85QSOHv8TKFsZXk6koWbJ8gJqy+LR9bqkzDy+2axIaE7YcI6WDvU7WE4u2c+RZVVaIEoWb17fnYUmTNDfnQAIQGIpzYI5bruncNgUUpDLf9rUdTlah7/yBjPeIyJCtvycORYcEoaSseJYg+pddkaxIgQgMkrZFFcOyFTo4hRmYBqP3F0k4Kpq51k3dBOgd/3aJJgmp/uxeDSUerIHE6sNKLLUUmeH6KEGFCZ9ApBBhRJL7rl6AuI3zpNFmYBCd7zej0OmZCYhumgVLFV130ue7/eTNWn0m7Ico6emYyyt6nBAtOIdj/X+JrdSESzhyIKlHlXZJGz+FhxltDhATqKZU35SobX4LrwMY/dGHzyUIEpfUPltB/ZITGF8VIZwN1E0yNTdPyZ+0N4arPFSK7zez9z1pNglIixza/coIT+4eFCE0m2aCsvQSUnTZ8sRSDWc+WL9UydFS9bd/qYwwd7IEZyMjIoL7+gyuWLmMZ/19ClmWi0SglJSUcPXqUPrr4c+wFztVdsWD78BCEh5S5YsUn8pmOzGjWguQ0GZ1Bj1Hg4FfTiyfo3DmUJO04cmRGWxefm8InwshuqLqrnIn+iCZJuPXtLgovydZURAGSBJK8D6XiL3Np5vejL3RgtmsTlOai6jP5RGeiSTu9xTBYrxyAtGbJBMqcmgQuLeLAyRBSXIoj3BNOWlOIYvVn8jCYDUIbVA2vdBAa0Kioz0HqSi/EYkIkpZnwDDqDPmkVIgI5RSbc8wHUvOJOLaLKRXqTDgT3g7LO8uPIsOJf4WG4UTsu9c8eJ/scvxBByZols/K6XJpeFyN6wdIIWRPtYbZ+Vbzm1b1rkO5dYt9SxVdkcvSFDiGCUupaDwUXpzNcOc5hQVWSY693Yk+RNdulrvWQc3YKO75/RDiGx9/rI63ao0lQktNkqm7NT26qaRGUEjl227frk3aQqgiD3qCfZ/OzGHyrHJR8NJvR9gkO/qxF9V6HM3ppjx6F+HB9+eWXOf300wU6tIxl/OPhe9/7Hvfeey+FhYUAvMOLFMVWkaMrXrB9gsRQclUWvhInx17tpGf3kOrfsLgl9EaxA/fbvl2PFOdI2bMk1c37BEGp5OosfEVODjytoUYSgdH2cXrrxNgPCXLN2nuLad/Sq6mmc/ydHmbC4iTuoo9lEljhouUtbcWjBDEl/9I0beJJBLYLON8k0PFuPx2CpGCABg1hi5PhLrZRfFkW9S+0aqpM9R8eodndRed7YtLhvmIHrjwHqWsDtP1Zew9JL+nRm8XGIpC0ThNSgVoiRFW9AGSv8v0yMyW2+Eqv9KIz6oVJSnt/3IQ9ZWFy4slYdUsegLD6PSBEOEug9jdLcw7ZL/idkXGal7H2cUZaI0RGtJ1AVt2Yg8liFCZ7d743gCtbjKBU9blCBo6N0vJatxCJL9QVYaInzPF3tcd4xY05OLJs7PmvRk2CkiVdItQV4cSOQQabJ4QITQZZr9hnBtTzM0D1vUVINhNbvlE7SyhdBAOrmug83AzTJK11/5mwhKzzj4HBwcGk9VuMGJtjz9EXU0k4EzDWFaL9Pe1BPNwwwZYv1XLkGUU6cM2dBartEwSlDQ+Vsuq63Fkyx2LtO8PMTEUZaNQmTPTsGUmeol5xQ5BApUPzd5wZVsVTXKMfAPvi6jJl1wVxFWn/wkj7BC1viyV2gLIrc0mvEj+pv+GhUqrvLhRqa8+3sv4LJUL3CYq0W9XnxK5ttBrn+b2roWvboKYd31wcfqZFmGTV8U4/W75UK2xBuOGhUipvyRfuy1Kw/s4Sah4oF26/7at1QjaIAA0vdLD/l800vSQ+tkTJdf4VHnQGHaER7QWyxa/IgRddkSl07TV3FFBybZZQW2vQSs3j5WSdo25Rmbz2XQV48u2kn+YRat/yajeR4UkO/bZFs+2qW/PAqhCmRGLuybejN+qwZmhXSNbcWaBc+40edn9Pu+A53DBBdDpGf732YmT9gyWsuDYXa4asKKqpvHaFl2cosZ5Q7D73CShptb/dx+TIFA1/UF/YvR37PTuatzE0NERxcTGxWGyZoLSMf3qcfvrpxGIxzGaF8HeMg/w19ifV3zn6p05CAxEh5ZV9P2hKfvTkXJhCzoUpi7YNDQAhZfO84ro8obm9/+go05EZoQ32vU82KoQgi2IrpQVbigWDWY+vVPtkQ5JwYIHyG3I02x/8dTOhvoiQJRso1kq+EicVn8oVbl/zWDkWr1BzSq7OouJmsWuXXJWl2DcJiJxMh6fRG3WkVriFri1KUAJlY23PT5qECEoAO75xRHj9Aopd1tpbi4TbLwVrPpOfVHbSQusbPWz5t1r6DogRsrd8uZZDvxEvqIy3hoRVlIwWIyaH2Dq66nOFbPhiqVBbi1exy7GkiezYKJbP6+4Xix9AerVX+ZYTRMvb3Qw1a5+c85ZZKbwiAxArYlm8YJQNOIPaHzmBKiclVylr0Z3fOqpJ9AEYah5nOjyjaZdo8eqpuC4vOQa18mciX9b+qo0t/6ZNgALo2j3AkIbyR0+sg82x59i3bx8pKSk8/PDDtLdrS/wvYxn/6Dhy5AhPPvkkAFGibI49R09MfUNk4OgInTu0N1jCJ8Js/XItR+IF5JU35Wq2B8Vqa+WN+chu9RJjeAimJqY132+A4cZw8iR/0eUZ+FYJ1LxybBitRmS3ZtOk4kr+ZWm4i7QXJQMNIzRvXsJBvutzydwg9o0PCpF3zWfVa4wJyCkyaz9fJHSfoKhZV94hdm2zy4TJJjZX9x8YFbbLAjj0qybNg40JDNSOsfXLtRwXrHlV311E1e0fTM2r6pZCar4gXvPa+R9HhYnQ7X/tY+9PG2l8Q0w1EhCOSUq5C4NJz9S4gLq3DJseK6fo8gyha5dfH6ToY2JtZbeeTY+UkXWW2PtQfn2QQIVbuH33rkHGT4Q4/FttglLZJ7JBVshYIiRFX6kDo2zA6tdeY668KRdkpT8iiu3hE2GmwtP0H9Veo1feUcDKG/Nx5CiKdGoEqOxz/MnYbf1qLQd+0qJ5/f4Do4z3hGnQ2LB9J/YKu7veobe3N1nzWiYoLeOfHQUFBcRisaSDSwMHeCf2survtLzeyVhXSJOgBFD3TJtirRSBtLVuss8OLN44oiioSH7FImqNwNw+cGSUyYlpIdWjg0+3KmQjCVZcF9RsL/klTFYjvmLtNVrHu/0KmUgi+Z2qhoZXOhjtmBAiq4JinZZW5WXF9dr9BsWKaeMXS5ECYuST3A+lUv4JsWsHzw2w8ZEyJAGRk8joNEbZgKdYTBFFlKAEyhpjz4+OCRGUAPY8eUzYFgyg5gvlrLlFbH25VFTfUSC8X9uze4htX60TthLb/vUjHPqF+AG3SG9EWEXJ7DRhdokR7CtuzGH9Awsf8j0FkmI5ZkkXG68rb85NKnuKIOesVMqvzRNu3/T6CXrrtONtz5LIvzQNUHKdJiQwO0xCTjauQiuFl6UDsO+/mhg6qk2uGmgYZXJ8SpsAJ8GaTxckY6hFUErky5bXutn21TqhfHv8nV76j46okvxGYiNsjj3Hnv178Pl8/D//z/9DY6O4ytg/Cv7pSEqgsJx7e2eT7z7e5d3YK4u2P/DjZkVtyKoQEdbcpZ1ci67KxOKTKPtktmbbtve6CQ1EhJRmtn+tnpZXlQ+l6nsEErEVXLl2Ci7Wntx3/sdRxb5pAiECj8WvkBBKr9CegA/9rIWubYNY/IoVmRaaN3dx5A/ip+n1Rh0GSVvZBcBfonxEFl0qRigRPeEECsFGS5ZyLtbdW8ymR8uE2orazs2F1S/2CvccHmTsxAdwlB84cWCQCdHTalaEyWMJiCgogVLIqHm8fNY6UQNHnmlny5dqha7vzHdBDMa6xfpiCUh487QX6AD+UjvoYFLQFm7vk430Hh4WUi7KvTgViCuSaXQ9faMHe7qFqk+L5Z1EX7Z8qVZToSvrHD8Wn8TqG7SLhsXXZFEYL4xt+2qdkFVl8+ZOIsOTQkphKSvdZNdo5yhPmZWaJ8opiy8ydn2nIWkpeTKmrH0cy9nFDDNEo1E2btz4T8doXsYytBCJRDjvvPMAmGKSzbHnGIgt/PEcOhFO2k+W35BDzePlij2SBjLX+clcr12sHmkKERqI0PSG9gmN9rd72fHvyvtaeEUGeZekaf5O5U0F2NJlAlXqRYTx1hBbvlTLocQJdgFSTvWthbhzbXjLNOayEEk1GjXiVgJtm3s4sXdAWFFvanxakbQucgu19xY6cGaIzb+hwUmIgTdXu33/oTG2fKmWJkG7L3exhZrHyym4PF2gI9rkilOwBPeo8e4wnfvEC0hLwVhniK7dYte2eJf+uaemQjYXmx4tE/puSmDb1+qS75sWYjHxBXrOBdmYbEacOWIkJb1Zj17QHhrg6B+P0/CSNvkl65wAWKBr64CQtUrRR4KkrHCLjSuLQsTc8m+1Qva9BRdmChEkgeQzbHq5ix3f0H4+oYEoob4IzW9pv5fl1+dgS5eF8tSaOwuoeUzZBG7b3KMaw7GqdurNuwEwGAzs3LmTr371q5p/YxnL+GfBnXfeSSgUQh+3/DnAFt6LvbZo+/rfttP+V+VjZtNj5ay+Tfu7LHhuAEfQSuk12jWv5s1djJ8IER7SVkze+a2jSXuw1YKkkkCFm8IPadd39v+wia1fjlssiUwJMqRVeim+XLvmVf/bdkUFRoaM07UP3B39Uzv1L4ifdtab9BgksbnJFbRgdprIPkeMJEJMfF7d+Y2jbP93cbWm1bfns/FhMVKxmtLWYtAiviXQtXeAkdal19RE0Ll7gNH2JVxbbDmSxER7WEilKe/SVDY9Vo6rQOwPtLzRzZZ/qxVSI3NnWyAK44KqBa5se9J2SLNtoQudXsfUuJiCRu0v2+jc0ZfMWWrIjh/22/+jZs0YuosseAodrLlZYO0qz/Zly7/VapLxfKscOIJWVl2vvcGXc0EK+Zcp35w7v3FUSBWr+c0OxnvCQu9QVk2KUM1LTpPZ9Fg5pdcqOX7/D5sWVSIbl4dozt9LhAmi0ShnnXXWcs1rGf9y6OnpSQojRAixOfYcI4vUvCIj0eQhlPxL09j0aBnOHG1yQc65qWTVaNe8In0RRjsmaNqs/T3Wu384STzJPjtA8ALt/FD6sWxceXZSqt2a/dj6ldpZuycB/kTFNTn4Spx4yuzqDSMk1SAzNmmfnus/OEL7e71C1lMAk6NT6Aw6PDliRZ7ACjfOXG3iBMB4bwRiYM3UuEcUFZgtX66l9XWxw3NSQGLjw2VJ4ofI9ZcECaHnCDB4bIwugUMQfw/6j45wQrDmJUIGOxmiVoXrHyihUuCQagK7vnWUXf8hRvTS6cTX58EzA8geM65ssbqrUTIsSRXr8G+aaXhJWwUsba0byamoejW8oF1zL7kiSNoar9gzituwbftqHfsEFNWLLssiZbVHaLyu/HQuAJ1bB9gt4JBEBEbaxmj5szahPf+SNFz5dqHcuuL6IBsfKQNJIdcd+d3idcbRNR3sl/4KgNFoZNeuXfy//+//q933f0DoYkupAP8DIjc3l9bWWTJMDZdg1S3yMlth4+fL6D8i9pJlneNPKtkEKh1CllFr7y0iOh3TtHMrvz6IO89O94FBGv+ovuBIXe+i+9CwsN2Wp8xK2cdzmegJa6qIzL1HEWx6tAydQaeQoQRg9evJOD2NY0uUQtS87gdlbRZH/ofThJRmqu8uxGQ3iRGbrFBzfzlj3Yq9lRY2PVaGTiduJbEU1DxRzuToFLu+LZC0l4CKm3NxZlk59nJ70vpPqx9jXSEhCfTy64O4cmxCalSp612EB6f+LmKYKKx+PRN9YrZ2IrD4Ffs7kdwEiqKAyWbk8DMtwvcZvDCFNg0VioQtZWR4ckl2jJln+IQIRzVPlEMMzXGdUuWk4OJM9v/wiHacrYpd53DDBKnrXYw0DS9KOJqLTY+W0XN4SDUHb4m9zpQpzPT0NGlpaWzbto1gUOxkxTKW8c+IY8eOUVQ0e1rDiYf1uvMWbV9weTqBUrdyckwDFq8ea4aV/kNjuIstDB0PaVpp2XIsrLoulyO/b2VAwx41sTkuIlebvskrrGIEyul4s9PE3idrNVVKss70Jy3atOCrsFPysSChgYgQcQEUMtaxVzvfVxsyi1dPaOD9m/NOhrfMis6gp/+QtvJCzWPl9NQNcewF7bXl6lsV60GRZ55xho/cs1Pprx9R/ZD8e7DuvmJMdqPw+nkpqHm8nOh0TOgdW317Pja/WDxAseQKD04KWbLlXpRKy+viChRLxVIs8ERRcHk6nX/r0nxnlQ4o6lkzk1FxKx6LIjWulUsq7yjAGpA0bSnnXdoL1gy75jtTdGUmgXIX3QcHafyD+jdn1ecKic3EhOz6fBWzfzvjDB+dAmvAkquzcOfZ2f7d+kXzUygW4j1eRqfT4XQ6yc7O5uDBg5rXXsYy/plx5pln8s477yR/Pp0PI+sWITHIsP5zJQw2jtLwe4FC9EYvJ7YpOcpTaktamalh9Wfy0Bn0mnZueZemkl7lo3v/oKb9l7fczkTnmKZ9UgLWLJnKT+Ur1uEatYTUtR66Dw0KW3mtf7AEo8XAlq/XCv2O7Ib001KFFZ9F8YFZm8URPFfMGmTlzblY/JKw2uSmR8oZ61bsrbSw4Yul6I16tgquS5aCmifKiQxPsfu772/Nq+jyDAIr3TS9eSL57qhh06PljLZPJJW91FDwkXRSVriF1Kg8pTZiM1EhgtLfC9mtFyImil8Q8i9Io+lFMSX1hG133e9ahXITKBvdWqocshuqPldOeHBSyPYwgdS1HiE7u02PKt+cW7+iPq7dRRZKr8xh33+3JFXrFoUMrkyZ4cYwnlIbIUHS6IaHSuk5PKian/bE3mHE2M/MzAxpaWn8+c9/prRUjJi4jGX8M6K3t5e0tDSiUeUdc5PCWt2Zi7bPOstPxjqf0GEQyQmWNBtDR8cVO7feiKaVluSXqLw5lyN/bNdUEtn4xVLQ64T2qQKrXcLKNKCQABzpVnb/sFFTpSRtvUfTHi4Be5aiGjXRExYiLoCyhune1UtETPxGCJJTT2Tkg6t52bMkTA4Tg3XaNa8ND5XQVztC40vaJLWSq7LwFDqEnrm72Eb5NTn0Hhqm4fdi+0+iWH1rHrY0yweyj7nx4TJi0SjbBQ7ElV6bjTvXzrZv1QnZ1K29t5jIYISDT2uLbWSe7luSNeBSsRQLPFFknx2gZ0+/8NiuebycqdAMO78pTlROqXZrqsqVXRvEU2Dn0C8bGWkVvEdJEVjRemeyzvITPCOFE3sHNC3+Km7MQW/SCymduwqtDB9T9hlE7hEgeEGAlJUedj15dNHxF4lFeIeX0Ot12Gw2ysrK2L59u+a1/5HxT6mkNBctLS288sqsitIWXmFH7O2FG08oTL0ECWDTo2Wqlk0J8s7KT+dSdFm2kIKQyWrE7NCWfKv9ZRvHXm5Pbo6rKeZ071AISlnn+Kl5olyzH4N1E8xMRuner70YSNxj7sWpioWaBo690s6JveKbdqs+U0LKSrewus66e4uTzEc1THSGwUpSBUUL9nwraz8vJoG39vNFpK3x4tFSOQB2f++YuPLSBMSiMaKTYpPCcOs4I8fFPsRdRVaq7ykUsu5bKlbdmkfxNWLWZr2HB5kcmRIiKFn8EJuJMTUxLXTt2l+2Cdvl5V+QwYprc4Xall0XpOgqMVWu9NM8Sds2EeLMpkfKSNFQ4khg5adKCKxwCStF7fzBUYaaxzQJSvkfTmP9g8q7rUVQAuXdmg7P0HtY+0Nl06NlybyhRVBK5LgDv2ph7w+0F6zWVAs6vQ7/au1TrDX3lyefd/eOxQlKVr+eTY+WJRWotn6lblGC0kRsgqa8PUwwytTUFIWFhXR2di4TlJbxL4/CwkJisRhZWcq8MMIgb/E8odjCBfLGP3QlyRMFl6Wz8Yuli1qMhQaiyU3v8qvz2HSftlKhv8SBzqBDcmufON77VD17/1v5ENFSn0mQCtY/VCJkSdVXP8LU2LQQ2SFBUFr3QDFZZ6qfous/NMZgwyh7fypGUHIXW0hZ4Ra2IUtd61buT+NwWYKglHVOAL+AHQsoxZKiK8Xm19KP51J4qdhaY8uXa4UISgBToWmiMzEhJZvOXf2EBiL01Q0JXbvkqizKr9e27lsqvGVW1ny2QEh9DGCodZz+BrHq3HRoRomHILb/33ohglKgyknGeh+Vd4idQKv6XKHw/SUUPkQISqtuyRNWfrJ4IXWlh5W3CMpvh6B73yB1v9MuXq1/sISMM3wQQojs2HN4iOmQti1l7kWp1DxRTupaN6EBVAlKiRzX8HwHR/94XJOgBGC2mzA7tb9j8y5Jo+RjweSzUSMolV6TncyhR37brhC8FrnNoco2dkmbAeUk2U9/+tNlgtIylgH87W9/Y+/evcmf3+Uldsf+unDjsGJfmiAorf9CCcUqluYJkkXxFZmUXZVDzgXaqmiSy4wkkCuaX+6m/vm2JEFJTTFnoFYhKAUqXdQ8Xk7wXPWa10R7mKnxaXoOaX+zdu9SCEppG71CVqp1v2ula2e/MKlp5aeLSa/yCVuzrb49n4obczXbhXvCIKP6/OZCTpOFLd9W3ZJL1mkBIYu9gz9rWZIdbnQmynRITFGnr26YwUYxu1o5TWb1Z/KErPuWitJrs4Vt0PrqhxnvCXNCRE1Thuh0lOmwWM2r8U9dwnZ5RZdlCdt2FHwkXfj+vOX2pJKYJglGVnJMoNIldO2qmwtJq/QKK0Xtf7qJ/tphTYJSxiYva+9Vvn1EbIPCQxAZmaK3dkiz7fovlLDuASVvaBGUEjlu70+b2Puf2oR2ySWjN+oJaKmNABvvLaX8WmWdPVg/vuizkd2w4Qsl5F6o1Ly2/3v9ogSlcCxMa+F+BuhmenqakpISOjs7lwlKy/iXRyAQYGZmhpqaGgCG6OFt/e+JxBbecW7/a1+SoJRxmpf1D5QgORde80RGSBKNKm7IZ+O92u+bJ9eCwWzA6tOWE9n7VD37/1v5fl+sDwkkCEpVnytM7huotj8wRHh4UohEkSAorbmzgIzT1FWSxtojdO8bZN/TYgQlKSCRVROg/HqxNY+72KZYwWuEL0HiSKl241shtpeTc1GKsOLRqpsKKP6w2Jpu+78fESIogaKSHp2MCinZDB0dZ6wzRF+9GDkt56IUigVrekuBPUtSSPCC1mb99cP01YrVvGbCM0Sno0IEJYBd3z4qRFBy5kjknJ3KqlvE1l6rbskTvr/8S9NAQujdKr4yU1z5SYLs0wOsvFXMVg+g9S/dHP3jcc12VXcVJhXQRMg7PQeHiIxOaRKU0ta62fRouaLyFkGVoJTIce1/7aP2t62aBCUA2Schu82a7dLWullxbW5y/KvdY+6HUlkXt/Vre7NXUdpa5DZHV3Syy7IZiKHT6Xj66af/6QlKAGJG4//guPjii4nFYlitVkKhECP0szn2nKqqkjVoRWfQYbJoh+jgMy1U31pI21vap4y2fmX2g7L8+iBdu/sYXORkf4LIkVBE2fdUvSrxIdQXIhaNMdymTVxJnPC1+CF4fhZHnlE/Ee4vdsZ9uNXVYXr3jSYVpdbcUcBejdNzh55txZtnE1aBMtmNwlJ1624rxuQw4iqyahI1cs8IYHaaCJ4X0HyOtb/vIGuTd9HndjKsGTLZZ/o1Ywzzx4cWagXlKwFceXZkt0Rqlfd9Vw+yp1uwpYgVEbp3DCukOgGE+sTjkb7Rg8lpEiLZANT+tpWUlR6htp48pSDQgDaDPPesNHQGnZD6WO5ZqeiMOqypFkB7IbXjP49Q9KFMJtrUn1/RFZlM9IbpeKdfaIz4ip0YLQYsflTVhaxBK5lrPTS80CFchJyZijId0i64JU6j7n1K236v8vZ89v2wiZZXu5PWmFroaxghGtEm/01MRNEZdDgz1YlgW2KvMyNNEmmK4PV6efLJJ7n22muF+rKMZfyr4Pjx4zz77LNce+21xGIx3uNlXDEv63TnLvo79nQLepOekMCB357aIWbC2u916xs9tCbmBgtUXJs7a792EhSiTQhLmsyaz+QTGZpk9/fUT89OjU9jMGqvS1pe706qyBRekUHHX06oKg9Z0mRMViOBlS5NVaW6Z5QPxKxzAhjNelW1mqGjIbr3DdL4olhBw5ZqwWDWk7FWQAnFAsHTA8xMRuk7oF1495U4iUVjQvNrz+EhunaLnbQDxQJv/ESIvgPqG1sillxJhBBWqwLwFjnQ6XXi1xdEWpUfa0DGnmoSUtWp/YW4vfLhn4u3Lbkqi7a3OoUUtHr3jOAtHKFtszZ5LPeiVGSPmcwNHo69oH5//lUOvMUO1txZwN7/1H42Fr+E3iD2TEID0L61j95D2mu01bfms//HTULvlS3HgtFiIGWFS/OdKrk6iyMvttP5Tr+QEtFoxzixGa9y4lajD6tvzEsqsKm9J74KO94SFw3PdwipcQE0v3ICd56N+j9pF68khwmDSY/Fy6IkzoR6kn6/HlmW8Xg8DAx8MFaKy1jGPyoqKyuJxWJkZmbS2dnJIL1sjj2nqqoku8FgNiAJHKI7+koHloBE65va39tzlQKKLs+gr35xEsFArVJYTiii7PtZk6qtUngwQnQ6ymindk1jZ9zaBBmKLs7QVI5KWeHEZDNizZJV+zDaOmu5tPLm3KQVyWI4+Ms2/GV2YRUoi8dM1CFGGF59o6II2Vc/nIzlYshc78EakIQUko4+30b2OWn0a6yjEpDderLPTqNBQCF9KVZyWgpbc2FLMWFPt5K6ystQw/t7+t9T4CA2E6UB7fsbrB9nsF5sI5WweDy85XZsqTLHBZXuD/2mlbQ1bqG2gXIXOoNe6PkVXpqJUTbQuUubqJdW6cUoG7ClyPSiXQfc89Qx8j6UynCj+oWD5waYnozS+W4/R57XftaBVW7MdpOm+pjs1pNxRgpNL54QVtianphhZlp7LbzmswVY/BJ7ftikqYpUfn2Q2ufa6N41KKTMBNC1ewCDrP1NGg6D3mzAoXEYYG/sXcbMg0QaIvh8Pn7wgx/w8Y9/XKgvy1jGvwree+893n33Xc444wxmZmZ4hxfxxFKoVlFVcmRa0Ut6IgI16o6tfei0l2ic2DXEiV1DyZ/Lrg1S98zCdY7ICDASQXJC9d2lhPojmnt3k8OTxKLaHZnbj+AFAbr3jRBR+S6VnCC7JVJWuOl8T/3bLkHISal2I7tMquuYSG+E9i29tL2nvU8LYPVJmKxGMqq0lfYACj+UwXR4hv7D2nWC9DU+iMWEyBHtW3sZOCou/ZS23sPUuHY/ml45QdMrYgqFgJCCTAIpFR6Mkh4EanpLgW+FC2e2DVemRciuTmT98ve0zf1QKl27hoTIQSOtETp29nFij/Z6J22tG3u6hawNPs3+OHMk0tZ4caZb2fdj7fWlI8OKySZI+YhA02udDAvUFcs/EaT2N21CSlGSU4/sNuMvd2m+U7kfSqVrSzf9h0eE3qmJ3hDR6RnCA+prKcmpp/ruUiZ6FQU2NZU5Z45EYKWXxpe6ktaYWjixa4jAKjdHX9Ie+2abEYNZjxSQFs2JkViEd3kJfZ0es9lMamoqJ06Iv7f/6Pint3s7GU8++WTSPxbAjouNugs0f2/9gyV07u7XJB+UXRfEk2+n4cXj6vZvVqh5IG6/oHESJuscP+lrvOwU9LMERRkoWOPXJCms/0IJRtnAvqdbNMkPWBEmEyXs6noODolZuVmh4prFNw7/LlgVIogokcFTZhUmHi0FiRhv+WatUPxyL06l5/Co5vOw+vWUXptPx45eMeLPEp7fku3eBK+95s4ChlrHhKTOCz6aTtd73UKWaRsfKUNvFLcZXCpEiG6gkP4CVdqWaUtBQhlNhAQJ4nZp8yDw/JIx1hjH1qCV/HMCHBJgmScQPC9A6koPO7+tnuOCF6aQtcEvZAG44aFS9CadtrqWFdbfVULrX09ovkej1j66/S20tLYAUFpaSl2dOLFwGcv4V4XX62VwcLbAehqXYtGpF0bTN3nJ2uif3WBSQc1j5UxNTGu2TWyANb7aSfecIs5CWHdfMW1beujert5uLspvyKH55eOa5KM1n8lnOjSjLfdtYUmWbDWPx/O/oCVGzoUphIcnl3SPWgien0Lbez1C/XbmWxhp+gAsKOK2W0IxRnkmqatdQlZkeZek4Ui3iBVulvD8lmz3Jnjt1A1u0td4lVOHGu2d+RacOXba39ZebyTG8eTIFLtE/NyXCHexhaGjYsHLvSiVlr91v6/2hStuzBEmbJVclYWv1Clkl5aEwPNzF1sovyaPqTHt3FZ+fQ7Nm7uXZHe37r5i2t7p0cyFolbeqWvdFFycIRSH4PkppK50C+X30ep29uzfzdTUFLIs83/+z//hkUce0fy9ZSzjXxl//OMfufzyy5M/O/GyXoUknkD13UV0Hxik/a/qNa+8S1NJX+Oj4aUOevepfz/VPF7OzJS2DWag0kXwjBR2f098TpFTZHLPCVD/rDohsvruIiS3icO/btIkPyAjrJCUsKvrPTgkvOFR9ols6n6jTeAUhgzBGjFbNgBXgawdg78DVXcVInvNCgFDwIIu43Qfo8fHk2SvRSHDquty6do7SK/Aps9Snt+S7d4Er11xYy6jXRNChL7guQF6Do0KxSy5VhS0GVwqHDmy9vMAkCFrg18zTywFgSoXssskTMDa9Gg56FiaDaDA80vEWGscy249uR/KpP4Z8Xc5UOUieJp2jgtUuii6LJPRDm1LxOp7ijDbTGz9qnYcqu8pon1LnybpKRwL01VQR2OjQlooKSmhvl6cWLiMZfyroqysbN67UsOFWHXq0jWeMjt556YJ2UpueKiE6VBUM4eUXJ2Fr8RJ0+tdmnZqlbfmc2LfwDyCkxaKLs+g7b1+VfIREtR8oZzJ8WntDX8JYUUbgI1fLAM9wq4laWvdAEu6R81rrvcwWD8oZCVnz5IYa39/7bkSqHm8nMmxaXZp7KWAQtgIrPEKzd0Zp3nx5No5LHKgbwnPb8l2b4LX9pTZyVzno+EPxzUty6SAhK/QJkRGS4zjpVq/isKZIwnbmmVs8tK5Z2BJ74oWiq7ITLpJaSF4boCs0wJ07x0UVvASeX5SQKL69gKhGBdelk7HrgEh0loClbfl07G9X9O2cu39xZit8TW2yuVdhVbKr86le7+2bVxKtZvMDT6hw5QTa7rYfWgXkckIZrOZL33pSzz00EOav/fPhH96u7eTcddddxGLxbDbFXWUMYbZHHuO/tjiSdoatGK0GEhd6da8fmggQmwmpk5QApiAYy+3c+BHyuaJmuVT+9t9SYLSmjsKqL5HW4JtxccVkpBF3SWEHU8eoWtPvzZBKd5na9BKzRPlVN6uLhtX+8s22t7tESMoAVWfLsCZZSV9o5i6TeXt+dq2bxMkCUoillqDdRNgVSy7tGDxK4uB1RpxAGh46TjNb3YJkXg8ZVYy1/kp/YiA1LLZjOwxk1Gl8ZATeP/5V0u+tsUnESh3C7VNXeVh5ae15dYBtn2njq49Yp6vNU+UC1kGYiU5HjUJSlbl2YX6tC3TLH7Y8HAp1gwx9anMjX6yarStJBM48KsWDj/botom8R4nx6/A89v/ozrat/Rqtl15bRBn0KZqUQmQut7FpkfKwKoQsNQISoFKRWa+7Y0e2t7t0SQoAUSGJ5kROJlidcsYZQOZ69Vj/NfYi+yf2UZrWysOh4Pf/OY3ywSlZSxDEAMDAzzzzDPJn9/jZd6Lvar6O2lVHkx246LWb3MxFZpmXOBky/4fNtHyl+7kpryvYnHp/J3fOqqQdyyKv7laWwBLpgV3ro2Km9TXaKETYdq39rHjSQFFujiJofKOfGoeL9e0oKt/voW9PxE8uQ1kbvCTd266UFtbjoX1D5Vo2qK1bVYISlrxApIEpfRNAg8ZRQ655vFy7YYh6NguGGNg1U25ZKzXtg4FCKxwYc8QtBH5APhXS712RpUPa0BsvVF0aSbB0wNY0rTbh06Ead58gro/aKuEVt6RT81j5UKWeomxIEJQStgKtryuTVBadUseFZ/K1e4AkHWmH1eOjYqbxdof+V07LX/p1iTmVN5RMPseCzy/oaMhOnf0axJ5LJkW3Hk2Kj6hbTe79u4iVtyoWBDu/NZRVYJS4h3e93QL9c+1aF67+/AQ0akYof5JzbYpZS7N/D4QG2Bz7Dl27tmByWTC5/MRCoWWCUrLWIYAPvrRjxKLxcjOViwXR1DepyGVmpfsBsllIkXgWz3UP8XMZJReASuI2meb2f90CwCeUtui7Xr3DSc33so+kU3VZwVqXtdm4y12IGvMW7u/10D7e71i5JywQkDY9Fg5q25Vt2tofrmbpjdPCBOUyq8P4il0JK0PNNtfF9S2fQuTJCh5y7XXXokYpK4VqLvJsOmRclbdotEHoP6P7TS+2iVEtlHIZakUXCxmD2LPsJJRLRazD4K8s9RrO4NWUgRqxwBZpwVYdaOYNfDOp45y/N0eoX5seqw8Od9rITEWRAhKnlIbhNHe5JQV22prltgaNP+CdLJP07aSTGDvj5uo+616TUh266l5bE7tTyBuO586StvfejTH8YobC/AWaeceT6mNDQ+Vggy9e4ZVyQWJ/Ni7b5imN09oEpQAxnvCTE1MabaT3SA5TaRVq7/322Ob2SVvprGxEafTye9+97tlgtIyliGIuro63nnnneTPW3iDbbHNqr+Tuc6H7DEj+bUtnyZHppnQUMsFxT772CudSYKSq3Bxp4B9P25SyDuS4uLi0bCWlJx6AhVuKq7V+O6MQNMbXRz8iYDYQvyWSq/NZtOj5UgB9Vgc+lVT0q5OBHkXppNzbqpQW8kvUf35Ik1btBM7FIKSM0fStIhLEJR8K52abUGx6tr4SJlQf1vePsGup8QELSpuKiB4htg8m1bpxZWnvaYE3lfSzN977fRKL84cG5i11b6KLk4j74J07FkCDyMCR37fzrGXtAnJpddms/HhMiFLvcRYECEouYuVtUHnVm2CUvGVmZRpvZuJPqxwEih3UXGDWPu2P/dy7JVOTYJS+SeCbHq0THmPBZ5fpDdCy9snNAlKkhNSVnso/7h2f1d+OpfyeG1s3381qRKUEvE9+ONj1P62VbPPw8cmmI7MEB7QrnmlrnJj8UqqOW0iNsLm2HNs378NvUFPZmYmkUjkX46gBP8idm8LYXR0lKeffppPfepTAOzlLxhiJs7RffSUthNtE+x9qjZphbT280X01A0vSEaYa0GUOGF2+NmWBUkOCTs3a4ZM4aVZ5J6rfeJb8pjRCVDLtv97PVnn+JU+q6mkTJBUtdn4SBnToWlV9ZyJtgmi0zGG27Ut5RKqU2vvLWKkK8TRZxffyNjz/UbyLk2la5uYlK01IBOLiomAbXi4FINJT0+9tpLRpnuV08Jd76n3I9QHsWhMiAShqDOJsXgG6yboOzpM22btTZ+JzrCmBeBcbHq0jMmxKXZ/9/1j/1qDVipvyqX38LAQ+3bLl2o1iXMJtG/pJTwouCKZM47VYA1aic3EmOjXvu7azxRhdpoID0c0FbbW36nYle37SRMTneoFjaxzMjGY9PgrnLRptAXY/7NmXHkaO3tW2HBPKfXPtwkpPiXe48FmdUn41PUuCi7KpPnNLrq2DaqrOcXzzPbv15NZ7dMcl+58BzqjjvRVHtX33rfSRtFl2QTPnGT3d4+pqtlV31OIyWZi21fr2PdDlY8Wq/LMal84zljT/Px+MkaD3bSEjzLVHWEqDBUVFRw8eFD13paxjGWcimuuuYZrrrmGlJQUent7CTHO5thzlLOODN2pRfS9TzYm7X+8ZVYKPpS16Gb9XKXJDV8sJTI8xb5FJKsTlklrP6/k+P2jzYy3Ls4YyFjrQ2/S4Qza6T+0eM4MdYRo+Uv3rCWTilJK22Zl/Zhxho/cs1I58oc21WsPt00gucyatloD8bnKW2al8LJsdvy7+pqy5S/dDB4WI/imrHBhlAzknpmqqTjkzLdQ8rEgk+dMsUvrtHCVk7zz00hZ5Wa/Wt4GQkOTWAMyFq9eMxatS1A0bHnrBAaLQajtwZ8cWdSS6mSUXKWcYtzyzdr3lbBUfXchRqtRU5UCYO9TjcKkmNpfNZF5dpqwGk+XyOkzYDocVWwwBPqQd34awTNTNO/N4oXij2aTf6GYWpYtVWyTDKD9b30YLQbNcV56TTYWr5m9TzUKWbGNHJ9Acpk0x+66+4rRmXTs+PcjQupep+QeFZidJvSS9odkwoZ3S2MtoY4QoUWW+N4yK6VX5NLyN+Xvq9nB5VyYgrfQwd7/bFTygkqOHFjTxP79+2EGLBYL3/zmN7n99ts1+72MZSxjPtra2njrrbc4//zzAdjFXzDFzJyl+8gpbcNDsOUbswotq2/LZ6BhZEFlkxPbBjixTZkD0jZ6yTs3jbrfNTPUcOpLnfw3GcquyhFSh7OnWTDK2vPy7u82kLbRq2mdBLNEnnUPFBOdjKmSBcJDUWYiM4wIHORLxGH1bfmE+iIcVamJ1P6yjeC5AbHT24AzW92CfC6SCjCdtZq2cgmlb00bqTDMTM8wLWCvPNEeVrXIm3fZnjAn9g3Q+Y7AWi0Me75XT3hIrOa1/gslTI1Ns/cpcXteTciw6YFy+g6LKWZt+bdaZLfYpZvePMFMeEascRghpSHZrSc6FSU8pL2BsuqWXOwZVqYnpzWt/ao+W4jsN3Pw502ahKZgTUCxrS5z0iowLvb/sB53qTYRbd0DxTT86ThDDSHCGsMnPBRlOjLDyHH199hTaqP0yhya3zrBiW0D6gSsuBqTaO5xBe0YJD1pld5krlgI1iyZsqtyCA8oSgJqbVfdmofsMbPj60c0lZyq7ymi8dV2hhpC7Pn+4rkhnDpEs76O0c4hCMOKFSs4dOiQ6rWXsYxlnIrTTz+dWCzG6tWrOXDgAGMMsTn2HCtYR/oCNa9DP29FcioWbJZ0idKPZbH3J40LbpTPtWRbe28xkZHJRcmMPbuHAMWS1pFp5dCvmhhpXjxf+QqdmKxGXDk2BusWr0tFRqI0vNgxS1JXUUpJkKR8K5wUfSSTI384rnrtoaYx7BkWdYUmZkk/9iyJko8H2f1Ugyqx4OiLHYwJKq948q1IDhOpGwK0vamuUCn5JSpuKFDs0zWUUpw5EiUfzWK0U1shL9Q/SXQqqmoLlYCWRd5cNL7eiewU8A4EDv/imJBKFCgKOxkb/Oz9cZNmf5eClTfnYvFK7Pimdq2n9jdtSE69pooSQMMfWkmvSRVWtxKxHwOYiUSZmYoKxa3kI1lMRwTqWBKUX51DZGyK3QJON+5cO3qjTqi//YdHaHGf0BxDORel4M62sf/Hzcm8ooahtjGsabLmWFh9ax4mh4ld3zqqPY4lJUcee7VTqA9Wv8TMlDZnYM2dBVi8Eru/W09kJEpkZGGugz1LouK6fNr+1k3n1gF2qozJtPUeUla6OfCTZg7+rCWZ3xfCyJo29hzYA9NgNpv5xje+wZ133qnZ739W/MuSlABuuukmbrrpJoLBIMePH2eGKTbHniNICcW6lfPaJjewrUqBN22VR1MxRXaZQQeTg+ofRROdYSZ6whzf0p38G4txWrZ9tU757yiybMMto0my08lIbOZvuq8MYrD1KwKqHwK8n7mSikVXZdLwO3VyitlhwmPWLjIlSCZrP19EwysdqmSLLf8hZp0G0PZON958h1D7jl39GExiCV0onnEUfDSd1FUeDvyqhbEm9Y4ceUaboJSAKEEJgBjEltBcBJJNue7MpGBhBRYlg5wMUXuzjY+UEZuJsf3ftTfrJtomhJ9b7a8aKbw8R8gCsPaF4xRckKZJUAJo+F0HDdYOzfFYfU8hbX/rpnffqDbxaYMfg0lPWrVX9b2x51vxlzhoebVbSBo1Nh1PCBqvb9FVmQRKXbS920P72310qGyUrfpMHgd+1KyMczUCZfy/9R8cJ3zWJPUvaL8Xer2YOGCg2IHRYqDggjT2/7BpwTE5EZtgC69g6jQRi8WwWq288847VFVVCf2NZSxjGQujp6eHnTt3sn79egBq2UldbDfn6a44pW2CDBI8Kw2T3ShkD6bT6dAJTON1f2in8EPpswSlRTbMO9/pp3NXf/K/Vdy8uDVtgiSQc2EKmRv8dO7oVyUZ6OMd1ZpDm185QXPcQz73olS69w+rEknSqvwYJQOpa92qSimJ/gaqnGSu97PvB4uThJpfOUHz2yeEiCYjTSHGOkM0vKbtn927Z4TU1RMceqZFs23D8x00LMHrfv1DJRCDHV9X//jXsruaC1GCEsD01AzEwOK1EBLweBdFVJCkn4AWKWZuu2MvaG+++SrslFwepH1bX5Jwp4ZD/90i9PcBTuwZJDyivakWGoChlnG694qR7LZ+pU5TyclbZiXnnHT2/mejEDnIlWvDYNRedxRekcGxFzppermLppcFpbEFHvGmR8uIRWHb1+pUCUqpa91YU2SaXzmhfD+pDcV4Hmz+cxepq7ya73uoOww6sLjNmv1NXeXBOJcMuMC1j8T20a5rJLYnhsvlIj09fVm1chnL+P8T5513HrFYjA0bNrBjxw6mmGRz7DlyKKVIVzG/8ZylhS1FxmwzapIiLD4T6CCstTERVjagug/GiTEq1ks7v3VU+e9AzgUpTPRGFrWVS2zmb3ioFJ0etn1NoyYgOIXO3TjIvyyNphfV1zTWgIwksPmTIEutvi2f1re7FiR2JbDt2/XC6j3HXu0gtdKrSVACaHunV3ijSmsNNRdZZ/kJnp5C3fOtDNarH2rUiudciBKUAIgtfZ2kBdktQzSmrOsEIfIcAFUyylysu78Y9LDzG9qKCeGhqFBtDODo8y3kfzioSVACqP19O4UXpgkpLrX9uZe2Lb2a43fVLbl07Oyn/8CoZiwClS5MViNpa3wMNSxeG5JTZFIqHLT9uVeIyB6NP1e9xvdjwurk+Ls9HH+7T7W/5dcHqf1lGy1vdCuWxIvFIZ4HJ9rDjHZM0PiG9nuh0+vQCXzsOnJkJJeJ7DNSGWpoWXRM/jn2Bwz9OmZmZrDb7bz11lvJ7/RlLGMZfx/2799Pe3s7ubm5zMzMcJid1Mf2UsPFSLr5qhqJDeycs1KweCVc2VaGj2lsGOjBIFD/PvpiF0WXpM0SlBYhFfUfHmHLsVmbo5Krszjy24XzbEKVJKXaTeHFGbRv71Un9MS7GZtRn5tP7BhMEpsyNnkZbBlXtXXyV7iR7CZSKtyqxIX+g0qAXYVWgmekcHCRWl6yD/sHxRRg+iIMHBul9a/a9ZCR1gj9R0ZoeV271nL8L70c/4vYfhgolsY6o07TVm/oqLbYRAKiBCWAmckoRGNI1vdXVCk2EyMaE1/PiRCUlHbQ8pp2rceeJbHyxnyOv9crZJHX8HvxOmXLX04QFSDREIGe/YMMNok9ux3fPKKp1mXPksi/KIMDP2kWIrn5ixUFbC0EL1CIfZ3vDQhdV/TRrnugBL0etn/9iOp77i624cyy0vbnXrZ/54j6YIznwcZXO8jckKI5dqZGIqAH2aNd80pf68XikZJ/Y6F3qSPWTB27YQ84nU4KCwvZvXu35rX/2aGLxZbwxv8To62tjZyc+azmGi7Bqjv19JLFP0u0WHNXAaMdIU1bs9T1LvLPz+DgM62qJBWrX0/lZ0sVJu6T6kzcmifKiUVjbP2yevF2zV0FMDOfda2FxEeVGtbdX4zJZqTuuRZ1IocaEeEkeMqslH08l8jwpJDiT9kns7EFZHZ9R8xH3hq0ilnbgVC/00/zkFHt0+yrb6WN4o8EafnLCU2VpkClg8JLs2j7W48q2QMUwoc9zcKWLy3Bi10ANU+UMzk6paqqtVSsu7cYo82gOV5BUcKYHJ0S8u1c/2AJsemYql0YQOHlGdhTZXWFnQSWMGatGbIQOSl1vYvcs9PZ/v16zWtbM2Qqb8lnOiSmEKD8EtpKYY8qSmFa46Xoikw6tvUL3Rco79Wq63I48HSz6u8UX5OFv9jJYOModb9e/NSXPd/KqutymegJaz6vqs8VYJSNmnGy+vVU3FzEwZ8dIdSn/LwYyW9ibSeHjxxmeET5+DrvvPPYvFldpncZy1jG0nHOOefwl7/8JfmzCx/rdOcs2DahnmNJk6n4RJBDTx/VJIysu7+YyPAUB36ibgdQeUcB1oDE3ifrVQkd5dfn4M6zaZKPbDkWVl6bw/4fHRUmiNhyLKSscCXJSAvCAjUPljMzGdVW0VFRKTkZifXc3idrNWNq8cLKW0s4+oc2IUsuS+YSCDqCfV59Wz5DLWOaaknr7ismFo0JrRHXfLYAk017LgGoeayc0KD2ibmlIKGA8L6v5x4vZ6hlnNpftqq2C56fQsY6H/XPt2g+14wzfOSemcre/27WfLbVdxfS9l4PvYscqEhiCeN1KWNq7eeLGGwd07RiA8UKzew2sfen2vc12xlU+x2oclJ0aRahfo3xYoGSyxYvBi+ENZ8tYHoyykGN/FbzWDnoFGUH1evdVYDFI2kqf7mLLZR9PJcjv29NqrcthsIrMrB6JCUHJ0hiC1w7FAsxXNGaPLXv9XrZvn07hYXadk/LWMYyxDE0NITf72dmZpZscTofRtYtoDaX+KcwVNyYy8RgWJNY4i6yUHplDnW/a1G3VpOV9cx4b1hTRXHTY+XxA3fqOWzFjTkYzHohW/AEij6WQcOrnapEitW35WNLlTnyx+PqRA4V0tUpTdNkqj6TT7hvkj1Pade88i5NxZPr0LRCmHt9EXUppTGa/fatchA8LUVTnUhOk1lzcx7Nb3drEk5cBTKlH8+lY1uf5uZP6TXZeAodbP3y+1/zigxPsfu771/Na/Xt+Vi9ElsFDoStu6+YybEp9v9Ie8xW3VWITq9TVQADyD7HjzvXrroJm8QSx6zImHIXWSj6SDYHf3JUk6glu6Hq7nImR6aE67kifU4ohW35eq1q25wLUuitGxFWAJPdelZ/poj9v2hVjUXOBSlkbvQzcHSU+mcXr3nJKTJVt+UzdiKkmbcqbsxF9pg04yS7YcWNRRx+5jjhnjCyW78oyW98TRf1zbUMDir16YsuuojXXntN9frLWMYylo4777yTp556KvmzlzSqdKcv2DahBiM5YcUNhRz+RZPmBvqaOwqYGp/i0C/U9/DKrg3iKbCz96eNquSf/EvSSKv20rGjj9bXF6+3SH6JlTfmcPAXrcIKOpJfInWVM0nYXgw1j5UzHZ7RVtFRUXI6GWvuKMDil9j9g0YifRq/JEH1bUU0vt4pRO6R/JL2NedcW6TPZdcGGTsR0iQsVd6aj86kE1KQXHFdENknCa17NnyhhMjgFPt+LG6tp4XVt+ZhS7No1iWWio2PlDHYOKpZSwmsdpF/YRr1vz+uSQT0rXRSeHE6db9rVVUhA1h1Sx4dO/qThLhFsYTxKqKkNffvj3WFaFKrJceRVFf7RaOQ3ZzSGVT77cxRVMUmToQ1x0v+pWk0vSx+UKH8E0F0BjiswVHY8FAJeqNeU5hixfVBXDl2dn+vXjW3WtIlVl6XS8PLHaoKcADZZwdwZlmSfVxMPSkSizC8qpWDBw8Si8XweDzs3LmTgoIC1ev/q0BMduJfAMFgkFgsxsc//vHkv23hFd6O/ZG19xZRdIXil55S5WTlp0qw5yvkJYtXIlDhSv5O9T2FFF+TBSjElPUPluAps+IrdqEz6Cj5SMZs27sLKftkNgCuIivrHyzBlmdjZipKdHqGtZ8vSrat+lwBK+I+kdYMmfUPlnBifz/1L7RS8NF01j1QnGy75o4CKj6Vq/TPDyaLkZ7DQ4Bifbbh4dJk29W35896dKMQPkqvy8KdZ2fdF4pZ/2BJ8r+tujWP1bfnJ3/W6XWEBhUrrMwzfKx/sCRp5VXxqVzW3BF/ySYUgkr1vYXUPFFOweVprH+wBGuGUvlacUOQqs8pbQfrJpgcn2akPZSM9/oHS3AVKfEuuy5I9d2zBWt3vh1z/BSYp0yJoW+l4idZfE0W1ffMtt30eBmVN+WCVSFBrH+whJQqxSy06IpM1t47G++aJ8oVBSoUMsP6B0tIP03x7y74aLpykgnIqPYhucys+kye8otWJYZZ5yiByL04lfUPltB/cJytX64jUO5m1a158+IdvFDxhA2eF2D9gyWMj06h0+vI2OCjck68191fTP6H0wCFHLX+wRKmJ2eIzcSouCWXNXfOJrW19xZReLky1lLXu5R4B61YM2TKr5+NNyhjtugqZXwHKh3znnnZJ7PnxbD6nlPHbGCjY8F4V32ugPLr42M2aMVg0yeVnAovz5gX7zV3FlBxU04y3nqTDpNNYermfzgtGW+AyrljNs4hTJzIDF6YcsqYTTwbX4kTa4pM7sWKF3HWOX6lbfwaFTfnUnl7PqnrXdQ8UM6Gh0tPibfVr6TMiptyWHNXAWvvLaLylnzW3j8/R6x/cDZHlF0XpOpzhWRU+TFIeqpvL1owRwCUXKvEcKIzzOFnWpiJzJwa70ol3kVXZbLp8TI2PaaM06pPn5oj0jfOGbP3FnPwmVY6d/WfkiPWP1hC5hk+APIuTyWwwsXKG5T/vlCOCJ4XwOJXSE/rv1DCRNsE275aR+El6fNyxPoHS8i7NJVApYPMM3y4s2107uuj7tfH5+cIlBxR8NF0ABwpErFYjNFe5WNgbo4AZdMxEW+z3YxB1i+aI6rvKaTk2iy8K70YZQOrbyvFt9LGRF/0lDGbcpWZrdZX2bprK1PTUxiNRsbHx5cJSstYxgeEt99+m4mJCcxm5UTCMP1sjj2Haf38NdDKW/LI/7CSC/MvSsVkN5J9vpIDss4JsO6+2Tmi4lO5VNycC4BRNmBNkwier8yzGWf4lLbxzfLyG3JYfWs+w23jTIdmWHFDAXmXKHk/da2bdfcVY0lT1ipl12Zjshloe7eXlte7qfpcIeU3KH3yr3Kw7r5ibDnKhbM2+IiMTBEaiOJf5WDT42UUXqHMyd4yK+vuK8Ybz/tFV2ay5q4CKq7NIb3ay5rPFlBytTJH2HIsrLuvGP8qJe8XnJ/OVHiaA0+3AEp+LrtW6YMlTWbdfcWkrnUDkHdOGms/X0TNY+Wsu7+Y1bfmU359nIxvUTZGMuJ5v+fQEFPj00mCUsXNuck5ApS2WecElHs7Kw2jZCBzkxLTFTfmsPKW2XXN2s8XkRNf1+RflsKaT+dRGV+flF+fw+rbZueItXcXkX+pkvdXfzaPmgfLSd2k9L/0mmwq75htu+auAgouV9raUmXS13lx5ivxLrkqizWfnZ0j1txZQNGVmez81lGOvdo+L96FV2Qo5P04Ku8ooPSabIyyAYNZz7r7ignE14b5l6bPm09W35ZP+XVBZqYVKed19xWTukHpb+5FqfPG7Kpb8ii/IUcZa9758Q6enzJ/zN6ci8Ey+0m27r5i1TG76rb58c69SFnXpG6Ij1mvcq0VN+UQI0ZkWFEmqr67MBnvQJVTaZupXDhlpQu9UcfQ8VAy3iePWXex0taWIhMajCSJPGs+W0DJVcqYdeYrY9ZXYcddbEFym8m/KH1OvPMpvSY+ZjMtyXhvuKeUmsfLWXv3bAxX3zY7Zi2JGJ7jZc2n81j/xZJTcsSKG+eP76wz/ZgdJnwlzkVzxNx47/peA937+qi4OvuUHJGM9wPF1DxRTuEVGUqOuGN+jpi7Bqr6XCHOTBs9h4c4/m7PvBxRcvX8Mbvx/lJ8JU68ZdZFc0Ti/298rJSSq7PY+1QjTZtPzM8Rl6VT9bnC5HNbfXs+o93j7P9F86k54pK0eTHUm3WKlXaIU3JEzoXzx6zOoCP/4sx5MUzmiDP9yTHrL3Zhz7AoOSIEhObniPRNXgbXNLNV/yqHDh0iEAhw55130t/fv0xQWsYyPgC43W6mp6d55JFHkv/2Li/xt9iLrL49n/zLlDWQu8hC9WeKcGUq+c0ZtJK6ypP8ndWfyaPoY8oc4ciRqb67CG+5HV+ZG71JT/7FWcm2q27JpeRKJV/IKUrbQKmLqfFppiMzVH129l1feVNuco6Q3crp8I4d3dS/0Er2OX6q59QPVtyYQ/l1weTPsstMX71SEV77YJGiphhH2SeyZ+cIlOsWfiyNQIWbtZ8tovruoqQ9V+k12ay8KTfZ1mDQM9Ydov/AKIFKl9I2RYlLyZWZrLol3jasrClW3ZFPzePl5FwcoPruIhw5StuiyzNYHa9LhE+EmeiPMNyhfOu6CpS4uIuUOSL/srR580nqak/y9K41azbeAHkfSp0/nzxaStVn8pHdCqmi+u4iAlVKvTJ4boCqu2bjXfN4ORvvL4sHUIlL2kbFcivrLD/V8Tk5Y60Pi19i5a3zY5hxujJHZGzyUn13EeGhMFu/Wocnz0bFjbMxrLqrkOC5yhwRqFJiGBmfxGDUk7Lazco5c/KazxaQe6GyrvGtclB9dxEzM9NEp6OUfGJOvFHWwXmXKm09pbZkvOUUWYn3nDXn6tvyKbp8/phNIO/S1HnxXnVLLsXxWoOcprT1rVXm2dwL58d75c25lMbX7bJbj8VrTio5nRzvihtzKftEdjLeRpsBs1upZWac7pvXp/LrgslaGii11+4DSs0rbaMS7wSRsPTa7GS8U1d5cGRZybkgZV68ZbeyNiy9OouVn87FXWSh5gvlrH+ohLwPKTH0ltupvrsIa1Z8zH4sQ6mn3ZpH1WfyqbyzYH6OuLsIV4HStuAj6ay+LZ/0tX5MViOlnyxYMEck4l15RwHhIdj3syYmx6ZOzRGVypjNuSCFjY+VsukRZZyuvObUHJG6VslN2ecoY/bA0620v9fLiqvn54h5Y/ZMH5kb/VR8QhnTC+WI7HP8ICvKrNX3FQFRtn/9CLlnBebliKrPFpJzQQqeUhuBShf+UhftO3qof/b4/ByBkiMSY9bqNxIjRmhA2fycmyNAGbMFH1HW0LLfhMlhXDRHrLpVycm2oAPJZWL1p3PxltsJD0VPyRFpH7Oyw/4G2/ZuIRwOY7VaCYVCywSlZSzjA8J//ud/JjekAQY4webYc8TKJ+bVxEuuyiLvkniN68x0ZK+ZnIuUnBtY7VLaxlVSij6WSfknlPxmshtxBG1knaXsQ/lWOFlzRwGSX2lceFk6K64PMtw6RmRsiqJLMpJzsrvYppB30pW2+ZemYQtINL3eRevrPaz8dC7FVyt9cuZIrLmjAGeekvfTql1EhiaJ9EZw5khserSM/I8o/bWkK23dxcr+XPDcAKtuyaPiuiBZNQFW3Bik8DIlv0l+pa1vhVKDyTrLT2RskoO/bgEUkkKi/o+k7HmmVLsByKjysuaOAjY8VEL154souTorWZcApW3aeiXuXbv6CQ1GiIwqbIviKzMpjdfSACpvyyfjNGUNlLnRi+Q2kb7Ol4z3ijnzSeWt+WSfrcQwbb2L6s8WsDpeuyr4cDoVN8y2XfnpXIIXKG1Lrsmi5qFy0jYpfcq/JI2VN83OPStvziU3Pid7CuxkneZPxjvnopR5ezMVN+ZQ8OF09v24idrn2llzRwGeMmWezT47wOo5e48rrgtSdHkGJosRo6xX4r1SiXfm6T4q56yXyq5V4j09GWVqcnp+vDd554/Zq7OU2qU0+2wyNikxTKl2zx+zV2QieWeVaCpvyyczPif7VsbHrFNZqxRdnsGKOXFZfWtecsx6yuxK24By4YKPpqPTwdTYdDLeORcpayBnnqyM2Rwp/qw8GGQD4R5l3l15Uw758fqvPUsZh65CpQZjS5OY6IskCUoVN8wZs4HZMSv5JewZFgovnd3vX3FdkKKPKWNWcipxCax2UX1bEZseLZsX79Jrsym+cv74Ttvopvq2AtY9WHxKjpg7ZtfcUUDGaV6sKTK+cueiOSIR76yz/Bz8WQstf+mm4OKsU3JEsu2dyrdMwYfTlRxx8/wcMW/MfjoXb5mbjp19NL3ZMS9HnDxmNzxUQlqVF0+ZfdEckfj/G79YSuFl6dT+po1jr3WfkiMSMXTmyZR/Isho5ziHf9V0ao44acwarAZmolEikWgyhokckbZ2dsxGp5X9hLwL59Qy5+SIRE6WnJC6xoMrx57MEZGR+TnCU2ZnbG077+lf5sCBA/h8Pu677z4GBgaWCUpzsExSOgm/+93viMViuN1uAGaY4uln/pvOaYWN6Sl2YrQYcMWL+jNT0aTU6po7CpBcZtxB5QVz5ytt3fkOan/ZxkwkiuQwY8+3sunRMiS3GWe20tYVtCltc51s/1o9kkPC7DRR80Q5qz6Th+yRcGQpbR1ZEkaLAdkpMVg3gTfPgclqZGP8w80SkHBkKP0ze6wYLQa8RQ6wgsGkx2Cafey2gIw9XWlr8YPRYsDikOg5OMT0+Izyc5x4ZEuVsQVmT9kZLYakVUn2mQGMFgNmj5LMHRkWLP5ZjTmTw4jepCc2E0N2mzFaDDiypPj92JA9s23NNiOefGXSyb8oQ4l3PKbOLCvSHEsBnU7HTDyxuPMd8XgrScsdtCG55reNxWIwAe4cJS6eYqWtJ9+O2XGS5HVcQdeWpTwbX2G8ba49SaDZ/eNjECMZF6s/Hu9CpYjhLXDMszawp1mwxTczsCox9BXF2xbG2w5PsuVLtRglA9Y58TbF4wLgK3ZhtBjo2tHH1q/U4Ui1YPHNiaHDlGzrLVLarr4+h8pb8nFmz4+35DLjybHHY+ic119n1vwYSi4zzvg49MT7W3RB9oLxlj3S7PjOltDr9Qy3ji0Yb4tPwpGhjB0pIKPT6ZiIs9A9+bPxBkVKPTFm19xcMC/e/riNV4J4ZEuVscWLiAnVCW/B/Hhb/fExm27BGpAJD04RnY5hMOmTbX2FSlxs8Xu3Z1ixeCWOb+lhcnQKs2023ifnCGe2FdljZu8PGtnyzVoku2nBHAHgyXMgucxY/XqGGyYWzhFF8XGYY0en0zEdmknG++Qc4Sl0kLreReoqDyaHkbGmCVpe7V48RwDeoPK/27+nxGuhHOErcuIIOtEZdBhl9RzhL3dRdFk2mZt8GC0GBuuVMbBQjkhd5aHsk9l4ixzodDrG4qfaTskRThO+MqWfA82j6HS6BXNE+kZPPCfbaX+7j+76AfQG/Sk5YiI2QXfFEZ7/4/NMTExgMBj42te+xtTUFFbrqWp6y1jGMt4/WCwWIpEIL7zwQvLfXt/5R/66/S+EYgoJwpFmwZmlvItNLyonUi1OCSyQfZpfkZ+NkwocGRac8flk61fq0Ov1eAsdVH2ukOwapa0tJZ6fM63YUhUbpB3fOILZaSJllZuax8rxljvjbZW5ypljwxaQaX9bOckke8y4cx2krnXjLnRgshtxBZW/68q1JefktCofOp0OT4EyRziDSltnPNe6c21YvBIHflRP+9Y+LD4JV24i71sx2Y24C2fnLZNsJHQijK/Cji1FxpWnXNeWYsJkN85Zfygk7qmJaSb6IthS5WQMbSkWpW3B7FrFZDNiSZPZ9GgZzgxrco7AohS+EmsVq2/+c3BmWXGkzfpomZ2mZB8sHuXfe+uGk20TczKA2W3CW6j0fyqszGWSTZ+ModU/29bilfDmKdftOzaMXq/HGV+7uHJs8+YTi0/CE49LYKUiT+zOVzY7PLl2LN7Ztla/Eu+d3zpKy9vd8bg44/G2z1tz2lKUGG7/v/W0v9sdj0v8uoWzpHlQ1nuubCunfWEFldcWKG2LZ687VzLZkW5BN8djQnmOifWeMg4tLiUWrmwr9lRLkpBtdprwJNoWKfdqSVXaOtIs6NDR+KKiIiS5zcnreguU6zrja3GD2aBY4CTcD70SntzE2tCVHLNZZ/rxlTjnrTktfglXTnwOzrEnx+zQ0RBT49MYjLPrSqtfTo5vZ7oUv1cnox0horFocrNubrwBTG5lzHqyHYT6I0SnovPiPTdHWCz6ZLy3fLOWyNDUojkiEe/0+AaXxWddMEckYLYaicViDB4dUd7HBXIEKKQd2WPGW+jg2AudqjkCFLvamakZBuomFs0RAJ48O3q9XjVHyB4zGx8uo/TjudgCMlafhfHW0KI5ouaxcmV8WM3JwwQn5wh/WXwcpsmK0lYUTHJ8DJ+UIzJrfEpbi579/1VHbCa2YI4YqWjjL8dfZfee3cRiMQoKCujp6eHJJ59kGctYxgeLr3zlK8RisSQZcJIIv3jhv+mOKergrlwHktuEMxifo8enkzWv8uuD2NIsuOPzrCPDiuQ24S6w0/inLiLDU1g8ZuQUmQ0PlWJPs86uVdJMSG7lu3nnt44iWUzIfjObHi1n5c252LOsyfnE5JKR3CZsfiuD9eN4Cx1IDhMbHlIO3DkzrTizlZwqu0Fym5J5yGwxYZQMSeKRK8eGM3M27yvXtdCxrY/xE2EktwlTYp7NsWHPmm0r+80YDco8ln9RuvK7aUred+XZsaXNtrUGJMwWAzNTUUxWA5LblKxxuPPt2FJnc6HVK+EtcFB+XZDiK4JIbhOu3Hh+znfM+6bW6/RMhZXNF0eaRYlhIpcXOeetgfQ6PbFojPAQWOJtfYm2xU7kORtEkCx5IbuVeCfXCUXKGAA4+NMWolNRbP54/+V4vItn+yC5TchOpc/uPDuO7Dkx9JrxxJ+Nr1hpK9nMbPlyLSbJgH3OnGzxS7N1iQKlD0NNE2z/v/W4MufH2xaQk2s2d64dyW2i7Jocqm7Px51nn7fmtKXIs2M225a8N+XvOOfF25ZmxZ2fGN8SkttE6SVBkJW4zI23PWN2zEo+M3qjnuFWhXzmKXLMi7cjc7atLOvR6XSEuifjcYnHO94NZ7YVV7wOtOLGHOXZJOuGyr3K7tkx64iP2YTSjidZx1Kua4nPw84cG/Z0K+HRGFOhaYySAW+ivhRvm5iz3QV27KkWjr/bQ3hgUhmz8brVyTnCW+DAliJT95vjbPl6LVavtGCOSIwBa0BCTpGZaA9jWyRHKP13otfrmRxXxv9COcJbZMdTaiP79BQkt4lwT5i2P/eq5ghfPD4HnzmSjOHJOcJb6MCVKWOUDEh29RwRWOGi7Koccs5LRXKbGI+rlCyUI9KrfJRek427QKnnJdqenCNsqTIpK90AdO8dVGpeC+QIb7kde7oFd4Gd/gOjtL1zAoNJf0qOCMfC9Kw8ynOv/JbRMUUV7utf/zrj4+PI8gJqestYxjLeVwwMDLBjxw70cZu2t+te46+732Y6LlHizrPhjue3xpe6IAaSVZmr8i9JxxKQZr8J8+044213fOMIOp0OX5GDlTflkHdRGha/hMWrfKu5ixw4sm10bh1g93casKdbSK3ysPGRMnzlypyWqP14Ch3YM61J2zVHhhV/iYu0tW4c2Xalbabyd31FThzpSn5LXeNDZ9Al5+REvd+VF29b7MSebmH3Dxpo/Us3jkwb7ng+tniNWPwSnvzEdR1IDjOhrgj2LAl3oX22vuSV4m1n1yoWv0RkaIqJ7giePDvu+N9EUtYUc9cqFo+EM6Bn/QMleAodyXgDCtEjXq+x+S0Qg453FfV0d74dR3BO2zQ5eV1rQIndYJNClPcUObBnz7Z1ZFjxxefZyQllzjc7lGfjKXBgz1y4bfu2HiXv58zuSyXiDeDIsibzvK/EiiUwWwPzFTuwzfn+dgRtuPPt7PtxE3W/a1XWWsm1oQPrnPWSK9eGt8DO7u80cOyV7vnrskL7vDWQO9eGO9dGzUPlrL4hL37d+c9GcirtvQV2jOY5daEUGW/xbA3D4peQfOZkvF1BG2vvVQ5J2dIsyWfjyVP64MyYXXMCSRUhR7o1uX/rylGua4/vlZllE0RnreHsmbbkesmeNjtmA6tdpFV6kmt4AHuWLVlzsaco49CdZyPSF2GiO4zBOLvXnog3gMkZH7OFdoaax4jNxObF251jS45nKT5mvXlOhlvHmJ6YVuIdD/ncHAHx8V3oYNtX6xhpnYi/96fmCABrqkzmemXzzuoxL5gjkm29MjFiDDSO4sqzLZgjQCGPOTKteAsdtL7eo5ojAPRGPdORaQbrxhbNEYn/rzfrVXOENUVm7X3FVHwyX1nbptoYaY0snCMCUpIzYfVIMBNTlKFOyhH+VS4sAQlXUCbSG2EmMoNZnj9mE+Mw59xULAEJySNx8CdHmQrPLJgjxoq62DH+Ntt2biMWi1FSUkJvby//8R//wTLmY9nuTQVtbW3k5uYyN0TFVBLULXyyc9OjZaBD086q6KpMAqUujr3cTo+K/YHVr2f17SX0HR2h4Xfq3pYVN+Uw0j5B21u96rZPc/5b+fVBal9oU7WIKroik8AKF81vdtG1bXGbso2PlBGbiQl7n6ef5iE8EFG1idvwxVL0Rp2QPVjwwhQy1/nY+q06IZsuNaunvwfWoBWTBMMN6rZ3NQ/EJSu/rm0n4ltpY6JrPGktuBjs+VZsfhPdO4ZV2xV8NB2rT+LgT1s0/7ao3VvWOX4CZS5tyxMrZG3w0/62to9r+kaP6lhLIGENGB6MsOf76n8/8wyfpnXekiFoCbfmrgJMFjELmfLrg7jz7Bz5Qyv9BxeXFC26KlMzJyQQPC9AVk1A6B3W6dCURiz7ZDatb3Qo749grqm+p5DaXx/THMubHitjoHGUI8+oS3RuerSMWAy2acioJ3Jt61+6F33+f469QBQlF2RkZFBZWcnLL7+s3tFlLGMZHxguueQSXn311eTPRsycrfvIgm2zzgkQPD1Ax/Y+TeuvjQ+XEYvFNG3Syq7Nxp1v18yFFq+e0mvzZuc/Ndun+H+zZFrI3ODh2AvqFsGbHi1jZjKqOm9knekneGYKjW920r19SPV6CRRcnq5qe+Vf5aD4o9n0HB7S7CPAugeKCfVPcui/WzTbWrxoWsktFembvHRtVb9o1ecKFaKwoIVXoMqpbU2GEv/2v2mvaSrvyKdr74DmM1qK3VvFzbmMHJ+gbbP6mA9UORnrntK8b4tXj+SXhOz71j9UglEyaPbTW2YlNBglJGo3I4CE5aN2Q9h0Xxktb3drjg9Q5OSnQtPs/I/FbYN9FXb0Zr3Q2ADlGyY2E1N9hzPO8JF7dqpm/rJ4IXheFkd+F18bCeSanAtTkN1mTcnz0muycefZ2fadOlWLt9QNbgouzKBr94C6JSVKPGemF7ekbI010MB+AGRZxu/3s3//frxer+p1l7GMZXwwGBoaIiUlhampqeS/lVBJ9iI1r/UPlmAw6TXtrHIuSCFzg5+GVzro3aNSp5Bhwz2lDB4b5egL6t+3RR/LIDw0yfG3+9Rtn+b8t6KPZXD87U5V66nsc/xkn5ZC0+YTqjZl6+4rRmfQCdux+1Y5iE5GGaxf/Lt+7eeLMFmNQvZgqWs95J2fyrZv1wvZdKlZPf09kFNkZJeOoQb19ULNE/F59RuLz6sJuApkIv2Tmv2U02RsKSZ1yz2UZ+nItFKrYQuR6KeI3VugykX6Gg8HftKiec2MTV46BdYevlUOzXuBWWvAid4I+36gXvNKXeuhe5d2HW0pkN1o2raBUsey+iXN+iEoKkBpq73Uv9DGQO3iFhp5l6bS/PLi9tpzEahyUXRxJk1vab/DBknPtq+pfw/mX5ZG584hxdZNMNesvi2fI79t0RzLGx8uZbBhlCPPq+e79Q+WoNPrNGvswXMDZJ0WoOXtbjrfXbjm9U7sZSLxhV5aWho1NTU8//zzqtddxjKW8cHh3nvv5Tvf+U7yZwmZM3QfXrBtYLWLossyad/eS9ub6tZfa+8vRq/Tadqk5X4oldRVbrb/u3o7yQnFH8+d3UdSs32K/zfJqSfz9BRN66n1D5QQnYmx69sq3+ArnRRflknzG12c2DWker0EghcEVOPkzJOp+GQ+3fsHFTKYBtbcUcDk6BSHf6W9rljM5un/HwRWu+jdr77fV3FjDs6gTdjCy7fCSf9h7Y6mVLvpOTSkaVG24rogvfUj9OweUm23FLu34iszGe8O07HIvJaAp8xOeGhK1cIQlGcj+WRN6zaI1xDdZsU2VuWy9iyJqQjCtmwiSFg+ajeEDfeU0PrXniSpUA0bvlDCdCSquuZ15kiYnJK2bV0c1XcXoTPq2PUtlXd4hZOSy7No39qrbvMoQcEF6bPvpECuSVvrxpFlpeEP6rXrnItSSFvlYd8PG1Rj6y62UX5VDu07tHPthodKiE7HFq0h9sa62M97SnclidTUVHbt2kUgEFC97r8ylklKAvjSl77E//k//2fev23gbBw6/6mN4xvzKz+diy3VohR9VYgMFj9U3l5Gx85+2jQ22DY9VsZ4d1jTr7rmiXKmQzOqxRNXkZUV1+Zqtks/zUPu2WnC5B9QyDCNf1Sf6GueKIcY75sPacm1WfiKnDS8eJzefeof+2vvLcLsMLHvqXpVopI1aKXyxlwGm0ap+/XiXuKg3E9sJqa5qZm63qVJJgLFMqzow9mMdYfY/0N1P8/3O5aJa4qQlERRcm0W/mIXJ/YPCI2Nmako2zUKB6AQlQZbJ1THZu7FqWSs9THSPsGhn7Wo/+3Hy5V2GhuuSZ/7b9ZqvhcbHipFb9Ig2wkSnkAhCXkLnfQeGebos4tvPuVdmkrz293C162+uxCdXqfqc2/Pt7LqOu28kXmGj5yzUxlsVH93XEVWVlyTS+fuflpeVS9AbXiolPDwpOb7UHFTDo5M6+y7uEhs9zn+itFq4MQJ5cPJ6XQyPKz9bi5jGcv4n4HX62VwcPZjy46bjbrzT204Z8N+06NlDBzT9iJffXs+ZruRnd9U3zzJvzSd1NVu9j3dokr0KL8+B3eejaN/PE6fyobD+gdLMFoM7H2yXpVsse6+YibHp9n/X2L+7xYv+FYHkipPC/bxuiCeAgdduwdoelm7GCOCmsfKmZqYZqfKR6nSPz1r7iplcmRKdY4BhYDjSLdorqdW35qPLV2m8Q11kpbFq8fklhhp0ibgbPhiKQazXpOAU3RlJikr3HRs76PldbHNEy0shaQkioRCzpYvq1+z8o4CrAGJ/T9vZrz1/SFybXq0DJ1Bp3k/5Tfk4Mq2su8HR1TfCVuOhdU35hHqi7D3Ka1NOjcFF4sRakRR81g56LTX2rkXpQqPCYtXT+UdJTS81K6aN9Y9UIzJamTvj5pUSV/rH4yvTTX6uOqWPKwBmW1f0yAYXJhCxtr4ARCVYWHxwurbyhhsiufeRUhUA7EBhgtaOX78OJOTyinSr33ta3zxi19U7ccylrGM/xn8+te/5rrrrpv3b2s5H7fOfWrj+MZ88RWZeAod7P+venUigwwb7y2lY3ufQjBSwYaHShk/EebQz1tU2216rJxpjTWInCJTdXu+5vrDW26n+CNZ7PvBUWFST/DcgHqxPd5HYrD1K+/P3J4kfr3UQe8+9e/W1Z9RNoL2/ayJifbF5w7ZrafyjmKGmsepf1aj5vV4OdHpqCbBQ5SAY82Sqbw5n7GukGaNc9Ojyprm/YoliJOURJFzQQpZmwKc2DdA4580al6PlzMdETu86MiRmRpWJ3IFqlwUXZrJSOuE5ruz8eFSRtonNIlcVXcpRP8936/VJCpV31OE2SZGthNB7oWpZG70018/TL3Kd13G6T4GDvULEalAsdIx203s/t7iz1x266m6u5SpMfX84lvloOSj2QwcHVV9d+Q0mcpP5XJizyAtb6ivEdfeW0RkZErzYGnRxzLwlThn38VFiFQHjO9hDOjo7FQ28Px+P7296nlrGctYxv8cSktLOXJkdh5w42et7uxTG87ZsF//QAmDjaOaG/Ol12ZjC8iq+Q4Ucm3wzBQO/aqZsfbFyRb5l6SRVuWl4cUOVdLMms8WYPFJ7P1JoypxZNUtecSmoxx8ulW1f0lIkLHWS+d7ixNRcz+USuZ6P127+jVJUnOvq0ZE2fCFEqbDUc04IkHNg+WEhybZ8+Qx1aZFH8vEV+xgm8YByoRwRNPrXepEFAmcaZIQQan680VIDpNmzSDrLD85Z6XSsaOPltfen5rXUkhKotj4xVLQ6zQPsZddG8Rb7ODwMy0MHV388EACnjI7g3WLE6kB1j1Qgkk2aNbb8i9NI6XCzd6fNqsSmiS/RPUdBYyfCLFfY13sKrRSfnUunbv7aH1dnU8gio1fLEVn0GnWYrPO8tP+V+0Dm0CSTHXstS5V8tOaOwqw+CUO/Hejah5ac2cBktvMNo0+llyVhTvXxnaNdXbaeg85Z6ew/TtH1Ml4Eqy9q5jhlnEaXuhYNG9MxEbozm+ko7ODcFhZmH3rW9/i3nvvVe3HMsCo3WQZTzzxBE888QTnn38+b731FgDb+QvEdNRwMVbdHDug+Ga42WZEb9BpEgS8ZT7F4mFGnStm9euTEttamBqfZui4esIdbpiga0+/QmIAApWOBck9Xe8N0vWeMhGmn+Yhe1OKKjnBt9JG6ioPnjy7KsGlfUsvoX6x09V5l6aSXuVT+rvISRot5ZW56NjZR9aGgKaS0kSb8vAMkkG1HcBwyxg9B7WZqyIEJYCePSOkrwvR+Kb2oqrn4BChfu2FiD3fSsmHM2h6s1NVwWopWPWZPEJDk5qqPsc3d2KSDDS+qb0x2t8wwni32NgQuY+WV7vx5Ng59GyLajtr3IIjMj6l2g6g59AQ/mKnEAFIRF2s5v74qXMBYlbdr49Tfn1QlaBkzZBJr/IRKHerFr7yLk3FV+hk13ca2P29xRfRnjIrg3UTjDVNcGLvAE0vqY/Ljnf6yTotQF/tkGq74Y4J0IF1juXJYjCY9Zht2lOW3qRHp9fNqqWd9Iz6ChrZd2wvjIBlykJFRQXbt29ftnVbxjL+l2FgYICBgQFSU1OZnp5mjCE2x54jnRxW6NbNNkzYU2UqllkiayWz1YhRYG6XvWbFikFDiaa/fhh7hqxKNABFijvnwhSFjGFRLJUWIoXMLYiv/XwRJ/YOqqr2rLxVUbfp39+7qFpR7a/aKL0mW5igtOGLpeg1PlC1PsYTCA1EmRyZonOP9sny6QnF9k1LNefoC00UfixPU6EoNBAlNKBNvAHo2j2Aya49Ltrf7sBo0tO9U7tYU3RlJmabkcM/Fyy+acBXYSd4Zir1L3RoqhS1vdMzz8J3MTS90UnwrFQhghIgpCZ07LUOvHGZbTXojcr7qqWQNN4aYmpsmuPvaRdguncN0a1x0rLgsnRSKz20/bVHSBGr8fVO9CZ1l/QE0ay3fkQ1luvuL6bpjU76D42pvl++Cjv9h8bY+Z9HydoY0Hzew23jWAPa6ymdQYdOj7oiE4oct06vI1CmTkoLDYDeoENOWCOedM1QLMRh53sMjQxBIwSDQaqqqvj973+v2ddlLGMZ/3P45Cc/ySc/+Uluu+02fvSjHwGwi83oY3pquARZN8cOKJ6OJJcJvVGvSRDwFTvQGwTqWTLo9KDTnrqY6Asz0aOeF8M9YUVdZJdyCttTaltQ1WigdoxttXFr+HI7+Rekq5KarFkyWacFCKxwq25aNb3eRXRajPSUsclL7vlpdO3sp3mRzaDWN3tofVNsI+L4e73knZ+uSlACksQXvUl7/dx7eIiBRm3ykQhBCWCiPcxQ8xjH39G+p45tvUmbezXIKTIll2fQ9rduVQWrpaDsE9lMjk9rEo+6d/YgO010/E17rd21t5+pMe37ARht1a6N9e4ZJqXCzeHfqq83Zbeylkmst9XQuXuAjGqvEAFIhOi18eFSojMxIWJWyxvdmO1GVXU12Q2556SSucGnevAkY5OXtCove548xkGVQ4uOHJnR7jDhoSjH3+3RJFT2Hxhl6oJp+o+or4vDQ2F0ev0pVosLwSgbkta7atDrdegMeuQ0WVF7OmmIDOV3sqtxC0yB1C+xYsUK3n33Xdxut/bFl7GMZfyPob6+nkgkQkpKCiMjIwzRx+bYc2RTSImucrZhfMtHcurRm/Sa36UAstOE0aLdzuKTQK9jTEMNpv/oCJ5ih6aqz96nGsk83ZckKDlzFibPHPjJLAlj9a159NYNqxKQqj6jqNv0Hxkn0rdwX1te68Zg1AsTlKo/X4RJNqiShbRIDklEYOxEiL5a7X2/yQll30kKSKqklYaXOzBJBm2lnAhCBCWAjvd6kf3aNYP2bX1YPGa6tmgTW4MXBLB4JM3DoqJw5kjknJvOsde6NBWSGl/rQvZoz68tf+0mRkyIoARoEpQAjv7xOP5Sl2a7xL6yluJSpC/CRE+Y9u3aTjDDxyY0ifsZp3nJPSeNlrdPqL5bCdQ934bFrR7LBNFspG1MVZVqzR0FtL3TS//hEdV3yFVoZfjYBHt/1khGlVeVoATKnrE3z6F+I3Ho9DptdbNoDL3RQKBUQ7EsAkaTHjlu1XgyQSkSi1Dr3kr/UB80QVZWFqeddhrPPPOMUF+Xsayk9HchGAxy/PjsSQk9es7VXbFoe1HLNIgruRwf55AGk3jjI2VMjU+x+7vq7Nyax+On3FUsDFKqnBRemqVpm1V9TyGSy8y+nzQx0bl4Iiq7Lkjd79Vt5BKwZsisvjmPpjc7FyXwWP16Vt9Wwv5ftiaJQ4shofQy2DRGnYAUozVo1bzm+40ND5VikLRP6r/fyDzDR+45aQw0jmrGRlRJqeaJcqLTMU3G8vuNNXcUYAlIHPhVC2NN/3PPT9gmMG7tN3YixIEfqbOfQTkxFR6eUlV62vBQKeO9YU01qATKPplNyxvHVS3WRBShLH5Y81ltm8KEelL79j5VVbj0jR7yLkjXtrvMkKn8dL6QktnGR8rQ6dWtNg/HdjPhGmBsbIxYLEY0GuW9996jpqZG9drLWMYy/r/Hu+++yxlnnDHv33IppVBXsejviFimgaKC5Apa2feDOlU7svRNXvLOTePoi+pqSfmXppNW5aHh5XbVjf2kbdY3ahclCli8sOauck0FAItXT+bZaUIWbQArb8lDdppUTwevuiUPg6TXtnNFUaay+WW2/Mfi9zLbWbBY3n/rNzX4KuyUfCzIUMs4tb94f8hCotj4SBl6g07ztJioklL5DTl48uzU/a6ZgfeJcC6KmsfLmRrXVs56v2HJtAhZ9ZXfkIM7x8beH6srDgG4iy2UXpHL/v9a/L1P3eAm79x09v9QPTck+3myLdsCcOZbqLguj4neMPt+sLhS2pq7CrB4JWqfbVa14Vt3XzFGi0HztNvau4vQW/Ts0JD0r/hULo4MbSWzhFVd+9a+RW0HQ7EQW3kNh8ueVKosLS2lru5/9pthGctYxt+HdevWsWvXruTPBkxs4qL5ZKU5yDrLT/AMbcs0UMgKw63j1P1G/Rtv/YMlTI/PsOcp9ZrXxodLmZqYUSVKuApkVnwyn/GesKoy76pbcrFnWDn48yZVckjR5Rkc/4u6jVwCshtW315K05tdi1rfyW5YfVsp9c+3MNyoPofJKTJrPpPPYOMo9c+oxxCYJTL8D2Lt54sw203ChPb3C+4iCys+kU//0RHN2IgqKW16TFGQ0rKMfr9Rem023iIHtc80a1rsvZ+Q3RAOo20pKMOm+8sZOzGhqfwDih3aTDiqqvRUfU8R4aFJYXJ//mVpdL7To6oyVX13EZLLpK4IJUPNF+K1cxXCk2+Vg5KPZCtWvSqEQW+5nZLLgzS90aVqwSe7ofKOUiElMxGruuZYPX2u44yPjxONRonFYvztb3/j9NNPV732MpaxjP/vUVtby+rVq5menk7+Wz7l5OvKF/2dDV8oYXoqym6NvZv8S9JIWelm70+aFyX4gKIeU3J5Ng1/6lC1A8vY5CXnnDSOvtiuqo6SsM3a/d3axYkCEmx6oJzIsLoCkeSEzNPThAlIRVdk4sy0qpLJi67IxOo1a6rWAJRcnYWnwMG2/6jTtD9T+ito2/U+wZIuseaWAgaPjVH3jPZ+6PuJtfcXY5KNmqQZUSWl/EvTSK/2Uf/748LWY+8XNj5SxtTYtLZy1vsMLcJaAgUfTiew0s3+/27SJHBZ0iUqPpnLgR8tbnPmKbNT/OFM9v2sRTU3zHYU8s9Po+nlxd9DKSBRfXsBo53q68OKG4I4c+zU/rZVlTxWeVs+ssesqTy28tO5SG4zu1Q4EKB8w/lKnJrXS1jVHX+vl+N/WZys907sZaweOekEsXbtWnbu3Kl67WWcCm1K7TJOQVtbG+Pj41gsFgCiRNkce463Y39YsH1kbIrYTCxJUEqpWvhkcULJZSoSP9WiIuwhpqkEM5NRIiPqyjA9e0aIDE9Snzilssjf3f3dY4pFWmcYT5mV3ItTF2xX9yuFoJR1jp+aJ8rJPMO36N925SnKB/b0xW92oi/K1q/UMdE2gafMStY5C9jsxTF2YoJYNCZ0yqriU7lU3pSr2j9QiCmbHikjeJ66b2TifoMXpqi2G+uaIDI8qdk/q1/PxkfKKLoiU6OhQmApviZLtVnHO/28943DQuQtUWz5Uq1iaaiBDQ+Xat8HymKg7JPZmu2Gjo8xHZ7RJCjVPF7O+gdLhP6uVvwAVt9eQs3ji38gzEUsGiM0pP6cE39z17cbNMlHBrNeU3Fo4yNlbHioFFAUlxYkKFln/+6Orx9h71OLEJTir2SoD0L9ERpfU2fEd+zuJxaNaarCDXcqix5bumXhBvG/myBCGswLH6W1Bq1YM5Qi+eToJFNj0wu2myjrpTZtC100Mzw8TDAY5J577iEWiy0TlJaxjH8QnH766cRiMb761a8m/62FejbHnqMltvCm+9T4NOFBJQfbcixYvAsveRMnx5MkhMVSk18CHYy3q5+8mY7MEJuJ0Vun/jHdvLmL0c7QLKlngb8bGoC9T9YnCUpFVy48j4YGokmC0oYvlrL+C+rznuwyaSrsHPhJc5KgtNjfTSA8OElUI/cnUPNAOatvK9NsV3J1Fusf0p6/1z9YwqZH1a/Xf2iM6dAMI63ap6ZKr8kW+rtFV2Zqxhlg27fr3lc569pftPLe1w9rEpRKr8kWWv+UXBWP8yLjfi4mh6cYalOPYf6l6dQ8UU7qWrdqu7xL0tjwxVIsXvW/GTw/hTWfzqPkau012tTEtLL2UtmIDZ6fgi3HwtDRENu+pk4+cmRa0Rt12LIWP6mVdU6AmseV+w0NsChBKfeiVCyZFkaaQux9sn5xglL8ORx9qZOJ3ogqQQlgcnSa6bCAEoMedQWT+N+NTinFq8XypX+VEovOXf1Ep2JMjS+89hqsbGa78XWizBAOh1mzZg2xWGyZoLSMZfwDYefOncRiMVJTlZrPDFO8y0v8NfanBdtPjc8wMxnlxD4lsXrL7Qu2Syi5xBLrhoU5T0vCdGiGyWH1mtdwY5ixrhANL3eq/t0DP2lhz/fqGW0NI6fJBM9duAbU8AeFoBSodFHzWDkZpy9eU7Jm2DGY9DgyF59sw0OKAvNwY1hRajpr8ZpXuCdMbCbK1MTCOXguij6WQdVn8lWvBwpZYv2DJYvebwKBShc1j5eTe+HCtcAEBpvHCA9o17yQFVvTosszNJuuu6+YYo2a0lBDiPf+/bAQeUsUW79cy/bvaBOU1t1fTMFH0rXbPah9HwAj7RNMjU1rEpQ2PlzKuvuKhf5u0ce047z6tlI2PSBW84pOR5PfW4shEZP9/9WkaUVnshqwaCgirLu/OLnGbXrxxKIEpcTf3f29hsUJSok8EIbh1nGaNJTf+4+OEp2OMjOpocrfGVcM9y9yL/G/m+jTYkpmsltRSwII9U8yObrwOz+c0Ut95jYaOcTw8DBZWVk88MADRKPRZYLSMpbxD4Ly8nKmpqZ49tln0euVtVITtWyOPUdbbGHyTmhgkkjcWUPyS0iLqOomlVwSJIRFthYSew5jPepkhehUlOjUDP1H1Wteja91Mtw8NktQWujvRmDP92uTBKWci1IWbBcZIUlQqr67iLUa8549RcZkVa95NbzQkSQo5VykvpcXGowQE1TH3PjFMirvKNJsl3NRiuZ9gGJxtfGL6jWvUFeE8NAkw8e1FYDyL0kT+rvBCwJU36t9H7uePPq+2vE2vXyC9/7vYU2CUs5FKVTfXbToeE4geG6AtfcWIzm1aRDj3SGGmtVjmLHJS81j5aRUu1Xbpa33sO5+7b8bWO2i+vYCij6mvTacmpgmNh0lNLD4O5q21o0zRyLUFWHnN4+okuVsKTIGswF7+uJBDKx2senRMuV+IyxKUMrY5MWepZCtdn+3fnGCUvxPNbzazWjHhKa6VWhwkikBBVDQ4EvE/+5UvH62WL50F9sA6D88wlR4ZtHvrcE1LfzN+CcihBgfH6eqqopwOLxMUPo7sWz39nfCarUyMTHBxMQEHo+HyclJZphmc+w5jJg5W/eRZNu2N3qSyiKp610UXJRJ5voIe38w/3T6RNvEvI2MmvvLmZla+MTOXK/vDV8sBR0LWkXNtZpSUxVIKDJ5yqyUfTx30RNmCRWZkstz0Bt1tPy1e1EFlpnQDMRgWOX081w7OYDgeQHa3lqcnVh2ZS7ooH0x6d2J+WoqakpJTS+1UXFzER271WX0Jiai6Iw63Pl21b61b+8je1OAKQ27sMO/ECMJTfRF0Rt12FM0KncTYJD0OLTaxdu+79C4ptWvx2DSa1pQWP169EYdZodJ8082v9y9qPXfXEyHZwhrEIWsGTJ6ow7Zqf13h5rHMMrqi9zEmFNT9YH4iQKPmdGNnsUV1qyQWe2j451+oU1O5UNBfdG8/s4SjBYDnflWxpomFiQyJdSTpkan2fnto4sqaQTPC5BVE0iqIi12z0VXZRIodbHv6RYlzy2iFJGwdkyoMS16z1aovClXyY9fq19QAa4pVk8ThzAcUZ6XyWTi9ttv53vf+97C11zGMpbxvx4PP/wwDz/8MJ///Of57ne/C8AxDnIsdpBSqsnS5SXbzlUeqrg2B4N5YQXDuQTRvEvSSK/2LmgB1fhiF40vKoVrd7GF8qvz6NzZT8vr8+eits09SWWR9E1e8s5Lo/HNzlNsyXr3jCSVltbdV4zJZlRU7U62SorbYHnLrATKXbgyrOxSOdUTnYwSm1YnDM1V18w4w6fYoCyyVMs600+g3IXsNnPwJwufMJsr66ylejPWFWJcwO7X4jVjNBuweNVVlyJDU5hs/z/2zjw+sqpO+9/a9yWVqqSyVSqVPd3p7iTd6U6zq4CAKMvQoNAgm7KjiIKg73xmcdyZcUGdUUYEFxRERsAFUUSgd3rvJJ096ez7WkuSqnr/OFU3qa66lXaZeR3fev7qrjq5de/vnnvO7/7Oc55nbV+YtRS14tBnid9dywrL5NKLfGCNdmsqS/0pOINjmnJ0a+YrIMh3aq3qjI6Zrt/FsTi3RGQpuqbdmrXIiEqjJLDG7/a9NUruBjsnX5QnSsf7XPtPB2gnvf1wYZOTgsbstEpBhRe46H9tjI7nB9dUJ5sfmIeoi/CifNHE4ID8xmxyNtrZ94WTstZ2Gz/sw5Sj59B/drPQG+Dwt1LnXlseqECpUbL3860c+Y68GsjWh6qILEXY/1hbWiW21daOzWk2MtTdWYrBqSOy1MNki589n0uO4evRF1kiBIfAbDYTiUQYHx+XNvZkkEEG//swPDxMMBgkPz+fqakplljk1ehzaDFwruIyqd3IgSlJMcRebqDqag8LZwU4cpqqcHA6kqAEsu0jVUSWoynn6dWfbb6/HKVWmVLZd/UY1/hgJZGlSMpx72hsIUrv1lN/u4+5gdQ7fOOkh9rrPWiMakYPjskqsIQXw0QjURaG5Avsk83z7GpeyUHzz85m8E35GtSGG7wo1Ur6X5eXRF4dw3RKSadeG8TmMdG/N711VTAIap0Km9cEyNe8xg7P4Lsoj8W59DWvtazRVn4Y1Hr1GdmVaoxqTLlnUPP67xCNOgNVIY1RjWmtmpwe1Do1+qy1a0+Db06k7SdxLM4ty27Ykn7WLn7XcAaWY6MnpjBlp5+3431udb05Fdbf6MVabCQwFmJwt0xCrwf3JgfDeybTqgTFEQ6I+mw61N9Zht6pZaJlmun2gCxBafvHagjNCTUtOfUmV72NsksK6PjlAGMHZ2TP0fMOF4VNLk4808VMZ5DdMipicWvHgT1CjSndNdffU8VySCiapyJ4DUb7aGYfqmEV0WgUrVbL/fffzxe+8AXZY2aQQQZ/3dixYwc7duzg61//Ovfeey8AbRymLXqYGjaTr/BKbVdbpq2/3oPOomHXF5uTlH7afzZAPCtyN2bhuygvpQXUwJsTDMTmHZ1LR/3tPgb2j9P3m8S8YPjANMOx9317hYnqv/PQ/cqQ9FkcMx1+ZjrE++Wm23wYc/W8/bVkVaX4/w15Ogq2OHH4LBz6pryi95J/GZU2PfFj9Zqra6ONsdYZWQWk7HVWChqdWHINHJeZC/p+MybFYS3Vm8mO2TMSTzBk6VAbVOicurQqNv6xEJzBnsCDX0+vPBqHzqoVv7uG2pMp24DOpFlbFerMnOb+OJzBMa1ug1hDXKOtOdeAxqg6I2WrM1GGDM2LjWKjx6fTtrP7zKj1KkKh9L871jpD4VlO+n4rnzvH+1zf78bo+116C76Si/KJLIfZm0ZF273ZzvCBafpfH0/7vgEwPxokGo4SDqa5Dh143+lm0b/MgcfaZGNddV0RjjILx5/uZLY3JGvDW3dHKWqjiv2PtaVVKm/4SDlEhO1wunvXcF85GqOaPZ9roedXI/TIWGvXvN+DvdRMy0/7mGqZZ/+Xk2O4J/oq80zDQVHzMplNDA0NodOt/S6TgTwyJKU/E0ajkVAoxPj4OHl5eSwvL7McK9yoUHGB4sqE9iP7ZihodHLyOZFIrL/Zy0TLTEqSQmh2kcXYy6bZZyQyG0xpNRVZiqBQrq2tFFmOpi2iA0z1+gmHIvTvSk8AOfLtFvK2ucEvCA0Kkm2whvZMSdeVVW2k7JLCtLZzWx4Qi3QzfQvMtKdmvpz8r14MzjMrdDc9Uo1CpZAlRPjHI1KRy7XJwthhGfsWP2dmzeZnTXuEOMw+I+uvLabr1wNpLa/O1BLuTNtt+2Q1kaW17W/OBHlnZVHyjjz63hyVJ40h4nwm53em7RofrGRuKHBGilBncp3+weCavxvvH2vZjtXdVYohW7emlRmI5LHyusK0FpBN91ejUCsEkU6GDOa9JJesEjOHvtGZ9npt5UZm2v3s+8ZJSi/MS6tCFRgXO1LH29N7KY+3L1DY5EJjkimyGQE/zHTO4aq0YXaq8ae4bTn1VkYPztL92gi5GxwEx1NUAY3QcGsZbz/RAX7h9TycgmB4MnoEXVmU3u5uiA13733ve3n++efTXksGGWTwvwdf+cpX+MpXvsJNN93EU089BUArb9MafZtS1lOiqEpo3/PbYZw1wivc4FBSuaMkJQHAPxokvBiRCErODZaU1m46qw6iMNker6aQkuSh0qsgCrPt6eeDibY5HGXmtESRyRY/wwen6PqdeHG1+oQqy+lYbcW16Y5SxptnkghXEgzgPT+XwianrA1U/x/GMbh0tP80PfkDhD1W6UX5zJ7yc/zJnpRtVhfSstebmTieepdSOius1UhH0jgdNdd7MOXo09qVyRFD/tR2xRfliLz/hT7Za/1jEN85vlZ+8/bXzqxAla74F0dek4Ois10ce7p3TRu1/j+My/e3VUhntRNHvH+ke3cAqLulhPDimdmw9L05xmyv/H3IXm/Gc7YLV42VQ4/Lx2bLRys4/pNTTLcFZK1sDG49gZkggUkYenuS7tfSS9MPvz1J8fm5BCbTM7ei4SgR1i6wRZbkd/ob3HpQKQgMBAiMh1BqUhd588/Jxu4x0fyDPtp+MUjZxXlJKl6BaICx0namZqdYihVr8/Ly2L9/PwUFa+8GzCCDDP76odfrmZycJBgM4nQ6WVhYYJEAr0afQ4OGrafZwE23B5jr99P5GzHuVe0oZKprIaXtUWAixHKseK936yEilIJOx3IockbFy8hShMgaZO3gdJCl+WVB0k6D/Y+3UXxOjiA46EFv1Sed22TzPLubRQ3IWKin+sqitBYRcUJqYDzIVGtqYtOJH/VgKTKlPbc4Gh+M2bfLbO4JTq+QuLKqTLK/SZAztmZbi5gShz5HT+0NHvr+MJbW8kqOzHE6zvT84qpCfwl72qwqE1VXF9O/a5RTaWpeBDkz5czgmV1vw73lLIwEaP1JejVrIK09jvSz02v/brx/rLUZsOZ6D3afmfaXB2TtC+M4/lQPpe/NkycoAVvuqUBjUAsVNpk0M7/JgbPGKpTO0tg/Wor1zPUGOfjdDrzn5qZXoQpCcHqRyXZ5G2+Aua45iAgSWkroiSkxzVGw1YnWoiPVhThqzEw2zzO4e5LCs1xi0TkFNtxWQttz3QSnYapzjvEU6rx90Xai5X66u7thGSKRCDt27OCZZ55Jey0ZZJDB/x7cc8893HPPPfzjP/4jf//3fw9AMwdojh6gnA0UKxKVcDp/OUjuxixB2NBB7XXFHHumN4nAEZxeZHFhmcEDYly2V5hSKpkYstREw1Fme2PvfjpSkkE0BjXRMEz1pn+HHW2ZJledJW/7hlAD6ntjlP49Yr41F+qY70/+0dU1pXXXe5jqmpefZ3RQfnkB3nfmytYVJk7MMlg0IUtcWA17hYmaHcXMdM9zQmZdqm1V7cxWZmSmI/X6y5mqPqYjaZwO32VubMUm2c3mwBnbwZ1pu5wGO76L8mh/aeAvYs9Wd2cpKp2KA/+WPo879r0zs4Zt/tHa12GvMFF2aQEnfty7po3axLHZM7rOM7m/8f6R7n4B1N3mIxwKr1kbA+j89SDBSfm6nblQh+/d+bjrHRz+D/m63KYP+ej69QCzvSFZazShEhUhNAu9vx9h/Gj6d6vBvWOYXHpmh9PHeHkxLFujWo1IMCJcXWTOTWnSEBgKMTfgR2dLvXaZvc6Ko9JC+/MDdL7cT/n7CplqSa4Z9niPMOefZX5kGoCCggL27NlDYeHaqu8ZrI2M3dtfCE6nk6WlJXp7eyVZxjBhXo0+x2+jz+OPrkxIB7/eKRF6rIVGii9wpzzm21/tkFiAtdcVs+nOqpTt9j/WJi1WND5YyfZP16S0bNv7hVZJMWnrQ1Wp7TH8ot3EsQWMTiXbP13DhttKkpoFxqHrJVF02vShatlzi8P3rnw0JjVZ1fK2bsefamP2lF+WoAQwcWxBEGKMgoRUcpm8zPRY8wwLKQpcpyOn3kr55UXU31OWvmHMVi3dbwKUvi+PpkfTyzBGgkIlKWfjGj4XCIWh7NozK1KthWg4uqbCwplCpRWLr4tnYF13Jsg7K+uM2qkNKsyu9DvUGu4rO2Obt7Vs/AxOKL+86IxsXbp+M8RyIJyWoNS0ysLv5DPpE822l/oYb5tNq1bl3uTAsIYNXP09pay7zotrkwX80Plfyezs+PO+6cM+QCyApipQVV/vYfunayTFqF3/3MzAG8lJSMN9ZWz/mBiLRg/Osuufm1PGpeG+MsouKxRjgx/2fLYlZTvP2Tno7FrW7/ACcPTb3QntFtYN8Ft+yina6erqoqioiCuuuILl5eUMQSmDDP5G8b3vfY9oNMrf/d3fSZ91cpxXo8/RGj0sfTZyYFraHVt2ZTFGly6lHdXIgWmJ6OCqt1LxviI2xsbE09vt+kwzs10BDA4l2x+sSdmu/7Uxdn2mmcBkBHuFge2frqH0imQbiK6Xh6QFpLo7S4WtaAo+dtfLQxCA3M121l9fQu2tyfmZBAMYXTryG9NY2gZgonWW1ufSv7THCUqV1xQK9U4ZjOydZml+mc7frF3cafxEJZVXeta0GSu+KOeM5t/GByvZ+KHke7Aaphw9GtOZ7c/I3Wo/o3ZrYXFOWJCp9X+ZfSHRcFT2JfyPhaPauKbdGoCzxoZaryIwkyanNoi83POu9DLppZfnseWBtaXFG+4to/JKD1bf2hsTFkaDDB+SX/zyXZbHtodFXt7/2lhKcl8cE8fnme5Z4NB/yheJnBssaMxqKi5Jb+lSd7uPrfeJ56X7F8MpSYgbb/NJz/vIgWnxPpeiXdMj1VLcDnylPWVxyuCA7Z+uoe7uUkC8H8rtpqy73ceGG4oBUeSVI90Vn5ODvURYNi30BjiyqogViAY47nqTt3iZts42lpaW8Hg8TExMMDg4mCEoZZDB3yD0ej3z8/NMTU1hNIq6zlLMBu530RcIRlfmiWPf7cHfL/7vKLdS8q7UNZQj3+6WcrQNNxRTnyKfAkEOjudKm+4QuZLentzuwFfaJdLG5vvL2fZwirwlKAgsE0fnhJrKozXU3uRN2a73N0Ids/GeSurXyDNK3+lGZ9fIWt0BHPleF5Ptc/JkIWCuNygp6Gz9RFVaa7WhtyeYG1hbLttSrKf6mmI23VG6ZtvN95dT8u70Na/C85witunKMotBNCY1zhrrmr+ptwsFrr8EopHoGdsQrwW1Xk00HGFx7sxsJtaCq952Ru20Vg0md/p41N7sPTObtwcqKLogvd0feqi+pviMcrSu344SmllKS1BqfLBSsltbS1Wr9dk+xo5Np1WrKmhyYs4zpu1v624spvZGH65NNghCzysp3kf00PRoDRtvF+9QBx/vSNmu5LJctn+qBkuxnuB0hN2fbU6palV7i5ftD9agtyuFetJnWxg7nByX2lu8VF3tITtmm7vvSydTtnNtsmHOM1D6XpGjtfzoVEI7f+Uov+WntHGEjo4OCgoKuO6664hEIhmCUgYZ/I3i//yf/0M0GuUTn/iE9Fk7R3k1+hzt0WPSZ9NtCxKZpfzSAiweE+5ae9LxptsWOPCvbRACa4memh3F1N7iTdluz+dbBYFJB9sfrKH25uR2Y0dm2PP5FkJjIXQuHU2P1OC7LHmdc/CtSUndqOb9HrZ9sjqlDVb/6+MQEuSNDR8sZf1OT9r4WItN5G9LM8eFYGD/OCd/lr7mFScoed7hSjsXTrctEBgP0fv62jWv+rvLWHedF90aaZB7s53NHzkz27dU92A1rAVGdPa1VRMBsmvXzs/OBItzSxCJrqludaaIhqMrttB/Jqwl+jOyeXOtt6M1q4mkFwpl68cr17RQzj/LcUY2dOtvLGbddV7JXiwdprvnGT4oT/jPP8tB48cqQQejb08z2y2fVM33hxg7MUPLM/IEJWuxDmOOnuLzU3MW4qi/p5INt4t67cCbEylJiJXXFNL0iHjeZ7uDYjNHCo5S48cqabhP2Ase+8+e1Js+dKI2Vhd7nzn0rU5ZolXDvVXUfsALCOKgnNKS72I3rmqRn4dmIxxf5YAUioY4mbePV6PP0dHdTiAQoKSkhNHRUfr7+zMEpb8gMkpKf2F4PB7C4TDj4+Pk5+eztLRElAi7+AVEYTuXYlSsEHUOf7MVpVW8adXdXYreqk2wcouj5/VhssvFA2PM11N1VUFKi6PpUwvYi0wSqSG30cbIvuSXn+XAsiCZpINWSzQcZbIz/c6SgQMTZMUK2HHllNPx9tc6MMfspQxOyK51JqnvBMaRdt5veaAClU7FnhSxADC7jShUCkwu+Rf3jhdWLBo23FYiyXufjtGDsxSdtUhrmsE5DpVOiaPUQjfyyYhCoUChVEjqMKlwJuo9cWy6s4poOMruY/IqTb73uHHXORg+NCmRx1LhTHe9nQn6XxtPq6AUx/ZP1xBZjsreSwDPRTkUbXPh8FnWtMM7k7ipdCpUazBus6qNKNUKbMXpJc0D40JdY2BvGhvCDxQxuH9CKBWlUTcwOpUo1rDwk6zRnuhi4tgCE8dSFzA9F+XQ98ooe77SgtEoc62x57HtF0NUvbdAXi0MoWQVWY4SWkO6faJlGrvXhM6U4lE3gqtCqE6Ntc7i3piaeOZ5pwtroZHj3+vl5EuDlF+Ux1RL8sCx/oNeLAUGdn+mhb5XRgmOB5OeqX3R1wjp5lluWUahUBCNRrnlllv49re/nfY6Msggg78dPPvsswDcfffdfOMb3wCgnw76ox1kk0ed4iyp7bEnuhMUkrY/WsNE+2yCZRkIO7b8LUHa/kvkEjU7i5lom0mybYMIy4Gw2P2LvPqSSqsiGo4y0Xz63yciOLWIxqJOq6o0cmCaorNcdLwcK/qnUnIKwKFvd0nKN5535Ug2dKsRL2SZig1s3FnC0MFJQahIAaNTJ+bWNBZn8V3rjmojjmq7rF1W7+9GcK23r2kzZvcIieS1bORUWiXaNQhIZ7qjfv3NXmxFJgiT1rZs2yerUSoVaXf2D+2eZCjN7vE/FmdyDeVXF+CqsdHz+xEGU5CI46i8shiFUrHmzn85m7/VyN1gR6FSrLkomOU1i53oa9jkNT8/QOXl+fKEIgOsu6aYE0/1rqnKZMzRoVQrhLKRjBLUtoerCc0tcujxTpqfTr0jr/BcJ/37xxk/OkdgRliypTqv+HUtjAQZa0mvMDDdN48+W4vBoCQQkFdHWg6GWVxIbeXiqrcydnCWwCQsLSwz05N6sbruzlJaf9xJYBJmehcYPZ6iyGWAbfdXMz8S4Ph3ezjxTA9L04nXGYgG2MUvMJlNzI+KHWYGg4HBwcGMrVsGGfx/ArvdzsLCAsFgELfbzczMDBGWeZOXUEQVbOOdmBR2qf3Bx5vR2MT7b80NHiz5RvZ+tTWJlND5yiA568Tf6e1QeU1Jkl0cwHTXPCqtUrJwyt5gEYSj07DWey2AXq9keTHMdF96tcO+N8dwVa5azImpp6zGse/1YCzUC3KWHvLrHMk7+4MrO6s3ftiH3qaVrdHoc/QoNUqMOfKrHKdeG+cUoiZT/f4iWn52KiXZY643yPxQgLaX1rBh04PWrCGrJH3NKxKOolQrcdXYZMkqwekzV/yuv7uGSDiS1vrKvc2B70I3w4cn6XpRvuaVzuL0j8XY4ZmUZJLT0fSIOP90qo6uTTYq3lOIq9qW1l4VzkxtSWvWoNKlr3np3Xo0RjV2j1nqJykRFM/V2An5a/Vd7maydYbp9gBvfzVNjPWiHpfO+q74whzyG50c+V4Xc71B5npTvy8Unuek//Vx9j/Whj5Hn5rIFHsWO381Qs01henvVxCWg8sEJ9NvtJxsnSG3Ngu1IXXNPK6KNHp0Br1NCykULl31NrIrrLQ+c4r2l4Ypf4875ThVcVUB2ZVWieAUXgwz2Zw4Hh2L7mVKO0KkIyLVvO655x7J/jyDDDL428fnP/95Pv/5z/PYY4/xsY99DIBeTtIbPYmbItYrtkpt2382wNiJaUkhaesnKplsn6f9Z4nq2LPdQaY75+n+vZjvy6/IZ67fn2TbBkKBKT5HyKkD6YwQWQqvqVAXnFnEGNSntd+a6fCzMByg89VYLiKj5HTw6yclO638phR5F9D7a1EH0zl11N3uY/BAsoVdHOZcAypdeiu0ONnKXKgjZ0MWXTL1s85fD5K/2ZlWPQoE0UprUmMt1jHbK68wozGo13TSSaeMsxpll+eRW+eg0zDI8D558svmBypQp1mfhRVC218KZ3INBWdnU3x+Lr2/H5EsClOh8qpiNHrVmmqc7c8P0P58evV4e4UJpUaJQpH+HmRXWoUN3Rpof+EUFVcWpVQyi6PymkJOPtu/piqTKceASqfE4NDJKkFt/mgFywvLHP6PrqSxII6cBjsz7dPM9oY49ESnvKpU7Hmc6ppnuiv9O9RU1zxWjwm0GtJ58y0tLLMcSr0pIKvaLNSNQhCcXGSyO/UYs36nh/ZfjhAaDzHWPMNkR+p2Wx6owD8S5MQP+jj+o14iC4nvjKFoiN38CoNFz9ygOEZWVhY9PT1YrX8Zcl8GiVBEo9G/DDUxg5Tw+/04nU4CgcQC73oacSsS2cAN95WhNWskyzA5glHd3aUYHGtbStXdUYrBpaP7N0NpLaXiNmu7vtycVrFl+6drCE0vprWQ2PqJKlQ6ZdpixNaHq1BplBz6ZjMBmffkzR8pR6VXsfcMPMlBqPAMvZX6GgvOERNXYCyU4EmbCq5NFgzZevp+K0NIkSFh/akwOKHw3IK0E2HNDR6muudkry9+Xo13V9Lz26E1bcayqo0pCSGrsf3TNSzOLXHg3+SLD0aPEf+4f8141N1VyuLcUlrykcEJlVf7OPx0l+zxsqqNWIrM9L2SvMj6J2ON+1l9vWdtWzmj8LJPR8QyOMFcmMZScBW8l+SS35DNiR/3yKqKxZ+zw0904R9MveAWt547+oMeWWu37FoTlVcUM9WZ3squ4b4ydDbtmmNE06PVYsFzjWJk2nZGyC41MXFsgXU7PdiKzRz+z+TrHK1tY3R0lOFh8TLg8Xi45JJL+Na3vpX2tzPIIIO/ffyf//N/+Kd/+qeEz3QYOEdxWcJnVp+B9e8vYeTEFJ0vDAl7qc75lOSJ7Z+uIbIUZc/n0tu6ngkx1+BQUnd3FQujwbQEi5qdxdiLTRx5WoYQAdgrDNRcW5LWYs1UbGDjjSUszS/Lklwc1UaqrvLS/bvhMyLVODdYGG+fkyWabHu4GqVm7fkAoHJHYRJJLAFrEFr+WHgvzmXk+Kws6cng1lN6iZvjz/Sk/d2ancWotMq1STwGMNjkCTIgrEk0ZvWa8bJXGJhuSx+M3M12POfmrCkFnX9ONha3Ia18eOkVeXT+eugvGv9099Pzrhxm++bWvMZ4jtP2X6dSkgJBqGElkwpTY+tDVSzOLcnKbBvceupu97HkX2b/l2XiahD54NKC/HMGUH9PGXq7Ni05zOCAurtqCEyF0trOFV7gwnO2i+meBVlyFQjLvpJ3uWXHiTjRCcTONP9EKGlsGoz2Qs0CbW1tLC8vo9FoqK2t5ec//3lGNSmDDP4/RzAYxOv1MjKSSGqpoZH802petbd4MeXoJTKKHMGo5gYP9pK1LaWqrivCUW6h57WRlEoncWz8sA+TU8/Bx5slclMqND1aQ2AilNbWteG+crQWDbu/3Cyr/rL5I6LNwX/vSmlfB7DxQz50Ng37vri2RT0I0oNcLBw1Zqqu9rAwEkxQvUsFW6keS6FZqBWkQgoC1p8FPZS8MzetjVj5FfnMDQcZ3pM+B918fzm9r4+uSRyyleqZ6Ux/Eds/XUNoZikt4Uafoyc4G1wzHutuLCa8GEm/iKSHmr/z0PXKqGyf0Lv15NRY6Pud/Aa5Pxpr3M/yK/Np/1lqktBqbP9UjbDXldv4qAeHz5xEsEkF9zYHJe9w0/Jst6wlW8N95ehsGg5/t0tSZTsdceu5Ez/skr3fxkI9m27yMdkxR+uP5e9P7S1eLPlGDn49/Rix9SFRz16L5L/1E1WotDLt9GAvMjDdHsB3uZvcWgfHfyAIW6sxtq6TsckRBgfF/SksLOR973sfX//619P+dgYZZPC3jyeffJJbb72VSGSFSGPCSpPiooR2OqeOultLGDsxQ+dLQ1hL9MwOBlNyBZoeqSayFGHvGnnJtkeqiS5H2PuFNO1i6ktzg36OfbdHtpnvMje5Gx2c+FGXrPqLIU9H3a2lTHfOy1p36Zw6Gu4oFfO6jO2uuVDH+ht89L0+ktaGNA5bmZHgqF+WZLT5oxVoTWp2fbE5HfcCENfZ9XIa+3cZEtafCndjFv4RvzzpSQfVV3ro+kVfWhJV+RX5aE1qWWu71cfTWXWEZKxMATbeVoLJbVhz/lyLrAWCMOS7MI+D3+lIG7fsWiv2YhOdaUj6nne4GDkwtiaZ7I9Cmvvp3mwnML0oawMYR837PdjLzLT/fICxI6nz3uxa6xlb7DV8pJzl+WWOyIh46KzQcF8Nofkl3k6zHrztk9UszS+ntbeuvakYU74xbV0cHWz7WDXB8VBaYlr2OiuVVxamff5hbStGieiEUPwMTISSxqbJ6BiL6yY42XaSpaUl1Go1GzZs4Fe/+hUuV3onngz+PGSUlP6bYTQa8fvFoJOTk8PYmHjZPM4+jkf3kUcJ6xQNAJIVGwhyRJbPjDnPmGTNdOjxzhWVHiM0fbSa8ZbZJKLLyee6qby2RCIobfpwahLI/HAAS75R+jy71pSs3mKEyHKU2eH0iwaz/QuY1rDiOvadNoovKhAEJSMYjUrJ/i6O1eSY9TcVM9U1n9JSCmLF/iwthElJxhp4YwKVQXVG5Jby9xSBAnmSUixGWz5SQWBmkeNpEq3CC5zkN2SnVdbZcJt4wW3/1YAs+aP5+2fgAevnjIpb9feUYXDoOPiNE7IEsTPFxhuKUajWXoBcy1cVhFrR4TV2wldc7kGlUzJ2cFT23MuuyMfmMSY8S6fD4IRNt1fT9lKfrEoRiOfFmKPH806XfH8A8Avf1YG35Yuimz4sSDljh+Vj1XBfGW9/tYOeX47Q88vUBby4xdqxZ/oobHLIEpQABg+M4z0/j/nh9PaJ0cujhGZT7zKNE9omO+fIWZdaFani2kIWBgMMvDHBeMsskXCKnQbG2M78YbEzv/knvczIyNJv/1gNRGHXseYkYps/6ue46U1mF2bhKJjNZsxmM1//+te56aabZK8zgwwy+P8L//iP/8g//uM/8vTTT3PjjTcCECLAq9HnUKKkiUswKAzMdgUSdtRUXuER40+KXTaHHm9GaREqIRtuLcHg1KXcLT1yeIrwohgHC891orVohE3baVgOhhlrFi+ajmojkynIw6HpRcL5BlmCEkBoPMByMMzgXvkcZ6E3wETrLH2/FQXuVKpEky3+les2QN3NpWnn74r3FVGWhrR15D9OYvWtvcOk5FI3ziobqhtUNH9fhmQREKSo0ksKhPJCmlS04d4yxlpmU6pGgbj2/MZsXDU2WSJJYDiYNr+LIx0pZDW2Pxhb1Pkzd5dZfQbWXedjbsDP0TTEqJED02kVoOJIp7IEgiiTW5uFo9QiT8xBEKz63hhN+5u1t5ag1isF4SbN/Svc5oStzjV3uh36RieFF7hkCUqF5zrxnJdDzvosWRJZ4QUuTC4dJ3/SL3tv4upLgeEgEydn6Xs1DZkuIKTOp3rTL875x0JiZ34Kslb2ejMTx+eFKpJ/mdkUuZLBAWVXlnDsiW76XxvDWWmh++Xkvlh+dQHOSiu7/6WFod2TLC0spYxXXHnLkjdF18tD0maZOCZKejnUtR8ARYuCnJwcDAYD3d1rK2xlkEEG/39Ar9dLG0fWrVtHc7MYw5vZR3N0HwX4qFbUAyRI7XsvyiV/azYj3qkkS6jm7/dJaiUA2x6uYqx5Jqldz69OoTV5JYLSuhuL6fx5bxLJYLZ/AY1eJX2eVWVKtlzTC8VxvwyBJI7JzlmyvJa0xI/jT7ZTdEG+REbR5+iTiCmryUQVVxUwPxSQXTRbd2MxtmITGp0qZZvJ5nl6HOmJWnHU7ChBoVTIk5Rip7nxwz6WA2HJji8VXJtseM7NSUv02XKnIGIPvTUiS/5of2FtkgycmUrS+hu92Lwmjn6vM4n08cdiw43FqPWqNRfU0sVIQnDt2t66a4rQ2TWMNs8RlCG3F57nxFVj49A309TZ9NB4byUdLw+kJQ1VXVtEdqWVxfllydpQDu0vDTDXI7/pbut9MVJOs3ysNn7Ix5GnuhjeMylLSNO79QSHg5x4qpOi892yBCWAwX1jmHL1hCbk2/j7g4QXw4RmUqsn2csFWWiseRa9jEWO96JcFueWGNw9ydD+CVlLm8YHK1kYDXLiqV6O/bCHyHzq82p6oAaA3f/STNeLwwnKYMFokBO2XUzNTMJxMJlM2Gw2vvGNb/CBD3xA9jozyCCD/7/wwQ9+kA9+8IO89tprXHzxxSwtLbHALK9Gn0ONhibejU6hIzQeSlC5qdnhBaUiJXlg95dbMLuEemP5VQXYvCYOPN6WRLbof2tMUpNxbbRhyNGmVCYKzS4x0SYIFHLEk9DMEuFQOK09VWAyRGhmiaHD8sSi0HiIgf3jDMfI3DpXMmFmvj+UUL+qvcUrawEFULOjmEgaMtaBb7SRXWFdk1zk3mzHXe9Aa9HIk5lj9nuVV3o4+p22tISZ2lu8THctcOr3qdeqdFbwXZSXlrBFCFqeWXu98Uzzs6aP1RAOhdn35TMj3stBZ4Xam8qY6ZnneJrcarptgYNt8mt/cUwcm01P4tFB4XYXrg32tMScujtKGdg/wejb07Jtyq8qwOTQcfg7XWn7hPfCPIiy5gbY5h/14W7MkicorbNS+b5CZjfNJ1iUrYZrow17iYn2FwZlr09nVRIKRQjNwvDBSQbeTJ8PBsaCzA2m5wfMDPrRZelSkrWsJXrxvIcgNLXIbH+K9cEYia7lmT4mTswyUzdP58vJtTjPO1zkbXaw9wsnmW5boPknvSmVqYrOd1F0jovhtyfp+sVw0lr9fPEIe3reEP85ITgc2dnZ0jttBv/9yJCU/gcxOioe8rPOOotdu3YBMEQ3Q9HupB3+Pb/uw3BdmURQanywkqneedqfFUSkuFpOTpUVhVIhEQNWq+T4xyPS7tuCc7Ix5ujZtNOXRAZZraAiqS+ZTlNf8pOQwMjtoll9rC0fqUBjSVZo8o9HpHZb74kpL6VRaLF6TFgKjLIkpYP/2cGmnb60alFxgtL6D3qx5BuSCvBxdL4yQGRRXm4yDo1ZjXINr9XcWjtqg0oilqRCx8un0Nv1a6sR3VGKLkubloHq2mSh+Dx32sLNwL4xcjc6CPwF1KBGjk5hyErvc7tup4dIhLRqRNXXe7AXmzj8Hy1piVN7v95K2UX5ads4yi2o9eltDHO35KJQK7B6zGlJSof/vYvyawpkCUo1N3iwFZvY/ZkW2b4Zx8Ce8bRSj6Xvy0Nn07Jup0dWcSr+PB3+Xg/+Pj9tKfpUXGVt15ebGdk3k1KJzXtJLvmbsxk8MEHPL0dkn4XVakfdL4+k3vloBGeFFYfPwsAbE0lESYnw6AelSoHOLKac1QpRxnw9tTd46X51kNGDs0x1zbMwlvhy0hftoI3DmM1m5udFkU2tVvP6669TX1+f8vwzyCCDDHbu3MnOnTvp6OigpqaGpaUlIkR4i5chCjVsIV9RLLUf2DeOJjZO5TU5KGxycvzJDgKTEQKTwKR4EdMYVShVKxK/q0lGnS+uLJ4Vbneh1CiSSEqByUgCsbjq77wpVZo6XxySjue7LA93fRbdryYqHQUmV0jKBgfU3V3DbL8/iWQTV8ux+gysv76EwERIloS0/lovhmydsLf6Q+pJd6x5htle+TlUxGwaDIJMP9Y6k9L6rfsXwyi1CjpfSG8/Yis2o9IqydvkkFd6MoDOriW31i5LUgoMBBg5PEXnq+l/z1BgYNNNXkaPTSfc09NRfV0RkUg0rRLUdPcCC6N/vhTR0nSA2QE/A7vklQgwQP2tZXS9MpBWjWjbQ1XMjwRl1bdA9K2+10eZ7Ze/z/YKAxqzGneDIy1JyejUJTwzcuj81SDLwdS2ZvG+NNkxx8mf9NP/mjyBvP8P42RXWDn2Q3kiTVGTM61cusGBUE+KKZClvMcx9aTARIhD3+yUzcG3PlSFSq1k12eaZXfxx4lV03VCFUlOCavq2lIMTp1EaDr8rcT3utVqWwqlQvr/aoJS5TWFWPINHPhKO+0/HcDk0tP1u8R+/kb0ZXRWDfM9K4ub73rXu3jllVdSnlcGGWSQAcCJEycAkYN9//vfB2CALgaiXRgwc5bi3VLbnj+MYPUYJeJR/d1lzA34pQWROLnCVqpHoVqpvaxWyQlOw9EnegChJmQrNqW0iet+eUSyL5PUl14dTiT8BEkYe5s+WU14KZJUyF59rI0f8mF06ZNUlYLTSOo0cUWYg1+TV2jJrrbhqLDIkpRO/KSX2mu9aXf+xwlK5Vfmk11pZc+/JVvqAbT+rG/NWhaAIUtLxJJeeN9dn4XOpsFSrJclBLU+34cl35hWnQaEKo4l35BWwcFWqqfkwgIOP9kpSxLr3z1ClByWZv58Oaihtycw5aS3Mi2/Mh+lUsHJn8qro5dclktubRaHn+yRJR8BvP3tdkrOz03bJneDiHk6haTc9Vmo9SpsHlNaklLrj09RclmuLEHJd7mbnHV29vxb65rqVV2vDmEpkI9VfpMDU66emqs9snZ3Gz/kw5Sr59hTQlUo1eLouhuLsXlMHPx6M9PtgZT5UtwacHDvBD2vjMj2qdVqR+mIU/mN2YQXIwzunkxSuYqTnACUaoVkP72aXKW3K1l/Uymn3hpn5MAUI8cmWZpPzHdHo4McZRcWi4W5GZGz6XQ63nzzTTZt2pTyvDLIIIMMLrjgAhYXFxkbG6OiooLp6WmWWeINXoSoIubkUiS173ltBGOMiGSvMFF6cT7Hf9RHaDwEIUHkAdDbNKg1SolgIBELIIHkXPyOXLQmNX1/GEskI4RIIMjUfMAn1JdOG48H3pyQ7Lrymxx43+mm57en5Werj6WDpo9VM9u3wInTiL+SrZtLR8OHS/EPBwVhJAXKLs/Dkm+UbEVToX/XeHrr4JAgwaCDrfdVMtY8k1ItafjANNosjazFXBzmfCMao5rsdalt66R2btFOjqQUmoVTb45xanf639NZlWy8vZzx1tTnHYfvMjdKpYKONHWxsWNTBKbSW6meCUIhGG+dYeRwGjcZxMbR3tdH0qoRbf5oBf7hYFr1HULQ/uIAoVl5VpHOpcPg1JG70Z6WpGQtMKIxrU21aHm2F6VGPg9v/FglU13CnjGdFd/EiVmmaudp+Zn89ZW8y41Kp5Inm+mg4d4qQrOC0JbSulAH2x6oJjgW4vB3umSVmBruLUdjUrPncy30/WYsZX+PqyJNdczT8kyfLOG++koPWeVmXBttjB2ZSXrW46THSDiKQqXEXmFium0hgaDkudBFdqmVQ9/q5NTvx7B5jAy8mXh9+6OvEbUssXBqQbLTvfrqq3nuuedSxyuD/zas/WaawV8cb731FtFolIceekj6LL7Dv6vkIMVX2wmMC+/SxgcrydlqRW1Q4Si1sOUjFRid4rbV31NKTm0Wu/6pmaH9UzQ+WEn133lperSasivy2fJAhXT8nFo7gdkQh/+9C4MTmj5VTcMD5YB4YW58sBKAk78YIhwO46q1A0LFqPHBSjwX5QDguSiHxgcrWVxYYmEsyIbbSth0l0/6ncYHK/G9xw3A8vIykUgEg1F8t/5mL3V3l0pttzxQQXA6SHBqkbwNWTQ+WInRIxqv2+mh/p4yAA5/r4el4DIV1xZScE42rk0WGh+sxFYu2lZf6ZG82OvuKKXpU9VUf0AkYFnVRhofrMS1yQKAMUeHQqUQNl+IHfc1NwgJcrPPSPG5bpRaJUankqZHqtny0ZUY1t9TyvoPesU5fauVaCRK3llCXab0fXlSDOPnsTi/zKFvNuMf94sYvlPIwnkvWYn3xLEFnDU2Nn7YJ51T44OVeC/JFfF+p4vGBytRahUolLDhthLq7liJYeODlZS+Lw+A/O1OtFYNxZc6Rbw/6KX+nsR4WwvNHP12N7nrbUnxbri3jNVQxcg+8XhnVcfi/YEiGu4ro+ulYU483UfDfWVUXy9iaCtPjLfNaybLZ14VwzLW7RRtjR7R1pCjRaFSUHB2Yp+tu7uU9TeLeBtKoPEuIcUH4HuPOyHemz7sY8NtJez74kkOf69VNt4A1kIj/tGgRLppfLCSkstEvAsvcLLt0SpqbhTnqLdoqLsrMYbxeOuyNSiUCqyVQjls/U3FCfHe+nAVTZ+qBiMEp0I4yiyYfSKGNTd4aLivTDpHe7GJueEFTjzdR3aticYHK8muNQFQ+f5CGu4ro/cPwyzOLlF9Rb7UZ+PxzqkXahVRokSjUemZq7+nlPU3iQV4Z524j6HQIpHlKOY8XWK87yql/v5S8rZlYXBCJBxlYUwUW1aPETn1Vpo+VU3dPT7wQ/fvhogsRZLGiMr3F1J5RTENHytn04d97PrnZt7+Woc0Rhg9RgrOyWb9B4pR6ZS4G7JZf7MXvV0jkQo17/bTW3qENg4DoFQq2bx5M9FolKWlpQxBKYMMMjgjlJWVsbi4iN/vx+FwSJ83s583NC+iujCAwQG9r4yiNWnY+CEfORvsaExq1t1Yiu+yPAwFBnI329ny0Qqan+1n97+0UHO9h8aPV1L1d15KLnXTcG8ZpVeIOcK5wUI4FGZgv3gxq72tmKZPVeOIzaV1d5dSeU0hANN9c0SiERzVRvLPyWbDh7xSDgRifDYX6ggvRpgdDLDloxUUXRDLPy7PY/O95bGWSqLRKGqDIF4Y3Hq2fLSC3K12QKgWVVxeyOL0Et2vDrLxQz7WxeYIDEIRJ/+cbI4/2cNkxwx5DSJW+edkU3triTQnA9g9JnR2LQaHIK43PlQplGEQ+cfG20RuaDAoUagUWArEdec1Odjy0QoMDpG31dxQjDlX/GHNzmK2fbKK0stFDF31VtG2wEDni0NMtc/h3rSi6tdwbxllV+UDQoFmyx0VnHyxh/3/2kbljsKEnLPu7lIqd4h4T5ycZssdFbi2iPyk7Kr8xHjfWYr3HEFgMeTq2PLRClyxebb08jw2318utc0qt+CoEDmPwaFky0cryGsScfNenCv6y/d76X1llI23+aQ8Mh7vwnNFzqbQJpJl1t/spfbWEun/Wz5aQc7mHI490Y3RZRT5aSze624sZuOHRLy95+aiz9LiuUDEMHerPSnem+7woVQrUemUbL63PCnepmIDGMTuetc6G7NdIheov6eM8quFrZej2ijlyIcebyU4uZgY77tW4m31GYgsRmh/SZB8Sq/IS8g5N91ZStMj1RgcMNsfxHdhPrmb7YAg562Ot0KlwFZsjMV7pc+CyPeaPlXNuhtFn45Go6y/9rR4v9NF7lY7hRe4WA6EOfTdVineG+LxNqzEOzAZYmZoIRZD8XXNzpV4ExC5l0Ij7l98jDC49WCAmhs9bLqjFP94iMB0KGmM2PLRCtbfJs7X5NYTDofpflmQmFaPEfX3lLLt0Soc1UYOfbOTueEFis93J8S76toitj9aQ801JWz5aAXT3XPs+udmsivtYowwiJhtusNHVpkZrUUjjRFDhyYgAK7zTSxsHWCv6deECDA7O0tZWRkf+chHiEajGYJSBhlkcMZ4+umniUajPP7449Ju+wDzvBp9jvbC/eS9RygRtf18iIZ7y3HV29DbtWRVWKi/uwy9HdBD7c1e8htd7P5MMwN/EG1rrvPR9Mlqii5w0nDvyhyRv9nJwlhAIihte7SK+o+IuSn/7GzRVg89vxogHArjKBdze9WOQhruLcfzDvFunrs5i4Z7ywlMhVgYDVJ1XRG1t3kFKQRBpvJeJOoHkeUwKKJi4xlQeXUBG25bmb/r7iwlOCuOY3CbaLi3HEu5aFt+Zb6oAxGbS2cXKb8in9zNWdiq9TTcW05WlagJ+C50ozKI+kz1+4toerSaymvEnKx3i7bZG0Q+Yi0yJix+bLjVS9W1oj6mtyvxXZiPUq1Ebxck2tUxrL3JS/X7Rds9/9ZKOBQhP5bXFJ6XGO91NxYTWY5y8GutzPUGabi3nMLzRF6T3+SQ4j3XG8TmNVF700oMG+4tp/hCUT9w1dtouLcclUGFUq2k6roiNtzqlX6n/s4ySt4t4p231YnRpcN3sVuK98bbV+K96Y5SHFU2TjzVK8XbVhqL9xUr8Y5DbRQxtRSfFu/L3dTdWcqp18Zp/fEpNtxWQuXVifF2bbIB4Ky2kV1jW4nhLV6qrovHW1yrrciIQqUkp8aSEMP1N3qpidXS9G5ouL2cUIy8IvXZGGpu8LD+Ri9vf62dg19vpeH2coouEPF2bxPx1ttF26wyM3P9frp/JWpe9XeXJcR768OVUs1LZ9IkxztWHzM6dSg1ShylIumsuKpgJQcCNn+snO2fqgE9LM0tkuW1YC8XbUvfm8fGD/twbxP9x1VrZ+bUPM0/6MNYKGLoqBG5eMlludTfWUbPbwcJji9S8i43VbE8Up+jl8YIgEg0QpQo8eWM2ptX+qylTC/FbDkYRu/QJMV7010r5xSJRpgbCSTGWy+IR02PVrPxDtG32l8aYDkQThojvJfmUHNdCQ33lVF7i5c9n2vl0Dc7pTFC79bj2mRj3c5StFYNObU2Kq8uwJxr4NRrYlFc/+5FesuOcBSxkTkajdLQ0EAgECAYDGYIShlkkMEZweVyMTU1RTQapbq6OvZplOPs5XXVf8H5s+hcOob3TaHSKFl/YzG5mwTpteqqfDwXutC5dNgrTNTdUUr3b4bY8/lWfJe5qb+/lPU3+Ci+OIfaW7z4LhVzsLVYRzgQpm/XCISg/Ko8mj5Vjb1CzKW1NxVT+h7x7jt2YopwOEJWtZnsdVaqbyhi020r88n6nYKUsOhfZqJjmro7Ssk7yw6I/GNTbO7R6SAaBVVs/kYn1uDcsfpBfpODmqsLmR8K0POHEaquK6Ly2kLpd+ruKCW/yUHHi0MMHpzAVW0DnVA7qrymkJr3r9gUO6usaAwqQUJ6uIotH6tAZxVzT/mVBayLrc3odKDSqbDG1tiyqs1CbCBGBiu7PA9bvviu9D1i/bD4YjEn28qM1N1RirVYx+BbkwwfmiS7ekWRvPYWL77LRLzNhTrq7iil/eUeDn69g+KLc9i4KuesvamYslhtZ/TELHU3l5K9Scyznne4pBgCrLvBg+ddeSi1SnRZWuruKMW1UcyzBWdnJ6w9ujc5cG3Iko133R2ldLw4xMCbE1TuKJRyICneZ4k5V2VQgUIcA6Di6gLWXb8S700f8lG4zcnJn/Sj0qlEDJ0xZa8r8lkfW0/MabBjzjdQfEFuQrwNeTopxrU3e1FpFKgMSmpv8eKN5ZHWEr0Ub3Tgu9SNuyFLIuDV3pwcb0OWmre/2szMqYWEeK+/sZjyK0Q9UufUEVmK0P6iIKwXnZ8c760PVaGzKgmO+vGel0tOQyyGZzlW4q0T67G2ElNivBtF/N2NWWLdOxa3SDhC9ZUrMay7o5SCs7NxbbSR02Bnyb/MsR8JIlD5VcnxLmpyMXtqgcnu2YQ+W35FPutjdTVC4rZF1WLjQnyMMBfG4n2liPfsgJ/AeDBpjKi7o1Rap7cUGQgvRuh6VeSnq8eIdR8spunRarKqzbQ808f4yVkKtmSvxHunh/IrC9j6iUpqrvdRd0cpgclF9ny2BXOeYWWMsCpZd70H9yYHeocOrCIu480zhGbB1qDD3zTIfstvmGGC2blZSkpKePjhh4lGoxmC0v8jZJSU/h/ic5/7HJ/73Oc4ePAgW7duZXl5ma6uLnp7ewlHw2xRNbHO4MXutbLrn5ppfLASjUVN7a0Vkrys1iKUbMxuLWqDisWFJWYHAtiLTWhMamEh9Z0ODA4d0YgYTFRWIwqFQky0QFaJRdgOAP4+P0qFElPM5spWbCYajZLts9DHKI4SM2qDikPfPElgfEVtZfuna9j1T82oDSqJlLK0EMGQpUSbZaTq7/IwuHSwaiOWxqQmGoly4N/aqb7eg9qgYtNNXnZ9uRlLoQmlWiGdk9akwV6kxFlhJRqOikUKj4mZdj/WAqNEUlJqFSgUCqyFYjC3ecW1WYvNjB2eg7hIkh/ytmWhs2tRx1iuljwdaoMKu8+CrcSCQqWQFBUA9Fk6tLGdZIY8A2qDiqKzXXjOyWXZvyzFEMDgFPEOjEP++Vmx45rp++0YWT5zQlujU4dCqWDrPVXs/UKrFMMeRsgqE+d//Ie9+AeDND1SnbDrW21QYS8W1xr2RyEb5k+Jl2xznkGKYTzedq+JurtLUWoUqA0qbEU6/H1+zAVGVKexeBWxU4zH0Oa1MNXix1poQqVTsuWBCvp3jaGzaVHrRZxssf5h91kZOzzHciCccK36LK2kKGRxa1AbVMx1BTj4rx1CKWgV49iQpUNvjZJTb6XsMpFQZpUJxZ6kGLr0sUKFuLdqgwpHmUXEO3ZOvve5yV2fbFmmNqjIKrHQzQiOUgtKpRJbkYip2W1IiLfGpCa7wkonQyxOLmGw6tCbtMwSxJxvTIh3PJ5Gux57uTV2r4zMd/mxFBhRaZUUbneRXWVFZ9Oi0onrsRXH+qzHjPcCobAEQj1t9OAs2z9dg9oQ67OFRtQGFWWXFTJ6sBmtQYNCoZDUpkSf1bLxwz5MOaI45yiwsOezLWy+vzwx3g4dKMB7gZtjoyFUGiWRRRHThDFiehmFQoHeLpKRoUNTlLwjj2yfBfV7lLg22FCpVPT9ph+zqwytRYPCsKIipTaoyNlox13nYG7Ij9qg4sTPepg57qfpk9VEFBHaPfvp7e2FX4rdY7m5uTQ0NPDyyy8n3b8MMsgggzOFwWBgYkLs0rr00kv55S9/yeLSIr9+5WUUCgWKqJItuQ+h0amF3ZRBWHVllZlw12exHAqj1qkw52sJDAexFIq5MzAZovsXw+R9ugaXVc3SfBiNWYXGrBZzM2DKEblXYEokIgaHTlL+WxgKYfdYsHos5DU4BJl69Xk7dCwvhtn7+VbymhxozGqKzs7DUmDFmK1FaxVjbGAyggIFOosYn+tu84ECssusjOydxl5iQmvVSDatNdfoQSnsPNpeGkJjVuMotTD4xgR6mw6NWS0p9EXDqxI4g1CUzPKZmWifAwWotSoMBiWBQETkH7G5MzAZS7xiOWhuvQ2NWY3OqSMwGcBSYEClFvOl3WMCJWR5RR7pKLWiMaux5ukIDASwFptQaQSJ/NSbY+jsWrJif2srtqAxqzFkmQA/jjJLwvxtcOjQxOZOq0e0LX+3h9BEN1nF5oR8z5CtE0qg/9xM7mY7pZfk4yi1MnZwliyfWYo3AFGILIlr0zlFzLJKLQztniSrTBw3r8lBQWM2WrOGSCwOBptetC230P+H8ZX8IWYBZslL3ImuMavJ3ZiF3WMmHI6Ia3UI2z5LvlFSKer59Qj5jdmoYsfLLhMxNOYbCUzOi3hrlJJtyfZP10h5u80rzteab2D9dcXiXWPVbddnaaX3D1uJOK6r1kb7T4exesRuvoR4G9VsfaiKxYVFNGY1Np+Z8aNzOEosCfE2xgpP7m1u5of9UgxHDkyT5RN91lUv4k8ElCrx3GjsQsUpq8TM4BsTZHnNKBQKKV8xuw1Eo7F4x/psUZMThULBwlBQnENA9E9LngGFQoHBoaTu7qpY/7Nw6PFO1t1YLBRULQaYDGAtFPlezc5imp/ujY0d4lqySsW1mfO11N3mEwQmFAnxdqiVdDKEzSfirTGrcdVbsXlMqJQq6ZlZPUZozBqUSiVWj4XJFj96i07kcAZouK0MnU2Lxqxmon0WjVmFtcCEzWtO6LPbH6xhaWEZjVFNeCnCrs82k71enEMod4Y/qH/O8utig4nL5SK0GOLEiROUlSVuYsgggwwy+GNw1113cddddzE8PExZWRkLCwv0nurlh4NPEY6G2aBuoN7uw1FiZtdnmtl0RylGl471N5WjtWqIhiGyLMZFpVmPzq4hNLPI7Ck/WaUWdHYNdXeWcui7nZjz9Ss/rBcbXLRGMWc7ykRbvV5JcDqCQqnAUmAge4MFR6VYDMoqs9D3uzGyyszo7BqOPXWKud4gWz9eiUqvouljNez+TDN6hxZHqYUeRghOLWEpUGDK0VBygYusMgvRVcLchmwdylklb3+1nZJ356Kza6i9zsfBr7Vi95qluTM4HcHo0KPRqXHV2oksR1CqlViLhC1dVokFXSz/UBtUYrNUrA5kydehs2uwe81MHJ0jGo79eBCyN1gwuY3oF8WHepdom11uxZitQ6VVJlhXmfMNRGI5n94q4l2w3UnhWS4CkyF09pUcyJJvkM7dUizaZpWa6X99HHupiKHeqicYDGItitWQ7qlg/5faxPn6zPQySna5FZ1dQ+ev+pluD9D48UpU2lU1JKeWLKWo1yzNi+uYi9W8rCUm1LrEnEKlVVJ7kx6lQYnOrsFSaGamM4i9xJy0wz2eP1mKTFIMp1oXyPJa0Nk01N9dxsDeCUy5BskKzJSjEW1LTIwdniE0tYTeuaIwbnYbiSyJ89TYRFwm24Mc/lYzGz/kS4xhgchVbKV61n1ALK44fBYG35wgO9a/44pJ1iITititCk5HYvG2cOq1cRyxeLu3uXBvyiYaBeUq9TG9Q0tWqYXe34iarkqjwlYo8j+rxyTVouLxdhptdL88gn88hLXQhNYiElSb1yTl04D0fBmdeqxF4hysRWam2wNklQhCtO9CN7kb7ZicepYCgoBlLTSKGJaaKdjmlDYzzHQGOfjNDpoerUGfFY4dW43OrqH80gLGDs6gM2lRKBQEp8WDZs4zElmOUHVtkbRxwFFqZt8XT7LhtpKEeJvz9Sg1Srzn5zB8eBKNXk1weVGKuzRGzERRKBWYskUfHzs8Q/nlBWSVWYiEoxRszUalUzFxYhZbkRm9TYPWvNIH9A4t7oYs8rdmM942g86u4eTLp5g4OEfjg5UoNNBVfJCuni74JWi1WnJzcznnnHN49tlnySCDDDL4cxC3KPrIRz7CV77yFZbDy7z62isolUqUUTUb8u/DaDMItw6dqHkpVUoKt7pYXFhCa9JgdhuY7w+R5bOgNamZG/DT++tRmh6pwZirJzS7JDZJO3XQIuZSu8+CQqEgNCfGelOBEW1s7pztDZC7wYGt2ISrxibm41W1BnOhieVQmAOPtWErM2Jw6ih5Rz62IgsaowpjbE0jNAtEQB9bD932QDVKtQKbz8zwgWkcZWYMTp30/l15RSEqnUpYu/2gB4NTR1apmcHdk+itWgxOHeveX4yt0ER4MYJiVSnO4NThqLAwfnIepUqJSqNEl6UhNBvCVmJCHZs7JWu2WP6V1+DA4NRhzhGWc7ZSszR3OqutqPRCiKKXUayFJtE238RsbyzeFg1bP15J/+5xzG4DWpMGGMacL+ISr3m5N2Yl5EumfKOw2GIIc44Og0tH5eUeTsz34PBZpBgCWApNhBfD7PlsC9ZiHet3lmL3mRk7MoOjwiLuawyR5YiUG+p0SgxOHfYyC8MHpsnyiXhnb7JS1OhMmHOlGPrMDL41KdU2dFYRF7vXnECqN+bocRtV2IqMLM4vY3Dq0NtVhMZj642xvx99e5qyS/JRxm6W1WOMxVtPYCiEvVTke3tiziHbH61BY1DTwwiWgli8C02Uv9cjzndV3m7OM6A1x+LtNmBw6XCus9LRtkB2qRVD9kpczAVG9NlhGj5SzuLckohLiYmJE7M4ysyJ8faYUKoUuJucjB6dEW29Jkbfnia7TMQ7e52ViROzRJcjqGL5qU4Xi2GpheF9UzhKxTOm0cdqqF5TYt3TqcNzbg4KpYLxthlxvjExMHuJWaxVxtTIFCoF0UiUI9/ppvQ9eRicOoxOjeizJWa0ZjXV1wnLNYVSgTJGDrcWx+LtNrB+p0+sH0fgWEzNv+mRGun9xlxowuDSiXu72Y6j1IJKoxTKbSSOEXqbFoVSga3YxFTLPEa7VsRQB7XXezG7DeiDYYaPTKGzanBW2nCUmpk4NktWqYj39kdrCM0uoTGqiSxH2P0vzZISVrBgmjePvsTiwUUikQhOpxOLxcKhQ4coLV0h5WXw/waKaLx6m8FfBbxer1icXwUFSpp4N0aFeHEruSwXu9csrNyMsO3+arp/O5hk7bTlAUH6kKzUjKS0FWv8eKXwWf+nZJ9F33vcdL0kpNAaH6xkbiiQZN1Vfk0BBruWo9/uxpivx1ltSbLIKr+qAEeFhb2fEzuWDU6SbLsqri3EXmRKktNejeoPFDF6bJKJYwsYnUr84/LWbBXXFhKcWpRUWRJgFPYMkeWorIXaWscH2Hx/OVqLJq1HfeODlagNKg4/0YV/MLUec8N9ZcwOBSQ7PzlUX+9Ja512Jtj+6ZhV3ypP4lRtFueWOCDjV5q3LYuSC/OY7p6n+ft/+vmUvi+PkWMzzHfJyzPG7cCOPdMna5u39aGYTHMa28DaW7xYCowc+mZzWsu4uKJVquN4LsqhcKuThdEgR06zTYyj/p4yDn5d3hd3db/acHsJR3/QLXvO3kuELPjer7cmtYk/Q9UxWfR9p0tYG6Hkgly6Xx7B6DGyfkcR+75xMuE4Zp+R9dcWc/KFXqZa/HguyqHvzdGk39p8vygSy8Y3NrZIY0mKdg33lbE4v8yx/+wh76ws8huyefs7HVK7w9FdjDOIXi8KmQAKhYLvf//7fOADH5CNZwYZZJDBn4Nf/OIXXH755UQiifN9HsWsU2wR/zFA3S2lnHpjlPGjc2y4tQSlRpFksxS3W1ucXRK2TzHCyekwuPXU3e7DPxbi8Lc6k46RvV7YrDk3WPC9O59jT/USWG37YIAtd1Rw/HvCis57cS49fxhJ/C0DNN5dycTJWTpfHMLgEPZdiT8GjfdUcurNsbQWauuv9Uq2YAaHcoV4lAKb7ihNuqbV3xldOjp/OZjaGkwmXglN3HrqbvMx1TFHyzOpbbPiRJOlhWVZyyyrz0DllUUc/25H2uuxVxiweS30psolzxDrb/ZiLTRy/AfdkirR6djy0Qo0ZnXKXDyOrQ9VJRCM/lRU7ihMa08Hwg7M6NTJyi/HbQND04u8/TWZnMcA2x+owT8RTHpWkpqm6VdNj4gCilxsvBfnolAp6E4lTX3a8V31VqweU1p7wcYHKxlvmU2yaVz9DG19qIqRw1P0/DrRes/zrhzGDo4SmISNt/mYHfQnnVfN9R6MDh0HYpL1nnflJNsTxgiScau55AsCAitjTmAyJFl8x5G71U7xebns+4LIDzfdUcr4yVnJJi8QDbCbX4FSqHAqFAoikQg1NTWSXVMGGWSQwX8HzjrrLHbt2pXwmQoNTVyMXiEK+vlnZ+OssnI0ZinQ+GAl3b8bZuxgYs0rvhlHslKTscBquFdYru36UnPS90UXOCVVk/o7y/BPBGk9bZ4svjAHa76RY9/rQW8H58ZkexDPO1y46x1SPUtvJ8nizHtRLs4aq2ydBYSKz0zvAhNH59DblRIZIxW8F+USWY4kWVDFsf1TNYSX5Gs/ax0fhJq3KcfA7seSYxdH/Z1l6J1ayaYrFTZ+yId/NLWF12qUX5kvWeX9qdj+aA3LoXDa2uL2T9cQmlni7a+mvhdx4tB017ysPdmZwPMOF1Odc7JxgZgd2AdLOfmzU7Lt4jWZg19rlb1nlVcXkF1l4+C3uwiOrmF3J/OsuDbZKL+8gPmhgPT8nY4Nt5XIfhe/nvg51lzvofmnfbJ9x73NQdF2J/u/0ZbUJv4MlVyWi7PCxv5vntZGD57tLvp+N4bermTdzlLe/nZ7Qht9jp7anR46fznIZPM8+U0OJlsmk57NDbeVYM4zcPDfZWIXi1f93WXoHVp2fTH5edhwq5fwUpQTT/XiqDFTdE4OR77XJbU7GT3MKToSal5qtZof/OAH7NixQzaeGWSQQQZ/Dvbv3895551HIJBYiyiijErFJvEfHdR+wMvggUkmjs1ScXUBOpuGY//Zk3iwGKkpOL3Iwcc7hCpOCqcsnRUa7qthbtCf8hjujVkM75vCWqyj4spiTvy4l8BQKKFN3c2lNP+0n9BYiPyzHAwemEz6rfq7y5jumafr5WF01lWEoVXHafhQOUMHJuQt1HRQ+b6VGonOqiQ0K58brb+xmONP9ab8rvo6oQjV9euh1FZdcY6LvLsYOivU3V3NZNssbXJWsjrY/vFYHvO11HmMzqVj/XWeFTs/GRjydGRXWGRt784EZZfnkbMxi5af9jHVktpmduNtJZjchrT1rIb7ytFZNGLT6J+B0vfk0fmSfM0HhB2YrciU3D9j0Dl1NNxRSmAiJFsXA9j2UBX+8RBHn5DPiyB9v9r8QAVao1rkFilulbsxC61NndYyMH58a4keZ7U9tXVbDPV3lzHRMStZJK4cY+UZavhIOWNHp5PeMdyb7Uz1BAiNh6jcUUhgKpR0Xr7L3NiKTByK1YYLzs6WbB1Xo+mRGkKzi6nXUeNjS6yv+0eDHP6PxLpiVrWZ0ovzOfDNNggJxaqp7nkG3xLPeigaYh+/YUmxCAqhVhmNRtm6dSt79uyRjU8G//PIkJT+SvHwww/z+c9/PunzHArZoNgm/d/3HjfuOgd9b47S/9o4uY22BLJSnBBhKzey7jovcwPJyUHp+/KwF5t4+6sdYITNt5fT/IPOJILO9k/XsBxI/6IfJymkI+RUX+8hy2em9/cjDLyRPECBkGEzuHQc/mZrSqKQwQl1d9akXYDa/ukaiCI7+VVeV8hk64xQWEqDbZ8UMplyZKYzQVa1kakWeSLOmaD8mgJyqu1Mds7JEpXWf9CLtciYlqxzJliLpHQm2PpQFUq1gt2fkY/b9k/XEI1E07Y5U2TXmpg4trB2wxQofV8euRuy6P7NEEN70vvebvywT5agtG6nB5vXzMjRKTr/KzkZiqtCpSM5NdwndsSnW6iMK2qlS+y2fVLsJkjXF+LjwmzfAse/l5hgV14n1KtOPtNPwTnZ5DU4OPAf7UnHShgXTiNC5p2VxdBbIp7bP1VDeDkiERUB/FE/+5W/wZnrZGhIxEuv11NdXc2bb76J0WgkgwwyyOB/AoFAAK/Xy+ho4kuaEhVNvBuDYkXZZutDVShVCnbHdubkbravkG7izQIxkrJelTxWG2Dzh8rpfWOEsYOzVF1bxJJ/mc7TPN7jc/qhb3clkpROO9b2B9fOz7Y/GhuD5QjKBkHe9o/LE0o23eHD6NLLkm3Kry7AVWNj9MQ0Hc+nWFwywPrrvByP7bCRQ/452XjPz6V/93gyeeMMkb3ezMTx1MWRPwbbH60BhXwuCWJOXg6GZfPRM8GZkJTWQpz8NnFyVpaEtO7GYuxeM6d2jf3JsY3DUW1k8s/Ibbc9XE0kEpFINHJw1VuxFpiSno84tn8qlu/LFLKkTRtfak5NGiwwUHdzCTN9C5yQKTZ63pVDYZOTkcNTsucRJ25JJEUZyI0LBree6r8rlAo09feUMdE2m0SQ23ibD1OeXhoXEgheBnCWWxg/OkfJpW7yGhz0vT5K/x9WCo7HontRF0SYmprC7xf3z+v1cs011/CFL3xB9rwzyCCDDP7S+MY3vsG9996bgijuZZ1is/T//CYH3ne56X9rjL7fjeGoMTPZNS8t/McJEfocPfUf9jHX5+fY93oSjll0gZPsSptEpN50Rymtzw8kkRGaHq1h2S9DEI0hTlJIR8gpeXcueVuy6fvDqOyiT/X7i8jyWTj4RBfBVHmeXuR4i3Py80rTJ2tACbtl5sCSd+cyO+hn4mj6mteWj1WgVCnZ+wX5jWxrwV5uYLp9Dbb5Gig8z0nxeblMtM3SKkNGL78yH9c6Owf/4wyIOGmwFknpTLD5/nLUBhV7Picft6ZHayACuz/75y24AWRVCWWtPwWF5znxnJND16vDDO+RWaiNoeYGD83PpSYW+S53497kYPjwJF0vJi+AWYr11N7oY37Qz9EnelIef8NtJZhyDez+sjzxrfHjlag0Knb/i3zcpPw5BWEojvi4kIpsVvLuXDRGNW3PD5C9wULxObkcfKIj6VjbH61hKT4uxIURYm1cm2yMHRY1+G0PVxEJRxM2EAajQXbza3LzXQwOivcjnU5HbW0tL774Im63mwwyyCCD/yls3LiRo0ePJnymRksj52NUrNiMNXykHI1ezZ7PiZpXdq2ViWOrGEAxAkHdXaXo7brksVoHG3eWMLh/krEjM5LdVs+vEjf5lF+Rj2u9naNPdjLfL0OkiZEUFheWOZAmP9v2UGwMTlMX2/bJahZGArLElKrrinCUWWj+SS/TbcnzbeF5Tjzn5jB6eIoOmbpA1XVFsjlMHNm1VirfWyjWc/9EcpC1RC/ZlP052PqJSpTq9PPt1o9XshyK/Fk505mQlNZEjCQ31jxD+89SE7h8l7nJa8jm1O7RtKSeM4G1WMdsbxpG2RrY/NEKUMCBNWqFtjIjWWWWpOcjjm0PVYNSfm267o5SDNk63v5aczJRD0Fgqru7ktmeBZp/lHpN2bVRkNSHD07KEpzixK3gVIykKIO6O0vR2bVJ56uzKqm8ppij3++GkBCUmOqcT3oGKq8pJLvSyqEnOgkMhZIIXlnVZqZa5nFvtuN7d77gGKwiQXVEj7OUP8f0zDQLC+I59ng87Ny5k3/+53+WPe8M/t8hY/f2V4q4FZzf76egoIDp6WkARunn1ehzgII6zoOXkJSOAEovLsB3Yb5E+ogTfJYWIiwHw/TvFoXuDbeVsBwM0/z9vgQyReV7C9FaNeRuddH9cuLAuHrhpPHjlah1yQX2fY+fpPqKIkFQMoqd/iee6kggGo2fmMJaYJQISq5NliSiUHB2EV2WVlbJKDAOS3PLjByTJ5QcfqILjUlI0eXUWxk9mDhKn3xGLOAY8/VsusVH/77xlKpLy/5l1uLyeS/JJX9zNv27xpJUpACmWvwYnUqq3++T3XGeXWui8n3FDL49Qc8vkyel9mcH4Cpof15ebWn21ALmPAO2AiMz7X8eKerPxdLCUoLsZCqcfKEXrVUr+33To9UEpxY59I3UjOWyK/JRaBS0PzsgS1BqerSayFI0bcFttneenPV2ZgZTJx5Nn6xmYSzI0e90pyQXxcmBJ57uI29blizRafTgLN53hhncK58k+ScWURvVSYQfo1MJWi3+wSALMsW46us9EI3S8sNTdP16AL1Tn0QqihMAd325mZl2vyyJKbvcKllEDrwxIT2v2bUmSi8ulJL+xbklZuIKV6uOU35VATnr7VgKTbT9uD9hrJje0MfU3ASdXZ0Qgfn5ecrLy7nlllt4+OGHZWOTQQYZZPDfBYPBwMiImHs/97nP8cgjjxCNRokQ5i1ehihkkUOD4twEok/N9R7sPjM6u1aQPlatzUx1z2N2xyrZMfWjk/91itmuQMJik6NMWBOcTn44/mTPKsUUoQ4003sakSIAA3vHmekReVT1dUUsL0VoP23H1cJIULJYMBUbiMwFkpSVwksR5gbkF5cG9o3jPc8tqwbU/tMBZnsXJMKWZNG16lzjBKWNH/Khz9KmJE3ND/iJhqPM9qVfUNv6UBUKhUIqnK1GnKBUuaOQ4PSirBJS3Z2l6GzalMcA6P7dMAsj6RfclgNhQrNLadv8T8CQpSS8GGG6S56cdeKpXkovz5MlKPkuy8O9KYvjP5JXfaq7q5TWZzplCUrei3PJb8ym5/cjDMpsRgBYDiyzHEqd53svFnn1oW82M3ZwNrEfARggu1QQ0Vp/2kNgRD7nHTsxQ1aZWValKzAQILwUITi7mPRdnOzW9+oo7k1ZTJycTjwNt5511xZx4CvtzHYFBEHsxWSC2PZPxTZW/Gsb+x4/mfJc8rdloc/SUnKpm+5fDCfsJqu5oRiA5u/3MnhQPIcsivNdrUC1/QFBqhs/2kz3L4YlFafJ6CTUT9Pa2orf70cxqMDj8aBQKGhubsZgSLQXzCCDDDL4n0DcCi4YDLJ+/Xo6O8U7/xA9DEV7UKKknnfAbhJ2v1de6YFIlN2xwrekKrO4SGhmiYH9otBddV0RRKH1x6c49dq4pJbkvSgXo0tH3hYb3S8nvlevJvs03CuUa04nAB18ooPyd+dLBKX6u8tofrY/gTAz2T6Ds9omFd1TkUuCs4ssL4ZTE5QAgrAwFmSyLcVqQwyHvtmM3mVY+Y2ehQSCRXdssUNvh7o7qxnYO55SdSk0syTZlsjBvc2B711uUfNKcYzp9gB6O1Tu8HHkP1IT3i3FetZ/wMfQ2xP0vJJc8+p/fRyNQSWddypMdy+QVWZBb1MQ/PP41n82glNL6NbY9nv8+10YXfLz7NZPVBGcCnHk26l34Bdd4ERv19L+s0FZgtLWh6qIrrEwO9c/T2TZycJQ6pyp8cFKAhMhjn23J6VaevYGCxNH5+h6cZi5UwGJmJP0O73B2HMonwPODfkl+7zV0NuFraO/P8hsnx+NPrlPlr43D7VGycmfDtD+0ikshaYkUlH8/ezg11oJjgZlSUzu+uyY3dAAE0fnJDKfpVhPxfuKePs/hCrTwniQ+aFY8rbqOPHF6uwKC60/6U8gq03X9DGzOEV7u3jnm5mZoaysjHvvvZf77rtPNjYZZJBBBv+dOHLkCAA/+clPuOGGG1haWmKZRXbxCkQhhwI2KJp4e9Wm9eKLcyjc6uKUa3Rl/o8tn0y0zkr28SDqK52/GmC2O8iRVYp7uRvsKFTKJBJG+wuDtP9ycEUx5cEaQSpdTaQIQdcrQwSnxfuv71I3KKDr5UQixdSqOojOpYPQUqJyjQ6W/MssjMgTe4YOTGDM1qUkKIHIUwLji0ycELlZnCyxGnGCUuU1hViLjCk3s80PhwgvhpkbSL9213BvOWqDkr0pNnbFCUrFF+cQCUU59fvUa03rrvdgzjew93QHjhg6fjnE0mx6Ik5oZokl/3LaNv8TMLt0LPqXmTslT9juenmY5UBYVmU0v8mB57xcmn/cLUvyqr2pmLafnZIlKLk32/FdnE/P74blFbqA0MwiitUegquP0ZiF94JcDj3RzUyHn5mO5L5grzAx3bbA8R90sZSGjzZ0YAL3JkdKghJAaFbwAoIzyTUvW5mRmQ4/Y0dm8Jybw8Rp7x06q5Lq67wc/l4XofGQIDH9NpnEtO3hahbnljj4eIes8lR2rR1zvgHvBbn0/GokgSxY+p481AYVJ5/tZ2jfGKYcPZGllfOPY+vHK1FqlOxuaWH4wDTDsfqzPzpLqGGCkydPMj8/D4OCmOTxeDh06BA6nY4M/nqRISn9lcNoNDI1JQgPf//3f88//uM/xr6JcojfQxS06DlX8R4Ahg+tDIwV1xbiLLdy9Ic9zHf5E3ZzmN2GBOKN2WdkvsvPyWf6E1R/5BR1/OMhDFmxl0ojrLvaw4mn+8APLT+MTcbvLURjUpOzxZVAuhk7PMfYYfHy5nmni8LtLnLr/Ak76+PHALGLx15ipuPl/gSi0f5/W5nkxS6oRaEGFT/HVUpOZZcVUnrxSiFrNUw5GlCASpN60li9kFh5XaFEblqN0RNz5NU7mBuUnyQrd5Sgs2tlSSwTnQugAK1Vk+KvBdIRlAD6fpuaJLUaktrSn7Fbv/HBSlRapaQikQoHvy4vhRiHIBbJxCwmohP3vU0F1zobCqWCduTjshwIs+wPp/zO9x43wwenY30yjZqTEjSG1EW7kstyyavPxlWTxfEne5LurWuThfLLi5jqnKPlh6eSbdmArQ9XoVILCxc5laxNd1ZJ9oRy0tpZPrNELBLPyqx0DpZCE10vDTPRPkuePRujXY/fH5SIRXGVp9Fj03S8MMiJZ3oSiG62ckF8yyq1oTaoJCvI1WPD5o+Uozao2fPZFtqfH8Ds1tMWW6wbzxuge66ZmbkZOCJkrbVaLQ6Hg87OzoxqUgYZZPBXg4cffpiHH36YQCBAeXk5AwNijpliNEYUhwrq8ChK6f5lHxVX+STSx7aHqwnNCnLtaqJQ2SX5aMxqrIUmZrsCWH0GiQSy6zPNWH1i8aJyh9gx0vzjbqbbAitkBoOO8GKE0eNijim51M1UxwzTbYEEAk5WqSA8nT4vHvnOymJR7Qe8QmlvdR4QIIEwlMomYzVZpOaGYuwlpiRVpThBqfbWEiz5BtS64ZRWcmqdEqUqdd412xWQ8gtTsYHscktKUk1oZkn4n6dBdqWVyFJUlqS0Fgld1gZvFdKpLcTR9Eg1SwvLaRV20sHggLq7aphok1dJmmzxs7dlbQUEOSUgAI1JBFSOoFR4rhNDtg7fe4plVYfmh/xElh1MnUhN2C67Kp+O5wfTxkKlVYICdE4Dgcnkc2n6aExR8nhzSrLU5vvL0ZqFTHjPr0eSbNlyt9opvShfUkZKRZaLKxZ16oU9YaqFv/wtWWitGolYtPre1FzvkXbsLy0sryxurbqcLR+tQGNUs+szzXS+MMRE87R47iFhjLAXm6S+uvo5dFQbqbrKy+CBCXp+PcLI0SmWAiLnDUQDTFX10Nwas247CBaLBYVCwb/+679y//33Jwc+gwwyyOD/AfR6PR0doo7z5JNPcuuttxKJRIgQ4QCvQhQMmGngfPQKPafeHJXezT3vcFGwzUXLs91MtwcSdnjbvaaEhQFLsZ653iA9r4ww1TnDTKeoFzV9sobF+WS7jPlBP2bFyjtq1Y5CYQMXRLIsK74wB71DS169je5frdSfZjqDUn4Qt886XeGp++URaWNgvKbQ/vJAgqXd6g1STY+ImtfqncvBaQhOi7mi+upiIuFISlUfXbYelAqUamXKe7C6vuC73J1SIWe6dZrweTnMD8uTt32XeTDl6slvcqRctJnrDYJiJd9IhXQEJYCxwzOyBJk4yq/Mx1VjFxuy/kSRgfq7y9Ba1GlVko4/1bPmceZ6g2mt3gCphpMK+VucqLTKtBZ4welFojJ1s8LznEx2zjPTGUx7LUq1AnUKUhBA7uYsSi/JY2aT2CxxevwtxXpqd/qYbJul9Sf9KZUWtny0ArVBze5/aU7o+6tRf8+KPWHrj1OrUOSss8f+NcB0e0BS77KV6rH7rPT+ZpSxEzOY8wyg1wJBqQ/YSvWse7+PsePTtL8wyPEfJKqhxccIS5EJnU2D70LxLKx+Djd+yIfermXvF1rpf32cLK+ZnldE/jefM0Zr4AjTs9NwAlQqFXq9nry8PJqbm9Hr9WSQQQYZ/DVgx44dks3kli1bOHDgAACjDPBq9DkUKKimgXyFl97fj2J26iXSx+YHKlicWeLoE930/W6FuFxwdjaGbB1Wj5nZ7iDmQp2kjrT3CycxFwqSgOcdLgqbXDQ/G1MrivFAdBYdofklxmMkiYKzs5kfDjDT4U+wTnOtt6FQKZNISiefXXkXr91ZjNagTlRbDsHbq2oQ2x6qYikUTiBkzXT4ORjLSX2XCveaEz/uSSCQxAlK5VcW4Fpno+e1YcleajW0RhVKdeqaV2gsJJGGdE4dzipzSjuswHgIrSX98n1+QzaRpYgsSSkczw9krPkSFLJkcLrNVio0fqySJf9yWmu0tdD0SDXjLbOyKknz/aG0alpxyBGUADRWNShgVsYBKHudFUuRibLLCzkhs0bnHwsQXgwz0ZF6TdP77mQSzulQahSgVKC3qwilENPa8kAFmlgfTqUyVnuLF1OugT2fTSTrxGGvMFGzo5jhQ5N0vTycMm4VVxfgrLbR9atBhg9Mp7QOzF5nx5ijl4hFq1WWyi7PkxTFQtOLzKcQVdh4WwkGl549n21h8K1J5vsXJPKXIU8n2Tw6q60oVOI9ZbY3JL3vGPJ0bLyxhKHDk/T+epSBfRMJOe9YZSdHWg+J/7wNZrMZtVrNt771LW699dbkwGbwV4kMSel/Ef7hH/6Bf/iHf8Dv91NdXU1fnxgoFwlKi2a5LxZRq9gKgFojHuz5LjGR1t9TysiRaQbemGDXPzcLZRZgw+0lmN0GOn89wMi+mQRbsnAoQnBa0BY973RhLTRy/Hu9CYSiDdeXYMkz4rkoJ0GJ6OQz/RL5CcQuYv9YkMOrXvD6fjuGq8bG8R+L462/qZieN8akvwGYHwpgLTJJBCVjvj7RSs4Y2/2fhgk91TXPQryYcppCjSCorCQtdXeUSp6Zq1F4gZPscmvK7/19fkm9yuwzElkWn63GoW90plR0WjkIZ0QcanqkmmhUXuLP6DFSfolb1k4sNLtENByVrAD/FIRDYUidZwFC4Si8FE5ZeADwXJRD4VanrPIUAH7WtIHb/ZkWsmtNKb+LW43J2q8YwV3nIKc2K2UsPe90obVo6HhhMPV5xPpR98sjOHwWjv+kJ+XPjB2eo+zSaEq2cvweBCZCKUlQG24rof2FbgLjMDfgZ7w5sRiUVW2k+u+8jJ2Yof35AY7+oCfh2Ymj/PIiQKiurSay5dRbyd/i5PC/dzF6cJbSd0cJL4nFrdUEpaZHY4uB/9RMxwuDDL45LPqOEepvKaV/1xijB2eTimtvPX6M3fyKKBGUw0pJyl+pVPKlL30ps0CWQQYZ/FXDYDDQ3y8KHU8//TQ333wz4bAYI9s4RFv0EMoJFZPfTrSDi8am1tytdtwbHRx5uouO5wcZ+P2wpHqy/gMlgngaU/CJkxGWFsJElqISUWHjh3ycemNYEFBWESny6h3k1TmSLK52faYZU/EqwlO5lUNPdhNYpZDU+/sRicxkcOspuTCX5qcTCSeLs0v4p8S8lWAnFUNgMoSlwCBLZun4WTeVO0pXSD4xRag4VqtKll2Vz9yAn5G900nHqX2/F6VGkZKkdHhVLpa71Z7y70/+rC+t7Zuctd1qxJWBOn85uGLrdxpKLnUTDUeTyDBxhJciEnnkT4HSYiCyHJV2D6ZC7a0ldLw8JGsN2PRINZFwVN7yD2QJUHH0/2Gc4HSI8RS2MVafgSV/lPGjc4wflZGhvrMUg1PHTM98sjoSor8f+Y8uOl8cSk2mivWjwQMTqI3yC5wLI0GUmuSFWINbT2A4yMjeabznu5kfTey/9goD7jonrT8+RdvzPVTuKEm655vu8GFw6Nj9Ly10vjjE8NFpFnoTj+O7LI+sUgtV1xbR+uNTCUS2dTcWM9k+x9DuSYKzSwn5dPy5LzzXiee8HCbb5mj98SkOfbNVegYLz3WSXWXlyH90MdkjcjWNWbzSd744xPHoPobpQ6fTEWoNoVAoiEajrFu3juPHj8vGLIMMMsjgrwEf/OAH+eAHPwgkLpoFmOdNXoIo5P++hBpFA7Ay/k2fEuNn7c1eJlpnGdw9yZ7PtaK3i7mg8uoCsmtsdP1GWF3FCUoAS/4lAlOiQJ67OQtHuZmWH53i5CqyeeXVBWRX2fBetJSgANT7m1HGWmbx94vjbXu4Cv9YMMHmauzwDHmbHbT/l6jfVVxVwMiRiYRzmB8KshwMSwQlfY4+ycpsObC8UtNKgaHDEyubs/QkkHNmOoMJilC1N3s5lsJ+N3uDBfcmBxa3IUnZJzi9Yhusz9GjMZBEvmn+QZ+w42uWz73S2YnE0fjxShRKhWzOos/RU/ruXFnCdGhmifBSBKNTL92bPxZLgWVBmpaB5x0uFCoFvb9JTYSPk9PiNoVyWMtib+8XWsmqSl3zctXbGDs4I1v7A/Cck0PBVmfK33HV27AUGOh6cTg1gSnWj0YOTJG7yU7nz1PHe643SDgUJjCVnKfG7RjnBgMYHcm72KuuK6Lnd2MER4NMts8x1ZnYd/RuPXW3+Bhvmab9Z4Mcebo75T2t2VGCQinux2oim73cQNHZuRz7bg8znUHCixGWYs/J6v679RNVqDRKdn2mmcE3J5g8PiVU2vTifWT4yBRjB2eSal77n2xlL79miSVU4yrpXVGj0fDYY49xzz33pIxZBhlkkMFfC/bv3w/Aa6+9xuWXX87CwgJRojRzgOboATRBLf7vr7KDi65s9rJXmCjcms3xn/Qx8OYE40enJNWT9Tt9RJcjEhknTrRYDoVZDoUltaLq6zwMHZxgum0hgURUdE4OkLz+tfcLJzHkrRCe8rc6Of50VwKRo/vXw2RXiZqXzgreiwsTSEwg1CoX55djbRLtpACCM4ssB8MpFW4A2n8xgN6qXiEonUYCOva9lTmz6HwXS/NLSUQSiBGqTGqhQHgaF2W1olSS5V4MJ34krwgErGk9B0LVx3dRnkRWSYX8sxyoNCpZMtRyKMzyn6G2pLMqCYcihFKsn8VRdV0R3b8dJTSWWuFoywMVKBQK9n1ZXlmy99ej9P5aXopz4sQszUup7f50Lh1KtSDRyClT1bzfg73MzMJQkLEjyaT6mvd7aP5RH4NvTaYkt8X70ak/jGLMkSc3zw740Vo0Sf1O59QRGg8x3bbA4sIy/tPWyw15Ogq3ZtP+wiBtLw2gM6uT7nnN+z1YPUb2fL6Vwd2TTPUsSGSiONyNWeTWOVDphfrR6rXy8ivymev3M3xgGv/kImrDCgUlTlDKqjZTfbVHqJE/28/hf2+XnkHXRhu5G2wcf7ov9rsK1BpR/+t/fZyO6HF6aEWr1bLYuijVvLZu3crrr7+eUU36X4gMSel/IYxGI729YqI7ePAgTU1NLMYk/0c4xUhUTD4dT1dTplgX+yPQZ+nI35LNwBsTGD1G8ItBamDPKN4L8hjZF/PR/mQ188MBjn+3J+FFNq8hG5Uu+SX96Le7KX1fnkRQanq0Gv94iCP/3iURJgxOsTtoOShe2LJrTfiHFgiMr1qoMoLVY2LdDgN7V70gryZVxG3VxttmaftxLLnwk9B++6dqWA4m7v5frU6z/WM1LAfCKXdEb7itBINLl0S4Auh/bRxTrj6lklLCMa73QpSUHqtxglLjg5Ucf7I9JUkoq9pI1ZXFHPl+bxLRCWBxfimtulDpu3Iw5xokks7paH9+IK3y0JlAzrIujpz1dlAgS1JaWhBEqb7dqRObxgcr8U+EEshwq1F/TxnjLTP0/XYspc1bXH3L5DLQ8YLMjjM/jBydYuit1OdY2OQCBSn/vuCcbIrPz5XUkU6PR+EFTjxn59C/V1gIplKc2v7pGqLLQt3raApp79xGG+Y8A1XXlnLo8c4E9nX83k61+CEKan0iIdFWbmTdtV5GjwtVpN7fjzDVm1zQ9L5DSCkanMJCMX6eZp+R2uuKGTo0Sc8vR5junodVu1BNhSb843MY7Xr0WTqKzsph9OAsb3+1A3/Uz15+gy3Lgj/gJxoUfTw3N5eGhgZefPHFlPHOIIMMMvhrxs6dO9m5cycAV111FT/72c8AEuzgtOgJfDYgEZaKGl1o7SvqiKZCE4FJQe6Y6phjMShe4H2X5ZFTa+fIk910vTxE18uCnGFw6zHl6il5Vz6TLYnzzJGnuzG7xIuXREZ6oovAcFAiTCiV4kUtTlCKE3mGdk9K5KGqqwswOHTYKwwSQQLgwKodNJvuqEShUCQQolZbSfkuy8Ndn5VA4glMrpCI4pYL7S/3pySm5NTYcVXZUpKMjjzdQ846S6pbIqHymkKyq6xYCox0PJ84Z8cJSsUX5WD3mmXtR2pvLUFnVCdcdxwj+8dw1zkIL8qTjPLqHUQj8iSlVCqKfwwWegOylnQgrs9aYMRzrlOWaBScXpQIdKfDXmGg6spimp/tTUk8MxUbqLmqiP3/2paSoASCeEeUJOLcahz6ZiflVxek7Ae+y/Iw5eolYs/paHywErVeWE2nUsba8rEK1DoVu/+lhZYUhbjq64rIKrfQ/apQ90q18Fl5ZbG0IBmYjEh92OBQonPqmG4LsByKiDjGCFPx523jhwV5ac9nW+h6eYhoNCo9IxIMYCs2YXTqGNo9ybEnVvK/9Td7Mbp07PvCSfr/ME7OBjuDMcsitFoMbggMB8nb7EBjir3CB0S840Uap9PJ+Lj4m6WlJRoaGvjiF7/IBRdckHStGWSQQQZ/7YgvmvX09FBfXy8pjA/SzWBUjJ/d/7Wekp9XSX9jKTSis2oY3D2JXirsBxk8MIHBpWd4j8h/tjxYwcJwkObv9yUo+xWd5RTK1qeRfE7+dIDg7JJESNn2cBULo0GO/WfPCmFCL4jqcStTW6me0MQiwelIglKRc50Ne6k5ITcYOzgjEZTiqjUTzTMJRKnVhNdtD1exHAwnqBqvrr00fayGZf9ySrXHiqsKsBQa8V6Um2S5NnF0jhHvFJ0/l1ddBKi7zQcKkqzwAImg1HBvOS0/O5WSUGIp1lOzo5jW53sTyFpxhKYXE+oPp8NzdjZ2r5nC85ySpd5qrFZ2+FORbvc7QH5jNgqVUpakFF4MEw5FGD2Y2vas/s4yQgtLskSr2pu9TPfMc+q18ZQ2b77L3bg3ObB7TJKyVyqcemuUsZbUpLGyi/NBqUipnJW9wULl+4qYPCnUkU5X83ZtslH+ngIG9o7T+5vRlIt1TY/UEI0Ida9UuZ293ICj3ILOpuHIv3cltIkTsILDQaKRCEql6A/x/qTP0VN3awnjLTO0vzBIxy8HWRhPXrQseVc+BqdOIv7Fa9z6HD0bP+hl5PAUPa+MMHpiCq1+ZYnEmG8kOC3iZik0otGrGTs4w9HvdBOMBjnAaxjsWkKLIZb8YmOvy+Vi+/bt/PSnP00Z7wwyyCCDv2ZccMEFwiYJeOihh/jSl75EJBJhaZUdnBEzocdC6BSiFlXU5BTqcxYdoVAIg9tAaFbMWaNHp6T1q/wmB4XbXRz7YU8COUNnhawyM3q7hkNtiYIAh77ThTVf5HKed7jI35LN8R90M98fkggTar0KIlGJoBQn8kycmF1RPHqfB2uxOcmabfU8v+G2MlQ6VQIhavV5uhuz8F2YR8evBhl9e1o0CK0QkXyXunHXO2h/cSAlMaWgyQlRUhKAjj3RgavOkVLlKI6i810UneNipHiKzpcSc7Q4Qcm92Y6zxsZxmbyi/KoCzDn6lMIMw0em8JyTw1JIXszAc24uRJAlKa22q/9TEJqNpCUXZddaya6wElmK0PbT1Oua/tEgShmCuc6lY8ONXk4+15PSxk3n1FFzTSGHvtkpa/dXd0sJKBWywhEgiGXed+em7AfuxizsZWYqr0kmzUFMxdOqkdSRkn7/jlJ0Ng17Pt+akmxVfHEOBVuc9PxW2NClUk+q2eFBZ9FINovxPqyzCuXV2e4gS4FlIuEoOiuEZpGet6rrirB5jOz9wkmG902hNqhS5uGu9XasRSaGD0wnuAKVX1WArdjEgX9tY6plnrlBP0MHVv5e59IRGgtR2OTE4NRJBKw9n29hMNpDCwdxurJFzSsKi4uLNDQ08Nhjj3HuueemviEZ/K9AhqT0vxz19fWEQmKgSLSDgx5a6ImKQbNqoZ5dXwZDTK269joPKp2SXf/UzMSxBSaOrRCFlCoFmtju5IJzsrEWGWn54Sn2fqEV1yaxUBRXcJnqmqflB310/teQ9PcAkaUYMaHRRnQ5yujB2QSiRsV7PZIyiwQ/nHyhl8CMSGDq7i5FpVGth0M/AAEAAElEQVQmFF5Gj8yQs94uWUh5L8lNsJIDwdyVdpqfppoEwnJhRsbz9eh3uik4RxC5QNhkjR1eWYyJE5Qqri3EWWFNqVwzdmKG0PxSyuODIJioDSpK3+tJWfjQGNQoVAoKmxy0pSAprba0S4Vjz/SQU5VGsQlBYtFZ1GnbyMIIniZXWlu5XY81k1Nllf1+6K2plASqONR6FUanDOvVCPosLXkN2bLn0Pz9PurvKU1JMNrykQrURrGIJfXbVciuNTFxbIGWn/YQmkmdnA28MUHR2TmMN08nnRt+6N87TtF2F+HTVBMKzslmsmWCwDgEJkLMjyUW5LyX5JK3ycHuz7Ywsm8GjUlD/2uJk33d3aUYHDrCgTCjB2cTyHDlVxXQ/vyApIKkje0sjfdnEOSo5WCYfV88yfEn20GrJTAurjtvs4vj3+1hftiPQqXA7BYL7avtFxs/LhYJx9qa8Q8GOfqDHkY7x9nPbyn05jMwOEB4cYnJqUl8Ph9qtZpDhw5l7NwyyCCDvxk8//zzAEl2cIsEJcKSAROBrwZweh0QEHZdFe8rwnvBEge+0p5AojC59SjVCkkBZ92NxQzsGWW6LcCRp7qJzAkSROMnKlFrVOz6TDMLvQGJHKHSipwt/velV+TR+cJQwm/kNTkoeZcbV7Wd40/2SJ8feryT/HOyBUHJANvur6bvrVEGV80b4ydn0duFxa/BrcdaqE9Ql1n0LxNZjjJyIvbZaapJEydnMRcYUhJTQBCu4sheb05QPgoMBOiNkayaHqkmOC2s9Fbj5LP9bLrDl0RQWg13nQNVCmWdOAzZWlQyFiiByUhaghBA+y/6GWtJn1MVXuCi/7U/bcHMVW/FP7GUpNgTR+8ro/jHg2nP4fS4rYa7zolSq0Qp82ZYdmEeGrMa5waLLElpcH/qRTh7hYGaHSUMHZyk+xfDCTaIsHLPu14eIjAZkrXYm+v3o8/WJn8R62+Lc8uQIm2Lx73nlVOY8yqYPjmd8P2Wj1YQnF3i2BPdtDybuqBXd3cVkSWhfLaaQJ+72U54MSxichqHLU5QqtlZjN1r4tB/CkWz1epe1dcVMd42w9jBWTRGlbQ7DFYV+QxQd7uPpXmx2Hz8yQ4CgQh90U7m8oaJRqMMD4vfCoVCVFVVceutt/Lggw+mvJYMMsggg/9t8Hq9TE6KueHb3/42d911F8vLgujdyXE6o8chZkuy64ugj23gWXddETqbhl1fbGauN5igwKjWqCXCZ/YGC85yKyd/OsCBr7QL1ZqgUHCpv93HZPscrc+cSiCjRKNI476jxoxKq2Ls8EzCJr+qq72otMqkzWvHnlohTK+7sRi9TZtgrzDTMUNoxknvb8V8mX92NoOnWYAsLYRZnI3VnE4jVAH4x4MEZHaZtz0/wEyfn5EDoh6TVWVKIMHECUrFF+aQ3+ik+ZmuJCLRwJ70+YyjxozOrqH0ne4Ei7s4lGpQ6VXkbHAw05mcv52u4pR0Db8YYKJjlgmZnATAWKjH4NCkbZMOqeK+Gnv+rZXsCnki/WTzPHub5VWStDY1KqN8bmrJN2LI1nHqtRQeIEDXi8OYc/QpCUobP+TD4NCy53OtKf8+fs9X5+CnY+LoHEsXLTPRdlr8Yv1trHUG38V5SUqhrk025gZDBEeDzPYvJKmAurc5KD43h71fbWW6PSCpm61GfNOhUqlk5MBUgspTyWW5dL88IimNqXQid1ptQdf0SA3LwWX2P9ZGy486QS8ISrZSPfmNLlp+dIrgqFDdNLnFAvhqkl/DveXo7BoODjYTnIbD3+1i8tQ0h3kDV4mDwcFBQqEQwekFSkpKMJlM7N+/P2PnlkEGGfzN4POf/zyf//znCYVCnH322ZKypZ953uBFiIIZO6Enz8GebyU0HgId1OwoJjglrGlX27GZ8gyodEoCkyI3Kb+qgJFDE8x2B3n7W52wKHKa1SSN0FiIsVguozGqQaGQyEied7jo+90YXb8Yluyn7BUmKq8oZGbjPCe+vyJWcPzpPnIa7BJBacsDFQzsHk+wpR05NoXZKdZAdFawltgSSCbhUITwYpjR49Pig9PUaybaZnFUWFMSUwAOfbsLXUwU0VqiT1A+Cs1GJKJH48cqWZxZ4vB3EjfXnfr9GLYiQxJBaTUKtrvQpVDWicOSb0Br1iR/gWifjiAEcPKFU0x1yStlgiBKDR+bTku4koO9wsSyfzmltRkIW7oToR6me1MTiICE+550bvU2NAYVSp2aVCdYfJ4TQ7ZOVrEKoOe1EWmtbTUMeTo2ftDH4IFx+n4zRs9p1sW2MqNkWxgORWT7yUTHLFnF5uQvYvfUPxFCoUom8cdtlnt/P0p2mZWJ9sQYbbythOVgmBPf7+P4D/vQGZNDUH9PNZHlCHu/cDIht7RXmFCoFEy1zIv1/ujK+cT7bel78sjdlMXxpzuZ7Q1x4pkVi0TfpW7mBgKMHZlBa1Sh1qmkv1+9Lt5wXxWhGWG/3fzDTkIhGAsOMZLbiVKlZHBQnFMgEKCiooL777+fO++8M2UcM/jfhwxJ6W8IcTs4gCuvvJIXXnhB+q6Vg7QuHIQFqKKevD9k4VpvF18ahbrQ/HCAo9/uTiiiFDa5EtSTFkZF0hBZFtYVg/vEYFR/TxnRaJRDj3cmWGP53pWPQqVg9GBiYabn98PYY4Nudq2J8vd4aHmuN0EVR2vRoFw98BrBPxiUdpyZfUbyN2eTs86eoIq0ekda00eqARIIUqvtv1KpLsUJHQ33laGzaYmEe5PUeqJLUYjC/HAyiUhiiBqh8a5K9n3jZAJRauitKWZOhVKqJIFQWzo9XqfDVm6k+u+KaXmuN8GWCwA/a5KP1l3nJRqO/kkkJd873OTVZ6N36lbUrE5HmnNofLCShZEAJ56WTxxSqVCtPvbhJ7oSLf9i2PhhH/PDATr/a4iDX0+9GBdejqCKprYIaXqkGoVKwa5jzQm2h5CsjnQ6a7r6eg9ZPjPtL55i7PBckkWc0WOk+PxcCrY62felk4mLhTFyk9aqQaFWkNtoY2TfjERQqrujFKVWwdtf7eDkzwYovzw/Kb5bHqhAY1IzdHiK+S6/FMOCc7IpOjuHPV9pAb8g6S3ECjp+fwRDrKJZ+u5CsQMhdi4SgTA2PoSmF3n7ax0M7Bkny2fGv+BntLQDpRLaEM/Uqf5T5OXlMT09TVdXF06nM2WcM8gggwz+FrDaDm5gYID169czPT0NQIAFQVjqASMW6ibOZbpngbETYkFo873laG0adv1zc4KaisEhlFYMWYUcaGsnMhciEKudzA8G0ceUmQwO2HB7FV2/GaT5+yvEiuz1ZnJrs7DmGxPmmaHdkwn2ug33lhGaW+b4kz0SISlvkwOlRrFiPxojf6wmldTeUIzaoGK2a1o6r/7XxiTyTe5WO6UX5TNyeEqy6xo5MC2RmkoudZPX4EhQXZKINwaovNJD+LJISpWbaDhKWGZnV9y2reyqfLQmTZJ93d6vtmIwpPpLgX1fWFvpqGZnMUa7NqXakhwBS/rb6z1klVoIB8OyJJx0KL+kEBTp8yO5c3BusFB6SQHHn+mVJTml2t2+Gke+04WhwJBgGwhCYWj9TWXs/9c2WRWp0HgIohBZTr53uZvtlF6Sz8L2IEf+oyspNmupI622sEulkrXlYxVojGomjkwQmIysKEqsItJpjGqp0BNXkXJUGyl/r0eK2WTbHBPtyYWk0kvyCS9GGD/aypFVhcS6O0uJLEU58p0uRo9MYs5dWbTyjy/HYgdZ5RbMeYLAd+jxled144d9mHL0IhcLwGy/n+G3J+iLdqLPD9N3qo9p/zQMQXZ2Njk5OVxxxRX8+7//e4o7kEEGGWTwt4Pbb7+d22+/HYAHHniAr3zlKzFL8SgtHKAlcABFQEEVDTheNeOud0gEnu2fqmFuwM+x7/aw+7Mr86n3fDc6mwZeHoAgBCYF6UKphqX5ZUaPityt9mYvSrWCI9/uTshTyi4tQG1QJZAkADp+NUB2mdi4ZSzUs/66Ytr+q4/p9pW51JitE+/gceiFrdrbXxW5ht6uxHtBLvkNjgTFp9WkpsZ7K1GqFAlEjtX2X6lUl+IEpdqbvVgKjWLn/2nnH1mOQCRKaCLZdmO1SlHDfeWceKpTWGPFMNk8z8HJLoIyFrQzncHEDYspEI9Z+0v9yUpCQdYkH228yUc0HGHiaHo7tVRwb3NQ8g43llx9gprVmZ5D/Z1l+KdCaS1WUtqrrcLBx5sJpghf9fuLCM0v0fXicIKt4GqEgxGiMurrkjLll5qTVK5OV0fa/6XEHfgll+WSV59N+8sDjB2cScrX9XYov7xAIlYnqETFyE1aowqVVknu+ixGDkxJBKWaG8TO/kPf7KT5uT7W7/BK/TSOjR/yYcrVM905z1TrArtjNbnsDRZKL8rn6HdOEpyG4FSIwKTot8Fp0NvFv8suLUJn16C3i89XK4E1PVpDcDLEoW920vfGKNlVVqangox62lEYoE3RRjQaJXhqgby8PAKBAPv378fr9aaMcwYZZJDB3wJ0Op2kbDk7O0tdXR1dXSLHmGdaEJYGwUIWm4JnM3Z8muluMWfX3lSMucDI7i+3JLp66MBVY8OSZ+Dg4x2wGCKmv8BM7wKWfIPUbvNdFfT+boTOl4Ykgo4hT0fhdhcOnyWBzDPdtsBk+xzdvxC/U3uLl3AgQvOP+iT1o6xqMxqDGrVZJf0GIej7zUpeU/MBYVE/OxiUbMXGjsxIxBJbmZF113kZPjQpEbFmOvwc+DcxZ6ZSXQqNhwjFOMPrP+BjKRhmfwpSUCQcZVlGwft4bB2t6HwXJrc+Kcd4+6vt6KxKWYLQmSgdlV2eh6XAmFJtaUpGlTGO4otzKNzqQqVXMZCG5C2HyvcVotQoU7qRxCGncGQu1FF1TTGtz/bKkpzWsnlr++kAva7xZCs5HdTdWsqhJzoZ3pdacCGyEIJINGnjGghS2rrrvMwN+jn2nz1JBKUkdSQSz7HxwUqIChJZKvWlujtEf41bsh18vEM673hf0GdpWY4JioTGQoRYiVnbC33MdgcZOTzFzKnkteqaHcXCkajlZIKC1bobhADJ8ad6GTk8ib3UTCR2/cHpsHQO7noHWaVLjB2ZSSCRxR0Bdn2pGUJic+t48yxj0SEihbMMDA0wGZyEEXA4HLjdbt7//vfz2GOPpbwHGfzvRoak9DeKuA0JwFlnncWuXbuk/7dykNbdB2E3FFFOnbOJ8FJEYqJu+rAPnU3L3i+0svcLreRtywLAmK9n060+AhMhDn2jM8FiTWddxcQ1CiJL10vDHHmym7wt4u/j6kvDhybpemlYUtLJq3eiVCtYig2cWdVGplr8Ccdff7MXa6FRIoCAsLaa6pqn9w0xy9fe4iU4t0T7sysDZnByEUWslxucEPCTQBhaDoUJynidtrwwSNV781PaibU/PyCRkQrOycbuNSWRbkovFFZale8tTLKIixOUtjxQwXIonLAwIYXRqaT21gqO/agvJaFJqVZQsNXJTHsy2Uci1OwaS6k2NHZiBv9Y6oLRWhjeM4ohS8up36YmKDU9Wk04FElppwegNqgw5aZeKdx8fzkzp/wJUoBxmH1Gat8vJMFPJxDFYcrRY3TokhSSjB4jle/J49A3OtMmZUOHJjFmp1ZwmjiWWh3J7DMy3+Xn1O5xbB4TgdmV740eI+t3FLHvSyfx9/mZ7Vug8+XEhdNtn6xGqVKw65+baftxP22r/tY/7gc/6LK0KGJcQf9gUCo6Nj1STXhRxPrEc/24N1iZ7/Jj9BhxlBrpf20crVWNUq2Q1K8kkp4x0fqw+aex5NYP1R8owu41i8TQL3YM+CcX8Uf9HJ/tpufnPUwwAZ2g0WgwmUyEw2Heeust6uvrZeObQQYZZPC3ioKCAsmGZP/+/Zx//vn4/WKu8jPHW7zMW0+9jAYdjbwL/2QIhXaFiL3tk9WMtUzT+cIQx3/QzZJfLCysv7kMjVHNrn9qTiAj5W7JRaVVotaJJKfwAhcTLXNMHJ9npGSKwZiVaeODlShUCvZ+vpWjq8hQOqsWVYyMZHAAWn2CDRzE5ohQOIH8few/2ym+sEAQlAyw5Y4Kjn+vg8Bk7IV3KkR4MSL9vqnYkECMWZpfJhpepbq0GgGY7llgqiP1gs+eVQshm+7wcfInPdLvxuGqsqFQprAHCUAgIEhcFe8t4vB/dkvKU6tRfnUB5lx9StUhc65e7PqRwZaPVaDSqlJKP3f/dpTIcpTpk388QQmg5w8j6K0pVIRYIX7J2ultdKDSKomEkherrD4DVVd52Pf4yQT1qzjq7i4FhOLW6QQlAO9FBWjM6pQqUTU7ixk7McXYwVlZC7iRA9PkN2bT9lxPyu9TqSMZHOJeEoDgzCJL/sS8rPzqAjR6Fc0/6KP9xVM412cl9JM4kW7i5Cwnf9KfcG6rbQ9VWiWFjdmc7O2XSFylV+SRuz6LQ98VqkjDB6cY2i36uu+yPMmqUZ+llaTtx4/OMX5UPEN1d5ViyNZx6PFmApPQ+cqgZHPY+IlKFoaDnHiql9lTfnRWDQaHkmFbH6/ua+X48ePiJI+B1SoWvS+//HJ+/vOfp4xdBhlkkMHfOh577DGpUL1z505+8IMfEI1GicYJSycOwAnwUsX6rA0s+ZeZ7Re5WfX7izDnG9j/5Tbe/mo7rnqbUE+yQ/2HfSyMCPLsars0g1OXsIkubpd29DvtuBtdQEx96VYfQ4cn6H55RCKxFGx2oDaoiEbE3GAr1TPTGUw4fvmV+bjW2yUCCAjC0vDhSSZiCs5V1xaxFFhOsGObHwoIhQEAPej1goARx9JCmEUZpe/2n/VRucObRFACOPXauKTCk73BgqvGnrQgln92NjqbhuJ35iWReeIEpY0f9kGU1Ja7ethyZwWtz/cx15uYl0WWRe0od5Mjpd1Z9gYLle8tkgg1p2No/wTBWXmF83SYbp1kLN9An8wiWyri12rosrSo9KlVkjZ+KLaxLoWlnj5Hz6ZbvEKtIMU1A9h9FqLhSJJFm96upOJqD0ef6OH4Uz2y19b7+1GyysxJ6lsg1JFK353H0vxywufGQj3+/iBDb43hqrGzOLOygKe3K1m3s5S3v91OcBrGT8zQ97vEa9vyQAVqg5rdn2lOsOLT5+hhMUhwGky5etQxdViCSNfQ+PFKostR9v9rGyd/0kPeNhdTrQvoc/Q4KkwMvjmBWqtGbVCRUy+UNQ59cyWP3/6pGhbnlzjwb+2c+PEpNAbxfJRclkvO+iyJaLW0sERgIkQwGqSdHl59tZcxxqAP1Go1JpMJpVLJ66+/zqZNm2Tjm0EGGWTwtwqr1Upnpxhf+/v72bp1q6RuMscUb/Aib/wMDJjZzAUsjIfQWrUSUaLxY5WMt8zQ9YthDj3RSSQ21cRJQbu+2JygFOSutaM1qdHECEXuzXamegMEhkL0vTHKWLPIseruKkVjULPvyycT8hRjto5wnLCrA51Vx1TLfML7/7YHqsV8viofa/5hJ0Xn5Ulklbo7Smn+ab/0/3AwzOLCMgMxwoohTyfZYcGK6tJM+3TKOI4cmSIwkZpIEyc6Aay73kPHr0fEpq9VcNdnSSqCpyM0G8FarKN6h5ej3+9JOK84PO9wYS8xJ9QH47AUGdHZUtedQGzG0lrU7E2xyW949yia/8veewZGUp7p2lfnnINaqZXjZE0eZsDknE3GacHGmHUOaxs4e85iwAanNQZ7jQOYbEwyGZOZnKNyzlK3Ouf4/SippB4NYb9vz357zvb1S93qrq56q6R6+nnv976VMryHPzw55aPof2MSzYmcsxHOfc1ZZfS9viBubwElK60odSeWOagcKpZe7ebow30kQ4sXzi253o1CK+fg7/oXC5SA6lNL0FhVlK+1LRJf1V9YSnA4hudQsKBfuZDQQILQcJSeVxdH6wJCb/h4dyQVqFRC1FpsKi7+rczhPtOB2qik+5kx2p8ZpXydpeBczwnpPO1Bep4dK4jkNVapCA0lyWZBqZNTssJKaGBcdCQr32zDfXIJxx4TXJGGP5jGcyws/m5szwwkKZjbjYwm2Te7mGLJdW5MNXr2/baPpDdJ13OjYvTi6q82EPMk6XhymPBIDH2ZBpVRxbRsiA/auzly7Ah58nBM+H8jlUq55pprePTRR084dkX+76EoUvpvwLZt28SfN2zYwK5du8THI/QwMtTD3+4GO2WslGxCoZMjVcz/c6zc4kSmkTFzxEsymBKtnYUvmjJ23NlRoHJdfl0NhlItqWiG0Xe8omBEbVWRz+WZ6RL+MS39QjXR6ThHH14g2tBCy6erReHEHP7eMFq7ShQotf1jHX2vT9Dx2LxAx1CuRZ/LzyuzoUD5u/wfmsWIuzkKXJcWrMYGQUg0J2hZ9eU6NA7VCePdKjc7kcoXT4j1vTDBxIHgvMDoBNFzco0M6YfEj5jqTciUUmpOsS8SQAV7Yh+58mxOUMMJLACBE4qAPikxb+4jXZCyqdyipsZCPmq/lUYF1voTW2Y7WgxIpBJ0Lu1ikdLs2H6Yw1LrZeUoDQpMDdpFzlPrvtOEXCNj+x3ti6ID6y8pw7nM/KHuSGu/0YjCIOfgH/qJ9McWTUyWtZmRa2TUX1JG7/Pj4rW+/MYaPB0BJrb5haairrC4NDUIxUTCn2L/r3vF7WrtUlqurWXf73sF8VBaKHxBuF77Z6+1lZ+tBgmMvuNl4OUp0bp6+Y016Es1wjmIQTKQwjP799h8YTnB8Rg9/THkahkSmQRtmZpgYJTXXn+VfQf3CTt3UFhJAaBWq3n66ae54IILTnTKihQpUuS/JWvXriUaFSYWtm7dytlnny0KltIkBcHSoy8jQ8ZaTqGiqRypTCI25ktX29A6VBx4oI/pIwEstbN2vxpBOBQYiND+2HCBc437JAeVG+1ClOmL842dTCIrxpxprNB8TR2dT/QVNGZar6tHZVZy4MH+AuFOzJsU7bgrTrZjdOtof3RIFGw0nCcIVBxtdobfFCaHAt1xsY4y1mpYel2NKG4HGH3fy+j7woTXnFhkdIdXfL/ogDR7rKlgepFzkX25Aa1DTdOVNQXRLQA7ftGBRiMVt3G88Ebn0iKRSbA16hk9gUjJWm/40Fi4DxNfz5GOZk8YNwZCFN/HuRV9FAvj944nn82Tz+Y/1EnpeFephVRudiLXyLDVFcbszaHUKzhhJTk7th1PjpzQYQkNmKt16EvVi/bL2qKl+dPVBAajtD8ytEgQtv6fmgFO7I6kgVW3tJKOChEeJxL5O5pN4s+B7jiB7jjWFi2VW1wc+l0/U7sCVG0pIXCcVfnCetDXMV9n15znQmNR0v7YMIHeMM5WM/oSBfGxuChKqj67hNLVVlQGOR1PjhR8L9p0ayvxQJID9/cxvm+GsjYb8bggLCxdaRFFSnKFTFz00TF5kL/t7mFqZgpmT71KpSKZTHL66afz5ptvnuisFClSpMh/Wx555BEeeeQRAK644gqeeeYZ8nlhYmqQTgb9nbz0MyihkmWS9ahMSuTK+Xaoe7MThVbO+N4ZopNxxvcJouIVN9WitarYcXdHQe+o+coKbM0mcpkcw297GHxjVpztVJDL5gj0RcTXxf0pep4fL4hOWHLtfIznHIGBKOZqvShQWvaFaka2ThWIUeZqwoUCl/YFq5LX3NSA0ihE3M2JUApcl77TBMzXNIlATrzXtlxTiaXOQPtTAwVuTwC1Z5YKQqjjouXGt87g643OOyadIHpObVKK4qzjsVTrBLHzJgcdQ4V1UmLyo92WZg6HyZ334Y5Bc+fk/w2JgBCL92GkY1nSsQ/vee2468P3W+tQozIq6GOxSMlap0Uql6Ir0SwWKc2O7YH7O0kkFhecTVdUoXNpsLbq8bUX1jhtN9ejsirZ8bN2pvb6CxyKKk6x497ipOclwU3reIenOfeiI3/uJzyUKPg7ALCvsArRfmeV0ve3CXHcmq+qJDQcZXyHj8BABM1xiwHVTjVtN9US8yQ5+Ns+9vxM+FtQm6Hpqlq6nuonEZib7BWONxHIMTAbobLyH6qF+I+tMwXH1HxlBdYGI9t/JvwNRCZiYjxN0yVlxKYThIfGkStlSOVSDFVqJqcmefP9v7Nv/z5hcuwAKJXCRKnRaOSJJ57gvPPOWzTmRYoUKfLflYqKCsbGhP/37e3tnHnmmfNxTLORcB+8BEpUrOQUHA4HUqUU2ax7pGOpEbNbEMpM7PfhaDGKYqYNP2jB3xum6+lRJmfdtwGqzyylOg87f9whxkwBZOLZ+YVqKlh2XTXdfx0uEGYsvaoKo1vH4Yf6Cpx2wiNRUlFhXsW2zIit0UD3M2P0zvbUKj/lQGNX4VxiZORdYT40MpoURU0qu4pVN9QRm0yIrk6LXJeuqmZ467S4zwuFWBt+0EIykCoQ14IgJDHV6Gm+RMah3xeKifb8vBuVXSUe7/HOSWq7BplShqVWd0KRkmOJGYXhxJKAEy3WW0gykD5h3BgIgpreFxfXNp+UD4tAA0AqIZdeELd3HAudto6ncoMVlUmBvlJP8tjinpnaqkKuOkEPcHZsB1+bYmJf4IQCJudyC+YGw6J915SqWPUPdfj7InQ8OczRPxf25FZ/vQGpXMqen3XR9ZfFJhCbvtNKMiREnx09wRxs6UorErkUGCPpSdL/8iT6ChXVp5Zw9JFhgr0xEoGU+H1kjlU3C4vmtt/bTnwiKTq1l51kRVeioefZMYKDEXKb7CiMwgDMXbfO1WaqT3OhL9PQ9ZfRgnjA9d9tIhlMc/B3/YztmUGqkkIqiXO1mYoNdlGkJNdIURmFa68v2MWbT/UwPj37/WhC6Hml02kuvvhinn322cXnpMj/tRRFSv/N2Llzp/jzFVdcwV//+lfxsZdx3sz/lTd/BnKUrOMMqlaVIFfLMFfpGX3Hi78/gq3ZxPT+EJlkFql8/p/4hh+0ML5vhsMPDtB6vVuMqtp0eyvZZI5d93SK7kkAxgothlKNIKDQgt4lONJEpxN424V/7stvrEFtUbL73i4xhs3SokVtUVF/Thn7euZdcbbf0Y7WrRXfp3dpOPDbduKzdcvEvhlszcLKY7TQcqm7QOSUSWTnoyiOExQFRiIozYpFAiWAnXd34FgpCGtMDVpS/pj4mXMCJXHi42ftBdstEL0c95kTO/0Eev3itk6Exg71F1UXZHgCxL0sEtQsxLHSQO1Z5fS/MSYKvz4pa77eQCqa4fDvFyuugUVNizncpzuQqaUFWe/Hs/1nH97MWSi2WchcLN+JBEpzsWl7f9mDs824OBoPCE/EMZQe5+w0ey4mDwdwLCl0ZbC0aLHUGel/aZLRnR7K1toKPnfVLXWozUp23NlB7/PjTB4OFF43WtCXalCblUxs83P0oUEAGq+qwFprYOfdHQR7YiQDKUa2Tomf6e+I4VzrQGVSiu5cc2PtPt1BxSYHU4f9s+K4GSJjs9fed5uIeZIcfWiQuC8luE2VqdHYZGRTOYbfECaGlUYFFoXQ9Ny7exedk514PB4kEgn5g3lkMhnZbJbKykqef/75omNSkSJFinwCNm/eLAqWxsbGWL58OT6fMPGVJctO3oYu4A6opJ4myUpMVTox+mPojWnMN+oxN2rIZQT75+isE+LSL1SjMSvZ84tuel4ZRWUSGhVNV1RgazbS9+p4gXtgzbluNFYVxgYz8V0BrC1afB0xhrdNU77OIQqUNny/hekjgQIBUNk6G3KNrED40/PMGON7faJT0qZbWwlPxsX4ulB/nLgvydA7QrOg9vxSvB0BMVILmBXXzBY6C0VFcUjHMvhHFgtnvIfDSOTzrkGONuO8ECYO8XgOXZWGFZ+tIeZJiFFwAMNvTouCqBOJmHb9qvOEjkILqT2/lKg3LopL5jheMHU8y26oQa6Sfmzj53hK1pip+lQJnc8OF4zdHIOvT31o1NrSz1cLEX8fckzH/jwkOBMdb/A0OzYnit3TWKWsuqVZjIFdKFDSuNRIVRKiQ3G6XxjBe4IYFF9HjGwqJ7pZHE8mliF33GRmy9WVQtxbHOLeJJMH579PaFxqVt1Qi683TOdTIxx4aGCRaKr2jHKUZgUal5r4ZEKcnF33nSYiE3HaHxtm8qAfY4XwPcJYqxHH2rXSItaBM0cj7Dgq1Nfr/6kZmVzK9jvbGXx9Co1FSceTI1SfXULJyvmV+dlMjuzsZKKl2oCnMwRxsNbqUejl6Ko0eAd9vPryq+w5IFjpsw8kEuEzJRIJV111FU888cQJx6tIkSJFihTy9NNPiz9/73vf4+c//znZrDABNcUIU/kR3vwNqNCyltOwVppRmRRYaw2Mb53B0xHCMisWysZzZNLzjn3rvtvE5D4fnX8ZpenyvOgIs/GHrWRTwkK7hfFilgYj5mxOdPoxVKkJDyUI9EdEJ/PmKyswlGvZ84tu0dFI7VRjqNBSc0YZB3rm64Ydd3egdgkRoo2XlWNrMnLgDwMkZuPcR7Z5ca0yi0KhpsvLCxyOUpEMkhPPLREciWEo1y4SKAHs+Vk31lbBfUdboSaXQvzMOYHS3MTH/l93FkS/7bpnQS1xnIjJ3xll/33tBc5Pi1BDy6WVdDyxWOz9UZFphio1zZe5GXxn6oROUR/FiptqycSzhXFlC5iL4zseR5sJnV39kQKpHXe2C+NwPGoY3+Fj/ASxwMtvqEZfquXgQ/2LItpsyw3MHA5z6MEBbMsNiwRKAP7hMDalsVBANnsuvB0RKjbaYcH8nKFKja3JxOAbUwy/P4X7lJICp6sln63CWK5lx93CRLGvL1K4X2qwNhowlGkY3+Gj5zlhAqr6rBJKVpjZdW8XiekEkYk4Y7uF7wHmBg2BnjiGWhM6p5rqsyro/MuoONaOlSYaLizHcyRAz/PjDG/1kAwJrvirv9pA3Jek/bFhop4Epho9hhI1UjnkM4iOYDqHWnRaONR+kP5t3UxOTQo9r33zPa+amhqeffbZomNSkSJFinwCWltbRcGSx+Nhy5YtdHUJ37dTJNnNG+CBV+6SUEUT9ZKl2OqNaKxC/2pytx9LrQFjjZpkOE8ulROdhhouLcdQJsTCdTw9hG42Rr3yUw4qNzvof22cI38aFPel+tQSDOVabEvMjO/wia4xI9s9uCWIAqU132rEcyxQED/l3uJAY1XRrRoThT8j73rwdoVEsc/67zURGY+L70t6k4RHoozPCmXLN9sIj0QIDQmvl0glZFNZZrpn+yLHiYqS/hTBkcXOiaGhJO1/GRLjzSwt+oK4taQ3icquYvVNdYQnYgXzgtP7Aid0G5pj3+9OXMMspHyzjXQ8u2g77U98uGkBCL1IlVFxQpemj8JUr6X+3HJ6Xx0j2Lu4TzS52/+hUWuNl5cz9Pcxkides0fvixOMvDex+Pez5+KENZ0KNn57Ngb2t30FAiWVUYrCqCAymuTYU4Mn3N/4RJJkJE3w+H7m7GemQulFiyNrz3fR/+YkJCE0HMHbMb/DKiOsurkZX2+Y7mfGOPjQ4CLRVM3pLgyVOvQVKiKjSbEX3HZLPdHpBF1PjzK2ewZrgwGSsw5gviQkoWKDA5lKSg9jREaTolPW6q82oNDL2Xl3B9P7AhjLNPS+OIFrnYWKzQ72zqa1ZBI5UbxvrTfg6w6TDIGpSofaosRUr2W6x88bf3+DPftne17H5nteCoWC66+/nj/+8Y+Lz0WR/xZI8nPLi4r8t+b73/8+99xzDwsvB7lcjkKuIJ6I87nrP0dVbRX5TB6JXAJ5yOfyhEaieLsD1J1VAQgxYsYKDSqTkshEnMO/H2DT7a3k83l2/KiDhivLcDSZifkTHPxjP6turENjUhHzJtDa1eRzeSQSiajk3HR7KyAIkOZcYA4/NohMBq1XVCGRSshl80gAiVxCKpRm77/2sO57jchVcnpfHmV6f4iNt7YgkUrElVhz2x16dwpdmQZ7o1FQNb/jFSYdlFLIw/YftbPp9lYyCSHupPYCF65VVgA6/jpIwwWVQp77HYv3dy5yzdsdIhPN4FxhRiqVFrw2l8mz8+4OVtxUjc6pJeqPc+jXA6z5+uwKuAWvzefy7LizA32tluXXVROZiKPSK0T1s/ja22bH+84OlnzejalSL7oYrLypFq1TzdDWcao2l5HP55FQON7JYAqVSUkum0Mqk9Lx10H8HTE2/rBFUEvnhQkXmUJKOpxhzy+7abnOjaVWTzKaouv5cZZeVYVUXjje+bxwbj3HgjiWmBjd5WX4jWnWf09wuBp4e4KJbf4CUVv1uSWUrbGJ18+67zYtGu9cJk8uk2Nk+zQ1p5Xi7wvT8fgIG37YjFQmFSPvFo73uu81IVfJCI3EOPrQoCh02n5HOytuqkXnVIvjPRdzGJ0WYtYWnmMQ4u0Ael8exXMwPH+9/7yDFZ8RthUYiWCu1IvXd89LI+JrU/EMe3/aLV6zg+9PMP6eX4iBk0uE98xOjqWjGfr/PoZzmRVLnUE8nvXfb0amkDLw9wmQQc1ppeI1O7e/43tnkCmlOFrNSOUS8TwDJGMpXn/tNbp6u1AoFYRChZXbunXrePrpp3G73f/efy1FihQpUuQExONxWltbGRwcLHher9cTiUTQS4x849avkU3kUGjlpOMZFBo53u4gSX+akpUWIXosB9vvFGqVXC5H36vjOFdaMJXrhPiLN6bZeFuLUFvd0S642FxeTSaZRa6WkcvmkcokTB3x0/f8BGu/04hCI8fXLQg+Nt3WSjaTY9ePO6m+wEnZKjvBsQimcj3pZAaFSoiimxOuzN07y0+1UbW5hOBQlGN/HhImruwq8tk8O+7qYNOts/fKuzoE16TvCPeqwEAUhVqGrlQtRmLN1R+pgOCqtOn2VrGuaftaPWqTkuBYhGN/HGbD92cjVO9sFwXic2Ka5qsqsTYaxFi04+/nm25vFV0Nln2xGoNLy/B704y+7xW2pZaJdSEgun5WneWkfL2diX0+/L1Bmq+oKqz3bmslk8oikUiQyiVIpBLBdvmZMdZ+sxGFXk46kkGhlws1VjrHrp90Yluqp+lSN6lIGqVeQSKYQj1bq4AgCsuTx9cTZnjbDKv+oYbQaIyjfxpk5Zdr0TqEBl7Mk0RjFe73C8c7l8ux885Olt1Qg6FMIzppzY333DWx6fZW4j7BCaj1+irMNTrS8QwT+/xUrLMhVUgL6si5mk0Uy70xTjaepfHiyg8d77kxnXPVWuhqVHWWk4oNDnKZHDvu6qDiVAfuzQ4i03EO/9uAOIZzzkybbmslm84hlUnI5fLIFFJ8fSFGts3QcknF4vp6dn/NjRpar6oh5k+gtajJpLLIlTKOPjZAqD8ujLckz8g2LzOHZlh1SzPZdJZdP+5i/febkClkbP9pO80XCddZPpvn4MODVG22Y200EPMk0TpUYl337nPv0THRTi6XIxQOkU6nhUmyfB6Xy8X111/Pvffe+x/8n6dIkSJF/vvywAMP8K1vfYtkcr6pL5PJUCqVJOIJrr70ahqWNYg1Vz6TJ5/P4+sOM3F4hmXX1ALgORpAbVZiqNCK/YSNt7WIfZWyzTaqTy0hNpPk4AN9LLmhClOZjuBIBFOlnlxauA/Mue0srEcaLyvHvsRE5zPDJEIZll5ThUwpIxPLIFNJkSqkJAPCyuq5Gqj/75NM7vQJPQ6FTHTL3HR7KxKJhOEPppBIJFSc5GB0mxC1NddvyucE0cymW1tJJzLs+Vk3JWss1J1bCnnofHaYmtNLUZkVJ+x5WVv1NF/uZqY9SHgqgftkB1LZfA208Yet5DJCb6fh02U4WszEvHEO/mag0OV5dru5bJ6dd3WAGjZ9t5XwaAypXILOJSwq23+fIIDa8P1mJBIJO+7uEGPy5iL6mq+uxNpgoPfNcerPKBOcliQSQRw0+zkJbwq1XUk2LfS1el4UXITWfacJmUpGPpsjl80jV8mEley/6qHmnBJK19pIBJP0vTxG40VuFDr5fA10m1CXSSQSht+fxn2yk/FdMwy+McXqrzWgMikYfHOS8R0+Nt7aSiaZYc9Pu3G0mWg4v1zsP7bdUo/aqlzQbxLGMJfK0fPSCK1X14h1+rrvCDFqc+d14w9ayedz7PxxJ23/WI/aohRr8WX/UI2hXMv2O9rFmjiXzrPzxx3iuETGYxz+w6DYP93/YD+JyQTr/0norXU9P4yvPSLWTwd+3UX1WWVYm4z4ekNY64xkU1mkChmdzwzh74wKPa9omr0/72HVP9ajsSgZ3e1h+HUPa78j9MBy6ZzQgwVS4TS9r4xiqjZQvsEu1MU/7hTrvf6/T5KOpWm6uFKsIzfe2opEChP7Z8jEsrjarCi0csJjgvAun4NULMVbb7/JkfYjqDVqgsFC4dr69et5/vnncblc/zH/cIoUKVLkvznJZJLTTjuNnTt3ksvNi5d1Oh3RaBSzxMYt37+ZdCSD2qwkGU6hMiiZbg+QmEnhXGYWYtRn5z42/lCYf+l+cQyjW0Npm42x3V6GXp8umPcz1qhpvbqGTELoeeVnewJTB/30vTQhzvt424N0PzPGhh+0kM/k2XVvJ861ZurPLsM3GMZaZSAVFXox23/UDirY9L35WsXUqmXJZdUEByIce2yY1mvcmOv14r11/XebkEglYgzYpttaQQK+njC5dA57i0l0dlr77SYUWhlxb5IDv+lj022tojvTks9VYXLrCI1GOfqnIdZ8sxG5WsbOuzuEmsGiFPpjv+nDfaaDivWCeGtyb6CgFwhCD2nOoafhsjIcS8wMvy+4PLXdUo/arBT6i7e2ghSS4TT7ftmDbZmRposrGN87g/dogCXX1SBb0Afa8IMWMsks+VwehUaOVCbBc1QQFS/7h2oMZVqik3F0Lg25dJ5cNsfun3ahcghCq7g/icaiIjIdR+/UiNtd/70mkEqYORak98UJNt3WSnAwwrFHh4V6bzaNJToZR21RIpFK2fmTDnG8cxmhJmq4tBzHEhNHH+snNJAQ5xcn9/vof3lSGO/pBAd/10/teS5cbVaS4TST+3yUrrEh18qE+pTZOni2ZpsTyw2+NUlkPMrSz9aJvwOhDk6FhfHe+IMWJHKJWLOturkOjVXF9jvbcaww0XBRuXht2ZYYabq0QjjnDw2x8ku1aEvUzHSF6PrLKBt+0EI2mQWJBPJ5FFo5no4gE7u81JxZiqFCe8Kel8ooZfXXmgmNRTGW68TvPIcf6yMynmT915uRKiWMbvUy8q5ndo42y657ulj9jQZUBgUHft+Ho8VIxUkOcpk8Bx7sp3KjFecKC5GJOHqXhlxO6DNvf/kAR0f3ks6kCEfCpFKpgp7XF7/4Rf7lX/7lf+v/oSL/Z1B0UioCwI9//GN+/OMfA9DZ2cm6deuQSqWiWOHhRx9GrVaTSCRwmJxc+emrUCtVmGsMqEwKMvEsgdEIkakY2VSWkpUW9LPuNLHpBEqLHK1bi0onTJL4OsIQA4VGTi6TY+jdSWpOLyOTFCwaN93WSiKQIhPP4ukIAJCbFbnUnOrkyB8GCU/EUWhkSGUSpDIpSCE4EWHNNxoY3++hbKWTyGSKmvNLkMqkZNLzdsypcJpcNsfYBzM424zYGgxoHULEQmg0hrFSQy4hCLaSwRSpuJBlHxwK41hqRiqT4O+IEVwRRe+cXwaVTmREu+nAVIyyeJZAT4jp/SFkGhmmci0rbqolFU6T8CdJhYV9mj7qo/pUjWhb6B+MYK0TbrRau3T2+IWCLhuKkYln8fWFGd3lZenVbrTWeSegqCch2mmbKvXk83lmegXFtq83jNKgYGxXgLF3Aiy/sQbpApvGTDyLvz+Ca5VVKBpSWRIeQREcHhdiyeaiNdZ+qxH/oKAIDvSFMZRrUOmU1J5eQng0WpBhmwqlCU3GiY7HSYVTWGr1BAeE90Z9MYylepxLLUxs85MMpojN5u0GB8O42iyiGjcwHMXo0qC1S1n6hQaSgRRxf4r2R4fRurXCuAwK1+xMVxhbs4Hht4TVjXFfUohimT3/UoWEmR6hMeHvj2BrEeJBpg/5qT7DRdQjrCCMpRJCMT0rcA6ORNDZF4z3dAK9S0P9eRV4DnaQiWeZPhag8cIKZCoJmXgWb3cAU5mOeDCBJCstcK9SzLpljGzzULnRSSaVFhs52VCOyHQCqUyCsVyLTC1FppDh6w1hqtGJ4qVMMksum2Nip5+VNwnN04gnhsYOwdEwOpuW4GCYlk9Xk8/lSQZT7Ny2g87hTmKxGIlkQpwckyvkVFdXs379ep588kmKFClSpMh/PBqNhoGB+dVFN910E4888ojYvInkQ9x9993IZXLIS1hZvYrTLjwVS7UBWaMUX3cYjVVJaCIGGkhGUqj0ShytFiZ2eNBdqEYzW9cAooOAyqwml88RmoiRT+XJS3KYyvTobEo23dbKTH8QvU0jRpPlyYsrfKb2hnA0mInPpDA484SGIxhKdCz5bBUJf4roVIJ0XPgc90YnIDRgAHx9YZw6GYNvC5El6WRGnIwgDulIBplaxuQ+D1qXDqVZTnx2IX94PI6hXEM8KKyWTkcy+Gbrmok9PqpOc9L/vLCiKzQeE++ru3/axZqvNxAYjbL2242M7J7GUKYhMi5sJ5vKsnClRjKQIjC7im0uhjWZmK3/hqNoZy21B9+domS5mdj0fK3iXGImOBCi+rRSpFKpuLIbID6TJO5L0fnUCLoqDa2XVRIYmK/LLNV6YQEAQg03F5kbG4+RjmQY2e5haleAmvNc2BrmI3GjUwm0JSpsTUa6XhwtGBdfbwSFRs7Y3hnGP5hh2Q0181ErccjlckilUtCAvyeM2qggHhRWwIcmYhjLtYzvCYjj7e+N0HqdG5VJRjqS4ejDvcR9OYzlWmGsZp2XsukcMW989pyHMFZoCY0mifviNOTzpOMLavFoWnSRSMczSOVSQsPC/qcSGWRq4foYemMa50ozoQGhHg0NRchttKF3aijdaMU/FMFYpmXg71Os+WoDsZkkSX8KfamGVDKDUiVnpjMkOH7JhNVapRutTOzwEZ1OkI5mBRdMk5J0JMPUvgCuVRYinhjWOhN155Zx4P4+oWHm0qBzqPA7VML3iO2Cy6tMIRMWesSFa1Blk5NLQsul5agtwnZHO8cZ3N/DwUMHhWsrmSSfzyOXyzEajdTV1fGHP/yBZcuWUaRIkSJF/uP5yle+wle+8hUAJicnWb9+PcFgkFAoRJ48Tzz3BOpXhZ6X0+LiknMvQ6NSY19iQluiJhlIExiNEJ1IEvUk0ZdrRAe+4GAUvUuNtkKNziHUCzNds65IBgWZVJaRXdPIFTKS4QwKjYwN328m7k+R8KWY6RZ6GNmcIGou22Dn6B8HCQ1FURrk5HNCBGsukyY4FqHt5nomdk9RttZFaDRGyRpBvD4XBQ9CnwJJnpF3vJgbNOTzdlRWoTb0D0SwNRrIJvOzr42TyQjvDU/GScczQt+hP4LJHcJcoxe3mwgkmbNjioUzJANpfAMRPPuDKDQybI1GWq6pJJ/NExmLkU4K2x3Z68PebGJq1jXd3xdGoZltSc+21MRaJSFEisz0hBnfOkPTleXoS7RizFloJCb0ABFiS/L5PP7ZGsjfG0HnUBPqCLB9R4DmqyrFug4g4Uvh6wtTZreRS+fIRLOEJ2druoEIKotSdA1f+eU6QmNCrRIYjGBtMaI2qaj6lIvAQATtgl5g1JMgNpUgPJkg7omRDFgIDgs9r9BkFIfJjL3VyPgOH9GpOAmfUCuGx5Nk0/Pxcf6+MJacAbUZln6+gchkjHQkS+dTI6jNgkhtZkC4Xib3+ynbYBMdvSLjMTKz10A8kERlVuCfrcX9fRFUJsXs+7yY6/SEJ2Pi+OdyOfKz/SVvRxBjlY5EYLY2HI5iqTfQeFEFO9s7xWu2dIMDlUVBMpDGc2QGU6WeqDeBBElBXJ1CLZzn4fenqD7FRWQ6zcZbW0mGUqSCcYJDMRQ6GTqXGqVRgcqkJjgYpnSdVVxln0pkyJFjcqeP5qsF4XvMnwC18LdmKNUSHIjSfLmbbCZH3Jtkz54DDLzSSSgcKuh5KZQKqqurOfnkk3n44YcpUqRIkSL/8ahUKrZt2yY+vuuuu/jxj38s9rwC+Rnu/sldKBVK8pk8S8vbOO38kzFX6VG2ChG8hjINwcEoKiNEvQn0JRqcS8wMvjeFtcEoxqXns3lxPk6qkEE+T3gsSjKUQaIAc7keuUbKhh+04OkIIMlD96zTpEQK0tneQ7ArQHy1jdhUAmOJlpm+MOZyHQ2XlpOKpfH1hMXPaTq3EiQws6DnpbIqGN4h3JNT0QxKg0J0z4nPJFHoZXiOBJHKJejLNaRDQv0RmK3LEn6h/xSbTohzeZN7/ehLNfS8LvTSAv1h1LNzbvvv72XFjTX4hyK0/WM9I1sniHuTRCaFnkwqkkG2IAUnPBEjOuuAqZo1PUjN9rxmekMYy4W6tuelMVwrzcRmhFol5k0S9yYJDkWp2OxEppQS8y+Ozet5bgyVUUrrtTX4ZqPG/H2Rgn0IDUfFWiUZErY7tmeG6X0ByjZaka2Yf21wOIapRodzhYXeF4Vj889uN9AbRmNWMrzbw8yxEI0XlCNXztd72WwOmVyKyigl0B9BX6ImOXs8/oEI9gYj3qOCO1NsMoGvP0zteS50pWri3iTtz4yS9CTRWJSoLcp5F6RImujsvGVoNErcayQyHiU0lCSXyZOOpcV9iPnihEeFcxEPJlHq5ASHhfooGcugnl1M6DkUpPJkB6FB4XeR6SSZVBaTW0/ZSVbRiWvwtXFW3FhDeCJGKphBZ1ORzWbJxLIEeiNERpNIFBLhu8RJVsa3+fD3RMhlcyz9bBX6Ug1xbxLvkSBkITQdo2SJhfrTyzn4+34CgxFsjUbUFiUqh4psMsvINuF6Vurk5PN54j7he1BwOEo+lafhPBemaj1RX4KpDh87jnaw/8B+pFIJiUSCfF5wqjQajaxatYo//vGPtLa2UqTIQopOSkU+lk996lO89957J/ydVqPFJLeyJLJBdH6ZU2o2XFFKz8sTlK6yUHt6GeHxGId/P0D5FhsAYx/MCC5FsyvRnW1GXG02Dj8+wIavtxDzJjj84AD1l5RhazRy+I+dVJ5eQfdTQlbnxltbICdYXs+x9AvVGCu0ooOStkxNbDzB0i9Uc3TW/nHdd5vIxLOi7Z1tmY6mS6oIDUc5+vDQoti1uVVmx54cXBQXNuf0M+fCtJCNt7ZAfnbV+gI23TbrinTc83O4T3eQTeXEeDthoAv36URUnGpftA+OlYZ/d5wbCCrbVDjN3l9+vAXkQiwtWvxDsYJ91djBXG9hYueJbRmBEx7fwnN2PA2XCQro6SMBep8fF59vuroCW4ORoXenCscP2PiDFvII8XzHM+caMHftHr9Pcw5T+34lXDOlGyxUn+6i/S9DBHtiNF1dwfQhH0lPgphXKLY33tpS4Aq2cP+6nh9i5kiU2gtcTO4PUHuWC61dJcaPbLqtFU9XkLg3idmt4+jDQ2jdWlZ+rprwWIy+vw1TeUYZXU+Oivs3t7Kg/FQbEU+c4NHYvPPUz9qJmQMkS/zs279v0fHL5XJWrlzJP//zP3PBBReccMyLFClSpMh/Dnv27OGMM85Y5Go3h9NWQtlMPZWlNaz6Yq3oImldqUWhUjK1KyA4Cinm72tNV1Qw/NYojZfVFrgUtX6mCn9vGGOFFmuDQaxN1n6rkfBYnKGtXpxLDAy9MU3JejN1Z5Uxsc/HwCuT4v4IK5TmV2JrrKAp0WJpMtH3/AS2pXoaL6qk56VRMf5rzdcbUBoU8/fI46LXNt3eSjaVO2Hc2IYftJDP5Rf9bs5hZ3K/n/6X5/PoGy4vx9FqEp2lTsSSz1YtjvQ4QRzcQko3Wpk46Ct8jQaMpZoTxrJ9FHOrwwvqkE+IbamemaOFNtIVJ9sZff8j8oJh0fFVnOogHUsvirGbY+MPZ+uaO9sXPZ/PIZ7/OeYcpgbenGTiuOgS+3IDjRdXLorjm9sn0d3pj/PRbatuqUOulLHnF92ggdbLq2h/dEiMcCvbYqP6UyXi6rKC/cvmhRWMGqg7o5TxPX6WXV/F5EE/w29Os+JLtagtSnb9qpNl19Yw8sEkge54gYNWxcl20rEMU3sD4urLzr8OEp+KUbqlhP4XhGiXhd9tkuum6B3sZWJqAqlUWrCCtLy8nJUrV/LSSy999HkqUqRIkSL/2/n85z9fIBZfiFatxSpz0Bxbu+h+XX2ek8nt06gdGlqvriE8JkRuONpMyJQyJnfOuubEBMcXU52aipNKOPaXIdb9YxPxmSRH/jRIxSl2StusHHlsmNI2EwPvTkECYRW+TFIQazbnttT36gRTe/2onWoS0wmar6qk84URSMDqrzWQSWY59G/CPVZboWbl52sJDguuOsfHri2/oRp9mZbOZ4YXxYWVrLFQd04pI9umxdisOdZ/rxmJdHHs2sYftJDP5z80js3RZkKhlTO+dUHP5rh9OhFlG62L4tAszboCQcwnRejxpD80uu3DMFSpCU8lFkWnlSy1MLX3I3peJzi+lmtOHGMHUHmqncrNTqYO+en723xdW31WCWXrbQy+M1U4fggxthKZ5IT180KXyhPt08ZbW0kGUuy/X+h5WVv1NF5UQdfzI/g7o9ScX4K/O0TCExfj+db/UzNSuVR0qVq4f3PuVJWn2vF0RHBvsmGs1LL3X4Xx3vD9ZmY6Q4RG41jq9XQ+OYLaDG1fbSU8HKPnhUEqP1VGz2y/b9Nts98N7unE0WYinUoROBoXnaf239dJMDFJYkmcPXv3LDp+mUzGqlWruO2227j44otPOOZFihQpUuQ/h76+Ps4444xFzuJzlNhKKJ1pxK4uYdN3Z52dH+hDX6NCY1Pj2RtkzTcbUS5wNKw+p4SJ7R6qzizF3mJi32/7SHqTNFxaTnA4itqqoKzNJjobrbq5jshkguEPvNib9YxtncFYo2bpdbWM751h8LX56NYN328hn8uJMVgqoxSVRYGl2cTQ69PoK1Qsubaa3pcnmDkm9PGW/UM1epdmfv7vuKg3wcUyy56fdS06/jXfakQC7JmN05rDsUKIPj1+/+YcfUa3e0Th8vE0XFZOz7NjhU8et0/HY1tiJDISKoxKU4HRpRIj7T4pK26sQefSFMyTfVJM9dpFsWrO1eaPjLUDFh2fY4UJmULC5N4Tv2/dd5qQyqWLelvrvt2ERAq77i08V641ZmrPLmPw7clF9am+QsXyz9cJSUML4+9m96nhUqFPefRxwd0JYOlnq1AaFeKc9dw5U9lVJL1JzI06Wq+sEpzZF5zLtd9qRCqTiPvnPtPB1C4PSz/XwNRhP6PveWm6sgJDhZa993fTdFEFU4f8BLqjrPpKHWqzih13CY5OIIimmq6swN5sovOZEWZ6Q7hPsTP8hvA9YNNtraQiGfb+spt42zQDE72Mj4+fsOd10kkn8dRTT330eSry356ik1KRj+Xdd98Vf96/fz+nnnqqOHEWi8eIEWOCv/L23VIsZgvyvJZ1jvU4mi1YqoyCfZ9FiWRWCOve4kQikzD2wQzb72in4Ypy0IJ7SwlKowKtVsrOuztovKoCU4MWY4UGmUpK3AvdT42y6st1TB70kQymYXYNvGOlgfrzK+h7dYzB96aJ9As3rpU31IrRYXPMRbkBaN1alEZlwRf1Td8qFBG1Pz1C44VlokBp9dfq6Xi8n5g3RzKUIp/NM7pL+Cc9J4oCiHuT4qqfhWz/+fxn1ZxfwuSuKeILej0VmxwAhSKb2fvw6q/VI1fLC44HEOO+Rnd5C8Q+cwIljZ2Cz5jblsqk/HdNiB0ftyYyK+jxdyxWUi37gvCeYG9QFPCAIMaq2Ojg8OOD4vmaY876u/rcEgZfnS+65m7OPc+OMbZzRhzrOUbe92KpMeAfis/vF8K+paJpFlomtFznJhlM0f/SJBMHfPOr+IDGqyqwNxoZ+PsEEzv9wvFqwX2Wk+E3pkkEk0ikEuytJoI9MbqeHKV0g4WWT1eLlu+HHhkiNhxj7TcaAdjzy27Gdvuw1BiQqqWsvKmW8T1eYuMJtHYVco2g9m66uoKDf+wnNp4QhX8AlioNPa+N4NkTZs03hMldrVuLVA7h8ShH/jCExg5Vm0tIRzO8emQ773wwRk9PD96oF0lMQn5sfgCqq6tZuXIlzz333Ief8CJFihQp8p/O2rVrCyIIPve5z/HYY4+JbkjTM1NMM8XBiW28da8WpURFbX4Va09rRKGTM3U4wM4fd7D0C2405Ro0Rgn2FhMam4qDv+3Dsc6IscFMfFcAc7UOfama3fd0oavSUH9ZGb3PjqPQytE71cTH4iRKVSz9QjVTx3xkUzkmdwpCn7XfbCSTyrL9R+1oygWHweU31KAv09D+1AB9zwsTKpZGIxKZhOiMsELcfYaTvb/rEQUyFSfbcZ/iLBA/edqDggMAUHdhKRKFhN5nhUmKVDhNLiPUExorxGd7AaGhCNl1NiZ2zE/kAPQ8M8bothnisyvGas8vLRAx1V1YirlaL0zuPbVgoiiOEAF2RQ19b44XiHd0VRpqznBRvs4mTrbMvSfUH/9QgdOm21tFUdknZdPtrWLk7ELmjv14gZLGKsV9ipPStVb2/KywqbXue02kQmlBGHTc/rlPckCeguPUWKXYVtgYfcfDwd92iGO9kLgvRSYx79wwJxqa3uultM1GJimcd025huaLyjjwmz68h8OUr0vQ/eyg+L45+/Ydd3VwZLaJU3GynZl4krgvJ9qGCx8K7Y8OiRHN2+9oZ/yDGYLDMfQuFRt/2MLhxwaJDsVJBFLkMnlKN1qxt5qEbWtArpFhrtIRatQQmYhz6Hf9GGs1GMo0VJ9WysGRfma6Q+LEoPsUJ9lUjqm9AcKTUWb6Qvg6Yqz9diMKrZz+F6YIN4zwwgs9HD58WHBW2jU/TjKZjNWrV/Ozn/2MLVu2nPhkFylSpEiR/1946KGHeOihhwAYHBzklFNOYWRkhHw+TywRI8YQowzx1i8k2Kw2VHkjLZI2ylbbsTea2PvLHgbfm0ShFb7T15zmQq4RREo77myn5rwSUEPVp1zoy7Ro7Wp2/7SLmvNLMNWpMVfpUejkJEIJBl5LsOSzVXjbQ8S8SaSzjpaGKjVLrqmm740JRnfPEBsV6pq2L9UKUe8/nZ84kauk4j1TbZZirNAWTApt+EYzMC8u6n5mmIaL3aJAacUXa+h6cYLEZIJMKkM2lcNzQGgozYmiAMJjMbGPsZAdd3egNgs/V5xix3vIRyIw3wuqP7sMiVRSKLKZbe0sv6EalUXJnp8W1jBzAjFfR6BgW3MCJbUZUTwzx8KIs0/K6q8K0WyLJtFmTZPCQ4uVVKu/2IDKrCA8GRfPCwhirPqzy2j/ywDBvsL3NV5WjrXBSM05JQwsmGisPquEwTemGHnHi+dYRBzrOSZ3T+FcbiY8Mi/Mmjv2RCCFdIFbQe2FLvLpPAOvTTG81YPOqRJ/V3Wmk/INdjGCbsed7aAWztfoe15iPsHl0tJgwN8ZZeDlKUx1atq+2ipGyB16eJDEZIIVN9UiV8rYd18Pk7s9OFeYyUlztF7vxnM0SGJScL9Q6BXifh1+dJDYaEKsowAMtSa6Xh5hZn+Y5TfWYCjT4jnmJxHO4x8M0/HoCKih4fxyUqE0bx7Zw3t73mFwcJApvxBrmN+bF6NE3G43mzZt4oknnvj4E1+kSJEiRf7TqKurK3AW/5d/+Rd+8pOfEIsJ80NTM1NMIQi2t96rQa8wUptfwcozV6J1qgl1B9n7i24aPl2OplRFLgNla22YKrQc+v0AU61+jOVqPN4kjlYTphode3/ezdSBENXnlDD42hQqs+Bik/QmiU7LabnazfhhL6lohqlDAQBW3iikVez8cQeqWafMueiwjmeGGXpd6I2Z6wxI5TLSEUERU7bRypHHBkWBzFx819ger/ie0d0eMhGhj1K+2YbKpKD/ZaEflpxJwlzvY+7WnYTQeIJUNMPEcSKbkXc9TB8NkZx1+HGf5igQK5VttOJYYkIqk9D19PyCLpKgKVWx4rM1DL41WSDeURmlNF1aQcI/L2AW92NOoHQCkdPGH7aQDKYL3/MxbLqtlfC4IPRfiMoIyRCLBEqooP7cMiq3ONh3nMHC6q82kIqmhW0dt29155UBHHecYFsmuA7tvm+xYAwgMh5noc3LnGho8kgA9yklJGfd0FVGKY2fdnPkj4NERpP4eyP0vzlf4637dhMSGey6p4ue58boeW4MxwoTKkeepCeJQi9HsaCu7nl2TKhLjQq239lOoDvKgT/0oTLIWf/dJjqfGyHYGyPuSYBEgm2JEecyMx1PDs/ujwKzW0ugQkUimKLrL6OojFJsTUaUBjmBoSgzPSGG/y5cKw0XlJNJZPEcChKejhGeiDJzLMSqL9ehsasYfs9LoHScl17s5+Chg0LqzwIvBKlUytq1a7nnnns4+eSTTziWRYqciKJIqci/i7a2toKJszvuuIN/+Zd/IZPJkMvnmPHPADO86BnhjR+rkEqkaPJG1jXfiFwjY+DNKQ49NEDTZeU4VhpIRbM4mk0YSzXs/dceai52YWmxEPtgBnujEWutgZ13d6AtUwuClfem0DhUVG52svunXThWGmi4rFyIb5BKiHgzxIZjLL+xhqgnQdyTJDxrcbj0c1UYKrQc/LcOUbCz9MpK5BoZwYF4gbgoN3vncbYZqdzsZN/vhRtr9bklqExKas6t4Ngjw0xs8zOxTVgt5VhpoOHCSkEh+/sBDi6YTNrwgxYkUthxZ8e8iEgLpW02SpZbC9x9Ov46iFy1uNEDIFPKkMgWC58G3hjHVGc4odvSCVdMAYGhKLYG2SdyaZojMhFHZ1cven7tlxpRGORs/1n7om0dfWyI2jNLCgRKAGq7CiSQy7CIw78foPYCV4FAqXyLDccSE3qnmgO/7RPPV+v1bsw1etHpShxLLWz6dqvQsLu3S3RBmsNSqyeXydP/0iSDr05Rd3EpK2+q5eC/9TP61jiWaj2J4Hw1s+HrgmBo+I1p/B0xtt/RTts/1rHxhy3suKuDiZ1+KjY5CI6GWPONBo49KhRJstniwtKixblCONdauxTtOZVUbnYS8WaYPOxn+I1pStaZsDea0JpVdP11gOBIiI5ZZXTVp0rIJnN4jnUSD6fwDwaJDcdEIdN0foyMI0jH4wfp6+sjTx52CAUCCNFCq1at4vHHH8ftdn/cqS5SpEiRIv9FePjhh8Uogng8zpo1a2hvF+7pc2Lx/bzNgZ+/g16nJx5LspwNGCtaWXaNht0/7WLqmBeFVmjC1J5ahkwpZWpXgAP3t1N5VjkaKzSeV4bGrmL6oJ/tP2rHfYYTjUtN5UkOlEYFR58cxLM7RNMVFUzsm0GmlM7XJNk8q26pw9PhQ6GVEegWaq+NP2whOpWYr0E0ULHRjqvNwu7ZVWgxT4xMMsvAO0JDZsWXavH3RxifFWs7l5mRSOdFSnOrigCW3diEXCk43YT64+LKcdtSPU2Xupk+FqD32XFRoLTqK3VobCpCIxHR1anvxQmyqRyDr8/XHAVIQGsrrH2iQ3ECg1EGXh5a9HKNVcqqW5qJe5Mc+E1fwe/SkQzB0U9YdCEIkdKRjGhpPf8LWHWLsOJ9332F9U3cl2OmM8TUocLV9QBSmVSM7zuenldGic2kC55b8aUmpAoJo+94CgRKm25tJZMUJkQP/rZvwetr0ZWoOfTnAaJD8YIVaHVnlaCxqyhZb2ZqV4DuZ/tpubae3lfGCPXHiXmTZFPztaKxVoP7FCfO5Wb2/7qX3T/tQlOuYeMPW/B2heh5ZgxvVxCNRUXdhaWozEraHxlCpZUgkUlwNBtxrTIz8OY4ge54wSRY9cklHLi/k7gvJ7qO9b04gb5cy+geD8OveUQn1fGtU+gqdES9CbqfGkTjUuNabiMZSPHW+6/j/XsvAwMDBPNBKJxPpb6+nssvv1yM1C5SpEiRIv/1qa6uZmho/v7+0EMP8dWvfpVIJEI+n8c74wW8jOX7ef9uJXKZAn3eyqol16Kxq5jaH+bw73tovMKNtVVPbDxG6WoblhoD++/vpfJMO8YKLbHRBKVtNpytZnbd24XaLMW9SZhUMlXp0FiU7P3XHkx1amrOLyGXyiOVS0mHU8RGEzRfXSlE1Q5GiM9GbtRdVIqj1cTBhwTxCEDz1TVoHSqiEzFRYBMaiYmxu4YqNXXnltP5pHA/d7SZ0Lk01J7upP2xYWYOh5k53Cm+dtlnawmPxjjyp0HaHxsWx2ntNxuRq2Wi0/mcYMi9RXBWXLjQ7tAjA2is87HEC5EpZWKU20K6/zaMc5m1QKA0x6qbhcmT7fe2F7gV+fsiKPWKEwqYPozAUARzlX7R8ys+K9Q4++/rXLQPxx7pofrsygKBEiD0zqSSE/a8up8dIxFIFUwiWlv1lK23YarWceh3/aJAqfZCF66VVjqeHsLfGS0QpAlODBn2/KxbjKmbw7XcSi6bY+C1KSZ3+qg81c6yL1Rz5E+DDH0wjXO5WYzpBVh7i1Arje7ykphMsP1H7Sz7XDUbvt/Mzh93EuxLkPCm8A8EWXFTLV3PCbW5UicIyQ1ValyrrOy+twvU0HR+JWqTkvB4kun2AKPveTHVqXGttGJwaeh6egBff4ix2e8ADeeXk4lnmdnfRSKSInIgRqAnLgrUAnkvsappnnziMD29PULPa9d8z0ulUrFu3TqeeuopXC7Xx57rIkWKFCnyX4P/8T/+B//jf/wPQIhFv+iii3jrrbfIZrMkEnESiThe3mDP7/6OXqcnHcmylLU4mlsxVerY+4tuhrdOobWrBAHL6eWoTAo8h4Js/2k7dWe5UBml1J1ZgqXBQHAoys67O3Cts6ByqKg8yYGhXEv/K6Ps/UU31eeU4FMGkOvlMDcNl0yy4sYaJg/5hAj4DqFHs+7bTcSm4+y4a4Gr4Okuyjba2TvrhJSOJEmG0kzuECYkW652E56Iie47petsKDVyUaR05OH5OrTti/WoTUq2/7SdpCfJ3l8I29RXqFj+uTrBcfGlCVGg1HqNG3O9nqgnycwRwWRifIdPMIzYurhHlMsAUgkqm7Lg+WQoh+dogOETvAcVbPpOK7GpBAd/X7iYLj49Pxf7iVBREOO2kNVfbSU+k+TAbwv7aiRhdJeH0NDi3ppUISmIfVtIx9ND5NPZgueW3SA4co3v9RWImtZ/t4lsOs/eX3bT/sR8vdt0RQW2JiNHHxMckHYvcMKqPKUEQ5lWdP7seG6YZddVM7LVQ6A7SmgshnSBoYXKrqLhwnKhd/jbPg480IfKKGX995rwdYfpeX6c6SMBDKUaKk6xo3Oq6Xp6lFxGqJdNNTpMbh0jO7wEe2OimAgVlLVZ2fdvgpvYmm80otTLGXp9GmONgaGtk4y96xPF/L6OEDK1jOBYlN5nR0AF1ZtdxL1JPtj9HjM7+xgYGCCQCMBsqTlnzFFfX8/111/PP//zP59wzIsU+SQURUpF/j9x++23c/vtt4uPr7jiCp599llyuRzJlPCfPU6cu+69E6VSSSqVQhs1sNz0dWrPLmfXTzrxDQTR2bVoy9Q4m83IlFLGPpih58URSjfYsLRoqTm9DI1VRXg0wsHfdOLaYkdbpqbmjDJBgPOzdnqeHhOETN4Y+lINWodaFIS0Xu9GqpAikUhEgdLabzQy3eVHa5p3P9p0eyuxBavVK09yojIp0ZrVxGIJpvd4iE7ERIeijT9sIRVJs+9XvURGw2TiWXrfECa5ai9wMbFzkrgXkv4UcvXsDXKBu8/kAR/+PqFgsC3TMXMkKroRaeyw6mZhf+YETwubEQtdm6b3h5jeL2yndENhtNpMTwhzlW7Ruet7YYI+JhY9/1G0Pzp8wudnekPY6o2LYt60pcIxHV1QXGntUmLeHN1PjRbM5ehrtSy/bt6JqP8loTCbG5exD2aw1OrFbc25Q3mO+jG5daRnCwnRvjIGyWAKX19YHJeaM0sZeHuCiW1+IXKtLyqKtBytZtG1KObNceQP3ay8uVl0LxjZOo1MJ2X11+rxHAsy/NZ8M6l0gwVtiZo9P++m4lQ7SoOC6rMqCU/EOfzwwCJXpNKTSuh6eYiZ/VEhFk4qiJ/MtQZ8/QE6Hh0TXauIjdF4VQWpWJr2h/twNBowl+vp9I6y1/gWI88cYWBggBQpaAeFQsFciufSpUv5zW9+w+bNm/9d57lIkSJFivzXRKPRcOzYMfHxkSNHOPfccxkbGyOfzxOOCPe8/bzPwR9tRSaTkc3ncEmvoba6Fk25hsMPD7Lk6krqLiyl780J7A0mTKU69vyim5Zry3GutBDqj1Ox0U7ZGhs7f9yBvU1L1RYnQ29MY2s2YqrSsfMnnWjKNZSsN2NrMKGxqkh4M+y7r5e6C0sJTghNhrkFR1VnObHWGxjd5SXpE7LgV365Fq1dLYicZ/sYuhI1KqOC4TenQSM461hbhOKp4lQH7pMcdD0/zMzRCJ6jQUzu2RpHAzWnuhh4ZZJ0LEsunWf6oFAPzbkOHXigj5arK0WBkrVFi68jJgqUlt1Qg6FUw4Hf9xOfTBDojhespNdYpcR9wsRU+yNCPWJfbsDbExb3P+7LkY5kmOlZHLe75xfdi577KOK+D39PMpDC01EYCViyxszU3kDh6jjm3Y2Oj7xdOP6e/fPbmhuX3ldGUc8JtBa4Q6VjGeJ+4RxqrFIcbXaG35xm6N0JGs6vJDotvHD1V+uRa+Xs+kknR/80iLVFS3xKKBYVZg1qi5Ka00o51N/Pod/1s/LLtWy6rVUUnfl7wsRCSVbdUseB+/uIj8WRSCQotHJar3PT/uwwxGej6KQS0IDWpWP7He1oXGpWfbEWc6WO9ugYnk4/Uzs8lKw3U77ejqFCy9j2KaKeKCMfeEAD1Z8S3Cg9R4SJ6OmjPuK+HMu/WI5EDm/PvE5pvYO9D77FxIRQQ48cArVaGCOTycS5555bXLFfpEiRIv8X8fnPf57Pf/7z4uPvfe97/PrXvyYej5NKp0ilU8SIcu8DPxF7XkasrHR8hfrzy9l9bxcT+72YawyoXWpKWi0ojQomD/o49ng/FVucmBs0lG90Yq7WEw+k2H9fOyVrHahdamrPKkdjV7H/3/oZ+vs0ZZttBEbiWOoM5LM5wQ1JDc1XVoBUgkQiFQVKK79cx0xfkLhHJQqUNt7aSnQyxuE/DAJQ/SkXWocKhUlNIpAg3B+m/ckBAj3CvXzdd5tIRzIc+E0f4akEyUCa4feFXk3lqXY8BwSXpOh0Ao113qlnLkps+INpYh7hs80NGgI9gttQbDQBatj47cL9WSjwXujaFOxLEOwTRDGOlSY8B+cXT3ragzhaTYvO3eh7Xkbf+5j42+NYGK22kJmuEHKVrFCgpAZrrR5fe6TAjVNtlpII5Bh8Y4rBN+ZF8GqnUJuERgQnojmB0ty4+NojzLQE6XpmbHY7grjKcziAo8VMJi5MrFWd6WTog2lIQGQqTnBIcFWyNOtovryKofeEKLj2v8yex9lz4VppRaGbnQZIwJ77uwvGf/CtKVQWBSs+W4uvJ8TIO15xAad1hR5TqY79v+nFttyAzqmm+lQHMz0hjjw+TGIyIYqJep4fp3Kjna4XBpg5HGf99wTny9H3vNhazXg7g3Q/PesOYFbQ9+okNeeUkAikaH9qFLVLjb3BRF97P3v0bzLy8hEGBwdJkoROkMvl5POCY9Ly5cv55S9/yac+9al/13kuUqRIkSL/NVGpVLz++uvi49HRUS688EKOHDlCNpsVe157eY/9d34we0+QcLH6Uqpampjc6+Pow320XFtN1dlOhl6fpmSFFZNbz/77e6m90IWpSoe/I0LNGaVUZbLsuqcLY5Maxyoro+95KVtjw95iYu8vulHZVThWmDCUa9CVasgfkHDwd/1UnGIn7k3Ni5gQ4r8cy830vz1ONircP5uvrsRco+fA/V0kQ0INYa7VoStVCzWKCvbe342xTOgp2JYZabignJ6/jTFzLMTkAR+2JqMooJlzSUonIZ3I4u0U6qE516H2J4apv7BUFCgZa9SEBhKiQKnh0nJsLUYO/amf+ESSpCdZ0CdSGaXifs5Frhpr1CRnEvOxb0mIeRJ4OudrsTmOFy19LEkWi5BmCU/EFomXbEuMzBybd/8R93vW3ej4iLyWq92YanQcuL+jwJFpbly6nx/GUK4TxneBa1XSnyYVnXNIAvtyG2NbZxje6kFrV5GcEerTZV+oRm1VsednXfS+OIGnI0hiWvgclUGFoUxL5UY7ge4onU+O0HK1WzQ8SHqTTB30EwsmWHljLQd/308ylEMikSBVSKm7oJTR96cYCeVY+y1hMQAqsNXr2H5nOyojrP5aK7YmI+3BUTydfjz7AxjL1NScWYq1IcLwe5NEJmNM7BUEcQ0XlpMMpvEejYJUwuQBH5HRJKu/3oBCJ2Nn8APMtVo6/riDsbHZSLkD8z0vm83GxRdfzB/+8Id/33kuUuQjKIqUivyH8vTTTxc8/uIXv8hDDz1EJpMhlRImM2KE+dGPfoRUIiWXzzG8vZHzLjwPhU7KkUcGWXp9Fau+XMeB3/bRcGElDedXsvuBLpZdV0X5eieHHx/AtdROSauNHXd2UH1xCU0XVdD1t1HK1tgoWWZh+x3t2FcbKD3JgnOpBX2Jhv43xjn8+wFKT7IQHAmiMMixVRvZd18vpRss6CrU5DJ5IlPCTWbJZ9xIpBIOPjwoiIG0sPLmZpLBlChSIg/52R6FtlTH+L4ZYsPCjci1yopzmYWdd3cU3GzXfaVJFFbNCXHQQtMlVWTPy4kuAPEY5LP5E6qPa84vobTNhr8vTMfj882QOdek4PC8M1TfCx8uRHKf5cRQoubYIycWHy3EsdJA6Ro7hx8fWOSW1P/SJP1MFjy3/EYhgm57X6G70sqbm8ll8osmyiL9MfLZvLgKEAT3pKpPlRDdJAiF5gRKc3Fn23/WjudgGM/BDvH1zqVm0W1p3+97aTinHIBArx/OKEXn0AB+4jNZNn173oXg8MMDuNrMrPtuE7vv7SLmzZHL5MmmM7Rc56bjsWHQQsVaB44lQgNs/6+F87rptlaQwMQ2oQF1+LFBFCpovaIG5xITY7u9BIdDTO73U3uBC9cKK0q9AkOJnkQoyfiuGbRlamwNRlKhNKUnWZDKpYzun21a1Whp7+jgb57nKFOU8befBolGhUZUPBFDpVKRSqWoqqri2Wefpa2t7WPPZ5EiRYoU+T+fZcuWMTo6L0gZGxtj8+bNDA4OksvlxDzwR//yqFh3ASiHP01jUyN9L04wcdCLs9WKfbkBfYkOhV5O76vj9L0xTtkaKxUn2zFV6zBX60nHs3Q9N4x9iRH7cgPuk0tQW5QceLAfqUqCpUqHxhqmZIUF5zKzEJ2rgbItNhwtJpRGBcMPCPfO5qsqSSeyZNM5Ufyy7jtNjO7y4tkrTCitubEBpVnB9p8KQiG1RQF5mJltVEiVEg4+LGxv1RcEl6TwaBTv4bDo4nO8s1HHk0LdtPLLtWgdarpfGBFFS3F/Ep1dJTovLWTD9wWx8fGipcaLK6mJZQqi1T5MWKSxQt3F1YxumxLdpj6K1uurCAzNu0qJxFnkoGSs1VB3bhmVGx3sva+nYBvmGh2D704t2k5kOoHKVLhibmGEmjAuYTTWQuemhce34qYmwWnyzWkC3XEmyv0YSzWE+gstsQFqzypHaVSw/Q5BhHTgjwMsuayChsvL6XlmjKgnidKooPbiUkIDETqeHGHNV4VrQFMOxgoz2+8UXL4qNzlovcxNYDhK1/ND+Npj4r6P7vTgPtnO6C4vw29Ms+lWoU4bfNtDXauZwHCYY08Ns+4WoW4OdA+z8su1pOJpjj0+gr5MSVKS4PV9LzNjmOHoQ1uZmpoiT57e3iAmk1AHKpVKbrjhBh544IGPPZdFihQpUuT/Du655x7uuece8fHCiJK5nlcIHz+6c77nVXOkhgtrL0TnVHD0iRGWXlvJ8uuqOfyHQZZcq0d7gZo9v+mm5fJKHK0mPO1Bytc5KFtjZ8fdHVScaqfyJCs9r45TfWoJFRvs7LizHXOThpI1Fix1emxNRobem6LzyREcbSbC40G0DhVSiZn9v+nF2qrHWKMjk8wQ9cw7Lym0cvY/2C8Km9q+2kzCl2J/z2ydkYdcTrihG0rUTBzwidFllSc5KVtnZ9dPOgtclVbdLNRk+3/dXiASar2qZlE0XTaVJTK9uO5ybbBSe6YLX1eIzr/M17ptN9ejtitJ+JOi8OqjxEiuDVbMVbrCSN8PwVSnpnyjk/6Xhhc5L53oM9beLIhy9o8XuiutuqWZXDpX4B4FkJhOkEtlC3pe1lY9zZe7iYwLQqE5gdKcO+X++zoJDyXEbVlb9ZRvsGOu0XPod/0cfnSAmtNLAPAPRiE/Wy8DgZE4m25vJeFNsf83vRz5Uy/2VVbWfrNRqOUSkE1mSSUyNF5WTvesi7d7sxOZQko6nuPYX4YgARu+34xUJmVi5xQqnYKDf+onl4K2m2qJeZIMvz+FfzDETEcY1wYr7i0l+HpCqHRR4qEkE7t9oBaEUslAGttyAzKVlLE9HkiArdVI33AvL009TVlZGe/+/HkiEaHejw/EUKvVpFIpWlpaeOyxx1i5cuXHns8iRYoUKfJ/PhUVFRw4cEB87PF4uOSSS9i1axfZbFasvf76ypM8+6pQd0mQoJi4lOYlTQy9Pk3/O+NUbnBiW2ZE79SgL9Mwsd1D53PDlG+w4VpnQedU42qzks/mOfpIH7alZiwtesrX2jBV6znycC8TB/wYyjSojFCxyQG5PDtn5/HmBEqGMq0Y9VZ7votsOksmkRWFP2231DP8/jTeTuEet+xawc1m36+E7WhtKshDZERQBMlVMmF7CC5JlgYD8ZkUnkNB9sy5+KgE16HoVJxDvx+g90VhLrD56kqs9QZ6XhzDc0gQFMV9SXLJHPGJ47LQgDXfbESukbHzrgVzdipYel0tyUi6IFrt4O8+RIykgqaLKpg84Fsc03YC6i8sJTKVYHK3f9HvFsW/2VU0XVpB/JQkBx6Yn2utPc+Fq83K4DuTjG/zFbwnPBFDX64hueBwV39tNkLt3nZCAwlCAwlQCcL5hE9wNVootlp2YyNKrZyxrTPEJ5KM7Z5BZVOTDCXIZ/MsbHy5T3ZiKNOy/d52kt4k+/6tj6aLyqi7oJS+lyaITMbRlapxn2UnOpai76UJln2hGq1LjcohRe/Ss/MnndiWGWm+tBKFXo7nWJCulycIdYXFWOLx/T5KN5Uw9MEkY+/5WP/dJmRKGaM7fFSvsePtDtL13CirbqhDY1XR+eQorde4SQRTHHtiBIUa8ro077b/nXHtGMee3Mbk1CR58sz0I/a8jEYjX/rSl7j33ns/9lwWKfL/lqJIqcj/Vh588EEefPBB8fEdd9zBXXfdRSKRECfKuvu66f7l/GRH34tLqHRXEc7HGHhnlJpPVVB7mgulRiFOpAy8PUHFRgdLP18N+TymKj3xzSkm9s9gKFVTe4ELS60elUnJ4ccGcbQYUBgVaO1Sak4rJZ9zCdEjdig9yYJ7c4k4IQPgPt2BvlSLTCUVRUfLrqsmFUkzdSQAwMqbaslmcmLsSP15lcLEyC4vxGDo3SnSUSE2Y+kXqtHaVOz+aRfezmCB65D7LCfDb0wTmYgz0yUUIJYWLf6OmDC5N8v67zXT/eIw/o4YA+9M4Wg1M/TGWMF4d70wQtUpJaJASUQrxJVFxmMFrkbla2wnjI87Ee6Thag7rVZKLDbfgNl4awvTRwOLxFC9L49QusaxSNAU9yUJLYg6Wf21eoLDMXqfHxePd+74xz6YwbXKQs8zg2jsYG6yMLHNz/SRACUrLBCD+kvKsLeY2Hl3B2MfzGCs1IrCrfX/2IxMJaXntTHBdakriKPFRO/z48TGE6TDGTLpLOVbbIx9MIPpUh1ytYyyU0yERtLsvLtDdDTSVILBYeTAb9qpOLmcypOcqO0qUqE0A1snCHbHWXFTExKphMDQIFUnuwgMhBl4dZSVNzdDHqYPB3C0mgmNR+h4bliMkJvaHWTDD1pIJzLs/dcelGenmdwzyAfvf4BUI+W9n75AOi1cS4FAAKvVSiwWY9myZbz44ovF+LYiRYoUKQJAeXk5AwPzUQ8+n4+zzjqLAwcOiIIlgGee+av4s+4tHRujGwnHY3h/EWbtdxtZ99Umdt/TRd1ZZZRtULD7vi6WXlNF+VobXc+PYGswY6s3c+AP/VSd4qD+/FJ6X5vEfYqT8o12DvxpAEuNgopTHRjLNFjqDAx9MM3MIQ+ONiORqRDWRgPpSIZdP+nEWKtBX6FFrpFhLNMy7MtRcbKdZDwtrOCe1fPYG01MHPBBXBAIlSyzYK0xsOcX3Rx4oI+Gy8tFwdH6f2pm6qCfwfenSEcyjO8RBDqlG61MHPTR9eIEzReXia83N2rofXacXoTVYg2Xl6NzqDj4W6E54e0WosUWEvflCI3EGH5/cVRc3SWlOFvNBbWcwqzBVKlDdnIpge6PX2FmrtFhKNcUiIuWfqEarV0lRGksINQfJzwep/e1QtH4wJtTLL3WLW7DtlRP7dll7PlZd8HxGmsFYdHEPh/6EmGVlPsMJ8NvThP3CbFzc85Na7/VSHgsTudTIwy8PQGzjtkaqxT3ZgfpVRb2/Lyb/b/uZd13mmj9TBXtjwwxfSyIvcVA62eraP/zEPGxOEqzArNcR8XJdnqeGQONYB1uqzOg0CnY+/seiCMKjUJDCXKpHKM7PUTGYzRfVkVkPI6pOkZkOkZ4JEHdGaXYm01MHwuw9PPVpOJpRt73oLFqhIgdT4K6s0uRq2S0Pz+AT+OjbzJLZ3snHRMdGCIGwvvmnbC0Wi0Wi4V0Os33vvc9brvtto89d0WKFClS5L8HCyNKQOiB/eAHP8Dn84k9r4GhAX71q1+Jr+l7pYWqmloC+STH/tpP66W11JxegkItQ1+mRW1W0/PyGO6THbRe5yYZTuNcZiETzzL8/jRGt5aqM50YK7QYK3W0/2WQ6HScXCqH2qmm/txyyJUJ/S01lKyxUHmSXRAKz0ailW20Yq7WozIq5qPhrq0k6kkwM3u/b766knw2LzqNN11SidKowHfUTyKQo+el+X5U42XlGCu17P3XHjztQZxLzaLQp+IUO6PvefF1h8RFgYYqNeGhREE9s+YbDfS9No6/M8rkTh8V620MvlsoDGp/bpS6s0pEgdJC1n6rkeh0osAB3L3ZgVxz4tiP43Gf7MJYqRNdpebY8P1mpo74GXi5sN7rfHaYys3ORfFv4ZEYMf/8+5ffUE3Uk6TvbxPsmj1eU52aYF8CX3uE6JYE3S9PCudqqYWpvX7G987g3uwkkcjhPs2Bq83K7p924WuPMFXvFx2fVn9JmKya2OYhEcgxvseLa5WV/hcnIQExT5J0Ii1GjxjLtCj0clybLETH4uz+aZfoaDS8fQyd08D++9qxr7BTd1YppnIN4akEg++OExhMsfyLQn9s/4P91J1TgvdYkOGtM6y6oQakEqb2B6g720ZgMEzHcyNihJxnf5C1324kFU2z774epJsT7D00xrZt28ipc7x/3/xEs9/vx2azkUgkWLduHY899hjV1dWf6BwWKVKkSJH/u3E4HGzbtk18nEwmufLKK3njjTdIJIR7b548zz//rPga9R41m5SbSKWzzPwhRNs/1rHshnr2/qKblsvcqC0q9t7fjUwjwbXKSngsSskyKyXLrRy4v4vKU0oo31jC4HtT1J9TRva0Eg482I++UkXZRisKo5yK9Q5Gtk7T/ddBzFU64v4orlVWEoEUe3/RjaZUhaFUgdqixFylY2zrDI4VJjKpLLHJhChicrVZGN/nFVyLVIIYyrHEzL77emh/Ypja81yi4GjNNxqZOuhn5F0PMU+CqVkncdsyI5GhEAOvjKH4tFt8vbFKVSC6rvyUA3OtThQDTR3wY6zQFA54UnCsnNq3WAxecYqd8nU2sbYBwT3I1mxEqZdzpHfwY8+nc7kFSyJbIFJquKQMU7Wevb/pLohgS3qTzHSFGNtR6KI0tnUac61eiGybPc6Gi9zsu6+n4HiNVSpCQ0mG35vG2miAJLjWWYTPTkJ8et4datXNdUSmEvQ8O0bfq+PzEXIqqD+3jGRQqGeO/nmItlvqab66ks4nR5g6FEAqk9B4cTndfxkj6UmidaqRa2S41pgZedfDyLseNt3WSjKUBikceWYQQrD+e01I5VL2D0VQaGQMvDWBvz/KqhvrCI/G8DmUhKfiTOyfoazNSvk6O9OH/TRcWk4qlmH4tQlUKrA1GQmPxyhfa0NlVNL94jCxfIiR+ADdb3VzzHMMg8FA+JfzPS+dXofVakWpVHLbbbfxla985WPPXZEi/1EURUpF/lM5Ph7O6/Vyyimn0NHRIUZUHWs/xrF2Icpk99b3cPW6iIQjJF5MccvXbmbTt1vZfkc7NaeVIi+TseOuDlo/X0n5WhvD70+jX6VD79Jx8I/9VJ/mpPWySka2TlNzZinla2yM7vIiN0hY8hk3OcBaY2Di4AyZRA5nm5GwJ0TFJgeZeJbtd7SjLVNjaVRhLNURnYoz+o4Xx0oDSqMCuWq+2ZGOZQiMxiEmRJFVfaoEf3+E6f0htDaVGPfW/9IkwWXCTWDlTbVonWpy6VxBfnzLp6vJZ/PixFb5FhsylZTS1Xb8HcMQQ2zmlG6w4Fpt5cD9fQR7YhzuEbbTcEU5PU/PNo1iIJVJUJkUBeej/ekhgmMfr2oG2PerXpxtRmLe+QaMs82IRCoRc0hBEF15OyPMHIkycyQqvq5ik5P9v+7lwP0LLBy1oDIpsTXKxUmy+kvKcC4zM9MTouvJUfb9ShCBzbsV+Rne4SE4LGxba1chlUvQ12qJ9Mew1BpY/bV69v2ql95XR6g8pYSaU0sYeHkKtUGBRC6h7tIS+p6bYs8vu9l0eyuazWpS4RQH7u8TY/bSUWFCs+elEeQqGas+3wp5GN42TS6bIzQaJRVLU77WTnAoQulSG3F/El9vhOotDnQlGoY+mGLpFxrIJLO0/3UEx1IjMpWUZDjL6hvqQZrn93c8jK5exeTfOunv7yeWj8Fr80OkUCiora0lGAxy2223ccstt3yi81WkSJEiRYpYrVb27t1b8Ny//uu/cvvttxMOC7VINBrlzbfeFH+/434dFouFsfw4Pfce4nPfvYYVn6klGUyjKJejK9Nw9PEBmi93s/QaN572ILYmI+XrLYzu8GKp09F4fim5bB5juZb+d8aQyCQotXLMTVZqTndBHrpfGCEezFC60UrFRjsKnVxwTIoLQpqKTQ6kCokoIK+/tBSpQoJSL3x9Kd1YQtSbYOB1YZJmzdcbUOjk9DCGtUWLTClFbVZCXBBxh/oFpVPNGS6qTy1hx10d4uqr1uvcmGv1DG/1MPqO0PCw1OkLsux7nx0Xf171lToG3hwn0B3n6EODgCDy0ZdrRTGQXCFDIpVgbtSIrkmh/jhdzw+LwqiP48D97SjMhU0itV5RsF8gCKL6np/gyB/ma8lVN9cx/MEUM0cjBZbXrjYbCq0cR5tRjHibi0vb/qN2IWYPqD67hPL1dvQuDe2PDtH32ii+2UhihVaO3jVr99xgwlytY+pYgLgvh78/hMow784kV8nQ2pRYW7QMvzmNrcGAuUpHyXoDoZ4o2+9oZ+23G3Gf4mSmz4vWIpwHtUVB7ZmlaEtVqDQKJo74SPrTrPyHGiRSCQNvTVJ7Zhm+7hCD73pYdWMt5CE4GMe5zMx0h5+eZ8bZ8MMWpBIJU3sDbLq9Fa/XyyMPPkbdkhp8+3yMjAjC9v3Pza9+02q1lJWVYTabeeWVV7BarZ/ofBUpUqRIkSJf/OIX+eIXvyg+TiQSnH/++bz//vtkMkJsREdXBx1dQq9nX4eEbb4SIT4umOWGL3+Bthtr2f6jdurPLUOukdP+k06Q5SlZaWF4qwdThQ6TW8+BB/up2mKj9swyRnd4qTu7FPcpOQbemkRlkdN8ZQXJWJqyNjsTB2ZI+NNYqnXEA1Gqz3CRCqfZ/qN21GYphlot1joD0ck4o+95MTdo0DpUyDXzbeNUJE1oPCaIctTQcH45vp4QnoNB9KUaFHqh3zT6npfIuNCvab6qEluTEalMUuCItPT62vm4OsC23IDSoMC1yoq/U3jv3n8VVuxbmnW4tzg59OAAickEx/4sLLyrOb+kQDgkV8lQGwodIjueHiIdXCxoOhFH/jSItVVfIIAy1amRyqTIFfO1l2uDlehEjPBQgvahYfF11aeXceh3/Rz982DBdnUuLSqLkj6EmrXiFDvuk52iS9ScCGzD95uRyqVM7fXj2R8kMZOEBGgsSuRqmRgL52g1YarUsf/+XrpfGKHmTBeudQ4G35hCqZcjU0qpvaCE/pemOPjbPjbd1oreoSHuTwqOV2rY9N1WksE0o9u9dDw3gtooZ9U/tALQ/8YEcpUMX08I/1iEhrMqCAxGcLRISPiT+HoilK+zYK7WM7J1miVXVZJOZuh6ZgRthRqlUUFoJMaya6pRaOU8eu9fkFZnmHytk4GBAaL5KHwwPz5yuZza2lqSySS33nprwd9PkSJFihQp8lGoVCpeeOGFgueee+45vvGNbzA6OkoulyORTPD222+Lv9/+By1Wi5XJ/BR9dx7huh9ewbKrqwhNxrE3KTC4tRx6uJ+WT1ey5DO1jO700nC+lUwiQ//fJ7A0GWg4z0UylMa53ELf2+N4jgXIZfOYGszUnuECqYRjTw6ST2dxrDBRvt6G1qlm36/aSYbAVK+l6tQSlHq56NZdeZoduVom9lPK1lgJjkYZeU+odZb9QzU6h5r+VybRlKpQaOVoHcJCut5XxojMOmU2XFAOuXJ2/qRDFCBVn1NC2RobI1sFkQyAc5kZpUEuxJwlEZ8HWPrZKka2ewj2xuiZdVpUOVRYqjRM7g0AiLFk5kYdgW6hdkt6k7Q/NSQ+/ji2/7QdvaNwMaDaKtQ9CwVK7jMdDP/dQ9fT87XkkuvdTB4IMHMsJJpIADiWWVGZFDhWmESB1rpvNyFTSdlxVweeQ0E8h4I4V5upPbsUS62BjieH6X9rXHBVQpivnIvys9TqKVlhITQQJBmCyYMzaG1q8fOUejl5iXBOp/cFsDUYcTSbCawOERxKsfPuDlZ9uY7ac8rwDwXQWHT0vzGBTC2l+dJKJvbPIJVIGN/nJR3OseKLDcjVMrqeH6X5kgqmDvgZ3ekTel6AvytM7dkupo746X1+nHXfaUKqkDJzJMSGH7Tg9wR46A+PULeiivceDzA0PAQSyC/oeanVasrLy3G73Tz99NMYjcZPdL6KFPnfQVGkVOT/V+x2O8eOHSt47uc//zn/83/+T8LhMPl8nomJeYeeX/7qlyiVSlL5FG/+C1x44UVUfNZK3JPCXCmhdJ2Vg3/uZPl1Taz4Qg2Db01irtHjbDMxut2DfamR0pVWop4EpkodY3unCKtlqI1K8vo8FevsAHi7Q/i7gjRdXYGpQodcI6P/7XEm9vtxthmpO6cciWzhxFkJarOSVEhwu3FtcpHP5QkMCpNQMU8CpMKdbU6E42kOcvCRfpZdXc3oO4Kid913mpg84MPfHyE9m3tass5EIpDg4G86RYHQ6q/W0/5EL3EvVG5xCk4/dojPipobLivH2WJGcb1MXEW2MJ5kjmDPJxMozTG9P7To8fT+wu1WrLdTvlaI4puj+rRS5BoZWruUmDdH6/VuQmMxRt/xisdVf0kZvc+P0/v8OOZqHcNbR1n7rUY8HUEGX51i8qBPtMXe9O1W8rk8O+7sYOqwD7XZRaRfOJZsJgdyYaxnjkRpukSN2qBi6kCQI38cZM03GihZaiMyHifUF2Lo3SkqNjlouLASuU641oKDEWRaGdWnuphq92Eq0+HpDJL0pXCf5AQgMBjBtdRKYCDM0H4vyy+rJpvMYXbr0Jdq6H51GHujBZlKSjaZIzIZw7Apz2OPvMrE5AQmswmPx0Mmn4EeoahOznpPNjY24nK5ePXVV9Fqtf+uc1SkSJEiRYp8FF//+tf5+te/Lj6Ox+Occ8457Nixg3Q6TTQaFSNFh+I93HnnnUiQkMlmaGxsZMOGDUxt9dGMG7lWhlwnY+DtEapPrcDfE0ZtViFTSDn63ABlS+24N7nw9YZxrbKQz+UZ3uZBqZdTucVJ1BvD0WTFPxgiNwalK63k0jnqzi0jHc0w9J4XjVWKqcWEc6mFmCdJ119G0bjUOJeZkcolovgoL82TTQl1kq8jJjj/HBNWYy29pgaA7Xe2M/julCgyrz2/FHONjo7n+mmx1IoCpboLS9l9TxcaqxSAqrOcKA0Kep4ZQ1elQWNTUX92BXu75+2ul15TAxJEkdLC5slCPqlACSDug7ivMBZuYZQbwNLPV2Ny60hHsqLASONSo7GrqD2zjJmj3WisUpqurObgb/s59uchNFYpugodtqV6Zo5GxNVi7jOclCwzs+cX3Qy+PoW+VBAoNV9VibXRIIq4QmMxMjHBPikyGcfk1lK50c7I217kagVah5qK0+2MvuVl+53tbLq9lYaL3PQpxuh8agBjo466sypJrEsRHo8z+M4kxnIdq74g1HeB/gi5fJ7gSJR8NoelzkC2I4hjo4l4IMHUgSAlbWYUejlTh2ZYdUMtmWSWI88Os+SSCiRSCdHJJO4vGDlw8AAvv/wSLpeLvb96k0AgAMChw4dQqVTk83l0Oh0tLS1ceeWVfPe73/3E56dIkSJFihT5ONRqNW+99VbBc48//jj/9E//xNjYGPl8nsnJeRfEX//2vvme111w3nnnU3ldCdG+FCWtUsrWWDnwxADLPu1m1Y21dDw9gK3VREmbib7XJyhpM1O52U6gN4Kt2cTYXg/+/jAyhRRDiRr3ZgcSmZSJPTOExmPUXVSKsUKLxqai+5VhIn0xrK166s8rR66RiT2v8i029GVasmmhRixbZyOXzYnOSJGJOImg4IRTttlG9amCy07nUyO0Xudm+G2hxlr91QamDvuZOjwfx2Fp1pHP5Nl/33xs2vIbqul+ZphEIEftmWWozArUTjWJ2Wi4ilPslK22ozGrxKi5HXcviCeZ5USOSx+Frz1S8DjYl2D7nYU9r9rThX7fws+rO6sCtV2JtkJNbDRB3UWlggjoPS8H7heOq+acEgZem2L0PS/2FhOD74+z8st1BPojDL4xxegOL5mkcPwbf9gKeeEzpo8F0JdpCfQINWE2mQNZXjw+fYkWjVXN5MEgPc+No7GpcK2yEZ5OEu4O0ffaBJUn2Wm5ooqeF8eQyqV4jwWRqiXUn1fG1OEZdCVaJg7MkApnqD1TmFydPuKneosLz9EAE8dmWPZpod7S2dPYWk30vTqMrlSP0ignE8/iGQpQd4qNJ598kqHBIWw2Gx6vR3AFHxBicufckurr66mtreWpp57CbDb/u85RkSJFihQp8lFceumlXHrppeLjZDLJDTfcwIsvvkgoFCIWixGLCfNIA/ku7rr7LqRSKZlMhrqeOjZu3EhwZwjyoDQp0LvUHP3rAEsuq0aqkKI1q1AZFRx4tI98Nk/FWgf+nrAQAZeHwTcnUFoUVJ1Sgn8wjPukEmZ6g0Qm4uirjOiBposrSIbS9Lw4hsoI2godlZucRCfj9Dw7hsquomy9HaVGzrFZ4YxUKSGdFPow8YkkCV+S6aMBAJZcU41ELmXn3R30vDSGetaooGyjFecyMx3P9WOq0IpCpMpPOdh3Xw8qoxSS4FxtxlCqoe+lCVRGKUa3jlqdnAO982YDK79QjUwhE0VKc65Ax/NJBUrCyYHIaGH03PExb/UXllKyygpZxHpSZQRTtR6VWcnMsRAqIzRcUsXRPw/R99IEo+9PobIpsbTo8XdEmNjnQ6ET3IxK19k48EAf0/sCmKt1dL80hvtMBxUbHIx8IBzTTHcIZuOOg8MxHEtM2FdZGXvPh0whx+jWUXGqndF3vOz8SSebbm2l8aIKel4ao+O5YWwtRpouqCQ+k8Q/EKH/zQnMdXpW3dACwPRhPxKpBG9nkEQwSc2pZUwfDeBs1RIPJPEcClDSZkZjUzH8vodVN9QIPa9He2n+dBVSuZTYdIKqz5g40nmUl178G06nk32/eQu/X+iDHjzkR6PRkM/n0ev1tLa2csMNN/ClL33pk5+fIkX+EyiKlIr8l+Nb3/oW3/rWtwqee/jhh/nmN7+J3+8Xv9QCvPji38Sf1W+qcVe6iWaixHYHWL58KZVbnKRjGXQ2LYqVSqQyCTKVFIVOxtheL2WrnWSzWWRSYbIqk86Sjmew1RrQORRorVqiAaHZUtpmxX2SE5lSRi6dI5fN0fyZCuLeBM6lNnK5HGO7PWjdWlzLLUgkEia2CTcFQ6VWdBsKjAaxLzES6AlBDPQuDRtubabjL8PINTJK11kJj8TpfWMcrVtL7VllSCSCIKr+kjKsjQbkKhkNl9QgU0qJeZKMbBMmpdZ9p4np9hl6nh3D6Nagc86reufi6TQWFV2vj9B0diWTB3y42qzIlIKQZvdP5+0Z5br5lWIbfiCs6Or46yA6l5ay1Tay6SyT+/1Y6g0oVDIO/FYoWjKpLJFJoRhpvLocc4Weo48PodBJqT1fyFLVWFUYK3W4VlgIDscwVmhQmZRYGwy0vzLC3l/20HK9G4VOjr3JSNKfomSlhfBElIltfmKhBGqtEkuLFlujCblGxtrvNrLn3m7SkQxqi5Llt1Rz+P5BhndM4d5YwrLPVjO6zUM8kECukVF3VgWJcAqFRkYqkiI1nhGiAPN5cuk8cV+SZCSFvdGEVCYlOxgUHLbSGfz9Yax1RqRyCcHJGMsvqyaTyiKRStA4lRw92s5QaoDeLilDbwwxPT2NVCol98i8C5XRZMRkMhEMBjn55JP505/+VIxtK1KkSJEi/+loNBree++9gufi8TiXX345b731VkHd1d3dTXe34Mqz7Z6XcblcqNVqzGYz6Z44tTW1xDwJdCVqll5Ww4E/drKqsRlrk56pYz6MFVrcmx0ERiNorCryUsims8gUMnQ2JZYGPRKJhMBAFP9QmKpTnZRvtqFUK4j7kyi0Mko3WqncIrgsRWeEyZrqC5yoDSriQaG5seSLVSj0cswNBmaORkil0kglguAoG89SdYoTXYkCvVOHQi9n6ZX1HH24FzSw4nM16Bwa9KUaDv2un9VfrUdpVAhxrgNhqk9x0ff2BFPb/DRfVYmuVMW+X/bS9/o4FSc7qL+sjN5nx7G2aKk7p4LAUAi9S0dkKoHepWbkg2kaL6okncoQGozR9ZdRmC255kRDdZeU4lxqJh0WYmBXfrmWbCaLSqfk2FMjLL3GzfAH00ztDRDzJNG51Ay/OY2uSkP9eaWkw1nanxog6Y2z9puN5PI5VAYlzddUYHBp2fOLblbdUkk+nye8Js7RpwYB2PCtZqRSKRqXmiXXVYouoJ1/G2H9N5uw1OkZfceDsVxLnjxVZzkZemOaio12KjY5CI5EOPL4AOu/3oR7k5NcLoP/UIhMKotMJqXx4koiUzHUJhWRqThShQTnEjOmWi0yqYzp9gCWWj2WBgP5bJ50MoOxQsvUMS96hw65SoZErqRikx2FVk7cl6Tp0ipCkRDbPtiG1Cal/9X99PT0kM1myb6fFa/dYDCI3W4nGAzicrn4X//rfxVX6hcpUqRIkf9fuPbaa7n22msLnnv11Ve55ZZbGBoaKqi9XnnlZfFn5T4lbrebeDJOYl8Ly1Yso+GCShLeFPoSLYqTFOTzORQaORqXmoEPJqk+qYRcNgd5kMikpOIpMvEcjmVmdOVKTOVGor4YoaEYZavsqE5VotDIySSzpGMZGq4oIzIRo+pTwnbGD3pRO9VUbXYikUnECA1bqxHJ7JLz0GSUXC7HzKCwyE1foWHDD5s5+PtBVGYF5RtsBAdjdL4wgtoMzZ92iz0v92kOnCvMKPUKGi5zk89AzJug95UREqEEq7/WgLc7wNBrHqxNBjTW+dX3rde5kcgkqAwKBt6aoPbMMqaP+nEutaAwyEmHM+x7sAdmdUuKBT2vtd9tRKGS0/nsMDK1DPdJTrKZLNNHghjLNCj0cnHSLBVNE/UKG6k+14mt3kTHcyMoVFC+1or2XBW6Eg3ZVA5bs5HIRBytTYWhQoutxUjPayMc/G0fdReVonUI4v7gcITKLQ7CY0LUXWg6gs6mwdqqx+TWoTIrWPOdBvb+tIfYTBJztZ7lN1dx+DdD9L4+Qv25lSz/fBVDb08Tm0mgtilpOLuM+DobCo2cRDhFpDtBwwXl5MmTSWSJTieI+xJYG43IVXL8QyGqTy0hk8wIE2XNFuRqGbFIgmVX1pJOZCAP5gY9PZ09dGW6kE/IGd41zOTkJFKplK0Pz/e8srksZrOZaDTKGWecwb/927/hcrn+P/71FClSpEiRIv8+VCoVjz76aMFzyWSSb37zmzz55JP4/X5yOeH+1dfXR1+fMMf1/n0v4nQ60Wl1GPQGFF0pauvqCI9EUehlrPpMHdt/1c6mFRbsy4xM7veiL9VSe24Znh4/+jINeXmedDxDPgdGtw77MjNSmYTpg34iUwlqz3aRTthRm1SExqMoNHIca01Urneg1MkJjwtiKud6EzqHhkRA6HnVfboEjUOFtcmAvyNCKpFGNuv6mI6kaLy4HF2ZBo1RgdappvXyOjpfGAUVNF9WgbXeKEa9LfuHarQONTK5FM8xP3Vnl9P92ijevSGqzynBXKvn4AN9dD0/Ss2ZLmrPd9H/8iT6ChUNF1TgGwhhLNcRHIlidusZfHOc1mtrScfSBPuj9L44IagQJGBbYmTmWIiKU+xUbnGQ9KfZf38vS65zkyOH2qCi/fE+Wq+tY3SHF8+hIDFfknQ8zfDbHlR2FXXnl5CN5Tj8UB8RT5JVX64jm8uhd2pouKwMvVPDgT/1sfraWnL5PIEVETqfG4EkrP+nJmQKGfoKFfUXlqOxqlD9fYzhv3soXW3F6BaczG0NRiQKiPtTjL7npfHCctxbSgiPJ+l5bgxTtQ73ZieZeBZ/b4xULI1UIaX1yipmekPoSzUEh8OAhPJ1dmxLDEjzUsb3ebG3GilZZSWfyREPJrE1lTK2z4vOokJpVKDQypCttaK1qQmPRqk7r5RoIsq2D3Ygqcnz+vvt9PT0kE6nyW2dr7uCoSAOh4NwOExdXR233norn/nMZ/53/mkVKfIfQlGkVOT/CD73uc/xuc99ruC5V199lZtvvpnh4WHy+TyJRILuHmHibGxsjDfffAOFXIHFakGlUlFdVQ0SaGtrw2QxIWuQks/nkclkpKMZUvEMOrsg6pHIJcj1cvL5PAqlHIVRTp48EomE0ESUQF8U92YnZrceW42JdCKDXCWj+vRSVAZlQfxZ/RWCyCg/q76t3FiCTCbDfUoJnoNhkIJUIiXYE6Pr5SGazq/CWKlj4zdakMiE7SRCQpPK0qBHrpIxunOS4b/72HR7K2prHq1NhVQOco2MstVOBl/xQg4UBjlLP1+NQi1DYxdWi0ukEmq3CM5G1noD2UQWqVKCXCMDLTBrriSVSsVjkMqFsfJ3xKjcXIJcI0OukVG+3o5MKUUilbD+n5rZ9ZNO5EoZWrOGVV+uQzNr16hzKqg6xYVCJ0cik9D78ijOFVaMFVostXp2P9DF6i/VozIoWX5ZNR25QUyVOgD2/rIHfa0g8tI7BVchrVE4T5Y6I+2PDrPp9lYUajnaMjXdr4yz/Lpq9FYty2+swT8Wnj0GidBYy+WQSqXEvIJYSSaXoTZJ0ZjUhDwRjA49MqUEtUmJTC1FIpEwtn+a8jbBQUkml2FvNJNKpRgZHcErn2HHk+8wNT2FWq3G4/GQzQqTYgqFQvy5vLwci8VCW1sb999/f9EhqUiRIkWK/JdFo9HwyiuvFDwXj8f5xje+wRNPPCFGxS1c+X/w4EGkUilKpRKn04lWq6WktoSOjjwNDQ04Ws2kooLjpLlCz9D741SdXAaA2iRMiCGBfC6PuVqH0ixFKpMiy+cJT8RRmxUoNHJqznCRz+bJ5/NozWqWfKEKU4VOEBmncuiqNBhLhHvs+O4AAEr1fNytsUqHRCJBa9Ow5xfdrP12Awq9gpKNDsrabGK9dugRIXpDZVaSy+TofmEEa5MJhV5O5Xo7U9v8mGp0yBRSlny2imN/HqLu3DIs1XrWfa8JX18IhV6OtdGMTCFFoZUj18jwHg7TcEEehUqOqUqodebqPXO9IKqy1hiQSCSk40INobWrxTrUvkQQVlWdVoK5Ro/BpUGmEGq2FZ8VHKNypjyBIS1155Sj0MsJDkWZPOTHfZJTrFGnDvopWW7BWKll/deaOfxoJ1KplOhMgvhkArlaJtSCGmi9vAq5XI7BJTS9otOCEM2+1MjQG9OkommUOgXNl1Xh6wmLNWTNlnLK25zIlTLS8QxRbwJzpR4AvUpD1Jsgl82J50eiyKLUKsims2QTORQ64auqpcaEQiNncnISv9/P1OQUBw8dxGAwEA6HCYXmnT41Gg2pVAqZTMayZcsAeOCBB9i8efMnvfyLFClSpEiR/3TOPfdc+vv7C57bvXs3t9xyC0eOHCGZTJJKpejtFeIsxsbHePPtN1HIFZgtZtQqNVVVVUiRsnL1SswOMzKphDx5pHIpyWCa6EwEW52JlDyNXClDY1OTzwu/N1SoQCrUGjN9IcLDcapPLcHeYMLZYiERTqLSK6ncWILKKBdrF4DK0+0FPa+KDXZkMhlVW1zM7BdcnCQSCYnpBAcf72fltbWYqnSs+2oTMqUMiQTRhcnabESpVzD4zgTjW/1s/EELyMDXEyE5k0JlUlC+1sHQax7y6TyqEgUNny5DY1ahtauQSCRI5BLcW5yozAosdQZSkTQKgxyVWYHWLjgdgdDnmkOhFvp/vvYIzVdWoDIrAAXla+VI5BJkShlrv93Invu7URoU5LPQck0llnoDAMYKLSXLzajMCuQKGR1/HcK5xIyt1YRCLWPvv/UIQninhiWfrqXrhRGsTcJ7993Xg9osjJHOJdSwJpceJGCu09P/4iSla20oNQrULjV9r03RdpMOvV1Hy/WVBHoDAMgUUurOKRV6XjIpweEocr0MuVqGTqlGZ5Pg7fFhb7QK/TOLCoVBjkQiYfDtUapOqZjdjgzXcivpdJrRwRG8Mi87//IeExMTaDQavF6vGF0olwvjBuByuXA6nWzZsoV77rkHtXp+0WSRIkWKFCnyXwmVSsUDDzzAAw88ID6XTCb5yU9+woMPPsjExATZbJbp6Wnx94ePHhZ7XiXOEtRqNaUrSjl29BhNLU24VtuJeISJNUe9hYG3x6k5tQwkoJ0VoEgkkEvnsC8xo7bFkKlkIAH/QASlQY7GoqLhrHKy2Rz5bB6dQ0PTFRXYmoQ4rmwqh8quwl5vAcB7VHDFVptUYq/HVCX0k3QOFQfu72PlzbVoHWpsLQbcm+rIZnLk/x/27ju+qer9A/jnZjfp3ou2UKAsGYJMkSkqKktRQFGmCDJE+ao4fi7EreBWUBBxsBRk7yF7g8oeZZXuNk3b7JzfH2lCQ1poSwtFPu/Xq0LOPffek6Qhj+c+9zkO4O+fkwEAfjFa2M12HJp3Bv5xvvAJVSO+XTgyd+chrEEAlDoFGvSPw6Ffz0LzsAqyRBmaj/VD+r858AlVI1wXBKWPwrnSS7AaeWfMEDYHVL4qBNaWAbgImdwZcwXW1CHr3zyE1Cma88p3zhH61dA5r5HKJATUDXCOoVMEAmvqoAlSQaF2zg01G14LMoUEu8mOzEN5SLwvGj6hauSezMfJAxdQs3M0ZHIJajVwdnM6YlqFIriOH1qOTsLOL45CrpIjP92I/PPOuFaSSZDp1EhoGwiFSgH/ouuROWfyEFInAOHNAnF+YyYKMk3wjfBBvd4xSD+ohyQDIIDEbtEwtTJD5auE2WBFbrIBoXUDAckZWxakFsJmtUPtowIEIFPJoPFXw25xwJxjgU+I89ppaG1/qPyVSE9PR3Z2NlIvpuLvv/+Gj9YHBQUF0Ov17t9DHx8fmM1myGQyNG7cGL6+vpgyZQruuOOOyvp4EF1XTFKim9Z9992H5ORkr/ZPPvkEkydPRnZ2Nqw2qzuYOHfuHADgr7/+gkwmg06ng8FgQExMDGrVqgWVUoVaCbUQXSMaVqMVSrXzgolcJYPDLiBTSDCkFsA/SgddqDOr1lpog1ALFGQYERDjC58gNYRDoCDThOOLUtDyf0lQaORwOBw4+NNZhDX1g8bfmSy0Z6pzcsl1txkAJNwZBQA4+ONp1Lo7AppQFf798ThUQVq0ebk+TAYzlBoFMo86J1VOrj6PxLtjEdMqFLunHsfZzenwi3KO7fAvp1BY6HAmO8kk93Jv2mgNClOuXvLaYrC6/+4q8Q0AB6eddh6naOk2AGjweBwCa/oiql0QDv6c7Fx6TQs0G5yIfV+ehDbauS692WDBnu9OAIVArXtiAAHYLXY0H1Ybe6acQNKjUQio4Q9zAVAszwu1OkdAkiSk7HG+l1azDUq1Agpf5z9hBelG6MJ9cNugeBRcNCPtQCaC6gTAL1rrTM6yCZjyLZAkZ9BmLrRCG6pBQYYJSh8FHHYHZAoZfIOcE0IFGUZndrrJhMOHj8BkNmPnH1uQciEFGh8NsrOzYTR6Lr8COBORIiMjkZGRgTZt2mDWrFmsjkRERP8JPj4++Pbbb/Htt996tGdnZ2PAgAHYtGkTjEYjTCYTzp51Lrtx5MgRj/0BZxJSUlISwsLCcHbdKbS5qzWUOoX7u9xhd0CSyaDWqeCwCZhzrfCL8oE533nxyqS3wGayQxuigRAOBNbwRWGuERn/5CAwPgC3PRbvrMZ0pgDGC0YkPea84OLa326zQpIkFKQ570BTapWwme3IPpyHsKQAZB7PxenF6Wg+pjYcNgEIwGEVyPonH4Up+QiooYXKTwmfYGDHe0fQ9Ola+HfeGQDAgVmnERSvQ1yHcEAULQvsA/j4OJduc9k22XM5EmERgAo4udC57OyuT495bHfFcD6RGhhTTTi3NgttX2mAwFq+ODjt0mucfcyAnJMGpO3OxR3j60Lpq8C/C09D/7cRgXV9nM87oxCtX6qPAzNPI2VLGhoMSkTBBRPUOuf7g6LiQzJJBmEXgBE4tOAM2k5wLsXmX8sHZzZcRP2+CVDrVLjjubrY9fUxNB5UE7pgDcIbBAICyDqhR2CcLxx254UrmVyGwBq+MKQWwC9CB4fVAZ8g56SQsAvYrXaEJ4Xi9KnTyMnNQU52Dk6dOgUhBKw2K7Kzs913N7rYbDZERUUhPz8f0dHReO655zB+/PhSf4eJiIhuJi1btsSuXbu82ufPn4+JEyciOTkZVpsVGRnOpS/OnXfOeW3asgkymQy+vr7Iy8tDdFQ0aiU657xqOGogoU4CzAVWKFUK581tameCsFwlR975fITU8kdAjA4QgCnfAqVagbzzBQito4Iu1JnYlJdSiH9+TkaLcXWg8ldCOAQO/XYaAYkaBNTwhRACe6c6l6gVdqCooCUSOzgr6Ryak4yo5iHwjdXg0KzTgEqFVi/UQ2GWc66q4KJzvuXfhafR6OFaiG0TirTdOTi++AKCajkTno//kQyTCWg52pnstG2yM14qvizclZj1Jc95HZnrXLJXEwiYTABMQK0HIxHZNBjRzYKxf8YpZ6KTBmj8WAIOfp8MTSBQ6+5ImHItOPjdUZhygdr3xUA4nPOGTQclYv83JxF/bxjC6gXCordCEpcmveI6R0GSJKTtcy4bbNKbnUsoa5x9sk8aEJzoh6aDEpB3vhDJG1IQflswgmv5wy9aC7vFgYJ0IxRaObRBGpjyLAiI08FwsRB2iwPC7oBMKUNAnPMiZ97FQvhHaWGz2vD33//CrDXiwJI9OHfuHHx8fJCTk+NeCqc4nU6HyMhI6PV6dOzYEZ999hkSEhKu+loTERFVd2q1Gv/3f/+H//u///NoN5vNGDNmDBYuXIisrCyYTCacOeucAzp6rGhVkj+cS/y6lo1LSkpCRHgELq5Lxu1tmsMnRI2c0wYE1fKDzWyHTC6DJkgNu9mBvJRCBNX0Q0G2CRBAXmohYHfAJ1gDSEBo/QDkpxYi61gefII1aDI4AXKlDNkn8qA/UYj4+5w3o7kSvm3mojmvVGcspA3WwFpgQ8bfBoTVC0DO6XwkL0/DbYMTAAlwWBywWwVyjxUg90wBgmv7wjdKC3WoGrs+OYaGj8fh0O/OOb79M05BG6pGUs9YqHyU7rkqtb8M5rxL8zU7Pry0WgsAOMzOqp4nlzjnvA5MP+2xfft7zjkydaga5kwz0nfr0frFeghK9MPOL45CrXYGkukHnBWo0vfkovHQmtBF+ODwgjPIOVwAdZgasrsl5F0oQJPhSTg0JxkZ+zLR4PFE5KcYofZzJgQJq3OOSlJIztVULpqRfDEN0S1C4LAJ+NfU4OzGTAQm+EHjp8Ltz9TGv3POoda94fCP1iGqeQiEXSD9cA4C43xhNdugdqggQUJo3UBkHc9zvs8mO3xCnL8TDpuAOd+CmOahOH8yBak5qcjLy8WpU6dgt9ths9lKnPMymU2Ijo6GxWJBrVq1MG7cOFYEp/8cSbhueSD6j5s2bRomTZqECxcuuKvblEQul8Pf3x/5+fkICQ5BfHy8s3pOaCgSExOh0+kAh/OuK7vNDoVSAbvNGVzYTHbIFDLIFJKzapEkwag3QaFyJtMoNHJIkgRDaiFOrkxH/V7RUAeoYLfaseO9o6jbLwZhdQORc8rgrhDksAlknzIgtK4/0v/JwomVabitXwIKc82IaBgEa6ENuz52Xsxq9UI9AMCOD46gzcvOSkxb3z4En1DAmAlEtQvCxX05QCHQYlwdZJ804NSSVGjjtEh6MAr7vnSWs2z7WgNYDFbsnnIcdfrEQDgETixMcZ/jyB9noT9eiLhu4Ti7ypk4pA2Voe5DCdCGa3B88TkEJPgh/LZA7P/+FApTTAht7oe63WvAbLBCEsDun49DCxmajEiCcABn1qeiVrdoFKQZsf/bU2j7WgMIIbBt0mFoozVoOrQWHA4HDv95Fr5hasS1jXRniOedK4RPiApKrfMuLplMhsJsI3yCNLAUWKHUKpzJYEUVGiSZBLvVDiEJnD9/HmlpaSjML0RmViayc7KhUChKTESSy+UIDw+HXq9HYWEhatasiYYNG2LOnDmsjERERFRMdnY2RowYgTVr1kCv1+NK/8uh1WqhVCphMBhQr149BAcHQy6TI6FmAmJiYiBszruQHDZnUrGwC0DmTFjyCVCjMNsEXWhRgpMkOZfhSDMhqJaf87tfCJxYeQ4OO1DnvljIZDJs/egQYATavFLfucTIpENoNjIRPqFqHJmfjLo94wEJOPDtUcAHqNerJuRKGVR+Svw99zQMR43wr+WDRgNq4sLOTJiyLUi8Lxq5yQU4vfQcjNnOyYXYu0JxflOmc/m37rHumK12n2jYCuxIXpnmTihyXSBr+nQtHF2YAmOqCYm9ouAXqcX+b07CJxjwrxWItN258AmWwZjtQNtXG8BudWDH+0fQ8oUkCJvArk+OAT7AHSPrQqlTIO3vHKh1Shz6/SzqPhiD0KQAXNyTjcimQe5YsdGgBATE6XB2ZzrOrchAq5fqQa6UoSDdhGNLLqLOg5HwDXOuZ2/Jt0KSOSd0NIHOO8IgAIdDwGa0QeXnvNipUClgNdqg0Mhhs9ghk0vIM+Th3LlzzotfBYU4c/YM1Go1CgoKkJub6xWj+/v7Q6fT4eLFi1CpVGjevDn69++PMWPGVM0vLhER0U1q0aJFeOONN3D06FGYTKZSYy+5XA4/Pz8YC43wD/BHzYSaUCgUCA4JQWKtWvDz94Pd6oBS7fweV2mVsJptUCjlMOktUGoVzjviJWfyUWGWCXKlDA6HgCbAWVlcf74AJ5enoU73SPjFaGGz2LHz/aOI6RKChHaRyD6eh8O/nnPOeVkduLgnGzGtQ5H2dzZOrkhFvZ41YM63IOr2EFjyrNj9rXOZthbj6kBSStj10TG0nJAEhVqOre8cgiZQBlOuA2FNA2BI1sOUCzQZXhN5KYU4vTQNmnAN6j4YiYPfJwNwznmZ9Vbs+ew44u8Oh1wjw6nFzgqhLZ6tgxNLzyP3uBHRbYKRss2Zaa4JlKHmfTEIqu2H44svQBOkRGzbcPwz+xQMZ0zwq63Bbf1rwZRjgd3qwNFFyYAJaPJ0XcABHP3jDBr0q4mCVCMOTDuNtq8WzXm9cxiaQOD2MQ3gcDhwdPE5yOVAne5xzmRuB5B9RA9djA/UfiqgqPpVXmoh/MJ8UKg3wSdQDWEHZHIJdpsDcqUMVqMNkhJIuZCCtPQ0GAwGZGdnIzMzE0qlssREJJlMhoiICOTn56OgoAAJCQlo1qwZpk+fjsDAwKr5xSUiIroJmc1mTJw4EX/88QdSUlI8luu9nI+PD9RqNfR6Peol1UNwSDBkMhni4+MRVyMODquAykcJm9UOuULunPtSSijMNEEbrIEhpQABcX7OeRVJglFvQcFFE0Lq+UMml+BwCJxYeQGmbDMa9a8JmVyGPV+fhDnTjFYvOud2tk46hAb94xBUxw9HFpxDzW6RkCklHPjmOMxwoHHfmhAyAb8ILf6Zdw55Rw1Qh6rRbHgtXNiWibzzBWjYLwE5J/Jxatl5d1JSZMsgpO7MgW+sGkm947Dnc2eSeo2OYZBkwNl1GWgyrCZ0kT7upKaGj8fhxMo0mDPMiLkzBMF1/ZzL6qqBkLr+yPo7D2p/wJwHtJ5YHw6LAzs/PormY+oAgPscTZ+uBW2oBme3p0MboMaxJRdQo10oarQNx4VdmQhrGAiVVoGtkw4h8YEoRN4ejAu70pG8PAMtnq0DlZ8ShgsFOLY4FfGdQxFaNwDCIWDKtUAIwGa2wT/aeZMdJAl2sx02sx2aQDVsZmeMbMm3QqlTwGp0LrmXX5iPs2fPITcnBwUFBThz5gxUahUKCwuRk5PjNefl5+cHX19fpKWlQafT4fbbb8cTTzyBIUOGVPavLFG1xEpKdMsYPnx4qZmmL730En744QdkZmbCbrcjLy8PdrsdqWmpSE1L9eirUCigUCigVCoREREBHx8f6HQ6BAeHIiIiDIGBgfDz84PD4YBcLofKVwm5XA67zfkFZDXb4BehRdMnEwA4L5zlpxW6qy4JIZC8Lh0ht+mKSm9LODbnPHTPJCLitlDY7RL8YrTwjfaBucCCjEM5aDYqEZJcgkwlwW5yBgiZJ3MRlOAsHy1BhqT+0Qip7Y+EDpHYNuUwVP5KhNYPwKklqUjqHgWfYDXCb/dH+t48j+cbWt8fkkzCiYUpiGodBLlahhptwxBQ04jYVqEISfKF4ZwJJxamIC8lH5pgFTL2GyDJJITfFoimQ2oh45AeMpUEc54FUAAqrQp1u8S6Sztue+cQWjxXB0IIGI3OygauZKLWL9eDWW+FzWyDQq1Aw14JsNvtkCQJNosdcqUM/jW07gk4IZxLwCj9FMjMzERGRgYMhnzk5emRm5OLrOws2O12GI1GFBQUeP0u+Pj4ICAgACaTM9u8YcOGCA0NxTfffIN69epV5FePiIjolhMcHIx58+aVuO3EiRMYOnQodu/ejcLCQncFJofDgUOHLt3JvnHTRgDOO9LsdjtCQkIQFBQEpVKJ8LBwBIcEI8wehoCAAOf3f9GSaEqdAkGJfs4qPEYbVBolErvGupf1MBssaPpkLWiKKvk4bM7YyWKxQitpUKNTJLa/dxhtX2uApiOTkHsyHz7BahTmmWDLcCC6SQgsiTZE3R4MSIA+2YDcc0YkdI2E/qwexmwHEh+Mgn+CDj6BKljNNoQ1CIRSq0BII19k/ZOP8IaBcFgFklemebw20e1DoA3ToFa3CPw76wxC6vpDoXIus9b0aWcCemAtXxxdfB7wAexWOy4ecF48E3YBpU6BxiNrQiYkXDyYg7AG/ghvGAhJklCnRzTCkgKhP1uA08tSEdU8GEIIBNb1wbk9afCvURM17ghDRL1A5F3MR2ANP+jCNWg2pCYgAHOhBSofJRRaOeRyuft1szvskMvlMBjykJeXh/Rj6TCZTMjJyUFeXh5ycnKcVRfy8tzLgxQXGhoKh8MBu92OoKAgJCUloWPHjnj33Xev5VeQiIjoltKzZ0/07NmzxG2fffYZPv/8c5w9exYWiwUGgwF2ux0ZGRnuSkwurjkvhVyByMhIaHw00Ol0CAkJQ0REGPwlfwQEBMBus0Muk0Pl71zizGZ1znmZ8i3wj9bh9uG1ADjndnLP5OP2sbWhCVBBCIEzOzMQkFi03JxShjOr06EL1yCycQiEEM5l1IRAYZYJ6Yf1aPxYAhwAVP5Kd9XvC/syEXN7KKABTCYH6vSORljDQDhsUdj+3hFow32g8lPi9NI01OwSBt9oLSJbByN1e7bH841sFgy5ypmkFFRPB5WfEtGtwqD00yOhayTCmgYh73Q+Tq9Ig/6sHn5xWmQc0SMgRgOpXThue7wWLuzMhMpXgfxUIyS1gC5ci7i2UQgpmk/b+vYhNB5R01npwOSq7ulMJmr1Uj0YM0ww5pnh469G/Z7xcFgdkCDBbLBA5atESP2AojgXcBQte+wTrERWTpZzzuuEc84rOzsbOTk5sNlspc55aTQaBAYGwmg0QpIkNGjQADExMfj2229ZFYmIiKiM1Go1PvnkE3zyySde286fP4+XXnoJa9euRWZmJkwmE8xmM4QQOHzkUmXtv/76C8ClOa/g4GAEBwdDqXDOeQWFBCEUoQgMD3QuqysBklyCT7AKPkFqQHKuHqL2UaJW5ygoNM65I2OeGbXvjYAuSgO5Sga71Tl340xi90Vs+xDs/vQY2rxSH81GJ+Hiniz4RvugMNsEQ0ohgmtqERijQXSrUEgyCYaUQuhPFMJSaIX+YgHMeQ7U6BgGvwQfBNZwVrj0i/aBOkCJkIb+yPo3DzFtQyFsDpxd5xlnBtbVISDBF4ldgUO/nkVEkyCoA1SAGrhjdBKUPnKk1MjCxc0ZABywGe1I+8dZadJhc0ATokKjwfEQFoHUA9mIuC0IsS1CAZmE2Gwj4u6MQO4pA86sTEdMy1AI4ayOdH57NiKaBSG6RRiCEv2Rey4foXUD4BetQ/OnE+GwCJj0Zqj9VVDqFFCo5bCZna+nXTigVCpgNJqRU5iDtNNpMJstyM7KQp7h0pyXwWCA1WrF5UJCQpzHKXqPGzRogO7du2PixInX8itI9J/ASkpEV3HkyBE8//zz2Lp1K/Ly8qBQKGC322G32yGTydxJMcXJZDL4+PjA19fXvbRcQEAAdDod1GoN/Pz8ERwcCK1WC39/f0iSBEm6VH3JHXQUtVkNNii0csgUMlhNNuz68hjaPu+86yrvfAEC4/yciTtCQkG6CZJcgjbMuRbtiaXnEd8xEkqdAlmncpF7vABpO/Wo1TMC+lP5yPq7AEH1tVCo5cjYbwDgWUkJAKI7BCDnXz2MmUCDJ+JwaJazxGOjwQnwi/ZxT7q0ecW5tFxhthEqrQqF6Sb41dA6Kx4JwGaxQ6lRQJ9mwD/fnnVXS7KabDCZzPAP8nW/hg67cJcEd70+JqMJ+QX5SEtLg8PhQF5eHgoLC5Gd7ZxkKigocN/xZbPZPEokSpIEmUwGu92OqKgoKJVKnDt3DlqtFs2bN0f79u0xadKkKvs9IiIiorL5+uuv8dVXX+HUqVOwWCxQKBTu5GG5XF5iRUylUglfX1+o1Woolcqii2nOiYDw8HBnYlN4OHx8fKDVaj3iN4ddQF6UwAQA+jQDfHw1zkqMkjPGuW1kAvzDdDAZzFDrVBBw7pt5JA+BcTpYjFZnNSebwPYph9F2grMaZt65Qhya7SwFXv/xGjg8+xx8gmXwq6tD+nZn3HV5JaXQxn6wmWzIPWZEaGM/aKPVOLsiE1FtguEX74PQOgEwZpmRui8Hte6OgsPhQGG6GdZCOwLitBCSgFwuR+bxXITUDgAAbP3oEFqOTYJCJYfdaofFYIMmsGi5NSEAh3Oyyx2LFr02er0e+fn50Ov1MJlMKCgocMdfdrvdvd1qtXpNxsjlzuR7lUqF6OhopKc7k5eSkpKQmJiIr776CjExMZXzS0NEREQVkpqaildeeQVr1qxBWloahBAec14AvJafkCSpxDkvX50vVCoVAgIDEBAQAD8/P/j5+V2a83I44wy73QGZvKjNLlCYZYY6UAGFSgGL0YrdXxxH2wkNAAlIP5yDiAbBzvjPLiH3dD6UGjl8Y30gk8twYlkKIpsHQReuQfrhHBiSTUjbnYPYLiEovGhG9qF8BCRqIFcrkH0oH4BnJSUACGvuC8PJQphyHUh6NAZH51wAANTrVwMB8TrIVTJs/fAQWo2rB7lKBkNqIdRaJfTnChDaIAASJAgBmPLN0AZokHsxH/9OO+Oe8zIbrDAZTAiM8Xe/hjazHXKVzP16SpLkTt53vQ+5ubkwGo0ec14Gg+Gqc14RERHQaDRISUmBr68vbr/9dnTr1g0vvPBCFf0WERERUVn98ccf+Oabb7B//37o9fqiJOYrz3kpFAr4+fl5zHkFBwdDkiSEhYW557y0Gi20vloIh3DPW9nMdijVCqBopdncc3qodRrnjXtFc15JA2IQWjsQxlwTVD4qSAoJEAKZh/Twi9HClG9BYJwv7GY7dnxw1FnV2+JA9gkDjv/ujJsSe0Xh5MKLUPsDfjW1yDzgrNh4eSWlgNpaCKsdeWfM8K+pgX+8Fuc3ZCOovi8Ca+sQ1TQEhWkmJG9IQ4NH4yHsAjmn8iHsAgEJOsgUEuRKOdL+zkZYw0BIkLD1w0O4fXgiNEFqWE1WmLNt8AlXQ65wXr912ISzEiichRFc1x4vxVq5sFhMyM/Pd8darmIW+fn5sFgspc55KZVKREdHIzs7GzabDbVr10bDhg3x/vvvIzY2tip+hYj+M5ikRHSNCgsL8dZbb2HBggW4cOECbDab+wtLp9O5KwNIkuQ1sQM4JxJUKpV73VqtjxYaHw20Wi3kcjnUajUCAgKgUCig0WhgtdoQFBQItVoNjUYDi8WCwEDnY9fH2bUMmtlogdpHBZvNBoVCAeEQuLg3G9EtnBftIICL+7MQ1SwEOcn5OLzgLOr3jkNQLV9YC23IOpqHU0tSnRMrNgFDqhEBNZwVnox6E2wmAf/IoipGwnnHnMZPdem1yTdB66uBw+FwX8ACgPz8fPfFLbvdAavVAn2uHgIChYWFMJvNMBicF+6MRiOMRiMsFkuJd9+7JnNcFyZdS8okJSUhPT0dQgjcdtttePnll9GlS5fKe+OJiIjohvj777/xyiuvYPfu3cjJyYHFYoHD4YBarYZMJoPRaCw1kRxwTiRoNBqoVCoolUqoVCr4+/sDAvAP8IdcJkdgUCDkcjkUCgXkcjm0Wi18fX1ht9uhVqvh5+fnXF5WXwhtwKUlX80GC1RaJaSiC285pw3QBCmhCXAmj2ce1iO4jp8zwXvSIdS6PwohSX5Q6hTIPmbAkTnn0PDJeATE6ZC8IQ0JHSLcE0kXdmQiukUIJLnkjO3kCljMVqg0SgDwSHK3Wq3IzsyBSqOE2Wx2VzZSqVQwm82wWCzI0+fBIRwwmUweiUau2Ovyi18uMpkMcrkcgYGBMJvNyMvLQ0xMDAIDA3H27FnUqlUL3bp1w5tvvgkfH5+q+SUgIiKi68JkMuG7777Db7/9hmPHjqGgoMBdDUCn08FsNrurXZc256VUKuHj4+O+oU+jcVZncj328/OHUlnKnJfJgsDgYnNeRYnVgHPOS6VWwe5wznk5rAIXdmSgxp3hAADhAE6vTUWtuyORc9KAw7+cQ90+MQhtGACLwYrMQ3lIXpWGNq80gLA7kHU0D+G3BUEIgcIcE4yZFufSH0UXt8z5FvgEqt3PrTCnENogLRwOBwryC2C2mCGTyWAwGNxzXg6HA1ar1TnnJQQKjUVzXnkGCAiYTCYYjUaYzeYrznnpdDpoNBro9XrY7XbUr1/fHds1bdoUL774Ilq1alVFvwVERER0vZw/fx6TJ0/G5s2bcf78eRQUFMBisUClUkEul5dpzkutVrvnvDRqDXz9fCFBcs55yeUICAiATCaDSqWGXC5zz3k5HA6oVCr3nFd+VgF8Q3TuYxekG+ETpIFMIUGSScg8mgulrxz+0b6QJAnp/+QiMEEHhUaObZMPI+bOEIQ1DoA2WIPUfdk4tSYVte6JRGTjYCRvSkVcuwjIFM4CB8lrU1HjzjDINXLYbDbIIIc53wyfQA2AS0UNJEmCxWxFTm421Go1TCZT0ZxXLtRqFUwmEywWC/R6vfOapdnkkWjkir2sVmupc14ymQxBQUHu47jmvHJyclCvXj106tQJ//vf/6BWq732J6KyY5IS0XW0d+9efPjhh9i+fTtyc3Nht9thMBig0TiTkgoLCyGEcCYUCeG+6FbSl+Xl5HI5lEolFAqF++KRK6hwPbbb7VCpVFAoFO675OVyOVQqlXt5OrlcjjNnziAkJARarRZWq9VdPcpqtcJms7mPZbPZ3HfX2Ww22Gw2d3BUfLvVai0xYCrONXGl0TiTmmw2G4KDg6FQKKDX62G1WpGYmIi8vDwUFBSgbt266NSpE15++WVotdorHpuIiIhuPUajETNnzsTcuXNx5MgRZ2JOXh6EEPD1dVZvLCgocC9rYrFY3JUDrsYVtxRPZHJdRHI9dsVZrj52u919LlecplAokJ+fj9zcXMTFxbljKUmS3InvrpjNbrfDbDa793Vtd901Xzz2Kuki1+VcFwZdcZ1cLkdwcLD7Lv3w8HAEBgYiJSUF4eHhuO222/DMM8+gffv21/zeEBER0X/PkSNH8N133+Gvv/7ChQsXYDKZoNfroVKpoNVqYTQa3fFPRea8isdRV5rzksvl7ot3rjkvV3ylUChw9uxZBAYGwtfXF1ar1X2skua8bDabO9a6ljkvAO4bFF3L3AYGBkKlUiE3Nxdmsxl169ZFfn4+HA4H6tSpg65du2Ls2LHQaDSV8fYQERHRf4jZbMayZcuwYMECHDhwANnZ2dDr9bBYLNBqnaub5Ofne815ORyOMl+rK2nOy9V2pTkvhUIBm80GpVKJgoIC5OTkIC4uzqNa59XmvOx2OywWC2QymfuxKzYr65yXRqNxj00mkyEkJARGoxF5eXkICQlBSEgIcnJykJCQgPr162PEiBFo1qxZZb1FRHQVTFIiugkcOXIECxcuxI4dO3Dy5En3F6nD4XBXXCooKIBcLodOp3N/ubu2ux67AgUAsFgs7opLrseAs4x3RkYGdDoddDqdR0AihIDVanW3uwIJPz8/OBwOmM1mAHDfTWcwGODn5wedTofc3Fzk5eUhNjYWMpkMeXl5iIiIQM2aNdGpUyf069ePyUZERER0wxmNRqxfvx5r167Fv//+677IlpOT4y6rbTQaIYRwVsEsuujmmrhxLY1isVigVCrdxzWZTFAqlc678YuSjIQQKCgoQEFBAcLCwiCXO9e8V6mclSldF8J8fHycy4WYze7y3q6qR76+vu7y4IWFhYiIiIDNZkNubi7kcjmioqKQm5uLwMBAxMTEoHbt2hg2bBhq1659/V9cIiIiosskJydj9erV2LdvH44ePYrMzEz3UrNqtRoKhQJ5eXlQKpXQarXuC1OuGMlms7nnqFyxl6uStyteM5vN7nmxjIwMd8UAV+KS62Kb1WqFVqv1uHhWfM7LlexusVhgMBjcx9Hr9TAajYiIiIBarYbVakVMTAwiIyPRpUsX9OzZk8lGREREdMOZzWYcPHgQf/31F/755x+cPHkSer0eOTk57irlrgqPrmV9XXNeruIHgOeclyRJMBqNV53zcs2XuSoQuea8tFpnZUrXMV2xVGFhIXQ6nbuCVEFBASIiImC321FQUACZTIbw8HBYrVZERkYiPDwcSUlJGDBgAJdaI7oJMEmJiIiIiIiIiIiIiIiIiIiIiIiqlOxGD4CIiIiIiIiIiIiIiIiIiIiIiP7bmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpRQ3egBUvaWlpSE3N/dGD4OIrpPAwEBERETc6GEQEd2yGHsR3VoYexER3TiMu4huLYy7iIhuLMZeRLcWxl50JUxSolKlpaWhb5++gPxGj4SIrheNRoOffvqJgQMR0Q3A2Ivo1sPYi4joxmDcRXTrYdxFRHTjMPYiuvUw9qIrYZISlSo3NxeQA4pjgZCZFABkkGQSIF36kWQyQAIgyZxtl20v/adoH5kEwPVYKvZYci5GKMH9WLjaivoXfyykS8cQrkUMXcd09fX407VfUb9i+wjXcSRnk5AAISu2n3Tp2MJjH3js43F+XNrP3feyfd0/uHJ/j31Kabvq391twqNNeBxTeDx2nl947Q+vYxb1k13aLknC2Sy5HrvexmLbi/50brrUTyaJov1FscfOPs5fAQFIwt0uk4RzGy5rkwRkcP5Ikij6VS1qk4r1L/rT/QMBCQ7Iis4lkxxF2wAZHJAkAXnR+eSSo+hPAUlyONvd24s/driPLZMc7jEoYC9hmwMyADLX8YrO43ouMgiP8zj7Fo216O9ySJAAyCVAglT0+NKfMkiQSTKcu6DEO58HIjc3l0EDEdENcMNiL0lWreIu9+NqHHsJWbF9q0PcdVmf6hh7yWXVK+6So2h/xl5ERLckznk5m0qMvWSoVnHX5W3VNfaqTnFXdZzzujz2Ukh2xl1ERLeQahN7SbLqFXcVi6uqbewlu2wcuPFxF1A8xnK9ldUn9nLFTdUl7uKcF1VHTFKiq5IKFZAZVYDkChpk7uDAGTRIgOxS0CAV2+6xzf3Y9XeZd5BR9FhIRd9UxbYJqehbSXJ9rVzqI4p9g4qiPq4v/EsBSfHHl/1dJnkFBB5fhkVJSq5AprRgwvtPySswKK3v1QKEkvpddTuu1reEwOHybSi+7fJAQXhtk1x/vzxJyeNPZx/JFQBcHjQU2ybcfxce+8ngOrdrIujSj4RL+1weBMhKbXN4PZYX//J2fSm7/i4J5xd6sUDA9WUulxyQSZK7v/NPFPVzfok793d+kcuKgg2l5IAcDvex5UWPXcd0BgWOS38vOvelv4ti57p0fDmkor87AwR5UaDgfCwr+rvzTyIiuvGud+wlZLLqFXd59EW1jL3cSUrVJe5yj6H6xl4KmaNaxV2X+jP2IiK6lXHO6/K+rjin+sRdpW5HNYq9ZJcnKXHO62qxl1KyM+4iIroF3fDYSyarVnHXpVijGsdelycp3ei4qxrOeV3eppDZq1XcxTkvqo5kV+9CRERERERERERERERERERERERUcUxSIiIiIiIiIiIiIiIiIiIiIiKiKsUkJSIiIiIiIiIiIiIiIiIiIiIiqlJMUiIiIiIiIiIiIiIiIiIiIiIioirFJCUiIiIiIiIiIiIiIiIiIiIiIqpSTFIiIiIiIiIiIiIiIiIiIiIiIqIqpbjRA6DqT2htcMgAQAZJJgHSpR9JJgMkAJLM2XbZ9tJ/ivaRSQBcj6VijyVnCp0E92PhaivqL1zHgQTh/EvR3wHnf+A6gHO749I+wrVf0enc/V2P3ccueiyTim1zbnb+Bx7tHvtIgOQ6X7E21zldbaKE/a/U32OfUtqu+nd3m/BoEx7HFB6PnecXXvuX/PxF0Xslil4H5wssSa7HRa9P8e1Ff0oo3g7IJFG0vyj2uOhddx9DFBubgIAoem4CDvdzcbYLCDgkUfSrKiCDcB7zsj/dPxCQ4IBMQlFfR9E2QAYHJElADud+cslR9KeAJDmc7e7tno9lRb/Ozj8lyCRAARnkQNF5JcgkyfknAJnreEXnkUG4fzyO6z7mpb/LIUECIJcACVLR40t/Os8lw7kL/EogIqoOrnvsJcmqV9zlHu+ln+oWewlZsX2rQ9x1WZ/qGHsJWfWKu+RFURBjLyKiWxvnvIo9dg1PhmoVd13eVl1jr+oUd1XHOa/LYy+FJGfcRUR0C7rhsZckq1Zx16XYoRrHXkXlTqpT3AUUj7FQ7WIvR1HcVF3iLs55UXXE3xAqlcPhgEKhgK1u7o0eSsUIFAsgyk667E+6+bjeeseNHsgVuSKr6lXQTqFQwOGo3q8cEdF/1U0dezHuuqVV/9iresZdAGMvIqIb5aaOuwDGXrew6h93AdU19mLcRUR049zUsRfjrlta9Y+9qmfcBTD2oitjkhKVSiaTwWaz4dVXX0V8fPyNHg4RVbEzZ85g0qRJkMmqXzBDRHQrYOxFdGth7EVEdOMw7iK6tTDuIiK6sRh7Ed1aGHvR1TBJia4qPj4eSUlJN3oYRERERLcExl5ERERE1wfjLiIiIqLrh7EXEREB1bH2F9F/0KZNmzBhwgR06tQJAQEBkCQJgwYNutHDKtHs2bMxYsQItGjRAmq1GpIkYebMmTd6WNfMarViwYIFePLJJ1G/fn34+vrCz88PrVq1wtdffw273X6jh0hERESVgHHXjce4i4iI6NbB2OvGY+xFRER0a2DcdeMx7iKqHKykRHQd/PDDD/jxxx+h1WoRFxeHvLy8Gz2kUr366qs4c+YMQkNDERUVhTNnztzoIVWKkydP4uGHH4avry+6dOmCHj16QK/XY/HixRg1ahSWLVuGP//8E5LEFYKJiIhuZoy7bjzGXURERLcOxl43HmMvIiKiWwPjrhuPcRdR5WAlJSpVSEgIBg0ahJCQkBs9lJve6NGj8c8//yAvLw8zZsy40cO5ounTpyM5ORkZGRl4+umnb/RwKo2fnx++/PJLpKamYuHChXj//ffxzTff4NixY2jRogWWLFmC+fPn3+hh3lD8zBMR3Vj8d7hyMO668Rh3lQ0/80RENw7/Da48jL1uPMZeV8fPPBHRjcV/hysH464bj3FX2fAzT1fDJCUqVWhoKIYMGYLQ0NAbPZQbasGCBejQoQPCw8Oh0WgQHR2Nrl27YsGCBWU+RosWLdCwYUPI5fJrGovD4cD06dPRsmVLBAcHw8fHB7GxsXjwwQexYcMGd78NGzZAkiS88cYb2Lp1K7p164bAwMAyZe527doV8fHx1zROF4vFgk8//RR33HEH/Pz84OvriwYNGuC5555DTk6Ou19CQgISEhKg1+sxcuRIREVFQafT4a677sLevXsBACkpKXj88ccRHh4OHx8fdOvWDcePHy/zWGJiYjBq1CjodDqPdp1Oh+eeew4AsHHjxkp41jcvfuaJiG4s/jvMuOtaMO66+fAzT0R04/DfYCfGXhXH2Ovmws88EdGNxX+HGXddC8ZdNx9+5ulquNwb0RV8/fXXGDVqFKKiotC7d2+EhIQgNTUVO3fuxB9//IGHHnrouo5n4sSJ+OCDD5CYmIgBAwbAz88PFy5cwObNm7FmzRp07NjRo//WrVsxefJkdOrUCU899RTOnj173cZqNBpx9913Y8uWLahTpw4GDx4MtVqN48eP49tvv8UTTzyBoKAgd3+LxYK7774bJpMJjz76KNLS0jB37lx07doVW7duxT333IOoqCg8/vjjOHHiBBYvXoz7778fhw8fvuaATKlUAgAUCv6TSEREdKMw7qo4xl1ERERUXoy9Ko6xFxEREZUH466KY9xF9N/ETwnRFUyfPh0qlQr79+9HeHi4x7asrKwbMp7o6GgcPHgQWq3WY1t2drZX/9WrV+OHH37A4MGDr9cQ3V577TVs2bIFAwcOxIwZMzy+3PV6vdeX/cWLF3HnnXfil19+cX+BN2vWDC+++CLatGmDwYMH4+OPP3ZnaI8aNQpff/01Fi1ahD59+lzTWH/44QcAQLdu3a7pOERERFRxjLsqjnEXERERlRdjr4pj7EVERETlwbir4hh3Ef03cbk3oqtQKpXu7NfibtQ6miqVqsRs3uDgYK+222+//YYEDTabDd999x0CAgIwdepUr/EGBATA19fXa7+PPvrII8O4f//+7uNNmjTJo4Ska9uBAweuaazfffcdli9fjs6dO6N79+7XdCwiIiK6Noy7yo9xFxEREVUUY6/yY+xFREREFcG4q/wYdxH9d7GSEtEV9OvXDy+88AIaNWqEAQMGoFOnTrjzzjvh7+/v0W/KlCnIzc31aBs0aBASEhIqfTxfffUVGjVqhH79+qFTp05o06YNfHx8Sux/xx13eDzOzc3FlClTvPq98cYblTrOI0eOwGAwoGvXrh5lFq8kKCgIcXFxHm1RUVEAgDp16nhlc7u2paSkuNtmzpyJ5ORkj369evVC06ZNSzznkiVLMHr0aMTHx2P27NllGicRERFVDcZdFcO4i4iIiCqCsVfFMPYiIiKi8mLcVTGMu4j+u5ikRHQFEyZMQEhICL7++mt8/PHH7uzb+++/H59++ilq1qwJwBk4nDlzxmPfjh07VnrgMHXqVNSsWRMzZszApEmTMGnSJGg0GjzyyCP4+OOPERoa6tE/IiLC43Fubi7efPNNr+NWduCg1+sBADExMWXe5/JgDLi0buuVtlmtVnfbzJkzsXHjRo9+CQkJJQYOy5Ytw8MPP4yIiAisW7fOHYgQERHRjcG4q2IYdxEREVFFMPaqGMZeREREVF6MuyqGcRfRfxeTlP4jCgsL8dtvv+HQoUM4fPgwDAYDJk6ciPvuu6/Sz5WRkYEvvvgCu3btgsPhQLNmzTBmzBhER0d79LvrrrtK3P+pp57C448/XunjqgqSJGHIkCEYMmQIsrKy8Ndff+HXX3/F3Llzcfz4cRw8eBByudwro7aqKBQKTJgwARMmTEBKSgo2btyIGTNmYNasWUhNTcXKlSu9xl9cQkIChBBVPs7AwEAAwIULF6r8XMVt2LChTP2WLl2Khx56CKGhoVi/fj1q1apVtQMrhcViwffff49Vq1bBYDAgMTERw4YN88pKv9zZs2exaNEiHDp0CMePH4fFYsGcOXO8gh+9Xo9ly5Zhy5YtOHPmDOx2O+Li4tC3b1906dLFo+/kyZOxYsWKUs+5YMEChIWFuR///fff+Oabb3Ds2DHodDp06tQJw4cP98hCP336NGbMmIGjR48iOzsbGo0G8fHx6N+/P9q1a+fu53A4sHLlSmzcuBHHjx+HwWBAVFQUOnfujH79+kGtVpfp9SQiup4Ye1U+xl0Vw7irbKo67gKc/y5Mnz4dGzduRG5uLqKiovDwww+jV69eHv2WL1+Od999t8Tz/fHHH6WWer9w4QKefPJJWCwWfPfdd6hXr57H9qNHj+KHH37A0aNHYTQaERUVhQceeAC9e/cusYR7WY5JRFQdMO6qGoy9KoaxV9lUpzkvADh37hy+//57/P3338jLy0NERAS6du2Kfv36QaPRuPs5HA4sXrwYixYtwoULF6DRaFC3bl088cQTuO2229z9yjrn5bJu3TrMnTsXZ8+ehUwmQ82aNTFgwAC0adOmvC8tEVGVY+xV+Rh3VQzjLm8VjbGAyv+8bdq0CYsWLcKpU6eQl5eHwMBANGjQAIMHD/Z6LcxmM+bNm4eVK1ciNTUVfn5+aNSoEQYPHuxO0nMxGAz45ptvsGnTJpjNZtSvXx+jRo1CUlKSR79HHnkEqampXuPs0aMHJkyY4NG2a9cuzJw5E8eOHYNSqUTz5s0xatQoJpXdQExS+o/Q6/WYOXMmIiIiULt2bezbt69KzlNYWIhx48ahoKAAjz/+OBQKBebOnYsxY8bghx9+QEBAgEf/Fi1a4N577/Voq1OnTpWMraqFhISgV69e6NWrFzIzM7Fu3TqcOHHC6x/F6yU6Ohr9+/fHo48+iqSkJKxZswZGo7HUcozXU1JSEvz9/bFr1y7k5OSUuQzj9eAKGoKDg7F+/XrUrl37ho3l3XffxYYNG9C3b1/ExsZi+fLleOGFFzB16lQ0bty41P3+/fdfLFiwAPHx8YiPj8fx48dL7Tdt2jS0bt0aTzzxBORyOTZu3Ig333wTZ86cwZAhQ9x9e/TogRYtWnjsL4TAxx9/jMjISI8EpePHj2P8+PGIj4/H6NGjkZ6ejjlz5uD8+fP48MMP3f1SU1NRWFiIe++9F6GhoTCZTNi4cSMmTpyICRMmoEePHgAAk8mEd999Fw0bNkTPnj0RFBSEf//9FzNmzMDevXsxZcoUryCYiOhGY+xVtRh3lR3jrrKp6rjLbrdjwoQJOHr0KHr37o3Y2Fjs3LkTn3zyCQwGAwYOHOi1z9ChQ70mQ3x9fUsdy+eff15qstHRo0cxatQoxMbGYsCAAVCr1dixYwc+++wzXLhwAePGjSv3MYmIqgvGXVWPsVfZMfYqm+o055WWloYRI0bA19cXvXv3hr+/P/799193cnfx5PGvvvoKc+fORbdu3dCrVy/k5+fjzz//xNixY/Hll1+iQYMGAMo+5wU4b/ybOnUq2rRpgxEjRsBsNmPFihV48cUX8fbbb6NDhw7X+nITEVUqxl5Vi3FX2THu8lbRGKsqPm+nTp2Cn58fHn74YQQEBCA7OxvLli3DiBEj8PXXX3u8Jm+//Ta2bNmCBx98EHXr1kVmZib++OMPjBw5EjNnzkRkZCQAZ8L4iy++iJMnT6Jfv34ICAjAwoULMW7cOEybNg01atTwGtOjjz7q0RYbG+vxeOvWrXj55ZdRt25djBgxAgUFBZg/fz5Gjx6N77//3p0MR9eZoP8Es9ksMjMzhRBCHD58WLRv314sW7as0s/z888/i/bt24tDhw6525KTk0XHjh3Ft99+69G3ffv24pNPPqn0MVxP69evFw6Hw6PNYrGIpk2bCgAiOTm53Mfctm2bACCefPLJcu1nMpnEli1bvNrz8vJEZGSkUKvVwmQyuccNQLz++uvlHl9x7777rgAgZsyYUe59//e//wkAYuDAgcJms3lsy83NFQaDwf04Pj5exMfHl3gcAKJDhw5e7adPny7367hs2TKhVqtFZGSkOHLkSJn3qwr//vuvaN++vfjll1/cbSaTSfTr1088/fTTV9xXr9eLgoICIYQQv/zyi2jfvr1ISUnx6nfhwgVx8eJFjzaHwyHGjRsnunTpIgoLC694ngMHDoj27duLWbNmebRPmDBB9OrVS+Tn57vbFi9eLNq3by927NhxxWPabDYxePBg8dhjj7nbLBaLOHjwoFffGTNmiPbt24tdu3Zd8ZhERDcCY6/Kx7iLcVdVuR5x17p160T79u3FkiVLPNpfffVV0aVLF5Gdne1uW7ZsmWjfvr04fPhwmZ/Djh07ROfOncW0adNK3PeDDz4QnTt3Fnq93qN99OjR4t57763QMYmIqgvGXVWDsRdjr6pS3ea8Zs2aJdq3by9OnTrl0X/SpEmiffv2Ii8vTwghhNVqFV27dhWvvfaa17nat28vpkyZcsWxlzTnJYQQ/fv3F8OHD/f4vOXn54tu3bqJl1566YrHJCK6ERh7VT7GXYy7KsO1xFjX6/OWlZUlOnbsKD788EN3W3p6umjfvr348ssvPfru2bNHtG/fXsyZM8fdtnbtWtG+fXuxfv16d1tOTo647777xJtvvumxf9++fcULL7xw1TENHDhQ9OvXT1gsFnfb8ePHRYcOHcTnn39e3qdIlYSVlP4jVCpVqcsCXG779u2YPXs2jh07BkmS0KRJE4wcOdKrnFpJNmzYgHr16qF+/frutvj4eNx+++1Yv349nnrqKa99zGYzANyUSzb16tUL/v7+aN26NeLj42G1WrF69WocOnQIDz/8MOLj48t0nM2bN2P69OkAnOX0XG2DBg0CAISGhuKjjz664jGMRiPatWuHunXronnz5oiLi0N+fj6WLFmC1NRUTJgwoVJe4+nTp2Pz5s0AnEt6udpc5Q3vvPNODBs27KrHeeutt7B9+3b89NNP2L59O+677z6o1WqcOnUKK1aswObNm0tcv7WqHDlyBL1794bZbEbHjh3x66+/evVJSEhwvydVbePGjZDL5R53VqnVatx///347rvvkJaW5rXOr0tJ6+aW5PISjYCzLGf79u2xd+9epKSkIDExsdT916xZA0mS0LVrV3dbQUEBdu/ejUceeQQ6nc7dfs899+Dzzz/H+vXr0bJly1KPKZfLER4ejiNHjrjblEqlR8lsl/bt2+OHH37AmTNnvKo8ERHdaIy9Kh/jLsZdVeV6xF0HDx4EAK/lRbp06YKNGzdi8+bNePDBB732KywshFqtvmI1I5vNhs8++wwPP/wwYmJiSuxTUFAAlUrlVYkpJCQE586dq9AxiYiqC8ZdVYOxF2OvqlLd5rwKCgoAwKv6QkhICGQyGRQK5yUSu90Os9ns1S8oKAgymeyqv4MlzXkBznivRo0aHlXCdTodfHx8bsp/O4jov4+xV+Vj3MW4qzJcS4x1vT5vQUFB0Gg0yM/Pd7cVFha6txXn+nem+PE3btyI4OBgjyXnAgMD0alTJ6xevRoWiwUqlcrjOFarFTabrcTqX3l5eUhOTkb//v2hVCrd7bVr10Z8fDzWrVuH0aNHl/n5UeVhktItZuXKlZg8eTJatmzpLi+7cOFCPPPMM/j++++vuPaiw+HAqVOn0L17d69t9evXx65du1BYWAitVutuX7FiBRYuXAghBOLj4/HEE0/g7rvvrpLnVhXeffddrFixAjt37sTixYuh0+mQmJiIr7/+GkOHDi3zcU6cOIEff/zRo+3kyZM4efIkAOcXwdUCB51Oh/fffx9r167FX3/9hfT0dAQFBSEpKQnvvvsu+vXrV/4nWILNmzd7jXXLli3YsmWL+3FZAgeNRoPVq1fjiy++wOzZszFt2jTI5XLExcXh6aefRkJCQqWMt6xSU1PdX6i//fZbiX06dOhw3SZsjh8/jtjYWI9EHwDuAOHEiROlBhPXKjs7GwC8yjcWZ7PZsH79ejRq1Mjj34VTp07Bbrd7lR5VKpWoU6dOiWW4jUYjzGYzCgoKsGXLFuzYsQOdOnWqlHESEVV3jL3KjnGXE+Ouync94i6LxQK5XO6+yOXimmg5evSoV5LSuHHjYDQaoVQqcccdd+CZZ57xKlsNAPPmzYPBYMATTzyBTZs2lXj+Zs2aYd26dfjoo4/wyCOPQKPRYMeOHdi0aRNGjhxZoWMSEd1sGHeVD2MvJ8Zela+6zXk1a9YMv/zyC95//30MGTIE/v7++Oeff7Bo0SI89NBD7gtaarUaDRo0wIoVK9CwYUM0adIE+fn5+PHHH+Hn5+dxQdClLHNeTZs2xcaNG7FgwQK0bdsWFosFCxYsQEFBAR5++OEqeR2IiK4Hxl5lx7jLiXHXtalojFXVnzeDwQC73Y6srCzMmzcPBQUFaN68uXt7TEwMwsLCMGfOHMTFxaFOnTrIzMzEN998g6ioKHTu3Nnd99ixY6hTpw5kMpnXOBcvXoxz5855FF/Yu3cvunXrBrvdjsjISPTt2xd9+/Z1b7dYLABKTrRSq9U4ffo0srKyypyYSZWHSUq3kMLCQkydOhUPPPAA/ve//7nb7733Xjz++OOYPXu2R/vl8vLyYLFYSvygutoyMzMRFxcHAGjUqBE6deqEqKgoZGVl4ffff8fbb7+NgoIC9OrVq3KfXBUZOXJkiZP65TVo0KBr/kJSKpV44YUX8MILL1y1b8eOHSGEqNB5Zs6ciZkzZ1Zo38up1Wo8//zzeP7556/YLzk5udRtpT2PhISEcj3Ha3lNqkJpX3rFP0tVIS8vD0uWLEHjxo0RGhpaar+dO3dCr9d7BR1ZWVke4ywuJCQEBw4c8Gr/8ssv8eeffwIAZDIZ7rrrLowfP/6qY/3111+h0+nQqlWrq/YlIqqOGHuVD+Oua8O4q3TXI+6Ki4uD3W7HoUOH0LhxY3e7q8JS8XOo1Wrcd999aNasGXQ6HY4ePYq5c+di1KhRmD59useEUlZWFn788UeMGjXKaxKquAceeACnT5/Gn3/+iSVLlgBw3s3/7LPPomfPnh59y3pMIqKbCeOu8mPsdW0Ye5Wuus15tWrVCkOHDsXs2bM9LowOHDgQw4cP9zjGq6++ijfeeAOTJk1yt0VHR+PLL78ssXpTWea8xo0bB71ej6lTp2Lq1KkAnElUn376KRo1anTtT5yI6AZg7FU+jLuuDeMup4rGWFX9eRs5ciTOnj0LAPDx8cETTzyB+++/371doVDg7bffxttvv42JEye625OSkvDVV1/Bz8/P3ZadnY0mTZqUOs6srCx3klKtWrXQuHFj1KhRA3l5eVi+fDk+//xzZGZmuj9vwcHB8PX1dVfzctHr9Thz5oz7uTNJ6fpjktItZPfu3cjPz0eXLl2Qm5vrbpfJZKhfvz727t17xf1dmaHFy6G5uEqrufoAwFdffeXRp3v37hg2bBi+++47dzk+oluV2Wwu82epsjgcDrz99tvIz8/Hs88+e8W+a9asgUKh8Lr762r/Driykovr27cvOnbsiMzMTKxfvx52ux1Wq/WK5//pp5+we/duPPfccx4BChHRzYSxF1H1cD3irq5du+LHH3/Ee++9h/HjxyM2Nha7du3CwoULvc7RuXNnj7vE2rdvj5YtW2LMmDH46aefMGHCBPe2b775BtHR0XjggQeueH65XI7o6Gi0bNkSHTt2hEqlwtq1azFlyhQEBwejffv25T4mEdHNhHEXUfVRHee8oqKi0KRJE3To0AH+/v7Ytm0bZs+ejeDgYDz00EPuflqtFjVr1kTDhg3RvHlzZGdn4+eff8bLL7+ML774AoGBgR7HLcucl1qtRo0aNRAWFoa2bduisLAQc+fOxauvvoovvvgCsbGxlf56EBFVNcZeRNdfRWOsqv68vfTSSygsLERKSgqWLVsGs9kMh8PhUQ3Jz88PtWvXRseOHdGgQQNcuHABP//8M15//XV8/PHH7mOazWav5dxKG+d7773nNc7//e9/mDt3Lh566CGEh4dDJpOhR48e+OWXX/Dtt9+ie/fuKCwsxNdff+2O2aoiNqWrY5LSLeT8+fMAUGpygusuWrPZ7LFWJODMUHT9A1FScsGVyqW5KJVK9OnTBx9//DGOHj3qcYcx0a1GrVZX+LNUUVOmTMGOHTvwyiuvoHbt2qX2KywsxObNm9GyZUuvpdau9u9AScFDfHy8e03le++9F8899xxeeuklfPvtt5Akyav/2rVrMX36dNx///03xV0QRESlYexFVD1cj7grJCQEkydPxjvvvOO+s0+n02HcuHGYPHmyexmR0jRu3BgNGjTAnj173G3//vsvVq1ahU8//dSrzPXlZs+ejfnz5+OXX35xl+fu3Lkzxo0bh08//RRt2rSBQqEo1zGJiG4mjLuIqo/qNue1du1afPjhh/j5558RHh4OwLkMixAC3377Lbp27YqAgADYbDaMHz8ezZo18/i3pHnz5njyySfx66+/elXBKMuc1+uvvw65XO5xIe3OO+/EgAEDMG3aNLz55puV/noQEVU1xl5E119FY6yq/rwVrwzZpUsXDBw4EADwzDPPAADy8/MxZswY9OvXz2M5wXr16mHs2LFYvny5+1qgWq0usRhCWcYpSRIeeeQR7Ny5E/v370e3bt0AAEOHDoVer8evv/6Kn3/+GQBwxx134P7778eiRYuuOmdHVYNJSrcQh8MBwFm2Njg42Gu7XC4HAKxbtw7vvvuux7ZNmzbB398fKpXKvdxTca62Ky0fBcD9P4J5eXnlfwJE/yEhISHIyMjwai/rZ6m8ZsyYgYULF2LEiBG45557rth38+bNMJlMJa4vW7yk4uWysrLKNO6OHTvio48+wrlz59zlI1127dqFyZMno02bNlct3UlEVN0x9iKqHq5X3NW0aVP89ttvOHXqFEwmExITE93nqFGjxlX3Dw8Pd5fHBoCvv/4ajRs3RlRUFC5evAgA7jtUs7KykJaW5l4abuHChbj99tvdCUou7dq1wxdffIHU1FTExsaW65hERDcTxl1E1Ud1m/P6448/UKdOHfdn1KVdu3ZYvnw5jh8/jhYtWuDAgQM4ffo0Ro8e7dGvRo0aiI+Pxz///HPVsVw+55WSkoIdO3Z4LXnk7++P2267rUzHJCKqjhh7EV1/FY2xrufnzc/PD7fffjtWr17tTlLauHEjsrOz0a5dO4++TZs2hU6nw99//+1OUgoODr7iOK+2LFtJ41QqlXjxxRcxfPhwnDt3DsHBwahRowbeeustyGQyxMTEXPGYVDWYpHQLcX3IAgMD0aJFi1L73XHHHfjkk0+82mUyGWrVqoUjR454bTt06BCio6O9JsUvl5KS4h4D0a2sdu3a2LdvHwoKCtx3FQDOz5Jre2X5/fffMWPGDPTt2xePPfbYVfuvXr0aPj4+XgEDANSsWRNyuRxHjx71WKbEarXi+PHjXsvDlcRVOvHyOygOHTqEV199FUlJSXjzzTehUPAriohuboy9iKqH6xl3yeVy1KlTx/145cqVAJx34F9NSkqKx2c1PT0dqampePTRR736Tpw4Eb6+vli2bBkAICcnxz1JXJzNZgMA2O32ch+TiOhmwriLqPqobnNeOTk58PPz82q/PE7KyckBgFJjKle/K7l8zis7O/uaj0lEVB0x9iK6/ioaY13vz5vZbEZBQYH7cWkxlhACDofDIx6qU6cODh486LVc3OHDh6HRaK56E+CVxhkcHOxOqrTb7di3bx/q169/1edOVYP13W8hLVu2hE6nw+zZs93/E1ac6w7a0NBQtGjRwuPHpUOHDjhy5IjHP2Rnz57Fvn370LFjR69jFVdYWIj58+cjICAASUlJlfa8iG5GHTt2hN1ux59//ulus1gsWLZsGRo0aOC+gz0tLQ1nzpyp8HnWrl2Lzz77DHfffbfXnWAlyc3Nxe7du3HXXXdBo9F4bff19UWLFi2watUqFBYWuttXrlwJo9HokaTkCjyKs9lsWLlyJdRqNRISEtztycnJePHFFxEZGYn333+fa0gT0X8CYy+i6uF6xV2Xy83NxS+//ILExESPz3VJn9dt27bh6NGjaNmypbttwoQJeOeddzx+HnroIQDAqFGj8Nprr7n7xsbGYvfu3dDr9e42u92O9evXQ6vVuieQy3NMIqKbCeMuouqjus151ahRA8ePH8e5c+e89pfJZEhMTHT3c7UXd/ToUZw7d84jEb2sc16xsbGQyWRYt24dhBDuvunp6Th48KDHMYmIbiaMvYiuv2uJsari81ZSPHTx4kXs2bPHo19sbCwA7xhr8+bNMBqNHvFQhw4dkJ2djU2bNnmMaf369Wjbti1UKhUAZ6Wky5O9bTYbfv75ZyiVSjRr1sxrbMX99ttvyMrKKvEmPro+WKbiP2TBggXIz893lzzbsmUL0tPTAQAPPfQQfH198dxzz+Gdd97B0KFD0aVLFwQGBiItLQ3bt29Ho0aNMH78+Cueo3fv3liyZAlefPFF9OvXD3K5HHPnzkVQUJDHOpK///47Nm/ejLZt2yIiIgJZWVlYtmwZ0tLS8Morr0CpVFbdC0F0E2jQoAE6deqE7777Drm5uYiJicGKFSuQmpqKF1980d3vnXfewf79+z2+kPPz87FgwQIAcJeF/v333+Hr6wtfX1/3haZDhw5h8uTJ8Pf3R/PmzbF69WqPMTRq1AjR0dEebWvXroXdbi9xqTeXYcOG4ZlnnsGYMWPQo0cPpKenY86cObjjjjvQqlUrd7+PPvoIBQUFaNKkCcLCwpCVlYXVq1fj7NmzeOaZZ9zZyYWFhZgwYQIMBgP69euHbdu2eZwvOjraY01bIqLqgrEX0c3hesRdADBmzBg0bNgQsbGxyMrKwuLFi2E0GvHee+953P01cuRI1K1bF0lJSdDpdDh27BiWLVuG8PBwDBw40N2veMJS8fEAzpLY9erVc7c/9thjmDRpEp5++mk8+OCDUKvVWLNmDY4ePYphw4a5K1SW55hERNUJ4y6im0d1m/Pq168fduzYgdGjR6NPnz7w9/fH1q1bsWPHDjzwwAPu5U2SkpLQokULrFixAgUFBWjZsiWysrKwYMECqNVq9O3b1338ss55BQYGonv37liyZAmeffZZ3HXXXTAajfjjjz9gsVjKVPGciOhGYOxFVP1cS4xVFZ+3QYMGoXnz5qhduzb8/Pxw/vx5LF26FDabDSNGjHD3a9euHWrWrIkff/wRaWlpaNCgAS5cuIDff/8dISEhuP/++919O3bsiPnz5+Pdd99FcnIyAgICsHDhQjgcDgwZMsTdb8uWLZg1axY6dOiAqKgoGAwGrF69GqdPn8ZTTz3lsSzcqlWrsHHjRjRp0gQ+Pj7YvXs31q9fjwceeMAjQYuuL0kUT+Gnm9ojjzyC1NTUErfNmTMHUVFRAIB9+/bh559/xqFDh2CxWBAWFobGjRujT58+Zco4Tk9PxxdffIFdu3bB4XCgWbNmGD16tDsTEgB27dqFX3/9FadOnUJeXh40Gg3q16+PAQMGlGmpA6Jbgdlsxvfff49Vq1YhPz8ftWrVwrBhwzwuHo0dO9YrmLh48WKp2b2RkZGYO3cuAGD58uVe6z0XN3HiRNx3330ebSNHjkRKSgp+//1397rRJTl48CC++eYbHDt2DFqtFp06dcKIESM8yiKuXbsWS5cuxalTp6DX66HVapGUlIQ+ffrgzjvvLNPzAYB7770XL7/8cqnbiYhuFMZeRDePqo67AOCLL77A5s2bkZmZCa1WixYtWmDYsGFeSeHTpk3D9u3bcfHiRZhMJoSEhKBNmzYYNGiQu+x0aVzx3XfffeeVULRz507Mnj0bp0+fRmFhIWrUqIHevXujZ8+eFT4mEVF1wbiL6OZS3ea8Dh06hBkzZuD48ePIy8tDVFQU7r33XvTv39+dzO0a92+//Ya1a9fi4sWLUCqVaNy4MYYOHepxl39Z57wA5139ixYtwrJly3D+/HkAQL169fDkk0/i9ttvL8vLSUR03TH2IqqeKhpjAZX/efvhhx+wfft2XLhwAYWFhQgKCkKTJk3w+OOPuytVuhgMBvz444/Ytm0b0tLS4OPjgxYtWmD48OFe82YGgwFfffUVNm/eDLPZjHr16mHUqFEec1ZHjx51x3a5ublQKBSoU6cOHnroIY8VXwBnHPj111/j1KlTMJvNiIuLQ8+ePdGjRw9IklSxN4KuGZOUiIiIiIiIiIiIiIiIiIiIiIioSsmu3oWIiIiIiIiIiIiIiIiIiIiIiKjimKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERERERERERERERERERERERERViklKRERERERERERERERERERERERUpZikREREREREREREREREREREREREVYpJSkREREREREREREREREREREREVKWYpERERERERERERERERERERERERFWKSUpERERERERERERERERERERERFSlmKRERLekmTNnQpIkzJw580YPhYiIiOg/b9CgQZAkCcnJyTd6KERERER0BZwzIyIiIro+kpOTIUkSBg0adKOHQnRdMUmJbkpr165F7969ERkZCbVajejoaNxzzz1YtmyZR79z585h1KhRaNWqlUff9u3bY8aMGbBaraWe48cff0TLli3h6+uLgIAAdOzYEUuWLCn3WNPS0jBmzBjUrFkTarUaYWFh6N27N/bu3Vtif9cFnNJ+jhw54tHfNXFwpR+5XF6uMc+fPx9jxoxB+/bt4e/vD0mS8Pjjj191v61bt6J79+4IDg6Gj48PGjdujClTpsBut5e6z5IlS9CxY0cEBATA19cXrVq1wo8//njF81TWe1MVHnvsMUiShK+++uqqfbt16wZJkvDHH39ch5ERERGV360SE+Tm5uLDDz/EY489hgYNGkChUECSJKxZs6bUfd54440rxl8rVqwocb/NmzejZ8+eSEhIgEajQVxcHLp3715q/8tNmjTJfY4rja8kZrMZX375JVq2bInQ0FD4+vqifv36GDt2LM6cOVPiPidOnMDgwYMRGxsLlUqFqKgoDBw4ECdPnizXuauCw+FAXFwcJEnCoUOHrti3sLAQgYGBUKlUSE9Pv04jJCKiW015YyfXRYnSfvr161fifunp6XjhhRfQqFEj+Pn5ISQkBM2bN8eHH34Ig8Fw1XEeO3YMOp2uzLHd5cobz1gsFnzwwQdo0qQJtFot/P39ceedd2Lu3LnlPvfx48fx/vvvo3PnzqhRowZUKhUiIiLQs2dPrF+/vsR9rjZ39s0333jts3PnTkycOBH33XcfIiMjIUkSYmNjrzi2isbOpVm6dCm6deuG2NhY+Pj4oFatWujbty+2bdtWYn+DwYBXXnkF9erVg0ajQVBQEO655x6sXbu2wmOoTJwzIyKiypKVlYXp06ejd+/eqF27Nnx8fBAQEIA777wT33//PRwOh9c+FYm7zp8/j3feeQd9+/ZF7dq1IZPJIEkSTpw4UerYKhJDXMnff/+Nxx57zP08Y2Ji0KlTJ8yZM6fE5ymEwLRp09CqVSv4+vpCp9OhRYsW+Oabb0rsfyV5eXl49tln0b59e0RHR0Oj0SA8PBwtW7bElClTUFBQUOJ+5b0uWpHnWdlx1/nz5zFkyBBER0dDrVYjISEBzz77LHJycrz6Xm1OUJIkJCYmVngslWHatGmQJAmPPPLIVftOnjwZkiRh3Lhx12FkRE6KGz0AovJ64YUX8OGHHyI2NhY9evRAaGgoMjIysGfPHmzYsAHdu3d39z158iR+/vlntGrVCr169UJwcDCysrKwfPlyDBkyBD/99BNWrVoFhcLzozBhwgR8/PHHiI2NxfDhw2GxWPDbb7/hwQcfxOeff47Ro0eXaazJyclo27YtLl68iJYtW6JPnz7IyMjA77//jqVLl2Lx4sW45557Stx33LhxCAwM9GoPDQ31eNy0aVO8/vrrJR7jr7/+wrp163DfffeVabwukyZNwoEDB+Dr64vY2FivxKiSLFq0CA899BA0Gg0effRRBAcHY/HixRg/fjy2bNmCefPmee3zxRdfYMyYMQgJCcHjjz8OlUqF+fPnY9CgQfj777/x0Ucfee1TWe9NVRk+fDh++eUXTJ8+HaNGjSq1X3JyMtasWYOoqCg8+OCD13GEREREZXerxATJycl44YUXAACxsbEIDQ1FWlpamfZ98sknkZCQ4NVeu3Ztr7avv/4ao0aNgk6nQ+/evREbG4vz58/j999/x/LlyzFp0iS88sorpZ5r7969eOutt+Dr64v8/PyyPbkiNpsNXbp0wZYtW1CvXj30798farUau3btwueff45Zs2Zh69ataNCggXuf3bt3o3PnzjAYDOjSpQv69++PM2fO4LfffsOff/6JDRs2oFmzZuUaR2WSyWQYMmQI3nzzTUyfPh2ffPJJqX3nzZsHvV6Phx9+GOHh4ddxlEREdCupSOwEAE2aNEGvXr282hs1auTVlpycjFatWiE9PR0dO3bEfffdB5PJhFWrVuGFF17A7NmzsX37dvj4+JR4LpvNhoEDB0Imq9i9q+WNZywWC+655x5s2LABCQkJGDx4MBwOB5YtW4ZHH30U//zzD956660yn/+1117DnDlz0KBBA3dS/NGjR/Hnn3/izz//xNSpUzF27NgS9+3ZsyeaNm3q1d6iRQuvtl9++QVTp06FUqlEgwYNyhQbVvT9L8mLL76IDz74ACEhIejVqxdCQ0Nx4sQJLFq0CAsWLMCsWbM8LsTl5OTgzjvvxKFDh9CwYUM8/fTTyM/Px6JFi9C1a1dMnz4dQ4cOrfB4KgPnzIiIqLLMmzcPI0eORFRUFDp16oS4uDikpaXh999/x7Bhw7B8+XLMmzcPkiR57VueuGv37t149dVXIUkSatasiYCAAOTm5l5xbBWJIUqzePFi9OnTBzKZDD169MDDDz+MzMxM/PHHH+jXrx/WrFmDadOmeezz+OOP45dffkF4eDj69+8PrVaL1atXY+TIkdi6dStmzZpV5vNnZ2fju+++Q8uWLXH//fcjLCwMer0e69atw/jx4zFt2jRs27YN/v7+7n0qcl20Is+zMuOukydPom3btkhPT0fPnj1Rr1497Ny5E1OnTsWKFSuwZcsWhISEuPt37Nix1GMtXrwYe/fuLfd12crWv39/PPfcc1i0aBEyMzO9ri27CCHw/fffAwCeeuqp6zlEutUJopvId999JwCIJ598UpjNZq/tFovF47HZbBZ2u73Efh07dhQAxJw5czy2bdmyRQAQiYmJIjs7291++vRpERwcLNRqtTh9+nSZxtujRw8BQIwdO1Y4HA53+9GjR4Wfn5+IiooS+fn5Hvs8+eSTAkCZz3ElrVu3FgDEokWLyrXfunXrxLFjx4TD4RDr168XAMRjjz1Wan+9Xi/CwsKESqUSu3btcrcbjUbRpk0bAUD8+uuvHvucPn1aqNVqERwc7PFcs7OzRWJiogAgtm7d6rFPZb43M2bMEADEjBkzytS/POrWrSsAiD179pTa59VXXxUAxMsvv1zp5yciIqost0JM4DrXmjVrRFZWlhDiUjy2evXqUvd5/fXXBQCxfv36Mp3DYrGIgIAAodFoxJEjRzy2HTp0SKjVauHj4yNMJlOJ+xuNRtGgQQPRtm1bMXDgwKuO73Jz584VAESXLl284uP/+7//EwDE4MGDPdobN24sAIhPPvnEo/2vv/4ScrlcNGnSxCPGvZLKjHGLO3v2rJDL5SI0NLTE/z9wufPOOwUAsWrVqko9PxERUXHljZ1Onz7tnucqq1GjRgkA4o033vBot9lsonPnzgKA+PHHH0vd/8033xQqlUpMnTr1quO7XEXimU8++UQAEG3atPGYAzMYDKJ58+ZCkiSPuPFqZsyYIfbu3evVvmHDBqFUKoVKpRIpKSle+5R3Dmjfvn1i79697vgCgIiJibniPuV9/0tz8eJFIZPJREREhEhLS/M6BwBRs2ZNj/axY8cKAKJPnz7CarW629PS0kSNGjWEj4+POHfuXJnOzzkzIiKq7tauXSv+/PNPr/mNixcviho1aggAYv78+R7bKhJ3nTt3TmzatEno9XohhBAdOnQQAMTx48dL3aciMURpGjRoIACIDRs2eLRfvHhRhIeHCwDizJkz7vbff//dHSdkZGS4281ms3jggQcEALFgwYIyn99ms3ldd3V57LHHBADx/vvve7RX5LpoeZ+nEJUXdwkhRLdu3QQA8dlnn3m0jx8/XgAQI0aMKNNxbDabiI2NFQDEgQMHyrRPRX4vy2r48OECgPj4449L7bNmzRoBQLRt27bSz090JVzujW4aZrMZr7zyCuLi4vDdd99BpVJ59VEqlR6PVSpViXeGKZVKd6b08ePHPba5Sjy/8sorCAoKcrcnJCTgmWeegdlsxowZM646XpPJhOXLl0Mmk7mX5XCpW7cuhgwZgosXL2LBggVXPVZF/P3339i+fTtiYmJw//33l2vfTp06oU6dOiVmmZdk/vz5yMjIQL9+/TzuPtNoNJg0aRIA5512xf3www8wm80YPXq0R/WBoKAgvPzyywDgVW67st6bK8nJycFdd90FmUyGd999191us9nw1VdfoXXr1vD394dWq0WzZs3wxRdfeJWaHD58OAB4ZXa72O12zJgxA5IkYdiwYdc0XiIioqp0q8QEQUFB6NKlC4KDg8u8T3llZ2dDr9ejbt26SEpK8thWv3591K1bF0ajsdQKSRMnTsTp06cxc+bMClU+OHXqFADg/vvv99q/Z8+eAICMjAyP/gcPHkR4eLhXuec777wTDzzwAA4cOIC//vqr3GMp7sCBA4iJiYG/vz9Wr17tbs/OzsbEiRNRv359d9n2Ll26YNWqVR7716hRA/fee6/7DruSHDlyBJs3b0atWrXQtWvXaxovERHRlZQ3dqoI13d6jx49PNrlcrl7/qf4d3pxu3fvxttvv43XXnsNjRs3Lve5KxLPuL6fX3nlFeh0One7r68vXn31VQghyrT8l8ugQYNKrOTYoUMHdOzYERaLBVu3bi3vU/PStGlTNGvWrMT5x9JU1vt/5swZOBwOtGrVyqsCZKdOneDn5+f1Hrte57feesujYnx4eDiee+45GI1G/PDDD9c0Ls6ZERFRddG5c2c8+OCDXvMbkZGRePrppwEAGzZsuObzxMbGupcTK6uKxBClOXXqFPz9/dGhQweP9sjISLRq1QqAZ9znigeef/55j8o5KpUKb7/9NgBnNfOyksvlXtddXfr27QvA8xprRa+Llvd5ApUXd508eRKrVq1yzykW9+abb0Kn0+Gnn34qdWm74pYtW4bz58+jdevWFYq1i3M4HBg3bhwkSUKfPn1gNBrd21auXInu3bsjNDQUarUaiYmJ+N///udV5ctVGWn69OmlnscVk7GKEl1vTFKim8bq1auRkZHhLvm3dOlSvP/++5g6dWqpa7GXxm63Y9myZQDg9UWxbt06AMC9997rtZ+rPJ+rz5VkZ2fDarUiNDQUfn5+Xttr1aoFAKWuC798+XK8//77+Oijj7Bw4ULk5eVd9ZzFfffddwCAoUOHQi6Xl2vf8rrSa3bXXXdBq9Vi69atMJvNZdqntNe5st6b0pw9exbt2rXD9u3bMWvWLEycOBEAYLVa8cADD+CZZ55Bbm4uBgwYgKeeegoOhwNjxozBk08+6XGcJ598EiqVCr/++isKCwu9zrN8+XJcuHABXbt2Rc2aNSs8XiIiourmvxITlMfmzZvx0Ucf4f3338ecOXOQmZlZYr/w8HCEhYXh2LFjXknyrramTZt6lI92WbduHaZOnYp3330XderUqdA4GzZsCMAZh1x+sWjJkiUA4JHAk5qaCsCZ+FVSUtTVYtmyWLt2Le666y4IIbBp0ybcfffdAJwX5po3b4733nsPYWFhePrpp/Hoo4/i8OHDuPfee70uarkudpU26eJqHzp0aJVeNCYiIqqolJQUfPvtt5g8eTK+/fZbHDx4sNS+ru/0pUuXerQ7HA73RaHOnTt77Wc0GjFw4EA0bdoUL730UoXGWZF4xhVTuGKH4iojnijOdRGteJJOcfv378eUKVPw3nvv4aeffsL58+cr5byVrU6dOlCpVNi5c6dXbLlp0yYYDAavxOuqfp05Z0ZERDeLq8UD5Ym7brSGDRsiLy8Pmzdv9mhPT0/Hzp07ERUVhQYNGrjbyxIP/PXXX7BYLNc8tsWLFwPwvMZa0eui5X2elWn9+vUAgG7dunnNf/n5+aFdu3YoLCzE9u3br3os13XZa034MZlM6Nu3Lz777DM888wzmD9/vnsp5zfffBP33nsvduzYgfvvvx9jx45F7dq18dFHH6Fdu3Ye15JbtGiBpk2b4vDhw9iyZYvXebKysrBw4UIEBATgkUceuaYxE5XbjS7lRFRWrmUoXnrpJdGoUSMBwOPnrrvuEunp6SXum5GRIV5//XXxf//3f2LkyJGidu3aAoAYMGCAR7/8/HwBQPj6+pZ6HAAiPDz8quMtLCwUcrlcyGQyYTAYvLaPGzdOABCtWrXyaHcthXH5j5+fn/jiiy+uel7XuQMDA4VcLhdnz54t0z6lKUuZxBYtWggAYvfu3SVub9iwoQAgDh065G4LDQ0VAERmZmaJ++h0OgFAFBQUCCEq970Rwrt09f79+0VUVJTw9/f3WjrFtZzL6NGjhc1mc7fbbDYxZMgQAUAsXLjQY59HHnmk1NLYrnKX8+bNK9NYiYiIqoP/akxQkvIs93b5j1qtFq+++mqJy6DNnTtXqFQq4efnJ5544gnx0ksviYEDBwpfX1/RvHnzEsuF5+bmiho1aoi77rrLfcyyjO9yDodD9OnTRwAQDRo0EGPHjhUTJkwQnTp1EkqlUowZM8ZjaZCjR48KACIiIqLE59KzZ08BQDz66KNlOv/ly7399NNPQqlUivr164vk5GSPvh06dBCSJHktDZiTkyOaNGkiNBqNSE1NdbfbbDYRHR0tJEkSp06d8tjHbDaLsLAwoVAoxMWLF8s0ViIiospQnuXeSvrp2LGj17IWQjiX70pKShIAROfOncWECRPE2LFjRb169URgYKD44YcfSjzX2LFjhVqtFv/++2+Zx1eS8sYzriV/ly5d6nWsP/74w/18CwsLyzWOyyUnJwu1Wi20Wq3HcsBCXJoDuvxHLpeLESNGCKPReNXjo5xLtVzrsiOffvqpkCRJhIWFieHDh4uXXnpJ9O3bV6jVanH33Xd7LQMXFRUlALjf38uP5YrryoJzZkREdLOyWq3u64crVqzw2FaRuOtyZVnu7XLljSGK27Rpk/D39xdqtVo88sgj4qWXXhLDhg0ToaGhonbt2mLnzp0e/fv37y8AiC+//NLrWPv27XM/38OHD5drHFarVbz++uvi9ddfF2PGjBFNmzYVAESnTp084qiKXhct7/O83LXEXRMmTBAAxEcffVTi9meeeUYAEF999dUVj3Pu3Dkhl8tFQECAew6zLC5f7i0rK0u0a9dOSJIk3nvvPY++rmV/27RpI3Jycjy2ueK3Z5991qP9q6++KnU5OdeyzM8880yZx0tUWZikRDeNp59+2j2BcNttt4m//vpLGAwGcfDgQfd6oR06dChx38OHD3sEHJIkiQkTJnitpXrhwoUrBgwWi0UAECqVqkxj7tq1qwAgxo8f79F+/Phx4efnJwCIunXremz7/vvvxZw5c8SZM2eE0WgUJ0+eFB999JG7/7fffnvV886cOVMAEPfff3+ZxnklZflyr1OnzhUDs7Zt2woAYuvWre42pVIpAHhcDCsuOjpaABApKSlCiMp/b4pPuKxatUr4+fmJ6OhosX//fo9+drtdBAcHi8jIyBLHmpOTIyRJEn379vVod63j2q5dO4/2lJQUoVAoRHh4eKlr+RIREVVH/9WYoCRlSQL6/fffxQ8//CBOnToljEajOHPmjJg2bZqIiIgQAMTEiRNL3G/z5s2iRo0aHrFpRESE+OKLL4TdbvfqP3DgQKHT6cTJkyfLNb6SOBwO8frrrwu5XO5x/i5duoht27Z59Xe9n1OmTPFo37Jli/sY3bp1K9O5iycpvfvuu0KSJHHnnXd6XUTcv3+/ACAefvjhEo+zcOHCEifcXn31VQFAvPLKKx7tc+fOFQBE7969yzROIiKiylKW2CktLU289tprYs+ePSInJ0fk5OSIjRs3ik6dOgkAonbt2iI/P99rv5ycHNG7d2+vua6nnnqqxJvV1qxZIyRJEu+//365xlea8sQzkyZNEgBE27ZtPRKR8vPzxR133OHe3xXrVYTJZBLt2rUTAMQHH3zgtX3Dhg3i888/F0ePHhUFBQUiJSVFzJ07VyQmJgoAon///lc9x/VOUhLCmcQVFBTk8TrXrl1b/Pzzz159hw0b5o6hiicLI7lHcgABAABJREFUpaeni7i4OM6ZERHRLeH5558XAET37t29tlU07irueicpCSHEv//+677pz/Xj5+cn3nnnHa9E69mzZwsAIjExUWRlZbnbLRaLOxH48nm5sjAajV6JXQMHDiwxEaki10XL+zwvdy1x1/DhwwUAMW3atBK3v/zyywKAmDx58hWP88Ybb1Qo4ad4klJycrKoV6+eUCqVYvbs2V59e/XqJQCIf/75p8RjNW3aVISFhXm06fV6odPphFarFXq93mNbgwYNBABx4MCBco2ZqDKUXOuOqBpyLUuhUCjw559/IiEhAQBw22234Y8//kBSUhI2btyIbdu2oU2bNh771qtXD0II2O12XLhwAX/88Qf+7//+D5s3b8bSpUsRHBxcJWOeMmUK2rVrh08//RTbtm1Du3btkJGRgQULFqBOnTrYv3+/V/nAIUOGeDyuVasWnn/+eSQlJeHBBx/EK6+8ctUl3FwlBUeMGOG1LTk5GTNnzvRqf+ONN8r/BP8D5s+fj1WrVqFOnTpYvnw54uLiPLYfO3YM2dnZqFOnDiZNmlTiMXx8fHD48GGPts6dOyMxMRFbtmzB4cOHUb9+fQDAjBkzYLPZMGjQoFLX8iUiIqLKtXDhQuzfv9+jrWnTpujVq1eFj9m7d2+Px3FxcRg2bBhuv/12tG7dGh999BGee+45hIaGuvvMnj0bw4cPR58+ffDaa68hPj4eZ86cwdtvv43Ro0dj48aNmDt3rrv/ggUL8NNPP+HLL78ssVR3eZhMJjzxxBNYvnw5vvzyS/Ts2RNarRZbtmzB2LFjcdddd2HevHno2bOne59vvvkG9913H5599lksWbIETZs2xblz5/D777/jtttuKzGWvZrx48dj4cKFeOihhzB79mxoNBqP7a5lnPV6fYnxaUZGBgB4xV7Dhg3D5MmTMWPGDLz55pvuWNm1NJxrSTgiIqLqJDw8HG+99ZZH21133YVVq1bhzjvvxI4dOzB9+nSMGzfOvT05ORk9evSA0WjEsmXL3EtQLFq0CM8//zwWLVqEbdu2uZfKys3NxaBBg9CqVSs8//zz1zzm8sYz48aNw7x587B161Y0bNgQ3bt3hxACS5cuhSRJCAgIgF6vd8cUGzZswIYNGzzOmZCQgEGDBpU4HrvdjoEDB2LLli149NFHMWHCBK8+HTp0QIcOHdyPtVot+vbti9atW6NJkyb49ddf8eKLL6JJkybX/PpUlg8++AAvv/wyxo4di9GjRyMyMhJHjhzBxIkT8dhjj2H//v344IMP3P3feustrFy5EvPnz0fTpk3RpUsXFBQUYNGiRYiJicHZs2fLHbdxzoyIiG4mn332GT7++GPUq1cPP/30k9f2isRdN9rq1avRr18/tGjRArNmzUK9evWQmpqKL774Aq+88gqWLl2KjRs3upe269evH3766SesXLkSDRo0QM+ePaHRaLBmzRpcvHgRcXFxHjHB/v37sXDhQo9zBgYG4tlnn/Vo02g0EM7CJ0hJScGaNWswceJEtGjRAitWrHBfrwUqdl20vM+zunE4HPj+++8BlHxdtiyOHj2KNm3aoKCgAMuXL0eXLl28+mzbtg1KpRLz5s3DvHnzvLZbLBZkZGQgKyvLvfyyv78/Hn30Ufzwww/4+eefMXLkSADA1q1bcejQIbRs2dJjyT6i6+bG5kgRld0LL7wgAIjWrVuXuH3o0KEl3uldml9//dUrq7Uqlg85ceKEeOKJJ0RUVJRQKpUiPj5evPrqq+Kvv/4SgHOZurKKiYkRAMTBgwdL7fPPP/8IACI2NtbjzikXV0bx5T+l+a8u7eK6Kyw4OFgAEIMHDy5xKZPNmzeX+Hpd/pOQkOC177vvvisAiOeee04I4axeUKtWLSFJUrky7YmIiKqDmzkmKGk53ZLKHF/ev7yVilxcd/L/+eef7rajR48KpVIpmjdv7lVhwG63i+bNmwsAYv369UIIZ3nn0NBQ0aVLF68YpSLjcy3FMXXqVK9trupF8fHxXtv27t0r+vTpI0JDQ4VSqRRJSUnik08+EXPmzBEAxBNPPFGm87vG7Iq9SlreQ4hL1Rau9jNo0CCvfe+55x6P1/306dNCkiQRHx9fYpUqIiKiqnStlXSmTZsmAIg+ffp4tLvu4C/pjucpU6Z4xTmDBw8WPj4+4siRI9c8vvLGMy4Gg0FMnDhR1KlTR6hUKhESEiIGDhwozp8/L3x9fYVCoXBXzilpSd3SKqfbbDbRr18/AUA88sgjpVbmvJLHHntMABCfffbZFfvhOlZScu1bUiXIgoICERMTI2QymUelTSGESE1NFc8884yIj48XSqVSREVFidGjR4vjx48LACIuLq5M5+ecGRER3Ww+//xzATiXt6/IUu+lxV2Xu56VlLKyskRQUJCIiYkpcfkwV1Wdy+dXLBaLeO+990SjRo2EWq0WAQEBomfPnuLw4cPueblTp04JIUpeErekuaGSbNu2TQAlr+hSnuuiFX2exd3o5d6WLFlyxevXV+KqpOSKu5o2bepVddxFoVCUKfZKTk722M/1Xt1+++3utsGDBwsAYvr06eUeM1FlKN/tE0Q3UFJSEgBnFm9JgoKCAABGo7FMx7vvvvsAwOPuLJ1Oh5iYGOTn5+PixYte+xw/fhwAULdu3bIOG4mJifjxxx+RkpICi8WC5ORkvP322zh27BgA4I477ijzscLCwgAABQUFpfZxVVEqrdpSx44d3RnPxX+uheu9cT2n4mw2G06fPg2FQuFRAeBK+1y8eBEFBQWIjY2FVqsFUDXvDQBMnjwZPXr0wIwZMzBkyBB3xS6XgIAAAM5qCSW9bq6f06dPex178ODBUCqVmDVrFiwWC9atW4dTp06hU6dOqF27drnGSUREdDOorjHBzJkzvb67S6osWVlKitlWrVoFq9WKDh06eN0xJpPJcNdddwEA9uzZAwA4e/YsMjMzsXbtWshkMkiS5P758ccfAQB33303JEnClClTrjqmJUuWAAA6derkta1JkyYICgrCmTNnkJWV5bGtWbNmWLBgATIyMmCxWHDkyBGMHz8e//zzD4DyxbKAs6pV7dq1MXToUHeVo+JcsdfUqVOvGHvNmDHDa9+nnnoKwKXqSd9//z2EEBg6dGi5KwcQERHdaCXFEwaDARs3bkRwcHCJdzy7vudd8QQA7N27F0ajEfXq1fOIJ1x9f/75Z0iShKZNm151TOWNZ1x8fX0xefJkHDt2DGazGZmZmZg1axbMZjPy8/PRpEkTd+WcN954w+t7//LKSgBgtVrRv39//PbbbxgwYAB++eWXCt1dX5a5tuvtSnGbVqtFy5Yt4XA4sG/fPo9tERER+OKLL5CcnAyLxYKUlBR8/vnnOHv2LIDyx22cMyMiopvBlClTMGbMGDRq1Ajr169HZGRkuY9RHeOBrVu3IicnB61atXLPiRVXUtwHAEqlEi+++CL+/vtvmEwm5ObmYuHChUhISMDx48cRGhrqrrg5aNAgr+/t5OTkMo2vdevWCAwMLDFOK8910Yo+z8pypXlJoGzXHq+0uk1ZPfjgg5g8eTL279+PLl26eM3PAc7YKygo6IpxlxAC8fHxHvu1bt0ajRs3xt69e7F3714YDAbMnTsX/v7+6NevX4XHTHQtOFNLN40uXbpAkiQcOnTI63+KAbgvlLi+XK/mwoULAOA1gdG5c2cAwIoVK7z2Wb58uUefa+EqNzlgwIAy9dfr9Thy5AgkSSr1OZpMJvz000+Qy+UYOnToNY+xrK70mm3atAmFhYVo27Yt1Gp1mfYp7XWuivdGrVZj/vz56Nu3L2bOnInHH38cNpvNvb1evXoIDAzE9u3bYbVay3XsiIgI9OjRA5mZmVi4cCGmT58O4NIFNCIiov+amzkmqCxWqxV79+4FAI9kLLPZDODScmWXc7WrVCoAQEhICIYOHVriT506dQA4k+6HDh2KRo0aXXVcVzq/2WyGwWDwOP/VnuOvv/4KpVKJhx9++Kr9i6tRowY2bdqEpKQkjBgxAl9++aXH9tatWwMA/vrrr3IdFwB69OiByMhILFu2DOfOncOMGTMgl8u9llMmIiK6GWzfvh2AZzxhsVgAAHl5ee6/F3d5PAEAffr0KTGe6N69OwDnRaShQ4eiT58+Vx1TeeOZq5k1axaAss+NuVgsFvTt2xfz5s3DE0884Z4Lq4gdO3YAwDUvrVuZqsvrzDkzIiKq7t5//32MHz8eTZs2xfr16xEeHl6h45QUd91olR0P/Pbbb7BYLOjfv3+ljM9gMCAvL69cSeIlXRet7OdZXq4kqFWrVnldezYYDNiyZQu0Wq17vupyKSkpWLp0KQICAvDoo49e01gmTpyITz/9FPv27UPHjh2Rlpbmsb1169bIycnBv//+W+5jDx8+HAAwffp0/PLLLygoKMCAAQOg0+muacxEFVYF1ZmIqkyPHj0EAPHJJ594tK9cuVJIkiQCAwNFbm6uu33Pnj0lLnlmMBhE165dBQDx8ssve2zbsmWLACASExM9SuqdPn1aBAcHC7VaLU6fPu2xT0ZGhjh8+LDIyMjwaDeZTMJkMnm0ORwO9zIWjz76qMe2ixcvinPnzpU4XldJw7vvvruEV8Zp1qxZAoB44IEHSu1TXmUpk6jX60VoaKhQqVRi165d7naj0SjatGkjAIhff/3VY59Tp04JtVotgoODPV7P7OxskZiYKACIrVu3euxTkfemNK4ylq4SkTabTTz++OPukp6uMuNCCPHaa68JAOLpp58WhYWFXsdKSUkR//77b4nnWbFihQAgWrZsKdRqtQgNDRVms7lMYyQiIqpO/qsxQUmutpxaXl6e15IpQghhNpvFqFGjBABRr149j2VQduzYIQAIHx8fr+VZ9u3bJzQajZAkSfzzzz/XNL7c3Fxx+PBhkZKS4tE+cuRIAUB06dLFKz596aWXBABxxx13eLTn5+d7xdJWq1U8/fTTAoB48cUXrzrWy8fsel/S09NF48aNSyyp3b59eyGTycT3339f4rEOHjwo0tLSStzmei7t27cXAMSDDz5Y5jESERFVprLETnv27ClxSdI1a9YItVotAIgtW7Z4bKtfv74AIF599VWPdqPRKDp27CgAiP/973/XPL7Dhw+Lw4cPe7RVNJ7R6/Vex1+1apXQaDQiMTFR5OfnX3W8LiaTSXTv3l0AEEOHDi3Tkq7F41IXu90uJk+eLACI0NDQEsdYHKpguTeLxSIOHz4sTpw44dHuWlY3IiJCnD9/3mPbsmXLhCRJQqPReCyXbLfbhcFg8DrHrFmzhCRJom3btmVe/pZzZkREdDN46623BADRvHlzkZWVddX+FYm7LldVy72dOHFCHD582OM79sKFC0KhUAiZTCZWrlzp0f/s2bMiLCxMABBLly712FZSTLNv3z4RGhoqgoKCxIULF8o89oMHDwqj0ejVbjabxRNPPCEAiAEDBnhsK+910Yo+z+KuJe4SQohu3bqVuPzv+PHjBQAxYsSIUo/r+j0cPXp0qX2uxLXcW/Hlmr/++mshSZJISkryeL/WrFkjAIg2bdqU+D7m5+eLbdu2lXienJwc4ePjIwICAtzzcXv27KnQmIkqQ/lr4BLdQF9++SX27duH5557DkuXLkWzZs1w+vRpLFy4EHK5HNOnT3eXGgaAt956C1u2bEHbtm0RFxcHrVaLc+fOYfny5cjNzUXbtv/P3nvHyXHX9//P2ZnZ3nevd+l06pLVLbnLGINtisHYCaaXBAiBJOSLkwckkAT4UUM3JYDBOJQYsLFxl6tk9XqS7k7S9bp3t7e9zu7M/P6YvT2dJUwJBEjm+XiAvTvtM59ZP+Z97/fr83rv4B//8R8XXWPHjh383d/9Hf/+7//OunXruOWWW1AUhR//+MfEYjG+/OUv097evuiYr3zlK/zLv/wLH/nIR/joRz9a/f7cuXNcccUVXHfddbS3t1MqlXjyySc5efIkl19+edUCcJ6+vj5e8pKXsH37drq6uqitrWViYoInnniCSCTCkiVLqiuLLsb8+f67q47uv/9+7r//fgAikQgA+/bt4y1veQsA4XCYz372s9X9vV4v//Ef/8Ett9zC1VdfzZ/92Z8RDAZ54IEHOHPmDLfccssFCuKOjg4+85nP8L73vY/Nmzdz2223YbVa+clPfsL4+Dgf+MAH2L59+6Jjfptn8+siiiLf+973sNvtfOtb3+I1r3kNP/nJT7DZbPzTP/0TJ06c4Otf/zoPPvggO3fupKmpiZmZGc6dO8fzzz/Pxz/+cVatWnXBeV/60pfS3t7OwYMHAXjve9/7e1N8m5iYmJiY/K75vxQT/P3f/z3RaBSAPXv2APCZz3yGe+65B4BXv/rVvPrVrwZgbm6OlStXsnnzZlauXElDQwOzs7M8/fTTDA0NEQ6H+eEPf7ioDcrWrVt561vfyl133cWWLVu4+eabaWtrY3h4mPvvvx9FUfibv/kbVq9e/RuN+4Xcd999vPWtb+XNb37zopZ2H/rQh3jwwQd58sknWbFiBS972ctwOBw8//zzHDx4EIfDwRe/+MVF53r66ad5xzvewUte8hKam5vJZDI8+uijDAwMcMstt/Bv//Zvv/U4a2pqePrpp7n++uv5+7//ewqFAh/60IcA+MEPfsDOnTt5+9vfzpe+9CW2bduG3+9nfHyc7u5uTp06xb59+y66QvKd73wnn/rUp6pOTOZqfBMTExOT/0l+09jp7/7u7zh37hw7duygubkZgO7ubp566ikA/u3f/o0dO3YsusaXvvQlbrzxRj72sY/xxBNPsGPHDvL5PI888ggjIyN0dnZyxx13/LfvZeXKlQDoul797reNZ1asWMG6detYsWIFdrudo0ePsmvXLurr6/n5z3/+G63gfte73sXDDz9MOBymqamJf/3Xf71gn6uvvpqrr766+nnLli2sWbOG9evX09TURDKZ5Pnnn+fUqVM4nU7+8z//E6/Xu+gcfX19fPKTn1z0XTwerz5LgM9+9rOEw+Hq59/0+U9MTLBy5crqHM5zyy238JKXvIRdu3axcuVKbr75Zurr6+nt7eUXv/gFuq7zyU9+klAoVD0ml8tRV1fHddddx9KlS7FYLDz//PPs27ePlStXcu+99/7W7W/NnJmJiYmJyR8b3/ve9/jnf/5nRFHkiiuu4Etf+tIF+7S3ty96b/82cRew6Bx9fX0A3HHHHXg8HgDe8Y53cPnlly/a5zeNIa699lpGRkYYGhqq5rMaGxv5p3/6Jz7ykY/w8pe/nJtuuokVK1YQiUT42c9+RiaT4eabb666Y85z3XXX4XA4WLNmDR6Ph97eXh566CEcDgcPPvggjY2Nv2xaL+Db3/42d911F5dddhltbW34/X4mJyd5/PHHiUQiLF++fFFsA795XfS3vc/fVdwFcOedd7Jjxw7e97738eSTT7Jy5UoOHDjA008/TVdXFx//+McvOj+apvHtb38b+N3mn971rndht9t5+9vfzpVXXslTTz1Fa2sr1157LZ/85Cf5x3/8R5YtW8YNN9xAR0cHmUyGkZERnn32WS6//PKLOs/7/X5e97rXcffdd9Pd3c2mTZvYuHHj72zMJia/MX9olZSJyW/KzMyM/t73vldvbW3VZVnWQ6GQ/upXv1o/cODABfv+4he/0G+//XZ92bJlutfr1SVJ0mtqavRrr71W/8Y3vqGXSqVfep277rpL37x5s+50OnW3261feeWV+oMPPnjRfT/ykY/ogP6Rj3zkgrG+/vWv1zs6OnS73a57PB5927Zt+le+8pWLXnt0dFT/i7/4C33Dhg16OBzWJUnSvV6vvmXLFv1jH/uYnkqlful4e3p6dEBvbm6+qHvUb8L8/fyy/7W1tV30uD179ugvf/nLdb/fr9vtdn3NmjX6v//7v7/oeB544AH9yiuv1N1ut+50OvXNmzfr3/3ud190fL/Js3mxc3DeqrB5NE3T3/ve9+qA/tKXvrS6CkzTNP3uu+/Wd+7cqQcCAV2WZb2xsVG/7LLL9I9//OP66OjoL73WvEIcuKjrgomJiYmJyR8r/xdignna2tpe9F7Pj/OSyaT+13/91/q2bdv0uro6XZZl3eVy6evWrdPvuOOOX+ryo2maftddd+lXXXWV7vf7dVEU9UAgoO/cufMCh6kX48WclOZjnPNXYM0zMzOjf+ADH9BXrFih22w2XZZlvbW1VX/LW95ygVOCruv6mTNn9Ne85jV6c3OzbrVadb/fr1999dX6Pffco2ua9muP9/wxv9DhKplM6jt27LjAESKVSukf//jH9Y0bN+oul0u32+16e3u7fsMNN+jf+MY3XtRxYd4x9XcRF5uYmJiYmPwm/Kax07e+9S39xhtv1Nva2nSXy6VbrVa9paVFv/XWW/Xnnnvul17nxIkT+hve8Aa9paVFl2VZt9vt+qpVq/R//Md/1OPx+K811l+14nx+zC/kt4ln/v7v/15fs2aN7vF4dLvdri9fvly/4447fi3Xgxcy72Dw68Zt89e/8sor9YaGBt1ms+kOh0Nfvny5/ld/9Vf6wMDARa8zPz8v9r8XxjW/6fOfXzl/sZhaURT985//vL5t2zbd4/HooijqNTU1+o033niBy8D8/m9729v0rq4u3el06k6nU1+/fr3+8Y9/XM9ms7/JFJs5MxMTExOTP3p+1TsX0K+66qpFx/y2cdevus4L35e/TQwxn5O6mCv4/fffr7/sZS/Tw+GwLoqi7vF49O3bt+t33nnnRXMen/70p/WNGzfqPp9Pt1qtekdHh/6e97znol1cfhV79uzR3/72t+urVq1aFPdddtll+mc+85mLxhi/aV30t73P32XcpetGffYtb3mLXl9fX82Xvf/971/k4P5CHn74YR3QL7300l+6z6/iYk5K8/zgBz/QJUnS29raFsWsu3fv1l/3utfpDQ0NuizLejgc1tevX6//7d/+7UUdROfZs2dPdX6+8Y1v/NZjNjH5XSDo+nnLYUxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTH7H/HYeryYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJr8mpkjJxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExOT3iilSMjExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTH5vWKKlExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMfq+YIiUTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTk98rpkjJxMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExMTExOT3ivSHHoCJicnvhkgkwu7duxkfH2d8fJy5uTlEUSSbzZJMJtF1nXQ6TSqVYvny5UxNTTE5OUlbWxvBYJBnnnkGXdfZvn07Y2NjBINBIpEI0WiUSy+9FFmWOXbsGLIsc8kll5DL5Zibm0OSJJqamojH4zQ0NJDP53G73SxfvpxQKERXVxfbt2/HarX+oafIxMTExMTExOR3QqlU4syZM5w+fZpYLMbAwADFYhGLxUIkEqFUKpFOp7FYLAiCgMPhYGRkBEVR6OzsJJ/P09vbSyAQwOfzkUgkaGlp4cSJE1itVjZs2MDc3BzxeJxwOEw4HGZychKv14ssywiCQH19PbquUyqVCIfDLF++nJqaGtavX09ra+sfeopMTExMTExMTH5nJBIJent7mZqaYmpqikgkgiiKaJrGuXPnKJfLuFwuEokEkiSRTCZRVRVN0wgGg5w5cwZBEGhtbWViYgKfz0c2m6VUKtHU1ITdbicWi2G1WvH5fBSLxeo+NpsNl8tFe3s70WgUq9XKpk2b8Pv9tLS0sHz5ciTJTLGbmJiYmJiY/O9AVVUikQhjY2Ok02kmJibIZrNYrVYmJycZGRnBbrfj8XgYGhpC0zTcbjeKopDNZimXy5TLZRKJRDXGamtrI5/Po6oqoVCIXC5HOBwmHo/jcrlwu93U19czPj6OKIps2bIFh8PB4OAgHR0ddHR04PF46OjoIBgM/qGnyMTE5HeAoOu6/ocehInJ/2UikQgPPvgg+/fvp6+vj9nZWWKxGIqiEAwGmZ2dJZfLEQgEcDqdTExMAOD3+ymVSmSz2T/wHfxqBEFA13VkWcbj8VAoFMjlctTX1+NyuRgYGEAQBFatWkW5XGZqagq/309bWxtut5vNmzezY8cOdu7caYqdTExMTExMTH5rSqUSR44cYe/evRw/fpyhoSFmZmZIJpOIogjA9PQ0mqbR2NhINputJlXsdjvpdBpVVauxzR87Ho8Hq9XK3NwcAEuWLCGXyzEzM0M4HKapqYmxsTGcTicNDQ34/X7Wr1/Pxo0b2b59uyl2MjExMTExMflvkUgk2L9/PydPnqSnp4exsTGi0SiJRAJRFInH42SzWVwuFy6Xi4mJCXRd/5PMeUmShNfrpVgsks1mqa2txePxMDIygiRJLFmyBIByuUwgECAUCtHW1sbWrVtZvXo1GzZsMMVOJiYmJiYmJr81qqoyOjrK6dOnOXv2LP39/czMzDA7O0s8HqdQKBCPx1EUBY/HQz6fJ5lMIssydrudTCZDuVz+k8t5xeNxLBYLLS0tVaGUx+OhtrYWTdOoq6vD6XQSCoXYsWMHK1asoKuryxQ7mZj8gTH/8jEx+T3Q39/P3XffzfPPP8/w8DDxeJx0Og2A1+sllUpRLpcRRRFVVX/peeYDAgC73Y7T6axu6+rqQpIk9u3dh9fj46prrqRcLrPr4ad4+auux+128/xTe4lOxXntm1+FxWLhgbsewYLILe9+JcVikae/s4+Nr15N25JWJvsj9D8QoX5LkEteuoJULMPBr52iQIFr/nYL5XKZh7/8FM6wlav+7DLS6TQPfe8Jrr3tCjweD8ePdtN7tI9Xvf4mAH76g/vQ0bjx5hvIZrM88fgTrF69GofDwcT4BKO5UTweT/X+dV1ndHSUfD5PuVwmlUoxOjoKwCOPPAKAJEmUy2UAmpubAZicnMTlcrFy5UoURWH9+vXs3LmTm266yQwyTExMTExM/g9QKpXYtWsXjz76KMeOHWNqaoqZmRkKhQJ2u73qJglgsVjQNO2i55EkCbvdXo1NbDYbdrudRCJBfX09DQ0NJJNJzvSc4drrrsXpdPLY/buwYOGVf34juq7zyI92sfHKtSxZtoR4PM6+nx3lpW++CpfLxa5v70UoClz33suQJInnv9CNjMTWv1yDK+jg6M/PMteTZPlrG6htD9Pf00/PI0Ps/IvtSLLEfV99BI0yN73jpZTLZe7/7kMsWd/CqrWrSCaTPPngM+y86SosFgsPPfAIOhrr1q1DURTm5uawylZEUUQQBDRNI5/P09fXRz6fB6jGXY899lh1TmRZplQq4Xa7qaurY3JysupC4Pf7aW5u5rLLLuPaa69l7dq1v8enbGJiYmJiYvLHQjQa5eGHH2b//v309vYyMTFBLBYjn8/jcDhIpVKUSqVfmfNyOBxYLBYURSEQCOBwOIy8T6nMss5lWG1WDj5/GIsgcv0rXoKmaex5+CBX3LgNr9fL6RNnmOqb4/rXX4EkSTz5/QOIgsT1b99BqVRi/z19LLmsjs71bUydTTD6dAJ/u511N3SQjRU58aNRSihsfWc7qqry7H+cRLepXPmGdeRyOZ655zCbX7UCn99H/9lBevcOcO2tlwHw8I+eREPj2lddTi6X4+nHn6VrRScej4eZ6RkGBwfx+Xyoqlp1ExgbG6vmvM7na1/7GsCi+WpqaqqKuOZdA3w+H5deeilbtmzh8ssvx+12/56esImJiYmJickfC6qq0tvby4EDB+ju7ubcuXNMTk4Si8UoFAqUSiVSqRSapr1ozksURRwOB5lMBhAIhUI4HA6S8TThcJiWlhay2SwDPWPsuGYzLpeLvY92Y0Hkmps3A7D35z3UL/ewZuNy0sk03Y9PsfmmDnwBD4cfGKacFdn2Z63IksSRH0SxijY6r/Hjb7Rz+tk5MpMKdasstKz3MdQ3xfCBNBtfVY/NYeWpe06j6WUuf91yVFXlmZ+cwBEU2XTlCrLZLHsfPcXmnV2Iosj+PUfIJDOsW7eGUqnE0UPH0VQNSZIoFoskEgnK5TLRaLSa85rnP/7jP6r/Lssy5XIZp9NJXV1dVdwUDoepqalhy5YtbNiwgXXr1pmL+ExMfg+YIiUTk9+Q+++/n7vuuotjx44RjUZRFAWr1UqhUEDX9RcNBCwWCy6XC6vVSiQSYd26dTQ0NPDkI08h6jK3vfUWnE4nu796lKCnhiv/9hJUVeXAJ86w9c1dyDaZc0+OMfN8iu3Xr0QQBJz7GiEDl1yyCrWsoTzipMndRE2nn4Aepu+HEzTUNGJ1ymywXQ4KhAIh0GGpsJrkz6H8BmioaUTY4GD2cBLL9RYsWRG3zc+ON3SgxlQiB9N0CCtZdmUTwYCP+JEilwg7WNrWiWQXGf52gu1CK52dnei6zhXCjbjarKxd20mpUEZ7wsvW67uQ7TI9D/TTNV5k+58Z97D333oA2PG3q9A0jV0f28+at7Uj22SOHz3BsQPH2HnDNShFhV1P7gKMwmEymUTTNDKZDAcPHgTg+PHjfO9731uU3Kmvr0cQBKLRKH6/nxUrVrB582Y+/OEPm0ImExMTExOTP2Ki0Sh33XUXjzzyCGfPniUWi6HrOpqmoSgKwIuu8HK73fh8PtLpNAICO6/ZiSiJPP/YfrZdvYWulctIJ7MM/mCGnf+wGYvFwt6PnwFgxxuWo+s6+z5xlqbOAO2X1ZFLFGjsW83G9cuwOiSKu2RKOehc2mmM16LCHmi6uomQq4aURYRBO+Grw1x+2XZGn4ky80yOmtVeLv2z9fTeN46WAyFkodQHS9a34Hd6yQ+XyT5mpc2ynLA/jK7DKssmZJ9MY2Mjubkimy1Xs3J9M8EOL2MHZ9hheRmXrFuORbKQ+4XNuIdrV6LrOr6jS2i/PkTTphoKWYUjnx/k0vcvw2Kx8Oy/niJJlMv+ai35fJ6ffOfnWL0iWy/fzNTUFMeOHSMQCFAqlarxbl9fX3WOf/KTnwALYnKHw0FtbS2zs7PYbDY6OjpYunQp7373u7nmmmt+b78VExMTExMTk/8+hw4d4ic/+Qn79+9neHi4GnsVCoVf6SYpCEbBy2a1EZmaZvXq1TQ3N3P0+ROUMxZe8abrcDjsHP7eCB5CXPaBdtSyxuGvTrL+1locQRvDe+eIHMyx9WVNCBYB96nlAFxySTPlokppdy2hkpO2pSF8Wh0DYwnC9jCuWjtrwlDOgc8eAIdAk02jeBgyLvC7AmhddhKDBQTBgpoFu93NqquDFEY15s4VabAtoX6Dm6DfT7JboMu5hdaaOpwhmbF7NS5xtbOkowl02OaxI9lh7dpmiuky7G9i9dU1eEJ2+p+doXOuyNY/a0IQBA58cRyAbe9vRtM0dn/+LC03OfEEHZztO8fRZ09x6fUbKJfLPPXE02io2O12UqkU6XSadDrN5OQkAA8//DCwWHhfW1uLLMvk83nq6upYunQpV111Fe94xzvw+/2/51+MiYmJiYmJyW9LPp/nySef5JlnnuHkyZMMDQ1VxUf5fB5N01409goEAgQCAdLJHDaLzOXXXIokyXQ/N0Tn6ibWbFlONlFi/Bm49E31SDYLB7+TAGDrG/xoms7h7yVxhGHddQFSswqN0TTLO9z46qyop5spZaGt2Y8oCcT9IZiGupoAHkuZlLuWwhmRlms9dC2zM9tXZOpZkcASmRWXNTB+NI+asWBBQJ22Eq534PPJxM/o5LrD1DrC+OweBAHaPOsQRaiv9ZOeLrHC76VxjUxzh4vRYzk2hFpY1eXB4RZRjraDE7bs9KOrOsGp7bibYfVL/WTjJU7dl+WS29xYnSL77o6RzydYf4ufQj7P4z8+hKJn2HzNSqanpzlx9BSBQIByucxcdI7p6Wn6+/sBePDBB6tz/cKcV6lUoq6urtr6901vehNr1qz5Pf9iTEz+d2GKlExMzkNRFL70pS9x7733MjAwsGj1l8VioVQqXXCMIAgEAgGUokJ0LsrKlStpa2vj2Ud3I2s2bv+r2/D5fBz8/86CDDveugq1rHLg/zvDpms6sXtshNKNTO1J0NzcjCAI1ApNkKlcQDOclOIDaWpWBvDWuZghRbmgITtEsAIK6JqOUIlVhh+YIvx+H6JstC0ZfnyajusbaNoeYuLZOXrvHaNtZy1Lbmxg8KEp+u8fZ9P7llOzWmP2eLJ6b1arBVe9g8RAmnhfBnutFV+rk/F9M0zvjwNQzqsUE5V5sYKuQTZSAKB+SwhBEJjtThjbVcMxKX68WJ07XTMG7V5urAArZUq4BT81wVpkp0Qg0szlQiObN68yzvGUH4Adt69CUzX2f6KP9e9vR5Bg7+79nDjQzRUvM1bNPfnkkwA4nU5isRilUonZ2VlmZ2fZvXs3n//857HZbHi9XmZnZ7FYLHR1dWGz2Vi3bh3/8A//wKpVq37r35OJiYmJiYnJi3PmzBm+8IUvcODAAUZHR6tuk/MOPhdLxHg8HgKBAKOjowgIXHPNNVgsFg7tOsHWKzdwybb1FGJler87yaXvXoZFPE94dJkhPFJ3+QkkndTW1uKy5ImIRUppFZvPAk4gB7qqgyCArjHx1Bxt22vRKwvfY71p6jcEqb00yMRTMdKTeVy19uoY0xN5LKIRw008HwMBatf4mTqWJNaTpna1F1+764J7q13txdPo4sAXjPEueXk96ck8o89Fje1rPRRTJfofnDIO0AW0ksboU8Z2XQVNNwpWcsWAs5hQQNewumR0XSdyeK66LxaQRZkwDYRCITRVZ6v4ElqvCNOyOUx6Jkuou4tL37AMi7wwj1s+uIRkMsm9dz6AEFDZsmMjo6OjnDx5imAwiKZp5HI5crkc8Xico0ePcu+99wJGEm1eZB4MBmltbSUQCPDnf/7nvPGNb0SW5d/mp2RiYmJiYmLyKyiXyzzwwAM88MADdHd3Mz4+Tjqdrrp4XyznBdDY2IjL5SI6M0dX1zI6liyhe38PQsbGK96xk4A/wJE7IwBse2szpbzK0W9OsWJLCH+zk5ryUiIHsjTWNyLKFgKSkTNCB61sxHqR7hTtV4WxeYw4IDtTwlVnRbJDuQDlvMZ8WDh1KEfTukA1Xzb0dIKlLw0R7HQy052j78EojZs8NG3zMnEgxcjzCTa+pQFUgcRgYdG9+TvsxAfypEaLSE4IdToZei7GbHfOmLOCRmJ4YQW+WtTIThtC+cAqJ7oG0d5KSzrFyHFFjxk5L10V0Co5L6liepSPq9glNzW+Grw1dqL7VLZ6Wtm0sQmLKGA52GLM4+3NqCWNw3dOsuxmH44aie79pzi2r4cN165AVVWe3vUMGiput5tEIkEsFiMWi9Hb28svfvEL/t//+3/VnFcsFsPhcNDe3k4oFOLKK6/kbW97G+3t7b/x78jExMTExMTk12N2dpb777+fffv2Vd0n4/E45XIZRVEuanbgdrsJhUJMjkWQLVa2X7kZq2ylb+8US5a3sHnnKnJRgcFdRdbf6sHmFqvCoy3b/Gi6jnC6CzEPNWE/cklhRsyRmioRbLNh9YGShGJWRZQsoGnkZ6Bc0tCUyrh787iDMoE2KzM9CrHBIv5mG4iACnNni4h2Iw7LTKkM7UkTXuIkNlIkH1fxl3SCXXamTix2MfI1SPibrPQ8lAIg3GklM1NmuteIzzyNIpnZEuNHjM+CbEHJaMz2GAPTFChmKnMmglaGbFQFXcfhltFUnZleIw4rF3RkO4iqiNsaIuj3obo0VgevwdMMqzb5iU8UCU9fxpqb3Tj9IgfvToIKG97gJJ3K8Oj3D5PXY2y4ahnj4+Oc7j5TzWlFIhEmJyc5duwYAJ/5zGcA8Pv9WCwWAGpqamhsbGTdunXceOON7Ny5E1EU/7s/KxOT/zWYIiWT/5N8//vf584776Svr+9FrRDnW625XW5aWlvo6+kDTeA1t95MOBzm1J3jWLGy4x2rUBWVA586wyVXL8EZshPMNxB5JkkwEESwGOeh8pKncpm5M0kaN9XgbnABCUrZMlb3QmFG13QqQ+Dco1PUrAzgqjEKYLGzSerWBalZ62P2SJLsTAFXrQOrG5SMRiGl4G0yil/RkymWvryR5m01TDw7R7I/i/1VViwtxstSyWjs+2zvBfOkZDSOfKkHpSKYctfZkV0S5ZyRZFl6UwOOgI2Bx4wVXatuNSwPBx6fAMBb60Qtaww/NgOARbZQLhruRtZKgqYQNyalfqUXgJmTCWNDZc6U0YVnoqnGdX0VQdP8sbLFitUp4eypZ7tQz5YthkOT8FQAgB1vWEW5pHLwk2foeGsQ3aKx69FdjI6Psnz5cvL5PLOzs2iaVnUGOHHiBN///vdxu92USiUURaGxsZHGxkY2btzIRz/6Uerr6y+YMxMTExMTE5PFRKNRPvOZz/Dwww8zOjpKJpNB1/Vq27GL0dTUhCzLDJ4domPJEq6+9krUNIzem2LrezqRbOKC8Ojy5Ybo+ekQjhEZx9UOVKuRCCkmSjhCNmQflJKglfRqXBbvzqHfpGOxiKBrzPYlaN5aQ+Mlfiafj5GLFXGGFoRH5YJqCMSBwYcj1K7xE2jyMEGM4WdnWHtbG52vaKD/wSmiPUk6rq2n6bIQE8/PoZV0rB4ZZ1AmmSzRd++EISJ6QS2w56fji77zNDmQbBYy48b9NG4No6t69bOvyUl2tgAlkH0ygigQHzYKZaF1AXQNIicSANh9VtBg4jlDaC4A5aJmKMwr4Wc+biRz7POCpiPGvpoGlvP0YrIsE/AFWS9eRttlQZo21rAkuIK6nlVsfWMnktV4PiVVYdW764lGozxw7y+wuWXa2toYHR1FVVVisRizs7MA7Nq1i7/8y7/E5XKRSqWQZZnVq1dTW1vLX//1X3PjjTf+yt+aiYmJiYmJCTz33HN897vf5cCBA4yPj5PNGrHBC1uvza/Md7vdtLe1Mzw4il6w8PLXXEdtXQ1nvpdAkuxse0czSr7MsW9GWLoxQHiZizp1CVMHcgTcISTJsnDSSmgBMHMqi6/Jgd1ppJ9zMwruRju6qEMZSrkFZ6bp4wXaLtNxeI19Z3oztIcD+JY4mOvJExvOE+xwILmhnIFMpIiv2QHEyc0YIquGDT5munPkZ8s4/DKyvZL2LsPRb01dmAUvQ/f3JylXdEt2r4TNJ1ZF6bVrXXjqbAw9GwOg5TIfFtHC6CFjcV+g0YGqaIzvM9oKy04LSub8OdbJzRqxVbDDCRpEe4wEm8ViCJhSQ5WLaQLlsjFxNp/xVX7OyHlJkozDYcc+1cAGVwObNxmCJvGQkYPb9oZmlJzKsf+YovGlIpIf9jy9j6GBIbqWL6VYLDI7O0smk+H06dPous6zzz7Lv/3bv+FyuVBVFV3XaWxspK2tjRtuuIF3vvOdpguTiYmJiYnJr0E+n+e+++7jscce48SJE4yPj1drjhdveyvQ1taGw25ncnCOuroGrnrZVkpJiel9Vla9wo07LHHwrgQAmy71Gx1cepOQAKfdSdFixAipqRLhpSJ2PxQSUMiWka0iaBpqHMoKCLoAmkb0nIKvyYqvVmQ2XiI5YYiW5oVHuZiKZDPyZbEBleaNGq6gDChETubxN9toXGtn8niB2HCRzmu8hJeViJ5T0EoCDr8Fm1smV1SZOqUw06ugqhaqBU5g8nSRydNFqEyLu1bE5hEpJI2EU8MaB4JFIDdn7BBotpKeLaMqIIogWQXiY8a9u2tEdFVnbtD47ApIqIrOzEAJdCPOLaYNARMYea101Div02tFU3ViQ0YCTi8bgqf5cYmCjMvmo9O3FU8rrNzgo8W7mvq5q1j9KheuoMTBu5KoqkrnqzRic3Ps+vk+FD1De3sr4+PjRKNRkskkZ86c4emnn+aLX/wioijidrtRFIVwOEx7eztr167lbW97G5s2bfpv/Q5NTP4UMUVKJv9ricVi/N3f/R2PPvooc3Nz1ZVhv8wasampiXA4zOljPbjx89YPvAG7aOfAZ86w5tY2fE1uRusjjD05R1dnFxbJglWYqR4/f9ZoX5q2yx346lxESBrCI88LhEcVJe3wrlkaN9XgChotOeIDaerWBQmvdRE9mSU/V8TmtxoHZqCQVLBUlLYDj0bwtrpwho1jR56eoe3KWnBZIaMwsTeKM2SrXvfsA+OUsgtVr4OfMwp7WMEVtJKNKFyMeYGSp91B9GSK6MlUddvAL6YoZkpEDhoFrJFdEVqvqiNbCRTm+pO4Ao7qdQrpEqlhYzVaaE0AtagxttsoTDlCNrSyzthTxup+i0VAVbTqsVBxAgBqVniMue5JVvalOkcAAoarAEB4sxtBEMjPJ4b8QWxuK52zm+kUNrPjVYZT0t6P9YAVtn6gi4FzAzx478O0r2rB6XDS3d2NrutMTU0xMTHBoUOH+MY3voHH48FisZBKpQgEAqxevZp3vOMdvOlNb7roXJqYmJiYmPxv5pFHHuFzn/scx44dI5lMvmhLEFmSWblqJalkmvhImhtveyntS9s5+KkBALbfbjge7f/kWeSMTGNDIxkpzygpcnMKvkYntiaZ4kQJVdEQKq5FuXEjGSFWgoNYf4amoI3atUEm9sTIJ5SF+EjXKBdULJUwbfSZKI0bwngajdhlYn+Ujp0NBFc6ifXmmDmVxNPsqN5DrD9FdtoQC2WG8sydSTFScTyaOhC/4J/z/+5qspGdKFLKXWQSK6Gas04mFytx4ltDizb3/WR80eepo3FSY0bhUbZDeizH2NOGk4HNLZKdzjO5xyisCYJAZnphFZuuQWrSGETtWh9oMHc6BbpmxJ8azByZL6RRjctkJ6BDPlasXMeGgFAVmgsa1cBYFq3UhGvwuwNcIb6SjqtradwUZPp0jP77Ztjyt0soqAX+8/M/JU2MSzavZWZ2hmQySalUqq5Ie+yxxxBFkUAgwNzcHHa7nWXLlrFlyxY+97nP4fP5LjKZJiYmJiYm/3vJZDJ85Stf4b777qO/v59UKlUVm1yMpqYm6mrr6D8xgl+s5bXvfRmybuPEXTO0XeOlfp2P8YNxJvZlWNpaj9UlIVUcjzRVB9WItaJnsoQ7Xdgrea7crIKn2WZkmMugFDQsFUF4rK+Adq2OzS+h6zrRc1lctTaCS2zEzhZJTRSqsZWu66Qmi9V82Wx3jtBSJ1an8XnqYBpRtCCKUAYmjqTw1Fur99f/WHTR/Z76USVfJ4HdLVFIlI0DX0BVoBSSyETKhpipwszJLJqqE+0x4qWpE0ksEuSnjBPFh3KLREm5eJnMpBEf+VolSlmViWNGLOWus1IqakS6jbjNIltQsucVLgWdfNTIeXnbDIem2DkjbhMtFnQNCrOVfTWdciUus9VKoAtkI5Xr+gJ4GxwsKWyl1buVLTc2giBw6KvGYsJNf1XP8LlhnrhvD+GlLlweF6dPn6ZQKDAyMsLQ0BDPPPMMH/zgB/F4PIiiSLFYpK6ujjVr1vDud7+bG2644cKJNDExMTEx+V9Ob28vd911F88++ywjIyNVR6SLLb6TJSurVq2imC2Tn5a4dOd6Ote0cuyHWcOp51YPCHDsBykQoaHOT0JVmCZHarqMKyjhqoHsLBQyKlZHpQCmQLlU6aiiacSGFULtNtw1IoVYifR0mWCrWBUeFRIlRNmIyxIjJZSsit0vASVmeos4AhKeWpH0lMpsXwFPg1w9dvZM0Whpi1EjnOkrEOs3Aqd0RGXo+QyJ0RJYLKSmNE7eb4i2rR5Q0nBRfVblO6sDFAWG9y52WhrYnal2hwGYPFlAySzUCOeGSsyeNcZgdQkkJhRm+434SbBAYrJUNYrQdUhOGuN3hgW0sk58SAFdx+azoJYgOmhsF0QBJbfwHHVNNxyaAIdPQtcgPlJJ2OmG+AtAFEWCgQAuOcCW2noCHSLLrnQz2ZNn/HCJVTc6wVHkoW8fIF6cYsklNcxF5zjX38/Y2BhjY2Ps3r2bO++8s5rzKhQK1NbW0tnZyVVXXcX73vc+3G73RSbTxORPH1OkZPInj6Io/PM//zM/+tGPmJycxGq1oijKRW2q21rbcLqcDJ0ZZu36dVy583IoWjj+lUG23b4C0WphY2g7I0/O4HK50HUdV72VaG8cb6OLukuCjD05RzFTwuG30fGyOoYenUYr60hWEXeLjfE9s7ReVoO/3QtMkhzNUrPaz8rXt9D7gzGKaQWb14qv00WyP4taUrEFjcTK2J4YtWuDNO2oJXpyiPRUDmeNnfodQSJ7Y0iyBclX+c9WAbvXStOWMCOPzZCP5HHV29n4tqXs//96kVwi4XU+atYHOP61szRsCqIpGp7XOZk8NkftSj9Th2P4W10EV3gpJBWOftnotYoFnHULAqftH1qJrsP+T/RSt8lP47YQotXC1NEY7rCdVW9oRS/puBsdlPIqzVeHcQXthFZ6KaQUrEErnS+rxxmwLYiHunyINgvuZjvRkylkh4gggrvJSmZCAXQqrtiEV3rQdZ1ixnimrkYHuq6THDESRaJNXEjEWQGBqqV2uMsoWmVnjH0lm1idP6jsW3FoatwRRJIkmsIt7BCuZ+tNy5HsIv6j7SDAtn9cTiQS4Qff/iGqpNLZ2cno6Ci6rhOLxdi9eze7d+/mzW9+MzU1NQQCAWZmZti6dSt//dd/zU033fRb/spNTExMTEz+eDh+/Dgf+9jH2LNnD4lEAkmSyOVyFxTFXC4XbW1tzEVj5GaK3Pq219DQ0MDZB6aIDWfY8erlhhPlZ/oJOeqRJImuWxs4+19TlBUV2S4SXushejKNrus4KsLtRH8GX6OTFTc2cuKbIyhpwy2pbqOP6aNJ1LKG3W8FGUaejdK4JUjdJT4m9sSYPRmn7Zo6Wq8PMvpolHxcwVVrR/bJlJIlQMfbbPRJSw4XkJ0iLZfVEesdopQt4WkIsvy1jZz56SQIAm1X1yM5ZEZ2zSC7JDa8s4Po6RQzJ5PUrPbhCFnxtriInUvjbrDT859jrPnzdrAITB2JMfrkDBZZxCIJ+DqcJIdyLHlFPfXrAkwcmGNk1wwrb2tGcojITonTPx5l+auaiByL0XZVHalIDm9zmPiZLGvesASAhk1hBh6eomFjGCwQXOUhdi6NI2RDV404zNVkwyJZkK1GosseNua2mDUSNFZnxWFU0qBsQRAF1KKxzd9lJNOUjPHZFbaho5MaMIpwgmypxmGyExCoOmm6622VIqWxr2gV8Yge1onbAdjx0uWUiyoHP9vPslvqcLfa2P3kHo4dPU7Xqk4URSEajZLP5+nu7qa7u5tvf/vbiKJIe3s7+Xye2tpabr75Zt7//veb4iUTExMTkz95yuUy99xzD/fccw/d3d0UCgWKxSKKsrDQbF4U3traisftYXJwhqUdy7j6xh1oaQunfxRl7c21OANWhr1xpo9ncTk8gI49JDHbl6N+rZea5S4m9mXIzhaxuSUat7qZPJihVFCRHRLOWonkgIKu6fjbnECS+EgeT4udpS8JMPBonNxsAV+zE0+jTGpCQcmVcVXijLm+HC2XBqhd6yF2tkhyvEBwqYuadS5mu7OIsoCrbkHw5AzLeBpsTB3OUsiU8bXY8N7awNH/mEJ2WAgtdxJe6abnvgjh5S4EC7ivtjHTkyG01MlsbxabV6Rpm4/MTJFzD0YpF0CUwFW7sJhw0182AgJHvjGBp9lK0yYvFpvAXF8OySGy5CVBitkygXY7xZRK7VoXkk2gcbOP3JyC3S8RXu3C12xDqCi1/R1urB4JZ0giOQCSU0SULNh9EoW5MoIF5pNezjoJXYdizoiXvA1WQCc9YwiPrF7RcA2tYJEslCtxWWipFQQopIx8mdUtgq5TTs/vvNByztliQZIkwr4mNrpewuqddbhrZEJj68AKm9/TwEx0hp9952GyeoLOzk7Gx8dJJBIMDw8zPDzML37xCwDC4TDBYBCAnTt38sY3vpEdO3b8Ln7yJiYmJiYmf1AmJia4++67eeKJJ+jr6yObzZJOpy/IeTmdLjo7O8nEC5STdl7y6m00tTTQ/2SB9LTK5lf4UPIq3T/J4BGsSKJE21YrI3uLFDMazoCEt0kkNaGilnWcIQlR0EiNFalfYadxnYNzT2QpzJVxdNjwt4okhkuUciquGgnRCsmRMmpZp6bLTvRMidhAkWCrjbrVVqa7FbKzZfztVkMUlAddE/DWG/XFYlzF6ROpX+0gPZWhmCvT3uGmXNQYO5BH0zQ6LvcgOXLM9BSR7ALLXuZjbtBo/xZosyK7LfgbrcyNKHhqJEb25+m8yoNohcjpIrNnFCwSSDYLzpBIbk4ltEyi41I3o4fzzPQWadpgR7IL2FwWBp7L0rTeytyQQuM6B+nZEr4GicxMnuU7PQgylAs2IqeKNK5xINoFPDUK6YiKp1424iURrFbjmpLVEGjZvRZ0dNRKbdLmFNDKGqJFR1UFJBuU8sY2R8iCRRRQ8pU8lt+Yr3kXJslmqebWEMEiCJQLlVxbSEQXIBstg64j2izY7C46fJvpADZf66WU0zjx0wzh5SIN6y0c2t3NqeNnaFjmoayW6e3tI5MZZHBwkMcff5wPfehD1ZyX1Wplw4YN3HTTTbz61a/G4VhYSGli8qeIKVIy+ZOiu7ub9773vRw5coRc7mLLz42erR6Ph+nINJdfcTkbN26kOKHS/9MIO960CgTo/k4/Tslh2BpbjRfIfIHL1WC09dBUHYsoYPVaiRxOseRaqlbRyaEsjg02fEvcwDRaWcUiSTgCNjJjRXRdR5SNos/IM1FqVvtx1RvnzccU7D4brhYbyf4sFsGCIFVam8UUBAu4ao2XS/S04azUtCVEZG+M7EwBb7OL8Fov0ZMp1JKOWjQSEbJbAkGgEK/0b61zINkkyvkyiqLhqrWja5pRkLKJ2P1WXLV2Jg7P4Wy0Y/PIhsCnkueyWM/vjSpQqLT/cNU5sPutaGUdd9iBs96OaLWQHMqhqTqOgBVvvYPR3dN42pzYPDJWl0DPD0bZ8oEu7B4jOZWazOFqtOMKObDXWrF6ZdAFZI+Vtmv9SDYJtWS8+MPLfAiCgFRRUQuigCAIOEM20sN5dEE3bCuB8CqjbVxZqSid/XZ0XaeQMj5bLtLzVZ9vI9ditMcrVtrIiVbLov1EUaSxsZHLhBtofUmIlm31ZKN5jt85yNr3t5JIxrn7rntQKeFwOJiYmCCbzfL444/zxBNPIMsyiqLg9/tZunQpN910Ex/96Ecv+js2MTExMTH5Q1MqlfjqV7/KN7/5TQYHBykWixfsI8uyIQTRBdS8xm1veh31dfUc+dwwXa9soKbLR2Y2z4lvjFAbqsciWnCGbMR6MobjUeXdHutLE2h1420wYqDCXBG5yYmr1k6UtBGXSRaQYbo7TeuVNdi9RnEpNpChKWTD3+Fk+mgSpSIml50V4ZGO0aZN10iczdC+s55gm5dRoqiKhihbqF3vY+K5KEqujN1nRXYKlJIl1MKCS5Na1NHLOpGjCQCsLglN04kcMxySnDV2BNFCWdGwB2ScYRvlsoZkF3HX26vx3cSBKI3bQngqMaelsqrNHrCSHMphc0homsbsyYrzUp1xnGAxinXOsA3ZJaGrOlaXjDNgCMtjZ1MElrlwNRif+x+fpPP6Rty1NiwWiA+mCbQbq6/ar64DdMRKvFe70g8WcIVszAJWl1xti+eoFxEQqhbd7kpMW87OOysZ8bHFLkOuhEU0VqgB+Fca7pdqJWFjdRn7luILq9XmE32yoQ2rxmV2nw2n00mnay1usZXtr+xCEIVKG7kS69/XzJkzZ9n12BP4fX6y2SzT09NMTk5WhXSlUgmLxcKyZcvo7Ozki1/8IkuXLv3lP3oTExMTE5M/IOPj43z84x/nscceY2JiYpEQaR6/308oFGIuEmfL1k1s2raJ3JDA2HNpNt/eiChZOP1fEbSyUTwrW4xcSD5Wxhm04q6zMU0WtagiO0WsLpHUaBFdM4Q0APHhIsEOF75WO5MHM5RzKjaXhN0nkZspo6o6cmVFf6Q7S+tlAVw1RlyWnS7jbwVXg0RqQkFAQLYb5y0XDAchb70R26RGjPurW+1mtjtLKlLE5pXwNtpIjRYp5TSKWqUgJGGIcWJGDswRtGL1SChpFcqGU5EgCYhWC5JswVlrxTFbItqTxdfuwBGwLmTBLQKSfXFuKDdrjMURkHHWWlEVDZtXwhGSsbpFCmcUdBVctVbKeY3xg0kCS5zY/TKSE8afT+JrtRm5NaAQL6GkVZwBK5Id3LVWNE3D5pFwBiXsXplSviIAb3UgSkI1j2iRLICA1SkD5UXxkqNGQhCoFtkcPhugo1RyXqJsWbB6pyJgq+wbqLiFKmljX1vFpYqKm5RFEqmrrWez+3o87RKrX9lAKpKn50dRlv+5l2wpzb3fv4+sksLpdDI5OUkmk+Hs2bN8/etfx2q1Ui6XCYVCLF++nDe84Q28/e1vR5LM8oOJiYmJyR8nTzzxBHfddRf79u0jEolQKBQWbZckidraWgRdQlSc3PC6ndTXNnDq3gJ1qyXatrhJRoqceTRP2ONCkiXsHgvpaRVN1ZHtFhAhPlakaZ0Dd1gCiqQjJVwhY9+UVqKU17C5DQekVKRS1wpUcl6jRYJLbHjrJRLDJXLxMn6PDdEKqgJauXIdIDurIloFfA02prsVlIKOzSXhX2Jl5rRCPlnG32xDdICah0JKRa/U1VAFSgWN2JARE8lOEa2skxgtgsWCp1ZGlAS0ko5oF3HXymiqjmQXcPhE3DXG+37qZJ7G9XZcIZFZjFyWIBrOR7k5sDpEyopOYrxSbwyLWESwiBZkN7hrZZIzZTRVx+qw4K6RgTyzA0XCnVZcISOG69+doWunB7tXRC3BbH+BcIeRr6pdZQdNR6zk82o6HUhWC1anBKg4fBIWqwAiiOhG7FTJeTkDAho65UoK1O4V0THazalUaoaVvJUjIFYW5lX29YigQyFpnEu2CoZwStdBEhAsoJYq4vGAiMPpoNW3BnvdSi55mQfZLnDobsMddeVrBAYGh3j28b3ILp1cLsfQ0BC9vb384Ac/QJKM3KHX66Wzs5NLL72UD33oQ9TX1/+3/pswMfmfxPwrweSPln379vE3f/M31ZViv4zly5fj8/iYPBxnw9ItbLi9k/hQht57Rlm7vAOPz8He7/QAxipuiyiQmVDITCh0Xt9UbdMRH0njCNqYOWm0xCjEi9h9VuJnjZXeWklHqbRLmz4Ro/6SIPmKnfLMqQR16wIkx41xZkbzWCp/7CsxBb2sU6okAYYenybwTg/+OheTxDhx9wBdr2jB2+EkNZRj5KlpMjHjPMn+LPmYUhXNnP7+KNs+uIIlL2skejLFwc/00Xx1mE3vW8aRL51j38eN+7TXWum7d3E7kEOfP7vo8/CjC63qjn6pf/GkapAZWxCBzZ8XYPDhKQYfnuLFsNdaKcwoHK5cs/26Orpe5eHQ54zPS25ooGFTkMFdU0ztixHocqOVdHp+NEhmrEh8PIPskuh/YBIAq09mfP8Mo09EwWokYTITeaaPJPB2OBGwMH3UeG6uGjtKpsSpbxn3pAPFVInJZ402cuiQjRrzW7POCzpEDhvHWiQLWlnnzI+N62olHb1i12l1G8fmZo1jHT476DD4pNFSxS45aG50cY3wKgB2vHkVpVyJhz73DMrSBPUtdZw4cQJFUchkMhw5coQjR47wL//yL4TDYRwOB6qqctttt/HhD3+4uiLNxMTExMTkf4JSqcSnP/1pvvvd7zI6OnrRohiA2+Vmzdo1TJ+bIzjXwkveuw3ZIbH/U2fBAi3NrRSTxrHRvjThpV4SA0Zbi2JCQbLaGd9tvJOVXLnaG376eIqOa+pIVWKp5Gged72DWMVxJzdXwBmwQwlKyRL5mIJScf2ZPJgk1OUlWYldEoM5bOusyJJGSddITxjnAshFS4w8M42v4pbUc88o7dfVMrHPaBFy7oEplt/chC1op5TLM7Z3lvZr6mjcHmRyX4zI8TiXvG0J08fjnLp7pDovtpB8Qax1fovc8xnfPVedA4ByroxW1pmuiJ96/2txDHf4S+cWfd7/aaNl70SljRuA7JPpf3AhPtvw7qVMHphj/6f6ANjyt13oml49VitpZCIFTt41bNz3gxPY/DIzR5P4O12kJ/IMPjwKJWi/og5N0zn+jX7Qddz1Dsp5lf4HjRgoH1MoJsoUYyWc9TLlvMrYfqMfSaDFja7q9P7EGJtWhlJWJTth/EY0RSM9ZTzz4CovuqozfqDSrkXV0VSdyN5k5VidcuWZe+tk/D4/nb6VqKKPlTc0Eehwc+irp+iL9dJ2dR2JRILjx4+jaRpnz57lzJkzPPTQQ8iyTGNjI/l8ns2bN/PRj36ULVu2XPRZmZiYmJiY/L7o7+/nYx/7GE8//TRTU1MXdQMHgWWdnQQDYZLdGktDy9n41jbmzuUYeCxOe6Mfr8fN8Akjdigmy8gOkUzEeF9qJY10JW+VGMnhb7MTHzbistREAW+zndSosV3JqJQq7ccSAznUywLkZo3zRLrTNG8Ryc0Zn+d6c5VWIRgt3jIqhYTRam7qaJK6tW4cfjuQo+enU7RdGcLTZCU9odD/WLTqxlhIlkmM5Ksr10efTRJoc9JxTYDj353i5H9OE+xysPrWWk7/1wxHvmHkamS3hYkDKSYOLMRaPT+Z5XymKm3WAHpfsE1VdJKjC3nG+fOC0eJt5mT2os9s8nCmev1SRuP0fxl5tfAqJ607Apy+dwbKULPGSetlAYaeixE9ncNRI1Eu6vQ/MEtupgwSjO1LMHnIsDuyB2QGn4kx223Esp5GO4mhPLGzeWw+CbSF+3GGJTIzCmd+YVxblCxkIgqRY5Ucni6QnDDuzVkroZV0IseM60gumXJeY2hXwnh0Ra0qdgLQy0bLPQB32Iaq6IwfqByr26kPu9nueDU4YPPrGylmyjx/Vy9x3xANXSFOnTrFbHSWeDzOnj172LNnD+9617sIhUJ4PB5qamq4/fbbefvb3262LTExMTEx+R9FVVUeeugh7r77bg4ePMj09PQFeS8BAY/Lx+o1q0hNCgSVJWy8oQVXSOTYj433YWPYQyFpvDuTU2VKBZ3EmBHXZGMqNq9IbMiI6XKxMhYLoKjkp6GYVklOlEDTyE6rlDo0sjPGselICaFeQK0MKTFWRC0a+bLUaJnkRIlUJb5LjJZxhawIogXQmBtSCLbZQDRES/1PpXDXGUYBU8cLlPM6sxXh0diBLLJNxGoXyedVRg9l6bzKS6jTyly/wol7Uyy50knCXWL8cJHxw0XAguiA3kcWYiuAk/ctznlNHDXij/hImfjIwr6qAqWcRmLUGP9Ud5Gp7oVFkGefWBx3zZ83dm4+Ns4jOmC2T2G2z7iPpVc7mRtQ6P6Jse+Kl7uxWITqsVpJJxUpM7jbiI9GDmWxOi2kJlRsXkhNlZg8lkfNQ8NaG7oGfY+lQQdXUKaY0Jg8ZowxH1dJTpZR0iDaoZhUmeox7tVbK1LK6YweNK6jq5CLq+RjRkxdzGqGqxLgDgiU8zqTJyv3rgmU8hozfca+5bxGIWU8c9Eh4nZ4aLSt5PKGpTSsk2lc7eD4Q3Empgbxry6QyiQ4caybRCLBkSNHOHz4MF/5yleQJInm5mZ8Ph/XX389f/EXf2Eu1jP5o8UUKZn8URCJRHjzm9/Mnj17LuqQZLPZEBBQigob129k5/U7OfW1YZSMxrabVyAIsP9IH/lBw3Zadhg/7fhAGne9g5rlPmaPJCnny9i8C23MyoqK1W3sO7kvQf2aIJ4mJ9ETGQpRBWfQXhXc5BOGaAkgO6aQjRbQReOlEevLUL8+RKDDyXRMoVwoE2j14ml3kB7OM/DUJI0bwwAUZhQSA2nG9hsFmHIeHEEbtev8pIZyzJ1Ls+HtS4mtTHPmZ+Mc+2o/Vje46q1kIwoDj0ySmV5Ipth9ViS7iNVtMfqzWmHD25eSjysc//pAdb9Vr28lMZRlct9CUaxhe5DatX56fzCIsjjGuIAlNzTgrrfT/Z2h6nfWoJWVr22m96fjKDEjQAiv9bLslc3MnIgz8AujIOWssSE5pKpT0+DDUxQzClP7jOKaWtI4+Jm+yklh+1+vJDGQrn521tjRFA2IggJzPSnmzhgFq/AqH8mRDIOPGIWy2rV+RKulej+iJFCuWDNag1aKGYXJw8YchFcYxbCpA0Zyx+6xVoulAJqmka3MtWep0XIudsYIdGweK7qukxqq/F4FvXodrKCjk4sq1ApNdG3aSni5j9pIM7FEgY1/vZTpuQg/vPuHKChYrVYikQilUonPf/7z3HnnnYBRMF62bBlve9vb+OAHP/jiD8jExMTExOQ34Mc//jH/+q//Sn9//4WJGUHA5XKRy+aw4+K2N72OoCtM9zdHCS/3sOwljYy7o4w9PUc+qiC3LPxJUc6qWERDqJ3uzyxq0xYfyuIM23C1W8kOK2SnCzjDxionSqBrVPedPp2kcVOQ0AoP6dE8keMJGjcGkZ1QyhnOPPMOi6VkCdkh0rAhSORAnKFHItg8IqFVPnLPRZk8HMPbtGCB7GtzVd2JAKweiW3vX86BL54hPZrj8BfP4W42tk/ui6GVdSKH4tX9ZYeIq8Ze/bz0hgZq1vk4/YNR0qNGXOAMy7RfX8+5+8Yp5RZii9W3t5IczS4SKV0M2Sez4uZGJg7GiPWkq983bAvgrrVz7jxB0vp3dGDzyRysiMFln4xkF7H5FtqYnP7BELLL+Oysk+m9bxwq+Z6umxvxL/Fw7GvG8eGVXtz19uq4x/fHKOfV6mdBgIHHJ0DX8He68NQ7SE8Y8+NpNPq7Jc8a86DpOqnxXKWVnuG6lJkxFgi4mqxYJAu5SisTR9hGuagSPZ6s7ju/QAAM16X54qlvqR+trDN31pgb2W6s8CslZZaK69h26TJURSN8cjnOBpllt9bz7K7nON59DL/fTzqdJhaL8fDDD/PII4/gdrvJZDIEAgGuuOIKvva1r9HQ0PCiz8jExMTExOTXJZPJ8JGPfISf/vSnTExMUC6XF2232Ww47A60ooVVXWvYecMVnLs/RTFWZv3L6xBtFo6enaKcNVZfzzsTJUcKhLqcuBrsFJMFlJyK1b3w/i+mylgrjkeJ/gLlLVplVX6R3FwZf5sFe8hoP5aeKeKtN/Jl5RwkxgvoFUue9FgZYYuAIySRnyuh5FVqVrpxN8qkJxQGnp6jcX3F1boAMz0Z5s4YBSe1CJ4GO/n2MukJhdRonnW3NxLrzzH8bIIzD0RBArtfopAoM/hklHLOiEcBbC4RySEiuaFcyfOsubWOfLxM330L4qPWy33kogrRvnz1O1+7nbq1LgafnKN8cTP2KnXrXHia7PQ/shCjSXZovybI2N4UxaTxzJy1EitvrmX6ZJbxipDaHpCrLlQAs6dy6GV90Vi6vx+pnBQ2vKmB+ODCNm+TDUGgKlKKHE+TnTHic3+HjdhgvirIql/rxeYSq3NhkS1Vx0rJDoWEwsxpY6O/3YGm6sz2G+d1+GTD7bLy89M0yM1UnKkaJDRVJzlijMvhN1r05qaMOE2wGMXVKrpAbraEVwrRtaKVlu1+alNdJEolVtwSJFWO8dPvP0hWS2Cz2ZiYmGB4eJhDhw5xxx13YLFYEEWRdevW8c53vpO3vOUtL/6ATExMTExMfgOOHDnCF77wBZ599tlq3WUeI+flRijLeK21XPeKKwm56jn3ZAFHAFZe7WX8WJ6Z3hLZORVn0HA4QoVCUq26YReSoGk6VocIlEhOlvA3yVj9kJ9RSU2V8NYvxGWqAjZPpVPLpIKqOPA0yGSjKrP9RURZqDoclfI6ks2I4VQVZIeF2i47ieESc/0KNo8FT61EMakwN6CgpDXD5gdwBmXjupUxi1aBNTf6OPVAEiUDfQ+nsPkqebtJlcE9GZITKlgM1yer04LNu9BhpGaZlcb1ds4+nSU/V3FutELTBgcTx/JVYRVA82YHuViZ2GCp6kyEUPm/+c+AaNFp3uIgNqKQnlqIL7xNIq6QtEjE1L7DgbtG4tQv0pX7McYozztCCgKDz2arsZjVAdOni6iV09autFHbZaX3MSN/5G2w4qmXUVUj5pkbNq5V+YgowfCBHOg6Vg/4mmQiPRXHTa/hnDQvPAKNxIRSrUXaPCLZ2cocOUC2WcgnKiYIPgtKViU5WXF8t1sopDWouJhbJAulSrzp9guoJZ10xVXL6hAplzTUlEi9axlr1rrQdaiNXoFoheU3Wjm45yjd3SexeTXS6TTDw8OcOHGCT3/603g8Rm2zq6uLK6+8kn/6p38yTRJM/igwRUomfxC+/OUv86lPfYqpqSk0Tbtgu8/no6GhgUhflBVs5rr/t5VctMCJbwzSWleDw+4gtNbP1L4YhUQRR3ChUFQuakiVNl2JgTRtV9QRXuph9kiS+FCWurUy1qAVJaZQiCmItgXHI0G04O/wAjMM7p7B0+IkvMrL+EyU5EAWrWVhrFanhN1baV02lCM/V6RuQ4DpIwkGHp6kKVEiPWm82dxhJ46AFXeL0Q4uPV1g9Z+1cfSbgygxhX2f7am2WSvMKOTjComxBdXQJe9eAcDBz/RVV+WHVnmY60nT//NJ+llY9YUC8f40c2cWK5m9rS6sXnmRSMnX7MQZtv1KgRKAt8VptGQ7D7tPwllrp3lbsCoSip5M0bglz9jehev0/GB04ZqdLpKjWSaeM7YvubGB+ksCDDw6yfSRBAD5uMJsb6p6P/s/2bswF+9aikUSOHufsVLQ1+asFt0A+h4cw9tguCN4O5yINonBx41926+qxe61UqjYeGejBaw+a/X+LZJAfDBdHafVIZPKGskcV50DVdGZPmwU4USbhVK2VH1ukk0iP2cENDVr/OiqTuxcZVWcz7C+jJ0xBE+yVaaproUrhVeCG7a/bRWzZ2M8+l9P4FopY7XJnOg+gaZpnDlzhjvuuIM77rgDgNWrV9PU1MQPf/hDM5AwMTExMfm1iEajvO997+PRRx8lkUhU20XMIwgCHe0dlPMa9kiA6267msASt+GOBNTXNEAlBIqeSNP5Ug1X2IiBEkNZPI0OfEvsJAcLlPKq0U4DQ0xUzJQQK8WxmRMp6tb68dY7yQ4rqDkNq0vEGZbJRUvEBtK4K+Kh4nSJ7HSBQqKyuj9RxhG00rAtzOjTUcb3RVny0nrj2Nkio8/NkJxcWH3laXIh2SXGnosS60nTdmUNrjo7p+8Zpee/xqoCHYDYuUy1NQdA3UY/S15az+juWSaenyNyKI7sBGvARnaiyKEvLHY2Gj8QxeYVqwIlgNpNQbwtLmSnRCm3cDFnrb0y/y8uUirlSrhqHXhbnItESrVr/Vg9MrAgUpo8FMPduBALl5KlRa5O/k4Xif4s8ze9+vUdaIrGka8arpPJkRxWj1wVIfU/OEX/o1NQMsRWK1/XzMjThqDb0+rEGbZj99iBLImRLOP7oozumQUdatf4yETy5KLGtYJLPZSyC4XYTCRPYihb3VbMlJk4aBQY/W1uREmkVJlGtaRRqjg2OOuNotrcOSM+9LU4ESxUXRAE2VJ1ZZgnW3G/DHR4cDmddNkvwS92sPbmNpxBK09/8jBn6Wbp1hYmJyerwqWf//znPPDAA+i6TigUYtmyZbzrXe/izW9+84s+MxMTExMTk3keffRRPvGJT3D8+HEymcwFsZfX66O5sYlkv0qnbT073rOM3EyJvvujBP12HHYnnoYCxViZ9IyCv2XhPV9MqVgqOa/0dAEBAV+jg1hfgfhAHkdQrgp+MjOlapGpXDDaaPiaHUyQYaYnTXCpA1+LjcJcmeRIAeG8YVodFjw1TkaeSVBIlEhNFqlZ7iJ2Ns/E4RS6opGeNhIidpeEq9aKq1YiO1MmM63QdVMtp+6dppRWOfKdiaowplyAzEyR1NRC8WntrXWIVpET35siM2ns6GmUSU+WmDqWWeSKBDDTmyU3s1hkH1jqxFljXSQMctXKuOttlC9uELoId4MNV6110XeSXcLXaic3V2LyoBGP5WbKxIcKTHcvxGfjzycZf94QLDlqJErpcnUctWtdtF7mZ/CpGLGzxnfZWYX48MLiw+N3TVUz9MtuCGF1iVWXJV+zHUdwYVwDz8RwV+Jwu1/C6hYZftbIU9WsdBs5vnQCACVbIhMpUqoUx0RZIFZxOLX5JOxeiXTFxdQVkFGyKnPnjDGKdoFiqkS5MkyryxCoAbgbJbSyRnKsIjT3y6iKTmLA2G51WKmx1LPd8woANr2xkblzOfY9fJRyyxx2t8zJUyfJ5/Ps3buXvXv38ta3vhVJklixYgWXXHIJX/7yl/H7/b/6wZmYmJiY/J8nn89z55138uMf/5i+vj7S6fSi7RZBZEn7UiTVjavQztoty2hc6eD4/SlQoMbnqrYFy8eptF4z4qdUpEywXcYZgtwMlHI6nvqKMFmF3FwZ0WYcm55QKK60YXcJ5IFyQcfhk7D7RApJlehAAW+D8Q5XFUhNliikjbinlNXw1MkE22zM9hWZ6S3Stt2FzWehmNQYP5olf55Y2NtgpZhUiZ5TyM+pNKxx4AxKDD+fZeJonomjC/FQaqqE3bsgpnbXiXRe7WH8WIFov2IIlESwuwUKSZ2+RxfHXbERBZtPrAqUAPytMoEWmenexSIlT41oxBtDi/MzL0TVBLwNMoWUtkikFGyz4govFinNnlXIJxdEWKoCvQ9XxigIOIIi+ZiKkldBEFhytQt0qveRj5fJzFpQKzHN7BmF2X6lKnhadrWHiRPGfFkr7ebS0yoZVJQcjB7Okxw3hEXBNpnMjEqxUroMtdspFxdqxumZMtmKE6mnRiSfLBMdrgjPG2REeWEcmqaRndFA1RCdFtSyTiJSAouAu1bGYrGQS8y384VC6rw6ukUgEzHiLmdQxCbZaXGux92whtZtNgJNMod+NsdYqptgl0okMsXI6AhHjx7l6NGjfPGLX8RisdDU1MSaNWv4wAc+wM6dO1/0mZmY/D4wRUomv3cUReGtb30r999//0VdkgBcDhdXXXMV0qST3AlYe0sbrloH+z9puOvoqlbpFwqRI7M0bg7jqjOSNKmhHDavFdxABlD1SvEGMmNF8skigmQEColzGWpW+fHU25iLKWhFDXedoypamj4+h81jBApKxBAtGT3gITmSpXFriCU3NjD40BS9Px7GUe+ougMJolB9USoZjdBKL+E1Pg79+1kGH5pi8KEpY18gNZajfkMAm1dEiYGv1cWq17UyeWiOkV0zixyQACYPRSnnFl7WNZf4WHZjEzPLEvT/fEGgNO/c9MJWb1AR+izOt1x0v1/G8W8MXPBdaijHkS/2GQ5O5zHvtuSqt5KNKVUhD1ZYdWsrxXSJo182CmODT0xh98lVgRIKi+7/0jtWkJ0qcPLuYQDK2TIWeUHJfezOgep9NV8dpmVHLWfvH6tc344gUF2BlhzNMHVsjvSwEXQ0bashX2mlh9Uo0pZzxr3YAzKJ0SxDFYFTzQovoiRU71XXoFgJIu21VspFldnT8eq+FtFCasgIhASExU4AloWWc41rQ1gsAvnpEp3CWlZf2oa73kHoxFIUFFpe7+HMmTMcPnIYQRDo6enh9OnThEIh7HY7LS0tAHzrW9/iyiuvvPjDMzExMTH5P8X+/ft5z3vew6lTp35J6xBYvWo1q1esYfpnJWSLzNbXdZIYznL2p1PkpouEOj0EV7iI9WXJzSlVURJU3n/zbkkTBUTZQniFj+RggeiZJPWXBKqOR6W0WhU4FWMlJJtIzSofU/sTDD0TRbQL2MNWctESWlHHYllYWSVIFlovryVyMEmiP0f3D4exuYxxFGYLCBYBZ52V3GyRUrbMutcvof/hSaInUxz6yuLWa6WcuiCWKcGq21tw1To49PmzRE+mFrVmmz6awNfuZOLggpBozZuWYnVLHPjsmep3shOQZYpzJXp+tDimGn5smondM4tclODC9ru/lBLs/3TfBV/3/GCoKuKZZ/ZEktkTRmHM1WQIqeZZ9ooGwqt99Px4lGTF/XHsuVk0fSF2mz6aqLaaa3tJLfUbApy8e5DcdAnRKaMVNdITRkErPZVj/+f7qiKvze9ZRilbZvTpipOBpbJITteQXRbOPTpJsRKHLb2hDm+Lk+Fd04Ah+LYIAiVj6ORmC0R7jA/OsIwzZCM6X/wM2tDLGvEzC8mybFSpOjQ5fFYKqcq/18uUi2r1fh1hK6qiMXPEOLfNIaEpOk7RxyVcwdarOkkOZTgzGcG1DSx1Ck/ueopUOkkqlWL//v3s37+ft7zlLdTX1+PxeLjxxhv59Kc/jSwvFvCbmJiYmPzfo1wu86lPfYrvfOc7jI6OXuCSBOCyu7niqiuxTgcoDtlo3+kj0OHk2LcN0bFa0JFdRvEo1leg7TIVe8B4x6TGirhrrNj8UEwYLdzsfmNbOWMIfnRhvh2IQv16sPlECoky5bxKcIkDm0+imCwzfjhRFZOXMyBYBCySBV3XSU8WabvcT9OlXsb3JRl4LIY1ICLZDWGRIBj7GweDr91BeLWb7u9HmDmVZaZvQSyemymhFjWsDoFSGuxuidW31DJ1PM3k4TRnH5xDEISqW9LkkTQLESC46yWWv7KW6ZMZxiriH6Dq+jSx78KWuie+N4VkX/zd5MF0VVz0qxh4LHbBd4VEmRPfm6wKdeYZfNzYV3Ibc3H+9hWvqEFJq0brNwxBlSMoVwVKlOHsgwsx5vo3NZCZLlavr2RVzp+Ms48u7BtYamfJtUH6K9e3+SUEQaCYNPKFuViJUz+bpjBt/AZbtgXIxxZ+j4IF1JJxcrtfZK4/x8Shikt5lxvZIVKaz+9phiAODIemUl5lrn/eocmFKIvkKgsABUmgGD/vOiJVEZm31YZFsJCfLdFgW0L7mg0E2h3UDF5CuVym7iYYHDrLwYOHKJfLnD59mlOnTnHPPfdgs9loaWmhpaWFz372s2zcuPGCZ2RiYmJi8n+PoaEhPvGJT/DYY48xNTV1QewlW2x0LVvByuVrSB4LIYoiq290kpwsM364QDGmIQDeGpHUhEp2royvYeFv+1xcrb6KiwkVUbLgq7eRmykyN1rE6llwPCqmNCySAKqKqoJksxBstxMfyjB3pojstCA7Kq5Lio5goepwJFgEWja6SAwnUdI6PQ8lsVbcgZSsikUEq0ugmAQlp7PiJT5GDmRIjpXpeyxVrUUClAoaWmkh/9S0yYGvyUrPA0lyUZXhaNZwSrJAZlZn+kyR6NCCumjpZU6cIYmTD5x3XhGsVlDyMH54QfQEMNdfIjFaMuKK8+KW3kcv3jL3Ypy8vxKjneewNHywAOXFebRsVCUbrTgKeUCZD+0EgZrlVprW2Tn3dLa6z8TxAhZx4bzpaY10xBh/sF2m6RI7557OUEjqiDZj7gqVWErJL25j17XThVbGcIbCiKUEQTe6sUgCI4fzVcfvcKdMsM1K9Jwxr6JsQRAE1EoOL5fQSFZMLUQr+OqtzJ4z8ndWu+GclKvcg2ARSM2WUHICWMAZkChmK65Lkk65qJGeMfa1+yyUSxqpitjL5hIpFXWs2Fjq3cKqTS5S02XGxRJyOIfUNMPzuw8QnYswNTXF6OgoDz/8MAANDQ00NTXxtre9jb/4i79AFBfEbSYmvw9MkZLJ75xMJsPtt9/O448/TqGw+C95QRDQdR0Jmdfddgst9W0c/VI/aLBh3Qpm5QSDJyIU4yqeRgvuJiuZCYXsTB6737CdVmJQzpeNFzqQmSnQaJdYcmUDgw9PMXkkSs1qf/WaFkHAWmnTFj+bQRCg+bIa5nrSDD8ToWb9wr6uWgfuRmdVeDR1eI7Qcm/12PREjtnTCeO8VollL2+iZpmXnh+NcfzrA3g7nNX2cKnRvPEyrLD6DW14W5zs+1wvyf4sh/59oUiV7M9STJeqrcUAVtzSjKfFyaHPn2X8meiieZw9niTU6aH/kQWBUmCFm5WvbSXak6q6DIHR4szuk4y2ZL/G6rFfSWVu5pkX7dSs8zLbnVq037q3VdrOfa0iOlIgcjhG9Ox5+ykLTkvt19VRu87P8W+cq7auy8cV5s4tJJVOfX+k+u9r39KOq97O/n83injZScNxYa7iOKApGgfmC3xWWPKyRvKxYnU8c31pUpWiW9uVtRRTJQYeN5KEDZtCOIILLksTB6PY3JXVarVWHEEbU4eMZFFgqRtJtpAaM4IMJVcmPZElGzEmylljR6kURq1BC2pRIz1ScWiqt1MuqkzsN87lDNiqxVyrYKWtuZ2gUIv/aDtNl4UIbXFx34/uZ3hqCKfTyejoKMVikauuugq/34/b7UaSJL785S9z0003/crHaWJiYmLyp88TTzzB3/7t33L27NkLREkWiwU0gSWNnbzqtlcwtitOrCfD8nWNuOvtxMRBY0ddwBkyKjuRE3PUbfTjbnAQ68uSGc0ZltQyUDLiOW+j4VqYHs2TGM1QKhh/DGenikjbRDztbmI9GVLjeRo2LoiWJg7MVd2RSskSvjY3gmgh1pdl4Ilp1v55K/Wb/UQOJ5g5Ecd+3srxzusacQSs7D/dRy6qcejzZwmv8QAQPZOmcVuBQrzSVkwW2PieLuKDac7+bJJTdy/EDwCJwcWJE9kns/4t7UzsjzJ1IM7Zn00u2j742BTuBsei71bd3oHdb+XAZ84s+j64ykOsJ32BQGl+/v47zAuUfB1OctP5RdfoelUjoZVeur8/VBUqnXt0Ck2lKtgBiBxZaF236a86metPM/yYIRzKRvLkY05y08ZA06M5Dn/FEJbLToGNf9VF7EyKcw8Y8VJyKINSEdI762QGHpkkV4l/Om9sxL/EzYlvG+L16e4kslOsthXxNDkZ32vEuLJPJrjMA7qRRCqVYOJwjOmjRuGsaWsQXV9oSWL3WxcSYTLk5gpEjicAaNgQwOaSSU9UXJYEKJ7vsiRAJmLMh6/diShbyFcKa3WhWoJLPKRzVhBhw7vaGZ0a5v6fPECRPIqicO7cOb7whS/wpS99icbGRorFIq961au48847TdGSiYmJyf8ByuUyH/nIR7jnnnuYmJhAVRcqRIIgYEHEIXh4+Suup7WxndM/NIS865bXMyfkGB9KoaRURNmCu14iEymTnirgqrVVz1NMlo0CCJCbVbC5ZcLLvUwcSBHpTlOz0mVkdMvGNR2VFq+FhPE+q1/vJjlSZOpYmlJeRVUrzoR+K6EuJ+P745RzMHEoSc0KN5NAIVYm1p8n1r8QIy1/eQ1z/TkGn4hx7pE57EGp6tKUHC0gn9firG2Hn/ByJye+P0khUab7PyPVbYVEmWy0RK7ixCMIAo1bPQSXOjj1w5kFAU+FTKRMpDvD+MHFAqU1r6tjtjfDyLML30tOsHuNeXyhmOi3ojKv88yf09dmIzlSXLTrutsayMfL9P5soe3c+MFkdaGccQIYeTYBQHiVk8aNXnp+Fqm2n8vOFkmOLwx8fl+A9qv9BJY4OPmDKcplKKTKZGeURfufuHvBXbPzpSFyc6XqeKZPZqpt6sIrHChZtTqnNatc+FrsDD1hxIWRU2lsbuN5SnajBd3UMSN356qzGe1KKq1NNEVlbihHbsb47GuyVwt02KFUUElPGXPgCskouTJzldjbGbQyH8RJkkRjuBZPOYzvzCp87Xaar3bw6P27ODd6BpfTydjYGP39/WzatAmv14vf76etrY1PfOITXH755S98eiYmJiYm/wvp7e3lk5/8JLt27SISiSzqzCKJMk4pQGtdJy991RVETlhITag0LJPw1VvJiMYLV9fA4au0y42oFDJq5b2nkp1VcfjEqvAIXcDbaAWKKHmYGypSLhpxWSGpIdtFnH6RdF4lM1OieaOzeuzksTylovFOVFUIttmQrRbSkSyzAwqOoESgWSY+UmJuuEAuvlCib1rnxNMo0/2zBKoCPQ+mcNcZY87PqaQjJZTMQg5o9at8JMcVxo/kGTuweDVbOlJCsgkLLd/sFjqvcTN7pkhsuLTIqQhg7FgOd428SPjUcakDd628WLgEuMIi2ahaFT5XqVzrv4UKCAI2j05Zoeo6BEbbtoY1Ns7uypKPGxea7VewiFQFSsa9L/z7sp1OUpEy0z0K6DqFtEZ2TqWQNOZRScPZJ7LV8a+5yUN8tMTEMePCyYkymmbsKzog0pOvuig1rLJSt8JOz6PGF6npEraBhfZunlqJSG+heu7aZVZiwyWgDBYYPZYjEzFiqZpOKxYB8nMaiBbsbktVzA+QnSsTqzhYhlplHF6JYkYBi4Bg0Skk1aqjlSBAuiJYt7qM1nhKJXfo83uoaQiRD7SDFzqvtBLLTPHYQ8+SUqYpFoscPnyYw4cP81d/9Vc0NTURCoV405vexHvf+16s1he4YJiY/DcxRUom/20UReG2227jkUceoVgsXrBdEiVk1corrruZlds76f7+IOnhPDW2xoWXlgIWUcBTZxS8Jg7P4F/qwrfUQ2ZijkK8vKill2ARCHZ6gUlmjycJdnnIxSoBR0nAGbRTt8nP9JEEY3tnab28tnpsPlokM2UkQDJjRda+MYSvyc3xbwxw5ifDKIDVbTgreersxgq1ijAncjxO542NHPvqAKmhHJEjMQafrCRerLD69e1VEUxVKFQ5NtqbRLQvOAC56q2svr2D0d0zRA7GOVopAM2jqvqi4wHqNvlxhmwMPT5N308Wr9iP92VIDGUYfmLx9yte04S7zsHhL/YsauvWfHWY1stqOfvA+CL3gBdjy991ASwSWAFsfG8nNq+V2e6ehS8ViPammD4eX7Tv0ONGEcwatNL5svpFreAsFccrRdGq5zjxzcFF14+dTTPwCyMJEzuXNlbyVeYnPpwhfqdxk75OF0tf3kiw00Pvj8dAgaEnpsjNGr/Rzlc2IrtEIgeN8XkbnUYhtHKuc/ePoVaG4W6xseTaRuYqLegkGQrJItG+BACBJW4yU/mqQ1NwqQddW3h+ieE00dPGsa2X1yO7JBIjRvCjlTTUorpI+JUaz1avK1lFSpnK6jW3hM1iZ2lsI0uFjWx923I0Qedbn/keMaZwu91EIhHK5TKveMUrCAaDFAoFwuEwX/3qV03RkomJicn/Enbv3s1f/uVfcvbs2UWFMTDiLlSBOtp449+9Dk2Bo18bRE6DpMnVlfdq3nCplH0ypWSJxFgGV0WkVEqCVtTRK7FIZrpA0/YQzZeGGN89x+hzswSWuarXdAbs2L02Rp+KkujPkZ7ME1rqIdaTITGUxdvixGKXIVfCEbDSvD1EYmSIUrLEsW8NzZsyQQkcYRveFieRwwkiR5KsvLWJlitDjD03x/CuSNVlAGDF65oILPWQmx0gN12i+9vDhhAIw4I7E8kTH1gotC15eT2+dhfHvjbA5L4Yk/sWVsyXcoZ1s0VciNUAul7TyNCjUySHcouEPgDDu6YJdLoXPxwZul7ZRHZrnpPfXSyM2vzuZagljWPz4u1fQc16H50vb+DcQ5OLYjVbSGbVba0khjL0/ngh7ht6ZhZd1xc5KVGCgYeNuKntJbUkh7OV1m9U5kpHO2+VWvRUmugpQ+xdvyVA87YQJ74/QilZolTSyc0UmO1JVY+fFysBLHtlM46AreoA1XvfOC3bw0bsJVhYer3RQg8MUZIjaMV5XkH2yJfPMq+xW/naJhxBmdFdhogpNZbHGSxXryvKFoafNmLK+nU+XDX2qutodjrP9AlDQAeGmLx0niOpqmhkKyv/3U0OSlmVqW6jYOeucyCe9xvQVfBrdVwhvpJAl4uVr23m+BN9PHXgMVw1dvK5PHOxOb71rW/xve99D7/fT7FY5LWvfS2f//zn8fl8v/T5mpiYmJj8aVAul/nXf/1Xvv3tb19QGAOwSTacWoArNu9k3c5O+n4+TXqyRFD3op33d75FFHBX2onNnMkQWuHCWWMjEylTiJdx+BeS/oJFINTpYmx3itxMmcnuJPmY8ZIsF3Q8DXZCSxzMnc0zeThFy6W+qrgmM6VQSCjouo6SVmm4xIO3yU7f/bMM7Y4zti9ezQY7glacYRnJCeUcRPuytF0RoPdnsxSSZUb3JZg+tZBIWn1LHfk5hZ6fzjJ5uLKYrHLd2EAOu09i3sxAcsOqV9UzeTRFtDfHmZ8b7/RqwUXTQWeRKMjTKONptDF5OMP43gUhEkBhrsxsb6bq/DNP62VBgksdnLhnasEFCPAvsdP50hADT8wRH/j11Eurb63FYhU4ec/0ou+7XhHC02jjyLcnFwmYIt2Z6mK1eWZPGfGiZIfmS/0MP5OobhMsoKMvaj/X/8hCPLr61loSY4WqU1RyzBCCzQul8vEyffcb82j3Syx7WYi5czmGnjTyWv1PxFALFaHaBjd2v1xtG+eut+GqsVbHP7Y3xYhqjE1yQ+dLQsz2VtzAJQuZGYVURQzla7GTmiySnqy08+10Gm7yFeYGclUBV12XC2fAyviccQ+arqMWNcrVriwCiZF89bo2t0w8bxwruy1YFCsdhU20eDex+pZaRAf89OuPMlk6h9frra74v+KKKwgEAgCsXLmST37yk1xxxRWYmJiYmPzpMzQ0xIc//GGefPJJZmdnF8VeVsmGXfTR6F7Fy163A60MZ5/KGwKZgh3JZrxkywWwuS1Y3aBkID6q4K6pBEAqlPI6VHJe+UQZV9BJsEVm9myJyOki3gaxKrqx+0ScQYHZMwpKGhJjJdwhC+lxhcysRma6hCgapU7JKdC6zUPPQwmUDPQ8nKCaxVKNVmJqSSc+UiI9qeKts1LTZWX2rMLkqTzWgUK1Zlq/1k79ajt9j6QpJFWG9mSpnkyF5JRCKrKwEq6my4q/zca5J9KkJsqkpjTAcE9SVcP8h8UpLxrW2ZjpK6KkIZZevKpu8mQeb6O6UMOtxHBLr3SRiZYZ3L04Buq6xqjtnt118W46L8QZEll2jYvhfVmj5VwFUYQV1/uIjyiMHqoEQbrO3NkiokxVoDQ/D9M9xjMPLpEppjWys5XtlbnSzht/LqYxuMcYt6depHG9g6HnMiiVW0lNlUlOlKrHT/cs5NdaNzrw1Mt032+ItqZOFylmNJSUDoJA8zoH02eV6rGukEgxI5FARRSh+xdpxMpYWi5x4GmQONlvxGmZ6IIYClVDskGkt5K3qhHxNshEh8uASimnM3k6T7bSfi/UbkMt6YbLEqCWoZA2/ptx+EUKKZXEqAJYcAUkJNlSfaaaKmAv17Gl4TXYPLDqpW7OHJhm/9HdaO4EhUKBEydO8IEPfIA77riDUChETU0Nb33rW3n3u9+Nw7F4MaeJyW+KKVIy+a345Cc/yac+9SkSicQF22w2O2JRYgWbufFDV1BMlTj6lX5yvTq55QVsfok0xvvQ5rcuiHjOpXAFjeJYdkwBQUCyGm+SeH+a8Eof9VsDRA7GmToaW3ghA/52N742N5H9SSb3zZFPFapt2iySBckuEuhyEz+bYepojPZr6gxxUUU8FO01khxKBi79h5UoWaMdWc+Pxhbdm6fBgd1nxd1iIzNWZPCRiNH+7YkpUGDyQJSpowtzsv6dS7AHrBz4dB/TRxILLc2AUkXpavMuXnHddm0tI0/OcO6+iQvmtuXyGiSHWBX6zDPfru58wc88fT+boGlzYJFACQzXocx0nuiZX0+gBBAfyBhJpBcwtCtywX0AC/cwn2s7LxHT+dI6fB3uaos6gMFHIgw+Yoi+Qqs8lPKq4QAFWCvq4fO6kzDx/BwTzxsORCte10yg08Oxbw9QmFFI9meJHIkxvts4X/t1dUweiaPEFopS1vOEb/Pt5ADCa710vbKZyYNzDD8xTWa6SPxciqFnDLvutmsaUJJlMhX1ss0nY5EWIrzZkwkm9hrPaMlLGgh2+ohVbLEj3VFku4VkpUAYXuWjkFhscTW/As3X4aaQUhjdY9xDYIkbySZW5zGfVMhHi1wibCfQ5WbVbW2MHZ7hoYcfwtpiPKhYLMbo6CivfOUr8fv9pNNptm7dyg9/+ENaW1sveGYmJiYmJn98RKNRbr/9dp577rkLXCotFgt2yUlYaeK6G15C08YQx789SG6mxNy5DPbKyvpSDmSHRKDDxeTeOCP753A12vG3OZjtLqHlF7/gywWVuvV+xp6bI9aXZa43TazfiBlkt0TNSh/Z6SKT++Kc+M4ADVtC1WPtPiuiZFRAkoM5ypvLtF0R5uzPpxjfF0Ur64YoCKjf4Kdxc4BTPxwjPZrn4L+fWzQOd4Md0WphTJ8lOZTDGZZp2hFiYu8cA4/PULeuUHX9cdZbWfemDiLH4gw/McPpexbHRTo6FguLHI18HU40teIY9KXF1/YtcRLq8lLOa9X4xJgA4x8XEy5RgqHHI+SiF9pXzp1LoSoXCaR+CYlzKZJrvFV3qHmKcyXD8em8dnRgOFPNi4bmxWfnj7l+QwB/u4tE/1B1rEe+uiCYmp/XeaxuCSxC9VlRgpPfG6meb+v7ushM5un5oREv9/1snHDFgVR2CjRsDTFacQP1tdtxBGXsfqk61vOf9Zo/b0ayixz6giHaH9szi6/NWTkXhLo8DD5RiYc6XMhOsRoTqiWd0/cOkxo05rz1yrqKWNyI2yYOx1ArsVXj9gA2r0y8EoeJ1opzU8XZQddhpuKaKvtkHH4r2Skj3pMckJnOU+oRuFR8GRtu6cDqknj80/vo4yj17WGmJqfIZDPcdddd/OhHP8JiseD3+/nQhz7Eu9/9bkxMTExM/jT4+c9/zoc//GH6+vouaCHitLlwlP0st2/hyr9YXW3tpY5AeiqPVGnToesCrhprVQA005PGXWfkvMppQAexslArMVqgfoOX8Gon0dM5IsfTWBwLIpBQhwuhUyB2borUaJGe+6exuYx3qqYZreI8dVZS40VmetK0XR5g+mSacgGmjmfIVN5llGHNGxoo5VRO/9cM4/uSjO9bEP3YfCLOsLXq8DR9PEP9BjfR3gzlAoztTRAfWYhFO68P4mmyc+zuSdITCmcmFlzAywXAAlaHuGgleM0aJ7OnckwezjB5eHGiqvlSP46AdMH383N4voPSPKO7Y+Si7kUCJTDaEydG8lVnxV+H+GAO4QWCdYDxA0lD6P+CTn7zAqBqdv287fUbfYRXuIiezZCZNDbMnspVRUzOWgmLheoKeiRDxMR5txEfKFQFVo1bPdSv99Dz0xkKsTKFRJmxvQnmKjFNzRonqTGl6pzkabThCC3kvIafSVQFU85aiVWvqWPycJLJw8azjZzMED1tnKtxk4dSTquOzR6QsJ7nmhU9kyNaETSFVzupW+UhN2vEUomJIvaeDKlR4zdXu8ZttH+eRzCEdgCeOjvZWYXIaeO5BlodWF0LoqxCskRhXGWZYyNrm7ay9rZ6Jo7G2fPMfoo1syBqjI6Osnfv3qq7uK7r3HDDDXzuc5+jvr7+gmdpYmJiYvLHRz6f5xOf+AQ//OEPGR4eXrQYT7JYCbhrqLOu4JL1l9C2yUXfrjT5BMSGFezeyvtJBZvLgrdGJjaoEpso46lXcbgFlKRK+QXeCuW8TniZjdn+EoUkRHqLJCuCH4sI9SvtKDmduYESg8/k8LUulNJtHgFNMa6rpHWKGY2aZQ4mjuWZGypiEYWq6MXXYKV1i5OzT6bJRVV6Hlgcy3jqZYopC7NnFYpJjbICwSVWYoMKsz0FlNxCKzLRAate7mPmTIHp00XGDy4WCWkaCKKAaLdUXXVsXrDIIvk5lbOPL46vrB6o7bKBDlMnz5ugypQW0wKzZ0qL2rEBDO3LVZ2lzic+euG+L0YuoRIfUVCyi8+lqjB2JEdy4nxHbAFVg6mTRt1YtFK9x3kaVtsopjX6n6nk6VQ499RCzi7QJhEfKVfPJ9stCMJ551Fh9Lw5XfVyD9lomZH9xnejh/L4GsuGwEeEcIeVaL9xsNWt46qRsE2WyM4a5zr9i4X5br/Ugd0ncvpB47vpM0Wy8QUxVahdZrLyDBx+Cza3hfmklyDA2Wcy5CteEI3rbAgCTPca9zLVW6yKjjz1Iq6gyFRPESyCkfMSBKNtHDoCMFNpMYcI7hqJYtqYf8kGiakSxTkX62pfxpLL7LiCIgd/GmEweQBHfYGp6SlOnTrFBz7wAT70oQ/hdDpZu3YtH/zgB7nhhht+2aM2MfmlmCIlk1+Lffv28frXv56RkRF0ffFLwyJY8Eg+lpU2cPmbNuBtdXH4i30oGY3Z0wksVuMP/MKsgt1vo3FjmOjxNINPTdH5siYC7YZ4yO6SjWJIhfxsgeByDyO7ZoieSdF6lUKp0qqhnFNZcl0DpVSZ6UMJBh+fIj258ALpurEFXYfpQwmm9sWYOhLD17qw4l+yi4SXe4meTDHyxAQrbu0gO55DyWhEe5OkJxdeXuvfuQSrW+LQ588uEtEABLrc1G8IYHWK9N07zsiumUVzE+tP42t2Lvpu2c1NzJxMkOzPcvAzfYu2dby0jsZtYUo5lcl9iwtPAIe/eA5302JLPW+Hk9Wvb2f2ZIL+ByYvOEaJKReImsBoXxc/m7ng+xej/+cXnh8MF6dfihW2f2AlubniIleknh+NLRIovZDOVzSha1TnSMloHPzcQjuVVW9opf/+8Wq7ubkzKWwBo9XePNVnZYWGLSECXW6OVYpxx89zMWi7tpaGLSFO/ecgmbEiqaEMqdEsw88a87by1c3EhjJVgZPNLy/qtTv4eKQqOlpyQwMNm4LkEwqRg3EGH55CyZWYPpQAYPWtSyjlFwKsXKRANmoEBo3bQwgWgchhI7HnDjuwuiSUmHGPalZl8pzhQGANWvHUOVDnnQFkSE1miRxIslbYyqbXdGJ1yTz7iROc4TihlW4mJiYol8vs3buXZcuWIcsyuq7zxje+ka9//eu//BmamJiYmPyPc8cdd/DNb37zooJwl81NqNhEB6u54oOryc0V6f7OCJFDSZxBOxaXCJSwu2X8ra6qKGfiYBTHvFtStITNLeOsMZxsIscT+DtcBFdV2rRN5BfFZa4GO6tuaeXwlweYOmD8ZTz/z/DaAM07wpQVjcl9cY5+bRBf+0L8Yw9aKReMd1lupkRqMs/S6+oYeHiayX2z2AMyhWhlJVOrg1Wva2boqRlmjsY59IXFwqGu17Zg98lM7J2jlCwxvnshXspFFLKzRUNUXUH2yXTsrOHsfZMMPTLNEC9YGf/qZtD1C64DhsDq/NZp86x7Uzt2v5WDnzt7wTEA0+cJ1s9n6JEL47EXo5TT6fnPsYtuG31BK+Dz6bypgfBqH93fHagKuCjBye8PVVuxvZCmy0K0XVWLpmrV5zr69CyjTxtxR2C5C2+LayHWLUFmcrHYvThXqoqcOl7eQGiZl2hfilxEITmUY/+nK3GcYGHze5eSixbp+ZHhBDVxIIaj0trPFpRp2OCn52eG2N3X4UF2ieiV8ElTdA58buF5te+sRdd0Dn/JiO1O/2DEWAgB1G/207I9zNmfG+cqxBVyc8oil6XUxEIsavNKFFNGQc9dZyU5mmX4WUP4VbcuiDNsr7bcS0/mKOXK+MQw14RvZP2tHUR70hy+7zTx1mGQdQYGB8hms7znPe/hH/7hH8jlcqxdu5ZvfOMbbNmy5Zc+QxMTExOT/1mGh4f5y7/8S/bs2UMut1iALAkSQUcDy4QtrLqmjdo1bk5833DtiZxIVVuelQvgqrURXg7x/iKTx5JIDhFH0Eo6pyA7JWzehdgqPVnEv8TB1LEMuZkyudkSSkXMUSpoLLsmjF7UifblGXomtkiE03ldGEGAWL8hWjr67Unc9ca5dVXD5hH5/9l78/BIrvrc/9Nb9b4v2vdlJM1o9hnPjPdlbGy8YHtsg8EbYDAQAiSBJD9yn9zk3tysBAMJewg7GAPGxgvYxtgGe8Yez6qRZqTRPtpaLfW+d1X3749qVatHrTGX3Jvkkn6fR88j6VSdOnXqW3W+dc5b72upMxCeSDN3LErH1S5SEZFcTGLxVJx0tDQn0XmdC5NHYOC7fgKDSQKDpfM3uLQ07XFgdOiY+GWIxVPldrnBieIYumoNqX6nlfi8rLpzviKRp89E66UuVCoViwPldQGc/nEAg6t8qtrg0LLxTh/+wQQzr6wlKYlpWDi2dk4qFRDLVIp+E5xPjlpBclFUrM0qYes9daSDOc48XsrPZl6NsDScIL1ceb/O6+RreOKbxXkrEU59vzSn2HK5g9kjYUWBKDaTxlorkA6W6vOfLPVh014H6Z4cQz+Uc7ezT5VyZFe3kZZLHAw/GSC5KJKNiiyPJFksqmQ17raTXMwodoFGhw6NUCJrzR2OKIQlz0YTTXsciJk8S0NJlgaTUIClITluuq93k1+1cBmbzZBd+RCvRY9aULE0Irfb6NLJ6lthedtcSmLmjeIfWnC2mQiOyTGm0kNwIkFgMEW7sZ+eazyYvQJHvjLHeGoAoTPJ3Pwc4XCY7373uzz66KMYDAbsdjsPPfQQn/zkJytehyqqqKKKKv5j8Mgjj/CpT32KgYGBso/xVGhwWWqpFTbSYN7IlltspCJ5xn6VIjKbJ+DMKiQarV6Ds1lg9mQWKQszJ9KYih9GSSkw2lTorbIcUmQmi6tFh61BQ3RWIr4kksuUciuzS42zycLpZ+LE/BITBxOEzxWt7b0aWnaZoJAgOJZl7IU4BnuJvGuwa1hZMpVSkAjkqO0zsDCQJjiVxejQkInKdQkW6LrazuyxJOHpHGeeKRcQaNlpxlKjIziVRZIgOFaaw5FSEFsQiftLuYBGgJo+A3MnsyyPiyyPl+cybfssqDUqhp6KrbkG2Ric/nmU7HlFLbtkxaBTT8Yq2rettlNbjcBIruL/lYU0lQpWry1LlJSSzkNwYv28y9uto67fyPBzUcV6DeDsC3Gya9NLAGwNGlovMqFSJ5W6g1MiwSkRUGFwyISxwJlSf0dmcyRW5XFSlqJdG9T26qnt05NYkkiFJbIxGHgsqpxn99UmMvECU6/JeczicBaDQ44ZjQDuDoH5oqWcyaEpxqmMQiHPqafiSt83bDai1qoY+pmca539VRJD8f3D6tPQssPI+EH5OGImT3xJIlm0nHM06Igvlq6X3qZGLKqpGy0QnBYJnJXP2dmkx+bTImXlOdD4co6YP4dRsLK54Rr632omMJZj9I1l/OpjSIYoY2OjvPTSS7z00kvYbDb0ej379+/nL//yL+no6Fj3GlZRxQqqJKUq1sVHP/pRvvzlL5NKrSWRmHRmmsROmuhi7yf7SAbSnPjyOFO/WqR2mwMsWohnsdSaMHr0IMxCFkafPoehuDgmRkTMtUa8mx2ERuIM/3CartuasLTriY8XF4NWmLdZmczReImX5aEYC8dD1Gx1kgzL2+Wzeba9p4Px5+fxHw4z+uQsseXSgtKu3+tGI6g59DdnCByPEBiKKGo05noLljojDfu8TDzrZ/QZmYgjWNRk43kykWw5MUuAnlsaOfPoDKHJOGPPzeF/LayU9b+zFaNLz+ufGubcKwHOrV4LsoCn14a5xsDx6THl3Fb2nXjWTy5bJCitsnnb8mA7CwNB/IfCxGezZWXR2SSJxRTTv15S6lmpd9fHukkspRn61iolgeK+G25rZHE4TOhsvKwNq9WOyv4u1tt5fT2hszGWR2Nl29p7zfTc1MT4s/Ny/66cWxYi5xIETkXW1BubTIEFtt3bwejTc/LfxeOMPD6DmJYqtsnZasHRYqHt+nqGH5+BLARORgmckROBtmtr8G1zcuLb46Rns5CFwR9Nki5+UdZytY/oQpLQoJy05ZISYrqkjIRZy6lHppTj2tutGDx6hWh09MujSlnPnY24umyc+u4k0Ykk48/PkwplFBu53R/vIb2cYebFJdn6bSJOtqhsULPXgeDQcvZncszpbBpQq5RrrDaomFhlJ2hpMBYlOZfQuzXMvLbIwqEgCNByWQ1Gl14mUgkQOB2hIIKgEtjVcAnbb+8kdDbG0UdO428cQ2WA0dFRCoUCX/rSl/jOd75DIpGgr6+Pb3/722zdupUqqqiiiir+/TA2NsY73vEOjh49usbCTY0ar76ersw2tt7VibPDwhtfHCEXgXOvLpMviKCDTCyHo9mEWuNhcGKG0Z8v4ttqweTTkZzNYW82Y/IaFNLS5C8XsTXJ0rxxfxqVGgS7/HqweDzEhtsacfSYCJ9JsjwSU4jnAO5uC/W7nBz5p3HmXwsh5iQCRUsyZ7eZntsamD8aZvLZRY59cUJRHwKo2+VEMGsZe9pPLgnDj8+hM8mNik0lyCVF8rkSCdfRYcZoF5h/LcTIE+egUGIKm5oENt3ZyrlfB5g/GmLg25OKShI6aLvKi2uDDXPDMonFTFkZwMhPZmRZ5PPUlZqv8DHwr5MyQWml7cXy+WMhHM2rSOjFfWu2O2i+zMvgj6ZIriSAxX1dHRZsTSYmX1wstWFVednvq9roaDHj6rLKxGtdeVnv7Y0YHALHvjheVjZ3eAnBriVZtIVZqXeFoFS7x4mrzaIoIKGT1SkL+QLzR0NrjkMOmi/1YXAKTL26CMW1y6EflghUOz/SRXQ2wcgP5Zxm5EdzuDbHlGN23lTH6M/mQSx+vBDNkiySv3UmWDwVUY5Zt8uJvdWMya0juZBjaSTG0khMKe850EA2JnLsS7Ii1PFvT2EqKnrW7nXQss/L4CNy2xLBDPG5FMEz8kxVw0Xu0scIOuS8qpjmW9uNRM+lmPi5fA6ePhu2JrNMStJBaDLJzIp6lQm8vXYi5+S6JD3MHwuyeCSC3eDikv3bMHv1HPr7EeYZg+4UC4uyJe+xY8fYu3cvRqMRvV7Phz70If7iL/6CKqqooooq/n3xla98hb/6q79ienq6bM5HhQqb3kWLsJk6dRs7Hqwnvphl+PEl/CcTSFkJDEBcJiU5WoxMH45CGkaeCWD0CqBWIWbB2WpEzOSJzeWYeTVM414HpnotyTlxjUp1bD5D7RYL0emM/DOTJhktWrxl8vTe7uXcK2ECp5OMPb9EOllKKDbe6UNv03L0q3PEF0SOfL30gZnBocXVbiIdEpl9PcrccXklSmsAKaMiFRMVQopKpaKgKdC8x870ryOkgyIjzy4RWbFL00LbZU6sDXpOfmuB4HiK4EhpzlBlVFG31UqyyciZJ2WyjEJg0haJLCpkYssqm7eOt7gITaUInk7JJJxVZem4SHg6raj8rFYt2niHj1REZPzZVWSk4r4Ne21EZ1OyRZlYXnb+tqvrrd9mJe7PEp3LlG1r8Grpvt7DzKEIwfFyclZoIkl0Nam9WO8KQWnDzW5mXy8SfYrHOfuzJTSaym0y2LV4esyghqlfhUGE2FyO4aflPMTTZ6LxIjtnngyQDsg7D/1kkUIxffb0mcjEc8Sm5RjJiwWyCalEtNLBxMsh5bieDSYydQLBs/J1PvPUklJWf5GV+u02hn8aIDaTZWk4iZTOKwpP/XfXkI6I8rXVytZv5IpKSc06zB6BhWPy9dEVFdJTIbkfNAY1U78KKeftbDOiW9DgP5bE4NAyfTBEcFiut2GbHUezgbHnZbvCpbGEQmDq9vaz9aYGls8mOf3cAn7LKfLWFGNjY8RiMf7sz/6Mv/mbv0GSJC677DL+6Z/+ic7OTqqooooqqvj3QzAY5JOf/CSPPfYYfv9qErMKg8ZKg2MDLZbdtPRbqdkgMPB0HCkFM8fTqIQCaGSSiKtZh1avYvJgGv9wlmRYQmOUy8xuLY5GLbODGUUVx1wjD7zZhKxYqNXL80mh2RytFxmx1GqIL0iEZkS0xtJcnKVGJ1ut/SxBbDbL6EsSMb9crrer6bneyvxACv9ghrEX42WuL55OAyaPloUB2bpt9kRKHvORnVwy8Tz5otUcGtmSy2BRE5rKMXU0gVZbsuPSWGDDVXYWTqUITmWZfC1RIg5pwN1lxLtBT2haIhWTysoAxl+Jo9FqymziBCs0bDUy8WpKJiitlOXlvlmeypFLF8rrksDs1dCyy8j4oTjpYPlxjHYNFq+GwGhWqWd1eel3VVm9RosKa62WxTNZ5TgrZfWb9JjdGlkNaVVZcFrE6MyRSapk/pMGKBQUgpK1QYOzXlciQGkgOlskns1Ja46DBLV9Rqw1WgITOSiSrWdPlghUG661kAiKzLwh/2/hVIb4skgqLFdUs1GP/0xGOfd0PE+maLmmESC2VIofe6MOd6vA8miWVDhPMiyVEcI6LrWQS+UZ+UWRlPRyAsGoASmPtVFHy04DY7+WyzIZifBMjljR4s7bJcjEKqnU34XiS4dgg/iixMKZDKjUWOu1uJq1zA9mQStbzoXOZZR963oMROZEAsh9NnsqTWRewmi0cvn2/djrtZx8PEEoN0fCMszi8hyLAT/f/e53eeSRRzCbzbS3t/Oxj32Me++9lyqqqIQqSakKBQsLC7zlLW9hYGCgzOcVoL6+nssuu4y57yfZ8UA31iYTubjI4U+PEBqN4O520HlzPdMvLODd5MS7ycmr/2OI0SfPsfGd7ez+8AZe/9QwTRfLRAqzU8+ZR2cIj0Xx9toZEWZQm7TYW8xsamzn0P86zcDXJ7n4v21k4/0tDH59CmurGcGkxeCT1XIEm45Nd7Zy8K9OszwaQ6VVUb/Ljf9wGHuHhZ4DzcwdWWLiKb/slb5KsXnfJ/oAePV/DmFpMKJSq4gvyC+329/XicEpkA5nOfq5UZydVlLFRZS6vS7ar6mjUCjQcrUPZ5cVo0tQSEp7/7AXScqTjYl4N9vovqWJmVcDTP1ikS3va8fkNTDwzTHi5zLs+ZMexJTEG585y7YPdmByG5g/EmT86Xn672/F2mDi1b8aQrCAudZAu7cO/6EwBp/Ajvd3sXgqzNnHZum7oxlrrUlR+dn9kR7IF3j9U8NIYh5nq5Xeu5o4/cg5eu5oxN1j5/A/n8bda8PZY6Egwmt/d0bpl8ikPJobPAIX//FGTnztLPHZLLs+1I1ap0ajU2N0Cmy4tYn4fIqTX5tQFKDEjITOqGXHQ53oTDoO/c1pAOzNFnQmLYHjERqv8NByaQ2jT8/iPxJm+7s7MdgFarY4iU2m2PtHvaTDWY59foyaXQ4239OOmBE59c0Jum5pwujWc/B/DTHwnQk2vaOV7e/v5NR3prHW6um5vZmZgwGyCRG1RsW2+zs5+FdDAPS9rRkxI/HGw2ep2+WiUfCy0BZk7Ml5XJ0WxfrNu9VO100NSFmJ1/52GMEloNGpSRZJb7v+sBvBrOOVvxwEwNZiIZ8vKLZ0F//JRuL+FPMHg2y4rRGdUUOoSKbb/ZENaHRqDv4vuV86rq4HIB3O0v7WOuq2uzj1A1ltaucHuhBsOnQmLf7DYfZ+vI9kMM3AdydpucZH4z4vhXyBhUNLbH9/J3qLjtGfymoEe/+oD5UG4rMp8tk8rVfVEp1JcO7VRfZ9cAtG924KYoGDf32a3g/Vc2LgOGdOnyGRSDA4OMju3bsVP9lPfvKTfOITn/itnilVVFFFFVVcGF/72tf40z/9UxYXF9eUXXH5FTS72ph7IsneP+lGrVEz9Og5Zg4FsTYZ2f7eLl771FlcHWasTUY8XXYGvjHN4kCYmi1OvJtthKdStFzio3mfj4N/Pcyp75/joo92seW+Vk58dZKGi5yYPAaSAdm2LRXM0Ha5j4WDYXLxHEa3QNd19Rw+M0poNEH/u1rQCCrGnvAj2HVlVq/tV9XQsb+WQ387QiaYRaVWK28a3bfV4+214T8RZvTJBXRGDYXi4gU62PfxDQAMfv8c3j4rBodAZEwmPO18fyeCXUcuKTH/Wogt93ewPBJl5EdztF5XQ/0OF5loDjGdZ/uDHWj0Gg5/egSdXcfOD3QQmYwz8K0J3F1WttzXzuD3psilRLY80I6ULSgqjXv+uIf4XIpT35qi+QovtkYTNbsd+F8Ps/lemYD+2t/L23ZcU0siII/t3i12ut5az9jP5lHrVOhMWja/o51Dxdzqoo9sIB3OImXyWBuN1O9yM/XSIrOvLLPxnc1Ym0xEz8m51+7f7yaXkDj2xTHMDXq23NdOOppDb9Git2pxtFs4+Ddyvbs+1IVaUJFazqKz69j1oU4WjoUYf2aBxn1eHC0WhdSz84NdkC/wxudGQQcd19QhSXnQQed1dfg2Ozj8z6PMHQyy40Od6CwaIpMJTj8yw94/7CE0FuPEVyfouqWOfR/tZfB7Y0Qmsmx7bwdao4bDnxshlxBxd9vou1vD0HfP0Xipm+ZLfQzGp7C3mPFtceDutfPa38vqU5ZaI6ri13Rb39eBYNEx/PgsSwMxbPVGCnlILuTk+PjEBrKxHG98dhzPRisanZpokWi07QOtGBx6Dv6DfG1aLvGhUkN8Jo293cTGtzezcFyePeu7uxFroxEpLU/e7PpwJ4V8nhOPzWGq1dH/9hYKhQITP4cNB+pxdVo4+KkRyMGuj3Sgs2iJzaRInJtm10c2EByPMvHcEl031+Hrt5MX80y+sMTOhzpQaWHuiHzc2//0BnlBdihKOp4l5Qpx4sQJhoeHicfj/OVf/iWf+cxnSCaTXHHFFXzjG9+grq7ut3iiVFFFFVVUcSHE43He//7388QTTxCPl39lXldTx+WXX0HgGYGOq93U9ltILuUY+K6f+RNRGnY6aLrYzrnXIjTstNO428FrX5hh6ldhTF6BzXfUcvI7fuq22nG1GzHZdUy+FGHhVIz6rTbmj0QpiAVq+i14Nph444tzTL4YZucHGui8wcXo00HsbQasNXpMvgjJRRG9TUPfzT7e+OIcqYCIzqzBt8lC4HQSo1vHpgO1zB6NcO7XUdQ6FWptaUFo1/saUaHi9S+fw+TSoVKrSIXlxGDDDR6cbUZiCxmGfhCgts8ik0YAa6NAzy0+oICYlDDX6LE3G3hjTFYk3HZvPYVCnkxEwlSnZdOtdcwcCjF/LEHHdS6cbUZO/cBPOiiy5d46pKzEqe8v0nm9C1eHidnDUWZfi9J6hQNvr4XDX5gBLbi7TDhbDQRPp0ALux5sxH8qxvSvIjReZMfVZmLqRXlc3XSHD7VWzclvLSDl8ni6jRREJxMvhKjfZaVhp52B7y1Qt8VKTb8FKVPgxDdkVcSd720gVFR/0ju07HqwkdOPLxCfE+l7mxe9TYtapyJ6LkPXW9zE5jKMPLmMp8dI25VucikRtVZFz40eTB4dR78q1+vuNGO06widTeNoN9B1nYfxXyyzPJJiw9vcOFqMJJZF4gsRtt1bRzoicvpHAaz1Ona9r5FsUmL4iQCNF9mwNxs58qVZBn/op+cmLxavwPCTi2gNWtnu7HCYVEhErVOx6fYa3viifG26r/eQz+U59b1FGnfb0du1zB6OMvNqBHuTHlNRsdJSr2XjgVpySUlpv86gIVRUmdx4lxdLjZ4jX5tBjIOr3UghXyA2U5xz/EAD0dkMobE09TstmNw6ogvygt2mu2rQWzQc+ZJMkuu50YdKBWJaxNdvpvUyJyNP+0GE3tu92Br0hCe1BM+m2fFAPYnlLGefXcbdbaTzOjd5qUBwLMmG6zyYfQJnn5HJU9vfU4fWpCE8kSITFem+wUtoIsnCyRj9N9VzaXs7+XSBI/8yT+cBM4MjJzl95jR+v5+f//zn9PX1YTKZ8Hq9/Pmf/znvete7/o88Y6qooooqqijHK6+8wic/+Ulef/31MiEEjUpg3769NLk3EjxlZMvbTOgMKoZfSLI8mcXeoKFvv5mBJxJYarTU9Qos14mMv5JibiBF0zYT4cYcsXmJjkuMUIAj348zczKDvUFD56VGRn+RwNNlwNtpIBvPExzPEV+SaN5lIjgeRcqCs0nAYNMw+ESc+HyOTbfa0QkweyyL3qrG4iktnzfvNqMzaDj+/RCZeL4s96rZqKd5t5nZ40nmjqXRWdRI2RIbfdvbHajVKs78PIrJqcXq0zL9qpx7dV1lxVarJR3NE5qKsOmtDpYnMswcTuFqF2i5yEwyJCJm8nRcZpHb+3gEjUHNxptsRGZznP5ZFJNDS891dkZeiJOLS/TeZCOfKzDwWAyQ6L/VRnwxx8QrKWp65H4Jz2QJTUi0XmTCVqvl5GMykb31IpOSGxpdGnquMTP1WhJRLKAzq+i+0srJH8nb9r3FIlvSRfN42gUatxg5dyzF0miOhm16vB2CTFwCeq81I2UKjLyQRKOHzTfbSARzmJxaNAYVtd16jv1AngvsucaMYFYTL5Kxt91uY+F0hvmBDO42AXeLwOzxNJIE3VeY0OhUnP5ZAgoFuq8wI4kwezSNq01H43Yjg09HCZ+T6LrShNGlITSV49wbaba8zcryVI7Jgyl8PVq2vc3G2V8miAfk2DI6NJx6PEY2IeHt1KPVqZg8mMLWoKHjEgujL8XR6lU0bTdS26fnxA/lfrHX6Uho5bZ3XmHGXqdj+PkYkVkJq09LIV8gVVQ72vkOO8mgyNDTCYxONXqrmtCcnLd3XG7E0aTjyPfkfmnZoUenV5GKFhBMsOl6K/OnUiBBw2Y9vi6BxeFif19jQqWG8VczaATYdIMVCgUWhjPU9mip26jn2E8TsqDF1UasPjXBSZHx5Qzb3mZmaTqDfzCHb4OW5m0GxGyB4FSCrkuNCGYV84PyvOgVd3ah1XWzMJwlGcmhrglwYuA4wyNnOH78OPfddx8f/vCHMZvN3HHHHfz5n/85Lpfr3/h0qeJ3BVWS0n9xHDx4kNtuu42FhYU1ZQ21jbTRjSHkYu8DfeTSOZZUZ1k4GkRn1bI4EAZAsAoUCgUCQxGy8TzhiTiFIiEomwKNoCYdlh+MI4+fo/nKGvwn5H3NtSb5i7UspBezzB1ZVhZUzLUCBQroDDLdduQnM9Rvdyp1kc+jUmkUpZ3gmSjLRcuJwECY2i1OTG7ZwmT2tSX0VgHBIrOVE4tpDE4Bg08gNBLB4tUj5QsgwMKRELU7ncy/IU+ALJ2OEptN0nFjHbOvLxNsihCaTrBwKEQmlsPaYKJurwtfv4PAYKS40LeM4BIIDkdYPhNm18dkJafg6aii1rM4ECETW/mCXEsuLRIYkvtl4WiQXEIexLLx4t9FW690OEtwOMLiQJjdH+8hFUwTHC6pFC0eDylfAR793Ci9dzaycFKu138ijEoF2WCeNz4zRN0lPtSrmM2hkSiB01HsLWZyCZHEbIp4QG7j/LEggknH4oll4rNZeg40ympKwNJIFINDx9jTc2TjeVRqMDhLtnTLp6OkYxku+kQPi6dCBIcjhIqknvnDQcw1BsVKLjAYIbEoT3BEppLE5hKYfUbsbVbmjy5ja5Rt+2KTKRYHwph8enZ8oJPxZ+fk/h6OED+XQUxLOFos1O52UrPVyeJAhGzxS8OB74zTfGUtgcEIdXtdROeTsmoTEBmNkYuLLJ6S+8xYo5P7+7j8dzaWQ6MrMd4WTwUprI7ZfEG5Vounwqi1cPZJ+dwKUh6VflXMDhdjNgvB8Qi12520Xl7HieFxFk6EEEw6Zl6WJ42kjITZbUAQYHk4gsklEJmLk42D/3iIlstrqNvpJnAyytLpCFqjmtmDy0gpkdxeD5Y6I3F/hoVjIdy9NsSivHtuVl4I31yznTM/myG1cZ7l8DJnz55FkiT++I//mL/9278lFotx//338+Uvf5kqqqiiiip+e3zsYx/jy1/+8horEZ1GoL9zC9bhJjbe3oy718bZoo1raDyOWlAT92chl0Or1yj50PTLSzRd6sZ/Qs4FTDUGCkB0JkUukmP+SKh0DJMOtbY0hg0/PkvDTg/hoj2aYNXJKpY6yCVh5uAy2eJ4ISVTQAFTcXyffGERV5tFqSsVzmJy69HZdSQjOQIDEUIjcp4QOBXB2WZGVVTIXDgappCXrd1i0ykCQ2GMbj3J+TiBQh4VYKo1oTNpmD8aQnBomXlRJnItnYqwNBKl/4FWgqNRAgNhzv5sHnKgNajRGTW4+qx039xAYjHNwsmIYtemt+pI+lN4+h0UChAaK2laL54ME52Rr8nY03M07PUQHJbJQ/5jYYxugYaL3dTvdhM4EyE2I0+wRWeSBAbCxKYTJJdkspSl3qDUu3A8RDqYxX80jL3diG+jQzmu/0SIdCiH3qkt9kuIbNHaOBvKEBgIszQSIX4uibXZQi5V+qrPfzyEmMkzdzAIOjn3XS4qSi4ORCiIBbpvq8dWb2LhaHDFyh5ysHgiRGA0Cjk571KpIFfMkRaOhajd5cLkkXPowGCE5RG53vkjYchD99taySVF+Z3ApIUcnPjqBJ031hEcj9P/QCvLZ+Vrk1zOERkPoDGoyRfzpdb9XhYHwkSLfbhwPIR7g43YbBqdCYJjMcWCzeTUIWXzBEflGE0spwmcijL/mpynS7mCLBderHvhaIhM8d7IRpNAQVZ1RbY0zEZERp+S33ukTB69TYfOriMXlWN2aSRELgmLgxHc3Vb6725m4BvTLBwLozGoWDweIZeDTDyHs83KWHqexVMR1HpILWYhB/NHwzRf5lEWAwNDUXQWDf6TEfJigQ1va6OtsYPXh8+i3pphSTXNuZlzRCIRnnvuOVpbW7FYLPh8Ph599FE2bdpEFVVUUUUVvx0mJye55557OHToEKJYkqtRoaLB10yHYRuGmJvt99QhJiVC2kWWRxIYnVqWx+W8QG/VgapAaCIBIvgHYrLyUF5FIV9Ab9GQWCrmZa9EENMiy2flfW31elSqAjkxD2mYfDmISiXnYloTqDWgNcp/jz8XxNdrVnKvgggqjQqtQbY0m30jSnxOzmli57JIYkGxj5s9HMVg1ynbhiaSWOv1GCxaYvNZFk5GySUltAYIDCXQ6FQEhuQ8Z+FknHREpH6nhcWhOP4TMeKLGZaHUzjaRFJREUebgZp+C/6T8iLN0ukkWoPcF6HpDH0HvOjtWvwDccWOzD8QQ8zKCYjBoSUbF5V5oOWRBPmi1QQiTL0cKuUqxT4Ojifov7uGVCQr11X8mN0/EFcWBc/8ZInmS+yEJuW8ITyVQqtXk46LHP/6LK5uExpNKfddGIgTm0njaDUiJiX852Kl9p6Mo7dpCI6mSYdFGvbaSPjl6xpfyOEfiDF3PIIYh3wuj8FZIusvnIyRS+XYcm8dgaEo/oEY8aLlrv9kgvhijtlXo8W/Y4rlSyqcIzgax95swlIrEDidJB0pzv0ti/hPxDD5tGy5p56x55fl/p5KkwqISLll7E0G7C16ajbL12alT0/9cJ7mvQ7C4wnsrQZSIbkPAdJBkbg/y/JZ+fqbfFq53mK8pyIieotW6e+FwTgatUqJ2YIEYkq+WKGpNFpDjLk35PeQfCaP2qFV4nD+eJzYXAYxDVF/BihQu9VOeGKJxYE4kamUYjmXSYhYa/VoDRD355g/FiOxnEGMQ2Aojq3BjW+ThchUhoWTcXRmNctnEqTjIqlIBnuLgckXgwROJ8hLeXJJuS+Skyou3nsp3c7tTL2yTKJ5mqXEAqOjZ4lEItxzzz38/u//PiqVio9+9KP8t//236iiiiqqqOK3x7e//W3+6q/+ipGRkVVCCCrMgoO+zu04Epup36infpPA6K8ygERgLItOD8mIhJQFvUlDujhWBkYyaDQQOieP12aXFpW6QDIsIUkw/UZaFihAFo4RTGoyxVxq5kiaVKhAPCCPyXqzCrUGNBqQJBh/JUlelNuYlaBQkPM6gLkTGRL+nLwhkAiIOJrUCEZ5zXPueIrovFxvdE4kGZIUlczAablNBruGdERifiCNyakhHZaQMjB/KoXaqMHqhMBwmvCsiuCEnHMsDKaIB0Ra9pmILWSZP5UiMJxGygKkEcxajF4dXVeYiS3mCE5mZTWkvMj8YJp0TMLs1kAelidKKo8LQ2mlT+dOpcmlIeHPg0rF8kSWRFDC1qChcYuRwGhaIdBk4xLzg7JqUDYOYy8lMblK8kj+MxmkbIHwjMTS2QyOZoHYotwv4XMiYqaAVlAp264oSEkizA+liftzpEIFBLuagohiCbc4nIECRTs2mB/MEJmXf48t5JjXyKpBjgYt/jMZJQZQqZg5niG+LMdHdDHH/KAaqciRC4xmqOnTK+cwP5ghsSz3S3hGRK3J0LjTgJQp4B/OoC/m6ROvpPD2SKTDEi17jET9WeYH03LMpmDq9aJUF+Dt1LFwOqP0t384jSQWZNUlDUTns4oCk8YI6Vie0ExRPTWdZ+5khuC0fO3EXEGeSytOB86fyiBl8yBBVoRCvoDRrgFEQrM5JDHPwlCpLmuNVo7ZLMydTBNfyiFlIDKXpW6TQPt2PeOHMgTOZglNQ3i+GO/LEu5mgbmTItEFifmhDOlkHikLgdEsrRcZ0Nvk4y6czqK3QHhWIpeBtvYm3nJVC43Z/ahtYQL5Ic7NTTA/P89nP/tZvvCFL+B0Otm3bx+f+cxnaG5upor/ulAVynysqvivgEcffZT3ve99hMPhNWU2XGzlEjbe1oaz08rrfy9/rb35vW0sn44y+4psQ7b7wxsIno0x+sQcdXtdOFvMDH1ftlXourUBZ7tF+TK9964mZl9flpVmivuGxxOMPDaDu8+K3i7I9mZAx411ePrsirJP3V4X8wdLss27/qCbTDjHya9NIFjkh342Lg+YDZe5ab7Ex6nvTpZsw1bZhG3/vU50Jq1S92oILoEdH+gk4U9x8qsTa8rbb6ijboeLsZ/PKTZeq7HxXS1YG40c/aczZCtY2Lfur0GjVzP25Px5By5v4/nY/uFOJp5bIHSmQqUCbH9/J6HhGBPP+tcUd9/ayORzMxXb82bY98k+otMJTn1r6n9737q9LvLZPP4j4TVlu/6gm7nXluU4qoDN720jOBqTrdF+Qwgugd7bGznxlfGK5ZvuacHSsP61uegTPRQKKLG+GpYmPZvv7SA8FWfo29Nryjtvrse7ycGp707IMXcedn2sGymX5+g/jZbVGT+XweAT2PaeDqZfWWT2Zbk/nD0WUsEs6cUs/fe3YnAKHP60rDhg8AnU73DJdi/Fdi8eDynXvuvWBpn0NBSj964mLPVGZd/a3U5c3VblHC76RA+BUxHGn55HsKjpfUcrc68tETgZpe/tTZjr5H0nC8NourMsLS+xvCy30WazYTKZ2LZtGz/5yU8QhBIZrYoqqqiiirXI5XLcc889PPbYY2Sz5YO+gIFOtlCvaWXHB9uJTCUZfWoB72Yb3k02zv5khlwSWq/14emx8sZnZavYngP1LJ2OsTQYAx3seLCd4HiciZ8t4uqzYGswMvmcbLHRcrUX3yYbhz8j79t8pYf5oxFyRevRHR9sJzafZuSxOUw+HRqDlljxS+qGi900XOTi2BfPkkuCqVa231rBtve3USjA8S+vzZ3s7SZ6DzQyc3CZmV+tHff77mrA1mrmyBfGlLasxq6PdVPIF3jjM2fXlOnsOrY/2E7obIyRx+fWlIM8/g8/MVex7vXQdJkHa4OxZIN2Hhr2uanZ6uDo58fWlHm32CnkCywVLe/+d9D3ziZsTWYO/c3aXOTNoDOpaLzcx8Qza3PB1v0+7C1mTnxjotxirgjnBjPNl/o4USH3LR2ANfu2X19LcinDwuG1OfHKtQmORDn7RDHvVZUWB+v3Omm9wsfki4vMHVy7f//9zZi9Bg49PFKxzbv/oJNUMMfA11flqMU22ttN9N7eyNjPFwicjCrtIZcjl4RN9zShM2tl+8EivJtt8rY6ZDWqoyHOFfOy2p0OEosZYtMpum6uw9Zo5Mjn5XzT3mrCu8nG6JNyXrbz9zsIDEaZ+kUAdNB9Yz1Lw1GCQ3E631qLvcWk7Fu/14mjxczQ92UFzF0f6cA/EGHsuTnGbMcw1ugYHx9HkiTUajW1tbWo1Wq++c1vcuWVV65/raqooooqqgDg8OHDvPe972VwcLDMQleDFo+umU2GvTTv9uDpNXPyO/L42bHfRWQuLduQ5QtseoeP8HSGmVci2Fv0ONuMTP46DHkV9TsteDaU9m262Mby2aRipbXpLh/R2QzTv45g8mgwuXQsnZFzq5qtZmq32DjxnXkQwdlhUGyzQLZtyyYkzj61jNYAqEFMyotmzg4D7Ve7GX5ykfhcbo1NWM8tXowuHcf+tUJupIUd724gvpBh5Kdr8zLvJhOtl7qYeCko23YVsTJl3HKZA3eXiZOPzCEW51VWyOcg24vp7VpmD56XB51vZXYeem71Mns4oqj0nL9vz01eojNp5g7H1hQ3XGTDfyKqkGn+d7Dj/Q1EplOMPhN8843Pg6PdgEpF2XVbwaa7fCycistxVAEd17mI+zP4jyd+4+NpTdB2pZuzT1WeR2u53I6rw8TA9+cRKxx287tqUWlUiprUaugsaja/s5bQRLrcMq+Imq1mGnfbGX5iUbaqOw99B7yoVCoGHy2pwhpcWtJBEa0J+t9ex+zhKIsDJUJUPgvpsEjrFQ4sdQKnvifvq7WAt8vC/DE5wDbfU8vS6Thzb8h/1+8q2vBNZ2jYa8PZauDUo4sggr3VgKvDyMQvQso5L40kmHsjjtYArZe7WD6bJDSepnGfDUeTgVOPLLKYmSLVMMtyeIlAQH53slqt2O12brrpJj772c+i1Va/766iiiqquBAkSeLhhx/mn/7pn5iamlJyBxUa7IZaOh378Jia6brCQHxRYn4oh9mtwt2mY/ZkFikL7lY1vk6B08/KA1n9ZoHYokRsQc7juq40EvOLLAzlMDpVWLxaAiPyhIGrTUtNt8Dpn8v7ulo0ROZzCiml6yoTyZDE7LEMglG2Gk2F5PVEe4OGph1GTj8nW8utCBwUT4z2yy1odCrOPr82DxGsKnquszM/kCIwnFlTXr/NgLfLwOmnwxXXpHpusKHWwNBP184haTTQc6Od8Lkss0dXrTmpS3MrzRcZmT2RQvrfyIMczVpstats0M6DvUFDTY9esRlbDYtPg0oDsflSbs2qXPBCaNiqx9spcPyHa/txXRTjSKMBd5cg28Gdd1xXmxZnk46xV1Il+7ZVMDpV1G/SM/by2nU7Baut34rwduuQsgWCk6tyn1Xt6bnBSngmx+yxdFl7AKy1GjovMzN9JMXy2NpJreZdBhxNOgafjBWJZ+Xovd5CJi4x/qtVbS62UW+D7qusTB9OEpmVQKNGU1yak7LQuF2PyaFm5IXSvtZajXIf9b3FxOLZLEtj8nnZ6jTk0nlSERW+bi3ORh3DL8l9qbeCs0mnEJ42XG0kOJ0jcFaEQoG6jTriS3lifglvpxZXi47hF1OQV2Gr02Cv03DuqHyCPdcYWZ7KsXAmw1T6ECpbiLGJMURRRKVSUVdXR1dXFw8//DBbt25d/1pV8TsJ9ZtvUsXvAr7yla9gsVhQqVTceeedCkFJhYpamrlGf4A/euiPuWP/2xFUAmJCpCDmEYofyPtPhPD02eU/sjJDcwXzB4NI2QL1e90ASGmJQr6g7DvxSz8Nu1zKvnkxT16SE4HloRiZSJaaXQ4AUstZ8rk8QvHL4/mDQRqv8CjHyiUkMkWJ6mw8Tzaex7tVblfgVEz5+nzlWIJLwNIg1xUaiREeLc8I7J2yKk82mGV5KMrYk7Nl5c4e+STGn55n9GezawhKDRfL5zz47SkO/U05CUawqOm/txWAyef8awhKdXtd7P2jXtx9VirB2W1Bb9VhqTNWLCcrKyVVIih5t9rxbrLTeFllq4jN725j24d+O//1lqt9XPSJHplgVQGtV9TQeLG3YtnhfxxZl6AEYHTpcbZa1i3f+ZEudvx+ebuzwaxCUKrf66b9+tqy8lPfKl0bW5sJW5uprPzE18c580OZvGNrM5WdV/xchuBwlNGn5QWolXhZwfKZKMlAWiEorcTLChKLaVJFVSjBJWDvNCtKWoJZi5iWiBTVFOr2ukjMJEkvyoO3mBTJpUsZUuMej0JQMtcK5MU86Zh8LzRc5ia5mGZ5SK6rIBWUewzA22dn5pUlpR15MU8mni32mZdcSlQW8/JSAan4BUGragO3vOVWbthwO9u5DLfNjd1ux+/388wzz2CxWOjs7OTSSy9ds/BeRRVVVPFfGblcjuuvvx6tVosgCDzyyCPKc9KIlV3s510XvZ8Pv+8j1GtageLzt/jsDpyMks/m8W5xAiCmJPK5ArriEDb/RhjvSv6Qg3y+oHx9HhyKk42L+LbJ+VE2LiJlCzJZA5j+5RINux1KW8VMHikjjzfJxRzpiIinX647ei6JmJLQFW3dkgs57O0mpR0Jf5rEfPnkhr1dLoyMJ4nPpwhPlC/CWJvlvGbylwv4T4TKSEQ6E5hq5YF45CcznPj65Jq6TbUCuUiO1/5heA1BqeUaH55NcttPfWtqDUFp+wc72PLeNtaDrdmEucawbvnsq8sVCUoATRd7aL+2tmKZzqRi10e7qN3hXLfuC2HL+9rovbOxYlnj5T7qtrmwNpvWlE0+tygTkNbhaVnrjBicAuYGfcVyzyYrez62Add5uer4MwsKQan3rkYlHgDl2qwQlGp3lZ/z3MEQI0/OKQSllXhZwdjP5lk4EVbabGksvx6h0YSinGqq1cnHLm6bFwukoznCo3K5q89CLiITlAAyEZFsMXdCJ5OQVvIfk1OHlMmTWJLzNN82O6mlrELYy4t5xFwpt/JttjNVJN/p7DryuQK5pPweUrfdSS4lEhySXwzy+bzytSCAq9OiqJzq7PLkVy4hodMIXLvzBt568S1cyQEa6KS5uZl4PM7MzAxXXXUVNTU1dHV18ZOf/IQqqqiiiipKePnll+nq6kKtVrN7925OnjyJJEloVQLt+i1c53wPH7j7D3jLJTei1RrIZvLkcwW0xemWpZEErpbS3Euh+GUyahWRc1ly6TyeLnnMyqbK950/GsXTXZoryOcKsqJNvkByUSQdzuHqksezdEhEykjozTLxITSWxtNjVHTus3FJ+fpfTEMuUcDWLI/Tsdk06VCOwioFIq1BJoUALI8mCI6VLyqZvHKZSlKxcCLG9CuRsnJLvVweOJXk7M+XyghKAJ5e+ZynXg5z9F/mkBIqVCr5R2uA9v3yXN/SUHINQcneomf7/fXYWyvnVga3FpNbi9m7zuSSCGceC1QkKFlqtdRvt1GzxVZx1/ZrXPTeXnle6s3g6TGy5d5amSRWAW1XOGnYWfm4px5ZXJegBGCuEbDVr59r9t7mZdNdvrL/iUkUgpK91UD9zvJ5p6mXIhz7mkxQMri0WGrLSTVDP15g7OcyAcfg0padVy6eZ+F4nNnXivmQr3zf6GyG2FxGISitxMsK4gtZ4sU5LK1Bvi4rylRag5ZcQiLul3MrR7uBbFwkHS7Gd7aAmC7lR75eq0JQ0pogn82TTcq5l6vLQDYhES2qChSkAgUJhQDn7jQRGIwp7cjn8khpeV9Hhwkplyc0Lr+zFMSCcg/59C1cd/HNXNtxFxdbb6fG2oDT6WR2dpYvfOELGI1GOjo6ePvb316mxFZFFVVU8V8dkiTxF3/xF9TV1aHVavmjP/ojJicnUaHBa2znssb3cmDfH/LOO+7DY5JVUvK5AvnimmJiuYCYKWCvk9VsxEwBSSygKU5NLE9ksdeVxpy8hDLnlQoVyCTy2BvkfXOpAlKugCDkQZJt3VxNJbVDMVNQyCDZFGQTeazF46YiEplEHm1x82wcDBbQCMU5sqBIYql8QsXolPfNxgqEZ7LEF8vHB4NdLvefSbMwmConKGlAb19R5okz/Hx57qS3q9Hb1UgSDD4ekQlKarXy42rXYSue9/RrawlKHZeb6LyyfP1KgUqFpUaHxbs++TYyK1UkKAHU9Opp2W2SCTkrP6vOq/d6M85mTcV93wztFxtp3HnevFTxGI5WHQ2bDZg9a+sOTogyAakCQQlAb1VjcmkxOtUVCVVGl4b+m6xKPKwgMJJTCEoN2/QyEajYHimvYvCnMYWgtHI9VhBbkBh9KaEQlIzOcgrGwqk0C0MZJSYN9vI2LU9kCZ+T9xXMyMcunl+hAMmQRDwg/8PsUiGl8qX4TubJJkq5laOhRFDS6CGXLpAtKk1afUWCUqgA+TwFMY8kFpRjORu1BCbkdmg08nyblJP3tdVpkSSILeaVfs1LpXY6GjSEZ0RlXylXQMoW0Gg07Oy9jCu33841bR9hk+daWls6SCSSvPTSS2zbtg2fz8fu3bs5dOjQmutVxe8mqp8D/A7jJz/5Cffffz+RSPkkhAo1LXSxqWYHjXs8jD4xB1kwOHSYa+W31Yln/QQGQxi8JrLxJM5WCyavHsGiJhvPc/jTIxh8pYkE1wYrRq+euYPLjD+zoJApAFou8eHssmFrMxGdSK75Ir7rpgbyYgH/4TBzB5cVVSWAml0OWi6tQTDrGH9qnuNfKl8Y2vqBDowuvWw1F8xy5LPldW9/XwdSRuLwp0fWkHlsbSY23tVCeCzG0PfPMfLYTFl5y9U+GvZ6mHrZz+zLy/gPh8vKew404uqxkQ5lFXJI2f7767A0mXD2WCoqIcXnU+QSIrHpygzi0Eicg//rdMWy9utr0dt0nH6k8pf+geMRxLREaLyyjFIhX6CwarHkfwdiWiIv5jE4BIVQsxpnHjtXWfmpCE+/jYa9Hk58ea3yUSWVq9VIBjLkVy0QnY+GPW7UOnVZ/K1Gz+3NqDTw2t+WjpNezJIuyln13dmMlMtz+B9HSufzQzkuBAv03dlCajmjxGFoJE5oRD7Xur0u2q6uZe61ZSafk2Nt6Dsl9aW+O5owevQc+cwQ2ThEJ5KK0hHI5K6G3W7l/jj9g1I8tlzto2aLk9RyhtlXlkksZMvaWL/TjVqrVghgK20GmVhlbTDh6bXLamZQtq+j3YLeXkrcw1MJzjwq729pENBbdBisOlwqH7093Wi0GkbOTXGcl3F67Jw7d46xsTH0ej3t7e10d3fz+OOPVxWWqqiiiv9yyOVy3Hffffzwhz8klyufxLDioJ9Lab+onmxSJi8YXAJ6e9FqKpLj2Jcm8G4uLXjYms2oBTVzB0PM/EpWI5KJRjncvRbs7RZMPh3JxVyZMgxA414PuYTI4rEI86+FmH+tRLJuvNRN/U4XqeUs/qMRTvzLZNm+m9/ZhMagYWkgRmw6xdEvlMZrnV1H3x2NRM4lGfruDCM/KSdgt1ztpX6Xk+GfzBI8k+DUt8rzlM3vbsHkFjj06WGS/vwa9Z8tD3ahUsHhh88SmVg7MdJzWxNiSuTIP1cmCtVscZDtsLB0qnJuFV9Ikc+tn/8MVlBNXEH//S1MvxwgMl55wuboV8awN64lCgEIToGCWEDM/HaLG4VVBLbzMfG8n6XBGLHp9RfEum+rJ7GQYfbVcqL49ItLTF9AvTJyLk0mmiO9XPkrO1efFUebhbqLvEz/MrCm3LPZTvv+WvR2QVYYKmKpaDfSeKmbpovdjD/rx39Ufl9JLuSYXJC/qO+9ox57u4WT/zpBsigXrqgzAX23N6MSVBz+tKxYGZtOcfxL8r2gM0H3TfXEtiUZ/M7Mmn079tdQs8VBOpwlPJokuZgri/XmSz2oVCoOf0aue+zpUqw6u814+qxk4jmmX1giFynf17vRhsEhMPEz+TxmXwsx/oz8u8mjw1JrxNaQlp8Ddi1nHj1Hsjjxaa4xYHTJk3O9mh20bfQxczDEMCfwG8cp5AuMjo5y6623YjKZ6O7u5u/+7u/Yv39/xWtURRVVVPG7jJMnT/LOd76TwcFBVovECyojHfqttHv7qOmzMvu6PO6YPFqkrAAkWBpMEpvJIli1iCkRs1eHtU5Ab9eSiYgM/iiAzlJazPD1mUkFcywNp1gaTJYRUXy9FnwbzYQmU8Rmsgz9sKQqA9B+rUe2qzi7QGQqQ2SqVG6t19F2pRuDK8bMqxHOPi2P1Svn0/VWN/YmA8e/PouYpkyxBmDTO+qRMhID3/UTGEwCpXYZHFo2HqglOJpi/Pkgc6+X50eubiPtV7k492oY/8kE4fHy8b5+p4WGXQ7ZwmN8bS7g7bXg6jCyPKInMrVWQSATkchERBKLlfOI9LLI0a+uVfcBWdnJ7BGYfDFcsTy+IDL4owWSwcq5VV7KU5B+u+9yxaxMMtOatYjptfWffTpAfGn9nM5Sr6V+h72iYtXJb1aeq1pB3J9Fo1tflaBxlw2dRaOoC52Pzmtd6Ewajn2t1K9iEuJFInX3jXIsnvxWqR0rBCW00HOLj2Qgy5mfyPlhKiAy8mRRVbtZT/cNHubeiCjHn/51ab659UoXjhYjx785i5iUbeVOPVKK17YrnORSkqKcNPNqaV9Xt5GGnXakTB7/yQRikrJ967baEKwahUQ393pMiWeDQ4uzw0gmIRJfiIK2fF9Hox5rXWnhM7mUU54JWiMYnVoEqwaL1sHlLbegM6iZCYU4lXwRwZNndnaW8fFxHnnkEVpbW7nkkkv413/916rCUhVVVPFfEg8//DCf+tSnmJkprT1oVQJecwe97ivxNFgo5AvEFvPo9GC0axBMkE3C2CsZrDUlQoejXktCLxKcyBGZhchsSiEpWX1a3K06lsYzpCOsUcJp3KxHzBSIzKaILUjEZksfx9kbNDRuNSJmCoSmRCZeKd+37WITRruGgZ/EyMbh7AopR5LQaKD7WgfR2RyTryZYGCjPYVztAs27TYy9HCM2JzF9qHwepnWfGVuDjsEfh5FS4B8sz4+6r7Gi1asZeiJCJrJ2jqfjcitSLs/wM7Ey1aQV1PYayGXyRGcrKzImlqXVQtYyVpFzZt5YX3apZY+RwNksyeXKjJ+xV1IYbZVzFI0AUraA9FvyefN5YJ0lv+UpkWQwTipczPUrkI1qNwlkk3mC4+UNCE9LhKdX5Uwr+xbz7GxEIhWWyMQrn7PRqcbToSebLBAYXqvkZHRpaL/YzPxgGv9QqTzml+uzN2ho22dm6vUkoaJtXTaFogpV16/Ht0HPmWejZIrp2GrFqJaLTAgWNYNPyOeQjcl2ewBooONSE7EFkYlXU8V9c6x8xefp0NK0zcjZl5LEA7LN4NkXS/dCfb8ejR6GnpbrC4yKBEZFUKvRW6F2g0A+D4vDIpIEZ18qxY6rSYvFp2FxWD6n4JxEYEwClQqNAPZaLZl4nthiHq0Jpg6nyRabbbCrMbnUIEGjrR9v5zaCsyLzhnEm4gdRqfIcPnyYvXv3Yjab2bZtG5/73OeqCku/w6javf2O4eDBg9xyyy2KTO0K1KhpZyOt+g0IFoFsMEvfO5txtFo4+pXRimSTvf9fL9l4jiOfHV1T1v7WOmq3Ojn13UmiE0kEl1znCnb8ficqlUohXKxYXK383ndnKxO/WCBwPIK7z0psOqawir1b7dTvcivqOC1X+5j6RekF091nxeARmH15GVubCWu9sUydx94pTx5lg1la99cQmogTGS0N3KvbuuG2RiaenVMs485Hzx2NCmGjElqu8TH1/OK65ZYGgfjseX0rgCCo1z0mwNaHOhh9akbps/Ox7UMdCGbdm5J6flv8W+ze3gydt9Tj3ehg4Buja/umiL67m4nOJS9o+2bwVSBJCSjxXQmWJj1Gt4HA8UjF8trd8tf+lSz9QI77xZNB4ucya2IeyuPFu9VedhzBJdCw0ymT5QTYcGMjwz8uxZazW/4aLjQSp+UaH+YaQxnJqWaHQ7HQ2/mRLqLTqTJi3co9VrPLQfv+Os7+dFaxnFkhF4JsuafSqMvt7Yq2g97NNrpvacJ/MsRoBfucnR/tQmfUcvCvZfKcpUEgMBPkGL9C0osUCgVFKcTpdHLVVVfxwx/+sGJfVlFFFVX8ruD3fu/3+OpXv0omUz5m23Czjcuw15kVgsWej3eTCmU58dXJNfV03VSHZ6OVU989J6u3nGezteujnYhpSSEk6UwoCjGejVY6b6jjzGMzhEeTmBsEEqvG2M4bazHXGpTjejZaZau4InoO1BOeTLLwRhhHpwkxnSc+U3oB7XxrLaNPyYsZzZe7mT+8rBwbZMWa4FAcdNB5bWnbFawQseytBmxNJs69XHl8r9nuIJeWCFYgf4NMdE7OpxRCx/nQ2XXkkrk1ykF6t47M8vq2b42XujE4BEZ/WnmhzNpsYuPbm5k9tLRu2/8t+LfYvf0m2P2H3aSWMgx8o3JeZ2k00na1b91yKF3D82Gq0ZH0X6BvL/NWtPtbQeeNtYplWqVjNu1zKgSf89tgbzdhqTUw+2oQvUuH1qgqi/v6vU7CZ+Mkl3I07HMRn0sTmUyWla8oOvXf28zMoWVCI/I7g84EJp+JyGQS3zY7TXvdnPr+OTLBIplo1T22/QPtiJk8J782uaa/HJ2y7eH0ryrbHW//QDs6s4bX/mGtraG5QWDzPa0EBqKMPrWA3qUjE8txLn2WUQaw2ExEoqVcc9u2bTz88MNcdtll6/Z3FVVUUcX/6xgdHeXuu+/m6NGjZVZugspIj+Ei6iwd6AwqcvECjfts1PZbOPXDRdLLa1dNtj9QRyYurSH+ANT0m2ja62D4yQCxuRxaI4ir1rh6bvGg1as59QN5X4NbKx8jX0BnUbPhJg9zb0QJnk1jqZfVZVZsyayNAnXbrAqJxbvJROBUaXyy1GoxuHQEBpMYHFqsDUKRgCTD4NEiZQrkYhK+TWaSwaxs/1aE1gRSSl48adhrwz8QVSzazkfTxXbOvVJ5fgTA129WrLoqweDQKso4q6E1UdF6bAXdN7k5dyhCKlB5Nav7Jjcmt8Dxr5fnZoVCocxm7rdBoVBg50ONv7Xd25thxSLt9E8WFQvA89F0sZ1sTMR/cv2+1VnU5M6fN9TKSkHrXU+9XYvRra1IKgNZ3UqjVxMcqWx7UrPVTGJBVk6qdA0bL7Yz81pEtlhrKSenaQ3g6bWwUFRDarzYzsyq2DJ6tWh1KmJzOTx9Jqx1esWeDWSVqMik3O7e273EF7Jlsblyj1nrdXS91cvYc0Fle60B5f7aeKcPrUHDiW+uih1BBaKsFNV3qw//qTjnXllrr9N7qxejU8vRIsnL4NASX4pzMvUrIio/KjXKO5/X6+XAgQN8/vOfr9iXVVRRRRW/K/j617/O//gf/4OJiQmFRK1RCdSau9ngvhKLVVAICJtuMJGO5xl9uQK5uVNL42Y9wy8lSC4DWhVkS7lcz7Um8mJBsaqSiS9ymcmtpmOfkYlDaeIB6Txbtjy+HgFbrZbRF+WGWHwa4ouluus360lHJIJTIkaHzOJJhVcpJfcILJ6RFXlc7QKRmWyZFZfZpyFRrK9mo34N+WilrYJFha1Wx9Jo5bUpa61M0lpRtzkfZp+GXFIim6xMtNYIIK1SrFH+b0SxtytDMWdyNGkwOrXMn6y81iiYYcO1VhYG04qN3vl1/FvQsNWAt1PH8R/HIf9vpCOoVWvq6L3eTCaaZ/yVyvmNYIH6TUYmD60qP48WsV7fCmbIXsCl19WiJTi1Pjurpk8oIzCdf0x3e8nKbnXMg6yyZHJqCU6KaATQGSG9Km23NWhIRyWyMZkQlc3ISmMrcDZrCE3LJ9SyS8/ShEhiqaispAHBpiIVKmD2aGjcomfitaR8X6nVZfdY56UGCvkCY6+U4melrXor9F5tYuZkhqXxUucVNGpUUp6OS/SYnBoGfrr2xUBjhP7rTPjP5pgfzCnXYDl+juHlF1EZM4oAi16vZ9++ffzjP/5jlbD0O4aq3dvvAOLxOH19fahUKvbt26cQlFSoaKGba1QHuEp1G62qDez9w142vkOWWBx9fIaT3xxTiB4tV/vY+6e9itXauVcDDH5/lRLM3c2KfdnMwWWi0wnSATnhyAazdN/aqKgrpZayJP2lZCR+LoO1VdbCjvszqDQqTB6ZGr08FCuTPXR3WjF59UpdqwlKAB1vbaBxjyzbHJ1Ilk34Cxbou6uFvruaANlmbTVByd5pZscHOum6tQGA4R/PlJGFnN0W9v5pr2Ljdj5ByVwrcNEnepTyNQQlAXb/UQ99b5ePX4mEs/19nWz/ve41/1+Bd7MNo1uPo6OyDRzAsX8e47WHKy9k1exwsOdPetZYj61uo6Wpsq3HbwxB7ov1sO1DnWz/vcp2cqOPz3HwH4bWJSgB2JpMeHrs65b3vb2JbQ92KlZ+CrJyLFpbjez549J1WkH8XEYmDgmw+w830H1ruXXKwushhaC0++M99N/fWlY+/tS8TFCywI73d7D5PeWWMSvxYmsz0fXWBiUOQG7XippX51vqcffZyhQzVqsyOTutWBvK1RhWCEoIoNKoUBc/PDD4BAQLCqFNSufJxnMsFa1QOm+pR3CWlJIWjoVYGowo7dz5kS4sNXI8BE5GmT20xOgzMkFp+4c7y+z13nj4LGd+JKti2DvNbH6gk403drFPdT2XZm9iu+oq9Mj3eTQa5Uc/+hEqlQqj0cinPvUpqqiiiip+V/Cd73wHu92OSqXin//5n5XJagt29nET12juYrfmGjbc2MiWd7dh8snP4dOPzpQRlLZ/oJ3ND7QAMPmLeaZfXlLspax1RrY91IbJI+8bGIwwf7i0kKJ3GWjdL+dDkYkY6WhOkb9OzGbRmVAs3tRaFRpdKe1fTVACWbXJvUHOG8KjyTKCknezDW+/jabL5DF1+qVyglLvHfVsuKlePsccawhK/fc1s/29raDNE5lIriH5bHxXMzs/LI81/qPhNQSlrpvq2FG0qF0aiK4hKDXsc7PrD7oxeYoElvPmUyyNRrY92EHHDZUtcAFc3VacHevbzcamkxz69Jl1CUpb399O//0t6+5vqtHJpLN/A9azZANZ0Wj3H27Afp6l7Qpe/+zIBQlIrk4z5lrjuvujg+0PttP/QOuaohWCUs8dDcp1Wo2ZlwNQyNOwz8Wuj3QoMbmCFYJSwz4XF/1hF+ZVuV0uklMISl031bHj/aV7CWRLwdlX5Xui57YG+u9uLevnuYMhJV4a9rjovKHcjm+FoGSq1WGukQl0yrGTKIQmg02LWqeuSFACSATSJIsqEaZaHa3X+hQyVSKQIzwWZ/GY/L7S9/ZGum4qxeKZH51j6peLyr57Pt5N7Q45B07MZhn49jSjz8p91HtHI7s/3EmTposrNbexK/EWem3bUKNBrVZz7NgxrrzyStRqNZdccglLS//nCXVVVFFFFf8REEWRAwcOIAgCXV1dHD58GEmS0KkM9Br3cp3zPVzpuJs6Qwdb31lL17UeAGZejzL44xJByd1tZPu76zA4ZQWUqVfCjD1Xyq2aL7HTUbQvWz6bJDiaIhWSn+diCup3WZR9E0tZEoHSWJBeFjEU7T9y8TxqnRrBIm8bnysRlACstQKWWr1i07aaoASyIk1j0Zo3HRbLCEpoYeNtNXReK7dz8VSC+FxOsWAzOnVsvaeB5kvksWT2YDlByejVsu3ddXg3yWPe+QQlrQU231OrlFciKG16h4+2q51K+87Hhls89L+9DrQyIWj1D8gkLGudHtsFcpuRny5z/NsyUeT8/c01Gra9uw57y/r7r/Ttaqyu402hlQkq66H7Jjd9ByrbyfmPJzjytbl1CUoArg4TzvZ18i6gcZ+dze+sxXi+JYsoE5QMDi1b76/Ds7G8jkxEVAhKm97hU+JgBZGpjEJQ6n9nDZ3Xl8+Z+Y8nZGs3LfS/vY7um8rLZ16RCUoGh5au6z1KHIBMElohKNVsNVO72YKzo+QtlwqIxIpkOkeLEXtzue3dCuEIQK1RodbKi6JaC2hNKtIhCdQqCipIh3JEiu8r9bus6Kylflo4HiNwWm6H3q5l450+TA753kwuikz9Osz8EXm+rOdmNxvvKNnrnX4swMhTRWs8h5ZNd/poudjLdut+rrS8iz32O/HoG1ChIhgM8oUvfAGVSkVdXR3f+MY3qKKKKqr4XcHrr7/O9u3b0Wg0PPDAA4yPj6NCS425hyvbf4/9bR+m33cd9V1G+q4zYSgucYy9kiwjKHVcoqfj4uK6w6TE1NEMyaBsmyUIEp2XGxGKUzFLY1kWR0q5lUYAb5f8gp8M50mG8+QLBVCpyCZUaLQqNII8CaZSg1oLFNdLVhOUAByNOmz1cl2pcL6MoGT2aKjv1+PtlNsZHC8nKNVtNtB1pVWxaTufoNR0kYm+G+1oNAWysTxLZ8vLG3cY6blB7qDYgrSGoOTr1bPhLVbQQGKpsIagZGvQ0HejFcFaJLBUINFsvMFGXX8xL6pgx+ZoFHA2rT8plU3AwBOxEkHpvDraLzHSfrFx3f0FI0rfl0Gtkn/e7H/I67oV6wCMThUbbzRjqdGW11Gs5/SziXUJSgAmlwZbnbbcMu68c+y51kL7vrXnuEJQquvXs+Fa85o2rhCU7A0aeq+3yH2xCisEJVuDhk23WBWSHMjXc4Wg5N0gsPFGK/pVjsLpCIrtXPNOI91XW8uOH52VCUoA9ZuNtOwoz61WCEoaI9hqtZg9q44tlQhNejNodLLKE4Bgypet1yeCEslQXqnL161V7hExA4HxHKEZ+VgNm3XUbdShkvIUNGomj+WYPpGjoFGjEaD/RhPOJvkkpBQMPZ9k8awcdy3b9Wx6iwm3sYl9jfew1/1edjXfhlnwkMvl+OUvf8mOHTuwWq3cf//9xOPru/lU8f8Oqtqk/w/j/vvv51vf+hb5fGlQVaGijhb6VDsBqN/rpulSL8c+P0I2nicwFCEyJT9Zs/E8vp1Wara4GHtynuWRCJ6NdvQ2DdkgzLy4hLXVSLqosmJwCYpcYDaYLVPZsTTp8fTZ0Ohkm6qh75bbZfTd3YyjzcLJr8vqOecrAG15sB2NQc3Rz43KVlXFY65gw22NROeTzB8McvrRKTJL5YOOs8dCaDxONg4Lh5eZfaOyEk5kNEFiIcX862stKQBCk3FyKZHkcmVWcS4uUpBK/rlrkAUxI5Ku8KX5CmYPLuFoWX8hLHAySmR8qNyvdhVqdztlIs36HB+kTH5dq7eGPW5aL69l/Pl55g/+dl+NXfTRHvJiuS3aaoixN9F2zMokJ41Rq1iQrcbRfz6z7vkDTP/KT6tOvS7RKbOUQcrlycbWvw6FfKGidLfSxFiO2Gzl5CYbh8h0gsBAuGJ5dCLJwvEQ48/Jk2qefpuiagQw+sQcodGYYhO4+T1tjPx0ViEMHv/imHwPIFsetl5Zy+lHp+W+ypbbtW16Rwtao5ZDfyOrGy0NREvHEsC70YG5xqDY651bZcfibLegM2kVr1p7p1mxqgNIL2cVKqvgEthwYz3DP5bv7dRCivBojJmiPeOWB9sBsHxFju2sI8Ok8QTTM9Ok02k+8YlP8Bd/8RdYrVZeeuklOjsrk9iqqKKKKv6zYmxsjOuuu46xsXKrMSMWtnAJFo28CNB/fwtSVmLouzMsHA6h0WrIxeXxKBnK0XtnA6NPzpJLQmopjZiWn8G5JMy+GsTabCQ2nUJKiwgWLbYWE8mlCJPPlecu7dfWYHLrmXwuQC6JYnO1gu0f7CIdynHiXybX2LLZW01031rP6FPzhEYSvP65s2XkHpNPR+tVNQx9f4bAySi5pEh4tHy8dnSaCI8mGX1qjrpdbkUt6nwsHAvjaDGuIQ+tIL6wvtw0QC6bJ7+O1RlAJpYjn5FIrpN7xWdSRCbiTL+yPmHj5L9MoltnncjabCKbyF1QiSkbyyGmK38JB9B3VyuoWGN5/JuiYZ+blit8jDwxU9HKLjabRkqLaPTrfH9SbLp3i53AibVqCdMvLjH/+lIZ+ez8/YPDUZZG1n5xvoJ0VESwrZ9XSVmJgoisdFUByaUM2YRIooK6K8Dc0WV0Zs26cXbmx7N4em3yuepkkt8K4Q/g2BdH0dnkSbm6i5zo7Tomn5XJQcmFHIceHlH6adtDbWRCWYYemQVkYt70S3K+Y2k00P/OZgKnogohb/iHJfXJpku8uDoszL8RIhPMkYvkOP1oqdzgFNAY5H5aibmFI/I10QhaMtEcy8V7rfVaH+nljEIanHl1CbNPnnTSu3RsvqcFzwtWGgbkjx9Sm+d5bfAgYj7HK6+8QktLC6Io8gd/8Af89V//dcV+q6KKKqr4z4yHH36Y//7f/7vyBS2ABh2thn46TTsAcLQJNO+TVWty8QKLg/GSBZgIJqcOZ6uBucNxonNpMhERdXGNZnkkhcGhVVRYjA4tWoM8loppGH+hNK+ks6io32ZDb9Ey8cvwGhWWxr2yatPgj/ykAuIaW6/2a10Y7VoGH11k7o04c8fjsGrYrN9tJRuXCAwmOPuzZcRk+ZhqqdXKFmMizBwKE5xIV1QUSodFwlNpFk9X/uQ7FRLJxqSK5KKV8y5IBQri+mQeMVUgc4E5n7kjUZytRgoVLHYLhQLxBZET35wrI26thqPdIBNtRCqSitSCrDKQCFSet7O3Gui+3sPEy0GWBpO/OTFpFTa/o5ZCvsDAd/wVy7MxCSl7gXpFWQlJZ1JXJCsN/mB+3fMHWDgZQTBr1lWaSsdFxLSEmFo/Ry6IIGbXL0+HRJLr9CGiTNSLzlYuT4dFZl6LsFQkA1nrdQoBCWSyU3Ixq/yv4zoXs69FlbgbfWZZWZGwNgp0XONm9GcBmSAFDP6g9EFo534vJreWo1+T76n4vMjQj5cAFVCgdqsVW72eM4/Luf7yKpUoS40OvVVDPgvkC5hqdWWkv2RQRFtc4NYaoPliJ9Ovyve9mBZZHEqwdEaur+NaF1q9CsOTN4AZRGOUKc1xRqeHWVhY4IEHHuD3f//36ezs5PHHH6exsfyjyCqqqKKK/+yIRCK85z3v4amnniKdlgcpFWo8pnb6vNdgFOQ5r9btWijA1BtZQjMSOkOOXHFMy6ZkksLCmRxSFlKRvPwxnUoFEgSnJAw2SIckpBwYrGrMLg3ZuMTSWPmYV9enx16vIzCeg7yKsV+XD5w91xnJRPOMvpjEP5QtU6vR26DjEgvnjqSI+SWGfh4vI/dojFC/0cC5N9Ik/FmGn5NInWdzZvJoSC5JzA+myaXyFe3ZAIJjGaRMvtzqrEimAkiGJLTrzdWwYjOLbO9WYVpJyoCYySOtM1+TTcDyRJbl8cy6qkeTB1No1iEA6W1QyJUIKpXqyCTWzycAWvea0BpUDD1dzD8rkJDWYGWbfAFrrYbOS82MvZogOru2E1LRAtnkOnmXWgWSXGat1VRUqQpPS8RmY0jrTdupVARGsySD68/rZRJ5xHS+4jUC2bIuLxXWPUYuWSATlUjFKvdlZCaLwapWbN/Ox/TRFPZarXx8DRhtalKhUl0jz8bRmAAJrA06jA510f5NJgMNPJ1Q2t5xiZFcOs/0G3KeF5ySCE7JASaYoHe/hcWzWeaH5KCeHyzleN42HbXdOsJzItm4TLSaPVkqN9jUFIrHUZFHrVUTLl5TtVFNMponEZL/9nZoyKVRyv2jWUxLcqBqBOi+3MjsQCcug7yOmDaf5eiZl4nFl/nGN77Bo48+itPp5M///M958MEHK3dcFf/pUbV7+38MTz75JHfddRfJZPmoZMXBNi5DUAnU7XUhmLVMPb+Is9tC1y2NnH18RlFpKbN++lg3Ku151k9FWJr0bL63g/BYjKHvn1tT3rq/hpptToVwZO80l6kWefptWOuMTDzrx1wr0HSpb611WpGMtPFdLWhNGoVIcT72/mkvqXCW418YW1Nm8Alsf7CT+HyKk1+bWFNurhXYdF87C0eC61qz9d/fysyhJUJnKjNjnN0WpFy+IqFmBdZWI7HJ9Rm75lqBxMIFmEVAz4FGxl9YXNeurGaXg863NDB/NMj4U5UtSd4MBp9A08Vepp6bXZcI9GZ2by1X+8jEcuvaov0m2PunveSS4gUX7NrfWsfycLQsrs7HaivBihDA7Lpw3zde4bmgtdzm97Yx/vO5yscRZNJWeDReZt+2gpX4jM0mGfj65Jpy72YbnTc1snB4WVFaWo36vW4a93l4/XPDkKVczhT5PrM1mxl/ah7BJdB+dfl9ZvAJ5EWZWNh/fys6q5ajn1tr4YgAez/eR3IxrVgtrkbnzfX4+h2c/OZYRbu7FZLSia+MI1jUdLy1gbGnzpGNQ7hmjoQzxJkzZygUCmi1Wurr6+nr6+OZZ55Z25Yqqqiiiv9EOHDgAI899lgZKVyDjh52UKdpQWeCtv11jDw9Dznov78ZKZ1n6PulZ7Fid9Zuou+ORmYOLnPu5bXWT5vf3YLJrefQ31cmAW97qI2EP8PIY3OKIs1q+6uum+uYfH6eXBJa93sJnU2U2VutWMTpTLDlPR1MvRQgcHLtG3Drfi+1250Mfu9cGdFjBZvuacJSb+TI50YqElu6bq7D3mpad4y3NBppvtTD0PfW5pcrqLvIyfxr6+cZb2YzBmCqFUheYPx3dJqx1BkuaEe240OdaAwaXv/U8AWPdSHUbHeg1qnWPZ83s3vT2XU07HExeyhY0XLtN0H79bXUbnMy9INpwuvkVXq3jsaLPIw9fYEcUwd624Xt88wNehLrLGoB2NssSGK5peBquHrMePrsjPx4rfUsQPNVHmo2Ozj+r1MV++PN4nPLe1vR27S8/o8V8iFkomEmlGXk8fk1totQvM9eWiIXydF8pYfIVJLIeOlAK0RDdLDrg53Mvr6sqDatRs+BepwdFt744kTF89j10U5yKUkmIK589FjczNltpvP6WgYfmSa5kKPpMjepUJalgRg5KUds0zTTC5OKmpLb7cZqtfK9732PPXv2VDzvKqqooor/DDh58iS33XZbGSlchQqPtpnNpqvQarU42vTorRr8J5MYHGq6b3Az8VKI2Iw85msNIIqACBtv96I1azhxHmkIZIWWrXfXszyaZOKF8Jpyz0YTDdutnPieX7GKWk04sdRpsdYamD8SQ2uC+h12pn91HhlYK7ej5XI7BoeO4cfXUWW8v45MNMfQj9Z+UKc1wNb7GojOZjj71NqcRWuBjbfXsXgyxvyxypM8rVc6CI6liE5XHp+NXi0aDQpJpBIUS7t1oLOoyaXzFclJK2i82M7iyfhaG7MirPU6em6pYe5YlJmD69vQXcjyTWsBX68V/6noupZzb2b35umTLWfWs0X7TbDt3XXkUhKnvld5HhJkxaHVZJ5KMLhku8ALYT3bvRV4+kwsDa0/n9lxnYu5o9F1SVGb76klPJlaG9/I8bnlvnqiM5Xj0+TT0nurj/mjMeYOryXbOzsMNO6xc/pHfsR0uXUbyAQ9W5ORucMxtCYV9TvtTP+61A5tUb1BjBZovcKB2SeUkZxWY/uD9SQXs5z56dp21mw207THzpnHF4n7xTUWjx37ZZLS8FMh0ELLHhuzb0QR0xDVzxJxTHFm+DT5fB6NRkNDQwPXXXcdn//859Fqq9+IV1FFFf958Xd/93f8/d//fZkSr1nw0Ou9GrepGY0GfF1aFsdFpCy0bisqUr5RrnokFdcteq8xMTeYJTC6lq3RslOHvU7LyZ/GK5I9Oi41ko7lmT2eQaOXx/rVqkY1PTqWxnNISQlPp45EME9qFbFEoyladmmg+yozC0PpiqQXV5uWpu1GRl+IKfZXq9G404i7Xc+pn4Yr2qj5+vS42/WcfjpS8TwEC9RsNHHu9fXzCEezjvB0TiYnVYBghGwF5aTzj5ONsy45yWAHs0fH8tj6eUbnlSaMdg0Dj//2qjTWWg0aQUV4pnJjGzbrS3ZvFaDRgKtDR3AqW9m2bgUXID95OrQ0bTNy9sXEGiUt5TgCeDoE/KcvsEZbKMh9f4F2CFYUBaNK0NtArVaXKXathtGpxtWqY/ZY5bzc1aKldpOB0RfiFdvRuNOAu0XHqadjFfurbZ8Rk0fD4FOVc7+W3XrENMyezMjKTOd1V02vjtBkjmwKXG060nFJtmgswmCDdBTQQO9VRvwjWYJTa/u8rk+Hb4OOoefSFc+j9yo9Uq7A2RflxE+5fwGjHVp2GZk6nCKZ0OBq1CDmJKJ+kCSJqOkYU/4h/IvyO57L5aKtrY2vf/3rbNq0qeJ5V/GfE9Us+f8BZLNZrrzySl599dWy/2vRsZVLcahcZcpDTfu8qDQqpp5fJDQSLyMg2dpMbLy7lcUTIcaenOfENybLiAZ1e13U7XBx9J9GiZ/LsHw6ysSLq17uBLA3y2SkdCRLQSoo5JvziSRt19SiEdRMPOsnsZBdQ1Da8yc9pEM5jn9pjMFvn0eGEWDzvW3MvrrE8lCMI18aW0PcsTQIxGezpBezLA6EmX5h7aQTQGIhSz6bJ5eoPDgJLgFLvZHGPZ51SUrdb2ukUKAimQug545GXN02Bh+ZWpdQs+nedvK5PIc/XXnh0dKkx7XBhlpQr1GiWoH/cBiz18j4OotHgkugbruDqZcX11VaSi9mOfvYbOXC3xDnW/BVgrPbgtGtZ+5g5YW/6VcWCY+sP5oLFqjZ6sRab+TEaGXyWuMVHpov9jH1Kz+zFRZ7AXZ9qBuNoObQ31a+du1vraNuuwsxKVUkXVlbjZh9Rhov8nLm3FoSEoCUkYgvVc5c0otZFo6HFMWhlbhdQeBklMjMqBLfWx5sZ/bQkqKGNHdwWenDlfvXfzTI+DNyvK9WTmq/2oer24atzaQQ6tKrFAkkMY92lQqYs8dSivmsrEIWnpbjt/PmekwevUL8G31ijulfLynt3PFQB8lARiE0rSY2NV1Rg7PLirneQnYkjiNUj8NfTwMbOcavsTUamZmdYXp6GrVazaZNm/jEJz7Bu971rop9WEUVVVTx741f/vKXHDhwgGBw9cKFijra2KjZJf9ZJC9YWy24e600LGWZfWWZga+Xj+H997dgcgu89qmzRMaTawgJG9/ZSGwmxfRLy8y8uoTRVW5dYW83KQSIvFigUPxC6HxSg6PThKfPSi4lMvlcYI3yUuu1Pmq3Ojj59QmSizne+Fw58dvVZ6F2q4Oh784w+VyA2dfDa45h8ulILuYYf2YBz0bbuso7yaU0phqhIsEDoH6XE1uTGb27Mtmlfq+L1itrUGvUzL5aeXzvv6eddDTLiS+vJagDNF7qpuliL6PPzFdUDwJoutSL2Wtg5tDyukpPp380ja3BXLkQqN3hJBHIEJtef+HHfzS8btlvglwkx+TPK3/Jr0AHTXs9LLxRWRFp/PkFcglxXYISQPs1NdjbLEy/srQuGWrnQ52oNCoOP1yZgObcYKbn1ibmjwSZfK5yvtj9tnoK+QJvfHbtxwcAdTucWGqN68ZPLiEhpqV12zj8xAJ1O+xKP5g8ujKbwBNfnVRIfp6NVnz99jJS4cDXS+8lm++RCU2HHy4Rms4+UcrD67Y7cXdbObZKyWyF2Gf2CRTyBVLLcu5kbTYSm08p5zT9YoBsQlTOY8uDrcweWmZpQM6PDz88qrSz89paPJtsnPyXCZJLOUIjCQ6PlPqvdocTKZ1naSCGTqPDNdqBK9dBhCAzvkHyKonJyUn27t2Ly+Vi3759/PSnP63Yf1VUUUUV/xH44Ac/yL/8y7+QzZbeX81qB1st+7FoHQrZB6BxlxWNXo3/RJx0KM/JVWo3erts0eQfjDPzapThpwNlRANHu4G6LVZOPxZAjMP8iRiLg6vmgbRgcslkpExEJC+BwS6Tc85XxGnZ50Swapg/EkNMsobAseXeOjJRkTM/CTD10tpcpOM6F0tnEoQn0ww8Oldmy6ZSqRTiiZSB+aNRFteZrxLjICYlcpl1vnLXgrPNiNagWZek1PUWDyq1ihPfqDzXVL/LSv0OG8NPBhQy2GoUCgV6b/VRkAqc/E7luTmdVUNtvwW9Scv482vJQYVCgehslqlXQ/hPVT5XrQHcPRYWBxNlSlSr68jFYPb19dUffxNciNCzApNPi9GhK1PuWY3pX4dJLF2AXK6Fhl12EovZdclrzg4DHfvdTL8Srmi9B9B7uxeDXcuxr1W+dt5NJlovdYEKlgbXnpfersXebEBM55l6KVyxnbnkhdW3Zl+PEirazJ1PmEouipz4Tim+V+I+MiXHYmgsTWistO/GO33MHysRmuILIvEF+XffJgu+PjOh8aRC7FLub7WqqGIg/06+gKVeS3yu1JaZQxHFwrF2qxlLjZ7Rn8ux6D+ZYHk8obSz/+21JJdyDBcJTautIWt6LXj7TITPpYlMZbFJDdj8DTQ59nE2eZhCbYTZuVm+8pWv8JWvfIUtW7bwl3/5l9x8880V+7CKKqqo4t8bY2Nj3HvvvRw6dEj5IE/QmGh17KLNtVveqEheECxQ261FzBRYGs2VkZMAWnYK2Gq1DDyVIpuAU8+kyohFjVt1ZOJ5AqMSi8NpYn5NGSnC6IBUGFCpZDXHvKxCJJ2XbuitUNcrQD6Pf0hiabR8jHW162jcamD4+RiZKIw8Vz5umtwaPB0C06+nCI5miMxm1hA8Vkg/84Mp0hFpXcJMJiaRS66vLuRsMeBs1uMfSpONryVvW+s1tF1sYdqQZHm0cq7QebWVXCrP2V9UHv/tjVra9pmZPJQgfK7yumdNjxF7g5bwZK6ywo9KxfRrKYyudWSWAFu9hlwyTyq8vpJRbPHCSktvBkmiaDWnkl09KrnYaMDVrCEyL62JDYClMZFCIUV8Ka/kAefDt0GPr1sgdC67rnhD19VmdCuqUBX0XQx22LDfxsJQuky9azXa9plRq1UMPV35IO42AWezjoXBTMVzEcUCuVR+XaLU/Mk0mWgpPgVzyZYOYOLVFBoDIIHRo8HbITB9LKPcd1Ovl94HWncaMLvVDD5dyhH9p0sxWdurI5fWKUQiKBKUAEGQ864VJTWDDdIJlOMsjuaQpIL8cYJGTfsegaWJHFG/3K+nX8igEaCgUeNt11C/UcfwL5JkYpCKwJnn5RNUIVHTLZCXNET9WTQaDU5xJ07HTlKmOFPpX5JVhTly5Aj9/f14vV5uvvlmvvSlL6FZT0Ksiv80qCop/SfGo48+yn333UcqVXoaqVDRQjedqn7lf85uCz13NDP/+jKTz/nXkCC8m23U7XQrZIP++1uZ/nWgjEyzMgB33FiHr9/BsX8ZKyM3rGD3H25ApVGtsWtbwdb3dxCdTjD+zIJMXgpmy8gyq9vW985mIpMJZl9Zu/gkuAR2PNRBZDJRkbBjaRDov7+TyER8XULPlgfbWTgaxH8kXLFcsACCrAZzvirM+XD2WMiLhXUJSIJLoPP6Woa+U7ktIKsPiWmp4vmuYDW55LdB962NeDfZOfW9yXXb2n1rI2JGWpfoBG+upGRrM9F6ZQ1nfjK7br+9Waz8JjhfnasSNt3TwqlHptYlZdXudqK36dZV0QL52lyIeLU6Pt5MuWnbBzsYf3ahYrvluO4ksVBZ9cvgE9j23g7CozFO/2AtIUpwCfTd0cTQo+fIBrMV27I6hnZ+pIuplxYJHF87Idp9ayOejTZO/3C6Ijlvy4Pt6B2CQsw7X8Gp985GghNx/IfDNF3pxeLVl7V5tbLYnj/pJbWcKSMypQpxDvMiOrOGRKLUV5dddhkvvfTSmvZUUUUVVfzfRi6X421vexvPPPNMmS2EGRvbuByDpuQH1n9/CwanjsOflokL5gaBxKrcq/ttdUSmk/iPRqjdYcdSa1SsoaCkaASw6yOdJPzpMpLECjwbrXTdVMfsa0Gmf7l28cLTb6Vxn0exerM0Gtao06y0zeTR0X59LcM/OleRxLLhQD2OVjNHP3+2Yvmme5qw1BrLbLFWw9FpoukSj0zSKlSeoFitbLSiLrUeGi52XzBnar7SS9yfJji0DuFZBz1va+DMoxcmZlsajcRnfvuv5Hf/4QbElMjRz1cm3JhqdLReVcvkCwvrKj+9mZISQOt+H6hV65KVXD0Wem5rYubgEtO/XKvC8BtBByb3hdWn6ve6yIsFFg6vr3LVfXs9E8/MrUtic3SaEdN5ud9Vlb8aXIkPvUtHJpZbl0RWs92Ou8fK0HcrE8l772zA3mrmyJcqqxX13lGPrWX9uK/f68TiMyiqSiZ7OeFJZwK1QUcmmKN1vxezT8/gdyq3ZfcfdCGmJI5+YS353twgsOkdLcy8uszsq8GyZwTIZMX6HQ7FOq7v7kbmXg+WbBhXta11v5fabU5OfnOC5EKprePSEBOcQm/QK/L9TqeTL33pS9xxxx0V21xFFVVU8X8Thw8f5o477mBqqjTvoEFHt3EXzcaNyv8MTi0bb/MwfzzG3JEEepuaTDIPOTnfsNbrqOm3KmSD9qucLJ6OEZ8vkRNW1Fl8m0w07rYz9HigoirQpjt96Exqjn29MtGm6y0uEktZ5t6Io7OoKGTzZaoveruWTEJU1JMSS7mKxBCtATa/s47QVJrx58oJOyqVCq0FttxdT2hibfkKOq5zEZpIra/2owWdQU0unkdrYl1VIZCVlLQ61bqKPloDNO51MPnLcMXyQqGAp9eESk2Zndb5MLi0pKMiKqn8S/jfdGq6fruFxj1Ohp8KrCFcrdTRsNtGoQBzh9cnKr2ZkpLBpaVhl42ZQ1EykcrknE13+dCZNeuSg34TnK/OVQltVzuZeClUkZQFYG/RY3Lp1lXRAvD1m9clOQFl8fFmyk0bbnYz90a0YqxoDbD5nnri8xlGnqyg+lWM++B4qmIsaQ3QdrWb6V9HyETEim0x1ugUxae+273MHYvJ9oDnoW6bhYbdNs4+s0xk8rxytYqO/S4stTpOfMuvHHv1vdy4z0ZyKUtwJI2724ilTiiRDVXqMmWxrff6SC2LDD9ViidRTHMk8RxZfZRUKkWhUECn03Hbbbfx7W9/u6quVEUVVfyH4H/+z//Jpz71KcLhMFC0czO3s6nmLQgao7Jdy3YdVq+GUz+XH4wr6wIqSc69anu1pGMFwrN5rD41ZpeahTOl5/VqRZSeqw0kwxLTR3Kcz5QxOlVsuMrM7ECGwNm1Y4/Zo6Zuo57Rl+RcR2+FTKi8jpW2aQRo2m7k3NFUReJH7UY93i6BoacrqyM17jbiatYz+ES44v4Gu4a6fgMTv65MXlndFiipS1VUOVKrcbZoCU2tP966WnXk0vmK9mUAaFU0bNavq8ZTajekK323dwFVytXou8GMlCsw/FyF/E6tQqOHuk16AiMZMutMz72ZkhKAu12LRqdicbiYX5xHMjLYofc6G7MD6dI2b4YKRKXz17jOh61Bg0YDoWlp3etcv1mP/0xlgtFKW1Xqcju287ESHxoDsPbWUGDxaXC1yuS6SqjbLMf1mZ/FyohKq8s97QJDP09UbK+tQYPFpWFuQC4UTJBdfak1IBjUsqpSqwabV8vk4cox13edESkHwy+sbavGrKb3CgMLwzkCE1LZMwJkgpOnVcvMSfmeaOrXEjqXI7EsX4OCVqMoXLmaNDRt1jLy6wypVbEdiI1xOvA86LKkUilUKhX9/f18+tOf5qqrrqrY5ir+41HNiP8T4rrrruPZZ58t+58BE7u5BkElALLikbfXzsmvTRAaiZMMpIlMyU8hhaBUVFfy9Nox1xoVosX5llO7/qAbgMP/OMLYk/OMPVn+gt15Sz3h8ThLA1FmXl0il1p/8NTbdZhrDABr7LXMtTKxKDqVYPDbUxUJPZvf3cb4z2eJz2Y5+A+n1yWexGezRCbijD9feeJIsKgxefR4eu3rkpS2fqAHkNWRKhFtLE16NtzaxMDXRi9oAydmJWKTqXUJSgafQHoxe0ESjLvPyvJo7IIEpc3vaUOwanljnS/XAUYemyEyHb8gscfRaaEg5i9IUnozmGsNWOqMODtM+NchKZ396SyJpQvb27XfUIev376uytHKeXg32yra0QAKkWqln8/HanWkhsvcFRWXVq5Nz4HGikpWK/HRfkMdtducjD07h/9weE091lYjBoeAt89e8Rpkg1nCo1FmXq+86JpeLI/7je9qYeFokOXiAmw2mOX4l+RFUMEl0H9vB/HzbORWYsjZbUFn0qI1VmYLTz43AzQqsd33zmamfrGg3LerCUUNl7lpvrSG0Z/OKNdhNSHJvcGGwaErVS5QZn0YnU4QmZH7o+FiN852C6e+NcVl3AhJCLVMcWTqMAAvv/wyNpsNgBdeeIGdO3dWbH8VVVRRxf8pHD58mOuvv57l5dKzWY2advpp1ci5AjrovbWBwOkoSwMxgmfjmNyCsn1iNlum+uLstKAza/AfjbBwJAKU3pp82+y0X1vD6NPzLA3EOPyZcsspk09H414PI4/PszQYw95iYvrXlb+uFixa9BatQkQ6n6C0Qiw68s8jJJdynPpWub2aq8eMp9fOyGNzDP9wbl3lGoBzv1rG02ddt9yzwYbJo0fv0pBZXvsiXrvDSdv+GqZfDjD76nJFwkjPHQ2kwzkmn1tcl6BUu8vJwuHQBYk4KwpNFyIouXosBM/E1yco6WD373cze2j5gmSpE18fRzDr1i23NVuwt5jRO4Q3tae7EDwb5AW39UhKwTNxRn46q6grrocdH+ogsZiu3Dc5ZIKSDuxNpjILsxXMHSwtvqynhDXyI5lIY202kZekNdZvK2pOOpOKjfe0MvLj2TLiD5SUwjbf20I+m+fI5yurarq7rVhqDevG7tSLizTs8axLiDv9aCnuzQ0CzRd7Of2DUt+stmnru6MRW6OpjPCUSwJJ+XezT79GCW01Jp4vXTvPRiumGj3TL8j3dmI2y2v/UMrxt7y3Aymb59gXZQJiZLxkKWfy6bA1mkgFszJJqdj+lT6MTCUx+/QKQanv7kYWByIw0Ec7faTTSYZtrxOI+gmFQrzjHe/gvvvu48CBA3zzm99ct/1VVFFFFf+n8PGPf5zPfvazZapJDk0NW8zXYtDK80mONj2eLiOjz4ZJh0Sisxlifnn7TDQvE6KL6kq2RgP2JoOi4DL+QjmRduPtXtR6NQPf9bN4KsniqfLxrX67hUQwR2Qyw+wbFx5HDS6tsl6Ri5bnO1qTTFwJT6UZ+3mwonpS+7Uu5o5ESS+LHPn6HIiVrcvEOCwNJ/CfWGduRwvWennMWY+ktOkOHxqdhhPfnK9IUNLbtXTsdzLyZGBdmy+DW4taI6vhnE8qWSEF6awacjGJpdPrz2dZ6nXEF3MlwomqvA6A9v0uzB4dA99bXz1y7micVFhUCEqVyE2uTnmR9UIkpTeDYNHgbDMSmUqtS1Ia/2XwgioKIJOD6nfaOP6t+YokoxWCkq1Zv67K1cQv5HjWWdQVbfIiUxlFlcjTY2TpzNp4WCEo1e+yordplTpXsBIf3k0mWi5xMvFCsKJClM6ixuwTsLeZiM2tjW8xDYuDCcLjleNWTMPRb5T6ovUKB8Hxkg2hmEaxjNMaYOPtPtnm8OlSLp7y50CtwuDWordp0BorE97nB+Jo9Goi0xlQq2i51I5/IEE6mIN8oUwZydFuoONqF+O/CCqKUDOvluLH1W7EUqcv3dOafBnJMTieIh2WV9qc7XqcrQbGX4aLtDcBEKmd5o2JX5LLZXnkkUd46qmncLvdPPXUU2zcWCJkVlFFFVX838Ds7CzveMc7eOWVVxTVJIPGygbvldRaNyjbNfRriQfyRBbyRBYkcunSGJuNg4riGKRS4W6VrdbCs1lii/kyJR2zGzouNjJ1JEtkVuLML4rzVEVGgmBS4enUMTeQIxWGuaEswfHKY61aq8JgUWG0y8oq5xOUGncYcLXoGHw6hpSGyUPlY5fRpcHVrGX2eIaFwQwLg8l17dMWT6cRU4V1iSfWWi0Wnw7BoiIbq6COVKuh/XIbM0cSLI9mS/UUCgohqG6LAUlUsXg6sy5Byd6gITIrEZysMIdRrEdjBCnFBQlKZo+GxJK0lqC0Ku/se6sZ/+kMy+v0P8DwLxIIxlW56nmWaya7BneLjsisSCZ2AW+6N4GrWYdau4qktPo4+QLpCIy+nCS2jpXbCrouN5KK55k5kinVkS+PZTRgtKtJBdfmVavtATUmVYnQtirnnDsp97tgBY1mra2b3Od5NBpovcTEuSPJNcSolfjoulxWbj/z83UUs+q1RTs9Ksbm4lm5LZUISgDzJzPMD2YANYIJfL16uW9Wne/KOTds1uPu0HHmZ6ts5iTIJvKgVmOyqzHYK+ddAFNH0mi0crnJDWanlsCoHFtSIs/Az0pz1h0Xy3PqIy/LJ5WOohCUNAK4mrSIuQLxsISKPCpRIpuS1zlTUYnwnEohKDVt0RJZEIEOvNYOJCnLWPyXTPlPcfLkSa699lrsdjsf+9jH+LM/+7N121/FfwzWj6gq/l0xOjqKx+PBYDAoBCWdVuCOW+7kjg33c4nqBrr2N7Llfe0AuDqsWOqNdN5aD8DpH87QclUNnn55cX/Pn/ay94965bJHzhGZitN2hQ+Q2aK7/2gDDVd6AMhEc6hWPfR772qi545G+Q8L+DY7aLmqBgBJlGjY45EJUMDG+5rZ+8k+6va6lLqCZ2VChXerna0PdVCzS25Tw14fYkpk8nmZHLPlfe00XekFZJLOtt/rwFxnpHGfj86b6+l/e6vSps3vbaPtxhr2/HEPffc0s/WhDqZfWiC9mKX9hjr675e3tbYa2fz+Nhov9XHwU6eZ/vUiWx/qwNYmqx+07q9h83vaAJg7vISYEem4sQ6QSVRbH+rA2WMBoG1/HXq7gLle/nvju1rourVB7kOXvO2GWxvpu7OFhsvcbH1/h9Levrub6Tkg9+G293Sw9//rpWaHA5AJZlsfKm3be2cjG25rYucHugDY+lCH0p81uxzytgLk4iIaQUPf3c3Kvlsf6qDhMrfc35ttbH2og1CRpNJ1awMb39WibLvlwXZarvbx+t+fYfSZObY+1IG5Vr6QHTfW0X9vqb9Rg94ll9naTGx9qANLkzwB1n5DHd5eO6/+1RD+w2H672+l/Qa5Dy1NerY+1IG900xoJE79Dieb39umVNt/byudN8sxa/AJuDZYkKQCBp9A05VeJb4B+t7VTPetjdTsctB1cyO7/2gD3q12OZYudpf14Zb3tbH9/Z20X18LAsW4k/u7dreTrQ910HVrAy2X1bD5va303tVU1of1e+U+tLWasLeZZZUtYMNtjfS9s9TftiYT6UgW/+Ewnn65v4ViP3XeUk/LpT4O/sNpRp+YY8uD7fQW93V2W+Q+bBA4/YMZvBsd9D/Qyp4/6aXr1gY2v7uNtmvle8xab2TrQx24+ozYmk20XVfH5nev6sP7W2l/ax3ZYJbIVAydRYOz24Kzx0LLNT62PCj3YWgkTmwmidknT/Lu/ngPF32iR3lG+HZ6MPn0yjV2tFvouUuOF8Ei98tKfwtWHYV8XiEo7fhIF713F/uw+CyY+rU8kdhxSy37/rhPicueOxohX1DIYU2XerE2y8mXd6udrR/soCbYxjWqA7z7lvdzxeVXIIoisViMPXv20NPTw0MPPUQVVVRRxf9p/Nmf/Rlms5k9e/YoBKXuth7ee9sHuUpzB62aHjbd10TdRU7Igb3VTPv+GnR2HbOvLJNLifQckMe0hn0u9n18A+1vlZ/lw0/MotapMflk8krHW31s/5D8fF48FSEvFrA1ywso5gaB/vubsTTKz+uutzXg2WjD5JH3FSxaWi6T8yWTR8fuP+hk50fkulQqFfGFlKLitOFAPa3X+bC3mtDZdWhNGkJTcXJJqLvISf+9pTGt+211tF9Xi7PDjM4O/fc34+m2ArI6Tf/9zXTeWMvuP+ik620yqXjsaflZ339/M75t8hjRfoOP/vubGf35HK89PEzTXg/dt9Qrx+m/v0UmFh0JEfOncG2wojPJeWfb9TV0317a1tlpxd0j1+voNNP/QCt6t9wPrft9bH5vK+37a2m+wsPGdzbTeKk81libTfQ/0IqpVqD1uhq2v7+T/ne3KvX2vaOJ5mLOaaoV2PnRLjbc2oij00zjpW42rhrre+9spOUaHyaXDimTx9tvx9Epj1v1ewqyNEQAAQAASURBVF1suqeUW2040ED9bhex6SQ6k4r+B1pxFfPI2l1O+u9vYeFwiIN/cwZvn53OYs6JDvofaFXGZMEqT8asoOumOrpuriv14QOtnHt1iSP/PIpnk5X+B1rRFYW9Om6oo7v4PrA0EKX/Prm/QbZe63+gVbEMa72uBo1Bi5iSJ1A23dNCwz65D+1txT706Njxvk767mym967GUh++s4mmy+R3B0ujkT1/3MPWB+T8pPkKD313l3Krvrc30ny1j947Guk90Ez/A61Ym+UGN1zsZuO75P62NJkwuvW0vaUGCnl0dh399zfj6JS3rbvIiZiTOFe0ve2+rZ726+X3GZ1JjsOFk2Fe/9wotZvtbHmwRblvum+po/PGWpKLOc4+M0///c1sureZXR/txLfDRv/9zTK5B+i8rpbuW+po2O3B3mpm83uaqd0hx6Grz0L//c3oTDD5gp90JEvb1d5ijJrYdE/xGQHMHQ6RieXQ2XXU73Wy5xPd9N5d6kNfvw3BKh+08WI3jXvcyjOi+SoPfXc1KNsW8igfhvi2Wtj+4XblGeHusRGdTTLxM5lkf9HHurno4/J7hMmjo3Gfm5lX5IW3pitdOFrNOFvluOy5o56e61vZkriC613v4u0H7qazo5NUKsW3vvUtvF4v27ZtY37+t/+YoYoqqqiiEsLhMLt27cJoNPIP//APZLNZ9BoDt173dg5s/iAX2W+mcZOTDTfKcyG2BgFnu4GmS+Xn18SLIeq3WLG3yi+gW++rYee75fFv9vUYgZEE3o0l1ctN7/RRs1Uev5ORHCoNymeaTRfbaLnUrmzbuMdO8x7577xUwNdnpsiVovVyKzvfV4enWHcmLBGeSUO+gLVex4ab3Tg75Tb5NlrJxiVmX5Pfmzuvd1OzWW6Dyadlw21unG1GajZZqNtmpuNqt0JQ6rjORe1OC1vuq6Ntv4MNN7tZHEqQDovUbDbTeb3cL3q7lu6bXNRvtXD8W/PMHIqy4WY3lnr55LybTHS9VR7b596Ikk2KNFwk5xtak6yCY2uW5wHqdpix1OoxeuT2t1zuoPHiYr9o5W17bvLQ/VYvri4DG252K33WfImd5mIfbjpQw86HGnB1y7mto83Ahps9q/rbTu/baui/Q86TN9zswdNjpFAo8P+z995hch3Xmfev++bbt3OenpxngEEOBECCAcyZlEjJEiWRVKDEtdYKDuv1fo+9+wVr7d21LVmy5aRgrawsi6IyKZIKTAAIEDkMBjOYnHPo/P1xe7p7Zvr2QDYl2+t5nwcSe/p0Vd1TdavOrXrveV3VCi33BhB1U1JMUOzUHfLl62m+209os+lDo0Ki5d4AizlySHSnQf2tBdumO/yEtxic/OIwl340Tsu9AVSf2YjIdoPG2wq2gmTLv2il+kRa7vWjh0zbUIeD0CaDI3/Zz9i5Repv9lGx24yRJcNOy71+nBUSCyMp3DUqzXcX/FJ7o4fYvpy/VQi26WRSGVRDxN+srfBhzfVuqg64cVZINN8VYMs7I3jqzYHnbVjp7/pbvGx/NErFHmfOh/68v921pm10t0HdjX4a7/JRe4On4MN7/ATazfHrrVcJNDsQc3teFXuc1B3y5m091RoL4wnGLyxiREy/qB7TLxW7DKr2eXjts4P0/Xyahtt81N1s1qP6c7Z+kb4Xp3FEFBpu97HtsShVB9zU3+KjYpdZqWqYtkaliK9Bo/paN013Fq617pCXij1OUkswenYWUbfjrJQxIiKBTTrN9/jNw8rxFJNdi6hOs30dvxZi+6MR3LXm+PbVqzhycaHiFgl3GDTe5jUPLO02Wu724835W3LYyGayTA6Yh2dtbwpQe6gwR9gEG1demQIgvFVnzxMxwltN/8f2GtgFW578WHOtC1+DBilwVoi03OsjkKrmkPddPHLTk9x0/U1ks1l6enrYunUrra2t/MEf/AEb2MAGNvBG45vf/CaVlZVUV1fz05/+lGwGWmt38I57fovr699PxNlCzS4JX5V58O+vEqnaLiFrMDWQIbmYpXKLOce6I3Z2vslBRe5z50vmfKmYyxLBBoGWm8z5d34c0oksWm4alTWo3SOjeW1gs1GxVSG6Scmfv0iyDV+dWa4gQ/sdGu23m+uWXYC50bRJRkiliW5RCLXKaF47ggCKw8ZkX4L0kpkRpnZ/IRtUZLNCzW4VX62MIEPtNSrOsHmtzohA7QEHwU0Km+5zE+5Q8NcrDJ00r6t2vwN3VS62apGpPeBgomuJk/84iTsmEdtelHVqnwNPjcTsUJqp3gTOiMxyUqpgi0Jsp2YSXOx2Qi0q/noz7lLdNmr3a3k/+Bsl6g5q1B1wEGyVqdyl4W9c3heE2v0aqtuUtdtyn4v6g4U2xLYrBJtNW0GD1tscNB1y4AwLeKoFavbmbG02KrYoBFskBA2Sixl8dRKOgOkXd0yg9ppCudEOMwvP4lQWBKjdp+EMFflwr8rsSJrXvzGHw2cn0l54mbN2r4orKuTbLyo2lpW3Qq0SFR0rbUcvJjj/zAK6307tXhUh93WwSSK2zVyvZ0fSVO9S8FabBWke87fysr8bRRTDTmrRJBRV7VLw1Qpgt6G4zPbLBjRep9F8k4PKXYWXzCp3KASW/e2ALQ8YtN9mdo6vRqR6z1p/N15nULtPo3a/hu432+SpEqjJ+VB22nFFRSq2mO0XBLMfHUHT1hUTyGSyDJ1Zyvs7vOzDnO3MUIrT35lD9wk0HNSQc/dVuF0m2qGQXjSJSLX7Nar3qrTfZeTvhWUfhppkKjZJeGskfFUSdfsVPLGcD702098KjF6MszCRIthk+kX326nepeCrESCTYexykqXZDLIOrojA1vs0ancXXtr0Vkn5Z6hIs0zVDgXFQ86HAtXbV77gmYqb/eTwQdtNMlrO1hUSmBpKM3jOJE9tvkOn4x7Tp4IMkSaJ0W7zecATsxGqF3EGcvHqZoGKVo1m923c3vZR3nL/Y7Q0tzIxMcH/9X/9X/j9fm688UYmJkpnU93Arx4bJKV/YfyP//E/kCSJpqYmxsfHURSF9rZ2DnA7D7a8ndbNLehBc1KIXRPIZyk6/ZUeUksZjIh5cyouAT2g4IiZ36eW0itYsY6wiqPC/E6JGoiaQHSr+YCemEoiyIWhYFTqeFucGDEZEpBNw8wV82HLGdXRfHJ+8VTdMtiy2HKvQWk+GWeFlrPV0PwKDbdVUn9XNF//cqYW3a/grNBoe0sVjpiK6pK5+FQP577ah1GhoeWuFUAPKBgBjcR8ikwqg+aTUX3m986Yhp4jYmx6Sw1GSMOo0CABqkdG88l5H7rqdYyo2b6+58cQFRFnzAx6ZFfONkfcyCSyZJJZJi/M5X1oRM16ZM281vGLM3R9fwBXzi95f0dU9JzteOcM2Gz5ep2RVbZRjeRSmu4fDxd8GDHbZIS1nL9lzn65l+RiKj8GADSvjCtq2vo3udGDCr7m3G8r1BW2ekDBkWuTHlLMcl1yzof6Cn8DCIq5UOlB01bzq/lytUBhAddDKs6YeW2qR1nh7/BOb36MAmhh1ewbQHaISJrI0NEJlkYSOCs0dH+hXCOs4ahQGT48xfiFaQTZjpHrZ1dMW+FD2SGRTWfpe2UCWc75MOcXZ8z098Xv9NP/8hiyQ8r7Ydnfrlz7x87MQhZTUBVwrPKh5pNZGjOZxpGdXjNjhEvI+SU3DnOMZj2o4mtwEjvoz/tQci77W0MPqiTmk0xdmkULKDgrzfbq/pytpnD04+dJTCfRAgpND8QwqhTT3zkfDr82heIy/d36QBUVu/1oRZk99HDuXpAhk0wjyHaTtCSDq6IwDmcuL5BcSJNNm4HBpnc2oAcUnBVmmxRNzG+eyj4ZxSXhyR12LfvFCJq2Ui5z0+gp80DRXe/AUVEYAza7jclOc9PW1+JC9ytU32JuVvqrvOzbtZ8DS3cRpYampia6urr49Kc/jc1mY9u2bRsBxAY2sIF/FpLJJDt37sRms/H//r//L4uLi9TW1tLi3MrNwlu455b78MfMJ77aW4K4KnU8OaJz78tj2AU7ijP38F6r46o1D01Gjptzk5I77FAMCUdQRXaZn/2tuYxzuYwn2XTWjKEAxS1jRDUa74yYbZxJkVxK57OiGFEVZ4WZKUZySQiynWzuxR5zrS/Msc6oRnSbh5YHY0gaqC6ZuVwWG2dERQ8pGJUqtbcEcVZoJOfTvPapi4DZXj1srsNGRMURVJm+skB8JoURUTFycRwSOIIqjrBC5XV+Itt8OMIqkmQzs9FUqBixQpuMCp3AJnPnavrSPI6ggpQ7THBWaPk4BiCTzDI7YL7+o/llHEEln6XIGdOQHRI9L4xw5fkxHJHCeqh6JRxBBdUjM3hkgnQ8heoqPPw6IlrB1iMjyname+aZ6pzHWaHhiBTWekdUw1WpsTCc5MJTA6guKb+2ro6tfE0uQps9plucIo6gkicHOyMqerBga0S1fCwsSTbTNleWINnzvgUwYhpGRcEvjqCSj6f0sIYjqIAk5WwLfvC2OHBW6XibcgeiAdX0d+6tN1dMI5NI05nLmqqHCv2qBRTT1iXR88Iwi5NxHEUxnCOsFeI9rwQ2mL4yl29v8Th0RDScUZWuHwxy5eejOIIKeu4A1BXT8tc9eX6e5HwKe+5NK8Wwr/RhVEVWRUaOTef8beCsym1WquaYNYIKJHP+DalsentNrq+0fMxp+lAFMsRnkuh+Nfe52N8aF745wNFPX0b3qRjVGo13RzCCCo6gil2VWBhKkk2ZfdtwZ5i2N1ea43A5vg6YtopTIJsxH8Ucy7GtZD5LuHJZLwaPTJJJZpFdEkalSmy3D0e00F67aCOTNOOy6B4/qktCj+buhQot7yMTWdIJk3imV2kYETV/4Kz7VVJLGS5+2+xzb4OTip3mYaSkQWNjA9dEDrGfe2ioa0QURY4fP05FRQVut5s//uM/ZgMb2MAG/jl4+umn8fv9eL1ejhw5giiKbGrr4HrXO7i9/jFaOxpR3WZcUHudC3fu5agrP5tlcTKFsTyPiuCqlDHCImQzxOfTK3Y0nSEZZ8S0FQ1w+CRC7eZ6GJ9KIcp2RMkONjvOmEJokwMtaNabimeY6jUPB1S3iCMsI+jmd6pHwSbY8m9gO8IyRo5ArXgljKhCwy1BKve7MSIyNruNpSlz09yIyDjCClUH3DgCIg6/Qtezo/S8MGXGd5HCs7sRVjCCMvHpJOl4BkdYQXWZbXBEFIzctbXcF8BTq2NEFUiZc7lpm1sjojLeWnONmLi4hKjYcUbNekRZxBFW0HKkk0zS3Duc7Uvkf7vcJlE2yx3vnOfyc5NoAfNawMxeZERlnFHz8/DJWbCRzzKq+yWMiIKYuzxnRCYxn6L35enctcroQfNLzbNsK9L782mWplJr/OLI2bqqVLx1Gq5amWw2izOq5Ps876fctSouESOioCzHnBHF9FkONjtIuQw8km43fZgbh0ZEwShuQ0TOfxY101bxmv6O7XLiqVFX2DpzfhIUEcUtMXxyjqWpFHqw4MPlNjmjMrMDSQaPzyAqdvTc2NKX/Z0jeqlukVQiy+gZM052hJW8D3Wv2a+jZ+fo+dkkoizk/QBghGQcQbPckdPzpFMZRCXnl6iy0jYis5jLduVv1nFVqoi5kNQRzvkll2zBXa0QancS3uJAcZptWPa3ETbHbHw6xdxQPH8vgEmWc4QVFF3ixP8eZH44iRGRqdjtRAuKK8bWyNlFNK+E6hFpujNI9T43RijX3kwWI6Lkx0tyKY2o2tG9EojLPjS/i0+nWBhPkMm1velOH67KXHxqsyPl9j/F3P84owr++kIsboRls1xAUGyQhdkBM0ODv1HDVVk8tuyMXTT30I2ojKdaoWKH+SzkrXCyc/M1XKu8jTZtH83NzVy+fJn/+l//K3a7nRtuuCEvwbSBDWxgA/8UpNNpnnzySVRV5cEHH6S/v5+a6hp21N3FrU0f5Yb9t+PPzbH+GoFwg4grbO4XdL+ewG6zIeamNCNox1clgt3OzHCaTBrk3NopSuAMCfkMO8FGCVdYyJMi0ilQdDtZuw27ZsNbKVC13VwvkwtZ4nOZfGYZIyhgBAQQTAKCotnJpDMggO4RMEIipMxNMGdQoGKzQuP1DvN7v5jPhqM6BZxhEdkwiUVGUCAVz3Lme3OkE2mcEQktt9arLgFnRGJpIsXSTBojIGGECntIzoiI5hFxV4lU7zHwVknmtaXBGZIwIkXEjFoZb73ptOm+BM6IlF9XHAHJXKdy5yrJpSyzuYzHkmbHGZaQ1JytT0Rzilx5dZHRcwmcIQFHjmwtaaJZriYwPZAkPptBcxXUM5whEYc/Zyubsc14d5zZ4TS6R8QZFvNtMEICzoBIehF6XllEdQooztzZrkfIE7kAQs0S4TbZlHWTbDjDAqrLlvOh3bTNmRsBEWewqE1hIZ91R5DtuRcGbHlbo8jWCApoXvOzapj1LI8lIyBghAQQ7GgeG6FmGVeOnC87zPYKuTGr+wTSySxDZxL58aLnfCjrph8kzZQ2mx1O4goVhKacIRGHz2yDoNix2WG63+wrzZfzi2DPtVfEERDpeXWRvmPzOMMiipHzoTfnb2BxKsP8WAq7kDunlzFtnWY5mltAMQSmetM5f8u4okVtCouobgHSptygt0am8TrDPGsOCit86AyJYIelmbQZ/4fFQt8ETR8On4pz+rtzOHwiul8g0i6jOs1+FGVTSi21ZPZdsFGk+QYdV4WA5s35ULPhDAkIau56bLb8cwWCSS5a9uHwxSTJpSyybGZwqtym4ArZzXFosyGItnxcFmwwx47mymVh8thWjCWyWVJJ8/9lzY43JqA6ciQrp53EYpb+nNxkqF6kqkPKt6m6ppId1fdyY8OHaKnbhqZpPP/88/j9fmpra/mHf/gHNvAvC1v2aoW/N/CG4s1vfjNf//rXV/wtQJRttgP5z7JPpvWBGOe+fJnEnJmRZLpvgcGX1h7Su+p0Nr+tlokLM5z7at+a7/3tTupujXDkUxchAd5Ww1LCzJRla6D3p6WlNmIH/FRfH+bcN65YluGq0/OyUy0PVnL+6b6S0m3uRgeb3lJj2W4wMwBNdM7SW0bWYxnh3R4WxxKWsmlND8QItLk5/Q/dlja7P9JMKp7m2CcvWdZTc3OIwZfHSJRItZxHTm7vjUDjfRWMnJgqKwcX3eej+roQx/6mq6R8HZiZaxpuj9L5nYGyciD7f6+dmSvzeSm1UtjxwUYyqSzH/8LaT8tZfYqlw9ZAhqa7Ygy+OlqQKvzn4Cr8Xn9HhK5nhyztInu81B2K0Pm9AUaPlxLtNa9f0kRe+aPSUnVgZp26Klk9GXY80cil7w2WluqTYd9vtrM4Eef4X5b2d+ygn6WxBONnZjGqFOZ6rdN97v5IM+lkhtc+0Wn5fXwqyYm/u1zye2etRnxskcScmYUhk8xw5ku9aw3Xabfsk2m9P8a5r/SQmMvQ+uZKZgcXV8w7E9kRjvMzsEMmk0FVVVRV5fDhwzQ2Nlpe4wY2sIENFOPSpUvs37+fkZGC9KqIzA5uwC35yOYOnir2eVHcEpe/P4Lik2i4JcTFb/ebkk6rsPU9tWhemZf/+ELJOlveXEE2leXCPw4iuSUkBRZGSktObX5HFZJDzEs7rcb295sZa6y+RzIPhBaGkvjaDURFyBM7SrVb9Ui88mcXS8pjuet1am8K8frfdJeuaxWqb/CXlV7b89FmliYTnPi70uUFt7qpvzXCxW/3M2ERV0o6RHYF6P1Jadm7giGWcnS/CIxKjUCbk+4fWUv1gpnhKB1Pc+aLJdbAHLa+p45sNsuJv+22tGl/exWuKgcvf8w6pghudVN3c4Tz3+hl2iIe1MMS7W+tpfvZIcZOzVqW5a7T8TQY9DxT/vquGuv4XXJLhDa56H/RWjZv2xP12Gw2jv3lJfPkcBXc9Tptb65k4PAEV54rPQ7ctTqCbmfiTOlxVIyqg36cFRpnvlT6+aP5gQr8zQavf+5yXjZt5UVB/c0hur5n+tCoVNfILS7D127QfFcFnd83JR5XI7bfR+waP8f+tttSls5db8rvSW6JjrdVcel7Q0x3rx0HLQ9W4GsyOPG5bhZGkvm5bRmRXR70oEzX90aQ3BJNd4W5+J3hfL02u40TyRcZ5gp2u9kP2WyWJ598kj//8z8v2bYNbGADGyiF//v//r/5f/6f/ycv6WbDRqXSRrvz2jzhR9Sg5loPPT+bIrUIlXsNlqZSjJ1fO5+qHpHNDwUYu7BA9/NTa743wiI1B32cf3qE1CIYUZG5wWVpsaJ1JZtB1KDjLRH6Ds8wenrtXOqpV6m/0culZybyMlp55NquBcW8RFpsn4v+wzMl5bxUn8jmh8OMnZsv2W4wsyjNDccZPm6h01AEd41COp5mbqi0LEd0u0HFbhfnnx5hbqC0zaaHQmSzWc58zTp+C27WmexeILVqSV2xhZyT23sjULHbxUzvguV1gZmhqeY6L+efGs0TwVbDiIg03xni8vMF2a5S2PX+SqavLNL5PeuXoFrvD4INzn3T2k+Nd/gQJBvnn7KOccCUWZvsXrSU1fuFcBV+D29zMH5unpSFC9w1Cg23+Lj83CSTl0obtd4XQPVJHP+M9Z5WdLvB4LH14y6AtjcF6X1psvS4FGHHo1EWxlOW/vY1qaQTWaZ74qg+kaWZlOmHVbIzAJveHIQsnP566bI2vSlIYiHDxe+Nr5kfwJxvUvEUqUUz45XdbuPyKrlDAASBHY+GWJxIcfapiRVyMmBm06o+4Kb3lWmScxDbbRCfTzN2JqehYrcxl5ritZnvE2cuv+dVWVnJc889R2Vl5do6N7CBDWygBKanp3nwwQd57rnnyGaz2Gw2nHKYLbF7cci+vNSaO2JHddkYvpBGkKGiXWLgTHKtjJTdTt0uEVdI4PUfxLHF10psRdtF7KKN/hNJBMHM4LNMPMoWzc22VJrK7Qq6x86F50pL1DZcqyLINi78OPd9sRRu0lw3ZMMsX/MJyBpM969tE5jZZ5xhkZPfnjOl3VIr1x3VLRDboXHpJ3OW0m/F8DdIjHdaHza13eMmMZfh0nOl92AcYZH6aw26X5xjdsTiKF4AX43ERJe1xNuy3dW02fL3OcgOcFdKjHYmy5ZXs0cFG/Qctj5nqrtGxS7ZuPTT0n0LpoxYsFHi+DeLYt1VtASHX6B2r0L3q3Hmx0o0ymZDkKH5Bp2+15eYHbJuuOIEV0Ri9GJyxe/zSJeX610DAcha/16QwR0VmbCQ8AOov1ZDVG1ceKb0fp7igpZDTgbPxBk9X3q8KS6QNWGFvOJqPy7DUy3gishcebVEvwh2wm0SkTaF88/OrZUEBBAg1CQxcs70oeKE+PIQF1YSiDQPNF6n03Mkzszg2n5xRQWqtilcfH6BxCJkxZW/BzMr1uKUWXT9Ppn+UwkWptY2K9IqE2kROPt8gvgckFnZF66wKUE4dCGNIJgylv1nUoU5ThToGT9C5+hPyeQOhx0OB//tv/03PvShD5VwxAZ+2RDXN9nAG4VEIsGOHTs4ffp0/m82bLSxiwpbzRp7Z8R8azq6N0TPsyNrSDw1N4cIb/Xy6v88z8zlBc5+3Zo0ZBNsSJpIsN3N6PHpNXb1d0YJbfHw2p+fZX4owcsfO7umDNmwk5jLMPr6JOEdXpKzpSfL2EE/NdeFufLzEfqeH+P8N9Zu/kf3+Rh8aYLpznlOfdGaMIQMqlfGW2dYkpSaH6jEXadz+H9dYPjwlGU5JODiN/vp+dFgWXLRwkic5Lz1IicbULE3gLfRaUkYAdj7oVbi00mOf9rapv2tVThrHLzyJ+esiTUyBDd70IMKJ/7G4nASGHxpoiSBrRjZdJbUYpqlCevNmqtFaj5NKlE+KipLTspB9cgE291Iir000SWH9keqccZ0XvnvZQ7wtrlpvDNGz3PDDLxUepPIVacT2eFD9cqc+eKVkjYTnfNU7ksxO2AdXL32ic58RjErYtQyQan+riiBVhfHP31+jf4sgLfeQHFKuKr00iSlBJz8XCdzo2Yl0X0+Bo9OrKhzWU4NYPPb60jHMxz+k9IH5/MDi/l0issBfjEO/6/C77a+rx7ZIa4oa7a74BfFKy3v45Rs97G/6cyzotvfXo3ikTn2SZMclZhIrCBCeRoM9Ii6gqTks4W4iQdJZBIs7hzk6LGjLC0t0d7eTkNDA3/4h3/I/fffb9GADWxgA//e8Z3vfIeHHnqIxcXCvOUmwHauR8ploik+xA9v9SAqApe/P0J8IsmZL/evKG/re2uZH1yi8+khLv5jP8kyxAzdr5DOZUJJTifXcDh2/YcGFsbjnPlSH6f+3mL9y5E/5vqX1pANVpT1RAM2wcbhP+ssTdCQINDqZOzkLGe+2I2kS5akElelhuqRLEkXkg5b39PA4NEp+n82ak1QyrX92F9cJLlg3fb5oQUSs0lmr1gfzDXeU4mnzmD8/DQLw6UbHtvvp+raIGe/doXpLmtS956PNjN5cZaLT1kfuFTt9+OpN+j/+WjZtp/8TLfld8tIzCR5I94JWRxPkJwvfyK1MJzkyJ9dXLes6htCOIJqWZKS5JbY/p46xs7M0PW9IUu7Le+uRTaksvW2P1SJ5lPoPzxuOe7mBxfzWRvNNEQriUrTXQsc/fMLBcJgCWJUnrQjwa73NzB6ZoaeZ0uPT3eNjuqVS34HcOGbAxiVqklQkiDY5srL3oJZ9zJBqfp6P7F9fi5+pzQJKT6dYHEywdg58ztJZwXxsf/FCfpfNGN4yS2x4z219L08sSIeWh7TnhoNyWGmBC+F898YwNPoMAmRkjk3DLwyweDhKbKZLENHpvK20R1u3FU6ilPIk5SymSxbpP3AfpK1M1yYO87A4ACf/OQn+frXv05zczPPPPNMfv7cwAY2sIFipFIp3v72t/O1r32NTG7DWLTJbHEcIqjmZEGL5i/JEPHWqiyM6QweW6DvlZUxTKBVI7rd4ORXTVLKuafHmBsovXGSyYLiFHBGVSa7lpgbWrmWhDbrxHY5OfnVQVJzcOyza9c2UTXfHp66ssTiRIr43Kr9jlzbPfUqjbf66X15iuHj8/S/tPYFMG+DymTPEksTKU5/fbgsOcURkrGLNkuSUsUuA3+Lg5NfHl5Lmso3HkjB4LE5Rs/OWZJTAOZG4vmsnFZlVe3z4G9y5AkjpWKZrW+LEp9Jce4frUk8lQfcBFscnPzSACnr8IzodifOqMz5p6wJ6VOXl5i6vP5LYPG5FPHZfz4ZKD6bKsQmFihHclqGqELFTheKS+Tys5OWdtXXufE16mVJQUaFSPNdIa68OMVYCYIdmASbqms8OIIKXT8q3b754Tjx6XReOq8Uzn1rLC/ZYUWMWiYohTocRLY6OfO1oZJjTwuKaF4RR0gpTVJKwemvjpKO56Q76lWmriytqHPiYqHglruDZNIZTv7vYfO+XEVUmh6IY1/+W4m2F5OXGm7xoPslTn5pND9nLE1nzCzrmNm+imWZVyCd5sTXRlj+tuqAEyMkc/ZbJmEptQRdzxZO/vzNGumlbIGklMliiB4O+t5KKpViru4cR0+8SmdnJ3V1dTQ1NfHnf/7n3HTTTaXr38AGNvDvHqdOneKhhx7i3DnzvMSGnZi7g7bQbQjLRIJ0YdEP1ImohklSSieg93jRQ7XdTv0ekfhclv4zaa6cSGGzp0oSlAA0tx1bbq5NpyG1YFuR5bL5WpnEYpaeV9L0HSsdvwiC+dvZ0RSCaF9LqMkRlJoO6ciandNPz7E4kWbNiY1oZl6ZHUrT/eoSskpJghKA6raje0U0l8Di5NprEwRovNXJ2MU44xfj1gSlHGHowvemSVstpzYbS7NpFqczLEynIQPY176UFd2kEG5VmB9LEp8p/LYYrphA7R6dSz9bYH7UOpBrv8tgqi/FwAlrYpG/XiHcIjNxJUm61PFXrl97jliXsYz4QsZ6nSyH/P5Pbt90MU18Plt2/yydgLM/XCj5+2KEWxQ8lRKjXRYkLMEOArTfojN5JcngSevrrL1GQ/PaOfuDhZW/hzxZqWqXhisiMt03W3y7rcDcWBpJtfZTfAZOf2e2QKYpQUiLz0B8xvxj880OpvqTeRJRHjl/GCEpn6FsjQ/SGYbPJpnqS+aJR86IsJL4lSZftqdSoHaPxuVXFk1yYDpdICrZbKSTsDCRYX7c/L0gs4L4ODOY5vTgQv671psVhi6kGOsuqEEtTgOYhCfVaQcLVw2dSzA9IpgEJaDlBoXRrhQTfVnIZJgZhpnhHCkzKuCrEhjrTrGw3J5Umhr/Lmr8u0jLw1yceIGeK5f48Ic/zMc+9jFuvPFGvvCFLxTmzw380rFBUvoVYGJigubmZsbHCxvNAiK7uRnDZqywbX+kGmeFzit/dI7xM7McGepckxVnmSyUWkyD3YYRk5nrT6whHhWTOsZOzpTOnJMjV0x3z+FrNrDrMsytXXibH6jE3+bixN91Mj+UKJmBRfbJJCYS9P9kHHelg74XS28uOGs16m6K4GtwcvoLPSUJSt5mA0GxM3Zyhlf+tAyBB0gn0zmJLkrayYadHb/ewsyVec588YolQWk5+8zpL1hnDwKT0HHxqT5mLltnIgKYG1hkfrg8GWh+LI7skctn/knA0b8onfGmGMEtqw5PSsByHPwTYJVlZzVkn4zssFlm9lkaSZQnquUw279oSr6UyZQ0emaaygNB5oasyUUzlxe49MMBa0IbJnlm+bBNDcksTSVK1pmYM8dNxyP1jJ6epvOpgdIFZswAqxRBCWDy3Bwv/Y+z+Trqbg1z+YfDK2yWs0zJhp3amyKEt3gtCXC9L47mJUKW78tiFJPBNj9WPiNUfDKx8mB8lf+PfrwwNtvfVo2zSl9BulsaKRgLgn3FmePyXLaMl//7OWTDNGh/axXOakf+/pdtMvJrNdxEDcf5OUrIzvnz53nggQcQBIEnnniCT37ykyWvYQMb2MC/P3zsYx/jv/yX/0K66OkwRiPt0q4VdpIO297XyPi5WS59d5hTn7+8JmtSMaHALtiw56S5luXY8nZuie3vrsmXdezTJdbJImJFfDbJ0rR1ALDnI40sTiQ5+dmevFTTmuJybet7eZxM2vpBfss7atEDMmPnZkkuQHJhLVOk6qCf3p+Mm/9esiaTJJNAOrvmbZViNN4dxd/q4vhnuoiPly5I0m0giSwMJzn2l+VJzWe/3Edgs9OSoAQwN7jIwvhSWYKSpMPiRIKZPus4AeDsV/owKrWyBCVHTCExl7HMfFNc1huBub5FM8vQVcDXalhmpQK48FQ/mcXyh3fJ6SRLUwkWJ8pvSk11L+TlaKxw5qt9pnxJGVcVk8b0iMxCTh66OHBYvg/bHo7hrNR49ROdlmVm0wUJtFI49fe9eXk9X7tBYia1hpS3/Ln9oUrcVTozfYvEJ9ZWeOXFcVSvnCcoSW5pxbiY70/kM5M5YjIdj9QyeGSyJIFKUiC5kGa6J3dQvYqMNXpiphDvS7Dng41Mds6v8N9U5zw2uw1HUMZms5GYX37z1Jb3YTaT5cpzYwy+Np1v656PmGV1Pm0e3EvdLjZxkDqmuRQ6zsLCPD/5yU+QZZnm5maef/55otGopY83sIEN/PvB0tIS1113HUeOHMn/TbO72Om6E4foWmFbfa0TX73G8c+PsDia4vgXhkitWpaXyULJpTQ2uyl1tTSeWkNQqr7Wja9B4/j/HmJhJMVrn8k9Qxc/dOYICrNDSyTmdERRJFWCbVGxyyC6zcXpb46wNJ7i7OpsLpksog6pBZjqWmL07DzDp0qTiiTDTsMtfiYvL3LpBxMlCUpaUETWBaZ74pz4h6GymXHSqWxemr0kRNj2jigzvXG6npmwJCipPpGliRQ9L5TOtplHCi58Z4SlqVTZg6LpnkUSZV7wA1iaTLI4kSxLUAJ4/fP96+5Qu6oVZq6Uj0vmhlKc/sobkymyHKGoGKIOomaO0VJILbEuUQ1gbjiB5pPy47+kzUCKhdEES+PWzxBLUyk6fzjOVJlMUqklOP3VkXz7yZSuM7VkjufND4cZPb9A389Lj51sNks2ky11FgzA4miK1z47mB/n4W2ONaS8+HTuSxEabvYxP5K0JMD1vjSZl04x/bWSqNT3YmHfs+UOP5pP4vjnSpPul6aTCMWHq8ukptw8cu6piXyGpcprXARadE59pTBvpaYLB3WCZC9Iuththb7M7amd+N+jeeJX5V7DLOtro6SWQBRFPL2bOeTdTOf8EeL+Ec6dO8ehQ4dQVZX/9J/+E7//+79f8ho2sIEN/PvDD37wA971rncxPGzGPoJNpiFwgDr/3pWGArTfqDDZn2bwbIruo4mVWZPsdgQJ0rlnTpvdhs1uzlnphJkFKV+UAC03q0z2phg8k6LrpYSZMamYKFpEiIjPZYiXSRTQdptOYj7DpZ/HGbmQZg2TIpnKkx2GzsTXcnuKSDy1uzVcFSKnnzZJHol51hCUfPUyE10Jpq4kmeqfsswglE5DNlWeLBNsVQi3a1z44VTp8x6bLS9fl16EzmetM10DDJ6IMzeSMglKFgTp+GyaudFUWYISgkkWWbDIOJmv72SciZ74WoJSUV/Khjku0uvwlAZO/DOVUXLXm1jI0vlC+b26ZTj8dubHMyt+X0xW6j8Rp/9EvNDHpXyahoXJdNkxCjAznCS5ZBGk5shKva8songES4ISwMi5gp9KJQ2AArGnYouCt0bi3A/m1mY5AxDMPZ1sssQYzV1r39E4CKYPdL9ANp1lcaroWtMZ4rNm+5czXZ354VzJdk0Nphm+kMhnLzPvy0L8k1iASy/GARuyDq03awydSzByocQ4FCAxl2FhPGF+KCZR2WzMTcDJ78fzZPFNtyhMDaTpP10oa3HCrFvWTM5fKucHQbHn5zIyGSb60kyPpPM+bL9ZZnogTX8uF4OQCNNqPEx9yyKXZr7HzOIwX/rSl/jyl7/M9ddfz9e//nV8Pl+JDtjAG4kNubdfIq5cucLmzZuZnS0sQhoOdnMI2Vak+R2TkZwyk+fmqLoxiL/FxfG/u1SSFLHzPzYhqkJZiSk1JLM0kqDyhgCBFjfHP1O6rC2P16GH1JJZk/LIERKMmEzDnZW8/rmukmVV3hCg6kCIyz8aZOjV0g/yxZNvzc2hsm9v7/3tVrJZePWPra+z9pYw3T8atvy+GNve38Dg4XGGj06V/D6800PD7RUMvTZR9m3xhrujXPrh4Bsm4/ZGwdtq0P5QDUPHJrj0tPVbV646nUwita6s2tXIvSFDsHV9YtS+/9xGfCbJa3++PtHqV43KGwJMXZotK42273fbiM8lLaXRALb/h0a6nx2yzGRWjOA2N4vjS5Z11t8ZJbrTR9czg5aZsWIH/IyenSUxkbAMapax97dbySStsypV3RjECCpXdYja/kg17ioHRz9xviTZr+ZQCG9TIcOYIyIzP1R6rDXeW0Gww8NpC4Jazc2hFdnKYgf8a+QnL2fPconTeTkSSZJ497vfvUFW2sAG/h3jd37nd/jjP/7j/GaCDRst7KJKalhhF9npZuioucne8Wg1o6dnGHxlbfziadRpfVMl/S+Z5J1S0ANSnrC05fEaRk5Mr8hWsgzFJ7H93XWMnZ3JkwDWoIiQ0Hx/lOkrCwy/VvowYNd/aAAbHPlza+LKMolJD0gYVbqlBFzFPi+1N4Tofn6EgZdKx3HOag1RtTN5vvzmCpgkmcr9AUuJN4DtH2hA0gVe/Z+l1yezTh09IDP82tS6df6qYbZf5NX/eb6snbfFwWTXfFmCztXIvYEp52YT7cz3W8ctDXdGCW/zcPzvLhWIPv9aIEH1wRBXnrV+Bqi9LUx0u5ezX+tlajm75KqsSuEdboKbXNYZyFah8jo/fT+1lmHZ/aFGspksRz5ucS9JENvtK2Q7WpUJqRiRXR5qD4Xo+uFwyftN0qHlTVWcf2rIJAeVk8qTYO9vNDHdPc+5r60lwks6tL2lhsGjk4yemFkxF9lKSJ/s/lADS9MpTn7GjO+LSejLZQ2/PsXI8Rk8jTrxqSSLRWTMZDLJEZ5hDvO6dF3H4/Hw+uuvEwgELC5iAxvYwP/JmJqa4sCBA5w5cyb/N68YZYdxB6JY2MxXXDZkQ2B2IIWvUSHUrNNpQaZpvdeP6hE4/vkSa0WOKKC4ReLTKbz1KuFNDjp/NE4qvvat9Lob3XhrVF77wjAkLQ4gcoQE0YD6g366fjxesl2+BoW6m/z0vDDB2LnSByjF5JLgZp3RcwuW5KMt74hgs9t4/XPW+zfhLQ6GT6wvAQfQdJef8QvzK7LNFMNZIdFyb4iB12YYeNU6lqvYZTBwfA5SpbMn/UtB9YlseWuUgddnLIkyAGpAhBSWcnDLuBq5N0RwRmRm+8rHU9sfj5KYTedJP/+a4GvWWJpKsjBi7Y9tj0VJzqfLkrta7wvQf3RmXV8AOCtl0omMZZ2BTTp1B31c/smEZTYoX5PK/EiK+HSqLGkLoOPtYcjCyS+Vbr+/WcOIygVynpVcns1O9QEngRadk18ZJrl6ny2bIdCiEWjROZeT91ueiyjxtn24Q6dyt5ML3x9ndiC1Rgou0KoRaNI4953JXDtVxi+svNChpcucmnsehAyZTAZd1/nd3/1dfu/3fs/aIRvYwAb+j8ZXv/pVnnjiCSYnzblDEQw2Re4k6KxfYeeOwHRu26luh53poQwTvasYFHY7igGt1ysMnEkxenktw8KWSiNrkMiFPrV7zEP+yb70Ckk3MIkL7TepTPSm6D+dWkFwWluwjUibyNJMlikL2bam62RE2c7Z78+t+W2+zlwmJkEGR1BgZrmsVQQlZ4VA4/Uuel6dZ+JS6bVMdtqQNDvzw+tnY9R8AtEOja4XShzK5NrXcKOB5hY49Y8l4pbcWYZsgO4VmepNrfjtPxn/nN+v6s+GazV0r52T3y4fizr8AvNT6bKycSXl3kpA1rLYhCJZsWLkri3YKFK5VeXcs3MsTq2ysYpdr8Yv5STgSuyvlPy9AMG6nIyeBXz1ElU7NC79ZJ65kdJOM0ICgQaZ7peujrTlq5OY6LYet6236djtNs58t8R4zRGtfDUCEz05EpKAJeHKGRGo36fR8+oiU6W2tgWo3iYxdDZJYgGwZy3HRlYR2HxIYXo4Te/rJdpvz1K7XWJqMMNUf3plTFgi9mq/USKxmKXz5VxZxS/XClC7TWJqKM3UsA3NbZLCEkUuTqfTnB3+PgNTp8hixl3btm3j29/+9gZZ6ZeItU/xG/hn48SJE+i6Tk1NTZ6g5CHAzbY3c8B2xwqCEsDmdzTQeGcFAL3PjZqH8kVrZXCLC1edDsD42RnGz1mTQvZ8tIUt7zKDkr7nx8xMK6vWXdln1j92dob5MnJWbW+pYt9H25ANO3P9CVO6y+J5tO/FMRZGlpg4Y0FQ8sns/GAbm99hytqVIygBXPjHPs580fqt+ppDIWLXBKi8ocyGuGzKYgEc/8tLlgQlgOGjU8xcmafrWWuCkrfZILzVS9v95TXBt32gga3vrS9rAyZxKrjFVdbGqFLY95/bqboxWNZuvm+OwSPj9L5ofQAD0PJAJZvevn7brgaNd1TQfF8VRpVS1m7glXEu/9Dar8vY81utbHt/Q3kj2STXxQ74y5pF9njZ+9ut+bFuVVbV/hBN95Tvz9HT0/Q8W54Md+yTnUyem0M2zLrLoeH2KO0P11p+3/XdQS4/M1RWuq//5+MkJhIYMZmd/7Gdlgetr2H01DSjp6w38XqfG80TlLa+t569v9NqaTt+dob5kaU8QWm1f3ueHcmTiurvjLL13Y2WY3zk5BTzg4t5glLNzaGVZT1TKKvyhgC1N0WoObTSps7Wxs22N3NT1U3U1NQQj8f51Kc+RUVFBffdd5/ldWxgAxv4Pw/vfe97sdvt/NEf/RHZbBY7Ars4xM3SW9YQlKqv91N3c5hgh5NsJsuJv+tZQ1BaXmemOheY7Vtg/ELp2Cu4xcXWd9dRsc+c+0/8Xc8agpLkNtO1xCeSzA4sMNFpcTAkwZ4PNtH+lhgAF/5x0JKgBDBydpqh16csv2++L8rO/9CM4jOJC1YEJYCBlybp+uGQJUEJoOX+ChrvLJ81JbzDAxJMnJsrS1AC6HlhhKHj1u0HqL89TN3N4bI2elhi94eb8bU7y9rF9vtpe7j8mg+mfNmuX29c167rB4P0/qx8POtpdND2pmoqrykft1wtNj9SR/O95a+h75Uxen82mnsryRpVBwNc89ut+fFphUCHi453rZWlXo2Ox2rzcb4VWu6LEdvtQ49Yx2f9Px1monO2QFAC81C6SFt2+LXpPEEpvMOdz4hUClUH/VRfGyC03W1pc+arVzj3jX7L70mSJyi1v62S7e9vsqxz/MwUs30LlvdbcsHM4pScTqL4JK75UDMNd1qM8STMDiwycsacf1b3VXIBTnymJ//CwKZHatjxATPOLyUPOXZulrFcTOiu1/E0OnJvytryZQ2/Nk02k6Xh9gib3l694veSJLFPuoNbpLdyzY59ZDIZBgYGiEQibN26lVOnTpW+jg1sYAP/x6Gvr4/6+nq8Xm+eoBSRG7kt8D72eO5ZQVACaL0nQN1BD2SyTFxY4tzTKwlKRlTECJu/GetcYPR8CeJCbh3Y/HCI1vvMfaDJywnOPT25hqAk5hKWT1xeZLo/bkkUqrzGxY53RZEMG6k5uPDd0gQlMlkmLi4x07vEVLfFHpoIHW+L0niHuQc1esqaoARw8ftjnH/aWibN16RSfcBLeJvDuhDRJKEAXPzOuCVBCWB2IMn4hQVGTlgTlFSfSMUuN3UHvWUJSs33+Gm9r/weFUDLPQG89WpZG9GAne+LEd5mlLVbmknR8+IkwyfKvxjWcMhH2wOhsjZXi/BmB633hHBWlI+Vel+epufn68u+dbwtTOv96/ut/mYfwc16WRt3jcLWd0VRPeXTT9Ve76XmuvJ7VCMnZ+l9uXx2rXPfGjMJSkVjzgr1N/lpvM16r3bs9AKXnh23JCiBKe0Wn04hGXa2vKOCmuut47iRk3OMnZ1fQwJaxviFxTxBqf5mL9sfiVhm7ZrqWWJ2IJEnKInFw9JmZ+xCnHPfNp+Xgpt0Ot4SMsd4iZO86b4E031xk6AEhDp085Azd9A5dm6Rc982ZeG89Qr113uIblvZ7xG1jpsDj3Ew+iYa6huZn5/nv/yX/0IkEuHxxx+39MkGNrCB//Pw13/917hcLh5++GEmJyfRJS/7ax/nhqZfX0NQ8sagfreCJwqk01w+nCwQlOx2sNvxVZsTYXwOJvrSzJTIzmNLpXH4oe1WDX+dSQi4fCTJxEBmBUFJyD3epxMwPZxm2orkY7PRfrtOzW7zLGnobMqSoEQyxXhXgpGL8fxv8/9yCLfJtN9jIDvMuq0ISgCzA2ku/WTWkqAEULvfoPaa8vGIMyogiGYmlzUEpVXtGzixyPBZi9gsR56IbdWo3q2b2WQsiDSCCu13GjgjZeSnbDZclSKVOxWzrDKovUaj9dai9WZ1Nqzl9p9apO/18ioxsgHNN+oE694YwaaGgw5q9uhlSUUTV1L0vLZIworIlPutp1Jgy30GcvmQCoffTu1eJScBV4IukfNNzW6FumvKxLWCnUibQmy7huaxpl1M9CQZuxS3JCgBzI2k8wQlZ1Qo26eeKoGa3Rqeamujrp8tcPmlhTVjFMiTs5YJSrEtCm13OPL39WosjKaZ7E0yNZQuzWRKw5WjJkFJkKHjDp1Iu2SZzWpqMM30cCFD0wpkbHQfTTE1YLaxab9Cy/W5s+gSdY92p5noM/+uGGbfLs95pKH7aJKp/gyk0lRtFmnetzLGFwSBzRV3cWv773Bg1x3YsPHiiy8SCoXYvXs3Fy5Yv2S7gX86NuTe3kCcOHGCPXv2EI8X3m4OEGWb7cAKO9mAtrfVc/lHQ8xcXqD7x0NMdVuwSGVovLuS+KwpsVYqc5CzViOzlGZ+KMHIiSlSSesJbveHm7FLdl75o3MMvDTOwEvWpJah1yeR3RIJC6mEyB4vdYcinPtmL5Pn5kwSkwUSEwnmh5cYOm59+NX2lipcNaa80+SF8hsPPc+OkE5n6HveWq9+66P16EGV8ZNTlhJvyBBsdzN6fLp81iBg8sIcF7/Tz+jx8g/v2fVScWP2meaTcVY6ymYisgl24jMJJs6WrzMxR9kMUMvofmYI0fHG3PaDr4yRnE8xN1w+52NPmbfli7E4usTC2Dr5IxPgCKtkM9k1WXWKMT+yRDYLjsBaqbPisjqf7ls3E1Rewq1orFhh0zsbUD2KOc4tqr34VD/x6fLXuXxftj1ciavW4NinzpXMljTXn2BhbIn+w9abm13fLbyZufvDzSQX03nyz2qMX5zBW20djA8fncqT/RrvqyC42cO5r18pmUGq7+VxHAEl79/wTs8KouDM5QVOXDalkPztTir3BdE8Mue+tjajU9/zY4iSkB9LWx6vY+TUVCFr2xUPDezESw0XHUeZmpriqaeewmaz8cADD/CNb3zD8po2sIEN/NvGo48+yuc+97n8ZxGJHRzCLXlW2EV2uvHUOTj3tQGuvDBOOpll9GTpQ5rm+6P4W51M98wz17fE6f+9dl4KbHIydnqW0RMzBFqdjL5eOr7xtRu03FNBXy4TU6my8kjC3NAi4xetY6Ct767FJto4/unLXPmxdQwEMHhsCskQSspTgUl42PZYDWPnZrj8/ZF8ZikrnP3aFUTZ+qFXckvU3RohuNnNqc9bx1SBzU7Gzs8yccb8Vw6vf+Yy3voyh3OA4pHJZrIsjZTfPPHUOXBEyh+UgUkKka8iVpruWigrLQcwPzBPzwsjjJx6Y6R2rzw/SryELHMx4uNJen9SfmwATHbN420ykFRIlul6V6WOI6yi+CVL6T4w499Mqnya7PNf68fXapTN8JRcMO0gN1ZOWY8RxSdRf0sYf7OTM18qfW/1/mScVDxTlqQ3n8swuiz/OHHBlGwshZHXp8mmstZyiAvk73Nfu0HTHVEufmeAiXNrn/Xis0nmR5YYPmHdtjNfLFzX9nfXEJ9N8fpfd5e0HTg8STa32alHJGzYWBgpNPTy9wsxed3NYWRD4NX/ZWYKtdltK4hNZ7/Six427xdPo07FHh9nvtqXv27nyRquo4YTvEjGt8iJEyfo6OjA4/Hw05/+lM2bN1te0wY2sIF/uxgaGmLPnj309hYy2VUp7bQ7r11pKELjTR6GTswxN5Si5+fTLE1Z71M13+EnPp3m9NfHGDuzlgRkEjEyLE2mGDo9Z2bStZXe/G9/wI/sNDMxTXcnmO5OrCC6FmP80gK6XyK5VHr/xlUl03DIx6VnJpi5Eufid8u8FJaC6d444xetY4PK/W78TTqnvzy4rvTXxMUl7NIEY2esy2s45MNbpzE7MEiyjFSFu1ZlunuJyz8uL1+2NJHiwnfHmO4pH1NlElmQyq/5klPAiCjMjSaYLCM7Jooi8yMJZvvL10kKho+vn7m69+fTSI435n3c8c55smlYtIill1Guj4oxN5wgMVdeHg/AVaVgl2wm0c0CS1NpspkskmFnacq6rIvfG2N2ncyaA0eWGTngrjTHihWab/fjjCnMXFm0zG506YejpMq7jIkL5n0e2+si0Org9FcHS0oCJucyzPbHGT1rnXmhONtY+4MBMmmTVFUKU1cWsdlspQmE2QwzfUlm+sz7JLxFp2qvi4s/nGC6Z5UPbXYmu5ZwRhbz49tdI6+wW5pM0fnDKQC0gEj1PheaV6TnZ7PmgWdR3DXZFadHm2bktOmX+pvcTPfF85mV5CUPDUs3EvHs5ET8B8zOzvKZz3yGz33uc7z//e/fyCa+gQ38H4xPf/rTfOQjH2FhwZwkHXKAHZVvRpc9K+ycQfBEBXpPpJnsB5stwdTqZI257D3hJoGKVpGluTgLU5TMYGIEYH4I5sdh7HKKycHMmsxJAJoHmq9VGTiTZLQrzZVjucy+xVmUisgJM0Mp5sasY4javQqSnOXij1NmZphSpIocJnsTqC67Ke22jCKCkiBA8x0uJnsSDJ1cYqa/fOzV/bMZBKUMG0SAumtdzA4lufxT65jEERKYH0+zmPtXDpd/vogjkICMNSlH1uxk0lniVhK7Of+4wiLuCsmU+SqD+bEUqUQuViqTIWhxChbLxO9gZqHpObxQlnDzi6Dv9TiZUhJmRUgnYKJE1q8VsNlYGE8zN5ZeN02L6rbhDInIRtw8fxPsJbMqmX8q37ahs0lmh1MrZdXWFAT9x8w+cgQF5iess1AJMtTt15nuT9HzcukXJaZ601xmnqnetOW9Yt4jWRCg7VYHk71Jhk4WjZN0Jk/QmupPYZMoLTOHyQ26csT8reaBhmtVeo4mmB0p4bM0zAynmB5clSlsWf0glabvZMG+5TqZZBwu/qxE5TYbgxdSedlHWQPklQozo5cLbajcJGJ47bz+o4TpX7t9RWalriMptFxuBcWAaJM5fy5zn4yFbVxbu42e8SNMZE9w5MgRWlpa2Lx5M0899RR1dXWlHbSBXxgbcm9vADo7O9m6dWs+WAAIU02HbU9Je9kns/P9jUycm+H8N0pvqLc/Uk3nd4dITCQI7/Yw/PqUJelh339uIzGX5OjHreWoZMNOYi5DzaEQgmy3JLS0vaUKd62Dl//k3LqSZrJPZuu7ajn/j30l5ZrAzMyyMBbn4jfLvJ2cQ+UNAUKbPWVlwbY90cD8yNJVlScbEN4dpPc5awLH1vfWo4dUjv5FpzWZBai7NczlH16dtNy/BLY90cBk5+xVE4LWw1XJvV0lZMNO+yN1DL02YSkF+IsVyBsutxfc4iKxkGa603rjY8evN6K4ZF76H2cs65d9MoEWZ1ny3zLUkEzHI7Wc+0YvsxZvY1bdGCS4yX1VUnmyT2bro+XL2/J4HYmZZEki0Gq0P1KNs0LnlT8tPRcYMZm6Wyo4+dnufP1W91Bwm5umu2OMnJyi81tr5UoAKvb5835rfaiS4denSpIVZQN2frCNmd4FTn+h9Pick6d4Nf5jMpiBR0VFBXfddRd/9Vd/td5lb2ADG/g3gt/4jd/gE5/4RP4tbwmZPdyGLpUmtLS9tRIjonL4k535Q/biA3lPo46/2WkSEyQIbXZbkhoa744Q3OzizJf6mO4uHf9IbsmUcgLa31rJpR8OlyQLSTpse6KRyYtz1hJwRWi+L4pdspWUfgJw1+o03BHh5Oe6LOWoirHtfXUMHZ2wJCi5a3Ua74xw4gs9+esph8huL+Onp0gulH68kHTY+cFW5keWOPmZbsty3PU6NrttZTadNwLlpLV+AUR2egludnHyiz1vSHlXK/d2tag6GMBVrXP6C1fekPJ+GVhPgk0PS2x9rIGpy3Oc/fKquKXoYDq230f/4Ymr6ofGuyPILnEF8WcFJNj2WB0DhyfKkpqW0XRPFEm3c+bLpZ9L3LU69beHOfX5y+vej5IO29/fyNjZGbq+Vzqer70lyNJkkqEjU2Ul5wB2fKDelFP8k9IxpKSDq9Zg/Mwcekgiti/AxW8VdrGzmWxeMq7p3ii+JoPX/uKiZZ0XOEJP0qxL13VCoRAvvvgi0Wj57Gsb2MAG/m1gamqK3bt309m5PKfYqFO30WzsLmkvKrDl10KMdy6aB/KwJstJzUEXwycWWJpK4a41ZcKtSA/bHw2TnE9z6qvWJNzl9P+BFhXZKRaIF7CCpBTb6yTY6uDUl4fKSkgtl9lyd5Cen0wwN1T6YKv+Vh+phTRXfrb+uuFrUolsdXLmH0ctsyw13uEjPpOmt4ykWaGBEGzVy5JZ6m/x4WvQOPWl4bISaOEtDoZeX58E9C+Fprv8zPTG182kdLW4Krm3q4VoEu3Gzy8wfuHqZDnWK69cFq5/CpwVElmyzA1YF9xyrx8jovD65wcs7w1RBU+tZil5uMJWh9Z7Q3Q/b33/+Js1Qh0GZ79uvW9bXHfr/eXLqzvkJZPK0vPT9e+fqgMufA06p79SNBcUxZiSAdXXeLj0zJRZvwYpi8s2wiKt9wUYPj1P70ulx6ivXmHiipnZrXKvwXTvUj7LEpls4aBYhO2/FmJmMM6lZ0pfx5K4xKsj/8hixnwRIhqN8sQTT/D7v//76173BjawgX8b+MIXvsAHPvAB5ubMOcWlRNgWezOaXPrl4tgmAV+FwJkfJwoJRtLpPDFJc4E7IjB0wfzSFYEZiy2oYL1AZbvAhZ8vMW/xyC7IBRJD5RaRkYupFbJJtmWShwBthzSmB1IMnFr/oT3cKiIpWBJtFBfU7NK59LOFtSSKEhmU6q83mLgcZ+pK6bplp43afQaXfjJD+iqWcFdMZH4itdK2mBgiQMcDHuZHU6Wl4HJQ3QKCBPP/nKOyUoQUgbKyaytQhqDkjAj4ayR6jy1ZklV+EVyt3JslstkV1+utEnBHRbpfXSfhwTL14Z8qg5fOXJ3UWwn4qu1MXLaOuwQVNt/lZPJKkiuHrR9KPNWCmXHsKvo12CLj8Il0WxCaAOqv0xjvSjC9OotZNrsmk1SwWUJz2fOkpNVQnFC9U6PrlcT640SA9ptVJnpSDJ0r+CVbVKe/RiCTyjLZn1kxx5RC4z4J3WPnxA8s5hUBnF6YHTPnq0ijQP+ZomvOZEA0SYnhRjuRBoFTzyUt6+ybPcG5/h+RziTQNI22tjZ+9KMfbcjAvQHYkHv7Z2BoaAi3201TU1OeoBSmmpttb15DUIod8OflpxITCV76H2csCUrOWg1PjUH9TWaK4uHDU2tIAtF9PmTD7L6+l8Y4/SXrQ4g9H21h6/tM2YqeZ0fKZtyZujJPYt568pR9Mjv/YyNGzLyOw39ywZKgBCA7RTR/GcktoPXNpmxF3/Nj65IxJIeA5l2/PG+rQWKOsgQlgLP/0MXgq+NlCUrhnR4q9gZouLv8Jnt0n4+OR2tNEk0ZOGs1jNg6RphSb+1vrcIi9lwB1SvjCK+fHWDbEw0Et1mnSf5F0fFo7bpSdIm5DJpPxhUrnwkBTKLKen5evhfCOz3rlhfd52PL4+uzWhvvjtF0V0VZmwvf6qXnueGyBKnERCJPtOl4Z23+Hi0FzScjyAJ60Four/e50fw9ETvox9tqPRhcMRVREdD91uWd+LvLeYLSlvfUrZFYK8bCcJz4TNLyeuf6E3mCUtWNQXZ+oNGyT0aPTzN0bDJPUIod9K+5T/LELhm8TU6qry/dtsQcvPSHZ/MEpW3vb1gjE2gkPNxke5BruJlN7ZsYGRnhr//6r5FlmXe/+92W17yBDWzgXz/+4A/+ALvdzsc//nGy2SwiMge4lxukB9cQlLY8XkP728wY4+zX+zj8p52WRIbq64IE2nOvUCRZS1CQILLLA8ClHw3T/8qEJUEpvMPNzvfX5eWlznypzzKbUXIB4tNJ5ketH6yrr/cXJOC+NWhJUAJQfRKSLqCHrPMZ+1od+bYd/6vLZTMoaX4JQRVQnNaZhSS3ROtDZvuGDk9aEpTAvN6e54e58FR5snnjHVFa1pHXBdj09moCHeWlc4GCzTp7YrW3hQluXT9OcsZU9JC6bnmV1/nzvnkjENzqXldSDcCIqlcVF0q6jeYHKlD85WVMABwxBT28jp1kEq7Wk95rvDtK1bVBPI3WseHCcJK+F8c4W+p5qeiwuf9Fk6DkbXZQd3t5eRfNJ6O6y8TgSfOeWL7/LWXYclD9EqrPOu6a7l7g2F+aBCWjUmXre2qRyqQaj8+kmOqxfq7q/tFoXk5y63sa8tJupXDu671c+Zl5mC+5JfztK2PI5AKMnzE3TWP7AviaDbRAoX9tRRtxF58a5JWPmwQlLSCx6zcaCHas7ONmdnGL9FZ2Nu/F4/HQ3d1NRUUFzc3NDA6ufoV3AxvYwL8VzM3N0dHRgdfrzROU6tSt3BZ47xqCkrdeYevbg0gGpOLw2hdGCgSlVQcDistOoFknvMWcFKe71xKUPHWKKbVkt9H78gydP5qybOfmhwK0PWDuS4ydXzIJSnbbGrlQgLmhBPEZ611+UYW2B4JofoHUQpbTXxmxJEQA6F4R1VsUJ5U4yKjcb8YWExeXOPM1a4ISgOIU0XzlMzrG9rpwVsqQYgVBqdQ7qF3PTdD78lRZgpKzQqJqv4eqA+VjIHeNStMd/nVz8qseETWwflZKySlQe70Hcf2QBSOk4Aivv4/WfLcfb8NVFEh2vZfhAZP0Et6yzl5WCoyQfFXt8zaoVOwpHyctjw/POlJ5yzaNd6wvK9x4e4Dag+UPUbp+PEnPTybLkvdSS+QJSnWHvCvl0FZBcohIuoDiso4fxy8s5glKvmbNHNcWUD1meXKZ55LLz07S88IUZLI03OIjUkYucXEiSXwqufJ6i+aM5Bx5gpKvQWXr2yP4mkv3ydxwiv7DM/QeNmOrQLO65j6Z6CpIT4ZadWLbi8aBvShTSAqO/f0Il54349HGWz203rOy79SUykHfW7ne8046NnUwNjbGH/zBH6CqKr/7u79rec0b2MAG/vXjm9/8Jh6Ph3e84x3Mzc3hVELc2PDr7Kt7dA1BqW6nSO0Oc7LpP53m5I+KCEqCPU9QAgg1iITqC7JRawhKAngi5n+O9mTpO5m0JCgZAdh8q4onZhbWdyJHUBIEbOlMgaAEkIbF6QxLs9aZZXzVAtU7ZUilGT4VL5sJSFIFZMOO4izKeGS3rSAoaV4Bd5Xpl64X5iwJSmDGXZJuR9asMygJMsR2mlKnM/1lCEoAaeh5aY6+o+VJ1ZU7deqvXyceACp3qabc12qsqtcICfn6yyHYKOGKiesSbzS3HWdIWJd44q0WqNxmvSeSx1XyfBwBO7V7SpS36no1jx1HYB1dO0AQbUQ3y1d1virrrLVbLf8mQOV2pbz0HhBsFKnZ4yj0Swmkl6D36CL9r5UIvIqud+qKSVDSvHbC7eVjTdVpR14nbO366WKeoBRuKyqvhKSi5rKjuqzPN+OzcPH5RdKLaWQlTcMBxVImDmBpOsP8qixT+TnDZmO8J81kv/l9wzUyLddbF9Z9LMmVE0kQ7AgSuFZvB6ZNghJAoEYgWCus7F+7naxg9s9wZ4bXnzEJSoIM7TeKuCMri6t0buHm1o+yb9P9+P1+XnvtNfx+P/v27WNi4g146eHfMTbk3v4JSCQS1NTUMDRUWM1LybqBObEl5mBueIlsBjSfZBJiVk3wrjqdxrsreO3Tncx2L3Lis53M9ZdeBWSfTN1NEYLtbk787WVrIk4u48zExVlSi9YrVN2tYQKb3Bz+kwsMvjTB4EvWN5XqFpENCX+bh7n+0m/5yj4Zb53O8NEpDv+v8jqNlTcE8LW6qDkUKpsFaJnctV55ywQHNaiUlKBahrfZIJPJMt05X1JCrxjDR6cQZGHd7DiBFhdGVFs3y0/TPTEUp8xL/9+ZsnYVu4J4GpzYdRnWkfZ4+WNny1cKOCIyml/BXe1YV7LuamFENWx227pksJf+v/XbB1Cx14cgC1x6uvxhxpbH6zCiGpPnZ6yl/IBAk8s8pFsn+1LXDwaZPD9Vts653jhzvWaQXHVj+Qxd/nYnziqd6kMRy8xBk+fmVvTbcrYzK1TtD5JOZDh8rvQ9MHZyhrGTOTkZGWLX+On/icWYlUHzKVAm82T3j4Yhd2803luBu1bn6F92lvTj6OlpfI3OgpxbCX93fcfsUzUkU3NdGH+jixN/d3ltYQk4+peXSOTGfPvbqkktZrjwzdKkzkwis5JuW1S3YfNgnPWgZcMc5TkAPvvZz/L5z3+eT33qU7z3ve+1dsAGNrCBf1X43Oc+x+OPP04ml5pVQGIPN2NIqw5TijLlZJIZc46AkmSSpnuiZLNZOp8e4uyXy2cO3PzWKowKjYlz0yTmslx5rsSb/Lm6h09OE9zkYtJKCkyC7e+uY+zMDL0/GefE35Wv213jQPGUJ4dE93oZfGWS4demGX6t/Bpff0sEm2ArmylmOUvL0JFJho6Uf7Wr5mAAT4MTo1Jjrs/6bZ2KfT4GXppg8JX1XxU78ZkunLXldxEkt4RRoZGcSxXWvxLQAxJNd1Xgb3HmZcSsENrsIV6dYPT18j68+NQgsD7xwlNnlCUj/6JwV+kYUW3dLDprMg9ZQPbK+FtdLM2kuFIuG6cEHY/UrZsBC8BZoZNaTJeV8ut8epCZgYV1M2Uty9a563VS8TTz/UWbldnMirfdqw8GUVzSCkmz1Tj5+cJLHcXZzkqh+sYAoS1uZvoWLaWBT362UF5wi4upzhnLfvE1GageCcmQSC6srTe5AK//TXf+884n6xk6PmWSsEpg5GTRGC2RIWxhJMnCiHmvtdwbwRFRmekunQnp4rcG0UMSi2NJJB3a31bLxaf7WRgqKjT3n7JLIpvOMj9sbqStHou+y3X4qCPNi4zYerl48SINDQ3U1tby+uuvI0nrE+I2sIEN/MsjlUpx6NAhfvKTn+T/Vq120GbsW2MrKiYpaXEiRTadRTFEknMp8zC+aJNb9YrUXe/m4vfHic9kOP21MUvijKhCwyEvs4MJLnxnwjprSy7jzHjnqslt1cFLcJNOeLPBqS+PMN0TZ7rH4lneZkfURDSviKdSZXG09J6SqJqE5clLS5z68kjJOpfhbVCJbDFIL6YZPGa9RyXqkFqA019ZPzt2aJMDV0zhbF/hOpYJStlsFpvNhhYUESSYG0gxfLz8ejvTn+DSs+N5CS4r+Oo1XJXrxzW113sxIjJH/ra/LCEr2KITbDcYOj1Haql86qBjn7Em6S9DVM2XtxYnU0xeWidNVg7L/rKCu1pF0uwrJMVK4bW/vTpCbmSbE8UlMvBqecnjupu8+Jt1Xv/COlJ+VQqumJwfP1boenaC+eHy2QaSc5n8vRbYpDN22rpALSjia9RJLWUss34tjqY49ncFvyxnO7NC1T4PmVSGk/+79B7t3NDK8gLtelmpPUdIQpBtDFmM/7Gzi4ydNa83vMVBoFnntEWWs5mBJWb64kwsSxeWyHY1eMxsi6jbqLnWja9e5cL3p0rWfeJLI/kD2+r95jPPlZfmV8qgLCdZSmbICEVjtKhuVVSpGN6Hz7mNlye/TiaT5L//9//Oxz/+cf7+7/+eBx980Mo9G9jABv6V4dVXX+Wee+5hZMSMA3QlwM7aX0O3rWIcFGXKSaeyrOEnF5EqQo0CogQDZ9P0nUjRVybLTtUmEX+1wKkfJ0nNpRgtsWW/XPfcGEwNpJkrljIThBV2DfsUZoZSjHam6X6lzPpjs6EHBBx+oWwWIHdMYLo/zdxImlNP5eIpi9irareOpNmZ7rXe1xFUO+kEzPYnOP3N8uduvnqFQKPKRHdipXzbqvjBUy0xdSW5rqwcwOWfLaD51yHZCOCpEMmms8wOWtcryNBwnc54d6K81JvdRrBZJrmYZWawfMw3cj7JyPn1M185giKeiEjf8fJ9fLXQPXZcURFZi6/IzLUaAyeTDJy8inTaMoSbZdKpLCPny/dLy80O5sfTdP18VbBisxUyMqXBExMhC7ND1ufto50p4vMLzI2XZ8RPdJttUt1gs9lNmbhlfxXXC0TaFBxBkeHzCcv7pPdIoe2CYitLMvNWC0Q3KSzNpAtZlZZl33JtKM6gZAQFFmfSpC262ggK6B47omKRASkNXS8Xvmi6XmG8O8VEz6qxnbvmsctphOXtoxJzQ2oJpvozQIbYDhlfzG4SNUvUPXwxzWRfOkemhIbdIn2nUizFyROVbDmGp6RAJgXxXPgoCBTIn4Ar28YmVxtGxWtcHPoxL7/8MpWVldxyyy184xvfQBDWJ89tYCU25N5+QezZs4fDhw/nP3sIsMt2Q0nbLY/X4QirvPQ/z65LXAnv9FB/WwWd3+23JJDEDhZIB7GDfvpfHrcsd89vtpKKp3jtE+vLRNXfESGw2cPxv+2yzChUe0uYgZeGV2g8WmH3h5sRVYGX/vDqiCmBDlfZw6XG+yoIbvJw5is9ZeW4lqGGZJZGyjt8z0dbsEu2dWU1/O1OxsscsqzBVUiROSIyvjb3usQeuLpr+WXgjZR7+0VQTjKsGEaVgrvOsCbh/BNhVCkk5rNl29D2cCXeZhfnv9FbdmwYMdmSaLgaO/9jE6Iq8MofWY9HZ61GfCZ9Vf7Z/I4aXNUOTnz+Up5YVQ51t4a5/Lx1lqj2t1bhqNDWJwliSrs13hmj57lhS2JfdJ+P8ZMTJOZyMm9Hreey3R9uJp3KXNVc1vFoLUZU4+gnzpacqxZ8s3SJrzM0bBJMm5ub+bM/+zNuv/32dcvewAY28C+Dw4cPc/DgQZaWzActOwK7OIRbWvsmsOQW2fGeOiY651bIFpVCNpNlxwfqyaSzHP+rUrsv5uG7r9XNyPEZJLeEu1pl7OTsCpm4ZVTs81J9XZBz3+hjavVBWQns+mADk5fmTHk5i7pD2/30/3z9dc5dq9P+1krGzszmyDPlofgkBNEkMVhhz0caiU8nef1vSvtmNfSwxMKwdXmBzU6a761k4OgE3T+wJodLbglJgoWxq9RQu0r5top9PqYuzl5VueuRV34ZeKPl3n4RKH6J+Pj61xs74Gfs3Mz6tr+gpJ6n0bEuWWnvb7WQWkhx9JOX1n65TFSSQNKvru+8zQ5aHogx8PI4V16wvse8zQ4mL1xFOnIJrvlQM4tTCV7/6+71zd0SoU1OSwKS4pPY8o5q+l+dYOCl9Ul9299fh91u4+inukp+b1NsRLa4zaxpEoQ73JZkxtA2F3WHwpz/Vv+6c5mkw44PNDF1eZ7z3yh9eDzVfpmjJw+TyWTQNI3rr7+e733ve+te0wY2sIF/Obzvfe/jb/7mb/Kkl4jSzFb3IfPLzMrd4bobXHhrVU78wwip4sfONW+VZ3BWiDTd7qf7hWkmLAgkvmaNie4lSIG/WWW8awkSpbcsN78lQDYFp7+eI46XOqjK7SgHNulUbHNy9lsjJOdKlGezE9ykMdm1aMo5pa0PHQDa3xxE9Uq89rnBtYSGEnGis1Jmts/6OT663aBij4sL3xkra7cM0ciRPXJ1l9rW7fi1MJIurCB1lIJRITF7lfsWZuWsK0UmOQV8deq6xJ5l2+Ts1eqSvHHY9f4Y0z1LXPxeIQ4oR1Z6o7AemWgZilvEWSmXJQoVCuWq5eEUt0g6nSJVZm+3Yo+T2E43F743xnS3NatI9YhlM3QVo/WBIKpb5Phnrcej6hFJpzJlSVnLqLneTbDN4Nw/DpfNdLY8L4Q260x0LliSpCqvceGtVzn5xRxJ0GadNcBZIdJ8R4Cel6YZO1PiBNVuw1MrM5eTsPTVK8z0x1fOkUVov9+HTbBx+uvja+fOVfd27UEXvnqVE18aWXktdvNALCVOcp6f0zfQC0BTUxN/9Vd/xQ033GB5PRvYwAb+ZdHf38+hQ4c4f/48AKrkYUftr2GoZpY8W7IwxwkCtB+SmRxI03dq1dq5OuNLKk3jPgm7ABd+Zi2H5ArZmRkxy3b4YGYUSK6dV10RO3U7ZS69vMTc8tJZ4jDeljDrar5RZWY4zdCZ0nULog13pVAgKJSocxmyAe23OxntTNB/okTMklhZhyCbBI3E7Kr4qCizVNudBon5DJd+fHXnfsuJKPJYndnHL9Byi5Oh00sMnbReOwUZBE24qjPWNShHqo4JLE6nrcstipMFBUuiyRuKovbGtsgEG/4Zcm//DAgaVyXl56kUWBhPlyVHmZJoXL2kHqB5bSyOlf/BprsNUoks539UIu4rigWu9lpUNzQfcjJ4Os7oBes9Mt1vXvMarJ5PgM136cTnMlx8fp0GCAKCwMr7e7WJDE3XqYx0JvM2WbEEuSd37Q3XSEiqjXPPWzyzSCKeCEzlcsp4IssEprUw/FC/W6brcIK5cchKK/P42IqfA23QcbPE1GCG3lVzblYy2zsrHOXIyWdJJhOoqsrDDz/M5z73udLt3EBJbJCUrhKPPvroisGl4eCA7Y61hjI4KzRmuxcJ7/YQbHVbEj2i+3zE9vg58mcX163f3ehg01trmOqc5cyXete1b39rFYsTCS7/sPRBkBGTqb8tVjqTySo4IjJb393I3ODiVdkbMRnNr1q+dQyw+yPNzI8sceYL1jJ1xfU33B3jRJmDMtmw0/F4Pee+coX5ofU3WNSQjDNSvo3eZoO2h6qZvDjD2a+UfyO95uYQPc+s/8bbLwO7P9IMWTj8J+sTSK4WbzRJqfaWMBV7/FdNmnmj4W02wE7Z7FrIsO8321mcjHP8L0ocghWhmDC4HtofqSYxm7LMqARmZibVI3Pxm+UzPIBJVtr01hq6fzzM0KvWB1eVNwToe75Epo9VUEMyO9579fd37KAf3a9atlUNybQ9VMWxv760LmEPGfb9VjtLk3GOfaq8zwGaH6hE9UuWc0F4t4fQJk9ehs7bbDB5YW2fX8l2Mu7rZWJyApvNhmEYXL58eUNDdgMb+FeEsbEx2traGBtbnsdsdHANEWmt1JWrVmcmJ73W9pYYQ8enmDxf+sF30yOVzA4s0fPM+kThbe+rQ3VLvPLxiytIF6VISpIObW+t4ezXByxJEo13RZjuXSgbeyyj453VOKIqRz9xoWzGnGVU7POWJTNEdrqpOhjk9N/3XBVRp/HuMLP9iwy/NlXGJorNBhe/fZVvju/2MnS4POFi63vr0LwyL//R+bJ23hYHyflM2cxNvyy463XaH67m8rPD617P1eKXQVLa9cFG0sksx/5y/fX1l4HYgfVJds1vqsDf5OL1z1xal+Q23btU+t5adYikRySa763k9Bcul713Nr+jivNPDV0Vqan9LTFUn8Jrf1GaBAQQ6HAy279kKe24um6jQuPoX16+uvrfVsml7w9bll1zKIikCnR+p7Skd7F0W+ubK/DUOzjx2e6yRMVlbHtfHb0/G81Lw62ABG0PxBg6NsnkxQWMSoW5vrVxfjKZ5AjPYHdlmZmZwWaz8Tu/8zv84R/+4br1b2ADG/jV4U//9E/5zd/8TdK5jVmvGGWH625EsWjjNkdS0gIii2MpnDGRYIuDrp9Mr8mcBOCukajc6eT0V6/iudQnsvnNAcY7F7n8fFGsVCLuAqja7yQdzzBwrPRkL2kZag546fxBmfT7uTVE1GDr2yPM9MW5+P3JdUlKkmHHEVGY6lp1CFXU1k0Ph1icStH1w/XT/4sG1F3v5+J3rNdNUYXmu4N0/XiSpYmVB3mltnUlhw1HSC1LMlG8Ah1viTB2bp7Lz5WPacJbHFdFOvplYNPDIQTZzokvlF7n/ikoRVKCfzpRKdCqUXuDj3NPDTM3cJWMoTcQWlBEVOzrktx2vLeCxYlkXmLNCoFWzTqD2SpUX+smk4U+i4xKYBIQHUHZMutSMVSPSOv9QXpfnGK8THav9bI9AWC3mff3IxXM9se58N319/G89SqOiEzfSxaZ1DRovNlH548mSpOeigmTIux4JMTiZIqz31p/LqjY4cAISVz4wSo/5e5xV6VEsEXn0rPm90ZYZG44lScpLWNsqY/L4otMTZn3dXV1NceOHcPj8azbhg1sYAO/GiwuLnLHHXfwwgsvACAJGlurH8JnVK+wsyVTaC5YzIVGlZsFpofSeRmj1WSC6g47S/MZRi6sz6Ko3yPhDNh5/ZnkStJFCcKQIEDNLokrrydJJUtnCgnVZInPZZkZLFN3bp2t3C7hrxY59cNFk3RRhqQEJoFkaqAE6SBHUHJGBKr3Glz88UxZclK+rS0iifkMUz3Wz8TBVgVJszNwrMRaVCJecFeJTPeWv4666wycYZETT82WJbpoXjtkMTPrWNR31VhH2m01ZAPabjHofW3RkmSyLla195dBUmq+0ZTgu/Dcr3hfMLcm+2qsSTjLiLRLRFoVzj07x9KENQnbERRYmkuTXirRV6vifFmDqj0a3S8tls2UVL1HY+jkIolSZa5CxRYFIyhw4dmiuGrV3OLw20kupEmst0ctCFRuk/DXiJz94WJ50lcOldskRi4kiSdKzy3+ajuyBoPnLPxdRDSKNtuINAic/WmKpen1ie+NBySGL2dNgmYRlslKsXaBmRFzzpUdmNefLZCUlnG69zvMpbuYnp5GURT+7M/+jCeeeGLd+jewUiRnAyXw1a9+FbvdnicoCYgc5N7SBCVgzwdbaH/YPEAbPjxVluQh6yKiJmJUWadLjuzxAjDdOU/vz0fLEpR2fLCRre+tB+DMl3otCUoAlftDOCIazlrN0oac5OP8UIJLPxwoS2Co2Odn72+3oobM7DHrHcClExmS8+Un8fBuD2pIZn4oUZagBODv8CAbEnqkzPVgZm1azk60XhsnL8wxemaaS98tT1CK7PFSuS9I/Z3RsnZgEopaH6pc167xvgr2/W4bsm99TfvJS3NMd69/gtn+1ir2/k7runa/CDa/o4a9v71+meMXZ5gbWiSbXJ8TufV99ez5rfXLNGIye36rlYp9/nVtW99UReMdFeWNEjB8fJJzX1+fBJjPaHZg/bqNsIazUi9r0/vcaJ70U3NotYDqSiQX0mSSWeIz5Q+WlglKW95dx45fb7S0WxpJcOn7Rff3OkMuvNWLr9laM3lpJMGxT5oEJXejg2t+p5XgFldp4wR0fX+As18zfR7c5i5bvxaQUVzWMiHDh6fyBKWmB2K0PVSNv31tW6ttjWyfvJH2aAeZTIaZmRlqa2vZv3+/deUb2MAGfmXYt28fwWAwT1Cqo51bpLeUJCgFOpy0Pxyj6qA5H5/9cr8lQQlA9cg4AtZxl2zY8LUZ2Ow2Lj7dz4WnBywJSoEOJ3s+0ogekUguwIm/6ylLOPC1OInu9Fp+D5hZaICT/3CFC9/qL0uy2PZEHW0PmWvbetlWEvMpsoksyXU4CbH9Jlmz89uDZQlKAEZMw1lVfn0DiOSu+WoIPRef6jMzha6D+pujtL+lel272H4/u36jCcW/vsTU7g810f62qnXtkgspZvoWmOxa/9W33R9upvm+deKPXxB7PtpMw1XEnFOX55noXP+tQD0is/e3Wqg6GFjXtvmBCnY82bCuXf0dEWquD+FtcZS1u/zMKINHJ8oSlADGTs2SnE6iByTc9avGXDZj/svBiOqobmlducBTf99rlhmS8LWXt03Mp0mWkc4GGDs5S3wiiR6R2P2hRgKbrGOlU3/fS+fTg1dFUHLX67iqdKI7PZY2Pc+O5glKHY/W0PHoyrmyeN4697UBep4bzROUgh3W7XRWq8gOAVG1SFedhLNf6WfyYo4k+uZKtj9Rt8ZMkiT2SXewY+YQLoebbDbLxz72MRobG/nWt75lWf8GNrCBXw1ee+01DMPgwx/+MOl0Gs3u4nrfY+zx3V+SoLT5zX5abjfX9tn+FF0/noa0reThiagIyA4BPSSu+Q4Auw1vowp2G0tTabp/Ol2WoNR6t4+Wu8xYpfflOUuCEuk0wVYH7moVI7qqbpu98C+H1CJ0PjNRlqDkrlXZ+mgU1S+RXMiWJSgBpOLr73m5axRUj0hqjrIEJQBHWEH1Suj+wvVks9k1BCVnTEZ1iyTns5YEpeXfLU2k6D8yQ+86UryuSoWaa31U7nOXtQPY/JYwtdd71rULbzPY+Z4KVJ/F2CjCZNcik5fXP+GoPOBm++P/vLhrtU9rrnez9V3rx12zg0mmryyVlTNbRsNtPra8M7KunWTY2fJIhODm9ePt1nuC1FznWdeu//A0l59dPyZfJij5m8vvsQK4YgquaPmNpIkLi3mC0nrXk0qkzD3jpfIHS8sEpfqbfbS/OVjaKJM17+8fjnPhh7l7bJ0hF97kINisr4gvV7RvEc592yQoqV6Rbe8M4akrer4sngtS0PnMJJd/Ys5rrkoJsYxiouYVUTwlGmgz59iZvmSeoBTdptN6jx9Prbwmy11ArWS3+DDbYzeQyWTp7u6msrKSm2++ufzFb2ADG/iV4CMf+QgOh4MXXngBu02kPXY3N7Z/tCRBSfdAy0GZUIMZt/SdyhGUBHvJbCeq04ZmlDnyle0YIfO3V06luXTEmqDk8MOmWxRUlxkedR3JWBKUbIkkwXqJYL31HIbNZmahAfqOJbn04lJZglL9tRpVe8w4sRxBCSCVNGOvdCo3B9vthX9F8NaY7Rs5Ey9LUAJwhiWM8Kq9JNvamNcVM8ssS1ASBBAE+o8t0n9iad1MPJXbVRqudxTqtICrQqD1Nh251NaL3baCoNR6i07NnvVle0nDRG9ypZyfBdpu04ltKSqzhH9+UbTfrhPdtP4e3tRAksne9fdUBNnMAhRsXD/mDLdKNN+0TuxjsxFoEKnZreOMlJf2Gj2fpP9UnKVpLO9ZgPlRk6AkaGZ2o9X1FftUMgR0n4juK1/3lVdNgpCggTNc3jYZz5CKrzq3Ta+85+bHMyQWbci6jfbbHbiiFmWm0/QdT9L10lKBoFSmetkAX5WIt1rElio95savZBg8b7anZrtIwzWrxkfRHDJ4IcvlYymW5gDBjjNs7XdZB9VhQywxNLKCQFYQ6D9TIIU27hZpOWAa25Ir27qp6i52VT1JxN9IPB7n/e9/P01NTXki6gassUFSssDExASGYfDwww8D4Ha52cNNPNj2CHv/QxuOiPkA1nhvBVueqMuTfdLpDLND5oOSq05n+5MN+e/q74yy+8NN7PigSRhw1zgYPTXFXG8cIyaz/ckGM+MLZuaZHf+xkfpbozTeW0HHo7WoHrNONWTaBjrMg/+qG4Nse38D6XiG9FKaTY/U0PKgSYSRDTvbn2wgnNvYbnukiu1PNnDuq30c/ctOqvYHaXs4R5qRYfuTDXli1DUfbWXff24D2Tz8b3u4kva3FYKl7U825EkaWlBCUOxIujlhtr65kk2PFDbIt72/gaobg/jbnQQ6XGQzWXpeMOmJTQ/E6Hi0Nm+79b311N4Spv7mKB3vrGP7kw0YMfPaG+6OsuXxwub3lvfUUX9nlMGXJjj11W4q9wdw1ZkPvPV3RNjyniLbx+toujfGlnfWF/zdavq75uYQW99Xn7fteLSWpgdiJnFENm2XiRaVNwTY9v7CAY2v2cncyBJd3x1ENky/hHeb/o4d8LN9+TBHBkG244gWFrrtTzYQ3WduskX2eE1bGRZG4mQzWRrvKGxcbPtAA7HcIWxwm5vtTzYg+2Q6vzWAzWYShvK2TzTkyS7+difbn2wgvpgkMZuk8b6KNf6uuzUMmKSS7U825LXR6+9a5e9311F/l7lBY1Qp6GGV5JK5CNTdGs6T5JZ92Jg7mMsspREUO6rPDFpqDoXY9kTBh5vfUUPzA+Y4XJyMYxdyhBXMzD3bPlCwbX97Na0PVZpSatkssQP+/Jit2Ffkb6DtLVW0v7WKrmcGef2vO9n+ZEOe1BTe7TF9mDuXan2oEtUnmfJ6sjlmK28wD+yCW1x5f4OZ0WfXh5qovSlC7ICfre+rp+Zm09/eVoPtTzbk54iJzlnSRQdbW99bT32uX1fPER2P1VJ5IJj/fsvjdTTcnfN3bsxqHplX/+d53FUOtr6vHnejI+/vpgdiwMo5IpvMIir2FWN29RxRsddPeKeH4DY3+3+7nd0fbSr4+23VK+aIbDrLwKvmvVt3T8Scz3L7UavniMa7K8AGs0NLhHcu+9tcdpbniOGjUyyNJNj2/gaa7oqx6wNNBDpW+nt5jnj9r7s4/L8usPW99Wx5Ty07fr0R7yaj5BzR86N+Ji7MENsfoP7OKJE9Xpy1GtufbMjPEQe2HeQj7/0tqoK1SJLESy+9hK7r/N7v/R4b2MAGfvX4b//tv2Gz2Xj55ZfRVI0AFdwivZU7H7qNxrtz66EEHe+qpv5OcyPaLthIxTP05uQlG++J0HRf4SCh49Fqdn6wnsguN/52w8xs97RJCm28K0Lzg+Y6ZbPb6Hi0mm3va6DpzijeJp2G26LM5bIz1t4aovVNhXI3v6MKZ6VKJpnFVauz5bEa9JD5kFRzKEj7W8150xGT6Xismurr/Rz72266fjTMlsdqMCpVAKpvDLDp7aZt7ICf/b/VQtODUUjC0kSCLY/V4K4156zK6/xsfkeBRCM7RRS/OfdJboktj9XgbTbXhIp9XjoerTZ/K0Gg3c1U9zzJ6SSSDlseq8mTKCI73Wx5rIa620NUHwyw+Z1VNN1buNYtj9cS2mGuycGtbrY8XgsSHP90F7N9C3kfLttGdptrsq/dyc7faKT+tgiR3V4a7ozS8uZYUd/UENtvrsneFgdbHq8lnYLen4xRe1uYtrcUSN2b31FD5XWmrbtOJ7mUou8Vcy2qPhRaQS5qf3sV1Tea40PxicgOEdlh9k3VwQCbHimsU+1vraT2FnP9XpyKoweVPAkmdsBPx7sKsVXrQzHq74iwMJTgwrcHabkvhi8XR0b3eul4rDZv2/ymChrviRKfSbAwE2fL47X5uD28w2P6cNn2vgocwUJsuOXxWsI7PIBJrl/2N0DjPVGwwdKUOS47Hqslujfn71aDLY/XIrlN40w6i+YtPLh3vKsmH7e763W2PF6LHpBYGEqQSWXwtRTIKpseqc6TlpzVpq0jppBJZhEUgfa3F/n7bVVU52JOPSKz5fFaxs/NcOn7gxhhbUV82vaWSmpvM2NOxS/R9qYYU5dNUmHsoH8Fuab1oViejCXpNrY8XsvmR+tovjdGZPcqfz9YQdPdZrkjp6ZZGIsjiGa8Edpuju9lNN0bpfn+wvje9u56mnKxVmCTky2P1SDlzs6W54jOp4c4+dkeOh6tpuGuXLzX7DBtc/6uuz1kkgYzJikott9XGLP1a+eIUId5T217Xx37fqeZ6utNW6NSXTFHuGt0ZgcX6f6ROd63vq+WmkPm+NZD0po5QvNJpBNm3Nn2UAV1t5vtFZ0iHe+qxtukM3h4iuheL7v+YwMNd0TwNOo03x+l4c5wzt/mPCsbIq/+SSc2m/l523vriO710nRflMZ7Cs8oHe+qJrTNxZWfjDHdO0fHu6px1qtoAYnGuyN5f0uSwnt+7Qnu2fFW6mrr6O7u5k1vehPRaJSFhatIGbeBDWzgDcXS0hItLS3s3LmThYUFPG4f+30Pc1vLu9h2bzhPHolu0Wi63YUeND+nkxlmc/GR6hVovduLkSMhhTdrbHqzj033m3sc7kqZkXMLLIykEA2TZOSslMBuI9Cus+kBLw03eajaZ1B3gws1dzgvqtB6pxd3rRnn+JtVWu/2kUxkSCUy1Bx0Ub0/9yAvQutdXnz15l5D9QGD1nv8DByf4/V/GMDX4KDmeneemNR6tw9/sznHbntnkJ3viSCqMN2doPIag7qbCoTy5nv8BDocYLeheOzIuoCYW7Jje5zUH8rZZrI03eUnvMWBs1LGiIjYgNHT5hpXscug4bZC1t7GO3xEtxvU3eSj+Z4ArfcF0HL+jWw3aLqz8DJUw20+KnY7me6Jc/obI4TaDYwKkWw2S3iLg+Z7Crb1t/hovjtIy/1B09/3BXBVm34JtOu03OvPE3DqDnmpOuBm4PAMZKD1/iDeetMv/haN1vsLpA9fg8Z0/yJ9L5nkiNb7g/hy5BVvg2ra5jb3ZUPAiBUOq1rvCxJoM9cpd41pK+qQmE2RzmSp2FF4oanlngChzWYs64zJtN5vSoQNHJklk8yu8GHTXX7C28wx4AiZmXcy6QxLU0kqdjlpuqPgl6Y7/FTsMuMc1WfaLmdMCm8zaLprpb9je1xks1kUl4CrSiW1aO55BTfrK/xdd8hLbJ/Z/nQyhSDZUJzmKUygVaPlvgIBvPYGD1UHzLV/YTyBKNvwNpj+9jWptBbZVl/npuZ6N8m5DNlMlsh2Z54s5Kk3bUXzp1QecFN7o4euH09y7lsjtNzrJ9Bu+ttVrZi2uVslts+FI6CYEm0iNN/tJ9Rh+tuoEGm9L4DiNjuyYreTtoeC1B8ybZru9BPZbhakBU1bNUeYG7+4QKKIkNdwm4+KXaat6jFtjYhpW3ODm7obfVTsMfuj/hYfsb2mD5fHrOaTOfnFYWSnQPM9/vxv627yUpnzoaiatu5alXQyg6DYV/iw5noP1dfmSHX2LNEtBr5ak7S48/EoHW8L5cds9bWmv4sxcNQc66EtGm0P+gr+3mdQd0PBtvYGFza7jaXJNM5Kida7faa/M1liuw3qb3Iz05dkaTJF020emm/z0XqPHyMs0nqXF9VjjpeKHToNN7u59OMZTn55nMab3TTc7KT9Pi96SKT1Lg9aQASbjchWB023ehg8tcDImXn8DRoVOx146yQUJ7Te6c77rL1xKx98x2/TGNqOpmk8++yz6LrOn/7pn7KBDWzgV4+nn34ah8PBn/zJn6AoCjWBa7h5839i995txJoLdvXbbVTk3je2C5BYzDLVax7Qh1sEYpsKJ/51OwTaDgr4YqB7TDnYvnOmbahRoHJzzlawU7tLYtNBkfqdEpoLqjcL+awowVobVe0FIkT1dgmHVyCdtqG6BOr3Kii59cRfY6N6q1murEHdLoFgg8D55xbpPRan7hoFzQPYbPhqRWp2mc/B7pjAjgd0KreZv12czlK3R8qTMjzVArX7tDy5RvPY0Tzmc70gQN0+FSNo2rqCWequdaC6BRDAUykxPZgiHTeJSXUHNJw5EoUzIlB3QMPXKFF7jYOaa1Qqthf2YOquNXBXm210hATqrjMQZOh6YY6p3gSxnTlbm43a/Q68Naat5hdovs2g4aATX71MsEWhcmeh3JprdHz1MggCmsdO3bUaCDB+KUmgUaJyl5q3rdql4m8wy5WdkEpkGTi1aPqwTqR6d8G2codCsMm0lXRQ3SKCbPadr0ak9hotT06KbVEItZi2C1NpdK8dx7K/YwJ11xTKreiQCbdJJBah91icWIeKM5Tzd1Sgbl/BNrpZJrpZZnEqQ3w+Td0+FVfuxQBnSKDuGiVPTAm3SjhDBRpC3V4FT8z80uG3U3eNgpA7Wwq1iNgFiM+bY7h2j4Kv2rTVPFB3jYKcc3E2DUoRIa96l4Kv1rRVXTlbA9IJSKcyuItINZU7FAI5Qp1smLaaGzKpLKIMNbsLsWzlNjlPcBI003ZhOkPXy4uIMtTuLfgltkUh1Gr6W5Cheo/KQi6Dkrs658McYaZii0JkU64eAeoOaLTe7KB2r5ofs8uIbJaJbjHrmR9NMzeSwpa7HCNk2i6rL4bbZSqKiGOb73JSf60ZG+r+nG3u62CLRGy7wuj5JF0/W6Rmr0qkIze+PTbTh7n9sWCjSOV2hTSQTmcJNEj4G8zYRHGa96eS21b0VdvwVpo+q79GZts9GsH63JyhQ91e2ZwjAMMvMDOSYvicGW837BUINQp5H9bvFtFzj1yeSjvOoJDPIBVrFwg35WwzKep3CBh+U/bNHYb26wUad4sYfqhoF4i2FsZA/S4R1YCTz2VIJs15t3G3DV8Moo0QazHtsoJA3S5TTq73VIqpwRT1OwU0tzn/heugMmcrCAL33flr3H/jh2mob6a7u5ubbrqJPXv2sLj4q1cC+LeCDZJSCezYsQO/38/8vLmh8K53vot33fduXDYful9B9cjILnPmdIRVjJBG6wPmZr0oCwg5hq4WkFE9cp5cZERURF1E0kRkw47qV3BEzMlFcZvlqn4ZIyZjRFRkTWTo6ASdTw2g+RUcYdNWdoioHhktoNDyYCXhbV5Uj8zrf9XFqb/vQQ8p6FFzprHrpq0jpNJwdxRfnQvVY36XmEighxS0cGEiVT0yRi4bUWopvYKlqYVV9JCywjaw2WMSF5ImeSG5kC1pq3llojt9tDxQhatGQ/XIKC4h70PNX2TrM6//wrf6GDs5adq6ze+NqIZaZKuHVMLbPMgGqA7T15qv0Dear6i9foWl6QRdPxhAcpq2eq4sR0TN/w4ZnFU6/txhjeywmbYh00/OsIbmLdg6giqClPOTbJa7fNjkCGn5/icBqeK3sOWV/naEVHNsyXYGXhonsZDCESr0jeaRcYZztkHT1tuk03B3FD2qoAWLrtUr58eWFjLH1tjpWY596hJGREMLFPW5r9AGzVcYr2COWa0o44TmVzCWy/UqCLKdgVzGA6NCQ/UWfqsF1PyYFQ0J1atQcY0v7+8VtkEFR27M9v90FJvdhiNY5O+iNjlCKnquDcf/8iKiLOT95IiYflkmzehhFT2sMnx4isRcZqW/g7m+keW8rSOo4qzV2Peb7Wh+Je9vfblvHGY/6xEFu2Cn/+Ux+n8+juYr+HvNHBFSUf0KDXdH2fHBRrNvcn5ZPUfYbDbSyQxd3zPfhreaI5b7xhFWaX+oOt83peaIk5/vZq5/EdUjmyQ3Gcs5YvrKIulkBlEu0IdLzRGK0/xtZIt3xXhZfd/LushU5xxLIwmcVRqaX0FdvvYSc8T82BIXnupHCyjrzhGKR0HURDSXUnKOSMzBua/2ofkUPI0OGm6roPLaYMk5omVsF5snrmXr1q0kEgk+9rGP0dDQwJEjR9jABjbwy8fhw4dRFIXf//3fB6C6spYPffDDbJcOAua9ujwXShI4QgqhDi++NgM9qOTJCHnbojlL9yuIqrlOOIIKekAhK5hznCOi4oyo2Ow2tICE7leYH1ni4ncH0QKmrZR7JjQiCo6whuKT2PreWvSgguyQOPKJS5DEtDWkvO3y/Nb+cDXOqIYR1UhOJ1HdEnpAQc0RG4ywip5b78bOzpDNguww5z7JyNn6cpslYQU9qBDZaW6MZ5YypHNvGMuGDT3XZgAjpKL7FdoeqmTrO2txRsz1cNmJeqDQRkdYRQ8oXP7+CN0/HkbSxAKhWjKvbbmNjpCCEdXyBBY9oubXVVgZJzgCCpIiMHBknKHDkziiCka42FbFETbbULkvgFGh5X/rjKg4im2DCs5cmxSf2VeLo/GCbVG85AiqGFHz81TnPJlUJn/gYkQL/gbQw2bfAPS+MIaoCPn1xhFRVsRARljDEVGpPhTC1+LI+aXI36ttwyon/rab4Vcmcv5WV/g7396oiqAU4m09UFjP9Vy5Ui7OdIRVUgtp+l8cz9sauXL13PiWcpdnRFXctQZGZS7GCyg4Ikq+n/SAgqCbY2txPIGkF639RT5U3CJ6QEFxSnQ+Pcj88GI+RgMzznHmYxVzbCleieHXpsw4sig+dYS1vK2kmeVqfplNj1RTfSCE5i8uV8vHhvac7WTXHGe+egUjssrfEQ09qkI2g5Qbs0alwo4P1ONvc5q2Ob6WI1KYT8Akc830zOf8nbuHJClv6yyy1QMK4a1emu+L5u+3whxhjtmFkSRHPn4JxSnhCJv3q+aVLOeIiYuzZMnmx2HJOSL3PBPZ6cYIqfhbzWeUUnMEwJkvmllg3XUO/Lnsl8tzxPKYNsIqdsFG30sTTHUuYERUjIqVc4Qj13fLfhF1O5JqXznP5ucIheHXpknHzc/Nd1Sw+ZFq099Fc7Lml4lVhWns38u1m24kEAgwNDREVVUVt956KxvYwAZ+NXj88cfRNI0LFy4ANn7t4Xfwa3e8B6foRzZAD0gouTey9YCEr1qh4UYPAJIuYLebb/RKuh09ICHniBl6QEJ1Coi6HdEAR0DCkZujREVED0koLgnVI+AIiMhOid5XZul9aQ5HUMII5p6LRZOIqXlEKnYZRLcZ6EGJS89Mc+nZaYywjCNYeA7VgxKqVyS8WSPSYeDIZXVJzYEjKGMUPXfqQQktR66Iz6axCWZ9AEZQxpEjlGK34QjK+Bs0ECGTtpFOZEjlVC0dQRlHWMpnTXGEZIIdBi13BzEqNfSgnH+JTw8qOEJFexpBGT0k0/m9UYZen0EPyihOMWcroxddmysmU7HThaiay5MelJGNnK1fzs/VAEZIZmE8Qffzk4iyiB40syqZthJ6oFBuqN0gtCnXyXazTVqOJKb5ivwrgiMsI8r2wuegjJbrV80r4QjK+TeQl6ZWZmRwBCX0XEZL1S2atpLI5KUlliZSBX8v+zRXr5KzdUREKna7cISlNT5ctpWdpu3cQIKz3xjN+zff56EiW10w/9u+tpzlfjTC5mdBAUkVGD5lxgmOwGpbCWeuHkEScYRlwh3mSY7ml3EEpJXl5l5kGz01B9jQvAV/60E5T5oxwoUxe/KLw0iKgJrzoeY2+3W5/UauvdPdS6QWQA/IK/ytB+X8/o4RMse34hbZ8VgFrkoFPddGxZDMMasV2iupAld+PsnIyfkV41J2mOUqRu6+z/kwvM3BpodCOEIyjlz7Jd1mjtlcRmy7YCcVTzPw6mzeh8tjQFRy5ebGrCMg4anRaL7HJBQ5QsVzhB09KKN5RXpemGKyewk9KJlkLtH0oSNcPEfIqB6RpckUqaUMklY4pHIE5Xy5y7aS02xTbKcTV1QpmiOUFWNWc4lMdC6yNJVC94u4qpU82dIRkHAEi8e3xMxQnO6fTiM7RfSgVJgjArJpmyMRmveNjKQLSIrNnJNzB7F6wPwtKbjyojl3uqtlGm50E9lumLbLc7JPRA9INHANWzMPsH3rTpLJJB/96EdpaGjgxIkTbGADG/jlY2hoiIaGBu655x4WFhaoibXwH973m7REzexmhseG7insCbjDNmKtAq4wKIYNUbCZS6tgx+Gx4/AV7YF5bCi6DcVhQ3GA4bch2NP57xx+AQRTKsnhtTE7kaXraBJJBcNvz5NDdLc9/7lhn4wzYEdxCpx7IUkqAYbPjqSstAVouEbCXyWge03igCCDERDy+wuay46RI8XMjabJZsxMmwCCZNoux5yaR8QICrhzBJbkkpkNDzDn9oCA4rRBIonqFjBCEo03GTRe78zFnMuELDBCEqprmbBi2k5fTnL5Z7OIsh1HoLD/4QiJeVvFEPDVywRacs/NftG0zZ2ROkJinmCqOOwoDpH+1+eZ6Erg8Is4QsXlSmg50r+/USLQIKN7c/OzV8BZ1AYjKKLlvpNUASMg5jOr614hT84C0w/LWXTmR9Ok4xlk3ewP1S3gCBavcULeL0On44iyPU82U912HIEiW7+Awy/iqxNxBYWCvwHVZccostV9Zrndrywx1pXGCIioblvOhzaMgJgnzTj8ApKjaMwGBFS3PefDnG3OFQ6PQGIxy0R3Ov/bZVvZYfolP2a9At4qEc1d5BfPSh9Kqvnb2dEskl5ov7PIh+Y4FBE1gdHOFNOD6TyRa7m9y59F0bSVNTvT/WlUl7DShwE7RvE4DAgoBlRuV6jboxV8KNhz5dqXTTECApO9Cbp+Pl/w97IPfTnb3Dg0guY4bLxRx1stYgTFwp6Xb+V4SScyTF6J5/xt1iPkbcUV/WoEBWIdKrHtCpJutkEQc+f9HnNMpBfh/DOLqIaA5hZxx8zs26a/C+N7+b6fGkyTzWbRc/NWfo7IxWKay44j129G0Ia/WsJflbMVzblHycVLmtOOzQbdx1Jgs+GvEQjUFvnbb0PNzSeqYUOUbVw5lWJuHBweO0Ygl1VJyJVr2LElU6gOMHw2ZM2GJOfmzqI52fDaUN0Cs2OQjJtzZ3WHSOteOw63DYd3pa3X76DB+TDX7fg1IuEIhw8fpqKigscee4wNrIUtW0q8/N8p/uIv/oInn3wy/9mJl722QyVtg9vczA4ssjSSIHbAz9SlWeaHSotA1t4Sxl3n4PW/6lq3DcFtbpruijF0bJKu7w6ua7/rQ2bGkyN/enFdWzCz3ZSTgQt0uAi0ujj31fISZwCOiMzWdzcy27+Ql1gqB9mA6psq6HxqoKxdx6O1nPxiN5SXUgeg5cFKPI0Gr/zRubJ27kYH01fmr6pMgI531jJ6bpqhV8unQd7z0RZSiTSvfaJz3TIb76ug83sD67bBVacTaHPT9czgurab31GDq9rBi398Zl1bb6tBcjZhZiBaB/t/r52ZK/Nl5QoBkCHY6mK6a4bEOqonO369EcUp8dIfnl23/kCHC2dUKztWlxHc5kaQ7ev2Veygn+rrwpz76hUmL5Rv7Nb31XPlJyNMnltfymW5vWMny8sHtj5UiavG4NWPn7uqcVh/Z5TFyTiDL1nr1rvqdNy1DnqfG7W0WYbsk9n1gUbmBhfLSjcuw1mrUX1tiNNfsB4D7kYHsi6sK50IZvasir1+zn2td13/A+z73TaWZpIc++T691Z4t4eKPQGO/XWnpW/r74zm59TYQX9esm81RrL9LDaOcbHTnFNra2u5fHl9f21gAxv4p6G9vZ2zZ811wYaNndyEVyqdrj+yy83QEfOt1qqDfnot7mNJh7a31tD709G8DFExspkstqKUx1vfW4vsEDj8p5fKtjWbyeJtdtByX4zuHw8zlHvDthwCm5wsTsWZL7P2tj0co+fHIyyMrZ+muOOd1TiiKkc/caGsFNwyKq/zM3FxhoUh67Kje73YRTv9P1t/LZF0G1vf28jYuRm6f1B+jfa2OMpK7622rdjt5/QXrpS187U7ab4nxqXvDzL6enn/h3d4SMwnr6oN1TcGme6ZZ7prfade89utzI8scvKz5WMkSbdhVOlMds2vkAwshfa3V+GqcvDyx8rHswB6WELSJaYvl2+rpNvY9RstjJ2e5uJT6zxTSFBzfYjRU1MsWDzPFMqF2HXhdfsfyEvDvfap8vdWZLcXV7XGha+Xf0b4/9n78/DIrureG/9U1Tmn5nlUVakklWZ1Sz13u7s9tN22sY2xsbGNg5kDBEKAkPHmd3PzhHtv8t43uUlIQkggzPNsMGADxgYMHnueW93qQWqpNc+lqcb3j1NVKqmr6mwR8ws4+j6Pn8e21jm1z9r7rL3PXt/9XaVtMHrMJPornETS6UGGHe9tYvTUdFGFSOueza+JcPqrA1XtGu4IcOmpEc0+BVVxzRY2c+jfLgmVdmu5t4bhY9NVyzhXi32rse1346STWY594jLAiri3Gg13BAh2Ojn99QFmBMpIb3xzjPHuWQYrlAiyhGRsITMjR2ewBGQUh8xUT/n7jjSf41J/DzMzM+h0Oj73uc/xxje+UfsB17GOdawZTz/9NHfeeSfJpBrr/UoDW113lLW1hyVS82kWp8ATl5kfT7M4VV6C39dmwttgovuJqWv/mMmuKDVhC0m0vdrL4PE5Bg5U+S7Mk3/a7/NiUHSc/LpY7AtuMDF8ovJJVVtQwttsofcXq75hC2XeStoqmWHTG8PM9C9x/okKv19a2kmCyDYHAy9W/z6O3+6h75kJodJg4R12/O1Wjn1pCNJcU96tAItfIjmbvuaeBcWg1dc13OxmdmiJsTPVY/7Gh4OQg5Nf1Z73IzsdDB+f0Xwuk0fCEzdz9egsVKmMAlB/kwt/h40jn+7XvK8tJJFeRFUK0sD2d0eY7l2s3K8FSOAIGVkYT2r+fus9XmxBI4f+XXs9YwtL2IMmBo9o743YoypZZeJc9RPY7kYT8f0ezv9gnJl8MqoSmu/yMnR8ltl+sU1Se1TRtA3vtONrtXL660NCYzvQaSWbyTF2uvIYNHkknFEjw8e11/OSCTa9Jczs1SXOfbdMv65aBxmdEpFtdi4+XXkv0eSVMDokpi9r+8nbYqLueifnfzTBbH/qmt9bjc1v9JOcy3D60VV7fmXK5NjDEtFtds4/OVnet7kcNZstDB5X+93XYmTsXPkxMJseZ8x7lPM958nlcuzcuZOf/exnmEymsvbrWMc6/mN461vfymc/+1kAFMnK9vo3YjOX3/NyhVQFEAB/OMNYb658mSIDxLcYGL28XIZoBdKZFdfFtxuwuvSc+LHGN2kqjdkJzXvNXDmZZLL6pzEAVjdkF1IszlaOeZFOmdFLqWtzR4USTSXxsna7EU+tzMnHE2QqTWWFMm96Pe46ifnJNEtVll6OiAHZrGe8W2ByMkDr7Q6mriQZPpm3r1C+zOIzMD9WpSSaYZn8YXbrCbQa6X2h+lxudulpvsVG70vzTA9UL7dmDxnIZlSiElB13vHUG1iczTE/Xr2UKkDna6zMTWS5+Gz1thoMqqrq3FRWs3xdpEvB3yhz9FHt+VyxqESWhSkNQwNsvsfK6IUUA8c15mkDeOsMJEYzLM1q39ffIDHao72ebLzehEHRce6p6utpe8iAIyQxcHTVoC6UVFs9xgxgsqGWiSuHXA4M0H6bjfHLSUbOCqznDBDdbKL/cPU1or9FZuJCamUF7Arl0qJbjHjrJM78cG65tFuhfbDiHQAItUnMjKSZr5zuxFNnYFwg9gA071XZVud/kX9+uXJJP18Moh0S519MM1e69MtkyZW5rr4LZsZhokJbjEoGsxOmxg1ICpiskKiwpJzgBXp6DzI1NYXVauVb3/rW+iG9EqwrKQGJRAK73V4kKOkxcCP3VCQoKTZoenWEttep6kkDz45XJCgB2GvMK9RdqmH06DQzfXP0P1N5A8Beby6WoTr40fNVCUqOBgvX/bf2YpkwLdJH9Ho/7ia7UFvnhpL0/nxYJRRVQev9UZxNVpIJNAlKkRu92CMWont8Ve0K6P5WvyZBCaD9gVp2/F6Lpl0BJz53WZP0AjDTN8dMn/ZGfu3NfoJdbsLbvJq2sev9hLa4CwI/VXHy872c+OIlMULXvVHaH6rXNlwDQpvdtNxbi3+T9nOd/lofh/5Zm6AEENsXILTNo20IxF9VQ+yGgKbd6OFJFieXSC1oJ4mOffyiMEGpbn+AlnujxXesEs5+vZ+X/q8YQQnA3+kksqv6PWcuzRcJShveWFcsXVcOyQn1fT3+BTHCTd0NARwxK6ZA5YE43TOnEpQU2PUnbXSUlNBZjd6nRnj+/55RCUoKxbKBlTByYor+Z7WTigCeBlvx5GklFAhKjgYLdTcG6XikfFsDugh1FzYRRP375cuXiUQi/NVf/ZVQW9axjnWI4W//9m/R6XRFglIdbdwqv74iQan9oQj1Nwcw50/7aiXpTU4ZV+O1QTGXvTaxM3hggsFDU1XvV7ffBzJMnpvjhQ+fq0pQ6nh9hO3vU8kZY6dmqxKULCEZZ72V6F6xdc+JL/dx+cfDVQlKslMulmDr//l4VYISQHibm/B2d1WbAlLzOQ7+43lNgkrtjT7a7q8tli3TwmT3nCZBCSA5k2Z+bJHR09oEsdob/DTdGda0Awjv8BK7SXstAXDoI2c5+6h28im4zUP762K46qxC9xVFx4N1tNwb0bRLzec4/rlL2gQlQLbIhHd4iOzUXs8FtngJb/MUSwBWw0zffLGcWzUMHZgUJigBbHpnM+0PRKsbpeDAh3uECEoAoe1enPVWfJ32qnaXfqASlFxNFupvrz5mTn7livq+ChCUZItaQjq6t/r6txD7ojd42fkHTcUScuVw6KMXiwSlyB6PWiakAvqfn2DywpwQQUm2gMktYwtWTmbND6UYOaruFDfdHab13kjxZN9qBM63sHVmPxIyuVyOd7zjHbS1tZFKCTDB1rGOdQghnU6zYcMG9u/fTzKZxKizsN/ztooEJSRouc1FQ75c0kTPYkWCEoDVK2FyS0jGVX/IXJsISQylGb+wwPCJyt/bJocB/0YL6HWc+c5EVYKSyS2x+Y1+ghtVCZhqBCWAmnzpLKk0hGUyxdIipUgvwOWfTXL+yeoEpfBOO/awqmyiRVByN5rwxM1428TWB1cPzHLsc0OaZJ7mu/xseOjab+xcLleW2HTpJ5OaBCWAqd5Fpvu1k3qeFjOR7U68LdrPFeq0EdnhXNkHFXD5Z1OcECS9NL7Kv6JU3ssBR8hI2z0BPM3WigSxAi48Pc6xz4utZyI7XIS3O7QNgYabPUR3aa+7JnsXmRtJklrQyBQC5x8fFyYoeVrMtL7GT7Cret9efWmW458X6yuA0BY7oU1VNrGAxYl0kaBUf7MLyVLZNr0Il38yyTkRQiEQ6rLijpsxuSuvjxbH00WCUudv+Ynvr9wP4+cWOfy5YZWgJEF4a3V/DR6bY+hYmXVymXHmiOQVmioNQZ2OwaPq+2y0Q/31duK3lF/T2iUvDdP7abXsAeCll14iHo/zj//4j1Xbu451rGNtePLJJ7FYLHz2s59Fh4728J3sa/9gRYJSpBUaNukx5cNiRYJSHma7Dpu7DCklfe0cMHIpw5AG4cIfzYFiYCFh4PiPqxOUIh0G2m+WwQBzk1QlKBnM4K2T8MdXfQym0mXXXleOLHH5pYWqBCWDSU9kmzohTPZWJygBBFtNBNsEiZgZ6H5iZpmgVAHOWomWW+3F0m/XYBU5Y2Eyq0lQArWM1uxImsSo9lxes9FI3Q6x54p0mgi1r16ol8fpx+foPazRVp0OW41Eyz4Ldp+huu0aUbfDTMPuKhN+ARk4/eScNkEJVZCodpMJX4N2wtURNBDdZMIV1X6umeE001fTFYlsBcwOZa4lKIH6jpe5tuVmC/HrNdbUGTjzg4QYQQm1vJ+3QSkqlVXC6DmVoGR26Yql68p90wH0H1/i8oHFlQQlUJ9Jp2MF08kAvgaZYHP1PpjoVa9xhXVsvF0pKn+Vw/lnU5x/IQU6Ha6IHsVYOc5NDsBoX3YlQanQ3NS111mceixVlupLSQPTeVJprF1H0zb96te+CA/XsS36HlyWKHNzc9x9993s3LmzeHDovzr+yyspPfDAA3zzm98s/ncLm4jpmsva+rscjJ6dgSSEd3u5emgcUrqyHxDBHS68LQ5Of1E74eJusdH2ulr6XxgTUkTZ8cEWJJNBSJEGBXa8t4VLPx6qqvSi2PQkE/mSIR6F5ETlF6Th9iCOOivH/l1bGQoFdv9hOwtTSY7+a/VT1AWYAgqLI9Vf0I43xlDssvA9g9tcoIfhA1NV7Ta9Mw4g9mxrhL/LIaQ4A3nlpx4x9QFRBHe4yC5lhdogqqSk2KBmV4DBI1NVx8xaYQ0ppBJJTXUmUN+fycsJYfKPKEI73dTtC3Lko+eK70YltN4fpftb2upjAJG9XiLX+Xjpn7urtlnrPSyFt8NO6321jJ6e5vyj2lRjf5eD2psCmgpghXdRsaHZF1ve28hE9yy9Px7R/P2OR2K46m2c/NJlZjSUIFBg1++3MT+yKKTY5myyUndjoLxalE6N15EbvQy8MA5J9b2oFBeSuSQTGy9y5swZMpkMZrOZs2fPEotVJmOtYx3rqI6xsTEaGhpIJNSgYsTCbu5Elst/2Ps67YydmAUZgp1Ohg9XIQf9VpTLPxnWJOUAbHgkismtcOgj2vO9q8lC2/0RRk/O0PO9IU372M0+nDELJz5bZQ1YeNyUWr5saaJKm2XY/LYGLv14WEjpp/k1NXg77Jz8Yh8JgaQSuSyyU65KpJAtOja9o4nLPxnWVA4sIH5nqFi+tBKMXpmuN9Vz4UdDTJzWOs60NsgWMPkszAqQyWWLDr1ZYmn85SNFyE6ZwEYHAy+Nv6xKSr6NdrJZXnZ/2WNivoK1qWStBZ1vqyezlOH0l65UtRNWydKpm7qbfrue+ZElzn+3OmFL810swaZ31GNyyrz4d2Jqtp1viTF+bparz1c+BFH6+7KFqmRE3wY7tTf4OPLJS0KqTtf9cQuLMymO/ftlTdvaG73UbHdz6it9zF3VXou2vi7MyMnpiv0hW8Dd4mDk6AyyBWwRS1mVO4DZyDB9yW6uXlWTvO9617v42Mc+ptmGdaxjHZXxV3/1V/yP//E/8gQLHRvttxAxlz/AZQ9LLEyoajyeuMJMf5J0etUGcx6OqIS30cKln1VYF+j0kFWvM3kkOl7jYeBwguETGnONTkfHa92YnBKHP6P9bYkEG+7x0n9ghuneyjFLMlEkT8g2SJV+3+ZWfu/7Nljw1Js5930NlZ086WHL22tYnEpz5ltixFjZpielsccQu96Jxa9w9lH1nlpbt46oWpZTS22n6Q5Vmar7sXLSC/8xOKJGZvqrn84uwBqQmBvRPqG+Fjjr1ETddK/2+nctSkrBDivjF+dIl4wZnUYySgtGp0Rm6Vrlq3KwhSQWp8Rs1wJnnZH6m9yc+tbQimcrh+geJ/3PaR8SAHDFTdTucXLmG8NV2yzZ0PzdAsx+iY77g4yeStD3C+122MISsT1uTn97dCXBb1UyXLbpSCVyxVJ7FcmAOj0td3mYHVxk8IjAQdU9doIbrHT/YILZAe2FWtdv+VgYT3P+R1P5dhquiUsFmNwS0W1Wen5cxg8GA2RzeBoVJnqTkAZXvczU5fJtSKfTjIYPcKb7FKlUCr/fz+HDh4lGNQ4DrGMd66iIhYUF9u7dy5EjRwBwW+rYWv8GDBWy13YvzOanoqKSkkGHLnXt2qt2g57R3iyLFWJnTtIXr4tuMODw6zj9s3RlgmMeRoee9r0GRi9mGDijTY7xRHW4QgYuHs6gW6oc4wwGdQlpMEMmvzzJ5ePwalJA4/Vmhs4kmRuv8PuFeTeVxt+mEO40ce7HcyxMarQ3T5QwmCEzX8UReQWlweMLzBTitsZcH+gwMnK6HPFkua8NCrTst9F/ZIHZIYG2rgUGlay2ILBFZzCobbmGTLJWlLTRoKiEnpmrmXKfCiuwFiUlq1eP3qBjdkR7LK4FJgcsim1nYvXqmRNQnboGGuv12HYjOh30Hlg1blYRqe1BA9lsiUqWxu817DGzlMhy9Xj1dXjxXRQYaw17zNj8Bk58L6EqZVUhTYL6bImxdLFUXxH65esMCmSS1/57OZj9BiIdskpCEhgKG29XSM7nOPdiTrMfXCGIbZQ4/1K6+P7kZANkyl8XaYWZseVYXYqc0YAum8HhgZlRwABWO8xNlf/tJfq5MP4U/f1X0Ov1/PVf/zV/+qd/qv2Ar2D8l1VS6unpQZblIkHJgp1bdQ9UJCgpHoXm10TpelMDAFefzxOUKqBmmxdHrVVIkWjycoLkXIrEQPVZQsnXnz722cuc+EL1pFrj3TW422yQhAP/cK5qQim6z8e2D7SpRB7QJEbYYxaMLoEHA0jC8U9f0CQT+Tc7iwQhLYISgKQY0EvawVTxqO0cPjSlSVAqQmA9oHgUtv5eE7ZaMQYyIExQAoQJSjv/uI26W8VO/g8fmFpTG0SQTKgKOaJkmh0fbKH5Pu3T/3NDYgQlQFXmWQNBqf31tbQ9qP3BvTSlLkitYW3mdoGgVBhv1ZBJZdEZdNjD5qp2BZ+GdrrpentDVdvx07Mc/9wFIYISgLPehmKVq6okwfK7uPl3WtnxwepKZEf+5UKRoNTxxljV2Hf6i32c/25/kaBUTQGKJCxOJVUimgAi13mxhkyV+0KnU0u9JVUSVuPtYTrfWl/WVNEphE610ZrZBqgfmps3b+b+++8Xass61rGOlXjrW9+K3+8vEpQ2cxM3yvdUJChteCRK4x0hZKcEKaoSlMw+GXvETM1WMRW+6b4FFsa1y1qBqp7U/e2BqgQl2QIt96mqPX0/GatOUAK2v6uRre9Q1z1apAiLV8Zol3DWVp83Cjj/3UGOf/aSJkFpwyNRPB1qANZSejH5zOgMOrIp7Y902an2pxZBCcDiU2P14oR2Qqvl3jBNd1dX4StFah5h0k1qPidEUGp+TQ1b3t0ods/pFAPPahOU1oqxk7PCBKXYzX62v69JyFbUV8CaCEr2mIVN72wovk8vB4YPTxXbUBhv1aCXdUgm7QV+4V3sfHMMZ7x6g4999jJHP31Zu7EAMphcCs5o9Xe48PvBrU62va+FwJbKp/XHTs1y5N9UgpKnw0bspurKESe/3Mepz18il81p9kVicIHF6bQQQQkZnHUWarZWVmNLzVNUVWp9XS0tr41UbIN9IMiG0Rux40Kn0/GJT3yCuro6Bge1FcHWsY51rMTU1BR+v58///M/J5fL4ZYjvCrw7ooEJckELbe7iO9Tj4xOXMwTlCog0GbFXWdcTu6XQrdyq3FxIs3CVJp5jX0DyaweKjn3xARnvlelDgAQ6rLgrFXVi059a7wqQcnTaGLTG0N4GlUSSzWCEqjqOWaPVP7ZCihJJpz82jBnHqtOULKFJVpe483/vvZ6SjIZMAjseRWUZWb6lzQJSgWIEGwkE3S8zo81UF2xuBSiBCVAmKDU9cYQ4a3V1XYKmO5dFCIorQlpGD4+J0ym2fBggNj12qpHS9PipKPE0NoIStG9TupuEmjDbIYcYBbY3y0QlCSBrsimc+j1ehRH9bFT8Kmz3qSpgLUwmubU14eFCEoAtqAJo0PCtLoNq5KAqYT63xvvD9D5QJW91VyWc49PFAlK9Tc5qiqBXXlulnNPjDN7JQk6naZq2PxYmpnBVTFMVz5lE2gz4YwaMVY63a/XMXFBJShJJmjc56T59vLGkiRRM7KbbbZ70WNgdHSUzs5O3vve91Zv8DrWsY6y+NjHPobNZuPIkSMY9EZ2tr6THY1vqkhQim2Apm16pHwYLhCUysGggDusxxst//ectDJmJCYyzE/nqhKUDAZAr2dpKsP555LVCUoGVUEJYOIqmgSl5huNNN2oBj8tgpLBDCanHks5ZShYQVACGD2b5MwTM5oEpegOM/aQYUUbKkGx6NFLOnJZ7TWaIf9Zr0VQKtwX0FY51OkIdiiENgrmXAEyCBGUQCWLiRCUAq0yzTeL7T1mkjB5RZugtFbMjWeFCUqemIG228TaK0pQKrRBFIoN4ntNGBQ0yT8VpvZrSNSzw5kiQckgMCT0EugV7fV94T2I7TBh9VdXVLr03ALdP0osE4QqqCkVYHHrsZVT7y55pwqkJJtfx4ZXmXFVUXVaGM1w/lmVoGRxgb+henvP/SLJhZdSkEprfkMtzcPcdO7a96dC/PWE9fgqxF6AnN6gEpSAujZo2a6v2G9GonR430LUv4NcLsef/dmf0dLSwsRE9W/fVzLEvzZfQbj11lt56qmniv99Hbdi07vLMuzcLTYmzyVITiQZPDDOpZ8OVww2tohCoMvDxSeGOPpvF9TEe6V9EgW2/k4TV342wujxGQ79U3VFk443xnDGrBz6twskJ5Ikq41ZBQKdLpz1VibPVr8vwMjBCXxtToZPTFU3VFBJR5/QLhflbLLSck+EY5+5XLUUXgGBjS4sPuMKRadqKKuSUgab36aSO176u24he1EFpUCXA6NDQafBIAVoeyCKM27jyEfPahJvovt8RHb6OPXFiySqlIeBPCEmmyNbgeG5wtYGHY800v/cqLACgig631xPYmhBs5RgAXpBVvimd8YxmPSaaj+FNpiDJl76W20FAlvYTCatPcYmzyWESgkWEL8zRGirh+5HrzBeJXk49NKkUCnBAvwdTiwBY/H9q4TEFXVh3PFwLZJFqvqO9Dx2dbn0osZ9ASZ6ZskISIaDSjh01dmI31bDxe9XTigVCHOb3hXH7DHywt+fqdiOYx9ffi+3/l4Tg4cmGHy+fBA8/YW+ogqVKaAQ3uG9th35Mbg4kmTgxTEGX1BPkbrbbGXL/IX1dYSpY3ZrH0dPHOXRRx9FlmUOHjzIpk2bKj7jOtaxDhWDg4PE43EWF9XddS81bJVvqmjvqLcwc3mec98bxtdmIzVdOYlRt9/P1YOTLIylOPzR81WVR0Lbnfg3OjnxmT76f1791LRsgS3vbmJ2YIHTX+5n4mx1UkZsXxBviw1n3CKkdjR2boZsWkDMVFbLJomotWx8Uy0L40kuPK6tJiU7ZWwhM77WNBOntNcFs33zHPiHc5p2vo12mu+O0PuzEa5WiNOlmOye40C3mBKNLWIWWvOASoqe7k1w7lvaJTe2vLuRpaklTn9FQBFxDQfbYjf7MXnkNZUxE4Fvo52abR5OfLa62iVALqNuSmqp8oBKJmp7XZTLTw8zeqx6Akh2ymx5RwPDx6Y0FRT1EpjdRtxtTkaqEA0BToiSfvLY8fvNZJJZDn+0wmGIfOL5yL+JfTeA+myWgJHARmf1dzmlkoqMHpmND9dy5ltXKr93KTjwjyXrWZmq5LWJs9MEupyMnBRLxNXd6Ee2SPT9rHJcK5AWLQGZrrc0MN49W5F4OXl+nsnzlwHwd9oJbfdw4gu95ducgiP/1lMcX7GbfQwfm65Ivuz+5hUCmz1Fe3vMxGzftZnX6+Q7SDkX6Hedoqenh3A4zEMPPcRXv/rVis+4jnWsYxl/+qd/yt/8zd8AoEdij/8hbJKbXJnNZYtfYn5UJUFcOZBg4sLiNRvlBcg28DdZuHp0np4fT6vl3UqXaaU77xK03e5h+PQckxeXOPOdCuuC/LdZbLcNX6uF04+OsTiVIb1YncRSs8lGMpFh+oqGEg4wM7BIYjDJzMCqeLOaoCSpz3PxKY3v9WwOk1ei6XYP3d8dEyIdeRqt2AKKsHrMxR+r/tJSUGq7J4hB0XPsc2Jkzp4faPsLwBEzY/YqlZMpJQhvtxPstHPi61c1n83daKLuejfnnxjVJCpJJiCnmRMpovUeH0PHEi87UanhZjdL0ymuHl5+uEK/lCV8Ca4XG1/lweSQOPV1bcWw+n0unDGzUD87ahR0Fd7hUixOpDn+Oe1DBQX4Nliov8HN+R+MM325so9n+paExyOAu8GELaQgWSBdZem1OKGOl+heJ2aXxPkqSmdDRxIMHcn3V/69LiKbuybGjZ+fRydYrcZWI+FrsZBazDLwYuUBP9OvroUa9ztwRowc/+oo6SXK5h56npwq/nvb3W7GepYYO7e0HFNLYlXf8wmuHkmQXlTfkUCHhauHVzku/3zpxRy9L8wylScQ2gISiTLvncsU5PaadzNdc5KjZ17iox/9KF/4whd48cUXaWtrE3HLOtbxXxqJRIJt27Zx7py6Z1Lr30Vbbb6kbhlFJLNDJZcMnIXEVJZ0korJcX8dTA5COgmnfpa+RnmklJzk8EEgauDCgQxTgzA1WGEvP69s0r7PQGIiy+VDlC2BtKIdMT3+BgPTo1kSAkuJ8b40hnzmOVcSc68pq2RQiROnvl9mz610jk2liW43k1nKMnhiqXKOrXCNAZwhCTJZZgdK/lZhXZWczXLmu9PX/u4qmL0GWvbbuXJoXiWErniWayeShaksZ57QWBzlf8/mU0UZhgRO47e9ysLsaLZ8CbFVaLzBTGohS99BATJ5pUcv4xNPvQGz08DAsZe3vInFqyPQqHDl0JImASqbVadILVUeUPOjjXstXD25xPRA9RsbDNB6m4XxyymGz2qfPLR5Ddj9BqYGMlXHWe9LVfpAr7uGTN16m4VcDs79uMICKd8vF54Rl8gyKOAIGUgv5TSVmpILYDCqfus7NM/idLaiotLZJ0vaYGCl+lE2u0JRKTGRY2Y4w6xAWUOAmlYJi1PPaF+moqpSMu8igwIbbjYwfiXDQIESsKo/FmbgwgH1RjYPBBsN9JzIt7kQi0v2n08/ky2ORW9UVVRaTfrLyer73382w+xUtjgezXZYKJMqbq+7i8a6mxmafYzu7rP4fD7+7M/+jL/6q78S8MgrC/+lSEqnT5+ms7OTbJ6958LPdv2+iva2iEL7gzGmehOc/kIfl54c4ZpIXTLAW+6LYXTIXHxqCJLVyyMpih7FKuNuFCsBNvjSBJJi0FasyRMOTnzhYpG0UAkNtwcZPz/LzKV5jv5bdaUjZ5OVjofqGD46ycXHBT6Kay0YFAOKWUzk5tQXeoXIEhveWIder+PE5y4L3BWGj05iMGp/adpqjdTvC3Hyq71CDe7/6Rj9PxWTx16cTmGeSwspA+WyObLprCZBCVSlHVHylclvwew1YguZX3aSkrXGhN4oJsomkuAsIL2QEd7cmRtbwmAR21FYSxsAanZ7sIcsnHu0evKy/+dD2GrMzPaJqRv4uxzU3xriwEfOVR1zJz5zWejdKEBxKxhkQZE8Ba77gzbmR5aqk5q+s5xgbXswytnv9Fdsz+jRaRanksxeXij+RrW2Dx2awNfuFHo+xaOg2CRsITEVqpZ7IliDZvqfH1f/Xy63clGt09H71CjkcigehbbXxZgbXqhIxLQfjtGZtXGQp0in09x8883s2LGDH/7wh9qNX8c6/ovi4YcfLiaVdejYwx1Y5Moneze+qRZrwMSL/3Se1HSKwRcr75RYAjI1W12Y3TJnv3FVk4RhC5kxOmUhwkZqHmauzDN8dKq6YZ5scOHxYYaOTTJXbf6Woen2ED3fH+Lyk9rlQDrfHMPkUTjwYW2yLoBik8llxUg8qekUL/5jt6bKj2zR0fW2Ri78cJApAZXH6YsJpvvmuHpQm6DUdHcNU71zwuuSikSU1ZBhaTrJ/KjYaf70Uob0glj26/xj4gkXZ70Vk4DKz1phqzFjDZoxemVN9acrz4xx5Rmx9ers4Dy5VFYoQZOaTrE0kyI1p62CMH1xnhfWQPqWLdD0mig9PxjWVPgaPTXN4pS4VFXHG6Kk5zKc+07lflTfjfPCCliSWYfBZMAetjA/pE0qargjQLDTxfHPX6pIakrNw4nPqGpszrgFW8jEwHOV36kjn7yExZ0faxoEqPmRFLODCwweFjul5ayzYnJKyDKkKnGw8vFUtkDNNjeOqJmTny9fsi81T/FZ2l8fwRGzcPjjl8v2tTxtpmF6O1PMM8ZVvv71r/Piiy/yzDPPrJfeXcc6KmBsbIzm5mampqYAqDG2sslza0V7yQbtr3Yx1ZfkwtMzjJxZ4pqP8JLsQPwGF7agwsiZedJLqAn3CiwWSZfB5DJgD8lMXiwzJ69Kdox0L6LYDCxOaWxW5wkHZ747zmIib1th/ePfYGZhIkViME3396vHPZNbouN+P0PHZ7l6oMrmTf63rF4Z2WzAYNQu3QbQ9/Np+p6frlxOKo+6m5zIFgM9T4jF6aFjsyg27a1d2W6gdreTvmcmhFR5Js4tMHFOTKk5tZBhaSYlRL7SGXRk0znmJrTXEOlFOP5FMRKNbDdgrzEye3XpZScpOWImlqakFSSlAnK53AqikgjhqID0Yoa0SWzvZmEihckpXUu4KYPT3xArO1iAK27CVmOk/9nq65ix7nmcURNzQ2L+tYdl6m50c/bbI1XH3OWfTHH551Oaz1WA2SlhtAkyioBNj9SwMJ7k3PcqZ9UHjyz3bXSPg/6XZq5tTy4LOj2JwTQnvzXG4njeQKNPRrvnyWXy8RKWY1+ZBKZkApNLwuJZtS4qjbO5bNGfsesceOImJi4usjiVzddVKvGNXsfYuSRk1Xa23ulidjjJuR+U//5yDm5kl62eny98iZmZGa677jruu+8+Pv3pT1d+wHWs4784PvzhD/OHf/iHZLNZFMnKzrZ3YlYq73nVdYI7pOfE02rSe2JIpyb0S1Ao2WZQINwmYXZk6TuxnPRerZpUgNmUxWQ3VCZs6FdeNzmUZXpEYw9J1kEGRntzTI+lSOa3hcqqKBkg2CwxfDbNeF9+bVSFNBvdZsQZNHDqh/PLxINyBKE8sclo05Etl4Mqd00GTn1v+lpCw2oCiQFa9tsZODKvXVoLSE5lGL+8xPRlbYJSoE1hYTrDbCWy2Kq2CxNN9DoWZ3IszogRPNJLWU0CTwEjZ1OMrCblVCBt2f0SVt/LT1Iy2fQ4QhIG8xIZjbXlVH+GqX4xvyUTkEmJ7ZlmMrA4nSUlsFeYTMDxx1btl1YhKmGAyAYjoz1LRWJNEauISmMXkmIHXPOIbDFCjqrktUwSTn4/r5AkICZhkEC26DE5DSxOZ9TTA1WEO7xxA+GNJs7/dK6yelUGLr+kjhujHaweAxO9145nXTpDTjJw4cU0ioU8iYiq5d8ySTW2TZSeF62y9rK41LKJUipNWl/yHpcQRzMlhKVoq57EVI4Lh/IHFpYy5Er4B2m9gfER0JEh0gKBmJ5Tz2bLKpkpmInZX08m8iw9A0/x13/913zta1/j5z//OaFQqPJDvsKgy2kdy3mF4N577+Wxxx4D1CTZLu7Apl+lU1twRUlSvfX+KJd+dJXkXAU35XI4m6xM98yh2MDoMy8n58sgstfLdF9Ck0AEaimijtfHOPnpHiGCy+Z3N2J0yMLqL7v/rJ2lREpIqQYFtryzkfPfviJEoBFF++tr0Uk6Tn+xelmUAra8txGdTsfhj4gl7ITb8VAUV7ODI//eo1luztlkZWEiJVzi7FcFU0BhcSq5plJnotjz3zuY6Zvj5Oe1T+mvFbaI8rKOoV8W/s1ORo9qJ5O2vq8JxSLxwv8rnmATQXCbi4bbauj+9pWy6j2r4W6z0fiqGg7+6/mXtc+73t7A6JnpispEpQhuc9F4R5jhY5Nc+J52orbtgSjuFjvHP3VBSFGt4+FakvOZZZUnDcRfXV2tCcDbYVeVrRSw+RUSVytk2HI5mu4JM/jSmNrWUnJVmQXbVOdlTp07ycLCArIs09PTs54wW8c6SjA2NkYsFmNhQV0TBYiySb6+8gX5xLo1rOBttldVBLGGFeZGk5ACV5OFqZ7qjKPYTd6q9ytF/E5V5v/iE2qCoRrpxxpR6HxDPUNHJ4VIR02vDuHf6OD01/uF1JZC2124Gyyc+frLp8QjW2Djmxvo+f6gUHkvT5uNpldHOPedfiGS0lqw649aWZhY4vinLmu3o8MuXOLsVwlLUGZ++GWu3wZ0PFKLo9bKC//n5V1rACCDbJE1CT+/ashOGcWmZ26g+jeQJaSw6a1xho5NcukJMZVOIej0bHl3A+n5DCc+J/bd0f5gmKVEuhgPXg5YIwrx22o48RmxNfbW98SRzAZe+nsBxTEZdr6vicTQIqe/VJ1cr9PrkJ0S7Q9EOfON/qqKdQXYYyaMTpmxE5XfRXvMxOzgIqQqqyQVm+uUiexyc/lHI8X2VyJYzcvTjER6OH9e9cPb3vY2PvWpT2m2eR3r+K+ED33oQ/zlX/4lAAZkbvC/AdOq2kxFJaWSpHpkh4XhM/Ok5ytsUmcyRbUlJLC48/9ewCqSkrtBZnEmx0I1snD++0oyQfPtbs7/aFJNumtsTzbd5sIWlDn6ldFrlVHKYMtbAiTnspz6RhnCbpkyb62v8dL73PQy+aAcBAnhBUR2OzBapaIykhZaXuNFNhk49fURTRWlNbXjOgfhzQ5OfG2oqEhTCSafRHoxLVzi7FcFyaYSlUTJK2vB9ndHmO5d5PwTYt8IIiiQlUwuicWpX0Gj1whnnZHpXu2957Z7fZi9Mkc+9fKWVrWHZZru8HHhxxPM9Gm3wxKQaLjJQ/d3q5Oa1or4rR5m+hcYO7tqr75M4txWI9H2mgBDxxP0v1Ams7Yq3oW32wh1WTn9nfHqcSOfzIvuVGNy/0v5l6vaO643UNNlZvD46qP6K2OXPSwxe1WNzyaHxOJ0hXtmc9R0mZnsT6kxoGQeKFclYNJ/gpMXDjE3N4fL5eLMmTP/pRJm61iHFpLJJJs2beLsWfUbvj54Pc2R/dfYFQhHhcS6YgZnAEZ7qaieZJQyJJOqvcUJ86vSF6tJSv5aGL1S8lvlkCco+etBkmGw8HmZrnyNYoa2mxSGL2YY7lkZe8qRlPxxA5EuhfPPLpZVW1qtomQPGXBGJPoP5eeISoSJ1epLK2666hoDNN1gYeDwfOVycCWx1+wxEL/RzuXnZpkbyQiRNq5BhXJ+Ha+2sTSbqUw+Kvktq98gRJKqRvp6OaBYlhVpfilfVECkS8HfKHP00Zd3XxEAQ15JSVxM6FcCgwKyaVVZuTLzvMEMG++wMdy9xNDpChsga/zeKPxW441mchm4+KyYM8JdRrJZGDq1xmRjFZKSYoHoJiMXX1q6lkykv/a6xj1GzC49Jx8v3+actPL96tivMD+V5fIhjbW2LGEwQP1WPb3H8op1UHXtJTsMmGwUS7cVUUJSUqyQWVSJbGYbLCRYQVIqhaTL4IvAcEEPoYRgVVBeKiCZXmBo4bt0d59Bp9PxP//n/+TP//zPqz/jKwSCchu/uUgkEhiNxiJByU2Q/foHriUo5WENKez+o3baH4oC0P3oQGWCEmqCv+P1dWp5oQRVCUooELspQMtra4Xa7m60YbTLuFtdQvajp6eYGxSPxqe+0svhj1Un+ygeBV+nA5Jw5F8uaJJLut7RwPYPNAu3wew3YvEbhe2P/MsFIYJSx8O17PyjNpVoIIAzX+vn0L9qE5RAVWfZ+q640H2DO1xE9/nEGqGoqj2i6Hyknl2//5slu9t6f5RNb2/GFBDrGFutEXebQNF7VPJT071hIdv2h6I03x3B0WDRtD35xb41EZTaHoiy60+0+2X40BQv/J8zQgQlUEulyBYJd1zMH3W3Btj1p21qWcAqOP6pS0WCUminW7PNZ77ZJ0RQAhg+PsXCeFKIoARgDZtx1mv3Cagks9AWt2afF0rvbXlnE51vaawcE3Q6er47yNxQEsWjzgMdD1eO1a4T9Wxa2AtAKpVi+/btvPvd7xZq+zrW8UrHn//5n+P3+1lYWECHjr28pipBqfV1YXa+rwnZAnNXk1UJRbIFNv5WHRvz76cWQanp7hDhXR4cgrHFGbPiqLUK2c4NJJkbXWTsjBh5puf7Q0IEJX+XA4Chg1OaBCWLT2bnHzQR2u4SaoM9ZkWxSRgdYqePJ84meOnvurUJSrJaYq3+VUGh+wK8+I/dnPmKNlHD1WSl7bVR4Xs33BnE4hNTMHI1WbEExWztMQubf7uJ2P6AkP2vC3a+v5UNVeaz1QhudQnbRvZ48Qiu07a+K07LPVFNu/mhJAf/9YIwQUm2wPYPNBO/UyNpksty5N8uCROUACx+E9ZgdfXGUmz73TjtD1Zfl8wNJIsEJU+HDVkjNJ347EVOfVXw0EAKElcXGT0ppk7mabRidsk4IiYh+6Y7a4jfWv09nO1TCUqWgEzH62tpvb+yP1LTqSJBqfX+/DzgLK8GYkk5qb+8jQDqGPrsZz9LW1sbqUryTutYx38hpNNpYrFYkaAUMXVwW827riEoFSCZYOtveam/Qf37wKGFygQloOEmB+13ezC59JBGJSjp9Mv/rEL99Q7iN1aYG3S6lQmZoIzZLeGIiO0JTVxYYHYwKURQAjjzvQm6v1ddUVAyqWQOgO7vahANsjnit3nY+LD4WsAWULD4xUXsz313XIigFN3rZNOba9SSaAIYeGGGI1/o1yQoATTu97DpYbG9FUfMSGCj2NoZwNMiPq+23hlg61vE2vHrgFwuR3i7jc7fCmEW7HOTS8IeFluLGp0SkV0OIdvwTjstd/mF7t3zwzGOrKE8W3innU1vqdG0m72a4sinBoUISgCyRcLoNGAJiMUDX5uZzW+rwVhh7VDAxR9PFAlK7sbqL0xiMM3Z746UJyjBNQShyd5F5oZT1eNGCZxRBVdtyabUqphYCltAR2S7ldh1q96vVfF39qr62y23uthwjwepUpfrdQyeXGRxIo2kqPNAw02V1/Hu0U52WB7CgMzU1BQbN27kf/yP/yH0nOtYxysdjz32GFarlbNnz6JIVm7Y+IdlCUoFRFqga58eg6KWCBrt11UkKAG0XS8R36zu2RQISjlJX/ynFIF6iLbrsTuqlHYrIQY4/XrsPo2UsF4Heh3JJR0zo1lmRrQJSjm9jpHLWc4+U56gVAp7SH222aEM/YeTVWOhwZCm4247nvqS4FawL3ON2aEqvsiWKgSbkusWJjKc+vaUEEGp/W4HwQ2r5qgKBCWA099PcPkFbYKS0QHNN1kIbdDIl+UJSv5mWVWVEYDZpZY5E4HBDBvushNok19WgtKvGh23WYjvEl9f2kOGa9TLKsEVMWAPiBm37bcQ276qHWX8mFmAk48nKhOUYCUZzQCtt1uo6dRYH+l0XHhmQZigBGD1GrB4xNUpm/aZie0wVa3FnJyHi8+rBCWLV4dBY1hfeHGJ8z+v3GbdKiLl9FCGqQGxdZfZBVanDkupuF2VeFPXCg0byvzNoCv+k5zLC1cq0LpbT2xD5d9P5wwM9av+rWmErhv1SBX8oUhmYvaHaIm+ilwux1/8xV+wadOm4uHvVzJe0eXe/uIv/oL/9b/+V/G/d7Ifh74CCSS/ATA3pJaHGDk5LRSMLzw+QGR3QLgMW8/3Bhg9W33juKDMNPj8BIOHJjRVU9oeiHL2G/0MPDPOANVXATW7PUR3+zj28R5mLmmfoN/4SAyjXWase0ZIvSU1mxaqfV6AqCJSy31R9AY4+43qp4ILSM5nSC+mhdrsbrMxeTYhrIzU/Wg/9lqxiS+6249ilYRKw0V2eKm/JYTBqBeyH3hhXEjWG9Qx4mqy/UpO6He9vQGT18hLf6t976uHx8nmcmTnxXy98ZEGMktZDpzVLtEWuzmEq85G38/HNPvywo9HiEylhN6Bwr3s9WZmry5ojqm58SWsYROKrXrJxwLcLTbqbwty5F+ql7G5+vw4V58XP+U3N7xINiVWvgbUfrTWmJm6PFeVrFcgVbU9GMUcMHHkXyq/w5PnEkyeU+0jN3qZH1mqSso68PfL/VyIg5UwenQag6Jn6KV8KSiNsnI93x8g2OXWjgk6HckJdR4YPJq/9+oycXnY9G5u5UEmN13i5OkTfOxjH+NrX/saQ0NDKIogQ3Id63gFIZVKUVtby/CwSi5wE2C7fIvmdaOnZzAoes0SbKCWCho+Mc1I4f2shLwiR8/3hpjqnWPmcvWbFxQ/jnzqkmaZJ0+bFcksMXJkuliSqRo2vbOe6d55Lv9oRJOgZAnJNN0ZwtNio/sbYgpKmcUscyNim/8TZ+d48YxAqVgZut5cz8UfDpMQkE6WLTLphQzzo9rHnmWLDtkhMz+UJCUgtTzVM0f/i+P0PaOtZmMJyoQ2uzFIenq+q51sabqzBp2kFyoFuzidYujIJGPHNMZeHjt+v5mZ/nm6vyFWKkUYsko8Gjk+yeUntX0ydGichUkxIkdsn4/oHj+pxYyQclXt9T7mx5eYECBcX/nFKNN9YqfmCqpPzgYL0xprtdR8vlzKgsAmRb5MR8u9NSwl0mrJ1yo49NGLQu0tIDmfITknJrmODC13h5kfXeL4pyuTkFLzkJpPIjtlNr0pxsWnh5k4Xdnfp7+y/K3U9Gq1vGQlDB+eZvjEdDHm2aJGEv2VY8nJz1/CGrYU269VVm7s1Ax9z4oph4yemcFg0msqOm2Sr2dBnmIg2E13dzeKovDRj36U97znPUK/s451vNLwjW98g4ceeohcLocePXv8D2OTyh88KagopRdhZjDF5OVFodPYVw7NkFrMqqWEqiGvytHz42kWxquXdzP7JBbG0kz3pjj8xVFNpZzoLhv9LyaYuLjERLnScSVw1inEdjs5871RIeJA021erEEjhz5zVUixJzmXQbaIn/fs/o5Y2dXwdhuy1UDvz6aFFJTS8xlS82khxRlbSCIxJK6MdOGpCexBse/Z8DYHVr/CyEntOd5ZZ6LpVh+9lkmGj2o35urhGRS72J5XeIeDUKeNw58T68e1oGG/B0fUyLHPaq8tx88voJP1pGbFGtF6j59sJsuJL2qTs4OdVgIbbYx3z2sqNY0cn4VsjtlKStIlKIwhk0ciLTCmFidTpOczSBZIC3y/mf0SdXvdnP1e9Xd9+vIihz8hTpZanEqRXhRcdwENt7jxtlg4OTlclayXGFT/Ft5hwxk1c+bRyuvFhdHlUpKeRhPppQwz/ZV9fupbE8VMTFGhDsqWhUkMpel5epqpy/n7aZSV63thBm+zmbRWl+t1pJM5Zq6mmLiodnYuky2rpmSSLNxW8y4mg8c43n2I//2//zdf/vKXOXv2LJL0ik4prWMdFXHHHXfwwx/+EICIbxsdsbsr2haUjSaGQDblS25VIScVMHg+zbSWWHdekWPkMizMZssTg0rISSYbLCag54DGek6vw+ICxQRTQ3D5iHacbdhtZH4qw1B3hoUpjWabIb7bzHhviv4jYvmh9GKWxdl8uzXytQuTWU5+S6MRecRvtDF4YkFVXNK4r8EAybksS7MCuRZDXpFotkLZvVW/tTQDfYcWmK5GvMiv2Q0KRDqNyGYdV49r+y+6xYxi1nHqcYEJOwn9xxeZHhRbw7TdaiYxnqX/iNh+5Fqw4U4LY5dSDK8uPVcGQ2eWlkuqasAVMdBwnZkLzy4wM6Q9tqObjSzMZJkd0bbtP75UvgRfmTk+k2+v2YXmO0MGUvM50osCYy//W8EOhVwWRs5WHyPnfzK/fJ0AUgs5kgIl8AAwQOMeC/OTGS78osriMgNLs+rYbtxjZPBsitmhyr8xcGrZx8FmA8PnK/dNYhyO/3j574U4CJTtl57DmWXSlkBZucGeLJMClalzsoHpsQxGy7Kiky6VuUZNCaAudB01no0MzD/G8ePHcTgcfO1rX+O+++7T/qHfULxiy73V1tbS369u0lqwsUd/Z0VbxQab3tnM2MlpLv1oWPOljN7kJXqdj6OfvsTisHYE3P6BZvSSnpf+TjsppHgUtr2nibnhBY5/4pKmfXSfj9j1AQaeH6P3Ke1ERf1tQYJb3Bz5xEUhUo4poODrcAiRZtaCrrc3MDeyKKzIsu39zegl3QoSw8sBxQbbPtDB/Mgix/59bYkIUWiRLZYbA7V7/Vx5dvRlL+FWtz+At90hTApbS7m3pnvDWIMmjn385fdfaKebuZHF6gpleSgeBVlBWLVnLbBFFLre2sTUpQSnvyR+Al8E0X0+avcEOPutPiFVJVtEoe2BOk5+uVdI+UsUik1PzXU+en8sVtJkwxvrsPiNQoldgOv+WxuZZFboHbbVGul6cyNTvQlOf0Hb3/W3BanZ4eXct68UlZMqQqdj0zsbkEwGDmmVuszlQIGd729j4KUxBn5emSQ2lO3jJC8CEI1G+fu//3sefPBBzbavYx2vFPzkJz9h//79xaTKVvbhlSsrm0T2eAhtdnHo3y9qkoIAtvxOA4tTSc58VZvw4Wm30XxXDX3PjDJ4YErTvv31ERwxC0c/eZmlieXGVCr1tv19jegMOg58WGBOlWHbO+PM9C9w/jGxNU/tjV6uPD8u5BdRWAIyrfdFOf31PpbGtW/s6bDTcneECz8cZPSYdmnUtaD99VFcDTYO/uuFX0kJMktQJjWbEiK92aJmTG6ZsRNiyjNrQefb6pm+PEffT7RLAa613NumdzUwfGSKoQNihClRyBbwdboZPDwpNP7sMYtQ2cBfBl1vr8fiM/HCP5x9Wd8FdHq2v7+RZCIjVGoQ1DKQRrvMma+9vISzyB4PI6dmhd4Do0em68119D8/zuCL2v0eu9lHZJeHnseHGD1efnyXHizZ+KZarAETh//1vNC7s+334qTmMxz/lPa3giUks+HhGH3PjDF8WDue1O334260cfTT1Umjz6d+QIIpZFlm27ZtPP/889oNX8c6XkF41atexY9+9CMAXHIN1/nur2wsQcddDiZ7k1w9PK9JTvLEFWK7bJx9YnIl0aeMchJA+91OZKuB41/NExOzJTu6q/bXJCNs+q0As8NJzj0xtfyHCluT7riRxltcDBycZfBomQC1ar3mazMT2W7n9LdHSFX6vC5RQ5HM4I5bGD2lEfzWWHYhfpuHpUSagefF1hht9/mRrXpOfGH4ZS3zhgTb3h5hbiTJ2W9rr0l+GVgDEnMjAgktCXwtFqYuzr+s5bwAfO0WAhusnP6G2DOupdxbeKsNe9RE92Pi+6I6wWSPK25iaTbNwqi2/yQTSKZfTSk5yQab3xhh4sICF58UIxiLwtNsomGfh54fjQuVn5Ntelru9HHhyYmX91klCG60Mny0ZH+2SiyMXe/EETFy8psjK8lBFeLgpjcFyKZznPhyhTFYQgKSbdD1YICp3kUuPL0qRpS+/3o1eeVrNVJ3nZ2ep6eYvlLGJ6UKTwYDjbfYMdkNnPrOVMXnA9S4JkHnfW5GziwycqZy/0wtjfDixDfIkSMcDvPxj3+cV7/61dXvv451vIJw6dIlNm3axOzsLHqdzI6Wt+GwVlaVc/kh3JDjzAtZNdGtQU5q3gapJFw+sbJs22rlJFBLwDVv13PlbJaJ/CfqilJvq0oqRdp1+GN6Tj+TIVmaYilVKCmJhy17JWQjnHq6fAwuKCnl8tc0X6+WXxo4WTlmF0u96XR46gxMD2bKE3hKUVrmTYtEZIaG6yz0vTArdGjc7DXQtM/OlZcSTPWlXtYyb+EuI4FWI6cfnyG5OiX4y/zOqrlKMatKLpr+Q819Gm0GZgUIOWttX90OI/OTGUZ7tOfqtZZ7i+8xMXklxeQVcTKyEAzgqjEwNZipSkApwORYVb7tP4JV6/u6HUacEZlT302QqdSWX7LsW8utFjIpuPAzsf06f5OM0W2g/+AaCWdVyr4BuKIGZsczK0vxlSn5BipJqeUmE8PnUkz0rnTI6pJvAO6IjvotCpcOLjFViSgkLxOqY5063DV6Tv60TOwp6ZsCcajtOh2ZdI7zByvcu6QEnGw30Lod+s/DpManiC6VwRsFX0TH+WP6yn0PnLn8ffrHDiJJEvv37+cHP/hB9Zv/huIVR3vv6emhpaWl+FHfznYi+oaq1yQT6gekZJWEAvHc8BKZpHiAmLyQQFLEZNOSE0nGTk+rRBUB9P90jIWRJc3EvOJRSE4kufzkMJef1D6hE391DcOHxpkbStI/ov0hvutP2lgYW+L4p7SJVQAmt4JOgDlewKF/Oi9Uus0UUOh4KMa5R/s0S9OB2veDL40z3Ss2Qe78w1bGzsxw8XHx0z1CBCWAJFwRSGSB+pzNd4W59NQgiSvak0fvUyNCJLZfBj3fEVN6KKD5vgiZxQwXn9CmmRZVcgSQnEiuidul2PRs/p1mRk9MqeTEKkgMJBk7PcPln4n7sO3BKDqdWkqwGvp/Okb/c2PCxDSDWUa2SHjb7AyMaG+oudtstN1XS9+zIww8U9k+mcgWCUqt90fp/l5/1Tad+sJyUqoQX6rh5BcvkRRUckhcWWKie4aLT4v5e+z0JO5mmzZBKY/UXHq1Snd56HRYPTI6PWTT1S8I6WOEiDHUfoYzZ8/w0EMPcc899/Cd73xHqE3rWMdvMh5++GG++tWvAmDEwo3yPZrXZDM50KsKPCIJ+tR8mqTgieSJnoSq7nJBbP69+OQI4Z3uFQSlajj2uT5kgaoMslN9NhE1FtkC0RsDXPrBCFeqxOoCojd4iezycOorV0j0a2d53M0OFLuEQRZbe02cnuWF82LkkJb7wqQXs0LzOsDFHw9Tsz0l1O/1twXwttg59PELwkSV+WFxRkuif0FIKQrUMqqAMJn3xKcvC7djrTj2cbH1NqhErNgNPs5/p5/UfPXvl9Q8QgSYAtZKUKp/VRBvk51DVVQYC+h7ZlQtCS3YndaIkaa7wpz+4uXqz5nLcvCj5yEtroJhC5mRzeIS2BvfVIvJrXDwn6qrZA48pyYBrREFb5O9aqnLpYnUCmJkIb5UQt9Pxpi5Mq9ZErOAiz8cwt/pEiIoAcz0LTA/Lrh4zUI2mWNuRCwjLRn16r6VRt/vlu9g0jZIv7GbF154AUVR6O3tpaZGuwTNOtbxm4ypqSlqa2tJJNQMzGbXnYTMGuXo0yox0SDrhNSTFqaz6p5XYcO2QlK+gIneJCZ7SZyssq+WXoLB44migocWJi8u0b04XixptAIlG/eSDdIJGDu7UCztVBb5D8HQZitTvUssTqaFCEpdbwqxMJHi/PfF1I0tXgllDYpLZx8dJWfIgcZWo2SCllf7ufizSRbHBNbGabjy3JSwqmLnG4JM9Cww8JJ4RkaIoJRvy9hpsYlGMkH9TR6uHp5ZVpupgrEz84yd+dUQp68eTsBhQRkqILzdrl53cFaTrDQl+B6AqniUXlwDaUeCjQ8EmLiwwNUD1fdK0glVuWr0tOD+JRDZ7UBS9PT+bKqq3cT5RSYuiStcGRQ9RocBR61RiKRk9ku03+Nn4MAMw8ertD9NkaAU2eVg+NgM6cVcxZjY94tlYnUhvgBFZc7V6P7uBOm02EOmEjB0co6RM2XaW2bMTA8sMTdmqqxuUWhPPr4l5zJi3316HZIph06vI6uRCHUZA7yq5ncZ9D7LqbMnufvuu3nnO9/Jxz/+ce3fWcc6fsPxz//8z7z//e8HwG2rY3vLWzWvyeXUV1NRIJnUfh+TS6xQgylHTipgfhpmx3IkSjmlFRL/AEMXcqRTqwhKxeuubduFF9MVSzTpllJFcpJBUYky539R/btQl0qDpCPQLDNy9loCQjm4QlC73UHPz+ZYmNTexLd5DJjsevQGDfmTPBbGM5z49pRqqjFXhzpN5LI5hk+VdFCVMm/D55ZIJ3NCBCVPg4SvUeHCM/PlSUdl+qdsP1ZAMgHJhAAbR6fD02DAYNAJkY4Aeg+8/ApKBVx8Tnx9pNgg0KQw2J1cSYYphwxM9YsTn9ZKUPLFJbwNMt1PlWnIKuWekfNLzI6kq5JU0OuK3zuKFaJbzfS+tFBUYioLnY5zP12AtDh/weKVMDnFv1ui24zYAxJnnpirSlQq+Foxg6NGYuxiGrLZsvEqk4QzTy73eyG+gFrybTVRaXIgx9LcEvNTYm2+2p1jMVGBHFnm3ZwazpGp9ioUuA2ZHDlUkumiwLDNyQYMUgadXle974H2+ldTH97KpfHv88Mf/hC/3093dzceT4VqYb+hEB95vwH44Ac/SHNzM7lcDh06buTeqgSlptfUENqpSmG/9PfnOP/t6mSLzjfXgaKWOzrwD+eqqpjYIgob31QHwIXvDdL9repEhbr9AToeiQFw/tEBTYWUze9uZMMb1ftrJuYV2PY7jWx6l8bGVYl9cJOb5vtqxeyBxcmkMNEH4KW/6xZSLgrtdFN/W1D9D4F98GCnC6NDEdp4K+Dyk8PFklTVoNj05HI5chpkhQI2v7uRbe9vFm7Htvc3E93nE7L1NtuxRyyYvdXrqRfgaLBgqxWr675WKDbwdzmE7T3NdjwtdmH7Le9tWh4DGmi4Pch1/61diNCWTKj9qJPFwuC5R/uFSwIC2CJmrDWC9XCTYA0pdDys/c5N98zx/P9zpirhqBSTFxMk51LMD4ktHN0tNrztDtrujYrZt9nY9p4m4ndVTwglriyRTGRxNlnZ+cdt2Our++bsN1R/OxosbH53Y/V7DyQ58lE1ERjc5qLlvuptP/2lKxz/pJrgbb4vjK+z8nicG07x4t92M/i8mrTtelt91VrOoTPteDNhQK1R3tXVxcTEy3sScR3r+HVBKpXC4/EUCUoxWqsSlGSnRPtDEUAlQhz6yMWqSXZvh43YLeq8ePLzV7jweHVCaeNdQdzNFkjBic/0VScdydD5lhiWgMzSRIpLP1hJPFmtomSPmdn+/kasEYXUdIr5seqJnoY7Amz7nQZsUbF5uuGOMKFNLiwhAfYTkBhcYHEqJURQAhh4dpwX/7abeQG1wZb7w8hOWZgcYg+bhcvgAiyNp7j8Q23CPIBOyq/nBNoiO2V2/VErNbvKl7lZjdjNfrreXi9kC+BrdeBvF1zvyOBps6klsX4FsEaMWCNi6zpb0ISzzoq9vsrkVYLIXi+b3ln9gEcptv5uIxvy3zBayGVy6kESAb9M9cxx9Xnx+VNSDJjdRrztLm3j/HiK3eLD06Htl+Of7l1T6beZ/gXmBUswAjTdGaZmh0d4vHS9vY4tv12naVcgKHU8HGXDI9eujUrj3PxIqlj+rvV1YULbnVXvff6xQQaeVdeibQ/mY0YFzI+oZM1E/xKyRb1/NVx4fJjD/6au00LbndTe6K1o607U0Da0Fz0GUqkUra2t/NEf/VHV+69jHb/J+NznPofb7SaRSCDrjNzq/52qBKVgpwlvi/pxfPLRKa4cqE7iiN9kQzLBwniaE9+cZHGaigQl2Qbxm9XvqOETC/Q+V31PxddiomGfOo9ePTy/snxcGeWg5ttdNO5XY1FZgtIqbLw/QNtrBDdsJQhvddCwT2zNADA3kiRxVTy2n/zKCGcFSr0564yEt+fnIoGckLPOjNmrsJZKSyMn55gVOMSHpHZFJTXR1Wi+08vGh8X2agA6Xucn2GUVsrXVmHDHLZg9YpOjySdh8v2KzuFK4IgZhY/5+tqseFsswrdvu9dHzRaxdZqvw8KWt9cgidy+IFohuD969aVZUgnBEh6AI2zEXiNY5j6tEn3q97k0TRcn0hz+5CAjJ8T2mBdG0yxMpZkfE9uvM3klarbYiV6n3RZQSVCbHg4T2Vl9H3NxSi2paPJKdL3BjyWwasBkVvp24MAcqQSYXHraXl29LakEnP3+NKTBHpao3VXhPcrH6ysvznPuh2pmNbzZjLO28uBNz+s4/vVJxrpV/xXmgUqoGd9Lo3knAP/+7/9OZ2dnkTS7jnW80pDJZLjhhhuKBKXW6J1VCUoGA9S1qf8+PQann8tVJShZnRDIf9b1noSB8+q/VyIoBRvAnl+6XDyW0ySrNGzRo1jVRP/w6nNC6cyK/JlihfYbJUx2yKQhWWHJWCAo+eoNbLzdhNlVvQ0A6HQEm2XC7Qrm6p+ZRSwlcsxPplmYEZuXpgcynHx0msVpbQJKTZcJxYyQkg6AzS/jCJXMd1UISgCZxTJltioQofR5ooMQQckAG15txVMvdoDKU2cgvkd8r84bU/DFBed1wOrVa7nil4ZiA6Ng+lAxG/A1yFidYo1xRQw03iC2VwvQeIOJ+l1i+2/ZbI5cjookv9JxsDCFEGGvOA50YPUacAQFnjN/W0+DhD2kbd/74gLdPxLP7c+NppkbEyd7RbqM1Gw0qiXUBFC3XabtFrOmfYGgFNlgoGF7mbVOiRpbOgkj+fOekVZwV9+WYugSjF5R/z3aqpbALAuDjlQSzh6EhVnAALUt1e89PGDgzEG1Xx0eCFRJZZqVGloDb8NmDjI2NkYsFuPv//7vq//AbxheMUpKjY2NXLyobh478LBTv1/zGl+HE0edRUitxb/ZiT1qIX5LkIs/yCdWqkgwx24KYY9ZsUUUIUUfT5sDxSreHXpZh0ER5JglYbp3jvFuQepnEk59+TIzAwKnkBTVXrRUWscbY8z0zwuXj4tc50W2yELqT7A2xaCme8J4mu0c/Vi3kAxkMiFWqqpoP5NCMolFXsWjIJsNKFaxDZiBZ8eLiQERtN1fi86g48W/ESsjshbU7qshtMXD4sxFobJsa22DYpUwe8QWSImRRbwLaWx+sfdOpARjKdpfX4stYhYaBwc/fH5N967bH8JZb8MaUoRK1ikehY7X13L6q1eqk6eScOif8l8i+fe1GibPJTjzTbHSc6CSNudHFul/QWw86vU6dDqE343gZjdmj4Kt1lheNaywuMvH48huH4qtynuUy61YEPpaHdgjZsZOaKswBbe7sNWYCe8OcPnJynGmS38dU9kWhiLdnDhxAp/Px0svvcT27ds1f2Md6/hNwdGjR9m6dWtRuXI3d2KTq+821Gxz4ayz4G6xMXl+Hi1Js9rr/cgWPX1PC6wZZPC22TH7FPXeGnBELFh8RnztDvoEVOlkix6dXodOQ0mggOGDk1i8ijCJ6Ny3ruKMW5gfEmMGTfXMM9VzWdPO6JFpuaeGs1/rIyXwvWmLmvG2OMgmc/QIluQ99C/V1WJKsf19TUxemOOCoCLlpSeGuYTYGlCx6Ukm0syPiiUQzV4FxS7OIhJR/ynAHbfSdn8tvT8bWdN6TRQdr68js5jh8Ee1fT90aJKhQ+LqSEaHrPpFRogclpxNk5wRG7e9Px4RVqIClXi26a31DB2eoL9KyVWA6UvzvLCWNWYuS81WNwsTSSZOi615ojd4sXgUzn2n+vjt+0lJzBLw4+kvXUZxK8LEwOGjU9jD4puNelmHTkOGuxT2qBnZYmDooHZpNnvMhLPeSu2eNBefqNK3+dgZud6HO27FGbcwfVEjVuv0hLZ6kMz6qgpzsiyznwc55zzA6PwgH/7wh3nmmWd46aWXNNu/jnX8JuHee+/lscceAyBobGSL5w7Na0IdZlKLOcYvZEBD4cMekvDUG1mczTB4RF2/5DKV12rBDRbcdUYs/gVV6aawgV7hSKin0YTZLb7nZZB1WgJOKzDes8CcBom8iDSc/s4o6TmxEmUk4cIPxYizdTc5WZxMV1d0KUHNFjsWn8zVg2Jz0Xj3AuPdYuVHg5ttBDttnP7mEGkRkaE0nPyy2LoLYCmRRieanJJAccjIgvueU5cWOfCv1Q97lqLpVi+S2cDRT69N6VsEwQ4rddd7OPvYCDP92uvM419YVhctfCtVU1RSHBJGl5hfFqeSJGczSGaJ9Lz2+D35lbUpqkf3OHE3mDjxRe1xcOabaysfGNrkxNdmZfhUQri8XePtXi4+PalJnlpLWxbH05x9bJhEgfxYIOVVIHMtjKaZvrLIWLeYdIVODzqDDkkRI4e560xY/AoWv3Stalguu5wMz7czvMmK1Sdx5dBceWJjNocurzaQy2YJtJtJzSlMX9FY1xkM2Gsk3HUKi9Nmrh6t/LwNti3UmJrpMT7FyZMncbvdHDp0iK6uLqFnXsc6fhMwNDREa2srMzMzGPRGdne8B7NSfc/LFQRvGMYndMxO6tAtVY9dNY1gtukY6c0ViUkryratQiCmZ96dY3ayELcqX6NYwe7V4QzAaIkQcy4/H60msBqkfPwSPPc/eTWD1a1nYUrMfvhsipmhFAtan5i5HBhgYSrLhZ9px12DArHtJvoOLGiqkkBedafNhE4PV4+K7df1PF2SM9Drr8ktlKLlVgszgxmGTontS431pBjrKbN+LTMnKUZYms2yJMgLVawGTA6NDi15jvMC/i7AaIeWfRauHFlU1XFeZjTusZBJ5zj3tHabEqMZ4TJyAJJRh9GmX6HUszq/VIqluRyZpBhZbuJyhgmt/GiJopLBAE03W5i4nKyuYKXXkUzkOPHtNZCCdTrCnWYWptLMDon1rStmwOKSuHq8+vid7Msw2Zd/4fQ5TUWySweXMFqWlomBRbXe8teM96ZJzueEiYR6SYdeEgxegCNgwGjLMXn12n7VpbPFkm/kcihmtTRbLpsrEknLXZM1q/vLfn8GfwQmRyAxVb0dWaNEoCGD2ZRjpMpnj8FgYPeGd9M3/gz9Iy/xx3/8xxw8eJAvfelLAk/764/feCWlZDKJLMtcvHgRk8nE7TvuZad+P9aQQueb67BFVZZjZI+Xjt+qBUVVOWp7IMrwyUkOf+QCike1dTaqJxFqdrvpeERVNFE8Ci33RbAFTBz/7AX6fzFM55vrcLeqtsFtLjrfXF9sT9P9YeJ31XD6S30c/1wPDfvD+DrV02L+LscK2/ira2h8rao+cuRfepgfWcS/WV3seDvsqm2emxG/M0TzfRGsedbu0mSK4RNqwsHdYqPzzfUoNrU7628L0nq/Sr8L7nDR8UiMqUtzDB+awl5vpvPN9ZgC6n3q9gdoe3CZqrfrj9uI3uJl5tI8Nr9C55vrsUVU28iN3hVKL+2PxNjzxx003xfBFFBtC+oo4d3eojIUQNsDUepvC2IPW/B3OOl8cz3OJtWHoZ3uoioUqOXA4neGADjxqR7mxhfwdtjL+/ueMPFX1xSfu/Nt9UVVH1+nY6UPX11D0z3LFElXow30quyhu63gQ/VvDbcHV6ixbHhjHR1vVp/H2WRVbfPEmbpbA7Q9sGzb8YYYkb1eTn+pj0tPD63wd+3NftofWrZtf30t0X0+khNJTnz2IlavsaK/2x6MUrdfLTWijtl6HA3q8ama3Z4V/m69P1pUH1JsepLzKUZPT6k+3OEqqnwBNN0bXlbBUVB9lo/p/s3OFf5uvLuGxruXFXM631zP4swS/c+NYvTIK/19Vw1N9y77e+Ob6gjucAGl/taX9XfHG2PU7FZPQZ75eh+S0bDS3w9e62+AhfFFliZT5PITWHSfj/bXl4zZh6LU3uwHyMeIemp2uwlucxHZ66XjDSvHbKG0S8HfOkVHNp1V/f3GZduW+6I03F7wt+oXd5s6mNofidH5tmUflvO3r9PB6S/20fuzYeK3L/ss/upr/V2IEaGtDiw+IzXbVZ8WYkQBG95Y4u8WG51vq+e6P2in4w2xFTECoOORGOHdqg/t9WaiO32YAgqNd9ew4U2xlf5+uJZI/kS7LaL65cLjqupRw11BNr5teWyV+rsQI9LJDC/+zVnMbiMdb4wVx0AhRpT629lk5fyjA1z66RB1N4WKY6s0Rqj+rivGiIHnx5gbXSj+rTRGFH2YV07yddpJDC9w+DNqkrfptTU0vabUto7gNtXf7jYbgQ4nx754gctPjtBwe5COR0pjRKyozOdstHLDW7fQtXQTNpONXC7H9ddfz2//9m+zjnW8EvCXf/mXbNmyhVwuR3O8mdssD2OTncRu8lJ/e6Bo1/o6VanMFjXiqLdg8Sic+HIfk+fniexxE79z2bbltTUENqvzt7vFRNsDYbof6+fop3sJ73bTeNfyKe3me2qKKh+WgEzbg2HMTpljn+ll/MwsTa8JFW2b7g4VlXWMHtXWGlOYuTzP5WdGMLqWSbCNdwWJ7FHnHtkp0/5gGE+bGWQwKAZm+ueLpKOGOwJFdQ/ZAu0PhnHGLTjrLYR2Oqm72c+pL6pfGPW3+YuKUMiqrbtFXQM13RNky3tU1Zrpi/PEbvFRf5u/2Kb2B8P4Nqgxy9VkYcfvN7LzD5pAhthNXhruKPH3A+HiGsgeM9P+YJjwDifWgInafQGaSuaTlvvDBLe6AFWVp/2hKEavTKJ/gYGD4yu+E1vuDRd9aAnKtD8UxRKUMXplWh+M0FIy1ze9pobIHtUvRq9qa4uqa8PgLhcGk57UUibv7xqiNxR8qKP9oSjO/LrG1+mg8231xWsb7gwS21fiw4eiuPLrSE+HnfaHoswNLHHk3y7gituI7V/2S/tDUVXVCHC3WtV1mAzd3xhg5PgU9a9aHlttD0bwbVT97YxbaH8oipw/qV57o6849wC0vC5MYKs6Dm1Rs2qbV5Ox1piYHVxg5KR6QKDlvjChbXkfhhTVhz7VNrzbg8W3fCSn+Z6aZX/78v7Or/9D29y03Bem96fDXHpqSPV3fg0kO1f6O7DVSUuJYk38zhC1N/pW+ju+7O+2B9U1xMUnhhg9NU3sev8Kfxe+fQr+LmB2cIHkwvLOQftDUTwdhTG77G9Q1atK+7LtwUjxO8nZUPC3OviiN3iJ7fWRS+fQ6XS03F/Z35E93uL8LTtlNr2jgdCOVWM27++aXW6a71FtT3z+EgujScK7l2NE+4NhrPm1eHCrk5bXLr834R0u3M22ZX8/GMYeU/3t73LQ+sCyvxvuCND123Xs+kAzFt9yjADwbbDT/uCybWSvH2+rA9kp0/GG6IoY4WmzrrCN3eLD7FXo+Z6aAO367boVMaL9wXBxzBZixMnPX+HEZ3ppfSBMeK/6rIUYITulfBu8xTh78KMXSM6mCW51IlvAGlZoeyCM0bPsw6a71Xdhtm+RycsJFvLqBbaYTNsDYSwB1Ta03an6O09KNch6Bg9PMH1xXo3Jrw8Xv9dX+zt+h4/R0zMc+2w/sgU6HoniaCqMWTut9y/7pf72APs33cEG+3VkMhkOHDhAfX0909PaRKt1rOPXHel0mpqaGh577DGMRiN3bHuQLZ47kEzQcKMVi199j91xmbq9VpDA5ILIdjMj5xc5/b1ZDLo08Zts2IKqrbNWIn6TGs8kE4S3mrEFZE5+e5zBE4s03GjFFlS/0xxRifi+5aPM4e1mwlst9L84z8lvjhHasKzSYQ9JxPc5ischQ10WInnFj3NPTDFzNYk7f0LbFlBtC4odwY1mortsGPPJlMXZDGM96rrL5JGI3+xAzu/X+DvM1O7Oz+1xI3XXO1gYTzFxbhGTSyJ+ixNTnvThazVRd/2yEmLXIwGCmy0sjqfRSTrit7gxeVVbT4uJ+puWE5DR6x1sf3uY2r1OJAvEb/UU1VHcjSYabllWYorschDaYsMZM+NpshC/1YM9rMZCZ72J+K3LKk/hHfaietLZb48xc3VJVeoBHFEj8ds8RR+Gt9sJ71DbH+yy0ninB1eD6jRbWCZ+m2fZh5ttRHcvt9/XYkEvQXoerAFJtc3PEcEuK7V7l23rb3LReLvaRpNPtZXzJfz8GyzEbli2rbvRha/DQt/Pp+n7+TTx2zyYPGqDva1m6m9yFW1j1zsJbLSqBKivX0WxGYpj1tNipuHmZR9G9zoJdi2Py/htHmyhwvhe6cPITgfhrfkBIamloUdOqesuZ51J9WHB39vtxRJsoN5Xl1cuuMbfW21Edi6Pl/itHjKZDJefmSCny1T1d8PNbjwt6rrA4s/7uzBmN1pW+LvuJhfevO2574+hN+gx5udkX8dKf8eud+LboHZcag4WJtPFsoDeFjN1Jf6O7nUS6FTfucKY9bSYcMVNeJpN1N+8bBvZ7SC42brs71s9SEa1RKuzadWY3WlfVnuSVFt7VMm3z0HjnaX+thHeUeLvWz0464z0PzvNxZ+MU7OpJEZssRHZtezvhlvcuBtVBzsaTDhjJnwd6rMHu6xE95SM2X2uor9NXon4rR62vL2G+G2eMv524mvL27okAh0OTC6J0BYb8Vtd1N3kLJKASv0t29QY0X9whqXpNIFOE013lPh7l41gp2ormSF+ixOdDo59fgSDoqfhZidSnlce2WEj1GVZ9uE+B/awxOCxeS48M0log0X1iwThrRbCm5flsuI32XBEVaddPTbH9KC67pIUVSkpvLXEdp8dR0Qd3/aQwsxwkvNPquuhms0mIjuWbRtusOGuV+OU2Q2+RoVTP5jm6tEFAu1GGm5Yto3tseJpVPvc5NbTfkuQzeZ78dkjpNNpduzYsa5muY5XDB577DEikQgzMzM0NW7ktm3/DbPixFMDofplu0gTOH1gsqr/WOxw8ohKUPK509SUiF2Gm8CV36Yw21Vljr4zcPqFHK4aPeGGZbJRTSO481sPkgLRdlAscOb5LKNXckRKCneEGsCTTwcYFIh26DDZIDkHl45nUEzLmzuBBvDmP+UNBohuMGBzAwaVpDQzmmMhr3Hgb9Dhr1u+NrrBgMUFRhs4w1DTJtF7JJW3NeCPL7OWo10Stvz2jb9JT/PNJgwGVTnG02DA37xMzI10KdjzyjAmR47W2y1svMOKQQFPnUSwY3nPLtxlxBFRbRU7RLYYcddJ2EMy3kaZUOfyvkqo04QrpsY3xQaRbWYUm5oHvHI4seLMZHCDEXedamswq7ZGp0piiWwzEd6cv69eT6DdiCcfNw2K2gazS10z24MGFJuBTL7Mlr9VwRPPb4boc6qtR7W1+g3U7zVhdunyfpLxNxVsdUQ2G7F61We1ePVENhtJLkHPMwuYHDr8zcsH7iJdRuwB1dbsgshmIwYDDJ1OMnR2iUDrsm24Sykq6xjtENmkFFV/PDEDwbZl25qNMo6wYdmHmxRVgQowuw1MDyaZzJchDXXIuAp9Y87b5pcNjrABe2CZhhBsk/HEDMs+3KQUVZPsIQPhTpn+Y0sMHFsi0CoVlaMMBtW2oN5lDxiIdC2PD3+ThLcwDvO2Fq/qX6tXT2STajt2Mc3o+SSeWOk4lLH6dPlnU68tqPgsTKVJL+VKbJVlfztX+bDOQKBNLrY53CnjKOdvnQ53zICvRSabVtWXajYqOAs+tKj9qOSnYVfEQGijseiz+PUmXAUfmtVxWOrvcJdqe+7pBImxDJ46adnfW4yYnMv+jmxeVomq6TDia5SX/b3FiNmt+sUWMBDZsmzrb5ZpuN5E511WDMbK/gbw1Uk4ghIGA9RuMxLpkrH5VcKf2aX6v8DJ9tQbMDv1DJ5Wx1bDLrk4fkx2iG40LPs7qifYbODKsTQXXkgR6TDgyaeCFZtqK+VtXSGoycfOM89lWJjJ4gqpz6mY1dhZGN+uAITzhV2SCzDan1NVkgCjWY3fpryopcMPkWbQL6jxUDLp6L+gEpQMBoi1gTnfN3Y3REvid00wzeQYnDyuAwPUt4Ml3zc210pFJn8Utm26kS2NbyKX0/HlL3+Ztra2V4Sa5W80Senpp5/GaDQWaz7/wQf+kK4dqqaiLWLGHrXgbFBHgK/DgbPeyo73NrPhkQZcjVbc+bIHVp+CPWrBHVdHlq/VgbPOppZJe1ccb7sDb5uDxEASxanaeprUyOltd2CvVaOFs8lKYIML/yZ1JKUm09hrLXib86SZtrxt/sXwb3AQ7HQXyRj2iAV/m2rraVVtTfnkmbdNbcOm327Cv9mJo86Kvy2fPG+0qbZ+U75NdlxNNpXg8Kowrnobvg71vq4G1dYWVG09bQ5cjeqz1Oz2YDDpCW3KkxVieduI6hd/u6voTwBnrZVcLsfIiSnsIRP2Wguugr835H1YsG204Wmz8+LfnOXiT4aw11rwxNW/+9vU5ynA02zH02rHv9mJbFOwByy4m/P+bl32N4CnxYG31Q4K1Oz0Yo9a8LY6iv1or7Wg5P3tbbXjaV3++FUsEomrKpnB26Layjal2K+FJASAs96Ku95OZK8Xd96HVt+yraux1NZGcJsbX6c65uy1luJpZ1/7sr8BXHEbvjanSp6rtWCvteCI5QkUbU6c8eX7uhrtePNlRrreWo+9zoK74MN25wp/u5psRVujz4jFY4KsbtnfsRJ/F3wIKDZlhX99q/ztbXUU/Quo7a2x0vvUCJ66vL8LPmy142lZtnXErPhanYR2uml7XS32mAXFLZf3d8yGv33l+LYGlt+Flf624utwFq+z11qI3Roq+tC12of5d8wWUf1dd3OIun1BfB1OnPXLfnE12Yq2Vp/ql/mhJQ79U89yjMjD3bzsb8Wp2nqa7NhqjbjjNuzRVWO2Le9vRb8iRjjDZuy1FvxbHUUfrvZ3IUYY7UbIqqfpC37xNC+PrWtiRNhCMpFk8lKiGCOKPqwrHyN8G9SxUjpmnQ02/PlSKqtjRM02L47osg+dcXvxvuVihKvBxuZ3q7NtIUYAmD3yyhjRpMaInR9oY9v7m4oxAkC2ymr8bnGATqfGiJAaZ7f+Xjv+TldxfKOoPlyOEU7sNRYUVCJXYKML34bljazSeOJttqv9mCeSB7a6cDXYcbeobXTErMUyQO64FXtUjRHXJe/k1ptvRZIkvvCFL9De3s461vGbjO3bt/OhD30IgF2de3j4tx5GtuRjeZsDX+tyvHDHrYS2Otn4hhixm7y44lZ1Qz2XxdexsvSnOx9zG+8K0vraGK64FaNNJjWdxtfuWGHrabYV42jrfVHcTTasURNLEym8bXY8JfOJp9mGL29rDRpxN9nouF/9YvE22/GUxEJPy3Ist7hlXHEbzfdE2fqOOL42O+6SucfX6ijGN9mi2robrbS8Nkz9zcEVc4+v3VGM3bKszv3ewrqmxaGqBeb3AfxtDnxty3HfFbcVn8cVtyGZDcyPJyGlzp2+kjnC3WjD15q3rbfgitsYOzPHC/9wDnvEgrvUh00OfPlndURV2+BWJ8jgqrOqMbVw3xZ70dYaUm1tEQuNtwXxtjhW3rfFgbdd/W+LT8EVt+GMqXOgt8mOTqenL6946Wm1F+dvo8ek2tblCQhtduwRM+15Erjq77ytI+/vvF98zXaVmLTPh2zR4S/xN6v87Wl04IrbkGUdyODvWOlvd+Py/OKK21Rbu4ynzUbtDX58G5ZtPU0OfPlnd9apfrHkSRzeJrVfC+UMPc3L86Gj1qrahvLr9jbHClUBT8mzWkKqXxz5edbXoc71I4enmeyew1PSNxavvNKHrQ48TerfNr2jgeAW9/KYzfuwsK73ttpxl8z1vrbl8VEc3/H8mG1S/VI6ZgNdziIRzBW34c2/V+7mvA/zMcLX7sDf6SK6x09wqwt3o734fjrrVb8obiX/rE48rXYO/UsPV54ZU/2d7ytnTPW31V+wdRTXnO0PRLCGTMX22yN5f9csr8UL3wPzQ0k8LTaCeQK4NWRU/Z1fy/ja7SvWVqBjcUrt00KMcNUvj9nVMUKyGNTSI/JyjADwtNjLxojQJgeOWguuxpIx22S/xt8FP9TscmOvMRPJE82LY9ayvL4ujRGeJhv1NwUI73YXY4SpkBBtty+vxVNqPAltd7P1d5sJbXPjiluxFPzdvjJ2umqteNvsNNwRYMPr63HFrdjy3z7eNjvuptLvPBuOmA10ejoejOCO23DkvzW8rXbcK2KyOj5S0ymMXhPOmIWWPPHc22LH1bh8X1+r+i64JgLc4X2A9vZ2ent7aWho4OjRo6xjHb+p6O7uxmQyMTQ0hB6J33vX79O+Rd3ZNDokPA1GbH51R9dda8QbN9Jxp5O2Oz144ybcUSO5dBrJAp4GI44aNT64Y0Y89eom88b7PYQ3WfE2Glma0SFJqq0zT9h0RY144sY8+UlP7TYboU71HV+a0+GJG3HF1DnNXmPA02hCzudyAh1molts+Frz+08NJtx5W1tIUW1teXJLk5lAh4XOBwN44ka8jWY8BTJOQMbTaC7GLG/cjK/JjH+DmabbPPjaLXga1Vhi8Up4Gs2YPapfPI0WvM1qe50xGbNHJrhBjTVmt4ynyYwtTwb2NFjwNpXshzRayOVyTF2aR7FJeJrMOCJqm9wNFjzNy6p23hYL3mYLxz8/RM/T43iazNjzZX9ddSY8TSW2rRY8zRZccRNI4IqZcdaqts46E94mS7Gcm7fZgq9NbVPtbhe+Fivu/OFAR8Ss2prysbzFsqLMmNktM5NXmLaF1PuaHNLyfVtK4miHFX+7jWCXFZtfwdtkWV7XNFtX2rZYCHbacNaZMHsl1dYnF+/rLbH1tuRLn0lgdqr3tQXVseeJr2yvr9mCr1X979Z7Avg7rDjCeR+u7ps2K56WZYKNI2JGn89uuPI+LNq2WvG1lrSpyVIQn8BRm/d3IdnRasXXttLWHrIwcnIOezDvb8uyvwvtVZ/VgqfBjCNmpOP+IN4WCyZHqV9W2Tar/231qePQ7F1+F3yrbAvPY3IZ8DSZi6QrT9MqH5aMAZNDHbP1N7mJ7XWpPmxe5e/mgg9V2+RshlNfH8Fdu3LM+lqsePPPKkngaTLjjJmRbBDa7MDbZC4SjzyrntXTZMZVr/ajyak+q7fZVNYvnmYL7vyhBcUkkU2rqlpFP5S039tswdOottEWUvA0mVmYTjFzZQFvk3Vl3zQv+9vil4r+DnTa8DRZl++bzan+z993dYyI7fHgbbYWyde+1uU2KHY19jjCqq273oS/w8KG1wXy7TfjbVKfWzap6nL2vK0rbMLTaGLjaz1svNeDt9mMJ2+LLqPG5Foj6HU4Y0bcMSOSAhsf8FKzxYqvaTkx72kw4s7HE0dYwhMzYjDpMXkMxHbYCLWvsq1T30d7QMJTL2PQG8BgoKbLjL/NXCRHeePL84bVr84/FpfEdttredW+uzGZTPzTP/0Tt9xyC+tYx28yPvCBD3DvvfeSzWbZvvkOXnff64pzhLcGfCUlgvxRVTmpYxeEm3T4ozoMOtAvpXGFwBctUfKP6nAFwR+D9t06AjEdRruedFaPOwC+5XPH+KJ63EH12rqNEGnWY3Gq5YrcIT2+Wn1RRckXBndY/XdZgZpmPS3XqfOh06/DV6snp9OR0+nw1hrwhNX7GhTwxfQ07JRp3S3h9OvxxZZTxd6oAXd0mRzii+mxu3PEdxpp2GbCVy8VSQXuWgPeEsKHr17CkSd1BxskXGGpSCrwxhR8DcvkBW9cxlljgFwOi9uAxalnfjpNJgnuOhlvqW2jgitPALe4DPibFBYmshz/9gw2r4SvcZlA4Wsy4sqTaY02A/4mI86YgsEA9oCyIm76mkzFWGi0qrYWl4HgBhOhDWZ8zaZlf8eVIqFJMqHa5slEjrDqk9F8+Uxfg4K3QGiSwd+oFNftjpCEL67QsEedfzwNskoa1atkBX9cxp4/MGDzG/DHZXz1hjx5S8bbsEwm8jXKReKRzSfhj8sYzIABPDEFX6ltXMFZo/aN1aPaKhYwOaDhOjPBEvKTr0HBHVFtTQ61DYot/91RI2FxS2QWCrYy7vx8odhUW5MjbxuRsLgNJfeVcdXmCWQW9Vmt+b87a1S/zA5nmBvP4qtX8MTUfjSY87Z5Yrw9qMeXJ4HV7zIS3WJcts370OYv2KptKhCP3DEZT74f0enwx2V1zOp02Pyy6sMCaSamEGha7jtffJl4ZPGq9y2Mb3dMJtgiU7fNjCdmwNeg4AirbbC48j7MLzPdUbW83vmfLjB2Ia36peBvp2przPvQFZXVZ9XrqN1qxhtXcNfmicNWA/5GBYsrbxuR8eb9kpwDb1zB36KSrmRzfszmfegMy3hXlPjTsTClkiUNSn7M5sspO0IS/sZlW0+DjGLVMzeeQZ/Lj1lffhzmx+wy8UjGU6+OU0+tRKBZLhK9bF49/oaSGFEr4cu/N/aAHn+jTKhdQpfOYHHr8dVLyMaCDw346pbHlj9uIL7DiLdOj8Whw1cvYcz72xPW463N22bAFzMQqNez8RYDnoga40z57Si3L4uvVh0b6HR4QjpcIfDXQsdeNX5b8luFLj/4a0tifQicXh052UDDRgg3gC2fbnT6wF8a62vA582RSRrQWXSE6nQ050UpnZ5VtmHV3qwEuXnzn9HZ2UV3dzd1dXWcOyde/enXEbpcrkrNsl9jfPCDH+TDH/4wAApGbtTfI3RdaKcbyayn/2dipRc63lDL6MlpRo+vKpVWwW2b39NIz2NXhEpNKTY9G97cwKnPXRAqN6bY9LQ9VMfxT13SNs4j/uoaLn5frKQGqGoniyNidbzXgvhdNcxenWf0qNhp1o5HYrjqbRz/3IXyJZ7KwNFgITmXFmp//K4aJntmmTwnzjSs2e1h8Hkxie8df9CCXtbz4v8rVnZi15+0kUlmhEuEdb29gXQyw+kv9AnbT1ycFS6zt+e/dzDTN8fJz/dqGyvQ9eYGho9MMnxoStPc3WKj8c4azn//KtM92lKM4d1e6m8JcuEHV4Xu3/ZAFG+7k+OfFys/5+t0MHMpQVJDProIBdruiXLxB/1C721wh4vhA1Ni9wZ2fLAFyWTg+f/njHB7NjxUx6kvCPTVGqF4lOql5FYhuM1FcjYt/F7V3xYkk85y5Sdi0txtD0ZZnEpdW/6xgjRk19vqGT4xWd7/Za7Z9I4GznxrQOiZFRs0vVottyeC+fg4h648y9LSEhaLheHhYWw2m/aF61jHrwlSqRRer5fZWfXowCbdjQTkaPWSbfkaHc33Bjn/+PByKaMq15h9Mg23BTn9ZbHyDsGtTlwNVrq/KVbaIXazD72s5/KPqpc+yOVP0tbe6CW9lGXwRbFyWQX1k8lz4lLDslMuklleNsjQ8pow5757VcjvANf9SSuL0ymOfkyshC+Ab6OdsZPa5TJlp0ztHi8XfzwkXNJKdspY/QpTAmsFd6uV9tfFGHhpXKicWGiHm4b9QbofG2DitHb7XU1WGm4L0f3oFeYFSrIGtjrxtTs4/UWxOaLjkVoctVZe+D9i68bIHi+OqJkzXxN7T9pfH4Ucwvbb3tuETg8H/1msxN2uP2olNZ8WKj8H4N/kZPSYuMKNq8mKPWzmyjPa61hLUEYn6ZkbEPt+cDZY6Hg4xujJaXq+J1bixt/lwOiUNUvQ/TIwemSWJsTjQewWn1hJzDw6Ho5y+pv9xfdwtcx/KWSnRNtrw5z4Up/Qe2uLGqm/WVVuKotVdZt8nSrJq+e7I0JzSWSvm/mxJSa78zWLNK7pbzjCmW51Pf2hD32Iv/iLv9B+iHWs49cIn/vc53jLW94CgFXycEPNm6qXbDMsJ0hMDj0jZ9X5KlflGp1OR+0uC7NDSaZ6V9pVKvXWcoeDK4cWWBgvc99VdTYkIzTd6qLnqSnS1SpqFPbXJGi8ycmFpwTmiELpoy1Wrh4RXHflssg2HanEGrdBs9r2wS4rybkMkxfESofU5lWDzj46TGJI9aXW9qzJJ0EaFqe0y2qEttiYG0kyK7A3WYC70STc/o2vD6LYDBz+pNgavOtNIXKZHCe+JDbXxm/zgA4u/khsDy5+m4fE4BIjJ8XGwvZ3R5juXeT8E2JzefOdXsYvzDNxTnuPyeSRaLzNQ98vpq7xf7myb846I813+rj09ATjAvcPb7cR2eHi7HeGmb2qPUHbwzILUymxkn8AEkR2OBg+MUNaYGvHWW9i+rLYuAHoeMCPySVz+BOCpfkkqL/BxeWfT5Uvb/YfgGSj+jOuWicV1KNm+5PXrGvKwddmxqDoGD6ed75G+d3IDiu5VI6rR1d1lsFQ1r7hBivT/UkmLlz7nhdKvpWi8WYb/QcSLM5UXkPpCgxJCWLbzfS9kB+T1eooSRJJ2zDPXfoOi4sLBAIBLly4sL7ntY7fOOzcuZMDBw6gQ8+WjW/H7axDv1A58OTk/HdKQ46hPshk1JihX6p8jd6ip7YRLpfZ9i9Xts3uBXcQ+s6Wjx+rr/FEVFWQoZ7l0m5lr8u/064alX8zIVJJNpXG7FQJNwnBT1BdOrOyrNZqVFr7VCk5XLgmssXEwPHF5ZJQ2ep7Xhtf62RpLsv5J7X3gAqwh2Vmh8rEv1W+NSjga1IY7k5WLlFV5hqj3cD8eKFsVpXSsDbYcIedgZOLjJzVnvttfgNNN5i5+PwCM4Pa7Tc5ILrFzMDRBe2SfPn7e+ok+o4sCZXkinQp+Btl4bJsrogBm99A/1GxdWykS0Fn0NF/RGwfqPkmM5JRx5kfzVcuU1YyNjvusJBOipWfA1WhqOy4qfA7ZhdYPBLjAqXzDGaVML40LfY9o9ig4w47I+eSXD2msV7L+8LqN2C065gQKeVXadxW8KvBjEpuq+T3Vf/fFzcwdlH1Za7M2mY1ol0GBk9llpctcuWSygYD1G3S03sse80yp1jyrQSKGaJNOS4eL3+/Qsm3AmyOLE4vDFzSVy3lmTXmlWN9GTJpmJlSf7vaXJI1SozOfJ/jJ14A4JOf/CRvf/vbK9r/OuM3kqS0e/duXnhBdb6PCJv1e6raR/Z4Ce/0cECQAFKz240zauXs16ts5Je4LbjNhc6gY+glsQSWr9NBMpFm5pLYF6K7xUY2mxMidIBK1rGHzQw8K/axba83E7+thmOfvQgCcV8t8dTI1QNiiSBQSTjZVJYD/yDI6lOgYV+QSz8S2MBQEGp3KXb//9pZmklx+CNiyZe1QrHpscesjAskvkAtSZVZzIg97y+B3X/WTmJwgROfuSxkv1aS0u4/7mD89AznHhVLfq0Fikeh9e4wl34yKERYW6vv1wp3m432B2KMHJ+i5zHBTRUQHqe+Tge5TE64/ZEbvdTdEKT358MMPCPwziuw6/fbmB9ZFB4PkRu9OMMWTn9FLNmq2CB6Yw0XHxcnSNbe7BcmK4Fa9q8Yf6oVzM7H6rYHopz9Rsn4rHKNLaIQf1WY45+6LNSWxrtrcMQsHNFIzi5kEzzLEwDU19dz6NAhPB5P1WvWsY5fB4yNjREMBslms4COfbr7kAtH5CskiTe9o56xs7MMPFtmbVTmmo43RLnwg2Hh5HzjXUEuPC4+Z0b2eBh4TizJkcvmCO92c/V5sXUd5IkCPx8TJuC03B9m6tIcI0fEiBobHoli9hg5+M9iJJDoDV5q93o5//1Bxk7k5xMNkpKnw05mMcP0RYH1qYzwswI03V2Dv9PJsU9fFCL5/DLwtNmY7UuQEmi+NWKk7gb/CrLGy4mWe8N42hy8IEhWXytJacMjMawhMy/9Xfd/pJkVEbvZD3pdUfVKC+5WK4krc0K+/2Ww5d1xFJvMi//3V/S8+3z0FYj8Agmn7e9rBB0c/Cex9zF2s4+abW4O//tlMUKiDBsfruXiE0PMj4kN0JpdbqYvJZgfEbN3xi2kl9LMDSSrEpVK7XNZmLks1smhbU6WZlJMni+xr+Lb5tcEGT8/y8SZMpnC1dfJsOXtdfQ/N8Ho8QoxNH/NieRzjBquIMsyt9xyC9///veF2r+Odfxn433vex8f+chHAIhZN9Hh2af+oQLhyB03Et5k5tTjs9ck8cuRlJxRCVetkb4XKr/TpSQle1hCsRoYP79UNYFS2N21BSTQUyTfVEUuh8kjISmC9qhqMraAzNhZsUSB0aGnbq+Tcz8aFyI5yDYdnQ+GGDw6y+CRhBBJqetNIXLZHCe+KL6ChgNYAAEAAElEQVQ+DW2xMXRkZdx7ubZot/52mKWZNKe+LjaXrxWSCSw+IzP9Ysmg8HY7ZHNcPfyrKUmw9bfDzF5dEiYdrZWktP13IoydnePyz6b+A61UcQ1RSYL4LR6uHpphsRz5bxUkE1gCRmb6xHy/Vpi8EhsfDDJ0IkH/s2somyoh9H7ZwhIG2cB0r1j7XXETTbd7ufLcFMPHxfbFO98YZHEizfnHxfrX02zCETVx+SdT1/6xXMyTINxlFydIAr4OM2OnFzSJSgUEN5oZPpmPcRVISkAxPtXusnLlxeX2lCMpFSBZstTtstPz1LX7jkWSUmlbOhQ8dQpnvldhPOSvSafT/GTw42RIUVdXx8GDB/H5fJXbvo51/JpgYWGB+vp6RkZGkCQze7b/AbJB3fOqRFJq3KJjehJGB66NEeUSy7EOGLoES6nKMaA0iR1qUO3VG2pf44msJBppEZRcNTAlvm2Prw4mL6Wr8hVLUdMusTCdZbqvyvdpyZonulktWXbmqXmV9FKJpJS/xhkx0LDXysVn55gZyDdKg6Rkyau8zI8JPIQByFWJ16v862+RiWwy0/1kgoWpCu2olr8Q+CY3u3Uk53KVCV8lUGyqYs7Q6aVr7au1QxCBNplQm8Lx7879SkhK0c0KrqjEye/9ajaZPPUGDJKO0Z60UF7J7FZViUR8/8sgvseE1aPnxHfF1xUA6HJC/vc0SEz0pVXbat8aeV8032JBNuk4/bhAe/Q6PHUGwp0mzj09R7K0yyr51gB1W40Mnk2WF4Eoc52jxsDiAiwJfkqY7OptFmaoSlQq2ttAb4D5/FKnHEmpiFwOuxfIwmxJ6mA1SakU4WiGuRmYKbM0LZCUlpGhvQsG+2FmsHx/Fa7pHzxAT+/3kSSJRx55hE9+8pOV2/1rCu3e+TVDIBBgdFRNZLeyhVp9k+Y1RreCXtYLq4LUbPWg2Kq4ZtWLXL9fLS0lSlJqvDNMLgcv/a1YIqL53ig6Hbz4N4L2rwmj2GRhklJkuxeL34TVozAnkDhKpyA5l2a8W/xj9cUPny2WrtNEnswhStjZ+Po67FELz//dGWGy0qF/6kZvERv+9bcFCW5xc+QTF4VVZZKJ7JpIMmslu3ib7Gu6v7Aqzy+DJDz/V6fXdIk1pKA3GYSUjpITSU587rJ4c9boe4DOt9ZjdMoc/EdtIuPk2QSnvtIrTBoEVcnKGjQJ9cPYiRlNm1IMPDPO9KWEsOIYSVicShZLHYog0OlGsYpPF60P1GOPWBg+PC4UU1rui+Lb4GBxfOla1boyiN9VQ802D8m5tLa6mU5H4901eNocK1WtcrmKC6XaPQGsQTO2qJGEwKar0Skhm7SZ3Ga9jVt5kKutpzh95jRer5cf/OAHvOpVr9K8dh3r+M/Ck08+ye233w6AjJF9yuuW/1iO9KLTgwySSY/ZU2ZxXuYae8yEPWymZrtbU+EIILTdiX+jg8XptNBap2aXm9gNPrKZnJAiUmCLk/p9ASSTgb6faB8Ps0YUIjs8mFwK574lNp+76i0YbZIwSSkxtFT1O3I1+n8+zsT5GeaHxAgRpBBSFCrY7/r9VqYuJej+hshxO+j53iDDx6eFCUpbf7eRxPAC5wQVsgAmzoonveYGljj9FXFitS1qJrWQZmlcjABy7jtX4TtrWNutEae+KKakWUS+jJ+IKhVA3xpIwwCT3WvbSLGEFDY8XMeVZ8cYOqD9TnZ/4wqpeXE2meyU2fY7ccbPznD+Me2d1yJBSQZS+RhVhVBz+st9zK9B/WzywtyqsnHVYQ0o2GrMBLaKxURkqLvRz/wGB8c/Jaas2fraCJnFDIc+Kqac1vyaGnKZHIc+ImYfvd5HLpXj0PkS+1y2vF9ltTyo0SUzcXb+2nli1XVmp4zBqEexS8v/v8I1ncoeEtFhTo8f5PHHH6e5uZnz58UOLq1jHf9Z2Lt3L8899xwAXZ47CVvV8thlCUr5xLVs1iMpOoymlRu35QhKOp2O0AYrFq9E38H5sqSC1SpK9XvtGGQ942XUOsohfosTnV7HsS+JHbNv2u9ENhk48nkxQk399Q6sfoWxngUhUoS31YI9bMTklIRIILlMjsXpNNMD4uowx788hFH0mzlP5lhNUKqEuhtd+FqtHPvigLAazvEvXkW6ZsO7PHztFiI7nXR/Z1RIpQkgvYgwQQng6sE17NFIYA8qzA4nhZVzRBWdflkc/JjYmrcA2W5ANumYH732AXK53EqiUlpcMQryvl8jQan+Zhe2oMLJr2i/Y4vjaU5/a5j5EXHZooZb3LjjJg5/QnvdlbiaptixAsSmqYuLnPzaMIsT4u1ZGE8xPyqeSfS1WbH4FGDq2j8WSIolCeT66534WqxM9C0JxZTwFiuRnQ4yi1kme7XXkP4OM7HrHGTSOcbOasQhvY7gBhPBDWYWJtOMnVPHRi6dqUhUCrRacUYUrAGZuVUE91w6fQ1RSbEbkEx6MBrU/lrNUkinQZKQJInban+XAcdPOHHqOIFAgGeeeYbrr79e85nXsY7/LFy4cIENGzawtLSEzRJi15b3Fv9WjqCkqiflUIygGK/5c1mCkmzX4w5BMgWDFQqklBKU7F6oadKTycKowHlhhx/quiT0+jSj/doEFKsbGrbIDFjSjFzQ3mhSzBBtlzFZoP+4WCx2RwyYHfryJKUym1vzU2m13FM1wkXJddMDGU4/PiNU5aL4GyLkpDw23uNkaiBN/8EK+ZNVeYXRcylmh1MsVtviK7mmaZ+ZxZks/Yc1DgCUYGFSfFMwmYCBo2XWChVyIYoNyEBSMF00cjYlpOj0y6L/aFJYRakAsztPSBHo5onLeSMtwpZOB7kcC+JnWAFVLajlBgvD3UtM9Go3qPfIolC7l38ANt5pZbIvzcBR7e+ViUvp4nXkFd+qbTJffH5+TYSsxHiGhZksmdW3LPzGKj8rilrabzGRZfhsuY/Ra6+r26owP5Oj53mxcRffpZBLw5mfij1IwxYDOh2cfkagI3Q6atvUfz397PJD6xdSFYhKWXxhHRYnTM9cq6qkX0qvICoZDCDJagnPwv9fPbcUronW7CAYCHKi+xt86lOfor+/nx/+8IdCz/zrgt8YJaVkMonNZiOVUgfhTvbj0FdXoAhudzF8cEr8R0qUThSbjmQlCehVLlM8CrKCUDIewNlkJZfJCSsp2WqNmFxGcfKCAr5Wx5rIDopNL17uag1wt9lIL2aEyCig+nLbu5sYPSmuUlOz24O/3bmmMnhrQd2tAQJdLg78vZgKVMcbYpi8CocFS2QEd7hw1dro/pZYsiy820vDrSEu/XiIq8+//GUmYI1KSr8Edv1pG9mkuLJWcJsLd4NtpRJOFcTvDOHrcAorDHQ8XIvRo2gq4fyyiOz14mm0c+Irl8WIdApc9wftzA2Jq18BRPf5hEv6rQm/hFqZv8shRDgqYK1KSpEbvSuVozQWle42G5NnVm2MVrmmSGpd47P7Ou3MXJrV/Ej6Rfb7LDKPxWLhne98Z7F86TrW8euEv/3bv+VP/uRPAHDgYZdyx/Ify5CNZJeExWtk+mKVOb+Cmo/slEhNi288O+MWMcWfPELbnQwdFCME5bK5NSkvAXg6bEycXsPuSOGb5VfwTV9VBaqM/zc8EsMSNAmvc5Ch43VRRk7NrJlYK4pN72ggcXWRC4KKfNvf38zgoQlhgn7za2oYOzcjTK7Z/r4mdAadsCrrWrFWJaW1IrLXS91NAc58s0/4mZvurmHiYkKYvLbl3XFmBxbo+a5gn/1eEwMHxoVLKa4VGx6JMXx8SniMNt1dg6/DwaGPdKuKUAKKSvaYGYDZPnHityhkC2tSpvK0WZm4MCccUzwdNhZHlpgfSwkrKaXmU2LER8ASkEklUtc+QwW/yk49qel8fJKB5KpYVaU/fJ02xk4kKhNngenUJC/lVDXL1tZWzp791bxr61jHfxSRSISrV9V9kOuDb8Km5Pe8KhCUXDGJqb4qZUhWXaeTdcvcABMVS7CtJilJFh2SkeqJl5KktcktIRnFlZSMDh0mp8T0FcEgJoEjIDHTL76QkkyQXvgl97yqKClZAurGsSihQzJB15vCjJyao/+5ax1abovWHTfha7UKq/6sFb4OC+EtDo5/cUjIPna9E3vYyKmviZHKnHUmHFEjVwRVeRwxI213B+j9xYSwcs5asVYlpbVi01tqyKVzVX1aSlSyRxXc9Wb6fiHmo0CnleAmGye+IHa4M7rHiT2kcOZbayOii8IVN+FpsnDx6QlhYtnmt9aQGE7Ss4Y+8G2wMHbqV6CqUMgLVWv7qvWSs97EdK/4ZpF/g5nRU+JKSr4WE2PnSoJ0NTUlwBaUSAyujIlV1ZRK5oDcKvWRcmpKxd8JGFicyZCeK5PEK7nu8Oh3GVm8iMlk4k/+5E/40Ic+VLX961jHfwaefvppbr31VnK5HEFfFxtbHyz+rRxBSW/SYbLC3IwOyAHaKko5SX3nDTJkqixbVietzU49Cxqf4qXXuEIwNVRdQal43S+hpGR1w9wayKsAGEC3tLqGkmAqerWSUsl1rlqJqSsV2lJGTSm6zYwzqnDqe9NiRBBZT2STidnh1LJKUzn8MopE+Wsa9qokpcFTYvNI634LoxeTy2QTDQTbZRKjWeZKiVlV2tu8z6wq5/zgV6NctFYlpbXCETbQuNtMz7MLwmXWAm0yC5NZZkc0vg/yY6/xehPzUxkGT4p9f7TcbGbsQpKJvjWwj9ZA1YhuNTJ9Na0+r4Dqq79ZpmaDiVNPzJJZKvNbZcaHYgODrKtOkBMk2V1T7tCo0yZClVxj8cDcnEGYzGVxQ3oJVdlJQEnJmK9Qu+LATxU1JcUImRxkllb6ppKaksFQKCmnB7LoUquuK6OmlGeV4XCpJeDKkWAL1yWTCZ479A9kskk6Ojo4ePAgZrO5Yvt/nSC2Mv5PRiKRwGQyFQlKN3KvNkFpm5PGV9XQ9Joaod+o2e1m9x+2E9zuAtAkKNkiCjv+oAVbRE1kixCUNr0rjmLTM90zJ0RQanswiuJRSFxZEtpgb7g9iLfDDkkxNRZ/l4ONb6oDECIoKTa1bFvtzX5N2wKa7gqz4eF6YXuAhYklho+LJywGn58QJig5Gizs/u8dRPeJy832/nhEPHEHoF/bGiW0xYOnzSFsP9Y9y9UXxxg7IeYjd5uN6/5bO8EdLvFGrRE7PtjCpnfFhe37fzHK5afENsAAgpvduFvFfZTL03YVm1iIO/2VK2smKO384za2/G6jkO3As+OqGpTo/kUS5kcWmbgoftqw/fW1xK4P4GiwiF2gwI4/aKHlvqhQe0CNGZ1vrhe6fYGg1PGGmJB9gaDUcl8Ua0hbda1AUGp7IEp4t1fTfvJsAnQ6ut7RQMfDter/rLLwK6im7fy9Frb+nlg/AzTfHaHzbdoKf9frX01LqB2Aj370o7z1rW8V/o11rOP/H3jPe95TJCiFdU0rCUql0OmL/2x8uJbWe8TWXQCb39XAlt9pABAiKLW+LkzbA2EAIYJSzS439bepaxYRgpI1rFC3X7UXIijJ0HKv+ryiBKWO10dwxi0qkUDgu7bl3hq2vLtB6N4A7hYr9fsCxO8MCF8zdWmOxMAaNiJScPor/cLkj03vamD772nHxVIc+8QlYYKS0at+AGbTgolHGXwbnAQ6XcLtufjUML3PiJdL6Xp7PZt/R3xdtFaEdrjZ+YetWCNljm6WwcjJGfp+PkLiing/+zY6CW1yiTdKp1vT+vfgR3rWRFCK3uDluj9tw+KrLJ9cilNf7FsTiW709DRzw4sUN5pzWc0SiR0PRWm6KyT8G9EbvOz4QOMySbEKCuSeYszQwMRZlaDkabMS2au9Lpo4nWB+LIXRIwvFi+mL88wPpZCdMhse0V47zo+oBCVb1MjW9zRgLCjrVfBpgaAU2upg1/sa8XTYhYhijXcFaLojiDNuXjEfrYZTdrNP9yANDQ10d3ev2FtYxzp+HZBOp7Hb7Vy9ehU9ErfWvHeZoFQKg6H4jy1goPFGK9EdJs3763Q6XDGZLQ978MTV91GLoCTbYOMDbsx+mfSiBkEpj+bbnUg2WJxMCxGUojttyDZYmskJEZQCG8w4ojKkESIo2Wok4vudQOXnXQHp/2Pvv8MsO8p7f/Sz9wo759C9Q+fcM92TZzSjMMoBFJCQhJAsLEsE22CwwcbH+Prc597LMT728fE5tjE+xvbBNgaTDBgRJREkUB5NzjM9qXumc4473j/WDh12713VaDA/6O/z9CP1dNWqWu+qeutdVd/1fqH7sSqqugTfqYGGG/203yO+RwZGhszx86UPaVZIgQFjPeJkGqtHZfv7YlR1O4X7M3xsVpigBGBWTKXOZVdFqN1OVZd4f2YHF7jw4zFGBDNAWoMqW5+KEmi7ehvxGx4K0/428ed86aVxLvx4vGyZxYS0YJuD8EansN5BJncYpQnuefW+OCFNUOp6tIqOt4vd83jPvJENSuL8erJvgYlL4kTv2G43DTf4ccUFs/QDGx4OU3u9p3LBXHInZ1Sl8fZVzhsy2SWHgHmCUt11bqHnNnTUuNfoVjtWf+UKeYJSbIeDYHtlPz89kAKzicabXDTsNeZbNrX6SV7eJ264z8OG+3yYyshJLUbzTU7abnMtWY9KYWvoHjZGrkNVVT7xiU/w+7//+0LXX8c6flb47Gc/yy233EI2m6W57o4lBKXFyGrmwk/TRmjpgtUISkvqqWaat5vp2GH8LkJQirZA3UYzmCsTlADcYahqNohJYwOmigQl3QZVue0lUYJStM3wDTOCr+7xbhVH/nV0uQsqsQ8fbtdovdlmnMWXQja7pJ7FDfW77VR3ie2FAEwNJpm4kqhMbjAbticNfW/MlycoLULDtTba73CIdSZ3L+d+MidMUFLyy54EgaWqzYKvbtFaU2FsXD68QO8h8SyNdTsstOy9enGXK6yw4S12bF6x8jPDaS7sm2N2VJwQVN2q468VWMBNptyP3JnvqR/MSRGUvDGF7rc5sbjFGul9Y6FIyDKbKpKFJq4kmRxIGe4LivdVBi03OqnZKv6cvXGFjjvspUODZeM3T1CKdWs4Aqv0Y9H8nx0F0mD3gr+2cswyO2YQlBQdqgW2pBemjR9FgfpNlZ9BYsG4B91uom2XCT1nJvNcaWefTpsBMy5vhi17wBU2lZeUyznFcBRaN4DLkyZjUQs/y6HrTq7f+TGam1s5duwYNTU1JBJXSZ/wTcbPvdzbmTNnaGlpAcCMmZvNb69Qw8DAvgkc1XZ6vim24o6cnCGyNcHYCbGvVmwhG4quoLnE0mxU7fBiD1mJ7Apy4bnKhxzOmI6v1U2LReHoZ8Wy2VRt9RHc4BGWuorsCOAIW9GdCKVG1H0WshmYHxFfsA5+5jz+ZsFFGoMYcOBvxckim3+9ieETE8LZY7LZLPNjCwwKZnjxNDuw+rSiRJQAjn1WToLj4N/1oPvFX7ITowlhKTyATCpLcjbJ/NjV24hfmEySnBK/vmimgzxOfOGcVPrOc98bkLIRGJlzqjZ5hLP5zFyZY25M3NHrfp3Od9TQ95MhoQxDspnBjn/1ErFrAsIZ2kgUyVyiiGwP4KiyCmdei+4O4G1wUndLWMjv6X6dQKcbq08Tvn9PkxN7tZXLL4tlPNEdqlDGgDym++aYnxbfabv4oyEmLoj54NrBjVhDdg4N7OOf/umf6Onp4fnnnxduax3ruFq46667+M53vgNAq2krdVp76YLLDoJPf/MKNp/4RsHExRmpFzzdJTd/q7q9qDYz558R8+sNt1ThCFvp+8mgUAaT2uuCBDpcBM9MM3y08rzXPBruWgfpdFY4C1Q2AxkJXz12aobzPxxcPZNSCfS9OIKogEV4q4eqLi8nvnRBOMvLxIVZdHtlScw8YnsCDB6dJCkop7UwkuT1v5TIcJSEl/78BJoY1wWQkMLLYX48gapfvW9BFiYTJKaTwut4ciJJ7wtysde+T50VfgYA+z8ln40ytMnD7PA8M32V3y1GT03ia3atvnlZArFrA/ganUKZQSd6ZjncU6LcahJlwLnnBhmTyOi2MJEkmwG7R2N2uLJt8z4jI+EzGm+pxqSZhGPtpjurcMftXHpxTOh5V29y44za8LXYGTtduU+6S0OxKNj8Ggujla8/cnaO8KYEUxdyB9Mmc1my2NlvDZKcSa/M4FeinqZpNPftZkAfZHZhBpvNRk9PD7W1YoT6dazjamF8fJxwOEwymUQ327g59t7SBZft9k4Ppuk7OEf/4fLvpHnSy0x/irnRFJMDYr7d6tbQrGZ0G4jQCFxRFXfMQrDRTv+hyv5BdULVBjsWl5mzz4rtw0U2O8kksxz+otj+T7jDgbfOimqbICVwExaHSjabZWFGPOPSyacHcccqEwjySM3DqW+Ir8mtdweYuDgvnlHIBNP9CSYuiknVWYMqNo/K2FlxabvzPxoXLgtw5rujqOK8L1LzMHBIYgMoAwuTKZISz00W85Mp0vPi1x89JZdl8dJPxjj3ozFhks/w0VnpjEKqHXyNdoaOiNWb7FsgOSt+uKZaofG2AEPHZoTGU88z4llrAfpemmRhMsVUr/g+XCadLR7GCSDU7jJ8hhNSqw3BTLZwEOip1wl12EnMpLiyX8DvWSHS7cQZWuDUd8X8XrDZRnIuzfBpMd9tcSolM7KthonLiULIZDKbV2RVWo4LL88wP7VsoCrKSgk4IK5uwxXy8dK5b/Cnf/qnnDlzhq985SvCfVvHOq4WPvGJT/Cxj30MgA2tj1Ad2lCynCHtVsT5U2C3gwhBCWB82JA1EoXFbkaVKB+sMWN1meg/K7Y+VTeCP2pm5GJaSMrJF4Nwk8L0WIZJgW+2FB18MRWTycTMyCKfVc4nZSGTpjSBqES9hUk495MZJgSz5QBMXEoxsVrmpWVwhBTCrToXX5sTlruaGkiRmBHf//HWKkwNpMsS1xYjnYCTz8mt+Ye+Nl0pAd8SzIzIxVALM5lSSaveNCTn08xPZip9N1ZAOrFIwk0QR78rJ2l29gXxWDkPV1jJ3UvlslNDaaYGUjJcNLwxBW9c4/wrlfuWmIbzL5WIT3OSdqVw8fU5ZsfE7ZqcM+azYoN0qThqmYybooCvRsOkmJgZKfMwFkklxjdqaDYToxfFHl51i0KwQWG0Ly0kZ+iuAk+VGVcgzaTAc1NUI6uSbjORmKv88GanYHoSZnLXzmrKikx6izF42bj9qYmlEzpjUVdkVlIUhbqqxxkf/XuGRy7g8/k4cuQIDQ3iHz//Z+DnWu7t+eefZ+/evQBo6Ow131exzsbHa1mYTnH6q2JSYaFuN3OjC0yLaqlrWWnZozwK8kGCcDfYxQkHuesDUm2IEpTWAlkJuY2P15HJZDn2r2IkH90JWz/QwcS5aY5/QUCgdw3Y/BtN2PwWXvpvx4TKW8M6illc+m8taLk/hqKaOPElMemzteBqy70Fu9zE94Q48H/Prnk+icDX6mTslNgA3/y+JmxBCy/92bGr0ycddn+kg5ETU5z6qtizC3a5abi1mtc+eUqqT1dLvtG4OFJ98TQ7mBD8AhLW5vcSo4m1pViVvBdRshUYvmDjI7Uc+uzFij65N9PDeetRUqkUGzduZP/+/eKdWsc63mRs3bq1MAY3mfYS1mIrC5lNha9IbUGNtrdFOfqlS0WpnnLIZqSl1NBYsyyarGSSM25hSvBQBwy5JxmpJ9n+yEDo2ove8DW7ia4nGjn7nSvCBIiWeyP4W9288j/E5FRlodlh+wfbmbg4w7HPicV2ngY7ExLrhnyfTLQ9WMulHw9JSQzK4GrLvYHx7BKzaS48K54RShb2Ko3kPGLkJg12f6Sdyd5ZjkoS/EXR/lAMV42D1/7qlLAP6Xg4TjqZ4dTyd8kyWX3+0+f1ItiDGsnZEjJrZeCMW5i5LB4QycpzFitiPAeBDEkArloLiqYwfnZ2ybqzGprfGsakmjj99UUfKqxS7/nEV0mY5gmHwzz77LNs3LhR4kbWsY43D+fPn6epqYlMJoNd8XFD9F0rC6kKJItzrvYaG5l0lt7XKsQrZjMkkzirVdLJLHMjYhvM2WzW+JxRdpqn02Ul5ErB6leZHxEP8lQrKLqJhcmskKxBvk6hT6InHaVQoj3Z+63b60XRzPQ8Wz4OLmzTqrD58SgTF+c595wcoUMUrXcH8MRtvPb3vULPXHWCqqrMj69hHRBEdLsLza5w4fnxq9bG1ZZ7c0Y1otvc9DwzUnGMlMqeVQnZbBaTyYSzWhWTVQSa7vDja7Bx4DN9UuNWBluejDByepaLL4gRcJxRlfrr/Zz4+qBUn2TnngyEr202gcmMPawKyz0C2MKasD9e0h+Z0+ZCZTBlxA/Ow+0WBk8sgEVfsu6s1q/WW1yc/dFUURpF10rWG5u/zMGpb5BMJtmzZ8/6x3nr+E/FBz7wAT75yU8CJrZ1vRuve+UHC1nNXJB7U/QszR3QcxySicrkJPNCCn81jIonKMREVljCaAlSGRQdKaKF1QkLE+KNWV0wP4URB5UgI66AoU5UgEm03nJksiuk24TudXEdBVpudtG3f5bZ4Qp9yGWTC7frVLVbOPyNqcrPZC1nEQpsut/NeF+SC6+KnUfbvDA3Lt/UEpTrqwL12ywMnk0wO3J1qAJXW+4NoKpdI5POMnRaYE1ey7PLZtFtxrBIC24Dd9/nYKo/xblXxJN+LG6vEqo7dQINGie+M1OcZhXekaLdFkxm6Dsg3qeyc0/iY+ICFmVxWoXnXBJZxYxiNeaqjN+zeBUWZsT7mb/f8pmOVkfGKpYbSLdl0DWYnjSTtqmYl8tjLkN1LI1ugYs9xX6lrSrK/Moxf/D4vzI6fopAIMBLL71EU5O4UszPGj+3cm/f//73CwQlOy4hghKALWjFGRH/iqnprgidD9cJl9/x/lZ2fLhVuHzjXdVs/a1m0MXIQ7rTbMhm6Qgf1LfeHy/Izom04Wt10nK/cegoSlDa8v4mYjdUlg7Io+X+GNs+2I6zRjyjgu7RsMpkFJqGl//kuDBBKbTZQ+djtQYxQRAH/uEsPd8RI7wBtLwlyqanmoXb0P06u36/Xcq2nlo7rhrxz9B0v46vVTy19lpgDet4JDJmuSI2bAEL7pj4fez4ndaCPKEItry/mfYHa4TLn3n6Ese+cEGKtBLdHShKh1VCAl76xHFhghKASTGhWhUCzS7hOls/0MyW3xT3UbrTzJb3NxPaLJACGyABrnob7Q8KyMRBgaDU8XBcKGNY3u/V31ZF092VZaPyPq/uljDbPyguJ9RwexW7P9KBr11sbtTdHCK+O0h8r9hc9dTa0ewqvobKKTHj5kZ2+G7C5XJx4MCBn3t28zp+cdHZ2VkgKO003bWSoJRPH7vohccVs6K7VJxhgdgrm6HmhgC11wep2lrB5+Qke3ztTnZ9qIXILp/wfWx5XwPV243rixzUN9wZJpKTRBUhrVv8Gs1vNSSeRAlKLfdEsIc1YeJAeIuHrifq0CS+Ot/y6810PbHKOllCusrT6ERzqFJfF5/+jytSBKXWt0cJbRJcXzCe17EvXOT898R39DoerqXrV8Xjg85Ha6Sk2Jw1dpy5uEUUngY7mkciVdMaINuGp8GJt148VovtCRjvPIJNaHYTm55souEWQSmUJJx+uo+jXxAnKGl2aHswhlcw5jzxpT5DslmC5Gj1W7B4xV8WPPV2tv1WK7WC8QFAdLePrifEsvfkfUbzW6txxCr3a3bYICg5Yjr1t4vJPs5cTqDZYcOvxMWk6CZSoMGm99RL+eZt72uk+6l64fJt90ZpfkuV8Us+a0GZNOaOaiuO5WvR4nqLcIN+P9s2b2dwcJCuri4OHDgg3K91rOPNwpkzZ2hsbCSTyeDVoysJSqqygqAE4AyquIKrbHzmZSpyBCWAphtcNN9cQTq9IGNgouMeD933i8/tYJuFzns9oIpLqrXeYZSfHxU72I9ud2D1q6TmDWm4SrAGVOK7jfe81DxCEp5tdwcIbhAPvCJbnGz61SjOavEE9Vavis23evlsNrs0A0oKDvzfy8IEJVdMp+EWP6r4liinvjPC6e8OC5PSanb46HpntXgbKmz+tSjhjeIxiKfOiqdO/CZUO1LPYS1QnXJtWD0a7qgVe7By/Jh/5p0Phmi6YxWpsRJovSdA273iEs+9L09y4msDUuQeX5OV+pu8wuX3/+MVYYJSHrpTwVEt/rzb7guy8Z3iEuOq1ajjbxFrIzVvzNWaawXeYbIZZgeMPan4bkO+shLmhlOQzRJssxLbUXle5J9XsFVnw33eyg3kEGyzsO3RAO64XlwXysDfqFG7y0HVBgssJEBTiz8lYPOpWFxm7IvXo0SyZB2fNcp14Xfg8/l44YUX2LVrl/B9rGMdbyaeeuopPvnJT2Iymdm99UMrCEp5Wbc8QQmMzElWh/FTClnVXPgxL6TwhaChE/yVVMFz89LmNrHpBvBHxe4hazLRss2EL2K834gc1IfqwJ/b3psXOAtUdIi0GD5jfkKMGF7VqqA7KRB7TJmsQVBaBY6gQuMeW1HKLI/M6u213eai8YZVYrVMZgWpye5TsDjM5fNeLfOPgycSHP6aOEEp0mXBHRMkMphMkDFx8tkprhwRJ4g03+CgcY+45Fas20LLjeLlLXZwR1SsghKyAFa3kS1nCfLSXG9SThSbh5Xjoww8URVPRHADK5vFE1PovKPEGFwNCnTe6SDSJt6pnhfnOfe6BEFJgWiXhiMo9iz6jyU4+s0ZKR6gzWvG4ipx/VWene6EDW91EWpbxbYl5qwnptC4p0LclWsv3/dQi4pNIPRKz2dIz2fQbRBuFpt7C9NGe/WbTEKc77xfbdpqwh+rLKWZR9tOaNlu+On8Tzk0d0BjB0AGZS5FxqIUfkrB6QanCxY7KGU+Rdqqkl5GjNrU8Rg7tt3E8PAwbW1tHD9+XOge/jPwcyn39vTTT3PPPfcA4MLHLvOtFevks2m89henpNo6+fU+ktPiO9cjp6bQbeIMOqtPR7WowsSH2J4Q9pCVQLNLSLZNd5oJdLixBXUOfrpHqI3avWHsISsXnukTk3nz61hcGo6A+OI2fHQCm09n+pK4E37jr88Il9Wd4KoVs1EeVV1eXDUOuSw5CRjYNy5c/PwPBwh1eoXbsLgVMokMiXHxMfj6/5aQNAGa76rG1+jiJ/+/o1L1ZND5jlosTo2XPiHm7NYix5ZKpElXYJMuRu8Lg1gkSG/TfQlkUyiFu73YJNoAQIdgm5vhw5XzBQ4dmGDogNwGz8iJSSwuCbJfIoPVreFvdAm31Xh7BHtQXCrSVW/D1+KmWTVz7HNih5GhLg8mk4mzT4tJdmp2BcWioDtNJKYrB8NXDozhbXIw1iPG1Lzw/SHS6Qy9PxL70nLg9XEGXh8v/F6pX5YBJ22ZbbzMs5w/f54dO3bw2muvCbW1jnW8GWhububsWUOu6VrTvdgX77CWOBDOZ/cYPDjF4EHxtfjS8yOk5tIMvCHmb6YvzTI7vMDwCbE2LH4NxWpGtYmHuP5mJ+naLFcEpV0bbwnhaXRy+ZURYcmmQIcLzaFw7N/EiKqeGjs2vzipCWD01DQzQyXirlUO5YaPTDF8RJxw5G93Mnp2Worw4W9yoVoUhg6Kr2WyWZEuPj/IbKn7XgWp+TSKhBTb2MkZXv7vchmOOh6qYXZ4gUP/eF6qnig0j8aGd9YxeGicM4LrpGz8mJhJkZ5PC0uTJWezXH5tlKEj48JtDB+Rk9FLJsHX7CKTyDAukaVRZuzul5CdBpg4P8tU7yyjZ8X74wxbsfp04SxJmkcjuMGN7lQ49gUxccbG2yI4QhbO/2BQ6L7d9U6cERuRrT6uvCImF6lZFewB8Zhz8uIcs+VSeC/Dyf+4TFYwUwrAwX8oxpiax7wyu19+Lctd03e0BXf2HBMMs3fvXj7zmc9w//33C7e3jnX8NDh69ChdXV1ks1mC1nq2hxZ9lKeW3m/KZ9M49rSc7zz13KSUXO5ozwIWl8Sel0dBtYqXDzZbcUUteGIaExcEHJQK1RsduMI6J78l5p+imx34Gmz0H5gmNVs5e5JqBVtAwy6RHWi8dx5HtUU4iw3Aya+vLlO3Ism9Cu6ohcmL4jFOoNlOoMXGuR8JV4EUjJ8TZ61cOTjFwlRKmOhidaik5tIk58T3co5/RUyqOY/IFg+RTW7e+MwlUlcps2HzrSEcIZ19nxZbh4ePzzJ8XLwz2WyW1EKG9IJ4tq/L+yaxesXfeRYmUizIbS/hb7bjqbFy/gfj4pUkxu705RRv/INYLJvHyOlZbD5xon5qHmx+DWe1hdHTYgM3tsuNt87Klf0TQmPK4jZTtcGJblPo+b6Ykas22FE0E32vicWQqkVBtZrRnJAU2MYav7BAsMkinOVptCeJWZ1m+JRYrDZ1JcX+fyve64oMVHmiUo5oq2a9bNTexg/5B1599VWuueYaXn75ZaG21rGONwOPP/44n/3sZzGZFPZs/whWvfhB8HJZNwBFMQ7Pp8ZNHHwxSyWJtzzGhqDnsPFfEczNwdQoTAoo2WZNJhQdNAuoEt9EBaJmsmQZ7RN7t6pqMBNuUBjpSwvt+ysKVDVrWJ1mLryRLEtOysMRNGP3mZeSKyrUGz67QGq+RJlVdMdmh9Mc+VoZn7yMvGkPKMyOp6UyKAUadXSHmck+8Qzr8xMAWeEMNJf2zZOUIBinUxnSFbJ+LcbCFBz6ulyGo+br7cxNZDj746uU1hBov9VJ/8kFrhwR24Q89X05qd3UXIbkQlY8G1kaLh2cZ2pQPKadHpLMIpaGYKOOiSQzEnVtPhOJySzpZOW5d/b5CnZaJK0Gxtnf2KUk0wMV4olFcrgWpxmb1yxm22wWRTURadeZ8Ji58LpYHBJpU/BGVUYuiEkn2j2GjNvkcIrRPrH5oetgzVEisiYTpgoEvIkhhGUcAc4czyfKFNujPlM4eldQlDTp9NJ38DxRKZ9ZyanfSG00wYU+gyD+1a9+lVtuuUW8gz8j/NzJvX3pS1/i4YcfBsCNn53mykZrvi9KaIOHY1+4yITABrHuNLHh8QaO/kuPcCahYJeL4cNTbxoTtBxkZeGcMZ3poYQUv8JZY5EiEF1tNN5VTc+3xb+a73ykBm+zi0P/dFbqPmTk7Vruj+Gtd0gT337e4Kq3EWx1S5GCZOXeQt1udJdG30+uTqrsnxVa74/jqbeLP3NJuTAwMkIpFoWX/0ScveprdaLaFWnC0lWDDlavzvyg+M276m1MnRcPFqUl69aSpjMHX6uTsfPTws+y5f4omWRWmEC1/YPNKBaFV/6sMhlgOjPN+er9DAwMEA6H6e+XyA+8jnWsEQ0NDZw/fx6A601vw5pP31PqhTm3abD9gw0kplIc+r9i2Qwb7giRXkhz8Qdldl4WSQBpdrD4daZ7Ez+dNIcgFpMFRA7FHTGdmT5xH2gPihE93lSUsVuwy838WJLpXnG/vOv32khMJdn/t2Kk+AIk5Pq2vb+ZkVOTnH/m6kmS/SwQ2eVjbiQhTKRZi9xb7Y1Bhk9MMnsVJYavOjTY9t4mhk5McVFQTlVW/szTYGfDO+vo3z8m9a5Re2OQiz/M+StBebKrCXu1xmy/hA/RwOLSWBitXCdPXlizjJssTGZ8LXbGTos9SM1jpv2+GIe/0Fvalyzz2b4WO633Rbj8yhiXXshlHymznl2MHKTn8ik0TePpp5/mpptukrmbdaxDGocOHWLTpk0AhK1NbA3dbfyhFDkpd7hb3aUT7bJx+gczTF1ZNk9LZcdQoW2vjbM/nFydTLLs/ckVVZm6nCK7ykFPRUh8wrtUgq1y3KU5MQ5nFt96hXjN6lOZl9hXqwgJ0mQpVG9x0r+/9GZUqW3Z+G4P0S1ujv37FSkilIwMVnS7i0CLncNfGpCX9/s5gtWv4q2zrmrfUpCVe3PHLehuheFjV09iGMSk30qNF1HJuOgOF/5mG0c+Lxhrr0H6ccNDYSxuRYp8ZAupWFwq4z1X77BTFhaPykK5uGhZbGENqMyPpCrHjbl6qgVSi7ezKz3Dtci9ASZVxeaH5CSklvjQ1X19pNuKyaJw+VCJwKuEnFv7HU4sbjMHv5T7GFMvwZ7I1ZtPzXPK9A0uX75MR0cHx44dk7mddaxjTXjooYf48pe/jMmkcN3230XXjY/ySpGTjCxKWTbuhMQCnDq4cm5m1ZX1wpE0SibLQLlvc5fEbFlsTpibNmFKVo6hSmXkEKmXx2JJJVOlmC2TLX2GVqaeaoVUEkylSBIiMWKpOKtSTFrm746wQiYJc2OrtF0ift5wr4vEbIbTz5bZxynlq5dJ3JWr03KznYnLSQZPJNcmk/XT4Kc4O1kOd1QhvZBlZiT3DErF84vaW4vcm79eYXpYjCj3U0HELj8FJ6DlRhvjfUkxGTpyczUl3p7uhM47nPQfT9AvkaHL36gy2pPr02r3t5YxIzKuS1xXd5kqPuussmjeKgaJKDFHxWyR+ffsFaSpCveX0Vd+DFCJqASQtmk4XGlmppbGbqvVVZQM9W1w9qKygngErJCBsznSdHRD3wUYuGyUX55JCYpkpYGxH3HqzPMoisILL7zAtm3bKt7DzxL/+Tuui/D973+/QFDyEhIiKAFceWWY2cF5IYISQHibH6vPgqdZTH7C1+qk9Z44HQ+JyRsBbP9QC91Pikv2eJodhfKiBKXGt0TQnWYjA4xAFd2vE78xCCBM7Gm8q5pQd4XU4Muw48Ot1N0qnnK47tYwke0BKcmzM0/30f/GmDhBKfeRr8yipihyTthZY2HzbzThqhfPOOVusKNLpFLUnbD7DzpofIt4auOp83PSWYtkMXRoUpqgtOuj7Wz4FXF5FkBYmiuPjnfUCMuSAWRlNG+gOO8kkildfH6Qs98S+/ouj7YH4jTcUilPbBG6E7b/dgv1t1WJN6JjyCGKIAHzgwl0v07sWrF5myco5f1WxSZyBKWqHV46HxXsFwah9JrfbxOXONSh/e01bHlKXPrH1+DE1yQ+FgcOjzN6RuyLZ6fZSVP/FswmMwMDA9TUiEsWrmMda0FLS4s4QWkRxs7MMHBwXLgdX6OdQGsZ6cplm7kdj9Sy4eEaYakpX5uD7R9qwl0vLtPR9kAUX5uRs1uE9GDxa8SvN3yeKEEpssuHZkecoKRB6/1R4fsGqLslxOb3NUjVabilig6J9RHg7Lcvc+GHEuShfH9EeRW58jJnoy33RmgWkAZd3IanUUJDD+h8Zw3bP9QiVefKK2NSmX7Wgos/HJYiKNXfUcWu322TakPzaDjj4nGtq9ZO95P14jJ0SeNQzayKx9yFuSrYxMS5WXpfGeHSj8QJSjU3BInvCVG11Stcp3ZvgK2/IR5LAAQ3uAo+pRLyBKXYHr/YvSdhYTSJ5tGoEXzHyhOUOt8Zx14t7lA2PBaXk3G7P0LbfRHhNnz1DuwhnXDHKmvIsvVq7PQs05cX6D9UIfbK1au9somYq5bZ2VluvvlmXnjhBaF+rWMda8GZM2fYvHkzANX21vIEpUUYPptgqj8lRlACfDEVR0jFFV1lni3bkLV6ofVWF3XXiq+RHXd7aLlVfK/I6lNpvtXYgxMl0VR12VHzWUME9vVVK4Q22CCbESYoVXXZ8dSLS7oCbHwkTPUW8fdBf6uNmmu8VG1eqRWz2nej/fsn6H11XJyglNuXlpHyMplNRmIIwSY0l0L720I4wuLZe+whFVUu9GLbu6PEdoqPrfnRlBRBaS2Y7F2QJih1P15Ns4R8G4AjopbVPFg+Xmqu9VB3g3fVcVTiAsZ/RR9hfmxI6DBcemWCs8+JZT3Lo/WuILXXesUrqIY8XnS7xB6hCvU3eoXvZWEihWqFYKfYAJ4fMYxV1W0Xkn3LE5TccY2GG8XHuzOssvkRP+6Y4I2o0H6Hh5Zbl3WqzIGev8GCr2aV9aOE/Nvg6XlGzlfwubl6VtVKZ/YeVEXj+PHjbNmypXy9dazjp8Sv/uqv5ghKKtdt//2yBKUiTAxdhuHLK/9SiqAE4A+Cv9w2/LI517gB2rYASnn/nZcMsjmh61pwiB1nAhBrBVfuVVCEJ6SoEMwd1YieoXmqc9lSZrOlCUolEO3SDWJPHhWI4P5GjZabHVJczfg2O403rOKMV/F/51+c5cqhMoHUckJDvj+SyXJk+C5VHRrVnXIqHjavXH9i3Todd8gFa5OX0+UJSuX+XRCj5+UISoFGhY1325eOrQpQdLA4K/Rz0X3oTmjYZUGXO6LEJHHOXJirgveRmIZL++cZOiO+P+iJKdRts+OrFTeWv06l9RaBcbJoPjsCCv4GsXglMWXIv3ljipgEX9ogKCk6BOvEztfzBKWaDWasEs+wrh1atxr/LyLjFq01SEQ2x1LnsFo9uwvcXvCs4t+Xy7/NzcDYsPFTDnniUpVvLy31e5mbm2Pnzp0cPHiwfMWfMX5uSEqvv/56IdWUhyDbzTdWrBPZ7cMa1pnpT3Dw788Jt9X7oxH2/eVx4awkY6emGTo+wfGvi0l0AKQWMiRnxD83ie0K4Ki2oQtKR+l+naotPjreWS/cRtu9UWqvDeOoFl/Ywpu81EuQIxzVOmbVTCYtvghdeHaQnmev0Pe8OMklMZ2h51viX+VsfrKJa36/Xbg8wIkv90plUfI2ubD55Da3Oh6qZfP7JA6+dJ2FqSQzQ+KZDxpur6LjHVeX6FC1w0v3U+KkPICFySRzY+KLZ92tYTofqqNqm1e4jjNqwxEV17Y//dU+6cxZnY/UsPt3O4WJSgP7xhk6VFnqbTHOfusyB/6PuExLYhrMqoLuFD9gim4L4G1wUnNTSLhO9+N11O4VJyQ6YzrVW3y03i8+HiPbArhrxQPl6YEFMsksikUw+EvAwP5Rjn9F3L+/+tenpGRzLv1gmNNfNd5sG26vTByzmZ1ck7kdRVG4fPkyu3fvFm5rHeuQwZYtWzhzxpBavdH0gEFQMpvKEpRi1/oAOPutQQbeEJcbeeNvzrH/H1eJ1Up8bXrm6Sv0vjIqTHAxmU1kk1nxdUUDT52dyDafWHmg6c4q4nsC4gQMDer2huiUiNVq9wQItDkJliN0LYNuV1FVc9FW2UzF7FMH/u95Tj9dYsetDIaPTDF6QmyHQLPDNR9pp0mCVE0S9n3yjHBGHQBX3I5LgkRTvdnHhkfqpMgns6MJuUwMGmx4rBa/JLFaFq0PRIntESf4zw8nmB9PSJHZNv9aPe33x4TLqzYT9qAVrwRZ8PW/PsP578qR6Xf9bhsbHhYnMF98blAq+9Kl54c5853LDLwxLpVFyayZxP0DUH9TmMhWcR/kiOnU3hCk9e6ocJ32+yPErgmgCT4Se1jDFbMR2Sp+qJqay5CeF3/v7fnuFa68MSGcGWrw4BRvfOosgwfKxM/L1q6jn+slOZHEXq0R7CozF3P1WqZ34acas9nMgw8+yL59+0RvZx3rEEZ/fz+tra1ks1mqbc1sDtxlkJPKEJS8tSpWL6Rm4fT3F5FfzeayB8xjZ+Y49G+jjPWUmGclNkfnx+HKoTn6XhF3lqkFQ55KFKE2K564BatXzK+qFohvd9F0vbifjO9yU7fHgzUgzqio3uyidrf4iZ9qB/MqB5SrYfTUHGefHWbgQPEZZrPZssSS1Dxcfl081m65I8DWp8TXB4C+Vyc5/DnxNdgZ1nCEdRRd/ECj+c4gGx6UiAdVmB1NMjcunj2wqttBw03i42QtcNdaaLlLPO4CmB9LMjcmvj76W210vq0af6P4HpY7ZsEVMfYhRYhKl1+fNrIoSWRHiu/xsO2pKKpgtyYvLjBxXi4jUs+zIxz7ikQW6RQoullKatITtxJsd1BdLi5Yhua7QtRd5xUmNqlOiO90U7fHK9xGuNOBt9ZqEBUEnuH8ZIp0Miue3CAFffvnOPdiife4VdaRo9+c4Oi/j69+TU1dQlYa7UnR+5rxzMPtZTZHc/VU1cqN4SdRFZWDBw+yd+9ekTtZxzqk8Vu/9Vv88z//cy6D0kfRdRtZzVyGoJQmWG3Mw4FeE6NDxYmWVc2rEpQATr2e5fgbq/yxxFy7dBp6zwDp0pN5+UG4WTGyoSUkFK38MTPBGnFyRKTFTLxTQxffYqFui07DNvGzRm9cIdyq4w4rBplBIFOlqpswa6YieSOTqfh125nnpjj/k2V+r0L8PDOcZno1Ka8SBKXu+1xEuiqcBS6rd/r7swydzMU4AvfuDKq4qsTXOmdIof1WV2nyySprzMJ0hrlxOaZVzTYLzpByVVWHqjs1/PXi956YhtmxjBSZrfl6G4277cL3YTKBq1rF5hFv5PQP54zMWaLIZul8i5367eLx4EhPSkyyLoeJvjRnXphh7GK6/L1ni7FJJifLJuQfcnM72q0T6RD3D7oN6nZYiHSK76vFN2jENqgoqth7qaKDL2omEDMtub9ySCaMTHGLUY6sdLkPei/A3MzKcVKqztS4mUOvwEQZSc6MRVlEVlI4d1ohkVDQ9TRu3+rzN21VSVtVqkM30Fhj8G9uvfVWDh8+vGqdnzV+LuTezpw5Q0uLQdRw4GG3+Xaherv/oJ3kTJrX/1LssLjrV+tQHSr7/+ascN/iewP0/mgReeYqmktW5s3X7mSsR1yiCCCy28+Vl0YlOiUv63S10fWuelSnIvUc624J46iycuxz5XJuFuGM6Zg0RUqeai2o2uHFZDLR/6rcV0Yy2PL+ZnSHyit/Ki4hIiv31vFwHG+Lm5f+7Ji0/JkodL9O/JoAvc8PyMmASTcEoXa3MJEotNlD9WYfJ798XpjdXXdLmKqtfl79M/Fn8rOArCSbq96GyWRi8pz4ZnZos0dOti4fx1QaV29CylJrWMcVtQn3L7YnQPzaIPs/dYrEdOW1oWq7l+Y7owwcHOPMNyqTLJP6GMdcBxkaGmLbtm28/vrrQv1axzpEcMMNNxSyRVxreht2y8ovu5ej6a4QoU4XJ792RUimR/NobHo8zvkfDTG83KeucvAf7HIycXGW5MQiP3+V5N5Wk40qJ/fmb3cwekI8Q46n3k5yNsnsoPgLqayU3BJcDVtpsP03W+j98TD9+8TiFc1uouW+OH2vjDDRI7ZG+DtdjJ6eEs+8tAZoHo3Idh8Xnx+8au1oHo1tv9FE//4xYfLNWuTedn6kjbnheQ7/k1isthZUbfWSTqQZPiJ+SLoWOOM2knMpFkbEHkrbgzEmL81y5RXx+HnTuxuYG13g1L/LkfOuptSbPagxO5GUGotVWz0MvCEeR2l2sAZtTF1cPb4zLSOmXnXZt0U2jezwcOU18fvZ9FQts8MJTn+jwtzK+fGtv16HalV49S/FPmgabT3J/iNvkMlkuHz5MpGIxMH6OtZRBuPj4wQCATKZDH5LLTujDwrV2/yAg+RchqP/kfPDFVLZ111jxe5VOP6N8aV/KPOuFGzVGT5VjDuuptxbSSmyMnts9pBKYiq1enagxTFbLgbyt1oZPSVBkFDB4qgg61SqvZ8ClbZhG27yYfWrHP/KkPA1g512XBEr554T2+/TXAqa1cTs0NXVefM2WDFrJkZPXb29tbZ7gjhCOm/8o/gaLyv3FtvpJrLVxYHP9pG6SkmbVCuEN7oYPDZFanalhJvo9n1F6TcVPDELExfEMtM7oypVXW4u/GhUOFNXoNVGbJeHQ5/v/7mSEixIsomW96qoVlZmNCvzUY+7Rmfy0qJ3ueWxZIm6K6TfoMSB+Nrl3grtWI1MTOMXV7HBMv/vbbJRu83Kse/OlH/2OSk3V0Sl9RYHA6eT9O6vHODOZ6c5Mfd1+vv7ufvuu/nGN75Rsc461iGKP/zDP+SP//iPMZnM7Nn+u1gEUhBVVaepq81w8hBMjRlzsBwxSVHSdG6GS+dg8soyH71KzOb0ZlmYhWSiOMeXy7ZVytKxWr2VHaRklp8Vcm+L4htnAKbLLY2L6poyWSwuI5QreyayrD3dCYlJwZhqeVy61ji1QgzdfqeTgePzjF1Y5h9XeRaKApFNVsYuJpkZLmXklfUcQYWZsfTSZ/ImS74pOnjjKuO9ZUgrP+0ZigLd9zgYPLlA/zGxzYzYJou03FvnnXbmJ9L0vCQuYSYLV7UCGZjKk9OW2+ZN4gLoTiADiUrbo7n2Iht15ifTBolIEA27rSRmM/Ttl7SX6D2uYdwoNkinTCv9UJlruaoVpvpXPo8lUm9LGgGbC+bGF/3b8vm+7KOgFbJvq/SrlNxbKSyXcUvbiiQrXzCdy3hUOo5bWjdD0yYTCwsmLlwo33ZeAq69K43VDvsOqqu2sRhzk8/x2r7voygKfX19hELiCSuuFv7TMylNT08XCEo27MIEJYATX+3l0GdlN+bFHUvHw3FqrwtLyQbt+mg7rfeLy2f42p10PGyUFyUoVW3zgg5jJ8QJSnkJMlGCku4044zpBVknEUR2+wtycqLY8v4mdny4VaqOSTVJO8ULzw0KE5QAGu+I0fWYXGagtWDgtXEpgpIzphPoFM+uALD/k2ekCEprwfEv9vLSf5MjKFnDupSUYGI0Qc+3rlxdghKw5T1NNN8tPoeHDkxw+DPiBCWA5KyxiDhj4kzixrdG2P2xDql0ko5qXUruLk9Q8jRXJivky0+emwUd4QxteQJQ1Q6vWKcSxo+v3SmVEcxRrbPr99qou1kiM9Sv1NN0h/hhVGohRTYLumDWhIHXx+l57ooQQQlAS/ioGdoAwL59+7jrrruE+7aOdZTDo48+WiAo7Ta9VYigBHD220P0fG9QiKAEoDuMzfT0/DK/XebQv/HWKkPmTRC1NwXZ/sEmqewlLfdFcMYt4plVNEOWCRAmKNnDGmgwcX5WmKDkyWWfkSEoNd9dXbx3AYKS5tG45qNtwlKdAM4qI4ZMzIgzKZKzWY59/pIwQQmg9d4YG98pJwMri+RE0sjUJEEK8Xe6pMZXciLJy39yQjo7kCxe/fOT0gQlX5sDe1D8XgbeGL/qBCXNDl2P11F/k3hmxpNf7pMiKIGRXtssKeW8/bea2fi4XDbS2LWBgr+ohNlhg6Bkr9aEM1zlCUoOwRgyOYtBUNLA3ykWROYJSnlfKYrme6rZ9gEJ+dw2O3U3Bmm4QzxWy2YFXwNzm73Hv3yZ4/8uLrPsP9WGPWM8v8bGRiYmJIj161jHKkilUoTDYTKZDB49IkxQAjj17CRnvi9GUFoVZSZNbJuNumscuKPimYe6H/JRu0s8Y54tqFJ3nTGvRAkOnhrNyKgzVIagtAz57EnCBCXVkKAjhRhBCfDUWwl3icXNebTeE6DrsWI2XRGiiUkxSZ8DDB+bFSYoAdTs8rDhwWrh7Dhrxfi5eSmCktWj4pZYewBOfmNYiqC0FvS9OsnrfytHUFKd4KkTN3A+e1YqFz6v9ZviSvVa7wrQfKf4u8D05RRnvytOUAIKWdZsPnHfUtXtYOt7oqgSe16a00zNteKZ0PIEJbugZOH8eMogKKkGYUkEeYKSp95iZGASeEdLLSz1lUDFQ0PVAZve4SfSLZ7ypPU2Fw17yviwZetMOpUhm6Wyn8hlVZq6kqLnxzNCBCUAq8lJu+ktADz99NM8+uijQvXWsY5K+NSnPsUf//EfAyZ2b/mQEEEJYKBf4dRhMYISGESVbLYET3vVmC1LQwc0da1+zeUEJX81bNwDusTSGGkxDu2FZMhyBCVX7kivLEFpEXQboMDClIA0XI5kafUY7QkTlICqTksxc4sAQUnRoesBL4HmRe/LFWLo/FlLOrWsX2WCsXQaet+YL01QWgVN19lpvGaZz36TCPCFfiXks+o4AmYUiexZpOHQ12aECUprxbHvzEoTlGw+0CWU66b600WCEly1BCUdtzkIt4tP4itHElIEJTJGhkXZb+xab7bTcK3gw8/ZxhtXDHKXANJzQDKLbssWJdwqvOTkCUrCZ6DpHEFJAWeemlDBV+TnR6TFhG3x8XSF519VBxtKCJ6sRiy1OdI0tUOsTCL4pXXNwvSVfFal0yfh1FEQ1Qe0uW+hOriVZDJJY2Mj09NXVzJbBP/pJCVPTmhPQ+c33v1+QpuN30ObPXQ/WV/IotF8T4TW+2OgG1/Cdj9Zj8WtkRhNEOh00f1kfWHgNr41suRgvuuJOqK7/Rz+pwucf3bQKJuTVWu4vapAEgLY+HgtseuNl7W+10ZZmEqSmDRGbd0tYTofLY6ozl+ppe4WY0PdGdPpfryBTDLDzMgcNTeF2PArxYOWzkdqqL/N2JiwhnW6n2zA0+yg5toQ3hY3XU/UF8p2PBynMSePoTvNdD/ZgC8nGRG5wU/TW6JseU8zAO0Pxmm6O3eorkP3kw0F4kfVNi/dTzZQc1OIrsca6Hp3Ay2LJBu6n2woSGeFut10P9lQsPem97XQ/WQzutNcKBvZbaT9N+zdUPhb41sitD8UJ7YzQPyaEF1P1BcOvzzNDqPsInt3PlLc7Fd1lXTKcBquehvdTzYUiBt1t4TpfGyRvR+rpe7WMIf+8RynvnKR7icbCuSr+I1BNj5etHfHO2oKskrN90fY8ZHWAvEidm1gib3bH4rT+Na8vY17HTo1Qd8rw1Tv9Bl2yaHtgTjN90ZL2nvP/6uTnb/XVijbfF90pb1zxIxgl5vNv9nIpvc2Yg3rNN29fMzWF+zta3cWbNh4R4y2B2qWjNmud9UTu2Gpva1hw4b1t1WtGLN5OS9njcWwd42laO9fKZa1V1mou9UY345qY8y6G4xVPnZDgK53FW3Y8Y4aGu8yZAF1v1E2T+6L7l5m7wcNe7e/vYbmu2N0P9lAsCs3Znd4l9i79f44zfcVU5bv/EgrXe82/m74iOKYbb43uoQg2P1kA9XX+Nj9sQ42vachN2aNv630EfVEdxs2HDk5wcJUYqmPWESO2fh4XcHe7ga78Vx3eel6ot6QpCvnI3L2vvzSCFdeH6HupiIhZjUfAcaYddfYWJhMYrbr5X3Ebn/BhnU3V+PvcNP6UOkxm/cRebTcH2PnR9vofLi2UHY1H9F8b5S2Bwwb7vrtdrqfaq7oI/LY/OuNNN0RpePheEUfseFX6ojfGKT2+jDeZhfdT5XxEY/WFOwNYFZNqA5jgY7vDbDx8WLZjofjBR9hjNl6+l4b4uRXe4ntCdD1q0V/stJH1BPodDGwb4KLzw/SeHtxjLY9EKf5nsU+uX6RvT2EOow1rvGuaja/r4GW+4t1u5+sp2q7Ye9gl7Gu+a0hutmD2+3m+eef58Mf/jDrWMdPgz/5kz/h85//PAD3bn+YrQ8X162We6qI5VLTW3waHQ9FccZ0aq730/5gNe0PRBg8aByUNb81TM31xpzXPGY63hHF02isyeFNLjoeijJzOcm+T57H3+Kg9ubcm4JulPW1GOtJsMtJxzuK82Di0iwzA8WDjI53RAnkDtZ9bQ46HokXDvPrbgnhrrWRms+QnEjS8UicUJexsettttPxSLwgcVR7U5Cmt1SheVT8zU7a3x6jepsxH931ubI5IkrN3iAt9xb98/bfaKLl3ij2ag1HTKfz0XiB6BG7NkDronncen+U2B4/nY/Usv03m+h8NF4gE0R2+Wh7cFHZ+yLU5NYTLaix4dEaNr3b8D3V2zx0PFyMIZrvrqb2JsOGmh06H40TucZDaKObtnur6HykWLbpLRHqb8v5Qs3wjXnpsdAGF1lMjJ83XkIa7qqi4a7iwVnnozUENxo29Lc76Xy0humBOV7/36dxxe1L5Ns631lDeKthQ0+jnc5Ha9DsxsvVlvc30f6Oot/veDhOdU5az1VrlLUEDBvGrw/Qel+Uc9/r59ILQ7Q9GCOaW0/s1Tqdj9Zgr8rZe0+A1rdHc2Mjzu6PdRRiTntQo/PRGpw5+bfILh/tDxXt0nJvhE3vaaDu1jCaxyjrycU1VVu9dD5S7G/zPRFqc+tJ670xtrynAW9uTQ5t8tD5aHGdaryreqW9c4Ryf6drSdn6O6oK8VLB3rkYyGQiZ0Pjb7W3hGm+e3GcEC/I1HkacvbOjdnaG5eO2Y6H41TvMOztjNsMGwY12h+ooeWB+NIx+/boSnvniMe1t4bY8TutOGJGrNh6f5R47j3JElhq7+odPjoejtP2YIxrPtpGyz0RanMfLxTs3WjcXHirp2Dv5CzMDM6Tmk8vsaGvzbB3sMu9xIYNd1VRf4fxE7s2UHLM5n1E/W3hwpg98H96MGtmQpuMMettdqy09z2LbPiOOOlklumBBTz1djofXeQjbggssXf7g1Eiuwx7x/cEaHxLdUUfAQaZsfNdNWx6ooH2+6LlfYRHo/PROK5aG5FdPrrf1UD3u4uxSikf4W3O2XuLh12/3UrrW41rN72livrbjPcBk8VExyPxgr0Dnc6CP/S3OGm9O0r97cXYquOR+Ko+2eJRMaumwu8d74gR3myMb0/jMp+8N0Cg2cmFHw1z7rtDtL89SvVWo6yr1kLHO6JY/Hkb+mi5x/BThz5zCZPZRGSn8RztVcZaZQ8ZZaO7vLTel/NpZhPxawO443Y0O2z4lWhhXQOIbPfQ9rbifGx+a5j4tT52W++mOhBhfn6erVu3so51/LQIhUIkk0nsqpfH3vFr+GqMw1xnGBqvs5JPchHp1IhvMcZn8w1WGvdYsHoUFmbNOKoUGm+woeb2kKs6NGp2FDe6G/ZYCTapXHh5nvOvztB4kxOLCzCZCLdbqN1d3K2vu9ZOqM1oZ+TMHLPjKRJzhg8Otuo0XF/cEa7b7aBqg3E6rTmh6WYXmXSW+akMgWadxr3FsrW7nUQ2Ge2oVmi6xY2zWiWy0U6ozUbz7cUd4PhOJ9EtuT5pJppu9eCOG/PYU6fTdleAzrsNXxnb4SS2o9hO060ePHVG/91xjabbvPhbdDY+GKb5Th/xa4rtNN3mx99s9N8ZUWm63V84bO98W4jud1ahOY3YpfEWH4FWw8D2cK5srtmqbgd113uIbnUR3+Wm4WYfwU6j/9aAStMd/gKBIbTRTv2N3kIfNLtCJnfoZXErNN8ZwBo0ygY77TTeWpTXrLvBS9VmJz3PjnLqO0M03xnAWW2U9bfaaLy9WLb2Og/R7cb6V7XVQfevVOHK+Tdfk3UJCSV+rYfojpxdVGi+M8BE7ywXXxrHGVlaNrbTTXyR/F3znQF8Ofmx7b8RY/MTkYL0VXS7awlBpOkOP/6cDZ1Rjbb7grTdF8DqVane4qT2+mLZxtv8BDsMG9pDKs13BtBcCpGtLtrfFqJ+b9GGDTf5CG3I2dtvlLX6c/beYF8i9Va/10tVt/HgrB6jrD2Us3eHncbbija0hzSqtxhlVTsr7N10R7FszbVFe6tWo2yeTOVrXGbv3R5iO9007A3QcqdBCMqTlTx1ubJ5G+5Yau/uR6tou9dYz10xnaY7jDGbzWaJbndRe90iG95u2Hvbu6O03Wu0kx+z4U2OJfZuuKU4ZkdOzzA7msDiMToR7nJQt8je9Td5CW3M2dtrjG9fs5WmO/wEN9hpuLlo77q9Hqq6jRhCc5ppusOPPawycWGBvlcmiGwqzsfa6zxE8va2GuPFmSNI+luseOqszI0mUVWV+B4P0e25m1GNsu5aw96eemvh2VR1u6je4qTu5qXj0FNv2NtdazHKFuztYtO7qul4W7hwXX9LzkdE1YK9ASJbnIXx3fWOKjY+Eq7oI/JovtNL610B6q8z5CebbvNi9ZjBbCLUaaP+hqJd6m9wE95gI9LtINhqp+kOT2F8B1stNOwtEpdqr3FQtbHIGFItJpTcUuBvXOqTa3bZiW4y+quq0HiDg/7jc5z50Qy+OpXGG4pkpdhWK9FNuQvpZhpvNMirU/1ZLu6bJ7qozWiXRmxzkV3feJ0Vb1wBTcVVo+GrNchZ4TaVlhstxLcsKrtHL0gQOUPQeK0Fp8/HddEn8Hq9fPWrX+UTn/gE61jHT4NnnnmG3/zN3wTgtlveT1uXt/C3WCxNKGTEPIqSpr4hhd2exh9IU1efpK4+xeSoiaxqprohSziSe0dV0tQ1p3G4jN/dXuP3RAKOvKHgcEI4/8pqNlHXlsXlNdZ+hydLXVsW4+TZxNggTC/6DqKuNYsraMgG2Twm6tqLidNCcfCGDKmhxALUtBm/A9icULuBwsG/Pw7RFkCBcK2Zpm3gzb3q6A6jbJ7s46tViLWZCwSZtusUWq/VsbmNMjXdSuEMxRuBWGfx8DvSoRKoMdOw00LnLVbiWzSsOZfmjijENxXnfFW7SqDBqKvYoPNOJy03GZ1wVSvEtxVj2XC7TqglV1eB+HYLnrhC9QYL1ZusxLcXy4baLIQWET7iO204c5Jo9pACpgyzOfmyUJuVqs5FZbdZcUWMsjafQny7jXQCTnxnGs1mpnpjrqzJRGyLBXesSLCKb7cWyDwtN9up2Vm8bmyzBW+tAiYTustEfLsF3VG0d7TbwrmXZ7lyfIFIlwV/neHndRvEt+pG3A54YgqxbuO60S6dLQ858TcYZRULxLdZsHkX2XtLsQ9V7RpN11sJtWooilHWHjCvtHc2S7hVJdRsXLfxWhsdt9hxBI2yjqCZ+FZLgfMQalYJtxWJuvGtFlwho6w9YCa+zVIYs8Emlar24hiIb7HgjijG8DcbdQtjtkGhepGsV6xbx5Ozt8VllM2PWX+tQmRjsWy0S8NXY5TV7bmyTmi90UHtDgvRrmLZyEYNf11xHMa3Wgpj1len0HmnDVtuCTck5ox7U7Qs8a1Fe7uqFeKbdao7NbrvdVDVrhVsiGJc1x4w3itcYcWwYQ4TV1KkFoqko/jWnFweBklshb1z1/Y3qIa9q/Nj1mTYW19k7w7jXnt+PAdZlo1ZSzFOaFCXyBPGNltIpzLMjKTRXcb4Lti7TiXaXSwb7c6N2WyW+DYrDXtsRR8RV4htKpaNdFmWjNmanRY67nIR3WjMp/jmIoGwql0j0Jh7NrphF5vPsPWGOx0036AXiENVLQqhXFkUqNms4ciF384gdN9upWmXFRQINSuEG00GWUlVqNloxpkr6/BBzUYzig6heoXaLjNVzUWiULzThDtotGlzscQnW+2gaMXfF/tkq8tEbYcJ1WJcKxBO4w9Cz0nouwg1jWn8ufVHtxlriG4xfveFM8QaDY7EqdMamTQEA2kgja6naahPYbPlyvrS1NUapPuMRSEcN+Nwgok0LY0LNNQtYM+V9XrT1NcVyYSxSIpwKEVr19uJ13YzPT3N5s2b+c/GfypJyWazkclkMGFir/U+HNU2/I25TeZGF45qG3puzPqanHgbHMR3B7CHrTgjNvwNxkzwNDhxVNvQnLkX8kYH7vrcKqCDK24ndq3xkueps+OotmHzGZPX1+LEXVcMzF0xO4FOF9U7fbjiNnSnhj1sLZatLW7uuOMOvE1GHxzVxnV7Xx6m7/kR/M0u3DXFsq46B76WXNmgBUfEhrvGzqF/OMf00BzOaJGx6K534m0y+mTJlfXl7tVX64QMnPlmX6GsL9cH3anjiNjw5Mr6m5w4IjYGXhti/Pw0VreGt6FoF0fEhq/RKOttcuGI2NBzNiSbJZPKFrLWLC7rqTeuq+ds6G1y4Glw8vr/Ps3RfzuPM2rD35I7JKxz4IjYcASN63pbnLhqi/ZWrWZSuawyrojdKFtt2M3X7MJdUyzrrrET6vKg+3Xs1TbDhjF77l5duOKLnk2dA2+uD74mN5pdxZt7zv4mF87oorL1Tnw5e+sew4Y2t4ULzw7ibzbskoenwVG0t2427NLkBh1S82lUi1IgcfganUV752yYH7PeBid2vxV7KDe2mpy4G4ovk86ovdCOt9awocWt0PPMZVLzKdz1i8rGbQSac5v6cVvO3sbC4G124m1ysuk9xlfNnhoH/mbDLs6CvW255+jEU7P42aj4cmVtISuOiA1XjVE20OwuHErl7VK93U+o243NrxnjMGdvX5Nzqb0bjDF74bkBLr82tKRsoGm5ve2FcYcOql3FkbOZvzE3Zhf7iMZl9q53MjMwTyaTxRFZ5CNK2NvfbPxuNilY3Dq23MGIr9W11EfE7UV71xj2DrS4DN/R4SrvIyI2XPHcOGx24a51FMbLaj4CwN/iwua38MZfn2F+MFHeRzQ5C8/02JcvkprP4I7mxvcqPiIPb4MDsnD5lZGCDVfzEd5GB57c+B48MIYJKvqIPGx+C8mZJMe/2FvRR7hr7PibXRz8px56XxrAUV3eR/hyz9FebQOTifmcdIy/2XhGhbJ1DrzNeXvrOKptqJrK2Klp/C3OFf7E17jIR1QXx2zehrv/Szv1t4Xx1NsX+QgTjmobvqacL2ow1jV0CG30YAta8C6ay47qRT6i3niOulMnbI7xtnseIJ1O8xd/8Rd87WtfYx3rWAu++c1v8gd/8AcAtCs7adxYj7e+OIc8dcU5b/NpuGusuCI2whtceGrteGoX+YtGB74cacPiUnHX2HDFcuSQnT68TXZsuUN6b4MDf5MLTGY0u4a7pujfvPV23DU2Ytf6QANHSMeZ90sauGtshT56Gxy4a2xouXdNf7MTi0PjwN8ZMj7uGhveXP/dMZtR1pnz5bk1IjmR4o2/P4+iKoU12hW14q5ZFBs2L11PFN3MwkSS2f4krmqj79awJdcHB96Gor/wNjjwNzu5+MIwExdmcNfYC5mI/M2OpfZucBR9llsjm80ydXmu0F/PorXH11Qsq7k13DV2NJvGwf/bQ2I6ZawnS8oafkeza7hri/7aHrBgMsNMn/E1kr/RWYi9Ady1jsJ64q5z4K51ELvGn+u/q9CHfNm8DT21dty1DnSfjq/Ngc2nL1k7PfUO/C05e8esuGsdWHOED3+LC0+Tk4E3xpk4N4t3UWzrjNpw1zqK8VKzE2+90d/x8zNAFn+r8bs1aMFd68AZKcZWnkU+1tvkwhGy4m0w2nbXOgrxt6/Jgbt2UdlGZyEu6H1xCLNqLtyPr96xxN7+Jmch7tU08NQ5aL03hqvWjq/eaZTVimULcU3B3rlrmUy4ax2Yc2mBAy3OQgxhlC2OS1fchrfBSVeOqOtrduFtKj5HT72j0P+8vS0BnQs/HCSbzRbmCRhrUz42tIeMso7cmPXWO9AcCp7c/XoanMXY0KfjrnXgiuXismYnnnoH4z0zTF6axdtULGtxqbhrHbhza6u3Yam9dadW+FthzOba9DUss3ejC3+Tk1Cnh9BGjzEO64vxtbvWgaYZmwL+Flchxs/bO0/0ctcYY1ZzaYX+L7aLp87J/OgC5783iDNmzHt7wUe4lvgIT72j0M6V/aOYzaaKPqJg74iNyb5Zzj4zVN5HBIx5747buPLKGInZJHZfcSOolI8o+lkHZjOc+daVXNniHNPshv/O+xtvveFnkxNJDn3mvHEPi21Ys+idsNbw35pdKzy7TCpbyFTmrrEX7scdN3yy7s3Fe02G/7jy6kTuXm0Fwr2z2vDJ+QN/f5OzQCg0no2d2E4f299fj7PKirvGii1U3Afw1i2yd70RGwY7PbiqrHhqrTirrYVn4VlctqH4PrDHfxc7tu+gp6eHYFAuU/A61rEYra2tjI+Po5ot3FDzJN6oiqsqd1gQ1PDFVJTc2a+3RsVXo+GrVfFEjP/3RI2x7fCr+OJa4ctgX42Gv7a4+R5q0YluNi5k96r4anQs7lwcVqPjrytuBvtqLHgbdPyNGha3it2jYvMaO63euI63dpFvqbPgqzXqWhwq3hqd/qNzDB6bxxPX8dYUy3rrrXjrjN9Vu4q31oozrNPzw0lGz83hiRYPuX0NFnw5EoFqxSibI8h6YjqZTJaLLxlSwb56C776Re3UWnHn7OKK6HjrrExemWf45AwWp1og1AB466y4c0RbV7UVb50V1VY8ZEknMiRzst3eeiueGqOuI2Rc1+pSc32w4m2wcfzfhzj+9SF8DVa8dTmyQkDDW2/DkvNZvgYbvsZizKzZFZKzabLZLBavirfeiiNH1PbV2Qp2APA12gh3OtBcClZnrmxuPfHW2fDV2xaVteNrMH4PtjqwB3VckRyJI27cax7+ehv+xiJZwVtvxeazMHBgGlfUgrfeWiBx+Jps+BoW2bDeijtu/L4wkUazKwUSh69x6b366m14cntGjrAFd9yKO2LFrOXL2peU9dbmxmxIx1tvxepWuLJ/irmx5NKyjbbCvdp8hl1si+wd3ugoEHsW20V3KXjrrdhza4S31rrEhrpLKZZ15O2dIxPVLLV3oMVOzW4vviYrJs24bn7MuuNWw4b5/jZY8TXZuPzaBD0vjOKtt+LKEZpcccPeeXKiv7H4bABsQR1XNFc2YpRVdKVwryttaGP80jzJ+SzeeisWu1q47pJn01Ac3yZM2P0WLB6l8IyXli3euzFmbXjiFnwNNkLt9mX3WrS3xW3GW28r2NtTb8PXbC2MF2+jDW9+HDqM6zqrcmSimBVXxMLxrwwxP57C12jF11AkPXrrbUUfEbfgzfWv98UJ5seTuMKLfZGtOO8jRlk1v2+Y62vvqxOQyvsIow+uKqtRNmdD7yIb9h+cIovxvgyr+4g83BEbs6Mpzv94AntAxVtnxZLzs746K75F89Nba8Fba6Xn+xOce2EUb8yKI0dk9NbmyuYO6AyfbNyb1aGCCRIzOR9Ws9J/e3P+W7WDr0bFYlOYupLCFdHw1y2SIqnVi2VV8NXouCLG311hBV9MZfMDDqIbNXxxDW9sUd2YiitHDnCFVHy1GqoK4RbdWMvixbLemIYnRw5w+FV8MRXNBk5rgPvuegCz2czHPvYxnnnmGdaxjrXg1KlT3HHHHQB0bXiMeE2IQKiYlsIfzODzG79rGgSDWRwOqKrKEg5DMJQtZE8KBMGfew1QFAiGwZF75Q5HjcwYlvyBfhD81aZCxh5/FThzJAin2/g9FAGULHY3uLzFPvurwZXjfjrc4I8UiUfekEFGOvm68XsgAq4cf9bmBH/MXMiw5A2b8EXMkIYjL2Qwm814cv232nNlc67HEzThjRWPhTWrwvRYhrlJg/DhjytYc6+A7rCCP1YkKfljCt6IwpWjC4xcTBKoUbG5lVxZc4GMD+CPq3gjObICWTIZmB7NyUOGVfy1i+NTFW9cLdg7UKejO8wc/+Y4C1NpAvVFEoevTi/EpwCBegvOsOFrrE4Vs2ImMZMGsxlPXMNbU/RD/nodVy6bns1nJlCv4a/P+dyohq9WK2R68dfpuKtz1/UoBOo0dJuC1QOeqIZv0XV9dTru3DplcSoE6nQszpxdIhq+Oo2p/jRzoxn8tSruaO4d2mGUteZs6KpWCwSm6eE0ZI1+Gc8JArUaNk/R5y5+H/DVarirjPcIRTfKOnzGc3YGlSVlvXENb84/X9g3j6qZcARz/jmoEKhVC3lZvMv8frBBpel6K/aAGYfPTKBWK5xveWI5G+btXavhypHFzWYI1Kpo+bggouFf/Gxq1cKzsboVqlrVQpYfd0RdVlbDnSOWW5xGfy0OhQuvzpNeYKld4hqe3DjUrUYfrK6cDcMKjoCCza8UynqjGmSzORuq2Hx5e5vx12nMDGcY7U3hi6t4cnZRFKOsw5e3oZlAbXEu6HYz7nCRhBeoVXHkCGR2v1FWMefW85iGL6YRaNQJ1Gk5G+ZIeD6FQK2Gkrv0inFYqxFsNH63eYyxpduM8eyNakvmp69WIzGTZfBEAqvbGN/a4jG72IZ1Gu5cXNB3YA5T7hkVyi6OKWrUwpjVbSb8NTrjlxIMHJ3HHVJWjI98WUU17GL3GXJvs+Np7PksltksvpiKN6oU7O2vUQr2dgYUzBr0vL4AafBFlUJZMPyfy2/Ywe41fgc48eMUmZQJ36LMUIGYGVfABNlswSfn40jNCulkMXuevxrcOfKT1WmUzY9vXwACYRgdUgCFUKS4plitxppiza0hXr9RNp9VKRDMEI+n2dRtkJQCwQzW/LzxZAkEipmigoEMnpAJjxt8fqgKgyP3uuBxZwguKusPZAj4jd87NzzMnj17OHv2LF1dZdL7/Qxgyq41f+xPiZqaGnp7ewG41fyQVF09YDWk0QRSpgJs+c1GBg9M0PeiWL7Cre9vwuLWeenPj6+UryplLt3IJDJ4YIxz3xOTdnDGdEIbfMLlwcj2ISoJ97OG7hRI7bgMXe+q5/LrI4wcE5eR2P2xDhLTSfb95Zmr1r9gl5vavWFOfvkiM/0/n/aWwab3NJKcSUnJ3e35w04mL85w5F/EZETcDXZa74tx9jtXDBnC/4ej4+E4ikURvn/ACMYkhkuo203rfTX07x/l7NNi8l/o0PlgLUNHxhk6NCne2Br697OCNawLS0qCkdUr3F3Gdy5Lr6g7TWx+bwvDJ6fo+aaYnTe9uwF72Mq+vz1b3ufmc2hmM2z7rWYu/mhQ7LmYzOh+jcSIXMrSA5mfMMxlnE4n+/fvp7m5War+On65cfHiRerqjKwbcXMrHfoO8cqaQbpLzkI2XTn2CnY5ie7wc+gfLxb11cukMLYFNTY9UcvEhTmOf6mEVEOJeK/hzjC+Bgdv/P05Yemu2r0BBg5PsjC6eoXssn5a/FrZ8v9p0Cjet2A8HOxy42twcPo/BNccoPnuCOFuL4c/e4Gpi+LSbUv6J4DOR+IsTKY5+y3xvv28wt/upO6mKk5+6aIh5yWAzsdqcNc4ePlPxOV52x6MoWhmjn3+0lq7+nMDR8xC811Rer43IDzONDviko05bP3NJjS7yiv/46RwHX+Hi9BGDye/LCcjs5b+/aygeTSSE0vHpslsWqW0kYnuyhsTK+qUKx/a4GbfX/eULrAsB7lmN57NTP8CRz7bW/baJsWoG9npwd/k5Mjnypcv1lPQPIrUu3QymeSH6S8CsHPnTl555RXhuutYB8Bb3vIWvv3tb2PCzC01H0BV1cqVclCcCql5MC2IzbvWm+2M9SYYOpPbMU2Ur9d6uwtnWOXQv42RWqZ0ll0lPX73Qz6GT81z+eAy6a587LQsHlGdEG62c/mAgDPM7bOpTsTktFZp82pC1bNSclcADTf7GDkzy+RF471PZPt161NREjNpjvybnGysahWX03OEVWqv93HuR2PMD4tJ3f1cIjdWm+8Kkk4hJXe3/ddjTFyY5/S3xfaJ8xmFLr00UXieP+8wlZHTiO/xoDsVer4nbjNUQGK42MMqG95ezZVDU/T+pLx8an5umEwmaq/3MNm3wHiP2IAu1NVMUv37qVAmbloOzWkqkCELn96XLQ/BZjtXlvvO1dYQFTbe62XsUoK+11b6W1P+C59F/qfxeju+Oo0jX5tgoZzPteRO5TIZOm63ceVYgvHeyvIzWV1D1SG9kJJ6JmfHXuX02AvY7XZeffVVNmzYIF55Hb/0mJ6exu/3k0wmaW68i9ra6yRqp8k6FNJpBW2qcuzldKeJ1sKpI5BVcgfs86sPdkXP0n0NjA3C+RNF/5HN/a8puTKeCcUhGINTr6+UkzPlY7X00rgiEIepEUiUUVk15X1ByrioajEkJysi16ZJYE9wtbrI1FWAvF0EZN7AINe4YxpXjswXpe4qSL2FWnXiW2ycem7akG4T1dtVWCmnV05iebOFdDJL/9Fl76MS68lVgay+cDaLzQvxTTYuvjHHguCxbqzbQqhZ48C/Twu3GdmooVnNXHz9/xlxVznoNohvsXLl+DxzY2UKLlqrFaWElGQpLNrHbtprw+5VOPx1gReqXFs2v4K/TqVvv5ydFQXSGcnxkx/vsuMOCnM5KzBnFL0o6VaIvZTVfYE/bkhdLvedWd2IvZbLuQWiUF0HR18qfb1M/qOYwqNJs3U3TE3C6aPlY8FU7kPKgCNJKJTh1GkzIlJuSYeKrqTJiFMtAHjxhT8mkZji9ttv57vf/a5c5TcJ/ymZlB588MECQekG7hOqU3dziM3vbQSTWXxzMRdL7/+bHmGCEsAbnz5Lz/cuCx/oW7062XSW2THxidx4Z4zqHYGCxJEINj/VyI7faRUuD7Dro+1LpMEqQjfqNC6S86hYxa+z7UOdBekn0TrOGjtV3V7xvgFHP3+Bnu/0S9UBOQKVK2LD4tZITou/ScWuDRSkrq4mNj5eV5CdEsXBT/dIEZTWgslzs7z+v05LEZQc1Tqb39dUkDS7WnBU60tk90RgDVmxBsTnJiBNABo6NMn5H/WLE5Ry8DQ4CXf7KhfMQzfIfV2P1kvV2fl77VJ2c8Z0dv1++xK5tUqI3xhk63uaC3JoImh7sJbq7YGCf1+BbHZJQJeYzq4gHVTC8X87x5lvXRZfa0xm9v3VGSniWGI0CSYzkd0Btvxmk1CdzeZraW/qYGZmhj179gi3tY51ADQ0GNKOXnOVMEGp+4kagp1OTCmT1GH78OHppQSlCpgbTnLmuwMc/5o4CSCbgUwacSKMBpEdflreWl3yz9nMSl8R3uJh63sapHxU7c1Bdvx2c0EWSgQt90bY/oGmQrYdEWx8pIZdH2kxfhEUHQ9v9BBo91QuuAhnnr5Cz3f75QhKIEVQArAFrNjDEuuuZsh+5SXjrha8zQ42vqtO6nmOnphm/6fOChOU1oqTX+6TJijV3xam9YFo5YI/Jaq3+QpSgCJIzWew+fVCViYRrIUAdPY7Vzj82XNSdaq6PEZ2MYmh1npfhG0faC1Im4mg/vYwOz4kRz5uvT/K9g+KxRB5bH9/E92P1az491I+EAwSaXS7j6acPJwIElNJsuksmkeMkJGchbPfHeDIF8QIRwBXXp0oEpQEn01yIo1JUeh6PE71VlfF8pqmcaPydqqqqti/f39BNmId6xDBn/3Zn/Htb38bgL01vy5EUPI3qLTebCOrKuJkmNxlT31/tkhQEsCp70/R88LUCoLSqs1YIZPOFmThAGNDfLHfWBaP1G53E93qxCIeRtF+V4CNDwVWL1Cize7HqqjfKxffbHq8iugiCbmyyGRR9Syb3hVdIp9VESr4m20EWiQWA+DY1wc5/7wEcSQHGQKVPaRjD+ikF8Tfk/2tNgJttsoFf0o03OQrStOVw6IDyzPfHpYiKK0F8+Mpjn5hUIqgpDqh9Z5AQYbvakFzKcSucRf8AZQnKAHYAyr2gDhxEpAmAM0Opuh5bqQiQWkxstkswXaH8LzJE5S2PhWl5Q6/EBEQABW6HquSmtOqEza9K0JkW+UYIg9fo5VNj0YKspMiaLzeR3SLa8nzXJWgBJCCbCoLlc7wTabCoWDPS7OcfX6mPEFpMcxmjn9vToigVOhWArImFXetSsdtYvff5NvJxpZdzM/Pc9NNN5ESXaTWsQ6gqamJZDJJVc0OQYJSmtbWFM4QpKw66XTlQ2CDlZJmelLh1BGlQFCqWCth4swhuHTa+D1rKhKUyiGTXkpSMGUyRYISgLL0IvE2MzWdpS9symaLBKUcnAHYeIuOt9xRUyazZM311qp03mEtZPcsfwNG3XCbSvutNpFz9kK9+CYLXW9zGXUqEI0KfavRCbWK+1uAoVMJen48zcxIRo44sdgdLvKvq8HuM2P3LjNAhT3TUKtWkN+6WrC6oX6nRayd3PiZG4fTPxInKK0VV44kpQlKwUaVWPfVjbvAkCNzV4sOaGMeO/xKIQvWqlg0lmQJSgCXD85z6gdyCSS8MZVAg17I4CaCcLvOhre5UCxLz+HKIdCo0nlnznFkxepVd2p03G5f4gNMmSymMmd9LdfptF5nWfmHdKYkUVLRoWaDSnXzUj+TJyjBSv+ZXDD8s1bJZqbcDwqnj8Np8e9SGZnROHVaozQjsjQSaYWUHRpbUwT8YnV27fldItEozz33HP/9v/938Q6+iZB8I/np8S//8i985StfAWAzN6CbxUa/u8aBReKAwNPkoPPhGi6/OsqF5waF6vjaDSm1sVPTDOwTf4maH0zw6p+Lf5ELcOgfzhHsckt9zTl8ZJxsWnwTQXdCci7F7Ih4G1avTiaZYXZYYocjkWK6b5bLb4gTwRKjCV76s2PibeQweU7uRGLbB5sxq2Ze+5+nhOuc+96AVIYrgNjuEJjgykviGyM7P9LGwlSSg3+3ylfGJeCI2FAdctPW3WBnfmhWOtOVLJw1FhJjyYJEYCXobh1bwIIrbmPizIxQnWCXm5a7Y5x7rp/+V8vRjouo2hYgvNHL8NEJxk6JGWH/J+UydQE0viVC1WYf+/72jPC87ntefM4AkIB9//uEsI3zdSYvzjJ8UtynkYD0Qpp0Qryd6b4EmUSGVFJ806L3xWH8TS4mesX9zZHPXTQCZwlS2Gv/67R4YQxS49ABw151N4e48P2hlYWWkwJyv+/63RbmxxIc/HuxQ1B31IbFpQpnyouf72bYN8TQ0BBut5vJScmMWuv4pYTf7yeTyaBhYaftDrICbzq2oIbVreKosjByXMxHb3xXHItLZd+nSmShM5tKZlOK7fHR9+IYw4flFqnz3xOL7QpIwpHPXSAxs9KvrUZknLgwy8SlWSkCYno+Q2ouLZxxBCA5nyY5n5Yi9gwdnSQxJbdpe+zzl9Ds8l+r9O8TW28B7FUa3U80cemFIakPBPZJrrvBNheRLX4SEynhdiK7fNTeEObo5y8y3Vvm08JFcEVtOCOGxKAwH86jodlMzF7lbJyaHXSfpSDdJwJPnQPNJr6RAtD9ZD2qVeGNvzkrXKfmhhCZRJrBN8Rij4WRJC//qdy7FMD232omMZPi0D+eFyo/0SPPbDr+1d7iwxckBA4cnkDR5ebawkSS1EK6ZJaj1TA/nsDq06Uylw0enyh7KJ3NZJdkVZobTnLya32MnRa3Xf/rE/S/LhF3QmEN8DbZSSfTTJU4BDYt+/LNZDJRu9dP9WYPhz9/idkBASNoYPFouGsc9L9ReVdV06y02XbyQuppPvWpT3HPPfdw1113id3UOn5p8dprr/HRj34UgB01j2JVxQ5LXGEVq9ssnK3E6oWOO1z0H1vgytFl41/XSmZTsgcVzKqJ6f4U4xfE44jUPBz593Hh8gA9P5xk6NQsCxKvK4PHZlFl/KcKiek0C5Pi76CqDVKzGRISdQDGeuYZPSsWEwOQgn3/KJeFD5DObNT+thC6U+HQZ8U/5hs6OsvQUbk1MbbNjWIxM3JSLIYC2PjOKlJzGU58rcT79CpwxSxYZ9Ncfk28b9agSmo6RSpxdb/DtfpVUvMpUoKmUxUVd9TKxKUFpvrE4kJ7SKXjvjAXXhxn+JhYQ746K7GtHmYGEoyfE9tbOfUNyb0oILTRTu0eL0e+MMjChNg4HTklPl7yOPjPfUYmOYnD4tEzs0xekTjITBkk+dSC+J5XahpSc2lSEvtkYz3zjF+YZ6pfvG9nfzBmSM5JuIKj/yERd5lMkMoyftFoINyuM3iixPi0LDuvyR0Qdt1tY2EqzakfiI01h1fB4lKwOBEiRcWUmxgNX+Fyv5EJuq+vT6iddfxy48Ybb2RwcBC7K0LrpgdB4MNzRQWrC+zzWcYFyRYNLYZ826EDWZYzbtJWtWQ2JX9VltEBmBo3fJoIOQlgqNf4kcHxFzMliQ3LyUl5zE3BaF+acYnttWwmS3IuS6LSErWI2JRJQnIhK3rODsBEb4JMMiNVp2//HP1H56TqAEz0iWdQUnTY8FYXfYfmGTmbFK53+gdy66HNC/FuK5lUlpEesQXBVa1Qt93K2Z/MMjcmdoZsdZpxV6v0n1gAwS4quvGz5rPGbFbIbopiyJXKkKFcIQWrR6HvkPh+XN0OC1a3mZPPiT+jWJeFbDbLZL9YnXQCDj8t8R5hMuTGWm+2kU7C2RfE2pkblxfNunJsgSvHFqTmzXhfAt1hrkyQXoTEbJbkfBbFBun87VQYCwtTGRKzGfGsUsDopQoF05klWZXSCTj9SorZcbHrA0yOGD/CMMHUuLFm2BxpTCaYnV65N5vPopRHRjMT8qeoj6U5dhzm5sT2c522DCmfmREBqoKi6DR0P8bgM/+T//Jf/gt79+7lmmuuEWrnzcLPVO6tv7+fSMSg5sZpol3ZXjk9c7nN4DJ1db/OxnfWcOxLl4SlhHb8TiuKbubl/16G0rbMXDt+p5Ur+0fp/eGwUBsAoc2ewgH4LyvWIg+38yNtjJ6e4sx/iG/0tN4fR7WZ5TIJrUUWSzcOsqbOiy9m3U82MD+W5NRXJSNOSez5w06m+mY5/JnzUnVk5N4Arv2jDYz1THHsX69e1ibdr7PxsVouPDcgLBOoO41DvOlLa0gNKTEWfK1O6m6u4vTXLgnLBOpOM5vf18LQ4XFpYtxa5tAvEnQnOKLOysSzXKCjO010/VoT/QfG6HtBLIrofEcN3mYnR//tIhPLN6RXWZu6n6hl4uJseXLsGte1xXWfTX8BgOuvv57nn3++fJ11/FLjhhtu4IUXXgBM3O54HKAiSanchnA5ubf49X4cIQsnv7bKIckyMpCvxU7b2yIMHp6k5ztlDi8WzYvYtQECbU4O/csF4UN5b7Od8QuzK8rLZln7uUYF37EW6an628IEWt3s+7szwra2V+s03RWl53tXxMkzktJweThiFmYGF4Tr+jtd1Fwb5OBnxCUC14LOR+J46p28JCHdtha5t42P1+GM2sq/t7wJaL4ngmZTOP5F8XhV9tkUIDkW2h6MsTCR5Pwz4ruqTW+J4G1wSBPjCnNIkKj0i4DlEnD+Diejx8WDz9geP6ENHg58ehlxu4wNd/5OE4npFAc+vfIdZDlJCQxiZNMdVZz4ci+JmdV9uqmMvErFNVFROD7/GpfSx/H7/Rw5cqSwp7GOdSzH/Pw8drudbDZLk/86msPXYVoo/26YVVcfn+Xk3lS7iebr7Zx/dZb5UttLJUhKnfd4sDjN7P/86gTk5XJvG+71MHRmgcFjuQPpcvFTLh7x1GhMXJJw6JW2JQXafNPxU8aJq8mvlduC7Xq0irFz8/S+JL5fGN3hxuJW5TIJScp25etYvaoUiarxNj+puTQXf/wm7n+WkHzZ/hs1TPbOc+obQ8LZFmTl3gB2/Eac0Z5Zzn736mVtUq3Q+tYQfa9PMXFB8GOuZc9GhtwjMxasAZW667xceGGc+VHRNGyw8aEwo2fmuPxa6T281eaEaoX0Qvl7KTefpOwgg59GmkdA7q0AFZxBlen+VPlMSovKd9zhYfT8AgNHi2OnIPdWArEtFqo7LZx6boapK8ue6XKSUg4Nu3RmxzMMHF99bcvqq7dpSpYfO/m6z5z8H2SyKW677Ta+973vla2zjl9u/NEf/REf//jHUVQLu277f6MoCloFklLKmp+LaZaTjcrJvfmqs7hcWS70lJ6Ty0lKNkeWju0wcBF6z6/uOxbLvXlDEKqBnoPFQ3lTObmzdBabGxIzJWThysVXqQoH+WXaLCv5Vkmaba11K1y3LIlhldjA36gRarZw5kczRWmoCtBtEN1iY+DYAnMTgrHi8kQoguuI7jTIHKLkDJvPRHSDlfOvzZGWPQYrt2YuG0fRLp2qNgv7vyzOHloi9ybSJhDfYiFQp3LwaxLknjUg3Kai2xV6JeTOdGdOGkySECeRFAeAyAaNdDLL4MkSfmmVd5VQi4a/XuPkM2U2gUv4Bhki0Koo90wrjfuydVeP7yvKv5WLvZbtMTn9MJ0L8xdnUlrRZq6vvjCEa+DkvqV/L8i9rUCaTTuNTEzHDlQmKQHoaprGujSnzytk51e/1+SSxCZL1zZ1tvyDTdvMDPUf5sTrn8Xr9XLkyBFiMTllop8GP9Nd1vyN2XEbBKVKMJnZ9O46Ot8pIVeWQ2I0wRufPCtMUAI4+E/nOftdceklR7WOWTOjqOJmbHsgTsvdMQKd4ulhm++NsvMjbeiC2ajBkFHqfGRlKv9yiO4O0HyfnARE1Q4vm9/XhO4Ut0HVDi/bP9RJ9U5xySrdabx8puflPOWpr/ZKEZScMZ09v9dJ412l5WBWRQIpghLAoX88d9UJSgD9b4zS+6I4iW6tuPLGKH2vyH+NJYPEaII3/uqMMEEJDCLPWghKu/+gg81PiUtojJ2a5sDfnhUmKBl9y5DNZjFpcq545++10/1Ui1SdxrdE6H6yQaqOr9VJ52O1UnVCmz3S7bQ/GGfHh+WkLDe/r43W+wXWhlzQlZjOoloVnCHxPKnHvnCJ898fWElQKoNDn7nIhe/Lzzdfi4OdH25BD4h9aX0NbyEYDPLqq6/y6U9/Wrq9dfxy4NOf/nSOoATX6W8XquMI62x9Xy3OmLyMVu9PxlYnKJXA2OlZzj83VJ6gtAw2v4ZmV6SIDK13R9n61FK/VImgtP23mqi/XVy+EqDz0Ti+VjkJ07YHozjjcumoNzwWJ379MimUCsSJ7l9rZtv75aSkMJuMjX8JW8/2Jzj8f89LZffZ9ESD9BoAGG1I9G302BQHP311CUoAfa9c/XgIoPelYfpeuvrx3ZlvXJEiKIH8swFDvm/3R9qlpPVOfrlPiqAEkE6mjXEt4eKiu/1s/2A7nka78GG45tHoeqJW2ic03hUm2CX+ngjQ+kCU8BZxuRLNo7H9t5qouaGMpBJL/WSwy0XrPRFqbwoKt6NYzag2s7DsG0DPswMc/VfxjyRmB5Ic/ufeNcn/td0Xpv2BqrIEpjw6rDvY3LWV0dFRuru75Rtbxy8N4vE42WwWn62G5nBlqZGsqtB0jU7jLvm4KzUPJ55ZhaC0Ck49M8G5F8XfpVUrqDYFVcttiAoQd6Kb7bTc7sNbL64ZUNVtp+sdQUomnVqlTX+rlfq9ElpygLfRSmyXgI9d1KYrrtN2bwBVYj/OGVXZ/ESMYKeE1JuakzNOypGuLr82KUVQUu2w4z1xYjvlbEdKPstTzzOjby5BaRVcenmcK/uvfobhvlfGGTh4ddtJzcOxrwyJE5RgTc8GYPMTETruFZdznR9JcfLrw+IEpVzfyJKTuhBH16NVdNxfVZaEtPxvVd1OWu4KrPr3UrCFVBpuFt+bBsMnNN/hl6oT2+mi69EqqTob7w/QcptEOynQHGYsLnEiVN/+Bc69WIKgVAbnXkkwcFJ+vNm80HWHBYtPLC68vukDVFVV8cMf/pDPfe5z0u2t45cD+/bt4+Mf/zhms5ntN34URSCuNzmgu20Bu20lQWl1GDJvo0PKqgSlUpibMXH2CPSeF66C1QG6VZCglEPjFjMtu5Zlna3gA1uv16hqWeX+V2mzZpOKs/wr5ApEuzRsIq+qi9qMb7cRaF4WG1cgITfc6KL9LrnYxpzb8xIlKIFBTDn/4pw4QQlo2GVjwz0SgWS+rWk50sjcWJazP14DQUkSoxcTXNovnylxBSqM0ZFzC1w6KBEPrRGDJ1NSBCXIJQ6QJPQEGhU23+sQk0rM4crRZGmCUhmkU1myaTletCuisPF+N86weCVFh/prbLiqFtURiL1CLRruiFyG90inijdWuk4p6TdFgba9BjGuLBaRJu0eaNmlUtVUOWjN+1eTGTQL6CXU5UpDoecEnDwsWh4SKYUTZ/OSpKKDzrBVXVWClvgCKXtle4equ9i28xYmJibYvXu3eAffBPzMSEotLS1kMhlMmNijLEqRXupQxWQu/LtqVdEc4oM2tNnD7j9op2q7V7iOM27BUW1I7VTMcLSI0TfTn+CVPz3BhWfFN8dPPt3LwIExKZIFGJvEMllTgm0e3PVyi194s5dQp/gGN4Cv3onNr0vJT830zzEzOE//AXH5kMQ0vPY/T0llm6na4aXmJvEXboBUEqYuzTJ0XHwjJbLbz44Pt+KoFt+E0/26QdKS0Pp0VOvs/oMO6m6ROzTt+Xa/sMzZT4Oeb14Rlm3LY+fvtUsTWtwNdoJdckFn1xP1bP51ccIRwPjZKYaOjkvVcdXbpIl+r/3PU/R8U5wcCTB+ZpqR43KbY66YDVtQeMUEILozgKfeKUVCDLW7cVRb0f3igzs5nzakLCXmw4XnBzjzDcG0zzmd21f+7CQn/13uoPVyTsIxtFnON+747Va2fkCcEJDJZDGr4Km1LlkDl2DRvzkVF6FULQsLC7z3ve9levqXOK3WOkpiYmKC9773vQB0aNdg14pvQaUOZE0mEyaTCXu1BbNmJiOx77j5PXVsfk+dVP/8HcbBff8bAr5s0dg/841+9v21uEwqwOlvX+H8j4pEqEoEJc0OmVSW1Jz4G6c9qOGO2/E1iRMSLH4NX5OTyBa5jXF72IorIkdsGjoxycgZudjz/HcHpCS+wCCa2CXiIYDho5OMnZLrW/dT9bS+XW699bc7ccTk1sGN76qTJndNnJvl4g/EiXdrxfiZGS49L0dSqr0xyK7fa0OT2BRBg9Amj5RUoDNuY/sHmvFLfJQxemKKsbNy4wCM7Goy7Zx/ZtAY1zLyigfHmOydJTmTq5TNVCQrJWeTOEJWvI1yJKXwRi9V3ZLvY40Ogh3iNkhOJMmms5iUys807y+HD09xZd84F38gPuYufn+Y1//yLMnFkjAVCJXDh6dJzoK9WsMWFCdtVG11seu3G/E2iJPRNaeCmttnMClK6bVx0b+FezaiKRrDw8Nce+21wu2s45cHDz30ECMjIygmjZ11jxX+PVsiG0VWVQoZlDSrCd0q4WOrTGx5hwt/o/ghmcVpyMOl5qko82ZadAiUmoeDXxjl8v5Z4cxCl4/Mcnn/NOPnxU98zGYT2Ux2aeahTLZsm/56K/4Gm1SGu1Cbg6qNFfbJlrXpjllxVFlKZkVaDalZmLg4z3gJmdFVs7uk4Mi/DXD5dfG10FNnpapbbp0BGDk9y/h5cXanp85K92PV2EPiY061gq/JamTqkaiz7d1RqreUeEaZzKqHpgP7p5jqXSiWu0q4/Ma0kdVGAt2PVdN6j9yJrjWo4q6Vi1kbbvHT/raQVPag4dOzDJ+S28Oz+lViu+T244782yCXX5XLojR6Zo6RnNRsNpsVIhw5IzqOqqX+tlK9UJsDf4sdTXTPy2zCE7fiiVuwSJCwU3PGnpeg+icAl16e5OwPxPfNAQ59cYyLLxefabksSnmMnjNkjtwxickKdN5hp/MO8ZeKbBoUDWweyGoqWW1le4szMFlVK3W+a0kmkzz22GOMj49L9W8dv/hIp9Ps2bMHgNatj6Jbi2tH0rlyfKWsCimrgs1qJCeT0ZZp2WCifZMc29LpzZI1ZRkfNVGJqZld9PFy/3k4+qJBThIhKAGcO5Ch72SxbCWCEkqOGJ1aVq7MWqvo4IsquEIK2RIZbkvVVXQINur46yrsES2r5worOAJyPmn03AKj51chmpS6J5OJ4bNJTj0r97VLqE1Hd8mNhbGLCUZ6EkYmGcEsSvW7rMQ3y8UC9oAZi9z3TsS3WWi/zV44O1mCUv8GzE/A8Fl5smpJlBmrc+O5NUoCvhqFjXfb0cW3BUABV5WCIrGVqduh9WYbrmpx3sLUYJqhniRpSdN5a1Rcy8lDZd6RRs+lOPX92dUJbiVsPjWYZuxikkSFjDuLkU6Aq1rFHljWtwr+p6pNJ1BXIj5ZZbxhNuOv1fBGy2QfzmSXkJXSaYyzRhHkiEqzE9B7LMXAWbF6pmyWsStZjrwIiUWuZ/UsSgamJhXSGQXdkka3idvb7UqzbVsGh1d88dK1LLqSBdKk7EpJslLaVvTn9vDtON1hLl26xGOPPbai7NWCnLdfI/7bf/tvnDljpNS/nreVL7xsg2HfX8sdjsyPL5CYTjF2Yly4TsdDtSi6IiWX0PkrtYycnGTgNfF2AEjA2aflCAky8mZ5HPg/Z6UyLwEc+NRZKWIBwIkvyWcCmr60wMFPyx0wVu/0GaQmCWZzfHcQ3aFxSeKgaH4wweF/Pi/VN92uYlbNzIyKdy6+O0Bkq5+50YQUsWdhKsnMoPjumO6Etgfr6X15mLETV5fE0PGOGqYG5qSkDxfGE8wOyzGV2x+oAbOJ4cPiJB2TYsKsygWQslkDAGquC+Gtc3LxuX4p4p6v3UliPCGchWktGbhk5xzA0S/mvmSXmHfH/u2StGSirE8E5H0vQDaL7jLR8UgDJ/+jTzjTXuc7a/A2OFmYSDJ5blZoI3xmaN4gOJjMQlkXJs7O8vKfnl76jxXqxqZaOMcJ5plly5YtnD59etWy6/jlQ3W1kRHQbQpSo5fPUrN4M3v48DTDhyXWC7OJ6StzYjrsZhNksvha7LTeXc1gXQWZt0WwV2vU31TFsS/3SmdoGTtZXGdFJN6Ss/DGp+R85uxwkpf/4pRU3xZGk+z7q1MkJe/ntb9YRaaqjM+4WE6CsgTs1TqaTWXinPiGjSWgUb3Zh6KaOfMNcb/e96J81iGzakYptTFWBk13RUkvpKWIV7NDC2RScoddsT0BbH6dM2tY22Tga3NQvdnH8S+IxwSzIwnmxxKgieuq+VtctLw1yoUfqsLPamEqhUk1oTvEXzUnzs1Kjbc8aq4NMjuywKjMByAaBNvdwrFkcjbL0c9Kyhkn4eU/OyVXB9j3d+dITsg5hTf+5rR0JqF9fyPu47KZLCaziQvPrY18V7XVgztu5/R/iM+Jje+sJTGV4sDfG7FoKam3xRg9M0V1t4fkXBqTySR0mHnkX1f2x6QoZeXfrlPu4wfpL/Paa6/xiU98gj/4gz+o2M46fjnw9NNP8+UvfxmA65reX7bscnm3Ez+UeB82m0glYH4yw+TlCjvculaQfGu60YPFbWb/58QPvOv2OJjqTzJ6RvJz7BRcfkPOKV05OMuVg3J1znxvXOrAH+D0t0fKZ0QqESf2vTJJ3ytyHwjNj6c4/S25+MbXaGXs4ryUDFtkqwtHSGfgkPieUmoWep6VkyvT7GZMqonEjHjn/M0O6m/wc/KbElmBzDA7mmR+XO70pvH2AMPHZ5i8lJckzAjLvsmg9joP8+MpBo+I23t2JMn8hNz9NN8WQLWYOfAZ8XXTpICiye159f5EPstVqMNBVbeTwaPTJCX2vJzVquG7BLMw9b1afs6VWudXk+HLZrOrkrcuvjzB5dcnpEiIvS9P0vv6pNRcHTi2wMAxOV8qJZm5GCo073XRu2+aBcGhGt9moardwslnZwwi3ipSb4sxNZI2smSZzULkwPkpOPD0UhtkNbWs/JuPVsLOVganT7Ft2zbOnpU7I1rHLza6urpIJBKEopsIVXeVLVuUd4PJGYU3joJoFqWsYmZqMosq8P1E2qqizKewObK0boL+XugTfO3SdIg1w6WT8lkVZxe584oEJYA0nH4lg0yau3QCDn1voXQij1V8QDoBh55e5ogU81LJtxJ1j39rlT3JMv5mtEfiIMJkQrcZmX/nxsRtregQ67aiWc1cPiTu08d709CblpILNasmWE4iq4DabVayaTj5nHhMvTCRllYx9cYUrB6F/mMSNl8DbF4I1OtcOZwQzii1MJthdlRu/tic0HydjYv75xjpEWsosWDEXSJ+oVBnGvoOytssvsnC3ESGqUGJ7FUKuEIKU/2ChkvDxVfls2Md/toq+3DZ7NJzgkWD7PgzM+WzfS2vC5x4Zk5aiu7USxIV0hlQzAyJJ/UuwJTN4gyYcAegT/hoLk3HZkjMw/GDxr+UknpbjJlZmJ41kUpCRjNjFlgnTveqLF/rUnalrPxb154P8PJ3/z988YtfZO/evYUP4K8mTFmRHbyfAtPT07hcBoWzla3UKiUkirKZFYe+m9/XwPTlOc58o4xsyJukPe+MW/A0OOl7QXATQcuy+yMdzA6Lk210p5ltH2xj5PiUFMGg64l6zj13RUquKtDpks7UpPuNTFIycNZYmB5YkCIj+NqdxK8JcvLLF4VJHLoTtn+ok+krcxz6x3NSfXQ32A1SgSBa7o8x2TuzNgKEBHS/Tmiji77nr64ciKveRtdjDfQfGJPK1rPnDzuZvDjDkX8R98y7/6CDubEEB/726r40BrvcpJOZq0660v06TbeGufTSkPD80/06ZhUpmcn8+J7qm+XwZ84L16u/rQqbT5MmU3maHdIZr3QnUpncwMj8lc7I2aLtgTgTvTP0vyq2ea47YesHOpi8OCMs6+iqt7HxsQaGjk5w5utiBFDdCfHrq+n5dm49kvhadwnya1aZ+s6oTsfDtZz46iWmLiwadyXWyTwuNL7BmTNn2L17Nz/5yU/W1rd1/ELh1ltv5bnnnsOMmVsdv1KyTDadXrJZ666z0nhbiGNf6ScxtvqGaDa/mSD7FptH7vCn9uYAF18YESb1NN0VItjp5tBnzjM3LFap/aEorpiN1z55luyCWLhbvc2DNWDh/PfEST32oEY6Y5COhJF/95Dce3bV2pi6WObFsURs3Hp/lOn++UJmOBFsfLwOV8zGS39+QqqP9qBGcjZFclbM3s64jeotXi48d2VNck0y8DYbmQbGJddAWWx6dwMWj8arfy5OUOl8rAZ3jYOX/0T8g4nGu6qp2uTl9U+dlSa1SEGD6m4fI8fHhZ/rWhHe6sEesEhJuDnjNqZ75TZT1jK+NY9Gy1urufj88Mr2ysUFGth9GrODcs9I82jSz9XbbGf8jPhEcsat1Oz2c/xL4h/EtNwbwd/q5NW/OiNsu43vqsXm13jtf50VjqEiOz1MnJ8t2K0SSWk15Lc6ykm6NdwawObXOPbFpfsO2XS6ZL352BVevfgCqqoyOjqKJpClYB2/2EilUui6TjabZWP1PcS8G1aUMS0kVpCTWq/TmZ3M0Hto9QNa00Juoq017sqRlKwecFbpDJ8SezfLZjJsfqefudEUJ78tSGRQYes7AwyfnuPiS+Ivj403urlyZJa54ZSxKS1AKHdFVaaWk7Qq7A+qNkittlys0qbVqzI/nZIiI9hCKtGtbi78ZJRUGTMs2YpVYce740z0znHqabk9IntIZXZIvIPRHW7mJ5KMnnoTZDrKQLWCp87GyNk5KfuVRBkChOo0s+VXY1zZP0nvi4vGagWS0vZfjzFxYZ7T3xa395Yno8yPJzn+71c3Y6YrZhBEpvrk9mhlsiiB8Ywi2zwMn5phTnAMqVZQLCoLMsQrFba/O8bExfkl5L2KWY422HEEdc7/aHzJv1ciIzvCKjODpfu3qo3yvPpyt7XMD2tOE2ZFEbNFLp6IbnewMJlm5JQgK0qFze8MM3k5Qc+PxPyqxWVIxQ2enKP3DcFgTYVoh87lwwnDDwuQlEoiN1cXZ0RaDs0ObdfqnN+XYHrR66kpmVq13kW+zvETx7nnnnv4j//4j7X1bR2/UPj4xz/OH/3RH6HpTq65/Y9KltGmU0vISTY9TXN9mpPnFRKJ1d8NtClj3hjZgmQk4Qwo8ymypiyhCIwOQjot5purIhliTVmOvZQlIfhKF2sBf8TEseczK7MirQJXEOxuGMgfaabSFYmGqtVwgYnlr8Hp1TMvgeH6ShILytSzekzMl5NSK1GvustKYirDaKUsnmZzgfwQ32Yl2Khz+N8nxckPJhOKDUgjLBGnO8FfrzN0JiklK7cW2LzGe/PsyE95Zm4ylc2GU7/LijOkcGQ5Aa0MYt2G9NaBf19lLSuxPgcbVeKbLBx7Zkb6XEoWnpjC9FD6qj8jV1jB6jExdFo8jrK4YCF/1C/4rhTfZiHYoHP4q1NLx3eZ56roEOmyMtKTkCLvoYBuK3N2aCqdQUzRK8wjk2lFPG/zwZzAsWHWbAJFQbdDuFGh94g4YSncYqa6WeXIC+Jyi3UbwBOAgy+YKmZSysMXSDMzA4l5BbKVSUpLUVyb8mSlZJmPRCP+JG5HhpOXlmZnU2fTSzIpFa6+cJ4DP/knzGYzIyMj6Poa40JBXHW5t1DIkNuy4ShJUDKZTSs3K3UjO43FU+HBLKrnaXJwze+3EeqW1FXXYbp3QZygBJA08dInjnPwnyS+stdV5sYSUvJRvlYnrpidcLe4BrUzptN2fw2dj9aK9w3Y9utNbHpPo1Sdzofr2fXb7VJ1qjZ6ccbsgLijS0zDue/30/OMfEYpGYISQLDDTWSbXCpm2exTAInRhDRByVGtS8ucTZ2f48X/dkxaTmwteOkTx6UJSmu5p+HDk2siKOlOpOTEdBv42zxUbxEfD4nRhBQpB4zxfenFIU5KZkzzt7mkJR2b74uy8Z31uBvEUzK76m1s+1AnzfdKyOro0P1UM21vi0v1z9/monqLuL9LTMPcyAITF8SD4qnzc+z738eECUr5dvIEJd0pt/G39f2NbHp3TgbLZC57SAbG3rqim/A3LcvPWqZuoLeVbDbLiy++yEsvvSTVv3X84uHll1/mueeeA2Cv/kDJMiZVXbFB64pbUa0K2XT5jUyTphZeLroej9P1uNw8z8tMXfy+OEGJbIaz3xrgjb85LUxQApi4OMfMwIIUySa8yUd4o5zUUvO9Uba8W066tPmOaq75cCsWv/hLiL/dQddjtdTcIBeneBudBNrkcj6f/I/LnP/BgDSJanY4KUVkqd7iJbTRk8vsIwiNIslLAuNnZqQJSv52J5aAXGMH//6cFEFprej5dj8v/ckJaSKL9D0loX/f2JoISlqld7lliGz1U7VJTv5QlqAEcP4Hg5z+5mXp8e2pXUVWrczB+M7faqb97TVS7XQ9UcvWd9dL1el4OEbH2+NSNq/q9uBpdGKvFq8zenaa2aEFqSl75PMXpQhKAFdenWB2MCknTQgENzjY/oF67FVGB00mEya1/CaRxaNica8sY1KUknWtfRH0lIPp6elC1sJ1/HKjo6ODbDaLxxotSVDKWrUVBCUA3WHC4ig/L7I2SyHusnpg8wMOvHG5hOiqmpNlECQogSH5duBfRzj5jHimFdUM00NJJiSIFVafiq/Bir/BIrzprjqh7a1BGm9eFK8JfMDY9UiEtrtLxFBl2my+w8/mxyMVr70YvnobPgHpySWxeArOfG+Y3lfkM9vIEJQAqrudVHXJ7SOokr4YDKnAkZNyBCXNpayUOatwcJqazvDaJy8tJSjl661V+m2Vuvv/8bI0QankPVXAVF9CmqAEGEQbGfdghqpuJ4FWccnA1DxyBCWAFJx/foxzknug/iY7vqaVg68cQal6i5MND0Zwx0vbvFRdzWlm21NR4rsqvAMu8xXdj0RouEHwvTFXt6rDQahVYkJlFKYHkkz2iwetC1Nw8PMj9O5LiOtZpTAISoBqMxmHe4Jou8lC2005e5vNZB3l/V82A6rFhCOwdP3LaioZe+nnFk3dAcA3vvENXnvtNeG+reMXE/39/fzX//pfAdh64++ULJO0m5cQlACcDtC0ynMi4dELcmZNLVlaO+R8nlnNAiaGrpiECUqmTJbBPhOHfyhOUAKYHoep0QyiqkYAgbiZcEPONoJrZbxTpeNmyxK+ViWCUqhZZeM9DimlF6vHRMedbkJtZQ5wSpCQ/fU63kqScstw5fA851+ZESMhmEwFEk16TpygBOCJakQ6rSgy67NS4LZKYW4caYKSPWBeKY1WYe04/8q8FEFJCCWkvoZ7Uhz4qjxByR4wycm9ARN9ayMoyUjEAQQbVKrb5eLChcW5SFYh/CzH4MkFzv54VpigBEAa/PUa7ojcu2bH7U7qd8vJT9dut9B5R4U6y8ZEdINK214bukAYZcoYdT1hM8FaBZvE8fPkqJmpEbn9zwtH4dDzkLUoS2TnymFsRDEISkoaTOIkKpcjzZYNKWxWo05GMzNf4WzBqmew6RmWp8JL2RUW3CudjWKpx1/VzfT0NFu3bhXu21pxVTMpPfbYY3zuc58D4FblHSsbXzShROQ3SiK3GRHsctF4W4QDnzkvnBGo6111OGM29v3VCWFn52t3kl7IMNlzdb/CzmMtGY4a3xLh8usjUmSJ9ofijF8Qz2ACULXNi9Wrc0FSQkRWCmotaL43ir/Vzat/eUK6Ld1plpLq2v2xDubHE+yXkA/pfKSGbBaOf+GScJ2Nj9fhrnPw4sePCddZK9aSSWkt2PqBZiwujZc+cVy4TrDLTc0NYY5+/qLw3HA32Nn4WD39++UySq1l/nU+Woujysprf3GVDyjXMI90v07d3hCnv9knVbfriXou/nhIKgNT41siDLwxIixhl++frL3XDJOJmpuCXPqBuDxh91MNOEIWXvqLU8L2636yjnQiw9HPGnM9v+7JrnmLCUqlZEgOpV9ikIvE43EuXRL3K+v4xYOiKGQyGWrVTtot21f8ffGBazYhOd9ymwH5MdjxoHFoc/zLYn5Vs8PW9zYycWGOE18RJwpGdnq48op4fFIKMnNONoOJvVoj0OrmksTGu6fRTmSrlxNfFreDZofaG6u4+MOB0lmHyh3Qiat7rRnb3t/MxMUZKak3kLd301sihDd5eP1vxDMI2YMazffFuPD9QSlJsWs+2s7M4ByHP3N146G1ZFJaEzTY83sdDB0Zl5Lean0gSiaZlXq2m97bgMWl8+qfnxTv3hqyB2l2E5ve08zA/jEuPS++pq8JleZRCRJO/PoAs0PzjJ4Qj6Gqt3lwVFk5+60B4Tr2ag1/i5temQ9vkLe5aa3ZXAB3g4NsJsPURbEMpZpHY+tTtYyenubMt8QOhW1BjY63Rzj73UEmzueyFORjKMltjyXrZWrl4cT3Zv4Zs9nME088wT/8wz9IXXsdvzj4q7/6Kz74wQ9iwszt7R9d8festbhhaJqR0BOCQtxlWjDiNWcI6nc5OP3DGRYE969qt2kEGi0c/toYKUE35AgbY3/6sqTM22JIZD1XrZCaWzQ/BWK2qm47E5cSzI+lhNuKX+NmbjTJyOIMQhXactdasHpUBg9L7v+pCJFzfprt2KrNBtno2Jf6paSqwCAdpSQOQbc+FWV+IsmxL4sTdGqv86BoZs79QEJi8AYvVRtdvPp3lwz7rZVktBirZFQqm0kp3+6bIBnXdm8QZ7WFfX/XJ1zHWa0Sv8bH+R+MCUvFaS6FzY9H6D84vZKwVQaqk7IZv0qh5loPnloLRz4vuRdcAmXngOA8WlLFasRR/fvKS7gt/2Cn8VY/g8cmma4kowmFw8GqbgcTlxYMP1QOi+JD1W2Ss7dZWdKmDEyqSrBVY1giW0PjdTY8cY03njakJ0UO2hp3Gye0PS8Za1XWljt8LSPjVgoZR1G/0zy7cv25MPIaJ4e/TyQSoa9PfD6t4xcP1dXVDAwM0LjhHmIN1634e9JenHP65PL90/KZkfIEPW3aGL+1dSkUFc6dFT20T7NlW4bxEbhwUnze+oNZxgbBlJTUM4LCO45Jgqmk6JCeX7TGpsq3q9vAXaUwfD6daytXt8w6bXVDsFGn98CyfcdydRUIteiM9iTKE0ZWqVtSii6P/JoumXVwcZ2Wm+1MD6W5clhOqlmxUF7eahlCzSqxTVaOfXda+Mxa0aFuu43+kwtSRKWuexzMjGToefHqZtismEkpj7U8n2XY/ICDoTNJ+g6J73lXd2qYTHDlqPjeSONuC46AwuGnxYPqitmDSlaCtptsjJ5PMnQ617+1cClE3jsqzaMS8NWpJOeyTA+uUjH/TBfFMq5qBbvPzMDxCvZeNG8VG3irFUbOVe7g4g+EFItJyuZZLefvVfn3AN1nxqTA7KwYy1BR0nRvh5Eh6BkU0zFXlDSdzSnOXVKZzrWTcBn/VVZVkSi99iVcxXu0rFgv4aXv/X9JJ2f52Mc+xsc//nGh/q0FVy2T0ujoaIGgtJWbl/zNZDatusHZ9XgNdbeExBvKBfvDh6d49X+ekjrg7j8wxnTfnBQbs/muCBveIZelqOPhOBsfr5OqYw3roLOmA/ueb12RzuZy4ku9UgQlgIF943IEpTyzVPKWtv5WM41vkft6LZPKGpI0a+A7yBCUAIaOTNC/X8529ior9ioxx5PH+R/2c+kncl9tVW3zsuuj7fja5b6UWwu2vL+Zze9rkqpz7tl+zj1XRtKxBCxuDatHwxEWpypPnptlvGea4WNyXyauZf5lkhnSKbkxpPt1tn2whdi1Etkx8l2TYGwnRhOc/qocQQng8GfOS0vE9XzrihRBCYr2dtXL0d2rtnnZ9sESUqJl0PloDTV7Qrjqxefh4OFxJi7OSNnv0D9eWEFQyv9/uYM+3a+z5TcaS2ZqMynKiqxK3cpuOjs76e3tZcOGlV9wr+OXA9u2bSOTyaCirSAomVS1ZEYIW1Bj4+MxtHJfFZjNSzbp8+Pv+JevCBOUAJKzMH5+loEj42IVshm8TVbq9gZpekuVcDtosPk9Dfja5L7kcOSkFWRJErP9SSmCEsBEz6wUQQkM+539liRBaQ2ycrE9ATa/r1E6W1EmLb/+gby9h49PMHJsUpJIZsUesKA55D5HO/dsPxd/JBd7dT9ZT9ev1UvVWQv8nS52/E5rQcZOCEm48MNB+l6UI/M4q204JOPWgX3j9B+Qi4/XIluXnM2STWWlD3rrbwvT/VS9ZGO5/642N0rMw94XRqQISgD9+yakCEpg+CFZghIYNtfsSGV1A+h4R4yGO8NydR6I0nS7eOah5ESSyd45hiRkzOeGk7zxfy6uJCjBki9gSyF+nZeWu0vvQ5RaQ6+L3ofdbueLX/wis7NXWa9yHT+XSKVSfOhDHwJgZ+1Sed2sVVtCUFqM+u0a1W1lDruWxV3ZnOzO9BAceVqcoAQwei7BxKWEMEEJoG6Xg9Zb5TIwxnbYabpZLkOy5gTVsoygJIiBQ7NSBCWA3pcnpQhKAJMXF+QISiKSUYuQJ0p0PBAiukMyK3wGsumsNEEJ5AhKAP0Hpxg4LMdkcVbpOKrkPi8fODjN+edHpQhKrriFzb8Ww7Pae70s0Wlx+WV12+4N0v42if1qoO/Vcc79UFxyGUC1qTjCOhav+Jfsyak0Q0enGTsr95xkCUqQ22+VlfBTofPBEKGNSz9/N5lMq0uw5duQ+KA/NQ+9PylPUIKV5KieZ0fFCEpQ8B0Dh2YqE5SW92/SqGv1y2UpcEcVNtzjkbJFfLuVup12nCGzMFF7uCfJ+KVkwfZZc+WsSj0vJVYSlAA01fhZBaoV2m/QsJTYrs7YLSuyKtUFdtC1sZvLly9z/fXXC93POn7x8OEPf5iBgQFszvAKglLy/8/ee0dJdlX3/p9Kt3LnnHOc7unpnp7pVs5CWQIFQAEhUEAiCMmSQf55La/l33vP4dnGfrbBgJd5GGwyJgoQQVkjaUaT80xP5xyqu3K4Vb8/bqWuqXBPSRoLfvNdy8to+py65+57zj777P09e1u0mwhKMRh0Ml0tAQy6zASl1LketClzd3JCL0BQUrA8r5R5UwNNOILJGKG5B2rFCpzQPgT2IjEbSoq6DjYRlFQg4OVsghJkJfP6NshMUMrUV4alYzkISql9Y580E28hxa4mEqGgVkfrpZbcWXBSzo/hUISwWjKYNpHxRoSgBLCxEGLheEAoZi1ZwFqqRW8SI/mMv+lj7ogYQalpp4mWCwRTFalF0n5lLoKeay3YysX8eONv+FgaE4tJ2cr0WEvF1vrSmRDzx8Sek1c5ORnCITbPvaT5lQmlLXpaL4l+J7X+stg6EhD52kQoN0EJNp29nPOyeoISQCSC7EUVQSkVsj8COuXcKYK69jDVTWK6snMrNLUpul0N0VuWdawswaqAi1aWdRw8bjyLoAQgGzXIxnTzQmlTXhSkuSq9QvIXnJ1VafSKT2K32/nCF76Ay/Xu1Vx810hKtbW1ANgppkSXOMTlun1pqTRR3CIWVNr+6TYqh8RKcwAsHdjg4NfFbkbv/78TjP1ajFRhKjdiLhNbBb0fbGD0yW6hPi03VDP8RIdQGkUkJZtNcYcYiWXg4VbabhEo/wT03N7A6DPdQqQKAINZj2QR24zGfj4nnMmm5+4Ghp/oEOoDcOrHs8y9JuZ02P33J9nzDyeF+rim/Ez9TixQFg6GCYfChHx5MPEFIftlZL/Yc9aOuYTJcTOvrPDa/zwqXPLtyH9MCpf/67itjh1PiZU0PPbdad76P6eE+gRWAxjMOkzFYotj64MtjDwhpifsTWa2f6adQpGgJtB7T6NYyTcUgubwZ8XWVM/dDfTd3SxURlFv1SFZ9ULvdOR7U4z/dgHnuHqv7vwbaxz5zzxubEkw8FATjVeUnfWnTHuiuViPqchA9bbMe1sqUansSCcAR44c4cCBA+LjPI/fa+zbt4+33noLgIul2zf9LVupm/JuG5ZSCYM5Q4A6jeOg4eIiej9Ym9c4j//XPGvHVejiaNDJccrD+G8WhQL2xU0WJLsOrU794dxSZaD/3ibabhAr3TP0aAst14kF6luvr6TjVsHSIR1WBh5qxlKW5jtlCdDtfLyTng+JlZoyFhowWPTCmZf2fmmMM8+KESuGH2+n8Sox+a2f8XBCoGQnwPIhJ7v+6jjLh9STHQAW3nIIZV4CCPll5HNhd/lkwgGZiEhud2Dm1RU8AmUTAd7659Ps/+oZoT7ze9aYFM22Cmz/VBttN4mtjz3/dEqYoCPZ9Eg2MWKOodDAyNNdtF6dZXxp1mPbDVX03i1WGrO4w8pWQRKVodDA9k+2ipHegaHHOui8VczGs5QasZaLnW/Hnlvk8H+Inb2Pfmc2QTgSQHmfja33Z5B5hmBoUbMFe212Ml7yfmpZL8QcKcTlctHQIHaJ6Tz+MNDT00MkEqHU2kyRJbGGMpGTYiio0FFUncEVlyHY032theJGMcc5gGtVw9iLYkTJE8+tM/6K2H5pLdVjLhbz2bReVkz/B8UIHxVbLPR9sBy9GfUEJT103VKGvS7pfKnCadx+fSl1F4r5Get2FDL0UI1weTSDVYeUJrCaDQsHXBz8DzG7q+HiQvrvES9TObvbqZRuE8CR7y9x6Fti4/Oth1g85BYiFkXkMHJA+b93BUljkf1hZL/Yc1zzIVZPiMnOccbHni/PsD4htv+Nv+DANS9GmqnZbmPrfWJzYub1DQ5/V9DGC4HBqkeyi+mxtmtLGLpfzEYxFerpvaMiY8m3GFKJSo2XFlF3gVj5ttqddrbcJXaWqdtpZcv7SzEVq5eFVq/BWKDDXqZez07v9nHmVXcicKgiQLkxG2Jsz9nnGDXl39ovlqhJd3cwA1FJbwBriZaS2sy6L5WoVO69Gq1Wy8svv8zhw4dzjuk8/rCwurrK3/3d36HVatl28ac2/S0dOSmGosIIBbYI+gzmWbr5XV4corU9hHBKEXRMzRhwruVeM7EAtt8Lpw/CjMAxyWyNYLZp0AqoVL0EPRfrqBUMfbVfJFHdqeieTQSlGNLYruVtemr7U/z66fomwVSooe1yK5IYT57eGwtpHBEzvIxmLUabVpgwcvpFLwtHxDp1XWOholPM7+B3wtwhsed4HXDwJ242ZsTmrHNexusQ6kLIHyH0btldEN+v5BCEAhHhahSOaVm4RNypF72celHMXnPOyyydEmVtQ8cVZmr6xObEyee9rIyJPUtv0iKZBekfOui7zU51j5ivp7xTomlEBXEtvJmE1nKROT0hKt2ZOBJBp4OOy4yUtYidO/uuMNC0TcwGtRRqMBdoQOAy7tgxOHEw8d9qiEqTYzocYbFLoQAFNpnu9gDp9qn0RCUotoUpKTi77FsyNhGV9CWU1gzhdrsZHR0VHqNaiHs5VODP/uzP8PmUw9RO3TXxf1eTHv71/31SiMRS2GrBYNGjN6p/FVutRO+Hmxn75RxLBzbUPyya2WhhNaA4N1UyEPf+k/oyYDFM/G6RgnoxEoFWr8hXRAlXbi3CWCChN4kpLMluwCxISFk95URv0glncXn9r8RLX5T1FbB8UODbAmG/uGOjfKCQss4CobJt+aLz/XVodAoJRi2WDmyIzfG3gQOCwSuA0h479RdXcOSbZ4QzWImi9sJSbJVmjv9AvfxCvhDhPFKtSiUSxgIdznH1xs2uvxSf544xF0GPmIHi35AxWPQUNVmFsiNZq80YBB1K4ZB4WbPJFxcIemShLFYzL64wI5LFRKOBAMzGyIWCpfO2faKZkEfm4P+dVNchoGQAs1WnNzjSlYBbP+3htb85nnNcGp0uXnpL0kmUy/UsMcWNN97I5KTK8Z3HHwR27NgBQL2uC4MhqbRIFoISwORLa0zuWjubkJLlRpSlwijkVAXo/WANGq2WQ/+RQwcnB5yipZXm94hlwVs76eGNv91MFtVoNVn1kWclyNLBDaZeE9AlBsUUDIfE9JytxoxeErO77LVmjHY9nuRMMyqCc44zLtYnxEg2Y8/OM/asGCHfVmfG7wwJZcIxWEAOhAl5xPbZ9puqWZ/xsPiW2LwQhbHUQMeNNUy+uCREVDryzXNTcnN9zMOePM4YHbfUEAzIwoQyYRig4/oaFg+v4xCwN0KBcF4Or5IuG6sCBPYTPxQjukE0s8+Mm/XJHM+Jrc1oxl9jkR5ToRgRXbLpMZdIFHdYWTuhTn6x9aeTxG5Pzr21huNM7mckn+X3/POY0DPQaFk6GCU9CJafLOu10nhpGQe+Oatax0h2JRBqqTDgWUzTJ0ZUSjrPH/rWrKpxafT6ePm3bVzJr/g6a2tr/Pmf/zl/+qd/qmp85/H7j5/+9KecPHkSDRq2198V//dcBCWAAz/3ne2Jy2J3mexgtGkxCPgu9WboudbK5G4/jjGBBadXMpGsTYTQ6HVEcpT/iOHEL1J8DhptTjtl+s0NCmrS6EatJiOJSGcAiBDyqN8n7FUSljIDBpNWqDSCsVAnWiUS56wfU6FOKFORRqPhwL+L2V2glKLbUFk+MwbZHxEm2dhrJUrbLIy/4hAuvSWK2pEC9AYNEy+ov8jmmgty8Js5MruqKd+WjRgVDoNWy6lfil1OBKV0W+1wEWPPrxF0vrsk9pIOM7YKicmXFRs5Y4aiJAR9YUK+sFJ2UYATpbcopCPvkvpJsf//Zv5OsbGmEocckz5kwXnnc4cwFuixVRjYmM6+RmLP02g02Gsk5ba9WoSVbJ5EyFyaLk0p4FhWMp8zx4tpE0Eix3iQt8ZTzqlZYiwxH8BqLKAZG19MvjnmRsfFEpEwnHwl4ZCKETkyBdxMhTpkIigCSUGMqJRUAs7nhD0/9efUK2GLMV7+Ta/X0156OceXfsP73vc+pqbOzbnrPN4bGB4eBqCx6zp0SSlwshGUAJZW9SytakiNhGcj31nNYazWCKD+XNXYEkIywMnj2X1l6dbQenR5Rwy67CXfomvY64IDz2/etyI6TdaSb6EAzB4N4VhI00avy1zyLerzSktQygBbqQ4pVkYoWz+tNr7/Wor1mAq06rMORfuuTfjxrqUZe5Y9f+lkgKVTWezjNDpSsoEcVJEVKWVeyf4IoYCYQVnRZcDnDAsTjkShk6B+m4mFE368a+rHOL3vbZSEVotIhIBLw4nfiZehq+wyEAEWj4ln6haCDqo6DTgXZdzL6tdHyB9BFh1aJIKlVHt2Kb/YfEujVxaOBBRSnciBRoa1qSAuAfsOwGjVYixIWXOZbI3oWLU6PbZSHbYSHa4ldXNdjvrf05hXcSSXeoth7ngIz0aYXDo9kkSsPrErSW4xolKWEnBhkx6nI/5fxPIDxXR+tj3HbpVpaQhx9LSeQEAdAUuvB4spgkUCT5r4YYyolFwC7sR07P2yP8NfoIuXf6trex9Tp1/n8OHDfPGLX+QTn/iEqvGJQBN5O0XQM/1odAJuYYQqXaMqclLtRSUEPSEWducRcBBI8QwKsaTl6ioO/fsZ1eWIKocKabm2hrFfzbGw25H07Ozia7yqgolfv/063f9/halCEi5dVzlcRNv7apl+beldl33ffU3Y6y28+j+OqO5jrZLof6CN2TeWhca3/fF2NBqNWIYoCSSbJFy27II/6WFj0s2hf1dP45dsgCT2rMarKqjZUcbh/xwXynK08+kufGsB9n9FfYBk4BOtmIskXvtfR1X3yRcjn+sm5A2x++/FsmVJJeLf6jwSKGyzope0rGQrC5JiIO14ogM5GGaP2uxXGi3bHmkm5BUgKcW7qjvcJhMpJBu0Xl/Lse/ndlzHyEqTLXs5dfoUt99+O9/+9reFxngev5944IEH+Ld/+ze06LjKejeQm5wE0Hp1Iad+tbQ5KJvNeZ+E2HxTi94P1oBGw+H/nEkfIEpjy217uBmAvf+ingRb3Gkl6A7hyuCQFiVOvmchaPuqhgEMFoNw2a2hx9rQGrW8+bdiWSzzwcjTXThnPRz+hnod3PfRJowFBqF9uaTLRsfNdZz59TwLbzlU9zMUGgh6gkIkjJ676ymot7LrL8QIy/k8a/un2gj6ZPZ/Rf26ariygpqhEvb847H05QbTDg5G/6iLlSMbwpmvRNFwZQV1O0s5/K0J1sfESHnGUgP+lXfReZXNe/J7hEw2TO0FJcy8miNomySDqqFCGi8v49gPZlkfU+dwtNYZ6b61htO/XMShsk8cOpU37JLO9OV9NjQaWDqSO1obCYXwls7zxsIL2O12lpbEst6ex+8vDAYDoVCIbbUfoMLeroqcVFYWIBKOsDqVnKpfnY7Q+AVLFlRoaBm1cOIFN750RL10far0dFxlZ/xVF6tJxKZcRKXybhNLRzOsl3T2iloXpEp7UTXeozagwaYlIEhesdUY6Lm1iuk3HMzuFst6JYqmS4so77Hx5lemVZOU9CYY+Egts3s2hMbXc3s5eqOOA/8uYDfolZviIbWX3qJrbvsjtaxP+Dj57Ir6zE2SViHzCFwMLekw03J5CSd+tpyTMJOM/nur8K+HOP5j9fUfOm4spaDWxO5/SWR/VkNUygcD91cT8skc+paYz1VvUQLl2ebSuxCmUIW3Jat0dpJaGzBdX216+8Vcqsdgho3pUMa+qX6AnpvsaDRw+Mdp1mKad46YJDoulgjLcOrVzHtPOqLFpnJv2ZBEVkIPjX16zpzI7b+IkZUm+BHHjx/j4x//OF/+8pfVPfM8fq/xta99jY9+9KNIRjs7r/5/gNzkJJBptQSZXdIiy4k1pSYzGIDB5Uek5lFjcwhJUkhKWv/ZSi7dmukYUJb7sT0pbdMRlaK60VIIEVkhKqVDWqKS2n0ujc2nmpyU7hlvp69apOubw77WmUD2Z5gHGfaCtsvMGO06Dv8kixGgcm7lQt9NVlxLMmd2qWcPN2w3Yi3VcfSX6v0hpkLouMzG1F4va5PqbVGdEQiBiFu4tt9IeZuBfT8QS3GkM2qU5wg8q+NyM+EwnHpBve+gpEFH3YCJY8+5CQi4HLbeamX5TJCZ/e9iPC8SoaRRR+OwhZMveDITejJd8jAppdLOKdTaVGltIJX2UzobJg1BSXXfDJkfS2phNbmwShqiUtiU6FtQHKatB04eBqfj7Lbp9iBtiZbu1hBjU3qcLpEsUTIBu7oLkclkpSKrjE4XYS6Su69xQybgm+fAK1/CYrGwvCxQm04l3nGvaVeXUhpJj0E1QQmgZriEpsvEUqS2XFtBcbtV2Pm7tG+d1//6uGqCEoB3NYhvzc/CAYfqPtWjJdSNltNynVjq3OEnOmi6ulKoT9WOYgqaBXNKSwiVVIrBVi9YwBEo7rLRdUedcKm3gQda2P6ZdPliM2Pt6AZzu1eY2yW2YEp7BPNJAge/Ps6rf62eoASKfeZd9eOaFdsddn/hpHAJu+5b6xh+rF1Y7vmg/2PtDD4kVkB54teLvPY/jwiXYfMu+3HOiMlv37+ezougZKqQhOf89K4lzjwndhuycriI7Y+2UXuJWImO6tES4dKLoLxXPvPCWiXYSUJYB0o2hZQnWgKo544GWq4VKxHjnPKoyh6QjL1fOpMfQUmCrjtqhORef2klxW02yvpyl+SMlX+rcrQSDof5zne+IzTG8/j9RDAY5N/+7d8AuEC6EVBHUCrfYqG0007tUJH6hxmg5VpFR6WWG8yFw9+aVQhKAnBMuFmfFFufLVdW0n27WFmlhivKFEKUWLZdGi4vE+6TtlxbDhgsChklDpUBupbrqijrKxB6Vv1oGdsfbaWwRcymHPv1HFMviAXnLVXS5vdSiV1/dYzD3xbTwc5pD+45Mbth9ZiLXX91TIigBDD4UAtbP9Is1CcfWMoMDD/WRtMVYmeG3f/nlBBBCcA158W96EXkJilBeO1/H8uLoFQkWJJ2bvcaUy8v4ZkXsycHH22l/94moT4GC7TfXI2tTkUqa9i0Xi1Veaz/QoOwnilsslDWJ3auabi8jMFPiNnxTddU0HBxGcXt6vXFytF1PIsBoUygnrkge744kRdBqbjVTO2ImB5suKiE2h1Fqtpq9HrMK1VYJCvLy8tceumlYmM8j99L3HPPPYRCIcz6QtUEJYDqXomGAbFzZWWbFns5RIxiZzDXYoQDP3Ljc6jvE/KFcC+F2JhUT9wsqNPTdIGdmiGVeiAaYOv9QCnVA2K2RlGzhK1SMBm8HvQ2hAlKphLxpPPmcj0NFxeiF8zW3/P+Svo+JLaX+1aDTLy6xuIxMYKSvVbcATD+gkOIoBSDc86Pe0mABBwOc+Q7C2IEJaB2uJDB++swFan8ZqnBTIHAaPdN5Wz9oJjvZfWEl93/MiNEUAJwzQdwzokFvE78YmUTQQnUEX70NvE5P/Wqg4mXHUJ97DUGBj5SS+WW7HZeKlmouMVE3ahY6UVQ3ktkPcZkZSwU1zPVW8VsV/TQ+4EyarZZhfRT5/sKaRxJsvFU9F2fCeKYEpxLLwWyEpTSIUZQauhDqG5HRaOW8hY9JSrchrHyb5X6KwH4yle+Qij0Lqd4O4/3BB5++GEA+i96DFBDUIICE9RWhykvEbEBZBoqg4BM0CZms02c0efMopSKtWVYV5OkL0mX13VqaN8uEAsNhymphfYRver7GzGU1mtEeFoASLFjskDmJXSgU3m8TkZ5p4S9JmWAOQgORfV6+m4uwF6Zpl0WYsXMAT8ze7OcR9PEwCVbfu918CduzrwpVvLVvSrjVJmNJgbfOhz4kUuIoATQdaWF5gvzeDFB6HTQf5ONKsFyeSd+5xUiKAF4nTIbCyHhAo/7f+LOi6BkLhZrvz4nM7HHi3c9ywjTzMG2S810XZk7prQJOqjskTAXiVNHJMFHEY6gkxDWM6YCsFeIja+kXkvHRdG5pJIQX1oHTX06CpIrlOco/7axButrEBQw/QMBHfuPGgUJShCwS1glmapCsYuXLTUB6qrV2U/+Ah2SqYri8hZWVlb4yEc+IvQsNXhHSUqrq6scP34cm83GYw98Go1WQ1mvjZGnO6jeWQTAlnvq2PlHbfE+w59tY+vHG3nzn04x8eICo5/rpP4yJQDW88E6Rv84USh1+PE2tkWdp9YqiartxXTcqhwQu+6oY/TzXUlt2xn8ZCugLI7Rz3fRdlM1HbfVsuX+JqVt9Hw+9Km2TUSY0c930RUNcLW8r5LRz3fhWw+x94tjDD7YyvBnk9t20/PBegAar6xg9Jlu7E2Kkq4cKEYOyPGSGSOf62LLvY0A1IyWMvpMN8Vdysrd+mALO5/uQiqR0Oi0VA2X0P+AEuCoHCpi9JluKqOBxP4Hmtn5dOJddzzVRcs11XTd3kBxl43RZ7qpvVCR4ZZ7Gxn5XFLbJzsZ+IQil54769n+WBttt1RH5V3P6Oe7EzJ8ooPBTyrfSiqRGH2mm5brq+m7Vxnr6DOJttsfb2fo01G5SDD6TDftt9UC0HZzDd23N1DSoTiIBz/VxvBnE9919PPdCoEJaL6mktFnuuNEiLAcRmfUbmrbc3cDAHWXlTH6THecnDXwSCs7nuoi4Aoz9uw8g4910HdfE6AQOUaf6Y4H6/o/vlmGI5/rouv2Blquq6K8v4DRZ7qp2qHsFn33N7HzjzfLe+BhRYbFHTZG/6g7TizpuaeBkc8l5LLjyU62Paq0tdUqMqzaWsy+L52mYkvhZnl/toPBT22Wd+uNyrfpuK1us7w/0755zj7TTcdt0Tl7QzWjz3QjlUjMvrVGKCgz/NhmeXffFZ2zVylz1hZ1Vm17tJUdT3YmyaWbnnsUeddeEp2zHdE5+1ALO55KyEVv0RHyKRtl5bAyZ8sHFEdC/8c2y3vn0130f1yZ32V9iryrR0sUed/XxEiyvP+oi4FHFBkWNFsYfaabtTMuxn4+R8+HG86as9seU2RorYrO2ShBpuuWzTLcJG+bIsO2mxV90nZLjdJWgm0fa6Xvvha2P75Z3nEdcV1VXN4Ag59so3qwJJ7NJ5uOGPhEQt4L+x1EIhGKOxSHQyYdsUmGDzRTPVRCeW9uHbH1QUV3FnfZGP2THgYfaqPtfTVZdYS9yczoM900XqmQhUY+383WB5P0dwYdAUp5wtFnumm5qprq7aXs+KPOrDpi9JnuuCGz5aNtSHYDkt0Ql2EmHbHtsTaGn1Dm99iv59CbdNl1xB8lze8/7kRv1nH6p3NUjxYz+vmueFCv/2PN7Hwq0XbnU530f0yZs+X9dkY/18ngo81INuj7SAM7n0rMjx1PtjPwYJMi73Yro5/rpPbCYip6CihuszGSpP+GP9PGwENKW1uNxMjTHTRdXYFGq6H7jloqthRy5HvTLB90sf1TzWx7RGkrFWsZeaqNlusVK6n9lkpGnmpDo9NhXC9m27Ztynv093Mef9iIfeNLL72UoqpSNHo9fR+uZOD+hJdv+yO1tL5P2dNqhu0MP1qLezHIkR8uUNxmZfDhBuUgr9Wy/bEGOm5W5lXlgI0dn2qksElxzgx+tI6KLXaKWhRv7/ZPNtF9u6I3y3pt7Hy8hdIexUHbfUcN2z/ZhKHQQOetVWx/tEnJpoRCQNj5RCuVg3aIhOl8fxXDj7fGxzv0yRa23FfPmV8ssrDfwc4n26kZVcbffnM1Oz6b0EODn2im76OKbWUsMaA361ifUIhNrddXsvPJxNoceKiZgYei5BEDjDzVQdM1FUgWPVKBnpHHO+JkgIGHmjcF7Eee6qDtRkWmDZeWMvLHHdSNlFI7XEL/A00MPZpou/PJdjpuVXRhzWgxI091YKtTZDbwYAujn0/olh1PtNF9hyKXysFCRp7qoKhN0Vm9d9cx/Jk2Gq+oYvsnmhn+bBs9H1L0ZkmPnZGnO+N2Tc8H6zbZVts/007VYDHV20sobLYw8nQnVcOKDDtvr92012//VBt9H20CwLPqBY0GW7U5Lu9kXTj0WCtbo/u3odDAyNOdNFxZwdpxN5YKIyNPJ9pue6SVbY+0JOT9dGd8T268qoKBj7WyLfpbWx9sZvDRxBzY+VQn7TcpMqy7uJSRpzuxVCofp/9jTWx/ODEHdjzZSccHFBlW7yxm5OlO7A2KDPs+0sj2z7Qz/twiR78zzfATHXTfpewn5VsLGXm6k5LoPttzdz3DSXv98OPt9Eb3k+JOKyNPd1IxqNg13XfVsePJzfLu+4gyD5dPrGMuNVK9U5F3x/tr2Jm092z/ZBv9H1PkbSlTZGgqUva0tps2y3vw0Va2PhiVt0XDyNOdcQJv5XAJkUiE5RNKiZ2Bh1vY9khChiNPd9Ia3ZMbLi9n5OnOOCls68ebGXpss7w7ooTn2guj8o7us30fbaLlykoOfm2CoCfCjic76LxdmYdVQ4q8Y6S2Lfc2brJPhz/ZQc+HFBuorK9AmbNblH2258P1m+bs8OPt9N7TQPN1lfTc2cDI011UDhYB0HVH7WZ5f7o9PmettUaGHm4hHIoQ9Cjl7JLlPfRYQt7G0uicvawMgIBXVkpRR7HtE60MPLx5zjZdqwSOm66uUOa3xUBZTyE9d9VvmrMjT3fSFp2zDZeVMfJ0J8bS6Jx9oIHRz3XQd7cyjmw6ou/+BrZ/SvndwhYLw59sia+TTDoiIcM2ej5cR8etNTRfXcnIUx1xu6bnrlqGH0+03f7pVrbcq3ybwiYLtTtL0Ft0YIDO22vY8UTiO27/ZCtb7lPWgqXKwM4n26m9oITx3y2yMeel/aZEwHbwkWb6H1DWgqFQz84n22m4XDknNV9bzuAjrRz8+hSe+SADDzYy8PHGuLx3PtFK87XK/tNwRSk7n2iNlwnov7+OoccaabxC+a3hTzfTep3StvaCInZ8phlLuSLvLffWKvsa0HRZCfUXFNN+o/LNq4bs7PhkA/Y6pW3vXVUMPlSnOKQ1GoY+0YB31c++r81T1mNh+NFaituUb9P1/jIGH0x61wdr6Hp/ORq9niuabsdms/HGG2+8KzfLzuO9A5/Pxze/+U3MZjMfufcTREwGLAUwdI2GcmXa0dQHg1cnnMR9l0LXCBx8AcZ2+xi8zUxVlx60Wur79QzenAiC9V4l0X25on/1emgaMtA2ovx3Tb/Etjts8eBv97UWeq5LEH223WGjbptETb9E04VGtt1hUwg6koGu6wrovTUR5B/4UDENI0rf8k6JbXcXg0bD8V86abnCzpb3J7W9u5TmS5W9sqRVYvC+MuzVyiAquy2EAmFm9ysk0a0fKqH1CsU2KWzUM/iRcoqaJIhEaL2igK13l4MetHoN1dtstF9bBChZnAbvr6C0Q1lvzZcVMHBf9MJKJEzfh8pov7qU1mvLMJXqGfxYNRVblPE3XlzI4EcTF1W23FVB1y3Kmq8ZsjL00VoaL1Xep+6Cwk3ruPfOCnpuj3qd9cq6rt1ZQM9t5QzcX8XggzVxkkP3B8rZclfiEs3gx6upv1D53coBK1vuqKRiiw200HVrGVs+lGi77YFqmi5T3rWsx8LggzVYKhQZynIYg0UbJ2Zs+2gNLVcrvpGSDjNDD9VSUKfMkfbrStn6kWpCPljY56L3A9W0X6foxYIGI0MP1VLcqgy45ZoSBj6aeNeBj1TTe3sVtSMF2Kr0DD1US1mPIsPmy4sZ/Fiibf/dVXTdqsjFVKRn6IFaKvuVOdBwcSFDH0+03fKhSno+oLTVm2DooVoqttg5/uNl7DXKmJLl3XtnQi5DD9Uq5JNwmJrtBQw9XI8+yvXovr2SLR+uTmpbR+Olim1V2W9j6OF6TCV61k678btDdNyU/G3qaL6yJC7voYfrsVUrer/jpnK23hc9J0UiDDxQS2v0EkZxq4mhh+spbFJk2HZdKQMfTYzfVKInECXZFtQp71bSodjMLVeXsO2BJBneW0Xnzco8tJQr8i7vVeTddGnRJnn3fbiSrtui8i5U2nqWA8y+uUHDRYUMPZgYw5a7KuNzNibvmmFlzdUOFijyjuqI3jsq6L2rIk6+GXywhrronK3aZmPwwRoMNi1b7qhmy52VZ83Z2Lop36LMWVOp8sOdN5dSM1yAc1oJyg18tJrmK5VvU9JhZvDBGuw1irzbry+l/15F3s7ZIEQiFNQr8i1sMjH4YE38bNl6bQlbP6J8c41Gw9b7qum4sZSKLTaqttoYeqiW0k5F3s1Xpsj7niq6bonKsEyR4eD9ddRsL6Tp0qJNc7bvQ5V0vz8qQ1tUhoPK/B54oHrTOTqTjgCo2a7IsKLXQt1IEX0frmDLHYko1uBHK6m/QLHDKvstDD5QGS+F0nVdCZYKA1pTdN3fV0HTxUrbsk4Tg/eVYSlX5N3xvgL671Tm85mX19EZtbRcprQtaZEYvKcUe5Viz7Zdaaf/Awlydv8HCjDZdczs9VNQo2fbhwopblR+t+ViC1tvt8cDdX232mm/WpGDrRQGbzPTfaWE3gRN2w1suyURkO57n4nOy41EtBpMdtj2AQuVLWAvhapWHduvT9jXWy7T0n2x8t56PQxer6OmVw8GPbVbdNRtMXD4NVidhy0XKP8Xw/aroS56BKhpVf5bW2xEkkoZHhoF4IILkjqcxx8kHnroIQKBABdccDH2qiKCFi091T6G6hMkhJ1NHlpKlYhwqTXEBS0ewmHYPWXEbgkx0OUnotUQ0WoY7PbRUqforyKbzI5eHwVWJZ7R1xqgpS5EQXQv6hsI0tym6H2rTWZwOEhRsdK2oSnEwGAQnU6msSnElv4gbR1KW6lIw8CFEUoqImjCEeqaIvRfmHinriFo7YelaViega0XQVl0y6tuhK2XJUpTtw9D+/bof+vAbNPgWFCC5OWNsPVybZx81DakoX0kGkcLh+m/SkdVuxa9pMFcAL1XGuIkopbtOjouTJCqtlxpoKZH+aHiKg1bbzTSOGSktEFH07BE5xUJ1mfvtSZq+xU9X1Clo+9GM5ZSZYy911sZujNB3Oy5zkrddsWOsZbr6LvFhr1SeU7doJGe662Utxvpu6mA7httNI4oAzQX6ei7rYDCWqVtzVYjvTcnSJqd19io326mvN2s+OY/UERJi/Kcqj4jW25NtG2/ykrLJcoe7HeG0Og0GG06iESo6JLou9UeJyi1XWam7dIkfXeLjYouA97VMAaTlr5bbMSqDbZeYqb9CkucHLLlRitVPYpcShp19N1op+dqRRbNoyY6rkzY7b03WKnpV36oqFZH301WzEXK35p2muhKattznYW66EUHe5XS1lqqyKV+u5Huay2sjIWYfstP97UWGqLytpRq6bvJGt8jageM9Fyf+N2uqy007VS+q6lQyeBUFJN3n8SWGxLfseMKMy0XKG0XT/mxlGopaVLaVnYb6Lsp0bb9MjOtFysy1OmU37WUKvOyvCPaVpckw2R532SlokuRYVGjHoiwEa2y03KBiY7LE2233GChujcq7wZFLrHYUvNOI51XJtr2XmehNirvgprN8m4cNtK43cL4635kL/S8z0Ldtqi8K5S2tvLonN1mpOd9CRl2X5mQt7lYGX9BTN79Er1JZ7XOK8007TRS0qyj60ob/bdaKa5X2lb3GthyQ6JtXN6RCLpoGW8AOaCUs9sk70sT8sagoe8WG+UdBqVknieMZNHEdUR8zsbkfaudyh5FLiUtBvputSOZoarHRMvFFjquSrTdcrON6n7lXYsadPTdascYNTmaRs0M3FVA59XKWuq9wUptVIYFNcq6t0TnbMOwie73KeOXbDB4p53O6He1lunou9ESJyDVDRjouTbxHbuuMtM4LNG0w0zDoETfDWYKa5S2NVv0bLk6cSGj81KJlmFFx0kWaBzQY7Jp0ElQ3aWj7xpD3AbquEhP61C0PJoEW6/UUt4AK9OwOivT3J/gJ7Tv0NA+GImTlbZeBlV1UZ1cE2ZgFMaPg8+rpX1LmK6tCVLT1tEwtXUymnCE0nKZbTtltCXKb3e0BBjo9VFToewjg1v8NNQq5KOSIpnhfj8Ws7L/tDcF6O9W9rzWigA9NQHaKpQ9sdgSYrTVQ4Ep2rbSz/YmD7JRg2zUMNjuxe2DN2eNFEgyFzW4KTErz2wr9TNSl7j8OVzjoafci79AR9uld1NYVMS3v/1t5ufFS5Vng/j1oCxobFScjH3dffiWFQH61gP4HAG8q8p/O+f8aKXER/Uu+wn5QxCA9Qk/PkcAz6IiYOe8F8meGKJn2U/Iowg36ArgXQ2weHg92taHqTQxCd0LPqU2NBAIgM8RwLXgo+nySuSgjM8RgCjJ0TPv25TxyecI4IxmuXEv+QjLEVquruDYt6dxz/nRmRNtvWsBnAsKs9W96MPnCOCP1utzz/uQ3Ql2o3clgDN6i9u7orxr0KkMwjXnJSJHCKwGeOOvj9H/8WZc0baeaFvvaqJtMr3Mt+LH6/CzfGSDoFORt2clKsM5L7ok57t3yY/PqXyLhf3r2GutOMaUYJ5zwYdUlCTDRR9hX3QRBZTfdS94WdgbQW/XYS1LGCeeeV+CgBiT97wyfte8F3udmcM/mIKA0lZrSJoDjgDOhWjbqAyDLmVhrJ/2KA7zWNvVAO55Rd7eRUUuAXcoLhezT6b/gWac0x68qwl5+1aU8fsc/mhbn1IaMjb+ZT8aHUy/voqxQLdZ3rPezeNd8sX/1nZTLWE5Ep+z7jkfkjXB7vUs+gi4lDkQ8CpyCclhqnYUszHvxViScEi6F32EA8qgAq5AdM4mZFi2pYCeexo48o3JuAxiSJa3e9GLz2Eh4AoQWA2wftq1ec2tJeTtico7lsbQPedHsoUoaLBG5e2PP8sTk/eG8u7u+cR4ATxLfpyTihLzLsfkHZuzm8frXfbjWvAhlUi031hLKCDjW1HaOue8aI3JOsKHd035W8AdwucIEA4rMnTOeeNEltgYEzpCaRubA353EI1OQ+2Fpcy8shLVEVF5B1Jl6MNea4YATO9aprjFSihpLSf/bmzdE4jKZdaHvlDHwCOtTL24mFtHxMYfUMbvHI/KMIOOiMtl1Y9rzhufs23X12TVEe5FZQxBZwDfmqJ35/euUNpZmFFH+DcUXRnr65x1Y0la95l0BIBrwYulysjYz+dwL3gpbbfn1BGBJJ3sWwlw8ofKLcBsOsIz54vriIU3HVQPlmbWEfM+zL6zdXJxl43akTJlzkbnmmvet4lV7V0NxHWybz1AwB3EVCRRd2EFrjkvWn3SvrDsj3+LgDOo6OTlAGvH3RQ2WbCUJda9Z9kXH1/AG94s73kvxhKJ9dPKf/udAQLRuRNwh/E5grgX/PFvYa1IfJud7ZcwMzPDxMQE8/PzVFWJZbM6j98PTE5OcuzYMXQ6HQNtOzh9Qilk71oMoJM22yruaKkPz0oAnzNE0B8kuAiuxSCSNbEuPEsB3AvK/PU5gnhWAwTdyjpfPu7GXiPhGIvuC8uKbaW0DSi/HdX77gUfGg3UDhVS3GLBueDDGZ2vAWcQz0oAb7TEkmvej96UUFruZR+2KjP2BhO+dRnPsh/vcnT/XvBtut3qmvMR8ivjD/uCeJb9rBx3xcdgKU/aZxd8m/SoZ1nZ45YObLA+6aF6KHGVxT3nQ5N0gcG95I/rANeSH8+in4WDqyzsdmIqMmyyVTzRPQ4UPeNZ9hOM7k3OOc8mm8Kz5Mc5r7ybb1UZf2AjZjP7iMgwt1e5WicV6OL7qX9d+V3fWkyGPjS6pN9d8LJ8JMDMK0sYLHpFhisJG8hgSZLhvBd/VKduTAVwz3sTbRd8mEoTMnTOewlHU8QGPcG4/dT3kUZWTqzjWU7aI+a8idvbwai8Y/vhgg/Pqp+FA2vKf8/70BoSc9az7McZsz9iMvQpBBpLmQnHVCJFtHfZh3vOv0neAXdUhrNeZL9MxWAhrlkvnkVfXIa+NWX8cVtl1gdJl2nCcoSCegsYwL8ejM7DYFyGyd/RPe/F61D+Nv3yCtZSE96VmL3kx5hkqzjnvQSjNkUwKhd0GqTodzQn7RGueS/hYFTewQieZT+eJX9chu4FH64z3ri8k2+ee5b98X3Ws+RTnhMM0vPBOsylEqunnJvaOmNtl5W2QW8kPoagTa/IcMaDZ8kfl6F3za+0jcl7zks4OTW9JoI1SniLyTtm07nmfJsSM7kXfLiX/CztU+aEvdq8aU/WJ6VPds9747ZKwBXGs+zHWm2k+8461qc8GIuT5e1Bjr5L2BtSZBjVJ8sH1tFuZdPvxs6PMbnEbAr3YvRd14Ps/uJpmi4pQ5O097uX/MocAlzRtmFvKPpt/EQisHbKnfg2mXTErI9QkfK/18c8BNwhHOPKfM+kI+JjiM7v2TdWIRKi4ZLqzToiabyeBR+eqK0SdCn2xMQLSvlP15wfgzmh01wLPvxO5V2C3ug8XPFDEFaPOtEk7gDgmvchR88HQU8Iz3IgLm9lHio6ov2mSrQ62IhlRg0qe4pnKbrul/x4VgIEg7Hf9VPaYaWs28bEb1fwrCTsJe+qsv8E/bH16UcqUObL8R8v0nxVaWJfW1P2NX9UhTgX/Mj+xHnGuxJgY1Zpq9Up2ZQTdntgUyI791IA77LSNuzTMLJzlF//5jkuv/xyDh48yHn8YWLHjh0AdHcO4HcruiYYAPd6BF90XrnXwWhO6BKXg/j+4vaY8KyF8W4ok8njCOFeS6xN12o4Ps9CwPpcmJVZZW573eBZTSx613Jokx/LsyrjWQ9Tv9Wo+ChW5Xj2G+eqjF6frN9CeFaVP/qcYcJymKpeM+Mve3AthTB6tZvbrkTPK84wnuUgwZh+WwoSlok/x70YimfP8TuVvv5oGS73knIeJwQHv71M65WFeKM6KuSL4FkK4t9I/K7emLzPBlkb97I+7iPkD+FZDOB1RNsuBzAWJNk1C35CAeVdHWM+KrpkHBNRO2E5gGfRsKltfF2HUH53NcDMmzIGuxZbmZFYkg7XfACdIVnvB+N7vW8thHPGz/gry4Q84FwIICXpUfdSAHdUX/gdwWhGOeXBqyc9mJIyS7oW/XGd5XcEcS8GCET3CPdSgEhEIcT41pTfiZ0HAy5ZaRvV1+7FzeN1LvjxrAVYOeqJ/92/Hor/rmRL1vsBAlFbpe19JUTCkbid41kO4ipO3Bh3zweQg8q7hELK74YCMiUd5qiuTrR1zQc2JSlwLwbido13TRlv4yWlnH52RTkfJPmxXAv+uAy96yHci4pPI7QKK8fdKeP341mKnWeibWN2zWIAORCmuFUJurgX/Lijbf1OpW3MLvYsBTfZVs4pH56oLRjwROUd3ZPdCwH0xqS1vBDA7wiBHrpuqSDkD+NLnrPJ55mFIMGonyLkD+FeVGRa0mHGvRTAUposQz/haPacmLxjvoegJ4jOoKWi18rifjfOeT/aqI6IRCLK/I6+q3dNWUeRUJjp19cpqDdt8u8pczYYl6FnMaD47qPjNfojdNxUysIBV/Q7Rv0fG7H5HYl+Yz/hpPOXY8KHaz4hb89iIG5juBcDm3Sae1HxoywecqI36Wm6rDje1rPkx2BOkXf0byGfIsOQP8ziMTe2CmmzvOcDhAIJReteDOBZU/qunXZT0GBO+t30OiJZhouHPQScYezVxsSa02ijOiIWGwnhWQzGbSTnYgC/U2b6tei5dTEYl7ffFdmkZ11LIULR89f6RAh3R6KtL6aTPWEIR/CshokkGYfuZRn3ahBLqYa6IROetRD+qI/avRJK+LEiEVxrYXzO6LnDD94NGWuJjooWPe61MJI5af9ZlQlE11RQ1uBZj+B1gXMFpo7KFJQmrd21cLwkUAjwrEfwKHcs8Lo1uDY0uJXQDj6vEoCN910Hb/TI4nUp/x2rRtXXcTXTs+McOXKEU6dO0daWIOOfxx8OvF4vX/3qV9HpdHQMXsWY4vJiw6MlYEjolnWvDndAmXf+oAa3D4KyjF+WWDMbCHkS+m3DqcXlibYNwLpLEz9zLKwZCIaCbLiVPcXh0+F3Red6AJwbGvzR7Bgetwa9AUpKoaIqwuoKuF3KmgqGwOnUEIjqQo8LjI7EezkdUFIJZpsSL3I6wB89FnndsLGuhUhUN65FEnpIBudKBEc0ibXPBc7VSHyNuR2RTYmEnMthvM4w6/Pg2QhR0aRDDiba6pMSLLpWw3ii683vkXHOy6xMBdmYjaDVEbetAFwrMt716JnPK+NakgkFNECE1ckAhiT/nnNJxhu1X4NeGdeyTMCr/LfHIaPVaVifDaLTg96owe9Uflf2y7gWgwSi8XLfehjXYiLzh2spxNpkgJWxAIQV32bM5vQ55E1t3Ysh5Oh/ep3gmAzEdaHPqYwp3nYlvCkLoWtZJhKJ0DRixjETwLUsx+XtWpY32VqupYRc/C5Ynw+yOhG1E1ZlDO7E77qXZbwOOSrvsPK7fiio1WGv1rExG9r0ux5H7DyujDcY9YPGzgb2Kh1+l4xzWcbniNkUyu8Go/L2roXQJbEB5GCYolo9OqMyv13LMv7oWvGuy7iWk/20YYLRc/PquIytVI6fqX0b4U0lyNwrMnLUryJH5YQ2AuiUtstyvHybe1neVCTJtSzji84BvzOCYyaEP5ptzL0qozNsbut1RL+5O4xrKYQcUMhBtiodq+OhlLbReeiR420BPGsycgjslTr8bkW+MXkHvErbxJwNpRR1isSzcsl+ZV7G5b0ub7YNl2UCnjDrMzLTei+2cn2SvMOb5qFrKUQolhxHVvoa7RrqBo1sLIQ2t12RiYQ3z1lf9Ky5NhlEZ9DEM0S5V8KbfN2uxVA8O5PfmZDhoZ9uUNokYTClzO+oXPyuzWN0r8podBHWZ+VE27WYvJV3i/nuPWty3JYNRH/HESW+BwORqI6InZXDaHWbz79+V5jFk8qZqLrbGD2zaPC6NBiWw0lt5Xg2IzkE6/NhFk4r7+fdCONaSXo3B4k5Kyt61Rct7LA6B1pd0tpdiyRcx6EwGxt6vDE95QHnujK9qxvC6PTKf8fgdIAn2jbghXWvNqFPXFrs1jBVFTKzixqcLg2e6F4ViO5VMRvI6dbij37HY3MSzaEALp+yuP0hDesebbyyrsu3OU+Rw6djQ9YCOrQEcPiUPkpbDfqkCe7w6/AGlb+F0bHjoit47qc/4Oabb+aNN97gnYIm8g4Ve37ttdfi7PWrDR9U3W/LvfXYa8zs+eokgdUAETXFLCWQbAYCqylprNSUv5BAskkEVtWnYRt+vB05FOatfzx99h8ziK//gWZMxRJv/M1x1c9BgtqRUmZeXFHf5w8YjVdVYCmROPqdaaF+O5/uwrvq58BXxUpZ5IPBT7XhmfNx7Hvqx9j/QDO2ajOv/g+xMnEDn2hlY8LD2M/nVPepHi2hsM7Cse+KyfCCP+lhY9LNoX+fUN2ncriIkhY7R789pf5BEgw90sbsm6vMvaYmv6mCbY+2YiqSeO1/qi/fJtlg4OFOpl9dZva1d3eNSSUSQ4+0sbB3NZ5JTQ0qh4qo6Cvi4NfG373B/R7BVithLjWxdGBDdZ+O2+oo6bSx6y+Onf3HDGlby/rstN9Yy9iv5ljYs562TeI3Ehu1qVzCt5R7L0lX9tRSJeFRUXI0VrZr20MNSDY9u/76VM4+Mcw3Hubgyf1YrVZcLrGaz+fx+4Hi4mIcDgfV+lb6rSpLzBhg+MFavKtBDn1rEYCIihTp5lJD3MkKxEsjqDEjjcUG/GvJfaN9MthtlYOFNF1ewZHvTuGcVJni2AA7PtnG/H4Hk7/NncUidoAr6bHhnvfjT7Up34tQWebt7aDnw/XM7Vll7bj6MntN11ZStbWYXX93DN5lMdaMllAzVMLuf1SvC0HJmOma8QrZNVXDxVRuK2L/l8XsyY7balg+7mT1iPoSLD1311NQb02/d2VB+83VrJ1xs3xQ/T7ZdHUFtmozh76uXhagZJpdOb7BiR+oL8PScUsNpjKJA/86LvSsfNB3fyOmIok3v3BSqF/HLTU4573Mvb72Lo0sCYIlyv87UL2zOK0sspVw3/6pVjamPJz4rwxnlDTvPfBgI5FwhP3/mqV0Y/SZsQCxoQCCaqe6Ieq9jO5VhkKtEsBToaM0FguWUtjy/nJWTnk4/Qv1Z5SXQ9/G7XZz7NgxOjs7c3c4j98rzM/PU12tXHO/ZuBPVfdr7oOyOg0HXtXgc4PWqcK20SsZJ0KxplF7SxNQt9HqTUl9Y3ZXFnuv+4YCNFoNR35y9lkoEg6nLSnUdLGNghqJA9/OskZitkuSvVjWaWL5uAoZ5LAXVUGwzNu5RlmPBWu5gYkXFLmrdc9uva8anyPI8R+/+5nbum4tx7cWZPwFh+o+zZcXU9Zl5c0vqvBDJZVb67ipHNdigNnXc5zJk1DcaqKgzszEC2L7+PZH61kf93Ly5+plWNhkorjZwvjvVnOWk0lGz+3lLB52s3xUfVnajhtLKag1nVW+LRf6765ibt8GS4c3Pyu1hNrbhh6GHqhhbp+T2TfU27wFDUbKu62c/qW6vfUdClnkjbzkpk0QlXLBYANLqcT6RGBzX23mch81A2Yqt1jY+62Vs8owanRa0tVzspRq6LymgInX3ayOZdgLJMV2iiRdfDFYIKhi2kaiZdg0SYQ0oxX8Ko6UwZJohtCeALYi2P2r3H1iWJNfZff+56iqqmJuTr2v/Dx+f3DppZfy4osvUt11BY3916nsJXNBi58Nn4YDi8r8Mjpyxxslg4xiZm1eQwZXbn+ZJMkEAol+mqj9ofWn72svgtY+OLkf3OnON3IETZoY6ZZLtCxNhVnI5qKIbqux/tZiCPqIX1DPimiJNk1IRXz2rOeGN/1G3v3fZdQNmXBMBXEtRt8xmlE3G0pa9NRtNXP4Z85NRMp05bXeLgqqdVT1GDn9vAc1YfIY+m624lqUObNLfZk4e5WOinaJ0696EalzVtUj4V6WcS6q71Tbb6S8zcC+H4jFJyq7DXjWwjjn5ZzfKYbSFh0F5XrOvC5WanfrbVZWzgSZ3qeeN1DZZcBaqmPsFbHyfDmRxv5p2G7EVq7jyLMqNuZwJP4bVb1GAi6Z1QmV5VEjEdWyTot8+8ZtIHG/Wdx2UdG3qAocyeFavaK7I1n6dl2gxbMeZvJwmmeb9ET0Z/dt3xJGp4Nj+zP/rmxW4n7h6CVYnS5Ggsxd9s1fqLTRRFWnTqeQ/2QVfb2lWiRkLi31MuvUc3JFfXnTYz/7f9lYd3Dq1ClaW1tzd1CBdyyT0mWXXQZAjbY9e8MUnPjZAg0XFguRhnpur6Ow0cqefzkj1M9UIeFbDAj1ATI7u7MclrxrgU23VdWg5apqqodKCHllFt50qO43/NkOPEt+Dn9DIPCyo5jKrcUc/c8xAgJ7Q9/9TbgXfELEi/L+Alqvr+X0z2eEyAYlnXaMNrGaowCv/5VYgAcUYoNGA8d/IEbmeev/iAXJAE78dIaiJsF65cC+L6YhyeVAZX8x5lL1SubtoLK/GGuVYD3aAOz5B3EZnn52Dskmpr4CLsRIg1GU9tipv7iCff92Op59LeezVgO89j/FSGgAJa02bLUWJJuWgEu9cT706TbCoQh7/1n9HLHVSrTdVM/YL+fYOKPeWdZyXRXWSpMQkaqwzUrX++sZ/808C3scqvv13t1CJIKQ3nAverHVmoRkuHzQyfJBcb0RIyhZqyTcKghHMWx7pBmjXc+uv1YfSJ16dQXJKjbnq6f7OMh+3G43r7/+Ojt37hTqfx7vbRw/fhyHw4FGo6G/7FrwqjwQBWHq9fV49jq16PtwDe6lAIe/pd75Zy4z4F0ObiYoqcDCW+ssvKU+OAFgsBjwbYTit7HVovWaKiLhCLv/Qb3+rNpeRP2FZRz+9gSeefXv1vPhOtYnvMy8op4oW9Rmof6CMo79aI6gQ/27bX2wmUg4IkQOsZQZKGiw4lkJCJGUxn+5wPgvF1S3B6VUXOctNUy9tMS6wB40+9oqswKk5hhO/HgG/7rYnJ9/c435N8WJK6WdBWj1GiGSUr4o6ynEYNMLkZTGn1vM61mnfznH2mn13wrgxI/UE5qS0X5TNUGfLDTWg18TI13FUNxuRyo0CJGUyrcW0nJ1FUe+MxXPIqoGjVeWYyo2cPx76uViKDTQeXMVs2+usnpM/brsuasWY7HE3i+pJ9lV7yym+YoKtDoNM69uXmeRcCQjUcm3HsS3nkUXRsJnBer2fUX8e8UISrG9RS0s5Qb6PlTN0jEXY79Spz88K7BwyMXsbofQGEvCzbg5xIUXXni+7NsfIEZGRgCor1dJDI9i6iQE/BF8bvX+ofoePZWtOg49549naFIDo0252RoS9JMf/Vn6fSSSJWAUcMrxTGMZOp/1T+U9ZpouLAQc2YlKKeSi3g+U410PMfZr9bq6oF6iqs/G2G9XCAlsX81XFOPfCDK7W73gLRV6Om8sZ/yFNdZOqxd+SasZa7nExAvrQmSM/V8XD8bXDBegN2mYfEnMxj72X0vCz5p6c431GTVEtM1z5MRPxJ9V2mGlqNkiTFLKB6UdFkrbbQpJKRxWHUQ58j3x95rctY7Rqn7fj+HAN8XLL9iq9NRsLxRbKyHY82VxO89ebaSoyYyxUB/P5JUJyWui67ZytFo48n31stTboPXyMmbf2sA5IxBw7LdirzFx6hcrRCIRVUQlU4mezhvLmN61zsqp6NxPY/+kovumcjR6Dfv/PcXmDcsZiUoeRwjfekgho6ZTU7J8FlHJsxJh73+KrX1IEJRie4tadF6gxVqk4a2fqw9gz5wCk01sfPaSyzEYnmd+fp433ngjnu3wPP4wsL6+zosvvojRaKTi8htgRa2fXMeJBYmALBKXk+lvD+L2ajh6JneANwaFnMQmgpIaOB2w76VMQ0lvD+h04HVGstuFaUTU0KdHo4Ujz+cgKCSRi+wVGuoHjIzt8uFT42qI7ud1AxKetVBmMmQaGAugusfI7F6vOiJVFC0XmdHoNJx+Qb2Rp5OgpFki5I8oJKWYfs9BylgdC7E6luLfyUVQ0kHTdhMLJ/x419TbeBtzMhtzYn4XgNOveOPZ+tTCOS/HM2qLoKJTYs0SFCIp5YvKDiPrc0GFpKSSPLMyJrMyJj62sVd9eLKdbdJg4ViQfG5rVnQZiMgRlk6qXyuTu1X6hGPnKI0GIhFKmw1417TqSEpR28taqqXpQgvjr3pxL6uXSUmLAUuRjum96v3XOp1CHlydDinfWaWNXdtvwFKi4+TzSWeOHH3t5dA8bGTqQJDlic3rRRMOZyQq+d0RfFmWpSYUPouodPIQbCp1owKyrOwlkl4mEAI1ZCUASScz3OJndk3HmWV1fQLoOL1qYNEttn8V77yZjV99neuuu44TJ04I9c2Ed4Sk9OKLLxKI1unZYtyp6kZ+DIG1EKd+mjhkaHS6nNmUpl9bAZmzyUYabcZbVq03VlPZX8TR702xdkK9ZV05VHh2Zg0VzoNYmSIRjP18jqA3JERQAiU1n+wTU6DFzTYs5UYhghKApcK0qbyFWsh+mfVpMU/Z3n86DVLudu8EChrNWW8Ip4NkA4NNjJwA4FsMML8o1gegrK+AjTMbQt9s37+IE5vyxYF/zS9zVUGzhXBIxjWlfvMSIdVsggS2cgmXgIPCXmvBXGaksMHK+ilxJ5EIRLOGxRDYCCGHxAzRUBDMpUZK2uxC8rTXWzAViS3M9Uk3ETmyqeygGoz9ag6PoLE888pKegKACiPWWiWhNWlxjmfRVbE9JupsGn68Da1ew+v/Oz3hKJ1emd+7hrkoNwEzlkUJYPlQfnOvvrCVqfXTfPzjHz9feuQPDDEHXL2pT7jv/J7NG4lGr89pu80f3FDKSaQEEzQaTcagSu8Hawl5w+yLZcpIvc2exm6z1RnxO8MEswW80yC4HswrW8vhb00I6zSAcDAsRFACsFWZIAwiFmJhoxVrlUmpC5bFzk1FYD0YT5+rFp7loHAmn3xhrzZiqzFjLjEKkZQslQY8q0FhH0A+hCFrrRGNRotrWmwfeu0cyTDfZxksYG+wsXpM7BCwKEgcjCGfb1bYYouXuHi38frfHxeeT+4FLwFXCK3ISVqjpbDBsqmUuRoEPUFsVWaKmq1CJKWQL4zOJ2Ybzr2+hkYLs6+lD/RmIiod+nqWbEiJzsr/TwnWlfbYWDmSZi4mPSe2x2g0Gkq6LLRfX8n0q2vM7HKkf5YhycbSavGsyKyc8jC/L7ce0Fgs8f898ZoXMALqzyg9hZfgsy3gcrl46aWXuPjii1X3PY/3Nqanp5mYmAA0tLVdC2vq94ZgSMv0WOK/w3ZTzmxKS2cUHRMrvRNDRDJkzKZU0amnfpuZky962JiVz7a79Pq02ZQK6/WsT23+97PISVrNWb83u88L+zLIIYO9snTESySMEEEJjZZQILypNKMa2GuM2KqNhARdL/ZaI0a7ToikpNUrpC3vitjedeInK6A/N9liihqN6M06MZKSHkw2fbxMmVqEXLB6IscaSUOAK2g04VnwCZHsTj27ApybbPRjv1rdTHZVGUSxlOsJR8C3rF6OvuWQUPs40nyzXCQbU5EBe60RS5mRjUmxCx+imHl9g5nX1ZPrY/BvyOIJKUOKHrDPGYVISvZqI/aaxGVPNUQl32qIcCiilLRMRg6i0vhLDgLuDOs/A1HJMR7EMX72Ok4u/R1Pv5FCVtJbwGACbypnW0rYTpooUSGWlaD3aiMGk4Z9P0m/MGNZlJQ+yvvPj4WxFqZ/rWTEsigBOAISrIJO7e3QKJqaruTUqV/ysY997LzP6w8MN9xwAwAlg9cI9130b/a5+ot0ObMpTc/r8QXPXutBmz5jNqXOnjCyrOFIdOppUmyYsFF/VjYloxkislK+ZxNSyEkRnW5TNiVZhtN7s9gLGcyk02+GkCzp/5b48ZTOei1ykHi5o6xI2s8LKvXoDBr1JKVwGGuRgYJqA1N7xfwuPmc4UbJSJeQAHPhedA9K1esi2WNUxBBNNiio1rMxH4yXvVIDyQIBP0KZjQA8qkl8Sc+yKa/sF3SXHfjhuavWcOBHKc9S8Z10OjAWafCsiNnXzoX8SFeSWZlbIpmvimr0RGTSk5TezrngrHOUhsPPuoTnk88lE3CFhYdir9BjLdFBxBd/fi7IsrJW/J6IQlICVTZ2KBBB9kc2ZYDM1de5BGfeCuCYSf9imYhKZ/anbx8xJfx7mmhsNkFW0gJh7EXgdJz9m7EsSgDaaOnssEGLxSzT1xliYkbHfAZufiyLEkBEC/6IjplVHQvO3P5Gb1JJ3rGIESwgOdV/6KLWrfiqqpmcnGTXrl3xi1xvB+9IuTej0UggEKBe20m3cRhQUTpEo2XHEy2sHHNx+uebbwyoKvmWCRmcIbZaiYZLKznyH+pLURV32Oi5s4GFgw5OxW4CqxBXy3VVOOe8LO3Lz5l/Hvmj7/4mrFVmdv2F+jJg+aLlhmqqB0s49J/jQuSVLfc2EvLKQiXiijts9NzVyNzuFaEsVvkin3Jv+WL08934nUHeEijdUthmpeXaak7+eEqI3LTjyU7Qanjjr9/9AOKWexux11l47X+9+3PxPDZDsmlpvaGWoz+cUrJfqTxkjH6+C/9GkLf+SSW5T6Ol8YoywuEIU8+nd4yKkh839dVvNiwkG2x9oInVU25O/SR71pJkB9Vb1l+wurrK8ePHaWtry3s85/HewfHjx+nq6kKj0XBN5ScSf8iRTan5qmKKGs3s/frsWUH5nHZblpv0mUzJ2guKkP1h5vdsZC+3kWS7DTzYjGTX8cbfqt8TDBZovKKKid/Oq0pHn3jse7sESEacg7JvIhh5upPVk05O/DC/rDkiGP5sB7Jf5i2BzIGFzRYar6jg1M9mVZXZjGHbIy0YrHre+Jt35mZINuRb7i0fNF9XSfW2EvZ9+RQegWw07TdXo9FrhMq9lfTY6bq1jonnF5l59d0PIO58qpO1006hMZ4T/B6UeRNFqn1T1mfHWCCpyxQXlUfbDRWU9dg58O+Tm0mfWWwnjUZD+80VTLy0RiBTlj5DFiJ4jjICySQlUMpZlTQbeevrK+DPceYwmwBYKz3MG4dfoKioiLW1c1BG8DzOCRobG5mcnKSx8XJaWq4GwJCDqBTRaxm4FFbmYCplK8lZ8i2L3ykTSUlvg9peIxOv+7PbXUk2n6kIem8uZvG4n6nXFSMqW/ak2O9W9pnxO0M4xlMNyix9c/nSVNqKeeE9bPOJumSbLy+mpNXMnq+++3tdZb+VxotKOP6zJdYn1DOHmi8vJixHmHjRkb5BmjlmKtLTf08NM7vXmdn17vtS8yn3lhE5gijbHqgh4Apx+DvqM0SaSvQ0XVLM1KtruBfVk5W2fKgSvVHLvq8p2bbe8TJvSWi8tIjSdgtvvQtz8b+7zFs6qJJlNv9PLnswW98UspJegppBK7P73IR8KQSlVCQRlbbdVYjPKXP050lBXymz3RTRaSlr1qLTa1nIkO0hmaSUCk2GjDAxJJOUFIQYHI6wuqJh6kB2vR8qTDz36NF/YGFhgaNHj54vt/sHgvX1dYqKijCZTHR+9H/E/92cg4hRUxKkxh5iz4zxrJI3akq+ZUImklJJqQxaWF3SnUVQSkYyUam1H2wFsP/lpAZZ1opGlkEH1c2weCYNESKLSNKVjNuELKXZVJV8y2Yz5ir7do7Ku6VFJn2e4d+33GRjbSrIzD7/u1LiLRnd11gIy3D8N+qdm5IN6vrNzB724hMwoVouMmMp0nLop+/upXzIv9xbRmTZk0uadTQOmjn6nEtdJrAoKrsM6CUNMwcEKjcVQPfVNqb2+lgWyCCWETnsn94brKzPhJjel8E3kUkPqbGrsrV5N8u/ZbV/cvvSziIpifTXZ84ilEpWshUrpWxXoiH9ZILSWX2jRKXKujD1LXB4D3jdid9LJiilImyI0FAbZn5JmzFLXzJJKRWaHKo1maQE0GAK0GAJ8vKqCcmZXV7+QuVb6WYOsfcnX6O1tZWTJ9VXismEt+0xnZycjGdRihGUckKjRSqRkH0RvGtitzQGH2uh47Zq0WHimgkIEZQA1k64mNu9wuRvoqmUVR6SKrYW03hphdCz6i8vZ8eTnUglYrf5ay8sxVRxjtIN5Ym6y8qQbGJTrfaSUkY/301hm1hZtI1pD56ld7gGaAYsHlhl8ZBDOLuOudyIuVKsBJt71sX0q0vM7hErcbLl3kYGP3VuSAkt11Wx46ku4X6TLy5y5tdixCvJpsdUYMBaIVZebmbXMjOviqfazgfr0x7ceczFwU+2MfRpsbKZAOUDhRQ057oa8Q4iD7WTj77qvaeRwU+KzeHCNjvF7XYaLxHTw7NvrHLiRwLZrCJhJn6zmJGglA22Oontn26lrFd9PuuAC+RAhJBPzu6ESoF2xUw4HGZ4WOUefR7vecQyM9Sbtgj1k30yIZ8slDWkrMfKwAO1mMvEy6/OvOpg/s11ocDQyZ/NMCVQDg2gemcZZT12zBViOnDg4WY6bhGzKS1lBiq2qbgWmgpx8eUNe4OF4k7xsrKDj7bS99EmsU4GcM562ZgUTxGdD6ZfXWJ6l1gwyVxixFJqRCeJZbAZ/90CE78TK41msMD2z7RTe0GpUL98se0TrXTcViPUZ+HNVSaeX8QjmK3MUmUStrtWTzqZ27vK2gnxG/P5wDXnxTkjNheLO63sfKqTsi12oX6GQgNVw8VCfc41LGUGKgfF9JWlwsD2T7bm1HOpJM+GC8uo3l6k7iFRssHUa2tMvboqlJUuEolw4kcLmQlKWdB6TTFb7hbT+X6nTMgXxmAEjOrOb8UrvQA4HI7zJd/+QOByuZicnAQ0cYJSLkT0WvR6CPrBL3gk7LrEQMOAeNLzkAsmXvMJ2V0+B0zt9jB3WAVBKQlVW8zUDaacY3IQiUpajPTdWYapKI1TNcuYSzpMGAvfkSTw7xrKuszoBY/iRS0mBj9WTUGdmG/IueBnY+7dzXYTw/qEn5m31tWVbkuCpdyAtSKD8ZthjvlcIcZfWGVFIGsgQNPlJfR+qEqoT76o6LOx9f6as2sS5Fg3Ey+vMfWqGPFKL4G1XMJULHaImN2zwfQb5+bCrGvOj3PWL1yjofOWMrbcJearASioM2KtOIe6IOVROYlTWg0lbVn0VQYd2XhRAT3vz3F2CG8mC5hK9FT0mKnoUmGbJ5EUpvZ6OPOa+gCxRg6zciqUkaCUDSYL9F6upUhoeeoJBiEQAtmm3ndotQ4RiUS45hrxjDvn8d7EXXfdBUDxwJWq+4T1GkJhCMiaswhK2WCzyPS1+zFJ4iSm1RUdawvarASlVEydhKnkO3k5yHwAJRVQ1aLFXJDyhxxmW+uwjtqeDLLIQCLSm6CwCiJZgvfKs1P6i1QMepsEJWMBWMvFShQBtF5moeWSLAZbBj2/MR/CvRp61wlKALOH/cwdE7PzjBYd1lItulzfLAVzh7xM7hWPXXVdY6Gk+dzsx60Xm6ntT2MrZ9mT1+dlxt/wEhTkXlmLdVhLxWTo24DpAz42BAjlbwcbCyE8axmelUEPmQphyy12CmrF3k0nQVF99Du/HfL428oMlV1X6KxaCquyxMjS9NdJ0HmJRFFt9vWsSelb3a6hpl1dPC6WVWl5DiZOgFdgLmqDGqbHdcJlRAHqiwL01oqtaW9Yg0/WIgEBuzodJ9duQWMwcerUKZaW3n6s/W1rk4GBAQDKNHWb/j1t6ZCkWwOB1QB7/jl9eahsJd90Bi16Y5YPlKYURs/d9egMWg5+TTwrzNgvFoQX0q6/PYpVkGxkMOlAqzm7hF0ONFxWSXlfEfu+pP5GecsN1VQOFHPom2dwjqt35A8/0QERePPv1N8ol2xaGi6qoKDWwpFvqigFEEVgI0TAHcI7L7abTPxaLJgESpairg/UM/78AnOvqScBuab8nJwSL+v35t+K38gPuGDiN+LvFo5E4BxdQIrIkbxuKKq6cZ2CpX3reWUqy+dZoMz9oEcWWmdTv1ti6nfiStq3FoA8bN72G2pxzXuFyu7VX15O/QXlHBTUBUOfbkdn1AllpLLVSjRdUUVBrVm8rJ2gPJb2reNzBJR3EmB657PGACqHCmi4qII3/35z5pdsWZRciwG0Bg2WCiMcPttJlJpFKYa3vpTYx2JEpUjKwTKVwDRgupSX+D6yLLO6ukpJSUn2FzqP9zSCwWDcAOwuTCkjYzZlzaY0+fIGvJyeLJDWbguHMRXr0Rm1eLNkXDmr5JsBtt3fwMSLy6weVbGPJ9lu7tkA7lkxW2jyd8usHN8Q7pfPzeL6y8opabOxNuYRKkk3/FgbAWeI/QIl6Yo7rHTdVsvYcwssJJfaitnTGRzdTVeUY600s+svxbLyeJf9hLyCjrkgHP6Gevsuhv6PNaGTdOz9olhZ2rnXxbOSzO9ZY36PeL+14/ncJlPK4Zyr29+RcESxvwTgWQ7iWRa3h/Z/OY+yvkE482z2zH/pUL2zmIZLKjj49TE8C+rXWT5z0bMcwLceICRYGq39ukoKm2zMv5llbqW5MT/0aAuRCLz1xbE0HdKjsMVC9x11TL20zMyr6s8q7bfWYi6WNuuPHPAsBtHowGDO7RCJEZU0Wg1HvzeNV4T4FgnjX/Ez80pKH5WO3+47qwm4Qpz+eYqtnSWLkt6kQ2/UJm7TpZYvtZztsJ7b52UuuZxVjKiUmlUpmkUphgpjC4v+Ma699lr27NmT/WXO4z2PWNCzqmrbpn8PFpvPyqaUSO+uJCw6vCv9b6Yt+RbdO/SSBp0h81pIV/KtfsiI0aLh1AsqznQpZd8Wj/hVk5NiZd/2f3cVYyw2rjLLkc6sQ6MDX2omgxw+hKaLCvGuhjj6Xyuqn1Xea6HhgiKO/3QR11wobbm6dOi9swKNDg79p9i5sOmyElZPexl7Tp2OjkQiyP4wXkcQj0MsELV8xMPyEYHUoShZinrvqGDiFYdQX996iJld4kTjjBmDss2zECweFL9dHwnn54fKB5FIhIicoXJiltISOUvfpYFrPsSer4j7G2PPEj3n9N5ZgRwIc+y/1JNrV054Wcnj3byrQYIZ/PrZbOiOG8pwzvk5/mP1YyzpMNN6RSnHf7rExrT6tdb9/nKMBfp4RqrU8Z0lX60GvRlarixh+bib8ecz2F4Zyr+pysAdIyppdbjmQxz6Lwe+1ZC6C2zRGMtyqjs6SxalZBRWRqjfauLQb/2QNPezZVHyeZT9zFigIbJ0dlals7MoKTi4LzGmGFFJ59p8zk/OogTQ0HAhc3O/Y2VlBYfDQVFRkZrXOo/3KGRZ5rnnngONloptV2z6m7dUe1Y2pXBSya95l8R8hq0kU8k3sxRB0kcIZnEnnV3yTaZ7S4TZSdhw5D43JZd9C3hh1YsqchIoZd9W52Rc62ECsS1c7dFVpyFtYChLlqPyRh1VHXoO/9pPwKs7O6NShr286woLQV+Y0y9F7VudNv1zkvobC6Dr2gImXvfgmFRP8qjsMlPcaGD/dwVsFI0G75oKwaUpJzb5pk+YoNS004Rk1XDit2L75PqMOFnOuShz8Cfi/iuvA7x5ZBiLyJxD2yuLbZCh9JvshbUp8fcaey2/xBdpS7blgL1KR+N2I6df8uCNmQwq/IhTuwUzKAFBF3jXZeSgRpFX6nMyPLeyy0hFl5GDsxuKGaGyJGL7FRY0Wjjx66QzR6a+0XUl2aDrahsz+32spGakiumMFDs7otNS32egoFLH/p9mKyW+2UaXA8p/6qTc9lOMqBTRapk4GCHgVWSVLYtSvG8oTDgES/Obn5Mti1IymmsCyBoNkzMp5UuzZFHS6yIYdBEiWhnQnZVVKTWLEsBSwMBSIPGMGFEptQRcLItSDNUj1zPz4ve57bbbePnll3k7eFskpUAgEE9hPmi6THW/sl4bJe1WTvyXuNP6zS+oKP+RQlSS7AZ0BrFMPpXbi2i4uIKj3xnHJXCQASAAboFyEgBjz87nVcbr2HcnCQXElO76GRe2apMQKQHAcUZ8swu4wpx+dhbXjJgTJV8SStPVlSwfWcMlUG88HI7gdwZxz4ttRC3XV6M1aBKlAN9FlPUVULOzlGPfmiDgUh9EOZJHsCZfnPnVAmd+Jb6m226uQW/Ucuy7gsSVPFDcZaNupIyD/zGOSJlz32qAoFvc4Ki9pBTXrE8o25YImS8ZZ347z8pxMafe2qkNilttRIJiOmTtlCs7WTQNXDMBzvx6ntk9YoHRw9/Ir+SgKEEphi33NqA369n3ZfXBQ51Bi86oobDVwvppRdfldDIF4I2/UV/OKhllPVZKOmxCe2hXRzd797/FZZddxoEDB/J67nm8N7Bjxw4AivRi2SBarilm+biLjQmx7BPTL60x/VJugkcyUamo3oLepBMup9b3kQZ8jiAnfzSXu3EKRAlKAPvyIF0c/9EsFVsKhQhKoOhN/4ZYn4A7yMa0h9XTYjbUiZ/MUlAnnllPmECKQp4wFxuFSUC+5QBaSUxHGywa2m6qZfq1VZyTYjLJBx231ODbCDIpQDgOeiLs/j/56fZ8sO9f1O9VMRhLDbS9r5rpV5dZP/Puy7HluioCriDTL6nf/z1L/ihpW2yOWKokilvtQqR0/0owLwLW+POLmErEzyqOcTdyUIwQtT7mwTntwTUrdlYZ+9VCXmUt3/x7MfIgkJXImg22OomOm6oZ+9USDgFdZ7Trzw4QZivzBkJBzc2/Cy0X2Vk+4WNjRt17bit+H3tC3+H48eMEg0EMOcZ2Hu9tvPbaawB0d9+uuo+tCEqrYCKPKp6Hnsvtf0olKpmsGgxWMZ+XrUpP44iVsZeceJYE9JJWA6EIfqfQ41g64mXpSIoPSoWOOvqTFeFjnXc5wMaUTyEoCWDtjBetoO8Q4OSzy/id6s7UMXt5Y9rPke+JX2qq7LeyPu3HtyrwblrwrAbxOcR0dWW/DYNVx/Rr70BmnhxEOFu1gerBQsZfdBB0qn+3iRfOXVnNpUNulg5l8e1kICrVDNow2PSZy9+9g7BW6KkcKGDqpTVCAmaDZyVIOCSe2aK0w4zfFcQ1q/6bTb6U33w6/esVXItic9g5F8Ax5SXgE/N5rY55MdrEfF4hL4z9ZpXV8VzlPDcTlSZeFVSmUagmKKWgYcSM2a7l+HNiPn6DSYu9GJxRtZWNoBTDvl/nly3FXhCirBzOnFYfturp2c7u3S9y/fXX8+qrr+b13PN4b+DJJ58kHA5T1D4o1K+x0M+aV8+GYPaJJYeeJUfuuZZMVDKbwShF0AoaKM09EAzAtKDLIKLTEfCIky5OvRklVib/Y44ybHOnZNzrMgFBDurqZAA5mKu07+ZnR2RYmwjiEbFpgJkDXtamBHyA0e80e0A8E6WpEIwFemHykHdDJhQQ1NE6qOs3snLGj9ch1jUfVHYbCAcjLJ0Sk79IKbq3i7GXc0zENOQXnaSUl1s67cd7DszE8jY9shxh9Yz6ORJwy3jWwsJJhiQL2Mp1rE6of5Ysw+nkiyzpiEppsHzSz8Z8aHOJSRVEJcdMhvmUpW/ABY6pIJ41sXU2czTI/AkVtmGKjX70ZXF9GtOJaghKyZCMYVq7YXocnA71OsFsiiDLqUSh7PvbmRWxDL0JyDRbQqz69azL6vbQst4LCB1/mb179yLLMjqdeOanGN5WubdYuRET6QMh8UwQGu0mA7x6qIiSDnvWckGaNC/VeGV5XuPc96Ux9ggGDMzFElq9Btei2Oa18+ku+u5rEupjqpAo7lBf8icZaydcwmSjlSNODnxV3Bl/8ocznPyh+E2ehT0OYdJW1Y5irFVi2agkG9SOlNFwcaVQv/VTbt76x1NsCAZqSjvtlHSk5tnMjdFnuum4rS53wyQUNFixVprRWgR5hRJ5leXKG3k8q6jZSkGDeFma0c9303N3g1CfkjY79loLNsFyewe/Np4Xiarx4koaLxNMYy0p81+09OPca6vCmdhcU34OfPWMEKkPYOznc5z4obg8Zl9bzRjAvAABAABJREFUESKHxSDZtJT3i601e5OZ0c910XiF2L6hlbTCgfPZ11bZ9ZfHWT8lfvOzoNlEWd/mEjOZsijFULOjhOKWxJrR6LRx51QmJ1XhIaVk3sGDB4XHeB7vLezbtw+AwcIb0zdIyeYAgAFK2yxU5yjfE5974TCEw5R2W7FUigdWHafcvPn3Y6wdF9tXdZIua+aAdGi4vIwdj7dhLBEbZ3GnFUM+FTKDsLhX3LF+6qfzTL0oRtJ0zwQ4/M3pzISoNLdwQSFdLO0XG6Ox1EBZn7hN03BpBU1XitldACd+NMux74rZlJYqM0XNNgrqxUqOdd9Vx44nO4T6ABQ2WyluzcM+P5dcBIP48ySrAXu9BVuNmBw7bqlh51OdYg8DSrsKKOsRKzm2PuZh/1fP4BE8PzReUkHDxeLnRUul+Pz3zAdYPZIlqJRhfZ7++QLjz4kHpQ9/c5r1cTGd6pz04prO7zZgUZsFQ6G6yRUJR4iEI3R/sI6hT7YIPce/4kNr0GIuFZvIe786yeFvzeSVtax2R9Tu0iayKqXLohSDQQulrSYqe5PWjNGYyKqUbt8FvKsh3G43d955p/AYz+O9gyeffBIAmy19ac1gsTIvInrtpixKFXVQUa9kXMmEsD06d5Qrwkq/1jyce+EIJ5/3cuRnYgFnU4EWnUFDwCEWmOi/o5jWKwuUQLvKzEZ6E9hrUoShkkTpXQrhiZVQyKBbU+FaCHHyFylZjVTcgJ9908m0YFkuUMqiqSENJeus4hYTpiLxe6MNFxZTMyS2Z/lWQxz9/hKuWTGCR1mnhbJOcYN56OM1NF5SlPgHFZm6rOVGChvMGMTME+Xq7bmsBpjrWWnetbDZTFGT6IvBto/W0HKNWBZkW5WR0lYLphIxoZz5zRoTL+RxUfSyYmqGxEthF7WYMNhSbsTn2NPXTvsIqiQDxhB0ypz82Qq+ZTE9t7DPxeTLmeURiSRlTk3SLaunfJsyDWX+gc3zRG+EgjqVtlBYhrCMwQYDHyqhqi+9HZIWsoxOF1GVPSAZG7MR9v3QjWtenHRkskFRBUR0GiI6RVaZsijFUF0boaIqQkyYsk2KZ1VKzaIUg93+PgB27cqQwvA8fm/w5S9/GYC6y+9I+/dYJoiwXpOURUmmvjBEXWH286M/peSs3SJjzqPMm8+tZf9uPY41wfJJBtBpIqqzKAGUVEH/xQo5gTCqsyhZi+Gs8GoOgpLSBjaS8ijEy75F/YSZsHg8xMpYiixjPuoMfQNumHzDS0DQnS77wDmn8rtFSRE6k5K9RlVZumTbvNNE0w7xPXzhaJDpvWJxZckMZc0GrKVie3hNn8SWG8Rja0W1Bgpr8nBg5c9FyO9ZuZ6XYj/odFBUp8daLCbHik49fTeJy7GsRaK0QSyO53fC2Cs+fBtsmm+5UNoi0ThsSaxtlRlFJXN0/scQIwtleW7AC67FNOssx1iXjgdYOp5BFye/a8rZbHK3H+9alt9O0iORqG4JuEhkosqFFB1kLlAIbWqgCYfRhMPUdUPvTpXPiyLoVnwCkiB/6NhxAydPGdAKXnIEmUp7EJCJaCESVcPpsiglo9kSpMacOCsG7Jp4VqXULEoxBEtb8Hg8PP7444Jj3Iy3RVJ64403ABjRZQiUGQxpnQgHvz7Nvn+bzBmsTiYq1V5UQt1IKfWX5ajTHO+sPLe0JzsZKhPGn1vk9b86JhxQ968HcS8JZuS5poruOxuESQnbHmuj54P1Qn2QoOfuBmy1Ys8q7bHTcoNY1gaAnnsa2HJvo3C/5quq6Xi/2LsFXHDkuxOM/VYsm09BsyUvktibf3dCqNwVABJ4VwM458WCDGM/m+O1/3EE36LYhBz+ZAc7H+8S6pMv2m6p4cI/7hWeW7v//iRv/M1x4ed5Vvw4Z8UIeqd/Oser/+MIrilBI7FEompHsVAfgJM/mebYt8QyAdlrzLReW0PDxWVC/SqHitj+mXZhfVfWV5DX2m65vpraC1Xq4ygK26zseLKT4i6x9db/sVbabqgV6uMc9xJwh/C7xJxRB/51nLf+UTyDACiZujCE1aXqjqL7A3U0XZ4gsmmk3B/w2PemeP0fz86eodFp0RSmd1hLkoQmuuU/88wzqsd3Hu8tfOELXwBArzFmzMqQdg4F4c2vzDD2q9xZJJJJco2XltJ9e/qgXCYYTBHsDXkw9zVa9n11gmPfE8tOGNgI4nOG8K+KBV06bqyh+4Ni9klZr52hR1uwVIkd4mtGi6m/RExfAjRdXU5hSxYHbprAoKHQwLZHWijuFDtYN1xQRsdNtapJCTEc+8EMJ34sTlot31oo/Kz1MQ+v/cUx4dKtzlmvcLZMgDe/cJL9gqT+whYLFzzVTd3F4t87H+z4dAfbPtYq1Mc56WFXHnLcmPXiETzjgGIv55PxqbDFgrVWTJdM/HaBI98Wz0jZfksdre/L45zzwTrab87QL1Pg3qBcvClsEgv6WmslOm4T08cAnbfX0He/GKnfUmGg5456GgXncTwDlgCCHtj996eZeyOPrAoGJfAbiUTSeODTo260gPqRYsq6E/LXFtiz9ICgH/Z/d4mTv0pTTsBohLL0Z4Sh4lsBeP7551WN7Tzem/jnf/5nAPr67k/795BFt4mcFMPYIdj/UpqSUCkIWxPB5aJaaNwmUdWp0vOv00E4gq1CI07S0GpZPhVi/7dXCQkmQvOuyXjXxM5Y1QM2uq4vxVQk5oLsvKGE5suSCBAqSVFNlxZiEgzw2Kr01Gy3Ccuy4eJCYSIJQMsVJbRcJe5jOPrDeWbfECvBZirTY8sjCHX4u4tnlbtSA9diAPeS2H6wcMDF7i9OJQhpKtF7RxXbPiJ2CTBfVG6zs+ORBmw1Oc7sKUGQo99fYv/X85DjvF/4wufCATe7vzQjlNkIQG+B4lYBsksUJ3+xwthvxGxKvQ3ary2jamv2/TcVBXVGeu+sQC/ovrXXStQMi1/GqBywUd6rwl5LCg6aivVsuauCwiYxG7b92hLaBPVB0AX+DZmARyx4deZFN0eedWcsT5gNlhIwaMJgVO947BrR0rAl8Sx/Ve4POHZSw+u7NKQqZNkm4azPLFuTqYRIJMKf//mfqx7feby3sGvXLrxeL8biSnQZosdBm2ZTiTcFOl6eNHF8KffcDCRlomiuDdHTqt4QCktaNOEQFmseJbL0Wk4e1gpn2QwFweuCgFfsQl/rNi0tQ2J9zIXQeYmEKUk9n1XuLQ0Ka3WUtogzV8raJCylgv100Ha5FVuFin5JWVtKGiXaLrEqZC810GhAq2HmgJ9TL4qXNrVX6VQTIGIIuGDfD1wsnxbbwz1rMs4l8Qogx3/tEX43yQbbbrNT3nZuGOLdV1nouFQFSSyJOBPwwoH/crOcWjYsB7zrEZyLIWES1tFfeTippuR2CsyFYBQzhVg8HeDYr52bsxupQN2gmaaRFDmqIEbVbjNR059m381BrCprM2AuEROkZFEId2rkr0kiXFZ362nZqfKco1FK3ukk6LpQT1WzmI70ujV48kiAeWgXLK3oCafxG2SHjNUqow2GCVrVybPcGqarMkCZNfF9XDW5+up4ednMUdfZZ4GAXYMrg0ux5qLbAPjP//xPVWPLhLxJSr/85S8B0KBBShcQiwbPNKaUSRxt6hM8sM68vMr4C4tMPS9w+NFo6bi5lqGH24SeJZVIFDTnc70e9v3LaeGybad+Ps/s6yvCWVB0Bo1wKurKviKKmm0UtYsd0GovKKNyQNyBYiqSMBaLO0NO/mSasV+Jl79bO+YSJvK03VhD1wcEyV75IgD7vnSauddWc7d9BzC/d43Ffecm/fXiAQerx9cJrOeRKicP7P/yGFMCJVjeDtqur6LlGvHg1dKBDaHyfKCQayZeWmDyN2LzX2/SoTfrKRTMSlV3YTmVW8XXdkV/IVVDYs5Y72oQjU6DpVQw6Pi7BU49K15Wcc8/nGT+jTzmvxQluAqgvL+AntsbaBWcJ2d+vciBb0xt/scczqKAC4VAm7L1xghKmYhKQzWXotVq+eEPfyg0xvN47yBGMOsvuDrt32MEpbPmgAEIKsFgERz69hxnfqNOz8ZuktZdXMGWD9YLE5WK2y15ZaCZ37POgX8dF+536tk5Jl8U20OkAj1aSYtnRSyaVzVQTNWguJ6tGiymdkT09rSEZBMvczz+4jJjz80Ll7ELrgdZPSZ27c1QaKD9hhoaLxEj4+aL6ZdWOJxnKVVReFaCLB10sHoyv7INoph/a425PefIpnxzjYNfy68Eaz7ovr2e1mvF9lTPcjCvEnbjv17geB4ZIo3FRkyCNg1AzfZiaoaLhPqUttkp7bRlJy6mgU7SCp8XPYtBpl5ZZkKgRB/AxG+WOPzN/Mo3FzSZhbPbbbu/gc6bqjZnAcyB6d0bnHl+heWjm+eJRp/daROIcahS96mKqI5OQ1QyGyy0tbXhdrv57W9/m3Ns5/Hew/j4OD6fD63WgMl0dlA1ZFHmja8y/eQN5OJ1pkxZxwyMveFj/nRur3PcMWvQ03apjZ5rxc6AehNYy/O7Bn3yV+vMviWma+f2uZh8fQOfQ+xsrDVo0Apm2bRV6ynrslKYSnTNccu4YksBNdvFM8KYi/WY88iIdOLZZSZfFj+ruuZD+NbFgi5NFxXTeaNghue3geM/Xj5Lz75bWNi/wcJ+MdJWvlif8DJ/wIlPjc9LxZ6UCyefXWHhgHi25nyyDFZvK6TtmjL0gjyljUk/IcFPHXLBmd+tMJeSnfasMq4p0Bo0GO16LEVitldVv52aIcEoIFC91U5ln1g/nzOEzqjFoDKQFMP07g1O/84h1AfgyI/XWD2dhw9Wn5JRQQUsJdBzjY2Krcok0ajMBHPmQJijr25eD+EcmZxCIT3IelLTUm00Kc/ORFQaGvoQer2eb3zjG6rGdh7vPTz44IMA1F2aPotS0KboCVdt6hySAR1yjui2JmXaHh3Tc3JSnSNKF1DmcWm9lt6BCDa7GEvAag+DTnxv2FiBU3vE+43tDTN7Qmw/kMxKZpGgYFW0shYDVZ1p1mWOzE01W01UdIgxeUw2DUa7Fm2uz5ayp6yeCXDmNTcBNa6aWN9wBDkA7hVBRogOWi80U9l1bsqbOKZlJt4QL2WXD2QvzB3xsbEgTorKBwvH/SyeULnP5WH/JMM5LzP+ul9RJ+cArRdZqNtqylk+LRmyl0QpQJVZaQFmD3k5/ZI4kcpUoMWUo8RYOtRuNVHWkmORpozfUqyjokPCJkhu0uoRrsogB2DiQIj5M2JzZmUGxvfnN0HMZhmdQaxvV2eYzg4Zf/Sij1bFsltyazk8Z2TZvVkmsjG7jALx/XPzGJ1Nyv9PR1TS6XR0dvfgcDh46aWXcg8uAzSRfE4vQEFBAU6nkwZtN13Goc1/TLndH/EllOT2TzVDBHb/o/qbyRFRamASakaKCLiCLB9UHyzovaeBwkYru794msCKegXfeFUFjnE366fE0myfa0g2rTBxAsBWbxTOQHMu0XZzDbZaM/u+KJYFpbDNiqXcKEwc2vl0F6snnUIl8KQSidJOmxJQEjhHdt9ZR0GTTcnudQ5wwZ/0sDHp5tC/v/vBqJ57GrBVW4SzUhV32dAZtCwfFHNI7Xy6i5VjG5z6sXrSi63eSEGdTSlXJoDmayop7rDz1j8KFps+h5BKJAgEhFOrSiWSMLHynEOCliurmH1rTYi8uP3TbRgsel77C7E52XpjNdO7VgkI3iyOIW0GnAzOzYZLS6jeXsTh70zjitbhTiWmRNbPXhuvaH+I2+3G7/enJxifx3sWwWAw/s2urXr0rL+nzp/Y9y9qkmi/oYLJF9dYOKjePokE1K+ZZFPSUGigesDO5O/E9OXOJ1rxrgU48G9Tqm/JWyoMlHQWML1rBQSzAIBSouhcwVBoECYAGSyAIU0/lfI5Fxh4uIWlg+vMvCrwvQ1Q1V/MxoQLz7J6mbTdWE1Rq43df39SaIwlXTZkf1iYvDL8eDuOMRcnfyx+810UPXfXU1BvZZfgvpMvdjzZwfKRDaGLFQYLlHQVsXrMIUR4bLupmqIW8e9WOViEe9GPa1rMkbL1482snXYxeY6I7KqQklnYUmXAMy+otAzKEVuUbHquEMsiWdhiwVppZPY19YF3S6WRrfc3snhog9M/X1T+UUVWypIuKzqDhuWjKUwQgcwAWtvZxI5IhtvC2+4pJRyMsP/bSWfGihQi6fLm916y7OetsVeoqalhZka8bPp5/PdicHCQvXv30tR0Jc3NV276W4ygFINpIbE4t1ygVLfY/3KGH06zjWtd6nWdJiXgU1wNsgwbMyrOINGzRf0OE5WdJg79yIFXRZmyGMo7jXjXQrjmo31EbJJ0rke1tpig7aM3RbNYxV5N5XNMJXpVZdveDvJ0wQJQM2ijsMnM0R+I7XGWcj2mYgOrJ8T21P57q3Cc8WYte5UKvQkKGsxsTHoJJavnHKSdugsKKe+2s/df8yO7imL7o/Wsj3s5+fPcmWbfFrRaGi8poqjZzP7/K2ZT2qr0aCUdG5Niftit91WzetrD9KvqfWXGQj22SgMrY1515cqiKN9iobzLypHvvXN219tZI+mgj5ZICgkmBNXbFEJVJqQlVanNqp2udKVARm600T1ID5XdZjZm/PjULlODga5rLZiLdOz9djRWkoOsHUN1j57Fef0mWcZKuKlBoPxsu0sbSK8byipCtHVEOHJQw8a6QgSNkZRisKeJUeze/Rc4nRt4vV5MJvHsYOfx3wutVgtaHf0P/eVZf4sRlGKwzShzx6yTGa7zcWLZwLw7vZ8zlZwEIK2rjzfqkuapTidTUSCzOAdqUn7E7LatI2F8Hjh+QIvGr+7ZBgkKS8OszJOIGwuUitOki6mqKflGhgxKWfZynaQE/rM+J6W/TgcYlPJt7ygESB+5+rZcbMYxE2R1XCw+XVCtw+eUheIt5e0GyloMHP2l2KHfUqolIocT5BWV6LrawsZCiNkD7358p7bfSHmbgX0/ECdfC0OjoftaC2tTQeaPCPhddGAv1+FZlTfP5Rwob9dT1ixx9Fdi381epSPokZWSb6CaZNU8YsK1FGLpZB6O8BjeATL9JqSsG8lG+rmfw3Y6S4+c1fZs+ylW+i0n0mXfVtsXiBiU/mYbmO2wsixAprJqGNwRYX5Ww9SELvp7uZ9ts8no9bCAgeT9JixwP8adhpSu86efazuKPGiA1x2JS1gxklJ8TCl3gEOzRzj8o39l+/btvPnmm+oHloS8Myk5nYohm4uglArHuAfHuBiJp/aCYnY82Y61SjygOrvLIURQAjj9q3nm96wKB+BrdpTRcm2VUJ/iLhtDn27DliVdaTqYKqS8ytgBeRGUgHNGUKoZLWXbo63C72cqNCDZxNMwrJ9y55XZSA7IhNyCac4Hi2i5qprSNrHbOH6XTNAj7ixrurqSusvOTaYCa5VE1x11wmULAxshgh7xTbX9prq8shuFg2Fkn5hh6ZryCxOUAIyFBgwW8VuVbbfU0P9As3C/fBBYFScoxfrlC9GSgKCQ2XrvESvNVFBroXp7KfUXiK2BiecXGfu1eCa3sWcX8yIobbmvnm2fEPveC4ddeJYCWR2I6TIqyW7FCLnjjvS3ks7jvYsPfehDANh15Wf9LVuZwIA3gnvRz+ppMdtr60fr6LilMme7VCdycD3I5Avie+qZ3ywy9bKYnq3ZWUrdaAlGu9je331nLe03idlroJCi8oUoQQkUMkI+/fJB7z0NNFwpfsNesumRCgX3uSDM71kTIigBBLwyIcH9G6D1fdW0XS9eJivgCuHfEBujpcxA203VGEvznysiqL2wVLj0KuT3bkXthbS+r5qSriKhfsE8v9vCWw5hghIoc9JUICZ/Q6GB/o81UdYnXgokHwgTlCCvbHhxGBAur2hvMDPwcDNWFTZbcpnbpisqqBsVLBO3GGTm9TUmX0ki+KggFKwec59NUIKcDjdLlYHBB2sp7VSRNj4JaxN+1nKdh1MyKpV7tgIwOyueEfQ8/vuxf/9+gJwEpVSsLcDqotizCmug/3ojphyJfFIJSgBrc2IEJYC5Qz6m93kSTnE1CEeo326lfkdSkDldoD0FphI9PbcWYykXsxf0NsTL2EUR8iFMUALedYISKMSG4hYTXbeWC2etkex6JLu4UDxLIWGCEoDsCxPyifkPCxvNtF1Vhr025eVyEEiDLpmAS3x/rOy3UdEnWP8rTxjsehouLsIkmDkr6AoRECxDD9ByZRnNl4mXEgz5ZGR/WIjs418PsXJCjKAEIFnzm5M12220X5/eXsiVUUkUIY84QQnyICglQXSOADReYKflChXZ3LSJPchggvphK+VdYjbNzH4/47uSdIKKck4As+P6s2SpJqNS81bovUjsuzpWweHIXjY1XUYlo1Ep//jQQw8JPe88/vvxL//yL0QiEewNXWf9LZWglIwIsOjRseoTy77R3eynpTa3b1uXQqSTZR1zaxIiBCWAsWMwMy40REoqwzT2apGSp7oKYmBdN9R1iBM+pVyqJMtenpOglK6PfO4ISnXbTZR35jjbpulrsmsxmMVD6BtzYgQlADkYJpSBPJAN9dtMNO4QrwoUcIcJCpYM1RmhstuQe668Qyiq1VHSKJ7Jx+8KE/CKvZulSEPbhWYKBTMNysFIXt/NOS9vPouptH+Mdi2SVXBO6qD5QjMFNbp3nqCUBkJzP+msJkpQikOH+LnKBm3DWswq3IAxghJAdSvUd2nQBNX7OWVZx/hpDQtJ9xU0wdzfweXSsYCJ1P0mV0Ylo05mqN5LqVXMsF/w6Zj3Z5//qRmV9DU9oNGyb98+oWdt+o18On3ta18DQJvKccpAUIqVfIv4/Jz6yYLw8/RmZZiitbgHHmzCNe/j1E/mhW5e+RYDjP0iOk6NRjWLcc+XTgkraFu1GclqEFZkPXc1YLQZeO1/HRXqN/xEB+5FH0e+IVD2QoIdn+libveKUHmtusvKaLiwghM/nhbKdmOrMmMqlIQyDQF5Z/3Z+mALKyc3mH5e7AbV7i+I3QgHmNu1TNAts3JKjDg39vP8bvFXbismHAoLv1s+KOqwU9pVyNq4iwUBAotIRqNkjP1iFtkvvqm++XcnxB8mwdb7W1g86BAitB37bn63AK0VJoyF4kSe4Sc6AHjzb8XecfizHTinPULjtdUb6f1QM9O7lph5UT2xoOfDDRQ123j1r48IrXFTkQSCvqqNMx6O/9fUZv2jwuBbOiCeLl6j02Grkei4tY6J5xdZOSJgjYUjmbeomAGWYkD6lwMc/LryvTKVd4v9LTmj0qDuSt7QPMvhw4fVj+883hP48Y9/DMC2ohs2/XsmglJsXngWNjjyXfGbrZGIhnAWh2M6p3dpj5XaHSUc/9E8/rWgUFBocX/SvqjRqrLbTv1knuWjG/hXxQIaxiIDOpPYodNQaGDgYy0sHljn1M/UkxhrLyylZnsx+742IUQ46ri1GkuFiX1fTso8qkIm2z/dTjgU5q1/FssqaSkzEhG4kRfDG38jvqdWDRdT1l3Aoa+L2W2Tv1lk8jeCUV/gxI9nNpEo1GL/V9VnfY2hsNVGRV8RjjMu/IJlAfNBdbTs6swrYgS/ff8yJvwsx8l1Tv0C1o6pz6YAMPHrRSZ+Lf7dai8spbDJwpFvTuVunIQ387DPg54gllIj1kqT0JmlYrCQ1muqOfnTGZYPZbHtY2s3Gsyvu7iUqm1F7P4HsXXafWct5lIjb31R7PuNPN6BZ9nPgX9Tv+Yi4QhGux5bpRn3jHqD7eRPZwh6BXRJVCaTL6SZw+FI1qwCGr2epiuLsZRIHPluio8hZjelcWTFSnZKxSZI826x0m+pGZXGX0qy7VIzKCWjrHhTRqXqqmoWFhf4+te/zn333Ze533m8p3DgwAHC4TB6/easD5kISrGSb6YFDzOZlnaWbVxnN0MkjC8DpzwdOQmg7WIJ73qYmQNAMIsTMuUsEfLA/MFoNla9nki2KHCSPXfguyvoTWJOcUuxDlOBnnA6P65Wk9FebLu8BEu5gbf+VcwX0ntHBd7VIGO/WROyRfvvrWJhv5OFA+qJ/UUtJtquKeX0cyusnVYfZbOUGrCWS1mD7+kw/oIDXnCIdQLarytlY8Yn9G4Ah78rvn+vT3g59etlnDNp5KHVZgyMLBxw5VXarHJAOfMsHnz3b+bbKvRUbS3AsxLA51D58cJhZndvMPuW+PjOPL+aV1ahw99JfLdIJKKa9NNxYymrpzwsH1NPaJt5fYOZ18X9J+ZSCXMWUr9Go0n77lvuqkRr0HDgG2KXynrvqMC9GFDWkErobdD7gWrm926oXzvhCHUXFVLdb2fvN2bSE50ykDvNRXp0RjH9GnTB8V84cM4m5qMmW1aAaNzGOZ9GIYfkrBmVIhYTBpMS0Js9GWY96RPEiEqZsipFwiDr04egYqXfUjMqhUJ6jh1S/ndqBqVkOOuNmzIqdXffzq5d/4uXX86UzvA83qv4y79UsifVXvT+Tf+eiaAUL/k2A8eW0s/ddBmUYgjpNUSyHHNSyUkAVotMfZ3M2LiOADp0WS7jpNpuTkdibUaMuqzZlDTRvXJxAtyOMAHByyomcxa9r9OmJRHpdNB7pZGF0yHmDqo//xXW6qjZYuT0Kx6FmJCNoJRkB1T2Gimo1HPyt2K2ScdVVtDAiedS+uXY66wlOnTZCF4Z+h/5efQ5Aj4le5WOkgY9E3vESoetjsusjouTyid3e7Lr/gwYe1WcIWYp1FHTa8K3ESYw8+7XRavolNAZNKxOCCyCSISxl73CGbU8jginX/HiXhV7r3y/W1GtjsIaPRNvJl2EUsFFOPbLPKo4yWAt1eFe0iBitVnLdLRdbmX8VTfr2b53bMxRmRc16KjqMXHsOXdiDWT7HlHfT02/hK1Mx4nfimUZ7n2fBe96mNOvZdBdabIohYNgLtBitITwbqhfP9MnQI7aPTGiUjKJKRWySbF/lhbPbqMJhrNmVPIXGagpDlBgCnNsbrMtFCMqpcuqFNtegsWatBcQYqXfUjMqTfgSjNjUDErJcDVszqhU29zGzNgJvvOd73DnnXdm7pgBeZGUPv3pTwPQqutX/iFH9qQYOm6txLMcYFqw7vrk86tMPi9+K18qMGAWJDGU9dlpuKSC49+fSpCiVBKVAqsBUV4NU79bEiL+xDCzaxlruThlVQ6ECbnFZGItkSAcIZwhBWsmOKe9uOa9bJwRO7Ce+OG5Se8cg6XMSNAjyDaWwFYu4RJw2oOSxSqfjDzWKgmNDuHnvf6Fc1M2BGDmxRWW3loRLxtmA3OVVbhMomiZt/jzSiS0eoTKfxEAS5mJwloLc4jrIlHs/4p48BDAccadV5BZcVyJ9XEt+AmHwkQEY7Azb6wQEMxABuRdMu+seRKJqDJSu++sQ2/ScVAgiB7YCCBZddiqTEIkpWQnYkakIStZKiWaryjj1IuurOsuRlaJrG9gkwqpKK44X3Lk9wzBYJBgUFlsZoOyX2XLnhSDqRDqLynjzIvLBMV4BRz8j8yk8kzOcmu5CVOhAb/gLejuu2oIOIOc/nmSPaSSqOQ4JeatiYQj7P2SOPmEYJD5fWssHHAIPi9MOBgWz4iUqqdUku1XTm4QCYnvA/kQO/JFQZ0Za6V46n1jqYGwN0TQI/Z+62P5pZ+xN1hwznmESgnOvb7G8sG1c1aSa/9XTxLMgwtlqTQghxAiUgU9sPiWoCJJep5nNSgky4I6M7Yq8duAeSEIu/7quHC39QkP61NuvGsqbcpIGDRaxVYLi5eBDHnDeWWlmntrDeecmNPMNe3j9f+dXS+kI/8JZYlKCtJZawy0XVfN2HMLOJPL2sQIBhmcwuZiCVO2LFHh8NlEpSDs+09H7uGlIStVD5gxWHVM5lKZsYxKy2s0l/YxNz/Hn/3Zn50nKf0eIfatGhsvA3JnT4qhtg2CAVhMvhOmYgtfnoHlGW3aW5GZCEoAJrtOSSGQCWkIIdZyHQ3bzZzZ5cIXdc1lJCqlkHxCPs7OrBNby+lslUiE1VM+Vk9lCYJkICrN7XdiLRfPTCj7ZEJeWYigpLcoNmJYsBSwbz2EY8KLa0HMTzO728Xsblf2b/cOwl5tVJzpIiQlPZhsevVknChCPrJnbcpAVDLY9ej04BPMTHzgP2bJwH14x7F22sdbX50Uz8qjB2upFveSoE9V0P8Xf5wJNAYdQWc0cKKSqGSrkvA7ZSGSUr44/cvcfrXYmJPPnqtjXjTiCRWU3xO8tBByRTOxp5ytcsly+WjUL5duKmfJPnfsp0kySTdWbfoXTyYoAUTkcPpgdUrspm7QiGTVMvZSmoxKGchKQR+YbBqsdjaRlGLQyJG0RKUT81bIwStLR1bSSyGamyMclvX4QpkXeiyjkn3Kj15voqqqipmZGUKhEPpzpSDO421jfHwcjd6AZFMyimXLnhSDhEx7aYAJh56AnJi32chJMRxeNMd/IxXpCEoAFjNYzUoGoExIZ7c1tIaRQzAzkZuopEnZI93pjuCxdZYmBqCRZU7nqriThqgkAzOH/DgXc5w3U/bxiKxkkgm4wuoIOdH+AnkhNmFtMnh2bSAVe9zxX2WxgdQERXKcS5NhKdJSUKUHWawqjc4MyDmyyaSBUuZN/CK/qVAhu2abz6lwLsoc+KFTqM/bwYkX8rNJJAsQiRDwCez9MmykI/GqfF7AjxApzVKixV6ZZr/NtDgEzympOPRf4rFU34bM6ngQv9rKTNG4W1hWjoaSBAEvqtdYyBchlG7+58jIOn/ET8CdQT7pyrwBIT8c/FXsYeG0pd/SkY8CaaakJiinbRsjKAFIkkxTa4TZKQ0uV9J+Fc2olImsZDZEsJgiKJPr7GdoQ+mISjpeDObONJuOrFQlBTDrIxwge+WvWEYl2yRUDF7N7JmT/NVf/VVeJCVNJI9rGTGD/BrzPaoJSgA7Hqsl4JbZ+yX1QV/JBgXNNpYPuoi8Xe2nIsDTfE0lVYPF7PnHY2cHfbOIauuDLUAe5AIJ4YxB55Eeo5/vxrPsz5vgIYK6y8povLiSUz+fYWGPQ3W/+svLKWm3s//LYmPc/pl29GYdu/7i3JCOLviTHjYm3XlnpxJB9131lHQU8MpfHhZaCy3XVWGrMXPgX8WCzTuf7iIcCgtnG8oHtlqJvvvbWNi3xtjP8suGdR4pENSZNaOl1F1Uzr5/Hdtcoi6HcbTt0RZ0eh27/yF34F6TwdhRC40kIRUq5emWj+SIbCcdBIvbzXTeUs3MPjfTb6oz2iPrGzzv/T4BvDz44IN8+ctffjtDP49zhIceeoivfOUr2HQlXFj+QVUEJYC6QYnqXhOHvrOAZ1F94Li4zYRr1kfQA5HA5gUnbDaqOEQNPtJIwCVz6BtpSMoZbDdLhYHuO+sZ/626zGWR2DgMCBEl3jMQyAh6rtB6fTXl/YXs+YfjwsShfLD9M+0QjrD7/4iRVrfc28jaaRczr6oniVvKDAw81Mbc3lXOPCueBVYUPXfXU1BvPWd23s6nOvGtBYSzRfV9tImlA+vM71F/4aRquJiWq6s48ZOZvAnmIuj7aBPmEimvLF/nBCpKI72nkEVnZgr2bbmvHtkf5ui3sxCiU+RgLDGw9SMNTL2yzNwbaTzxKc/SiAacUpxaWpuV4hYDrqlgTqJfMklp610l6Iwa3vqFgM5bXuOX8/+MRqMhfA5Sq5/HOwO9Xo8sy1x++f9UTVACGOnyEArAodeS/jHHZ9frwVoM60ugdW226bMRlNIiNZtSmjlX1mGgftDCwZ+un5XlYxNRKcWGa72yAL0Ex5/NoMuTbZVke1FP7hJSqfbi27V73qYT/1xCxLbe9kANnuUAx3/87mfKLm410X5tOad/s8zKcfUBotJOM2Wd1txjTJmb3R+oxFJqYM+Xz82lxe2P1rM+7uXkz999WdaOFlI7VMiBb87jW1dPwqrYYqWoycSJn4pddOy/VylrfeDfN7NC3ukyaqAQ/LbeW8PCQTfTr+ZHZs+FfLJJvVsQlmGqraTGDkzWmcn9M5CUChv1NI4UcOKXq/gcSY9KDralid10XGHBYNVw+CdpAvcpJKWIReyCSSpRKVBuRa8PYbOCYz27DZdMUjKZQ2wbinBiQ+LMRvZgWQz2KT/79/9fVleP85nPfIYvfOELQmM/j/8efP/73+f222/H3tBDyw0fU0VQAqjVBRjQ+tkza8IVUE9SKpBkPDKEZB3S+uZ4YyaCUiakZlNKZ7t19ocJyXD68Nk6IJmolExQ0knQuV3D9MkIG5nyGySRlDSxuKkGdSTolHFqVJZ9jCPVxhSxWd/pM9Hb2d+y9C1rM1DTb+LYL50EYqoyjyzdatFxhRmdQcPRX4rdeqvfbsS9HGJ1XP031Omg/zY7c0d8zB95952ktf1GytsM7PvBu5/5EqD3egs+V4TTL4kxyxuHjazPhXBMq5elrVxH+yVmzuzy4ngns0ul2j/R803DsImCaj2HfixSxeMc+iHSrSmRNZq6xnIQlFIRSSUb5Yrb6dhMLkvqnylDUtMWRc1OHEp5dlL7ZIKSMgyZ/sEI0+MaltJk/0slKfmLxC7rpBKV3FVQrIuwIWuQc5QnTSYpbSv0YtOF+XmBNUuPzbBNwv4vPYVk0OP3i5Ez4WzeaU5MTipXwjo6OuJG7vaHa9n6kWoALOUSOz9dT+OlRQB03lTKzk/VA/DGP82gM2jZ9kgToBCQRp5qo+X6cgDabqpk5Kk2JQgNDD7axMDDLXTcUE1Bs5HRz3XS+f4aAFquq2D0c51IJcoYBh9rYfjxtvg4R/+4g567lDrEjVeWM/q5Tmx1ikE78EgLO6JlkQBG/riT3nsU6lfAFQINWGsUptnWB5vZ8Ued8bY7n+6i/4FmACqHixh9ppvyAYXhbS6V2Pl016a2MfJSaY+d0We6qRlVam733dfEyOe6uOCpHrrvqmfHH3Ux8EgrAPYmM6PPdFN/uSKXng83MPr57vjvDj/Zycjnu7FWSZgqJEaf6ablOuUQ2nV7HaPPJNpuf7ydoU8rcrHWS4w+00PbLYoM226pUdpG5T306Ta2P96ekOEz3XTdXoepQqLluipGn+nGVKE03vZYW7y0FCgEoZ4PKzKsv7yc0We6abu1hsqhIgYeaWXHHyXkMvK5LvruawIUAsHoM92U9tij8m7hgj/tYetDLWfJu3ygkNFnuqkcLgKg/4HmTfJGCwabsuCKO2yMPtNN7YWKvHvvaWTkcwm57Hiyk4FPKPK21RsZfaabxqsqAIU0s0neT3Qw+ElFhlKJIm9LmcTCgTWK2myb5f2ZdoY+HZWhpMiw/bZaAFpvrKb+wnIspco8HPxUG8Of3SzD7juVOdt0dSWjzyjfGCCiZZOBOfK5bnqic7busjJGn+mmsE1RHAMPt7LjKUUug59sY/RPuum7X5F31Y5iZc72K5lV+j/efNac7f+4Im+9VcfoM91U7VBuAvfd38TOP0603fFUFwMPKzIsbLMy+ic9jHy+m8qhInrubjhL3tseU9paqxQZNl9TqXw2s0a5sRiNgw9/toPBT0XlbdMy+kw3rTcq+qX9ttr4nLVVm7HVmJWgZUyGz3TT+X5Fhi3XVzP6TDdSiRSXxfATHcy8sczMayvKnP2gopsar6pg9JlubNHbNwOfaGXHk4l1P/K5LnrvaQSU8iOjz3RT3BHVEQ+1xOUdl2F0zlprLNE9WPl4qXM2k44obLNywZ/2MJI0t9ToCKlEou2WGoaf6GDbY4oM1eoIW60Un7MiOqLvAUUuIjqi/8EmLvh/erA3KbdW1OqI0T/pYednu86es1l0RMNl5RABc4mBHU91xXVLcbuV0c93UXtBTEc0MJI0vw0mPaGAYqHY6oyMfr6LxiujOuLOOkY/l2i7/dOtbPuEMgapWM/I0x20XKe07bitmpGnE3IY+mQrg48pY0CCkac7aL2+jP67G2i9toKdjzchRYnO2z5ex9Aj9Yl3/UwTne+vAq2WxstL6Li5mqPPLjP9ppetdxUzdF9pvO2OB8roul5Z57VDZnZ8vIyCegOawgI+cs89aDQafvKTn3Aevx/41re+hUaj4f03345GkqjsNrD97gLs1Yrh3n2dhYE77PH2gx+003GVmem3Aoy/4aX39kpK2hXHYtf7yxh8sCbR9uM1dL1f0SVFLUaGH62l7dpSeu+oouOmMrZ/qinR9pEGtnxY0bG2Womdj7dQvUOxgdpvqmTHZ1oSbR9uoO8+Zf6aywzsfKKV+ouV8jit11ew84nWeNtImHhqe4MFdj7RSuMVZQA0XV3OzifblUA5sPXBJgYeakYqUP6h7fpqWq9X9pP6S0rZ+WQ7hmhWjf4HGhl8pDlOUNr5ZDvDj7Yx8lQHtReUMPJUB9ZaRWf13d/I9k8lxrTjiTa6blfkVDlYyOjnOmi/TdGjW+6tZ/gzibbDj7fR80FFLmW9dkae6qCsV/kefR9tYPizCft0+6db2XKvIpfCFgsjT3VQNaTIsOv2GnY8obS1VBjY/v+x99/hkR3nnS/+OX1O52400Mg5zQCTMHnIYRBJkRQpUiJF5WTJypIVbK9l0Xe9d+8+v/Vv7Xtt7a7tdVjZlta2JNuKVM6REtMMJ3ByDphBBhpodD6hz/3jdKMbjQ6nejgjau98n2ceEkBV1+k6VW+99da3vu/Hhhl7Vx+YWfzdbvY+Prpis0Ze08WtnyisU7s+Msy2Dw4y8Io2fJ1O9j4+Sl9ujRh+uJO9jxfK7vitYbZ/MPeunHDb/7HB8m3anQy8oo29j4+SE+xi2wcG2fnhwne99ROjrHvEWpNlr4TkkHD6rJ3Q1vcOsOsjhe966++PMpLz2ztvbWLv46MEeryF/i5av2/5+MiKD9S2M8Tex0dpGrX8ms1v72PP767n6tPzXH12gT2/u55Nb7f6MLwhwN7HR2ndZvXhprf0rFp7dv/Oehr6fAS6PIQGfex9fJSOPZZfM/L6rlVr/e6PrmPrewasH9wWsS1/KLL+kc5V/b3zw8Nse79l950hq7/772+jfWcjtz4+urq/PzTEjg8V5sbex0dX1uS++6z+lnKB/G3vX9vf6x+1+rv7jmb2Pj6Krz0/vgfY+wejjL17INeHo4y83urvjj1Wf4cGrRe55Z2r+xupcODTMtbA3sdHCed88U1v713ln+753fVsfru1fvvbPAw+0EHbTqu/N76ph1s+XtTfv72esXdZfkGgx2uNpYDM5IEI4Y1Bbv394jG7jq3vtZ7d15Ibs/dY837dI6vH7M4PD7PtA7n+9ll9OPAKa50deLDdKpuzEZ6Qa9X5z97HR1mX8yP77mmxnilnI7a9b5BdOf9063sGuP3/3MhIzgfqvt3qb3+35RuOvXuA3R8rjO9bPj7Chjd207otxMjruq3+Hsr19zv62VPkL+35dyNseqs1Zls2+9n7ifW0bA3iDDmtMfu79m3ErR9fhzu3/7VshNXf/m7Xim0DGHlNJ7f+vvUMvg4nex8fYdsHrP52hpzs/cQIfS+3+nv44Xb2fqLwHnd8aJDtHxxkwxu62Pt7I+z9xAiDr8z19yta2fuJEVy5g4Nt7xtgxwcHC/3ye+vwNDlBkuh5mWWTvS3OXB/2s/O3isr+7hAjr7HmQnjY8pljk9ZB+Jbf6GHXRwYKffixATa81nqPbVuD3PLRPpqGLXuy8Q3t7PpgwV/a9aFeNr7eWhea1nu55aN9tGy0ym54rIXdH+qhsd/J+nsa2Pq2JjY9YvlLwW4nu38zTPsWa10Yvs/PrneEkRQZSZHZ8fZmDBwc/J6JLwR7HpXpzrmDQ7th96OFwM/2BxyM3Zdb1/qaGFk/gsPhYGrq5qWFXwek02kMw2B4eHiFoLRrQ5odI1aQW1F07tiWoq/d2sAOdKncsS0F6Dx7ykXWKbHlNixyUhZ2vwJ6cyata9j6Wcmd927aC9vuhg27oaEZdjzmpX+Hta62DznY8Xofnlxm59F73Gx5uKCmvf0xLwO3WOM1PCCz4/U+Am3W3Fx/j5exxwq3J7e9oYGhu6x1VU+bVsyr0Wpn6C4/295QSB+99U1NrL/PWhOCnQo739lCeNhqxxd2sv1thT3H2JvCjD5k1fU0u9j5m620brS+XP+dQXa8s41d72xn8J4GtryxmQ2vtmyUMwA739VGx1bLbvbcFmTne6x5i5ll85ta2fneTjxNCiiw872ddO2xvk/X7gA739u5ogu/6XWtbH5jW+5zJXa+t5PeOyy72bEjwM73d+EMWPNxw2OtbHlr28rz73hPJ/13N6IEoGXMx873d+FttT549NFmxn6jvdDf7+5k6H7r+cMjXna+v4ve2xssMs/DzWx9Z0ehv9/ZyfCDVtlQv5ud7++iccjql6EHwtzysR42vKZlpezII1afBjoUdn2gm5aNVr8M3hdm53sKfrvslHA1WM/nCVtl27da77X/rkZ2va9Qduyt7Wx8veULKj7Y9YFuunYHc/0dYtcHulfKbn5TG5vflOsXxSob7HEz8XwUX7PVzsqYfX0rW95S6Jdd7+ui72VWf7dvDTB8fzOBDvdKf299e6Ffdr63i8GXW35Yy2Y/uz7Yi7/d+j4Op4RZFPTa/p4ehh6w+qVpnZddH+ylod96iPUPt7Dt3d0rbez5SC/rX2X1Z0Ovh10f7CU84s31dzM73tuz8rlb39nF6KNWv8huB7s+2EvLZqsPB+8Ns/P9RWV/o4sNr7P6xdOosOtDvez8QA/hER99L2tk1wcKZbe8rZNNb7T6RfHArg/20rXHmhtOrwMTk3RKhWyWzW8s6m+s/u7JjdmunQGrvwPgb3fTNOhj7K2r+3sgF29v3+pn1we68YStPtzwGqu/J59fZvL5ZXa8p4vB+6xx2DxqjdlAl1V2/auaV8hMANt+szBmG4c87Hx/F6Fciq3hB8MrMX+wSFDrH7bejbfRicMpgWQdfg3e18T2dxfKjv1GO6OPWmU9zQo7399F6xYfnkaFPR/pZteHCmN2y1vb2PCY9W6cAQc7399Fx44AkiTRe2fjyjjs2tPAlre2rcz7/JjtvsXq7649Ddb4ztmIzW9sY8ub2/HkbN6u93fTd2fBRuz6QDfOoGXrN7y2lbG3Ffp753u7WP+Q1S+tW/y2bcTgg03s+XA3wY5cf78yzNaistt+o43hV1jvMdTvYud72mkcdLPzPe1sf2sb296R+25Zk61vbWHkIWveBNosm9wyYs2xwbsCDN0dAhOcXoWxNzYx+pD13dxB2PH2MG0brbK9e9zseFMhZuD0SRiqNecUD+x4c5DOnA/UPWatKXlsvtvB5rsLDvbOh2W6c2HFrhHr5zx/fOPLHIy9rHDAuPMhhcEBjS2bDDZtMLhtTwaPx2JhjW1U2bm9cJh1664MQ6MGWZeD9g6dsT0m+6edXFx2s6stwV3dhQPZe3rjbG22DvLbvSr39cVo9mjEet08+uijOBwOvvKVr3ATvx745Cc/CcBdr3gALSDRgsYDnhjNOcbemDPFPe7C+7/bnWCbM8WE4eJZzcXW3jTNXg3JhPXhDHt7CySP3d1JNrVaewyf0+CO/gRbO9Ns68gw1JRh11hhDG4bTjOyLpca2mmwe3uG1lYrNtzdmWFX0XjdtEFlw4jlC8qywY5bdNrbredt686y/bYsyDmFjOxq7t/227J09ll/a+mG7XeZOBXr5+EdMHqrpUBimjA4JtGV2y6GO2DbPZKlEgMM7pDYeIdjhaC0+V6FjXfJbHvQSUMbbH3Aia/RKtu/TWbj3YVT7E33uejdav0cbMqy47VeerZbP/dsd7LpgQI5ccP9Hvp3W3s6byOMvdpLQ7f1c98tLjY/VPBPR1/hY/D2nEpVAMZeEyDcb31u55ibLY8GwOHA5bdStw29zPoysgfGXttA8zrrc9s2uhl7bcE/XfdyP+te7qN11IXss8q2bnCDJNG6zsnYY0Hk3PnF8F1e1t9bsGHb3xBkx1sb8IQgPKgw9lgQlxeQJIbu8DJyX6HslkcCdG217KbsMlFc4Mh128BeLxvuL3zXTQ/76N6eU3LrkBl7xI+v2bKVfbvdbHyw8LkbH/TRu9sq62+2ygY75Fx/u9n0kI/pkypTxzJseMDHwK2eQn8/4qex2yrbtdXF5lcVyAMj9/loGXLhCyu4fFbZcL9VtmOTky2vLpRd/3Ivw3fmnl8mp3pjrQNto07GHimUXXeXl3V3F77r2CN+2kadBFpltjziZ+w1/pX+HrrTy/qXF8puebWfjk25PUq/9V3lHM908DYPo0X9vflVfrq2WmVD3VZZb6P1t/5b3Gx7nZ+h3Hja9JCPnh25/m6zyvpbcn24y82mVxY+V5IlTLJgmvjCEmOP+GnI9Xf3NhebHyqUHb3fy8Ct1uc2dMgM3uahsccq27nFyZZXFcqO3Otl6Dbr3cheq1/cIbj6Qhpf2MFYcX/f7WX4zlxZ2Srbus4aTK3rFKu/c3Zh+E4P60v6u31jrg8HrbJy7s++sGNlTAJseTRA55j1/E19MmOvCaycLQ3c5mX0Aev5+/d62f2ORrp3WM/U0C0z9toGvM3WQ/Td6mXjQ4X946ZXBenZ7SXYIdO51ZqPK2N2t5dNryr4FBseCtC/13pAb6ODsceCNPTIyF7o3u5hc1G/1LQRj/it+YlFqB66LT8fYezVPpoHrWdoG1UYe7X13VxeGHvEy/p73BZRVIatD3toG7HsSeugg60PupBzccPhvQojdyh0jspsf9DF1gdcdKy3PjfcZbL1FcqKbzi0zbLJK+/mLolAk8UHbczZZG+u24Y2GmzaXSCEbdul0z+YO18MWlytVO7ux+A6g607CpcXtm1RGeq31p9AwGDvuiRNPuvvw20pbhkqkMp3DqbY0GnFJvwuq2yb16o71JzhlvUpAsCtgST3BBPs8FqNejG4ryFGt9Nau9a5M9wbjGO4JQy3xC2NSXSfwXf8HlyGwaszcYZy0lbr9QyvzhSk1+5UU7wsJysV7zbYtHkzmqZx8aJ49gphzctHH30UgPaW9hWpzuS8hpq0Hk7PWLm5k/PWw8fnNNyNBTZmYk4lmzv4VVVILakkZqwFPjGTxt/hXiErJOfSSLJEclZl+WKG1JK6IlWfmMlY0vqq9dnJ6TQOV8FhlhSJYL935XNSiypqSlppRw8UvnoqohKfsl5qctn6XHU59/xTabI5yS0kiVQkQzz3DKl5ldSiSnpJ5YW/v7Ci7LLyufMZ4jPW52ai1uemFqzvGptK4fA40JI6cyeiKG6ZVNRqM7NsWGXnC2VdwQJzLqsaOH0ySsCJNm2lGMj3S2wqhae1cLsgOZ1eOZwbfrDbShmWKxufSq163uR0etWN2PznbnlbP4pPIbWokk1aEyM5lUb2Ffo7FSk8Q2re+q7Now00DQZYvBDHGyrQEVMLRWUXrLKZaO67TqbwNLmIXUmu/D3/vOklNdcv+XeTWkWzi0+kSOb6TF22yiZz/R2fTqEU3YBMzqbJxHXa9zQydH8nalInOWu9q9hMCndTQaUiMZMmm08bqFqfG72YZObAEl23NeMNF/o7MV3EzlWtPoxP5/p7JkVwwcfhT59f6W9HEUMytaiyPJ0f3ylSiypabi7ELqVw+gvPn4pkSOTGbGo214fL2kq/eHMsfMkhkdVNYhOplfeUWlRJLeb6ZTK96mZnaj5DfDpNoN1LVs9aZXPqM7GJFJJSND7m0it/yyxrZJZVXD4FSZZITKdx+gtzLDGTRktYz6Tl+yXX30sXEjg9zlVl83NOVa1niM+kVt6jv8MDKhz5zEU2vrl3FRG3eC5YfeizDE2+v90Orv7MuinXtq1xpb+TszkbkZMFTEyX2IgFlUCPl50fXcfFH02vthGTqVWpEEttRHIhw9zx6Mq7ofh5K9iI1HQCPamjF6WrTM2ma9qIltEg7VubSCykSOXSVWaTak0b4e3wsO0969n/1yet/rZpIwCCXf6Vz20Y8NuyEd4mDyYmmWVjpR07NiJ6KY7kdCAX2ykbNuJITikiNZdeayMiubkwlUbxFtmIOctG4AI1aVpl59baCEmWSc6mMXJjoPOWRiSZlVQB8ek03pYiGzFTdAtVhXRUIzGrsjyeItDlpqHbmx+yJOYyOJSiPoxqxPPr5bxGetlYuSkXX9BweYpsRFQnPmfZhNSiQXrZIJOwfla0Rtra2q7LTcqbuD6IxWJ4PB5kNQRopJZ1UkvGinpNYs7A0ApB/eSiQWLeyP2/RmrJRTo33xLT6qrL6Yn5wpxRl7MkFzQiF5Ok5jX8LS5kV0FmPzGjkl6yxpGWNHN1rZ+zkonslujYGWT6YIzEjIqaMMAhoSc1EvMZErn5l5hO423JrbNOiM+kyeaeX9MgMZ8hOWeVTc6pJOYyK0oeiSnLDi2dS3Lgry6w5Z19JHJ2NDmfyZUtrIeyu2hez2fIxDVMrVBWjefnago9UbD7ybkMsSnrGdIRDUmSaOixNj+xycLzAiRm0wW7v2R9bjqXwinQ4cVQC/YtOZMmketvLa6RmMuQyqXcik1lULwyvg4n2989RCpa8CHUeJbEXIbkQs4OTadwNxXWzth0CneDi649zcRmklbZnM2KT6fwtRfZoclUQVlKg1RURZIkkjMaiVnr+bWi/nYUrf3J+YzlOwDzJ2O4G1xoObsfn0yv8lWSc+kV/zq1YL1HLaWz/YNDOAMK8auFwGFiJl3kR1r9ksn1YSzny07vt9R7wusDK5+biVll04vayrspvjWcmE4xH1G59MNZfC3OXH/nxuFUBpe/0IfxmRRqPOerxK1xuXwpufIMniJbHp9Okc0F9bWk9QyJmTSKR8Y0WZX+Kz65Wn0gXxYs/yMxl1l5H4mpNA5XSX/P5Psw925yrmZsKoU75MSRIzgl59IkcmN2pWws3y8pjKIbmvGJFMs5Xzu9mO/vvF+TXkWMT8ykic9an3vkH88z/HD3yryPTaVW7b8S0ylSufempXQScxliV1IsnUvQdVsYt7cwx+IzqYJvmLTK5tuJT6Zp6PNx6ydGOf3EVeJTKbJ6kY2Yy5CYzduI9CobsXQ+tspXScxlCvu8UhsxmUb2WmWj40ncja4V/zS5kM7ZCMtgxqdT6EX7seRshthkmv67WpFcktXfiUK/ZPWCoU3Mpgo2YtGaC8MPdpBe1Fg8G1u1n6lqI6YzhEeCDN7byqkvTxKfSlm+CqDGTWve533D6TTu3M0rT9iNQ5EwUvnE9NbnJvP9PZ3G11YIQiem0phZWDgfI2uAO+Qs2q+vthHxydSq/UxyPsP88WWmD0QJbwyQmMugJws22eVTVlQEkvNF/l7EWie03LyKTabR04X9WHJOJZazh+llneSCSiZmffdgh3tVHyZmMyTncj5zLFc2ah0Mx6ZVHC6FpcsaVw8lCLQrpJfy814jtaiTWjRzbeq4vEXje0Enk5XzXUhy2SSZE5RJLoI3UJg48SUrpUO+7NDwMGfOnuFd73oX3//+97mJlzZ+7/d+D4Dm1gKJYznhKFwQ1yGWkEimrfERTzqIJfJ/VIjGs7hShYBjPEphrMSsn/MqGfElSCcgsQzLC1ZKj0Q0i2RkSS1nSS7IK5L3sQUDd6owzmQXKwcWasIguWCgaTKgk5jXV/mG8TmDRM6WZJI6yXmdTC4Fd2JBW9lTS4pCYlYnFSm25RpqLMv5Hy/TttlDqKsoVjKrkc6llNJV3fo5tw4k5nXcQQ01YbB4MYWZZWV/a2pW3VROVSa1aNXNO6l6Oou/xYEr4CAdg8SsSmohVzaikyhK3R6fVVfSP/Xe0ojT4yC5oObKWnstM2eT47Mqirt4jVBJzKusf7AVX7OT+IyKnrLKxqZVPEVKkYkZdWXtUZetzw2P+Ggc9LJwOkG2SM3AsrE5OxQ3SMwWbFZiNkOw08XyRM5Pm1FJ5Z5XT1nt5PswOZfB6Ss8b+R8we7raZ3EjEoql44tMa+ukDAA4tMqupol2O1i5OEWMssaydwYSC6oJIpS1MWni5RTdesZ4lMqkTMpmoY8+FtV8iJbsWkVucg3jM+qJHN+QWpJY/lqhnM/nFv5bs6iOFx8NkNirhDTSMykUXPu4OLFFJ7Q6hhSvqwa06yyK32orpCtJcWBns6ufB81oZOYSa/4kYnZzMp+xvquGdJRnWCPh2w2myub+9w5FVeg8Lyx6TRaPtat6STn03iaXDgUqw/ze3OA+FRmZe3Xdev5Uzn/dPlqGk+DAnkfbjqDo9hXmVFX1q3kovVe0eHijyPoaQOlyNeKz6rE5/Lj2yqrq9bzx2YyuBMK8yetTg0Pe1f2VJmYVVbL7X0SM5lVNiIxmyHQ6WLTG1q5+PPFkjGrriKAW/Mx56skTZavZFg6n1r5m+Iu9g010rlYpZ6x5m56Sbf+RbQV/856Nyp67ia3qWetdnLp/1JzKokZJ/52Dz17QsSmCv7SSh+uzPvV4zs2nSHY6Wbr2zo58i9TJGbVlbGV70NTM1b611l8tiBB05APiJCJWs9vx0YEW11gStZ+PWuSmNXIFt3ST8yqK+cmmXiWxKxGJm4wfyaJ7JaQi/Yz8WmVdNRqM2+TV/b2CzpOr4Mz31/OPb+GmizY0cScRjrpALKkIgaJYNF+YN6wSEqKNWaTCwbJJatuailLciGXLtDnIRYp+LXNveB0F0KbyWVILJkr4k+xxSyyDJJhKSrF4hLJuEQkIhMMGDQ2SCv2ZDku4Sq6cB+LS8STubMbzUE0bZLMHV0tZWS0IqWWpZSDaE45J6U5iKYdZPRc3UATnZ2dqCWq0Dfx0sXhw4dxu91orR1gQBoH84ZCOjfSlrOrVSAWsg5i2dyeAoV5I4uq5/yyjIRSpLyxlJZJ58aGnrXGzkJSJqnJuJUs7tycltUssZiEZlhljSxElx2kc9t5PSvh8Zi0hg3mIjKxmIOsCYZHhrTB8hIrZdNJWF4ip86RJb68WkhteQlSufPmtC4Ri2Qxc9MzvmSpbKbicPIZk8Gt1v8DZFIQi5gr+4xElBWbBBCPmGgZA8k00dIQm8+i5+ZYcilL1nCsKptcziLpBmrKEmkJtFpSbsml7Krzlvi8QWbZasfIWH5lfn0M9zpXbDdYf1Nzz2Ro1s/p3NqTWtSJ+x3ILtj86kbiEZX4fH6PatmwfDvpZZ34bNF6Mq/jCkr0bPeSiRvEZwu2MB3PEp/VV1KQxeeNVXGs+LyOQ5HQ4pBxmVbZrPX3+IKOs2jdis8ZK77V8nQWX6O+cj6XWNDRVYfVWQ6J+Kyxsk5pKYP4nIGeyTJ0hxdvo0S0KHVYbN4gtZjbd2asslpuf55c0nEosDyVIzO0GmRysal8f2eSefts4PQU+7IGS1c1Zk9ryK5c2dx4SUWzxOcKz5CYL8SODQOWJnQSc2bZsivvpahf0stZJNly11OLxkp/J+Z1ZKe0umxOoSwTt37Or4HxBQNXoni8WPFtsPYz8TljJUteMmLgC8tISuFzk7n+VnP9reWUzPJ9m8fShL7yDHrKGh/5/k4tGWueV83t5U78KEnfVjeZRL5slrhvdR/mYxYYEJ/VSS+ZJOYNGrpk3L6iPeCCvhJ/N8iVjVl103GT9LLOlod8XN6XIRExVs+5WZ3UchYkCTWWeze5cRi5rKMU+7azxsqeKpOwvo+Rj+ku6Gg5TkRsVifQKhfGYcKac0auD5MLxipfJTark4zodGzx4PI5cj5GrmxEX/O8KzYibc3P/l1eUstZIhe1VfuvWjbCHXDTvtHNlYMZ4vMGulbU33MGmVzZdNRcGbMOJ7i8jpWzEEnNElswScdy9iSeJbaQXdnPJxZMHDJEZw0cMri80sqeVk2axOazGFrOp1gGpejIP75kEp2FyDT4GiybnLcR8SXQVHNFRWl5WSKRm49qBpajoOZ833gcTLPQL8vLEoncupD0OokmtRW/piVo4ixi8kQTDlK559MMiCYdpDUrdXxMdSDpEnFkjiY9hGSNVG69NICIppDM/RzXJSJFSp2RrExKlkGWMQyDOYdMPLd4xSQHc0VlF0oUrvo3bOTEsaM8/vjjfOlLX0IEwuneZFkmm81yj+eNuPKUPBvY+b4uzKzJoc9YtwfNtLjsU/GpmllDvnnwAev2xcUfFOkh1pCMdoVd7P7QMLPHo5z7+mSFZ1jbbl6pZVUqoZcgmkYCNPT5uPyjWaF6Xbc14w4qXPyBWLoLV9iF02UdiF5vuMIuem4Nc/W5iNB7aNoQYPD+Ds48MU5cIN97xy1NhNcFOfEv4/U8rjDWvaYL0zA5/60bc/v2RqZ7axj00X93G6e/MXlD5lD3Hc009Pg4+YUrQvW2vKMfQ80K1+u8LUxWzzKzf0moXl1wQaDdTfyKmH1tGPTRvr2Js9+eEEql1rQhQEO3j8s/FrMpvwoEB7zELpVLGluZqHPbv99Aci5TOR1ObpEuPgz1tLoYuq+VCz+eIz1XuTNXpSkRlK0EkLqsW3jdI1m6d/g58fV54pXkf8vgee0LLCwsMDU1RUdHR+0KN/Erw/j4OP39/fj9fl7W/H7b9YKdEqP3Brm0L8X8GWssmssx4faLU+2uSgFSAl+rk947mrnwg2m0csrEFfy2Le/swdfkYt9fVEiDWsF383e5SEzaM1i1fMbrie7bwyxfTREbt58mw+mD3rvbmD60SHJKzJ77u90kJurwsetA284QWc0UTuE18rouMOHMExV87Ur1XtvF4oUEcy9cn1QSxfC1Oxl4eTuXfjZL8gb4sTc63dvgQ+0Yqsn4DVq/R17fReR0jPlj9m1QoMfL8Cs7OP+9aeJXBeZPyEnnjhBT+xZuSBpCX7sTLaYLt9X38lZSEZW5I2J2ufeuZhYvJIhfFZMtvx6olO4NrPRt2bRWfj2wKq/51bpXtdGyMcizf3G+coq5/KFdkWR338saMTJZJvZVt0WSr+hmZUkaEztQ11nKELt3pclm4eiP7Uump7Qkvzjz57jdblIp++P5Jn41aG1tZX5+nj33/SEeT8h2vR0jaRwOOHjCIv25Z8RSNQA41IKvJaWqr+dt6xUcCkyfLPLP8n5bpZQdCux6S4iZ0xmu7i9jRwwDs0y6DsUDkmKReCsi77PVm5op769dQ6o3b6tCQ7uLmSNl0hdVQdOwB0+DwtQhsRQUigcUj0J6yX4Kr0qoFZpVPNCyMcD82fiaNH3V4GtV6H9ZE5d/sUhyzv5zNg56aBrwcvGn9lO81oVc+omuPQ1IssTEs9ffz4Mbm+7NE1bo3hNiYl+U9KJe1/5fBE3DHkI9Hi79fGnN36pdVBq4pxHThMtl6tVqT3JA5Oz19U3yc8TTopCeF5tznrBCy6if6UNRdIHH9Lcp+NvczB6zbEpdF73y/lK9KX/z9Suke8vDE1ZIR9b2i6TIUCFN7vY3BkktGpz+Ufn1yvTkSKmuAlFfUaB3TGLqrEm6ii3SwgW/K+sS/+7zOVWIgVSGzS0ZDkx7WVLt37Wff/J/cOnSJc6ePcu6detqV7iJXxlUVcXtdltxrzf9ju16Xgxe5klyRHMzo1ljNTAp7kPIamH9dVVJyelyGnS0mUzPSqhaYT46cgRVR6a87zU4miUUhsPPlJ8Hkp5F0tbWdflYIfJWgpS/GFNvKqecvyicXhhWfM6mPpl01Fi56GELMrQOO1meUslExfxGVwDUFNZpe72Xb23WC7bLIEFsuuT91Ej51rHJhaxITBwRi811bHKRXDRWyErXE7IbOje5mTuXISMeKhbGjU731rpOAUli7mxJYOE6Xdju3OIkPpclNlPm3eXbLPH1XT7o2e5h6kSa1FKFD87XKYpryy4I9ShEr+oYtcKV+fp178+yuLxgmI7abZUgPOREV02WBe1yuF8hFTMKfVKH32yWiRsJIRcvMpXKbeeVxMr1S9atkHWtbbuj06B3wOTgPgnDKP9sesDyufSiC3MdIWscT0erp4BLthbqGG7xsR7dbK2Bd0+ryMAv8pJWNmCkU4z/0f9FR0cHExMTQu0Kv+FsbtFzD6+vUXI1kvPqyi1Q23DBrg8P0ra9QThQcfEHc0IEpTyWrySYO1ZlU1zGkK17oJ3dH16HAGcLsMgSA69or13wRcLimbgwQQlg8pkFYYISWKQtUYKSKwD997WtEL/som1rA527m2ka9NUuXITFU3EO/tU5IYISQNuWRkKDgi+cXCq2otQidhFeFyQ8Eqxd8NcQTUMBgt0+6xa0ANa9pmtVWj67aN3SSOOw+Ls79tnLwgQlgL6XtdH3srbaBUvQvqeRlrGG2gWLoSJMUAJYvpjk7BNiBCWw5s+NJCiF1vlX0gGJYNdvr2fzWwbW/qGGYxq9kGD+RO3D92ICRHpO5cS/TVQlKK1Bbl0de0cXQ69srlF4NZajDut2RYUcuWXR3EgmZpV/z3veI9TeTdx4fOxjHwPA5e4mPWLfZzCzJumYQXxGbGIP3NfE6GNWuoRiglItJOc0Tn+tAkGpChZOxoicq7BJreK7bXlrP2Pv7rfVRvFB+vpHO1dSvN0ITDwdESIoAWhJuPDdWZLT4nnh6yEohTcFV1J9iaDvZW0MvFzcjz3z1UlhghJAeKSB1s1i66Iz5OTWTxTSiNmFv8NHaCCwSk3wfyc0r2+gZVT8ne/+nUKqPdH2mjeIvbv41RQv/MNFIYISQPNIgJ7bWwkNi30/Z8hppVMUS/tOckariww1/tM5i3AnuMe98uTCDSUo9b28hbYd9kkaYKX43Pn+QXrvruL/lvne86fiRM4l8hnlq6NofRr/xVJNgtKa5nWDllEnY68X+24AibRMIir23hy9bZimSTr9qyeX3URtRCIRABK7xdaO5YSDWFw8iLr5dit9RzFByQ5mz+rlCUpVoADz51WWrpRpK1e/WJEwj44xH9vf3Irbjmkt2mOFh9wrKd2q4kUilKfmdGGCEsDi+bQwQQlATyNOUFKgdYsPpSQkUYv8EOzy0HdbE429YjGv5JzOya/OCRGUwFKPadngr12wBOsfambbOztrF8wjd/AQXu+neUS8vV8H+FqchNf58IYVoYOWjh0Bdr2/C0XsldO83l/23dUaY5d+tiRMUAIrfWDPrY3C9UL9bkL99uKAxSQ+UYISQDqic/UZMYISQGJWXyEolT6HMGz4fJ5mhb47iwxtjYPwPDa8OsSmV631aVZI2RUuGy1cVFm4aCNeoBb2pboOFw9VJyiVwpFTHt+wXmWgT2yPO+eViasOIQ5GslNiqclKJfif/tN/EmrvJm48Pv3pTwMwP9BGfJP9+JUDiGQV4prYIXRPSGVDq2UMiglKtaBqMuMTSlmCUjUszsNchTvneZKRWSamO7pbYv0umw9XtLZ0rnfgseOvVSK020GRz7k4LkhQAtBN5k6rZMS2cACocXIKVdgmXviaZQJt4mSFzi1uerZ7Vv/Shl2ePqEKE5QAWtc5aeoVTnxkpRFbLxbIcPkkmgeceEN1kjhe4mjqcxLuEwzuYKVzG7hF7IwSoHXYRairzLsr9r1K/DA1CReerkJQKkbRuPM2yvTv8hForfHuSuaH7IKmfsU+bye38Kqp8kScWohc1FmeMIQJUpHL+uo+qZeECbb2x+EeiVDx/X0bF9pkGbbeLdHet/ZvWXculbW6tu1oFGam7Pl2SpFK3nTUWZOgtOYZMybNssYt/iQFo2kPEf9apaRayA4oZGUHMzPiPBIhqxePWx6oJM5t4tTXVt9OkTzummpKTYM+nD4Himfti5McUsWb8a3bG2gZCXLyiznGls3grxpROfZZG8o4krRqck08H0HLZK1FUgBdtzTjcDm49EOxF7fn342gxnVe+PsKqgMVMPauASIXYkw8uSBW750DTD6/wMIJ+7RaV9jFtncNMP6LWSEFmaaNjfTc3oquGULPefXpeRKTaRYvib2EQK8bT6NbWAXgyGfEcyuClRrCqMCsr4Z9//V0Xe3d9u83kl5WOfTX5+uqL4KGQR9b3j7A9MFFLnzHvuLT5R/P1kV0Sc5mSPeo4EKIXHP4U/X1hafNRbDLy9xhsZt9J754eUUCVQSD93Wgpwzhsbnjw8Ok5jKc+tJVoXob39zL0niCqWcituu4ArDhTYNMHYwI9UvLWAPrXtXN+e9NCtXr3N5EeDSEKzwrpLo18ew87oaShdwGc/5EJVJamRtwZtZcIUJ03dZEsNPD6a+WnwdSuVts2SzuoGIr6JVXUQKIzcAL31YBD2A/IL+x85Xsv/zPnDt3znadm/jV4Gc/+xkA6zc8IlQvPm1y7Our10SpIVhTTcnXrODyyWUJSpKiVFRTWvdwK9ErKeaOVliH8xuqEt9tan8FG1DDd7v6bIT0oqjKkIvWzQ1WGogJ+9Jj7TtD9N/TyskvTwgRjlq3NtC6pYET/yJmjzt2hQh0eDn37emCvbHhy468tgt3g5Oj/ySmgjj48nYcTomIgJ8HcOLzl5Dc4nuCli1BolfSaFGxAPWz/08dKkOaTipSSIFlF3MvROtSbBp6qIP27Y08/zfnhb9fPdj2gUHcQSf7/usZoXrP/+XZutpLzqdXUoSJ4Jk6FaLCGwKkFzMkZ+z35fThRVLzGaJXxRiTHdtC9N7ZSnw6RfSC/bodu5ro3hvmwN9VVv8ph/CGAK1bQpz+8oQ1v23eru++PUywy8OpL4sR/cbe1Y/sdnD4U2J7mM6dTaSXNWYPrZ0P+b14qaJSal5j+oUlZo8sVf/wku+9dD7J0vnyfV+ONIFhWNEhJ6y7v4WFMwkWz5e30cUqSnkoTgmXT8bXKpGcq+5/5VWUAE4edwJOCIMzYn+stLW1sbi4SDQaJRQSJ0fdxI2Brutks1kkp1hwWsrChSurSdCZdl9NNSVvADxecMpr/SvT666ophRsh6YeJ+MvaFbquFK/beVgevXvdR0uP1NmnpTUl2THKkWl+fMqJpS/aV3FR2kf8+MJKUwfqdAP5WJ6koNNr2vGyGQ5/S2x2NXgvY3EZlTmj4oRlQbvbWLhXJLlcYE1ToEtb2hj8mCMyBn7/mGgTWHgZWEcisTMYfvPuTie5sRXp4iLKsg0KrgaZLHvhpVq7OKP7ccG8kjM1+H/OBwc+5f6VMN3vq+H9LLGiS+KB8RFoQQc7PjNHqYORbn6tH0/MXImReTMFeGb4Okl3epPwbOZc99bO2/sKAApAfC3eIheEmPynP3uAmYdYmIDd4cxNIPo5erxwNIYyeijLWSielmlqGrouzNEYk5l4bQAAV6Bdfc3s3A2weL59Mrz1OpPX5vCyKtaGX9miciZov7M28sKfl940EP75gCzJ1OkF0o6NZ+DpYyi0tTRBJ7g6jjTGtVIXV+jqHTl+fJ2YUVBqRiqtqKo1NQFwWYYP1q2+ioVpTwcahafz7R1OJpXUQJIoPBzLQAh8CzYP+hsu/2VLL/wLAcOHLBd5yZ+Nfj85z8PQPCBO4XqJbMyB9KrLxXFuxw11ZQCriwBV7YsQUkNKRXVlLo7dRJJiaWoNYhLCUpZd+73Jec+SwsOlsq4M1JJfdMpr1JUmjhbSCFUq24esgs6RhSypr6S5mgNypCT/G0OBna6ubgvRbLW0l/kM/pbZJr6FaYOr04hWhWmSbBTxt+sMH0sU1FlphzaN7vxNTq4+FSRHTfNmjH+7q1uXH4Hx78t5h+efzpZsFk2SaNg9Us6YWAICuge/YY40R4ZEgsGmbiYs5BaNHnhCXGCfvOQQu8ODyd/EL8hCkxDt3vwhWWOfUusb878pELn1xgvyUghFZkIjny9zPOVa6eEV+BrltAzZnleQemccORTFBqc+mGMVEyA/CNJBDtkBvb6OfvTOPHZGmeVRcSgYIdM51Yf53+ZwLDjIua+tzcsE+5XmDiUsTVP8wj1KgTbFK4eKvJRstmafnT/bhcuv4MzvywxnHmbVcEB6RxVUFMm0ekyapR5ImmJopJhwMQZk1iJbc8TlPJwqMYqRaVUUmb8UvnnzysoFUNJZXOKSgZ9zTpLSYXlVPnvUayilIdTN/E7sjTIsFzjledVlACOBl0QBDBwRuwTGdt7e5i/fIVIJEI4HLZdT4ik9K53vQsAr7MJAKnXCtaZV6pvJhv6XATa3UzuX225ahGVFk8nefaUeBC9YyxEoCfnEAvcTu2/t5WsaXLlpzbkfosMSvRcgug58UVk/38/g6dN/DZ/JqahLYtv/PO3wUXIP66wi2Cvj+aYLkRS8oQUHIoDRxVJtHKYeWGJrGYSPSd4MKRaSlGiGH5lN742D/NHTwjXrQdnnhA7qLxWLJ6NEZu9MSkF0nNpli7FWThTBw2+Dkw+s8DkM2JBy2vB6Gt68LV5hElKZVOM2cDZb0yQiYofBCpuGadXnHXfOBzEGVSESEqqCv5OL+GhoFC/pCNp9JROVhVz+i587yoXvndVmBA6va9Eot6mUxTocdN7Wysnv37VFhEuT1Rq3dKAt1Hctj//V5dqOlzFBKWV52yDULvMxFE/xKqsRc2NK/8bDvQQCoVYWloSfs6buLGIxay11+ezbvPn1ZQ8Z6oE4k2TjjEny5MayRIzWYuodOKLc0IKSnk0jwZxBZ2VSUpl4PRB3z1tTO5bJJU/0LDpt008JWb/JYdEckpj/1+cRhN0oYxMFi1pkK4i/V0OTYN+GnoErz4DrWMhfC1ui6SUh+So2TeKV0bxit+COvmVcZw+8XUjWc8hFLD+1d1EL8U58W/X3yfSkiZHPn3pureTx8LpZRSfAy15/QlKAHNHo3jqWG/qxYnPiytKXgtGH+th6WKck18QGCsaRC+Kp1iafn6BxGya6BWxug6XhMMl4ws5heZEy2gD4XVBS7lJwzZRqXHQh79dXOErE9VQ6iAVHv5fl8hEqn+vcmSli9+zeQGh5LCu+/Ymslq2MoG1FIalJtk84geJiiSlcpg6nGLqcKpm6rdigpIFjc5uiC1DHF9VolKmoyCV0t3dy+zsLI8//jif+tSnbD/nTdxY5N+Np81SYFjYYgULm49VngdSFvwenYAfZhagOMxWi6iUisOh74qf7jf1OGkddjJ+QLN1QzSPlvVOHLLE7Knc5qZK3WKiUjqiM1GaRqiaX5Lbb538egRnJRHjKupJmWUDvczt01po7PeguBzMH0/aV2dSoHnEh6FlhYg8br+C7JJxKGJS+vFZndPfnitL+s0TH8peXNEhXiZ4XgvdtzYQHvKx/29vTCxqcn+d8SCHo66b0rMnYmSWrz3dnh3o6Szzp+Is1RPjqSNVxdLFNEsXr12Bz26Ksr7bw4SHvDz/P8VSNKwh09jE+R/N1VQ2KjcXFI8DQxXf87Ru9OMNO8VISrplV/SUsUJSyj9XtX5V4zpa3MDIVLBDFfy+ycNxZo/F0VWp8oF4GbJS9LJOlKJ0oZV8m/yFoxxZyR2A1lE308cz9lSmckSl5h6JUKuD8aNidvrwfmfN1G/FBKU8Aug0KwaXm91ViUrJzkKfKYEAjY2NzM9f/5SON3FtOHbsGACuXLwzr6YUOFF5nytloUNWiRkyCVaP91pEpVNzHiEFpTw62g2Wlx0sRWVbCkoWsnT1wfwcqClr7FciGMFqolKkzHFrtbo4HBg6HPlelQB2BfWkbBYySbO2HSjxGwMtDpr7nFw9kLFsVi3fK2fTm3pdNHbnSEp5lJA3ykFxSyieMjakBgHi8r4kskd83TBSOf0RAYISwPCdXqITGpf3i5/rCMOw1HhuFBILOrNnVfQb8NUAFi5rJCIvcvq7/DgrM2auHq5DMqgcqvleRWN93Z0+liZ0xktJw9XmgimRWqr29/J/i00anPlpgsSCfYISAI7c3HOCkaxBFir63sE2mdZ1bqZPZixykx2ikkMi2KbQ1FNCUso/V5W2M4ksWap8fv6SWwlO/1KzxnOVuFA5stJsyf3gUoJSHnlFpTxZKdxigASROXs2ySIqQW+zgSJTkaRUDnOqk7l5Z83Ub8UEJQAMg27VJCZLLIepSlTSOgpxkrbRdcxcuMQnP/lJ/viP/9j2c0qmgFZpc3MzkUiEbT2voyO0YeX3tUhKW97aTqDNxbN/sTawXVVNycZBVSU1JVcA1EqM4Qq45fdHIWuy778J3EY2TTb9Rh/RiwnhA7ObePEw9FAHjcMBDv6VmCpIw6CPYJdX+N1tfe8gik/m4P8Qa69pQwAjk2VZ8PBk12+vR0voHPl0fQpOorj9P2xieTzBsc+KqTHUg+ZNQda9upsLP5gSIrq4AtA02sjM0SUhJaX++9vo2Bnm0N+cEiK7hNb58bd6hIlRw6/upKHPx6G/uf5qVtcEQUWqXye4Ag5GX9dnKcKdtP/SB17RRvetLZz66pUCSdPGAaLkkSr2ZVkVpVJUcbjKkZS2vcqDOyCx7wsp2yQlgO8ft5yFa5Isv4nrDiv4KXHP/audu1okpT3vDBGf0zn53bVjohpJyQ5BqZKa0sphey3kfLfWsSDrHmrn4o9mmT64bJugFN4YoHVTA6e/MSmkXAKV/caXHMr1pWBaqOuNbe8bZPFcjPGfiQV+O3Y1EZtOCqWmczc72fqOAa48Nc/0/sXaFXJw+iA0FGT+dExorLTtDNF/dzsnvni5rhR6otj09l4aev08W6fikCi2vLMf2eXghX8Q8yuDfT4csjgJaMeHhkhHVE5+UVBVbE8Ty1cSJAXTR2//4BBzx6K/nnszm4pKL0UUk5Q69zQS6PJy9usCyhiSg90fHSRrZDn4t4U9SFkVpRI4g3LFdKPlVJTWlKkSkFpDUpI17rgDIhE4ecxpm6Q0PfUCp47/G4ODg1y4IKaIfBM3DrfffjvPPPMMna96K01b9qz8vhZJaXQgQ2s4yy8POim9C1iNpGQnxVslNSVFAd2OSnPRgdTm1wSRFYkjX1m2TW4yjSz9dwRIzGvMny56Fjt+SbV9hh2f7Fp9n18Xv68E5fZn7Vv9tIz6Of4lMRVqT1gh0O5i/qTY2j30QBhvo8LxL4q1F+hQMLNWmiwRbHx9K4aa5czX7audXgt2f7iX6KUUZ79z/QkMvnaXparz9JKQ6hYKNPZ6iE+lhdKUtWz00X1LiBNfnUUXUFbwNCv4m50siDwjVlq6pkEvJ7/64r67Fz1OoQAvMp+tIlHJzoF2NZ/PTv1iRSUFBu8IELmQZnnKLkFTITykMHSbn/O/SLA4bnVOWRWlUvicFfuynIrSaug5olL52Fg5ktKtngRtToNvxnx4Fir7bMUkJYCTn3wc09Bvxrxe4pBlGdOl0Pu3/3nV72uRlB7wxZg3FA5m1l7gqExSMnIEpeqHvOXVlAwkQNJrz8+8mpIvmGXTDrhwCiKzjuokoyL4vQbhTpg6t9pds1W/GuHXRoo3yahQ3y4pvpLvVToPZdZmILqWuVqLFFIHBu/wEp/Rmbsgtng0dMpk4oaQ0pAsw8j9PmZOZYhcFiDlyBAIy6Qihsi9BfwtMv273Vx8LiWerq8OdG9107rOyeGviotM1IPe3W5cPgfnn6zi05QZF+6gtbzaSsFWhOE7PagpkysHMvbHm2nS0CWTiZWMFRvzYOh2D0uTGpFyY9POPKpUxs6FAZskJeEydsmAFdo3bcSNqso52kjzVkxSCrVCoBEmzlYmKJUi65LZsk0HCY4dLtQpp6K0pm2viVFh7SqnorQaBkaVZyxHUnr9gsplt4PnQ27bJCV1LsL043/KXXfdxc9//vMaz1SAUBQ0r7hQTFCCgqJSJZz55gwXflI+SCx53EieEgfUzIKZZc/vrmP3x4arfnapvHy+vihBCWDfJ09z+B8viVWSJEJ9AZpHG8TqueCWT2yg/7424XotYw0WoeB/Q/Tf38aOD1d/5+XgbnDWpQKwfDFZ1wFGVs2StStjWYSRR3sYfW2PcD0jk0VPi7OGhx7qoHX7DUon4IJ1r+kiOCB2u1tLGWS1rLCqTtvuFtY93E37WKNQPV01yOpZBM0f0XOJupSb3I1OnH7xHLhDr+pk+wfF50LduMEEpUC3i4ZBcYWRPf9uhNHXic0hVc0S7PXRurlRqN6ln8+y/89PChGUAMy0WZYIUYug1H1HI3s/PkTTsHuNUyh1tZclKAGc35/m5M9yTnfQb/0rRQlBCUDKOTbj4zbSnN7ErwRTU9bhrqKsDdTlFZVWwTRXNhonvx/l8r7ypDWpIYjUsDpJvWkYNI+6ufW3+2jZXGYMFdevNJbtkkByvtvc0RjPf+oC00ftE5QAmkeCNA35hQlK6x7pYPsHB8UqAcE+L742cTt+TSj33a4TeWHs3QP03tUiXM8VdOIOivfL9IFFYeKPLEFWM8lWCphVQPPmJkYe7aFlg5ifnlWzGBkD0/YNSQvBPh8DD5a31dcDLVuC9LysWbientLRU+J+5ehru1n/SLdwPUPLYmjie7Pp/YvCBCUAp1/BExLfLG173yCdtzYJ13tRcb3IiE5oGvFbBEgB9N3dXHM/nkex79O8IUjTcPW1pMwH8MJnrwoTlAC0mFE2cF6LoLT9bWG2vy2MqRuYJUF7dV1nGRUlwHBy+hScy2Xj1sK+sgdyxQQlgI7ObQDMzFz/lEQ3UT9On7ZebHDDjlW/zysqFUPKWv8Azl+VOXF+LUEJLDWlTPvqMeJQdRyqzpaXO9jy8urj3PSWST1nGPYISrAq4Hr86zFOfNc+QQmsedg85CY8WPQcNm3V2FtaaB8rmR9Zszp5SIFgj9Pqyl9j4mYltGzyseG1rVXLlCM+OIMKzoB4zCsd0YUJSgDZTBajDqWJoVe0MPyguF+pJ7PoKVNYcah9e4DGIY9we/Wie28If7vAe3A4yGqgZ8RjiE19HkYeaqVRMG6SNUyyWtW75GWRXtCFCUoALr+Mq46x2b7dz+ij5f3Y60IquQ6CW2WfM7fX9TQq+Nqq9Evu7KMUm17fTN8dwTIVSpAtsuM6NA95aBSJx+o6kXGdw1+JihGUAJKapapUgloEpXCLzt47TVqCWRwlMeD5MXdZghLA8bSbX8Ssz043S6Sb147uUoISgBKw9oD5tf0mXnowDINsNovcuPbsIq+oVIxi3+vppI/TmfJjNt7lIN61ej2RVZMQJneMZGgJVg8mqaG1c9ehS7YISlBI/ZaMOTj0FERmbRKMcmhok2ntlVZxeOzUbx+C9beXsTu6UZWg5A6AK2c+yh7016G2vgrlbGW5j6yTTLTSRrl2JImBvV5a1onHrtxBB86AuC+6PCVGUAJABkMzMQTXqkBYZv3dPgIdYkpRWSOLljHJ6mLrrSsAreudtXh+Lxr8LTLhQXEfw8iYldUM8ygzZvr3eBm4Vfy8ytBMy88TGcOSxPKkOEEJrLHp8pV5CTXqD93hJdyvlH9Ou4qm2Wz5sgLkrGtCmbZN2QEy+JqoPjaNtXGjpm7YeI89/6fYDodaoaVHsk1QAktV6eQJiWOHC31lh6AEIKUklDKpCGsRlPY0JrmtKYOcMZFL5kR0s76WoAQgy/wi5OJQzr/XwgZaeK3RLiYoAbharRRvZ84IiAAhmO4tW2WgSr2dFRWV1DjMHhXfFC9eiGMatQet5JAKQVEzyy2/P0r0QoLTXxWXM1Yj4oHwZ/5YPFWYK+CCrIkheNjSvaeZgXs7cP5oSigtU889LfTsbeX4v10SSj818Ip22nc0cehvzqAK3MDZ9Bt9NPYHePq/iPWNv8WNu0HcaTj5hfrST6x7TRcur8yJfxOrX6/C0KUfT2MIknEADn+qPhWe9h1hGvozwinK6oE/7KJ9q3WwIzLGli8m2f/fxQwXwOzz1vhfPC0mJz7x5IJQysM8WreH6L61hcP/67wQoefE5+ojgPib3bhD4nNhx4eHcTe4ePb/PilUb+t7BlH84upgOz6yDocMB/5SrN7mtw+R1bJ1vXvhWLWKZYtENzsqqPnArEijLrj1t9czd2J5Jd2JHQWl6IUkTQN+tLjY5i9e7nJrsCj1WxmCEsC2bVs5/MIh/uAP/oB//dd/FWrzJm4M/vN/tm6S+f3lSQ/pkfaColKJkx+v4ww0GdFYnsgQvVrbhkuKsqKoNHB/Cy0jAZ7/m0v2G8tJQWvR8sHZajj79SnEkwFbBz4S0mq/0QZGX9MFEjz/l2Jr8Y4PDaKnDI7+k9g6sONDg6TmM5z68uTaP1ZJ+7b38VHi02mO/bOYj+JpcuFtESd01GO/nT6JDW/s4+qz8yyetp8qOTmvceCvxdYZgIUzcSTHNNHzYr7C/LEY88dEo0rQsS1E61gjl34yI0yiqwfde1vwNLm4+gsxv+bUl8TSeORx4fsCqjhFqDfl3sjru0gv6Yz/WEzFYb+IKm4RPI0ufM1iB51On8Tu3x5l7niUc9+03z++Fiebf6OCOliV1G+hIR+jj3Vz8UczzB2xP66794Tpv7uVU1+fIHLC/u3FlaXFplJePvXtsc/WtzfTljIr390uQQlg+OFWQr1eDn5qfOV2nB0FpcUrqq14QynmZ9f66Fq4kPqtlKCUR2trKy7X/6a3jf43QTRq7ZuVMr77whbniqKSVLIU67pCpI4td2Qya2ubYXrdBUUlw2DLI36ik7p1W9cOFHnlcEqPiR80Hfxs0Tpj129TgDpi0KFuFyOvbObSL5eYO24/rhBe56H/zkbOfn+e+FQu2Goj9UjLJh9duxs4/fV5MgKpfXvvCNE+FuDwP04Iqdx4Gp14m2rvDSVJWkWAuPpUlKtPiQ+yrt1B3EGFiz+1r0QJcOnnS8JtWfXE2snj7HfrUz/suaWR5ILG0oXrn+pE8UD37hCyy0Fixv73TC/pHPtX8c1ZbDLNhZ8tsHRZLJ4eOZNi8ax4fwR7XHTuCHLhhwtCY3r8l1HGfyk+Nr2NTjxN4mviyCPNBDs8HPh7MX926P4w3rC4Otjooy0oXgfHv1C+XqXUbyOvasY0TY7+i0B7jtx+1W7oKmusKCo9/7/ma6awXYO0jp5b72wTlHLY+rCbhXGDiTPWw9ZWUILlZViMQFpweMbLHF+lm6WV1G/lCEoAmzaP8cLTP+dP/uRP+Md//EexRm/ihuAb3/gGAM6B8hdh4pvUFUWlUt8rXgdLQjNgJioTS9Z2vtSQsqKo1B7W6OzMcuSIA0x77WbdMo6MgWHYV1DKY+oyTJ8r+AC26zuwCKqCKVT7t7tQPHDiR2UOPKoQlIZf5sU04MLTRf5aqe9VhpAwfJeXTNLk6vNljEGVtG9bXhMkMa9z8SkxQq230YGWEScbnfqB+Hk2Mgzs9jB3XiMxb9/nNlQ48xNxonAqanDxmSTxOTH/PrVocvan4u2Fupz0bPUQvaqh1pH9VhStw06C7TKRi2Lsrcmj9d3Gv/pCGkcdKXovPSegoFSEzs0u9EyWuXO6EHnn5PfLjE0b9b1NMqnlLKLM7W1vamTuTJrJwxUW8DLfXXbByL0BZk6liVwqTRteQugqEqJxBWD93X4mDqdZmqgwrsukfmtokRje6+H8cxmWp+3bP1OSMU3reQ0bw0bSs5iKg/ETMH7ChPL86srtJYBc6je7BCWA7jaN1iaDw6c96F7ru9dWUIKZtIIkiW/KZ91r1zotbKyoKpUSlPLo6OiwnWo6D3EaYh3Y8Z5OImdTXP7FUsUyksdtpX4rCnic+8a07TYkh7SSoiSrZtGSYicDgR43m94ywOWfTjNzQHBzZSNnainUiMq+/yrO5J87GcPpU1g4uiRUT4vpaEmdzLLYgmVmTUzDFCIoASycXEauw6CLkoWuFQ19PhQBtmMeroADVc0Kq8/MHFgSbgvA0+Yim1SF0pMBHPqHc2ST1+G6UBkkplUO//1ZEnUQ/fwdLqueQFU1nuWqYIqZPFxhlzAhsaHHh7fZjafRRXr2+ssOHf3nS3XVi5yO4WsWD/ToqoGjRm74cshE1brm+vgvZtET4mOznkNxoO7bGDs+PIwW0zj2OQHSq2opfhiZLGbWxOGy53DEp1SOfb4o0JZzuCopKK3ABdtf6WHuosbE0SIbX0xUKgNJbwRg3759tp7vJm48fvKTnwDQ3rmzesESH6R7u4twv4ujX6++aEgNQczl2Ir/lJzWOPkV+wH0PFEpq2bRM+IE3I1v6kJ2Ozj2zzdGzevsNwoEAhGi0qWfzCLJ4jYks6ShJcUPAg3VrH5zvQJRKXI6xvKkeJSgXkJHPXCHPfjbvfjbPEIkJQBnyIkWFfPvtajG1HN1HJY5wRdykpwXa+/s96aYeGb+hhCUAE78yyUcXnE/1ukDnOL9GTlVpzS3E5xOCS0ptl8K9frxhDRulN7fc58U35tpSZPopTiRs2KkNi2pWzftKpnOCkQlbVlDTejCCquzx2MgScQuib3DK08ucEWQ3J8nKtWD9p0hem5v5sjnJtAFSNt6OouRX4cMAyloQ4EAuPyL1f1h6gaSIpdXUCpC/5BGOAyHnl/t4xUTlcohm80yN3djUhndRH0wDKOmkkvpIRnAttE0kSWZKzOV/f5Muw/3THJVirdJAbNjet1IcWt8Wb6CmO+l+GDjg0GuHkyweEHM/kuyA9MQJJbrcPSLOfshSWDzgl5iRuXyU1EWL+R8mioE7WJo6SyZmLE29WMNopKpW6ozRkZsbxq9ksbpl4XIHABXn45y9Wl7McdSolI9aOjx4G4Q9xUUD+g6wuozy+P1pclVAlZbeprCHLRxwHrkX6cxtRsT89LTcORzk6TjNtorsSOekEI6oQv1p56G+RN1HJBizXddsKov7CTY6UbxK+jp69+nl362BCyt+p2d8R45l0IVjG0DGGoWow5F/PSSjrPG4fYKUanI/7nyTJSsSFrLHMn6+BOChL0cUUmYoJTD6L1eNA3O7xfrU0PFUuBQdbQOewr+uqpwuugus0PNknU5KiooFdXkZb40k6rCeb1woaCYqFQOWv8IPP1zXnjhBVvPdxM3Ht/61rcA8G0drVqu1PfqkFV6FZ39GTfVZDPiXQ4Ck9lcijfIGDLnZuzPFTWk4FlQMU3QdMk2QSmP3qEsbjecPypUDQDTKSNphhDBaeYczJzLlXc4yiqelcPESRW5yFUwZYeV9q2GglI6li0fV8v7XhVselaHbNWYV/mz1vnzKula9j9fr2gdPvk9sdiT7bRTZSC7oKFDIbGgkxA8trJLkiiGoVKZyFG1MXC5ECYazZ3XiF65MQQlgCuH0nWpNsky4ALDznMWEWaSCyblZb5qNQiyIv7+GjoV9HSOpFQP8mPV5j7r+LeK4h/5szIbSmnz5zMsT5XYkzxRqMKZm6GCYZiVfaF8v5fMN0O1bIteqy9z7efV3xKLJpcPqSQiNvoi/53dLpamYWla7J3niUoiKkp5BBtN+tbpnD4joQtIneu6ZK1DGCgpWO6z1/Z4evU5sZwxMdxSeQWlIgwkNfoyBk82rb7IWUxUKgfDIbE0J2b8bPeiqlqjQqqSIknq68IcX3vrW/HIOAM1rImmWYGP3MLrCkDPXW1M7l8iPVd7dptZcyV48fxfit+vl3MDKitog7pvb6bnzhZOfnGc5YsCO0AXdaVXUiMql34ofgNn5sBSXQSZyz+e5bLg7eVraa9e7PrtdcguhX2fPCVUT1Q1Jo8dHx4hq2eFD/Y2vb2P9JLGhW+L3UTf8b5h0lGVQ38tpuJwI8g0xUjUkZKjYdDH2G8MMnUwItQv/g4X6x7p4dJPZ4ies+9s9tzTQv/L2jn3nQmhMXr+W1Oc/5a4gsC6R7toHWvkwN+eq0upTRT1zFeoX/Gp3noiSnClcAUQJuzt+K0hkCQO/Y3YHJIc9alQ7v+Lc7n6Eqau21JSAui+PYSeyjJzyDrsdDQ1QipTPs1DHio43RKeoINSR/rcn3ey7o/Ke+SN6hjwU6an7ROCb+LGIv9uWtt3VCyTGm3He2r1O3QFZZy+2uRBM50GlxNyaZ9ax/w4ZImZwzYnmGEgSRLjT0YYf7KOOW1WSNtbA9veN4CRMYSVOpw+Vg6uRJSU5o+LK+oAnPg3cUVPgCOfuVS9QIWDujNfL6O8dJ3g73Yz9o5Brj41J6TiE7+a4tk/FfPVADr2NDH0ig7OfHOC+aP21WMa1/npua2F09+YFCLkDL+ik/btjez/63NiRB4NYWLTtUBLmla6BUFsfscQroBT+MLEwIPtON2OVYQ/O9j94fWQNXle0O/e/+f1aKbBnt9dTyam1a3gJIp65rqWNOtSB0vOaxz+1EXx9qJaXSmugUKKOIGh1rjOx/pXd3L++zNETgooN+Vss9MNuoCvd/knC+Q15CSXCzIZcNe+0uZphLYNfsYPJFa+n9HRjBxXMQKVSf9uF7jcYFVaHViK/zcV55+Wr7e4uEw2e+NsxE3UB4ez8rufH3PS+kLpO9TxuE1cruq+hTOmkfU5V5GUukZgYQIydrazmo7pdiFl1PK3Z2tAcUqYwgmgINSrMHB7kPM/jRKbFNjP5rc/OtaGyoaqEVjEjNlj4t8vdlXlxFVxEuDCmVRdKa6WxzN1E3JEkCcqbXhtK+4GhRf+SWwNPvW1+oiRm97YAcCRz4rtFfvvakRPZ5nYJ6ZiufXNXWSWdY5/qSieYUMJQovdGIJSHuklm+0V3fBWArD17Z1MHlrm6jP2L8UqARi6p5nJg8vEJ+2vHU3DXtY/2MKFHy8Ije2ZIwlmjgge5GKlbeu5NcTxL8+SXri295G/eV2NrDR/MllXCsPLTy7V9Ux26pW7Mb4oou4lOSz7mNsbK27QBc3L+vv9KG6Zk98Wm3soEtRB3jr+I+sBTb8HJZZBD9qTEmhp0zGzsDBvLRLRARfOmIkWrLY+KXglE59j7XM+/Ps/58ufv6dsLb1rPQBTU/Wpwd7E9Uc+FZ9nbH3FMomxNIEXVh+S+iSTgCNLLfaCK2aiBiW8OTJbo89AdpgsxO3FaOVUFs2nMD8H83Usp6YEUh0SEcNbAd3ggiC/TpaL+AbZ7ColzWpIlNsmmmbNdXjicH1+0MWna6xNFdaA6WM22ruWlHF5ZE1kr8TmhwJMHUsLEUiMFBypcWG0HAKtVtq2C88kiQqQjjwhaB9xM3UsI0QcahlQ6N3h5fj3YmJnLIY4selaYJv0k3/vubHTf6sXf7ODo98U82tahhRcfonJo2J79pG7vciKxMkfinXO6R+n6jp4Gr3fh54xOf+LlOU/1CGisgIblwMmDlT5XqWqSEU480Nxv9JQ4fyTNvqx5EKAoUJkXIDcIefsY50kb3fQwbrtWcbPS0QX7NsdEzAdICtitmomojATsRaUTKOMe9kk01D7M1wYtHsMJtMyRm7NjPdnkeMOjEDld+7JmgQM01pU5NV99Cdv+Dy//8s3la23JJtomoZhGMiyvb61LX/xne98BwDZUSFgkxuIUl/Xmj/t/5urnLMp3Zs/yG3aEKJjWxPNI/6adYoPmlwBCHSLq4hEzyfY98nTwmmxdNUgq2ZJC8hCA2x6XS93/MfNFllJAN13NTP2rgGxSlh9EhTJTZ2DK+DAVUfu1c7bwnTfVT63eDXs/Og6bvl4dfZ8OUQvJYmN13m7uw5MH4wwdVD8QDbY7SPUL57XdObQIpPPih8s7PzYOtY9unZOXg+4ArDn340Iv/fliSSzx5aYPSLWn56wG1+rh0CXWFqOxVPLzB+PsihCKrwGRC/FScykQBUjKA29qpPb/nATrrCYkQj0uut75y5LsUu4WsBBy1iDcL3el7cy9s4B4Xq7fnsdOz+6UbieHjfQ61AVO/hX5zn+uXHhdFSugEWkyyOfFqsWum8J032rlb/V0Ry23d7+L6U4//RqB/rcH1nv5dx/LG/7Xa4AiqLgs5EO5SZ+NUilLKfc6SzPrDdzvmhqQ8eq31/8RYqD/2o/OCl5LTvac0sjPXub7FUqumnha3VayiwiyJqc/NIkR/9JXEFRS+iodRxI7PjQOsbe1Sdcb9NbeujYZe92aDGaRvzi/QK4w87SM+/acMLAK9rwtYtV9HW42Pv4BrrvEFu71XiW2JUksYkbE51Yvhhn5vAS0XGx9gKdHgJdXmFfdubIElOHIsJKQ913NLPzw8NCda4Fww93svW9A8L1Jp5dYHKfuBplqN9HqL/23qwUU/sjTD5fPzlZFNHLCZYuiAdDdv/OesbePSBcr+u2cF2+kNMnVbYRVfI/BXo8+FrEUwJvelsPbTvEbJk77OT23x9l6P4223Ukh4S6rKGnsisXkOxi9vAyB/76EslZzVJtEYCvvcR2ZmoHsZvX++jc6qehw6qY7bH3Pc+ccvLcU05KjXXm/1wCQHu8/HgPhy1bm1dKvImXFvLkcNlTfmLm/a65baXzT+G5I17OX7G3l9IbLd882AzdGxQaO2pUAChWilGsAwkhGFnSy3DsazFhFSUzC1oqi5bShVJgd+/ws+dd7TiLsx/aIKeHhz2se6Bx9QPYgKdRwdta5iSwBjFK8Vj/RNE45KFls7ijN/qaFra+w85LL0CSJJYvp4heunGnQlMHl5k+JE7UD/V5CPUK5j0AJvYvM3lQkFwBbHh9Gz13NArXqxdb3tZJ21j5lJ5rkDvs0eMwcTBKROByHYDiUWjo9uBvsd+fkiQRn00z9UKM+MyNIcUmZjNExzPogmpkbWN+dn2gC09Y7ATf06jQtadBPDeEAs6g+EGU4oGGHpvvoMjeNI94GX6FjZhOiV3d8OowW99i3+/Kp3tTE1nUpLi68ekfpbjwVBrJpuJKHoobPEVTQYnZIysMDJr09lv9tDhi3/j+IBHkqLo6tvW6d/8MgDe8/Wfln1FRcDqdZAXSXt3EjcXEhKUmLwfK21VJtt5dfNtq0t8F3c1PUzZtMZBqtuZZX7PKcJu9+LycKowbl8tAlgWVNtQsVy7InDlWR1q6NKi5r2wq9n2vjXfLrNtTUt7GAXzPmEJjd6GeZIPYBOBrdiCXc3/ztrACcUH2Upc6TuuIC5fd154jbMgu2PraIC3rBPfPqsnSVY3E4o2xH6llg4ljaVIRsXHmDsiEup3IHjHCw/KMztUjaWHCUahbZv093rreXz1oXacw/DKBM+3cmJs7pzJhh9RWVAegoV0m1Ck4ViSJ2TMaM6evUZxAgGAXndQsZaPifY6N+iOv8DNU3J82iU2hXoVgl/hLl12UtxFQeN4yezV3EFw2t1lSUdyoZ6tCY5cNm1lCntnxkEJnZa7sGmRdCppm2WpRFyO+JHHsqJNUSkZJifjOxpq1yL1c+/2FXQYbgxkanVbZ6Ii9d34q4OI7Ld41ffXJe//N+u+dXyxbL9TWCsCPf/xjW+2AgEv/uc99DgCvUiYaUjIBKikqlYW21gmWFIWZ56MkZ9PEpqsbk9Kb8H33dtG+tZEX/tc54hMChqFOZaOZ/YvM7BdPIzFzZMn6H8E2w0NBAl3iZKP1j/XiCbl45o9PCtXb8u4h3AEnz/yJWL2evS04XA4mBNMDxCZSOL3iBu/cN+pTD9jz70bQUgaH/6eYusrlH9WnVvNcHeoBABe+W5/SieJW6urPeuFwOnB5BCMFKpx9QiyXPMDCiRjPnDhRu2AJEtMqp78qfuO9dWsD617VzbnvTgqRGeeOLDN3RDzYFptI0tDjA1Us0NNzayvNG0OM/3JeSLlp0xv7aBoK8tQfHRdqb/QNfQS7fcwfFXsXTUMB/G3i0eDpw4t4GsTJVCvp8+q4UbGi3FQh9Uo5bHvfOhyKxL7/VlBJsKOodOIrE6iL6hqCkpTK3VKrpqhUhDxBaeXn/+gtq6gUCoXwesXXlJu4MdCrkNvMkqGc2tCxRlGpYt302ludktfDsX+dwGknH3KJFOzmt/SgJQ0Of9qmslpeKSOvbGQzjUceJ/61PoWi2aNRknMZIRUlgIZeH1k9y7RgOuCNr+9h/uQyZ75m/+amM+Rk1weHmD0S5dy3S95nlT7yt7np2tOMacLlGfs+iqGZJGZSJGbEcpVoUY3jnxdX0mvf2Uj/y9s5/dUrRAXIwsl5jfPfEb8Be/UXC0JKT3nEr6aIXxU/CFS8MnKZvN3XC4rPgVPU7wLmXhBMbZ3DC38nruADMPF0fQo+W987gENxcPhTF4TqnXmivn1BbCJJekn8QK/3jlbSy6qQyhfAro+OkJzPrFVPq+FrbHlbH/GplLCaXEOPDz2VZfaQ/fefiWjMn1hmwaYaUl4dLzmrcagOxaeV7+4ENDCNLJJc2/dqHPKy4bVdXH1uiYl9RYfqNRSVZo8kWbyskpzV1xCU5LjlR1dTVCpGnqCUh/Z4BOefrvbnBgYHmZ+f5rOf/Sz33nuvrc+9iRuHr33tawA4G9cSd0v9rrlt5RSVysMZW1tOb/QSW0hx9Gd67ZRMJams2jZ46Nvq4tQPl4nbudWfD9wqWKpGipLL42UP0XGV6HjRvtKm3xa9nEFxSWgxQb+rx0WoN7dPFPAP++4IEex0c+AfitYAGz7fugdb8LW6OPgPYmtH544gnpDC/HGxy0+xiTRqTJxoOnUoUVfqt81vbMPQTGFFpTnB75XHkc/VF7uaOVJhnalxu9vpkXF6xC9W1gvF40ARaS+nqDTxrHhMKD2v8/yn7MfK8mo+ehzbKQWLEehQWP9wK5d/uUREQIEpPqlzblLc10stqMSmMuhlYl7VUh2G13np2RMicj5JOmLflvXeGqJzWwMHP3NFKE1jz62NtG0Osu9vyvtda1SUcopIDT1uQn2ChL2syeypBJ5Gm/69o7DvuJRLYSuU9s1l2aL8siCpGqbLnn0auceDyw2His6g7CgqHTsioWtrCUrO3FpRXVGpgDxBKY83vP1nZRWVwuEwik1l85u48VhcXCyrRAYFglIe8W1rFZUqwVXG90g1Ozg+6cJlY4oUE5QARraYGIbESZvKRlIuJa8sGxgGZJ0yDs0++eTK8dVlTcVhK+3bzHkDLZWtnFK8Apq6ZCQHLE1k1xKUqqgpjdztY+6CtlpRqdT3KqPwsvWRBqZPZZg6UnLuW8XPkV3Qs8OLJEvMnixzXlxuHJkmILE8pZOKinWKYcD4vrRw6jd/i8zgrR4uPpsmsWD/nRsZmD0lHouIThgcmRAXblDjMHdGvD3ZCU6PhExdSdHE23M5UNxV3kG59y5JxGZtPl1J/QvPCKqD5erXlXLPNBm41Y3T4+Dsz/Npru0pIk2f0Mrvc2rUj83o6Blzpf1VqDLXu3f40RJZYpOx1eWLvstK+0XY+MoAqSVjrTJSBd8pj5F7/CQWDC48XcFhK1FRkowspuwg3G1teJcmRVKUG0yfhajNrVLWZfkUhgqnDwCY4LRvJ7JehcLssYhKure2n+J2wY4tKufnXSSLthW1FJXmVJlfRnwkjbUEJTlu9WM1RaVi5AlKKz/f+cU1ikq93b3MHzjK9773PR544AFbn2vbSzt3zjpo9XtaVv+hkiORIyoN3ttI25Ygx788Q1xAGlpSFGI1pJPLHTJNH4qAhBhBCRh7az/Bbh9Pi5B4TBNX2IXLK97ewokYCyfEbyUd/cdLwnUAxn86i7dN/DbT5HML+JrF673wT5dw1XHuXQ9ZBaDjliaMtCFMBslENbSEuBrDutd0kVrMCJOw6sWGN/YQvZoUTpElmv7uWqDG6yRhuSyCzNSBCIunrr8alivsYt0D7Yw/NUv8in3HQ00aZOIaalxsvLjCLjp3NDL13Dxq3P4COXc4KqzsBnDhe1e5+tyccGq5qQMR9DpuXV3++SxNw/Zvr+Rx5NN1HnTWOedcAQfuFjexSykhotKO3xrC0+jimT/JjW2bRKXJ/ZGyxWoRleJX1hKU7GDnazxIisSBr6TWEJTyKEdUikQiLCzcGDt2E+KoFJgtPSjLI09U2vGWBvRUlqOCEsO66UGbrRGxLZOreuK5RbS0zQ1Zke+287eGiU9lOP4vYqSjQI+bTCSzkrrNLi79cE6YoATw7J+JpXbN4/KT8yxdEvP1tKTG9OFF5gRTzCUmMhz+zHmSC2K2P7OgcfSfLtcuWAJnyEnb5gZmD0eslGN221vWyMRUNMEUZcE+H507Grn4w0nh914Pmkb9tG4OcearYgeWl380WzeRvR6c/nKdfvOeJvytnrqIX/Wg67YwTr8i3DfpRRVZ4OZoHuFNQRyyJEwaqrc/j372ApoYzw+AyQOLJGvZ3DIY/8UciSlxaf1n/7Q+W3bm6/WNE1+HEy1logkqDu/9xDALZ+Kc/bqV4twOUSkxnWLqheXyqVWqEJW0DGhlCEq10NiksWkMLl+CiXHnGoLSyueXEJUmp6znm529cXbiJuzj+HHrsoYr3Lrq95X8rjxRqatFY6hP58gZJ8s204eARVRKL9UgAmhr5090KsuEohG3c1eu6GZp324PrcNuDnze/h7TNLI5pSEH6SWxvWJ8Vic+U8afqZH27dLPl7n082VhJdvJ56N4WopIhTZ9vumjcXyCSi4AZ787h+ISrzf5fH0xj8YhD6ZhsnRJbN1ILemYurj/27U7iJYy6iYriaLnjhDpiCacxuvo529sGqfDn6nDV8hmGbyvmYWzSZavXp8UgcWH/IoHum8NMXcyQXLW/hqsq5CO6miCMS/FA03rfCxeSgqlao1NasTqIDdNHo4RuZASIigBRM4mMLNCHE0Apo/HSS2W37tUIleQNbn4kyUuslT9w8sEjSJnxA/FARQXKAGFdEQXIiqtv9tDsMPJwS9Y9touUWnynNXmmueoQVRKpxQhBaU8XuaL45FMfpgIriEo5VGOqBSJRKpe/rqJXy0ymUxZElkpQSmPPFHpTm8CzZR4Li2maBhvdOJdqO5flBKUAC5POnNn8LXX0zxBCWDrHohF4ZzAcaOkGbh8FmmlTPitKuYuU56gVCPt29HvW2tTRQWlCuSF8QMpEsXKPzZ9r4kjaWIzYvPSUOH4t6MYgnfJjIzJpWfFL6DJLmjokFmeNjB0+zbZ0AxSy1kMm2pUebgC0DzgYvaMaj/F2TXA2whNvS4mT6hCbKPIJYPIpRvjGwJMn1CZPiHeIcFOBV+jxMzJKrHHa00NWFQ/1C3j8kpCqQEB0rEseunXs0FU8ocdOBSITYuNsxVioODFh3M/ia62Rw57cbrJYxk0u+eNRUSlKwfTZCrVq9C2ZGQ58l0b+6QyKcimTtWX9s3ltey0oWYxnXZjlwZ7bs0yOy1xOReOt0NUyqhwfsHFQmLtc1YjKhnIZQlKtRDQDB5YVDkcULjgc64hKOVRSlSabLPOiZNJ+3bCdtR3cdGKgATcRQGbGhNZ6usiNpEhMacSny+ZbZpWVkUpj767w+z6aOV0CZUOmeJXVc59Y1pIhhpg+oUlImcFDoRyE3njG3oY+811Qm2BlQ5i6OFO4Xr1YuFEjKs/E0/rML1vsS4VHzWiChO3wFKrad4UFK7Xf087A/eJSWYDHPnMRU5+QTzVTOumEO3bbKbEKcItHx+tK11f0/oG2reKt/frAFfARdNQkNaNjUL1At0u9v4fG+l9eWvtwkUIdrhpWt9A86iYRn70XIKD/+McUUGJ7taNQXpubyW8Saw9V9hlpd8RFA1S4wiRr/JYPBXnzBPi6iTLF5M39EC2aUOAjW/qEa638a0DbHn7oPWDgCM2fXiR+VMlh5w1AuaSQ2LymUUmnip/clAt9dv6R9rZ+vrKNlBKZVZUlYqxNG0QnTYqEpTyKE39Vs9t3Ju4sSgNfFY6KMsjtaGDpQmNxatrfSwznS6ropTHljc00//yKmtNhQjJ1P4o80fjlYO0eZT4bnPHl5k5umT9IDls+25b3tbH8MNiaS3NrMm6V3UQ7LtxymETTy2QEPWFNLjw3VlipWnNbBzUJadVELwI5fRJdOxqEk5L17opSP89bQQHxEiqS+cSvPB3F0kKpp8IjwRo2RzCKaik13dPC7d8fBRnSEyxoGW0gZYNIfG0e78maNsaomWzeHqyzW/vY9dHxPc97dubaNvaKFzvzFcnOflFcd9k6L52Bu5tF67XNOqnaVQ8nV1yRhNODQgw/uPZ1UQqm3Zw8plFojcwMNh/X6utNHFSyYHa1ncMsO6VNt9D0XefPxVjvuQyT63Ub7ruYvzJKMn5Cu+hUuo3J2x7c5jOwcqfLcfVFVWlPBJxWI5CfHmtglIpilO/uZzWha+ZmZmqdW7iV4N8yhFnQ8EXquV3zW1zEktJRJYcJEtcLGdMK6uilEdbh87mu6vM+TIEJYB0HCZPGpgVtfNzKJk3i5d0Zs/m5oKiWP+qID/v+m9vYMtrSy5R1LJVpkl40EXXzgoORq0DeEGCEkB8Ri+oGgmQ0pcupOsiDulJSC+JH3wHe1wEe8SVgfvuaKTvzsba/nYJLvwwwsWfiqu/t48Fadsifhlp7G3trH9ILI0wQPsmPy0bqqzBDoftA5GXHBRo3einaUhsH6L4YOd7umjfXv09lI4JxafQtilIY58YESQd0Tn5lTlik2I+jb/dzcDLwjT2i20oFI+VEq1SukVJksqPdx1hghJAYlbn6jNRS1FOAOl5nZkja+OAonvftR9Qfjz72hT6bgvUru9YfUjVd0eQLY81AmDWOhx3OVdUlObO68ycWe0n1Ur9Zvo9LE7DXAVh3Wqp33r7dW5trhxXdcbMFVWlYkxpCtOaUpGglEdp6rdqqlw38auHrutrSEqVCEp5xLelmdIUZrS1B7WumFlWRSmPrQ0pesKVYzTlCEoAkWWZxZiM5qvuOxUTlACmrsJs7lgt65TJOqsfgks5taVNt0n0bFj9t5pp37JZOofBW2nbVuMAvmaKtzJrcOSyQSa/batmsyRp1Tny7CmVVGkaNRvzVI1XCEtWsceyDA1dFdLSVYEvLDNwqx9/iyzkV6ajcP4XKdKC984DzTIdG9y4/GJ+XmOPzOZX+W2nxsoj2O6kfdSN/OsqNFcypkrR3KfQPlJFeKNC3Z7tLkbvs+GvldRvGVBoHxEYZLnxPn1C4+ohm8pgeWRNura66d1R0YGqWNUblvE3V7ElFfxtNU6BIFjNHy+Zx5EL2moiVY33lp9rSxMGqcUy867GXkCqETcqR1ACaOmXCLUYVcmcUFBRymPTrdCbSxMnadXbznqVnIqSzMRVB5FIif9eI/VbptHF1aiLlFH+O1RO/WawO5SiT62y9sUdK6pKeaQccMXtYElxVCQo5VGc+s1st/aBc3P2VXxt7/DicWvT3ujLHQrZ3BgvpJo49q8zq9OaVSEn5eEMyshuqaziRLVb8N13htn4xu7cM9rfwM4djnLqSzaC4Ka5arJd/eUc08+L3/xo39lE+7ZG4Xrb3j/Enn83Ilxv+NWdbHiD+MH+4APtDD0kTv4Ze9cAY+8cEK439Mouhh8SO3gEOPmlcU49IU42ahj04e8QDxA98ycnOfg/ztUuWAI1rpNaFCdvPfPHJzj8KbGUdAC3/eGmukhRdcEFt/+HTcIEEjWi8tQfHRcmyKgpS3FCXRYLoCyciPHUHx0XJ9a4LIKMKGloYv8Cp792henDYoHBzh2NDNzbQesGsUPE1u0hdv/uegLdYg/aMOhj09v7cAXEAn8tYw1sfe+gcL8MvaqTvf/HBuF6nbvChAUJZgBXn5pjen+RrS6x5ZUw9cwiZ8uljakQOM8f0HXsDrHpLd0VP7ccUcnRHMbV5EZ21X4HpUSlC89pfO+V9oKQxUSlzs5OgkFxYuhN3Dg4ihzwWgdleZyYC3H1wOoxUo2clIfT68DV4ELylhlLVa5wjTzWTniDtSOudpu0FBe+N8f80ZJDITsH9M9FmHx+qWa5PMysiTPkpHVLA+1jYvbDGXJyy++ts0ijgvU2va2H0IBYpMAZcjLyWCe+jhw7xszaOqgL9HjZ8VvDhIbE2gtvCDH0YAdNG8T6Ze6FCCe/Mi5G8MdK8Sf6jGApFD39xyctIpYAMss6alwTVm46+40pS11VkHcy8voua227Qdj8G33c+olR4XpHPn2J5/7stHC9TFQjHRX3Yw/97Xn2/zdxFR9fuxN/t7ii66knJjj5ZfF0hMOv7GL4AfFLJJve1svoGyqv+ZXQd19bwbYI7FvXP9JJ38tbahcswa4PD7HpzeLP2bmziY7tjRX/LjmkNQQlgMl9ESbtpEUv+e7nvjnL4tm1JKxKRCXJZTmTw68M0zpW5YC7DFEp296G4ldw2nChiolKmubk2AtOZj9q7/JCnqjU0tqeqy9OaruJ6498IM2dU1Ky63ddWOflxAU3ul6IXVUjJ+WhuMDpl9EbyzBiKxCUAMJ90L/Tast0V9hMlZkvsWmdK/tK/MFy8TYju2q+zZxIcvX5MmO9ErEyt8dq2+ijY2sVckUFotLw/Y1sebOYuhlA544AfXeGhA6SANrG/HTtFifjDN7bxPCD4gq4A3c3Mfhy8XpnvjPPuR9Y+1kRopKnRbGfOqoIh/7XJMe/IH4ZKR3VSS2LE0gO/P0kp56wEcwuOZzY9YEe1r9KfE2sF7t/q5fB+wTfnw77/mqcyz8TU0bXVcjEdLRk5X1YubGQjujs/9urdZHvAl1KRdJQJUQnMpz65ixL58UI1A29Hobua6aht3qDpd8x0OVk85vb8LWKjWtPWGHg7kYUweke6FBY/1AzStEWxs4cbBvzs/03O1DKnXVW8fvCwx7atwSs91DOnjnkNQQlgNnjKSaKbLWpG+XJSiUqSUtXdSYOrfXvKxGVTL/1vkJtMLSt4tcoS1RaHPFgtsl45Np2upSodE7zsP7tz9WsB6uJSu3t7fh84vvPm7gxyGazOJ2FMVmLoJTHC5tNLhmr94nVyEl5eGQTR9BK/VaKSgQlgP5OjcaANZ8qEZVKCUoA01dllhdXz9dyRCVJM1YISgDjp0zmyhxzmYqjPFkpp3LUMaLQ1FFlX1mOqCTDlvtdtAzZUBEpWoNlGXp3u/E1O+z7XpKE7IKurW7c+eMOm/F5lx/W3+vH31rynDXssadJZvgOP8F2sfOO2JzB6Z8kWJ7JvRe731G2VIoQFGWJXDY49OVYeWJGFegZSC9nhVW3Zk9rHPpyDEPwnnvHJifbXhsQ/n71ome7m62vKVm4bazBl/ZlOPKNRMV0cJWQiWfJxGrYoTL1zz+V4dh3bPhBJePd5QV3pWOZcs+ZG4eX9yU5/1SVWESF79i7y0PvHhskrBJ/u3uXl549PnsXBoq+Y3jISXhQqfpMa5A1ad/gpHVdia210fb6uz3076jgH1YgKAF0jDhp6c/VK+M7ZV3KGoISwJUzMFtkqyUtW5aslC1RSZqckInF1j5PJaJSptEqO9CYodVXOc5QjqgUHXHgDGRx2zAtxUQlQ5bZH3Lzh6/8Uu2KFIhK/kbrfEHkYp5tj17NMa2Cri4hKbSGNmjoDXHlKTH66PlvzXGetRvUWmk6WjYE8bUUbXAkh63DnY5bmvC3eTj/LTGp4HrTth381Dlc4twYYUJGHk3DARw12Nrl0Lq1CSSE1ZScAaWumwpnvnFVOG8uWGou9WDTm/vQkgYH/vJsXfVFUQ/R6FoQu5Igcu76p1ADQIX4VIr5M+Lzoa7mIioH/lKcKFYvWjeFGHmkh/FfznLlp/aZoKgIpxsBmHpunkxMY65UxacGFK+M7JZxuBRWs0Oro2VDA01DQfxdPtQz9sdMQ58ff4eXQKtLSD0tE1PRU+L5ek98abwu21mvrW4ZC9K8PsTpr5Yh0ZWkfis+oGvdHMLfUT3YVi7128lv1yn/3wNbZwyOtNuz8/nUb06nE0N0J3MTNxR5kpLdgzKAnk4NNeogNiW2oB76bAXbVmOMNA1aQb/IKWstXnNbsYLvNvxwG/OnYkQvlOamru67jf/cPjk87zdqUY39f3G6rlRhWsJAtXHYWAxfk5OGXh/R7pSQ4kmox0PLxgZiU2mS0/bJrU6/A6dPRvaI+XqRU0tkDZOls2J+upaExdNiyoIAnbe20nNbC0c/d5nY+PVXgpk5uMTMwaXr3k4ei+cSdaUnqxcLp2NoNW7bvJg4J7hPulZseH0fsltm/38XIzjFr4rLuQOc/eaEHQX/NXD6FWQ7O/4StG9tJKsaTDwlduGlcciPmtAZ/6mYSq4a18nE6jg4/uszdu4YrYEtW13mkK7/3hbi02kWTqz1iUpTv0lFTmF42IvidjB3tIptKpP6bf8Paj/mWmj09sNsFJZtcjy1xyME/rQ99xjXJ93PTVwblpetfZcr1Czkd4XQ6WrTmJyVEAixMTmuMLnCpyyaZFUISgBNnU4auxxcPmiVM90upEzRPqwCoS/Uo+BvdjD5QsmeTVGq5j+KT+vEp23ajiL/79T3F2ur5pemfjOzZGI6sks8/UJjvwdnQGb8SbF6bZv9yC5ZmNDhCjhw2Jb1L+DijxcErosWkF5Y/Q7sqoNseHUreiZrXR69ATj77RuQSrwo7UzkfJLYVB05V+tE5HySpcv1+RmA9dx2FaF0OP6lykQxUVWtWvC1KWx8TQdXnl1i+pDAfNAhdlWcxL58Jc25H8wTm6j9/orHu+yUcfkUFLeMiCxSoMNF2+YgS+NpluL2x4y/zU2o34OnQSGe1G33u5Y00OJGzi4W1alBTL/6TJzpQ3H0/CMWpT+phvisTrxWer8yadwCrdDY6+LqwfJEpeLUb3mCEkBzp/XvwguVmyuX+u1otD5l4yZ0uBCGIXtkv3zqt5sxr5c2TNNcISnZJSgB9CQMshgsCzIl9i2WJ6xVIygBdDQbKLLJUtxqT/MpOJOF+VaOoATQ2WOwHIVEbC1RyaFVHpcRkcyiRWnYjnxPreQGFlCS+k3SDTIJE83u9iS3BstuaOp1kooYJOfszzGXz0H7BjfpmEFGgNTsUCScPivFVeHha9vGxKLBuScTJCOGtde3u3YakFwo+V427HFjp8zgXh9nfpokUVr/OiA+ZxCfuwa/RBCx2SyKRxNKEXctWJ7RV4eH6/F9itOn1ag/d05nrppv8SL7Xn17vLj9Ese/ayM+WrRnUu24aaVp40yTK/tSq1ySqijyt90+R12paNvWuzBNiFwUi0M19igYKoX0eTZ950wii5rIIhlZzKK4UTWCEsDJn6irh7RuL/3bQhldg1KUEpQA2toN0mlYjpYnKhWnfssTlAB6QjrzSZm5ZGXZ/3Kp377nr4+s3ZfUSS0F8Dba2xd88s4v8vs/eQxJkkil7NslybTJJOno6GBmZoZ//wf/0faHAyhO6+BWy5gVgyW2cJ2VORWfA0mS0BLVLOzah3A4rZujRuYavttNXDMUr4yZNYXfg0ORMAFTFxtgii/XXlrwvTskaxgJErgUn4xpiH+/euH0K5iGiZ6+AR6HBE6fgqEaZDXBiV4a1LRZx+mVMTIGWcH37nA5yGpZMXvkkFA8DvR0VvxZb+JFg6RIyIqjwpiu7GQpHgeSXGttuNaHQzhFaTGMoIw7a31MWvBj/uXv/oHZ2dmbh2UvUTidTjo7O3nL294rVM/rtvYRGQ0cmWtQazBNrqcD5ml0oWeMyoTFCk07fTK6lsWstWbcNLnXD05weRXUhC4WnHDk1lJB/8nhkXC6FTIxTYzMLmHd8BLkZTg8DpxumUwdKbzqgTOo4FAkMos3pj3F78ChOFCjoh2D1aeCS6LTLyPJEqqgsoLksuIqWcElSvE7kLjOa/dN1AxuKT6ZrGGSrbR/qVDfHXKS1U20RK3xcg0BQkmqmeqqGrKNWXy6A13Kogqkhcxk0vzl/+/PGBwc5MKFC3W3fxPXB9u3b+eFF17gPb/9cfwh+wqDPrK4JFgyHbji17Bfr5Vmoxay1dt2Bx0oTolEpJLfZZb1nRS3hMMJaryWY3WNjtc1+23/ezt+7qB1EVCNi40T2WXFvLKqWP94Gp2YhilMbpVk60BENGOft8mJoWdRYwLf7xpeub/NhZ7JkhH1heqEt9mFntLRklmh5cuhSGSN8nOzciXwNrrQkhp6WjD26HVgZLJC70+SwR10oiZ08Zje/6cgXZPrUquywwlOj6O8AoRUuW2Xz4qRJhaqzAVHfYeTeZgOB4an/phXqD0GcRcYMoTEDuM/95dfYXx8/KaK5UsUbrebjo4O7v+IWMyrPW2iSrDolnBG6h9bsmoiXYPrJhkmUpVYfygMmTSkK/EPsoC5dt3zBkBLV+WQF+rXC9NEupZUiBX8RoEPuJbK14ja9kxSwNsgk1o2MEvfQ5XqkgSyR7LWX4GvqLglPA2WLRbyoSRLXC8r6M4oHglPUCYxr4seU9YFT4MDl9/B8tQ1+F0CBCG3HxS3g0Qk15mmaau+JAGOstOyKjwBCYdTIlmaxrAGHE5ridWrxbzKzDV3UEKSJdJLdtp7EfZo19F/qVn1Gohh5jXWL6dcWQyPz7rXXZbk6ZAw5fJth0ImhgHxeOVnM2WJrFL/s2cV0MXFglewsf0qiZlWZE8KT0jsMs8nPvh37NixgwMHDtgqLxyZcwg6pdksSNl8Pft1HU4HkoMbRsqwNuwmjqovfu3fZKcDJHHD5XA6kCQwKjCt/78Kh9MBpilMHpEcVq5ys45Ys4RFYBCrY23wHIK35WW3A0zx9y5JknWwJ9ieJEuWikQ9a5Ek1deeUd/CJzkcOBTBAIpHxtCzwiQzqz2pxnwvgyw4ZME+cVjvT1YkzKxYe7LLgSFKivp1goTwd5Nk670JExJzhFLRMZ3VTdBrrQ3XikI+Xtlp/WiIXEQ0rfN3CbChmr265Rf5BsBNvLiQJAmHw4Gg2UHTrT2M7BBb35w+B1nDxMjkBpJZcuviRYYa18EUt6sOlwPFAUbNZ1v9d6dfQVezmDXyRK9tsA5C7K8LHBKKR0ZP6UL2WFKknD12gEOwbwwTh1PQ73I4csEXSUhWWvY4kJ2ysBKWJOf8PMHnzPtqWVH/PteMcL/IkrXxFRzTUm5fJtqe4lOQHKDFBQNLsrXOCfdnjifpECCBADgUOff+xPpFzh2eCF9C+HWBlHO8BKes4lMws9ky/VL9fcouBw5DnHeh5Q7ga64N1+LDSAVb4nRD1gBDYFhLkoTqMDGRhHwvhy6t1L+Jly4UByiS/RerYvniimTWimOugssFsgKp/MGVJF3TYZMkV0+3oSdNdMlErhAsBQmzjIFw+mQcMuiZWpN59ee6vJavkLFD3CoKvlv7Z2teiuHXY165/A5ME4usIgDZKWEiCcdM8gddovtZyYG1Bgvun71NClnDJLMs+AIlcNQRg5LdVjxW9HAOrO8oqoaluCWymlmLE7i2LSkXgxJpT7LUWbW0ITRe8pkY64mxZTWrnsgdKodijU85F88VeU5XQEZLGnW9v18HOOQSW2ZjGsouizSUWS45OK7hOzg9EorbgVaGmJaPYZeDoYKhGchVbISZO7StF6YM5NZVt8PE6YC4LmCTdAc4dVB06/8F4HA4bvpdL2HkY16KYNwpqlj3ZhTTRGTZaFQMNBMShuWwSQo46jhTKMCsyt+LLwNmFREPB2Vl093enAhKLU5eid/nD0lkUia6nZiyCVKubUkWP9vM79V/dbA3ryUF3H4HmXhW6DvKLmvNV5zSWve8RtOmRhV/uzwcsvXOHYrYfsDptchGsXldqJ5DlgrticQCZStuZQiSoPP+fbW1pmw9xXpGI22PZFT8nKvbs1fX0yAhOyUSC4IxNtn6jqLfD9Oae3LVM+21MWnF5cAhg2arvcIBnNNn+XjqtVysEcaNIylJcs4VzXPTbNb3Bq1LAZlSQmmN9cXts+JIZfetEpgV4uXxXLIXuUo83ayQWd02nBJK7r03G1kyQFzg/CWrK7galsGRJavXf8HPDmx/eiJhyab/nx/6Rx571TvEWplenT7ETNSWL+u+PURjv5/j/zqJWUQbrpXubdObe/B3etj/50VpoESv8FTDi3RYt/U9gyg+mYN/JZauavfvrkd2yzz3/5wSqrf9g8PIbodwWrOt7xvEoTg4/D/F0pTt+b0RAPb/N7H0DHt+bwQ9k+XQX9+YNF4b39xLelHl4g9ujPR178tbSc6k60o7VQ9u+w+bSM6mOfLpi0L1bv8Pm4iNJzj22cv2K7ngjj/YTOTCMie/UCZx8osNFwze087c8UWhNGP1wtPmYuTV3Vz66Uzd6QVF0L6rkaEHO7nw/SnmDkdt1+u/r42uvS2c+so4i6fss1y7bmum585Wjn/2Aolp+/3Zf38bnbvCHPz7C6gR+/U2vKGH5o0h9v/3k0KOUf/9bXTsDPPcn58SyWZXGdcarKiQ7m3ktZ2EBvzs/+/VbZlUlHLE0Riie6ebYLuTU9+t/e7O/E7/6s/qFRuXZ+7+J770WTfukrQnN/HSgaZpTE5O8l9++3Pc+06xm2We8aXVv4gslSu2CiMPN7J4Kc3ciTRmcdqQGrcOd/1WP3On44z/pJDewU66t6p4kXy3vN/oDDnZ/q4+rjy1wPTzS7br+7tdbHvnIBP7Ilz+sf1Un74OJ1ve1s/4k/NC7QV6PGx4XTeXfjzL/PGY7X5o2RJk3au7ufCDKWYP2l8z2nc2Mnh/O2e+PkH0wvVf20JDPrr3NnP2a1fRktc/ouXvdhMeDnLlSbG0WPViwxu7aVoX5Lk/F/O3N729l4ZeP/sF6429qx9/m5dnBevVi6ZRP55GF1PP2U9FeC3ou68Nl1e+YWnmtn9wCMkhcehvxfY9uz+2DkM3xepJDra+px89oXPiCyJ6/rDzt4ZIR1VO/EuZVLRVcOvH15OO6rzwD5eE6m3/4CDphQynvlxey1q6hpv19URdKqV72/GeTpbG01z8UfXxKQUL18mMtiY23gILUzBrY/ty9vdW5xzubluy99A5/Kn6Hf4cCASu4UrbTVw35H2X33rkC7zth78nVLfh0ur1OnC1diqhcKtOcyucPaEgxwvXL6VU9U1Oz5hCU5fM0e8X1VGLfLV6FJmKY26iCujFvkqR/zd4TwPeJoUTT9RIzVOS7m3ja1vxNMoc+edpe+3n6q97qBl3UOb4FyunxyqHoQfCuHwOTn1NzFfY/KY2HE6Jo58XiyVtflMbZtbkxJcFUshXgB1h/N47QhiZLJPP35gYVMsmH+qywfLVG6PUu+sD3SRm05z+hlh/7v5wL9FLKc5+R+y97/lIH4sX41z4gb2UU2VhN90b0L49QHQ8TTqylsXzYhMvFA/03x1m5ugy8cnrzxoKdjlZ/3Ar409FiZyprY6TH+/hES9D94Y59/0Fli7aT9vWNOSh945Gzn1vnuSc/e/XstFH795GTn59lnTEfrq3rj1BuneHOPqFadJLRXa5hu/TMuqha3eQE1+fQ8+HhYp9LRE2LCAVpyspk+6tFiqle+taD6098MJPq9fPtBVSjCz3OunyqLR5dA4v1U49MvTu1WcKm4Nie4L/1HqCL/6DgnIN6pk3cX2hqiqxWIy//c3PMfTD9wjVdY67LZa43/o5OF61OACjgTRLqoMZ1YVrubCGumoQa7ePpJlbkpmYLcwHpUip31FHJopCujcHUpXUb+Ug6UW+V541K8PGOxVmzum108UV+YqKw2Drq/1Mnsgwc8qmbcylexu9z8f00QyRy/ZtqsudZejuAJNHUyxP2P/e3iaZ9ff5ubI/yWK+PRv2ONAmM3i7j/H9KeKzxrWfA9TY+3pC0LLOzdSJDMYNyMLm8lnfMXLFuCEp2Dq3uOjY4ObYt2NC7XVvddO6zsnJH4jFHXt3u2nqdXLsh9c/XgngbQK3X2bpavG6/SL6WyW+e3hAxuVzMH3CxsXKerJUlaR7G3qZD8UjceaHCXv1c/Zl5IEgSNivl8PA7V6yOozvSwn5v8N3ezFUuPRczs+zWXfTK73oKZOzT6Yxi/2fGvWHb1FQ0yZXjhTeu+lUyA9y0ynme5nuQvmsW6wuWClF81BDhfo7u1IsphxcXKx+lpfodEASSEKiO8u2dIZ52cGEs7Yf+NGHvrfy/zLQ6xTb8zziWuYPPgJyjRR7xbDtpblyAcADR1S+88Mv8PAr3myrXvcGaHtFK4c+K7ZhnHg6ysTTaw9ZJIdUlaikq4YlhZuHzcOd9a/tItTr53lBEk+9OPIZMdJIHleemkPxig9sNa6hGOL16mVFRy8my97CqwVRUtO1oqHfj7fVfcNISld+WmcgykVdhIwTX7hMKnKDJG1Vq73EZB1OQz3fT6X+91ZHe4F2D/5OLw39vhtCUpo5sMTMgSXhestXkoQGUiRm6xgwpri/oyUM61atKtbexPMLqElDmLl9+UezXP6RWOD5WlB1bSgJLplZc+WgzlCzNaXOpTLkoImDGUA8oHtXKkHgQpbvDtmz82fu/icA5ufnb8pev8SRzW0IfvLPn7ZNVNq+OUOyWWb8kNgO9cx3lsr/wemsSlQy9KyVCjOHNQcmFZSIdnywn4UzccZ/urD6Dy8iuTzvN2pRjf1/IUY8AEjMqlx9doH54/aJP2DdSNWSVVLZVYBp1qeel5xLs3wlQWLGfqAeYObgEjMHl8QbrBMNPT4a+vy4mlxoSUFb5wQEzVViIkNios5DsjraO/+DWTw3iMADcOqJSdzBOoLu+X2p4PdbPJ0AxIIS14LwugCKp479S504/Kn60m8tnk9gCAaWAevWXB3zXY1rK2pDIhj/5byVMlEQhz9V377VFszsGn+q4trAaoISgKmqK0SlrG5i1FB6KSYo5XFyn+hDg1PTeGgSpnSJyS57L/HJsSf40jet/r+ZZveliTx57MqEzrHf+Ru2/MWHbdXrQWW0V+XQFRe6gFh5ZE4hUiY8YHpdVYlKWd1cFfNaRVACUOSyRKWuMRdN/S6Of6vkMkTNXCICkAoqnBd/tly7fKl/KDmYPLiM02cziF1UX43romf3FuqMeS1eTAmr8ADCJKpKsENQAggP+9BTxg0jKc2fqDNWkp86gsPx5BMzVvrhG4STX50ivVzH/lnB+m4CBzQAM4crX14yTbMyYSbfngCcQYXGAS/xmcwNISnFJjUO/kN5AnQpisd7MqIRvZwmvSj2jPlM5qL3Z/R0FjWpY+TiO1X7vQiRsylM3SRd6rOV8X2KMX86zfzpoj3dtZDBS6Fqa4hKnZudhPudHP/O2rlrlpSVEukCUSlbW4WymKCUx2TaxWTaVaZ0dbSd9UN6EG6355f+p9YTAEQiEQzjZgrolyokSULP+SEXXvEZ20Sl3fM6aQNOy2KXLk/HPWV/rzbIVYlKuiGtUtBTSkhJWY9clqi0YcxgaRGmr652UBz17B0rweGwiAQGnPy5DbtY4iPqWZnxQ2liczafKd8RJmgJU9iNNKhzD5wyWLyskSomfdpI4RWfNTj6tZwPdJ0JSgCegExzn5PIJY1kSjC2KSNMNFKTELlU53iqo73ZMypLV9UbQogCmDySYe5snbfU6/h+qUVILd64NaOxy4mnwSZJSXaIHdyVTjRJ4sIvBPz0IqO3OK7W54/UGfPSUiZ6pqhiNmvLh544qpLVzNUEJRv1z+9bbcgsgtKLA0fGWENU2rBRZ2lJYnpq7ea1mKAE4IoaK0QlIwtGjUw9ic613/MFj7hAgWGAum+E5eHzNHTb4zS8PrDM9LSBaZorfCI7kEybO9u+vj6uXLnCn/7HJj7+4WYAW0SloU0ZWtb52PeP06tIAbXUlAKdLlo2+rn4g/IdUEtRKVeodpkcNryxh2CPj/3/3SZJJtdtm97Si7/Le8PJNTexGrd8fBQ9YwgrU9WL2/79RjIxTbi9TW/pJTGfESZZ3PaHm0gtZDj8KfED1npw+3/YxLKoklKd8LS52PXB9cwdi3LmCfs3wl1hFxse6+bKL+dYPGNfMahpQ4BNb+xn8rn5G0JOsxSRurjw/cm6SEc38eJgwxt6aBgIsO+TORU6mxuTimtDlaCSHUWBcgQlgLZtfuSgj5lj1R3wUhWlh5NxfKbJVzbUjsznCUoAcqdlw+wGuW/ixkKSrFSm+uTwyu/sEJVu25YiGc1y+smSTU4NNaX2MS+ZpQyL5yoQXWwQ2qqOpRLfbddHBlg4k+DSD4t8PRu+2+6PDTN3YllI2ciW3/hSxoupCvoioGNXEwP3tXPqq1dYOnf9SSsDD7bTtSvM4U+fIzlj/2CoadRP584wJ758RYiQs/7RTlq3NPL0n50UJvLUg7yS0rP/t5hSar3Y+t4BvGE3z/3ZaaF6vXe14Ak5OftNsVvMOz40jNMvs++/3pj90vYPDuGQJQ7+zY3xm4VwTXrNL22U+j+7PjrE0oUE579jw98u6peyawNrCUqr/mYjAFKOoIQTusfczC36SNUwZcUqSv60xiOTcLIB5jfVtoFPjj0BwP/9lwv8hz9ZZOfOnRw4cKBmvZu4sXjta1/L1772Nf7s/wrze78VBrBFVNqylGIgrLNv3E26SAq9lpqSx6PT3GAwXYEfWUtRCcoQlIpRcgjVtd1NeMDFsa8VkVWqnCzlFZV6bvXR1O/h6BdLblFW803s7C2q+WZ2/J5fd99OEFve3EbWsBSYbsTebcd7ulDjujCpqu9lITIxoyq5phx2va+LxILGqSfqvNgnmH+tXiWluqDALR/qY+ZYnMtPLtmv5oGBu8PMHIsTq6IeXkqY8TQqjL21g4kDUSb3XX9yWrDLyfpXtXL554ss2FBEEsVLNVZhS1GpWmzIjk9YrX4JK7Nrl4+W9R6O/Jtlq6XSA7piFJGPura5CPc5OfbN1f5MKUFp1d/85YkexShHUAJoatDR22UmahCVSlWUuo824Ik58Tx4rGbbeYISgLd/HFVVX7Lj6P/rcDqdOJ1O4he6V35nh6h0/wWDmCRxUPau+n0tNaUWl4YjDkvp8gfQtRSVYC1BqRilRKVN2w0WIzA1XpiP1QhKeUWljbdJLE6bTJdw8lYpKJXCzjpYRW1TsqPEWa0NO36ZaK5Uu7BjjwUJSpYCk5eLT+cUmF5MwmgZhAdk+nf7OPWjGKkl+/W8jdA85GbqWAZDgMvTNuqke8zDkW/HbojiU15J6fBXxfzDeollA7e4aehQOPINsXhluE/GHXQwdVwTan/odje+RpljZQi/ZXEta5KRZehOr6WI9KMK7VX7fFv7tCpzVZBwL1y3qu9Tu/4agpJo/SoEpVJFpQ17IBaBiVzo0ayimlRMVNq0RWdpUWJyYnX5UoJSMYoVlSqhHEEJDHplg/FWiWQNdaNiFSVDhfTPt+IcnmJ4tHbs+PUB64LSvkMpbnt4gscee4wnnniiZj0QyCjc1NQEwLHTBWv3nR9+oXql6Tku/GSZfX83vUa1RPL7kPyVpT07dzfRuSuMK1zeaa12COxpdQkf5pz60lX7BCVYMVBqyiBbzUGogG3vH+K2P9wkXK/nnhY2va1PuJ4r4CA44K1dsGxl8Sqt20N03hYWrrfzY+vY/TvrhevFp1PEJm7AiprD3IkoM4fEb8o3DPhpWh8Urjd/MsrUwbW3iWthx0eGGXq4U7heXXDBrt9eT9dtzULV0ksqkdNRZo6K9ac37CTQ6SXU7xeql5hVWTy7zPwZGzc7XwSkIiqpSIbkgtiN6f772rjt328k0CvGdA10u+i/v0183tYxz8EiiwW6xSt33hZmyzv6axcsQb22U9eyZPMbQQEHt+zaUCOYZGZNXAFwVcjkUYmgBNC7t4neHZXXxjO/07+GoATwHV+AL/uDmFeqS2YXE5TAujHu9da5NtzEDUFpMO0n//zpquU940sc+mZmLUEJINxo/auA3j1B+m6r/HcqyII6fda/moG/Et/twF9fKhxCm1nbvpuhZjEFfS/JIXHbH4yw8U3dtQuXYOObumnZLL52+zqcOGur2K+Fk4LSTR61gthO6L6jGXezmIR/aMjHrZ8YpX1no1C9VCRDYjaFGrv+6VYBFk7GmD8eRRNUgQn1+Qn1+/GFxPpl9liUuaNLwgSlrtvCbP/gkFila8DAg+2MvXtAuN70oUVmDov7seGRII3rxOfCzAuLzLywJFyvXsQnUsSuiis57PrIMFvfMyBcr31nI02jNvzR0nksnnEDsNJQ1mNbRl7XRceukHA9u7azlAxqqCaaXTW5ojVg1dqQQzWCEliKSs4qX60sQQnwN0H3Vh+tVbbXZ3/PtSbNW8Lj5N+GnLzQ4mRitrHqs+UJSgAvnLbmT3Oz2H7pJm4MOjutffPFKwXizrHf+ZuqdRouZRlfcvPkBf8qghJAvMdDvKfyQW64Dfo2OvA1lP+76a28x1I8NQhKYCkqFWHycKZAUNL1mgpK+XmXzZirFDOth6vhh0kSQ/eF2P3e9vJ/r3KQ1TziYeCexuqfX6a+4gFPc523XuuoFuxxER4R30dteKyFLW9pE663PJlheerGHbTPHI0ze1zwIAkID/kID4v3y9QL9bU3+mgL3bc0XNuBiQA2v7mD1i1iMSh0mD4aY0GQ2K+4FZoGfQS7qhNCSseEntaZPRFj6dKNiZFqSZP4dIaMoMJUeMTLzvd1EugqPwFN0yw73p1BmfatfvF5W6958IAnvLZyrbkYGvIwdF9T5QIV7OjQvSF2v7+j9oF4drWPZWomRk51oCpBCSxFpdwaMvmCKkRQAktRSVGgUha1SgQlgP4eg42hynvIoXefWUNQApgYW+b87Qscj1WPcRcTlAC8Xi8eT21S1U38aqAoyoqSUh4XXvGZqnWc425+rvjWEJQAYn3Wv0oYDaoMhCvbKrWh/NyRZQNZNqoSlMBSVCrGicPyCkHJoRk1FZTyB+C6ZlIqAFaVoATgcLDtQSd9WyvM/yokpJ4xhWB3DbtRhrTg8oGcd1er2axsdm19UfVLGcIDTlzlluAq9tgVgLHHgjT1iTWoJg1iMwZa+voTlADi8wbTpzKogmEMb6NMc78Tp6DrtTytMXUiLURsAmjolBm+yyv+/uqBJNEypDB0m7gKzMIlnamT4urFoU6FcJ/TOjsSOD9auKwzc0agM69F1Ut2EJ/XLfJcOVSZD+tf7mP47irBpHJzFQh2yfjb5EIZ289q7/NXkJtrrkCRbSmtXwWdW100dlfZE1Sov+0hF307lZoKSqWpOQ29cJ+7GkEJLEUlR075+8QxRYigBOCKqrhkg0ryYOUJStaR7xZvmt4qa8BHH/reKoISWP3vf8URXENzXNGq8zzyBCWAI8ctH7KhoUKQowxsu+gDAwMcOXKEY6dWL+QVU79NX1t+9Us/m2H22BJqpMptkTKp30Ze20nrphAH/u4c6XrSHYlAkjj3dXvStKWYPbZEY5/gxhZoHmnA1yxumDe/cxBPo4tn/vikUL2dH1uHO+DkmT8Rqzfw8nYcTgdTz4jlLEzNZpAUcSN94vM2Eg+Xwc6PriOrmxz+n2I3ret97/XekD/7RK1kwuXh8jvxNNV5AiLalgucPgVPkyBhRYWTX7SvoJRH9FyCp//LidoFS5uLqJz4tyvC9dr3NDJwbwdnvn6VxVP2g2fLF5PC4wus1D3pZQ01IRaE7L61jZbNIaYOVrefpdj0xj4aBwM8/f8X69PRR7sIdvuE30XLaAOBLvETtnpt58qcvVZpV5sKCFvfPYzDJbHvv65WW6tGUAI4+cQsTj9A/cQh84oPqbdoV6OqfOsP/ycjT3kpZaN5PJ6bJKWXMCRJKhv8rJT6zTO+dE3tnfrGDJlEjc1GmdRv2987gBrXOfwZG7a1Quo3ERyqM/XQwpk4kTPit4kbB/0Ymsn8cbG62989xPypGGeesO8zOH2w53dGmT0S5dy3p23XC7R76b+7DdkjM/5j+zfetYRGKpIhvSTmM0cvJjl6UVxtMbwpyPArOzn7jQkhBabYeJLYuDjp5NIPZ7n0Q/G0KtELSaIXxNtzNThxBW6M3wXgDTlxN4i3N3tQLH1hHi/8Q31zb1JwP5DH1vcOgAlHPnNJqN65b4kpPeWRmE2ji0qyA/0vb0eNayyeFksXt/d3R0jMZTj6j2JzaeztA8SnUhz7rJg/Gx4OoHgcTB8Qe/8Lp2NEzoofHB/+uxcnTVwtghJAQ7+HTW/oZvJAlCtPr76IUImgBJCYhZPfXyYdNSBQ5SCxBiZmG+luW7J+0DT+6hNf5KN/9iae3PmtVeVm5luB8RUyzE28tLBx40YAzlxY7edUSv3WcOnaboMvnDFITEGyyt2ZcqnfOkcd9GxxceL7Gsla5rVC6je7kGQHk4dTTB4WJzssnE9hZMr0UQ0/sLHfQ2Ofh0s/Xy5/iF+h/uB9zTR0uznwd2Kxmg2vacHX5uLg34vV690bwt2gEBFUjonPaTg94oSa8V9E6yIobXisFSSEFYom99d3qevwP9W3BtfbnjukoOXX7nzKm+sId1DBFRBkuzgcjP9C3PdKR3X2/097sbLiFGR6Gi7/XLy9YI+L4fubufjTCNHL9g/20ks6Z74pfqlSi+sk53U0QVHW1lEfPbc0EpvKkJyzn2eob2+Ijq0NHPzMFXSBDNm9tzXRujHAvr9Z63dVTP3mkGjq9xAe9nLhx1UuBpRJ/Ra5mMbQxef61JEUU0dStQlKNVCLoJTH6K3g9sLBH63+fTWCEsCpszKKE7gGvvbxWCebg0W2Rtd588cPsOGfvZQedXk8Hvx+8RjiTdwYuFwu4vG1+4xKqd+c4+JnYsU4MeGmVqa1cqnftq3X0HSJk8dq2/+1qd8MRBgdplPm7PP1+W6zlwwSkTLrYA1fsLlPBgmWZyooKlVYWze9MsD8RY2rh3Jrhs143443h5g5mWbyiP21RnZC/60+Jo6kmRUgnxiaRGLeECb/qHG49ExKmKDkbYTB23xcOZAhVolEUqG9qRpZFcohcskgckl8r56OwnRUXDbc6ZXwBB31ZFITQ25tdfkl3EHxdS02axCrI8Pyxecyq9q3i+hEfb0xcKsbhyJx4SkBxwSYPWuAIf7+EguGNZ2LUnTbQe8uP1rK5OyPcnFxm+nXtrw6SGrR4PyTNiZg0VwbvddPfM7g4jNl+qVC26Yi09KnsDxrsDRRQ3WupP7sBYN4TPzM8OyhXNs1CEr/L3v/HW7ZUZ55w7+1V9g5h5Nz7NPdp4O6JbVyQiCBJEQ2Aptog804YY/Hr+edmfebzx6PPcbGNsFgMJhggi0MCAmEBEIot9TqoM7p9OmTc9w5fH+snc4+O6zaklry+/V9XbrU++yqvdZ6VtVTT1XddT8bkWsrhTq1CEqgi2Be0RHh7LzG2PLG61UiKIGuHfTEmp3YGiB+bjuPiwkfbWrR4kMqxa7/OU73/3ZS/CwvHPUBI3g8HsO/bTjd27e//W3e8573EPBJTB/t2fT9BqJSEUHJ2aqx5S0+pl5aZ/SJyps7xenfMoLJTIuJSq5OC407vZz60fgm9aZq6HxDiOYr/Rz/7kWh1FEA9gaV9alLc5K8XgSHXdhCFuE0Yy3X+rH6zZz5gdiCTU61afUSndzx9jtQbDKzB8Um4sMf6iKdSAunNeu4LUQqmWbssUsgDQ303t3M2lSEqefET73Xg0uZ7k1zQM+drYzvX2DlvPiGoCjsjRqt14Q4/9iMEIknsN1F122NnPjeRaF2bQlpeHscwoS9eqE5wNXlYu6I2CJfYLuL4JCb498W2/Dy9jvw9jo592B9i5GXCppPg0SCuGDcfuUnByCT4blPnRJK0dK8z4vZqTDySMFH1CIolcLkKUgClFNPKsZ71ldZlSR+ZCtsxOWISj/7xF/RPrdEul2GZ7s21JObzmA2m4lGxYLhy7g0UFWVZDJJarK37PfFRKVigtLW2zTMdokD368xcS9K/5aJCcYxRUSl1uu8RJfizB4R6GDpDHs+oY/BBz4vtpGt2gBVJVHHhDqHS5H+rePWIAun11gdFYuF+t/axPTh5cokmQqnbr0DdtYurpN49YdSUKFhu4eFs+tC78HdZaPnjiZOPzApRDqyBVSargww+uTcy3rvRuHushHa5hZOa1YvLnW6t8YrvGgeVYjQ9nLQco2fTCYjTFYa+pU2MqmMMJk9sM1JbCVVF7GtHthbzGRSGcKV5oMV4oeuN4VYn44x86LY/KXtBj9rU1EWT736qRbrQU7x2OxTiS2I9Vf/kIO+tzQx8rM5pl5YNkRQAn1caLkmwMyRZSKLhcWlagSlckiFCkSlUvWkYuyZSdC/Cg80w4q1sJnXElriy7/xT/SfnyO9VYVHNsZvbTvPMzGd4vHHH+f6668XurfLePUxNjZGW1sbvV0KJ5/q3PR9MVGpmKBkUZLs64hyYVHl3ELleL84/Zu8Jnayt5ioZLUm8HepTJ9IGN9oT6bwdyt07rNz+tFlVsbE1twUa5pELsyrJwVt8bKjaAxWfL0qdZ2tGraAyvRBwbQOfRasPo3xZ8XmzxafAhJE58VsWS9sQRnVrrB0Xmze1n27D0mCsz8RG4ODW21IksTMS5dmrGne4yS6khQmfZWFAaLSJUv3ZjKBAu373MyfXGd95tVtL5IkoTigcdjN7NF1YsvGr+doVOi4wceFxxdYmzJeT3GAq9nKwrkIvEKPV22rQrGALWBmZUzMjzqaVQJ9dkZ+sSRUzx5ScLdbmXi+8p7GBqKSqOJGcZxYj1pHNu2b4gApKdcSyduErfe6kRWJw99fN0xQAvC2gtkuMzlWqFOLoFSKlbZC3XLqScXoezJAzJpkdPdS/m85otKvfvhJevbPk77OAt9t3VBPbjqD3W4vS4S5jNcenZ2dXLhwoeKaVzFRqZigdEUqgj+T5mGlOgGtOP2btiIWfxQTlZqccRIJWFoyvhFtiqbYukv/jePPCV0aWQYpncqr3NRUUSqH4rFQkLC+gahUZUz1dyuEF5Kb05MVx2tl6jduN7MykSQ8L3ZfNr9MbCm1SWVqA4r98cs8qOxsVggvp4TSoWkO6NhjZfxIjPC88fcmm8HfpbJ0IUH8Emynmp3gbVOZPZmobs9XCELp3l7uAXPA2ShjcUjMnhEcFOu8tqdFxiTDwqiYMVuGVSRZYuyAWExjD5hIJ9JESkmJogcaMtX7ag6aM5tVarXk92sQlYL9GrH1FCvlSFymyvGPr0MmtqaTqiqiqH7VFG+16tZQTyqHnOqdZoYYEgIJy7Da0wxdAefPmZiblQ0RlEBX9Gv0pVlYNrFcpLhcjaBUDusthfdcqp5UjPiFAPFjbVivOY7sLsw/c0SlvX9wns7vL5J+hwP+rjH//ds+OMH3fxzm0Ucf5ZZbbjF0T4af4N577wVgZa18Q8+nfitRUFqdiRNZTLI+Y6yj5QlKGuz+zW5arq19orE49dvK+TCnvidGUAKYP73C0sga63NiFbtub2DnR/vwDootgNobNfrvbUVzXBpJ4tnDK8IEJYDxJ+eFCUqgk5PqISg5WjSCw8alwHLofXMz3W8UP5F6+Mvn6yLiNO720bRbPJ3dnt/tY/hDXbULliC4zU3TXvHr/UeAJWjDN+AmMCSWfsLda+eq/zxI45Vip569gy4CW92428XUY+aOrLD/r08Jt+uO60J039ZUMXVlJdTbF+JrCBOUQK8jSlACWDy1dkkJSh23hoRTCgLs/HA3O39jQLje3LFl5o6vCBGUACaeXuT8w4Xx0ChBaeeHW+i4SW/T6SXjm5bzksS0aWNAlkv91ja3pN9DSaC8kCXpyTXy0V7GawebTX+HiUT5Td5c6rdSBaWVmSQrs8YnRjmCUvv1brb9SoW0HKUoSv128ZcLYgQlAJPEzLEVpl8S91c7PtLD9ve21i5YgsY9bpr2eoTr1YsLj84KE5QATv37ZF0qPosn6yMo+Yac2AJiajyOBis9b2qiaY/YGLx8PsyBz54VJo+4Ohw07PQIj92Ne73s/b1+bA1izxfY4ia43YMqmCbuPwoa93hp3CmuGrPt/R11pbNr2uujeY94HHvsXy7WpbbZ86Zmut9k0JcVoZ6+ALA+HqtMUKqC8z+eESYoAVx8fP6SEZRUt0r3HSGhvpBJZwhsd7L7o1007hGL78MzMRZOr7N8IWyYoASQCMPII3OEpwvjpRGCUvMOM9vfWkhhKM8YOxAyZ4YFDVZK1pPGZzz0jugb3tKxzWP30oq+IHSZoPT6RGurHlvMlTuBTiH1W6mCUjQJSxETK1FjbbaYoDR0DTQYyIBdnPotugzjBwUISgCKzNpMkrmzMSHSAoC/X2Pnu4N4OlUhgpLigJa9dpTirlgPSdzgPGx1LC5MUAJYOB0VJigBRBeSdRGUzG4Fd4fY4ZVMJkPnjT66bxEfS889vCBMUAJo2u2icZd4itet7wzR/xbx+XrjDieNw2LrqhVxiVK/1UT2PhQLNG534e0TU3OxeBR2fqCJwBbjxI9MJoOzwULTDicOwfh3bSrJ0e/MCBGUAEKDDnpu9WNxi23y1NMXQFeKEiUoAaxNJIQJSgDrM8mqBKUNqIdkVOJXAwMWAv0C6cmyad8G3+hl6F6P8OVnz8SZOxsXIigBLI7B1MnCmoNRgtL2wRjtzXqM5LponMy+6oux7t0Yb+dSv3Uf1JW8pGfLD4y5dZXLeP2hpUWXdVheLr9+lUv9VqqgNIvMlGR8LTNHUGpyxtnWaGyNpjj12+ysLERQAl1RaWYSZupYMh+4Avqv0P2JCEHJFQJvc8kf61DUNLrhP3+uDEEJCr6wAulh6khMmKAEEJ6vQVAqRhHZxB6Qy6eJqwLZKtF7nQ1/h5hvjK/B6cciQgQlAKtLpmWbBZtPrJ05G2WG7rBhEczq7mpQaBqyUCZr4muLV4CgBBDsUmgcFI8xWndp9N0gniI01K/SMCCYXQYYP5wQJigBdOyx0LrTCsVrJgYISpv6gkF7x1czmwlKBjB7Kl6eoAQF/1Amdlq4kKpOUCqCMEGp+NropNCGLtAE+oKUSGFzwfbrIdBYu3wx4gmYmjSxtmpMQSmHVEpmfFYlEi88rxGCUqMcZ68ljJxVcLKPG1yzcESQQ8tg3Rhb5VK/dfxsCQDpJxvn3xcu6vOIG2+80dB1QCDdm6bpnazCPpn+nc+GWpqZIg5Hvl37ZIpkt5FeK3qgOKg2GYvHWOeWTBKZ7Cg19O425s+uMv38kqG6AKsjUY6NiG/QzxxeRLHLrAumlvP0OAluc7Myvi6kjtO0z0f7DSGOffuCEFnCO+ig9eoAR745IkTg8vY7aNzpEd4g6LgthH/QxYG/P1O7cBH67mnD4tGYPSy2SHTmRxOY6kgTpzlMaG6FtXGx9/fiZ08B4iz2ZDRNYl18IeuFvz0urAADcPV/2UJ4NsrhL70y6RaqQfNpXPHxXmYOLXJWIM3Gyvkw+//6qPDzpZNp0ok0yYhYUDv22Bwzh1eEVJRAZ8JrXjNrF8UCh/OPzbAyGRa+Xtcb9DRqs4fF0qj13tOMo9HKwX8QSzHXcq0fs0vl3EPG0wsBdN/ZhEkVT32567d6yaTEUy02XuEjnUwz8bSYnPj4s3N1+Yi8PQRJSlvf18b0wSXmXlrFZDUe3KpWGXNxDnRN5dTHS2eYm/HTIgUlbW2NF/70f6Km08imEj/VlvXJCvy39+4ERmlvr5Kw/TJeUwSDQVZWVvjuDyK89+3lJ8aRkIqlJOPpxcNpDI1RPs8GNSWzU8Eskr5AVcnE4/gG7QT6HZz6wbTxusDoz+brOo0/+fwiyaj4gkbL1fqGyeT+pbIpgythx4c7SSfTHPmqWGrZ7jtCJNZTXHxczF+13xIgupioTF6QTGXttv2DnSyPrDP6c7F0HoNvbWXuxDKn7jfux9emI5z58QSLZ8VZUbZGjcRKXIhQNfXCIvNn1oRVlJLRFKlYipRg6HX2wUlGH5sUJn313NlEcLubZz51Al59wSe2/1oHFp+Z/X9d/eRxKQ5++Vwxz9Aw4uFEXalmDn3xNCA+ButtJUEiLHbNUz8cIxkRv8/+u1pYm4gIH2DY+RvdTB1YZGp/mTldpfhBhb43NTH54iJrY8aZBqpbpfeNIcaeWRAiQXp6bfS9pZmzD0+xcMx40B0cctC408vShTALAv1veTTK1KEl5k+LdaLIXEJPkSmZhEhKoR1OHE0Wzv14lkw8jslvbCNfc5pQbRuvk7YqnP149WuPuFVGsgvBajjKc7/7l5gTuqORck0vA3Rl41wNeLEdn68ZFi+NMu5l1I/1cOXYJBpM4xop/avCixO146e1Vgv28Y39XbNJaDZj/ipj1TAt62tmrbs01ufTLI4aH+BiqxkuPCG+qLA8HmfypTBrc2IDm92v0rzDQWwlxdzJKKSMxXzuDo3OGzyce3SB1Ymi56sRt9lCCo07XIz+ckGIwGUNKgQH7Iw+syykAhMYshEasnPsX8Xirvbr3EJp6XLj7sgvFpA18UV4xQKKTSG6IBYMHfuu2LpADolIikSt9NFlcPgbE8IKMAA7P9hMZC7OyR+WrDu/GqnfFNjz0TamDq8y9uRS9bJFRKnkGsIpxgBSqQzJSLp82sQqWDwb5cWvjpEUjGPrbSszx9aILieJChIgm3Y5CG5xsP9zhfVmI3Fm824HrjYrJ74v1vd8/VYsLsU44SiLhp0OVKvM2NOVieXl0r4NvMWPJEuc+L4Bta5MWt8lA5p3OchkYO6UQIMxSUweiaBo4gS9mSMRUBSwiG2udl6hsDieZHkqSrTLOIHSomWIaIX3nLJK9L3nZM16U1sK702JJvm7X/kWlkgSu5wozLsSwJZs+mWrxL/+t0GgQEK+jNcf+vr6eOqpp3j4F2HeeXd5Yqzfv8ZKCUlpVNYwsjqz2g6Ooi0tVc5g1zIYTcEWd8nYZuI4HCl8vgyjo2JkzNlpGVNcfO1qcgQyGROiCbUae0woqsTiREofh+LGYreuPSqSDOeeLSlfYxwN9qmkUxnmz5Xx/1X8ua9bJRlLVyYvVEDnPivrCylmT1bZY8ldt8gn995oY/583DgZxCSRisGZJ8KEF8Xfn+aAVAQhhaK12RSHf7hKSpCvkkpkSEQyOb6qYcyeSbJwflVYRSnYq9C0zcLRh9aE77UetF1hxtUgc/RBsaDm3NMxZFnwBiWJZCxDQhVfSzr7eFQkq2Memg1SSUlXTRNYazv/bLiw7C+bDJMRu6+3sTad5PxTRWtJBuLl7hsdLF2IszAitr/ZuM3M8liSyJJAQ5OhddjM/PlYeRJkDiVp2zQH9F2tcfFInBUj2xPpNBmzhs0LLQMy0fWUkIpZLAoXz0usCJ4FScVNjJ+GtFkGAQ61x5HC5UgzOmVCW4bFQWOLulYpg8OU3jCapOxpfueGh6vWk/3rWP3nCn+Ip7jvV/ajraVwmxKQI62tZuDqEf3fThOrkUYslhkhUQRhLatafSUx1IF6bOPCrr9fw+xUmHihsjPJE5RkOe/Bn/0/p43fVzqT37Rx9+ipv0RISgDdb25ifToiVG99Ks7p+8eFrgMwvn+e+dOrRAXJTYm1JOm4+ETb2+3E2WLD1WITSqnVsMODb8CN5pggvmb8ulaPJp6nHRh5ZBqzR3zXRDRFXw7DH+lBNss8+7/F0muI2KIYooSMwvXqqsb6VISVi5cm1QXxOOGZKCuj4qcX63m+1ZGI8KZc/nqChCGA7je14t/iZv9nTgvVjy/E60r1dv7RSdxd4icJrV4NzSXeh5r2+FAssjBJyT/gRFJMgBhJKRVJ1ZVu6dm/OYHmqIOZ/vhcXWz8Le9sZWz/HKsXjL9zzQHudhvpWJr5Y2tkYjHDSkr7/74wzTaFAgD0f26iKlHJH4/TmU5xxCQT1zSuGLuINZlEYjOPQUrq28SZJDz9jL7Itm3bNsPPdhmXFjfffDNnz57lH7+xwnvfXllZbXFPEO/zRYu0KrT0mZgdTVf3r1mCkmTWyMTinH5QjExDKoUkywQHnXi7xU8nOtvNhLa5OfsjMb8z/lR96TNf+uZFYqv6oouI/0lEkmQS4uO+f8BFIiJOUmra5SW6XIWkVIHYZXGrxHzi/v/8o1Msi+awT8DMAXEFGHuLmR2/1s34c/PCCp/1pHmbO7JSl7ogUJcq1fLFdax+7ZIQlACWzq9jD9exo5eofvCkEk79m7i6KuRsKT7mb39fF9HlOIe+KEa2XzxZn8rQuZ9OEhHchEcFzaFiqTR/yaTLEpVsfpXgNheJaFKIpORo0PB02Vm+GBYiKWXSkIqlSayJrUJOPL3I0uk1wgJ2kUwSieUE538sruIb2unC7NK4+EsxPx/Y4sTRYObcj2eRNI3M6pohJaWRJyKMULBjoiMIQM/n0lWJSlvmEyyZYdKhsm10Enc4qsdXJeWkaEb/exQyRxKsrYdxOsWVSS7j0kGWZRKJ6v1kZi+E9m/8m8eSxKalmVipPE/JEZSSTjPKqr5ofvAR475RiuhKF1I8QbBXw+pKCpGUABqGrcTXkiyeM96nk+sw9mzWr1YgSpfD8oUEh78zTWwFwwQlgEQkTSqaLqw95q5nkqoSlWxBDV+PldnjGqtjxudu3k4rDdudzBxbFyJnaHYZs0vRV1UFXsP4/mXmTxlfK8sRH/Q0YeJjfv9bgljcKge+JDaGixJqcjj1gOB84mVeb+VitLIi/itNVErCyliU9akaN1tGyame50uspnjp22KHQHLtRZSgBBDa5qBlr4cj354S6gvJsK5Ihkkq5GswMNeaOrjGWsmaeO7+q5GVzF4Ns0d8vblxuwOLRxUmKQX6bKi26iSlPEEpnckrAiTCaSQjB+VycWK27uF/nUMVEXFQdFvMn4kh1aEi1nqVnYWRGOuC4XOgU0GSJJZWZcwzYcNKSvsPFx5usV8fM09/a6AqUUlZA9eClYWGCJih+cIigZn18rHXUlr/+xJ859/0jrB161aBJ7uMS4k3v/nNfPWrX+WBn65XJCkBuHbNs/JiQaVPTqVoJsUcMpEqG6E5glLMI2FeyjC6ZKZEiLwqtLUUSZuM252ksSHN+HiKVMr4xqvZmsLfDlNiZ/hZnNGVOgAyismwmtLZF9IF0kkiWVgHr7Ghm4hnNmZJyxEeaoyj/i6VVLwMSSkX90lS2Ws3bbUQW0uzMi7meCxumWS8xvhS+sySxMgzYSIV1Lo2oUjVZXVKnKAka7D1TU4mXooyfUJsbaEe0k94Ps3px+rLD1dPmrfwYobl8cQrlt51EzKZDfs367NJMqk6lFip4/kyGabKqCEbvlYd9uy9wUoinOH042KBYiR37inXzmWTofnWyNNhktHMxrq52KFKX7d6ZNbnSmKaGjGHrOl9PZOJlicpmTbGPzmYbbpviSyniCxVaWjZ+lIylVdTikchaWQamKubSLI6p3D4Zylj9bLIqDKpOMyczZAxC6qfedJoThOzgstlPk+KkCfN6JRK3C1jn0wbUlI6nzRzPlnYl1zp12366cdvr0pUSox7MFkSyH7dT7snIoSOr5WPvS4k839f9q8Jr3lJGYHjsLIsk06ny+aJfcO7P7jhczFRafcHQsiqxP4vVp5cbVBREvQgmzaa1LRwujeAfX88SHQ5zoufPVe7cBEG397C+nyMi4In1/9DQANNq58kc6nQcWsIT4+DQ18Qe3eNV3pR7Yrwu9v+gU5Mmkn4eppPw6QgTE7b9Zs9JFaTdaWmqwfX/MkQK6Prl+R67l47A/e0cu7hSbGNRA0cQU1YBat5n5+WfX4OfWVEiGzk7LTSMOwVTn/YdXsDznYbh//x1VezernQfFpdBK7XPTTY/t5ORp+YY/ms8QmQq8vG9vs6mXxxkXM/mhRWU5JK5CqNEpVyyJGUgKokpRsi67Sn0/y7amYtq3p49Px/w/xZ/VmL7yK/1v+f3Ni/sEw0BpOTkzQ2CmpTXsYlwejoKB0dHfg8JmaPb06xtO8PPrbhc46oZA/AtlssTJ5KMHqwSkxVpKKUS/lmGCWxWkZ09pfO0HNnkNA2Nwf+8QKxeeOzcXe3jeY9Xo5/R5wkDmIEpdcCqlutTMipQ3nq1cK2X+1g8cwa408JbEap0HlTiJkjS0LpsWwNKlve0cGFx2eESUe2BpXwQkKIOBTY7qLzphDHvnNhQ/qoVwtD97XharPzzJ+Lkebrvt57WpHNMke+Khbnmf0q6UhSWNlo+wc7ia3EhUlOLdf4ia3EmXtJbDNp+wc7mX1pubyy0WuFMjGEasuSxS4Rqe1SIBf7tFzjQ3MpwkSlHR/pxOxQeO7T+hxLRE0JFSRpI0HECFGpGDmSElCVpPSecwnCMvwgK///6z94jP/ynZ/q1ywql4+7/qsXfsuP3HQGTdOIxS7BsdPLqAs+n4/FxUViFztRlI2b4L3f3Bh3FROV9raFsakZfnGuci6JYhWlHEnJKKRIyUZ+WnBzIKv0tfPdbmIrKY4/IEY0bt5tIRFOM3M0+wwi8YgAQaksSq/1Ssdxir7HXy9J5lLBP2jF32fj5A8MqLIUwdNlQbPLzLwkthHYdbMXs0sRVqtRLCCpMolVsbnBwF0BkvF0XanpaqLMpsue32xjeSTC6QfF7FkTZTZsLB6F/jcHuPj0EovnBBqaAhaHQrTaBk0RckQZT7eF1qtcnHlowXBdAItPwddjZeLFVSH/Etxmw9tp5dSDJe/uZfTVepQ7jUBx6MpWryRKFZSEU76Vxogi9YvGqe6bHMyeiLM2Y/zlKR6Fnfe4mTwWZfzFGBlBNaWMfSObqjZRKXdv+n3nSEpAVZJS8IyN4KiTs1fME3Prv/GdJ/8N6T9nU+wW31Pu//8nQP/fL3F2JMmJEycYGBio9TiX8RogHo9jNpsZ6lc58ovN+W/3HnjXhs85opKWSnFnJswJSeOEXHmttVhFybyUax258an6xrK24XBHCiVsTH0pB1MsRagpRUcPvPQCxARCL6sdAo0pxk4Xblck7Vsu7stD0KdKpaosIoTfcnFfyfVlDV055tVAqU8WObBc4n/b95hZm0uyMCIW0wR7FZankkL7qbIZeq61MnU8zsqk2PU0G8RjCJFkbH4TbTstXHg+TFT8/KEwWobNBHtVDt5v0CgvM+1by7CGZpM4/4zYnEu2SZASb58dezVS8Qxjh8QWdzytMqkErE5nX57Bvtqx18zKVJkDKyLzrtJriRL7DRCjZTnbLEvbZrm6IvFPSX3hlG+l9VXj5PeMql/L2wgWK0xMiF27d3sGhzPDgRf0tSSRlG+QIu7eGKvVJiptHLtyJCWgKklp/ZFhJGsc27WFderfffoI0kenIV0m9jJB5ksNyB+cpqGhgakp4wfShY4euFwulpaWePixNW6/qbDgV0pQAl1RCXSy0qmHl0hEy/fsDeSkHLIM6OFfa8HmN/PMX1ZWVCq70ZQwUVZCogYO/9M51gU2TPQbyODtc2JtMAsTXXZ/opfIbIzj3xZLM2cJacgmxO+1HsQhfgk5C8FhFy3XBDn29bNCA7m9yYLVJ55nVCTVXjFMqgm5DhndnR/qBgme+0uxTSjJJCHJ4oNz8z4/kflY3UpTQtCg7dogs0eXhUhYJkUCkyQce3Tf2kjTHj/Hvn1B6PlkiwmTYoK4GOV7dSQilGIxB0ezFatfvG3239uKrEnC/uHl4FISlLz9DuF2qfk0dn6wi9Ffzgj1XW+3A2eLDW+XXYiktHI+zP7PniG+lrVLBTWEUpSSk3Kopai09V0NOJot7P/m5nvs/5y+sVuOrPSMrDImZ1jTNF58718DEMdL/L12nNdt3hzMPNsO7RrpfwgDicsEpdcxcqn4llc3xzOlBCXQFZUAeH6WU09FWawUDxaRk3KQzBqosPcDIRbOhDnz4yobBGUISVI2djNEVsrGbqOPzTL62KyusiJwMt/TZcfdacPWqBKeMj4BbNzjpuUqP89//qwYKUAFd4uN5ZFLo0x4qQlK/W9rJr6aZOSnYmQCW9BCfF2QXZFA+DoApMCkSsiqWOwV2Oak/+5Wzj86xeSzxscNyaTHJqLBiS2g4ulzMlGHgmI9cHfb0Jwqs4fEVpUk2VRXXDn8q12k4yle+IyYMqismVAE3x0gRoArgi1gxtloQUSjTXWrDN7bzOjjsyyfexX6epkYoh61rnphC6gkEuKKZP1va8bsUjnyldqEtuL4JzDkQrXLYiQlycShL41iDRRUqTKptCGikqSV31Srpai051c9rEwmOHpq86Zaz+d0n1uOrPRQI+Tu8sQt/wi3QPwPWtGu3JwiPXOgA5pUvvZd3faX467XN3p7e9m/fz///lCYd9xVULEsJSiBrqgEOlnp+JRGssKacmmKN9DVlAAGemJ4GiRe+EnlBelSghJAxqSCBpKRNB5FG1XHf7RMbI0NCua1kEmlCfZZia0lCyQlg3HbwB0eYqtJRn4hRjBWHCCbTMTKpY+qoagkjCR1pRmrF45mheYr3Jz7+bwQWcIe0HCExBWFl87Xx76SNQlZq0OJ+N4GZM3Ewa9OCtWTZAmTKLkD8PZYSERSrE1U6QuvoKJScJud1bFYefJPpc0aRX8+0cy3gX4b3Tf5OfmjWZYvVH+PxUQZk6LHzKI8n+hCkokFMWI4gD2kYS/XNmv01eYrnWg2mZHHljZ9J0nSq0JUetUJSpBXBHA0KKzNJysTvsqtLSmw/Z0BJl9cq53urYigZPFI+DrNRJdSxklKikJyDQ7+WyHVpRSNGyIqlZKTcqilqNTbkaYhkOaBVY3SLanT39JJROXISrOdYcLuODF7ku90P6r/sdtD5g0OpF0jm+/vSCcEFGb+xyqQvExQeh1D0zRMJhNjk5vbbSlBCXRFJdDJSr9MWVmq4Fgdm0NyYh4JSHGrJ8rUqsKZ+coby9om9VmZpE0vr5OVqsMU08vMzMD8DLr6kobh1G82W4pgm8T8eIZI1i0bUVRyBqC538SZp0tIFgYUlaxuiCyXISjByx9HSxSVXhWCUqW1m0yGxu1m0skMM9WUjcrEII6gTDoJC4ISObNn6ggsMyCrEiZBroXVA4O3ObnwfFiITCUhIcniXCDZCk6/zNJkqi7lIMPIKipZ3aBaZVYEVa0kE3WtefVdayGThpM/E4ufZUWqa8l2aazkuSqoj5XCEZRJRNMslua9rKKoJMvQdqWV2dNx1mcrxLFG+rmAamPZ6WYdqo+16kvJFKpTJp2pcfCkTN2mQRmrC86+WPvSOYISgLcBHC6YPJ8yrKaUNsucOpVCK5pjqeGkIaJS3C1TjihbS1HpVluE2ZTMEx2b1d8//fjtQHmykuWa45DUf/d3vSP6H+90kjliQ9q6WYwjc6yLU3MyME1v72aRo2oQIildd911PPDAA/zR/1zYQFKqhbWJ+kaehTNhklUG/kon4XvvasQ/4NTTxQl4h3oISgBP/6/jYvWyMMlSXUSXXR/pIboU58XPim0QXPmHg6xeWOP4d8pEapWgwZX/aYCZw0uM/NS4zLB/yEn/vW1cfHKGsceMn0xyNFqx+sxoXjPxNeNM12NfN5KJeDMa9noIDrqFFYMOfVFMQSmH8adn68pPeuDvBXVBs+i4OURkMX5JSEqOBjPt14XQ7ApnHzC+ILV4Yo3nTogrB8wcXsCkmVifEHu2iz+frUv1rO3mII6gWaz/AEe+MiJ8LQBnm1UncAniqv88SGw1wcHPifmHvb/fz+LZNc58X0zl4Oo/GmTmyDLnHjT+zp2dVobe3cH0oUUhZSqrT0WSxRerFk+s8dSfHiv8QSAC30TcqkFUkkwS297XisVr5vm/2/wOqhGV5s+GyajiqZrimkY5j2T72MKm6boEZD46BT9px+FwYrVaha93GZcWkiSRqkPadlHMVelIwPJ4nKVqi+AVNrR2f7SV1ckYpx+YrU5UKordNm3QG9zwuvDoLBcerVO9UgKbVyU8Y3yjvveNjYS2u9n/2XNCG/ydt4cIDrnY/zdiY3jPnQ242m28+HkxBb4dH+lCtSs8/2nj6ZIBXK12cbIR8NxfVT7tWg399zSzMhZh6gXjpKHwXIL9fyP2XADL59aY2D/PwhmxWGH20LIw8QegeV+A0HYPs4cWhdWG6kHnrQ1Y3JrwvR79Rn1x89hTs6QT4s918B/qi5u3vLuV6UNLLJwQe3/P/qV427T5VewhnVguQlJquyFAy74AR75+nvVx43OX9lsCBAddvCCo4Nt/bzOuZivPCxLF+u5tweJSefavxPqRopkwqeLx6KF/HBGrUBRblabcq0VUkjSNK369mekja4w9vZkIUY2otDSeYDEifphg2bY5XpN/d7Z83PXb0/DdVv7x2wHgAtdff73w9S7j0uHd7343+/fv53NfXdlAUqqFtYR46iGA+VWZdKZy3FSOoATQ2G+isV/l4AM1iEolJ+ljxe7UAFEpk13kPvjN+kijObKEKLa/o4HoUpLj36sQ71UgP2y/r4HV8VhZ0kM1bPuVEAunw0w8b3y8sfgVtr49xNhzy0wfNH4QxuLRcDaasbgU1taMb2KNPrHM6BPisYmr3Uxg0M65h8UI1GfqVDQaf2GlrnWME/9eX2zfdZOP6FKCY/9Wo/4rQFRS7NB1k5/JgytcfGJp8+9XQHQuyaF/FiNtASxfjDG2f5n1aeMEJYCFUxEWTokfsPP3W3E0aVz4hVg7G3lsmRHqaJstFlR7lfG9AlFpx682EV9PcrzWOy/B1neHWB6LMfak2L3u/EATs8fWGX9uY4xRlqCUhWLLsOXeBiYPrzL2lHGSpsWh6PuTQncI0aUMz3+l4Kdrpn0rIjiVbubVIipl7Ba6toPTB4d/sfn7akSlhWUTSZ+E4HYUKLAeLOMv/3uF2Ou/zsLnm7Da3DicdSzCX8YlhcPhYHVVPEX7vFxP7CUzllBYCYsQlHRs74mxFpY4P6lVJSrlCEoApOQNPI60JtckKkmJFAsTsDBRx3pCRh+OFEGlomC3TOs2lWMPr1cWDSgzjvq7FRoGNY49mJ0/V1NxKSJfBAc0vG0qpx4RVHm81orVo3DsR2KEWleDrlZTlaRUBscequ9UUeOQSnQlvZmAUgWpOBz/ifj14qswdijK2owYiWd9PsWJh8Wv52tRaN1p5eiPVy9J5p3GLWYcQYUjPxRrK2MH6+MjTB6LC5O8Ac49XZ9ScsuwyspUitWZor5jgKh09EeCOVrRCWauRoWViQTrlUKoMv3c067SfpWd0z9bJTJvvJ35OlUC/WZOPbpWILRVi0+yJO/GIRVPq1q+fVap37ZVwR6UOfyQ2LswyXnNHCGcO1T4txSrTVRK57+XN4nC1CIqxd1wZVuYiWWFsTLp5asRlcYSChNNVW+tLGRbBX/56Qr7jX+zwF+sdwGwe/duoWsJjeZf/epX8fv9HD+lW7GcglIpEkMdqGcusPs9IebORRh9ojCIlFVRKsLYk/Wp3CTWk6TiadCAuPGT+W03B2i6ws9z/8fAwvYrcKJDdBMph4nn5mtOUsshGU0SN8D23oA4YJKEFxlWp2KEZw3kai/B+YenOf+wWM71l4PAgBtXe2VJ9lca40/Wt7hXL07/cJzowqXRLV+7GOPUD8dYHq0vD67w9cbjnBkXI9S8HPgHXVg94icX68ULf1uff1gdDxOtQxGp2gJLJWgOE8lYitia2PVicxEmX1hg+oBYf1g+s86zf/EKpMIpyW9cCds/0IFilXnxc8Y2EHMKAslommRM/DjBzEUzMxer99f+z01sUlN6+/oqF2SFL37o8xv+Lh/VF3EyQOx9NsxfDyMB0pE4h45GWFhYoKWlRfg+L+PSQl+wWWX0YoL2NrWsglIpFvcEGY7P42tROPRQSf8so6JUjFMPVv++EhLRNImo3u4lWTac/m34g23ElpKc/F524T63Uf0KqwZl0hkmn1ti8rkl4boTz88TX02QCIstaCTWUySjKV1uQ6CqJEmbfbIBeyyNrGO2iy/UPV/neFMvfANONJcqRFKqF4lwpj7lpjpx4fE5Fs6uXRKCEuhxnuYQJ7fWCxE1qpcNFTxdDpLhlDBJqR4snwvzTB0xxtp0hLXJCOszBhZCiojOJlmqqLxYDcloknhEPMa4+MvZulRnj32rNuO1nucoqpz/p2qDHR/qYuypeaYOGNuokDQN1aHHXokKGwrVcPxMrbQkuqJSsZrSFTMJWsPw/RY48cav5v8uP6e3gQwQ/y0X2mdW9LjrmSgZ4MiR45hMJv7mb/5G+D4v49Lhd37nd/iDP/gDDhzW32c5BaVSzOyF0P4kV7bFmV2TOb9Y6GvlVJSKMTejMDejoCC2mKrHXRkUCyRRjSkqAb5uhdadNo79YEVXD8qtyJaJ2zK10gVUi9mydY//e33rH2PPLRNbqUHgKUNUSoTTJGLiMaRUh3pidDnJ6kSM8JxYfDh3LMzcsfql9EQVZrydVvw9Ns4pC2IpAutEPeSYl4PTP54jETH4zl8mUSm5DicfmGF9rmR+9XJPhFdAYjXFxP7q42E96ziV4Ouz4Ww2i5GUasUAue/LkApPVCIhFqFce1++ECG+Lj7mSyZJVMwKFEiEs3O6kvuqhmQULj69xNJoBd9e4eBbdCnJ4W8W2aWcfZXa871MOl2eqFRSt3OfBYvLxAmDG+M5BaVEHBJ17MeeDdmgxr7q6W8NbFJT6nrOx0owyudu/eGGv0uP6PedkSDzf/uQ/ucCUgakn4ZZXEoyOzubV6e+jNcvhoaGeOaZZxgZjdPZrpVVUCqFa9c8nueddGSS/FLZGM+XU1Eqxsl1C5jBHBGbs8cTkExl131tsiFFJYDeLSkScbhwVo+50pr+/3JkJSlRgzyu6P26rKJSIsnqFByvJidcgfywPJkik0iRqjWEl4yjyViGxHpGT99mZCwuvn4dc8iV6SSxMkrztWK4U1lfUbbcy5nLVkCgW2N9LiVEUqoXqRTMnr50+eMXRpOEl8KXhKBEJsP44RiK9dJl/lgeL6Ns9Coi0KWv520gKeWuWynerzUPyB3wKpnLxdfg8P0G1llK+nlsNc3yeJz4ekYs5jVlixshKOWQzpCKZ0iU88816k+djmGplnqtQv3xo9m9jOzncqnfihWUKqESUSm94W8ptg+nGR8zsbBgjBkVd8vIpIglJeIp8fa4v6t23Pjpx2/foKYUvxAgNeZHu+oknwyObCgr/bve+TMaZP4qhPTJGaQ4SPev8azvLJIk8Ud/9EdC9yhlBCUpcoF4arLXEEkph6uvS7B0fp2zP9UnO7UISjl03OIjsZ5i4qmNp3gqqShVhIHNnZZr/LRc7efoN0eqqyqVmKzt5iAtVwU48IWzwumSNIeJ+Nqrk77j/5/QcIWH7jc2cebBCWYPvvqJVLd/oBNHi42ni9VZDKDt5iB2v5kT/yomcXHlHw5COlO3aoEorvmTIVZG14UVpupBx20hWq4OcOr7Y8wdMX5yIrjTTWibh6NfF7vHnb/Rg9Wv8fSf1aeAJoq9v99PMpbiRcET75exGZqDuoLgXb/Zg2SSNiuS1Qg0hz/YiWwxVSYpFS0siW7QlaopmUIB+m6yMHY4SsTAodUcUUmLx/k1luntOsftNz61oYztjilMoynWXgyCpkE8jmPXLLSrXCXB84fi3HLLLTz66KNC934ZlxZ33HEHP/7xj7n7jTa+95VmQyQlgKFAlAZ7koPfjxQ2JGoQlABsQYXGYRvnHl0hEyuJaQwSj3LYQFSqELcNf7CN2HKSk/eXOV1cJXbb8dFOkpEkR79ubDwtjhtV26VNs/Sy8CqleHslsOPXuzDJJl4UVO6rF1f/0SArF9c59k2BNKgqDNzTwsyRJRZPGj9pFNrtpvdNzZz98STTB5bEb1YQQ/e14Wqz88yfvwJEXAPY+7t9pBMZXviMmMpX311NrE5EhQlm+/7LIPOnVzj1b68+ubxht4eu2xo4cf8YS2fET5ddMhhIH/t6QDV/WSn2sTWqbH1PO6OPzzF9oMq8rMQG9maVwXtbuPD4HHNHygd8xYpKlVK8VbxciZpS4FofJhnGLxhbHMoRla6dTLCbVX7rvvs3fC+/awLT2SSJZ5pAVSGRQL16knSPgum7bchNen97NdLXXMYrC5PJBGRITvQaIinl8Ja1dZbnZE7O6pu4tQhKOTQ0J0mnYPFMySZ4BRWlSthAVEqUZ6N42hVar7Bx5rEVoqWuvChuKyUo+Xo02q92cuJHi0SXKsQmxTFLUX3FUkN2v9rvGMErmfrtdQxns0rfnUFGHl/ME4FeTX/SdbOXwKCd/Z8TW7vyD1ixhzRGfym2Lrf9vQ2YFFNdikPCSKfZ85ttLI9EOP2gceX3TTC4UePrt9J7W4DTP5ll8azxzuBqNeMfsHP+F+UJZpWIMr13+HC3WXjhC69i3FUUA2x9R5B0isrKZ/Cy++nraewUJoYVx0s14r9N/rK4bhVyUv8bXChWiWM/2NjvNhCVytTvusaC2VmZpFSsqFQpxVsllKopLfab2G6Ncz6isWbgzHyeqJSEmw9a2NJ1gZv2vrSx0Mcm4WQcftqiP18yCW8YhwGN3w/JfPqLK7z97W/nX//1X4Xu/TIuLT71qU/xyU9+ko9/wMXf/6+QIZISQOsstM0rPLLmIJUlXdciKAFYSNFiS3I2rGBe2tgnK6koVUIxUclU4bBq75YUiQRcOLN5zlFMVColKPXsgkwKzh2ufP0NZKWi2M9QVt8iv1o2xVs1lBJ+axHbq1z7ZaMeEklxnSrr+d3XWFAsEqd+dmkI2NvvsrM6k2LkWTHBgZZhM0sTSdbnjL9Hm99E/002LuyPsDj66pOpWobNBHtVDt5fx8ZOHe944FYrkgQnHhF7dw2DKrG1EhUsA9cfvsfGwoUEYwdfYcJYcV/J/tsekOneZ+H8M1HWZqu8u+J+WU+fK+7nr0KKturlS2wuWD+jFPnbGnVlFVJFr62YpFSJnCRrMHQljJ2BxRJiaDFRKV1CWtK0FP0DacbGTCwtlv/tYkUlPcWbcZSqKTnao2jpDCNllMDLIUdUip1upGnazq/eVWbP8P+ZhWNx+GZjYbB57xQMaTi+skI8YSIpmEtd+Li1yWQinU5z473vQWRd8JknVMCDKigB27jDQzKaZuLZZaHNMc2n58RezJ28NZBCZPypecafqnHSq0yHjs7HSEaSaHaJuIAicv+9rQS3udn/mdNC5KbgsIvmqwLiKcc08HY7CjYRqerThAlYjVd6ScXTwqShq//LFpbOrnLiu8YXQ8LzMaLLceICctkvB7PHlkklxDcOg1vdmJ3iJ97nji3XNakf/lAX4fmYcAqvemAJaQy9q53RX8wIkY0Wzqxib7SwYnARN4fgVjfuDnEVrNmXlnC11j41/UohMhsjUccpr31/vIWFk6ucvN94P9Ac0LyvgYkXFsX6a86XCxLT7Y16RdFUmd1vbkKzyUJ9HGDHR/sxqSZhNaXEahJTuTQDNRSVDv/TiKHfL96k0xzg6nAwd9S4nzWFAgT7TPhaFcKLKuMLxgPaZz/wmYrfhR9q3PgHTWPtqK6cNLPPhCRd5J/+6Z8MX+syXhv8/d//Pb29vfz8KdkwQQng2JyFY3PATgfe541L4fu7LQR6rMydiLAyzmaiUhX4+m0snA/nVYOMKCod/qcqhJMqsVtiPVk1JXAxiglKV/5+H/G1JAe/IJZKrf+eJiKLcS4+LqYIYAuppJIQE+jXgK6+BEJ+WXWrNAy7GHtmXki5qe/uJrx9Tp77q1NCtxieiiLVkc6jXiycWmHxnDjpxNfnJBVLC5GU1kbDzJ1cZnVc7HqBbU5arg5w7Jsjl0RNqefOJjSnzPFvi42n00eWydQRx/q3uLD4NWGS0vzpFeaOi0my14vYSoLwfIzIolhs0v+2ZtwdDvb/tVg/CGxzAjD3ktjzqW5VKH1kDu5uG8sXw0J9HGDb+9sYe3qepTPGGZqOVgvD7+9g7Jl5Rn9ufBNX1mQS4TSRan6vzCbd+kSCFz4zYugaxQQlT6fG+lychMAUN9ERpLk9hSzDuOCZjC/d99Wyf099p3lDOgdUlcQL+un9sYkosizjchlPH3YZrx28Xi8LCwt0fuF9KOUzBZbFAw47OCAkmLWqrV3fV5qdNqOsGpemUCxgdcJq9noZrbai0tJokqXRCnP17CJjOQWl+HqaRDiVnVPVGD+K6jftstF6pZuX7p8lMmt8rcbZrNK4w8XphwzEXcWKSgo4QgprE+LrQooNkoIkdnenvmm/PCK2lrHj15pYvhARSksXXUkRnkuQKFrzElVVEsHiSH0bcoEBO44GszBJaebYOnIdcWX37T7i6ynhFF71QLFA35sbmHxxmaVzxt95eCbB7PE1InNi7dLTaSHQb9NJSiWoRpRZOBMmEX4VDzqUbBytz8ZJ15qWlVE+2/nBJhbOhA21lXxbV6BhyMH8uTWSIkvbud0PQdegOmVkWSK6lMzfhxE07LRjcSsbVakMENT77/CjOWUO/nNWCTab+qQW4uEU6fTm388rKlUgOJ1/ylg73kBQUsDtg2UBsdrFfg2fkqTdnCScNrEWM74d9Z3+R6G/wpefL8lfoijw8w4AfnKzAqzwp3/6p8Zv9DJeE3z84x/nk5/8JD95PGCYoAQwFoSxYBI7S6y86Ddcz6Ol6LHHWYjLLHokzEtGx9EUDitEopDK6BvHRhSVzhyvvMmcS/9WTkEpERUQ/ysiKA3dqpGMZTj1RI0JY4lSS8OgQjKWYf68gXW2IqUVzQqkIC4SNkgSmLLXFtgykTVwN6ssX0zo28QGfXJoUCM0YOal75fM2Wv41/WFFIp26Q4XzZ5NEF4W30MK9qlkMhkhklJsLc3M6TjrC2LXs/lNNA6auXAgUlt56xVAsE/F7DIxdkBsfWf2XBxTHeSmYI9KeFEsVR/A3NkEq7OvYuxV1FdTiRTr86naCtuyacO8rHGbGX+3xtEfGFy7yvZze0jGpJhYnRKziZxLOylIMLJ6JSJriCkwAe17NObPJ1ifL/LpNeoqZth+u5nx4wlmzui2khLJsmpKxZBliIUhXiaMyikqlRKUAOJxmZeOGFdQysGhpYinIJ4yTlpa6U+yazGJM2WcpJTDH135TOUv/3tw42dZhm+3EImkSH4pTENDsHy9KhD2slu2bNH/oTyR/9vQ1gQ9A/rAp2kJdl6RIBDUPze3JtixW/+3w5Gg5x3NdN2QJQhosP39rQSH9cXd0E4n29/fmv/d3reEWBpb54XPjQB66p2GPW4y6QzBYSfDH+rIb6733tXI4NsLKXCu+I0uBu7RP3sHHQx/qAPNrytXdN/RyJZ3Fa6z/dc6aLleD2bcW+zs+I0uLCH9h7tub2DoV9ryZbe9v4O2m3VDO9rMDH+4i8hijOc/fRp/v5ut7+so2OW+djrf0ADom/nDH+7C1aU/e+tNASxBlYWTyxBPMvSeNrrv0DeUNZ9e1tuvr4g17/Mz/KGu/O+23RTC3mDBEtLQHDD84S4C2/UFz8YrvQx/uFB24G2t9GbtMPz+Lra8s53gTjegK9EMf7irYMN7mhl4W8Euwx/uovFKL1f8dh+7P9bD8Ie70LKLdD1vaWLwnUVlP9RF8z7dht5+B8Mf7qLzlgY6b26g+45Ght5TsOH2X+2k9aYAAK4uG8Mf7sqTHXR7ZYhkCRZb39dBx62hDfZ2tOnvse3mINver9t7dSRCbDGBr1u/QUtIt6G7VyextNzgZ/sHOvP3sOXdbXTf2URgu4ur/miQ3Z/oxTuo123a59tg78F3tNJ7d7ZtabpdUtEUx74xSsNezwZ799/bSt+9hfRJwx/uouEKT97eyUiKp/9KV/DpvbuZwXdstGHTPh8A/iFn1t6FLmp2Fpzj9g900nLtRntrvqI2m7W3xW/GP+DKt1lnp1W3YYtetuO2EEPvK0jfDr2vnY7bdHtLZonhD3fh7LRusjewqc0OvqMVs0vF7FVpubbE3u9qpfvN+uRRc5gY/nAX/iG93zuarCianCfVlLN3rs02XFGw97FvjDJ7bJn+eze22Ya9WXsPuza276y9x5+c5/i3L25ss4Mbbdh9ZxNb3l3UZj/QyZV/OJBvU8MfLvER7y3YsNRHmDQT4/v1leOOW0PGfIQGqXgae0thIcCIj/Bv99FydYAt72ql5y05e9f2EVd8rI9r/igDisAAAQAASURBVPMQmm+jvWv5iO0f7GH4w70ABLa7DPsIX78T34CrYG+DPmLyxQUiSzGG7ivY24iPeOlrFzj85fMMvbedrtt1e+d9RE/WR1zvZ/uvFd7Nlve20vfWpiJ7dxb5CC/DH+wEdILSwNua6Hmz/rutNwTpv6eFrjv0+2/Y42b7Bwr32/fWRnrvbiQTi5FJJtn2a20E+0zMnk4zenAdd7OSt3fXPo3eGwqKS0NvstKwRQ9Grnpwgj+wnOHw8Q7icfjJL67hez++LV/2X/79zTz9wjAAJ8+28Y3772J6Tm8DjzxxFdFolFAodFn6+j8Aenp6AEgkEnS49I0rrznB3uYwNlWPr3q8UXY0FGaHuxrDdLpjQIImW5jeu+3YJH1DqvkKO723u/Nle29307JH7wcWL9hDKqceWWBlPEHjsJWBt+r9i1SK3juDtF7nAUB1y2x5RwOudr2N9tzpZ+CuBpp26L69+41+2q/3IMkyqg2G3tOMt0+PgYLbnQy9pxCz9d7dQOftep9B1cv6tuj35N/qYuhXCr6k8/YQXW8KceybY5z690mGfqWV4Hb9mt4+G0O/0oqaDTPbbwnQc2dDvu7Qe1pZm4ow9cIC7m4bQ+9tRXXrgXr7zQH67i4scm55ZzONe/RndbRa8G9x4cv63Nbr/fTfW7j/gXc003KNPn7bGlWG3tuKrVH/3R0f7mb4Vwu+pf/eZlqzMafZp5d1tuvjbOMeD1ve1YItoLLvk/3s/HAn7dnxRHWrDN3Xhrtbf7iG3Z4N8WnvXU0MvLWJ9utDePvsDN3XhndAt2Fgu4uh+wplu+9opOuOgl0cLTaSUX1Ryzfk1Mtm5y+db2yg586CXYbuayO4Q28/s8dWUKwyqk2f+LffGqLvrqKy72ml8QovAO4uG0P3taG6Vbb9agd7freP/nsKNtzyrlaarvJm7W1l6L42bAH9Jlqu9dP/9mZOfW+C2UPL9L+9OR8D2Rp0u9hb9HbYvM/H4DsLcVj/W5oZe3KOMz+cxOzXyzrbdRs2XuFl6D2FttV3VxPt2fEkEU6iWGQ0p+6QQ7vdDL23yN5vaaLzDdm+oep28Q06sHg1rH4zA+8qlO26oyE/fudsmBuTfYMO3d7ZtZPON4TofUuRDd/bRmi3bm9Pr/5e8/a+OYhv0IEtoMcKW97dSuNe3YbOdt3eZr9uw7YbAhvarM2n5sn29hazbu+GjfbO2/DthTZ7+MvnSCXSOFr1Ntt0lXfDnKr/nmbas+N3vs122Tj1bxNoVmWDvXuL7K3a2NBmgzvc7PxYF3t/rx9nu42eO5vofGPDRntn48jANueG9u3tc7A2ESU2n8jbO9dmvQM5G+plO24L0Ztts5G5OJIs0bDbA+hkoFybzdl7g494l27vzpsa6L69aYO9W6/30/+2Yh/RQss12TbbqDF0Xxu7f72T4Q910nKNj4F3FNm7mo+4ysPW97Tl57h9dzfRfnORvd/bWuQj3Hl7O9utuNpstGbvARWG3tuKtz/nI5wMvbfwbrrv0P1sbDXF7NEVXB02Alt1e/uGHAy9txXJrLfDzjcE6b4jlK879CutWNwqB79wHpPCRp98c4DetzTmN+m2vLOZxt16X3B1Wtn6/pa8vduu99F3V8FPDb69maa9+nt0dNoZfFsAi08v23dnkB2/WjSm3Omjea9+v7aAyuDbAtgaVDKrazRskem9S/fXLzwFKyvQ3q2vfllsKbbuSuHy6J8bW1IM7SgsxL3pFwk+JR9kZs7F8rKNbz5wGyfP6f7mwEu9/MuPbs2X/dFjV/PwE3sACIdVfuv/HiCVSrF7924u4/WPe+65B4Dgz36e/9uuSJTtUT0OU5JJrg9HaM5uCLUkElwfjkAyiSOZpHkozJCW2z1PMrA1iS+gl3V79c8o+ufWjiSLC3Doeb1015UyvuYMUiSOww+9V6so2Slh04CJ9l2FNYEdd5jpu0Yf/2zebFmPCpkMoUGN9qut+bKd19oI9Ot9xuKBvjfYsXj074IDKp3XZjuqLNN5nYOGbfpFzU7ovdVFKgFHv7eEzSfTfZMz/7sd1zhoGtavo1hN9N7qwtGk36Ov34K9SWP66BqJtSRt1zhpvkL3O4oFem/34GzV78nbbab3dk+enN68x4mn04w1qP9W7xt9uDv0Z3V3mOl9oy9POmje66D1Gt0/dN3oZejtjXh79Pt3tmr03uHL27B5j4O2awtxcM8bffj7rQy+NciO+5r1stn5bOMuBx03Fsp23+YjMKTbyRpU6L3DR9dNHtqvcdMwbKfzJk++bNctXoLbbFl762UtPv2GA1ttSHKGyJI+TnXc6KFhp24X1WGi9w4ftlC27KCV7jfoPiuxliY8H8fRYC7Y8A4fzhY1a28rvW8qbNK2Xeumea8Le0hh5weaGHpnMB+3e7st9N1RKNu6z03L1QUSZe678z9fxN2RLZu3t2uDDXvf5MfXr7cBZ4tGOpHh0NfG8++x/foSew/oZe0hhb47/BuIgJq9sPDefZuP4NasDQN6WYtHv4mGYTtdN+sxjz2gEhyw0TBsz9u77w4/loBeNrjVlrchQOeNHhqv0J9VUqDvzgCOJt2G/kEbPW8s2KX9Bi/Ne1x5e3e/MYA9pGF2KXj7bBvs3Zq1t15Yt6G7Q294Fq+CYjERXc76jKtdtO4r2KXvDj/ebr2sq92ct/foE8uMP79C+9VF9n6jD/+AbhdHs962cpmOmnY5aL/ezcLpKBd+sUT3G3wEBnV720J6WTW7xtgwbKfjRk/+d7tu8TL8vkb63+LH4tvYZoPbbHTdotsbk0TnjW4atusXNbsVFIvMbPYwQGCLle5cWaDjejdNu/SXrNgleu/w4WjWfzcRS+NoLpCO265107zHkbd37x0+nK36994eC313+nE1mum4zkvvbQFartzYZnP2Lm2zLVe6GHpriL0fbcXi1ttHzke4WnV7F3yEk/brCvbe9s4Qw/fpcbyzSTXsIwJ9NkJbHZjdCqQzNAw76LyxcL9dN7kJbtXfjcWj0Hu7B4tXYfroOmszMbpuLvxux3VOGnbqF1Ud0HurE1vWNwb6NbpvdDDy5DpnHl2l/Wp7wSdb9LKO5qyf7VDovqEwLrReYaZtT9b+CvTcYMWVfTeeNoWeG6yQyZCxW2gdgJYsUSjUDFuukmjLfnaHoK8ovGnug7ZBMM+EkcNJunclaFbiLCQVDqxpeJU4SpYt1muOsM1aWMfYbV+nVdXH2tnv9PCecxFOXQiSTMIzhwd48Ikr8mV/+NhVHDjaDcDErIf7H7mGmXndTvtf6mVlZYVAIMDAwACX8fqG1WrFbDYzMTFBY5aTaY3AllETuebRuAB94wXCQe+4RNM8kALPMlzlX6RhMhvDa3EGHIWd415bjBazvuegkcKvJXhhwcxiUiGoJehujSGlM2hrKVpDCRp9+vgsSyl6W+M4rPrvNvlTXDEQJ+jVN8Bbggma/AmSNhlI0dmbwunSyzrd+ufcLntTW4qm1sK8orO3MOew+qFjayEDb7ANmrph9DiMnYT2LeDK7vlandmy2a4b6DTR1FPYkG/dJrM2n2LmXBKzA9p3KDqJCPC1mWgZKoyzLVtlvK0mpGRKP/S8RcPbrvsAb5tMy3BhU7tpq4qvQ68rW6Ftt4bFo48nQ3c66H9DYTBv3GbG36PXlTVo22PB6tXLulpkWvdYkGXY+XY3vTfbCPZlH0aGtr1W7AH9Os5Gmba9BZ8VGtRo2W2h4yobtpD+nSOkl7UHZdr2WCBnwwGN0GBhfHE1KcTDKZDB6pNpu8KMbNHbU6BHoXGo8Kytu8y4WvQfWplKYNJAzi7N+7oUmrYVfrdlpxlPtqzmgLY9ZjSb/v8tb7TRPFwo2zys5W2YK5PbQ/G0yrQMm5k6FmdlPEXTNg1fZ5G995ixZIcFV4tC667CXkHjkMrYwSgTR+JZe5uxeqW8DVuvKJRtGFQJ9unPmkqCrEmoWSKFIyjTtqdQNtivEhoo2KVtjxlnSEa1SDiCJtp2mQv27lVoGCyy4RVmnI36l1avRNseM1J2TPZ3KzQOFezSutOMO2tDi1u/jpxrs50ygR4Vu1eGTIaWYQ1Pa5G9r9DtDXqbbd5euAeLw0Q6pfcNzaqXNWenMJ4WmZYdhXto2qri69J/9/hPwyRiGaw5ezfLtO7U8iShhkGFYE/23ch6X7D5YeIl3W+07S78bmhAIdibffBsWXtAytrbRNc1GkO3W7F6dRuG+gvzvLbdGs4GGSQJm0+3Yc5HOIMK64upfLaR1t1mXE1Ze3uyNszehr9Py7fZ2GoKyaSP8QBml97n8j6iU6V5uNAGWnZZ8HZpNO+w0X6VTS+bbbPeDoWWXYV9y6ZhM77ObL+36r87dKeTnpvtuFtkWncXtdltGv5u/R4KPkLK23voDget2ffTMKTl7Z23oT/bvkOmvL01KwQ6FUID+mcpmaJ9l4ojG6o7/NC+Qy602W4TDb0ymTRMnUxi90g4s37W5oGOoQwmi1442Kr75BzaB8HmgFMHIJ2Eji1FPrkFWnoKCkodHUl8vux6kyVFb18CTdPbij+Yoq29MC60tafwB1NI6QwmHwwEolhl/fvhxihXtxfipW5vjEZHdlyTUwwEoti1FPbJNE2JOL2Nelz+C5fKuCrRG85yd1Ip9izH8GVV/BqjKfasFA5JPfzgTewbU1hetRKPy/z06V1cnNKNODoR4KdP78rrCD1/tJfnXuoDdG2hP/rf3SQSCa666ipEIUxS+s53vgPAwkKBMu/ygjc7B9E0sDvAnf3s9YLDCYFggp1XgC8A3k57oWyDGXd24dXbacPeYM5v0Ho6bDgbCoORvcGMt9OOZJJwd9ixN1jQHHphT6cdV5GqigREFvSAxNNuxd5gwezUG7Cne2NZR7MVX4/ewwbvbsUetGAPZBdAuu042wqqK85WG77eHLnChr3Rir3RiubT8A+5cBYptLhabXiyv2sNWrA3WnG26c/j63Zi91s4/p0x4mtpnO123DmCjVvB3mjFld1E8fY4sDcW7KCYFWIrcaIzcUw2DXujNa8o4+3aWNbVacOb/d3x52Yho187fw+N1rwilrfbgauzcP/2RiveLgdTBxeILsSwN1pRc/butuPqdGwsm31WV7tul4tPz3DkGyO4ux0424vs3WLN34OzTbefNag7NU+PAzJw4dGZvL092fvP2drZqv+Wr9e50d4dNrwD+u/aA+Zs2YK9Hc1Fdumw4+m2E1tNkE5lsLg1PNl79HaX2LDDjqcr22Ydur29g05672nG17uxrLvLhifbvtEKNgTwZN+NVmzDonZobyqUdXdmy7p1h+0fdOLuKSwG6m1W/+xqy7bDQPZ3+wr2fu4vT2CSpXwbcGbbrDWY7XM9zg2qQq5WG97s78qaSbdhky1vl2J7623WnrW3htVrYeLZecYfn8fXs9Hezg4HnmxZLdu+3dn2Exhy6WW1je8GQMvegydrl3z7zvmITjvuro1t1ldqw5y9u3R7t9zgp+Vav/67WYKKp92OvdGK2SWXfTeOZism2UQylsLZas3aO+sjehxVfYSjyZrfMPKU2LCij4hDdDGO2VEIroz4iMkXFjj57xcxO7W8DY34CJNmYvH0KsSzNjToI0wmieiSPiC6O+yGfcTskSUyGf05AMM+YuyxOUwm04Y2a8RH5AhxzlYb7uw9FHyE7nt8PY4NbdbT6SC03Yuj1YzZZcLeYC34iCIbZtIZXO12PNlnnTm2SiadwWTS25K3Ux+rcnC32/F02PVIVgO7z4Q7uyhqdWvYfaa8vT1NCq6GQoBq9xfKulqtzC0E+NmTN/G1f3sHFydamJwqbILPzAcZHdM3HKemG5hbCLC0rEfYP/l5G7OzsywtLXEZ/zFgs9mIxWJYpCUA3JY0Xksaa7Z5hOwp/NZCYOu3pQnaU1zXHmdbQ7ZsY3YsatXwtBYmB+4WDXeW2Gf1qjgbNcz2bN9sN+PKLRzLMu4OK56sz7U4TThbLDib9PYtqzLpVJq5Y/qJDE+nDW+3jUwqhWJTcbYWxmRPp63w7x4boa0uAlv0fqqq4Gy14s76N3e7RS+bdYfeLjve7Jjs7dN/x50dd51t+meTJbsQ21MYe0AfL1PxNFMvLONs0Tftzc5sX+125Md60MciX69uM0ejhUwmw+jjc9nfteftoN+jHW92PLEFLfq4HNKfL7aSwFR0Ktzdacv7QltAw9Vmw5G1oa/XgavdRnguwfyJVTSbki+rOUy42uw4W/TfdXfZcLUV7tfT5UCxKhz7zihr43Fcbfb8995O+4ay3m5HPt5ABbNbZeWCPtnxdOhlVVUqlC22Yas9H8d7e+242+2oWRK1r9eRH6cA3Td25zZRrLja7FjcKqloClkzbSzbYc8/q6PBopfNjrO+XgeeTgeNe700XuHF0+ko2DCol835WW+3A3dH4XfdnQ68vbmxU83a0JK/f1fR2OPpKTyr6ldxd9jxDert0lNiQ0+XPR8vqTb9d10ddsZ+Oc/csWUcjYX24e0qsWGbPR8rurL2zinyeXucG9thcdlW3YaqK9u+ex2QJp+yzd1hz1/H2WLJ2ztX1l00Jnt6nISG9THBnrW3LRuLe3sceDoLMWexvS0BM642O46GQtnieMnd7cjHNTl7u7psdL6xAe+gHVd70T10O/J9LGfD3Pjt7bRj9ZpJx9PE1xN4u+35uZqqZu2Sva673aG/m6yP8PU78Q4Uta02O54OW/7frjY7JmuRj8j2hYuPz2EySXmfofsIe/6QgO5PNrZZX6+DI/9ygZljS7oNs7G4t9eZ/1393Wxus6vjYaZeXMTTZcNd1A6r+oguB+lUhvFn9NV7T5c9H+NrDglXm63gIzrtuLLx6epohPhqEiU7aOj2tuW/93Y68v+GbJvtcpBYTnD6oUkcDZZ8O/R06PXUrL09XUX+JGu34LAb1a3o99NqRXUU7O0uiiNdbUX+u9mCq8XK9vuas+3DvrFsuyX/buw+E84mM1af7r9jq0koOiznbrPgyaqbWHwKziYz9qAKZjOeNkt+nQJkXG7wZheuLBZwecCZXZD0BSgqC54gnDzXzVe/fxdnxxqYmA4xMauvZF2YaGZiukCqGhlvZmRcJzBFEyrnz08gSRL/8A//wGW8/vG3f/u3AKxNFbTbW1IpWrIrcgrQlEoRyH4OJVM0pVL4kkneEonSm07jCRXGfq8P3Nl25XTpn5XsSpzPD25P7lezn/2QsajZeYIJJRu2eZpkPI0bT0+uL+r3YPNIuJtMWLIEdm+biretMJf0tKp4sgeV+m9x4m1Tsbiym9EtGp4s0YVUCk+7GU9bdsHXqeBu07D7ZRQLBPoK3wF42jXc7fpn1a7gbrfk1yXczWZcjWZGn1glGQFvhwVPu943JSUb4zXoZZ3NGu72wpxJtSpE5pO6+lKubJNuCEejXjYnDOLttOHN9vmpw6tkUhlc2VjXmS0rm7PP2mnF21W0ftNuwdVmYeboKqtTUdztFrSsxL6nw4qno2h+2GHG3aZfx+ZVcbdbGD+wwokfzOLusODpKp5LWvBmD3uZPbpdbP7s77ZbkZCYPrheuKfsdSwuWS8b1O3iarfi6SjYxddnxZslBCk5e4fMSJKEu8Wyoay3y4q3y0IqBqlEGnvQnCc4OZvNeUKHbkNLwS6KTvLwdJhpudKFq13D3WFBya0JdBWeTbeLBVf23TgbsmVzNuy04C2KmT0d1vz6rz2k34PFkSXCDNny5JvcPXmyZW0+FXeHRSd8wAZ7H/nmNCDl35XZreDusGDLElk97Va8Rc/q6Sy8V5Niwt1hxZZb22m34Ckae7zdVjzdORKegqvZysT+ZaYPruFu3WhvX6c1TzRSsjZ0NBUINt4eK1g2vpsc3B0WnFnCvaNBt4uSL1vatqy4smXtIbPeF7Lju6fLiqfLir/fSmBQbzuunA0Del+w5Na8ujb2BU+nBdkskYxmsHr1tpUjhXk6rPq4mo1Xi22oOU14uiw4s+sU7lZrfgzO/W6ub6s2Oesj9PsPT8WxuAp+yttlxZNtW5Ji0vt9Y85H6M+6Mhbj+PenUW0y3u6NbdbZurF9531ElxXNbmL22BrR5STudgvu7DqQozHbZrM+wpu1YQ6yamJ9Vl/zsgXNhn3E1KE10qkMmtMEJgl3m3lDe/F0mPFm7WL26M9q8ynMn4pCWiopa8Gb9bsWh4K7RcOWjYFczRqedjPOHLmoyH8rNhl3i4Y9Rw5oUvA0F+wd7FFp2mbF0WDS22yLiiOgl3WEZNzZcUFai+BtAG82zFmYgHQyk99Rcnh0olK+zYb0ssns2mCDmsKv6aQkuwwNar4r0KilaNAKCjAhNUVQ08c1hyPFufEmHvjFdXztgds4d7GZcxcLpPSzY02MTOprYHOLLs6NN7G0qs9hPv3EbqampkgJpqu/jNcOW7duJRqN4rioz3NsMWhcMmHJigEFVkw0LBVioIZlmcCqzM4LMrtGFBqXTKhunejs09I0aoV332AutCtNhkZLBi3rH3xqikaz3gYTNhMBdwqfS/8dWYaAO43Dqn9WlTTJFMwuZ8kt7hR+dxolrKuz+kPgyHIRHU79MzKYrSm6eqGhcJYKf0iPCQEcVvA2SkjZx/OEwNOgX8PmAm+ThDPLtbU69bK5uZgrCN6Wwrqxr0Umk5ZYmshgdYC3Vc73TXeDCU9zwYbeFhlX0ERGNmG2mUilYfqEbgtng4y3tcg/tyq4G/XraBbwtilYsmtpa/NJTGpR3Num6gdw0ck93g4Va5bQ5PAr+NpUUimYOh5DtZhwZe9fVvWyOf9mDyh4O4pi2TYVs0Pm5CNrrM6n8HaoeUKTzSfj7VDzJA5Ps7IhDrZ5ZVanU5ACm9eEt0NDlvUJpLtZxVP8rG0KziwR1O6T8XeqeRKHp0nB21qwt7dVwZG1i8Up421TUW0yqXgGxSxtKutsyM3H9bJmR46QpeBtV3C1yLhbZLytBX+tmXWbWrOqKs6gvCnGz+0VyJpe1uYtlPWVlm0plA12qbia9Xdj95s2/m6LgqeobXnbVGx+E8vjKSZfiuFqKNi71Ia+VhVnMEea0e/XlH836ka7FNk7Z0MtO/dxN6lIEpx8JJwv68ra2+yQ8bYpeYK7q3HjOw90q/i61Ky9TXjblPz6r6NBwdtWuAdPq4one9BUzbbvvL0D8oay3lYVV1OBYONtU7B5ZYK9Cq5G04Zn87SoeRvK2fu3+3Jt1oS7QSEZz5BKlLO3gt1vgkwGuy/7znOxeLuKv3Nj/8zZ0OrWy+bmj+5GOR8XLF5IIgGO7AFFi1PvN4otF1MoeNqL5nltKq4mlXNPrTN1LIK3o7jNqnjbi+6hXcOdvX/Npv/u0kSC2VNRnA0b3423pB1621Wsnuy7CSikEjB/Lp63Yd7ecs7exW1W/y4egbX5NIqm+6KMZsLbbCrY22PC2yIjZ2MXT6MJT7OJVAImT6VwBWWc/mxZt6SXze3PBfXYJn//DeBr0u/d6gBfI/m9PFdA/94UyR4E9mdwuXVfY7FAqAEGh7K/68ng9xeUrvz+NO5sWWckSciRwqrpn1dj0oZEE0FHCr+tMK6FHCnsapqYS8KnpWiLZQvLMqFkhuYsKUlLQ3s8jSebKjSULCoLtKWTHD7Vw1d/cDsXZ3ycutDKzLy+KDY55+fUhcLhxrMXmzk3VjjI+cR+XQH5L//yLxGFlKlDGzgnb3rDHf8bZd2oVmqCrW3rXHx2hchsQW4wHashZ63B3o93sXh2nTPf35ibPCOa/spAbvvmfT4kRWL8l2Jp3/b8Th+qTeHp/3Vc6JY6bg2huVROf29cqN7/m+FoM2PxmIVShgHs+7+2EF2K8+Jnz75Kd1ZAx20hWvcFOfnvF4Xus+ctTQSG3MLpqvb8Th+KVeaZPxerVy+u+ZMhVkbXeelrgvkP6sCWd7XiG3Cz/6+P5hnARrDt/R1YfBrPf/q00PWu/MNBSGd47q9OCt6pOJydVobf3830oUXO/MB4yj1LSMPZbBVOlfj/Znj7HTTt9XHm+zqx0yiG3tuOp9vB8589szEFXg3JT0eLRstVofLp9kpkuiUD8tsbIMsbPzY3sufddhYuJjn3VPUxMe20bvjcsQ3ec9+z7NlhbOy56yP/ied/+ReE1+Z597vfzbe+9S2xe7+M1wT33Xcf3/zmN7EG2hh82++irhuLf1qccTzjS0we2SjznFmvnsui60YX3k4zB746uzndm+BC36Z0b2Vit547g0w8t0RkrowcdYXYzRZS2fHBLqYPL3Huodpa87mYUXWrdN0aZPzZOdbHBXNcvpYwEMO+HPiGnKyOR4XST/Xe1URou4f9nzlTV9oqUez93T4yyQzP//0ZoXq7f7OHtckIp75nfBy2Najs/HAvEy8sMPKTadFbFcbQfW242uyXLM676g8HiC7GOfSPAmkPVdj7W31MvrDAWK15UhFCu930vqmZcz+ZEk4TVw92/HoXFpfGs/9HLM7zDTqILsYIT7/KbdlAqo/XC3rubCA8H2fy2fLvrVL8c9Un+4gsxjn85QulFaper+lKN8lImtkjm+XHJbkk9hLJOw9gNm/42HVPAx4v7H8S8sfpKiDuKVzLYUvQEkzz9//VeLrcff/jE7z4hU8CvGppmS7jlYeiKKRSKdo//xfI68b77Q2nIkwuyISjhUVmbalWvJFk95WwOA8XX9y4viZFxXySVBq3JTfHbd4OBdksMXeqzG8XxW2lad+23OXG6lU58M8V0j8W53sqivcCg1YsbpmxZ6tM9l9unCO6Nvgaw+JR0FwyK6PG0/sB7PpQE9HlJMf/rXxOwVfSx/gHrPTcGuD0T2ZZPGs8tVnDsIPGXU4OfWNSKLXWlrcHsXlVXvhH4/Hay8Gej7WwfCHK6R8J5mcUTFkBupJPyx43h78xmVdTMoLOGz04ms289C96LGo01dj29zYgyRKHvzZVu7BRVBjzFSvs+rUWpo6scvHJKmujJX1UcYDdb2b5glgfgNd2LDX6DvIotVuVWMjiV2jcZmPsuRWSucPyxfUrpGxrvdJG01YbR+6fI7ohu1zRtcrUNTsg2G9m7MDmd5Axb0wLknFYN5WphhxBKYe5nRq3uSNMxBWORar/VrwkM243Mf789p+ytX/U0LW7vv/rLHz+q6wdPMpHP/pRvvCFLwjd+2W8Nvj617/O+9//fgLX9zD8/9zNUo12koNvBTjiYgyZ4pjeslDdT3RYYrRZkzyxaMGysLGfqoLpMkvTvZlim2OvptYU8zN6qp9SmOKF8sVp32QNhm+UmBnJMF5h62NDmrhszCer0NgnszCWIlJty6okl5xUJt1vVZTmohOtX4qX49sN+GZ7UCa6ltJTlBWXr7KmH+xTad1h4eiPV4X2rOrFwG02JBOceLjCmm3pc2Zt1nujlchimvHDNcbUovqyDMNvdTBxNMr08Vd/Pa9l2EywV+Xg/a+AIQ2876132IitZzjzuFhOui2325g9E2fuXIV4rcy1bX4YuNHOheejLIy+guTY0j6R/dy1z4IjKHPkB+vV6xf3yUwGm18mGU0Rr1HtVYFI/FzaJwVj70zJ2lHpPlwxQj0mEtE0i8XUDKVQPq2Vj72Gr4fouq6mtOHaauHaaevmul5fikwalpY231PSsvFvMa/x1LgAMddGuwX7o3RGkzzi0UhVsQGA7C6sIVjjKbpW4Xtv/Vo1023AG47fxc9v/1tkJBIJcX9S1yqpzaafLBkffZak3aixVE49ML+BoGQIcUjF0qTjmwe6WhvDwx/qoP/eLJvL4KLHxNMLtQlKsMkhjfxsmjM/EicaBbe58fU5axcswZ7f6WP3J3qF6219X0c+3ZFRaA4TQ+9py6eWMoqGvR72/l5/XgbOKAbubaPvLS21C5bg/CNTnP5hGUJBDWg+LZ92yiguPD7DoS+fFiZSpWJp0knxoO3w1y5w4AvnhOvt/f3+utpJPWjY62Hf/7UlnyrMKI7/+xiHvnxaONhLJ9KkkuIB7MHPneLoNwQ25bLIpRATwepEhHOPTDL6RIWF3ArofkOj3gcE91+2vq9jQ5o9oxh8ZyuNV3prFyyGBjs/1pNXKTKKhr0e9v3xFoLDrtqFixDa5smqFYn1nzM/nmL86TkhghLA2ni8PEGpDHLkB80BV3yih8D2KjYpM7prDkglMkRXxQPZCy8hRFACCAWc2Gw2/vmf/1n4epfx2uArX/kKAJE5vU0m7MYWR8dXtU0EJSOIraVIxtKoljJfVolQ/Vts7PhgS17RZBNBqQLOPjgrRFACCM8kGP3lHBefWjB0DckkIZn0E2f+fgeBQbGxKjjs4qo/6MPTa6tduAi+IQfbf008rWLDbveGVHVGMXRf24a0XkZg9qsMvrWV9msDQvUmnp7jzI8n6iIo2RoFBzjg6NdHOPRlMYISQCqZJp0QixfC0wkOfukMIz8TIyg17PZw9X8ewNNrr134FcDO3+hm18d6hOsd+MI5jn1XLGZWVYl0IkOqzJysGmYOLHPwS2eYOixGUFLdaj61nQjO/GiCsz+ZrF2wBP13t9ArOP8w+1V2fbwH36DYZMfTa6P/nqa8rzSK9lsC9L+1qXbBEuz8jS52fKRTuJ5/0EVom5ivBDjz0CQXHivZ9DVAzpp8brksQakcMnE9rut+g5eBe2r4LvPmGD6ZAD1Tl8FVlyzWwionLxifE+z7H59AuvgsAP39/ULXuozXFrn3tfrUflJ2437v7IR5A0HJGBTiCUiWWQvPWKo7iu6rFNp36tfbRFCqgMULyZoEJdhMDhx7fp2zv1gydA1MUn6BOTBgIzAgFj8BbLk3yNDbg7ULlpAfOm705FNGGYYCHTe6cTaLOWZXu5mt7wrlU2gZRedNXnpv99cuWILzjy1y/rHK42klAoViYUNaNSOYPxvh8DcnhQhKkIu70pX4FBVx+qFZDn1LnKC09d0htr4zVLtgJQhsfDhbzVzx6y359HZGMX5ghcPfFCMoAaSSGdIJ8fXD4/dPc/IHYmtQQD692yZUWXtPRuDsI/PMvFTlEEwZEmHjDjf9dwaF22XHjR767hTvO63XuoXfG8DA3YENqmNGCFLOZpXdH27C2yt2PV+nmcCADVk1bfChtTB1OMyFZ9cqE5Sg7AATW6MsQakcpLXCJu/Wa3Wll0ooJSiBrhUYS0tEUuKx/TnMQgQlgNBqFLPZnFdGvIzXP973vvcBsPC8/q49VmPEggUXjKEhGtNH0iaiaVPZZfeErfK44LSl2NYVQ5ay6pphY2tek2NyTYISQEYtlEnF4cKRDFNGz48rcn5zPdSt4AqJ2cQWMrHtzTacIQPjYhFByeqV6LzKIvoKcDbKNAyJrwu1XmHZkGbKEGTou8lOqM+8eU+gCtF9YTTBmSfCxMV4LgDC+6EA558Mc/oxgwSlIqQTkK5F2C+pn0rB0QdXmS43J6gCe0Bm+112nILtq150X2el/5aS8dTAWHzi0TDnnxF/calEJp8mrizKXDs8D0d/vM7CuNi+jqwV0oQZuU4O40eijDxXIz4vJQ1KEt3X2WjbIzYnk2Xou9WeT99nFFaPTNN2s2GSSw6+LoWW4ZL1llJCZBl0X2Om9wbLZoJSDQQ6ZPzZNJfFPrQWzh6B8RKdlGKCEhTUlIqxuCCXJSiVg3lRr9/ujjEYrP6+SwlKAAkJoiapJkGpFBFN5phfFiIopQ7PIaUzbNu2TehaOYiungDw53/+5/z2b/825088QEv7VXmiUi1VJbPPxOBbQlx8epGF03ogbMouGlZTVDrw+QsVT+5LJqmiopLZpRrZi96EoXe3kYinOF3rxLUk5R2GKFklh+c/dxrqOMgfno9BHQQNZ4s1L+EmAk+vk1Q8w+Ip40wSRZORzSYsQRvxteqqDcUYeWQakybOn5t6rr7T2Vd8rIfIQpyDnxdQYIrrJAZRjPx0mpGfip/I30CwEMD6TJSU4AmAehFdTBBZjBOZF1vEqteWx751UbgOQHwtTXxN7HqOFo0dH+gVVkQiDpNPG9tAL8a5n04RGHIJ+wbNrYir+gDePheaWxXqQ95OB1afGUeTlfljxjaUAFJRPXXL8jkxVtrJ+8d00pagTeIL8Xz6SMAQQUnzaQy9q5VzP5li5XyR76qxwebqcKBaTZXfQYXRPXJqihfXGst+l0OpghLA9hthxQCnNkdOAoivLzE6OkpTUxOaqArBZbxmUFUVWZZJpVIkwmFUmy1PVKqlqtS6S8Pmlzn1SGFyJtn1SUklRaWJF9aZeGF9s4pSDrJcNi5TzCY0u4KryVz5ZHiufxTFbu5uK+3XBTjyLxchNz82QC4fN0hQKkZkIcnTf3WqcB2DWJ+IEF1OkBHbW8DRaMHeYMHWqBKeMn7R0LAbW8DM2QezMYNkMmQTs1NDVsRuMjafYOTn08wK+HKA8FyC8Jy44l/fXU0Et3vY/zcnSISNx7LhckQ2Azj0BXFiMlCXok54Ls76bIz42qt/Eg30dlnPuF8PsSwRzuRTy4miHlsOvbMVi0dcEWl9PMb6uPip/DMPTpBYF1tUsno1VJu8IaVjVWTjiNBWN/5BJzwoRqbydNoxOwWZTUB4NgbVFtoq4LlPna5KpMrNwUvb4PyxkhjPAEGp584gIHH2wY3KeKUkiVJYfQqqpcrctgxBCeDig9Oc76tO6CxWUAIIeRO0hpIcOVd7CWXf//hE/t+nnnoYgE984hOVil/G6xBf+tKXuOaaa1j+/o9xXrM3T1SqpaqkKEmG2pOMzynMr2Tl57NtqZqi0ksvKigr5efRGYtaUVHJ5jKRiFbp37mF1hJFpda9FsjA2PPZa1Zab5NNeUWl1ckK8UW6iu80SZz40Xx1RZ0K8U14Lp5PfVIRZdYCPR0WYstJJp4Xm28Gt+i7SasTxmMbkyKh2mUsLpmEgNrv2DOLyBbx5dilc7XXWiRJ2kSk2PG+ZsKLiYoKTGWRhOiSYOALzB0LM3fM+Ppf/nLiVQBYn4rX3pirBZOp9gaISe9r69NxYkuCcU2dtrz4pN4WRdV7klFIRsWup1hg+7sbmTq8mr8uYIgos3CmSrus8G6mDi0TXUqQFDysaHbJ1cf9CmgYsrM2rbJwyviGZS5l7OpYlOUikkAmk6n6TjISRJZShOfLMU/TFeOiiRfWmTi0DukKv50jGpUwAJNRmDlWeAebCErF9bN1FQV6brYxfijC2kzhHZUqKJXC4QGzFUwV3Fc5ghKA52CcX+6svmNfqqAEcJW0zlKm9vvOkZMAktEo4yMjhEIhLBZBIsNlvKZoa2vj4sWLxJcjaG5rnqhUS1WplThBU4oX04VyUZ/ejyopKs3EVWbiKpaF8r4/YTOVVVSSAIs5g9UCaxXcSdqst9liRSWrNUVzB4ycg1SWrFRKUMoho8p5haSFCoJ4GxSUSpDKyLz4UAyqTW3LjHnRVYispKl5tr6krsVpwtWkYPWYiCxhWFHJ26anCJs+lo2Pi/ZZq8FsN23eC85kqq/3p2Dk2XVW5yrcWzpTdrxLxWB1SvxAcV6B6cFV4gLxTUUyVKVny/793FM1xrYK9eMRYzYvRiKaYm02RTxyadJprs0l8ym8NqDGO0/VKZx/6ucG4oQy1xZ5zzm07zLjCMkc+WFJ5UrvJHvN+FqG+FoV+1fog+efjlQnYJWBYgfNZqo9JyuBs0mhYYuZmZNZX5RO1z4YYJJwNijY/TLjh0u+q1E/vJLBZKrwbKlUxT25Yz9L6ATLCuQkU1yPvUoVldaXNpYrJSjl60eSeUWlxqYUsgLjFzdeq1RBqRQ2LYNNrfzeyhGUAJZOWji3q3o/LVZQAvBGUgwsZTjkrx3/v+H4Xfl/H/vyL0in0/z2b/92zXrlUFe6N9iY8q0Y5YhK6iGd/KE5YOcHW5k9tsb5R5fK/m5ZslIqRcMeN9HFOMtnKzuKiunfBKWjr/z9fpKxFAc+I0BayWTY/oFOUtFU3eSJ1zM0h0koxdJrgY7bQni6HBz6opjiUPcdjayOh5k9LEY02/O7fcwfW+H8w2KkI82nCZOOet7ShKfbwQt/K5barF5cynRvffe24Gy1cuDvxDa+NJ+mk40Eg469v9fP7EvLQmQxzQHttzQz9eI8axeNb3x1vqEBd6dduE2+FtAcXBLp0ksJe6PGlnd3cPahSRZPG9eybLzSS9dtjZz697ECAcvABpsoOSmHjpt8TD6/QMq1mahUjpyUw963mAgvpjn6pP75uw9+ZVOZYoISwHOP/QXRyDy33norjzzySNX7uozXF+644w5+/OMfY2/oov+ejRud5YhKvid1dcfBN1ixemRe/G7lDl6OrKSocYKDTiaer0FcqbCpZUhFKRu3Bbc76b49xKkHJlk8GTYct3n7bHTc3MDRb18kIXgyWThl8CWGaoNEpUnuq5z6TQTbP9DB3PGViumgysHRaiWwxcnIYzNCZLH2W0P4+xy8+HnBMVUF1aYKE3N2fayb+dNrjD46U7vwy8SlTve2+zd7mH1pmYuPC5yyr9OOHbeF8PY4OPgPYu8tsM2J1WcWu0f0Njl/cpWJOkjirxrKxBBV+/h/MBTHPwNv04k/J++fEEptt+Mj7ciyxIF/KMw9ahGUoEratwrkJABXm4qiwcLZBMkyRKVSclIO/e0xGv1pHn9RIcfe+ukXP7+pXDFBCbic6u0/MEwmE5lMhvbP/8WGv5cjKrU8lhubk1y3Lc74vML5yfJtqRxZSVmJ4g5BKglrVdxXJbKSIRWlIqLS1rudpJMZjj+4ZjiVbyaVpusGB5kMjPyyKK6sRlLKl3ll1uoM/24dUCz6Zv/rGYGtNnzdVk79sPZJlWKf07DTQWw5ydJ5sQfc+s4Qi+cjtecDJVBskIwjlO6tYaeDwICNo99+9eMuKEr39lCJLcuRlepI8VaM5j1OvN1Wjn5H7NkUG6QSkpAdQX9vC2fCTL4osMCjQPMuJ4sjESKz2QsaICgFttrwdVo59aMybfISzLdExtZXso9XJCkZPTxQKUYyUr+IpKRYYOCNbkb3r7M2ZdCfKgquZoXeG2ycfyrM4qj+vmsRlKBy2rdK5KQcGpqTzM/A1LbNTKRy5KTsr3KHHGExbeKZjK5Se/QTn91UqpigBDD35X8h/NyLvOMd7+C73/1u1fu6jNcXPvWpT/HJT36S0C39bPuvb97wXTmiUvhJXU11mylCgynFo0krleR8ypGV7AsJAs4006vV236l9G9GVJRyRCW7I8XAdjhzHFaW5IoEpVLYLClaB3QV/XiR/6pGUsqjTMpfwJAqCVRJ/2akvgGiUoWzjzpejdRvRgi/ZXxwx14zqzNJFi4YJ+VoDnA3KiycTxoNswHwdcj4uzROP1a0/23kvmWQTZnyxJwq9Xuus7AynWT2dPLl2dwAXtF0b8Wo8Hw911tYmUwye0YgiJKz7dLoXmP22r5OGX+7yunHxYIMe0DC7DCxMFLUSAy8h469ZlanE+XbpBGS4CVal5C1MrasFFMbiX8q1DWsnlRpf86AelIxSamlRydrXzxZmZy0qb5VoX8giaZleOlIYcypRVCCymnfKpGTABxyCrMpw3xCYmHX5u9LyUk5dC+l2LqY4cH2ggLTmZu+sqlcMUEJ4Oe3fxpTRiJZThraAOqeaeVSvl04/fMNf6+W/i2+Bs/93VhFglI1dN3aQOct1dNelN0gVtNYQmJqEc996pQYQQlAkjC7VTSvuDLF3t/vZ8dHu4XrNe3z4b5E6SReFkFJ0CSaT2Pnx3qE00E5m6xY/eL2P/fQlDBBCUDWZBTD6Q51NF7pZe9v9dG8T0yeWLXIyGbx00LefodwOq56ofk0PWWY4CtQrTKKJv5suz7azd7fEk+bYFJNyGYx1xdfgzM/mBAiKEH9bXL4I13CaRlfLi4VQanjtpBwekVHm5l9f7yFlmvF+o2ry4FqU4TTAk49t8jTf3ZciKAEYG8sM7GtQVBytGg07/XS/cbqSkrlsP+BAkGpHEoJSgBOhwlZlnnwwQeFr3cZry1+8IMfALA+PbLpu2rp3078NFKVoFQJXTcFaNvnQa2V6adMG7f6DPrYbNw2e2SVZ//qrE5QEoRml3E2i52QbN7n5ao/6EN1iymS2AIqLdf4hOrUi0tNXmi/NcTQr7QJ17MFLDgbxVIZrI1FGPmpGEEJQDXXFwvt+Y1edn6wU7iebJbRrILXUyG4w11XmrJ64B2w42wXT6EjayZkwWdrvdrP3t/qFU5lp1lllDre29xLq8IEJdDbpD0olqI3uMPN9g92ir83cVGjPC5VH3d32oTnVKCTvXZ/3Nj8tJj0afaomL2aEEEJ4NA/jgoTlKwBNZ/2bQOqEJQAOq5y0HOTR+j+AE6NmjcQlMqhlKAkn/0lAI2N4nHeZbz22LJlCwArP3tiw9+rp39TeOIlrSJBqRp6d5toG6zuh8qlf5NiccxGUkoULcAe/cGqTlASgCSbsHhkrO4in26EoARsfWeAgbeIx1DebguOhgprLq8wAeJlkRcERZEUCwzc7cfTLRbD2gMq9qCxtlVMopg+uCZMUAKQLSYUq5g/d7Wa2f2BNhqGxOIFRTOh1KGQYw8puFrFxv16oVjA22MRft+yWXwNCmDrO5vYVkcqO9liwmQRvF4SJvavChGUINsmQ2XGxRr9s+eNPvG0jC8TryQJsRo5KrjVhtkt1kgUB+z+YAPBIQPzqqINIHtAQXMoldWTKmBlIsmBb60IEZQArGw+OF6LoKRoSbp7oFM4Q7XCQyknz2Qq9+9SghKA6+IUsizzta99TfSCl/Ea43d+53cAmHtq8+GWaunfXkprPJp0IJpvrM2XZCCUwCpXj2XKpX+zJY2xGHKqSutrcOBpnaAkgrRJxmqXsBS5SyMEJXcDbH+TGU0wy6ViAV9blXs0SHDCwFxOhLwjhHL+WZLwdSu07akRd5UZuxxBGaugT4+vwewZMYISgKxKKGbxtaS+66wM3Fom7qpBcJI1qbxKUdVKeqq+imnKXmFYvRJWj3g91SwZV7zOwtUgM3yXA2eDWD9VtPre2/pcRpigBOAIVGiTVQhK9oBM5zVWZAvGiG85vIysfobJXkYJ3hX8j8UFrgZx+3fskum/3lj8k1NUAjDbwWo3TlDK4dRJhZeOFOoYIShpcgrz4ub96GoEJYBuW5ydbvHA95xH5oft1VPElRKU4s9OQirD1q1bha+XQ13p3gC+8pWv8K53vYvRsw/T0Xfzhu+SdqVq6jfNAZJmIlZGUnFT+resNz//6DTTh2vLLpemf7v69wZIRtI8X4cCjaiyyPN/e6YuJmJsOUFsUTwNQtctjazPRDl0xvjJ5OCwi963tDDy82mhNFS99zTjH3Dx7F+InfC+8pMDZDIZ9n/qlPFK8SRWnxlnq12IPFSv6k/zPj+eDpuwApaoLQAWzqzjbl1m+bzYSbQT/zomfC2AvrtawCQxf+zVP5nfus9P024f4dnYxhRZNXDsm8Zyi5di+sAiibA4O7Oe99a0z4e328Gxb4jd65F/HhG+FoDVZwZBXmDLDX46rm/g9A/HhPrN9g90YvFq7P9rgT4KXPmHg8RXE0JpEjWfRsvVAewhi9B7l80K8fUEK+NiO3qTTy8w+UwdaSBzaeUENtgadrvpeVMjF5+aZ+zx7ClCA8lb18bjnH5ompWRNVJrIDfrm1jVFJQAHH5Yq3KAthxBaW7qKAsLC/T29l5O9fYfEKqqomka8Xic1akRnI2dG75P2KWqqd9sAQhX2O8vTf+WicU5/8s5Zo6aSRjJeFF0BKr1Og8te9wcv3+S5fMGZHKL0r+pNkisG3d+i6fDPPfX4umn1qdjxFaSaHaJ5GrltMGl6LglhKfbzvj+BSGCzfCHOtGsMs8LEuD3fKKHlYkIp+4vSTOa801l1AdCu9303N7E6QfGmXvJeKzhaq6PVCuaiiuH/rc3s3ByVegezwqmxsphfP88JsG85ADPf1p87uDrcdD35mYuPKYw/pSBfJwvE713tpCKpTjwWbG2tf9vxJ9t4fQqFrfG+oRxZUKA0z+s7731v72ZxTPrzB4SSylYT5t0NOvEJpH0gwB7Pt5HOpmubP8KccSVv9/L1ItLjP7cOAmreZ+X9uuCHP32RVZHjacqab8piD1kFj6QEZ2PkyqzIF8JmXQGySRx+MsXhAlKxapSRshJOQy+rRGTYuLAPxa1sRoEJYAj31/E16kvRimnJ/JqSpUUlABsWoJ4HJICBCWAmdMHUBSFv/u7v6t5X5fx+sP999/P4OAgSz/4Ca5brtvwXcqerpL6TUEhiaJANLl5ya00/VsuzdvZA2mWDCzRlKZ/G36rnVQiw9EfGZgrlaR/U0ypigfty+HEj1bz6d+MEpQAIotJktGUHvfl4i4DKkrdt/hYm45xslQ5qErsZgspDN4TYvSpJeaOGp8/Nu1y0LDTycF/Ehu3tr0nhKRIHPm6caXmZBTsDWbs0wlDKdxyuPCLZS78wvi4mEv95u2x4Gm3cv7nYnPjw1+rkGemCsJzMSYPrbA8JnbAa/y5FcafEz882HWrH8Vs4uBX6os3NqE49VsJ8cPXa6fzBh8nHpipnNq6DC4+ubwxhZoBSJLE5IGVusTG6nlv7k4L3i4LIz9fMr5ZRIU2aWBuZQ9p2c1D44vunm4Lvbf7OffoPAun9X5TLr1hKbpu9uJsNnP4G2J2Gb6vkXg4xYnvlU+TuCHtW85mCnRc62HhbIRzj1bpb8Vp30wSilkhspQksmBwkplN3bY8luTgvwiueSWTKBaFZNI4OQnAEYDBm6xcPAVT2W2IWgQlgGRc4ejhJOEIBOJh5nbqaw+VFZR0uEmyjEKlratyBKXExSnm5+bo6em5nOrtPyBkWWZgYICTJ0+ycmYGV+9GkqbHGqmQ+k2PbRykWKuwo16a/s2ykOairLAQVoikaq/dFqd/C7iT9LemOHECVlYNKHCYZUDGFEshyykyxqdyRMNw6ClTnphkSEEJiKxBZDmDZJb1tatcsFeDZBTqVmjoVVieTpGK6z4qr6hUpW7nVRYsbhMnHi6Ku2RTTVWXvlttRBbTjB0oiYVyvrWMf7cHZXpvsjPy1DrL4xXsUZyOK/t/m1fGGTLAuChJ/Xb0wfpOFzVv11idTQmli5s9U6L8Y5BMMn06jqKyMWWegbqnflai2GRgX9vigN7rbIweiDB/rj7VFBF07LWSScHJRyu8hwrPe+IRgY6WRXQxxfjRGOFFg+8s285mTiWZOSVui6YhlfWFNCtTKSFOwdGHytiiRl+zuE24GpTCWrbB991/ix3JJHHyJ2KHW4be7GT2TIzZkyVMpdIYu6ivORtlOq+0cPbJCOH5Kkpu2bo5BaWGXhVvi8zBH9aYUxWnfVNkouuQwbjdTfEkaU3h3GFxgpIaT5DQTIBsiJyUQ19XCrM5w9MThXWuWgQlgKOrGp5oBpDxvQgL2bRvlRSUAKzxFHEZIYISwPg/P48kSfzZn/1ZzfuqhLpJSu985zsByGTSxOPxTRueOaJSLtVbMXZ+sJXYcpJD/1x5gmAymzekfpt+XmAiniMqZdLMHF5mfVacNXblHwyQSabFF/ElCc2rCqXzOvyl84J3p+PsjydYPLkkVGf53AqxlRDRRbEcWbGVBKlYSpi4tXBmlXRCbME/vpbm6T87JlTn5SC4zY1N8MR1vYgvxDl5f32Eo3pw9qEJJPnSnOYfe3qe6EJcmEhSL0TStb1cBLe4sQsqRbwc1EOkWr0YYW0ywvI5sYW9xHoSuY4Ti+GpCFHBlC/xhTjH/3WUiGC6w+Uz67zwt+JEBEuDmeiM2LWa9nnpurmRsw9PMv2CcVsujoRZOrvOxafmkJAMEZRymHtpo1OtRVByh2DL1SZmL6Y5+2Lh7++88wN898GvlCUoAZw4/C3SqRR333234Xu7jNcX/uRP/oT//t//O+cf/jLDv/r/2fR9jqiUS/WWQ9e1ZgKdGkd/tEp4qfLvS3ZbnqiUWIalZYHNhSxRaWr/PGaHTHhabELYeIWbzlsCnPzeOIunxcYRs08lZnRBF1g+F+bQuRGhawBc+NkME8+pwgpA61MRonUoycTDKZIRsYnu4tkwyyNrhOfENoYuRXrXYvj7XEiSJERSqhciqeheLhbOrnH2x5MsnBUj8tSLsw9NkIpfmvR/4ak4Zx54hTYADcDX60JWTMIkpXpw/qFpzj8kHlfOHV82fJg0B9WtkginiAnGUNHFOJGFOKuTYr71xHcu4OwUVyqoh1ymulUSK+JHYoc/0Ekmk+HA58T80NjTi2guhUw8rqd9M0BQAiABC6c32r8aQQlgW28Sswa/PAjFSkpv+OjH+OkXP1+WoJRIhBkdHUVRFN7xjncYu7fLeF1hYGBAJ4hHYySjUZSSDc8cUamQ6i2HJFdtixOJShw4U0Vp3KNtSP22JJAJKkdUkmJxpk+kiYuvw7P1HicS8NL9S0L1JNmEbE2TFJh2nvtZfb78zE/nWZ8Wi2nCC0nCcwniq2L+KLaeIrGWQnFAUmjNKyx2IjmLA1+cqF3oFYAkSfh6bXg7xUlK9SAZRZiQ83Iw8osFTMrLS8dmFAvn1knG06xMiLVJUeSIL7MvXTppVV+3FV+fjREBElxZGDz8UQ+RKrqUZOFchJXxjWv8tYhKiWiauIG0TKVYnYiREI2zk3Di+zMkBLchootJjn9fPFWx6jIJ+SsAV7NC320uRp4JMzdeu3wO0VWYOZtk/mQCVKshglIOK8sbx8JaBCUHSW6Rw5xLqRyisD629e9/k6Of+GxZghLA7Je/QTKR4L777jN8b5fx+sJnP/tZbr31Vk7874e58ovv2/R9jqiUS/WWQzcxhpQ4jyVtFYlKoJOVckSlVEpGZOqSIyotTaaZMJlYF3TRLk+K/q1w5jCsCJ5nUuwyyXXjNxtfhzP7xf3ezLkkixNJ4wooWawvpEhEyvjhGkSlRCRDIirmZ6MLKebPJ4jWivOKiUrA2AsxwOD4XUJUqgeBHg2TmhAiKW2AQGy5MlF0DYPkk4rXrFE3ugZnnwyzvvBqSWFtxOgLUcMHS18u4hGYOSG44FvSzkQQ6FFRbUlWJuske+Xel4EUb/NnE8yfFRdJmT8fxyTYF2QZ4uE0iUiN+yr53WQ0xfp8mtiSmE8YO5RgflT82abPAQIkJdBT2CUzdaidDYNJTfPSEbG9gbFpGYuWwbyYJOZVDBGUAFLIzJeYpBpBCWDHfIZgFH7Yntqwr9n72Ac4c9NXyhKUUqkU54+fwWaz8eY3v3nT90YhZUQSOJdgeHiYI0eOYLEHufKGPyhbxvrMqU2TlO7bPCyMhFk6U90w6Uh0w+mqnb/eCcDBL4zUvLeMwOmscui9p5lkOKmnoxDA1X80QDKSEj593bTPR2ItydwR8ZNDl5GFBvv+YAuLp1c58d1Xnwi09/f6kRQTz/2lGKFk6D1tzJ5YYfag8cl/793NhLZ7OPDFM8Kki3pwzZ8MsTK6fkk2Leu243vbmX1pSehkePedTTTu8vLSN0eE1J7qxb4/3sLy+TVhla7L2IietzRx8bFpobSTDVd46LmjmYtPzXJRQKnA2Wmh65ZGDn99BBL1L3ZKam0OcGCbg+7bgpx+cJrFU3p7lBQFemqkXNKgfweMHNMnnjmYFtcIb20qWyUeX+O5n/8p6XS65knDy3h9I7dovevX/6pimYZHJzdoJ1vc0DBo5sKBWE2CTWZ5JX9C3tdnpftWHyd/OMPquIGAP6GXqaeNqZYMvXc1c+Fn04RnjE8u2m7w03K1j+P/Os7yOeN+XXUrNO10M/qL+Us24X3VUGes+0pg8J0tuNodPPdX9SkqicA36GDgra26GqgA8SiwzYm328HpH4iRLvb+Xj/x9QSHvlDfYQIRDN3XhqvNzjN//uorXzrbbWx7bzsXn5xl7JfGV0eDO9y4222cESSv7P29fpKRJC9+3rjya73of1sz3h4nz/7lq98ea0JQTej1BN+QA5MsMXdEjER4xW92Y9JMPP93Yn2m/UY/mGD05/NCSkp5ZBdQJFvt1Ifb3+klFc9w7PtL+b9Jmsr6jpaq9fzuBB57hrMTGzfkLLNR5naWJ4GNPfRZZi+e5fbbb+cnP/lJzXu7jNcnPv7xj/P5z38eraeTxj/8zbJlWh+WMJUczGoPxVkNm1hcqz4nsE6ubzgV379XTxlw7MnasYkU1jdapEQdC9vJFM3DZtLJNFNHxHbTh9/lJRVP89J3xVJyejo1MqkMyxey6xkvJ375jx67vQzs/nATC2cjjDy2JFSvnvh867tCKFaZQ18VG/vbr3OzOhlj8azxttUw7KD9Wg/H/m2K9ZlX/2T+no+1sHwhyumHXn3ly63vDKHaZcNqT7n5Xvv1bpYvxlgeMW7HwFYbndd7OfnALKtjgmuHdWzI7vpgI0sXopz/2dJr1i9fy/UNSZLq38guUlJq3mVj5nhYKCWdo9nM4J0exg6EmX7JOHHO4obmK5yMPhUhIdeRu1jT6yR8teMuhyPJlu1w6gQsL+rjYcoiM31ldWK5TJItJBhBZa3ofL1lLpNXAyiH8d/6Y9LpNGnRUwSX8bqCxWIhHo9zw8P/CbnCAdCxx9swFbk4jRQdUpJzGYVUjfxEzotp5JjuNxxaiqHmGCemzKxEDaTeWdXblhwTJ2iYonE6emFmBGIC5HJvCLqG4Mz+JGuzxtu2LIOvFWYvUCAx1JljTUqljad6K0U6Uz9pBl5eXUmqm0ACgEmiaZtGoEvlyA8FD6LVQRYyO2HLGxyMHoyycN74u7L7TbiaZCZfEiNqDL7BRiqe4fQvShrkqzCutgybCfaqHLxfkFkrguy7lq2w/U12xo/ENipT1YAjKOMImpg6VocdkxlOP1ZnXlkBezcMqoR6NY48tA5JYwSlV+K6rzgkyVBayLIwmfIqSsLIjim2gIyiwkp5scyK6L3ahNkmc/hZMb/ib8wgmyWmJmWSdnHdoFQ2/fa6ATW4HS69Px9aKZC8kzaJ9Sur75l4IikCMTjj2XiN9KKZnsHyh2tG/+5JznzvOT7ykY/wxS9+sea9VcLLWj19/vnnAYiul3+b1mey6YNMG4P2c48sGSMogR60ZwP3VCylS0SLQDLRd28zwx/qFKp25vsTwgQlgJmXVhh/TnyS23lzA+03ieUat4Q09v5+Py3X+oXr9d1bfSG2Ur3A9hrHHUqgOaD/3lacnWIqNMMf6uLq/7JFqA5x9BPGE3UcI6wD86dWWTgpTirz9Dhp3OkVvNYKq+Nh0mGxRYbee5rZ+r4OoTr1omGvh50f69FTZQlg/uQqS2fEAxRPt4PgNo9QncUzq6yOhy+Z2lN4LsbyRbFrbX1fB/v+WLDto7/r4E63UB3NpxEcFuvToKdIbLxSrA0D7PndPmHf4x9y0rjLR9tNDUL1Fs+HWTq/xsUnxRbPV0eiHP7yiJ7uzSAadrvZ9fFuNJ/YAo9JkcikdBUmSVF0ghLA2Rqktjic2l8gKJkW1zAt6n3IdrT8wmd88Sek02m2b98udI+X8frDwMAAAGceKh/8NTyabQOynA++o8tw4VljBCXQT8hLsonVyQjpeAZFUAXIFtQY/rU23F3Gx/5EGI5/e4LwbEpoc3/q0DLzJ9cIz4uNj+3X+mm52o+9WWzQ6n1zIzt/vUuoDuh+oh5/G9jqRK21/ltir8A2Jx23icWUqHD1fx6g7+7yRMdKWB2Psi6omlUvVidjLJ1fY3VcbOIf3OomMCQ2PgIsnl5l/rhYnKfaJLZ/oAPfoLhyTT3Y8u5W2m8OCtWJLidYOr/G8gWx9xbaXp8d504sM3fs0hzCWB2PsD4lvjB01R8OMPAOsfjE3WWj+45GKmb/qrD57hu0o7rFN4S63hQSrtdyrZ/dH++u7UNK0HFDkJ7bGw2Xl0wSkkliYv8C0wKHMHIY/cU8oz8Xmz8PvbuZ9pt8QsqVsPG0rqSpSNmNNvuh6lIC88vqBoKSZTaKJavWHDhYfh5jiq/hdrt54IEHhO7xMl5fyKXqi58dKft968P6OldalUirhTWv0RnNEEEJIKPKZFS9LSfjkIiJLRhnVIXmbSq9N4iltpk4HNMX4QX70fTxCJOHw2CS9f8MousGD61XFsVCBuI9xQLb3hUitK3EkZmqEwMUB7RcJR53KQ5wtQuqbCvQss+Fo1FswbnrVi+7PywWdwGsTsVZq+PgmlTHJt3cqTBzJ8XVIUNbHQQG7UJ11qaizJ8NEwuLEZSa9zjpfoNPqE69cHdYGLg7gCKYRWruZJh5AaXYTCZDJpMhtNWBv09sEF+fibNwNiKsXl0v0WZtMs7qdLzwGwZ+p/16N7s/0iyc26F5jwN350bj1yIoKRbwdImn/fL2WPD1V57LSpJU6FNF5KyhtwVpvcaA7ynyfxafQsseF407DM4fsr43upRk9nSM+TMCyl6KQnRd4dzjEZICXc0ZhC03m1FdYrGorOiZ6dZXdXJSKqvi3vBc9XtOofAS1jxByTKXwTKn29n3Yvlxx3f/w6RSKfbu3St0j5fx+sP73/9+MpkMpz7987Lfjz2uH+xMa/p/AHFkTmfMhghKACmzRMosEYlDMiUJu0CTDfr7E7icIvuUMhfOyESSMmnVePy0OA/ToxBeh4xiImNQPdDXBq1bVazFLslAzBfqlem7rjDvyad7M5k2pUEthrNRxtVU8vs5/1iFLGQPyMiVluUq+Hh7UCY4UGMtr0zKuG13O2jZYSDOKxrPwospVqYEHGbxswrGXrEwzJ1PEBFUKXI3yzT0C27IAQujcRYulokXqt23rKf3M5Q67xWATm4yGDDk3nVKt+PanFhM6Wmpw46SxPxInMU6lHyKf8NoW4mspFmdSeoEJdCJPgYIO1vvctC6pygeMkBQ0pwQGtREp4rY/DJypRCq+FlLCFbBfrVyPdjgg3J+ydNsov8GzVhsXvQgTX0mOncYf7Cc750egUlBLYq0JjO7oDA1KWbI7tYETcFknqBkFLG0RDyt2zhpk0ja9H/bn6s+p1iyyhsISulFM+lF3V+ePdFctk7kuXEcDgef+cxnhO6xFHWnewPQNA2n08nq6ionDn2bwR3vNly3540+nM1moXzvR75qrAWUnoi3BcyYneKLwR23hnA0WTj69VHDdc49UJ9k8+kfjjMnSHiJzsQxKSY0QfZd69UBQts8zBxZYvmM8QWH7e/rxKSYxNSeNI3gNjcmGU6MGFc3Wh6tL03Gwc9vTi9YC/ZGjW2/2s3UCwtceNQ4Me3cj+pLefHUXx4TIkAALJ5YY/GEOJHH2WJFtddxMqYOuFrtWH3iafPOPVinHf+/x4QJUYun1lg8JW7HKz85wNpkhGPfNO4LAA59UVw1YHlsHdkizh8NbvVgD1mEFLo6bwwR3OYmunKO1RHjm5Wt1wSQZImp58Tk4k2yCZNggD5/bJVj6QssnhN7b/GFOMe+MSo0IWi4wk3DDi8nvjMilNbS1W7D4lKIrxUC0kwiWVNNaebgKjMHsyoFBt145zD4GiUOPJYR8iMHDz6PxWLh4YcfNl7pMl6XePbZZ/F4PKxeFFNcUW2w5XY7s2fjTB4xNnlKrMGBLxuMaxKF30yGE1g8Ku42K8vnjfsW1W2i784mJp5bNExeTSwnOf198XFk9LFpZo+tsjYmlq5BkiVMdaRR7bgpSDKSFlL/8/Ta6L+7mbFn5hmtpQgnmfKkiOYr/dgCZi48IkC2T+ibQytjYsSV8afmGX9KnJy/5V2t2IJmXviM8bgtsZzg+LfFlTKP3z8mnKIPqCu1mcmqYA9ZcTRaWKgjbhOFo8mKLEgirNeOR78+WpmQUwX1pFFrvylAwy4fB//hNImw8c36yWcX60rvtzoRZkWQVN6wy4O/38W5R8TSlfTe2UwykuLA54zHiL4hB027vCTWU0LqV4rFhEmVSAhy81/80nk8HYLMJmDqhWwMKkA0HXxHM8uj60w+J0ZusvgU0qmN845MOFxTTenEA0tC1wG4amuEuSUTZ8eNz3Mu/OLbLExPs2XLFlT10szFLuPVgaIo7Nixg0OHDrHwre/je889huu2h+IE3SleOG2ctH3ukLFyORWlHCw+Fav3/8fef0dHdlzn3vCv+4TOOaMbjRwGM5gcmfOQFEWKCiQlKgdLDpJsy5bDXd+69/2+dV9fJ9myLVu2Fa5py1YONBUoKpCixTQ5JwxmBgNgkAY5dvz+ON3oRqPDKTBYouZZi0vCdFVX9T4Vdu16zn7E/RN/u4IzpND7tP7MaUOH1/bCT8+PxpkZKtmQi/yXckgtglExIAuej33NNuq2OpkdWmLqkn5fr+PeIKpd4tAXxHyAyCYHisnI7NCk7jozV5aQVPFndu674n6XbIb1D0UYPjbDlYP6n/VwBRJmLez//AAIJkOaG0nR+0NxuStHxIRZ8GWhtcLmk7GHTRgUCQReoB0+ukY7fnZAOGq/MJqi9ylBOxoNbHg4yNxoQsuIJIBzPxB/ZrPDCUxOWXiMhLc4mR9JLGeW0pNBKbjBQWynm1PfGWZmQH8AJbrThWKWGD8rdjYyKobasiglftLiWJJTj4+xOCVmkNQiXHp2BoOs/yxgDxkJd5q4+OKCWNYmn4zFbSSbKqzXyvh8zWxKU5Myh/bl/tA5lptZotGY5L8yZhICE+DoT36Kqqp85zvf0V3nGn4x8dnPfpbPf/7zDP3gBOt+9w7d9STS7JSWGEzLXNJ5YZBG4uBlfX5aPosSQDINNjvYbDAtkHxWktLEmmB8DCrkfCjXSQZPi2cYHL8Ms+NJFiZK/CxJqppRyWBgTTGv2CYTmTRMX6niJ5ZkF1Id0H6bjYGji4yc1r9G+1tUXFGF0TM66+QkuaavpJi7KmbLqYE0UwPiGagiGxScIZkzP17Qn7EmDf2HxYnogyeTDOqM8xZj5EwVW1TJBOUMy8yNp5kZefUl3xwhiaVZg/6MSNks6YRhTXbsP5yg/5hAvbw8b4+4HTz1EpF1KmeeXSAt4GpMD6aZHhBfD6aupJgfzdXTOR499SYiG0xc7U2AwE9s3G0llchw9qmS+/0qd3QWN8Q2miGTFcp+ZVQMSIqhtk9TwrQ6/1ISq1ucaDc9BoylwaTfP4k3ppmbg6ujIu2lsdsyoBqh6BhhG0nXzKZ0elacnH/DYIohs4Eer/4+Dv34FAMDA2zfvh1VFSdJFuNlyb0BHD16lE2bNgFw0z1/uvzvy1mUyiGTpe0NPpwxEwe+OLjqonU5i1IZWEMy8Rv9nP5a+UuzqpIdgumkN32oCbNb1S8ZkDNl+4MxFJvEiX979aWy1gLVDia/RYiUABDY7CKTyHD1pFjqf3tUZVbgMPhy4Gi04Gq00f+0QPYUFXb8VjuDL15l4Of6Az72qErdziBnv9svTDoShWo3ErspxPDBq8wNvb7k3hpuDzI/uih0cbtWRG/yQRqh5wyw9bdamb48T8939JMQPe12LD4Tg8+/+unDAVBBtaskBN6YU70qka1usYvsXFvOqPU1kcxbC3xdDuK3BDn19cuaPKJOolLXw/W4mu08/yenCv/4MuVaKhGVYtd7yGazDL5UJWBZRvatfQc4A0b2fy+znD2pHIpl384c/TrDA/uw2+3MzIit39fwiwmPx8Pk5CShrXdRt33v8r8vZ1Eqh3SaLW+zc/VSkr4yby7msyiVQ3izlgJ45FgFAnGy8mFYl5uZ990U2PWxFkZPTNP7g1zERofvZg0qtNwb4cKPhoVIR6+lzJsjbmHmyoIwWSZ2o4/hA1f1kwyyGRSXQnI+uSZizloQ3uZhdniRWQGCU+t9EawhE0c/f1GorcguD5lkluGDk2KdXAP8GxwoNnlNpBdRvJZyb9aQgr/LTd9/jb7qY0SxQuzmEMP7xpkf099Y9Dofoc1uDv692MsH0et8TPTOMP8a+Mqg2XJ+WMfvKvIlvJ02shmYOCv2QoY9ZmZ2ePE1m9d6YCi6hOt8Wx0L40ku/Xg0/6Gu79j58WZmrixy6qsFH1uX5FuV1/kqEZVabnfSt2+a1GLly+xS2TdFSbJjXYqRcSM9/abl7EnlUCz7duifPgHApUuXiMfjFetcwy8HJicn8Xg8YDQS//v/s/zv+SxK5WBMZmkIJQh7Uxw4pZIquWjNZ1EqB0VKE2uDi8fKf15KUFrxmR7pt1Qhytx8kw1nWObwV3NEwRoyIHlJ4LqtVswuid6fFp0tMjWi169grK7md8tg8cgsjIoF8R0xFYPRwHSfGInd7JZZnHz1JcpAI2naIypjJ8TO4hseCTJ8fJbR4/O65bHMLhnfOivDh6eFCA1rggx1G+2M9y6+JrZ8LeXe/F1WUgsZJi+IG1E0A5a33YJRNjB2Uuf4yO3lnff7mB1L0v+c/ricJSBj9ShcLUfkeTXOWbJGuEvN6pd4k83ga7eLE8VksHnlVdKDVZ+HnlQs1fyjWvWLMtdZfDINu21c/PkUi5PUJirlsnZHt5gIdZg4+PXpZZJY1qSD5KdWLlOJqOQPppAkGJyQqMRQKif7tp4F4lKK76ctmMcq/65i2beZ5/Yx8djXiEQiDA6u7eXxa/jFws0338zPfvYz2j9+K7EHNi//ez6LUjkYE2lukRcZSMucy64eW/ksSuUQkpMYyDI6V36sFxOUCkgDki7pN+MysTXNlj0wMggDl7TxbUxWr29IpJBViK8zMHQxy3zRux2GVA3/qZoUlA7pN0O1+iXybyaHlglomcxQ1e8rfOZtkJm6kiKdKP95OUhqrvvlfkKtfbPW52XWYmdEIrmQZmGyetXi7w60yTiCMr0/z+39tfatXF1XVBsXayFGicLmM6JaDUxcrtLWKyQJ9prIveWgWsBRJzPZn145rl5J5J+1BMEWmcn+FAkB19wZkQh3KJx9dnHlOK5hb3fUyPxkuvzL9bWk39bwLFVbQclDLyw+CaMR5kaLfljV7Fyab6TaIb1QZmmqksFNl+xbtVRQNfyn4sx10Q4t6/HwBe3vTA2iUkaVgDSbtmWZmTbQe67Qlh7JNy2DkrbPlKISUanFusTAvMystfL3l8q+Sek0twxmGbAZOO2VlrMnlf3+Itm3Zx/8B5JTi69IzOvl3b4CGzduRM45uxfO6szQYDRw7rtXOfCPqwlKtVC304enxY6rRUw+DCCwxS104Xzkny/oJygVwVZnxhoUzyiz/eNtdL+3Ubieq9WG6tXPVkvMIkxQAhg9PCVMUALWTFCK3uQTlpdruiNM/fWCEicJ2Peps8LEleAmH4ENLlxxsTTWGz/YxJbfaBGqY4tZiWzzEtwoLrH1i466nT7qbxJ7ZtHrfez8/U5sYTGWZnSHn+h1YrIoAAf/rkeIoATQcFuIhlvFJMoAWu6LYA6ugX2aQIigBFp5YYJSri1RgtJaZI5sYZVdn+wkskcsfbu72Y7ZrQrLI578yuWVBCUd8LTZUNeg6hPe4iK6Uzwt/dl91CQolUIxXEGWZX760/Kpkq/hlw/5jFijh3+kv5Ikcehrs2UJSrUQ3eEistUhXE9xgrPepD+4noQX//J8gaAEuvy25BJYfSZcDWKTMbLLw47fbhWWQkIBT7vY3j/TJ05QAuh/VoCgBGAwkpxaG0HJ6leI3y7oQwFNd4ZouFlsb+154oowQQkgdl2A6G4xmWN7zML2j7cJ+5T1NwSpv0HcZ/hFR3Czl9geP1bBrAObPthE1yMxoTqORgeRLV7cbWLrx8BzV4UJSigQvylAw81iY9jb5SC01S3WVg66CEolGD89J0xQApjtFyMombwKtqi4P7n+0RibPthYs5yhJHhrC5lx1Im/sfXSp3tXEJRqQpLwrhPfjzzNCr5mE6F1YvtEMqnw3FFLTYJSMQznn8FgMBAIBK4RlF4ncLvdhMNhyGSYeuoZXXUyioFLwyovnrKuIijVgr9eIlBvxLmGLchZL5Otkc21GL0/mysQlEC39Js9KGMPlOwjOqTf1r3JR+td7tUf1PD3zD4Zudr0Lb1QSiFMUAKY6U8IE5SANZNqvO0WXA1iscO6bU4abxSPCx3/8gijxzWnUq9v7qw3Ed3qwhYSW99b9npZ9xaxAWy2y8R2e/C1i2fy+0VH/W430R1ifqin2cymd0ew+MXe8q7b6iC6Q6c8b9G8Of34VSGCEkB0q5OmWyqMxSqEm7rtdkyuNQg7pMQISqBlG1pTJqsUYgQlwFGnVM8WVGadky2w6V1B/J017jhK1ldnnYLNr+iTbJMLnRo4tMTBL0/rz2KlKliDirDEIUC0HuqbQDQd2AksfD/tqEpQKoXzmZeQJOmaxO7rCF//+tcBGPjcS7rrZFSJp1O2sgSlWmgKJol5RPdyCUlKY3JDWnd2Y4lDzxcISoAu6bdsGhw+A7aS5b2W9JszCF23K6jllpgaPp/dXWOtLSEOLM2gP9tK0Xo6fiklTCRJJwTaKoJkgUBLlTWpwt7VuMtCqENsIRw9lyoQlED3C9SRLhPhTrFzvGqBzjstOOvEfIZQp0p0Y435sga54P9u2MMy8S2W8uO+Cpp2m4hv17F+FNnEYofoBhOOkJjtp6+kOfv0otg4zmZp2GEh3FmhjxUIO1afhKtubTQQUYISwMLVtH6CUnFbs2IEJUkFi60GMavMOhfrlmjbU9s3KV1f7W5WrcGVoBGUACSOHJDpPaevHmjkJJs3SyWCUiXYpTTNtiQBl9jimJYkflwv1yQoFWPhvwZIzyRoamp6RWJeL5ukBPCtb30LgMvnfwzUyKK03LKm7Rm/0YUjrn/h7fnPYY79ax9TvWKBg+Z7Q7S/oY7QVpdwZgx7TMfDKTokHfpMD/s+pcMGJUgtZUgnxd4gMwdV1j/SQOvdYaF6zfeE2fXJTqE6oBFsOt4sdkERu8XPrj/oRLWL2T1+Q5C44EVD7/cHOPkV8ew/ql0je4mg/2dXOPzP54Qk8wDIaM6lCCZOz3L8Py5y4WkxyYzu9zay8/fFn/NasO6hGLv/ULytY4+d5+RXxWTUAMhkSc6KHSAO/+MZTvyrmASb6lWx14sfcE7+2wV6nhCTU/G02wlv8RLdKXYBu/kjLWz5TTHim2o3sv3jbcLkoe73NrLtY61CdVCh9Y0xNv1as1A1s9dENp1lpk8sqHT+iSs8//+eKrDKdQSx7JUu8mq81dv+QB1bPtIm1D+DLHPgs/2c+qaYREzLFjAnZ3URlKwntIw6Z45+jf7+ftra2ti+fbtQe9fwi4sdO3ZgtVrJZDIM7n8SqJFFKQ9JQnFLxLeJHXhPfXuMo/82oi+7RRE2vquBtvs0/6RiULfC21UWf9HFVw2/LTmV5MW/PCdENs5msswPL5FNZjH7xU6uG9/VQMeborULlmDrrzfT/ubyOs6V4O92sOUjTWIyWwYjmz7UzPpHxQ4Kdbv9xHb5sPrFyCtnHh/g7LfE93Fb1ITiEmvrxL9f4OA/i5FXMoupNb3NfebrfRz/lwvC9Xb9XgfN94j55WvFjt9pp/0tYmPq4k+GOfZvl4QJNtlMlkxazI7jJ2c4/PkeBveLSYE44lZxabkknPxKH5d+LOYrN9wUoPE2MVK51a+w43fbCW7VGaHI+RJt90eEiV4osOO3W4leJ0Zsbr4jyMZ3NgqTMDOJDOkqbwMbjIZVBCWAA3/Xy/F/LZJm15MFL1z+IWcrvQEoSYQ222m/N0B0p5j/OtkPJ56YZOCQ/hiCx5GkPpjAPLqgi6Dkz8kinX3xpyiKwuc+9zmhPl7DLzaeffZZAKa+9X2gehalPDKKgYySJuJN4rTqP7deuQhHnzcwNSkW7A62yrTfaMXXYKxMVEqVn99md9EfFS6tiufm2R9Mc/SrZdZ2o1SerJTbh1OLGTKpCnuJwVj+Et8MG94SJL6rBjGnZG0KbLCy6T0RYbmslr1e4jfqXN9z8LaZ2fzeiDDxouEGN7GdYm0NvDTN6W+LS6kigzVY6J8eotLI6TmO/vsVpi6JZQDKpsVjXouTKU58/QoDB8WIMk23etj83kjtgq8AYntcbP2AmN8FcOobI5x/UlAWzZDzvRJipJzjXx/hzHd0aAgVzRfZohEBRXHxmXHOPSn2sqfJJRPd4SawXiz+2nqPj3Vv9gvZAhnWPxTE0yx2sdx0u5cND6/0DfXMl/Z7/XTeUyaWV2FtA1AdMplklsWJZPnzSoU1dfjYAgf+ZYxULjSUrbC2FxOUTBWInoalCmeCXPaklu0y628RGx9ps8TBExJHT4rtY+tYwD2WxDxW+zl7D2nfPfPcPvr6+mhra2Pr1q1C7V3DLy4CgQBbtmxhbm6O/sePAtWzKOWRUUFW0zQjdm94ZNjE/lETaZMYIaO7LUl7gzaHKhGVjKvkQbXsGqqp8O+ViEqGhOY/ptNw5CcZRsuEXbKysTxZKZ1hcRbSSZArXWtIUlm/r3GbQssNltr34yUEgpYbLcS2mPTFX3Lrqs0v0XqrFSkfptS5zjffYKHxupJYXo212htViG21YHaKxTXO/9cClw/V8IXKtK3aKfyuav0r+vfe/5qn52mx5BLp9NqSkl46uMjZn+p4K7Kk3+vvtRLuem2kdtfdZdXGlADG+1KcemqGhUmx55zN1E4MW2qLhSk48f05rvaJOb5mZ4UjV6UxkpsXZ34yy9BJsfUtvE4lvlPM75JU6LrPgbtebP8PrjMR31k0L/UQlNIZ1u214m0qaasKQQkg1K7Qebu1PJG6wtoGkE1pGZGAsmfjSmvqmReh93BR95bKn+8LBCVQzfnvX9kXea583bTFiMuaZmPjEhG32KSeNMk8PWflQlL/M3MspWmYSpMZk3URlM6f1s5BJ//uRxiNRv7hH/5BqI+VsIZXF1bjvvvuQ5ZlUqkU509/nw3ouyxX7RDe7MARM3GiT8vmUU3qLY/ZQW0UqR6ZxEThgVaT7ej9kXaIHz6Ye0vMYNS1ejfdFSKyw8vZx/sZOyaWRcjTbmfirP7L9cOfFXxjGFgcSTB0cIL+F8QOhkvTSTLJDOagqskh6YTJqQinG16aTJJJZDD5TSRm9W+yp795mYleMXKClrVJPHNT9/vbUG2yUBaVxCwkZsXbOvoF8QsvQJwMBcyPLWFUXxEuYu22xhOYA+JvlK8l09bAz8Wk+fJYyzNrvTuMu9nO/r8+WT6VYsW2MsISdhNnNTLawpCgM7qYxiCoF+1qdaBYZeFMj+lUhnRSsFIC+p4e1mRKBHD15AxXT4pls7NHVRJTCaFnBdD19ibIwkt/Kdbe2e8MYvZVJnxkk6lVkm+q10hiPLO8l1XE+cvLkm8mOwTqjZgUK6ef1J9WZXhgPwCPPfaY7jrX8MuBp59+mp07dzJ88KkVkm+10LTdhCskceVUYjlDTzWpN4D5UW1tV1yQKI2vV5F6639+nLmieW8wGHQFlrd/tIlMKsPBfygiHevw2xQryFaFBZ2yUlMX59n/GXHfq+9no5ic4gfydCJDttLFXAUYZSOKVcZVb2WqV//cTy+lSelIO16MS8+OMXR4UkiWCzQiiihMPoVN72lm+PAk57+ng2CXw1oy18yPJdn/tz1rqrcWLE4mWBgXz8Kw5rZGBf2oJMz0icu1Hv3CReE6sLZntv6ReuavLgln25pagwztoc/34qoXY/IoDoXMUpqlCYHfls1g9qrIZjG/3OpTyCQyLM2I2bH3RyOEup1imdiAUxUk1avB2Whl+qJghs1uBy13B7n09BhX9k3VrpALMA0fnsXklBl4qfK+lZ2fXyH5pji1TArzOo4OtiMDy5JvTXUpHDYYPVG7Xh4D+37A7OwMNpuN+++/X3/Fa/iFR2trK5FIhCtXrjD5g58QM96uv24syeSMkWMXtDNBNam3PBZzZxnZzAqZrWpSbyM9KWQFrl7S/KWsIuuSf/O3KTTsstL77BwTl3LlJUmXDIg9KDM7op+Ade4H4hKqqUXof2mKqz061hmjYfliLDmfIZ1IY3bKLI7r76PZJSMLXlImZlKkFtMoFljSsaTlce4Ho0L2A1iaSgm1kUfnfQGsfoWDnyuS16zlm6fWliWq90eChJwcSjPX6MHCZBKT8xUJbdfE4lSShUlxv2ZxSvx3TZxfZOJ84aWmbDarLxar55mVEPrCW5xENjo4/G+DJGfFshRNXari8xbNxzyWplIc//oQyQqXM5WQXsoIx7zsQQWTQ8Ygi9XLJFe+QKw3Bn7h6QkSs2LjY34kxbEv6yCVFcHk0EgHNSUY5ZXzovVWG5Js4Oi3dATLiuTdevansFZJYqmMz6+SfFPkFMmUTK0rntBLS8uSbyopOqQkbmeGQ9P65/TEv38Tslm+9KUv6a5zDb8cePLJJwkGg/R89hli92/UXa+NJM1ykoGUzFLuYria1BvAQlorp0pp0iU5HcpLvWm4OKCQKFrO0iZ98m/rt4IBOH6w8G8ZRaop/SZJGnkgofPaIDEPZ34mvm+NnFli4rKkL8uL0bgs/ZZJZsmI3BkYDGSzYHZKmF2SkB+QSiD+ElVfkpnRJItTaA+gGFUyAM6N1TBEmX1CkqDrLhvDZxNcOZ5cWbbY9yqpq/fZFiOdgDM/Fq+YXhBI5FPU74XJDIm5lynVrBPzk2mWZgSZ72m0ZyyIi7WUByr4A2t5Zq03WFmYTnP+v8q0WTpGiv5/zd8lGVfJvvU+N4/FKUYalkyQXMyQXBCbYxaXEVM+UYlO/0myaMlbUomitmoQlACGzyZZmsuQnstUzCJVDgOnxNOwWRywoCP0XUxQstvTrOvOcrEnzehobftr8m4wNQ/nhxSuTFb+TbaR9ArJN5U0KQws6Mi8ZHvJuiz51j4J9XNZBpz6GRVjL11gamScxsZG9u7Vfx9VDYas0GsIlfHkk09y9913A7DX8wHd9XwdZq6eWVw+uOghKQHs+kQLyfk0B//h4vKlVTWSUkXUIiqp0PVgPT3fvVz50ruMCbveEcfdZOfgP/cIkYAcjRbcTXYu/1TskHINBWz+SAuLV5c4/TX9WWxC29zINomBn4kRX7Z+tJXZ/kXOfkssY47qVYWlubb+VitTF+c4/4T+y7y14rr/0cV03xzH/1U8K5UQVNjxm+0MviRGOlLtRhKJjBgfTYWdH+1g4IUxobYcjRYCXW56BS5RVbuRTR9qpe9nIwwfmBTo5DXkYY+q+DrdXPqxmBzd9o+3IVtkXvg/ZQiHVZyjuj1eFIvEpZ9UWHsFM/CtqJojKRlkGf96K613BRjcP0Xfs5O1K+dISsaJWZxRmB5F97ifDOznhQP/hdlsZmFhDR7zNfzCw+FwMDs7S71jC+uD+i7LFItG5pm/yvLlUy2SEkD8OifhzQ5OfmeE2YFk4W36KiSlSlh2PSv4bdHrPSSmU4xWIodX8N12faKNhYkER79Qe+8q9hljN/oYPjqtyaS9HrGWV6oEENzqIrbbr2U4EjBhwx1BRo9NCJFYotf5CG/xcOAzgqQjBRTFQHJe/1khep2P4EY3h9bwEoEouh6tx1lv44X/c/pVb6vpnhCOiEWYdKS4FOE50vbGCJagSZhsFNnlYWkqyfhp/Yzj9gfqUJ3Kq++7vhy8DF/itUD0Oi8TvTPMD61+zuWyJwHY6lS639nAyLEper9fxmer8JsVKzTeGeLcdypnA1nO3qdTfmpF3RxJyaAqbHyrE0kxcOg/9EUq8yQl8+gC7gBMjuq/3Dxy8TOMjo7y4osvsmPHDuF+X8MvNnp6emhrawODgese/DPd9dzWFJPzYExqY1kPSQlg882QSsLx58CQu7SqRlKqhGWiUqVMG0B8t4XBwwvlL73T6bIZzmK7rITXWzn+7cnKJKD868hFfpfZI+OoUxg9UeN88nL8l7XEBn+J0PYGH4nZFJee0X8D44ybUO0SYydXk72qhYU7HwwwP5ag71mx2x7ZznKWF73ofFOAmaElBl4Qe9lrLdj+kShTlxY5933xl99Esf6hIKMn5xg5rv/FQ9mMJuVVNLX0kGU2vD3I8LHZZWm/VSizn5vdMt5WM4P7BR6YDBveHGTw4DTjPTXi+C9zPr5C1xZrguhLukDBxjX8PsUO3iYrw8eKnlW+bhX5zHVvdGHxKBx8bGzVZwZZWkVOysMTl1GsBkZOl/fns6YcMUkVfxknT1JKmyUc9hQbu9Jc6pfoH6xNNsqTlMxjWRxyioUUumVSld5n2f+j7+Dz+RgdvXaP8nrEzp072bdvH/473oD3Bn0xL4k0VmAGCWMuflqLpAQQtibo9CU5OGxmOiEhLWlrTzWSUsU+5IhKq7MoafAG0mTSMDleIftSMr2cRakY3TcbWZzPcm5f5XXRkMr1t8h380RhblwHmSIXIzRUymxbDTmi0prX/GxWdxalslirLJnBUJWgBGAPSEQ2qPT+fKG8NF2Ftn3NEjMj6fJ3yvnfWlLXWScR7lQ5+4wIgwjIJY4Rkc5zRSWCrSrnnhG4M1jjM4puNBFoVTj8zTVIsAoi0CrjCCn0/jz3u/SSZdQq9qvwHcF2GUdA4vzPxc5orqhEainDXKXMgXk7F9k7tE7B4pS4+KIO/kQ68/Lm08vBWudiPv6jg6BUiqzO2JE7CvNTrJyTslanknymaob1NxoYuZhloIxsW8YkryAn5SFJacJRGBgA0uX7lbJp/k6eoCSCPEkpZTWwwzKPzZDh6XkLeiTi8iSlzJiMLw1Xy/S/Epb+918zPDjI0aNH2bBhg3C/y+EVi5Tu3bsXs1nLrTXTdpb4DVoKdktAZv3DQRz1WqaJ6C4HXW8uaJP722003OzCHjWh+g10vyeGu01zbqN73Gx4VyElfsebwzTfo9W92jtL1pDFv94OBiPhHR42vr+hqGwdrffnpBZU2Pj+BgKbnWz7aAvbPtpcKGsw0vZglPYHC7IdGz/QSHinlkra3+FAthceUst9ETrfVujTxvc1UrdHS+fq6bSz8QNNqF6VvmeGmB9fpOnWQorY7nc3Er1JK+tssrLxA02Yg5pdGu8M0fVonI4HYsR2+1n/zgYabtekzuz1JjZ+oGlZcqrh9iDr31n4rV2Pxtn1yU6a3xDBHFTZ+IGmZemy6E0+ut/buFx23cP1NN+rpUJWQyrbPt6Gp1PL+Vq3x8fG9zctl+18W4yW+yIFG36gCX+3E1SI3epl4wcKZdsfjNG2woZNhLa5AQhsdrHxg02Ed2s2bX2gboVk3MYPNC3b29fl0GxoN2KvN7HrjzrZ+KFCO93vbSR6fc7e7QV7gyZh1/VIPYpFQnUodL+7kdgt/hX2toW1sg13BOl6Z0EGxbfOiZybjPaoZkNHo5aarv7WABveVWTvd8Rpukt7rpIq4W6zFex9fYm9H4rR/Iacve1GNn6giY0fbGTHb7ZRd5N3pb3fGqP1/roV9s5LcYV2uDG71OXMDdqYXWnD0I6cvTc6tWejamSo9e9poPOtRWXf30Rkj3eVvQGa742w7qFC2e73Fsasq9W2Ysw23RWi6x0FG3Z/qJH2N2tjwNFo0cZstLy9u94Zp/HOEKpdRTIZqdvpxdmkzfvYLX66312wYdcj9cuyKapXezabPtzG7t/tXGXvzrcV27tozALxmwLIFgmDom2UHW+O0fpAib03a6nWQ9vcy+N75uICksm4yt7La0S3M2dD7bOW+yJ0vK1ey2Bl1Oxdbo1YtvfDhXS1e/5oHZt/Q8tEV2mNyCO/RjibrIR3uWquEY13amM2v0YEtrqBGmtEzt75NaL1gQibPqJjjUAbs3kb7viddjZ9uLn6GpEbs1o7dXQ83EB0t3+5v+XWCIDmN6wcs+lkhtkhbaNdtUbcHaKryN7d724gdrP2bGaHFnE12QprxO1Buh4tlO16R4yG27X9x16nsvnDjez5g3ZCW13U3+JjwzuLyj4So+kuraw5oNL97vrlfc3slUknM/S9OAlAxwMBmu/Q5qNqhw3viODt0Nae8DYHG67PYjNonlOwzULTDvOyvbvus+Fv1ZyZYKdC132F1J3NN5npuXQau93O008/zTW8PrF/v5Ypa3D+KB23mZblkeLbFBp3FzJ8td9qItCWuxhzQ/0mE4odzF6J2DYzzXcW5DPa7/MR3qiNJXtUofNNflSXgSuHp1mcThHaqK0HBslI+xv9RHZo66Y1pLDubRGsIa0TdTtdtD8QIrjJwY6PNtLxlhDR69xa2YBK10N12GNaHyM7XHQWSVZZvSqW3LxVXEa6HqnD1azNi9BWB+seLsz5lntDxG/T9vrBw+Nksxk8ufkW6HbQ9fZC2eZ7gjTeWfBBu94RI3Kdh/rrfbTdH6brHbFlGzbeFaTl3tCKsvk92dNuY8uvN2sybEDD7QFa7yvIe3U9EiO8TbOLq9FK1ztiy7JmLW8M0fVooU/r3lZHJCdfYo+Z6XpHbFluLXajj/YHNbuYvAodb61blnyyBhWtbE4uqW6Ph863FmzY/qYIzfeFsIYVTD4TXY/WaxJaQHiHZ4UN2+6PEL9Vs0vHQ1F2frIDV7NWNrjVRdc7Cutb630RGu/MSfEqGrnGEbEgmSWiu30r1s3me8I03VNkw0fr8W/QXsP1djmwhUzMj2tB8sY7g7TeV5Dq6HpH/bKUlrvVRtej9ShWA0bZgGKXaHuwqOwjMcLbNBs64latbM7e9Tf5aX+wjl2/3UHXOxrpfFuUupwPZItqdsmP2ej1vhXSaYHNLk22RdHGd9ej9diippy9vSv2nvYH6ojnfE7vBgcb3hfHlfNrwts8KyS+2t4YIZ7z8RWrga5H65Et2loe2LTS3i33rra3t0uzoX+Dg00falr+rU33hFbIzHU9Wr+8J3s77dqzUcBkl7H4TbS+sciGb68nlPMLXM0rbRi/NUDHw1F2/GYrTfeEWPdwjPCOlfY2+VaPWQBXkw2TW5vL1rCq2Tu3z0av89Hx1oJf0P7mOmI3anvy1PlZwts82GPavI/s8qy2d27MKi7t2ViCJhSbTGirm663F43ZN0ZouCNvb80ung5tjWu5P8LuP+hc7n/LvREa964cs3l7e7scyzYMbHLRuDdEy72RFWUDm7Qx6+nIj1nts4Y7grQVST1WWyPiN/tof6DwvZs+1EhkT+01AlheI5ruDrL51xprrhH1OR/f5NXWk/ob/LTdFyW83c26hwrPpu2BCPGcv6RYoevtseU1whYyk5hNc/m5iZwNQ8v+Egp0PVKHp0Mr6++20/WI1ofkvCb7tGJNfqQOX5e2x3jX2Vj3UB2Ytb0rfouHbR+pp/udmm063xwk0K09R3ezmXVvCS3bO36jm+Y7nBhyl2yZdIb5XPZle8hAx147Ss5vj24x0XxL4e3/ttttNNkW8C4tYHNBXSNY7VpwL9qSpX1TIdDXvilLtEX722rPkjA/w8jICBs2bLhGUHqdorW1ldbWVshmWer/LnGfFsU2yyk21C/iNGvjLOxKsj5WCB4HHGka/GkstjRGJU3bZnDmFBy9IWjbXGijvh2iOWXt0X7IAi4/ZBUJV1Si9bqCf1e3QSbaXbjIbb1OxRMz0HmrifV3qrRepyLLWkalyEYzsR2FXPjNN9nwNmt17UEJxVQIDYa7Vep3FdL0N93swN+h7X8Wn0zr7U5MDhg6Mc/0lQThrsL3Nt1kJ7BO+9vsNtJ6pwezJ7fHrbfQdIuLpptd1O9y0nizk1C3Nv8UO7Te5V6WI/N3mGm+veCfxm9wsemdIaI7HcgWaN3rxR7RynrbzbTcWZDErL/eSd3OXNoPM6x/KIAzrvXf3Wym9Z5C2egeJ9FdBfnI1nu8uBq1/ns7TFrZnInrdjqIXedaUdbTopV11Cm03uPFl/vtddvtxG8olG2+y4uvXbOpPSzTeo8X2Q6K3cjmD0TouL8gEdV8hxd/V+7s6NPK5mXkgt02Gm91o1olVJtM461ugrm10OzWyuZlu/zrrTQV2dDTZEFSDTl7G2m9x1tkbystewt2id/oom67ZkPZbMTbasWRi+142y203l3ob/31Lup25GwoQ9s9Ppr3etj67nr8XRbaiuSvorudxPYU7NJ2j29ZissZN+GImDA5tD7V7XBSf32Rve/24c3Z0BFVabvHh2wG2QpNt7lpuMm9wt7+dbl9KijTdo8PxaHtJ6HNdhpvLip7h5fA+py9/VpZsztn7w02mm4t2LBlr2dZCtDs0spaAzkbdllpLhqHjTe7CW+xg6z5XuFNduxhrayvw0Jrsb1vKLa3Zpd1D4bY9t46PC3mZRtms1li17kK41vOjdkGbXx728xYPArG3GVr3U4H0T3F47tgb0dMpXWvF9lcyLxUf32hbMudXrztWll7RNbK5paFyBY7zbe4kC1GjJKB5ts8+NdpH1oCWtn8mA11W2m8pWDvLe+P0PlmzWc2e3Nj1ptbIzZYabqtYO/GW9yENtow+2VcTdozt+XH7DorzXcVbNhwk5u6rdrmLls1G7pbisZsBXvnx2x+jYhss9HxoB+DwYDBYKi6RrgaCmvE+oeCtL3RV1gjDEZa73Ljada+11En03qXe1mSpG6LjfZ7fdTvcWL2yDTf7sKXt3fYROvtTuScrxLuttBwXUGrLZ3MMDW4WLBhbk0GCK630LC7sCY37DYT7ND8oYXJFI6gvCzv6W+TabquqOwOldA6raxihrY9RrbcK+ONga8emrcX9ol4t4G69pwJZWjvTmMP5HwiS5pkEoZy3PWmeJJ4NE+MSrGuLYHHqY05rzvF9ck5vGMLQIqIKUWrLbVcdptrnrCq1Q3ISba55pFzzL026yJ9R5/HYrHwne98h2t4feKpp54CYOLpJ+lOz6LmWBuNJOik4GttZIFI7o1OK9BCAjMJTGqaqJqg2VUgELS6lwhbtXFlkdJ0ehexSGlG5yWmlwxErFrZtMlAQzBBwKuNOVVJ0xJLYMnJtPncKRqjCZz2NNvWL9IUXSSUK4sVGlvSWO1aWbc3TUNrgXFisoCaU9aRpDSNbWlsDu1zpydNvKtgg1ATBHMh/oEeTTbXkVsq7R5oWF8oG2yAYFvRXN0k4Y5CwxaVunUS8U3S8h1+oMlIuK1w51m/UfM1ASwuaLvJRPutOZ+oUSJSJO8V3ajgzpU1OaB+q4pq09oNdcrEdxVkg+o2mvDEc5mqbFC/3bx8h+KOS0Q3a2UlC0Q2mvA2K8t/1++wYHZpe5orqsUv8wh3mwhtUDA5QTIZqN9uxuLNZc6KSMS2F8qGulQC7cpyvY0POrD5c2VDEvXbC/0NdijLZQHqt5uweowoZgPOSK5s3oatMqF1Bd88ttWEI5yzoQesHnmZ9OJvlldIpMW2mHBGtT3N7IT6bSYki8aXMtkMRDcW21vFHcvZ0K6VVXNHWG9coq5bYf1dVpp2W6jrVvDm7W3Jlc3bOyoR3VTor79JxuI2IKkaQad+mwlLbhtz1knENhfKhrsU/M0yGAzY/NC424TFoz0bR7jEhp0KgbZc/yXNhmruysIeWFk20K4s71N5ezty5AubT6LpBs0uBXsX2XCrCWekKNa93YSkar6rzWck3JXrfzZLbLO6PL6L7Q3gbdBsuPGNdsJdCtGNKp76EnvnbOipl1Y8G0+9vDxGVYs2F/J7sju6smy4S8HXpH3v7Ggab1zB4s7ZO7zS3qF1CoHcnY+Us6HNI6FYDavt3VFk75wN7Tkb+ttVNr7NiZp7roEOleC6Qt36HZblMWv1SdTvsCBJ2jMNtKuE1hfKxrZbcObXCHeubG6aeZsV6raYIJe9MrrFhDtnQ5MzN+/z9m6UqdtY+N6mG814cudS1W7U1pP8mI2ttGFkvYK3QcLfLNF6k4n6rSpmZ8HesQ2FNS3SIeFv0PojKdp62NCt0tAt4wxqax4A2SyhNiOB/LWrpK2rttyzMdlgYTbLaC5HSfGaDNDQBQ6ntn7bHWmaWtNAmnRaIpWESJEqdWNLGpdbK2uzp2lqSkIu3hRxJ9nWvMCGem1vawkv4bVre4pVTdMaXkKVtLohV5IW9xIpq/b7MpksE2kjIGEjTbdpAUtuv4xKCTrUwn7ZoS5SP2jEOipjAZqWUthzL0TFFpNsni3slxtml2ie1/ZLUzpN7JkXGB4cZPPmza8YQQleQZISwJkzmkzOiTNHsUe1wWPzydj8Co7cRbu7wYI9VJhwjjoT/g4L698SINBixhYy46rXRqy7yYY9XNhQnHEr7kZtRRt8bgKTXcEZ18p6Gq3YQoWyrgYbniZtNKuqFkD1NNm0lLKS9nf+QtzdYMXVWLjctYUseHJ/uxrs2EIWut/XStfD9bibbDjjRWXDFjytWjuuehu2sAWzS2Z2IIFRMuJsKJS1Ry34WrVZ46i3YAtbsOf67G6x44xZOfv4AIc+fx5HzIq72b7chi1swR7Rdh93sx1HrBBMdcSsSCYjZoeMPWTGFrbgyAX1fa1O7JFCgMnZYMPdrPWp/e4wZpdKoDt3CdSi9b9Q1r7cB9WuYgtbcDXY2POJdcR2BleUdTUVng1qzi45+3uaHNgjFppvj4CqPVdX00obenPtuJrs2MIWVJdMYmIJSTZi9RUWLXudBU+urDNuxRa2YPFqY83VbMMRt7Hvr85y9AsXsEcteJu1XcFRp9nQGtTs7Wlx4CyyoTNmJbLdS2ibG1vYmrN3bmy1rLa3O/fMe747gKRIOHMyEd42B/a6Ihs22pftrXoUbGELSzNpxk5M4Y7bS+xtw52zy7K98zZstJMFTv67Jj7sbrQtX37lbehpLLGhXaX1njDuBvuKcWgLF2zoatCeuepRlseAs7Fw+LXXFWzorM/bOzeXW0vsErbiX6+NJXvEkhu3hTHrjBX64IxZcbfYSYwnOP+9QWSrgiNnN2+zA3u0YBdH3IYr11+LV7Ph3OgiI0cm8TTbsdcVPcdGO54WrR0lZ8P8fLX7zWSz0P/0WM5OtmU7qMtjVvut7obcs1E1kpG3zb7a3k0rbWi0qsu/1eKz8OKfnmZ436RWtmX1GqGVta14NgbZgJpj0FZaI5btklsjWt9QR9Md0ZprRH7M5teI9jdEab43UnWNMDklbRzWa38HNrixBWqvEQDe3Di015swKkbMbqXqGmELW1Bz0oTuJhuSwcj5HwyyOJKouEYAeFpsOBoKY9bsVpffNFixRhgMuTWiYBd7nQVvi4Odn+ggvN2DLVS8RthL1ggL7twYsIUtWL0mMuksExfn8TTbcRSP2Zhl2S5Wv4otqC6Pb1fEilEyLmdDcsYsuBq0z1SnVtYZzfWhwYzNK7Fur5Otb3fiDCu4c3urqmrOujMX6HRGZGy+giN2sOdpxsbGcLvd7Nq1i2t4faKjo4N4PE46neZM3wGUnN/ujsi4I4VLK2dIwhnKHcADCo6gRPfdVjpuseAOgru+yH+KmnA15AKkARVHxITVrZCc19Lsu2NFZWNmPLn1who04YiZsfpza2GTDVfcwuzgIqmlNM46y/IeZ3YrOGJm7KGCv5f350C7tPd12dn2m42YPDKOmAV7JLcWNthxxgpl3c2FtXzk0DRWvxlHbk92NdqW/SHQ9s58WRRtX7O6Vc795xUWx5Zw1luXbehtsS+vUaCV9eT674hZMLtlZIuEyavgaSns9fmy+d9qj1pw1luX1/1Qtxt30brvbLAtf689ZMJZb8WU22c9zTbcTVaa7g6y9deatP7n9jhrwIyz3rq87nuabcvrb/63hze5adkbweJVcNbbcOTWFm/LyrLuZvvyPqWYZWTFuLz+uRttK/Zvd5OtUNaqfW86kWHfp85icas46wtlPc0FX1yztw133ldpsOKK25aJJ54Wx7LNNBvalu3krLfirLehOBUu/2yMhYkErnjRs4kX7OKMWXDW27DmfENPmx1Xo50rBye4cnAcV5FfZg9pZc2+wrrvLvKBVIvM3NAiJMHsM+OstxXGbMn+7Wq2487Zpf0NUZx1tiI/cuXZwdVc5Ks4ZJz1NuQcEcPTbFtpwxYbnlbNN1EUA856G66G3LNpsWMPW2i4Sbvo8TTZC+M7Z8P8eWbZhlaF018bIDGdxN20smzez3HGtLJ5MrCnxY4zYmX48CQjRydxNdjw5vpvj5hw1tuweHJjttWx7LuCRuafz0k+2nL2tgYK9nYV7d/uJjueVgfBrS5a3xTV7J2b957mlb6sq2gcmnI2vHp6mkOfPa89m/ry49to0cZs/nNb0IRRMbB0NZnrgw1vy8oxm/ev3Q225bHVem+E0Cb38vpXam9HzLZs7/xv9Xe62Pm7rcvPo9Ia4W5xLJ9LvZ027CEzka05klKFNWLZLrm5YLLLKFap5hqRt4u2RlgZ3H+Vnu8Prl4jGq3L41t1qzhilmW/x91gQ7FKy1m23EX+tWLV1m9nNLcm11txxCx0PBhhwztjeBqteHJkJ5Sc/5R7ScRZb8URNaHkthxPo3a5npzLBe+jhZiBM2rWytpz55kmC65IIZBltstkcvcFjpCCIyxjzl1Wu+sV3HWFss6IQjC4xMbdEG0GhwfM+QCZXyOLLNvQD54cx0o2Jzly9CCSJPHVr36Va3j94tChQwCcObkfj1Vz6BUZfPY0Dqv2BrnHlsZnL1xE+Z1p6jwpdrQuUc8S7oABu1v7zOUFd4Grhzeo/QcwfAmsNpYvopyWFK6ItEya8UYkPNGC/+8KSzgCspaW32jAFZYw5GNeESOeWCEO547JOCM5EqlXwhWTabvVRuP1Vtx1Kp5YYV64owqumBaTsfkkXPUqqkMmNaspZbjjhXiNO27CnXtB0ezWylo8+flmxt1o5sKzU5z4+ijuBjPunM9pdsq44ubl/dsZMy1/BuBuNKPYJFS7hGzVytoCWrvOOtPKPjRYcMe1uvHtDhx1Znw5AruzzoQrXvheT6MZT1PubxlccW092fy+CA3Xe3HFzctJSTyNlkJZwFVvxpnzi+0hE54WC023aMQZV4MFd1ORD9pgxpXzda0BrQ9mu0xyNoNilrAVxUjdDSZcOd/c6lNwxc2YXNKyHdyNFk58bYRz37uKu9GybCeTS8rZMLefxM0lNrQQ3ebE22bG5DRqNszFaV0NFtwNhf56mqzLdXuevIpsMhbKRld+r6epYBdZBVeDmcxShsEj01j86vK5YrlsY3Hc1oyjLkfiCJvIZrP0/Xw8V9aMp9SGOV/WFtS+V7bL1G11Eep2rrC3p8GCM2/DgFbW5DAuP8fSZ+POPxuvgqvBvEysc5f0wd9mI7JZi+mqLglXg3k5HumOW/AU/VZXY25PS8GZJ0ZQHTK2oPZbXfWFGACAp9m63I5sknE1mJm/muDK4RlcMfPymDUYDNqYze2Vcm7M2nM2tAa0GMXwSS1jk7fU3nFTkb1VXHEzBtlA8+0e/OuseIr65I6bCvb2a2UVu5z7HjP2sJnD/zLE2JkF3I1mXLkzl82rjVk1Z293g3mFvRWrtOzzmN3aXLbk7R234G5cOWbdTRYarnPTfk9Qs3furOmKm1fY291kwZW3oVWzYfs9QaK7nbii5hX2djdZCvY2a+PQHsq9iLDVtcIOldYI0MhErrgZs9uYuxBVCmWzGVxxM87c2mkPaTaUzTkbNpiRZCPnfjjO4kRKG9+5slafEVe9itmat4uKu6GwRtgDKmQ1+1o9WlmTS8YgGXFHZDyxQhzAE5NxRWU2PGDH16LiiipYcvZ3RRRc+bVeMuIJGfHkLntNVnAFjGSzWeYmwBUy4g4VrpDcYQlX7lJTshrxOtPYc/6Sw25EliCVyhFJPRl8Hm1/lGXwurM4HdqFnNuaISSn2eFNcpt/kbApTchU2D+DpjReVXPiPGqaoCm9nGNpaP+PGR4eprGxkeuuu45reH3C5XLx8MMPk06lGHvuZ/mrPMKkqStKM1NHmkDubydpoqS4kSV2sUj9dIpgkV8WsqVxW7S/LUqWkC2NWc6SRmIhbcRXOAYRMaVwu7Txqyrg92Sw5Ka5y54h4MmwsACJpAGvK4snd/msyhBwp7HYciQON/iK/D2fHwJhWL81jaJqn9nyc8gBPn+WbI5N5A4ZcIe07xkfAofPiNWtlbW5wRMxLhOP3CEDnmBhrnqiEhaHRM/zCebGs3iiElLOiK6QEU+0qGydhN2rtWNxSdj8EqrFgGoHd1jGXby21CvLJAiTXcJTL6OYcwTZzVYCLQW/zBNXcObOZqpNwhNXMOUSQjhDCp64gq9Zpvs+J94mFVculqmaJTwNCuacD+QIK3jihbXQE1OIbbYR3WRFMoGnQcHi1n6PIyDjrS/yZWMKrtyZzyhpRAirr0DMWOn3yrijK3+rwQgnvz+PrBrx1CvL9nZFlRVlvfUyjoDWB4tbwtcoE9uS2/vr5OWYfv57ncE8KUyzoWqCyYE0c2NpXKGVRBhHSF5pb2vut4ZkPDGFK6eXGDmbwBNTlu8KFKtRI9Hk7G0PrdwjTDaJ2ZE06YRGsPHUy1jy9g5IeOpX2sVVp9Vtus6Gv0nFmvPx7f6VNvREFdx1BYKNp15BzmWKsfk0G+aJXuXsbfPn9zgDgWYT4U7tuTvrlBU29NYr2AMF0oynXkFS4crxBHPjGTz1ue81GPDEtIxHAGZHzt75uRzWns3AiSUm+5Ml9pbx1MuYcvZ2hqQVfZAUA3NXtT1NtuZISzlpNXtAwhsvtouMKyxjDxiJb1VX2jtoxFsvryjrzMf1Vc0uMyMpzv10AZt39bNZtqGk7f1Wb/7ZGDFZjWRzSaXcMQV3UV1PXMGeI9xbPdqckyzQfKON8AbzinY8cQVHUMnZ24inQUHJSWS7owqhTjMb7nPkyqrYc2PY5NC+V7Hl5n2k0AezCwItZkKdOelXi0Gz9/IaUTK2YjKuiIxiNqJajCvt7TPgrSucjd11xoKvYtLWw8FzSfqOpXD4JLxF52hP0IA7dwaXJPCEDdhyxC67C8xWw3ImOncQ3Ll3G7OKhM+XxZ4jStnt4PVniTdmaetM4fFl8fkKL7r5/Fmcue+1OI0E7WmUXDe8jjQmJctSSrOp35HBbcsRmsxZgq4Mav5c6soQzRQyY7rkLJmchqVVyhBRUpglrV2/nKZOLmTmq5NTtI2k2Du5RPt8ivhSGkcuA144laG+SLI0lkgTyWVjtqTh9I+exmg08o1vfINXEq+Y3Fse8Xicy5cvo2LmFttDy28wVoUKnff4OPn1fiH5Jk+HlbZ7w5x9YoiJ0zpEActBZwrp7R9rZWkqybF/qSEhUGTOvOTT6PEpLj5VOZX9fxdUuxFvl4uhlyaE6rXeX8fMlXmG903qruNotGALmoXbWjNUxKTAgD3/o4uJM9Oc/rqYdNta2nqtsFb5wLXIvXk67Vg8Jgaff/XTZa8Ja3xOe/54HTOX54VsodqNJGZfG21ee1TF1egQk8vzqrTcGeLCT4eF5CjNObLN6OE1CPu+Btj5iQ5Gj01y4YdF622NFJP+bgctd9dx+pv9TJ3XkX5dp1RLqSyKwWRi64diLIwnOPWNGhJ26ZX5XCM316FaDVzeXzt1aObqOEvqLM/PPUEikWBpaQlVVWvWu4ZfXiSTyeVnfJP/fVgVK1gtNWpBdJPC4nSKsQPjQu213+fDZJc49uURsomSVPEZfeteOcmQUng6rLTsDXH28SGmL5akHq7iu8Vv8+Nvd3Dwsxf09eU1lgPxdzuY6lsUks2yBhXqdvq49JMhkhWUG8ohvN3NRO8cS+NFbb2K0m+KVUxOTcvCZOXFvzizhsYQkpZ7LRHe4WFhbImpC/of1lrl3ur2eJnsnRGSzHtNsYbn1P5gHd42Jy/8mYAt8sfN18gMoa1uZgbm9NvdYCS4xYXZo9D3k9XSHNXbcjF8bOq/fbyXk3uL3+bH2+rg8BcvVO9fie/U9UgdskXi6Bcvry5bph1DBdmS1XVXtuPr9tJ4nZWzP55irobrlU0VySko0Hp3kLNHAGqnKpcuj3De9iPO9Zxh69atHDhwQF9/r+GXFg888ACPP/44VluInbt/m4RLzxhN0RlJcflgeoV8U600/FYHtG+F3uMwe7Ektb9Ov8uwVGaClqm77m47iYUs559ZeSZaMT9gpYyHDOvf6GbiwhKDh8tIRWTSJX8L+F2vhNybDN5mC+NnxaSv67bbWZxKMX5Oh5xCDma3jDWoCLe1ZuSHXQWlvXLY9mt1jJ2Z59IzkxXLlA0Ry2LtvJYwu2UcUZXREwJOMmuTe7OHZcwelbFTYm29EtAlO6b3OZXstVveF2ZmMEHPk/rPhbKZ8vKQxXiFzlmK3YgzZhKyu2yGuu0uRo7PLWeK0tWWw4A9aGayV//cX0apDyMi81tat4Lc24a3eBg/v7hivV2Wx81DWXkPYwsYaL3JRu/PF5gZKlmTS+sCWat51b+VQ7bE71oK29jUlWBxCc6crx6DkpZWru/qJgmrlKF3wVShRgHungSp1Cz7XvgLlpaWWFhYWFb2uIbXJ9LpNGazmVQqRfuH/7+oNjsJZ+16MRIkMTB/caWfZkxXX5taXEs4TBkOj1gwTa4cq8aUvnVNmSnne62sa7GmaeuC82dgbmblnDcurly3DEVxYm8UgnEjp58v7ycty73lISLdVhKPFpJ9y/mW9oDEwnSa9IL+PUAyZwm0mBg9u6RlHtJ5Xe2MSixOZUjoV1NdidK9tYbsm6gcWHSTirde4dgTa+ighJjc22sIZ1giuZBiYVJ/nbXKvbljEvOTFSTz9GCt0mN6667hOYU6ZULtKkcfr+DXlI7//N962iqds2ukfjjCEktzaRJ6KRcGA46QhNllZPSsWPDKEVWYH08X5paA3Fu21I+pIfe2suzKullldV1vFPxROH9g5fJYWjZtXrnPNDSnsViynD6xOk6QVVb/Pn3xBEgrJfeNUdhiXeTwvJnpGjJvxhVrV5qGhiVOWGTSOmzm6JFIPvt1zux7jje96U1861vf0tVfvXhFMykB9PT0AJBgkbHE4OoLrHJIwMl/FyMoAcwNzJPNamw8Eahelc0falyWANKD/X/TU5ugBCsWr8RsBoNkRLaK9S92i589f7xuWSpLL1SvuixFogeJ2cyaSEM9jw8KEZRAk8xaK0HJWfSGsB4ENru47ve7lqXe9OL5/31SmKC0/p0NXPf7XbULlmDdw/VCzwo0yawdv9suVGfm4oIwQWmtmDg9K0xQargjyJ7/0YWn3V67cBG6HqlflmbTiy0fbGHPH60TqgPw/P97SoigBLD1t9rZ+tFWoTr2etNydjcRzA4khAhKAInxBKe+clmIoASwOJIQIiipdpYl3USw/eNtwvZTvSoYDGSKD306nMmxYzO8+Odn9BGUcuh6R4zYTb7aBYuQXVoim8muKdZ+5ZlB3QQlgD73IZLJJHfcccc1gtKvABRF4U1vehMAPx/7V+0f52tfjgwcSQoTlEC7uMhmsvr8uyLU7XTR+oZA7YI5TJyZZ//fXFhNUKrZQe0yXdHpOuQv3rd8pIlNH2wUawtNYhUdfPw8xo7NCBGUAOZHkvQ8IUZQAhjaP7mSoAT6guU5eTMRbPn1FjZ/uE2ozskvXV4TQWn3JzvZ8EhD7YJF8Hc7aSuSN9MDb5eD3X/YuSwlpxdD+yaECEovB4PPjwsTlLZ/vI0tH2kWqrMW+6HAnt/rpO1+sXpnvzUoRlAC4tf72fOJzhXZEvXAHqtN6CyH4YOTQgQlgJFDU8IEJa0tMYKSt8uue/3LwxG3sPv32wluEfOtFbOk3aEJEqhOfnmwPEGpAiw+ha6HQigOsXZkwxLZDMyJHkGT0POfI+glKI0t9NM/0EcoFLpGUPoVwXe+8x2MRiPzc8NMjPeiTum5AJe5/FJamOgxvwBkwZQRuzCXzdB+g4pJ4Jh96gezqwhKZVF8gZPSfCmjSecFQK6ut8XM1veHluXG9ELLelL7Eru4f2shDQ3unxUiKIEmmbVWgpIlIGYHe1hm+wejhLvF4igH/mmwKkEJVpNhGm5ys+NDsQIpSifiN7pwN4kRB9Y/FGTju8K1CxZhcTIlTFBaK2aHUsIEJV+Hhe0fia7IKKUH8Rtdy9JsughKQPvdPrZ+qK52wRIc+uKQEEEJYP3bwqx/S5WzXRmCktktC48jgORsRtjuqUXo+68pIYKSwWAgNYsYQUlGk32scbFdinVv8rH+LbmYtc66snn1UW4VQakM5kazHPnG7GqCUhU0bDQQEDsuYBqaI5MR5aalgBSJI2ndBCWAoYGvsrS0xIMPPniNoPQrAEmS+NSnPgXAhf/4awDU6dr1+lFzBKU0IiyCbO4/06TYIcfnTtEQ0V9nYV7i6H5pFUGpbJ+KL5EzWrhb0hvuza0TLbtk2vaILcJZyYg9YBS6958dTZNeQmhdTC/A0PGlAklB5743PZBeG0FJAtVRpo0qC1jLDRY676hy0C5DBhk4klgTQWnDG6w07RDwdwGb30hkvVgcz+KCTW+yLcvD6cX0UJqFqZdB/hHAZL84Qan9Ngttt1qECEqaPFyR/XTW3fRG6wo5Mj0YPp3ST1DKwR2T2PyAfYWKxiqUIRWaXGt7TjNDYgQlgJnhtDBBCcnIzFC6MvmvDGw+TaJwFUGpClQLbNyr4s6HJ3XWlWWQJENVglI5XOqVyhKUKvZPStNRV5Bz0wv3eIosILbKpAGJS5esuglKialR+k8eIRAI8PWvf12oNT14xUlKqqrysY99DICDyR8BkE0kdV1mdb4tzK5PtOi+qE/Mwr6/7mVIkDBjchiw+E1Et4sFYlU7y7IUVVG0iL30F6fp+c6gUDtjJ6dJzCYxqmKOw+b3NdFyj9iB1NflYNcnO8VJIu+I0/6gDlsUoeW+CFt+U4x40Hp/Hd3vbBIiKo2enGLm8jxTF9dKo9aPkaMTTPSIZ/HytDoIbRK79JronWXygthv8rTb2fShZiFC3lrR8eaY8JiY7p9nbmiBuUGxgIO7xUFgg9j8HTkyyfiZNWZcE8TYqWlGjk0K1el6qJFdv90pVKfprhBbf0uczLPlN1uFyX9bP9rKhneJXQo33xOj9d6ocFvzY0ssjtYm5RQjMZ7gpb84zaUf5V6V1+FMNtwWECa7gSYn5O8of1NmMBrKZhsAOPT5AU5/q8qr/On0Clr2+rfXseNjjTX3xMzV8WWC0snFF7lw4QIul2tZu/0aXv/41re+hSRJpEnRM71P+8f5hZpkJcUK2z4UoeVu/fvRue+Oc/yrFcivRmPFNx68HY5lmSoR+LvtRHYUzdMaTL++n45x4O97hQg9BqOBhbEE8yNi646300bbGyI03qKffAXQ9UiMje9vFKrjarRqdQTOvooVNn2okeh13pUf1CAq7fxYO51viVctU4qRo5MMH50UqrNWjJ2aYuSEWFvBDS5868XW+7nhRaYvzzE7LHZJ2frGCI17Q0J11gKrX2H9O+PCRJvJ87OM94hFeYLd4vYDuHpymtGTOiLILxMTvfNM9s4y06d/4ns77Wx8dyOxG8VIx5s+1ERc74sQubnWel+Y1vvELl29XXa2f6wFe0zs4qXtngjd7xG7VTIaDSxOJ5k4U5mIXi7r3PnvDXPwH3RkrStat1vfGCy/jhkNFQPZgW479rAJuVKG5gp7z/DROQ5/pTrJK5tKLWeJUVTY/l4/DTfaKlfIQbo8gnRZ8+n2Tz7OwsICb3/722vWu4bXD774xS8CcPTwFwBQp1K6yEqxNth2K8sSYhgM1c8tKTj8M7jaV+azKn6XJIMjKOGrrxBTqlRXhvpdhX1lVRal5fqFPh//xgT9L5ZZf0uzKBXVnb6yxOJkqvL9VQV/r/P+IM23ect+Vmh35XplDcpsfFdYjNwE1F/vov56sb0vvMXOumrEjTIIbbSx4a1hHDH9MZvZoRTjPQtMD6wh24sOFJNixs/PM3pS/PX14Ho7/o7a62kxJnoXmOgVI3pZAzJtb/AtS4i9mojudBK/QWxMLIwnmbq0yHzpiwM1EFxvx9dm1U1QAhg7M8foSR0xw1cgw9HoiVlGz1Roq8L3t+71svldYuT1wAYr694SwKAIXLLJ0PlgAHtY/5gwGAx0vilAy94a60sJ6rY6aN3rLz9/q5xb58YSzF1NVr7EL7N+phbh2NcmlrMoVSQoJQtjzd8i4y63D0jGqhd07oiEL1r+4iprNK7KopTHsdMq53orr2XSUmZFFqXmVti+O4ssV98/3T2JZYLS4MB+enrO4Xa7+eY3v1m13jW8fvDRj36UaDRKcnqc8WMvABpRqTZZKc2e0CLtrsK8yEgGMlLlNaV3ysSREQuUyUqRkQ1k5PJ1va40Pk8VQlSF847DmcYbKNQpzaKUR56oNH4FTj2XKXupvyqLUh6SkfnpLPOTVdb/9Op+m53QeqMFf1uN9bQkQ2d0o4mWGy36iEo5UobJCc03WArkKz37n8FA840WvE1iPsC6u+w07q4Qn6ywh129kGDkXI29/BUSLBo5n+Rqn9ibDe46LTuPCBILMH45xcK0GDEi2CET7JBfXpYiHZBMEN9uwuIWqzfRn2KyX9B+UZlQR85+en+XBMNnk0wOvELpRiuNH4OB+ck0o71J5iYrPKsyBCWzC7rudhIQHBfNN1oJtOmsk7NVsFMlslHsrGXxGVm317r6+dbIFty4w0zLDRXioGXWMQCDBPNTGWYnK/s/huTquiOX4NTzhedSiaAkLa/baaLxNFIZslFWMZbNogTgsWfwOjIVCaFpxbAqixLAxILMs/M20lWyKBkTxVmU0tziXqDNXPsM6eiRcPRo39v75c8wNzfHJz7xCSQR1qpOvCqnuE9/+tP8wz/8A8lkkv3zP2S79S5AIytVk3+bvLCA2W1CVSEhIvvWaafhJj+H/+mirvIzl5Y48LdnhFmYkV1BPG0Owjs9tbMC5RezbBZ7VCW0xcf5J67oamdxJMGBv+kR6xxw4cdDJGbFFsWZoSUtG5VbjPFpj1hILYltYCangmIVG3L9L4yBARZHBW4bE3DssYtC7QB0vjWGp83B839ySned0aPTjB4Vv3x57s9PCmcOEyW7ATjrrViDZmx+lcT4q6tJ51zD5fPE6VkmTosHvJ773yeFsw6JZhsC2PShZkxulZf+XOyN/rU8q75nR1BsYvPD7FGF51RgnQOzS0WqsClWRJaVWYp04PR3+mmYSDAtmFHi5JfKReErw9flwF5n0QhKAg5yeJuXbDorLF/3wp+dWzX+KhGTAJr3BlCdCmcerzAGKzhQs0OLGBVj1bUiT04CSCQSjMoXIa294X0Nv1p46qmnuO222+iZe4kGy2aUfJr3+YWK8m/Jee3t47kRcR2htvsCzI8mGHixzPzJBy2LDhbHv9y/JrmixpsDZDNZruybEpL9iN3oY+rSHDN9+i5vznxTfN0ePz1H33+N0f+C2P6STWeEZeYkqxGrX8Xf7mDshD7CbXIeVJuMuZyPlycqlbHpwAtXWZoS8xnWsscC7PjtNuaGFzn5H/qzqvT8pz5/uhgnv35ZePwtXU1y8kv6+5WHu9FGOpnhonBNMVjDZhwxK9agymy//gu9Hp3nkWKc/PfLQgQ5AJJwVtQfUmD373QwdGiCi0/V0OcqwkzfPKcECEpanTmGDk0wLJJRTtHmlGqvYYwSIqAjaqnqJ5SDatEO/qIkudPfGsBYIXBeCVMX5zn8j7XJRtlMdvl3NN4ZYPjQJAtjOidWNkNkpwd/p4PZgUWGDubOTzrs0vf0BFdemlhNPq2SBnzDIyEuPTvOXIXlsizxQobFmRRTfdXXvzw5CWDA8TxcyeJwOPirv/qrqvWu4fWFd7/73fzxH/8xAwMDnDj2H6zv1khq6lSqarr26XFwlOOGF8WPysHqgfoNCmeeLTPnyvhdS7Nw5PEFUqkaOcFK6nrjMsE2lYXxFKOnauwt+fmbyWJygK/dyuCB3EStRFDKIbUIJ789Xv4iqIq/d+m5SbJJsdS08+PafJdNYudfV8wknAVXtkooNklIHu3q2Tlkm8TCmJjv1fsj8YyodTschDc7OPjFwZr9y5NjZgYSzAyIx5L2f25AOHPY4H7xl8rMHgVXzMyIe45FXVnN1g53oxlJMdL3X/rjB/OjKSFJuTz2f3ZAjJgDjJ9b1J8BLJMFo4GWO73YwwpH/nVYqK3Bg2XieDXON5dfnBZWQjA5FVS7rGVtMxjKyxGWwF1vxh5UkUy1J2IxCSybzZIVCXMbDQweniW9lGGmv8IcyWbKviDS95yOOGgmvSz7Zg3IOMIKw8cWdGVPIpkERSG83oxRgsnLufZ0Zg448mRq1Y1RJWISQKhZkyc9PZyi3FVTqbxbHnOzYDJDKlV538yTkzQs0d/3fQD+8z//s2Kda3h94rnnnqOhoYGRn34TV9eO5YtSdZoq8m8SUwkj08nV4zdPVCov/5YmHkySSBkYGl999ssTlYrl33ovyTl6kgRUcSCK/CeAeIvmjo2PViYo5ZEnKhnSabwRWJyH+dyWVJGglMOVs2IEJYDFabh0MMH4YAYko275Ny0De+6Pkt9bUnD5/xqNRuxBGVtAYnog159q/nHuM5NdQrVlEHE6rpxcrJ65Jd/XorPq5IDOjFz5vub613mHhYWpDJf26X8pcuS0ePB04ESCgaNi/lo6AZcPiL2sCeCKaHNi5ExK+52vEDmrFKoF3DGF6aEUC5XIOWUwek7cHxw4mmDgREKMeJWGoZPiz2rDG6yM9CQ0+4Eu+yXmDAwcLvOsqszJ5Cz0H1lkvF+sj6rNiGypYYcSO9kDErLZyBV0jKecLyKbJbJZSAiE8rKSkZ4Xl5CrheTS6VWyb0uz0LOv9vplSKaXiUiBepga08h8erInSYspbGEDddEsiwsGrube765ETCrG8JTC2JRxFdmoHDEp9wnrwkkujyvMViAoGcssBxIwmZKYSFb/PXlyEgDHf0Zqbprm5mb+4A/+oGq9tcKQ1ePhrwF9fX00NGhZN65T7sOuFt5GKEdUysytXbe9aa+f0EY3x//jIjOXBBZWJUPjzUGhILirxSYkCwSw6YNNWINmDnz6pBAxquPNMRKzSS78UOyweA0aaSGyzSsk01W3x0dwk5uT/3Ze6Dm1PlDHzOC8sASeKJxNVnxtjtdkPFz3P7qY7psTljkThb/bicmjMPCztV1uiqDrkXoG9o8z1aN//rbeX4fVb+LoF3S8JZ5Dw+1BFLu8JqLSrzxU2PTeZs5/f4DZy/rX8i2/0YLZbeL5vzwlRv5TwR40Mduvry1fl5Y96eqplWOo1sXjlo80IVsk9v99mcvuCgfBUhgDq7M2FBOUAC7H9nHqzCk6Ozs5dUo/2fIaXj/o6Ojg7NmzmAxWbg2/b+WHZYhK2fG1ybACbP1AhMXJJCf+owbhoeQNCE+7heRcipk+ffPOVqcwN5rUCCY6b4oUK2z9jTZmryxw4kv6ZVztMRMNtwQ4/pg4MeWXFmvRoKyA5nvCzI8tMbRP/7ha/844MwML9AlI07qarQQ3uDj3uDjZRhR1e7zMjy4xKeA7rAVdj9bjrLfxwv8RI0WvBfFb/IydnmZ+6NUlrwe3urB4TYUMhzqguBQ63xzlyr6rjB3Xf1G57qEYg/vGXzOZvarQI6n4C4T4bX6MspGLP9T3nAxGA4pLYduvNTJ5cY7TXxPwdw1GHHFTYf3XQVCKXe+h/+cTGOSSy6sqF2WuBpWO+4L0vzjF0NnVn1fMDFOCTHx1RrRigtJUcowTie9jMBjo6enB7xeTGr+GX37Mzs7icGjng+27fge7Pbj8WTmiku2yzr2kTIguFFgivlHlzLNLzFY7Opf4XYalJKF1CsOndASnc3WtPgPzV7O65wpA8812vI0mDn9tjNQsNUlKedRtt0Eyy+ChItu8HN/kFcgQ88sCe1gmuMEpRFZyNZoJb7Jz/qkxUjq3zGw2S912B4vTa5ez0wuzV8bdYGbokPiLbKLY/pEoU5cW10QgEoEjqmJ2y8KSdCIZlPKI3+hi/Pwcs4M6567RQGSLHVtQFZJ783dYMLllBl4s8dVeg/n3Sl5hrMXGyxAhn5f4hu33eri8f5aFMR3PKUdSarvLibNO5eiXx0npvWtUFJDBbIfFSXQRlKxekM1GpiZXvpVXjaAE0LHHgMVu4MVjCqUkpUoEpVKMr1udPXQlQQlGh77MiRNH2LZtG/v379f1vdfw+sL73/9+vvjFL2IO1dP66O+s+KwcUclxUd+asZqolGa3f5HFpJFTl6pnBykmKgG4sxpZdG5WBykzk0W1pLVkDWmpJkmpGJtvzjJzNUvvEa39WiQl0EgfdR1GLh5OreTb6IxNA6uJSjWynqwsW2JnkTW9tOzLWcP11i1Z6wNtCqmlDBN9OuyVayO21cTSdJrRHv3P1uwET73ClRNreNNTEK6oRHIxw/zVl7m/1niW0Y0mAq0Kh7/5Kvt4BgPeRom5q2mWRLnvgmPKETRidhqFnq0kQf12E+OXUkznZVh1zIPoRpXxvgQLEyVldRIHX1Ei2cuZewISbaUxHxF5t2KSkrfegGIxMnxenw2yioQkQfctBiaGs1w8o59gnzbLWCxpFhak3HfV7nPAn2Z0DBKulXtNZYISWNQ0W2NL9I4pnHOs9p/KEZTKYWr96rWsmKCUWphl6D8+RTqd5vz58wQCYhmD9eJVi6LG43HuueceAJ5LPrHis1ryb+1vCrH9o0262smm0/R+b5jnP3VGjKAErH8oTt0OH/aY/lRkeYKSq0V/2uJTX77I0S+IEV8A3K12PBUkhSohepOP3X/YKSzvFd7pwd9dkXZeEbawuIyYq1Us5XN4p4fNH2kRqhPocuGM24TsMPj8VQ5/Vvw5Bda7iWwTk4rofm8j2z7WJlSn4cYgkR1i7fyio/6mIPHrg7ULFqH5njA7f78TVUCh0B5V8bQ5CQhKlfQ8PihEUALwr3fi6xSbS63317H+nWJSarawimoXXMJVxOugSTWK2Bs04tCW3xCbt5FtXqwBM7agmHTNoX/o5eRX+3QTlFS7NiZIoJugBNB8V5j2+6PLf1eTdlvRv89eYN9nesguFbVVIu22op27/Wz/rcaKNi+Wd8vj5OKLnDpzCo/Hc42g9CuMM2fOYDAYWMrOc37mwMoPq8i/KTbY8r4Iddv1TfRsIsmBz/XVJijBKjmRtnvCNN+pXwprblAjKNnqFN2ZXJLzcOrrA0IEJQB72Iw9YsG7TmzB2/TBRrrfLSaPplg1coAoFJd+OxTXMXkrVDIYy5Iquh6J6Ze0yiGw3kVwo9g+e+Lf+oQISgDB9S78610oVv0HY8WlsP3jbdTtEZNwiN8YpP761xHxQIHYdQFiu8R+09bfaKH9zWKS0pGtXsJbxKSNk1NJjn3xohBByRY14W62424Rm7cbP9CIf4PYOcsRr5E1tMxcsvpFU1BpUm/+9WJ9swYVdv5uK4GNYj6or91RUcK2EpJTSY7+60VOf1s/QckR1wInM31LVaXdiuFsMBPb7aH13qJASBV5qzymLiV46Z/6Gdw/Q2a6MJaKpd1KseUdXuKVUv6zUt4tj+fHvsr09DR79+69RlD6FYXdbud//a//BcCBfX+74rNa8m/RFth0Q4UPSyTgjDOLjPZmOfBEDYISrJoj9dtNxLZYsOoJI+Tq5i8prAH9GXt7fz7L8e+MawQlAfhaLHhaxM5+nmYzm98Txuwu6V8NgoSr0Sws+QZgWoOMmDUoVsfVaKbzAbF1xBkz4221YPbpb2vq4iJnvqOfoAQakSOy2UFog9g+23Srhw0Pi8nfhrvtxPd4XqWc//89qNvmJH69mD8U2GBj47vCyAIml80Q3GDH0yQQb81kuXJgRoigBODvsBJcV9ROJltz/oW32Gm+S8wPV+xG5JKtuSaxSEaX3Uq/p267HVmvwm7Oh2l/g491bxKbt64GFUedCZtXbJD3/HiWM09O6ycoyWB2AylYnKku7VaMhu0WWq4rGL2atFsxzjyf5fBPM5iGCjGvUmm3YkTqUmzdkawo81Ys75bHlcEDnDhxBLfbfY2g9CuML3zhC7jdbhaHLzN+4qUVn1WTf5NIsyM4T8xWPnBcKgFnmjRwtEetSVCCUgm4NG1dWeJNOgkBRgOJJRnSEqopXVHqpxzOHDBw/rhYjN9kA1fIiDMgVq95p0LzTu1cu4IoUIWgJEkQaC190aRo7a1AmpBUyintrSRGlKzhkqoRsHQhVze6WSPNVEXJ/hZoVfA26LxrzGYhm6X/4JIQiQXAEZQJd5pQBURLJAk677TgbRTLWBjfYiLcLu4fr8KrLP0m0of4VjP+JrE765YbzUQ3isVufE0K4XVi7aTTcPHFJY2glBsjtSCp4G9RcISL+pfO1CQoNV1nwRHOjQedz8fsEsugBAJzr2jtsPqMhb5VQtH6kpWMSCqsv8uEu05s/fJEZbwVJGwrIZ2GEy8Yudyjv57FBqARlKpJuxVDVdM0NaWJxwvjoJK0WzEWEhIv9Jq4Mq1gHyjcL66UditGmt2OeZrMle9Bi+Xd8uj5t08xOTnJ+973vleNoASvIkkJ4Hvf+96y3Mjz80+s+jxPVCrNopRaykAWMTmnhHZp3/Ym/frWJ77ax/knB4UuqUG7fO96qF5/12azzA0lNIKAAGnm0N+f5uDfism+zVxeIJ3IYKl0GVUBTXeEid8iRhbZ9rE2ut/TLFRn4/ubWP9wg9CztUcsWLyqkO1OP97Pc//7pLDEma/LQWibW6jOgc/2cPiz54XqpJMZMmXTiVbGmScGOf7vF4XqOJus7P7DTur2vPrkph2/287G9+sjF+Zx4j/6OP0NsYwVmZTmIIqQyWYHEuz7qxP0fF//ZYpqN1J/a0BYVu7A3/Rw6DNimRDsUQu2iFhwtv3N9Wz7WKdQnc4HYmz/eKcQudDX5SC8xUvDndHahYuQmk+TmheThLzy/DgHPn2S4QOTuuvYo9pvEclw1/lQI93vaREmcx753Dl6fqCRMvSQkzwdNpruym3gxUtRrTdUjAayJWM8Mzqm/e/V1QHERGKOYWMvAI899ljNfl3D6xvf/e53ATg3+wLJZJkoZo6oVJxFKTkH2XRWTCIo99Xxmz3Yozp8jlxws+cHwxx5TEzS0eJX6H5HnI436idJTF/Ubl+sQf3+0ND+KQ5+5hwTZ+aEpJlSCykS82JBh8bbI0R3erFF9a9DjriF7R9povEWsYPBto800faGcPVCJeQKW8SKIyYm43rw789w9PMXheooVohe5xMiXp37wRWe/4vTJOf1+1HJqSRkssIye6e+1idExADY8K4GtgqSdNeC6HU+dn6iXYwEk4Rj/3aJC0+LEcPSyQzZpJjtjnzuAgf/qVeojr/biatZbNzNDSzx/F+e5tIz+jM22aImrD4TFq/+YJxiNbDhHXE63lrBH6qQQan7PY1s+kCj7nYAGm4K0HJPjTlbAtWpkFnKMjcoluXi0GcvcOTz+s8xJq9GlJwfSuqXUFSg66F6NrwzJtS36UuL9PxghJ7v5carjkuypjs8qG5pVd+qZYRRrFpmhtTSyjFu7NOy15aSkwAuWJ4Gstjtdr7yla/U7Nc1vH7xP//n/6Suro5sJsWRQ19c9XmeqFSaRSmV1BIGlSYJW4HSIHBKG6+xDTout3Pz5fL+Jc4/O8+8YLKY9jtsrLvHpZ8skoLFySzIoAgQK059e4wT37xauLTSkUVp/mqK9FIGWez4TMvtHmI7xcjUnQ8G6HqLmN/VdJuHrjeH9BMeAItHxhpUMQsQFwYPz7L/cwMsXhXzQe11Mu5mgc4BR79yhVPfFPQdUhkyOrI6FKN/3yQnvn5FSCbO7JLZ8v46ghvEXoZcCzY8HKL9PrHY2vkfjXHmcf3Z0A0GA2Q1iVUR0l9qEfb/8wCXy0lxV4IMgQ1WobEKcPrxqxz78pBQHUfEhCMsdgnadIuHTe8SI8nXbXGy5V2xqiTLUoKS2SdTt8NF3XYd60PRGTG5kCa5oGOM59c1o4Gpy0mOfGmYsbP65XzNbu1/50b0T4ymPTbW3+vEJPiy4amfLND7fC5eoMPvsrqgrj33R1H3amVPMhi1u8di98x7SrNJKTkJIJVa4MJ5Td7tq1/9as1+XcPrG3mS2uAPv0I6sXq85IlKxVmU0mhcgFpRnmKiUl52J+RJYjPXjm9rRCWJ86cNnD0pRtiQpDTd2yAm8D77Qm6P0E0QAGbG4PiPUkyPUiAM6MiilFjMklgs2FNPRhNvi0JsswWLp8QWVWJtqgU23O8k1FEhTlaBaNH1BgfRrWKOoSMkYRMg5AOc+eE8558VzCopgTsmaeQrnRi9kOLot2eFZLDS6VwiU8GEOT3PznPpgJjEfGyrifbbBB3xNcAZlVh/rxWTnneqisbGqafmGDotcCdsMJBN6U4Eu4yLLy5x8kmxTJn2gBGLGHeddAKOfGuOkXNJ3WQjyQL2oIzZJUDOkaDjLgex7RWebYW2226303JzjTheyZoRWWeicac+BzS/3ihmSC5lmZ/W4Xvl1zXJyPl9ac7+XCDbVY4omUgIJZmjfQu0d4pNwERC4vRpib4+zba1yEkAMVcCVUqvkoarlj0pL0JakvgP1wntO0rJSQCpfU+SmpmkqamJT3/60zX79XLwqsm95TE+Po7Ppx3iNig3UqeuJjFkE4k1pcbPloySje9vwBYyc+Afe0mM64iaFgVARGTc/N0ObAEzl34idkjf84edLM0mhYlHgc0uRg8LHDTXAH+3k7FjFejmFRC9yYfJptD7ff2HU0+7HU+LXajOa4ldn+wkm87y0l+e+e/uyisCW1hl3cMNXHpmRGgMrUXubfOHW1gYXeLMN8UyV/yiovHOENHdfs7+Z/+rPv/WAk+nHU+zg97v6Ze7cTZZie3xc/LfxQgC/m4nY2emxaTUBOHptDPXPytEPgtsdNL2xhhDB8fp/YH+wJ85qFJ/vZ9z39J58VwiC2fQ+WrL5l9rxOxWeeGvz66w3SrJEh3IplIY1PInmot1L3D23Fk2bdrE4cOHhb/7Gl5/2LlzJ/v27UNC5s7Ih8uWyczNYxBJlZpDcSZMxQpbPtjA7NASJ7+qb1/PptOQyWKPqcwOJ3RfcjftDdD//LhGNtGJxjsDhLe4OfHly8z06T90K1awBK1MX5wXJrWItGENW5nqFTvQtr+5jv7nRjWCgE7Eb/Mz0TPHTF+NYMorKP2mF+FtHpr3hul9coihA2uXH/xFQtv9EVSHwokv6d9r1yL3FtjkIrbHx/HHLggRtn6RseO328ims+wXPCu9JlAgfkOAq2enmRsoecGlyjk2fpufxYkkI4cEfEkF3A1WJnteXfk6b5ed8ZNiaU+2fKQZ2WJk/6fFXtCIXu9jZnCRaZ1rsbPBzPQlrazBYNAkS2rA4lXofkeIqb5Fzjyukbvzb98Z7Gu4vF5YxFBGKnWIXs5OPYPJZKK/vx+rVYxYdw2vPywuLmK1Wslms2zofhf+YNeqMurYHFlV/AxgnF65dzfvkPHEJI4/tcSSjulrWEosvwFuCxiYG9W3X9i8YPMZGT4hdmmx+REvyYU0J74hxopy1StMXdYIxa+W3JujTmFmJClEgPG2WzA7JQb3618rLQEZd8zMlWOzQm29Vuh+NIRBMnD0sbXF5F7lELIwZDN03B9k8MA0E+f1j9e1yL213eMjMZfm0s8m19DT2nhZ8mNrgK/dQvPtPs7/9CrjAqSZFXgVJd6sQRl33Lxq/lUbg2avTGSTgws/rXyuKGdne53M4niKVDUziEi8lUKSsIdkFqdqtFHar7CJzvvcXDmywOBh/Rfjsg1C66wMHNd5uyaDxQELE4DBQMam7/K5fRc4fUYO/zBDKgWGnN+V9In7XfLMEglv+XavDDzGmdOnuOmmm3jmmWeEv/saXn/45Cc/yZ//+Z+jOD10fPD/U7aM7UqGlEl83lpzUoxZgwGJNNvXJZiaM3K6Tx/RUp1KYshkUc1pEkkgrS+GHAmlGB/IkhSIvfujEO+Esy+kmR/X7z9JEqg2WJgGUmkxybYiGFLpyplgJLA4DavlqSDn75WvF9loYvziEksC15S+FoX58TQLEzp+x1r32jXuAbaARPvNVi7tX2D8kiAL5hcUoU4Fi9PIxZdK4iJV9ue1yL3Z/BKRLpW+fQskam2Br4X83yuAjtstGI1w6qmFtUmwZbP6Jd4q1a8Cb7PCwniGhcmSsVrFRt5mhfRShqmBCuPbUCaTtgRWt5H5q1V+i8FAVhbLgLSiTUXG7oVZsYShtOySsDgkjj4nVs8bhsUlmE7pYyRqsnAAEhnJwJKndqxAktLsaVhiZFbi7Ii2JxlzZp+tlZmqDExTGRaCq+OZC1cHGP7GPyJJEv39/djtgqx3QbzqJCWAj3/84/zN3/wNALcoj6CWXLRmi1nPRUHexjv9+Dsd7P/b8nJLpSQl7SJZZbZf526eC35s/kgzFo+J5//ylPglvIruOm1vqmOiZ0aIDJQnSlz40RCDz+s/PDfdFSKZSNP/9JjuOr/oUO0IERi6392INWzmxT/Tf+Hj73YyO7zI4oj+gVB/a4C6HT5e/OvTQuPHFlaZG0/ormOPqnS8pYG+p4cZPSpGKBPFWkhKa8HmD7cwP7LE2W/pJzbZoyqzA2ITdeMHm5BMRg59RuxCJbzTw9BL+i9N1z0Uw9lk58W/0j8WRMf1LwO6393ImScGhTKZrYkgqMKGhxs4LiD1JrJm57Hpg01Yg2YO/M1pErNZ3SQlAGeTmekLK6NQlUhKLfcGcMUsHPy/hd9T/OZ/OZLSc/P/yWx2gkgkwuCgWLaPa3h9Q1EUUqkUPqWeHf77V32emStcfi+TlRTY9HCIqz3z9L9QXm6pVK7XHlWYHdBPmMmm05g8CpvfV8/0pQVOfU1w3CpAQt+BTLFC010Rzn73iv6MH8D2j7WQzWQ58He9uklKJq9C8+0B8d/zi4IKF4KKVZPP0wPFamDLr7cxenKKC9/XSRxVwN8pTpTf9GtNJKeTnPyyADFaAatLYX5M/2Boe2ME1aVw4t/EyL2iWAtJaS0IbHIR3e3jxJcv6yf8KWByKixd1W83xaWw+f1N9D0zwvDBSd31rH4F1a0y2aM/O+KO32ln6tIsZ7+pf+6JjOuqWMNLNq8Gotf7IJtl4Dn90ZfodV4abg7Q+9QwQ/sna5bPZ5fzrrNjj5jp+4nOM6YCpIrspCO4q1hh60eamR1c4uRXcs9VB0kJwBpWNBJnSaC9Eklp89s9DJ1YYOhoka+2UPj/pSSlZDLJj8f+CaPRyO/8zu/wF3/xF7r6dQ2vfzz22GO85z3vAeCGm/8ncklqEnWssK4Vk5UCMYjEqRgELSUpAZhdsKiT92hY0g4VrTeZcYYVjn57Wt8FedEZJGvM6Cbb1G00MTeW1AhHoCv47m8303Szm4s/n2L0eNHiXIOsFFhvxWCAkeMlC/qrSJp4tSGbESIwNN7ixtVg4ci/6H9xyVGnkJjLslRFjrAUvnYLsd1uTnzzCqlZ/UQlxSGRXEjrHj+yHTruCTJ4UIxwtBashaS0FrS9wcfSdIq+Z6tP2mLijMklszSXEiK5Nd/lxeSQOPUNgZdpjQbczWYm+xZ1txXd6SCwzsbxrwwVxmqNOSc6rivhlbq+eFlksJwf03ybh8svTZKc1dknSWLj2/1gMHD033U8I2Mu5iRD03V2+g/M67ehYig8T5O+i7Lm60x46hWOfHeO1By6SUqgZVMqJQZUIinVxVIEglmOHDFAWtsL5ZnCJXc5ktLpU99kaHAf4XCYK1f0r3XX8PpHU1MTFy9exLPxOqJ3vHXV57YrhXFZICul2eJLcHXJSN9sedJRnqSUh9mUYSEB5TXIVkOdSiJJaTZvzzAxZuDCOX31jEtF7epV35CgvilN/6nCPxl0EI46b5AxynDy6ZRGUsqjmnybCpFOmf6jWj8NxfVE1+fifeO/g/xctA9Iko5sKfkzrARdd1kZv5Rk6KTO+IjBgCMkMTMsRlBq3mMmlczSt19MAUi1IpSBKdghY3VJqwlHa8ErTFIShsGAzWck3KVy+cCifjtIoJoMtYlQJXW6brcweDLBZL/+ZytZwGRFy3Krc+yvu8vK9HCKgcNFz6gGUanquBaZc68U+UuU5FdUNytLuKMSRpnaRL+ies6oTMt2hUtHkowP1G4yK2txK5tb+294UP8LRvm6AGmLnnpptm1NMzVj5GyvFuvSQ1ICsEhpFtJgLCHAlicppdntWOLyksxAouATmqYK46eUpJROpzn9mT+GdIo//dM/5fd///d19evl4DWJrH7605+mrk5L0fpMskZazpJAhEEyoHp0djMBs/0JVDs031NDuqyonUs/GWHowLjwxfWO325j+6/rz8N47lsDwpcwF58aZvjIhBBBCSC42UN4k1juuA3vamD3H4rJR4V3etj2sVahOqEdbrb/dpuQjFbn22Js/3gXqgBpb25siaVpgVtJYOzYtBBBCSC1mCaTymAP6P9BoR1uNn+ojdh1YvrlilXGJChR5WyyCstarQWuVhuqXWxJUWwSJpfYG6Ub3tXM9o8L5D8Fsqks2TW8xShCUAJYmEiSmE0KrSUb3tfKrk+KzbuuR+NseFeDUJ3Ot8Xofm+jcDu7/6BTaK7W7fHhqLfi79CTi7OAnicG6HtWv1QLAAk0Ip1Oe9ft8bLnE+sIbHQK923s1BSJXABqFUG2BO42G3V7tPW3lKBUDYrFiEE2lCUolcNMqJ85JgE4ePCg7nau4VcDfX0aqeJq8jJD89Ull7L5w00SjLIBxaafiJcnKIW3ObCGq18i5+fO0kSSkWMz9PxQLCNloNvBro+14O3St74k5+Hst8UISgCX/2uMc08MCWVR8nc6cDfb8a/Xv/YpVtj5u2201pJiK0HXO2I03S0m0dv1SIy2+/VLIgPs/EQHnQ836i6fnM+yNJVkaVLA4EmEfWPQ9vV0aZ7aGtj2a62sf5eYLK3qUjA5xSSUFZeCPfbqp75eSzsmp4xqVyCp3ymK3xBg24dbhWTYTA6ZbDJDclEsEDc/lhQiKAEsTiaYH9UfUDP5FLZ/rJPGvSHddRQrbP2NFrydYm8Pbf5wE94usTq7PtFG+wNiczW8yUVku9i5b+C5cQYPTAgRlADGT83qJygBWz/UxKYPxIX6lpyHKwemuPizoj2inHxpEeI3uAoydDrfBFZdYJSMK1PiL1T3244Zvg3AunXrrhGUrmEF3v3ud3PXXXcB8MLP/7xqWUOiaA3OglEGVUBuaXEKkKGus7q/licoAfQfXeTK8UVhosC6NzjZcL/+9WXw0HyBoAS6AttjZxcZODSzkqCkA5HNDoLry6yxVYLgDTe72fJ+sTXW1WCi661ikm/OuIn1DwWFZLTqdjrY/N4ossC2sTCeZFHE7wJmBpNCBCWA1JIm3aboCrprsNcpbHlXHeFugR+U0nwI1SYWI7IGZOTXIKmdLSjejskhY3JW/z2lpJnONwXY8FYxX1+LeYlf9E726icoASzNpVkSzAbUstcvPO/iN7po2esVqhPd7aT17tpyfMVkp/rrXWx5f0RorroaTXhbLbgbBPzwdJren0zS/1L5F4FWwFi0tqfgws9mddvbWa+w9REPngaxOdR3cImhMwlSOTfcOFf9ptbsBH/OvdOVuSQHRcmpkeaOCMUEpXJILvUyMnQAgEOHDulu5xp+NXDy5ElkWWbi6HPM9lXPxCsXyTpLxiyywPXF4pIRkPA4UjVl39Tci0DptMRAn5EBwXe/bS7YfCM4gzov9NOsICiBPqnGgdMpLh4qISjV6pvXiL9Rxhku8/2V/D0J1t9rpa676GKhNM5Wpm5sq5lQl9hdVnSLibqNOmVFc/tA1702Gq4TWcthcSpDYk4sk40oQQkgk86SEdzXW2+20FZLdqsEqsUofJ8nqdo+sAKvAtlMUtEn9VYExWzA7Cg549eAOyKx/h4b9oB+O6gmSCWzpAXvG9MLCMtwL0ylWZwWIEKpsOFBp9gckqDtNhv2oFg2npabLTjKkWNK53XRvF9/r5VotblaZk0INEqE28R8m+mBFP0nxQhKAHOTMHJRfzsd26Bzk2h2K4m+yxL9VwrtmiaqD6aIM4lEmoW0tIqgVAkqIBlWToZiglI5TP/nP5NNJbn33ntfE4IS6FeYf9kYGBjAaDSSzWZ4Yf677La+ASjJopRHjkB08akxLj4lngmo861x7BEL/S9O6srkMXF2lomzGotT9aq6s3/MDCwIbxaORgvrH2lk4MUxLv9U3+Vcz+Pib+Uf+b+9wmSbqf55JLMklGnE5FBQbQr2ehOzl/VdEBhlI4pFxtNoX7Z7LQwfmcRoMqLx6vRNehEZrGWosO0jbYyfnubCD/VlAbjy/DhXnhfLGzdxapKxejsTp/VfzM0OJHjh/5yqXbAE3e9sYqJ3hpMCsiNrwfqHG5gZmOfY/72ou86+T50VbufK/nESc2IegEif8tjxO+2MHJvk0o/0E2cuPjXMxaf0y44BjB6fwurR6UTnYHKrK+IWemD2mVCsYpXmhhZRbLIQ6Wrw+atMXZhhbkhs/bl6Ukewpgi7PtnJTP+8kHTd3MgSi1MJoUxkqt3A3FBCvzQc0HRHCJNDZvB5MZLb6W9oY6cSOSmbSCxnU0ok5uiZOYaqqvze7/0e4bAYyeEaXv+IRCL8yZ/8CX/0R3/E4anvc7vyayi5TBTFWZTyyBOVDv3fNUg/KBC/3sv8WILj/65v773wlOYDKW4jyUl9+/ro6Rki290sTRXJBOuQBOl4Sx32iJkDf1edrJXH8EFxic+B58aZODsjlKUnOQ8L40vMDovdGFp9JuGXWcweFclUYe+sYMPxs9PMDor17cjnymc/rYb4LX58nU4OfVbf8wE4+oWLwu0MvHAVoypmuLVkUOq4vw57nYUX/vTVzYrUdk8IV6Od5wWyL/U/e5X+Z8UiImOnplAsspA04Wz/Avv/TkyyrfHOIK4mG0f+SWwMHfviRaHymRRMnJ9h9Pik7jqOuB3FJhcutXRkUHI1WjE5ZGSTft9LscL86BJTl8Uu6g/8fS8mrxiZDuDiD2v7uHmCUv1NPsJb3Rx9rI8lPbLqORtN9y2QShSdlzPZqgQCxWkgNQOXf6b/bGX1K0S2ODE5Jc49oT92kJiCg/+Wmw8VyEnZ+YXlbEoXTE8zOjRKfX09x48f193ONfzq4Mknn8TpdDIzM8OxI4/RvendwMosSnnkiUqjAzKjOgKnpWjcJONvkBjvT7OoI6SyOAlXJpNgNCCr2eoX3kVnkanBJEYZDLkLr6wOEqDJCeve6Gfo2DxDR+e1QHONi4vB/WUIqjV8vVPfGamcxSS/zpRchM1cWcLklIQyu0gmI2aXjD0sMzukLw6RzWQxOSSsQRPTffriZOPnFzA5ZL3hLgCGj84xfFSM3Auw7i0Bpi4t6Jaxm7q0xLFLhThHnlRTLbPN7GCSwSPTTF7S70umFuHgF8Tjn+vfGma8d57zTwrqOQhi3YMhpgcWOfuEfl/q+Jerx4fKZfUZ2D9FNikWa77wE4HYQ25+rH9LgKvn5xk6rH8MjZ2YZ+xEiZ9iNFTNpjR2ag6rwEudABaPjGzWfCi9GZSsPgWLR8wfWriaYH5M1k+6ymSZurjEsa+MCJP9ZodTMFyjTlGgb+PDXmaGElx4Ro+2p/ZME3Np5q+mmRjItbOUqJlNSbYYSC3CwBEBWfUNBuxuA1f7U0Jr1qULMpcupJBn0iwzlYqgji8sZ1NKpRbpOfc4kiTxJ3/yJ9diXtewChaLhSeffJLbb7+d/m//E20f+X+QVG38FGdRykMjKhnZP2pCb1akPAzZFO2xJLPzBk5c0ld36IpWTlLSZJLZqm3msyjNTcHMJCQXASm3P+jIqhRtB1fIyMlntd+dNRqrZlSaqXRkyhOcytSdHspw8qlFEgslWZTyyO9nxWt2GmbH0ixM6ch+UlTP6jWSmBOL3ZidRrIiXKBslrHzCRILNRaxkrNr73M6N4yi/d0bl/A1q5x7Wn+qnrVkNho+k0ARzFPQf1hUVggiXSq+JoUj38r5D69SNqxQp0qo3cShr+u8M8pmmexPMVlJdqwC5q+mGTixxIKAZGJiHs7+VCxe6m2U8MRkzv9X7tmWmzNlcPGFMu1IxqrZlEbPLjE9WMHnKHM2szgkTA5jIdSlI+is2sHilpFNJf5DtboSzIykmRsv07cK9QypNOd+nqhOKK9Qd/RilTo55AlKnjDEOoyc2ZfRlYUrX2/yamZFiFBaSFXNpiRJaZLIDI/rp+aoUpqWQBKHItEzon//SiDx82kzIFUkJ1lGCpJvC/ue5MrFHhoaGnjiiSd0t/Ny8ZrIveXR09NDW5uWAaVF3kSLaVN5klIxDEZC25zEb/Rz5LH+FQSiitksVAh0Ohg9WmUBKxPo2PyRZixulec/JSbbpRs5U2//eBsDL10VIrZs+lAzZo8qJF0GWhad6QuvhJ7BLydcrTbsdWYGfqY/iLDrk51M9c5y+usCEiIq2EP6iVqvJZrvjTB2akpoHKxF7q3prhCTF+d0E89eM6zh2ah2I1t+o53R41O6yW72qIqn3aWbfPh6hKPRwsxFkdyY0PpAHYEuF4c+f14/sVKFLR9qYfz0DJd+PPKqaQevf2ccZ72NA/94fhV5tarkmwr+Dgdjx8rvQaVyb93vjgFw7LH+mtmT8iSlH849BsCOHTt46aWXqta5hl9tbNq0iaNHj2LAyN7IrwPlSUrFMEhG1r8tQGoxw5n/XLl/lsq95eFttzJ+tvr3lvpt1oBC9zvruXp2lp7/FCN4rvzi6gfJ+M0+nA1Wjv/HZd1ZlSxBme53NjL40jiXBXwIFC1APj8kmL7pvxM6iF66oUB0p4+x09O65cEa94YIrHOy7zPnhLJe2aIm5kaWhDNlvdpwt9qwhcwM/Fz/uFmL3JsjbsXdaOXyz37xpJ3X8mzaH6jDGbey/2/1k5siuzzMDCwy2y/me7ws/IJIvOVhj5mZ7RcLju347Vbmrixw8ivVmRHFGZTC212Etng48s8XazdQy0YVSEqKFbZ8qJnZoUVOfbWM/11F8s3bZmH8TOVL1mK5N6sXOu/1ceHn00xcSNbMnmSwWjg/c4Bzsy9gsVg4duwYLS0tVetcw68uJicn8Xq9ZLNZWtrupz6+pyxJqRhZVcbpg+b1cPolWCwakuXk3vJwhWGqCre8OJNSHq03mXGEZI59Y4aKx44a55GqRKWcr9f1Jg8jJxcYO1v0Y6qFHjNZmm934agzceRfyxAoq/gqloDMwmiFPv8SS7/phSUgYwuojJ3UH+/pfjTEdP8il54RIObLYHbKLBZdKryG4eSqCG22Mzu4yNyIftLIWuTeQhttzI0lmB18ZZzPlyU7VgwZzC6Zxas6f7/RADJsfDjE2Nk5Bvfpi+EpdgOeRgsjp+dXZ196lebaqzXG1mp7s1dmcVa/hCFo4ya6zcnJb4+yOF3l9xS/iShDx51OpgeSXDm6UJBnL4dav6UKSal+u4lAs8LJH8yxWBK+qiX55g5kmKpwhC+Ve2vrTKIocPKYIUdQqow8SenZp/8X6fQSN9xwA88++2zVOtfwq43f+q3f4jOf+QySxca6X///AeVJSsVImQx0uTUf6+TkyrFeKveWh8OaZnrBQDWykVoiqS4paTZtyTA2bODyhdokpYqoQlQyJNN4I+COGOg9kl3B/6tGVJLlNJ03qQz3pBntLTMvq9Q1mdMkKm0dtdbtavvFf7P0W1mUnl0lLfPO/Hi6OpGh6Ht9zRLBVhNnn54nLXDnrNrRJMjEEzG9qrC4wOKWCtJbOp7bWuTeTA6wB2Su9gqmK3qlJMqqYC3PJtQp44kpnP5Ryfmuiv1cdUaWZtPlpb5rSL5VRbVn9mrZr5bkW4W6JgcsLlS5hytTb91tKnMTGfoOpUCpTAYqzqDk9EOoycC5fTklFbVWvQyVhMoqk5TSbNmSYXrWwLne1fGtapJvTnOa2TmotAcVy72ppNnpWuTUrMrVtFIze9JC0MhM31kuff2zmM1mjh07RmurmHrWy8FrGmVtbW3lz/9cS319PnWEqYQOkk42Q2ImicEAZpfOCZJgmaDU9ib9KWWv7B9n4vysMEFp20db2fiBRt3l93/6nHDmnZmBBRbGxAgwDbcH2fBoI9Hra6e7zUO1G9n4gSZ8OqVU8vC027GFxai6rlabkIyUp93Opg81C7XRdl8d8evF0iS/+GenxQhKwM6Pd9L1sJiESPM9YdoejArV2fXJTrb8plhQvPd7V14TotqFHw4LEZRcrTb2/I8uGm7X/3w87Xa6390oJF/XdEuITe9txd+tX+IrMZvhxT87LZSNK35zmPrrA0J9a32gjtYH6nSXB/AISo2AJssoio3vbxKu1/VwAzt+t12oztzIIovTSbHMbwk49JnzGkFJBxyNZnb/QQehbS6hvvU/f5WZ/jnd2fUiu9z4uuyQoCJBqSwMgCFTk6CUx8XICwCYTKZrBKVrqIkjR45gtVrJkuGnQ/+iq042ndHGpYBmdJ6g5G234u+y1SitYX40yfTlBa4cmtDa0tlecJODHR9vwuLPOfQGY9VL8b5nrnL8Mf0EJdAkgxYnkyxMiDmF23+9hfUPi0kbhbe56HpYzB8A8HcL5j2G1ZJdNQhKLfdGiAvs07agiYabg8R26ZezvfjkMPv+WoygFNzqYtN7mglv1r9PmXwK6x6KYYvqz14YvzXAnj/sxOrX/1b2ZM+cEEFprZjpmxcmKG36tSZhydyWeyNCZwmArrfF2f5hsQPt2e8MChGUABpuDtJyj8Bb1QpseHeDkEyeYjUUxoxOgpI1qGCPCeiGAP71DroeiYFAAoDo9T663xkntFXMv5kfXWSqCrHJYDSsICgBDO2fqk1QKlqLN7wzxsb31evuk8FgILVgYKJ3jiGBbHaNt3kgk6lKUCqFbFXAAInJxZoEJYCkYZTLqcMA/PM///M1gtI1VIXb7ebJJ58E4Py5x5mdrZ2h0pBIkZ5PYTAgJDmUJyhFN+h/m3L4bIKrF5OkMvr9LoDOe5y036n5HQajcTmzUiWc/PbESoISaAHkKoHr2eEk86MVnIEKvp633cz6NwcJbqggbVHOv5ShZa8XV6PYOm0JyJjdYsnozT5Z6JlaAjLt9/mEct433uQhfp1bqF/HvjQsRlACuh8K0X7fSv/OYDBUJXuENtqIXS+2R216d0RYXm/48KwQQWmtGD46J0RQMrtkdnwkRt3W1TGcSnYz+2Sa7/CiCEiv+FstdD8UxttWY7AVz4cUHP3SsG6CEkBog4OGGzyYXWUGaIX1pG67nege/bE4AHud9v0iBCVPs9h8zmazNN/lxdcuJp3c/gY/Gx/SLxkMsDSbZmEyxWIlGQ+jxKpU6Sk48/1prhytQsQvWlNNdtj0sBtPk87FI1d39HyCyYHkKoJSJXjCGjnJkKlMUKrUnDGdqUlQymPkypdJp5fwer3XCErXUBN/93d/x5YtW0gvzHH+y3+rq468lEXKiN3Fz8xLGLJGHOYUHru+sZxOSlwdMTA6YiBr1P7TA4cbuveAKb9ESYZCZqUyGL8CvQezqwgTWaOxovxbahHmJzMszVb4LUZjIbNSEdpvVmm9oYqkWBl/zxGWiG0z1Sa0ltQtKyNVAxavWJ1Au0KgvcIhvMzzklRo3GXB16z//udqb5pTPxQjKFl9BtbvteON6f89kgrRTSoWAdfLUy+x6U221fJtVbAwhRBBaa1YmkGYoNR8nZmuvWJ7e6BNxtskNm6adlnovFWsneHTqdUEpWrIZqnfbKZ+c4V2KhCYG3ZZsLhr+JHFc1Qq4l3oJWlZWNlGjXMegMVtoH67iVXv/Vep66yTWHenDU+5eVCl3uzVDPMTlcdmVjauICgBTI+xTFDSU6+hDdq7M+hNKZmRDGQkA0OjRoZH9fv5MVcCYzrN7JyE3iyAqqRd6zBbW94NgLlxRr6nJUT49re//ZoSlOA1JikB/N7v/R633XYbAC8mnyCR1CHHdmaOlz7Vw/QFMZJO870hAl1OQttLVuYKFzLD+yc5/TWNnCJCNEgnMqQWxCitnnY7O363HXNQXzu937vC0S+IyR9c+vEIE+dmGNgnclGSwRayEFivfzdT7bDubXFa3xjTXcfZZGX9Iw103q+/jj1qwRo0CxGozj0xyKHPn9ddPg+R5w8w8OIol3+uXxYMwNfpxNMqdsE40z/P5DmxTEXrHorReKfYIVoUqldl4/ubcDbp171NzSaZG1pgolf/7/F1OnHUi2nrjhydYPT4FGPH9Et86Z2XxTj5732c//6gbkILgKfZjqdFjHTU+ea4EFHNFlZpvjPChnc16K6j2sEWMuMVHJ99Pxth8EWxi9krz49z6DP6LyU3/Voz6x7Wf+kFIJtlMsksswM6HUFV+2/q/BzH/7W81E+5TH711/tpuVs8BfXRz1/k6Of1SQodTP2Int4eotEo09P6x/Q1/GpjcnISg8HAUnaWg+M/0FXn+H8Mc/qbYvsaQNPtfuLXryaOVMp+eerrV5gbTKLkl3YdQZvZ4UUyySySWeztjvY3Reh6u36/48jnLooRDoGBF8e5ICATCuBpseOIWYXICV3viNF2b6RgNx3Y9KFG1r1F/+8H8LTZ8bbq36fmBpY4+3g/59cguWvy6TfAyLEpBg+MC/kQikXG3WzH06z/90xdmmPq8hxJAQKVq9lK1zvqhZ7NWhC/NUDLvfpfxgCYOD/HlIDNALwdDgIbxC4YLz87xuXnBAhUCigucbmyo1/oped7+mVh/J1O7HUWLD4BsvvdETa+uwlrQD+5reXeOjY8Ghea0952B05BH3fgpauMnZwRlqg88aX+ikS6UnKSNayw9debsNWJ+caphQypRX3BGoPBgJILivY8McJET4WXK0omYnizldB6O9GdYpef0/1JDv7TAHM6LpqTySRHEj8hlUrx4IMP8uijjwq1dQ2/mrjzzjv55Cc/CcD+F/+GlI4XEean4PBTKWYnxdoKthiJtMv4SvjR5bIoAcwMZejbp8XVZDO6iUqppQxJnXM6D7NXZsNbvZhL3witEEweOT7PuR+IyWWPn11k5MScltmlGkp+pytuxiNCUpKh681BGm52665icslseFuI2G79dSxuGUfUjEuA6Hrh6QlOfE3cZ5etCJGhBvZPM/CC2H7j77DhbxPb2yYuzDN5USxDYOx6V1ki0CsJ2Qytd/uw1+nf3FPJFJOXFpgeWhnLrkbsctWb8LZakC36w/VT/UsMHJhi/IJ+uyl28bfk+1+Y5uwPxvRnbALcjRZ8rWJjoP0NQda9Rf8LD7IZWvf6abtHgFQvgytmwtUgdsF46dlJBg+JxWEmexc59a0KGddLyUlA6x1OGm8UG8+SWSKdzLJQiQhVjNz4k2VNCrT3ufL7hXFuZfzMkMlQ32WkcYsIWVPrT+9LGU6/qK/GuTOPc/bsCSKRCMPDLyPb8jX8SmHfvn24XC4WBi8w9LPHddU5NWrmzFB+v9V/r9dWn6QpksBQQs4ozaKUx6WLMgsLEkiazKEeotLSvJbYsswSURWRNmjcuPrfKxGVel9KMS3oQgyfSXH5sI472qK9zu6X8NTJq8kJVRDdYqLlRhuqwDLdfL2FtpvF9hxPXMEd1b+upReg52cLXDle5f6nwj4vCfyW+atZBo4vMjsicOcsQaBZwR7Q/3vmJ9OMX06REYh5mZ0Q22JCUl/dzFfeBolwl1icaHIwyUR/Sog85WtU8MVz8Q6d9QZPJLhySuylVqlSSKXceMn149RP5ug7qJ/YZPFKuGIyJqd+Py/UYaJzrwOT3gQxQGSjhfY77EJz2hmW8USVlattDWLT9HCaodMJJvrFuBeXj6QYu1i+Tik5STVDx24DFsH3gFMpSCVBD8UmIxmQpDQgMXBFZnqmvOFMJX6c15Sm2Z8i4hL5/Wlm0xIv9VmYTdR+QOl0muFv/TNLi4v81m/9Fnv37hVo65XBayr3Vgyfz8f4+DgGDNyhPKyrjjmgsuk9ca6emaXniZHKcm9FCGwsI/tW463xrkfrccVtHPjHXiHCQVWUmNleb2LDo81c/MkQQy/pD8Rs+lAzyfkUJ7+k70J7TVARzibVcHuQKy+OkZjVH7hqvb+Ovp8MCdVZS99EEdrhpmVvHZd+NiwkE/eLil1/0ElyLsXBv9NPBBGVe/N3O2m/P0bfz0fof/oXT3ZEFLv/sJPUQpr9nz736jcmOKaj1/tYnEhw9aT+i/PoTT6unp4Ry1b0KsMcVNn4ribOfXeAidP6L0y3/3YbiZkURz9fQtp8BSXfNn+4GbNb5YW/qi79WSr5pnpkTA6Jmb7qhzWDLKPaYfMHGxnvmeXct2u/YQ1wMrmPAc4jyzI/+tGPuPnmm3XVu4ZrADh+/Djd3d0AtKhbaTFv0lWv5S4P7iYrx/79Csn5ynJveThiCovjSZIld0XVfLZliZ8ri5z8ahHhYK2yARX8vA3vqkcySRz53EUdX6G17e200Xx7mCNfPL/qN71iUBCWLLMGFRwxqxA5wdtpQ7bIjBwqqlNL6m0NfVsLtv1mC0bFqGVU+iVH/BY/0d1+jv3bJd0yZGuRe9v84WYUi/S6sFn9TX5i1/s59bXLTPboz4izJgiOacVtom67m0s/1i/nq7gUAl12Bp8Xu2x/tefbuoeiGIwGTn55dcbYUnJSHuFtLupv9HP0sT6WxqtkOBFBrq38Ja3Fr9D9zhhXz8xy/vs17JyXfMvJD3jaLEycqz3PDHYbTTfb8dSrHPvSoO71/IdTXyRLlq6uLk6cOKGv0jVcQw7XXXcdzz//PEaDwh0b/0BXHVmGDbcYuTpspO9Mdbm3PJwhmC65x61EUsqjfpuJQIvKie/NsJQ/iuX9Lp3ZXfNYln8r8fVMTlj3Rj+X981ytTSr0nLl7Mq2gZY73GQzWXp/UsXHeTlStZmsRs4RTLzjX29l8sI8KQF/sG67nZGTs0J11tI3UTjqFDoeCHL5+UmGD78y++5/p/TbpvdESM2nhchaonJv1oDM+reEufziJEOHxAjfpXjFZN5EULLPb3pXmHQiw/GviBPcqqLc+U1gTGezWbztFlKLGaZrxFWK4W23MD+SZHFS/+QxGAxrn286SAayBdY9EOTSzyeZvpxbk/MxpCrMg3X3u0gnspz9wUoy1LLkm+j4ycu9FdVrucGEMyhz7PG5qkt+XvItLxkly9pLjfOT1ZtM+mzIcur/z95/Rsd1XWne+K/qVg6oQiGjkEMhBwIgCYjKEpWzlWVLsmQFW06SLNrWTK//h3dm3nfmnW67o7vd0R5nu+WcreAgyRJFiWLOJEDkDFQOt+r/4VQCCKBOsU1b/S48a2mJZO1777n7nrPPvuc8dz/09qnMT8DIIbmmjs7u5dDZH6AoCi+++OLmmtcm8sL8/DylpaWoqkrDtrspadwmdVyNI0JlQYzXp02oKOvKvaVgNqhEVFBVMY4TybG1HklJQKW3P453WcPJ4xkCiSYZM3PKvZ1zOnGcJroy96rtBINFw/E3N5CHS+VtMXGs2QE1PQZOvhkhthHXNXmcJnYe2mNr5Hu5oJjBVqhlaUz+emaXgt4My3kcg8JKjloqVuZRcXQF1onRTZeZMVo0HPzphVc7udBwVinUDpg4/psAgTm5nPx85N4adpgxFWg4dL4++yPIvsnC6Vao22bk5KshvNPr+CyROL/KVKtl31b36fWQvJZi1OCq0zNzTH4xSjFAQYWOhZE844FeI9p2Hv5N6JK50wbHutsVdEYNw+9kxdSk3NtqclIK9iKo7dBybHdcSPhlX9Ow8bHrISX3Fk9WwFMUlb7OGFOzCiNjG5MIU5Jv2qRrC8wqyxvJ3SXhK1eoNYZp0Ed5a9JIRJVjkO37/v9N2Dv3J5XX/aNXUkphbm4OnU5HggQvRb8DBhjc5aHpZlHxpenmMgZ3eTAkPx7o+0gDnfdWEw3E8U+HGHyuidY7hUxSw7WlDH2mBVOJIW279ZOiJNXMPi9Dn/aw9ZNNGFwGaq8sZuizremKL71PNrDtUy3pdg1+ugWDTYdvIkhxi42hz7am5TR6PlTP9ucyttufa0nLvJX0Orjov7bR+xEhR9b9wTq278rYbnuuld4nRPWTwlYbXR9o4Oxr00y+uUDH+2sZ/ExbxvbZFrZ8RNjaqo0MPd+WroRjLjLgrM98UbH1GQ99HxP3anAZGHq+jYYbxVfVLXdUMfR8G+3vr2H7rlYGPtGckXgwwNDzbXhuF1/UN95UwdDzbRhsWohA38eaVrR/6LNt6eol9deUMfR8Gza38PeWpxop6y1Mk42GPiuuCVB1eTFDz7cJaTeg98lGtj3XCsCJH4zT95SHroeFD8u3FTL0fBsl3eJr2O4P1bN9V2vG37ta6XmoAQxQ0l3A0PNtVAy5AOh6uI7Bz2Rstz3XSu+Twoc9T9Zz0Z+1U3W5+BKn/f01DH12lb+fEj5MVZ0JLUdYPOal7W7hw7S/n/bQ//Gkv21ahp5vo+mWSjDA1mdbGPov7WkJu4FPNDPwyYykxtDzbbTcIfzdcGPS38mKTX0fbVohkzX02Tba7xX+rr26VPi72oijycrWT3nY9mxWn/1MW7pKjvvSIoaeb0tLgvU83gAJ0gSl7bta6X5EyNKVbXUy9HwbZf1O4e9HVvrbXmNNy+sVtdsZer6NyiHxZVLXgyv93XBtJYH5MKOvzFJQb2Ho+ba0jFv7/Sv9vfUZD30fbaKo3U799eLeGpKVAFrvXMvfK/tsSh6t6dbKZJ8VP/d/vImtT2f58Pk2Wu+qovvRejofrmPo+bZ0haQ1/f2A6LO1V5Wi1WmZPylIQNl9Vvi7la4H6wCoHBL+br23mm2faqXniYZz+mz3o8LfJb0O4e+tSX8/Ws/2T7emSTCrY8TQ8224LxX+zo4RY6/O0Xh95boxov3e6nP8XdZTSGg6sm6MSGHgE81sfaYFe5154xiBiBEpf7feVcVFf9ZO2/3rx4jsPjv02TZa31eFVq+hsMm2bowAGPx064oYobfomEhWhzsnRjzXQs+Hkv5OxojBT7dQ1G6n66FaBj+dFZM/1ULvE6J/OxqtDH22larLkl/eaRJodZrMs3nGk/a3tdzA0Gdbqb9G+Lv1zkqGPuPBVmkgshCj5dYq+pLzgMEm5rXGG5Pz2i3lDO7ykNDGCAdiaHQaHHUZWazBXR48t4tn03B9qZgDkzHCfZ+JJZvYffi7v/u7zcWaTeSNzs5O/vmf/xmAk5G3mY6O0Hp7Cf2PZ2TG+h9z0363kFdw1BrY9lQVaCHii1F3uYuBxzLylH2PVdH5gOivlnI92z5Wi3u7A+9olNrLS9j68VrqrxZjasuHquh+SMQHvUPP9k82UJMcb43XldD3eANLwwEm9i7S+2gNvY8mywEYNWx/ppG6naJNtVcWs/2ZxnSFmr6P1DK0qwmjS2xab3+mkaYbS0GjperSYrY/25yWhOv6YC1Guz5NUNr2dBOepCRwxfZCtj/bjL1GfEXX+YFqBj4uxrwaSmBw6mhLSriVbnEw+JwHV6sYux0PVLH1E5kyqFs/2UTHg9VsfbqJljsrGXzOk85r2u9xs+2ZjO3AxxvpeqgGouCoszC4y0PN1SJX8dxRyfZnMznEwEcb6X5EzPWWUj3dD9VjsIkXl+ZbKtj+qYxt34cb6HmsTvjbAoPPeai9qoT5I35s5UYGn0vOf4k4W55sZMuTmep8g7ta0tV5aq4qZfDpFvQOPXoL9DxWT39WJb/tz7XgSc7JVZcUMbirBUu5AUuZnoueb2NbVvu3PdtCy52ir5VvLWRwVwuOZC7e9VAtikXH+G4hhbz1GQ/t94n+UtxVwOCuFlzJKprtD1Sn556K7YUMfraVjmTOWdhiZXBXC2V9TgDa7qli27OZuX7gE810fVD4xVZlZnBXC5XJPNJzRyXbs94H+p9qSs8ntVeVMPjpVmqSeWTTzRUMZuXIfR9pTM8negtUbiti4p0FfKNB6q8vE7ZJXkXvEw30fWSlv5tuEv7WaDUM7mpJV5Tq+VA9/U9l+sv251rw3C787b6oCJNDz6Fvi48Wuj5Yx8DHs/3toe1uMX+X9wt/O5usVF9aTNcjtWzNyk+3Pu2hPTl/F3faGdzVkpbIbb+/ekVutfWTzXQ+KPqho8HC4K4WyvtF5bTWu9xse1b4v/2+agY+1kT3I8LfVreRwV0tadk4z62VK96pSnucqNE4iyf86B16Bne1pGUGm25a6e8tH25ky5MNbPlwI547Khnc1UL99WKerdtZyuCuFvQWzbr+br5O+Lv60mLRZ5MxovvROgY+muXvT7XgeV8V0aUo0UCMwec82GvERk3XQzXpGAGw7Zkm2u4W/bt0i4P+x+sJJaUi14wRD4hn42q1Mvich4abkjncHevECJIx4jkPFduFvwc/42HoM1n9e1WMGHzOQ3Uyj0zFCJ1Fh86iWxEjDDYNg895qLlS9O/660pXxJ7yfhfRQDxNUNr+bDMN14tnU3NlCdufbUbvELlh9yM1bP9UI+33CV9se7qR5uS7vXtHIdufacRSrkej0dD1gSr6nhD3FpyNolE0GAqU5DXtbPtEPQW1IiZ33Oem78PJeSEeZ+BJN1seFz5U9Bq2fbQGl0fEk7b3ldH/ZKbiZv+T1bTfVSZk3aIx9GYtzkYRvz23FNP/RGZe2/JoJR33iPnGWqkn0HWcBAlsNtsmQWkT54XXXnuNyspK4okorxz8PAD912qpaRe/lzdC/3VaTMm8pm1IQ9vFGsL+BMGlGP1XxKnrF3N9cYOGvluNmJ3CtuUSPd3XiQpvy1PQe5ORruv0GG3gqoEtd9mwl4ux2XSpie7bMu8cPbdbMTk0LE5EMRYobLnLRmGNDrQaGi4103OPM23bdaczLfNmLdUx8EEX7beIOaJuh5XeewvT8m9ddxfReqM41lSoo+P2Eibe9TN3LETNRTb6HsxIeHXe6aLtlkLQaNCZNfQ9UkZlv2ijvVJPcUvmK/iO9xXTkVVVpe+RMtyDBaDRUjlgo+/RCuoud9DzYDltt5fQeXdplm0FNReLaoBlXRb6Hq3A5NJDDFpvK6b34UwV3C2PVFB3hWh/cbuFvscqsZUL/3tuLqKyryBNNur9YAUN14gcorDRRN9jlThqxfNour6IngfFXDP+lo+OO8tpvkHEY3uVgb7HKtOyXA07XfR+MFMVsfsD5XiuF3JvllIdfY9VUtwhfFF3uZMtj2Rsu+4vo/U24dOGa51s+1gVZb3ChzUXO+j7UCa+dd5bmpZQ05mg+cYSgnMRlkbCuLcX0PdYZbqqUsddpXRk+/CxyrRkW8e9pfQ/WYkuuQbTdkcJnfcJW41GQ/+HKqlLVpsq67bS/7gbU7E4cettJXS/P+Pvvkcqabha+LCoxUz/425slXpMxTo631+e9iFA78MVNF0nfOisN9H/uBtnvfBh03VFaDSkCUo9D1UIyTzA7jbQ/7ibohZz2t9bHsn4xVlnovVW4RdTsY7+x92Udgof1l3mpD/Lh407i/BNh5l8x4fOBv2Pu9PVm6p3OFa8U3XeU0bHXaXYKvWU9go/uAcL0Gg0aX+nZADb7yyh856V/q5O+rt8i42+xyoxJuXVWm/P+BuSffZyJ43Xuqi/2knfY5WYk9UTWm4pEv5OSrz1PlROw1Uih3B5TOitWpZGxE5M83Uuej6Qqb7e82A5TdeKZ+OoNdL3aAU1F9vpfqCMphtc9D6UeY7dD5ThuVH421aW7LOtwt/1OwtFn03uE3U9UEbrrWIsm1zCtqw72WcvcdD3IfHM548Fqd3hpP19yT5rSfp7QMSiqlX+7ri7lIpee5qg1P+4m6oh4cPKATv9j7tF5bCkv7veX4a1VEcikaDv4QpqLknGiG4rfY9VpmUdW28rpusB4ZfKrXa2f6yK+p1OAIrbzPQ9WoGtLBkjbiyi+4GMD3sfKqdxpwvFqMVaoqfv0QoRI7QKTdcU0nOfK+Pve1007xRx1V6pw+zUp+UyG66w03t/ap1KQ9edhemYbClW2PJAIb33OSmo1FF7kYXe+zIVjTtvd9B6XQFoNBjtGrbcaaWsJbUxFkcxZjipHdebadspOqVOB1vutFLZqUMTj1PVEmfrbTrMTmFf36vQcXlm46vvJh1VnSL3rmgWfzdFw7CgotODK6vwa/9OqOsQfy6rgf5rwJSsXFDZMcfY8q8B+MpXvrK55rWJvOFyuXjjDVGy69Sb32J5+iSNrjCDNRmCw4A7QEepiH1mRWVHrR+dNk4gqqHBEubSsgyBorsxTFutIEsqisq29hDlrijBiEK5K8729iBVpWE0iQRd9SFa21Ob4ip9W6OUV4gd5tJylb6tcebmYHpKQ0tbjLZOYZvQatiyPUaFWHqgqBx6LhaVPQBatsDWq0lXE+reAe5GQNFQWK6h5yot5uScXN+jweLUpglKnZdrqUrmnPZi6LlKi7VQVFWq6dHSfqVYb1ZVKCjRpKukWV3QfZ0BezJtq+pW6LjakJZ/a91ppm7QSPu1Fqp69XTdbMXpFjGhsktP542ZHK7lKjMNQ0bQaDCYE3TdbqOsXVynvMNA162ZPc7mKy00XipuVDFA+7U2DBZx3tJWA12329NKR02XW2i6InOdrtvtlLYaCM6rGMxaum63p6vWNF5qxnNVxrbzVjsVXSJnc9Xq6LrFjsEmOKT1O8y07LSkCUodN1pxdwtbh1uh6xYrZicoRuh9n43OmzP5dfv1Fqr6hK29VKHrZivWYpGLV/cbMTs0TBwW/antGgs1A8LWXAhdN1spSErbuXsMdFwv2ltQrtB7u4W67cLWaBe2hdXCtqJzpb89V5ppuEh0HsUsbFMyZmWt4lml/X2ZmcaLha2zRki+lTSJZ1PSpBO2SX83XmKi+bJMGajqLUYmD4cJzMVx1evousWarhLVsMOM58qMbedNVio6xcPQ6qDrFivGZNyv226i5eqsnP8GC+5eca8FFQrWIi2nfy/Ga+1WI23XZmzbr7cICUHAWiyejb1UwVWriP55vSVNwmm7xkLt1qS/ncIvjmSfdXcb6LhhZZ+tHxS2Bht03WzBVZP0d7vwt71MoWqLAc8VJhouEraKQdgWNyT7bIuOrpsz5y316IlF44KgpAjbkuakvxsVum62oOgTSX+bab7CTOMlZty9RrputqYrSrnqxL0akqduuMiM55rMOOq8xUZlh2iTs1qh63Y7pmRh9LohM63XZvpAx812qvrNqBEILcfput2OtVi0v2aribbrM+dtv8FGzVZT2t/tN9qJJffNqvqMtN+YOW/rNRbqBkUfMDmg6zYb7m7RByrbDHTelLFNxwjAYEn22TrRhp7bLWy5M2PrucRI40WGtL+7rzdSkuzfpU0K3dcb0Zk06E0amncYaN4hbBM6Ld3X6ChLxtmSaui5UpuOEWV1GqLhRJqg1H25lsrkklhhJfRcCgaz4D00tsfp2xGnoU3IvHVvj1PVIH5zFsfpvSiO2RYnrmhobIrR0yGcpKoivzIaxbxQYFfZ2hPGnpQObayN0tspbLUqbKv2M1AXAFTicRhqCuCyinmjoTTMtobMvNZXF6StIoRxKY7ij2M1xHEZxfpdgyPMjqqMbX95kO7kHGhQVKxjPyHsnaOuru5PKq+bn6D6Hxh+vx+j0YhKjN8Ff0TPwkfxTYhE3DcRwlpuJpLs7P7JIFqdlsPfGgOgtNtBcEkEdu9UiIKFCPFgJHlsEJ05kzCHlqOYCw00XVPK1L5FggsRIn7xUH1jQcyFGcZfcC7C4mk/wy9OU+ixEVqOEppPXmciREJNZNmG8Y2LhxpaDJNQE6R4fN6x4AoKWHAmRGBWnCeyGCG4ECEwHcZWbcRabiI4n/lCxD8VSrcv4k8QXIjgnxLXGf39LMWtjhW28bAYCBGfOK9/MphsbxBzmZHAVBiDXU94PpJhY0YguBDBOyk6qW8qiH3BQiSS/DrCqKAYFUylBkLT4rzLE0nbyaDwYXLg+sfD6K0x2u+txl5jJTAXxp98jv7JEMGFCOFlMTB840HMriyGpVaDqVBEhOC8uE5wIZy0Da2QdAzOhokEY1z0XDszh8RzDMyE0/7W6DIsyuBUiOBiMgiE4iTUBMHpjK3ekun6/qkQUb9oU9QXI7gQYez1WfyTEZYngxhdxhW28WjS35G48OFEACKgNyuo0Xia2OCfCK5gdgrbYNIvQSLNNvoeb+D0Lyfxj4dQsso5B+fFtVPXFH02QevOUvQmHcvDma/dgnPh9HkD02Fhm7x333iQeCS+0nY0kPRnsh/OJf09sZIqqkbjeJP9O7wkzhtM2i6PB9AaM+0NTAUJJZ9xaEn40D8dStsa7JnSjP7pEGogTvWlpZhdRoIL4XT/9k4EMWXJafgngsSzxhwacNRa0u21VWbFiIkQ2ix95uB8BO9kkJpmO4FZ0f54IDXuQ+isK/2dulffRJDAXJjxN+fTPjQ7V8aI5fFA2p/BhQhqWJSR9I4GSUSzYsRsOO3XUHLcB2dFg23lZuJZXxCsFyNSbTI4dGx7rpXjPxzdMEYsTwYxOMWYaru7Cp1ZST/z9WJE2t+TIRz1Vjrvr+P1/3F4wxgRmAihNWiT9xYloSZYHt04RqQQmAuzeNIn4myrjYJq67oxIjAXxjsWpO2eahJacsYI32Qo+UzDRPxR9CaF8FIY73gQTRbrOTgtxhVA2BsluBAhFhbXnTvqJZElveqfzo4RwtaX7N/+hSCFGhv115Sz/99G8E9nxwjRXt9U0nYqhLXMhK3YgG88IqpFZJG/gwuRdPt9EyHsVRGIRFiIzvH6C68Ti8W47777eOyxx9jEJs4HjzzyCPv37+fzn/88e4Mv0nKmhnJNZsPIPxMmMCfGYsSbIDAXZeagj+WzUdzb7OhtWvH1lFaLbzpC2CvGdTQYJzAXITCXnHumQhQ2WihpszH62hy+yXBGFjcaxT8bwT+T7OuTIczFRo4mK4oVNYfQJF/MiIJ/NkIgNd5mQvhnTWnFn8B0CL1Vh6VIT3g+in8mjC8ppxCYDeOfCRMLJGPLRBC9SeSG9deVosbieJO5SnBO2EZ8oo3e8RCx5HyxdCbA0hl/ehE/OBfBPxMmlJxnveMhEllpjX86hG8ihM6gEFqKJm1FG5bHQytylVSOBCK2aHUaiprsjPxqFv9kCIM1k8t6J4NEfEl/h8WzCi2F2PqJJgJzoXQ+lLrXeHIuikaFbWpOTiBImJZiPYHZKL6xwIo4JHyYzCmmgvhnLLTfXYXBrmfhmBetIWMcmAnhTdnOCB9GgwmiS1HisXi6f6SelW98pb+j3qRfxoLEQmpafso/FRR5NBBaED4MLyX71lgQkt3DWWdFo9Gkn2N4MflsFlLPJohWn4n7/okg5goTvU80cPg7Z0V/n0nNsyGMWbmKdzJALCBiecXWIhJqHN90Zu4xF2fmTt9YMD2fp/2diuXjIWzlWc9mPIg264s8/4yYn4ocdkgk8M+EiQej6WMVc5a/p0PpXCUwF0r22Xj6XqMFma+e/FMhlpM+DM4n+7c3QtWOatEvJ4NZtsH0+0xwIeVDca5EAnQmLbYqM77RIP7JIP5kHhNdFs8m9Q7jHQ+hM+lwNlgpqLaweNpHONlnI7648PdsKOnfIEZnlr/HAqih1LgX5w2kcsPxIOaSbH8HIAHWSjPxqPCZfyoTT/wzYaLJ/u8bDwrSMYLApDVoCQdFm/zJGBFN5YbjIXSWrP4yHcJeYabjgSrG3phP+juWblMqRqT8neqHdVeUoEbjOWMEJHPDxTBlnQ50BiVnjEj1Wb0FYgEVNevL2bViRGrce8eDmAr17P+SILV5bqs4J0akxoJ/MoS/1ITeAq331BKYCxLPKsgi/J20nQrjnw0TTY4V/2QQo01J5+OBmUxeFphN2ibnAu9kCKNVh7lYT3A2inc0xNLpVJyNEpiLpHMv70SQWNhAIpF8106AwaJgcOoJLQnb1HuIdzK0opqHfypM2CtuYOpdP5ZiA+Hks/FPhlH0Wf6ejhBKfgH90pl/Z+nIHI2NjRw+fJhNbOJ8MTY2htVqJRDw8ftj/0zL9g/hTxYICnrBv5BIL/B6FxLoDXB6n/i7qyxOKJmbhL0J/PPxjO1snGgoq68vxXGWanG36Zg+GSMwpxL1J8fmnJr6+D15rIp/VmXqcBSTEwJLKiFvKjbGVsiX+KeihJZFG2KBGGo4ka426Z+Nos+S3vVNRYkEkrbBGP6ZKMHFKMYCIWHln42usI1FxHliMfBPRwnMizaM/N5LiSezqO+dCqfnfhC2wWSVg8B8DP90BN9sBJNDj28ugqJktylCYEY4LbgobGPJagU6owaDTYfJpSOUPI8/aRtajOCfjhBNTpe+iTCxUIKqHQ6KGi34JiP4kzln2CuODXvFvfsnw2kfAWgUMLvE+pP46DJCaCnp76lwep4S14kQi8bof9TN1IFlcd7knOybiWCwZeWGE+G0BJ8aTqBG4oSSEgGB2Qj+aV2WbYR4LNvfEab2+wjNxwjOi3tNEUm8E2E0WR/e+qczPjQ5dcQjiYztZARdVm7om47gS/l7PkZgPkL7LaUMv7qAdzKM0abLsg3jT+ZW4aUo/qkIMX+CioECLIU65o5lFtT9UxF8ybkn5I3hn4qk+2zq39PnnQwTTL7PRP1x/FMRwsnY7p8Ko2S1NxpS8U6I42Oh5HmTRBffTARjQVZ7JyJEU2trMdGmQNLf/pkI/qnMZOmbDBOPJ6jYUoCj2oRvIqsfzkVFP0z7O4I2a2VeoxXj5SwQnBe2arLPeifD6E3ZuYrwd82gA99MWJw3GE+fNxrIHsuRtL8jSzG8Y2FmDgfT54ln5Sq+yYxt2KeK80ZFXugdDa/4Ot83mZk7o6HkXJqck10N5hVFz3wTESLJuT0WEuMmmPR3YCaCv1hHz4MVnH5lHt9khFjS37GIaH8wSZgOZPnbPViAuUjPzOEMscA/lXkvDc4n+1Yqdk5EKGm10HZ7GXu+OL52jIjE0rap97FIQCUWjuObiIBWQ2hRPJtosuqIbyq8QubWNxnBOx7i6A/msZTqKHBHCC+rgBb/dHRFoQTfdIzAbJSq7RYUvQb/TJSQNxm/Z6Ir1jl909F0rImEVMLLMQx2hWg4jn82hiErl/VOR4kl5wk1hpgXwiroYHE8gaLPyiNn1PTaawwIzMYILMQBhaBfLG1Xtysce03FOxdfUcTAv5AgsCiODXjBPxfHaNQSC8HkmUwRTADfIviSBaKCfvAvCqmUUMjHv3//y4TDYT7ykY9w7733solNnA/6+/v51re+xd13383hF/8ed8ku9EpGw2cxpBCKiQ6sAotBLbN+PacWFEosUZb1ETQqJBRY8mtJFw2Kw5JPQyAsxlggpCWeAHdJnIk5lWWfFm1WDFhe0hBM5hChoPj72bMaUBWW7VH0WbJPy0sagj4xhsIh8C6CmkyZvMtgc4LBCJEgeBfEOEvbzieIJuObbzGRfg8uqYV4LE4gmXPGUrbJmBVYhERq7doHk8dVgkvi79FQKs9M2i4k0Gqz4ttsnLBXRavREPbF8U3HCCdje3AxjteUiS2+GZVoct9SVTXig5EqA1OHYgQXVbxTK21TuYqqgm9aJRSI03qdleCiim8qlp5/fDPqinUs31SMUDI2JkigM2gwWCEYAd+sipKda03H0nNPyJfANxXD3WvG6lKYOhrBEIiLik9ajYjPi6n9FxXftIoaBjUMsWginSODiKOpXDYSVPFNx9J5mn8+RiIB80n5Ke90jNByKocTbUq9JwcX1PQ7qq1Ei1ZY4jM5AAEAAElEQVSnwT+XnDtjwjb1fhBcjOOzZPswhr1MR/NlZk69HhTPxit8GlyO453OrGH4ZmPpub+m10RcTRBK2oa8CXzZtjPqigKAvmmVYHKeCnsTQpIu1Q/nYitzwxmV4KKK1aUjkRDHpuZk/7xKNJiZEL3Talq2NBpM+TuRtlWziuMsT6sE5pN7NSFhGwmqNOywib41k/VspmOEfSv9ncpHVDWOwarBXAjBBdHeSDAOiQRqRCP6Yap/L8XxzahYi7S4qnXMnooSS+0DpvpsyodLiRVSfctTamZffrVt0odqXAMk8M3E0Oo0mB0KCTUh/JIcn2GfODblC99cDH3S3646HcYCLbHkOlHYL8ZGKkb452LEwlnvElMxzIVa6gbNTB4OCtuQmvZ3duGz5ekYwQXxW+12M2o0ke6zgXl1Za4yqxJO9o9ocgyWtBrR6DT451W805lcZUWMSPbvsDcBCoSW4hl+hVaLb15Nx0ZVFXEqNRZCXhXvrJbht4VjKlqUFTHCO5cgmEwVQz7xd4CGLcn4m/2uPJ8QcVarJRyE5QVQU/17GSw2wdkELd7F+IqYnLY1gNenIRoDg0ElElGYno2z7BM3FI3CkleblIuDZb+WRDyOJtmOOBrspgRmPURjsOjXEo6KG/KGtGQXdloMaImH4oDKTEjHhC+OPyaSL19Uy0LW3LQY0hKNi/OcePXfmT65m/r6eo4f/9NW6P+Tyb2lMDk5SUWFoNXbcDKkv07quL6nGtCbtfz+f8k50FZlwDea7E2SpaFrryzBPVjM6Zcnmci3XP9qrOPmsq1OGnZWcvpXE3nJvrW/v4bl0cAFk9YyuAwUt9gZf11e7qz+mjIKPXbe/uIJafmq3icbSagJ3v3HU9LX6X6knuHfTLN0AeUgCj02aq8sY++/nLxg8nKmUgNdD9Rx5uUpZvbKybWYSg3oLQreM/JapD2PNaAza9nzVxdO7q1uZxllWwp555/kJRINNi3WKkteUl89jzcQWYxw+FvnylT8odB6ZxWxaJwT3x/PbfwfvI53OigtKVi+rZDay8vy8nHDDRU4G6x5Sf0ZXAZK2uzpzeILgd4nGzn5s/G8+vG2Z1uIRVTe/ut17uUPUIZz+3MtxGNxdn9Obl5Jyb2tmF/WQWqhuu1uN85GGwe/PpxTFg7AG13m9/wEEJIRr776qlTbNrGJjXDttdfyi1/8AoCLDXdiSX2+uAEctQZaby5jcv8Sw79Kxod1dO1TsJToCcwkyQ4SEr0A/R+uhQTs+fus+ecPLPu25Qnx+cQ7/3B6zd8Ta1zPXmOm7vIS9n/5wsntlg84mTu0mJesXO/j9cweXmb0t5JSFaV6Ou6r5eQvJ5k/lJx/c+TF7ouKMDr0nPqpnDTl+aLh+nISJDj906ncxucJzx2V6M06DuYhm+xosBCYDK7Y6NkIljI9HffXc/Z3M0zulsvtz0fure8jjYQWIhz6+lnpY2xVZsLeGNENS9FnUNLjoHpHMfv/7cLJHeodelpvq+T0i9PS8njnA0e9BfdgUV7+6nq4lngswcGvyuWdegu031/H9P4lJt6Qf6+r2F7I7P6FC+bjqkuKMBcaOP6DiTV/X0vqrXzAQe3lpRz7/hgLx9dpWL4yb6nDknIl5QMF1F5SxOmXZpl+d30Z4+zlCo1O7ORaSvUEpnP0Y1UFPWz9cD2hpRgHvi4XW37v/SFL8Rk0Gg1jY2PptYpNbOJ8EQqFsNlsqKpKsaWRvub7pI5rG9Jgtml45/vJ2Jgj7zLZIZQcSrnk3lJwNeio32Zm+M0gs6eSq905pH3XQyJb/iMrt7BX6vBc42L4teV0dZCVB2bNr1k5WM3FdkKLKtMHNgiO5yv7Fk+gM4GzwcLsIfngW9xuoaTNyvEfz2wsiZKF5huK0Chw7Ify79eN17qYencZ3+SF030zl+ioHnRw6sW5/OToJJCK2zoTtN5extibSyycXNth2dJniUQCnQ0MZh2BGfl7b7rWhdGp42Ae0mX5yr0Vt1mo2u7gyPdmpCXFdCYwufT4xleOqY3k3pquLyIWVDnzyqLUNaSwap53b7ODBsbeWH/uPS+seodyDxUQ8caY2WgMZ8FRa6T2skKOfm8mTeTLhbJuG8Utlryk/nQmKKy3MHskz7wzD+kfz41FjO5eIpDa5M3OmXRrfy/eeUchiQQc/O7aOaRGp6z572sie74wZFhCnTcJAuiBH20UVzPPMWERVRNMNrGptyGi4l7dnToqWnQcfgN8EulweHmJX5/8SwBuv/12XnjhhdwHbWITOfDf/tt/48/+7M/QaLRs3flf0RQV5DzGrKgMVIeYmFQ4OynGTWLDYadiMEAkIoz0y3Jxq70rhqIk2L9XS6pUjRLKOjaPrVpNJOu4rJSoeasGRafhyOtr50ma6LnXM9jA3arj9Fsb38cKubd4HnlYIkGBW8E/FUtv+Mug4RIzS2NR5k7FpHyjGMBzlY3Rd4J4J+XWIR1uBZNDYepQsmH/Ucm37HNkoaRJh1anYerIhdN4L2/XY7RqGd4tL5lqdkIkgPRzUQzQcqWFyUMh5oflfHw+cm+Nl5qJBuKMvCV/LwabWAZQg0jtFVmLtVR2GDn1enDt+/9DyL4pUNdvZOpomOBaW8DZ/TpfqkYq90okMDmguNnE6FuSLylAzTYzWgXOvC6ZEymietPiaDRNupNBQaWCfyGOGiY/n2blMwll/Xdhp1uL1aFh7FBWm7LypoT+3GBuL4LGXi0n347jzc5Xsq4ZN8nX+Elk3VfMKo5zFqi0NMU4eUbH7Pz6E4omK5RGkhU9zXqVYHTj3E9JkpP6W6P4E1r2Tps3tE9h4vc/ZvTEy+j1esbGxigpKcl90AXEn7SSEkB5eTmvvfYaF110ET4W2R19ia36K3MeN/bGHJasr5hzIbWB3HxbBRrg2HfHch4z/LsZCmosTOzJj6DUfn81pkIDb//tyZy2U7sXmXp3MW8iTEGVBb1FlxdJqf39NWg1GiniSWQ+kiEoGZBq3+lfTHH6F/ltLO39+9w+Wo19/7L2puJGMNi0FHcVSpOuTEUGzEVGStod0gSifBGajrD7c8fyPkZ+mhEQX4hf2KEeDceIR+NEfPIdOeKLE8mDoATw7hflyWznC3uNZc0N6vVgqzZiLjQys285t3EWjnwnP6LV5JsLeREZAU79ZO3NqHVhEGNflqBkqzbSdmcth78zjO+sXMJY3FWA2WXEWW/Li6T05p8fTUsp5kL5tkJqLill3/85TWhavk9Ovr1AXPIFy1RqoO2uGg595bQ0QQng9MszNBm0UgSlQNTLWfe7aMY1NDU1bRKUNvEHw89//nO6uro4cOAAv4t8hyu4E30OotLScITFkSDjb2bFh2RVpfUQmImit0PLbZUceWGU6HLu2Dq1b5lYKD9Na0upnra73Jz61TQLR3Mvgr/zL6chzzWBwkYr1nIT9hoz3hG52GWrMuG5uZKD3zyblkraCJNvLYo/6JFu394v5pcTBaaj7P7LVWRPjXbDTb6x186PtFrcaScwGSIwK3czhQ22ZEWiC0dSOvZC/gTkpVP57dxFQ6CGVdTIeW6cyl4nECPqz2/zMl8S0My7S8y8e2Hy4BRcjVasFWb0VnnCS3l/IXOH8yP1LJ0OsHQ6v2e5/9+G8yLiRAOkJSWlkBzr+RCa2u+tIhpQ1yUcrQVXkw2jQ5/bMAuTby0x+e6SdCzq+VAN/okQJ34sv0k4+e4yzlqLNEGp6cZSsUj520U5ghJAFKYPLeMdl7uR+bqD+A8uoFf07N+/f5OgtIk/CEwmE2fOnKGmpobZwEn2nXqB7oY7ch43diJBgT1782njvCtFUKpsVdDpDJzdk/s9aP5UDGdFlNmR/OaT6u0WbCU6Dv9onXfgrNzCOx5jz1em09V3NoRWk15sL6w3E16IbUxSWoWaix3ozQonfzm/vlHy/LEQGYKSDqn2zR4K5EVqAjj+k/zzqJM/36D960BnAkeNmbljcnO93qxgrzRRUGVmXvIYWWg0GhKJBLEQ0gTR1HExX4KYL7/+GA3GUYwXNu9SI3FioXi6yo4MYiHOISjlwglJ0lReSFaESMFZY0KjaKRJSkaHDlOhwtKZDdYw1lhDG3s9vzWypeEw734pvzWsqX0+pvbJrytq9BrUMNIEJb1NS8uNxZx8aZ7gnNw7qqVUh73CSEGlUZCUJHPJAy8sSC/dFlTqqB2ycfxXi4RWp+obzBOThyIoG6WEWXmXzgSNlyic2K1KE5QApk7EMBTopAhK6rKf09HvotFo2LFjxyZBaRN/MPzX//pfGR8f5wtf+AK7f/U/2HrNn6EptG54TFBVGF/WMTWTiZepqkprQyESEVJwzVUxzh7NEJY2wuSkBg0a0lpaq6HRnENU0BuguRdGT8DyeimCljRR6fjuBCvKUG6E5PWsDg0FpQqWwhgByddTgw1qB8wMvxUkslGcSN7P8pgKaJLvwXLtO/XbrHi9hm9WQ43A4Z/mt9+0NKayNKZmrpHCqvlzNaxFCtGwuvG9Z8Hp1qNRuKAkpclD+Z87uJifvapCNJRIV4W8UIgF48TC+ZF20s9Ckgjjn41z/NcX7mM5AGuhhoIKhbkRBZbkcomCCgX/nLoxcSw799JoCC0l8iIoAYy8mee9q1ljUsbHCpDQsDyZlacnEhse6+4xkIgnGN8v35edZVqsRdoMSUmC2O2dg72vxFdUCN0oh2rujBPww9jpc20S69zP4jJMz2qZ3eDVLpugVFkRI2KKM75gkCQoASiMTcdZMsglkdrh3zI1/DuMRiOHDx/+kxOUYIUg2Z8OQ0ND/OxnPwNgkWneif42J0lg6q0lTv1EvOw23li2oW02nLXWtFxUTkSSi9MRKGq3S2+Qa7SaNb9I3eg6BpuW3icbMdjkHsnbf3Mkb8KGyWnA4MxvgXrrMx62PuWRP8AA7Q/UUNbvlD/EBp7bq/JqV9eDdTTcIL9o3PFQA7VXyveTidfnef2/H8qLoFR7VSlDz7djc0t2FJIVq7pys/mz7Qc+0Uz5tsLcxkkc+upIXpWqzgdjv5kThKs8yHZbnmqk6dZKaXtTqYFCjy23YRYGPtnMwCea8zpm918c463Py5e4a7zOTfPNVdLxAaDvo00ipkjCvaOIkl5HbsMsdD9ST2GrvL8qh4oYeq49r+sUNhWgMyl5JYyz+5fZ81eHOPvyjJR9+wM1uHcUib9I9i+jXQ8a0lIruVDSLcbg8IvTnH1ZjvhZ1unAVKDHXrO+jxPxjByC+6JCbJUGQjMRDn5tY4JaIp4gHA3zKj9mbGyMvr4+jh3Lj9C4iU3kwv79+2lsbATg5ch3iIZCmU3ddXD0B7NEl8Hm1lPSlez78fiGX08VVFmwFOopapKLR6OvLjC5RyxoF3rk8rWoL4pGo8Fok8xxku85FdsLabqpXOqQkZdn2fM3x6QJSgDxmIreouCsk8w7gdItDgaf9uBql4/fhR4r7fe4pe0Birvs6dgH5Fw8d7Xa6H60Tvr8eoee5pvc1F0tn3vt+dsTvPOF/Mjr/U810vN4fV7HOBos6PMgbDTeUEHXw7XS9tGlKG//3ckLTu7Z/2/DeRFVyrcW0vtEA3r57khhixW9Rf6dxlFvYXBXK2V9Tuljpt5e5Pf/zxEWjkpWSNVD/c4yWu6UfyZ1O0vxvE8+5wTx3Mnjtamsz4Hn1vwILQOPN6Yru8nC6NRjcuX3PrfvX4fZ+0W5qppGl57OD1TnRZaEjatCnAM9OOpMEIUj/35uhbZEIpH+LxuOajOFDTk6sKqm57Kay1wADP9qjoUTGy/WJWIx3vW9zO5338But/PCCy/Q0tIif0+b2EQOVFVVpaUDJ72HODz8EzShjQfZ8gyMHRCr/5VtyUXHHHkXgLNSwVEhHydOvRqCGNhKyOvbppzjXqPN5BfJ76Y81znR5UpxtBrQajj47WmO/GiDFd01CNZmpw5TQR7VRoCOu0rpuls+XwGovcyByyP3pSoAOqi6KL/3+bornFRulV8zaNhZRN0VLulnuDwSZs8/jOVFUCrymOl/rBJbee6LpPqHzgQFVWt/YLpWH9KbNXTcVUpRi7x/h3+zyNEfXJgq8yksnAxx4BtTeVWdarmlmKod5z739QQNdDawVeb3gWHb+0rovLc0r2MOfmeGA3lUnXJvtdN8TRE60xo/xhNrEpRabyumoEb+w+LCRpPIDfJA47WudfvWWnDWmeh/pBJXs/x17JVG9DYdibh8nhOYjvHuV8aZfDcoRVCquchKcWvyPiQ3fPVWDRoNxFbzxtbZXCsoF+2fPRVj6uiqiyQSmf+yj6nQYXVosDo3aEg0liYouapFNY5YCE69u3H7NYEw6rKfl05+npGREbZt28Zvf/vbjQ/axCbyxN/93d9x//33k4jHeOuX/x3tcgi9f+Mc6uS8kaiqYDSoFBaIdwqNKv5bD2YDFFgT2CSn+fkZhbkZBVCx2dc58ar5MaqKf9Ll2nvQsmK311EKbpltPY2GhXE48PPwhgSlFVWUADWhxWjVYnHK517WYoXum23Y85jvzIUaqgaM6bZKXadEocAt3y6zS6Hh4jXeNdeZ51Cg6VIzFW3rzENrxNXjvw5y7KX8SCFNl5lpviyPnBMwO0DJ45CSJh0NQ/LzKSocfyXI8viFJYgP7w4zvl9+s9FertB0qRnFKD9nW4o0KBuNq1XP0GCB7lssFFbL9y3/bIJ93w+cW9lrjT6S6t91283UDqyTr6zRJ4sadLj78sujSlsNKHm8NtlKFSq7jRl+pUTVp+bLLHiuzK//muxaTHblnJxGo67f3868HePISxFBTspBUFIUqO/WiHtPPRKtNkfV4jga1g4/axOUVGwWFVA4PaJnNSlVE8/8lw2nM06JbeO9GSUUT1dQKneJ9YTJeT0L4Y1jqnE5zvy7r/LGb7+PxWLhF7/4BfX1+a1HXij8ySsppXDttdfyjW98g3vvvZdZxnhXfY0eLgLWLkGfQtmAg7IeJ4kEadLSRtj9BXkpshQMLgOe26oIzIR49x9zf7F+8Cv5S4HYa6yYi4xUDBYz/KvcL4spVmjTrZUsnfZJVXHJR/IpheUzAdRYHhNOBBy1VhS9lqk9i1KH1FxVSXFHAXNH7cwdkvuSx1JuQmuS59id/Mk4ivHCcvIWTvko9NjzKgXZ+UANRpue2f2SXxhFIujMOkyOPBgxBrCVGaUr3ZwPDC4DWh15Va3RW/QY7PK7H43XVOCos/La/zokPYb94xeWCQ1w+OunKO4qkm5TcVcBxgIDept8+HUPlaDRIk2as7kNWCvMFLc5pOX0vBMBgvPhvIh5Z1+ekSYbAXR+oJZjP56QlqsDsLstGB36vOTnhl+cZvhFuUU3e52J5pvclHQ5OPRVeQmYkV/PM/L6/JrPfS2Sbc0lJUQHXLz1V+tvwKeOi6gR3rb9EnxQVFTEW2+9Jd2uTWwiH5w4cQK32834+DgvR77OFdyX2ZPf4E2l+cZydEaFmf1Z8SW1YbYqqZ87HGDuxHDelYva7qzEUWPinX89S3hu45gRDcBbf5N/lcXSLvG1vSyiAUG+adhZwtHv5K7IE5iM8saf56frPH1gifJeJ6F5+Tm7uLWAghoreodeWsarYWcZaii+Mn9MLaKvselnKjRgKTJir7HgHcm9OxNdinL6l1NM7vsPyiXngHc8mNaol4Heoafj3lpm9i9y/IdyBB9jgYLBmh8pxFKsJxpF+nmcD6xuI/7psPTYMhToMdh0eVUfarm1msBsiH3/ckbKXo0mCMyG8I5dOElmonD4O2eJ+OR9W1BtwSBLYkTI3JX2OIj4opz9zazUBlNxmx1bRX6LL/OnvMTzKxzHO38vH+tKugswFxkYeXlW+rmX9TiwlpmwV5jwjsh/hbf3H+UkogE673VjKTLw5t+eW9VuIyX6t/9pg0rIq0i29TtLKO2y4R0LsXBi/ZtPJD//nK85xuRh4dtvfvOb7Ny5M8ddbGIT+aOlpYU9e/bQ39/P2cW30aClrewqABKm9WOUvRQqO/Ro9TC6L7m5vE7eBXDoJZE35SVOoAPPFXb8czGO/jR3fD37Rh6TSTKGWgq12MsNlDZZGN+b+/hYRANaqOgxE1pSWTiVOzc6+qP8q9AsDAfRKPlJORQ1WTBYddIEn7JOK+U9NnyTYRZPycXWAreJiDfGOHJrZCOvLaE3LkuTHM4H/uko/ulIru8a0tBoNDRdV4y11MCeL46d89taiIXAYNdhtOexXK0Dk1NHaPbC3bzOAjq9TlqGDMBgU4iG1l5PTSQS5/igcouDsk4773xpVJoM5Z2IoOgl+m+OahAb4dQrCyyNhM6VOFzn42JbuQ5LiQGDXf49y71NfAC390xow1wgBZ0NnLVmogGV5dGNY0PKz2Gvim8qwvxp+fxm/kSI+RPyHwXUX+Hk7FvLxPIo4uGsMWIt0jF7RP79b+54lLnji5l/2GBjTWeF5kstLIxGOfXaqvfqDXw9N6Vj7mextWNK9Nx/rN1iIhpKcOAX69+HJiB+i8Vi7Jn9ZxKoNDU18fvf/37dYzaxif8IvvrVr7K8vMyPfvQj3vz5/8W2a/8MvV/sqUQ3qOTbVB3DbE7w1gFIbS6niEqrKyv5ggp7DoGKgp4YYtc7d/yrroWyijgH3hXVmM9Bao5IJECFg2/kPGUGyVsrcmsw2zWMHZPb21PjGhQjlDdpGTuYe7JXg3Dgp/ntvfhnVbyTMcI+NTMv5ShWYSvV4ao2MH04TMTPSt+sg5oBM3E1wbLk2oTOCLYSHZYihcBalfNWz6MqnP59EP90Dj/lqBqTC7485G8BUKDlKiszJ6KM7ZPbf9GbNRjyqGwNSRKUCmokd3Wr84XBBpEgKyvdbAC9EYx2rXSeCtAwZCa4GOfk7yRzAy14p1QCi3ku5KzGRj7TaDj+im/ttaL1cq8SHZZChdzaUQKWIoXKLhOJBMwclesnzmo9hdV6xvdJ5CvJsbI4GkWjy6//n1ydq2wAaxFYnAozw9LdBEcpOEo0GG0JAl6Zfh8HtBw7sPJf16ueBNBcH6fQGWfPPlDVcwlK50LMG3sn1icLKqveKcpdcerdKqGIlkXf+nOOcVkcF17Yzcn9onrlL37xC7Zt27buMX9saBIy2f8fEX/913/Nxz/+cQCKqaBXuRRYm6iU2tAtG3Aw9VZ+XytXDDqovbSUA189gy/HCw1Aw/XljL4xn9fmev01ZZRtcfL2P54mMpf7GgYb0uUBxQEw9GwboaUI7/yd/JfnTbdWEvXFpDfx84XBpiXiy49JW9hqkyZT/LHQcEMFZVsKeecfT+RFvskHxV0F6MxK3jJe+aD7kXpsFWZe+++HpI+56L+0szzil5IGBOj9cCPmQgOv/4/D59vMnLC5DRS1OaVIfOeLgU82o9Fq2P0X77GqNQZw1FhZOiG/6Xc+4zAf9DzWwOF/H5WOicVdBXhuqWLq3QVO/iiPEt4pPl6uy2g0dD9ah9GuZ3celbAAGm+q4OwrE1Lxd8uHG0ADe/9h7bGxXhXAwlYb/ukwkfnohvNZRA1zuORVZmZmqKioYHw8f2miTWwiX5SUlDA7K74+vsJwH3p9cqNsLaJSNIqhUI/RqsG7ntThOouk3Q9WEgvGOfiN3K9NegtUDLgY+c18zgWLbPR/pA7fZJijL0xsKGEmLsKaBI+Nqnk23VhOcWcBB746gm9U7iXW6NLTdH0ZB7+an8xnPtBbyIt8Yq8x450Irk9wyeW7C4SBTzQTDcSkPgo4X1RdUsT84WVpGbrzweBnWvGOBqQ/XGh/oJqCaiu//3+OSF9j6LOtzB1b5ti/X7h5oqzPSWgxkrfknSysbiNdH6jn7G9mzltW8ELB2WRlMZV3Scp05DsO80HNZUWgaBh5Sb5SRM+H6jAW6HnzLzbOi1bnJbL3YSwy0v2BakZfn2PiTfl3cWOxkZJ2K2OvLq7497WWJezVRlpvq+TUi9PMH1vnfXqdVcjiDiuzB8Uz1BjO/cAjRVB6N/hrFnQTGI1G/vEf/5F77rlH+l42sYnzwW9+8xsuu+wyAKocvXSUXwusTVRKbeg63bC4Xvq0Tt7lLI5Tv93IsV/7CUiE2LJWHXOjMWISErUpFHsMVPVZOPCjRaK5FusTcXTGNSp/5FiS3PKBEkJLKoe/t+omNshVKvuEhOzk3jXen/PIK9eDzsS5hI0csFXq8I1fYF2MPFHaZaX6IicHvzNFaO7CtM1WqUO/BqFLpgKf7HJ1/VUuij0Wdn9BPtceeNLN0nCI45Lyas03FuGoMvHWP8hu/+TGah8YHTqctUam9l0gsrdWQ9vtJegtWvZ99T8or/wHGEcroAOLS0dgOib93GXGYV6VHrOh1dB8nYszv1sg6pNrj6VUR/ttpUwe8DH6+gaLS7o1CHgSkpManUL9xVasJToOfDeZd2341X8SBj3lbTpmT8dW+msdPzdfZkJn1HDod+vc9xoEJQBLodhMjoUgYT23mkM2QemA7ytMTU3R1NTE8eP5rd9tYhPng507d/KrX/0KrWJg+87/gmIQH5esRVQyLqooiorJAP7g2hu/60nAtVeIQXb8aG6iraKoFJXA9KSCEpKYg5NjtqUPQgEYPgKaXBKk66RKmnXGMUBJvRZ3m45jr4YJLK46LrZ2rqcYoKpbz/Bb0bUrfsrE9RzzimLgXOmrDc5rciCkKvPhksjMGedD+M06r+dKM3EVTlxAiTFXjYJvViVygdYmALpuseKdinHmjWRin+MZu7uNlDTp2fuC/P5vz+025oajjL4tSeI9jznfXqagxuIE5nL00fPMJxQzdF5jYXRfmLnTWZ0x15hY63eZ3CsPqoe5UEtwIb+133PG4Vp+kRkjaxxXWKNHZ4KZE+sP2oSyMmY3bNVjLdKy/8XYhgqXCf3KoK0oyWWkHHmUxqqlox/GR2B2UthuRE5KX69Ag6sQZmZzE5SMBpX2NpXTpxWmtWuTlFYTlFJw2tQ0QSlUeO7ElCIojZ/+HePHf4FOp+P73/8+V155Zc57+GPiPSH3lo2PfexjfPGLXwRglgn2qK8AK2VzUkgtqKYISk23lNP9iFzp/8B0hHg0QSImqX/600ki8xFsVUZqr5TT6fNNBlHD8gM9tUHe83iDnARYBPZ/+WReBCWAopYCitrzkBizadn6tEdaXi1FjEhLNEkgTVDKo0AQgKNpYz3hbNTtLGP7rlZp+9nDSwSm81t5steZ85Khm92/fEEJSgBnX5thcu+FvcbYqzNMvrVBKfY/AHxjkbwISiXdBVRfkZ+m5uIpv1SFiBS6Hq6j76NN0vYGlwFTaX6d3GADIkgTlIq7CjC4DPIEJQNse7aF2qvlS4RXDLmwlJoobpEvPz+7f5l9/3ZCmqDU+2SjkMSLIF2lKrIcI+KXW1w12AQ5CeDkj+QISgCxgEossDJZSs1Pq+eoonYbAx9rBIOIcWsRlLKPC6o+fsP3mJmZobW1dZOgtIk/GmZmZigrEzIXL0e+TjS1O50lm5OGXk9kIYp3NILeAj2PVFNQu2oRMiVFsmpxIhZUiQbkxmg0gCAoAbVXFkvLLkV8KmGv5CZLcg/O1Waj4wE52dkTP55k37+eliYoARS32rFXWfKScKu5opj+jzRI20cDggzlbJLT8vKOCILSutJf65AyLMX6vOS/ep9oyEtma/mMn4UT+ZHW3RcV4cwjHxz97dwFJSgBjL8xx9jvLyzpZnz3PFNvL17Qa0y9vZgXQan26lIs5fJ5TiIWxzceZOGYZEVRPWz9ZDMV2+Vlj+01eejbJa8BZAhKkJO0V9YnavvLEpTqrytly5P1ecnJFbc7KO3MTyro3X86w4GvnJE7f5ed9vtFHMyHaKWGVfySH3O4dxRiLhZzSIqgtJ60WwpxNU48Gie4uqJean5aNUd13Oem5hLRP9YjKCVisTRB6Z3gS0zFh0kkEvzP//k/NwlKm/ij4NJLL03L2owu7WXfxI8A0ISi50jAJSxioTJFUKpo1eG5ZFWcXSfvCvtixCJIV2ybOhIj5gOjDUrb5SQfgotxoiHJxXCNllhE5BdNOx046+Tmi8M/nOfwD/Jbayhus1IkmRMBoBOyb+7tcutkqY3+fCTfUgSlNSWzNoClVL6iUHG7he4Hy6Vr5i+NhPGOhfLawDO5dFQOyOe0vvEYC8dX5s2yxBFZu5mDy4ztvrAyu5N7vYz/ga+xeu4LL8XyIijZK/WUdOaX5yyeCbI4LP8eU3e5g/b3rVpX22CTTGcSZKt8oDMBMSGTBrmfu91tQG9X8iIodd5XSsUWyX6r1eCoNVJQbcJZKz/GAzNxDnx7dmOCUhY81xbgqE76SvL1NeyPE03JVeUiKOmgskfE8snDSYLSOtJu2YgE14jrKVm3VcQGWxF0XG1Ep4PAwtoEJU0gvIKg9NLJzzE1NUVnZ+cmQWkTfzT88pe/5IYbbiCuRnjjl/+NSEQQRPT++DkScGGngqoq+IMKCirtjWFs5pUTZUoCbrUMXCQKEck1bFVVmJ4Um8olVQkURY4kEQmJ/6SQlH+zOKC+R3JOPR3n0MsRAkvy6z5Wl4KzUoe9PJdkUgauWoWWqy2ZolM5iA1qBBSjqACThkazLnkktASoGxaJXxOKmY3lv1bNgQ07zFT15sibs+Lu0niMpbH81qOcVQrWIvlt/PmRC0tQAhjbF2LmRNZ9/AeqRW10jTmJSqr/ket7p9TcBCVIP7+iekXs1eWBhbEYvtlUKbaN52CAtmssuGpXddwNci9TfstE6TGXD0EpJZ14DlFwNZLjuKhBR/Pl5o3H0orjtLhqdJQ05FfF/tQ7cY6+ujFBKQWrE+q6xJ/VhHysioQhmEzPcxGUXCUqBrOKqippgtJ60m4pJIBoFMKrwkJK1m01QampKkJFsTBej6BkXI6nCUqjJ37Dqf0/QFVV/vmf//k9R1CC9yBJCeCxxx7jy1/+MgALTPGm+qv0b2ttBKdgLTViLJDryEsn/bz5F8fwT0awlhswuORGTOsd1VRukyPfzOxbZvfnjxOZj0gHL4NNi6XISGmXU8reNyYiQ9XlxZRvk1uwf+efTvH2X8tLv0V8cdCQl1xaw40V1F1ZLt0mgO27Wul7XJ7wseUjjbTfXStNbIr4YiTUBFbJzZPl0wHe/cdTeVVRqr+ynPIthXmRrXoea8B9qTyha+szHrY92yJtv3DEx6kf51G55jwws2+Z07+Q/xKrbmcZF/2Xdgo98rN675ONVA7J+6nqklKqhoql7QFO/GCcI9/Jo9JFXP7rPoC291Wx5bEm6XhQ2Gqj/xPt1F4lTyBqvL6S3kflN7ZtJQbQaqTJPQATr8+z5wsnGH9dbgO2/YEaMGTiVS5Yyw2YXQaKWuSyrJQ/j3x7VLr6RssdtZR1O7FVyS3Ap/rq/i8Ns//f5CqMFVSZ0ZkVrGvML6vnsqhhgdOV7wBQWlrK4cMXrirZJjaxFiYnJ6mqEhvUL0e+QyCaJS2xFlkJIZ1lsOmwlsqNo4PfGOfYD8RccQ6xaR3Yq41U9Dtovq5Myn7/l89y5pdChnJdAs4qFDXbsZaZ0DvkcsjAdBT04LlNjpQ89to8e/7+NPOH5Mk3sZCKRtFItwmg+8FamvIgStdcVkT/xzzYqtZ5FquISnqHnp4PNdJ0s1v6Ggk1IfWymMKx748zkoeMKED1JSVU75Cf7yu2F9L5oNxHDQDFnXaGPtNKeb98Tjvy8sxKkssFwPCvplk6Lb/yNPCJZrY8KZ8fuHcU0fFAjbS93qKhcquLqjyeRWAqyoEvD0uTxqylRhJqQp6IqIeO+2vyet5bHm1g4BPN0vYV2wtpvLYc90Uu6WMUnVZsnOWxNvn2F07x7pfkKnOV9zvSxKnAtNxFilvs2EpN0nFTb4HwfJS3/36Y5TMSX4HqoWq7i+aby+XO79Cjd+jxj0fZ8/fDBKbk7sPoULCUrR3TsslJAAueY8xrxDvSj3/8Yz784Q9LXWMTm/hD4OKLL+bNN98EYGL5IG+PvpD+bS2yUgoWpxaTXW5dJrQEB37kJ7QIOrP4Twb1lxTg3mKRIrr4p2Mc/N4SMR/oJNdAdEYh++aqk8sFQ8kKTS6PmSKP3DGHXpji4HfyyCdioFFAm4ccQUmnhcariihulyeJdH+gnJab5d/tPTcV0XZ7qTTpKOpXSagJTJIkkfBSjGM/miO0KL8WUN5jo3LAkRfZqun6Ikq75AnlHXeV0v0BufkCwDcZY/wtOVm884V3LML42/K5fFGLma1PVuGQfOcB8bzz6U8V/QXUXOSUtieeYOIdHyO/y4NslUjm81nn2Ag1l7jouq8MneRtmEt09DzkplyWQAQ0XFVEx/s2HkfZBCWdDTSKhmhEYjMuubm2NBzm3a+MM3NQLteuvcwJOqTHks4GtlI9zmq5/pGKr+PvBDn6C6/UxlpNv5mKLhMWyRTVmkzhh9+McOI3cgwIk0OLwaJBt8bwziYnAYQUH8ci3yJBHI/Hw/79++UatolN/IHw4x//mFtvvZW4GmX3L/4vIsFMLFyLrASCrGI2JTCb5RY1hk/pGD4t5mCzRY4BbDCqVDdCZb2EsUbD6UMwcSbZPkkCjr0Y7MUaDJK5YCQIKOBul8snlidVDvwsiHdSkkQJRMNiyWnF9yQ5iErNl1uo27ZG3FyHOFBYq6PzNjvmQoncWaNBUaDzBjvunhyxOXsuTCTyWfJi6kiUmRP5Va+s3mKizCO/2VhQrlC3XW6dFsDshJ7brLhq5Bld82dU/HMXtgL77MkYwUV5+5arzHiukCcXO9wKtVvl/YQCVT1GSpvk12nVIIy8FSEsmaYazKDGEkL2OoWNci9FSHbX70jetwRZq+EiM+03yOdd9nKFxh1Wihpz3HfW+FX0GjRaCVITpOPFydfCHH1FLv+wlwryHiTjlQScJVBQrEXRy71Li2pLWo68q8Xv1UpUUFKpaYR6SXqDoqgYDCqRiMKBQwaC61TuW30NqzmObZ05KZucBBCd/zVjx3+ORqPhd7/7HXfffbdc4/7IeM/JvWXj29/+dtpxJixcrNx8jo1Gq1mTtGSrMuBbT4YkheRXsdt3tRCPJtj9udwSTwabBnOZhaWTeXzdUmei8756Zg8vcfy7EqWBDUhXDklh8DOtxEIqb+Uhc1R9RQkRX5Sp3Yv5XUwSdTvLOPNLeeJK2z3VBGbD0jJ0xV0FmIuNnM1zMysf2KqN1F9Rwf4vn5GyN5UaULTgn5R/gEOfbWNp2M+hr8ltPDTdUgkaOPF9uSor9jozdZeWcfRH49LSXPnKvTXdUkk8GufUTyel7AtbbVTvKGHf/zkt1dcNNuj/WBsLx715kYgKPTYWjsktJDXcUIEaVi+YDCIIybqyLUXS1YRMpQZabqvi8NdOSVf6sdeZsRQZmdqzeP4N3QDt99dw6Dsj0jGqcqiIuivLOPvaTH5jVTIOGmxa+j/Wgm88yP4vy/XXFIq77Mzuz50l1l5ZgnuomOHfTDP22zk0irKhHNR6889689WMOs5+7asAdHd388477+RxF5vYxB8WDQ0NnD4tyH7bDNfj1K9RkU5RBM1/FSxl+o03krVaEqqK+yIn1UMuTr84w9Te3GOwsNnMwtH8PgNqv8+NrdTIm397Qo4IkCX9ttH4TqHmimLc210c/+EEswfl3jb1FqjfWcGx718Y4nBJdwH+yaA0KUHv0NNySzlHfzBJdCnHMcmcue7aMqb3zF/QSkTVlxaTSCQY/a0cEdZRb8mLrOO5vZLCJjtv/L9Hpez1Dj3NN5Yz8ptZfKNyb7+1V5eSSMCIZE6Rr9ybpVhPzRWljPxmWpq80XhDBdGwKt2mtrursFdbefPP5fwEIgZEQ+TuTwB6aLu9iuGXpi5of6q6pAjvaFC6j1RdUoTJYeDE6lxtA8m36kuLOPubC1M5q6zPgUYDk3vkNxT7P9KA1qBl9+flPkpJV3lcRwJzNZpuLqfIY2ffl0cI5vHsCurMLI8FQc29cNb/4Vo0Gg1v/d0Z0Uadbl1ZN1h//tEYDCuISSm86v8eAY2XoqIivvCFL3DnnXdK38cmNvGHxL59++jt7SWRSFBgrGCo7sFzbBIm/YqN3hRMBRDaqBCdVosmLN5Jum+1kkjA/h9IrGPFo1hdOvzT8hsoRhu031LI7LEgI7+XuEZK2igRl5Yl6HmgBDUS58C358RivYQ0bZHHTIIE88eyFrz/gDJVZb1WptaSlFsHVTscRL3y1XJs5eJjgAsm/wWYnDoqBwo49cq8VDUXnQ10Ol1exKYtj1SwOBzi9IsLJBKJnJVyKgdsaA0Ko69l5r6Nlq5T9zC+e5nQkly78pV7qxwQVaRlyVDWUh0VfQ7O/GaO2AYpSLYv+h6tYO5EkOFfL0pdA0Qf8U3K3XNZtxW0mvPvTxJjx+jQUdRiZvxNOT/pbFB/WRGnX17pp1zP2+zSsXDq3I2s/4i8Wwq1lzgY270kJ+mo0eKoM9C808XYW8tMvCORb6bk3iQk3lJ2W+4twjetcuKV/J5dQaWOZYllOFetjvpBE2f3hpg+GiNhMa0r6wbrzz8Jq2nN+coXmuX1kX8lQYKBgYE0SXcTm/hT4N577+Wb3/wmaLT0XvYJbAXnfugVtWoxpmVsVUTpERWjAcKR9TeSEwrol2O4ilQam+OcPK5lfi73xnOBIYp/GUA+hlU3J3AVxzn42/hGr0kZiFuA+MZybyk43VC3xcCp3RGWp4BEYl25t+xrVLTomDiUdf64fK63Amvt95YqRALqxnskWddSFKjaamb03SBqrqWc5PxR0qRnaSJKRCbcno/0G1BYo0Orh7lTckQ2swOCefCLy1r1lDbpOfTTgHTfqO41MnsyLE0KctUrKIpmbcLVGs87X7k3xQjlbUZmToQ3ft5Z835Jk5hfZUlgFZ16iur0HPiR5HqiRhD9VMjdn5Jwd+uZORUl4j2PMZBISOVezhqFsC9BcD6eOW4DFNbqMNoVJg9IVqkCXHU65s+s4VeN5vwlEJPkJHupBkWvZXEsd2dNKFrQKTQP6jBY4OBLcs86oVfE9VJxMAfK6qC8Dg7u0xKWIg8JmC0qkTBEDLnJb53tEXQ62LtPARQiTt26sm4gJEhDkewbyFRRyiYmpXB873eYPrubwsJCXnjhhbTc/HsR72mSEsDrr7/ORRddBICCniuUO841SsRXLBybSgxs+VA9vrEg+7+8AfEjuahRdVkR4YUoM/skpQYQpImuDzZx7IejeM/kfnPpeayeU7+YwCvzpWkSHe+vJUGCQ1/JTV6x15nzOjfA4GfaiAVjvPWXcsQmg01Lx0P1nPr5pLT0VOo4aempPwLqdpYx/vqMVJuqryih+qISjv94jJm9F7Z89IWC+9Iiai8py+se8iUpbXuulYQaZ/df5Cb6vVeR7z1UX1HCzMGlvCptXVCkCPV5NKfnsQZmDy0x9qrcwlz5tkIadlYw/uZcXgRER5NVKmbYqo203VnLoa+fyYvo1/1IPeNvzUkRjnoeq2f+hJezL89Knx/EZu3hbyUJchtsVFrLDXR/sB7v2QAHvnI288OqeSqFcOM0r574NfF4nPb2dg4ePJhXuzaxiQuBbdu2sXv3bgC6DJdSoa87xyahqisWgdvuqsDuNvHOv5wmukE6lVDjoNXQdGMpJ34sSQpNvpRVXeKiwG3i0Ddyk3SLu2wUe2wc+Y68bKKlXE/LrVUc+vYoodncMcheYxayaZKovaqEyoFCjn5/jPkjcnlU5VAhznorh74mT9DVW/KTa5KGxGbgWrCU6XHU2Zh4Q056duATzSRiCfb8rXzVz/caBj7eTEKVv4d8SUplfU4ari3n+A/HmD1wYSsHXCiU9TlpuKacEz+dYObd3Pmp3qGntKOAsdf+A2Qgjfb8+vE6836+Y63QY6XqoiKOfGtE+rj+jzSgNWrZ/bk8xoMeLEV6ApO5CUTt97iJhuKc+KHchwYABXUWqne4OPi13PG1oM5M/VUlvPvlkQwBSmIRq7jDhqLXCCJrPIFGWT/3aru7AnuliXe+eHqFXxOJBJo1Pi8+6HiZsXGRo73zzjv09vbmbM8mNnEhMTo6Sm1tLfF4HLPOwaWNT55jowlHSOgzX7PrjNBzg5mlKZUTr62fs2jCUdBqcNXpiMdgcVRiITeSHKw6aLu2gOE3/ARmc6/mNl1pY2KvH18e5Kaai6zoDBpOvZR7HjAV6gh5Y5lNfQmiUu9D5cSCcQ58KyvnzCFV1XhNEeNve/Hm+uhx1XFShIY/Eko6LSycCRCT2AcqbDTRuLOIUy/OMX/8PXQTq7DR0nVhg4mma4s5+eIc88fkcvN8SUpd95ehUTTs+z/y86UMzptUcx7ovK8MraJh39fk1nKK28z4JqIZQtofkOCXC+s971xjbbU/m64vYnEkyGyuikjJ3KSg2oDn+mLG315m/K0cAygrP7SU6tJydRtBX6Ch5bpiTry0RGhRPidtuNzOwmiMxZHc12i8zIpvJsrUgaSjjHLVN6r7DZzdEwE1TsK0/jE6E/Rcb2JpUuXE65lcUxOJkljjWmHTWX574JuoqsoVV1zBSy+9JNWeTWziQuKTn/wkf/mXfwlAx9DjFJacW/pC742hmjLvEnXuCGWuOO8c0ROJrr9prfdGSWjjuKth7Cxk9MzWhxIUY8lVDg4XnD6ce26wFiQoLlEZOSQfmw0mqOvRMPy2KrUvZrJDKHu5IR5Ho65/nKtWoWaLgZOvhfFOZxEm4usfU+BWKKzUMbx7FWEiR/UYYG2ywX9kq/s852TFqsFepLA4Kkc68lxlQauFI7/Kby/3vQTPlWa0Chz55ap7WMf/+ZKUrMUKzZeaOf1GkKVc5JU/Yi6Vz7WsxRqaLzZz5s2QFAFHMYCjQmF+WIUNxtmG+ANTPRRDjmpIq0hKJgdUdpgYfiskcVxSBvxiI0abloM/23g8JLQayHofNliRIhO627QkdApjeWxbGyxQ2QAnT2rJFcONZpW6RjhxGOLJClgxW+7cy25T0ethfkFBG1GJbqAQ1uCOUFIY553DeiJqpj26oErUdm7Fu/HDX+XU8XcxGAzs378fj8eTsz1/Srwn5d6yMTQ0xPCwIEqoRHlR/RaRtXp41uJEaCbC4kkfp34h9/I4+us5QVAyQM+H6qWkukwlFgxWHa4Gu9Q13v3iKbxnghhcBhxNcmWOjYV6TE65l4kUQamk10Hz7XIyHAe/cUaaoASAQYfJYZCWogNBHuj/WIu0/Fmhx8a2Z1ukJdlsbgPbnmulYkiufm2hx4Z7sJj6ayql7M++PMNbf3kkL4JS14N19H1UXrYuXxhcBppuqcRgkxu+Y7+Z47X/fuiCkqze/H+P5EVQqr6ihLKtzgvWntqrStn2bIu0jCOIe3j3385I21cNldB+t7wMytZnPLTcUSVt3/tkI233VEvbd91fx9CzbXlIS4K5yIijVr7s+uSbCxz85rAUQclUaqDj/UJeRZbU6KixoTMpKGa5crIlvULKZN+/nJYiKGEAk9OAs0bunptvr8R9kZAYTBOUcsA/GWHplJ8TP8/y0TqL54fVt3hnfDd6vZ7rrrtuk6C0ifcM3nzzTW677TYA9kd+w8nwvjXtshePh38zy9xR34YEpTTiiTRBqXK7k5rL5KQ8HdVmzEVycX12vy9NUHK1yQVGvUWP3qJgd5sylUU2QIqg1HZXpZQs2/CLMxz4+llpghKAo9qCtcwkKpxIQO/Q0/+UB8/tcnkOgOeOSjoekJ+fmm+pYMuHG+XPf1s1tZfJS5u8+29n8iIoWcr0DHy8mbI+p/Qx+aK0z0H5Vnm5t7f+6vgFJVlNvb3I6//3EWmCkt6hp/bq0rzkA/NF7xMNeO6Q73dTby/y1hdOShGUAOqvLKHmshIsZXL3UDnkYuBjTdL3bKsy0/9UE7aqVeXBNyAo9T/lofVO+Xsu8tixFOdRThzY84+nOPQtuWqrjTeU4WyyQBQpghKAsVBI7MrA0WBBb4HlMwEOflUuL3LWWjAW6LAU5X4Oegt03Cv8OXvQlyYo5cLwr2eZPeI7h6C0GtFolAMFv2Js/CwOh4PFxcVNgtIm3hOoqqpiaWkJo9FIMLbEi8f/ktgaFcCyv3qPhWH6dJTRAxJEmniC+TOxNEGp6VKTlFSXyQamAgV7udy72fFfLeObVdEZRHUXGVicOsxOOdvQgiAo2St1VG1P5nYbfDwCcORHsxx4YRUpXrvxF7/WEgPOWnmpiPqrCun+QKW0/Jm5REfnfaWYS+TuW2eDrgfKKO6Q088yuXTUXlyIu98pZb9wMsTeL4/lRVCqu9xJ+51rVFv9A0FnEdWUdFkp/EZknoVTIXZ/YVSaoHQ+2P+1qbwISsVtFlwe+X6UL1weM13vL8MkOX4ADnxzmkPflf/YrGbIScNV8vlvx92l1FzikLZvvqGIuiuc0vb1VxTS86BbWkoOHdjKDBRUykvuLZ+NcOh707kJSggJzYYrU/K6EuRMrQZrsQG9VYvOJLee66gWz/fUK14pghKAxaVgL5XrFxXtekqahW2KoJQLsRDMnI4xun8lQWktjCy+y55TP0RRFB566KFNgtIm3jP4/Oc/z5//+Z8DcPD1LzI5vHtNOyWUIRaMTypMzCgbEpRS0MS1jJ0V1TGchSrlFXLkFWsBWAoACQEx/7KGkcOARoNNMlRrdWA0aTAXABt8BJJCiqDkblfQJV9jExscNz+scuSlYIaglL6wdl0JOGuhgq1UJy1dpyjQdZONqh759+ryTiN1Q/JzcmmrAc+V8vKrtX1mavrlz3/yd8G8CEqKQUiZpeStLgTspUpe5z/2UlCaoHQ+8M+q7H3Bl5uglIRiEJWUFPmtwLzRsMOEu1t+Tc0/m2D/j/1SBCWAogY9tQNmzJKpVEGlQus1FgySW3sGM3h2WjE7JSkhCrRdb6dqYJ08ao3c3F6mx1q0QT/SaM457sTvwhz/nQRBCSit12BLbiFIVTvTaDDZtJglfWS2iRgTCcCZAyBDMrXZxHEGidRLg0pjfRRQ8fqUNEEpF0ankvPPKoLSWhje+0VOHX+XoqIipqen3/MEJZBWNv/ToqamhnA4jNlsJh6P8xu+yw71RszKqk2nrI3gw98SsmqmEgNt73Pzzr/klpWq6C/EUmqiaqiI0V9v/DXN8ukAr2d97WywISXH1PNwHYpey+//Z+4vpd/+6/w3N2ouLUFv0SFDPUoRm8r6neisCmM5ZAoi8xFe/9+H86rUMrV/gaJIgfQxkeUIWr2Ggnob/sn5nPa+MXFig0WuKy8c83HiZ2N5SdzlWwUqkUjkNSfXXl1K5fZi9v/bifT9bITiFjtlPYUEZsKMv35hpCUuNCq3FhGPxqWfw9anRTCVkWQERHVUrUZa3i6FfOz3/5+T8ic2AAlQ82BB60xa4lb5ED25d4HyuFwcAmH3+//nsJyxAdpur+bwN89KE44ariyjoNaKrdqI76xc+cixV+ekqzq13lWFy1NALKBKSfqlYrSsvA+Aq8lOQZVFqmpDww1l6E0KR18Y59A3R3N+1ft79ef4WEQJKtx999187Wtfk27XJjbxx8B3v/tdnn76aT7/+c9zMraXxfg0/earz7FLbQT7JyOc/KmoJd94QwmhxShjry2uf4HkxnNZdwFavYaRjfIurQbiCQ5+LSOZK1vBxNVmw3NzBROViwy/uHGt+6VTAd7MqlaSIiptJP9mrzHjaLBRs0Pl5E9yL/qniE3Nt1Rw/Ae5Zd9S+awsoktRlkf8zByUJyYbrAqKSWIxIrkRmIgjs2aWxokfTxAPyVdVkJIKy0JgPgoa0Orlv2ga+GgTsWicvf9wSsq+ZkcJaDVM7parBvVeQ2lHAe5tRXhHA8xL+NdRb6HtnhrOvDglfc+JRCKvfgH5Petj3x2nuMsnLW+nM2oz18jexF6nmpLdbUIxaQl7Yxm7DRANwNIZH1P75MfaiR9NcuLnk1KSau6LXARmwywc8+OXeD9AD8VtBVjLTSyekJe/fefvT0uRMgFabq0k4lfZ+8XTuZuTjNEjv55bGd83uFZprxNbpQlXq5X5QxvndnoLtNzh5ugPxghMRTn1s5kNq2wEogF+F/kOTEBlZSWHDh3C4ZDfSN3EJi40bDYbPp+PkpISFhcXeenk57i08cOYdCvXvLKJSmf3iv/rTNC03cCJVyOswW0SSOYyBVU6Cir0uGpjTB9dx9igh0iU0CK88/XMHKDTsf75s9ByYyEGm8I7X53LSTQ88pMliMst3Kfg7rNjdukZ3e0VVZVS8XqN2B6aEw22VxkwOXTMZFdTSeaX2YiF4O0vTchJMCUxe9SPRqORrqQU9cfQmRSsRXqCM7kvlKqGpDPIbSiE5mOc+MUci2tIYa17jTwrcCYS+e1DFbeaqb2skKPfn5aSJrOWGHFvdRINxZk5kGmcRqPZMNa/l+De6iChJjYkTmUTr9rvLEExaNkvWeVIq9Og0WjkZfeS828sDx7XwX+fQZvPZt/GxTLOgc6szZVurcDc8QBag0a+v8Zg77/Jy2zXXOxg5HdLcoQjoLzbRmGDGcsB/8bHZOU+i2civDMiKTHYb6Gyx8LxXy6ydDZ3m3Q6iEXi7P/3xcw/5qiiVNxkIB5NMHMkd65Z1qRgtGsYeSfGyN4Ymkh0Q2GqA5M/ZWxpH1qtlg9/+MP8zd/8Tc5rbGITf0w888wzVFdXc/fdd3Pi3W/jX56gseuWc+xSRCUVGFEFQcFdGiUW0zA1v/66vSaZY5RXJDAYE0xOwHob3qpZjxKMcjZr20PRJVAlZLLNdmjeqmXyZIKJU2w4QYd8sP/XcTSpkJIiHG2wX2GwQHGdQjwOE4eEXYqotFZVpZQUZHmbjsljsZU5lVZ7zkQxcSDChAzpPglVhfmRqFx10CR0Jg16k8Q7b9J3iXhCLG1ISkONpqU+Ja6h0WxcYWYNqJEVhWek0Hy5GRJw/NdyE395uwG9ScPi6IUoy36BkUhgdemo6jER9gVZnsz90AwWaL3GyujbIeZHJN9F8lwLJZHI61lPH4kSnI1lZNtyQEmGn4gfqcTc6FTQGzWoYclkTYX50xG8U6vG2gYfDswcizJzMrr2uFl1nMOtoEbi+GYS6+5nJlatH5XUK4R9cGIux/jPutbJt1QSMgwioLEXohE4KqFKqyiqiEeTGuYnE6TG/0ZVlAoLweWKMzenZTlnpWKVltoYp0d1RGIKI1PKusQkAFWNsPuX/4NYJEBtbS0HDhzAZpOsZvEnxnte7m01bDYbfr/YJO/iIsqUZKWRtTaENVrqrymhvM/Fke+NsXBkVW9f4xiDy5AhKhiQItf0PtGAyann9587urF9IkFRux29Tcfkm/KbHA3Xl1PS5eSdfzqVk0QhqqjkJ6+27blWQFSSkUX3I/Wc/MlYXpJM/1lR0uug6QY3p345nhe5SRYF9Rbqd5Zz8sejUiQlDGCvzE/eb/uuVuaOLHPiB3KyN/nKvW3f1crc0WVOfF/u/AabFoNDJ3e/QMsdVWi0cOQ78nI3+WD7rlbCy1H2/n0exKP/xGh/fw1Tby8wd0iuAkPDjRWU9xZy8mfjTO1ZlL6OtdwgFSO6Hq7DVGiQJ6EBGKDpukrRp3OU2my7uwpno419/3pKLmYlY/+K+SAba6ykDXy8Ea2i5c3PHV93Pkphsu0gBw8eJJFI8K//+q88/PDDudu0iU38ifClL30p3UdN2LjUmpHdTawhbq7RaOh7soZYKM6+fzs3ZidWL2LoQW/UCMKRnvU377M2kSzlerrur2H64DKnf74x8YhEnLqdJZz5ZQ67VW3qf6wB73iQY9+bSJ5m/XTZUqwnMCtPtijrc9BwTRkjv5UnZrparRS3FqTb8yfHeUq/yaL70ToMFh1vnQdhXwbNt1QQDcc583O5jSBLmZ6oN0Y0IPfa1HRTBc56q3T785V7a7yhgsJmW14VUW1VZnyjcrmj1W2k4epyTv5sXJoUlA8qthdSe1kZh78zwtKpC7wIttbul0z/zWfXLAesbgM1O0ryIh1u/WQTiWiCt/5WPjfVO/REA9GcJCijS0/3Q7WMvzHP2Gvz0iSl8n4H/pkw3pHQxv7Rw7aPNOCbCp0rz7nWtbJiv96hJ7pwbu61Wu6tsNlC841lnH11nondS2tuWqek3pYLpjgZe5uZmRnKysqYnPzDSvVsYhN/aHR0dHDo0CEA+t33UGyrA4Tk22ok9DqKGxRqew0cfy3I8qrurQmfGxB0Vk2GqKBjbULOqqoYjVfYsJfp2fudhQ0JPIl4HEuJDrNDy9yJiJw8VFylpN2Mu8/Gwe/NEM31/YkuuRm/ek7eILZ33VeKVq/l3S+vMf7XaWPDThfjby+niU7/X4atUofnxlJGfrvA7JE/fDUik1NHzSUORl5bkvanuUS3LolrrZjf/YFy5k8FGX1Vjjycr9xb9wfKWTgV5Kzk+XUm0Jl065KIVleGqtxmR2fUMvLbC1ABXauh6/5Sov44R76fn+z9CvwR5d5gY4m/9ZDya+1lThZOB1kekftgrrTbSs0OJ6denmf+mCTBT6PFWKAlvLxBXpnMe+ouLcBebmD/C7MQl69UUdlvYXxPAI1h48oN7j4TpS1GDv94gdBi1g/rkZSSsV9nglg4fk5cX0vure1KA3qjhn0/Da9ZOSlb6m3S8Ev2H9xLPB7n3//937njjjvOsd/EJt4r2Lt3L1u3biUWi+EoaqBrR0Z2V+89N4arJuj2RFHjGg6eOLeaj967enyoaPUaVFUBRQV17RiQknwDMBigbRvMjMP46Y3f1TSRGKW1MJ3awpGInZpYHM+QQmA5wejBZAzbiKhkhkiQcwhG60m/2Uo0NO0wMbovwuzJNebBNRit5kINhdV6xvcl893zmXP+kNvc5yMhJvNenTxv3XYjpgKFI7+8MOshZa16EgjiiwwMFlBjOaS9slDSpKOo3pBpfw7f5yv3VtKko7jBwOFfSPpHoxEfqAeRIpYZLFDRYWTySJiw3PbYimvlgr1ES/2giZOvBvHP5bF+ej4yb39Mesda967VYDBDaZuR0bfXybvWOK71GlGt7Miv1s+7VpOUFLMuWQhi4zYqBmi5SMfUyRhzZ5EmKdmLQI1CYFmQR9eHSvdW8C/BqVXynGuRlDSoSX6bgk5Ria/xurVa7s1qVuloiHJ6QsfMvG5NglJK6i0ammR439eYnJykv7+ft956K8edvrfwnpd7Ww2fz5cuUbWf1zii7hE/rLMAffrnU+z5m6OCoGQAW1VWJ1njmNSGdPej9Qw+LSdTNrVvAe9YUIrQNHfImyYodT9aLyXN5J8OEY/FIZL7ZT7iE5V/7HVmtnxETorj0DdOs/cL8gQlW7URa4WZ6ovlpTt6Hm+g72PyEmgF9RZa75KXHin02KRl7kBIb/U+IeefmUNLhJYiRNZITNeDwaalqF1OCnD5dIB3v3hKmrBDhLwISgDxaJx49MJtKMajceIR+fNHfHH5+wWOvjAqTVDKx/cp+CeCeCWZ4vY6M0OfbaNySE6eqLDVRtOt8lIgJd0FNN0ib1+21cn2Xa3SMpIGGzhqrLgHi6WvcerHExz+9ogUQanhxgpa7xRjV5bEGFmOEQ3JsdZb76wSMm8RpEl3k3sXCcyEpdrTdncVQ8+0ShOUCupFOde3/v4kb/7F0Q0JShE1wovqtzhw4ADV1dW88sormwSlTbzn8dBDD3HkyBHxpS4+fuX/KtGoeMnVrFGPOZFIsOefhtMEJZt7ZZK9eqOZKER9CSzFOrY/1UD9znWkI7JeTAKTUXxTYab3L0rdQ4qgVNpbQN1651/dppCaqaiCqKq03kZ+iqDkua2Cqktyzw1Tby9x6Buj0gQlAPe2IgobbdKyb84mC1ufbqLQIy/p2XB9KY4GyZLWGi2NN1RgdcuV2K4ccrH9uRaMEpJPAN7xIMtj+S3WuFrl/XP8BxPSBCWAwFRUmqAEov+o0Qu3UBCLqPJfPyUhS1AC8I+F2f+lYWmCUmGLFb1FfhEvtBghMBeSJih1P1rHliflJQYbb6gQsm2SRKPmWyqwpKSmNdqcx215op72++XfU9xbi3DUWTG65EuD7/3iCQ59U0LmTQ/dj9RiKdaLqlESjyyuQjwcJzCbe+NO79DRdq+418k9S4KglAtRWB4LMbVvlf7nGjFUb4FtH66n9fYKiCdyEpQsFcKHC8cDvPPF04y/ubghQeloeA+/n/g5i4uLXHbZZZsEpU38p8DBgwe58847Adgz9k1Ozr4GrNwATkETjTF3NMy7P8gQlEzOzO8J47lxJ+ZPQDxB/ZCR3ltt6NZas121IT57IsTyWESqwlBgJiYISkDj1QXoJOaH0FKUWDhOQmbJJSYqHpmcOlpvdmXqw28Qv4/9ZJ6D31pn/K8h/6a3aSmsN1HWKf/1adP1Ljrukl8jM7l0eUljWUp1VF0kb99xVymtt8q98/vGYwRmooR98lWtdCZRoUoGocUYx344lxfha6MqU2tJv6nhOPE8c6N8oIbjeeVesRDSBCWA8Te90gQlnQkKaiRlbpJ92zsWxjshR9gxOnT0fbDiXInBdd6FzCX59U1bpQ73UIG0fUGVkd4PVmJ3S5Z10kFRk5nyHvnxO30gwJHvTUsRlMq6LNReJu53XYLSqrgS8atEg+eSgdaCe6uFwnoRg8f3SOTK8ThzJ4P4pqJSBCX3FgNbbrNissaJ+XMTlMxO8f/DL0XY/2PfhgSlWCzGS8f/inf3v01FRQVvvPHGJkFpE+959Pb2MjU1RUFBAUtzp3jzF/8dNcnUiNrPTZKUEBzcp+XgCfGb2aiSzYqI2lfnXgrxqBadLsaWLXHc1WvPtdkb4pEILM3CwjRSBIQUQclWCOUN58oprYVoGKKhrHMr2nUl4CLJpYRyj0JJfWYdMKFo15R/880kOPpykNlT6+QVa8i/FTUYKKrVS8u+mRzQfoMVe5k88bPEo8daLGmfSFDi0WMulFvnKKhU6LzJuvFeb9Zz8c+p51aoyQFzIdJyZlNHotIEJRDyVvlU/VHVRGbN6wKQZFQVYpE8zptIVuORTGUjARjeLU9QWuH7XPebSBCLqPhmVPyLcrlj3TYjnsvk5WlLWvSYnRpp35e1GzDKp140XmqmdnCVhOEGcaWwVo+rRn9u/19D3i2F4y+HOPXa2nlXQqtZQVBq2CbOrcY2IChlXyvZf8ISaZSiQG27+LN3ThCUckGjaliYgdlVy8prV1FS6e1WaaxR0UZyE5RMBjGn+IMKew7rWRjTbEhQmhnfzxu/+AtmZma47bbb/tMRlOA/IUkJ4OjRo9xzzz0AjHKCV9Ufb2gf8Ypg0PdYA10P1EldY/bQEoHpsBTxaOL1BQ5+RSwiN9xYgcGVe7Yo6XVgLTdTdUl5TtupPYvs/otjRHxxbJIvZSVtDkxOI4We3C9lvrNhIj5BDJIh+vjOhtnzhRN5VbWJBVTUkPwLfd2VZRQ2F0iRuABqryyjuE0+0oYXo4Tm5F7QicA7f3vi3EpcG6D3iWaabpInTRW126m9Og/S12MNdD1YJ22/+3PHOPXTC7con8/5Cz02tj7jobBV7uE6mqzUX1MmRRgEqNtZSev7aiiol9cOPvB/hjn5I7nqFDqDQjQYY/aoXBZTvaOEkk6ndF92X1RCSadD+n61Oi0JNcHSiJwMW8QHe/7qKPv+JbdUh63amCYcyUiqARQ2WimoldsUT8Wzoy+MsvcLcpUCnE12qnZIkAyAppsrMNhE29/9p9z3CzBzeIngfERK+q/rA9V03FuDqcQAORYsfaWL7C98hQQJdDodx48f57LLLpNq0yY28adGS0sL4XAYg8FAHJWXI19nMbpBZaKoICtZKvR03F1F0425x2xgOop/NszsEYm3AeDgV0fxj0fRO7TUXCFHGq3Y6qK4XS5X2Pcvw2l5OEtp5mVho4ojjlorrma5YL90RrwpNd9cIUVc2P/1Ed7+wnEpAgKAfzxAIppA0cul+noLlHY5cQ+65Owdekq6HVRfJLf5tXjKS8QbQ2+W+3rl9E+nOPaCHBEVBEGp9Y5qai6Wmx/QQ83lxdIkK1erjf6nmjJElhwY/tU071zA6oz5nr/9/mra76+Wtq++tFiesAY031RF18MN0vYLR/3s++cz0vah2QihBcm8XQ8lXQ5qL9+gL2RtYusdeoraHdRcUiJNaoqFVaJ5bOQe+94Ee/7hNOH53AO46cZyLOV6ogGkKrS5Gq1Yiow4JWNPisy05+9OsXDMn7OKUuVAIQXVZqn+YC7WU32JiCFHvjPOXA7JNhCScP7pMDOHJWK/HjrvrqLjAfGOFfFvvCA35znEiCqq0Tz11FO88sorua+xiU28R/Dtb3+b//W//hcAJ+Z+yxsjX93QXg2KTY6WSw20X2HOEHc2wPxwDN9MTErCbelsjFO/Fe+bZZ1GdBIhx1amw1lloLTVvPGX5VoF71iMA9+eIxYCY4HcZpCtUo+11IC9fFUetUYsDy/FBLGpUEfVRevkglltjPrivPu1cYZ/vSjVFoCITyUWlp8bKrbYKWm3SvkSoLLfQVmnVerZAgQXYwQX5TenjnxvBu+o/O5U662lNF0jl4ODIKaU9cqT5xuvddF4rVxeCnDwW9OMv5Xvp/DyyOf8JpeOrvvL1iQSrUVQMhXpKN9ik362pZ02Wm4syU1UyurTZ369xNibcu3XGiC8HJP+sLC8205Zlw2dZOpY3lNAeZcNneRenFavIR6JE5yT7J8x2PfVCY5JVMnS27TUXCwIRz7JzeLCBguO6g0an+V3k1Nsho/v8XPkh/Ogzb05XtxkoqJbbqxUdBrQmSC0kOD4r+TW7BbPRgjMqWlJpo1Q26+j40oTJgeCnLSBi2K6Wd5d+hLReBCbzcaJEyfYtm2bVJs2sYk/NVwuF/Pz8zQ3NxMJLfH7n/7/8C1vtE+goITAoKh0e6LUuXPP/2oElhdhUVJc5cwRCPrEBnqpW5KIUAcl1ckYtAGhIKHTcvptlamT4ryGbC7COkQlAGelgqP83N/XIioFk7zbslbd+nsiWUSl0T1hDv3cv3GFlCyEfEkSi+y3UgqUd5goaZJb01EUUWmnqFHO3j+nEvaqwn0SVaBmTsQY2yefdxnt0HqljaJ6yWRBAVedgklyu9TsBM8VZsySnOP50yrHX/nDV9/MnD+W1/ndvUZqBiQJ3ICrRsFcKN+e+u0Wmi4x5zZMkoaCi3Dq9ZAcaUqNE1xSCSzLv0eUtxkpa5O7X0WBshYjpR55ElQsDLHsvfwcxMepI1EO/tS3UrZtnWNKW3QY7YJsFFmDRLS6epLZAbZiBXvRBjlU1rUMZnHuY6+p+OZyV1FylkNhuSB55oJiUCktFc9p9KSG5XmZAKSwuKRhXqqYqUpXU5S2OpFwaXJs94anfs6xPV8B4H//7//Nd7/7XZmLvOfwn5KkBPCNb3yDf/3XfwUgiI8X1W+x9VPN9DxWD4hqJEPPt1E5JF5qux+uwWjTMXNQzJDbP9VM7xPC1tFoZej5NmqvFIvZHe+vofayUvb96xkABj/TysAzzYCQLxp6vo2G68qAZNWNz7YBQhqofIuT/ifFIr3BpmHo+bZ0FRXP7VUMPd8OBpjZu0QsEKOoNTNTDD3fnq4e1HhTBUPPt6cJT30fa2Lbp1roeqiJ7g/VM/R8G+0P1ABQt7OMoefbsdeJQLnlqSaKO528/r8PsXDMx9Bn2+h6uA4A96VFDD3fnq400/tkI9t3Cbm3xusrKOl00P0h4ZfybYUMPd9O2Van8OGH6hn8jLCNzEfYvquV7btasVUbKe4qYOj5dtyXikWKrofr0n4BsFWa0RrEoC2otzD0fHualNP+/hqGns/Ybnu2BZ1VYc/fn0BrMTD0fDsNN1Zk/P18e9p26zMeBj7ZzKFvnWXP3x9l6Pl2PLcLHzbf7hY+TCZCA59oZuszogrXvn85TaGngLZ7xIZNww3C39byLH8/25L1bNoYeMYjyERXlTL0fHuaBLPlIxkfAgx9to1oKMbJn47j3iH8XdwlnnPvEyttBz/dSs9jDdReWUbl9mKGnm+nfJuIiN2P1jP4mYxftu9qpTf5FbneqsNea6HqcrE52PXgSn9ve66Vvo+KylW2aiND/6WdhlsEIa79/nP93f9xYWtwCX+nErzWO1f5+2kPW5/2ZPmlnZY7qzCVGmi6pTLpbxFW+j+e8XfKtv3eagwOHTqTQuv7atIklb6PNqVlB1M+7PxALQBNN1RQsb2IwibxIHs/vMqHn2mj+xHRZyuGXBS1F7Bwxsvy6QA9jzUw+OmM7fZPt9LzuBifIka00/vhRora7XQ/soa/Pyz87Wiyij57VSkLx3wEZyP0Z1Xi2vapjL9FjGin4Xrh76hPTCqpSXrrMx4GPiHiicGmZej59hUxwuwysv9rJyECA59sPsffq2PE3FEfb/75UfqeOLfPro4RnY/UYXMb6Hio4Rx/rxUjGnZW4morYPuns/3dumGM0Ft0vPnXRzM+TPppdYzofqKe7kea0mNw+65WtjwlbDeKEW9/8SR6k5KuzGYqTcbkVIy4q4qh59uwVRkp7XLS/7HWtL8xCL94kmTM5tsrGXq+DYMLuh+pY+ATzdRfXcHeL55K+6XtbuHvhuvLGXq+LRMjnmrAXGJi4biX0HSIoc+20v6AuJfaK0sYer4tHSMMV/k44H0Vn89HY2Mj0WgUg0GShbaJTbxHoNfrCYfDNDaKcfpm5KcEPaNsf7oBfXIzqeeD1fQ/WZs+pvPuKiK+GGd+M4N7h5Ntn6zHUiY2kroerqb/qbq07banG4j543iHQ1QMFjD4qUYcyUplne+vYuCjGdutn2ig/V4RN9vvqsK9vZDyAZHXdNzvZusnMmSJgU800vkBMTZHfjeNotdS3i/eutvudrPt6UyVx4GPNdL1kIibtioj2z/VTM+Haul6sI6WeyrZ/qyIJRqthoGPNdLzIdEmS7GewV0epg4usu9fhmm+pYLBXZnY3f+RBrY8KeKm3gKDuzzUX1eKpVhPcWcBfU80pCsAbXmynv6PZNo/uMtD880VEIWKwWIGd3nw3CXiXc9jdQx8LDMXDT7nwXOH8EvpliJ0FoXQktic6n6klq2fyNhuf7aZ9ntELCzvd9D/UQ+nX57m0NdG6Xqwhq2fzPhl2zNNdDwgYmFxl53BXR6ctWb2fek0WoPCtmcz97r1aQ9dD4s+4GyyMvjpVsq3FhKYihJaCNNxX03Ws2mm+1HhQ6vbyOCnW9OVqDx3VDL46Vaab6lIPpsmep8QftE79Ax+ujU9RzTdXIHn1ipGX5th4o0Z+j7SyJbk/I1e5FqNN4jz1F1bxuCnW7E4NLiHium4v5b+pzL3Orgrc82ay4uFbbGeRCKB0aGn475M/97+XAstdwofVg65GPx0K/YaEfe7PljH1qebMz58toX2+0Q/LOtzMvjpVlH5Ceh8sBZHFrl36zOedA7karcz+OlWSvtEn22/v5ptz7agd+jRW2DrJ5vp+qDwoaPewuCnW9PvPq13udn+nMgLFKOCo9ZGT3L+tpQJH9Yk80jPrZUMZuVW1ZeW0Ha3eFZ6i4bBT7dSt1P4u/GGCpFbJfts30caicdUzrwyLXz46VaabhI+rL26lMFPt6J3COPeJxrY+kxz+vfBXS14bq9MXjPp7+Q82/1oXXr+Pvb9cQpqrOk5uWJ7IYOfbk0TZ4S/k/0wphUVaJMo6S5gcJeH4o5kjHigim3PZJ557yP1BKZDHPn+BIUeK4O7POkY0X6POz3uAbZ+opHuD9ay/99GmHh7gcFdHtw7svrsc5mxMPCxRrZ8pJ6mm8qxFOvpf6KemiuEv9eLEXoLFLcX0PNIA/XXCX83XF8qbNeJEZ5b3Mwd8zL++gI1V4oYkSI+ro4RFz3fQs9jIt64dxQxuMuDrUosbHU9XLPCdtvTTbTd7Wb4xRlGX5+h9Q43hc3C350fqGbg4/VZfmmg4343jdeX4R4sZPuzjZR0CX+331u5MiZ/tI7O+6so67XjubWU7U83MHfUx9whH613VrLt6Yxt/1N1dD0sxo2lQs+2p+rxz4Y59cspmm8uZfsns2yfrKXng0kingVGa99izztvUVxczE9+8hM+97nPsYlN/GfDc889x2uvvYZGo2ExOMqLxz9P581mWq4S+ZGlCPrusVPiEQuv9f06rC4tU0fDEIOu6020XSnGuNEGffcWUN4h4kP1ViONF1s48UoQ4gl677TSdYuYi3Q6cd7KXnEdd7+ZvvcXCpk1E9Rut9J9e2YVt+/9hVRtFbaVPWb6HyxCZxUb/sHFGEWNyQVxrYa+B4upu1jMf2WdJvofLsbkEu1vvclF933FdNxRguf6QvoeKqXhShGPiz0m+j9Yhr1S2HquL8Tdb2fPlybxjkbpfbCUpmucADjrjfR/qBJng2hT07Uueh8S7+bVgw7cfXZabhax215loP9DlRS3CNuGnS62PCrmpZhPSHz1PFyBpVSHuURH/+OVlCXJA3VXOOl7LFMB2VFjQpskh+ttWvofr6RyQNxrzcUO+h/P2HbeW4qlSM++r04SC0H/45XpyjLu7QX0P16ZJnB03FVK532lnHl5jne/Mk7/I5XpCkwVW2z0P16J0SH80va+EroeEGuVp345T1GzlborhF9KOi30P16JpTTp71uL6f5A5qPJLY9U0PX+Mhy1RlweM/2PV6YrJXluKqLnoYq0be8HK1DVOCd/NY+jzkT/45UUJp9z47UutjySse15sJyWW4pwDzioHnTS/3glxe1iPmm42kXfoxnb7g+U03q7WJc12BSKPJY0san2spX+7n6gPF25SmeBgSfcVO8QPqze4WDgicxHg533ltF5T1n67wNPuFF04v2lcmsBA0+40wSbjrtK6bo/Y9v/uJu6y5yYHDrKem0MPOHG5Ez6+46SFT7s/1AlDVe7MFgUDDYdLTeWYCsXti23FNOb5cMtj1SkSVi1FzupvdRJYZ0Yr803FtH7wSwfPlSB5ybRZwtqjFT0FTB7ws/ySPgcf3c/WC4qaGk1WEp19H+okpbbiiioNlB/hZO+LNuu+8toS/rb6BC2FVtsBGdieKcidLwvQ/juvKc0/XedSfTZym1iro8EVCBBLLnX2nF3KZ33Zj7C7H+8kuodos9WDthwVJs4+qNpYqGVfRag77FK6i53AlDWLfwd8sbY99VJmq4voefBTPv7P1RJwzXCh8VtFgaecNN4vQtTkY6GnUX0PLCyzzZdL3zobBB91tlgomqbg/ItdrY8nHmOPQ+W47lxnRhxVSFml5593xCfznffXyIqugHmUj39j5ZT1pm0vbqAnvtLqL9c9Muuu4tpu0X4QW+D/oeL03G2ZtBK/8MiTzz43Xm0Og0dtws/oIO++x24t4j+UbnFSN/9DowFcSq6zXTfWUjHbZld5b73F1K9XXTo8nYdfXfbMNqgYYeRtp1m6rdbOPorsSu45R47tYNi7JZ4dPTdW4AlGd5bLzXgLNMyfTxCeCZK7/tsNOwQtq46HX332LEnyQr62lPsPvttFhcX2bJlC16vF5NJfjN0E5t4L0BRFI4dO8Z9991HIq6y95XPEZ5/k4GBCAaD2JT2eKJ0dWWIJT0tEULBBFNnweVQ2dYVwmoWtg2eGF39GWZfz0CCeFxDYFmLoyDK4I4o9gKxXlPfFKO3L0Ms7hyC+uR2TG07NHRCcUUCEglqPAm6L8qQYNp3aGjoEX8eOwaKDlzJ8Of2aOi+IrP92zqkpalfzH8GM/Rco6Npm4a2S3VUdWjouSa5ma9o8Vyip3lIl/QN9FxvYH5M5cTrUUqbFHpuMKarHjXvMNB8uSlNVuq+2Ux5qw7FAJUdBjpvsKAk+R2NO4zpXBag6xYblT0ivjkqFLpvt1E9IPKPhh1m2q7NrJV03mKjqk/YFpQrmOwKatJtdYNm2m/IsKE6brJRs01cx1aq0H2rndF3Apz5fZDqARMdN2Vs22+wUTckbM0uhe477NjKFY78wksilqDzloxt6zUWGnYIW4MNum+346rToYbBPxen6fJke+MJPFdZaEwSWxQjdN9qpaRJ+LSsVU/P7VYqkrl58+Vmmi9L+kURtqWt4reSJh0tV1o5uzfI3OkYTZea8VyZ8WH3LZnzuOoVum+1YjBDzRYTTZdaaLk6y983WXB3C/86q4St2SGEIaxFCo0XZxjHHTdYqErOPfZyYWstEs+4dquRjhssoBV9sf16C7Vbha21WKH7Nhv2ctFBqvqMlHgyHxW0XWuhPjn3mJ3QfZsNZ5WwdXcb6brZimIU/a51p4WGi5P+tghbV5KoVdFpyLy/GMBVo6Pp0qS/DSv9Xdqqp/tWKyT7bMNFZlquyPSt7lutlGX5u/tWa7pyUuPFJhLxRJpU1nVzlr9rFbpvsYj950SChiET7deZxbkU6LzRgrtHnMjhTvrbKc5bt91I+zWivVOHIjjKdVQPmDL+vt2OrVQ0uGariY4bk+1NJFCzCHqWItFnC9xJf/eb6Lw1ozLj2WnDNxfj7DshjAXQfYcdV63wS2W3ka7bMrYt11hpvNTM8BtBZo6G6b6jgOJm0f7yTgPdt2ed90oLzVebqeg0oCjQcb1NPGeNJu3vdIy4zIznCjMoUOYx0nmDjfJW0YbiBoXum80oFlE9qXHIQOvlGQJW8w4TcyMx5oZVXG7ouVaPMTkkGwZ0tF2W6Vt9N+noulqHooCjTMQ4azJFqu+Cjh1pUzovhtoOmBuDMwehqVfIvYGIuz3bMqSxrgGVxhaVmlqo8UDfxQmcJaLv1zQl6MmKyV2dETzNUQoKVGorwmzdEsa/mGBpUaG6VqVvW2Ze6OiJ0dIu/q5XVLZ3RvEvJxg9o6G2MMxAf4QU0629LUpbmwh4qhrBO/x13nrzJYqKinj99df55Cc/yX9WSFIv35t4+OGHueWWWygpKSEej/PXf/dXXLvlJgCCcyECMyF8k6Jk2NKwn0QiwYkfJlnQGtCbRTno4EKUwEyI5XHBzlwc9qMYMxO4RqtB0Ym/R31J26QExdLZAIbkwntkPoJ3zE94UXScSCRBYCaEd1RQ3pZG/ZiLDenqTMvDATRaQegxFxkJzIRYHBa2y6MBbBVmUd8RWB4JoDeJUT36xiz1V5ezdEbYescCOOqshJNsy+VhP8YCPUQECQINxJNar75x4ZfQfDhtay4Sg/6dfzpJ10P1LCfP658Wtv5J4ZelM34SscyA888GKai0Un9FBad+MS78PR5K+zD7y1zvWIDQYlQQIfQa4cOkvNbSaT86U4YJ6R0NEA2pROYjWKsMhL1hvGdFmxbPBjA4Mpv73rMB4rGMTF9gLoR3xpf0mR9LsTHlQpZHgmizenxoOYy5xJi8ph+720zUF0k/G4Ml0yb/dAhbuZnyPhfjb83hnAkRWhIBZGk4gMmZCYb+qRBLw35m9y/jaLIm/Z3sh6d9WMsyL2r+iRDeiSCzhxYwFOiovrgc/3RWn1Uz/vaNBwkm7/PA187QcmsV/qS/F0Z8aHQZf/vGAoSXRdCK+BNoNFDc4uAUkywN+9FbM47wnvUTS5ZnjPgiBGZC6TYujvgxFq70d7aaVWAmhEYH/U80M71/nsBMiEhS9m35bACdXrPCdnE4wNTuRdRQHPdgMZGkD5dHVvl7KsRi8pmf+tkkddeWEZzNPBtTVtUJ/2SQ5bOB5J9DBKZDjLwkqjotnfGvKPntHw/inxI+C86FCMyGsJSYKNtSKPydxXT3jgcIJb94D86LcW9yCTLW4ohvRYzwjfqTCzOClJTq37ZqI0sjAQxZJft8o4F0Ah2JxJMxQrQ/oVXFODoj7tU7ElzxIWh2jIiEY6BJYClRiMyvjBEg+mx2jHA2WbFXWKi9oiITI7L9nTxvdozY9y+n8dzlRm/M9Bf/ZGbspmPEXJCtz3gILYbxT4bSMc43HiSYrFgWnAmtiBELx3yYHEZO/nIq3cZQ8kvP0FJsRYxQDFo0Wk1agi0VIwDiQfFs0jFi1I/Bqcc3Gubo90Yp6XAQT8WtiPDhUtI2FSNcnkJs5WYC8yFCc5mXwsBsph96xwLYq8xYq4x0vr+WhTNedFqFI98ezfh7RLR3eTyYjhEnqt5i+JdnUBSFm2666T8to3kTm0jhxIkTPPbYY/zTP/0Tv33nJbyxBUqCYvVk6WwQXXZsnAwxd8xLdDlBLBRDo4DJpRCY0rI0EsCYVTrbOx5KV4SzlhjRaISMx1I8wfJIgKgvay4aC+FN5mwnfjJB43VlLI+m8o8Aajgrlo+G0vNqeC6KbyJILKqy9ZONeCeC6fOAmLdSpJ6wN45vIsjUoWVctVaWRwMoWV95LY0EiAZUNFoN0YA4b0pOSzGt/AZgaSRAPKkrHo2CbyKI92yQwGyUkd9NU1hnS1dIWhr2o836Cs03EWQpGQt940HisTiuOjt6xyxLwyvjvnc8wHIqlk8E8U0E0TsUBm5tZOGMl9BClr/HgiwmY5Z/JiLadFocGw3FiIxmXpq8o0G8E8KHgZkQvokggbkQgckoS8NBNAqiakEizvJZP8GkhFRkMSLmgeTfl0YCWEpNVGwvZOKNBZZH/GlJvYgvjm88iC95neXhIM56K0VtDo7/dIKlYT/R1HwejeIbzzy7pZEAJqeBkVfEZynLI1m5SlT4LRX3fWMBfKUmAksJDn1zhP8/e/8d58hV5vvjb6mkUmip1TnnHKZ7evKMczYeG5wAGyfAxmDCYsDAcu/uH9/fDXv33mX3sruwsMCSMyxgDDY4B5xmxp7c09PTOeduZamqJP3+KEmt7pGqali4u7D9eb144R49derUU6ee89Q5n3o+xe356U2qtA+T99E/GyYwE0YOKYSWZGYOLyM6LRtsvePr+UdgJpwePzEphjXPSck2N0un/ASmg3gn1HaDC1HVNlkZyDum5uKpvCIwFcI/q9pGltV2QwtS0jYE8QTb392g/j0ZTOcqEZ/ql2Dq3WcilN4sPfn1MdpurkIKqf6W/Yrqw+R5vJMhrBnP4+IZbzrnl+UEgZkwvmnV1jcdwlEsro/ZMfV9ZqVf/Tpf9Xco6aMw7sowckhO9ilISXs+Jd0ehn45q8r6Jf3in0n6O6ye1zuuxoiud9Uy8dIS/ulQOlcJpXyY9Ld3LIhULGMtsIEs458K45tOjtnl9TGr9iGcliguaMnDPxMiOBcFGaJr6rMQXFT9vTYR2vj1l8mEYFP/jvpj6ecM1HFnyXj2veMh3HUOSjrzmXltboOtdzKU3lBO3at4LI4cghPfG6Xpqgr8k8l2p8I4S2znxYiaS4sp2+ZRY8TEeowIzIaJR+R0HzJjRGA+QkKJq89Fsj/RZMVh73gIe/KdFiuYLSasLiF5bREC9WEiq6l2w8jB9fzaP62+z0wfWqW020VZV8FGf2d8de+fihBajFK1uxCL3UxgNkooWRnBOxFU40kSvqkwUiBG151VJEwJArNRpg+tEpqX8U2FsDjWjb2TYZRwnGiZn9fmfo3UL1FUVER/fz8lJcYljrewhf9oOHDgAKFQiIqKCrxeL//0L3/P9XvvADxIIfDPyYRX1YfMv6AgiDBzXMIEmM0JLHZV8i2myPjnZILL6rMbXIphz1t/7zELJhBVGTgFU9JWTtrK+GcFVWZNgYVzEZRwRq41KxNcSNoux/DNyun3wbUpCYtopuHiPPKrRHyzEv4FGcwmQisxfDMSSnJu8s1EsDoFYnKClZEIlb15+GaS6zyrCr6ZKFKyip1vOoocjoGiEibMVhMJ1D5FfDF801EiazEwmfHNSOn3wXNPLNN8XUG6v5I/jm86SigZ33xzUXUdy2yCeALfbITStjyqduUz9tKKaptcl/BPRzesY3knIijROA1XFmB1CvimowSS5wnMRzfG/ckoiYRasclih9CyRHBeStpK+Kaj6QpXa1MRzGYTSiTl72j6HTu4LOObjhKLKuk+WJ3rc1FwMUpeiZpDh1fUdlO5gG86guhd75NvOkphk4OSjjxm3vSpPg4k54ipiCpVlbKdjBJciOKbiGIvsuCbjhJeW283c83IOxkhuqawMhLBbF+lZnchkeS6lm8msiHueyciyEElea8WabyyOJ0D+WejiHkb/Z2SGVEkMAkmitvzmHzZR2AuiqMw098RMmsa+KYjeOrVTaHggoRvOpIm2KxNRhAy1rF80xFisTi9d1cye8yr2kaU9H0UM/ztnYrim4ngm4py9hfzVO32EE1W/fNPrY/flK0/uTYy8coaZksB4ZXk+J6MbHif8U1F0nOllBzfc8f86/7OuDjfZATJn1yTDin4pqN4am3I7XF8kxEE0bzBVk7KR8Siqq3FbqJ6r5vAQnTDu5p3KpJ+jhRFHS/BBRl7kYXgvIRvKpqusuOdim6obOGbjhKYS1bEFNS/IyspH0Y2vD/6pqL4Z1RbOSqr60B5EFlS+7thDExG8E+n1vck/LMRCursEFfbycxVfFPrfYh4lWSMUBh9dhU5rCC61tfHfJMRwqvnx4ht7ywj4k1ea8ycvjYpEAOzCTmixqnQSirvlXCXi8y8qd4r73Q0Pc4SEvhmJALJqplmG5gtaqWMqB+8U1J6fdJktuKfUwguyRCPE1yQ8RcIRAMw+LQfT7V1w7qhf1YmsCABZkIrcfyzMk6PmcIaK74FmeBKxtiaVQgsqPcivBbDtxDD6oDt+0VWJiUiPjOTbyT3D+YV/EkZxrBXwT8nIwfjjAnPcPapk5jNZu6//36+/OUvs4Ut/DHje9/7Htdddx33338/h3/7E6LBacqKDwLg9ZoRxfVnaHXVjNdrQpIE7GEJwQQ2S4ygW8TvjSFnFMpZWzERSBa0y3Oqr5k2EQLxBH6vKfnOpLa9tqhWUQKYOqsWNwomKxP5V5MhNpEAk4m1ZTNyMLknIcPaQgIpCt2XmvCtJPAuJtLvtN7FdYmumARr83FW5xK4/XH8SwkES0bcXIgTjydAMBMjztpcjNCaeqxVTGASkqEwBt75WLooUkIwszarylzFJBg9FMZTbl3fD52PIYjr5/HOKgRX4mA2E/bGUCJxCmtEZk5G8c0riP71ALc2LRNYSq0hxfBOy5jMMdquduKdlZAjG23Dq6n5MIZ3WiG4rP6tKHG8M+svqd4ZmXBSvjMWVm2loCofFlxSsNpNaX97Z2MoyZwoJoF3ev3YwLKCu0KgqN7CyriCb1ZO7wHFFPDOKISS8l+h1ThyOE5pq8jCORnfnLKeq8RU2/CKahv2JvDOKCyNxdTfZuUNucrajJLO8SM+9dpiEpx9Noir1ILFlmE7GyOQ9EPUH8M7oyBJEAvDxJthbHkZec3Mus+koGqbygelaAxHvhVPhYB3OoZ3NpbOBeWQem+k5LgMLim4ywRsyZzJO6sQDaTaUX2YkhwOLiuYRWi+2IFgNbE2raQr+sQU1TaS9HdwOabeG2D8UJRoIE4seVtjKR96k5WNVpL3PJmKTZ2Ibtgn9s4ohFaT92Yt6cOkrW9eQbCaCCzG0v0PJnO2sE/1Sypv8y8qiE4L5R0i8+dk9VlYSvowkPR3MiXyzcnIQYGanTaWhqNqH1L3Jjm+U/uNgUWFmJJAsCbXy2ZkwkkOgpIc36k8M7Aop/MwR6EZ34KsytPG1JzZO62kx2xwWUEQ18eHyZxc8zKZiMnJ8b22/v7oda6/P3rnFDxVAqUtIgtjUtI26e9VdczG0rayWk00BmefDlLZY0tL4YX8cdZmYySSTfsWY1gsJgqqBcqaBbzzMTVGWC2EA2rcUmQTmMC/FCMaWO//ylQck5AgFoNoULVNxQXfChtiskVcryIX8qlxN5rcIvAGzMTMYEqu5a8tQTQEi7OwMg/F5eu2fu/GQr5rq2bkcJzqMgWHA1ZXIJyy9bNhv3xt1UTUItBSIyHEYqwum1lcNBMOC/itMWyrGTFtzUQCiMVWOHTon4iEQ1RVVXHy5EmKioxXn/2PCFMi8QcQjfx3QFlZGYuLqixHCVX0mS/WtO97qImEkuD4vyRFWzPfojdBLBKRAhJIqjyRkZK3lQcKabi8nIGfT22UCcvi7uabKnHXODl2AbINYpFI3SUlDP1CRwpDhL0Pd7B02svI48bkrMQikc7bazj+lRFdW6P+SGHHh5rBZOLoF4YM2acq5rz+fwZ0bUUX7PpoF6GlCMe/rN/31lurKenycPJbwwQm9SUk7GUikQXj19p1Tx2CxczJb4wZPuaCIGJIjhCg/uoylEiM6Zf1yx0DXPQXXfgmgpz69riubV6FSPWBMsaemkEK6Ev6iS42lv77PaK4y03jtRUM/HTC0D1N9QeM9WnXR1ux2AVD49FVa6P3vmZWh/yc+eGkrn3rrdWUbStg8LEpFo95de2rLyum9qJSjn1txPC4zKsQCc7p2zbdWElCjjP65LyuLagxY8f7mpg/usrYU9rHuGptlHQU6NplonxPAbUXl3Lkn86dP+Y3lY7c+RG1CsCbn9ePp5n+0H2+k9lGYauTtpurGXx0WlMCLxAPMFL6BguLCzgcDn70ox9x00036fZpC1v4Y8ETTzzBwYPqQo0JE5cIt2C35q7xX9jipPn6Ms78bJrQrPrWmIjlnjNsRda0NJKtyEo0+bKrVTa578F6YtE4J7+1KeZuyvGsTth2byNjzy+wetaYVCZA3eXFLJ72Ec4iwZRJcq27qoSybR6Of3UY2YD+NUD91aXEpDhTL+nP084SqyEZKABnhZVtd9Uz9twiC0f155bynR6ar69g6pUlJl7Q70vH26sobHbx5leSUlYa+TTA3kfaiKxJhqS+rE51kc2oxJ27zknLwUoGH5siOG1QGuwCYXVi6J7aiq1U7S1i6pUVZK/+BXTdXUt+bR6v/bV+fgFqJSGA2dcN1oq3YtiPF4quu2tRAjEGHzUuz2crthJd1u+Qp9FJ1x11TL+2lCah5YTJTO9763GW2Hjtc4P615uIs/eRNuJSgiMGcgaAvvc3ooQVTn1bP69LwVlmJbSg0xkrbLuzlrP/Omk4ZjRcV0ZJu5sjXxrWvdaG68qY/u1C1rZzyb31vLee1aFA9piUsQJT2O6k9YYKhn4zz8oZjXiaPI+zxKL6wwpWq/bzZEoSNrvvriahxDn9A+0xdiL6MsG8JcLhMI2NjZw7d07Tfgtb+GPDxRdfzCuvvAJArauX7pKrNe1bLrNjFkyc/a0aJEzR3MHCYknyCxSw50Mktdgr5T4mv8ZC06VuRl7w48vY6EnEz88FyrfZKayzMfD4plwklT/Fz5c3sNigrCePmSMasSWeAAv0vKOU5aEwM4c1XuozchSLHRqvLObcU8ua8kXEE9gLLETWtIw2ou2txVhsZvp/oiGNnIGeu8sRRDPHvm5gvc4CO99bRWhBYuBRfc2Aih0uavZ5GPj5PIE5/WuwusxpYpIR1F/uweoUGHpixfAxFwQL2vcniUQika7OtNRvbCLd/VA13vEI5wxIgllcUL4tn/lTPhQD60YWO2lSWQrZZN5+F9iLLTRfVcToCyuEFrI4J9u8bkk+45Hzf9qMjptLsBdYOPbNuewGGe88VpeZ7fdUsnwuxOgz+jlpxQ4XtfsLGH5mmZVBfQmXwlY79ZcUcuanC4afQXuBlahX37a8Lw/BYmLmSEBbjjIJix26bitnaSDIzJuB9Vwoy7G2fBOFDQ7mTmQZiznk3vJrLNTtdTPwy9U0kSkFk5gkUCVja/v1bgTRTP9jGu92NpWcaHHE02PW4kJz/Cbs6jEOp0z7lXmMvBrGP5c7HihKhBPST1lYmMfpdPLYY49x1VVX5T7BFrbwR4bBwUG2b99OJBLBanWxd+/HETfoom2EwxGjtTXGuXMCgYT6PFn9ufMoUYwhSQIQQxQhqiSrFoVzH9OSrJg0dDz5D8m5xSSdH/da98DcCPg3T3PJvUmTcv7zXVQNgRWQsoXo1PpdPE5RrUB5q8DgbyViWkvpqWMSCYrqBcwCLI3oSFrF44gOfWnvFAQHdFydx9TRCN4p/fifVyrQdmUeU8cjLJ41sMfbY6Os3caZX/vUvSOd+bzrYB7RQJzhFzOcaDZlPS5VZcaoxJ3ogrqdDqZPhAmvGTvmQiEIxvojiFDcYGFtQs4+XjahutdGaYuVYz81timYXy0gCLA6YdA56qOk4veUc6VQ0ycSjyWYOZnl2TSZsu73Cw6V+JUTyWdDdEHn9W5mTkZYHNRZ2EkkqN/vwFNl4cSjfkNScl0HXSTicObXxvzedImDRAJGXzGQNCYhukyqbJuO3+v32Jg6HlVjRpLVuFnaLRMlDQKlTRbOvBBVr9WaZJVlOU9pA6zMkDUe5ZJ7a+yFwCosZlneiznU3MsUi+NwJWjrgdGzaMq7KS417tuR0rFdfZ5yy9TJySISbRVRBCHBuSFrTluAqanXmZ97jmAwyNVXX81vfvMbTfs/FvzJkJQA7rzzTn74wx8CIGDhSvOtho5rvbWKpdM+zQ1nUKU/eu5rwjscoF+HdJDf6KT95mqOf2s8XeUnDQ2XV19czPThZV3ySe/9jeRVOjj6laELIs4YIYjUX1NG1b4Shn41bYgsASrRKrgQYe6Qwc0SgyjfVUDEK+MdMraJ2HZrDbNHl/GPGdMs/Z0IMwbJQTs+3IzJbOLNfzRGyNrx4WaUYMwQqanmihLqLinj3C+mWDxhQEj8AnEhJKULxd5PdZCIxTn8d4O6tq5aG113NjL61KyhsVh/dRlVe4t54x/PGiJMXQjRK31IspqPEXS+s4bhpxcM2zfdUMHIEzkWg/4N6HlPA2d/MmHMJ6hSMyaTiUN/e1bX9kKfoZ0facGWb+XVz57R9X31ZcVMv6ixaJglKem+p45EPEH/97RjtFgksusDzQTnw5z42phuv7vurmXo0UlD1zpu7edc9DQATU1NHD58+I+e0byFLWRDKBSitLSUUEhdgG0VdtJg7dQ5Cqz5JhqvKGPw5/rxbts9NeSV2XjzS/qEn463V6GEFYZ+tXD+j7nIM1ao6PUw94b2HGN1ws4PthJcjHBqMwlqw2k25nhGSS27P9pMXE7w5hf1SdagSp61XF/GmR9NG7K/ENRdWcLEc4bEsnGWWancXcTw4xnEUw2iktVjNUTa2XgQhgg2zhIrPe9pYvy5Bebe0M9HS7d7aLiyjGNfHzPUp90fbYV4giOfN5bXXQgulKR0ISjfWUDT9RUMPT7L4nH9XKrr7loEq5mT3zCWA+74YDNKSOHkNw3Y/w5kKUNjJrlR5K5zUNzhZuzJLDEgCzxNTgTRxMqAcbKiEVTsLkDMEwwR/QDKdnhouq6csWcWmDuypmlrNKak4Kywsv3djawMBzj7k/NJPpkkJasTCtvyWTim8W6R+YkYKom06x1VnH10htCc9n1qv62SgkYnx74+kSah5kJBsxNPo5PxZ/V9KMsyr/IY0VgYq9XKu971Lr75zW/qHreFLfwx4m/+5m/49Kc/DYDd7OKSqvdisegXSK/qseKbUwjMa78PWlzQe1M+qxPS+uK0kn3Dx14AzZd7OPuM97yN72xEpRSKmqz4JmWUzDAQi523TtZ4RT7FzQ5O/XSZyGqOTacs5PVsBJFNnaOk3UH9ZYWMPrfCypCBRfh4goodLpRwjKUBY2tNRpFfZyOuxAjMGCNhVO11szYWzk5QyQJdf2Q9CEPkoLa3FmN1CJz+kbF5t+2txcSVhCFSU2GzneZrixl5ZpmVc9oX8Lssa18ISelC0Xt3BZjhxLfndMlJFhd03VrB5CtrrA7r36iSDge1FxXQ/6+L55NxchCUjNzLDYc4QNEa5hnPXc1FHpb6g4ZJRJU7XMweNbaAdCH3tem6IiZ+u0IsbGxjsvudZQg2Mye+PadLUsr6DAm5N5zaDxbiKhc5/r15lM3fTWwiKRW32lgejea8RybL+eep3efEKpoYeSlH/pqcEywW6LndTXAxxuCz+slj/X470yeihuLFgjTAmzNPANDY2MihQ4e2Kldu4U8SsViMvr4+Tp06BZjo7r6TsrIe3eMEIUZ1dYKp4QRpfakcqG+JUVyc4PgRU3oz2xzNHhSqk+rc01m+sTHJuRkLBWWwtmmqzmbfe62F4GqC4SMa7Ad5Y9+MkFpMSkyVJ0skGHzOWFIimGNUbrMx9eYFfIBmcN4oarKyMmJsYUKwQ0mTyHx/xiaGxtwuiNmJEgjmLP+Y+g1DhBNBhM5rnUyfiLI6qX9AXomZ2h12Rl4NGdrPaLvSgdliYuApAwsOF5h7XShJ6UKQVyzQeoWDsdfCrE0n/aJxj2r6RESHiZFXjY2t5kvsJGIJY/ZG7uWmD3YNEcOS/hbdUFAtsjBgbK/R7gGLTSCwYJDsZZDg5a4QsLvMLA7J2mM7ibwSM80XO5g6GmFlIkYiS36TQk5/iNkJPBYRuq+0sDIVZ/L0+e+gG0hKAniKwKvxLUlc3Ng3wZKgtQfGzkIklN0/qWOq62JUVCU4ecyEFNGO/Q5nDE+xmdk5bbsUjh/7KisrI1gsFv78z/+c//E//oeh4/4YoD+C/ojwgx/8IP1lWQyFp+M/ZimuswEmQkl7Pg3XlGnbAYGpKN7xACPP6VcA8Y2GOPy5c0grEvmNTppvqtQ9RiwSqbuinO3vbtK1PfG1UQZ/NnlBBKXtDzax8yMdKjFDA+NPL/DGF4cME5QASrcVULW32LB9+2019NzXoGs3/8aaSlASVf/oYfBnU4YJSqCSK0SXGXuZftugkjf2fLjNkO3RLwwbJihdKJb6fayNBggtGEvsKg8U0XlH7R+kLxfa9tJpL4snjY0tR6Eqxxc1uKE5/swCr/6vM4bIONUXF3PgU12U9nl0bUElHgKGCUcAZ340Zcg+r0Idf0YISvmNTnY/3GroeQCV6OeudlJ1oNSQPcDhvxvk2D/rE5S67q5j10c7DfcF4M0vDzHwk0ldgpKrWqT+0nJDcSKvQqTt1moATn9nQpegBOp99I4EGH1W3+fFXW4K6l3UXakfx8fqjzKeOIfZbGb//v0MDw9vEZS28CcLp9NJMBjkyiuvBOBc7E1ejfxK97i6i0soasnDXWfTtR1/cZGlAf/GTfkcJJiBn8ykCUrNB0uxerS/QADoensN9VeV6drKIRj42bQmQWkznGVWdn24jZYbK3Rtj3912DBBCaBqdwEFjXkUtOSuXrWhLyVWdnygEWeZvk9SBCVnib5taEHeSFCC80gMmUiRTVw1ub9AzETZTg8HHumgqMutaxtaknn9s2cNEZQAlIhCIgHOIv3rBFg4ucb8iTVDtgBtt1ZRsk2/378L2m6toqQn35CtfybE8qCPtXPGSO0mLuyrs6NfHDZGUAJ2P9TCjg82G7J1llhVQo5BghKoMrlGCEqp5907EjJEUOq6q4aG6/TfFVOo3FVI+Y5Cw/YLR7288aVRQwSlnR9spevOGsNth+ZkzvzrlC5BCaD97XU0XlOORlG8NBquKcFZpla8O/rP47kJShnxevK3S6wMBXQJSgD1V5RQvk1/jK/I8wyW/5ZoLIzZbObkyZNbBKUt/EnjU5/6FKOjo9hsNiLxAE9PfZ7ViH4lu7I2G7V99pyEoxSUACyNSsyeylhnyLEJEVmD04+qBCW7B6r69Od2ixUaL8mn+epNz7cgnLcoPvq8j7NPaBCUsqD5mgJ67izHYte2Wzob5vh3ZowRlJIo73VT3mN8Xq/a66b5ev33QN9EVCUoWVTCih5mDvkNE5RAJVdY7GyQm9NC9zvL6Lmj3JDt4GPLhglK6zCWZ/hnIyydDRJa1r9Wk8lEYbODhssLLrAvxlDQaL+gtudPB1g4ZWwTzu6yQAKUqLEPypYGwhz92qwhgpKnwcbu+6soasnxQGwi+TlK1TFilKAEMPWK1xBBKTX+jBCU7AUWut9Rht3gmHVXixQ3OSkz8L6QwukfLdD/Y/21oNqL8+m9uxJ7gbG+AJx9fJWzTyzrEpQsLmi8xE3L5fr5jiUPavaoMXby9VBuglJGvFYUWBySmDqus9msKDgLEpQ0iVR06a/tjfA0/SvPYTabufXWWxkZGdkiKG3hTxaCIHDy5En+8i//Ekhw+vT3OXnyu7rHlZZCeXmcPHtCkzwEMDcN87MmzWobKUwPrxOUyutANLAcX9MOjb0mNheBSljPP9+51xVtgtImCCJ0X2ujqku/78MvhA0TlAA81RaKG0VcZcY28AUbtFzhRDQwFaQIShqFsdKIRdhIUAJNgk6KoGTbHNpzHJNXYqb3rXnkV+hfZ0yCU78KGSIoQSq3SGyQe9PC0ojE4rBxUlhFl4jbQL9/F1R0ibjLzJrV9FOQQzEWBiX8K8bH7nnQuKfDv41kJyhlOab1UodKyMuFDIKS4EiS2gwSlAAkP4YISoIICBDxYoigVL3DRlmH8f290laRsg79Nf0UgktxTj8RZEWvMpYAndfYqd+5aZ1WgzylSHDuNUWfoAQ0dEJjT9I/OiitTmB3JogpJgaOmnISlEwZw2BxDhZmTUg6oc6sxKmpTVBZGUOP1RYOr3Bu8IusrIzgdrsZHBz8kyIowZ8YSQngwIEDJBIJCgoKADjGSxyKP5P7AAmOfm2Eo19VN4bKd2kTFvq/qxKD8ipE9j7STmGb/ipC81sqKOvx6JKDpBWJiefnOf5NY5tUy/2qkO2uj7bSmtyg18L88VX8U2FDlWOkFQlE2PXRFuoNELhOfmOYNy/gy3JnpQ17sfHAt//jHfTeW2/ItnxPAQf+S2eaVKKHXR9tp+uddYZs10aDrJzzG7JNwWg/jn5h2LA0XGRBov+7E4akuwBKuz0UNP9hNsoutO2Rx2cNS30tnvBx6G8G8I3qM7hFlzlN9jGCwHyE0GLEEBmvsMPFtrsbaHlblaG293y8jb4PGNuEq9hbyPYHWqi/2tjmV3GrG6vTgtXgpc6/scaJbwzp+1xUSXjlewoAY9WRZt9YITgf0SVi2ctE9n6yg9LefJDQrVoHEJiWmHh5gZPfGtO1bb6xmuLOfENkqb6HmuhKkur6fziJfyx31pCaD5b7/Zz41ghDj+Uuwb8SX+Tp+I8ZGh3C4/Hwv/7X/+LVV1/V7c8WtvCngGeffZYf/OAHAARY46nI9/DKuYkiw08scuK7k/gnomCFos68nLb+iSjDj6ubHx23V9F9VzLfScRzkpUcJVZKuvJpvkafnNn/kynGn1swVEnHO6LORSU9bnZ9uAlrloXzzE3/0IJMYC7M3PE13bZTJKzynR52frBJrTijgfFnFjn+9VHWhoyVVDHZTIhuCwXNBna/UKXttj/QSGFb7nuTid731tP3/saME+Z+xWh5ayU999STV63/Qrtw0ot/JkzUa5wg7Cy3GiJZrJ4NcuTvz+E1kGMATDy3yOSLxipMARS351PabYwIfaEobs+ntMsYSSk0JzH4rzPIIWNfup3+7oThKkruOmM5bgrLQ37DeXT722vZ+aF2baOUFGtbHvseaaWow+B4vbuWPQ+3GLIFcBbacJUbX4A5+s+jnP6Ovg/rriph+wMNgAEyFmqc8E+FmDumT8Rruaki3bbROHH2JxOMPZtdFi4TVieUb/fQeI3GJnYyRhe2Otn1oQasHlX27tyjGvloxnzQ//0Jjn5zSrMfR6JP80bsaebm5ti1axexWIz2dp0xs4Ut/AmgoaGBSCTCzp07gQSvz/2Qo/OPaR5z6vEA536jklXzK1Crq+TAxOsRIj61msq2t7lwV1nUxXGNxfva3S4qttl1yUGKDKO/9TP8fA7irGmjHIY/WV2o821F1B7IksNsImYsnQvhnYxoVwJJzh0pIkbHzSVU7dTJj8wmBn6+yOkfGyfkuMpFnMXGiNAAvXdV0HGTsTWB/DobO+6vxF1lrP2euyppvtYYeXZ1NMzK0IVVi3KWGSNwDD62zJDBykVKCMaeWyOyYoyQVdTspLTLWJ57oShqdVLaabzt+WMB5o8FDUm8BeYUTnxnDv+Ufq5rsZOdLJOjElDUH8M3FWUl25pHWmpR/X97sYXuW8uovVgjv8zYKOx6eykdN+sTUxKJBO5akZ53lVOxw5gPXdUitnxBr/hIGv5piZM/mGP2DZ11Jgtsu7OMojZ181CJoFtFaWkwhH9G2kjEylJFyWKHnjtKKGhQ16SMyCsqARh72c/QC/ofEtTuzKOs3Y4tlwszYnTL5Q4aL1KD8dQbUUIaj1xqPggtxTj9hJ+pN3OPw6C8xpNj/8jg2Eny8vL4/Oc/z09/+lPdvm9hC38K+O///b9z9OhRbDYbS0uneeml/0Y4nLsq4NycwPHjAiG/CUiQn5c7JkTDAtMTySoc9TGa2/Xjh2CFygao1K9zwNRZGD2VMCTJFU6Go7xC6LjEgiXbMrt1fR6KSbA2H2N1WnuTPWER0kQMd5mZtivsujF+ZTLBmd8ECCzFDclyCmawewRcJcZyksJ6C5035hsm2TTsd9B6Zcb6h0ZeXNpqpfM6N47CZL9T/c9yTHApjndaQQoZJ9iIDmMki6gfBp4KE1o2tha0Mh5jWU+OLwNlbSKFNcZJvBeCslaRwlpjea4UhpmTkra8WgamjkkbSUca99KWa8szxzFrUzKrkznWdjZVUKrf5aDrBp3cKHkeuwe23ezGXW5svDZe5KTrLcZzV2eh8WcHYOSlMOeeCehWUSqqF2i+RH3eUwQ+rSpKxGB1RmElJd2Yeje0nt+3skZo2aO2FTJYa2XsDIyezFLtLJVHpe6rkKC6AaoaN7ewDlNC/Z/DlWBbn5KW8JwcF8gd4GJ4XOq1DQ/AqdNatjAy8jSvvfpZpqenuPjii/H5fDQ2anTqjxR/mCjyHwCrq6s88MADfO1rX8PHCs/Ef8JFvAWH+fyHM1WNSCwSabq+ioqdRRz/yqhm+45SG2aD3jv6xRGVqCIlNRr9uQPf9Mvq20Nhh4u2t9Uw+PMp3Q19s8WExao/Wc8dWk3LsdVfXcb4Swu6hCXBZsFpYOM/RZapvqyYwnqXrkzY0S9kqUupgaUBH/4ZYwvsq8MhlEtiCDZjHLyFE2usDBrbMDn3swuTVdn9cCsWh4XX/vqMIfu8ChFZMlatp/bKUqx2wVD1nRNf1R7P/xZcSNvuBgc1e4sZfnzGULWjwg4XqwPGvkBreVsNBY0ujnxxyJD/vENBjg8ZIwSujgRYHfQx8az+V6oAUZ+MHDC2mLbSv0ppl0d9Hg1g9Ml5Rp/UJ3kVtrmov7KcY/88TGBa3x+uchuC1YzFoZ/s1F5ZyvzhRVYHAobuj8WqrgULdv22d3yomZgU58RXR5l6XnszOCW9d+JfRslvdBq674LVjCVPvx+uGhvN11dR0unh9HcmCEzl/pJgsW2Ikekh8IPD4WBqagrRyOcsW9jCnxDuuOMO3vrWt1JZWYnP5+NQ7HHK4/X02i7Jah+aV1/aOm+rwlPr4Oi8vvyPYDcjiJvynRRRKYMUE16SOf2DSQLJxX6rx4y8lmPOkWHuiPo2s+2+WhLxBKe/o70xbrGZMQkmzIJ+7nXq22rlJasTirsKdCulWBwWBJsZp8dKaEnbH6EFGazQc3cdI0/NEdSI9cFpidc/e063vynMHl4mr9zO6qgxGayIV0awbPKHyZyVSDb+4hIkIDht4AstGU59y7j0bF61jd77Glk47mX48dzE0kx4Gp2GiEpWj5WGy0uYfn0pPX618OofQLrtd2m7/poyoquyoQpTtuRmanTZWAXL7jtrCa9IHDeYC44+YYykDjD69Dz5tRokqE1EODkUwz9hbLxOvbaMrcD4xvERg+8tXXdUs3jGz+IJn+7zC2AvELEayLuwQtXuQmZeXaX/h8beRcyiGbPG+2GKUFnQ4qTlYCUDP50iMBVl/k2N1R0rWEWVLHX6h+sxdgM2P/NmEyaLCUehRZeI1XNXLc4SkdeHkvKekez2ITnEQuMpVofU8fRf/st/+ZP7kmwLWzCCN954gy984Qt85CMfYT48xFPjn+fS6vdgz1KORwmjyglZoOUKN8FFhbO/8adlgbLB5jIhbA6VqYXbTeSLc88EcBSb1ao9FpDj5JQvWhlRY4ej2ELbNfmMvODDP6dsrO1v2riZY7aaEKz66zvecQnvuNp+SZeDpcFw9n5k5ChWpxkxXz8WR/1q34pa7RQ0Ohl5UluybPCxC5MRW+oPENlcHScHQgtR5FDM0KYdwNxRP4F5Y1/Gzxy+sI/yOm8rxVFk5c2vGlsrsbrU+ygbWA8qbnNgyxeYOaK/5jDy1AojT5EmBv0uEnA5235yhRH0JepAJRGV97qYOXq+DGI2uCoshggtABU7PVRsd3Hqh/Pr5C2NMRBZVhh8PMs4zFKVILKsMHcqwNyJHISZTcdEvDHisrHqT76ZKMvDIWZP+A1V7Fw8FWTxlH5OZy+xUH9RAWcfXyLq1d9UteVZEGwCltRasYbvStodrI2HCS8qhiQBTZbk2ryYI05lVFFquz4fTDD4ax9Lg9rPZUpqbvSlIHP9YaKbx1SWcW6xm7S+F1GhKFhc0HplIasTEiMvBIlopICL9jcYWj1OHIXy8nLGxsaw23VYqVvYwp8Y+vr6CAaD7N+/nyNHjvDaa5+lvv5KmpquzWovSQICcWqaobwaTh5WkMKmrBWMUrBY1f/pISbDwBGIJJcxBCvENV611pJbR/XdIFhg5Lj6d8IqZK30ZBbAbDmvAFxWTBxV5yNBAHeFmbXp7HNDwiJgUmKYrSYsdrWyk94H0lLEDMRp2Gdn/myE8Bo5K+tIYTj1C+NSYqtTCnklEqFFY6ScSCBOTNm8HpnIWuFlZURGEE2EfVn6muWY8cPGqxcJInS9JY/5QYnZ08bWbRwFqL4z0HZpi5WVCdnQx+snfv77l25L3d8TPzOejxY3WYhFE+tSbxpIVRiKhTl/Ds1yb1oudRINJBh6MbzRLscxi0M5crrY+c/F7KmINjEo4zwms5loIEZo1dh4nT8TxV5gvMrVueeMMbyq+2wEFhW80zEkSf/dTMwzY3Ws+ycnQUmAwkqB1akY0yeV8z5cyXqIxYRZI16mqig5XNC0HUZOQNi/SeotSx4lCAliMRMDRxPpGJsJU5bHWhDUynaSxtakWYnT2JGgsBiOvxYnFjMjSdn9EYtJzM3+gInxs5jNZr70pS/x4IMP5m78jxymxO/zze0/ICYmJmhsbCQeVwNBJQ10m/fktK+/qpTZY16kFSm9Aa4H0QXtt9Vz0sAmyt5PtpNQ4hz+v4OadsVdbppvrKb/eyOGCAYplO8qYP6NNU0bV62N3vua8U0EdclEGyCiS2rqe6gZW76V1/+Psc2T+mvKKGh0cfwrxiVOjPTjD4nyXQVU7inm2Jf0Nywq9hZicQq6ZAsARLjoU134p0OGKirt+XgbZqvZsK8vBBf9RdeFjw8DaL21mrJtBbzxz+f0pQpT/pgMGaqm46oWqdxbaohI1nRjJfZCK/3fmTDY8z8QLmAsl+8qoGp/CUe/MmTomM531lDQ4uboV4cN+dpoP8QikV0fbCG0ENF9bvMbnUhB5YJkKfs+0EwsGtN9BuqvLqNqfwkjv5lh/g1tunTVgSJsbqshcldm3G96Szkjz87n9I0Ul3iJX5Aggcfj4fLLL+fRRx/VPccWtvCnjvvvv5+vf/3rAJgRuEy4Bas1+yKm1Z6gfFcRUy+pC/9WjxnZq7PgnYhTd2UJoaUoSyeTL645VmIrduZTf1Up488uMKcTK7rvriERh/7va5OUMuEss4KZDVJHiSyLJr3vrcdZauONzw/qVilJwwrorDk4y6z0vruR+ZNrjP7aANnVCtvf3cD48wuGq6sY6UdO5Kh2daHoeEc1gbkIUy/pbxI03VDB3OFlQySR7rvryK91GiL9uOuc9NxTz9Qri0wYyesuAF1315Jfm8drfwBi095H2pACCsf+WT/X7r6nDneN03A/qg4UIflllk7pLyD13t/A1CtLrBgkn+tCd/clCy5wLPe8p47FUz5dcmGq7b1/1kJgLkL/93RiyAX2o/vuGtw1To5+ZVSXzFnS7WbptP79SJGUXDU22m+pZvAXM/gntGtS7/pwE4l4gje/pPF+kHzmO95RxcDPZ9Tr1LlXVo8V2SvjKLFS0Ohk9rA358bhGekwU3H1Pbq9vZ0nn3ySujpjFXG3sIU/VQQCAerr61lZUXOppvy9tBVdnN1YkilpE/HPSEQDqoSQEtX5+k6WwQKNF+Ux+mKSOKCxaNx9iweTCU7+qzY51llqoeVKN+ee8RNOSXpl0zvYtGTpqRfTRCQg62aV1QXb31XB2niEoSfXsncgW45iISe5KnWulhuKcFXYOPbtWW3bJEo6HBS3OTn7iwsgLen14w+M/DobVTvcDDyqn+94GuxY88wsnTaWV+76QDXeiYihikpdby9FdFs49nVjxPNM6C11736oGu94xBAB5UJQudNN7f4CTv1kjvCi/k3c/VC1Ok4N9MPmsVDS5WT61SSRSINkU96bh7PEyuizaxt/yCWbokd4MyC3shmJROK8saxVXcpdZaV6v4czjy4aGv/V+/Op6HVz+kfz+iSlbM9Ujmu22GH7PVUE56MMZCMbZlRSsheqleYiazrnz9jpb7k6H5MZzj2lXUGpuNVGw8Vuxl4JpKWJzkNynBfUW3B4rMyeCINVm+FgsSjpanPl3Tbmz0bJtcunKAovzvwLUjyE2+3mtttu4xvf+IZm+1vYwn8GfOUrX+Ghhx4iHo9jtxeyZ89HsFiySzwJIYnSSlicVasqCSIoCa3cK4Y5mqC4Qq1A6dWZHtyF0NILE6dirOh8x17bARYRRk+s/5ueHJ1FVIkdG0iS8vlBun6HhYIqgVNPRc+vUpI6l7LpXAJ6SkcItjhd1+SxOCwx15+MhVpzkgBN+x0sDEYNyVwZ7UdO6FVNzDW/bjquqseKFEywNKI/AZa2WpLVl/S7V71dpLTJyrFfBHWvUXRA90EXUyciLJ7T6ccFUgqqe22Utlg59lOd9aBs91YnR+l6ixM5kuDc85uINlnuTU2fSElj0h9KlnNtOqagWiCmgH8+6bxs1508pmGfjaURhcBm4lsWgpIh/C60jQscy/X7HfjnFFbGjb14dB3MI7QSZ+y1sHYVpRz9yEVSqum1UNJgof+ZCFI2WbWMSkquYggYSN9TJCXRAS19MHYaQpmpVxb/tu0Fs1Wg/wjkkqhWSUoJaltgZhRiMRMxG2hVRLKaFWKSGUGM4/HAyqKZmCP7PDA3d5wz/T8CEnR2dvLss89SUVGhf8F/xPiTk3vbjLq6OmKxGHv37gVgljGeif8rUjz7bDn+7GKaoLTrA81su1d/0bP2ikrcNU5KDOjTL51aY3lAv5Trcr+fQ38zQGBawl4m0nCtviZ87ZWlNN9QRe2V2vImgckoY8/OXxABpfueevZ/ohPRpT1kjn1pmNc/Z3yDJb/Gib1Q1JXCS2HfpzvY8T5jMlpVB4rZ9VFjUg41V5Sw79MdutcH4Kp04CgScVXrd3ru0KoxghKApEryjT5jbAHm+FeGDBOUirvc7Pt0ByU9xqRBLgQ7/6yF3vuNlZk797NpDn/BAEEJQIKZQ8tMvLKob4sqD2a00lV+nRNXpTGJku3vb2LHh4yNuZa3VbH9QQO1VlHvyYFPduk+rykUNrmwua2G9KYBzvxoilc/e0bX1z3vaWD/JzoQDVaAlFYkRp+aNSRL2XVHHT33NOjaiUUijdepMe7YPxuTPZw9tEhoMcL8Sf16jjUHSijtLdC1y6sQ2fVQM13vUuXgRn6dm6C00j7GycIXSZDAbDZz5MiRLYLSFraQxNe+9jWGhoawWCzEifF87F85Ix3JaiuHSBOUOm6vYucDjVg9+nNxWa+H2osyJAZS8m+bNpyWB3wEZqPMndTftD/93ak0Qan2smJDkmGd76w9TzLWlOUF+swPxxl6YtYwQcnqsbLvo6203VKpaRdakHntc4PGCEqA1WnF7rFS2GIs6NdeVsz+j7fhrtPQVM9Az3111F1evP4PGuSE7e9rpOvuWkPtumvyKGgw1ueRJ+YMEZQApl5dYuIlY3mGfyLE4S8MGSYodd9TR29Sbuv3iZKefPZ8rBVXjbF7cuhvBzn9bWOVjsafX2TmdeObdTOvrhgiKLlqHDhL7DiK9SXTbMVW9ny8jbKdGlJ5GeNqxwcaVTlZA9j+ngZ2/5mxnM7qBHuhqF3NKRMyHPrHIV2CktVjZd/DrbS+TfvZzsTpH00x8uS8LkGp7soSWt9aSdkOfZnB2suKsXosBKaivPH5EV2CEsDSQID5bBUWNsXfkh43BQ15VO8tPt92EzrvqGLnA3VYnWoVvNnD2fM6WY4w2fAG0wm1ItxNN93EwMDAFkFpC1sAXC4Xy8vLPPTQQwCM+A7xzMSXiOTQPFsaTBKULNBzSyFNl9hA0V6YLmuzUdRgo6A+uZi6uSR+BhYHIqyM6n8RHlpUOPGjVcLLChY7VPTkmNdSX9KaTBQ12Wi9tpCK3ozYnCXvkgMw8uxaboJSFtRd4mHnvZVkKUS14VxDT6wYJigBuCpsOIpEXSm8FHrvqaDzZoNrBM12ut9hTCKuqNXO9ndXpisZacHuseAsE3GU6peP945FDBOUAGYOeZk+YkyTYfCXi4YJSo5SC733VlDQpDraZDIZklszgo5bSmm9UX9OM5lMzB0NcPSbU4YISgATL68xd9yYP6JexRBBCSC/2k5+zaZBl2NTt+WGIjpv0ZBuyziuYoeLtrfq+yKRSJBXZmH3A9WU97k2/HvOPtc6cBRYs8sLZcH0az7e+Nq0LkGp/vICdtxXicVgSqdEYPjZFQayEcc2Sb21Hyyk7S36UoqZMW7oGZ8uQQlgZVLBPyfjm9iU/2WJv9V9eZR16ultKlgsCj23F9J4qSqvO386mrvqneMER8PfQ4qHcDgcnDhxYougtIUtJPHggw+ysrJCbW0tkcgqL7/8P5mYeDmHtSlJUILqJujdCzaTokEOUuNMRT1UGdhi8PtgbRHW1vSrpkwOrBOUiqqNSYY17RZo2bMpH8givTR+QmHkcG6C0mYIAnRf56RmuzaxMhY1c/Lx4DpBCdQ5MPW/ze0CjkKBvBJjVWQK6gR6b3bjKDJmX7fXQWlbRp815rXGix3U782xBrLpuPwKK+5SY31YPGeMoASwPCox8WbEEHFFCsOJxwL6BKUkanbaaL7E2LqULuKJdL7hLBbofEsejiJj1IX+X4cYecVYJaCFIYnpE5HsBKUsWJuOaROUkv8uOsFdZsHh2TQmsxCUBFEl+3iqNe53xrmaL3eQr2Wbgab9Djr1JOTSHVFl3pzFxisu9f8mqEtQEkTovt5Jda9xlZGpkzFGDkV1CUoFFdC610KBAc5OUaVKspTC0P9qBkFJQ8Z8eUFgcRo2E5RS0m6pKkp5+VBarZ5DRXYfmpU49XUKvbtBEOPEJDMri9l9F4tJzM99n7MDPwYSPPLII/T39//JE5TgT1jubTNef/11nn32Wa6++moSxHmRR6mI17PNvDervbQi4Z8KMvFb/Y2I4V/OMn90OV3xqGJvYVpWbTNGfr1eyWPnR1oITEcY/Jn2YnbHbbU4im3MvLqoKZE1+dwiNreVyef0N1tmXlVftqoOFFOxu5A3/3FI037pjBeLQzAk0YWkynS13ljNiW+PapIkjJARMuGfCRGc1V9EB7AXWLE6LeRViGk5ulwIzkRIxMFeakcKaM/yw7+cZfiXxr/kari2nMI2N0e/oO3jVNtGYeheJCGHY8SVuC65+3dBXEkQk4z3xUh1shTGnjImC9J0sJL8Oqeh6lYAx75oXG4woSQMfzTmLLVhyzcmH+KfixJZizJ/2Nhm4MCPjVX22P5gE7FITCUhGnD1Yr8Xk8WkW8az4dpyClpcHPvicM74thnjLywQWtRfoO66oxZHoY3pV+Y1++GqFum6s5Gzj07hHQ5pynKKLhP5jS6WTvo59o0xpIC+M4JzEoGpEJOv5o6h4XiAV/g1iTMJ3G43Bw4c4JVXXtFtewtb+M+G5uZmZFnmiiuu4IUXXmAqfpaZyJBmVaXpw8sk4kX6lZSA418ZTr+oFHW68I8HshKA5JBKPgIobHXSdG0Fp34wqbnZb/VYqNpXRH6tI31sLgz/eg4hV1n/Tf1IVX3a/kADC6e8zL6eO5bKXpngQoQlI3K0yUvpuqsGYglNOSjZK/P63xqXfZs77qOw2UVkydgLv63ASl540yJMDtm3uBInbjB/0KtAugFW6L23geWz/rSMci54R0J4R4xvrOnJVWUiLsezEtZ+H0goCeSw8RILcshYIhOYChOYMnavtz/YyOIpLzOv6sufBKbCvGaQWG/3WEnEEwRmcvQjg6CUVy0iuixYDci4Aqyc9WMvMLZQIofg8P/Vz92dFVa63lHHwM+mCUzpv6PIXpnQYpTFfp0NSSv0vbeRqZeXWDrtZ+Go/gbmxHNLmC0mXVt7iUjVviLc1Q7dynEtN1VgLxI59a0Jxp/Vfi8u68tn4ZiPpZN+QvMRVZJSB7NH1lAiMU0C52npdWbiQzAAjY2N/PCHP2TPntyVkbewhf+s+OIXv8gjjzzC9u3bCYVCPD/1RRrz99BelF16V1FgZTTKclJ+DUXJKf+20B/FNx1NywEVNllZzVHZY2Fg/f2v44Z8QisKE69rz7UNF7vx1Igsj4aRNQgHKyNR7IUB5k7oz90rw2pMLmi0UdXnov+x5Y2b8Zvyk9WxMHaPxZBEF4pKimm5rphzTyyvS29lwdjza8CagUZVrI2HifqNzfGC3YzoFrAXW4gsax8TWlZIxBLY8s26UmsLJ4MsnDQmoQpQ0u2ktCOPM/+qvxY5e9R4RcUcPLusiEuQiJ2f75hMpn+z9Fs8Ficm525jMxlKMZ5aGvZzWU8eRU0OBn61BHH9/PK8ClEai1oxKYHZkuP3Tcc5S0TsOpK5KX9HfQqBeYnlIWP3fOo1L1Ov6ec7zdcXYTKZGPp18pnWccfaWBibW9h4X7Lk6CWdDkra8hh4dIm1EWODb+y3Xn3ZO7NA46X55FeLLJ0La45rqws63lLI2Ct+AgsJzj2d23cWKzjLLfimFM7+xqu9AZ0koioRWB2TWDibuxOKEuHFmW8gxcPk5eXxlre8hSeeeEL7Grewhf+E8Hg8TExM8Bd/8Rf81V/9FcPDv2J6+hV27foIopiduLE0q+7tS5Iag0yyQiIL4Qfg9JF1XmRePkSC2QtOEoPRfvU/nW6o7zYxcjyBpPFaLwhQ127CW5xg9ER2ybcUJk7EyHE55/XDn/x2rmmPlbXZOCtTG9tNSb6Bei3+BQXvnIE1oWQz1b02BBEmjmTsNZhNG+aqWAxO/9J4ruGfi+GfV5BCxsrPOArMJOICG0oj55B9i0k6e0oZxw08dQHJA2rVHv+iwvKIdr8jPoj4jJfWMUoyA0goaOZHhrHJSSaT2u6F7Dca7bfkT7BoMM9uOmBnbUZmZTymW9VICsHJxzbldDkqKFnsEFMSRAM57kvGuUQH2PNTUrX693F1SsbhMei3GJz5tX4eKjqg8RInE0fChFf173dMgsBiDO/s+c//ZjQfEFkcU/DNJfAZ2AZem4OpM0pawjIXzA4LdR3gXYLRk5mdOL//5Y3gKoDho6QJpbmQX5jAtwpBn4lTryeQIrntzYoCmFlMbvdrjdHZ2TcZOPOvQIKmpiYeffRRtm3bptmXPyX8yVdSysRVV11FIpGgp6cHgDnGeSb+k5xVlU59ewLfaAjRBfv/vIPOd9TkbDtFUOq6u5amayrIb9T5RMNmQhDNWBz6t+DYl4YZemxKJaXorKsP/ULVga+/pozdD7fq2udXO7A6LLoVhObfWEtLO1UeKNJt12w2YbaYyCvR/2IaVCmrPR9v0223/zsTjD9jrFrAyBNzvPbXA7oEJYDVwQCHPjuAb9R4QuCqtSEW6W902AusiHkWQ9WixCKRvg82U9qn/wW0q1pk36c7qLlC44unJHyjIQ7/3SCLufTl/w049sVhTn/HWFWuPZ9oo/MOY1UTtr+/yVAFMQBnsWiYHHSh1aROfG3UsBzhiX8Z5dDfnjVkK61IHP2nYV2yWdedtfQ+YKxSFYBgMyM49DfrKg8UAWq1rxNf1a+wkFdux+a26o7jhmvL1dgDzL66gncod7KTqt507F+GGfz5pC5RKhFDjStl+p+hbn+whdYbq4EkMS5HGLCXiRz4TActb1Wpzye/NY5/LPuCjW/bBKc8r6SrJz322GNbBKUtbEEHzz//PEePHt1QVem09FpWW/9ElLM/U7P35oOl7Hm4KXtVJZMZOQSyV32xbD1YSffdGXEyR1Ule5ENk9VEXOe9TvYqDP58mtM/UjfvtSoqrQ2FWO5Xg9eODzRSua8w2cXsLypWJ4huCy4DcezUtydZ6Q+AFUOVYix2wVD8T6HnvjqaD2rPs7JX5sTXxw1XgDryD8Oc+fHM+T9kqah08hvjDPzYWAXEFArb8/SNZLB5RMM5aN0VJXTfbawaS9vtVez4oLFKPGd+OMUpA1LQF4qlkz6OfH6I6LI+AaTm0mJ2P9yK1aOfI5Xt9NDz3gasTv2NL6vHii3fimgg93KWWHGWGMvRQCWOHfn7c4Sy5e+bxlFwWuL1vz3HzKvGyNOTLy5z7hfaHwRYnbDrQ00UthkYa6hxxWw16RPSrKSr7p785oSu3KLVaUV0CbiqdGKFFXY81EjF7gIAxp7S2CBO3oboiszgL2YMSVtaHGasDuH8Z3hTnC1ocdJ0XXk6pqQJSlme/babK9jzcCNYYW04xLlHs69GReQQU41vMptQPy648sorGRkZ2SIobWELGmhpaSEYDHLvvfcCMOo7zNMT/0QkB/Nm/JUQgTkFLLD9jgLq94rnV1VKSgelCEo1e500XerGVaFdVclkNqtrXnb9Na+hZ/yce9qLHED9lDLX55QmEzNvhsBkoqTNTvftxaqtRgx2FlsR3YJuJSP/lMTgr1RiR2GTPXcfkucymUAQzYguY7mXu0Zk251luv2YeMnL/DFjxJWl0yGOfm1Wl6AEEFlROPGdOQIzxknO9gILNo/+t61inoAt32KoUo3FDu1vK6awWT8Xtjih994Kynv15+SoV+Hk9+azkkv+rVWVBh9bZuTJ7KTsze12v7OMhisLDLXbckMxFTuMfe3uKLJiK7QaIii5azYt2uh8dTf6zCqDj2UhImc5buSpFU58W2dnKAklAgM/XzyP+LeZNFZzkYe2m/SrM6Vgsa3HFa37WtisPsfe8SiDv9T/OFBdV7TkfkaTbIGSDocaewDvuIRf45myJF9Hzj3nY/DJNV3iXQIwW03nE8GyxNm2t3hovlx9R1QiqizUeVJvyepJfXcWULNHZRmMvRwktJT9hdibf5I3gj9Aioex2+28+OKLWwSlLWxBB//zf/5PZmdnqa6uTlZV+u9MTLyQ1TYaNjExpMatspoE2w+AmKWqUtxmgdj6pnZzjypXpAfRJWCxogYTDcRiMHgkwehp9W9BI5WJBMCXfMVs3SdQVJ38IQe5CgFsbhMOA9svE29I6So17gqNTpjVmG+xkz2vzFFZqXaPg8oe7XWhmASjL4eJGSRGn30yyOSRLMZZyA8Tb0SZelPn4+1NxzmLjeUrDo+A3WAOWlQvUL/H2PpYZbeVtquMVUeaPhFl7PULYJRvRkb1pEwEl2IMPhPS3ScCVY6t8zqnISJdXrGZxv12BCOuEMDuMWN1mHQJSoKN8xVKNCTeoj44+2Qo/W61AZvOJYXh9GMasq+bsDquMHNCZ8wJ0Hq1E1e5sfo1gsOMIJrWiXi5qigJ68/x+OHo+bJ3mTCZEGwmbC4TDrfGu2IyzmTGnsUx/T7HYnDuaAZBSaN6ksWiVlyK2zY+T5urJ9mdCVp61Yp4QJqgFNt0nFmJU1Ol0LsPBCFOJGxmcsRMNirOevUklaD04IMPMjw8/J+KoAT/yUhKKZw4cYJXXnlF/aKGBC/yKIfjz+W0lySI+iVWRvS/Zu//7iQzh5fTZBd3Q463GwkO/90g/d+bAKDzjlrcDbmjaYpcsvtDrex9pF23H44CEbOoP1EN/GSK1//PAFIgrsqX6RAQ7GUijVdV0HuvNmliud/Pa/97gOV+vyFyjsUuINgE3FXGJsE9n2hj50eMSbmV9ubT+c7cBLNM1FxRYohEI7qg975mOm6r1rUd+LHqYyNVbaSAhKNQxFOnvwgTmJayfimWC6ILQ3J2F4q8CuOl+9SqS8b67CgUySs3VhP91LfHDUnf2ctE2t5WQ/c99bq2+Y1Oeh9oNCSDVtjmousuYxucpX0eDvzXTsr3FBiyt+ZbEV0GkobkbXjz80Mc/7I2qSqvIvkcG5Dp87SoY/H0d8YNjWPRZcUsCrp+azpYya6PdlHY5gJJjRm50HVPHfYytSLaa/97QLNqg6tGzTSHfjXL4C/0N78jCxJRv4x/NvcnJivxRZ6O/5hDJ14nkUhw2WWXEYvFuPzyy3Xb38IWtgB9fX3Issx1110HwEx8mKcj38Mr5yYWBOYiRNZkQ1WVzj0+y9ATKjHGWbF5QXd9E332kJcjfz+M7JVxVlhpvTm33NLquRDIavWlnR9qpeqAdhl/q8eCIJqxOrVzLzkEhz83xLnHVKKEERm1bXfW0nxDhS7R5MTXxjn5jYlkh3SbRXRZsOl8CZ1CxS4P+z/VRkGLMZ2E9rdXkbdZFjcLWcHqNNF9Tx3Ocv1+dN1VS8ettYZINIf/7yCDj2YhS2WBq8qB0wBpDCAhJfS/ls7AhZBzjMLqsRq6v5Ac+rGEoQpQ+VVOnCU2Q1WXZK/Mob8dZOw3+p86Nb+1mt4Hmg31ue22Kip25XjWNo2ftlsq8TQZG487Hmpkx0PGCN/2EgeCXUCwGsuZV/oDHPq7IfwT2hWoeu6qo+Vgpa6MpNWpjhvZK3Po74a0SUeoe1EWm4DdwIcTez7UzPb3NQCwejb3Bri7zp4mGw38eIaj/5xBZt9EAM2rUs+7NhRi8uUVhh/XHxPeySBhHem6N6PP8lLsZ5w5c4aGhgZOnjzJs88+q9v2FrawBRXf+ta3GB0dxeVyocSjPD/1FY4taG80h1dj+OeSz6ai5JSAmzoUYvJwUCU3AfbCjHi5aQH49KNrjLyg7jDU7nPi1JAP802r7XUeLKT3HfofYokeAcGmH6tnjgQ49q0FlADY8s0bCQhZchOLHZquLqLteg3ShNlEaEHh2Ndn8U3oVw4GMFvUPFHMN7Yh0P2OMsNSbq4qC/WX63/oBlDc5qDhigJ9Q0uScGOg3ZlDfo59fdZQBSElAnllInnl+jtESkitjmS4EJIFTaLU70pWsmchauVqK64kiBusKpBXKpJXZmw9bfwlL8e/pU8Ostih/WAJzdcVJTuUuy/2AgutB4vXn4lM203H2YstuuSrRCJBIpHAXS2y6/3VFLfnfs/JJCrZ3IIxsl/yNpz9xRIDP1/UvJcWJzRdU0Rrtud40ya2s0xteOK3Xo5/e06XSCQ6TAg2sy7hsLTLwfa7ynFXWUBBk8xUf7ELewEoATj+/RWWBpMLb1k21ewF6v+PvhJg+IUcH6JmxHAlAuG1GCENMmNQXuOp8S/w6omnkWWZm2++mXA4zM6dO7Uvcgtb2AIAFRUVTE1N8d/+23/DZDIxPPwbfvvbvyIczr1+HQ5C0A9y8nE3ybkl4IZOwETym2gtMsbaEpx6KYEUUTfdq1tz24Z8QAwcbth2tYVine0wQQCLaEqTL3MiBmeelZjuV6/F7t74c7ZqKjV9Ik37bNpEE7OZ8UNRRn6bfO/ONW1kEJZsLhNinrH3ene5QM+tbvIMSq5V9tpwFGz+kCcjXifnGkGA2t02bJv8kO246l6RtsucCAa2R888GWL6hLHyQQ6Pcfm7mJK4oOpIhqpsbUYOclIKgqhNnDuvuTialcNSc6mzwISrTCCmxddP3cMY9D8RZP6M/lpadY+Nzmvy1vusQVCq7LFRUJPj4jbN9xXdNsP3relSB21XG1sfE50gOgXMRl5JBAivxOn/VZDwSlxT5q22z0bTfnvW8Zt+7k0msJgQHSpBsP9piflz+hWiLKJJJYzpoOMSC6371HMFV3PLk4tOqEx+fzp9Ds6+DqnSnJnEJACbIwEkiIRMjJ2F6RzbrmYlnqyepMpwBgPata9GR5/jxRf+f/T3n6SpqYmRkRG+/OUv617jnyJMiX9r3ds/clx88cUbKmH0chFlZm3iyb5PteOfCdH/3UlNu8531FDY6ubU98ezV+hJul4sEtn1UAvBuTAnvqZd0aTh2nLsHisDPzEm/QRq5ZioX8Y/pr14vv8zHcSicV1JjdorS5l8edEQ6QZg36c7iKxJusSJC0HXPXXIwRjnfqZPQuj7QDOOIpFX//aMbp93fLgZMc9qiPDSdLCSmSPLmnJ2mSjucmsSMf7QOPBfO4msqdV79HDRX3ThmwiqkmEacDc46L23ifnjq+kqXv+v4WnJwzsRNDweG68rZ+HEqm6FrY531FDYms8bXxrSlajreU8DriqnIVtXrY32W2s5+bUhQ4xwIyjuctN2Sw0zry8brjRWf3UZ4y8taPqt+rJi6i8tZ/q1Jd12668uM3xuUAljHbfVcuxrw5p9cNXa6LmvmbUhP2d+mIy5ORajdj/cisVu5rX/rV3NKr/RSfcddUy8vMj0S9pf1M13DjA0MkQ4HMZisfDqq6+ye/duzWO2sIUt5MbZs2fp7e1FktQH300h+8UbNI+pvriQqt2FnP7+5Hp1jizyYQB7P95CxKdw4l/Gzv8xQ9aj/fYqChrzOPa1MU3pN6yw7V11nH10Jl25yQiqDhQy8+oqCY0X77orS6jeV8S5X82mpeCydsEJJT2FmvJwG9q9vJiqvcWc/uGkLnHCKKweK9131DD40ylCS9ov6bYiKzve18jKUIDBn2bJDTLunbPESu8DzcwdW9UlvORV2yiodzH9ijGZVKsTbEUOw/Jlv2+0vLWSsp4CDn9hSJck1HV3Lfm1ebz21/r55/b3N2LPF3n9s8YqN/4hUNCSx5pGpcRMOEusFHd5mHxRX0J77yNthBaj51eg2rSJbHXCrg+34ZsO0f89/XeilpsqMJlNulWULgS9761HdFs48g/GJISNPse7P9KMyWLi8Oe0pebcdQ7MFtMFyRW23VxJYCGq24dt99aSV2bn9X84t17FPotsY0GLk45bq5k77mXsyRw5YPLedb6jCmeZyBtfGNM894J1Gm/pOGNjqt3b3vY2Hn30Ub1L28IWtqCBP/uzP+Pzn/88ACbM7C56G8V27Y+4em4vILgoM/JiUP28VM4+j1XtdFC5zcHZJ31p0lIaJhOJeDJuWGDnncUEFmQGn9Su7lzSbiOv0Mz4y8Zfll0VFuJKgtC89ny7/d4y4nKCkz/YRADdFN9KOh2sjWrLMgHpDZbeeyuQfAoDj+rPdUZRd6mHRBwmX9aXv2q5oYj8Gjsnvj2j2+e2txbjLBE59nX9ObG8L4+10ShRgzmwu8qKf8a4NO7vGzvuryTiVXRl5xKJBLsfqsY7HjlfFm0TLE7Y+Z5aZo/7NtyLf0tlpguFo9yK7FcMy9+Vdjvxz0lEFrXvRfW+fCq2uzj1w4X1e7xJNieFhisLKG51cuJ7cznlAlPbC3aPhebrijj7qwVN4lrKh0a2JfLKLHTcUs70YS9zRwOG/F/S7WRtOLTRb5sISgVNdlquKWL6sE9bilAQKO1ysNhv/L3CYofmq4s4+5R3o9TkJlhd0Pv2ElZGI4wmSZ0mi5B1U63zJg+2fIFj38tBfLBaQVGwe6DjhkJmToRY6NcmUs4WvMbQ+BmCwSD5+fm88sordHd3G77OLWxhCxuxsrLCvn37GBpS3+fKirrpbX2n5jEFpQnqmmHwBERCJhJWAXM0e+DouQiiERh8M3tbKaJTVQuU1Zvof0Vb+g2gqRcmT8ZQLkDqq7AaVqcBOXeAK6w2U7/TyuhhCe/cpoqbSsb2vQCFVQKrkwZkyeJxCusEavrsDL0U0pefiueuoJIJQYCGSxxMvhHW3a8RROi60c3qhMzUG1kmZ9N6VSdBhO4bXMwPRnUJL6JTJdGsjBuUZxPAnqdKuv0/RyJBaYuFmj4Hp3/t1/VZda+N0hYrx34a0K3w2HixA1eJwMlHk43qVa3OBZN+FaRcxzkKMCRtBiA4oKDSwvJoTJOgBNB1MI+IN87Iy5seys39FGDbTW4C8wpjr+nnHqXtIlabSb+KUgoG8qj6fXacRQJnnkiu/WkQlNTfoaBSYC2LzGPmOdsuEbE64PRT2gFHLLBgsUJoTberaVS0mIjKAisz2veuvhsKyk2ceiGRltGM2ywbyEmgVk/q2gOz4zA7lt1nMZuAWYlT3RSnsAhOHQGt2kCB8AILvl8zMjKEyWTiYx/7GH/3d39n/CL/BPGfnqQEMDc3R319fXrDzIrIAW5ANGf5okWEHQ80sXLWz/izyRffHLqjYpFIy7Xl9Cc31sUicSOBIcP1eRVimjRRc0UJU68s6ZIutj/YhOST1zfuc2DfpztIJODQ32hvfNRfXUZoMWJYEqy4y039VeW8+XntRfSe9zSwNh5k8jl9fXp7mcj29zQx98aKccKDiLavRBBFjBFC9Nr6HdF4XTlV+0oYenya+TfWfq/9KOxwsTqgf3FNN1YSnAsbOr9RkpLoMtNwbRUzRxYJTGpPgq5qESmMLolHbdfg/SI5vuNw6LP6G3sXigvpx3nPd1YjjN1XEfZ9rIOVc35DRDzRBdve20L/Dyc0SXMN15aTX+vUJUNmouuuunTFt1xouqGCyt3FjDw9y6xGlaP8Riftt9Zw8jtjuuS+6ouLmT68DJI6dlKSmsB58Tbl+8oDhYgOy3pszsSmOL37o61MvrzA/BvZF32H46cY5QwA5eXlXH311Xz3u9/V7PMWtrAF43j44Yf5h3/4h/Tf7abd1FnbstqWbXdTuaeQ41/NiEU5SEo1lxYTWoqyciaA1WPRJBY5y6yEFmSsTihsy2fhmHb+46yw0nFrDQM/myI0l3txoepAIfWXlTL27AKzh9dyE5Ws0HawksFHjRMnuu+uYWUoqEkycFZYab2pmuPfHFsnGGig5aYKCpryDJMtsKLbrq3Iqk3+yrh/VieG5eQuBHs+1koiDkf+4Zwhe6P9sBVbEUzokrVcNQ5Ke/IZfXpe118XQlIq3e7BUWhl4nn9jVBPk9M4icXAfQWo2FNI07UVjDw1x9xhY8S5C8LmfmSpcgEqcU63QpTBawKVNFjeW8Cxb4wbqjxVe1kxeWU2Bn6iQdK3wvZ3NzDy5LxhwmBJjxuLTWDuyJqm3Z6PtZCIJ3Sf2/a3VyFYzPT/QCVz5ZSls0LFdg9zR7xgBZs79zOcGVvbbqlk9MnZ3M9O8v7VXV5Mfq2DU9/JTiqTZZlXE78kShhBEGhtbeW1117D4zFWGWQLW9iCNgKBAJ2dnUxNqc9gnlDIgeI7sFiyf0Lbdq0b35zE3En1HT8Rj2clBVjsUL0rj/GXg+m/MwkBidRCvdmE1QVyBFCgpE1kaUTKvXGvKGAy0XxVPvEYjOaqFpJE753FmMwmjn9vSXNzoKTdjiIlWBvdtHaRI690llmov6iAM79cyt7XZI7XeHUhoWXJkEybxQldb69g8WRAmxSx4SA0SQ6pdo1UMjLS1u+Ckg4HjVcWM/LMMsuDBua8C+iHq8piSKauYoeLqE9hdVifzbPrA1WGSEpYoHp3PqvDIUKLiiY5xuaxEI/Fc5J4NjS76VnRQs89FZgFOP5t/WqFaehsAP4u/bC6zFmvbcO2wgXc1957K1gbDTPxW30iHhbovLmU0edWiazkvg8lXU4KGxycezzHfc2SB9Vf6mH8VQ0ikSCo4/tSD2MvezWJSvZCCy3XeBh62ktkVQFz7goIRU0ivhkJJaJWR4qsrf9m2rQRmLpP+TUWHB6B+dPnr78mEglM5vXjOm/KZ+5kiNXx7Bc2Gxrk+NpTQILS0lLuvPPODe/nW9jCFv5t+M53vsP999+PLMuYTBZ6Wt5BWVFHVlt3QYKqejh7HNRqHgnMUpyE5fx34aIKUCTwrYBghdimVzaTlHzmTWq1EikMCOApAq/G1pxJjiE6oGGHwPiJGFGNFCW/DJp3W5k4KbM8iSZRqapLYKb/fNLNBpJSBmr6REKrsdxEnXgcwQENuxyMvRpOEwy0UNpmpaTBypkndUqbpCCgayfY0ZaIy4jjgoChfgKGyCMptF/jwGw2ceY3QUPHntePHHvaggiCBSStvDKRQHRBQbWV5VE5LU2YC2mS0k/0Czi4ygTs+WaWhpKDW4Ok5CiA8FqOH+OJjccauK/E4rjLBVqucDF+JMTKmNEbh+Hc67x+5KBnCELSLFsXUsdYTMbGNFBUb6Fim52zzwWJGUjVC+sE8kosqmRhIgFZqqABNF1kZ/ZMhHCO5cHEJmnIvGIQ7WZWpzXyZauFzkstmATof147saxsNSE6TIyfiCfPlzv3KqiAtWRhUtEOUuZ7q7jeT8GSIKaoY6e6McHcJOm/M2GSY8TtqpRbUVmcwhIY7ofs0m4ypwZ/zOLaAGazmW3btvHiiy9urXnxn1TubTMqKiqIRqP8+Z//OQAyEi/yKMfivz3fWIKjXxxJb4Lv+Xgbve9rzBpMpBUpTVBqvqmSXQ81q9JGKWRMAimCkr1MpO7iMnrv0ZckUEtF62snnPnxBOceTS4Ia1QSHn9mQSUoiWpFkuIurTqEUNSej81t1ZX7OvmNsTRBqeqAts54ZE0irsRRIsaia99Dzex9OHuCl4akEk1ctTaabswt7ZKyBbX6VGGHvs5X663V7Pu0zvmB0efnmT+xyvzJNV3bkp58LvpUF/VX65f27nlPA523G5MZG/nVrDGC1AVACsQZ/NmULkEJoO3WOnY91Gyo3Z0f6WTHh43Zjjw5y9TL+gS4rnvq2POJ7Bvgm9F0QwWgT1ByVYs036SOKT2CUsvbqjjwSCeuWmMawDEpRmhZe7XIVS1S2OZCCsCb/zikS/zxNObhKNE//44PNVN9mfqsahKUko/+yBNzTPx2QZOgBCBYzQiigKdWu/ykvUyk/orydBzUIijtfriVHQ+odrOvruYkKJX25nPgMx2U9qqi2Ef+4VxWgpIvvsJY41EmBLWiXHFxMRMTE1sEpS1s4feMv//7v0eSJKqqqgA4mzjCM9IPCcnnP5cLx/1pglJpj5u9H2vKKfM09dIyK2fU4L39PfX0PtCQsw+pqkxtt9XQeG25rgyTq8KBYDPn3uRPYubV1TRBCcgtcyWTJihVX1xMz7t15nMrOEvtFDZqS8KG5mSOf3UMZLXSia1IO1eMeGWUaNyQHJe7zsH+j7VRc6l2PpciNzS+pSy7TF0G8SRFbqi7Ql/aBatKMm19q04+B0y+vMTwb4xVedz+/kb6PmAsR9jxvmaab6rStQtMhRl9Qp+gdKFYPO41RFCyOk103VFH2636fa27uowDj3TgqtGv1b18epXZoyuGCEp7Pt5GnYF8tqjDtf5M6xCUGq4tTcuh6Z7/wy10321M8lmJxIhJcd12y3eqCwiTLy5rE5RQ5WzsBVYKm7Wf2aIuF33vV3OZpZN+bYJS8nEaenyW/h9ok8hBleG1JmWDtWLXtjtrqb+yTI2DMjkJSoXteex8fyPVF6kyMoM/z01Q2nZvLTver0osT7ywnJOgNF54nNMlzxNFXSn77Gc/y5kzZ7YWa7awhd8jXC4Xk5OTfPe730UQBIKxVZ5e+BKnV1/Iaj/4lD9NUOq+2UPbdflZq50oEdIEpbJOG73vKCK/en2BN3OjXQ4AirrZXr/fTdtV+bk7bLEkNz8ERKf+suXgb7yMPL+WPDa33dLZSJqg1HVrMZ765AttDkKsp9qOo8iaVe4LSG98jD6zmiYoFbVpz6VKCGKROLJkTD629WAx2+/Wz3uUkEqSqdqjvY6XImK4qiy4a/Slxqp2u9j+bv3zLw2EmXnTh9cAKddRamH3+6qp2q2/5tZwRQEdN5frSmsBzB0NGCIoXRAUmH7NR3gpplu9p+FyD713VRhqtvuOSjpvLzVkO/biKtOH9D8mrbvEQ89d5WDW3ySr2KH6Xo+gZHGpFZcAXfJVeZ+LXfdXk1dmQD/Eoj4HUZ/22q/VLeCuFkGBM/+6qElQAvDU2nGWitnjQEYe1HZjMWXb1Nxz/CUNglKynaWBMKMvaROUADCBxWbGWShoEpQsdmi8LJ+my1XfahGUOm/00H2zKofsm1JyEpRc5Rb63lVIQb3a6TO/9GUlKEWUAEPO33A68CyQoK2tjZmZmS2C0ha28HvGPffcQzgc5uDBgyQSCifOfZ/fHvu/hKXz17z8aybOHjcBJlz5CbYfgLwCMCnnx92VOZWgBNCxE9p2bPw9c6M9VUGprh2atpuwaEz7CaugykDZTejRZHwLMPpmkqAEKlEiB1IEpYJKE0171teGssm+AbhLBdxlGhJXZjOxMAz/ViUoOQpU6SYtyME4StQYgUR0Qc9b3ZS2aC+QpQhKpS1WxGyv+xmk+RQxqKjRwPwYi9N2lYOqHv0FutlTEhNvGst7mg7Y6Lg+i6Oy5Pdd1+dR06eTeMUTSL4EC2f1CUoXisBCbJ2gpAUB2q9yUdOXZa9rE2GoqF5g+80unMX67xX+pRhTxyOsGKjs1fUWJ6VtVt0KSo5CE87i5LjObDYeP+8elLRYEV3JcaPThc5rXTQcMKa5pygJ5EhC937lV6n9XJ2IqZXCNAhKogOchWZcJdnHdoqg5CyA1otFECC4jDZBKXmqseMKw0f0me+iQyUpqefLHTvqu6Fx23oczEVQcrgS9F4EpVXqfZkeNeUkKNV3Q2cfQJyVBTPD/SphaTPmV1+nf/zLLK4NIIoiP/rRjzh+/PjWmlcSWySlDPz1X/81iUSC+np1MXWJWZ6O/5jm+4vpukMVZq08UMj+P2/Hk1xsFkQTjtJkILQm2PvJdrrvVjeZSvs87P/zdkp785k/ukxcidP6VlVKTnTB3k+00fOeBkCthrP/Mx146p2MPTuPEo2x79MdaaJQmgyFKrG1/zMdzB5d4fhXRuh4Rw0H/qIzTarZ/XArfR9QCR5ikUjXHXXk1zlBhAOf6uKiv+xKX/POP2tZJ4OIquRb+y3VWJ0Wai4pYf9nOtJEhB0fbmbnn7Wkjy1ud7N01kdwTqLhYDn7P9OBWKQa9z3UzO6H14Vv9326g90fb6Xh6nJabq1i/2c60mSN3vc1sufjyY0hCcwWM5561b/VlxSy/zMd6WvreU8Dex9pT7drLxQBNWCU9uaz/zMdlPapD3f3PfXs/dQ6gajn3U1U7CwEEQrbVH9XHlAX2LvurN1ANmq7pYaO29R77qoW2f+ZDmqSm2cdb69J24ZXo5hFE30fWvf3/s900HBtOaASU/Z/pgMkGHp0hp3vb2HHh1s2+DtFcmm6oYL9n+nAN+ojMBumuCt/g7/3/3kHbbeqGy31V5ex/zMdzJ9eZebQMn0faGb3xzb6u/Odqm31xcXs/0wHTTdV0PH2GnofaNxA1tn7qQ66kmO2fFeB2t9k3N3s772PtKfHbHGXm/3/tYPtDzWpPrynboO/93yijd4keSS/0YnotuCbVhfuOt9Zs8Hfuz/Wyvb3q+3kVYiYBJADyc3jW2vY/+frtrs+2sKOlL9dZprfUom9QE3cmm+qVPufxI4Pt7DzI6oPlWAca56Flrepm3WN150/Znd9tJWKvYVU7i7mwH/tpP021Yc1V6jPgqtatd3+YBN7Pt5G01uqKdteyL5Pd9B1ZypGFKnPcos6hnvvV/29Nhog4pPourOR7nvUGFPa51HHbJI403Nfg+pDCY587hzVe0rOixHlewpUf99VR+/9Lek+ZosRKaJR57117Pt0B8e/PMLrnxs4L0bs/0wH9deom4itt1XjKLbhqVX7ny1GNB2spLDDxUWf7mL/f+0EESafWzwvRuz/TAett1bTc18DDTeU0X5bDW9+eZj5N9ayxoie+1W/FHe4iScSjDylbv5tiBGokptdd6v+Dq1EMVtNGTGinr2faEtrzu59pJ1t99bjHfUTU+I0H6zMiBF17P2kOr6luMTazlHetLzA0PAQ9fX1fPe732VpaQlR1F+83cIWtnDhsFqtTE9P88tf/hJBEIgT4+XErxitOsKeh9fJ2tsfqKPnPvWZTxBHsK3nCXVXlbDnY83pjfue99TRm4wlS2f82AssNFxbitWpzod7PtacJs1su6+WvgcbOf3DKcafXWD7g80031hOfoOTyj0F7PlYM84K1bb77hqq9xVz+HPDBGckdn+0mV0fVuetsr589nysmfwG9YW/845qKncXpvt30afb6UoSJYo68tj7iRaKOtT+d7y9it1/1kx+tR17gZVdH2qi607V1tPgZO8nWtJzRNvBSkiQroiy68NNaQKGs8LK3k+0ULlPPW/LjRXs+VgL7bdU031HLTs+0JgmQVk9qm2KaGRxCIh5Asjqb9vf15D2IVbY+4kW6q5Sc6DC5jzMVhPBBXW1q/e99Wx/sCF9r/Z+ooXGt6jzScO1xVTuKqTlRjUn6rmvjh0Prd/XPR9vS5ONuu+ro+aSUir3Fyb9XcfOD62TlXc/3ErbbVUgQyIRp7g7n4LkPNt1Zw27M+ae3X/WQuc7a9Ikmr2PtFGyTc2n226v2jD37PpwC1131bJ02od3IsjeR9oo31kAQOvbKtmTkVvt+GAz2+6tZ+qVRWaPrrL3kTaqknlk88HKDblV3wea6HlvA223VlG63cXeR9qovawk6Zcy9j6ybrv9fY24q9YXi/Y+0kbDtaoPay8rYe8jbVidamLW894G9n6yjbIkUWbPJ9poPqj6sOpAEXsfacNZoo7Z9nfUoUTiTB9SvyTf87FWWt+m2pbvLGDvI21pUpKn3kkiQVoab/fDrbTdruZLJdvc7H2kjcJ21d8tN9VQ3LK+Abr7z1rSY7agJU/1d08+tmIrZouJih0FadudH2pOvyflVdvY+0gbFbsKaby6gq476jfM9Ts+2EzPfaqtrUgds9WXFVGxo5Cuu+vY+4n1e779wQZ636uOWaszOWavLCE4GwaT+ncqRvTeX8/29zWs+/sTLTRcV8bMq6ssnPKy9xMt6RjR8546dnxgfczu+2QrzW+poOG6Mir3FbL3Ey0bYsTODzal+7DnYy1U7y7m9b8/R2RNZu8nWvAkY0TXnTXs+lBTut3Wg5U4ikScJdacMQLUZ+iiT7XTdWcNq4NBrE7rxhhxcyV7HlaPbbiujJ0fbCIuxzj+1TGcFVb2fKyZymQe2XywnN0PN1PQovbJ4rAg+WTkkBoH9nysmeqL1RjRcG2pGmeB1bNBEvEExZ3JjWUr7PlYM3VXquO77vJknHVCZFXGmiew/YF1Auaeh5touFbdlDX1+ekvfYHB+dOEQiEOHDhAIpHgYx/7GFvYwhb+MLjrrrtQFIUbblCldifDJ/nNzD9RcUWEhovVuJNfY6HvzgLyq9TFWsEG7gr1vxNCgm23FdB4uWqb2hQvbLCwMhlFicZpuEidIyxWleDUck0+xBPY8030vauIgjqRkRd9RAIK2+8oSrfd/TYPbder8cySB333lLI8FObs46tU785j1/2l5Neotp1vK6TjxgL1oizQcbAAd5n6zrbr3eXsfagyTS7oeGsRnbesk6v77iuj/jIXtnyB8m4nffeVYXEBJjNtNxbTnUEcKetxsXg2SGRZobTHQd+7K7AXqg23XF/EtneuE3F7762g644ymq4uovqAi773VuJK+rDpuiKVPJKEWTThrlDXw4pabfS9txJPvfp341WF9N6zTnTJq7CS0h5wllnoe28lRa3qxlH95R5671u33fauMmr2e7DYwV6g2pZ0qXG+5iLPBrJR120VtN+kXqvFCX3vraS8T72vVXvc9L1XtQ2vKlgdZjrfvu6XvvdWpglGFTvUa7XYYfp1Hy3Xl9C1ybb6gHpfS7c56XtvJXEJVkfDeOrsdGf4cPt9ldRdouY4xW0O+t5biXc6wuSrazRcWcS2Ozf6u+GKAgA8DXa1T3tc1F3ioenaInruXvd3z93lNF2r5mzuKit9763EJKi5VeOVhWy/b90vPe8qp/UGdbw4Sy3sfH8VnbeUgkUlAWXadr+zjLabVFubx4KzVMQ7oTJ3qw/kp30I0PX2UjpuVudKix0sdhNyOCnJs9u1wbbjllI6b1v3YfPVRYhuddOlvMdJ37srsCT3o9pvKqYrOWaVcAy7R6Bmn+rDki7V3/YCdRy23lhM9zvLcNeI1Oz3sOv9VdRfrtoWtao+dCYJRs3XF7HtXWXU7iukcoeb3vsqaLxKzdM99eqYza+zkUgkaLqmiN57KwjORQguSjRfW0Lz9aq/XVVWdtxfRWGzOmYbLi+g792VoMDpHy9Q2pWX9re9yMKO+6so6VTHbN0lHna+p5LWt5Sk/d3+tqQPXerYKutRx2z95aq/h3+zwvHvztJ5cykdtyQ/gLAkx+xOdcxW7XJR2GDHVak+cx1vK6bz1owx++4Kqve6sRdb2PNAFbseUGPE0kCYthsK6b51PZ5sv7uU2gMuGq/Ip7TbTsfBQgZ+tcrKSJSWa/LZdlth2rb3ziKar3WBBdyVVhIkmDmpjpemq9z0vH3ddtvtBTRepl5bYFlCsJnS8a/hkjx63l5AIpEgkUjQfauH5qvcBFfjagy+2EVhciO8br+T3rcXpNtdq36Dl1e/y9DQOWpra/n5z3/O2bNnc1bV28IWtvBvgyAI/OpXv6K/v5/y8nIi0TVePvp3jC3+jG17FVJ7Ws3dCVp71P9OAHYnOJJkiuLSOD0H4ljM6qZ+Uze09antL0yD0wWVDWrVlcJSVQ5OdACJBPXdCdr2wEQ/jJ5I0LbHRFULONzgLoZtl5pwJF/t6zqhql3g1LMKkQB0XGqh83K1D3mF0H2lhbxkmKruNFPRosaNomrYc4uNxj1WVSbLY6L7WpH85DRc2SHQeZVIXqEZu8dE2yUi9TvUY60ege63OCioTs5xHRZMZhg/rLIoWq+w07BPjdWCCN1vcVBUr9qWtlrpPuik6SInDQecNF3ioOmi5OQoQPdBJyXNqVzWhJhnQhDMCKIqJ9Z82Tqxo+tGF6Xtah6ZV2zB6jARCan+btjvoOXK9fWaroMuKrrVPhU2CjRc7KRquzrH1e2x03b1um3HtQ6qetR2q/tEWi5xUpz0W02fjfYM2/ZrnFRvV20TsTilLVZcpeq1VvVY6bh2vb9tVzqo2WnDNxdDicbpPugkv1KVCa3otNKZQUZqvdxB/R4bKxMKq5My3Tc4KahR2y3rsNJ1gzO9h9J8iZ3GfTamj0dYOBeh+wYnRY1Jf7dY6L4h2W4srvr7EgeV3SKuUoHug05KU2OiQf1bSG6nNO63U9iwPs90HcyjrEP9saBOoPumPHXMAvV77Wx7Wx75yTHReUMeFV3qmkt+pdquPcnrqOmzIUXjLCU/QOi4zknVNhHiCVxlarspUpKrwgIkCC2r97X9aic1O9T76CiA7hucuEvU3LCq20ZxozVNEGq90kHdbtVWdKljK79aQBBVPnJFR3KxKZGg5QoHDfvVixEc0H1THkX1Fmr67LRf5aT7xnVGW/OldhovTl64OUH3TS6Km61U9thpuTSP7ptcacJOU+aYTSTofqub0nYR35xMPKYeKyR5ZQ0HHLRckTFmb3RR3iXim4mzOBil+4Y8xORyTt0eO61XZdjelEfrFU4qukTc5Wa6b3LhKFB9WLPDRttV689Yx7UOSltFTv06RGglTvcNTvKS/q7uFWm/dr3dxj0i7lIzogMcHrLGCIC6Pgu7b7FT32sm7INETI09BcnXnfIWE11XWHB6oKwJWvcJmAUT516PIYhqTCtKfqdZVq/+7Ux+F2MRIexPpGUtt11qolTdaqC0KkHPgQSCkCAcgHgMCtdfJejZn6C8NoFJjlFcHKNnf0xtL2pGtEN7b4bt7jhVdeo4M4szDE79CycHfoXP5+Omm24iFApx++23s4V1bJGUsmBsbIxz586lN6a/8rUv8/2nvk04HkAOKCjhGLGkLuzacDD9pemuh1oRbCaiPhkSCZRQDCUcQwrGCExLrJzzIwVlqi8tZtdHO4nF4kR9ajtKRLVVgjFmXl0msiYjhxTabq2l94FGpICC7FPPE0/aSsljo14Zk9lEw9XJ6i9+BcmfZJtKan+jPhkkkIMycnSdgin7FaQMKRQlHCMwHeHV/3WGpQEfSjimEnsAyasg+zfaSsmvjSt6CzFZTJAsKSn5ZKQMWzmssHzax8zry3hHg+q1JhnMsk9GCqzbSkGFiFdm98Ot1F5SrtomKytJPgUpuG4bWZNYGUyWCTSrfVJCqm3UJyMH11m34WWJlVG/6oewjBKOISfPG/EpyKGN7a6NqZUYFFltN3XtEa+MHFb/e+r5JYIzkbQfkCTV30mCTdSvngcAEWz5VgQx+dhJbLCNrKm2kgQnvjZKZFXa4G85HCPqlza0uzYcZuypeSSvtNHfIYVo8m8paVvQ4KKw1a3em0CmrUw02X8pqKz3N3mtmf5O3ZtUf8BEXok6A0bXZOTQur+lgJL2S1xSUEIxFo6uJfu/0d+Z41uWQA4oLPb7krZS2t+gjoFo0rbvA60k4gkia0l/B+QN/Zd9MnLyORn82RSSTybiS/kwea1JmUfJLyMHFOYOrTLy9CxRv0w0+RzJSdvUFwgpH574l1EGfjyBHFKIJM+zOUZIQRk5GGPppI+jXxhGDsrp/qdjRHLMWvMtWOzmdMU1KagQ9Z4fI1L3JuqTGX1q7jwfZsaI+mvKKKx3EU8xuqXsMSKRiONpyUPyquOh/7sT6WvfHCOiXonVgQByWCEWXmc+Z4sRZqsJd60Td6Uz6e/sMSIWVXBX5dFzXwOST0EJKufHiOQXc4LNjLtGTXTm31hVfR5JtRtLj9nG68qxOMwosRhSAM7+bFr1eSpGeNUYcSz+MmdKX+HIkSMIgsBdd93F8PAwd911F1vYwhb+8LjxxhtRFIX3ve99AAyNDfKPX/oH+uXDQHLuT8aLpYEg4WUZySfjrrNTtbuIeMYXMqqtGt/GnlxA8sWI+hR639NE5c4C5GAcZDltG/XLIMPcG17kYIz8Wied76gmHo8hB+PpL0yiXgUpkPEljxmsLgvuOjtyUFG/zIok56KMeXZ1KEBMThBaVBuSQ3HkYAw5ueAR8anz9ZkfTXP474eRAgqJRFyVsorISdtk/uFfb7dyXyE2jxWTVc0pYhKqbTqvUefvkSfnGfjxpDqnpXIVWW031ZbkV/8u6shj10ONCFZzep4Ctd1Uzin5ZMLLEqsjIaxONR+RM2ylDNvgvEzEKzP0q/mkD+UN7UqB9Vxl9sgqkl/GOxRY96E/M0+Q0znz8BNzas4RTuVlSnq+BogGFCLJvwvb3AiiGTmYkUdm2vplJJ/C9MvLTP12Qb2XSX9HN+enPpmoV2LqpWW8Y2HkoJL+PeKVkIPn2xZ35FPYmr/BVs1PN9rGY+tjWA6u5zlSQEnaJpI+lLDYBEq7PGnbiFfaYJsc3kRXJUILEYLT0XV/p3KtkGobT5ZlDy9ECcyufxkuBeT0fZSDsfQYb7qhAnetk2iGX6J+mUgyT5DDartKOEZ0WWbu6CqR1fXPtCT/eh8S0bjql7DCia8PszzoXX/GTOoYTI3ZeCw5DtcUTnxrlNmjq0jBjfleOmeTQQ7FkHwy/T+cZnkgkL7/6fuaMQ4tNoGSdneGD2PpGBHdNLYiXpm18SBjTy4gJ21TMUKNNeof29/XjNUhqONQJum/GPKmGJEiF4WWJGbfXCW0JOeMEQArQwGUSGz9PuaIEXWXl1G2LZ+oT0JKVihQY0Q8nSNFvAqC1Zz8OEXtU2Au+WW+LCMH4+n3KNFtweIQKOlR/eSbCBFdzXiXCMbTz1X5zkLMVjOyDEO/WsA7Fk6PJVBzW/+Kn9NFz/P8sd8wNzeHx+Ph3LlzvPLKK2xhC1v4f4PHH3+cxcVFqqqqSBDnWz/4Gj997ptElAAxCaRAAkVS556lQYngghpLOq73YHcLSME4iUQCRYojBeLIEVACsDgQRQrEKGyw0HtnEYl4AikZz2JKHDkQQw7GWB2TifriSMEYbdep5KRIIE7Un4zXMTW2yMl3TSkYQ7CYqdmtxqFoIEY0o6qLHIynzxNaVYhsmKdi6RwCQArECC3HOPrNBRYHwsjBOJ4aW7JdhYh/fc6Q/DGk5N/VO/OxOgVicizdp6g/lq7OIvljrA2HmHx5Dd94FDkQQ4mm+rAey1O2Ub9C522l1F1WhByIEUuu00X9yoYcKLQos3xOnaPNVlQfpvziW+8fgG8yytJAACWS4e+kX+SAsiGv8U6HWRpKyoPE2WArhWLIAbXd1eEIK0NhVboq5e9ALO1vKajaKsmfHaVWzOL618aSX0m3JYfUPsVkheHfrBBaljf6JaCk53c5otqGFxXmjwWJ+GJIgdiGdlPXE5PUc+TX2CntyiPq2+hDNf9IrqvICbU/iYx7kzE+ohn5aVwGEuCutoGSzHM3jK1125isIPliLJ+LrPsoow8RXyy9ZqQoEFlRWBkKJ/0dT/tovU/q39veVQaJOFLynsvheJb+q7Yzh/0E5tbXEdP+TlbiiPoUpEAM/5TEyNPLBBfldJ6QajeupPyg+nv0mVUGfj6P5M241mjynidzcXXMxgjMKQz8bFHtU/J6FCmBFFBQImofxHwBm8dCfp1tvf+p+yirtqlxGA3ECCxEGX1+Jdn/2HrlJSU1ZmOUdDgo2+ZeX/NSNtkm74eixHBVWpACMQJzEiPPrSb7cH6MkIIxIssKIW/Svym/+BUi/o22kKC42UF+lV19f0zm11IglvYDqLlsUb2dlivyUSIJoquxdCWrqF+1TVVRsuWZKahV9ySWh2Uiqxk5ZyCefhZK2m04i1SZQRQYetaL5EukY48UjCEF4wz5DvOm8iNeO/wqZrOZT37yk4yMjHDzzTezhS1s4Q+Pzs5O5ubm+OpXv4ooigyNHOOrX/+/jM+p7z/RCESTr+NBn4m1JbXSnehQq38k4kBMrawUDav2AItTEPSpFUFa+qCmBaIhiAsqIUQKQzSkElDWFiASTOAuhI69JkwmiIYTxFLxLbJeeQnAZErgdJtxFqiSclIokZaWkyJxtV0gsKaeI7Sm/h1TVJkwRVZzASWq/j7dH6P/aYloME48lsBiV9/zo8H1nFMOJ9L5nbtCIL9cQLCsr5VEgwnkKGA2I4fjRAMJxg9HGXs9hBSIb8gNowG1agyAHE0QDSQQPdD91nx1/zaY0W4gnp6nlGgC36xCaCkGAkTDcaL+zHZj6TlZCoB3RmbmaCTZP7VPKUiB9fl9ZVzGN6/gn0vOEeFN/fWv57ITR8IEF2PpnFMOJ5A2XFs8PVe6K9SPDtNzxOZ2g3GiwThr0zHmz8pEg+uVdJTwxv5Gg3GioTgrEzHCK8l7kxwTcjhxns+iwThlbSKeKkH1dzixfs8DiTTJJxqME5M2+Tvpw1hUvfbUFB4NxRHzzBTViedda0xS242nljaDcYKLMSLedR+mcuSYpN63eDIHCq/G8c1k5FqBdX/HJNVniqxWMSqstyJtuo/RYLKDMbUPsajan5mTEULLmTncJlt/HDmaYOTFMLNnIkRS9yYeT/Zho1/kSJyzv/YzdyZy/n0MJNJVl6Jh9Vqnj0ZYnZRV2/i6bSTjWFu+meIm1Z+KlPR3sstSaOP4jqzGWBqWmDsdVW0DcWLJahZSOJ4eh22XO3B4BNWHMYjJcXVsyfH1doMJ3MnvC4IrCaZPy0iBjBiRGofJGAHgnYsRCcSRkmMpHlNjj5K658lxWNEqUN5oIRJcf9ckpsa0VLtyFCxWlZwpiGqMDaylL5VoWI0nCdGCRVQJn+4SABNLsxDJUPGOREBJnqeyWZWKSwBzU2aW5iAS3mgbDEgMTnybF177OlPTk7S1tTE+Ps5jjz2GIGhUivtPClMiW83mLaTx2c9+lk996lPpv0Uc7Oc6RPOmyhqJBC03V2G1C5z54WSajSgFOE+eKK9CpPXmGo7984jaZqE1p1RU08FKZo4sE1mQcFWLG2WPMiAWiUgBCSS16svCCZ+u/NSuj7Yye3iFmVdza7C331ZDcVc+534xpUrB5UD9NWUoUozpF3X03JPouquOiFdm5Fezudu8ugyry8LQo/pSHW23qv08/b0xfKNagqmqr2r2FzPyeO5zp+CqFgksSmkZuFzoeHsNweVoWtYuF/Y+0o53NMjZn2aXO8jsY8ct1Yy/uIB3KKhp2/nOGhQ5wbmfTWt38gJw0V904ZsIcurb47+X9lzVIi031TL8mxn8Y9rlkbvvqWdtNMD0y9pjKa9CpPveJmYOLzGlI3uy/cEmhn89rStL525w6PYP1MpQ+fVO3fOCWo1AsAm8/n8GdG3tZSLtN9dw/CsjOW3EIpFtd9dx6rsTus+4egD03NXAyW+MaZrt/VQHJhOa/RRd0HN/C1OvLjGfkjHKgcbryhl9Ut2Y1opdmb+1vK2KiWfnNiTemdch2kxIAWi7tRolrDDy6/mNNsnpzF4mElmQyKsQabu9jtPfn0BaPb9MaKhlnteHXyYWiyGKIj09PbzyyitblZO2sIV/R8iyTFdXF0NDQ+l/6zDtpdbacp6trVCg/ZYqzvzrNLJXwVZkzSlRlKoENPHsElZnkoOQxdTqsVC5q4CJZ9X47iyzpmXhNiP9mxWq9xZrzluJeIKKXR7KdxRy/JtjmhJgez/RSiwS441/yj0XYIXOW6s58yNjc7/VY6XrHdX0f28spzQTqPJMZ38xZ0hKa+8nWoj6FFVaTgfVFxezes6X05fqqpuKvGpbmliTC3nVNhquKOf0d7XlrmovK6G8T/W53jVV7ivEXeVg8Gfaeae7zknDVaUM/GzGkJ+MoOvuWvJr83jtr/VzBaNouamSRByGdfLdgpY8KncVMvTYNHJI+7Ww7eYqXNUO3vynYU27mkuLsbosqtydFqzg9FgJLWX4MYfkTv3Vpcy8uqg5fkGVOOy4vYaZwyvp51gLLTdWEJgLM5dFAjaFphvKMAtmhn45p9seqOM9Fo1pyraV7fDQ8pYKpl5f1uxn5b5Cyno8us+ZrchKYaOTuTe8aenKTF9lSr2lYpezwkphc37O2GX1JGX1rLDtXbWcfTR7bMiMqW23VBJZlZh4Yfm8eynLMiOVh5mYUa+lpqaGj3zkI2nJ9S1sYQv/PvjlL3/J7bffjpT8eCffUsreotvPq6yRiMep7HVgc5sZezkIFlWVTYlwnvySJQ+aLs5n8FkfKCA44ijZpNTNJsq77Xino0TWEtg9pDcaANLMF0jLfSkRKG6z45uNqhJy2ZDc6ei8pZjFgRBLA7nf8at25FG9N5/hp1dZGY5syEkyUdLuwGw1sXAqx0S0SVai9mIP8XiC6Vdzr6MVtzlwlIpMvZx7Dkr3c7eLyl35DD62iH9GO/+w2KFsm4uZIzr69agVgKJBJbfcVRLV+/JRwjHmT2ivT227swzfdJSJl7SvyWKHukuLWDzt172emos8YMKQn4xi1weq8I5HOPdE9jlQT9ptMywuaLqymKnXvYQWtJ1Zf3kBwUWJpX7tpMbigs5bylk4EWA+17gDiCdoPVjM5OteIsva57YXW3RtQK3ElV9rY+Fk9vuduZXQeXsp9nwrR7+uv3ZrcUHTFcUM/jL3e5PFDm03ljL4m8UNcUPrnjRdW8TIcyvZx3EyB9p2RxlWh5mj39DI5yzQeVMJC/1BlgfDammSHCjf5mB+IAwK2AsEImsZmiwZUm/2gnU5t6o+BwsD4ewyexaw2swoEdUOYObYxtiV8rvVpUpoWuzQcrWH4Re8KKHzc+hQwSSvnfs1khzFYrGwZ88eXnzxxa3KSVvYwr8z7rrrLr7//e8DIAg2tjW/ndLC8+XnrcSo74SpAZCiaiWQ1AZ8wrLxmS+pBMEK8xNq6IpLSlapKMFioqgaFpNLKaJjEzlJXj8o87eiGljR2s5SYrhLobzFyughOU2CUDu7MUfqukYkocCZ59WLMSnZNa1qtluZOiXnlryKr+dsgggNex2MHQprylnV7bYxfTpKTEfCFKDzBhdyOM7Q8zqLEEBBrUBoLYbkz2GQIeUpupJ7xpnYlEeKLqjssjN+KLLh2PPOW2WmotvGyEuhDfcROG9POr9KwFVsZuZkMu/KQQsQ3SaqumzMnIoiZbt0LWmzHBLz1b02SlusHPtJLgfpIEu7Ze1WzALM9cvn+S/zOLsHSpptzJ6Knj82Nl1LeZeIp9rK4FNBbb9Xm7C5BOb7swy2TL8LKqFFykyn4jneNVpFVic05PNS+14eE23XuJk7HWFhQDr/nJtQ2i6iROKsTuR4kBIJSlqsWJ1mZk9sWovNIfPmqRYQBFjJ0WbCaiGvGNousjF9RmFhKLduXX6FibJGC0OvJselNXuOIojgLoK1OUBQ41ymrzKl3lKxyyJCYZlK6MzVpoJaZaupC6aGQJI2+tIkx9LpYCwGlU0q0WphAuL2jX2NxWRmVp7g7NARQF3z+qu/+ivuvffenNe/ha1KSrr45Cc/SSKR4OqrrwZAIsyLPMqh+DMbDU0mhh6d4cwPVTHWrrub2fVRVQYpVTIvheCclCYoFXe52f3BFpoOZtd4H3l8lsiChOgy0/PuFrY/2JTVTlpJEmlEqL2ojG1312W1S8FeJmJ1CtiLtDfjz/50irk3VjQJSgDjTy+kCUp9DzWnK8HkgqvSQUFjNsHWjDafWUgTlGqv1NZqn3h5geBcWJegBNB5ew3lOwrTMl+5YC8T6XlPCz13Nei2WdDsoqQrX9fu0N+e1SUopeCqdFDara9L6apxkl+rI7777wxPsxtHiQ2zRT/k5Nc6Ke7Q92VwTuLQ3wzoEoVK+zw4y+x4GrXHZF6FyLa7G9PyalpoPlhF7UVlaSlELcweWWH1nPbiYGmfh7wKlVijRVACKGrJw+YWKWzWvufbH2xSv9CX0CUoAYz8eobBX+iPTavDgqdG25clPflU7i1OS9HlIii5Gxz0vqclLU049IuZ7AQlYP8nOum+T41/gz+b3khQyoixvfc3suN9LYgudYwc/cLQeQSlxfgMz/EzXh9+GZPJhM1m4+jRoxw5cmSLoLSFLfw7w2q1cu7cOQYGBnC51FgzkDjEM9IP8Mob4310NcaJr40jexWsHit99zfQfltV1nYnnl1KEwG67mpgd4aUWCZkr5K2a7+tip53N+Aoya4FnyLctB6spPbiItx1uTXbTWYT7monokt/QXjo8RmGfq1DhpBJE5RKe/PpuqtG07y4xYmjUMTdoB2/T317EtmbJC+0aedpK4MBZg6taPcTlcBQe3ExzW/JnusCKpnBZKb77jp67mlMy23lQlGzG3etE0+T9lw4+eISR/7hnCEyUUlnPgVN2v4BsLoE8sodFDT8x8698uucaXkxLZR05uNpdCHL+t+tDD46o0tQAijuzKekXT+X23ZnPb0PNKtydskxkA3OEitVuwtpualat8218RD+qRCzGqQjgKoDaqXYoV/NaRKUADz1ebq5dmFbXlqebvrlZU2CEsDCUS9Tr2kTlAAcRVZEl0X3meh6Zw31V6qfqcmh3ASlbffV0XNvA1ghNCfnJCg1XFvKzvc34KqxgQynvjWZk6C084OtdN6uxqDBn89mJSgdkZ7hSN4TTMyMpatWTk5ObhGUtrCF/wC46aabiEajfPKTn8RkMuFTFnl64UscW/71BjuT2czsibBKUAKaL3PT+45iLFbSskMpKEEYfFIlKDmKBba/vYSqXVniaDzB/MkwkZU4WKDrrcW0X58xf2RspCsR0hv79Qfyabu2KOfmCoIZiwNEt4DNo/216szRIFOHvCpBSb3QrHZLZ8NpglLbjcW4qzbF5U2bJ55aGwU1uXNDgOXBcJp4U9KtPc8s9AfwTkTx5yJ8Z6Du0iKqdnuwebTzTotdJW60Xl+saQdQ0u6kqFU/rzj1gwVdghKo/LPCJjsFjfptempsFCSrXf2hYTKZLpigBOAut+OutGGx638dXdTsoKjZoWunBODkd+a1iWHxBK4qlVDkqdb2kcUJ3beX0XKD/v2uu9RD7QFPmhyYwuZnHWDumJ/lc9rktfwaG/YiC0oATYISQF65HUexiKd63UfZ7knLDUUUNKkdHHlKm6AEMPbiCsPP6L+7iPkW8spETYKSs9RC7f586ver1d1yEZRsbui+pYTGy9R3jJljOQhKQN87i2i9xpO2yyQoZfq98VIXvbcVY8lTY+LAr84nKAXkFZ6d/xdeGfwVsbhCSUlJumrlFkFpC1v498f3vvc9lpeX2b59O7FYlOOD3+WlN/+WQGhhg52MwMhxlaAkCNB9MdR1qL+ZlDgmZX0NfWlWJSgB1HdBzyXZ85mYkmBxXF1Hr2yG7otMiBlTceZGf4r0Ut5sor7HgrNA46IsAg6PgC0vyxxqMq3/Dxg9LDF+fH2vIJGDCDF1XCUo5RWbqN+dZb3evH6NzgIBZ5EZZ5H2PDxxJEosrJIY8kq1bZdHJRbOaX9AB4AAtbud1GzXmNtjcYjFqemz0XmtKy1vlgsOj0BBrVXtowYpaG06xsCTWQhKcN6etKfSQlG99roCgNmcIL/SgqPwd6j4Ek/kJgz9nuEut5BfbtE9n7vMSvHm607ej82Y75dUgpIWYnGKakWKG/X3kGr6bHRc70ZwoJKTchCUBBGqttup7ssyMDbdx4g3weqEzPK4tNFmEwrq1Pu3OCifT1BKtZk8Lr8y6ctMbHouHR7S8ove6ZgmQQkguAwTJ7QJSgA2hxmby6TmnDkISgAN2wXqepK/x3ITlOq3QecBE4KgkjpzEZRKa6D3UhNOdwIwMdJv2kBQMsmxNGmz+1Ko61L/fXYkO0FpeOI5jpz5HGeH1P3F/+//+/+YnJzcIigZwFYlpQuAJEm0t7czNjaW/rcK6tlm3qv+keHK4i43Zds8nPmR+hRUHSher1iU+XIlQu89DQz8cBQpoFZoyUW0abu1hsXTa6wOBjQrvhR3uQkuRYksSJT25rM44NOtBNR1dx1DT8xpVmZpv62GwjYXb355JKedq9ZGz71NLJ3xaVf2EUn3SSwSNc9bc0UJ9ZeWM/XKIuPPLOS0S6GkJ5+lkxqkKhEKm1ysDuh/VdZ+Ww3jv10gsqDtQNFlzkmu2Iy8CpHCjnz9KjwZPvp9oLDDRdvbahh5cpbFY9qLRkYrKe36aCuSTzZEgrkg6Fy7YR+mmjN4f9pvq2HqlQWCc/qOL+5ys9yfm/2tOw4zsP8zncSkGIf/bjCnzYZr0PGP6DKz68/a8U4G6f9O7ioTPe9pwFlm5/XPDWi2135bDXMnVnWrepXvKUhXWNoQ8zYhM8513VXH0K+zxx5XrY3AfBQktWLYykiA+cyNxGTMFYtEPDV2Fk/4KOxwUdFbkI69QDrmymKAxcZx+s/0q/0tL+cv//Iv+chHPqJ5XVvYwhb+/fDzn/+cd7zjHSjJL+ktiOwzHcSZKhWS8bV7682VzL6xQmAqSnGXC99YIGvVlbK+fFyVdkaeWAArODxWwkvnb/g4SqxUHyhm6DGVMOSqsRGYyr5AUdaXz8IxNeYXd7lY7s+eYySSL88FLU4KGvMYe0qjAqMV9nykBe9YSLO6T9cd1biqnRz90jntKjNW0hWcrE40bXd/tBmT2cThzw3lNspAQYuTtaHcDRa25bE6qPOiD+RVi5R2exj7jU4FHsDqNOlW/kmh+qJiFk77tMlKGf75faH77josDoHjXx3VtDNaSalsp4f6y8ro//GEbrWpC4KBa///s/fe0Y0cd77vB2igkQNBECTBBOY05Mxw8kgaxRlZWbIlW1ayLFsrex3X2uv1vffdc3bPPbvvbXzeaN/1OkdZtiRLlmxZWaOs0eThzHBIDnMOyDm8PxoAAQIN0rvat9578T1Hx+awWF1dXV1VXfWp78+5z8bykI/I8uYqaTPPR1+tpnrAxsVfl3YihY3b2GbTgOSsVr+nkgtPz5Y8iJF1EtqE2m+qxdZp5Pi3xmQd3fR2NX0fczF/0l3y3dfY1DQdsDP0RGkXLLUejPXSu6V3qBG0KnwThd+HCqUCfY2a4FyMinY9pga9LByV6efUFjVtH3Bw9rHpom2jZoclC3e131zL/EkP3rE8MgqAYM80p0aO4fV5USgUXHLJJRw+fLjkfZVVVln/sbrhhht45plnsj+3GHbSYdkLSG5KGRkdKipbNYy/KY3vlW0iy8PpE/G5a14qaLnEyPg7XuJ+0FWqCMk4uTgH9PgWYvhm4mitCsLuVJ6bUkb6KhXJWIqwO4GpTkVoKU48WmRTLGfzoemAmZmjXnn3JSS3ouotBgYfW8yGXV8vtVFB34drWBoKMvFakXWVIhslKj3ESwxPFa1a2g7ZmX7XvSn3I5NTvaH70GbSgOSQtHw+SNhd2l1HpUUWrlgvtVGJpUnL0pkNxmQVGzo4/TbSVqrouMHO1JtuVi6ULmwxJ6ViIEz3B6skFwUZx6V/tTa4d5URKlx6FnMdlNa7COS0tc0+H+dukxS+b2XjijfVi/im8tdpcrcQTHUiPpkDaeu17f5akokUJ78vfxAj7x5y6qfYc1Fpoe+uWjxTEUZ/Iw8eua60YnXpOP7DuZL17dxlxDcdWXtnZAAlS5OIJ70paGvRsDJaZD6uFPL6uab9RuZO+YkUWT7UmNIhnuJQv0tP0J1gdXTtvc3Ut0oLhioVnsk4ukoVjk4N42+sfVsp0hv1YVWQZdO7nDpzCpDWvP7iL/6C++67T/7myyqrrP9QnT59mg984ANMT0v7aEZdDQNd9yKmw7Qoo2sb/LUt4F6EkA8MVggH1zbqc52VTBVgMsSZTZ+DXu+WlJEgQo1LwfQF6WetQQpxlOumlJHZAd70tpzJDj65LZm0K5LWBJZqgXk5QCGVAgF6rhDxLiaZPiq/vuHsU2NrUHP2+WBxl5nM/FQg67okiJR0VOq4Sodaq+DMUxvPuwD0lUJeWK/10tkEQiulYQyQnoW1RcPCuZw5mgxkU3AP6519csZka51AcCVRHFYCaW8kp37W/31JrR+Hc+bX9QMaNCYlI68UuXDOvGWzTkqGKoHGHVrG3goScueUr8QcqKQyf5d77zLQl6VOeoZ5dbi+znP+tmQbS9eZoIPKJpGFwY0naboKgZAvWegclvOcSrbDnOdU0aTCtUfPxTeDuKdy0q975nn3kFtHRcDBqnYVNZ0azr8cKHQCy8mv8xo9S2MJ5i/Ivw+CCDVtAtODOWmKAUoCGMwQWJVckUQdBIt8fqXUAqJeCiOnM4HZDvMyy7CZfk4QoL4LxkYFSOTDSQDmKvCml+1qW8CzBMGc5cMMpBThNKfOPofbvYpCoeCGG27gpz/9KTrdxgcSypJUdlL6LSSKIhcvXmR5eRmTSTotMcc4zycf5VzyaF7a5UFfdpO86456XFdXU9GVPp2dSz9G4eS3xoj6Jeee3rtcbLm3qej1hx6fYnVI6gG2fNTFjs+3F023POjLQjVtN9ax41PF02VkaTNgdRlpudpRMp1nKiDFGi8BFPknI7z5V2ezgFJVv8wp6nQWVdss7Ph0G82HqmXznHp5adOAkrFOpOPmevruc8kniiIBSiJZpxc5nX9sKutkVUoZeKTuko1PJHV9uImG/aWdoTLlBDbl1rMZxXzRbBzW90vJeJJE9H3MM3OvG6xztHzASeMlDrSO0pVTvcuattAsXcbM8z3/2FRJQKl2n42qbdLJplKAkmgTab+5nv5PNpe8bkYjz0xz9tHSQNjAZzvY/pl0uCOZIhpqRIx1IlF/kjf/+mxJQAnAPR4g7C4dzlA0gq3LjOtK+XcUpHe59VonbTdLLiZygFLN7gq23OXKvvODPyoetk60ifTd15p1Mjv76PQaoLSOIN/2QAut10nXXT3nzweUgFDSz0vJxzgcfZbBs4NYLBb+6I/+iLm5uTKgVFZZv+O69dZbicVi/Mmf/AkKhYI4UV5PPcEr0ceIxfI/8i78YjYLEbVeW0PffcX74IXjXglQAno/XE///a5seKRchZZiWUCp6eoqttzVSIXMCfIMoNR6fTXtN9Zu6PDTeFkV1VutEhwipxiEV2N4xkvDPYOPTPPO30uAkqFOlHdcSa+BbHuomW2/Vxg+L1fnn5hh6MmNQzYA9N3fSNcH64vWYUYZQKmq34y91ySbLjAdZew30legWl/6FHssmEJtUWPfIp8fgL5GpPHyKpqv3mDulVkj2vhg2aaViCZIxt7fuVcqnto0GL+hMve6CQ6n8TIHXbeVnjcDVA9YpSw3AJTUegXB+diGgFLbDTUAG8JHPXfV0/Wh+g0dh0ByVht/ZbEkoOQ6WMWOTzVjbSv9Ltu6JMexC0/N8vbfXpAFlACCSzHCnhje6dKhhZuuqMLWaULvKH0vfR9roeMmaf4TXIgVBZQAtj/UTO+dksvT6oWgLKDU89F6eu9slCBGT4yzjxQHlCp7jDRfU50No3nhydl8QAm4EDvBc9Ef8frxV4jFYzidTvx+fxlQKqus/wR6+umnCYVC9Pb2AjAaOMKzM//IqPdYXjr/QjwLKDm36Wi5zIylQVqszXNbicPoK37i6dBEPTdZabu6+DrRzNEgvikpZEPXdRVsudVaNF1wMZ51Lmm72kbXTZUFJ4JzpbWqsHfoqdtR2uUvsBQl7I4T8cqPszF/iqPfm80CSuaGdWsS6zZRTE41W+914twlP19ZHQkzdnhlU4CSyggdNzlou85WMl0Gtqi/pLQ79/TbXsLueIFjznpl4BFbx8YL7q0HK2m6xLphuiw08j4Zu8RDcVLx3/4cbin3pETsfV7zytzrBoxQ/U4rTZdWoLUVqZwclwKLSytBcBvsfWWe78w7vpKAksWlpaJVSlwKUFJpofPGKjpvtpe+cFrDv1li5NnShwy33FlL7x3pdWkZQElllGC0eBiOfW+2JKCEUoF3NkJoJVa6vlVQ02fasH8w1qhoP1hBwz5pbb8ooASYnCp6b7HiHJDmkONvFAeUVCJs+ZCd9iul604fDWcBpfWOVV3XWWk5IL3LoeV4HqAEEI+HOTz/Q16d+g6nzpzCarXyd3/3d8zNzZUBpbLK+h3Xli1bmJqa4qmnnsJkMuEPzfHqsb/k3TPfIBrL/76bHZUAJYDmLdA+sPa7XGcl3yrMTEnjR0M39FyiRCiyhZKIwvSQNHeyOVN071dgktnaygBKVc3QtkuFsfQ0hOo2FdXtgrwpnUIBSQVBdwr/clLWTQlg5lSM089KgJKop9CFKOOolOYdWvbr6Lqm9Hf82DshLr69Ofq6cZeWtiv0CCXmShlAyVAlYKqRv5doCBbOSOOHIFIStklEJZDCVJ2JNVXc/UfQgWuPDkdXCUfFVGoNQBHYPKCU+VuZ9Mm49F/xX/72rkoKBSRiKRJyTt+/bZ6KdNoNACWAxl16GnbLtJucujfXSc+jFARHKiUBQCE2BJQc3RoQILSagPXz2Jx6rxvQ0n6VAVHO9D4n7ep4nLG304CSzDeSrVlF702mNUcxGUDJUCm9X4sX4pz6lTygBBBPqQh5UwQ9pYG9KpdAVYsKzQZm9m07BFp3Sn1ZPFocUAJo3wGdO6U5Y8gnqOOJngABAABJREFUDyjVd0LXXgUqUQrdNnZBlQWUcp2TdCZo3Qo16W2F2dF8QAlgfnmQl975U15761HC4RB79+7F6/Xy1FNPlQGl31JlJ6V/g44cOcKll15KJLL2YdJMN62K3oK0Tdc4GH9eGs377ndx8bmZtRBICkW2k+j8YD3Tby/gn47i3FfJyoivqItP09UOwt4o8++6MTfrCS+Gi25YVO+yShtcwwEsbQY8E4GiQIKxQYN/UrqPlutqGH1hriS40HSNA2uzsWRoquZD1dTurmTshXlZYAGksFRnfzy2qQ2X1htr0VpFzvxAHuhou9nJxIszJTvMTDpHv5ULT06V3KQw1on0fayN1Qtezj0qHw6reoeVtuvrmD26wujT8iefTS4dqVhCNgRWRqJRyY7Pd+Ee9hZAF/kJYd/D3XjGAwz+qDSUsllt1klps9r333o2rL9MOs+4n8Efbnwf1TuszL/nLp3ff+0mFoxz5G8vyKaR6rkT32Rww/vd/V+6UCjg7b8o7XQA0HJ9LVNvLctCfeZmPW03Ojn6v4Y35ZjV/eF6Vi76s05FxbTny12kkvDOX8mXr2Z3BbW7Kjn2j6XdMeoOVOIe8hGYi+b1D+uV6yjVckOtbNvPdZbqubuRwUcnit6362A1Y89JDhpdd9QzeTjtbJXTT4LUV7onpfqo6jcT8cULXOiiqSgLnUNMTE4QDEq/u/7663n66adL3ntZZZX1u6v77ruP73//+9mfNejZx3Wo1fmb+WaXHqVKAhtqdljQ2sSiziV6h5qaHRVZaKnuksqi4Y/UenBdU8uFJ6U+rqJdz+qF4tBE45V2Jl6SFuHXO7ukcj6mM84m+ho1xlo9C8dKuxxu/aSLyTeWWJFxaQLY9YU2UqkUR/5OPiRX9YAFY42WkWc2ditCDVvvd3HhqWmCc/LuMJU9ZiZf3fiE+e4vtZEIJ3nvn0qHNu25qx6TU8fbXz1fEqDZ8ZlWBK2Kd/76fMn8Nutu2P2ReixNBt76i9L5dXzQia3NtGG6zWqzTkqbVfdH6jE3GHj7r0qXr/P2OipajLz1/5auZ5BgL4BgCZi79fpaHFstDD4ygWdUHirq+JATW6uJ9/55rKRTkWO7hdZrq5l6Y3nD9qXWQ+1ee8nwaT0fqcM3G95UW1Vb1HTcWM2ZH8rPXev222g8YGfspUVm316VTdf3sUYWT3tKh5VTQ8O+ymzZMv1DQTI9aGxa/FNhrG16lCoFK+cKQUa1RY1oVBCcjVE9YEGhhLkjhdfX2dUYa7UsnvJhatRS2Wkq2lcanCIN++2c+9lM9t6n3yjcGJxWnidYu5p1Hrbb7fz6179mx44d8vdeVlll/c5qamqK/fv3Mzk5CYACJV2my2g0FK55OXq02UX4lsuNzJwKEU5v2CgUClLphX3nDj2rY1FCy3EqmtUEl2JFN/DtHRqSiRQrF2NozRAPxouCGJYGNclECt9MHJ1dRcwXJx4hvcuxtsakrVARXpV2Uar79cwPBkuCC/YODbY2PUNPy48Z9m4drgMVjL/mZjHXNWjd5knbdZWMHV4mvonD+tXbDBgcmpLwhXOnkYXT/g3BlOptBhr2Whl9Ybmks5DKCP0fdbIyHGTsJbdsOqNTRdct1cyd8DP1hvyYlgFrNnTrUcHAxze+LsD2B2rxTEaksF7vgzJOSsO/fn/yG3jQycqFIGMvuzdM5x4Lb+o+rC1a3KM5z02pKGhb2x+oJRZMcPonJQ51qmDgfqn+Rp4tfd0tH3Wg0goc/3b+uk6xrYPqbUY8F8OEZVzHtDYVLVdVMPjE4qYcs+ovsRBcjLIyJG3KFwPH+u+tQaGAE9+Td2SyNGlw7jBz9onSUJStTUtwOU54NZ7XPwB5TkompwrfjPQ753Y9M8eKz3FNdSp8s1I9Ne03Mn3ET7zItLl6i5b509Jzrd+lZ+lCkLAbFIIyr56dAzrC7gQro1FMNSpSSQkOzVU8HmfW9gYTM2P4/X6USiUPPPAA3/jGN0ree1lllfW7q6997Ws8/PDDhEJSX1hhdDHQcifCOspIawBBDQE3mGygt+RvzKdUShTROKIWKp1kXZVsdbBSLPiJAHUtSK5KCgUGQ4Kgu3gZq5pgMb2ForesAwfia3BCxtlE1Enp3PJdN6RStO5UsXgxjm9eHnDovFqHoILBZ9cd0Mlx+zQ5BAx2JXODmziNJUDrXg1Tx0NEZJaMBC1Y69Qsj2ycX/d1RlLJFOeeLX3YsG67BluTyOCv/CVhl7YrdOgsAqd+sW4SKSjz9kmMVQL+xY2dnJx9IvYWkZPr81unmh41jnZNfrp1c+vfRnXbtJtyUiqpnHmQs19DZbOaU7/0FzoP5aimV8TRoeHML72loSKQ4B8lRHOLKCjz7rmqTU39gI4LLwfwL8hfuKZXg6NDw7lfeeTdrZCgtvYrDUwfD7M4lFPAdftgIE1NbK1ifrp1qtuuJepPsjgS3xBEE0So26Zj4p2cAq4DlMw1Ai37tUwcDbMyJn+/Tbs0+ObjLM+WOGwqQGW9wPK4lI9ogGjua5JxUhJAq4OwH3RmCeou5twmCKDSQTgiYKoEtRpWivQxKlHqf7yLUl9UUbPWV6ZEVRZMEnXgaIKp9LKsraZ4fkveEVaTbzI2dpFUKkVPTw+PP/44HR0d8vdeVkmVnZT+Ddq5cyfhcJhXXnkluzl2kbM8n/oZo6nBvLQZQKmiw4ipTo9jWw6WnNNhnH9sKguvNF3hoO9uV9Frj7+wkIUVum5vZPvvF38J5t91Z0M0dd/eyK7PFE+XARDMzXpqBmz03N5Y4s7B0mhAW1Haxebib+ZZOuMtCSgBnPjGKFF/EkubYUPnGXOTAUN16SNew09KgFJFh5GmEu5Qw0/OcP6xyZKAEoB/OkpgLsTsMfnNB4D599xMv7VUElAC8I2FNgSUQHL/CcyFWBnZYCUrCsGlCJ6pjcOoiEY2dB/atEQJ4NrMNQMLIVbHNrgPEfxTQZbPbS5E2kaAEsDQL6YYebb084j6k/inQky/u/GG1fGvDTH4U3mQSTRKYRkBRp+ZLek6Zu8yozGqMTnlydrafTZ67pbexbM/nSoJKAFMHF5g5JkSYRYBc50BjUmNaJN/dqIRGi+rpv3WBgBZQKnukko6P9iQfc/k2n7bzU46bqnPulAN/rA4oOTcV0ndXnvWZencoznOVutp704TtTukfnTxpDcPUIqmoryrf55XeZJz589hsVg4ePAgqVSqDCiVVdZ/cn3ve98jlUpx6623AhAhyMv8nMOxp4jF1hYMvGPBLBxU1W/F0Vt4ijyVTBFciGUBpaarq2i8tBJbd+FRjliQLKBUPWCh64P1su6JGUCp8fJKuj5YR2XPWn4KpQJF+oR9BkBov7GOlmuqSzr46B1qtBY1xprSc6CR5+YY28B5cv6oJwsodd/hxNYjf3TFUqdHZxWpaJE//R9cimXBirYbakrex+BPp3ivBOCe0dxxN6ujgQ3BmdHn5zj/2OSG+W02/OryBR+ro/4N3ZS84yG808FNuS7pq98/ayZNpXpT1/RMBPHNbBz2bHXULzl1bWLtLjgXLQkoAYw8M8vka4slASWAhRMevBPBDUOpLRzzcPZnUyWhooYDlRjqRGJBSgJKAPpqLVaX3LEzSVvubUBfI4V5KwUoAUy/scL8CXdJQAk1aG0ilubS1+2+rY76fZVZ9yQ5KHDrA6103y7NNd3DwaKAEsD2TzTRnZ7HzR/1FAWUAHo+0oArPY/zTYSzgFJq3SZo9VYrlmYD+hqpfOsBpeXqSZ6L/YTByDFmZmZoa2vj2LFjLC4ulgGlssr6T6z6+nomJia4cOECNTU1pEhy1vcKz819nYnAmby0GUBJa1VQ0aTB3rp2mjuVSmVD9M68F1wLg7TPTMcHKopee2kowspIFJIp2q+xsuX24o6InslYFiDouLaC7lvsmYtKmxnpeVcGQNBaVTTsMWddSeRkcmrRVapLuvwsnQ0xe9yXDyhBgZvS8K8kQElrU9F+Q2n3bUuDFmN16XWWmSMSoKSrUlG9TX58mT8e4PyTCxuGPov7wT0eZvl86TUl/0ycydfdJQElkOCkzYQTIy5d1zu1sZOBdzqCd2YTjgcqKdzcxlJAadNOQGovm7mmdyqMd2aDULwqWB0J4R7beI4G5ANKUNQ54MIzi4y/5i6dURxWRkIsycwZcnX60QXO/zIfVs4DlFTQkHbnmj/ulwWUAMxODboKEaNdvg4tTVpaDkp2HFOve7KAkpwmXncz9krptVlDlYi2Ql362anAdXkFzZdbgbX+AUHIA5QsTSKd11dSu01yVpADlKq36Oi8rhJbq/Tujr9RHFCyNKho3GPKuixNvSsBSqSSBSBYdZcOR5e0Xuibi+cBSvF4nBORX/LC0j8zOHQag8HARz/6URKJRBlQKqus/+T69Kc/TTAY5M///M/RaDSs+sd44eT/w3vDPyCRQ1mEAxKgBGCvh+p1W3mKeBJFIkU0nA8ouXoFzMWmVAmyYd+M1hSd+1RUFQ/2kgWUKuqgc78KS27wBZWQBR2i6S6zrldF04BG3lUJEDQKdDahuINgjiaOhpg8UaSDVa6N/b6FRBZQcvaLJZ2NRB3obSoMdvmFlkSYLKDk6BJL3sfIa34uvLTxeLsyFmNlPLohODN9Iszw4SJjzzpYaDOAEoB3LsHyWHTNYUhGgaUk7ulY/r3KQC+iAcmdqaQ255Mi6GQirqbyHZQCy3E8M/GSgBKAf35z9QwSMBNdz1DF8y+wOBxj/N1gSUAJwD0VYWUiWhJQAggsJjj/QqAQPMqp64omFTqrQCJBSUAJwFilwlStKgkoNe7SorVITlB5gFIRONw7l2DmTKQkoARSGLqNnMCdnQIN/WvuSVlASa3KC/XWsVugbbf0c8grH1qy4xIVLduldL7l4kARQMs2cPVI9xYN5cCciVReaEuLHaqcoEuXb31+wdQoL536a46O/JDJyQl6enoYHh7mzJkzZUDp36iyk9L7qCeeeII77riDeHztw6GeVroU2/PSiTYxCy8MfK6N8Eq0qHOMsUGDoFHhGQ5Qd6ASrVlk5JeFEEBljwlthcj068uYXDr0lZqiAEfN7gpSqRTz77qxtBmIeGNFXZqqd1mzMETu/5dT9Q4rWqtYMhyb62A1NQMVnPruqGw4rZ47G7C0GDn2LyNFy7VeufVYTLv+oANBI/DW/3N2w7x672niwgZQiXRRNuV6s1HZLG0Gej7cxMzbS5sKY/d+ac8fdZGMJnn3/x0qmW4zTkq1+2y0XFPLxefnNgTR3k/t/UoXwYUIJ78l49vHxvW/lpBNuxhNvbOMb6z0zKLnzgasrSZO/2iswNWnaNk2uP62T7Witap562/Oyabrf6AZjVXNu38j/0xFm0jrNY7SjlxIThPei16i/tJOVbn9Qtft9Zz7WZF8RWi6zCG1bxHab6jLhoHMlblZT+OlVdm2JudiUtFlpOPmes49NolnOFD0GftTft7leXRGLX6/BMXt37+f119/veR9l1VWWf95dejQIZ577rnszxp07OYg2nWxx9QWCTqoaNfTcm0N55+Yxj8VyduIVygV1OywZN1Ouu5wMnF4sSgs0PwBB6Np0KfukkpmjqwUBT1ar6/OAkH2PhNLp6Qv3jwAQA22diMrg37UFjX6SvWGkEf7zbWMPT9LrESynZ9rxTcb4vzPZMK2qWHP59vxz4VKwxhqsveWqcdisrbp6f5QPQunPBu6NFlceqp6zQw/XeooXc71NwqzoQa1WlEyxNiWe5vQ2TUbzoHeT9VdUknT5Q7O/nyC1RIbf5t1Utr5uTYUgoJ3vyrvEPl+q/FqB84dFZz87ijBeXmoqFTbyJOo3Ni1ya6m/lI7Q0+UBs0B9vxhOxFvnOP/LD8vzJYtpy0XvW6Nmv57m1k8I9+G9TVqttzVxOTryyXhpIYDlfhmQhuGqcv2C2qwd5hYOlN4slDvUKNQKwhMR6kesBALJ4o6qjm2W/BPBwkuxKjdU0FgPoxvonBD13XIQXAhzMJxL5YWPTF/jOBCrKA/7Lrdidqk5tS3pTlasWc8FDuO2zyLz+8jlUqh1Wp59tlnueyyy0red1lllfWfUydPnuTKK69kZUUCFRUoaDXuodU4kJdOZYB4etjrut5CNJBg9BW/5KufkUKJ1goqrQr/XBxbi4iuUsX0u4X9pr5Khd6qYOl8GK1VQGdTsVok1JKlQY2gEVgZDqO1qUjFE0S8hWEhLC4Rz1QU4mBt1uC+WAIuSSUx1YvobWrmT8qP5fZuHfW7LZx7cmkNeFh33fr9Fqp7DZz5+UJpiEcFxCWHo1LuSz23V6G1qDj6zY3HS9cVVmaP+YmUgEpyr72RNiqb1qqi5w4Hc8e8mwpj936p/74aUvEUp35Uei6646E6PBMhhn8l7yxkbtTQeUMV46+tsnBq4w3H90tbP1ZLcCnKhRIuXiotxONs/Kw2+TzrL7HgHgngn1tLXGy7oP4SC7X9Js49uYBP5vBlXtvY4Prt11Vicmo4+t2ZvHS5LkrNV1VgdIqc+oH8M1VpwbnLwsRhTwEkmCtjrYqwO048JDkueaYj+eVL74xaXSLuMen+6vcYmXq7SBtWgaNTx8IZaZ2wbo+paP+ltSpxbjcw+pI0x6ts17B8IZIFNzPX1VWqaL/axMVXffjm4nn9aEbheJgjq0+g1Mfw+XwoFAo+9KEP8eijj8rec1lllfWfW//jf/wP/vzP/zx7KM9qaGBb652IQv6hZ0GUoAOdEZr74eIpKexR7iZ8SlBgqQJPmkWt74SlacmxZL0cLlgcTkBKgpFW5xVFgZDqNgXzw9J4YbLnAAWxvE4dox38S1I3qzFDsARvqognqOlSsTgaJxGRX+PpuFJLcDXJ1PGc8SiZ27dC77V6AstJxkqFdhOQ7i2RRNBKUFIxaczQdcjMwvkIs6dKg8kaM1Q0aJg7swHAnLl+cmNyOvOMC5Qe9+p3aLBUC5x5ZgMYOnd+WmLM3PBvkUKfte43MHw4gG9OHmSp26ahqk3c0Emp/So9aq2CwWcChaCNTGhe+bLmtIUSf2trUlE3oOPCiz7CGQ4/99rpvy3VNvKVWHtXlMXBeUEL1Z0aZk5s3D56bzYRDSS58IL8XDRbtg3qSNRB5wdMLA1HmT29rjEJymyativ0zA1GWBmXf6YVjSpi4RT+xdLhGk1V4Ftc9/9zy6kSUImS41HYL/UjUBxOMlZCNCwBTpZqiMSEbAjMXFU1QCwC7gWpT0wkJECJRC54r6SuXfr9cDqqebF3bG51kInVF/H63KRSKRoaGnj66afZsmWL7D2X9dup7KT0PurWW28lFovx+OOPo1JJFN8UIzyf+hmnUu9k0+VurCsUZEFS0SYi5hxm909Gsi5I1VsrqCriAgCwPOjLbuq331hHy7VOCX5Yp7l3VrNgQeetDWz9eEvR/DJpTC4drYec9N4jg02n1XBpFbW7Sp8Gi/hjxCMJWUAJYPAnk7z3d+cJL0QRbWJJxx9jg4Ydn2qj+yMNsmlOfGOY0z/c+LS+yaXD3GSgpYTrEkjPZ9/D3VlnGzl13FbPjk+3YXLJO+R4hgOE3RECCxuPbF231+M6WF0yjWgTabvFibjBibG5IytMvVX6lPlmtTriZ+G0m6XzpScXTVc7sg46shKlsH/m5tLxggECc2FWL5Ze5Oq/t4k9X+4qmUbrENn3h910frC+dNGMYG0z03KwdsOyDf5kkvOPT5YElHZ8qpW++13SP8i8DhUdUkdw/OsjHP0HeUAJILgcIRYsTTO3Haqmot1csk2KRiXtN9fTc3crIO9U1fnBelqvdVLZI7lqFAWUgK0fa6Fur11ybIpSFFACcO60YWo0YGyQTtquB5Qy/x5Ig4v6Kunn3H40Iq4w23OWtxXPkkivMF155ZWkUqkyoFRWWf+b6ze/+Q2pVIpDhw4BECHEYZ7kpdhjBGNrH3CZjXWNRY1CocA/L30IZlxBQAKHMoCS2aXH4jJQ1Wstet2Lv5YAY71dTeOllXTd4ixwHgHyAKX262tpvFL62lLkLgTEyAIH3R9ySi4pJQ6gWFr02LtNNF5Rem4QDcQJLZb44I3B0a9dyAJKFpfMGJxmEnrvrmfgQRdqmWTu4SBnfz61qTByjVfYqew2begK1HFLLXu+0I7aUHp+s/vzHfTc5SqZxjMewLcJ10lTo57ee0rP9QDsW0w499lKplk652XmvRX8GzgQbVZTbywz/fYGYc8salwHHaj1pRcnGq+sovm60m0IIDgfIrAYKQkoWZr17Px0K40bzKV77mxg9+faN3zu9QeqsHWa0Jc4zZjRmZ9Mcvzb8oBS1+1OdvxeMxqbWhZQ0jvUqPWSe9F7/zhUsg0Hl2PEQ0li/tI7fs7dNpqu2KA+7qqn/frabNmKAUoAW+5x0XWLNF+dP+opCiip9dByqJrW66X56uzbq0UBJQBHr5nqrVYAPKPBPEBJrSfvHc9dO8oFlPxdUxwzP8845/B4PbS3t/Poo48SDAbLgFJZZf1vrP7+fpaXlzlx4gRVVVWkSDHsf4tn577GkOfNbLq8jfXcNWit9B8AqSRhN1kowtGtw9FZ/Hs1uBhn6bzUpzXtM9NyhRWVpjCdZzLGyrCUru1qCz23pK0C1m3AeMYkQElthLZrKmg9aJW/aYWS+l0W6naa5dMAsVCSeChJ2JczPqy77tQbHk58f4bwShyVtoRLT1xyA9r6USfNVxV3mgIY+uUiZ58sDNG5XhqLispOPbUD8u6ZAKhg+321tBwqPb9x7jSy7Z46jDXybgdhd5zAfITA0saETN0eM7XbS5dNglBMqDa4hZn3vMwc2ZyD5kYKLkWYfs/D6sXSh9XsvXosrtJupwDt11eid2zszOSdCuOdLr1W2H5DFdvuLb1GpdJLYd6aLt9gPU4Fjm49dbs3SIfkdlQSUNLC1o86ab8uvUYs8/gzbefCr5Y5+UN5QAkgtBoj5i+95lUzYMHRa8RYV2LuqILOGxy0HZTK5hkvDig5B/S0H7RhdUlr0kUBJaDlgIXGvWY0Zqm8xQAlAFurloomDcb0s18PKGkrpH+PeeOAAo1Z+u7J7UfDKj8z9sMcXvkOgcQKyWSSm2++mWQyWQaUyirrf3P9z//5P4lGo/zxH/8xGo0Gd2CSl0/+JW+d+wah6Fr/lNlYV6eHo2h6KUjMmVopEqksoCTqwN6gpELmk3VhDEhJm/ZNfWqaepVF3VkygJLeAm27VFS3pvvwHGcUUin8i1K6hq0q2vdrEEp012qrQHWnGkebSvoglQEvooEUEf+6A225UEgCzj0fzAJKOqvMBdNDTP0OHT3XmRBktiQjXhh6MbAhoASSG15VR2nXJZCcmfpuMiFoS/uIdF9noHm/zL5O+ls+sBjHM7uxo5LGDE27tWk4Sv66BrtARWPpGwgsJpg6GSLo2ZyT00aaG4wwe7r0HEgQoapDLfucAEgmsbnUVPcU+WBYp0gghX8hXhxQSks0wZYbTDi6SrudOvvUbLnJUrpsgL1VQ1W7BlHetD6rCy/6GD0sv5ZZ06eh9wYzokl+DVDQSSBTNASDT/tkASWQ0sSCKWJyzTz9Tjq3aKjpFksCSnVbVLTu1WSZB9+SogBQAsmRzbUt7Yq0JO+e1LpDRX239DeeeYoCSgDVLgX29JZvyJ8PKAkCa88nlV+cXEApKJzmxPT/4uTYz3B7Vujp6eHll19mfHy8DCi9zyo7Kf076tVXX+XQoUNEImtvtBkbuxVXFU2//TOtaM0ib/7fxZ1/Ms4h1TusNF1Vw+BPLhaGYRIlO/75d91oHSLt1zs59aOxAsjB5NJhrNUx++YKxgYNugpN0bBnTdc4mH1rQXJWKeGqZHLp8I2FsLQZEI0qFo/L2z9X77JS3VdR0gln15c6ENRK3vpz+RPlffe7uPjczIah00SbyNb7XQw/M8PqueIfl8YGjWxIq1xtfbCFuaMrJUONlar3f432fLmLWDDO0X8Ylk1Ttc1Cx031TL25mA0t+G/RZpyUNqt9/7WbaCDOe38nf+q/epeV1kNOLr44x+yb8ifZNqu6SyrRO7SyYAwAImx7oJXRZ2dloaKMjHViyXY28Nk23KMBRp/Z+ATjlnubmHhtUfaaXXfUY+swc/bRCVaHirfX6h1WqreWfocQwXV5NWPPSRtt5mZ90Wvmvte57/v6vOr325l6eQlEaLmmtui91h2oRFehYfgXM4hGJZYWY9F+pe9+FyqDwLF/HJGyl3G+6rvfhbFOz3t/e47o+o8OYC41yRneIZUmPW02G/v37+epp56Sr5eyyirrf2vdeeedPPLII9mflQhs4zIq1TUFaTU2Nds/4WL5vK+oY4tYIWY35fs/4SK8HClIl0qmsPeaWBryQUxyTvLNhlk45skHkYDGK+3ZUHC1eyqKui+p9VC1tYKZN1dLOquYGnX4JqQNk4YDlSXDYYEEGM28u8rqUPEPW1uXgc5b65g96mbsN8XnEZYWPdVbrQw9LuPMlCPXIQfmOh0nvy0/j9Db1QSXSlvqWNv01O+r5PT30yHdUsUdlVqvr8U7HWTxROnwI5tR3f5KGg5Uce5nk7iH5RcCBn6/FUErlHQy3Kw266S0GTVd46BudyWnfjCOb0J+frPtoRZUWoEjf/s+uDKpoeeOBi48MSXvZqVQ4thuwd5tYvBHpZ0dQQII5UKe2XqMuC53cOq7oyXdxAAMdSKN++2cfVS+3e55uJ1oIM6xr8vPqzZ6h0CCEUMrEQLTUYz1WvzFwteowd4luSepLWqqeozS+14kr+BsmOBSjJodFryTEkyUl5Ue2m+tT9c7VPWbWTzrhVg+CGlq1NJ5Sx0Xnp7FMxrMOiIVgJVq2PvFDvzzIc78oPgzOhJ7iVWkuaVer0cURQ4fPlxepCmrrP9DNTw8zJVXXsnU1FqfUS22ssV8dfbgXq46DpkxVqs5+oOFQnhBocw6sJhqVTRfbmb4BS/BxZyEyQSooKJRw+poBJUWmi61MH7YQ3zdco7WKmBwqFkeCqMxK9BVqIs6Jtl7dLgvhoiH0q5Kk5GiYIXOriS0GEdbqUJrURWG4sqRqV6kZouRC79Or20U2QDqvcOBaBI49i35NYSWa2zMHPMSXi4N+qi00HWrg4k3PHgniq9raW2qTYVga73WxuposGSIOJUWmi63MfLCyqZcejZS/701xEMJBn8mD1wZa1R031bD9Lvu98WZaTNOSpvVto/XEg8lOP0T+bU4k1NNx00Oxl9bZWl9eMB/hSpatRiqNaVD76mg4wOVzB714pspPefWWFRZl61i2wRdt1bhm4kw/c7GAFjzlRUsnvfjl7lm3W4zzh1mzj+9WNBeM4CSuVFD9RYjF54p/Y1Tvc3A/HFpbqavURNcKGyQFpcGz5T0Xtt79bhHgsTXN28V2DuNLJ2Tvq+c2/VFQ7vZWjToq9QSuKQCS52IZzwKyvwNOtdlRnRWgbNPSc9HZYS4r/A7xnWZCXu7jhM/XyZWpFm7Iwsccz9NNCWVy2az8eEPf5ivfe1rJeulrLLK+t9XX/3qV/nv//2/EwxKfZRetNHf/CHM+kJwVRCg73JYnkoydaawb1fqFNlN+ZZtCmKRFJPrtiUVsQSGCgj7IBEHR7OCaCiFe44CeMjeCEvpYDHWGnAXCcclCGCpFViZToIAJtuay0quNEaIuqU/tjUJrEzluNMUGacaBkRWJ+P4F9N9bTK/z9VZoeMqI3NnI8yfLT4+aUxgb9YwfWyDGF1AZasai1PF6GH5tKIhJ6SVjLQWqOnRMfZOSLo/GSCrqlNNxJ/EO70BDLQJZySTQ0nLJXpGDq8LW7bub9sO6NCalJx+OucmSkBNpbRZJ6VSYcoydWNzqWjapWfo5QCB9WHucp57y2V6tGaBwad9m3NhKnVtlYL6bVpmB8Mk5B55IoGxWsDWrGHirZw5hIybkmikcA8uLV2lQMOAlpFXAhuGqhMN0mGPqffk5+69NxqJhVIMvVhkDpoGlOoHNHim4viKhbJL15/BriARTRH2SuWPhIsDShnHJEEAi1NgZapwDmSwQSwmEA2B2SGFsCx4XwSo71IyeyFJIprv1pZSr11b1EHrdgVTZ1P4VnMckRKFz7T/KiV+D4yeKFp0hmdeYmzhTZKpOFqtlubmZp5++mmam5uL/0FZ/2aVnZT+HXXgwAHC4TBnzpxBr5eOpHpZ4fnUz3g19UuiqfweZuKlBZbOpT/4RCmMk2hbwy4zm/iiWUKNMy4AuWmIrjkhNVxShbFOj8lZSNn6xkJZGKTjlgbabqwv6r40/rwELIhGJS2HnGx7qLXovWbCYLXf6KTtOmepaqG6rwK9Q1v0ehmN/nqW2fdKLxac+s4Y/ukoWodI/wPynYRoUCCISvQOeXI2Ayh13V5f0inpxDdGJUBJRLb84YUop74ztilAyXWwWrZOM3r7q+dKAkoAi8c9DD4yviGgZO8zr7n4/BvlOlhNx22lXYgA3vv7s5z/eWnYaf5dN2/85WBJQKnuQCXbPtVast1kNP36cklASTQCUcmpSA4WMjZo2PmFdkSjsjQIJ0oW9Vqr/BGAuksqabtFei9Of3+8JBQ1+qspVoa8soASQFWPBUO1Nv/dX6ctH2nCubsy60RU7JoZt7SetGNE5n1fr60fa6HxEkfWFUkOxqodsFHZKZ0wjfqT+YCSSJ5TXK5yAaXmQ9W0XCfBBBOvLbJy1lsAKJ1LneC04zXOqd7LAkof+tCHWF5eLgNKZZX1f7h+8pOfkEqlePDBB1EoFCRJcJSXeS72CBdjg3lpIysxls76sg6DTVdXUbd/7eR4dLV436/Wk+cEs3TGl4WNKrtM1O6UTryvBwAygJLeoabpcjs9H6wryDsWJAss9HyonvYb0y4r65QBlEyNOur3V9Jxi/xJao1NjbFWh71L3gFg5VyApTM+xl6Sn0d4RoNZQKnthhqq+uXz01lUqHWlT1wFl2KoLWq2P9Rc9B5BcmfKAEpqPaAo/uky8szspgAltV5B/wMu7H3yZZ9+Y5m3/vpcSUAJ4Nxjk7z79xsDSm031lK3v7Tj6GbVc2c9lpbSrpPjzy9w5selASWA4/9rlCP/VBpQ6vu4a0O3KABiMPijSXlASZSe28IxT0lAqfsOJ65D0lFOOUAJQFehQaVTotTKz7167qpHbVETmI6WBJQAZt5dYfTX8u5Jaj0Ya3U4+ks4DKih7QO12e+gooAS0H+vi7brakEtORMVA5TUemi7vpbWG6W85t7zFABKAHqHHkuDnto9kkPb4klvHviotkj1E15KnxytkH7OBZQ0NjU9d9VnQ+EtnvEw+Vr+fDwWi/Ba7Je8Z/pNFlCqqqri9ddfZ3V1tQwolVXW/8Fqa2tjcnKS2dlZ2traAJiPjvDC0j/zxtJPia8jAWaOB1kYDEpgiwparzajznwjppLZEFGiUZpDRNPQRJ57TpxsqLeqLj0VTdqijkRhd4LlIen6rkuttF5dsebilKOlQQlQQgWtV1XQdX3xMTuUhqWaD1TQcmWFFMZKRvZ2PaZazdr1imwYjR9eYeZoaeBj9PkVwstxVHpou05+PFaolKh0AlpLCWejNKDk3G2i5Rr5vEaeXVkDlOSMnsJSus0ASvZePZ03l54HnfzxXElACSTHrbOPz20IKBmdqg2doDarqi166i/Z2F3o9I9nGf5N6fVL30yM9745XRJQqmjV0nWLvWg7Xa/VkXBJQEmlBeIw9MtlWUBJY1HRe4cDlZGSgBKAWq9EU6J9VbRqaUjX1cWXVmUBJYDpo17mT/tkASUAa5MWU62IuoRbfNPlFhr2WrPuVMUAJbVRQfuhSlqukL7Pls4UAZSAlisqcF1iRmuV+p5igBJAdZ8Be3t6jT2OBChlpEL22eUCSlU9Opzbpfn83OkQ8+dCBYDSVHCQ46nHOOr/BdFUCJVKxWc/+1mWl5fLgFJZZf0fri9+8YsEAgG+/e1vY7FYCEZXeOv8N3jp5F8xt3ImL20iAbMXYWlc6tsrG8CWs5WTDOX3+ZkhQBCQXHbSCqxKgBKAvUmgyqXK/4O0MoCSIIJrm4qm/sJxI5FAAo5SKeo6lLTu0RTdL4hk5oQGaNwuUteb8+2/zl1JEMFSo8JSm1PodWBIyA1zZyMsDcmPTxEfTJ+MgKCkqlPEXCe/piUalKh1yrx6Wq9oQCpb2xV62T2RsAfG3pQAJUFAFpRZPB/bGFACUKRw7dFiKVF231yCE0/48gElKACQJo6EOPvrjd3IHV1qbK4SE+PNKpWifkCLvrL0WuLKWJxzz/lKAkoAo4eDDP66NBTl2quTyr6Rj0sCpt4rASiRAAH884l8QGlduZz9mqy7kxygBCBqQa1VlnRkqt+pQ9BBNKgoCSihUDB7OsLk8SJpMg5KAlhqBCx1qoK/zX3XmvfoaNimLVl+1w41Lbs1CKKCRFJRFFBCgLa9Ghp6pWftXSgO9IlayfGtMr18vt5hKVM/0ZBk3ptx2s0FlAQRGnvJvqtzF5PMrTufmEgkOHHxUY5O/hOj84dJpuIMDAxw6tQpBgcHy4DSv7PKTkr/P2plZYW+vj5mZtYWypUoGeAKrIr8j+imaxzU7bEz9OQUS6fkFy6MDRr672tl+ayX848VLvpnHUpE2P25TqbeWGLmzXUnUUSo2VbB3DuriDaR9utrOfODQqik7pJKli/4CC9Eqd1nY/m8v8D9RDSCpcXM4kkvxjoRtUks7l4kAlEprJWlyZB1eymmHZ9vI7wSK1omkMKrVfaYGXxkPBser5RKueIMfK4NpaDgyFdLb9rs+XKXdOL6H+Xhoa476rG2Gnnrb+TDdfXe04TRqePtr5YO6QXybjO/jTpuq8feY+bI14ZL5rUZJ6Udn29HpRV4+y/+jaf+M4PtBrfWc1cj5kZ9SZeBLfc2YagtXZ9V2yy0XV/H5BsLkjOQjJquduDcXcmZn8hDRZt14Nr5hXYEjXxdVXQZ6bi5nqEnpmThJNEm0nR51Rp8lX6H1qt2n02CvXJc1Qru7RpHFmhzHaxm7JX5gryqd1kxVusY+eUsok3E0qgrdEgTYeChNrwTQck9Sa6NirDvD7sJLkY48Y3SIRh3/5cuUolkUWcK/8AUZ4bO4PP5UCgUtLW1cfvtt/Nnf/ZnJfMsq6yy/s/VV7/6Vb785S8Ti60tRFTTSL96f/bnzGb9zs+1kkqkeO+fivdTGWeSvo81oqsUeedvhvP+PiO1XoKN2m6sQe/QcvJbY3l/D5JLimfERywITddU4Z0KFoZwUkPd7spsGMy6/Tam3yjcAKnqN2eh0OoBC/NHi2xYpAEEgJbrHEy+sZoXuilXFR0G2q6r5ezPp2RBi91faiPijXPiX8aK/j5XpRxxLC16uj5Yx/hLC9lQe8XUcKCSur2VnP3ZFJ7R9Ji8zlVJrYdtD3XgHvFx4UkZVwI17P58JytDXoafKu1+qNZDLIZsiLDNavfDHYTdUU5+c0w2zWaclIz1OvruaWL67WUmXto4tEspZZx0SqbRw/ZPd7A65OOCTF1JaTpZHHRz8VdF5vJpqGzbQ82oNEqO/N1IyWvu+P0WYqGErAOX3qEuCuusl7VNT9eH6pl5d4WJF4vP9XrurEelV2Xfz2JqvNLO0lmP1H5z3qFcVXQY8M9HiXliea5qudLY1JjqtCyd8qGvUWNw6AqdJtXQdYuTkWdmiAXBsd3CwmlPQV61eypw7qjI9lPFnqVCqaD95lpsnUaOf3OMyIr0+2IhKav6zbRdV8PF5+ez72Cmr4rZgyxYhxk8KwGeZrOZzs5OXn755ewBnLLKKqusXIXDYa699loOHz6chR00SgM7Km7EpE6DKglpQ6GyQ0vzpWaGX3TjHivyDZkeQ9RG6L/dztJQmPE3/JKbUo4y7ksAfR+2M3vCnw0Nt5YIbI0aVkYjqMQUDfssXDzsKYBsKlo0hFYThFfjWJs1BBYj+fBAKim5p9Rr8IxFUBsVaK1qfFNFyq8C4qCtVFHRqGX2mF/29HnXrVXEQgkJ/Cki504jtTvMDD21uKEjDkhh5MLu4gRR1y12VHolp39c+oBb/z01xMOl3Y3q9phx9Bo49aPZouAHQOOlFmztek7/WD5NRrnP8l+r2u1G6vZYOP3ofEkHqs04KXXdWoW2QsXxb2/smF1SKlCp2PD+Gy6xYO/Ul3TXarrcgtWl58wj8vVpdKrovNHB1DuerMtQMVV26Gg6YGXomUV808Xb1WYduLo/VIXWrObYt4uD4foqFe3XV3HxhRW8U4VraAqFApUeqreamX4zPUdKv0PrZevQsTIk7RJWtGpZHQkXgIBVvXoW00CYY4uehXPBgrwsTRoMDjUzR0OoNGCsFYv2RV032ggsR5l8049KW+Q5pl2UBu6tJLAU5/yv0t80Mg6wW263oRAUnHokvTafEwvIWzvI4OgxPB4pj/b2dn7v936PP/zDPyyaV1lllVXWiy++yP3338/kpHS4S6lQ4XLso815ZTaNIibNnTr2KVEKCs69Vhx2SQlSX+rqA4tdyYmXknl/n1HGpaSqWYHZLjByJA4p8mAGo00Ks5SIQlV9irA/UeiYJIDNKbAymXZMaih0XFHEE5gcCnzLKUiAqUaJb65I/6pMZZ2WqtpVrIzHJVAhWZhWZwXXHj1jbwcJuYtWBT0f0BMNpRh+ceO9xlKOOBoztF9pYvp4iNVx+fHU2ijQuFNyN8rCN+vdfwToPmjAOxdn+rj8flTvDQZWJuOFIb0gfy6aGX6KNQc5R6Yic9me6w1E/ElGXpV3lSrppJT+ZhC0sOVGM7OnwyycK/ZtIFemwmcsaCGxfrwuUp891xpxT0WZOSFTnwL0Xm9iaTTK/GCRMqW/a1oOGNGYlZz9pcw+fhqaa7/KQDKRYuSV4nuNm3HfAtBaFHRcY2JuMFJYV+n7rNuqQWtRyj8XQYmtSSDkThDykA7/V1jHOqv0HkeDkpNSeDVFIkFemDdBBEMFeBcUqLRgsIJnrvCSdb0CcxcSJJKC5Iq0SkH7Mzugtl3F+bckJ7asK1KOUmqB6mZwtig480ZKCucGRZ2TDFbo2KNk/GSSlcwUWyU9jwQe5mOvcPr0cQBMJhP79u3jiSeeQKeTCa9Y1vuu9wFxLGuzstlsTE9LgMGePXt45513SJLkCC9CCuppp0uxFZBOQc8edWc3/Pf+UReB2TCnvjeWl6d/PoJnPMD4a9ICQ+uNtQSXI1lHmszfWxoNKAQFsZA0GObBBFGYe0c6xdt8hQNLk6FoaKjMJhmA64pq6vfaeff/zQcJon6yi+4dH2xEYxJ5868GC2GK9M+ugzVoLeqikERGqWTxRfWMhh6fQnxlDcYy2EQCc8Uz2/apVnQ2kTf/6mzR6x39+9KORRn5poP4ZkpbP7rHA+irtYgiRGXuTQ68Wq9tn25FZ5UPBQiS01D93iqO/dNQ0dBYINXV0OObuuSGKhW+LaNtD7WCQnIsklPvh5swNxlkQ3plNPijiQ2vF1yKoDKoSgJPnmEfYXeEhSOlT7qNv7DA+AvyC3f9n2jGUK3jva/LA18ZiOnI1y4gliCfo+4oqRSotPKnxLpuq8NQo2P8lUXpekUu2f+JZow1uixAWAxQqt1no35fFYIoMPrMrCwg2HipA6VaycgvZ4muRFnMucds/xEFQa1ENEhDSXRdms4bnVKfFQX3sE8KQbJOJpeOLR91MfPuMuPPL3D8m6N5+fhTfo7wAnFi8B7odDq0Wi3PPvssBw4ckK2vssoqqyyQTpl98Ytf5PDhw9x44414vV7mmeC52ARa9OzgGnSC9OFx5O9Hss4jTVdXUbPNyqnvjmVDkmXmItPvrFDRbJAuoIbum50MPz2TDTuV+V+VVolKs9avq0wqYp4YCqWCpVNrH+aOLWasLkMhpBRbm3s1f8BB7fYKQisRVs7lf7Fm5l16h5qWg9XYWg2FzjHpfQe9Q011vxXRoOLcz4pvIggaJalUiohP/pTWsa8PZ++zFISkt6vpv68Zz0V/UTcbz2iQt/9q4/nE3Akv1hYjwbmcualCmbf4HwtCxBMluFxiEhCDd/76/IbX01Sq2f5gK8tnPLKADsDWTzYTDyU480P5Oco7f/1vDwcH4J8K8eYG4eD0djW99zYz9uJ8SWepHQ+14JsJceYH8uWOBTdTdgURXxTPxSKrKDmuV0uDXnTWja0w5QBBkGCc/o81450OyroxZSAm93CQ975+sSSIlUokS35fqPXg3GXD0qDn1PcmisNqaui8tY7gYoST3x4vGpoRoO+jjSg10nsfnIsVfV8sDXoqWo0491Ux/sIiC8fyn18GRkrGkihFZfa9y73Hmh0WRKOKycMrTL+zhEIJEV9hWLeeu+oxVGl592+HWTzpxT0eysvnQuwEY5xDMQfMgcFg4Morryy7VZZVVlkbSqvV8sorrwDwe7/3e3zrW98ikgjwxvIjKFHRbtyNS9cHwPJQGM9EOLvhv/WjdvwLUUZeSH8zpsf4WFjJ8nCY+UFpDlC7TU80mMy6JGWgFm2FCqVakWWY8mCCOKyk3ZccvQYq23Qsngvgn83fLMo4NAG4LrOQiKY49ZOcHTWFEuJJPGNSutYrbRiqNbz3nZlCmCL9c+NeC6ZaDYtn/cTDiqKbO6lUilSJw/EzR/wsnPOv3WsJCKntOhuWei0nfjhDvMj+x7lfyB/UypV7LETEWxpO8c1GMNfLO5YDTLzmYeK1jd0u26+vxFSn4eg35N0PK1q1NF5awbknFrPOP+s1e8wvAWHvg849sTEU3nZdJSqNsmTaxr0WqnoNnPzhHLESa16Tr3uYfL10XYVW4uissZLAU3gljn8+yvIGhziXh0IsD8mva7YctGFr0XHiR3PEZL4LMhDT2Z8vlnSAigakDWxBLNz8yjgoNeyroLJdz/LZoNS+izzilmts2Np0BBfmCbvjRQElc4OI67IKRIPA9Ds+Fk4X3wis22FGNAnMHA0Rj5AHKOX2H4JGkf2my613lRYa95kZfT0AcVgYCuGbiRbASRoz9N5axdzJADPHg5z75UpePuF4mKPuJ/HFl2BOWvOqqanhySefZNeuXbJ1WlZZZZUFcNVVVzExMcHFixe5/fbbOXr0KKPzhxmdfw2bqZn+xg+hUUjf4kNvJrPOI7Y6qOsSOP9WIgtFKNIb/IuTCiLBtb6svldg9kIiCwpk/lctKqT8Mg5M6pT0O4UCf862S1WrQCws4Ftct1aTIAso2V0CDf1q4tEw3oW1fj2lErLhpwQRWvZoWJmIM3ls3Td1UgEKqQy1PSIao5KpY1EJDlkHsSgFgVQKoiXOnZ9/LiixE4ISUZeUhZAEEboOmlidjDF5pHBwjnjh9C82CHGG5G7km48T9uSMt6lUPliTgJA7Schb2lHpTG54NhnYSBCh9wYTSyNRZk4WqYhkCpQKXHukwX3sbfmJx+Azm6Bq5JTjn5IIw4mflXYZFUTovMbA1Imw5CxVBFAC6L7WRGApzsXXS+zfxlNSKLhS1wNC7gTBYuB7Yu05rIxF0FWUdoACuFAKehOg85AZ31xMctcqIlEn7TOHvXDmGV8+iLUOwkomSxhECZILWF2/lsBSgtE3w0UBJQRou0xPcCXByOsRAktShrmAEkDLbhGtQcGp30SJh4sDShojVLlUxCMwP1bcFSkRlc6jCGrQ6iDszweUzFWg0cPCDCxPg0pMSfvu6+Ck+m6wOJSceSVJwA0nX0rm5TO3epbzU78imgiQSqWwWq08+OCD/MVf/IVMhZX176lyuLf/IL399tukUikeeuih7AfZFBd4z/oCy32jRFNRDA6RvV/ppvYSG6GVKGqTij1f7qJ6h5Wmqx3s+lIHWz/WwpkfjKPSKNj7lW6q+q3U77XTdUc9e/+oK3u99hucRLwxFo97EG0iOz/Txu4/7JR+d1sde7/SDcD5x6aI+qO03eAEEXb9QQf7/ls3rTdKYURarq9l71e6OffEOOefmGL7Z9rY9Yed1OyWrHP3fqU7GwJsZcQHpNBaRUSjkh1fbGfnF9uzZdrz5S7Ci2EGfzpB3d5K9v3XbhoPVgGw9cEWdn2pA4Cj/zCMqV5Pzz2N9N7TRPsHnez9SjcVXZJPYv8DzWz7uGS5NvBQG1sfbMuGNKvqN7P3K91U77ACkEwkpHlTulPa9aUO+j8h/a2lzcDer3Tj3FdJ7T4b+/+vHvZ+Za0Od/1BRzY028TLc9TtsdNwZRVah0jX7fV5aXd+oZ3anTYpTJsoPcdMCKu2m53Z+gYY+GwbOx/uoLLHlK3Dtpul8A4t19Ww9yvdLJ11s3TOy/bfb2XnF9bqcO9Xuuj8oFTfxhodgkaJpVPKZ9tDrez6g468+u65swEA575K9n6lG0ubtMna/8nmbH0DoAR9tTQJqd5hZe9XurOhUfrud7H7D9fudffDndn6ruwxSfW9S6pvjVmNrnJt0WrXlzrY+mALIMEpe7/STSQYw3PRT+sNdez58rr6/pRU3513SG206RopBEjnB/Pre8fn29j+mVZGfzXH4A9GpPq+XmqzrTdKbRYRtA6RLfe3oBAUWSBq71e6ab9N8gxsPlTN/v/Rw8DnJKv6bZ9eV99/1EXXHVJ9BxZCKJRSOEFIt9mc+t7/f/XQf38rhhqR2h02Bj7bTUXHWpvd/XAnWx9sQesQ6b23heBciMWTXqq2WdLvsllyKvp8G7v/Sxcnv3mRwUfG2fbx5mx4w4ouI3u/0k3nR6Tyx6MJkslkFvLJ1LdohN77Gtn7lW4EjZKxV+YQDUJeH7HzC+3s+6/Suy7aRFRagfkTEryY20dU77Cy8zNt7HpYutd3/2EIc6OhoI+w9xoxNejZ9XAHOz7fxtmfSq5we7/STddd9XR+sJ6maxz03ukiGowTXo2y7VOt9N/XBMDF1DmmOk9zQveKBCgBjY2NnDt3jlAoVAaUyiqrrN9Kl112GR6Ph8XFxaxNa5ggbyieYqL1GMtaCXrouq2W7Z9qJrQSJbQao/feJtpvqqXthhoarqxk95faCbsjDP9yjt6769n5mVasrUZMjQZ2faGNjtuk8buq34y50cDIs9KX2cDvt7Drsy1Y2/Skkil2fLaFrg9J/ebwc3OIJhW2HiOt11ez64tt7Pz8WijYnZ+RAOvR5+ZJhFPs/lI7ffc3gho6bq1l1xelMSu4ECMeTSKkw6zVXy6V17lPmqO13VjDlnuaGHxkinM/m2H7Q83s+GwzqCUAYveX2mk4UMnSKR9L53xs/4QLvUNN7931bP2ki62fdEkFUsP2T7XjOliFsV7L1o+3sO8rHVI4NqD/gSa2PSTVcXApBkqIx6Uxt+4SqUx6uwSD9d3XyMCnpXnB9oea2fffOmm/WaqXmh0Wdn+pHWO9Ng1nJOi/vyUbGm7XF1rp+FA9KJTY+8zsfriTiVcXmX59mZ4769n5+bXxe+fn2+m5Uxq/KzoN7H64M/tzx4ec7MqZn+74TBttH6hl5YIX71yQ3Q93UrNDqsP2m2vzxnqdXYOhRpov6e1qdj/cmQ3t1np9LbsfXku77aEW+j8h1aFar2D3w500XinNe7U2DUqVIhtGcOsnm9n64Jqd8O6HO3FdWw1AwwE7ux/uzAJ1/Q+42P4pqQ7VZjVqvUBleo7s3Gdj98Od6KultFvua2Lg91tZPO1l/oSbXX/QkW2z1QNWdj/cialRj63HxNYHm9n52ba1OvxCO113SPMN+xZTOq2BE/98keqt1rX5kkLJzs9J9a2xqbG06HHusuEelxZjOm5zsusLufm2sv+/dWLvNWGoE9n9pXZqdlql+r6pll1/IKWNeWKkUknUBql9a2xSm62/TKrvlusdbHuwhb77pXlEz4fr6H9Aqm/UsPtL7XR9xEnHrbU0XmXH1GDg1A/Hs3W49UEprWO7hT0Pt1N/wMHZn06xejHA7i+1Z+u77/5Gdn6hJeuslEqlCKVDQ9buqWD3l9ox1InU7LCw/SEXO36/hQtPz3L6R+MFfcSe/9LBjs9Jz65ur41YKMH4C9Im587Pt9J9h5R2x2el/sPWY2T+qAffVJCeD6+Fp975mVZ67qqnfq+d6oEKdn+xDWONjvOPzdB+XQ27vthGw4FKbF0GBj7dgs4mElgMo3dIdVjVYySWiDHdfIpzta8zxlkghSAIfO5zn8Pv95cBpbLKKuu31j//8z8Tj8f5h3/4BwwGA0ninPe/wVvRn7BQe5R4PI5Kp2L7vVXYO7UEFmOo9Uq23W3HXK+iuk9H7202Og+aGTvsJR6Ls/2eSmq3GandaqBul5Ht9zqy12s+YCbiTbAyHAYV7Li/hm33SONs7TY92+91oNJIYZwCyzEa90qhqXpvtzPwgIO6PdLY6diiZ/vHHIy8uMLFl1bpuN5G/912bB3SeL/1vhoaL5X+dmk0CIqUFGZNBT2329nykbUy9d9TTTQQ5/xTC5icWrZ/vAbnHmm9pvVaG313S2P7+V8sYahR03LQRtPlVpy7DWx/oBaLS7pm81UV9NwmrSd13mJn6701tKXD0ukdKrY/UIutQ4Luk4mkxFKluYwtH3HQcZOUVmuV0lZt0WNxadn1+3UMPLgWMrj3Dgddt0ghRGeOeHDuNFOz3YjaqMS5y8T2B9bSdn+wirqdZs7+fJF4GLY/UItzl3RvNduNbH+gNgutdN1ip++easyN0trQto/XZsOoVW3Rs/2BWlYnQiycCdBxU2VeHW79WC1Nl0tpNRVqtGYBYzoURdt1lWz5aE5931tD81XSnM3i0rL9gVpM9dJubMtBG/331GTTqjQKjDXS70xONdsfqKWiVSqw60or/fetpd3yUQft6frWVkp1aO+S6ltnEzA510Ds3g+v1bfaqGT7A7WkSLE8FMTRZ8yrw57bq+i6VWqjdXuk39VuT8/hdqbTpo8Wd91WRfeHqlg4FeDcL5bY/kAtdXukNbrqbVJ7URmla7YeqkQlKrNQ27aP12ZDsdl79Oz+bD296Xprv6GSLXeu1eG2j9XiutwKgH8hjEJQoEmvebV9oJL+u9fqZeen6th6dw1auwpLk5b+u51YmqQ6bLnGxtb7amm/rhKtVUXPbTUEFqKsjoYx1qgY+IQTW4cOhVpB1212tt5Xy8UXVjn3xDxtH7DRfkO6vm1SfbuulMofS695ZSC93jscdN5UCSpwXWFh+/016CrUXHxJ2h3ffv9aebtvq2LgEzXU7zWDCjQWgYX04Y/cPsLkVDFwfw1b75LehTM/X8ZSr6FuV7qP6NWx/V4H5gY1tlYdW26roPc2K1Nv+fFMRNl6lx3X5Ubq9xixd2jpuaWKiDdO2Jug/ZCFrhulSAoL4THGba9wJPSIBCgB/f39DA0NMTs7WwaUyiqrrN9Kzc3NvPfeewSDQW699VZUKoEV3yivDP4Vo+FH8Sak+Eb1XQo69imJhiHoSdG2Q6CuE6pboMIJW64SSMVSzA2laOyCLZcrsTcp0Vug+4CK+nR4JkMF2OoFZs5J/XHrboEdN6gxVgKpFJ2XCDT2SVvPo+8l0RoUmGsUVDUL9BwU6bl6bezsuFTEaFNw8d0IYS9sOSjSvFNAUKaobhfo+YA05iaiEAkkUWmlcclar6T3AzpsTVKZqtoEuq7WM/RyiKnjMVov0dJ1jQbUEpDRe4OBqjYVgeUEi8NRuq4yIJqhaZeGlv1aWg+sOad0XavH0a5G1EHvDWa2fcSMmP61a6+O9qv02TIpVGvhUs11Ar03G9FIQzSNu7R0XCOlbblMx8BdZuq2SfMhU7WUVl8pkIhCLJyi7QoD6XOUdB4yUD+ggVQKnU1J701Gli9GWRmN4+zX0H2tYa0Or9bTuEsagzVm6L3JSMMuDSRT1PSo6blOnwXl26/U0zCgY3E4im8pRu9NRmxN0oTD0SXSe2M632QKc42AySE9R0GQ8q1skdJWtavpvcmYdWRquUyXV4e9Nxmp6pDWUXQVStT6DNSWonmflrYr1tL23GCkukdqE9ZGqV7EdDGa9upov1qqQ5UWdBYlFXUCJJPp+jahS4drbdilo+OQkfnzEZbHonR9wEjddqleDHYlvTcbMVQq0dmUtBzQ0fWBtTh8nYeM1O9Mz+8qpHz1VQKjh4OYHCq6r0unTSTouFpP0149gg5Ek4K6AT2hVQlaqunT0nPzWrjgzutNDNxtwVSjQNBC780mbC6pXqq6RHpvNqXzhWQihUqXhoUEKa29TaoXe5vI1g9bablUqoumnXpaL9dnQ7L13mikYadI3VYNNpcKm0vN+BEJdnLt09F+pXRvxho1vdfrqelUc+HVIMuTcXqvN2RDEjbtFOm5Vis9q4T0vELpsLWmaoHe6/XoLGByKGjbr6bzCg2TJ2MMvRGl+wqR+r50H2GD/utEuq9UgyCFioyEUsyPpevlElW2j2jfKzBwvQqzA/zL4J5N0LJjzV+nY5+Aa5uS6lYBR5uKvgMKTJYU04MpahpSbLlcia0OTJXQvluByabAvyJBmX1XKrE4pJBuc7GXOOv+LifHHiUS92O32/nrv/5rVldXy4DSf6DKTkr/wfr617/O17/+dV588UVuuukmAoEAx04eBY6iHdZhnrmH6GqcE98YpeX6WizNeur229EY1QQWw0TTp17jkRSxYIyJVxfxTIRw7qggSYo9X+7i2D8NEfHESITTdGc0TiKWxDctfYwpVAoSiTXqNLwSI5lKUdFiRKUViEUThNOL7+HVKLFgjNWRIEQh4o6itRhouqKauXdWiQZihNwSfRtajBD1x0jGofujLjQmNf4c96FYME5oNYZnOICoF0AJdburmHhlkchqNC8WetQfI+yNUd1rJeKLEQvGiKfvJ7QaRaGSOu+Lz83RfmNddrMg4osTC8aI+qQJU2A2gjJNevbc1UgykSSyKtVhIiTlG/XHCC2GScSSxAJrlGzEGyPmk9JGQxALxqjZXkHdHjuzR5bR56b1xEhEpTptuqoKpVpByC2VKeSOEAuu0d4RdwyLy4DrmmqWB33Egmt1GHZLZVo4skzUL5VZENfYwmggTtgj5ese8WOs0eK5KNVxZDVCMqZelzbGri91EAtK9ZIISeWIrMTy4r8DJNMbitFMHfrj2foWdAJ7v9LF1FtLRP1SvgDRYH59Lw56sDSthYOI+uJE0s8mGU4QC8bwDPtZPOml+VA1uqo1oCniiRELxKnaZqGy00Iilsjea9gTlU5ipaVUC1Ks+rRrVSwYW2uzXqnN9tzRiKXJiHc2gCIHfo4FY4RW023WHSURTxJclDDk6GqUhHaNDI4G4pga9Ig2Ee9kCGtzlHgklX6O0byT6mF3BBQKAnNRtDbpOcbS9R1ejSHolegdWur32on6Ymt16E/XYTDB1vtb0JpFgitS+TzDASK+GOF0m40FYigEqGyzgDhNeDmGxpzTtrwxop4YzYfqsTQaiQbiRNwSrOg6KC2YZsLGRTwx1EYVersGonGigbU6jIWljUGA+ffcuK6uybbRTB2GV6NsubcJY52OWDDGzNsreC74abq6BkHIbbMxDHYtGpPIxBtzxIIxTv1gguhKFFOLjpGVc5ywH2dxcRHFeQUul4uuri6eeeYZyiqrrLL+rbLb7YyOSm4td911F48//jgXLlwglZIcY1bf2cWe3ktYOOZh4ZiHrZ90EYvGqN1mwzsbIuqPEw9JfX14RXIoufjsPMGlGPX7YlS0Gei4pZaFM55sfw4QmA+h0ilxD6+d5A0Hpb+PrsalsdafQFuhRqGC8NJaXx72RgmvRpk74kZfoyYei2Os1dJ4mZ3wahStbW1xJzAfJuqNo9ZD/V5pcT/qzYzfMSLeOJ4xqQyRYAxrg4GeD9Vz4ckpov44kfT4HfFI475zVyWmOj2eqSDJ9LyGmDRWhVdj+KfC+GfDCBolmYh64dUYgnptThFajhKcj6KxqanqNUn1kpM2kZ5vBBYiqPQC4fR8KRqIE/XHSabnexF3HKVGyfYHm1k64yXsiWfTxoJJov4YsVActV6BqdFAIrw2t414ogSzY2cSSGFpNmJp1hN2x/PGzrAnSng1xsgzs+jtaqIDMaKB9PjtjhHxrh2/8U4EiKXrLBaT5qsRXyZtlIg3RsMBO7W7bPimg9m5YSyWktKmx/5UPJWt28zf5k7Lov4YFc0GbL/fmp57xchUYng1mj3d7RkNEpgP40uH6Yv6pHltLH26KrIaJZlIMvKM5A7l3G3LjvXRgJQ2EYnRfmMtGosa39TavD3ijRHK1GEkgUqjxNZpYuWcn9BKFJVOyLonhT1RQu4o2x5wEXJLbSkzjwy7o2ita/PTsCeKoFbimQqjFKS2FQ2m26w7ijmmo+3GGoZ/OYdvKkw8JLWHZFjKN1OH4dUY8VCCi89LDpFRdzT3YBtRfxyDXYugUTLxymK2PJkyCYLkntRyqBpS0jvgGQsimlVS2nR9RwNxTE4d3bfVcfan04RXY4SWM98dsWwf0Xi5A4US/LOhtXfOG8tps3Hi4TgqjYCxXkt4NYpSWHvoyWQyW/7V0QCVnSZi/sy3jzRn09jU9H+siWQ0SXg1ysiv5xFE6Li5fq2+031E3Z5KAosRaQ7tjTP8yznUFjWzU3Oc8L3LaeE0ieEEBoOB/v5+vv71r7Nv3z7KKqussv6t+sxnPsNnPvMZzp8/zw033MDk5CTHTr4LvIs+YMI6+RFiQS3Dz3uo3qLD1qygtt+IoUqNezJCIpIez+MQ8caZPRXAvxDFUqshmUyy7Z4qzjyxSNgTzzMwifjjeGfSY7agIBFPEk/3q6GVOEol6KpUiAYlsXAy6yAZDSSIeBOEluPEQxD2xjA5DTTtM7MyFCbiTaylTadLxaHligqMDg2rE2tjZ9QTJ+pN4J+PY6wFpUqBc5uZhVN+wu54nqtMxCOtqzh6jUR9aiLeOIlwel7mjSGapHWJyTfdaMyVWUgjGZXqJRaUyhRcjCPqpTGr4RILiWSS8KqUNh6PE/HGifqTBJbC0vwpuDYehtzx7FxFum6cyk49zgETE2+585yVcp2cnDuNqHRCduyJ+uN5aUPuOKZ6DY37LJyeWJDK4M2kTRLxxnGPBYn7pfBwiejaukrEEyeSdgwIzEXwzUYIzKTHOE8817iRiDdOxBuj98MO4pEEEW+ceLr9hD2x7KYmSCfLM9eJRVJSHaad56O+OFFPnG0fr2X2mJewO0E4Xd5Uuh1G0w4TC2cCVDSvrXmFPWvPIpWU7s03E8U9Gsbeqyfsya3DBMl4EmONitoBC/FIkkggPe/1JvLqUKkGXYU66/AT8caJZOrbJ6V17rBQ1WXAPRYiFs6vw8waXSyQIBpKEFqS1lzD7hipnNPnYU8cU70WtUkgtBQnuBglHl37nTJnF8E/F0HQKAkvxRGUUpniobVno7EIWBq1hL1S287cezzdZuOBBK1X2zA5NfjmIuk8JReJzL0nokmUagX2biNTb3qIuuOEltL1olQQ8sRJRJI4+43YOw3SGpg/wepoGHu3Ltt2Mm1AVylIUGG6jqPeZLpMSVKkiCfANxMn4ksQXM5ZW/NJ733TpSZsLVoinjjeqTinHl2geosRtW6tIUa8CbRWNcZKNRdfXyXijTPy0ioRL2grlQzPn+eE8hhzvjkUQwoaGxu57bbb+P73v09ZZZVV1r9VOp2Oxx+Xwmj8/d//PX/yJ3/C8MgFLqSGUCrUbGM/23svxb8M/uUkLQNKYlFwdgi4F5KEfSkS6e4vEkwRWE4yM5QiGlIS8qaoqFeSSsHSRCIvrX81id6iwJ8OxKJQpIiFJSuXZBxCPmn/0uxQIKgUBJbT8w0Bwv4ksVAK92wKQYRoOEmFUyDoThELpgj7kqQEJYpEEv9SUhq/BWjcpkGhksZxgFgIwr4kYW+m/EmsdWqaBlKMH4kR9iaJhjJpU4S9SSy1Kix1alanoqSCa/OEsDclzZNCsDIZQ61TZr/Pw74k8fhaWt9snOBKAkGEqjaRsCdBKraWNrO4E1hOoLMIRPyZsSdF2JMgkQ6nF/EnUesU9F5nYmk4SsSbzKZNRBOEPXHi0SQIUNGkIpmzvxXOSZuKSU7w9haRlYtxooEkYXcy68wU8iWIh1PMnY4iiBD2JLLzhlgwQdi7the2Mi7t7ZJMkSCVlzYaTBL2JLDWCdT1aXHPxiFnLh72JIil50uJWEqap6fXvsL+JEIkt74TmBwqLE4VMycjUr0k1n6XjEuOWBE3rI5Hs+5a8bB0nUR6kh/xJVAKsJgOgWZrSmSNChLRJGF3gng0Qf12PeZaFasTsbwyRNNrLolYAlGvxOxU4ZtLEAmmAel0ocKeBBF/gq5rLYQ9iXS9pPdSA8k8R6zQShxRqySymoCUMi9tLJgkHk1S26dh9lQE99T6eZk0bwOIhhIEVhLMnpH2HMO+JIocQ6OwN4HWLKAxCnjfS7tyZdtsgnhUARqBlv1aFAqIBlOEvSCIScK+tbSRUBK7VU1dv8jEkSj+pSSRNKQUSygI+1Mk4gqad4uoVCm880nCaUOqkC9JJA3Jx6MQDaUQdQp0RilcXCYdSGteyfTH2+pcAo1eyM45I8EUYX8KQYDOS1XSHr4vxcQ5gBQtWxXE048uGoaQP0V9p5KAJ0U4kCIZg+khCaxbnHNzfvZ1Tg2dIB6Po9fr2b17N9/5znfo7l4zEinrP06KVErW9Kus/wBFo1EGBgY4c+ZM3r+bqGA7lyGm7RlNLh2+sRDmZj29H3Ux8cp8Xjg2ANfBamxdpmwIs7abnUy8OFNgTzjw2TY0ZjVv/pl8KDGQnHhCKxFO/svF/F+IYHJK5aneZaVmu40T3xnND0clQv1+O1MvL4EIrYdqGfnlbEE+tTtszL65gmhUYm42snQq3+JPNCqzA0vLdTVMvb0iG2pr6++1kIqnOPmti4W/FGHvl7oIu2MlQ5GBVNepWAL/dOF1qndYsTQaGXq8eNgJgKarHTi2Wjnxz8Oy4czsfWaWzntLhimztBlov8HJye+Py94zSC5JM28uy/5++++3EpyLcP4x+TLv/+89eCcCnP5+8XB0xjqRrjuaGH95gcXjxe2oK7qMxHzRovWWUf8DzUTcsZJlAajaZpG9DkDHbfWYG3Uc+Vv5kDHGOhHXVbWy91SzuyIb9lBOlT0mOm5rYP7YKqPPFIZ/qeo303ytk5PfHSW8UPy+W2+sZfLlWaL+/PaclQjVfVbm33MjGpVUdJsLwrZZ2gwYq7VMv76MsUGDrlJbUD9NV0uhGzPt39JmwLPO7ruyx0THrQ1MvDbP9Kvybab/gWaMtTqOfK0wtJ1zXyURT5TlQR8tN9RibtRz/JsjBW1598OdRINxjn9tBNEISr2YraNQ/SLHFt8lGJY28QwGA7FYjO9973t85CMfkS1XWWWVVdb7oSeeeIJ77rmHQGCtjxRQ08seHILkHKN3qCXIJQZbP+lCJSoLQ1Opof9eFysXfEwdXsbWZUAQhWw4toz0djVbP9HMyoif8zIh1wDqL6ukfm8lp388gX8q31rZ4tJnwYfeu+tZPu9n7og7L01VvxnvVIjISozaPRV4pwIE1o3Jju0WFk57IAb2PlNeGLrsbeml0F9qPdTusTPxUvEwIfoaNT0fbuTCL2fxjBaGVXAdclCzzcqZn0zimyhhuZwu+/p6y6j7DiejLywSWcmx914XVmHg91tZHvIx/rx82FZbl5GVc6XDgbTfXItKK3D2p/LzFH2NiFqnwnOx8J4BHAMW6nbbOf3jCdnwYz13N2BuMPBWiXBu7TfXoq0QOfVd+VDBNTsqmHtPfi6jr1bTeVsDQ09NE5gu4W2uBmuTAbdMmBC1RU3/PU1Mv7VceL2c3cK2G2tYHvKxOlSYj7FeSzKcyIZTlNPWT7gQTSre/WrxkMxb7m0gGUsx+JPiz0iC48xMHZbmOZn2nCtbj5GVC36IQfWAhflTnoLwbq6DVYw9J7kcOfdVMHNkNS+NWg9ddzQy+foS7uEgxnptwXsL0PexRrRWNe/+bYnvDzXs/YMOAgsRTn0n/3mr9WRDwgFse6iZhZNuZt7Mfw51+200XGLn5LcvElyK5ZUnlogx23iWoQnp20+hUGC1Wunr6+P5559HrVZTVllllfXvpXg8zt13383Pf/5zEumFfgUKHKKLLYarUKkkgEBnVxFaiqO1Kum91c7EOz4WB3PmD4kk9h4djm49g49LrinOAT0Lg8GCUFid11dgrBZ57/vzayGkioRd67+7ivBqgqFnCkPD66pUhBbjmJwqareZGX1xhXgoZ/6hAnunnqUz0iDj3Glk5si6eYYKbC1aVoYktydLrYhnPH88zg0zVb3NwMpwSDZEWOu1NgS1gqFfFv+W3/qxWiLeOOceLx22TGNRoRQhtFgYysJUL2Jt0pUMQ1bZoaN2h4lzv1goGmIOJLci30KsaAivjLSVKlqvsjH8mxXZcG6Z65UKU9ZxUyXh1XjJMHM7HqrDMxFi+FeFzxpAZYTO6xzMHveycqF4iBNjjYp4VAqvJqeWa2zEIwkmDpcO42Zu1OCdkJ+bOXcasbXqOf2INLfNLOXnHjZUG5U07LUy+nzxe6po1bI6EqbUNoDBoaL7tmpmj/mYfqdwLm50qmm9xs75Xy7K3rdzwMjCoJ94eF3Yxbyy6HCPSu9BRZNUrlxpK1UYq9QsnQuhNioxVov5aZQK7J06Kpp1XPi1dL/GahX++fwy6apUdN9cxfQ7HuZPrWucwtrOXvMVZipbdZx6dIGIN79+Klo0JKJJvFMxqrfoqHDpOPfMMqTyg1Nsud1GIpLi7FOroAKtUSltCgNB0yIn51/CE5Dma3q9Hr1ez49+9CMOHjxYtB7LKqusst4vnTx5krvvvpvTp09n/82gsdPrvIEKg+QwrRIhlZAYjOYBJRqdgnOvrwsrlkrQvF2FfznJ4ngKvVX6O++6ZRdBhL6r1CxPJZk8nZNHPD8/a62Cxm0iw29GCLrz89BZIJQeOhu2qvAvJVmdTqLIMVow2CUwKRoAc61ANJDIAkoZmRwKgm4pDJ2xSoF/MZ6FMXLLm4hKw4KtWcXicPHxTdBB+6U6Jo+ECSwVhlyrbFVTt1XLhZeDhFZKh2Qz1Qj45oqnqduuYXEokg3Dl6f0uN92hQ7vXJyFc/LrKYYqgcDiuvBxOXmA5JwkGhRMvSc/BxENUrjW0Eqy4O8z13FuERl/J1S8zEDdNg1VbSLHH5UP5+boEjFUCsVDtOU4VXmn5etW0ELzPgNTR4OEPSWwBwH0VoHgcvG8BBFaDxhYvBBhdTzdHoqElnN0awiuxPHPF+YjGgGFgqgvJYUdlJFrvw5DpYozz/gK2iZA/U4dggrG3yn+jAQNWOpUrIzGs2VPrNuX01cKRELSv5tqBHyLiYJrVbUJLF6U/t1aJ+Cey0+T0qpw9atYmozjX5LuLxqiIJ/GbSqMdiWDzxfZG80JE9d/UEVgNcXIkfwMBAFsDbA4Jv3cuktgdSrOylSKlHqNlrfWQNMWJeffShL2S+000/4SiQRLybc4PfQ6iWQUhUKBzWbj9ttv5x//8R8RcuaAZf3Hq+yk9DsmURSzE4Y//dM/5Y//+I+Jx+P4WOVVnkSRUtDNTpxjTdm/iXijLJ6VNpW67qgntBJl/IUFxp6bZ+w56TRxRYcRR78VQaUsAEKO/sNwNnSasUFD70ebGf31TMHmUHAhjHcqmM0PYHXID1HwjUmDR2W7GX1OeK+sokiAEtBxQz32XjOe8UA+hBSF2Telj8ueu5vR2TV4L57Lgzgy/180QvWADXOTQRYyUgiKbEzcYuU5+g9D2fyMDRr8k8U7+p4PS3X99l8UbhzNv+dm/j03IA8Hjb+wwPgL8ptkQLYeMvBZMSXjSdQGFfZOkyyE1P3hemydFnyzQdl8jv1TaShrM/JPRznyVXkgCKDteieCqCy54aaxqlGK8oO0uVmP92KwJKAElITE7H1mvNNh/NNRWUCp5YZaarZLtuDFQCVDjUhgTgJx3ps4JwubxaNJFArQWcWikJK5WU/11go0ZjWDP5ooms/2B1vRWjTMn3IT9ScLACWAztsaUChg+vVl/JORom3X0mSQnKnSTklZQEmEhkuqmHxpkeVBH+ErowQXCv9++2faSIQTnPzmRc799CIau64oHNd0ZTURr1Q3o0+vgVuGGpG2m+o5++NRon6p/1hzi4Koz88RXiKk8KOYVmQXytrb23n11VepqakpuFZZZZVV1r+Hbr31Vvx+P8FgkEsvvZRjx46RIMZJXoMEWKhi2+xlqAVp4943HUSllabQaouajhurGf7VPJGVGCe/NZbNt/FyBxqTqnA+tRTj9I8n8c1K43TffY2ggFPfnchPtxgmuBzJggXOfRVZECEDKKEGQ7WOWChZACnlXrfhEjuJcEUBWLVwTBpf1Xpou76Wmm1WTn9/Mi9NBuhou7EOa7OBpVOeomCJxiyiUCqIR4ov6Iz9ZoHp1xak/NSgManzQaO0avdU0HyVA9GkLgDwAc4+KoFdersatVldFIg6uom5TgZQMtRpZIEdXZUGQV3647Xv3mai/jjHvlb8mgtHPSwcLT2P2YwuPFkIR+fK2mag5doatHaRsWfni6axuIyIJjWpSPF5DEjQVXAuKgsogRR67b1/LA4NQRr0Oeph+JdFAtGn1X17PalEiiN/X7ze9DVqgnMxTnxzLBtKsJgUghIl8vfTeWsd+kqRqbeWIVYIKKktajpvcuKZDDL4oynmizwre58J504byXiKiZeWCoCgbJmrNNi7zLiHg3mAkrVNTzycxD8VxjMRJBoQC/62qt+M6yoHJ783TmQlxtmfTRVt280Ha6nsNrF4xk1wLsbx/7V2GKPhQCVqg8DorxZYHfJh7zZnv/b9U2HmEhOc5R3UWjXhCal8er2eP/uzP+MLX/iCbB2WVVZZZb2fUqlUPPLIIwA89thjPPTQQywtLTEfvch89JuICh29xstxLKXXvBRKAksxvGl3v7pdBuLhJPOnQiwNSv8BaCtUOAdMqPUC46/lQ9fnn1nFWKOCOKiN0HNLFRNvelkdzgcjfNPR7Der3qFCUEmuKrAG8FhdOozpMKoolGugdJwsoFS73UjdTgvBlbgEYmQURwKUgNarbFS4tBz/wXQ2LBfkAB0qqNtlocKl59wTxSEjpUohrXvJ6Mwjs9n8tDaVLFTScVMlSkHJie8WzjV8U1F8U+nT6B06VorAQctDoZLQEIBvJrZhOVJxKQSXqU6UhZScu03U7bAQ8c/hnymeZugp+QNYm1XcD2ceLb2O13TAhsYkcPSb8nM0XYWKREx+LqmtVBFejpcElABmjviZfrfwMAGA0akiFpAck+QAJUefgaZLKxh9aZmls4XzC7VJIBZKEFiIc/y700XBIoBkLIVCCaJeKPoctRYVdXusaO0io79ZKZpP5012THUaTnx3hniYAkAJoO2QDZVWYOmcBOmt+vMBJQCTUyOF7FMBcfIAJXuvBAyGFiU3qJB7XVkFgY7rpDXAoV+tcvE1L/NnggWAEkDzZRbCnjiDE8vMnwwyfzIIghK1EZr2WRg77CEeBv98LOuMQBz8S1FOB15iIXoR5YqSZDKJUqnk8ssv56c//Sl2u714JZdVVlllvc/q7+/n1KlTRKNRPv/5z/O9732PQGiJdy5+F6VChdPaR1fNtdmNe/9Kkmg65JQgQH2vgtkLKaIhgYtH1vrTmjYVpkolJ57NX9dJRGHwcIxEuutu7BdQiTB6hDxQKRJM4V9JZgEla50S91wSEmuAEgKYq6S9o9XpNUclgEDO+bn6PjWJuJrzL66b2y2ksvm07NXiW0hw8Y38OUsG6HB0i1R3iHjn/USKDLmiBpSCgqQM7Ls8EsM9GcvmJ+rSEMc6mWoEWi8zMHUsxNJw4ZrY9DFpTiBopfE2D3hKX3v4pWABLLReGUBJY4ZI7rJkDqyktwqI+tL5tF9pIBZKMfR8IP/v03kEFhNceKn0PHAzWji3bt9pXT2LJmi91MjsmTBzp4vPmwyVAjqrQLLIYYTcfKI+ZAElkNrE0POBomASgLlOhXc6zsJZ+flb6+VmUMDZZ4ofjhSN0h7Z2BuhtdBqRSSoFChV8s+oYbsOc60Kz7iPRKIQUBJEaLtCj3cmwdi7kaJwnL4S6vo0oIiyeCGOex0IloGDTFVKomEB/1IizwhFlw5vGPKCfylJMlFY/0aHQGO/iuG340RDcOHtOKEizJrdpcDZIeBfjBLywshbyWwZbLWgMcDsMPhWwL+aE4kpAN7QLKenniKOl3A4jEKhoLm5mT//8z/njjvukK3Dsv5jVXZS+k8gv9/P9u3bGR7O3wzQomc312TdlUByO4qF4pJ7kgjaHFiissfE8qA0wg58ro1UIlUArFRts9B8sJbj3xwluhKlepeV+RPuAleUnV9sR61T8eb/XcR9KQ1FmJv19HykkZFfzxZAJrnOOH33uzj/5EweACEaoXavQzoBn+vClKOKDiOBGT9RP7LlzKjzg/WsDHuLnsq395npuLmehVNuhp8sdDSo6jeTjKeydVdMDVdW0Xipg6k3FmWBpPor7NTttnPsn84VuFmB5HTT+5Emls96N3QWkpNoE6nqNhXd1FtLBPZOc4FLVa42dFJq0JCKpQjMybskGRs0GGv1G7oTlSrnvj/sIbQSkQXR+u53oTaqOPoP8htle7/STSKa4N2/GSp5uZYbavMgm7xyPNxN2Bvl2D8WKYcI/fc0c/IHF2XbX65LUzF3CK1DxNKkZ/5dN8YGDaZ6QxbYy6jtZieBxTCzb65gbpZswtdDQwOfayMRTnLiG+vcPXLUd58LU4OeE98cLnh+NbsrmDu+ClHY9qlWEuEEp74zlpem7pJKGi5zcOo7IwTmonn9CqyBdpn3auL1hbx391zqBClnEI/Xg98vvQhNTU3cfffd/Omf/qlsucsqq6yy/v/Ut771LT73uc8RDK4t4isRaKaXZmHNDrbhQCX1+yo59UPJ7chQJ+a5FVnb9FlXld6PNDDym7kCt6Keu+pRKODMD6dQ68HSbGLpTH4aY72WvnsaWT7rY+gX8hshffc3oVDAyW/nj98amxqVTkFgOkrNTiuiSVXgiFSz08rqaIDISgzHdguro8EC5x9bl4GVcwFQg72ruPMSSNBT+011DD4yXfT3236vGdGo4p2/KQ48N15lZ+LF4o5NGe38fCsKpUJy2EkVXzjY9lALwcUwQ48Vd6za+slmtBUib//l+ZLXKiXHgAX/RLCkI5A+vZkZnP/XOylVdBpYHQ0UOPzkqmZXBctn3MSC/7rPu47bnFR2mjnx7ZGiZVVb1Gz7uIuJVxeZP+oumkfjVQ7q91Zy4elZWTcsAHuviVgoURTEabuhhqotZgYfmVoD8nL/ts+EsVbH2G9kNg/VYO+Q3iO1HjS2QlejXOiv/rLKLMSUkd6upunKqiwUZ+sxsjKYP4Gv6jfTfI2D098bl56/mqLPZ+9/6SC0GuXEv4zJljPjRDb8zGxeWEiQ3NtSiZT0XqvBUrfmpJbr8rb9U80IopIjf7c2Xw0nghzjFax1JmZmZkilUqjVavbu3ctjjz1W3iArq6yyficUDoe54447+NWvfpV1VwKwqmrYajqEVqXL/lv/RypJxFKceWwFFEm0RlU29JixWoV/OQ5JBV03VKBQKTj7i/zvapNTRfMBK0O/XiW8EsfiEvFMRQscfrpvrURnU3H0W0XA3zQUobWq6LrZxvhhN6uj+eOMpUmTdUlquaqC6fd8+eCNCqq79ZK7SzKVhSpypatSEfPFiYfB4tLimQrLOhE5d5sILsXyoai0jDUqum6tZu6Un6kijkhGpwpBLRS4OuXK1q6l9Ro7U2+5mT1WfLPF1qGjfq+FwZ/NFXVU0tpUbPlwNYtnA4y/4pa9VimptBIotnSuxGaYCkw1YhauKqaNnJS0NhUk88PaFaSxqtBXqWSdljajgU/WElyWd7tyXWlFX6lm8GeLRR2QFAoFWz9WSyqZ4uT35eFwgNodRmaOFJ+7D3zCScQblwWzWq+1Mf5KcegIoKJFy+qE1D6LuUKp9GCu17F6IYzaqMRSryl4hrXbjcRCCZbOhdBWqkhEkgUuYl232EkB50uAaE2XWajqMXDmsYUCdzCLS0NgLkI8JtB+yEoqBcPPufPSWF0izQesnHtmhdBCDJNTlYUVIQ2WuZPo7Cp6b7Yx+Y6P+dNr9zIVOo/bdAGv34vPJ9W3y+Xii1/8YhkKL6ussn5n9Prrr/Pggw9y9uza3p5ObaGj+ipqrD3Zf7PWgGurwNBbCYIeELX5cILeCkE3iAYFHfvVTJ6J4Vk3HNX3SpDS2LEEpBKYbOBbN+yJOui5RsPSWIKpU/Jjb9N2FWpRwcgb+eOMIIJKAxEfmGqUaI0KFofzQQtTjZKIL0k0AKZKCPoSJNZNJwyVAoE0vFLK7QiS1G/XMnUsXBQuablEh96u4vQvi7vj2NvURQGlXHVco0etU3LmKRkHcIWClkt1RINJpo4Wn8O59ukwVQucerJ4OTYCnUCqh4g/ITkCyZRD1AECRfc8YXNOSvpKgaA77d4jgyyY66Tnk/hXTr0c3RqcfRrOPesr6rQkCNBxyMjs6TDuyXhRSKmiSY1rv5GLr/txT5RYB7QLoFAWhaGqOkScW7VceDFQ9PeGKgGDXSVBUMVcmAQw2QV88wkEAUSTgpA7/36s9QLu2QQoBGyNAp7ptRB6IDmD1XaomToh3YPBriCwlJ+Hwa7AtVPLhbdjUhg3gaLtqP9akZA/xYXX19WHQPZ9F/QCHXtUTJ6J4183/W4ZEFAIMPJuAhLJbL8C0nsdj0NKqaJtpwKNXsGZV9eeSyIRZXDm1wjGFaanp0mlUuj1eg4ePMh3v/tdLBZLYYHL+p2SvIVJWb8zMhqNXLhwgVQqxd/8zd9kLfjDBHmVJ3k+9TOOp14HJLef09+WgI3u2xoYeLANQ40EMeWCBDHfWgx4Q41Iz50NIMLicQ/v/OW5LPzQctDJ9gfbCsp08l9GGH1e2iQzNmjY9QcdmFzphaMMLWxUkYyl8KRDemTcl4AsoFS1zYKpTo9zR0Ve/lE/2RAdPR9soPFSB5Y2Q16a1SF/OmQWtBxysu0TrbJ1WNFhouGAo+jvlk558U4EmHix+AbW4kmvVHeiBIFk7zNHky8tMntkuaRjUsQdI5UC0VJ4ehokpxv3iI+Lv5EP/QJS2LKqfnPR30VXoqUBJaT67Ly1QbIc/Feq64ON9N0vX98A/slISUCp/ooNNkWiMH98lclXS5xeS0oxdktp5Jlphn8pszn5YEu2HEUBpXQ5ls/5GHuhuCtBVY8FY62OlquLO/+Ym/W0HKql5+5GgKIbdn33uGi+uhaQ6m09oARQ1WuhdocNAO/FYPYdNTfrJTAQSISTJMKFM4WeexrZcq90EvX8YxOM/GamAFCq6DDSeq2Trpslm9fjXx/JAkq1+2y03CCVzzPmIxFJIJoL+5WdX2in904XIL1XR/52kKmXl1hMzTDbfZbXtU8zxQWmZ6apqKhg69atRCIRxsbGyoBSWWWV9TulBx54gEAgQCAQYO/evSgUCpIkGOEkzyce4dXEL/Aklph8dZkjfz+UBSC2fLSJrZ90ZfPJwAZqvUA8lMCTdi9xHazC3mcCYPBHU5z5oQQnN1/rpP2mWvSO/HBL/qkwI8/OM5QONdpzZz3tN9cWlDsRThCPpMcBteRGAxBZiWXhqdodFdRstxb87dwRd9bZqPlqB1s+Wl+QZuWcdHKq+7Y62q8vLGdGdZc6sLgMWFqKW+CMv7zAwil30d8BWUCp7pJKeu4qLAfA8DOzDD05IwsowcZzhOm3lph+qzQMBeDcZ5P93cLR4s5Suer/WAvtNxW/j81Ib1fT/aFGWq4p7TI49+6qLKBk32JCU1k6jNfFFxdZGvTIwlQak4pUCsJu+U2/iRcXmHx9qeh8x+LSS++HGpbO+IoCSgDjL82xfMFfFFACyRmsqrf4XBhg68dctF1fC2rJOWk9oFTRYaDp8ipar68GkELBrbtlx3Yr1hZjtg3nAkoWl/RvgbkQyVgKtTldr+k8TI06Bj7dgsYm/fvIs3MM/misoJzbHmiWygkE52Ic+bsR3MNB1Hro+KATtUX6+5gvRtQXy14jUy/Gei1bH2im+WrpG+f09y5mAaX5+iGGG97mNZ4igBe3201rays/+MEPiEajvPrqq2VAqayyyvqdkVar5amnniIej/OrX/2K6mqpf3bH53hl9Xs8t/gvnPW9BsDJR5Y5/7T0vVy308SWO+zoqqTTvf75uATxJFNE/Aki3jgkU6i04DpgRqWRnJFO/mSJsDsBSgWtV1XQc3NlQZku/HqZiy+7Acl9acsddvSOtD1deu9MpYNELEVweQ2SyigD/BhrVdjadFS2a/MvECcbfqp+vwXXgQpM9flrRaFFCVBCBW0HbXTfXCVbh44eI3U7io+N/rk4y0NB5t4r7uzon4lL5VVB94eqJNepdVq5EGayBKAEEPPHIQVqQ3HT/vBKnIUzfqbTbuRyUhuVWFzaor+LhykNKAH1uy103eRAY/nXBw9ovqKCntvl6xskgKkUoGTvLWEFmdb0O15mj8kfiCQFyWRKNkRbKpVi5LlFLr5QfB2w9Vobjj49qVRKFlACmDvpZ/LN4u3D6FRja9bj6CvevrRWFW3X2mm5Kr1eVcQVqvMmB80HpHXfmD9Z9BlWbzNRnf4+Ci/Hs4CStlKVdYaMRVLEw4V10XiphZZrpPzH3/Qw+sJKAaCktapov7aS+n1Sugu/cWcBJatLxLnDAMkU/oUIsWACVfp1zAWUum+tzPYXoaU4x3+4wPzpEL74MlP213kt+APO+F9menYai8XCoUOHCIVCXLx4sQwolVVWWb9TuuSSSxgcHCQej/OFL3wBk8lEKObhxNTjPHv6z3h75Hv4w8u45+DU8xKgBNCxT6R939r4mgEJBCFFNJQktJqCZIqqJgXm9DA6dSYhAUpATYeatv06dOu4gWgIRt6KMHte6nPrtqio6yl0IozHIBZdc0fSSMMGiShZ96MqlwpHW+H+m28umQ0H1bhLR+u+wj2+DKDk7BNp3a/L5r9etmaRSpeIwVbcLXF2MMLC+YisO04GULI2CDTtKSwHwOSRcIHrU55SKVLJVMl1r/nzEWZOFgepMnmQSmGtl3d99M0lZOGjTB7t1xho3FH8PjYjQYDOqw3UdouygBKAd1oeUDLYBURD8d9ltDwSYf5sRDYUnKCVLh8LJWRdlFbHY4y/EygKKIkmBa1XGkGtJLiSknVrWhmJsjQclf19dbeGqnaNbJi45j06mvfrEQQpRON6QElrAddePbW90nx6ZSIfUAKwOAQqXWoMdglUywWUMu9n2JsiHlcgZJYS03mIRmi/RI2YnupePBpl9J3C+mjZoaJllwZUAokonD2cBpQEqO1Iw22JJJGA9B9pl7RMvyLqYMs1IjWdUp9z8VgqCygtJY4xHPgxLwz+BbPukywvL9Pb28sLL7xAIBDgiSeeKANK/0lUdlL6T6poNMqhQ4d49dVX8z5WFShoZQsuRSfGOpH6/Q7OPSptfO1+uBPPxUCBS0/nB+up7DZz8jvD+KejiEZlNgxV1TYL8WCC1SE/HbfVY3Hpefcfh/IcYxqurKJ+r51j3xwhvBAtGrJMNMKOL/QQXAgXuLxoHWtuTwOfa8M7HixwNKo7UMn0q9JHd9cd9Zz7xVReGWr32fBe9BOYi1K1zYJn2JM3eIpGJdFoEqJSXounfUVDV1V0GKWT/z8dKwihZWkz0PPhRmbeLg0jtVxXQyKa3DDEW0ml3aiKac+Xu0il4J2/LH7a3rmvkvr9dt75+/NF8zA2aKjstDD+6oLsNTZyUrL3mdFWigXuVhn13e9CoVJw8l8uFv19y3U11O6sZPjX00XDmZW6/01JhP77mjn5PXl3I0TY88UuggvhArcggP4HmkEBJ79Z/B5cB6uz4RQz4eByVbvPloWNctNmVLN7LbxcRYeReDSR994Y60S6P+Ji9NezLA/68t6TbJoGDf33teK+6GfwR/lhggw1IoGVKERh4LNtoEByWMtR+21S6J6My1TzoWou/mY+Wz+Zutv1Bx0o1cqCkIeGGpHee1uYPbLM5EuLOPdVImiVTL60SEj0E+pe4Ojxo9n0NpuNeDzO448/zlVXXVW0Xssqq6yyflf10ksvceedd7KwkD++m7GxnctRCyJ1l1QS8UZZOuWj8Uo7jj4LJ747UeBItPtL7UR8MU58Y0xyXwEJcFBD/d5KCZoAdn62lYVBT4Gr0PZPNRMPJzn1nXHUelBqC0OndX9Y6uOPfP1iwfU1Nim9vc9E46VVnHlkMu/vLS49ibgUnqp6wEIiksx3d1JD3e7KLBhdzCVQb1dn3WVy065X332NRINxzv+sECjuvbsevV3Du38rE74tlQQ19H64kTM/nSjpMrShZFxwavdU0Hx1DRdfmGP27eLwdd/Hmoj4YrKOTc59NgLzYVkoZ0MnpXS7WBnyFnc40ivY+kArY68syDpl7vqDDlLJFEf+ViZcr8z9b1aNV9hJRFNMv5F+zorCxZTGyyup3WXj1A/GCM7lX8xYr6XrtjrOPjaZ50aWkcamxurSM3/Ug1oPsVh+edV6MDVKTl+GOhGdVVPQZtuurcmGoKvdU1HwPFuvr8ZQo8uGbcy8J7nq/3gTeruGt746VFBfGSc1fY2avntcjL24kBc+Tq2H/vtbWDznZeLFJaxt0orOGswoQVWmRh1b7mpg+p2Vgne//eZazPW6bOjG9ptqmX5zieBSjEjHCucWT7C4JPVRGo0GjUbDddddx/e///3sQZeyyiqrrP8MisfjPPzww3zjG98gFFr7ThYVOjoMe6nTdaAxQ3WPgYnXpf5+y0fseKcjTKwL9+bcYcA5YOLME0uElhOotGth1Ux1Kkik8M3Ece4wYGvVcfqxpTzHIluHFtd+C4O/WCa8Gs+G6MqTkGTHx2oJLEQ5t87lRW1UEPNL63Zdt9jxz0eZeit/vLZ361g6G4JkioZLLEy+7ckrg8WlJeKLE16OY27UEFyI5LvaqEClku7L1qHDNxMpcKEBCfhov66S4WeXCyEOm4qe26qYOepjrgSMVLVFj6BWlkyzodJuVMXUf28NCoWCE98rfpDM2qKlYa+Fs4/NF3X20VpVWBo1zA8GZK+xkZOSyalGU6EucLfKyHWlFdEoyIaWs/fqaT5g4+IrKywNFsmjxP0DslBS7t+3H6zkwnPLEJcclYrlsfW+WoLLUS48XVjO5qttiHol558qvq5X3W/I1qHWoiK8LgRfRas2G6otN21G1mYtSrWC1QthdFUqBEEC5jJSG5V03mhn8i0vnjHJYWl9m1UZYds9dayMhBh9IX/epjYqSMVTxMPQeVMlKlHJmZ/nW3M4B4xUduo59WNpblS91cj8uZBUzsweezRF962VaC0Cx76b/52n0kHPrVUsngsweyyItVmDaFKxcCZEPB7G23SeI8ffJoX0vGw2GxUVFfz4xz9m165dReu1rLLKKut3VSMjIzz44IMcPnyYeFzqr5UKNTXmbjqd1yIKItYaSEYTeBegog5q2tVceDNGfB2f2nO1mlgoxYU34lKYzowDiwJsdbAyJtEOHQdE3DMJFta5HrXuTR/4eSsGAohiYeg0Z6eS6g41g8+FsvBRRoIOEiHQVfx/7L15mFxXYab/Vt2l9n3p6q7qvdVqtfbVkmzLu7GxMSZsYQkxwSSBQBIgYWAIM8kzmYQAgQAJBEzALGazwRi8YIM3GUnWLrWkVu/7Ut1dS9e+3qrfH7e7ukvdMmQy85sh1Pc8evR03XPPPXXurbqnznnv90Hjdh1jJ3LkV92OdRaV/8jEwLIEU13pmuRsFoiMX91VaXWcm7NRS2Rs/Rt74x49ZWDq1NpBS2C3HmudSO/TyauDRAI07dIzceYVYKNlXc0ZqVy+qguOxSfQccjE+KkMkZHCunU07dWjFEqVKLorZW8UyKdXRahdUccrOikttc3ZKJEMFdYHogTovMVM8FKG+PT6ndB1hxmtoKH3iatA2Vd5/xVdBUpalqNZQiNqiAxffdHS0SoT2GVk8Lm1Tk2yGVqvNTNxPENmcW1DBBnMHoHYbBlBUNu7OrpNEEDvFEgtKMgGNSK56poUoG6jzFxvHkQBm191T1otT4eAtU5k+MhSpODS52S1mvfI2BpELj2RpqitBv6XI+pEPWw6JDN5qcDi9Kr3KcCG/RKxuRLzQwoGKwh6oeKctAxVyXKJ7ptlZvsV5q747Nd1CDgatPQdVifcfBsEwnMa8hlQ9JP0TR1menYMKCPLMg6Hgz/6oz/iv/23/1aJrKzpN0v/64+V1PR/VbIs88ILLwAwNDTE9ddfTzAYpEyZIS4wVL6AMCWw8Qe7aNA0gwylYonCkstK/QEn9kYjl38wRf+Ppqogi91/upFUMEvP10arYtq0y5/xpS/Htjt9jDwbZPL5BSafX/ohKMOWt7aSXqiGkfJJCJ4MExlJVvbVSlqGfjKzAl7IIMoCkl5b+Xv5WMuAkv+QC+dGK43XelaOCVXOMx2vbqCQ8lYtwixDV8jQdJ2Xuu2ONcAGgN4loxE0lAtrJwRiQymOffpypU2OLjPRvrV3TfcWO2Xl6pCSrcPEpjc0Mf7i3LqOOXV77bTd3sDYc8F1t489HyQ5uf5ECUBJKaERNFj9RuKja8slJ3MkJ/8DABW8YlQcgKAT0EpXt4sceSqIki+tDyihwkP5ZGFNHOGy9v1lF+lg5qoQVfP1Xkx1Bnw7HGvdnGQqfXP8n/quCjFpZS1c5S24t1ppuMaFbJYYeHRqDaBUt9dO2631GF06hh+fXQMoAbTcXIeSKxE8ESU6sJqoA/KQj+XRSlrMDQbCvYnK58TWYaL5Bi89/zZKcjJHqDfO2IvV59Psl9l2XwfRoQSXvz9ZFYe3Or6wVChVHXMZUDI36tj6jnYWLi4y9NgMFx4aqxy/brcdV5eV3ocmSAXzlJUSWkHtqLGjswxYTxEszyAUBZRzCoIgoNFoeO9738vnPve59Tu0pppqquk3QDfddBNzc+r35F//9V/zD//wD2SzWeJEeJFHQQHnYR9bOYgkSFAqUyqUK4DQxjc0sHAxRqQvxYkvDCIZ1UmXDXfU49pk4fSXVZhoGVCSbBLlUhkltzTp3WWiVCyzOJTm7L+uALTtr27A0W5eAyMNPT1P4ICj8trmtwUYe2Ge1HS+Al4Y3ToEnZbcskvLEqiy2sGm8Vo3GkFTDXwUqEBHHXf58Gy1UkgXq2Kqlt2FOl+tvr/4ZJrExNqnwLSyFlFZ/+mgSw9NVSAuS5OBxGxmDRji2+HA2mjEt81B8PT6EFH3WxsxOHSc/pf142G3/2ErkkFcF+CZPR5FK2ivCiiB+qNbKl59MWlmnfHcv0sFKtfFejI1GNFIWpT81WdcLn1nFL1rfVeChgNOmg556f/xJNH+1Jrt9dc4aLzOw6XvjZOaXn9SyrvNAaVVkNIq2dqMxEbSTLwYZuLoWtcigHK5hEbUYLDr1oWUNr+5EckkMHcmRmGdYfC2+9oQDQLH+wZJTefX1NF0nRvPFiuL4ylCFxLV53Ppuhf0q36HQOVz0nanl1xcYfpImImXFjB59Wvew9b7mjF5dLz8qQHSwQLHPz1YqbvpoIuJF8OVdguyeozVn5et72jC6NVx/NODJCYynP/qaAXy63x1PaHBBJHeJIWsgqKsXGs9L5/n+NwRiuTh8soiZVdXFz/4wQ/YunXr2s6qqaaaavoNkCiKfO5zn+Nzn/scoVCI173udRw9epR8KcPF5PNcTD6PPmxm0/x1eKVGAEqFMsWlcZOtRcYe0DP+cpyZ0ynCgxlycfX377Y31ZFcKDDwVJTE9MqCkkarUecAll7y7TASvJgmMpAlMrCysNT9Whep+QL9j6+6vytaJl6OkY2qNwjvFiOSSWD6eKICKAGIei2ifmmiYRWoErqsjpHsHQbqtpkppJUqCCg2tnL89ludFNIKF7+3ah6gqEYhALRcbyeXULj0g7XzPjqLiCBq1zWizEaKnPnGbKVN5gaR5MzaBTffNgtouSqkpHeJdN3jYep4bF1AxxKQ6Xy1m/Eji+tCQOOHo+RiVx/TlIpltJIWg1MiMbN2UJFdLL5iTNuvo8RMYd26lyXqBUTd1cMJQpfSaDSsDygB297io5BWuHwFVAMqXLTtbT7SoTxDT68/hnS1G7A3G3BvMBK6fMUxRDA6BFLzRc5/Z/aqMJQoaxDk9Se9TF6RpmsdGBwSYy8urgGULH6ZjtvdBHsSTB6JMdezdvzYcoODUrFMdDBbDcQtXfeFbAlBJ2B0iMTGqHJOarzGxuCTYYpJmD2bYO5y9YKjaIbtb60nPJhm9PnFqvg3S4OERtAQn8yjFEqUSypsVMwLlVg20Qzbl6IHJ44kGPxFuAK8WQMSrg4joy/EKGagpJQrpg6hkQwj4suML/ShEajMeVksFj784Q/z0Y9+dP3Orqmmmmr6DVB7ezvPPfccAI8++igf/vCHGRoaYibWw0ysB0mrp2F2Kxu8tyCg/vZUlHIFUPJvEojNKyTD0PtsAVGnvu5t1VC/UeTyiwXyGYhMAaKAUFagDOWlW77RDhoBUuElOGlJ9RsE6jaI9P4iVwUqzY2WUAr5FXekXRLzQwWy8RXwwmAREHUalOVpjCVQJbfqtuLr1iHr4dKT1ffTZUDJ0yES2GFg6HCaxPzK+GS5Ld6NEg1bdGQT60d3iTrNVQ3Ap05nK23SWSGXYg1IY/EIOJokEvNFouPr39T9O3WYPSL9z6TWQkblMq3XGtBbBS4/tXbslggqjB1Pr9RdLq+pQ9Rp0F7F1QdgcfKKRi/fOF8pTm41kK1AZOzq4y6dCURJU7lW1tPIi0lky/qQiqVeoPWgidEjqXUj/Cw+DU17bQy/kCR7lTGoZ6Me7VUgJYNDIBMrEx0vEp2Krw9DKSCIGkQDsLh2c8sBI0aXyIWfJlXXoyvqaL3egMEmcOGxJPkM5DPVBex+gfpuHdkUxKaVakBp6RoTJA2iXlv5e/lz4ukQUIoqPDg3kCexoKwBlJp3itjrBc4/rT4oceGZfKVuV0BLeLxUafPyac+kBVj6WDVu0eLwael5Ok8+A73P5SufofpOgWRUIbEASqGEUlgBG0fHgvQMPU0sM0OZEhqNBp1O5o477uCzn/0sra2t63R2Tb9Jqjkp/SfTgw8+yPve9z5SqeofiCISW7gGt0aNidj+h20YXTqO/b2aO+s/5GL6ZfVH3abXNRIZSTB3cpH2u+vVha8vDVbBHJ4dNjpfEyB4NsLw49VPN7XdVU9sNEm4N0H73fUY3bo1TjV7/mwDWllYcQNaxzln9592IOjENY5Bq+Gg7e9uY+Z4daTEavcnzw4bmXC2yhXJ1W0hFcqRnV/fdWlZeq9M220+eh+aWLOt+21N2FvMXHhodB3XqBXXpnUlw94/6WTs2eC6URjIsONd7Qz9ZJLkOos0q8v9r7oNdf9uI/m0ssaxalmv5KSk98p0/U4jI0/PrgtB/Ur9Gu3e9OZGMpH8unAPwM4/aSc2kmLkqeC625fbeaXzEMCeP9+AqBd5+ROX12zzbLNiazUz9Nj6/bLaHanhgIuZY9ULcasdk9ru9FW3b8ndaeZ4mNCFOLYOE7GJVFVfdNzTgGernbMPDK1t+1K/tb26nrqdDnq/P05saOVzXn/AiW+Xg7P/ooJdm94UYOLw/BqA6sB/3UQ+WeT056sXYjte24C9xVRZoN16XwtTL4eI9iVxdVvIJfIkJ3Nsva8Fc4ORY5/uVWGqcp4ejrJICIPBUHnKVRAEDh06xCOPPILTefWYnJpqqqmm32QVCgXuvfdenn76aZQq71wNXgJsYi+SICHZJHb/USuRgQQDP57FHNAjyFpiI2kcnSZ8221cfli99+x6TxuhvjgTz1c/1bzrPW1IRoHj/1j9/W30STTsdjH0hHrP2f6uFqZPhAldWJl1cXSa2Pg6PxOHF5g5Fl3XNcfkl9n69hZmXg4z8eKq+5sE5jo9yaks7q0WvN1Wen80XbV/0w2uyj6B611rgJq6XbaKo8x6rkvLan91HaG+dWLAJLjmzzaQjS25T0FVzJvOJZELX31Co+VVdVh8ei58Y324uekWL7JBYOjx9Z/YX92O/xW3IVubkaYbvPR9f2xdwOZXOSm13elDK2oY+umvaN/V9CvabfLraLu9ngtfH1t3u3uLhaZDXs48MHz1eiSQluLVKtJosbUZ6X5jgIWL8co1ulob39DAyM8X1rh9geosZA6YiA6kMHolBL1YBbqZA3oko0B0ILXGlQhQr9etNnq/o7rILsNSq7X3zzrIJQr0fO2Ka2NVn+398w7yiSLn/626f7rfGiAxlWHycBhntxmTW8fk4eprv+MuH95tNi59d7IK/pOMsOUdrSxcijP1UhjfbjU+eOjxIEjg22arxPLs/8tO4pNper+nvo+wMsclXkYwaMhmsxW3hZaWFv7qr/6Kd73rXWv6sqaaaqrpP4sOHz7M/fffz9DQUJXbjFFjY4v5BhySGhXXfqsdW5OOM19Tf5+7OvWER7JQhMaDFtKhAuGBLHVbjbg3Gul/Ikwxs1KfuU5k070eZnsSTB2rnjDy7TCSiRaJjeep22bE4pMZemZR3bg0Ptl0rxvZKnL+m0v3vnWcc7rucaGziZz/VvW8h7leJDmt3oQ67nQS6k+zOLICKVkaVII7MVPA2qSjkFGqIBCjV6SUV2EdS0AmE8qv6zgkGqFxv4PR59aC2IFrbfi2mun7ydwaUEnULwFRV+OARNjyei+Tx+NVcNVqbbzHxfiR2FpHqivqeSW3oVdS47U2SqUy08fWH3O+kpOSqIf2211Mn4qtC2n9Sv0a7Q5ca6OUU5g5pV5bV07Nb3yN6rg1feLqDwhKFoFCYuX3h0ajoVwu0/0GDwaHxOmvz6xph7lBwt5sZOoq0W6r3ZGcnQYiA9XznXXbzMz1qG327TRXg2oitN/iJDKYJjqSxeiVyESLVW3w7TTj32fl0sPzZCNXNG6p3zxbjDRd62DgiQUSU3nVgQPVQcu31UzfY+pvpMBBK6He9Bogbec76ymkFC6uhvQEgfrtBpztRi49ou7fdrONhYE0iakC5noRpahGLDYfsuLuNHL+oSDFjOrqNpg9wXS+H9kgVea89Ho9d955J9/85jcxm83r9mdNNdVU02+6FEXh7/7u7/iXf/mXykN7ALJgpNG+k1bnQdW9RIDtt8mEJxWmLinIRhBlNbbJYANXk8DUBfWeteGAyOJciYWxMhRX7mMdByWMNi09T1U/GCUb1P1n+9WybfskQuMF4kvN0Sgl9FbovMHA9MU84VFlXdcc2QBdtxqYvZxnYaga4NCbIBtVMLq0uFslJs5WR7U5W0Uio+r9ZrXD0rKs9QLxWQWUEpZ6gcTs1UAXmVRIWRdm2nyPmXyixODzayeN1nO8WS1nm4S9XmTkyPqFnC0islkgeHH9h85WDsRawEajecUINlDjxXzdBibPZdZtp3+nfsVJaZ26PJ0yok7D7IVf0b5/T7tXSTaBf4eB0ZczK+VWOSeZ3AINO1UHpFdytBKucDcCkG1aNt1hZaE/x0zP2vY3bNMxN5hbt18EAfQOgVRIQTBpkQ1aMpGVdslmkAyqe5LBrkEraUktrDTQ5BZwtUpMnFTHbga3QGax+hhdtxooZEoV96TV72f5vXbdaqCYKzP0klpPWVIBpcA2gVwcFsYUjHYw2QUWxq5wZ2oVCGwRGTiSI7V6WC0KbNinZTFYYmG0hMUDZqfA7NJnz+aB2NLPpG23y8QWFMaXYiFT+Qi9wafJlBfI5bKUSiVEUWTnzp389//+37nrrrvWdmZNv7GqOSn9J9N9993HfffdB8AnPvEJ/uZv/oZsNkuRAuf4JZRBQCL45V00WZoBNbKp+VAdtiYTvd+eYPiJyQq0IxkEtKK2AlJselOAySPzLJyLoZU0FSec1RESI0+sLKCYGwzobCsZsMsLU6c+N4hsVunbxps8BA546PvRRJUzUXQwic6iXqKyWUvgei8jTwUrZfReGaNHh2tj9WLXaventtvrAapiqsK9K4t2HXc2UEh7131yvu1WH7YWM2a/vAYWGnpsgpbbAmsAJVhxbXJ1W+h8bYCRX8xWOwbl4eRn1Xgt5JXXVm8/96WrxJosyb3VyobXBBh/fm4NKLMszw5bVV+slrnRRDHzvzbbY28xYXDq0NnWj4zwbLOy0Be/elzdn3eRjebXxP6t1uXvT677uuyUyUfyFRDnSu39YKe6iPTAyLqAEsDoM0GMdes7CTTd6EUySutCSsvuSAanjpEnZtf0e8c9DdRtd5CJ5Jg7vbgGoJJlMHn1eLfaCV2IVwAjS4sBW4uJqRdCBE+HMPn0lK44Nbv/tAOtqOXkZwYYeXKWqcNz5JMlZKeMziqQGMtg8ujRW+UKnHX5B+pCVvMtXhqucXPhG2qc48jTs8xdWARUoDAxmWKhJ44gaNXP+hIM1f/ImPo9IMPG1zWSWshy/isjXPjOGPlcnnO8hOjQkC/kSSbVz6TJZGL37t089dRTtUmammqq6bdCkiTxxBNPABCLxXjNa17DkSNHKJVKzDPJPJNoFA3OiI/0Jw9U4pbabq9TI6M+OUB0IEVySr0nSEbQihr1SX7AvdmC0S0z8WKYC98YwdKifrfaWoxselOAsWfnCJ6OVeAPk19G75DQ29UBhjmgJxfJEh1IcfoLAxWAZM972sknlUqsFUA+WSYVzDJ7Th1T+Q86iQ4lSM8XSE6pP1Q9XRYsjcY1/bAMKPn22Gm6zg1UO/8sA0rtr67Du81GMasQHbjiiWsJ3N1WTD49PSNXACMFmD4eITa+Phy9DChtfWcLol7g7BXjqLGnVybTJJu0BoiZ+DUiere+swWdVbpqXJpkVMdX6zkRGRw6TB79Vbf/KtmajWiFqzy1JoGz3UxkHXdPAP+1Lhqv9XDpexMkJtbvv9R0bl1AaTlWLXQxQejiWsvsul12mm+q4/LDkyQm0moE2xWKjaRVQOmZtYCSpcmAs92MkimtCzBtu68NQS9w4jODpOevyHcDut8UoFQoc2pguApOWpZzgwVLg6ESo7YMKDXd7GbipZDqGjaeIrVQPWZ0dpvpvLuB4Z+pDxSc+8pQ5bPj7FIj5UAd1y0r0pskgnoOdr+3jWKhxPkHxhh6JkhkNElsLI3JL1O/w8nQE0EKadVRSTKpT/oFT8dAUj8n3a8PYGs2Eh5KU4gVOP0vA0wlJunnNI46OwsLC5RKJcjAli1beNvb3sZHPvKRtZ1fU0011fSfUIcOHWJgQJ1Peeyxx/jTP/1TJiYmSJdjnEj8BFCBpdCTB/FZA4DqotJ6gx1bY4aRZ2NMnkhUwAnRqEWQNCqgVC7ReK2Nhf4MybkiAz8LE1uaC+p+nQutpOHiD0IEz63cc8x1MibvypyXtVFHfDLH5R+HEJduE442PW03Oxn6eZjY+MoCQWQkg8G1NK8iQsM2MzNnkiRn1caJerA26ChmSlWQ0mqHn+br7QiylnNfX5mHS8+vTCh03O6ikFG4+N21Yx3fThuuTiNzFxNV+wBMHVfvSetBOsvAk9ErsvFuD+O/XKyGWYpw8fvzlfe1HENXLpcrjn/9P7m6Q+Ry3V2v9TL1coz5C+uPnaxNOuIzuXWBIFuTjlKhzPQrHmV9GdwyZp8OnVkiuU7lrwR+geqSlIsX6X9s/Rg1gKkjK3N1qwEl0QjFNFeNYNv8Zi/FTIn+n4SqAKXV9YwfjmL26dftl8A+Oya3xNTJ2Jrt1oCOjtvdKph3JLYuoNR8nYNiTiHcn1nXScveqKdcgujIinuS3i5iCcgsXEwTGkxiDego5qsP3nWvB8ms5cK351i4mCY6lKaYBdGoQbKIZBaK6ExajC6pErc4dVT9zeLqNNByyMHln8yTni8y8lyE1Jz6OfPtMJFZLBIbL6DRatBKmkrc48TRWOUcbrzLTWouT99PI4wfjTN8OEJf8ihpwzwKCvG8eiyTyc4NN9zAww8/XJvzqqmmmn4rJAgCH//4x/n4xz9OPp/nv/7X/8rXv/51IpEIw+EjDIePIAsmGmxbUZ64HkFWf982dInYfVrOPZ0nE4PZ3qV7lgBaSYNWq4FSCZMLjFaBhVGFoeMFzA61mGyATTfpmDhfIDpdqgBKoh5MDi2JBZWwkM2g5LVk4yUuPZ2pACSd1+tQClSBGYoCsdkisRm1LrtfIB1TyCchu7S0aKsXsdWLCGdzVazKMqBk9gg07zUiSBkWhlbuZfElKMmzUSawXc/QiykSc2tpF2+nTLZOYfjw2jXF6XMZcon1YaBlwKVpnwG9VcPAL65wfRopqFFtqLFhFZBmyRVJjaJ75bXA5msMmFwCvU9ecX8vl9V/ogbTElBzpUSdgLVexDgikMisR/mU1X9XgZ0sdSKySXtVSMnkEargnNWy+gVarjEx9OL6TlYA+RSMrga4lgGlJeOlVEhh8Odr57wsPoHm/WaGX0qSCSsoV1av1ZJPwOyFLOHBtWuRsgncnTrKwOw6AFPrIRN6m5aLP0mhZCCTqbbcar/OBMDln6XILJa5kqAyewVsDWIFYlsGlJwtArEZBSUPi9MF8pnqfjfYYcP1RibO5FicVhg8vPLZMdaJFdjI4hQQhBKMqcBheimmbsNBCTQweKTAwqhCNqmQiqwCCvuKoJTQSgKCqI79EwuQjiiggL9bwNsmcOlZ1U3p0vN5ovE5+heeQ7JkK3NeWq2WnTt38sEPfpC3vvWta/qvpv8cqjkp/ZboL/7iL/j85z9P4YrVAy1aWunmwDUHiAylyEfy7HhPO3qbtOZpbnOjjm3vaCd8OU7/j6awtBjIxRXykTxdb1Qnf/oensLcqGPDPY0M/HCiysWl4YCL1lt9TB1bYPwXKxMkrm4LTTd5qxxggj2LVcBS91ubsLeu41y0ypVn1/s7KOXLnPvyysKU3itjrtMTuhDHvdWK2WeocudZ7brk6raQmEitRMNBBVCSzeDeutY5B6DrjQHMDYY1i1Z6r+pIcPnh8Sonp9W65sNdKHmFU/+0dsFLBZH8jD2/fizczj/pYOzZ4LqRc3V77XTc4Wf2VPgV3YaupldyUvpVOvDRTRTSxasu4m35vWaSwey6LknXfLiLTDhHz7+Nrtnmv9ZF0411jD93dTBr+7vbSIdyDD5aPRXVfKsa8XfiC/1r4CnZrMXZbSN4IopsBtBWXQO+fSuRcW2vrmfkyZXJP5NPxn/Ay8CjU5U2LsffLO/bcnMdF781ooJu67hI7f1AJ4JOqHZ2kmHTvQGmToRJjGXofF0Arah+vlZr/0c2oeSUFehtSRt/J4Aga+j93iQmn0zn65sY/PEEyek87q3WSlzfgf/aTTqkwker1f3WJmytZo59SnVL8l/rYvTkJKdyL+JudDEbnK18lzQ3N2O1WnnmmWfw+XxrT0pNNdVU02+hZmdnueuuuzh37tyaJ6OtuNipP0Rgq4e5MzEkI+x+fyehdZxmtv1BM0aXGiEFK4CEOaCn/VU+er+rOvN0/k4D+WSRsWeqF6D2vK8djajh5D9Vx5x13ltPPlVk7OcL2NqMeDZZVYhk1TDxmr/YQD5R5OyXr7gnLznMmAN6ut8UYOhnQSK9K2MR3+4VB5iOu3xMHgtXYrOg2nXpSlclySZRSBegoLovRfrWRntJRth+fzvTxyNqZNcqR6UNr6lHMov0fnd92LnhgJOmG7wMPTGzbnTt1vua0VllTn1+7Rim6RYvervIwA/Xd1vc/ScdCHotJ/5xYN3tr6Rf5aT0Smq9s476nU4ufW98rQMV4NhoovFaTxWQtqyGA04ar/PQ+/3JdQGm3X/SgUYLp9aJSAYwBwx03tPAhYcmqsEvWcuu+9uIDCfXXJOwdI30xKAARq+0BCCpkmwSRodEbCyNvcOIRqupAtqabnITG00TG0vj7DKRmM1XHXvbHzRDGXq+vjSGvcJFytZmpPtNAeZ7Ygw/uTIWdXSacG2wVD6D2/6ghfHn5qvcj5pudhO4xkXfo1MVUAlUN7MNd/npfWSaQqxA5731FLIKoz+bR+eUEERIz6uvuzZa1kQzgvp5S85muPTQFEa3hLFOz5me0yy6pkGA+Xm1H00mEw0NDbz73e/mL//yL9c9LzXVVFNNv4168MEH+ehHP0owWD2W0mlMbDDsobtrC9lIkVy8xIY7HFh8MmcerJ6TEM2w4y0+FvpTjL8YQ28XUZQShST495oRDVrGD8cRzdBxi4uxwzGy0ZUFH1uzTOcdLqZPxJk5tTLOMPtEAgccVQ4wsYms6hKzpMB+K77tZvp+Ml+BlADQlitrSl2vdYMG+n68ArCIZjA6dcQncph9IpZ6PbOr4BFLQIZSmcRMAXODSDZepLhqCklvF1UnGhFcbQbCV4Ap5XIZ/34rjmYDF384h0ZZie0QjdB1j5fhZyPVcV6rtPVtdZRLZS5+d75qTKzRaFQQ6R4PE8di68a+db3WzfTpeFU/Vfq0QWTTa31Mn44xc2LtotKv0is5Kf0q7XhnPcXs+uAXQMtNdvKJYsUlabW2vr2OXKzIwE/Da34jONr0tN/uYvylKAvr9AdAx6uc5NMKEy9VP5Do7jbSsNtK78PBNfCUqAdr05IrkrjkhLWqaavdk650R5IsAr5tZiaXoCrXRgPh/pVrxNasp+0WJ/0/nSe9oF5Hq68RgM1v9KKzCZz56ipHUBEC19hYHE2RnCnSsNeCZBQYf3FxpYxWw47f96HkS1y4oq8b9pqRTQJjL8QQDdBxu5vxo4tkFopYG2Xik+o1s+td9aQXCvT9tPo8Bw6Yqdts5vy31f5yduqJjCxyJnIYQ32Z4FyQfF6to7GxkdbWVn74wx/idrvXPS811VRTTb9tSiaTfOADH+Dhhx8mFlu5J0laPV5LJ5vqb8LpM6hOKQJsv11mYVRhpq8asmjZJWKr03L+CfU+ZHKpcW+yAQLbJCbOFyhmob5LoKTA3GD1/p3XychGDRefyaFZ5crk2yRSUmB+UEFnAYdfJDhYrGI8Nt9hIJ8pMfjilet2KkghG2HDjSrIsToizOoXiC9FaXm7JBbHC1UxdK42kfCICmlYfELVvoK8VL2iAjDpiLLGmQcBNt5iYqE/R+SKeDdvl4zBJjB+fH3HJKtfoGW/kbGX02obV481NBoa9+gxu0Uu/2ztGMXZImJwCEyfvaI/lurYcLMJnUXLxZ+s/4DcK8m/U6c6Kf3g6g6RV5OzTaJ5r5GhF5PrRrUZHAL1W3SMvLR27GT1CzTvMzF0OEUmrFS5JwFsuMWCqNdw+Yn12yWboeWgheGXEtVOSFotHTeZSMwXmbu0dt3X6heIB5euIxOVSEJQrwHZIpAJKxicwhp3JGeLSDZRJh1WMLoEcmml6tgt+w0IMiugm4Cak7iqzd23GpkbLDB7aWXeyWBXIbzgZfWaatuvY7Y/R2aVoaqjVaZ5p8TwyRzx1QExBghsFZm6UCSfgfqNAuUyBAcUBBkEsUw+BXUbBOq7JHqfz5O/4nRsuVUmFS0xerqIIIPRBqOjo8zkjlPSZipObUajkfb2dj7+8Y/zxje+cd3zUtN/LtWclH5L9OlPf5pPf/rTAPz1X/81n/zkJ8lkMpQoMcxFho9fRIMGDwF852w4mqzqjjIc+NAm5s4vMvLkLGceGCK7qN45O+/xI5skjv395Sp4wt1lR2+TUZa+8wM3ulkcTjBzOozRq6sASrve10EhWeTCg2MVdyPZDPYNVkSjqMI3S1BH73cm8OywVQClfX/ZxcL5KKPPrEwqFTMKpVxpqR4tWqNIdj5fcdRpusGLzipVwTGrnYY6XuOnrMCJT68sEC07KHX9bivmOgOR4cQahx6tsH62anY+z8nPqAtVeq+Mq8vC9BUREJHBBJno+gBTqD9O801esuH1HYHO/sv6C0YAcycXMXkMjDz77weU/qMaeuKVn1V7JfApE86RmFx/MmbhfBh3t42Z09V9KJuhfr+X8V/MX9WdSSmWQKNBNqtOTKu15Z1t6CwSwXPRJQexlcFKy211+Pe7ESQt00fCVYASQNsdDZj9RuQX1XqXASVrq5H4aJrERIpSoYxkWbqQ82p7t/9hJ+H+BCNPzNL36CS5+NJAZKmYbJZxbLCiEbX0jk1UICjPNittdzRw6bujJCdzTB8PERtTRzltr65n5BezkAdLo6HiwpEK5ivXytZ3tGBpNBKfHiIfyXPxOyvQ3zUf7iIxk6b32xPMX1hUFwXzs8w3TDIwARM5NfZwbr5IfX09drud559/vhblVlNNNdW0jurr6zlz5gwAoVCIe++9l5dffhlFUYgT5sXso3ASDFjYWThIbCTJwiX1R3H3m/0Y6/Sc+vwwPV8bx+hTn7A3eiU23usnfDnBwGOzVdFTFp+e4tIYSDJC3W41cm3w8VkMbvXpfluLkc7XNjDw2AwDP165nzXscWBrNTH+fFB1wlmCOi48OFb5pdB2pxd7i5kzXx2pAB+SUaCUL5OYVscxliYDiYlMBVAyeiU8W6xodVoGfrQC9iwDSv5rXTQfciPIWoKnFgEq4IZkhNZb66jbYV8Tw6XVq/1RXH46S7PiMDS4Kg4tcL2LqZfDVYDKwvkIzg4Lob71JyAS05mVeq/Qr3JbGn1+jlK+9Ipl/k9o6sU5lIyyLqAEEO1PXdW9Kb2QIxvLX9VhKXguiqAX1rzecMDJQm+C5FSGM19cejhg1XlY7vPlJ6ZWy+iTaL21DkebicsPz1QBSgA77msGypz83DruSBI07HFiazJyYWyiAgoZvRLpqAq3FdNXTMQVVLjI223j1D8PExtJ0/+TmRWwbul691/jxOwzVGC9Zahr89sCaCWBCw+OM/FSCK2gIdKXwuSXsdQbCZ5aRCNoMLhk3F1mZo9Hqz5fO+9vJR3K0fO1cUafmWX0+RCFWIGW273UbbVV4hujwynCQzEuKScxWwVmhmdIkYIw1NXV0djYyEc/+lHe8573rHuuaqqpppp+27XaVfyRRx7hL/7iL5iYmCBXTnEx/SIXz7yIpNER0G3COnCAfHrFGXLnfXXMXUoxczLJue8GoaDez1tuUF1nTv/b7ErslkaLPWDA5F5xlnZv1JMMqfFv06cTzFxIgSCw8W4nSl5h6KkIfY8uqIVF8G4yYbCKJKYilYirqZfjJGZzFUBp61u8hPvTzJxJghYolclnSmiWb60i6M0qYBRPqmOxhr02LD4dsxeSFbBpNeDTdosKOfV8c2WeaDkqq+1GJ84OA6nQ3JoYLo2gAY3azjIr99hiWsPF76njI9EI9lbjGtgo3J+imCuvAXLK5TKpuQKZaIFcdP0s2b5XcCJKzhSZfHmR4IV//0LZf1TDT4fQSldxuATGnl+86rbkXJ5spLCmPwCiE1niU1miw1eMf0So61Zj1oaeXh+qKhVVlyqNJEC2eizbcYcHc51MfGKaYrYaUHJvMtJ2k4vxX0aY60mtcUcK7LHi3mhi4VKK7GKxAiiZvCKp+SKphSxKroSoE9Bo1MW45bi/6ESW6WNxhp+NUF5u0tL1LopQt8WEbBBIzkSYOanOCZt9Iu2vcjP8TJjkXJGpl2NkF9Xro26bifBAimIWrA16RL16DoqZlWul+Xobnm4TF78/T3axSO9j4Uqk4La3eEjO5xl5NsbiSBbZIJAoRhiXz8NsgfF59TeHPCdTX1/P9u3b+cY3voHdbr/q+ayppppq+m2V2WzmgQce4IEHHiCTyfDRj36U7373u8zPzzMd62E61oPQL+E0NbPRdxOhcS+LS85C/m4Ba52Wy88XGDtTXHpoXIU3NhzUERpTmLpQZOT4yvjA7BagvAQpCeAKCITHFcbP5THY1PuBZBPo2C8zfipTATEAnI0S3g6JhZGi6oSzFHPV91xGhYYAd5uAs0lk+KUciqLG1wmyQiEHuZjabp0FcgkqgJKgA98mHbJBy9QqsCc8oh7b2iTRfsDI+PHUkpPRKocjAVoOGEmHi2tclYSlIWaptHasMN+3Mq5zNovEpopV7j7xoEJsqkgqqKx1LSqXSb1CzG5krAhjV98+05Ot1FORZv110f+diowX0GjT6wJKAJmosi6gBFBIQTpSJBMprF7yq2hhMItkXDumszWKJENF8kkYeGYJhteuLbfOSwgGaD1oIjJWYPJkpgpQAui4yYwgaeh9cn13JP92PamQwsiRTMUZSjCoxZQ8FLIlSstAuKjO1zmbBbwbZPp+kSGfhMFfZkiFls7T0vXuapFwNkksDKjXzMjL6jUb2C4hWQRGjheJTJUQ5CLxBRXSM9o1LM6UKZXB4hYwu0tEJkuqU9KSNt+kIx0rMXSswNyIQniqTDEH7mYN9Z0SF57LgwLhSYVMTGEqep6ibYyZ0SkSCbVvvV4v27dv52//9m+5++6713ZqTf+pVXNS+i3Xgw8+yJ/92Z8Rj69drGn0NbPNsp3Nd3YTGYyj1QrorSJ6j475C4uIeoFyocz4S/NsuKcB90Y7c2ejRIcSODstDD+uTtAf+Fg3Sl7hxKf6QYb2V9ezcD5G+531lJQSyeks8xcXabzWQ2w6hUYD8yfD5JOw7y83ohU0vPyJPiwtBrxb7EyfDbPtd1uJTaVIzWXJzOdIhXI07HERHUkQ7Uuy471tGJ16Tn2xl3xEdRaSzRKxsRTx0TSdb/RjazJz+XujFAvg3+ciPp1EqxUoKWWcnWbme2JE+5K03FZHKpxBNkssXEzQeNBFZjHHzC8jeLZZMdWtuDNtvb+FfFKh/3uTyGYtjTfWMX0izKY3NmGwywTPRRhZekK78SYP+WSBuZOLyGbY9NZWhp+YJjmdx9FlxtFuqUTnBW50o+RKqqOSDO231zN/cRF7qxnfbieRvnilv/3XuiiXqLgNtd9dz8KlGPHRNNZWI57NNuJTaTpe3UB4IE5qPluBp9ruqic6mGDTG5tIzqVJBXMMP6OCL759DkSjQMMeN/lkgfhEutLfJp+Mb4+LyRdmySehbrcdvV1mfGlBr/X2OswBI4JOS98PJ/HvczF5NEw+ksezw4bRo2P852rZltvqSM1lWOiJIztl2u+oIzyYYP7kIu6tViz1hgqc1nyLF/cWG7JZ4sI3hqnb4SR4KkwqmMe310bg2jpO/dPAmv7GDN2/08TEs0HQanB2WRFlsdLfW36/mfBAgtljEdpeU4+mDPMXF0mMZdj2rhZkq8ypzw6ADK231JGPFyuA0r6/3IggCxz7VC+WBvWaHX5mFv9eF6VSGa2kUa/V4SSlYpnoYILoQJLN9zVjC5g4+k+9kITGm91Q1lDKlzC4dZTyJdLRHM2H6pg6HkJvkZjriZCcyNH+Gh++HS6CZyMMPz5L6+11JGYzhC7E2f+RLpRCmfNfH0U2aQhc5yUbyqMVNbg2WZnvWSQdyuHf7yYZTHNx7BzhbIjJyclKjJvVakWr1bJ7926efPJJZHnFzr6mmmqqqaZfX4VCgTe84Q089dRTa9wtZUHP7o49bG7dgdmnJz6RJj6doePOehYux6CsoVwuMXcujqVeT/PNXrRaDSc/N0TgehfphSyRvhQbXufDs8nO5ccmiV5K4d1pRTZL5GIFWm7yEDy/SGo+h6PFRDqcRTbLRMdSxIfTuLcY2fCaRubPLzL85BwNBxzkk0XsTSasTUbCAwkWLixibTSSiRawNRuZeD6EZIQ9f7qRTDTHuS+PgQTNhzwkgynCl9JYmgxseE098bE0Q08E8e22US6Dzi4x8VyI5ls8CLKGkafmMQf0uDZaSMxmSAVz2FuMmBp0jDw9DwVovsVDZDBJYiKD0SfR9fpGLnx7hEJMhXlFvYbYcJLt97eTTRQYeWqW2EgaY52EZ6uDmaPzFNLQfLsXjQbGnlbHH42H3CTnMkT7U+hcEr6dDmZORinECji7LRgcMtNHwmy/vxVFKTFzLEykL4lkk2jYu1LWsdGEuc7A5GF1scR/0EUunse/341oEAhdjrNwLko6VMDeYcIaMGD2G7A2mph4cZ58sqi6PEnQfIOXcrlMw24n44fnkExyBZby7XVQUkrMn4lVyoYux0hN57A0GXF2mnFvtDD9srqYVS6XmTuzCKgOk+HhBMnRDCa/DvcmW+UhAu8uG84NFvq+rwLSTbd4iY0kiY2mMfpkvDvt+LY7Sc1mCJ5bRDIKzLys1rv5HQHSCzlGn1rA6JbwbLczc2yBQhpaXuWhkFCYPhrBt8eOZBRIBtUowrrdNqxNBsaeC2NvNiCZ1LjpqZfCmPwy3W9qYvJoiODxRRydBqyNZoJnF8lFCnh3mGm/009sNEXv96bwH3SSixVIL2TROSWsfhMaEVztFsZenMPkNTDxvHpu9v+XTrLRPOe+MoZkg4ZrPCwOLuLb7SHUn8Dk0WH26RFELQu9cdCWCZ5QIbx9H+pAo9Fw/NODlWt2/NkFWu/w4tthZ+zFOWaPxfBf68LoFgmejdN+p49MJEc2UiAdydGwy8nI2QmGUpdIZhKMjqquZVqtFo/HgyAIfOUrX+Guu+76P/BtVFNNNdX026HDhw/znve8h76+PjUqc0latDR529lo20vXdU0sTmTQajVoRQ1Wv465C0lEk4ZyAeYvpvHvM1O/3crMuTjRsSyOZj0zp9UFkd3vqkPJlzj3LRVE8u8zER3LEdhjRaMpkZjJsTCUJrDLRmwmg1bSsjioxllteUsdslngzL/NoreLODv0hAeTbLjDS3I+R3K+QDaSp5gBe7OO1FyOxEyBDXe5sLfoufCdabJRsDXr0FlFEsEcmYUiDftMuDrNDD4Vppgr4u0yk1jIIooiSqGMrVEmNpknPpHDu9VELl5EMgksjqTxbjGTSxUJ9Waw+NU4u2V4pe02O+UyjP5iEVEPdVstRIayNF1vw+rXM3M2xsxxtay7y0BJKavuTCJsuNPF5LEY2VARk1fE1mRg5pS6OOHeZKRcohIx1rDHTHQ8i9Eh0bDPSrgvVXEmcm7QoxU0hPpWysansiSDRfROEWebnngwS+cdXkKDSdILRUK96rmq32kmMZdl42vqiM9kSc3mmL+YpJgFW4se2aylbquZYrZMdDRNOlQgMZVHMmvxdBmZ701STK/093IUXd02EyavhGyRGHp6AW+3mfm+JMWk6mZldEuVPvRuMZFPKSyOZhH10LDPSmo+T7gvi8UvY6mTVTgN8Gw24u4yYfbouPBwEGergchQhuxiEUujSPP1bi5+J1jpw5JSVvtQD63XOpg9n0DJlXG26hBkodLfrbc5iE9kCfdnaNhjASA2kSE1X6T1FgfmOh0XfhCEInh3millS4Quq3249W0+9FaRs1+fQtSLODsMzJ5P4mozoBTLiAYtdZvNxKZzFNNK5ZptudGGZ7OZCw9Nk10EV7cerVaLkithcMsUMwq5ZJGmAw5mzsaQjSKRsSTZEHi3Gmm53sHMmQRTL8fxbjGSSyjExnPseIePklLm8mPzaAWBuh0mctEipRL4tpkJ9iTJpxTqNplIhQuMzPYxnxtnamaqMhdusVjQ6/XcfffdfPGLX0SvX4n0rammmmqq6deXoij8/d//PV/5yleYmpqqQLkatFj0brZuPEiLbxMWt0BsTiGXKuPfIhKdXgJdNRCbU5D0EOiWEPUaLv08jzMgkM8oJMPg3SDQtFVi4GiWeBAsXpANArmkQuN2mfmRIoW4gt6qJZ8pI+shtaiQDoPBBRtvNDLXV2C2t4jdL6AUyuitGhwBkehEkdicgt4qkE8pWFwaNdZNgB33mklHFQaeU8cfng6RTLxIMgw6IzTtMZCYUwj25rHWC6AFWa8hNFzE0yqgkcrMX1ahLJtPIhUrUUwr6CwCRqeWuf6CCpO0S6QjCploCdkALQeNjB1Nk8+o8V6SQUN8tsjm11jIxRUmz+RIhxUEAzj9EpGJgnrv7xCRZA1zverco7NFIpcskQqp7jfOZpnIVAElC0aXgN6qITJapPWggbIWQgN5kvMKglTG2SwTm1KjuQwuAYNNW4mXszeLKDlwtcvoLFoiw3liswXyKTDYtZjcAjqLFk+HzOiRFKUSJGZV2MzTJqMUFfw7TEydTSNKWhaWYtOsfhXAWYbCPBtk4nN5cnGQLWDzydibJBYGcyiFMlotxJbKujtkUhGFTKig9neDzMKwCstYfAK2Rompkyp05eqQSYcVMlEF2QC2Jpn6bUaSc0Xm+zNIei3RSbXewD4dxWyZYE8eQQ/ORpnIeB4lrx6zVCwTGStg8wsIkpZcqkRqQcHsFbDWC8wN5DHYJCSj6ioaGS0im6DjBhOzvVmiYwoGO5jdErFp1aHL6Naw8RYzkdEC4yey2AMCShHSKdWlyWwTKJXB3SIzfSGD3iIQGlHbu+0eA5l4icEXcggCONsE4vMKrkaJxEIBvVlAtorIBg2hySIaAdX9TIHNt0qIsobzT6opQza3loUJBXejQNM2kbGzeSKTZRx+LTqLhtisQkO3TC5VJpcqk0mUqGsXmR6JMx45RTwzx+joSCX+2ev1smHDBj71qU+xf//+/7NfTDX9P62ak9JvuVY/bXbs2DHe/OY3MzmpRmRMBseZDI7zxOBPaGlu4bbbbkOTs6LVavDvc1MqlCiXymh1GrybHOSzRRZ6F2m6zout1YSj3cypzw1SKpRQH7uCja8L4N5oQ7aInP3iMJveFMC304lkFLC3mDHXG0CjITWbI9+XRNKL5NPqDc+3y4l3i51UKMuJf+xn7wc6sTebl6NVESQtJq+OaF+S9FwWk8uAwWkiH0nRdns9ZaXM5PPqpJF7ow00kM9A3XYbvp1O4hMp5s4usut9HegdMs52K8f+/jL1e51kInnO/esw9Qec+HY5KZfKxMdT+A96MDjlCqRkqV95Gs/WZsa300kxo3D2gSF2/VEHdTucFUjJf42LYkZh7uQiG+5txOwz0nSTj95vTxDY78biNzLyxCyyU6bpei+logop6e0yvp1OtJKWfKKAqBPw7XSuQEoHPVAqM3MszJ4/34DOIiObROKjaRr2OHF12ZjriZCLF7C1mHG0rTg8+XY6MDhUAEW2SFjqTcydDZOcztN4rUe1H5zNkEsW8e10YPbpifYl8W5z4NvpxL3ZxvTxEHXb7EhGqQIp+fa4KCsllHwJd7cV304nydkMc5E8jde50Tt06C0y/T+aon6vk+xinoWeOI52I84OK7ZmM/MnFwkc9GBw6SqQUsM+F7lkgZGfzaCzqv1SzCqkgvM0Xu9FMomVKBn/PhfFnNrfe/9oI7JJJLezwPDjs7TcaMTaZGLkiVm6396EtcmEwa1n9liEqSNh9v7JBkRZoH9sCqNHX8lXJg+ezQ4EWYNsEhl9Zg5JL5KJ5CAPDbtcuDfbEAxaPF12CtmiuqD1SdWt6+DHu3FutHDqMwOUlTIarQab30A5r6FuqwNRL1DIKIj6JevHYIbjn+yj+VYvvl1OPFttvPz3fdhazJSUEsOPz9L26np8ux3Y5nOELsTJJ4sYHDoc7UYa9rkRDVocrWZmT0bQaDS4tlsYOXmZ4z97ntGxUcrlMlqtFofDQaFQ4L777uNf//Vf//d+8dRUU001/ZZKkiQee+yxyt9/8Rd/wVe+8hUSiQR5Jcux/l9yrP+XgIY77riD1n1toAGDU4ez3UxoMEHnPQ1oRQ2SUSAyqC5gBPa70Ioaxg+HiI9n8HTZEAX1XtVxZz0AR/+un4WeONf8xQay0QI6m4Qta1TdL/NFlGwR304naGD+ojph33TIQ7lU5vinBrE0Gdj6tiYMLglnu4VsrIDOIjLxfIhCGkpKCUFWHyPquKMO71YHM6c0hC+lqd/jwGCXKbjUp20C17qhBKf+eRgk8O9Tj6sV1P29W22c/Fw/hTQ0vsWNbBex1Bs5/8AYDXsd6GwSiYkMzTfXYXDINOx1M/6LEI3XuhF0WmZPxBh8YoYNdzXg3+ckNpLGvcmGf5+LxWEVuPHvdQErkJL/gJvkjAopbbzXj6XBSDaaYe50gcABFwanjukjYSSDgNGix39AQ6Qvib3FiH+fi2wkj2QSlsZs5QqkFDjoJruYJzWnQjP+fer4Lx0K47/GpTocTqYqZQsphdCFOCavDv8+F6HBOJlIHnuzGXuruQIpNV7rVsHnvS4ufU8FwAVJy8h0kPrddtybbBSyCuVymcbr1bHh3JlFkCCw3039XienP9dH/U4n3m32CmTVfKMH2STTdJOHiecX8O91YnRKxEbTeLbYadjpYvzwHNPHI+y8vx3RsAIp2RpNWHxGRp9awLnJin+fk8XRFJRUB6SyUmb6aITgqUX2f7iT1BKk1HprHYKoJTqUYqEnzrZ3NmN065h6KUy5UEYyCgT2OQkeX0SQRPz7nLi7LJz+lxG8Wx1AmbFfqGND/34XuYR6bZaUErJRYuKXIU5/cYTt9zdVQUoaLYhG9XPiaLfg3+1ENgg4280YPTr0Noljn1Bh970f6EAyCshmidmXQ4iywHyfCixtfksjoiwwfniByECSuh12/HvdaNDi2WzF6JLRaLRotarjUt6U5PzUEZ74nvrkWLlcxmQyYbFYaG1t5aGHHmLLli3/4e+bmmqqqaaa4NChQ1y6dAmAoaEh/vAP/5CjR4+Sy+UYmx9kbH6Qpwehyd/MbbffjhC2ohU0+PdaKStllEKZsgYadtnUh7Wmsng2mqjfbsbZYeTi9+bJpxW0S+6BDbtNNO6zobenGHgygn+vGf8+O4JOg6vTiNknoZUEsgt5FapxiOSTRSiVsTfraNxvU6PEvj9P9+s92JsMFLMlRL0WQdISn8qSmAmTCGZxtBqQLTqy0Rwdr3JRLsOZB2aW2mFXXb8VsNbr8e+1M/yLEJHBLBvvcWFrNuDpLnHmgRkC+6xkokUu/2gBS0AmsN9OuVwmGwni22bB1qSvADaeLjNlNIz+YhHZIuLfa6esRBl4KszGe1w07LRVICX/PjtKXiE8kMG/z4K7w0RZgaEnw3g3W/BsMjNzKoGoh/bbXCj5EuH+NBpJg3+vHdGQIDWXR2cW8O+zV2Cihj1WtKKWUF+G7jd4MPtkFnolksEoznYD/j02Ig8HyUQK2BoNOFq0FUjJf42N6OjSnJdZwL7XTnwmS3KmiH+PBZ1VJDqSQSmUCeyzkZjJkZgKYwvo8O+1491qZvZ0AkebAaNbqkBK/n02SkoZJVfC7FP7OxdXCPWnqd9lwdFqQGcRGT+8SOAaG9nFAoujWQwumYadNoq5EuG+abW/m/UVSMm/z04hXWTomRCUIbDPDsDMqQRN+52YvVIlrs2/z0apUCIykGHzaz1Y6w0UsiWmjsQwOGS8my3qftfZqOs2Y/PrCPdnmDmVYN97G5FNAqn5RWwBPXq7WImFq+syobOJyCYVctLbRDKRPMUs1G01qOdKr8G3zUYuWUArajn3dXV+cu/7/GRjRS58aw4lX0Kr1aB3SCCU8W6yLNVVxOAU0QoaEsE8PQ/N4eo00LjfRv0OC6e/OoujxYBSKDH1cpy6rUZabnAQm8wRG8+RjhawN+qxNepxdRiRzSLyBoHxIzE0gHe7jnM9Zzl9bJSRVYtjTqcTn8/H+973Pj72sY/9H/4mqqmmmmr67ZAgCPzVX/0Vf/VXfwXAd77zHT75yU/S29tLPDvPkfM/5sj5HyMJRm668Qb8Td1oNRKyEbytMgsjeQJbJMoKGB1aFkaX3Jc2i8gmifEzBVIRhVJJWpo/KrHhoB5BhJOPKFx+Ls/m22RyKQGdQUMxX8LkEBk/l0XJK7iaJQQBYsEClKFpt0QZDRceSxObVth8hxF5OIe3XUcyXMTsElkYTYOiUCyUESR1vOdsE2jaY2C6J0tyvoA9IGFvECtOSb5uHVoB+p5ZGn/sNiCIIOrzFNIlAtv1XPppnHwGmq/RYfdLWH0FBp9LE9hpIDyWZ+pUFtcGGXujjLOjQPBCgbpNMnqrQHQ8ychLadquM+LpkBkPZ7C4BQK7DKRjJVLzRVr2mdCKGuZ6F9U27DSQnC8wGsoQ2KmnrttA8fk40TEFb6eM1ScSGU0gGjSYPSKCFpLzGWSLWq9SKFNSyrQcNFJSqEBKDVsN5FMlYrMFSkUtgV0GymcgNFTA2Srh6dCxMLTk+rndgJIvk5hNIUgQ2GVgfihLKlTE4BSo26CvQEoNWw3IJi2ZqMLgcykCuwwEezXMXshhD+jwb9OTS6suo/Vb9AiShth0Ekolmq8xUFKg55EotgaZwG4TsZk8+SQEdqnj8VyizEJfjsAuI+GxHFMnMpjrZQK7TEycThEeztN+yIzBLhCdVCFvX5c6Lg/25DG51H7JJhRySYWWA8YlSClGbFph671GUqEiIwsZ2g6Z0Jm0pCJlYtMKzdfosTVIREYTKEUwuQTqN+mJjqVAoyGwy4CzXaL/6TTOFhkNMHspW+nDQraMpNNQBvRmLVM9Wfqfy9C8T8LTLhMaT4GiznlJBvWaNTghsFVPsD+Hp13C6NZidoqcfTIHCnTdKGN1axg/V2RuSEFn1LIwUoBymc6DMgaLQHQ2QzykUCqL1G+UUAoF3C0iJqcGUdai1YLBqkFrjXB+/Bi/uDBGIhGnVCphMBjweDzceOONfOITn6C1tfX/2PdQTb9Zqjkp1bSu8vk8r33ta3n22WfXPOkPYNU52NN4LQffsIPgmSihvkW82xxYGoxc/u4IG97QjKQTOfflYfR+mW1vaWPqyAKphSxNhzz0/2CMfFKNmMpEc/Q8MIrslNEuYXM77+8gE80x9PgU+WiOfBI8u6103BFg6IlpFs7FCNzgIhXOUYjmMftNJGfTmBv0NN9Qz8ATUxTiBZKTOep222m7o4HplxeYeHYB2SkjGyAfK5JPlpCdWna/p4twb5yBR6eQnTImtwbZYmDu9CLePVbqtjm58O0xAMwBHd5NzgpA5N/vYPRJdWHE5JPRGESSo2k8O2xoxDLzPfGlCC8tskNi0xuaKeYVBn44SSFPJX6s7e56RpZci5bLJifVG/jO97azcGGRqZdUmMjcqCM5l6vEh8kOXaWs3qtOuGTn8+z9QCfpcJbBH02QT64tu9znyxF25kYd+WiOPX/WTXwqxdhzwaqykqzGh62ULZBPlkAG7zYrLTc1MP5CkOhwurqsX670NzKY61a1v05my5uaGH06SHQgqZbNLPWLDJ6tFvUptktJtV9sIma/idZbfIwdnid8OVHpQ3OjDvdmO2M/m0M2a7G0mghfUAcRjs1mZJPE3Ikoji4z5kYDky8uqDDR9U4crWYufXMCZGi83s3c2Tj5iEoK737/JuJTKS59a6LSh/lUmXwkj94rs/2dbeTiBc59abjSh91vb0ejhcGfTpGcy9F8yMvsmUUar3My/BMVVNv3l13k4nnOf3mk0i8aQcvWt7cSGUkw+dxc5RrxXWOj9eYGJo8tMHU0RPud9ZSLMPLELLve30E6nKXvO1PUH3ASOOCm70fjONttODotDD2utuGaP+9icTrO4z95HEODzNTkFMmUOvllMBgAcLvd/OM//mMt87Wmmmqq6f9n/exnP+P9738/w8PDayIgRI1Ei7WDW2+7DXujmfPfmECSoOOeBuZ7YuSSeVpv9jH2wjyRwSRd9zYgmyV6vj5O26u9FDIKk8+HabrBRf1eJ30/miQ2kkWySUgGCBxw49pooedbo5QLVCK4tt/fjKgXOP3Papxq66u8jD43T2C/i7nTYSSrxIa7/RQzRUafnqNQUCPbtt/fgmwWOPkvw1AAY50EGkgH1Xq73x7AUqfn+OeH1O0+CWuTkeCJGJIR2u9uIHQpQehSAp1Twr3JTHwyS2IiQ/1+O7HxFOnZAkhgbzOy2K9O/DTf6mbhXIx0SD2O0SdhCehoubGewadnyM7nSC+NTdzbrBTSRWJLkWLGOolCokghXcbRbaLxWi89D6jONpJNQtJDeq6wUja7FE8ngdElkw7n8e1wEDjgZuiZaRb7lup1S5V+UduklqUAklGDZJVouaUOa6OJnq8O/8qyy+3XudT9DA6Zc18euaIsSFa5qixALqzW6z/kxtFi5OI3J9aUlWwSdTtsTL0YqrShEM+z+fdUYG7gx1Ok54qVstYmHaVcmehACtsGI+npNIU0IEHTdS4mng8vXTse5noWK+et+3cbmXwhSGKygGenlWwkQ2JGjWzb8Pp6XG0WXv6nAfX68EoUltzTC2kVpKrf6eDyI1Okg2kks4TOLtNxVz0jvwgSn8jhbDeSmEhjbJApoSHSk6R+v42m6+vo++GU6q61dG663+jH4JDp+dYo6XAByShBoUDXm5vQmSVOfWEYnVOi7VV1TByexxow0XCNg56vjlBIw7Y/aCYXz9P/yCxb39FEfDpF8Gwc30473q02jj18nilNP0VNgbGxscrn2m63UywWufvuu/nXf/1XbDbbv+9Lo6aaaqqppv9lFYtFPvzhD/Otb32LUKg6VkyLgNPoY7v7ALtft5GF3iSR4SzWJhl7wMDIs2EaD1rRmST6fhpGMmvousfD7NkEyfkCgb0Wxl6MUczCtrd6yCWK9P80imhYimwQRDa/0UsmUmD0hSjFdJFiFswBkc47vYy9GCUykMHZpaOYg9xiCVOdSHq+iGyBtpvcDL8QphAvkY0UsTRIdN7tYeZMjNlTKUQjiLJIMV+kmAb0sOv3Ggj1p5g4HEM0ooIcZpHFkSwmv4Rvm4Xhn0egCDqPgLNRz8zpJKIePJvNzJ5W5w30NhH0RbJzYA3oEPQaomNZNcJLD5JJou1mBwCDPwtTpkQhoY5r63ebmT2frJQVjWIlWm7ja91ERlMs9KjuBHqniJJRKGbXlhXNqiNDIVli8xu9ZOMFxl+MUsyixuBZq8sKgkguVqzUW0wX2f77fmITGaaOx1fKGkGQVpW1ixSzxUq9lgaZlusdzJ6OsziRQZTFSlye3r6qv0XQWQSy8WLlvXa82s3MiQTxqRx6m0ixsFQWsDbpKFMmMZGvvFedRaTjNifjx6IsjmcqEW16p4itWc/cWfXc6D0SyUl1fGfwCRisIpGBHCaviLlep8btZcGxQY+z1cDwM1EAvNuNREdyFBIKiLDrvgZi01mGn4pU+rCYVdsommHz6+vJJ4tc/uFCpQ9bb3EhGQRGn4+SjRTVOLaRFN5NZmZOqg3e+vY6CimFvkdDlXqVfIntb68nNJhi9lQSpVCkmNVgbZRpv9XJzOkEc70pfNvUxdWZE0m67nWRSxQZfTaGrVlH40EbY89H0Nsk3BuNjL0UI5sosu1NdcTmMvzyuSOUvQmmpleiRPR6PZIk0dnZySc/+Uluvvnm/8A3SE011VRTTf9eDQwM8F/+y3/h+eefJxaLVV7XoMWkc9Jat5OdO3bjbBAZ+GUeQQD/FonFGYVsqkTjVpngQJ74HDRsFjBYtAy/XMDTLlBWyoTGStj9Whq3SQwfz5GOgKhVXYMcjSL1XTL9L6RRCpBfuq+27pfRWwQu/3zJHalTYGGkhNMvEAsqKkizVXXImVyKO1My0Lpfj8Gppf/pNIoCsgEQVur175Jx+CUuP5lSt5tBbxWIzymglPBvlYnPKSRmFQS96pCUT5TJREvY/KorVDam1mmwQ0adVsHTKRKbLJJfSoiTTeqYo/kaI+Mn0+TiitqGchmTV0BTVkgurJRVCmpkmMEl0LBVZvhoBvJq1J4gQT6tAi2yAZSleDHKZWSzavZg8Qj4dxqYOpMkOcdK2TIoS2lwshnyWRWUF2T1n2eDDk+HzIWfxuHKshnUsoIaa7bch4IB6rp0mJwig8+mkM1q3yvrldUD5RLKUr84WgRsAT1jv0yBoLZxdb02v0hkqFhpg5KH5mtMCHot48cS5NPqA5SCDHobgEBqQcHgVOtR8uq5cbUKhEdVFzDPRkl1kIqr2xr36AkNZslEwNIgUcwpZOLqe/VtlvFulLn0eBIlv9LfoNbtahXw7zQy/FKabEy9hgVRQ+tBI1MXc6RCZYwOgVxCQTKCVtSSCJYwezW07TcwfCRDKlyuxMQ17dRhqRPoey6t9pEAZa1IYLuA0SZw+Xl1DOrboCU0qiCbNPg3SQz8Mo9SgJY9Ekq+xGSPQvNOkXSiTHRKweoRqO8SuHQsxETsFPlylOGREViKh7bb7bhcLu677z4+9KEPVdYfa6pptWpOSjWtK1mWeeqppyp/P/DAA3zkIx8hElEjI+K5KM8NPc5zn3gcDRosOHj7DW9D75DJJ+HSg+Ps+ON2/Ne6SMxk0GjVJ+xjQymyW+10/W4rPV8dJbuYJzmt3pW826zU73Jy/sExJo/Okw3nSU7m6HpjAEeHhdNf6OfY6d5Km/zXeCiX4cSn+khOqzCJJmCirJSJDiYhry7ehQfiHPtULyyRzDvvb6OYLXL680PqC3nIhHMsXFoEwL3RQjKYYe700t8dNsz1RmSzTD6SJzmSIzmiPhXUeNCFb6eT9EKOuZOLS1DOEnR0ez3lMsyfUt0I8skS+WSOTCi35PazkiELMLLkhNT99iYAer89Udl29ovDSycG9Ha5Ag6p9YJjk4GWG31c/NZ4BTgCOPnZgapj5JOQT6r7mv0y7m5HxQUKqKqXUvXf+Uge61YrtlYLM8fC1WXz6vtcfq9UekGNXvHtcnLhwbHKhuV9zY0qMHXmC0MrbZjOY+swsf33Wzj/wBALpxOr2l8in1StJQMHi8SHVwAlAO9WJ/W71ZiP2WORCqAE0HlXAIC5E1GifUmifcnKtrptTnQWsdK+yWdDtN9dz/DjanxdaiHL4kiq0oeurSZab/Yx8vNZgieiHP+s6ozU9YYAI8/Nq4OVrIJG1JCczCGbYfwX86rL0XYnqWCO4IkoJz6l7rf93W3oHXLFYWnhUozxFxfouNOH3iFz5p+HCB6P4b/GSyFVxL/fha3JVOk3QdKi1WqRzeDdamf6WJjEWI7ANaoLwOXJi+SaYlz+9jGmp6cB0Ca1WK1WJEniuuuu45FHHsHpdFJTTTXVVNP/Hd1xxx0MDg4CkE6nedvb3sbTTz9NJpOhWC4wFLvM0COXAdBhoMu0ky32FgxumeCpRfS2KA27HUQGk2g0GkS96hAz8uQ8O/6wlXysSC5RJBsrEBtRx16b3xwgNZtl9LkQ+ZRCalpd5Nj3wQ0kZzKc/+p4pX0NBxzU73KQixeYeimMZFShIyWnUMyVSIcKGL0SjXd6Of+NMXWngrpf8yEP/Y9NVyCl6GAKiup2AM9mO+PPqjMnhbTqyCPpRUKXEuQiBaaPRCvtCBxw49/r4tQXVABqGVBqOODAv9dFMV0iHVLHq8vHyyeLJIaSFNIr8FeoRx2z6FwSW363ics/nKxsj/amiPaqgJLRpwI8hZU5NNKRAt1vamT6aJjYaLoC+ARPRgmeXGkrUAGmAHy7HWSiOVgqX0iXKaTz65ZV25+n8ZCbcK8KXq0umwsX6P/BVFXZZW24J0CwJ1Z5bRlOMrol0qEC04dDTB+m0t+FdJ7u3w1QSCkM/nS2Aiitrjc9n4WypgIogQpTtd3STLlU5tTAMLHB9Mp73W4nsN+NkofpI2FGn16obDM6JKwNBrxbnSQm51g4G8fWYsSzycBCT5zwpTg6o4ikskKk5wvsek8bWknDqc8PM/7zBcZfWMDRaqJ+v5uJ50IUkgXKxTKakgYKBebOLLkcvV1tX6QnyezLMWZfjqFzSuz/y06C56KM/XyByaMhZIMAJdjzh+1MHA0xfzZGYjpLyaNGA3XeXU9sKk1qOo+tyYRWo0UyS3i2mykVSvQ/oo7jDW6ZRDTFsYVf4B61MvnSJJmMOlNmNBrR6/V4vV7+4R/+gd/93d+lpppqqqmm/zsSRZHPfOYzfOYznwHUWLg///M/5+LFixQKBULpaZ6deIRnPweiRsYtBriz+y6MboliFkafi9P5ahfuzUaS03nVtQjIhoukQwXabnYw8ESYdKigQsTlEtYGE/49ZgafDDN+OEoxp0JGDfss+LZbuPDdYMUJCSCw14FGo+H8N2fJRQuIetBZ9SiFEpn5AsV0mYY9ZhLBPKe/NqOOrYDu1/tQciUu/UB1XxSBxEyOxTF1/Gep11NIFVlcGg86mo3Ym/TozSKZaIHsfJGZeXW+xNVppvEaB4W0GveVjRVhaUzUerMTjRaiQ+o9sJiFYrZAaj4PGg2FZKkKvF8GnZoP2RENWoafjlS29T+2MvbQ21YgI4BCBkx1Ag17rIw8E1kCdtT786WH56tPbJHKvjqbiL1Vx9y5VGXz6nqv/LuYBn0DmOsMhAcyFQBpud7ERJ4LD82tKq9uN/tEfDutDD65tIJYWKlX71TfS9+PVt5fNlZE7xbZ9FoXl386R3xiZW5N7cMixXSRbKJIcrZQAZQArA06mg84KOVLLFxKVwAlgA23edCKWiIDM6Tmi6TmV9rv3WTG5JEBdZw6fz5Nwx7VWYkixCezxCazlfeqs4hsfbOPscMRFi6lOf+Qeo4DB2yELqdQchqUbBmtVr2GRT3M9aRwbzbi32Mnny4RupTmwrfV/mp/lROrX8fZr6n1zJyJM9+boGGHDbNPR++PFohP5skuKhSyCs42Pc4WI70/UsePgiSgoQQieLvNBM8lSAaL2JoNGJwS07ExwsZhen+Sq6QDaKIabDYbTqeTe+65h89+9rPY7XZqqqmmmmr6v6POzk4effRRQI2F++QnP8mDDz7IyMgIyVyICxM/58LEzxE0Ela9jw73fjbYN5KNa4hOQ3CwgNMvEg8V0ZRBkNWx18KwQvt+iWKujJIvkYmVSC8NMZr26cktKswNFCgVIbM0XdP9KgOpsMLoyyvzKJY6gcAWPUo+S2SsiCBAPgfFvOogpOQFBFGhrktidCkqbDk+rO2ggZGjGfJJlTRJzCkIWk0FPLH5RDU2DgAt9kYZnUV1FFKyEJtQKu1o2KaCHJefSoKyAihZ6gUCO4yUlAzh4aW5rhRQUsjFFdIRRYV/lsZeqfklOF6GtkMmJk+myafUbZmwwvAL6jyFbF4F3izBJfk0BPYYiIzmSYeVCuCTCCr0PbVqYAIVYArUiLZilko/KDn137KUDNX7JtUYuuSCGg+nJKvLzpzNAblK2WX5tumJzxbIx9V+UJamogSD+j6iY4rqSrR0jvJJ1UmqTJmZs9kKoLS63lSkiKgXKoASqHU17jGj1WrofSJBZmXoisUj0LTbjFaTYWEwz0L/yphMkMAR0FHMasgs5kgEFXRWsNYJxGcUYtMF9Bahqg/bDxnQmbT0PpUiPKoQnkhgsGpwNkssDBZAp0VRNJRLWlAUEnNqH7cdNKDVQm8wQ3K+TM9P0ggybL3byPxQnrm+InNDOaJTAkoe2g/pmRtRWJwukQqX0ZQVKJdp6BLJJspkEyAby6rzuA7MLg2UYbJHPZ7JqSWfz3N56iWkbJSplydJpdS+NhgMOBx2du/ezcc+9jFuvPFGaqrpV6kGKdX0a+nd73437373uwHVZemd73wnP/rRj8hms5QpEyfCF7/1BQA0aHCJdewxd2CpNzB9JMz0iRD1e5wEz0UxuGT0NtXt5/xXRtj1vg7qDziRjRIaQUs+kmfqhRA7/rgde6uZ2FQanV1WXXiAvR/sJDqc5OI3RzB41Jxw/yEXzdfXMfjENCf+sb/Sbs8WO+YGA9E+1YUHINwXp7A0mVC3245vl5Pebw9XbkiN13sol+DEp1VgpPd7k8hOeclVR8vO93Yy8dI8s8ciDD8+i5IrMXdyEYCNvxNg9Jkp8km4+M0RZLv6Ph1dZopZhcRYhovfWlnw2/YHrYSH4pW4NVAhpKV0vDXa+yedaCVtBWZZVt12ByaPHmRW6KAlmXwydTudjDwVrHq99bYGLH4jYy/Ordnnamq6wYvOKjFzLFz1uqPTjNlvqMTprZZvhxNzvaEy4FnWxt8J4Npk5fLDE0QHqgc3Ro8OUS9gajCSX9omm2HLfR30PzJBKpjn1D8NVsoHbnQz9UKIkSdnyUbzzB5TRwyNN3lIz2UJ9yYYezZIan5lJLT7TzeQCeXo/c4El74xVNW2ltvq8O10kgnnmTkWpuerozTf6mXrfS1ceHCM2WMRPN02ktMpzH6Z5HQec6MOZ5eVcgn6fzRVgbL2fWgj5XKZk58ZYOTJWXKxPJGhFPs+tJGZ02GmXggRH09RypUw+2U2vr6JsV/MkY/k0Wo1aLTqxbD9D9sIXYoxd3KRjnsakE0islOm8aCLfLJYgdqMLh2L+jle4mmGXq5j5ocz5Mt5GFfpZVmWaWxs5Mtf/jK33HLLr3fia6qppppq+v9VRqOxMnkDcPLkSe6//34uXbqEoijkyHA+dZTznzoKgB4jdxheTaPHDQW4/INptt7XRNMNLkKX45Wn5ScPh9FZRDa/LcClh6bQCho0WhU2SU5n2P7uFvp+OE1yOs3ihPorv/GQC+8WGz0PjlAqlAmeWgRg+7vaKRXLnPnSSKWdgYOqI9PkUTU6zOiTWBxNYm81EelTf7R2vzXA4miK3u+pgI3/Whf+fU5yi3mCp9VVr+OfH0RSzX/Y9MYGZJvM+a+OAXD54Slks/pj3tltRjYIBE/HmDkWpZQvVeqov8bB7PEo6WCBs/86CmgwBXS0v8pHzzfHKoCU0S0jGkT0Tl0V6APg7DKz8d4A0ycjlZg1AMkoYfUbKe5QiI2muVL+a10sjiVJTeeqXm+5tY7UfJYLI2O/6hJQj2OTCFzrxuCSGXh0pmpb0y1eZk9FK65LK23TYGk0US5BpDdRtW3L77eRTxY49+URrpTOoUMwKFWv+Q+6sAYMXH54hoEfr4wjLU3qpFliIsPQk7Mk55ZcmIzQeIOXkafmCZ5aRDQITB9ZihTeY6fxWhcnvzhMer7A6X8drWp752sbKJfLLPTEifSlSEyk6HpDE5NHQywOpQn1xkDQINlUcqmQhqbrPegdkgoppeHUF4ap22Vjz/s7GXx8ltClBMM/myUxm6fjLh/WJiNnvjRCLlIgNZ8lGczSdqcXo1vHxW8tLWiJGiSjiG+PHWvAQM/X1HG7zi5hzumQjODeZGP88ALp+QKB6wzIDoHzvITOJ9DzjeeZn1evlfhoCJvNhk6n4/d+7/f4H//jf9Tckmqqqaaa/h/VoUOHOHPmDKC6LH3605/mi1/8ItPT0xRLeYKFEb7+uDrnJWn0eORGtjh/B3NKInQpzeSxGN7NZhZHM+jtEnq7Ot069HSErntc5DcqaCX1PpNdLJJdLLLhLhfmBh2puTzJYI7C0pzX5jd5iU3n6H00iNGpA8Depqfjdhcjz4arQBnfDgvWcJG+RxcQ9YAWQpeTlJZu6ZYGifrdVkZ+HlYdgYDGg3bQQM831Xv71NEYwXOxigvQ9rfWM30yRuhymrkedaIkdFkd7wQO2AieVV2iLv1oFqNdbZ/Jq77f1HyRsRcXK+1ru81JcjbH/MUVUMjgkBB06096bX6jF9kicvZr1eMe5wYj9kadGkGWrd5HNIO3y8zMqep5pfqdZtybTIT7Umv2uZr8e1RoJjxQvYqmd4lYG3SVeLfVcm00Yw3oEY1U3JEAGvZY8O+10f/EQhWIBKC3iEhGAaNdR3zpQUJE6Lrbw9gvo2RDRS59f2Xs6e42EupNM38xhVIoEe7PLB3bQDFbJjaeZezFKMXMylhu0+s95OIKIz+PMPxMiOIq5sq10UBgn51itsT8xRRDT0fwbDbScYeLoZ+FiY1nWRzLkJjNV0ArySJQv8OCqNMy/uIio8+pK71b3uxFI2m48O05QpfSlAtlYhMZtrzFy8LlFHPnUsSmspTLIJm1dLzKxczpBMUkaATQLAF+G+5wEh1NExnIUrfNhM4qoLeL2Ft0FDMKI8+qxzP7JKZmwxyNPYO738rM8zPkcjkIg81mw2KxsGvXLj71qU+xd+/eX+/E11RTTTXV9P+rBEHgox/9KB/96EcBmJiY4K//+q958sknmZ+fJ5qZ5OTkJCf/BSStHpu+nv2+67F4m0EpMt2r0LJLg6dVIDKtoLdokAxaFkcURFmhZZfI2JkiWq0aeaXkIRkq0n6djskzOWKzRTIxddxl9wvUbZQZ+mWG4WNZ4rPqvbT9kB40GgaeWxkTuNpk6rtlolOFSmpJLq4QmSiQCKr7BXbqSEeKTJxS7+/WeoHADgNKIU1kXC1z6ck0ggAIWuo3SxgdAsMvqoOI4ZeSSAZ1zsvgFNCZYXFCdV0aPpIiPq3WYW8UWJxUyGdg8Hl1X9kAgd1Gxo+mK4CUbBTQmbRIRi3ZWPWcj8Eh0HmridkLWeb7VubDBAEcAZFyqUw6XL0PgL1JJBtTyMaqXeCb95lIhYuMHL5inuxqWU4CNO0zEBoWmDpdPVhztkkkZwtVENTyPo4mCa2I6sa9ShtvtVLIlhn8eYIrpbcJXJkpZWsUsfgkpk7nmLtcYHmiULaAIApkogrjL2dQsstuqODq1DF/WQWPxo+niYyp+1jqBQI7DQz8IomS13LpiUQl/g+gZb8RQdTQO5Mis1hm8mSGwG494bECyXmF6HgBQdYgqMvJKHmo69Jj9YksjJZAgf5nM5jcGrbcbWT0RI74rMLE2Qy5NHg2iDgCIgPPZ1HyEA8WSS+W8XQImJwiYyfU61EraBAlDdY6sPq0jLy89FCjTY1PRAB3k8RMX5FcEhwNWvSOEiPRY+Tkac4/miYYVH9DCDEBh8NBe3s7999/P/fff3/NLammf7dqkFJN/27JssxDDz1U+XtiYoJ7772Xnp4eFEWhTJlQMcgnPvUJQIWWdoZ2covuVshDz1dH2fnedjpe28Ds8RA6i4TBoWPkyVnKxRLb/7CN818ZQbZIGOwKQz+ZoZgqsuM97fQ+Oqne1MpqlJhzk41d7+tg5NkZknMZFs6pC1O73t9BIVHk9Od7QVa/2Tf+ThPmRiOnP9dbAVKcHRaMHl3l77q9ds5+dQSTW92n+RYvvt1OLn5zhDxgajBSLkN6Qf1St7QYKk5Eji4zrm4r5XKAgUenSAXzFbekDXcH0Ahw/B9WwUUyGDw6XFirIKUz/7ziKlS3215xdAKYfjmMbF77se356ui6gBLAhnsbMbh0jDwbrNo++OQMklH4tQElgIsPDmFpsqx5vfnmOgwuHZNHFtbUd+GbY2sAJYDRZ2YQjUIVoLT8fmePRSqg0bJ0bgM6q4x3m4PR4Mqk3MbfCeDqtpKZzxHuTawAVDIEDnjIxvKEexPMnV7E2mqs7Lf6ib58UgXGZKvIqX8aZOznc2QiOfKJInqvTHY+j73VjN4hV/bp+bdRdv5JO3qbzLG/u0xyMseFb4+is0hc8+EuLj88QXw0TWQwQalQouO1DZjrDZz71yVXLK0GSRbofF0A2Sws9ZMW2SRh8RsxNxgQTSKnP6/CWAanTDFtwOyXsbeaGH5yhnwkj9GtYy45wwvlx3DXuTj2uacq9PLCwgI2u41iscjHP/5xPvCBD/yKM1xTTTXVVNP/i9q7dy/nz5+v/P2lL32Jv/3bv2V2dpZyuUyWND9+9hF+/Ky6XYcBf+53MbnspOcLjP5iDv8BF8Hzccw+PcYlyPvMl0bY9s5m6q9xIJkE9FaJXKJA7/en6X6zH9ksUlLKaLQaCmkInlpk2x80sziWYqE3Trmk3ksdnSY6Xl3PwI9nmD4ZrsAn236vlWQwUwFAkMDs01Mulpk5FsXolYhPphn4yQyhS+okwu73tpGcz9L/iLo4VS5DubTSF+VyiUifOnnRdL0HnUWsgEnL/7s3W2i92YtsFisOTQCebhtGlx6jXae6FpVLRPtTHO/vr7TPucFSgXsifUmiwwlmj1U/pV+IFTj9z/1qrNkVkowamq73YGsx0vvQZNW2/h9PEh1Zu7h1NRViBS4+NEF2HRDJv9eJxafn0kMT1fukyxz/p/4KhLVawTMR0gtXTPx0q+/37JeGqwtrtDg3WKrGPsva9IYASlbh9BdHiA6svJ/W2+pxdVmY61kkNZ1n6qUwJr9MajpPLl6gXAaTV/1bNmvY8c4OJg4vMHcmxsBPZ0gH07i3WghdSFAogKlOj6vTwuJQmokXw+icEnv+uJVwX4KBx2bpe3SaXKLA5rcFEHQiPV8bY+5CDPcmC4Vsge3vbiF4OkohttJGo1ei4+4Gxp9bIDaWxrvVht4qgwRb39rE9IkwM8eitN3pRW+XkWwSTdeqLp29319yozSVuJQ4wWUuc/Gwg7n5OcrlMpoZDR6PB4PBwHXXXcd3vvMd3G73r3Wua6qppppq+n9HoijykY98hI985CMALC4u8r73vY8nnniCWCxGoZxlJjfIP37hHwCQNDo2x7dTb76BYhZGfhGl8y4Xgf1WgufjGFwSOpvI9IkEpTJ0vsbNwFMh9DZ18Wf6WJxiukjXvW5Gn19UG1GGYhLEBi2bXu9h8miUxfEskVH1Pt51r4dirsSZB2eR9OoDef5r7Hg2mTj37emK+46txYjZp6sAKvY2Pb0PB9E71XklZ6eBxgN2+h9foJguYrCrlPjyE/B6t1gBlfRuUYVUZA1jLy5STFIBbNpucSEZBc78WzVcZGnQIem1VZBS32MrYzNbs57Y+MrYZPpUHKNj7ZzXyM/VGDJWgTYajQq3tFzvwtakZ/5isgpGmjq1yHxv8tcGlAD6nwxj8a0d+wT2WbE1GYgMqsDT6vmksReiTL0cXXOc+YsJ9HapClCyNeuJTWdZHM2u6Su9ScTklXG2GJgJrSyuNeyxqEBRpsTiaLYCKKnv3UE2ViQ2niU+kUPvXum7conKomAxC623ODF7JS58d45wf4ZSYYF8sojersbWWQN6LA26Sj8PPhWm8zUuLPV6Tn9lmmKyxMWH5xAl2P6OekaeC5OYyhMeSKMRoGGPCmv1/Vh1jdJoNQiihoa9FvQOiZFnlqLkbCImt4hkMqK3SxU3LKNHRimWEc0pXBuMjB1eJLtYRG83sVgMcST2KCaPzJGvpEgm1WtSmctgs9lwOBz8t//233jrW9/665/smmqqqaaa/p9RU1MTX/va1yp/v/DCC/zP//k/OXHiBPF4nFB6lMcPj/L4YRA1Oqz6Opxbb8FoqUfJw9iZPA1dMrFZBaNdi8mljo2GjhZo2S3haNGgKSsYbAJKDqZ7Cvi3SXg2aFDy5QrIFJ9VaLlGRyqsEBotICzdVnUWaD9oYOxUht6fF5fcdkpsvMlEKqwwcnRlEGD1CWgFiIwrCAYoZBQGX0yTXFDHVhtuMJBJlJg6szQ+0GjUf4IWlBIaLaSWytZ3y5g8IovTCVCoAEoGp0DLfhMzpmq4yOwTMXlEBJMGJQGUy2QWFS4+tjKuMHsFkksuS5moQmgoT3ikekFPUaD3p4kK6FQlAZr2GonPFhg7Wk0QDR1OkV9cb6erSIHep+IoxSteFyCw00DcJ645BgpcfFztjysVvJSlmCtVvWauE0jOKQy/cMXipFaLtUGHxSuCkKuqr+MGC0qhTP/TSTLRlQ2uTh0NW3UkgkUyUYXIWAHZAvkEFLJlymWQzQKZxTKCAJ13mgheyhKdUJg4kSGfLmPxCSSCCooC1nqRXLpEcl4hMl5EkGHLayyERvJMn80xeT4PZ/IEdkjoTFqGj6hRb9GpIvm0QttBHZGJogqSldXjCwZo2qZjbihHOgzWbRJ6q/p5aN6nY25YITKp4GkVMNm0yAawNQjkU2Umzi5FIJsKjIZP0zt+FnNcZv7JeUqlEhqNBrfbTVNTE6973ev4m7/5m9qDeDX9h6Upl6/kB2uq6T+m3t5e3v72t3PhwgWKxSvvMKoOHjxIwNlM5IkC9QecNF3vpfcH47QcqsPo01ecgna9v4PF4RQaLXi32Tn26cuQh63vaCGzmEeUtdjazRX4Z9u7WomOJHF1WcknCvR+ewJHl5n2V9UzfXIBW4OZvkfUJ/ev+XAX0cEkA4+qf8tOmT3v6SAxna644DTe5MG308HJz6ixaRte52fm2EIFPjrw0U3kkoVK7Jajy1yJEdv2B60kptKMPjOHySdjaTIRPBHF1mHCXKdXnyxfBRZ1vi7A3IUosaFUpT2739NBKpih599G1/Rh5+sClbYvy9Zhwr/fVRUVp/fKiJIao/br6uDHuolPpKpcn36VXN0Wwque2PfssOHaYKHv4eo2Nt7kITaWIn6F84DJJ7P9XdX9D2r83dCPJ1TIaam/ZKdM4JoVd6jmW7yMPzuPySez8Q1NDDw6QXI6j6PTXIGgPNusavzJ2SgjT6gW022vrid0OUZ8NM2mNzeic8qcW1qkk81a9vxZF8nZDD1fG628tvO9nYT74gz9ZIa6vXZMbj0Glw6tqOHCg2PITpkd72pj6lgQT7eTqV8uEO5NsPUdLRi8ei4/Mk7HXX4Gf6y2ceeftCPqBM4/OMbWtzcxezLKzLEw3W9rwtpo5OVP9LH93W1oZQ1n/2UY5Dy2u2ReeP4FkqkEkixVJmhkWaa+vp5kMskHPvABPvaxj/3a56+mmmqqqabfXC3HlczOzlIqldZs97rruPa664j8uIQkyGy/v4VCusjgj6fY+ccbiPQnGHoiiP+gE/dmK70PjbH9/nZyiwUufHMCS5OB1lu8DD0xw+a3NBEbTzPw41ncmy34dtmZ743RdK2H818dppBW3ZKKKYVsokByJkOkL0XHXT4cHWZOfnGoAtBsfUcTpno9L39moPLatj9oITmbZuSpeWxtRqwBA5NLMHfbnV7qttu5+J1JEhPqRIWtxUhsLI05oKftdh+XfzhNIVbAf62r4uLTdJOb2eOq2w4SUFBdilpv9qw4FJVLbH57E5aAkdNfGl7jUGRrM2Jw6Aiero5z63xdA3PnF4mNrIxrHBtNRPt/fRip+22NWBtNvPyJvl9deElGn0whU65q56Y3BRg/PL/GEartTt8aR02Arfc1Y6ozcPoL/WrUnUaLvcOIvc3M2DPVYFbDAQeLo0nSwQLenTaiI2kKsQJNN7sxuXVc/oEK8CyfD4Cdf9yKZBQ58ZnBpTZLeLfaGfu5uji5+71tTB8PV+CyLb/XiKXBwKkvDFQAsA331GNvNXHyc+pYe8Nr6olNJwlc46Hv0UnSwQKb3uRH0GmJjqSxBfQVmGjfBzuYvxhHK4BoEBn40QySTWL3H7YyfTyMoNNibTTR87WxpfIbWBxNMXd+kc7XNDD89CyRvhR1r5UYnhri+Inj2Ow2EokEytJsndfrRZZlNm3axFe/+lWampp+7XNYU0011VTTb6aCwSAf+tCH+NnPfkY0GuXKaVUBib179tDk7CB2UsbaKNNyg4ORZ8O4O004Wg2cfVC9L3fd4yY+nUUplAjstXH+oRmKaWi5yU4hW6KslPFuNnPu6+ocRvurnCRmctib9RRzZUZ+HkHvEmm/xcnMuThmj47JI+p9dds7fCyOZph4Sf1b1MOO+/zEJrMMPqGOkVydBup3W7j4XfW+37DXQmQ4U4kr2/kH9eQSxUp0nNknkgyq29pud5KNFJg5lUA0g7XBQGQgg94pYqmXWbhUPefj32clNpUhufTUu6iHHb/vJzGbo/8nIa5U4ICNqWOxqtf0bpGGHVZGfrHyUJtoBFEvkov++otiu//IT2wiw9BTkV9dGBVKsgZ0xKdWgCNzg4R7g6nKOQpUl6Jcolh5n6vbueMd1f0P0HqTg8mTURUsWwKERL0aazZzRp3rqdtmYq4nhWiGjts8TPwySnqhWHU+zD6RTa/zMXsuUem3uh1mUvM5kjMFAgdsmH0yfY8uQWIi7LnfT2I6R/9PQ5XXtr+tnshQmskjMaxNOix1MpJJQDIKDD0VQdRD9xt8TJ1cxNVhYv5SithYluYb7Nia9Az8NETLDXbGjy6SWSjS+RoXeptE7yNBNtzlYWEgTehSmsBBK55OIxe+F6T5kBPZJHD50QWKxSyOW3Mc+eUxQtEF9AYdiYQ61yhJEg0NDRiNRj70oQ/xrne969c6fzXVVFNNNf1m6+mnn+azn/0sJ06cYHFxsWrsJWgk6tx+9u7bQ2owgIBM2z4JpVBm/GyRzbfJRKcVZnoVrD4N3haBsRM52q8zUEyXGHk5h2yEwDYdUxdztF5jILlQZLqngNEFnjaZ6GSBhi16Bg9nUPIQ2C5RKkE2UaKQLJGYV/B0iHg6ZPqfS1ccdBr36HA2SVx8PFl5rXW/nky8RLA3j84CZo9IeES9l7vbRQI79Aw+lyIVWgKS7FoyiyVkEwR2GZg6lSGfAUezSHRc3c/ZJhGbKqjHEABFjXmr69Ix07M0dimXCezW42qTufx4fI1Dkc4KBpvI4mT1eq5vi47EXLECTgEYXAKZdRyWrib/Tj2eDTLnfhD/tfeRTaCUqiPi/Dv1hEdyKw5OS/Of3k2qu9GVarrGiKNZ5uJPF9V6tFr0Ng3WemkF7lrqL6tfIJdQyMXVCL9cTHWpcrZJGJ0iU6fUhhgcQgVcaj9kxOAUufiTpbU5A9iapEr0W+fNRuaHciwuxfkFdutwtchc/OmKy5K3S8bdJtH7pDqHWLdJJp1QqOvUM92TJbMIDVsldEYt0ekiFq/A5Bl15+5XGQiPFygVy8hGLdM9BRBg66uNBHtzlEpgbxAZOq6e0+5bZeJzJeZHi7Tvk5m+lCc+B7YNMWbC/Zw6eRq9Raia8/J4PDidTu644w4+9rGP4fF4fu1zWFNNv45qTko1/W9Xd3d3xSYbVKelt7zlLZw8eZJCQf2CPnr0KKBGlOhO6ehY7GBhLEp4dA/XfnALu97fwZkvDCEZRHR2kcvfmSSfKrL3fZ2cf3AMg1ePYBI496VhLC0Gdv9pB4M/ncHo0VMulDn3pWE8O2xsf3cbi5NJJKNIuCfO7NFFut/aRC5ZoJApko6qlHPbq+uxtZoYe26O+IT643fb/a3oHTpOfEpdMJKdMp5uGzqzqMI7Mky9HCKfVN9T8y1e7O1moiNJyIPBrav0QSqy4qrU9iofepuO6ZPhFdchGVybLBh9Os4NqZBMPpJn9kSYmWNrI9TqD6iLiMVs9aJT03UezA3GSjwdQHY+XzmGWvGqc/X2JnRWibNfvOLp+XXkP+SiYY+L8w+OVepe7pd8JF8FKAH4r3FjcMprHJ4C+93UbbdXxbWB6owVPBNRHZ+W5OgyY28203ybn8FHpyv1bHp9AKNXz9RL8+STJcZfUifMlBLorBLebU6S00GsjUaab6rj3JeHWeiJ496UYO606sIkm7X4djow+/T0jI5y+fuTdL0xwIGPbuLY318mnywxfTyEaBLY9b4OzvzzEPlkiWJWQSvCjj9up/cHk8ydXGTnn7Sj0Wpou6seg0NWrxkZmg814NhgwbfLiaKUOPHpPiwtBvQ2GVu7haabTICmAsFJRhGDS8Z/yIWt2czF74wS981y8vI8/QP9zJXnEIoCyo9W5RT7G6ivr+f9738/73//+3/leayppppqquk/nz74wQ/ywQ9+sPL3Aw88wN/93d8xMTFBqVRiPjTHoz/+obpRgUuP1eOwOtEmrJh+YqTrdQFik2n0dgnZLKrRWZ8fZvu7W9hwTz3pcB6jR0chByc/N0zXGxrovLeeUrGM2Wfg4rcmmT8dZ9Ob/CSDWXRWCUHUMvDYLEa3xNZ3NJEKZcmnihUYafu7W4gOJ4kMJdXXJLjmzzYw1xOrADKN17ow1xuYPBaGAsyejSKIQgVQ2npfMwsXY8TG0rg3WTC6ZFgaa06fUBd/dE4J/z4nZq9OhVeWjt9yyI2r01xx+kGjZeBHE9Ttdq0BlAA67mxA0GurICXJqMG5wYJoFKogpWVASbJJVXUZ6yQ2vaGZiV8usHC+etFtPW2/v5XMQo6Bx1aetJeM6lu8EkQyuiVsrWYCxRIDP1op33pnHXU77CyOJon0VT851vfoDN7N1gqgBNB8oxe9TaqClCQjNB3y4Npg4cI3J5g/G1NhL8DqN1TcliQjNN3gZt4ZY+5MjOnjEbSCpgKGtdxch7XRyPSRBQppOP3FEfb+eQeONhOXH55h9Lk5jHX/H3v3HSdXWff//3XOmV53Z3tPsi2bShpFCE16E6R7g6CgSLFjwfLzttzw9VZU5FYUAekgoIAoLYEAJpSE9GTTs7vZbG/T65k5vz9md5LNJpCEhAT4PB/G3Tltrpnds/PmOtf5XDYmfW4c/c1BOt4cJO5PkgxbGXdaEWariU3PZX+nzCdp5Ne5qD3NzbaF/QS2Rpn8X9l86J3gYMKpJay8v43EYIrp147DZFFxFJppuqSKlld66FkWoPHiitzUgTO+Mp5kWGftU63Ej+ih5bWVrNm4hjTpUbkrnU5TX19PQ0MD9957r1RKEkKIT6DS0tJR1cX9fj8333wz//znPxkYGCCdSfH2u2/xNm8BYI1YqU3VEd0GNe1HMPPSKiZfVMTap/qwuDSsXo2W+SFS0QwTP1PMpucHcZVaSCcM1v2jj77mCJMvLqZt0SDuMiuKqrDxXwO4yk00nFtAYFsUi0sj2qMztDFO9XFe9FSGZChNIpC9KFE81UlBvYOtrw0Q7RseZHSqD3e5lZUPZAdAmWxQNtODo9CcHbxjgvY3/WTS2QtBvgY7RROd2anD4uAutWIanrZNj8Pg8BRpNcfm4S63MrQlOqq6UMlUF54qK+v+3pfbZ9siP4OtYwd2e2tslB3hxkgbdCzecUGrbKobX62dziUm4sOvTY+CHtXBBGazMuo5a07w4iiwsO4fY/vVdpVfa6PiSA+bXxgk7t9xgU5zGtmqUdtHX/wqm+7BU2Vj+zv+Uc9ZfWw+ejzN6kd7Rm2vR6H9zQADO1UTtxWaKGx0ktYz2cFkw0877gQf+RMc9G2KkQql6Wkefo90cBZZyBvnINoXxOazUHlUPuuf7SPcrdOzJkT/uuGMaYKqo7wEO+Ns7Bxg+1sBKo72MOtL5Sz9ayfosG2hH82mMOmiIpqf6gMdUmEdwzBoPK+QtjcCdLaHaTi3ALNNo+QIJ84iK6sezvbbjTveR9yvk1djQzUprHqoG7NLxVliwV1qpWiiE82i5ra3uk1YXRr5E2wUNznZ9EI/g3QT7tzCxk0b6BrqQtM00k/vyF4VBeXU19dzyy23cNFFF73vz1EIIcTHz+mnn87pp5+ee/zGG29w++23s2jRIoaGhujsa+XZf7cC2VldSgPlFPkqsEXr2PRWJU3HW4kOZTDbVGxulXQSNr4aY8LRVsqnmIkMZXAVZ/sGNrwSo3yKmYppZpJRA2+ZibZlSYLzY1RMM5MIZ7C6VIw0dK5OoVlg3DF2okNJElEjN/hkwrF2gr0p2pfquWVTznHStyU5PLUYFNVbKagx49+eHcQU6NQxWZNEhrLZa9wxdgKdKWL+DK4SM85CU67gz9D2bGjQLFA1w4a7yETbO7FcRSDfeAtFDVaG2lPEhjKgKGxfESc6lB47hRpQPduJ1a3ib9/pGp8GhXUWbG6VSN+OnUYGKGkWRk1pptmgdq6TnuY4gY73H8Q0/lg7iXCGzpU7Zazsj4HkLvFQs2Rfk6Iyamo4X62F8ul2YgGdUOfo5+xYHiXcp+cGKAGUTbHhKjbTuymZfa/S2eccd5STcG+KrQtj2an7htvh8JnwlJhybStutBDoTOHfptO7KYVmTeUGOhU1WimstTDYkhr+HYvSdLoTd3Ga9nfj9K5PEOzSqZljx9+VYnCrTjKcJhHWKKg3YbGb6GrO/k7ZXCqOPI3iOo3+1hSRfoPK6WY8JSas7iSV061sXhQjGYbxR1mxuFQ0S4raY220L0/g356mbIoJiyP7umuPMZOKQ9uKKBH3BrqXDLBm7VqSqTjpjTveN0vGw+TJkzn99NP54Q9/KJWSxEEnlZTEhy6ZTHLTTTfx5JNP4vf7x6y3WW3Y7XbC/gi1RRO5+LrP0LNsCBSF4qleWhf00L14iCO/3UgyrNO3zk/1scWsfnwL4ZYk0744HhRIDKXwTfTw1q+bs9WXrh5HpC9B4SQvekxn2f9txllqoe7cStLpNI4Ce25A0vQvTUBPZdA0JVfFaM63Guhb46fzzX6S4QxHXF+L1WPOVXGafEUN7go7bw8/LprmoW9VtjPliOtqsebt2HZkna3YwsTPVtH8RDuqCeL+JCSh9pwygtsiuf1dVVamXjGBziUDtM3vHXP8ne08QGnHQjjm201E+uLZqeGGTb16HGa3KVcJasTuKimNP62E4iPyc1Wucu36fC0DzcExVZ2A3FRpO/PWOYl1R3KVkY76xkSivfEd1ZMsMPmSGtY+0QbJ7HOE2xNMOLsMi11j/VPbsbhUnOUOhjaGabq0irxaV67KlrPUgqJlK0dN+q9sRYR3frsektkKA3l1O34n8htcjD+tlOC2KJv/2UnZMT5Kjsgnk8zQs2qIniV+mi6pxDPOxeDmEBiw6ekO8ie6mHhhNT0rh/BWO9j03HbC7Qlm3FCL2WmmfWEvVZ8qYvGdGyAJs75ej5E2aF/YR92Z5Wx+oZNod4yJl9QABkt/v5ljbmmia1s3jz38N2omVTI4OEhPT0/uzgBFUTAMg/LycsaNG8evf/1rjjnmmDHvuRBCCLGrJUuW8M1vfpPly5cTjY6+q11RFPLy8ogEo9jTHi6+4rMUlxWy+DebmXn9BNJ6hvV/7yBvnINxJxez/h8djD+1BCNtsPKeVsxeM9OvqKb1tV7Gn1pCbCDBmofa8Y5zUH1iIaHOKKUzfKx6oIVod4ras0pIGxmKGr30rw/S8mIvpbO8+JrcmMwa298ZYLA5TN3ZpTiKrbQtyE7LZfaamfWV8fSs9NPyYi9mB8z4Sj0D64Nseb4HR6mZdBISg6nstteNp29NgC3P95BX58DfFoUUNHymjNhQkvY3BnCUmol2p8AMDeeWjxrcM/m/KrH7rLw7PO2q2WvG4lKJdIy+QGUtMJMYGDuoqf68MgomeVn+ly071pthzk0NdL4zQMebO+6g31MlpRlfqSXSF2Pj33e0a+oXxuEosPLOrzeMec49tcU30ZUboFR9UhFls32suK+VxGB228LJbhyFFra9PoDZAZjNqBo0nFfG+qe7SAVS+CY6GVyf7SU68lv1hLtjND+6ffj4o9f5t4TZ+GxX7nGkJ8baR7Zj9popneGmqCmPZXdtBbLVk/RkGlVTc8eb8406wp0xTDaN9U9tIxWFGdeNRzOp9G8KYfWY2PBUJ2YHzLqpga6lQ7jLbeixNOuf6sRbb2fiZyrZ+nIPZbPzMVk1lt21lZKZXmpOLKLjnSHMTo3SGV6euPOfxL1BHC4bLVtbSCQTufPCMAxMJhNTp05l7ty5/PrXv8ZsNo95f4UQQoid6brO//3f/3HPPfewZcsW4vHR84BZrVYcDiepgEG1t5Hzv3wKXctC6LEM5XPcbFsYYHBjjCmXFqMnMvSsDjP+xHw2vNhHpENn/KfzMdlUIj0JymZ6WPlgZ3Y6r5PzSYR0CuodZFIGa5/sxWSDCacWoMfTuMvtuQFJtaf7yBgZTGYtV9VnymXF9G8I078hih6F+rMLcJVYWH5fdp+aE7z4ah25aco81dbcVGZ1ZxTgKbey7L7R60wOqD2lkK0LhjDSachkByeVznAR9+v4h6evM7s1pl1aQteyYK560M7H35nZrZEKjb3wNfOaciJ9yVFVmcaflI+zyJKbUmzE7iopFU1xUD7Tw4pHunKDhcxujemfK6VvXYS2N/x71RZboQk9qqMPR+5pV5YSG0yNrp70aR8trw+CDjafifigTskRLmweU/Z5TOAusRDqSFJ5rJeSyS5WPtyBHs0+p2ZWiA/qVB3rpajRyapHs78DFUd7KJvuZsVD2W1dpSYqj84n3Jdk+6JAdvDXDDd6Ks3Q5hgDG2JUHO2hqNFJ78YIqqqwfVEAe4GZyReX0LUsgLvMSsfiAOFunYZzCrAXWGh9fYjqT3lZ988e9DA0fbYIRYVtbw7RcGYRrf/xE+pMUHu6D01TWftEL0d8oYy+nkH+/eQL+OodBAL+3NTVkM1eiqJQWVnJpEmT+OUvf8m0adPGvOdCCCHErrZt28ZvfvMbXnzxRVpbW0kkduQHBYW8vHwySRMecwUnnnIsJeX5rPl3lNrjskUG2pcmMDsVJhxtZ+vbMUrqs9eXtixMoGlQd4KdzuYkFVMsJEIZWt5JYHFBxXCVofJpVja9FiU2lKGoIdtnUDjezFB7iu7mFO5SjfwqE6qmMNCaItSdrbzkLjHTtTZGzA9oMO1cF70bE3Q3Zwe+TDrdwdA2na6VcSxOIAPJGGgaTDrPTd+mJN1rEtjzVJLRDOkklEyykE4a9G9OYXGRvQanQcVUKx2rd0xrVjnLhrtYY91L4WzlJQ3MLmVHlaJhmn10NaMRxRMtlE2xse7FYPY5hjWd5aJnfYLBrTv6pvZUSan2BAeJcGbUoKPqo+x4y0ysfm7slG6aDdK7TuObyeAs1HKVp3zjLJTPsLPxlVCuXc5CDUe+Rt+mJGigmbPvZdVsO+3LY6RjjDrGpHPcRPp12t6O5fbPrTvXTWC7TsfwwKpJZzmJ+TO0vBlDs4CnXKOo1srGV7JBsGq2DSNjoGoK25ZkG990upPQgI6mKmxfHScdgwnHO7A4VPq3JrG5VbavzP4OTDvLQffGJFanipEx2L4ihc0N9Sc42LY8QX65CYtLYeOCOO4SjeqZFrrXJzEMqJph5dVnVjKY2orFmaalpZV4fMcPc6Q/eMqUKZx//vl8/etfR9O0sT9sIQ4iqaQkPnQWi4W7776bu+++O7fsjTfe4MYbb2TDhg3EE3Hiiewf7PV9q/jF/6wGsuWVp7RMYeq0qSTfSRIfSmLzmTFSsHV+F9M+V0fLq92oFhXNptK+qI+Wlzs5+ltNdC0ZwFFsQ7NqLP7VevIbXMz+Rj2BbRGcxTbWPNpKsCVKwwWVGGoGR5GVoU0h1j65nZI5eRRN9qKaVJKhNMlwhglnlqJqCqH24V4HCzjL7LQvzN6dld/gov68Snx1QTb8YzsDG4N4Khy5bUtn+ghsj1M+uwB7gRWLUyHcviM8FU3xkl/ryg1CSkYMUlGdgQ077rofWTfxoko8410sviM7ECc5mMTiszDlv6pZ88i27IClJATaIvSt8Y/6Wew8rdr7aXm5h5aXR98JFu5JEO6Ism3Rjg6fKVfWEOmJ0/JyT26AUuNnK/HWZts4Mp1d9oVlB2aFO3d8OJYekY+3xknN8cW0ze/NvS++OheqKTvyt+JTRWQyBkMbw/Q1BzC7TFgskEzCtC/WEQ8kWf6HzTQ/so1ZX6un6YIq1v2tnb51QWzFVqZfPYGVd29laGOY+nM1XBV2Jl1WRfPj7XS9NcgxP5hEyRFQOsPHyruzF9GO/HYjRsZg6tXjMNIGb/1PM64KCyXT8ilo8DLpknxifQnWPtjC+HMqUDQFb7WTiZ+tIp1Ms/r+zUy8dDx6Mk0mmcF9nIlVG1fy0osvku/L5+3fv5ibtm3Dhg04HNnfl8LCQs455xxuv/12fD7fXv+8hBBCiBFz5sxh4cKFucepVIqf/vSn3H///XR3dzM0lK0OlKSPex7+c/YO5nSaN+6ycMrpp+I6Io9Udxo9oVNxVD4r7mth1pcmMPurtWx5qRvFrOAZb2fF3ZupP7+SmddPoH99EGexjfVPd9H6cj+TLqtET2Zwl9owDFjyu82YHdlBKhkD3NaDP+kAAQAASURBVKU23vl1dkBQwwXl2HwmzFYtN3XYxAvKiPXHc4Ntxp9RTiKYYsvz2WzS8JlKbB4zb/9qI6RShLti9KzK5iZPhR1nsY2ONwfx1DiwF1lpf2MgO0AJqJ5bSEG9a9Rgm1BXHMMgW2HIyJAKpEgFstWCjvhyPb1rArTN780NCqo5pRir25SbPq5j8QAmm0YiuNOgoRQs+e3Gvf65Lf/T2EqXXe8Okj/emXtsLTAz8bOVND/SmmuL2aFwxJfr6FsboHVe76gKSkNbo/gaPGR26uypOaEI1aKy7fWB4WnWUrir7ThLbBRP8dC/LkjJtLwd7832KENbs983nF9GwUQ3K+/PDkLb/lY/5XN25JXAtghWrzk3/V4mpaBZVRovKadvVYA1D7XTeFE57io7E84qJpMyWPK7zeQ3OGm8oILyuYUUTPDkpnab9sVxWJwa1ScUUDrLx9u/3Uj+eCcFjS6MjEHFp3xUH19I8xPbsfssmJwa0a44qXQKoy7M0//8Dxs2bqCwqJCBlweyJaxD4HA4SGfSOBwOZs6cyY9//GNOO+20vf5ZCSGEECNMJhPf+MY3+MY3vpFbtmHDBn70ox/x2muvMTg4yNBQdnBM89DbrPvfdwBQDJXG3olMP2I6ejNE+lO4SsxoZoVNL/TTdF4Jrf8ZwmRTMbs0QiuTdN7XyYzPl9G1PISrzILVo7H60R5sPhOTLylmsDWGu9zGxn/3sXWen/I5bhSTgrfKyuCWGJteHsBTbaVwoh3NqpHRFfRotvKSyaLib91xJchbbaf9nQCKomDzmWg8u4i+5jCtr/vxt8VyFZcACic6iQ3p+MbbcJdZsdgVIjuNEyqd7iadyOQGKRnpNPGATmD7jucbGaBUPsdDUZOTtU90occhFUpjskH92UVsfnkwN0hoYFOU4PbRV65aFuyogKkoyh5/ZoZh0Ls6Qu/q0bftp2JpBrfG6FmzI0uNOyGPZCRN57uh3HOXz/FQNMnJ2r91Ee8fPU1KrD9FpG/HzXueaiuFDQ4SQ0k6l4VzU+sV1NoxO7ODlIonOlFMCqGOJEObIjjyTTA8o/O0y0qJ+1OsfbKX9kUBXKUWqo7Jp2XBEIHWKO5yC7WnFrLh2X7C3Tpmu4qr2Mz4k4a3aYsz60vlKCgUNDjYOm+AjreDTLm0BEUDs1VFs6gs/XMHJgeUzfDgKrMx7kQH8YDO2r91UTrLg2pWsedZGHd+PkbaYM2TvUw42UcqkSadyOCZprO5u5lXXnoVh9fGm/emctO29W1QcTqdWCwWJkyYwDnnnMP/9//9f7hcrj3+jIQQQog9qa6u5ne/+13ucTqd5h//+Af33nsvS5cuZXBwkEwmQ4BeHvr7cjRNw8go2Ns9HH/SMTjLy0kPekjG0hTUmGlbnGDCsTaaTrXT8k4MzQROn8KmN2KUTjTTeLKd3k1J3MUaHSsT9LdEqZhmhhpw5GsoisG6l6KgQc2RVjLpbEWm1f/M5oyyKRZsbjDblOwAJaBmtpVQb4pgTzZblDZaSIQNutYkQVOpnGnHVaiy6unsZ6m/PUWgM5sh7F4Ve77KYIuOt8JMRs8OUhoZpOOrNFFUbyXYrWerBAHRQR3NrEBGAQzSaUgHDNBg4mkuBltT9K5L5AYo+SaYsXs1OpZns9ZAWxKLUx1TlWnd86MreL+XLa9Hxywb2JIkFcvkBihpFhh3tIPWt6M7BihpMPFUF4Nt2TaODCACCA/qxIMZ0jvFsbKpNqwuNTtIKQ3pNFhc4Ckzk9er49+eIr/GTGQoDWkIdKSIDAxXI22yUj7Vyob5EWJ+g+0r4pRPscIaIA1D7To2r4JvgonBrdmqWSarQuUsC4Ht2QpKpZMtFNWZKW40YwDrXopg9cDEU93Ewhm8pWa2r4wTC8C4I63YvSr5VRnKp1hZ+1IUiwO8R1hJxRQ8pRoTjray5c04iqpgdStEBtOk02lMVb3MX9DMuvXryCt0MfD6QG7aNofDgaoq1NXVceyxx3LTTTcxe/bsvf5ZCXGwyCAlcVg4/vjjWb169ahld955J7/73e/Ytm0bup79UFjTvIY1zWsAeOPebAAx0gYJfwpr4zlUzy1lzYNbmXT5OBrPr2TNIy3oMZ2CiR5aX+mmdKaPY25pYtuiXsx2E/HBJO/esZ6mz41DURXMjuxI0bduXQcWmPW1OjJpA5vXylu3NgPZKdIcxVY0k8ay/8tWIJp+9XgUBZKh7MWhgiYP8WCSlpezF6oKGj2o5myHSOWnCnFXOPBW29n6fBfblw6Q7Enmqh31rw+y7P/WgyU7dUbtOWVY88y8e0f2wp3FpTLjhgba/9NH51sDJCM66UR61JRq3kobVreFoiY3HYuyd2s1P7pt92++BQrq3GOmaxu1yU6Vi0ZJjh3o5Ci1Y3abYKcBTfFAEndyR1iY/fV6wh0x1j+1nZV3b6XoCC8zbqxl+R+20L14iHBXlORQiqO/NxH/ljDrn9rOqsfbsu8TUHxEPplUhrb5vTiLbTiKrIAKZBhqCWEvsOSeS1HAUWaj9Mh8uhcPkV/nprDJy9QvjmP7m/0svn0D064dj3eCi2nXjCfan+CtW5upOL6A6rkl1F9Ujm+Ch+V/3Ih3govqE4vJpA2mXFmDu8rJW7c2M/Xz48ikDeKhFPWfrSSvxs3SP2+i8TOV6KkU8194lVhVlI4lm9i4cSOJRILM2kyujdFolLKyMjRN46STTuJXv/oVdXV1e/x5CCGEEB+E2WzmF7/4Bb/4xS9yy7q6uvje977Hyy+/TH9/9g70ZDrJ88//O7eNY4uDqqoq2uLbCc2fzvFnzKVsZj7rntrOtCtr0DSVZFDH6jXhKLDw9v9u5OjvNTCwLoTZbcJkZNg6v4fEYJI536hjcHMIV7mdzf/qonltiNqzSrB6THiqnQRawqx6chu+iU7KZ+fjLLbR+c4AgdYopbO8OEutZJI7LoYZhkHf+uygJNVmxlFkw1ViJbw9TvHUPFCg481B3v39FszD1YobLijHW+NgyR82098cyA1amn7NONpe72Xbq/3D21VgL7Ky8i+tpFIZ0skMiaHRFYvyJjgxmXfccRTtTrLuibFVJgG8ExwE2qO5qed2J6/Oib8tMmab/tVB+lfvuPussNGDPd+Co9Sem3IuFTXQExlS0Wz2Kju6gIqjfLx71xZC22KsuLuFpovLCfckaH9jgDWPt5MIpag7pxRfg4vFv9lMaFuMpfe0kBpIUTrLS954545KoD4LBWaF7nf9tL3Rj6PYSmGTl23d/ejxDIoGTZdXsO6xDjY81cmR36qjZLoXZ5GFjc900bFogKO/14DFZaL6+GJW3J2t8jn7q7WkUxk8VU70uM7SP7VQPNWFya7hLLYz7crxBLdF6Hp3kPKj8khGdKw+Mw3nlZMI6rS93k/TxZW0bmxnRfRNfF4vb/yjh23btmUH3j22I4tqmkZZWRnFxcXccMMNXHPNNXv+YQghhBAfUGNjI08++eSoZS+++CK//e1vWbp0KUNDQ2SMNOs2rmXdxrUAvPIPqKysQlM00kMmbBuPp3JOGRv+3cf4E/KpP6OA1U/1kAjq5E2wsf3tAPm1DmZeW07LgkEsLo10Is3KhzoYd4KPitnZCjyqRWHZPdnqSJMuKkJPZXCXWFl6d7b/quaEPFylZswOE+uezt6IV3tGPooKmWS2H8M3wUakP0HnshCKopA/wY7Fmc1B+bU2Cmod+Ftj9KyKMNASQR/ubprxxXIGNkZY8XAXZnt2+9IZLhyFO1U7MsH0z5XR8W6A/uYo6UQaPZEeNaWazWfGUWAhr9pK39ps/tldpaOR441UJdrByP5vZHIBE7iKzYQ7dwleOmydNzhqkbvCSjqZofPdHX1oiWCKdCLDcNclky4qItqXovV1P5teGMBdYaHps0Ws+0cfwW0JVv+tm3hQ54iryvC3xmh93c/Gl/rQh7vcSo9wgwE9K8LY8s24iq0oZg3iaXrXhXGV7tTnBTjLzBQ02hnYECPYGqd8jpeGs310r46w+rEeJpzqo6DBgWpRSITTLP1LJ3njbdSdXkDZbA8FtS6a/9GDLc9ExZEeFEWh5gQvhY1Olt7dyfhP5w+/zjTlR3oomexhzVPdlM/0kFEyvPXaO4SKBunZpLLp35uIxqIYq3aqxBDNUFZWRklJCeeddx7f/OY3qays3P3PSwghhPiANE3j4osv5uKLL84tC4fD3HPPPTzzzDOsXbuWoaEhIqlBXnh5pz6vdU6qq6oZ2B5ncPEkjjxuCsUNFjb8J8a0M51oJkjFDTKZDI58lVX/jDLtXAcDbSmsDhXFDJ1rEsRDBpPOdNLfksRbYaZ1cYz2pUmK6s3YvCp5ZSb8XTotr0Sx50FhnRVvqZmudQmiAxncpRruYg0js9OLUg16tyZAU8ECnlIT4T6d2CAU1FkwmVUGW8JsnBdBs2d3KZlkoWC8hQ3zwjS/sKPi0YRj7fRsTDLYkh1hVDLZirvExOYFUcBAjxu5/qQReeUmLK4dfV7p2Ohp13Zmz9NIRtOjpoIbs02BRsyfHlMtKdKfHjXoyFmk4Sg0YfPsqGZEGlLxDHoi+wZ5qsxUTLOz8ZUwyTBsXhChfLqVVNSgb1OSlreyfWtFEy2UNFpZ869slaW1zwdJx8BVrFFYayHcq+Nv17G5Vcx2M/7tGQZaspWwXEUmYv4U6QSoJqieZWXb4gRdqxM0nenEPF7B5tLoXJWguTPCtPPdWOwpihstbFkUo3ttkoaTs0UJnD4TBrDmhSjuYhWrS8Xi0qg91kqwV6d9RYKiOhOJcAbNkv15JcMGnavi1M2107Gtn+bu5TgKMyx5pY+WllY0TSXdtuN9U1UPdXV1HHXUUVxxxRWceuqpe/5hCHEIyXRv4iPl/vvv57bbbqOlpYVUauyVHZPJhNVqxePxUF5WTlFxMRPrJ+LJd5OK6iQjKZyFdvREhsV3rOdT35uEkTGIdMdRbQqOfBv+7WG8FS6igzGchXb61g7RtXyASRePR7OokIFwZwx7kY1kMAkqOApsGIbBxqe3Y/VaqPl0MYqi8ObPswObPvWjSaRTGd755XpK53iZcEYFXcsGaPl3D8f8cBKKAu/+cTNTPleNya4RH0zS1xzA4jFRcWQhGd3g7dvW0XRJJd4JLowMbP5XB+NPK0WPZVjx5y3Yii0ccW0t0Z4Yq+5tpeHCSnz1rtzUIbO+VodhgMVppuPdPipmF9K7KkDBRDcmu4aRNnj7N9lqTJ/68SQyeoa3b8vue8wPm1AUhVV/3UzR5HxKZuZjGBBqi2DJs2Cyqrx71yZIwlHfm0hgS5itr/Yy7coaTHaNNQ9tJdyRZPqXJmBxmXLvuafGSWhbhHggRclMH0Y6Q7AjSvND25j2xfE4y2x0vj1APJik9oxyYoMJlv9hCzNuqsXmtbD5uQ70ZIaJF1Vl23/beiacWUrpbB/pRJp3/ncD+Q0umi6tJp1KE2qPgQHuSgeaWSU6FMfusxLtTbB9YR+1Z1dgsqpkMgaxvgSqWcGWbyEdz7B9cR/jTypDj6cJd8ZwltkwWTViQwns+VbioQR9gV46OjpYsngJdrudRDLBwMCOkt4Wi4VkMomiKEybNo3x48dz7733SoUkIYQQh6VAIMB3vvMd/v3vf9PT05O7A2eEoiiYzWby8/OxmCw0TZ6E0+Ri0vSJKIpK71o/xU1eFE1hYF0Ik1Mjb7yT3vV+8spcpEljsZuJ9iWx5ZnRrCqKAuv/0UG4J8KcmxpJhnRMdo2upUOUTPMS3BbFVWHD4jQT6U2w8p5WJl9ZibfaOTxV7XamfKEKT5mD5r+14N+S5Mhv1oEGi3+9mYpjC6g5sZChLWFCHXFKpuWhWRXWPNxGycx83FV2XMU2Wub30vXOEHO+Xkcmne386F46RM2JRax7qoPQthiTPleJp9LB0j+3kPInmP31ekIdUTY824Gv3k3dmWVEBxLYvBYiXTGcpXY2PdfB5MtrSKcyhNojND++nWnXjsNVamfTc530rQzQ8NlyCid5ifUnWP6nrcy8oRYUBZNNZfMLndSdWc62hX10vzNE/bll5NW5WfLbjdScUkLRFA8Jf4rVD2zD7DUz45oa/K0RPJUOAu0R8sdnByHN+XodmlUhGdbZ9p9++teHOOob9ejJDKv+soUZX6nDZNd48383kD/eycQLKogOJln5l1amX1ODo9hG9/IhWl7s5ajv1KOZVVpe7aHrbT9zvlGH2akR7IzSvmCAhvPLMQwDzaySTqYx2U1senE7zkIHlUcVoKfSqKrK0ntbmHXteDKpDKH2GI5iC1avhQ3PdjD+5BJUqwoGpJNpzFYTQwN+ev3dbNq4iQ0bNuIryGdgYCA3rY6iKJhMJnRdp7S0lLq6Or73ve9x9tlnH4rTSQghhHhfb7zxBr/61a945513GBwcHJO9Rvq8vN48iouKKS0pp66qlrxSL/FAimh/Et8EJ8lImrVPdTPz6goyaYPBzXEsLhVXiYWBrVF84x2EuuLkj3PQszpI79ootacUYMszkU5kCHUnseWZSIRSgIqnwgqGweaXB1EUqD3Vh2pWWXzn8FStN1agJzIsv6cLe5mJqReW0LE0yPY3g8z+SgWaWWHpX7ZTd0YRVq9GfFCnd20Yk1Nh/PEFpJMZlv6lk8pjvBRPdpJOGrT9Z4jyWW4yOqx/pg+TDaZfVU6kO8H6Zwcon+OmZKqb5Q9mB1dNPLcIzQIWh5nO5UHKZ3roXRMmb5wNR4EFPZFh9eOd6FE46mtVpBMZ3v1zB0C2jRaVtU90YfNZqDo6DyNjEGhPYLIpWN0m1jzVAzpMv6qMQGuM7Uv8NJ5djMVtYtPzvYS7depO92EvMJNOZogN6LgrrYS7koS64tQcn08mZeBvj7H1pSEmnJIdOLRtoZ/YYIpJFxYT7kmw5vFeGs7z4a2ws/nlAWIBnamXlpDRDZb+uZPCSQ7qTi0gEdZZfm8XNp+JI64sIxnRGWpJkE6k8dU5MNlUwr1JPGU2Au0xupaHGHdCHvY8M+mUQbg7QSZj4K20kQil2f7uIA2nl5AMpxncEsVbY8PqMhHqTuAqshLxJwim+uno7GT5u8vRLCqpVIqBgYHcYC+LxUIqlcJqtTJ58mSOPvpo/t//+39SIUkIIcRhKRaL8eCDD/LUU0+xatUqBgcHc8USRlgsFvLzfFgtNiZObMCmFNI0bTyg0r0+SVGtGbNVoXdTCiMDldOtdKyJ4SywYBhp7B6NQEcaV6GKalbQLCob5oeJRQxmfdZFzJ/BbFdpXxWjrNGKv1PHVaThLDAR6NTZ8kaMqpkWSidZGdiaYuubcarnWCiut7JhQYhQF0w83YHFrrDq7yE8FRqNp7jo25gg0KlT1GDBbFXZ8p8w7lILzkKVwvFWtr4ZZXBriomnOzEMg3QKutYkGHeUnda3Y0T601TMsFJUZ2H1cyHSMYOG01xEB3S2r4hj92hMOM5BZEDHnqcR2J7CW2Fmy3/CTDrLQzplEOjU2fZOjOojbZRMsrFxXohAR5qSyVaqZtkJdKbYND9C3UlOVBOYbSpbF4WYcKybrtVxBltTFE3Mvta1z4XwTTBT0mglEUqzdWEMNJh8lpvBbQnyyi0MtScpGG9l7fMhJp7qwuJUSIQydK6OE+pKM/UCN+mUwYaXwzSc6sbp01j+pB+LXaPhFCfRwTSbFsQYd4yVggkWti9P0NOcZMq5LmxehZY3owxsTdN4mgN3iYmBLUl6NqSomW3DUMBsVUhEMzi8KlveimC2qNQc5UBPZFAUlfULojSdbEdPGQS6Mti9kFdupvmVKFVTbZjsBqqikAgbWF0qg/0hAvFuWrZuZcP6DXjyXQwODhKLZQeXjfTJappGTU0NkydP5rvf/S5HHnnkITibhNg/UklJfKRcffXVXH311aOWNTc3c8stt7Bw4UL8fn/2Tvq+Prq6sneGvfjiC2iaRn5+Pmk9TUVFBaVlZRSeX8Dg9gC+Ci82n4VAewSHz4bDZyM2FMfiMGNkDFxlDqY25ZOO65AB/+YQQ9siTKhyoKhmVJPGpvnbqD6qjJqTizE7zSgoRPuypaln3FALCrnpPgqnZG/f12PZwJNO6igmheRgkp7lQ9ScWEIyplN1XDGKColAim0Le8ACJpeGalZZ83B2erqKYwpxltppuKCS1td7UVRwFNkASPiTpKI6M79ah2ZSiQ8lSesZVE0hFU2TiqaJDyXZ9nov3glO3GWOUdWYMjvlsWRYJxVJEe5I4q5OkYqmMTIGoZ44blXBVGzlmJubWP9UO6moTjyQovq4QixuM8mojuKwcNR3J5CMpEiEUqy6p4UZN9aiWhTiQZ2tr3QT6IxQd2YFeTUuCqd6sOSZIQNtr/TircuGpVh/9qKTxWkCBZLRNIHNERQU0KBkVh5bX+imeFoemkVjzrcaaHujm2RYBwVc5Q5MVpV0KoO/LUxaz+Dw2bDmmWm4oIrOxX1UHF1EIphEMSlY8ywoqoK/PcL4E8tIxlL0D/TTG+xl87JNGIZBPB6no6Nj1FzHACk9RVlZGbquU1VVxZVXXsl3v/vdA3MiCCGEEB8Cr9c7anreEQ888AB/+tOfaG5uJhqNEgqFiEajtHe0A/DsiyoWiwWPx4P6tkpNTQ0VFRXY/B5cSRvFjXl0vDtA2RH5KJqCQYZIXxxPZfaC2cQLKgj2xiAD8UCC5PY0eTUOTDYNd6WD+FCSuD+JYijMuik7AFqPpxnYGKF4hhdXkR0MiHRlg41qU3N3Z/k7QlRnCoj7U2z/zwAl072gKngnOCmbkU+4L46/NULXsuz0IGaHRiJssPIvreQ3ZKdZm3hhBSv+vBkDA9WkUDrdQ/sbAySCOqhw9Dcb6VkxRDKsEx1IoCgKsUAKk9NEoCVKx+IBPJV24oFs2DKG25aKZB/HAzqxoQRtr2UrCiSCKRQTGGkT8d4EybBO1bGFFE/2MrQ5PJxzVIqnZacnTvij1J9XRt54B8lImqHNEXpXBWi6qJJkRAczLPnjZpouqMA7wUnN3CKiQ3E0k0r/uiCpKNmKSMNVQBWTgqIpqNbh97A1irPURl5t9i6wrS/1UH9uGZXHFOKrdRHsiqKZVTwVDiacUYLZoTG4OYQeyZBX78RIZ2g4s5LAtmg2D5tUon1xGs7JTqcc7UvgqrCjaArhwSimSXGWrHyHbe3bMJvN9Pf309u705wxjEzhkk9ZWRnpdJqTTjqJb3zjGxxxxBEf8CwQQgghPjzHH388xx9//Khl3d3d/P73v+f555+npaUFXdfp7e2hs7MDWA5kKwbk5eWRSWcoKyunvLycwmOK6d4QoKTei7vCwsCmCN5KG65iC+GeBBaXhp7MYPWYmfTZEuLBJEYGetdHiQ4mqTu5AJM1e0Ftw0s9VM3Jp3S6C5vXhKIqBNuz/TP1Z/tQVIXYcJXJ4kY7iqqQTmXvbk9GdCwODT0O3StD1J9RSKgrTuXRXkw2jUhvks7lQTCB2ZmtcL7phR5CHUl89Q58tXZqjs+j7U0/qqbiLMkGkmQ4TTKkM/GcIiwujVBXEkUFDAU9ll2XjOhsfyeIp8qCp8yWmzINwyCd3Km6dX8SPZkh3K1jsptIhvTszWuDSSwuDbNLY9YXK9j0fD+JoE4ypFPQ4MJRZCERSIGaHbyUjOgkQjobnxug8dxCbG4z/euj9G2IEh1KUn96IYV1LoY2x7D7sjfw9awKYys0kUkbRHqz2dWeb0E1KejxDPF+HSMNJouKr8FOf3OUijlebB6Nqf9VQvs7Q4T7kxi6gbfKitmuoacy9G+MkklmcJdas9PznVPE1gUD1J5SSHQoiWGAq8yKalIZ2BSk7tMlxPwp/MEhBtRe3lqwmXRGJxFP0NHZkRsEPsLpdFJWVobdbmf69OlcfvnlfO5znzuQp4MQQghxUNntdq677jquu+66UcsXLVrEY489xqJFi2hrayMcCdHT28227a0APDdfwWqx4vV6UZaYqKmpoqy0HFPCRyRQQkmDjY7VcYrrLGgWBUWFYG92KrlgZ5L6E50Ee1NkMgqRgE6qEzxFGjavhjsNyZBBvz+Bqik0fNqO3asRC2Twd6RwFWnkVZoxMhAdLvZocymAAppK3J/ODpYOpxlq0ymss2Svc7k1KqbZCPam6NucZLAtm9usXo1kOM2GlyPY81QMA8Z/ys66eWEwDDSriq/aTN/GFMlQhgwGU8/z0L0uSjyUJubXUTWFZNwgEUqTDMP2ZXGcRRqJcDZrGYCRAX342mMqliHYlaJrVTZbxEMZTJZs31gyDPFQmtLJVvKrzQy2JYkHs51mJROtmOwKgc4MxRMtFNZaiYeylZcGW8JMPN1DMpIBDdbPC1MxzUZRg5WK6XY2+cOYrCqDrXHSSUjG0pjjZLOhAiabgmm4zyvYmaawTiGv2kRPc5KWt2NMPM1J6WQbrqI0we7slHLeMjMmm4rdp9GzPntcb4WJtA4TjnER2K4TC6SxOFRCPTqlTWbMdpXwkI6rSMVsURjsiGOt6mXN5h62tbVhtmrZ64+9vexcX0ZRFNx5Tqqqqhg3bhyf/vSnufjiixk/fvyBPi2E+FDJICXxkTdp0iSeffbZMctfffVV/vu//5sVK1YQDodzU5cM+YdYs3ZNbjtVVSksLERVVeLPxzn2uOPI9+ZRqBfhNDmxuMwMbPZT1JBPuC9GXr0HR7mddDLDUEuYvBo3JU0FWN1mkuEUsYEEsaEEoHDMLU2gKvhbw7TN66bqlALc5U4yqQztr2Yr7GgWLdd5Y/Vk5yXteLOf9Z3tzPhSLYGtEUxWE8d8ZxI9qwcxO8wEW4an84jppGI6kd4YycEkax5uJRHPfmgnQim6VwzhKLBhdmg0PzJ6urfuN4dy3/cs9Y9+8zIQ7d4xoezS4anmALreGqTrrdHlrl1VVhovqCbSHyXWE6d1Xnaqt2BXlN4l2WOnk2kyaXIX3CKdCRKBFAUT3RQ0uml+rJVkKEXfmiH6VwcZd0opaX2kZKMDRVFIDZdwDLZEyG/0MOG0UrbSzbt/3Mys6+sYf1op5ccUEOqK0b2sn/pzqqg5sQzNpBAbTKKoCkZaQ0+myRvnItIfxzBAj6dJJ9KUzS4gHkzSP9RHJBlm/cL1JJNJkskkXf/syk7TltnRkWU2m/F4PCQSCcxmM9OmTWPWrFnceeedWCwWhBBCiI+jq666iquuumrUslQqxe23384jjzzC1q1bicViuYEk3T3dOzZ8LjsXemFBId3zepgydTJ19XXYVReOsBVnsY3oUByL1TQ8uFqjoN5BdChJbChBOmGQTmVwl9vRE2lMFpU1f99O2fQ8iqd7sXnMYMCSP27FVmhn0hklKCh0Lc9ml9JpPlAUwp3ZzhDVpJIM63S97Uc1K/hqPWz6Vw+zv1xLOp1haEuY6EC2J8XIGESHkpgsGqkorHu0g4JpbgZWZaf7iA8m2f5mF44Lx9O5NEDLvGz2HF2jG9rmjx5gk06myegG/s0RALa90su2V3Zss/bhnTKcorLi7laaLi4n0p8kk4b2N7PPs+KhNswmiHanqJxbgKvCRrgzRt+q7PRw0f4koe1Rjv5WAxue7iA6kERzqKx5pB1XpY1MxiA+mO2oMtmy1UNJwWBzmPRZGaxOC6VHeuhr9uMosuCtcXLUzfX0rB6i890B3KUOLF4zXq+Fgc0h9FiaYEcUk13DXmDBMs5CfCCBuchK95ohihq9GGkI9gYIxv0M+odY+8paHA47fX19uTvzd+6Y8Xg8ZDIZzGYzZWVlTJkyhe9///vMnTt3L35zhRBCiI+e0tJSbr31Vm699dZRyzds2MDtt9/O66+/TkdHR3bKuEyGIf8QzevW5rZTVZWCggJMmon4f1J8au7R5Hnycafz0SzZz+jutQFKp3gJdSconuQkEbSQjOr0b8pWXSqsdeH0WQkPJogOpAivC6MAM68pQzErDGyMsn1JEN9EG4WNbpKRNN3vRrJ3eDtMO/q83BooBt2rw0T7/DSeVUioM0E6aTD72gq6VgYJdcRzU7OlYmliQzpxfwp0WP14N/rwHXWpaIa+dRFMFgVbgYWWV0b3Uw1s2NGnFWiLAzumy81WEtpxl17zU3257/0tcfwtowfkmN0aDWcWkAgmiA2k6FyWnS8lHkwQ2JrNTno0m+e6lmVzYagrQSqeIX+CjYJ6O+v+2UN8ME3n8iBDW+KUz/KgJ7IZx+41oSiQ1rOP+9dFqTjKQ+UxXra9McSKBzs44ooKxp3go2RakuD2OJs3hmk8vYjqo/Mx2zSCnQkySYNUPI2RhqJGJ6GeOBndQI9nSEUT1MzNJz6UYijURywTYfO8zYRjYdJpna5FXcTj8VF9XiaTCa/XSzqdprCwkKamJj796U/zwx/+EJNJLikIIYT4eDr22GM59thjRy1Lp9O88MIL/O1vf+Pdd9+lq6uL/oF+0uk03b0dOzZ8Gex2B4WFBQRfi1FbN4HauvFYMvlYB/NxFpiI+XU0k0I6aaBkFIrrzYR6U4R6UiQj2elo3UXZwS6aBTa+FsZXbcVbacZVoIGhsOIfIcx2qJplQzUpdKzK3kDvrc7edJ8IZJtjsigkQmkC29O0vB2moNpK18oY9Sc4UFToW59AT2bzh2FkiPp1TBaVdAw6ViTxd+tEurPZIB7K0Lc1id1tItCRpm8kaxnZLNS/Mfuwf3OS/s073pJMKnsjXKQve91ycGuKwa07ZsnZ/u6OzAaw5bUo5dOspBIGGd2gd0P2tW18LYymQTIE3orsYPvoYJpgR/a4oR6dUI/OtPM8tCyMEAuk8XckaX0rhsWR7dOLhbKvxeJQAZW0rhLzG8QDGawuE75xGuEenc41CYprLUw5z0XPxhjt78aweTVsboX8Kiv9LQmSkTTBLh2zXcHu1XD4NAJdKRxeEx3NUQon2MAw8HfHCacGCMYGWfDYRiwONdvn1T9AxsiM6fNSFIXi4mImTJjA5MmT+da3vkVTU9Ne//4K8VEi/0UhPrZOPvlkTj755DHLBwcH+elPf8q///3vXAWcgYEBMpnsB8K///2v3LaqquJ2u3HYHURfiFJfV0+eNw+7w05dXR2+Wg9kDJzFdtLJNKpZxe6z4iyxZedEVaFn1QBFTflM+q9xmO0mMnqGjf9sZ9JlVbiqHSiqQqAle1HKVWlDUbPTkYVaY9i8FsxTTKx/qp1kKImnzMmaR7cx86Y69FgaZ6mdcHuUjkUD2IotNF1cA8DiX62n6tgiNIvK279cn3s9k/6rmkB7hI63BzjqGxOJ9sZZfX8rVScVUTa7gMW/Ws+upn5+HJpTY8VdW/CMdzD5shq63h2k860+Jl0xnuYn2gm3J1j6+01MvLiS/HoPnvEOCid5KZ2Rj81rZtv8Plbds4VZX5/I+FNLsH7WwtrHWiidUYCjEIY2h8irc2L3WbE4soN7zA4TYOCqstK+oI/KTxVRMiUfV5GNjpUD2Iqs2PIsTL6shkQwSbAtgrvSjmZW8FY7sfnMaGaNWCCKw2fH4jSh2TVSyRT94V7a17ajp3W2d2xHVVSCoWCunPrOJdXNZjN2u514PI7D4aCxsRGPx8P3v/99Tj/99APyuyqEEEJ81JnNZr7//e/z/e9/f8y6BQsW8Ic//IHFixfT19eXrULY2UE6nWbZ8mUsW74st63VaiUvLw89pePxeKgZVwProba2lqKCYixujVQkjWpWSAymsLoc1J1SjC3PSiyYyN6F3hVj0qUVOAuspNMZwl1RwgNxpl5djbvcTjqVoW9VEEdpdoo51WLOvgabCXe5DVeFhYEtIfInOIn0JQi0RJnzjTriwSTOQhtv/zbb81J9ciEVR/rY5jIT6Y1T2OQmFdNZ/ucWAByFZmrPKmP9U9soO7qQshn5rH5oK9GeFNOvHU9sMMHGf3Tu8kbC7Bvqaf9PHz3L/Ey+ohp7gZV3f7+Fik/5cBRa2fTPLtY9md3vqG/XkwjpDDaHOeKKGoy0wcoHt7H9PwN4q+0UNnmw5plQNY1Nz3RQe3YZscEkyUiK4qleVJMCKcivcaKaFFzVNngT/K0RCps8zP5aLYGWKBv+3U7j2VWMP7mUZFhH1VS6Vw9RMjmfgokezFaNjA4ZPYOeTOMut6OaVQrq3cSSUbZ1bGMoMITf78fv95PJZBhcMEg4HB4zEMntdhOPx1EUhQkTJlBcXMzpp5/O17/+dbxe7wH9vRVCCCE+qhobG3db8TIcDvPAAw/w3HPPsXbtWvr7+xkaGiKdTmf7vJ7fTZ+Xw0HsPzEm1NZm+7wsTurqaylqcIAKngobqaSO2axiKzLhLrOSiqdBU+haEaKowUnDGfnYvNlp1Ta90kf1cV7yxtswWVV6NmYHLLlKLahmFU+5lWiXjqvEgr3AzOBzfUT6kriKrWydP8TE84tI6xm8FTYC2+L0rIpgckHDWYWoJoUV93dReaQHq8fEsnt3ZKma4/OIDaboXRNh+ufLiA4k2fTvAXwNdqqOzmPlo10wehYXxp+Uj81nYt3f+7DlmZh0YTHdK0P0rglRe2ohbW/4iQd01j7RS/kcD8WTXQxuieIoMFN9bD7bF/vpWhpm7dO9zL6mgoo5HmynmNn8Unbgk6PQzODWGI5CK94aG8HO7IU2W74ZVVOw+UwMbYmTThqUTnNjyzPTuz5CcFscV6mVyReVEe5N4N8Wx1VqwWSBoiYnziILJqtGdCCO1WPC5jNhdZlIJdIMBvtZs7gV3UjRsbADRVEIhUO5aWx21+eVSqXIy8ujvr6epqYmbrjhBubMmXMgf2WFEEKIjyxN0zjnnHM455xzxqzbuHEjTzzxBIsWLWLDhg309fXR3d1NKpVi2ap+lq1anNvWYrGQn59PJm3gcrqpqalC7bBQWVWFz1mIx2MmHkpjtqlEu5PklVupnGbFVWwm1JcirRsEtuuMO9qOu0gjkzYYak8RGkpTfaSFgnEW9KSBvyONxatidqpYnMOvwayRV2OmvzWJf1uK/BozqXiGQGeKSWe5iAZ0vKVm1jyXHXCdP06jZo6T7ctjhHpTlDRZMQyDLa9nCyhoNqiaYad9aQxvuYny6XY2vRokEYTxx9pJxgw6lo0e+I0GE0910b02jr9dp3KWDXeJiXUvhfGWZqe561yVoHN40NXkc90koxlC3RHqT8hOH7vptXB2Cr2SNEUNVkz2bFWitsVRqmbYifTrJKNpKmbYs4OR0jFseRomm4q7UGNwa5qBVp2qGSaaznLgb0+z9c0IE45zUj3HTiyQnY2mfWWUimkOfDUWrC6NdNwgkzFIJdK4S02YTApF9WaS6RhdgQ4C7UP4g0MMvTtEJpNm8M1BQqHQmD4vl8tFJpMhLz+P6upqxo8fzyWXXMJ5552H3W4/YL+zQnwUyCAl8Ynj8/m44447uOOOO8as27x5Mz/5yU94++236e7uJh6PE4lEiEQi6LrOu0vfHbW9yWTC4XBgGAZer5eCggLMmpn8Ah8ul4uKinJ8Ez1oVhVj+A6pTNpg4gU1oEAmnUGPp7H6LBz9gyY0TSWtZ0iFdRovq0TRFDRFI9gSJbAtSvHUPCqP85HRDeyFVgJtYbqWD3DkdyaSTmarCWxblL3zvv3tXqqOLcFVZcVeYKP6+CLMDhMWt5mONwZIBFL427KDo0amF3FVWQm3j562TDEpKGp2uo9gR5RUVGdgUxBnuQO7z8qUz1Wjx9OsuqcFzaoRDcSJ90XZOi9K4SQPFUcVkT/BjaEbtL7eTeWRhQDYi6wUTfNCBrb8q4vJV2UHWOU3uamKpwltj+CpdjL1ygnosTSJYBLNpuEstVPrK0ezqCQjOma7hsVlxuqxEA5H6B/oo3/9AIl4nGAwSCAYIBqNous6fr9/TIlqRVGyF0N1nVQqRUlJCSUlJTidTr70pS+NmV5QCCGEEPvmpJNO4qSTThqzPJVK8Y9//IP777+f5uZmBgYGiMfjDA0NkUqlGBgcoKU1O+Dntf+8BmTLcZvNZkwmE0WFRbg9bixmC3l5eRQXl5Cfl4d3vJu0nr0QlwilcJU7GJ9vwWw3kYykSEYyzLpxAmaXCdWk0LchRNlR+RROcoMC+ROcbP1XLyXfrafiKB/R/gRgYLJobH6pkymXVWEYBp4KB8mITsebg5gdEBtKZqekBaZcWYVmU7HnW7HkWwhsjeKrdxMdSoOigqqgamr2e7I5C0XFXW5HURSSkex2wfYdd5QVNnmweEzMuG48W+f1kE5m0FNp2v6TrWDZ+e4g1ccWMumScsx2E5v+uY3SOUV4Kh3E+hOUHp2Pu9JO+6J+Ih1JzHYNFKg9t4TBDWEyukHBBA9HfdtBuCdOIqxjtqkUTvFQONlNMqZjMZuy07E4NPLq7AwFB+jY3klKTxIIBAiHwvQP9KOqKqFQiFAoNOpCGIDNZsPpdBKLxTCZTDQ0NGC1Wpk7dy7f/OY3qa6uPqC/f0IIIcQnicvl4sYbb+TGG28cs66/v58///nPvPbaa2zZsoX+/n7i8TjRaDR7IW3Z0h0bv5S9IOd0OrN9Xp5sn5fJZMLn8+FwOCmvKCO/wYXVayIRzN6op6fSTDyrBEWFTMog7k9hcmrMvLYMk10jncwQ7dWpnuvFZNcwZQwSA2mGWmLUzM0nNi1JRs/gKrIw2BKjd1WQ6Z8vIxXVsXpMtC3MVgXfvmSQcXMLcRSZUM0KNcflY3Zq2AvM9K6JEO1LEuzK9m/p0Qwo4PSZiPSOHqWkaArKcBSLh3USQZ3Athgmlwl3uZXxJ+eT1jNsfG4Ai0Ml0pcgNpAk1JGkZKqbyiPzcJVYUVTY/MoAlbM9oGZvvCuf4wEFOh8PUXWcB0WFwiYHqWia/q0RSpvcTLmkhERIJ9KXwupVyR9nx1lkxuIwEe5P4Ciw4PCZcJVm+7yGokMMtPURS8YILg8SDASJRCOk02n8fj+x2OhqBAD5+fm5PFZeXk5ZWRmNjY187nOf45RTTpGqSEIIIcQH0NDQwI9+9KPdrlu8eDHPPvssK1euZMuWLfT19REOh4nFYvT199LStmXU9jabDYvFgkkzU1RUiNvtxmyykteVT2FBIT67j6IGJ5l0BkMxiIcy5Feas5V88lTCQ2lSUag/2Y7do2Kxq3Q2J8irMVNQZ0YzK7hLTXSsSFE6zUpFkZ3oUAYDA4tDZetbEcqnZaszeStMxENp+ltSaECoJ4XJkg1N1XNsmGwKriITFodKeEAnHkiTiCqggKIqKBqgKLkuLwCLHVCyVS0Bwn06mlmBNOTXWHAWmrD7NLrXJEjF0+ipDN3N2et53Wvi1BzjYNzRDsxWlbbFETIZg/wqM9GBNN5qM0WNVlrfjpIIq9i9GqpZoXSahVCPQTKaobDehqfMTLBHJzKoY7arlE3RKGm0EI+ksdhVNLOB3WuieKKFcGyIjs4uUkacYCBAKBRmcHAARVVyfV66PjpbWq3W3ECksrIyKioqqKqq4tRTT+Xiiy/G5/MdkN87IT4OFGPnIXxCiPfU3d3N7373O1588UXa2tqIRqNompbrBFBVdVRp5BEjg5lsNlvue6/Xi0kz4SvwYTabycvLQ1VV8vPzcdgdaCYNgHQijaIqqCYVRVUID0SJ9SYpaMyW/mtZ0EXNcSWoJpV4MIGRzk4hZ3GaMAyD5n9so3R6Pr5aD93LB2iZ38O4E0pwVlgxktD86DYmXVFN8xPbYLja9ad+OIngtghrHmoDYNypJcQGE6STGcadXEL36iH8G4Jodmi6aAIYsOwvW5l0aSWOQht6VEezaLQt6qZmbilGBmL9Caz5ZkxWjdhAnMHNYSqOyg5YMjIGsUACe54VRVFQFIVYNEY4kg1s4XCYRCJJJBQmGo/iH/KTTqdJJBKEwiEikWyHzK6BQFVVDMPAbrfj8/no789eNKuvr6e8vJwbbrhht6PfhRBCCHF4mDdvHo888ghLliyhs7OTZDJJKpUilUqhDF9R2vU/ZxRFwWq14nQ6cxfXbDYb+fn5qIpKvs83PFDGgcOR/ed0OMkYBmAQ6U1g91nQzCoYsO0//fganLhK7SQCKZJhHXuRFVWDlleyuUpPpLF6zPjbo2x6tp0Z19RiGAprn2hDVTQ8VVZKpvvY+nIPVm923vrOt7IX2SZ9rhJPlYO3f5mt0GR2wPjTy9n4dCcTLyong0GkM0HHkkFqTiykfHYBPcsH8beGabygGgyDZFgnGdQxuTRsHjN6IkP7on4mnFqCYRj0rvTjrrbjLLCT1jNkUgaQwWQ1gQJ6SieeiOMf8pMxMrmy04FAdrB3MBjEMAyi0SiRSIR4PE4qlRrz3o9k4eLiYhRFIRwOU1hYSF1dHXPnzuXGG2+ksLDwoP/eCCGEEGLf+f1+/v73v/Pyyy/T3Nycu3kvGo1iGAaKorxvn9dI9vJ4PJjNZvLzfbmBTWRUCovysVpsmCwmyEAyqoOSnWrWZNYIdsYIbk9QNtODqilsfLGP6mPyMTs0ooNJ9HAGi0fDnpethLn+uW48FXbKZnrpWOync3mYkklO7EVmVEVl6/xBxp+UT/tbQ+jD96zN/koFgbY4m14YAKBosoN0Kpunao7Lp2dtiHBPCgyDps8UgwqrH+9i/IkF+GodxAZTmK0qLYsGqD2pkEzaINyVxOLRcBZaCLTHGdoco+b4fBQN9HiaSF8KT7l1+MKdSjQcJRqLEo1FiEaixBNxopHsMv+QHz2tk0gkCIfDuT6vVCo16n0f6fOy2WwUFBQQCoVwu92MHz+ehoYGrrnmGo455piD+0sjhBBCiP22bt06XnrpJZYsWcKGDRvo7u4mGAzmsteuVXhgR5+Xw+EYzmBO7HY7eXleVFR8BQXYbFacDhd2mx27zYHT7SBtGCgGDG1L4S7JDi4y0rD1zSieCo3iWiuhfp1IbwZvhQnNAlsXRqie7cxWDyo009+SpH1JjMbTnKiawuYFYTJpcBRqFI630rk6gaqBxaEw2Jq9Vlcxw0pRnYUVTwxPvatB+RQrnSsTlE2zopogNphhsD2Fb5yZmiPtdK2O4+9MMfFUN4qmEOlNoccNFIuCp8RMMpKmfWmMxlPdZNIG25fHcPpUCuvspBIZUpEM6bSBM0/L3giY1EnqcfwDfjJqhoGBQTAyBIJBotEIgUB2fryRghXv1ecFUFBQgNVqxWKxUFVVRVVVFaeccgoXXnghLpfrIP/WCPHxIYOUhDjANm/ezF//+ldef/112traGBoaIpFIYDKZMJlMhMPh3F1Kuw6q2ZnFYsFsNucCh6Zp2Kw2ULLTYGiahtVqJZ1O43K5hkfnGihKdsS11WplYGCQvDwvZrMZi8VCIBDApJrJL8gOiErEkoT6IlQ1lhMPJBlYFaB0ViFWt5lkVCcV0hnYEqDy6CLi8QTb13ZTOrEge9EpFCESCeP2uFEUJTtgKBjC6crWj4wPVzLyeDxEo9HcP7PZTDweJxaLoad09HS2gtFItapkMkk8Hh9z1/2IkffOarXi9XoJBALEYjHGjRuHxWJBURSmTp3KscceyxVXXCEjk4UQQoiPsVQqxfz58/nnP//JsmXL6OrqYmhoiGQyidVqJZlMkkwm0TSNTCaz2wtrkK0UYDabsVltmC1mnE4niqJgsVhyHQ82m410Op0b2GS32/H7Q+Tne7BarQBEozFcLmdu20gwisvtxOFyoKCwbWkf42aXYbWaaV3QT8kULxanGbNLIxFI0fHOAKVHerHlWWhbvp28Gg8Wuzk7PVr/IKDg9rpyg7X8gwF8hfkkk8ncoPmRwUGhUAiz2UwqlSKZTBIMBlFVlVQqRSKRIBqNkk6nicfjJBKJ3b4viqKgaRqGYeDz+VAUhWAwiM1mo7KyEl3XaWhoYNq0aVxyySVMnTr1oPychRBCCHF46O/v51//+hcLFy6kubmZzs5OAoEAuq6jKAqRSCR389n79XmZTCZsNlu2z0vVsNqyecrj8aBpGhaLhUw6g8ud7fMyDAMMsNqsWK1WhgaH8OZ5MZlMWK1WAv4QStpEQWl2/3g4W0F83MxSIv0pepaHKZ/pxZ5vJh5Mkwrr9G2MMOGkPOLxJK1L+qieU4CqQSgYIRwM485zDt+cGCcSiuBw2kHJ9nn5hwLk5XuJx+OEw+Fcn1cikSAWi5FMJslkMqSSKSLRbJ9XIpHYqz4viyVbKTQcDufuxHe5XJSVlTFt2jRmzJjBWWedJRfChBBCiI+xdDrNunXrWLRoEcuXL2fTpk309PTk+r1isRjxeBxFUTAMY4/5QtO0XO6yWCw4HA4URcFms+WuQVqt1twN/3a7HYfDSdAfxJvnyWW0cDCOJ8+R2zbQm8DhseD1OcmkoGN1lLKJXhxuM61vx8kvs2BxKzjzNcJ9Or0bExTUmvBWmNm2yo+rWMNRYMYw0gx0BshgkFfkJJlMoad0BnoDFJZ6s/kplsAgg6qqRCIRQqEwJk3LDuyOJwiFQqiaSjKZ3Oc+L4C8vDzMZjO6ruNyuSgsLKS0tJTp06fT0NDACSecIJW/hTjAZJCSEIdQOBzm6aefZtGiRaxbt46uri78fn/uDrVQKITJZMJisaDreq6DR1XVXGdHOp0eM6J3f6mqiqZppFKp3IdzJpM5oMe3Wq2YTKbcaxwpfRiLxXA4HOTl5TE4OEg6naa8vByn00lZWRmTJk3i1FNP5YQTTjggbRFCCCHEJ8+GDRt44YUXWL16NVu2bKG3tzd3x1QsFiORSOSmk4vFYrmLbCMVG9Pp9B4HOu0rRVFyd2Gl02lMJtN7DqTan+OP5MiRygcOhwOLxUI8HieZTFJaWophGLkcVlpaisfjYdq0aUydOpWzzz4br9d7QNojhBBCiE8WXdd58803WbJkCc3NzWzfvp2+vj6CwWBuADVkB+akUqkPpc9LVVV0XUdV1Vw+OpDHHxl8NcLtdpPJZEgkEsNVDvKIxWJYrVaKiorIz8+noaGBpqYmZs+ezfTp0w9IW4QQQgjxydPX18eyZctYt25drs9rZFDTSHXGkRwUj8fJZDIfWp+X2Ww+4Mcf6fMaqeo9UrwhmcxOGePzZWexGclgHo+H2tpapk2bRnV1NTNnzpQB30IcQjJISYiPuGQyybp163jnnXdYu3Yt3d3duYtskUhk1EU2VVUxmUy5KerMZnOuPGQwGMRqtaLrOuvXr6esrAyv10smk8HpdGIymUgmk4RCIQoKCgByFZE8Hk+u9LTJZMptn5+fT2lpKQ0NDVxyySXygS+EEEKIj7xAIMCyZctYu3Ytmzdvzk2JNnIH20gmSqfTuYHmJpOJSCSSq9A0crFKURQGBwfp7++noaEBTdNIJpPk5+fnKiBlMhm8Xi+pVIp4PJ6rppnJZHKVA8xmMz6fj7KyMvLz8znqqKOYNWsWZrP5UL9dQgghhBD7Tdd1tm/fzsaNG9mwYQOdnZ1Eo1Hi8TihUIhoNIqu67lBTiM5K5VK5S6MWSyWXIXJdDrNhg0bKC4uJj8/HyBXRUDXdWKxGG63O3fBzjCM3MCjkYtchmHk+rsKCgqoqanh+OOPlz4vIYQQQnzkJZNJWltbaWtro7W1Fb/fTzKZJBAI4Pf7c5UhR2ZESaVSKIqS668amaJu5z6v3t5eGhsb0TSNdDqN2+0eNWDJbrcD5K5dapqG3W7H4/HkMlhZWRllZWU4HA4mTZrE+PHjc4UWhBAfTTJISQghhBBCCCGEEEIIIYQQQgghhBBCCHFQqYe6AUIIIYQQQgghhBBCCCGEEEIIIYQQQoiPNxmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qCSQUpCCCGEEEIIIYQQQgghhBBCCCGEEEKIg0oGKQkhhBBCCCGEEEIIIYQQQgghhBBCCCEOKhmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qCSQUpCCCGEEEIIIYQQQgghhBBCCCGEEEKIg0oGKQkhhBBCCCGEEEIIIYQQQgghhBBCCCEOKhmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qCSQUpCCCGEEEIIIYQQQgghhBBCCCGEEEKIg0oGKQkhhBBCCCGEEEIIIYQQQgghhBBCCCEOKhmkJIQQQgghhBBCCCGEEEIIIYQQQgghhDioZJCSEEIIIYQQQgghhBBCCCGEEEIIIYQQ4qAyHeoGiMNbT08Pfr//UDdDCPEhycvLo6Sk5FA3QwghPrEkewnxySLZSwghDh3JXUJ8skjuEkKIQ0uylxCfLJK9xHuRQUpij3p6erj4sxeDdqhbIoT4sNhsNh566CEJDkIIcQhI9hLik0eylxBCHBqSu4T45JHcJYQQh45kLyE+eSR7ifcig5TEHvn9ftDAtDEPNW4CVBRVAWXHP0VVQQEUNbtsl/V7/je8j6oAI4+VnR4r2ckIFXKPjZFlw9vv/NhQdhzDGJnEcOSYI9uO+jqy3/B2O+1jjBxHyS4yFDDUnfZTdhzbGLUPo/YZ9fzs2C+37S775v7x3tuP2mcPy973+9wyY9QyY9QxjVGPs89vjNmfMccc3k7dsV5RjOxiZeTxyI9xp/XDX7OrdmynKsbw/sZOj7PbZH8FDFCM3HJVMbLr2GWZYqCS/acoxvCv6vAyZafth7/m/mGgkEEdfi5VyQyvA5UMimKgDT+fpmSGvxooSia7PLd+58eZ3LFVJZNrg4n0btZlUAF15HjDzzPyWlSMUc+T3Xa4rcPfaygogKaAgjL8eMdXFQVVUWnvMPM/d+bh9/slNAghxCFwyLKXoh5WuSv3+DDOXoa6076HQ+7aZZvDMXtp6uGVuzSG95fsJYQQn0jS55VdtNvspXJY5a5dlx2u2etwyl2HY5/XrtnLpKQldwkhxCfIYZO9FPXwyl075arDNnupu7SDQ5+7YOeMNfKjPHyy10huOlxyl/R5icORDFIS70uJmlBjFlBGQoOaCwfZ0KCAuiM0KDutH7Uu93jke3VsyBh+bCjDn1Q7rTOU4U8lZeRjZcc2xk6foMbwNiMf+DsCyc6Pd/leVcYEglEfhsODlEaCzJ7CxNivyphgsKdt3y8g7G67913P+227m+Cw6zp2XrdrUDDGrFNGvt91kNKor9ltlJEAsGto2GmdkfveGLWfyshzj3QE7finsGOfXUOAusdlmTGPtZ0/vEc+lEe+V4zsB/pOQWDkw1xTMqiKkts++5Xh7bIf4tn9sx/k6nDYMCsZNDK5Y2vDj0eOmQ0FmR3fDz/3ju+NnZ5rx/E1lOHvswFBGw4K2cfq8PfZr0IIIQ69Dzt7Gap6eOWuUdtyWGav3CClwyV35dpw+GYvk5o5rHLXju0lewkhxCeZ9Hntuu1Izjl8ctce13MYZS9110FK0uf1ftnLrKQldwkhxCfQIc9eqnpY5a4dWeMwzl67DlI61LnrMOzz2nWZSU0fVrlL+rzE4Uh9/02EEEIIIYQQQgghhBBCCCGEEEIIIYQQYv/JICUhhBBCCCGEEEIIIYQQQgghhBBCCCHEQSWDlIQQQgghhBBCCCGEEEIIIYQQQgghhBAHlQxSEkIIIYQQQgghhBBCCCGEEEIIIYQQQhxUMkhJCCGEEEIIIYQQQgghhBBCCCGEEEIIcVDJICUhhBBCCCGEEEIIIYQQQgghhBBCCCHEQWU61A0Qhz/DoZNRAVQUVQFlxz9FVUEBFDW7bJf1e/43vI+qACOPlZ0eK9khdAq5x8bIsuHtjZHjoGBkvxn+HrL/x8gBsuszO/YxRvYbfrrc9iOPc8cefqwqO63Lrs7+H6OWj9pHAWXk+XZaNvKcI8uM3ez/XtuP2mcPy973+9wyY9QyY9QxjVGPs89vjNl/96/fGP5ZGcPvQ/YNVpSRx8Pvz87rh78q7LwcVMUY3t/Y6fHwTz13DGOnthkYGMOvzSCTey3Z5QYGGcUY/lU1UDGyx9zla+4fBgoZVIXhbTPD60Alg6IYaGT305TM8FcDRclkl+fWj36sDv86Z78qqAqYUNFg+HkVVEXJfgXUkeMNP4+Kkfs36ri5Y+74XkNBATQFFJThxzu+Zp9Lpb1DPhKEEOJw8KFnL0U9vHJXrr07/h1u2ctQd9r3cMhdu2xzOGYvQz28cpc2nIIkewkhxCeb9Hnt9HikeSqHVe7addnhmr0Op9x1OPZ57Zq9TIomuUsIIT6BDnn2UtTDKnftyA6HcfYaLndyOOUu2Dljcdhlr8xwbjpccpf0eYnDkfyGiD3KZDKYTCb0Bv+hbsr+MdgpQOw9ZZev4qNn5EefOdQNeU8jyerwKmhnMpnIZA7vd04IIT6uPtLZS3LXJ9rhn70Oz9wFkr2EEOJQ+UjnLpDs9Ql2+OcuOFyzl+QuIYQ4dD7S2Uty1yfa4Z+9Ds/cBZK9xHuTQUpij1RVRdd1fvSjH1FTU3OomyOEOMja2tr4xS9+gaoefmFGCCE+CSR7CfHJItlLCCEOHcldQnyySO4SQohDS7KXEJ8skr3E+5FBSuJ91dTU0NjYeKibIYQQQgjxiSDZSwghhBDiwyG5SwghhBDiwyPZSwghBByOtb+E+Bh64403uPnmmznppJPwer0oisLVV199qJu1Ww8//DDXXXcds2fPxmq1oigK999//6Fu1geWSqX4+9//zlVXXUVTUxMulwu3281RRx3FXXfdRTqdPtRNFEIIIcQBILnr0JPcJYQQQnxySPY69CR7CSGEEJ8MkrsOPcldQhwYUklJiA/BfffdxwMPPIDD4aC6uppgMHiom7RHP/rRj2hra6OwsJCysjLa2toOdZMOiC1btnDRRRfhcrn49Kc/zXnnnUcgEOC5557jhhtu4Pnnn+ef//wniiIzBAshhBAfZZK7Dj3JXUIIIcQnh2SvQ0+ylxBCCPHJILnr0JPcJcSBIZWUxB4VFBRw9dVXU1BQcKib8pF30003sWbNGoLBIH/9618PdXPe0z333ENrayt9fX185StfOdTNOWDcbjd/+MMf6O7u5plnnuGXv/wlf/rTn9i4cSOzZ8/mX//6F0899dShbuYhJee8EEIcWvJ3+MCQ3HXoSe7aO3LOCyHEoSN/gw8cyV6HnmSv9yfnvBBCHFryd/jAkNx16Enu2jtyzov3I4OUxB4VFhbyxS9+kcLCwkPdlEPq73//OyeccALFxcXYbDbKy8s55ZRT+Pvf/77Xx5g9ezaTJ09G07QP1JZMJsM999zDkUceic/nw263U1lZybnnnstrr72W2+61115DURT++7//mzfffJPTTjuNvLy8vRq5e8opp1BTU/OB2jkimUzy29/+ljlz5uB2u3G5XEyaNIlvfetbDA0N5bYbN24c48aNIxAIcP3111NWVobT6eT4449n2bJlAHR2dnLFFVdQXFyM3W7ntNNOY9OmTXvdloqKCm644QacTueo5U6nk29961sAvP766wfgVX90yTkvhBCHlvwdltz1QUju+uiRc14IIQ4d+RucJdlr/0n2+miRc14IIQ4t+TssueuDkNz10SPnvHg/Mt2bEO/hrrvu4oYbbqCsrIwLLriAgoICuru7Wbx4MU8//TQXXnjhh9qeW265hf/93/+ltraWz33uc7jdbjo6Oli4cCHz58/nxBNPHLX9m2++ya233spJJ53El7/8ZbZt2/ahtTUWi3HqqaeyaNEi6uvr+cIXvoDVamXTpk38+c9/5vOf/zz5+fm57ZPJJKeeeirxeJxLL72Unp4ennjiCU455RTefPNNTj/9dMrKyrjiiivYvHkzzz33HGeffTbr1q37wIHMbDYDYDLJn0QhhBDiUJHctf8kdwkhhBBiX0n22n+SvYQQQgixLyR37T/JXUJ8PMlZIsR7uOeee7BYLKxYsYLi4uJR6wYGBg5Je8rLy1m1ahUOh2PUusHBwTHbz5s3j/vuu48vfOELH1YTc3784x+zaNEirrzySv7617+O+nAPBAJjPuy7uro47rjjePTRR3Mf4DNmzOB73/sexxxzDF/4whe4/fbbcyO0b7jhBu666y6effZZPvvZz36gtt53330AnHbaaR/oOEIIIYTYf5K79p/kLiGEEELsK8le+0+ylxBCCCH2heSu/Se5S4iPJ5nuTYj3YTabc6Nfd3ao5tG0WCy7Hc3r8/nGLJs5c+YhCQ26rnP33Xfj9Xq54447xrTX6/XicrnG7PfrX/961Ajjyy+/PHe8X/ziF6NKSI6sW7ly5Qdq6913380LL7zAySefzFlnnfWBjiWEEEKID0Zy176T3CWEEEKI/SXZa99J9hJCCCHE/pDcte8kdwnx8SWVlIR4D5dddhnf/e53mTJlCp/73Oc46aSTOO644/B4PKO2+93vfoff7x+17Oqrr2bcuHEHvD1//OMfmTJlCpdddhknnXQSxxxzDHa7fbfbz5kzZ9Rjv9/P7373uzHb/fd///cBbef69esJhUKccsopo8osvpf8/Hyqq6tHLSsrKwOgvr5+zGjukXWdnZ25Zffffz+tra2jtjv//PM54ogjdvuc//rXv7jpppuoqanh4Ycf3qt2CiGEEOLgkNy1fyR3CSGEEGJ/SPbaP5K9hBBCCLGvJHftH8ldQnx8ySAlId7DzTffTEFBAXfddRe33357bvTt2WefzW9/+1vGjx8PZINDW1vbqH1PPPHEAx4c7rjjDsaPH89f//pXfvGLX/CLX/wCm83GJZdcwu23305hYeGo7UtKSkY99vv9/PSnPx1z3AMdHAKBAAAVFRV7vc+uYQx2zNv6XutSqVRu2f3338/rr78+artx48btNjg8//zzXHTRRZSUlPDqq6/mgogQQgghDg3JXftHcpcQQggh9odkr/0j2UsIIYQQ+0py1/6R3CXEx5cMUvqYiEajPP744zQ3N7Nu3TpCoRC33HILZ5555gF/rr6+Pv7v//6PJUuWkMlkmDFjBl/96lcpLy8ftd3xxx+/2/2//OUvc8UVVxzwdh0MiqLwxS9+kS9+8YsMDAzwn//8h8cee4wnnniCTZs2sWrVKjRNGzOi9mAxmUzcfPPN3HzzzXR2dvL666/z17/+lQcffJDu7m5eeumlMe3f2bhx4zAM46C3My8vD4COjo6D/lw7e+211/Zqu3//+99ceOGFFBYWsmDBAiZMmHBwGwYkk0nuvfdeXn75ZUKhELW1tVx77bVjRqDvzt6ec8888wzLli2jubmZ3t5ezjjjDH7wgx/s9phLlizh/vvvZ+PGjZjNZmbNmsUNN9yw2wAVjUZ54IEHWLBgAQMDA3i9XiZPnswPf/hDbDZbbrtQKMSf/vQn3njjDRKJBE1NTdxwww00Njbu8bV1dHRw1VVXkUwmufvuu5k4ceJ+t1MIIT5Mkr0OPMld++eTnrs+jIwF2bviHn/8cbq7uykqKuKiiy7iwgsvHLXNG2+8wbPPPsvWrVsJBoPk5eUxadIkvvCFL4x53YlEgieffJKXXnqJ7u5u3G43U6ZM4Qtf+EKuc3LE3uahSy65hO7u7jFtP++887j55ptzj1esWMHjjz/Opk2bCAQCuFwu6urquOqqq5g6deqY/VOpFI8//niurU6nk8bGRm6++WaKi4vf930WQogPSnLXwSHZa/98UrLX4ZSx9vWYI1atWsVNN90EwD//+c/czw7g9ddf59VXX2X9+vUMDg5SXFzMMcccw1VXXYXb7d7jMd+vH2tv+8buvPNOVqxYQXd3N8lkkpKSEk4++WQuu+yyURUebr31Vl588cU9tufvf/87RUVFe1wvhBD7Q7LXgSe5a/98UnLXzjZs2MBf/vIX1qxZg2EYTJ48meuvv576+vr33XdP/UKQHej12GOP7Xbde2Wm++67j/vvv3/MPhaLhfnz549atq/n6SuvvMJTTz3Fli1bMJlM1NTUcO211zJr1qzdHmd/LVy4kL/+9a+0tbWRl5fHWWedxec///lRUwK+8MIL3Hbbbbvd/+mnnz5k0zJ+nMkgpY+JQCDA/fffT0lJCXV1dSxfvvygPE80GuXrX/86kUiEK664ApPJxBNPPMFXv/pV7rvvPrxe76jtZ8+ezRlnnDFq2d78IT0cFRQUcP7553P++efT39/Pq6++yubNm99zAMbBVF5ezuWXX86ll15KY2Mj8+fPJxaL7bEc44epsbERj8fDkiVLGBoa2usyjB+GkdDg8/lYsGABdXV1H8rz3nbbbbz22mtcfPHFVFZW8sILL/Dd736XO+64g2nTpu1xv3055x599FGi0ShNTU0MDAzs8ZhvvvkmP/jBD2hoaOC6664jEonw1FNPcdNNN3HvvfeOCiDhcJivfe1r9PX1ce6551JRUYHf72fVqlWkUqncIKVMJsP3vvc9tmzZwmWXXYbX6+WZZ57h61//On/5y1+oqqrabVvuvPPO3c57vK/tFEKID5tkr4NLctfe+6Tnrg8jYz377LPcfvvtnHDCCVx66aWsWrWKO+64g3g8zn/913/lttu6dStut5uLLroIr9fL4OAgzz//PNdddx133XXXqNf/85//nEWLFnHuuefS0NBAf38/Tz/9NNdffz33338/paWlwL7nofr6ei699NJRyyorK0c93r59O6qq8pnPfAafz0coFGLevHl89atf5Ze//CVHHXVUbltd1/ne977HmjVrOOecc6itrSUUCrFu3Toikcje/6CEEOIDkNx18En22nuflOx1OGWsfT03IdtPdccdd2C324nFYmPW//rXv6agoIDTTjuNkpIStmzZwtNPP83bb7/Nvffei9Vq3e3re69+rH3pG1u/fj3Tpk3jrLPOwmKxsGnTJh599FGWLl3KnXfeiaqqQHaw+ezZs0c9j2EY3H777ZSWlsoAJSHEQSHZ6+CS3LX3Pim5a8SGDRu48cYbKS4u5uqrr8YwDJ5++mm+9rWv8ec//3nMNHa7+upXvzom93R3d3PPPffscaD5+2WmEd/+9rdH/U6MZJVd7e15et999/HAAw9w4okncsYZZ6DrOi0tLfT39++xDfvj7bff5oc//CFHHHEEX//619m6dSsPPvggQ0NDfPvb3x6z/TXXXDPmpkCXy3VA2ySGGeJjIZFIGP39/YZhGMa6deuMuXPnGs8///wBf55HHnnEmDt3rtHc3Jxb1traapx44onGn//851Hbzp071/jNb35zwNvwYVqwYIGRyWRGLUsmk8YRRxxhAEZra+s+H/Ott94yAOOqq67ap/3i8bixaNGiMcuDwaBRWlpqWK1WIx6P59oNGD/5yU/2uX07u+222wzA+Otf/7rP+37nO98xAOPKK680dF0ftc7v9xuhUCj3uKamxqipqdntcQDjhBNOGLO8paVln9/H559/3rBarUZpaamxfv36vd7vg1q7dq0xd+5c49FHH80ti8fjxmWXXWZ85Stfec999+Wc6+rqyv2+nnbaacb//M//7PaYV155pXHZZZcZyWQyt2zTpk3GCSecYNx5552jtr399tuNM8880+jo6HjPdr7yyivG3LlzjQULFuSWDQ0NGWeeeabx05/+dLf7vPPOO8bJJ59s/OUvfzHmzp1rrFu3br/bKYQQHzbJXgee5C7JXfvqw8hY8XjcOOecc4zvfve7o/b/2c9+Zpx22mlGMBh8z+cZGBgwTjzxRONXv/pVbllvb68xd+5c4w9/+MOobZcuXWrMnTvX+Nvf/pZbti956OKLLx7Tzr0Vi8WMz3zmM8a3v/3tUcsfeeQR46STTjLWrl27X8cVQogDQXLXwSHZS7LXnhxuGWtfzs0RzzzzjHHOOecYd9xxhzF37lxjaGho1Pply5aN2eeFF14w5s6dazz33HO7Peb79WPtT9/Yzh577DFj7ty5xpo1a95zu5UrVxpz5841Hnzwwfc9phBC7A/JXgee5C7JXXvjO9/5jnHWWWcZfr8/t6yvr8847bTTjB/+8If7dcz777/fmDt3rrFq1ardrn+/zHTvvffudvnu7O15umbNGuP4448f1f91sFx55ZXGF77wBSOVSuWW3X333cbxxx8/6rx7/vnnd5vvxMEjlZQ+JiwWy16XGnv77bd5+OGH2bhxI4qiMH36dK6//vox0wrszmuvvcbEiRNpamrKLaupqWHmzJksWLCAL3/5y2P2SSQSAHu8A+Vwdv755+PxeDj66KOpqakhlUoxb948mpubueiii6ipqdmr4yxcuJB77rkHyJavHFl29dVXA1BYWMivf/3r9zxGLBbj2GOPpaGhgVmzZlFdXU04HOZf//oX3d3d3HzzzQfkPb7nnntYuHAhAKtXr84tGylveNxxx3Httde+73F+9rOf8fbbb/PQQw/x9ttvc+aZZ2K1Wtm6dSsvvvgiCxcu3O38rQfL+vXrueCCC0gkEpx44om7LWs4bty43M/kQHr99dfRNI3zzjsvt8xqtXL22Wdz991309PTM2ZO3xH7cs6N3HH/XoLBIK2trVx++eWYzebc8rq6Ompqanj11VdzZR1DoRDPP/88F154IeXl5aRSKQzDwGKx7PY1+ny+UeUc8/LyOOmkk5g3bx7JZHLUfrqu8/vf/56LLrpot/MJ70s7hRDiUJDsdeBJ7pLcta8+jIy1bNkyAoEA559//qj9L7jgAubNm8dbb73Faaedtsc25ufnY7PZCIfDuWXRaDS3bmcjf1NGfrf2Nw+lUil0Xd+nux5tNhter3dUOzOZDE899RRz585l0qRJ6LqOruujpvsVQogPg+Sug0Oyl2SvPTncMta+npvBYJB77rmHL37xiwwNDe22nTNmzBiz7Pjjj+fWW2/d7VQ779ePBfveN7arkX69nfPY7syfPx9FUTjllFPeczshhNhfkr0OPMldkrv2xqpVqzjqqKNGVRErLCzkiCOO4K233iIajY6aFnZvzJ8/n7KyMqZOnTpm3d5kpp1FIhEcDseY6f929X7n6ZNPPonP5+Oiiy7CMAxisdgeX1cymeThhx9m3rx59Pb2kpeXxymnnMI111zznrkKoLW1ldbWVr75zW+Omtrtggsu4KGHHuK1117jqquuGrNfNBrFarXusXqmODBkkNInzEsvvcStt97KkUceyXXXXUcikeCZZ57hxhtv5N577x1TwmxnmUyGrVu3ctZZZ41Z19TUxJIlS8b8gXzxxRd55plnMAyDmpoaPv/5z3PqqacelNd2MNx22228+OKLLF68mOeeew6n00ltbS133XUX11xzzV4fZ/PmzTzwwAOjlm3ZsoUtW7YA2eD1fsHB6XTyy1/+kldeeYX//Oc/9Pb2kp+fT2NjI7fddhuXXXbZvr/A3Vi4cOGYti5atIhFixblHu9NcLDZbMybN4//+7//4+GHH+Yvf/kLmqZRXV3NV77yFcaNG3dA2ru3uru7cx+Mjz/++G63OeGEEw7KIKVNmzZRWVmJ0+kctXwkfG/evHm3nTv7c869n2QyCew+HFitVlpaWhgYGKCgoIDVq1eTTCaprKzkxz/+MQsXLiSTyTB58mS++c1vjirRuHHjRurr68eUeGxqauK5556jvb2d2tra3PInn3ySUCjE5z//ed54440P1E4hhDicSfbae5K7siR37b0PI2Nt2rQJgIkTJ47arrGxEVVV2bhx45hBSqFQiHQ6zcDAAE8++SSRSIRZs2bl1ldUVFBUVMTf/vY3qqurqa+vp7+/nz/96U+UlZVx8sknA/uXh5YtW8Zpp51GOp2mtLSUiy++mIsvvni3718kEiGVShEIBHjppZdoaWnhyiuvzK1vbW2lv7+f2tpafvWrX/Hiiy+SSqWYMGECX/va15g5c+ZujyuEEIeK5K59I9krS7LXWIdTxtqfc/Oee+7B5/Nx3nnnjfl5v5eBgQGAMdPpwvv3Y8G+943puk44HEbXdbZu3co999yDw+EYdbF+V7qus2DBAqZMmfKef9OEEOLDINlr70nuypLc9d5SqdRuB97YbDZSqRQtLS1Mnjx5r4+3ceNG2traRvX17GxfMtOll16amwbwuOOO48Ybb8Tn843Zbm/O06VLlzJlyhSeeuopHnroIQKBAD6fjyuvvJILL7wwt10mk+GWW25h9erVnHvuudTU1LB161aeeOIJ2tvbufXWW9/39QNjplIsLCykqKgol0d39vWvf51YLIbZbGbOnDnceOONo6bsFQeODFL6BIlGo9xxxx2cc845fOc738ktP+OMM7jiiit4+OGHRy3fVTAYJJlM7nZQwMiy/v7+3JyYU6ZM4aSTTqKsrIyBgQH+8Y9/8POf/5xIJDLmLpnD1fXXX8/111//gY9z9dVXf+CLMGazme9+97t897vffd9tTzzxRAzD2K/nuf/++7n//vv3a99dWa1Wvv3tb+92Xs+d7e4OpRF7eh3jxo3bp9f4Qd6TD2pPg2l2Pm92Z1/Pub3h8/lwuVy5kesjAoEAbW1tuWMWFBSwfft2AO6++27Ky8v5wQ9+QCQS4f777+cb3/gGDzzwAIWFhQAMDg4yffr0PbZzYGAg1xEzMDDAAw88wA033DCmw2t/2imEEIcryV77RnLXB/NJzF0fRsYaGBhA07QxVY/MZjMejyd3MWtn119/Pdu2bQPAbrfz+c9/nrPPPju33mQy8fOf/5yf//zn3HLLLbnljY2N/PGPf8TtdgP7nocmTJjAtGnTqKqqIhgM8sILL3DnnXfS39+/23PrJz/5CYsXL869nvPOO4/Pf/7zufUjWfDJJ5/E7XZz8803A/DQQw/xne98h7vvvnvUhTYhhDiUJHftO8leH8zHOXsdThlrX8/NLVu28Nxzz/HLX/5yn+9+f/TRR9E0jRNOOGHU8r3px4J96xsD2LBhw6hzsLq6mttuuw2Px7PH51i8eDGBQOAjc1FeCPHxJdlr30ju+mA+zrlrZ1VVVTQ3N5NOp3M5JpVK0dzcDOyonrW35s2bB7Db3LC3mcntdvPZz36WyZMnYzabWbVqFU8//TTr1q3jL3/5y6hstDfnaSgUIhAIsGbNGpYtW8bVV19NSUkJL7zwAnfccQcmk4nPfOYzQLYK1NKlS/n973/PtGnTcs8zfvx4br/9dlavXr3bClEjRvLknv7O7NynZ7VaOfPMM5kxYwZOp5MNGzbwxBNPcMMNN3DPPffssYqo2H8ySOkT5N133yUcDvPpT38av9+fW66qKk1NTSxbtuw99x8ZGbrzVAMjRkZ2jmwD8Mc//nHUNmeddRbXXnstd999d64cnxCfBIlEYq/Pm133g70/5/aGqqqcd955PProo/z5z3/mrLPOIhqNctddd5FKpUYdMxaL5fb77W9/m7trob6+nuuvv56nn36aL33pS7l9djfCe3ft/NOf/kR5eTnnnHPOAWmnEEIcriR7CXFwfRgZK5FIjCoJveu2u3uO73//+0SjUTo7O3n++edJJBJkMplRd9W73W7q6uo48cQTmTRpEh0dHTzyyCP85Cc/4fbbb8dqte5zHvp//+//jWrHWWedxXe+8x2eeOIJLrzwQoqLi0etv+6667j00kvp7e3lxRdfRNd10ul0bv1IFoxGo6M6ZGbOnMnll1/Oo48+yo9//OPdvjdCCPFhk9wlxIFzOGWsfT0377jjDo466iiOPPLI3R57T+bNm8e///1vLr/88jF3y+9NP9ZIO/a2bwyyF0V/85vfEIvFWLNmDUuXLh3VF7c78+fPx2QycdJJJ+3NyxJCiINGspcQB94FF1zA7bffzi9/+Us+97nPkclkePDBB3ODaUYqbu+NTCbDq6++Sn19/W6rTe1tZtq1OveJJ55IU1MTP//5z3n66ae54oorcuv25jyNRqNA9ga8n/zkJ3z605/OHffqq6/mwQcfzA1SWrBgATU1NVRXV4/6OzNS2Xv58uXvOUhp5P3aUz4baQvAySefnKtsDjB37lyOPPJIvvrVr/LQQw/lbtwTB44MUvoEGbkT9hvf+MZu14+MdkwkEmPmvi4oKMh9yI90iO/svaYiGGE2m/nsZz/L7bffzoYNG0aNehTi48xqte7XefNBz7k9ueaaawgEAjz22GM88sgjAMyZM4ezzz6bZ599FrvdDuz44D722GNHlVWdPHkyZWVlrFmzZlRbdxeQdm3n2rVrefnll/ntb387pvz1/rZTCCEOV5K9hDi4PoyMZbVa0XV9t8dJJpO7fY4pU6bkvv/0pz+dK6t94403AhAOh/nqV7/KZZddNqqM+sSJE/na177GCy+8kLvD7IPkIUVRuOSSS1i8eDErVqwYMy3dzlP3nnbaaVx77bXcdttt/PznPx/1HkyZMmXUHWMlJSVMnTp1VBYUQohDTXKXEAfO4ZSx9uWYr7zyCmvWrNmnKd4AVq5cyS9/+UuOPPLI3M14I/alH2tv+8ZGOJ1OZs+eDWQvhM2bN48f/OAH3HPPPdTV1Y05TjQaZeHChRx55JF4vd59eo1CCHGgSfYS4sD7zGc+Q29vL4899hgvvvgikO0ruvzyy3nooYf26ZrYihUr6OvrGzPICPY/M4049dRT+cMf/sDSpUtHDVLa1e7O05Hz2mQyceKJJ+a2VVWVk08+mfvuu4+enh5KSkrYvn07bW1tnHfeebs9/tDQEJCtzLbz3xKr1YrL5cpd49xTPnu/66vTpk1j0qRJLF269D23E/tHBil9gmQyGQB+9KMf7XaeyJFybq+++iq33XbbqHVvvPEGHo8Hi8Wy2ykNRpaNTP20JyN37waDwX1/AUJ8RBUUFOy2DOP7nTcH4pzbHbPZzPe+9z2+9KUv0d7ejs/no6qqip/97GeoqkpFRcWoY+9aentk2c7/ceHz+d6znSPlFO+66y6mTZtGWVkZXV1dALkR0AMDA7nwsS/tFEKIw5VkLyEOrg8jYxUUFJBOpxkaGhqViVKpFMFg8H2nnnW73cycOZN58+blBim9/vrrDA4Ocuyxx47a9ogjjsDpdLJ69ercIKUPmof29m+A2Wzm2GOP5ZFHHiGRSGC1WnOvbXd/v/Lz89m0adN7HlMIIT5MkruEOHAOp4y1L8e86667OPHEEzGZTLk+p5G+q97eXnRdH9P2zZs3c8sttzBhwgR+9rOfjanutC/9WHvbN7Ynxx9/PP/zP//DK6+8sttBSgsXLiQej8tUb0KIw4JkLyEOji996UtcdtlltLS04HQ6qa2t5e677wYYU+3xvcybNw9VVTnllFPGrNufzLSr4uLivTr3dj1PR859l8s1Zpq5kUwYCoUoKSnBMAwmTJjATTfd9J7H/tGPfsSKFStyy8844wx+8IMfjJpyd9fp2gYGBmhqatqr9m/btu19txP7TgYpfYKMdGDn5eXl7tLYnTlz5vCb3/xmzHJVVZkwYQLr168fs665uZny8vJR1VZ2p7OzM9cGIT4p6urqWL58OZFIZNT8rCPzyO6u4wEOzDn3Xnw+X+4/INLpNMuXL6epqSl3zMbGRiA79/Oudp4PGrJ34q9atWrMVCbr1q3DZrPlwlNvby/d3d1ceumlY455yy234HK5eP755/epnUIIcbiS7CXEwfVhZKyRakPr16/nmGOOyW23fv16MpnMqGpEe5JIJIhEIrnHI3d6jXTqjjAMg0wmM2rKtRH7m4f25W9AIpHAMAyi0ShWq5Xa2lpMJtNuL1L29/fL3xUhxGFFcpcQB87hlLH25Zi9vb3Mnz+f+fPnj9n22muvpa6ujvvuuy+3rKOjg5tvvpn8/Hz+93//d7fn+L70Y+1t39iepFIpMpnMqNy4s3nz5mG328cMdBdCiENBspcQB4/b7R5VHezdd9+lqKho1DW595JMJnn99dc54ogjdjvYaF8z064Mw6C7u3uv+sR2PU9VVaW+vp7169eTSqVGTfk4ci1yZNvy8nK2bNnCrFmzUBRlj89x4403EgqFco9HXvNI+zZs2MCkSZNGPU9fX98eKzTt2n75G/P/s3ff4VFUbR/Hv7ub3hsJPfQgvfdeBelgw4Y0u2DH8ggqoj4WUPG1oIKCHZDee5deBEIooUN679md9488WVkTIAFCLL/PdaHZM+fM3HMmm5zs3HNOyVCS0r9IixYt8PT0ZNasWTRp0qTAkyGJiYn4+fkRFBR02QzJjh078vnnnxMeHk7t2rUBOH36NHv27HH4Yy1/X5dKT09n9uzZ+Pr62pMfRP4NOnXqxI8//siCBQu4++67gbxBwpIlS6hTp449gzcqKorMzExCQ0PtbYv6nrteP/74I3FxcYwZM8ZeVrlyZWrUqMGmTZsc3tPbt28nOjqawYMHO8S5bt06NmzYYJ+iMTExkbVr19KmTRv7tIrPPvusw1rSALt372bOnDk8+uijDude1DhFRP6qNPYSKVk3Y4zVpEkTfHx8mD9/vsMNtPnz5+Pm5uZQ9ueZAAAuXLjArl27HN6DFStWBPKm1x4+fLi9fNOmTWRkZFz1Q57CxkPJycl4eno6PIWWm5vLd999h7OzM40bN75inCkpKaxfv57g4GD7Ng8PD1q1asXWrVs5deqUvf9OnjzJwYMH6du37xXjFBG5mTTuErlx/mpjrKLu88033yxwLqtXr2bNmjW8/PLLlClTxl4eFxfHM888g9ls5r333rvszafifI5V1M/GUlJScHd3L/BzatGiRQCF/gxJTExk586ddOvWDTc3t0JjFRG5mTT2Erk5Vq9eTXh4OI8++qhDEnRh47B827ZtIzU19bKzLxZnzFTY+2/evHkkJibSsmXLK9a73Pu0c+fOHDx4kGXLltk/W8rKymLlypVUqVLF/jOjc+fObNu2jYULFxZIKMrKysJms+Hu7n7ZnwFVq1alcuXK9vb5n5nNmzcPk8lEx44drxj/1q1bOXLkiMO9ULlxlKT0DzJnzhxSU1PtUyFu3ryZ6OhoAAYPHoyXlxdPP/00b775JiNGjKBr1674+fkRFRXFtm3bqFevHk899dQVjzFw4EAWLVrECy+8wF133YXFYuHnn3/G39+fu+66y15v7ty5bNq0iTZt2hASEkJcXBxLliwhKiqKl19+2SEzUuSfrk6dOnTu3JkvvviCxMREKlSowLJly7h48SIvvPCCvd6bb77J3r172bBhg72sqO85yHvPHzt2DMi7KXX8+HH7mrLt2rWjevXqAKxYsYL169fTsGFD3N3d2blzJ2vXrqVPnz4Oa8ACPP744zzzzDM8/vjj9OvXj9TUVH7++WcqVapE//797fU6derE7Nmzeeuttzh58iS+vr7MmzcPm83mcPOtRYsWBfonfxrJRo0a2f8YKW6cIiKlQWMvkdJ1M8ZYrq6ujBgxgsmTJ/Pqq6/SokUL9u3bx4oVKxg1ahQ+Pj72usOGDaNp06bUqFEDb29vzp49y+LFi8nNzeWhhx6y12vbti1Vq1blm2++ISoqijp16nDu3Dnmzp1LYGAgt912m71uUcdDmzdv5ttvv6Vjx46UK1eOlJQUVq5cSWRkJKNHj3ZYXuS5556jTJky1KlTB39/f6KioliyZAlxcXFMmDDBoY9Hjx7Nrl27GDt2rP1DmTlz5uDt7c1999137RdPRKSYNO4SuXn+amOsou6zffv2Bc4lf3nali1bOtx4eu655zh//jx33303Bw4c4MCBA/Zt/v7+NG/eHCje51hF/Wxs7969fPjhh3Tq1ImKFSuSk5PD/v372bBhA7Vr16ZHjx4Fjrl69WqsVquWehORm0ZjL5Gbb+/evXzzzTc0b94cHx8fDh06xNKlS2nZsiVDhgxxqFvYOCzfypUrcXFxcUjCuVRxxky33347Xbp0oVq1ari4uHDgwAFWr15NzZo1HRKHivM+7d+/P4sXL2by5MmcOXOGkJAQli9fTlRUlMPykD179mTt2rW8//777Nmzh3r16mGz2Th9+jRr167lvffecxiLFebRRx/lxRdf5JlnnqFr166cOHGCX3/9lT59+lClShV7vUceeYRatWoRFhaGp6cnERERLFmyhODgYH3+VUJMhmEYpR2E3Bh33HEHFy9eLHTbTz/9RLly5QDYs2cP3333HYcOHSI7O5syZcrQoEEDBg0aVKSM4+joaKZOncqOHTuw2Ww0btyYxx9/3P5EMMCOHTv44YcfOHHiBMnJybi5uXHLLbcwdOhQmjZtemNOWORvJCsri6+++ooVK1aQmppKtWrVGDlypMOHHU8++WShg4qivOcAJk2axLJlywo9/osvvkivXr2AvOlSP/30U06cOEFWVhaVK1emf//+9OvXr9ApE3fu3MlXX33F0aNH7U+zPfzwww43uyDvSbD/+7//Y9OmTWRlZVG7dm0effTRqw4Sli5dyltvvcUXX3zhULe4cYqI3Gwae4mUvpsxxgJYuHAhP/30ExcuXCA4OJiBAwdy++23O4xJvv76a7Zt28a5c+dIT0/H39+fhg0bcu+999qTxfOlpKTwzTffsHXrVqKionB3d6dZs2aMGjWK8uXL2+sVdTx05MgRpk+fztGjR0lMTMTJyYmaNWsyePBgOnfu7HDsuXPnsmbNGk6dOkVqaire3t7UqVOHu+++m4YNGxY49yNHjvD5559z8OBBTCYTTZo04ZFHHrnqkiUiIjeSxl0iN9dfaYxV3H1e6uuvv2bGjBksWLDA4YZbhw4dLtumUaNGfPTRR5fdfrnPsaBon42dO3eOGTNmcODAAeLi4jAMgwoVKtCxY0fuvvtu3N3dCxzzkUce4fz588ydO9dh5kwRkZKisZfIzXfu3Dk++OADIiIiyMjIoGzZstx6663ceeedBZLxLjcOS0tLo3///rRq1YqJEycW+diXGzP997//5ffffyc6Oprs7GxCQkLo2LEj999/v8OSjMV9nyYkJPDpp5+yZcsWMjMzqVGjBsOHDy+QIJ6bm8vPP//M8uXLOXfuHK6urpQvX562bdty++23OyxNfDkbN25kxowZnDp1Cl9fX3r16sWwYcMcZoCbNm0a27Zt48KFC2RmZhIYGEjr1q0ZNmwYAQEBRe5HKTolKYmIiIiIiIiIiIiIiIiIiIiISIkyX72KiIiIiIiIiIiIiIiIiIiIiIjItVOSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiIiIiIiIiISIlSkpKIiIiIiIiIiIiIiIiIiIiIiJQoJSmJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKCUpiYiIiIiIiIiIiIiIiIiIiIhIiVKSkoiIiIiIiIiIiIiIiIiIiIiIlCglKYmIiIiIiIiIiIiI/EWYTCY6depU2mGIiIjIP9jJkycxmUwMGzbMoXzYsGGYTCZOnjx51bo3SpUqVahSpYpD2YwZMzCZTMyYMeOqdf/KLnceIv9mSlISERERERERERGRfy2r1cq0adPo2LEjAQEBODs7ExwcTIMGDRg5ciQLFiwo7RCvaN26dZhMJiZMmFDaodxUnTp1wmQysW7dOofyv8ONq79DjDdT/rW83L/MzMxC2x06dIg77riD4OBg3NzcCAsLY/z48WRkZNzkMxAREflD/u8vEREpnFNpByAiIiIiIiIiIiJSGqxWK3369GHZsmX4+flx2223UbFiRbKzszl48CDff/894eHh9OvXr7RDlX+Rw4cP4+HhUdph3HTjx48vtNzJqeBtjN9++40uXbqQk5PDkCFDqFSpEmvWrOH1119n9erVrF69GldX15IOWURE5B/nrbfeYty4cVSoUKFU4xg4cCCtWrWiXLlypRqHiNx4SlISERERERERERGRf6UffviBZcuW0bBhQ9avX4+vr6/D9vT0dH777bdSik7+rWrXrl3aIZSKos4GZrVaefDBB0lPT2f+/Pn2JEKbzcYdd9zBnDlzmDx5MuPGjSvBaEVERP6ZypUr95dIDPL19S0wNheRfwYt9yYiIiIiIiIiIiL/Slu2bAFg2LBhhd4E8fDwoHPnzg5lM2bMwGQyMWPGDBYvXkybNm3w9PTE39+fIUOGcPTo0UKPlZ6ezltvvUWjRo3w9PTEy8uL1q1b88MPP1w2vhUrVtC3b1+Cg4NxdXWlUqVK9O/fn1WrVtnjzo/vtddec1giK38ZtEvjXbZsGZ06dcLX19e+DMnJkycxmUwMGzas0Bjyl+K61KVLzO3cuZNbb70VX19f/P39GTx4MGfOnAHgxIkT3HXXXZQpUwZ3d3c6d+7Mvn37Lnu+1yM/plOnTnHq1CmHvvjzuYWHhzNs2DAqVaqEi4sLISEhDB06lCNHjhTY77BhwzCZTJw4cYKPP/6YBg0a4O7uTqdOnQDIzs5m6tSp9O7dm9DQUFxdXQkICKBbt24sXbr0mmI0mUz2/V8qKSmJF198kbCwMNzc3PD396dnz57274fCjjVhwgT27t3Lbbfdhp+fHx4eHnTs2NH+vf93tH79eg4fPkyHDh0cZjkzm83897//BeCzzz7DMIzSClFERKRIsrKyePvtt6lfvz4eHh74+PjQvn17fv7550LrG4bBhx9+SJ06dXBzc6NChQo8/vjjJCUl3bDlZPPHPidPnrxqXZvNxpgxYzCZTAwaNMhhydXly5fTu3dvgoKCcHV1pXr16jz33HMkJiYWKY5Lx7CFSUtL47nnnqNy5cq4urpSo0YN3nnnncv+/v/555/p0KEDvr6+uLu7U79+fd566y2ysrIKrb9r1y4GDx5sH4eHhoby6KOPcuHChULrHzt2jNtvvx1/f388PT1p06YNixcvLtK5ivzbaCYlERERERERERER+VcKDAwEICIiotht586dy9KlSxk4cCCdOnVi7969zJkzh7Vr17JlyxbCwsLsdRMTE+nSpQt79uyhSZMmDB8+HJvNxvLlyxk6dCgHDx5k4sSJDvsfP348r7/+Ol5eXgwYMIBKlSpx/vx5tmzZwqxZs+jWrRsDBgwA4JtvvqFjx44OiS1/vkk1e/Zsli1bRq9evXj44Yc5depUsc/5z3bs2ME777xDx44dGTVqFAcOHGDu3Ln8/vvvzJ8/n3bt2lG7dm3uv/9+Tp06xdy5c+nevTsnTpzAy8vruo9/qSpVqjB+/HimTJkCwNixY+3bGjVqZP962bJlDBo0iJycHPr27UuNGjU4e/Ysc+fOZfHixaxdu5YmTZoU2P+YMWPYuHEjt912G71798ZisQAQHx/PmDFjaNOmDd27d6dMmTJcuHCBhQsX0rt3b6ZNm8bIkSOLFWNhEhMTadu2LYcOHaJ58+aMHTuW2NhYfv75Z3r06MGnn37KQw89VKDdzp07+e9//0vr1q0ZOXIkp0+fZs6cOXTt2pW9e/c6fJ+Wtp9++onIyEhcXFy45ZZb6NKlS6FLtq1ZswaAW2+9tcC2atWqUatWLSIiIjhx4gTVq1cv8bhFRESuRXZ2Nj179mT9+vXUrl2bxx57jPT0dGbPns2dd97J3r17mTRpkkObxx57jE8//ZTy5cszevRoXFxcWLBgAdu3bycnJwdnZ+ebFn9mZib33HMPc+fO5bHHHuOjjz7CbM6bH+W1115jwoQJBAQE0KdPH4KDg9m/fz/vvfceS5YsYevWrfj4+FzzsXNycujZsyfnz5+nV69eODk5MW/ePMaNG0dmZmaBJWRfeukl3nrrLYKCghg6dCheXl4sXbqUl156ieXLl7NixQpcXFzs9RctWsTgwYMxDIMhQ4YQGhrKrl27+PTTT5k/fz6bNm2iatWq9vpHjx6ldevWxMXF0atXLxo1asSxY8cYMGAAvXr1uubzFPnHMkRERERERERERET+hXbv3m04OzsbJpPJuPfee405c+YYJ0+evGKb6dOnG4ABGAsXLnTYNmXKFAMwunTp4lD+wAMPGIDxzjvvOJRnZGQYPXv2NEwmk7Fnzx57+fLlyw3AqFq1qnH27NkCMZw5c8b+9dq1aw3AGD9+/BXjNZlMxtKlSwtsj4yMNADjgQceKLR9x44djT9/jJx/TMCYNWuWw7bhw4cbgOHv729MnDjRYdvrr79uAMaUKVMKPVZx5Me1du1ah/LQ0FAjNDS00Dbx8fGGn5+fERgYaBw8eNBh24EDBwxPT0+jcePGDuX51658+fLGiRMnCuwzMzPT4XrkS0xMNOrWrWv4+/sb6enpRY7RMAwDMDp27OhQNnr0aAMwRo8ebdhsNnt5RESE4ePjY7i4uBiRkZH28kuv0fTp0x329dlnnxmA8cgjj1w2hj+bPHmyMX78+CL/+/XXX4u87/xr+ed/wcHBxi+//FKg/pAhQwzAmD17dqH7u+222wzAWLJkSZFjEJGbKy0tzfjqq6+MZ555xujdu7fRvn37637PhoeHG88//7zRv39/o0ePHsYDDzxg/PLLL0Zubu4NilqkaPJ/j13NpEmTDMDo1auXkZOTYy+PiooyQkNDDcDYvHmzvXzDhg0GYNSqVctISEiwl2dlZRnt27c3gCuOL/7scmPA/LHPpeOKP9eNi4sz2rZta5hMJuPtt992aL9mzRoDMFq3bu0Qp2H8MS4dO3asQ3lhY6P8un8ex+T3Ta9evRzGWFFRUYavr6/h6+trZGdn28u3bNliAEalSpWMCxcu2MtzcnKMPn36GIDx5ptv2stTUlKMgIAAw2w2Gxs2bHA49ttvv20ARvfu3R3Ku3fvXugYd968eZcdj4n8m2m5NxEREREREREREflXaty4MbNmzSIkJIRZs2YxePBgqlSpQmBgIAMHDmThwoWXbdulSxf69OnjUPb4449TvXp11qxZY5+pKC4ujlmzZtGsWTOef/55h/pubm72ZSm+//57e/nHH38MwPvvv0+FChUKHLtixYrFPtf+/fsXOvPM9WjXrh333HOPQ9kDDzwAgK+vL+PGjXPYdv/99wOwd+/eGxpHUX377bckJiby2muvUadOHYdt9erVY9SoUezZs4dDhw4VaPv88887PDGfz9XVtdDr4evry/Dhw0lISGDHjh3XFXd2djazZs3Cy8uLt956y2H5vZo1a/Lkk0+SnZ3Nt99+W6Bt27ZtCyx3N3z4cJycnNi+fXuRY5gyZQqvvfZakf/NmzevyPvu378/Cxcu5OzZs2RkZBAeHs6LL75IYmIid955J8uWLXOon5SUBFDoEo2Xlhd1ORkRufmSkpKYMWMGp06dokaNGte9vyNHjvDoo49y8eJFhg4dyqOPPkr58uX56KOPmDp16g2IWOTG+/rrrzGZTHzwwQc4Of2x+FFwcDD/+c9/APjyyy/t5d988w0AL7/8Mn5+fvZyFxcX3nrrrZsTNHDq1Cnatm3L9u3bmTlzJi+88ILD9o8++giAadOmOcQJeUvJNWrUiO++++664/joo49wd3e3vw4ODqZ///4kJSU5LOH79ddfA/DKK69QtmxZe7mTkxPvv/8+ZrPZoZ/nz59PfHw8d955J+3bt3c45jPPPEOVKlVYuXIlp0+fBuDs2bOsXLmSqlWr8vjjjzvU79+/Px07drzucxX5p9FybyIiIiIiIiIiIvKvdccddzBw4EDWrl3Lpk2b2LNnD5s2bWLevHnMmzeP+++/nxkzZjgkhgCF3nCwWCy0a9eO48ePs2fPHkJDQ9mxYwdWqxWTycSECRMKtMnJyQHg8OHD9rJt27ZhMpluaFJRixYtbti+8jVr1qxAWfny5YG85cvyl0TLl59wdfbs2RseS1Fs3boVgH379hV6LfKX/Tt8+HCBJKYr9d/Bgwd599132bBhAxcuXCAzM9Nh+7lz564r7iNHjpCenk7btm0JCAgosL1Lly5MnDiRPXv2FNhW2DVydnYmJCSEhISEIsdw8uTJYsVcHE899ZTD67CwMCZNmkT58uV54oknePHFF294gp2IlK7AwEB+/fVXAgMDCQ8PZ/To0de1vwULFgB5Sb75S0j179+fJ554gmXLljFmzJjrjlnkRkpJSeHYsWNUqFCB2rVrF9jepUsXAIff7flft2vXrkD9Vq1aOSQ6Qd7v7hkzZhSoW9gYqKiOHDlC69atSUtLY+nSpXTt2rVAna1bt+Ls7Mwvv/zCL7/8UmB7dnY2MTExxMXF2ZdeLi5fX99CExwrVaoE4DDG2b17N/BHn16qVq1aVKxYkcjISJKSkvD19b1ifScnJzp06MDJkyfZs2cPlStXdrgufx77AnTq1In169dfw1mK/HMpSUlERERERERERET+1ZydnenRowc9evQAwGq1MmfOHIYPH863337LwIEDGTBggEObkJCQQveV/4R2/mwvcXFxAOzYseOKM+qkpqbav05MTMTf39/h6fDrdemT4zdKYTPZ5N8gu9K2/MSsmy3/WkybNu2K9S69Fvku13/btm2jS5cu5Obm0rVrV/r164ePjw9ms5m9e/cyf/58srKyrivu/O+lcuXKFbo9v7ywmYP+PINBPicnJ6xW63XFVdJGjhzJU089xd69e0lJScHb2xv443srv1/+LL/8cucuIqXPxcWlyMkJ27ZtY9asWURERGAymWjYsCGPPPKIw+x2aWlpuLi44OXl5dA2MDCQM2fO3NDYRW6Ea/ndnt+msDGoxWIp8J46efIkr732WoG615OkFBERQXx8PI0aNaJJkyaF1omLiyM3N7fQY18qNTX1mpOUrjS+ARzGOEXp69OnT5OYmIivr2+xr82VrguUzBhc5O9OSUoiIiIiIiIiIiIil7BYLNxxxx0cOHCAiRMnsmbNmgJJSlFRUYW2vXjxIvBHIkX+/5966ik++OCDIh3fz8+PuLg4MjIyblii0p9ngspnNpsByM3NLXT7P2nJrPxrsW/fPho0aFCstpfrv4kTJ5KRkcHatWvp1KmTw7a33nqL+fPnX1Osl8qPO/97688uXLjgUK8kTJkypVjfC40aNSrwnikuNzc3vL29SUhIIC0tzZ6kFBYWBvwx89WfHT16FMibHUFE/t6WL1/OpEmTaNGiBQ899BBZWVnMmzePxx57jK+++sqeLNC4cWPWrFnDe++9xx133IGbmxu//fYbGzZs4JFHHinlsxAp6Fp+t+fPEhYVFUW1atUc6lutVuLi4hyWCe7UqROGYdzQuPv27UtYWBgvvfQSXbt2ZeXKlQUSjXx9fbHZbMTHx9/QY1+rS/u6evXqBbb/ua+Le23y/3+1vw1E5A9KUhIREREREREREREpRH5SRGE3eApbtsFqtbJp0yYg74Yp5C0TZjab2bhxY5GP26pVKxYtWsSyZcsYOHDgFevmLytxrbPi+Pv7AxQ600RycvJlE0H+qiwWC9nZ2YVua9WqFXPmzGHjxo3FTlK6nGPHjhEQEFAgQQkK/x65WoyFCQsLw8PDg3379pGYmFhg9oC1a9cCXHZGgxthypQpnDp1qsj1H3jggetOUjpy5AgJCQl4e3sTFBRkL+/SpQtvvvkmy5Yt48UXX3Roc+LECSIiIggNDS1wA1dE/l7S09P58MMP6dOnD88995y9/NZbb+Xee+9l1qxZ9vI+ffoQGRnJggULWLRoEZD3s3bs2LH079+/VOIXuRJvb2+qV6/OiRMnOHr0KDVr1nTYXtjv9saNG9uXJf7z77ht27ZdNuH8RnvxxRdxd3fnqaeeolOnTqxatcphFqFWrVqxePFiDh48SN26dW9KTFfSuHFjdu/ezbp16wokKR07doyzZ89StWpV+/gqfwy/bt06RowY4VA/NzfXPqbPvzb59Tdt2oTVai2w5Nu6detu9CmJ/O2ZSzsAERERERERERERkdLwww8/sHLlSmw2W4FtFy9etC8L1qFDhwLb16xZY78Rmm/q1KkcP36czp07ExoaCkBwcDD33HMPO3fu5I033ig0mej48eNERkbaXz/xxBMAPPPMM5w7d65A/UvL8p9eP3369FXPtzDe3t7Url2bzZs3c+jQIXu51Wrl6aefJiMj45r2WxwnT57EZDJRpUqV695XYGAgMTExhcb94IMP4ufnx2uvvcb27dsLbLfZbMW+kVSlShXi4+PZv3+/Q/lXX33F8uXLix1jYVxcXLjnnntISUnhP//5j8O248eP89FHH+Hs7Mx9991XrNiL4+TJkxiGUeR/M2bMKNJ+IyMjC51pISYmhgcffBCAu+66y758C0DHjh255ZZb2LBhAwsWLLCX22w2XnjhBQAefvjhy85+JSJ/Dzt37iQ1NZWuXbuSmJho/2c2m7nlllvYvXu3va7FYqF8+fK0aNGCl156iQkTJtCmTRumTJlSrCRhkZtp+PDhGIbBc8895zA+jI2N5Y033rDXyXf//fcD8OabbzoseZqdnc1LL710k6LOM3bsWD799FMOHjxIx44dOX/+vH3bU089BcCoUaMcyvOlpaWxbdu2mxZrfh9OnDiRmJgYe7nVauXZZ5/FZrM5JCMNGDCAgIAAfvjhhwJxTpkyhcjISLp160blypUBqFixIt27dycyMpKpU6c61J8/f/5lk9ZF/s00k5KIiIiIiIiIiIj8K/322298+OGHlC1blnbt2lG1alUgL3Fi8eLFZGRk0L9/f4YMGVKgbd++fRk4cCADBw6kRo0a7N27l6VLlxIQEMD//d//OdSdOnUqR48e5dVXX2XmzJm0a9eOkJAQzp8/z+HDh9mxYwc//PCD/fg9evTglVdeYeLEidxyyy0MGDCASpUqERUVxaZNm2jVqpU9CSQsLIwKFSrw448/4uzsTGhoKCaTifvuu8+eKHU1zz33HCNGjKBt27bcfvvtuLm5sXbtWnJycmjYsCH79u27jl6+uvwksUsTUa5V165d2bFjB7feeisdOnTA1dWVhg0b0rdvXwIDA5k9ezYDBw6kVatWdO3albp162IymThz5gxbt24lLi6OzMzMIh9v7NixLF++nHbt2nHHHXfg6+vLzp072bRpE0OGDGH27NnFivFy3n77bTZu3MjUqVPZsWMHnTt3JjY2lp9//pmUlBSmTp1q//75O1m/fj0PP/ww7dq1o1q1agQEBHD69GmWLFlCUlISzZo147///a9DG4vFwvTp0+nSpQtDhgxhyJAhVK5cmdWrV7Nz507atm1rv0EqIn9fZ8+eBfJ+zhbG09PT/vWsWbOYPXs233//PR4eHkDerGtjxoxh8uTJtG7d+ob8jhEpjmHDhl122//93//x7LPPsnTpUubPn0/Dhg3p3bs36enp/PLLL0RHR/P888/Trl07e5uOHTsyevRovvjiC+rWrcvgwYNxdnZm4cKF+Pr6Ur58efsyvjfDww8/jJubGyNGjKBDhw6sWbOGypUr07VrV95++21efPFFatasSe/evalatSqpqamcOnWK9evX065dO5YtW3ZT4mzTpg3PP/88//3vf6lXrx5DhgzB09OTpUuX8vvvv9OuXTuH2dq8vLz4+uuvuf322+nYsSO33347lStXZteuXaxYsYKyZcvy+eefOxzjk08+oXXr1owdO5YVK1bQsGFDjh07xq+//krfvn1ZuHDhTTlXkb8L/UYWERERERERERGRf6VnnnmGmjVrsmrVKvbv38/y5cvJzMwkMDCQTp06MXToUIYOHVrojCyDBg1i9OjRvPnmmyxevBhnZ2cGDRrEW2+9Ra1atRzq+vj4sH79er744gu+//575syZQ2ZmJiEhIdSsWZPJkyfTvXt3hzZvvPEGrVu35qOPPmLRokWkpaURHBxMs2bN7E/SQ17Cxq+//sq4ceP45ZdfSElJwTAM2rVrV+Qkpfwn+T/44AO++eYb/P396d+/P5MmTWLw4MHX0LPFc+DAASBvxpzr9corr5CYmMjChQvZvHkzVquVBx54wJ4A1LVrV/bv3897773H8uXL2bhxIy4uLpQvX54uXboU+3xvvfVWFi5cyMSJE/npp5+wWCy0aNGCtWvXcuLEiUKTlK4WY2ECAgLYunUrb731FnPnzuWDDz7A3d2dFi1a8Nxzz9GjR4/iddRfRNOmTbnrrrvYtWsXe/bsITk5GW9vb+rXr88dd9zBQw89hIuLS4F2LVu2ZMeOHYwfP54VK1aQkpJCaGgor776KuPGjcPV1bUUzkZEbqT8BNZXXnmFgICAAtsvXVJp3rx5NGnSxJ6glK9t27ZMnTqVixcvUrFixZINWORPvvnmm8tumzJlCh4eHqxcuZIPPviA77//no8//hgnJycaNmzIlClTuPvuuwu0+/TTT6lduzaff/45n332GYGBgQwcOJBJkyZRsWLFAsuZlbRhw4bh6urK/fffb09UqlatGi+88AJt27blo48+YtOmTcyfPx9fX18qVKjA6NGjGTp06E2N85133qFx48ZMnTqVb7/9lpycHKpXr87EiRN55plnCow1+vfvz+bNm5k0aRLLly8nKSmJsmXL8vDDD/Of//yH8uXLO9SvWbMm27ZtY9y4caxatYp169bRoEED5s2bR0xMjJKURP7EZBS2oLqIiIiIiIiIiIiIFDBjxgwefPBBpk+ffsUn5KXonn76aT7//HNOnTpFUFBQaYcjIiI3UXh4OKNHj+bFF1+kV69e9vK1a9cyfvx43nvvPVq0aHHFfXTt2pX27dszYcIEh/Lvv/+ezz77jJkzZxY5cVfk7+jo0aPUqlWLu+66ix9++KG0wxERuaKbN+ebiIiIiIiIiIiIiMifrF+/nlGjRilBSURE7Fq0aIGnpyezZs0iNze3wPbExET71xUrVmTnzp0kJSXZy6xWK2vXrsXDw4MKFSrcjJBFStzFixfts4zlS09Pty+LOHDgwFKISkSkeLTcm4iIiIiIiIiIiIiUml27dpV2CCIicpPNmTOH1NRU4uLiANi8eTPR0dEADB48GC8vL55++mnefPNNRowYQdeuXfHz8yMqKopt27ZRr149nnrqKQDuueceJk6cyMMPP0zfvn1xdXVl1apVHDlyhJEjR+LkpNuh8s8wZcoUfvjhBzp16kS5cuW4ePEiq1ev5uzZs/Tq1Yvbb7+9tEMUEbkq/VYWERERERERERERERERkZvmp59+4uLFi/bXGzZsYMOGDQD06NEDLy8vunfvTlBQEN999x0//vgj2dnZlClThgYNGtC7d2972x49euDn58esWbP44YcfSE9Pp1KlSjzzzDP079//pp+bSEnp3r07+/btY8WKFcTHx+Pk5EStWrV48sknGTt2LCaTqbRDFBG5KpNhGEZpByEiIiIiIiIiIiIiIiIiIiIiIv9c5tIOQERERERERERERERERERERERE/tmUpCQiIiIiIiIiIv9KmZmZHDlyhMzMzNIORUREROQfT2MvERERUZKSiIiIiIiIiIj8q6xatYpx48bx7LPPMmrUKE6dOlWkdsePHy/hyESkNOi9LSJyc5w6dapYY698+jldOtTvpUP9fvOpz0uH+r10/BX63am0AxAREREREREREbmZunXrRrdu3Thy5AijRo0qcrusrKwSjEpESove2yIif236OV061O+lQ/1+86nPS4f6vXT8FfpdMymJiIiIiIiIiIiIiIiIiIiIiEiJUpKSiIiIiIiIiIiIiIiIiIiIiIiUKC33JiIiIiIiIiIiIiIi/ypWq5WcnJzSDkNuABcXF8xmPZMvIiIi8negJCUREREREREREREREflXMAyDixcvkpiYWNqhyA1iNpupWrUqLi4upR3KdTt8+DDLli1jz549XLx4ER8fH+rWrcvIkSOpVKlSkfaxc+dOZs6cSUREBDabjUqVKnH33XfTtWtXe53Vq1ezZcsWDh06xLlz52jUqBEfffRRicQjIiIiciklKYmIiIiIiIiIiIiIyL9CfoJScHAwHh4emEym0g5JroPNZuP8+fNcuHCBypUr/+2v5/fff8+BAwfo3Lkz1atXJy4ujl9//ZWRI0fy6aefUq1atSu2X7JkCe+88w7NmjVj1KhRWCwWTp8+TXR0tEO9+fPnc+TIEWrXrk1ycnKJxSMiIiLyZ0pSEhERERERERERERGRfzyr1WpPUAoMDCztcOQGKVOmDOfPnyc3NxdnZ+fSDue63HHHHbz66qsO59GlSxcefPBBvvvuO/7zn/9ctu2FCxeYPHkygwYNYsyYMVc8zssvv0yZMmUwm8088MADJRKPiIiISGG0SK+IiIiIiIiIiIiIiPzj5eTkAODh4VHKkciNlL/Mm9VqLeVIrl/9+vULJFpVqlSJKlWqcOrUqSu2nT9/PjabjREjRgCQnp6OYRiF1g0JCcFsvvotwuuJR0RERKQwmklJRERERERERERERET+Nf7uS4KJo3/69TQMg4SEBKpUqXLFert27aJy5cps27aNTz/9lJiYGLy9vRk4cCDDhw8vUlLSjYwHIDY2lri4OPtrJTaJiIiIkpRERERERERERERERERE/oJWrlxJTEwMw4cPv2K9s2fPYjabefvtt7n77rupXr06GzZs4Ntvv8VqtfLQQw/d1HgAFixYwIwZMwqUR0ZGFmvmq9TUVA4dOlScMOUGUL+XDvX7zac+Lx3q99JRkv1ep06dItVTkpKIiIiIiIiIiPxtvfvuu2zevJnMzExCQkIYPXo0bdu2Le2wREREimzChAmMGzcONze3YredMmUKd911F2XLlrXvKzExkSlTptzgKKU0nDp1ismTJ1O3bl1uvfXWK9bNyMjAZrPx0EMPcc899wDQqVMnUlJSmD17Nvfdd991L3VYnHgA+vXr5zAuO3XqFBMnTqRq1aqEhYUV+biHDh0q8o1PuXHU76VD/X7zqc9Lh/q9dPwV+v3GzO0oIvIvZDKZ6NSpU2mHISIiIvK3NWHCBEwmE+vWrSvtUETkb+yOO+7g559/ZtmyZYwbN46JEyeSlJRU2mGJiIgU2WuvvUZmZmaB8tzc3Ku2nTJlChcvXiyJsKSUxcXF8cILL+Dp6ckbb7yBxWK5Yn1XV1cAunXr5lDetWtXsrKyiIiIuKnxAAQFBREWFmb/Fxoael0xiIiIyN+fkpTkpnvhhRfo2rUrlSpVwt3dnYCAABo3bsxrr73msDbxpVJSUnj55ZepXbs2bm5u+Pv707NnT1avXn3Z40RGRvLwww9Tu3ZtPDw8CAkJoXXr1nzxxRdkZ2cXqL9y5UqeeeYZunbtSmBgICaTiXbt2l3zecbHxzN27FiqVKmCq6sr5cuXZ/jw4Zw9e7ZA3RkzZmAyma74rygD/sKsXr2agQMHUrZsWXscPXv2ZMmSJQ71zpw5w6OPPkrLli0d6rZv357p06eTk5Nz2WN88803tGjRAi8vL3x9fenUqROLFi26bP3du3dz++23ExISgouLC5UrV+bRRx8lKiqqWOc2bNiwK/ZZeHi4Q/2S7OcbZeXKlZhMJlq0aHHVut9//z0mk4n+/fvfhMhEROSfTmOGP5TEmGH27Nk88cQTtG/fHh8fH0wmE/fee+9V223ZsoXevXsTEBCAu7s7DRo0YMqUKVecFn/RokV06tQJX19fvLy8aNmyJd98880Vj1Pca2O1Wpk8eTINGjSwj+l79+7Nli1brnpON0Pbtm0xmUwFvn8LExYWhslkYs+ePTchMhEpCaGhobi4uAB5D5Pk5OQQGxtbylGJiMjfxbyXN/P942tK7N+8lzdf8fgPP/wwAO3bt6dRo0b07t2b4cOH06FDB+rVqwfk/X5LTEy0twkKCuLkyZO8/vrrnD9/njvvvJNGjRqxd+9eAC5cuEDfvn2pU6cOXbp0IT4+vkT6TkpOamoqzz//PKmpqbz33nsEBQVdtU1gYCAA/v7+DuX5r1NSUm5qPCIiIiKF0XJvctNNnjyZJk2a0L17d4KDg0lLS2Pbtm1MmDCBL774gm3btlGpUiV7/YSEBNq1a8ehQ4eoW7cuDz/8MKmpqcyfP59u3brx5ZdfMmLECIdj7Nixg86dO5ORkcGtt95K//79SU5OZuHChTz00EPMmTOHZcuWYTKZ7G0++eQT5s+fj5ubGzVq1LiuP9zi4uJo06YNERERdOnShbvuuovw8HCmT5/O4sWL2bp1K9WqVbPXb9SoEePHjy90Xxs3bmTNmjX06tWr2HE8//zzvPvuu1SsWJF+/foRFBRETEwMu3btYt26dfTu3dte9/jx43z33Xe0bNmSAQMGEBAQQFxcHEuXLmX48OHMnDmTFStW4OTk+GPj2Wef5f3336dixYqMGjWK7OxsfvzxR/r27cvHH3/M448/7lB/0aJFDBo0iNzcXPr27UutWrUIDw/ns88+Y+HChWzevJnKlSsX6zzHjBmDn59fgfI//6FUUv18I3Xr1o2qVauyY8cODhw4QP369S9bd9q0aQCMHj36ZoUnIiL/UBozlPyYYeLEiezbtw8vLy8qVqxYIDGqMPPnz2fw4MG4ublx5513EhAQwMKFC3nqqafYvHkzv/zyS4E2U6dO5YknniAwMJB7770XFxcXZs+ezbBhwzhw4ADvvfdegTbFvTaGYXDXXXcxe/ZswsLCePzxx4mPj+enn36iQ4cOzJkzp9STqEeNGsWWLVv48ssvHb5//2z9+vVERETQrFkzGjdufBMjFPnnSU9P58cff+TQoUMcPnyYlJQUXnzxxUJ/XmZnZ/PVV1+xYsUKUlJSqF69OiNHjqR58+bXfPwPPviAJUuWkJ2dTatWrRz+5hYREbmS9KQs0uOzSu34n332GZ9//jkbN27Ez8+PYcOGsWvXLjZt2oS3t/cV27766qt8/fXX/PTTTzRq1AiAefPm8dtvv7Fr1y4CAwO56667+Pzzz3nxxRdvwtnIjZCVlcW4ceM4c+YMH3zwAVWqVClSu7CwMM6ePUtsbCzly5e3l+cnbxf293BJxiMiIiLXL/ZEEqf3RmPNMbDl2rBZbdisBrZcI+/r3LzXGFCxURA121XA7PTXnqtISUpy0yUnJxe6tvbLL7/MpEmTeOutt/i///s/e/mECRM4dOgQgwYN4qeffrLf8Jo0aRLNmjXjiSeeoGfPnlSsWNGhTVpaGjNmzOCBBx6wl7/33nu0aNGCFStWsHHjRjp06GDf9sILL/Dmm29Su3Ztzpw5Q9WqVa/5HF966SUiIiJ4+umnef/99+3lH330EWPGjOHRRx9l2bJl9vJGjRrZ/4j8s9atWwPFT0SZNm0a7777Lg888ABffPGF/anSfH+e5aBNmzYkJCRgNpsL1OvRowdr165l7ty53HHHHfZtW7Zs4f3336d69ers2LHD/kTGc889R9OmTXn22Wfp06eP/Y+WzMxMRo4cSU5ODnPmzGHQoEH2ff3www8MHTqUxx9/nAULFhTrXPNnrLqakujnG81kMjFy5Ehefvllpk2bxkcffVRovWPHjrF+/XoqVapU6olVIiLy96YxQ0ElMWaYPHkyFStWpEaNGqxfv57OnTtfsX5ycjKjRo3CYrGwbt06mjVrBsAbb7xBly5dmD17Nj/++CN33XWXvc3Jkyd59tlnCQgIYOfOnfZzffXVV2nevDnvv/8+gwcPtp8DFP/aAPz444/Mnj2bNm3asHr1avvY/uGHH6Zdu3aMGjWKLl26XPWGSkm68847GTt2LIsWLSIqKoqQkJBC63355ZdA6Y8BRf4JkpKSmDFjBiEhIdSoUeOKs5O99dZbrFu3jttvv52KFSuydOlSnn/+eT788EMaNGhwTcd/+umnGTNmDHv37uXEiRMODyWJiIhciYev619u/7fffvt1jadvvfVW+6w6rVu35sCBA9e8L7m5rFYrEyZM4ODBg0yaNMk+m9afxcbGkpaWRoUKFez3TLp06cLq1atZvHgxo0aNAsBms7F06VJ8fHwICwsrsXhERET+iqw5VrIzcsnJsGJ2MuEV6H5d+7PZDA6vPM35g3FYs63kZlux5tjIzbZhzbFizbbZy0wmqN62PE2H1MT9GsaDmanZ7PwpgvA1Z8AoWpvI7RfZ++txGg2s/pdOVlKSktx0hSUoAdxxxx1MmjSJo0ePOpT/+uuvALz++usOT+QHBwfz9NNP89RTT/H111/z6quv2redOHECgH79+jnsy9PTk65du3Lo0CFiYmIctl16s+Z6pKamMnPmTDw9PZkwYYLDtscff5wPPviA5cuXc+LEias+2XngwAG2bdtGhQoVuO2224ocQ1ZWFi+//DKVK1cu9GYjgLOzs8Prwurk1xswYADr1q0rcG0+++wzIC/B7NIpZKtUqcJjjz3GG2+8wfTp03nttdeAvJtgUVFRNGvWzOFmI8Ddd9/NO++8w6JFizh16tRNXZv6Wvv5ct59911eeOEFWrduzcKFCwkICADgt99+491332XTpk3Ex8cTEhJC7969GT9+vMOTLcOHD2f8+PHMmjWL//73v4W+Z7788ksMw2DEiBEFbhKLiIgUlcYMxXM9Y4arJSX92ezZs4mJieH++++3JyhB3lh64sSJdO3alU8//dQhSenrr78mKyuLF154wSGpyN/fn5deeokRI0bw2WefOYx7i3ttAD799FMgb3aoS8cpzZs3584772TmzJnMnj2bBx98sFjnfKnTp0/Tq1cvjh49yldffcV9990H5M3U8uGHH/LTTz9x9OhRTCYT9evX58knn+Tuu++2t3d3d+fee+/lk08+YcaMGbzwwgsFjpGYmMjs2bPx8vJyaCsi1yYwMJBff/2VwMBAwsPDL5v8d+jQIVavXs0jjzxif+/17NmTYcOG8emnn9p/xgA89thjl72pet9999lvvuWzWCw0bdqUX375hYoVK96wv/NFROSfbcCbbUs7hAK8vLwcXlssFoclnzMzM6/Y/tJxusViITc398YGKCXmk08+YfPmzbRp04aUlBRWrFjhsL1Hjx4AfPHFFyxbtoyffvqJcuXKAdCuXTuaNm3KrFmzSExMpEaNGmzcuJH9+/fz7LPPOvw9v3fvXvbt2wfk/W2UkZFhXya8YcOG9gd3ihqPiIhIUdhybWSm5ZCVkk1m4vWPT6w5VvYtOEH00USyM3PJ+V9CUs7/vrZZHbN7qrYsS6v7b8HTv/B8hStJupDG+s/3Ex2RWOQ24avPcHzLeRr2rU693lVwcrFctY1hGBzdeI7t3x8hMzkbgNBmIXgFumF2MmO2mAr+32ImKy2bQytOkxKTwcYvfs9LVhpQnZrt85KVTmXGMC/uNw5nn+SWcycYENiSULcyxe6HG0FJSvKXsXDhQoACT01evHgRoNCEnvyy1atXOyQp1a1bl/DwcBYvXsy9995rL09PT2fNmjV4eHiU2IeV27ZtIyMjgx49ehR42sVsNtOzZ0+++OIL1q5de9UkpS+++AKAESNGYLFc/YdWvpUrVxITE8PYsWMxm80sXryY33//HTc3N1q0aFGsc7darSxZsgQoeG3WrFkD5D2Z82e9evXijTfeYM2aNfabWle6lvnl+/btY82aNcW6qbV06VKSk5OxWCzUqFGDLl264OPjU+T219rPf2az2Rg7diwff/wxgwYN4rvvvrN/IPD1118zevRoXF1d6devH5UqVeLo0aN8+eWXLFy4kG3bttmXrClbtix9+vRh3rx5zJkzh3vuucfhOLm5uXzzzTdYLBaGDx9+zfGKiIhozFA6Y4aiuFKfdejQAQ8PD7Zs2UJWVhaurq5XbZM/82J+naIcp7Brk5mZyZYtW/Dw8KB9+/aFtpk5c2axr82l9u3bR+/evUlJSWHJkiV069YNyPvgvEuXLuzZs4cmTZowfPhwbDYby5cvZ+jQoRw8eJCJEyfa9zNq1Cg++eQTvvrqq0KTlGbNmkVmZiajRo0qcBNIRIrPxcXFPmPDlaxfvx6LxeLwUJGrqyu33XYbX3zxhcPsZ5988sk1xWK1Wjl37tw1tRURESkN3t7eJCUlXXY5rho1avDbb7/Ru3dv5s6dS1pamn2bj48PSUlJNylSKWnHjh0D8h7e2bJlS4HtV0oKMplMvPnmm3z55ZesWbOGZcuWUalSJV555ZUC7Xbv3s2MGTMcyr766isAhg0bZk9Sup54RETk78NmtWEymTCZr29WYsMwOLb5PHEnk8lKySEzJZvM1Gz719npjolJmUedaHF3WJGSd/4sJSadNR/uJebE1cdBTq4WrNlWIn+7yNn9sTS/qxa1u1bGXITzNWwGh1aeZvsP4VizbTi7W2jYtzqeAW5YXMxYnM04uVj++L+LGYuzhZTodHb8eITYyGR2/hzB4VWnaXZnLWq0LX/Zfo4/k8KW6Qe5GJ4AgF8FL9oOr0O5W67+eQtAg9uqcXj1afYvPJGXrDTtd/bMO07i7Zl87r4SEyZsGGy/eJIZF9cyIfRO+ge1KNK+byQlKUmpee+990hNTSUpKYmdO3eyadMmGjRowLhx4xzqBQUFceHCBSIjI6lTp47DtvwZk44cOeJQPnHiRLZs2cKwYcP4+eefqVOnDsnJySxatIjc3Fxmz57tMHPNjZQfS61atQrdXrNmTQAiIiKuuJ+MjAxmzZqFxWJh5MiRxYphx44dQN4TM40bN+b333932N6hQwdmz55NmTIFsyNjY2OZOnUqhmEQExPDypUrOXbsGEOHDqVv3772emlpaZw7dw4vLy/7kxpXO8+goCAAIiMjC437ctfzah599FGH197e3rz11ls89thjV217Pf18qczMTO655x7mzp3L448/zocffmif4SgiIoKHH36YKlWqsH79eipUqGBvt3r1anr06MGYMWPss4ZB3pIj8+bNY9q0aQWSlBYuXMjFixe57bbbqFSp0jXHLCIiojHDzR8zFNWVxpROTk5UrVqVgwcPcuLECW655ZartilXrhyenp6cPXuW9PR0PDw8runaHD9+HKvVSrVq1RxmOb1Sm+JYtWoVgwcPxtPTk40bN9KwYUP7trFjx7Jnzx7eeecdnn/+eXt5ZmYmAwYMYNKkSQwZMsT+YXrDhg1p0aIF27dvZ926dXTq1MnhWFrqTaR0HD16lIoVK+Lp6elQnv+z7NixY5ddorEwqampbN26lbZt2+Li4sLGjRvZs2fPZd/bsbGxxMXF2V+fOnXqGs5CRETkxnrmmWfo3r07Hh4ehX5uPXnyZJ588kleeeUVbrvtNofE4CeffJJRo0bh4eFRIOlE/n4++uijItV76aWXeOmllwqUe3h48OSTT/Lkk09esf3w4cOL9ABsUeMREZG/LpvNICMpi7S4TNLiMkiNy/zf15mkxmeQFp9JRkIW7n6udHykARXqBV3TcXKzrWz84gDHt1y4al1XT2ey0nI4tPwUFw7G0emxhgSGFv1h0lO7olj/6X6y03Nx9XKmyeCaeAa44uzmhLO7E85uFlzc8752cnPCbDYRdzKZTV/9TszxJLZMP8TRjedoN6LeFY+bEpPOhs8PcOFQPADl6wbSfnR9vMtcfdk4nxAPytcN5PiW8+z4KYK0uEzWf7qf35eepOW9tSlf54/xXE5mLrvnHuP3pScxrAZOrhYaD6pBvV5VsBRjyTYnVwv1e1fllq6V7clKZ3NimeW65X8rxuX91/q//0849RONvapS+SbPqKQkJSk17733HlFRUfbXt956KzNmzChwE+y2227jyy+/ZPz48fz444/2p9ZjYmKYPHkyAAkJCQ5tateuzY4dO7j77rtZuHChfZYmZ2dnxo4dS6tWrUrsvPKfWvH19S10e355YmLiFffz888/k5iYeE2JKNHR0UDesmN16tRh48aNNGrUiMjISJ599llWrFjB7bffzrp16wq0jY2NdVjOw2Qy8eyzzzJp0iSHetdynm3btsXPz48dO3Ywf/58+vfv73C++dPL/vl6Xk6HDh3o3bs3rVq1Ijg4mPPnz/Prr7/y2muv8fjjj+Ps7HzVm07X08/54uPj6devH1u2bClw0wzylkTJycnhww8/dEhQAujatSv9+vVj4cKFpKSk2Gff6tmzJ6Ghoaxfv56jR4/ab/iBbqiJiMiNozHDzR0zFMe19FtR2qSlpZGUlISHh0eJHePPbYpq1qxZDB8+nBo1arBs2TL7LJMAcXFxzJo1i2bNmhUYa7m5ufHOO++wfPlyvv/+e3uSEuSNl7Zv386XX37pkKS0Y8cO9u3bR+PGjR2W0xORkhcXF1fojEv5ZbGxscXan8lkYtGiRUyePBnDMKhQoQL/+c9/HP6GutSCBQsKvYEbGRnpsIzO5aSmpnLo0KFixSgif316b/972Gw2bDYbmZmZGIZx9QY3yfPPP19gnJuRkWH/ulOnTuzfv9/+Oj85JSMjg3vuucfhIcf8WUTz248YMYIRI0Y47O+fJisri5ycHI4dO2Z/cBQo8NCziIjIX1lmSjYJZ1NJOJtC4vk0Aip5E9a5IibTtc9udOFwHGs+2ktGUvZV66YnZLHs7Z20vKc2dW8NLdZxM5OzWfnBbqIiEjBZTNzSpRKegW64ebvg6uWCm7dz3tfezrh6OmO2mNm8YBcnlyaScDaV+f/ZQvM7w6jXq8oVZ3Oy5drY8XMEBxblPdxapoYvXZ9sjFfQ1ZOGAqv40Pe11oSvOs2On44QcyyJeS9voV7vKjQZVANntz9SZwzD4Mi6s/w28zA5mVacXC20uDuMW7pVLtZsUyaziRrtKlClRVkOLjvJ3vnHiTuZzJKJ26ncJJgWd4eReD6Vrd8eJi0ubznf0OYhtL7vliKd0+Vcmqw04bcfARP5CUoO8WHi17jfGFOhzzUf65riu6lHE7lE/jIeUVFRbNmyhXHjxtG4cWMWLVpEkyZN7PVef/11li9fzuzZs2nUqBFdu3YlLS2N+fPnU6FCBU6fPu3whwfAnj17GDBgAMHBwfabbYmJicyaNYtXXnmFefPmsWPHjsveXPkryF9O5KGHHiqw7eTJk4V+qDphwgQg749tyHvKfsGCBVSpUgWA+vXr8+uvvxIWFsb69evZunVrgWVcateujWEY9unxf/31V1599VU2bdrE4sWLCQgIuOZz8vT05MMPP2TYsGEMGjSIfv36UbNmTcLDw1m0aBGNGjVi7969Ba7n5fz5SY9q1arxzDPPEBYWRt++fXn55ZevuhzLlfq5KKKiomjbti0nTpxg1qxZDB06tECdrVu3AnnLGuTPWHGp6OhorFYrERERNG3aFMhbGnDEiBG8+uqrfPnll7zzzjsAnD17lmXLllG+fHluu+22a4pZREQkn8YMN2bMcLWxmVzdhx9+yPz582nbti0LFizA39/fYfuOHTuwWq2YTKZC+zUnJweAw4cPO5TfddddPPXUU8yZM4ePP/7Yvt9p06YBeUvCicjNlZWVhbOzc4FyFxcX+/biyP+dUVT9+vWjbdu29tenTp1i4sSJVK1albCwsKu2P3TokG54ivwD6b3975GZmUlkZCRubm64ubmVdjhyg5hMJpydnalataquq4iI/OVlpeWQcCaFhHOpJJxNJfF/iUmFJRLFHE+i7Yi6RVqW7M/OH4xjxXu7yM2yYjKBh78bnoF5/7wC3fEM+N/rADc8/FzZ9ctRjm48x7aZh4k7lUzb4XWLtAxb0oU0lv93J8lR6bh4ONF1bOMizcbkX8OdJm/XY+O03zm9O5rfvgvnzL4YOj7cAM+Agr/P0+IyWPPxPqIi8h5crderCs3vDivWTENms4k6PUIJbR7Ctm8OE7n9IgcWRRK57SJtH6xDpcbBpMVnsnHa75zdFwNASC1/OjxcH9+ynlfZ++U5uVho2K86tTpWZPfcY4SvPsPp3dGc3hNtzx3yKuNOmwfqULlJ8DUfp8BxXS3kVLRhSigsRQkMDM5nFe1B4BtJSUpS6kJCQhg4cCBNmjShVq1a3H///Q5LjZQrV44dO3bwxhtvsGjRIv7v//6PoKAg7rzzTsaMGUPNmjUJDv7jzZqbm8sdd9xBTEwMv/32G2XLlgXAy8uLcePGERUVxZQpU5g8eXKJ3DjKT3y63Drg+eWXW18c4ODBg2zZsoWKFSvSu3fvAttPnjzpMHNBvvzzyd9348aN7Tcb83l4eNCzZ0+++uortm/fXuCGYz6LxULlypUZM2YMISEh3H333bz66qtMnTr1us7z/vvvp1KlSrzzzjusW7eOJUuWcMsttzBjxgyio6PZu3evw/W8Fn369KFChQqcO3eOQ4cOUb9+/ULrXa2fi+LixYskJydTsWJF2rVrV2id/KUE3n333SvuKzU11eH18OHDee211/jmm2+YOHEizs7OfP3119hsNoYPH37FG6kiIiJFoTHDjRkzXG1sdi2upd98fX2JjY0lKSmp0FlK/jwL0rUeo7htimLDhg0YhkHXrl0LJCjBH+OpHTt2FJr0ne/P4ylPT0+GDh3K559/zqxZs3jiiSdIS0vjxx9/xNPTs8CyuiJS8lxdXe2JhZfKzs62by9JQUFB9mVFRURERERERC4nN9tK9NFEzh+MIyoigeAafjS7s9Z1zWx0bPN5Nn5xAGuOrdDtXmXc8a/ohYefKxHrznJk7Rlys3Lp+HADzMVIxjn3eywr3tuFNdtGxYZBdHuqyVUTjjo8XJ/AKt78NiucoxvOkXg+lW5PNcHT//IJwBcOx7Pqg91kpeXgVcadns81xb+id5HjdPd1pfszTQhfc4ZtMw9z/vc45o7bRLuR9ajaoqy93tn9Maz7ZB+ZKTk4uzvR4aH6DtuLy9Pfja5jG3N6TzRbph8iNTaD5e/uomLDMkQfTSA7PReLs5mmt9ekXu+q15QkVhh3X1faPliXuj1C2f7DEU7vjsZsMdGgbzUa9a+Ok+uNv/db3tUf0xVmUirvWvCz2JKmJCX5ywgNDaVOnTrs3buX2NhYhw8NQ0JCmDp1qv1mV741a9YA0Lx5c3tZeHg4x44do0mTJvYEpUt17tyZKVOmsGvXrhI5j/wnLyMiIgrdfvToUQBq1ap12X3kP6l/uSf6O3XqdMXpiPNjuNzNofwbP0Wd4rdXr14ADku9eHp62m/qXbhwgXLlyjm0udJ5du7cmc6dOxcov//++wHH63mtypQpw7lz50hLS7tsnav1c1E0bNiQkSNHMmzYMDp06MCaNWuoVq2aQ51Lb+b5+BR9PdUKFSrQu3dv+5KFAwYM4Ouvv8ZsNjNy5MhrildERORSGjPcmDHD1cZm1yIsLIydO3c6zLSYLzc3l8jISJycnBzGHWFhYcTGxhIREVEgqezChQukpaVRsWJFPDw8gGu7NtWrV8disXDixAlyc3NxcnK6apui+Oqrr3j77bd57bXXsNlsvP766w7b88dTTz31FB988EGx9j169Gg+//xzvvzyS5544gl+/PFHUlJSGD58eLHGZiJyYwQGBhITE1OgPD8Z8WYlEK1atYpVq1YVSG4UERERERGRfyeb1UZsZDLnf4+zJyZdmkx04VA8Tq4WGg+scU37v3A4ng2f7cdmNfAMcMO/kjf+Fb3s//wqeDksOVahfhBrP9nH8S0XyM2y0uXJRlicr34/8+z+GFa+vxtrjo1KjcrQdWzjIs2IZDKZqNerKn4VvVn70V5ijiUx/+UtdHu6CcE1/ArUP7rxHBu/OIDNalCmhi/dn2mKh2/xHzwymUzc0rUy5W4JYN0n+4iNTGb1lD3U6lSRVvfW5sDiSPbMOw5G3pJtXcc0wifk2mc1ulTlxsGUuyWA3XOP8fuSk/bZk4Kq+dLx4frFSrgqDr8KXvR4timxJ5Nw9XTBu8y1L+12NQMCWzLj4tpCtxkYDAxsWWLHvpyip9uJ3ATnz58HKHLCyLfffgvgsMRW/tTwsbGxhbbJ/zA0fyr5G61Vq1a4u7uzefNmUlJSHLbZbDZWrFgBUOgNN8ibcnjmzJlYLBZGjBhxTTF07doVk8nEoUOH7Mu4XCp/pqqqVasWaX/nzp0DKHATqkuXLgAsW7asQJulS5c61LmaxMREFi5cSJkyZejevXuR2lxOUlIS4eHhmEymy57jjejnfPfeey8//vgj58+fp0OHDgUS1Fq1agXAxo0bi73v0aNHA/Dll1+ycuVKTp06RY8ePQgNDb2umEVEREBjhps9ZiiOK/XZhg0bSE9Pp02bNg4zjlxLPxe3jZubG23atCE9Pb3QsU1xr2c+Pz8/Vq5cSfv27XnjjTd4/vnnHba3aNECs9l8TeOpJk2a0LRpU/bv38/27dv58ssvgT/GWSJyc9WoUYOzZ88WSA49dOiQffvN0K1bN95++22eeOKJm3I8ERERERGRvwLDMEhPyuJieDxHN5wj7mRyaYdUbNYcK2f2RJORVLzlwguTm23lwvZklr+7k5mjV7Hg1a3s/DmC8wfjsObYcPdzpXqbctS9Ne++3K5fjnJ0w7liHyfpQhqrJu/GZjWo2qIsd33UiVtfaEbLe2pTq2NFylT3c0hQAqjWqhzdn2qCxdnMqV3RrHhvFzmZuVc8zpl9fyQoVW4STLenipagdKmK9YPo90Zr/Cp4kZ6YxaLXtxGx4ax9u2EY7Jp9lPWf7refz22vtLymBKVL+ZX3ou9rrWnYrxqYIGLdWb57dA17fs1LUKrdtRJ9J7S6YQlK+ZzdnGg5tDYD3mxDlRYhNL+rFv1ea1ViCUqXCqriW6IJSgChbmWYEHonZkxYMGP63//NmJgQeieV3cqU6PELoyQluakiIiIKXRrCZrPx8ssvEx0dTZs2bRyWeLDZbIU+2Thz5ky+/fZb2rRpw4ABA+zl9erVw8/Pj9OnT9tvQORLTEzkvffeA/Juyl2v8PBwwsPDHcq8vLy47777SEtLK7DEx9SpUzl58iQ9e/YsMNtOvl9++YWEhAR69epFpUqVrimu0NBQ+vbty+nTp/nwww8dtq1YsYLly5fj5+fHrbfeai/fvXs3Vqu1wL5SU1MZM2YMALfddpvDtocffhiAN998k4SEP9arPHnyJJ988gmurq48+OCDDm3+nLgFkJ6ezgMPPEBiYiKvv/56gen9jx8/Tnh4uMOSABcvXuTs2bN/3hWpqakMGzaMzMxMunXrRkhISIE6cGP6+VJDhgxh9uzZxMbG0rFjRw4ePGjf9vjjj+Ps7MxTTz1V6Axb2dnZl73h1qtXLypWrMjy5cvtMwqMGjXquuMVEREBjRlKY8xQVEOGDCEoKIgff/yRnTt32sszMzN55ZVXAHjkkUcc2jz44IO4urrax5z5EhISmDRpEvDHtch3Ldcm/7ivvPIKmZmZ9vIdO3bw008/UaZMGQYPHlzsc/b29mbZsmV07dqVd9991/79BBAcHMw999zDzp07eeONNwr9Hjx+/DiRkZGF7jt//PTss8+ybds2GjRoQMuWN/8pIRHJm33OarWyYMECe1l2djZLliyhTp06l/15LCIiIiIiIkWXlZZD9LFEjm46x67ZR1nz8V7mvbyZb0eu5PtH1rDo9d9Y/9l+fn1pM6um7Cbx/F9/ltmstBz2LTjOj2PWs/zdXSx6/Tdyswp+RlRUhmGw9uO9RK5I4MyeGHIyrLh6OlOleQhthtVh8LvtGfpJZzo/3ojW99ehQd+8e7sbph3g3O+FT5ZRmMyUbJa/u5Os1BzKVPel46MNMBVx+bDKTYLp+XwznFwtnDsQx7J3dpKdXnAJdYAze6JZ+f4urDk2QpsG03Vs4yLNvFQY37Ke9Hu9NaFNg7HlGmz47ADbZh4mJzOX9Z/uZ8/cYwA06FuNLk82KnYi1OVYnMw0vyuM215pgWegG9ZsG06uFjo91pB2I+rdsOMUJjDUh25jm9CwX3XMln9WGk3/oBbMrzuOB8p2opWlKg+U7cT8uuPoH9SiVOLRcm9yUy1ZsoQXX3yRdu3aUbVqVQIDA4mKimL9+vWcOHGCsmXLMm3aNIc26enphISE0L17d6pXr47ZbGbz5s1s3bqVW265hV9++QWz+Y8fFK6urkyZMoUHH3yQUaNG8eOPP9K4cWMSEhJYsGABMTExtGrVqsCT8Js2bbInNeUnRR09epRhw4bZ68yYMcOhzS233AJQYHmPSZMmsW7dOj744AP27t1LixYtOHz4MPPnzyc4OJhPPvnksn2Uv5zI9T7Z/cknn7Bnzx6efvppFi9eTOPGjYmMjGTevHlYLBa+/PJL+7IZAK+//jqbN2+mTZs2VK5cGQ8PD86cOcPSpUtJTEykTZs2vPjiiw7HaNOmDU8//TQffPABDRo0YMiQIWRnZ/PTTz8RHx/Pxx9/TJUqVRzafPPNN7z//vt06tSJcuXKERcXx8KFC7lw4QJjxowpcOMM8hLKTp06RWRkpH1/4eHhdOvWjdatW1OrVi2Cg4M5d+4cK1eu5OLFi1SrVq1AktqlblQ/X6pfv37Mnz+fgQMH0qlTJ1atWkXDhg2pXbs2X3/9NcOHD6du3brceuut1KpVi5ycHE6fPs3GjRspU6ZMgYQ3yJtVbPjw4bz++uts2bKFsmXL0q9fvxsWs4iIiMYMN2fMMG/ePObNmwfkJU4BbN261T7WDAoKsifTA/j4+DBt2jSGDBlCp06duOuuuwgICGDBggUcOXKEIUOGcOeddzoco2rVqrz77rs8+eSTNGvWjDvvvBMXFxdmz57N2bNneeaZZwosA3ct1+auu+5i7ty5zJ49m8aNG9O3b1/i4uL46aefsFqtTJs27ZqXUfPw8GDRokUMHjyYjz76iMzMTD777DNMJhNTp07l6NGjvPrqq8ycOZN27doREhLC+fPnOXz4MDt27OCHH34odFasoUOH8uyzz9oTw5X0LVIy5syZQ2pqqn3pts2bNxMdHQ3A4MGD8fLyok6dOnTu3JkvvviCxMREKlSowLJly7h48SIvvPDCTYtVy72JiEhxWQ0bu1NPEJuTTJCzD028qmEx/bNuYImIyN+fzWpj+/dH+H3ZSTAuU8kEXoHueAS4En00kZPbozi1M5paHSvSZHANPAPcbmbIV5Ual8HvS09yZM0ZcjL/SEpKupDG9h+O0GZYnWvab8T6s5zaFY3JDM3uqEWF+kEEhPpgvkwCUfM7a5Eam8GJrRdYNXkPfSe0IqDSlWfbseZYWTV5N8kX0/EKcqf7s02LnWhTvm4gvV5szvL/7iTqSAJL3tzOreOa4+b9x6pBp3dHs2rKbmy5BqHNQ+jyRCMsTtc3TnFxd6LbU03YPfcYe+Ye4/elJ4lYf5bs9FxMZhNtR9SldueSeaiz3C2BDHq7Hcc3n6dC/SB8y93Y2ZP+jSq7lWFMhT4cSjpEnQrX9p65YQyRm+jAgQPGY489ZjRs2NAIDAw0LBaL4ePjYzRr1swYP368ERcXV6BNdna2MXz4cKNWrVqGh4eH4eHhYTRs2NB48803jbS0tMsea/369cbAgQONsmXLGk5OToanp6fRpEkT46233jIyMjIK1J8+fbpB3q/ry/77s8uVG4ZhxMXFGU8++aRRuXJlw9nZ2Shbtqzx4IMPGmfOnLlszIcOHTIAo2LFikZubu5l6xVVdHS08fjjj9tjCAwMNAYMGGD89ttvBeouWrTIuOeee4yaNWsaPj4+hpOTk1GmTBmja9euxueff27k5ORc9jjTp083mjVrZnh4eBheXl5Ghw4djIULFxZad+vWrUavXr2MsmXL2mPq1auXsWTJksvuPzQ01ACMyMhIe9np06eN0aNHG40bNzaCgoIMJycnw8fHx2jevLkxceJEIzk5+bL7u1H9DBgdO3YsUL527VrDy8vL8Pf3N7Zv324v379/v/HAAw8YlStXNlxcXAx/f3+jbt26xujRo43Vq1df9jinT582zGazARgvvvjiNccrIiJyORozFO5Gjs3Gjx9/xXFmaGhooe02bdpk9OrVy/Dz8zPc3NyMevXqGR988MEV41mwYIHRoUMHw8vLy/Dw8DCaNWtmzJgx44rxFefaGIZh5OTkGB988IFRr149w83NzfDz8zN69eplbN68uUj9kS+/X9auXetQnpWVZQwcONAAjAceeMCwWq328o8//tho3bq14ePjY7i4uBiVKlUyunTpYkyePNmIjY297LFGjhxpAIa7u7uRkJBQrDhFpGhuv/12o3379oX+O3/+vL1eZmam8cknnxj9+/c3unbtaowaNarQ3zk3Q3h4uNG+fXsjPDy8SPUPHjxYwhGJSGnQe/vfIyMjwzh06FChnw9fycr4fUb3fROMBjufsv/rvm+CsTJ+XwlFWvrGjx9f7H4qiunTpxuHDx++prYff/yx8cADDxQov9brKjdfccde+fRzunSo32+utMRM49zvscbeHfuveR8ZyVnG4om/GdPuXmJMu3uJ8d2jq42Fr28zNnyx39i34LgRuf2iEX8m2cjJ+uNzpbjTycbyd3fa23x9/zLjt+/DjcyU7BtxWtcl9lSSsfaTvcaX9y61xzf7+Q1GxIazxqndUfayM/tjir3v5Kg0Y8aDy41pdy8xlk/bUuR2OVm5xsLXthrT7l5ifP/YGiM17vK/e2w2m7H2k73GtLuXGDOGrzDiTl/+c8iiiIlMNGaOXpnXD89tMNLi8459cudF46v/9dGqybsNa471uo5TmBO/XTCmD1tuP5dr6fM/08+Y0vFX6HeTYRiXy6EUERERERERERH5xzpy5AijRo1i2rRphIWFXbX+oUOHqFOnlJ84FJEbTu/tf4/MzEwiIyOpWrUqbm5FmyViVcJ+nj0xo8BkFPlzLLxXbRjd/BvcsBhzc3Nxcir9RTBMJhMJCQn4+fkV2HY9MXbq1ImxY8cyYMCAYredOnUqO3fuLLDiwbVcVykdxR175dPP6dKhfi85tlwb8adTiDqaSPTRBKKPJpISkwGAxc1Mm/vqUKtTRUymoi0JBhB/JoWV7+8iJTojb3msRxtQpXnZIre/GB7Pjh8jiIpIAMDV05kG/apRt2dogZl/DJtBelIWKVHppMRkkBKdTmZyNrd0r4x/xSvPLHQ1hmFw4VA8+xed4Oy+P5ZUK1cngAZ9q1GxQZC9X7ZMP8ihlafx8Hdl0DvtcPNyudxuHdhsBksm/sbF8ARCwvypNtibuvXqFjnGzNRsFo7fRtKFNAJCvenzaitc3Av+Xtzz6zF2/XIUk9lEz+ebUrFBmSIf43ISzqWydNJ20hOy8AnxoF7vKmz79jA2q0HVVmXp/GhDzNc5g9LlxJ9J4eiGc9TqWOG6rzPoZ0xp+Sv0e+mPdEVERERERERERERERP5irIaN/575tdDVcgzyEpX+e2Yenf3qXdfSbyaTiVdffZUlS5bQqVMnXn31VZ5++mn27dtHZmYmrVq1YurUqbi4uHDu3DnGjBnDkSNHMJlM9O/fnzfeeIPo6Ggefvhhjh49imEYPPHEEzz00EMAVKlShfvvv9++7PWIESN45ZVXAJg4cSLfffcdrq6uAMyfP5+33noLgPbt22OxWFixYgXPP/88ZrOZY8eOER0dTXh4eIFEpqCgIHbu3EmVKlU4fPgwY8eO5cKFCwA8+uijODk5sXPnTp566ikmTJjApEmT6N27N++99x4///wzubm5BAcH8/nnnxMaGkpKSgojR45k7969lClThrp1i34DWUTkr8SaY+Xsvlii/peQFHMiCWu2zbGSCdy8XchMzmbjtN85uuk87UbUxa+811X3f3JHFOs/3UdOphXvMu50f6YpAZWLl0RStnYAfca35PTuaHb+FEHC2VR2/HCEg8tPEtapElkp2SRHZ5ASk05qTAbWHFuBfUQfT6L/G62LlVz1Zzt/Psq++ccBMJmgSsuyNOhTjTLVfAvUbTG0Nud+jyPpQhpbph+iyxONinSM3xdHcjE8AWc3Cx0fbsDZuJPFitHNy4VbX2jG/Fe3En8qhTUf7qHHs00dkoOObznPrl+OAtDmwTo3JEEJwL+CF31ebcWSSdtJjkpny/RDAFRrXY5OjzbAbCm5pWgDKnnT8p7aJbZ/+fdQkpKIiIiIiIiIyD/Y7t272bVrF7///jvR0dEkJSXh5uaGn58f1apVo1GjRrRu3ZrAwMDSDvWmWbVqFatWrSI1NbW0QxERkb+ob6PW8dWF1SRa0y5bxwCichJ5+/RcXg4dcl3Hs1gs7NixA4DRo0fTvn17pk2bhmEYjBo1ig8//JDnnnuOe++9lx49ejB79mwAYmJiAHjiiScICwtj7ty5REdH07RpUxo2bEirVq0ASExMZOvWrcTGxlK9enUefPBBPDw8eO+997hw4QLu7u6kp6djNpv57LPP+Pzzz9m4caPDTEq7du1i06ZNeHtf+cZ3bm4u/fv357XXXuPuu+8GIDY2lqCgIGbNmuUwk9L333/PkSNH2Lp1KxaLhZkzZ/Loo4+yePFiXn/9dVxdXQkPDyc5OZlWrVrRsmXL6+pnEZGbLSsth2Vv7SDmRJJDuaunM2Vq+BFc05fgmv4EV/fFydXCmm+3c3ZDMhcPxzN33CYaD6hBg37VsBQyO45hM9gz7xi7Zx8DoHzdQLo82Qg376LNKPRnJpOJ0KYhVGoczLFN59g9+yipsZnsmXusYF2zCa9AN7yDPfAq486JrReIPZHE2f2xVGp4bQk5qXEZHFh0AoDaXSvRoE81fEI8Lls/f8aoBeO3cWLrBUKbBlO9TfkrHiPudDI7f4kAoOV9t+TtP674sXoHe9DzuaYsnrids/tj2Tz9IO1G1sNkMhEVkcCGzw8AUP+2qtzStXLxD3AFPiEe9H21JUsm7SDpQhrV25Sj4yMlm6AkciMpSUlERERERERE5B8mIyODOXPmsHDhQqKiojCMvDkgXFxc8PHxISsri8jISI4fP87KlStxcnKiTZs23HHHHdSvX7+Uoy953bp1o1u3bvYlR4oi4VwqGXE5JRyZiIj8VaRZM6+YoHSpuNyU6z7e8OHD7V/PmzePrVu38sEHHwB5v9ctFgupqals2rSJ5cuX2+uWKZN3I3jVqlXs2rULgODgYAYNGsSqVavsSUpDhw4F8mY7qlatGpGRkbRu3ZqaNWvaE59uu+02KlaseNkYb7/99qsmKEHekl6ZmZn2BKX84xZm3rx57Nixg6ZNmwJgtVrt21avXs3kyZMxmUz4+voydOhQjh8/ftXji4jcKDar7boSP7LTc1j2dl6CkqunM1ValCWkph/BNf3wLeeJyVxwxqHyLX1o2acBm78+xNl9MeyafZTjWy/QbmQ9yob52+vlZOay/rP9nNweBUCdnqG0uqf2DVnqy2w2UatDRaq1Kkf4mjPEnkjCMyAvIck72B2fYA88A90c+sbF3Ynfl55kz6/HHJZkK469845jsxqUqxNAuxH1itSmTHU/Gg2ozp65x9j89UHK1g7AM6DwpT+tOVbW/99+bLkGlZsEE9bp8r/zinrszo83ZNUHuzmy9ixeZdyp3rocK9/fhTXHRmjTYJrfXfSlLYvDM9Cd/hPbEHcymZAwf8yFfC+J/FUpSUlERERERERE5B9k/vz5TJ8+nYSEBKpXr86IESOoW7cutWvXxsPjj6dQDcPg7NmzHDp0iB07drBp0yY2btxI27Zteeyxxyhf/spPoP6bGIbB5q9+JyoigexIZxoPqoGb17U9nSwiIn8PnhY3/CyeRUpUCnQq3pI6hfHy+mM5H8MwmDNnDrVq1XKoU5wZAP98c9jN7Y8bthaLhdzcXCwWC9u2bWPLli2sW7eOVq1a8cMPP9C+ffurxpi/n0uTijIzM4scXz7DMHjxxRcZPXr0Vetez/JBIiJFlZ2eQ+T2ixzbdJ6Lh+Op2bEibR6og5Orpdj7Wfr2DmKOJ+Hq5Uzvl1sQGOpTpLbeZTzo+XxTTmy7yNZvDpF4LpVFr22jdtdKNL8rjOz0HFa+v5v40ymYLSbaDq9LWOdK13K6V+TkYqHerVWKVLdBn6ocXnWa6IhELhyKp3zd4s3UmxqbQcS6swA0GVyzWG0bD6jOmb0xxJ5IYsPn+7n1heaFJoDtmn2M+NMpuHk7025UvRvyeyW0aQitH6jDlhmH2PXzUQ6vOE1mSg5BVX3o9FjDEk0ecnF3otwtASW2f5GSojm/RERERERERET+QaZMmULz5s2ZPn06X3/9Nffddx9NmjRxSFCCvBt9lSpVomfPnrzyyivMnz+fZ599luPHj7NixYpSiv6v6fSuaC6GJ2DY4OCyU/zy1AZ+X3YSW66ttEMTEZEScn9IJ9Y0fI0QZ18ud3vRBIQ4+zGu8qAbeuwBAwbwzjvvkJubC0BCQgLHjh3Dy8uLDh068P7779vr5i/31q1bN6ZNm2Yvmzt3Lt27d7/icVJSUoiKiqJ9+/b85z//oV27duzZswcAb29vkpKSrti+Ro0a/PbbbwDMnTuXtLS8hK6wsDA8PDz44Ycf7HVjY2MB8PHxcdjvgAED+Oyzz4iPjwcgJyfHHkO3bt2YPn06hmGQnJzssD8RkRvJlmvj1K4oVn+0h+8eWcPGL37nwqF4DAMi1p1lwYStJF0s2ux6kD+D0k5ijv0vQemloico5TOZTFRvXY4h77UnrHPejD/hq88w+7mNzH9lC/GnU3D3deG2/7QskQSl4vLwd7PPTLTn14LLw13N3vl5syiVrxtY7MQbs5OZTo80wOJs5tyBOA6tPF2gzsXwePb/bym5diPr4eHrWuwYL6dOj1Dq96kKQHpiFp4BbnR/tinObpovRqQwSlISEREREREREfkH+fbbb3n55ZepVq1asdq5urrSp08fvvvuO3r06FFC0f01rFq1inHjxvHxxx8XqX6F+kE0GVIDs3PebeqstBy2fXuYOS9s4vTuaPtyeiIi8s9iMZl5vtJAgAKJSvmvn680AIvpxt5qmTx5Mu7u7jRq1IgGDRrQtWtXTp48CcDMmTPZuXMndevWpVGjRkydOhWAjz76iMOHD1O/fn06d+7Myy+/TMuWLa94nKSkJAYNGkT9+vVp0KABOTk5PPDAAwA888wzdO/enUaNGhEdHX3ZOMeMGUOTJk3Ys2cPgYF5s2Y4OTnZZ3asX78+DRs2ZM6cOQCMHj2aSZMm0ahRI5YsWcI999zDsGHD6Ny5Mw0bNqRRo0asWbMGgP/85z9kZGRQu3ZtevfuTbt27a67b0VE8hmGQfTRBLZMP8h3j65h5fu7idx2EWuODd/ynjS7oxZdxzTCzceF+FMpzHt5C6d2Rl11v9npOSx7ZyfRxxJx9XSm10vNCaxSvASlS7l5udB+VH1u+08LfMt5kpGYZZ+pp//ENoTU8r/6Tm6SBn2rYbaYuHAonotHEorcLiXmj1mUGg+qcU3H9qvgRYuhtQHY/kM4ief/mH0wOyOX9Z/uBwNqdqhAleZlr+kYV9LirjBu6V4Z33Ke9HiuKZ7+hS85JyJgMvQpioiIiIiIiIiI/AsdOXKEUaNGMW3aNMLCwq5af8+2/STvgaMbzzmUV6gfSMt7byGg0vUv9yMiN9+hQ4eoU6dOaYchN0FmZiaRkZFUrVrVYfmzq1mVsJ//nvmVqJw/ZgAKcfbj+UoD6ObfoCRClWK41usqN19xx1759HO6dPyT+/341gvs+jmC5Kh0e5m7rwvV25SnRrvyBFbxsS8FlhafyeqP9hAdkQjkJeI0u6MmZkvBBNXsjFyWvbOD6Ig/EpSCqvoWK7Yr9XtutpWDy06SnZ5L40E1cHIp3hJ0N8PGaQc4svYsFRsGcesLzYvUZtNXvxO++gzl6wbS++UW13xsw2aw7J0dnDsQR5lqvvSd0Aqzk5kNXxwgYt1ZvILcGPR2O1w8nB3a/ZO/1//K1O+l46/Q75pjTORvIjc3l9jYWKKjo4mNjeXkyZPExsaSk5NDTEwMp06dsq8jnpCQgNVqxdnZmdzcXDIzM7HZbFitVrKysnB3dyc9PZ3s7GycnJxwcnKyT7fr7e3N+fPn8fHxwWw2Y7PZ8Pf3x2w2k56ejsViwcfHB5vNhmEYGIaBp6cn2dnZeHt7k52djbOzM76+vri4uJCWloaPjw+1a9fG2dmZrKws6tevT5UqVfDx8aFChQr4+Fx7BrmIiIhIScjOziYtLY3U1FSSkpKIjs6bJSMjI4PIyEhiYmIICgqyL0Xg5uZGhQoVOHfuHMePH6dixYr4+fmxZ88eMjMzqVu3Lrm5uezduxfDMKhevTqnT5/m4sWLpKSkUK5cOWrXrk1aWhrR0dG4u7tTp04djh07RnZ2Ns2aNcPNzY19+/bh5ORE69atAdi7dy+VK1emRo0aJCYmkpKSQqtWrfDz8yMlJQVvb2+qV6+Ol5cXbm5ueHp64uSkPwNFRK6Vq48THR+pQ50eldk2M5yoiLyng88diOPXcZsI61KJpkNq4n4Dlw4QEZHS182/AZ396rE79QSxOckEOfvQxKvaDZ9BSURESt7F8HjWfbIPw2bg5GohtFkINduVp3y9wEITjzwD3OjzSku2/3CE35eeZP/CE8QcT6TzE40clgzLzshl+Ts7iY5IxMXD6ZoSlK7GycVCw37Vb+g+b7SG/aoTsf4cZ/fFEnM8kTLV/a5Y/9JZlJoMvrZZlPKZzCY6PNSAOc9vJOZEEnvnHyewik/e/k3Q4eEGBRKUROTm06fTIjdZZmYmERERhIeHc+TIESIjI0lKSmLtsp24e0NWdhYpySlgtuHu4UpqahpWa26R9m0ymTAMA1dXVywWC+npGQD4+/thNptJiE/EbLYQHBKEYRjERMVRrkIILi4uZGXmkpmeTVBQEK6urri5uZGZkUVifCo+Pj5kZ2dz7sxFDMOgbPkyWK1WoqNi8PXLyybPyMggIyMTT08PbDYbGRkZxe4bX19fLBYLKUkZuLu5U75SCImxGTRufguurq74+fnRunVratWqReXKlalcubJusomIiMgVpaamEhUVRVRUFGfOnCE2NpbU1FQ++2IJZnMGqSkZ5ORkYjJlkJuTQXpGJtbcLAzDetV9m83OmExmXFzMmM1mcnMsuLiYcXYxs2/f7+RkWfDyMWOxmDkWEYvJZCYgyITJZGbb5mN4eJlwdXUjJycHV1c3dmyNxNktF3cPG2lpmSyavxFPHyuGYeP7WQswDBtuHlZsNhubN+7EwIrFyYbVaiM3x4ZBLjab7epxW1xwc3XFw9Od3Fx3LBYP/PxccXV1Iz3Dk6fG9CM1NZWwsDBq1qxJYGCgfYwoIiJ5ylT3o8/4lkT+dpHtPxwhNSYDw4Dw1Wc4vuUCjQZUp96toVic/3pPNouIyLWxmMw0976+m6ciIlK6MpKzWDN1L4bNoFqrcrQfXQ9nt6vfZzI7mWl13y0E1/Rj4xcHuHAonnkvbqbLk40oWzsgL0HpvzuJikjAxcOJ3i+1uOEJSn8XPiEeVG9TjmObzrNn3nF6PNP0ivX3zT+OzWpQvm4gZWsHXPfxPQPcaDu8Lmun7mPPr8dx8ci7vvV6VaF8ncDr3r+IXD/d3Re5AdLT0zl06BBHjhzh2LFjREZGEhUVRXR0NHFxcaSmppIQn4hB3uxDhTNhcvPH1c0VksHd1ZOwsOpkZeZy/kQy9ZpVxs/fl/1borDY3GhzW2VcXFzZuyQVF1d3Ot4ZQnYG7F+UTVhnJ/xCnDm0JoOUaGjU3w0nZxM7Z+clDjUZ6EZ6gpXwdTm4eUPNdm6c3p9N0jkb5ELPu12JOWEl9qQV/OGWzi5kptiIdM7F3R/qdnHjQkQ25w7YqNHOiYAKTuxelEluGjQb7IbJAjt+zgSg+R0upCZn8Nu8OKq2NOHl78yR/ec5dyKFem38sVqtbF93lFxbFrXqlCUlJYWjySdxdjWTmJhAYkoiS5eetPfSjBkz7F87OTlhzbXh7eNFYGAgLi4uhISE4OPjg7+/P61ataJmzZpUq1aN6tX/2pnlIiIiUjSGYZCcnGxPPDp//jxRUVHExsZy7tw5Tp06RWpqKvv2R5CTnYrVmvOnPZhwcnLD1c0Nby83DMMdJycPyob44OXlzsVoL5ycXLklzIxhuHDqrCdBgSaqV3Uh+rwzcVHu1G1sISDQme0bnAATTVpbycqEg3ssOLtZadAEzkRC9AULQWWtlK0Ah/eBNddCcHkrLi5w9qQJMOPjZ+DrZ3A20kQFP/D0thFSAU4dA2sFM5Wq2/DwgiP7zIBBg5YGmWkQ8bsZL18bdRrD6eNw8YyZ2o1sePnmsnVVNlZbLrc0zSQrK4d9vxuYSKNqaDYJidmcOWsjwC8VkymDU6czycnNIjMjjqTETJKTM3nqqfXYbI5J8iaTCWdnD5xdvKlVsxy+vr40adKEkJAQsrKy7AlNZcqUITg4GBcXl5vzDSEixZKSksLmzZu59dZbSzuUfwSTyUS1VuWo3CSYg8tOsnf+cXIyrORk5LLjhyOErz5Ni6G1qdI8xL5UhIiIiIiIXJvzB+M4se0C9XtXxbecZ7HbGzaD9f+3n/T4LHzLexY5QelS1VqVI6CSN6um7CHxXCqLJ26n2Z21OLMnmqgjCf+bQakFQdX+nQlK+Rr1r86xzec5vSuauFPJBIYWvqJKSkwGR9bfmFmULlW9TXlO7YzmxLYLZKXm4F/Ri2Z31Lph+xeR66MkJZEiOHv2LDt27GDfvn0cOXKE48ePc2j/UTJz0rHZcjAoPPHIhJmy5fKSZrJSzHh6eNGkdW2y0gyiIsw06VyBCqFBHFhskJsDzQY4g8nEzl+zAWjRw4WUWBuHs3OpGGKifE1nLNE1SIkGf09XXD1N+Lvn/WK3ZpvJSsl7cv7Mvlw82jvh6mkmBRsXw7MJruaMiwdkp8OF8FwsznkfkGamwOG1mYQ2csFiziX+zB9P3zu5QGgTZy4cySXxYl65k5OZxPM2LhzOe23LNpEaYyM3La9NVrpBZnLeNnc/MHJNJJ5yxsctGB9XC4FBzpxJ9qO6H9Su6YoJyD5RP+98uzmRHGejgmGjWjMoE+rM4U05JEdB494msnLTWfPLKTKyE6jdypvY2Hh+330cLw8LJpOJM6fPcuRIBCZT3g3MmTNn/nEuTk7YrAZuLh5UqV6JcuXKUadOHSpXrkydOnXo0aOHZmUSERH5C7BarVy4cIFTp05x+vRpIiMjOX78OPPmbyYzM5GsrASsudkObcxmC07Onnh4eBHg70FOrjdlghtQuaIb/gGenDnnj4uLN62aO2O1unMowh0fr2zq1DY4Hgkxca5UC80iIAB27nEGzFSplEVODqTHWXDKtuLlCSmu4OpiIT7aiqsLWCw2rFYLUefB+X+TDOVkmomLsWEz8sZa8dEmnJ0NnJxMWHMh5oIZd0+DkAoQfd5xDOnpbeDpbeLUUQOrNS8pKS0FkvJWEsLJ2SAtGaLP5702mSEpHmIv5L1OTQZrrhPOzi44A+7ONqxZUMbVjIeXjRrVIPIIEOpKtdBsAgIM+/k2bpBFbi4cOOSKi0sWDetmczwyjZOnsgn0S8DJKZXDR9LIzs4gLS2ZmJgT/Lb9d7KzU7HmZjqch8lkwsXVG1dXf/z9fejYoTGtW7emcuXKeHl5Ua9ePQICrv/JOBEpvqioKN5++20lKQGrVq1i1apVpKamXve+8pdcqNmxIrt+PsqRdWfAgJToDFZP2UO5OgG0uu+Wy34wLyIiN19RZiCVv4/LPxgsIv8EudlWdvxwhIPLTwFwalc0t73SAr/yXsXaz94Fxzm7PxaLi5muYxoXO0Epn18FL/q/0ZpNX/7O8S0X2PHDEYC8BKUXm1PmX56gBHl9VK1lOU5su8DeecfpOqZxofX2zT+OcQNnUbpUm+F1iD6WQEZSNh0fbYCTi2a5Ffmr0B15EfKWAdmwYQNPPDCJlMxoMnISsZFJVk4GVlvBpdbc3T3w9PLAluyOh0cITdvUITvFRGykhXqtylO1dhD7lxjkZkPDPs5YzCZ2L8i7mda0sQuJUVaco62Y08BiccbNL5PUKEiJt+HubcaUnffEf3aqM7mZNkzZOSREmgmq6ISbl5mUaBvxp3MJruaE2Qw2G8SfteLkknczLD3e8XX0cRtOLla8Ai3Ep1u5cDiXai1dqFDHwvkDORgZkJloJSvJhslqw2QDk82GNd1KVrKZ3DQrpmwb7n5mKtRx4sz+HGy5YHEBa47BmQN5y6E4uUN6ko2oI3mv3X3MpCUaxETm/9FvIi3BRn6X5mYZpCcakJ2Dhx/kZjmRcDIXsq1Yc12wZhskRxlggM3qhBNelPWtDUCD+k7En7findSByg2gbHUn9q/JJTMJ6vc0k5ObxoZfz5CWnUBYC08unL9I+O+ROHvYiImJITw8nNWrVztcVxNmgsoEYTE7k5liwccziBGP92fQoEHUq1fvhn2/iYiI/JsZhkFcXBwREREMf2gKGelxZGcmkJWZSEZGIlmZSRjGJUnTzm74+frh5OyHv3s1ypX3JjjIm3MXA3Bx9aJpI2dsVnciTrjh4Z5DnTAbJ06ZiU9wpmKFbIICDVIz8hJxcrOyyLWCJdNKejZkpIEpG5zjM0m2gIcFXFOyseVAfKwJN/e8GHJzzSQn2Mj/3Ds50YSXt4GLm4mMNIiLNuEfCGazDZvNTNQ5E55eYDIZ2Gxm4mNsBJWF2KNZ5GYDVsg1TJhTDcwuYHLP+9pmg5xcE0aygdkA/3ImzBYn4qPzDuzqDvExkJKcN8azmCA2Ki8+gNwciIvOi9FssZGZCQkxea+dnSE1BVKTwDktE6s/pOSCc3zeGDU7w0RSEpizrLg6QW6OC9YMF3x8XSlXoSwB/gYZOXmZWA3qZJGRBUePu+LikkO92llEHEvj/IVs/H0TcHJK4XB4MlmZyeTmJPDrvPl8O3MWOFxXdzw9/fDz8yXX8MfVPQA/v0A+++hxGjVqhLOzcwl894n880VFRV1xe2xs7E2K5K+vW7dudOvWjSNHjjBq1Kgbsk8PX1faj6pHnR6V2TbzMBcOxQNw4VA8v760mbBOlWh2R03cfbV8pohIaXFxccFsNnP+/HnKlCmDi4uLZrv7mzMMg5iYmP/N/qq/I0T+aWJOJLHu//aRdD7vSXl3XxcyErNYPHF7sRKVzh+MY/cvRwFo+2BdAip5X1dczm5OdHqsIcE1/flt1mEsLhZuHdecMtX9rmu//ySNBlTnxLYLRG6/SMK5VPwrOF6rlJj0EplFKZ+blwsDJrXFmmXFM9D9hu9fRK6dkpTkXyM7O5tt27axceNG9u7dS0REBEcOHyc7JwMDxydnzCYnypUPwZbrR3aqE1WqVaB2vVBO7rHgYQumYS93LBbYuyQvmahpExcSL1o5nmDFKceECWc8ArJJvghpcTa8Av6XSQRkpRlgA2w2Es9D2Zrg7mUm7VwOqVFmXN1MmJ3AlgtpCVb439/I6fE2ctIMLC5mwEZytI2AiiY8g/KSltLibJSp5pSXOJQNuVngFWgBrNhywWQ24elvIuFkXsyJZ3LIzsi74WWzwfmDf14KJc+5/X+UZyTbSLqQS2ZCLqZccAt0xtXTTFZaXtaRX7AZZ2cTmf+b0cnD10xuFuQ/XO/kbCY9Ie+YTm5555gak5fQ5OpjJjfTICkq77XFZJCRbEB2LjjnzYKUlmADw8AzIO8cEy/awACzJe84mUn/C9Rqwgkvgn1qYTZD/XpOlPe1EphpULmeiZDqFvatziUpPomKTVJJTU/itw0RZGQn4u/vRUxMLInpCSSmn2b8+N2MHz8eAG9vH4KDyxAaGkq9evWoXLkyffr0ISwsrJjfjSIiIv98ycnJHD16lIiICI4ePUp4eDiLl2wkPS2W3Etm3nFx9cHb24+AAF+yrZVxc/OnVjVPnF38iE0IwtPTiVtqWTl52kJikhNlQ3IoE2QjPdsJsGC1ZmP931AuI9NERhY4WQ0smVbS4gx8PcDVmktujoXkJBNuHnljEVOqjbR4sPxvqJORAlmZ4OIGmTmQEW/gEgQmsw3DZiYtBZyc8gZmuTkmcnMNXP+XpJSTbcLibODmYSI9NW+7i5uBswtY47OwZkC6yUT+BFBZGZCVUfBJ36z0vFkp86UnG5hTczD/b5IPt2DnvCGlYQIM3L3yjgdgthg4u5hI/t9Yy9XNRG6OQUZ63naTGbKSDaz/m/3SMCAtKb8tWNMNMmLAkpaDxd9MRrpBeroZc64VcvKSm8xZViAvET81NS8xysXZTE6uMxCIj68T5cqVxc/fICs3b7m3OmHZ/D97fx4myVWfacP3ORGR+1KVtW9dvW/aV8QihACBLRmDMDZgDwaD8DavxzM2w8zYZl782eP9M8aez349GBvMZ7xhCxlLgBEgsWjf1Wr1Xt1VXXtVVu5LLOe8f5xcqrqrJGGEBCju6+qrKzMiTpw4EZl5Mn9PPE+jCSenbLTKMzKY5/SZMourZSLWKp5bYG3pJI3aQyjlcfXVfw1CEov3MtCf44bXX8vll1/OxMQEExMTXHjhhWHhISTkGfixH/uxZyy0aq3DQuwLQN9khht/9WrOPLTEA58+QmmxBhqOfnWGU/fNc9nNu7jgjZNYTngnb0hISMgLjZSSHTt2MD8/z9zc3IvdnZDnCSEE4+PjWFb42RoS8v2CChSP3XaSR281Tjvxniiv/umL6N+Z4Y7/9SBrM2Xu+M0HuPE5CJVqhSZf/d+PoTXsefUYe68bf176KITggjdOsv3KQaQtw5sRziG3Lc3klUOceWiRx287yWt+/pINyx/77CnjonTh8++i1CaWisC3ZrgVEhLyAhCKlEK+72g0GnzlK1/hy1/+Mn/1//wjNXcNN6ijdbBhPceJMDg4SK2YJWbluOzqPYyNjXL6/jRSSi670aa4EHDqwYDcEGwbj9CcdSkvQW1NkcxZXeFRpSs8Ks6Bv8/Gcczj8opxFGo7HlXXFMLUdGgWAry6wmr9RlxcDOgds4lnJdVVRXHBJzfpdLZdm/WIxs0XrVpeszzlEksJykuwMh1QLwXEM5LKimL+iIcIFNGoiXg7+0gTMBFuvgtrM2Y8IglID9msnfHZyuU40SuJJAWFswELh00lT0agtuhxfNE8FhJKcwGFeYXvgpRQySuWThoBUyRuRE7LU+ZxMitoVBWrrX7EUxaNiqJRMvuUtqBebDk0CR/lWVRXA0AQiQu8JlRbzgAIqFU0bXsDrcw5QmtiGQg8KC0ZQRNS4LngViAeyTIykCNQ0Bw/iIzAZW+wWZhSnH0a+nfViGTX+NoXD1OoLNE7aFEul/jKV77CV77yFQA+8IEPAIJYNMHo6CiXX3EJ119/Pa973etC8VJISEhIyEuCfD7PU089xaFDh/jN3/5rqpVFatVlPLcbn+NEUvT05OjrH6Rv8AJS6RwX7u+hXB+gXEsw2Ocx1Bdw6GkjPBoc9tBaUyhHaDYDmq5ACuOA1Cxo/BREgwDfg1oBonEjSgJBvUhH5F2vSZoNheMYlyG3oIhaYNU9NFCvgGx9I3Ib4NYhEoEGUCtCPAUxFHUka3lBJmPEQCoQLM0JIlENAoJAMDcNds3F8s20cLFg2hXSzE1KK2aeksiA1zT/NkMISPZArQTNavd5acHaqdY8DLAcWDoCQdJpjTEsnNV4TXPwtq3JL4HvtsREUlNc7fbJsqBkDD6IRMH3zXgA2E2FVwaKASQlSmmqZdnqh2qNu0Y2A+xYgNeAelEhVQCBNuKqlqApCKBalQghSaV66B/IUKxaxFMWo8Mu2YzmqVMxtFZsH1lmaWmNk6eL+M0lJMv842c+x1/91Sc7c3khbeKJHH19A6TSQ/zGh3+egwcPsnv37lC8FBICpNNp3ve+93HppZduuvzMmTN8+MMffkH79FJFCMH2q4aYuLSfp75whkc/ewKvHuDVfR749FGOfHmGl/3EfrZdMRgKx0JCQkJeYCKRCNu2bcP3fYIgePYNQr7rcRwnFCiFhHwfUZyvctefPs7ySXN31Y6XDfPK915ALG1uiLrxV696zkIlpTRf/d+PUS+69E6keOVPXfC89zd06dmay96yizMPLXLym3Nc9tbdZIeTgHFROva1tovSnheziyEhIS8CoUgp5HsWpRT33HMP//Zv/8YDDzzA0aNHmT5zFk3QyaC2LIuB/gECL4v00lxz3UH6+weZezRDqt9m79UOpRXFsXsCtg1J+kYktcmAldMBflOTHZJEEgHlVVPMGT9g8/SCS3lF0DtmMbDbYvlEQLOqyA5JYmlolE0hanivzeoZl8oqjB8QjF1kMfN4gFtTDO50SKRd6mvgNwMGdzssHvGoLimQmsG9DlP3NqnlA4b3RUiPSopnFXZEkB22EEETbUkGdkQQQrN8KsC2Yc8rYzSqmqNfqtM7ZjF6URyvDse/UWfswghoTaLXZnXKIzdps3jMRVqCkYMOfdttjt3dAAXRtCA3abNyygiKdl8bw6trCmfrZIYlwwciIGDtjE8kIbAigsDVJHLmi+DqaR9hC0b2O7gNzcn7XeJZSW7cwo4JTj/gopQg2WvRM6pYmQpQgSKSsIkkwa+DExMEre+V8awkkhBIW4Dnk+6xicSB1vJUViJbNSlpQSQuqBXNj7zpPrAd8FqGDckegZR0BE3RpKBeMX+nckYcpTwFSPqHEqT7U+weGIMBuOJGSeBpHvuSRtlrjF5U5ehTpzj69Gni2YBiKc9nPvMZPvOZzwCQSCRIJBJs376diYkJXvva1/KOd7yD/v7+79wLIyQkJCQk5DtEtVrl8OHDHDp0qPPv7rvvo9k0CmMhJNmefnp7BunJ7aS/v489u3oo1fqp1jNsH3fJpBXHTkVoNCHX55HyoDxlxERyIGCgL2B51aJWFwwNKFLSp14T+HUYzAUUFyxqVbAk9A9rFmagUtH0DUIiGVCrWvg+9A9AfknjuWYeMNCrOLuiqPowNAmZPiiuQKMGgxOwMgsqgCCAVBZKq0a0k8oa4VJzyceOS4bGNM0GVCuCTA8MjWnOnBQ0F5sMTgoS2wX5OaiXNf3jZo4RSwqqBU08LVg6o0n3CWIJWFvQlFaN2CjdL3CmNV7DzEdG90qmDynqZeifEFg2WDYsndEMbBMUFjW5UUGzprEdn4VTmtw2h0gUinkorGoSKUimwfc0zYLCsiE7YI5NWmYqFI1DtWD6YLf+eU2znRMFBNg1j0wCqg0zP4o4klgi6Iju4wmwbRAINJBI6I7wXVqaeERT8BSyGZDMKCKOGVuAeNy4fUpfo2xBLpdFi17qKkJv1mf3Np+njttUa4Kh3BJ+c4Unj5SoV1dAzzN14j7e9jYjHLcsi1R6kB9+0+vZtm0bO3bs4IYbbmBiYiIs/oe8pNi7dy/lcpkdO3ZsujwIut+XQ14YLMfi4jftZPerx3j4H45z9K4Z0FBarPGlP3yE0Qv6uOZdB8ht+/biJkJCQkJCvjXa0WCh0D0kJCTkuwetNU9/aZr7P32EwDU1o1e85yC7Xjm64bt9PBNtCZUeYG2mwh2/+QA3fehlZEeS57X56D8dZ/5wHjtq8br/dBl2NBQ0vpD078wyfskAZx9f5vF/OcWrf/oiAB77rHHIGruoj+F9vS9yL0NCQl5oQpFSyPcEruvyhS98gTvuuINPf+Kz1L0Cvurefi6EQAqHdDLHBRftwwoyqNVRDlw1xMA2ydFv+lQLsHObhbRgjoDKCniuxq2bKkplVdEzLGlWA1CKelmRSEsCVxG44NYUnmt+zK0sBzRrNlqZx9W8IpaW+K24kGZVGyEMUF1RNCoBWmmEH5A/E5DsNZFtZrkm8Lp37ARNOtvWy6CVoGfEpnjWJT8T4MQkuUmb/BmfpWMuvquxLIX2YPm4R2HBVH0aZc3qlE+tqFCuiZ3TSlMvmnXsmMCtQr0Y4FabpIesdpcIfGhWurZKSyc8SvOmj24dSgsBXlNTXvBJ5CykLSgv+sQyAYlei2bFxM+5VY9kr4NuBFQWAqYfVthxiRWBnmGL5VM+jbImnoW+bTblFYXyIN4rsWwozJl9qgBqRUVlxfTJdxWFBR+/5iMDCAKLcivaJNlr+l9eaY+pNMXFlhNB4EKtaNaVlinclVcC0JpIRBB4mtKyRgQBgWfhVro/4AcuVErmcba3l7HhPtyVcbLuq9l1hYm7u/9zNVaqpxnaW2Z+YZ5jR07yyCOP8tBDD3HrrbfyC7/wC0QiUYYGh7j4kot47Wtfy0033RS6LoWEhISEfFextrbGI488wiOPPMLv/+HfUCnNUq+tYmwJBbF4L8n0MDv3XMbw0CA1d4xILMfBPVCtwcx8hEQ8oDfnU2u2XCDrgmhEEAQCENRqoF2NXfXxXGXiYZstt6SiwkuD7ynAolKBWMz0zfcljbrqRKd5TYHnduOLqmVB1FKImkJoKMyDbP2O5bkm4qy9rdsw4nI7Qme+kBsxYh3fg9V5cGLG3SgoKxaOKbyixvKgCSzWoNlydqyXNY0qVNbM+tWicSZyG5rAB42ZQyxOaVI5E80Lxi3TbZgYXDD9mD9uBEoAjYpGaRDazHGqRSO+zs9pVADRVnzd8lGPRMasY9dg5Rg0+wVBTZLMmnllu82efiPAb7Sck6IJs9/2XLZRb42RNu6Z5TWoFDVW1SMagfoaNGpmUC0LqlXQWgAtl6VaOwoOalWotvaLgGpZo+vauC75UGuYGDnHD/BqUG3FyAHUGoKmB0JaJBJ92Nk+xuoRQHPhHpfVNYszsw2EmiUq5zl5aoXbPnc39eoiXsuqyrKj9A+MkEqP8ev/8+e49NJL2bt3b1iMCvm+5S1veQuNRmPL5UNDQ/z3//7fX8AehbRJZKNc+/4LOXjDNu791NMsPG3s7OaeWuXW//EN9r9uG1e8bQ+xTORF7mlISEhISEhISEjIC0813+Brf/4ks0+uADB6QR+v/tmLSG3hUhTPRLnxV67mjt8yQqXbf/N+bvq1jUKls08s8+hnTwLwqlsupGcszP16Mbjs5l2cfXyZ41+f5bKbd4PWHPvarFn21tBFKSTkpUgoUgr5rqNWq3HHHXfwi+//TUqNeepugUC5neWWZZPL9aPqCXoS47zsugNkE32cetjcYX7wapv54wErVU29qPCaohNdUS1oIjGB8kwxp1HWNEsKvIBaAdy6hWoJkUpLCmkZYQrA2rxC+a3tquA3NKpVyCkuKHqGNLYICHxYeLpJOicRrllhbVpSzRvRTKNo7jRPZG3qaz6Lxz12vCxGekBSXlYc+WqDRFYibVAunHmo0REMVVcU3rgmnhGgjQhpYLfN7lfEOPGNBnNPmf1lhiW1gmL+cFdolD/jbxjnhae9zt/VvKK6pk1FDfDrmupqd9t2xJvpv2Kh2F3m1roCK6+uKC8qeicsqmtQXoDygsfwfofUoMWJbzRABST7JPGM4PQjHm7NbDt/xCM/Y9qNSzj05Sa0ujy8z2b1TEB5SSElZAYcVmd8/IYpKpYXFctTHngghWR5KmD5VCtSJS1Ym1e4dUCAtAT5s2Y/sTRU8pql1rp2RFBeVVRb0SftaBYRBEgbXFeSnzHLIlHjvlCYba2rBZU1jW3HGM7u54J9km19ilEB6X4Y2dvk/q8dY3Z+imhPjUq1xO23387tt9/OL//yLxOPx1G+QzY5yDvffRPvfe97ufjiiwkJCQkJCflOs7KywiOPPMLP/KePUCnOUinO0qibD0NpRejtHWFoZC/R+Ci9uUH27u5jfjmO60oGcj6JuOLMrCmo1uoeTdfMJ5quoN6QBK5ABJp6VZCISih52Fq2Il5bcw8PymWB55vHjbqgVADdWt6sSWy7LRwWlEsgfI10AzxXszoLYq2JXYVmHQqejTDTJdw6pHu6x1tcgWQWqiUzpzt5yHyuAxSWjWCoLdapFGBwOCCiFV4Vyq5keKf5zC/nzfZCmFi4cn7juLbj3dpujuuj2yp5EL4yR+cKmsUAVfMRgOtCs9YV0FTWzml3WXfGDIyYKJo07VfWjAh7eJeguNwSXrsNYgmJ9iBfinTGoFIwYyUt0/f8AqAhnjTjsdSa88STRohUKZjHgQf5RVBLHjYeXkywpm3wTVSe8gVrrbGwHUGzKam1BE0qEKwuGxE+GKerQsEscxxJo6GorSpsz8eOKopFgXItBJrAF1TqRsBkS03TlZSqkkg0RTa1i4G+HeiYjdaS0YEmjXqRE1N5KqU5bGaZnzvMf/gP/6G1rwiJ9AjJ9Dh9/SP86R/9Itdccw22HX49Dvne59WvfvUzLk+n0/zgD/7gC9SbkM3o257hpl+7mtMPLvLA3xyhvFxHa3j6zmlO3jPH5W/bw8HXb0Pa8tkbCwkJCQkJCQkJCfk+wHcDPvfr91FZrmM5kqt/fB8Hb5hEyGd2Ro5nW0Kl//UAa2c3CpWq+QZ3/f8eBw37XzvB7leOvkBHE3IuQ3t7Gb2gj7mnVnnic6dQgQpdlEJCXuKEv8KGvOg89thjfPrTn+arX/0qjz7yxAZBkhCSqJPmgj0XEWWQmLuD0e09jO6xOHZvgO9CQkoTA4YRCPmuxomZwkd1Dbw6xNOaah7qRY3TugsfP8CtSSIJCQRUV6FRUkSSguqapprXxDPm7nHlgg4g3W8BAcqHtRmPaFwg/IDGKqycwZgLKONqlOyPYMdc/AbUCgFD+yJUlhooH058vY4dbRXlGlBdNc5EANKGbZdHWT3jsXzCp7ykSPZJoklNeUkx82jXQQqtKcz6qKB79z0ShvZFqK4EHdESwORVUWprAcsnumKlnnGLgV0OJ+9pdrffgqF9DoleydR93f1HUrDtshhnn3BptIRL0TQM74uglEtx1giY8mc93LruODVVVxXH7zYVO0tCbpfD8qmgc/zjFzqsTgcsnfRBQmVFUW85GFkROHFfsyMQG9hp40Sh2RKipXIWTlSbvBbLorCo8JsalCaWNi5XhSXTkXROEokJvLrZNggwYq3u8FJaMv1KZo2DQb0UABaWba6tdpwJWlMx8cjYEeNOUG09jsbAtuL0xS6id+IidlwCli049qDHSvkUvTvXOHnyFHOzZ1kunuSjH/0oH/3oRxFIJrdvY9++fbzrXe/i5ptvJpFIPPOJCgkJCQkJeQY8z+Pxxx/n3nvv5d577+XWz36xI0iy7CipzBgjEwcZGRrBUxPEk/2MDyuaHqzkbSypEMLHsTQu0HAFqaRACIXWklpdYFlGlKQC41wkLPPZGlQUMqtwHAvXNZFpyaTGTKAk9apCtz5XfV/gRCAWF1Q8qFY1MVvhKAh8QS2vO3FjsubhaAFJQaOq8ZrQYwWkeizKeSPcqRaN0CYIwG1uHJNML6R7Ye6k+eyvlSHVC7UFD9WEhRPrB1BRWpE01gmO4mnoHRY068YxCSASM8+tnO0+BzA4KaivKSr5Z45asgKPwV0Wayuy43YEJsY2EhOszna3z/QLoglYaImuVWAEUvUyXcH8rBlYSYNYSuDJKM3W/CfVs+74MVFs9YppB4wQq1Yyp0lI6BmEQmuOZzvm+KtnPaw66JxDIW+iewUax9KU8ub8gomgq5TaDkyaRgOajdZjW1OvCbzWHM+JgKprrEZAEDNRcs06iEDjOJqGC83W1wbbFriuRGtzUUhLgpUjNzDI4PBeJoYDFlYsSpUGlprBb85ycmqBtZWjzJ35Jtde+xmkdEhnx/mhG1/BG9/4Rt7whjcwNDT0jOcpJCTke5s777yTO++8k0ql8uwrP88IIdhx9TATlw7w1BdO8+itJ/GbAW7N576/fpojX57mmncdYPzigRe8byEhISEhISEhISEvNMfuPktluU6i14iOvhXHo3g2yo2/ulGo9IO/cjXf+ItDNMoefZNprvnJA9/B3oc8Fy69eRdzT61y9K4Z2gnkl/9I6KIUEvJSJRQphbygVCoV/v7v/55f+aXfp1Sfp+GVoRV9IaVFxEqSS05y8MKD7Nq5m9nHzG3te66xqOYVc8c0jZIpmkST5s7xZh2SudYOtKaSV1iW+bteMSIS2zGipXpZ0T/pEI26NH0ozgfEe7pKbBUY8QhAo6xIpG16B4SJVjse4JYtrJZISQdOJ5ZN+YpkrySeiTD9YIPyoqJerhGJS/yGor7mU1mSpj6jIDVoMXIgwqn76jTLMHfII9knQWqUC9OPNKnluw5F/TtsEFBe6lbVhvY5LJ/08GrGUal7EDB1f6MTY9KmWVZGKLQut9etQXlZPatACUwsXOBtLKi5tVYsnO4+3yzDyXvqHYckALcC+YrZSW6bRa2gaLRER8lBSf82m8qCiX7TAZx+xKVebi3PSpZP+h0x0PiFDsISnLrfHGCtoPBbjg1IIyoqt2LhUr2a4V2S0w83AQvLAQS4VSOYalQ0Zw975vgl9I1K8nNm23a0S7N1HNKB8mpAowSCgGSPg7suRUEIiVttCbWS4NZ0x/kgkhAovyskE1LQqIKUNiMDe9l3QDLgvIxCD+TGNXbPAl+78wnWytMUCkX+7d/+jS9+8YsADPQPEHUy/Id3/yhvf/vbufTSS5/95IWEhISEvGSZn5/n3nvv5Rf/6x9TWjtDpXgWpXyEtEhnx+gbPkimd4J9u4epB/00KhaphKKvN2B6zkJrSdNVWK05T6AEWglsu+1wBF5c4AiN52u8psCOK4xDksD3IR6F+kqAi4nykpaJjPM9gZAm5lYp868npaitmO1Xz7bmiK5Aexp6WkIjH6h6DGyXLJYUHrAyrYmt+/2qXga/6QM2WsPguJk3rs6bPrt14xbkNo2LUL0MouEhACcKvT0Sv0RnPuNEwY4K6iVNbVWh17lb1EpsEChBy8GpCarRcktq96sgOsL0Z0IFRlyvah5i3ZwuqArcc77CFRa7gq02lTUjUBISkjnZicwFSA9IAs8ln29FHtegXomZ6Zww85/iSve4h7fD8oxxkBRAfU115kDSNuKotqCpP2XE87WyJkibebxSRrQmLU1xRVOrGqFRImmujdWWKElKQRB0BU2+bxy1AGJK4dh0BExSaHQgCFwjhpJaU62YdrHBtui4cjk2BBpcX+A4Cfp6dhON7CKSMeM43FfJC3z5AAEAAElEQVRmaWmB6ZkFqqUzfPa2z/E3f/M3ACSSvQyPTCCcSf72kx/i4osvJhqNPuv5Cwn5buM1r3kNn/rUp5iYmHixu/Jdxetf/3pe//rXc/ToUd7//ve/KH2wIxaX/PAudl87xkN/f4zjrciDwmyVL/zOQ2y7fJCX/cT+DZEVISEhISEhISEhId9PBL7i8X85BcClb97174pkawuVbv/NByjMVrj1f3wD5WucuMVrf/Ey7Ij1fHc75Ftk5ECOoX29LB41hbOxi/oZ2hu6KIWEvFQJRUoh31GWlpb4xCc+wb/+67/yxBNPUCwWO8siToz+njGS9jjbRy7g8lePM304oLwCfb2QiEvaeV/1om7FfWjcmrmLO5ExEWqVlYBkVmI7Gt81kRqRRKscpMCra9L9kuJiQHUlYPW0RrTmIyqAVK+FtI3wqDAfkB2UrJ4wj5eOe5RX/E5bAzsj+K5L4WzAypTH4G4HJ6rw6rB6yiXoGhcxflEMacGpexq4VVh82iXRJ6msQmEuQCuXZrk1FgnjnrR4zCN/xu8IlJy4ceuZebTZdewBomlBz7hNrRhQXugu6N9pk582MWjnsnD0fCVSbU1RW1Pnr7wJpQVFxwqpjYKZR93z1m0X9LJjFvVigNu+MVVCbtIhmgqYb0XIlRcUJ/L1jqjKiUMjHxiLJQkTFzuUlgLmnjb9nz3s4URbUR8xcOuaYmsMeoYlowccTt7fpFkxAqblUz71ItASFi2d9DuHMbzborgkKLfckhaOB9TLCpRxWfKaUG0JjZJZiRPtlhlrqx61MoBFLAWReNc5yXYAIXBrrSKk0hSWdGcMoklBpTXu0biJlam1XZcSknh0lP1jxnp075WCYr7JQw88SaF+EideZ3buDL/zO7/D7/zO75BKpRgeHua6667j5ptv5oYbbiASiTzb6QwJCQkJ+T5Ea82pU6e4++67ufvuu/na177G6dOnAYjGsvT2b6N/5I2keybZPjlMLGoxt2y+DkQTPn5N0MDEtLmeaAk9jNgjkTaORyKAckkitEIEAl8JEApLSjyMs01P1ohE/ADKy8b1xghPJI6jiEYFjTo0m2YuFrcC6g1BY03jrzOziMUhloSFqkZrQXFVE4mBv+biYqJ4O/OHKPRvk6ycUTSqJs41EgPb9/Ftm7UlNszTegZMRNvcKSMoCsoelm0EUF4T5o+rjvAGINkriMRFx9kRjNOPFYFGZWPbYNoozAScS2X12QVKbYqL58/R6iUNJQ8i3Tg4rY3jp5QQz0C1sG4MU4LMgKReVJ0+Lp8OOpr19jEH+QYkY6SyZmzmTplz4zVhZdYIlAAiVkBxmfY9BvQOCyP+ajk7FZd1p+1oo4lSEaqt+W48Ab19UKuYFeo1jVICfBAo4jFNudJ2QoJEAmrV9txLU1wCv6wgKknETSxeOy5QSvC8liOTVtRrRowmAk0kYtYKgk5TNFq6f4HGicSJp3czvmMviZhiqM/j2FSFwuosqjlFfnWGleWnuPrqz2FZNpdddik33XQTr3zlK7nqqqvo6el5zuc0JOTFQuvn/t4T8uKQ7I1x3c9ezIHXb+O+v36apRMFAKYfWeLs48tceON2Ln3zLiIJ55kbCgkJCQkJCQkJCfke4/jXZqmuNkj0RNn7mvF/dzvxbJSbfq0rVAJ49U9fRHY4FPx/NyCE4LKbd/GF33kIgMt/ZPeL3KOQkJAXk1CkFPK8cvbsWf7yL/+SO+64g4cefHRDdFs8mmH39ouJetsYyhxkz5UxtILTT5gCTLOmcVo3JjeLCq9XYMdMHJpSJspi/qi5Uzs/G3TuVnfrEE1K4hlFeQXKK4qRvTaWYwpGhUVN4AbgKxSQHbFxYorZx5oUpwOEUsTimvqaImhoAk90HI+kBZNXxDjxtQZ+A45/oyumQSkywxb1kk3xrIll699tfjCsrSnmDm10MxrY59Az5nD8rhpKSYpzQef43BpMP9ygutotRo1eGCHZb3H8a/XznI6aZc3xuzc+H0lC/w4Hr6lNzFqrQhTPClIDFsun/A0aI2lDelBSXlAbBFDPRDwrkTYb+gmQ7JMkeozjUXcHMLjbobwsWWgJklBw6t7GecfTHqeBPTa5CZvjX2ugfAUBnHm4SbMlurJjZqzcmtn/4E6bdL/F0W80QUFhTtGsup3ot8HdNvkZv9OfzIBxNKqumcfH7+tWFAcmJdkhixMPmLaVAuWamDgAr6FZOhOAMiKx/u0Os0d8RBCgPVhboCVagnROUFkXGxfPSGpFU9y1I1BZVR2HgnSvcW1yW5ErOtA0yl0xlNbg1SNM9F/Bwb4r2HZAcuIRxeLyWXTyFGvleU6dPMWJEyf4+Mc/TjQaZXR0lGuuuYY3vvGNvPOd7wxFSyEhISHfp2itOXr0aEeU9E+33o7bKAGCZGaE/sEdXPyyVxBLbSedyjA26DO3bNP0BK4XEIsqjNpE4NY1siXi8AOjgYnZGr+paVTAEUb8oZAgIBaBIqC1oN6AeEzTaApcV1AsCWTDxwokVkqQ61fUqxpdV6ye1cQTxh0JQDd1W++C70HfiJl/VUtQykNxtXu8ceETj0LbrLFZg1ROUF4xEW+LJxVeW3wioH9SUlnVlFb8jvtQO/KtuArVRQ/ZmoNIC4Z2SYpLmuqa3iBQAigsaITcWORP9giiSePMCCD8lpNjTtCsabxz5juRuJlf+OfEzW2FaAmbmxW93rQSISCdCaiXuiItHXGIpaBnUFCv6M5cq17SNCp+J0bPrGzmF0LA4C6b6pqitKSQ1Qa1Kvh5UDLWGZd6a15lBQH9OwXFZU3FJASyPN0VJUXiRizWFklF4pCJeNTKGj8VpVqGRk0YYRKaoVEornWPSfnGMUsE4Nia/KKmWdMIJJmMidArFQVWI6BZUARRc9eBZWlsG9Zagu+IA7Eo+EHrGvM1xYJEBACKVFxRrHa3db224AksqWk0LZxIjoGRPob7DxIoweKyplKaIcJppqfP8L9+6/fxvV9HSot0dpz/+HM/waWXXsrrXvc6crm2xWtISEjIt87g7h7e9OFrOHnPHA/87VFqa01UoHnic1Mc/9osV759L3tfPY6Q4tkbCwkJCQkJCQkJCfkO4tY8nvriGfLTZV7+kwdI9Ma+5TaUr3j8tpMAXPymHd+241E8G+XGX7ua+/76aQb39LDjZSPfVnshzy9jF/VzxY/uwYpYoYtSSMhLnFCkFPJtUSqV+NjHPsZvfOgjlBtLKN0WfQiiTpod4wcYyh4grnaSHZCM75ecfETh1qG4osj2d7MpGlWNDhQi0DSr5k7wdK9gbU6RPxvgNumIhyIxSSIL+bMBvgsrpxVO3Cxs1qBZ1ebOcA9UzWXsgij1JSMwOvtIE6/ardQM7HIoLwbU1xTlRQXKJ5GVHZchIf3OfpM5ydAehxNfNwKhY3fVNgh/ekZthDAiJbdqIsKSfZLqqmL5uEfhbNAqGimcpGTXK2IsHTfuSdVz7qxfOeVSWbE2tN+/0yaWsTj7WHOj0Edr3JrkxDcbpvC1LtItmbPoGbVYPrGxUpbql4xdEOVEsY5bfW7ne3CvibibWt1YXUvkJJlBe6NIScHUfY3zCnHtfqcGJAO7HM481D2W1TM+Xl1vOLZG0QyAZcOuq2MUFhSLx8wKc0d84mkjvpK2EVG1BVRODLKDJibQrRp3pBP3dFVjo3ttoinB1CNm/VpBmWFrjbftwNxRU6GMxKF/m2Wu25rCq2qmHnapl836QzssLLu7bbOuOw4DdsS4PS23HAZSWUj1SeaOm5XrNVg41T3JPYOSwpIRaNkRE2fYLg5GYlArmWu8JznOtoPjSEuwM62pNfLYAyc5evQIZ06fZWrqb/nbv/1b3vve9xKx0vzwzW/k3e9+NzfeeOMznuOQkJCQkO9upqen+dKXvsR//9AfU8yfwmtWQEhSmVGGxi5lZHQ7VnwHtpNguM/H8wWrRQvXV9SaYNuapifwfInraaxAgS8gJkgnFaWiiWlbXREErY+nQAtSKUW1Lmk0oFyGbAaEMA5Hvi87IhqtBUntE0lBYVnTXNMsVgAvAATRKGT7oFbRqECwtgKJFIBpq1rSHaGRUjA04NOoQnlFU65BeZ1oyYkaoVBbVOQ1IZown51aw/LprmhJuj7pUZtkImDhhALd9uts7SuAtXndERyBEQn1T0iKS2buul7oI3xFcc6IeMR6QZMwrktaG4HzerJDksDT5Gefm6OJ5UD/pMXyVECz2t1GA6k+QeALfLclkHI96ivQXDOuSutL1+1+58YljYqmVtCtcwVrc4GJA16HWwdJg1ROkBmymJu10Y0ABSxOafzWdD8SNw6mLT03saRxbqq22q+VoNZynnKqTYZ2CdbmNVURRQiolISZ32NcqcolcJum54mUcdKq18zjwrLGsk1snGVp+vo1ywvGPkoIIzIKWqIk24bVNYHW5nEqoWm2poBCaAolSa2uEYEmHtPEHU3gaoRWKGVeH7QcXAFqdZCWTd/AdkYHx8kMvoamqxFqjlppitOnz/D7f/BRPLeKEJJUZoye/l38/v/6Wd70pjeRSCSe0/kOCQkJaSOkYPerxpi8cojH/+UUT94+ReAp6kWXr/+fQxy5c4aXv/sAg3vCH/VDQkJCQkJCQkJeeLyGz+EvTfPE507RrJgfCQJPccMvX44Q35qY/sQ9c5SX68QyEfa/dtvz0r9ENsprf+HS56WtkOcX46YUOiiFhISEIqWQbxGlFP/8z//MJz/5Sb74+S/jBfXOspiTZSg3yb49l6DWJpBSsvsKSbWkmT+uqa6ZQkU8ZYofXgNTWGkJgAIf+sYkhVkjPFo8oaiXWlUVAYOTDl7Np7iomT0SkBkQnfpBPCs6d7z7TWiUFJmsYnXNp5aH/LTfcQuyozB5ZZyT99Tx6nDymxudfQb3RmiUg45IqVFUxBKCRsGnnleUl7rCKtuGkYuiLB5p4lbhxDfqG0RFIwejJHolx+8yoqZmubvQqyqWjnsUZrs7lxEYORBh/im35Ri08TZ+FYDyzy9s9UzYFObVpnfmr0z5rJw5P+qttKA4Uap3otnWowXoTe7MnH2yucEdqs3ySZ/l4+fvo92fZL+FVws27CvwOM+lQLlQOGue7NtuE/i687gdv1dZVQjV6p+iFeUG/dtt+iYsjn2zSdCK/Ws7LAGMXeBQWQ060XCVvMKtC4Tno6M2gQ9LLbFQPAsDOy3qFUV11VyvR7/pda6T8YuMmn/6cdO3wqIyhTNPYUcgnnJYOGnOUzQJiazoVPACH6YeUx0nsJGdxmVpbc68FhZPKyN+AjIDxoWp2RLV6cAcVxtpmWIfQC6XY8eFffTKq6iOQixbouAd5bHHnqBSX+Yf/uEf+Id/+AeEsLjoogu4+uqr+cAHPsC+ffvOP6EhISEhId81lEolvvrVr/KlL32Jj3/y72lUVgBBKjvG0PiVjIxuJ5Xdjq/jxKKKwd6A2SWbQEGpKkjF2y1JAr/ryOMFJn6rWdLUfEGlJmi6krazUjyuiTgwt2DEH3MLEtmaAmkEsbjCqYDrQa0m6MkqmpUmWgmqms7nnNaCbL8m8GFtCWoVqFfp9CMag94BIyzyPSivCZyIsfqRpTr1mLNB7BNPQyQuKC5p6mWoV1RHGCwtE/lWWDRuSN76eZHnU5vz8ZJWZ31ofUZrM0ddH+UGZpqp1PnzFTsCEoXryvOWoY2j02Ysn1GdMdyAHyCUQPgB2u7eMeg3Yf6I3xnL9fuYPxZsOI42qmWmGUtq6hVx3jJ9TtcaZdOItCAzJCkuqM46taImCAIo+WbKHXG680AB/eOCahGKrUjb0gqUWqJ7O2JcUAsLGtU6RbWimVPZfgPR61AqSjPpBNJZI6BbnGuJklZpuYQIbFszPAFLc63D11BaE7gNsLVPKqNx67Ll0ASRiDbXYc2IkoplQaM1f0rEIdejqNbMODddWMl3BU29KU25JZQSwrgxtR2ZHFtTqwtcTyOEJJcbYXhomETvtWitiNsLzM2eZnF+ioWZB3jHO+7CshwyfTv5xZ9/J9dddx3XXXfdt/yDbUhIyEsXJ2Zz5Y/tZd9rxrn/00c4/cAiAMunivzL/30fe64d46p37P133bEeEhISEhISEhIS8q3iuwFHvjzDY7edpFEyPxBkR5KUl2pMP7LE6QcWviXnIqU0j992CoCLbtqBHf32XJRCQkJCQr53CEVKIc/K8ePH+chHPsJfffxvabhF2hUR24rTn97Ngb2X0RvdQ6Ms6R2GwR2S4w8qlA/LM4pUr/khXikQCLCMGKNegeEdgnROU85DZdnHrXQrN6mcoGfU4tSDAY0ynH7Uo9ESb0QTMLrPJmh6lFc0M0/4JLKAMneSR2MO2jH79V2orgVkhi0KZwOqecXaWZ+gVVSyozDxshhnn2jQLGnOPFjvin0CxdiVMaJJyYm7fdyKZv6prkpHKVMoiyZlx60HCbGkpFFWLD7dRDrrBlPCtitiFOd9imd98qe9Da5H0aQk0WMRiZvt12+Hgvx6sVFru0gKRvZHAJfC7MbKUyRh4tHYvFa2qUBpPdraWEnzG1s0pM7Z33oswdhFESrLAXNPtW6915p6QXHmwba9wfl9TOQkyuuKlIDO8Ukbtl8ZYfG414lVWzrhU14OCFxa54DO9YI0d/tbTnesS4sK0RIO9Y9oBnc7HP9GAy+wqRfh+D1e5zrYdqlFvaBZPm32X1zQHYsCOwrxlGCltSyaNHf+66YP2Cgfjj/QjdQb3mVcDGYOm32ffKRbsOwdhJHdkmMPtlyWSrA2GxBggYSeESiugJZgSVPxa7sXOHFTGKy2RFu5gQyjqauJ1a4CID2a58jxx5iaPsJTTx3miSee4C/+4i+wZJRXvPJq3vzmN/Nf/st/QW5aPQ0JCQkJeaFQSvHII49w++238//947+ivDYDWhFN5OgZ3MPuA29kZHQnDT8FwGi/T60pKJSN4KJaFzi2JnDbwguNdoywqIkgldFUAoFCUFkJ8LxWJJaCgX7F0rJFvQGFgkRrE1UKgp6MxrI1CwsWgS+Ym5PYtllsl13iGajZ4LlGhJTKgttsiUVK64U+glSPxolAfhEaVZibai/XOPU6IxM2qzMBdaCy6IHT/coibYG1fm6lzWex3zRtLE2pDeKkaCQgPSBZPWME0kEhgHVCoGjSiF5qpc3OBazOrJugtKylUr2SWNJi4XgA6+dKwoh9zo21Xd9XFcB5OXB02xD+RtVTwBY/0LU+/9vxxuuJZ6B3zGb+SFdgjZQU5tdbQbFB5GQ5xgWp4nRF5iqAetGslOgRxFIB+VmFdhzQsHRad+fTkVZ8b9tJ0jHPtecpWhkxk2ip04b6AppVn7V5TZCMkJ/XLVcqhR0X9A1olhcEAeY8lAoCrzUFjyWgUacjLHIioLXCrmpUTFIpCDwPJJp4XDPQrzg7b6F844o0t2B1XJcG+jTNJlRrZlCLZbOtFhCLahxH4/oSLdpTb9E5XwIotCJ6bUswMDCAsIfJDb+CiOOhvDmmTp4knz/Jb/zGb/LhD3+YSDRNdmA3/+OX3sXb3/52RkdHNz+/ISEhIetIDyZ4/X++nLmnVrn3rw+zNmOsdo9/fZbTDy5w6Vt2ceEPbsdywqJOSEhISEhISEjI80/gK47ddZZHP3uCWt78aJAejHP5j+xh1ytHefSfjvPorSe555NPM3pBP9GU8ywtGqbum6c4XyWacjjw+ufHRSkkJCQk5HuDUKQUch5tt6Q//dM/5RtfvwevVamIRGJkEiOMDV7A5ZdfTmPVoZyHfZdLfFcxcxiKSxDPKIa3w9wJU/BI9wrSfZryGhSWFQMTgkZF06yB52rSOagsBjSqMH5AYDuwNAWrZwN6hiWxFDQq5s74ZE7y9Nd96gXN/HEPaZkKSywFe14RYe6oz8oR47iTHrKRtikUDe52iCREJ27NrSmSvZLyool1sCK6JWDRRFOS3A6L8nxAPa9olANKC6b6Y0egb5dNImcz83CDSFKyesanvGSKPtlxm94JGyciOHlPncyoTWnBVIfivZJYWhonJKXJjlr4rqa6qrFjkBm2KS/6HL+7TiwryU3a5M/4SAn7XhenvBxw9jEXLEFum01lycetmYJJ/qyJkkMI0kMSNJSXFJNXxlBKMfOYi1sxgqZUn0V+JmDy8gjNiqJaUJRb7kK5SYtaPuge66TF2kyAUiYezrIlPcOStVkfJyqpFYzTlB0zzke5bQ5zLbclOyoozgWgYO2sR2W5JW6LmmMtzAeopiYzIhm/JMrMY03KC4qecQu3qpl5xEVGILe9e6zxXkksJSgvBgSBJt4DIKiuKkREkOiReM2A3lGLwV02iyc8VqaMeCx/Nui6Fx20icZg/rCHW4NqPqC0JPEbgANjBy1KS4py0wjqnKig3qq6xbNgx2D1jBmzwZ2S3JhlipgKYinJ9JMevguRLOy+UlJY0Mw8rUn3wfK0opI3/Zg4COk+ybH7FZGYiahbnFL4DUj1wtg+yepZhfACerdZ+C40G6YYN7RN4gdQKQqSWUXvINgRcw3nhk083vxJjR2B3Aj0j/Uh/deyZ/S1JHKwsjbN448/RNWd49577+XrX/86//UD/5U9e/fwqle9il/5lV9h165d36F3mZCQkJCQ9ZTLZT7/+c9z22238Y//9Dm8ZhnbidI7uIeBiTczNr6LbG8f5YIgHtMM5QIW8wHVusVKUdKbVkQcjesJohGNlArXF9S0JGP7ZFOKQsXCCwQJFFEnQK0Bac3wkGJu3sIPoFgS2LYCLDSwfVvAct6iVBKsFQTxqInaCgLB4IAmEQ+YOmMT+ILCshGZAEgJ/SNG5FItmRi2WKIrWrKtluCjJViJJ424p7xmnq/kVcfVKJoUJHsVXmBRXtForSktm/1YjhHkZAcla/MK3zX79pqA55PoESil0cqsG0kK6kWNxgjehYVxMgQSGYHXNO5LiR7om7CYOxIQeBCJKCxHUG8JmZoV3RGTSwtiaUGjrIkmBQOTgtWzxskJjPNT4BuBdTIrqBd8GmUzP3Vi4MS6AupYRrTmqRohIN4jEVIRSduUlhWRuOhEtcVSgsygREhYPBmQ6BE0K5rAA7eqKC12xVLRlJkfNCsapKR/h8R2BAvHAyzbLK8VNAvHAqJJMxdvVo3rVqJH4NbNGCLM43rBQ2uwEg521MzTB7aZvufnzRi6TaiumeMQFgxOCsqritqa6VNlTXVcmaJxTSxhzj9A1FZIAcrVYFkkUppGzYjupFT0D7Wi4ZYFTkTRbECt5RqVy2l6ehRnzlhmji81C3MC5YIT04wNK4oliVsUxGMBlaqg0RAIoentUcSimoUli6gMiEeh6QqUhnhUkUoqihWJFpp03KxbdyW2pUknFYWyoN6EWFSRTQlsawyfbRy46DVo0WBxYZrlhZMUV47xS7/0S/zyL3+AbN82bnnP23jTm97EtddeG7oshYSEPCOjF/Rx82+9kiNfnuHhfzxOs+rhNQIe/LtjHP3qWa75yQNsu2zwxe5mSEhISEhISEjI9wkqUCw9XuGJP/8alWWTqpLsi3HZzbvZ++oxpG1u4rnkzbs4dd8CxfkqD/ztUa59/4XP2rZWmkdvPQnAhT+4nUg8LFeHhISEvJQI3/VDAMjn8/zRH/0Rf/j7f0a1sQpopJTEYxn6Mvt4xTWvZGLHIIfvhYFx2LZbsxzVlPOamacVu6+0iGcCiksmsk1aMHdKkV+EoR0wsF1SXlM4ccj2S/LZgGYN3LpmcFIyfzTAb4AdE2SHLJamAupl2PtyC+1r5o4qvKbGiQosoQmAgW0WsZTgiS8qGhXwXSPmACNm2X5VlBlHs3w8wGtoI2hqFcPGLo4gLcHhz1eJJiS2I1GtQkl22GJwf4TVmMtM3qd3zKG0GFA8G+AkJX07o/iNADsmyYzYZIYsCjM+SBjY5dAoKZaOuERikuH9UdyqwrU1/TuMuOnoncZqaNerYjQrmuqqy/arY6T6LU7eo/DqivSARd8OI1JSyrgGOHFzC7e0YXivw6ynEVZAqs+mb5vD4hFTieqbtNEKyksuc4dddlwZJZWzyFcCkr0Ww3sjFObraA2pAUk8IykvmIMf2uOwfLLl0JSQ5CYsivMByoXeMQsnJgh8jbAkA3sc8tMBjaJLPCPp2+awdMKlvKwYOegQS1tGpATkJhyk5RMECicqGd4boVZo0HAh1WdjOYJmK9pvYJdDZcXE7UXjktEDDmqfw5mHmqQHLTLDRjh15kGX3a+KEk0o7CjUS4rh3Q5uTbN82hTr+icdVqaaIE0cnFvXVFYUjgM9ozaFswFuTZHqt8kMWszikUwphnY7xFOa8opGSuNw5bumf+MX2GQGJatnzJhF4pJK3hQFkbD9CpulqYCZxwNSSYVWkuWz5rob2S2IpwRPfrUlahuQ1CumSJcdhPF9FqdaEXK9I4Jogo5rwOgOU6Arr5lIlP4x41ShFPSMSNL9cOwRE4M3MGmKfdWS6f/QpGT+lKK4BKO7YWBC0DuwHV3Zzr7LoV7zeOihh5meO8Ts7Cx/+Zd/yV/95V9hWzF+4MbX8+53v5sf+ZEfeb7fdkJCQkJe0pw8eZLPfe5zfPi3/pTSyim0Dsj0DDAwcRl9w/u55OAYa9UIhapkx7BHzPI4XopQrUOtAbmMolq3iEZgsDfA9aCBw1rdYmLAZ61h4/uQTmiSOqBQsag3BWN9CmqalZZDTzKpsR1N0JQ4Dgz2K8pli8A3TjVRRxkLP2BiImB2XlAsClwXklLhlI2Qu3/URLedPGQELX471lVrojHYtsc4JhVWjIC2EzsmYGjQQ0hoLvhE4oJUTlKcV2gglZPEewTl5QCQ5EZagiTPiHx6hoygt16C3KjAkorGWkA8I+gdtSguBqxOB0RTgtyYxXzFx07A2AGLWlGz0BIbZYcFlTx4TdP/SBSEVhBAPCuJpwX1shH1ZIdNVGujrLBsyI1KFk8FNCqaesnEnLVFSpk+aFYUzapGIsmN2yyf8mn6mlhaku6XlJdNH9KDFn5D49YChAW5CZvyso9QilhM0zMiqa/4aNsiPWCcrtZmFUJgBNPTAXVPE0lKssMW5WUTQ5vul2gNzYrJe0tmLdM/DZGEGZd60UdrSOYE6X5JdU2zcjqgd8yiMB9QzRvRUv+kxYpv5tbJZIATFTQqktVZzeA2QSxp5i5OxIxL44QyQq4kCC2prbWONSepFjSNsiaX9ukdkZxaDGjYEewInYvDJmDbTsgvahbPCmzLjGut5WDUNwA9fZojT5jHMelTKwiCwAjuJrYFzM9b5nqNBNhS06iCDDQDvQppw5mzNlJAb1ZRbwiUgmRCM9QTcHI+AgiyKZ9MUlOpS4SAwf6AYllSbQhScc1gLqBaF5SrgkwyIOJo5pfNa2yw18eybbTcx8DIPkZyN3BmrsLZM8co55/mj/7oo/zBH/wB0XgvuaH9/O7/5+e4+eabSaVSz/8bT0hIyAbuvPNO7rzzTiqVyovdleeMtCQH3zDJzmtGePgzxzny5WkTg7lY499+/2HGLxngmnftp2c0fA8JCQkJCQkJCQk5H601J++Z59AdU7h1H926uUsr3brRq/sv8BVBqy4S74ly6Zt3sf+14+c5eNoRi1fdciG3/8b9HP3qDLtfNcrIgdwz9uP0gwsUZitEEjYXvHHyO3a8ISEhISHfnQittX721UK+H5menub3f//3ufXWW5mdnQVAIEnGBxjuvYCd41eh/RgAB18Ga0swPwVWEBiHImXu0B7eZQpER+5RnbSKSAzchrmbfd81kuUzihWzCyzbJEEoH4YnNOkByYn7u7EX0SQ0y8bBZvfVDitngk48hR0BJPgNUyDKDApmDgWIhimQJfsl1RWz7vABh/JSQHWl5QwUg2jKLLcjkBq0NkSJ5SZtKoseblWfF1sWSQmG90c5+1hjY4SHbEVF7HbIjNpMfaPeifVaz+TVMSwHTn2zsem56N3m4NYU1dVzNpaYvInNkLDvNTGK8wELT7dyPp6nu6/3vz7G8pTPylTw7Ctjojm2XtiKwYjBnlfFWDzukT+zRbtCnx9NJ40oa+mkv2l8Ss+YZORAhJP3NXBbvy1r2R2HgZ0W2WGLUw+4KJ9OxFtn+S4bFWhWT3f7FEmCWzV/9+2JUJjr3u0fSRj3gtKSRtomlrC0ZNqUNgzttsifDWhWIJYGr2FiWLRj0zNsCpfTh7ruCvVWJJ2UsOMyydqcIj/fikhRXReEgW3QOyI5+khLRNZ6jbW33XcVrMzC8lmwbTOM5ngVI7sg2y84cr/ubKsUeMpE9ey7EhZnzPa2DXU1xdPHH2C1dIZANdBaE4/HefnLX8473vEO3v3udxOJdCqIISEhISHPAa01TzzxBLfeeiv//M//zJNPPomQFtn+XfQOHaBvZC/xZB9KS7KJgFw64PSSjdYSO/ARAoJAIoBtwz6FiqRYsVAOSGFsbpSWZJM+2YRietmmnadqW+AHEoFme8alUBRUqhZGlG4+G1QgSSUDkknN4pKFCbMywl7PM+0M9GsqVUG9LnHKTaQ0TkK+J3AimnjKuOG0BUixJDRqgDZuSW6Tjquh1RKu1M+aO/HOjS1L5QRa0xH7dHBspISBHZLyiqJWXLesFaPmxGBol83KGSMcOhchIT1kU1re4mvQFvOaVE6QHTbi+k583TnRuBs4L9Ztc9L9kky/6MbiPge0/QyRPq3JaHbEIpEVzB/1N0S7bcCS5y2LJgXSouNmdS6Duyz8piZ/tjtOOmKs3IWEoe2Ccl5TLZhlYt3XTSGNELu4qDvXApjvB4Fv5j9Wr0OtAu1MukQK6jXQShCNazy3HQ8oiCQhGofSmgQ00Zim2QCQ6LigL6dbbkkSy1JoDUqZc5ZMKNIZzcKCeSyj4PtmW1CMDStKFUmxaSOFEc1pbfaTSSp60orpBXPPj3EY04CFRLFtJGCtaFGqCqTQIDRaSwJLkEsHpBKK6UUzZlI3KK9NsTB7jLWlp2nU1rDtCD/yIzdz0003ceONN9LX17fFCQwJeW78+Z//Oe94xzvIZrMvdle+Kzl69Cjvf//7+djHPsa+ffuedf3Dhw9z8ODB70hfAq14pHKKFa9Ev5Ph8tROLLH1Z83q6RL3/vVhFo6sdZ4TluDCH9jOZTfvIpJ4blEbISEh39nXdkhISEhIl2917tUmfJ/+9qnmG3zj44eYeXT5OW9jJySXv2UPB2+YxI4+c7zw1z92iKNfnSE7kuTm334ldmTz9bXW3Por3yR/psxlb93NFW/b8y0dx0uB8Hp/4QnH/MUhHPcXh++GcQ+dlF5iPPXUU/ze7/0ef/vpz+D5RoUjpUMuvZOJgavpz+xBSsnQNugbgcP3m+1OHYJGS7ShgH1XSfKzisVpWJqBpZmuQGloB+SGJU/fr1AKjj2gukUICXuukhTmAhZPKBanYPGUgpZwpH+7ZGC7xbFvegQenLhvY7Fm55UO9ZJi5lBAcUFRmvZoy1HSg5KJS6OcfqBBbU2xcNjdsO3IwSjRlODE1xr4LhsESlIo+nc4WLZm+Zi3QaBkxkjgJCVOXNIsn1+4Ki+bO943EygBzDzWQG6iH2qLqtamvY0CIyGwY7DzmhgLR1xKC5s0rODs4y5ubZNlEiYvj7B43KNRPL/AJCMt8cszaIueCTtmhGJt9LoC3eh+i0ZJsTazUYjkN2DusEtxs2Np9XnXy2OUlwKWjvsd1ysULBxtFR3jZpjWn5/CrKJe7AqUYKMQqbIaIKTYVOAExkFAKwF0+9sWKNkx6B+X6GbA6rw5P27NxLCAcQgY2GlRK3n4DTOm80e67YwesNEBTD3sIzyf4gwUWsWseBp2XmZx9ohxIFMKTj7cHZuRXYJ4RnDsfvPc8rSJihOYAt6eSy0Wp2Flzmz79IOdlyCDk5DJwZEHQUvJ3BSszBvxliUVuy8XLM1oludNMe74Y+2iHAxug0xuB47aYc6bLLFUeJCTp5/kK1/5Cl/5ylf4hV/4BS655BLe/e538973vpdYLLb54IaEhIS8xFFKcd9993Hrrbfyv//0L2nU8lh2jNzwAfZf/S56Bvdg2TFAMznoU6xqClUo1yXVhux8FKbi0JtRTM9LAkcys+bgK6AVVTsxoChWJYUqlGoWpWpbZASZhCaXUsxNKbQWnK20lrXaHh1SVGuStQJUqpJKtTsfSSRgoF8xOyfwfcnyCjhll5Ychb4R48azPGsivrxm99gtGwZGYHUBahXj/reehGiQSVk0pBE1Befoc+yYaImdzp/HKAW1osats6kQyGvAwnG/IzDutBkx4hYVQGneh/VCn0CRGZREk4LlqfPPJUC1oPE91RUorT+eHhOTVprbXGjUjiD+dyGMuEev26/wzQMnLkgPO6zOnN+pympAvSC2FCjFM4KeUcnicd8ckzQziWa1u0EkITrznjYrZ4KuE1a7P273uGslh+Y557uN5ZgYXcTGNtvfFeIZQTId0FxSBAnjYlTrzPE0uUEjfFtbbs3LquafQBGNa4ZGYH5O4jZB1DX5WVAxc1y9veA4mvl5DQiqNUm1Zv62LM3YkGJ1VVCtmudmF8z1IVH0ZhWJjGZmQQCCUtWiUpOAiYobHwxYK1mUqqCQTC8II2oSgkxKkUmZ1y8I8mVJuWZ1tp0ctllN7iOZO4jWPwTuErPTT/GvX/gGf//3f49l2WT6d/MHv/Vf+YEf+AFGR0c3H9yQkGfgZ37mZ17sLoQ8B+5ce4Lfm7mVRa+rwB1ysnxw4mZe33vxptv0bc9w04dexqn7Fnjgb45QzTfQgebJ26c48c05rv7xfex+5WgYJxkSEhISEhIS8hJGa83Ru85y////CF7dR1qCS2/exejBPoQUCCmQrf/NP+PgKSRML57mwot3Pqf9XP3j+5h+dInifJXHbzvJFT+6d9P1ph9ZIn+mjBOzuOAHQhelkJCQkJcioUjpJcDTTz/N9a/8MVaLx/GVqR7ZVozB7H62Db2C3tQEAHuvgLVF48SytrSxmJRIw+RezbGHTEVi/qSi0vrdTPmw/SJJJW/cktYWoFZWHQFMPA0DE5KpJ8xzC0d8qmvd5UO7JIEnWJlWFOYUzZruFKrsCAztsVg4FhB4MHvEo1lpFUK0Jt4jSfVbLJ/wKC8GnHm40YmRAMiOWgSeprKsmD/cPE9E1L/DojDt4btw4uvVTuQbmDrNwN4Ii8dcGiXFybs3KpfsGAzujTD3RJNGUdEobmw82ScZOhBh+sEGfvN8PVBmxGL8khhT99apt7dd98OhcqG8FFDLb60kOs95SWsQgkgcrEg33u5cxi5wcOKSU/c0N13+TOQmJMP7Ihy5q7Fpsc2OSSwXIDjP2ak49wyqKAWlxaB7TO1t1x3D+MUR0DD1wMaqY7NVvBraZ2NHBbNPdAtljTVNY82I2bKjEsuS5NcV8maf7K6bHZV4dTrXkN+A499soFxT6s1NWpQLoiOSWplWVPKqI9ga2iNZnlKdcZl+3Mdq3bgaz5rImuUps7BetjsCJYCh7abo1n48P6WJJ82xWzaMHxDMn9S4NfBdmD0aUKm0YkQmzGtl7mSrX7NQbf+uLWHPxbAwbZyXAiU5ewJqJQEKhrcpEj2SU4da2851t5USLroiw8KZ1zGaeR2+36AqH+XI0Ud54IEHeOCBB/jABz6ATZaP/Mlv8lM/9VNI+QyOEiEhISEvAdrCpLe964OszD2B1yjjRFPkRi5g58iFZAd2IaVNKqbIpQOml40gYrlo4Xrms09pGOoNqFcEBdei4ls0S5LAMcsdWzOYUszlrc62zda2WkNfWuH6oiN2oqg7ohLbht6egJVVidaClbzViRYFQSJuIszKZUm9JlhcsvB9I05Ca9K9UK+YOLe1pY3CGykhlYXSmhGdzE+zQShkOxALGtQKmipQK/gbxC6RhEBKaFQ0hU3mDMleQeAZd6Ty/PljnxuXuHWorKrzBEoAveMWyofV6XWCnnWuSY2KIvC3LuJqBY3yOXOrQIElsXSAtUUBWNowesBh5bR//vbPgaE9Ns2KpjC3uROlJRUWAQEbFfOBC8GWFkrQrGmqa6q7SfuP1md5JA6DOy2Wp4INwqX2Obds6Ju0WJsN8NaJ18stoZaI2PQMCkordIRdfrN1gwKAgHTOuC61u1le0VRbj52mSzwtKLm2WRnB4oxu6++IJcxGjZp5olmHxbPgNRQCQbpH06iBV1VoS5LPS2zbtGNZmmxGUyiaeLcggOUlSaM1NU6nTR/LZeOcVClCo2m2FUIzlDOipKb5SsJSvvv6zSQV0Yhmec2MY6kuafgCLQQiUEwMBqxULLzAuIUtrHW37UkJUvEBRPT1jO+5Ae2tsLZ4iLNnnuZ977sFIaB/aAfZwcu47yt/HjoshTwrruuGDqjfI9y59gQfOPWJ8961l7wiHzj1Cf5g53u2FCoJIdj18hG2XTbAE587xRP/OkXgKeqFJnf/6RMcuXOGl7/nAP3bQyetkJCQkJCQkJCXGuWlGl//i0PMHVoFYGBXllf/zEX0jqef0/Zy9bmL3aNJh1e8+wBf/uhjPP4vp9j58pHz9qO15tFbTSHj4BsmiaXC7yshISEhL0XCavL3KWfOnOGWW24h4iQ5ePAgi2uHEMJiJHcJLz/w81x/yX/jVVe+ncuunuhsU1yGWit6ym1ANAHp1u/ejYagUtDtmgXlPPT0d/fnNTV+S+vh1qFeMhEe0L0z2o6AaPrGSWfdL29OXGDHzETHd6G8tG6hgGSPJJYxD6t58P2u+CbVb5EdtTpXcjvqrU3fdofsiNHi+Q26IiStsW2fvu0O6dZydU4xK9Yr6d3mkOjd/GUSz1gk+y0iyc0naYELfkNverc9QGk+YOaRzQVKYOpE84e9TYtsQ/sdJq+Knvd829HIrcKpe5o0Spvve+V0wPKJze/017Zl+rJFoa20rJg97G7pwjT9mMfyqQBtyQ0OS22yo5Ld10Y3ffdZPuFvEJkBG/ox95TLzBObDEgLr6HxG1sX41L9FqmBrd/2chM2fds3WpC2rwspzfXUO7xxXBotgVQ8C72jFvF1c26/2RVQpXKSnuHutYrsCpIAEj2SWGrdtg0om+8NRBIQiXfdoOyI2TaomYtLmJpZBycKxZXWuja4bjcaLt1rCsvtgnS9Jqmuc83oH4NGvdvHtSWott4XhidiHNj9cl524Od53eW/ytWX/hB9vcOU64vccsstZDIZrrzySv7hH/4BtZWtWEhISMj3IVprHnnkET74wQ8ST/fxyle+ktW5Q/SPXcJF1/4cV/3Ar7H70reye/du0omWW40nKNZk5+3b8wWZhMJMkgRladFsLfWVQGmIOuYzLlACL+ikzlJrCmxLd7YFEK3Jliwq6o2O7sSIP+yuiVCjIVo6nVYkaBRiUdOWRpjlcQu0RggjQorGzba+u9FF0olCOmfESO3l60lZTTIDsvOZda4bT7pPksxt/Tkdz0iiqa1F2L4Hgb/1PCA/E1CY31ygBMYtsZrfPB5ueI9FLLXFD3OeT3lFsTa7+aRPK1g945/nSNTdgUBLsem8CaAwF1DdQrTu1TXLrUhc4QfrTnSX/h02qf7zn1c+lBY3zsvNArMvt855AqVzVwtctpzr2pYinhEmrnkTInFI95+/vH1NxVOQGRTYnt+52JUSqMD8nUhBuge6ByBoNrpColTWRNyCiSYOkLhuS+jnQDy+8bjqDYFuxSzblplDGTRaQ7MqsBtBZ4jbl49jQ9MVBEp0nvdbcXSgSUQ1zWbrdSmg2hA0Wuc6EdXYks62DVdQbjk0gWZosIeRHa/m4lf+HNe84Ve49Jo3EyiLE0/8MwMDg4zv2McnP/lJSqUtJv0hL3luvvlmPvKRj3D06NEXuyshz0CgFb83c+umstL2c78381mCcz84z8GJ2Vzxo3v5kd+7lskrBjvPLx5b47O/eg/f+PghGuWtv0+HhISEhISEhIR8/6CV5qkvnuaf/ts3mDu0iuVIrv6J/bzp11/+nAVK/x62Xz3MtssHUYHm639xCK02znLPPr7CyqkidtTiwhu3f8f6ERISEhLy3U3opPR9RD6f58Mf/jB//v/8Fa5nlBGWFWWo90J2Dr+aVHyAngEjTug4pdjmB3jfh8VpSLZvrLME2T4jhigXoL7qU1/t1j0SPTC4XVIpKBpVmD22caKx7YAECaceN45MU4dA1I3CIhKHXS9zmD8aUJhXnD20sbLROybp32Zx/H4P3xMcu9cHREfcMTiuEMJh6ZjH8gnvPLFN/y6b6oqiXlScfqDl9rOumJUdtylPN/HrcPyuCsrfWLRJ5CS1vKK2qjj21SrqHC1PJCVxK4ryUkD5rlpXrNMqnkRSJhajUVZMP3S+U1EkJYjEBZVlRXmF84pJdhR2XBNj/rBLZXnzHyEbJYVqFeHOLWhpWxCL6Y44ZjPq5wqBaImTzqXdt3UVSL/xLI5ItK6rqHEcWt8/ESgaJUUtr5By63i8HVdHqOQVyyd89LqcvEbNRLlJGzLD1obIPoD8me7jWIbzRFqzT3id6yiS4LxYv6kH3c4hx7ICt6w7fVQKTtzb7AiFsqMOlbzquH7Vi3Dsm15n+fAeSf6sMlE0wPKUYvmMcRCLxGF0P8ye6oqHpp7oDsbQDkhkJVOPmefqJTj+QHf5rsslpRXN/AmN8AIWz7bOnTTiwfHdcOJxE9Hou3DmcPcY+8da+2u9B5TzUFzRaEcSS2gyOSisAjVNJGJcmdpRcNLqFp6ltNm97Qr6Elewb9hnofgwNXWCRx55hLe//e1EozEuvfQSfuM3foMbbriBkJCQkO9Hjhw5wqc//Wl+74/+jGZ5BTuaJLftYgaHLiXTN4ltCZJRRanecm+RGtkS33qBESNYlhE0qLQgntQoKfGVoLKi1utPyaUVQQBLRYnrC5aL3Wl81NaM9fnM1CLUPclia24TL5sPqd4eTTyumZuX+IFgbqEtggDQDA8pqlVBuSJYbVrQFNASItmWZpw6ecuIUebPsEHUYtmQTBv3pGYd5qY2io+kZYRP7kKdUhkz91mvR5emDd+F/Oz5MWIIszzwYOWM39225R4JZr7quy3BzSYksoJ6SZ8XKdduIzMgcOKC1enNtxfCuDt5zc3FOlZUoly1lXYKraBe2mThJoLw9rxJrBNQNSvP7r5kR8EL2vOBdXNDpWhWFP4WfQeIpgS9oxaLJ1rOVlZ3TthszZWiSYHvbhxDrejGzK07TwBYEt+F+WOtcyYllrMx1s+twfxx1TnnTowNjkzVAlSrxgXMarhEcg71WnfM8ksaIc3OIzGNE4FqyTzWWjB/Zt38P6cJgiYFjMi/7grOtqLbpFCMjCjW1iT1uml/rWAclACSSU0up5mdlSglEFXFfCv0EAv6+wKUp1nMm9dktS6ptuZ/EQf6ewJc36LZEkjlSxagCRISJ2levwUlsJpmIEo12R5CrHWXSDKVJp25hmT/K3CbZRprjzE38wTvec97+Kn33sL49n382n/7T/zkT/5kGMUb0sF1XT772c9y2223sWvXLm666SZuuOEG0unvXFHipcDt3pP84hP/+Ly15yqfQrBFTibm3WjRK/Dax/9vIvI5/ox3AwSvUbg1DxV03w/FI4JIwsaOWrxr6Dp+cug1317nQ0JCQkJCQkJCvusozlf52v95ksWjawAM7+/l2vdfRHYk+R3ftxCCV/zUQeYPr7J0rMDTX57m4A0m0s24KJ0AYP/rJohnzr8RPyQkJCTkpUEoUvoeRynFn/7pn/Inf/InHDt2DABLRhjo2c/2sVfTEx3BiXRdUwYnzI/31SKU18y/Nj2DML5HcOIJIwY58aR5XrhGobDtAoEQcOaQprwCx0rdKA07AuP7JIunFfWqZG5q493zjnLpmZSsnFGdu7Ir66PKZKuAVYd6SVEtCKQlzrszW9SbWI6zlcmPEWmM2QgZUC8E5wmMnLiJ21gUivyU13LJUZ1iTiwjmbw6zvxTTQoz/vkCpQTsfGWcpaNN8qf9892EJGy/KkZlRTH35OZRaoO7I8QykhOrW0StaaitBTRKWwuBiq24j02digYl4xdEOHV/fVMnJTsCvdts1mZ8/OYW4qRzOUeslB2VoDCuWJsweXkrlu2hjQOoLUmzoph7anMXpza1gqJRURsESp02pCA3YdG/06ayEnSi1tYTScGOq2MsHPVYmznnImqd7u1XxygtBCwc8TYsUwqQsO3SKNV80ImD01Kg22IdCcO7JaUVwfzRbvttgZITg+ywRb0Ebl1taL+9XDoQVH1T0VuPNOKi9RfXuYKqhVOqUzRM9oJtBxRK5jwWVoyTRNsNafIAlFaNIxIYwWDbsSDVCxN7YepJaNQUjZrk6UdaP2BbktHdGqE1J1vvBUtnu32IJWBwrC2Estk29DJ892VM9gdMz3+TpjrBQw89xBve8AZSqRTXXXcdv/Vbv8XFF28eURASEhLyvUI+n+fv/u7v+OQnP8kDDzyA5cTonbiI7VfdTGZoN5E6LSGuIGor+jKKWlPiK1gqbnzPH+kNaEQE8xUHfM1U0QEEkYoiYmtGcz5zeRvXFywWrA3i3lRMEYsoVko2VcdiumoipQyaXNklcASuJ6hWjSNSF4Ft65YIVVCvG2eXIL5+XmFcmSILDeSY+bhSAee57kRikOqBSsksP1dklOmFhO2ysGi2PVfI0zMiiSQEi8c3ESgB2SFJPCNYOOaft28wEXA9oxYLR/2Oe+d6LAd6xywQAbXCJg1ojdsQKLW1iEcFUJjfel6WG7dQntgYI7eOWEaAXhcVt+VEdl231omVpG0cF6t5tekYOXHB0B6HxdPqfLcmKSlvIXpv4zc0jbYQytpMtC7oHZPUS3rLuV/PiCSWFCwcP2cMWs0ms5rssMXCCbVhft8+nkQWekclC8dV5zxqS3SmQ8kMZHM+s02746SElKZ5aaLf4sm2SKlN9/UgJEgNdtHFTzu04+Pax1drSDyvPQSaIOhuX68L1vLmNQ0mCq5a9WjGjVBpMW8hhelvzArIJjUrBYnS5vU3vWB3XJcGcwF+IFgtWNg1RR6rM0h2EkZyAYuLFvWWM9N8vvuekU4oIjbUm5JINE189FVkhq+lQoni7KOUZx/jZ37mZ/j5/+s/8+PveBtvfetbefOb34x4DtdbyPcvt912G1/60pe44447OHLkCH/8x3/Mn/3Zn3Httddy0003ccUVV7zYXfyepI7Lkld89hWfZwpBFbZwr9uSxBbPe7C4WIChb7NTISEhISEhISEh31U89cUzPPDpIwSewolZXPXOfRx43TbEJrWW7xSpvjhXvn0f937yMA/+3VEmrxgimYsx99QqS8cLWI7k4pt2vGD9CQkJCQn57iMUKX2Pctddd/Hrv/7r3H3X19AoQNCT3saOsdfQl93VWS+bVYzvgeOPGQHQiSe6QgqAkR0gHcHsSeOeEigjUIJWvNUIFOZMbFVxeWPRw3dNYcptgO9L47ISkVDtRmABiLpLZlzSP2lRmDfCppUzGwsck5fY2BE4+WBAowpzRzcu334hVFcDVk7BwuHzBS4Dux2Ksy5uDU59vX6eQ08sLWmseXhlOPmNGm75nBWUUa40SoqzjzUoL2z+y59bg4XDTQqzm1TBlCnmzR1qPqPA6OwTHk58y8X4bsvxZzMkjFwQYeW0f54LUJvykuKs2jrqLZqW9O1wKC5r9Lf6A2dLrJQbc/BdtWWhavGY14n/O5d20a1/UuJWFeVNXA8Wj7XVQJtPnJfPBBSXNxcoAbgVmDvsbtk/pWDhiEtti+gUFMw84eLVzPJzxVJKwakHmgSuWTfWY9Eod5d7DTj+Ta9zHQ7ulBTmu65K1TU49YA5Rlv47LjCYf60ptISDRZXWnFtEnLDMLxLcuKh7vbrY+Jyw4JoQlB8OEBHTWGx0v69XBqHirZ7lO2YQmtbQOjWYW2x+5rvH9FUStBoxb+dOQ6OI9CWcfcY36GZPmpe840aPP1w9/1kYo+puZ48GmHnxPXA9ewarTF19i5WS4e54447uP32OxgfH+MnfuIn+LVf+zVSqXX5diEhISHfxXiex+c//3k++clPcutnb0NrTc/oPnZf+y56xg4iLaez7mjOxQ+MIKnmCk4v2Z0IKcfSDGYDZnwHXwnmAhuvE7kpiFiKmKVoIHB9KFZlR9yglImwEmiUFgQxgXIkftyILboCJYgvefSOaOp1cAtGKMG6z2XH0YxMKBbzFrWmJO9tFD3HIoohmiydNdObpZmN42E7RqxaKUK9YgSr54qPbAfUap1yBSpdU5rzKC4q5DPopcvLAY2S2Hx7rakWIPCDTQVKYJx7Fo7757soraMjHtqEWFogLTYXOLVYmw0QW+XgYqKLNdCofOtRqNqSyChkRm2aFQ9vk1hbr65ZmfJwG1tE5UmJHYFkr6Q4f/5ABb6JlANgs3OhYfm0esYxLC0papHWNbiJiL5W1CjfOA5tFklXK0LgnSNQWkelAI2qBs9DAjLr4HvddUoFSbmoQQpsRxOL6dZ8yLw+Civdtnotl0gUFmsRQKC0YK3QFixpBoc0rgurK92IuUrrdWpZmp4eje8LVNXHS9oESnQ0A8ISCFsTSIEI2oKnbj8rVUlbD2dbmkQsoNww10fTF8yu2TSEgKigP+WjGlCsmpOyUrQ6U2PH1owP+MyvWnhOD4N7r2dw7/WMlpZYOf0w/3Trv/CpT32KWLqfX/3gL/LWt76VgwcPbn0CQ75vSSQSvPnNb+bNb34zp0+f5vbbb+dLX/oSX/7yl/nKV77C4OAgN910Ez/wAz/A0FCoVnmuxIkw6GSffcXnyLM5KbXpsZLP3UnpHLTSuDUf3+3+CHD64QXu+sbjXP3j+0n0hHexh4SEhISEhIR8L6OV5v5PH+HQHacBGLuon1fdciHpgWcoRn0HOXDDNk58c5blE0Xu+cRhbvily3n01pMA7HvtBIne0AE4JCQk5KVMKFL6HiKfz3PxgTeysPokQWBceOKxHBODL2N86Cpkq8IzvE0jBCyc0JTzsHDaiIzACAp6RwTlvIlw8oOOfgFoOStJQIHwfQaGJaoB+fmNwgikpH8MBrfBsYeN6OHUExv7O7ANIiJg7gjkzyoKC6orkJKCRNYURZpVWDq9+d3zYNyT3KqzsSizrhImHegdt1C+zeqUf55AybYDtl8TZ+W4YOWEe55ASdqw/RUJ1s4Y153NBEq5SRuloDDjU5g5v7gjbejd5rB6yts8ok1K0kMSr65plDReffNjnbwqSv60t+kd79qSxNKQHrBYm93EyqCFUlDaQpyjbYtKEZ7+qrvp8ufK1MOtKtUWmW21gn5Wl4DMkEW9JCmt+BsiTdpICWOXOqzNBZSXzl/u1gBb0L/NYuV0gDjHAaEdSRfLgJOQlM8Zk/YY2REY2ucw/5S34VDakXgyJthxZYTlU/4G0VM7jkTasP1Sm7W5gMWT3T6027Ic6B21CDxYnTn/OIQ0bkvNQsBmb8n5JdAo3CbGKWwQCkt0nAVmntZYttlv3AkY3msxc7wrRDr9dHtAYXQ3xOJw7DGzvdsw7w/t5f1DGku3RUoa3wW/FU0iJPi+oOkBlqCnX1MvaFpGayxOG5cN4QU4acHEDpg5FWPfjhuBG/HVLIeOfoXZ2VP87u/+Ln/0R39E1O7nM7f+VRgHFxIS8l3LkSNHuP7mn2Fl6mH8ZpVE7ygTl95E3/bLcOImKseRmoGkx2LFRlY0a54kUF3hkSU09EDNk3hoGhGFDIywuRm01TvmcY8fkHYUM9iAYK3aVYz4ccFkj0/Vk6xULcpNKK8zZbSlZjDlUz6t8REsLMoNn2sqLohHNbWmJACW1gS15rmf1aYf1nwTr898lG8WYRZLQrrHuNbozdyR4k2SvZKFvHHKOXeOF88I0gOS5akA5W8U0IP5zMkOCYqtuWPTP78TsbTAb2p8V28QCncbMS5L1fwmMW/r2ohnBGvzeksRVTQpsCPPLFLyW6LlTRFi08//bwWvAbNPteKPLbHpvKlR1s/4zU7agkSvpJKXZjw2mb9FU4JUv9y0v+0xdOLG7bRZ3XjilQ+ur8GSJHsFtYLecF1oBfWWGCyRNhFu9erG66/tEpnoEyQyguWZjeelLYBP5yDT7zN3QhPEIt19tMSAsQSks4Jqpfuc6aRpLPDBk2CXvZarEnRdlwQrq0Y0pKXAsTUI8DyBUEZwZGLfzNqDEZe6bVNuRbTVXUk9b/6WjmZiKGBpzaLakIhAU10nJItHNb2RgPqajRe3EEBjnWAw0ALfhiBqoiKjNjRb17ofwHLBouEKHFeRGVCt951BJi7+QcYvuoH6yinmTz7Mh3/9N/jQhz5EbngnvTtezlNf/TjRaChGeCmyfft2/uN//I/87M/+LPfccw+33347DzzwAH/5l3/JJz7xCa688kpuuukmXvWqV2Hb4U9Fz8RNzkX814Nvf97aC7TiB5/8DZa84qYfRwIYdHr4/EW/hiW2EKQ+RxaO5LnnE4fJT5s3lBPMcebhJa54224OvmESuYnQNCQkJCQkJOSF5+mnn+YLX/gCjz76KAsLC2QyGS644AJuueUWJiYmnlMbDz30EJ/61Kc4duwYSikmJiZ45zvfyete97rOOl/+8pe55557OHz4MLOzs1x66aX88R//8abtua7Lxz/+cf7t3/6NcrnMrl27uOWWW7jqqquel2MO+fcT+Iqv/fmTnPzmHABXvXMfF//QjhfVWVdKwbW3XMStv/pNzjy0yH2fepqFp/NIW3DJD4UuSiEhISEvdcJfnr4HuPXWW/n1X/91Hn/8cQBsK8bY4JXsGrueSCQFaLJ9UF7TnRiCNkrB6nzrgWWKLKM7YF5CfgGWZzfuKzcEg+Nw5FFQLhy9X22oYaT7zJ3Ya4vmn+9tjHUDuiIn6P7eT6sAtc6RZvwCm1pBc/ZwQP0cp3TLgR2X26wca1Csw/x696RWxSM3aVOY91EunPh6/bwCV7sffgPmHm9QWtj8FnvlQ6OoaFa2thVKDtjoQG8qUALIjtkM7I5QXvBwt3D3GdgVwWsoZh7ZXCBkR0wxcDMngLb7UKMMR7/e3LIQFk3C4C6HhSPueS5DzynW7d/DFkKl/kmJsATLpzYf11MPeZ3j0JY8r+AWIBDy/DS09SR7JAM7beplTW158/0M7HJw4pLywubxepGkJJGziCS9TYucgQ+NiqZxrvtWC+XD7FMe1TUFWJ3rrrO9B8fv8zrXZ25MUlruRiX6TZh+3PRdSJ/d10RYnVPk269bBWsL5s9YCkb3SjSqKxpU3WvGdsw11G773FOzMA3R1o0TdgT6RmF5urWOgqMPYvpvweh2SKTgxCFTsK6VBVNH2i1pRiahmBLMnTbF0tq6sXNa9b52MTHTq6hVRrj0wLtQSuFymBOn72dh8QxveMMbGBoa4sYbb+QP//AP6enp2XScQ0JCQl4o6vU6n/nMZ/jYxz7G17/+dexogr4dVzKw80oSvaMAWEITsRR1XxIYDQOW1GiMSMGgcVMWmbhPKhJwuuigaUW7ddBMZHwqrmStYVGsSgpVSXsCJYQm1QuFunluuWrjBhvnegKNRnQcl7oJrWa9doRbMq4Y7AmYWRL4gdgglgBIxRWZpCL/lEcA5Bc3jotlQSRunJMqBRMdfJ6AyWhcqawoGmW9qcAJwGtq3NrWy21HE0tbVPOqIwo+l+yQRbOmKMxt/vkcTQh6Rizcmr9lG1K2NNVqa3F1cUFtmM+eS7pfEPhQy2+y8Dv0Y+Bm8ybLgfSopLSoNp1LujXN/NF1kXmbzN+0kCCMSGyrmwcygxIhMSKlTbAj0DMsCXy1pUNVLCVQCupltamrktc0bo9bCccqa+YaMn1sr7TOragoqJY0WgukpYnFoVYR5nuI0ubv9vHgkhyyWViSHUGTu86hKZtRRCIwtyA7zprdYdMbLg3zWuz2JVCwtGZ1xICJpMYPwG1FL5ZrkkpdoLVxSZvM+SxXLKpNMybrRYrJiKIvHXDGc1BaYDU1lfrmQgIpNDFHIgb2sGtgL9p7C/7K45w4/Agn7/0bMj238ta3/DD/83/+Tw4cOLD5IId8X2NZFtdeey3XXnst+XyeL37xi9xxxx088MADPPjgg2QyGf7lX/7lxe7mSwpLSD44cTMfOPWJ9kdph/b7zAcn3vJtC5QAhvfneMv/egVHvjzDQ/9wzHxO1n3u+9QRjt51lle85wJGDuS+7f2EhISEhISEfHt8+tOf5sknn+T6669n165drK6ucuutt3LLLbfwZ3/2Z+zcufMZt7/jjjv43d/9Xa688kre//73Y1kW09PTLC0tbVjvtttu4+jRo+zfv59SaYtohha//du/zV133cWP/uiPMj4+zuc//3k++MEP8tGPfpSLL7742z7mkH8fbt3ny3/0KLNPriAswat/+iL2XDv2YncLgNy2NJe8aSePffYkhz5/GoC9142T7Htx3J1CQkJCQr57EFpvVR4IeTFZWVnhkoNvYHH1KQJlFAeZ5Di7Jl67Ls7NiAciMc3ei2HuNOSXWkUtr23jIugdhP4ROG40TkSiGFeWFtG4ETdUSya+LTcIy6dajkTnFA4mDph1p85xTWqz5wqMe9OUiXk7N64rN2GKJ75rBDXNZ3A0H9upKMwF1PLni0/sKOy+NsHySZfVqc2djXZcE6Mw47J6cvPb5xN9EiEF1XPFLeuOeQv9zabYMSOI6hzzOWPXdmU/T0z1DOh1dzE6MSNGeabt0wOSob02U/c2Uf7mwqTxC20CXzN/ZGtR1oHrIyxP+ayc3vzg41kYO+Aw/bjXiSDr0Bqw0QMOwobZQ898wLE0G8RB7aLbuRFrW9EZ93Wsd1V6TuO+Xli07u/z+iDpODdt2pcI7HxZlMVTm0fhSRv2vNxhbTZg6dTm7lHD+yxWFwWNLV4bsSSdZX1jUFw+RyioQEctnAjsvgTmplrRceeQ7YfRnSYK8tztAVKDgmgMVubNz+S9/bC2Au2fyaVlxlgFgqFxTSINU0+DCMzz2rE6DR64DEoFmJ1qD665rl2/zuLaXawWTrCysgzA6Mh2fuM3P8R73/vezQcgJCQk5DvEoUOHeP3bfo6VqYcJ3DqZod0M7H4ZvRMXITuKWTP3Gkj4JBzFmaJD+33RqZo3UDclGEv7lF1JqWkhhRHjdOUMmpSjqXgmhiobDWgGAlUwS/1497PflpptPR7zZZu6d35hMhVRDCR9zhSMcCG+5HVESWCEU/FoW8ygsS3wg3M/X1vzSVvT22hQzLOpOCSTg1QW5k9v7q6USENPwmXx5NbumMmccTbaCiGMPbl5sHk/OuvKVj80W4qBpP0tzLs2acOOdt1It6J3TBK4mtJisGk7dgRyExb5meB8YX+LdL8kPSCYO7x1Z7MjEjSbzi9EoBAWDOyJsDYbnD83W4e0AHHOuHTsH59d0C6t1urnnpv2RWHJb2nchWiJo9rNnBPzFk2YqFpvi/OQykEiLVhYsUGffw7TWU2mF+amQavzl0ciingCVr22s5B5Paw7sM7rxrI0saimWhMb1hFK4yVtcumAWEQzt2qd04ZpZ6QvwPUEq6WN4ywCbQSJfVBqGCe2mKPwA4G/rs+W1C23JM14r0++alFzJVbTjL2XNOOYiQYMpAJO5x0C3X4hmXbqpSUas/dw+ugjuI0amYHt7DxwFV/714+TTqc3H+SQlwQnT57kIx/5CE8++SRCCO66664Xu0svKEePHuX9738/H/vYx9i3b9+zrn/48OHvSITinWtP8Hszt7Lode/iGnJ6+ODEW3h97/Nf+KuXmjz4d8c4dtfZDc/vesUIV//EfpJhBEfIS4zv1Gs7JCQk5N/Dk08+yf79+3Gc7o1OMzMz/NRP/RTXXXcdH/rQh7bcdn5+np/8yZ/kh37oh/jFX/zFZ9zP4uIiAwMDSCl597vfTTab3dRJ6fDhw/zsz/4sP/dzP8c73/lOAJrNJu95z3vo6enhz/7sz57zsX2rc6/1fQjfpzdSLzb54u89xMpUCTtq8br/fBkTlww8r/v4dsfddwP++b9/g9JCDWEJfuwPX016IPE89vD7k/B6f+EJx/zFIRz3F4fvhnEPnZS+y7jrrrv4wAc+wMMPPwyAbcfZNvgKdo69Btvu2vL3jxjRwPEnNW5DcOKQplHrthNLgrAF9Yq5E7le7Qpu3HN+5B9raZ5OHWrFP02DQBodgYTJA0YIUViC2aPni3ZiCTr7XluAWnlzgZLlwOCkRApYmVbnCZTsKExeYrF4MqB6tsncoU2iPbKSRlnhN+HEN2rniVPaqEZAZcnfVODUZnBvDARUl2sbFyhzV3d62GL0whhT99VxK5tX23ombISAtWm/2xelNxx7ZlhSL6otI94ActttmmVFdbW7H32OzfrwXodoWnDim1tHtZWXFeVlF6G2dk5yaxoVfHvaxMDd+g769oU2d+TZq1P9k5KBXTbHv+F2CnfnugNIGwZ32Syd9DcteLXHPTdhkZ8NznOZam9jx2Bwt8PcYe+8ddqPJy5zkLbgzIPupiKpzIBxbqrkAxqb3Fji+1BZDait+sD54698OHm/1znWRBZq61zElIK5p1vXbNRm52WSwqIiP9ddpy1QkjYMbJNIS7E8vW4nEkQzIJAWa8tQLpin179OwQiXyvnu63nXRbB0thX5CJTXBG3tWLYPxnZCvdZtQ60rcjcb7bqmQFvQm9OsFdpiJMnxJ7sD3j8CPb2KE4chYseZGPhBJgZgpf84p2a+zGp+nve973184AMf4H3vex8f+tCHyGQy5w92SEhIyPOA7/vcdttt/Mmf/Al33303dizF4O5rGNj9MmLp/s56As1YxqfYkJRdi3zdYrW+XoigSUQVBcc81/C74gJ1jnAiamlG0h5nSw51X1Bsms8L2bqJLOEoeuIBcyUbXwmm8s45fi0aR4KnBHVPUGhYaM15AiWAdEKRTmqqDePW4p8zLUonFMmYYiFvIWcbnGNsCYATNQKRUt44KG3pjrRUp5aTWwqUInHoGbbwm8Hmcwit6Zu08F1t3JG2yLvpGZaUlhQq2LhtWxwkhImTqxX1lkIZaUEqJymvqi37a9kwvNti9ayiXtx63rQ2u66BLcRSXkNv7O+/g8Ddeuy1JSFQLJ549p0M7rJolDWF+XX9PkeVH00KLBtqmxx3+zgsB+yooFlZt05r7toe90SPMI6llc07bkdhYLvF6kyAW1svcO6S6TdtrM5t3oZbM69PWfVQich5y8tFQa2i0cq4FVk2+OucklxX4rpgKxdnwKEnq1hcluvcabuvm2RCk8koanVrY5SdFDhVn6ojcf22gOlcUaBgftXqvJJTcUU8qlguWGhLoBGs1br96ksF+IFgsdT9ut6OkZQCGp7Aa7VtJTWiAe3bMkpNSd2THYHSRI/PWl1SaVrEM4PEM28hu/eHWJs9ROH0vTz2tX8k1387v/Sf/y9uueUW9uzZs+lYh3z/UavV+NKXvsTtt9/OsWPH0FoTi8W4/vrrX+yuvWDceeed3HnnnVQqlRe7KwC8vvdiru+5kEcqp1jxSvQ7GS5P7XxeHJQ2I56J8uqfvoj9r53gnr96ipUp8yX35D3zTD+yxGU/socL3ziJtMMIuJCQkJCQkBeaiy666LznJiYm2L59O2fOnHnGbW+77TaUUrzvfe8DzLwvHo9vGv01NDT0nPpz9913Y1kWP/zDP9x5LhqNctNNN/F//s//YXFx8Tm3FfL8UFqs8oXfeYjSYo1Y2uGNH7ySgV09L3a3zsOOWLz6py/ii7/3EPtfvy0UKIWEhISEAG07i5AXFd/3+e3f/m0ikRTXX389jz76KJnkKC+/7D387C3/jcsufAO2HWV8l2b/5eYX8WbNiA5GW9GtgQ/7rxAkBwRCaXZdKth/hVlWLYNtw0hrXTsGl10HQ9vM48oaOBFQEQsVsZjco5hY5/yfG4Jkj/k73Q/7ruqaBE1eAAdfAbkRU1jIjUvikQCkID0Ae19hM7JPIi0Y2iVpVDUr06YIsucam/6JVgRJDnZe6RB4AlVxGT7gsP1l3bv2dl0bY2ivw/arYoxdEmXv9XEsx2w7tM9hx8tjICU92xz2vTbO4P4oi4ebaAV7X5ck3mvWHdgbYeerzSRo+sEaCBi+wIi/IknJ3tenSPabAkksI3HioiNQmnxZjJGLop0x3PvaBLlJh9SgTW67zZ7rW5Mr22LblTHGLjJ3OQztj3DghoS5Ax7oGbfY+5rusY1fGmHsQofMsNnvnuvjZCdMQSI7LNl7bRRpw8Ixj8DVbLu0e/fE3ldFyE2Y7dIDkn3XRbGTNjrqMHrAYvLy7rq7X+7QPylZOhVQLyn2vsoh0ury8F6LHVe21rUkiawgM2jajWdh76scYq2bq4d2W4xf5DDzpI9bh51XOQztMetGU2bdRL8NtsXATovdr+j2YceVDsP7zLE5MeibtFmdNs4C/ZOS3a8wxSVtSSaviDJ60MGOQO+oxf7XREkPmjHMTZhx6bR7lcPkZQ7ZQYmUsOe6GJlR06fsqGTvdTGiaUmqz2LbFQ4T68fwuhi9rTH0GppkTnbcl8YucNh2WXfdoT02K2d8GiUz3nuvjWK3TuXIfpvtlznMHfbxmoLd19jseYWDdATJXtj7SjPevgvDeyQ7r7aZvMxhYIf5e3CnObZY2qwbj/k0q5pUD+y6vPtWvfNSyfBOUwA885QiNyJJZo2r0the2H2FERjqZkA8CcMTgISdF8Ilr4Z0r2mnf8Q4LYFxeUhmoW+k9TgG+y9VZAZA2xLLMrEvjZopdl18jWb3Ra3qnNQMTxghJMDIJOy9TJDOgrIl43s04zvA980xjIzRqulLsr2Ki1+miEQU/b17eOubf5p3/MgvsX3iakrFKn/wB3/A2NgYb3zjGzl+/DghISEhzxfLy8v81m/9Fsneft72trfxyOFpdr3yP/D6H//vXHXtG4ml+5FCszfXIBMNOnFqwykfW2oCLeiNBfQPBzRykrij2b3Noz9u1AwVVzKY8HGkea8cTXkc6Deq2mZghAwxW1MfkASDsDPTJGabbVMRRU8s6OidRzI+uVa7ttRcMNRkstcFNPYARHs1TlkRxCVDvT6DPT7JuMKSmnRCsVIwAqVUXDE+0FXtDPQERHs1lYhFfLnByHYztwSIp2BkO2R6TQxw3zD0DnZ1LCPbzToqYdG/XTI66qMwbpk9I5LcePdza3ivRaLn/2Xvv8NkOep7f/xV1d2TdmdzPrtnT07KSCAQAiQkMBiMjX2Jvr5gmWSCMSAwyDiA4WfgYvsB4y8XbIzMta8vyb5gTE4SICNAQiDp6OS0ezbvzsxO7lD1+6N74s7MrgSSQOrX88xzzk5XV1dXd1fX9Ofd74/ALsLarEf/pD8vBH+eMzglq+qbWLK2XiQhGNtvYgS34Z4Ryehug1iPxIgIRnYbdA/65a2EZGy/iRmBWI9gbJ/J6J6a4GV4p0FyyC9rRmDiAoOeMT9tWfegYGRPTQgyNC3pGZF4LqydV/SOyep8qatfNNQ7NC3pHZW+e1DMZGy/QbQrSO3VJxjba+DavpCpb1zSF8wFReCcGEv6ZaPdkuSIAZbfjv5tBv3batsZ2++7YObXFLGk3y+VeHXfuGRgykBHLTAk4/v9/gZfbDS236jOa3pHJVrD+rJ/IEf3GHQN+GUjXbLa3/EeweB2ydB07XiM7DLoHgxcw6IwfanJwDZ/eXJIMLw3gg6cmIamJckhQTwpSPTB2F4DK5gvdQ+I6pzHtX2H1njQD4YlGN8jq6lpu3p9sdjavH9+DE4I+kYCoY6E8d0CYfii6/iAwfQuj1gXaCEYGNH0D/nreQompjXD45rRbRDvVkxMaxD+8v5hzcAYiJyDbcP4mEtXwu+jWEwzOeEipWY9KykWBEMDCik1vT2KiXGX7i6FlgKzrOjv9ZCWf+3tnbQZG6g5um4b8kgG9ZqGYrDHo/JOQX/SZbLLwYsKvKgArXGCyzUZ87hgokzUUMHfiqilqyKl3cM22yccpKuRMdg+5GIEY09vzKMroqplp3ptxpIO0jAZmb6E637997j6uTcytPMK/vpvPsj+/fuZ2HMB3/jGNwgNlx+53HnnnbzrXe/iuc99Ln/zN3/D0aNHOXjwIG9+85v593//d9761rc+3E18yLj++ut5z3vew+te97qHuylVDCF5bHIPzxx4DI9N7nnQBEr1jOzp4zl/cRVP/L0LiHb7N16n5PGDfznCv73te8wdXn3Q2xASEhISEhKyOVprUqkUvb29HcvdcccdbN++ne9///v81m/9Fs94xjN49rOfzT/8wz+gtpo2oonjx48zOTlJV1dXw/eVFNInTpxou+7KygpHjx6tfjYTWYVszsrpDJ//s++zvlggORzn1/78Cb+QAqUKYwcG+B8fexpXvvjAw92UkJCQkJBfEEInpYeRpaUlXvva1/K5z30O27aR0mT/vsexd/tTKGW7MSOa9TQ4DoCmd6AWHMpmBAuzGqfsi4t0zMU0NTJ42H7+FMTrBMm5DFTMc5TtBwUqb45nSwIjsEwxCg5OGYanYG0e8mlYPAupIFWxXfQDAV29vuNKdhWUlqyuBdtZcCgX/IqdEhTXFb2jktyqopDR2HVOLtlVhW0rdl5usjqryK5qlu7JoWyIxD1cuyKCgNySRyHtkU952EWFmo7g2f52ilmNCnamd9RPhVFc9/92bUV2ycUt+39LCxJ9RjVFWH7ZrYqQlKPILroIQ2BaimLKY/lEzbUov+LhBOkUlAvZJY/UOYdSTtHVL8kuelQiDfk1VXUrOvn9EqN7rOq+l/Oa7FLtTfdCSlFY81ib9dCmQXZZYRd10N+K7LKHUqBKkJ73kHVpMNZXVNWNwIpDvFcSSfiin0JGYxZr28mtKEoFTbTbd0TIrqjqm+7FdY3n6eob8K4TpNUwDTzPL1tx/ymua7RWmBE/yJZbVdU35D2nsezAlFENRALk1hR2IehDBetLisy838ZiDsyVoL1Skk8pXMd/Q/7o98qM7jJxiiroQ8jWpelbX1Lk1jw/BYr0l9lFP2BkF/2/88uKY98pMbDNaJBnZpe9qgtAes5DCP9t9q4BSSHtYZiirqyikA6CPuMSM1pzCyisK5xynbtQwaNnyCSSAMcRZFfr+jsLnqdYyihyKT/QVgz6xXX8a8Mtw9zdDt3bTBLdiukLBOurmlxKUQ7OJacE2VWNY8P4mMRzNNm12g/N/KqH7RmgYOYk9A36xzXeDbZdc1lybZg75YsdAXYe8Nvk5nw3pJIjSAUOS9Lwy1UclSR+Krdy4GiVWYWFaODIFIFEQlMq+oIl6SpWl/FTCeGfP5YVtGfNF1QaVpQ9k89mz+Szkcl7OXz4+3z1q19l37597N27lxtvvJFXvOIVhISEhDwQfvKTn/A3f/M3/N//+3+xXY/B/Y9h12VPQDCJRmBrDzfQFMRNTdT0DRIBVgomtuehNJQGJJ4p6BL+mFtwBWczFvkgJZunBVlbBEF+ge0JHFcg0GgEywmTUlyCgtiCxuiH4S6PmYwka0tsZVUdmAq2xFUQMTSuguW8wWrMpDjg591S5xUV975CWZJMePQYimJJkitKnEAk6riQL/liJaNPsO5KVFlg3FtECN8Js3IfUK7/dzYNpaIvJKknV5bYUmBJSGibQlFVnWXKBU19PNWKCaJdgkJa45Q1hbSulrULGteASFxgF/2UaZU5hXI1hXTN6cgu+m5EuTUvmOtpnJIGKVGeP+9RCooZzcJxt2G+VFzXuOW6+ceiJp/yUK5/jy5mAxdMpSlldfUcKGU1ZrTmyOSUNcVMo+OQFRdkVvx2FtIazwnu52VNIaMxrEDom9fVfdE6KOsJMASep3EqjpyWSbksfHvGgELan1uZUXBtv1+o628pNSCxYpDoN6oiJM8J+ruuD12ntj+FTG27npYUMgqNIL2gKOVEw3EvrqtqWeXB6qwiFziA2iXQ2SDdq2H4rqe2P5+REroHa85XTklTrLhRakjN+fM9EfeFV4WMrp6Hjg2Fdb+/DBO6+iGzpGt9uO7PPcGfP2kFXTGPYsGkVBI1tyPtzzGKed/sSilBPquDPhSUi/73dllgzyq8CQMEjAx7ZNKCXF5W6yqWBVJANKrpSSryBf/aBvA8KK75bcuWJQsZA8/2Bd6xiCZfInBaglzRYDElUBriEcVgj2JtXRLJKuweybo2setcPcuuwA3a4LiQL9cusvm0GbgmgSkVptS4lsCTgrIrWcz6/4L/UyVi+nkSNX47iY8yfdlz2HPpdZRX7+TeO77P9ddfz969e3nBC17AW9/61g2BiJBfPpaWlvjSl77El770JRYWFtBa09fXx3Oe8xye9axnsWPHjoe7iSEPM1IKDl63nZ2PG+NHnzzGkW/NgIb0+RxffNcP2PWEca787QN0DYQp4EJCQkJCQh4uvva1r7G8vMwNN9zQsdzs7CxSSt7znvfwohe9iN27d3PrrbfyiU98As/zeOUrX3m/t726usrg4OCG7yvfraystF3385//PDfffPOG70+fPo3nbd12OJfLcfjw4S2Xf6SSPlXkyGeWUbama9Ri/4sGOZ86y/nUg7O9sN8fHsJ+f+gJ+/zhIez3h4cHs9+3mkZO6PAVyYece+65h9///d/nu9/9LgCRSA/T25/EtonHY5ZrgY9YQrN9D5w5BnZJEInqIFWbQEX8YJQZUbi2BKnYu0+zfFZX0zXVk+yHqT1w4m4/kFBZv4Yi0QXlQPgxugNWZmvBqoa6BmD7IcnpI5DP1B6ey1wQuZB+Gqrls34ARZo0ptuQsuG/0xdLls4qCjNNadeCunZfFSO34rF4xNmwfoVIAuyM6ysm6l8GaDq9I92S4T0Rzv+0tDHlV2B3uvvJCdyy5uztxbZpO7ZdGmV93vWFSVAVJ9XTNeineWuXagT8YJOMGRtS3zW3ffslFuvLnp/+pJngrXszAj2jkrWZoIy3sWzXgGD6UovTd9gUKzldjI39efApJstnNStnm+qoyxOz63EWrq05d1eLHQzqTA76wcB8auP6FcwIbLvQYvm0SyFVEaa1eFtUQqKrJhJqR3JEkl3auO8iiDJLE7ZdZLF43MFu4eqvpaB7SLL90ghnf2w3pOCrx3dWECyfatqn+nOmcj6aBpG4L/JrIGhTJAE7L7eYP+qyvrRx/3TcZPtBQWZZk1lqs+OVLlPQOxKkeQzEh83pU/Ze4sc+T9/buqq+YV+4lMuAmZQoVXNCqu6m6/fLzgN+8PPMsVbXimb6kCCTFqytSKSpfKGl8gVLAJGoCsY1yY69imIRFmdr21JRg3x+iTPnvkQ2O0uhUGBoaIjXv/71vOUtbyES2ZjaJSQkJKQerTVf/epXef/738/Xv/51rO4+Bi96IgOHHo8Z7yKWqo3zA3EXU8JS3gQ0pqSatq00IBFB4jWFoNfw6DIUq4uSWtq3GuPdDkoLFvP+fbo43DiOGoHKJLagiZvKFwo5rd0SJnocnC7BuXLjmNd71p8bRSyNITXFskSIigioTuDQU7sPdEc8EpZmKW/Qe3zjBCTe5bsmLZ7zRRcAXqzxvQbD9IUk1mqhktmqRtP8IzkksYu6bYq3aLdgeKfJ4gkXp9g+LVhyyCA979XSszXPFQRE4x3S0QZYcXAc2TqdXN19uXtAkpprkw4umOdEAsef6v29xTxnaNrv+5Wzdcua5l7JQUFyWDJ3tMXGAjudSEIwsttk8bhTEzTVY/rCmkSPoJSrSy/XYj6Y6PWFY6n6eWWL+aAZAc/WbVPigS9eNiywvY3vvojgBIp1+4KuzGLrY6MjJsNTAgQsnwvKNP9EFdA/Klhf0Rt+nzTMc4LzUSSMoFzjtSmCensHNNEYLM1tLANgDJj0JhVLK62vbyC41nzxYTKpWc+Kalmnu9ameEQxPuAyt2RSbnGNS+E7L2Xywbb6wfZqdVXbVNZYhmay32EubVaFR/XEI4pkn+Z8zgQEhtBVAZNh++KkyrgWMTSjSZf5ILVkhXI35OZPUjhyC/On7sOIJnj7W9/MDTfcwNTUVMu+CPnF5Rvf+AZf/OIXufPOO1FKIaXkiiuu4FnPehZXX301phm+twZw9OhRXv7yl/P3f//37N+/f9Pyhw8f3vJDt19Wlk+mue3jh1k+VUsGa8WMMAVcyCOaR8O1HRIS8svL2bNnedWrXsWOHTv40Ic+hGFsjEdUuOaaa1BK8cpXvpLf/u3frn7/5je/mbvuuovPfe5zJBIbU2695CUvobe3lw9+8IMblr3whS9kamqK//k//2fD93Nzc7zwhS/kta99Lc9//vNbtmdlZYXV1Zoz49mzZ3nXu9615blXhXCchpO3zXHLh3+K8jQTFwxy/RsuI5KwNl/xZyDs94eHsN8fesI+f3gI+/3h4Reh38MnUg8hX/jCF3j+83+XYtFXlXd3j7N3z7Pp79tRV8ojkYRCVmCXfLeTSgympE2oi00NjSjGJjRH7lG4ruRUs1hEQleX/+ZwPgNrawJbgopsfJg02u8xMg0nsr6IafEMG+rqHZWkVwTrWd1eoAQkkjC0XVJYV+TXAoFSfSBJwsQeyfI5/43s03cpRK6FQAlAQWZBkU/p1sIVYHy/QXLU5MS3XDa4lQo/XULXoO/MY+cU5+8qbSxTx8ydJTZWVNd8CZGExIyKluKkChMXRiimFbM/sduWGdobpXdUcuQ7dmvRlNa++KTVrluNl69rUxMotaG4rpm52/XFKy2CUZtS2V/XY+Gow2YvOmSbXeHr1q/g2kGAywyiSu2O8z6D3hGLI7e0EJgFxHth6uII5++xfVelOnT1bXRNJCGJdsmqi1YzuRXFzE/aC5SAhvq7BqVftlnUFhQZ3Ql94wbHf+A1Cfb88rbtp17Jp1oH70TR5dy9teM9tgsyyzURUv22AIYm/YDwzH1+fcLxGgJ4p++j6nAV6/KbXawTbKWXa/+fnFREonDkPqg/EXXwUHptTVUFYKapMSOVtHAAgrOHa2PO1JQmnoAj9ypUsH7Jk0gUoCiXqbpwmZbCMKGoDLq6Rrjg4EvwdJHjx77CwuKP+ZM/+RPe//738+IXv5j3v//9LX9Yh4SEPLqxbZt//dd/5VVvehul1Xniw5Nsf/rv0LvnYkSdzZ8lNZ4GpQWuqnNfQZDrq78naXbGHHKeZMkxyXgGpZXGcT9iKFxPoBBkywaFfkkx0eq+ptlfKlN0JEuYFFuIDaKGIt9n4GjBjLDwyo3bqgiUAPq6FVL4IiUdCBLqhUlRU5EwNamSQc42yNnQe7yFUhffGS9bktiWAGujOENKzWR/2Xcx9HelEUOCUr47UkGTXWlxL60ToJRzmuVT7QVKAGZEYEWDbbWZJ8R7BIOTkoVjbvVe0oyQMLLbYn1ZkV1psb3ATUlKgTTYKM5pmjttEB+3ID3v1ZylHsjcK5jvOSWX5VPt9w0A7TsRNVDZZrNYSbQoU79Ywuhu35Wplfi7Qt+4xOwyWDzVQmQdPDQ3TIUVFX56tTaHObWgGxdV5lSVc0X7ZSqLzKjvKNksxEb7bZ8Y88imIZ1rnC/roN5CocGsagPemstS2X/Qa5qa7i5NOtMoHKpca9Eo9PUqikWjmqLNynlVoVLRFpxfNSkrCQYkoopioVaX0oJMPngBxdBMxVyWUgapSGPbvahAC1hzjaojU9RUlN1aXUVbUlwCEgJTaHb02izmTbKOgRfxy3nUBEu2J6qnRqUuISTJiT0kJ/YwcMUSC3d/l3e+6938xbvexdj+K/jmv/0T+/bta995Ib9QvPOd7wRgfHycZz7zmTzzmc9kZGTkYW5VyC8Dw7v7eM47n8DRW2b54b8epZxzqingjn17lqt+9xAThza6KYSEhISEhIT8/FldXeWP/uiP6Orq4i/+4i86CpQAotEoxWKR66+/vuH76667jttvv51jx45x6aWX3q82RKNRHMfZ8L1t29Xl7RgaGmJoaOh+bS9kI2d/tMi3/u4noGHX48d5yu9fhNH8mzgkJCQkJOSXhFCk9BDwsY99jD/+4z9mcXEREAwM7GXf3ueQiA9sKDuxw0/JdPjHGqUEZ47431ecjyJRRTQG2YwkvQYg2j5gn5iG3kG4705wTYO5mcblUiq6kn5da/N+UMpu8Wa2tgyGxjWjk5Bf1zi2IJ/ZWG5gm2TtvKKQgePfD4IoLQJJhoTuAUFhHdILtBQoDewwQfuim5VTHSIIjsvyCZf8mtdWVyRNmLwiQXrGYfFwuXFhnahkaI/FyimnUbii9QbhiVJw+rZiR4ESwJkflDa8BF6PNg0Wj7msL4q2oht/g3Dux00/AJoESggY2+P3v91G7wVBmrpl9cCCZPWYBoXM1qxYh6Yk5aIiW+/4ahoNQqXTP9z4A6eZ5dMeqfMeCANove1iBs7cYVNIte9QTwlOfq/ccpmuS6uRDVKl9IxK7IKilG25CmbMd7paPuVudJ4KWDnrp69RJdX6vFEwf0wBAjOiGd9vcP6+RkGTKLvoqImUkByQuGXVKFKq4+RdqnrpdfeDXYZyXRfXBzhHpyASg+N3ta5r9qTvTAES01TEEpBbr50/6TX//wLFyBT0DfjjF2pjYHtpURCJ+nVJqejth9RqJRUczJ+rlR2Z8MfCew4r0P42DBHnwP7fYN/e55AvfJ+jx27jwx/+MB/96Ee59tpr+fjHP87k5GTrHQkJCXnUkM/n+chHPsJf/dVfMTc3R3L6EBNPei5d23Yjmu7pAs32Xoe1okGqZLBero3RpQEJaJKGIudJNIIl26CsW99DJZqpHrda13KfuUGQkRCKkvZFTIs5M3BL2UhxQDAeU8SUZsG2sFts0zI1UkDZEaykZTUtXb04qULc1HRHFemSvx/NAiVpQN8QpJbBsUzSHSzCjeUCqbKopmVrRfegpGdEsnDUrTn6VAgmR1YMpCEo59u4LNVRympKWa+tQAn8NG+LZa+jiEcLydIpr6VTaMP2cnrj/jXNnWLdfvs3iIKaqLbnZ5x7acOknN+k4fjuR4lewfpyi/YHapRCRm/abq1g+Yzn/zYIxFutyCzUhMftyGUl+XTruZsOhDiVFHtCQKKH2m+Nimi/jp4hQVcvzJ1s48ykYG0RykWQykVFNv7ktcvCd3IUkEz6To+FXOP1aOYd3C6LaETTldBk1kXLuX2pLJidM1DKF9x3JTT5Qn1dgrITpGMzNGN9HovCIF8SiKZucT1YWDUo2gIiEDcVJbfi4eYLmtaKJkTBtBUTfS6pgkG6sPG6dzUsFcxqGsqEqbA9gasFXkRg25LFrL9MCs22Xr+uxTpRutUzwtQTf5Opy59G8cRtnLjrNvbvP8D111/HjTfeyK/8yq+0PAYhvzhcd911POtZz+Lyyy9/uJsS8kuIkIID106x47Gjfgq4bzamgNt9lZ8CLtEfpoALCQkJCQl5sMjlcrzlLW8hl8vxoQ99aEtin8HBQWZnZ+nv72/4vvJ3NtvmofImdS4vL2/4vuKQFIqQHlzS53N8+8O+QGn/tVNc/XsXIGTrZ0ohISEhISG/DIT+zA8SSik+8IEPYFkJXvayl7G0tML42OU8+eq3c+nFL60TKCmGRxT9AwpZdFmag1NHAOWndKt8KkxMaia2acB3T1pZ8m12jJIftIh3+6ndABYWBadOCFQbMc3EFEzt1CD9B/P1rjfaMtBRSfeIf4qszMPJe8GxW7xRnyvRPeiLZLr6ASn91FBNgaTkoC8Y8lw49n2vtUBJ+uslBkzife1FQNKEyYtNZATcEqzPtQ/aKE9w7gcFFo/UCVOEaBAfxfskQ3uiJEda6PYq0QgJ26+IEe+XHQVKVtwv6xT9tm2ozjTQwfp+KrRN0pfVp4exzI0CJSCagL5R6bsMtMOQ9E0aDGz/+WgTY30GYwct2JA6sJGeMUH3QIuhxjQa+jGSgGhX+3rcMjWhkGH4nxZUBEqRDnVpKXxHrwstksE5rttM6kf2mAxOt7dMdUtw7i6nrUAJwLMhM+8vH94OvWPtf0BEk4JYj8SMiarTUgVR9t3Cjv9IsXLe/653iI0juaqlWBzdKZnYLRFO6+Dg2WNw9qj//0jUH0Ma9s+uBQpHxmF6t0bKjfuqTcn584KzpwQogZSaoXH/LX1p+9suFiSZlN/YgSGYnNJUsrUpU1Y/AAszcPYEyJK/valpj0jE366UkmT3VVzxmBu58NCLGBwc5Rvf+AZTU9t55jOfyZkzZ9r2b0hIyCOXTCbDu9/9bnqHRnnTm99MsXeSfS9+Czt/7WV0T+6pCpQsoRm1HEATTWnOZ03SpcDdbUBWP35Z2BZx6Tb88SenfGcjgGhKAZqeqAdoFIKTVoS5pLkhtRv4IqbtEYc+wx8TS65E6do4XxyQ6CGwB3y3k5myxYLd+p7de9ZhsMejPxmMr0mTco/ZIFASaBKW3+50STKTMVsKlLyYiU4YWEmJ6G5/T090aXo9f95WXO+cAiyXhpXTTQIlrRvEJt2DBr1jnX+KxJKiVqaDQMkIbtNOidapeg1ZFQk5ZTYKp+owI7X6mtetJ9olSPR2fiAoLEnPmIER+/n85EoMW8T6W88FKxiWn6rOaFWkfl+En0KuE3aRmtBObpyXALjCRHl+t8sOU0Jt+KlvB7bVuTK2EA/FuqBvVGDWH4Omefv6imZ5Rlfn060o5v15tpQw1O8iRPv5thUTROICLUTVaamCmXfIFyTn532XMik10cjGulQgzo5FYWhQEYn4bkrNuJ5gZsUkXwrKxxXa0OjqrgiKtp/2TaAZT7r0x1tfbG5Ecq5gkVL+yomIwjICEWDBF7+v2wYqyIE3knAZiNfa5EVE9aO0YDZtkilJIllN0vToMevaH0sSv/BXuOCFb2fqSb/FD+74Mc94xjPomTrIrbfe2rZvQx5+/vRP/zQUKIX8zMS6I1z9exfy639xFcO7eqvfn7xtnk/feCt3f/E0qkV60ZCQkJCQkJCfjXK5zFvf+lZmZmZ4z3vew44dO7a0XiWF2srKSsP3lb/7+vrud1v27NnD7Ows+Xxj2vjDhw9Xl4c8ONgFh6/99Z04RY+xA/088XcPhQKlkJCQkJBfekKR0s8ZpRTvete7iEQS/OEf/iFKOUxNPpGnPOlPOXjgNzHNyhtmlQc4kmRS0dXlP1B2bUEpL+qESYqJSUVvn19+9qzg+BFBu0M3tt0XQaiIgetKioWmt75jimSvX9fceThxn8Coe4CuLaOaNmF0Aqb2+CkOQNSlcKrRbfgqnNwqnLxDkc+0cRcwYdsBg5HpWh0bBEqmJNbrrz97l835u9u760SjinivQSTe/hSO9UrGLvBVO8W07uhWVEwrTnw7R3ahvdjJjIAVF4hNHJQmL4kyfXlrtVAlmCIl7Ls6smlwLt4rmLok4gtpOgSkynk48l2XfAfnA/CDVt1DP58JrBWD3mGBGelc7tQPvcAlqA1Bn0xfFmFk9yb5kyXsvtJkaHvQb22ESskRyZ7HR4n3tlwMgEYQSQiseOf+OPNDm/P3dHZ6qgjNEn0wurfz+RHvlXQlO9UFx//L9R2xJMR6NgqVKphR2LZfMrStfX2nf6qYPer3fzziIZtPI1VLVzO6Hba3SQMuyy5zM3DqqEAp3wlpYNhP01arS5LLSrQpSQ4LxiYrLkwbWVmSHDviv8UPiuldHvGEX5cyJUpJ8oFjUzwOyaSui0/WtjkyciEXHnoNV1zxUhKJIb785S+zf/9+Hv/4x3Py5Mn2HRMSEvKIYWVlhT/5kz9hYGSMP/mzP6dv76Uc+O83MXXdC4kNjNWV9MdqGbgjRQLRQsn13YUqwqSoUIwFIiZHC06WImS91mN7xNCMJDzkiKA4LClqX1xQv81eWRMxnbYt1jyDrrqUocUBSXFAItBMRh0GLX9e5ouhGu8BEs3grG/Ns5w2OOdGWjonAfTGFOPdLlLooJ4WDkpJA9C4jmBuVrQUo1fosktENxG19AwLzCAtmz++tyd13mPlTGdXRsMSmBHRUaAUifspYSPtsn4GopzuAcHwjs1/+vSMSga3Gw3rtiKzqFk51zkga5jQ1d9GMPQASCQF0a7Ox6Cch7mjm7hFGZJ4UjCyy9h0HhfvEYztkbVTsc2D0KEpwcD4JnNM099eJzFTMQfzJ3XVWakVWoMdCHN6h5pEZU0Ylj8XsToo09aWIRU8u7ciGt20G2beodIBvT2a4WEP0SZvXaksOD9vYNuBq1J544FwPP96NKRmrN+jJxAhaYM6sRJY65pzGYtUMZgPmQpTNm7X9nyxoxeF3l5Ff1e7/RScy1qsFP0NdFmK/qhLZVz0IqJaF0Dc0HSZlfNbV8tJ02LowBPY9ZtvYedTfxsnn+YpT3kKY9t38pWvfAXdyUY25BcC13X51Kc+xSte8Qqe8YxncO2111aXHT9+nL/+679mZmamQw0hj2aGd/XynHc+gatfdiHRbn/wdYoet//zEf79pttYOLL2MLcwJCQkJCTkkYPnefz5n/859957L+94xzu48MILW5ZbWVnh7NmzuHXpNp761KcC8J//+Z/V75RSfOlLX6Knp6cqYro/XHPNNXiex+c///nqd7Zt88UvfpFDhw4xOjp6v+sM2RytNLd8+Kdk5vN0DcR46usvQ27iZhwSEhISEvLLQJju7eeEUor3vve9vP3tf4ZSDoaMsGP7tezY8VRkU2DFtBR79ijm5mA9Izl1UiKLqsExqZ5El8bzBJk0vkNR45YZ7VcUXUE2Izl7RrVN/wYwPgVmRJPNKJQrsV2QDQ/2NYluP93B4hxkUuC6rQMOyT7N9F6Lsz/1yKeg3CLNmJS+nEC5cOYnHqUgNiZyhQ0Bp7EDFr1jBsdvLTWkuWqozwRVdCmm4fg3860LBXQNGnQPG/46Li3frI8mJX2TFov3lVu6HlXRGtc1OflfHXKIBMwftjGsxm1teNNbQm5VUVzvHNwqZrSfviz3ACeeTcG12Xu3lqJtK2RX4OhKUF/9/rkPYBumwczddpCqrsO+KsivKUr5un6rCJW82nazK4qFYw7FFmkJ6zn9oyAC1uHNg0qalkS/pKtfsHyqaf/qzquuAYPuQcniSa+tKK4+dZ+MGW3PdYDxPX66nOO3uQ3pDCup39wynP6JohhcV9VzvQ7l1poydcC/5s8cbr29mZMQi9fqikSg1HBdS4rB331DvrNbLitapolMr0ryWYXjSDAVkxMuSyuyIWhdDpxLojFIJBoPQ33qmOKa4nDed40Dxb4DitQaLC/VyiS79vD4x/0hhdI5lpe/ze23386ePXt4whOewEc+8hEuuuii1jsdEhLyS0sqleL9738/7/mf70drGLzwKoYvuwarq2dD2X7TJWkozpUtylpyohQhltJVYVI9UkBCakzAhapzUgVTaEaKDrPDFkVM7sPAbVY1BESEZsJy8RyTnKqliisOiLoyCkf76ZxmShblNnUBbIs6RMc1s+vtp/BSaJQWpEuSglMTHfQez+HFausJqZmY0GQygvU0NAui6suZywXSbbdYKecLWjwH3HIgVDDkhnlB95CklFW4mzgaAeTTkE93Fj3YJVibbZHutmkO5JQ1IsempM4rX/TyQNOz1a3n2jB/7Oc391qZqZsM1IvXnc3TwDVTLAgWTwTpmTuIhpyyprDelHWtcsOuSwGXWdabHs9yARbPCX+DkfbneaWeniH/HKgKroI5lw7mCEL6DpBOGQptRE1OGebPBM3GRUcN9IZrTAT1aUYnNOtpwXq6deq3VFqQyxlohO/OpKmmYqtQ+e0Uj8HoiMe5dUl5w284PwXx+VUTO9i/iKmxXdBGrT63mj5XM9zlUXIFS/lW17/g/LqJEKCigrip6HZdUoZR3b9657aIVMRNTapc+86rOybpFQM7ENV3m5qhiMu5ghW4MoGQJn27H0PvrktR5+/m3J3f4BnPeAZdI9P849++j+c///kt2hjycFMul3nTm97EPffcQ29vL11dXZRKtYn8+Pg4X/ziF0kmk7z85S9/GFsa8ouMkIIDT61LAfctPwVcaibLF955O3uunuBxLz5Aoq+TzXNISEhISEjIZvzd3/0d3/ve97jqqqvIZrN89atfbVj+9Kc/HYCPfvSjfPnLX+aTn/wk4+PjAFx99dVcfvnl/PM//zPpdJo9e/bwne98h5/+9KfceOONRCK1t1XuuusufvKTnwCQTqcpFov80z/9EwCXXHIJl156KQCHDh3i2muv5aMf/SjpdJpt27bx5S9/mYWFBf7oj/7owe6ORy13/b+TnL1jCcOSXP+Gy0j0hnOskJCQkJBHBqFI6efA7kPP4ezxr+K5ZQwjwu6dT2dq6kkbxEnRqKJclrgO5Aui+oawG7Mw6153NiOKnbs0czOCfF5y4qiinXDDixn0jinMLGQzrURMfhoBw4R8VjJz2k9H4MUiWNmNgpvxaegbhqM/1ihPUGqlA4oJ5FqZfAFmHDq69+x8jKSUh/P3KUo5P6gg1zcKlACWjjlkl7z2og0h2HGFRTlrcP6ucptCNVZPOayecWoKDa03CJW6hw2SYybLx8vttyth6vIEi8dt7M66KABK67W3jQF0iyCXcmHuvi0ElCyTwhYCansfb5KaV7WUY0I88OCalEE/PcA3oU3DXz9Q1UgT9jzOZOmUR3qhfZ2lQrBeJ8srYOF4m+WGURMqKVib6VxPPaP7TErrisxC+3WSQ5LuIcnymSYBUt15tXzK27i8DfFemL7M5Px9bkOqxXoWTyqyq6pBoAT4wcFgm8Wc36fxbthxsWT2PkW2zTV57j6FBoQDIm6i3Kbjoahe8+PTfurII3dS3R8ZuAF4cYu1JUkuo7DLvnBoYAjWVqB+rHICQVIs7jsdpEsSu8XLteWS5L57KuOcYtdeP0C4suyvr0yJFzUxyh4IyOUExcD9KRJR2A4QBP4Tse1MT/0PBvsXue/oZ7n99tu5/PLL6erZwX333MrY2NjGBoSEhPxSsb6+zq7nPJ/U929Be4qhi69m+LJrMJvyVQo0EvAQlJVsmEmVhhrTR/UZHglDMWdbFJXkVNminWhHjSri6xrLBgdwN5TT9EjFupLYWnK8HMFFUBjTdJ9rcsdDMx1zSLkGK45ZFTE1Ux7S9B7XpKXR8e6csBRj3S4zGQtHCWwPyr2CwXuKDQIlAK0Ey4tQ7jCligxIxs0iS5maaLcdWsHiKdU4fWgSKAkBXX0SNOTK7W+W8R6BEZHk1rYwF9FQyDSVM42G1HLgOwyV85vXpwwT7Xa+kSd6BT3DgoWTtf3VloF4gC4y2vTTsGlLtE3P2hHL9LcfqF26BwSJPsHSqQ77ocFxJDpuVtdrhVuG9aXW+6XrhFIVV8atYEYgOQyphfZlpISuHoFr+yKplttXsHCWLU9ZB0bBiGkWlgSiRTdrJVheALvFNeGnggMQVU3YQL/CNGBxudlBzadYgoVFA1XWWHg4PcaGOaIdCJqk0EwMuKRykkyhphqzAmF+ucdoECfGTIWrRJ2IyRdLVU7BrogiGtesKAOjhZg8VTZJBWLCmKEYjHvM582qkMmLCNy4wCxqXAV5T1abbgldFW8KITEmL2HHtovJzh5l+c4v8YIXvICXv/kmBq7+VU7/ywc3bjzkYeN//+//zd13380rX/lKXvSiF/Hxj3+cT3ziE9Xl3d3dXHrppfzwhz8MRUohmxJLRrj6ZRey75pJbvv4vayc9gfrE9+d4+wdS1z+vL0cetp25AN9LhESEhISEvIo58SJEwDcdttt3HbbbRuWV0RKrRBC8O53v5t/+Id/4Jvf/CZf/vKXmZqa4u1vf/uG9e68805uvvnmhu8+9rGPAfDSl760KlICuOmmmxgdHeUrX/kKuVyOXbt28d73vrehTMjPj3N3LnHHZ48D8MTfvYDh3X0Pb4NCQkJCQkJ+joQipZ+Bj33sY7zlLW9hbW0NKS12TD+VHdPXbhAnAfT1K6a2K44fg1JRMnMW3JgBsbpCUoGSuLavtRDVahrrk1IxtkOwsiZx1hQn7/PTL7VjcodGazh5xBcxNQepwHdXcm3B4iysp0F5Gx+0q4hBLK7YtU8zfw9kVyG73LmP1uYU5XztjecN243BtouinL/bdzLKr7QIplSCiLbD2hlNOdc5cDR9ZZzsksva6SaBUuXfuqDkBiFTC6K9JtEegWH6Aop2DOww6ZswOfX9UrVYK4FSckgS7RadU5yYBoleGN1jMHOPh7uJJmt9uYUrU8Mr74CEfVeaLJx0WV9qU1HzudtcRxO7LjdYX25Kd9IkBFOu72xULm4eQRrZKTGjkrkjCrxOwUs/Hctis2CpXqgEDO0w6B0zOPn9zpHVRI8fMO0kUlo87rJ4ktanQP15pfzzevoSi/mjDoV06/qK64LUec8/50Xr60N5fipFgPF9knKxJr4StouOmA1ipdSCItvBPare7Wz3hZDLCObP1gRl9cyfhvRKsL8ycEWri2FqKQKBEvT2w7ZpTakoKLQQ8pWKkiM/VSil0VHB1KQitQT5fP1+y+o/nltnChGMiwBe1AAM5mZrx3j7dgUCThxv7MPu7lEee/mr8dR57r7386ytHmdycpInPelJ/Mu//AsTExPtOyokJOQXkkKhwIc+9CHe+973ksqs03fFVYxdcB1WonUOze1RB1cLztsWBSUpKElpqL6E73+iEXiAp/3vKqnR6olJhTXssShNYssGJ5Ab3FMqxIVmm+Xi2hYFLaoCpXoMNF6w7dmyRUm1rqs0BKO4JFCkMHDalKtQdASpkoGjfHFSK7qTGmnAelpQKrUu4yX8uaI+nWN9ABzPCHppI5E49I5JVs+pRiedFs6KWsPiSXdTUYkVl37auE5ZYwSM7jLIrioK9W5LLeZePcOCwrruOJ/ShkH/mMApa/JtxMMV3LL27+9N+6EjjYKf7kFBrEt0TAtXSbNc/3c7oVI8CT0jksWTasM69TglTWETN0nwU6H1TwlSiyauTUexUveAwC7qjmIkIWFkWrC+oilm25eTEqJxgWFpvDYOSErB/Gm9sY+bf1MEy7t7/bRuqx2ET9m8xCiBdHXVsVF4TWK24JowTM3AkGZ1SaCC687Mu7hdZjUdXC4nMYzKmNEKQSk45+IxxfiQ5vyaiasEQjVuV2nBQsqg7ASiJamr263gSokM2juU8PAUzOda57pbKZgINBZgJBXdpiK9bjSNWxWhkW+KVWmSQFfLuXFBDoNSkHIuKhU7uhxmChYFr3YshBD0TB0gObkXNXcvR3/4Vc78n7/lqtM/4k//9E95xjOe0aaPQh5KvvnNb3LZZZfx4he/GPCPWzMTExMcP378oW5ayC8xI3v6eM5fXMXRb87wo08eo5x3cIou3//EfRz79ixXvfQQYwcGHu5mhoSEhISE/NLxwQ9uTfB/0003cdNNN234PpFI8Ad/8Af8wR/8Qcf1b7jhBm644YYtbSsajfLqV7+aV7/61VsqH/LAyczn+dbf/QQ0HHzadvZdM/lwNykkJCQkJOTnSihSegB87Wtf49m/9t+wy+sIaTC58yns2PcMIk1vhEtDkeyGTEaSToE0JKViIE6qw8y7JHsU23dojh/1nUlOtXgu6AXraQTJbo9iSZNeo6VAKRZTIKFUkJw7KSibJirWWggxMqkZGIVjP9EoV5BvCmrUp6ErFSE773YMPCSHINYtWJoVrDWJYeR6Yy4OaYBhCQyLxnRr9Q9MJfQOaTKzkJ7Z3H3ILatamhHYKLLRmr7tFoYlWD3VWaCEaVDOak7cUtrYribKOUUh5bvotBInVUj0C7oHZXuRUpA6TUjQHpsKlIBasKpD+6SEXErhtEpr10JYV6VSZwuxUmFdYxfbdGClTqWYP7YFayEh0Kou9Ysh2wqV4j2S3mGD5dNqowNWXfq3YlZjRlXFoKftdk/f4VT/30mUhYJIFwzvtDh/T1NUrU6opFxwnQ5pbIJyiyf8ApGEwkrIjq5kpiXwmpyPqkKloM6F0wT1aYYnBeePtd+X9IJLoRSsW3esqruqqI4FEzsg2QdH72ysQwfpXtIZg/JhLwhgKXoHILMG9QLLyjhlmtDVrcnlDXTgtCScuoOjJGdP1/7cuUujlMfZU7WguS9WAqPsMTsrsYL4XCSiiEYhm61t15DbuPBxryOTOsPKzBe55ZZb2LZtkpe97Pf4u7/7uwZ745CQkF9MPM/j5ptv5lVveCNuPk/fZVey8+rrsXr6sJrGzYRUlJXAQ7DkmNU0bI3iJIitwkTERWuYdyyynkHW25jzqjDuj6MRpUhqxbL2BQkbBUqabqnIKYOilpy0LdKjrV0JBZqdcZuUa7DqmBRbzOPq25tFEjnXXggh0AwlPFIlg3xSsoCEuqFt8J5GVYlh6Lrbfl2qp0TtZ0E0ojFm83iaqtufNgyE11p45DlNetdmgZKAvnFJdlm1FaXUygrWl9qLn+tbXsxqnFJdarkWSAMSfRK71DQ/rN+HYO6glL8/WkpECwFvBbsEdrDdZoFQPa4NZdHOhaj9epVlzWIlz4FSTkMbw8vKnKBccCkXNheHu9L0py+ytn47oVJXvwABdgfRuQ4cGTc7xrYjWDi9NZcsgO5+vy+L5fbzVc+rSwvXqirLaHBI6op65MuyIbVavWBJSv/caT79KkIlgJIjwPH7pS+pKJUF5XLr89V2BMVVTWUqV5lD1YuVSo4Mtq3ZPuSymjXIFhv3WQXtnc1bGMG6EUOhdKOrEtTS0EUNTZepWKn7DVrvrlR0JcXAjdeSiqmky/mcCWlJua8mVvILC+aKJoXghZYuQ1HwamOiEAbGtovZdcFF5I7exeHvfYVnPvOZ9By4lDu/8Bl2797dsn9CHhqWlpZ40pOe1LFMPB4nn9+CffAvMPfccw+vec1ruOGGG3jJS17ycDfnUYGUgoPXb2fn48b4wf89ypFbZpjbluJYYp6f/uNZnrLrAq580cEwPUlISEhISEhIyBawiy5f++s7cIouo/v7efzvHHy4mxQSEhISEvJzJxQp3Q/uvfdeXvSiF3H33XcDgrGpx7Hn0K8jZaUbG4MZY+Oa/n5N9l4/QL+Ua3JOwndFAsjnIJNpL2rQCcH0hMv8ksS2JYePAUhMWj2NV2zfrXFswYkZk+LGpgWp3vyA19pSIKhoqqoqTpK+gGplUVDIy00FJ119kliPgNnG4EO9QCmS8EVJdh5O3Vb3lLxFIGpgDEYPxCimCtj59tuW0g8ubSUVXGLAwIwGIqV2mAaj+y1Wzzo1AVWLlHEV8iuK/IpqLVCqW2/xuMfiyc4CJfDT6OVTm6f86OoHzxOUOgjHIEgxd6RF/3USKNXTQsDTNvVaU/3ShOSAJtMh3RvA8tmm+toIldZmFWuzm2zbMMiveuRXO5RrOpaD05J8SlFqThtTRyQuSfQJIgmwC63LKBfO3ll3bnU24WJsn4kVE5z8YfvjPXNvbVmsG0pBGsAGoVJAIino6hWBQ1rr+lZmQEf9KOfUXlhb8FNC+jvQ2NiVOSjWpR00ig5evPHN/WLZAAk9Sdi+U3PaFeRapGdxXcmRI1ARME1MeGSzglwbt4xMupa6RMpK6ruas1JeGxhZv2+GRzR9/Zr77t0o3uzt30Fv/6sZmDjK0Z9+hn/4h3/gs5/9LK94xSt4z3ve03rjISEhDytaa774xS/yR3/0R9x7770kL7iMoWt/lUj/YMvyEs1k1GHVMVh1ffFPszhJVJUdgpwnUR1uS2LMY1gplqVJWkjSQradA3RJzXbL4aQtSI0KCi0ERd3ngMChZMk2KXQQJyVQ9OIxj0kBSaTD1EYKSEQUqZhBs9lRTaCkMS1wHUEmXWlbkNYp0fxzQDMmC5SHBan5Th2EnzKsxKb3ZNOCWLekkNJ4Tvs6rYTAiopGZ6Q2cy+tqYmZWs29gnmL8mDhePv7a0WgBJBpk9assV6IdUHJMdCbTEVKWd1yftZJoNRcrl6oVC+O6rhexMSKgnDc1uL0akFYaZqvtxMqNafyq++3ejbtwzpRkGFCogeynRyzgFhCYBuaYofroJirzVU205yblmZoDFhQ5Mu1/agIloTn/45aPA8gEMIX9nleo6NSDU0s7jvXthMpeZ4gnRHQI4iaimRcsZI1WoqVlILVrEG+6nSmia57lHtqbVUIVLDuUMJDAOezrV2VMo5BxvFT0llC0xfxWMFAtnBSU1qwbkvsYF/rXZUA3LgkhcR0NRLNRNxh1TZYsxvHESEkyQOPoXvfxXTd+yOWvvNl9u7bz/P+22/x//1//x+Dg63H8ZAHl3g8Tjqd7lhmbm6O3t7eh6ZBDwJKKT70oQ9x4MCBh7spj0piPRHs52k+ecXtrOjaDfBr2Xt46ocO8cIrnszB66fCFHAhISEhISEhIW3QSnPL//op6fN5Ev1Rrnv9ZUGGj5CQkJCQkEcW4d1tC6ytrfG0pz2NCy+8kLvvvpv+of08/ro/Zd+Fv1UVKJlF/2F+Mqno7/cjFgtzguNHJXbE2uCeBDDU73LBXhfTVCglmT1r4Lq1Q+LFjOpHSuju0nTFKw+wJWahMYAgTYVp+rmZTp+3OHW+tQbNytr0Dmr2XgzS8NO8rS36qU1UxKh+qvUC0Zj/MdPtczxYSYk2JfNn4PRP2wuUAKYfG2P8wuBBuhC1TwvWzjicvq2zQCneL9n71C4Sg3WntNZtIxRzd5U494M2URvTANMgkoC+SZOugU0CSRImL4kQ6e7soAR+ShRgo2Al2Gb1z4if0mxThGBkl8nY7s2DXWYUol317ZZbFyjVba/+OBkmxFpn2Wmgqxe2HTSJ9Wy+PcNs2ndDtnVHMKN0HsWCANrIHpPeiU22LWFg0qR31Oh4PuZWFMe/a7cWKLU453ZeYbHtUN212KLe2Xtczv54M2sJn1gSdl1u0jtW9+Z/UzAxvQTHfqRxHYG0BGYbsyBRdpBmcG3Xv9RaOTeC88MuQSpwRRvdDjsO+kKlVqxnDU4ek+TW/XVjsSaHubJH7aApkt2KeEyjLVn91LO2Ikmt+t9NjXvs3+XSfAF5UQMvanB+VnDyuEQp6afFHPdAqOr4DPjj91P/mMsf/1tIafDe976XwcHBDbnXQ0JCHl7uuOMOrrvuOp797GdzKldi++/9IRO/+TsNAqVoyg+gD5guAo1CcKZkseoalIY2uieBZhcOI4GSZ90zyKnG+2dhXFc/ca1JVsb14L4QW24cw63AJSevBPf2WaRG26RYOweTUZd+U1W3Xe/y1NxeC00MjQT62giCDaGxe6HQIzmmI+S9xvGz3kEp0QUT2zSm6QvUvYSFlzBbCJQABMvnNOkWwuJ6YUr/uGRgsune6not07y5Niwcc9u78AT9G++RdA9uPleI9wq6B4K+7jD3EsJ3w2mFNoyG/bFibbOvNmB2GwztNLG2YMRnRhvr1JaxZYFSu3XMSPt9qqdvRJActzYImVthNbczYm5cr2JY1VoH04AZgf6x1tdCPdE4JAfEpvuzcl6TSW9tzhqJwfhOXxhXobnPXUcwfw6K+dZt1IYIPv42B4ZgZFxTr9Iy8/VzL8HCkiSTE2jhp4pr2751F8uAiNnox6alqH5AkC1KlBZIoZkcdIlFFNH11mK7uaLFQsnfYUPoOjGmj5WvObHFDEW3oRCAF6t9KnhasFI00QgModkbs0nKFtd0XGDHJafzEVK2379J0yMWvIATTfltENKk76LHs+flN7H/Sdfxb//vc4xsm+Qv//IvyeVyG+oNeXC54IILuO2228hmW7/dsri4yPe//30uueSSh7hlPz/+4z/+g4MHDzI9Pf1wN+VRyddTP+XGUzc3CJQAct1lPv8rP+Z/f+9bfO7tt7F4rIOFcEhISEhISEjIo5iffP4UZ3+4iDQF1//hZST6QifKkJCQkJBHJqFIqQNKKd74xjcyODjE17/+dbp6JrjiyTdy0WNvIBJJtFxncFgzOOQ/nLUjFgW58Um+GTy8TWclK2sSt+ll5ZowSTE14WJIhetK7j1qkMr4D4GbBUqg2HVQMLlX4MVMSiXZMg1chXIRyiWqz9qbhUkA8YQiEvEFVMcPC7InN76+rE1fmNQ3KdlzmSDaoluaBUoA84cdFo+7HdOTDe8xSQ76DSytd35VvZxVrC+6lFJBuTbipIGdFr2THYI1dUIhuwDHbymSmevsZhTrFsT7DcRminah2fnYCGP7m7ZvbozM9I1Ldl5mIjvFlYK+O3uXx/kjmzsuDW6T7HyM+cDESa22LQTDOyXTF20eKcum4Pjtnu/+s8m2J/ZLJg+1qLMpCGnGYO9VFv3jm+yLYZDoM4h1b1JOwcnbbRbr3RY6nJ9mDLZdYLUeRevOv8yix/pi53R8yvXT+kmhmLzA6BgALGVh7pi3wZWqXXqW7QcE0xfKtsIrnXc5cTdkVvxlyf7GIFzz+WKX/LSPncjnJVoKuvs1ey6A7mQroRKA5Ogxg6Ug6D866pFMqpZiJYDVtMFqWlKxpqo40VXwohZ57Xdeby8MDWkibfqyq/9xHLziTUzuuoZ0OsMNN9zAwYMHOXr0aOedCwkJeVBZWlriZS97GVdc8Vi+d/dhtr3g95j6nVcTn9jesrwpYMjyiEt/3FoflJSGGsc6SWVcE6xikGkxcFeESV1aMRDYWq4IySlpVsfOZoFSQiimB8roUY/CGBQ7KlwEZSWoNxHaKKTSdAUizAwGp7HoOb5xPlPuFZR7YWTUZSxaGfubnAGbUrwV8rCYNSlHrDbCJD/F1GCfR2w+h+e2d6KpCHuK64riel2hFuIkIf05TUcRSt29aX1RsXx68zmNFRNEutuLmCsk+iTj+4wN22/lAjQ0Jegd7iys0ZaBU4K5Exq7k0NRwMhOg+4B8YDESa22rS2Dsd2SeM/mAqC1ec3qXJCSroNQSRowtlMQ726xzab1ekcFwzuMti5KFYT0hfGbCZoKWZg/qdunx20i3g2JTcTxThny67XUb+363XWCdGVRj+5khxR2hiC1LlhZ852I6mkWKoHAsjTbxj1icYUWoFscKntZMZfyhUCmoTGNJjerqljJp+wKXK/9MVda4CiBMgQjPR5jvRs71BcqQdY1OF2wUIEIaTjiizybxUp+vbDqGuSD35SyRY7BUkzixCWg6Y8oeiOtf7NJK4K88hnsesUf03fBFfzx29/OxNR2PvOZz6A72V6F/Fx54QtfSDab5Q1veAN33303XpDCs1Qqcccdd3DjjTfieR4veMELHvA2CoUC//iP/8iNN97Is571LJ785CfzpS99qWVZ27b58Ic/zHOf+1yuv/56XvnKV/LDH/7wAW87k8nw6U9/mhtuuOEB1xHywPG04n0z/94qG2l1+PzOtUdZPrfOf/z597n1Iz+lmNlCbvuQkJCQkJCQkEcJM3ct86NPHwPgqt+9gJG9/Q9zi0JCQkJCQh48wnRvbfjMZz7DC1/0O3huiaGhES56zHPwjL0kuxQ7JsocP2tRsiWTo2WG+jQzpyWZjCQaVWTS4MYMuuKKXVMuJ8+ZFEqSiVGXsUEX25EcPmmye7tLMQUgicUUu/ZqTs+Z5PIwNuIyNOAhEKxnJSPDDqWSYGZOEokoDuz1mDkjyGZgaFQzOC6ZmTWwbdi908FxBedmTExTcWCfy+x5v9592x0MA47cKTh3DLYf8lMKnDsFSMWhCzXz5wWpVdhzUBGJwB23A0oydUgiJJy7R6FNyf4r/Tft1+b9NHXSoJpaats+sCKCc7flAdj7lBjpOf9BfimjGb8gwunb/ejO+CGLaLfgzA/8lXc/Mcr6gkeiB2LdJuMXRDl7e5FyVjF6KErXgMGp7/rCp11PSpBfc1m81yZ1zmHPU7uY+VGBYkozvD9KctTk1K1+G3Y+MUGsR7I+71JMK3Y8IcH5HxfJryqG9lj0bY9w4la/TXuuiVFY9Zi728GMwa4nxJm/t0x2STEwbTC4w+L4LX7Zkb2WnyIsC9KEvVdFWTjmkFlQ9E9KRnZZHL21DApcWxNLBk/oJOx/UpTFUx7peU3vmGBst8Hx77uszCi6hwSThwzO/dR/eLzvKpOVc36as+SIYGKvwckfebg2jO2QRGKCM3f5ZfdeaZCaU6yc03QNwORBk5l7XHJpGN8riXXD6R/7QYTdj5WsL2uWz2gSvTB1qBbMG90t6OoTnLrDL7vrckk+rVk8qYl1Q9+YZPGUf1xHdkiSw4KTP/LL7rxMUsrB/HFFJAo7LzWYPeKRT8HQDoP+McHx7/vr7rjUwC776ehWZxVTFxkkhyC7AgPbBEPbJcf+ywNDsv1CgXJh9l6PxeMeI7sMlIff3xOSkV0GR29zQMHURQYIOPNjFzyP/U+OsnTKITWr6B03GNtncvw2G+XCtgtNDEtw7scOyRHJ+D6TlbMuazOK5JBg4qDFyR+UcUswccgk0S8wDEk8CZMXRkjNeayc9ugakExeaHH6jjJ2QRBJSHrHBNkVjRmB6cdYZJcVSyc94r2w/eIIZ39iU1qH8X0Gw9OS1JzfT7uuMChkNAvHFdEu2HGpfxzT85rhHb6DxfJpxdp5xc7LDEp5xdwZSSQGOy8RzB3TLJzWDG6DfVcIjv3IdwPZcZHAKWnOH9MYJuy5HObPaFwHdl/oX8f33O6fA9P7NUrBzHEJUjO6XbNw1l+2Y8qhd1jwk7skKMn0Lg8h4MxJ/wSa2q5Yz0A2L+nrV2zbrjl2r8B1JVNTLhFLc/KUH8E8eNDGsmB1RSKAqSmP4ycMnDxMbveIxeDEMcglTA7usUH7Y87Z85Kdk4rjZ0xKZcnkmEtXQnHiPoPMOuzZo8iue4i4Jp0VTI97nJyxKJQk20Y9LthzHXcfewqZ+f/kyH0/5tChQ/zqr/4q//qv/0p3d4uIbUhIyIOC4zh86EMf4sa33YQQgoue+WuUH/MkhDSYxEEBc1gINAdEmZKWzGERkwqtNUUlKA3BNhwEMEswtlAiCsxgYiMYw+XcagQFjFoOpoDjg/50eL9nozS4QlBWsF17HJcWLjCmXJIWzDh+G3ZGHOZ7BWeFidCag67NSdPCFoJRz6VLa06ZFn3KY/eay7JpsuyYRIVix1CZM1iAZAiXXhQniZBEcSllTmFxHosIsLPPZi5nUnYliUFFn+VxuhgBBL4swMcUmh1xh7mSSfynZbq6Nb19mkxaYJchOSbxPE2hCFJoto15rKQkxZKkK6EY6FUsrRp0l0vEJgWei5/qTcD4HkF6QVPMQjwJ/eOC+eMGpZxH37ggnhSsnfXd9cb3m2QWPQppTbRbMLzTQLmQW1UkRySmJVg9589VxvaZZFcU+ZRfdmSnwdwRF8+BnlFJJC5YOeOXHdklKaQ1uTWNFYOuPn8OCpAcEsS6Bctn/PnH8A5JKavJrmqcssYwBYblz1W7BwXxPoOlM/66w9sF5SKsL2tWZzVD2wWFdbCL0NXvuzUtnvTrHdxh4tiazLIv4BrfLVib15QLkOiF3kHB/Cm/3oFJifJg+YyHMgzG9whSC5pSzu/DvlHB/Am/bP94o0BofLcgveT3d6zLdyRaOK3RCvpHwXYFxUC8P7bHn8PlCxBNwMC4YPGML/rp7vfn4ivn/e2M7rfILbnkU5pIHAanDBbPg+dAfl3T1SsoBKKz0WlBfl2TS4GZNBke1yyf9cinNYalGJk2WDrrlx2ZFpTymvUV30FpeFqwMqNZOKnpHoCuXsHiab/s0LTEKWkyK75z5si0YHVO45ahZ9hP67YQlB3cJvAcTXrJv9+P7gTP80VIAL1DMH/a///gmP97puL62JX0j2HJlcTiiv4hwdw5QAsGhjVCwOqSPx+f2K4pFjxyWYNYHAaHNHPnBVoJ+gcVhgErSxLPhYlpD8+BlQWBFfF/gy3MOpRjFv29ikhEs7jsv4TS36cwc5DNSSJRzciQx8KigesKensUVr9mLmUx1O0xmHQ5v2aSLphETM14n8t82sR2BcmEImKA6wkEmgu7isx7JqslC0tqJpMO8zmTkifpi3pEpeJ83kIZgslEmbIrWC1aGEKzvcsfI4qepNf0GIs7OEqScgxGog6uFixhYpU10z0OS3mT3IpB96BizHLQCJYdk4RUaGA+GA/3xGwWpMm5vEnS9NjdbbNYMogJQUJ4SCE47/lj8qEei8Wn/Tq5y57A4rc+x/Oe9zy6p/fylf9zM1ddddWW7hchD5xLL72UP/zDP+SDH/wgr3vd66rfP+MZzwBASskb3/hG9u/f/4C3kclkuPnmmxkdHWXPnj38+Mc/blv2L//yL/n2t7/N8573PCYnJ/nSl77EW97yFj7wgQ9w8cUX3+9t//3f/z3Pe97zSCa3YPUbAsAnFr/N/1685edSl61c0l6+fQEBuZ4yH3vVLRiB+6O4CyIJCzP6wIW8vzP6FP7H6DUPeP2QkJCQkJCQkF8EMgt5vvWhu0DDgeumOHDt1MPdpJCQkJCQkAeVUKTUxOnTp7nw4idQyC0ihMH03qfzhKueTDYvyebBdiCVlbjBS6L5gmS4xyXZo1ktG6zlNAXXf+jtuJBaF7guSKnIFwTLUlIuS5SC9azEziu8mEHZFKTyCttRjAz5QaS1lMHCokQFIiY7eOPXcyGdEjhlmD4giFiCdEaQzfkPetazmuClSJSCdFpStiEeg2gU0utUXZNy6wpVeeFVQToF5ZICTGbOKLq6/e/NdJFcAgickwDWVzTJIShkfGem1Tk/gAKQT4Np1d6hW1/0MKOS5LDB7GqJ9QX/IT9AIe3hFGtvwmeXPIqrNsv3eUQSMLAziuf4FRdSHqrehkDA4I4Iy0dtXFuxPu/glPyypXTjW8TZJZfV04r1BRfTJCjrLyvmwFj0y0sJsW6JWwJwUC6sL9ZSlJSzfh0A8SGTQlbjFFW1DzNLHuUgNV05p8ks1dqROu/5EcXAPSmzpCgXgnrzmsySQumgnnndkHpjfVlRzvsiE6cImWVNVy/0jknWVxV2XcqK9RVNMReULfn1lot+gMWMKJxyrWx2RVPK+m1wypBZ0QxM+MsL641vt2dXNaXgTWzXhvSiJrcmAE0xqxocd7KrGqfkl/UccB3NwDZJPqUoZrX/dr2UoBS5VY3jBq5ZWcgs6uqxKec168u1Y55Lgw7atDaniCREtb9LeUVmSVSzgeXXdO2ld8PALmnKQb+UC4rMoqorq5CG75A0eaGJXQjKAnbJP44qeGE+n1bYBcHKOV8Mtb5Uc5NwSsov6wBaU8woPEcwts+gZ1iSXqiVdcv++VIR960va+ySQ35FgSHJrmjKBVXtw8ySqpYtZhVaSfq3CdbOQ3bND8YCuK5/DthlKBcgvQyeo5nYC2tzkFvzBUkIgVaa9UWPcsmglBfMnNBEqi6ymlyG6nWNgvU1QbkMSEEkqvAU1T7MrosGo6x0WpBJCUBiRlxiCYhENa4L+ZykVOcckMkYZLOabFYSi4Ft++OmtkxyJSh7dWWzMlgOtiNJZTyU9lNd5goC15N+CjgM0gUXrTxGEh6ZrOmP38FxLJR8RybTTDA49TyevvtJ/Net/5cvfOELjI+P8+d//ue86U1vIiQk5MHla1/7Gs9+0X/HXlum7zFPYPKaX6EvEWeJYK7S5N+R05KBkmJFaLL9AoFJMRB55JCBn4lGA6uYSDTrGEg0axhofOekNS2QGiJaE0WTEpKcEBSEJAKsoavJJQtCIhREhWJ8wCEjBCUhyUuJpTVrUuPVlXWFnyauVyk8Jcj0SUqAi2ANAze4ORXrpEZZJCexWA/2u/uEIhOTFLsljhZIJSh6giHLZcUxWHNqKeOUhrTjl4sDjgPrjkH3sKZQFBSLwp9fBFvL5gVuZb7q+H9zJs8CkKhPuar9OV3l3uM5EE0Iugc0uSX/Hi3qJgr5lKqKSDxHs76oyK4qtAd2XuPWjfv5tK6WjXWBFRdVUyW7oPHq5nvFTG1OYSUk+QzV+YlTrM0/AYrrdfdDG9ILCuX67km2DdS5PxWzwf0wKJtbqznwOCVNIV1z4inm/DlR/6jvKpjP6Opc1i37f4PvPlTKeWgFtmeA8vvQs2vbyadr7S3nNaYJkbi/8/mMbujvfEZXXa1KBd8J1ZMGwvPFYE7gctNc1ilDV68mEqu111YGOgKe65JPKbTn71sh0zhvL2Rrx0Z5kMsJPGmii77IyUzUlV2vtVd5/r5V5kue68+hADAExVytz7QK+tCFniFI9gvSdfO9Uq42B1VSkl/3HZJcByJR///V41gXE9c6cFLyYHw75LP+pzKINLtBrixCIQfS9duSy9XKlkuiwYSyWBD09PmiOrsMuXWq11XJJnA7EuQLAtPw29Lfq8jmfMG2p31nJdsWqFUNEpbWDWwPyq4/FngK1ovSn1/huyhpfIdKywQhNJ4KfhNqWC/L6jhQ9gSpskHZ8+uKWUFqwKK/SxlH4gbrlpVgpWyyZhtoBAVXEDd91zk3CmktKUUAF2wlSLkGjpbkPImCako5DaRdA1sL3LikIGBNCBKGwirCStxA1A3gKWVQRuANjjP+Wy9n5PS9nPz6f3D11U9i+DFXcewbX6C3t5eQB4/f+I3f4NJLL+Vzn/sc9913H+vr63R1dXHw4EGe+9znsnPnzp+p/sHBQf793/+dwcFBjhw5wite8YqW5Q4fPsw3vvENfv/3f58XvehFAPzKr/wKL33pS/nwhz/Mhz/84WrZ17zmNdx9990t6/md3/kdXv7yl3Ps2DGOHDnCG97whp+p/Y828l6JJSfzkG6zlGhOG16GrWU+b0ne24K1YUhISEhISEjILzjf+9i92AWXkb19POF/HHy4mxMSEhISEvKgI3Torw74qd1e85rX8L/+1/8CYGDkIAcueSGmGWtVmslRj3TWIFeQmCUbN9o+n8HkqEtPt+LwSZP63FCVFAFerPbWWDym2Lfb5dxsLbVbM2bBxYv5+rKBAT8Ikkq3f/OsK6HIFwAkhuNAhzRww6OKZK/m1DFRbauZLlaFSfUYJuy6xH9DO7WwsS65XtiQXkqatcBFKyIJmLo0yvkfFyhlOqd4A7ASkByzWDtViXi0Pp37tls4RUV+uUU+CWujVs+K+8GeTm3VpsHux0dwHc3ZOzo/VTMisO1Ci8VjLuU8LVO8VegagMFtBrP3eY3bb5Gqq3cEBrYZnP5xhzwZwXpDU34gMtPiWDVz8MkGy2d8J6ZOmDEYmpKszKhA1NWeoe2CeLdg5nCL46pUw/4NTPquCHNHOpwDQfRmdK/Es2HlbOfzJTkkmLrY4uyPbfKrncvGeqC03mJBi/NLmjCy22ThuFsV6zQQ7Fc0KUj0SlLnNz+vAaYusSjnNUunO5eXBhvSpLRK6yJN2H2JYPW8Zq3VOaA1um4c6xvSDI3DqcOg2qYY0XhRP/1aPKEolmg7vpimYmybZvasP7YIpVFt35hVHDzokcsJZmZq+yICsWJzqqKRIZfhAcWREyZem+0btoMbiwCK6QmP5TUjECltxMndxZ0/+BzlcoEdO3bw8Y9/nGuuuaZNW0NCQh4o8/PzvOENb+CTn/wk8e27GPmV5xIb29aybAxFH4oFDEAQS2mKQ63HJgPNHmwWMMnQOM7EVv1/C+O18XxSucS14ri02qbljC0LCmMaoTVjymNJGnhtygqtiaApC4nQGqPoCxfatXUHDguY5OvmiH3HFeXeFvd906Pf8jhbtNAt6hy8pxiMkX56OyEqopX2qaL6ehRSavKHN8nlGZDo9QWwqhTcfFqleROQHJZkV1SDgKihQBNm1Bf7dCLaYzC8w2DxlFcVM7eje8DfRi6453dKUdY3KrCLmkLdvV8o1TJV2MC4LxYqdIrpal+M3dUryKU2T2eWHICeIcn5Fun9mokn/XRqHbcfMDwlWF/13Z6aEbZbnS9IA/pGIbtGx34VtosZhZ5Rk7U53TYlYHX72/1jsHxOg9H+HJT+Zd1y3t3qN0g07guVix0MOwASg5JivtM8poYV0fSPCZYWRcfy/jVVWR5cZ57G7do49+ruUvR0a+aXZN06dXVpsHv89QSasT6XbMkg12Z+UilX7jYATdTQgSCpNd2Wh0aQd4J0bZ7G6Wq9b0nTYyzmcjofqYqeAIzKSwN9te8Emp1Rh7QnWXPbv/NkFRWlfklCKBJCsaKCA92Ma1O+8xZOfe8bGJEof/Oe/x+///u/j7FJWsGQBw/P834u/V8RKb3tbW/jmc98ZsOyD3/4w3zqU5/iC1/4Al1dXdXv//mf/5mPfvSjfPrTn2Z0dHTL2/rUpz7Fxz72MeLxOAC5XA7DMLjmmmt429vetun6R48e5eUvfzl///d/vyUnqcOHD3Po0KEtt+8XlYfUSSmgz+jCwsAuurjlxhukFTWwEiaiQ9r1ZkInpZCfJ4+UazskJCTkF537O/eq8Egdp2fvXuHLf/lDpCl43vufTHIk8XA3qYFHar//ohP2+0NP2OcPD2G/Pzz8IvR76KQEfOUrX+FZv/ZcPKdINNbLoce8hGRv6yBZhWSXxnEVGWWAbidQ8p090lmJ0/TQ3YtJhFd78JfsUmTzUCxJ7jtmYjutHzh7MYPhPo9YzGV2zmRtrfPDw2hUsWe3y8ySSeacR71IqhW2DXYQINKmCP7duI6U/tvRx+/YGJ3QFSuV4MHS9ssj5JY81ma8TUU/OGWcoolb3kSYYQIKnAI1gVIH+qcsnFILkVKTWMiM+W+4O5vE6XSw3ukf2ZiRTTdPJA5WVOBhbHrVmabAiLCpQAkgs0SDU1MDTet0D0rsop8WrRO6st4WngsaBvQOCdaXwC3V1hUtola+4Kl1NEsbBkLV2iUNwabPxQ3/PLMiom299WRXNKd/ZFNcx++bDpG1ikDJinUO1gFEuwR9EwbZJUU+1aJvg+2Uc4Jyzl++lUCsU1S4Zb1pW5Xn17f9YoP5Yx7FNkFL1XS9BiZWNZrOF8f2nRc6B1YFRlnjxRU7d2uy6zBztnVJ15XMBsticcXYhOb0vASn1YkmOXq09ldXl6JYBGX5x1xZAlnnsLGelRiSOoGSP/bW40UsvJgg7kIyoUhnJbQ5tlb3pTz2mos5fs9nmZv7KU9/+tN5/vOfz80334xphrfNkJCfFc/z+MhHPsJr3/QmpDQZ+/UX03PR5R0DUhaabqEwtEF+1GsjOPEFA17gVlRoGgdK2xxURZQRCIlKQjInDBBG23ut2lZiCIMFbWILwbzReRyYUB5Jrbh3myZ6upXYva5u8F1Fgr/Lg4ET41JjW3xnKEHGNci4kuabtBsID7yESTSi6e/1WFo1UKrzzdxOGshUqcG5sR0VUWxFHCNU+3uTFRd0D0kKGbXxftfUz4bpzyk3uy9iGpQLsHjSq7r8dGyvGdxCI6ZvOdOpbAvthI6YLe+/a/Pt66nMmYXjYZjQ3dfomtR+PQNtCLTlr9uJWMI/XSvHoSI0EvbGSfbyTIf5QyKCCKxhlQeGKZCycz/piImyBGbEF2FVHJTasTZfJ9DqMJ+plQnmJ/VdsPGWTnevX11bkVLwWyS/HsxLAyufVkKh+jZ4ti/k8Uyj2jfNVOroTmqiMc3qMv6xqxz7uvVyeUku314wqAXouqmL44lWmr/G7SOI5BTxAc1wwuV0JoLXZr9yTm2cHIq7lFzBmmViOBuPQ9Y1KOYrrkyamNSUlMQLhjA3AWah0gZIuZJ8dd6lafXDwYn768dtRbdQrNBmcm9GiD7uaew5+FhWv/FvvO51r+NPPvi3/OhLX2T37t2dOyTkfvFv//Zv/OZv/mbHMp7n8Y53vIN3vvOdD2pbjh8/zuTkZINACeDgQf+t8RMnTtwvkdJznvMcrrvuuurfH/zgBxkfH+e3f/u3W5ZfWVlhdXW1+vfZs21+xDzC+R+j1/zcBD6eVjzz7r9gycm0/HUugBGrjy9d9HaMYOKxcGSN224+zNq5bLVctMviihfsY/9Tp5By62KlkJCQkJCQkJBfRrTS/PBf/QfhB6/f/gsnUAoJCQkJCXmweFRHW3O5HL/2a7/Gt7/9bRCS6b1PZ3rPdW1K++5JKymDki2575TZ4IDUzPiwS7JLc+wM5AqSXKH2dN2LNT5pj0UVu3e4zM4brKzRUaBkFjyspMaKBDnB2oqO/GVFbXJ6TpCfczuW7R+E1CpkUpJMqiZQMtMbo/gTeyDRIzhxZ3uBkpGpRQ08R+O2eBjesJ5pgAQ7D+d+UNpUc7Lt0hhWXHLqOy1eDW/B6e8VGtJQAS3djCYv9vNcnflB++iXrltPudAiJrSBYgZO/mhrDjqZpcYUce2CplAL7G2FM3dtbfv3h3Iejv7XJtGUeqR/FqpWWh4pq0KlzVyR6pk9oquuSptRrHdH2kT8kxyRTF1ocvIHNuVchzozmmPfKXcU4NXTv00yutfk1O02dgcx3MKxoF9NY3OhkgvKqaVlq3dHaMXAuO+ucPIu3RBgrF8vvy6qqVQS3X4KyXKxjRNIUXPujKhLodJpbIJoBKwIGCUPJ2IhWwSPVZ3gaMe0x3pWMDNTq7NeqFQqS+aX/GUDvR4jQx7HT7d2VSqaBvecoNq+yVGHlbRBqdxYVkrJ/oufh2s/mXvu/Bf+5V/+hc9//vO8733v41WvelXbfQsJCenMT37yE17xilfwgx/8gO7HX8nY1c/GiHe1LBtFkUSxgkkWg6yWlEZbj/cGmp04zAeORMtNU9zStkZB87j26NaKo9JCdbjPOlNlIuejRLSDpTV2pzf7tS8snRv3sBQdBUrRwHqvjGQWX+xeESj13de4DVNodsQdFssGWW+jmqYiUBq62642w1OitYNRHXbSH/dyFdFRh7JmBEZ3+m58pQ73xGrdBc38EXdjG5r6z4rB6G6TpdMedqHD5K9u7rUVgRLA+pJu6YTUirW5pm23EOiD72C0Wb9WsIswd+Lnb1ibWrx/5Vs5LlbQpqyKapY3cc+s4DmwOCPA3by81/wewSbzmeEpgXI1q3NNC5qmFWuLHatpQjO6DcplSC13aKsnWFkMzk9TN/RNK5Rq7Fcz5+B2Wy3WEwg046N+6u/MeuM1EMm42L0mWgpWspVxS9MV1eTL7V3Yimswp6w6gVJroVBlmSU1jhBEsho7KVoKlSoOSr2WYjTqcqrJVakmVBKkvFpbpyMOGc8g7bW+3pYiJqslv31RFN1SsdrCVclK9jH2GzcwevKnHP/G59h74ABvfP3refe73000Gm1Zd8j944Mf/CADAwNtHUKVUrzjHe/g1ltvfdDbsrq6yuDg4IbvK9+trKzcr/pisRixWO2+G41GicfjJJPJluU///nPc/PNN2/4/vTp03je5r9vc7kchw8fvl9tfDTwYnEFf8M3Wi7TwIvF5Ry970jD9/v/ez8LPzI5d0sar6wp5x2+94/3cteXjrPrmQMkJ8LrP+ShI7y2Q0IemTzcLgEhIZ049f15Vs+sY8UNLv2N8CWNkJCQkJBHD49akdInPvEJXvq7v4dWLt0D0xx84g3E3fbBJCmhL6mwHUG+YEC7N0EDCiWBYTQ+/G0WJ0mpUEpSKktOnTNZz7KBihBKSkV/l0u2IJhfrNTTXnS0c7dmPa9YXpOkswZWyzxUPr19MDmtKZcF+VLtYXErgRJAegnKxcZ903UKoIpASUZA2XD+p62djurFPoPbJf1jgtPfCxyENgliLB+3sRKbv/bfNWzg2ZpSRjUKY+oFSkFQEWDxmIPRPnNftc2xHpi+LMrZH5dbpwWr31QEZNzE3oKeSkqQVuAmsInFuZSw/4kGCycUa+fr+up+WKPXo1us18kZaSt1Na934CqD1Jxi8VQbR6XgPKqIlSIx381nUyxJPK4aRUht2H6xgfJg9h6343mWXVEsnnRrKVI2EQkhYWCbZG2mzbUW7FNmEQzT7ShQqmd4u6Zn1OTkHV4tnVxTW5QHZ+6qPUyXJqgOQqX1NbCiuqUDQiuB0/gOv/mnOzyry2WD9JCmYucezfkZRSHf+hrNZCSZjB9xtExFrBuyuVoqkkYkp8/4Lm/gj4WV8VdZ/nlW76pkO4JiSXTUrVXG1ajt0ZdUlMpig0ipghkZ5cKn3sjc8e+wfPKbvPrVr66mpkgkwjdbQkK2im3bvPvd7+ad73oX1sgwY697DbFdOzHW2t/LE2j6hWJNawptxEkVPKBQ50hUoVmcJLVGCcGiMFgRsuU905nyVTDdjkYp8ITghNE+FRxAXCvGusuc7pK4UuBK6BRSm8BFIziDrIqTYKNACXwtSMqRFJrSOrl1aZuG7raRQqO0Pw4ur7aep9pJ/3uBZrLfxTllU5GV65iJKLVW3Lo2pBc15TyIZnvQJhJ9gkJGbypQAl9wtDa3NYHSwDZfeJWa33xOYkXBVnV9YIi2bkoNgu824qQKyQE/hdv8yaZ58CbrtaOViKry3WaOShvWa+Go1N0HfSOC2WPt+6zeAcgwwfNo/7JA3TE04xJVVi2F5/VYMRieliyeC0RLHeZe6yu6QXxf//uiXqhUWd2K+jIXu41wTQTHPL0G7ibGq5W5q5Sa8RGXVM6gUPeSSbNgqZAXFPK1dZQSDUKl+nU0gmxOUCq3HkNqQiX/77ihGe11OZ8yKbd0nAQQFFx/hd6IR9TULBXapFNDMJ83q8u6DY88spoyslmwlHEktrKqrkrBrB7whUpQc1UCKCpJuYNLFYAX85d32Zo+qVhTRvvTbPfFTF2yj+zXv8pf/83f8JH/83+49T//k8suu6zjNkI256KLLuJd73oXPT09POYxj2lYVhEo3XLLLZu6Lf08KJfLWNbGH96RSKS6/Gfhpptu6rj8Oc95Dk984hOrf589e5Z3vetd7Ny581GV7u3nzSEOMZma4n0z/86iU7P4HbX6eMvUb3B9/8Ut17vgQij8Rpkf/J8jnPiur1TNz9vc/fEFDlw7xRUv2EcsuQUL65CQn5Hw2g4JCQkJeSjxXMUdnz4OwMXP2kW8JxRnh4SEhIQ8enjUiZTS6TRTuy4hlzqHNCz2XvnfGZq8xF+44W1ZxfiQYjktcV3J3bMRVJMwyCjW1hno9ejpVpw5b5HJGmSyxgZhUoVY2eHAPpfFFYPlFYP1bFNqoiaXpvEBj+E+j/uWjZbuIAAqUufWpLxqcMjKdn4qn84ZlE8oiqVNAjODkF2Fwrr/0RusiWoCpd4xyfihCKduL2HXpWLQLdyLAIqLZSKGtTHFWVMQQ5q+IKSUUZQyLaIiTesM7wuckb5X9yS9VRsCoVIx3T7S0uyglF1Wm7sJWCaDuyQD2yRHv+tuGsjpGRVM7Dc5druLu4k4RwFzRz0K6bov2wRQDRN2X24wf8Iju9q4rJU4qZlOYqWdl0nyKc3SmRbOWkI0rLNwwtuSA4OWkukLwYwITv1o8yDdxD5JctDg6Pe8TV2Vcmuq0VGgXbBMwWrF0WkLIq2eYcnYPotCprNwTbk1p6jK+dyJfEohjTqBUqXNFZratv0iA8OC03d6bR2V3DIsnvH/39Xrp0vp1I5zxzZ3jjDKHl40EA+p9q4NNfzxY2JMkexS3HPUBCTKCAJ+dcHkSpBQSsWBAx4ry5q5fO0hdUWsBI3OdckuxfCgx5lZA6UkZkHh1okbyxGDu2cFouRva3TQJZWV2PbGsW1i75OYmL6ME3f8M9/61rfo6e3nfe/9S974xjdutqMhIY967rjjDp7wa7+Gs7hI7/XX0fe06xBtUidaaLpRpDBIIVkY1mjROABFVwIBN5ptuCxjUEIyFzgSNQuTKkwsCga1w3Fp4QqB2xTMr4iTwL/f7cgrViOCJWh7f/XGfAWl42m8OvFp9FTnB0snBvwAvSfaD64GGlNqykqy6vj9VS9MquA7KGlGhjwcR7CabpznVIRJ9WhAnbM3CIFbCZUq7kGVtGUbWlCXPzQSFwxMGrh2k/Co3VxDQyG1NQelUnYryV19kc/wbkE2pVnfghHH0JTALkFqefP5UGEdnNLWBEo9g2DFfPepVm3cjHZipVgX9I0KFk7rlh2iI2ZVqFTMg9fsEtUGIy6ZmNYsz2hK7dKoBQgJYzshvSTJpWnxG6qGW4b8etN0pc3cq1w3XW/1O6PZUal/JJhX1afga7FeqVBzG/I33Xis6+fCSkExL3BzqqGu+uNcL1iyLM3YhGZ5EUqlmlCpeZ1sdf6riUVpK1gCKHqSmZSF7YmODmeRnMLulmi2MlUNBElCsy3qsmSbpFz/HPOsZrGSoOj53/VZioGIx5k1i8JAbX/cRK3epULNVWnccsl6klwgEoykwe6rtWI5YrCCRLoCE01SKlJqYwpLGYnS+6u/xtBFF3Pqs5/mMVdcwcRTruHYf3x+Q3qwkK3znve8h9e+9rW8/e1v5wMf+AB79+4FfIHSX/zFX/Dtb3+b3/iN3+D1r3/9g96WaDSK42y8X9vBmwkPtnvW0NAQQ0NDD+o2Hq1c338x1/ZdyJ25U6w46wxZPTyme1c1xVs7En1Rrnn1Jey/dorbbr6X1EwONBz55gynf7DAY1+4n/3XTCLCFHAhISEhISEhjxCOfnOG9cUC8d4IF/7qjoe7OSEhISEhIQ8pD+y1319SPvaxjzE6OkoudY7ekb1c8ew/rwmUWmCaMDzg0d+j8GJig0CpGSl1EEvZPA+E60rWUnKD5T80CpRkUNf5FYMTx9oLlPz2KroT/tP7M+ctVtKdNGiKqZ0e/aP+w+hiobHeZhelSBymDggGxv2/WwYO6siuKFZn3E0FSlKCKJYpphULhzd/W3LyMTGmHx/ftFyFM/9VYPaOTQRKQNegZNdVMcw2z0Kb224XYO6w0/lQW37/L59VnLtnc4ESQG5Vc/7o5gIlABSkFwKnISE2dVDKpfWGFClbEShtVr6wril3cEDQQlTXSy+wJZESwPIMzB/bmovAyjnF2Z8EZY3O5+bajCI913QwOvTD6B6DqUs62GsFrC8qTvzX5s5alROhZ0Sy74kRopvEWQopWDzugeu1irttaHtqzmPl3BbdFyRMHhCM7WyqsimHoWMLXFdgmpqdhzSxRPvj7bqSk8cMSiUJUtHT2/nEnz2hOXHGFyj5451fviJWqkcpSK1J0pmtnbeWqTGM1ukFq3Ui8WIGUipGBjwGezoUjnSz5wmvYs8VLyQei3DjjTdy9dVXk8tt8aQOCXmUUS6Xuemmm7jyyisRUjL+xtfT/8xfaStQAujDY0h4CDSlUdXxPqUBE71lxf26kKwIo+WtuypQ0hqhNVoIjiclS6n2Lpvguy0JrSkbgtPdBl6HwFkUxTQO7oCHKwRe0741uygNRzy2RV0qSpRWAqUagky2Mb0wtBYoCTTdZwusr4HTwlGvHisKE3sF0UCQsJmLkl3UzB91tyRQGpiSdA902KemuVdhXVNc3yR9cCDsWTqnq6KqzVib1+RazMdb4dpQDIZ8bcqODkqO7fdHuzZulebyngvFrO4oXtEREx0x8ZxaezfDdWB5QVDegtOjVv48LV8xyejQD1pDZrmFGLqDsH5kWmC10yfUXcCrc00CpTb4jkqakQno31STIEivCVxHIMu166+e+uPuOJBJCzYzfams092lGR32NjjuRjKNHWQHIqHuhMdgd+t2VFi3DZaLvlNSzFBI0b6spwWzyyapwIVJ1NXrWRuPSd6VpGwD1fGMI6jLNy3brKRG4MUgKRXD0u34C9uZmmbytX/I4LXXMX/Lt7n44ov50Y9+tGlbQlrT1dXF+9//frq7u3nzm9/M3NwcWmve+c538s1vfpNf//Vf5w1veMND0pbBwUFWV1c3fF/57qESEH3961/nrW99K3/7t3/7kGzv0YIhJI9N7uGZA4/hsck9mwqU6hk/OMBz3/1ErvzvB7Di/j2wnHP47j/cw+f/7L9YPpXZpIaQkJCQkJCQkF98nJLLnf92AoDLnrsHK/ao85MICQkJCXmU86gQKZVKJa655hpe9rKX4Xqw/wkv4YInvQLTbG0X3dvtIaWquictFNoLFCKmYmTQf6i8kjI5cc7Ai5l4MdnCRUkxPewwZPpvDM4tmg2OHV7MaBAoJRMeF+22ScR84VGphdORisjqZ2rUY8eEQ/3T+1YuStoUaFMgTdFa9NACuwin7xGsLsq2AiUjk8eMgBn1AxHLx120aVQ/rZi8yGT6yg4BwKYAxuppm9S5TfI1CIGMgBkHFDXBT5s2VHBK2k+z1kRz23vHJANTm3ScVZtUKhfya52LV9rtOoLMwhbKAslh6B1lS+ndPBfmjtacn+qFQ/eX5nUXT2oyS1tbL5KA4R1b224hA4Vc+/OtHrvQJH5qJ1QKXjOPdsHY/qbzoU1/OGW9wTWhUzsAYslNCipFbk2xNuttKRgIgajpCQaRVhnGKiI1IciuQnal1o5mwVFjO+DcvZq5k1trAxIMo/0pZ5QbxVGjo7B9p8Y0OwmVZJBqTbFrp8eOqVodyhBNYiXJ/IKBbUsiJYfd2xxikca6lSWqn7WMwfHTBiCJRRWD/e37wokY3HM+wvxKkDol6VVFos2MTF/OoevexOi2vXzve99jdHSUj3/84x32MSTk0ce9997LlVdeyV++730kn/40xt/wB0S3bWtZVqLpCq63ZQzuHZYUO6R368PDQqMRnMYih6S0zal+6ol6mumiR3TJwBaCVdk4iDlT5QYHpem8Zirvj/llo7UA2Buz8cZs5EiZ3TmPfrvxHtHKRak8qHD6Fap7C4rlgEXb4Iy0cLtkW4HS0N02lhkIzkuSsi2wk0b104xlaKaHHKId9N667sGYa/spuMrFTQRKUlaF3l79Iegw1/BsGlJ7NdA09+oZFh3T8UKjmMcpd6i7YTsSx5UbRNwtEdDd74totpLerZiFbN38T1vG/RYotVrXKfuin61k4tURk3iSqshsM4o5ULKz+KpCudjUhnbrBN8nelq0o9X15YLnbLJzwWXkVfTppu/u1OmHjfAgm4Fck5i8/XxYMzKuGRhok6I4EKlp02A9I9DaT/UtpMbMtUt1LcmWDeZWLTxva/NhIUAYoCXVdHD1RHK1MUWgGe92GYx1Fqs7gXNRTCp2x22idY5uniUaxEqOFqQc/9wbWncZFhsFU27C/zgJwaxtkg1clPoMj/ZJ3WAlYnDMjKAQSDSJNs5ywjTpe9oz2P+a13O+VOaxV17J2972tpYuPCGbMzg4yF/91V+hlOJNb3oTf/Znf8a3vvUtnv3sZz+kDqF79uxhdnaWfL7Ruu3w4cPV5Q8F119/Pe95z3t43ete95BsL2RrSFNy0a/u5L+9/8nsvmq8+v3yyQyf+5Pb+O7H7qGU20RpHRISEhISEhLyC8w9XzxDad0mORJn/1OnHu7mhISEhISEPOQ84kVK3/jGNxgaGuKWW24hObSLK579ZwxOXLihnFnwH4qapmLHNpfRQQ8vJnA7OBcBDPYrRgcVpqw8VO1cPhZRG4LqsDG9G0C+JEjnDEptnr3Up3cDODtvcGLG6tgGbQpMK3BbOi1YWd7EcrsXhqd856RCtmNRACYutJi+Ihpsa/NATPpMiczcFqJIQTPzy4r1LZQfOxhj19XdWz7D86uKmTs22he12ofksEHPSId9qxMoDWyTTBzYWiOkCRMHJJHOpg1V+kYlA9u2FuwyIxDr3lq995f7U3csKRiakph1+9hJLDU0Bf1jW6s7OQTbL6rr6w6OSpGEpHfUINIcpG3RlrVzHgtHtxLp9Bnda7Lj8ihyk5cflK1YOultSF3SjtyaIj3vbUjNs4FgHwYmJTsvMzfuYxPFHKB8t7SxXZ3LurbgxN1+GhTQmGbnIOLiPJw6LnDdrVwDknRGkllvIcZs4apkmv54amx6Cfj1DQ94jA3VnJpa4SrfVcmUih0TLqPDfpCvcn9o3H43u658OXuueAFaw8tf/nKe97znobZimRYS8ghGKcUHP/hBLr/8cg4vLDD+h39A39OvR7S4WKNr/vU5hMd24SAD9yTV4b4gtGYUlz4qQfjOgX5Ta2JK02qoqBcnVchEIB3pIKwZq03KHCk4ljRY61AewBvwQGuKUnIiYm5wUGpEM2S5mELjdEnsTW4QpqnZNuaRiPtjTythUj2uAueMs/m9pNIa7af67Sh4BaQBo3stuge3/tMis6haOyM1zb3MCHT3C4wO99V68c/ghOgowqonkfTFM22pO1amCX3DAiO+tX00I36/PBiYkY56nAa6hw0STeLpdiIk04K+4S3p3wHoH4V4fd0dxE1dvX6qug202NjKwhaFY8HqY9OQ7OTKFVBaB7vsz2E2Tx4oyGUFxdTm93W/P31RU38bUVN9vbbjvzDSk1RYVufy60WD5awBCAypWwqVqu1AcD5rslLc2olnK8G6a2DrFmKxFq5KEamJdnBp8glSx6EZsVy6jc795wWuSoPSY7vh3wcAomsbt+9sm2Tbq/+AgSdfw3vf+16uuOIKTp8+vUl7QloxNTXF+973PlKpFLfeeivPfvazefOb3/yQtuGaa67B8zw+//nPV7+zbZsvfvGLHDp0iNHR0Ye0PSG/mHT1x7j2tZfyq29/HH3bgocOGo58Y4ZPv/FWjn5rBq229kJRSEhISEhISMgvCsX1Mj/9z1MAXPH8fRhbeFEoJCQkJCTkkcYj1kNQKcUNN9zAP/3TPyGEZPdl/43RXVe2LW+ZCsf1UxUdXYiQ3+TBeCKiKNiS+WXJckoGwe3Wk4mIqTANKJQlR89bmPk6W/0W4qTRfpdUVmK7krOLfp1moc5dpE6cFDEV09tczp43sV1JqU27tek/6B0eUYyMKo4eAddpE6AIUr1pKUkOQrIPls637wvwXZQA5u9zsLrbOydVkCbobJnsVlxkhGDbJREMU3Duh1uLqi0cKdO14Nb0CB3aM7TLIrfiUVpvfIjebh9m73bai0qsxktKmmCYmwRNguBMNOEHWFbPdS5eYeberQRYfPrHBUPTksPf+fkJKCriopGdgu4+wbHbN08xllmCzJJi0/hGQHefxC5rUgtBSopOAhABhiGQZl1KEUOCF6xT97p/dllxdLmN+k+IDfYEUsLgDoPMgld1S2rH6lmX3JramNakDckRyfg+g1M/cHA7vAyqXFgI0t/JiNE5faAQrM1rPNfDLoLARUc6D/fd/dAzKFg+p/FcPyDdeh3/uE/tgXgXHPuJpr1IQFLIAygmt2tKJcHK0saLxyh5eDGDlbXaNTc67LKaklWBU0WoJD3/2Ni25N7AJQkUvd2aTK7xmlVBgE06mpl5A9MEIrIqKm0nQi1HDI7MC8pB8DxiKtolIxmZvoKhbXs4efsn+MxnPsPY2Bif/exnedKTntSmT0JCHrnMz8/z0pe+lK9+9askn3Q1/c9+FjLS3v7GROMiWMZgcQjKsv3AZiqNFuAJwQkiVYlSs3NShaSryBqCvCk5aggihUb3pOa6ex3NalSSrptjGXM1R6R6cdJQWWFoWIxJih3u8eVBhdCaA2WHjCGZs8y26o9KqjfdJUhairwr2czEb+huGxfB0ookbZmQ7DzfEELTdabAVpKkyG6T0XGP1VmNvYW5mvJg5azCztcdwzb7akYg2i3Ip/TGaUyLuZdrw9yx9udGvUBJGr6jTsuuMwQE95CKmCYS99cpbJaqFT8d2syprbtQjmwX5NKQyfz8HjZW9nV8l2J1XlPYwsFcmgUwEWw+MRES4t2QS4MbqGGEG/R9i+MpZAuxlCl9NVzl/wHLM502vHHuZUUhEqtLKddMIPLW2k/5Zm/ZUEMzNOYfz1QLIUw9hVwwj8BFxwx0CzFPtVbTYDWlcUvBiy85B7e7/fgngO4kaAPsnES4ikjGxe5tPfcypWZqwGE5a5IrV+bFG0vawdzGlJqRuMtCwUS1aHckq7GTgiXH354lNHGpWPdq11NFqGQEzlZrtom/e4IYCheB2zQHdCtuWQXByVJtrI6gOoouFyIGKSTKFQh025LCNOl/xrMY3beP+z79SXYfPMiHP/ABXvnKV7at+9HMzTff3HH5wYMHOXHiBIODgw1lhRC85CUvecDb/exnP0sul6umbvve977H0pJvvftbv/VbdHd3c+jQIa699lo++tGPkk6n2bZtG1/+8pdZWFjgj/7ojx7wtkMemUwcGuQ3//KJ3POVs/z4s8dxSh7lnMN3/v4ejnxrhif+7gUM7ex9uJsZEhISEhISErIl7vp/J3GKHoM7etj1+PHNVwgJCQkJCXkE8ogUKc3OzrJ730XYxTSx7mEufMqriMTavyYtpeLATofUuuRsxiBf7vzAerjHZWrI5fBsBKcoKZuyY0/uHHUwJBwOXI68Dk45UipG+12kNJhfbXw82+yc5Jf30y+1epvayjpVcVIF/zmh7ChQqk+vtXAGWmgKGjAyeeKDBqUs2A7Yqc7lAXZeIilloszdvbXXpHMrquMb9A1IUDZkl4LH4h0ESlLCwLQJEl+kpDUI0VagZMXAKdHajMXa2MCVs5uIguoCPsV1OHrb5kKfLb/eXkdqXpPPPjgOL8szmtTc/au7InASm+QqOXN3k3BMyrZCpewyZJdb9F+9UKmJitvRBkFRJVhWaZ+Ewe0mnqNZa+GqU49rg7uqqut1MO4BpSiuKXJrorPoqI54L0xfajBzr0c+3aluyCz6+9LVD/m1zkKltTlIL+iGdrQXKsHyPERj0CxQMsoeXnTj9WMYbMH1yMcyFSNDCqUFyytNu9WU/g1gqFcxNepx5KygWG7hxGQJwMB1NERg15iDadTG5FYUbAkxiHseB3c5zGQ0S+utg43S7GPvE/+A6L1fZfHkt3n605/On/7pn/K2t71tazscEvII4Gtf+xrP+M3fRAjB6CtfTvzA/o7lB12PKaE4piPkRxUdHZG0ZnfZpSgF56ImHqKtOAkg7mn2FDxOJgzWTT9lWyvXpAp9tma0pElbGk82tqNenFTBUGBoqnOGeqKnopQHawOpFoI5y6TY4d7dd59oSOd2womgN3GIGrq7jOiXlF2J3dInqpGYpZhWRRYtX5yxGVpBoWTg5kothRANBMY05bymeuPrsL/RLkHPiEE+1XTzbTH3ErLWnpbtbEqfpjxYmd1E3VUnnElvIV0tbC29WzPLMxrvQbJSWjgv8QpbmDMClWurcj/v5IrllGG+yZhGm7ImVGpibb5NRfVCpSYMs00qvmDuVfkdEuuCrp4OIiWoCpXK1ZTYnYTTwWY8KOc0didLoiYGhsCwXBbXzI71l8t+bjZhaV8Y3UGopBHMLdeET5VzrJ1QyVWwmjPI27XtV3YhklPY3Y37I9EYcvOpaIUe06PP9MgW5YbxZ6Orkmab4VLWglnVev/cBLgIzAJEUezF4Swm2bbjlaCMgBiM2x690uNebbV1XLV37WXy9Tey+vl/41WvehXv/F8f4eh3bqW7+0Gyjv0lZavpiP/pn/6p4e+fVaT0yU9+koWFWg7zW2+9lVtvvRWApz/96dXjdNNNNzE6OspXvvIVcrkcu3bt4r3vfS+XXnrpA972/eXrX/86X//618nlcpsXDnlYkabk4mftZPcTxrn9X45w6r/8m9DyiQz/7+23cfD67VzxvH1EOwhEQ0JCQkJCQkIebrLLBe77uv+W+mNfuA8h73+sJyQkJCQk5JHAI06k9MlPfpIXvejFaK0Y3/Mkdl7ynA6l/Ue2Sklm0ybpwmYPq/0n4cvrEqVNSkEQe7PypxcrD0k61V9ry+EzkQaHD7PgbRAomVKhFJRsyZFTZsu66wVKvb2KfN53ilruEJCpBAa2H4D1VUgvs6l4QkcMpi62yK1pzt+7NfuY1IyDs4nYo57MrLvhDetWxPslU5fHOffDIqWM6ihQAn/fjt3SaBHQ1gVKwu4nRFk967J8qikw1EKgFIn7gcCtOurcHyIJmLpAcv6IorRJGj4tBI4DzhbEYw8Euwg2YrOYUJWpgwLH1iycfHDaE0uysU8MCW7jMZMm7Ls6wsoZl5UzLc7Furf6lQvHvlu+X8dy+yUWWsPMTztHg10b5g5vNdAIxQyk5z1KW3yOHu2C6YsN5o8p1lY6l1XKDx5OHRQsnNKU8u3LlvKiurx/RJNagk6OSmdP1/LaRSIK224csypuSgCOK7nvuFmXJq5zTryVjKRoyzqBUuvyFWelc0sWllkXTO9Qd9EQzKZNVvKVcaF9+e0XPJ2pXRdw7/du5qabbuKrX/0q//mf/0kikWhZPiTkkYDrurzjHe/gXe9+N7F9exn+7RdhJJPtVwiEPWlD4g1A3txskuGXn40Y2EGwuq1AKShbNARHukyKLVJF1iO0RgvBSlSQiogGgZIxF90gUDKVxpWCxbhsKVACqgIloTU9SpMxJJkO6UcB3C5BVCiGDY8510Rt4YYaHRYMJ13OrVq4avPyjivIrm9NoAT+/SC9DB3MraoMbJMoD9Lz7R136smnNIWM22h31Gbu1dUv6BkSzB3d2JBmgRKAFQGnk6POJudEJ3qH/F1LL29eVlsGducMoz8TdgnfAmoLOhsrqhkYgeU5UN4D3P8Ox1RKX0y2QXjUQtiVHPA/cyc23042Bdm1LbQtuC1bUc3wBCzNalyn837mMgK1mdNpHYU8wYPjra0zMKCJRjVzc50PUEWg1BVXxKKa1bTsIIgTrJf8c96QGsvQlIKXTlrprWwlmcn6bRZohGCDo1LFTQlg1TFIO0YgUNpM7CU451l1p3f78m4CFIJzmGSrJ2zn+pcjBnmEL1BqM9YCyFiM4ee/mG279nD08//OwK7d/OjrX+Piiy/u0PZHFx/4wAcelu1+6lOf2lK5aDTKq1/9al796lc/yC1qz/XXX8/111///2fvz+MtSeo6b/wdkXn2c+655+5L3Vv73vtGs28toIAIIoINgiCjgCiCC/MwOA4zPx9cUGeYn446Mygw4OMwo/DMjDigwyLaIFs3UN3VVV173br7dvZcIp4/Ms++5QGa6qbz/Xr1q+ueE5EZGRkZESfik58vp0+f5o1vfON1K0dIcFJjcZ7z1ls49pwF/uFPv8X21SJoePBTlzj/xWXueuVRDj9jPtzwCwkJCQkJCXlM8pX/egblaOZOjjN/48T1Lk5ISEhISMh14/tGpKSU4tWvfjUf/ehHkUaE40/+aUanD/fLweEZm13X4OquwXq+f1XETcXBWZvzKxF2hcmKBWav17qBXMphdszloasRLEfixiQYYPYQ5ixOuSRiitOXI3WBkop6iyrKaV95Vhza52DbgkcuS9p3KDoXqhVzexSFvOByr1BizcWSfriMQVHKaqIhBRfvt3GCRGLzFU9bF4OpPcYPREhkJVe+Fsxxya0qCquOJ1DyVuOhx+KUNL2NlZYQW/2sXpQXzq7cFhaum0AJYOaIQSQKj/xTFwFKl8o99jSD1fOKzas9xFhNeQSeOCjoZmNuxttA2lwKln4Y4ikvnNzKBR1IxGNVNa5fbl3bLOyziXf0bsnmkmLNb7s1IV03R6WxOcHMYYOH/9HpDJ3W5qikHFg545DfCLaDWLu2aJKBId8ACpsuKqj2SGsyU5KJvSbnvzz4pi4/7Dbaw4DN72oRLj7gUtwCTL9t9Xm4Nd7zb0SBIg1xYI88sYRmbp/3762+jhReOTMjin0HNOcfURTybWWvPatK1wVKuVGXuWnFw4944qWW5FWFkzIAg2LZK+fsuEMqoTl7pXHOljy2phD3nlkTh8OzDoWy4Np2rzduJas7EistiUrFyVGLi+sR8pXufYVIzHPiOb/Kqc//CZ/5zGc4dOgQn/jEJ7jjjjv6VU5IyOOSpaUlfuInfoLPfu5zjP7gC8g+99mIbtaOPkmlmHdczs+7uFKwtRnte/xJ2yWuNJejBs58BQnore7qcKE1+8su26ZkMyopG4KxWc+CZWur01kj4moO5xWXUpJCRFDTbkxPenlW1GhL+rStOVhweThjeCHe2vrEeNqbp1R2vL4k5yoWbJdT8Qh2rz63Kfap15PpgUFcpT+25SsS2xWBBEqRogsIdoMIPgRMzkF+xaUaJCQvUMnrho68JuTo4WBoRMC125yR+oxj5R2Na3XWSjeBkhmBmQOCtSu6q5C3Pn/wC5sZg1QWls93pq3nqQlGtD93CbjfKSKCkRFNYZf6nGdwpoDp8ByGlAtF20Da/ecxyvUckmrN0E15z52sdp+0pbKQHYelc43PavUt7M6JzdQiVCuwtdzxFVqIFtfMct4rSz9q4sHawyANr730fFfB8IQstgWlfG/XrS6lY3wKyqVGWLdeVMq+A2jUC7WsRf+51/a2QAj/WRgwj6p91fxzpRbaVvUQ1Y2lXOIRzeXNQcIp77vZlIMQcLXQZa5T13cLPzSbZjFmU1SSDbvzN04kD1bWe0FBKK/f2mvYLCuTUg93KmkJNsb9eWBeMYfDJSIdoeJqOAh2MXBSLlO2S7IsuNLnx6l1x13ML+5l5SMf5Lbbb+df/fqv8653vatPvTxx+F46EoWEfK+ZOznOS//vp/GtT17gq//tLE7VpbJr8bk//kY9BNz4vt6O6iEhISEhISEh32s2Lu1y9gveBs2drzrq/24MCQkJCQl5YvJ9IVLa3t7mzjvv5OzZsyRGprnxmW/GjA5yrpBUtMB2IVIevJptKbBdcCISHDAr/fNYjsRyVOA3qHeLwt+ADxJ6QHJt1cDp8jZ097VhySNnwOklIGkvo4IL3+pfgvoGTw4KJajsDiqzx/47I5R2NKvfCLZjozXBhR544pGlB6p9NwJqjB+IMLYY4czflTztlC9QEkqjewibdpaDCZQAls+4RGLByi0lbFzRlHYGu0UBVEtw+ZuDG1ctREJ6TPgipQDHr7WhgHPkSBxGJgUbSzqQa8DKuf7ft7N5TfUP9dHEzqrGrnYRKNU2iNqESltX+xS2iwhq7rhJZtLg9OcGi+Y2Lw9nn+DaGtfRGFFw+7lA+MQzsHhThMunXMoDnr+i76KVzEKlCMrp/Va6cuDc17u0k16uIWXBI9/UVErBGkx+F1aWBYUBDmA1SiVBviCwA7pYWQ5EBnQv0byLlTFw4t4mvx3AWSJaUDACZSRVp396KU1ueOabsFf/nvu/+Nc86UlP4o//+I95wxveEOwiQkIeB3zhC1/g5S9/OWuVEjNveRPxgwcG5nGEwB51AIEaIFDy0nt5YjMlQFDpIVACT89QlYIe0Ww7jy1hJyrooTfsoGjClaSk3CV9TaDUzKYhKUo5WKDkj08lLbnoROg3+ErLEwSYwnMhqQxwiwGImYq5aZfl9WAXKqUn8nCHmHvV5y6DHAsETB80yW8o8mv+GGk0REDdxhjX8YQtzXQTKIEn3F69pD2XoQBUS4PdQpspBJyLaENiGJrkqKBc1IFESrV5p5YCoQI4h6bARlLcABWRfYVKriPYDBjWDjwRfCBBm8/mcvfwbbU5aLNQybGDCexrQiUhYe6AF5ZvYP0r2F4fZoFXoALUdTOjowozQkco2nbc+rxCE49qKlZ/R6BCSVIo1dyFGi5D0tVdhUrrBcN/3IJd72bQjg7vmAVXUlbBOlMNVLXAGVCVsQ1BdVxjpzVOoSaI6k98zcDOuZQTGqz+1xqdmmbhTT+P+//+Jf/iX/wLLl68yPvf/35isYA/xkKesITh3h7fGKbkphcd4OCTZ7nvvzzE+fs8xezqmW3+6l1f4Pjz9nL7yw8TS4Uh4EJCQkJCQkKuP1/+84dBw/4nzTB5IHu9ixMSEhISEnJdCbiV89jli1/8IuMTU5w9e5Zb7ngGP/Rjv4AZTRKPKE7OV0hFvUX76azNsdkq6ZhLdtTl4LyFowRb6wZRU3FioUom7i2XTo04HN/jbThlUw6HZqrMTCpObSSwFNw4UyGb9NJOZBxOLDQ2p47vqbI4WaVYlZzZjHJ0n8PIqFeGScPixN4qNRXH3ukqxxYrgGK7KMllFLmci4oKRkZdTs5XkH6cjT3TNvvmqkyNOYBiZtJzXgLIpBTHDlgY/rXOT9ocnqwipWLPgsuhwzYjI14ouWRKceSoQzTqCaimp132HfSuJeFY3PpsmDvoXUs8BYdugbiv95qch/0nGwKl/TfAwVtgYq8kmoSDT4qQ8OdWYwuS/bc3FoIWbjSYPigpbCissuLA0xKk/DdqRxdM9j81UU87f0uMmRPegvL2FZv4iCQz5S2uZ+dNDjy9IUCbuznG7A1e2rlbYhx9XpLMrCccyswYHHhaot7KZ09GmbupsVA9Mm2QX7VRCtLTEQ48JYb0NUczR0323NQo/4G7oxx6WpRoElI5ycG7o5hpL/H0AcnCDY3F//23GowtSKySJ7A6eKdBTTM3ud9g8eZG2r03G0wsSpSC3TXF/DGDuG/4MLEg2HeLn1YIFm+QTO3zFuiTo3DoTkmyVt/zsP/WxuO8cFIyddBLa0YhmhBs+A5NuRk4cFsj7Z7jgtlD/maIhIO3SQz/0rNTcPD2Rtq5I4K5I41NgoO3S6QBp7+oiKW8vLU6nD0k2HOsKe1tktEZ79+5OTh4h8T096inD8LCiUbaA7dKxua8fxe3YfaQJOrvTU/tg8UbBFpKtJTsu8VgYsHLG4nD1H6DmF/fE3sle29qlH/xZoPJg14BYymvzc6dkIwtSMYXJfua2uzizRGmDvmOO3E4eHeU0q7i6inba993NTbY99wUYfqIl9aIemlT4xIjCoeeGuXw0xpp509GmD1mNur77iiZKUlpS7O95LLvFrPeZueOGcwdb7SXg0+KkJ3xvowkBLE0aEeBq5g5LJk/3rjWA7cb5Gb9MCI5rx3uPSmZ3iuY3g8Lx+tJ2X+TqNd3IgMHbxVE47B4Ag7d4LL3mJ9Qa/Yf10zMem0pntQcurGxK7X3mObobRqj6vUp+w+6TM96/VI0pjhy3CWZgtVlycQUHDvpkMp43+874DI37e1yRqKaY4dtMhlN1ZIUS4KjB12SCUUsqti3YLNn1ksbK9te/511UaZASUEq4YVyyyRd9s9WWZz2dkQliuP7LHIZr3xjCUUiqVn1nQJOzFfYP9Xoz08sVBnPeOfJJl1OZKuc3Y5QjBrsmbG4eaFMrT8/Pldhyk+biXv9d2ruKRx72puIxRO88Y1v5CUveQkhIY93tNb8h//wH3jaM5/JbibOU3/u50ge2A/AjOMw36QoPGTZZB2XCcclnSuzN1Hhakpgb8eYsl0WmpxcDlQcco5CaM2U7XC4YmPPVthcrDJRhj1NIt79JYdxy3v2Uo7iZN4mpuBq3GByrMANsXzdRWnkcpIJX1gedTXHtx1GqgotBGUDFouK6ckdpid3uMnIk/Md3kylOZx3magoYq4ma2tGrYbIYE/JZYEq8XQVqeDAJhiXkow6LnOWw2HLoeoLT+Yth1m/XgSKw1WLjC+YPX5VcXO0jEABginDYdpo1Ms+0yIjXKQFSak4kaiwN2Yj0OSSLhPpRtq5UZuUPzeMmYrFpEWkpChXBKmEy9h04z5OznluPOCFSJta8MJ96opLNe8y0uQ4Pr4gSeUac4qpAwZm1BtzZw4bTOyVdYHS2LwkPeb924h4aSP++J3MCpTWlLa9MuYWTDIT/vzDgKl9kqg/HUyMCPacaJx3dEYwMinQEQMhYWqvqI/18ZT3N3jCo5FxyE42Xes+SSzj3dd4Eib3CoTwQqYZJoxONdJOLULCn4dF0pKpBW+sRgpyU5BrSjs5D0k/smE05tWh9F1QEymolqkLpia61LfpTznSo55zUb2+ZyDtz+/MiJ/Wn0akRrxjrV+DrQ3B+KQmk9WoiMQwNVN7NNGY96wkM5rJOe/fUmrGZzTpSVH/e3J/Y26VSMPUHu/ftuWdt1YmYQim9mhiCY2OGMSykqnFRnkTGUjnWuswlvbOE0t6f9fax8gEjM/B2Iz3KE0uePkBonEvrfSnPSM5TW4SNq5BqQCTeyBZq8OYl9bw55yZUe+YaE08qVk8okmNeNduRr16MSPe3+msVxcAW+uCZAoyWT+tqZmeV0Si3t+pjGZypiEAS6Q0hqERWmFIxcyMS9RPm0wqpqcb0puxMcXsrGJ6wsU0FLOTDvGId6xk3Pu7njbrkhtRxKKa+SmHhRGLhP+7LmW47Ml6zzx4LkpjKRdXCYTQHJmpko66REqKhKlYyFhIXwQ5FneYSjhUXEnFlexJW8wkbUATN7y0Ru24UYfZmA0SNh2TiYhL1nBIGS4xodgbt4j4x50uOuwRNlqCKz0xWUpoBJpR4bDfsIj686OccFmQDWXalOuykxRYGUigOEaVuJ92FJd9NJT689iktiQrEQOSLidEhVH/7ZWscjnQpHibcx2mTQPj5a9k6kdfwX/8z/+ZuaOHOH36NCEh/bjnnnt473vfy1vf+tbrXZSQ74DUeILn/vyt/OA/v5PsbArwtKGn/uYi//Udn+PM566ie1ryhYSEhISEhIQ8+lx7cIPLX19DSMEdrzhyvYsTEhISEhJy3Xlci5QW7nwJd9/9ZJRy2fe0n+D4bc+vO2IoDVVb4LvlU5WSshZMT7jMjThUHY3VntYPmWG7ULUEKgZ7p10SCV0/rgYqTiO8hq28vADxiGI0pYjFhRfeDe87x1/bdlxRTwtedIJcRpFJalRUUHEbaV3Vmta2BRET5qZcknGvfLYrvMVhv/w1BxvbEVgWpFIwktUoRd2FRLlgVUXdnci2Bba/FqyVF4KhUm5KW2m8Ze5YGqvSWNiplGH5AqxfVCgFVlnXj+vaYFWUl1kp7IrGrmjWzrnsrijssqq/de3aGqvY2ABwKhqlFDMnYkgD7LLCsXU9rd0UMs8ua+yKAgmxlIFyhOcSAyhbY5fb0jb9XS1o8ssuGAauS8txnYrGLjeuVbmaSEygFLiOwqo2wlDYVbCrjbRWRZPKwtQB6dVh2a9DIXCqGrvpDX+7rHEsRWbC28ixKrpe37bt17e/IWpVvXsAnmgnnhZt9d04rlXVOL7Won5v/Pp2HLCb7qNd1l75fSMvq9II2+K63rHqaau69VrLuu62oBy//HjHsau65TxWxXMTyIzBnmMGym1cq2u1nqeWtoZhNL5zLFrqsFoB268XpbwN9Nkj3vPnVFXHtToWYNTujSaakMRSAscCq6l9WBWNU/X/9uuwsqsorCsvbantuH75db2+Na7jbSw2u4E116Hy61DV2rfj1d3EHtG7vmtpLc32ksLyn1enrHCay1/W9eemdq2XH1Rce0T7dai9lVvt3ad6CD630Q7tqteumkOzVCt+ObWXxqo2+oh4orHpCmBZYNfuo/bT+nXh2F76WX8D1bIEVq0M2uvjXBeQXn9btTSLe1z2zLl+2kafXLUFruvfc1dQcQSYmv1zDqmE1yfW6rtqC5zac6O8/hzATMNIRmPGGv1ua1rR0s9GDU0yoTFGBHZSUHUENSOLWlqlIJ3bwzNe9cscPHyET3ziEyRGp8M3tUMet1SrVTLPuos3velNpJ99F3ve8Qb0yEg9RJktRItzUDXnYI5ZzMWrJFyoGg2zPUeA1eS8U5XgCpgeLbE3UoVRq3FcCVaTEUhVCmqGZlOWYtTRZKd3GZvdwZUau2nMsKTnmgSgBGQcmPPH99HxAomxRvxO2wRH+n05UBWaqapitqJwhaDqlyGerkLKwWkukwkKTc5VpJWi0lQPlvAdnvwN/qpsuIhYCCpaoH1HFFsL7KY9NNsWaLsxX113DC5VTTTenLE53JvlCJSGSFFhFDW2480VN3YMXCVbHGxsu+GWpLU3tqZSLrGEN543OxI6VqPv1tobm7QGMyowoo15JIBj6/r8rp62NpQ6UNn1xxtD4li6xYHHtprSut45ao6Urg1OzS7UP25t7PHmr5qxWS+96zRCrGkpW8qvlH9t0hMYabc1HJvtj1PalPV60UA0CmPTosUIx7Gbjqu9saZ261zX+177TlHNaevH1d73rhat9eBSd6Wpp63Xi38/ol7jc5zGfXQN/1qb0/rXNj4Diaxo3HO8tuX6rlTKpeU+CtkQC2nayqDAdhs/IV3Hm8PWBFt2Uxm022hLWgjvPjoQTXgito62ZTXML737qCkXGuXrVoe1+q7dR8Pw/IXqaVVn2mZ3WdfRJFMaaWi/DKK1vpt+j5UKwg9V6/0OcCy8mw8oJbCb0joO5PNwbc3AVQLbfz69+ZNuTet68xfH8dpRPS21tgXC1UhX4yrqbroRCRFD1++V0mC5on6tjmrMTbx6E4zFXRKmrqet14MW2Nr/W3p9U1R6od+iQmGppvatBVaTi5OlvT45ayj2SAdHU+/THGhNKxr992jCIRV1sVKqnrbanBZRDwmntSapNCNRFyelqCY11aYH0hbUx5/sHXdxx9veQGVrlxvuuoOZf/GzhISEPDGYv3GCl/3m07jzlUcwY17nWNm1+Ox/eID/8Z4vsnEpoAV4SEhISEhISMh3Ea01X/qo9wLF0WfvqYuqQ0JCQkJCnsgI/Th9nei1r30tH/zgBzGiCY694K0kRqeJNgldmnFiAlMqHCWR/vaY8vVZvUO9KZyYSdxUVBxo13P1CveWyGgKluhID2CWOvOk4oq86m3B354nGlVYlnfs7qHdPCJFb/VdSoVqtuvvGQ1CYRR6x1MSbc0klaUegkuUeoS+aoqhMXcigmNpVs/6TgLV/rEeRhdMpg5HOfu5Ul1cAzR2GDoK2CcEQJfwI/M3xyjvajYvdQ820CvcG9A3xFuNmcOSSExw+Zvu4PLhudxYZd0Zwq1Hvtpb5+0hUGrotnwHb5PsrCnWL/cpRFMzOfFUydolxVotfZ9wKNL0jr96SbHTHE6kRx5pes4+xa0eYVbaPktk4MCtBhe+4dbDlnVD+AdL5WDmkMHF+11v86hfF+f2ubAeMWCiSZg/EeHqgzZWsXf2wLTdq7ljJrG04PyX7f7txv8unvHyXLq/Kcyd0b1z0Kb3eSzpbf61hMXrc65eoXU68knt3z+BGxscWsQ0la9jbNrsTPZ+vmKm623ItoUgcVLdz5WMKqySrvf3zViZzjxJU1FywKyAdyFd8qUbn0WlwlISUJgSRKF7HVopCTic//z/w8b5rzI6Osrf/M3fcNddd/W61JCQxxxra2u89KUv5Qtf/CJjr/0R0k+/HQC51T18hjlZwRWAEJhK4zSNq11DvfmhkGLTRaIuWGbn89Qt3JvUmsmpXeweXcfWVrrlb0NpJDA23XuTamVltCU9eG4h0D20W718V9Ogva35lnFYdBmH/OtNX+zdV8qmPtpEgwDHFxGkl7rPXyL+XNgwNJM5l/WtRnjg2Hq557mE7TK1KKgUNbsbbd9VeszZ+s2V2sZXMwbZaYOtFd06r2s50bc5DuEJXibmBJvLui6s1bL3RDme0EwtCJbOdYZjq42VLUWTnluSVdY9pxW6aexNpjUjOVi+7IlLelHLkxnVZMfgyrlGHfQL+5aakCRSmtVrrWXtFfYtEtUoU7YIY1ryVVtvyvisJ1Jau4JvJdUdYfvOhLOewCvvh4lrn4e25Pk2fnqmsmDGBNtrXb7sEg6tcbLu36mmeyylZnZBs7EmBoau1VEvXzarEAK2txvH6XXN3osrmmiEusB6UPkA3Dj0CufWHAJOoBsix+Tg949MqVvEjQBWtnc5YlpR7fKj0+oamUATR1PtESquOt5674XWmHjiokgeel1vZdJrZ1JrNF5dG1rjCoFZ7H4ue8ZCb+2y+ocfpfrIZd73W7/F29/+9u4XGRICnD59mje+8Y38yZ/8CUePHh2Y/tSpU5w4ceJ7ULKQb5fCRpkvfughzn9puf6ZkIITz1vk9pcfJpoMQ8CFdBI+2yEhISHfG4ade9V4vPbTF/5pmU//3tcwYwav+N1nkMx1rm89lnm81vvjnbDev/eEdX59COv9+vBYqPfHnZOS4zg86UlP4oMf/CDx7DQ3vfzXegqUnJjAiQnmMzY3z1QxpUIh+wqUnJhkbtrh8IIXVq3i+PYyTbQLlObHbGanHdyYpGAZHenbmc45TGYdVFT0FSjVmBh1mBzzNg8sS6Jlf4FSLuOwZ8EFmgRKip6ikeyo4thJVQ8l0YzQumMzIZ6CvSchN92Zvk6bwEMrje6z2dLO9mWHhz9T6r2R1UQkJUiO96mQLucVhui1Du5935RHmo0wG0EESgDLZ1RggRLAI//ksvRQMIESeOKkoAIlL72m2ntvcnBP0Ot76d3qcl63uO30y6MU5Dd6aoA68pXzcPq+/gIlaGxGFre8+hwoUIIWMU800fR5z8KBU/HaTyQavPuUJmQmg6VfetjxBEpQdzrqh1P1XAKM5ue3n/gK2HejZGZ/Wzvpc67ZfbC/11jVnE8JQJDKavYe8PqgvmV3JEpJolHF4r7B6auOgYuBaXoh32rhMHtRsiSOaRBNao4sWJhN6aP5zg3+kt/fj+QUJ/Y5kOxIQrTQ5Fbl968HRm1unLCwkxo72fn8eeOTyf6n38vCXS+lVCrx3Oc+l0996lN9yx8S8ljhoYce4u677+Yfv3E/0+98Y1+BkpiuIqcqHN5RTPuORYMESqnJIidjJcbGiiDEQIGSqTQHSg5TkzuMzvUWKNUwlGahqDCUZmJ6t69ACby5z56Si6k0rhS4UhBPV3sKlISGPTuQUAqEaIzDQvcUKB20HKbs7kIjabUKlACmIg57o16Ypl5EmubCUnhdc5/hzCui7daFJquXOgVKvYhlvBBPPWkTy0pDIEzR4izYQdMYZDQ1rUECJfBcdFYuBhMoAVTKgqtngwmUwBtnq+WGO0zH923X6zo1Z1LR8V2vPB3f9xCBqaiB7UC10vm9ivQQh2ijp0AJQMVaH6KtlcECJWjcm81rwQRKzd9LI9AUGfDSiW5tv49AKRr3BEiDUEpw9eJggVIz3aZM/cRX6aRmbsptcQbteSA8keGe8UZ4uHak76oEtTapmUg7JMwBDzwN97Vs1CXV4/jNVIUECVnTZcTo9wADCCp4v1UnDYecaE0f22itY+277wmt2ZOwGUk62JnO+oiv+Y5ffv9qas3xik3O8VyVnFTndUSWo4jcCFO/8tNMPukW3vGOd/CLv/iLqEGdYkhIyPcN6fEEz33brbzgnXcwMuP9sNNK861P+iHg/j4MARcSEhISEhLy6KOV5st/8TAAJ1+w73EnUAoJCQkJCXm0eFyJlNbX19m7dy9f+tKXyO45yYkX/xKGGe0pUKqxVjRYyps4Pd7qbOTxRQ6WpGh1ipN6IWIQGbAI3uyIlE4o0ongC6TplGYkpQHVV5xUIx6FaDT4YotlQbEgWl1V6L3YXinC5Qe9DYyudFn8vfaQw9q5xkK1jvV+ay0zY3hVH6SKhGB8X4yF2xJDteYr99tsXhy00O6Rmzc48vQYRh+Hl2ZksGQdNIf66LdrY0Zh5qAg0mU+22tjaOmMJr/e44BB6609XdPfV05rSjvBjz02B6NTwc/V3jaDYAS9D4Zk4SaTxVuCvUmpFJz7okVxK/gzPH3IZP5kJFhd+4dNZOl6j4GW9uFYcP4rDtX2CGJ9hEpXHlIsnellBdH5ebkApR6iuG4Yhuc4YQa8B7E4pNLe/4MQj0Eq6YXfATCL/Z9lQ3jP5YC91jpVR1L2Q3U68cGZlgsRrhYbAtXeQiWYPvY0bvqB11EuV3j+85/P7/7u7wYrVEjIdeJv//Zvufvuu7lcKTDz7jcTO7QI9BYogTcWrSQlm7HBm/6xmRKuhLLphXULggRGsmUG6Q9qLkoRBWlHE2A/HoCoghG7kb6fexJ4JnJRl4HlaaYgJaUuIpR2cVKNZdvkqmXSS2EdaZsL245gZcNE6Ub66kSiPRvgCYK6CdV7IUzB+IJBeiy4qMMqadYvqn4aqxYm90pGp0UggRIE79+bcdvcZHoJlAASaUimu3/XTWxUrQi210XPNIMESvV0bW2kFuatUhLsbPUQMXURKhmmJpvTiD6NtFmopBTfVqX2Fa41IU3B3CGI96jTdgrbsL06MFlLOSbnITXCYMG6lwOEJp7o43rVJE7f3ZXs7HRx3OpxrkJJsLxm4Lo9npm2fK4LFUt2tNF+RIzBv0ebTkgqogKJmmrpk1KRMJrE3t3m/U3pDTRGwPJooCxEPXxbN6FSMw6wbBrsNj1HPYVKpkH8DS9l7qXP5/d///d51ateRbH43bBCDfl+4dOf/jTvfOc7ef/733+9ixLyKLHnpkl+9Defxh2vOILh9+XlHYvP/sED/M9//UU2Lw3xQzckJCQkJCQkZEgu37/G9tUi0aTJzS/ef72LExISEhIS8pjhcSNSOn36NNOz8ywtLTF743M5/JzXI9sWz2vOSU5MIFHsz3nuSZaSXMv3FiA4MYkTg1zCU4lslEwubXffrWl2URIJz8L/4maM85tBBA4KFRWcWY/wSKD0HheuGpy9agx8K7zGtQ2Tc4/4Iqs+Dkq1L8slyeW2cCO9Ftmjvogg383Vxovb1PLR6JxkYl+wDSbwQmntuSXO2EIPdUPdnUDU/718qsrFL5aDiZoMg8xcMLFIzU1p55rL1YdVx9v2vZg5JDl8t9lSxn7k5gSLNzUVaECeaAJGZ2SHCKfnm+vS3wR6FJ/2aLzRNrqdv/3f2QlJOjegbpryjc3B3hsH16WWEi0lE4uSI082+rplNbN+WXHtIf8GB3zDOpbyQq0FYe2cw9n7qp1ttM89W7w5yuR+/yYHcFSKp2H+ZNuz5qquYqXijneZZrTHHmTbubbXYaVfqMC2Mu5uCs48KHCcYI0uvyt58JuCaiVY+kLZ4FtnTCqWwYBODoBiVXLqcoQKBkR1PexnNzclgKItObMRAySpiMJI9xcrlRzJatHr0+fTNiNRBzsp6v91MH6U4z/8K5jRBL/0S7/EvffeG+SyQ0K+53z4wx/mnuc/j+rCFNP/4k2Yk7mONGK6Wv8vZWvGKl4/sBUT2H1cTmIzJdKTRaKORgvB1ZHuDkrQcFGSWjM+s0N6fpdL4wpr0FTK75eys7tsHiyQne3voFSjaggeHDHQo9ZAgRKAK+FcDoq1DfNeDkq1MgnBSsSg0O421EWgJNFINApBpYtSPVJUbQIlzXjWxWx3bGmj2UEpMwaTC31CrcX9ipYCpEArWDnrUtgMJkAwkxIjgODTO5l3zM2rinwh4MsCAuYOC5IjjXnAICbmPeFR/bR9BEoAiVRTetFbfFTDMDWG+ei5MwihiUQ0vVRfzUIlFZEYBqRHNMaAKXmzUGliVpNIDb4GHTHQEcnsAch0dhFdcV1YXxJUh9SKxBOdDq9dy6S8eUv990rTHEX1uNfpDEzOauSAZ6fpLGQyqkPY1M2FFgQVy2s3PZ/NljyC9byB7XouSb1oOCoJru0Y7FpBf3MJloom6+Xg6a85JiuO6c/PB9WR4Jo2WdMmWrY6WrW7KXnJBcuGSUFK0Jq0UtgZ3VusJATrEQPXD/s2a7sIreuuSu2CJWEYmC95FhNvuZeP/eVfsu/kcZaXl7sfO+QJxz333MN73/te3vrWt17vooQ8ihgRg1t+5CAv/+1nsPfOhiX48kNb/OX/9QXu+9CDWKWACz4hISEhISEhIUPwrU9eAODIs/aE4WZDQkJCQkKaeFyIlP7xH/+R4ydOohybfU97FfO3/lBHGqftbf24CWMJRSY6INyQ756USygOT1pk4wHiiwHprOLm+SqZWC19/6qMRxU3HLTJxF0/bf/0EsWx2SrZjOtvtgy+VXtnbGbGm8ozQGsxMQmHj6mWkEndF9Y9onE4dBuMzXT5soewI5mVpMaCNzOrBOf/sczm5WD3oUZlN5iwJJmTLNwUIzMRvEyOBTvLwTeatpYUqxeCuTSBHwoveHJKKj7vLwABAABJREFUO/DQF1wqTc45/UJrJFJw8DaDVLbLl8P2ALLt/z6LJyXT7eHD+pzn/AOKK6eD16ly6R8ipo3ddcW1M8EzlHcZGE6unYVbokwdCPbDwrG8MHGBUXDx6xZLp9uegz4bc5G4IJWV3d2XergqHbxVMnOgz1v9beebmIVDN/YreHMZJfG44tBRl+iAfriWXkrFoX022UyQe+fZrR06oJibDnZ8UByds9m/ELRtKA6MW+zPecqBwa5KivGEy3i89fjdhErxzDg3v/RXmV9Y5CMf+Qg/9mM/FrBMISHfG37v936P17zmNaSeciuTb3stMtnZudSck2pkLU2uOlhUGZspATC/C/NDvLx+Ml5gbrMmBBqcfqaiudkoePvpAdIny4KZDYnQmlhmsIVfxIV9W97/68fvJU7Cm2MdrjrknNY+q1t4txqTEYf9se5h3trdkwBMAxJx3dcER7SFmdtehbXLwwlqXMcTggQhOyUZ3zPchMMqD+eiuLGkqZaCp1duQIMdn80V2GjTNPRzQxqdgPG2sMi19EFdlOr5fDelmosSeM6Dswu6r2Nhs1DJqgquXpQ4fUK+deQPbnwFCLZXPWfWoJQLgXXhgCfGnloQgV2/hnXhLObh2mWB6uV21IVEAmI93Gu7/Z5KJxXz025vh6G2uZcUmvkxl1Ssf0XVhEoAuZjLeKDfs16I3qSpmB8QSrI5fUIqDiRszD59XSM9JFEclRaxASF6a6S15qBje+EzGeyqlFKaMUfRrgns5qyUvPMGjrz9Deyub7B4x81cvXo1UJkeryilOHfuHOvrnXa6juPw9a9//XtfqJCQ60xmMsEP/OJtPP9X7mBkuhEC7pt/fYH/+kuf5+wXlsIQcCEhISEhISHfNbau5Ln6jQ2EgJPP23u9ixMSEhISEvKY4jEvUvr4xz/OU576VLTWHL7njUwcuKPlezfWKlCSvqtGyZF8bSnGVqX76r0bFXWBEsBW2eTBlSg7PdI3zidxY5J8RbKSN8hXg1WhJQUlq/EW7SBqm0uuDrpQ7i/EahCDjUUAqFpQLgmUHwZPJfpfu1WB5XNdwi2Yvd/CXXrQ4eJXg72RVguTVtlR/cvfJMg59Kwk40GEIkKAYVDaUpz/UoX8arCF8sysydwNQ8RAwRO87KwG3+DYXobL3/LKE9QtaxiqRbj4DZfyd8vFvEsRl84oVi8OWMz7Di5tewUunxoihGEJtq/pYXbXyMxI5o4Hd/268oDFlW8Ef9vSjMKRp8fIzgSriMouoLqED+yxaJpf1zz8Dzb2EGKo5fOK1Uv9K6m5TVZKUCow+F5qjXA1jr9HJgNWq1LeInEAAzIfSaksKFvBYxaubBssbxsoU6B6uLY0pz+zHuXcRqMPcOISJ9Ern+Sba1HO70b8vxr9jJ0U2Km25NE0U894M8mxPXzsYx/jSU96Epb1bcQ2DAn5LqK15p3vfCdvf/vbGfmhZzL2+h9FtI3zE5P5FoGS9PulpaTg3EhvF8Gx0UJdoARwZQQujwwu09jsDmOzO2ymFFvp4KqG1ESBSpTArnoCiJousXSw57AW+cgVoJToK1CqUZSCZtO4ykT/PBu2ybLdGebNTnbv9xxXcGXFwOohRmkXKAnfqGWgoMMXyiSzgplDMnBYLwzJ5lXF5tXg9y07ZxDNBh+PtYZyHpwhJhqby174Yi2Ch5RrYcBAtbMBW2udnw8rUKrRLFACqFZhZUngDtDcdgv9NvhcXnzUzRVBpRh8Plsqd4aO7ouA7JQg2s1xsAuVAiyf1ziWLwAKcGnpUZhebPqgz8az1sIXcWlEgGcZBKuromvYt/ox29zkimXB2pbsF5EXADfuC9M0VPzws4OouSo1Sh481Bo6cDeJrQVlJQgaia6MYEUbVBFoycDQ5QUpediMUG6af9oZjU53b+y7huRU3MSWouNlGyelSGRaxbSl43sZf9fPoMpV9t90A/fdd1+wC3mcsby8zOte9zp+6qd+ipe//OW8853vZGenEaNvd3eXt73tbdevgCEh15mFWyZ52W8+jdt/7DCGP1aWt6t85v9/P//z33yJrSve4omrFf+UP8tfb36Vf8qfxQ2q0A4JCQkJCQkJAb71NxcBWLx9msxU8jqXJiQkJCQk5LFFf1XKdebP/uzPeN3rXocwTI694OdJjc/Xv3Nj3v8jxeYFWMXxKQvLFZzZiKHaVq/daGM11fTDkcyP2FRdwXrRJF/tXh2qSQOT1t5rxWVHcqVHSLga3iKswpTgVCRnV2IDr7l2HY6SPHQthlEJuggiubQ03EZEfkeS3wExaKXcOzwob1OnhrB6v6UrTchMSHaWO48tnO6LzHtu8VwaLn05oMpCws41m9LWgB2atg2h8k6Q0BVeW4glBLF08A2aZBZSYwZrgwQ7TUSTnqgmqEBp/phEGp6wqWXzo8dtVAoK7S5B32UtVClYBJ06mXGYPSg5+1WFCmiaJb09s8AbYKkxQSIjWL8Y7BmKxCTxtACzFiaxf77KkKIvx4LdNRer3ORc5j97vTYtM5OS+ZMmj9xntYqPamXr0mYicYinBfn1zjYo/F2uWlibnZrg0H++e+J6xyrsCAo7fdK1Z6sKHjklOjbpeiN55ILRKBOKQY11acV7VnVKYEqv76yFauzGZqHWzytyKcWKaPTjsktXUvFD1plSsT9nc24rQjQvsTJN40m5cb7auDMSdTgyZnN6M0reD78SLWgsvz+J+CFupDQ59kO/wNaXP8yXvvQlbr31Vu6//37MfvYYISGPEkopfvZnf5Y/+ZM/YfRVL2Tk+U9r+X5i0uv4tnYairukrdmfVzwyIqmYomNbfGy0YfuXL8UxlGamANfS4PTpG8YzjThQMm9SjEE5wDRqOl1AuqAM2KokCLRR75uQ6BGLdYDtwVkAKhE4lw0+R9BCsBT1nm2zOFDtCYCDwGlSA8S2e19PPKawbYHbRT0Q2e0cPM0ITO8TrF3WWD2mXu2iJruqKW4HcFFqmltqFWzs1hEDIbywttUhBLfpUag6suc1tCMN37BG4Y35AzAMmFrwnJSsCqgmUVOvOXQ3x6LmkHIiiOrEp1mgVBvftBJD1RHA+JTGsWFna3CbVaZEOi6GCa4TrI0LAakxqBbADjJX055Lq1VtOIIOCuXWcVw/fGIvurUJ6dd9r7BvkzMa1xVstonMhOPXfYvA2RM1JZJQKXtCp87z1cLMCbQWlMr+taLRA6VBgo38cCK63ZJ/XQHnXmVHslMLEycG2845WnDN9sXYUuP65RQ9mrRGsKH931UoFIJq0ym66cFqAqVR5SI0bBkG5noEZ6LxcoAoNOql1n4WLRcBXGgKW1hZSpGY88aTct4bRCJzU0z/Xz9D8bc/wDPveS73ff7vufXWW/te9+ONP/zDP2RiYoLf/M3fpFAo8Ad/8Ae85S1v4fd///eZmJgACN1iQp7wmFGDW196iENPm+O+Dz7Ixa94P46XH9zkv//zL2C9XPPf932JVafxA3g6kuVXFl7KPbmbrlexQ0JCQkJCQh4nVAoWZz7vubeefEHoohQSEhISEtLOY9ZJ6Y//+I953etehzRjnHzJr9YFSm6sIVDqRLJWNFgvBl3MVWRiipFY8LBQ+8YsDk5YDLIqqr0lum/U5obpaoujRj9SMcVNCxZxM+jmheLQHpvxTPDwaLkxxYFDDlKqQAIlKeHI7TDR0Ij1FSgBjM0bzJ2IYLZFh+klUALYumKzszxEmDcFa6dtylt9rqFJ/JGdFRy4O9Y3BEo76xcV5/8peJmSOYOxueAniMbh0J0mIwHddQDKeUU5H3xROTEC0wcCJ/+2yEzAxJ7g6e0KFLf7h6Np59DtA0LKtZEek4wOUa+bFx3O/ZMdyIWsxsR+g323B48lvfyQQ9lf42wW0vR6Dotbiq2rLm6vJthFSDVzxGD6cH+BS/PmqGHC0Ttl9zCO7fhipdwU7DseIL1PRLgcOuqS6hJ6oxd752z2zgV/9uZzNicXLKRU9dA4/ZjIKA7MOCQD9rVxU5OOKuLt8UR6ULAkGyVJsYd7np2i7qwkpWT8rp9k4dhdnDp1ihtuuIFKZcjd55CQ7xDXdXn961/Pn/zH/8jYT7+8RaA0MZmvC5TaqZiwERdUA069oi6kbAg6zYlasLBhkKwOTlsTKE1fjZMaYmN/Ia+Z6xI6rRdJC/ZuA0G7KK05UHUY8fv6wQIlGDUUB2M2zbKvfgIl0EyMKkYzndfRTaAE3hCS39TYPeq2RaDkiwDsCl1FsC00jWkTC4Lk6BBCLg2rFzXl3eDznPSEJNot1GkPshO+u04AgRJ4crFygd5jcbcyZTWxxKMnABBCMzKqiUSGcJmsBBQP+cRHJXP7PSFKELSG7Jgnvg/K6uXhhO5CwtQixJqEwv3ckawKFLabD9DkvttDKFbMC4qFrl95h3Baz2eYMDmpSAy4btmUbyStmJt2Cep2JIRmZtQhESh8rn8Ow2EmGSSMm0dUKA7EbKIBJ8ICzSFhMeHLlAY5JIFmj3SYEcEfpJTSpIYQ0myaks0+z3UiU607K5kTOSb++T9DTOW4/WlP4Utf+lLg8zweuP/++3nzm9/M7Owshw8f5n3vex833XQTP/dzP8fKygoAIrh16fc1n/70p3nnO9/J+9///utdlJDrRGYyyQ+843ae98u3k5lKAHBm/zL/Yf5TrNqtb+is2jv80rk/5dNbD1yPooaEhISEhIQ8jnj4/1zBtRRjixlmj49d7+KEhISEhIQ85nhMWjXU3vSTkTg3vORXiCazXYVJNRcliWIsqVgvmawWWwUDze5JrXgOHQ+tdRcYqB66gzNrUX9Po4+1f9NXy4UIZcftcHXqhaugZAkGaIDqGADaDzMyBEoJtD3YpcRL6zmu1Nx4BgmUANYvuuTXXRx/n72rOMmQLRtZ+eXgYrFoSpBbjLB2xurtxNPmTqNsTbWk+hrk1ByUwHPuUQFD53kZJOuXNOuX/OsQou/GCXjOAldOKwqbTWUQou+b5JtXAXSnO00PN5xEGnIzkpVzqpHuu0xmVBDPCNavBKusShGuPjxg06HtUNfOqkChzIR/g1ceUaw8QqD70IwZ9R0fagqqPg3Grmqs0nCbkJkpSSwh2Djf2nCFqzoclZQDK2cGxXJpdVW69pCLUoOfJeEotClxHdheVZSCOkO5GuUK77SDHJh8HD+MW2BDJaBcEYDwYp1APdRQL9byBo6iHr5SS9HXUWk9LynbUUpNm1mqSdPQ7qpUsAy+di1G46IFtYepOfxbzVVJITm/6w1ccVMRk4ody2xxU4KGUClShOm7fpyyKzl9+j5uuukmvv71r5NMhlbAIY8+juPw2te+lo/8+Z8z/jOvIHX3LQBdhUk1F6WUrbEk2IZguS1cU7N7Uh0NaE05Inh4rLv7SbN7Ug0rCuenXKoD9KDTae+cSsLuqE056cKAiJzJiA0arIiBCijE8E7iaTaDTr0k4Pr/BREoAZSVYMuVdaeV/gIlAMHSqtFigtJNnOSmohhF73Plwu5Gj6PZneNIKidwqppqqUuG+glaBwW7ogc6JjaHW5OGV66gaFNy7ULTBwHGpfwWlNrDmPWZKygXttf9f7eFhtOG7Co0TmWgXIRquVHO9nIHcVNqD/PWPLaNZDW2JbADRp7N7wZosE1VUCnDyrJEBQlt489Frp7z/w44P4BGV6D1YEclrTyhVcfUrI+jkpCQGYXCTmc+6agOR6WOtgEdc5BmVyXXESxdlTgBHKeko1GmoFxtzCGCoHVjOhQ8jzeHMlyNG2ACZmtBRQkUotEO+mTTCFa1Sb7pOrSkp6MSCC6pCO2Pd7P5VLur0lWjyUWsrU00h3+ruSrlm19OcRQ7hhd+tLKUIj7XGF9qQqUyaSZ/+adZf98HeNozn8HH/p+/4Id/+Id7XcDjikqlQiTSGDillPzKr/wK73vf+3jrW9/Ku9/97utYuscW99xzD/fccw+nT5/mjW984/UuTsh1ZPHWKeZOjvP1/3GWD4x9zvuwrR+s+c391uW/4tmjN2AEjn8bEhISEhIS8kRCuYpTn/JCvZ18/t7wBYGQkJCQkJAuPOZESu9///v5+Z//eYxogpMv+VWiiUwf5ySPqZTLwqhDwZL10DzQW6CUiTgcG7N4eD1G0epcVOgUKCkWRxyWCiaOkvTaU2gWJ8VNheV4oYIqBYkR6C1WRcUeJiyctyH/yOXhFka212B7zRcABGTFm1MFEijVRB7Vzr3GrsgIzN8UZ+WhKlYx2Ap8csxgdD7C2uker4R3CZ+VX1Xk1wPu5ACTeyW5OYOHPh8gTy9LoAECGRfZCLkVkGQWyiUxONSKz+YSbC49egIlgKWzmqBvateIp8BxwAngjgGQ77GR2ozoJSgKKFSaOWyQnTU4/blgVgM7S4qdpaAqNo/MpEEsCRvnuxSzi1AJYPKAgWtrNi8PPlctpE4QkV1NqLTSpSz92FnVXrsNqjpSknMP+f8OaG6yut6cUA3MaDmSlR2v7hJRRdmSdUel7mIlSbECpGEubbNdMSg5rYKlzvBv3q7r0QmbakTwcKGzr3YSoiX8G8C+EZuYobl/TdLrIbRTnlBp35N/jLmxOA988TOcPHmS06dPE432Dy0aEvKd4DgO9957L3/x3z7GxJteSfLOG4HuAqU6WrOnqCiZgsttIVG7CpSAmW1JpgpLIwQSKEUtiNmCfEr3FSjVxEkApi1wIpriiP/wDhq+/Z2m/MgQqhigEBUUhngslRBcdaLBnZeAqpZU/T5pkEBJ+Dv7SovAQ3EqCwgobnc5XheBEkAyK6gWodpLnNtFrLOzrLrOyXoxe1Cws65bxNu9aBf+1BkgkHGUrIvog2CYXpO1gg5gwMqVRhvvVc5BQqV2gVI9nxSg4MrF4RY5hdCYEbB7OPx1nN8VVMqAYfR0HfIS9vguiFBJwNxB2Flvczzqw9Yy6G5V00OoJPBESlbFE151FLOLUMk0NdkcbK53D+HWTk2gJKUe+OKIdDQ2ArtLSMDeCFZ3hvvZXrQlRXsIIRSCJStS/yvI78Qt/5kQaAy88JS138PdxEq2f0xTK3JKsSZlyz3Tok2o5H+XUIq9rsNZFypd5p467baEf4spzT7L4ULUZMfsfR2JTJUycWbe/jryv/OnvPQVP8bn/+7/8JSnPGXgtT/WWVxc5PTp0+zd2xpW4h3veAe/+7u/yzvf+c7rVLKQkO8+H1z5DB9a+ex37XjWAYeC23uRQgMr9jbPuf9fEpXfvSXV10w/k5+cftZ37XghISEhISEh14+LX1mlsF4hlo5w8Klz17s4ISEhISEhj0keUyKlD3zgA3WB0g0/8k5kNt3xtmU3losGu1WjLlDq7Z7k4RYF+aik3EWH0M1BKW7CVNKlbEs2K52LvZ329oqjkxZlW/DwejDB0XjKYTbn8NBSFEcNXlAWSnFg3mVjV7ITMKRJIqmYnFBcvdhwGxnE3CFP9LB2NtjOmhGFQ0+NsXbOYeOi2ze8m5dBEktDbESi3OAil+3LDttXne6bH102w+IjEmlAaUv1FBQ1uygBbK+o+hvwKN3bycU/XmIEFk4aXPqGS6VPmIj6+aRkbM4LH9IuVOrlpmSYsO8Wk6WzLlvL3cpSK2+f7x4j7LtRsrOmufZIl/vepfzROIzNw+pFBroy1Fi4QaJduPKg6i9U8jdWt5fdzlB6UvZ1UzKjkBqT3kZsAJYe9ELK9eqlao4MzWKleFriWJq+u31NjkrShMNPjrB51WXtXP9y1TZIY1nJ3GHJpVOqLnQaxOiYJp4RLF8Mll6aisX9sLIEpUqwfmt2yiGd1pw5ByAHOipl4i5HZi0eWYmwXfKe6X5iJYliOuVgSs2l3VbVQS+h0m5VYpdFz2eq5qxUEyud3Y74Sfs/hDVXpejRFzO1q7jw4Oe44YYbeOCBB4jHh4hlFBISEKUUb3jDGzyB0pt/guTtJ/uLk2oIwbmMxG1q0r3ESTXWdATdQ9jTzUEpXZYky5J8snuH3yxOAoiXJBOrUZbnqjjR/vOJmoPSzGqEQtKl0CVEWjdiVRgrw7W0RgUIKwkwa7uUKwaFgGOwiWYuanPNjiC3guXJphWZlObysgGInuHdaripKJGY1TEQ9RIn1Vi70Gfw6iJQimcEVkmj3N5CJd3mTLS51BR+ro87Tk34MzbtJdsKKPiWMUF6RFPY9UQ4LfSYJ2RGIZ4VLF3qfszaeN3NUamnkOo7ZJBbYDeSaRif1Fw6T6t9Tf2gXfKkvA9LRdlfqOQTicHkHKxeAcdmsFBJw9YKVNtEY/1cRbUhiMY9hyunXYjYpc0o1eTw1Gsq719bs1gpGteYpsBubydNNDsqZTKK7Kjm6hU5UNhUC/2WyWmk0GztBpsTSaEZSyu2SxKnT7maSUYUqYhirWSiAojLDTSLcZsVy6RU+704INuCcDDRnNOReuJ+YqW0Uky6LltSdmg3O4RKQFUI8kKiNw2Y7D4m1JyVRMGgKgUPxSNUA/TTiUwVMhLnnW+g8Lt/ytPueQ6f+n//J8997nMH5n0s84xnPINPfepTPO95z+v47u1vfzsAH//4x7/XxQoJeVQoupWOsGzfC7bdIoEWLANSdMNw3yEhISEhId8vfOuTFwA49txFzB4vIIWEhISEhDzRecyIlP7iL/6C17/+9UgzxvEf+1VkMj0wz+KoRbEq2SiblJzB4iTTVwZYSnJ2oyEe6hXarUbFkXx9OYaD7HiHulOgBCA5txHBHSIEm+UKSlXR06WphmjoEIhEvIXtbjgpE7PYWMQVriIZUySS2rPxHwY7wOZdNAKWjevA6lmH3bUAAiWf8pbi7P/pFzukFRkFZdG56dHnTf3x/SaJrOTs5yrebkWTUKldnFSjWoBqYcC1Nx1HOVDY1Fjtl9Jl00v7+UYmJK6j2VntvI/dNmgcLbjwDbchngrA9AGIpwUXvzlknIghGJ2CyQXJma8EdxW69KDC6rYO1+MQRhRGpyU7q4pylz30bi5KpR3dGjZmgKNSJQ+VfJcC9An9NjpnMHnAJL9eDSaeUp5Yxoz1d5FqdlW6/EBwBzCUQjmStQsuhXW/vAFcLNyyQmvZCHcXgFgCEkntLc42bXy1h8NpKhqRiCYaE5R917SOsIVtlCoSw2iq9wHh3/IVwcX1CNulboLSzk1dheQbK17/3rXMXULAXcv7g0YG4lJR6SH6rIeBK3vfmygO5mxOu1GsPkJROwWzz3oJUeFw5tQ/cOedd3L//fcjezm2hYR8G2it+bmf+zk++KEPMf4zP87iCxaB/gIl04WFguJqSmD7z+4gcZLpgGPCdrz1me0mTGpmc0SxlekuimkXKAFUEoqNSauvQCkZae1LK1GFHRk8NtacUSJKE1W9w7xFZ0pYy40QjZGCIK3A7TFX64YhNBowtwbP10qTJsk1h0JJYjue88kggVKN7TZRzyCBkheGrcsY2kWYU0s/sddg84pLaVt76YzmuVf3caIcROTdJCSplnsM693EMabENDWZHJQKPcLKdZkn7BQk+SHmXUJophdga0t2de5ppnEtjcL0clBqZ2JWUy0GDOOGF35u2erhttWjiSZ88Wyp6Al4OoRKbfMi14Zivq0KBwiVeoWb7Rb6rTZnmJj17uH2WreMfvp2gZsAITW6z++zmquS4wiuXfYzBRh6haMplQWuEvXTt7sz9cqnB/wObUYD8agiWhUdIiU72f18Umgihkag6/OYfmIlFyi7gpZ3RwaEf1upW1t1cTnqEgJu2zDYlRLVS4TYFgJOCcFV0/u9ZiiNEo320ZHXFytVfWelrKuIKc1u96LXSU1oEu9+JWvv+hAv/OEf5ov/8A/cfPPNA3I9dnn1q1/Nq1/96p7fv/3tb6+LlUJCHu+kjDhTkex37XiWcjwB0gCSVpRUPI4YJqZ5H1JG+FJKSEhISEjI9wPrF3ZYfmgLYQhO/MDi9S5OSEhISEjIY5bHhEjpr//6r/nxH38lwohw/Md+mUgyEyCXIh1RoGCjPFigBHAkZxGRmm9djVJbce4nUIpJxULW5txWpOsGdjeBUjKiKNmQt4ZRSCvyFYP8AGeR5gVepSSnL5gMY4+zuS7ZXFd987jJCEbJ28QTlsO1U4EP7xcMNi8HFyjFMgK3wlBhN+ZuiBFNSc59vmnnZ4AI4+r9FtFU8HOkcpDKSVbPtYkjmoURbYKBagmWTg8W6eimfBceCC7qqW3MFIO8JNi0IWSX6Xwl+buMbUG5MNw5SkO+7FjehYf+YbjQahuXu5SpfQOybYM1PS5IZiWr54K14c0rLtvLbmB3J6E0uQWDmaMRTn+u4gnueqVtC/+WGpcUNwLUgVJsXg5WnhqOBRe+4l+Ev7Gmjf590koPV4ne5ZKcOdXaBwlX9xUq7exKdnabLcJqgrFe7maS9Xxz2DdaztdNqFTr3ycSDjFTczXffWBod1aaidnsT9l8fTtOuY/oqBYCzjQhGdEkteorUqox/swfJWE4fPMbX+IZz3gGf//3fz8wT0hIUH71V3+VP/zDP2Ts9T/K3hcfCJQn4kDS0RhKoIzBAqWoDXtXDZbGVIv8qZ9AKZuXWBFNOa67mr10CJQ0mI4X5q2c6t0/tgiU/EhG27nB/Xxz6KbdmGA32tvdpx0tBOcDhAEpzWmSS/4xtwSrDKFaABxX4JSDC5RicY3TdAsGCpRMmDssWb+sqBSaxtAeAiXwBEBLDzmBQ9MCZMa9UMEtAuY2Z5x2Z6LiIOVBDT+fVRVcPRd8vqIiBrjgBpgSaEPW3ZSq5WB5vhOsqhc2NyhKCayAIXZrbKxCs/Ckq1Cp5Rxe6LYO+gmVBGRyUCnScNEawMoVTxDVl+a2I2BmESol2O5Wvuai1sO/CQxDI4xGOLd+qAqUAqRrZjdf81nUKD8smZvoPT/QWnBlw2SYkN0FS1KwZEse6eo+QiXBst0j7FuPKHDV+jxLE0Vjtf3W7CZUUkIgtWbWdVkxDJw+gqX6zxitOVR0KRuCS8n+c9RaCLiE0sSVZjdABDuZiDH3a/dy/l/+Gbc/6+mc/vLXOHjwYP9MISEh152fnH7WdzVMmqsVP/iNf82qvdNdw6shnY/x2v/4dEwpufGF+7nlRw4SiT8mlldDQkJCQkJCrjPf+qQXcmD/XTOkxkIRckhISEhISC+uuy3DAw88wA+98EUIKTn2sl8kms4FyOVtVJ9ai3K+EgskUAK4kI9yqRAhiEAJIB1TjEQUzfshWjb+a8eQihNTVRZHg+8YTGQcjs3ZSNl95d6NS4RqXdidnbRJJ/uLjWoIVyG0w/ScAhksD0A84jCxMNxC+8Reg/njRmCBEsD00Sh7n5QcnLCJjfM2a2eaNuICuMQAWG17ojpi9nRRSoxIRme6LH7XXVw6z5mZ9EJ/dUXUQh8M98hpIbz//I2EVA5mgu0l19lcgZXzw+UZluI2XDk9nEgpMw7T+5o+UPQPCdKHbi5KNVI5L1Rcawa/bXfZYE2NSjJTPe6TlB33XjnDiewA8qsuy6ftQMKm2obn2IJk780mkaC/bZQiMw77bh1usTQxAuMzw93LdA4yWQ2BQjZKpFTM71WYEe/ahKsRrsaN995wmhh3ObTfpaWRKN14JtuISMXx+Sqzo539kZai/l8zIzGXkVjbOdpodlZarRpcKEYoB2i3TkJQiBh8bTXKtmMStMEnn/bjZPYe5wtf+ALPf/7zB58oJCQAv/d7v8dv//Zvs+dnfoB9P3p0cAb/MSvH4HRWkhkvDhQoAVgmrOQUxXjjOe3roKQhWRHEq63P5nS6UP+vncyuydRSDNFj6pGM2B0CpenVCMli7/F4dnQXpUTDQcnVTBe15+gSQKBkFiW5PCS0H2o0oKhpquQQ6TEf7I5metwhbVUDC5TMiGZ6ThOd8ibBgwRKANr1wrBVm50i+wiUaiiHDpGSjhg9XZRSI6JzvIa6KKpdoGREuozvzdSSdzjaCPqqFfx7VnMFHBnVxOLBx0WtBZtbBrY1xDzan8sGdVEC2NmWlLqEoe5TMrI5TTSmmz/q6aLk0XkNdYegHnMvaUCs29S+V1G1F1Iv0iNCdm0u3MxAgVI9c8MCaGcjuKjNE2JppuYhmwt+74WjGB91SaWGmUdpMmlFJLCiTyCEJpt0GXDz6ulBEDcV2VjjeZeuRroaa6R7O5VoFmM2qfY+qU+bmRYuB4SN6JKg229oA8goRayPyyk0OSsJwVJcshwP1u512uXaqOZC1PCqIUB1uaMJ5t7zamQiyo1338XFiwFjGoc8bvn0pz/NO9/5Tt7//vdf76KEPEYwhORXFl4KdI6Ctb+f95UbkVqgXM39nzjHx37585z/0jJ6QH8WEhISEhIS8v1NaafKI/+wBMANL9h7nUsTEhISEhLy2Oa6ipSWlpa45fY7AM2RF72Jp+4bYSLq7dpPRB1uHy0j/U3cQ+kqR9NVUobL7bkqd+WKjGe973Ixh1snypj+Iur+kSpHRxuqgTsmi8wkqpQcidJw03wFM+alXRyxODbWeG33hokKsylv5dtyBQpd1yQsZCyOTzaOe3yqwvyIlzYZUZycsljaMVjaNZkfsTkx3Uh7ZLbKnjEvbcxU3LinQibu4iqIGopjM40yHJ6usjjupY1IxYmDVTIpb1F5YtRi75xDxncL2D9vszjjpZV+2mzGSzs26nD0BpdMRjM5o9l/SLOwv7bQrDh6g8vouPd3Nuf9LaVCWA6LNxjMnzDqLeTgnQa5WW9JJj0Oh+4y6oKcmcOSxRskQiuEgANPiTO21xNGJMckB58eJ5Lw0k4fjbB4R2MXwogKStteeeNZycFnJollvJNOHo6w9+7G7tPeu+NMHo5Q3lJUC5qDz0ySGPPOM77fZH9T2sU7Ykwf9Tbg5m+KcOOLkyTHvOOO7TU5cHdDTbRwk8HMEW9TyIjAobsjVIuah//BJjcnOXh3Q+Sx5waDuWOmX99ePYxMev/ed5PB0Sc3NpfmjkrmjzcesUNPMhmd9v6dmYDjT5UceZIkGoe5w4KFE40lsEO3S8bmvH+nc3D4di8MVyIJU4uSxZONtAdulUzMe/9OZr200QQgvVBvB26WGP4l7L9JMrng/Tue9tLGfYepyUXv+xoTC7IuIoomvbQJ3+RsYh4O3NJIu/ekYM9R75xmzEub8vWGY7Nw8LZG2oUTgtmDgmQGRsYlh2+XZMa970Zn4PCdjbR7jgvmjvjXKuGm50oO3+n9nZ3y0hr+69VzxyR7muv7LoPRGVi8wWD6sOTQXUa9HmYPSxZubNyrg0+KMLbg5S1suggBpt+cpg8bLN7caAP774gwsdfLm8gKDj0lSm6P5OCTo0wdMtl3e6Ql7eQBL208A4eeEiWeFThVMCKCfXc02uHi7VGmDpv1+j741BjJnFem8T2C0TmDC1+zsSuweHOk3mbNKBx6cpTUuJc2Ny85eLdXBqU8Z6haO5SmVy+ZCe+c2Rnv7xrzxyWLNxqMz0uEozhyG4xOet+NjMOR2xoarbmDsOBrG6YW4OBNkJsGXE0mqzh6o4tpev3L3KJi3+HGJtehE16flM5AKuOljUb9tNMOB/c1dh+PHLCZnnTqm73Hj9jE417amSmHQ/vtulDp2FyV+ZyX1zBBoCmUvXwzozbH53r0yVJxy1SF9ZLkwfUoMymXm5r6+qNjVfZnvT7alIqbZitkUw4KiQZuG60yYjqA4mi6yqG0l1aiuH20XB/XpqION89agMPxlM2Ts2WOJmt9v+L2kTJTUa9M4xGH20fKmCgO/NBPc/zkDfzv//2/+aVf+iVCQr4T/uIv/oK3v/3tTP/YkznynLuY32j0m3Obklzee2ZMB/auSmIWTO4K9i1LFtYlYzlPZDSzKRn3w0wZrpc24TfnTFFwYEmCgN2kZnpbcliVGc8UEQr2LJskKr74tiTYs2zWHTpsQ1PfE9de2rgfvjFekkxfjdWF29lNE6Mq2Jy00AZMLcVIFL0+LVaWHFpvuJ+NbhtMrJsIDY6pGds0SRW848aqgrlrEQxfOJrdMVjYaWwyHd6E+bzn5hF3NIc3NVHH+368pNnblPbQrsuEcpnQLnOuw2HHIu6LD8aUy/4mdcWiazPpq1XTOy4HRqvkfBFBJuqyJ91IO5O0GY97aaXQLGYs0hGFUXaIxTUz840+dmxCMzrmlUkIzcweRTzh/R2JaJTSlIsaYbuMTgtGZxpziukDkrg/1sdS3t8IL3zqyITw5oK+QGnqoEEi6+WNJgXThwykAULC3ltMpg402tbkfoNkxi9DHKb3ifqYnBmD8XnB8nlNYRsmFgTpUe+7SNRP67vLpEdhojY/GoF9xz2BC3hzuJnFhtgllYXJxca1jc9o9hzUZMc1hqGZWdREffFRMqOZ2tO4j2NTmqxfh+mMV4c1oVIy5f1dIzehGR3385qC6X2aVMYTuSSSflp/rjI6pslNNM4zs0eR8AUtRkwwO68Q0k+bU4xPNM4zM6tI+mljMc3cHpdIVKGlYGRUMz7VOO7UrCJVq++oVwbT1KTSnlBpYrpx3MkZRXrES2tGvLQRPwxiNqc4fNIl4odRnJhWZLKeA6JhttX3CEztgVQGJudgbAZGxrzvpOGljfripWQGpptc7ytF716D135m9jaETom093dNsD866f03Nu05MM0sUp/LxpPe3zVNU3YCcpNe2ctFwdg0JNJ+HSa8NiD9+s6Oacamm+7NjKJUhM11QTTmPWOG4X0/ktVMTDXqcGpGkc54nZhpwuS4i2n6aTOKqYmGOGhqwiWT9vKapmZuxmUsp0jENdm4y2yuoWCfyjqM+r8BTanZM24TMxVRQzMz6rI40Ug7nXIYSzT1EVmbuD8PS0dd9mZtMjFffJVyGPfTCjT741ZdjJQ2XPbHLRQaWwvGTYfputDTS5s2XNCQQnFIWP5syBM2VQHtb+MfFBZZP5Rh0k9r+GmnHYdZ1+F0JEJRSg7aNjnffiyhFEdsi4i/2T/pOiw6NlpAPiJZKCkmKy5xVxN3NUfzDjFfKD9ZVRwoNup7f0kxEXWI23B0HY6uQdy/nFwZ9m3Vk7JnByaLYGbTHP7VVyMqVe547t0Ui4PDPj0eeNaznsXly0NarT4BuOeee3jve9/LW9/61utdlJDHEPfkbuJ3DryuI4zcVGSU9x18He96649zy48cRPoueMWNCn/7+1/jk+/9MjvXvj/6jJCQkJCQkJDhOf23l1GOZvJglqnDQcwYQkJCQkJCnrhcNz/iUqnEzTffjHZs9j7nNSSn91JwbOxaiCoFBUfWfSbKrkSicbSgKD2xkeV6CwK2Kyjasv5Cb8WWuEZtsVSRjmjG44olF2xDULRF/bgVt/XdqKItiBmK/dkq14oGRdtAKc95o6IkZtObu2VLUPVt/SNSUbIFmxUTR0kqjiJiiYb7QFVSsb20SkHREjhK1EO8ZRONhe6yLbEcL6/WUKpI3Nq1OgbX1jTX1rzNmoolWsJJlCoSVdZIS2EDpZIgvwMPPQBjk60vkJZKAsd/8d5xvL8pK1QswuaSw86aqBt9VAoa2/JyuzZU8rpe31ZJo6qKtcsgbIu5G6LYFeWn1VR2FNovY7WkaXYPqWy7FDddkALlaCo7Lsrf/LLKGmO3UeLqriY5bpAtaoqbDpVdhWu7gMAuayq7jYqo5hVWyctrlzVWQaP8e2dXFOUmN4BqQeP432kNlbzC8a/Vrioq/oYthqRaFmi/fAqvHhzLu6eXvuGSmWxsyFkl1XBQEsKvQxp16P9tWd61yua2VdBeyAsJjguVolff61dBKdXytnmloKn6G8PK8dP6VWFVYGovzB8RXDqlqRR1PdRHt7SVou8SIcCu6HrIlfa0dtVP66O0ZmLeYHNFUS1639X2YW3LK2O9vkvedxtXYe2SYv6I3w4lOHZb2qJuvASvvHop5b0PnKqXVilACKyiRjQ545TzXh2e+6qLNGB8XtYdHWplqDkXlPMK279W1/HuK03tu/nBqRYUlu/y4TqaSl5jV7325lqKSqHRBsoFXW+Hrg2VXYWyvb+Vq4ilDcy458RULSiscu07rx26fodoVb28pS3t14vCrvppVWtap+qXHyhuKFbOufW2j/K+q92b5rRevUC1rFm/oNCmpJJX2Jasl79caDy9VtnbdAS4dMpz+Kr1J66lvbS1+q60hr0pFQQrVzU7W5J4QlEqCpTy3uq3KrS4jpQrAssS7OQllSrMTjeOa1mCWpRM6WjK5UafrBRsFQ1sJYmaCsvWlKzGvSlVJZbttXVXeH2/owxAYoraxp7nPld2RH28QXlpbVfgxgQlKam4cMOIxcVyhLIrcJveuS04sj6uVf1xzU4b5E2F4UhKTWNQ0ZHYvnOLrb2/a/W997kv59ryKu973/s4cuQI/+yf/TNCQoblc5/7HK95zWvIPeskcz/5LOyqptrkKlmJaGx/Y10LKEc1SnqOSHvGttEmXMFTsFQjGsd//ry04PqPWLIKmbLAcGEymyflmmzbjYGrElO4vjDANaASVUxsSfJpjRWFWqc7lcwTH4lSM4txDU01rjw9k8I7RlxTSfp9ZUzhGhopNNpUVGKNkHG26V2LlrAx7pCTRn2uqCT1tFXHpCQElaYZ8kYCyiYoKVBaU4xALQqcbUBZQ3XLU7aWAQs4L01iWjOhVb1PsBGUm/qHihBYCBKrgtK45Go+wnbVq1RXiZY5atWVOPWQR1BxJHJTc8VJMFKp0Byd07YaJnMaqFZEvd90XUGxIJBlFxWLYFutln7Vkq67/CkXbEuTnRLsrnlzFomqh021WtJqqiVvzJbSG0uanZesssb1K00rbwypje+O7Ymp6uWvNMKYKaQ3b3E8AYhrN0KC7Wx441A95Jnyxpv6tTqiJXScVfWKblveuatl6vMa12mEmVOmpOo25jzXrghGx5vr0KvT5vqmqb6VEkzNai5XRCNt07U22zJUKwLlgo55v02q1UZa226d41erjfIqBdEYjI1rVpYFtpJgNebXVlXg+vWilX8eDUuXBcmUJhKl7iZYdZrS6kba2rWVi6J+ryyrkVaZkmpF1edWruPVf3EXinlPtFRLi/bvDQJMgYumWm7cc8ui/luBLvemWgYdkQhb4VheFRmml6ZaaaoX/+/akR0LiEq0ITzXRjzBf7ngpy030tp2qzlUxZFUKwKtBUpp77i1++jQMldpDr23uS5ITcqWtFbT/NRquq9aQ6UqWFsX2I4kMiqg0lQvjsCuzWuAiiVR2puDXNkwiDX131VHtBicle3GfXSUYLMsWSt5oeKqTsPrSDqaii2oVb+rBWXXc1+6ZkUYNd0WJ5GyK3D9jlW7UJai3s9WtMTyLYsiQAmB4+d2/b9r57WE1+a1EAitSShFxK9TJQRFIRv3BlEfB4ShKEc1o1WYslzOpiRFQ9T75KqkpT8sGwJLQiRhoyqCsmvWxypbQrl5DDS9Ph2A+Rwnf/FevvJbH+CVr3wlf/mXf4lpPr5DOYUOLyEhw3FP7iaePXoDXy2cY93eZSIywm3pAxjC60TueMURDj99nn/8s1NcecCLJXr1G+v8t1/5PDe+6AC3vORAGAIuJCQkJCTkCYTrKE59+hIAJ58fuiiFhISEhIQMQujrtFoVn5ihurHC3F0vZPrm5wTIoXBTAtVk/hTbDlb0bNQhj8Tx85rl/vnm0za5uMs316NoabR8Z1ideaNScdNclas7Jtfy/kpnl1MYduPDkYTDVMbl3HoEpdoMrdrymn4soWzGpVoVVKy29D6yaXOiRlpaviCnv2mWLDc2qeJJsLYCxlGwvXyjc5LdVYVyQNjBwt0deEqMjQsOO1drux2D7+e+u+OUdhSrp9vKFzCUSkd4t25h2yYEc8dNzn/Zxir7H3YLKRf0nAHTdeW74HWWHPE2qMqDI/N4CMGJpwrWLmnWLgV7xqSE1JiguEMjhNm327UMEelGtJ8j6Dm7pWva2dlzg4kRFVz8aoDnoE+ouWZEW/uWUTj45DjXvmVRWO9/jNpGojRh721RNi+77CwHOK/fvjMTgmpJY5UIHB7RSHrCz9r91IbRPwNe31F2RWP3vlb+nudUTEzD+gqARLWFe1NG57MzlnPJpDQXrzSeZTfRWTblv9UqpeLmxSrreZPLG50xPu1U2zk0TCUcZtIOp9ai9XGjG9Vsk/MYNlu2JMhDW822njNWcFvGtl44lRIPf/Q3EMrlox/9KC972csG5gkJqfHII49w/LaTjBycYOFfvhrZI+RWM0LBofG1ls/Obk8MPpmGhAXZ8Xz9o81y79Cu0oW5dYPNEUUpoZlK5lu+r7idz2520yRZNLk2X6k/dlJ09u1lp5F3fMOklFCUk539Z9VpnR+s76ZAa3IV2IrTc8yviZPq16I1iU0TK8DYn1j1+ynfdySyPjALAPEtl4jhOcBUbU9MENusDsyXTGkycZe1K03lrfYf52IpyM1KVh52OofOoGNu2xjQLdzbxILnMri92nTMLnM03WVc6Ep7/Q8xF1Md4eECUjN+lJpozBfL6GDnzYxBdlRz+aIRuF4jUU9Y3hxWTgQIw1ejOeSpCBSu1U/bVr4gIQOBrvcTx3cUinjOSmtXaRGW1csaa20zQc/Z3tayY5qIodlYHnxfaqH3kilNekSzem1AmEAfN24gpSYe05TKw4XjE2kDu0mcqAfubWsiBpS6hQnsUdSoL+SsOF7ZrExrwtr8qYZEMxN12LANqk2x2uxM57FrIXHHcZgSLg/rKG6XglijnfP3g47DppRsDZhvqimvrzOUJmJLymawZyw30RhXhIayFQlyOyl+7QxXf+MjnPiBW/nmJ78S6FyPVZ75zGfy4Q9/mIWFhetdlMckp0+f5o1vfCN/8id/wtGjg0Phnjp1ihMnTnwPShbyWEdrzcUvr3Dfhx6ksN4YxNITce5+zXH23jGN+E7WhEK+p4TPdkhISMj3hmHnXjUey/302b+/ymf+4AGSozF+/N89C+PbXVt4DPJYrvfvZ8J6/94T1vn1Iaz368Njod6vy0h57733Ut1YIXvi9oACJVjMOdyerDCMgiEXc1BRxRZmy0azk+i/QHC1EOkqUOqFpeDSVoTVYrD0AFETIqbu1Df02SOYnXSZnwm4EYC3OX/gqGZuwDpks0DJjHphmyYWgi+imHGYPWYyOhu8OUlDew5GlSEUKcCF+yqdAqU+xLOyHlqiQ6AEXQUmVkWzs6IaAqUATO4TTB8YbuEpkaEeMq8rXapz/02SmQNDnYbS7nACpb5/90BpQX6jSaAUgGgSjtwlSWXbvhjQjJJZb5+rQ6DUJ/3em42herv8umJ3ZbhNNylpcdIahLLgzGcrAwVKLXkccCoa5QwhAJMwd9xkbE/w/gnpheybagrFItz+9WFG4eDNMDEd/DSZLMzu0aS6bHSB56zUjmHgh1AJVm9KSS6tR7i2FfD6BayWTR4YQqAEsE4EN2KQNlyiMvg93WtY3D5ewQxwPWY8yfF734oZifCa17yG1dXVwOcJeWKTz+d5yUteQnQkzh3/5gWBBEqGC3cVSsTywd8ANx2IODCTybcIlADGEqUeubyN7StTbleBUi/yWYetcStw3y60d01ddEwdAqUaKRv25CE+xNg2biuOuBZywBhVEygBTBguB6JNdjwByKQUU7ngc0IAym7d8S4o1SIsn1VD6Y5jKdHY/O8iUu0mMCnt6BaHxkEICeOzjRBhA9EaIbUftqz3edoFSrG4ZnahEeYrCEoJKmURWKDUIeQNOPeybdkiUArC6JhmYkq3CJS8MvQ+jmHoevi3oHOvkXFIt8/v+uDYUNhudV2sly3W2V/VxEdmxPsvKDubBBIoNeO6vlvWENmSCc3EuKqHkgvCSEYzP+m0iC3FgL5nLK2YG3MYpu+YSDqMJXr3HbJtjqkAU2jMbp1nD7YxuKLNrgKlrgjBI6YZWKAE4EpBJaYR0iXtBJ93CQ371iSzAV+qSd16mLte+2y+9Tdf5T/9p/8U+DwhISFPHIQQ7Ltzhh/9radz80sOIv0xtbBe4dO/9zX+5rfCEHAhISEhISHf72it+dYnLwJw/J7F7yuBUkhISEhIyKPF93y0fP/7389HPvIRYhMzzL/w3oHp7ZTATglWHYMV2yRokZMJl6M5i6lY8A2cqYTDnoyNljqwQMmUXjig1aKJq6S3RhxgDXc9b/LgUpT69QTI9/AFk0tLneWSlurqoqSU5OJZwepK9+PJstMiUAIvLMKVs7C5OWBT0nbqLkpOBc7+g8Xm1YALxNoLD3L1/irFjaY8sv9CtpkUvdP02DSZPhJhzy3x7gKlHlQLsPyw324M2dt5pumchikw2t7k1UL0dVHac0wye7DH9z1OWdxRVIIKjnym9npuSgPpVdZBm2X+99P7POFVy+d98roWFLYbofZa6HH98TTsv9kgNdqnLF3OKY0mQVivDbame72zrNgK2p4BpGRkRrJwc7QuimspVh+XMGl6//WifSPx8gM2+TUV3MFCwfmv2I027aoW16ju55QsnVGsXWr9XLhuT7GSY8GVMzVXpPZ8qqu7Q35HcvpbgmK+d78uXd0iVlpbFzxyIcJAdzhH1zfaNgpeGE4payHcBiAAIUmZisO5arA8ACiOjVbZlwkupFxzTZZdk3JaYKcHb+Y5YzOM3fNySqUSt912G5Y1pOIg5AmHUorXvOY1nL5whjt/44eIZuID8xzOrXFgfI3yiI3dZzO7nUN2lWMFO/h+uYbJTYOIDVOpfDCBkvIcnpRBPcybFLqri1LLqQSsTjmUmlyUqo7ZU6AEUIwKHhqHSqTz2axuxTtclAA2IpILMoLqMf4lVkWLQAlgwzVYsiNUJvr3a/Etl/iWdz82dyXXNrzQTUGQZYdKEbbatI0q1lvhISQI3WfM6HKNZgwm9xvEUyKwcx94gupKbf9Oyu6uOzQcf6Th/ddx1/vMPWJxmNnrhQnrRjcHJeVCuST6mya2GexEY5pMNthD0NNpMMDcKxrTZDKtBdOG7ONe6IUlK1e7H7uXUGl0HMYme1+PjhgdjkWG4bWfOj3uJ6b0/sML3+cGHz7REYPxWU8Q1ev7TgTa8Nws+6GanImqFcHWhoSAojOAYklwdclAqeB5dpTJ8qbRYSwrnN5ipd2SZHnLoGs/0OO35UrB5NoA8WnzHAoEl6oRimrwb2Ppev+5CPJ46WXQAcEPIznpOowEdCkFyFmaQyWXGAHdtQRspzTFuCYetYlHBze6yZ88xuKLTvDP3vTP+MIXvhC4bCEhIU8sInGTO3/8CD/6W09n/saG8+iV+9f5b7/6eb78Fw/jVIcUmIeEhISEhIQ8Llg9s83auR2kKTj23NC5NCQkJCQkJAjfU5HSP/3TP/ELv/ALyFiC/fe+bWB6OyV8dwlFXplcsoO+Lg0F1+Bbu1FWq8HdQ1JRl3TUEx0FwZSKm2erzNQ2pAOswZpSsThu+ZvlTQKlPqgUmKZCKYnttJatmzjJzwVAIS9xeoSH68XOOjj9Xi7t8uap3WRy1VcQpDVIGF0we+5XdEXCoacnmTw8xOvSwOWvVbny4BAWCMDYvOzvcNSF5bOKpYeHc4W6fEqxcrHLze9TL6sXYXtI85SxWUly0NvsAYVI/c8jWkVKA3AdWHpYU+1lrtGlHioFuPANl9JW8Le5Sztw/qsuTpfwIf3ITEoSQ7gA7K7DuS9WvJBqAZEmHHlmnNwwLkdAIitI5WR/oVLTA9a1TAOESjvr3j0ahp11/FBv3cvVTahkVSSgMEf6t7GGUMm7ruyIYmJs8CJvbZNNSsVNCxazo8EXhqOmIh1VxAL3VZJThRinS8E7kBKSc04MkERRgYRKI0duZuJJz+Hq1as85znB3AhDnri85z3v4ROf+AS3/doPkNk3NjD94dwawvWccMo5C2UG7293xi22pqqBHUdMFxJVwWQ8+NvlmV2T6aVYfc4xSJwEkCpIYhW/UP7/+omTAGaSRdAau4two5s4CfBE2EJQGGqC423oF/VggVLTiQCB0xQWqjoW65lXlh2i8SFch3xSo4LZo8ZQDjJOFZbPOFQqwTNF4hBLDFc214a1KwzlDFUtwcrl7mNbrxBvti3Y3gjuigQQjcFIAJFSPzERMHDuFRtCDFWjVBQU8r2P202otLMJG6sisIsSeGK4/NZQRUMakBxiHgmwvi47hHeDGMnBzAIM4z4khCaZGvxGieuHrdVa4NbnQ8HO46paSO/gbc1Rgmr9t2GP87R97GqBRmAI3TVkWzPNQiWJZiLiBBIdSb+7GsPlsLCCC5WAtNLEdfDfVFtRwZmMxAoaChLYSmksE9AgFQOFSsIQ3PiLz2Ds8AwvfOELefjhhwOfKyQk5IlHdjbFC955B899262kxrw5o3I0X/+rR/jYL3+ei19eQQ9jURkSEhISEhLymKfmonTwKXMksr3XZ0JCQkJCQkIafM9ESpVKhbuf9nQ0sP/en0dGvZ2S6mjngmLNPQkUNyWq3BAPvgOhoopsytt92HGCOy9pKTiXj/PgVv8dHDfaKK+jYDlvslno9ip3d0YSivG0izlgPbmZPTmXEwdsX9jk0cs9qcb0tOLQQRs33nn93RyUACbmYd+g8INtAqXcvOTI06J9nWAAT0zhL8RkJiRzJ2PEMl3uTTenJOk5KF37VpWdpT6LyF0WelxhUh3kPKRUPexbLA0zR00SuT4OSt3O2ZR0kINSjUqxi3hkUKizkd4vo/fiofsU65f7JAgYVqRruqbPHvxHzeZSj3w9zhFPQbSfqUeXay1tdgmTGOCc0iSY+5DvqDRz2GBsT3AHLuVApdglrE0fFyXlwPJDVs/Qcu0uSjVmj0WYOOALm5qerX7MHJYcuLPtegYIlUan4MAtXa6ph6OSjkjGpjSHb4R+QqV2sdLcXjh8yGWQY1Gzo9LYqMtoNtgmlnQ0WILlHYOtQkMQ5o0zvdmqmnxtNUZ1gHigmbwyUUjMmCYWC774nJMOd8fKZIWD3cNVqfmzqWe8iEMnbuALX/gC//bf/tvA5wl5YvGpT32Kf/Wef8WR19/F9JP31T+fz+x0pD2cW+Nwbg2zbDB2MYVRDd7u90QLzCXyaAlONHi7HxvJUzmwhRPr/yzHjcbYX0657GYdpDHYPQkADemiQarUuJ5BAiWhYM+KyWTbGN3LPQm8MFhHSy5ZW2GPdc6xujkogWZvxCIlBlx/m0BpbsIlmwog0mya72UnIDvZPV1XNyVXUd52PVfBftXcZXx3HDlwfitstx72LZ0TZKdFXwellryubnXpqZVjwHxGa/xQvq3pegmUAAxT+yFGuxWk41AAFHYFVy/1v46BAqX6OXrPvfK7kqUr3UXO3RyVtBRgQHRAyLt2oZLjiEAOR+2OSvWiB5m4mpJYWjA+57kwgRfmrVuot5ay2QLVJURYdxclj1IBNla96+wmymp2UaoRicLEtCI6hNBPSs38nEsiPsxGtGY655CKd/YJvRyV7IRgfsRmpF8/2nbLpdDsHbUZjQyeR9WESoaAnOkSDxjCTrpQdCWrujWgrTXaJ78QnDdNVnvZnfXIUzI9F6a0dhFGcIHT/JZgbttrA71clY5MrgEgIwZ3/vrzsYXDU3/8ObgDwiCHhIQ8sRFCsP+uGV7+O0/n5h8+0BQCrsynfver/O/f/gq7K2EIuJCQkJCQkO8Hihtlzn9pGYCTL9h7nUsTEhISEhLy+GGIFcDvjGc/+9koq8rMPT9KbHy6Z7rWTWPJRSvSYXvfCxWFsYji+EiVb+7URErdcRICs+wdOBd3iBiwUjYIrtvynJCu7gynGNksmmwXJYrBGzg1lrYMilWBUsHPZVUFZQO862kSN3URJ9VwHVpCb6lYBFlt+qCLg1K1qNhdU6i2r3TERHRJD5BfVZz9fBEryJpMTaShYGdpuMXg3IEo8RHJ0reC28FUC3D68xbuEPq97KRm/rjJw18K7tYTT8HYvGD1gm64AAw4ZTQO+28yuPKQ6znWXG+Cipv6sHhSUtjWLD3czxGIFu3K2Ly339VXeNV+nhslRgTOfyV4Gzr/FRunGvwcAJkpSW7W5NLXggsrt4cJK+dz+X4Lu98pumwIFnc0jt3lXK5qEeTpps1a1wG7qpGSrsIw4brots3BahnKRXrm6cbatkG+DEH6X+lqlCG4eMkIHIStxuq6iTI9AWzwvl4SNxTTSYeLu57wtZodnPdkqoKjBA+oBIY9uLPfVpJLjkm+SRBlpwWRQu+85vN/EvnIr/H2t7+dpz/96dx2222BrijkicHS0hL33nsvE7cvcPg1t/dNezi3Vv+3E3MpjlVxo8GesJl0nuw17y2xjdn+neZYosRmOQkacrsSGRVDOTWhwYloVHQImzcBK1N2XUsySKAEfmi4MRcZKUEpFfQ0FAxBtYu4tFOc5CEBW4uWIEWVCUF8vVEnrQIlj0JZYNldHJ7GYsQ2u9+DtSsN8cdAfCGpa0M5QP/VzPhek/ymGspVcOuaxouyHHxeMTWrsWwxlItOOuuFbys1zT/7CZQAsqMQjWuWr3znc57vCt/h3CuRhMkpxeWLsu8YrQ1RD61nGJqRrCa/A64T7PxmBGb3weqSoFoOVrZKyQsbO4SJDqDJTUC1LClvB8vo2KLl907ztfbCqsLVS7Lv9ddclGooBcWibHE861mmRC2v55DWT3suHNAt3ZigYgvsIULLKS24ok1KTrC5kHQ0tik4W46ih3hObQQ7roEX+c1zgBuIH/YtpxSWEBT9Oa2a6j++pB04lHd5eMSgZCq0O/jatlK6I4pfPGpTsbo795ozSW7+Vz/AP/7ix/n1X/91/vW//teDryfkMc+nP/1pPv3pT1MoDBlTPSQkAJG4yZ2vPMrhp8/zD392iqVvbgBw+etrLH1rg5tefICbf/gAZheBbEhISEhIyIMPPsgnP/lJvva1r7G8vMzIyAgnT57kp3/6p1lYCBZS7Mtf/jIf+tCHePjhh1FKsbCwwKte9Sqe+9zntqT7+7//ez7wgQ9w8eJFRkdH+aEf+iF+8id/EtNsXUM5ffo0//k//2dOnz5NuVxmdnaWF73oRbz0pS/FCLzo8P3FqU9fRivNzLEcE/uGCMsQEhISEhLyBOd74qT0nve8h/vuu4/U/mOM3frUrmka7kketTBvG67Jluq/oaSi3n8Am7bk1G6sr0CpGS0FYwnFVHIYAYzi5JTFfCbAa8VNjIx4TiFKBxcoAThKslHwrmeQg1KNrW2Dq0teHjfu5+0jUALYWvE2Bzqwna4CJYDSNiyf7nPcHi4vfQVKtQ2+po2+mRNRkuPBnY10xEQaAmMI638ADImr5CBDlxbKu7By3hMoBXFQAi+0SWasKW2AS7MsOP8Nl/x28LIZJhy6XZLO9Ugw7GZXn/T7bhBM9vt91CXv5QcVq91C3rXj14/QmsSIJDEynAPBxhXF+qXhRG6OE9BNq/l0gGEKZNTL189FqY6E6aMmyVwXx4MeNIdXbGTo76iUX9WsX+jRsF3V1VUpvwmXH+zvXFVzVNIRr/zFvODKOYEasFnW7KhUrUp2doPXtXQ1uAKQxHMC0wz+wMZxuXFPlUw8eHtIRxUTKZcBhg4tPFyMcaroCTfciMCNDHD4QHLBjXkuTE03t5erEoA0Tfb++FswDIMXvehFVCpDxjQM+b7FdV3uvfde8rrEbe++B9GjP6m5J9UQLiChMmoP3EueSeeZSecB2Jqqsj0RXJw5Gy0wb9mYdvDnPlqRzFyLYg4QEzQjHcgoBwRUXDOQQAkAAaWExvWT93NQqqGE4GrcoOLPO2puSr0ESgAKwZITodLFrS2+5XYVKIFgt2j4YaG608sxs5/xR91Nye+Xo0nITIpguiF/rJVR2elwFAQpvbnxEOxuQHG39fyDiCW8+VdtrBwkUALY2fZCnXXQ55SZrGZ8qp9T0ZCV1MuNMq6ZmVPQx1Gsdq7anKJShmtX+wuUGnm9PAJNIhVc5KYjBo4NmyutLz8MzKcFWkoIcF8aCKQBQjbck/q5KNWIxTUjuUa91a61m4tS7TxBBVrNebZ3JHYXQWE/NnYNSgOc7GqOSnbCS7dRNikH6U+bHJUKroEaQnAkHe25OaGJZIaTiU8qh716uBjC48plJKjaHSiYcGbE8FyVAGGoga5KpRiUo9TDvtXo5aoEMHHrPMdf8yT+zf/v3/DhD384cPkeC/zET/wEIyMj17sYjznuuece3vve9/LWt771ehcl5PuY0fk0P/jP7+Q5P38LST9Er2srvvbfz/LffvnzXPrqkLFLQ0JCQkKeEHzkIx/hs5/9LLfffjs///M/z4tf/GLuv/9+fvqnf5pz584NzP+//tf/4h3veAemafLGN76RN7/5zdx8882srraOO/fddx/vete7SKfT/MIv/AJPf/rT+eAHP9jh3H769Gne/OY3s7y8zE/8xE/w5je/mbm5Of7dv/t3/Pt//++/q9f+eMGxXB7620sAnHzBvutbmJCQkJCQkMcZj7qT0unTp/mX//LXMRIpFl72+o7v7QzIjsVbxW3JCtuuwcPV3jFcy5OC2E5jgTlluBRdg60Ai7TKaCzYn92JIYM6a2hvw7loCUpDLDpHpeLwhM0V02RlI+BbqyhOLFhc3jApbMlA4iSAuVmHzS1JpeKdx6h036xqZnQKSrtgte9x99n4yc54x99Z7lEuKTt2xDLTkqnDUS5+qdJwEOqat3FeaUJ60qCaV5Q2BtSBYdQ3ZNYvuMAQwhQpWLhBUt7RrF8OvglqVWD9SsCNPJ/8BpyuXcsQ5l2lzgg9A6mWNW777a857QQJf9ZOjzZhVfTgzSj/7ega5fzwp7/64JD+OUJQ3IbAlmw+ZhwWjhssn9WUt4Pl3V1V7K7W7qtEC90R2qwDBSPTBnZZU9ryPuonUKoxfcQklhRc+npbpfd5ZqMJyM1JVh4Zrg5zM55gqdczK1wXZPPGq2Zi1gupUsoHECs5Em1qDh502dmRrK8H3AmNw+E5i428weW1YA+S5UC5KrGjAmGBDnCq9bLJZtl3wKuF9xnQJArKO7CJwpBQVRI3IqiOgdFHS5TG5dZYhYfsGGtNAl07LbBGNdHt1vpMTM9zw3N+kK/9zSd45StfyV/91V8NvqCQ73ve97738ZnPfoYn/9sfIZZLdnx/V+4C3zTnWj6LFk0yq3G29hRRkd4N/NlzZ3hwdwYAwxEoqVEGYAzuJydjBUzh4gKrC6WhpPJR08aKSdQQYsHMbgS5HWNzLvjmeDYviVuClTGXla0RnHx3R41mkq4mrjSbZiPkWGTDJLHWu/8z0SSkIq8kHROIntk02ZSiUJa4PYSgOiKhzblmYs5zuctv9b8OHTHqY1YkJkiOSPJrAeZR0usYlQvrl4YbX6JJwcg4bC57LkdBqRT9aw0S8s9nY7nx7yACJfCcgzqKNWCIdt3u4pyamHdoG0DwYm215VXKE7APGpK0IRvCLCWwgusJ0abEtTXXLg1XXB0xyFcF0hnuYtNZTSQKG9tmMKE3sLHSuCE6YqBMOfC8ZgSSKdjdarj7uEkT4fQ+p2FoJmc0m+sCq9raCNpdlJpJJhRKCyqV7g3HjXW2RdPQRE3dV6wkHC+kWq1PjEhNKqrYrgToJLUnSk1GFRNRh4vlCEF/yGSTLpO4PEQ0sMipikBqcNIK6QgGvH8EQvCIGWl5+UM7EtFPlC4ERf+4MVdTrYnsDEVurIBut0xqYnpXELfh4rhuqYZ41GYuucNSqfVt6IOvvY3dL1/jjW/7WV74wheSy/V6G+Sxxc/8zM9c7yKEhDyhEUJw4O5ZFm6Z5Gt/eZZv/K8LaFeTXyvzv3/nKyzeNsWTf/I4manOuXtISEhIyBOTV7ziFfzar/0akUhjXeI5z3kOP/VTP8V/+S//hXe/+9098167do3f+73f42Uvexm/8Au/0Pc8f/AHf8DBgwd53/veV3dOSiaTfPjDH+blL385e/d6Icw+8YlPAPD+97+/Ln5/yUtewlvf+lY++clPDjzP9yMXv7xCtWCTnoiz9/ap612ckJCQkJCQxxWPqpOSUsq3jtTsfcXPImXriqSd8f5fHevMe8mKsGz3XmRVbXtGuYjDzdkqWXPwRlRtMTcqFbmYl14NVRWSC1sxtsrBNV6WkpxajrKyG3x3zTShagsc33XIjQ8uY8RUjOUUibgfoqESbGNuZh+Mz7Z+Jq3+ebMzBqNz3a+nlzDDdaBa0P0FSm0oB85+tszW5WDXIlyFND1x07BoN3iIqhq5OUHy23XyHKLZpbIwe3C4t7FdBy6f0t+WGGhYls7C1vLgdM0imuwETAUJ1ezfk6BOVe1ICWML0nNQCEitjXaJnDaQZqeGIJz5XJXNIZ2e7LKiWuxxjh7njqUEuT0GsT7Ri0Tbxp4ZhdmDkpGJwWVqfu7HpyET4LlQMdM/r8CyBG6AsCj1vEpy9kqEy2vD2AlLzl2LUrCGsyBWSEypGIv7/VDAYt6UrnA00RqixO3TDgsIrrgm223hPa1R3fL/Zqo3PYvY1Bwf//jH+fjHPx6sYCHftzzwwAO8+93v5uArb2XilvmO7+/KXQDghsxSy+d2zKWYq/YNv7aQbFW5jK5FGVvpLSZvZjLmhVGJlYy6Y9MwODHF9sRgh6dmdkZtrk26Q+VxDI1taFa2vAU3M4BrZsZRTDYJySMbgycgGamYN52Oaohv9K7/iAm5jMLoIQiL5ruX1aoOdrQRbZOf4pZm5ZHhxiVjsJ6rJ8MIlIwIJEdACP1thT9TAZx2aoyMamKJpvoOcLpSQbCz9eiHh7Mswea67Cu+qFOrJ6HJ5hSRaIA5ip9nmPqqoaUgGtMk0sMJxAeYQvZESo0QOrD4rJjHD+HXWnfa7BPOzfWepWHLl0lrUsn+Py7aBVkjScV41iWI9a70n524qcjFXWQA4V7NvdhxwFJiqO54SxmcsyNDuTAVtMGaNod6Xmtz/oxSGDWn3ADh6dK25viOS7JNcCb61MtOQrOR1h3P992zFwGYS7a+JSJMwfF/9SzcqsNb3vKWgWUKCQkJaSYSN7nrVcd42XufxuyJxmLopa+u8rFf/jxf/e9ncKzh5mAhISEhId+f3HjjjS0CJYCFhQX27dvHxYsX++b9+Mc/jlKKN7zhDQCUSiV0lx8zFy5c4MKFC7z4xS9uCe320pe+FK01n/nMZ+qfFYtFotEo6XS65Rjj4+PEYsHWhr7fuPLAOgD7755FDuuaHBISEhIS8gTnUXVSestb3sLVq1cZu+OZxKcaG2U1cVJ3PEej5R6LkO3ipGrWc1PasiVnixF2+ixetr99P5e2mUy4fGVFDhYp+XO4qYRN1NBc2zQIusNmaIUCiv6muAwY681yJOcuDrfjYzuSb57ybmuzQEklzL5uSg9/tfXvFoFSNAJW5+7Wpa/bXQUcLQIlw2hxUyptKEob1c5M/ZAMfuu8LQbF+Lxk4oDJg5+1Buc1G3mvnPLLGnARXUvJ5D7J7pqmtBN812LxpEDjhdIKSiwFmXHBtUeG2B2R3tviTnOVN9+0Nmej7wTD9MJtBBKg+eeNZyCVlaxeDK4MS40J9hyTPPJVL8ReEISEmUMGrgs7SwHP5WjOf6UmSPHbQ4C6mjthkBqVnPmCVxE1d6GBjkrguREF3PTZvOyFxGzN33RvdefmbX5d89Dn7e7PRNMPKeEotL/R51hw9iuq02WtiebQKsJVaENy+gENA0K+tXPlvNF3g7AbxbLEC/zm4g4R+zwddZlJO5zdjAAykKPSQsZmLKFYKZsNVyXou4d4vhKl7AuOmgW5NaFSp6uS5Lzj/bAXKHSXcaYmVGp2Vdr7ijdx6T/9Bq9//es5f/58GM7jCUq1WuU1r3kNsfk0R9/wpJbvauKkrmjQpvbCvHWhXZx0fGSZB3dn2J6wkAOe85o4CQAF2dUYxaxNMRcwDpSGkY0opREba4hZa74SRwsgiBijiWJSc67Sd6LawUrMYDXq9bnNAqXypO7pprSlDPKWbNnobxYoVcYM4putG1S2I7i4bHbtcpoFSu5IFGO3MRjvbvQue7s4SccjiKodLCxxm+vf1H6D4rZid3VwZh316skqw/oVP33AuVc0IxmbhuIjgZID3lxoag+srErUEEL5REqjtaBaJrDYTUrtRdVqejbqLkoQbF7bcsC2f9fz6qZpdkChktak02Bb3n9BGZsTaEuxtR58jE6mIJEUFKsSaQe74HzZqDuB1VwlBzkqCaGZ3w/rG5Ki393UxEq9HZUaoi20QDXFc63NQzpdlQSbXa6/n4sSwGofIVmzi5JQun7N2wXJVqGLy1oTTrKRV7qQtyR5q3+ediwlWS4FmwPVUAgsBNL2ZqyDwtk20EwqlwqCvP97fZCjktSavY7NimFSew+iJlTq5apUMOF82qDkX1NurDEG1YRK7fejEm0pZtcqrAmVaq5Kiak0N731GXz0//4od911F29729v6X8xjDNd1WVtbY319HcfpvkZwyy23fG8LFRLyBCM3n+aH3nUX5+5b5osffpDSVhXXVnz1Y2c587mrPOW1J1i4NXRkCAkJCQlpRWvN1tYW+/bt65vuK1/5CouLi9x333384R/+IWtra2QyGV760pfy+te/HumvIT/88MMAHD16tCX/xMQEk5OTnDlzpv7Zrbfeyt/93d/xO7/zO7ziFa8gHo/zxS9+kc997nO86U1v6lue9fV1NjYaixODRFaPB7TWLH3Tu6b5GwO83RsSEhISEhLSwqMmUvrmN7/JH/3RH2GO5Jh59kvqnw8SKN2aqLLrSh6xOtXX7QKlGhKFQrLaxxK/W3iQM06E1Y1IYIESQCqiiJuaawQTDwkNByZsIobmwZXgNi7ZhENUKTarkqBiKCm9rS5Xya4OSv2ESqrp40EOSl4iQHW6DvUTYkRTEE1KCmvDWRUdeVaSrcs2a2cCbmgCu8uOF85iiFOZUe96VPCoMACcvk8N7QhRCBg+rJnNJdgMKrDxSWdh70mDR77uUinw7dkCBWTvSYHraC5+K2AGIVg5rxl4k9q+tiqws6aHureuAw993h3aJQu8EGlWeXC6GptXXPIrw51ImnDkGXGWH7bZGuIeR+IQH5HkV3vk6SJUqke2HHCaZqFSUIFSPa9bE9d4YVtsK/iGWcxwGR2HldXgO2a5jMPCjMupR8AWwfJFpCYTVUQlWMoLezJok+7yToRzdBG19om1s+XUhlnlV3trXjfePfxbGpebYxW+acXY0d2H6ubwb2YixYnn/Qhf/fhHednLXsanP/3p/hcT8n3Je9/7Xk6dOsVT/uhlGNFGg+4nUDIrBpmVODtzpa5h3toFSoDXf2hwIxq3j5qlRaAEIMHZv0mxn51YG4YjiJYNyungg3OxFGfvtQgrEw7lePDxNpuXnK+kYIgNe1NpHOG5fnRzUOouVPJ2wZ0eAqXu+JvrXXbPezkoAcRTYFc6ou/2JZkVjM5Ilk67wcRKPptXXdzgUzXAEzh3hKQdQCkvKBc8cQkQSHCtFeSLcqh6AFi56vfZQ+hnx6c0aFjzw5C1CJS+G/hjeDQKs/OKpasyuOBISK4GCWncNncolwVaGQSZfNWFNluwvTm8o5SQXitXAYXOWgvWlzUBzWPrjOQ0qQxDhrLTxOKeM1lQ58eaIEagBwrRa0IlVRfRdFfMNAuUakhXoAyQQnuOVIEbrSYjFLYQVFTQtqrZa9pUtGTFNnv+Rm9FkNYKhCBPTUTWX6ikhOBMJEppzKbD9apX+Dch2PFFR6JHvyCE7iocm9wVxBy4kut0VarRHP5t9nmH2f+3F3nPe97Dq1/9aiYmHvsbE0opPvShD/Gxj32MfL6/1W7zW/MhISGPDkIIDj7ZDwH338/yzU/6IeBWy/zNb3+FvbdPcfdPHiczGYaACwkJCQnx+NSnPsXa2hqvf/3r+6a7cuUKUkre+9738qpXvYqDBw/yuc99jg9+8IO4rlsPBVwTDo2Pj3ccY3x8vEVY9KIXvYjz58/ziU98gv/xP/4HAIZh8La3vY2XvOQlHfmb+cQnPsGf/umfdnx+/vx53CF+qBcKBU6dOhU4/aNJecOmuFlBGLClltk9tXq9i/So8Viq9ycSYb1/7wnr/PoQ1vv14dGs9xMnTgRK96iJlF70ohehtWbvj/1s/bP+AiWPTceg1LZA2m/hM4bizlyF88Uoq11ese8mTgKIS0VFSUr9FrS7rGue343h7QwIDKv3In+zo/xG0SDSFJpDRby3T/sxkXBJxjSbu63X5MYlRqX7BsHUpGJqzOXB+0Xg8HXROBy4CS6fhvJan8poc1M6eFeE0rbm2kNenr4uMf5r3qN7IowtRnjob0tDCUzWz1mUd3pk6OGcYpXAKjkt7jAdmK15J/dJRiYlp7/gdBd3NKHbxT5DvhG/eW2I9N8B5TxcedjFKtFboDSES1A/Vi7o4Q8xaGOxS71aZbh21tu0EUPsntYFSrV66KdY8t/anz4oye0xeOizdqO80LfMlR1NpUu5+jkqKQc2LjqU88OJmyYPmGQmDE6vVnvf31pZ/bLHUrD/jgiXv2lTrP3O7PGc1EK/aVOy/yZJtaRZOhuszoWrmDsAmTHBQ1/rvslWC/XWTDoDkxOKjU2B08cZz0k0nt98WbK5o1GAcP2NfKP382ulJVZFsrXcKgIV/m/iXmIlB4mFRKIwAau5n+3rqqS4M1PhGgaP0CnA7eaqVESwqQws3b8vbxYqVY7cSXzm7/nbv/1b/u7v/o7nPOc5ffOGfH9x+vRpfuM3foP9r7qZ7OHJ+ud9HZQAZSislNMR5q2rOMnH2EgxsR5jfa7adSO3Q5yEF9JRGxod0UMJX9yIZn1PGQREUVh9drR3q97DJIGdjEu1yUVJCt208d/lmhyILieJZ6A92rCZsXHyXSajWnOs5LBVjrA6RIzZGdPBAK46kb7ipGY3pURMMzXqcmXNxPXFG/3ESTU3pfFZyG91uim1Oyg1YymTnVWn932S3euxWux5yDo1B6UaswcF2yuawjaD515NotgOgcGA+YQtDXZ6N+n+DKmzaQ711lOgVPu437Dfr/uXYDuwsizpYYLSm0Fzry73oFjwP4sYSLv3ArJubhtN90j59dDPUclLo5lf1OxuC3a3W4/Zz1GpWO0+cPdzVKqUPIGcinWv6G6OSkLA1Kxma0NQ2B3solQjN6qIRTXLTQJst8d5a9cZizee+X59VzOm0uwbs1ktG+z2qJNaqLdmJmIuRUcOFCnZ6VpewbYysP1ySb8r6veb3cpqzncJ+Sb99tura68K4bnUKY3d1vf0c1UatRTzJc1yDrpdVjdXpXJUd/T/3agJlYQhOPyup/J/Xv0RfvmXf5kPfOADgzNfZ/7oj/6IP//zPyeXy/GDP/iDjI+PYwzhRBoSEvLoEE2YPOneYxx55jxf+MAplh/cBODiV1a58sA6t/zI/8fen0fLkpzlvfAvIoead+15POfsM5+eJ6RGs2QkMwlk42swZhDce8FgayEvMEgg8L1wkYwN3Mt44bNgIS3ABiR9n8AYgyyBMUNragmp1XOfPn3mac9715hDxPdHZFZlzVXdre6WyGets86uyjciI9+MjIjK94nnPcGdbz6G7abPa4oUKVL8fcaFCxf4hV/4BW6//Xa+9mu/dqhtvV5HKcX3fd/38e3f/u0AvOENb+Dg4IAPfehDfOd3fif5fB7PMzteXNftqcN1XWq1WuuzZVmsrq5y//3384Y3vAHXdfnzP/9zfvEXf5HZ2Vle+9rXDmzPW97yFl796ld3XMu73/1ujh071qPiNAyPPvro2IHPLzYe/e8XgKssn5nlzrvveLGb80XFS8nvf5+Q+v2FR+rzFwep318cvBT8/kUhKb3nPe/hwoULTN/1CjKzC2ORkwwkF/z2gmicXZk+cLNpseN3EZuG/HaftgNuL3o8UnGp9nPBgCDzfFax2WgHtcMBRCXR9dVOvQ95agBRyWqal6znrznYsv+L/EFEpb3rirAqUENeMHerKWkFB9vQ3BkjwpEgKu1cCWlGa9Sx0lhZFjef8Nm9EkxG6AG2zw9o24AXqtKGxZMO2xd9vJpqkUM6YPeW3b6iqGwnGjcgWJYkKJUXYXZV8sznxryoqGhpBqoHk6k2HTojEHKyFHFhAHs3GU9B6TmmfqvuTV6mNAMrJyXnPqd608QNcWmuBCqEZk0M3CXdjfkjgvyU4OLDUcVS9icqJYJgO9cUtf0+9Q/yVfTd7GFJ6JtnssfEkn2fmY2ng87g3hi4eTbg+pPBePc36s/NKuxcDfFjdagx8mWLQFHZAa8rU2M/FaUkdm7Cwe74BCWA7U3Y3ZYoZUho/dK/JQlKAEEguXyz8zpEqPsSlbxiZ96crK2wpabiJVPWmf8HkZXuKTbwlOThWh81mL5kJckNz2ZzhJpGkqykkTzmj6c2k0z/duSffA/P/OZ7+I7v+A7Onz/f9yVDii8/aK35/u//fuyFLKfe+jJgNDkphnI01fn2wz2MnNQqU2xS84KeR7sfOSlG/mYeNFTXxmCyRLCbEmXpDgKVK4O+RKWYoARmDbhT7h1nBxGVbmyb9IjXZ/XAqWcQUelqI2OC6EPQraZUVRKLcdST2kSlIBDsViTx9DGMoBQjnHK5ds7ruU/DCEpg0oAF/eY+GEhQypYEUjI09W03QQlg45LunP8Hrb0S883csqZRherBeEQl5VjYjkaIyZT9bFuzuKrZvCnwmhOk0GpOoKA0SNlwnGkdQWMCpccYcwuKMBigcjSgLwupcV1oNow/+xGVutcwQmgWlg3hqFE3x5TTP/WbavlKsHkD/D7dW0vRl6ikbIltawolHRHE+qw5bNlDVPKawqxrMsPvrbZFi6ikteDaJQiC8QlKYJSovEQ/H0RQSiLwoFKXPWqN/VSUYigtuFmxqPuynxv6EpRAcLHqoBDtJUyfS2sTlAz2+vzYln7/3+9eOUGY15qS1hxE5KNW2SFkpWKgOFlVPF60aPRZ2/UjK1VswUa2gyvXF0myUmV8kb92+jfK3P69r+L9/8/7+Zqv+Rq+9Vu/dfxKXgR85CMf4fDhw7z3ve8ln0+VWVKkeKlh5lCJN//E/Tz9wDU++Z8ep75rUsB95oNP8dRfXeGV330bh+9eGF1RihQpUqT4ssPW1hbvfOc7KRQK/PRP//RIonkmk6Fer/OmN72p4/s3vvGNfPKTn+TJJ5/knnvuab039LxeeV7P88hk2pstf/d3f5cPfehD/Of//J9ba8mv+qqv4l//63/NL/zCL/DKV74S2+7/vnd+fv5LQnl0Elx5JEr1dseX13WlSJEiRYoULxSe99xPu7u7/ORP/iQyk2P5H/7TsQlKR6abnHCbow27oJA87mTxR6hNJLEfSM7XHXaHqHR0YzajODXTpOQOD+wkCUoSxcn5Jrl+UvR9EBOUYnJSMLbkPliNAK8p2d6c7Jb6Hlx7NJg4xdn2JUV1S41HUErAq0xGgikfssnP9bmmIQvxTEFQXrGwnAFvpfsQlMAoABxsDm9Pj4KShnCEKlYLUVE3C0dutyjNjFcsRr2iqQ8KGg5AtgAL6xP0iRGB1mEozcLs8mRl/KZJfdcv5cIwHL5NMncoCgKO2eYw0ATdQa8R5B6vBgcbA3w+5LzlZYtCv34boR9xTmYF80ctrAk4JYE3YXrCKHh74yll1LUmwOYzyhDeJkC9YkiQsbrReJAoJZFSmRSWwbhlFasLPnPltkPGOe+pOY8j5cnyE11ouDzTGC/lZ4ynCi57z4IXXJYB9xTryDFyFXrTGrtQ4o7Xvolr167xgz/4gxOfL8WXJn7nd36Hv/zLv+SuH3oDVsYei6CkQ8Ft202sIalyB5bNBayvXZmoTH2uTnNmsnXe1LZLeaNXfawbSYJSsSqYOhj/mm5sTyG1RmiN6gqaj4Kz7XAgJN6Ec+eBsmhsTLheCwV7VQsQYxGUYihlSL0xRhGUpAWFMpDvM8YNIdJmi4Lc1BAVpD4EJYBmbXS6t25CrAqHiyF22EZlp8pRGrYJoIFaVUycIi5f1LjFCfpEd1cYs2sIoSmVFbY92XU1G+B5k/X1XBaWV1RbjHIESRnMkiMMRQ9vTI0gbzXqgjDo37ZBZG7LglIJBrwPN+e1e8/rTElyudH+SxKmg6A/EWoYGk1BtTbZMx8qwc6eHDvtXYxK0yJUAjlBv1XR9ciIDSXGLOuiWLF8kiwqOWJ4KqA5FvrkJ5DUq1qCiznJJNNVIAX+am0kSakH2qR9e232+ljmq/k9Dn3DrSyfWuPHf/zH+wZ3Xkqo1+u88pWvTAlKKVK8hCGE4OSrV/nmn38td3zdUUQ09+3fqPGR//AgH/2Fz3Kw8SxYyilSpEiR4ksWlUqFd7zjHVQqFX7+539+LLJPnL5tZqYzABF/jlP/xnbJtG4xtra2OtLA/eEf/iH33Xdfz1ry1a9+NZubm1y/Pt4a+ssBSmmuRSSl1Tt6U+WlSJEiRYoUKUbjeScpfdu3fRtBELD+T7+NsCyRSjGrAuwompBViulEVL2sAgrKvBqVQjEjA6SjUA5kUZRl27ZESCHabixQ3OvUOWaZgJcrFWU7QFlmB31BhhRaSkSKaTvAjcraQDU0P/T9PORtRd4OzftVDWU3wJVtwlDZDdhuSr6wmSVUkoLdfnNbyhhbocERiqlsgIzOU84ppnNh6z12KRPgWuaYlIpSLkSisJqKvA4oZBUSxe0nfI4s+7hOwjZvAvYArqMo5M3fViOgZHmsHglZWDE2xVLb1nEVhVI7kpPLK9yc+TtjBxw6FmBHpAjbhcJ0+15mi5BJrDkLM2DlHWYPS6bmoJi0LUGmmLCdkx31Lpy0OfqKHNKBTEmSLclO2yi+KF3zOe6Ziycd5o+3A2X5GYldMIERaXfaugXIlQX1Pc0T/6MBUuDkjNKTtKEwI5CRPLabg1yZRL2wdqvEzRveSmHGBOrQGicL+XKboJQr0fLh3hZsXdXEWV7syLbl7xK4eVptLEybYNzTnwupV6NA4CB/T9Phw0YVNqOYcLZg/g2yje9jflqytG7qbtmW27bS7myDm4Ncqf02P18GO9NlK5O27bLzh2gRh6Q0tjJBzEra5krmu0YNrj9trkVGpDLXhXy3beyX6N5cflxx87xu+TsmKvXts9G9OdiEvZvtZyFbNKnP4kYWZmgF+mzXfAaYOyyZWxedPpyJfCgEVmwbReEyBbj2uM/VR4LIVrT7d9QPkYao5BYgWxZoKbAcWD5jU5yXbdtZ2fZhvqvPTgvcPCycsDl0l236rN2+Nx39sNz2oRSa0pxm4ZjEKciePpvt4++43ulZxfKRhA8LXf4utwOEtms+ZwuwfgvkcopcJi6rKZYUdkTgtG0zbsVyEvl8wO13h8xFm0RLuRAnipjZthkPY9usq8hnFSApZDXTRYVrt8fvqUyIFUWYs66i6CbGbzfk4q7N4xsullSUM+3xO2srSlbYCtSV3BAR9YmdQOIK3baVXXOVDMhZCoQhq87YATaKPIqvFDWWaAewpgjIR/VIFDMEWFlFmDXpTONjWaCkQopxZF4p5lSAG312o8/eVMjBV72RTKnMe9/7Xra3t0nx5Y1qtcqP/diPsfa6k3z9Pwy5f+Y82rPQzXa0XtedltKEDgW61v6MAqspOZzf4XB+B1G3IVanDIX5HD+6VRv73EzruNMUyECwkKmw4FSw6lbLVvgCK5FuSCBQ0bpmxq7jNCQiFrYLBHYi+mx7AssX7Cw12J9tGtuwbetEtvvNLPVKFjsOimso1CS5RjQXhZBJKOA4vvkHcGOrxMGNEpbSzDbgtm1F3lPtsTzUZBIkybyvsSMVl+ymxcyG4Ejo42qNqzUZnVhraYUd1SO1Jq9VKz3p8kHA/H47ip+xFHbEcJdoslbb1paajKUI5yWlnKLoNcnVzPghhMbN6JYKiGVp3ER6O8fRLCyG5FYdEJBxVWvMkjY4CcUQxwUrWmq5WZg/JJAW6KyDtKM1TxQgszPtNQSYY9KC3WuKnavtNSYYO9ttE5TcbLS2wvxfmoX8VGTrJOrVumWrHQspNW42WqQD+zt0kI7djMaK0ioLy5wHYYg0lq1xXM3uDmzeEDhuwrbbh5GtOWjOf7APYSD6+ttJ+tvVWNEaYmoOpsoKIQffmzaxKKo39ovTaWv3sZVRvVJq5hc0TjbqL7bGdgbbuhnjw8qBxGuadsREJTfTnutFwjauNwg0Vy5LlAI38qFyrJZfiNrf4UNMyraglTG37UPlyJZtTFqKfWjbmvKMws2ozv6diRRvpGjZKluC0Gg0Vy4bApFM2Hb7W9mi5ReVsSiVFLNz7Wd3mL+FS/RZMX8Y8nmFkyCIZdxOf2fcTh8Wcub3W5iRZByNFdsKTcbR7efe0rh2u4/OFgPciHEkhCZjd44R8W9LANcy6pDlbMhUNiAnFFaYGE8SKr0Z2R57BJqljM/xogdobKHJadUad12pcGj7JScUEqNOVpSKkki0AUXG1xFZSZNDYUXjoa01WmuetGxqQpLRqj12RmOl62tkAJbW5JUinPHQQlC1BJn2acgH7THZUpp8oMEX6EDihppsdN0zFcHqliD++S4VZL32xiIngIxvfCuEJhMQ2QpQIDvmNYlstOc12bAQvmRtap/X/NQ9nDv/DL/yK7/CSxnHjx/vG4BKkSLFSw9u3uEV33kr3/TvXs3yLe0A84VP3+BDP/JXfO4PnyYckoI1RYoUKVJ8eaDZbPKjP/qjXLp0iX//7/89R48eHatcnEJtc7NzR3b8eXp6GoBTp04B8MQTT/TYbWxstI4D7OzsoPrsGAqiHOThpDt8voSxeW4Prxbg5m3mj0292M1JkSJFihQpviTxvJKUHnnkEf70T/+UIydPctepk4DZLXkfDcrR270j+NxNeyf97Xgcx+NJmeFcLsOdhQbT0QvUFdvnLqdte4vb5JhjgjNOtHOzFL20nZ0Oub3cDvyeLPgcz3uti7yj1GQuE3JbscEtxQZ3lJqtiz8y63F8qh3tuG2uyXwuqjcTcttcA1tCxbc4UvI4Md0+z5kln8WisZ3KKm5Z9HCil/xzhZBmgJHcB04t+CyXzKKt5CrOrHpko4DM8mzIsVXThqsbFjOlkKVZU28uA6cOe+QissjSbMj68fai78hxzew8ZLMmMHPstKYQkTzmF+HoifYL9MPHNIvHTXumF2D1jE1x1hybWRUcubP94nX1tGQpsrVsWL/LojQP80dt5k/YrN/XVjdYvtVl+daY+QLr92WYWjZ1lZYslk6bV9vKh6UzDiu3tyNcR16WZXrVRMdK8xbrL89hR8Gyxr7CdtsBxiMvzzFzyDi4MCtZvy9jglHAwgmH1TsS9d7jMnvE2ObKkvWvyOBGxJ75dcnh29oB3CN32MyvWzgZQ7Zav9shF60v5w4JDt3Rtj10q2Rx3bSpMAVH77RaRJ+5FVi/o/1YrZ2WLB1vB/aO3mFRnIVGBcpznbarJyXLka20jW0pujflBTh+t9UK4K2ckKycaJc9eodFOSZ0zJrP0obta0bJZvVEy5T122FmKbKdhqN3iBYRaWkd1k4lbG8TzK2QuFZJJvL34mE4dLp9b9ycoLJj+lquFNnG/j4ER25p2x6+RTB/OGrDvLHNlQAhmF2DI7e1r+3QLZKl9XYQ7eidFpZjVIRml9s+1EKweka2+rftmj5bjDaXTC8L1u+0WqSflVOS5RMxIUiyfrfD1IL5PLUoWb/XBQnlZcnycZuVM+0+sH6vy/SyjNpvsX6v21JAWjrpsHprm1h35B6HmVXzLBTnJOv3ubiRvxdPZ1iL+qxXhaAJ2UJEhitHtrEPjzkcurPdvw/d6TJ3xEaFJni3fq/bIq7NrVscurPdhkO3Oywciwh6eTh8t8vSCYvCNMytyY7nfu0Wi6VjccAQ1u+yKc7E12axdqvxg3Ys1k7A8hFzzLbh2G20+uz0vPmMhkwODp2ElWPmmMpZHD8ZMh3VW56G4yfD1r1ZWhGg4SBKIXjshGJ21vSt/Jzg1GGvRYZaXQhZXzbj6lOXbEoFzdy0GR8LBc2pwx6Oa1SVFpdDTsy2x/rT8x7TOYVCUnQCblnwyEXB1dWSz6m5iAwQwolFj8OuKVuQiruKde4v1clLxZrrc2shMVflPY5kTNmsBbdNN5hG4QFFFHeI9hxyq/A4GZGWXOBe2WAW0/7FbMDJvM+n7Cw1KblV+ZzWxtYG7gubLES2K4TcF7bb8Pp/9q2EYchb3vIWUnx542d/9me5fvM63/zNXwGx4sbGFPpam32oz8/DfsQeqbvo8wsIqZHrW9wSHHBkLxGkvzyN3DcDvWjaOOdnITBjhLVVQG7nIQqK37rnsdYwz4XlWZQul7Ci1ImZvQyFqwVkU1K8VKRwpYC7a8YwGUgO3XCwvWi8O7CZvd5mzZQ3shR2HbQ0aYfmruZwIsJTtmqzfMNuqSctbNvM7EfkZQWFuqQSEbkLdcnajfbYPbdrMb8fpQUCTu0pSh4cOHDgCk7t65Y+ynJVs1ptr59O7mlmM9EYoBWnQ5+81mhgSQUcSsgVnQh9pqPAex7NydDHnzd1rRV9jpTapMa1QsBUxpR1Lc2Rko8TkRemMyEr+YCspZgrh8zPK0qlKNjvwMqKwomG+mJJs7DYvo/zCyG5nMlgatuwdFS01kuFKVg83J6TZ1YEU9HGP69plIqcaLrJTwkWjrd9OLMsW3OlkLB43CITpZDKlgSLx9vzyfSypLzWnouWjrYJv9k8LB8TFKZN2fICzCy127R4BHIz5jxuDpYOG9KQEJrpeZhZbJmysNYmN7sZWDoCMhvN59Mwv6hRoSDwBYsrmmK0vnNcWD6kW2vO0hQsLOvW5oLFZcX0rCGa2DYsr+mWX4pTsLjS7h9zi5qpafP3xk1JPg+ZyLZQ0Cwtt+/N3JymHKXplJa5j27Uhnxes7zStp2d1UzPxIQVY5uNHuVsVqAU1GumwTOzmpnZdptWVhW5fGxrPktpCDRz84rZuXYKruVVRaEQEfQyxjYWLZ0qm98ZgW8UhBaXFYVi1A+LFkuH24TwqbLxd+veLCumomt1XOPD2N+FOclcoh/OL2lKZVNXeQZWDuvWeqlQiu5N7JclmIrWEJaElVVNJkrbVijAUtJ2XlOeiclDpn9kIh82m6JDiWp2VjMz0yaqrawocrG/c7B8WKO14TJOTylmZ9r3ankpJB+pMmUzmpXl9rpmuqxYWgwpT5n+tDwfUMiZshlXs7oQtPxdLioWZmJSEqwvB8xORZtTSoLD035LFLacC1meao8nK1MBU9kQ19bkbM3hab9FeCqUFWu5hG0uYDYibtsS5jIhe36kPOaEHMq310uLUyHzlilrA8ccj7xQNLVkM7Q4ZCfqtQMWY1sf1vMexWg8LGnFyTCgIYxjVsKAlWjsFMDJwKcU2ZZ9xUm70fq9vtJU3LYfcKhu7E9VQ6YjNdtCqDlTCYj4hyxV4RbaKiOL+5KpKOVg1oejG1aLtDRbEazstH93HNkWnFq8gT/TQDYt8hfLyMgvzm6G7LX2roXstSLOrumkC+vz3PW623nX//HjXLp0iZcq3vrWt/LXf/3XPUGoFClSvHQxe6TEm//tV/L6f3UXubJZXISe4sEPPMn/951/w+WHNl7kFqZIkSJFii8WwjDkJ3/yJ3nkkUf4qZ/6Ke64446+dpubm1y4cKFFFgKThg3gT/7kT1rfKaX40z/9U6amplokpmPHjnHkyBH++I//uINk9Id/+IcIIXj961/f+u7QoUM8+OCD7O3tdbTxf/yP/0E+n2dtbe35ufAvAVyNVJRWbptD9smYkCJFihQpUqQYDaF1twj/s8ftt9/Oo48+yq1vfwf27CINaZSUiigqSJSUuEqRQXMQbaWeVwGzhDwVRZxn9jQ1JCHS7MREcxBtz82jUIB5XakooagjCZA4KIo1RUUZ25xUaKChjG1RahpKcywf0ghhx7epKIHQkqxU2A1oRKoCRTukoQSBktgobp9rUlfw5E6OrFQICfWEbVA3qdmkVORsTdUTuDY4UqGUbNnmXYUfgK8kEkXe1tQ9kDVwbRM4aMQBu4wiDMELTL1ZFxoeKCVxbYWjFPWGxK4FZHPG1vckSEUua1I5KCWxbYXjQj1KMZDNKmgovCbIRkB+BhoHJmWU7RoiTcOofRo1FQVew3zOlsCrg6oHOHaInRE09nTbFloppLJlgVfVqMAQbtxCZKsUbs4EgLxqbCvx6grlxbaSRhQwdXImCOZVASnJlgVBwxBUWvUeaFBGxUjacOiODAdbIQfXAwLPED+Ea+EWoVGXxjZjgiDNqA2ZglE4CpqANOovXtWkE7GzRhWqXjUvtzN5CBUEDTj9Ckmzqrn0iDa2kWpAo0LLViuIlf9zRaNeUJwR3Lxggl31Sn9/54rRfQxMW295hWTrquL6ubaSk1dv23oNcw3Shkw2aq8QLUWBpK3fNDvbW7ZxG7LG3yfugY2LmoMd4+vAM4GdTB7qNVo+tC2jhgTGZ4Hfadus0faLnbDNQxCYY7e+QrJ5WbFxEVRoAoHdPoz9DYYAlS2Ye7Z5qW0rtMaN/O1399nAKCedvN/i0sMhezcjH+qu/n0QtvtsLvEs5CIf1tq2fgNCH7NjP0/7WciBnYNDt7lcezzA91Rnn81H16ZMX5AWNKM0iNmS6YP9bO1s1Gcr7TYEgSBoCqQEtwheJfJ3xgSwWz4sRv27EfXvIgSeJAhE3z6rBvjQzZv21qNd5E5Jdvgw2WftSKkj2bcAGsoGFNkpSdMDFUikrci4Ud9C4rpGhciL1FJyeYXvQdOykVLhFiW1RmTbNXbmswGOBXtVuzV2xrZyCnBEe0y2FYGCnKM4Nefx9JbDXtNCIXGlwpZQi2ztaU0ANKSFRFGSIUezPucaLk0lcaSmGs0/eakINTS1GevtOWXmNdU7rxVQhJh5TWLmy1o0r7koWAzYsyVLm5oFFXJZOtSkBKWYQlNDEERzaxbNPgKkJK8Utf/8Pp558gkefPBB7rnnHlJ8+eHy5cucPn2ar/jWVb76X90BmQAhQPsWaBBRAFo3bLAVwlZGSWmzCFN1jk1fR/k2D1cPQawy1rQMCcnWoATCl2gnNIxvX4IW4IZkpQ9NiyteGW2beVj60qglSRCBQCjzL7OToTHbQFsabWuUEkhfsqtdtDSKRzIUBBFJ0K1JZm7k2FqtE7gK2xeEtkZLQxr0PZddTJDGDoxWSWiD2xRoNIFDq14rBD9WGgzgoJkhsKBSyZANwZOgpEAqjaugYQFC4EQqHL4VBbYDTWM3QygE7r7ARdPAzLOONuSmOO1bRisCBKEQSK1x0cgbEhDk90IsAV6U0teRCqUFoRYINI7U+EqgEVhCIwX4SpDf8sk2gyh9m1H2sW0zl2pt1GOkjIkkRrklTrdl1XxcQgLfkCukZf4F0drEdqLUXNH7TMeN6lVgaaPOGUQcyFhxKYz4C3YGnIygvCjYuGDWyC3bjLnGQLeJr2E09wtp5gk/aoNlAyJRb8EytlogpG7Z5oqwuAZXz4MfqWTZrllvKhX5xTG2yrawLKP2UpiCZr299mj50AHfB7p9KGBqRjEzp7lwVoIAJ+lvqY0Pu/wdaAkWOE6nrWWB3+fegMZxDDmpVIarl0WHrWVrk1o4YRuEoFWyXtBCYkdqNiZVmrENw8gvUmNHttMzmmJJc/2qWQcgwbF02zbqW74PICIfakpTUK0KtErUa0X9sK5AR7aJfji/bAhYVy/Jnj4rXLN+CRsx8U636u7n7w6/5EwaudCjda2FosZ1YXNDjPS3Z1kIX/fWO8TfsQ8b0kJEBHEBBJE6r+MM96EUmoZtgRY4tiZUCVsL/CCylabPxvW6jiIIBV7WQhD12TAaI2Q0RsRtsMzvkdZ4Ymn8UODlJZbQCEcnxp64z/YfeyxhbP2CwBEaZUGA8UtGaHwtUAgsNFmhaGhJiMDBkDdjW1nUNDKghMDSGicaOw+rAKnhqmXjCwFak0XjJ8ZOUQ5pSMDVOEoz55k+fj1rkQ01voBQRuOsgqY0mxYcpZmZq+DbkYKXD6GE0AKhwAnBi8YcOzSqSn6sRurDaw6dBanxNqdQ2ZAwF7TmNZRAR+nfhSdB6tYc2LgU8Hvf/v/j277123jf+97HSxV/8Rd/wS/90i/x6le/mhMnTlAoFPrafe3Xfu0L3LIXBx/72Mf42Mc+RqVS4aGHHuI3fuM3WkG7YXj00Ue57bbbXoAWpkjRhlfz+cyHnuLRj1zoSKd69P4lXvGdt1Kcyw0unGIspM92ihQpXkr45V/+ZT70oQ/xqle9qkU6SuKrv/qrAfh3/+7f8Wd/9mf8wR/8ASsrZrex1pof+qEf4rOf/Szf8A3fwMmTJ/nrv/5rHnzwQX74h3+4Y1PjAw88wI/92I9x77338sY3vpFz587x4Q9/mDe/+c38yI/8SMvuv//3/8673/1u1tbW+MZv/EYymQwf+9jHeOSRR/ie7/ke3vrWt459bU888QTf+73fO/baK8ZLZZz+b+/5FFcf2eKV33Ubt3/N+ovdnC86Xip+//uG1O8vPFKfvzhI/f7i4KXgd3u0yXj4i7/4Cx599FGyd9xCML9MzNtWUrKfEGzypEwkujGqEssEPIWNkpKD1h528Oi0rUX15FDMyJCryiIWg/KRVFS7bF0lGcySSrTR9ala7yU3lCSxAZRK0N4FHiC5UbeJ1OQN6Ul12sZS80pJqlGDD5eblLKKz11pqw3VvHabtBJUvUg1B4UXSGxLcXTF5+qGRT2R9kSpOCAftalm2tU6rttBHpSMAv2RbSBJkOjxEmoJALWdhK3XDlhBm5ARo3FA/AbdkC4aerDtXvuYUpjoVyQH2mvbbpMK2p8XTjnkypKLDzZbKbkae+3UFMa2fZ6YxFLZCmnsqxbBRNsWWkFjn1Y6iqDZDqJBm6xkKm6TU5Cy7ZeoezUT7b/2lMJvti6tx4ct2+h21SuQmzLKBIGnh/o7JneACeo985Bq2Xv1wbYqaBOq5lY1xRnBhUeG2CY+e4l+hhA0Kp33MWkbNCHRtciXoLwgeOYLute2yy+NxLWef8TcKxUFhINggA/j9h9AaQ7yU5LAU6P7bPx3BS49GlLdjWzr/WwtwBCVkmX72xqoIOpbUYDFqxv7yo7Cb6r+thFiIlBcNluSzN1h8/THvR7boNHp70YlHu80whZRgDay7e7fiXtBx7OgCTwx1N8dfoiPRUFq/0Ch7fZY1HHPAwiS59Xg+USzjqSxT6usCiT15DgVjZXziwo0bG5E57DMeNjYB1zznRckx3ooF43a3ENnZc/Y6QXSODFqf0xACn3YqltUfUNQAkMg8BLDZS2eUyQoJHtK8vlaWyGkry3GNp4DBWZecwlZxecqDlX62xLZ1iMfLemQORRPxgelJNE9eubWmpTUvuXNqP/rMb7ru76Lz3/+86T48sO73/1uCoUC//LtWc4lFjLC6ZTYFtnEAyY1HOQQloZpkE7QJigBZMIOWx19lvsZVLbXVscLJAkqkYtH2zoKVUNtpWtgiWwjYbAoVW9iPnc1tSmfwDGExSCR/qqOA64m7vBBtKyTIRy6abMxE3IQtSNOARxjJ8i01gEIQcOG2YZGCc1uRphgeISYnBSjupdtrQNaAfhoPeKLTtumSDzXQiCvx581oZaEiaCSnxgvNAIvsZYNtSDUkNsM0IgW8QMMccNPpDxToUB13naUBqtqjDpt6bBNpk5bOirY29D4HojAbA5QoSH8Q5tE1CrbNCSA+kHXMSnbn6N75CcGKa06P4eJLqodq31MmDWz31r/aG5eNmTrVhu8Lr8k643IG9msIvQFjfpg2w4faqjsCRo1ETWiy4dKkFS5DwKTuhVgcUFxUJUt4ks/2zbMfVTRSUMtUX67g4R9bJNtmJtXVKqCWs0QpESrc3XaaiXwozYcHBiyUUxQgojk0sq61Vm25cOcotkQ1Jp9+qFtIXxlbBN9a29btNSEBvZZSyBC1dG/x/E3EC/b8H1Dko5JQsP83ZSGxKltAYFibl5Rr5s0eMP8rZWg4ZgBREeEtuRxf8jzGYaCEAG2IcD5QZdtov+HqnM88fz2+KGjNsV9LVQi6e4WWclYG5JfrA8XagGeaD+PKmlrxh5baGbdgM2mhafbY5OvhVk/2ZEPdWKcAtbsgF1lcTO08enytxAID8hoQhH5ATgQEiUS46cQhvgZQQmRGIc1vhRcz7YH9IbVaZvIwoYvRYt0BIaQNFUXVDOa0DLk1BiJn/3G1sGQdEOBu5ujuVBrPSfabqfwA1pkJcBsAli3+af/cpb/9Kv/iZ/8yZ9kff2lF6zwPI8HHniAvb291q560TWHaa0RQvy9ISm96U1v4k1velMrUJYixUsZbt7hlW+9jdOvP8QD73uUG0+aF3rnP3WDy5/f5N5vOsEdX38MK/EbPdSKz1bOsenvM+9McV/xOJaQg06RIkWKFCleQjh79ixgSEQPPPBAz/GYpNQPQgje85738Ju/+Zv8xV/8BX/2Z3/G4cOH+Ymf+Imecq961at497vfzfvf/35+6Zd+iXK5zHd8x3fw3d/93T3nm56e5nd/93f5vd/7PWq1GocPH+bf/Jt/wz/6R//ouV/wlwgCL2zNwWt3zL3IrUmRIkWKFCm+dPG8kZS+7/u+z6Rq+q5vgfpo+xjPuA6XlIWK3mB7Mxp3Rwwts2gFHLF9bjRznS9miwInQapIwkaxlAm5FqlkiC6zIA92rW9RricC0f0QZAR2s7PCCzsOeVfRL6OeUP3bmM9qSgWF2rD6HgeQXifJKMhLbj0ZUjkQXHpmaDORzfYb8JlFWFizOffJgD6phHsRvT0/9jKH2p7ixlMggvHyDBdnJUfudXnmkw3qu6pFyBh5yobGcnSLoNSCbhOV+uHmU+3r1HaXL0Nl8kJ0Ye1WiZCCy48kg7OddkJrdNd5D7ZGXESMRFfYvgrbV8dxeidq+6NtgA7fhD5RsGv4MzW0rjHF1kIFgT+ebRLVnT5ftuOhfXHzPNw83zYQY7Zx7/oYRrZlts1HKM0LVk7bnP2Ujwq6bLvPm/DX1Ue6jUdACPwmNA5M4Gus5zLC+j02oS+48Hf+aGMAS+Lm4eg9NlceC8w9GPJMJbF42qIwJTj3+Sj9TNBJVOqHTB5O3Q0XnpHsbbe/H1W2WDSEN/oo2EtPodzeshu7koOq7PFfkG/bWlE/DZ04yCd5ZifDIHhTbd/IICKl2ua7shXgCs1G0H+eaCR+q8bxvsMqYEaEXNVtom0/1FfbfejhOWkUnnbHf6FsLy/gnjnBF77wBf7kT/6EN7/5zWOXTfHSx/nz5/mt3/ot/vkPzZEvWWOvvYSA9VsfJTkv3JW/xEO1w4MLabBuFmG6jru413HoUG6Hy/WZvsXsio22NWHWjKmqay4quw32vGxPOWVrDua8ju8aYeczVnSbVLz2c6skXFkM8O3+88FBo/8zXvA1oYDdzOAxMNzqLFvIhxw/CHnUcglGjJ356+3jR12f/TlJdWvwOi+J3GZA1lXMLyqubVr4BRunOt7cMjunkY2QjZiw7VgIf/i6TUhDAgoDMz53YMjE5DdgL0Fc71k/9RnrLRsWDgu2r+kOgrR2unzTteYLQ0G9yliQgUJF571xdfJgnFICrznaDtqkETBEGR2Mv/Yya0vd8XncdU2oBDpBGNGWSBCVBpQJOoktLQxdewmuXem6N93Lc0ci/M4KfK+/D3TXWlxbEhEmUuItmn64u91bXjtdJ7YEhJp6XYwcB1Wm8xqULfE91SJijYuMCyuLIdeuWoaAPQbCrGSmFOI6mhvb0U/wMW6zlJrlVcVmxaIW+VMo3dHn+mGxGJKxNec8t+N7GYAa8gagaCv2fUlD9dYvAtA9ZQWXAqeDuBTDL7X/tiJyW5gxF70rh4+D/kyil8ZELUchtWbG0+y4AjVg/J1ZaDPstRZIBct7ghtl2MsPd/pXrT0VNVjDyZtkpCYIB68Ru/EN3z3HH79/k3e+8538/u///tjlXij86q/+Kh/96Ec5ceIEr3/965mbm8OyxpuTUqRI8dLB3PoU3/B/fiVn//oqn/zPj9PY9wiaIZ/+/Sd58n9e4VXffRtrd87zsZ2H+NlLH+aG316/Lzll3nH4m3jTzF0v4hWkSJEiRYpx8Mu//Mtj2b3rXe/iXe96V8/3+Xyet7/97bz97W8fWcdrX/taXvva1460u//++7n//vvHateXK248sUPoK/KzGcqr/VVJU6RIkSJFihSj8byQlD760Y9y9uxZcvfcgV0s0iwGZDaGV61tTUmFHCiTqmYSXAhdroU24ZDgbjfm3JCjOZ+NpsUgHkUvUUlxbMrnWs1ppYIbhG6iUqAk+42uIM0AclKQl9g1xX7V4gtnBf2C1t3kpCQuPSMIR/CFkgQlAK8JlV0IXBvZGBHwSmzvre6oVmoqbVujiUpKUdtWXPq8MgSlGGOQX3YvBb0EpRFw8ya9SH1H9RKUYvQhKtUrJgjQwoDzJolKbg7Ki7B1hV7ySj/056yNBWnD0roJ5nUr3XQ2sPNl/e5N88/k/fniEpX2bpp/k2LhMHg1zd5m14ERRKVW8ybIWFleNEHY3VFkpQRRyWtoKjsmpVhHcwadN/KXnYVMQVLdGp9tVN3WVLfGiHZ13cvrT/hGDUn3HutB1Pe9unmeW0oXI8h/YILHjQPayilxc0aQjZo1uPI0HFR6j8WB8H7lz59rj4dhZvC4mCQrBYGk0vU8JglKSVi+bhGVQLFSCmn4gp1Ge/5KEpQ6zh1olC04lBlOUuqHJ6WDwmmzlsZATOSVUz6hBLE7/HzerOm/S9/2T7n+7v+Hd7zjHSlJ6csM73nPe5iZmeHrvn0egDtyl3i4PoRoBBy2tkELzObpCUilAqyT17EmJLxmd7KEmZB6tt5DUIrRTVRyaxZWKKiX2g9yN0EpRgdRSUAz03tNg8hJxUKDSjXLpZIcOJ53k5NadVqC89KeiKAEmoNQ0tCS5rQgszvc/7lNc/1KCWoNQczfGIeoZFV99i71DumjiEpawc6NPgSlEXDzRlFJhQxeP3XNExpoVHXH+rWHoNQ60J6f8kVTplkfry8miUqTIpfTSBuqByPmxi6yyFas/oc2BJphZQf0oXGISloItrb6kHhGEJUcR5MvaPYOhEnfmMSYa69B69luopKUmkIJapW2IlM3Qand7jZRyWvS97dND0EphiUgVLiuKTcJ6Wi7YiPH6PNhguDkeXB9w8LTYjxiWNa0u+mLTqWkTn5aX3hZSaUJ3U0cRVTarUvz2Li9x2Q0hHSTlQItOFd1iAl2fqE/UQk6yUr1PuuZJEEpCaspWkQlV2tmVMgNaXUMWB0EpY5KJbYVcqih8KTkwBnvPisJZxeMitJEs5g06f+KQYDOhFRHkJW+dvohwOJr/skpPvT+D/HEE09MlLrihcBf/uVfcubMGX7t134N237e9qulSJHiRYAQglOvW+PIVyzymQ89xWP/3aSA27tW5U9/5tMcfL3H+2/9nz3lbvp7/PC59/Pzx787JSqlSJEiRYoUzwJXHja71tdun+9RJU2RIkWKFClSjI/nReP3bW97m1FR+vZ/Opa9tjWuUtwfNjmuJ1MbsaM3596ETb/hOXxqJ4s/QVA4Z8N8LiQjJwvWHJtrsjbVSTQYRFCKIaVCyv4slmEEJZDshi712uDr6iYoAVT34OoI5SWgg6AEcPPpkL0bY/oj2nGvAji4PpkPpQ25mSEvTgcEbmaPOBy5xx1MUBqA7UuKzQtRG8ckRuVKsHBYTvayW8HROyVrpydbwNoOTC0InGHvxvssiqU0vnzOGHPBbT2Lc5XmBPnygPoH3IrcFNzySkmuMJlyU3lRMr085hgQ9aFmBa4+FnakRBsJIZg7bHH4zskdYmcE2QGBnUGo7SZSsY1L2tJw5TFFoyMl2xhktE24eaH3+1FB7a1dGzWE7Nm/vImW2vbwurvHyKyrOLPu4Y4oB21VJZAsFEKmsuOPVTLQPLXv8HfV8XfYg0nXqZBYUjFeNNjAVorXHXgcb4QtEtJILMxSOHWcRx99lM9+9rMTtTPFSxcXL17k/e9/P1//v1lkB5DwurGe2aS5Nc3+U0fQk0zJGrIE5nGUk425lUMVanONgQSlfsg0LHKV9tg5iKCUhB3A8obVkboXBhOUWuWUHkjQHERQAgiFYHvQvBWhk6AEINgK7Y50kIMQE5QAvECwvW8xbmg9Tu8W+J3p1MaB7YI1rHMMWB8tHLXMPD4BsVwFhkQdE2UHEpS6UCib9LKTIGuFrK0rbGey/pvJQn6E6kovSURHpPfR5xpEUBr3OJhUe6JbHhZDVBoEy4bilGYgv2XAbZydV8wtqJG/HpNEIiFhelZjj8njjQlMB3uCWmXCl72WYGlFUyj2P9ytopQ4K3ZO9PXjwHYiaDRlS8VqmL+TqDUk+9UuB44sKtiuWj3pbWH470svlFTc4c+V7PszXCDRiBF9WHSVnZMBC9Z4v+tjVaWM1sxqNdGuKS+0eDjncDCIsDYAYeQKMaFqlrWdx7kwA0pQsMaTVvumt9kUy4Jf+IVfmOhcLwQ8z+Pee+9NCUopUnwZIVNweNV33cY/fs+rWTw1DYASmg8d+kTf5Uj81c9e+kPCiX4UpEiRIkWKFCkArj5iSEqraaq3FClSpEiR4jnhOb+deuihh3jqqafI3n4Gq5hvfd9c6FVT0okUHB7wkOWy1+dN9+CUb4qXuw22lMWTQf/gUb+UbxKF1iYwPApJNaV6IPn0jd40JAPLRmpKyZaPIifFmF6AI2Wfh886BIkA1nCCEhxaDahUJbvY2LXOF8P9yElgglCFKUzaJQUqO0BNqYugVJiBMIBGW0G/RQbqUVRKpARZu8tl51JAbad7C3DkqW5ihJQUFiWH78pw9m/reIPSevQJLN4867MzDokqqaYkTcCrdhB9GIF4Z/veTcHezclf6lS2FGNmymvBq8MTnxhyrgGBrNVTkCsKnvrM4EDs2BihqDS/BkvHJI/8zQQ+0ZpzfzfiGemzq99vwN5NkwpkElx8eML7FSkqudHQNgkRaOuiYufyhDcaOHynAwKeedDvn05uAFZusalsKg42Vf973Ue5QNomnd3e9cR5BvSTZAA5WwTHgYOuVH2DVJGUa2PbipXDsHmDgaTKfopM68c0bgEef6pvkfa1JFSVgqhfODbU+qSE60ZMVHrouktyDBikopREgDRBPluhusaPxpDfqnkU91PnMZnhBhLR1TWTqd5a55KSh/I2W1FgLiYqududQchuAlPu276JnR//Gd72trfx8Y9/fOQ1pXjp41d+5VfI5DVf/c9nO77vp6a0nmnL1GXmdrEL9UhJqRP9Ur5lpQ/7WcS1WfSJDRhA/Oub8k2BkgLG4J4k1ZQOZj3Q45GTwKgp+V4WoQVhdF2jyEkxbmt4bGqHq11qIcMISjmlmAkU1x2LoKSwDzqd2UtOir6XikCDF5HlB6kpJQlKAk0uq6k3O1N6+QWzvu5WVIoJStk8uFnY36YH8VjeragkAsXsmiAMBNtXhsxxfdK+XX8qRI+zfkqM8ZYDaLOuHIugFM2HG1fGkJ7pQhhCdUdPnNLLpBqLyvQp2k/FRgg4vK7YuCmpVYGwv5rSOASk2K6folJcfnVVUa0KdnfHV1RqNAVXLo/weZ+1V6Mu+o4dfdsdKSqFgVF8BTFQQam33RKpQhyXKN2eaNU5HILrNyRBs/eaBxOUzHpmdSXk2g2LZlP0qCqFA8pmXE0+p9jZs6J29/o7VlBKwrU1CPD80YpKsRKkQJNzNQ1foLrUr+Lfmt390c8LCrYiYym2m4N/8nenf7OF5njR4yIOI36G9qgqxS0YpKKUhNUU1LTksYwznopSAqEQ4IFwVM+zlEz11o3FPUHeg/MLUXu7iGmtVG/Jc001UHmPOFd8TFTqVlUyKkoG+SnBm79rjvf92nv5t//237K2tjbyml4onDlzhsuXL7/YzUiRIkUf/PaNv+R3bvQqH02E/wWCZkit2aSRG6zQrIEb/i5f9fn/E/d52dVm8J1Lr+etS2943upLkSJFihQpXmpoVDw2nzFpVFOSUooUKVKkSPHc8Jx/jb7tbW8DYPaff9NkBaVk41kIOT0TONS7UxN0oZuodEvBwxbwhYPxCUdE4ebuoPMoBBnBuSHBrUHYrUtgMoISKPJZje9PlkdsahZWjkL1wd7UAS34vQHypZMOYQgXPjsiHVUieCVtyE1LKpsCdoaUaRUw11HdVFz4bHMwQWkAQizCwe+m+yJXhKP3Olz4Qkh1nDY+R2xe5nnSMIswJNC1dRVsdzQB5fnA/jaE4WQEpbHRFSwLPLh+9gXa9WdbHL5L4FU0lx4en3RklJcmD6Zee9I3KXNg7FR7APlpgVcHYj7CGPe6UIa1W2y8mk99P3FgRNnFI+BmBQc7419boKBQ0uzvCupDUhZ2E5Vu7llYEz7TgZI8ccEdmOZtMCLlJknHWDwKC27AqYLHJw5yLTLsMIISQA24iNOXqDsM1zPPQp1rdobVUyf47Gc/y9NPP82JEycmriPFSwf7+/u8973v5au/dZZcYTLVQGkrZLE+2QlzHnrhYCBBKUaSqCQCQenCFJWVGkF+fDapCKMsiBNOU06xwTV3wrWXhhtTmkB6kEg3N4ygBOAqmAo1V8fP8AjAshNQCwXXhyjKJQlKAK4DS7MhVzZsvBFLr5igBEZ9MZvvT1Lqh5hgunNVT+x7gDCcfFEzvQDSFty89mwWRJM1MgwE+9ug7eew/tGdpx2UZktr2LgpaTaSDRid9m2ipiTm5+3tNjG3r203cWYSd3etvWpVMVH57tRvk8AtSJYWQ65eFEOvrxu+L0AK4/Oxy8C161brGVO2HCv9m21rchnNTqJzjJP6bXYqNMHh7a75fMiSUUpYKQdc37OpeuP3JVdqctZoXySJSoEWXBYOtQmf662ognEISi0IAQKk1qarTfAb5WQ9pNEUXE6cbxhBCWA/p6ll6Hmeh8JRaGfyfvzV3zrHB//fTX7qp36K9773vROX/2Lhe7/3e/nBH/xBHnjgAV71qle92M1JkSJFAtWwwU1/77lXJIHceKa7YRUm31c1ENWwMdooRYoUKVKk+BLGtUe3QcP0WoHCzCSxxhQpUqRIkSJFN54TSWl7e5u//du/xTm0gj0323M8VlNKKigBrKiAtTDgs5aLGpAaor+akuT6BIFjMJsebzZtnAkk/AHmc4oTZY/P3czSnOCcJSeg2RRoNVkwwgskNw9kK53daIISgOTJc+22BXmjpjRIQSnG9nWo7NLx0r+lptSHnBTj/Gd8pNv/mLYto6bUtbteBXD2r0a8qIiJGIm+oAJDVBqJmMAhBNo26bW2r4RUt8e43xGhplmRXHgo7CRpjIGVkwLLgcuPTda3ijPQqEYkljG7VmkOlo9JnnlIdaYdG/Eyv97vXf1zISoNIc14dfNvLCTqWD1l/Hjp0fEUlWJFgXwZ/KZRVRoXpTlYPC555jOqu6sOxZUnNKoRTkasAtZut9i/qTm4Of6bv0b3PYt9PuKePf2JPhHsuNwA9YKDHTj7Sb//fUs+W10qF1fPggoG+yKpqKTcaJpRkscfGlikp3xMVKp0p0UZgbaiEhRcqAegxhzDLV9zatHDduDhm+P/0NwLJJcbNjLQE8yqknO0B9Q4E6lQ/VWUkjhWD5gPFJ8umfJJRaVBaeCKX/8mrv7Sf+Sd73wnH/rQh8ZtZIqXIN73vvdRq9X4+u9c7Xs8VlNKKigBVM6v4E4f4E5X+paDtppSVibGE0fB7BBmYR8oIajPNgkzk8ndzV7PUXUEu3MjGDkJiBCsUICGg+YERCUBrUyN0bw6iqAEsGdL9hJEylhNaZCCUoxnmk7PlB+rKXWTk1rHfbh0wx6ovugXbJxq0EFQAqjsmX/DoB0L4YcdqTaDcd0er9eUIjslyeQFezfHmx/j8+1uSBhD6a7jtBYsrGp2NsBrjr+OsWyNtMBvRvODPd555xY1gQ978e+RiNgwiKBkIIyCUjcSRKVxVZRiJNWUusvW66PrahFnosu2LM3ikmJrS472Y0xUkiAtjW1P5nvtSOamQ/xQsD9B3LXZgGvXLIJQjaGg1EYmq8nnNTvbEkI9VEGpDUGzKzViTFQapKIEUK1Jqn2UIWN/91NRAtjYtRgotBu7VtNBtA6V4MKWM3hzCZ2KSn7eVLTjWex445FZk0SlvXAyAmwr9ZutyWpNY1zJLSDX0JzC55xrU5ng2dh0JIEAfGnmqTHQ6PodGyvUCaH7qii1EArsq1OEszV0wQyUSUWlpIpSjPKczWu+dpUPf/jDRv0wM/kmpi8GHnzwQe655x7e9a53cd9993HixAkKhUKPnRCC7/qu73oRWpgixd9fFKwsi075eanLU4EhII3AtFV4XpWUClYarE2RIkWKFF/euPpwnOpt/kVuSYoUKVKkSPGlj+f0a/THf/zH0Voz/U++oe9xWfLRO70vOTUQCAYSlGI0ZzWZbRE1VHHG8XjGd6mNwewIcwK7Zl7WbvmTXWaYgT0klw+ciQhKoLhl1mMnJ7lwYwCbpw8KrmK2EHJl1xoR+OiElKoj+G7Xw7HJJ96z2OCkFKgB5foRlCZCV7uXzjjU90L2r4+uU1sSpETa4OYFtjOZeo3SguruhO0FgqZGP4tdZ+t3Wlx/OmTrygTn8qB+oFHJOOYY97o0ZzaU722ONB0fA9L0uVmYmoPNa/SkCOlAV7lmzQQPJ8WROy22ryhuPjOBmo9vUraJPmlMhqFxAKjJVZEyBYmTDSdSRLJcWDphs3UpoBlzCZ6L+pXWoLTpCN1QYxDL+pw78PrYDSgr/RCVIDmZcQtGMfR0QnViuqzIuIobG+OP5XZOcNtqkwtbDjcPxh/Hbx5YqLwkzIzvc09JLtbNmC8DTWNu/LLH8fAQXMbIstSPeuANb28gwBeYMTcxj3qzIfNHdtm8ON1TpnHLCWR5ij/5kz9BKYUcMf+meGlCa81//I//ka/86gLzK/3XGa/KbnCgOrdPawXCDhFy9MD3utLjfKoaqW3t5sywNzMeA3XaqbHtF8DSNGeaY5WJobRkfzqgOaFKTr5mMbPlcG12srXeTBWaNtQyEDRM2VFn7kcUyV0bbwLTiL4b1aU/bG4QQ9PD9iMoPVs4GciXBfubGj3u/Cgllm3KToowEBPOqAa+N/lyszAFxTJcfcZ8FlqPRRTymiZVXBKj1ulCaApFqNfoSS83KTmp73m7nJbLaZSC5gjikLZFm8SiodEQY/sxLlvIa2ZmNRcvTLZo84Xs8ePIc2qB54F27bFTZ4PhZLsugCGFadHK0jUU+ZzCtmE/sV7wCxH5eHRr6R49tCUGpuoLx9jI0k8JMhhzA0yQEUaVrnWbdMQ1G10+XvtINLNWyL6SrRSV42AhF1BE8YR2x/9NiuAaNtUchBNsKtpNktd8SW5+PDKtE8BcRXCjrInFme9bHPGjTGqw+j8wBavJnFVhKyz2HPsnb8vxP/7LJf7oj/6Ib/mWbxmrfV9svO9972v9/ZnPfIbPfOYzfe1SklKKFC883rr0huctVVqoFV/3hZ/mpr/Xf72lYaqW43fn3s7h2xeel3OmSJEiRYoUfx9w5WETZFm7PU31liJFihQpUjxXPCeS0u/93u8hcllyt57qOSZLJmgSHGlgX+zcTXNd2lwfsVunO6NbQSjKcrw33LFZkBeshx61ULATTHapDSW5Up88VdBjNzOTcB8AKGQUc8WQSzsWk7z2P30ipF4PuXB5/Jwjtg3rt8K181BLKLbIxnC1g/KSpLwsufj5IXZS9kSODt+XQUi4+OBkwcr8jESFmlFMEh0rxCiFCiRPf3LCYJ1tUV4EtyDYOD9ZuGzzorEXTBZ4evqzoVH/maB71Q/g8hOJ9o15vtllsGzB3uazCQVOhtwULB2T7G6o8UksMBFZC9qKAuc/H+JPmLWovg+XHpmcTFeYhql5ybUnaSlwjYNzn4r64wQKTFpBcV5ysClpVsY/V2lRcug2m6ce8Dr9P4KMMrsmyU8LLj8yeHztTsEGcPgMNGqwcWnsJpLLK07cqjn/lKAygXJZsWBSW97YGL+MF0jOXnHY8ycbx/fqNt4A5alhcFGs5XyezruA6FAkGIYyinp34NBVQ4lKl7I2/dw+f2S39X8/otLMa76SrT/5KD/3cz/HO9/5ztGNS/GSw8c//nEee+wxfvJHj/U9/qqseUi+Jn+Rj9SOtL4XEgqHbo6sf9rq3HEtmjaEEj0GSakSGKbKLHWq29N45WYiSD4emvkQT01WqFYIueblUJOQTzVM1QWVbJT6Z0wUleZ4M+CxrIM3Aal81gqwBdzsWovmNoY3eH46pNYQ1BqDx4Ow4HQQlSwbltdh48pwQrrwO8d8y4Hc1PiKSDGqu1DdnayMdizKC1CtGUXEcaFC2L45OdGnsgu1iPSrJ0i7drDXSzwZBcuCuXnFjWuTE3OeDcplhe+LkSQlMEQnoTRKCXa2J1RzkoJqVVBvxITt8cprKdiL/DgpLW1qStFUkkZDjE1UqtUEtZo5XxiRWMYhKjkOZDKa/S41S2WLoUSlxfmQMICt3c5xKxyiEiaEZr6sOKgJGiNIyUlkbMVcIeTano2egMy5lAtwJFyujv97UQOzdkjTF3gT3LYNbbMZAM4E/UsItrEIxOTr81KgcDTUV8xg1/Acsu7w34JCQ94TOKHGSwzJu36eaWcA0UlAsNo/ldw/njYkn35EpUMnspy+q8zP//zPv2RISr/0S7/0YjchRYoULwAsIXnH4W/ih8+9vzebaPTh1R87xUfOPsiJV63wld9+C/k0ZU2KFClSpEgxFJXNOvvXawgBK7f1ZpVJkSJFihQpUkyGZ01S+uhHP8re3h7F172i51hMUOqHGRXgI6kMCJx3k5NiNaU9bfNAUzKK2dHJY1IsZQL2AjkWSUlEZYt2yLwbcBEH0Rz/5bEMdVvlyQVrzLe6Nw9stjYEVuKFc5i1sBrDoxs3NiSBL4yCUgIq6yAb/e+BtE2QJxk46SAoOZGfutK+CQtEn+CM6N7i30VU2r8e9C3XF4mUVs98YnTUSncTCbpURUbCNgGFXFmSKwo2JgyeuFnwPFopyMYlKjUqTERQAhN0tFyjAjSJqs6FR6DjldRzUeTpRpei0t5N2Ls5JMAwgKjTcW3DkKhaC0Hj4NkRr2w3UgWbIAuRm4XSnOSaUGab/gREpUlTxKkAnvzrCVheERr7iu3LYWcvTj4PcYCvO7AuBjw2XV92E5WUZqjaRjJFnIyC4fWa4MZVQXOEklsyPYsMNFcvCpQ9/nQVFEz5vVpUz/hxObyiZDYTkLMVV6pGqSYch8QgYDkbsoXiZvSAj0NU+jtc4gGhcSRx393IuQMCmFIpVn3FZUf2vYH9iEq5N72W3F/8De9///tTktKXKH7zN3+TxUMOd76yV7EhJih1Q2vw9ws4pRpC9h+PuslJ9xee5lPVE+ilg7EE5GKCEoBs2GR3MjTL47FPdpp5APL7NoGjIDcZUel6rQjR6bsVJgdCwIV5ze5mARLkDl0IEdXB524IwWXHwhO9Ckp+EZwBmfQ0At3lyCRBqVk2dWX2wo5SUvSngjjVzgksSVTSGva3h6duSxKUtC0RgaJRgetnn4Mi5pjQjoWQkCtBs6bwJ1gQCcsQPFQ42VpGKYHyOklG46zbbFsTKtBKjE1uCgLBhWc6r6mb5DsxRJ+/o+50/fqIuruabYhKRjUovrZhSCpHhUjUUOWv/mWF0EgJIQIxljKRQbYEuq5pNESLYDUuwi6SzCii0t5+px/DTGK9M4SoVK31KlIlCUpxH0sqKpkM1xrRT6kyN/h+ai0ItTC+HPCo+ony8e/afc/qK6bZU7aQeD4CwdnARdnjP2t+EeIOJ3zQE6y9gqmQxUCxKyVetElI5UaPR6VQkw81yf0Oo4hKngPnFlTr2fiKpcutY7u+mY8GkZVE0wIl0Ln+PyL6EZVe8zVH+K2f+zRnz57l5MmTI6/pi4177rnnxW5CihQpXiC8aeYufv74d/Ozlz7MDb+dc3VBTvHGT9zOwlkzXj39wDUu/t1N7vtfTnH7V68jn+u6JUWKFClSpPgyRZzqbeHENG5+gh88KVKkSJEiRYq+eNYkpZ/+6Z8GoPyNX9vx/TCCEsDp0Ech+LQcf5eORGED3kQEJVPyU0EeuzZ6K7NImJRsxWI25HzNGVvZSIaa4zNNKp7kZrRTNXTFGEQlhdXQTMxaAXaiXbt2nwQig4hKXgOeeTTR7hEKSjF2ryp2r04evNq7OnF+h7GIND0EJWDptM3UosVTD4yhpmS37+z1pxLXNQGJ58T9FpsX1UQKTG4e5o8Ibp7XE6kNzR+C2VXJYw988QOILzQW1wVT84InPjnk2vocmjsi0KFme0IlptOvsLh5XrWUsEZCKXauwk6y/49JVFo4Jpk9ZPHEX01OOpoUfgNunJ1ctmH7smL78mg76CQqXXlysF2SoNQJyca1ydoXl5OBRtmjx8qYoATg2oojCwFXt2wqE0i6lN2QKUdxJeJtWM3RRCVPS/6HzPW0bzRRyci/ZIFJsnAu+oo7qz7VUoadAS7pJirJbJZwdYnHH3+c/f19pqamJjhjihcb9XqdD37wg3zD/zaL7Io4DyIoAYS1LJULK0ydvIydn6CX+RJs1Z8lk0CSoASgSh7WmWsQFEaeIiYooSF/YFMvBHhjBKZj7O4UWa4IbpY1MTdpLKKSht3t4rhiMC34UrA1JD/pIKLSTthZZpSCkoHgZp+UyaOgQjjYGVKr3ztPxESlZ4PVM5LdG4ra7mjbeG7QCq6fi9pDr1JfXwhBcUpTnoPLT0/WxsKUNkpAXUIoo4hKy4c0+7uC/d3Jzjdxx3pOeHbnWl1TbG8LKgeDy3entrMszdSM5mC3N5XdMEyVNFNTmkuXLZM6bgyikrYFN2509v/xiEqatUOK3ZrF/sFkRKUYSYJSjEFEpWrt2QRyBTe2J/8J7oWCG/uDy/kDCE718NkGm0W09jJ/D4Of4OVME5IRmhu+PTZRSQMLQUjTEXjRuWRdjiQqXXUluYVepb+RikoCrBAmdY19o4iWEBzaG2jTTVR647dr/vOvSX7/93+fn/iJn5jshCkmxtvf/nYeffRRLMuMH3fddRc/93M/9yK3KkWKFw9vmrmLfzB9B5+tnGPT32femeK+4nHkPYInbrnMp3//CZoVH78e8snffZwn/+dlXvXdt7Nya6oOkSJFihQpUnQjTvW2ekea6i1FihQpUqR4PvCs3loqpfjkJz+JPT+LVcy3KxtAUAqONAiOmMDYp60MD1tuj40WvSpKMWbLAa/M1BmUSE2G/QhKEDMbgvzwII/oKnut4fCp7SwgRwamZaiRoXlp7VrgTOjRaam456RH1u29tjA7uN1TJcXsTNijojQKboIbNpSg5HS+BLe7bpkIwl4VpVbFRtlDulBetRiR2a8HM4csTr8hO7B39iMoAVS2FDuXxiBd2UP6wwSqN5cfDdm70bYXY5R1slCcFhMJPgHsXIdLj49H4Epi9QQsHY0b+EUKmkX1Zotw7C6Bm+tjM8Q3W9c0l5+YjKAEkCsJcuXJh7DLj4Xjp7Pp3h6fxBgpwarbIduXJycOrdxic/z+yXdk5KehMCNaz2BfKN1WVYoh6XxOh3TQZCDbzkwmXib9kGxOsbgy2K9JFaUkjh0LOHlkMl8GAWRsjWNrpG/+DYNXNBfzzIHD57c7O7I1QhSmMSeICUfdnVYG5t8g3I3HHYUBUmKuaqsqJXDdkfz1VIYdRzJ/ZLeV6q0b3d+X3vg6AN797ncPblCKlyT+7M/+jEqlwmu+odzx/SCC0tfkL/I1+YvYhQblMxewcr0EpWmr2qOiFOPYzRBxfTCRrRJkeghKaFqZoGad/vXGaBGUMPabaw2qZfOguCPS+96oFLlRKWIpyASCEWIwPZi9lOPwAAK7Lgw4t9Ys+CGu0j0qSsMg0FgtxwwnKMWKSmDUZ7plrJxq0KOiFCMsOIQFBzcLTp+1q/DDvgSlGAsnLErzk68T9jf0WKlXB5NXGU2QitYZtQpsPguiq5sXfX0Cw9duN68JKrXxVZQAbEezuKSwbVPvc1JREgzmhkTfl8uKcnmA/waU1VJy/aZFvTY+QQnMbcjlNGIMdZ1k+WpNsLGZUBcaUX7Y8X7t6molO1WLxoD0d4N+a0qpObQakCn3Pw70VRWSQpPLKoTQhK4cmOZNC9FFiNPILmW7YSpKMQQaa4Ai3sAyIZSckKw1+DlLqijFyAjF6ZxHLpzsfBYaOxq7hG/+DYNXVmgheCTjsNe1tpYjUq/HBKV+5LOG59Dw+q+lnQBO3ZB8Zel63+O7fr6lqpSEv3JAsGoISv94+jOtVG/dmLPabNV8UfKyf1Di93//94deywuFL3zhC/zqr/4qW1tbfY9vbm7yq7/6qzzyyCMvcMueP7zjHe/gIx/5CB/5yEdSglKKFJjUby8vneTrZu/j5aWTWEIipOCWrzrMN//fr+OWrzrcWjPsXKrwJz/9Sf7y1z5PbXeCnLwpUqRIkSLFlzm01lx9xKyhU5JSihQpUqRI8fzgWb05/6M/+iM8zyN//72mkpI/UkEphpKSeiKqPYycFGNLWDyWdWj2ae6wONbLsw1OOIN/WIuwl6DUDjC3zzWIqCS7Xto+vpnhykHny9DQFYRu/wu0Gho/EGzuWTQGCK0MIirNFQKWpocH8VS298Xssdvh0LoaT0EpIipJG06/xmVm1fhkIDmpC4VZydqdGexxUiUl0Kgo9q4FfckpgwhKANUtxeaFMMrlNeBFfB+C0sn7LeYOJ+7RmESlg03wugJzA4NdUabC6i48+SmFN4lkCuA1BZUhygiDEIUIvngEpRjCRNL6Xv4If3o145e+GBK3vPSo5vJjuk/gZzj2N4zq0Egk+5CE06+0mV7pOs+g/qg1aE1tFzbOTU5Squ4o9m9MXm7phMPiiTFZgQmi0plX2iwea8mQjCwqAkXGVpx5uaTU9btsWCAaoJDVLC5rpN17cwcRlAD29iQ7O3JgypWgYHWoKAEoJI9cyrTTvsFAolJMUIqsWjUkYTWHk5XyKF5n1ZkfRKgdMOyeXYIniiPuWzdZSUoqYwa/kySm3N23UZqa4g//8A/HKpvipYMPfvCDHL0ly9pxwzZ+VXZjqIJSElbG75gGhpGTYkytXuee1cf6HushJ0WQVZfM03MQDB6Td5r5ToIStLk4iWKDiEo3Km2FiloGLiTS9rTaIRVS9n8Od7eKbDuCPWcIEaIPUckGjmxryjfGVxQBKEnF6WyTwqYaS0EpJirNlBSHFtvtGERO6sb0PEzNdH43jJwUo7anaXqTrxUq2xp/RAyre17IT8Hy0U6bgUSlRMcNA0FjCLGm57yWIRhtbwh2NweXG7R2awZyIsWg1nkBZcnnTlAax2YEiWkQmk1BoAcQagYQgYJAcPWqhe+b9GuD7Lq/DwJBo9GlajSAiJT8vlRSLC/3Uf4acN7QkYSO5KAi8Yb05X6/O5UyadH8IWMXGKJSkqxk27A0H+KOqxgU9ediTrO+FCCiwW8cghLAfDFktdw7FgxSUYox64SUBpCU+hGUADwt2PItQsTA9Ytf7B3ztrC50iWhNIio5CUJdkK01s9JyLocSlZaPoCjQ34j9SMq+RZMn7hGmBk+NvaQlRw19tuTOavSIivd+8rDPPLII3ziE58Yr/AXEX/wB3/A3/7t3zI31z+wMj8/zwMPPMAHPvCBF7hlKVKkeDGQLbm85nvu4C0/9Urmj7U3J5z9m6t88N/8FQ//6XnUJKnuU6RIkSJFii9T7FyuUN/zsFzJ0qnpF7s5KVKkSJEixZcFntXb81/+5V8GYOqNrx+bnARwd9DgZDh52qOGlFyyel8wDt9or7ge2GxHKTaC/HhBhjlX8ZWzDbJdwa1uolI3QcmWveoZg2A1dJTiDRqe5PKGwyS3wq6HXHrG4qnHR19TN1HpylnYvjLhSwYFVx8PONierNzBTXjqr2p4w+OgPajvKG487ve8pB5GUAIoLUgyw7LLDFBQquxoGpXJdgnbWVg4KnoUpmA8RaVJUZ6H2dXJy117Gm5ceN6b0xeNKpz/gu4kbo3hi1wRlo71OfBFehc2vQzlxQkLKahsK/xGn+sZ1i8lTC1J7PGzWwKwf0OxeWFyB1x6xOfC5yYnN11/OmT3+mTn8xpw5UlFNZHxYhRBCWDnJjz6KaA+2XOyvW1ISgAy0APJSv3QPT53E5U6CUoGZ8pNbp8Zb74yKkpQA64pm9qQ8bxfoG8rI9nok15mFKYCxWt3m/QRyOmL+SO7SCnJry5z9uxZarUB6k0pXnJoNpv88R//Ma/6OiPzMS45qVbLsf/0IUJv8tRCmWINp096uEEEJQDthgQzdbDMMzZKTSnG7PUMU1u967xuolKSoISGATykvtjdKrK7ZcrvupL9CaUvnes2jyqX6hjrtWTQvqoklzwHNYqR34VKTbK1N/m4cH3XZme87tF5vl1o1iZT/rFshq+76D8vBL5RRRqJLgJyrqDJFp7/NRb0WbsJzdS0bikijYvAF2zceHbkpva5xzfd25PsdfeTMcoXi4pstvfaRisVDUe/8lJqSiXVoxw0SlHJ9wX1+nhEqCQcW5PNDL9v3Y9jmLHYORhNUuqG58Olq8Pn/X5oeM8uneNe3WLjoLPcKIISwKUDh8263WdzzmBoBFuBTRA5a5QqZHdp2aUE101U8roUwDJKc0fTJz/m76jcvFnDHGRgp5+KawI9RCUB/pSPnvD5BrA289g3iqMNI8xZFV75Zkkma/HRj3504vM933j88ce56667htrcfffdPProo0NthqFWq/Fbv/Vb/PAP/zBvfvObed3rXsef/umf9rX1PI9f//Vf55u+6Zt405vexPd93/fx6U9/+lmfG+BXfuVX+MZv/EZ+6Id+iKefnjA/aIoUf0+xeHKat/z0q3j1/347mYIZM/16wCd+5zH+8Mcf4Prj2y9yC1OkSJEiRYoXF1ejVG/LZ2axxnj/nSJFihQpUqQYjWdFUnrwwQfJzs1iL5kJudxUFDzzolEqxVxD4UY7orOB+QxQnwkRZY+iUkZBSSvmVIAbKZZklPkcK5gUlWIx8LklaOIGAcVpHzcKNLuhYkYGxIHnPIpiIpg1LRU3ApsdZWPTZasVpcRb2rIdkIkiXV4IB4HEi9qQlYqSnbC1AnKEkfMU5UyARHFq1uOuxSZFt21bdEOykVqIdjVT2RDHM8ddW1HMhcyXA1xbkc+qVso3iaKUD6PAOlhFQbFg/rbrIbm8IptVoExqoWJJYUfnsW3zOUY2p3BnEulDvIAgirvbLhQSu+0zBZOyK0ZhBuyCjVJwsKnIZjRCRe0vQjaRBSY/0yZiSBsKcxIk+E2JW6AjLVd+RuLkOm1j8RY3D7NHbdxo02puWuLmDUFJ2kadKU5L5WQhP90OJhy+y2H+eHRQQmG6ncLKLlrkEykcsiVa57j+lGq1peWXcnsnb7YImcQm2sIM5Eswf9iQopI+zBaNH+NgV2GGll9sF9ZOw+mXmYvNdvu73E6rZ9mm/QijglRehLnV9rXmy7QUqqRtysZPs5uDXCkqawnyU+00f1Ia25a/s5FthFwpkRJQ9NrmpwbYxvU6pr12BvJT7Rf/uWLb32CuzbLbfy8caveBbNH4Junv2C/JPrt4FE5/pWz5UAvRYWvZXf07b+qeXpaUFyWF6batTNoqhZtVZBN+yZfh5gVFdSdhm+izuZlE/y5rnMQ9X7/HYWrBHHdzkEv0w1y57RcpTao2aZu6p9ckxYX2Pc9OJXyYtMX0scKMIPAkSpn+3QocS9PemOfZ8dwrTTavaRxoGgemEYP8Db1jRFBvjzVWzjL9MLbNdd3HKXCS/i6DDM14kskqsjPtay0UFG48HkpFsaiQMmBmRlEqBeTz0bFAU8grrLJo2ZZyYUtBxbUVa7M+dx9v4tpQyCiyTjRW+iFlO2jbSsWU046+1QPYbykxKMpugB3NITlfMavatiVCCpEC31PaIYNqz1UoZmjPP0VCplpqdIrCUoNsoDhUDzl94DPXbCvBlXxF2Wv7eK6pyMoAXIWrFEtz+4hyE6kh14BignM0VQU3HusDKFcMoWP+yC72y+9Fa81v/dZvkeJLA3/zN39DpVLhvtfP8KrsBmEoqVQLqCjPWbPpUqu1o7TVWh4vCsrek7vBa6yb6FAwbVUphU38epto5NczLRKTVgKvmqNyc47GfpHQs7lXXGnXW8kjvGi8UyDqNsRkjECCEoRzNSPg17Tathoqe0V2a2YQkwE4jfa42cyG+NGziTbH4mWaDGFvu8iNAzP4OAG4PrgBnL5mMV0BK7ZVkPVoKTNllML1aZGT8oGm4CumfIWlFPlAt+ZrN9RkEwT0bCbAjhTnCtckORQCE7h30B0piLMonOikEk0ORVhsaRlib7brdS2FLeNjmqytkFGuIktoMpaiWbbwAkEQCnJN36goCY2b0YiorLQ0rtuu13EMoUZrgZ+1cbNghSbFm7Q60/3aLtiJmH1yPSItOtK22m5nyl83Z2zArAOWT8gWKcZ26FDPtEvtlL9CRm0QRoWyuteZls7JgI1CBMrY5uKUd2DZGsfVFKagUALH1VgRuUAIjZvVnbYZ3UrR5ria1XVFcUq3fRjbWuZzqw1u5ENLIGyYmVWt47Lb1kkSmMwxKTXaFgiXaA4zx227y9Ztp/qSMr6Pka2jcZxEf0nYCtFla2scR5lcV8LYdvglYWtZnfVOlzX5vDJkH4sevyRtHUdjWaautbWA6bJq2UqHVj/UUvT6xTUpV2emzd/dfdaK+qW2wcnT4RelaBGw+vlQxEt+qbELonWt5bJicb79eyzT5e9M5BctIh9G9dqWppRXrXRqUmgyjm6pHdlW21bZAjtneOqebSEEZBzVYesmCDCunUjTJs0zVGsKNAIKAjehLulaumOMyNhtf4e6MwmkKICTHE+szvEkTvGmEbhS4Ugdja3mWBit0yw0uQTr0xUKVygcoSlZATmporSV4ASanFD40RjnJtY8ADkUJ4XPqghMvbT9kvE1WT9hqxR2NAaHaA6kIL5zrtJkE6qmhSpkIiU1qTU533T9qmv+ZRMkqKwPTlSR0JDzwWuYQc8O4eXla4hAkNnMYlUthN+e16y6RdwIEQishtVSVBJNi1cXnuQ104+hlaBRzRMG0YYo36ZZbQ+eXiOD3zSD59pUhbteOcVHPvIRXmzs7u4yPz8/1GZ2dpadnWch4Rthb2+P97///Vy4cIGTJ08Otf2Zn/kZPvCBD/AP/+E/5O1vfztSSt7xjnfw0EMPPatzf//3fz9/8Ad/wIc+9CFe9rKX8SM/8iMpKT9FijEhpeDWNx7hm//v13HmHxxqfb998YD/+n99kv/56w9R20tTwKVIkSJFir+fuPKwSfW2lqZ6S5EiRYoUKZ43TExSevrpp6lUKtxx1x2t7+7YVZzej15UKnj5Zsh89Nt1taZ52ZZ5wfjojMW0D6eUiZzawH1BkyVt3gQu6ZD7gnZSt1tDj9tCj2UVomJbK0CGMG+F3JVtEGsDnMh4nHbbqhf3ZRucdE0jZmPbSE1pveBzqti2vWXKYyV6s2lLmHFDspE6ypG8z+mSsQ0zcGrOYyVSjyq4ilvmPfKu5uqBja/g9Fy73lOzHmuRbc6BWxabFKNdy4szISdXPY4sBkwXFceWfVbnTNDbtuH0IY9SFIifK4ccPxZi142f1k8obrtbkckqbBuOnVaUInLAzBwcO9V+fb12RLNy2HyeKgScfLnF1II5NrUA63dZLXLI8gnJyql2l1i/02J6CUqrNsvHBev3ZbAjhy+dcli9vR1dOnKfy8whc7AwJ1m/L8Pa7YY0tHDSZfXOdoTr8L0ZZtfNi+LctGT9ZVncSMlk/rjL+ssyzJ8w9ofudpk9Zv7OFATr97lkS8Z27qjN4bva9fqeRka77jN5WL/PNaQa22JuVXLkzjZZa+0Wi6Vjhhhj/GBTmo18uCI5clfbdvW0ZOlEpOBiRz6z4LG/DskWzecYKyclKyfbPjx6p8VU9B54ahbmVi0Ods19XTomWE3Yrt8hmVkyfxdn4egdViswqDWoxO7n9dsEcyvm70IZjt4pcaPbsXgEDp02fjh1L5x+GcxGtrkSHL1DtAgs84fg8C3teg/fYr4DcDPGNiYxza7AkYTtodPmXLHt8bsEd7xaUJqBuWXN+u3ta1s9LVk6atpku+baipG/hejM0Ld6sm0rZeTDaP0/tWA+A9QrJiCa9Pf6XTblyIel+ehexX32hGT1tOT85xQXH1YcudNiJiJ+lWaNbUwuWjpusXZr+74eudOkQ3PzhrC0frdDJopDLKxLDt1mm0iV1hy+02Vu3ZzUzQmUgvp+9Cyvd/bZQ3e4zB+LbAumz+bK5l4evdfl6L3tKPLabe1Ubm7G2BZmzbXPrFocudshU4Aj91gcut1m6YRpv23D+r0uxTljO70iWb+nXe/KGZu1WywWjpuxYP2u8ceIY/daHDljxpfiDBy7ldYYsXwEDh1vmbJ+C8xEClbHb4Uz94LrgvRDFo8Ijhxpd/Bjx0Lm5yNyQAFOnAjIZGBtLeTwYc36esL2UMDyjPmcc+H0mkchCoIuzxgi6MWbDoGC48seK5FtJrLNTUd+yPvcMt0ev2ezinx0LVkJt800mc6Y+7iYC7g1UllqzAnOSI+T0nzOo3iFVWMeM/YvEXCv1VajOSM9TknPKBIA9+/6LDcVc57icF1x/67fmtduqYTcXmlf68v3Ag5FpN95HXLrVZuzK4pqDtY3JCevt/vsrZctliPlqak63H7JJhNd3qteeRzXdfnt3/5tUnxp4CMf+Qjz8/O8cc0M9NVanscevwXPM+PJ9ZtLnDvflqQ7+/QJNjbnyefrrKxc44knz1AMTZ+sbs2yc/5wy3bnwiGqm2aQDTyHzbPHqG1N41Xz1Ham2X7GDPSVIINzvYS1Y4hGIpRkLswgG6bHWrsZMk/NtUhLzo0S9laBWaeKCAXzV7O4DdNHszWb+Wtt1kymYZGtRz1fw/zVLJm6sS014eiG1RKHWdyXLO5LAguuzihWdi2KUSqpfGQbcwHmDwRTV9vnOVUNOVI3z1o+hDOVgJhHsNRUrNfaz9uJasisE5C7ZpFFc7dssBpJgcyJkMMJSZEj0mcmYlW5aE5IDzcKyp/0mhwut6PnK8WA6ayxtSUcLvu4kfLUVFaxNhUAmtwSrBY9psoR4UDCyooiE831hbxmabkdwJ+d08zOKeYXFI6jWTrcJljnirTmVYDpRUF5MfosYOWEYPWEQEpDWFo8YbVEjKYWBNPL7bKLRyW5KfM58M3cHc8RpQXBTJQWVTsWi4cNqRsMQWlpXWBZZu6eXmivTQAWDtEiujoZWDrcJlIVp2F+BTavCbauC+ZXoBjZ2o6xjUmwhSmYX2u3d27JrDN8z8xPy4d0a72UL8FiQqVybl63UuUJIUAb4h5APg/LK+319cycZno2JgTByqoim4NcDk6cCFldbfelmRnFzEz7Xq2shORyERE+q1lZCeOsuUxPa2Zn27bLy4pCpB6VzZiyVjTUl6c060cUy1E/WFpq27qusY3n5PKUZn6+SyU2flYd07esKD11qaRZXGjbLiwopqY0YNK2zc6FuJG/i0XNwnLbL/PzsS1YlmmDkIKLlyxcx7Sx5e9ZRblsiF1SGtu4f+fzmpXlsEW0mp1VzEyrtr9XQnJZjZYCtyRYWQpbY4QlNV6CsLKyFJKP/Z3RrCyFrT5bLitmFiNyU1FxbNWnENlmXM3qQtAi5U0XFQsz7fu6PBdQLGjKhZD5qZC1+aAl2jpVUCzOtMeIpdmAqWjDiWPB2nxAqaCxp2Aqp1iZate7VA6YzkdjhAWHZgIy0UBVyoYcm/dapKblQsBMNJ5YAo5M+WSj8aTkKg5Fv0Ndqbh1tslizny2FBya9SlEJKaSpTiaba+BltyQRSekaCnW3ICj2SbFyLZgKY47Xuv3+pIIWRXtaz0ufOpasKUt8ihOyLbtgghYE0FLRemkFzATpRHKapgJlSFuAYthyHoiVeVxL2A2sp0p1zmxDfHeoNV9OLHVvudH9mA2UnbNBHBiGzKhUVSargkKVwuG2LfvUrhaJLNjOp4MJMVLJaymeXCcfZfClTY737syR+i7TC/dJAwtrj51imbVDLS1vTJXz7YJOVtX1ti5tgyAVpLTx47x8Y9/nJs3b/JiolgsjmzDjRs3yOVGyFMNwdzcHB/+8If54Ac/yL/8l/9yoN2jjz7Kn//5n/Mv/sW/4F/9q3/FW97yFn7xF3+R5eVlfv3Xf73D9m1vexuve93r+v77jd/4jZbdbbfdRj6fJ5PJ8G3f9m3k83keeeSRZ30tKVL8fUR2yuW133snb/mpVzB3tL1L7am/vsKH/s1f8chH0hRwKVKkSJHi7xdUoLj+mFEVXL0zJSmlSJEiRYoUzxeE1pPlpvrBH/xBfvEXf5GT//b7Cc6YIFfBUygJdVuCUpR9qDoQSIkbKHKhkdX3JFihQAnwbuSMLZoqwtgqRQ7NHgKkJB+xFuK9b9OBpoHAk5LCjtnxeaAkIMmikNCS2//KbJWmFnyumcdGkZOKimdsi83Q2CpjW7RDPCXwFKxmfRpKsutZKCQZqbAE1EKJDKCkQgIFnpJIFDlHU/cFCokrFbaEWmDqzduqZet4ITkXvIpGKYltK1wLGj6gTDBBKfACo46Uz0LDw9hKRS4MqdclVjOkPB0wtwjnz0lUALk8NBu06nVcqNci5ZasQtZCvIYhlMwvaZ78ZIgKDOHGzWEUVOjc4Q5GjcWvw+pJcPOCqw83aexFu2hzZld8nMotOwVBAwIvqrcgmD1sE3qarQs+0tJ4ldhWEjQVQTO2lTQOFCijCJMpCZoHmqAR2foa3zeEIrcIXsX4ys6a4FTc/kwRwsC0A2lUAbyG8ZGdN4SfRtSGTN7U4eYMseXKEwEHmxhb1ygBtPxSEKBMeqvYL17d2Fq28UXLNnqf69VBW4Jc0ZQLI39nsoZc0/K3BC/q4LmiCaIFnlEk6rFN3puisQs8ExzM5Nu2dgYsW9CsmbRmQkJlu8u2Zvqd7ZqgXSNqQzYPQWCITRuXoLJj0r+o2NYxad1iH4YhBBEhsVA217B7I1KqSfjbzdPhw1wx6rORvx03ca2xbeyXEjQT/nZzUO/j79jWq4Pydf/+nfB3tmTa3uqzOahXTGDEdYzyRLPatl27xcL34PLDIW4+8kPUDy0LmgdRAKygCHzTDyfqs0KbPlsXqMAoGIUKGlE6tUwh8neyf9cSfTYr0BrWbnXYuBDQOAC/X591jApZyy95k5Ju4ajFU59U2Jm27agxYvVWQXFG8sSn289yPfKZm4ls4zYUIn8H7eDzlXOgXAvHVYisRSNSVsnlFL4PQSCRUpHNQq1m+qqUCilly9YtC4IQGpaFRJHNQKOJGZPtaEyO1FxyriKMxtnYtiIlXtZqKQxUox3xeVtRdgIOfItKICjamkYgCJA4UpGRmq1CTDBTaKCOZAaPr7A8PhNm2MHBQZFFcYCZf/KR2sDWqjZzoIJaLsQT4AD5APZszBwYmHmtEqVfKnuKugTPlnzF8Qs4Dck5r0ypDk3HiJnUIz5GoQ6eDb5jVGvyHlSiZ8D14MYP/R47OzvPaad8ihcOd999N3feeSf/4d1/heMEhKGk6blkM02k1Hieg1KSbNYMyPVGFksGeH6GTKZBxbPJZDy+EMwS+hZaWdgRay1ouggZYjkhWgmCpmuOCY0KLJ6pLyMzJgB9YX8BLQFbgQbhWWgnBAniwCFzcYbmyS10JkR4Ei3ggj9tpD+aNqGt0RJEaNaDgauxmwLHkzRzCmUbmRDbF4SWRluwVS0QNGw8GxBGGUwAfkS+cH0ILCMuKZVRyYhtK5sFBNDUETkq1PhohDBrUVdBUxolPkdphAYvUuDJhhpx0yEQgkwFFkWApwXb2NhRKqM49O6iUAgCBAKNi8baMJd9suBR2ZdsRSQsR2qUhlAbW8fS+KFRVLGExpKgNJzINtnclQQ7KiKTaBzHjKFaC6TUWJZJiQVtpZnyNGxfMiQMVQ3REYnIss0aA9rKehFvDTdj1ul+w6wZbEvjeyBCbVQPRdvWzoCKyElCmrridUBsG0Qps+y8RIWGZC2EGfd9D+bXQFiwc80QncDMYyqEUAljmxP4PqAF0tJIaVKpgVEbUgpUKEBEfvGNX4Qd2YayZatVRMjpsu2u18qYeTRQ4/lbazrujY9Zq+bzmmYTPM8wj6yINJK0DUNQSiCExrYhW9BMT2muXLOQ6JYPHUf32Po+rXozGY1WglpT4jgaFeiBtiJ5b+zIh5Gt5QqCAAiN2pCU/W37+YWsxA8Elqf6+mWUDz3LAjRZrTpsczlDrLp61WoR2bvr9bM2UmgcpTqvFQjC0T6kIBECQs+Qmxxb4wWibWuBH0T1ysiHcb22xnck5bxChoqDmmXaH9lKAX5sa0XPvTLPvW3D/GJI3ZfsVuVQW8cCXxm/WEKxPhdw3XfY8ywcaXxoUrJpXKkJlEAhkEJjC42nJJbQLOUDdhoW9VAS5IytZ0lji8YRmqY2z40TqTGZzLoaV4CvRcuWoqaJQNmipSLnR+SiDIoAQRjXi7EFgR1RkOolCDOajNIEAkIhkFqTVwpHw45tYWuN1OBFqf0yShMK8Od9hNZMZXw8y4xdx7aNYtK5KF7gBqCEmRuENmQmz4JDs7vIEKQSrM5sm7ShvkRLbVK/KfNZOcrMa4FAhAIVkdS/pvAoQmjmrQPCwJA5bddDWoowsAh9BzfKwes3XdOHXB+t4cnPFfjef/IF3ve+9/Hd3/3dvFh417vexWc+8xl++7d/m6WlpZ7jN27c4K1vfSv33XcfP/MzP/Ocz/f444/zL/7Fv+DHfuzH+Lqv+7qOY7/+67/OBz7wAf7rf/2vFApt+dXf/d3f5b3vfS8f/OAH+7ZxEnznd34nP/ADP8D9998/0vaJJ57ge7/3e/mN3/gNzpw5M9L+0Ucf5bbbbntO7UuR4qUOpTSP//lFHvyDJ/FqbULq7HqJV/+vt7N0emZI6S9NpM92ihQpUrwwmHTtFePFGKevP7HDf/2pT5ApOnzH/+eNiOeYJv1LEen8+OIg9fsLj9TnLw5Sv784eCn43R5t0omPfvSjSFvy8q8P+PjT5ruqmxBkkpK9RPoGz5Z4NrzyRoAS8IkFp31iKdlL1O1JiZf4XJOytUVbBrCfOE2AjAhKBo0uUahPNnKtiwuQEUEpslWdtpUoKJ2RimPFgKcOMhHlCZqRbbxh/kBaWEEk9Y+k6kPBUUxnfa4dWHiJumOyUsvWA1ywGpogkCYYELcpeeFIao3Ex4qmnri+vV2bvd324XpCwby73mC7vQP15kXYPNv+rII2+QDaZIJWmw6AIOTSw+az8Nt8Nr/eZbvf/lsF0NjTXN3zWynToJ2GobGvumzbn4MGBI32eRoHcQoDhUJ2nMfYmr/dAiyecLjxVBTtUtCotH0WE3piNCOfhR6c/1xA7YA4G1OPrVfVtCQFIr/MrkJ5SfLM3ynCpA8jv8RpRmLiTXytYWjIGo1qr7+7bZOfF46AVnD1bNSGpK3qtI2JNwB7XRtle2y7rrVR67QfZtvssq3uQXVHddjH8IbU6+aMetLFRxReo49twr9h0P5s2SaoWdvrYysEKtB9+/f8YZM28MLnO/thTFAC8HwL0Wg/K40DuPJYGAVFO5+boAGJR45GVbZkoZSC8qJFOAub58OOPgvQjP2gTWC+sU8rbU61izsSE6ZMxZ3PXOCLVqD33IMB3Ui2N/TbwWYw/t68CJsXzfUGXtsPo8aIq49ptJOw3VNGGgTwupTgG4n237jUecz3JHgaImWGej0xdipJnKXBjG3tY2HWoh6fxzLjbC1xXi8wc0o5H5JxNDf32lOeQrIfSSnYDY2XlSQyq1ELJLdNB+x4msp+hkrCrb6SJLKV4FUlQRRb2cHmL0ObIGqnj8RPtLnW+js0c6AEfAnZEB/Ys9uyJDW7c67aS8y1yoZmUXF6u8Ls5Wk+fzQgkWWk429lQyUx2x9bvsmNW212/9suly9f5tChtpx/ipcetre3eeihh/iB//0Ks5kiBwosS5HPtR9I1/U7yuSyDSpVo7Z07PRjFIvtB9ByQlq5bKBFVgIQUmNnm60p74KabxGUALSb6PgCdKZdjy75NG7ZIJYx0q7iQm22ZRsk0jxpC4KIuJE/cMg0JPVSo8d2o14wqZHyQYuVFMTKMDVB09Y0EqnIlDSE+Bh+NBcLFDqQNKxIriZCw0rYdr1kCjfclqlCcD0e7ICAznq8xDOuEciNdkqms9UMTj2xflKiw9YL259DLQhDyOyFnI9WsU7YXkf5iduslCCRCYkgEASBoHEdZKDMHXZsZDMwc1diTg47u0vHeK0VxOIl2hKEQedehiBhW4hS7laaEQknMISvlm3inFq3SVI7N433gkQ7Aq9dVmvwa7o1n6hQoEJYWNVUD6B2kLhXWrTq1QJ0ZBvfksA3JCylDZnHT7QprjfpQzBtsxyYW9BsbRi/9/N3G8ZG2+b+HRx09aWw17btF/PZ8Es1YShQCZfHhJ6kbbLeWk20/Ob7gohb0tc2iamSIcLs7gqUkCg/bp0eeq2OY9Y2WpvvlBKE0fHQlXRMpK1r1SwthezvS+p10VFv2JrXBA1hYWnVqrdWg2vXrBZxaZAPlRY0hSEqg1myT08pdvYkYSgG+jDMWa21v0ATKkHoddkm5v5QdfqwYVugYbtqIb3O+TpUIjHKtglIxhum3ku7DvE4IhKpJrttvURFoZac23Txc9EaQ3X6xUt8VlrgRX4LteBq1em1VYBjxrhmwsd+l7+biT7ZLHaOfz6dfmkikWhmCakgaSbGxwBBUIqUtpqCZuKdgRICGzgShOxbkkCI5GloJsZoLQR7nks2bx7oC9OGlBTDS6x5tIBm4rOyQFmai5UZjhR3DCEpLitpEZIAtB2RlyLYGdN5zj19hrJTYenY+dYxyw6xEinineTcKuDbX7HPe47YfO5zn+PFxLd8y7fwwAMP8La3vY3v+Z7v4WUvexnz8/Nsbm7y6U9/mt/8zd/E8zz+2T/7Z1/0tjz11FMcOnSog6AEcOuttwJw9uzZiUhKBwcHPP7449x9990IIfjwhz/MwcHBwBdum5ubbG21JbguXLjwLK4iRYovb0gpuO0frnPs/mU+/ftP8OT/NGmgty8c8Mc/+QlOv36Nl3/rGXLlzIiaUqRIkSJFii9dXH1kE4DV2+f+XhKUUqRIkSJFii8WJiYpnTt3jvxycbRhAloLPjtrkYxtBYea2JeH/5B1leK1QYNHcLkpO5vanNFkdoYtCmSLOCC6YvZBLtrBW+8MvDSV5JObOVSnObKrfOgKLK9dtuSGrJYCrhxYdCNp142VWR/XhQvXnb7H7VrY812YscgL36ivBLJPqUS7a37Pd8q1kV4viaEvgs7za8fcA+GPWb5bpEuI3u+6YGdg6RaXjXN+S3lpHBiFnag/yD5+CUJaORgSUKqT5DIQupOoFAbgNweYWoP75dK6IFMQnP3MEHls0Vvea9COeA5DV9nygimbJPp8sSBRTC/D/k5nEHMUVADNmu4IiEUV0vMwJlBegpUTFo/8TdjXTguB6NPfAr+3fbqPz7VlIcIEUWlYf1Rd54n7oFLYWYHofRQHI2rz0ikbv6HZvjxCSr277V19dSisPs/KBOW10/tMiUCh7eFjExjVrkYcIIsgo0iccnvrBZOWZWEh5OxZi+5spVYcJM/0tn26qChmVAdJKch1lrcbmiDbWfah7WxnvDVCs9x7DrtKRFSSjBoh66u9Y7toWLymWmfLETw6Ndx/955uB1GqUz7hrTvMFgOqlfF3sh7+qqM889+e4nd+53f4sR/7sbHLpXjh8alPfQqAV7xsspf/Mlvj+JnHyOXazM+73U0+780PLXdwbQm/nmXvUKPn2NHsFucbQ6StrfZY2CIoRbBlRIRUnc/3/pyH7POcbdQ7g5ZZJ6Dht5/h2YrgIAsNt3ec39npv04VWnO8qrielVTt/uOc02dNFhYUuSp4XeSkfsht9LbHLwqcynjCpZm9eHyIiCeRYptTHWftpZH1zvFFZQxRaRgK5Vh1cSJxVaOcFJ+537wRtImrSXSTpMYtH/idqW87y3d9oTRIk0Zs+ZBm47poKf31Ld89HyrwvN7pvW/ZRBtjdaNabXRfaZWXbSI/DF6/9IOTMQpA9SjlYezHUeWDwFyb7nrBqqVADLnohQVFvS7Y2UkQkxIIXYnVM3EaAl13k7rLdpfXWuB5PSbta8h1jiUqqk+oEMcefykEZu3u2JpyNmRnX6J6OlRXO7OdbVcuSM+kxBuFIN973aP8noSfG73G6gcpjLpTo2udJKNNKMrp3/Zlx6euJHth79os/o2sut4oaGBFBFzSNh7tcjFBKYbVFISZ9nd7UvKFjET1W5fP9XaGRs0QldQYLjk8s9vz3cbNOU4cBOwf2+teVvbgzbOfb/1dWruOtkI2wikWrP0hpTrxipdl+PjHPz62/RcD99xzD29729v4tV/7Nf79v//3gElvGYtrCyH4gR/4Ae65554velu2traYm+tdU8TfbW5uTlRfGIa8973v5eLFi9i2zcmTJ/kP/+E/UCz2XxP8l//yX3j/+9/f8/0zzzxDGA6YbBKoVCo8+uijE7UxRYovZcy/1iZzbJlzf7pF9YZZzD35P6/w9CevceQN0yzfV/yyCNymz3aKFF+eeLFVAlJ8aePqw4bYvnZHmuotRYoUKVKkeD4xEUnp5s2b1Ot11m9fA+CVJ54B4ONPHxtYJt752rAl3eGucYhKl7HYH/XWsAvLls+KE/B3jQxiBJGnG0HiXN3kpCSSRKXrVYfr1c6g+TByUpgd/cO9H0EpxpFT4NU0F54eXL4fQenk3bC7CZtXxiAqJQhKJ+63uXk+5OBmpI7g2MOJSlrj5ODka3JcfqjJwY2k8sJwopLlCrIlC2mFdDNPRJT3vieQBNT34OlPeP0JSslr6iIqleYgPy258fQIIkh0XXHEY+8m7N3sLTOMoARw47xG2gOuf0g0ZePi6Ob1K7+0DpXdF4CkpBR2FlZOWoSPh+xNQFJqVOHSYwN8Et/OPrdnfwPqB/0JSjH6Bfp2r8PuddVhM7B8gqg0sK8MCypJyZWHhz8rg5ApCMSo4atP20++0qG2q7j6WDg8Qtf1HB29x2J/Q7F9RY9FVNKOhZRw4l64eQH2EnGEUUSlXBGO3wnPPAmVPn1TemFfopJRbwCdt1ADIlL9yEoXblqYZGoG3QSlGHak4haTlbxxol7J8hFRaR2Paan4vMpOVP6qtKn2IVwkkSQomZNCY8r0scNTO1zaH0xUOjPbllZb+YrDOI7DH//xH6ckpZc4Pv7xjzM/Kzl+1CzZStJIBx2owdH7hjbpmgqFXlbGKKKSW6xwwyrQnyo4GM6VKcJiE1Vu9hCUhkIYZYsY3eSkJJJEpWcWVQ95dxA5CUDYCltpuriRHehHUALIozme9TnbyDCMc9pNUCrZIbNuyIWaMxZRKSYolfKKXEZzc6ftGL9gDyUqyXrAzILGnYMblzvH71FEJdsBOeCGx+uapNJLjL14XThsvuhDVJqa61SUHLf8zkZ/u4F8EqVRSnPtkiAccPn91pRglId2NsTguuPyXdeWyRgiz8WL1ihevik/IJg3DlFJC0GxEJLJQP261XNsWPn9Azn43NH3/UgzGxsSpfoTjGL0IyptbfWSmcYpXy4rGg1Bs9nZ1m6CUhJNaXHt5uAbFw4oK4Umk9WICjCEn9BNUMpnFMvlgPMbDkqLiKzUH0mCUsFVTOdCruyZPInjEJX8nGQ6E1JwFFcq/cerQVjKB5CBS/X+5aSvBxKVBOAP2aPUTVbSCB7RLknSVjdBKYYV3dswo9FCjLUnI4lGzSWf9TiyB5t5qEzA5/UczYWsw4zuJAp2I0lQArCz7fl3FFHpZQnFwSPry3zwjx6kUqkMJM68EPjmb/5m7rvvPv7oj/6Ixx9/vNWeW2+9lX/0j/4Rx48ff0Ha0Ww2cZze/ui6buv4JJienuY3fuM3xrZ/y1vewqtf/erW5wsXLvDud7+bY8eOpeneUqQYhNvg5W9UPPaxS3zmgyYFXNhQPPNn2+w/HvDq//U2Fk+Nv3HmpYj02U6RIkWKFEn4jYAbT+0CsJqSlFKkSJEiRYrnFRORlD7wgQ8AcOh1RyY6yWJdsVxXPDQth5NIuhAoyVNy8JvGQWpKYSRvP4qgFOREh5rSsYJ5EfZMNTOUoNQ6T4ei0uS7Wq9tT/ZyOcbFyxYmG0L/l6n9CEoAtQo0o4DQUEWlBEFJ2uA1NMqf7JVx6MPNsz71vTHIPwk0K/D03/aqNzxv6CIqZYuS4qzgxhDCVwci8kYs7KUSLhxFUILedFnjwnYNQUMN6pcDAnxnPzuUw/O8wmvAYw+EvYpIY8DNTu6b7vRzg9ATqJNg252pZYaWj4hK2ZKkONfVV8bc9f5scPFzce6VAW0c8P3WxRCvPnm7gqbuTOszhKgUKygpZQhwQZ8hZxhRqR4Izp+F2hBVi344OJAcHEhUdtLxNqHEMYYCQayqVHICjpYCHtt2WwTWfipKHWWrEBRET/qTGP1UlGKcy8Vzwujd20mUNl2yVYuN9fpo4wgyKylMFTh37txE50rxwuNTn/oUL7svg5hEFgS4cuUQpdI+U1PjqzwAXM0UsTKDH86+akoatK1A6pEEJVuGLTUlGQimN132Zz0CVw8lKMXoUFSacLN2IAXPFCZfr9UQnLMc6gWNXe1/0n4KSoEW1ELZaugwolJbQcmMrcFkw4Bp50Fv2tZxsNen7c8ruohK+SmjSOk1xpuHTXmBtGIlpWTap1GFBb43YUcBEBpLmjS9g9rYb46r1XjOBKXW8TGISjs7cuBzMKy8sNup3SZBK3XaCBZjN1FJSm1IxloMJSh1ly/kNWFAB0lpGEHpuaDpS65sRmpMA35jdROUADxfsLFvTUyuCVVnajcYrqjUSvEWChoTzgcAN7BgMs4HANf9Z/d7dRyCUhKxqtKKHxAIwUbi91o/FaUkanWHQPoDx4N+KkoAoaM5KIcc1Kc5Utzpa9MPWgkq1xbITu/jFMb/AfOGV2l+9hcUf/d3f8drX/vasct9MXDixAl+6Id+6EVtQyaTwfd7f0R4kYRaJvPFTR81Pz/P/PxwdckUKVL0QlqS279mnWOvWObTv/cET/2VSQG3dX6f//J/foLTbzjEy7/1NLmpNAVcihQpUqT40sf1x3fQoaa4kKO0mH+xm5MiRYoUKVJ8WWGiSM3f/u3fArD6qk6SUqyolITWoqWilAs0U77uS1AKDjUJDnW+MZWB+TenAsqD8jpEaM70vvTc9GwerY6nYBGnfus+/7gIXcHtCw1Wiu0XbMNUlJIQeU03hcSuhUNVlABqNUm9IQkzfWT3BxCUAK4+DQdbIxrVFRVTAVx6KKTa9d42Tv3W+aVuKcOoALaeCQj6vbcVoj/5YcwX7rGiUhILJ23OvH7MlyCJa9y4oHj60xNGArVm7Yzk2D3t/jwOQQlgfg1ml7u+HOSPBI7eIVg7NeDgkLJK8cVnKSVYSc+GoJQrwamXWRSmhxhJekYrNwurpwS2O/ocyQDjzDKcfqWFGLBbvG95y2LjvOLpTyX6ypgEpaUzNqdf06dvjpnKpa/dkHu+c0VRjVP2JJ7JDvRRjrj8mGLvxuRtvPwkVAekTBRBb4dQrlFBOtiTA9WQwKgpxenfkgizAtkvN1QXYkUlAFsqbj/cpDQ7fge1GxqtBUq3Y+ujCEoxblQdnjzovefDCEpgUpyuNQOsmkA0Osf3e09f6FVRiuB4gkzdjMmHp3Y4PNUbaEuqKMWQizZbW6MmhRQvNh5++GHuvK03SBwrKiXR0JqGNmSAWi2PPyC4fLe7yd1uZxqVc80lnq4tE+7n0OGIOSnb1W8EPF1yecYaTxkiTv0mtKFbazFcQakbs0HI+oZEJB7pYSpKMaTWkVJjJ5zrzkAVJQAlBBUh0ULgF3vHxX4EJYB6KNlojt4PkCQoAVQbku393jVenPotCVkPkHWzcG02BPUBJCqVsVGZAWu3MdBvnbN8WlKYHXMuTcwH158x88ZYBKUIltasHYdsopuMJiiBZWvKMwopOsd/bcmBKkoA2SysrSts2/TTbgxWC4x//4wgII2ZDmUgQSr6XtP+vTVueS0FczOKhfnhc6KWoqeduWnITg9vc4wkGWlpSTEzrcciKCXLX71mUakmicbjEJQ0h4+EfdeVg1SUemro09/7EZQAAiU4aFit+6BcgXJ7y3eneWsEkpsVo6LUce4RfaMaSLYak2VsD3JGHXKUQqT0dSv9W6JFhH3Gvb7lE7+hZwk5IvyxCEoxrGaf/jqCoASAEJx1XLaC3nlxEEEphtMUuE3BxcoMF7vS5r559vM9KkrmfBq/liMMzH3YCKfYCKd6zJIqSgBfeZ+PlPDkk0+OuKC/H5ibm+u7Do2/e6EIRB/72Mf40R/9UX7lV37lBTlfihRfLsiXM7z+++/iG/6Pr2T2SKn1/ZN/eZkP/Zu/5rGPXUR9ETd1pUiRIkWKFC8Erjxs3p2t3TE38ebBFClSpEiRIsVwTERSeuSRR5COxM72vhhNEpW6X5ZfKFn8zdLkuzBPap/jQxNrGCSJSiKArFDICZgZMVHpmWqGC3uT7/ZpBAIvCuiNS1CSQnHvkSZzC5P9aHdsxaHVANfpvb5hBCVpdwZ2wKgpdaDPtn0pGUgC6UtUiuAWoLw6+U7n+eM2p14/mmDWTVSq7ii2Lk1ANno2EgUJbF4MuXEuTj83/gK1MC3Ij0l0SOLaM5rNy30OjFgcHz7ThxT1fCLBSpI2rN8hKJQnq6JZh8tPhNQrk5WzXCjNjUdSgnag7mAbLj+uBqtSDSpvJfrzBC/bKluK7Std/W2MoPDSKZuTrxrz4hLITkFpccjQPiAoO/BZ72prrKIUw84Ywtgg9CMqAcwvKmZGBEi7EWYt7jrts7Iw3vMbE5UCBQ1fTEyia1Qkj+xkaSg5NkHJQOGiyFbbJxxFUAKYChR31nzKE77M3V5tcvmWzrx5SaJSP4ISwPzRRYIg4OLFcfJJpngxsL+/z+XLl7n1dP81VJKo1Eg8q0LAqVNPMjc3GQlNN1y8/z97fx41SXLXd6OfiMysvZ5966f3dfZNoxW0wrAIIwwIsLEv2JjtHnEF9xyB0Wu/GDhe3gHbLxeDgQu+NgZ5A7FJNkgwGO0atI1mNNMz3T29Pt397GvtuUTcP7KqnqyqzKrMnulpSeTnnD4zT1VGRWRkZGRkxDe+v2uzaGf0AnhQqHStMoX0xLBoOQOY0sOzNNsLLVbcZLvRtICmpdHt7iyOQAlgvqG5Z1chzGSdwYTymIgQzUcJlAAsoTH6FC5Oqbcv6Rcoge86I8KUMYQLlTrkChpzRMjIMBZOCEoxInP0j3cqG5pWfAO3HqFSEoES+MON9Ws6ECIuXjppQLGcyMgVALsFa8sSL+SyDwtnms1qZmYUw26GuAKl7vF9dRX8u1RUTE6MEBuF1PXunmR7J7mrWC6ryWfjt7GOKGlrS7LTSv5eEBQ1xXdQEmxXDFp9DlqjBUqaI3MOpXxSxb2mkFWYMl6Yt2A6Q+hQ16b+NuL0uEBqMlJFuj1FYQrNTMZFJkxXKivuMWzidvAdoZIDtJLa3QFryuq6KMUSKLURWmN5mmZ9/7k4SqAEMLFrMr6TTPQlBEydvkpuvPflJShU6hcoAeTzksMHszz55JOJ8vtq5dSpU1y/fp1arde98ezZs93vXwkee+wxHn/8cd797ne/IvmlpHy1sXD3FN/+L7+G13//PVh5vz9t1Rw++R+f4wM/8ynWXty5swVMSUlJSUl5Cdx81p/7WrwvDfWWkpKSkpLycpNodnppaYnsxHABSehu3hgrwx03peAOzM+KLM8Tb5G+NakRLoDi1cUGR7KjxU19hSQTsZg+ivO1HJsNM7ZACQANVzYtdhsSLydiOSgBZDIwMaHo6CU6bkrDBEoA5Qk49dCgmKArVIoQ7UwckJx5Y6Yb3mzgNDpCpT4hw9i8yeK9I65dx0Eo4CTU2FXs3IynHhGe8ledpKS+DRtXkl+/xTOSIw8kX6Rp7EF1K5lACeDqc5rr5wJ1FXORrrbth9XqIUZaYYBIfnrxCLmvDUMkzk+5sLs+JJRdkMBvN/bg3JOKZgJxkxYCtwm74ZqNoYzPwumvsZAJ19hqW7Bxdb+txnWtqO8odlfa92XHESmG69bUQYMDp/sK2clziGvEwXslRx+KOLl2+n6BEsCh03DwzNAidYVKKrOfvjyhKQ1uOh+g46jk5fy011cNtnfjXwRfqCQ5t5tjN4ajST9m08NMaEcmgTeU6hywXMxaPIESwJYp+chYlu324mTHTSnKQWmAvmKGOSr1fH/yMADvf//74/1+yitOZ6Hu7tPDn6fNfjFhzOFIx03pUmseAFFokbvrBiLmGOpYbpOr9SnyVYuZq8ltr4WC9Xp8B6UOjZxmd9YvY1yBEsB2RnC9LRYQphrpoNShpBVlvX+DddyUhgmUAA7kXOaygw+3jlApTKAEcGDaY2osut/pCJU6DkodpuegOKI6uo5KAae96o6OHXJVGwIt/H/VbXAShmqVhi+KyuaTpdMamjVQnogtUAJwWoKbVwSuI7oC42EOSh2UEjQb+y5FQredv4YIlMB/RMshYpWkAqVuuo5zUt8YYFR+wfRBZyTbEdgxw+B10ngZyca2wcZ2soGQl5G0WgLHTX7uc9Me5VuYC96rSWxXoDISlZExHZSEn64d0k4bAm0IvJyMdFHyU8GBcZdcpvee7bgphQuUwBBwfNqmECEs7NS70xemNiM1x8Ydcma8jt7Nd/LTTFgKM0IAGaTjqOSUoKolS8pMJDeSLlQwuFG6tdB8VpP4D7I2803NXRX/GjTrmVgCJYDNaYeN2f1nXsdNKdRBqY+wIoY5KvWUc36ap556KlbZvtp561vfiud5fOADH+h+Zts2f/qnf8q9997L/Pz8HSxdSkpKEqQhuf+bj/Hd//bNnHrjYvfzjct7fOBnP83Hf+tZmnvxhacpKSkpKSlfDjR2W2xd8xdkUpFSSkpKSkrKy0+iFdtKpcLE3dEP5DeffpGPnu+LSaUUj614XCppLo1FT1Tqmokz6ZFd3z9GSUnctQ+jIXBKYFXhhWaW+gg7+34KBjwy0+CF7SzbCRayJYq8p2lqGBXaIYhCsl7xy2jWFF5WYrRGL4TX6pJnz/YuVgrHQ1sS4USnr+zA1eeJvQjVTbepUM+70QISz0NLgfB6Z2k3rrjs3EhoVQPUNhW1zXiCAG1IXygjJflxX4xTH74m3/cDmkZFY4aEFhjF+Dx4WlDZSpz0lphaBLsB1eD5dUQrQ7h2NuKLzqz6rdiURogOlQuXnk4uFJMSpg/5QiU7jiND59a+xTB2Rl4wMQvby+AlaKJ2E6rbGi0NIH5CMwOFCcHeWntBWMpYws3KuqKy3vdhjOu2csEDQha+pRjaZjaX1FCBWZQgb+VKdJpu2hBx0+Xz8ReuvJyJtBUqI9naTS400oYg63rojBgZ6qSfBw7bVBzJczp+eRWS55tZ9lyD5ozG2pY4k6Ovedgz7+iRDbaaRaZytdA07Qw58fQEWwca7Cz0hk/97w/8R372xreGJiu8cRx+FW7cuDGybCl3hkuXLgFw6kR0u58xilx3e9WaGxtzrK4scN/9zwzt5j/X6rXaEwKw4jsNfqFyhLLVolYUuJZKMgwCQN0cY9EV3JxPNl4wXFjfLeElFHw0TdG9x+RaBpXRyBhCjevGoJDJrIFTEFj16IX0lSHOMdKNTre5K1EqulxWLby+bl5jpNlJWBjNaoKxTGe8p6UgV/CfjSMiM/eiNI09jecl64ulAYUS1GsKL9keiy6jBEZBTFOTL0ClQte2SZsCofVQF6hmU9Bshl/3WxUoASDaAqW+61upxjunjutYR5+Sy2oMQ1Orx0vfDTGdUDjSwZoQZJSi0Ux27ZotgW1K7HGJTLAZJGtplAbHFbhtkU+czSQ7tcFr1xHFRWl7NIIr6xZeyPdOUUam9TQs71k0neh20S9QAnCUYKli0Roh+vL6zIFbSvJiLb5Dp1sUGDY4GYGTYAy0n78ia4NtJXNOKyvFUbPFl7JW2Gg2ku2MoGr6+UxOVtmoF5gp1EemUyGndjy/wdnGQe7NR4+PauuTNDammLnn4sB3D2VsILzOXvuqGh/+q72R5fpK5w/+4A+oVqvd0G2f/OQnWVvzd4m8853vpFQqce+99/K2t72N3/zN32RnZ4eDBw/yoQ99iJWVFX76p3/6ThY/JSXlFilMZHnrux7irrcd5lO//RzbS1XQcO6vlrjy2RVe83fOcNfbDiNeypgoJSUlJSXlFeLmc/5YdupImfx48ugrKSkpKSkpKcOJvdpr2zae51FcCN/xbkl/GvEtZy4MCJWulCTb2Xgvoa1ZX6iUU4p7sHkRi8oI6xKjEfxtyYabbALcbGps4GI1Q81JlnYyq7hrrMXTKzmaCAwn3gR63lKM5T1W9/bPLa5QKYhZjbcbSblQCRHwSLu90GUaoW5KThN2lm9BDaLAbY0+rJ/cmEAIQWN3ROiK4C54pZg9lsHMCi59JqaDVjv99k11S0KdqUMmrqOpbOhEfmTHHpC06prli+12EkNoBDCzKKhu616R0q1yiwtMtwtpwuxhiV1X8URKbbIFOPqA5PoLivpu3Mz8dHPHJLUdNehONYRGBRqVdt1ZJsKJt6hempYs3mNy7uMtvM7tGkOoZGYgPy6prLePi9lOk4ax6zCsDrsLu21RYJAkTlbSUSgrWR/r9YUXLRcVlqlii5U6Dgan5h2UAc+vjQ4nGeRqzcJWYLkapxi/r1hzO6IGv83EFSrdW7dpCMHlvMWRM6vxMpOwM9ekWey9+P/66B8B8PMH/2eoUKlw2LdcuXhxcIEt5cuDpaUlJiYmKBXD75us8NvZIbPUI1QqFqvML6zEfrwdzmyyZE/jbpXAk5izoxdQv1A50v1/ZWpsM1kY1RvVcbIlhTFEjBPFwpZBpgHXxsC0PFwn3gL6uK2xJTTM/TzjCpWC5FfjHR8liszu+H2BU5RYtcF+oWnfoggnSV0GnkPZgj/eG6WfDQrSTamZPWKwdk3RGqKh7MHww27uru+LZuJiWjC5AK2roGwVyw0JIJvTTM3B2o2AvDjG2MvKwMS0plrxg2pp86Utpr0kgVIQQaKwigPlEL5gppDXZLOa2mgNR89ze3Lcw5SwnsBNSRuCsaKHBhoJN0vsVSVeW6ijMiK2UGlmwqNpC1btfYGhlxEjhUoZU6M1OJ7opomDl8Teq4ugNqTvcSPenTWCRgJXKqGS329uYLwj0IwLRU1LnJhKVKekyWrNXcrhgraoJ3jXagjB5ZyJEv4mJlGMN7BtGYJ+XWgcoZJlC8Z2TbamHbSEt8xeiJVfpthAyM2B7uSxvO9Q6GgPSwzeJ0cPSZaWltBaI25ls8hXCP/jf/wPVlZWun9/7GMf42Mf+xgA3/iN30ip5I9B/8k/+SfMz8/z4Q9/mGq1yokTJ/iFX/gFHn744VesrE888QRPPPEE1WrC2OMpKSmRHLhniu/4l1/L2b+4yufffwGn4dGqOnzi//cc5/7qOl/zA/cye3LiThczJSUlJSVlKDc6od7uT12UUlJSUlJSbgexRUqdkCOlQ4MW5h2BUoceoZKUvDjE9VzXBovQmvUorgoyWo/cld8rUIJMSTEvHW7sWagY6hHTt0DCRbLSkmCATKDJqVYFF5wMzfb8qWfFEyqN5z0Oj7lsLguSqFxmZzymJhXnLlgDAqVhbkpj05DNwXpgQ2hXoNQhRKhUmgYrK30xTxCv9zhtSD/8WpuZEyZGRrD6QrKwe7OnLKys4NKnoxVOYQtTN5+zIe4O+UD6TAGUp31BVcyJYi0ll54K1Ici9iWsV9RgaJQYi2XnPxe1fXu4s87dr4XtNVi90nd8grx7GLKCKU24+3WS5YuK7ZXIwwZwbTj7yeRCOE9BbVfjxm1i7WtU27m1/JCQL0Kr5leDjilU2ltX1LcDAqXu7w0XKpVmJIv3Zjj3sSZe/y77IdetOAnTR02uPePuu00F75mINpMrQXlasn61t0wDzhN9QqXCOIxNwcrl8PPod1HqCJVmDyjGJzQvPh9/oVPaipl5h0KJWCKlYIiV61smOqHNi10SbNj7+Vi1+EKliSkHA80N9hdI4wiVMkrjGWJAoLTV9AXCUY5KWwd7O5aOQKlDmFBJSkmxWOTKlStDy5Ry57h+/TqHDh0CBhWVHYFSh6BQqVCoUxiyMNvvoAS+UOmyN4Z2R9+TQYESwFRToQ3NdohrWhg3quMAtDIAGrRAxghB1OGcyKMD0eXiCpUO1hU7dYuWmcyR7ZRnsykMtqUxIFCKdlPSTGc8qq6kFRArdQRK3fQDQiXNWFFTbwpcrzevfgcllTe7Id+E9MU4e1vghAgfwhyUkBJDKuaOSNaXFM0hYqN+x0zPheXzHl5cYVTbjU8IMCxwbf+ctYw3gLJtWApoB4QXT6jkeVBvSTyDXgfGEeOfRl2wdHnfQSmI6IRADUlfKimmpzVXr0o6LzEvWaDUnzwgVJqYUBQLmhs3o9ybQj4TsLUTr977hcW2I0myF6Tjwri6ZQACjMG2FIWXlxhSYwrdvRfiCpVWNg2ckBBto4RKsxMuLVuysWcMCJQ6Aq8wpooejgeVgIuWZ+2nj3JjKmU9XE/Q7KvUKIFSh4msR8sTNCIuRr+Lki9U0hwrOGzaBpUY/XwHw4bDWYdrwmI3hqNSJxymjeCSbDs+xTdwojGhaARerOIKlQylOZqtU8npHr/TkUIlDYYnkAreON8rUDrbOAgQ6qhkFZpYhd6xV0eg1CFMqFQoTtBsbnPz5k0OHjw48ry+Uvm93/u9WMdls1ne9a538a53ves2lyiaxx57jMcee4xz587xwz/8w3esHCkpX21IU3L/249z4vUH+Ov/eo6Ln7wJwPqlXf7kn32au7/uMK/+njPkygkeEikpKSkpKa8gW1f9DXwLd03e4ZKkpKSkpKR8dRJ7mvnZZ58FYOxY70O5X6DU4S1n/Em+nKtYqCtkjPBGQbbmNX9t5Ie6KPULlADKeBwRbqwT6wiUAEqGx4GsQ5IYUkZL4yrJVsMkkZ0OsLJn8dQ5ayCdlx3+O7YjqNdFpIOSjnApKY7B+Oz+3wMCpQjG5w2mjsQMJRFYLJKGwLyFuYblszbXn05uweTa4NZjXLu+Ba1D9xksnkmwGzxqMS1ms1m7QriA5za5G61fDzhoReURN+8R97ByYe2aov4KRTBwbbhxXmPHcAGIvD0T3LaFMpx4xCBX3v9MW6MXupWjEzlEddhbU1x8MkSgNAJpSkxL7OuIYrpNFCYEM0dj5hVoC4USjM+EHxYW5g18oZLdhHptRKiS3GD9Xl0yeO7iYOilUVRbBrWWjBXuJciY6bKQ3VfCWbV46ee1y6IefD5a28OvxxdLWRoPJY8jmasY5NvCrX6BUoefP/g/Bz4rFovs7Owkzi/lleHmzZssLi4OfN4vUOpwyPSdCarVEo1GMtcwgOMHL2MdGG7Z1y9QAsjuZrBCROdhdARKAOW6IBPPELLL+naZhilo3oKzzdlxyaox2C+pzPD7uiYkjhCRDkpOIfzzCUuRkfu/3S9QCkMKmBrzyFrx+hqV9+tdAIbB0LCdYXhKsnxJ0YrzLO1P6wIqRjkD4UIzOThwIuEYMeKcguL4KFxHsLMpwl2mYox/kjootVqCrS3BbRMo9X3eqAt2dpLnEcf4J8z5sNaQVGpx3wuCmYiIz4czM+YxU+59lqoY7katrIG6BXej1W2TraqM7aDUwZCa4KUOCpSGMVXwKGSSC+fHMh5ZI7z99guUOgglqLsSd0S9uH1ibA2cbWVjCZR60glBVUiUEIgke1a0ZspRZAN9S9impn6khtmKIBMyNbFRLwx+2MbJatYWbN54IJ6DUgflCVp7RVRb8NUvUOr+ft9YcGHOP5fr168nyi8lJSXlK5XCZI63/dhD/K2feS2Th/x3FTS88JdL/P57PsYLf7WEjjOeTElJSUlJeYWpbvgT+uW56PeJlJSUlJSUlFsn9lLG6qrv6lAIPJSjBEod3nLmAjMteHjbxeybf9U1M9aEYxRhAiWAFSw+4hVplIafWlCgBDCV8ThWdACJskCNWAM3Wn768azLwXLvzOuoiWmzpjBr0fY7w4RKu7uS5XMjQqGFLCosX4YXv+j//1CBkmn4/9rcOOtx8cm+473o694RKq1dcLjxTDIXJQC3yVDRSdSu+blTJtNHjeFCmjAHphc8Vi+1z2fEYlVQoHT4XsFs/zptjDWGbIHohbkh+R+7XzA9bLOt1qHpN2+2w3iNWogb9X1MkeHGEokXOqWEE49IyrewKSFX9B2chvZkfd+ZWTjxsCRfDv8+imYFrnzJo9lnaDJUqKQ1mQIcut/ECtMLDHGQUC60hol4Iq55ZV1x6bOOH/ZtmECpL+3Wdc3zH9u/t7UpB12Uegrot4mNG3DusyE/P8JRpbIGN69F/36YQMlHIm3fVWkYQRclgHLO48CE3yeNEirZJYFd8ut+NutxuNjbl40SKjVnNE8bOT5rhItERgmVhrHVLHZdlYJMreSZuZGPFCh16BcqmaZJvX4L6oSUV4Td3V0mJ3s7xyiBUodDZokb1w+zvj4/8N3nWguhLkpxCRMoAVQP1WjMNilbw0XGQYESwOyOQbHZDuWkxUhRwfq233HPNDR5t/c+NK3hY1K5lkGuZ0Pdb2C4UGlZmnhrw/u0QaGS4GIt03UsGSZQcooSp7hfD1eWLWrN3n6i30Wpp+x5E6UEazcEdjOmi1IA15VDhwFhzjeGBRMHBNLcdxYKpU+QYrdg9arGa3erYtT4ol0NmRzMHhx8bA4TKmlTgiUwLU1kjLSIsufymrlDQ9Lhn3f/uTuOoFLxC3nbBEqB71u2oFYffKZoOTzEV7mkmJ6ObhdRoVkNqTGNtgvVECeqfiHSeMljetyL/L6fToi3rYrBZiVMWDgkTFpeMpbzGM+Hn98wAZLrCZwhYx8twgVe6xWT3YZfzmHvgf1pr21n2Krvj3fcrBjpogRwrZJhpz+2GdECpW45myYNL/r8+gVKPr7ozrB9V6VhdFyUOkxrj7z279FRQiVn3MNpt5EjLY9SX78zat6gNFPj/AFFPaIOhgmVRnG2cbDrqtQtj2eyc/kwTiMbKVDqEBQqnTjiW9Y5TvL35JeTSqXChz70oTtahi8XnnjiCd773vfyK7/yK3e6KCkpX9UcuGea7/hXX8tr//7dWDn/GdaqOnzit57lAz/3aTYuDYk/D3ha8dnKi/zZ1hf4bOVFPH0L7tgpKSkpKSkxcVsezYo/Zi9N5+9waVJSUlJSUr46ib1SurHhT77lp/0JvlECpQ4nH7rIx+ZM7GC0oRjipBMNl7cYNamWg/kAAQAASURBVFrTgxN4UQKlfpxS+Of9AiWAaw2TT2/1LiiHCZWMlu4KlADGs4q50uDCkWeJ0Elqsx3SY2Ha5dhi9ORklFApZ7fIZGPs/I5YXIjroBQUKu0XyhsqUOrmbchYITjCmDlhMnU0vH0M+81sQZDJt+s7bMErIm2z4ofv2s8kXPjR76DkuRA6JzJinuTo/ZK5IyOEJyG4jkbFueX60o/PQDYfc1da2LkrFVugBDA+5y8kJsWzdZJsAF9sdPIRg3InLHTYJQ77TIPn6t51xxjNVSmobYdXR6hQqV2X0oBsSWBEam7CM88UBQfvM0e7TYS1GUPGc1CKau9xQydGXLRRAiUAaWgKlkfYTRMtUILxccXpk77rXZhQyS3IAYESwFhOMTe2fxMZtg4VK3XESR0u1iw+uzXYqKOESs2ZePdbmFDpyJlV3ljY4r5zI1YZYUCotHa0yo+87b/HyjsoVMrn87Rayd3rUl4Z9vb2GBvbj5k7SqDU4c1332RxsTc8TRxx0sYLJ5jc9kO/9RMlUOonSqjUL1ACuHTAZbvcex+HCZXWt8tdgRLAXF2TDxnOmJYXKlaSaxmE1pxwHIpDHjahQiWtGV/TiCFilQ5RjkpxHJSArlApiFVzhwqUOqi82XVVCjJKoGSYMDEHRia8348KzSWl/7zv6FRChUohQhStwG70PnqEUuFipWCRdDvUamgZB9N2nmP5Aiwe1sMj24aUXUnhO0XFIHjupqnJ5/VLEyjtGzGNxLQ0uVyfmCPmmMZTIlRwEyVQApgYU8wFxU0hFRsmQFJaDAwZwo7z8rIrUAJwPIHjhVdGmFDJbae1TI0V4TQE0UKl4piinIvxrhOSPOrdLyxtWPo44qRhjBIoAZhCY0a9awwJZ3vAdJhov/uHCZWckh4QKAHMaY9C4K4VTrhYyRnvbVNPF002Q1zMouYQJierkWUPEiZUevP0Bd60WUXvjl54CAqVpOUwc8+LvH1mKVbeHaFSqV3P29vDXQtvN6urqzz++ON3tAxfLjz22GM8/vjjvPvd777TRUlJ+apHmpIH/9ZxvuvfvJkTbzjQ/Xz9xV3++Gc+xSf/43M0Q1zjn9h+hrd/6Z/zQ+d/jfdefh8/dP7XePuX/jlPbD/zShY/JSUlJeVvEB0XJStvkCneutFCSkpKSkpKSjSxlSSbm/6CVW66EFug1MmhbsmhjiFhbJmSS3ljIN0ogdIRYfOIsR9bqV+oFCZQ6hY0pDpGOSpd28vw1HI8NXVHoATxImz1C5XMqs3iUTh6V6zseoRKiyfh6KnkO40WzhgcuDuZvT/A0UctjjyaPN5brizJjYUteAxvP0vPOCy/EFhNiql4mTksGZ9Lvihw87xmI8qlf0jW188pNm4kdzW6fi4iTNyI9Iun/MXHV4pDZwKioZgoBVef09SGb5wbwG3B1ec8qlFz/BFNxrXh6rOaRrz1jC5mBhZOxhRhBa5BswIXn3RoDstvwBrCD4VTGJe+U1SC/MozknvebJJJuGG8MA4nHjUSh2ksTypOP0q3nHEESgCTs3DqAZB9C+DDBEodgrfIKEelDjd2LJ6+Nvzi9QuU2jkQ1Zj6hUpBgdIh5fBarzk0vzCh0s6Yx9p0zJXxAG4Gcrn4cbM6QqV8Po9M+HxOeeXY29ujXPbFOXEFSgCW6WGaydtRcW6TbKk28PkogVLpehGrun/v9guVwgRKQKQYY5Sj0tlpyVYu3rNbru13anF6i36hUmlNcCprU5IxhUZtoZIpNMcKNmPVZNfBMDQL0y6WmSzshWVpjhz1eoTsowRK4D9+coV2mLi+viBKoATgtGDt8r4jEoxwVGpjWDA2nTwsnd2CzeUIgTjRjkrNBqzeFKPH3YEDtClotQQbG5K4aqHOuefzmtm5V25nf6momQmIhuIIlABqdcn2TtvxKXCKwwRKALsVycZ29HM+yiGpUpNshzgijaKQVZRy8erTDYibNqsmG9Xh44l+oZKXEWQtTTbmvRest4UJl/mQTSujmCm6TEQ4Pg1joeAwldvPL45ACeBwwWEq4yH6qnSYQKlDsFZGOSp1eF5m2BQjXOjGB89fD3Hq6hcqBQVKhzYlY/Xh5zIgVBIg5vYgl8zZSAgwMi5Sxu+rHe2RzfoX6/z584nyS8rq6urQf50NaCkpKSl3guJUjq9798N8yz99LRMH25tvNDz/xDXe/56Pce4j+yHgnth+hp+89NusOr0TRmvOLj956bdToVJKSkpKym2huumvL5am84ihu55SUlJSUlJSbpXYMuCO00KxZMRb5WmT28zyt/UaO6d3+chTHXXN6B/YMWDH8MN3taYV2XUDoyUYFnYBwNYa3+hoPw+nBFZ1mEAJFnMOZVNxrjo4y6sskA49Dkpx8dpritmd3gnY1a3ORPrwuvCyYLQUZtWfOF27AYYBo+qhg7YEwtE4VRdvRGiFAUwDjUC14jkoBdm5kXzCHeD604Oz3rfqyoRS/oLbkPTlOUGrBrtrffXZXmzSRvjEupTtKxd1+SKi+dXjCnG07pmcl6b/m7Hdhtrlv/B5P2xYIrT2V16SWhsB5z7j4SZfo8Ewie1YEGRAoCSJrPuew2TI6Y24JU0LJuYklQ2FHaI90ZaJcNx4CsRhhWpf9/oOXPhUfNFJp800G7BxTeEmSIr2nbpcr+0+kSCta0NjTwOiLYyMd/67W/j1qEAqD2WJtkBpeLvb3YXd3c596R8rbYU9YfZ8FhfD9hcmfYHSYNlnsy7zOZdndyNCt9XAKQqaU7ona1dpGh3rjyFYm+BMKo6cWQcFeyUV+zS26v6E7m/d9T5uLB3h2acf4t4Hnh6dsM3PHviffK91gGZzuJgq5c5h2zaZTIYMVqKu5eLSASbHqkyNV/jjWoStZAi5Sf8hpTUcsjZZsqd5KoaDkrKUv2AfKGPZbFFxstECJQ2LmwbbJUUjN3hySguk0Kxvl4jbr3ToCLTUjXw3rQaumB015fDfU5ZG2oL8msBDc6Vl0eo/wSE4BTAaGmcP/PWV+OV3CwLbEpg1B9z44zbP02xvCWzTgJYXW8Dp2LByJfBB+1k0TKA0DKG1LzCIGHOaFpQmBdVdPSA46rgpRbn5CTH80glPoQ3RTu8fqBS0ul1cDJH4vjUUsjsUii9UqtQF1Ub8thLIvC3aS5Zudw/2KhKEDnXniUK089GBRCrGM9z1AI/e4wSgdVugFJ5etM9P9xVStx/n+65IvekLGYVhaKohYQz9dCBt3RYo3cJ7WsZ3VvQFS5r1rpAqvlBJaNhxOiET45dBC3A1uBa4Klnalie6aeIKlACWGwZeuy8Tyhe1+QKl4Xkvu50x1v5xhg3NSd3/cSyEDdpqC5RC0h5peuyZgp2IvkBXDUTRZXKy1pPeMTSe0CPLs1ErMFOo8+bZC/4Hk744N85z9rm676b07smnuXTtCLtTJcbK8Xc+ZAv+nEo+f3tDRnzP93zP0MUUrXW62JKSknLHWbxvmu/4v97Ic392hS/84Yvd0Dof/81nOfdX13ndP7ybX6z8UWi37s9AwC8u/TFvm7gfI6kCPiUlJSUlZQjVDX8ioTSThnpLSUlJSUm5XcQWKXUWMQ98Zj5RBtKWGI4kv53j7dX4IWUMpTEAux0uQSDiOYq0WZD1nr9FGUQx4mAgIxWGgJls+KKOUIROeGYNhSGh7gx/IZYL/Yk7f4+eHBRKI25N87OfVXsVYPboLaRXgpljt2Zreei+DLeyaLBPeCiKfnJlgfY0rXrIlyMmYPNlmFiI2OUbkTZf9sU/rUbo15FY2XaIjTibdQNZF8rgOoSKY24HhTHI5AzmbqW9JEQIP79W3T/HJGRyfpqeUHgj1lqE9OuzWY95Hfo49tCQHeFaDqxwSANyJUGzGjNk30ul3WZnjyV3LEAI7nrtrWU7Pkfs8DRhaKlBxFGqBes3sLhqDq9cy1BkTKi1oF/Fpo1o9wkTTcbQjFvRN7syot09FtToTkJVFbnn/Jde6fkLnl6CLvcvL30bzUYex7FYvp70pv1s6qT0ZYxt21y7do2Pff7BROlWNyco5puUCk3W7Pj2aG7LQpoe0vAb9Jo9xaQXL312b/A43SxwOuohrqHUEIxXBW5Ee6+3LA70rxprzVQLqhbYI8TX2g4oLnvii43urMy6QN5C+NIOBmCYmon8rbnqTB3S3Mr4aWq6HVIpIkRWLNRowYdhQmFcUN0eFBuBGCkWPnhqyOJ5SFrTguIY7G2NEBJI0AGhjzQ0ltURKsWoE6FBCixLUyhqdncSxF6j7QBzC2Szfti2l9IdJ2kt+ZzGMjV71XaGUhBHHWsafhltp09sNKLJFHL++1KlHiE6GTFkOTEfPWBTpkD0DbAKGYUQUGuNrlBt8JLes+K6V0XnL5gr3FoBFqSXSJzWj7KI6asc/t7qjmgy49rDRtAIWThWWqOr4Y1mzFXYUtAcEjZRuh7ZxmDDmRw0AwxlOi/RG4sAaNsAQyGGhAjs56/zBmsb05RLVfK5+HMcrquAG9h2kt0EySmXy/zgD/4gDz/8cOj3V69e5ed+7uduaxlSUlL+5vE7qx/hd1c/mjzhUdA/obHrLm7ACdS7/sc0C9FjAA2sOjt83dM/SybJhPEQvlHfzb3c+7L8VkpKSkrKVy6dcG/F6ZcwMZSSkpKSkpIylNhvcZblWwL9/Vd9ll/fiBlvrM2lnWnAgjF/Abq5M1qBfKDlMeMqXihYyLr0S2qCGSZCCSDRSMANTKIaAWGHcQuiBBkMZdG3s3w865ExFeu18DAshh1YKHH3/39u0iNjaa6vDb8ERmt/9lfaHoWSvzBU2YlXdtGePZYGCOUlE2UoDbKt+VAkctbJFgEFdj3ZDtuZkyaerdle8nrmwUct+pRnJJ4L9Z1AGYNpbtWNKey3gPyYL3Cxo/QHEdktnJA0qordtYT5tUVKTkKR0vQi1CvQqCRIpDWH7pLsbigqm8nymzkoqO5omjEXCDoUxqFVa7spdS7hKDckEw4cl2ytKpqd8wvWW9QqpvQXOhvVPpep/jaW1EUimF8g7IxhQXlaUtlU8e8/rcnmYfqYxeZVJ1x810+7/NKE7JiksUfi9e2uw1QS1zUJZsZoOzfp9kLnaKysLxbb3QAvEF4mykGjw1hZMTWpuHJtPwybsoJOEOH5F7Me5ZxmZbe3zw2Ge/GyyVf63Dx+m3XADQhhhVIYgDtixdmddmjLGZiZrDK1bVCqGVxfGL149fcW/rrn7zGZbMFr3sjzW7fq/JXyimCaJtPT05w++ilkgt3Bdx1b4ku2hw2caH+24ZVHptt68QjZ8Qr5yT2+WD8CVLCAHWf4uE14wheGBIq4VJ2Eor/I4Krk99ZuNQ8d3VNwFV6DbcJuBppm+O96O+2EBRC2f4yhNacclxumQXXEfZnthGIU/jhu3FBUPdkzthxGpuILjEwBoq7QCUQuVl21HYNMQGC04okXhNBkMuDteu3HkRitIMDviydmYWul/QwOPL+GhW+TJtR3BfW9XpGSP15rp0vq4Nmtp8H00oC9TV9gHEXw+dEZN+byMDYJm+swSs2hO88vQ2C0xU3NuOKmdqkzGU2+CLu7ycadpZLCU7CxmSxdLqvJZDS71WTpTFNjSGi174+4rqXloiKb0T0h31TgOgkV3mYsUyID+XVw871/y4SumsHndvA9K28JhIC6Pfy8vMCYwXA0kwUPIWCrFk/ordp9UMbQaA1OAnGgNn2HKb/UIpHAzRAazwDVbptxhVIlU+EqaCrp11172DBKJHbIcmgowWZAQe3mgfb16g+T2aGhBU0E1b7nl5ffP15lk49DzLKNf19aFAv7AiGp/Nt8lHDr6Ng2Ffwn3KniGlyehbEGYny0sPx1hYvd/58/uMQJK5nATLT8OrzdLkZnzpyhUqlw/Pjx0O89z0OnY0AAnnjiCZ544gmq1YSxwFNSUgaoeU3W+sKyJSLb/peQHa/Wdnp86TTM2ysiTUlJSUn5yqAjUkqdlFJSUlJSUm4fsUVKmYy/4HP6yGV+9dRVfuDam2JncqNv4nSvNTrbpazEVNA0JaYdmDkdg8xu9KTeGdliXrh83PNXi62QuabwsG/hygijTxQSnAAHWKmGi5M6WPXeBSLZFi01WwJDwnYlelbYqrt95ZEcLTpIAzZWRk9sysAOpCP3gpUxuPTZBG/uruLowybShMufcxOFfDv+aj80zcrzES4GEQgBnqvZuTG4sKaHiB+2rvWVTfZt6Y6o5iMPGrRqmtWLffn1LWAOTHbfiCzKUHHNZsh5DfAyTlqPTQvqu5qt5QSJNMwfg9o2bA47zxAm5n1Xhd31ZOm6+USFYItg/Wp/rJi+PyLaXKj2qr/a+5pUJgdHH5DcOK9Cw/b1LsyJdkyUdjkvJXfSMLMaLTw2rircUeK0wKJweVYyd8Jg/ZKDHUfcBCAl43OwcI/B+b/2cBKIGScOGCwcgxc+QzvUn4YRQiOAyVnNxCys70qU6j1eZaL7xb09wV5Fsr4hAImX61v4ykXlHd5XO8EF0trggukw1Zw9JroLdADsQqsd+uQ0LQ5rj/8to2dZnSMtgp2TmvXYmPQwFcQxv1k4frXn71kjvrXbScsPAaZ1EdN8eXadprz8mKZJPp9nfsaPbZkkjMGVZm8nVvNG90MLj5xFSIU0NMra73jGaLJhR4eNm7gwTmO2QWvMf+Zf3J2BYm9+jgope4Sp5OZuEYKb1XoewoLtEXNErhnoQ0yQLYHQGk8IqlLiDHnO5tYlwTvJsDTz2mNDS2ph59BHdkfTBEyhOTFuc92zcPZGJutSsOHwvMvyukHTlpiNeM8Py4LpacXaGtitzvkZCGf42M0w/UdlbRdUqz8vMVSoVN3s/W5AZBHSlWfyMDkvWF8KcRfsSz5KONFzrNV7cGfMWKsKX6A0Kn3/GDOhuL1z7lprMhlFtZYsvTS4pXSgEAa3kG6fUeLgINUQJyTVJxaMEiqF4fSNtw2nN+1k0cM0NOt74c8pt+/ZLNvpK83RjSco0umgawIhdKz0yhLdseLBMQdPCbbq8RutUnC47GB7gtW6kUikdHjCpulJVgPljCNUmrAUDoIt0+wd53q+aCoKzwFPCxrtTJw+d2IvIkzhtgivDzfoWOSC6nOcE7ot3gqpE2uiRbCz2FY5yiW/1z69LNksabbK0W3wrql1gr5HotyA+6+DoRFydNsdK2/1/D2XQKSUFxl29vw6vN2hdr/92799aB7z8/O8973vva1l+Erhscce47HHHuPcuXP88A//8J0uTkrKVzRFI8ecFRHqOSFO06Vh2zTzoycnJoziy+aklNfxXWhTUlJSUr56qW6m4d5SUlJSUlJuN7Hf4iYmJgBYXfc4fFDyn458PJZQaeX5Q7xxU/CJE/s77McOVNhbHr6j35USKkZoAe1xHSlUuqlMdtqrImECJQA3JwaESscLDrNZj89sF7qf9QuUYH8iviNWMqTvlmH3LVz1i5O66TMCaWv2RuzQ9QVKg1y9aSEbo7cZBwVKAOvX/DBX2hq9YAV0BRYb11xkd2d5u8wjxEpCaa5/0R4MGiGiRSMdNq+4kSIdoXSkUCk/7of8alUZEBj5ZVahC06tmu51Q4pwVxBa9ywejM+B2/IX9Xp4qVGTIs59asF3D6gnWOgEuPxMgh2yL8Nu2otfuIWwNhJmDsDeRogzlSJ+nYbVXUibkxImD/gOPm5rSNqOM0DbUUkpaFZ1qBuSCHMZMw1wPaQJ+XFBY1f3OjeNwG0JVs7FSNBX9sqm4sInW77r1qhF1kB7r+3B8nkPZbfvtRgOGNowqOzA1XMdgVKn8GqkUGl7XbCxF94PStuLFCq1bMn6hv//YYIko6lCv5NSYUqw3fYC24AYycds6B6h0rGiw3zW46+3Cj3H2WPh6bPbgtakZhmLSsTiHHQESr1cW54C4MiBrYHv+nn81B/0/H3pmQd4rlLirW/+3yPTdgRK4C+SeQkEqCmvLOVyuWdnv6dVLKHS+585QaFcYerASvezBWOXFW/4ooFheXyycjr0u5lMNVKoVDtQw8v67eji7kzoMZZUA0KlkzdNNsY8dgMLypu7IbF5Owvg2u/TTQ2eGBTFuBvhNtwqq5EtwbYxfOyVWx+sWw/BWZHFiPF4y+7sn4en4XrVouUJvIKIHBcGyVQUnoC1LQPb9c/NzfsjYXPE2E/tuix3HAkDjBr3ea7//I1yXdIiXKgkpO/C5DT9x2yowMLTA25K2gO7ofsid0aM+7z9Z5FhQq4AtQoDLoH9AiUYPmbsJ+w4UyiyRUGtCqOclILnXq8L6nXDd8iJk/9L1KVX6pJKXEFygExGYxqamvPSFvT6BUrg12e/UCmbUUgBjUD4NacYcr+1nY06YiXHE0RpntyQMYCyBNLRWIbvX2ZHOBtFOSfuYmCEbmYZzCfIcqVdjwEjsei0+/+/0TC659f/rjEs/WrTHKgXoUYLla7VrRAxdju9Gy1Uqqr9e6xfoARgtIWRXp8rkqk1ClDt83KL4ZUjG7JHqPRAzWU5I1nvGwv6AqVBKtU85VKDm5MKe0iTvmtqULH4bMUP+XZ/+WZ0wjaPlZ/t/r/yJFeeu4/a0au8pi0kHkZe+IverZb/InH6dPiz9uXizW9+89Dvy+Uyb3/7229rGVJSUv7m8f3zb+X759/6sv3e7kaNd5z/v9jN1EPHTAKYsyb4swf+z0SbOYZx9uzZl+V3UlJSUlK+suk6KaXh3lJSUlJSUm4bsd/ipqenAbi5sr/68Z+OfHxomi+sHKKSgxvjgxOSYwcqjB2IjkE1bXs84jSRESHG7JDfBKhisIYZKVDq4OZ633A3bJNrdX/W2GiGC5SCdCblD425PLDQO2E6aiFKZQS5kmZ6PHzBKUqg1E2fH76g0C9QAj+0VUfgEraY08X1ehxgaltQ2eir6yGLfJ1FCdcGFeaSPGLyPVMSZKPNGiJ3Zx+4O8P8KStSZAT0hDDpsHpRsX2z/fmI8C/BRbr5Y5LJA33nEuNuOvaAZO5YVAbRdTN7VDA+O/r3b5k7aPdvSJg/blCMWjuPuJ3MDJx6VFKcEMPbVd93Vg4WjhvkS+HfDxawvbBiw9LzeiD0WqhAqVtIg1wZjj5kkQtZ1BmGNKEwJaLblYg4bxUICzjMOaWvvbtN2F7ej+ooPD0Q3jKIbvcDrk14WMARYYa87HCxQFg/BlDIK8bn1RDHJJ+OWKnD4oTHfQf9vjpKoNTBbGjMhn/umy2Tq33hPKMESh2y275by0rEbs4wgVKH4xWPQzej+/jHT/3BgEAJYHxmnenFm6x7w3f4BAVKAPV6nWz2Fjz1U14RxsbG2NvrVad6evi99WTTY2x6k3x5cIy1YOyyYESHYKiuzCB3o9vDTCZ8cOWUXJSlIwVKHSzZW/a1CY9Grn2v7RbDBUpB2mKle7Y0U33jtCiBUgeV1ZQNj2zEOCJMoBTEGzEvFRQoAWgEdVfitV2gnEL072cqikzFrxutBbWGRPWFyHOHjP2MugsIPFcQtoIzdNwnwDIVw9Z1woQTVhbmjksMa0RI3r7niGPD9moggvCIZ3DnOZTJ+oLt/qHasHMTSpPLKhYOqkiHlCghUTYHM1PDBZxaDA/RNdJR6CUKlEaFtBpGsaCZmEqebrzsMTPpoUwRKlDqlq2vXssFzWR5//4PEygF6YiVqk3Jbog7UZhAqYOyBNNFj+lS+PUbFtrVkhox5DGqLBEaVlZpgepckCHXRfWZOjZcScvbPxeh9VD3sk76picHNsiAL1QaRpRAqZs+4hV0THqIogoVKAUxWr2/f5e2mWoP5KMESh1kQyIb/jktZQ0qfWL3KIFSh0o1Ty0HUbq7MIES+HVWWsuhm9F97GPlZ3sESn5CzeTCKla2xVln+Ji2I1ACqNb8+picnByaJiUlJSUFxmeK/LN7vidcBKz9aax/fOhvv2wCpZSUlJSUFAClNLWttpPSbOqklJKSkpKScruI/SY3O+srJG6u9c5eRgmVvrByCIBKHi7PJsnJJ1uV5LUemixMqFRAcUzaRCobAgSFShXXYKU1PHRbP8oUrFdNLm0nSwcwVfY4NDc4eT5KoDQ373HylBspVIpa2C9NwszB/b+HLlgFKE7C+EK8ixdcjJk+ZjB3OuHubCFYuDvDgXuT2ytff9bm5vkYbiB9og0z4/+LS2fh4PznFNdfCLS/mO27Vdf7ApKeHx6+aHDurzXLF2MWMsCZ1wjmj4046GUSKEkJ93yNZHIhWTrPhuc+5rG9MuSgiNu5VdPxohAG6rdVh+c+4fnCmiSh9aQfpqbnZ4cJlNrUawaXPmtTj9ZkhlKelhx7JIM5ZDEtjMI4HH7AD9MIDBcqBcgWYerg6ONgX6AEUByDucMRB0YIlbyswfSM4vTdwy9eWH82OalC+85RbFQMrmxYIwVK/fQ/G0YJlDrMKZcDIdZZwwRKAFkPGtuFoceEMb240g3/FiVU6hcoAbiuS6GQPL+UV4axsTF2dwdFRVFCpSfbId7GprfIl2qJ83tu9wjCG/5ACxMqWRULM2aYo6BQqVLU2EmHUBKujAn2biESw1HbpRxSd8MFSpoThk1ZeJFCpX6BUifdZNYjEzjfYUKlYLpSQWEa8Z7NRnvcKKVmak5jZZI9002hWDguySTcHOg0YeVFhePE6BODQiUBhkUigY7wNI0aLJ2nJ0RcnLGs8trh70KqZZjTUa0KVy/LAZHVKIpFxeHD+4WMFCq9TAKliTHF4kLyZ+JW1eDGaoJ4em1cV8QOCRus340dyc0NP79RAqUghtTIPoHZMIFSh9WmyfqQkNpRzJdcpvPeUCFTGJN5j3I2cB1iJi9ZHtk4Nm30CpwmMh65iHRRQiU3LziSsRk3RjjihryKLpou5Rjv1v1cFRZ7yJECpX62LUkz0H5GCZQApNZM1ARmSPmjBEoAKIFhS85Vkr3ASKmZnFsjk/PLFiVUCgqUAK7e8Mdo4mUM752SkpLy1cxjkw/yb0/8Q+YyvbvaSpUsb//AgzR/tcHWtYSTLSkpKSkpKUNobDfRnkZIQWEi3diZkpKSkpJyu4itIjl16hQAFy4Ozvz1h37rCJQApILJmi9WCrNf77gpBcO/mbsGawasGaOL1x/6bbLpcTznsI5JmJFPP53QbxmpmLI8NncNVAJFVRWDemP/+DjhPABubhrc3DS64d/i4jiCVnueVuXNntBvUQIlgNIElKdg48b+ZwMhQNzB9OMLBsUJye5K33n1hX7rX4SxchIzagzXmZQNimPan628MPqqhYXwsBsJVHCB0G+HHzDwXMG1L8WfeBdao4MOBwmyXr4Ycq1v4yT19ooeHiLuZXRQUgq2bioaSeaHkqx39IV+cx3B0rkE6ftDvyWpd0NQmoSj90oufsGjWY0nUAJAQbNh9K6sxqCyqbjyeRvXTlZ2IyPJFEVv3QbDHUY4hpWnBXPHJFs3essZDLcDvQIlgMIYTB2AtaWIAvWFfus4KLkuNEc41vXj5STXtkyu78Q73mjuOy41HUnFTLZgaTY05XEPNGw7ZmyBEsDhhkdGaJYL+8+xUQIlgBcm2mVcnuoJ+xbmnhRke22GbL5BoewLU9a9PLNGO36iUpz8zx78kBq4/vV6nQMHDsQ5pZQ7wNzcHM8++2zod/2h3zoCJQCnlcFzTXLF8DhQHTelYPi3T1ZOw2K8Drw/9FtleZpWRsNkvH6uE/ot3xRoATeayYRylSw9NjKjXJQ6PJu3/K5R+OHf4iFoaoHXVh14uV63zXCBks90zsXTJnZgaOMUZM9YseOgtJ8bzE56rG0ZuI1wN6VO6DejT9huZYl0ROoIenrHfQpXwMpltR/+NIL+sG9aE0+g1KEd+i2ThfljgpUr4IzuErsMPItiiu0dW7C91v4jUDejQ7EFvu8LWzfMPcm2Bb6uUHd/Y2Dc+jI6KDVaImz4Pjz9iHCsw6g4BsQUKUEw9FvbUSyBQMmzBHNjHsLTrO74bT+OQAnA0wLPEMi+95NR4qPVqtnVs3lZgdHaTx/moNQhY2h0/4UNuD70Oyh1mC147LV63ZRgMPRbf/rJjMeObdCMuPb9od86DkotLXETWnA5RXiW+KpQoyW6Yd+qIrlAyawLypbHninwhIglUAIwFExsZtgeE4iA1d5QgRKgTc3uIf9Z+WxlsSfs24B7UgDXMbGbOfLFWtep7axjcK/lgdYYn26R+ZrB8PZr6/5FW1hIuKvjZeCtb30rv/u7v8vhw1G7C/5m8sQTT/DEE0/0hNdNSUn58uKxyQd528T9fKF6ietbG6z+5RbyL0FqwQrb/NE/+ST3fdNRXvXOU2QKyTeRpqSkpKSkBKlu+u8Txakc0rj19+eUlJSUlJSU4cR+yr7qVa8C4PylcBFJx1EpKFACyLhw/7JkMuaGfnO3b9EhhhAg6Ki05hp8oprHTqAccXOCoqE4WbLJJTT/yUrFwTEHQ6rYAiUAhRwQQ41yUQLY3pJcX9qvo1Gh3zqsXIYLnx/8vLvIE7HCcfOcx4VPJ1iN6OT3gsP1p2OmC0zC2zX/38gkwUUHKZk6JJk9kVCoBKy+6LF+JfnO4AOn2g5FCcepZgZ6tHcxhTKH7+l1worL+hLUoiP7vOysXoFmXPOOdrUbJhx/WEaHewtJ0yGTI9k1EIJcEY49KAdckUZRr8C1sx52PYFACciPweLdEplJJpBRLtR32T/nmG2lsq64+KQTp+vsYeOa5uwnwvuBTridfoESwPp1eOEz8fIIhnjb3ZEsXRldJ4PiS4kKCXESRSfs23TRZTo/uo/t53De5WDBTSRQAnjWzvGF1r5SM45ACeh55l1bjh+L5+qz97N65VjPZx1HpZP/3kH+7Cb88vZAur29PQ4dOjTwecqXB4cOHeL69euR33cclZ7sW6neWZ9lfSn+IuQnK6f3/4i5nhx0VLox57IRU6DUwZKKyYpkopp8wmespSm3Bd5xBUoAKiRM5qgwbwA3lUU9sOI/KvSbj+DF3Sx79mA/13FU6hcogR8m7soNk1oS8TWglGB1SWA3Y/ZVHac77bsixdEs94hzDMHEvEjkRomncWxYu6ZxEw4tzQzMLGgMM75ACUAIjWFqgg17tEAJsjnN3LxCtEMMxnVUchzB3p6kX4k0MvRbTPr1Ja2WoFqL31Y6AqVyUTE9ntyBSQqNERE6LzJPKZgoeZRmk9fBZk2yXW2Lm2MKlAAmch7FjOoRFsVxR3KUwFXJ0oAvbtppJHduurxrsdkMT9cRBYYJnC5XM2yH9C1hBEO8rTomtRhjqH43JY0YFGENwWgJDK2Z1h5mwg0RWa051nTJKB1boATgGIIvTQuqgfoaJVACBp55z1YWY+XXqJa5+eIpdN9NedYxMP+qSfG7NxAfaQykq9V2kVJy8uTJWPm8nOg7GN77y5nHHnuMxx9/nHe/+913uigpKSlDMITkNeVTfMfR1/P//Effwtv/8WsYm/c3OmilefbPrvD7P/lxXvzEjbS/S0lJSUl5SVQ3/HF8aSah5XRKSkpKSkpKImLP9k5MTCCE4OpS9CLvwdzOwGdNEz57RLE+uJGwh7EDlZ75fKkUX9+qczim+4g9rrGq4J9S8gWvnabkMzfy1N1kaXOmYnHMJZ9w8aGQUZxZbJExFSojYgmUfBSZrKJfrTHMRWkkw17gRwkdQkQLsQlZLCzPS2ZjhokTSnddQbIlQb6c/LrXKzKZ808nb8Et7YQ//oBk8ZQI/EhMFNzK+lZpcjBEWZeXMnET0S7K0zHD5wXSCwlaxV4XbyfyxUanXy0pxxE3BTGkX/UJT1+5UNkWiYNdWFkoTrSvdQInn+KUYOFM3/Eh90xsAvdL9DG39tMjcdXAwqqZUZhmvAyl7XUdkQ7NOxyYSba6rQVMTnnMFpL3k2dXLM7u3kJcKQAk2W0RX6AEfP2qx6m9/XLmTGekixLA3a9/koOnXhz4/ICRQfyBLybp/LfDxqaL1ppjx47FLl/KK8uhQ4dYXl7GcaI7rC+2BtvX5PwqiydHxwhdMHZ5un6k+7exWcC6HF8cN5OpcnF35padYZ4zszxnJLfOnm7CREvj7CRLO+94zLWdhFRWxxIoARhozL6HhtHSQ12URmE2o9OOEgO4eRPh3FqHrS1jQOQzNiuwYs69aSF8VyUBuVKf8DpOekfTaggiIhYOSdhuZgnbWjYPB49qDKM9boz7DNUhwwRPD3VRAjAMTS7XK4rq4SW4KIUZ4JimJhszxF+Pg1LY+Q1La/hhrqfHPeYTChIB3Pyt7T61PUlDSFpjyd43cpYiY3REPiK22Ggy55HvG5soSwx1URqGNqJdlHyGv1Dol/Ka1eemBBpTDGmb/eld30XJQnNEOFgJB86mpZk3XayE7xsNIfiSkaVxK0YY7XFypZqPJ1ACcnsWU5dLA9UyzEUJoDi+w5F7nkeGhN1rftBf1JD/c3DnxtUlxcLCApaVOn2kpKSkvBQOPzTLd/7CG3n0u09jWP4Dr7HT4iO/9gz/65//NVtLaQi4lJSUlJRbY1+klHCHc0pKSkpKSkoiEs0Y5/N5lm4OF9O841jfhJ6Eeg5GbdrcW/FVTO5Ee/FISq5Kk71Ri+ptstsCtwCgeLjQYMFK6v4jca3kE+i7tuQLlzM0HJloAlvj6wWkAKvqoUyJihF+YWwc7r7HI9deTOqEe1MjXFrKk3DqEZB9i0nCbl/PCOvK8ozg+KNDVqDa4d76d6VPHzO4623J1ea5MUl5Jt6MvJbCdx1RiuUXPK49ndwlpTytmIq3YbaH5fOK1cskFnXcvKRYX0qwSNZm6Rxs3Rx9XD8Hzwimo87vlsUuff9tY5hw5B6D0mTM9G1cG648o3zXoFF0mqnW2A249ryinmTuSQiaVbj8jMZOGGosV4S5ozqxBnJvHS486aE87QvDYtrE5kqC8kzyPmnhjMHJ1/ctfHSu9ZCYMLNHBYt3hefXCbEjvMH0iyfg8JnhZdLtvjUopjx2THP0xOiFK5UxUBmj64gkhf8vLp2F0QvXs7ywmXxByM0nCwHqo3h1ts6cdGhNaaylmEIKpbhalGy2F1PPHF4F4OeufNvIpLlCk0y+LVZxFWd+bI3Xfv9Ncn93FS61n4cXHfieG/6/H1nmTz7sP3enp6eTnV7KK8bRo0fRWo8ce+X6bC9My8WwRj8TP1x5AICS4bcdVbDxpsJDxIXxha3DWIZHsS44sJZQrQIoeWvCy8tjcKntFKbN+AvgQkPHBCa/bKCNeCKAw9JhQe7XZ2a37eI0Yr5qPu8ylR28Dvmt9lg3Ytw4PeFRKkQPMKw9u52+t29aOKopTw6vD2G7/tjPEN0QZsVxsGJqMYXWfigqV7NyUdOK31z89BJKYwojYXfsOn7IYs/pC1k3ArsJazcFngLdfv6KGE2m1RKsr8quS4q2pP8sG9FccznN/Pxg+brj5FvUtUVF6BoraWamYgxG22HXOo5Olbpkq9+9Nirv9mFCa3aqBpt7yZ6Jbl6wXTfYridX3JSzHtaIjS5hrFQsthsGTl7g5AVuTJFSKbMvbtLS/6dM/180mhNTNqVM73XvCIRExOURaBZLDrkQkQv4orCw9IbQHCnaken207ePb4esywrN6VyLXIwbwMu1Q1u2QKKRCRuuW9I0heQ5kaGRtI8XAresEj8bJpuao3t+nUyN17i0G29s4+Q86pOt7r3dCff2ROX+oemk1GRynRjsmvnfqbD4q7sc+9Vtxv/UX9QQ/7OK/OVt/99/2gWl+czTZcbGxhKdW0pKSkpKOGbG4JHvOMV3/Zs3cfTRue7nKy9s80f/xyd58n3PY9eTO8OnpKSkpPzNprrRDvc2nYqUUlJSUlJSbieJVpTm5+dZXr0S+t3/ufZA9//fcexZPnhlf2Lv8BZYHlyaTVa4F2OumGS39ycx3YLEViKR64xV8w++a6zFniNZ3UuyctI7Ua8sgRzieNChYUteuJ7FqibbjVyvwdXLBnZI1D2VMSIdlVwXWg1/cb8bPcruWzgzZDcMWs/vKl9QNRA+KkSw0C3nrmZriOtWFOsXXNYvjE4XJ1THUNoLVWMzBtkCbN1MGLoiOHGuiC1cqXWiLb3E4sfl8tMab1h1CpHMUam/DQTO3XPhwhc83GHin6j1FDnku6ifUlDZTJAgeM2SnjeQL2mmFyUb1xTKlAg3YYGDRNxrQTavKTavJc+jtqVxW0P6FdcLdXSKqo6OQKmD8LyesG9Oi6FtTEeIP5dvJL8JjKbi2kr8/nnQuSFh+KS85sHxFldrJrt7ZuyQbxJoakkjsAZlLWVxDo9wVJKSF29h3Wpvc5K1a0c5ct+zZDIu5qZi+s9qiBCnDPHxBgJ/wfuZ8goA3/Zto0VQKXeGe+65B4Dnz9ucODrY9r9k70+654RLU/vDOs8x2Vw+wMTc2v4iagx03kXHDIv4ha39cHLS9HAN6Te4mLf2ynaZoq2ZbcCVMZItSPcdq02NcEenX2kLuvPLycQSq8qMfES5eTAHI/oA4Chw+9QlHYFSh7jjxg4dgVIY1R2w41/uLssvxnRWeRlCZwgB47MC94bCc5L1ycHnkXC8WGHflBI0I67PiNz8tqxhoFEPcWOs1wU3bvSWa2DMmuA+gWiBEsDOnmC3MuLHQsfMnRNI9ix23GRWovuhxm4tv9KYxnAVDVfiZQSGfett0M0KzNbw9EuJ3gH32aob2F70uQ26Gg0finYESlHpW57EG9IwwkRVjhZca2WwhzWoENyW5Eo2vqOkWwqclBCJ33kmMw75puZ6zsCpZLDK0X1eEE+AIwVT4/vuRZd2pzkxPvxlwcsqvGzy8fbW8gJWtkV5ahtZ1xz6v3ewdtrOoZ1rVdfIX9z2x2MTEvXdZdbW1nnggb+VOL+UlJSUlGjKswW+4T2Pcu2pNT79n89SWWv4IeD+9AqXPrXM6/4fd3PiDQcQt7pRLyUlJSXlbxTVTX8SoZyGe0tJSUlJSbmtJFodOHPmDNWaRvWpVYICpQ7vOPZs11Up40IuYvPK3kq566LUwZ3wcCc8SkqxMFRh0StQ6vCMzHEzE2+SuSNQAn9HK4yy5e9L31CcmWuxOLF/gnEdlayqg5R9IQVGOCq5rmR3V6KU7Loo9aSPcFRqVGDpBX8n+lD6XF4qG5qrT7mxBEpaiu5CTGNbsf5icpFSHMIESjNHBKfeEFNzFzjHG897XPq8F6LAGpK/EBy9X3DikUBdxUw+Pi+YmE8+MXLqVYLD9yROht0cLiAB4i8MR51j4HO7PqQqIz7Pl+G+NxoUhzkwhURxzGQ1c0f0gDtYKIFznJiD+75WYMbcVQ+A1myvwPOfUt3z0zGczwDmjglOvibk2JiOSkmpbCg2rrYLGRUeLsRRaeOa5ua53ovUL1AKY/0GrF4L/y5MoNQRUtZqklotug46Dkp9n2L1iysjCAqUTKm4/2CTKeL3SW5eYMredejMXrzF0caU4POlLBt9jXOUo1LJViw0FGcOrnZdlDr83JVvi3RUcp0MjWoJUyoezHjce1jQ+JM5dLHtwtA+rrtUXBLoDx7k7LUqQghe//rXxzqvlFeeQ4cOUS6Xef784MM7KFDqkBMuOeEipMJu5PHc8A7yw5UHui5KHUpGi5JsIaoZGCEeCQqUAJp5zc6cjWXGE16vbLfHfe1GKRPqDrLrGc7U3R7RTFxHpcLy4LmNclRqIGm1H0IdF6UgUY5KWy2TPTuGkKZv3Li5Y1CtD5YzTKCkLNl1VKruCuxmeL/ddVDqJ0Y/D+ECpYXjgtJ4sounPLhxTtOsAgnEvjIrOHwGsoVAmWI4KkmpKU0JZKZP9KGHOyrlcnD0mMIwI8S2EdWmtcANCHkiRfUxq22UnkQpgTdEHBMmUBJKMzulWJgZXn9h90Up61HIxLvP9wVKcGjCZbaUbGOGm5csVTNsNPf7MS8Tr70emnXIjw22r7iOSv2CIhjmpiTYaRrYnuymDUvf74iktGC5ZtH0+ja8mMPL6GnBatPEUeHHhZXTaGkUgpqSqCGqoY6DUk+50V03plEEBUqznschz8Ww44+3VUgbcSrxBFLmXJ3mwUFrt1GOSpmaiXQE95dvdl2UOjxRuT/SUcmxM7iuP2mQLysu/ukstUczvr6xfRrCAzSoV2dx/+IQqiC4dKWRjrtSUlJSbhNHHpnjnb/4Jl71Xae6IeDqOy3+6lef5k//5WfYvp6GgEtJSUlJGU3XSSkN95aSkpKSknJbSeSk9Oijj/LhD3+Yzz9t85pH4iuJL86NPiaMxYzNoZpixQgvZphAyUdRAOoFiTkkDEVQoATwwt7+OSkL5AhBj9XwZ5tbnsAdtkAQwT13eVSrgqUbycQKs3MKe8+j0oiYnI5wVDIzoJUvWgldqOrQ7/LSKV6CTaZSQnFGUttRqHgbYAEoz0kW7s5w8clmonSNisZYi1HAYcKQjmXUEDoOSlvLGmn0TdjHcFSamAUhBDtryRb11pc07i1ovg6chHoFdtdGHDjKWShOJBETDp4SbNzQNPrnfoaktxuwfNGjVYs+JoxsEaYPSnbWNEN1K30infoerF7RuDbxHJWGfK9jOCo1KgohkguSDt5nIA3B0jPJLnxxSuC2dOL6lCaoQFbDBEpBN6VMvu3c0VcNUQ5KANJ1mT8m2d6AZjN+3WQycO9dLhdXBDuV+E4oUkDLEbhKYNoaNze8v+4srNpK8qXd3mddZk8PdVRqTWkySqEAN6Q/GeaodKihuUs1eH7E+fQztbDK1EKvqEk9mqP2hYMU77o+cLx++jgUJC9ezTM+nkXGDKua8sojhODee+/luXPPJUonDcWhu87fUp7F5SKN6SbeVLj9TL9AqZtne9hhGR6OF31/dgVKQM0S1MaTlc/ZzmEKTVP6j9wksodxV3FGOpxV2aEL9f1kUIwJxd6OJEqdEuaoJNCYkq6YoN9FKUivo5JuP56SjS1NSyMl2K1k6aYPC9wm7K4nG5vU9zTOLTg39eAqGCH61YZAebC14oeIDTLKUUkaMDGpaTXFMAPQARwHNtYlnpTRgqIQR6VMRlMqaba2YjgOjXBUinP5C3mFZcFuWAi2Ia6jlT2BiClQC1IuKFwlqI8YowcFSgDbdWOUgWRf+ug2MdpRSbPn+M66STCl5mDZYaVuDgiHOigTZN+wTApN1tQ0HYFO0K90NscE0wwTKHXclIy2ui7MSWlYWLqy6yGzsDukfw5jQbrkheYC8d2UAFyxL0A1bIGXGd6/dARKm5nBuh/lqDQ1XsN0wTUIvaciHZU0lFdzLBxKHlN7/mivQt85aHL5v89wz0PLGPXAuRYE3h8sgiV47nlJvaE5depU4vxSbh9PPPEETzzxBNVq9U4XJSUl5WXAzBi86jtPc+prD/Lk7z7PtS/4k2HLZ7f4w//jk9z/9mO86jtPYeWSh6pOSUlJeaV5/vnn+dCHPsRTTz3FysoKY2Nj3HffffzQD/0Qhw+Hz83087nPfY7f/d3f5fz58yilOHz4MN/7vd/L13/91/cc94lPfIL/9J/+E1evXmViYoJv+ZZv4fu///sxzcH+Mu5vfqVS3fAnd0qpSCklJSUlJeW2kmhl8ju+4zsAeP8H/Qmc/3PtgVAXpSAdNyUU9JkGDTgo9fNiweB/zya33T8mXV5rNQCFWxh5eA9WoJDKinZV6giUAK5uZlir9A7YlCUiHZWsqodV9Vhdk2ztRE2CR1+a6XGP8ohFvTBHpdOvgplDIwRKHTpiHgn3vjXD1MFAeUas8mgpMIuCww9lKU4kW/x2Goraphcqagk6NfVT21SsXnCHOyKFCJQmFgQnXh2oqyHpgyHeKpsRwp+o5G1Hm6vPwZVnk4eq2F0PhIpLQK4oyMTVE0Y5KsVZVGrru3JFwcC7y4j0ngtbNwYXHoFQB6UOlU3f2chu6GghUcg52U3YuDH8mC6B3509AkfvHzx2qKOS1lQ2YPVSRCUYMlI419jTNHaTh59YvNtk5rg52iGrz03pzOsN5k+0nR9iLFwKz0NKOPMITM/3fjdMoAS+2Gh6SpGJMBaKcoTzXLixbNDc1hjN8Lpx83JgcdP2JBfWstRt/3OzGd5e3LzoWVj1AzzFvwatKf93T2uHN6hhcQ/DUfducPFMbeiTOcxNyXX9BA/2uVuY768OrNUJgN/fA2Br2449qZFy53j00Uf53JcOdv/+ku2EuigFyQn/Oa9CFun7HZR6EMDJNfIzO4nLubicYawtHrSM+GoQoTUyZoxeZ9t/oDUMwbWciRcS9i3KUSm/bKDWTa4PscuMclPKCs287TJqab/fUWksozhWtgE9VKDUoTNunCgrDs33jtWGhXnz00pKs5LJkI0Bo8Z9rTpENSmhdWSYt8qGxm4kDwM3c0hQDI5jh4h9O88jraG2F+4OGeWopA2JowyWrshI4VaUo5LnCaotY7RQrO9rKSGbbYvM4oQmjgq1GlPrYpmQsUJ+ZETeLVvQjNjsMMxZbGXLZGPHGNou+gVKADVb0nTjvRPsP8M1h0s2RXOwfQxzVHLyks1WtNDIzYpQRyWtoerKgRCN/fQLgfKW5uCYgzDCHZSCBN2UxrKKk5MOnUYwykGpk34y43G0OHjDDhMoARQNxZSO7of6HZQ67GiDdWVgtMCIECW6Jd0b5g3YlgargY1GUY5KquT1OCgZSWK24wuUhILjKyZj9YTCOwEL91+AieHK/n43JaVE9xWhKPY7pfzTdq9ACRB1zbXP+rs3/upT7fHagw8mK2fKbeWxxx7j8ccf593vfvedLkpKSsrLyNh8gW/8yUf5hve8ivKsP0jXnuZL//Myv/+TH+PSk8volyGUcUpKSsrt5L/+1//KRz/6UR599FF+/Md/nHe84x08/fTT/NAP/RCXLl0amf5P//RPec973oNpmvzwD/8w73rXu3jooYdYW+td1HjyySf5p//0n1IqlfiJn/gJ3vSmN/E7v/M7/PIv//It/+ZXKnbdwWlHLylNp+HeUlJSUlJSbieJto68+tWvxjAMPvrp8N31UbzjyLOYnz7O5/NFrk35n40SKAHYHXeHCQ9zp3e2PNpFCVaVSTUwS+wW6HFU6ndQ6rCQdzhRsvnMeh43sErc76oUFCi1j6CQob2ruM+yv73gtL87fp+t7eHLXR2hkgws3siGy/lnYOTubAYdla6fB3svgStL21Fp5bxLdUuNFCcFadXgxSeb2BF1HUWzAjefGxWTbhApIT8uaeyq/XCEQXeQCCGI52qcfi1BiKOS7lsIzRUhV4adlZAf7XdUehni3penAA2VhEKly88knHTpdxZKsuu9CRc+H0gQM62ZgbFp2FnvdfJJJqHEL3ewriPqPV/y3X921+k9tn+Cqu9v12awrXQO7XdUCqTNlf3wNvYQV7cwtpaSC5QALn/BjR1GpitUMg1WL3o0KvEESh2043H1BcMP29P5bIRACcBuCs5+DkBBYMd8lDipg6ck6xvh3w1zXciYfpg+VwVCwDV7HZXCFlVPl21yhuapnV7lQSfsW9BRqSNQArgqLFZF9LmEuSl1wrvZMd5/f+7Kt/Fzxz4A+N3VpY+8jXvPvAineicorPf7jU7NSZq/Mk3u3ZvINYX4HxWee32earXKm970ptEZptxRXv/61/Nrv/ZrbG0fZWoyvgNGY32SzdUFDt73fLc7HCpQ6mD5fU/JaFH1epWEUS5KABszDm7AYbDfUSnooBTk9A5ULbhZGl6sjkCpg6E1QoMbIsboCJWE2/udi2BnhNSoI84QgSFPa0dwgeHhGrt5BByVao7kurLaAqV4fauyBLWGxHb840eJk4LsbNFWSQRCGccQpld32v/T6f+9eA8Rw/Ifn669L1TqHy+F4TohmvAQR6X+51G+CI4dHrq431FJJwypKnSvMEhkBYWcotEUoWK/3sSdTKHZFCwvG/EESt3C9v2ZIOlupe88Y+abyyq0FrTsXjHVsLCHYQite6552LMUoJhRtFzf0XAYwWe5wHc0jGqO/Y5KTjtviSZjaFpefGcjLf3+YaMR79U46KhUtwVXdjNxb5uuUKnuSFZqACKWQKnDXsug1if4GiVQAli3TUBjoPECIq0ocVKHxhDlVb8wqYvWZAAbesbj/Y5K/eHdTKV5oOpyMW+w1zee7IR9CzoqTY374iIt4PqMhx0m2GsT5qbUH95tGE9U7uexsr/5andjlvraNKfv/1LPMWNP+C8Ku9+UY+WfjrPwL3YZ//Om//nXjHH16gonTpzg2LFjsfN9Ofl7f+/vMTY2dkfyTklJSblTHH10noMPzPD0By7xzAcv4TmK+laL//3vvsjifdN8zT+8l4mDI15EUlJSUu4Q3/M938M/+2f/DMva32z1dV/3dfzAD/wA/+W//Bd+5md+JjLt8vIyv/RLv8R3fud38hM/8RND8/m1X/s1Tp48yb/9t/+265xUKBR43/vex3d913dx9OjRxL/5lUql7aKULVmp615KSkpKSsptJnGMlwMHDnDuUnakg1J/LurINg+dSh565KGKw4mGizsRXyDTQLKhTYKnF8dRaadlcLGSCdVWdDbeDwqUYLqouG+xRSbGuMWq7p9HJqOYm/EYpeYYdFWKP5EdXPSvbCUXSmBItq6r5OnwhUpJRC4dcuMCs2/CfNRiT25McPTRDLnxQF0Nc1VqU9mApWdD2lYgbdiC29gsHDg1LHRc+MezR+DIvSOLNcDMIcH0oZcudrrt3ML1zpfhwGkDK1kUCcbn4OQjEddgyCLp5DwsHBuRJmRH3fYK3HwxxgpUX9qDdxvMnxix6heymFoY90OwJcVtRbhSjWB7GRoRrgrDqGz5i8YQT6DUSyDEyQiBEkC5rBgf329kUW5K/ZyYcTizMFgpHUelqEXVmw2Ta/XRbn5BgRJAVUo2Ely8M4dXkS6cOJ+nUE1Wh/ebmvvvOs+B2fWB75zvKWL/gxL1zy+i3pin/vlF7H9QovU9Bf7HE/8A8BesUr68ecMb3gDAF67++kgHpSCFcoW5g9e7rkqxqVtwbQqUL1SKSzOncftulziOSstF2BqxSN4vUAI42fBYDAltG0Z+eb9/KeFRiPGw6hVrJOsbO45KrhY03OgQcVG0hKSeIBRmB+X1CmpiOWfi67KtEA3WKIekiXnBxELvucVxVdpZDQkLCz2OSmGC2akFKAzZ4xDmqCSEZv6AIpePL9rWlsQwYGZWDbpDxkmfRKB0hxgva8ZKfn2LBM41c5Mu5UKUk2HUeWsWxlwKmeH3Xb/YWCNYHRJ6LYgTyDtraI6WnFFRBAfclAyhycj4ddERBmlEO6RjsuvuKEHVNhIJlDrpGoE6iSNQ2qc3r1ECJYFmQniYASVdnMdCFs3drk0ppD/oOCr1C5QAlIDLeYN6DMF8R6DULiiNnCZJJLv7yzfRW0X0anLRzszYNnMHbwy8buw9luPaL09y7f87hX3U5NpvTnHtlyfZeyzHC06Lz3zpnu4z/U7woz/6o4yPJ4yxmpKSkvJVgJkxePS7TvPOX3wjhx+e7X5+87lN/vC9n+Az/+0cTjPhO1NKSkrKK8ADDzzQI1ACOHz4MMeOHePq1atD0/7Jn/wJSil+8Ad/EIB6vR7qIHflyhWuXLnCO97xjp7Qbt/xHd+B1pqPfOQjiX/zK5nahr/xIA31lpKSkpKScvtJvALy2te+lr29PerbyULZqMM7MGbzjmPPxnJR6iDYDyfgTnhIZ7iLUodF6XBQ9i7muYVwR6MOTSVZbVqoiGqJihCy25C8uGrhDnmnVZboESgBFPKaAwsemRjiDGVKZNtqcnxac+YhTVy7FJUxQGuKeZe548kXvYozkon55APO+dMmk0fNxIs1x1+TZfLg/qA4TvrmnubyZ1s0+8NjKRXpotTBzBG+rqBUpCPAxjU496kYAom+9J7ji0iScvVZzZXnkl+DEw8JDpxMmKhT5oTZZXJw9xskpXESiZUqm/D8JzxaQSFcjGaqXHBaw92Pwrh5ES48FfFlmKNSGzMzYLDVm7UpQ9MuPeexeinGQnpfOz32aF+YxVEIgZkTHL7fIFuMnwwgm/OYPJx8UbU8BbOLHshkAqXFo5pjZ/y6krYXS6AEMDfjMTfbW5dGUw11UQK4tmWxtBXegUcvqsKua7JpR6/+SXdQoFRQiru9FpkRIklrKQs7ma6Dkun45xBjLRbw3ZQezHiYpuLuk1eYHB9c8Xe/v4z9r6b2G66U2P9qCvf7y3zwgx8kl8vd0cWylHicPHmS+fl5PvrRjyZKl803GZvaRgg//FssFyUA2Y5/1W6MJaPFucr8UBclAMOFiR0D2dfdWYbH2m707uRKRtBMuEgPcD0rWR3Rd2hT9wiUAGaFx4SIJ27SBmR2/Xv8YNZh2oq/eOHmfWH7fNMmayVT8Ao0hTFNrp5swGBZmqlZjQ4JZTWMwjjMHQ2kMURssdH28uBxo9IKCTLq0rkq0tHv5mXY2xpZrB4XJa3BHRENuFsuTddNynHg2jUDO4noV0CuAIcPusgEYpduWUnmogQwNdHZ8EBsFyWAtQ3JxnbggaN1LBcl1xMDdSl0rzNPGJc2LCpDhHdhz3GBxhDD33e8jOgRKAE0PcGVioUT45q7WdEN0TaWVRwaS+bm6mYF5bzHRC7+ZpoOZdPDyiZvJ1NZlxwKLeILlASa4wWbguFXitHSIwVKABaaRcMl0xcT0WgNcVECHASXDIt6xHtUmEAJQAnBjiVDHfK6x2jRK1ACxmqCYgyh/aXdabZahX0HpYTV/0TlforCJZdvMDE12BnVX5Nl99sL++9SQrD77QXqr8mytWnyuc99jnvvvYXdKq8AWmuWlpZYXV2900VJSUlJuW2MzRf5xp/yQ8CV2iHglKd55oOXeP9PfZzLf52GgEtJSfnyR2vN9vb2SPH55z//eY4cOcKTTz7JO9/5Tr75m7+Zb/3Wb+U//If/sB+FAjh/3jcVuOuuu3rSz8zMMDs7y4ULFxL/ZhgbGxucO3eu+2+UyOpOUW07KaUipZSUlJSUlNtP4v3BP/iDP8gf/uEfcv43Gzz80/7spvHsAjrrok5vQFNifukQ7vENmKkjb5YRNybwHrqBvDmO2MvysFvni2YBqRRv2rU5VzBZyZosNl1ON1w+Pp5BSclDFX+i+GLBAqV4y67NVZXhZsliseZx0rT5nJPDRXK30cJE82x7xvUBo0VFC24oi2lcTls2z25ksZEcL7XIG5qzu/6xD002WG+a3GxYHM63OFR0eGqrQFNJjhZblEzNc7s5rLrmngMtduqS5V2LQkZxctbm4nqG7YbJwQmHsZzD8yv+dvS751tUW5LrOxY5U3HX3Q5L1wxqdcncjMfEhMszz1poJCeOOTRbgpvLJhlLcfK4x/WbBpWqZGbaY2bc48JZA+F4zCyAabYXeITm1L2wvASVbcHknGZ2Ac4/40+OHj6l0QpuPg/5aYNDdwtaNcXumu9EM3vM4MXPeaBg8W6JFHD9eX9Qeeq1BhvXPIrjgvJshpljisufs/FsOHC3iZkVLD3tX6OTr8+wfcNla0lRnJYcuMv0BSQC5s+Y5Apw7Qv+scdfl2Fv1WPzikd+XLJ4v8XSF1vYNZg9ZWI3FNtL/kLgsddmqG0q1i575Mpw6IEM15+1ae7BzHGD8ozk8mcdlIK5kybNimb1gkumAEceznDznEt9WzF9zGR8XnDpc/6k+JEHDOymZndNceJVFp6jWTrrUtuCyUXJ1CHBxc94CK05dJ/Ec+HmeY00ffeelcuKygZMzMPsEcmFz/p1duhugdZw45w/sXH6VYK169qv7xmYXhRcfMr/bvEUGAYsnfPvrVOvEmze1GyvQHkSFk4ILn9J49owf9x3Obh21j/25COCnTXN5g0ojsPiKcHV5zR2E+aP+eHorj4He1ua6UWBY2s2lnzXokNnBEvPa5p1mDsCxXE/H4DjDwhq7QVZKwunXyO5/oKiUYGZwzA2I7n0lH+uRx8QNGua1Uu+QOnog5J6RWE3YXpRM7FgcPEL/rFH7hc4TVh+UWNm4PhDkpVLisomTC7A9CHJi5/zjz18j8DzfNciKf36Xruq2N3w2+zcYcmFzysqWzA2A4fuElzv1PerJetLmp11KE/7jkkXn/YFTYunwDBh6QX/71OPwNYybK1AaRIOnIBLzwq8BiycgExecK0tDDvxiCRf9Otz84bm4CnJ1bMKu+HXd74sufK0QhsGJx6CyqZm46ry2+y9Jtef89vz7DFJaVJw+Sm/HR572KC+p1m7pPw2+0CGG8/ZNHZh56bL+AGDjavtOnzIpFXXrF7wMHNw7BGL5XMutS3N1GHJ5EGDG8+5ZEqCxbv9EGzL5zykCSdebbH6oktlQzOxKJk5YvDik/79eOg+g9y4xMoJtlYUpx+RrF1T7K7D+CzMHZFceEr5fcQZgSFh6QW/Xo49IPGUYH0FypOaA4fh0llwXcHiMY1pwbULfl90+gHN1hpsrgqEhLEpsDIaW5scmnXIluDiZV9IdOaUw86OZG3DoFhQHDnscemKwcXLBosHPE6dcHjxkn/syTMuu47mxs5+n3xpPUPNlhyYcJjIK55f9vvkuxZa1FqS69t+n3x63ubinsWWaXEw7zCbdfliO7Tbg2N1DAlf2skhJTww1uJSzWLbMVnIOhzIu3zWLpBfE5yZbuIAZ40sY8rlXm1TEYIbMsOicjiuXD4psyAl93stNPDFiQxSKc6cLbA2b7Mz7bI563D0So4Xz9RRJixezWIowdJxXxR8+vkCG7M22zMu8zWP//WXb+HwwRvMTW9zfXmeeqPAm1/3OQA+9NE3cuzQDe4+eZmV9Wk+/8z9vPl1n6VcqvMLn3mMy5ffz+HDh5HDlHcpXxYIIfiGb/gGPvjBD/LAO09wz9wlmvUCK9eOcPDERayMw9bqHM16kcXjlwFYuniK8vgO2XyD2l6J6u4k5ozAzWjYKkAtC4fb8UOXJqFgw3QNbANuTsDijh/2bTsPe3kYh6JlU7hZwM5odsc9DBfm1y02p1xaWU2xLllcztDIN2kZmpkNE9fUPKdKGEpzctt3TapmBOMtzVwdLkwKDKU5s6WpZOD6mERozakdWCn6Aqb8RoYTLYfzeRMtBAdbHgK4nvUVFXfVHVYyBrumpOQqDtoeL+ZNPCE40PLIZzUrLb+/OCFstrVkG4MCigPS5aqycBHMCpcsmuvaP/a4sKnWDHYsg7znMWF53Gz6301ZHnmpuNH+3UM5h5or2XYNMkKxmHO52TQBweysQrU0l1d8Rfr8pEvTFuzWDExDMz/psr5jYruCcl5RyitWtg0W8g7uEUF9W7O7LZCGZu6AZmtdYLcEhZKmPK5ZveHfw1OzGin8ftcwYO6IZucmtOp+mNOxGcHqFb/vnpgHNOys+U2gNCnYXfe/yxVhfBrWrghQmvF5v8/eaYuR5o5LKhv+uMC0YGJBsn7FD6k5NiswLNi+6W8wmD0mqe5o6rt+mNXJBcH6kmZyXlAYh/oubN7wf3f2iKC+p6ntQEZ6TB0y2Fj2Q7uVJyBbgI22rmBmEZp1P0ydacHMAdhc8V39SmOafNFjbc1vHzNzGrvl15lhaGYX2nVoC4olTWlMs3qzXYcLGtfV7OwZSAnz84qtLUmrBYWCYnxMs7zi/+70lMJTsLMjEUKzsKDY2jFwXGjZsDDncXPFAARTkwrQ7TDPmsUFxfauoNGQ5HKaqQlFre7r5SfHFVJqNtshoQ/Me+xVBLW6JJvVTE8qVtYkSgkmxhS5nGKvHfLtwLRLpSGp1iUZSzMz5bG6YeB5gvGyIpPRrG/6vzs3o6g3BJWawDI1M9Me61sGNpKxoiKfVaxu+a+J81MujZZgr2awV5PMT3k4rvDbbEGRH9Pc3PHLMF92sT3Bdt3AkJrFcZe1ikHLlZSyivG8y40d/76ZK7u4nmDZtLBczaGSw3rDpOFKSpbHfMHFEHB5L8Nk1kUBGw0TgeZw2WGzYbKdMygZHvO4XK1agGAm5/cRa02//EdLNptNg6prUDAUs3mXpaqFQjBVdDEFbG4b7LUkE1mPcsajYhvkDMVc0eNGxcTTgqmcR8bQrNT83z1Udth1DSylyRqasXHFzYqJqwQTOY+8qViu+ue6WHao2ZLdloElNQfKLoap2bYhb2iKluJGrX1swaHhCbZbJqbQHCw6rDRMWp5kPONyrOxwvpqh4cBizqGlBJu2iSE0h/MOq02ThpKMmR6TlsfVRgYJZKVmzPSoexKdhVPaZlma1LSkLDzmDI+Lrt9PLUgHEKwokxdci+Omw6pnUtUGJeExm/U4p/0++YDnB0m/Yfj1ctq1WZMGu9KgqBSLnsMlw8ITgnnPJYPmcsNE5z1O11w2M5ItS1LwNHfVXC7lJLsZg/mWR17BlbzfZk/VXbZNyQ5Q3Shyr9dkedrDMWF2W2J58MJRf3y9uCGp5zQ7JY3lwIEtg5Upj0K5QalioGrTyKObiOka+vokeqOEmKmiHQO9NIU4sIPIO+idPHqniDzmxxq2lkss7xwmV2hQLO1x/cpJFg4tUShV2d2eZGttnuN3vQDA8rUjGKbL3OJNlCf5b79/EM+7yrd8y7dwJ/noRz/KJz7xCX78x3+cctnfOLa8vMx73/ve7kLRW9/6Vn7mZ34Gw0gY/zElJSXlKwAhhB8C7v4Znv7ARZ7+4CWUq6ltNvnLX/4i48dzHPyxo0wspiHgUlJSvjz5i7/4C9bX1/lH/+gfDT3u+vXrSCl5/PHH+d7v/V5OnjzJxz72MX7nd34Hz/P40R/9UQA2N/2QyNPT0wO/MT093f0+yW+G8YEPfIDf/u3fHvj88uXLeF78TR/VapWzZ8/GPj4pV875c2W2qN/WfL7SuN31nhJOWu+vPGmd3xnSer8z3M56j7tJL7FI6Zu/+ZsxTZPnv3CBR8Wr8bREF23IdHbxgi41wfL/VlkPo9QCBRvnjrCZhWoerPEmUil2ayYt4U9st6Rg15RdE5aKKRAaMkqhlaLaMmm1dybW8pq91v6xNS0ITqNdUwZrbesjG8GeChwrJG5g62TVkbQ8/3fHsgpT7hvBNDyJCNjC1BxBs73l1lNQawlcBdNFl0LGo2bvL/jWHUnT8X9X1hS1osRuLwjbjqBeN9Bty5hGQ+C0j1Ua6g26zkxuVdHohBSwDKq7LrubflgPKTWNur+IA+C0oBHYXNpsgGj512JjCXIF3Q0F5drQqOjuydo13bMLu1HROA3FjWXIX/eYOmyghQF4tGoa196vw8aexmmba3m2orGnWTnv4NkweUiClmgpEErTrGjsdpglz1U09xSq3XzsuqK6sR+uqrmnsRsKoTSeI2jsaVS7XpyG9svfJpMTOO3fVS40KuDZ+7/bDIRRatY0bgtaVbhxzqU8JfHadei2FI2K2XUfadU0Xsc8QUGjqjEsX6SzvappVHXP7/oXvF0vVY3b1IDAsf2/ZQZUE+yG7ybQTVvVXZcl1/GP7WxCyOZ9IVDw2tid+u471g6YnG0s+UKQ7rVx22Xy9o+VZuA61jR23S+v1z7Xzrk7LQbOtRMGUCm/TBtXNU4dnAI0A9emWd1vd6r9u52/zSxkC74gSSn/d7XqVjeNqu6GE3MDZZCm76TU3aghhH+sA2iNaws/nEz7+1bdTzN/DNDQqPrntF/fvjuANgxaLdBq/wWpWdFUtzWVTVBeu74DdRi0jmrUBE47DJlSYOXAykOzCnZT06gGrmO1U9/t393T3XZY3QId+N1Wdf++0ap9rK1B+AKwxp6mWYWLT7rMnthvzwCNiurer05T0ai073PToNkQNOuKrRsg+q6N226zwT4i2Ga31gQ77ShjXlPTqIuedugFTEcaNbqOFJurvshSGRJcaDV7TajqDYHd7g9dD+p12vUtaTb3XRW8rKTe3L/vXQU1W3QjBtmOwM3AkWmb69smdVvSdNsuGZag6klc5Z9Q0xNU3UD4FCGZtDz/1BVUXInTtrhoZCR7IhBKE4HXfjatSZMLnke9038g2AtUWg3RDQWlgOuVEuLwBpmGxJGKRsGjXSTsnEIENiI18h6ZfIuxjINnG3xUzZF9fpFvP/U0Y6UamYDLy+T4LoV8O456xmZyYhfDdPmFzUdYub7K3t7eyAmNlC8fvumbvon3ve99VPZezZWpaRZllXypihAdUamNDlgC5gs1zIxNZWeCz6zegyi1QFawhEJnHNygZVfOgUy77QjtC5aE9gVLluK8Nwn4HYos2LjtoaMW0Mzq/fZqaZbnbVptZxA7o/EMDS3/jm1kdNv1Q+BIqAXMzcoOVAKukjUL2rcqroCaIbuOh00pfIcVrZm1FbYQ3WM9IagZsjvCU7sGTcDLaYymoI7Exg+/5qGpa9E91taix8XGru/f864p2bBN9tr15igQgfpueqJ7rMIPxZTdBhdY2jHJBZ6zLUfgtsecWkPTlnSibbme/71Z8bhWlZTLGheBykqk49Jqiu7z0XOh1dwvg2P748JaVWC4Hq0GeNJAZwSe59Jq7JfBadHjINKsaexG+3c9aDXaXwuB09LIgBuK3dgfFxim7zLY+SnX1iiv79j2s0i1fxcNe5sap9Xb79sNP2/aY4FWVaHbjct1QDR9catSYLfo/q7W/jNEKX+M7LoauwXCU2hDYtsCz9Ndo8RWk259e57/d7AOPc8fq0qpyGY0htEeE3mCZsDYynZ63ZmaLYHyfJHu7q5Bsah6ju1pLy269aQ8/+/O164DIjAWb7X224tS7WPb5XdcqNYktYpEtI/tjHuV9sukA8cGbUMzlsL1BLruvx+1bOHXi/DfP1rBMtidMvhCuKa9X4ctUyLaLrVCQcsVuGq/fTccgRC+eKlui+57EfjHNgsSHPBMqCHx2tXmKkHVllQdA1eB7e2/jWmg6UoaBQHKD6tYDcR2M9BYRmBs60rc9v3paf9vje+QaytBp8l6WlCxZbf8SgsabqCPUHT7WWUI6kriKMGua5FrKSZy3n59ewIRsAVtBurFNQU1LdmqSDwtKJiapujrTzp12C6/apffUZKrdYu9tvti05F0qlRr/721M3p19X5YOA/BastEafCyfh/aUAJtA1lwEdQCoSJbyG470whqSuK1z93OCGpaYNYETgmaQvQYoNaEpKwUHn7fXBP7fXI95/e13WMNgd2pfyCjNGOeZpdOGwxcx6KHZylAoAQ0sppOkVemFdmA61kzA057mKbbx5bzTTzANTRfas3yoNd2Qup7Boq8DbLd2kyFyNsU2jHuvFyGpxpHUKsFvunBj1AoVpGGn9ayHPLF/UF+Nt9Atq0FX3RnOH92iePHj/Pwww9zJ/mTP/kTtra2ugIlgF/91V/lypUrvOpVr2Jvb4+PfOQjPProo7zjHe+4gyVNSUlJub2YWYNHv/sMp950kE//57Ncf9oXpO5ebvKHP/0JHvhbx3n4209i5W4h9m9KSkrKbeLq1av80i/9Evfddx/f/M3fPPTYRqOBUoof/dEf5e///b8P+GL0SqXC+9//fr7v+76PQqGA3Z6szYSE+shkMtTr9cS/Gca3fdu38bVf+7U95/Iv/sW/4Pjx4wMuTsM4e/bsbXUnXXnii8AeR84c5N57j9+2fL7SuN31nhJOWu+vPGmd3xnSer8zfDnUu9C34GV7zz33cP7Fc7z3c9+KlBJPy9GJgPeffQjV59rg7Az3mpdK8Q3bNldyBpfrg8da1VHW7gqQ3XAdQYzQEA7+8QP51AfTS3f/s6PTNgVLd12U+jFrg5aXhq1YXHCxLM3VpYhYcoDRHFSTZ6WLkNAaYW0vW4OhSYSTICSBN1huEqjbB/JWo5vb+KLEykk2Lg2WfVjotxOvzVDdVKxdbKcLcwgZEfqtS0jaYOi3/BgcOCm5/rzqEQX5aUN+r5125jDMHRGc/WSy227uKGSycP18omTkSoDyHQdi4fnluvdNkvWrivVr8fOSEgpjmsZu78JdVMi8DuVp342q49DU+6PR6Q6eERTHBefbLlb9ofWiPuuEv1u+OLyMIm47Dyl2J62ZheOvMlk571LZHDwuinxJMXHAYPW8NzpEzYj6HYo5uEM6KsxOGNoKSz/8HpNSkytArSXpv8BeNnrHdrmsODDvOyq1jMGJQrcQnu9s2eXgpMsXr2W6+YWFpXEKoTEfB8ro5zV4bGOufU8rNTQuoFMevPfvvmeJe54rsTbXYv3A8FAzY5m+DkfBfzjyYUxzdFybX9h8BIA/+6kX+PyHz3H+/HlOnz49Ml3KnWd1dZWFhQX+X794hLd95xQAx8zRnYpSgj+rPjDQTTij4jptFGGjBHet8vndIwNf15whcWrbQgeAG1uD9uNKhfS3Wof2w6FjRL2f5r66y7WswZ4Zfs9l1wfPM9uEw8JhWZs0hzxkrL4IigJNzlO0lCA8Ruw++a3B+9xsxA/5ZlUHxz+yFe+ZJB3ftSdYRmEPD1MnpB++s74HbmOw7FHh23IlGJ+XrF1WXfFUGKPGAV1CLkfwOTMx43exYSHfhj2PFo8oahXY3Y6+3rov5KAQmpl5ze6upNUaXv7g+QmhyVi+MEnHjd0mYKysmBhXXLu+LwKMg2VqhALH7U3Qfz79TE962LZgrx4y3o1IK4Tm2AGX9W2DaqMtIMuFpO/7yJKa2bLLetXECYjYWmODaY2Y0dbs0mAZzXbbncq65A3NjXr0u1VYCO9Zz8VWgroz+l1BdcdKnXtDYAwJKR7Es8LGq7GStvMe/GxUl24JjQZamcFzGxb2bdFwaGrBljLxQl5xo0K+nXQdKkKwFhivufnBY3W+r1/TvgwsrM8wSoONY2ai2t/dhTKRawx89ia9it4qIs6sjBxKd0RK3WIqwTeW4+00u+DM4nmad73lHO/82/+A3/iN34iV7nbxnd/5nbzuda/jp3/6pwGo1+t867d+K295y1v42Z/9WVzX5Qd/8AcpFAr8+q//+h0t6yvNuXPn+OEf/mF+67d+K9ZC2ZfDZF5KSsrLg9aaq59b48nfPUt1Y/99uzid4/Xfdw/HXjOPeCnzLikpKSkvA5ubm/zYj/0YruvyG7/xG8zMzAw9/pu+6ZtoNBr8/u//PvPz893PP/ShD/Gv/tW/4t/9u3/Hww8/zH/7b/+NX//1Xx84DuBHfuRHMAyjOy6M+5txSDr26nC7x2Af+NlPs3Zhh6//iYc5/roDty2frzTSse+dIa33V560zu8Mab3fGb4c6v2W4rz83b/7d1Gu5vxfrgBgCIUhRi++qI5VSmDV3ZpoYk30qzx60zxdMlmuhi+IORGTowCvMevcPWS228v4/3qJJ1ACUIFJ/KubZqhAyaypUIGSn7/EdQWuG/2yGyZQAjh8RrB4IrlA6fiDgrnTRuhizmAB/XIbFhx/tUmx4/oZ0/p9bF5yz9dlMQN1PExk1CE/ZlCaCW+aw0ROlz5j+wIlKaNFAiGiq6nDkuJk4IOItMFFusYeXHoqpkAJ/O3NWrO3ATfOJ49xv3Y1uUAJ/DBwc8diHuwlL1cHoTWFsubogwbZ4uB3w6hsEi5QglABUIetm5rlS8oX6URNGIXkvXxxtEAJfEelLhLmjkGmfzNIRPm0YaANA7cFFz6dTKAEkBszKc/I4QKlkPM+8pDB0Udi7vQLCJSOPCCZOtj+2RjtQFsGIm9w16N+aMKeYoUJGwMUpiQn7od8yMYaY9givG67XkSIoMy6wqwP5r1eMUcKlCCqn+/Nyy2IUIFSh7xSfJ1qMqPCBQFhAiWAF547yLWjDXYmo59XY5lmqEAJyUiB0i9sPtIVKAEsf6nC/Px8KlD6CmJ+fp6v+Zqv4crHHux+dsWd5oo7aMcdRMp9B5kglvCwxJD7bbwBR7b5/M6gQAn80G9h5BuCI9czyCE/LaVGyt4CxRYoQXcxWgvBswUzVKCUXTdCBUoAdtZ3JxpGv0AJICc0x0oOIZsLe+gXKBUsxdFJGy8vcPOjh90dgVKppJie3r+31RARZ5DZRc3kXO9nOjP8uaC1H/rVNML7qKjnZLMKqxeHC5RgcBxgZqA01XdQRNUEhfU7G/EFSuA/j4Sn2Fr3HaaiCBPlaC1YX0kmUALIZODAgocZd9N9xM+LGEMyoWBqXDE5OXgBhDv8Bza3jVCB0rC0WsPqpkGjJXBzMlSg1ClXEEcJbu5aIwVKAF5APJQ3FWVrsDMJEygBuHmBmxdstczEAiWAfMkP2zYMZYiAQAksCafHbfJGPBFiR6BUMBWHig5i365oJMqAybzLYn5wrDCsOweYK7nMlsIPMqJfw3G1wNMiVKAEYFYFZsi9ddG0WJP792WYQAlANPruXSEG7imj5IQKlDrM7koWN6L71jCBEsCnvHnEwe2hAqWC0eoRKLVf5xBy9AW74MxywZkF4PxnBBsrzZ6d43eKvb09pqb2O+BnnnkGz/P4+q//egBM0+TVr341N27cuFNFfMV54okneO9738uv/Mqv3OmipKSk3CGEEBx7zTzv/MU3cfBrx5DtZ31ts8lf/n+e4sO/8Dl2l2sjfiUlJSXl9lGtVvnH//gfU61W+Tf/5t+MFCjBfvi2ycneidvO35VKpee4YFi3Dpubmz1h4OL+5lcy1Q3//aE0k7/DJUlJSUlJSfnq55ZESu95z3sQQvDX77vY83mUUOn3XniE33vhEXKO4q03YC5krnCYWGlrL0tzmDNFSYeKlVaUyYYyQl2UgvQLle4db3Kq7E9IRgmUOihTtMVKnfLF3ykPsLxncWM5fCUjSqAEcOOa4PoVEU9sFKBe0TTb79ZD0waEBp7jh0/rmUA3jJFipWZFsXHFHRBaaCmGipVWXnC48pnwBVAY4cY0pJ106RNRTB+UlDuiqBHphwpuYmRt1zW766OPe7m4fk6zcmnEQZ5+yQIlaAu3vuD1hBvsP+aWiLilGlWobMXYzTYk71HuDh2hkmnB9KLsFdbEuNV1TEFfP9s3Fec/PWTFKaLcuyua3ZURBTONAQcl5UEgut1QoVKn35ASqrt+2J24aMugUoErFySNCHevKKFSpSo5fzNLsseWoqPk8bIiUqDUodPfF6TiNVN1yua+2GiYOAkgvybwgCVhsNdXRqesIwVKAEjJ55cWcUI0GaHipDaHnhtn8nqef3jl7fzDK28PPSYoTgLYvFrl5s2bvOENbxh6Pilffnz3d383f/7nf06t0nuPRAmV/rTyIH9aeRC9XkJfDZ/AihQrWYrP2wtD3SmKlj0gVrItze6Y/3thLkpBgkKlgqO5Z1Njtp/vo1w26ZgZCZH4+aKF4Eo22kUpTKAE0NCCK60MLS1QYU4oETjtsFWdbnuYUCnooKR7Nf2AL1SKEitJRyEdRW2PnrCi3d/LmNFiJQ3L5xXNkHTdQ17i7vHgdbKyMD4r9sOHjujWhzmAxhkHt6oa1wkv/yjHIaFU5LgzrE5sG24sG90wzNE/zEj3F6GjxUqdV67NLcnWVkKxkQA9QgUVnlZQb0lamdF13vtKuB+mFaIFSh06QqWipZjM9V77KIFSEDcffUyUQAngWsNiTUary1SI06TSsN40/bBxlgh3SYKB7zT+0Lunlodcko57kq32Q7jFxcsKbjoWa070dYsSKq0pk60Y1ztI914XAjevIwVK3ePbQqVDTY8jjd7rPUycBLCxU6KW01QKg3lM5BqRAiXwQwx+vHk49Lt+cVIHVcnjXFhEu5K/qN3DX9TuCU3fESd1+NzHbzI1NcXf+Tt/Z9jpvCIUi0X29va6fz/11FNIKXnooYe6n5mmSbM5RL32VcZjjz3G448/zrvf/e47XZSUlJQ7jJUzOfq2SV+s9MD+O9b1Zzb4g5/+OJ/7vfO4Md1NU1JSUl4uWq0W733ve1laWuLxxx/n2LFjsdJ13Ik2NjZ6Pu/8PTExAdDdwHju3LmB49bX13s2OMb9za9UPFdR3/HfA4qpSCklJSUlJeW2c0sipVKpxIkTJ7jxpW1U3wrKMEelpgFrBf+/iVCKe70WcxHuFB36hUpLKsPeTrzMgkKliiPZi2H131NEU3D3QotTs/uTqVEOSv0YBchmkombGnWJbUeXMcxFCWD1Mj0imbgip6tfdKmF7F4fhl2H9UseUZctjqtSFGELRrMnDE69fsjqQ5CAUOnCky4rF4aHaOrJuz35fs8bJbPhJhORmBmYPaR73KXiMH8M7n598vqyGwy6Pd0mlIJmhaQ6PRZOwl2vH1H3Ib85MS8o9zsxxODeN8DMwfgLrh1HpOc/pdjtvIPFPMfZo3DqtXHtFEIIcw0aUu7dVcXOcsILAFw/q9hZGX1csL9wbbjxIrRCxEZD3ZSUpLI3GOptOIr8hP/fUQTdlIoZeNXRFvlysjpRwK5t0HDb4WxGCJQ6GBsGF4wsdqAvGSpOAlCKh+stJt3hz7ewQlYnbZrF6HT9AiWAT/ymb8n28z//88nyS7njfNd3fRe2bfPZJ3YHvhvqqJR3EGONYXrNUDJNyfiGNdLhIyhU8kzYHfdY2h0uUOrQESrZBuxEOHUMzVspHqi5ZAJjgigHpSBCazJZj1j2JfupaCiJHqIsCQvz5niCzZqJCsTviuOoVKtLtoeEJ4uiXhU060Ncg8KESjGFymHPzYWTksJEvLJ1Rc0VuHFO+w5MMU9ROB6lCTh4Mt7xQXJ5TSE7uKA0SqB06LBHeSyhCE4LHEcMbScvJ54ncL3keR076FEuDn829guVDKkpTGhkHJunABN5xbFp//1olECpg2fBRsPkWmV/XB9HoARwImczFuLANEygFCQs/GuYQAnA04KdloEXNz5fm4YrWa5bxInzFgzvVnENtu0o57Do33C1wI4Znr2DhYZsvGsddFM6rFyOeM5IcVI/NUNQC9TzKIFSh2vN4oBIaZg4CSBXl4xvm8keAYDIuMiJGmKIg2W/QMnzNJ/+sx3e+c53khllxfcKcOTIET71qU+xu7tLpVLhiSee4MyZM5TL5e4xKysrA7vjU1JSUv4mMX6gyDe/9zV8/f/7EYpT/uYJ5Wq++McXef9PfZwrn11Fv5SNeCkpKSkx8TyPn/u5n+O5557j53/+57n//vtDj9vY2ODq1au4gbnFr/u6rwPgf/2v/9X9TCnFn/3ZnzE2NtYVHB0/fpwjR47wwQ9+EM/bf6n44z/+Y4QQvOUtb0n8m1+p1DaboMGwJPmxOz92T0lJSUlJ+WrnlkRKAD/wAz+AcjXP/PG1ge8ihUpScnZashcRHgAGHZUy6wZISRlNIcZMYr9QadZymTLjLf52wr8t1TOsNa2RLkr9bDQMtupt55WYAiWA00cdFg5qvMx+vQxzUfJRHDrqUR5XaKs3fFuUQMn/EkqTvXqcHqGSp0JDoiEZCOPlF3S4o1JxUlKcjr7eYUIlMwdn3pKjPD/C1ahPqNSoQGUjgRgheJ4xBUrdvLVm/aqiut1JHy+dlYHZI5JsLlnb2tuE9aXkkyBTi74gJ5KX6KAUdEbIlWDxjCRqE3r/8R32NmD9WozrFjxECKYPCibmIo/uJZDv2jWo7CZbTOpxRErQxJpV2AtZtB7FydcYzJ1oN6qgUGmIQMmwYOJAdP2HOSiBL5wzQtIIT/c4KvULGotjkBkiKggKlfb7KMWREx6lEaKhoJuSl5VkxyVnjtqMDwnvGaQjVHIUrDVM6nb8623VNU0lOV/N0iwYsQVKoDiaaZEJCHdHCpSAHFBWGkvD+S/t7+gf5qAEgISdQw0aESHiwgRKACtPNpmbm+PBBx8M/T7ly5dDhw7x5je/mef+7FTo91FCJVFqIaZqQ0Pa9DsqfX7nCEKBZcuB0E1hBIVKhgfTdT3UxS6IlBplwnJJ4Eox2kUpQFMKVrOy2y3HESgBlNCc0g4yq/ECz+MoF6UOBamYt/x7Tlm9jkphAqUOptRk+sJBBYVKVtXtcVHqEBYaDwYdlaSz/9tCavIljRgiJOkRKrX7+bEZmD0yur/rFyrVdjVuAke9nnFAwrcQe89j5xaE9sUxKI33PZdGCJQAtrclzaZ/XHDMqUNCUnWQUjM5oSJD5/k/FqvY+4cHfkqoXpeicklRLETfpMLVPWIjX0uj2diWNEeEsuuk7yCLgtmyR9w9Bp1y1m3BZtWILVDq4Dsq+ZnFFSiBZteTNDK9eY0SKJUMjxMFG9l+1wwKlaIESgB5Q5Htu7eDjklR7kqW7HWXChS/5+OgQEmiyRkqPF2boFCp4yBZkh5zZr8l7iBBNyUvC7NZl6MinlAI9oVKO8JgM4YQM4hoGGxbks2MHBneLUjJ1pTsZAIlANMVZGwJAj62sf9MjXJQ6iBzDubcoFC4Q79ACeDpv5SsLtl8+7d/+8hyvRK8853vZGNjg3e+851893d/N5ubmwNlO3v2LKdOhY81UlJSUv6mIITg+GsX+K5/8yYe+rYT3RBw1Y0GT/zSF/jzf/159lbTEHApKSm3l3//7/89n/zkJ3nd615HpVLhz//8z3v+dfjN3/xNvu/7vo/19f0X5je+8Y08+uijvO997+Nf/+t/zR/90R/xkz/5kzzzzDP8yI/8SI+A/l3vehcXL17kPe95Dx/84Af55V/+Zd73vvfxrd/6rT3OTUl+8yuR6qb/LlGcziFeopt0SkpKSkpKymhuWaT0Uz/1UxiGwad++2Lo9x2h0u+90LdQqhSHKorJxvBVr/7Qb39t5Lgi422B7QiVMruagzmX+ZDd06MYt1zGs8mcLdZqFhutmNt0A1y5aXF9Nam9lB96KpvQeSBXgKP3SYp9myNHLfTMHpGceK2VuMXMnTSYOz78t/uFSm4Tqhsezog2AoFFIympbmpWX0x4rT3F9GHJsYeS3wqb1zSNConqpFGFs59U1HaJvYALvgBr80biIlIoQ34sebpbwcxAaVIk1XtR34WtmwkStF8SLj6lWXohQbp2fa/fFN2Qh3GZWoDjD8nELlGVTd+9LGnYt8qmprHXl9mIl6PCpGDxHjO5S9cJyclHR9yjIf3DwZMwfzRZXlJCNhcuihpGvQkvLllUhriDhNEwDK7uZlAJblKJ+v+z9+fxkiV1nTf+jjhLbnff7626tfdW3U23KEsDNozggvzA8dHRmZ+MwyioOIIv5kF+8xOGQZbxARxFHxUVBAT1GXAbxwEcN3Zsuml6r6696tatW3dfcz9LxPNHZN6bmfdk5smiu2ngvF+v++quzIgTceLEiYg88TmfL1MpH9njxR6UikNuwFBNqBBHoARQkZIv9KVZcfYapaM4CUDB8NUMdqX5vOoh39oJlM5/bonV1VVe8pKXxKpbwtOPn/7pn+af/umfWJqL3kStC5U+lW8WoWnfQm9EKY2baRQqVbOKtZkqOubwVRcqra4NMF2EXpdeUmmGKtFi1naEQrDsWgQdRARRFBGcFw49+pdhoUkLjejRfmM0FzLRv79BujkqzUwrBro4+TQKlABsG8amTUi1TrQ6KnkVKOd7d1TKr2m87pqAJoTWjB8WZPq7p23Er0Jp3bRjL+GO15dhdbEmNurk9NdCsSDwG0SuHcMN15ASslmNvL5orz2TSmniPgfeM/sRFEoSP4h/3wRpSdmXXFh1CHqYHoUCL5SspXr/fXQw69PvhD0IlAAE675NWcndsG9xHJR8LdgJ9s/8nQRKAKOZkJGIwa5d2DcwYqOjAx4DXVx0VUsfytqKwzmfGPq6JmwBaanoVR23iM013bsb6EZOsB3lBNqBXKjIXMeLE6NVzXhFs7bVB8QTKAEUBkJWJ5vDlXYSJwGoYopwJ7Pv51s95FuUQAngc//rGtPT03zf931frLo92bzoRS/iDW94A0ePHmV2dpaf/dmf5aUv3QsZ/OCDD1IsFnn2s5/9DaxlQkJCwtMHJ23zrH99E//H//UCZm7beylk/sFV/uJNX+T+Pz9H4CUh4BISEp4czp8/D8CXv/xl3vnOd+7764QQgne96138yI/8CF/60pf47d/+bTY2NnjLW97CK17xiqa0z3ve83jnO99JPp/nN3/zN/n85z/PK1/5St7whjdc9zG/GSmsmd8TfUmot4SEhISEhKeE645D5LouL3jBC/jc5z5HfqVM/8T+ydsSCiH2azGObMN6Bja7zPf2dvPTWakUaaAUQwVheRBmBI/m3Z43oaQPhwcCcDXbq7010UgmQJY1Oz1sihfLe2lFDw9ozz3e3D7asZClzm+eVgpw6WFFaSd2MQBsLSkqBd1epGFZJt5Xy8Wef9gnThQjLUXT5s+1x+K/uSuURgsNQpAbhmrZCJ3iEvgavwcXgDq5IRAW5Ld6z7uL1l3FJwB2yrgAbK30dvirZ9p88XVYU7fbQC5swNmvdH84I5RCN9zD2UGzqbfrSvUkYoRUsL1mumtcwgD8au9t1j9ihGlhj3lXLvYmUALIr2jOfsnb72ghRUensNUriu1OxiVtyr70GIgYw1zjRrJSknOnuueB1n4m2elRWGaHIVP9muWiRaDij8eDacXxPo+8l8HrnnyXbWXzzwVJJQtOQcQTKSlFn4KCvVe/M+dmeNatFztmcyqSweU01VxAkN7rKwuFwbYCJYALH1UIIfid3/md7nVLeFryoz/6o7zuda/j2j/9H0z9+09GprkcjFJSLlnZ0IMrDnplAPrLCKfz4PfP60dxrb2x3PIFoa1j7W8vbfdDSnNqVKB6DOkqt1McLAYUM5pSD6IjW2mGAsV2Ib4IQglBueGEuuxN75JXFvmWUEvKEWTWO7fpetFqO+1Kr33e1TXZcQ2lUhYIgWzYGPE9WLgIqscQYJVCT8l3hUqWpbEdehYqBR6oHvdzhIR0Dioe9Ja1uS3iRuZKpU1IOq/RjU/vO1wTQSBYuNYmHFetE8QNN9uIDKPzrq3HVEMpDbX7SghNJqWpeAKlYrhnNd3LvdfdHgCkotrDXAwaXwkqWdnTxbaFxhaaihJoS8QO8VZVkmpLGO0gI5BdFgJXCzZRw5WW7YVKCpgvOHgd7tFWgRJAIZDMFRyCLssLbZkw5HW2QoutMGY/aTh2gCDo8Xr3BYog1BR6FClNBSFhRXMp09vv7rk+gdSQTvsUKqlYIiUrEIRW85z2te1ZXjByvmM+tZNBlVNYA81lKC3bCpSK+ZD7P7PDW97yFmz76wj//ATzL//lv2zr7HTnnXfyqU996qmtUEJCQsI3AUMH+njp//9ZXPrKEvf88eOUNqqEvuKBvzzPuS8scNdP3sLh75z8RlczISHhW4zf+q3fipXul3/5l/nlX/7lfZ9ns1le//rX8/rXv77rMb77u7+b7/7u7+6arpdjfrNRXDMbSolIKSEhISEh4anhup2UAN71rncB8Pe/9ljk9//99HcCZo9795m6lNwzBY93CAEGoOfMG//KNX8A36U9btW9bBtDNWNhTrM3V4yzmy6PbqU6vgkbxcxAwNhAiLZFrFASBsWhKZ/Rwb2dKOXEuzRSKpDm3OoCJS1lkwiklSiBkvBrOwCWbA4vVcOvmLfl21JXfLRsngQesZu+cRPETtMxTNxuHkui6/XVmsN3ugxNxezWtXPdXtIsnOpVygajhyTjh3t31zn6DNkcpiyGYKhvEA7cKHt2yYnk6wi10ovDRaeyRYNCaPyQYOJIjIrUk2gTRujYHYLB6D2BaIQgNwQHTtA+JFobdlaUEXxZgsjdqDbM3ioZmar9Q8pYYQXdDM1OZzGcG+pECpSgoyLLKxmBWSvaluiaeEZE2Cb4nnHeiKLxvtwdWwBpx7tZVFOYFsXxWZ9cJmbelEClBLm05sBAQNruof1SglXt8NW1DKWgl5tDAcpspvZwU00FihcUKwwECp0O0WnTVvc9dqxjPj+ruHLHJqVBM+YvFAZZKAwC8A+L0fHfS8seDzzwALfffjtDQ0Ox65jw9CKbzfITP/ET/OEf/iF+Nfqe+GrxKAAl5VKqL6D6Kogbl7oKlOphb7zQwgstnKpkcj6DW+3hfhAgHL07VselLOGRPpuSIyAixFk7UlpzoKpIo1FOPNcUgIxWHNR+Ux1VzDlWNuzk1wVKyjZ/UQRKEEYoY9xts/YIXdkU8rdOtSoIOwgZ6gIn5TYKEEQsgZLwauuehjnNzfTudJcdEowdit8/6qHSNhc11R6FUZYFo4csnFTz3NKNTE4zPq1RtkTVRaExXgoYHtb0NQhO6wKhOI5KrTSun3rN35j+etZhunbK9RchLAmTYyGu0/1Y9fnY8jQDMmRqoLf1stcnGU8HjFi9OgwIruFQVCYkV1ytzIAVcijl7zrA1UOedSNjKSzR2M7mv93HhP33dr29ddvbQlAOZOSY0GkcAUFFSdo1RuNvZllTMgniO7+FDe5rQ4RM9PCaT5jRhBnNqA6ZCHq71jqluNAvmU/1Zj8mai96uNne+uTomsPYqpko+pwqfY5ZPH9xo3N4M3t6C+fw3tsiSktU7SJfrEbHn/7ff1TF8zz+3b/7dz3VMSEhISHh6YkQgmPPneZf/drdPOPlRxH1EHCrZf7+v32N//3er7KzXPoG1zIhISEh4XrJ7zopdXqbNyEhISEhIeGJ4usSKT3/+c9nZmaG0/9wDdWD939Q2yCwe4kXAFwQNo+L7jtI6Y3mh7fHBzzu7O9N3OSp+mZzj3W8bHNhsdc3JSUpV5PWzWV1EyrZtuLkHZqRkd5Kyw7Ckdu6PLCPECoNzch4G1ENQiXbhcPf6ZAbjtfV6kKlsSMOB5/RuyLn4lerbFztUTUEOGmQord8849rLj9Uy9OTK495M7+JLptOW2tw5l5lRF89MHMcjtze6ADwdYqMOjA4CTc+12qvw2kpuy5Umn9MM/dIlwaMOGbg6/huSLU+ub0CZ+7TPbWjUAo3HUtftI8LXw3ZXOytzYdnJLO31caQHjYyZ2+3GDnQUMkYLiapHEzdIPeJtrTd+WTHD8LkodhVq6G4+VbN9MEu4U1aNuqzKiTVg9CoTr5i8cgFh4LXi9DU1M3rye0BpuyQ5wyUcRsGguxi92Os2JJHMy47vRQXmGoqm55m8M+9d44gCPilX/qlHgpLeDry+te/nqWlJb74ya3YeYQAIc3cs2/+6YDvKjYmq3hdwhIBXFjbC39gh3ByU9MX3xQRhCCoj1s9zFVFKTjtp6jEsXZrLA4jcMrsNI8R3UQJ43bA0VQvJ2YYyQYMpDtv3rcKlaTUDA0pLCuOmGRvgz83oBke72HcrG2wTFxHCLbiFixdug7RjqgJonroj4EPC+eNYybEFyppDWEItIo1ugiVVpYFm7XfFK0ORu2ERlJqDswEpNNfn7CoE43HmxwPGRxo34itQhkRaoIQ5q7ZVKud58fW+VjrWNquXbw+k3++4LBa6e23kU4bV6R916wLW4HFJd+hN8cnzWzaZ9A2/UnELDJjKWayfpNosb0waY9BNyQXIdpuL04yYqOZjE9K9vZbZcBS3Jj2ugqVwpbwkK6ncXtse4ArwmbB6zG0n9boxvE/Jie2NbNB81h8dWuoa76NUZ+dwd6ETbom/BQxxuI6Yaj52z+9xgte8AIOHDjQU3kJCQkJCU9vnLTNs//NzSYE3K0NIeAeWOUv3vQFvvYXSQi4hISEhG9Gius1kdJo4qSUkJCQkJDwVPB1iZQA3vrWt6ICzeff3xxXqu6i1Eijo9JN64rnLxHp8FF3UWpEubCatil0UQq0CpQANkOLJSzi7IQ4DSGFDvVXuW3UI3RELEclp6hqYYX2xE1xHZUunbFYXt7/BmknoVIQSJauCQo7RIZ56+SoJC0TQgw6bPK0CJVyQ4LscMu5KBXt0lK70IFXE3f00NO0FKxeCbjwz51jtukIIVVlB5Qf4wFyQ17bhRue6zAwLmLFAKu7AKigJXnMfYMrpzTba1EH7uRURc8CJYBSHopbuvPxY16bbptsfgUKG22EQ23yCqVQyoRTa0ub+l15TJNf71ilWiH73b2E1rE2DetCqqN3CCaPNnwRw01JaI1XirhuXcaw1UuKy/f7PQmUTIENW3lRGz0R92o6B4PjoqnvthMoNbop2TaRrl5NzmaNeWtjzOJVwVaEa9NuFSOcRDxPcvZxqyksZmTemoNS7V+AGY+dGC8yBilBkBJMpEO+Y7SMXWsQJx/vGmy7khVl47V01m5CJSUl8wMCnd1fTjs3peHFDIcfGoag2UGpkVY3JRUoHvnseaanp3nlK1/Z7XQSnubcfPPNvOxlL+NzHxtEt4xjdRelRuqOSjoU6HNTsJ2NPG7dRakRT1nspOk6TzQKlAACaUL6hjGcWgCqW+YtNVtpbi4E9IfauCnFcFRytmxUPbZwrT3iOCqVhGQ+nyKMEDN0EirthJIV3wJ0ZJi3dk4olmwemusuSq20CpX6cprWKEHSU5Fh4naFSh1Ckgkv2HNRaqqgYGnOiI56QYUQ+vFCmDWmGZwQjB+uu/11L0c7Ftqx9q0x4giVKiXB2oZFZKN0UN0oJdBatD23KKGS1lAqyZooqv3aKa6bUrt09eOWKwKvjWaunWBGhLVz6yDkiZqPS1XJRszwcnWBEoBGoLRABiBjaEPCtKDfUtyQqTbXMIaGJbQEXsSJd3NTulhy2fGtSIFSo0NRU3Vqv2vrXTKqvbXc/3mfo8i0iJQ6CZQA7JqRZ1RvaFc/GWhKSrLk2x2vdatACWBd2SxWuouN6g5KwG4IayUETiHGeJBS6JTiRDlkvGEjN9yJ8ZKK1hQGQooRSbsJlQJH4/ZVdh2UGolyU9IK/PMzhGtGwdnooNRIq5vSff+wzfpKYdd5+hvFG9/4Rh5//PHrylsul/njP/5j/vIv//IJrlVCQkLCtwbDB/p46S8/i3/xujvJDpsJNfQVX/uL8/zFm77AlQdWuhwhISEhIeHpRCEJ95aQkJCQkPCU8nWLlH72Z3+Wvr4+HvnEcuw8QsBSDi7s31vtyogV8OywgoxtoQKrymYhcAkzFmEm/luapcBixxPUHz/HDf12ZMrnxoPNOwZxhEpSKuyoN2s7CJXWliXBVucNmlahUmkbLj6k94eGiqJBcLBwKuTKQz28DVTb1Ll0n08xYiOvE0EF/A4OKFFCCICBScnMSbsnF4bAg4XHAwob9dgO8eqaHYQjz5DNmpM4WWWHcCpt6m27cOgkpPtiVW2XrRVYnY9Xp07EEfSUtuHa2YgG6JL3wAkYmemxXrIWsq1bvVo2FicOweSRzll2szb0g2tnNZuL8fKBaa+BcZi5sc0JdBAqqUBT6TEEDsD8wyGbCyqWg1Kd7RU48+Vwt8t3c1Cqs3jZuFk00u6erCN8zea6pFyKThe1IQoKN4aDi2rZfBzKKe447OHGCC8XNOSthoK8JwliTo1B1vzlsTinInb5OnBDxeM2v7MQM4rCaJXN6RILlfgTqPenN+F5Hm95y1t6Li/h6cl//I//kUceeYT+i++JnacsHMTkDuTiTP4NaMiupsjt9OCEImClDzwbLEthWfHm1UBA3hYEjWN3DKGSqzW3hD7Zli38OKHf7DZuIe2ESlUtySuLzHrnerWKDlYLNlvleAKPulBJKcHVBdnV8aapXNeimBdsrvTmSgJmPaR7dDMBGJoUpLLxhEp1CpuajWsNbRhzmTg4akLgNtJNqKRsgZQdXHnaCJX6+jQDQ52vc6uISGvB5pbE92OImbsIleIImXbyknKEiLeTo4/raMYHA2Qby6Do+Zhaeo3lda5Xo0DJEprprI8b0wEoTJt2KyrJlYrTUVzTirZg0vHJtimrvVBJELYJydiJUiBZKBrXpjgOSnUWig5rlb2xoJtACcDXgvmSs8/psZvzW+jDdth+3IkSKFkxQ8TtipNqHFUBkyqeQ5FO1ReemrwlqPQw7qTTPulMwGYWSj2Y7goF40suQ6pHJzwB1uQmsr8cKU6KIgw1n/ujCe6++26e//zn91beE8zW1havfe1r+cVf/EU+9alPUSh0/5Hx2GOP8Ru/8Rv82I/9GB/96EcZ6dW2OSEhIeHbCCEEx++a5kd/7W5uf9leCLj8Spm/e+/9/N1/u5/8ShICLiEhIeHpjtaaQhLuLSEhISEh4Sml17hkkbzuda/jV3/1V7nno+d57k+eiHRRamUnI9nJ0KuLP74QKAm2A1Evgrcjg+Kg43POdwgzEqu8v+BGFyWAtbJNaxOFjsCKcOpxinsPxPNFgWXtfyBcFyqJoDm/XTabKzfdFFIuCy5f3v8AtC5Ukn7zg3cpFZOHYXsNKsV92fbKlrJJdAHgpsHPxxAdWRLCiAf+ccQ8tQ0rN6vxOtQvipmTNqUtxfbV+MIo24V0X0O4mKgNswgxxfZyyzVVKlJI0roBJy0jllGNbjmKjqKfI7caYdPFh9q0X5t6O65A9hBmAEx72C5U4jjCtIluGDdMie0ad65KvuHDGHktF+wol6gObTg4BgdvtDhzX0hQbXOdIz6TlvnbTVILMbEva0vfzm9GVVxEbmzW28tNm3BqvaE5dIfF2uWQ0nb8XHYKVCji6eva9e0YAiURKKys3Oci1k2gBDB5UJMvKYr51g229nmzWbjhRMDlyzbbOxCkm8fVVnFSHc+XbJWs3TnCKSn87P5ygpb8277Ntt885jt5jd+/v5ygZkYzI32UhiUdP7yJTocQquuKvnhZ9UMMseI/LN7ES6bPoDzFhz/8YcbGxvi5n/u53gtMeFryL/7Fv+DZz342v/Irv8J//CONECLSRamV8kAAWGTpRXBs/uOHEi+0cK34eQcrZlrJp41YKQz334d1FyVTlmAhHbGhLjWoiHlx06T1gC0hCaJckWq3pmzZl3a3BX0i5JDjc85L4XdwVJItc1RGKgZTIdvVzqIjZTc7xwg0QoDdRVwORqhkeQpzAfaskaIclPbX20IIjRWEqHDvvCIdlBpwM9A3BBuL0fNb23xp8Goh2LQQkeuG1rk20h2yzfpJO3vtLKT5a0X4YVO63UPaEtvWHJhVLC1Kqu20oaHe55IoLIhYzu8vW+kGcZfGcUx4OR3jVmnO2/x517xaY7umLNVwf3TTUQhhHBEJ9T5hc6c5eWokxA9gddvG8jShu7/ejQKlelmt5pMyiBbm1AVKAIEWBDqi8eu3QwsmqSYtNKW48dpqDFghKalZ8zr/LFZu41igsSX4u5XqjJZGJLN3L5s8cQRKYELfBbr1WnXOkxKKnKVZr8mOGokSJ9WZtgIcobkUuFgVCFuez7eKk+psC4nfcJ87BYHfFzEWpBrGMCFYTu2/zuGOizWwf5BIp32EhvECbGQhiKf7BKBfeqRsgRdD+NqIECAGK7EeWVysTnAstcK9nxTce++9/Mmf/ElPZT0ZfPCDH+TTn/40H/nIR3j3u9/Ne9/7XmZnZ7npppsYHh6mr68Pz/PY2dlhfn6eM2fOUCqVkFLy4he/mFe/+tVMTk5+o08jISEh4WmPm7F5zk/czI0vPMCXP3KKxVPGQvrK/SssPLzGnT90nJMvO8zD3hxr/g5jzgDP7DuG1WPI6oSEhISEJ4fKjkfoKxCQG0lESgkJCQkJCU8FT4hI6Z3vfCfve9/7+MLvneHZr4wOURNZuFKcXIVrOVjNmR9mUaHeGtmWFvfWHma2/pSLCvVWx5GKCTtgMbQpKAgzIlKo1IorFZPZgPmCvVtiO6FSnfX89TXrwoKF12tIr0LI8Enwq51FStAsVBo7AJOH4PSXIdZLrzWh0rFn2VQKmmuPxX8LdXBacuCkw7kvVujFOMRJC+yIDZBOgoiNecXGfKN6okXA0iZv/xikMpK1xrwtYo7WDbbSNlx8oM1mYQeh0uq8itTUdCLw4MKDvSsaJmahf1Rw5isx87YIleIKlABGZgSjs5LHv1DblYuZd/7RWoFdwqA1UtyGa+fDPTew1uvcpoGXLu3/rFWo1CpQyvTDwCgsX2G/iKtFqNTYXmvzNPenVqTcJ/QzQi8RuQHbiQO32FgOXLw/pnhAKdyc5Ph3Wcw/FpLfiV/gzCFFul9y9gHz7zgCJdAMjUG4vF+k1IlKBeavGoFSL5Q8ydxq53JaBUpjqYBQw2aXTUrYEygBjIsQJWApjBYpZRclpen9/eBsrruo6b7HjvGsWy+afyiYOt9PMSfZGozvTPf53z/D+vo6b3rTm5A93GMJT2+EEPzKr/wKL33pS/meLxzjO+4eiJ+54KLzWZjZ2h0qo0K9NbI10n6h0BrqrZGBCoTSiJSgvVCplb5AIYB8o3iyjVAJACFYbGtR2J6ilsz7Dj1o3gEYyocMpBXbVUk3gUKjUOnQsE91U7NBfEelnAyZGFdcXZBQiT8nT05rgjJsxDc6NeIVx7gOqR50bCtzLW5CLUKlSDGwgL4RKOdbBEst66dW4dHWaof6twiVVK3/hCGsrkj8HtfYOz3MjY1iowPTIevrgkIhXv5WQVLcUHAA0xMh23nJ9o4pO47RS9UTLK30oO6osZGXTZFoW4VKrQIlgEAJrhb3z3etQqVGgRLAkB1SVYKyijihFqHSnpZJMOd1Vu6EKYFVbXlZRIDTo3DFkXB0wGO+6FAK4y3qtYTJVIgjNQtFJ7ZAyRKa4/0e10o2+Zoqp5tACSBtaYadkI2yjOXoW2cltOgh+S4bsnufahQoCa0Z8xUbjiSM8cMonTa/PVMBjJRhq0MEhqtbQxwc2mr6TDmarenuP0S/uHGCF4wYu1CVT6PyGcTUduzfblpr/vqPznH77bfz4z/+4/EyPcm89KUv5Qd+4Ae45557+NSnPsWDDz7I3/3d3+1LJ6Xk2LFj3H333bzsZS9jbGzsG1Dbp55/+Id/4B/+4R9iuUwlJCQkdGP4YD8/+OZnc/GfF/nKH5+mtFUl9BUff/CLfHHsQ+Rze3PRpDPIm2Z/mJcMP+MbWOOEhISEBIDCuhmfs4MprIgXoBISEhISEhKeeJ4QkZKUkje+8Y284x3v4PffU2H4X8bLFwDpENzrcJMYCwNCCzYte98b7lHsKJsvlSWNOx+NQqVWF6U6GVsx0xewWbUoNOhy6qHfLF83uSjVSbuKkf6Qa+v7H8y3c1SKsxkS5ah0+t6u2fbKrgmVtlYhKIXxBEp1LMnWssYv9Ra6rbCuWHjMJ/TbvP7chrmv1Rq8tukjlI4piKBZbNPOUamB/lFJekCw1hoarY3rTCzaCJWKWzHy1jf3elUztbB2VbPZ6hLVjXqde8y2cU1T2OxNoNSIUMqEJozR3EEVNpfaHej626xVoASQ6YPhKcHy5S5hWa7HFqcuVKrt+gUVuHhvj9vlUrByOSTG3lATKoT1RU2xTfi1dqxeAbumJY19PyI4UxfZ1YbETm4Nu3VUko2NiM/bhmyBwVyAI2GtRSxad1NqFSfVmcoGKBUtUmp0U2oUKAE8FKaRMeMU6XQISnG0pJhPS4Iexpbl7UEGyw66L75y4O/mbuCRP/47BgcH+dVf/dXY+RK+Ofj+7/9+7rrrLv7+9xXBM6djD30CqAYuKkyRteOHfhMKskWLYp85SBxHpauD0BpBqVGo1OSi1MCEp1BCsE/zXRcSKLHrorSL1gxphScEpQilZ5SjkkaQj3Jrac3b4qi0VZFsVeIPunWh0krBRhR6UP8AFSQbxd7WTwCb6wKlLJQrkF7Y1UUJoFqClSu1cur2Nz04KjXSzlFp93tgYEwQeHq/q1IXR8pORDkqaS0oxXHzDPfOvZfQdbtl14RKi4uSoMepvN5WvQiUAJaW5V7I1utoMxFqtCVizckVr32aKIFSrVb1ktrmbRUoAQzbITuBjBYpNR696VLvOY51oi5UqhsubfoW+PHu57qbkg9cLTlUYgqU6hR8ibB1bIESmCViY1lxBEoA24HFdtAspOzkoFTHQxIV0a+dgxJaM65DtoTV5KQEe25KTe5JNTJKM1NV5C1JVES6RjelukAJoOLAmfH9c0s7+pwqTkWiQ0mQ7u03rAptlG/3JNr65N9Lzj1U4n//71+LdFb+RiGE4K677uKuu+4C4PLly6yurrKzs4PrugwNDXH06FH6+nqMLf4twEte8hJe8pKXcObMGV7zmtd8o6uTkJDwLYAQguPPm2H2znG+9pfn+evz9/Lp/8/D+9Kt+Nu88eJH+LVjr0qESgkJCQnfYPZCvXV4GyIhISEhISHhCeUJs1V429veRi6XY/3PPouK+2ReSu6dkVzrl8ZKPe4DQKW4KfA5EppylBv3ga3ERpFu2FAOM4Iw077gbU9y/0qaQpuH13WxUiu5lGJiKMS22z8M1bbYF75tbCzkwIHu7acciWgNwRbzamopCaqa7ZV46RvZWNDk13rbQAk92F5SZhOlx00f2aAriyuIOP5ch5mbWp7+C9HWRQng2hnFxfvabBwq1Xaz6qbnSqaOd6hMxOVPZWF8tkOeNtz0bMHkkR4yaI1XMS4FTwWBZ9ylehEoSQm33G0xPF0XosXbPOgfgaGJlg+7iNGkDbc+X+zPh9kcbFf2xiKcvqfDOVn7Y5k4aXNe/e0NRhoK38sre5WN1gR85R0oRoWk64DvC5Yvx3RSa6BSgvx6LwIlkLIhvInWsTZDcznF4cMBUja8da90R4ESwGhOMT4YfS+3EygBPLrpcna7/UQSZFsFSor+Wsgs1WXw1enQCJSA4QBuKoUMd3Dja2ShMMhCYZDAgVPHfbYH4m+wFd/3VcrlMv/lv/yXxEXpWxAhBO94xzv4yle+wj2f2oqdT/d5qNktkJqScinF3PFOVSXDGw52YO4jL7TwonaWG8uq3XKplnHGshSW1b4vz2UsLqc79Nko1xMhGFchA13mEeWAXdobCyw005aPG0NsqFxwCntCCNGDcEjZ4G9D0KOoIVSC7YJE9+gCVK0KfL8h/G0PNGm8Ygwd6T44ePN+F0DdSeyjYeGMbr9GUftdlACy/TB7Q+f6CD/cdVHazZfTpFLx2qFe51xOcehQSC8CMaE1nieawq/FztujQAnMXB6GnQVhrQwNKmam9uZJEUuIphnIhtgtYYctT3cQKMFYOuRIf7T7qgyiBUoAlyou651ieQkIW54dTzkBh914N0q9XIHu6T4GI/TRCIqBRMUQRTVSEHLXDSku9bICS8QWKJlzahirdDyB0oQMGBDNayihOgiUMNrzCR2SatOOUQIlgJIlebTPptIaD7CBdNpvEig5IUgVT6DU51Tpc4wQN7vt0L8RowFqKC1RWiIHS9iH1mPnC3zN37xrnmc+85l87/d+b+x83wiOHDnCs571LF784hfz3d/93dx+++3flgKlhISEhCcTN+vwrJ+4ift+qGbp3TJ/1WfO98z/D0Ldm5A2ISEhIeGJpS5Syo0lod4SEhISEhKeKp4QJyUwbkrvfe97+fmf/3kyf/BZZv/193B+RNLnKe5YgUfHYDstObKlmCzBV2bMA+1nLinKFlQdWFjP8F1BmVO2w7plczjwORAGfDllnkJ/h1ehKgSnnBQPWw53+lUmgoAV2+bYZsBs1ue+ktlFPulWCBGc8VJIFN+VrnDZdzjs+Eg0GsG9lTQguTWsIEfgXO3h5XeMl1ko2KyUHUZSisMDPo+sO4Bkts/HtTRnNs2C5ZnDJVYsm7V1i/5syKEJn3NXXdbzkkxacGQy4PyCeaJ8y6EqG3mL5U2bvrTi6LjHhcsWfiCYng7JZhWlksRx4MQJn3xesrxskckoDh8OmZuzKJclk5Mhg9mQC4+bNjx6qwlHtTQHm8tw5CRcPQelvAnrNjgGFx4y1+nISagWQ5YuQv8oHH2mzYWvBhQ3Tbiu4QOSCzWxzuxtksCDxbMKacOxZ1osXwyRQpLpg74xm/NfNpsBB26zzYbTYwFIOPFcl9WLAdtLisEpyfTNNttLisXTATMnHaQNVx82D51PPM9lfS5gc0HRPy6ZvNHm0n0elg0nX5ymsK52yzn+HIfNayEb84rcsGD6Foe5r3n4FZi8wSLVJ9m8GlItw7FnO+ysKNYuh2QG4cBJm/lHA6pFmDgqyQ4KLj9ozvXod1gUNjWrlxWpHMzeZrPweEB5B8aOWPSPCi7WnGCO3C4pFxXLF2FjUTF6QJJfUxS3YfQADE1KLnzNPGA4dLvAr8DiBY3twtFnSIpbiqFJiVaKoSnJ+ftN2tlbBGEA185ppITjz5SszGm214wgx05BoSZEOXij+e/Vs+a/N3ynYHVes7ViruvUEcGFBzXpLMyeFJS2Yf5xU/8T3ynZWFBsLEH/MEwdl1x6WBF4MH1c4DSsxY99p2R7RbE+D7khmL7R4srDIV4FJo8J0n2CuYdN/W96nsQray59TZPuh4O3WFw9FVIpwPgRSd+w4NIDpr2P3GlR2tKsXFFsLWomjkoqxZByXjB2EAbGJBcfNMc9fJugWtIsXQQ3DYdvk4SBRkiBtBXDU7X2FoJDt2h8T7B4ASwbjt1hQrzlN2BoHBCaUi102OxNJgTMtfNGLHX8O4Rp71UYHIeJQ4Jz95s2O3Cj0QPNn2nf3hfvN4Kf6RslTgrW5hTlPBx/lmTzmmJjAXLDMH2DxeUHQwIPpo4L3IzgSu1cn/EDrunv/xyQHYSZkw5XHvLxSjBxTJIdlFx+wOz2H/0um8KGplJU9I9JsgOSq6cCKvlae48ILn3NtPfhOy0qO5rliwo3C4dutynnNUtXTLsMjO/178O3QrUMSxdN+LmjtwuuXdQUN+HQLdA/Jnj0SyB8xexJQRDAtUsCaWlO3AZLV2BnUzA8phk/AOcfg1vuBN/TlAowfwVk1efGO2B5yWJzSzI0qJiaDjl71kIpyexsQDajQRijqZtv8llZlawWJCO2z8xMyOmrLoGSHBo3Y/L5JTPOplOa9VrYm/5MyOFxn7PXXMrS5oRTxc1qTm2bTn7HSIW1imSlYpOWihsGfU5vpSiFkkM5jwFH8ehWGuXAs/wyaynJJZWij5Bn2hVcobjfzzAoFWMi5Ku1HdM7rTJ5LbmgUqQcxXOu+jw0YbHuSoZCRVlqVmthS79r26dkwak+h3SgeM6Oz6mczWrK4lBBceRr/awfLxJKzcSmTSg1lw4GyABuu+hydSJgY0gxtimZWbV5+IQHEoa+4vLgl+5hdnaWN7zhDSR8a/LiF7+Yl73sZTz6+49yy6FbGDq5DJZGrPQhQomaNgOevDSCHimhBytQcpBLA6ixAliKs8uzjPqC9XEzJ08suRRzIcX+ELcqGFl3WJ3wqaQV+X6foU2btQmTVl4cYiQFG1kjRJrdhvlBqNowUoL+Kqxl4egmlB3YSsN6DpwApq+6zKXN56OeYthXnM+ZZelsRVGRsOpIBHCiFDKflhRtybCvmNyE87bZeD8Y+gQIliybi9LmuAooKEVBSgZVyKQKOWub8eFAGGAVBUvYCDRHbZ/VUJIRmkEZ0i8DLgUOGsGkFSDRLNZCOR6zPbY3JAUsMrZidtAnVHBx02UkE2JLWC6a+h8c8NmuSPKeRdpWTORCVhckIYIDEwFCwtUlk3ZqLKRYFuSLEtfRjI+ELK9ZBKFgoE+RSWnWtiR9/YpsRlEpSfI7AtvRjE9o1laMGKlvQJPNalaWzNpwbDLEsQUb6wIVwvgBwcaSxq9AbhByg2LXNWlkGgIfdtbM/4/MCK6c0nhlyA5A/4hg+aJJOzxtjre9ohESJo4IdtY1W8uaTJ+ZI+pphybNWLy1aP49eUywvaKpFCCdg8FJwcoljdYwOCGQFmzW0k6csNjZgHIRUhkYnoCVefAq5m9kCjZqjooTsyYMbHHHrBOGZyQri4oAycCQxnU1jgOVMgwOa0pFQSEvcFzN2LhmdVkQBIL+AU06o1ldEWhL0N+vqFbNOdi2ZnxcsbYmTXv3KXI5zfKyGcvHxhS+D9s7kqHBkIEBzdKyhecJcjlFf79macmkHR1VhAFsbUuk1ExOqt1wz9msYnBQs7ho0o6MKLSCzS2JEJqpKcXmpqRSEWQyiulpxfy8xPclI0MKhGZj0wI0M1OKrW1BqSxJpzQjw4rFZUm5LMimNaMjIesbFkjBzGjAdlFSrEhSjmJsMGRpwyZUgqG+kLSjyKTA3xSMD4YUypJ8WSIH4Fja44rnECjBcCogY2mulcx90+covJowz5WK6VzAYtHGU5K+wZA+SzFfC9F20PUpKcFGYOMIzcGUz2LVpqIlQ1bIgB1ypWrSTuV8qlqwgY2N5lDKZyuUFJVkwAoZsUMu19JOOz6BFqwGNhLNkZTPcmBTRTCRCjic9bl/K0OoBZOpAAWsVs0YcTjrs1q1KYaSnKUYSwfMlRzGUiGupQmVYLli7uXDfR7rFYtCYJG1FBOZgCtFB6UFY6mArK1Y822KgeRQ1mPLt9jxLdKWYiodcLXkEGjBqBvgWprFsgNobh2ssly2WVU2aRTTmYCrFQdfC0bskKyluFo17X0w5VMMJZbQDNshAbBQcahiMe6HZDMhc4Fpl1nLp6wFa8rGQXPI9lAIAmUxJEKGZMjlWtojpYByGpaljaU1x5TPgrQpCUlOK6oaCrWd14MqIACWpI12FSc3QuYHBHlbMhgopqsh5zIWoRBMV83692raQmjNTaWAaymLHVvSrwMOXHFYOOijJEzmYWoHtjNweQSOr8NqDnbSkPVgesd8HkqYKYeUL46RObYGgOVLyn1m3rIrksG1FJtTFZStyW062J7F9qQJ7zCymOah7Ru5beAaIu0RLg5jH1xHpALC9T50MY19yBw3uDKGyFWwRgtoz+bvfrfM2sIaH3r/hxBfpxtuQkJCQsI3hk/6j/CLD//ZE3Y8TwVsqWJbs0cNLPtbfM9D/wW357fW2vNvJ1/IT06+6Ak7XkJCQsK3OomTUkJCQkJCwlPPE/cLCHjta1/Lf/2v/5WzX/pnst/73XhikKCvxI4LQe0l27INOw1vgeZds1l1dAs20WwLiScFCCgj2G5wf8gLiVd74FeWkm3LPGxGKSpasKPlbjiPotoLwKOAvJJUteC85+KgGK05HKU2NeWsBKF3QwYUfEm19kDdV1Dw4fZRj7xvUfAlQcObzsWqpBqAcgS+kJQq9bALkopnIXSIRKEw33m1l0EDBcVyLdKTLSgHAlGWu5sSBw4EeJ6pQxhCuSwIay+2ep6gXCtfpyzKniJc0exsmOOVC+ylrZh/1ykXIKhndiSIvTfm/aqmnN87t0oBwnpIOgXlvCaoKA7c4hD6oilttaCb3tQv7yiCqt49buBp+kZMKK9qSSEb3pot7xjHH4DAU5S3NVqBV4LNhYBqiV23mXLebLCBqVt5x2zeAHglDSg2rpoPyuNGNIOUhL6pU+ibt4qrZd3kWlMpacYOm/SlbU15RxMGgJT4FU2lYN5S10JQLiq8ksm3uQipbC0t4FWhXKi1g4RqUePXNp5UrQ03l+DaeUX/MM3tXdSo+svLQlAu7OX1q2ZDsLhdT0uTu0G5oPFrUXtCv3ZcBeksuCnBRkNIwnJ+L21QS1s3nqiWNMqHviHT3pU8eOX2aRsftGgNbs2VTIUm7W67lBVlZ6/ClYKmWlGgYHVeIW1JWL/nSppKS7v45eY2XLuqqRQ1/aO19q71j0rBvMVcf4e8nDf1BnMvbK+w29cqJXb7jjkuNdcJE3qmfh2Pf4cgDHRTmL5yQePX7+VaWi1NjMFqURF4gtU5k7+8w16frbWhVqbBqiXQqubyFSp2lkPy66ZSYWD6bL1PeGUQdecRae4/r6zJDkiyA4Lyjt51RfLKze4UlYKmWgttGWoL34OhKcnWiqJaEVQKje29V1+tzLmFtXO1XNlkyFEts3uN0WYzud7evm/+jYKVayBdCIOG+74kdtvQD8y/632rUhZ4ntjd/C14mkptgPYDYcbZen09sRsmxLYUxYqkEtTHTkHBt/BtCQoqviBoMAgo+AI0fNdohct524zvtfOrhAJpi705JRQEOxL6IECwpgXF0GUTiaM1Ow03ZEFLipZEWRACO0g8CdlAUUaz0eAOkrehUnPECiVs2xJfWQhfUhGKbUsytW6hBeSzirDBxaKYUfiOaQnP1hQzimuXR0BKnL//GyqVCh/+8IdJ+Nbmve99r3FAeKiPxeNlkDDjVtENYZJ01kfbtc5vKch6yI0sOIrAbnYLrKYUoW36mZLm31qY8d5LabTQWAGEthEY1Y0mlYCiY/4L4EvzfdGFuSFI+3tpi+tZCpYiFCajh6DYsC4oSXCV5rZCwJmcRcEWhLU6+oLdcG5amPVgfVmmhaAgjBTdpDX/rlMRArs2cSkHilLgh5KLgU1aKCwd7r7RXNUC0TDJlbQgrNl3eI5gM7R250cvFE1R0SqBIKg1RKgEZV/sRXF1BI2GOVWP3dBgSkGlupc2CKAqBJkgZGRSk98R+LXjagWVCrvjZhhAtSF6n1eVZLOKlFCUNFQ9iekSIYHP7pwAZo1RH8uL22C7tfWINvN4tcRuGF2/srcOQJvvgiqUK+Bmamkx6f3q3noIZb6rz2lhaNafY4fMfBlU9e56VDuWSRuYfCo0843GzDH5LWiMolQt77VhYFlUKjVzRaVrc5JgbcX8d2hYNbd3ZW/5GoRiVywkQk25LGtrcYHWmmrDtQlD0dzeHrvzSyYLSu3Naa1pfQ/qZqhaQ7Wy54SkfPPv3bT+3lqlnlY1rF0sCbZt0gVVE7qtTqXK7trK9K1ae3mCnYIwZoy1+ccvaqiYOHtKCyre3nzvBwKtJUub5gJlXDOX+lmJozRl34TPDlKmfzbuweV9SaX2I1BpQTkwx/dzAl8LE86tZvhTVuazfitk3AkohoKwdrTdtECYhooW+BhnIeVBSQkKocTTkqxUTWHiqmrvOFqYtIGGICMoepLVqr17b1fVnq+SBkqh3L23A6AcSgSaXFrheYJqg2NWOZC7xwk1lIK9NqwiGLA0ozKkGErKodwdI5Q25dTHBa+hDk7td1pQu4eUFiZtvX9o026717zWhiVlxiTHhtAybexrKDW0S1kLvFp9FVDUko3QwkOSE8qsY+q/3xHUu7AGikISAlJrAqAorb3fagh8VxNaJqReQQqChvG7YEkOVBUpDRv2npWyxnwX2BpsRRAKCpagsJkmO1qhasHiAORrL1MUnb3nC6GAkguOHWBJ8CxQQpDRIEOBlwkJa/HltdR46dDMa0DgaCBE1v7tp0PQEC4NYR1YQ2Srxr4JEE4ImT23LpHxEE7IY4UZ/G2fh//yK/zrf/2vefnLX05CQkJCwjcnZTxW/O2nvNytsAi9RYXuSDGsPHEHS0hISPg2oLBuxs2+0USklJCQkJCQ8FQhtO4xBkQXPv/5z/PCF74Q99ghpv5/vwCAO9z9x5F9KYPXGo6mS80GVcizvSqnyylWVbPeSkZHFmjAPIhPbe4vRET8MBzP+JR9SaHFot9tEH/slW2OKaXiGUc9ljctFjecfems8v6CZGCENv39kM+3D59gVfbHaBLVeL9oRbg/nQhiWguHxlWpKURUzBBdkcTpfr2GiLNhaFqyvawIPWox41oT7T/mgVsstpbC5rBZEXkbN3NTWeMwtHEtqiI9VbuZiHPODpiPi92el3wdt3Q95Mctd1usXlasXenhWNdRru2a9suvi33dSHcI/9BEVP+Iar9BcBzYXutyvJbzmDlhnJjyGzGqUruPBidqAsGdeGXs0hrCMYqIvhsX3bCrK2Xt1o3ZzjrqXnDidXJt70+nUu3DnWQyxpEiCCRhRGi4MLP/MykVdxz2WNq0WNwy421UXi/XfL4SxUw24FrJ3he2Te0ftqmOCOrzRyf251U8J1tiy5Y8OBBx4AaE33JspZg9uk7QORvXLo8BkD17mXPv+31uv/12Hnjggc6ZEr4leN3rXscf/dEf8QN/+gPkJnIATKe7TBaB4Kvbs23f6m3HyJqD4wm+ms72nLcuRiit5vZ/1xLCTWrNsK/ZcPaHDLM39mvsa/vLjKmQCRXyuOVEhhpzt/d/Jn0T9s1C43W4t1Mb+8duuxpv7nN3GpQ9tYZrDfnbDrsUIATohhhH8UKDaWTE2lD4MdaL7eapNlV20kY4VCnWPohqxpa86Ry4WcHOanNZUWHeGo+XyRlRkl/dn0y5+/vG9a4nhNCkckZg1DV829dhmiKUZmBAMTikmb9izl1/HXO96nK+KVejNPhhxPyaijev+9n96YKI0G0DTkipQZAD4Oei1m17/5uRin5LseLvv5ZhhPO+9Mz9m7MU+VCi212MNh/b5e73UlR4Menv3csd8+52Z13T64nYEQS1bfIZamKeuOG9I/pB0DZygSYjNGVtRHlRYeWC3P5Kj6uAMa04LffG2zAirGLY13zzZ0JtBN4R60MiQqXnRsqNQ2dbXLv593F/GW6tVFifLRE6nRu9LlKqI0J4zuilzgUCjxVmAHjoHQ9x6u9Pce7cOWZnryOud8I3nDNnzvCa17yGD3zgA9x0001d0586dYqTJ08+BTVLSEh4KnnvQx/n78TpJ+x4ngqMAKkL6ZKDrSROxsZJf/3vEydOSgkJCU93el171Xmy1mB/9ctfYv3yDt/7fz6Tw985+YQf/5udZO37jSFp96eepM2/MSTt/o3h6dDuT6iTEsDdd9/Ni170Ij772c9SfPBRcnfehlcLjdZJrORJiVSKQa3YtGrVqj+IbPNMcRvBWdthXUVsgNc2c6PESjkRcluqyinPxWP/Rkj9YXKjWGm1vH93OEqgZMoWSF+jlOTaus1WYX/9ogRKYFyVBgcEx2Z9zp2zKZUi8kYIlACGDghsNGsLkV8D0QIlOwUBsrtQqSagUK3F76odYlB7E3ivQqKjuMXNwvBBi+Vz8V8psl2YutHBr/rk2wlSlN4n9lh4vKWMKHET7DoqgQn1NXFEsnGt5fy7bCAcvUOysajYXokqIPoJ/MRhgRBw6eEOD9mfAIHSdXGd5WYHTRi+818Jdx2OGuvTbmPx6B2SzUXF1mo7z2y9rx1HJiHbH0Ok1NInr53vdhYNxdrmPpo4alHcMk5fkXWLYHASUJLtpQ73UuumpTF+ilc3q3ms271lQ91VqKSlxHHZdfbaLd5XHYVKblozdkCwvKAIguZ0shq2FSrNHgwJheTs5ehjW2W1T6ikFMyv2eyUa04LEQIlALeom4RKCsnVUvNuXJQ4qZFnWlW2a+HcWmmfV/Jon03QYYetVZyUVgpbQcGWHQVKdXESgFKK7T/9K1zX5b//9//e6TQSvoV4+9vfzp/92Z+h/0jDL5nPFiuDQAexkm3ckWxfoKRGtdcNNpHvr/XiUreUzUwUTEi4+aE2CeoihppYSQnBurv/fokSKIEREQgNO8I4l0UNjVECJTD37WHpo0PBlSB67IgSKFlCMzwYsrOz56AShds0F5iB25IQOrKrUMkuhRgnH2jcpddSdBUqRQmUwIiAOgmVMn01p6ao/ZTWdVyNvmGBkzLuh23XQC15K8Va+pa6RdKgDR2agNIObLeIlKIESmDWE5kByPVpVpfbVC5i7WXbMDkesrhsNTkh7c/b4bsutLuGQunrFirJUHcUKg0PKQIlWIsQX1tVFSlUyqUVfRnF8qaFn42+RnZFNwmVJJqpbMBiySZfG2AiBUrQJEApK9nkhFQnSqAEoFzoDxQHXJ+z5VS0CUGkLkozYoUUhSTocP+2fiVqYcPN77222UzeBoESiL3uH2P9pm2NJdg3tgjVWag0ZIfGRS5iULcr0UKlrNActT0uCJdSmw5tF8U+odKWsPAQHQVKAFZBNgmVypag3FpOhDipTsaHA9swN7znyNdIqzipTiEFO/3VjgKlVnGSXZEEKdVw7aKpi5MA1k+v89CnHuLnfu7nEoFSQkJCwjc5L3Nu55dO/vgTdrxQK176yDtY8bejp34N/cU0P/kHL0DW5vzB6RzPe9VJDtw+FpUjISEhIeFJoLiehHtLSEhISEh4qvl6vF7a8td//de4rov3x3+FCvYeGtbFSu24IfR5pudhtwpeBNEbAFIyZzs194t2gqH9m8ZFLchrE26gE9qi6QFlnxNy22gFG9VWoLRXrnl4vbJl47VseLUTKNXZ3oHzcw6liA3AdgIlgNwA5EYEuoNDSSuZfrjxWZL+YSOwiHI8AfY5vBy6w+LAyYZypGwr6qkzeYPFjc+LeDVXiLbCHDdrMXzAIhVhutAOrwRnvlBtL1CqozSNMVekDbnh+j86n4vQGqE1Gwtw6ku9CZTAhKqL1HV1cI26ekYzd6o3gVJuCG78Lom9X0uxV2SonxCB0oFbJAdu6W1I2VkTnIsQKDXWLYrQ14TdXA1a2uPqWTj/UMyK1a6DmzFuWb2gbcm5r4QsXWi1htIdxVyDE5KhmTb3rhSRDkrjhyU3Pb+z1lRbVpNAKZWFm++SZAYaErVpZy3lroPSkVthNv6LLWhbkhkQDA616eu030A/v+BwdanzOGaVWw8qWcvblKXdVqBUx61tih/tq3I4t7fzHDVf7EexrSWFlh3CznkVoFhzLbYi6iZ8ud89CbixHPCcoofsIAJtFCgB/H8vbbC4uMhrX/vant5ESvjmZnh4mPe97338+Z//OT+y8iNN39XFSlEIBZOLLv078TXrfkrjpbTZYO9h6qjYUHJi5FFiT7AETFVDJmpjRTuBUh0toCoFOw2hh+q0EyjVuaZs5kX08aMESmBOZcBRWBkIUvEFJRNDIRPD5pyUI1FtxJ5GoGRwU5oDswqrIeSjlqKtkEVWjfvSgWNmfbiv7o7VVhCUG4JMf4fzkexb62wta1YudxAotclru2A5e3XqiBlKWZqD7fWWr9oIlHYJNBE6fUObtZfvw9UrshZOuF3e/R+NjiiGhzr/ThBKdxWZdUtj25qZ6RAnQoAhO6zrVjYsNrY6uLVW99dda/NToJ1AabdOlb1yFYJz2y4FX5rwbu0ESruFmP9kpDLhvGuE6fYCpTrbtsWZcmo3rNsu7X5DAq7QjDkhtHkGrUWUg5LmWM5n2Knfv23ytvyGnEyHTKVbFE3t9Fq2+ctZmhNZD0fEH2i1Jcg5mozs0G8i1twlLToKlHbzFpu/94VgW1qEKd1WoFTHKkgsrTleCkg19mtbdRQoQS0cnWvCiDbi2kFbgRLaiLkq/dHfS6Ej3ZOGr2XJ7HReDDYKlFSoWP6dZU6ePMmv//qvd8yXkJCQkPDthyUkb5r9YWD/1C8wy9C33PSvuO37juwuSbcXi3z6V+/jH3/zgd1N84SEhISEJ4+gGlLJm99riUgpISEhISHhqeNJESkNDAzwnve8h3w+z8ZHPtH0XSeh0gXL4X7XJWgnEGnz3HRK+tzlGPFQO5ofIktOVdMEGzFDFdUeMvuhQApNt32Q5nIFo/0Bx6c92sbI2IckX5Ao2+ohD1y9CJfPmnOKEipFuSiV87B0UVHM733WVqjUQGlLU9yKeBjdQdxTWFOszbUXWUXmWVec/qxHtbs7chOh1z1NKyMHJIefYfd0V6jahtkuMfNeeUzvF1F1CWsXeBEuVnXaiF9CH4o7uqeN5J5oKLda0FQLPRRUO1+/SzTIKKHSlcchvx6RuEP9oEP7tWHyEBw+eX1OBr2WdeURxdwj8R3DAAqbivWr7ceIVvckME2S39BUC52P3RrebfEyrEeENRQRLiD1MWRrQ3LqIYGKcERoR+iCH0hKlfh5RvsDjk16hBEayE7UHwpCHHGSIbUhuKBSLOu9DN3y3ozPM6lGOs5FiZPqPJqx+VrWQbUZV1sFSu7yOr/5m7/J5OQk733veztXKuFbjh//8R/n+7//+/kP/+E/4BebN8PbCZW0hNVJj+2hHgcsDYe3YKwHN6WdNKznoLQWU3VcEyp10Bi0RaA5GPr09RCOtookRKC6hARqqqIWXMg7lGphs6KESm6Eo952UbKx0yp07DzmBT6UitEt0U6opLUR87QTArdj7apmc6m3hYO+zsi/44cEfcO9XeHWsroKlIBySbC5HGWn06lsQRiaHhgpmm6T1fPN35ON1lCp7A+XWydSqCQFSomu4etahUqlqmTRjzfJNgqVNKJ9+LUIJJojaY8+q/cOpXocKapacqbiUuny0kora1WLUtjBeSlCx1UKxO440Qnd0JXLoWCxauNHdb0oo86ae9ZVz2E1iP/CCmiUKyghiT3aas2s8unTqqs4qRFHmRJ2V7tdxEl1NvIZFgeaq9dWnARYCo6tSrJtHNBaxUl1tAWbMyXK/e1v4EaBEsDFP7zIvffey+///u+TSnV4KyQhISEh4duWlww/g1879iomnObfZBPOEL927FX8wNR38Lx/d5J/+a7nM3Hj0O73l76yxJ+98Qs89DcXCbs53yckJCQkXDeFNSMIdTIWbvYJDzyTkJCQkJCQ0IYnRaQE8Iu/+IvcfPPNlO57kMqZC03feZvpSLFSICVblg1KkW33xL1ltyq9LthWFpsx4pS0Ol0MOAE3DlaJIwTSFlSE5OG1DKU2oUDaEVoC4fTa2IrjR3xmZnvZJDIlpDPmfBqFSlECpTob1/YLKpqESuH+9lmbU2y1hjjbrUb0mRY3NRvzHdq61VGpi2inE4PTNseeHXNRWXNU2lpUXHygIZ5IDITWHL5VMDLTPW0rdo+Civ5RmL054osO7jyVIiyc1QRtRFtPZIi3tXnN2nzM49Wu7fA0zNzY250hLYG8jt8Lx+6A/uHu6XYRgsVLgvnTvbXRxGE4eHvDOXVxUGpCAVZD3jYOSnXK2+ZejCJKoATglWHhTIS7UUNfaBUoARQ2oZTf9zHQLFSqjx1uSiFlb/eTzMKtJwL6sj0+gHMFwhE9lQVwsZDiYjUVW6A0lfI5ktmbM+I5L8EWkk0sMtf2Nq/auScBSKVIK4WSks0IZ5Frl8f2CZQA1Ef+DKUUH/jAB5Bd3OASvvUQQvD+97+fjY0NMn+6/82vxcpgpFjJS5mwb1ZAbEHr/NYQBde4I/WENs5IA3EfsivBomOz3INDJNSGUtpvRLcji+KE9BE9CJVAINDYtbIahUpRAiWAqi+pRtz/jUKlRhclAKUEmxuyJprZT6NQSVb3FnWF7f2hOpvytToq6R6EzS2uSCMHBX1DveVdm9fsbMvuLkoNpNMw3vO6SyOl7uhMF8XwiCKTNQ3StGbqsETN5yXFYvsxuJuDUtz0YSjY2GzfJ6BFqCRNjLGx4ZCU21sdVK6H+LI1BtyQseGgu4NSYzkaLpZcCqGM5aBkMKHK0qmGaxtL3ah3EwaZvcTRDkp7B94OLKoN4uvGdUC7EGH5wGInKk5ZQzm6ZTxVCHYCi3Yn0ihUqguU3N0P47f5eCpkRvSmqpOAsDVhj/2oYgnOZ20CV8cTKGnNbDkk3dCPO7on1bMBxZSmasPFzdG9eke4J+1+5wvQEKRV5HLyscLMPoHS9uVt7v3YvfzwD/8wz3ve87qfz9OAz3zmM13ThGHI+9///qegNgkJCQnfPrxk+Bl8+vb/zAdv/Hn+r6Ov5IM3/jyfvv0tvGT4GbtpRo8M8PK3Ppe7f/Z20gPmgWFQDbnv/znDX/6nL3LtsThv6iUkJCQk9EqhIdSb+Dr2oxISEhISEhJ640ndxfzHf/xHbNtm9Xc/0hT2rU5dqKTmmt+qvyXweY5X6byR0LBeKCM5HaYIYp5O/WGyJSFnK7pEBtpHnx0yORD/Ye5G0ebsYqoWli4uknJZUKkKlG1OtlOotzqDo4obboN0dr9QqRMzNwiGJps/6+aolBmEwak2adpskKcHYPxYlzq1LAaHZiQ3fncPih4pCTyFX9Y9iVkCDypd3GWi0PWQNz1c3tlbBEcbhSwxFsC2A06694VyOtc1et0TgpuNKbxqOFfbFR1D0e1mqW9OCMHwNNzyXBn/nLTGso0Qr8e9SQIfyj32CRWYvhTHkazO9A2So3e23BcdxElgQhOOHIwuo51AyU1jBHUdqhYlUDpyErL9Hatj8jac8+xRzbGbum9e1UO+ha5ESChXBZUeXT9W8g5nV+K/vZ6xFQcyPr041YEJQZOzzc0eV9gEsITDJfZujk7uSQA3VUJekG8O87Z4fhzY755UZ/PPP8nFixf5t//23/Lyl788fuUSvqU4evQov/7rv84HP/hB5r84H5mmLlT66sah3c+EgqlrKfp34gtF1nNQuA7TiKzSzaF+YiC0ZsxTOHEFn0Jw2XbYlr2JmzwEJQSCvbViu1BvjczmfCYye2u0OKHfUo5ifGi/MqyTo5IQmlyfEdtE0c5RKTcAbpdr1SoSGj8k6B9tkzgKadwbe51n/WiTuY5oDSo0y4k4Lkpg1kEHj2rS2eY1RTdsp3kNFUfcLaVuCsv3ZCGExrZjxl2Ue85ktt2+DzVSd1Pys5KDQz5jufhuj3U3pd7f+RdUtezJFckCqloQAirmzwWB5oaUR59sPqdupkrDTtggBGqmnUCpzw5xZeeWaBUoDdghY2485WhdoJQWiuNpj2yXsmAv5JtyTdtVenShUkJwyXEo9PADYyQMex77HQ25UFPvrt3ESbv1k7A8qAkbI5N3EK0KBSMLWbJbzYu7e7aOAvvdkwBUoPjC27/A4cOH+fCHPxyrXk8H3va2t/Hud7+bSpvF9tWrV3nta1/Lxz/+8ae4ZgkJCQnf+lhC8qz+E7x05Jk8q/8ElogIBS8FN77wIP/q1+7m5Pce2gsBd63Ip951L//0Ww9S3OjxgUlCQkJCQkcKa2Zc7RtNQr0lJCQkJCQ8lTyp0oWZmRl+4zd+A12psva7H4lM422msUvND0Yv2w6P227bEDd10qui6en3lPS5w64Q55G4cmA9tHlgPYXXQygibcGk6zM5GMYqp6FEBgdDBpz4D/ivLdusbZinq8oWqBiih+1NmL8ElYYQLDpltRUt1HHTAqdHZ5+RgxbjRzocN2LzJzcsGTlodReYNOStFhU7Kyq+4Ehripsw/0jYc8it8cOCsdne8sw/pthYpKfusHZVs3Sxt62bzSW4+GDLA/YuG7ZuFo5/h0WuxUFIhPr6XZSUitxRPHy7xeTxLhe2pb6rc5orj/TWDvl1WDiretrUDH3N5ceguB0/j5uG2ZvMf3thbQEWL9CTg1JpR1FoDJ9od99Y7x+TjBzY396d7vX+UZg81oPAC3P+jttlm8wS+0RZC5cFi1e7b3ppSxLWlKKeJ7k47xDEHJNFoJgcC2uOTfEZyYYcTPvQg9AI4FI5xaMlN7ZAaQafZ1BB1gYHEUJ2rnvmC2mLx9N20xzobMq2AqXs5QUqn/0y09PTfOADH4hXuYRvWV796lfzgz/4gzz6nkepbEY/wF6sDJL39lQrWsLGqE+hv/sa5dLqKEEtlJBUcHAb+tqE1NmHgItZyarbm3hIKMHMNvT3GFPM0poRHeJuxUsfILimHILahr1y4okeVio2K+XmRUqQEoRdhMWO1WyeV0cG0SOuEDA6pkh3mpciRAADI5DKdqwK0CxSrRR013Csu9Syba9qSjsx89Sw0oLhSehFT1Ytw/qiCSUm/XjraqVgbUnshr6L62a0uiwpFpqvY7f10/CwZnw8IrxnoBFtrm03ovKm03DgQNh1Trca3Q4RLK3alGOGVNW1ZCsFm50ewrB6fYItZbHs9TbRDtshQ3YYW2wEECK4FjpG3GQTy0RIAFuhhdegSvL7OmeUaEbdgFSEAK3RiakZzXgqZNCJ9+JNHUuAI3T0l/Ujiz2BEkBFC656DqUuofwAlL03tm1hsdGqkupAzteke/g9C0ZoOhmGDBWJHeINwJeC0zmLUiqmQEnDgQ1BrmHs0lpwYSN6/bSbRsLOeIXyQHMZ65VcpEAJ4PT/fZqNxzf46Ec/yuBgdEjVpyPPfvaz+dSnPsWrX/1qzp071/Tdpz/96d3PX/nKV36Davj186d/+qf8yI/8CN///d/PT//0T1Mq9RCbNiEhIeFpQqrP4Xn//lZ+6J3PY+LE0O7nF+9Z5M/f+Hke/l8XUUkIuISEhIQnhHq4t76xRKSUkJCQkJDwVPKkB1n9hV/4BT72sY9x7733UvjSvfQ9/9nRFakJlYKspiwl5doT97RSVLo9fa/9LgukAKGxgLiPTpUtyUrFsBWyWI73IH1+w2YOwJLIHp7Rzg76FF1JoWTKETF+UDq2YnJCcfWa3K0vgGyXV0m21po/EjWnEm1ZbcO+Xe4kFKnvoLWEfVs8E6KCLg1QFxvVxBrr84r1uQ5xRyIob0N5O6baqKE86QhSWSj3sGGWzkLYo7AJwE5DUNfHxdjDKbeGzdK69/B2MQQwXgWunAop9rhp2JYOyqCF0yFhJ4Oxen2V6tnaaXcTRmu8yt4mY1xsF4IedYW2q8n0iaj93o7lSAu8ksmkbRnrPt9eZq9y9X4gZcf2XjqnjEKgRjchIsD6Amyvqv3iPat93/MqcO7BDget5ZVeiGoQHlQqEjpcJ92yMz82HBAGgs18nNCdJm82rTjQ71P0BNs9bLheLTgslixUX7w8GakYTocsVC16CgdZLzOMF3hFKoUFeFKykDLlOJudy1NBwPoH/xTLsviLv/iLJMxbAkIIPvjBD3L77bez81s7pP5zCtHGYacuVOp3q5RzZjyRoXGh6NZpg8CqiTEVPUVVEwJQjPqaHSnxu7jGgXHteNxxULXxUcRce2W1ZrYQch4Lv17HGDdjf62AfM0apb6ZL9ssXyrh/vsulTftGaYFVmV/A1V9ybX19verqok3pbc3zisluHpForqIEFTNFaku4Fmco7shS014U18r5je6pG+D7RqXIxXzGgkgndYUhcbr5d0JsTdNSj/cPedOGUrFhkIBEap9c1Hs4gONtqOvw/a26GwR31sk1LZrl2oVlpasjqLtuhjLqoaEPYZNDDKmknZFUe6hwl6fCQ1ni/rvsfjrWyel0FrE/yEHpITC04Kwdj2CDNjlznkUgtVg72dw3QUpyAnsYvTNohCcLzarp1SbPrCH4FLR6fmtoE3fwnhERVPXVjX3Q0E+7HyNVcMvf4FmXISsa4swxjUKa7rWER3iljRncyL2bxdlCx636r+z413cUU+Rd8Hr2sZ71B2XQmnESbHyBAJla7wGp7D1Sq5DDlh+YJmvfuKr/ORP/iTPfe5zY9fv6cB73/tePvGJT/AHf/AHvPa1r+XVr341L3vZy/j1X/91PvOZzzA+Ps673/1u7rjjjm90Va+Lv/zLv+QrX/kKv/u7v8vExAQXL17Etp/0R14JCQkJTxpjRwd5+duey9nPX+W+/+cMlbyPXwm590/PcPZzCzzvVSeZubUX+9OEhISEhFb2REo9vqmckJCQkJCQ8HXxlOxmfuYzn6Gvr4+NP/5L/JW1jmkbXZVO+B53eRXsmJYpa4HNQ36GMMZpNYbvmMz4zOSCXbeLbpiwbRLXVmQycVUPknNzDnPX9h4exwkH5TgwMqjot3p5Y1Uxe0wxeXB/3ToJGaSE3NDev/eJK1o2cnaFDlGn0U5AUz9kjz3PTsNwhGtMJ6ZOSA7d0dsb3POPhVw709vbSEPTgpuebWH18PzTdmH8UEt4tG6uSBm45a4ew68oyG/QJEq5bgelVlrqW9qGao8vqh5/lmT6xs7XVbcIaEamoH+4TeI2zJyA48/oLU9pG85+VRPEdQgBRmfg+J29ic2yg+w5XcUVqtWb7DpenAtaN9lb2lc0jLeOa8IFtiVC3GTbihtuDcnm4lfOLoUMD2iGBuO44O31l1JF8tgll+1KvJtPS8VwJgAUYQ8OehOpgIMpf7fZ02vx7qEFHB4J08Qd8G4tBzy/IcxbN4ESwOr//SFWV1d5y1vewl133RWrnIRvfaanp/nYxz7Gpz71KR79k0e7pq+LlYSCycUUA9sxJzQhuNxnkY/5HKe0bux8LGC6GjLQw9u/SgjQmn6l0DFCVQHkheBc6OI3bsDHyDooFANCkdqMP1+mLcWhnIeMKKCTo5LTEnrLLjev91RLTOI9gdL+ctqKYnsQaMHeWjGVBaeHkH5CwNRRQXYgfp7Ah6VLGr83/TpTRwSDnc1R9pHOaLK55nYTYec+ODyimJzubbINAoHvt8yt1+mg1ErjcZQSVKuCXkRAmbTi0EzQNdxbXaAEYEvNYDrsGC6rFVvA8X6PgS7t28pS4LAc9iIo0ByxfUZ6cvbRDFghFnVhXrxcgrqzUXR7h27U5yZPt/B1jcLLjFS1sqKJ0t6M2QETTm9vWfSVNSMi7CCF2iNsGAeuYjOHE3vNmhYKW2u0EOiYeaTWTFYVg/5eO2yu93XNpyQsjGjKTrxyRCgYmc+S3tnrc90ESpWtCp/7z5/jrrvu4vd///djlfN048d+7Md4//vfz/T0NL/3e7/Hj/zIj/CZz3yGu+++mw996EPftAKlMAz52Mc+xpve9CYmJycRQnD8+HFct0e76ISEhISnGUIKbnrRLD/63+7mlpcc2l2KbC0U+NS77uUzv/0gxTYOugkJCQkJ3SmsmzE0l4R7S0hISEhIeEp5SkRK2WyWv/3bv0Vojf6dj6IaNsHTS/sfRNslgV0SXLVsLtgOPT1yVTBCwG0xw74BzBUd7t9KEcQRDRX3jnlizOPwiIeyQMV4wusHRtyUTavdunUTKpXKkkcftykVWzapbNkh/JskDI0jUN1FqRFtRYd/mzomOHRLt5gRzd8PTklufoHTPRSb2HvbdmBScvPdbrNApwv9o5Lpm+zOeVoefK/Nhcw9EGPXSwrz10R0SLNWtBDkN+Dq6ZDdKDR7l7d9kTaMz0oyrc/BOwiVgipsLGqqxfhhxAAmj0Cm3/z/1yVQimqPhnpMHJFko6IdRIU9q4WM27ymKKy3b6xWgRLAyLRgYDxupQ2r87AyF7Pd6vW9jtFxdV5z5fHm8+l2j4/OSqZOWNGbPW1ccQ7danH4DnMPt7ufWzl4s+DonS3H6+CgBDB+EI7exv62sERkXumF2DaEPnhtxF3akpHOFefmLOaudnEAaBAo5WrjqBd0v1Bamr/RrOKGMY+ca/pBaqd7f9AWXPZc7t9J1wSq3ZnC5xZd7br53crFlM35tI21bUcKlNzV5vb58fOrVE+f5+677+bNb35zT2UlfOvz0pe+lP/0n/4TD77/QV7tv7rpu9NbE/vS570UO0GK7SGfYl9vm92hLxnfkrHDvoVC8HifzXpa7llfdMCqOaxlteaY79OnNdqKIS4QggCBQJNqnJi7FLmgbBYi4joqt334N18JAi2QYs9FqZEwvT/8mxCaA2MB/V0E781CJc3klGJouHu7KcfadRgaPwDD7ebOiLWBtiyGpi1yQ/EFMFrDyhUdL7Rqw7rQ/NuIZEWcFxMsweYqFLb2PpJ+2DX0W7YP+gYjxF0dxupySZDfiW6DduHbUilNf79qSrePuNNDRLr68VxXMzAQfSCh9L6QdlY1RBUVWzuy4xK3UaAERkg3kQq6SqG8PlFzUTJdaqFkUwkFVjVGX02BTmkab06hzF83LmqHzZbBIOjwbNkGDjgBaUdFjiFBLkKALTQ35DwylqmQCcPduUUsoTnR55G14q8FBJrZTLToSotogZIINCEi6jbeRdnNLkoAZS05o1y8Lle2LlASWpPSCoQgjCE2qo/RB/2QWX9vTpH57iI0ZcPpQclqKq6yEmY2BamqiO2gBKClpjBapZoLWK/kIgVKlwsje+kDzeX/cpmMyvDxj3/8m1r8cuLECZ73vOehtaZarTIwMMBP/dRP0d/f/3Ufu1Qq8aEPfYg3vvGNvOxlL+Puu+/m05/+dGRaz/N4//vfzw//8A/zkpe8hJ/92Z/lvvvuu65yV1dXqVarfPazn+WHfuiH+Imf+An+5m/+5us5lYSEhISnFek+l+f/1K380Duex/jxvYdvF75sQsA98qlLSQi4hISEhOsgCfeWkJCQkJDwjeEpiwvz/Oc/n7e85S0sLS2x+n9/KFaeoGJxxXZASjIx3ZTAnFRaqNix7BQShcSViuFs/I25S2suZ1f2Hk7GESq5juLGIz4TIw1hmrqIGERFI6WKdCZpJ1S6NidZW+rt8q5c0Vx4KM7m0N5xy9uKzcWWB+mdhCBCUNpUbF4N45gZ7LK9qDj9eW+/C0wHvBJU8l3qs69+cPMLbMZm47dd4MH2SixNU1PdTn1Jkd+M+LJNfZWC5cvgdQlh0crwtNwVKV03MU5ueEaQHejNRWhjAfLr0d9FCZQAzn9NsXCmN7FVOU/PoWtuea5g7EAPGbRGBVCMuqYdmH9UMfdwbw+StpZDtldULHFSne01zc5qQzldBEoA1y7D3Cl6cmyqVCQXz1oEEeKhKHGSlIpsVmGXdEcRUKNASaK44YDHoYnuzgm64ZDrJcnjyy5FL167OZZivOZMEPQwXabRZHpoNFcppFIUbclyKd6GV/XyFX7zN3+Tqampths/CQnveMc7eN7znseP/diPUVqLZ3W37DqEthEHxA1pq4FUCHYPY0V9k3vAV8g4SgSgJCVnHYdCg4AzjgvKpAw5bPnN7iQdphGNILWpSbdxNIkSKoVacK3kEPSyQa4F19Yttovdx5c9oZKgWBSUy61OPe3bUDkWxR0otYaa7cLKPGwt9zbfemX2RNsx6RuCmeO9rR+qZXp2X9pYg5XF6LZuJ1SqVASlYm91S7ma/v4Y7datnbp878Ytp4EgEOwU2sdzbBUoAZQ9yaVlG1GOf2E1gkJgEfZwP4xYITe4HrHszmooW1BF0l1CtUeA4GzFpdiDo6LWsO5ZVMPO4qRGNyWtYdOzqHYJz9hUDoJLJZctv7fQfJuBxXoQ/cu3VZwE5neyQGOV4gmUAEYIOYGPFeN3VeO4fNG1Wegh3NaACrGUNu55MZ2XLA1OzNC6dWQgQEBlIGDN7+yeVOfhDz7MPffcw6/92q9x4EAvPxKeXiwvL/O6172Oj3/845w4cYJXvvKVFAoFfuZnfoa//uu//rqPv729zUc+8hHm5uY4ceJEx7S/+qu/yic+8Qm+93u/l9e//vVIKXnTm97Eww8/3HO5q6urFAoF5ufn+cQnPsHb3/52/uAP/oCHHnroek8lISEh4WnJ+LFBXvErd/GCV99Gqs+8WOGXQ77yx6f5qzd/icXHrzNuc0JCQsK3IUppihvGSSkJ95aQkJCQkPDU8pSJlADe/va384IXvIDqqbNs/c//HSuPXRIcLAY8v1phQMXbLVtTNl+tpgl6ePgMcDjrc6zPQ9kq8oFuK+VAEiiJLRWOrL1Z28VVyfMllxZsVjaa66Zt2VGsNHtEc/iYJmrHop2rkm0rJg+1r0urA0vgGfEMdN7sAoxQyZJ4ZVg+p5rCiXUj8AXL50PCHjaXlKJzGW0eYo/MSiZvsOILlTSszSkKG6qh4Oi2aAxZMDgBQ1Otlea6wnGZg0fXNzekyXSPdtDE6X9WbFz7OlyUugmUanU98+WQtXnd/HmndpcwOKYjw+S1EyhdD24aJg6zV067OjXWV8LqnKYQV3CkNZl+mL1ZRLqKtb23axswHcV3EW5KOyuwudLb+JZfg/UF2rogNVWrfs1Vy6Z2l7xD49AX4erQzj0JYHxSc/xGhd1G3aAc2SRQMtWSnF9wWdpoP9jW3ZPqZG0FSPJe98G9/vb/TDrgRNbD7uFGFiHMhS4PqBRxp9hnFn2euxHECu8GEBZK5H/zQ4RhyCc/+Umy2Wzs+iV8e2HbNh//+McBuPKOKwTVeJN1vpqi/1qW4Y2YIVOF4PIArDkWQRB/c91WmiOVkBFfG0elGK5K5dqYmGoYy7u5Kq0ri7nQQbduYTcbtzRhCc3hjM9Au7GpjatSxlJk3fZjRqujkufXBSN6X6i3/WVKlCsp5AXVSm/zZKFiUY0SOXdYG6gwvltfHWnB8JToyS2zWoKt1UYHnQ6OSrU5SFom9KtsqVpnR6VuIbf2lymlJpPp0FHY76i0k5dcq4V37hrmrV1X6TLtiEBTKEgWFpobIMpBqRHH0WR09DgQJVBqODLt2q/RQalOvx2Sa3AQauempFLmD6CgJCuB3bacfXltmJABgyL6erdzU9IWBJbYPx405m1xUwoRrPt2LNfd3fohWPfs2EIts07X+FoQNtStnYMSGOelESeMDDMZ5Z5UOyKzjs+E3X68CVPNAiWADSwu43R0UWoci22tkVoTCoG3z7E2AksjpOJQSTERw32rkUAILo9AOea4Y1ckY1dyFLf6uoZ3qzP32Tke+PADvO1tb+NVr3pVT/V7OvGZz3yGn/qpn+LRRx/lR3/0R/m93/s9XvOa1/Dbv/3bjIyM8Bu/8Ru8+c1vZmdn57rLGB0d5a/+6q/4sz/7M1772te2TXfq1Cn+8R//kZ/5mZ/h53/+53nFK17B+973Pqampnj/+9/flPY//If/wN133x3594EPfACAVMp02le96lWkUimOHz/Oi1/8Yu65557rPpeEhISEpytCCm7+nln+1X+7m5u/Z3Z3+bQ5X+CT7/gKn/3dhyhtxbS5TUhISPg2prxZQYcaIQXZ4USklJCQkJCQ8FTylIqUwDwYm5qaYueT/0jp4VOx8qxgcUk57PT2fiR9hNxplbFaNjpSG9EPPi8UHB7aSlNvljhCJVDcMuVxbMyPXbPtvAUYcVMr7cQMi1cFF88JerlkbhpGZyAXFYKrscyGzSfbhRu+SzK4PxJMeyRMHpdkh3rI4ggmb7Bwelj79Y1Kbni+2z20XANOWuBmav0mSpwS8dB8bV4ZB6YeGJoUDI73tmE4fVxw8KYOeVrrqzUzxyVjB3sX8DxpAqU6vbhV1Uhl4MBJm2x/cxmdBEq5YTj+TGk2P2OWmcrB6AGB6GW0U7C2AJU4xiO1ergpSOdET4K9mZskB7uFWGxh7LAkO9bbG/bTJ0TPblo3fAeMzTR8EEM4NjoJoz2G4lteFFy+ICOdl1rFSUBt3FQUKjJWqDeAwVTAbVNVBtPdL06j0OFyxeahfDrSRSm91tz/RAjHVZVjov4gMP51Pe85XBTxBjblefBbH6JcLvMnf/InPPOZz4xdTsK3J9PT0/yP//E/eOCBB7jn3feg44ydAjYGFAvZHsYnIUBrxkuagbzcJ1Yqre8X0wVScDpns+Y0jC8xhEr9SnGz75GOOUf5GLcV0JGb+VEfhVpwpeywHXOcqTPkhgyku9erUag0kA2ZGQ2jK9IG19UMDvWmhHb6JbmBnrIwMgWDY/HTa2XWn1EC5F1aRA6+B6U4IeIakBIGR8COqaNDgGVrJg8oHLeD4KhFqJRKwcSUoged1t6xugmU6rRexpiXNfbxGxgY1AyPaKyWcNCdBErjAwFDOZPersSr3ICj6Hd6659VLdmOeNMjymit/hvNRWP3cN9YaI47HumY7m0AjjBCIN3D74+0pRh2e7un+23F4Uyz41s3fVNGasacAFv00hcEc77DWhtBaas4CcDSGi0ExR4W07N+wDEv5qLYMvXXQnCm32IpHX3im+vNb2qIUDCzLnECerJRClKK+X5BJRWv3XYe2uGLb/0iP/zDP8xb3/rW+AU9DXnb296G4zi85z3v4Rd+4RdwHDOInjx5kg996EO85CUv4Ytf/CL//t//++suw3VdRkdHu6b73Oc+h2VZvOIVr9j9LJVK8bKXvYzHHnuM5eXl3c9/53d+h89//vORf695zWsAmJ2dxXEcRMMcI2K6cSUkJCR8s5Lud3nBq2/jFb9yF2PH9h7+nv/iNf7s//w8j376MqrHMPQJCQkJ304U1o2LUm4kjYzzckVCQkJCQkLCE8ZTLlKybZv777+fVCrF9h/8Cd7qctc8SkjmhItdsRgthsge4mo5QpOCWA/8FRJPSWwU4ynzULX9W6h1JFc2bC63uA20OirZpeYK9GUVt97g05eNFiq1ipU8T1KtSFPLCHGTqWuzo1J5XXP6q1CMsfFTf1M+8KC0o/HjvnBjSRCSgQmL7KDsSawyfMAmOxx/18crKco7ar9IqcPDx+VzIfMPNzwgb3LLic5nOTB2SDaX09LndEuZc49o5h5pc+5t+p5f1fg9vik896hi4XxveQ6fFEwee3IX2U4ajj9Lkq0/E4nRD6pFOHePHx3yrg06BL+i95yHYpSTX4fHv6yb3YoiBGCNDE10F/e1OkVtr8G5+9sPNE33dM1BySspKsX411NbFsMzVve6NWC70D8qcPu6OyjVkdKMG+UisZyX6lx4FBbONbqbtHdQAmruSZJ8vsUpKcI9qfYNN876HJtu3vRqHF9bHZQAtquSy5s225X2dWl8+z8jFcN2AEhKMRz56iYOrjB/cZlYVzjrsC1t1mOqL2/6H59hYe4K/+bf/Bt+/Md/PH5hCd/WPOtZz+IP//APOf/J89z2hdti5SmnNb5jXJWqhYhd6yiEwGkI+xbHVcmTZjzsCxR23QGmi6tSXgjmLJtKy1zc6qiU2mz+/oAMmJVtROURZjllZVyOIoVNNVodlTZXJUs78dY2dVclLxCUqvEHD+VKrKwgl9MIobu7X9ZIZyA3ItqMr9H4VSMiiuuopDUsX9ZU24l826zZ3AykW5wi97kpNcxFgQ9XL4BXiS6myU2plk0pCDzRi26ESgWuXpGEMcxc66KhVEozMxEgYwjuvh4GhxSjQ3sV6+SgVGdjXbC22tua0A8FQUPIskahUquDUp2FssNSpbm/tLopqYZhxUIzJKMdgWBPqNT6u+yqcljvoB5qdFPSFmBBSQv8HsLQpVzNcDpm7EtMyLeM1Ax0cCqKwleCUijRiI7uSY2UlOR8ycX39xJ3+u0qawOdp2WTWxNEuycB5LTiZjxSLXEc7YYwlVFudgu2zTWny5hh6V2B0oCvEFrjS7Hvd1YUWgtsBT1p4RTs7PSxXs1R6FexhE3eZon73nEfB6YP8Id/+Iff9KKX5zznOXz4wx/m2c9+9r7vstksb3nLW3jzm99MudxjfPHr4Ny5cxw8eJBcrtnN6pZbbgHg/PnzPR0vk8nwwhe+kI9+9KN4nsfly5f5p3/6J5773OdGpl9bW+PMmTO7f3Nzc9d3IgkJCQlPAyZODPGKt9/F83/6VlK5egi4gHs+9jh/9ctfZul0EgIuISEhIYrCmln3JqHeEhISEhISnnp6eCf0iWNmZoa//du/5Xu+53uY+8D7OPqLb8bOZhlFkUfiCYmrFf0o1jEimH4dYqO4A4/5ss0WFhUkVSQOij6p2FISjSSHQqLIY3Ofl2ZYKpRSVJSNjWLICdnxJQpJRipsqcnXNtIG7YDxVMhYOiRfhbSDSWtL0lLRF4TkqyZtfyrECwXbFRuJYijtU/IEnrJJ2QrX0rtpcxlFGELFk0ipECJkfUtQqoDrKFwHCiXzsDebVigFFYwoqb9fUS5DEEhuPKnQCs6dNmkzWfPvSqWelt20KR2SzkBhGzL95u12gErR/LdvECplE+bNdiCdhcK2xbVTPqmc2SyqFEza3LARlQSeeTs+3Q/FmrgklYWrp0PKG+Fe2jIEFZA2ZAYExS0NCtysEQGVt+H0Fzyyg+BmBV5Jm7SDkvK2CR/nZo3AorRlyrFTsHIhMMeVkBmWlHe0SZsBOw2lWp0ygxD6tfB1EgYnBflVk9ZOQyqjKe6Yh8zpWttUi4CA/jGYOCapFhXlgjm/4iaglEkrrN02bGwX2zWuPfV2qW+2VQqAgtxoc9pysSFtzuzblevtPVRrw6rea+9tsxmXyoLMQLnm9pQbNJuIXr29+037KmU2VpQywh6A7CAE9bTStFM9rZs2bVzaBrTGTWvcrGnD3bR5E3bPSZs2bzzXwIPQ1yBM/etpTXs3pG1ob79aO9eiwtdWdBvqvT4rLLhWE2ntpt3aa0NE/D4rpd5r70GoVkzbSBumjgnym5ritjlPy95r7+wgBBXd1N7VvNnztBxzL5VqERKyA7UwivX2HpdUNvRue5d2oLRtziczAGHQpr2zEictKG7D2XsVmX5zDvVN4NwwVPImf2t7Oym4ckrvukJ17LO1PYJKERbPK3Jj5poEHti2+b5QEz2ms7X2Lprv+obNd4EHVj9kMpDPGxFSOq2QEkq1MS7Xp3BsxcHDMHdZgZLki6Ach7SrsKSiWBMU9WVCPF/gBRIpYbsoKNTCHKVdhS2hUJFoCf1uiK8ElUAiUfSnFF4I5cBmpwr9riLv1Y7rhgRKULEsM37binwgCZAcTXsMOyFf2paApE+GKERNsKQYrqUVoUUKRZaATVxOqxT9+PQRUsACFCMoCkg8JC6KPhQr6wIXeJaqsoDFYzINSu3NgVLiqoY5UEr6lOLa3/8F//iFe7j77rv5kz/5ExISeuEnfuIneOyxx/ilX/olXvjOF1J91nOwA7CUoFpzlnE9UBIC24gCUr4gWxYMFiXzgNWwa54ONEqAZwmE1mQCqFpwrc+IlLK+pmQboVIq0KRCTdUybku5UFORglAKbKVJh4ojFcW6I9l0zDZ61RIgFLlQE2hJIASW1qS0piQEW5ZFSmtsFVKsxfzKKoUnBIFl0mbQVDBhnVw0JS3wMGkzKHwEQU2ElKqn1QIHTUoqqkqStRRHMh6XSy4lJU1aqakoc1xHaKTQVF0ztjiWRimBEJpQa1wJ1dAc15YaS2qqNXcm11YoJShiEa76pFzwfY3SAsvSWBZ4nmlzx9FoDUFgQsMFAVxbtxC+Qloa2wav2pAWE14XNG7KiHq2tyC/Y5z/PCSyEu6GZasLed20SatCE0qtWt4TAtkOCNciqIWlc9MQBGaektKsIbzavrabAsReXjdt5qgwBCHN3ORXjKjJcmBgDKQQVAoaJ22OGQYgtcJJgxdaJq1t6lUX0zspU9cwMOsoJ1UTVSlwdIhIy902tG3Y3qy1odC4Lvg+aFVr71obilDhOBolJUEgCENNKlW7NkogLY1jQzWivUWgcNIar6aFk1LjOFCtAghsxwQZq4tKUimNHwBm+UTK0XtpbY0Qe2ndlK61oUBIjZSm/UWgsV2NsBrSupowrKWtnavnGWEHQhs3qWpIdcjBtTW20gS1fuvaGi/Y67PlqmjosxqlIQD8PuMY5IUChcAWGltoKjVxb0qatL4WCDQpS+NVBdUBiY0mJTTlmqp4UIbMOAGPV1OAJiM0Xi3smYXGFZqCbULOpVBoTDi1AE0G8GhIi6ZcC0/nohAZCGpzvyM0K4FNWL/vhaasTVqH2r1cq5Pdp1FVwU5oUSwL0lJTUezd9+ylTUtFoAWBNsctWpKtkjmuLTSW0FR320UR1tLutksoqChJUBGkHNXQhgpVE1UJNGmpqSrT3lkZooBK7a0Yx1EoBEqL3TasapO23oajtpEmLdd+93paErqaLCZtWB9n0ZQwAlKlNRtIqjW3vCyaKiatlLUxWZu0KaWxtaIkJV5tfLe1bhq/y0KApXFDjQyhYpl0N+YVVzOCpYyFpTRpBSXLvBjihhpLQ9k2/TLtQSDBs2FuWJMOIVBGpG7XhLKV2vtDaR9CAeuVHEObFge3beYOVlE2WAFYocCrOSo5nkALTeCA0CC3As7+5z/H9m0+97nPMTw8zDc773nPe7qm+b7v+z5uv/32J70u6+vrkY5L9c/W1tZ6PuYb3vAG3v3ud/Pyl7+cwcFBfvqnf5o77rgjMu3//J//k4985CP7Pr906RJhDGVqoVDg1Kl4zuAJCQnfPHzT39vT8IyfnWTun7ZYedA88Nqcz/O/3v4Vxm/PcfjFw7h912ERmpDwTc7Jkye/0VVIeJqyJ1JqEy88ISEhISEh4UnjGyJSAnjRi17Ehz/8YV71qldx5Xfey7E3vJk7bY+zpJhHMkHITVT5DFkUcAMeEniUFBtIXkSZORzmcBmVITe7Vb5cyeIBxxyPlFB81bMByTOcEgJ4yE9jA7cOVrl/I0NFwaGsT85WfG3LLERuGvBYrUoe2kyTdhS3DlZ5aCtNIYCDWZ+RbMhDC+YH3fFxn62y5PK6S9YNuXPWY71g8ciizdRAwEhW8cBVk/bwAZ9iSTJ3TeI6cOJQyMV5B6UkY6NVxobh4bPm9dXDMwHVquDigsS14egxxdwlyfam2XgZbHBROThrNqouXTCCiaM3KK5ekWysweCUYPqgZmMZBkf3QlddetT898itsHQZ1q5B/wgcOA6n7gUdSg7cApl+yWOfMY4lh263WJ3TrM0p+kbgwC02Z/85IPCMoMdNCy7cp0lnFbPPcNm4GrJyISQ3LJm93eb8PR5eCcaP2mQGBOf/2QcFs7e75FdDrj0ekumHw3c6XPpqlfI2jB2y6RuTnP2i2Tk7eJtLYUNR2lJ4ZcXhOx3mHvAobsLIQYvBaYsznzdpD5x0KO9oFh4LOHynzdghi7Nf8smvKkYOWIzMWpz+gjm3AzdbeGWYfzTEdmDmJodrZwPy6ya01sQRyanPmbTTN1qEAcw9ajbkjtxusXguZGsZbnquxHYED/2jeag5dUwiJFx6UNXa22L5UsjagmnvmRMWFx8KKRdh8ojAcgUXHzBpD52UrF1VrF6BviE4eLPFua+aNjp4k6BaFpyvufbMnpRsLimWL0GuHw7danHhgZDqjmb8sCSTE1x9LKyltdhe0yydM4Krw8+wuPxgSGkbRg9J+kcFZ//ZpB2ZMRsk104r3CwcvsNh7mGf4gaMHJAMT0tOf9G0y8Qxi2oRqnmNm4HDd7jMP+aTX4XhKcnYIcnjnzdpZ26yCKqwvaroHxMMjFlcOx2wuW4cjCaPWDz2RVOH6WMSreHyIwokHL3dYumCacOBUZg+bvH4F0OUEEwdNSHdLj1sNhoOnxSsXNYMTwkqRc3AmOTMvYrAg8kj4LiCCw+atIduFawvaFbmjGDJsgXrV813k4cg3Sc4d38t7c2CrRXN0kUjUDpyq8X6YsjIlGR7TZMbEJy9r3ZtbpbkNzTXzmtSOZP28oMBpW04cLMk3Sd4vHauB2+2KOU1C48rnIy5NvOPhuTXYXhGMDItOfdVU/8DN0qqZc38KY2dNv3w6umQ7RUYnoDxQ5JTX1TYrinHr2rmHjNjxJFbJdfOKzaXYGgcJo9KHvuiqe/0cYGbho0lzeq84MgtsDQHa4u1MeIYnPqq2TyeOmSOd/FRGD8IszfApcdhZUnS3w+HjoScetQi8GFqRuO6mrM1ceXR44qNNc3qikSgOXIi5MzjFh4wPRKQTSseu2zeYDk+47OxYzG/CrmUZmok5PQVM1ZODocMZEMevlJLO+qxXZFc2kyRcTUnpyqgJaeWYSijGM2GfO2amfaOjfiUfMGWskhLuLWvyuOFFOuBpKRgBE3dbPDGnEdFCU4V07jAbX1VzhZSFLGYEh7PkD73hYIlHG6SAQGCB5WFDdxpVTgTplhAMknAjcLj78ngSUlJidoMZ3imqnJWuswhGSfkpPL4nMzgAaNf/TIPf+leTpw4wWc+8xkSEq6Hd73rXczPz/OJt3+Cqf98lNtumqK/KJmbMePz5IZNOaVYG1bYIRxcsVkYCyhlQvoqkuG85GrWCCQO5qFsw0K/2RA+sam5OCQouILBqubotmYlK7gyoDlQgLKnmMtYWMCNpZBLGYstKRgMNIcqisdyFp4UHCuHaOBS1kbU0s4ri03Lol8pDgcBj7guCjjie0yFintTKcpSciLwWbBs1i2LnNYcdX3OeClCYFwGuEJzKTRjwBHLY0XZrGubjNAcsTzOBil8YEwGDKQUl8su5VBgCchaISUlcaXmcNbnYsnBU4IhJ6TfVlwsGbXPxGhIuSgYSCvyFclgRnF106YaCPrTioGMYm7djC2T/SFlX7BWsNF9kiNTHovLFjt5QS6rGRpUXLlq6js6ovB9WN+wsCRMTymWVyRBRpBzFUOjMH/RCFSGx4yYZm3ZCHemDmrWlgSloiCThbFJxdx5CbZkaNyMQWsLpo9MHoaNRSjuGMHr2AGzVrQsMz9KG9auSFCKicNmPixsGkHv+Kxk4bwCDYdvl2ZOO2PmzvFZwc4G5DeMYGnikGDxgibwoX8YbEewdNGkHTsgKG5rdtaM8GnysGBxXuN7gr5ByPbD4mXIDcDMMVi9CltrRuw0OQvL80YclRuAvhHN1SumXUbHNZ5nhEoAUwc0K4uCShmyfTA0rJm/bNKOjGv8ULO+JhgdUwwNa64tWJRLkM3CyKjiymWzxh8eMWKctRWB1JqxMcXqqoVSxu1qbEIxd1mChuFhIzxaWTblTM0o1ldrohhLMzWjmJ+TKAWDw0Z8trxo0k5OKbY2BfkdQSplQrddvSIRgWJwSOPkBEu1tBOTip0dwc62wHVhalqxsCAZGFDYthHALV4z9Z8aDsiXJZsFC8eCA6MBC2umzw5kQwayissrDiCYGAwoe5KKb2FLOJzzuVJ0KIeCASdkxA1Zqdq7oc4qocVyxcYStbS+QxUYsEImrJDTnpnP+y3FZih3xUNHXY953yGvLPqlYsbxeTRMoSVMSjNGpIWmoAUjMmQhdNjSFn1CcdDyeTxIoYAJGWJrzTwuFpob3SrzvsOGsslKxSHH50y1NkbYZoy47Jt7+YjtsxFI1gKblITDaY/z5RS+hhEnICs1lyom7cGUz1Zgsebb9FuKA67HJc/FUzDshvTZiktFk/ZAJiAfSFardm088Sj4FqueRb+jGEwpztfGk5lUQCmULHs2toDDGZ8rZYeyghtyJjTcg/kMWgqmbZ+qFiwGDhZw1PW44jsUlMWApZiyAy57DlLAlB0QasFCIJHAce1xRThsYzGA4qD2eUSkQGsmhDKGQzWR0nHtcVU4bNiSPqU56vk8knYJgakgZDoIWLEtLroOJ7yAa7bFmm2RVZrjns+jtbSTVUUmhLP9FoEUBEJTK4lMCDcUQh4bsPAsmKgq+nw43W/Gw6OrAoHg9LTCDeHImuTiuKIqYbgoGKjAhQkznsxsClZxYLBEKaMY3QAnFFRtTV/RYiBvMX/Q/H4cW7eppjQbIwGiorjwlk9TnCvypS99iaNHj7abWr8lmZ6eftLLqFaru+HmGnFdd/f7Xunv7+ed73xnrLSveMUreP7zn7/777m5Od75zndy9OhRbrrppq75T506lWx4JiR8C/Ktcm/f8V2wcm6TL334FOuXzVt0q48U2b5Q5Tv/1Q3c8pJDyA6u1wkJCQnfLhTWzJtViUgpISEhISHhqUdo3UN8rieBt771rbzjHe8gNTbFM/7dGyj2WwRCYmtFBk0eAUKS0eaxZUnUNna0TyqvWQpdbBQpp5YWSRqFBEq1DeY+fG50fC6FLjtKMlRQFAKTNiVN2nLtjdWcFeJrgackkoAj2YDLJRuFjSsVmaKmXHubOGuFBCH4yrh2TAyEFCuCvGfjSIVtQdk3afuDAKXACyRWqEinoeJBLqM5esDnyqLNVt48eE27ajetXfbIZMwb2MoX2LbCcaFcExy55oVjPM84fGSyxhFGKYmtAtxUzc1GaMLaW931t9rTOfCqtTfgbXOsShFEGDJ20GwSnf9KSBgYRxu/Unur3TYbTHXHGjttBDujBwSDE5LLDwcERSOmkLbZuKoUAWXSWlbNtQg4cZdD4Gku3x8gJbhZ3TZtKlcTYn2ny8LpgGpe4ZUEShlHGMuFaq1ObrYW1qMC2SFI9wu2FmtOSi7YKbFbf7dPoJU5PzCOO17ZtIvlGNegSs1Fx83tpdVSku4z7akCOHiLoLSt2bhWS5tuae96GypzHv0jcPBGiyuPhVTLGMeBcktaj1q7GJHZyDQMz0jmH1fGJap2HQPfuCA0phW+xnZN/X3PtEUqZxymGtN6Jfba0IFqXnHLC222FhWrc4qgCshafynupbXdvT6Q7gMhNeWtWtp+YY4b1tu7oQ2zxuFgcFzSNypYuhDiVYRpbxvsPrl3bVra8KbnGvesK6eM85bbUAc3JyLbcPIw5GsCv6bjNqaNasN6/06Zz7wyoHVk2iCE/kGz+WrZew5HjWmRxn3IzxsnpZufZ1Hc0cw/ajaIU1lzfzWm9UoQaoHtwsC4Eb5detC4stX7d/1c6/3Qsmt9tmRER8PTgvMP6L3+0pC29V520zB+CFJZwcWHIDUoI8cIaHbJkBKGpmF73bi4kRKk0vVxSuK6CiGphayEdCYg8CVBYJzlnD6JiSohkQMCKY3rHEDGVfhKcXRSEYSa5U2HStWE53RSajdtkJFkbEWoqI3fioyjGEqHLOQdXLMfTykwrktp24yz+X7jeNQnNWkZUlEWnhI4UlOsuRNkpaq5FUiEMmkrSlAYtUgR8AzpcUm5rGGTpZa27oRXd3Qom1CiORni9oXM2ymytVBGJWk2/Ptr7gSelNjKzIHVvGT79ENc+19/zNTUFKdPn2ZgYICEhOvF8zx+8Ad/kPvvv5/Rt/4bcgcnyA6awdDxjZNSaBkXCTuAwDLuFDKAwaLgXJjbdbbQUhPUnJTcEHwLlBBYSjNY0WRDwULNWcnbSeFLs8mdVuDJWlqtcRRUJCAE/b5Zl207cjdtWLBQwghAHA3VmsOHoxQjSrFsWcbFQyuCusOH1uS2a2kRuEHNwQbBAeljo7mqnF1RhIPGq7kuZfNmzelrgVDGfUUBYc3txhEaX5u0ltDIWlqAbFmhNLiWJixoLEsQhOyllSZ8FtRclzSESmBVQmYnQkqbmu0dCyk1lgQ/qLkAWcatJwyNS4pjQ6g0s1Mh+R1BsSgIauFDLVuDbkjrmHlKK0Eqo5g+CIsXjOjHsjUExqEHzJwdBmaeFtLMKf1DZo5avWrSKL/maGgb50vVkLbuyJQbNvNmfW1lu6CUQIVG62A5e2mlZeaRoLZOtR1zzHpamZHmOw3SFrtpUxkjRNpaM2kRJm/oG4cmkaqnFWhpnImGx8w1WL4mTLsExl1ISo20au5Teq8NA2ExMRlSrQh2dsRuWqvBtaixvYVSe85KSpo6WcaxCYxjE7vX0bgwhSH0ZxWDw5qlBfMbZDetgDBoTlt36nJTGr+k0EqatClZc9oC29GohrS2DX6gmZyEQgGqFUHVsmvXUeOlpEmLxrbY7bO5dMjMcMilFYcgFNiWxnclYc3ZRw+YMGX1/m3+oM9WbHmWaYeas4+d2rtvdNr8NvFqTkQOtTaj5v4lNEHNBUjYGrs2P2ppHI9A4wgItQYEPiZt/V6u3/eOMvd9GAgGZcis43Om6uJjXNHsmmMTCGz2xggRgisU006ACgULVRunMa3Qu2MEmLShFhBqbsh5bPuS1bIdOUY4NYepehumLcV0OmCp6lBVAmFRK8eMNY1t6DaMPVlpRPrlWpw1y23fhhJVO1drt71Ddy+tzGrThvVxFo3QmiMiYEHbVITEr4mUXFvtplUZZcZkYcZvR2syoSKUguL/y95/h1ly1Pf++Kuqw0mT8+7sbNauJEQSyYAAAbLB1zY22IC5JtqE+2D7e/ldbMAXW8YYDIavA/drgw0XgwGTbIyNRLQAIbJAEpLQSrvSxtnZyeHMnNih6vdH9Ylz0oLQKvTreUbac86nq6uru6uru979/khJQmkCAaEwx6GjwROgBgNspZFK0xfCmitIKEysNHVwFZSlcVKyA5MB1LMEQ2M5BgvQXxScHTH7wQnAt02KPCs0GeQ8G3L5JG6oyfiaoZ0bKAtsXxDY2lzXQuMm6DtRn+abMs7m+lh837Vsff1WPvCBD/CKV7yCmJ+Mu+66i1e/+tX80R/9Eb/4i7/Y8NvLXvYyhoeH+du//duG70+dOsVLX/pSXv/61/Orv/qr91ldjx49yqte9So+8IEPxCKlmJiHMA+2c1spzV1fPcMPP3UMrxBUvx/Z08+TX/EwJg898F0CY2JiHpic79irwr3dT3/53T9k9pZlrvidh3HxM3ffa+U+2HiwXR8fKMTtft8Tt/mFIW73C8P9od0vmJNShbe+9a2cOnWKj370o/z4E+9j32/9P9AHgZBs1cUVReMbHpOE9CcUCwWbgGjyInoRr0RjbA6Hm/3KW3o1gRJQtd6vkA9rtreDDkylFKseZAMz8U1Q03QVQguhdFSqZGGzUpaZ3KoIlKA24Q4QWpJCNGmTLyqyOYtcsXUsVCbvAcsIAIJAcfCwZmtTsDjfFFuofVKBoBTdg/rRhJKsC6+IDUwslAIjUAJYOQsrZ42TiEBVRQzV2LrPFaHE6qwiu6gobZq6gJm8Km01xtZui2HxnpDQMxP1SkEpZx6At4qtiJXu/o5nJr1ELe1M4NUmu4CqIANMurjChm6M9VvHgqlvZti4RZ34YVCrvxANsUIpSrlag569s1HvVxHWVMttasPsEigVko9SerWNVbXPa/OwNq8aY/PbY0Woq9u685DETsCJm1S1DZvLrcTWt6FfNunPTHDTfmyKTQ1IdhyyuOsGz+zzrAYpWsZW2nBlVrEyS8N+DAMI6urU3IazR4ywBEB5RujXLraybeeOs41tsXXtMn0RKA1zx6JtLbePrW/D9eg8rd/W+lgqscJMSh37Xkh9t1YubI/VotaGG4sghaqmnWu1rRCl04nKWjytyW1ovIJoGdt8LntlwdzddXXKKrQta7FBfaz5v7TNb6uLtY1RqrEv8ur6NNtW7DsAZ2dhKwuBZRMU62KDxj65GC2bzRuBX6FsPmurRWxQ64NtCXnfJu+by5ynzF80H0opaOw7c0pxUSYk0Irbc0m8utOsEF0nhKrEVpZSlLH5gapdSgs0lrsF2JVjA8mADJgRIcvKpEOphTZe8wIpKWcF1qk7mP/8v5BMJvnhD38YC5Rifmpc1+Uzn/kMT3va01h812fRf/J8PHuEoUwRv87QQAsaPktgeMtiwIZswkwWQyRUEIJy3YgylIK1tGAt+hxIbQRKAEJQqsswEApB3dCLCd+kcso6shprRX2hEsJMhkcT+L6ULEbnka11VbxUjaXW93m2QEZ9WE6blHJh9LuiMTaoS2unpRFhZCzFRCLgdMGpCivACA3qk8L4yixbDIzoQSsdSR+i2LrgiljJKpnx1uySaVNSYBfD6vUOIAhrdQJhUoQhWF4y6cG0FuAKhKeqopZqbN2Yp1wULC9AEI1nTayAyNWt/hqmlfmcXQW9HAl/6t5tCAIjsKyPrVBJI1qN9aLVYMqpj1Wh+RueNL9tLNX9ZklUfWygUdE+LhfNX63CzeUaURSAUJogEGxUDsqmdlFKNLR3pQ0FiqXFxpQYbWOVEcwoBdN7FIuLUCoK/PrYhv1YEzpF1TefLdE9VgtGRhTlpGB9JYotaHCjcUNTbEUktbgQ1SNR26YgEChHRHUQ+HXHaLEsmVs1QjuAkmOZikaxnqobw2lhhDpAMWy8PitXVIU3AKIEXrImUNrt+JwN7Ojca4wNo1Ru1XaIBEh+i9ds6s9loSoiHMCGbGCRL8vqd6ppPZXvRbStnpYs+TYiEmw1xOrGfeNpiQzN/p8tOniRkKjaLnWxvqrf54KisjhRqLSXMDc/0e7xG9Zj6iDRaDQFZaFlc7s0xlYYsRQpqZn1jQCu7DbGluvG4pW+00aTxSInZHU8qh0o141zqn0ypg/2Ad+uHVvlqH5amm0t1602kIKMgpliSNGyKNqNdaheJ5SgMmQT2ggCs2nIpnXUhuDVXatCC0KMQAmMIHZfEVKbNmsjAb5bO3CUBcqq69McmF/rY/ND/8XGdTdXXZ8fTLRKb9YKIQQve9nLfqZ1GR0dZXl5edv3q6urAIyNjf1M11/huuuu47rrriOXy3UPjomJiXmAIaXg0p/fw74nTPGDTxzl2DeMfera6S2uecv3uOip0zz+RYdJDSYucE1jYmJiLgxxureYmJiYmJgLxwUXKQF85CMfYW1tjc9//vOc/td/YM/z/wcAQV/7ZX6MSzpy6aggo8kGtd01vMrDHQ97QHNkM9m1Xuu+zc3rklKTkKkeLUVVqFTh4LhP2tHcds5tqF/DctGDVxWaFHDRp7bxVSwBWOTzYTV9WyukFzZ81o5k78XmjdWTd3ReRT1uCixbUlpXnQO1xivWnGlMXaVRFXRga7nF76ImVGpFs0CpF/onJJlBwcLd4fZlK/uv7kF/uQj5dY3osjuEUuhoglRKI27aWu2hQtGu3lrpEtNmufNh+bRC9pJyXnXZxx3YWjZis2axVVda7EcR1IQxzRQ2o3+0qmqoqxN7FVL9RrTTcFx2odjq+XSH4zEzDAMjgvmTunW9WhVnCVTYOV43tY0KjHiwK3VNp4LK8ai7nzNCMDgO2e1zBW3pHzZp3o7fRUN/JP0Q5bQ/6PI5Qd6TKKeXg9kc9EsbNXFSN6b6Q3YNBNw2n4gcKQy64+okt24ltp1eos0+GrYD9lset4VJtmhdKbvFcTcbuJwVFiXZvjJu1uyr/Jm7Wbr242QyGX7wgx+wc+fOThsQE9Mzg4ODfPnLX+ZpT3saxb/8T8Sbn8cGJpfsUKZ1hxnYcHoqILvV2JfoaMJdyNb9ZDLQ7M3C3UJTtLpfu08lLVS3MKGrQiUAR2su9j1mLZsNq30nUdETZoP6GCMs6ISWUEJQCDr3WU6+sQ2sjGZXf8DCikW5y7IG42qSTmgKSOxi54uKDBSlqiDJbId2JcLrtJwgvwWyuZFtCUHr5apCn1bXwkpf1jSGEAIGxgSFTY1fpqdxm1fueLmtoWvXNNtkIWsQJwEtxxFCGfeozmVv/8qMSypiru6EISzNm1Sr3ZYRLcbJle90lxQca4tGHNY7pj71AqUKdlERpLavT2lBIWqzILn9dzen8frqt1GTsjSlsCbSUW73muW1aBLk1M7XekQkNp6QATktKbS4sLe+bmuULapOU+0QjbdPFLVsOw6oxwiUTPtW3HmxtpfXTNJSBFpsEz21RzOdDPARzHuNN7zSa9/WJW2cYJXb43q0JhCC+ehRgba7nJhac9Dz2ZKSOadxx3Uae+VtwZEBqyZirdDqIqA1ewuKxKZgYbB9fSripCpCcHwQdg53vklZyPYDUP74N5j/wnd529ve9qATKAF86EMf6vi7EAKt9X0iUjp48CC33HIL+XyeTCZT/f7IkSPV3+8LrrrqKq666qrq2/wxMTExD0ZSAwme+ppHcPjpM3znQ3ewetq8InX3DXOc/uEij33BIS6+ajey+ZocExMT8yCnku4tE4uUYmJiYmJi7nPuFyIlgGuvvZYrr7ySb3zjG8z+54eZ+dWXY0digVZiJSUkHmCjuCTpcXfJrToodRIrrYZWy4fe7TACJcXuVMBy2W54k7dC5S3WilhpPutgW72pSSoT7mlbcWDG58RZh0Kp+3Lz85UJBk2vypX15cpkYu8Z/nYdlqDhxK3ms2gzgVVBStj7aIuNBc3anDJCJegoVkoPwvgBh9M/8muijcpkVpvZqn2PdShkFYt3d3n6H5Hsg/SwbK84ACNWqrj/lGDuzrqyO0yuVYRKmRHYfanF8ZvDBnea9uuD/gmT1mv5zPbfWmG7cNHjJefuUWSXtv9ecVCqp5Xzzr2K0gRl2FzS274HGsRf9Rx6ok12WbN4vMUEXQuhUnoA+kdhsYUzUjum9pl1n7yt92N+Za7piy4zpqk0ZIZEbXu7YLtw8HLJubvCloK2ZnESwPgekw5n8USHghsNfLjo0ZKl2dbHSQPR+gbHYNchgVfUrYVaLSiUYHWZjoLJRhSesDnV3MYd4g/t8imUJbNrHdSnTSznjdNDRaDUWZyk2Jf0mSsbd5T6o7FTd7E6aDGkbfItrgnbxUmKixyfTSVZDB2KbQRKFXESQHH+DHOf+QBSSq655przsj6OiemFyclJrrvuOp7ylKcg3n0twZuegz3Sz0bePJhpJVYKo/HTUNmkd1tK1zmCtBErlS3jvES6DFvdBeJhdM1wlGbYVyy1EFSYFVXsXAS+EJy1bDY7iP/qqYwDp1SAi+assukmJgm0YCGwQdYcc7pRDgVrJYuiI6suTt1IOJqpkYBzqzalSABpFzuPddJpzcCgZmEeKkIloK1YSQaKgRGT4i2/Wbcdletui7FeMgMjk7Bwso0wRsoGoZLWkOozroxdhUER+Y3Gz+3gs1CKAAEAAElEQVQEy9UVCMHIpBEFrc73tAqkVvQNC4r5RmciU2brZYZGNMm0Yn6h9Q1E88sKICgVK//SDW439xYiUHgtBDeVfV45BupJZ2B4QjM7r43zVhOthEqD6ZByIMjJ3m6eklKzO+NzOu9QCkVHgZJV0oRJk6ptIWi8xne6V5NK02cpPC1oHn60u25PyJCE0MwFrccSzWIigWbaCVgOLMq2RLQ5f2XduHvQVvTbirOl7v1J5eeJREgIzBV7HeMIVkOr5f5rjemrNu1e3lYwpLRihoBT2qHcc7UEc7aNVzeG7TT2SoaaTKBZTcjeBErROsLxIrk25TaLk5xQs6OgOZsRBFK03SUVcRLA6n9+h+XPXs8f/uEf8uY3v7n9BjyAec973tPy+1wux7Fjx/jMZz7DYx/7WJ773Of+zOty5ZVX8slPfpLPfe5zvOhFLwJMStovfOELXHrppUxOTv7M6xATExPzUGPy0DC/+vYnc9d1Z/jhp00KOK8Q8J0PH+Ho9Wd58isuZeKi4QtdzZiYmJj7hHLexy+am72+0e7Pq2JiYmJiYmLuXe43IiWAr33tazz+8Y/npptuqgqVAOxce1clG0hJRUKqbY5H0t8uVDoXfZFAk7HChvRu7ZDARNI8vV6g/dPayiRE3pNU0p2lXSh43SfNymXIF2U346EmFPsOKraygpUe3E+yq9HTWccIlUSrPAlNnD2qGtJdaVt2FCopBeWCxi/3viFKgeWAm2jheNPGVSm3FlI+D0f25ROK5RPqvByYpA39Y4LsQvd2EkqRX5O9C5Qi+voFqSHB8pne2ivwYO1sJaVeb6QHjYhm+XSH7fhJXZSiibnMKCTTktXZHssRgtU5RSnXu3go2QdD47KlqKlKk5vS7F0a6zx6ufTA9jR43ViZg5W582u/zTXdUjzWSqAEYNsCYUGvAkMpoVTQDen9WlK3vuwKeKXeBEpm4lgR+JKF2Z6qhJSKA4cU5xYVW+1mmFqQL0kK5d7OW1sqJEactJCTXcRJhoSESTekqCQLdX11u4lOV5qUgzks7lTbLdFbuSeBuU75AG20BvUCJXvhJIv//kG01nzta1/jyU9+cvcNiYn5Cdi1axdf/epXeepTn0rfuz+P/4e/hDNiJmw38qm2rkpuCImQBkebClqJBqGSFoL5aAxnK23SrPUg2ugPNGO+ZtXt0u9FYqX1yEHJ0ZoQqinBOlHSopYOqkfSUjGeCJkt2lWnmA6VYz3KWaSSRixglzpvT9mXzC47+HUClCBldRQqBYEZR3YxomzAsjrEtnBV8svGzbCj1L1JqLRwMoo8jyZ2XBPvl7uGgtasLdZSulW/7iBu0hoGBjSB35jurRPFAnie6Oj02Exfv8bzTBpVoVoLlVq5KDX/3spNqTIO7x/UlIq9i8BKWGxsthYotaMvqQm1hA6OlPVuSiUlOJlz8FVngVINTZ9U5JXs4XyqLCE4Ebo0H4mdhMVFLZrSodUt1+LUcoTGFjpK4N0bgRaUVQ+OW3U/ny3a7bT82zBjGtHTvWuFYUuREoqz9CCciggR5BH0eHqQUJqyFGxZvQjDDYO+ZtjTrLm6cezbRqCUCDVlS7CZbl3eNvckwFHmOmVGrK2pFyjpT36X5U//F3/0R3/EX/zFX3TfiAcoj3rUo9r+dsUVV/DzP//zvPKVr+SpT33qT7Wez3zmM+RyuWrqtm9/+9ssLZk3J37913+dvr4+Lr30Up7+9Kfz/ve/n42NDaanp/nSl77EwsICb3zjG3+q9cfExMTEtEdKwaW/YFLA3fiJo9x9g3mLbPXUJp/70+9x6MpdPO43D5EaiFPAxcTEPLjJrZob3USfg5O8X02TxsTExMTEPCS4X119pZTceOONPOEJT+CHP/whZ/79g+x+3u8AtHRV8oaBdcmNhSSVR5C1/0Zl1j1hrRcsjScCLurzuC2bIBd0ftirkNy8nkAhcXsQCVRSwE0NhOwaCrjtXKLrUqElObEgowflveb0kgRKt3R36lA79l5snE8WzkiE33mCpCIaknY076S6C5Xm7mzxWwdHpdIWnPh+h0fhLWbdlk/8ZKIaO2lcktpS5/7TPyaYvtimuOn3lC5MB4rSeYgvAOaPR+kh6hfrsmmLp+o+1C3XykUJID0oGJmWLJ9uM8H5UwqUAPpHLfpH24iU6hyqTEXNv1dnO58VzZOBa2eNQKsrdUKlwNueAqYTk3sFQsCJW3VPM722e37lV+p07pjeNinWTqAEleOkDS0OORXA7J3dJvbrRDHRdvQqUHJdxb6L4exJRX6rt2NeJEx/5fU66xX1g2fXez+nDoz4JGzNbQtuNQ1jN8pKcuNmEkVvKV0uyZgd/n1qNsDthElg3P4CJLeVE4CkNNK4X+rFSQD5sydY+PcPYNs2//qv/xoLlGJ+5uzfv5/rr7+eZzzjGSTe+Tn8N/wyzphJ/dbKVWl8eIslHQ3GhEAqjWqaZdd1E81VwZLW7CuGBAJOprsPP9dcyYYjUEK0SajYhDApNA/4PjkpOWt3X0clNZwMIsebHsZTgYYAELL3VFtJSzGZCTm7ZRMkuwuVKgIlS2rCqC07CZU8T+CttXD6bOGoJKPx2/pyl21tEiqFQY/pQJuESojtX3VieIcg9DWr53qLD7xGoVx3EZFg7lSlrnVfd9gl5VLd8dw0NtnuomQYGNJsbQq8ci2uXqjUTaBUH1cvVKqNvzWDIxq1IvBbjEOEpxrclMKERRiAn+u835vdlE4XelIa1QmVBF7PAiVICM1ux+eU51LQoie3WxsdCY7q2rNLc25pa9twG9qnY/O05JRX2wht0+CmJFuMufOhJB92yxNd+Z/pbRSiJyNOLQXjToAtNPNe74KjwAZfiPbuRA0rMXXyhOip/wRwleZiz+e0Y7FhWT0JlAAWk5LlRCRQ6lK3dKA5lA+5J9NYeCthEhinLSWg4AjuHgSEYPfEWkNMvTgJYPUz32L501/lpS99KW9/+9t724gHKTMzMzz1qU/l4x//OM985jN/4nI+9alPsbCwUP18ww03cMMNNwDwC7/wC/T1mXHE//7f/5vJyUm+/OUvk8vl2L9/P3/5l3/ZUUx1b3Pddddx3XXXkcudx1sqMTExMQ8CUoMJnvY/ohRwH76DtSgF3LHrz3L6B4s89oWHOPyMmTgFXExMzIOW3LJ51tUXp3qLiYmJiYm5INyvREpghErf//73ueKKK/jud7/L6X/9R/Y8/zXV31ungDMPLS9JeKSk4uZikm4in+WyROCQa5EqoRUV4dNExieTUJxcczquQ0vB0qaFFwq8QOJ0U55EWI7i8B6fpVWLlfXuu2f2dDR1Z2HEGV0RlAoaLxLqaKe7UElKOPRYyfqiYvFktFwXoZKbgvG9krm7VOPEjyXbpn5LDRpdSEuXoHqhUjQZlR6E9JBk5XRvbTuy22LyoMXRb/qoHtKuZJd0JFDq/YZ8aEzRP2Exe6R3hyCgd10aZruFhPx6b/ErZzQrZ3pLi/eTsnAsZKGdRUwLbBcyQ7C10uPE5U+goxqeMs5Ic8d6X+b0jzX2ebwstuOAIJEW3HNTbxVM9UFm0LgvaUtUhWWdBEpDU7Cx0ObHFsfMyE4zcb7ebhnYJlC66DEm5eC2VHdN1E/MlovmrxeUI1EBHD/Z20FuS8XFez3m121WNnu/TJ1cc0g5qieBUr8bsrM/4MeB2yBs7cY9eQcpNfQwATtl+ex3PW4upqrpSCs0i5MA/NNHOfuZ/4sQgi996UtceeWVPdcrJuan4eDBg3zjG9/g6U9/OvId/4n3xufgTgxVf98mVor6EDfUHNzQzPbDltvNPUQwl7TocdgFGDckS2v2+AELlkW52wNyCbO2Tfk8XBMBBuyQMRFyyne6Oqd4WjJXltX19SJu9JWgFNY5I/UgVBpIhwz3K2aXbJTuLlQCyGSMU1Uh3yQac2Xr1G9Ck0pDMd9mm+uESkJrEOYaVs5D0ElwWqdKmtonKeU1G91Sj0asnjNp6Hp1LAIYHtcU8+I8Uo8a2jkcbYsTmmQKSqVGAV4nzs2en2j9/BGcPXl+x3nC1WgNXnOauzYEyfPfhh1Jn3UsCqq3ZYOi4G6d6Nm1x0ZzyPaYDW02jcVk13NwWIYUlKCMRNlUUy+2EyglhEJjzvVWNAuUBJpxN2TNtwg6uVTV/TTqhgw4ipN5p6s4snKMekpE/WeP964uZLVFtsdbkhEUwzLguHR6XocnBScdmy0puguUtGbaD9myJFl6c7sDKFhwKi3JWYKhbsFac2BTk3NgPiO2Of01i5NQsPbpb7D86eu5+uqrufrqqxHnef14MDI0NMSZM825yM+PT3/60z3FJRIJXvva1/La1772p1rfT8NVV13FVVddxdGjR3nVq151weoRExMTc6GYOjzMr73tSdx53Rl++Om78YsB5bzPt//pDo5+fZYnveJhTBwcutDVjImJibnXya+aCbJYpBQTExMTE3Nh+Fk/Qf+JkFLyrW99i6c97WnkTx3l5L/8H1STksHOmT+vLlX2gm+z4LcXD0m/9lceslgqm9gxN2DQ7kG1AtgWuD267IfSYrXooKVguD9E9qC0CBRsFmSUMq5XFDN7QiZ2qoZUV+1YOCNYW6p769yRaKf9+pSCxVOK1SYBg7Zl20kky4G+EUmyVZo+S9acleqYvtRhYl8HQYJofNjcP2YxPG31fBRvLinm7wp7FMVoCDTe+U54SXDaZwRsyaHHS0an6VmIM7FHMrk32ujI3aqdi1JXfhIXJaXp6bXv5mXq9l9mCKYvsbF6edM+quLhn5OM7Oh9lZYF9nnuC6XAK/TmogSwMqtZ7FEkB9A/CqPTtQNWC9FRoJQehOlDFv2jTT9UMkq2oG9I0DfcpkyxfcIm8Iw719pi+3o3n+ueJzl1tyQIOp98ypHIFBw66JNK9d5OvoDNgkWu2NvJPZgJEFJRRrLh9yZqciyNY2mEovrXHsXeVBlQ5JXF8qCDXaT614610GIhsKmYt5VGNG5WtBQoBffcytlrPoLrunz3u9+NBUox9zn79u3jhhtuQAiB97bPUD673TZnI59iI59ifNi8ZetJWEkJ8h1OO61E9S8Y8fCkQGjNRDnsua910Ng9prvMW4JAgkSR7vHCWkCwiSQ4D+l+Qipmkj5C6q6T86EWLOZtwjoBQ5AUBMn2/X+uJFnJWtsut0HKIki1HoimUppkonU7aVc2OOsAJNMwtgPsTin1bGn+IgZHIdEm5VIDkVh0Y0mT2+ghPiL06TWzaRXLxohHeyTTr9kxY+LbOSE1lz++Q+NGImYRKPN3nmMhobT5O7/czohQVdd5Xst5yjgoJczxMjIUMtDfY3rhpGQwGTIz2PsOEWike16ZlQHwESi7NxelEDgb2hSik66bQEmgGZMB6brjQ4TtBUoA43bITmf7faEMdUsHJVdqBuwO8sYWGeA2fIulstVRoKSlaBDRZUOL9R46KeXCcDJgQgacz8lUsGFTyI7j0gpCa/q0QkvIOhLVw/2nAFytsbQ27kmVvzb0BYq+wKTq3nAkQ+N5cvlk9a/1SgQrScF6olbu7ok1FrL92wRKWmn893+FpU9fz1vf+lb+7M/+DMvqPZXegxXP87jxxhurTkcxMTExMQ8NpCV52LP28vy/fioHr9hZ/X7l5Caf+9Pv8s0P/JjS5nnaiMfExMTcz9laqTgptbm/iImJiYmJifmZcr9zUqogpeT666/nV37lV7j22ms58aG/ZP/LXo+0G1UNdg6cnMbvE6wrm/XoYfW07bMcWHgdBEuWB6GrmE4H+AqyPTh2zG/YzKNASiSqJwcO11LsmQyYdywW17rFS2YXoxhLgQPdXy+WoOuetlsCbckukyCamYNQzMPKfPcHy11dWZomGoubcPTbXYRfTa5KZ271qw5PHYnWt3gyZPF4j+49QhCUYWP+/CZ4MoOaqYssTt6qenJf2liAjQWTgK/XdFNba5pSIXIpCDu76gCcvauxLkKpjjNCqQHYeUhy5scKv759g7AxDVuvaL1tfTsvsdAK5o922B9BaFR+QHYJCptBY31aIMpmQ3XCZnNZ9+ySIPyQlTmrqzNQPTv3m02bP9H7MsUcUHH+6mF3L52GlSglngh1131dyMLxm0JK+dp3QndOSXSmnYtXqMFuvdzafIdK1J3btq3YcwjOnYZivoOTnCVRkfCxMt8T9nD+aGnc5AIlOb3c2/kjpWLfRECfpzm10d0Gy/TbsJ63Wc9L1GD39Qzbih3JkHXfYqsgOwqTAKZtj8XAxkNywjd1svMat80k3tot32Lxq5+lr6+Pa665hsc+9rFd6xQT87Ng9+7dfPOb3+TZz342c2/5JP1/+FxSh3dti9vIp/A3XZwBj6VIsGIrTZ8PG4kOk+5KIEqStB0w5Sm2bEmxy5xwKAQnlA1agBOl9e1hEn0qDBkTmqPa7epU4iFZqiiNbF1N29uJiruRFEaHqyVdl0tYirFUyLmcXa1TO5GFUoJ8Nc2Yphdnk5WVFmqI5nJdC+mZa3UpD/OnIejBWafioDl/omdtGdqyKBajccp5MDgpUSFsbvQWv1JJDdfjmMb3IZ8DMCkChdINKdWaCXyYOyUI64Y4IlRo2f7gHRoxTqIbTSlLZTlA9fq2Q/1yfohyasvZjmZ0XLO6LDruP2ejjD9krkMLy1ZPAiKrpLBKivKYJCckvbrq2EWYdXtXh1todiV9Fso2Obu3NtEINrWF9IyJbLe0chrBPUEtyCrRdXPmfHvbcMkq6bbLlZXknkJr9yEZNKYbr4iGAi06phuXPoTRkGbYDnAELPlW58rLWnvoapfRyw7XaEtTFJKi6G3sNaoVkypgUzuEPRxUUmuUEJwWUV9O90HheNn0kjkbRMlqL0yi8fqzXif+DPLOdvckQAch8++9hq1v3Mab3vQm/uRP/qRrfR4sfOlLX2r5fRiGrKys8NWvfpUzZ87w67/+6/dxzS4ccbq3mJiYmBrpwQRXvvaRXPyMGb79oSOsz26BhqNfn+XUDxZ43AsPcfjpM4g4BVxMTMyDgPxK5KQ0GjspxcTExMTEXAjutyKlCtdccw2vfvWr+cAHPsA97387+1/xBuxUZltcRagEYKPYm/BwhM0pv/OkteVJ7thw6x6V9pJ3S5KWIZfs8Di55rBW7NyMXig5OutSKPX6mN9waCYAX3P8pIPs8tb17Jn6B90mtrNQabuwyCwTpU4It4tN7AQceKRk4aQi22ywUJfaox7LgcwwbLZL81EnVKq4FkmbngRBFYME24UgoCcnIjsBOy6yWDwR9uSS5JfB9zS2DV5vZlvVOvk9xs/fE73N32PZQauXl1oIhyqogO3iryDav0qfn1Cpcjw1rS/0NKqTXqzFsdZNoNSAgvnjvb8NLiWgQ0LR+0RgGOjzcm/YeVCQ39RkOwn46rATEJR7N6+qnAfNAqV2uElIpGCrVRrANuu86DGwsQTLs9t/0y0ENTLq6sIOwsnGiV5FuSw5dk/3SS8tYbBfsXtvyNE5l0K5t4kypSTH5lyyHdzg6uvz8EmPbFFyesOle19vrgfrgc0P1iWqB4c7F8Vex8cCzkQTo3a+w367+Sssfu3LDA4Ocuutt7J79+4etiMm5mfHzp07ueGGG/iVX/kVbv7zTzDyv36NvssvahlbESoBDJdgrKjZdEB1ua4UAps7+oSZ3G5K5dqS6LedZUVaKu5x7K52LfOWxZaKBBY9XuZSKPYKn3PSoYTsKDjytWC2VFEf1EREnYRKFSclS0BQF6KiVHnS277cYCYkk9KcW9kuUFC2RDa465jfk0mN5xmhUytqQiURpW3TCNlbKrPK7up5rAak+sFxYXO1t3gVnr/Ro7AFWvcm5vJKom5c1Fuq5BbDYoQfop3W44wwFNuKlpHwWnrheQmVKqKyBqGShiAQ6A7t1HwPoLXoWWAGUAokpfMY+1pCk8hqyj2If8EMPwMtCHo8QRMoRmTIkrK7Cg8hcnYCwvO4+5JoFAK/rp2sDqkZM5aiGIqWaSKt8vb4flsxlgg5nW+TWrLjcd9ZoGQw58Catns6tJWl2SN9PA2zoneB2QqSLdmbQGkwVOzyAu6xHPxeVHLRPcaptDQmVKXu58pICUZLmk23JmIN8q23R+Z9Vt/1rxTvOsXHP/5xfvM3f7N7nR5EvOMd72iZ0k5HnYMQgmc+85m85jWvua+rdsGI073FxMTEbGfq4hGe+xdP4shXTnPTv92NXwwp53y+9cE7OPr1szzpFZcyfmDoQlczJiYm5qciV3FSGo9FSjExMTExMReC+71ICeD9738/09PTvOUtb2H+n9/FxPNfS2J0cluck6s8jRXcRIqaBqKz8Eh7EgtIpBSXDJQ5tuWy1ebt1vKgJJFVFANYzUu2ir09+C6UzPoH+kIcW7OStTsKDgCWNyQ6cuxQ0cR/N7HS5FRIKgWnj2pAVgUDrcRKs8c7uB1Y1jahUlA2rj/lduKeinNQ3czSxD7JwIRkcyVo/+C9ImoIFelB2PNolzO3euRbiS0qD1Wj/9sJzUVPdFk4FrA+131GS4WQ6Jck0sqk9eqCV4AzPwob69mFmcskbkpw/AdmuW6OStKG/johl9CdHXaSGZjcL5i7WxMW6ra5jVCpXIDZH/8Ead3Og8XjHcqvP84jN6XJAxIVwHKnVGl1x2xqALSCUpcXXCtuDUM7BVMHJXf+oMdJ1FCzeLLucw+7OpESeMXeZ/sOPlqSXdYsHKttV6d9ve+REq+gmb1Td+0rAEanBYMTgmPfV7VTsMtu31ylZRqeVgIlAK8kOX6kdVnNLhT9/YqdUyHHT9IxLVx9mqStPCxnLQotJvaasaVix0jI7IpFwZPQg0hJKMlKzmIzEkCVBzv134qH9XkUQsHpbKIH17xIbInkpmKKIN89PdUjZm/kU1/7MjMzM9x6660MDQ113YaYmPuCoaEhvvKVr/DCF76QL77z0/zjP/4j7x4+0zLW3zRivHNasz7soaJ0bho6ColU2UIAO/CxNMwmZdt4fyzAWbHJCklZCaQvUZ1SlGFcCT0EAs0EISvaQiHQHU77EoIVbVFWNcERdE4JZgvNdMJnwbOr/US75QIlmMu1FwIoV2wTKpU80bEnUVEqtopYSQjN+IQiuyHY3OzQ/pFIRnohI5PG9W75XJvg6BpUSfs5NKxI9cNCj86Dliuxk9CLmlxLyeZa3Rc9XI8ty7ghrsxDMRKFtruOVXCi46cimBah6uim1D9o4reyomFM3U6otNUiree9SRAIVtu9AEDjuN/ZKKNHXYYHFetZSRB2GP9Xf9KkHUXRF10FQTra/OmBgKIvONtjHmZfC+bK5nyof9mkHY7QpJVG95hpZFAodlgBxwIXSnVlt9GypaVixvU5WXbwtOwoTgIjaNqZ9Fn1LNbqUs22EidVKCvBli/PS6DUMcVbQ1NrdsmAvJas687CHlX9WbCqbHzRw3hWw5AOKSMoCknZ+MZ2XawYCtawqsbA4XD7gXkq0OwphpzIWPhe9ySflXH0UgrWkgKv0NlaK9jIMfj317Nx7Az//M///JATKAG86U1vavm9lJL+/n4OHTrE2NjYfVyrmJiYmJj7I9KSXPaL+9j/czv4/sePcvzb5mZh+USW/7z6u1z8jBke+4JDJPu7WFvGxMTE3E/JrUYipdE43VtMTExMTMyF4AEhUgL40z/9U6anp3n1q19N8SN/xY7nvJz+A5cCUB4WJNYbH2OGOQF9ghEZcChZ5rZiioLu/NA8LJsHqeUe3iQHyek1cyPmypBUUpMttW9OPyNx8orRgYpIqXv6hPUtG6uoAEUqCcWSRFmyo1ApCASB37twAmBqt4lfPN74fSuh0rl7eii7zlVp8YQyQpQeNTKFLKyeaUxv1YmgLFi8J2BzubcVqADu+W7X/Hnb6B8TbK0p6CENwtpZxXkY+JAZgl2XSE4UwqoIp5N4RWuwHIFtaba92N9GqGS7ZtuVouaiVKFXN6Xm465uXXYycnhq3g1txDVWt5e1m9a1Y6+ZuDz5o9728+aahnsUqoM4prYuTWYQysU2LlVtOHnr+Qm/5u5R+Lnez82VWdXWsUiEetsE7Pxxzdq87lmgBLB4avt3rSZ23YRiZj/MngCvR4cjrUxKnaCDSKzSJVtSYVng+ZKzq72dPAMZxWh/yOKGRT7RRQiIYiihWC/anNvq1SlAkg8FpR639xLXwxLw47JLkN+ecskbqH1WQYnU9f/KJ2+5hYc//OF873vfI51O91ivmJj7hlQqxb//+7/ze7/3e/zO7/wOb3zjG/mPxyWq1v7psQKFlbrjVgiKuQROf5k9W5qyJZjfbny5jVIgsdz2boD1mHRE5t+DZeOa0UnUWx5R9K8JRkRIXkvy3cQWCJaxSWDER6E233V2RzJii/PBlprJdMBCfvu4sVmoVPYl5eq1oL1TUMVVSWvB/DnZsu8VQettyG+2/LotubyklO/9Glhx+DufVpIWxsWyTFehUhjC6iKUz8OhcXgMVKBZWajVqpNQSVrt699SqCS0MQuNBEEVF6VqeT26KVVclKqfIzclITRCtHbLavVigpBgWbqjk1L9Yew6MJ0oc0onKAW97bnlvIXSmFTVXRBoklJTVN1TFFbIaYuC1/sAe0tLVGg3CpQ6UFaCZd/Ca3c+N51+CsHJgktY77rUUWSt8ZRkpZUrY4vTacwJCHUXkVITPqJrIrWKQMlF4SHIIQl6EilpRrSiGImU/P7Oy2RCRTkUBEKw2GM6P19C0RKococTLiIRaPZtaU73QdERlArbD7z0SO3NGn18ieDvv8hcqcTXv/51nvjEJ/ZUpwcbv/iLv3ihqxATExMT8wAjPZzk6b/7SC5+xi6+86EjrJ/NgYa7vjrLye8v8LgXHebw03bFKeBiYmIeUISBorBhbuD6xmInpZiYmJiYmAtBb7Ov9xNe+cpXcv3112NZFmc/+0FWbvx69bfy8PabISen8XKCbGjRyjSn1LRMoCRHV5KEJUkiUAzarR/zNqcx2D3is3/ER3TMd2U4MW9z96wDSLTo7JhTYXJccdHBAMc2T7CVJavOSs2srkjOnrUwu7b2xFtbsv3Ei2ivUdGWVU0BV8F24eBjJJnhDpWO3INUYByYkOB2G+9ZEizJ0omQ8DzEImtndef4NqKdrvWJSPbDzCMcBsbEdqFOC/IbkKtLaSK65CwprGqO/yDc5hLUzj2nXIATNyvKW23KbbHcoZ+zGNkltguUKnRwiQDab3e0roue6DC+W7b8bRtByLm7VHv3pRbrOn1rwLk7Oh8U9e0clGDtnEb4Xc7JaGZp+mLJjoMNM08dSfe3+LLLMrlFTblH8R1Adgnya725KCUinUDV5axLXfY/EkZ2NH6nLdHWecJ2zGnU6vDZ3rcYYWUuLzlxyvR125aRjQ5Ku3eFHNwXdq94tXxY27K57bSL10WIJhRM9wUcGPGxZa38di5KEsUoAdKDM9kES6XGSS9vqPVy66HFZl5i57f/Xi9QCnKbbH367/nRj37Er/3ar3HbbbfFAqWY+y22bfO+972Pv/qrv+Jd73oXl33iDlRNMUN6bLu1or+VYM1zaWcYZI83KknWbYsVZSNKkv58+2ufP1Ybk9laszf0GS1rpNd5HOUhOKZc8lFfJLSm+3y8Zk/CY8KprVNLUXVIaowUnCs7lJXEqBh092UiTVY7sx/limoKuAr96ZCpkbCh/G3LRU5HQWCEH7atO8abdVkUQ5tyj86gYAS9pS7pL1uNb+1Ul2XqnCeHJ2B4qlLJLhWSksKWQNU5BImw83avLuiWTkTt0iRn1wQba6Lt783jjYEB2LHL1KFZoFStttd5jNLud+mH9A3Azj3bt7Ftmudlj4Vlm7DNixjNuhzPh9kFG1Y617HesKcYSMqhJJHtPm7psxR7Uj5O3XqdDkJuB43dIh2i7DA0DBHki+eR9hfBWmhjlTqneAPj6gSaQNecpjoJlNKWYnfax2rufBRtjm+Tqq7tWSnZ5qIEgkVls9XGRUlZNYGSg+Yi6TMoehh3acx9ghCcFDbzPbyJYXmafaWAyaaXXdq5KGUCjVWUhJ7NGeluSyNnDW9vXM+CLQeKJadlard6gVLp5uOcufrD2LbN97///YesQCkmJiYmJuanYcclozz3L57ME37rYpykGQ+Ucz7f+sCP+dxbvsvKiewFrmFMTExM7+RXS6DBciTJgdgRLiYmJiYm5kLwgHFSqvDUpz6Vo0ePcvnll7P0jWsoL59j+pd+q218WUnuWU1An6BPhvRJxULQ/RXfvf0+A6mQH6xtewq8jZMrDgkbQCKUbjkhVUOigKSrOLDT49SCS74k207KhSnJ8qrE8wV+02R8J1elwWHFzt2ae+5U+HUTSdqS2yYwzp2O0pJ0mMiqd1UKPCgXNbqbJqvOUWnvIywsh2oKtI5YkqFJGJqyOHVznZVMB0HXyIxF34jgzK295PaCvY9x8AqKM7d2r09pC07d5FGo3G+Hqmvqt8EpsGzB2lnTpkKptmnflKJtCr2Oqd8adWgdmbsrpHieTgnnw7kjIcV2oqnzoc3xrALwAtq+nV8vUHLTMDItWT6pCDsdDnUTmCduUXTJyhdVBDLDsPfhFmfuCNla7b7I4DgMTwhmf6xppVdr3sfDUzAwLjhzW2/tOTIFUwckx29R5jjqOplrXKO8Op1At7Q4hZzknhZp3loJH2f2aWwb7jnTOs1mK0O7uXmLRAKCTLe+WXFop89WSTK/5qBUd4ESwNlNm/WSRdAlHmB3ymeHG3LTsiTo0ve7KCbtgNnAZWWz++U0f/Y4Z/71/RAGvPrVr+Yf/uEfui4TE3OhEULwv/7X/+LAgQP89//+31G3fpfpN7wQZ2yg7TKrroRSAsf1GC1qNhIQdnmz1taa/eWAOUey4naODYTgbsuhFE3hS090TP9WSa00JgKSaM5qG6Hbp34rDwnmN52WzprtXZU005mAUihYbXLWbF4m1IKzkaub00l0VOeqFAQCrwcjyIqjkuNoduxULC9JisXuy+mEZHwkJLcJpXqxZZvxqZAwOiPJrSjKPZSfzMD4Llg4KfG97gLujeWmVXfO3Iy0NP2DkMvW3ItauQ5WCDu4A7V3VKqIvroLugp58LoI6H4ainnwz6d80b7urc8D0dEJERoFSgOJkEAJCn5v779shZKTRacnFzLpwU4nwHI1p7xeHh5rdlkBuaJkizaCmoam0My4AeuBpFjopf6a6aRPWQnmo3R1nR2UjManHMoG16XO4zXBkt9mXNFURUdodic8znkOW21OEtXUDD6CWWWzhSTo62SvBWmt2KkDTuEQ9PByjfSNSPG47dDLISq0Zl8hZA3BfA/uYkNlTd4G3xKcFm7H01GHmo2v/IDFD36Jp17xFP7t3/6N8fHx7pV6EPHOd77zJ162XWq4BxvXXXcd1113Hblcl7ziMTExMTFIW/LwX9rH/ift4Psfu4sT350HYPmeLP/xJ9/hkmfu5jEvuIhkXzzhHxMTc/+mmuptLIXo4T4nJiYmJiYm5t7nASdSAtizZw+zs7M84QlP4Mc/voniwix7f+t1TDoWXigpKGnS+7iKTc9MNA8UQg72l3ElLGAxJBUBggATO5hQbPmSQEmSUrFeEizkE1iBZMD18G2LXGABihFXUZbGecm1FRnHpBECxcOmPNYKFvObDlpqhlOKfFniRbGphCKbl3iBSdHg2op85Ko0mFGUSgIvkNi2IpPQZPMCpSTlsiKTViSSmq1NQToFxTJ4nontSyo2NwEtSaYUoMltCsIA+gcV5TJ4JYm0FZkhk9pD+5BMaywH8lnByA4YnYLTd4FXBGlDZsDEqgDcfgvHgfxayOwRTWbITDqVN40eKTMM+WwUmzJ/uTXzsDy7HNZSV0noH4HiphE8uSnjBFMRfKQHwUpAGGhTh2FJMasIfJNWLNUn2FoxD9RTg4A2Qh+toH9cUtxUBGWwE5AakLXYAUBAMQvn7vRxUgInCX7JOCulBgRbaxqUcU+SFhQ2TJ0sR+CmNF7RpCpLD2q2ssLE9oFlGwclMO0wOCERQrCxEJIZhPw6KKVI9Ess13yuxIYl8/9kn2RrRdXaMA1OAvLrRsSSGYbQg1IeDjxaIKTk1C1GiOOmo/autOGARilh3JkkqBBU9Ea+k4RkXRumB037lbbM5/4JUdWD2Y4i1S/ZWqbW3pg2hKi9txTZRYWdiNLirWjQmuSAcegq1MWWthROCvZdbrFwMmT1LNU2lEJV27tvFLyCOQ4HJmF8j83pmwN8zDFn2eZYA+gbVPhlEy9tGJmGoUnB0nFzXFl9je0dlKG8pRuO2cAzbdg3DLlK7CCEgWlvKc3nQtaUNX9Po7gtPWjauBSJzfpHobgFYVHjWOAkRVWglBowE6+lrVpsIWfqYLuQ6gcdTQym+qNjdrOu3LxxiqrEri2ZY0sK4/BUbe9RKOeNGKkSu7Vl2nt1zrRhZfK2f7gmXJI2ZPpNu/QNw8QuWJhTbGXNudw/qCgHknJJIqUysVuglCSZVASejib5JP19Cj+AUkkibEV/BnJ5CJUk4SomxkPm5i08X+K6irSrKHimT+7PKPJF0ycnbEUy6jvLvkQC6YSiUDZKveGkIu9F/axU9DmKbFFyaMxnrSQoeBY5z/TflT65jIUrFf2WYtWXSA/6bc16XrKetwiQjLgBhUBSqpRrKxYwTnV9MmQm9BiRiuW8xYCjKIQm1kYx6CjWfYlC0kcId3ybe677Ahaaf/nkJ3nBC15ATMwDiV/91V/lm9/8Jr/2a7/G1h//C8n/57/Rf/Ee+gJFzhIgBMnQeIoUo74ls2IxVVKUUxbFYZ9UABXDi4TSSDTFSCGaUJrTrkU2lNhFSIWKXMZMdidCjQVUhhFpbcZwCEGfCtmhQ06UbEIpsR2FrTWFqNwUihDwkARRdlOJRiFwtcZBkxfbY4tKkJIaT2nSlqagJK4w/9dSkJQKHWo8bRyU0lJT9ASlUGILjWNpipG4PGEptARPSYRSpGyNFxpp+PSwT74k2ChagMCN3I8qLnGJjIktliTlQJN0NaVIuOTYJuWX55v2TiY0fgAhEl9oNrOaYsmoMWxHY1kar2xiE0lNEBixjpAa19WRS6fCdjTSAi9Kk+UmzTUu8I04yU2YNGwakEmJY4GfUw2xfmC05W7KXFtKeVg9Z8ZWYFyTEq5CqSjVqjDXbL9slgdwXKoCKCcBaFMuQCIFvmdiLUvjJqFvCEpFkJESxPeM85HbJwg8I16SlsZxwStqhsdMvF+uCX4SKU3gG+t34QichKmDm4CdM4rlOXPNbowVSKlx7IByaKG1AGHGVhUXJTdpxhRhUNeGJeOWZDtg1wnzkjI07U3UhsmovZW5dls2eEVFKbBwE0YAHfgCqULcVNSGSmDZRjRcLgnGJsF2yiwUE/iBQKBJJDTlQKCVwLI0jq2rKU4nRkPKZcjmLECTcjReIAi1wJIax9EUI8cu11IMJUMKvqTgC1K2JhSSQAssNAmpKURp3VyhEMK8RFJWgrRUeFpUY12hKUTuRC4K24cSknO+Tb8McYTG1wLZlC7ORWEJKGqJXYJEQldTQ1ZiS0qgEDhCYwtNMVJNZ4RCoqFkXthIWZpS2BQbiZyTUqE0zJdt0NAXpTRTCHPeS00xrDvvNZQQlJRABhJLmPSEttC4lqZQiY2cHstKsDPl4yvJMjYhdW2I2dZEpMAuR/V3haKoJJ4yscm6NnQsI9EsReKlQUIksI5FHkkazaaO+lmtkJi0mmjIaJMOLkDga0ESRQGJElHfqVS1n82EijAUJLRmOAxZk5KClOhKrNbko9h0oAkFlC2BLAgyWnDKkhSkwFVRbCQSTIeKUJgUdkJr+jzN5Jpk1TV/fUqRixzkUqFGAyVLILQmtRmw8Q+fZ/F7P+J1r3sd7373u7HtB+Sjj5+KL37xiz/RckKIh4xI6aqrruKqq67i6NGjvOpVr7rQ1YmJiYm53xNqxRH7LOXfUux62iSbH9ti82wBNNx53RlOfn+ex73oMIeeGqeAi4mJuf+SWzEPGzKjyQtck5iYmJiYmIcuD6h0b/Wk02luv/12Xv7yl+OtLXHuQ3/BqD7HzrSZwkrbmksGy2Qc8yB3KuWTshW3byRwcoJLrBIzTpnSsCBhw8XDZQai2Il0wIGhoCpKetSYz2V9ZSwPXAmXDJQZSpnY0XTIwXGzTgkMpUMm+s2EhKU0h8Y8hlNmtqV/THNw2sQqJQkVjA+FSKlIuoqD0z5DA0aQMtinObDLJ3ruytRkyK6dPjunQsbHFXv2BAwPmzr0ZWDvPoWdNMGTk5rJGcHsSYlSkt0HNKNjZsImk4G9BzVuwrigjO0UTO816wgR9A3BWJQGKpWGPRdDMkqLNjoF04eopn+bvkhy0WMl/aNG4DFzmWVEFcDwTsGuS2pvw47sshmYMA+GkxmYucypCl4GJyW7HlZ7aDx1kUVm0GL2DoV0JDMPt+kbM9s2NCGZeUTNbWXqoM3EAZuNc4rZI6FJyzZh1jswbpatOORM7LeZOmjWU9iA6YttBiejh+sjptzKs+uJfRZTh2p12nWZzcGfcxiYEKSHBDOPcHCj42VsRrLjUG1bd11qUc7D6VtDUv0wc5mNG2VzGp2G6YtqN+m7DklGdkksW0TtYpHMRG02Ldl1sSlXaM30RZKxGYFQis2lkPSgJB214fCUbGjvHYcsxneb9dgu7Hu0xfi+qA2nJLsuq29vm4n9Zllpm31jRy89DU6YNqy1t8PkwVr7zzzcZninZHyvZGDStKG0dLW9Jy+qxe66zGZwSuIVYHNFMbnPqrb3+G7Bjob2dhjaEU1QDEoGd0isBAg/YGy3YOdhM9ErlGLXJRYj09EERR+M7LQ5fVuIUjC6S7LrQLVYpg8KRqPjO5GB3Q+zOPgY49w1sgN2XVzrEncelIztqrXh7odZpIfMb47bGLvjgGRiT13sJRZ9A5GLliVwk7V9PnVAMrHXLCul2ecDo1F7j2mGd0hmj5hja3K/ZGp/bT0zl1kMRS+A94/AnkstLGBjAcb3CKYO1GJ3XSIZnDT/zgxG2/pI4+w0vouG9Ha7DprUOmAESnsuNpOiAMmMYMce829tSab3C0YnIuFfGvYeVCTTYNuKkQnN0KhgccPs9127QibGzeR8woV9ewIqmc0mxkN271SMjpiydu0MmRoxfadjw8EdPv2VfnbA56IdPiA5vewwmFFMR7G6X3Jo1GMwoRAKxlIhF415CAm2pZnuD9g1WOujLxrzGE6bPnnUCbkkU2YgVDx6tMyBgTL7+kO2AnMsHh70GE2Y2CE35PBYGRfoK4bs1x59juKWbJIAycV9HpMJU6dBR3FJf5mEhFKfZuCWL3PjF/6DkZERvv3tb8cCpZgHLJdffjk33XQTl156Kefe8jFefHeSS3Sx6lUy6SmmyzUR556yYj4hWXck7obD/kWBpUzKt4kgZFddOqv9XkBCA0IwFCieUPDpKwhESTLuK3YX68oNA4YjO8cUmh1hgBs5Eo2VFXtLYTUN3FSfx0g0qV9EMiBCkkACxZAImJE+QhujmWkRMCZMubaAPUmPCSdkyg0YsgJmEjUro0knYDSh0FJgYVzY8glBIZBknJCZvloeqrFkyGg0FkQKdg0EpB0jdhBJzeRgWDUDGc6EjPTVLFZ2DgekXYVyBUlXs2fSZ0eU9m1wUDEyXIudGA/JpE07uC4MjIBwLaTUDAxoRsZqjiljk5pMn/m368DkTs3GuqDg26RHJSOTtf0+OmVE62DSf07sAseB1XlzPRzbAToasI5MGYErGDHNxIwR5IAReY9N18odmpL0j0S/WVFsdO1J9cHOAzC2M2qXCcy1Uplr58SMESohJcmMiZs7AeWiYHAMBkdr65ncoUkmzLYnU+Yz2tR9YBiGxmqxE9Pm2gbG9XRypxFshSUjiB6oS3U8vgPSURs6CZicBitSWA0OKXbsqrk0ju2otaHjmja0oyFSZhCGhmv7pl17g/l+bAekMuZFg9Fx4yAlQoW0TB2cqL3TfTAetV9u05Q1Io3lj5QwNRGSiBzI0knN1FjtWBrsUwz0R22WDZge9Ek5Cm1BKqHYNVA7F0ZTxkVppWB6gl0DPsPR+Zq2FLtTfvWGc8wN2ZP02ZXwEWhmkj79lllv0tLstb1qfzKuQqailIshgkknZECacpNSs9f1orRrMCJDdloBVsmkYLTR1d9cYdI3Vj4PWSHTTq3+O0RAuSQoKokjNbtTPglpYgeckOlUzVJqR8Jn2A0JihLKgpmMTzIa9/Y7iulMrdyJZMjOtM+uVIAtNDNpn1TUF2VsxUy6FjueDBlNRP2AFkxkAjJRu2QcxZ6UV+0jxpyQCcf0ARaa3QmfQigppwVpodhreRCldhsTITtkrf6HLY89lmfEWGj2WV71jaUxpZhWQTVD5P7QZ1gFeEKwLC3266Dq/DaYDNjtBUjfOCftLQWMhCFSQ1JrDvg+icgKbSQM2VNny7W7GDKegx2bsK8ccrBg2kFHff++Ui12lxcylSghtcbastm7KplLShYSkiFfc6BQuy5Ml0Imy6bNEuEChXf8G3M3H+Ed73gHf/M3f/OQFCgBfOpTn/qJ/j75yU9e6KrHxMTExNwPuW79Nn7x9j/nlcfey5tOfow3+h/jAy++HvHbNnbCjOJKWz7ffP+PuebPvsfKqTgFXExMzP2T/IpJMdA3lrrANYmJiYmJiXnoIrRuk8fhAcSHPvQhXvnKVwIw88RfYeSSpwKKlISyAoVxtrAllKI3YR89VCAEbgoygGJ4S1MOolipcCTRG/CKiwY98oHgXD4BKNykKdfJgpQKV0IpeuPdtQNQxtGjzw0IlHFNCqWFJRXpsqLkARhnJYBd4wHppOKeORsvMMIiKRUJS1PywCoaAUDlBRTPx6RG8o0jiZQKx4FyOSpXBEgJfs4sd/EjNcuLsHjWMrEulEsm1rbNpIYfOcAkLIUKMCke6t6WR4FtGxFLJU1UwgnZeUiwdkaxtWqESl7JxFq2mYzyKm/AJ80b4NMXCwRw7lhIUIreMreNsMOL6mAnTRmBB0NTAiehWT2jUKFoHauNOw7A+H5Jbk1R3DCpP2wXvOhVajsBCONCAzA6Ixiatjh+o2mvhnJds/2VWDcNOw9ZrM4p8qsaO1nbVjslEdI4MlViQ8+8LY+M3oCvK1dKKEcp+BIJXX2zvhrbrg1Txo0nLKnqetq1YaW9jTuB4MBjBH5Jc+bWsGsbumk4+HMOS8cD1s6qxtho4qs+NpER7LrM4dQtPqGnG2NFYxsGnnGJqtbBMw8xbEtta8NqrKShva2MEZ75hVo7dGtvrwTasXAdXXNtwDg4je8RbCxoCtnG9naTJhNHff1HdoCTEMwd0w3t4ibNfqjMwSQSmqAEI7sEm6tmMrTV8V0p1y8LhISp/YK1eUVps+44pDG20i4DU4JdF0uO36Qo5Vofs/Vt6GZgcp9keQ7KnkCK6NyO6h8Ede2dqLWDlRJIC8qRcMetOF8EEqQi4UKoFIcvFawua9aWJUURpTFK1sWiSLrgeVE/GznLbeWN65LrKrykRRBGsY7p6xSSXaMeU0MhPzqVIAhN36k0BKHEz0DSjhw1kKTsAEfCpmfc7dxoZtRTUbk25DPGRc/2FAkJvlIcGgyYzduUo/4bICUVvoIASTCkSQL9ns/F/QF3bTnkQotyi1iJKbecW2P9W5/k5MmTPPaxj+Wb3/wmyWT8hk7MAx/f9/nDP/xD3vOe9/Bbv/VbfOMJh5HJBHaU0iyIBiyuMo4ZoRD0BYrDhZC70hbeSICtNOFyEr9FbCJU7PJDTrkWoZRYWiMSCl8KnBUbR2sUJlZELh2+ENjUUmj6wqSAc7TGWZeEGPcYG+OWclD6LCqLTSz8aPrfRqOEEUQkNjSOgEBrLCFQGixBNT2VLTRam1jQuFoTaLDzgtFEwHAy5ETWRSGwInFEqE2sIyFQGMENmkRJEyjjeFTJMhZGqeZsqQk1aC0QQtMnQtIJzcaicdkRopbezLbMNU5FsZYEKTU7xkOWlwVBoRZr2RqtjOMOQmNb5jogJQwOa/IrisAXoLVx3lNRBl9hBEWh0UjguEZ8vhW5ENoY95hK/S3HXFu0Ng5CYzuhmIPcRuTop0H7JiVuc2yqHxJJWF8069TUXJashKm71sYJSkqqKV4rbk0qNO1t2abuSkiE0Eiho1jjrCRobBfjzmnaULqSIDCp46RlnKsqqeK2xVpUy030C6YmFfOnjbNRyzas1DdyGM2MCM4da2pvzLKV9pbStM3wuGmPtXVzMClVt60hTe1St881lPuT1dhQmVgpTGxQaYdIpBNG5YYjNqECZUWxIjqGEVjCbFTl+LalSW+mtMAbNII/X1diNX2WIi0V856DI8zxrSrnp4BCRiA94wok0exyAxYDG1+LbbG+NmkRLTR2maobU0mb+tTHBtoImCRR/REMWiFWWZMLZPVcdppia+e9Zk/aJ1CChU2n4VyuxkrwK8e+0KRtRSqpWChZOFq0KTfqT9CEkTObTEaxsj42akPMMTtohwzbIbNlkzbPS5tYYVVc52qxQdTHOVHySw9Z7Q+LGQ1CYCmNBPyoX71UeWwgmbMc089iytVCoPoUUtfOm/4wpCCl6ZOVwhGiGmtpU25pxJy8bkGiBAwGCkdr1i2JL0U11tLgRdeF5EAJLWB6xaRLn0tZ+IKWsZXrj3v73Sz9y2fJZDJ85jOf4XGPexwxMb1QcVL6wAc+wOHDh7vGHzlyhEsvvfQ+qFlMTMx9SXxut+e69dv4gxMf3pasuiKkfvv4fyf1HzYnvjdf+03AJVft5jHPP0SizyEmJub8uPPOO/nSl77ELbfcwsLCAgMDAzzsYQ/jla98JTMzMz2V8cMf/pCPfvSjHDt2DKUUMzMzvOhFL+KZz3xmQ9y3vvUtPvShD3H69GmGhob4b//tv/HSl760o9j/Xe96F9deey1PfOIT+cu//Mvz2rbzHXtVuLf66RvefzvHrj/L5b9xkMufd9FPXd6Dnfj6eGGI2/2+J27zC0Pc7heG+0O7PyheKXzFK17B4x73OK644gpOf/s/WT15hAPPfiXFus0LkNHDdMOJnJn9dwIzKVQMaq4igaqPldydrU0qT6VDVgoWAkmQArsIpbpyvWgifzQTsH/U58hCAoVEKJN+K2dZ2NEtXSWVx9llm4SrKXk1JxylJMVoIgMRRpP8NVxXMb0j5MQponRwdXXQNoRgERAEkoVZxcZardxyqRYbBNLkk4hW7ZUUfYOw8yCcuqMmVDCxmNiIsm9x8g6QnmmAiggDaiktKlTEJ2vzGhU0xqoAvLrYoK5+/WNGAGSeO+uOsUgY3mEhLShuGFFTQ/3r2gggv6FJD2kzUeQ3les1xnoFOPWjsOFzNbaoqM4q1v22++ESIQWnb60tVylXELVZqc76uCJciY6nbW1Y1BCEYElsF/qGBRvz5lhqbhe/vl2CkOPfr1tNpzaM6q9Vm9jy9livoLnz600N1iYWoH9ConxFfh1E4KEdmyBsHQsgrKZjq2TS8bSK7R+G6UssTtwc4hWa9mOo8ZrWU8rB7B21Ryz17e21aBfz3fbjsD5WaCPUspMwtlsSeCEbC7XfW7U3aPqGoX9UsnS6LrbFcVhhaxWWTxuBUrdYk84PTh1tbbVdX3+lYHKX+ffs3eBru+G897y6vqjan0gWzyk21gRBINGpFrFISh6MDIUM9PucmrWqjkWV2MCRtdiawQDnVm3yJRkJmGp9Z5CSCAXlum3fP2oqe8eiDUi8uv4ZJFuOAM+4Ko0lQzY8iwCbI9ntl8NKehcAmRd4wCo2pwqCVd+kfWsVq5Ccu/tWFr/1aYIg4OUvfzkf+tCHtpUfE/NAxXEc/vZv/5bHPvaxvOY1r2HvLXtZf8GzYedkQ5xXZ++fswSnkhZ5S8Cmiw8N9v/1sWVLcjy6rjpKk9KaTc8yk+19CnK1800LgSeMmGaP8gkQnJLmAbj0BCGCsA+cnBEHVCbvzyiHPCKawjcECNBU3UwqsUE0Bpl0AjYDi7wyqaxqRHUwC7LhWXhRaimoiJNqsX6lX5JG5BSokPEBRagEazmLegJVW1ZrwZa22SqCqwPMewZ19Q8bY4MQCGF9y6IYCGRY6xDDunEvWlRFtkJq0hko5CyUEMhy0HBtRDdeK92kcRfKZyOxLtVBm1lPXV+ulbneVIRG1XIiu6Hm2EK2lsI0bLp+h2WM+gUjEgoVOK5mYgaWz1JNaweiuh4Rjb9DUb/tRqjTql20FoRljQwV2pLGzUjU6r0ttv5amVWcqXtxvFMbKmXaRERp6hpi2R6LgpXq3I9x82re1vp2EVKTypiUe0oJ3PUy5ZFEw9hLaVHdL1LoqE1q5fpCVO8VlBb1u5jJPuOktJQ3EsD6+y2NiMQ10bZoQTawyEaF+XXnRiW24oJW8Rcra5NurFUsgPQAZVKCDdshA5bieNmp1r+5DopIdFhWDCZDfEuQDeq2tUVs5bfVnA11n33VFFv9rAm1YMu3yKpoW2mKrVuPAGbSAfNFm5KSpr1F69hKu2wEFr4W1bRvyqLa59THCjQzwmdZW9W0b5V2qR4v2pwXlUNCC8FJ6VCutKEwYyCAMKkhqMWmlWJ/EHCP45AXAi0lDcNvIfBTGlGysLSmT2nWbcma09jXVWLrujGKJXO/vpAwad/qrxPNsT6a7DVfZevar/LIRz6Sr3zlK4yPj29bx0ORfD6P67o4Tjw5HBMTExPzkxFqxbtmP7tNoARmaCSA92x8gS/+/h9z+Bm7+M6Hj5A9l0drOPJfZzjx/QUe/6LDXPSU6TgFXEzMefDxj3+c22+/nac//ekcOHCA1dVVPvvZz/LKV76S973vfezfv7/j8l/4whf4y7/8Sx772Mfyqle9CsuyOHPmDEtLSw1x3/ve93jzm9/Mox71KP7n//yfnDhxgo985COsr6/z+te/vmXZd911F1/84hdxXfde2977kvyqmTSKnZRiYmJiYmIuHA8KkRLAZZddxsLCAj//8z/Pt771LX78L3/GRb/8WlLDO1rGZ6uT44pLBz1yW5KFLYfQbX+z5ErF7n4fKeBc3jzkFQp0i6R5q3mJxiHvtfixCS+QkeBBsXsiZHXTIl+qLRekLOxiSP3doJTmLWwpqXsg3oR56ZeVJVOWbStSGdjKdqiThFLRTGQEQfuwerQQ7LlMUNzULJ/ubMy1tdy4DW3rHjF7JKyKdrqi4PiNfsMkVydKWzB7e9g9sI5kn3EFyK83/RA2CpUAsosKOt17hwrs2gP6A4+TeHmqqb464aZg6qBFKRdUJ/DaUjFLEz/DBwGVHSm7H+/jey2CsiS/3v0AS/bD/se5nP6RRz4S2uH5JjdNC8pFWD+nGwQ6gGnr5rpJGBqHjcXW6xbKODvUszbXub5CqWo7ByW4+3vhtsnGdmytwNG13o73imPE0qnusbYLex8hOXe3Il/qHg/G5aLjsVuth6J/ALIbstrPdMOyTd/VTJBp/lKxdyJkYcOi5EnW872Vf3LNpZ0/oKhrWxvF3j6fpZLiVC7Rtjy7rElYigNjHvfkXHKhxVypfV2U8ij+8HOcvuW7JJNJPvGJT/Abv/EbPdU9JuaBxotf/GIuv/xynv/855N91z+QfMEv0fekx7YOFoLVaIyVCjXT5ZC5UoJACIJ0+45vLFQMB4o7k8ZpA8AqC8JE04kuBLPSbhAddSIXTdabtG+KRW1R3/F5Q+BuNHyFhRFwdKMiTgBI24piIDrXSwvKvojccHoj4WhGRhSLy7LLcoLNLfO7EBqtO68jDARzs6ZOvZDfhEKuJm4GwK5YRW0nu9KmIGN2tx1hUpsVcy1+07phbON7sLW2XdDUbplkWjOxE+ZObRcGtaJ/yLgYLRe7hkIkOML62Y29RNTG2m1xUa3DdWFsEs6d7j7uBhgdVlgSFlZq5aYXfApTrcde2ZLVcsJKtNgPKakImgRH9VglCOuecYcIzvmdhRVOXhOkTHnLgc1q0Cjea49grtTbrbBAo6m47HZnOBHiSljekiir+zIKKIYCTwm6dTFpqSgpI8DcDCvKsU51N65OsqlcGYA32PhlSisGtGJRWBREb9taEIITkUCpFTIQqOgIGQ4UU17IpuU0igWbsPKS0TAkkQk5k5Tk7c51sVezLH7wkxTvOcXVV1/Nm9/85liQU8cv/dIv8YpXvIKXvexl1e+OHDnCkSNH4jEqcN1113HdddeRy7W60MTExMQ8MPnI4vV8dPEb91p5ngrYCPNtf9fAor/BM279U1xpw0vBLwX4xaD6fOa9+jqs70jcjI3sYXz0ksmn8dLJK++dDYiJeYDyghe8gKuvvrphbPuMZzyDV7ziFfzLv/wLf/Inf9J22fn5ef7mb/6G5z3vefzP//k/O67nve99LwcOHOCv/uqvqs5J6XSaj33sY/zGb/wGe/bsaYjXWvOe97yHZz3rWdx8880/xRZeOHKVdG+jsUgpJiYmJibmQtHb08cHCMlkkm9+85u84x3vQHlFjn32r1m87fquy4VKVN9Ut7z2T4Y9Jbl1Ocm5vHkg7ErzRFioxslvg2QtbwZ1Y5mAQxNRzjSM00rlr2EJCf3pkEyyzZNmQfWZezYrufu4hVImbVKrp9Nh0m5YZscM7NqrW8ZWUK5NEMCZY8ZFp4OjZxXtWPiemRzSPQphZi6z2fPIzpMqpkLmf5lhSA8L6PLGTUWglBrsqRoADO2QZIZ7i91x2GZif5tGCRvbNbsE2TYCmCp1r7Evn1KszvUwexQqCmuKu77Zg0ApYmRGsufRPxtN4sg07H1M7xMBJ270mbu1jGi2T2qBX4KFYwHFKP1Z55lH4x60eKKpDcPWbTo4BtOHLZKZ7b8JpRr+DzCxt5Z+rRXVWK1JZGhIPdMWrUFrxnbRfoK2if5xuOjnLNx099gKgQee6n6+Vc73lXlYOQcq2Xm/TuwwfYq0axUPUq3X40QxyysWx081uhC1rIuE/lRIJtHYKJX+tr7PHUkFXDxu8gEWfLltErE+XqKQKAIkt60lOZVrv4122fTRfmiuE926N29rnexX/oG7b/kuhw8fZm5uLp78iXnQc+mll3LjjTfywhe+kLUP/ytXfusOVKnccRkBJrVb9NkutO8P5m3J3QkbLQSybuxklQVWufGkLAuJF6Uq2hv69NUpZ2RQ+6sniaZPqPY9ko7+EJz1bLYiUUBrWQZ4/bU6WUKzM+Mz6Hbu3L1+yWbBIhcJIHsRQhX7zHitVr/OOLZmx36TjrQrUbq4TEahHIlq4XjSEB7pc22Hmmiog6jAsqBvqO4L2fT/+nq7MDYNiXbPDRvG0oLNddHoEtUCEdnSeCVYWehNuCNCxdq8Zvlc99gK47sglfrZZNUen1Kk+nuLLZcEsydMatweDi2yW5KNrVobSr/zQnlfUvCbrrtthmsTbsiE23pwZFXS1W6a9aWEok9Gee7a4OTNb3ZRkYgu9M1uQs0ksprBXEjGr1rWdowHzUwqYEr29mKDDDTKh9DXBIlut9ompV2oBYtFxzigpdvXR6CZdn1G7agu0S2g1+K+R6Cx0CgEp5RDITrBWvWDFVJa09+iBaUnqn9g7mX3+AH9kTh/S8ptL0PIQCCjc9GOztMVW3I01V2gBNE1oofbyuIdx1h/5/twltb4r//6L97ylrfEAqUmtNaR816N73//+/zd3/3dBarR/YurrrqKd77znfz+7//+ha5KTExMzL1GPiyx5Gfvtb9OAqV6NsJ8dZl1K0+ur0y+v/a3mSqyorZ6Wmc+7PEtu5iYBzEPf/jDt41tZ2Zm2Lt3L6dPn26zlOE///M/UUrxO7/zOwAUCoVtY0KAU6dOcerUKX7lV36lIbXbc5/7XLTWXH/99duW+fKXv8zJkyd51ate9RNs1YVHa01uJXZSiomJiYmJudA8aJyU6nnTm97Es5/9bJ7xjGdw7sZr2BGew3vY87DdZItoydGtBG70kHtm0GO1YFPwZUtXpXKU0mfQDbh42ON4YJMtmmasTII3OytFhkYtqUy2aSFQSnLHKZfKLE3SVZS8SlqjyE2pUmB1RYpDB0O2coLZsx0ehAuYOwOuI+gmDlCujfQCpA0HHgXZNVg40XER5k5KhB9Wt6V+21qRXVaIHjRKFaYusvAKUMh2nyDIjMKeR7qcvtUjv9q97LG9FoV1QX69e9ln7wjwt2c2q9HkqJQZhkRasDant8dViMQ6m8vn0SCA8re7N7Wtlg9BWd+7rkrRrF7oS4Ie3asARBD2bI4V+rB2Vm0XJ7VwU0pkTHrAtVlVm3Csa2fhB2in1uVll6CUCyk3uS6JFrOVyQyM7pIUtxRbLY6p5mVmLrXwSpozt3ff0swQjO+TFHMh+Y3u+6WwKdhYUtvdotoQeHCyTZq3etwkHHgELJyC9aXuAiWAhTnIrgtUF2eBZFJxeH/AmXMW6xvbBUr1Lkp2JP4MlOT207X+cLsQtEbl7GrWeW1fRvGIEY9SKLgrm6SkWtfbiJMUe4d8zm06eEpy+1ar60eN5+7M8da3voMwDHnJS17CRz7ykY7xMTEPJjKZDP/0T//ElVdeye/+7u8y8a0JPvrRj/KiO77VMr5gCU6mbJySwNGaYRWylLeglauSEPhRF7bbC7HQnKXmelQRKtU7K1V6vHbdRmWCXtmQxWJTSTQCK3JLqUzRV92UoCpUQsCAFTLlBpwouU1p3xoJteDMloPXg0OS1y9xtxT9iZDR/pDZVacpTVwjgRLMqQSuipRKldg2i/gBbOUkJUtUU852IuFqRsY1Xll0HvdEjO4w4tylesfBNo5KbtIIhYu5FmLepo7cL8P8CbaPM+odiurckYTUZPqhmGe7WKluXCqUNinlcr2Ph7SKHHV6dEcKg8hh6l50Vaq4J1XL7pVe1B4Rnm+EO83ipFZuSgOJkHIgKIe162m9QCm5pimN1NZ9pmS3bAarxRzUoBWSlJpcG1faikAJIGNpdiZ9TpTcavqzTgwnQywB5Zwk6Hx5BwTZgiTsch7LoKIYFGx5FkGie5uPuyF9jooE050FSmBStJ0uO/g97M8pEZAWmuPKlN0sTKp3UXK0xheCNWmxrmX1Xq4iStpeD0OrX2XTedenFLsLPsdSDiVZ68+bsfKSpFb0qZAVy2JDWgTJDgK5UplfvH2Of/zHD/KMZzyDD3zgA13TXcTExMTExDxUyFhJJpzzeHuzC92clCoMWRnjpNRE6Cu8go8K68bjUuCmbOxE62ehGavrIC0m5iGJ1pr19XX27t3bMe6mm25i9+7dfO973+N973sfy8vL9Pf389znPpff/u3fRkbZA44dOwbA4cOHG5YfGxtjfHycu+++u+H7QqHAP/zDP/DiF7+Y0dHRnuu9srLC6mrtoXo3kdXPktKmR+ibDBiZ0biviYmJiYmJuVA8KEVKAI961KNYWlriuc99Ltdeey3JO+5g6skvZHjfI1rGexlBqhgymg4JlaDgSyxPt03/lvUkczmbbLHyIFzRTvyznLdZjlyV+hMhBLoqPqogtI4eCEciqEzAgZ0Bx8465IptxCsC0JKFRU0+3/1htVISY26gmNkPywtQ6uBeoJRxU9naoGeXl6kDkB6QnLhFoSM3g1ZsVtK+SYlEdX2L/fStIUHFmEEKUO0fWudXYe6OoCeBEsCJH/ioHlNy+b28yFMnVBqckKQGBGtzvb19Pb5HkFvXNeegepqchyYPSCxHcO7u7q/FZxcU2YXzmc3qnfMpO9OvmbjI5eytXnV/NouH6pnYL9laURSb0+u1KntIMDYjWJmNvmjjoFRPLwIloRSlvOTo91TPx8nsjwNEt8nI6NzIb8DdN4YEJbq+zC8sQeDBwvHudRiegvHdkhM/UvSiIfNKsHrOiBI7o9i1R7O2KijkJMUexFKlEiwsS7Kb3fopxUXTPqGCY3MJOguUFBMZxVJesl60WS92u5yZPvps3qHUYXKv4p5kSxhJKQp+yNkOisrAK5G8/bP86T/+kOHhYT73uc9xxRVXdKlLTMyDk5e+9KU8+clP5iUveQlPecpTePOb38yHd6QQdutzyB8OGF4VjGjFChYK46rULv3boiOxKmIh2qd0UkJwyorEFFozqBUlrG3xMjBCpUoqthnhGxGA7iDS1LAVSqRnE/TgSuNFYsikpehzFCul7fWoJ1+WCFF3CevSbVqWZmpSsbYmKJZkh2YRbGQjIU9KIoudr5GlouDcaQij/lI5FtJvP5bJrnQcmjVQzMO5E5HIptUwtGnM2ZMQuk6oNDhmtM0tU8Q14SQ0yRRstREJi7qxhGXDyCRsLCu8sLsQZm2hh3r/hKyfR9nDo5oggFzdNibWypRHtqc6dR1NwtVs9XBfAZqhpCLnScpRCrx2DkqVeI3Ydt60Eii5m5qFAbsyCuhak3woOJd1KLud90sia1Y+n28tlmpGoJGeIEfnFwkqAqWZ/oAtT7JR7v7igdCQ9S3KqrubU0IohmzFom/1dOwBrGqLnDYdQjvnJICMVuxXPselQ0F0FiglUFhKUZKS023G7lWiczIvBOdci1KHTay4J/UrI1pdlRJ/pP3B5J05h/vhz/JP8/P87d/+Lb//+79fnWSJiYmJiYmJgZdOXnmvpkoLteIXb/9zlvxs6zS/wIQzxBcf/sdYbVLGhn7I7V84xS2fvYfQq42xJw8P8+RXPIyR3T3ahMbEPMT5r//6L5aXl/nt3/7tjnFnz55FSsk73/lOXvSiF3HgwAFuuOEGPvKRjxCGIa95zWsAqsKhVoKj0dHRBmERwIc//GESiQQveMELzqven/vc5/jwhz+87fuTJ08SdsmcUE8ul+PIkSPnte5tZcybSQknLTl67K6fqqyHCvdGu8ecP3G73/fEbX5hiNv9wvCzbPdLL720p7gHrUgJwLZtrrnmGj796U/z0pe+lFNf/Wcu++VfZnbsKcgWecxCJbltPlGdFxnLBGwUJYFq5aokOZt3cVCkXcX+cY+7F13KgWyYUG98mVexZ8QnHBLcc3L7TVu9q1I2Lzm7bJMrdlMtwNqGeRAupWLnlOLcgkRFk2Jh0sYqNT6Zth1IpTXJlKDURWCwGk2CSAnpQchV0ou1mNvSjkV+I0TVTejUp39rJViaPCDoG7Y4/oOwY7qSiqAl2W8mtcr5zkKl7KKpg7TpKiyp/O6m6cmdZminZGKvxbHv+e2FW5FQ6dzdqidxFwBByMhOB63aiJSa0DoyM2pyb2qH7WJSwyh+OkelJiFPQ7kdEEGIkBKte5twlDYM75QEpbAnkdLanGZtPjT1aCNQqgiidhwUJPsEJ39U57TURilnu+Cr9sdRw3LRxKoRP+n27Ru1/+CEcXQKSnXft1lmdAZGpiX33NSbWKqYg9yGxu9iWSZtSGUgn4Wls93LldLEJwtQaJoAbk71NjYS4vuC7JZkcbmXySPJ2RW7OineyT2pbwz2DvsUfYetOtFnq2X2DJeREk6uJlgpt77sVcRJY+mAjZLp9380n0Ahoa91HV5/xQSvfvWrKRaLPPWpT+WLX/wi6fR55OGLiXkQUnnw9Y53vIM/+7M/4/LLL+ef//mfefa3rmkZvy4tNqKJcUtr0lqzFQmom8VKxWgSOgHsJMBHsBwNZetTv9W7KqXR7FEB9wwKwuz2/rDeVWlB9zYs1lqwEZiyMpZCCE0urJXt9QvcrcYximtpkrbu6K4JoLRgMxKnJxyF54uqiKqVjqHYb1Mo+Pj17iWNGdAakFKzcyokuwiFdkKUaHxl+mJNMg2lgugoVPKr9ig60pDVpX1r4aZUSREnLFCtimwSKo3PQCkPW2u0dyTSGq0EcyfqnKW6kHBgYBC2NtqL3iooFV2+hREv6S5jLyFAyLrt+ykclUR9GwpzLW7Zbs3LVUw0exSQJROawZQiv9GLu6fgTNautlo7gVJyTVMegf0pnwXPJl8nsmklUAKwhcZDth1a1rsoiUj8lA8FdlETpFq3byKrcaRJ8eYrUd0ddomWbkoCzd60zxYW616rvmN7o+Z8SSkQbV2UKun2UpaiFJp6+D2k43XRpIRCKmtbm9SnepNoxkTIsrYIAklA99zueQSz0qZAZ/ckgMmUjwrhZJMgqNk9ydWa3aHPGcvBE4KVNikjrbzE0pqMVmxKybKUrEjZNn249n1evaJ56zvey6FDh/jYxz7GU57ylC5bGBMTExMTE/PTYgnJG2aeyx+c+PC2+5nKVfsNM7/WVqAEYDkWj/rVAxx88k6+99E7OfWDRQAWj67z2f/9bR72rD1c/usHcdNx2taYmHacPn2av/mbv+FhD3sYz372szvGFotFlFK85jWv4bd+67cAuPLKK9na2uLf/u3feMlLXkI6ncbzjHWy67rbynBdl0KhNlkyOzvLv/3bv3H11Ve3jO/Ec57zHJ785Cc3bMvb3vY29u3bt83FqRNHjhzpeeKzHWdKS9zGAgPjfT91WQ8V7o12jzl/4na/74nb/MIQt/uF4f7Q7g+JVw5f8IIXsLCwwOWXX861117L7R+7muyZ1uowhQQktjSpfqb6zeyV5bV/ui+AIBT4XcUokrsWXY4vmxsu21K0UnYYMY9kacMGJIOZkP07vLYP3SukUjA8pEh1cakMAsmxOwQbazKa6NheB+U2TtRN7YGZQ2ZSJNqUlmytwtIp82+7aaza6oHz1oomu6h7njyZeZjN5P7oQbfs3B4jM5KLnujQwml4G4NTkoNPcEi0ESPUU9xUbK0pur6wG56HQCni6Ld9Vk729vbA0gnFwrGwtq4OzkGpQTh0hUum2e25Q0q+lrQQ8uy53GXm4e0fIoggREQuUPlVxekfeD21iyqHHP1GmbXZ82jEDgKlegqbmtx6d4ESmNRt+x/Zemc3L7fzoOTA47pMNkVtnh6E6Uts+se6VheArTVBdqm7QMmKjvdSDs4d675/p3Y3ndu0S/WmkFKhlOTuI4K1rqIjxciQYnio8/EcZCyGMgH7Jz1AsVW0KHiyrUDJts0P60WbHy8k2PK6n+CBkh1To9TckxT7hnwmM2G0Ba23UfkeS1/9v7zsZS9Da83HPvYxvvGNb8QCpZiYCNu2+ZM/+RO+853vkM1mefSjH032i19Ht3k7rjI+GFEhM6GPjPpJu63boyZAEPTgsFIQkrssl0L0wNxqM+CQAZSQlJCAZqfwSaPwhjqXP2iHDFqKbgOZTc/ibM5GI5BtYr3+OsGl0OwYChjK1CvfWy0lWN+QBIFACI0QTUFNH5Uyad8KXZxhKqTSMDGlcRxTkGojNqisbGo3DAw1fW233o8TMzA80aG4usVKuR7dLHVFoNSbMie/CedOdhbFVouOHEb9ihNkqBqclpoZmTJp8LYRnt/YSzSJvBIpmD4osDvM3whdE8RkVwW5bG/CqNy6YO5cr7eHRrGlEV0clMy90mYgI9cgQzuBUkIq9vd7ZFrcn0CjQMkSmgN9Pv125wpUHJTGUiE7Mj69HBsa2CxY5JvTBrJdoGQJ0xbrJYtSG6ejyv6QQjOd9hl2G+vcKtWbRIOCrdDiVMmppqJsRxLNiAhxu2yfP6DYpXxSkVpwQ5h0m60FSrrab562bU63eNGnmQC69s8V96QxFbIrDMz9rxBtBUre3AK5v3gfV199Na973eu46aabYoFSTExMTEzMfchVw4/g/93/8m1p5CacIf7f/S/nquHWmQua6RtLcdX/73Ke9cbHMjBpnqFopfnxF0/xr3/wTe751hz6fJ9VxsQ8BFhdXeWNb3wjmUyGP//zP8eyOt/TJxLGOfeqq65q+P6Zz3wm5XK5muatIjaqiJXq8TyvWg7A//k//4fLLruMK6+88rzrPzY2xuHDh6t/e/bsOe8y7i3y6+ZmNDMSp3qLiYmJiYm5kDyonZTqGRoa4qabbuK9730vr3vd6zjxlQ/Sv+ti9l/1MmSzmgYzqf3jxQQVE6L+RMBW2QiY6l2V/Iwkn4e7FsyAzbUVOwYDZldtFNtdlYLI4Yi04mGTPrmi5PRCZ1clx9Y4dg8TLQXJHUftyEVJYdtGkNTKTaky8zO5QzEyoTl6h0IFsu0z+3OnYX25SaNSX+3oe+1YCD+kfxR2XSI5fbuikK2FNTsrFbKY36XEshRhF4edM7cH+MXOMRVyKwrbaamr2UZ2yYiOyj2kBinnYP6uHm1IQ8X4XsnwLotj3+1hmUpdgxDapMepx3aNw091G9u4KpXzMHckoNQqhXwvrkodGnHh7gDdZsJNNKWos5N1rkGdOA+bV4DJ/ZKBMcHd3+0lJ4xxL6rQSaAEcO7uMBLcNaVobLFcdklRKtS7WbR3Ripk4eQtwXbXrKZlpIRQC8oFWDzZsaoA7Hm4JAw0p2/X6ET3Y+jcKVhf6n6e7JzR9A/C0SMK1PZjrOaiVOt77jnV2/nnWCbFjCRK/9OGdEJxeJfHPVmXtaKkELRPBzecCkg6mvlNh7msmcn1Mo37oiJO6ncD8p5xT7p9qdbvt6J44ibOfOuzFItFHvOYx3DttdcyNTXVfSNjYh6CPP7xj+dHP/oRV199NX/913/NRbMrnP1vV+DuaqXcgGVpkZUWSgik1rjoalraelel8qhiabU2hB0lpIigEPXTza5KXtSnJgcC9hZCjgcufosJ9GpKJNs4l7QTNNVzrlxxkhFYQhNGn1q5KREJlHYP+GTLFusdUkJpLTi3buM1CyRavLbsDdm4GwHjY6aNlpatDsuIaupNkZLIUtjoOtTkUlkswPxZUeeU1ILqNUuwtaHxWl3nWzgqbaxGToydiByVtnpwVKyiNTv2mnTFuWy34BpCaXQXATyAZTUOU9q5KnWscw+uSs3ipAp+GVbmdNu2q9epGeEaKNV9u6RvXIZ6Sa8Gmn1DPms5i80eUpspBMt+7ZxtJ1ACKCvBfNHG94GBxt/qBUpgDtc1T1KoEwZ1clNayNuRZq5pPNDkpiTRCE+wUSfma+WcBCaV467+gNktm3IoG1yUmjWDps6C2bzTINjaHmQElftSHsu+TTZonSay4qJkoQmBUiC5B7ermAnABRw0RTq7J+0kIIXmrn6rcXza1DdJrZlUIcvSIhCCU5GKLuhvPI6tvERoTVIrilKyJC3WpNVWnCQ8n80vf4PcF65n9+7dfPg//oPnPOc5XbcvppGvfOUr3HHHHdXPc3NzAPzhH/5hy3ghBO9617vuk7pdaK677jquu+46crkeHgTExMTEPMS5avgRPH3oMm7OnWDF32TMGeDyvv0dHZTaMfPIcXa+6wpu+/xJfvQfxwk9RXGjzPXvvY27vn6WJ7/iUoZ3xSngYmLApGN5wxveQC6X4+/+7u8YG+v+xuvo6Chnz55leHi44fvK562trWocGBHU5ORkQ+zq6iqXXHIJADfddBPf//73edvb3sb8/Hw1JgxDyuUy8/PzDAwMkMlkfvINvY8orJs3j9LD21Ogx8TExMTExNx3PGREShVe+9rX8pu/+Zs861nP4oc//CH3/OvbGH/CrzO8/5HbYkvRBLgtFYfHfJbyFmc23Kqr0vYUcDCQVAylFXPr2yfnKxPpJgWcZH7Voliu3MgpWtkTCa1Z3bBY3TA5I5JJM61WLLVx+IjEAzt3KoYHFXdWRUutWV8DjTACJag9/9bGTUl6lTwoJn0UwM59sLpYSWkVUbcZ2rHYWg1ZmW0UKDVT/zB6eFIzdcDhxA99vA4ipHIksnGSJoWGVxGEtEj95hWN21BPKFg/dx6OPRLGd0tya6prarbcumo0LOrw1r3twoHHOyzcHZJdjGbA2oiV7AQcerLLuTsDNubryqyUXzdhpgLILnTZvlZipR4UJvnVFm5gQWuR0f6fS7K1FDJ/pI2YqG7W7+CTXbLzIcsn2giWPB9cMwGSWwkIvd4eikztVmysSUq57gIlMMdcOQ8ChZYVUUzr5fIbkN9oM6lddxD0jUJulfbHTp1QafpSie0KTtzS2/G5fFqhNF0FSvXncbHumXxrFyVYWxF4Hi0FSg3lTilGBhVH7u7c94BieFCzHFisbNisbBgRaLtYkBTKsLBusVFuL06qMJQOSdqa+U1rW7kVcRKY/v3iMZ/5nM3ZTVnt95sJSgXSd17DrT/4Aclkko9+9KO8+MUv7rB9MTExAKlUine/+938xm/8Br/927/N6jv+nje/+c18cNxBOE3DUCGovLs3pkLGVcidtosSouqq1JwCDjQDhFjIqkipnopgKUxotoRkMRT4dcu2FGQEgjM45jcb+qyQXChbxyIw/peafUmPVd9iPWw/vFaR20qhTV/j9UvcLbONXhTjWJq+pGI931SHSlcmjFBpc1N3yoTbuAyaqUlF2RNkK88XWy4s8D0Tn0hCuSSqbkqtUr/lN+sGks3tVS9UklDuUXReESo5LiQHRE+Cpa2NpvI7vI3dPwypPliaNUIloK1YaWgckmlYON34fcVRqV6s1FKs1UxYtxMr/2ojTqqgwsbrdnW5FpuY6oPRKTh73KTCa4X0I4fHtGZ4KOTcvIVuky4vveBTmHIQwHreanvNrCdhKwYKmqW0Edp0EihVjpst3xxj7qbGGzB1aRYoEaV5W+vgqFhxUHKkOTdC3d75tiJUcoRmf8LjnHIolbqLfUqhYKVoUQ5rad5a7QtXKvocxVrZotw0Pqq6KNUP54E13yLXpY0lmovwWFEWa9gdBUoJFAqBJwSnfNPHtS/d7Is1LJy6FMbN4qRaPWBIK3JastVCcFRxTgKYUCFjYcgRx0WL+j65Ee/kLOlPfIHsqVO84Q1v4E//9E9JJuO3nX8S5ubmqsKkem688caW8eInSQn+AOWqq67iqquu4ujRo7zqVa+60NWJiYmJud9jCcnj+g/eO2U5Fo/+tYMmBdxH7uT0TeaNwoU71/j3N32bhz17D5c/L04BF/PQplwu86Y3vYnZ2Vn++q//mr179/a03OHDhzl79iwrKyvs3Lmz+v3KygpgXugHuOiiiwA4evRoQ8qXlZUVlpeXqy8ILC2Z8/OP//iPt61reXmZF77whfze7/0eL3jBC857G+9r8muRk9JwfG8RExMTExNzIXnIiZQARkZG+MEPfsAHP/hBfvd3f5dTX/sIS7fNcPgpv42b3P6WRqAkR5cd8pEIos8NyXkCy5PbhEorOZuVXC1l3Hh/yHy2cZJcKCNUWtusNL/i0O6AtaxkJdtul5i3TnfOKBw0R+/u/MB6ZVXi+QKlTUq31m5K4JUlS9Hk1NCowitBIW+W2SZUAqQNfUNQKjaJlGrVrAqVlk+byatUv3nrO9juGloluypwU6qjQKme3Q+3CH049aPujjtjeyR9o5JTN3d7XR8mL5IkM5LTP+oSq2B42kygFDc7TyYVs1DMbhcOtSLwYHNZUS7UldnGVSkow7m7AnJrvYlXRmYk5bwmv3Yv2iZLGN9rkV0I8VodD03MH/Hwi23q2+SetLmoKGR7qGuoyK9Dfr17O9guDO20KHmacpf91j8Gk/stTv0obDh2WwmUBidhZNri9G1h13Rs/aMwc5nN6dsC8j1MtK6c1bjJ7u3QP2rSLW6tdRco2Tb0DUOp0HgebxcoKSZ3wuI5KBUlpTbnZ81FCVbWJJ4nugiUYHRYs2tGkTutKHntBUq2VFy0y+fsis1WwWJ+TaIyrdPBpV1FylGs5m1Orla2pbVAqdKPB0pybNUhW25f3+yPv8bZG7+C7/s8/vGP5/Of/3xPby3FxMTUeMITnsDNN9/MW9/6Vt72trdx4MAB1n/5aTgTh1vGL0uLnJAoIRBak0BTEhK7IJuESoKT1PquAUJKSLymiXqrLAgTsG6U4mSEYkwGzIbtUiiZ71KBccg8l7XJh+371opTTL2goLWbEmQ9K1qDZjChIuGlqFuuJlQCSDqKTEKxUZCttTaRHmgz5eBuBIAmkYByudMks3FU8gNBLzlYEymY3KlZOAtex3JBSs3YTsiuasrFDkIlTIrS8WlYW+wi6pFGoN43aNyROrnuAeQ2Kv9q72hYwStt1zC1c1XKZ1sLhFphO5Dsg9z5uED1QCJlxuPFre6x5YJJUddNoAQQ+IJ8XrYVKDUQCrIdzod6Uo5mIKFYwuoiUILpdEAhkKx7jWW3EijtSgVs+pLNoHs9JtIm+djZXPcJLl9jhERd6moJjRTgK8FG2eooUAJIWZp+W7FebvRoaxYoJaXCAvJKsha0v1X3Bivub4IlYZPT3QRjmmk7IJ+CorfdRbieIUIGUZzGjtJgmgpuEyhpzahWrAtJIAR3WU5LR6SKe1KlH1+RFlkh27onyWKBjS99kdzXv8dFF13EF77wBZ71rGd12b6YdnzqU5+60FWIiYmJiYnpSP94mp9//WOYvWWJ737kTjYXCyYF3BdOceI78zzhxRez/4k7HlIi2pgYMC5Fb3nLW7jjjjv4i7/4Cy677LKWcSsrK+Tzeaanp7Gj9MzPeMYz+OpXv8rnP//5qhBbKcUXv/hFBgYGOHzYPIvZt28fu3fv5pprruE5z3lONY3cf/zHfyCE4GlPexoAl19+OW9/+9u3rfvd7343U1NTvOQlL2H//v33ehv8LChE6d7SI7GTUkxMTExMzIXkISlSqvA7v/M7vPCFL+TXf/3X+cpXvsJtn3sbk4evZOaRv7gtdit6S1eiODzmsVaUnFxPYHkaGWpUQ7oG85B4JKPYMRSwmrfwmoQL9RPsUkAQiu0pPVpwcs7GjSZ3LKki05ztD6U9TxIJ45kYC1EKVtZsrGI7BYVifFLjlQWnj1cqWf2pugoVwLFbqT5Il7KF2U5TdWYulRS3NLNH2gstVACLpwDLIpmB8mZn8dHcXSFBuX6dnRyVNF5RVwVUnSjn6C0/FXDsu34v83qAmVgb3W2xcHcQTSa239fzR1tsu+ebxm5io5P7U5Nj0+iMRW5NkV/rIuzSuvbXBTcJY3ttSjmNV1BtHZQqbC21rq8oe+gmIdbSPZ3VPiJUUCwztDeBCiG72H1nBB4c/bZvbLi6EPpQ2tJdBUpgjl+/pFsLlCrLRPt8a5WeBEqJPkEpTy0lYgdS/eY8mzuqGlLZtUJKk17n2I/oevxm+mB8UlPICbbauD4FKQvHVkzvCDkzZ5m+Z619mbatCALJalaSx44ESu0JlOkf62f02jko7RzwSTma1fx20ZPlKWyT44Wkrbh03OPMhs1CXpItt74UFtbnyR35DKdOnWJoaIiPfvSj/PIv/3LH+sbExLQnkUjw9re/nRe96EX8j//xPzj6V+/n2S99KTfsOYDV19cQq4WgEPWbI1qxMwy403YJIlcl6YOq6g1q7j0ThOTRzLcY4lplgYguU9qGQIuul/EykpOegyoDtnEtaedUko3EEhLNhBuw7Nl4fQI31/p6mrI1o8mAgu/gNYlI6kUyWyWLXEmiEQh01B22TwOXSWvGxhRz5yyCDmPLQuRORUJi26C32l/Dy0VYnBMNAiXlVhyVGltRKXO9bTuMsGuDxzAwZXcTHQEUclBolba2DanIZb6Ya7wON1MutnZ1kl6IbkrH5ncQ3EPNUQnAScDQmLmGdx1aKo1QGtFdT0+qH9xUTaTUThQDEIaCYps2S6yW8AdqD2U9X+Blu9+LZBY9kjMW2ZIk7EHQtFG0yBYlVrpbrKYYim3nwnaBkjn6PSXw2zk+RePNMBIOLeRtumfy06RL2oiO6C58Gk+HuJbmzKaN9AWije5HRI5PWd9i0zfncQUZsG0sNmKH2EKTL0dubi0IMjAShmgBWW2xoTvVV0e3QIKzZYdSD0YEAcbdSED1mGzloOQCO8IA37LZFNtTttlboupCujMMGdCKO22HUAjCFuej1pribbfifeHzeIUC73znO3nd616H48TuCT8NcVrimJiYmJgHCjOPnmDHw0a5/dqT/Og/jxP6isJGma//3a3c9bVZnvTyOAVczEOLv//7v+fb3/42T3rSk9ja2uIrX/lKw++/8Au/AMD73/9+vvSlL/GpT32KHTt2AHDFFVfwmMc8ho997GNsbGxw8OBBvvnNb3LbbbfxB3/wB7hu7Qbmta99LX/0R3/E61//ep75zGdy4sQJPvvZz/LLv/zLVeemycnJbengAP6//+//Y3h4mKc85Sk/o1a496mle4udlGJiYmJiYi4kD2mREkBfXx9f/vKXuf7663n+85/PuSNfZfnEjRx88ksYmNiu/lZIjq24lKMHtWlbEaAglE1CJVjaslnPS3wlkShG+lTVZQkgSErskkJpyYm5Wr60PVMhKxsW+RYp3QIlCaTEIuDg/pCyB6fOdE6plMmoSKTU6QG25PhdqjqJIqWqOqGolI2siJvqhD4jkzC+C47f3tolSScsRDlk9ojqOaWH7cK+R0tWTmlWTref0SlFEzPShmSms4hjc0mzudRm4q0pxVlD2rRuhObt/GQflLq8VW+7MLRDkl0wzkqdkDYMTkg2lxVhff4DpbYJlVKDMDAmWTzevt4V4dDd3+m83p8ErwB3fq2MCKMp2w7iq/4JiZsWrJ5q2hetnImmJOW8qu7nTgxMSpSvyS52jrOje6+gpMDpLlIy4qDOafQqbK3CVou0dw1IyAwSuT51CbVh3yMlawuKxRNdq0pxC07/2DhKdXJR2rkP0v1wz21smxSrd1Ey5z/kc5K7bjeiolZU5gZd10yKJ1wodnAe6M8o9u8NOX5GkA1s8m1iJYqZyZCldYuiJ7l7rnbjHKQa65K0FQlbkS3ZnFhzou3aLlCCmntSKZDcveqw3i5tZlBi4ZbPMnf3zQgheN7znscnPvGJhhv4mJiYn5zLLruMG264gX/6p3/iDW94AwD2059J/+OegGghyF0TkrLlEAgBWpNEmwRvDUIlAMEJk5gIgAyKMoKgbqLf7wMnBwUtKUTOI0kUA1KxrKwGAUGFEhKGYGgrZDrpc8pzKXdwLXGEJmMp1oQm1AIZaJS9vdxCIDm56aK0sa+s/RfKgxaJrLleaimqv+4cCciXJBuF1n29N2hD1idY6CxQqmdoSNOXUSzkdAcXHVF1lkkkdfTv9rFrHQSzWgCWrAp61ruIa5uRFsbts8tlN91vhnm9OB85rnF1KjW5QopQbxMq9Q0asVKnsa30AsprcDZ3799qbVTaq+JI5bS77msGhqGYB9/b7oBTj5SaZFJTLIquTkquA0OpkK2yrGWra4NjafwQrLKGdOdYEKw1iYadolmB19dYJ41gqY3AuJ6EpfBDQahF17oOJ0JGEyEns050TnZmqWDhhCBDgZ9pHW8Lze6Mz2LJJh/UBEoyuq2q366KmGm+mr6udZkmJaEgLU1632xHgRLssgIsBWcCh0Jf++1KoRhAsYhNDkkuGksJwB+oazytGdSKTSHxhOCuSDy6bdu3BBKNqzWeECxZFqvItvcKzvISs5/7HIW77uTKK6/kPe95D494xCM6bltMTExMTEzMgw/btXj08w5y8IqdfPejd3ImSgE3f2SNf/+jb3PZs/fy6OcdxE095Kc0Yh4C3HPPPQB85zvf4Tvf2f5gvyJSaoUQgre//e383//7f/na177Gl770JWZmZvjjP/7jbcs96UlP4m1vexsf/vCHec973sPg4CAvfvGLefnLX36vbs/9hTjdW0xMTExMzP2DeEQfceWVV7K4uMgf/MEf8J73vIc7v/pe+sf3cfCKlzLYl8FXRiAkUYRKYOa8FYcnSpSHJcdmXWSoSTqKIARPWEgUtg2hpxjrV+wZ9fEDh2yp5uaBXREAKJIuqFDRl1IUSkYTUXEZcR3zILoam4SlZUEQSmxbYVuKUvSw3nUVWoEfCQvmFwVeJCLqHwoJfSjkrVos4HsSpSCZAnTI/othcS4knxOUikaolAgDhIzScUjwyrC1bgRKUhpXncrkju0acyO/bAQUiTSQgNFpwcI9GjcFpXxdbFRu4MHyaUV2KXqIL8FJRSmpdBRrU00ttvvhFm5KcOw7AUhIZATlvAa1PXZ8nyQ1IDhza2hiUxq/YCa5LEdju4JyVKedl0jKeVg9YyaAEn3gl4xjjrTBcTXlPEzsl4ztsbjnRh8vWnZbbBKKm3DXN30cB+wkBCXzsD/RL7bFqgB2XGwjrP8/e38eJVtW1nnjn73PEHNGznPmzTtW1a25iqJAXwYVacEWrG66HRqF7hZ0udQefq3YtooC0gzdvErpqwtbJhsbUGwnoKULZCqogpqHO8/35jxFZMxn2Pv3xz4xZGZE3gKhqijOZ62ouhnxnH322WfaEc/3fJ+A0qrCr3e2q0ysK3GSkOqT9E9arC8oJLTK5SUyZixVNTBjmIZGNURLa9e4uGmzzsAz+zWRppUXeSqxXlSSxnZBOhqvKtqxoSlLh4T8hEUiI1m/ECJd46jjldvthhKCaFsnrnUorYXMPxG0xqXRjHUVWpsqeABLpwP8yFVrZ6wdfdcI6jB2UNI3Ijn5ZQ/lB8iUjZOgtc9t1xgs+Z5xJSosKirFaN8IhZON2g0Vdkq2js2hacnqeVMqMQw6jtkKoHVrDPtGJSP7BBcfM6XxWmOYihKdHcdsoy65ckrhN8x7TRFgMmP2sVImmdo/YZZbnwe/ZmKburZk2pxTSpnybpYLxQ1z3rrJttMFgDtg4TWMMNF2A45cBxtrkqX5aHtche+Za08iBZ4HSkn6BwIqWlOpSp48aeM6Zv940XUrmVT4nrmWSVvgK83KuqBaATdjjhsvuk4lXUUQRNdZW5HPhFTqmprnYtvR8R20r51BdE2eG2yQdOCReVDKxpEKVyr86JhNOopAgtUnuH6kzuUth6WSzWbdxpYKWyrqHe1ePnYv6yf/ga2tLQ4fPswnP/nJVn32mJiYbx1SSn7mZ36GV7/61fzyL/8yH/rQh5g+f5blF3wvmX1z2IAXJbNtoB79O68UB1TA8SyEZQvb19hoPATKES2JYoBmgoAAuIQp6SYxsRqBCAVNSVLS1mSFoojEh22xPkYgZKPxFax7Nr4PCaHwLSNeF2gcofG0AASBFlyqO/haApqsG1L1JUobJyTpCgLVFiQ5UtPnhmQcxULFRmsjqmjkJdlySBBGfbag6gmqkeDElsZVKVRGwORYTd2KwPc1tq1JJTW+L/BNFbhWrG2bKqtaC8ol8H1JkJRYtQDLMnOUMIxiHXN/01pgO4qJGVhdhEpFmFhLoKN5je1o064SSEszPAGbq+A3zN9ICCPxlJUUaE+jVOQ6NASrC9HxYRktQxiJOSzHtKkUTOwzwpuNFbNNu2Jt48y0vgQIU3YtCACtkRKEJbbHalPKOJGEtcXmtpr7n7QgiEqiyYRoxVZLJq4ZKyRYFgQ+yHpg2gXwApRrmzEMTb86Y8H8u1Obt1estM0ULayrdmzDRyUchNBYdjNWYDnQN2jmNb5n9o0KzP1fCLPtflQrMJ1WjAxpLl620Bps2+wXpcwxa9nRtmKOpUsFm0B1HIcawuj4blb0kwL25xpsli02GxapzRB/UJpjNhLmOVFs1lE4UlPyzcMdAKmGQgsT65YVuk8QKM1YMqQSSOpK4jf7ENlJBVrglhSOhFBrJjMhVd+In/zo3LCEOfMC3T7/Qg3FmsQPwBKgtO4Rqxi0Q9arttF5SWjWW9wVKzQhmqIvaYTRerx2H4Js2yVy0A4YdkLO1lxUtKyvzXhbaCyt8bW5LqUtxRYWC6GNQOOiWtcpK3JN8iNRoxPClpKE0d8umgDRcY2jVRozjSJPyCoWBGyP1bp1TU6g2R8GXJQ2m5ZFALhaEwCyLFvXTg8Yz/ikfM1Z28aXEh9BQmtznRWmXavRYO2z91D88pcYGhrif/7lX/KjP/qjcTmXmJiYmJiY73Jyo2le/v+7nUsPrfDVDx2jtFpDh5rHP3mes19Z4M7XXseBF4zHc4aY5zTvfe97n1Lcr/3ar/Frv/Zru95Pp9P80i/9Er/0S7901TZe9KIXfVNuSB//+Me/4WWeSUI/pFE2X7Djcm8xMTExMTHPLFe3E/kuQkrJe97zHubn542N5up5Hvubt+Fd+r+MZ83kJZ9U3DBRJ20DSKqeJOmYREHaVVw31WByMESGmkxSc8NUg3RCG1elqmRuxPj6D2cCrhmvMzEeLZuAo/s9EgnBk+cdEg4cmfWZGApIuIrDUz4zo0aVkXDh2sMBCkmpLBkeCrn5hpDRYfP5/tmQ6Wnzb9uGaw8r+vsEAsWBa+Hoze1tnjmgmZ6Lki8SDh/VpPtgc00gLfN3M3EyfRimj0QLKpi71ggeAMZm4citZn0AUwdg9pq2q8uB2yRjByA3KMhPwMHbLdxIQDJxUDB7Q/tQHJ6RDE6Dk7MYnIGDdzgkoyowowck+25ua+sSGUElcrtJ5UxsOm++oA7PWey/rW2xMLLfIjskW+Kag893SQ9EsbMW+2/viJ2zGdln+uQkTWxuyPw9NCM48HzjqLJxJST0NOOHopIntontGzWxAxOSg1EsCqZvcJg+Gq1Hmv72T5jY/JiJDQM49RWP7JBg+ob2th58vsvgtFlPbtD8vbWiOPkln4nDFjM3tmP3P89haMa0mxmWHHxhirEjNrM3SsYO28ze7HTEugzvM+1m8qZdGT2UPXrIZu62tnvM3O0JRg/ZrfG+5sVJDv8/ZkI/fMBh7vntJxBmbk0wdsSsx01B36jNyhk/GkOLA3emWrHTtySZuMbE2kkjaKkWzH4dnLE48HyzDhEqpm9OMHm96ZMb7cd8NN79zfFuHrPX2cxcb/q7fDrATgoGpsyHfQOKg8+zkdGwTV4jmbneIpmGZEYwe6PF0JSEUJEbMu02RU8ThyUzN0aCL0uw7xaL4dlovAfg4PNsEmlzXo0dlOy7yWbtQsilx0JmjloMR8dWOmdiU9HxPTInOXyn6VBpDWaPSkbnzDGazJrzJpWPYvfBzHWydVzuu1Eyfk0kPkzCoZshO2BiZ6+FgzdCpQhrCzB7xJyjYM7Zw0cV+Sh2YECSTEEhKtk2s18zvU+jBQgLjhxVDAwaAdKBa+DGa8PoGiGZnQ6Zm247ZV17KGBsNOTawyGjQyHXHgxZ3bBQSGZGAw5Otq3CrptpcGTaw7UVuSQ4lmKrYsZidjjg8JTfclG6YaLG3KBZdq1s4Vohadd8NjPgc+1w06JJcf1Mg6mhkLJncaXoMNPnkXHNsTXd53N0JLqIFc9x8fN/wPmv/zVaa/7rf/2vnDp1KhYoxcR8mxkZGeGDH/wgX/nKV7Asi4U//H2uv+/LzK6vtmKmw4CpSFVSEgIrclMCGCPgiGwgAOnDJAHTBIDgPA59hORRpFD0E3INHiq65o5bAVO2TzGwOBc6HLB9hkXAoAhJC8Vh22sVfRqRAZPJgA3fAgQHMw2OJhvYQpOUmoMpDzcSSgw5ITMJ099+W3F43GM4Zf52Lc2BbINkVN9sIBEynfUpeZJCw2IqEzCYNNdRR2pmRnwSjmk3nwzJJ1Uk2NTsG/EYzJh2bQmzwz5JR+PlbTJZzeREQDqtSaU0I0OKgQGzTilhejIklTTtJpMwMqQATWJIMjiiGBhuOk3C5KxulU5zEwIhNNVICDowrBka1ajIoXBiH2SiCgyJJAyMGiENmNJnwx1Vh8ZnaM3D3BQMT9GaG+aHYHiyHTs2K8j2m39vbRg3o2YFqL4BGJ1ux45OQy66pzkOTB4AN/rtMTsAY9NtV5iRSSPkKa7B2hJMzLX7kOmHsX3tdofHNP3DsHTR3E8n9kfCbiDTB+Nz7djBKUH/mGB4VpBOBEwcMEJjgHQWJjrMWgfGTR+aTBwQrXlBMmP+blapHRgx9/R0NBcYPyjIRP9OpE3/reigzQ9EDwtEYuyxaVqxbtLENuftrmMqC6tI9DM+FtKXM+PkuOZ4sR0QQpPvU0zl23XppvI+A6nomLU0+wY9ErYR/lTqkny6PS+Yo8FQIvqOIuBAziNlaVypGXRD9kXft5yaZjwbMJQxsZaAAxmPrK2RArK2Yn+mbeM6ngwYTQa4JSMU2jfokXY1i+s2dSXY39eU4sBoOmAs3e7/4XyDfjuIyikK5vJeqzTcSDpkPNuOPZDzGcooXEuTcsy26sidaDgRMpU2/U9aioO5Bv2OYr1hk9BwMO3hSDOmg8mQmUR7DjTkBIQaQiARXU8S0pQAHLQCZlMmdjQRcm2/x7A01zgHOOx4pKJrz4AMOWB7DMqAKREw4/hkpaKqJTZwDR7p6No5QMi1NBjEjHEfiioCAoEFHJEeWRR+n6ZfhdzsN0BrGkJSQdAXXcMEcG3gMVhut3udbCCBJcvCFzATto+Ba3yPAaXQYUjy619j7XffQ+W+r/JzP/dznDhxgrvuuitONsbExMTExMS0mL1tlH/+7hdx2z8/hBV956huNviHux/h02//OoX5p2CbGhMTExPRLPVmOZJEJi4rHRMTExMT80witN7h9x/T4vOf/zw/+ZM/yeLiIvl8nqFrf4iJQ7eTcRWlukQhSdnGiaO2Jbl2qkHCVpycT1APJFIqcknzBK1SkqStcGyNY2kOjPhcXrcp1iyCsnFqyaU1lZogUBLXUaQSIbNjitVNi1JNEobGWUmiyGU09aImCCSuG7BvWrO+KdnYtMikTammWt04n+RyUKsZF6ZcNsAJQoqbFlIqkqmoFEY1is2bZEYQSGxXkclqsjmYvyxIJUF6ilpUgis3YNyQfA8O32IEDKceNp8l0+bp82ozNh3i1YwDiyUh3QelAqBMAkba7ZJtmQHjCjNxWOAmBUunfaqb5snvRMa4xTTLZWWiBIxXh8EJgVfXVCP3GzepcRLt2HQ/hL5xuJHS/F0tmqfK3RQ4KUFlw5RwS+fNU+yNMiBNUqu2ZZZ3Eho3I6ism1MnlQcdRiXfhCA7ZMrRBR7YCSMuKa8DQnP0pS7F5ZD5J82P9dkhQb2sCTyB7UIyF8Vi/i2EWS9KkR2S1CuKoE4UKykXozHMmvFvlpLLDIFXgaBknIjS/RInLUjlJGsXfWxHUimJ7WNYNfshnRfM3myzcjZgayXEcSWVTRXFSnxP4W8ppA0jB20SGcmlhzzcNDgpacYQSA9IAt+4JUkJ6UFJtaBQnjKxaUllLRKY9UuUEKa8m4TsoKS+pcwYJiGZlVSWg2i8JVprvKrmyEtTFJcDVs53Ge9oDNGK+hbReO8Yw0G7HZs1jgW1rfax5ZWNk5XlQKoPyptmvBN9EqvLMevVozHs061jtm/UrGvjShQ7KHaMN63YkQOSsf2Sk/crvKpJJvp+FCtNwrSyZWJd1zg2NY/v1LCFCiM3M4k5l0tGTLbvWpNUXYscKtI5WrEqaZHLg+MoQFLaMo5qpWLkZJBV264R+QFFpQRBYJMb1SgNWyVTxjKVVAgB1ZoEKejLKjxPMT2pWV4VCCHZKkOYsEm5CilplbXsz/rMjQUsrDtsbEkyKU2pIsx11lVYEgrCZFNvmaoRhPDEUgpbqtY1WXjGkcmRmlLdYjgXcGDM59SCwyouEkVfUkUlasw1WXsFuPIl7r33XlzX5Sd+4id43/veh223RX8xMTFPD0opPvjBD/Kf//N/plwu86Y3vYkPSoe0Y0q4NYQErcloTUMIUiWTSF9UtnH/QJCIalnWoh+w0yg8BLORZ8wyNjUEdlngYq5ZzdJtKaHIWIp+GXIhdHAE1LRxKHExjm6qEDk62QF9juJKzUEACUtTFaackyM0ltDUlRET9VshwaZxT7KEcTzyQoHSAltqpAP10PQhYSkytqIWSuqBIGlr2FCtWMvSNHwjkJ8eDlgs2JQbFgJNwtF4gWnXkpp0NcBrGLMW1wGtdeSyqUkkzP1FKeOGZNvm3jI5EbK5KfEKYVQiTJNIRrGhcUNyXGjUjfBHSk0YilY5sZQVEvjGhUnKdiwIbMc4KTVjE0lNEBhnJUsr425YxzhnOpG7YaQjdVOi5VwkpFm3VzdzWMs2wpymcN5NmDlcGEAurxkch8unzX3Pss3LqwNC4CYiZ0HfzLncpGlHK7BR7ViM25NWGPceYURYfiNyN7TMvb5RM05KTsL0rW9EUNk0jldBAwLLRlpG+NMsF+e4xp0p06eZP20cFn3P9HdbbKBM+eAxQaWgW06lvgeh47THuwFoM95mDE2ZRDfJrjGsuK5xyLLNQwlec9+4xhErCI0ozXXNHD7fp+nLKZZWJMW8UX4lbOMyG0SuSwlbE1YVWsttxyyAa2uqeQs/ik1amoaKzgVhHJCCciRcs5Rxboocvaw8eMq4jNlC40hNrXneSIVTNucVaAbTIcWauddbQmOloRYYpzNXRk6O0fl5uK9BxZcsVhyk0CQs3Yp1pMYKdNSucV0LFaaUt9DIHNRDc41wpEaiaSjJdNrH0Zr5skOgRavdemBidQ5sochZmjXfIiE1gRYtt6QkyoxLdD1xhKKqLFM+rU/T0BIPM4YpoanrKDY0rm6u0CSEZisaWw9JkNWk0DQQhJE73DgBaTSncUgFGgV4kTtcM7beB30q5Ejgc9x2qUjZElnWhcQuQTpyswuAw8JDIzijHfw8JLQpCV2PlHYZpShcusjofV/lwQcf5OUvfzl/+Id/yIEDHcq9mJhngJMnT/KGN7yBP/7jP+aaa665avyxY8c4evTo09CzmJiYp5P43H52s7Vc4asfPs7lh9sPtEhLcMMr93PrXQdxkvHvODEx3yl8o3OvJv/Y6/TSiQ3+7i33kxtN8WO/+9Jvup3vNuL74zNDPO5PP/GYPzPE4/7M8GwY91ik9BR4xzvewW/91m/RaDSYmZkhc/iHyY8d2hWX9AIcG2qeSaonHcVmpf0FSVntp0LTrqIalU+aSAasF2SU/tqOlEZwBJLhfMBWRbZKHgFYUbmHTqYnA0oVSbHY2ygr4XscuV6zsiRYW+4dlx9QTM1qzpwUeJGYQNaCXXFNNxrV/KhLk6LRfop2/80S39NcOd778LNsk0QJa2HPmCaDU5Kxg5KzDwSt0mQt1PZ15IYF/eOSy4/v3o7tHRYMzUi2OkquASbrtIN9tznUCoqVc6HJcnVDawanjeCnWWKs2zrBCHP23WKzdDqgsg7RQdCVmZsdVAjzx3aPk/Cvso2Atq1d7133UofV8wFr57e3KcLe/WgH7d7+ZF4wc5PL5Ycb1Le6t9Hsx/47HEqrirUL4d7rlDA4bbG1EuKrHk8+KJPQ23+Hy8KJgMr6jrac7T9gDM8ICquaoLL3dvaNCnKjFvPHd8R1OTZmb7ZwEnD2ax1j2eMY0VKSzLRLIXYjnTfl6C49qVqCqqZjWS/cRDt524lKtsdt30HjiHT+tECL7tcE21YcuU6zuiJYKvYYcymwLcXMZMj8orXtegUQJjr/Voz1K9a3pCnzJk3JuW7k0iEN26LqSxK2wg9oXTMtr70fbEvRn1aslWxAkU3Cptz9Q1UQVBnb+iqf+cxnCMOQ5z3vefzZn/1Z7JwUE/MsoFgs8ta3vpW7776boaEh3vKWt/BfVzcR1u5rXW5LU8cICvKElGmWNjKolnmhKYMUIEiicCpQ192vNxJtShxZURk4LaGjTbew/VrvCM2QG7LSsFAIlN39Gj9e98knQi4VnVapt50oG6YyAZ4SrNY6nCOLu+/xltRR+TYAjZa7t8ctmnlAwtWMjIQsr1j4fm+XEtvWBIHA6jLXAzqGQTMxrWk0BBuru9uTfsf9UWgGRqBSgkZ9b4cUWyiSaSPI3b7e7cslUsalafmyEQ71wrI0iVRbNN+VqO1cv2l3bTF6O+jesJM0Lk/LC4LQ3/25rF997qXc7fel3CDkB41IaRc9+tGJTu2+Jw+MatCwudJ7Ob8vQTKpGcgrlldly0mpF7atcV1NtSqpjXSfB9gNxUAmxLE1K0UjHuykNtA+jx2pSVmKLV/i1PZas2YsG7JmWS1hUhO3tON8tDSz/T5LJZuK144NE923zdampHbnOSl37NfRbIAQsFxq7zc/0+W4D0zpNylMCbxu57kXOS+5QjGb9JlvONSURKju34kG7JBBJ+R8zaGR637NEiFkRUhSatbC3XMeP9v+t4MmhSkZJwNzXVRd+inQ9KFY64uEYFoZoWiEXWpfe3Io6phybi6KAEEjv7ufzsoyUw8+wOc+9zluuukm3vzmN/PP/tk/67pNMTFPF/fccw/33HMP5XKZxx57LBYpxcR8lxOf298ZXHxwma9++Djl1fYEMjOY5AU/dS1zz49LwMXEfCfwTImUzt23yOfe+whj1wzwI29+wTfdzncb8f3xmSEe96efeMyfGeJxf2Z4Nox7XO7tKfCrv/qrbG1t8frXv575+XlOfO6PePz/vIfa1uq2uEBJatGP4aP5kNlhU9qtiQw1MjQ/QFejuIwL06Mh+Vz3BIRJ2Jvk/cRwyOjA1QQ7ilRKk3T3Tmg0HJv1VUFxs71cN4qbkmOPRwIlqUhne/QzMC/bgWueBwPDu2M6hRTFNUVxdW99XBgYdxyRsJg+atFFZ9BiY15x7sEuAqUuSEtgJ8Se7Zk4zfCcRf94x2nSQ9PXKCm8uu4dE723cWUPgVJHXFAHr6LRV89zUSuE1IrhnkKmJnaSXWe9CK4uAoPuYqFu7e1CKZQfUt0M8apX72O9pPGjsdxTFKVg41JIUAfhdckSNsdDQr2saZS6tNUh4rJdGJ6V9Hc5dnfiJAROj2TXTi49bsq87cXwPklfdJztJVAC49JVWtfG5YvuAiVpm/KLwxPm724CJTAiyHTGjMvFs4JzZ3oJlExMEEjW1wQbtS6iKClo1UcRkEpqksndYZ24NkwOBQz2mfZ7CZRAsW/MZyJv9nMjMKJOy1PbBEoAY/mQ6aEAKY0zVLm+vU2lFJcf/iRP/O+38elPf5q5uTm+8pWv8PWvfz0WKMXEPEvI5/P8t//23zhx4gTf933fxxve8AaS//ODVI4fY6e2vo4REFloJmVAXmy/JkjfvBSCIErEDxMyaQVA93t6M2Gf14oJK2BvGagRWiStjvleoCOxwnbWUzaFutUhXNgdIwNYLFqsRtfZhKUQPfrZFCj1pUOmBkNkl3mAlzeTHd+HSkUSXGVeEQSRk86gJJPba54mWFkSbKzuEdJEm7Ji1lN4sDmVF+SHYNutqEuSIfCNw9Ge+QetCYOrCJSiOIAg6H2/7CT0oVYGEWhEuPdcVghaJXQ7kd5TmODBboFSj/Z2obVxMK0/hVDVLPX2FLoTCKrVyHlsdffcy25ELkWhoOEb8eBOUpvtOVHODhlOhri1vcdRCrDlU3uuxg8FlzadbQKl3e1pRlMBUinCyC0N2teLnVQ8SaXR3pZuAqW8CNmX85FCozra3ElSmtKKnpacrbnUA9FDoGTeK4eSdd+ikesiJArNC0yZOFP2be9xGiRknAArElR1EygB5FBMywA3Oj+aAiW7JDoESmYPT4mA/qhsnIfc1WZYLrH2V3/J2f/3PTz66KO8733v46GHHooFSjHPCl72spfxjne8g1/8xV98prsSExMTE/MU2Xf7GK9594u49Z+1S8BVNup89vce4f+84+sUFuIScDExMd2pbJgvyZmBq/xoHRMTExMTE/NtJxYpPUVc1+UDH/gAy8vL/OAP/iDVzQUe++Q7ya58Gq9Z86mDi6sWx+ddQOLairlRHzsqL9ApVqp4kscXEmxGT+aODQa49u4sgVKS4+cdrqyazMRwPiCd6JZNkJw+a7G8anbt2EhALtM9bnlB4ntGAHXoOk0u3yM7EQkHJiZh/2ENPZ7iBZM0KhWiJ+BVxyuiKajYmIfSmnlvYLxnc4ApvZEekCQye8c1xT9jB6QRzzSR238oLy6FnH/Ab7s+9UAFcOY+j9UL0QbsYTq2dDqksNC5obpn/MCkZPzwHhmmaLnLj4emnNhVskZrFxUbl6MYpXrGJ/OCIy9KkRnYvf9EEPYUK4lQ9RQL7bs9yfSNbveOdfTFK8P8Y96eY95c/+KJgOJS73WCOR6mbnK6C812jEFQh8uP+gRej8YioVLgwemv+qxdvHqWbv2y4sKDO7JYO/b3yJzETQOK7U5cXWIzA5JM/96ip9ygOReUgoVTGqV6OyipIDoP90jMqqTD1Kxm30GNFioSJ3V3czt4RDMwaMZleVHiNRN/TWGSFEipmJnwsaQiCCTHTttslbu0h2Ji0Eei8ALJkxddVgpddyRj/c3roeT4WpKza8a1Yac4aTgXMNZv9uPihsUTl9yugqd/cqDIxXvezeKxfyCXy/HBD36QM2fO8MIXvrD3QMXExDxj7N+/n4985CM88MADjI2NsfTBP2H6U3/DB154x67YEMEp5bIZuSMNipAc7ftap/jgCjZnkw4gcNDkZUi3xP6msjjTcE2Zs1AzKIKugqFqKLlQdVCRWGrYNXFNsVJTsORrQbFhrts5N2Q82329IJABWIFiKhswmAxp5HvPG+qRgEJjxA7NVxMvb6O0YLMgW6W9Eu7eQoZkUuPm5fb+7bhNhVFJLNvRZPu2t6ecbSojVhahWr66uLdUgIUrou2O1EOFFAawsWxKol0NKY3rkt1jugKA1tTKsLURrXYP9yIVQmHF9AFAhL3FSgOTgqHp7tsgvaC3WClQXR2UEmmYOiKxepgZds4/K1tdHKl24Gw1aHiC9Y3djkc76e9XpFPdx8VuqJZACUwp12K19zHbFCpteDbzq3ZPQU8TpQXzWzZhcXtcp4uSLTX9SXNO+V0coaxGO9aVmowdYsv2tWG3OEmTiR76qHiSsme2p1OgJIP2qx5Kyr7caeC6jTAL+5I+A3ZoztEeh1nGUswkzXXE14JC0N4/TWGSCCEtTHlKgPXQ4nJg020/JlHkCJEBrAUW5wK365g76JbYaAvJkxkHr+ny2iFOstBMiAALHZV2c6OSm9tRtRo/cOoEq+9+F+KJJ3jb297G2bNnecMb3oDVxRkvJiYmJiYmJuapYrsWt7/mMP/snf8P0zePtN6ff3ydv3zTl/n6R0/iPwWH05iYmO8uqpvmyaT0YOIZ7klMTExMTExMLFL6BhkeHuYzn/kMx44d4+abb+azn/0sD//1Wzn5hT/Bq3c+qdEuy5ZJKPKp3VmUplipHsXZUjE2GDLQ1/0X60A1RQSKsQHjqhQmu+3Cdlx/vybfS3zUjJYQhkZgtBeLC8ZtRTXLN/U4ehbOmCe3pYSJ/a2udP0hPpWDicOS/Gjv9dbLcPI+RbVs7bleMAmo/glJ3/COoKZQqUMckuyDudt7CF0iQs8skx+TV3Vesl2Yut7C6kyCdREq2UlIZK9y6kVJptywwHkKwv7MgMBNbX9vZ6k3r6SZf7LR3VGouUzwjZV3WzrpsX5xx5f+LtucG5V7Jwcj8uMSx9pboATgpAWJrLVb9LRDoDVywCI3evXLXH4UpFBdy7Zsb8+UFWzR7OeObZa2EaP1jeyxbq2R0pR4u/CYYuHU3gnjicOSsf3thFI3gVJ+GPqGzL8Xzxunh240KwItzAsunBPsdVIpZRKxu3brDvGfY0N/nyabaQbubjNMSJIJGB8M6YvEkzvLwXX2cXwwYKjPHJONQGJ57HJOAsilFH1R4lQho2tlm60LX+XBP/8N3vrWtxKGIf/pP/0n1tbWeN3rXtdzu2NiYp493H777Xz2s5/lk5/8JMVikRe/+MUs/Mn7qF++tC0upOleosmiSIsuTkU+SL/tqtQnQ0atoKdEolk6LiMUYyLECcHrKio17yUtTb+jdl4idzkrKS24WgVVjWCxYFGsyGgN3e8TXiAoVMw9IZ1QpCJhxU6xUpP+vGJo0Li59GJjU7K2LglTDkLoPfUrqTTk8trEddAUKmlheg+a/KAm07fX/U6glUA4gmR6j7CIZAayXcpKbeuHMiJfu5ewp4nWSKmf0nqlZUrD7Xp/RyKktK4prlzFJWinUGkPgZRfh7Uru+crorb9Dcs2pV6vhmVDInF19x3QuI7u6uLUKU6ypGYoFyK7nHudSKFJ2wqnZlyH9oqbyPk40rj+ALhl0/bOMm9p13zf2nnu7e6rpuELLq05hI3ewVlXMZ4LonUbmgKlpjBJoBlqiomUYL3eXSRkzl1NiOBy1aawh8sTQKAh7HLaiR1fJ3NSdYgsuztX+VkYCUNGQxOn93BP6hMhYzJARu35QuxyTiJaSx8hiei4CXasW3o1ip+9h0vveDsf+tCHeNWrXsXZs2d505veRD5/lRM2JiYmJiYmJuYbID+e4Z/8yu287D/cRnbY/ICqQs2jf3OOv/jlL3H+a0u73HhjYmK+e6lumieJ07GTUkxMTExMzDPOUyi8ENON6667jkceeYT777+f17/+9Zw4cZwHl95G//j1HL71X2C77YnOZsVms9Iu23bdlM+VdYti1Qy/DDUi0AS25Ng5p5WbmBz2afiC9eLO3SQ5fsFpaQAG8iEaQaG48wdvycnT7b+GB0MaDUEpSnaFqajdWsD5U80oxb6DsLoE1cqO9pSkHD2RPX5Eku3TnHmg9xe9dB76R6Gw2iGWUKAdC+GbX9lrJTj7oKLxFMq0AUzfYOM4mvMPd390PvDg9P1Bd8ceKcwv/k20EZPYDuxVdcN2YfJai7WLmtXze2QUBWQHLZI5RWW9Yz1KbXMCWD3XQ7G1s7sSpq+3WLtwlfUCszc7bFwJWT4Tttep9bb1KgXFhauvVwQhQjs9Sk9sp7LWpb0d2yttmL4lwcppn/XzvQdaWpqp62xWE7B2bu+nnYrzIcX5HYIqz0fb27Nn2SGJtBSlld5tSRsmDlsk07B8du/xsWzREvi06PJjhwrgzNd6HIcR+THB2GGb8w+rp1SO5cKjCq+XG1TE4JhxeNha3yNmzmJ4RHPyhHE86lr6RypmZjSFTUFpS3LhnHk7TG+/FkmpmBxVLCxJGp7kyZM2qos4ybYV44MhF4sO1Ybk8XPuLiERgGsrpkcCLi3bBEry5AUTJ32NZXXuG8WRSZ9CxWKlaHN+xaabKGrl0kOU5j/P0tISiUSCX/7VX+V3fud3kLt2YkxMzLMdIQSvfOUr+aEf+iH+8i//kt/8zd/k+O//Hq961at4bPQwybGpzmgu6fb1alCEpFFc0W0BgfTBasB6wqagTAk2C82oFbAS2i1xUpOytjjtS0IEItQM2wGbgbUrrhJKzlYc42qEZtAN2fBM+zLQeNkoviyp+FHZLFuRdhTrtd1uNo0wErKHismpkPWqRX2zt7Ail1JoTav8MBixkp+zcEqR48qGjO5lRjjUXYEUuafYmvGDgs0FTb3Wfb2lIpS3BLqL2EQ5ssOVSCAtjXwKZcVy/ZDNCxbP7WlkSSIJjgvl3aam21i+tPfnTTJ9kB9QzF/FgSjdB/0jcOVU+71ubkq7nBR7IP0QQmHUKXugQjN33t0A2wYqmzev+XN7rzeT0+RyDS40rqZoEqysWuwUM6VXvFZJQQDX1mQSis0uToqd5FKKvBNyQTh7ipQsAZbcLaHaKVAC2KpblBtyj/Y0k/mAui9Yb3QXEzXjQFD2LBqbsuXKZPk6cg/r6Iel6U+ElH1JI+zenkAzNeRTDCw2fEGthzA8KRX9tmLJs2goyULDxAXptoMSGPckS2hKymI5tIBuLliarFBIX7AZSBaxozHsUqaOEEvAhrbY0Bab2kIhcMqgO+bzWRSjIuC8dggQnNTurvZU4LP14L3U7v881WqVn3vjG/m1X/s1pqamiHn24Ps+X/rSlzhx4gTlchnVw4X3V3/1V5/mnsXExMTExHxzCCGYu2OM6ZuGeeSvz/LY351DBZrKep3P/u7DTN88zAt/+ij5iatY9MfExDznaZd7i52UYmJiYmJinmlikdI/kjvvvJPjx4/z+c9/nn/7b/8t5849zgPLx8iPHeXQrf8cx20+jt10SzJPvDeixJRrK7wAwpTEqimT/AK0rUgn6XgSWdGZhFfIls6lfwRkEFIoRJ9v+71YtpYYGlTUG7RESi06foB2HEgkNZa9d9mFwgb4gQDZKcbZHlPehJMP0hJqJDNQj0qydQqVmgKl/nEYmZGce1i1SmjsWu+KxrnKHLK5vqEZUyJu4URHx6xo20NFvQTn7r+KdQ5G+HTuAY/GVUqaBw04ea/XXX/UTBx1jHVuWFLZUD2ruSkF5+5vtMrY9Sp5AnD+Qa81tl3XGy2fn5QoBaWlp5AhvAq2CwOzNptXAoLqHmVRAjj75Vp3MUxHP1UAp79QRem9E1uZYUmtoK5arg/g/Nf9q/rFqQDOfa3RLmG2B0unuojjlG65CqXyMLrf4vIT4VX7V96SpNb0ngKlsTlTCu7cDiFTp4uSlOAkzXl08XiPan8dx06xALYt9u6fgmTSJH9LeyRqky4M9iuKJUmpwi6BUjNhm05rBoY1KzWoeXQRKLWvb5mkIpXQVLY0CoFEEyYj9wRbRc5LEj+QHS4k29sLNh7g0qkvsbi4iOu6/PiP/zgf+MAHSCbjp2RiYr7TkVLymte8hrvuuov/9b/+F7/1W7/Fhb/5G+666y4eHthPcmI6imxf90INvmg6fWhsjPOH1wfulom1ADepSUtNu0rcdgFPU5CUEJq+PkV5Q6IiAUPnratZRillaQadkC3fwt+hqRAd12rX0iTsq4hTNBTrFlVfYnWIYfQOZ5vlgtXqsWNpzFTLvNMUKmktCEMjnhgbU1QqglIPUUkQQLkiqQmBoLtAHARag5SaoVHN5rog8KNeCIF2TCeFH7K52u5Pb4EUbG1CeQuUECDoKZwu7iHKbd37ormQkEbQtNd9t1KE6uYebUZUt3qIhXZg2ZDqE1QKul3C7h9BMmv+Xy+z5/ymuHH1Um9ozdYGVEtAem83I8eBhgetkmM9lGM1T3JprbujT6s9T1PyBLWSQGX2+r5h3ImuFNuCIqfcHkQ/Y8oRjmRCar4RFe0leAJBqS7xeoiJACyhmcoHrFUsGlWBwpQ2A/A6XFBdqfCUoBFKzhfdrs5EnaK1gm9R2WO9Zt2QtBQW1p6VnvutEAsoqe4l+qxI0D7sKmo52NSyh3OSOf+SQkcSJgu73CznBl7OxDSvlz7gIZA0L5HbnZPUw1+l8uRDrC0v8+pXv5o3v/nN3HTTTXtuc8zTz9LSEv/xP/5HFhYW9nSVEELEIqWYmJiYmO847ITF8/7lEQ6/aIqvfPAY84+vAXDl0TU+8aYvcdM/PcAtrz6I3cWZPCYm5ruDVrm32EkpJiYmJibmGScWKX2LeOlLX8rZs2f51Kc+xS/8wi9w/vzjPLD0JH0jRzh06z8nkTLW9l4gOb3YrHuluGbSo1KXnFvZXgtLBIIzVxyaipeJ4ZB0IuTsvMXOrMSZKxZOVK4gn1fkMoorC9JkY1pITp5pl3ka7A8REtY3LMKkhVU3Pzf7vsWpYyqqzaGYnIWNVajXtq+zWpFUK0BCMjockErD5aZrU8cP600hxMgMjEzBqYeM6Ae2C5UAGhWobumeAiWAUjMZZVkMjCi2VjWqR85MSLCsvRMCYMQ2s7c4LJ/2qfRITDUFSplBQW1L9xZ4KOPMkx+TbM53yTBE7kZuCmZuslk6HbBxuXcmolHZvWw36k8hUQYwOG3jN/S3RKTkZiTDcw6llZDgKk5Y3l6fd/xAHjS4qqho+kaX0krIwpO9BWbpAYFWmlqRPU2rciOS0roy/dtjvftvtyksKjZ7OVFFQiVpgbXbaGAb+THBVkESeLB4eu+kdLUEwtq+zp1l3qYPGwHgqYe6CJSi4yU3ACOTcPq8JGxIFue7bgQTU1DYhFpVcvrkdmFk00XJdRVjQyGXFy2qdckTp2yU2i1OyuUUA3nFpSs2pZLksfPWrjiAgVzAxEDIsUsOXiB5/LyL9Hcf55mE4popj3PLNoWKzfmV3XV7Fs5+meKVL7OxsUE2m+VnfuZnuPvuu2NxUkzMcxDLsnjta1/Lj/3Yj/Gnf/qnvP3tb+fC2f/NK17xCp4cPUR6en8rtohFMbrc5lDMyIAzysXbkbj36pKzCQciF6Q522c5tKnuEM82tOSU7+IoAM1YIqToS+pKbhMrVUPJ2UpTwKAZcUM2fItQCxp9gsSW6dRWzWKrJkEKEpYi5WgKdcl2AYJgs26u/6oPZmyfzZJsid7bYqVmUTjNxGBApS5ZL7XvG52OShqo1wWet7ewo1CI3KfSFikd9HRU0ph5ZsusruucJSqfl9OkMrC21F2opLUw80GhSSShURN7Ojy6CTOd8Ls5DgoBWtM/bO6Xi+d7NmPMIHtpsTrjnkIMGJFSflRQL+vW/PcfQyZvRFv18lXcLvVVyjh3zr2uotdPZzRDA4rL80Y8012gpMkmNZW6aIn0umEHygiefEGwxximbMVgOmSxZPcUHjkVhZ8RSLGnjh8pNClHU/EkW429E1KhhpovUI3t73cKlGyh2dfns1y12fKsXQIgI07SjKZDaoFgPWHjBd3X6wpFzlas+zaVUFKtmOtPEz8blUmUikALKlqyGNhdp5m2pxlxQkpSUlOSK55No+v0RzMjAspasonFsjZiJ6fLwxjTIiCB5qx2aCC5suNaGDbqFB74MurR+ygUCrzmNa/hbW97G4cPH+66vTHPPHfffTfz8/O8/OUv54d/+IcZGRnBsuJEbUxMTEzMc4v8RIYf+tXnceHry9z3p8eprNdRgeaRvzrLmS8v8MKfvo7Z20cRe00iY2JinnNoralE5d4yg7GTUkxMTExMzDNNXPPmW8wrX/lKzp07x2c/+1mOHDlCYfkED/7923ELn6Ze2fm4t+TSmsPylkn+JwdM6bamqkIEGhEIUwouEHi+WQYUrq22teMnojYSilQ6+ulaA1p1CCZkSyTQ16foz/dSb0gQAjshyPdDMt0jLELbcnspDtnxilidh/kz7ErQNJ+uB/NE+vxJ01BmAPIjvddpuzB+jc3gdO9DeO2i4vKTYSt+G5ZsuSoFAYQ+V33CXdowc6PD6P69f8jtH5eMH7Fx03SvUaI1XlVz/kFvT4FSk9lbHcYO261lu7WZyJg4Zy8thtacv7/BlUe+BVkyoLoecPwzFeqFvTN140cdhvZ30UN2bIvtwqGXpEgPXf2SdO6+Oitnu2fURJTxGp6zmbxut4ilEztpygcOz0b7s9dj6xICTxN4vROClgMoTWUDzj0Y9kxeShvGj9iMzPbul7RhdM78u7QOS2fbn+0UKAEsXYQrHWUdEaL9iggDUJbA3mt4JeT7Nbm+jje6kEpo+vs0yeical5TRKijl9l4x9akUhopFUF6p0CpfQ1reJKGL3BDjfT1NoGS6yiGxkx7lQbMb9gmkd/ZklK85LoCp+/9b5x/7G9MeZGf+zmWl5f54z/+41igFBPzHMdxHP7Nv/k3nDhxgo985CNcvHiRSx+6m4mv/C2//3037XKKqCBZUHZLoJTpC1tOKQBWQ2A1wGmApwV+JJAwsoAOByMEXl603E9k0zhIaYRqOyU1BQyu1OQdhSN63UsEQkHa0vQ5e88NpIAgJbaJN0TYfjXbWy5YFFrume31+jmrFVMoShqeEUL05RSiZ/+gL6cZmBQ9Y7QSLC8IvIYR0ki5PU47VmveF4bmdTVyeRiZACE1WvZOIgyOmRJxPRGCrQ3xlMq+JVIwvn+H1r8L2QHoG9o7xqvD/An1LREoAawvatYX9J7f4GwHhsaNQGoXHXOv/JAZt6tRLgsWlyx02F2g5BYDHAtG8yEpt/fxIz1NPqsYGwpaUjp3q/tBoIFQCZq6NKestrkoQeTwVNEsly1Ke4iP+pKKsWzQ4U67m5wMSekQy4eNgoXf4XrUFiiZ5QMtWCg7bHWWVGzNgZrriNzL9nSKgqSl6bcUVnTd6OVAlZch2ahOohGBRY5HHliexvJM71JS4Ubb2ejb7mjVvoYJvMgXzSmDU+4UKGlyMkTkzLrWtcWC3l0aL6xWeMnKCRb/v99h6957+LEf+zEee+wxPvaxj8UCpWc5Dz/8MLfffjv/5b/8F2655RampqYYHx/v+oqJiYmJiflORgjB/ueP85p3v4ibX3UAGT3EWl6r8X/f8xCfefeDFJe6WdLHxMQ8V/GqAaFnvuvETkoxMTExMTHPPLGT0reJ7//+7+f48ePcf//9vPGNb+Qf/uEfgH8gnZ/kwE2vIj98AIBitf2j+nAuJO+GbBZ375a1NQsdlWAbziumx0KOnXfw/O1ZiuUVm+UV44CSSStmpkPOXcCUsur4ffnCJQcRiaHyOUXfsGLhCnRmPQJPcvxJBcosOzEVUtw0LkqdrC5JZMO01XxKfeli9GG72hxF47LLyLSJO/uY0YXsdFQCGJwQOElBcbV7oi7w4OxDCq8q9nhe25DIwP7bbBZPhxSXdiQoLAmh4uLDbdGLlN31KiqAi494xp1nDzauKMrrHl5t77haIXJGMrqznjTKGq+2I2CHq1LoG6GPnQB/jzImvZb/htmrDsUOLFsQ7jykdyS5pA2NLYVX3u7e0w3/KuMKcOlRH2enMG0HQT0qk9dZDkWpDgsI0y8VwOXH98ikSjhwh0N5XbF4eu9xCbXFuUfUns5S+WEYmpQUltW2Y6hToDQyZco8nn3MJEC9Orv2ZzpnkpSXTxtHprOndifwpFRMTGlWlwWeJzlxPDrfd5DLKXJjPpcXHIoliydPim2l3ZpJuenJANvSXLgs2dgUbGzudn4DODQV4NqaYxcdqg3J+UvdBWUDfYrRwZC1khFYLhc6rk9BleLFe7hw6gG++td1BgcH+fmf/3nuvvtupLxKZjkmJuY5h23b/ORP/iQ//uM/zl//9V/ztre9jZe97GXcdtttLM0eJXftzQjLuJ4UMNdDC824DFi1bLbC7dfIEMFS1SFMAGhmbZ+aFiyG269XoRZcrLbdTyaSAQ0l2PBshGqXgfOU5GzFiQQGmtFESN0y5aI6KdQtinWJQGBLTS4VslmztrnThFqwUHJwAwVohvMhxYplyvDSFio1ouuvEJqpwYBCxaJcN+91OioBODb05xW+b1HrMY8oFAXlskWQEFh1n+6CCvPewJBxQFqaZ1ecdizq1ZB6dC8UQqN7uOWUilCrGgEUgJbdHZVWF9jTiROaoigz/nsR+KaEqpB7C9iF2DZl+PbzFNclLSOe3iWY3jH38r2rO0IJNBqBv4dQG8APBZdWbYJeeu9o+c0tSbkqtx3P7laI12d1rA/qgWQpKkG4U5wEpjTscD7kyqqN33NgjCCnUJOUG7KnI5PlKwYGQhq+YG1H2cOmQEmimc75bDYsSp5FJWgLtDvXN5QKqfqSWiBZqdp4XRxdk1KRtnTUlqTsbR+P5jgMuSEFYVHTksuBsyvG8sARmmnXZ96z8bTkYmO7E1MTF8Vh6XNJ2ZSwWNZ2V+ckgDEnwBIWK1pS2zG29sYKy1/7IpUnH+ZPgR/5kR/h3e9+N7Oze6jvY55VKKViIVlMTExMzHcVTtLmjh+/hsMvNiXgFp4wDxBffmSV+SfWuPlHDnDzqw9iu7GzYEzMc51q5KKUyDjxOR8TExMTE/MsIM7kfpu58847efTRR3n88cd50YteRG1rkSe+9EdceuBuli8+sC324qrFyQs2IEm4iqMHPVLJ9g/zxllJs7kpWFixWgKl0f4AWyrCVHN3tner55kXgG1FrkotoyUTl0wpUnkIk10mZ5FgQUpFXz9kct1rKqjIySmRhlSmy0B0uCtVS1AqbNe5dDoqAVw+prnwmAmwewjbm0KP7KjFoRc4PeMaFVi/rCit9UiwdLgqzd5sM3NLbweepkAp2YdxSuqBVwO0Jt3fOwZg7KDk0J091hcN0PLpgM0rPUrHRQmnwINz9/tXFVDlxiUHvie5a/mnjFKtfo1d4zB969WtUecf81g97e+5Tq8Klx9umHJvPQRQQ/ttDr04uWdC0HYhkQhB7S3Wyo+bRrYJlHaQGxEceaFDIts7BgAF6xdDNq6E0KMUzfgRm5mbzTnSS6DkRrtlcwlOfa23QAmgsgXlYuSiIbqfk5ZtBIO2C2Gyhx5VQl8/ZJvuSV0ESmHaxuqTZFIaK3qKXyFbjgGWDpHR+54n8FpOSOaED9IWoBjIBaTc6JjesLiyYCN9gfS3j9m+SZ+ZcXO8rK5LHrvobnNhqlc3yTc+z8N//3ZOPPZlcrkc73rXu1hdXeUP/uAPYoFSTMx3OVJK7rrrLh544AH+/u//nqGhIRb+6n9S+7O7eeOQKU/UJERwUrlsRUKhUSdgxNmudLEaxl1ppWazocy1OCEUaWEEQl6+061E4ymBHwlqJBrZ4azUFBlYQNpShH0icjvZTjMu5Sj6HLXNmakTr09iSUg4uqtLTMtZKYBqw7jWddJ2VAI/EFxZsKjVoz5a3e5ngiA0Ip/BaUlmtMf1VgjKW4KtwnYnl23bGLkqOa5mcg7cZI/5iBYEkdNTMnIK1VLsclVqCpRsZ28HJCFhYr8gnevxeWjKDm8u07u0b0RpAwqre8cADE4KsoP/CGF4NH8WAkbnBImrOJx6dVi53DHd6jH3as7HAZxit0mTZnJC0ZfdW8nkuhq36BOo3ftbehrpaWzLvEC0xHTd1jfRFzCSiRwZu7gnNak1BJslSahM2bed2FIz0x+QsBUgor4ZLF9j+RrbV7ih+XyxYLNW3j7X6izxphBUfInvdXNNapO0NIno3PFyu7dTKEgLTZ8MIzep7uXxvKwgkdYkRLN4Y6dzErhe09UJGrrzgQ3zL6/PiDDzmLH0EMwrm0ZZRu5J7XUlhGK/60WOcoLzDZcVvX3eWLtygeuPfZljf/hOgjPHeNOb3sTFixf52Mc+FguUvsM4evQoFy9evHpgTExMTEzMc4z+ySyv+M938AP/7hYyg+YHOBVoHv7fZ/mLX/4SFx9cfoZ7GBMT8+2msmG+96bjUm8xMTExMTHPCuJs7tPEDTfcwBe/+EWWlpb4sR/7MRYXFznz0Me5729/kwtPfAqlAkASBE1REDR8QSMSGGXTqiUEUEqyumYhAk3CVUyOhvTndv9AX6lKzl1wAInrKo5eGzA4ECUaOsRKyys2p84ax5N0RnH4uhDH3d6eUpKTTwpWo+9sY9Oa/qHtP86rhM3yJTh/zPydG4Cxmd1jUSnBUlRuo38UZq6JurRDqNRMDu2/STJztHdyx69Do6rx/d4K+NULChWAk4T+8d5tFZcUhYWr1x+Zud5h/PDeRmRjhy1mb3GRe4SV16P1XUUslMhAfrLH6dqxrJvasxnCBnhVtb1PT1WotEM85Dc0/k6Hpx3YSdpXmR7rcTOQn7q6qVt1U1FcDPY0cRq7xmHujuSeV7b0gGDqeofcyN6Xv2pBU1hWNHo8aW67MDBl2tiYVzR6uERry6JR1TTKvcc5nYdDd0hyw+bvTjeIpkCpbwjmrov6VhYsXtjdTioLk/vNv0ubcPoRaOw4AG1Xse9AiLQVKpAcf1KwsbZ7LCamFDNz5lxY35ScOGsTKrkjMae49nDI5LjZKStrFgtL3fflzEjASH+I9DWVyEmhSef1zfNpCZ1UR4nK4upZlh5/P4/c8y4+9alPMTs7y+///u+zsrLCL//yL8fipJiYmG0IIXj5y1/OZz7zGR555BFe8pKX8Cu/8ius/PE7Wfns3+IXN4BmObaoNJM2pZzACIySHcqgmpIEdYnVgH6pmLC7KVgE655NKTDX7eFEyL60T3PC1RQbhQguVB0qTXFUJiCf3D33KDUsLhWMg4olNKOpAGvHvbSWtZhfs2n4EtAM5kIce+f9RrBZtFpin7H+gGRUUq5TqKQiIUcqpZieDHGc3vctzxf4fm8RrO8LqhXTXjqrd5V+a8V5UC6a/+9FKgMjk2B3lBPbKVQSwsw7+wZ6t6NVc33dBb7b1pnrUTJt20qNc9FeBL5JgHxTdNzahDRz3qu5H1lPYY6XykalavdAaE2pBPV673GSUjM+rsjldq9HdrgvDeZDRgdC9naxEmzVLcpe7/t5JqmQUqO0YKtq0UsEFyrwAkHYRZzUZLQvZDwfADpyWdpe4k2gGU/7pKPytBsVa5fzGWgGkiEJy4id5ss2hYa1S6DUJ0MGLLPjNn3JxdpuZyRHaPalvKgkpOBC4FCIhJFNcRJAnxVyMGlERRrBgufQ0LvHLIdiSgbYaJyyoFJuO7KJjuubrwWeFq2SlWEUo1VIcPxhNj70u1z64Ht54okneNe73sWFCxd485vfzMjIHnW5Y561/OzP/iwPPfQQn//855/prsTExMTExDztCCHYf+cEd737e0n8yySnji5xZXqDrbUq//e/P8Tfv/sBtpb3sD6PiYn5jqa62QAg3R+XeouJiYmJiXk2EJd7e5oZHR3lox/9KJ7n8eu//uv84R/+IfOnP8/SuS+RGz7Edbf/CGk5SK0uOX8JkkmoewEHZhRbZVhas6k3IgckV6E8OHbKxg8U6YxibMInqAlWViWODbWorIdAsbYhKBQFoBgbVRS3oF63sW2F40CtDjppobUfPd0rkTIgkZQ0PFCBRNqKhBuQyYAUkmokvPA8CVqTGJCEJUUQQLbfJIqWL5ttd1yTYPGih7WTWXASJrkjbXATUK+Y0m920gi1vCosnFZYjhGFBJ55301jyoQok/xZPm/6keizyPUrCkuawAOkcZPxKkZjM7pf0jcsKawEoEw7KsQ4+NiSRrXtYJMbBb8K9Uik4qZNG0EdLj3hI2W7HJjlmu3rjC0shpTXjDgqmTPuSiqItjUF9RJUNjV+PcRNgVcz25DsE3gVZSqPRbEDUza5EYvqRsOMYfSdOZkDvwGhp+mflkxf73LqSw28GtvG0MSadq884iFts556WYMCO6GRlhknhEDaIB1AKTPeWWm2TZmSctIRbFwwCVo3K1CBJqhH452VeBWNUjB9SwLbEZz5ohlUNxONd0dsfsKif8ahsh5gO5J6ybg1uVnZGm8ArTTr5806pQtuUlDf0q3x1hoWj/uk8iHJjOg63gBBXXP58Qal1fYYdsZmBxXVAgS+ZP1SiJvuGMNsNN4+DM9JBiYtiisK5XeOtwYpSOUhM2SxehEKy5HzVlTaz3ZNErERtRv6sHpRUVrbfnxrx4pihanQZ5nEou/TPr5TUf+VcUTqG4Kly2Z77H6JpZQ5P1Gk0qbMQzotyOYUXh3qNXONcBMKtMILJCiQliK0zXKO0NH1RJvrx0jIZlHgeTYrqyFBAJZUhEpiSYXrghCK6Tm4sKRRnuDUWQcvgHRS4XkQKImUimxacWA6YGHFprAFG0WLRpSgdLINagv3c+nMAywvL2PbNrfccgvve9/7uO222/a+2MbExMRE3HzzzXz4wx/m7W9/O+9973t53/vex/mvfYFXvepVPJwZx913EEqSzcA2CX2hyVqKMSfgQt2UUVIIRPTZWlVSwCIByIRibChgddNMqZU25dgEmkogqIVGSGELRc5WbPoWQgkcAQpNIKCRAquio7kXSKGRwjgy6ajsW8JSpB3FBpKEAD807irC0uh+iShopIRcWuEF4AcWYK7dQQhaC6Qw/ZcaCMFBo2Sz9FuA40AQQK0m2NjcXhbNioQ4YWgEDNWqaAlq08OCYCvE8wQI2XJhCkOBlJrhUUVhXbBVFAihsW1zHwOBTFqUt0K0EliWxnaiMmTKxFqOud/VKrAyv738mu2YuYYKBVKb2NVFI+SRlrmfBn4zNjKDDI17kO0YjZJGmFihCeum303xzuA4FFagUTP3aa2jdq3oHgyMz5n+rs9H63GN0FhH1WOlDVurUbvRt66W61NHLIK2gFz2jt1c0gjZnhO32hUQRHFT+zUrl82YCUFrDFv7UcLAKJQLxk1JhWZs3K06eihB4BmRjJTmWAgi5yPbjsZbbd+Py8uSINDYeU0QipZzkpYQKnMuFEoy0kuZY0IKIlcusC1NquFTa0jKfRLXArcSmn0jNJY05eSE0Iz0B2xVJBsle9vx7VQUYVbQl1CUPUmgBIWiRKKxFCbWMuIlZaZplOuSQJlttaSR7wRK4GUlrlSEgUZqjaMUCQ1mCI1gUAha7kz5RAhIGqE0xQT7NGgQSmAL025SahxprglKC8Lm9URqAmVE2ToqdRdmzamX9EFpTYjAFYqUVGyFFuVQsoaFJRShNiemIzRKw4AdojKaTW1RLQvO4WIDllB4kZDJEZoRKyBjKU43HGwBC75txhuNlkWq934NzjzJ5cuXOXr0KP/9wx/mX/2rfxULwp8DfPWrX+XWW2/lt37rt7j55ps5cuQImcxuG2QhBK973euegR4+/dxzzz3cc889lMs9nkyJiYmJiXlOcc/mY7zr8v9meaYI0YO12VKCF33uGngYFp74Eje/6gA3/ciBuBxUTMxzjEpU7i0TOynFxMTExMQ8K4h/aXyGcF2Xd73rXZRKJT70oQ8xNzdHYfkk9336v3Pp5AdYWXyURBKuOeCTSUlOnbcJFRyZCxgeDJib8tk/4zE5FuIHEteVXLvPw7XARzAyEHL4kI8bOSLNzWqSrnFEsm3Fwf0h+2fNZ4P9mmsOBaChXJaEUjI1J3BdxXU3wTU3KgYGTb/7B+DQdXDhDCxegal9miPXKyZnQxCaQ9dBftoCIaiVjQjJdo2w4vCtMHtNewwO3GASOBdPQKYfjjzPuCrphMXEAcG+683hWdmEyYOS4Rk4cKtk4ggcvM0iGZW7GJ0T7LvRxA5NC2Zushndb/5O5eDA7Q6pvIkNjTYp+g/M3mgzdiAq35KGA89PkBmU5EYlB+9IcPBOt9XfmRsdJiL3pNCH/be79E9I+kYlg1OS/Xe0Y6evdxg77FDZ1EgbDr4gQX7M9Kl/QnLg+e3J8ORRh8Pfm6A/cko6cIdL/6TpU35McuDOJKsXAs7c22DiOoepG9rr2X9HgoEpEytoPs2vEaFi4jqX6VvaTwbMPT/J4D4HOwG5McmBFyRbJevGDjvM3tYuA5fISXLDkRhuQHLge1KkcubvkUMu+56XJJGTIGHf7UlGD5k+JXNR7IARrQV1hZNuPyk+c3uKsWvMtrspOPA9KaqFkLNfrjIw4zD3gqgPQjB9S4KJ61yzjue7HPreJLmotMzgtM3+O9vbNnVTgskbXVQAtaLi4B27x1u60D8pmTzqMDzbtg848PwEg5EjUt+o5PD3JpmNSv5NXGMxfX1by7n/eQ6D0ya2WtBIW7QStxOHLGZujGKV5tCdDpOHJbZrju/OY3Zsv2DuJsmR50syAzB3k8ROiGgMTWxqyCbTLzh0s2DuOuOMdP5JmDnSdihLJuHILTB92Pxt2eY4UKEgTNrMHdBMTGkyOcWR6xSHr1UkU5LjTwhSScmha9oJ6H37FTfeCpOTJvE4NCqoliUiFOYacdhkSlNJ2D+nOLQ/clnasJjbpxgYiARMoyHXHPLxkIQezA37zE0ERvyE5Micz+xkwKFZj/5cyMGZgIsLNisbkunxkP3TAfXaJqOZr3P/p9/F1+/9JOVymZ/+6Z9mcXGRBx54IBYoxcTEfFNMT0/zrne9iytXrvAHf/AHnD59mosf+SOKH/l93nDEJfQajLoBk67PZiC52HDYlwzI2wHTrs+QbRxMbCEIEAw7AbP4aF/QcAVzCZ9h1zizJC3NdDqgEQkZJlMBR3IeTnRLnEn7DLghQgm2PIt8v8K1NEPpkENDHlP5trXQZF9AytFcLDhIIZjtbzDb7+Nain5XMdPn42clSgv8EJKR29BQX8jcmNf6O5tSTA6HLG0Y56WRfMDcsE9CaFTGYmoyJJWKSlBpwdSEIpnUTI4rhodChgbbCqGpiZBUWmNZmtERxfRhgYisWAaGNEMjZp1KmVJUzWqoyZRmYka13Ifyg5qhKYl2LIbGYe5ayEQlSN0kTM42BTuCdBZGJowzkxCasSnIRvM7OwUT+0FH5pT5IRiZau/7kSnj8AngODB1AEanzd/ZPIzOtOcqw1Hs4jkjGJ7YL1pOlZk+GNvXblfKtiGTtGD8kGyVY0vlBWMHzZzBdmFgUpAfi5xspIlNRiVlE2nIDYnWN7P+McFAh/PnxAFJtt+sI5kxfzfL2uVHBYMTAuGHhH5bxNRsd2KuLTLLD8PwBCyeN2KtsVnIRGPopAVTEwG2DZmMYnIyZHSkbds0NqboixyTHAempgIcR9NoCHI5mEk0Wu5J40Mh+awilVC4rmZqJGyV6+1LKyZH2k5k06MBB6Z8Eq4iWVXsTzdIRi5e2bRiasScU1qbUnFNEZwUMDPik4qO734VcGiwwYAdYvmakb6Q4ZzpvwBmh3xG+wLG+0PSCcV4f3NuAsO5kJFciJ+CYdfnYM4j62oWyw4hgn39XstpaCQdcGjAw5FtgZPWAqHB7oODKR9Ha0bcgNmUz2TSZ9WzWKg77EsH9DumT0mpuTbrcSRrXJEGHYV0BEFDYnkwm/AYtE3suBNwNNUgIRQK43o0mzBj6AjNrOsxqgNCAXYNrgk8UtK4IvVbIXOux4Tjk5MhU46PFJoLnouN4GDCIyMDqssXOTz/VY7d/XaWvvxZXvayl/HQQw/x5JNP8lM/9VOxQOk5wgc+8AHuu+8+tNY88sgjfPzjH+cDH/hA19d3Cy972ct4xzvewS/+4i8+012JiYmJifk2c8/mY/yncx9k2S9ue7+cbfDpVz3GmUPLhL7ioU+c4RO/8iUuPbzyDPU0Jibm20HLSWkgdlKKiYmJiYl5NiC0fqq1nmK+3Rw/fpxf+IVf4Atf+AJhGGLZCWbmbmVy7vux7T5cR+E6xokkk9Ysr1uoUJFICEolTSYjqdWMQ0la+UxOKbI5eOK4TTJhEkT1unFGyfcpGp5xUhobDujLa05HJd9SKYVsBHh1GJvSVEpQrUjj2NJQuAlJuQQgSaYUI+MKrQRXLlpkcwH1BgSejRsGJNOactEkRIanjSCpFjnaZPLGAcb3zNPjUwdMQursY0bAYuvQxCoT6zdgeEZQ2tSoEGrF6MnvlEnGVKPvmLlhaFRAeyFKG4FUrWScZVqxW7D/Vguvrlm9oPCqJtGUykOtLFABDEyCVwqpbJp2U3nTRqMCSMj0CwanLZJZwfmHfBJpQWWj6YYEOtQ0yqbs2/Cczel7G3hVs/5ETlJZN8m+ZM4IlUqritVzIZkhSWMrJPC6xOYBDfWtaAyHJI2KIqgbN6dkTlLZVIhA42bBkoJaUbVivapi/51JyushxYWQyqYyjlIZsBxJrWBir39FkvVzPkvHfaQNqbykVjSuUG4GEn2SmZtTzD9Wx6tpQk/hVaIxHLRMrK9x02CnJNWo/6kB2YpFmj7VCm0nokRGtsYw1W+hlEIrmLk1ycZFj+KycQ9rxUbtzt7mkh60OPG5mjlehi0aJYUfytYYpvOCoVmLS495KL/trNQ5hrZrBFyVTeOelMia5GMztn8CRg84zB/3qZfMvqsUzDGayJjkoe+BH9pk8uacq22Z4zuV6zhm08bFYWhKsHrRCNmCBniRU1hqyKZagv5hGJmGhbNQio7vdM44Q3h1Ezt1CBIpOPOocSNzkrDVMGKpdCZAhSaROT2rWFuB0pYpK+m6CjdhEqWlIqTSMDCoKG5KKhXjAlWrQxBIhgYCRoY1J06ba0S+L8DzZOTUpshljRPb5Lginwu5eFFS8E2pyVRCRY4DJqHo2BrXVgzkNZcWpLl+VQQgKaw9TGHl6yzMXyQIAqanp3nta1/Lb//2b+O6bXFeTExMzLcCrTX33HMP733ve/nUpz5FNpslOXcjIzfciTVkFCwpaZwNR9yQjUCiEcbdREuEMGXhmqWW+qoB09mA9cBiw7NwLU0jjNyQhCYhFZXQOBztS/tseBalwEKgSVgaXYCErUk6mpov8EJBwtboyJ0piFxpMq6iPxWyVDKCWksqGlGJuUwjRCkIQ5gcDqh5gkLJQmkjprAtHZWGg4SjGBsIWStaVBuChKPRZYVSxi3Gto2TS19Os1USEIlEQJNwwQ+MCMm2FZY0JYrdIERIIwrxo9KdbkITBEbYMjSi2FwX1KqmvJZtG1GN55t/O64mKCvCQCCkxnHBawBaYNkaxzFzys1Vc78NQ0ysZYTxQcXMIaYOGpegjahMsZMwjkFhYO7r6Zxx/FxbMJ9bFvgV1Y5VRpCOMHNTv2EcjyzbvJquoE7CvN90bHKTEFbMPpCWmVfYDgxOS5bPK3TYdjVyU+bfKoS+EUF+XHDpmOl/U2TUGZvtF7hJWLmksV1azp+2a1xPfA+0LU0ffDM2MhIsNftrO1HZuEZHfwMItERIjdXv4HmQy2mSSc3mpmzvR1eb8Q4FlqWYnVGsbwi2tizjgiU0nifwMzauo1FKMzGsqNShUpN4vhG/mePQlLUGcG1FwtKUa+ZcsFPgR45DltQM9oVIAcubFo4xUMIPo+PQMceWRqATAtdW1DwJCJxIzNQZ60jjvrRVFdh21AdtYoOUwFMw0xdQCwSbNYswciBzLU09MMesKxXTfT4rVZuyZ5G0FEEoqGUkEkVCaupKMpoICTWUAkkjKl2blKrl5OQpQUoqkpamULOwBJCGujal5qZdn1JoUQgtbBSu1NSUbF1PbDSeFhxOeWxVBZueTS0lo1JumoaGpDTrsYVm0A4ph5KGFigEvhZov07t9MNsPflVVheuMDs7y2tf+1p+7ud+jpmZLjW7Y77jeeSRR55y7C233PJt68ezkZMnT/KGN7yBP/7jP+aaa665avyxY8c4evTo09CzmJiYp5P43H7uEmrFKx5/6y6BUicDfoZ/9f99D6Kjsvfs7aO88KeuIzeafhp6GRPz3cM3Ovdq8o+5Tv/f//4gFx9c4Xv+9VGO/uC+qy8Q0yK+Pz4zxOP+9BOP+TNDPO7PDM+GcY/LvT2LuO666/jsZz9LvV7nN37jN3j/+9/PhTP3ceHMfdx444341o2Mjt9EuSphwyyTTcOBGZ9zl22KpaiWFFCVDpcu+mRzgA91X7H/kGZpBSoVSXGr/TSsRhCGprwbmGRJTblYKmDxcjNKMXNUUy4JLp9vL1uvyW1/J1KSqX2a08cUHjbBVgAC1pbMC63Nk/H74crZdvJFBXD5VHssLAtygxa1UggSKpFIZOGsbrkgzVwnKKxqSmvtRA1Aac38/8CtDiqEiw/7rc+8Wju2VtJUNlWrlJdSUCm0n1rfXACwyI+bJEdxqaPGiILKhqZWCIzAxDNlxFrjsgUgQMD6JUW95LfWE3gQrLfbqpfg3P3tPlbWVavCSmdsul8we4vLhQcb22MjQg9CXzF5rcPiEx5eGUy9CbEtduFJD68aCYWa41KJNqq5eX5UAg+zbzrX41UgqCkuP1SjUjCiIYTZVqXbsf0zNpYD6+fa3+5rm9vHcPSgi1fVzD/WIGgIgkZ7DJviKoCzX67TSVCHoN7+fOFJj/SgBdr0o9Vfqz2GlXUoLoWt/dA5htKGyWttFs4oNufbnzV2uP5vLUNuSOFHpV8qGx2xFchO2MzdLjn/mKLS8buHCowjmGXDvqOC5QuaahGqpd0a0eSAETiVi7CxYl6dVEvGEUJasHwJLp+OPhACz4OaMInqiSlFrk9w6jiA5PSJ7U/Ae54pt3bkqOLKJcnGmqRWja4BCYtyWWFHd4hASYLQuCAoBcWt5q1DMTutKG8Jyg3J8qJgfdWmpJzW57WoPOX1BxvUPcnZyw5gsR6NT6lcYDj9GF/4whcol8vYts2tt97K7/3e7/HCF75w1/jExMTEfKsQQvCDP/iD/OAP/iCXLl3ij/7oj3j/+9/Pk4/dy5133skb3/hG/t+vryCdBFe89jV02vWxRMjFhouR4xhHla20zaWyIFRG+JBAkUsoVhsWgRYEobk+WwKUFgRatP6uhwJyAl3S1KPbZi4RMpYNuVBwWqWlNIKyZ1H2mqUHNBM5xVYDinWLSsLCqSgQML8eXau1oD8bEoSCcq29HQ1fcmlFRNsAqYSiqi0oKUItjEgHwfqm2UTX0QwPhaxvSBpee74UBJIASLia8RlYWrbwSx3zhoaJDYWmXmsLlMyygmgYCAJTWkxYgv58yNYGePX2esLAlJhbvKQJg/b7YMrZefVoMIG1FY1Xbt9j/UZnLFS2zKvddrNH22MHxozQZ32hHRd2JC38hhE7BYEp+Wv6YIEFIaBqRnS+ekHh1+msoLdt7qrV9nab8+PO2K3AiJpVGC0bze+C9hSS/hFTxi2MDJCUaguUwGzLyLQpxRx4tARrpg+CRrSvtrYEW1vmuG71oWOfh6FkeVlQr2mEMmXgvM5Y3+zjhVVBqNjWTqjMe5mkEezUa5LmJmgEfg2ULVqxlZrEsSPB0bb9Lmj4grHRAK0FS0WbWuu8aIqTIO0qUq5ivWzTAIjGI/SarWiSeU3JM32+vGVv66/SgiCE8UzIatXCU5Lzm+bcF0AjkHhZgYVmXzpgpWGhESw3dn/NrivJeMInIzTnyw41LJqHQT0lcKIDxHhTitbMPEASRH+kpGLADlneshCYUm21UOCnZWvZmpZkZciM63Ou4VLXkoWOfS3WLnFN4wqf+cxnKJVK3HHHHfzXt/wWr3/967Gs9hjGPPf4bhMexcTExMR85/Lh5c/zp8tf+Ja156mAQljZM2bTqfDhf38v1DSh3/4+I46Dc97GSdqd08SnxE+NvYSfHnvpN9HjmJiYbzWVyEkpMxg7KcXExMTExDwbiEVKz0KSySTvfve7efe7383nPvc5fv3Xf537778fpR7nlPUXDI/dwIEjP4Sb7KNchdMXHMqR8OLATIjnKa4s2ygl2YqEAK5rHExEqABJIqHwfVP+bWXNYmXN/CCdyyoO7A84d96muk0XIjl7wiQT0Jr+IU0iBcvz5rMmtSqUCgIVPTGcSEGjIwmDME+BOwmT0OhFNm9KdSxfsRCNcPuHpsoYdsI8Vd+L5XNqz4KGS6fbHRielaxdUduSR03ykxaEertIKUIpUJET1PgRi6VTISrYHhN4bYGTm9qelNq5XSNzFhuXg1bipJPqlqawFG5LRu3ESUiyQxI7aYQ82xACtKa8usfAP0WUgtKKarfbhXS/hZ3YLlLaSWEhIPB09za0ZnDOobweRIKr3UgXUEZQtdVl/wAM7ZN4VSitql0CpVZf85LcmEVyQVHvsq78uKS2ZZa//ES4OyCitAYrFxW1re6fa2WOWyepqXfpi3aNQKlvEJav0Kkb24bjmmNu57hJqbFchedJymXjcLGTTFYxOKS5fFFQr0vOnoJKl20+ctgca2cvSIpF8zIo0imo1kwpONdWOI75zPMkngckjePb/imf05cdPE9yft6h3hQlKo/G1mM88djnqVVWEUIwPj7OL/3SL/Ebv/EbJJPxl8WYmJinl9nZWd7+9rfz27/92/zd3/0d73vf+/iZn/kZstkszr4bGbz+TlIj0wghWPBsbGEmDK5QTLsBVzwbT0saYXviYQlwlEb6AuVoXKnxlCTUgsu1dtnRsWSAAK50vAdQaki8UBBETjAj2ZBiXeKF2yc3JU9Sj1xpbKkRaDRtIRBCY2+bL3WKT6LyY0KTTSnCUFBKWdi1Hfc6AZZtHHC6zZUAGh6sb0oaHli71mNESBtrUT8d49RUr+2+T9kOZAYktbIyLko7aAqUkmmNlFAt726jVhUIpVsl0XSP+6ntGBfCppPkrnbKV89DJDPG7anb/EE7FsoPafSYf3wjBD601Dxd5k2WY9xDq6WOuB2EoRExBR5oa/ck2al7JIZtyuWO42fneixNGAqqNYHoMmxSaPpzis2SNIK9rmgyaYUOBPUu82IhNNmkplSTVBsSuhwHzeNrs2KcwnohpcaJyiHTJc5PC/oSAYEC37PYvt1mHQpwLY0jdDS3asc4UuMhCBFsBRJv1zo0Q05ITUnqDclGaLNutnJbVFoqZhM+5+sODS2Z99rXA4nGEuBrgWxoEtHfoYZqx/Vg1A6QQrPkO5SV5HzDbTm9iUaVrdOPsPz4/dRWLnN5YICf//mf52d/9meZm5vrOX4xMTExMTExMc8ElbDOyh6uR98utnQVkpjXNhrQ++fNnlTCnT/OxsTEPFNUN835GJd7i4mJiYmJeXYQi5Se5Xz/938/X/nKV6hWq/z2b/8273//+1lZeIiVhYc4cOAA2rmGqX3fi5RmV9Y9gRclJmSfYCgZsr5mxAOnIicViWJuJkCHcOaMjepIUpTLML9gUSoDSZuJsYBaQVEqSrxGOy6V0qQyGrTJVklLo5SkWpZUoyRNLq+YOwQXnmSbq0y5CKcfNT/MSwcOXg8L5/W2mNV5WF0EFDg5i7FJxcJZ3RIAKeD8Y1FmRMLYfiMQqXa00WrPsth3gyl7tnphdzYlmYWROYnvaYrLu/fBpeZ6bAupwq7iqkQGckMWhVxIdXP35wjB4LRk7JDN2fsbXcUytgtDsxZ+TVFY6LISBUsn9v5GXFpVlFYbXZNGzX4k84L8uMXyiT3UTlehb8LCTkg2Lvbuz8LjXTNK29i83Fvwg4ShORsnKVg+2b2v0ze62EnJua90X5cIFX3DDl5dU+oizpISFJLyJpy+1+8unJMwdsCivClYOL67v24aZm52uXJcUa/A2uUdi0sYPyRYuawJGnD24d0r6R8DJ2OzcoXWaydz1xlHsdV5wcKF7YnfJvtvFgS+5txpKBVlq0QcqMgFSZrkbxZs2zg/VMrRdcFWTMwIllclng9LSxaNHcMuQk0+r5mbCzh92qZalZw9206iZbMKJytYK0Ddg5onWzrBal1SKl5irO8sX/zSF6lWq9i2zUtf+lLe/OY389KXvrTL4MfExMQ8vTiOw1133cVdd93FxYsX+ZM/+RPe//73c+ZjX+GGG27gp1/3Ot5/vILK9LWWqWtTOgkg1a9QJWiEkoJnQeTsklGamYzPpZJDPZSoDj3SasNqGgCh+qDfCSlvSJQWNCJBjiUhZStKSGOSiEYLI5Yo1NrOJ6PZALKwutjphiJYK0Z1sgTkMwrX1qwW2oIMrQVXVttfCzLDoMoqKutpqNUltboRFtuWJpvVFAsiEkSZ9ZQjwZCVlQwNKtbnjaBlJ315jZuAxQXYeT/zPcH8ZdDaBldj+SG6i7gknTWly6o9BEDaFozNGCehzcXuyqpMH6QyUCt0b6Ob8Ggna/N7f64di0wewlpoSgZ/k/QNC6ql3S5LTUIfFs/v3UYYQKEgmyqyXaTSkO/XVKui65zItjVTEyGrqzJyxNpN2g/IpGCrIgm6TPOE0BAK1tasXno3srZiKK+oeU2R3nbymRA7CasluyXQ6yThKJK2pli1KNck5Rp0HmdSaAazISvKRmvBxaLTcRxHY2ErhlMh81sm5nJxu8NSM2ZiOOB81aGhJGte+xwSaER0/mZcDVpTh5aDGkDaUlgZzWZgEyhY8GwaO451q66ZSftoDVfqDnUklyLnS4Em7yg2jQoLTwtka1AFtTCkfPk0L0xt8YlPfIIgCHjlK1/Jv/k3v8crXvGKWBT+Xczjjz/Opz/9ac6cOUOlUiGTyXD48GH+yT/5J9x0003PdPdiYmJiYmLIWElGnfy3rL2n4qQE0G9lcGXTkVbj1UL8+vbfPm3Xwk3bCHl1W6WMFc+3YmKeDahQUStETkoDiWe4NzExMTExMTEQi5S+Y0in07zzne/kne98J/feey9vfvOb+eIXv4jvn+PSmc/w/Oc/n1LjWqBdwzefVYwNKdbXzA/ZbqL5RLrk4gXZKuWUTQZMTiouXZTUQ5u19WYLinyfRvhQKoKUJluhlGTxSru0XC6vmD2gOXtSU6/K1tPdpSLMX5SU6kYYNTIFpU22OcjYFvheVM5DtIUT6HZZt1QWUv0S7UC3bIeU0DcoCQNlnh5vd7+F3wDfF2jLQoTb26iX4fTXw5bzkO12TwC5adh/q8vCqZDS4vY2akU4ea/X0/kGiIRHAV5NRNVhtqdmgjqc+Yq3reRZN4b2WWgFG3sIfKTNLkenJomMID9hs3o2MDF67/VtI9q32WGbRLa3SEnapmRcrzakCxPXuiyf8nY7PjVRcPbeenfhUNSPpVM+ifQedlnAha81uroFYEv2P9+mvK5YPq12r0dGIqYAzj3ot8rfdaIdGz9k92cdqxM25IaEccLaUboNjHtSqt84OezcRtvW5nxA4Hk6Kr1j/jbr0YxOwOYq1IXN4hVFo0s/9x8y+/j8GShuQnFTRJ1UuK4RMQLk84pSReAVicpHGmHSxESIbWsuX7YpFuHiRbuVFLZtM3ZKSQYGFKmcYK2gUEpy7rLE88rcemSNv/qrv2JxcREwjiWvfvWrecc73kE6nd7d4ZiYmJhnAfv27eMtb3kLv/mbv8lnPvMZPvShD/Hrv/7r+L7Py1/+cl73utfxO1+8yIJ2oyU0w3ZI1RE0QolEIwSEWlALBfNlx5R1A8btAC8UFDwLz2nfNJKWos9RlCL3E0vqqDyW4FLBoXn9n+gLCJRgpRxN5qLbwmrZxpIaPyNJ1UNSCUWpKqOAdgmtICS6l2pkVH6u7TKjSbqaRk4SiJ2uSiYmkdBk0priltjurKTb/wtC8G0LbQusHa6YG2sCU51UIGXTXbP9I39TlNQ/oEkkTTlR6W2/UW+sALK5Xd3Eu4LCmsb3QdvRPS3Y3sbWhnnthWVD3xAUVvaeMkWGlV3J5KHuWC1HQeHvIdLu0rC0IDsg8Oq6p0hJ7NgVnWhLkunTaEXrYYJuVEqC8oLs6sQolCb0NOtrklpXV1Cz9kZDsHReE6S7uDm6iqF+xcKq1VW81jzeKzVJfUEQdEn8KFfgWyKac3fs946NT9maTFJRbB372/HTgkRW41Y0taAttBO6fT4EoSBQAhk5FjXbcS0jgNpqWBSTElW3aXSMlwwgIRUzGZ/LFSNeulJtC5wkGo0pbZe0FUlLsxlEJSOjkpCJhmIiFbBUt/ERrNatDnGTxhZG7CSAkURAA0FJWRSi5evrS/xAdouPfexjbG5ukrz2Wv7Df/gP/Ot//a+55pr2d8WY707uvvtuPvGJT6CjC5YQAq01J0+e5JOf/CSvec1r+IVf+IVnuJcxMTExMd/t/PTYS7+lZdJCrXjF429lxS92nTMLYNTp59M3/jqW2P4b4sblEl/5wJMsnWg/lWq5klt/9BA3/vAclhOXy42JebZT2/LQGoQUJPOxSCkmJiYmJubZQCxS+g7ke7/3e7nnnntQSvE//sf/4Hd/93e577770PqrZDIZUtn9zB78AWCC9YJEKg0oDh9RbK4LFhbAa8hWCQ1LmqSK5xkx0cCAolSXeJ7kxOkoBsX4tEkWHXvUlIxrKjHqNdhYFS3x0fBoSHkL6nWLjbWo0ykYHDOJoU6RkteAC8fbfx+8ySSLFi80Ew6a4hoUo3bslMXsYc3iWeNaA6b02OkH20mnkRkjPCp1OBotnG5/BR0/YlPZDCitRm8I0RLK5Edh8hqL8w+Hu56e96qwtaqNU5Jt7RZMRV2YvsFGBZqFE9s/Vwo2rpigVB5qxd3ZrKZAKT8uu5aXA0j3S1QI9BAp5cclU0cdTn+x3jWRVVxQFBc6lEGiPdY92VFWZOGJHhmyiKmbElgOXLhvhwIpaieVk2SGrJ7ZtMyQpFFS3UvBCUEyB/UKeGXwyl3csfKCqRtcrjzaoNEtGWcslNhaVpQ3uo/z3M02QsL5B4NdIiTLgYmjDovnNEEdLjyuOk8JU/5vv0nShQGcvH/3OiYPCRqBxdoCLHQ6H0Tb6yY1h240nxXWYOHc7vIjUsLQBHhI6mtQ2mp2QDEyYgRJnicpbAhTqtF82GplYhoGBzVPPqEILIcnjjfPbcVgn6ZUggAZiZDayxcK5l+2rTh6NGRhQbK2BpfWHdQqqCCgsPYVGuUznD59mvs+C0NDQ7zqVa/i7rvvZnZ2tuuYx8TExDwbsW2bV77ylbzyla9kc3OTP//zP+dDH/oQP/ETP0E+n+c1r3kNn1t3yE4d4lzDQThg16HPVQynAs4VXRSCStAWGai2Fhsn0CQtTUkIyoFFOZCQEyRKin39PutVi2J9exmqYt1q3bZtqUk5ilJD4iuBHwkmnDwM2IpyVUa3W3PvKNfa94FsSjPUF3Jl1W6X5tKC5c32D+3pIXB8RXGrvVylKqlUm/ciTT6nKWy1xR5+IFiNSgnbliY/AcUl3RIfaSGiEmyakTFzr1xb3S0mqVZFS6yrXAvp7RRMCRxXMzQKa8uaYIerTrOcnBAayzb3tE6hktZGuCQtU/rN6yGcTmaMiN3vYRI5Oms+2+ziyAmwcmn73zpKZOwpVuqY/6gQFs70nqdZNkwcFKws7CizTLusWyLJHiIlTTJt5uiiFEBme+lBoRSOYwT/lR4PoA8MatCwudkpeOtsAxqeoFwVhF0223U0EyMBy2sWdc+UipNKo2zTVjqhsFNQqFqU61az2y1SrsK2NKWaRaEqKewQKLm2cU+64hlnpAvFtugvqt7IcDok7WguFW0CJVgqd35VNsd7xtH0JULWHHNOlgLTl6QygqMtLBpKsOF1Coui9aA5kPNYb9hsehYrlh2VshM4QpPyFJVQEgJKG0ETCOqqfe6NJEL6HMXZsoNCcFIlUAj8cgF57iHEynlOP/kkq/39vPjFL+bf//t/z0tf+lJEj/LMMd9dfPrTn+Yv/uIvmJmZ4fWvfz233norg4ODbG5u8vDDD/OBD3yAv/iLv+DQoUP80A/90DPd3ZiYmJiYmG8ZlpD8ysxd/KdzH2w94tCkOUv6lZkf3SVQAhicyfHDv3EnZ+9d4P6PnKBW9Ag9xQMfP8WpL17he153lOmbR56OzYiJifkmqW6YL/upfhf5FFzQYmJiYmJiYr79xCKl72CklLzxjW/kjW98I4VCgbe85S185CMfYWX5CdaWn2BgYAAnOcfsoe+nz+rn8iVJI0q+DA8r8v2Ks2ckpZJ5ASAUk9OKjXXN4oJxT1IawqTN2ooXlXYwIoa5Q7C8ALWqZLFZnkoqRsc1liWoLxhxFIAKJcePCWTdfA2c3G+SPZdObt+mlSu0xEepLGgltjsvJUC6kdtSD3LDEtvVlDY7vnJ2fMdM9gkC36K0ujtDUlqD1ZTuWd5j8ZTZHtuFwTmHlQtql1ipUVUdjje7SWRh/20uCyeD7WXdIhVIut8IbJTyKK3sFrdcfnTvMm3V9ZCVM3R3INqLbmKlbzKhsXnZx3JEzzYq64pT/9D1MXwAJq53aZQ0lx9umP7Ijh0oYfa2JJWNkPnHu49F0ND4NYUfHe8iVCZJJyWpPCQyksKCYvV870FauxRECdQuuDapnCCV0ZS66LVsB/qGBKV1TamHQ4N0LSzN9vGRmvygprgm8OqwugDlwvbl+gY14zNw5nGNCgTHnhSoVvLKiIykhLFxkwxeW4HNjfbnk9OaWlWwuSHZXINaRaAcCxHqyLnJ/H9mJmRxUbK6CsvL7WT18HBIf7/izBmLIJBcuQJbW+C7msbG1yhtnuDkyZNorcnlcnzP93wPv/M7vxOXc4uJiXlOMDAw0Jp7nT59mg9/+MP82Z/9GefPnWNsbIx/8S/+BZ9eFKQn9lGqSAJto6KfwaezAYWGpOxbrNXbU/CcY8RM1aKLhsjJBRo5wXLZbpV8y7ohjgWbNYuK174vpl3FUDqk3JDRLTxyZalblIXEQiOFZnIoYG3LCECa1BqCjZJsCZTSCUW10XZdAnML1kkJW822odOZKeFCJqPYKlmR40xHCGbOlEiASlqI2s4bq6Cw2Tn12O6I5DVES1SfyWq8hsT3hRErRT8shiH4/t7znoFhSKRg8ZJuuSoByKh0w8CYuXcvX9y9bBjA4rnebQOUNkzcN4puPXXd0flvYu6lFWwua/yKmTN1c5DcWNmZjmmTysDwBCxehMAHq+KjUh3l/7IwNKSYvyK7OiCB2Qed4iSnEuBnbITS9GUV5Yo5zja3dj5pbva558NG0aLhdW/fTkHS1tHB0qX8n6twbCjVdn5u/lYadAJsH4IO5y7XMmPihYJSQ1LbNbXUjGdDGoFgs25RqEtWsZDb0luCbEKRdxRbvhFHbTTM+CWkYsANWarbaATLNZtaKAnSAruuWj0cTATkU0Z8pBHM15yoZc1UKqDoS0qBRcGPhIyATwn95CMMeRt86UtfwrZtXvCCF/CJT3yCH/7hHyaRiJ8QjtnOX//1XzMyMsIf/dEfkc1mW+8PDg7yAz/wA9x55528/vWv56/+6q9ikVJMTExMzHOOlw3cxH878Hredfl/s+wXW++POv38ysyP8rKB3iVPhRAc+n+mmL1tlIc+cYYn//4iWmm2lqr8n3c+wNzzx3jBa68jO5x6OjYlJibmG6Sy0Sz1FpdgjImJiYmJebYQi5SeI/T39/Oe97yH97znPZw9e5a3vvWt/O3f/i0riw+zsvgwjpNhZPgoc/teSjLZTxiC57UFRzOzmo11QaUiOX6s3e7YmGZgSHPsiQDPl60nzJNJSKTaSYB0RuH74HuSY4+rliZochbSGc2Z4wqURLkgvZBGjfZT1BJyeeN8tNlRDmtsBhwXTj/afq9ehTOPCYRnljt8m2T9imJjqR1z7uF2omd4yvx/bb79+flHo88di5EpqG0pKpHrklKwdtF8nhmAsQMWlx4PdzkS9Q0LBqcEG0sQ1Le7Kq2ea6/fOCZtX7ZRhvljAcXlHdk0KUEpqgXN+a/Xdy23k9yIpLSudpWY833B+oW9y4jM3ubg12HxWBeRTzM51iNH5mZg3/NSXHm0Qa3QPSNYXlWmnS6JtsyQpFZUPcvRAVy4v95ev9yRaFNw5TEPb1ei05TkCzxTOu/SQzu2LWpncNoimRHbBWIRI3OSZJ/g8mMh5fUdi9swfshi8bJxdTj19e3LJ9Iwuk9w+aTGq8GJr23fN9KGgzdLVq8oCiuCy2d3j83gCEzsg1pZ49UFq9Fxa7saNwHVkhHt1atmc3zHaq1jaFgxNqE59qRCBbL1f1Dk81AsGqunVDpsnXv1uqRR1QhXMDlpxEfHjkEQSE6caJaBU0xOakolQalkksNelEBUymNx8XEee+wrVKvLKKVIpVI873nP49/9u3/HT/zETyB37r+YmJiY5wiHDx/mrW99K295y1t44IEH+OhHP8rHPvYx5ufnmZmZYaXvIAP7byE9NI0URgTRFAOlbEXKUmw0LAqepOy7kQuRZn/OZ71uUfCMGEG0py24dlMUoUk5mpofiZEaEo1ACs1sv89qxabiSZQWqLQgWQ9p+AI/EjwlHIUfmP6UqlbUvmZ8MGBpw46ESoZCxXxuiZBsWtOX1SytyJYrUq0umF+w0AiE0AwOKArFtpilXhcsLBnhhkxL+pMBxYJoLd+otx2mhkc19RqUSzvvkZq+vKZWhcJm5KoUNIXwgvXIwUjKqMTeDiFNcRNkEXZOblTSRtaDq5ZyM20bwVU3t6Vqw9rTFclNwtCkEUGpLmEt4VSPuVf/KAgJm0vdP1cKKgVQiS5f7YQmkYRGbbv4rJNaRbB0qe1EpdztQqJKGcKwu0DJcTS+LyiXdt/vhTLmo/05RRAIqvXty1tSMzoYsl608HxBqbL982RCYVtQ0DaFSrP9dkxfKkRpQbkuWS9buz7PJUP60or5DRtfC+a3tjtEGQFSQCMQLFdsGqHEVCbUpB1F1Tdj1ggEfnQe+knZWnY241P2JRuezWbDYqNh3JVsYYSBnpIIAQmrWaINSoGFCMGuKw5mPdYaNgXfLLseLZ+UipyjWG0YYZOnhCnJCASNCpsXnmTpzKNUF8+gtebFL34x73//+/nRH/1R+vv7d+2HmJgm58+f55/+03+6TaDUSTab5SUveQl/93d/9zT3LCYmJiYm5unhZQM38X39N/BQ+Rxr/hbDTh+3ZQ90dVDqhpt2eMFPXcfhl0zxlQ8cY/mk+UH5wteWufLoGrfedZAbXrkfy45/C4uJeTZRLZgv8ulYpBQTExMTE/OsIRYpPQc5ePAgH/zgBwF44okneMtb3sLf//3fs7D4dRYWv87w8DCWnGbf7IvJZsewbchkNFtb5sfvZAIsC0olxeamwPeNmEk7ikOHFCsLUCpKTj7eLA0Fk7MareHsCaBDm1EqEiU8JEjF5DSsLgnWl9qZoIFh46x0+tHtiZ8LJ8F1zb+TaSNamj9rXJS0ayMlVIphq2yFmzLl4zqFIalcO/HVjdyoxE4KKpvdE0uBr7uWTNtY0BRWQlRgklYybZm4DrFSZgD23epy+fGA0up2QUtToJTOm2RVy7kpEnTUipFQakhSWe9SziwHMze7zB/zKHYR21hpwciczdoZv2v/a0WN37hKNq4XGiobIX69u0Bp+KBDo6IoLUdCpR1Zv6kbE8YF6bHdHUv1SxplZcqrSbnNAQugf9qicCWkutl93bO3JWhUFJcfbguUdMIkpNwUeDWYPx7u0j01CX0Ie1Sys7I2uTHJVkFtKyXYREpzvCVT2riBRV1MZoywSIVQ2dJ4oY122wm04XGNk4DFi4KNZaiWwNuRxJs5ZM7JM4+bzy6dhjBhMTSsCEIobkoqZZO4ldGqmyKw/ADs2684fcK4np07ASAQhOy7RlAoSDY3oVAQ1KPyKbatyGZhI3KB6utTBIGkVIKNjQYnTz6I41zh+PHj+L6PZVnccMMNvO51r+Pnf/7nSSbjL3wxMTHfPQghuOOOO7jjjjt497vfzb333stHP/pR/vzP/5wTT36e2dlZ7rrrLj590ic7uh8hISE1GUezEYmBknZILZCEGlZqFvXQ3KjSGUXa1qwVpRFANIyUKWlrpvI+VwoO9aCzpCdsNWTLfSnjGh+nMharxQ4xUD7EDwQrhfZXAT8UXF518KP7x0A2xAsElbrpS5iyqNsCuxEadygBtq0J/XaZN9s288jdGuW261K6X1BsWFDdfS8PQ7qWAgPB0kI0pbAElqUJLXPPko32AoOj5n65PL/dTScMBGG07ekMVCvtPqmkbXwI6wFCGkelbmXd+kfNXGLp/Pb3m25IiX6JZUG1y7wtDMz9/ZvFq/c2WJI2ZEYsSgV2CdcB0lkYGoOFC5ow2NmIxk2auYXviV3iJMc1Jdx8X1DvYoCZSmlGRhWLCzL6vmAIExaW1AilCJXgypLdEtl0ohSEezhgJfrAsYFCd/ekhKM7lm+XVJM2BErQUIKqLwlT7WPUEpqRTMha1SJQgsWSTbCjD66lmcr5zJccqr5xUDIbDENu0BITlXyLeiTc0h19mEgHKA3zVUk9FFzaMqXlMrYinw6Zr9mAYKVhUwskoElYmlCDpwSO1GQsxToahWClWGbt3JNclynz2c9+FqUUL37xi/mX//mXeMUrXsH+/ft7D2JMzDdIXBowJiYmJua5jiUkd+QO/aPaGJrt45/+5p2c+bIpAVff8ggaIV//6ClOfWGeF77+KNM3Dn+LehwTE/OPpe2kFLvNxsTExMTEPFuIRUrPcW644QY+/vGPA3D//ffzrne9i8997nOsFR5heeUR8vk83/d938d9943Qn58FYHhEk05rThy3qdfBshSgsG3zA3yznEa+H5yEYm0Zzp0WuNHRlMnBvgOasycVpaKkFDkCpdMwMKTZXBP4roXjKsKyZnMFGrW2QGn/9VBYNa5KzffcpHk1kwiOC74H8xdN0kAQMHOdJPThwuPtTMPlE+2s3eA4ZAYEl4+332u5LtmSwUlQdUUxcnOqbEIlEsMkszA4JVk43VZgNUUgE9dI0n2C0/eH5nFxmsuHzB/bLVDqZOJah8CDiw/vdv1J5ozIqZsQqV6CCw80qBZ6C43y4xalNYW/ZpYVHRnM1bPfRE2SCK8KC4/vUPJ0/JidG7Wwt4QRKXXh3H29y7xN35qkuhky/9huh6fssGTiOge/prsKtwAWnvTxaqolTGoyvE8yPCs5c39AUN9eEiY3LEjnBcv/f/buPM6Sqj74/+ecqrv37X3vnp59YWYYhmVAkFVGRE2I4h43UDGRLOZRgyaa/EjkyaM+MYbHJCTGCIkmUaOiqKAyKvs+w7DMvva+d999rarz+6Nu356eBRAGuoHv+/Xq6VtVp6rOrXt77uk+3/p+D3hMDc49rh2ClpUBhvYdPztSXQs0tGsOP+WRz8DeRyuTaJXLEW+CnlM0h57yyOZtBvv89do2fjCfp7CCEAjBTDmSQs6f9O1Z7Zc/zCQVgwdn329WXFGqXP6GJkOx4GeIKBQ0Q5Wyi4uXuigNhw9AatJwoKAoZBXRqEt9I5XyjP6kmFL++8JxIJPx1zc2urS3eyQS4Hmap57KccklFtu2fZve3l5KpRKWZbFu3Tre8IY3cP311xONRk/4ugohxKuF1poLLriACy64gBtvvJG77rqLW2+9lf/5n/9haGiIlpYW3vKWt/DWt7yVz/73k2jLD5roiDqM5GzSZYu8o48KrZ4J0DA0Rjy/JJWn6EsGKHoKBbTHHRxPMZG1mcodUaYr6KGVIVPSlKMKW4PKwPCkXf3ojoQ8aqMeYwmrmmkJDAF7NgBk5rOiWNYU0RCBqOfQ0eoyNGpVM+yVHMXAiEYZv7+tzR6ptKZQPE7WpbCmvs6QHvfwPD9jzfTk7Hiirt7PqlSs7DuTecmyDJ1dHlOTmmxW4YVmx17TE04lEPn4k+yhCDS1gzNAtYzcDC9s09TqBw6P7Ts2Uio58czZlsIRP8Ape0Q5s5nsSq4DyfET7/tscqlj181kTQpGDTV1kEqcYN+0P2Y+NkAJonFo7NQM9Suco7e7hoYG/wmPjZ4gA1Mexsb8ACX3iNdBYehodcnmFdNJa06AklKGhlqPVEbjuIqxqbm/jkbDHm5Yky1qJjOqesSZ47bUumQKmlxJM56yMFrNCWrvqHcwRjGctMlZFrmZ8ZMyuMYP6AtoQ0AbHE9RrmQ3iwddYkHDSMam5Gr/58v138cmonCNIqT80m3psqbkKaZL/nMOao9FMYf+rE3J04xmbFzP729d0KOEIu8qDP5Psx9Qbii6inLlZ6Uj7JB2NONFTdrRTExN8aFNzXznO9/mscceQ2vNyosu4oYbbuDKK69k1apVx3/BhXgGS5cu5e677+bDH/7wccfuuVyOu+++WwLfhBBCiOdAKcXKCyol4L63j52/6MUYSA5n+dn/eZSl57TzmvetIdYkJeCEmG+5acmkJIQQQiw0EqT0KnLOOefw/e9/H4Bdu3bxxS9+kTvuuIMf/vCHAEQiEYLBNoaGT6dnkV+HOxj0WLbCY3hQMzGhOXTIzwijgJo6v5TbxKiF50Co1qNU8nDLkEoqipUAo84ej0IOpiY0O57wy74BLFlpKBcVfTtN9e5yrf2JHLcyoRCOgrYgNeV/gX+X/sqNMNYPE8P+OhO0GdzjoCvzI+EYxOph8ogyb0dn5alUV6uqbdK4ZUVy7NiJqWidH8gyk6XmSOOHPCK1x7ngtkVyxD9WTZOitlUztGvusfueKFef69EKaX/70WXHZswEKFnBY7P/OAXYfdfc2Tej1WygkoZYw7OXXTueSL3GKXqUZ2KNjrrb9tBDx0k/gH+nv+f5fTt+A03f1sIJr0dmwuPggwWKmbnrow2ahm6LwafK5KaPDVACmBr035dOCdCKI1NORGoVsQY/09fRL64dt6ltUkyPGPJpqttn3jsz7x8dUNXrGKnxM2RNDkJ6Egb3emTzsxN3WhtWb4SpMRjt879AoS1DvN6QnPTLyXmuX9oFZjMrhZsVy1YYDu5XZNOwf58CTxMMenQuMgz1K0olTTZdmdL2XKKx2dIykUqg4OiIh6MD9Pf7GZLAY9Uql0RCMTCgmZhQ9PaOc/jwg9j2KCMjI9x3n0MgEGDDhg28/e1v57rrrpNSbkII8Qxs22bz5s1s3ryZr371qzzyyCPceuut/OAHP+Bf//Vfqa2t5fLLL+eRYYty9xqskJ8+sjHsUhPwOJgKkC5b5ByNG1QEy4a6sEvBUZQ9jWcgaEEJyDq6GggS0IaGqMtk1mIsY6MqIU+RgKGr1qFPBfDSzEky6ZnZAJxoyCNfmsmy5K+sj3nEox59Y34GGICcthibMNXA2ZqYR6HoB7sY5X9WmiM+cpUyGDOb0SYY8PdJZyzIzv0AVsoQiRhcV1E8clhhKVzXMDWpyeVmVs5m2SlbdiWzkqGhBTJJKJdmxynFvGL4iLJmR0tUxpozZeCOVB2fVGKRjw5YSkzA0cFRJjBbBs6y/THt8bI0PROl/eD8I7ONHlnWrZBTDB46fqYhrQ2ep054zkzRojzEsQFKFePDoALHZl9qaDRkM37510KeOQFKYDAoJhO6GrymPOMHE1VEwoZCyeDkjz1vuA7AI1vUHBmcZKrvZMACUw1GM9SGPXIljeMpJjMWrqdwQ7PHrg+7NEZcDk0HMCj6U/77OGR5eMYPVPKMwjMzYUSKYiWbWWuDg1YwkAtQ9DQH0n5pxtqAi60MUyWbsqdIFzXGVWjPD/ArV37fqQu6ZMqavKvJKkU+b+OhqA+4tIYd9qeDeCh6M4rU2ADJvl3EUgc5ePAgn/1hiMsuu4y//uu/5uqrr6arq+v4L6QQz9EVV1zBF7/4RT72sY9x9dVXs3HjRurr60kkEmzfvp2bb76Z8fFxPvShD813V5+XN7zhDXOWC4UCH/vYx3j3u989Tz0SQgjxahCKBTj3g2tZdVE399+yg7G9CQAOPTxC//ZxTr9yBevfuERKwAkxj6pBSo2SSUkIIYRYKCRI6VXqlFNOqZaEGxgY4P/+3//LD3/4Q/r7e0kmD7Nn7w9ZtmwZig5c71xqa2tYssTguhCrMaTShlJBMdgPWnssXWWI10HvAT9YIxQyaK3wPI/GZkOxCFMTftmIFatc+g/DUJ8iWmPoWaeYHDC09/h3exfzswFJK04D48GOhyFWCy2d0LcXhg9DKAwdS6CYAzTU1NkkJ4CUQ/MiaFmkSY57OCVo7oJAeDaL0vLTFdFaxd5HPZSCtiWKgb0eThkaezQNbYrMtGFsv0fXKZpcwrD/EZdgFDpXaT+L006Phg5FtF4xuMufXFvzWgunDPsfcbHD0LkywNghj3CNId6iWWQr+p/yZ7k61liU84aJXo9wLSw/O8ihrSVy01Dbqqlr1/Q/6bftOSNAIWUYO+ihtUf3qQEmD7uEaxUdq23Skx69W/3sQ20rbYwHYwcctA2LNgSY7HPJTHhEWyyaeizGDpXpOTNEetyhnDGM7vPPs+j0AIlBfzItGNP0nBli4IkingPNy2zskCLWbFNMeygNyWGH1IhHuE7TutxmbH+JQgoal9iEoorhnX6fujYECcU1SsHAE0XaVgUZ3lmkXNQ0LLKo67A4/FiJYgY61wfIJz2m+/3rvXhTiNSIw+gel0idpnmpH5AE0Lku4GciCmsCjQHal1uMHXIppKFtuaJtuc3Ou/ySd6EYNPdoJvo8atsVHSss+p9yGDvokc8YetZb9D3pEm62WbxOMTlkGO+DvY95LFqtmBg0ZJOKFWf4Zd2eutuQnoJoraGlG0YP++/ZJaeCshSTw4Zok0VdOxTK0NhuKBf8CcqRPsgkYPFqw/S4/37vXOKXNHzyIUO5oMgk/Z+paNwQDIIJKFIJP2AQ47FytcfUFEyOaxrqPRobYXIUygWX2npDcsqfnFu2yqAt2P2Ux9SEAQUdixXFoktbm0ci4ZLPaw4dchkY2EkkMsjevXuZnPSj42pqati0aRMf+9jHeO973yuBSUII8TxorXnNa17Da17zGr7whS/w9NNPc+utt/LjH/+Yw489Rm+lZNwFF1zAz/Z51DV30BZxyZYVHTGHqYImGIX+hIVj/KwvbTUOZVfRmwwQsgzlSiBIMOjRUuPvg6NojjlYGsYyNqMZi9qQQ9HWxD0Xx1UEbMN02i9fVRNxWdzq0DsWIJNXNMRdHEeTymnKDrTWuyQymnjUUCxDOKhIY2MX/KxKqYxidNxGKY+mBkMipSmVFeGwx6JOl8mEZmraoj7uYQwMDFoYoLnTYFuKySmN7bjEaw0jlUD0eK0hGjNMJzSlEjQ3GzIZhTH+cbsXefT1aUpFTU3cw6pTpNOaYMilqdWQmPIDeQJBQ20DTE/4x23p8MeAY0P+51pDi6GQg3xWYQc9mro1E8MK11XUBB2CIT/TZ/sS/7M8USnRatmG+mY/SMl1IFZrCIZgetz/HK7t0JSLEImBHQQn55Ga9AOnwzX+eqeSQLK22S89m036QV717X6p2vpOi8lRP3h/spLVqLbBL7WcTvqhOo2thnTSD2wORQzxej+709SYwar8xpdOKLygpqXVI19QZFJ+kE9zi8fkhH9Na+s8authqF/heYrGBkM2A4WCIhg01NZ62AEoFRV2jV96L5ECMCxZ5JDLKcYmbRxH0VjvMZXQeB50NDkUHcVk0mZw1KKp3s/Umssr6lsN4YDHSCLAeMoiFvZoqnGYzNgEAoaVbUWGEwGmchaTOYumGpeSA2VXUxPy6G4sMzAdIJW3iNQYSi6ElAsGokFDsqAYzdhEAx6xoMdYNgAYljeWyJY0vckgeUcRD0HU9miMeqQKmlDMMF2y8Aw0BcuEbRjJ23jG0B5yKDiKaRdilkdQezieRTzgsbS2zGDWYrIQoD9j0R71CIVdOsIu+Up5uPGiRWaqRH7waZYEEtx7772k02kaGxtZ99rX8id/8idcffXV1NTUvIj/M4lXmze96U3s27ePH/zgB1x//fWAnwXCVKIujTFceeWVvPGNb5zHXj5/P//5z6uPJyYmeMc73sGFF144jz0SQgjxatK0pJbf/svXsO++QR75rz2zJeD+ew977x7gvKvW0rVeSsAJMR9my71JJiUhhBBioZAgJUF3dzc33ngjN954I4VCga9//et885vf5OmnnyaXO8D+A/fR0NBAe/tSYpHVLOpZQ22dxgQ91p0Go0MGpaDvAExPQX0DxOth5TrDnqcsEpMepnLvc12dn4HJtiExpYnVuNi2wQT8SRmlwLKgpcsvbZFPQ7ISsBQMQVOHXwZuegzae/y70mN1/mSRZfnfgxGYHvZLeoA/IdS5SpM9ojSa8RTZpEcxB5E4hGv8TDYU/eMEIxCpZJixAn4WIPD7F6lRRBSM2P5664jEPcaAV0kZoAE7qFAaJgb9u7NrmxXBqD+JZdkKt3LjeSiiCIQVwTDk8I9rB/1JDG1DY5dNNuoxdtADrbGDGmW5JEddog2aQHD2bnHLns1asPK1IQIhxdSAH3ikLbADilIKDm8tUduqsY7Y1w6qOc/VCs6W0LACCiug6NtaQGnoXBdC25U73LUfBLbs3AhDO0pYtt++2qegIjftUkgblFZYQYWy/APbYUV9p0XzEpuJg45/vWduyNcQjGoidRpw0baqXu9og0bbkM9p+nZ62GG/zMpM9iHXUZgjMiZZtsK4/nK8WROu1dW2utKnmfdLMKIIhir7GkUo6r822aT/vrSDs6+5ZUFjp0Ipw8ghKOYUk4Om+p61bP/9Hq+DLH4ypum+StmeVv/9k5ry3+eRGCgP2hYZ/71lQSkLpYAiYhvCERgdhnDEn4i1AzA16v/8TU1CJqVpbvNoboVsygAW/b0uLW2gleGUDVBy/UxNo6OKZDLBxMSTJJN99Pf3UygUsCyLrq4uLr74Yv7qr/6KdevWIYQQ4uRRSnHqqady6qmn8pd/+ZeMjIxwxx138KMf/YibbrqJXC5HV1cXHa95DX3JKE7nCnQwQsT2qI1DjXJJFhWpomY67wcXBSxDa42L6ykKjiZR8D/gjDY0xDw8D0bSimxJE497lD1DMaChbAhrv8xoJOQHDk1lNNlKhpv6mAEcDo0EyZc08ahLwDbEwh6Oq7E0WNoPlpmc1tXycA11hvpav9Sb/5wNxZIil/OXLdv/7PKURhlDIADBY2g4VQAAoNJJREFUgEHpmbGg8T/QjUJrl1gcCkVDqaSwrNkkjkr5ZeDcSsZArf0xhOcphsctWlsNSnnVz3SrmvDHEArPTQZ55HHjdVDfBJNjBlwFYQsVBnBJTfpjz5kxhFL+OZXyA5TauiE1fcRxNbgakpP+PvXNGqX8C6VVZYxZnu2DmUkqpcCyFAWjGemfzcQ0Q1sQrfHH1SN9/vYjr4vWkJiEQg7iDWBsjRf0S73WxCEWN2TTpjr2nmHbEA4ZbNsvLztzXbQ22LbBshTDCQvP09RFPGZjlxUckZHryONqDbGYQeVn22pt0JUOhwOGUMBUDqFQ2hAOGUwOSi7kS7qS5YhKe4/uBo/eyYA/BspYpPIWtjZY2qA9RTTg4XpgKfCMJu9omqNlOuMOEzkbzyimchZFVxG2PcK2h6UMHgrHAxMGWxk8A0VPU69cWoIOqYIm62gKjmKi6Gcb6447aAyDQKasGclpFIraoEtL2KGgFLqoGCtAbnKE3NAeAulBduzYgeu6OKtW8Za3vIX3ve99XHrppVhHviBCnGQf//jHufjii7njjjvYv38/2WyWWCzGypUrufzyyznttNPmu4snxZ133sm6devo7Oyc764IIYR4FVFaserCbhaf0cbW/9nLri19fgm4oSx3/M2jLH1NO6953ynEGiVQQoiX0my5N8mkJIQQQiwUypijixUIMeu+++7jH/7hH/jVr37F+Pg44GcD6OnpoVxqZsP6TSi3nWJB097lUVtv2LvDD+gIhQzppIVte6zZYBjoVSQmNbbt4jgW4LF2oyGVUAwc1mjtoUsGz4NVp/uTOaN9fkBIKAzFArR2wUg/eI4fyGS82ZJvAHXN0L0cDjwFxYSfHcgOQscyxdB+g+tAvMm/K71YKRNiB2HVJs1Yr8fEwLHXIN4ErYs1fdsdv1wYs+W+tA0dKzQj+71jypQ192g8zzA1MPdHbPkmC7doOLytfNxrrnWlqtgRlU+idf7d+sfUmpvhHX9Dfadf0q2YPcF+x6E8wymXhhg/UGbi0LGl705IQ2O3RWLExTuq/BzGwDNk4IlUSs8d+fy0zQlL0cVbNN1nhOl9okz2iInAYBTallkM7nSPuSQNnX4mp6lBb6Y6iM8ztK62Cdcoencc52lpWH2OIjFmGD5wxHNtg6nKe69tCRSykByvPN2gzbJ1/mTbwadnZkAN4aj/vu0/AHiK5g5DseAH44VjkEn6wXJrTofhXpgeBxXTuCVFMOSxer1hsE8xNT7zc+Qfe80GQ2paMdSvsW2PSMyQTipaOqC5xbDrSQVo6puy7Dn4FLW10+zZs6eaLSkUCrFmzRre9ra38clPfpJoNHrC10oIIcSLp1Qqce+99/LTn/6Un/70p+zduxetNZs2beL1r389P9w2SWtzNxknBBiW1JeZzFmkS5powKNQKfvWHHWIBgx9yQAKg1IGz2hqQy6tMb/slWsUljFYWY9Y2NBc59I3amNQhIMepbIiFDRYGjJ5jVKGplqXRMbCcWGmFFdnk4PjwljCxsr744ZoxMOyIJ3x94tGDNmcqu7TUO9RE/XoH7Kq62bLthlamz0KeUV20vhRJtUPbUWsxh8r5nNzS4UpZWhsNCQSfvajGeGwoa3dY/SwoVQ8cp/ZYyptMN4R25QfOHVkqbij6YKDCcwNJrEsQzAC+czs9XkuauMutY0wuM/MKeX2bOyAIRD0sz/N5V9LL3iCYJfjPD+lKrcUGMXsa1FhKVrbPExAMzI+95jxmIdnIJubO87T2g9Um05qjFHVcn/gj/GaOzzGMxZFRx9zvrqIS1ONy+GJwGwZQ8sPQCqUNValpOFU1qput6OGnroyA6kA+SOOWRty/YxTJQtL+SUTEwXtl0p0/TJvjRGHWMDQn7LRCkohhXIVrRGHmO1xKB0AFJbycI0mHnBpjzocSPql2iK2S9nVOAYWx8skihbJkkVQe6jCFIMDB9hQl+fuu+8mlUoRjUY588wzueSSS/jwhz9MT0/Ps7/YQpwEo6Oj1NTUEIvFTtgml8uRTqdpa2t7XufI5XJ8+9vfZufOnezatYt0Os2f/dmfHTc7U6lU4t/+7d/4xS9+QTqdZvny5XzkIx9h06ZNz+vcR7r66qu58sor+e3f/u3n1H7Pnj1cc801/Ou//iurV69+1vY7d+5k7dq1L7SbQogFRn62xck2cSjJAzfvZGx/orrODlmcceUK1kkJOPEq9puOvWY8n/+nnaLLLVf/AoAPfH0zwWjgWfYQR5PPx/kh1/2lJ9d8fsh1nx8L4bpLJiXxjM4//3zOP/98ABKJBP/6r//K97//fZ588kny+cMMDj1GKBQiYDWweGIdq1acDtRRKngsXwXjIx5TEzA6BJmkPxnU1qWIxlz27bQ4uNur3hnd0AwdnbB7G+x9nGoGn6Z2/2v3YzB0yA8q8vBLXsyE2GntByilp/w2hRwQtFm0EnLTDv27ZwOF2pdoCjlTLf3mlODgE56/D9C6xA+OmQlY8jwoFQxlT6PwCISh7AffE62DmkY/+9DRQUrhGioTXnODlPp3VAJ/bAs895jAo0WnBUBB7xFBTLlk5Zhxv7RZenzuTi3LbeLNmoMPz40OSgydKKoJ4q2aujaLgafmBksZXZlEVMdOrtV1WUTrdLWM2xweTPUdG9TUsMiioSfA4UeKc4KOtA31XRZTvS756bn9jLdqOtcH6X20QCF9xAYNJhAglYL+p+cGKIGfVSAcVwRjzN0P/3UCmBoETCXrgQZHBSgVZ7Nlgf/ealsK/bv81//w04b8EceLxKB9maJc9Eu+jR4GOwRLNloM9/oBS6P9/nsiUmOwLD8ACQzRGgiHoVQyTI362R66VxhqamH3NoPnws5tgKfoXmkIxzz27rAoFTWH97ukk9Dc6tHaCTu3+xdlbMSlkPVLL644xTA26gclZVIlRsb2s2PX4+jANBMPTeC6Lkopenp6uPDCC/n0pz/NOeecc+zrKYQQ4iUXDAa59NJLufTSS/m7v/s7ent7ufPOO7nzzju56aabmJycJBaLcfHFF/P0sIW9eDkq1gYobA3dtQ59SZt0UVNwZj9bl9Q7jGX99SUX3EogSndDmVxYk5zU5AozIxZDW4NLKqeZTlso5Qc5BSyIBA3TBqgEMrmeYiI5G7Ri1SoaajymRvxSYeBn5Wlp8iiWLBzHP/50QpHJ+gFKWhmaGj2mE7oS/ATlsqLsghu2CLh+kMlMgEsk4pcfPjpIyQ5AKGxQR41fCgUYHdEUUJiIwiqUK4E4leCXoKGtC8aHDcVCZV+jKJf8vsZqIZumso9Pa0PrCovUhJkTIOS6qhKgdDx+WbhCzi8/N2eLrTE2eKFjg40aWyGbYrZvR3DKqloq7sh92rohldNkj+pLOGJwyuA4M89vdp+WNv+6To7PXhsAlMEJ20xkNN7cIS0AwaDBeH62yCNpBbGIIZODUsl//SzL4LqKQkRTcs0RI2RFXcTFAKm8RaqgyZVmzucHGzXGXGxtGExo/32XsYmHXQIRGM/ZuC4MZ2yKDtQEXTIl/xeJsO1nQ0qX/LNN5W20MnTXlhnPWiSLFtN5zVReYSlYUl9mqGiTcS2mi5rpov/+XlxTIl3WTBU1eUcxmvdLFdYFXepDLr1pDSim0wVGBvuYGNhLMHWYwcFBlFI0btzI7/zO7/C7v/u7XHLJJYRCcgeveOm9613v4qqrruKqq646YZvvfe97fOMb3+Cuu+56XudIJpPccssttLW1sWLFCh5//PETtv0//+f/cNddd/GOd7yD7u5u7rjjDq677jpuvPFGNmzY8LzOD3DgwAH6+/u5+OKLn/cxhBBCiJOheWkdv339a9h7zwCP/vceCukyTtHlkf/ew957BjjvqnV0rmua724K8YqWrWRRskMWgYhMhwohhBALhXwqi+esvr6eP/3TP+VP//RPAT/i/Z/+6Z/42c9+xoEDB9ix55fs2PNLotEoa9as4YEHG2mIrwevCWM8Vq4z7HrKI5XwsyIBFEqwdgOMDHikk/6UiKMttPJYtcGQTvgZZVJTs8mCVm6AqTHo3zfbt3gDdC2DfWm/FFwwBKVipVKIZYNyCUf9oKID2001IKWhHVq6Nfu3z2bxCYYUng1g0BrKeejf6U9shOo0yzZqBvd4pEY8MpOw54GZGiOwZIPF2CGXXBIGds5ODta3g7YVUwOGUm6238vPDpKZMowe9JiZmZvqd6sBWkdrXWZjh9UxQUr5lMEKGLD1bNBT5YLVtWtqmi0Gn547i2XZEIxWyrmdOJZpjkBIEYwd27l4m6a2rXIOD4w9O2FZLGnyKXNMVqS6DovWFQEy4+6cawKQnfJI9DvVQCMTChCMwtLTbYZ2O6QnIT3hbwtGoWWxZnCXRyEN+x6snEhB9ykWmSmPxIjxg8NmKrgFbZafpcilDQN7YHqkcqyIn2XLMxAMK4JRQyHjZzpqWwKxOsXBJwz5jGL/Nr+kXWMHTI1A2fiZmmwbgmFDNuV3Yulav5RKJulPlO553G9zyukw3AdTo352MAMEIrBivZ9pKZXWTE662EkFeKw+1TA9oUgnNdmMy+SYH5zX3uVRUwt7xzSeV2Lf/n3YwRQ7DmxjamqKUsmfhWxqauK8887jQx/6EO973/uwbfnvXwghFrrFixfzkY98hI985CN4nsfjjz9eDVoafvo+ereVaG5u5oILLuDsU8/mtodHMJEuiq6mvcbB1i6pomYqryk4fimtiA0tsTL9SYvxrI3jGUo1mhptaIs79E0FOJwOgDEooCbi0RT36B216R+3q+ErDTV+Oa2xhF/yytIGS/ljuXLIQjn+vsWyRe+4hasUGpeONo9MVpHOVMq+2hAIzAae2xZMJ2cDZepa/O3DowqrbJgYnw2gicYMoaBhelpRLimGBjUz2ZgaGg2ppJ9VqVDwg7AjYUNjp2ZkVOO6CivvUC755dmKxWOvvx3wg+hdh2owO/hDrHxJUdIa94jAIqvoopShvsUPLCrNCSxSBILmqOCgZ6b03FK2R2psNeQyswFP1QxMypB3DOXysQFPDY2GYhGmJo7epkin/Nj5GU7Mpr7WJRxUjEwYSq5CVYKG4jGD40K+oJmcnrnmEAoaauMe45Max1X0D89mygo0K9pqXfomA+ApxtI2tjbMBCEFrNlMS8YoXM/Q0+gwkbHIlRQTGQtjDPGIS76kcTyFF/QzNIGHrRWZkkXQ8uiocehPBSg4MJbVgKYp4hAPeRxOBPAM9CVsSq6fdSxsGwZSAUoBxUjJIu9oagMuzRGXgyk/i1KypCm6Gq0MPXGHsbyFQVHMZzh4+BAXndLIz3/+c7bt2YMxhiVLlnD62Wfz+te/nne+8500Ncnkk5h/zyWJ9gtNtN3U1MStt95KU1MTu3fv5qMf/ehx2+3cuZNf/vKXfOxjH+M973kPAG94wxu46qqruOmmm7jpppuqbf/gD/6Ap5566rjHef/7388111wzZ93Pf/5zXvva1xKPx1/QcxFCCCFOBqUVqy9exOKz2tj63X3s+mUfGEgMZrn9fz/C8vM6OPu9a4g1SAk4IV4MR5Z6O/qmJiGEEELMH5mlFs/b6tWrufHGGwHwPI9f/vKXfOtb3+Lee+/liSeewHVdYAvhcJiVK1dydsPZZDIx8Fro7HEJBj1GBmF6AkpFQ6loYQU8Vq932fM0TEwqShl/4iIYNvSshgNPw1BvpVSbUjS3G5o7/cxLe7dDqRL8tHiNHwjVt6fS2YBFvA2aWj2mhg1eyc+4UyxAJmHwXH9WrWM5TA0bcil/t8ZOv9Tb3kc9nJKfIWfkkEdyCrA1jR1QSHrkUxAIVkqUHadCWqxeYwU4pvRbesKQTVYihCqBPekE1YCltpUWiSG3Wq5tYMfx659lJg2ZyaNOXCmvZgU1gbA+JhgpMeSRGPoNZsqAiYMOEweP7YMdtQhELIz2jgmwyk56ZCe9Y4qeTPe7pMddnMLsurbVNtP9DqUcjPQpCM2mXy3lID3pkT/qVv1ACGINmmDU84OdZpJXGdAB0AF/hdbQtNRmYsAvEzjaa+ZkO1h0CkRiir2PGUp5OPC4oWWxQmk/SKmQ9SdQgxGF4/jvtY5OiDdrJicBDQd3KKJxw6rT4NBuyCZhYD+US9C5xBCrg71PKsquYbgfUgnoWm4IhODQLr+fUxNQLCtaOzwam2F35e/xmRTkshAMeixbDQOHFKVSiUXLDA8++CA79u1gamoKx09TQX19PaeffjqXXnopn/zkJ2lsbHzOr7MQQoiFR2vNmWeeyZlnnslnPvMZcrkcDz74IHfffTd33303119/PcVikfr6ei644ALWLN/I6173Oq77l0cou5qeOofDiQB5R1X+MKfIlf0sS1N5yJc1U0UL1xgwms46h0JEkyxYlAuKctj/JF8aL5PKaUamLLT2xzWRoKG90WVg3GZk2kZhMDY0NHikUopkxm+rQopMSVM0Ci+gCQUMoZBhaGQmKMnQ3uqSyyumEv64KJHS+HG1ChOCmijkEqZSSdZUhjvHZlWKRg2ZjMJ1Z7JEQqkMuby/DsCt3EU5XQTLONgBQzTmfz6DwikrhnvNnPJxPsX01MyAZ7ZUmRuyAIOOGJSjoDA3Cnx86Df7g6jxFGODx65XyqDDFqas/DHs7B5gFInpI0vozfZ5dHg2GAz8cnHRKKSSinxO4cTsOb8dFoqz1wr8ZFLKKCJhj3IZ8gWYHXgpjAFLz5ZFDgbA1CmyRU25ZBhL2cwk+LK1YXFTmdGUTaboByGFbEN9zCWRs/CAbEnheBCwDWVXoYDmGoexoqJUVKSKmlRR0V5TxlIwmA5QcuFQIohnYGl9mfGcRaYI6aImX9bYyrCo1mE4YwOKXEmRUxo3CEviJaaLFq5RlD2YLmoU0BR2iNoefRkbiknOXB3l4MH93P/o/Wzd4dcKnt6zmHPOOYf3vOc9vOtd72LVqlXyB3DxsjQ+Pv6CSj8Hg8HnFJR39913Y1kWV1xxRXVdKBTizW9+M1/72tcYHR2tlpz7x3/8x+d8fs/z2LJlC5/85Cd/884LIYQQL6JwTZDXfmgdqy7u5oGbdzB+wE+bf+CBYfq2jXHG21ay7g2L0VICToiTKjvl35EUa5RAQCGEEGIhkSAlcVJorXn961/P61//esD/4+B9993Hf/zHf3DPPfewa9eu6t2PgUCArTsaqK3pIB5ZSSx+CktXWezZ4ZHLQDAIgaBiYtTPsjQ1akhP+8E7ngPJCcWydYZCzjA9BnrUz3xTKipWnmZITMDQwdlpmXgDLFrhBzhNjGhMACzXZekGxdSQYegAUJlQiTcqClnIpf2sOpmEoVzyA5QAFq9XTI2YarBPU5cmG1PkUy7lAhx8bHYmZ/kmy8+SdMBjcPfsJFVtC9Q0aYZ2e4wdnl3fs0GTmTRMDRqwLTQuda0ap2goZv12M9mI7CB0rQ8wvKtMKT/7OjR0ahq6LQ4+Vq72cWrAY2rA40Qpk7TNMVmOjv8iV45w1CGMbTHV7zHVP3dD4yK/nNyhbeU5p+1cFyCX9EgMzA1Q0kGobbcp5wyTbiW7Qhh61lsM7XEppGGoch3jzfil6na4ZKdh74MOGAjFYMlGm4GdDtlp6HvCrc5bWjGbpm5FMWdITkB6ErrX+FmU0lMw0Q9Yhli9Ipv031N1zeCWIZ+F5IR/rdacDeMDMDasGRmEoX5YvNqvjnd4t//eGToM5SKsPt0w3AelKUUq4WcvCMcMS1fD4T1+8FI+B4U8aNuwZiMMDyiKJTAYpqf8vi9bZdAW7N45imN2se9nw4yPD5NMJrn7YVBK0dDQwLnnnsv555/Ppz71KQlKEkKIV7hoNFotDQdQKBR4+OGHq0FLf/u3f8vnP/95otEoZ555Jg8nLez6pdQ099DcGiZguYxlLJIFDRjKnl8GbkmTQ+9kgEzRL7flelB2FYsbHQYTFhNli5KCclgTC3p0BMsMTVmMJSzKrh+s0tbo4jiKvrHZgKXasEdd3KNv2MagUBiCQUNN1JDM+Bl3QgHD2KSploqLhD1iUcNkJSAoHDI01HtkchaqaMikFZnKB304bGhq9hgZ1jhlxeCAn+HHaGhq8shkFMWiYroSwBMMGhoaPMbHNZ6ncCM2sUCZWC2kk7PBPDMBSrG4wbYhOT0beKKUXyYtk4ZcteybYmyk8jhkYRXnBpErZSrHfvYAFqX9UmpHt3WDAcZGj2qrDG3thmRybik82/YzKE1MzJbgmxGJQKzGkE5BOeoHhsdjHqGgYWJaUyhqCkX/2I11LtmcplBSjE3OZk+qr3UJBWF0QlMqK0bGZydVws0QCrhkiwpjFJ4xtMZdxtI2jqcYSdqUHPwycJ4iGPCIhzySOYVBMZm1aYi61EcdDk0EcIKKg+kgtjYsaygzkLIpuopEQeMZRX3YJRbwGEwFAMN0XlMsa5qjDrY2jGQCKDzSJb9kXEPEpTbkcjAXwlaGnKMouoqg9lgUd+hNaQpT/YwlDjI81E/US3Hw4EG2/jesWLGCiy66iA9+8IO88Y1vZP369c/6egoxH2655ZY5yycqv+Z5HmNjY/zyl79k7dq1L3q/9u3bR3d3N7FYbM76U045BYD9+/dXg5R+E1u3bsVxnGctZz0xMcHk5GR1ube39zc+lxBCCPF8tCyr44q/Opc9dw3w6Lf3UMyUKRdcHv7P3ey9e4Dzrl5LxymShVOIk6WaSaleSm4LIYQQC4kEKYkXhdaaCy+8kAsvvLC67uGHH+Zb3/oW99xzDwcOHKBv4AngCXbsg4aGBlavXs3w7iDnvXYji5Y0cnCvYmwUwhFwxvxMNqecBbu2+mXgtPIDQbIpf/2hXf76UhGyGahvhu6V0LcXJkehWAnmWbIGSkWLvh1utexc6yKob1XsfXT29vK2HojWafY8YkD5gUG6cic+CiIxw+A+v8SYsTUtPVDfqtn/iAMeJMcMhYwfVBOK+aU6Cmm/jFgofOzElOeA68ye38Ni/6OeP6FkW8TifkAOgLYq/QkARwQplfIepZw+bjhSvEVTzDKntNqiU22CETjw0LNnVKrvtGg/Jcje+0u4RzRv6NIkR71jAp2cEhRzswFdxtIo18MKgh2cff6hGnBUAKcE+x9x8bzZyS2v5F8XfdRNRNpWBML+dcBArAnS41DMQnrCo1wp2dKywvZf18cMpQLs32aI1gJK4RmwAv6XtvxApNYeaO6C3Y/65937mL9u9Zmwp7Kufw+4aFafAYd2+hmVEpN+UFzHUkMo4mdF0tqQSUGpBEvWGIwLvfugps4PuHNdP3guHIF9Tynq2iCdMuRyEI9Dc2uZ++/dTceiPL+8ezf9/f2Uy37JvkgkQmNjIxdddBFnnXUWf/AHfyBBSUII8SoXDoe56KKLuOiiiwAolUo89thjPPDAAzz44IPs3/8gw0/eBcD0kiVs2rSJ9114Id/42T7WLG6m6IYpOIqMowlFIJW36GkoE7INqYJFtuiPvdIFTXuti+c5JAuatNGUg5oSis62MrkSTDsWupJFKGAr2hocRqctCpN+8AkYFrU7TKctBsf8jElaGzpbHCYSFumcRgUNBBUEwA3MlJH1GBjyg4oIQFeHRzKlyCfAcSCbmc38E45AvuiPIWzbHJHVZjbzkefNDb5OlQOkJwwm7H+O20UH1/HbWpZfKhcMXiX7pTFQLh8/i6ZShkgUcsyWwLUsQ+ciw2S/N6d83Im0dUO+bB2RtcnPfhTQhmLx2LFkqQzOkdV9lf88LNt/7dzK8w+GIGcHmHYNiSSY6Oyx5l6T2QxJAdvvv1+2DoxrcFxFoahmEoD6gVI9humcJl2wmMx6BC1DwIKy5192rUFrD89osmXFkqZypa0mXdBkCoqeJpfprCZVsEgXNLmSoqHeRSvFWNam5Bqm8hbGwOK6EmMZm5KjCChDzmhClktXrUt/MoBrwPUUJVdhKcPSBofhtO0/s4BhwvEHk+1Rh3w2zUjvIOd1uzz56yfZu3cv+Xwey7LYsGEDF17422zYsIHzzjuPNWvWPPsLKMQCcPPNN1cfK6XYvn0727dvP2H75uZmfv/3f/9F79fk5ORxMy7NrJuYmHhex/3FL37BpZde+qylrW+77bZjArgADh06VMkI/cwymQw7d+58Xn0UQixc8rMtXlLtsOGjbfTdlWB0m5/qfXogw08//wjN62MsubSeYFymbk6GlyIAWyxcuWl/oiAqmZSEEEKIBUVGuuIlc84558y5o3Fqaopvf/vb3H777Tz++OM88sgjeJ5H73fvwbZttApTV9vGaaevxTOLUMlWUtPQ3gNDhxSrTjOEojDS52e5idbA2BD0rIDGNhjt98ttKfzHy9ZDPgO5jB9Ak8lZhGOw7FSPsT7D1NBsgNDKMxXTI4bJYX+dZcPKsxTD+w3pyg2XzYsUkRo/AAZFJUOPh9F+yiE7SDXLUctiTbROsfdBl4l+w0S//4fPaB10n2Jx+EmXgZ2zs2Tdp2iKeRg/PBvktPiMIEN7XBIDrl+O7KHKLJSGYNgPPspOQ3baqa6vRipp6Fxjkxp3Gd49+0fXqUEXbavZuhwnYGyLbBLGDjpzApSCEWhfbQMO04PenPOmRj1So7PHDNVAMaPpf3x29syEAyw+2yYzZRjc5eJ5/nPtWmvR/5Sfnerwdr+/XadotKXof9olOWJIjvjrW5Zomns0exMObtm/5oG4TdGBTBKMMuiAwnP8zEitPZCZBteBQ0/Cqk0QisLoYZga9rct3wATQ36WpUzCn3xctBpcpRk8oNABU822tWwd9O71g5ECAX9ysK7JsGg57N7uZykoFfz3XbSGahalUMTPGjY2CCU7T5leHn7sAIcPHyQc8Zi+YxpjDI8/BS0tLaxbt45LLrmEt771rVxwwQUnfK2EEEII8EvunHfeeZx33nkAGGPo7+/nwQcf5KGHHuLBBx/kE5/4BOVymZ2hEKeddhqHpyzaOjpobu3EsbuYyGrqIx6WMuTKFj2NfpaldEETsv1Srsm8xbLmMkNJi1xJ43qQLyuCQU1Xs8to2iJf1H6pVCyaG11wPaZTFoWSX+atJupRG/MYHLNwKpmL6uMe0bCpBjFZ2qOl1TA2bZHNayzlkc4oiiWFG1AEQoZypZaYtgytbYbJSchkNaOjs5l/mpsNjmNIJDTj4/6xbdvQ1OQxMaGrmZMaGgyhkGZoSGPlXVIJP7jKsy1s2+BXV1VMTx4R/KTwa6IBsRpoaDIU8lQzGLkuTE0qCli4IXVMlqUjeSGb6ZTh6LnyeNwQiRqGBmafE8pgjGJqYm4GJceBUlkzMuRV24ZbLJobPPpH/DJ2xkBd3MPShqmkf22zeb/EWluzy+iERdlRjEzMnM/Q1uSSzSumE/7rFQ4ZSnE/G1aq4PqvoQKDor3OJVM0TGb994dWsLjJ4fBkAGMUw0mbkO3R3eAwMG1j0CRyBtdAT2OZ/lyAoqewHD/QrDniELAMw2mboOWRLWlcA121DmVXMZGzqAm4lexK0BpzsbVhIGXTHHVJFTVFV6FNgvxQH/v7RiknBjiUGmFqyk9hmWxu5tRTT+WGG27g7LPPZuPGjdTU1Dz7D50QC9BMeXZjDH/yJ3/CG9/4Ri6//PJj2mmtqa2tpaenB330HSIvgmKxSCAQOGZ9MBisbn8+PvvZzz6ndldccQWvfe1rq8u9vb3ccMMNLF26lNWrVz/r/jt37pQJTyFegeRnW8yH086C8QMJ7r95JxMH/RJwE09nSR4ocubbV7L2sh60JSXghHi+spVMSrEGyaQkhBBCLCQSpCTmTWNjI9deey3XXnst4KeYf/jhh/n2t7/NQw89xL59+5iYOsiWLQcA/w+nLS0t1MSacPNN5Mur2XBWJ/F6TWq6kiGp5GdNqmv0M9aMD8Gq02DwYCXYxPgZmQyw9mwYOAj5ymRMedyje7UflJRNGHIZyKWgsR3q2xUT/YZMwu97+1KwAorDO/z2wTB0r9EM7vMnqIIRqGtXZJKKYhnGDrpY/t9bscOw+FSLwd0ungu5pKlmN4rWQS7pxwsZdzZoqpiF/qddP0DKtgiEoVwAHJeOVRa1rRb77itV44widdBzWpD+p0rkpgEPDj1WmlMaDiA7ZagWxjvij9FGg9EaY8/e/V/Kw2Tv3ECmUh4OPDj3uEvPDFDMGoZ2zqZWal9tU9+u2Xt/Cc8OoG3/tMaFgZ0O+RQz816Ui2AcPzBMx/yAMrcM+ZSfZQGg6xQLp+SX0pvs9yjmPBwdgBDUdYGe8l/vXAq6V0MgCEP7/SAkAyzf6GdJApgYgHAMlp4Kh57yg4yyKT/D0qqz4MATipJRmCAYD5ac4pdpGToMkdhsVqSV6/3HU+PQ0gEj/ZXnvtgv6zbSB8vXw2BvlgO9uwlEx3n6wCQDAwMUCgVMpa5MOBymoaGLTZs28fa3v513vvOd1NbWIoQQQrwQSil6enro6enhXe96F+CXiJsJFN+2bRvZrVvZcf/DeJ5HIBBg3bp11C5ZwtAgBGu7CdBKW61iIGFTG4ZwwGU0ZTGe0cTDhkTOoi7i0hB1GE7ZZIsKrQzjjkVrq4trXHJlhdGanLGwPEN3o0Myo8gXFCXHD1pqb3IolBSJtB8YozB0tHiMT2tyhZkyY4ZwSJEoWBCAUMzxlz3/15vRsTKFSsbM+np/vJNIKIpFqoE/WhuU8ku2mqMyCE1NKQIBvz9edCZzksJyXTq6DMmEIpWcvb6NTQbLgvExAEUm7Zddm1tizV8/ww35x/UCBmMbvJDFkfL5Y7MlTU8pUkm/XwChkKG51WN0xC9z57/WhvZOj1TSb+vEAn5JNVeRyRkcx6pcg9lMSZ4B8AgGFKWywnEgX/C3BQOGpno/YMkzfrk3x4NSrYUd9IjEXaxpv2Sb4yk6GhwOTwTwjGIwYdESd6mLeCTzFoWyYjJj0VFbJpG3yZUUSmlyRUNLjYNnNFMZjQpD1oOQ9lhc59KftLGUn/2y7CriQY/2uMOBqSB1IY+io8iUFBHboy3u0psIEAt6BLTL4dEsTrKf/nQ/LXHNwZ07GRkZ8V+3xkZOPfVUFi06g8svv5yLLrqI7u7uZ/xZEuLlZOPGjdXHV111FaeffvqcdfMlFApVs8QeqVQqVbe/mJqbm2lubmbLli1s2bKFTCbzop5PCCGEeCYty+u54q/PZe+v+3n0O3v9EnB5h4e+uYs9dw3w2qvX0r5mNoO6azy2ZQ4yUU7RHKjljJplWEoCmYQ4ntxUJZNSg2RSEkIIIRYSCVISC4bWmnPPPZdzzz23us7zPO677z5+/OMf88ADD7Bnzx4OHtqFMYbDw/fywBOaeDxOd3c35dBSsMLkpzqob26ioRkKORjqhbZFfpBITT20dsHBnX4wU7zOz7bTuRS0rSlk/Qw7xZSH58G682FyyA/GSU4otGVYdprCKRvKRVMt79FziiKT8MvNgZ+tp5g3pCvl2bpPs9EK9m01WFF/nVOsZHRKeNS2+MFJi0+zmB42jB3ycCoZi3pO1VgBxaFtLpYN0XroXmsxtNcln7KYHIFMwsXTFuFaP6NSPu2SmXKr8Ucz7LCf4amQgnCNn+GnplETjEFm3KOQmXktwD7ixtZ4K8QaLMYO+E84GAGUfxzP+MszgUr5lEshBQRstIZgFMb7IJv20CEb24Ylp1lkpioBRlmobVG0Lbfof9ohl4JDj7sEw7DiNTaTAx7jBz0CYZisZGtyHYMOWZiIRW0LdK1UuDsMmWn/XJ0r/CxIpQKM9UNzNzR1weSgX/avlIflp8PYYcimFaaSHGD5Rr9c4NQIGFsRyUPTYmhph31PQUuXv382A03tfjDS04/C8rWQTkImBa2dEArDcG+JaNMgE4kcQ0ND9A308cBT09U/gGutiUajLFq0iHXr1nHGGWfw0Y9+lNbW1uf/QySEEEL8BsLh8DFjr1wuxxNPPMG2bdvYunUr27Zt4+COHTiOw06t6enp4fTTT2d9x3rC4TB3bh2moFtpiHgQgXTBD0xqqXEYTlqsaHGYzBhSBUXAMn75uLxiaVOZsbSmYCtyQQtVguZmF9s2lMqavAFXKaJhl/q4R6EIrqcxBuJRj1DQI5n2/xCvlUddjWGsUhYtGPBob/ezMOWLFm7AYJU9QJPJ+NmItPaorYV43GN4WDM27g8GbNujo8NjfNyiUFDYtqG+zvMDnif9mm+jaY+Co9E1fkCQ42ryuTKBgJlNTqn8Ur94HgHbL0M3sy1eC4W8oVyuBDEpfz9VyYiktSFeaygWFIWCwrINxhgsrSiX/eMqz2/ruoZCwQ+yLsctvySbUYzkDAUDdoMiFvRojnsMjfnPsVCC9haXUkmRzGhSGQ0Ymuo94jGX3iGbgG0olfxSbtqAwUC9puxo2ho8PAMjSUOupCg5hsaox3hGkS8pMgVFZ32ZgekAjqcpux6RgEskYBhNawolRchWhCyP9maPwWk/eEmHLbTyy/4VHU26pIgFPKZyGmMMXbUOyZLftj7sMpy2iAVc6sIeqaLGlDIEigOsW70SK/k0Dz/wMA8PDZFO+5FhdXV1dJ93Hh/5yEfo7u7mggsu4JRTTjmiFKAQr2xXX331fHehqqmpifHx8WPWT076aYubm5tfkn5s3ryZzZs3s2fPHq655pqX5JxCCCHE8WitWHNpD0s2tfPod/ay565+MDDdn+Ynf/0wKy/oYtPvruYBbw9f6r+V0fLsHRNtgTquW/RWNjdsmMdnIMTCVM2kJOXehBBCiAVFgpTEgqa15sILL+TCCy+srvM8j0cffZTbbruNRx99lD179rB//3527NhRbRPcFqS+vp5QME5XVxfpYjvtrV2UCnWEwrDyVNjzBKw9028/cNC/i37xKj8DTssaTWrcIxhSuGWD6/hBLZEaxcghyCYU3ashFDEEggrXM9Q1aSYGPKIt0NQJnuunBtLaLzOWmvAjhkIhaOjUJCZg8pDLorU22oYnfu7Q+5RL1yoLy9YUc36AT12bJjHsB+c09WhaFiuG93kkx2D5GRaeZzi0zcMOwprzbTJTHvsfgWJOs+R0i70PlrAs6DwlABjCcc34IYfWZTbDexwidYraVk3rUpudd5XAg2BM09ANI/v8oKSlZ4UwHoztc6lt13SeEsC4hsSIRyCssIMwesAlO+nR0BVgwjPUGI9Fay20pdj7kEMpCx0rNcGoYvSgSzFrWL7JZrLfY3rIo5D1WLYpQC7hcXCrS8tSfyJy9KBHOArd6/wgrMM7LWpaIN6gSIwbkuPQvdqw9FR46h4o5vwArNWbYMf9UEhDbb0/YRqvB9dVRGr9TEvxZuhYClOjkE1AxoG2xVDbpJie8MvANXVA3z7/NWzr8oORQhEIR8AYWHpKibGJYfr6+7ECWbbtGmVoaIhisVjNjqS1prm5mWXLlnHGGWdwySWXcPnll0tAkhBCiAUnGo0eE7hUKBR46qmneOKJJ3j66ad5+umn+drXvsbo6CgAgUCAFStW0NXVxfC0Be0thGpaaYo1kncUnfUO4xmbYhl6GkoMKJvRlEVTzCEWNDieIhz3CBo/W2G26MdZn7q4xPC0RcHRlJWis8Mhk/azCEVCBtfzyOYV7c0u8RqX6bSGIjTEXaJhP8gGoLHOz3I0UbCIK4cli116+zTJpAaj6OpyGRy0aKj30NoQCPjZOQG6u1xSaZjK2ISC0N5SZnjcxhhFQ71DS5PHgb4AmVKARS0OyvIo5MF4ho4uQzarCIUM2YwhWqMYHlTEaw31DYZU0s+MZFtQW2cIBqFYhHitR2eXYWhQUygoWls9tOVnfhoZVnR2GSYnFLksRKIQatCUCzYtDR7xqEs6azGe0IQCfsDP2LRmImVRW+MSjxkODwbI5TW1NR51NQ7j0xbZvKI+7jCZsDBG0drk0lDr8vTeIKpe09AEXtZlMKFJFTTLm0tkCopUwb8WixrLFB1IFywCFsTDHj2NZSYyFg1Rl1ReU3ZheXOZUMAwnLApOQrPGHoay7iWpjcRYG1riYmsRd5RNEddWmIOu8eDLG1wKDpQFyoRcAsMDU5BdphMYpRsEA4ePMjY2BgAv/5JgNWrV9PZ2ck73vEOzj77bDZs2EB3dzeWNTdblRCvRk899RR33HEH+/fvJ5vNEovFWLlyJW94wxvYsOGlmdxcsWIFjz/+ePX8M3bu3FndLoQQQrwahWuDXHDNelZf0s0DN+9g4lAKgH33DnLn1BP8+A2PV6s+zxgrJ/nUwVv422VXSaCSEEcwxpCrBClFpdybEEIIsaBIkJJ42dFac84553DOOefMWZ/JZPjlL3/JHXfcwZNPPsnhw4cZGe2jf+DAnH1jsRgtLS20tbXxg/+BdRuW0dbaRT4VJTUN0Tj074emDk0+B4EaRSzmkUtBagKCISiF/HITjqsoZ2BiUNHUaehYrtAapsf8rD2RWj+YqZA1jBzy+xCth0LGIzEGJmCRmDAEKqXgwhFFKAqDuz1qWzUYOPS4Qy4JdW3+hJfSisyEAQ9GDrgsOc2ibZlm9KDHeK+L6/i/qSbGPPJp6F4fRNswvNfFeBAIOqQnPArpMoW0YXoQxg64hGsUVMqclHIeyRG3et0OPlymkPWzS2UmPPq2lzHGUCxa2EFDbSssPj3Agcdc+p52Keb9bAH5lGFq2MXzYMUmi+SYYXivW8kaZeM5hmzSD7Dqf9qjvsOjod0iGIFAWOE5/vO0agLk0jDS608sFXMQjBgKGT8jQXLCDyxq7IT0NAzshboWWPMaGO2HkcNQyCsCYWjugNQUBEJ+2+kx8Fyo71BM+XNb9B3wSwYaA4lxCEcdXDXBr395mJr6MqOjo4yOjpLL5cjlctVgpGAwSE1NDcuWLWPZsmWsXLmSD33oQ6xfv/7k/hAIIYQQL6FwOMymTZvYtGnTnPXj4+M8+eSTbN26lf3797Nz506G9j3F7q3+H9Ity2LJkiUsXryYhoYGzjztNG67t4+ejnpCdiPZsvY/bDFMZiwWNTh+6bi4h52BkWlNJq+IhcF4HsYoCgaKZU3BaJQyLF7kkisqDo8HKRhFTZ1HtAZGJzWuUYCHMYZEys+ylFUW0zmPHDbGeMRqDPm8rvTXMJ1QTE1rbNsPjPcM6KAmn9ZoZcjkLNqbXfqGFKmsJhDws3ACjE1aaKVp63EZm7AZnPYzHQUSLq6nyOXAeIqBPggGVbW8nOtCOq2qgVGZtObAfj+7I8DkhMbzDLatyIdsBlIeTS0edoNmKqnJTvpl28oOTCUtsgVNQ9wjHvMYmdAUHY2loa3RMJ3QRMMeqYwiX7BoqHOxrJnSd5qy648j85Yin7UpxS20Y8iX/RLGYCiUNOmCpi7iUihrxlIWWkF9xCMWMuRLiulMgJqwIRb0n2TJgYAFUxmLUMAQD3l4toWnNVnPMJW1aKspMZWzKJQ1tXaOybFJDk2Ps7JVkTiUYXBwkD179pDL+XWSlVK0tbWx/DWv4dJLL6WpqYmzzz6bs88+m0DgiJSgQoiqr371q3z/+9+v/v6ilMIYw549e/jpT3/K29/+dv7wD//wRe/HxRdfzLe//W1uu+023vOe9wB+qbfbb7+dtWvX0tbW9qL3QQghhFjIWlfUc8Xnz2P3L/vY+t195HMlfv3ancdt6/82AF/q/yGX1K+X0m9CVBTTZX9+AYjWS5CSEEIIsZBIkJJ4xaipqeF3fud3+J3f+Z0568fGxrjzzjt55JFH2LFjB4cOHWJsbIzDhw/jeR4H+h8EwLZtlArQ2tJCc3MLO/YH6exsp2tRB1OTDbR2WBRzfomNSBwKWchOQ/tSP2NSvAkSI/5cm2VDY4cfOJNLGcZ6FUpDz1qob4XJYb8sR7jGUNukSE8aTMAimwe3cjvMyD6P5WdZuCWN1h5da2wObnXIJd2ZWCJaFltMDrhMDvjLmSmD5/oD7/o2TTACA7tdbJtqKbcCCrSF44JXqVfnFKFgZmvDee5s+TYrCJlprxrAFKq3yUzPXl+n5B87n3Sxg9C6xOLQE/4582lIVQJ/hva5NHRYWDYEw36WJteBRettMIbB3S4tPTYDuxxKOVAB7U/mhTSlvF9+rrETBg8qJoehpgFWnAmJMejdAz2r/DJ79S1+VqyRw9DWA9EaiNZCuOg/r+QY2CH/cUObnxUpm1akkymK3jj33jsCVo4n904xMjKCtjzS6TReZSZRa00wGKSuro4VK1bQ3d3NJZdcwkUXXcQZZ5yB1vKHACGEEK8OLS0tXHrppVx66aXVdcYYBgYG2Lt3L3v37mXfvn3s3buXJ554gh/96Ec4jsNj+IG9K1euZDwNTY2NBKP1TA420t0Wp0AjKhTGtiAW9vA8RSgIUxlNOGAI2h6RoCGdh0JZkchqGuKGWNjDtiCZ00xkNPUNhrqYi6sUU0UbE4LGsIulDcUyeGHLH/8EFI6jSCQVzc0ew8PQ0uLhKkX/WACFwbIMwYBBK8PYhMYYP6gol9f+pIAy1Nd6TCc1I+MWhaKf8QnAsf1slsEgUHQBRalsmKkyZozCdfzybf4ylIr+Y60NxaiN487cLm0olCzGpjWuZ2iIexRLiiJQrGSOKjt+ABVAPAb5ab8nA+M2GOhscRgetYmEPbRSJNOaUNBQthWZgIUTt0B51AQ9Apah7GgSWYumGhelHNIFzUjSJh72WNRYJp33A4uUMhjP0FjjkVSKeMQwktCEbT9bVMD2sC1FKGAYLxhi3gQDY0nc3DSlXIID0wkyiQnc/DTJ5Gz5in21taxdu5ZTTz2Vc845h7PPPpvTTz+dVatWEY1GX4y3thCvSHfccQff+973WLRoEVdddRWnn346jY2NTE9P8/jjj3PzzTfzve99jxUrVnD55Zc/7/N8//vfJ5PJVEu33X///dVMZ29729uoqalh7dq1XHLJJXzta18jkUjQ1dXFz372M0ZGRvj0pz99Up7vc7Flyxa2bNlSLckthBBCnEz/MXoX3xy9+4UdpA3MHxpy+SLZQPGEzQwwWk7wuif+P4L65E35vL/tIj7QdvFJO54QL6Vsws+iFI4HsAKSVVcIIYRYSCRISbzitba28t73vpf3vve9x2zbt28fd999N4899hg7duygt7eXiYlxhkcG8DyPXftm21qWRX19PfX19TQ0NOAUbTo62yn119PY0Eo5H6auBUoFv0xYctLPfJTPQc8aRS5tCMX8zD2lAizd4JePMwYmRxThOPSs9oNmysbGBMGOQLxDMTKgCRx06DnV4uBWl54NFk7J+JmIpsF4EKuH9hUW+bQhPeGh8AOqnAI4ABqWbrTIJQyjBz0Wb7BIT2mGdns0dCraV2j2PeTilPCjfGwLAorOdZpgWHHgMZdgFBZvsBje55FLGhafajG4xyWbhPQkRGr9c9o2hGLQ3KNQAc3IHo/MBNS1GsK1fmDS4e0OTYs0SsPBHRa1TRbhOnCtIF7Yz3RU2wTJKfwsVlPQ3AU19X52o0wSLAtaF0F9mx9UZQzkC9DQ7Jdpi8b9TEvaMiTTY+SK04yNjaPtIolEgunpaRKJBOVymXK5XH2ttdZYlkVtbS3t7Z10d3dz/vnnc84557Bp0ybq6+tf1PesEEII8XKllGLRokUsWrRoTvASgOM4HD58eE7wUvX70w/iOA5PVNrW1tbS3d1NbW0tHR0dLFmxgvu39lFXV48O1hMNRQkGNLGwwTOGSMCQymtsbQhYsKjZIRSAdE7hoYiGPOIRj2jIYSodgJAmEvBoaDCkcopSrY0OuETqXVRRMZAP0h0vEY+55AsWHa0OkwmFZxTFsgYMjfUedXGPXMHGc/1AJc8YSkWNwhAKeTQ1eIyMW0RChqYGjwHXwnWhs82lUFRMJSy8sIcb9CjHbSzL0NXql2jLFTTNdS7hkMvAmEVD3CMYMIxNacqOAjRKOdVgp9qYv310UuF4UCj5Y6W2RgelFBMJi47mMmNTNpmgTXNDCYOhXNAo2xANOrTXOoylFMmcpibosai+TK6kKZQV01lNXcQjaBtiQcNEWhMOgsJQH/UoORC0DEXHENIlpiYTkE1ysD/J4labqcq4a2BggImJiWoA+MzrvWLFCs5Ys5GGhgYuvPBC1q5dy+LFi2lpaZEgcCFOgh/96Ee0tLTwz//8z9TU1FTXNzY2cumll3LOOedw1VVX8cMf/vAFBSl95zvfYWRkpLp8zz33cM899wBw2WWXVc/953/+57S1tfHzn/+cTCbDsmXL+OIXv8jGjRuf97l/U5s3b2bz5s3s2bOHa6655iU7rxBCiFeHrFtgrJx89obPxXNMFJpws+A+e7vnKusWTt7BhHiJ5ab8wL5oY3ieeyKEEEKIo0mQknhVW7lyJStXruQjH/nIMduGhoZ49NFH2b59O7t37+bw4cMMDw8zMTFBb28vjuOw/anZ9pZlEY1GiUQixGIx6uvrqauro6mpCZ2Kk0t51Ol6IjVx6pstlIJ81g9Kau2B2maFWzZkEn7QTU09xOogk/AzD6mQTbwFGpfaDPdCz2qFU/JLsK0+zw9O8hwYO+iXTwvGDLUtmvEwxBoUrcs0iVFDLuVPCA3sdsn71VhIjRmU8vwApaNM9HkEKtlQSzkY2OmSGveXc0lDY5embbni4GMuLT2aQBisgJ+paPSQR3OPpqbOopT3g6e61gYY7YNcKcCq5VAugB32y+fZFizbAMnxSkm2MCxZA8W8n50qMw11TX4MVTjmMTWZYyqZJlpjM50fJzmSJJVKkdieIJ/Pk06nyWQylMvlakkDgEAgQDQaJRwOs3TpUhobG1mzZg1nn30269at4/TTTyccll9ehBBCiJPJtm1WrFjBihUrjtnmui4jIyP09vbS19fH4cOH6e/v5+DBg+zcuZMtW7aQTqfnHKuxsZH6+no6OjpobGwkGg7T0dxBXV0dLS0t3P3gXqCGlvoAmYKiJmRIZC1qIy6xkEsoCCVXkStAc7xMY42fOUihsCxDqAbi9R67BmymijbNrWVGhmyaGzwsyyMQgPFJhcLPeBQMGOpqPCYTio5Wh2JZky8oXBcyOYXr+l8A00mN46hjroPnwkTSIl/JpDSVUgQCflamQskPbl/U7jA+beO4UBszTHsKrQ2TKUVHk0djnUskZBgcswgHXUwQhpM28QaXxgbDZMnDKhk/+1PEo+w6ZIuKVE5TE/KoaysxnfUzRDke1EVc6mOQLzi4xSy5dJ5T17XSEJggkUjg5HL0HxhhfHycbDbL9PT0nNfKsiwO1dezdOlSTjnlFM466yza29s599xz6enpob29ncbGxpP5VhNCHMehQ4f4rd/6rTkBSkeqqanhoosu4ic/+ckLOs93v/vd59QuFApx7bXXcu21176g8wkhhBALVcwK0xqoOynHKnmOH4D0LOqt2EnNpBSz5O+j4uUrO+0H2cUa5H0shBBCLDQSpCTECXR2dh63fNyMXC7Htm3bePzxx6tZmIaGhpienmZycpLBwUEcx5lzl/gM27aJRqOEQqFqYFMkEsV1oaG+lmAwRFbFmUwHCQYi9GyIEY5EMASJ1igaWv0AJm1pxoY0hQI0LdJMDRvalltEav0sQtMjhoZOjcEjXAOMQHoCuk7RRON+8M/QHo+eUy2G9vq32Rz5e6zWkE9B8zpNMGwo5gydayzqOwwTvR7jfR4rX2ORTxmaFynyaY+GbosVr7EwjuLwXkWsAQp5SCagdYVFNO6XwovE/XMEwg4rzswzNZZlYLBEJpfBKZdIJtMcHHHI53IUS0Xy+TzFYpFcLkc2m6VUKh1zbZVSWJZFKBSioaGBpqYm1q5dS1NTE+3t7bz+9a9n06ZN9PT0nIy3iBBCCCFOEsuy6Orqoquri/POO++4bRKJBH19ffT29tLf38/g4CC9vb1MTk5y6NAhBgYGmJycnBOYDH5pudraWmpqamhqaiIWixEKhZhIlAiFwgRDEeI1IUbTEeI1EeKBMI1NQUKBICVj0VbnEAkZWmo9CiW/3Fl7rUs4AMPpIF2NJSzLYGmYTgaoiboobaiLe/QO2oSCUFvjEgkbRif80mq2bZhK+CXS/OIMfiYmYxSlMrQ1uoxNWTQ3+IFT+aLHVMomEioTDfml0wI2FIrQ1VymNgrZQoCyrWhvLDM4HUDFDG0tDqUyaAVlx6CVS099gWLRJZvJMjKdxy0XKGaLDDs58oUCpWKepvoYBycnSafTZLNZMpnMnMCj2yvfI5EInZ2d1NbW0trayvr16+np6UFrzdq1a1m/fj2dnZ3YtvzaKcTLgVLHBk++kkm5NyGEEC+mD7RdfNJKpbnG441PfZ6xchJzvAYGatIh/mrf2znn3WuI1IZOynnF/Nm1axc/+9nPePzxxxkZGaG2tpZ169bxkY98hEWLFj2nYzz22GN885vfZO/evXiex6JFi3jPe95zTNbj++67j5tvvpne3l7q6+t505vexAc+8IE5v8dt3bqVO++8kyeffJLx8XEaGxs544wz+PCHP0xzc/NJfe4nS64SpBRtkJ8HIYQQYqGRvxYL8TxFo1HOP/98zj///BO28TyPoaEh9uzZw/79+zl48CDDw8MMDw8zPj5OMpkknU4zNTWF67oUi0Vc95lz8tq2TSgUwrIsgsEggUCA0J4QoVAIrTWBQADLsggEApTLZYLBILZtc/hRjed5WE0WfYkgKqlQSqFaFQPTQUyzIdJuo5TiwW1D1NXVEVsRw/M8RvMernZxIy479rtYlkUpVMKxHB7eZtBaUy6XKZVK7B7zj1sqlSgWi+wZ0tXHhUIBz/MolUqUSiXK5fJxg7hmBAIBAoFA9XnNZEZYs2YNtbW11NbWcvrpp7NixQo6Ozs57bTTiEajz/s1FUIIIcTCNVN2d8OGDSds4zgO4+PjjI+PMzo6yujoKJOTkwwPDzM4OEg6nWZ8fJyRkRGSySSZTIZs9sR3JAcCAYLBIKGQP9aKRCJYlkVvKIRt2zQ0NLB/qIQxhmAwSCwWo1wuM5J0iMfjNMWCOI5DPlUiYjeytDNKJpNBKcWKDR0UCgUymQzFfJFTFzcQCoXI5XJMTk6ypClKIBBgYmICp1ymORgkqqMc3DPij+ksCx2J0Ld3otrXUqnErkoWSc/z2HV3jkKhUB13FYvFY4K4ZsxkBa2vr8c4TUQiERobG1m5ciU9PT2Uy2UWL17MqlWraGxspLW1lYaGhhf2ogohXjJLly7l7rvv5sMf/vBxf2fK5XLcfffdLF26dB56Nz+k3JsQQoiXC0tprlv0Vj518BYUzA1Uqixc8OvV7N8/RN8jY5z1rlWsubQHrV9dAcivJP/1X//FU089xSWXXMLy5cuZnJzk1ltv5SMf+Qg33XQTy5Yte8b9b7/9dr74xS9y1llncc0112BZFn19fYyNjc1p99BDD/HZz36WjRs38vGPf5yDBw/yH//xH0xPT/PJT36y2u6f//mfSaVSXHzxxSxatIihoSF+8IMf8OCDD/Jv//ZvNDU1vSjX4YWolnuTTEpCCCHEgiNBSkK8iLTWdHd3093dfcwdCifieR5jY2McOnSI/v5+hoaGOHz4cPVO9pkSGsXibHYhx3GYnp7GcRyUUniehzEGx3HQ2g9O8jyvGgA18/iZAoROZCZbkdbaD3JSCtu20VpjjKkGFIFfumVmUm9mIi8cDhMKhYjFYtTU1FTXL1myhMbGRhobGznzzDNZvHixlFwTQgghxG/Etm06Ojro6Oh4zvuUy2WSySRTU1NMT08zMTHB+Ph4df3ExASZTIZCoUAqlWJiYoJyuUwul2NoaIhCoVAddx35NXPsmTHXzNdvQimF1hqtNZZlYdt2dfwVCAQIhULVgKWZDJ1ANaNkJBLB8zw6OztpbW2tHmfp0qW0t7cDfvbQjo4OYrHYqy6LihCvJldccQVf/OIX+djHPsbVV1/Nxo0bqa+vJ5FIsH37dm6++WbGx8f50Ic+NN9dFUIIIcRxbG7YwN8uu4ov9d/KaDlZXd8WrOc9E+ehBw1lHEo5hwdu3smeXw/w2g+to3VF/fx1Wjxv73znO/nLv/zL6t/ZAV73utdx9dVX85//+Z/8xV/8xQn3HR4e5itf+QpXXnklH//4x5/xPP/0T//E8uXL+fKXv1zNnBSNRvnWt77F29/+dhYvXgzAH/zBH7Bhwwa01tV9zz77bP74j/+YH/zgBwsy4Hu23JtkUhJCCCEWGglSEmKB0VrT3t5Oe3s755577kk//szkmOM4lEol0uk06XS6OgmXzWYZGBggHo/T2NhIS0sL4XAYrXW1nIfneQSDQYLB4EnvnxBCCCHESykQCNDc3Pyipag3xswJYiqVShQKBfL5fLWUWqlUor6+nmAwSDwexxhDJBIhHo9XA4dmAoyEEOL5eNOb3sS+ffv4wQ9+wPXXXw/4gZAz2dWMMVx55ZW88Y1vnMdeCiGEEOKZbG7YwCX169mWOchEOUVzoJYzapZhKU3ujCKP/vce9t07CMDk4RS3/eWDrL6km03vWk24Vv6O+3Jy6qmnHrNu0aJFLFmyhN7e3mfc90c/+hGe5/HhD38Y8DNmRiKRY25KOXz4MIcPH+Z//a//Nae021vf+la++c1vctddd/HBD34QgI0bNx5zno0bN1JbW/us/ZkvuelKJqVGuRFaCCGEWGgkSEmIV5mZux1mgoxqamp+o2wDQgghhBDiuZvJfDQz9pLStEKI+fLxj3+ciy++mDvuuIP9+/eTzWaJxWKsXLmSyy+/nNNOO22+uyiEEEKIZ2Epzab4imPWR+tDXPSxDay+pJv7b97JdH8agD2/HuDwo6NsetcqVl2ySErAvYwZY5ienmbJkiXP2G7r1q309PTw0EMPcdNNNzE+Pk48Huetb30rH/rQh6rzA3v37gVg9erVc/Zvbm6mpaWFffv2PeN5crkc+Xyeurq6Z2w3MTHB5ORkdfmlCmrKTvmZlKKSSUkIIYRYcCRISQghhBBCCCGEEOJV4LTTTpNgpIotW7awZcsWMpnMfHdFCCGEOGna1zTy1r85j52/6GPr9/ZSzrsUM2Xu+7cd7Pn1AOddvZaW5fXz3U3xPNx5553PqTzvwMAAWmu+8IUv8J73vIfly5dzzz338B//8R+4rsvv/d7vAVQDh5qamo45RlNT05zAouP5n//5H8rlMq973euesd1tt93GLbfccsz6Q4cO4bruM+57pEwmw86dO59TW881FFIlAAbG+xjLSVbi5+s3ue7i5JHr/tKTaz4/5LrPjxfzuq9du/Y5tZMgJSGEEEIIIYQQQgjxqrJ582Y2b97Mnj17uOaaa+a7O0IIIcRJoy3N+jcuYdlr2nnkv/ew/74hAMYPJvnRXz7Imtct4qx3riIclxJwLxe9vb185StfYd26dVx++eXP2Dafz+N5Hr/3e7/He9/7XgAuvvhi0uk03/ve93j/+99PNBqlVPKDeILBY98HwWCQXC53wnNs376dW265hUsuuYQzzzzzGftzxRVX8NrXvnbOc7nhhhtYunTpMVmcnsnOnTuf88RnZiLPQ/ShLcVpZ65HSQax5+03ue7i5JHr/tKTaz4/5LrPj4Vw3fW8nl0IIYQQQgghhBBCCCGEEEKcVNGGMBdfexpv/otzaOiu8Vca2P3Lfv7nk/ew+9f9GM/MbyfFs5qcnOTTn/40sViMz3/+81jWM2cFCoX88mabN2+es/7SSy+lWCxWy7zNBCfNBCsdqVQqVY9ztN7eXj73uc+xbNkyPv3pTz9r/5ubm1m9enX1a/Hixc+6zwuVm54t9SYBSkIIIcTCI5mUhBBCCCGEEEIIIV7hyuUy9957L7t37yaTyeB53nHbfeYzn3mJeyaEEEKIF1PHKY289W9ey46f97Lt+/soFyol4P71afb8qp/XXr2O5mV1891NcRyZTIbrrruOTCbDP/zDP9Dc3Pys+zQ1NTEwMEBDQ8Oc9TPL6XS62g78IKi2trY5bScnJznllFOOOfbo6Cif/OQnicVifPGLXyQajT6v5/Viy04XAT9QTwghhBALjwQpCSGEEEIIIYQQQryCjYyM8IlPfIKhoSGMOXHGBKWUBCkJIYQQr0Da1pz65qUsO6+DR/5zNwceGAZg/ECSH/7FA5xyaQ9nvnMl4RopAbdQFItFPvOZz9Df38/f/d3fsWTJkue03+rVqxkYGGBiYoLOzs7q+omJCQDq6+sBWLlyJQB79uyZU/JlYmKC8fFxrrjiijnHTSaTfPKTn6RcLvOVr3zlOQVMzZfs1GwmJSGEEEIsPBKkJIQQQgghhBBCCPEK9tWvfpXBwUEuu+wy3vzmN9PS0vKspUJe6bZs2cKWLVvIZDLz3RUhhBDiJRNrCHPJH25k9esW8cDNO0kMZsDAri19HHp4mE3vXs2qi7qlRNY8c12X66+/nh07dvA3f/M3rF+//rjtJiYmyGazdHV1Ydv+dN/rXvc6fvnLX/LTn/6Ua665BgDP87jjjjuora1l9erVACxdupSenh5+/OMfc8UVV1THhj/84Q9RSnHRRRdVz5PP57nuuuuYmJjgxhtvZNGiRS/m03/BcpVMSjHJpCSEEEIsSBKkJIQQQgghhBBCCPEK9vjjj3PmmWfy2c9+dr67smBs3ryZzZs3s2fPnuoEnhBCCPFq0bm2iSv/z2t5+meH2fb9/ThFl0K6zL3/+jS7f10pAbf0xSsB5xqPbZmDTJRTNAdqOaNmGZbSL9r5Xm7+8R//kfvvv5/zzjuPdDrNL37xiznbL7vsMgC+9rWv8bOf/YzvfOc7dHR0AHD++edz5pln8q1vfYtEIsGKFSu49957efLJJ/nUpz5FMDibLevaa6/lz/7sz/jkJz/JpZdeysGDB7n11lv5rd/6rTmZmz7/+c+za9cu3vSmN9Hb20tvb291WyQS4YILLngRr8ZvLjddyaTUKEFKQgghxEIkQUpCCCGEEEIIIYQQr2Ce51VLegghhBBCgF8CbsNvLWP5uR08/J97OPhQpQTc/iQ/+twDnLK5hzPfsYpQTeCknnfL9JN8qf9WRsvJ6rq2QB3XLXormxs2nNRzvVzt378fgAceeIAHHnjgmO0zQUrHo5Tif//v/83Xv/51fvWrX/Gzn/2MRYsW8bnPfe6Y/c477zxuuOEGbrnlFm688Ubq6up43/vex1VXXXXc/tx+++3cfvvtc7a1t7cvwCAlP5OSlHsTQgghFiYJUhJCCCGEEEIIIYR4BVu7du2cO96FEEIIIWbEmiK87o83svp13Txwy06SQ1mMgZ139nHw4RHOfs9qVl7QdVJKwG2ZfpJPHbwFc9T6sXKSTx28hb9ddpUEKgH/7//9v+fU7s///M/58z//82PWR6NR/viP/5g//uM/ftZjXHDBBc8aZPTd7373OfVnochO+ZmUpNybEEIIsTBJ/kwhhBBCCCGEEEKIV7Df+73fY9u2bdx1113z3RUhhBBCLFBd65u58gvns+ndq7BDFgCFVIl7/uUpfvzXDzF5OPWCju8ajy/133pMgBJQXfel/h/iGu8FnUeIark3yaQkhBBCLEiSSUkIIYQQQgghhBDiFeSWW245Zt3pp5/O9ddfz2mnncaqVauIxWLHtFFK8cEPfvAl6KEQQgghFiLL1px2xXKWv7aTL/7qB/yy5enZjYdvIzBiEYzYoH7zrEolzyHhZk+43QCj5QSve+L/I6hPztTVnRv+v5NyHPHyUco7lAsuALFGyaQkhBBCLEQSpCSEEEIIIYQQQgjxCnLzzTefcNv27dvZvn37cbe9moKUtmzZwpYtW8hkMvPdFSGEEGLBqWmK0PnaJrLDxWM3Oi/uuRNuFtwX9xzilStXKfUWiNgEwjIFKoQQQixE8gkthBBCCCGEEEII8Qpy4403zncXFrzNmzezefNm9uzZwzXXXDPf3RFCCCEWnJgVpjVQB0C54FDOO5gjarVZtiYYC6Ct55ZV6dkyKc2ot2InLZOSePXJJfzAOin1JoQQQixcMtITQgghhBBCCCGEeAXZuHHjfHdBCCGEEC9zH2i7mA+0XVxdzkzkeehbuzj8yGh1ndKKdW9YzBlvW0EwGnjG47nG441PfZ6xchJznO0KaA3Uc8epn8NS+uQ8CfGqk61kUoo1SKk3IYQQYqGSkZ4QQgghhBBCCCHEK9DTTz/Nxz/+cd7whjdw+eWX84lPfIKdO3fOd7eEEEII8TJU0xxh85+cweWfPova9igAxjM8fcdh/udT97L/vkGMOV74kc9SmusWvRXwA5KONLN83aK3SICSeEFy036QkmRSEkIIIRYuyaQkntHo6CiJRGK+uyGEeInU19fT1tY2390QQohXLRl7CfHqImMv8WI6cOAAf/Inf0K5XK6u27p1K08//TT/8i//wtKlS+exd0IIIYR4ueo+rYW3ffF8nvzpIbb/8ABuySOfKHLXPz3J7l/1c97V62hcFD/uvpsbNvC3y67iS/23MlpOVte3Buq5btFb2Nyw4aV6GuIVKjvtl3uLNUomJSGEEGKhkiAlcUKjo6O848p3gDXfPRFCvFTC4TDf/OY3ZbJMCCHmgYy9hHj1kbGXeDH953/+J+Vymfe///287W1vA+DWW2/l3//93/mv//ovPvvZz85zD4UQQgjxcmUFLE5/ywpWvLaLh761i95H/RJwI7unufXP7mfd5Ys548rjl4Db3LCBS+rXsy1zkIlyiuZALWfULJMMSuKkyE3NZFKSICUhhBBioZIgJXFCiUQCLLD31qMLNqBRWoGa/VJa+7lYlfbXHbX9xF+VfbQCZpbVEcvKL0aoqC6bmXWV9kcuGzV7DDPzu8zMMWfazvk+s1+l3RH7mJnjVHLMGgVGH7Gfmj22mbMPc/aZc35m96u2PWrf6hfP3H7OPidY96yPq+vMnHVmzjHNnGX//OaY/TnmmJV2ena7Un6aX6VmlmdexiO2V777m2bbaWUq+5sjlv02/lvAgDLV9VoZfxtHrVMGjf+llKm8VSvr1BHtK9+rXxgUHrpyLq28yjbQeChlsCrns5RX+W5QyvPXV7cfuexVj62VV+2DjXucbR4a0DPHq5xn5rlozJzz+G0rfa08tlAowFKgUJXl2e8ahVaa/sEA//ur9SQSCZkoE0KIeTBvYy+lF9S4q7q8gMdeRh+x70IYdx3VZiGOvSy9sMZdFpX9ZewlXsGefPJJTj31VD7ykY9U133oQx/i8ccfZ/v27fPXMSGEEEK8YsRbIrz+f51B//ZxHvz3naRGc34JuNsPc/CBYc553xqWnduBUmrOfpbSbIqvmKdei1eyXCWTkpR7E0IIIRYuCVISz0rlbHQ+CGpmokxXJ8T8iTIFenaiTB2xfc626vLMY33sxJo+YmLMMGebmflFRs1Mpcy2MUfMGplKm5lJrtlJuCOXj3qs1TGTYHMmgCpBSjMTeCeaQDv2uzpmMuxEbZ9tUux47Z51O8/W9jiTZUdv48htR0+OmWO2qZnHRwcpzfnut1Ezk15HT5Qdsc1UH5s5+2lmzl2ZSDviSzG7z9ETX/qE67xjlq0jJ6xmJqJmHivjT2IdMfk1M4FlKQ+tVLW9/51KO3/iyt/fn7zSlQm2gPKw8KrHtirLM8f0J8K82ceVc88+Nkeca/b4Fqry2J8UsyqTY/6yrjz2vwshhJh/L/XYy2i9sMZdc9qyIMde1SClhTLuqvZh4Y69bO0tqHHXbHsZe4lXrunpaS699NJj1q9du5Zdu3bNQ4+EEEII8Uq1aGMLHWvP56mfHGL7jw7glj1yiSK//ocn/BJwV62lofv4JeCEOJmy034mJSn3JoQQQixcEqQkhBBCCCGEEEII8QrjOA6RSOSY9eFwGMdx5qFHC8uWLVvYsmULmUxmvrsihBBCvCLYQYvTr1zBivM7efCbu+jbOgbA8M4pfvBn97P+8iWcfuUKghGZlhIvDuMZcgnJpCSEEEIsdFLkVwghhBBCCCGEEEK8qmzevJkvfOEL/NEf/dF8d0UIIYR4RYm3Rrnsk2dy2afOJN7iB0wb1/DUTw/xvU/dw4EHhzHGzHMvxStRPl3CuH4W4GidBCkJIYQQC5WErAshhBBCCCGEEEK8Av3iF79gx44dc9YNDg4C8Kd/+qfHtFdK8aUvfekl6ZsQQgghXtl6zmilc30TT9x2kCd/fNAvATdd5Ndf3c6eXzVx7lVraeiqme9uileQ3JRf6i1SF0LbkqNBCCGEWKgkSEkIIYQQQgghhBDiFWhwcLAalHS0Rx555Jh1SqkXu0tCCCGEeBWxgxZnvn0lKy/o5MF/30X/9nEAhnZM8oPP3Mepb1rC6W9dQSAsU1XihctNV0q91UsWJSGEEGIhk5GfEEIIIYQQQgghxCvMd77znfnughBCCCEEALVtMS770zPp2zbGg/+xi8x4HuManvzxIQ7cP8w571vD0nPaJWBavCDZaT+TUqwxPM89EUIIIcQzkSAlIYQQQgghhBBCiFeY9vb2+e6CEEIIIUSVUorFZ7bRdWrznBJw2akCv/p/2+lc38R5V62lvlNKwInnZ6bcW7RBMikJIYQQC5kEKYlnZaIOngbQKK1AzX4prUEBSvvrjtp+4q/KPloBM8vqiGUF2n84s2xm1lXam5njoDDM3GGhMID/DzMH8Ld7s/uYmf0qp6u2n1muHruyrNUR2/zNzNzVoY764sh2lfMdsW7mnDPrzHH2f6b2c/Y5wbpnfVxdZ+asM3OOaeYs++c3x+x//OdvKq+VqVwH/wIrNbNcuT5Hbq98Vxy5HrQylf3NEcuVV716DHNE3wwGU3luBq/6XPz1BoOnTOWtatAY/5hHfa9+YVB4aEWlrVfZBhoPpQwW/n6W8irfDUp5/vrq9rnLuvJ29r8rtAIbjQWV8yq0Uv53QM8cr3Iejal+zTlu9Zizjy0UCrAUKFRlefa7fy5N/6B8JAghxELwko+9lF5Y465qf2e/FtrYy+gj9l0I466j2izEsZfRC2vcZVVGQTL2EkIIIYQQ4qU1UwJuxfl+CbiBJyol4J6e5Aefvo9T37yUjW9ZLiXgxG8sWyn3FmuQTEpCCCHEQiajPHFCnudh2zbOqsR8d+X5MRwxafbcqaO+i5efmZfem++OPKOZ2UQ93x2Zw7ZtPG9hXzkhhHilelmPvWTc9aq28MdeC3PcBTL2EkIIIYQQr1517THecN2Z9D42xkPf3EVmIo/nGp647SD77x/iNe8/hSWb2qQEnHjOcpVyb9FGyaQkhBBCLGQSpCROSGuN4zh87nOfY/HixfPdHSHEi6y3t5cbbrgBrRfeBJ4QQrwayNhLiFcXGXsJIYQQQohXO6UUSza10b2hme0/OsCTPzmI5xiykwV++feP072hmXM/uJa6jth8d1W8DOQqmZSikklJCCGEWNAkSEk8q8WLF7N69er57sbL2j333MNtt93G1q1b2bZtG6lUig9+8IPccsst8921Y3zrW9/i3nvvZevWrTz11FOUSiVuvvlmrrrqqvnu2gtSLpe57bbbuO2223jkkUfo7+9HKcXatWu56qqr+OhHP4plWfPdTSGEEELGXi+QjLvmn4y7hBBCCCGEEL8JO2Rx1jtXsfKCLh78950MPDkBwMCTE3z/0/ey4beWsfF3lmOH5PcIcWLZKT+TkpR7E0IIIRY2CVIS4iXwjW98g3//938nGo3S09NDKpWa7y6d0Oc+9zl6e3tpbm6mo6OD3t7e+e7SSXHgwAHe/va3U1NTw6WXXsoVV1xBMpnkxz/+Mddeey233347t912m6QPFkIIIV7mZNw1/2TcJYQQQgghhHg+6jpivOHTZ3H40VEe+uYuspMFPMew/YcH2H/fIK95/1oWn9Uqv0uIYzgll2KmDEC0Qcq9CSGEEAuZ5JUX4iXwh3/4hzz99NOkUiluvvnm+e7OM/r617/O4cOHGR8f5/d///fnuzsnTTwe5x//8R8ZGRnhhz/8IV/84hf553/+Z/bu3ctZZ53FT37yE773ve/NdzeFEEII8QLJuGv+ybhLCPFysGXLFj7zmc/w1a9+db67IoQQQogjKKVYenY7b/+/F3DaFcvQlh+QlJkosOUr2/j5l7aSHMnOcy/FQpNP+KXerIAmVBOY594IIYQQ4plIkJI4oaamJq666iqamprmuyvz6vvf/z4XXXQRra2thMNhOjs72bx5M9///vef8zHOOuss1q1b94LLWniex9e//nXOPvtsGhsbiUQidHd389u//dvcdddd1XZ33XUXSimuv/56HnjgAS677DLq6+uf0x0mmzdvZvHixS+onzNKpRJf+cpX2LRpE/F4nJqaGtauXcsnPvEJpqenq+2WLFnCkiVLSCaTfOxjH6Ojo4NYLMaFF17Itm3bABgaGuJ973sfra2tRCIRLrvsMvbt2/ec+9LV1cW1115LLDa3fnksFuMTn/gEAHffffdJeNYvX/IzL4QQ80v+H5Zx1wsh466XH/mZF2J+bd68mS984Qv80R/90Xx3RQghhBDHEQjbbHr3aq784vl0nTo7Zh54YpzvX3cvW/9nL07RncceioVkptRbtD4kmbaEEEKIBU7KvYkTam5u5kMf+tB8d2Ne3XTTTVx77bV0dHTw1re+laamJkZGRnjkkUe49dZbedvb3vaS9ufP/uzP+NKXvsTy5cv53d/9XeLxOIODg9x3331s2bKFiy++eE77Bx54gL/5m7/hkksu4aMf/Sh9fX0vWV/z+Tyvf/3ruf/++1m5ciVXX301oVCIffv28S//8i984AMfoKGhodq+VCrx+te/nkKhwLve9S5GR0f57ne/y+bNm3nggQd4wxveQEdHB+973/vYv38/P/7xj3nzm9/Mrl27XvAkZCDg31lh26/u/xLlZ14IIebXq/3/YRl3PX8y7np5erX/zAshhBBCCPFc1HfWcPlnNnH4kREe+uZuslN+CbjHbz3AvvuGOPcDp7D4zLb57qaYZ7lKJqVoY3ieeyKEEEKIZyN/GRbiGXz9618nGAyyfft2Wltb52ybnJycl/50dnby5JNPEo1G52ybmpo6pv2dd97JN77xDa6++uqXqotVf/EXf8H999/P+9//fm6++eY5E1rJZPKYCa7h4WHOP/98/uu//qs6aXX66afz6U9/mnPPPZerr76aL3/5y9W7IK699lpuuukmfvSjH3HllVe+oL5+4xvfAOCyyy57QccRQgghxPMn467nT8ZdQgghhBBCiFcypRRLz+mg+7QWHr91P0/dfhjjGjLjee788jYWnd7CuR84hdq22LMfTLwizWRSijVIkJIQQgix0Em5NyGeRSAQqN7xfaT5KssQDAaPewd7Y2PjMevOOOOMeZkocxyHr33ta9TV1XHjjTce09+6ujpqamqO2e9v//Zv59xV/573vKd6vBtuuGFOmtaZbU888cQL6uvXvvY17rjjDl73utfxpje96QUdSwghhBAvjIy7fnMy7hJCCCGEEEK8WgTCNme/Zw1XfuF8OtfN/p7Y//g437/uPrZ+bx9OSUrAvRrlpiuZlBpC89wTIYQQQjwbyaQkxDN497vfzXXXXcf69ev53d/9XS655BLOP/98amtr57T7+7//exKJxJx1V111FUuWLDnp/fmnf/on1q9fz7vf/W4uueQSzj33XCKRyHHbb9q0ac5yIpHg7//+749pd/3115/Ufu7evZt0Os3mzZvnlBZ5Jg0NDfT09MxZ19HRAcDKlSuPyWAws21oaKi67pZbbuHw4cNz2r3lLW9h48aNxz3nT37yE/7wD/+QxYsX861vfes59VMIIYQQLw4Zdz0/Mu4SQgghhBBCvNo0dNXwxj/fxKGHR3jom7vITRdxyx6P/2A/++8b5NwPrqXn9NZnP5B4xdjwW0tZsqmNcDw4310RQgghxLOQICUhnsGnPvUpmpqauOmmm/jyl79cveP8zW9+M1/5yldYunQp4E+W9fb2ztn34osvPumTZTfeeCNLly7l5ptv5oYbbuCGG24gHA7zzne+ky9/+cs0NzfPad/WNrcWdyKR4K/+6q+OOe7JnixLJpMAdHV1Ped9jp6ABKp39z/TtnK5XF13yy23cPfdd89pt2TJkuNOlt1+++28/e1vp62tjV/96lfVyTchhBBCzA8Zdz0/Mu4SQgghhBBCvBoppVj2mtkScE/f4ZeAS4/l+cX/3UrPma1c9skz57ub4iUSqQsR+f/bu/e4nO//f+CPujofVEJSiUKKkkMZkcpmCbFF2IFGztJYY/YZttnWRpvzWcQYxcZIB40SxkzLRCLLoYNKqXTS8fr90a/r63JdnejqIo/77eb2cb1er/fr/Xy/6n193vN6vl8vHa6iRERE9CpgklIrUVJSgoMHDyIxMRE3btxAYWEhli5dipEjRzb7uR4+fIiNGzfi77//RnV1Nfr27QsfHx906tRJrJ2jo6PU42fOnIkPPvig2eOSBQUFBUybNg3Tpk1Dbm4uzp49iwMHDiAkJATJycm4evUqBAKBxFvksqKkpAQ/Pz/4+fkhIyMDZ86cwe7du7F3715kZmYiMjJSIv6ndenSBUKhUOZx6urqAgDS09Nlfq6nxcTENKrdiRMn4OHhgXbt2iE6OhpmZmbNHsudO3ewe/du3Lx5E48ePYKamhpMTU0xefJkODg41HtsTk4ODh8+jBs3biApKQmlpaVYt24d+vbtK9buyZMnCAsLw7lz55CSkoLS0lIYGxtjzJgxGDNmjMR2L3v37hV9R+Tl5cHLywvTpk2TOP+ZM2dw+vRpJCUl4dGjR+jQoQMGDRqEqVOnQltb+8UH5xkJCQnYunUrbt26BU1NTTg7O2PGjBliqzjEx8fD19dX6vFbtmxBr169mj0uIqL68Nmr+fG56/m8js9dL3L/hYeHw9/fX2rdkSNHxLYWLCsrw6FDhxAZGYnMzExoa2ujd+/e+Oijj0RJc03t09PTE5mZmRLt3N3d4efnJ/p85coVHDx4EMnJySgoKICWlha6deuGqVOnwtrausHrbKq7d+9i48aNSEhIgJKSEgYNGoT58+eLfr8A4MGDB5g4caLU41esWIHhw4c3e1xERERERA1RUVfCwPd6ooejEf4MSsSDxEcAgPtx2XKOjIiIiIikYZJSK1FQUICgoCAYGBigW7duiI+Pl8l5SkpK4Ovri+LiYnzwwQdQUlJCSEgIfHx8sGvXLujo6Ii1HzBgAFxdXcXKunfvLpPYZE1fXx/jxo3DuHHjkJOTg9OnT+P27duwsLCQSzydOnXC5MmTMXHiRFhYWOCPP/5AaWlpnVuQtCQLCwu0adMGf//9N/Ly8hq99UhLqJ0oa9u2LaKjo9GtWzeZnCczMxMlJSVwdXVFu3bt8OTJE5w5cwZLly6Fn58f3N3d6zw2NTUVv/zyC4yNjWFmZobr169LbZeRkYF169ahf//+mDhxIjQ0NHDp0iX89NNPuH79Ov73v/+Jtd+5cyfatm2L7t2749KlS3WePyAgAPr6+hgxYgQMDAzw33//4ciRI7h48SICAwOhqtp8b6QkJydj4cKFMDU1xfz585GdnY3g4GCkpaVh9erVEu09PDxgaWkpVtaUlSOIiJoLn71ki89djfc6Pnc1x/03ffp0iRWdtLS0xD6vXLkS58+fx5gxY9CjRw/k5OTgyJEjmDNnDoKCgtCxY8cm9wnU3JPPJvsYGxuLfU5LS4OioiLGjh2Ltm3borCwEFFRUfDx8cEPP/yAgQMHNvma65KdnQ0fHx9oaWlhxowZKC0txcGDB5GSkoJt27ZBWVlZrP2bb76JN954Q6yMCeNEREREJG96xtpw+589Ui48wF/7klCSXybvkIiIiIhICiYptRL6+vqit3STkpIwc+ZMmZzn6NGjSEtLw7Zt20SJAgMHDoSXlxeCg4MlzmtiYoIRI0bIJJaWEBMTg2HDhom9GV9RUYFHj2rexlBTU2uxWMrKyhAXF4fBgweLlRcXF6OoqAjKyspQVFRssXjqo6SkhFmzZmH16tXw9fXF7t27xVb1KSgogEAgkDppI0vh4eHw8PCAnp4eoqOjZTppO2jQIAwaNEis7N1338WMGTMQEhJSb5KShYUFQkND0aZNG8TExGD58uVS27Vt2xZBQUFib/KPHTsW33//PcLCwjB16lSxCa/g4GAYGhoiPz+/3vN//fXXEqs2WVhY4LvvvkNUVBRGjx5d77U3xfbt26GtrY3169dDU1MTAGBoaIhVq1bh0qVLsLe3F2vfp08fODk5Ndv5iYieF5+9mh+fu57P6/jc1Rz338CBA9GzZ8866x8+fIjY2FhMmjQJc+fOFZXb2Njg448/RmxsLDw9PZvUZ6127do1eJ+OHj1a4pnrnXfewaRJk3Do0KFmTVLat28fnjx5gp07d4q2LbS0tMSiRYsQHh4u8dzYvXv3V/Z7hoiIiIhaNwUFBZgP7gQT2/b457fb8g6HiIiIiKRgklIroaKiIraNQH0uXryIffv24datW1BQUECfPn0wZ84csUSHusTExKBnz55iK5mYmpqiX79+iI6OljpBUFZW88ZCc66+0lLGjRuHNm3a4I033oCpqSkqKioQFRWFxMREjB8/Hqampo3q59y5c9i5cyeAmgmP2jIvLy8ANRMVAQEB9fZRWloKBwcH9OjRA/3790fnzp1RVFSE0NBQZGZmws/Pr1nGeOfOnTh37hyAmm24astqt/QYMmQIvL29G+zn66+/xsWLF/Hzzz/j4sWLGDlyJFRVVZGSkoKIiAicO3cOtra2LxxvYyUlJeGdd95BWVkZnJyccODAAYk2Xbp0Ef1MZEEgEKBDhw5ISkqqt93T25zVR1dXV2wLjlpDhw5FWFgY7t27J5ak9Oyb/XV5NkEJqNlC6LvvvpPYYqe6uhqHDx9GaGgoMjIyoKmpiSFDhmD27NkNbg1XXFyMy5cvw9PTU5SgBABvv/02NmzYgOjoaIkkJaBmVREVFRUoKfH/wohIfvjs1fz43MXnrsZqyv1Xn5KSEqiqqkpskVtbB0BiZara89b186+vz6dVVFSgsrKySatxqampQUdHB0VFRRJ1J0+eREhICO7evQtVVVXY2dlhzpw5oqSj+pw5cwaDBw8WaztgwACYmJggOjpaanJ7aWkplJSUJFZZIiIiIiJ6GahoKOONDywbbkhERERELY4zvK+ZyMhIfPfdd7C3t8esWbNQVlaGo0ePYt68eQgMDKw3iaG6uhopKSlwc3OTqLO0tMTff/+NkpISsQSLiIgIHD16FEKhEKamppgyZQreeustmVybLPj7+yMiIgKXLl3C8ePHoampCXNzc2zZsgXTp09vdD+3b9/Gnj17xMr+++8//PfffwBqJhsbmizT1NTEDz/8gFOnTuHs2bPIzs6Gnp4eLCws4O/vj0mTJjX9AqU4d+6cRKznz5/H+fPnRZ8bM1mmpqaGqKgobNy4Efv27cOOHTsgEAjQuXNnzJ49G126dGmWeBsrMzNTNGl78OBBqW2GDRvW7ElKpaWlKCsrQ3FxMc6fP4+//voLzs7OzXqOZ9WuOPHsFkAvIjc3FwAkkqICAgIQHh4ONzc3eHh44MGDBzhy5AiSk5OxefPmehOJUlJSUFVVJbF1j7KyMrp3747k5GSJY/z9/VFaWgqBQAAbGxvMmTOnUSsWEBHJC5+9Go/PXTX43NUyfH19UVpaCmVlZdjZ2WHevHkwMTER1RsZGaF9+/YIDg5G586d0b17d+Tk5GDr1q0wNDSEi4tLk/us9c8//2DEiBGoqqpCx44dMWHCBEyYMEFqnMXFxaioqEBBQQEiIyNx584dfPjhh2Jt9u7di8DAQDg7O2P06NHIz8/Hr7/+Ch8fHwQGBtabOP7w4UPk5eVJ3UrR0tISFy9elCgPCgrCli1boKCgAAsLC3h7e0tNLCciIiIiIiIiIiJ6FpOUXiMlJSVYt24dRo8ejU8//VRU7urqig8++AD79u0TK3/W48ePUV5eLvWt5dqynJwcdO7cGQDQu3dvODs7w9DQELm5ufjtt9+wcuVKFBcXY9y4cc17cTIyZ84czJkz54X78fLyeuFJGGVlZSxevBiLFy9usK2TkxOEQuFznScoKAhBQUHPdeyzVFVV8cknn+CTTz6pt92zq/M8ra7r6NKlS5Ou8UXG5EVs2rQJx44dAwAoKirC0dERCxculNn5KioqcOjQIRgaGjZr8s4vv/wCgUCAYcOGicquXr2K0NBQLFu2TGwCvF+/fvDz80N0dHS9E+O1iU91faf8+++/os9KSkoYNmwY3njjDejo6ODu3bsIDg7G/PnzsXnzZvTo0aM5LpOIqFnx2atp+Nz1Yvjc1TiqqqoYOXIk+vbtC01NTdy8eRMhISGYO3eu2HZnSkpKWLlyJVauXImlS5eKjrewsMDmzZvFEn8a2ycAmJmZwcbGBiYmJnj8+DHCw8OxYcMG5OTkSP39X7FiBS5dugSg5vfS3d0dU6ZMEdVnZmZi9+7d8Pb2FktecnR0xPTp03H06FGJpKanNfQ8Vvs9pKKiAkVFRdjZ2cHR0RHt2rVDRkYGQkJCsHjxYvj7+0tsdUzUkpKTk7FmzRqkpKRAR0cHH374YbNuU01ERERERERERM2DSUqvkcuXL6OoqAjDhw9Hfn6+qFxRURGWlpb4559/6j2+9m1oaUv6q6ioiLUBgM2bN4u1cXNzg7e3N7Zv3y7agoKotZswYQKcnJyQk5OD6OhoVFVVoaKiQmbnW7t2Le7evYsffvih2bZDi4qKwokTJzB58mSx1QCio6OhpaUFOzs7se+UHj16QF1dHfHx8fUmKTX0nVJeXi76bG1tDWtra9HnIUOGwMnJCR999BG2b9/e4IoYRETywGcvopePi4uL2CpIQ4cOhb29PXx8fPDzzz/Dz89PVKetrY1u3brByckJVlZWSE9Px/79+7FixQr8+OOPonuqKX1+//33YvG4ubnh008/RUhICDw8PNChQwex+lmzZmHixInIzs5GREQEKisrUVVVJaqPjY1FdXU1nJ2dxb5n2rZtC2NjY8THx9ebpNTY7xkVFRUYGBjgxx9/FGvz9ttvY8qUKdi0aROTlEiuvvnmGzg7O2Pjxo1ITk7GggUL0Lt37xZfSY6IiIiIiIiIiOrHJKXXSFpaGgDg448/llqvqakJoOYfoYuKisTq9PX1Rf8ILy3BojaZoL7JL2VlZbz77rv48ccfcfPmTdjY2DT5GoheNaampjA1NQVQs3LGokWL8Nlnn2Hbtm1QUFBo1nMdOHAAx48fx/Tp05ttkujff//FDz/8AHt7e8yYMUOsLi0tDUVFRXB3d5d6bF5eHgCgqKhIbBJdWVkZbdq0afA7pXZirC7GxsYYMmQIYmNjUVVVBYFA0KRrIyKSNT57Eb0abGxsYGVlhbi4OFFZUVERfHx8MGnSJLHt/Xr27IkFCxYgPDy83hXKpPUpjYKCAjw9PXHp0iVcuXIFI0aMEKvv3r276O8jRoyAt7c3/P39sXLlSgA13zNCoRDvvfee1P5rk9ZLSkpQWloqKhcIBNDV1X3h75k2bdpg5MiR2L9/P7KzsyWSrIhaSmZmJoYPHw5FRUVYWFjA1NQU9+/fZ5ISEREREREREdFLhklKr5Hq6moAwBdffIG2bdtK1NdO8J8+fRr+/v5idbGxsWjTpg1UVFREWwI8rbasXbt29cZQ+4/Wjx8/bvoFELUCTk5OCAgIQGpqqmh7nuYQHh6OrVu3YuzYsZg6dWqz9Hn79m0sXboUZmZm+PrrryVWZhIKhdDT08OyZcukHq+rqwsAWL9+PSIiIkTltra2WL9+vWhbkbq+Uxr6PgFqvlMqKirw5MkT0WQ/EdHLgs9eRK+ODh064P79+6LPZ86cwaNHj+Dg4CDWztbWFpqamkhISGhwG8Vn+6yvHdDwfaqsrAwHBwfs378fZWVlUFVVRXV1NRQUFLB69WooKipKHKOurg4AOHjwoNjWgh07dkRISEiDz2O130ONib+wsJBJSq+5kpISHDx4EImJibhx4wYKCwuxdOlSjBw5UqJteXk5AgMDcfLkSRQWFsLc3Bze3t6ws7N7rnN7eHggKioKU6ZMwa1bt5CdnQ0rK6sXvSQiIiIiIiIiImpmTFJ6jRgZGQGoSRwYMGBAne3s7Ozw008/SZQrKirCzMwMSUlJEnWJiYno1KkTNDQ06o0hIyNDFAPR66h2RaFnV8x4EWfPnsWqVavg6OiIhQsXNkuf6enp8PPzg56eHlatWiX13u7UqRPi4uJgbW1d7xv27733ntiqANra2gCArl27QiAQ4ObNm2JbpFRUVCA5ORnOzs4NxpmRkQEVFRXRBBwR0cuEz15Er46MjAyx+6R2RcjaZMNaQqEQ1dXVYluuNbbP+toBjbtPy8rKIBQKUVJSAlVVVRgZGUEoFMLQ0FBsW95nubq6iq2mVvvs1r59e+jq6uLmzZsSx9y4cQPdunVrdPw6OjoNtqXWraCgAEFBQTAwMEC3bt0QHx9fZ1t/f3/ExMRgwoQJMDY2Rnh4OBYvXox169Y918p/AwcOxLfffouff/4ZALB48eJGvfRAREREREREREQtS/JVS2q17O3toampiX379qGyslKiPj8/H0DNG/kDBgwQ+1Nr2LBhSEpKEpssu3//PuLj4+Hk5CTR19NKSkpw+PBh6OjowMLCotmui+hlVDux9bTKykpERkZCVVVVtO1ATk4O7t27J/WebIwrV67gq6++go2NDZYtWyb1Dfqmys3NxSeffAJFRUUEBATUOWHm4uKCqqoq7NmzR6KusrIShYWFAIAuXbqIfZ/U3v9aWloYMGAATp48iZKSEtGxkZGRKC0tFUtSkvadcvv2bZw/fx52dnbNct1ERM2Nz15E8iXtOUvavXLhwgXcvHkT9vb2ojJjY2MAwKlTp8Tanjt3DqWlpWLbsDW2z8ePH0skN1VWVmL//v1QVlZG3759ReXSniULCwtx5swZdOjQAXp6egAAR0dHCAQC7N69G0KhUKy9UChEQUEBgJrk8qe/Y6ytrUXthg0bhj///BNZWVmisri4OKSmpjb4PPbw4UOEhYXB3NycCSEEfX19HDlyBIcOHcKcOXPqbJeYmIhTp05h5syZmDt3Ltzd3bF27Vp07NgRW7ZsEWs7b948ODo6Sv2zY8cOADX31pIlSzB37lz88ccf2LlzJ7Zv3y41+Y6IiIiIiIiIiOSLKym1Ir/++iuKiopES/WfP38e2dnZAGqWPtfS0sKiRYvw7bffYvr06Rg+fDh0dXWRlZWFixcvonfv3g2uwvLOO+8gNDQUS5YswaRJkyAQCBASEgI9PT1MmjRJ1O63337DuXPnMHjwYBgYGCA3NxdhYWHIysrC//73PygrK8tuIIheAgEBASguLkafPn3Qvn175ObmIioqCvfv38e8efNEK19s374dERERCA4OhqGhoej42sSfu3fvAqhJ3Ll69SoAiLZzy8zMxOeffw4FBQU4OTkhJiZGLAZzc3OYm5uLPkdGRiIzM1O0mtO///4rOs/bb7+Njh07AgA+/fRTZGRkYPLkyUhISEBCQoKoDz09PdEWDLa2tnB3d8e+ffuQnJwMOzs7KCkpIS0tDTExMViwYIHYBLo03t7emDdvHnx8fODu7o7s7GwEBwfDzs4OAwcOFLVbsWIFVFVV0bt3b+jp6eHu3bs4fvw41NTUMGvWrIZ/IEREMsBnLyL5acz9J+05a86cOejRowcsLCygqamJW7duISwsDB06dMCHH34o6t/BwQFdu3bFnj17kJWVBSsrK6Snp+O3336Dvr4+Ro0aJWrb2D7Pnz+PvXv3YtiwYTA0NERhYSGioqJw584dzJw5U7T1GlDzPNa+fXtYWVlBT08PWVlZCAsLQ25uLr788ktROyMjI0yfPh3bt29HZmYmhg4dCg0NDWRkZODs2bMYM2YMJk+eXO9YfvDBB4iJicHHH3+M8ePHo7S0FAcOHICZmZnYNl1btmxBeno6+vfvj3bt2iEzMxPHjh3DkydPsGDBguf4KVJro6KiIvZ7XJczZ85AIBDA3d1dVKaqqopRo0Zh+/btyMrKgoGBAQBg06ZNDfaXnp4ONTU10X97mJubo3fv3vj333+ZpEtERERERERE9JJhklIrEhwcjMzMTNHn2NhYxMbGAgBGjBgBLS0tvPXWW2jXrh3279+PgwcPory8HO3bt4eNjQ3c3NwaPIeGhgbWrVuHjRs3Yu/evaiurkbfvn0xf/58sdVWrK2tce3aNYSGhuLx48dQU1ODpaUllixZgv79+zf7tRO9bFxcXHDixAn8/vvvKCgogIaGBiwsLDB79mwMGTKkweMDAwPFPoeFhYn+Xpuk9ODBA9G2cWvWrJHow8vLSyxJ6cSJE7hy5Yroc3x8vGgLBhsbG1GS0u3btwEABw4ckOjT1tZWlKQEAH5+frCwsMCxY8ewY8cOCAQCdOzYEW+99RZ69+7d4HVaWFjgp59+wtatW7FhwwZoaGhg1KhREolHQ4cORVRUFEJCQlBcXAxdXV04OjrCy8tLtNIBEVFL47MXkfw05v6TxsXFBRcvXsTff/+NJ0+eQF9fH2PGjIGXlxfatm0raqesrIyNGzdiz549uHDhAk6dOgV1dXUMHToUM2bMELv/GtunmZkZTE1NERUVhfz8fCgpKaF79+746quvJLa5dXNzw+nTpxESEoKioiJoa2vDysoKy5cvR58+fcTafvDBBzAxMcGhQ4cQFBQEoGYbNzs7u0Y9dxoYGGD9+vXYuHEjtm3bBiUlJQwaNAjz5s2DioqKqJ2dnR0yMjJw5MgRFBYWQktLCzY2NpgyZQoTQahJkpOTYWxsDE1NTbFyS0tLADX/PVKbpNQYJiYmKCsrw9mzZzFkyBDcu3cPV69exdixY6W2z8nJESU41p4PAO7du9eo892/fx8CgaDR8RHRq4H3NlHrZWpqCjU1NXmHQf9f7Qu0jX32qsXvafnguMsHx73lcczlg+MuH7Ie98Y8eykIn10TnoiIiIiIiIiI6DklJSVh5syZWLp0qdiKXEDNSxd6enpYu3atWPndu3cxZcoUfPLJJ3UmGNXl0qVL2Lp1K9LT09GmTRuMGzcO77//vtS2u3btEiX0ERERUeu3evVqsRXbSb5OnjyJb775Rt5hEBERkYzs2LGjwRcauZISERERERERERG1iLKyMqnbkNau3FX7dn1T2Nvbw97evlFt3d3d4eDgIPpcWFiI9evX49NPPxVbPUyae/fu4ZtvvsEXX3wBU1PTJsf5utmwYQN8fHzkHUajyDNWWZ+7uft/0f6e9/jnOa6xx/Debhre2y/HuVvLvf08xzb13lZXV3+uuEg27O3t8cUXX8DQ0LDBZ69a/J6WD467fHDcWx7HXD447vLREuPemH6ZpERERERERERERC1CVVUVFRUVEuXl5eWiellq164d2rVrJ1bWqVMnWFtbN7oPU1NTbnPYCFpaWq/MOMkzVlmfu7n7f9H+nvf45zmuqcfw3m4c3tsvx7lby739PMc2tb2sny2oaXR1dTFixIjnOpbf0/LBcZcPjnvL45jLB8ddPuQ97opyOzMREREREREREb1W9PX1kZubK1FeW/ZsAlFLePPNN1v8nK+DV2lc5RmrrM/d3P2/aH/Pe/zzHPcq/Q6+Sl6lceW93XL9vcjxTT32VfodJCIiIiJJTFIiIiIiIiIiIqIW0a1bN6SlpaG4uFisPDExUVTf0jjZKRuv0rgykaHl+mOS0qvvVRpX3tst1x+TlIiIiIiosZikRERERERERERELcLJyQlVVVU4duyYqKy8vBxhYWGwsrKCgYGBHKOrn76+Pry8vKCvry/vUIioGfHeJmqdeG+3HvxZygfHXT447i2PYy4fHHf5eFnGXUEoFArlGgEREREREREREb3yfv31VxQVFSE3NxdHjx6Fo6MjunfvDgDw8PCAlpYWAGDFihWIjY2Fp6cnjIyMEBERgRs3bmDNmjWwtbWV4xUQEREREREREZEsMUmJiIiIiIiIiIhemKenJzIzM6XWBQcHw9DQEABQVlaGwMBAnDx5EkVFRTAzM4O3tzfs7e1bMlwiIiIiIiIiImphTFIiIiIiIiIiIiIiIiIiIiIiIiKZUpR3AERERERERERERK1BeXk5vv/+e4wfPx6urq6YPXs2rl27Ju+wiKgZrF69GuPGjYOrqyumTp2K8+fPyzskImom165dw7Bhw7Bnzx55h0JERETU6nElJSIiIiIiIiIiomZQWlqK4OBgjBw5Eu3bt0d0dDTWrl2L4OBgaGhoyDs8InoB9+7dg6GhIVRUVHDjxg0sWrQIBw8ehI6OjrxDI6IXUF1djblz50IoFGLw4MGYOnWqvEMiIiIiatWU5B0AERERERERERFRa6Curg4vLy/R5+HDh2Pjxo1ITU2FhYWF/AIjohdmamoq+ruCggIqKiqQk5PDJCWiV9zx48dhaWmJ4uJieYdCzygvL0dgYCBOnjyJwsJCmJubw9vbG3Z2dvIOrVUoKSnBwYMHkZiYiBs3bqCwsBBLly7FyJEjJdrevXsXGzduREJCApSUlDBo0CDMnz8furq6LR/4K+zGjRuIiIhAfHw8MjMz0aZNG/Tq1Qve3t4wMTERa8sxbz537tzB7t27cfPmTTx69AhqamowNTXF5MmT4eDgINaW4y5be/fuxc6dO9G1a1eJ1QsTEhKwdetW3Lp1C5qamnB2dsaMGTP4sk8TxcfHw9fXV2rdli1b0KtXL9FneY45k5SIiIiIiIiIiOi11JTJmeeZKEtNTUVhYSGMjIxkeRlE9AxZ3ds//fQTwsLCUF5ejjfeeANmZmYtcTlEBNnc1wUFBTh06BC2bNmCDRs2tNSlUCP5+/sjJiYGEyZMgLGxMcLDw7F48WKsW7cONjY28g7vlVdQUICgoCAYGBigW7duiI+Pl9ouOzsbPj4+0NLSwowZM1BaWoqDBw8iJSUF27Ztg7KycgtH/ur65ZdfkJCQAGdnZ5ibmyM3NxdHjhyBt7c3tmzZInqu4Jg3r8zMTJSUlMDV1RXt2rXDkydPcObMGSxduhR+fn5wd3cHwHGXtezsbOzbtw/q6uoSdcnJyVi4cCFMTU0xf/58ZGdnIzg4GGlpaVi9erUcon31eXh4wNLSUqzs6X+XkPeYM0mJiIiIiIiIiIheS42dnAGaPlFWVlaGb775Bu+//z60tLRkeRlE9AxZ3duLFi2Cr68vrly5gpSUFCgoKMj6Uojo/5PFfb1jxw5MmDAB2traLXEJ1ASJiYk4deoU5syZg8mTJwMA3n77bXh5eWHLli3YsmWLnCN89enr6+PIkSPQ19dHUlISZs6cKbXdvn378OTJE+zcuRMGBgYAAEtLSyxatAjh4eGiBA9qmKenJ5YvXy6W7OLi4oKPPvoI+/fvx7JlywBwzJvboEGDMGjQILGyd999FzNmzEBISIhoPDnusrV582ZYWVmhuroaBQUFYnXbt2+HtrY21q9fD01NTQCAoaEhVq1ahUuXLsHe3l4eIb/S+vTpAycnpzrr5T3mijLtnYiIiIiIiIiI6CVVOzlz6NAhzJkzp852tRNlM2fOxNy5c+Hu7o61a9eiY8eOUifJKisrsXz5chgZGYlt/0ZELUNW9zYACAQC9O/fH3Fxcbhw4YKsLoGIntHc9/WtW7eQlJSE0aNHt0T41ERnzpyBQCAQSwpQVVXFqFGjcP36dWRlZckxutZBRUUF+vr6DbY7c+YMBg8eLEraAIABAwbAxMQE0dHRsgyx1bG2tpZYjcfExARdunTBvXv3RGUcc9kTCATo0KEDioqKRGUcd9m5cuUKzpw5Ax8fH4m64uJiXL58GSNGjBAlywA1ianq6uoc+xdQUlKCyspKifKXYcyZpERERERERERERK+lpkzONHairLq6Gt988w0UFBTw+eefc6UVIjmQxb39rKqqKqSnpzdLvETUsOa+r69cuYLU1FR4eHhg3LhxOH36NH755Rf4+/vL7Bqo8ZKTk2FsbCw2eQpAtHXN7du35RHWa+fhw4fIy8uDhYWFRJ2lpSWSk5PlEFXrIhQKkZeXBx0dHQAcc1kqLS1Ffn4+0tPTERISgr/++gv9+vUDwHGXpaqqKqxbtw6jRo2Cubm5RH1KSgqqqqokxl5ZWRndu3fn2D8nf39/uLq64q233oKvry+SkpJEdS/DmHO7NyIiIiIiIiIiono0ZqKs9o3bgIAA5ObmIiAgAEpK/Kc3opdZY+/toqIiXLhwAQ4ODlBRUcHZs2cRHx9f59Y4RCQ/jb2v3d3dMXz4cFH9+vXrYWhoiPfff79F4yXpcnNzpSal1Zbl5OS0dEivpdzcXACo82fx+PFjlJeXQ0VFpaVDazWioqLw8OFDTJs2DQDHXJY2bdqEY8eOAQAUFRXh6OiIhQsXAuC4y9Lvv/+OrKwsrFmzRmp9Q2P/77//yjS+1kZJSQnDhg3DG2+8AR0dHdy9exfBwcGYP38+Nm/ejB49erwUY85/KSEiIiIiIiIiIqpHYyfKMjMzERoaChUVFbEVHFatWoU+ffq0TLBE1GiNvbcVFBQQGhqKNWvWQCgUwsjICMuWLUP37t1bNF4ialhj72s1NTWoqamJ6lVVVaGurg5tbe2WCZTqVVZWJrEtFgBRgkBZWVlLh/Raqh3nhn4WTNx4Pvfu3cOaNWvQq1cvuLq6AuCYy9KECRPg5OSEnJwcREdHo6qqChUVFQA47rJSUFCAXbt2YcqUKdDV1ZXapqGxLy8vl2WIrY61tTWsra1Fn4cMGQInJyd89NFH2L59OwICAl6KMWeSEhERERERERERUT0aO1HWsWNHxMbGtmhsRPT8Gntva2pqYt26dS0aGxE9n+dNbvn8889lGhc1jaqqqih54Gm1E6eqqqotHdJrqXac+bNofrm5uViyZAk0NTWxcuVKCAQCABxzWTI1NYWpqSkAwNXVFYsWLcJnn32Gbdu2cdxlZOfOndDW1oaHh0edbRoaeyaGvThjY2MMGTIEsbGxqKqqeinGXFHmZyAiIiIiIiIiInqFcaKMqHXivU3U+vC+bh309fVF29E8rbasXbt2LR3Sa6l2BbK6fhZt2rRhAsFzKCoqwuLFi1FUVISAgACx32eOectxcnJCUlISUlNTOe4ykJqaiuPHj2P8+PHIycnBgwcP8ODBA5SXl6OyshIPHjzA48ePGxx7ft83jw4dOqCiogJPnjx5KcacSUpERERERERERET14EQZUevEe5uo9eF93Tp069YNaWlpKC4uFitPTEwU1ZPstW/fHrq6urh586ZE3Y0bN/hzeA5lZWX47LPPkJqaiu+//x5dunQRq+eYt5zalfWKioo47jKQk5OD6upqrFu3DhMnThT9SUxMRGpqKiZOnIigoCB07doVAoFAYuwrKiqQnJzMsW8mGRkZUFFRgbq6+ksx5kxSIiIiIiIiIiIiqgcnyohaJ97bRK0P7+vWwcnJCVVVVTh27JiorLy8HGFhYbCysoKBgYEco3u9DBs2DH/++SeysrJEZXFxcUhNTYWzs7McI3v1VFVV4csvv8T169fx1VdfoXfv3lLbccybV15enkRZZWUlIiMjoaqqKkoU47g3r65du+Lbb7+V+NO1a1cYGBjg22+/xahRo6ClpYUBAwbg5MmTKCkpER0fGRmJ0tJSjn0T5efnS5Tdvn0b58+fh52dHRQVFV+KMVeS+RmIiIiIiIiIiIheYU5OTjh48CCOHTuGyZMnA+BEGVFrwHubqPXhfd06WFlZwdnZGdu3b0d+fj6MjIwQERGBzMxMLFmyRN7htRq//vorioqKRCuNnT9/HtnZ2QAADw8PaGlp4YMPPkBMTAw+/vhjjB8/HqWlpThw4ADMzMwwcuRIeYb/ytm0aRPOnz+PwYMHo7CwECdPnhSrHzFiBABwzJtZQEAAiouL0adPH7Rv3x65ubmIiorC/fv3MW/ePGhoaADguDc3XV1dDB06VKL80KFDACBW5+3tjXnz5sHHxwfu7u7Izs5GcHAw7OzsMHDgwBaLuTVYsWIFVFVV0bt3b+jp6eHu3bs4fvw41NTUMGvWLFE7eY+5glAoFMr8LERERERERERERC+hpydnjh49CkdHR3Tv3h3A/03OADX/2BcbGwtPT0/RRNmNGzewZs0a2NrayvEKiEga3ttErQ/v69dLWVkZAgMDcfLkSRQVFcHMzAze3t6wt7eXd2ithqenJzIzM6XWBQcHw9DQEABw584dbNy4EQkJCVBSUsKgQYMwb948tG3btiXDfeUtWLAAV65cqbM+NjZW9HeOefM5deoUTpw4gZSUFBQUFEBDQwMWFhZ49913MWTIELG2HHfZW7BgAQoKCrBnzx6x8qtXr2Lr1q24desWNDQ04OzsjFmzZomSyKhxDh8+jKioKKSnp6O4uBi6urro378/vLy8YGxsLNZWnmPOJCUiIiIiIiIiInptNXZyhhNlRK8W3ttErQ/vayIiIqJXH5OUiIiIiIiIiIiIiIiIiIiIiIhIphTlHQAREREREREREREREREREREREbVuTFIiIiIiIiIiIiIiIiIiIiIiIiKZYpISERERERERERERERERERERERHJFJOUiIiIiIiIiIiIiIiIiIiIiIhIppikREREREREREREREREREREREREMsUkJSIiIiIiIiIiIiIiIiIiIiIikikmKRERERERERERERERERERERERkUwxSYmIiIiIiIiIiIiIiIiIiIiIiGSKSUpEREREREREREREREREREQkF/Hx8XB0dER8fLy8QyEiGWOSEhERERERERERERERERERUSsRHh4OR0dHJCUlAQAuXLiAXbt2yTkq4MiRIwgPD5d3GEQkR0xSIiIiIiIiIiIiIiJqQEhICFxcXPDgwQNRWe0E4Msy2RYaGgonJyf8999/8g6FiIiIXiIXL15EUFCQvMPA0aNHpT439enTB1FRUejTp48coiKilsQkJSIiIiIiIiIiIqLXzIMHD+Do6FjvH09PT3mH+dIoLCzE3r174ebmBkNDQ5me69KlS3B0dMQnn3zSYNuvv/4ajo6OiIqKAgC4urrCwMAAW7ZskWmMREREREKhEGVlZc3Sl6KiIlRVVaGoyPQFotZOSd4BEBEREREREREREZF8GBkZ4a233pJap6Wl1cLRvLxCQkLw+PFjTJ48WebnGjBgAAwMDBAXF4esrCwYGBhIbVdUVISzZ89CS0sLjo6OAAAlJSV4enpi3bp1SEhIgLW1tczjJSIiopfbd999h4iICAAQPTMAQGxsLACguroahw8fRmhoKDIyMqCpqYkhQ4Zg9uzZ0NbWFrX39PRE165d4eHhgR07duDOnTuYOXMmPD09ERYWhsjISNy5cwfFxcXo1KkTPDw8MG7cOLHjMzMzxeKwtbXF+vXrER8fD19fX6xbtw59+/YVHRMdHY39+/fj7t27UFdXh729PWbPno327duLXd+ZM2ewb98+rFmzBnFxcVBRUYGrqytmz54NgUDQ/INKRM+NSUpERERERERERERErykjIyNMmzZN3mG81CorKxEaGgpra2sYGRnJ/HyKiooYOXIkgoKCEBERgalTp0pt98cff6CsrAxubm5QVVUVlQ8fPhwbN27E77//ziQlIiIigru7O3JycnD58mV88cUXEvUBAQEIDw+Hm5sbPDw88ODBAxw5cgTJycnYvHkzlJT+L6Xg/v37+Oqrr+Du7o7Ro0ejc+fOAGq2cevatSscHBwgEAjw559/4qeffkJ1dTXeffddAICPjw/Wrl0LdXV1TJkyBQCgp6dXZ9zh4eHw9/dHz549MXPmTOTl5eHw4cNISEhAYGCgWAJVVVUV/Pz8YGlpiblz5+Ly5csIDg6GkZGRWKIUEckfk5SIiIiIiIiIiIiIqEGOjo6wtbXFl19+iS1btuDixYsoLS1Ft27dMGvWLLG33muVlJTg4MGDiImJQUZGBlRUVGBpaYmpU6fCxsZGrO2CBQtw5coVREVFYe/evTh16hSysrLw4YcfihKpat+Sv3PnDjQ1NeHg4IA5c+Zg+vTpAGpWPAKAlStXIioqClu3boWVlZVEXIGBgdizZw+WL1+ON998s97rvnTpEnJzc/Hee+81eqyys7Px6aefIj09HV988QWcnJwAAHl5edi3bx/+/PNPZGdnQ0NDA3369MG0adNgZmYmOt7NzQ179uxBeHg4pkyZAgUFBYlzhIWFAQBGjRolVq6rq4u+ffsiJiYGixYtgoaGRqPjJiIiotand+/eMDExweXLlzFixAixuqtXryI0NBTLli0TW12zX79+8PPzQ3R0tFh5eno6AgICYG9vL9bPhg0bxJKmPTw84Ofnh5CQEFGS0tChQ7Fz507o6OhIxPGsyspKbN26FV27dhXr28bGBkuWLMGhQ4fEEu3Ly8vh4uIiSu4eO3Yspk+fjhMnTjBJieglw00diYiIiIiIiIiIiKhRioqKMG/ePNy9excjRoyAo6Mjbt68CT8/P6SkpIi1ffz4MebMmYOgoCBoa2tj7NixcHR0xK1bt+Dr64uzZ89KPceyZcsQERGBvn37Yvz48TA0NAQAnDhxAsuWLUNaWhrefvttuLq64vr161i0aBEqKyvF+nB3dxcd86yqqiqEhYVBR0dHbMuTusTFxQEAevXq1fAAAbh79y7mzp2L7OxsrF69WpSglJ6eDm9vbxw6dAidOnXCu+++izfeeAOXLl3CnDlzkJiYKOqjY8eO6N+/PzIyMhAfHy9xjpSUFCQlJaF79+7o0aOHRH2vXr1QXl6Oa9euNSpmIiIiej1FR0dDS0sLdnZ2yM/PF/3p0aMH1NXVJZ5DDA0NJRKUAIglKBUVFSE/Px+2trbIyMhAUVFRk+NKSkpCXl4e3nnnHbG+Bw0ahM6dO+PChQsSx4wdO1bss42NDTIyMpp8biKSLa6kRERERERERERERPSaSk9Px65du6TW9erVCwMHDhQru337NsaNG4ePP/4Yioo178D269cPq1atwm+//QY/Pz9R27Vr1+LOnTtYvHgxRo8eLSrPy8vDjBkzsHr1atjb24tNPAFAbm4udu/ejTZt2ojKCgsLsX79eqirq2P79u0wMTEBAMyYMQN+fn64efMmOnbsKGrfp08fdOnSBadOncL8+fOhrq4uqrt06RIePnyICRMmQEVFpcExSkhIgKKiIrp169Zg2+vXr2PJkiVQUlLChg0bxI759ttv8ejRI4nVB6ZMmYIZM2Zg1apVCAoKEpWPGjUKly9fRlhYGPr16yd2nrpWUaplYWEBALh27ZrUiUQiIiIiAEhLS0NRUZEowftZeXl5Yp9rk8eflZCQgF27duH69et48uSJWF1xcTG0tLSaFFdWVhYAiJ75nmZqaoqrV6+KlamoqEBXV1esTFtbG4WFhU06LxHJHpOUiIiIiIiIiIiIiF5T6enpYokxTxs/frxEkpK6ujpmz54tSlACAFdXV/z4449ISkoSleXn5yM6Ohr9+vUTS1ACAD09PUyePBnr1q1DXFwcBg8eLFb/0UcfiSUoAcC5c+dQWloKDw8PsckqJSUleHt7Y+7cuRLxu7u7Y/369Th16pRYDKGhoQCAMWPGSL3uZz18+BBaWloNJjRduHABK1asgL6+Pn788Ud06tRJVHfr1i1cu3YNbm5uEklDJiYmGD16NEJCQpCSkiLa9m3o0KHQ0dHBmTNnsHDhQmhqagKo2f7k5MmTUFFREdt+5Wlt27YFULPtHBEREVFdhEIh9PT0sGzZMqn1zyb+PJtcDtQ8Ty5cuBCdO3fGvHnz0KFDBygrK+PixYsICQlBdXW1LEIXIxAIZH4OImoeTFIiIiIiIiIiIiIiek3Z29sjICCg0e2NjY2hoaEhVqakpIS2bduKbeWRlJSEqqoqVFRUSF2pKS0tDQBw7949iSQlS0tLifb//fcfgJptO55lZWUldWLq7bffxrZt2xAaGipKUnr06BH+/PNP9O7dG126dGngams8fvwY7du3r7dNdHQ0/v77b5ibm2P16tXQ09MTq6/dyi0vL0/qeNy/f1/0v7VJSrVJSIcPH8Yff/wh2sLk/PnzyM/Px5tvvgltbW2p8dSWFxQUNOoaiYiIqHVTUFCQWt6pUyfExcXB2tpaagJSY5w/fx7l5eXw9/eHgYGBqFzalrWNVdtPamoq+vfvL1Z3//59sRU0iejVwiQlIiIiIiIiIiIiImqU2tV8niUQCMTekn/8+DGAmq0/EhIS6uzv2e1AgP9bBehpxcXFACCR/AMAioqK0NHRkSjX1taGs7MzIiIiRCsUhYeHo6qqqtGrKAE1KwaUl5fX2+b69euoqqqCjY2N1Bhrx+PChQu4cOFCnf2UlpaKfR41ahQOHz6MsLAwUZJSQ1u9ARDFq6amVm/cRERE9HqofSYoLCwUS3J2cXHB0aNHsWfPHsycOVPsmMrKSpSWltaZFF2rNllcKBSKyoqKikTPLE9TV1cXS2yvS8+ePaGnp4fff/8dbm5uohUtL168iHv37sHLy6vBPojo5cQkJSIiIiIiIiIiIiJqVrXJTBMnTsS8efOadKy0N/1r+8vLy5Ooq66uRkFBgdTVjsaOHYuIiAgcP34cvr6+OHHiBDQ1NeHs7NzoeHR0dPDw4cN628ycORPnzp3D4cOHIRAIJK65Nn5fX194eHg0+tzm5ubo2bMnbty4gTt37kBbWxuXLl2CoaEh+vXrV+dxtUlRz27RQkRERK8nCwsLAMD69ethZ2cHgUCA4cOHw9bWFu7u7ti3bx+Sk5NhZ2cHJSUlpKWlISYmBgsWLICTk1O9fdvZ2UFZWRmfffYZ3N3dUVpaitDQUOjp6SE3N1esbY8ePfD7779jz549MDY2hq6ursRKSUDNSp2zZ8+Gv78/FixYgOHDhyMvLw+HDx9Gx44dMWHChGYbGyJqWUxSIiIiIiIiIiIiIqJm1bNnTygoKOD69evN0p+5uTmAmpWZnk0wunHjBqqqqqQe16tXL5ibmyMqKgqDBg1CWloaxo0b16QVhszMzJCeno6srCyxLUyepqKigm+//RbLli1DcHAwhEIh5s+fL6qv3cLu+vXrTUpSAmpWTEpKSsKJEyegp6eHqqoquLm51bltC/B/28fVbh1HRERErzdHR0d4eHjg1KlTOHnyJIRCIYYPHw4A8PPzg4WFBY4dO4YdO3ZAIBCgY8eOeOutt9C7d+8G++7cuTO+/vpr7Ny5E5s3b0bbtm0xbtw46Orq4vvvvxdr6+XlhaysLBw4cAAlJSWwtbWVmqQEACNHjoSqqir279+Pbdu2QU1NDUOHDsXs2bMbXN2JiF5eTFIiIiIiIiIiIiIiomalr68PZ2dnnD59GgcOHMCkSZMkkmoSExNhZmbWqIShIUOGQF1dHSdOnICHhweMjIwA1GxDEhgYWO+x7u7uWLNmjWiSbPTo0U26FltbW5w9exaJiYl1JikBNYlK33zzDZYtW4aQkBAIhUL4+PgAAKysrGBlZYVTp07BwcFBNClYq7q6GlevXoWtra1Ev2+++SY2bdqEkydPQltbG4qKinB1da035hs3bohiJyIiotfPyJEjMXLkSNFngUAAX19f+Pr6Sm0/ZsyYBrfDDQkJqbPOwcEBDg4OEuVubm5in9u2bYsffvhBol3fvn0RGxsrUe7i4gIXF5d64/r888/x+eefS5RPmzYN06ZNq/dYImp5TFIiIiIiIiIiIiIiek2lp6dj165ddda///77UFVVfa6+Fy1ahNTUVGzZsgWRkZHo1asXtLS08PDhQyQlJSEtLQ1HjhxpVJKStrY25s+fj9WrV2PGjBlwcXGBpqYmLl68CBUVFbRr167OlYVGjBiBrVu3IicnBxYWFujRo0eTrmPIkCHYtGkTLl++3OA2ccrKyli5ciWWL1+OQ4cOQSgUYsGCBQCA5cuX4+OPP8ZXX32Fw4cPo3v37lBVVUV2djauXbuGgoIC/PHHHxJ9ampqYtiwYYiMjER+fj4GDhxYb7KUUChEXFwcTE1NYWJi0qRrJSIiIiIikiUmKRERERERERERERG9ptLT0xEUFFRn/YQJE547SalNmzbYvHkzfvvtN5w+fRp//PEHqqur0bZtW3Tr1g1Tp06Fjo5Oo/sbM2YMtLW18fPPPyMiIgKamppwcHDA7NmzMWHCBNHqSs/S1NTE0KFDcfLkySavogQAhoaGsLOzQ0xMDHx9faGiolJv+9pEpRUrVuDw4cMQCoXw9fVFp06dEBgYiODgYJw9exbh4eFQVFSEvr4++vTpAycnpzr7HDVqFCIjIwFIrkjwrH///RdZWVmiVZyIiIiIiIheFgpCoVAo7yCIiIiIiIiIiIiIiJ5HWloa3nvvPTg7O+Orr76S2mbq1KnIzMzEb7/9Bk1NzSafIy4uDgsXLsQXX3yBESNGvGjIMrVy5Ur89ddfOHDgALS1teUdDhERERERkYiivAMgIiIiIiIiIiIiImpIYWEhysvLxcrKysqwceNGAMDQoUOlHnfx4kXcuXMHb7755nMlKAFA//79MXDgQOzduxfV1dXP1UdLSE1NxenTpzFlyhQmKBERERER0UuH270RERERERERERER0UvvypUr+OGHH2BnZ4cOHTqgoKAA//zzDzIzM9GvXz+4uLiItT969Ciys7MRGhoKFRUVvP/++y90/gULFiAqKgoPHz6EgYHBC/UlK9nZ2fDy8sI777wj71CIiIiIiIgkcLs3IiIiIiIiIiIiInrppaamIjAwENeuXUN+fj4AwMjICC4uLpg0aRJUVVXF2nt6euLhw4cwMTHB7NmzMXjwYDlETURERERERLWYpERERERERERERERERERERERERDKlKO8AiIiIiIiIiIiIiIiIiIiIiIiodWOSEhERERERERERERERERERERERyRSTlIiIiIiIiIiIiIiIiIiIiIiISKaYpERERERERERERERERERERERERDLFJCUiIiIiIiIiIiIiIiIiIiIiIpIpJikREREREREREREREREREREREZFMMUmJiIiIiIiIiIiIiIiIiIiIiIhkiklKREREREREREREREREREREREQkU/8PB6a0dn/CBOsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "title = [\"100-158.489 keV\",\n", + "\"158.489-251.189 keV\", \n", + "\"251.189-398.107 keV\", \n", + "\"398.107-630.957 keV\", \n", + "\"630.957-1000 keV\", \n", + "\"1000-1584.89 keV\", \n", + "\"1584.89-2511.89 keV\", \n", + "\"2511.89-3981.07 keV\", \n", + "\"3981.07-6309.57 keV\", \n", + "\"6309.57-10000 keV\"]\n", + "\n", + "position = {\"l\":184.600, \"b\": -5.800}\n", + "\n", + "i_iteration = 49 # ==>50th iteration\n", + "th = -5\n", + "\n", + "fig = plt.figure(figsize=(30, 15))\n", + "gs = GridSpec(nrows=3, ncols=4)\n", + "\n", + "ax0 = fig.add_subplot(gs[0, 0])\n", + "ax1 = fig.add_subplot(gs[0, 1])\n", + "ax2 = fig.add_subplot(gs[0, 2])\n", + "ax3 = fig.add_subplot(gs[0, 3])\n", + "ax4 = fig.add_subplot(gs[1, 0])\n", + "ax5 = fig.add_subplot(gs[1, 1])\n", + "ax6 = fig.add_subplot(gs[1, 2])\n", + "ax7 = fig.add_subplot(gs[1, 3])\n", + "ax8 = fig.add_subplot(gs[2, 0])\n", + "ax9 = fig.add_subplot(gs[2, 1])\n", + "\n", + "axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]\n", + " \n", + "ax_spectrum = fig.add_subplot(gs[2, 2])\n", + "ax_likelihood = fig.add_subplot(gs[2, 3])\n", + "#ax_background = fig.add_subplot(gs[1, 3])\n", + "\n", + "#plt.subplots_adjust(wspace=0.4, hspace=0.5)\n", + "\n", + "image = all_results[i_iteration]['model_map']\n", + "\n", + "for i_energy in range(image.axes['Ei'].nbins): \n", + " plt.axes(axes[i_energy])\n", + "\n", + " data = image.contents[:,i_energy]\n", + " data[data < 10**th * image.unit] = 10**th * image.unit\n", + "\n", + " hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = \"s-1 sr-1 cm-2\")\n", + " hp.graticule(color='gray', dpar = 10, alpha = 0.5)\n", + " hp.projscatter(theta = position[\"l\"], phi = position[\"b\"], lonlat = True, color = 'red', linewidths = 1, marker = \"*\")\n", + "\n", + "### \n", + " \n", + "plt.axes(ax_spectrum)\n", + "\n", + "energy_band = image.axes['Ei'].centers\n", + "\n", + "err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux = get_differential_flux(image)\n", + " \n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "\n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlim(90, 10000)\n", + "plt.ylim(1e-8, 2e-3)\n", + " \n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {iteration+1}\")\n", + "plt.grid()\n", + "plt.legend()\n", + " \n", + "### \n", + " \n", + "plt.axes(ax_likelihood)\n", + "\n", + "iterations = [_['iteration'] for _ in all_results]\n", + "loglikelihoods = [_['loglikelihood'] for _ in all_results]\n", + "\n", + "plt.plot(iterations, loglikelihoods, linewidth = 1.5)\n", + "plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = \".\")\n", + "\n", + "plt.xlabel(\"Iteration\", fontsize = 12)\n", + "plt.title(\"Log-likelihood\")\n", + "plt.grid()\n", + "\n", + "###\n", + "# plt.axes(ax_background)\n", + "\n", + "# plt.plot(iterations, background_normalizations, linewidth = 1.5)\n", + "# plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = \".\")\n", + "\n", + "# plt.xlabel(\"Iteration\", fontsize = 12)\n", + " #plt.ylabel(\"Background Normalization\", fontsize = 12)\n", + "# plt.ylim(0.7, 1.4)\n", + "# plt.title(\"Background Normalization\")\n", + "# plt.grid() \n", + "\n", + "# plt.savefig(f\"fig_{i:03}.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "351b4d7e-6054-4919-853e-5b6d06e646f7", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.html b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.html new file mode 100644 index 00000000..d5a9ae4d --- /dev/null +++ b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.html @@ -0,0 +1,874 @@ + + + + + + + DC2 Image Analysis, Crab, Data Reduction — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DC2 Image Analysis, Crab, Data Reduction

+

updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)

+

This notebook focuses on how to produce the binned datasets with the spacecraft attitude (scatt) binning method for DC2. An example of the image analysis will be presented using the Crab 3-month simulation data created for DC2. After running through this notebook, you can go to the next notebook, Crab-DC2-ScAtt-ImageDeconvolution.ipynb.

+
+

Notes on the coordinate system of Compton data space in the image deconvolution

+

We have two options on the coordinate system to describe the Compton scattering direction (\(\chi\psi\)) with, namely the Galactic coordinate or the detector coordinate.

+

Using the Galactic coordinate is intuitive, and the spectral fitting adopts this coordinate. Thus, we suppose that Galactic coordinate should be adopted also for image deconvolution eventually. However, in this case, we need to convert the detector response into the Galactic coordinate for each pixel in the sky because the response matrix is described in the detector coordinate. As for now, it takes a long time to compute it. Thus, the pre-computed converted response are provided in DC2 for +several main sources (511 keV, Al-26, Ti-44, continuum). The pre-computed responses assume that we analyze 3-month data without extracting some time intervals, and the pixel resolution of the model map is already fixed in them. While there is less flexibility in binning/modeling, it is relatively fast to perform the image deconvolution in DC2 since the most computationally heavy part, the coordinate conversion of the response, can be skipped.

+

Using the detector coordinates for Compton data space may not be so intuitive. However, the advantage is that we do not have to convert the response matrix. Instead, we will convert the model map into the detector coordinate. Because the model map generally has a much smaller data size than the response, we can compute this coordinate conversion quickly.

+

The disadvantage of this method is that we need more bins due to continuous pointing changes of the COSI satellite. Since COSI is an all-sky monitoring satellite with ∼90-minute orbits, it changes its pointing by ∼4 degrees every minute. Thus, in this case, we need to divide the data into several bins so that astronomical sources can be considered at rest in the detector coordinate for each bin within the COSI’s angular resolution. The straightforward way could be to divide the data every +$:nbsphinx-math:sim`$15 seconds, considering that the COSI’s angular resolution is an order of degrees. However, we need :math:`5times10^5 time bins for 3-month observations, which makes the event histogram very huge. To avoid this issue, the spacecraft attitude (scatt) binning method is introduced. Instead of binning data over time, we first analyze the satellite attitude and find the time intervals when the satellite has almost the same attitude within the angular resolution. Then, we +assign the events in such intervals into the same CDS. In the DC2 simulation, the orbit inclination is assumed to be 0 degrees. In this case, the number of the scatt bins becomes 100-1000, which makes the computation more executable. With this method, at least in DC2, we can perform the image deconvolution using the original response matrix and have flexibilities to change binning/modeling, e.g., the pixel resolution can be changed in a relatively easy way.

+

While both methods have pros and cons, our baseline is to eventually use the Galactic coordinate. But we still need to carefully investigate how they will be scaled with longer exposure, finer pixel resolution, etc. Thus, we provide the notebooks of both methods for the image deconvolution in DC2.

+

For the Crab image analysis, the following notebooks are based on the scatt binning method - ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb - ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution.ipynb - ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb

+

GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb uses the galactic coordinate.

+

If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits.

+
+
[2]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix
+from cosipy.util import fetch_wasabi_file
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+import os
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
+
+

0. Prepare the data

+

Before running the cells, please download the files needed for this notebook. You can get them from wasabi.

+

Basically, the data reduction from raw tra files may take hours depending on your environments. So we can skip this process. Please download the following data files and then run the following cells.

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5 (please unzip it) - cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz - cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz - In this notebook, only the albedo gamma-ray background is considered for a tutorial. - If you want to consider all +of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB. - cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori

+

From docs/tutorials/image_deconvolution/Crab/ScAttBinning - inputs_Crab_DC2.yaml

+

You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files.

+
+
[ ]:
+
+
+
# Source file (Crab):
+# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip
+# File size: 840M
+fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip')
+os.system("unzip SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip")
+
+
+
+
+
[ ]:
+
+
+
# Source file (Crab):
+# wasabi path: COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz
+# File size: 619.22 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# Background file (albedo gamma):
+# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz
+# File size: 2.69 GB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# Orientation file:
+# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori
+# File size: 684.38 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')
+
+
+
+

please modify “path_data” corresponding to your environment.

+
+
[2]:
+
+
+
path_data = "path/to/data/"
+
+
+
+
+
[3]:
+
+
+
%%time
+
+ori_filepath = path_data + "20280301_3_month.ori"
+ori = SpacecraftFile.parse_from_file(ori_filepath)
+
+
+
+
+
+
+
+
+CPU times: user 16.6 s, sys: 1.57 s, total: 18.2 s
+Wall time: 17.7 s
+
+
+
+
[4]:
+
+
+
full_detector_response_filename = path_data + "SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5"
+full_detector_response = FullDetectorResponse.open(full_detector_response_filename)
+
+nside = full_detector_response.nside
+npix = hp.nside2npix(nside)
+
+nside, npix
+
+
+
+
+
[4]:
+
+
+
+
+(8, 768)
+
+
+
+
[5]:
+
+
+
full_detector_response
+
+
+
+
+
[5]:
+
+
+
+
+FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'
+AXES:
+  NuLambda:
+    DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+  Ei:
+    DESCRIPTION: 'Initial simulated energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Em:
+    DESCRIPTION: 'Measured energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Phi:
+    DESCRIPTION: 'Compton angle'
+    TYPE: 'linear'
+    UNIT: 'deg'
+    NBINS: 36
+    EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]
+  PsiChi:
+    DESCRIPTION: 'Location in the Compton Data Space'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+
+
+
+
+
+

1. analyze the orientation file

+

Here the orientation file is analyzed to define the indices of the spacecraft attitude binning.

+
+
[6]:
+
+
+
%%time
+
+exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside, start = None, stop = None)
+exposure_table
+
+
+
+
+
+
+
+
+angular resolution:  7.329037678543799 deg.
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+duration:  92.36059027777777 d
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 7979955 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 32.6 s, sys: 1.71 s, total: 34.3 s
+Wall time: 34.4 s
+
+
+
+
[6]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(532, 13)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(532, 26)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.955010022713545, -23.741156770888438][45.95764244902919, 66.25906763976249][1.0000000000065512, 0.9999999999969589, 0.999...26359.0263590
22(532, 42)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
33(564, 42)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[49.549399237968544, -29.168814518824405][49.59320571194872, 60.83674837374497][0.9999999999969589, 1.0000000000065512, 0.999...111115.01111150
44(564, 63)[[51.09862804289071, -31.321406880638527], [51...[[51.09862804289071, 58.67859311936147], [51.1...[51.90542254254405, -32.39811966891759][51.917215575378705, 57.603714738909005][0.9999999999969589, 1.0000000000065512, 0.999...57871.0578710
.................................
133133(468, 13)[[40.16189499252812, -13.801710443269755], [40...[[40.161894992528104, 76.19828955673026], [40....[40.89892831460051, -15.138427135287458][40.92208802371745, 74.8623891583036][1.0000000000065512, 0.9999999999969589, 0.999...67576.0675760
134134(499, 13)[[41.655148156368654, -16.49006256585185], [41...[[41.655148156368654, 73.50993743414816], [41....[42.7796358426142, -18.460371889534287][42.82335612555313, 71.54190445396517][0.9999999999969589, 1.0000000000065512, 0.999...99833.0998330
135135(716, 188)[[145.12720043519377, -61.03941171474516], [14...[[145.12720043519377, 28.960588285254847], [14...[145.15270150626816, -61.035193201971055][145.1526970180014, 28.964811462201155][0.9999999999969589, 0.9999999999969589, 1.000...992.09920
136136(128, 128)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
137137(58, 188)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
+

138 rows × 10 columns

+
+
+

You can save SpacecraftAttitudeExposureTable as a fits file.

+
+
[7]:
+
+
+
exposure_table.save_as_fits("exposure_table.fits", overwrite = True)
+
+
+
+

You can also read the fits file.

+
+
[8]:
+
+
+
exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits("exposure_table.fits")
+exposure_table == exposure_table_from_fits
+
+
+
+
+
[8]:
+
+
+
+
+True
+
+
+

The sum of values in the ‘exposure’ column should be the same of the observation duration.

+
+
[9]:
+
+
+
(np.sum(exposure_table['exposure']) * u.s).to("day")
+
+
+
+
+
[9]:
+
+
+
+
+$92.36059 \; \mathrm{d}$
+
+

SpacecraftAttitudeExposureTable can produce SpacecraftAttitudeMap that has an exposure time in each Z- and X-poiting pixels.

+
+
[10]:
+
+
+
map_pointing_zx = exposure_table.calc_pointing_trajectory_map()
+map_pointing_zx = map_pointing_zx.to_dense()
+
+
+
+
+
[11]:
+
+
+
hp.mollview(map_pointing_zx.project('z').contents, rot=(0,0), unit = u.s, title = "Exposure map projected in the Z-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+hp.mollview(map_pointing_zx.project('z').contents, rot=(0,90), unit = u.s, title = "Exposure map projected in the Z-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_23_1.png +
+
+
+
[12]:
+
+
+
hp.mollview(map_pointing_zx.project('x').contents, rot=(0,0), unit = u.s, title = "Exposure map projected in the X-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+hp.mollview(map_pointing_zx.project('x').contents, rot=(0,90), unit = u.s, title = "Exposure map projected in the X-axis pointing")
+hp.graticule(color='gray', dpar = 30)
+plt.show()
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-DataReduction_24_1.png +
+
+
+
+

2. Calculate the coordinate conversion matrix

+

CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.

+

In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.

+

If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.

+

If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index.

+

In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it.

+
+
[13]:
+
+
+
%%time
+
+coordsys_conv_matrix = CoordsysConversionMatrix.spacecraft_attitude_binning_ccm(full_detector_response, exposure_table, use_averaged_pointing = True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 1min 27s, sys: 1.28 s, total: 1min 28s
+Wall time: 1min 28s
+
+
+

You can save CoordsysConversionMatrix as a hdf5 file.

+
+
[14]:
+
+
+
coordsys_conv_matrix.write("ccm.hdf5", overwrite = True)
+
+
+
+

You can also read the saved file.

+
+
[15]:
+
+
+
coordsys_conv_matrix = CoordsysConversionMatrix.open("ccm.hdf5")
+
+
+
+
+
+

3. produce the binned data

+

Using the exposure table, we can produce the binned data.

+
+
[17]:
+
+
+
def get_binned_data_scatt(unbinned_event, exposure_table, psichi_binning = 'local', sparse = False):
+    exposure_dict = {row['healpix_index']: row['scatt_binning_index'] for _, row in exposure_table.iterrows()}
+
+    # from BinnedData.py
+
+    # Get energy bins:
+    energy_bin_edges = np.array(unbinned_event.energy_bins)
+
+    # Get phi bins:
+    number_phi_bins = int(180./unbinned_event.phi_pix_size)
+    phi_bin_edges = np.linspace(0,180,number_phi_bins+1)
+
+    # Define psichi axis and data for binning:
+    if psichi_binning == 'galactic':
+        psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = 'galactic', label='PsiChi')
+        coords = SkyCoord(l=unbinned_event.cosi_dataset['Chi galactic']*u.deg, b=unbinned_event.cosi_dataset['Psi galactic']*u.deg, frame = 'galactic')
+    if psichi_binning == 'local':
+        psichi_axis = HealpixAxis(nside = unbinned_event.nside, scheme = unbinned_event.scheme, coordsys = SpacecraftFrame(), label='PsiChi')
+        coords = SkyCoord(lon=unbinned_event.cosi_dataset['Chi local']*u.rad, lat=((np.pi/2.0) - unbinned_event.cosi_dataset['Psi local'])*u.rad, frame = SpacecraftFrame())
+
+    # Define scatt axis and data for binning
+    n_scatt_bins = len(exposure_table)
+    scatt_axis = Axis(np.arange(n_scatt_bins + 1), label='ScAtt')
+
+    is_nest = True if exposure_table.scheme == 'nested' else False
+
+    nside_scatt = exposure_table.nside
+
+    zindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[0] * 180 / np.pi,
+                        unbinned_event.cosi_dataset['Zpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)
+    xindex = hp.ang2pix(nside_scatt, unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[0] * 180 / np.pi,
+                        unbinned_event.cosi_dataset['Xpointings (glon,glat)'].T[1] * 180 / np.pi, nest=is_nest, lonlat=True)
+    scatt_data = np.array( [ exposure_dict[(z, x)] + 0.5 if (z,x) in exposure_dict.keys() else -1 for z, x in zip(zindex, xindex)] ) # should this "0.5" be needed?
+
+    # Initialize histogram:
+    binned_data = Histogram([scatt_axis,
+                              Axis(energy_bin_edges*u.keV, label='Em'),
+                              Axis(phi_bin_edges*u.deg, label='Phi'),
+                              psichi_axis],
+                              sparse=sparse)
+
+    # Fill histogram:
+    binned_data.fill(scatt_data, unbinned_event.cosi_dataset['Energies']*u.keV, np.rad2deg(unbinned_event.cosi_dataset['Phi'])*u.deg, coords)
+
+    return binned_data
+
+
+
+

Load the Crab data (without background)

+
+
[18]:
+
+
+
%%time
+
+signal_filepath = path_data + "Crab_DC2_3months_unbinned_data.fits.gz"
+
+unbinned_signal = UnBinnedData(input_yaml = "inputs_Crab_DC2.yaml")
+
+unbinned_signal.cosi_dataset = unbinned_signal.get_dict_from_fits(signal_filepath)
+
+binned_signal = get_binned_data_scatt(unbinned_signal, exposure_table, psichi_binning = 'local', sparse = False)
+
+
+
+
+
+
+
+
+CPU times: user 15.3 s, sys: 689 ms, total: 16 s
+Wall time: 16 s
+
+
+

Load the background data

+
+
[19]:
+
+
+
%%time
+
+bkg_filepath = path_data + "albedo_photons_3months_unbinned_data.fits.gz"
+
+unbinned_bkg = UnBinnedData(input_yaml = "inputs_Crab_DC2.yaml")
+
+unbinned_bkg.cosi_dataset = unbinned_bkg.get_dict_from_fits(bkg_filepath)
+
+binned_bkg = get_binned_data_scatt(unbinned_bkg, exposure_table, psichi_binning = 'local', sparse = False)
+
+
+
+
+
+
+
+
+CPU times: user 1min 36s, sys: 4.31 s, total: 1min 40s
+Wall time: 1min 42s
+
+
+

Sum up the signal and background data

+
+
[20]:
+
+
+
binned_event = binned_signal + binned_bkg
+
+
+
+

Save them

+
+
[21]:
+
+
+
binned_event.write("Crab_scatt_binning_DC2_event.hdf5")
+binned_bkg.write("Crab_scatt_binning_DC2_bkg.hdf5")
+
+
+
+

You can move on the next notebook (Crab-DC2-ScAtt-ImageDeconvolution.ipynb).

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb new file mode 100644 index 00000000..cc8365d1 --- /dev/null +++ b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb @@ -0,0 +1,1126 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, Crab, Data Reduction\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook focuses on how to produce the binned datasets with the spacecraft attitude (scatt) binning method for DC2. An example of the image analysis will be presented using the Crab 3-month simulation data created for DC2. After running through this notebook, you can go to the next notebook, Crab-DC2-ScAtt-ImageDeconvolution.ipynb.\n", + "\n", + "### Notes on the coordinate system of Compton data space in the image deconvolution ###\n", + "\n", + "We have two options on the coordinate system to describe the Compton scattering direction ($\\chi\\psi$) with, namely the Galactic coordinate or the detector coordinate.\n", + "\n", + "Using the Galactic coordinate is intuitive, and the spectral fitting adopts this coordinate. Thus, we suppose that Galactic coordinate should be adopted also for image deconvolution eventually. However, in this case, we need to convert the detector response into the Galactic coordinate for each pixel in the sky because the response matrix is described in the detector coordinate. As for now, it takes a long time to compute it. Thus, the pre-computed converted response are provided in DC2 for several main sources (511 keV, Al-26, Ti-44, continuum). The pre-computed responses assume that we analyze 3-month data without extracting some time intervals, and the pixel resolution of the model map is already fixed in them. While there is less flexibility in binning/modeling, it is relatively fast to perform the image deconvolution in DC2 since the most computationally heavy part, the coordinate conversion of the response, can be skipped.\n", + "\n", + "Using the detector coordinates for Compton data space may not be so intuitive. However, the advantage is that we do not have to convert the response matrix. Instead, we will convert the model map into the detector coordinate. Because the model map generally has a much smaller data size than the response, we can compute this coordinate conversion quickly. \n", + "\n", + "The disadvantage of this method is that we need more bins due to continuous pointing changes of the COSI satellite. Since COSI is an all-sky monitoring satellite with ∼90-minute orbits, it changes its pointing by ∼4 degrees every minute. Thus, in this case, we need to divide the data into several bins so that astronomical sources can be considered at rest in the detector coordinate for each bin within the COSI's angular resolution. The straightforward way could be to divide the data every $\\sim$15 seconds, considering that the COSI's angular resolution is an order of degrees. However, we need $5\\times10^5$ time bins for 3-month observations, which makes the event histogram very huge. To avoid this issue, the spacecraft attitude (scatt) binning method is introduced. Instead of binning data over time, we first analyze the satellite attitude and find the time intervals when the satellite has almost the same attitude within the angular resolution. Then, we assign the events in such intervals into the same CDS. In the DC2 simulation, the orbit inclination is assumed to be 0 degrees. In this case, the number of the scatt bins becomes 100-1000, which makes the computation more executable. With this method, at least in DC2, we can perform the image deconvolution using the original response matrix and have flexibilities to change binning/modeling, e.g., the pixel resolution can be changed in a relatively easy way.\n", + "\n", + "While both methods have pros and cons, our baseline is to eventually use the Galactic coordinate. But we still need to carefully investigate how they will be scaled with longer exposure, finer pixel resolution, etc. Thus, we provide the notebooks of both methods for the image deconvolution in DC2.\n", + "\n", + "For the Crab image analysis, the following notebooks are based on the scatt binning method\n", + "- ScAttBinning/Crab-DC2-ScAtt-DataReduction.ipynb\n", + "- ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution.ipynb\n", + "- ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb\n", + "\n", + "GalacticCDS/Crab-DC2-Galactic-ImageDeconvolution.ipynb uses the galactic coordinate.\n", + "\n", + "If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "2a7ca026", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "Before running the cells, please download the files needed for this notebook. You can get them from wasabi. \n", + "\n", + "Basically, the data reduction from raw tra files may take hours depending on your environments. So we can skip this process.\n", + "Please download the following data files and then run the following cells.\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5 (please unzip it)\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + " - In this notebook, only the albedo gamma-ray background is considered for a tutorial.\n", + " - If you want to consider all of the background components, please replace it with cosi-pipeline-public/COSI-SMEX/DC2/Data/Backgrounds/total_bg_3months_unbinned_data.fits.gz\n", + " - Note that total_bg_3months_unbinned_data.fits.gz is 14.15 GB.\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/ScAttBinning\n", + "- inputs_Crab_DC2.yaml" + ] + }, + { + "cell_type": "markdown", + "id": "8462d0dc", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f4e6e7dd-af43-4fef-980d-cb7a30a48739", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (Crab):\n", + "# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\n", + "# File size: 840M\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip')\n", + "os.system(\"unzip SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "326c8a34-4e48-4f9b-a37b-a23f0772601a", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file (Crab):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\n", + "# File size: 619.22 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "397b5225-6ae0-441c-b96f-870ffbc9cc68", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file (albedo gamma):\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\n", + "# File size: 2.69 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5dce412d-9ff5-49e5-be4b-2b36c317e484", + "metadata": {}, + "outputs": [], + "source": [ + "# Orientation file:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "# File size: 684.38 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16.6 s, sys: 1.57 s, total: 18.2 s\n", + "Wall time: 17.7 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(8, 768)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside = full_detector_response.nside\n", + "npix = hp.nside2npix(nside)\n", + "\n", + "nside, npix" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "Here the orientation file is analyzed to define the indices of the spacecraft attitude binning." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 7.329037678543799 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a3c41c4036b94bad945ff87f8864345b", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(532, 13)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(532, 26)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.955010022713545, -23.741156770888438][45.95764244902919, 66.25906763976249][1.0000000000065512, 0.9999999999969589, 0.999...26359.0263590
22(532, 42)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
33(564, 42)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[49.549399237968544, -29.168814518824405][49.59320571194872, 60.83674837374497][0.9999999999969589, 1.0000000000065512, 0.999...111115.01111150
44(564, 63)[[51.09862804289071, -31.321406880638527], [51...[[51.09862804289071, 58.67859311936147], [51.1...[51.90542254254405, -32.39811966891759][51.917215575378705, 57.603714738909005][0.9999999999969589, 1.0000000000065512, 0.999...57871.0578710
.................................
133133(468, 13)[[40.16189499252812, -13.801710443269755], [40...[[40.161894992528104, 76.19828955673026], [40....[40.89892831460051, -15.138427135287458][40.92208802371745, 74.8623891583036][1.0000000000065512, 0.9999999999969589, 0.999...67576.0675760
134134(499, 13)[[41.655148156368654, -16.49006256585185], [41...[[41.655148156368654, 73.50993743414816], [41....[42.7796358426142, -18.460371889534287][42.82335612555313, 71.54190445396517][0.9999999999969589, 1.0000000000065512, 0.999...99833.0998330
135135(716, 188)[[145.12720043519377, -61.03941171474516], [14...[[145.12720043519377, 28.960588285254847], [14...[145.15270150626816, -61.035193201971055][145.1526970180014, 28.964811462201155][0.9999999999969589, 0.9999999999969589, 1.000...992.09920
136136(128, 128)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
137137(58, 188)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
\n", + "

138 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (532, 13) \n", + "1 1 (532, 26) \n", + "2 2 (532, 42) \n", + "3 3 (564, 42) \n", + "4 4 (564, 63) \n", + ".. ... ... \n", + "133 133 (468, 13) \n", + "134 134 (499, 13) \n", + "135 135 (716, 188) \n", + "136 136 (128, 128) \n", + "137 137 (58, 188) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[45.66020516346508, -23.269427365755966], [45... \n", + "2 [[46.29919922293719, -24.286823740507035], [46... \n", + "3 [[48.1115581160702, -27.07000329743496], [48.1... \n", + "4 [[51.09862804289071, -31.321406880638527], [51... \n", + ".. ... \n", + "133 [[40.16189499252812, -13.801710443269755], [40... \n", + "134 [[41.655148156368654, -16.49006256585185], [41... \n", + "135 [[145.12720043519377, -61.03941171474516], [14... \n", + "136 [[180.0238082643748, 46.67626678787605], [180.... \n", + "137 [[325.1571038593629, 61.0351405587937], [325.1... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "2 [[46.29919922293719, 65.71317625949297], [46.3... \n", + "3 [[48.111558116070206, 62.92999670256505], [48.... \n", + "4 [[51.09862804289071, 58.67859311936147], [51.1... \n", + ".. ... \n", + "133 [[40.161894992528104, 76.19828955673026], [40.... \n", + "134 [[41.655148156368654, 73.50993743414816], [41.... \n", + "135 [[145.12720043519377, 28.960588285254847], [14... \n", + "136 [[180.0238082643748, 43.32373321212394], [180.... \n", + "137 [[145.15710385936296, 28.964859441206304], [14... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.77592919492308, -21.83137450725276] \n", + "1 [45.955010022713545, -23.741156770888438] \n", + "2 [47.169799754806256, -25.642813300423782] \n", + "3 [49.549399237968544, -29.168814518824405] \n", + "4 [51.90542254254405, -32.39811966891759] \n", + ".. ... \n", + "133 [40.89892831460051, -15.138427135287458] \n", + "134 [42.7796358426142, -18.460371889534287] \n", + "135 [145.15270150626816, -61.035193201971055] \n", + "136 [180.01420731505038, 46.68360608975279] \n", + "137 [325.15317939441115, 61.03567974667542] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.79590102793104, 68.17007080261746] \n", + "1 [45.95764244902919, 66.25906763976249] \n", + "2 [47.188380045186555, 64.35902575261872] \n", + "3 [49.59320571194872, 60.83674837374497] \n", + "4 [51.917215575378705, 57.603714738909005] \n", + ".. ... \n", + "133 [40.92208802371745, 74.8623891583036] \n", + "134 [42.82335612555313, 71.54190445396517] \n", + "135 [145.1526970180014, 28.964811462201155] \n", + "136 [180.01420553833427, 43.316394483057174] \n", + "137 [145.15317503922358, 28.964324759952632] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 71072.0 \n", + "1 [1.0000000000065512, 0.9999999999969589, 0.999... 26359.0 \n", + "2 [0.9999999999969589, 0.9999999999969589, 1.000... 71137.0 \n", + "3 [0.9999999999969589, 1.0000000000065512, 0.999... 111115.0 \n", + "4 [0.9999999999969589, 1.0000000000065512, 0.999... 57871.0 \n", + ".. ... ... \n", + "133 [1.0000000000065512, 0.9999999999969589, 0.999... 67576.0 \n", + "134 [0.9999999999969589, 1.0000000000065512, 0.999... 99833.0 \n", + "135 [0.9999999999969589, 0.9999999999969589, 1.000... 992.0 \n", + "136 [0.9999999999969589, 1.000000000001755, 1.0000... 646.0 \n", + "137 [1.000000000001755, 0.9999999999969589, 0.9999... 970.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 71072 0 \n", + "1 26359 0 \n", + "2 71137 0 \n", + "3 111115 0 \n", + "4 57871 0 \n", + ".. ... ... \n", + "133 67576 0 \n", + "134 99833 0 \n", + "135 992 0 \n", + "136 646 0 \n", + "137 970 0 \n", + "\n", + "[138 rows x 10 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(\"exposure_table.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(\"exposure_table.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "8ebcb20e", + "metadata": {}, + "source": [ + "The sum of values in the 'exposure' column should be the same of the observation duration." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0f073766", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$92.36059 \\; \\mathrm{d}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(np.sum(exposure_table['exposure']) * u.s).to(\"day\")" + ] + }, + { + "cell_type": "markdown", + "id": "e9306cf5", + "metadata": {}, + "source": [ + "SpacecraftAttitudeExposureTable can produce SpacecraftAttitudeMap that has an exposure time in each Z- and X-poiting pixels." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "b24d8dc3", + "metadata": {}, + "outputs": [], + "source": [ + "map_pointing_zx = exposure_table.calc_pointing_trajectory_map()\n", + "map_pointing_zx = map_pointing_zx.to_dense()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "b75a6097", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm375mt2l1Jq957sywXueFeKKaZjinGgI0pIbQAAQIfJCEhCSFAICRvSKEl9EASTAkQugPGgLGNe5Ml2+q9a/v5/ljtWpIlW2WlLZr7unSBd2dnnjkzc+b8zlOOJIQQKCgoKCgoKCgoKCgojENkfxugoKCgoKCgoKCgoKDgLxRBpKCgoKCgoKCgoKAwblEEkYKCgoKCgoKCgoLCuEURRAoKCgoKCgoKCgoK4xZFECkoKCgoKCgoKCgojFsUQaSgoKCgoKCgoKCgMG5RBJGCgoKCgoKCgoKCwrhFEUQKCgoKCgoKCgoKCuMWRRApKCgoKCgoKCgoKIxbFEGkoKCgEAJkZmaSmZnpbzNGjfvvvx9Jkvj0008Htf3q1auRJImysrJRtWsgysrKkCSJ1atX++X4wUgw38Njdb8N9TlQUFAYHIogUhhXSJJ03D/lRaOgMDgkSWLJkiX+NsNvBOr5P/fcc4Pq6zx//hKNCkfjuXbPPfecv01RUBhXqP1tgIKCP/jpT3864HfBOkOpML756KOP/G1CQPHggw9y9913k5KS4m9Txpzi4uJj9nEA//3vf/nyyy9JSkoiJiZmjCw7NsF8D4/V/XbTTTdx6aWXkp6ePqrHUVAYbyiCSGFccv/99/vbBAUFn5KTk+NvEwKKpKQkkpKS/G2GXyguLqa4uHjA77/++mseeugh9Ho9a9euJTw8fOyMOwbBfA+P1f0WGxtLbGzsqB9HQWG8oYTMKSgMQGlpKWazmejoaA4ePNjru46ODgoLC1GpVL1C7Dxx5AcOHOC3v/0tEyZMQK/Xk5qaym233UZra2u/x/r222+58MILiY+PR6fTkZGRwQ033EBVVdVR29bU1HDHHXdQUFCA0WjEbDZTUFDA6tWrOXDggHe744Ve9Bfu0zM+/aWXXmL27NmYTKZeXrPOzk4efPBBiouLMRqNmEwm5s6dy8svv3zsBu2DJ1+gvb2d2267jbS0NMLCwiguLuaNN94AwOFw8Mtf/pK8vDz0ej05OTn84Q9/OGpfNpuNP/zhD5x55plkZGSg0+mIjo7mlFNO4d133z3m8VtaWrjppptISUlBr9czceJEnnjiCYQQgz6XJUuWIEkSVquV++67j6ysLHQ6HTk5OfzsZz/DZrMd9RtP+1dXV3PNNdeQkpKCSqXqdb3+8Y9/sGjRIiIjIwkLC2Py5Mk8+OCDWK3WAc+nP15++WVOPPFEzGYzer2ewsJCfvGLX/S7H4Ddu3ezZs0aMjMz0el0xMfHs3DhQp588kngyL0F8Nlnn/UKv+o72fDVV1+xfPlyEhMT0Wq1pKWl8b3vfY/Kysp+j/3tt99y+umnEx4eTkREBKeccgpffvllv9sei/5yOnrm9ZSVlXHppZcSGxuLXq9n5syZvP3224Pa91DO33PcoRxrqNdrKJSXl3PeeedhsVh45plnmDVr1qB/+9xzz3HhhReSnZ1NWFgYERERzJ8/nxdeeOGobf/1r38hSRJz5szBbrf3+m779u0YDAaSk5Opra31ft7fPWyz2XjiiSeYPn06UVFRGAwGMjMzOffcc/nwww8HZfdY9Mu+uN+WLFnCVVddBcBVV13Vb1jjQDlEnv6kvr6e6667jqSkJHQ6HUVFRTz77LP9np/VauX+++8nOzsbnU5HVlYW9913H1arNWDDQRUURg2hoDCOAMRQbvvXXntNAGLevHnCbrd7P7/yyisFIO6///5e269atUoA4pxzzhFms1lcd9114q677hJTp04VgJgxY4bo6urq9Zu33npLaLVaodFoxIoVK8Tdd98tli5dKgCRnJwsDhw44N22o6ND5OTkCEAsXbpU/PCHPxS33367uPDCC4XZbBZvvfWWd9tnn31WAOLZZ58dsC0WL17c67Of/vSnAhBnnXWW0Ol0Yvny5eJHP/qRuP7664UQQjQ1NYlp06YJQEyfPl3cdNNN4oYbbvDadO+99w66bTMyMkRycrKYM2eOyM/PFzfeeKO49tprhclkErIsiw8//FBccMEFIiUlRVxzzTXixhtvFPHx8QIQr7zySq99VVVVCVmWxYIFC8TVV18t7r77brFq1SoRHR0tAPHXv/613+MnJSWJmTNnitzcXHH77beLm266SSQlJQlA3HDDDYM+l8WLF3uve1JSkrj55pvF7bff7m2Xs846S7hcrl6/AcTkyZNFRkaGKCoqEjfddJO45ZZbxH/+8x8hhBD33HOPAERsbKy4/vrrxR133CGKioq8181qtR51PhkZGUfZdtVVVwlApKamijVr1ojbb79dzJs3TwBiyZIlve5rIYR4++23RVhYmJBlWZx55pni7rvvFtdff72YO3euyMzMFEIIsXnzZu+9kpGRIX760596/z755BPvvp5++mmhUqmEwWAQl156qbjzzjvFeeedJ2RZFklJSeLgwYO9jv3FF1+IsLAwoVKpxEUXXSTuuececcYZZwitVitOP/10AfTa/7HwPIulpaXez0pLS73nHRcXJ2bPni1uvfVWceWVVwqdTidkWRYff/zxcfc9mPMf7rGGer2GQkdHh5g+ffqQn1UPer1ezJgxQ6xatUrcfffd4tprrxUpKSkCEPfdd99R2994440CEHfeeWcvGwoLC/s9//7u4RUrVghATJo0Sdxyyy3iRz/6kbjiiitEVlaW+OEPfzgou0e7X+55jJHcb88++6w499xzBSDOPffcXvdVU1OTEOJIH933OQDE1KlTRX5+vpg0aZK46aabxLXXXivMZrMAxHPPPddre5fLJZYtWyYAkZeXJ26//XZx8803i5SUFHHeeef1+35QUAhlFEGkMK7wCKKeL5qefw8++OBRv/n+978vAHH33XcLIYR47rnnBCBOPPFE4XQ6e23reSnGxMSIsrIy7+dOp1NccMEFAhA///nPvZ+3tbWJ6OhoIcuyWLduXa99/frXv/YKHw9vvvmmAMStt956lJ1Wq1W0trZ6/z0SQWQwGMSmTZuO+o3n/B566KFen3d1dYnTTjtNSJIkNm/e3O/x+pKRkeEVCxaLxfv5unXrBCCioqLEzJkzvQMBIYQoKSkRGo1GFBcX99qXxWIRhw8fPuoYzc3NoqioSERFRYnOzs5+jz9//vxex29oaBDZ2dkCEJ999tmgzsUjiPLy8kRjY6P3866uLjFnzhwBiL///e+9fuO5F6+44oqjBrnr168XgEhLSxNVVVXez+12uzjrrLMEIH75y18edT59B5Oee+D8888/6vw91/rxxx/3flZXVyciIiKERqMRn3766VHn2beNjzVo2rNnj9BoNCInJ0eUl5f3+u7DDz8UsiyL8847z/uZy+USBQUFAhBvvPFGr+0ff/xxb3v5QhD1N5nx3nvvCUCcccYZg9q/EMc+/+Eca6jXayi4XC6xfPly7/77CvTBsH///qM+s1qt4qSTThJqtfqo62yxWMS0adOEJEni3XffFUIIsXr1agGIn/zkJ0ftq+893NzcLCRJEjNmzBAOh+Oo7evr6wdl92j3yz2PMdL77Xj99rEEESCuvvrqXm21Y8cOoVKpRGFhYa/t//73vwtALFy4sNfkSlNTk/c5VASRwnhCEUQK4wrPS2Ogv8jIyKN+09XVJaZOnSokSRK///3vhdFoFHFxcaKysvKobT0vxZ4vVw8lJSVClmXvLLsQQrzwwgsCECtWrDhqe7vdLjIzMwXgnUn3CKJ77rnnuOc6EkHUn+Cqr68XKpVKzJw5s9/9bdmy5ajZ4GPhEST9DbKysrIEID766KOjvluyZIlQq9X9DpD649FHH+1X3HiO33fAI8SRtlu9evWgjuERRH1FjxBCfPLJJ95Z4p4AQqvVipqamqN+c8011whA/PnPfz7quz179ghZlkVWVtZR59NXEBUXFwu1Wt1LVHpwOBwiJiZGzJo1y/vZI488IgBxyy23HOt0e53DQIOmW2+9VQDi7bff7vf78847T6hUKq+I//zzzwUgFi1a1K+tHm+bLwRRRkZGv/dPenq6iImJGdT+hRicIBrKsYZ6vYbCfffdJwBRXFws2tvbh7WPgfjnP/8pAPG3v/3tqO/27t0rTCaTiIuLEw8//LD3GvfXJn3v4ZaWFgFuD/1wBJyH0e6Xex5jpPfbSASRwWAQLS0tR/1m0aJFAhBtbW3ez04++eQBJ308568IIoXxhFJUQWFcIoaQH6LX63n11VeZOXMmN998M5Ik8frrrx8zgXbx4sVHfZadnU1aWhplZWU0NzdjNpvZtGkTACeddNJR26vVahYtWkRZWRmbN28mPT2dxYsXk5KSwq9//Ws2bdrEmWeeyfz58ykuLkalUg36nI7HCSeccNRn33zzDU6nc8A8CU+ewK5duwZ9HLPZ3G8idXJyMqWlpcyYMeOo71JSUnA4HFRXV/eq6LRjxw4efvhh1q1bR1VVFRaLpdfvKioqjtqXWq1m3rx5R33uiZ3fvHnzoM8F+r/uCxYsQKVS9buvzMxM4uPjj/r8WPdFfn4+qamplJaW0tLSQmRkZL+2dHZ28t133xEbG8vjjz/e7zY6na7X9dqwYQMAZ5xxRr/bDwVP3s9nn33GN998c9T3tbW1OJ1O9u7dy4wZM7zn3F8bqlQqFixYQElJyYjtAgZ8XtLS0oaVr+SLYw3neg2Wl19+mV/84hckJCSwdu1ajEbjUduUlZX1m2/Y81k/dOgQDz30EB999BGHDh2iq6ur17b9PWN5eXn86U9/4vLLL+fOO+8kNjaWl156aVD9VUREBGeffTZvvfUWxcXFXHjhhSxcuJDZs2djMBiOf+J9GK1++XiM1f2Wl5dHREREv8cBaGpqwmQyAe6+TZblfvu/BQsW+MwmBYVgQRFECgqDID8/nylTprB+/XomTpzIqaeeesztExIS+v08MTGRgwcP0tLSgtlspqWlBWBAceX5vLm5GXAPEDZs2MBPf/pT3nzzTd5//33AXXnohhtu4L777kOj0QznFI+ysy8NDQ2AWxj1N8D10N7ePujjDDSYV6vVA37v+a5novaGDRs46aSTcDgcnHzyyZxzzjlEREQgyzJbtmxh7dq1/Sakx8bG9jtQ8Zy/5/oMlv6uu1qtJjY2tlfyeN/j9GUw98WhQ4dobm4esA2bmpoQQlBXV8fPfvazQdnvuc98UTrYc788/PDDx9zOc794zvlYz46vMJvN/X6uVqtxuVw+O85QjjWc6zUYvv76a9asWYNOp+Pf//73gAP4srKyfo/rEUQHDhzghBNOoKmpiYULF3LqqacSGRmJSqWirKyMv/3tbwMWfTj11FOJiIigtbWViy66aEj316uvvspDDz3ESy+95C0lrtfrWb58OY888siA90t/jFa/fDzG6n471nEAnE6n97OWlhaio6O93/VkKG2qoBAqKFXmFBQGwa9//WvWr19PbGwsO3bs4MEHHzzm9jU1Nf1+Xl1dDRwZ6Hv+6/m8L55qRj0HvampqTz99NPU1tayfft2nnjiCWJiYvj5z3/Oz3/+c+92sux+vB0Ox1H7Pd6L3FNBqyceG2677TaEO9y2379PPvnkmPseDX7xi1/Q1dXFf//7X959910ef/xxfv7zn3P//fcze/bsAX9XX1/fa5Dgoe91Giz9XXeHw0F9fX2/M7f9tXPP4w7lvhhoH9OmTTvm9erpLfUMqPqb6R8qnuO3tLQc89ieWXvP9sd7dkKV4Vyv41FRUeGtKPfXv/6VuXPnDrjtkiVLjnms3/72tzQ0NPD000/z6aef8sQTT/DAAw9w//33c9pppw24XyEEV155Ja2trcTGxvKXv/yFdevWDfocwsLCuP/++9m7dy+HDh3ihRdeYMGCBbzwwgssX7580PuB0e2Xg42IiAgaGxv7fT8M1E4KCqGMIogUFI7D+vXr+clPfkJBQQHbt2+noKCAn/70p3z++ecD/uazzz476rMDBw5w+PBhMjMzvQPPadOmARxVQhXcA+n//e9/AEyfPv2o7yVJoqioiJtvvpkPPvgAwFuuGiAqKgqAw4cPH/XbjRs3Dmj7QJxwwgnIsuy1KZDYv38/0dHR/ZaJ7e9aeHA4HKxfv/6ozz3Xw3N9Bkt/x/r8889xOp1D2tex7ov9+/dTXl5OVlbWgDPCACaTiaKiInbs2EFjY+OgjjtnzhyAAUuV90WW5X4FZc99DfZ+8dzj/bWh0+k85vPmL451/kNlONfrWHR2dnLOOedQVVXFj370I6644ooR7W///v0AXHjhhUd9d6xn7OGHH+a9995j5cqVfPzxx2g0Gi677DKvB3EopKWlsXLlSt5//31yc3P5/PPPh7SfseiXR4rHY+2r+2ogpk2bhsvl6rf/C8RnTUFhtFEEkYLCMWhqamLFihWoVCpeeeUVEhISePXVV1Gr1Vx22WUDDlx+97vf9Vq7yOVyceedd+JyubzrTACcd955REdH8/LLL3vzNzw8/vjjlJaWcsopp3jDXHbs2NHv7J3ns55x9TNnzkSWZV566SU6Ozu9nzc2NnLXXXcNuS3i4+NZuXIlGzdu5IEHHuj3hV1SUkJpaemQ9z1SMjMzaWxsZOvWrb0+f/rpp71hhQNxzz339Ar1aWxs5Be/+AVAr2s1GB544AGampq8/7ZYLNxzzz1D3teaNWsAt+errq7O+7nT6eSOO+7A5XJx9dVXH3c/t99+OzabjTVr1vTrFWxqavLmSwCsWrWKiIgInnzyyX5n8cvLy3v9OyYmpl/BDXDTTTeh0Wi47bbb2Lt371Hf22y2XmJp3rx5FBQUsG7dOtauXdtr2z/84Q8+yx/yJcc6/+Ew1Os1EEIIVq1axaZNmzj77LP51a9+NWLbPOsD9RUJ77//Pk899VS/v9mwYQP33nsvubm5PPnkk0yePJnHHnuMiooKVq1adVxvV11dHdu2bTvq846ODtrb21Gr1Wi12kGfw2j1y74kJiYGcOdrjSZXXnklAPfdd1+vddJaWlp44IEHRvXYCgqBiJJDpDAu6a8ogIfzzjvPu8r7mjVrOHToEE888YT3s6lTp/Loo49y0003sXr1at58882j9uEpdHDJJZcQGRnJ+++/z3fffceMGTN6iRGTycQzzzzDRRddxOLFi7noootIT0/n22+/5b///S+JiYn8+c9/9m7/wQcfcOeddzJ37lzy8/OJj4+nvLyctWvXIssyd955p3fbpKQkVq5cyfPPP09xcTHLli2jtbWV//znPyxatGjIBQPAPTDdt28fP/nJT3j++edZsGABCQkJVFZWsmvXLr755htefvllsrKyhrzvkXDrrbfy/vvvs2DBAi6++GIiIyPZuHEjn3/+OcuXL+f111/v93dJSUlYrVYmTZrEOeecg91u5/XXX6eqqoobbriBRYsWDcmOwsJCioqKWL58ORqNhrVr11JSUsKyZcuGNEM/b9487rrrLn7zm98wadIkli9fjtFo5N1332X79u0sWLCg17UeiDVr1vDtt9/yxz/+kZycHE477TTS09NpbGyktLSUdevWcdVVV/GnP/0JwJvwvnz5ck488UTOOOMMpkyZQmtrK1u3buXw4cO9BO/JJ5/MK6+8wtlnn8306dPRaDQsWrSIRYsWMWHCBJ555hnWrFlDUVERp59+Ovn5+djtdg4dOsT//vc/4uLi2L17N+D2eD799NMsXbqUCy+8kAsuuIDc3Fy2bNnCRx99xOmnn8577703pOsx2hzr/IfDUK/XQDz66KO8/vrryLJMXl5er1Da/li9evWAi/p6uOGGG3j22We56KKLWL58OcnJyWzfvp333nuPiy++mFdffbXX9s3NzaxYsQJZlnnllVcIDw8H4Prrr+ejjz7i9ddf57e//S0//OEPBzxmRUUF06ZNY/LkyUyZMoW0tDRaW1t5++23qa6u5pZbbvHudzCMVr/sS+bOnYvBYODxxx+noaHBmzt38803+zRE78orr+SVV17hvffe69X//fOf/2TWrFns2bPHG3atoDAuGLX6dQoKAQjHKbtNj3KnTzzxhKB7Mb/+OP/88wUgfvvb33o/85ReLSkpEY888ogoKCgQOp1OJCcnix/84Af9lkQVQoivv/5anHfeeSI2NlZoNBqRlpYmrr/+elFRUdFru507d4rbbrtNzJgxQ8TGxgqtVisyMjLEhRdeKL744ouj9muxWMQdd9whUlJSvGvC/OpXvxJ2u/2YZbePVdrYarWK3//+92Lu3LkiIiJCaLVakZaWJk466STx2GOPDXptkIEWEhXiSBnr/uivvK0Q7oUUZ8+eLUwmk4iMjBRLly4Vn3322YBlbD3Hb25uFjfccINITk4WWq1WTJgwQfzud78bUplfj70Wi0Xce++9IjMzU2i1WpGVlSXuv//+Xusceeiv/fvy8ssvi/nz5wuTySR0Op2YOHGi+MUvfnHUIpI9z6c/3nrrLbFs2TIRFxcnNBqNSEhIELNmzRL33nuv2LVr11Hbb9++XVxxxRUiOTlZaDQaER8fLxYtWnRUGfCamhqxYsUKER8fL2RZFnSv8dWTrVu3ilWrVon09HSh1WpFVFSUKCoqEtddd12/ZdU3btwoTjvtNGEymYTJZBInn3yyWL9+/aDuzZ4cqwzyqlWr+v3Nse67/jjW+Y/kWEO9Xn3xnPtg/wbbpl988YU48cQThdlsFiaTScyfP1/8+9//9paW73ntPev79OwfPTQ3N4usrCyh0WjEV1995f287z3c1NQkfvazn4kTTzzR+3wmJiaKxYsXi5deemnQz+ho98s9j+GL++3dd98Vc+bMEUaj0XuNPPs9VtntgfqTgfrMrq4u8eMf/9jbX2VkZIj/9//+nygvLxfgXhxWQWG8IAkxhAxNBQWFY7J69Wr+9re/UVpaetwZVwX/4rk+ZWVlI97XkiVL+Oyzz4aU8O5rEhMTiYyMZM+ePX6zQUEhEFH65aHxwQcfcOqpp3L33Xcft4CQgkKooPhDFRQUFIKcxsZG6uvrSU1N9bcpCgoKQUJlZeVRnzU0NHD33XcDcP7554+1SQoKfkPJIVJQUFAIUlpaWnjkkUd4//33cTqdQy5DrKCgMH65/fbb+e6775g3bx5xcXGUl5fz7rvv0tjYyPe+971+F+hWUAhVFEGkoKCgEKQ0NTXx4IMPkpWVxYMPPsj3vvc9f5ukoKAQJFxwwQXU1NTw1ltv0dzcjF6vp6ioiKuvvnpQVSwVFEIJJYdIQUFBQUFBQUFBQWHcouQQKSgoKCgoKCgoKCiMWxRBpKCgoKCgoKCgoKAwblEEkYKCgoKCgoKCgoLCuEUpqqCgoKCgMOYIIejq6qKiogKbzUZaWhrh4eHetZxkWZmvU1BQUFAYGxRBpKCgoBDCCCGwWCy0t7fT0dFBe3u796+1tZXOzk46Ojqorq7GYrEghKCzs5Pq6moiIiKQJIna2lqamppITk7Gbrdz4MABJEkiJiaGjo4OKioqMJlM6PV6amtrsVgsmM1mHA4HjY2NuFwutFotVqsVq9WKy+XC5XL1a68sy8iyjFarRa/XY7VakWWZmJgY1Go1zc3NqNVqkpOTaWlpwWazkZCQgNlspry8HICJEyei0WjYvXs3ERERFBQU0NraSkVFBYWFhcTExFBVVYXT6WThwoWYTCZKS0tJTU1lwoQJaDQa2trayMnJITY2Fq1Wi0qlGsvLpqCgoKAwhiiCSEFBQSFA8YiTpqYmmpqaaG5u9v5/f/9uaGigra0Nm81Ge3s7LS0tdHV1DSg+PMiyjEajISwsjJiYGIQQtLe3ExkZSVRUFA0NDTgcDrRaLRqNhq6uLjQaDdHR0RiNRjo7O4mNjSUvL499+/bR0dHB/Pnz0el0fPXVV6jVak488URsNhsbNmwgLS2NGTNmsHv3bjZu3IgQgqKiIqZPn84XX3xBTU0Ns2fPJiwsjA8//BCHw8G8efOwWq188cUXaLVaJk6cyI4dO2htbSUhIQGj0UhFRQVOp5POzk7sdjvNzc20tLRgtVqpra2ls7OT8vJy1Go1dXV1WK1WXn755eO2jyRJaLVaYmJiMJlMtLe3Ex4eTl5eHnq9noaGBqZOnUpGRoa3vRctWoTZbMZms5Gamkp8fDySJPny9lBQUFBQ8BFK2W0FBQWFMcJqtVJXV+f9q62t7fVvz2cNDQ1ewWO32/vdV1hYGJGRkQghyMjIICEhgY6ODrq6upg/fz4mk4lNmzbRVtlJ7cZWTLEG8s9Io3p9M20lFrKWJJE0JY7NTxxARmb69blY2x3sfPEg2nA1J9w+gb1ry6nd0kz0hHCSZkaz44WDABRdnomsltj2XCkAhZemU/llAy0HO1DpZYyJYXRUd+G0uEieE4MxQc++tRX9nkfhpekA7HrlUL/f552bQkeNhcoNDaj0MqaEMNpr3PuOzDCSPDfG+9vJV2UhHILtz5eBBBNXZlC9sZHG3W0kTIsi75wUvn50N7Z2B0VXZKIxqtj85H5cuJj2g2yqdzRw4MMKzBMNxM2IYP+H5bRWdZC0MAqNSWb27Nm0t7fz2WefIcsy8fHxHDp0iMrKSoQQ3vbvD41GQ0REBACpqalkZmbicrkQQnDSSScRFxdHS0sLGRkZFBcXExcXh06nG9yNpaCgoKAwIhQPkYKCgsIIcDqd1NXVUVVV1e9fdXW1V/i0trYe9XuDwUBkZCSxsbGkpqaSnp6OTqfj/PPPJy0tjdf++AYJBTEc+HctGjQULc/G0Qjln9QTZtQycUUGB96roumbdjIWpZJ6YhxfPrgTgOwzMjBrbKikBuQ2mUhbLF3ICKkDqUlLRHQ4Gq0Gl91FzXfNuOxuT4mtzcF3T5Vgtzjd52h1EZUTjiFOR2edlcP/q+11Dn3FTNGKDA59VkvF+noqNzSMqH17CqnE6dGkL47n68d2A9BysIOWgx3e7w99XOvNQTLE6ojOCafii3r3toc62PJUCbZ2BwANu1qR1VK390dDRFQ4VXUtmKRITFYjkdZowhusGKUYkh0x6CUtn/9sOwCn/78zKP9fLYffric/bxqnX3omO146iMViI+2UWNQxEttfLcGOndzlCdQfbOa8VWexe/duNm3aRGxsLHa7nZ07d9Lc3MzHH39MZ2fnUeeu1WqJj48nLS0NlUqFWq3m5JNPJikpiY6ODnJycpgxYwZxcXFKSJ+CgoLCCFAEkYKCgsIAdHV1UV5ezuHDh3v9VVZWUllZSVVVFbW1tTidzl6/i4uLIzExkYSEBAoKCpg9ezZtbW1sfHk7Uqea1OmJpE9PYtdT5ai61Ey5LJvWgx2UvVdDSxjkLZrEzmfK+ba+hITCNJKM0TRK7mOYDCYc3f9vabbTUWPB3uEe5FdtbKRpfztIgACn1Yk500jlhgZcNhf6KC1qg7vbb9jTyrd/2IvL4RZBlRsa0Jk13nPIWZZMZ62VvW+U03qoky1/LaGz3gpA68E+g3cJEoqjqP2uCafFxba/ldJRY/H59aj8qoGWsg6cFheSDPFTo6jZ0gTdcQ49xVFnvZUtfy3x2pG+MB5DvI4tfykBoGl/G9Zmt/fNaXfx7R/2esWS2qBGH631CkRzlvHI+Uiw9bkD3t/a2x101Fiwtrj/bYwOQ6VVYZTc3qCEsBREexhv3PwpYXFaiqZP5/AHdTgsTk45ZRkR6Ua2PnMAJw4mXpdK5fYaStdXoo6D5LkxJCYmYrPZ2Lx5M7W1tezYsYO6urpe7aJSqTAYDKSmppKdnY1arUar1bJs2TLS0tIICwtjwoQJREVF+fqSKCgoKIQEiiBSUFAYlwghqKuro7S0lLKyMsrKyo4SPvX19b1+4/HipKamemfm//Xr99CiJybZTFJ+AtWftiDXyxSfn0NbVRclf6ukxtDFpFVZZMfk09bVhVyho8HSiUpyd8GH19Wi1rtn+F12F8mzY+iottBVb8XZ5cLlEMgaGZfdxf63K3FY3YJIOAUHP6nFk5qij9JSfE0Om/+8n45qC20VXVhbHV77t/y5xPv/TquLLqvN+++YCREUXpLO17/dja3Nwd5/l2NttXuP017ZfygYgCFOR86yJCyNNloOdhxz25HQ046IdCM5y5Joq+iks9baz8b0sqPk3Up0EW7Bp43QMOsHBex69RANu1tBQFfDkbao395C/fYW778b97Vj624LY4KeadfmsuWvJbR3duFyuK+BcLpV2f53KlHr3NfSfc0Eji63sApPMZA8O4aDH9UA0FFj8Yo4laSm/vNOnA1aYqUkwvVh5KamsO1vpTg6ncw9azGm2WFs+WsJLlyknmmmZn8DVXvrwOggc0ki4eHhtLS0sGXLFurq6njttdd6NUlsbCyJiYkIIZg2bRqTJk1Cr9cTExPD0qVLlTwnBQWFcYuSQ6SgoBCyNDU1ceDAAa/o6fvfnvkekZGRpKWl9fp7+cdr0WNATxg6DCRMjgYB9Tta0BhVzL6jkJ2vHKRxTxuxEyNIOiGGbX8rBQGRGUbsXQ7vYF3WSEgqCafFhSk5jNxlyWx/oQxHl5OcM5PQRmi8oWcxEyJoq+zyDsJ7ojGpMWcaqesesE+9OpuuRht7/12OrJaIyg+nuaQdp/XYhQIACpanYW2xU/ZBNSqdTGSGkaaSdu/g/ngYk/R0VLk9J7oIjVdADYXj5RAdi57H7GnL8ZBUElE5Jre3yeYi69REtOEa9vzz8HF/q9LJmHNMNO5pQzgF+Rekoo/SsvXpAwDETYqkuawDe7vjqN9qIzSEJ+tp2N0GwMRL07G02jnwnyrUYSomXZ7J/rcraK+yoNarcDlduOzdIYDxOjRhareAkmDyqiyqvm6gfmcr0QXhTLw0g68e2YW9w0lsUSRIULOtESudGCaoaW1u4ewbT2P79u1s2bIFgOrqalpajgi/sLAwwsPDSU1NZc6cOSQkJOBwODjppJOYOnWq4mFSUFAIWRRBpKCgELR4vDz79++npKSE/fv39/prbGz0bmsymcjKyiIrK4vMzEwyMzN57vbXCMOIHgMaSQsSROWa6KyzYm22E1MYQd65KXz18G734Pe8VFxOF/vfqgQgbnIkLaUd3lCrnuijtBgTdN7B76xbC6jd2sTBj2vRRWpIWxzPoU9qsLUd/du+RBeEY2my0VlrJaYwggnL0/j60d3YO53oo7TY2uy4HMfvyjUmNanzYjn4SS0uu4vEGVHYO5xuL8kQCYvVMf2GXHa9eojGPW1D/r2HkQgiDzETwplwcTqb/rifrvp+vEXH/X0EGqOK6m+bkDUyGSfGU76+vl9R0xdZLaEN12BpsqExqDjhhxPY/fphGna1YojXoY/SDqp9tOFq0k9M4PBntVhb7GSclED8FDPfPL7He44dNVYsTbajf2tSE9lDJOeenYysktn7RjmSSmL2nRPYt7aChl2t6MwaDHE6d2ilAMnowhVhp66ynqseu5i33noLi8VCW1sb+/fv7zVpYDQaiY6OZuHCheTk5GC1WjnhhBNYuHAhcXFxindJQUEhaFEEkYKCQsBjs9nYt28fu3btYteuXezevZvdu3ezb98+2tqODDaTkpLIzc0lNzeXdc9+jQFTt+AxokHrHbCpdLLXg5I4Mxq9WUPZh+4wprn3TOTgxzVUftWAPlpLdF441ZsavTP1A6HSyaQuiKP2u2a66q2kzI0hbVE8G36zCwSYc0xYmmxYGo8e0PZFF6HBlBJGwy63UJn5g3xqtzRz6LNadyEAlTQoD5AHtUGFo9OJLlLD1Guy2fHSwUF7U45FZJaRltKO4294DHwhiHxlC7g9TUWXZfDdUwewttjRGFTYO53H/2E3Kp2McApcDkH6knjip5jZ+MReAGImRtBe3jUoT5o+Wos+SktziTsnbM5dhRxeV0vFlw2ExeqIn2qm/PO6494HskYicXo0jfvasDTaSJ4TQ8aJ8Xz54C4AMk9JwNJsp3pjo9d+zz6FEKhjoamxmS5XO7ocMKbqcblclJSUUFlZeaTdjEYiIyOZPXs206ZNw2QykZeXx6mnnopWqx10+ykoKCj4A0UQKSgoBAytra3s3r3bK3o8AqikpMRbuCA6OprCwkIKCwv59KmvvKLHgMmbk9OXqFwTtg4HHVUWItINTLkqm42/34ul0UbSrGj00VpK368GQGNUe4sUHI+0hXGow1SU/rcaSSUx48Y8St6tpGlfOyqtjHCJQXluwJ2bYu90YGtzkDgzmsxTEvj6kd24HAKVXsZpGbwA6kn26YlEZpnY/OR+9wfdBReGg6SSmHBRGnV9cmxGgq8EkYfYSZHETYpk92uHBx36dxQ92mja93NpPtDuvT+GiufayWq3p6b0gxqqNzaiDVejMagHXXxCVktIsoTT5iIqz0TOGcl8+3/7EE5B1qmJOLqcHP5f3fF3BGiMKuwd7ucp+/REuhpsVH3TSFiMlhk35bP12QO0HurEmKRHa1S7vUn9IBmhy9VOa2cLUoIDQ7YaWZbZvXs3DQ3u6oIqlYrs7Gw0Gg3Tpk1j6dKlpKenk5mZSVZW1qDsVVBQUBhtFEGkoKAwpgghqKmp6eXt8fx/RcWREsvp6ekUFhay8/0SjERgJBwjEWil46/NEpVrImZCBPvfds9gT7s+l5aydg68586Vic4Lp3Ff26C9LJJKQjgFpuQwJlycxtanD2Brc5B0QjQqnYryQQ5E++LJgZFk92C54st6Dq+rQ9bIAN4qZ0MlpjACS7ONjioLhngd2nCN29PgA3LOTKJhdxvNB3yzP18LInOOiZiCcEr+U+Wz/dna7HTWWjEm6dGbtV7P3VDpeV3TFsWRMieWrx7ZjXCJYedgAaQujMNpcVL1jVtoTbk6m93/OEx7ZZf33h0MfZ+N7NMTicwwsrm7GEfuWck07G4dUCD1RIQ7sOk6qaurp0vdjj5HoqWlherqI8IyOTmZwsJCdDodOTk5nH/++RQUFJCQkKCUEVdQUBhTFEGkoKAwalitVnbu3MmWLVv47rvv+O6779i6das3t0etVpOXl0dhYSGb/rXTK3oMhKMewNvjQaWT0RjU7twNo4pp389j3xvlNO1vJ6YwgoRiMztfOQSCIXtYeoYNTVmTTVtFJ6XvV6MxqEiZH0flhvpB5f4ci5R5saQtjHMPiJ0CQ5yOrgYrYngaqBfTrs+lcW8bBz+uGfnOcAtCvVnTqxKbr/C1IOpJWKwOS5Nt+J6iPmScnEB0Xjib/7R/xPuSZAiLca/rJKkkZt8xwRsSNxK04WqS58RS/kUdjk4nWaclEp5iYOsz7qIPPe/tweB9diSYeGkGNVuaaNjVSlSeibxzU9n8x33eXDZ7p+O4+3YIByLGioi3cWhXBdMvmMgXX3xBXV0dLpf7t3q9nsLCQhYtWkRycjKpqalccMEF6PX64TeMgoKCwjFQBJGCgoJPqK2t9YoejwDavXs3DocDSZLIzc1l6tSpbHp9F6Zuj08YJmRJHtT+NUYV0fkR3nVnCi9OR6WT2f58GeCeJW/Y2TKsQbukkpBV7nCkuMmR5J2Twobf7MJlF8ROjMDa5qDt8NELZw7tIDBldRa1W5up/rYJXaSGsBgtzaUdww5h86CN0JB3djL736nE2mwf8qD3eGSclEBCsTsXZrAhgINltASRrJaY+YN8aja7C1n4Ck/b6swacpcls++tyn6rAQ4Jyb3WUVeDDWuLncSZ0cRPjmTrc6UjvjfC0wzowtXU72xF1sjMuWsC+96soG5bCyqtjMsphiUYw2K0xBRGUv652zs66cpMnBYXu/5xyLsuVePeVm9o3vFwCRdddGAP70SbI4hONbN371727duHEAKVSkVhYSFGo5GpU6dy4YUXMnnyZBISEpDlwfUhCgoKCgOhCCIFBYUh4XA42Lt3r1f8eASQJxTGaDQyZcoUpk6dyqd/+goTZkxEHtfj0x9pi+LoqLbQuLeNiDQDk1dnselJdyUxQ5wOl1MMqkhBf6jDVDi63IO1E344gcqv6in/vB5thIbIDAMNu1pHPPg3JYeRMM1MyTvu8K20hXG0Hu6kpWzkyf9wJJRP1kgUXpLBwY+qafdBsYS+qLQyxkQ9rYdGKAr7YTQ9RBHpBjqqLThtvhOHHkxJejJOTmTXKwdxOcSQQtOOR2SmkYg0gzcnKGdZEjWbm0e8vpOslogpjKDlYCe2VjupC+JInh3D14/uBno/E0NFH61FVkl01lndFQi/n8vW50ppO9xJdEE4xgQ9h9cNI7RU58IRZaG6qpol15/Au+++S01NDRaL+z43mUxMnz6dOXPmEBcXR1FREUuXLkWtVpZZVFBQGDyKIFJQUBgQl8vFvn37+Prrr/nmm2/4+uuv+e6777yDkbS0NKZOncr2t/cTjplwIgnDNOzyu9EF4SQUR7HrVffguPDSdFrKOqjc0IAkg6SSh51XgwSSJCFcgpS5MaQucIerIdxllztqLcMWVz3RhquRNTKWRhuRmUayliay48WyIVUqGwxRuSZyz05h85P7cVh8u28PsUWRtBzsf00dXzGagsiDxqQmMsNI/Q7fFILoizpMxbTrc9n/VsWg8muGgsagomhlJqX/rablYAf6aC0uu2vEIZvgFjHGeL277LqEO2zvf3Xdz5uEEGLYHipZI+NyuEBA8pwYIjOMR57rS9Kp2dI07HLtQgi66MAR2wlJNuLSY9i6dSuHD7vXkdLr9UyZMgWj0cjSpUs5//zzyc/PVzxJCgoKA6IIIgUFBS8VFRW9xM/GjRu9Czfm5+cza9Ysvn5xW7f4MbvX7hkGslrC5RDIGpmpV2dz6NMaGna3Yc42ET/FzL63Knw22w5uT8rMH+Rz6JNaajY3eQeCjXtbfZKz05Pi63LoarCy55/lvt1xNyqtjNPmQmNQkTw3lsPr6oYvEo+BrJaYfmMeNZuaBl29bDiMhSBKWxhHwvQoNv3fPp+H/IF78J+2KI6KL+txdDq912g0KLgwjbAYLVv+UuLT/UoyROcfmRhImBZF+pJ4Nj6x1+fPYt7ZKdRubab5QDsxEyJIXxLPd08fwGV3efuGYWFyYjV0UFNTw9SL8vn444+91e4MBgNJSUlccMEFzJkzh+zsbCZPnqwUb1BQUAAUQaSgMG5pampi48aNvQRQVZU7tCspKYkTTjiB7Wv3E0E0EUQNW/xAd96FzT1b3DfJO/OUBOp3to44HKgvSSdEkzAtii3dFbISZ0bTerCDzrqhL9x5LAzxOgovSWf738uwttgxxOmwtthHZUCcPDuG5NkxbPrj6Azs+6IxqLB3OUecx3IsxkIQIYEmbGjrCQ0Xj5Cs3NBA5VcjK5DQHyqtjC5SQ2edFZ1Zw6QrMtn16iE6a318X8fpiMgwetcnmva9HKo3N1H1deNxfjk0TMlhxE6M8K4DNuXqbNoOd1L632qQuicARpAPZxc2WmmCdCuuKCt1dXXe9ZMiIyNZvHgxxcXFREREcOmll5KSkuKT81JQUAguFEGkoDAOcLlc7Nixg88//5wvvviCr7/+mn379gHuQcGsWbPY/+HhbvETjV4KG9HxJJWEJkyFrd3hzSfY9lwprYc7iUg3oDGqh126eCBkjUTBhWlUfdNIc0k74alhRKQZqNjQ4PMBvS5SgyFeR9O+dmSNRPZpSRz+vA5r8wiT6wdA1ki47AJ9lJbILCM1m5pG5Tjgvnbpi+Mp/+L4i376gjERRN2odDKp8+M49FmtT70efUmYHkVLaQeWJpv32o0GOrOGtAVxHHivCpdDEJVnorPWirXFx/ehBClzYmg93ElbeRfmHBNJs6LZ88/DPj+3mMII7B0OWg+5+4rJq47kDWpNauxdzhFfO4voQl1gp7axmuSp8WzYsIH2dneoY25uLhkZGRQUFPC9732PoqIixYukoDAOUASRgkII0tXVxTfffOMVQOvXr6e5uRm1Ws20adOYM2cOH/9+AxFEYxhBzk9PwmJ1dNW7Z6mLVmbgcgh3zoCn4tSeVp/P0EdmGjFnm7zlpfPPT3WH4vhozZ2ByDo1keiCcL79/b5RPQ64w71iJkbw3V8PIFyj310bk/QUXZbJjhfKBr1o6EgYS0FkTNBTdHkmO14qo2MUik/0RZIliq/Npn5n66iGHXqYcXM+jXta3d6VUcSc4w5t3ftvd1hoxkkJNB9o91mxEA8ag4rogh6VJS9NR1ZJ7HjxINC7zxkJQghUaU4qDldw8i1zWbt2LYcPH8blchEZGUlSUhKLFy9mxYoVnHDCCYSFjWzCSEFBIfBQBJGCQghQX1/PF1984RVAGzduxG63ExERwdy5c9n3fjlmYogkGtUwqr31h6yRUelk7O0OzDkmJl2eybd/2EtXg43wlDCcdpfPw3iQICrHRFeDDUuTjfipZhKmRbH976U+zwXqdVhZoujyDOq2NlOzpRmVXkY4xajN/LsPCggwJuoxJeqp2dI8esfqw4jyOIbIWAoiGNtzA0goNtNebaGj2uK9pqOFrJGQVBJOi4uEaVHETY5kxwsHR1VISzJMujKLms1N1H7XjD5KS1iMlqaSdp+fqyFeh0oj01bRRViMlhk35bP9hTKaS9rRmNQ4rS6f5dM5hYMWGmnXNyFl2CgvL6ejowO1Wk1SUhIXXXQRCxcuZNq0aWRkZPjkmAoKCv5DEUQKCkGGEILS0lLWrVvnFUC7d7vL5qampmIvlzATg5lYTET6xPvjQWfWeMPCir+XQ3tlF/vfqkRWS0RkGGkp6xiVUCRdpAZrix1Jhlm3T6Byg7tE9mgTkWGg9aC71HTGSfE0l3bQUurbWfD+SJ4dQ1ReODteLBvVAXRPNAYVSbNjOLyublTDyfoy1oII3KIodWEclV814BiDvCIAJChamUnTvrZRyS3qS2SWkchMI4c+ca/B1PNeHk1SF8SSPCfWXcpbHHl2fY2kkojMNNJ6sAOXQ5B7TgqmJL03Z7BnX+ULhBC004LI7KJFaqTT0e6tapeYmMiZZ57JrFmzKCoqYt68eUqYnYJCkKEIIgWFIKCiooJPPvmEjz/+mI8//piDBw8iSRKTJ0+mcWs7ZmIxE4teMvj0uJIMstpdECFuUiT5F6Ty1cO7cXQ5iUgzYG2zj1rejIekWdFknpLAV4/sxmUXaEzqUS0D7SEi3cCUq7L57ukS2sp9W/DheERmGolI716HZox66Oj8cHKWJbPlL/sHvZimL/CHINIYVRRfl0vJO5U07h1e6echI3WvQ3XId+tQDZbw1DCmXp3D1mcPjMpaUn3xPKOyRmb2HRMo+7Caqm98W4yhLzqzBl24htbDnagNKmbfMYE9/yqnfnv3ArQOl8+9yBbRiWaKg/KKw4SlaNi2bRtCCFJSUli6dCl5eXmcfPLJzJ4927cHVlBQ8DmKIFJQCEDq6+v59NNPvQJoz549AEyZMoWmrZ1EE4+Z2BFVfhsISZa8ITYzbsqjfmcrBz+uQR2mIjwljObS0fEC9WTCxWm0lHVQ9XUj2nA1hng9zQd8H4LTl8jM7ln1T92z6uEpYbRVjI0YMueYiM4P58C7VWNyvP7w5eKig8Ufggj8c649yT4jica9baOe7+ah572cviSelrKO0RdmEpizTXTWWLC1O0ieHUNEhoHd/zg8uodVSZizjLRVdOHocpJxcgIxEyLY9H/unL+efZxPjxvuQqR3sXf7fqKmGvjuu+8A95IFS5YsISYmhjVr1pCbm+vzYysoKIwMZSlnBYUAoKWlhXXr1nm9QD1fpB17HUxmDlHEod2mI953EXBHEVsUQc6ZyXz92z0Ip6Dsw2q6GtyLlTq6nD5fdNKDNlxN/NQoyj93J5531lqxtbq9QLY2B7a2UR40dud26KO1RGYYvQOmsRJD4F7cU2/WjvlAXR2mIm5yJFXfNPpVIIw1wimQZHc59rptLTi6xs4rJqkk9GYtav3YhVV57mVJlojMMGJttbsF0WjmNQl6CT5ri71XXmHqwjhqtzT5ZJHZXod1il59Vd3WZtor3J4xWS0x67YCSv5TSf0O31a6FG0y7DCSL02FrXByRBZt2iYq9x7mv7b/UlZWxoMPPsiUKVOYOHEiRUVF3HTTTZjNZp/aoaCgMHQUD5GCgh9wOBx89dVXvPfee/z3v/9l48aNuFwu0tLScByWiSaeKOJ8HgLXH5OuzKRhdytVXzeij9ISnR9O9aamUVnssyeSLKExqrC1OQhPDaPosky+e7rEK8DGioIL07C22ij7oGZMjwvuJPjo/HCfD8yGQuykSHLOSGLT/+0bk3V6+uIvDxG4Q+em35BHyX+qqN/RMubH9xBbFEHj3rbRLdIxAJlLE9FFqEdtIeGBCIvRMvWaHHa8UEZbRRfacDX2DueoV1KUNTKJ06No3NuGpclG8uwYogvC2f73slE9LoAU66SyvpxGUYclqoWmpiZkWWbGjBkkJSWxYsUKli9fjlqtzFUrKIw1iiBSUBgjKioqeP/993n33Xf54IMPaGlpITo6Gk2joVsAxROG0adFEPojMtNI8uwYd0lsIHVBHO1VXWMWuuNh4mXuykw7X3KX0B3L6l9akxp7p3vwlTgjCnuHk4bdYy9KEqZFkXVaIt/+Yd+Y5EUNhEo3ssUvR4I/BRGAdkoeTjs4d41+CfX+aL1pDqdGt1P6ZvmYVhIEcJw0g9gYJ/oDB6n+tsk9SWFwrx82FvR85vv2B2OFOceEKSnM650uvCSdyq8aRj2cUAiBw2iltqOKFl09TXItXV1dREZGMmPGDAoKCrj77rtJT08fVTsUFBTcKIJIQWGUsFqtfPHFF7z33nu89957bNu2DUmSiBBRxJBIDAlEED3qAggg6YRoOuustJR2EJ5mIHV+LPveqMBhGTuPgMaoIvv0ZA5+UoOl0UZ4ahgOi8sn64gMBZVOZtatBRz8pIaqr0c30ftYNngEyGhV4ToukruQQuOeMSoqMAD+FkSqwjwAopJlmqpc3vCxsRBItTfMA8Agu+h0SYBE0tMbxkScOk6acdRn6R1lpC+J55vH94y5QA6L1aHWHSmpnb4kgQPvVY5pgQ+1XkXeeSmUf1FP2+FOIrOMGOJ0Y9JPCEnQShMNrmq6YpuobqhGCMGkSZPIyMjg3HPP5corr0Sn0426LQoK4xFFECko+JDS0lKvAProo4/o6OggISEBuUZPDIlEE49WGv0XmjpMhTnLSP1Ot9dj8uosmva3e2dBxwpZLWFM0NNW0YWkkph0ZSYHP64Zk/K/fYnKNXnzCmImRNBc2u4Xr4gpOYxJV2Sy/YUy2scwR6kv0QXhFF6SzqY/7h9zUdoTfwoijxgKC5eYerqGPV84aKrsfU+MljDyiKGeRKkdzI/s5IsWI5onvhqV40L/YghArRKYzS6aX9vitifPRNO+sfUcg7tEeMZJCWz/exnCKQhPDaOj2jKm60eBO8cpKsfEtudKAXdoY/OBjjHJN3OqbNQ5amiUa2g11NPe3o7RaGTWrFlkZ2dzxx13UFhYOOp2KCiMFxRBpKAwAlwuF1999RVvvvkma9euZdeuXajVakwOM7EkEkOiz9cCGghJJaHSyji6nMROjCD/gjS+eXyPOxRrlBeEHIj0xfEkz47hq0d3+zVh35QSRvE1OWx7rpSWg2Nb8rgvkgwpc2Op2NDg9yIGYTHaMc/Z6ksgCCIAfbiEpW3g6+FrYdSfIJIR5IbZ2NelReDuM+L/uN6nxx1IDPUlpmQ3k1dnseWvJbRX+k+4SyqJ2XdMoHJDA4c+q/WDAYBwh9nOuq2A3f88TMPOVtRhKpw215g8w0II2uUWGlzVdMY2U91YicvlYsKECUycOJELLriASy+9VFn7SEFhBCiCSEFhiHR2dvLhhx/y5ptv8tZbb1FbW0tsbCyaehNxJBFNPGpJM+Z2Tbs+l9bDHZS8U4WkklDrZL8kyWefnkRHjYWazU2oDSrUOhWWprEfdKu0MjGFEdR+1wy4V7nvWeFqrEk/MZ66bS1+9cZ40EZosLX6IUyvHwJFEHnQhoHtOOP/kYqj/sRQX8JVTtJ0dnZ26gDJJ8JosGLIg9HgoqNTRv3xt8RPNdOwqxWnbey9qvooLQ6rE0enk4RpURgT9Bx4b+zL02sMKhxWtwjKWZZMRGoYm7sXgh1LXCo79Y5a6qmixVhHR0cH8fHxnHjiiUyYMIFbbrmF6OjoMbdLQSGYUUqZKCgMgpqaGt555x3Wrl3LBx98QFdXFwUFBYTVmpnJRCLrY8bEC9ST8DQDeeek8N3TJTgtLkr/W42l2S08hFOMqRgyJurpqLa4/yG5vSAAjk73IMYfROWZyDkzmZbSDqytdr+KIZVWJjo/HEujze+CSBuuZsZNeex/s4K67f6rrOZv+hNDsekyOTPVbH7XdkxR5PntaOYZRamdJOoc7O3S4RBHRNRwhdFQxRBAR6f7QVadMZ2cGTZcjkN+qYjYc0JFkoEeXW2vvmeU6dmnVnxZT4PZPfGl1quYcnU2+96soO3w6IcDy04N8VIK8aQgugTt2iaqayv44osvePXVV3nooYdYunQpRUVFXHLJJRQXF4+6TQoKwY7iIVJQGIA9e/bwxhtvsHbtWjZs2OAuiOCKIpZk4kjGKIWPuU1xkyMBqNvWgsakJmNJPIc+rR2zqlD9YUrSU3xdLtv+XkpLqX/D0fRRWszZRqq/bQJAY1L7tXqbJEvIWgmnxTVqi0EOh9iiyO4yz/6pLNcTf3mI+hNEshqikmQaDg+tXYYijAbjHfIgIRBIaCSBQ+ANo4OhCaPhiKG+aDUCmx3UH28icUYUzQc6/OL57UlklpHJV2ax+S/76agaG1HUH9pwNemL4zn4SS32DkevfnqscZotlDcdoo5KWqQGAGbPns1pp53GvHnzOPXUU8fcJgWFYEARRAoKPdi5cyevvfYar732Gjt27MBgMGDsNBNHMrEkjUlBhL6YUsLcMfwC8s5NweUUlLxdOeZ29CQy00hklpFDn7hj+s3ZRpoP+FcMAaTMjSFxZgybn9w35gnY/ZF3bgr6aC3bni31tykBSyAJopEyGGE0FEHkRrDY3Em7U+bbtrCjvj2eMPKFGOqJLAtmTbdRta6Kyg0NPt33kJHAnHWk70k/MZ6W0o5RL5l9PHLPSkaSJfa9WQGSu5CKXwqomJzUU0VF22Ha9A1YLBby8/NZsWIFS5cuZc6cOUrekYJCN4ogUhjXCCHYsWOHVwTt2rWLiIgIDK1mEkglmgRUkv9eGIY4HdNvyGPHi2XuCml+Ko7gwbNuSHyxmYTiKLY/XxYQhQGMSWHUb28BqdtGPyxw2R/GBD0aoyogxCK4BZq12e6f5PQBCERBlFqkQm+U2P/18LyLAwmjoYshN/EaB1aXRItz4L5oIGHka0EEoJIFTheARGLtfjqquvxenENSSUy6IpOazU3Uftc8puua9W8QINyhu0WXZbLpj/vorPNfuKwUJnBktLN71246I5tpaWkhMTGRa6+9lgsvvJBJkyYp4khhXKMIIoVxhxCCbdu28frrr/Paa6+xe/duIiMjMbSYiSeFGBKQ/SiC0hbFEZ5q8C5QGJFuoPVwp1+FEMDkVVm0V3dR+n61fw3pQ+YpCUTlhrP5z/v93kbgFmRJJ8RQ8WV9QNjTk+Q5MdjbHQGVO+QPQXQ871BsuoxGL1G1d2T5b32F0XAFkQepuwpdSZcWF/3nLPYURqMhhvraM2O6neYttZR9WDOqxxoq2acnYkwIY9vf/OydlSAitbsPB4pWZtB6uJPD68Z2CYSeuIQTeZKVkop9NIk6mpubiY2NZeXKlVx11VVMmTJlzHNiFRT8jexvAxQUxopt27Zx3333MWHCBKZOncrvf/97Zs+ezdtvv01NTQ1F0izipOQxF0OSSiJpVjRhse5wvPbKLppLjqz90XrIf2IoKs+ErHa/GKu/bfSua+RvwmK0ROWZADj0aS3fPVUSMOIjPNVA2sI4DLGBt4Bi5YaGgBJDgUr9IdeIxdBoEK5yUWCwEq0JDNsEEpu2aDj0qdvjGJVnIixG62er3NTtaKX6W/eCqrJa8vYXY47AK4YAmva3e8uYh8XqSJoVjaQaW/EhSyrYYSCneSo1NTX8+c9/pqCggL///e8UFxeTkJDARRddxJYtW1DmzBXGC4qHSCGkOXToEC+//DIvvPAC27dvJyoqivPOO4/ly5dzyimnsEy/0m+2aYxq7B0OJBlm3JLP4XV11Gxq8ps9fdFFaJhxSz771pb7JTn4WOSdk0JYnI6tTx/wtyn9otLLOC3+L1jgwRCnI2ZCBBVf1gdEblVPAtFDBCCrIClfRWOFi67WkbWZc9e+EXuHPGgkgV14BtAC+vEUxf9x/ah7h45GMD2rmc46K/vfrBjjYx+buMmR5J2bysYn9gZMuXmAhOlRpC2M49vf70W4jrwT/MU7lhf58MMPeeCBB9ixYwdtbW3k5uYybdo07r//fiZOnOg32xQURhtFECmEHE1NTbz++uu88MILrFu3jrCwMM4991xWrlzJqaee6lcR5CG+2EzOGcl8/dvdOK0uJJXk91wccK/VkzQrmpJ33Gt8BMLCnR40BhW6SA3tVRZUWhkhRMDkCiHBhOVptJV3UvGlnxPN+yF+qpnUBXFsfnJ/wFS681B4aTqSycieLxyjWsa6J03vuAVR7B0DbyPJMPU0DRU7ndQdHLm4rfmNhOvd2BHvx0NemNtT9FVrGP2JouYZNrJfHLtrXXWDFZUL0i7fidPmwpSkx9Ji91vZ/b707MtyliVR9XWjX3N6PHj6fpVe5oTbJlDybiW1W5r9bRb/sb7EBx98wMMPP8wXX3yB3W5n4cKFzJ49m6uvvpoJEyb420QFBZ+iCCKFkMBisfDOO+/w4osv8s477+BwODjllFNYuXIl559/PhdErvG3iaTMjcHe6aT2u2Y0RjWRGQYadrciAseRQHhqGLlnp7DjhTJsbf6bqeyPggtSCYvTscUPCyEOhrRFcbRXWWja1+ZvU/rHzwU5BqKnIPIw2sLII4g8DCiMfNRmNb/pLVh8IYwStXbMahe7O7X0FUTNM3pPYoy2MKq6obewSFu+neLv5dBZZ2Xvv8pH9dhDRRuupujyTPa/WUGbPyq/DYAkQ8yECFoOdmLvcBA/1YzGoAqICZbXGv/K22+/zfPPP88HH3yALMucddZZXHTRRSxbtgyz2exvExUURowiiBSCFpfLxbp163jhhRd4/fXXaWlpYcaMGVx++eVccsklXJlyi79NRB+txdLoHpzknp2MrdURUBW+AFLmxxKZZmDnGFf5GgySLKE1qbG22tGY1CDwa0hJf+giNVhbAicMpy/GBD0dtZaAFEPQvyDyMBrCqK8Y6stR4kgCQ6REZ/PwG7CvIPLgK4+RQXbR6XKnBPcVQx5GUxT1FUQAejskX7sbe7sDXYQGW7sj4LyTABNXpNNysJOK9fX+NqUX6Yvj0Uao2f+We4mFnu8Sf/L7nQ/w73//m3//+99888036HQ6Lr74YlavXs2SJUuQZSU1XSE4UQSRQtBx6NAh/va3v/Hss89SWlpKVlYWl19+OR8+8BVGKcLf5nkJi9Ux48Y8drxURtO+9uP/YAyRVBKyWsJpdRGVZ8IQr6fii8AaEIA7V8iUpGdzgHqFYiaEU3BhGpue3B8Qg5W+yGqJE344gYr19Rz+n/+qWh2LYwminvhKHB1PEHnwCKOUQhXJBSq+fcuGaxjRXwOJoZ6MRBiZVE5Ojurgm9YwKm2aAQWRB18Lo/7EUE/Slm9n2vW5tFd2udflCTBS5sfSWWuhaV87Kp2MyyECIny5J1F54RRdlsG3f9gbMCHMAFKSg5hFer755htKSkqIiori7LPP5mc/+xmZmZn+Nk9BYUgogkghKLBYLKxdu5ZnnnmGDz74AIPBwCWXXMJVV13F/QsfD5gSoVF5JszZJm9p6pgJ4TTuaw+4F+yUq7PpqrMG5AAF3J4h4RLoo7Wo9SpvVaZAQ5IlYidGBHTlNmOCHlu7HXtHYORy9GWwgsjDSIXRYAWRh6R7QaOX6GwZ3jM8GEHkYXjCSJCqc1BhVdM0Y/CeSl8Io+OJIQ/RnRBz614sjTbvsx2I5J2TQlisjq3PBFaxFkklEZ1nomG3Oxw367REmkva3WvTBQBCCO7+4Hp+8pOf8N1339HZ2cmsWbNYuHAhP//5zzEajf42UUHhuCiCSCGg2bx5M8888wwvvvgiTU1NLFiwgDVr1vD3NW+iltT+Ng9wz8LLahmHxUnc5EjiJpnZ9eqhgHvpGxP0dDXacNndXiFLk52uev8nFfclZV4s0QXhbP9baUDlV/XElBKGo8sZkF6hYGOogsjDcIXRUAWRh2MVYDgWQxFEMHxvUfMMGxF2F1oX1OsGF7Y0ElE0WDHUk/SLtzN5VRYNu1sDIjemL2GxOvRmDU3721FpZfRRWjpqLP42qxeSLFF4STp125qp296CWq/C5XAFTPVIp3Cw6rnzePDBB9mzZw9ms5nLLruMU045hXPOOUdZ/FUhYFEEkULA0dDQwEsvvcQzzzzDli1bSExMZNWqVax7aAtGKdzf5h3FtO/n0nKwgwP/qfK3KQOi0snMuq2Aw+vqAi5Wvi/hqWFEpBsD2s7Jq7JwWJzsejXw8q48xEwIJ3lOLDtePIjLHqDKkuELIg9DFUbDEUQqJ8zeq+FAohPHLwfflkMVQz0ZqjBqnmHj5DobWpfg3XgtDMFrPlRhNBwxBICAOY9V03qwI6AKGvRHyrxY0hbF8c1je3BaA/f5yT4zicgMI5uf3O9vU46iS93BojuKeeaZZ6ipqSE7O5tbbrmFlStXEhvru4qLCgq+QBFECgGBEIIvv/ySJ598ktdeew2n08nZZ5/NmjVreOzsZ5GlwEnUVIepSJ4TQ8UX9ThtLqJyTXTWW7E2B15ifWxRJA27WhAut1ejo6orIL0upiQ98cVRHHg3cEVlT1Q6GUmWcHQFZhgaQESGgdiJkQHfpiMVRB4GI4yG6x0CmFSmpiraSUOEGLS3aCSCyMNghJEnb0jnFAgJbPLQjzsUUTRsQdSDtOXbyT4jiZotTXRUBZYXBtxV34xJYbRXdLkrwBVGUr8j8EJjdWYNhlid16uVMj+Wyg0NAdU3uSQXS385i6+++op33nkHIQTTp0/n0UcfZf78+QET8q4wvgmcUabCuKStrY0//elPTJs2jfnz57N+/Xp+/vOfM9dxOm1vqPjdOX8LGDHkMUNWSyTNjMaYqAfcK48HohgyxOkouCAVc7Z7hfb2isAUQwDaCA2mpDBUgwz18QsSpJ8Yj9qgwml1BdSAoz9aD3YGvBjyJarCvEEtuDpctmc6aIhwi4b6R9x/x8IXYghAPmPwnlKrSsImS+idgunNdqQhzHceWClxYOXxbfaFGAKofnUSpqQwdBEan+zP1wiXu88EMGeb3GX/Y3V+tuporM12by6RMUlP0sxoZLX7OgbIqxNZyHz0/76lfa2aufbTWbFiBYcOHWLhwoVMmjSJq6++mvLywCrPrjD+CJDHRWG8sX37dm688UZSUlK48cYbycjI4N133yXrwDQ+uPsbdJLe3yb2InFGFMXX5YIEtjYHX/92D62HOv1t1lGodDLJc2IA6KyzsvH3ewMm8fYoJIjOd4dANu5pY+szBwI6NEVv1pIwLQpjQmDdm/0ROzECQ3zgDd7GgtEURuGdEkmNR16bgxFGvkA+o35AYdRfVblou4v8DiemYRRzOZYo8pUYArCr4J0zDDTucRcKiM4P72992YCgaX87G3+/15tzmTwnJiAnb1oPdvL1b/e415CToPi6XBJnRPnbrF5oJR1VL3RRVD2f//73v8TExPDss88yYcIErr/+ej7//HN/m6gwTgm8J1ohZLFarbz00kssXLiQyZMn869//Ysf/OAHzHOdTudbWh498+mAcp1rw9WExWgBaKvoonZrM1J3KEqgVY3zEJ4SRvqSePTRbrsD0XPlITo/nMJL0gNy1rU/LE02vn1iLy2lHf425bikLYonbrLZ32b4ldEQRqkNMvkVqqPWdAoEYdSTSr2K15J0tKmH94ofjKfIJ0hw+PVJhMXqKLwk3TtBEoh4+lJ9tJb0JfGEp4T52aL+8bybJFmidmuzN1crLFaHNjwwChEBSJLEb077C7rPE1hiOJs77riDt956i4ULF5Kbm8vzzz+PxRJ4oZQKoYsiiBRGncrKSu677z7S0tJYuXIldXV1vPDCC0ysnkfl+kYmnZPr3XbKVVnETYoE3Mn1xdfloDG6O/HUhXHkn5/q3XbSFZkkTHPPfhkT9BRfl4PO7A6/SJ4Tw4SL0rzbTlyRTtKsaADCYrQUX5fjHYgnzoxm4mUZ3m0nLE8jZW4MEy5KJ/uMJIqvywGgYn09cZMjmXRlpnfb/PNSSVsYB4DGoKL4uhzCU90vytiiSKasyfZum3tWMhknxQOg0soUX5dDZJa7HGl0Qbj3OADZpyeSdWoi4A57KL4uh6g8d+ibOcdE8XU53rCI7DOTmLw6C4DmAx10NVi9XoyIdAPF1+Wg1rsr+6QvjifvnBTvcSavziJuihkAU7K7vT0vzdT5sRRccKS9iy7PJGG6u70N8TqKr8tBH+UWXsmzYyi8JN27beEl6SSd4G5vfbS7vQ1x7vZOmhVF0coMGve0sflP+0lfHE/KfHeehDZCQ/F1OZiS3W0YP8XM5FVZ3v3mnZtC2mJ3e6vD3O0dkW5wt/fECKZec6S9c5YlkXFyAgCyRqL4uhxv+GB0vru9PSElWaclkn26u73dM6s5RBe4B2fxxWZm3zkBjVGFyyHIOCmBnLOSvceZcnU2sUXu9a8i0rrb2+Bu77RFceSde6S9J12ZSfxUd3sbk7rv2e6QoZR5sRQs73HPXpbhnd0Ni+1u726hmzQrmsJLj7T3hIvTvJ5BnVmDcAka97QCkDAtiqLLM73b5p+fSuoCd3trTGr3Pds9uIubHMnkq460d+45KaQv6b5n9d33bIb7no0pjGDqtT3u2TOTyFza3d5qd3tH5brbOyrXfc9KKvc9m7k0kewzkry/jYiTiU5xX4yIeInJSzWouiOp0iapyJ55ZCBXdJKG2HT3tqYY97aabqddSqGK3NlHtp24WEPSmQWoCvMwJuhZtF1DWLeTI7tKxcx9R7Y9YY+azJru/XZJLNquwdTltjejRuaEPWr2JjtZN8nOjP1qsqvc1zjMCou2a4jskKh/BOIyZXKvPhIGNuOAivxK9361dliyU010u3u/KY0yC3cdsaG4TEVhuXu/aqd729hW97ZJTRJLdroXJ5bPqGeK0UJ+tlucS0JwTpWV1O4wzpQuJ8tqbOgcLhY02Jlfb2Nu45HJkbOrrWR2urdNsLg4p8qKtnsgPa3ZzoIGuzeEbsIpNhLinVTdYCW6E07bB2HduyqshXk96oosKYWcRvf/m7vc25q627ugHhYePLLtwjLI79Z2lb/Lo1Uveas2evoIDwUXpgVMH2FptLHxd3vJPCWR6IJwkk6IJmZiBMXX5aDSujcOhD4icXoUEekGOqot3v163kc6s7sNPe8Jf/cRqk4tO186yCVnXsZ9991HXFwcV155JXFxcSxbtozS0lIUFEabwJkuUAg5vv32Wx5//HFeffVVdDoda9asYftLpeTlZvL3NW8iSzKWRluvXIy2yi5s7e7kaofFRVt5Jy6nO4zK2mSDHqWs26u6sLa638xOW/e2dvf31hY7Hdojs0vt1RasLd3b2oV7W5t7v7ZWO+1VXah0MulL4rG22bE029m3thzhEqTMjfWGctnaHLRXHamO1FFnwdZtg8vp3q9nW3u7g/bKI2F1nXVWHFb3uQqXe1vPuds7nbSV99i23gbd8f9CQFt5J/buAYyj00Fbeafna2SVhDFRj9qgwtHppK28C3uHpw3d+/WUALc02XDajrR3e2UXtrbudrG6t/WUb7U023pVqmqv6vKe65H27r42LTY6qo+UU+2oOdLeLrt7W6fNhc6sIX1xAk0H2r1t0lFrwdrsHgi5HN3bdreTtc3eq70766xee71taHFva+tw9Kpc1Vln9d4PwtXdhl3udrF39G7DrnrrkXP1tHd3G6q0MsIljrRhoxVVx5Fzba/owt7u7N3eziPt3bMcbntVlzucBXBau9vQ4fK2t6w60t4d1RasrY5ebeht71a7d6DTt73Bbb/nObId1YYWLE3dbdh9zzo893e7o9eaT111Fu99J5z0am97u4O2is4e21pxOfu0d2ef+7u7wbsarL3OtStMwm51f+ewQXuD8F4bS7vA0SMqrL3Rhc3i/tJpd2/rWTDV2nHkdwDtTS5sXd02paVRbdXhktzn3qUTtPSI0GwxCrrcY0kcsqDJJHDK3ddR6/7e2X3Z2/SCLl23DTI0mQR2VXd+0eUC/XMNUOCe2GkNO7JfIUGjUWDv3o9VLWg2HjG4LezId4LubdWebd3/9tAxoRPjH2vgBveAs04nY+32YFtkiTqdDBKY7S7qtBKtmiPtXaeV6ere1ia7f+vq/rpNLWOXjxynXisjvtoHy7Owy9BgAGf3th3a3lFuTWHQ2W2vXdW9bbeg6NBAk773th3dutEpQ60JHJMKeOzB//Dy6xOo33mkgEGg9RGOriPPedrCOCq/bujdzwZgH1GzpQl7d5+gDVcjSe5iRhA4fURnlZXtz5ZhcqVydtFFdCU18dFHH5Gfn89FF13EBRdcwAUXXIAsK3P5Cr5HqTKn4FOcTidvvPEGjz/+OJ9//jmZmZnccsstvHn7Z6ilwEye9SCrJaZek8PBT2q8ce2Bij5KiznbSPW3TYA7dyiQ82+8SO7Z08oN9QG7UGgwo4/SMu37uex4vozWw4GX49YfhZem0zHVzIcxbg9i4WPNo3KcfauOVGuLmjz8ku7RbRJz9mj4dJKNzgHSyaKWHal4V/9W/rCPdSxiz97r/f+9T88ceEMhhlSCuz/yr97o/f/Dr08a0b4GIvVRt4DQaAW3/GAz82duQpYF56eeMCrH8xU9+97EGVE0H+jA0hTY65NFF4STcWIC3z1VEjDrFw2EQ9g5/3cn8eijj3Lo0CEmTpzI/fffz/nnn49arczpK/gORWYr+ISWlhZ++9vfkpuby/Lly5FlmX/961/klM3gPz9cH7BiKCLDwIyb81CHucOhNv9pf8CLIXCHIiTPifWGIAW6GEqc0V2MQMDBj2qCQgwlz4kh85QEf5sxJBwWJ4c+re012xts7LrNzK7bzKN6jKZtsTRtG946KC0GwZ4Up9eT05eeYgh6C5fRIv/qjb1ESy/crgBmNtkpah16afO++01bvn04Jh4TjxgCsNskHn14OrIsqG2I5v7/tvDv8q/5d/nXPj+uL/D0vZJKImVuLDETAjcPyoMnXNnlEKjDVMy4OY+IDIO/zeoXtaThrVv/R96hWTzwwAPExsZy8cUXk5iYyJVXXklTU5O/TVQIERQPkcKIKC0t5bHHHuPZZ5/FarVy6aWXsuf5SiKkwKps0xedWYO12Y7aoCJjSTwHP63F0RnYg3RdpAZTchgNu1pBcnu0POEegYykkpi6JpuG3a0c/l+dv80ZNMmzY9AY1Rz8uMbfpoQ0fT1ER33vI49RTw9RX0biMTpqX8sGXg/JV96iY4msgbxFM5rtdMkSOyMGN6s+oMDqxleeop5iqC933/M1+w5msOKct1Grek/6BKLnSNZIbo+LcE9atVd29QplDUT6vgM978ZApk00I81pZ+PGjeh0Oi6//HJWrFjB4sWL/W2aQhCjCCKFYbF161YeeughXn31VcxmM9///vf57Beb0UmBWXmnJ5lLE4mdGMG3v98bsOvy9EfmKQnETIhg0x/3BYfdUnc4icXlFm8BHpoR7ISnhhGRYaTyywZvLkMwcDxB5N1uhMLoWIKoJ4MRR5ILsqtVNES4aDb1butjCSIPIxVGg/E6HTOMbhAcTxCBb0TRsQQRwGsvP4NG7cRi1aLT2vqN/gs0cSTJMP2GPOp3tXLwo+CZUJFkmHFLPvU7Wij7IPDttgoLJ/10Bo899hhtbW2ce+65/OQnP2HatGn+Nk0hCFEEkcKgEULw+eef8+tf/5r//Oc/ZGRkcMcdd/Cvmz9CJQV2LK8hToekluiosqCP0qIxqmgrD/ywIo1RjSFOR0tZB7JaQlJJAR8e5yH79EQi0oxsearkqDLFgUzOsmQ6aixUb2z0tylDInFmNInTo9jylxJ/mzIkBiuIvNsPUxgNVhDBIESRgEU7NByMc3IwoffzOBhBBMMXRUMJwetPFE1ocxBlF3wZPXAY82DEUE+GK4yOJ4Y8/OvVp3hx7dmkJNRw0ryvjrltoIgjlU5GOAUuhyAy00hnndVbqCWQCU8Nw97hxNJkw5ikRzgEnXW+W39qNJB0LiZ9P4M33niD0tJSCgsLuf3227n66qsDaikPhcBGySFSOC4ul4u33nqLBQsWsGjRIg4dOsTzzz9PzsEZrL3ls4AXQwA5ZyV7y2NbmmxBIYYA0pfEk3NmEkjgcoigEUMA1d82cWhdbVCJIXBX0PNUagomqjc2Bp0YGg6jnV8Eg8gxkmBdkX3YYgjcwma084v6EzYOScIhAT6cCx1OXtFgxRDABZdcw6cfxjNlwp7jbuvJN/J3zpHT6nJ7xSXIOTPJW5o60Gkr7/IWhUhbGEfOsuTj/ML/CKvMtscPk1U6jSeffJKmpiauvfZa5s6dywsvvIDDEfhCVMH/KB4ihQGx2+28/PLLPPTQQ+zcuZP58+dzzz338NhZzwb8rIskQ9IJMTSXtNNZZ0Ubrsbe4QyKUCJJJaGP0tJVb0Wlk5FVkrc0aaCj0smkzIvl8Ge1wRHWFyKow1TuUreBf3sfxVA9RL1+OwRv0VA8RH0ZyGMkCdA4wNbtbBmKIOrJULxFwxVRgw2hG6p3qCdD8RQNRRD15J+vPsWX305j5pTt6HWDr+bmT8+RxqDC5XRPaIXF6rA02QJ2ce+eSCoJjUGFrc2BIU6HOcdE1dcNAd+3CyG47e2r+M1vfsO6deuIj4/n17/+NStXrkSr1frbPIUARfEQKRyFzWbjr3/9K3l5eaxatYrs7Gz+97//EbY+icfPfi7gxZAbyb0wXfcCcbY2R1CIIYDs0xKZuCIDJPcsY7CIIQBTUhiJ06LQmYPvpTPhojRiCiP8bcawyF2WTNHKTH+bMeYMtiLdSMQQMKC3aPYeDZMPjtxDPlhv0Ug8Sn2FTkankxPrbL08RSMRQzB4T9FwxRDA5VddzfY9+dQ2RA/pd/70HNk7nW7vvgQTV2SQfVrimNswHIRTeNdEisgwkjg9it4rTwUmkiTx+NnPof1fPE8//TT5+fmsWbOGrKwsrr32WlpaWo6/E4Vxh+IhUvBis9l47rnn+OUvf8nhw4e56KKLOPSPJkxSpL9NGxTacDU5ZyRT8m4ltjYHkkoKilk4D+owFY4uJ9pwNRqDmo4ay/F/FCD0bOtgLKAgqyVyz0qmdmszzQc6/G3OkDEl6VHpVLSUBZ/tI/EQHbWvATxGIxVEPenpLYpplXDI0GISw/YO9eVY3iJfhNh5PEXJXU5yO5x8Ea3B2b1I60gFUU8G8haNRAx5kGXBv159CgCHQ4VaPbxJI394jYwJeuydDmxtDm+fHyx4+vm+79pgoF20oFts47PPPiMlJYV7772X1atXExYW+IWgFMYGxUOkgM1m4y9/+Qt5eXlcf/31zJ07l9niFBpfcwWNGAJ37ofGpEYb7o5fCSYxlHFyApNXZyHJbm9WsImhqWuySZkbAxB0YgjcNu99oyIoxRBAe5UlKMWQrxmr/CIPDRGCFpNv7/eBRI+v8o08axZVhqlYF6sdFTEE/XuLfCGGAFwuifMuupZvtk7i5beW4XAMb7/+8Bp11FjcE3YyTF6dRcbJwbPWmeedqg3XoDGpcdoCPHauByYpEs26OBYazmDx4sXceOONJCYmcuedd2K1BnbRCIWxQfEQjWNsNhvPPvssv/rVrzh8+DCXXHIJZa80YpKCJ2zIlBxG9mmJ7HjpYFAVHOhLWKwOQ7yOhp2t/jZlWCTPiaH5QDudtcH3Ysk/P5WazU1BKyjSFsXRVtFFc0m7v00ZFr70EPXabw9vkS89RD2JmlxPXLOEuUOm/rrdPt9/T2/RaBRg2Pv0TJIsTvLbnVT9aKvP9w+9PUW+EkQejCbBbbd9ycwpO3y637HyHMVMjKCzxkJXw+BzoQINlU6m6LIMDrxfTXtlcBQrAnCYu2jLrmbz5s0kJydz9dVXc+utt2I2m/1tmoKfUDxE4xC73c5f/vIXcnNz+f73v8+8efOYLZZS/6ojeMRQdxizrc2OvdOJSht8t3JMYQQTL8tAkqGr3hp0YkillzFnu3O0Kjc0BKUYUulkNAbfDtLGmoh0I2ExwZezNdoMNr9oJDRti8VokYhpG53+Z6yq0EVvbUGlG51z8HiKfC2GADraJX7xwDwAysqTsVh98xyMldeoYWcrXQ02JBkmXpYRlDmMKq2MvdOJra17MdfATzECQN0cRtSmLGa7lrJ48WJ+/vOfk5mZyR//+EdstuAVqArDR/EQjSNcLhf/+Mc/+PGPf0xJSUlQeoQA4iZFkjIvlu+ePhBUYXF9iUgzkDAtipL/VAZlmFn6ifEkTIvi2yf2BqX9CoHBaHmIeqJuHN2lAbLv/nJU9x8KiLlTR23fqm+2svSXWUwu2MP8mZtH7Tij5TmS1RI5ZyZTvbmJtsOdo3KMsUBSSUy9Opvy9fXUbw+uwgWqNAe6Yhdvv/02SUlJXHLJJTz00EOo1YG/rIiCb1AE0ThACMH777/PPffcw5YtWzjrrLOoe9tCuGT2t2lDQwKEe5HV+OIoDn1SE3QDcV2EhoTpURz6tNbfpowcCfRRWiyNwTmblrk0kfodLUEV5tEXjVGFvSN4krL7o/DSdDomR/FRpB6hHZ2w1/zrvgHgwK/njsr+s+/+MuivhSk5jNiiCMo+qBm1Y4yWKJK+/A59tNa9fo5g1Lw7+x1H7s87M+eMyjHAvf5czaYmrK32UTvGaCCrJdJPTKB2S5N7Mdfud3Yw0S5asE1vYNOmTUyZMoVf/epXnHnmmUFSXVdhJARfnJHCkPjyyy858cQTOeOMMzCZTPzvf//D8o4+6MRQ8uwYJl+ZBUBnnZWyD6qDTgyBe9ARP8WMxhics06SDLlnJ2OI14EgaMWQSicTmWlEF6HxtynDRpIlZtyUT9IJQys/HMhINhnJ5tvXkkcMweh5cpJOiGbGTflIcvAOmnSRGiIzTaMWOgdu4TJa+7Q0usWQIV7Hnd8/jwvST/C5RydXfaRtHi7bwMNlG3y6fwCNUU38FDOm5OCrfuZyCMo+qPaKocmrskieHeNvs4aESYokenM2H330EVFRUZx11llkZ2fzz3/+09+mKYwyiocoRNmxYwf33nsva9euZcqUKTz44IP8dtkzwTfL0T3DFJFuICLNQPn6+qCbcQK3EPJ4IoKtHHhP1HoVRSszOPhpbdAm8XsJwtnLnkgyROWG01FrwdocXDPJPenpIeqLLzxGPQVRT3zpLSr89UaM8Xqa9rcF/KKVx2SMnglfeYr6E1jmHBMZS+LZ8eJB92LF3fjSa9TTU9QTX3mNer4jer47ggoJUufF0nq4k9ZDnUHZ3wohWP7kKTzwwANUVlaybNky7r77bhYsWOBv0xRGAUUQhRhVVVXcd999PPvss2RlZfHAAw/wzMp/BZ8Qwl2K2hCjY9c/DvnblBERmWlk8qostjxVQntFEL7YugnG9YX6I3FGFM2lHUHr3Qo1jiWIYOSiaCBBBL4RRaGWP6SP1hKZaaRmU9OoHmekomgw3qaB+ixfiKOBRBH4ThiZUsIoviaHbX8rDdoqmB4KL0mns87KwY9HLyRztBBCcO0rF3HPPfdQWlrKiSeeyN///ndSU1P9bZqCD1FC5kKErq4ufvGLX5CXl8fatWt54oknyDxQzLOX/zsoxRBA2+FOmkra/G3G8Olu9payDrb9vTSoxVDK3BimrMlGUgXnveRBVkukzI0lpiDc36aMmKzTEt2hiyHOaITReci++0ufCRpDvI6s0xJ9si9/EjMhgpS5saP+rI9G+Fyv/askpvRYH60n56eOPJyuZ/hcX3wVTtde0cW2v/cQQ0Hc/Tbtb6OtPDgLRkiSxFMrXifn8DSuvfZatm3bRn5+PjfeeCM1NcEn8BT6R/EQBTkul4uXX36Ze+65h+rqam655RY2ProPjRScZXgzlyai0smUvF3pb1NGhDZczaQrsyh5pzLoZ/bAPdgzZ5mo/KrB36aMGFktIVwiqEObtCY1k1ZlUfJ2JS0Hg/v+Op6HqCfD8RYdy0PUk+F6izyCKjLTSM6yZLb/rRRbu2NY+woEJNmdnzZW3uDheIoGK6aS58TQXNLuzmk5DsPxGh3LS9SXkXqNvPfX30uxtQXv/QWQe1YyDqtzVAt4jCYOYeeEuwp49NFHMZlM/O53v+OKK65AlhUfQzCjCKIgZv369dx22218/fXXXHDBBVT/qxODZPK3WSMivtiMrJap3tjob1NGhCRD1mlJVHxZH9T5HYY4HZ311qCL/e6P8JQwLM127B3BPZgINYYiiDwMRRgNVhD1ZCjiKNRC5jxojGr0Zg1tY+DZHoooGpZnSQJDrG5UhNFQRBEMXxjpzBpS5sZy4L2qoO+PE2dG47K7qP2u2d+mjAg5yYl2up23336bwsJCbr75Zr7//e/72yyFYaLI2SCkrKyMSy65hPnz5+NwOJjBYlr/LQetGMo4KZ70xfEA1G5pDmoxFFsUgSFOh3DBgXergloMqbQyk1dnkbYwzt+m+IScZclkh0BIExCUCxH7ktEKofMwEpETKtcm+/REcpYlj8mxRjt8Lm1hHJNXZw3q2njC6QYbUnes0Ln+GG44nbXZzoF3q7xLT8RODK71A3tSvbHRK4bSF8eTcVK8fw0aJq4qFZZ39Hz++ed0dHRwww03cMEFF1BSUuJv0xSGgeIhCiIsFgu/+c1vePDBB4mOjsZcmUwSGUGbI+QhdUEswimo+DK4w7EkGaZem0NzSTtlHwZnKEBfIjIMdFRZcNqCOL6sG7VehayWgjqcCUAdpuKEHxaw+7XDNO4J4hy7bobjIerJ8bxFw/EQ9eRY3qK+wim6IJwJF6Xx9SN7elU4C0a04WpcdjGm53E8T9FwhZNKK2NM1LurnQ2DwXiNhuop6slQvUaZpyRgzjGx5S8lQe8tSpkbgyRLlH9R729TRoQQggZTJfXmw9TU1HD66afz3HPPER0dOssihDqKIAoS/vOf/3DLLbdw6NAhku3ZZFGIWgrOtWwAkmZF43KKUa9kNCZIoNapcFicqPQyTktwiwdZLRFTGEHdtuBaaXwg1AYVLrvAZQ/u6+JBpZWJnRhB4772kAj/G6kggmOLopEKIhhYFPUVRBqjmug8E/U7W0NiEgHc95ukknB0jY0wGkgU+cqLFDfFTMPOlmHnSB1LHI1EFMHQhJHnXaPWq3BYnUEvjAASpkchqySqvgneKBGncNCSV8F3BzaRmprKE088wdlnnx30E9fjgdDw7YcwZWVlnHfeeSxbtoymkjZm2k8kT5oc1GIIICxOR1h0cBZ+6Evu2SlMvCwDIOjFEEB0QQS5Z6egiwzeRUt7krU0kSlXZfnbDJ/htLmo2dIcEmLIVwxUic4XYggGH0Jn73BQs6U5ZMQQwOTVWWSdOnahpqMZPqcza8g9K5noEVSZHGpI3VAYSjid510z8bIMcs8am9DG0SYsWktYbHBXzlRJaqL3ZzBHOoX2gxbOPfdcioqKWL9+vb9NUzgOiocoQLFYLDzyyCP88pe/JDY2lqjyVOJJCepZhshMI7Jaoml/kC/o2Qdjgh6NSR38C5X2QBehwdoavPlPPdFFatBHaUOi2h+48yHqtrdgaQqNdZR84SHqSU9vka8EUU96eov6E0r6KC1xkyI5/L86nx/bH0RmGrE02bC2jG1/0NNT5EuRNBp9W0+v0Ui9RD0ZjMfInGPC3u6go8bis+MGAlF5Jlx2EdT9thACW1YL25o20tXVxY9+9CPuuusujEajv01T6AfFQxSAvP/++0yePJmf/exnJFgyyC2fSYKUGtRiCNxhcgnFUf42wydoDCp3IqgEHTWWkBBD0fnhxExwJ+qGihgCsLbYg/ql2hNthIbkOTHozKHhvRsNRnPdIji+t0hn1pA8OwZteHB78T20lHWMuRiC0fMUefq2mMIIovJ8sx5ZT4/RUIssHAuPx+hYXqPmkna3GJLcBYrUBpXPju9PEqZGkTQzuPNvJElCV2ZmWvMSkqxZ/PrXvyYtLY0nnnjC36Yp9IPiIQog6urquO2223jxxReJIo4JTMMoBW8lGXCvl6IxqumosSBrZFwOV0jEOptzTOSdncLWZw/4ZbAwGuSenYxar2L3a4f9bYpPiMwwkn1mEtufL8Me5IUUeuGZFwmB5wh87yHqSd5NX/l8n8dFImSujQeNSc2kKzIp+U8lrQeDc3HNvky4KA2Hxcn+t0ZnzTtfLMzaHwN5jXSRGqZclc2+typCYoIOCWS1jMvuwpiox97uCPqCOCLGxgHjdkoPHuCSSy7hscceIykpyd9mKXSjCKIAQAjBiy++yK233ooQgsTGHJJID3qPEEDhxeloTGq2PnPA36b4BHWYyptcLKvHbvHCsUJSSQhnaJyTIV5H4vRo97odCgHJ+5VbeOW9JXy1Pok9/7Oz++YYn+7fL4IoRMk+PYnqTY101h5/LZ9gYKz6Ol8Lo/915gHw5sSjn5We76Se76pgZ8qabOztDnb945C/TRkxQghqOEx17AE6Ojq46aabeOihh0JivBfsKCFzfqa0tJQzzjiDK664AnWDgUmN80iWgr+UtsdtX/KfSna9ctDP1vgGjUHF9BvyiC82A4SMGMo+M4mINANAyIghgM5aa0iJIUmWOOGHBUG9/khP3q/cctRnE34f3KX3PcROjOCE2wuQQugNe+C9qpARQ3Ckr4tIM5B9xujN0t+ZOWfYi7H2x0LDPgDO2dnAOTt7Py+ed1JCsZnpN+SFTPjcrlcOUvIftycv2M9JkiQSpXSKrQvJTs/h4YcfZunSpezbt8/fpo17Qqi7Di6cTiePPfYYkyZNYufOnRQzn8nSbLSS78NGxprs0xOZdEUmSGBrd2DvDI1ZKnunk0Of1YbE2i8eVFoZY5wejTG4XzK9kNzhf4a44K5W1BdJJVG5oYGOIB+Uvl+5pV8x5GHC7xuCXhh11Fqp/KoBSRVar1hDnI7cs5OPhG2GABqjGmO8ftQX1PW1MPLQnzBq2NPGoc9qcYTQu9fW7gAJJl+RSfbpIbDAdruKpL0TmMYCSkpKmDhxIqtWrcLhCO6wwGBGCZnzAzt27OCqq65i48aNpIoccihCLYVOkrQhTocuUhMy1eSMCXq04eqQOZ9QRxuupmhlJvverKC9ssvf5ij0oD8h1DNkri8jDaFTQuZ8iykljLyzU9jxYhm2NmXgNhJGGkrnCZ3rS99QuqhcE7a20KlCF5Vrwtpip7MuuCeGeuJSuWiZcIjNOzcxdepUnn76aaZNm+Zvs8YdoTV9FeA4nU4efvhhpk+fTnt7OzPFEgqk4pAQQzETwpl4aTqSDJ111pASD8mzY0hdGOdvM3yKxqii6PJM9CGyFlRPbG0ONv9pf8iJoZgJ4UFdXe5YXqGBCGZPkc6sIWaCb6qYBQrtFV1s/tP+kBRD+mgtRZdnohmjkKyReow8oXN96esxSl0YR/Js3+bm+ZOm/e101lmRZJh4aXpIPGOyUyZqRyYzXEtwOBzMmjWLyy67TPEWjTGhURc0CNi/fz+rV69m/fr1pIs8EndNQCWFTpiSvcuJvcsJUuiVWNr/diWyJoRiRACVzn3vuUJoAUkAU3IY9k4H1ubQqPznRYK8c1M59FktlRuCSyQMRwj1xCOKfF1wYbSJLYwgbWE8DXt2hVqXiM6sQROmor0qNLwOcKQvVOlVYxrm7RFFvi6+4BFF70yTcdlD7AYEkKQj444QIVKKJnxHJDMmG3n11Vc5cOAAf/vb3ygoKPC3aeMCJWRulHG5XPzpT3/izjvvJDExkagDaURJoeFtUGll4ovNVH3d6G9TfI4hTkfBhWns+schLI2hsQDmeKDo8kwQgh0vhkYhj57IaglJlnAGkYgdjBg6VshcX4YqivwZMqfSygiXCJniKz0pWpkBksSOF8r8bUrIMVRhNFDoXF8+WJjEhIvS2fPPwyEVbuYh6YRoarc0B1X/eCyaRQMteeWUlZWxcuVKnn76aWRZCeoaTZTWHUUOHz7Maaedxo033kh0ZyLpB6aEjBgCiMwyknFiQlCH8QyEvdNBR3UX9o7QclkbE/UUXZ4Z9JV6BmLXKwdHbV0Rf+NyiKB52R+vcMJwGUrBBX/nDzltrpAUQwD73wqd6qF9URvc4cTGRP8UOBqt4gsnf1RL1AnNIfdOA9BHack4MYHILKO/TfEZZimG1H1FTCqYwnPPPcdJJ51EaWmpv80KaRRBNEq89NJLTJo0iV27djGNBUyQpqOWQiNC0bMCe+OeNjY+sTekwpN0ERpUOhl7h5O9b1TgtAbHAHSwyGoJl92F0xJa5wXuGXmXQ3hXog8l8s5JCZo8gNEQQn0Jltyi5Dkx5J2T4m8zfI611Y7LIUa9Mps/cFpduOwuZLV/w6QHK4wGyiXqi6x1YpqzhzM21nLWlma0EaEzkWlpsrHxib3eCrCeMUqwo5LUxOzIYjqLKC0tZeLEidx2220ogV2jQ+j1Zn6mra2NVatWsXLlSgytkeRWzCBGCoESkd0Y4nXMvCUfc44JIGQWfvMw4eI0cs8OvQGMh7byLna9egjhCq0O1ZxtYtZtBegiQ+cl3xNrmz0oYuXHQgx5CAZRZO90Ym0LPYEOoIvUMOu2AszZoTMrD+71iXa9eoi28sAoyjIaHqOObwqY+0ASZ+8I/GdosHjGIuYcEzNvyccQHzrLLkRL8WQfmkZuVh6PP/44l112GS0tLf42K+RQcoh8yMaNG1mxYgXV1dVktBeSJGX426RRIaHYTO3WlpAbVIO7xLbD4sTaElqDmJgJ4cRNMrPn3+UhtfiqB61JTdzkSCq+DJ0XfDAxEiE0lByigegvt8jfIXPjgZS5MdRta3GvERNiSCqJgvNTqdveTMPuwFl7bqAco8HmEgE4O3QIuxq1uQM4ulR3MCPJEvFTIqnZ0uxvU0aFanGYQxG7CAsL48EHH+Sqq67yt0khg+Ih8gEul4uHH36YefPmUbu/gSntC0JKDEmyRM5ZyUSkGwCo2dIcUmJIVkukzI8FCTpqLCEnhjw4rM6QFEPgXgA4VMWQzqwJ6IVzx9IrNBCB7C3SGNUhmWcJUPFlQ0iKIXB7ihw2F4E2ZewLj5HKaEVt7kC4oGtXGmdvbTpqcddgRbiEVwxFpBvIOSsZSQ6dKrGJUhqTW+ejVqm55ppr+NWvfoXTGfjRA8GAIohGSHV1Naeffjp33XUXyfYsZnIiBsnkb7N8ji5CEzJxuX0JTzOQNj+OsJjQcbH3pWF3W8gWG0g/MZ7YiRH+NmPUyDgxgYkrAnOCJRDEkIdAFUUTV6STsSTB32aMGrETI0g/Md7fZowK+9+s8OalBBp9hdFgc4l64mozYNmVhqPB3X/2XcMo2NGGa9CFUK6UhzDJSEH1bDKkAu677z5mz57Nt99+62+zgh4lZG4EfPjhh1x22WXIskxyTV5I5QqBe2ZTpZWxNIV+2WmVTg65AgoAMRMjiMwwcuC9qpBbC8VDwYWptB7uDMny7+BOENYY1AG30ryvxJAvQuZ64gmfC5SQOWOCHnunIyQXMwV3ueOINAN7/lnub1NGBwmyT0+ipayDhl2t/rZmQB4u2zCksDkPLpsKWdu/hyGUQun0UVqcNlfIVdlrFLXsC9+My+Xi9ddf5/TTT/e3SUGLIoiGgcvl4sEHH+THP/4xUSKOSZyAVvJPic7RZOKKDFQ6mW3PhWapx7RFcbgcgor19f42ZdRIKDYTkWFk39oKf5uiECL42ivka0Hkwblnv0/3pzB+yTs3hdaDHUGRlzJcD0/XrjRwSYQVHTrqu1AQRpOvysJpcbLz5aPPL9iRo1xsbv2Semc1t9xyCw899BA6XehGvIwWiiAaIk1NTVxxxRW88847ZFFINhORpNCJT+2JLkIDEiGbU5O+JB6XU1D+vzp/m6IwDFRaGVNyGC1lHf42ZdSISDcQXRDOwY9qEAHiwEzeEM6z6f/z2f5uvf0cAPZu1vpsn4EkhiQZMk5OoHFPG62HOv1tzqgRmWWkrbwLlz1AbtRxzHBEUdfOdIRTxjC57KjvNrZmUjknMEMHB4suUgOCkFyWAUAIwUF5DyViB4WFhXz22WfExsb626ygQskhGgKbNm1i+vTprF+/nmLmkyMVhZwYCk8zMPHSdGS1hLXVHpJiyLO+xKFPa0NWDEUXhJO2KHQWAe6P6AkRTLoiM2Rz28D9Eo9IMwaUGFIYGsIFEWnGkC0JD+6wzkmXZxIzIbTvj7RFcUQXBP45vjkxZshenbCJh7xiSDiOHhombwgP6uff2mLH2mpHVktMXJFOeJrB3yb5FEmSyBQTOLnwTKqrq71jVYXBowiiQfL0008zb948GspamNg0h1gpyd8mjQqeKmShVJWlJzqzhhm35BOZGVprZ/QlLEaHMSH0wjh7Ure1mc1/2h+yuRkAddta2PrMAX+bAfQWQ1cdWuiTfZ6WXOz9f195dQLJO+Rh6zMHqNsWuuuG2NocbP7T/pA+RwBjop6waN95Mkeb4YS62WvMNP/nBJzt/b8/glkUQffYRhCyFVfZFcbExjm0lneyaNEivv/97ysLuQ4SJWTuOFitVm666SaeeuopUsgmn6mopMAtgTtcjIl6OqoDK2l7NJBUEumL4yn/oi4kiygohBaSLAVEifuBBkEjCZ3ziKHCS9MB2PWKO7ZfVZA77H0GohjyECjXUmF8MtgwOpdNhWV3OmFFZUiqI/frxtbMfrcP9lC6kB37qFw0FJSxeccmrrjiCv7yl7+g14f2JOlIUTxEx6C2tpaTTz6Zv//970xkJoXS9JAUQ9pwNVOvziZhWpS/TRk9JNBGaBBOwcGPa0JWDJmS9KF9HbspuCCVrFNDq6pjX8JitMy9pxBTSphf7Qj2GeFAwJQSxtx7CgmLCR7vwnDIOi2R/AtS/W3GqJMwPQpjUnANLgfrLZK1TgxTSpFUAmen7rjhusHcPyRMi2Lq1dmhGXbtlInZmc0kTuC1116jsLCQLVu2+NuqgEYRRAOwZcsWZs2axf79+5lim0+ylOlvk0YNW5uDHS8epGZLk79NGTXSFsUx9ZpsZE1ohgJ6MOeGkzQrGkL7NGku7aCtPHQT1AEcXU5KP6imq97qb1MGZLihcz1D5foyXC9PIHuHuuqtlH5QjaMrtBdQbCvvpKU0dIucACBB0sxoonKCTwgMJbdIOGRaP5iGZdfx10AL1vyimi1N7HjxYEiHXSdK6cyJPImGhgaWLl3Kxo0b/W1SwKKEzPXDP//5T6688kpUnVqmMg+9FFrJdx7ipphRaSSqvw1dIeRBHaYiIs1A497gdu8PBlkt4XIoj7XCyBnMIGeoYXN9xVDfkDkPQw2dC2RBpBBahEIfO5gQOltFDOrYFmSdY8CQuf4IxjC6xBlROO2Cuq3N/jZlVLBrrGy2fY5N38W9997Lfffd52+TAg7FQ9QDIQQ///nPWb58OeGd0cxkSciKIXCHV5mS/BuOM9qExepQ61U4upwhLYY0RhVRee7Ba7C/qI+JBGkL40IzxKEPsUWRhMX6by2Jwc74+qrAwkgIBjEUFqsjtijS32aMOtpwNWkL40LaS+3pY6Pzw9EYgzOMfjDeIm1KA7LOgcuqRtM2+CqJwegtMiWFYQqyMMihoLHrmMESksPT+PGPf8w111yDyxWaqQPDRRFE3VgsFlasWMFPf/pTspnIJGajkkJz0KXSuS976fvV7H+70s/WjC4FF6SSsyzZ32aMOvFTzOSfl4JKG9qPdFiMjpR5sWjDQ7eEsYecM5KIzjP55dhDHdAMVhQdK1SuL4MVOcEghsA9eM45IzSrk/ZEG6EhZW5sUFVjGw4qnUzeeSnETTb725QRMZgQus5v84jfGgNDmGsLtjC6/W9XUvp+NXBkjBRqqCQVWXVTmJ52As888wwXXngh7e3t/jYrYFBC5oDGxkbOPfdcNm7cSJ6lmAQpdJNCIzOMFF6SztbnDtBZG7i5Cb5CF6lBCLCF6GJsPdFFakJy3ai+SCopdEum9kQCWeWf0JzhDGSOFzo3kBgaKGTOw/FC54JFEMlqCZdTDGlQGayMl2c01PrcgcLonJ06trWm4jAMLwcumELoDPE6pqzOZterh2g5GLr5cHWikt26b4mPj+fTTz8lOzvb3yb5ndCUwUOgrKyM+fPns2vXLj7++OOQFkMAbRWdlH9RR2ddaIuh6PxwJJWEtcUe8mLIEO8OqwqlF3N/yGpp3Ay0ABAhHv44znA5xocYAvcaL7Ja8i6CHap4+lxPHxyqqAxWHAYnkhMMNaEdZt9ZZ6V8fR1tFaFdtCdOSuapp56iubmZ0047jf37g2NiaTQZ14Jo06ZNzJ07F5vNxvr16/nJ/N/626RRIyLNgC5Sg8shKP+iPqRfzFqTmoLlacRPMfvblFEnOj+c6d/P82uuyViRMD2KWbcWIKlCe5AFkLogluwz/RNeNdwwl2OFzQ0lVK4vx/IABYt3yEPOmUmkzo/1txmjjqyWmHlrwbhYAiAsVsf07+d5cziDmeOFz5kqTcRviUVlGVreVFCFzwko/7wel0Ogi9QQnha6eeR/u3ItW7ZsQZZlZs2axTPPPONvk/zKuBVE7733HosWLSItLY0vv/ySGyfc62+TRg8JcpYlk7443t+WjAm2dveq6TWbQ796XuO+Nna8WBbQpZl9RdO+dko/qB4XHiJ7pxN7+9iXgh3poGUsCywEmxgCd99kD/HS2+D2hpX+t5qm/aGfn9BVb2XHi2U07Q+esLBjcaxiC22p7VQsqMKpH949HDSiqJv0JfHkLksO6QIh38v9EevXr8dsNnP99dfzxhtv+NskvzEuc4iee+45rrnmGs4880za31KFbPGEnmhMapxWJy57aF/uuClm6rY1h7QHzEMolH5VCBx8NVjpm0t0PO/Q8XKIPPTNJQpGQaQQ2oRan9wzp6hX2W0Bpkoj7ckdwxYLwZBXJGskVFoV9o7QXafIg9C4MJxm55133uF3v/sdN910k79NGnPGnYfod7/7HVdddRVr1qyh4y1NSIshjVFN7jnuymP2dkfIi6GIdAP556aEfClxAJVeZuYt+cRMiPC3KWNC4sxo4sZBCCS4B1U689hW0fPlzG1PL9FIQuX60lMABbMY0pk1IZ9b4yFuipnEmdH+NmNMiCmMYOYt+aj0oTOsGshTpGvRErctBn3T8EO1g8Fb5LIL7B0OVFqZ3HNSgrbE+mCQ7DKdb2m59tprufnmm7nyyiv9bdKYEzpP7nEQQvDAAw9w6623ctddd3Hgr43IUmifvj5KQ0RqGGp96D7EPWk91MnGJ/bSXtnlb1NGHeEUVH3TSOvh0E789GBK0mNKDN01InoSkW5g1g8K0EeNTdni0RiYXHVooU/FkAfnnv1BLYb00Vpm/aAgpPMSemJK1If02i49aT3USdU3jSEX0ttfCJ3VbOPwogos0SML1Q6W3CK1XkVEatiY9cn+QpIk9v+5nnPPPZfnn3+ee++9l/EURDYuQuaEENx111088sgj/PKXv+TjezchSSE8QydxJGSs5/+HKCqtTHR+OHXbW/xtioLCiFHpZMJTDTSXjE3+xWgNSAYbEjPYkLmQQAJztom28k6cVmVRRIXg4qi+QoCxykBnXBdCM/yBhoygfE6A55uNs3HVab+ZzZ133slpp53Gm2++iVYb2mIQxoGHyOl0cv311/PII4/wxBNP8Ml9m0NbDAH556aQfXp3haoQf2gBYidGkHNWMhpj6IY/9iTj5AQSpod+9SYPusjQX4S1J06ra0zEUOoGE6kbTMij0EkEQ36AXxDQXNI+7sTQeHqGE6ZHkXFygr/NGBUq57T1erZVNpm47TGYqkfu8fT0RwFLdzeZfXoS+eem+NeWMeD9u77irrvu4v333+fiiy/G4Qj9PKqQFkQOh4MrrriCp556imeffZY3f7DO3yaNCc2lHeMmlAqgZkszm/5v37hIfAS3R2y85CBIskTx93JIXRD6pYo9pM6PJSJ9dEOq+g48fCmKFDF0bCLSDeOi9LaH1AVxFF+XgySPjz5LVkuotCE9tPIKI6fOxeGFlbSl+W4B04AWRUDr4U6aS0N3wdaebHr4AE8++SRvv/02F198MZ2doT2uDNmQOYfDweWXX84///lPXn75Zf588av+NmnU0ZjUfinV6y/UehWmlLAxCy1S8A+RmUYsTbaQX3jWQ/H3cqj+tonqjY2jsv+BBhwuH9SWHY4YGlchc7gLhCTOiGLLn0v8bcqYoDNr0Ju1tJSNj0HkeCR5QzhhdXqsZhsuzdC9nwNNyAR6GN14GXPd/MYVXHjhhRQWFvLNN9+g04XmuochOY3hdDpZtWoVr7/+Oq+88sq4EEP6aC0zb84nuiDwExR9RcL0KCZcmIZKF5K38VHoo7TETooM6TUR+qOlrGPciCGALX8uGXMxBCP3EimeocFRvbFx3IghAGuzffyJIQliJ0WOebVIf1GzuIP4LXGEH/atdyeQvUXRBeHMvDkffXTo59b8/rznuf/++9m5cycrV67Ebg/N93HIjSSdTierV6/m1Vdf5eWXX+ZPF73ib5PGBEujjQPvV40rb0nF+nq2PFUybuLxowvCyTo1EVk1PhSRpJLIPy8FQ1xozkaNNYMZXIxGPpGCgiFOR/55KUjjpO+SVRLZpyaOm2URnFYXmx/bz67LKny+70DNLWouaefA+1VYGm3+NmVM+PTHW/jnP//J2rVrOeOMM0IyfC6kBJHL5eLqq6/mpZde4sUXX+Qvl/zD3yaNOpJKwpjgLmtas6kppBaFGwi1XoWxu5TreOmMACo3NLD5yf3j4hoDaMPVGOLGR8leDynzYpmyJtvn+x3tAYXiHRoaU9ZkkzK3/zVeQhVDnB5t+PgofONyCDY9uZ/KDQ3H3zhE8LyLW863I9t8P7QMNFHkcghqNjUBYEzQjwux/4fzX+Cvf/0rn3zyCUuXLg25QgshI4hcLhfXXnstzz//PM8//zxPrXjd3yaNCSlzY5i8OmvchI0BJM+OYdLlmcia0O+APHhCLxxdTj9bMnZYm+1s+WsJnXUjW+simGiv6qJ+p3/Lxw/VS6SIoaHTsKuF9mqLv80YMzrrrGz5awnW5tAMtekPT189XsLmAGSNxKQrMpF/PDpe/UD0Fql0MpNXZ42bCY4X17zDQw89xFdffcXq1atxOkNnTBISRRWEENx66638/ve/5/+zd95xcpX1/n+fM73slO29l+ymdzYaCEWUJoKCqIjAVSwgdu+F6y1e7+tiuT8LWO614BWwoIKKIArSRCAhISEhfZPd7G629zZ95vz+mJ3NJqTszM7MmTnnvF8vXi+SnDnnu8+eeZ7n83zbz372Mx740GNym5Q2BJ2AvcTM1HHlNyONIYjR08aZAXVsKIwOA+vubOTw748zrJZeSwKYcgz4J9WzgUoViW4gFlJkIRliSG1FFdSMyWHAPxVURTsIiOYRNb6rjB33thFQyVxmKzLjGfIhzUayL6TPWSKhuplUcCGn3MJ0n09xTXnPxkd+dR3ve9/72Lx5M8888ww6nU5ukxaNItwK//Vf/8W9997L9773PdWIIVuxGbPbiBSWVCOGBFHA5DIgRVCNGAIITAU59NsuRg+p5yTeUWFl/Wea5sJB1YKzxobOnLxpeTGnqefapGieocTRmUWcNTa5zUgrtiIz6z/ThKM8tSXlM4nRQ1Mc+m03gSl1iCGIrs1SJOoZE0QhZfNEJnmLpo57kcISZrcRW7E61qwf3fAbPvGJT/DCCy9w9913y21OUsh6QfTDH/6QL33pS3z5y1/m0duflductFFzaTG1l5XIbUZaKdmQy+qP1Sd1w5gVSDBycIpIUB3FIwBm+n0c+E2XqoSv0a5n+U01OCuTs1FO5WZBE0OLw1llY/lNNRjs6sipgehGWW3f6UgwwsjBKdV4xGLozCKrP1ZPyfpc4M0NXZNJpogigNrLSqi5tFhuM9LGwe/1c8899/D1r3+db37zm3Kbs2iyOmTukUce4frrr+cTn/gEB77bhyCoJ6dEZxIR9aJqmpFCND7ZWW1jrC1zXOWppnRjHpZ8E0ef6JXbFI1UI4DZZSQ4EyIcWJz4TeYm4XShc8nc3KgxZE5nFDHY9PjGA6rbLKuRuitK8Q776d2mniIL7gY7E8dmiARPfsFPF0KXrOqWcofRGex6IsGIairfxlhyezHf/e53+fznP883vvENuc1JmKw9an/22Wd5//vfz3XXXcfBH/TPiSGdUZzr0yKIJ3eMFg0Cov7E4n7Wa/VvvlYQY9eS5GtjRpx8raATTiocIBpE8pc60Vt1hAORkzwGp7t2ruqJcMrPqhMQDSePS0LXLmoM4xvv6EQjMdY2fdYxTPZ4n31ckjDep46h7uRxiYQihPzh01+bge+sqD95XBIZb0uekdp3lGByGs4yhkka70yaIyTwjQWQItKi3tnyl2bFUASEkDC34RbCQvTPsc+GBIi9WtLJ1xJm7loRCSEkIMxe29s6ldQ5Yv451mLmiIW+s5kwR4SDkZMOsxYzRyRvTk79HKG36Ki7vARrkemc155rDM/9vc+cOSLkDRP2hzNmH/GmcYnn2gXuIyY7PURCUtS2edf2njdF/+bpuflkbu6JbWdi81bMprCAEBYWdG3FSzmyzhHB6RCRkITJqSev2bHAMUz9PiLVc8SB7/axadMmvv3tb/P444+TrWSlINqzZw/vete7uPDCCyl1VFD79mjomMlloPWuFpxV0ZCT0o25rP9M09znlt1YTd3lpQAYbDpa72ohtyF6WlG02sXGLzbPXdt8QxUNV5cD0Ze09a4W8pqdABQsc9F6V8vcF6Lp3RUsua5i7rOtd7VQuMIFQG6Tg9a7WuaqwNVfVUbL+6vmrt3w+SUUr3MD4Kq103pXy1xp0rrLSlh+U83ctes/3Uj9VaUUr83FUWGl9a6WuaZg1ZcUsfLDdXPXrvlEPRWbC4BovlHrXS3YCqOxrZUXFLDm4/Vz1676SB3VFxcBYMk10npXCzmzcd5lrfmsu7Nx7trlN9dS+47Z8XZEx9tVE92AlazPZcPnToz30g9UU39ldLz1luh4u2fHu3BVdAxjLLm+ksZrouMt6ARa72ohf2l0vCsvLGLj55ZgyYv+rI3XlNP83sq5z573T80UroqOt7shh9a7WtBbogl+dVeUsvTG6hNj+NmmOTe+q8ZG610t0Y03UPuOYlbcXDt37bo7GyjblA9ATpmF1rtasORFF/Kqi4pYdduJMVzz8XoqLyiMjndhdLzts7HEFZsLWHP7iWtX/kMd1ZdEx9s8O96Oyuh4l56Xx7pPnRjvwlVuDLM/i9Guj45hXXS8i9e62fiFJXPXtry/ivp3lgFRD2LrXS3kNkUn5YIVp4z3eypoenf0nRXE6DtbsDw6hnnNs+/s7MTXcHUZzTeceGc3fnEJRWui76y7PjreBtvsO3t5Kcs+OO+d/UwTpRuj4+2smh3v2apLNZcWn1Rieu0dDZS/NR+T00BuYw7rP90014Oockshqz964v1e/dE6qi6Mjrc13xR9Z0stAJS/JZ+1n2yYu3bFrbVzYQyZPEeUbMil9Ly8Rc0RG/+tCeexqA2mcRNVT1eh90SvdR9yU/LKiTDbshfLcB2N2mCcNFL1dBXGqeh3zHXURenfS09c+3IJ7sNues+bSvocEcsTW8wckd/ipPWulrmFPFvmiMot0T8vZo5YdlMNdZdHxzvT54hwIELBMhdN1574LiQyRwDYS6PjnQ1zROezAwztm8yYfUTZedGKaKneR+Q1O1j3qUbqrih90xxh/q/omBl8IlVPV2Eeid7X0emg4tkT41C0vYi8vVF7xWD0WutQ9Ltg77FT9fSJcSjYWcDKe6sp32qXd464tY7ay0oQDUJG7CNSPUcIgoBlazF1dXW85z3v4fe//z3ZSNaFzPX397Nhwwby8/Nx7qoiv85F0BNipt+HaBDJbbAz0TlDcCaMJc+ItcAUjeElmrAc9keY7vUi6ATymnKY7PIQmA5Fk+FKzIzsnwTAUWWdK1ggiJC3xMHUcS/+ySAmp4GcMgvDByZBik4qCDDZFW1Uld/iYKrXi388iDFHj6PCysjBKaSIRE6ZBdEgznXuzmt2MDPgwzcawGDX46y0Mnp4ikhIwl5iRmfWMdERvTa3KYegN8z0cQ86sw5XtY2xI9OEAxFsxWYMNv1cY1Z3Qw7+8QCeIT96sw5XrY2x9mnCvgjWQhMmp2Eu9MxdbycwFWJmwIfOKOKutzPeMUPIG8aSb8KSZ5xL6HfV2gh5w0z3+RANArkNOUx0egjOhDDnGrEVmhk5GB1DZ7WNcDDCdM+88e72EJgKYXIZyCm1MBwb70orkgRT3R4QIL/ZwVSPF/9EEFuJmbLz8jj8+x6QohVdBFE4abyn+3z4xgInxvvQFFJYwl5mQTd/vJc4mBmcHW+bHmeVldG2KSJBCVuJGYNFx3j77Hg35uAdDeAd9qO36HDVzBvvomhPjbEjsfG2458I4hn0ozOLuGvtjLfPEPKFsRaYMLmMjLXNjmGdneBM9J2NjffEsRmCnug7a8k3MXpoiuJ1uQSmgwQmQ0z3ehH1ArmNOUx0eQhOz453kZmRA7PjXWUjEoow1eNFEAXyluQwedxLYDJ42vFGgsnuee/s7HibHAZyyi2MHJxEisyOt05gstNz4p3tnx1vux7H/He21ILOJM69s3lLcvAM+fGOBDBYdTirbYy2TRMJzr6zVj3j7dNz4+0bm31nY+N9dJqwf/addRhOjPf8d9Yk4q478c5aC0yY3UZGD8feWXtWzBG24ujYDe0ZT2iOKN9qxzpgJWgLErQHEf0i5lEz3gIvkl7COGFEF9DhLYgWYbEMWghZQgRzon1DzCNmfPk+IoYIhikDeq8eb+HstUMWej88lZI5onJLISFfmIO/6U54jjh1vLNhjljy7gpmBv0ce7o/4Tni1HdWmyMyd44w2HRUXVRE9wtDsu8jvCOz76w19fuIotVuJrs9GKy6084RFX/PwTJkwZ/rJ2wKo5/RY5wy4imOjoN5xExEFyHgCkAYrINW/G4/YXMYvUePccKIpyR6rWnUBAL43f6ox/0fRHnmCKuOmX4/wZmQ7PuIdM4RriVWdnj/xsjICK+99hoNDScOHbKBrBJEHo+HLVu20NPTw6uvvsrNFZ+W26S0UbzWzeCe8TfF42ooE3OukdUfq+fArzrnNl9qQNAJiDph0Tk0aiMWl5+sWPxTSWVsvhpziNSOzigSCUuqKlPsqrXRfEMVu35wBN+YehqKL5RUFkeQK7dINAgUrnDR/9qYLM+Xg2+/8e9ccsklFBUV8fe//x27PXOKXpyLrAmZi0QifOhDH2Lfvn2U9zarSgxZ8ozUXFoyF3aiFvQWHas+Uoe9RB1lLOfjGw2w/ZuHVCWGIHrKuPGLS1RVfWuxzE9SXkjvoHiRO1FZQ1kY7Xo2fnEJ7np1rWfj7TNs/+YhVYohe4mZVR+pmwtBOx2pnGfkqkTnqrFTc2nJXEiiGvj08n+nun857e3tXHzxxfj92dNYPWsE0Ze+9CUeeeQR6j0rcQhuuc1JK96RADu+c2jOva8WRIOIdzSAb0I9PRwgmqiIACGfcjpAL5TpHi9H/thLcFo91RMhmrew6Z9PxIAvlIU0PVwMmhhKHY5KK5v++UTugVoITIc48sdepnrU0T9vPiFfGAROSlpXA/6JIN7RwElFAU7H8fOmUzbnyNG3aPTwFDu+cwjfqLpEsF1wstp1Htu3b+fGG2+U25wFkxWC6IEHHuCee+6hXlpGoVAmtzlppXClC0GEoEd9m+PAZJBDj3QTUtnPXtqaz5pPNJCCw/6MJzAdYnD3uNxmpJ2wP0LH0/14RxZ/mpYKL5FG8vGO+Ol4ul+V4aGDu8dVd+gBgABrb2+g9Lx8uS1JK0FPmEOPdBOYXNjhppK8RUFPGEGM7uXUhPG4k5W5G/jtb3/L//7v/8ptzoLIeEG0a9cuPvrRj1JCNZU0nvsDCsJeaqH+qrK5ak5qonxzATkV6vu5AUYPTXL8xSHV9ScxuQxUbC6Yq6SkJkLeMH2vjhKcWbj4P5t3KBmiSPMOpZbgTPR3HvKq68AHotWrKjYXzFWTUw0SdP9tiNHDk3JbIgs5FVbKZ6vWnQsliaKcciv1V5Vhn61yqBbyRysop4477riD+++/X25zzklG7zxGRka49tprMfgsLGG1qhqvAkz3ennt3sNzVVDUQqxyT6ycqtrwDPoZ3DMutxlpx1pgpnRjHlJEZUqQ6OFHTvnCF8uFhMotRhRpYig95JRbVLdJApAiEqUb87AWqC8/dHDPOJ7B7MmrSCa2QhN5jTkn9cQ5G0oJoZvs8vDavYeZ7lVfmGgjKykuKuZzn/scg4ODcptzVjK2ylw4HOaKK65g+/btNI9uxCLY5DYpreQ25cyVTFQtAqrzklReUMhkt2euzKyGOmh6TwUGi469Dx4757Xx5A0lUnUu3WJIzVXmln2wei6cSEM9uGrt5FRY6H5hSG5T0ssi1nSlVKFT494uZPaxP+dVWlpaePrpp9HrM7NoUsZ6iL785S/z1FNPUTXaojox5Kiy0nJDFfYy9Z0cWgtNcw1Y1SaGEKKJ1mqqSHMS6nIAn8ThR49zcAGb4niLKMTrJdI8Q+nl4CPdHP7dcbnNkA+VfufNuUaclTb1/fyza7olz4i1ML4IECV4i+xlFlpuqMJRpa50AL3PTMVgMy+++CJXX3213OackYz0ED3++ONcddVV1LGUGqH53B9QIJZ8E95h9bnVm95TgdllYPeP2+U2RSONWAtNrLi5lj3/167acJJzsZiKcgvxFMklhtTsIVIz2ndevaz8cC2+sWDCntFs9hapdW8H4Fs1xN93vcAvf/lLbrjhBrnNeRMZJ4iOHz/OypUrEUdNrGST6vKGbMVmZvp9cpshG4JOwJijxz+urlLbED01846oqzxnDKPDQNEqFz0vDxMJZdSUlHJ0JpGGq8vofmGImYHTf/eTUV77bKJITs+QmgWRrchMxQUFtP2hh7BfXdXmRL1A2aZ8BnaNEZhSYcU51Dvnm1wGAlOhRTXmTbVHJ9Vzohr3epIksVfYhjdnkt27d1NdXS23SSeRUSFz4XCYm266CYvFQgvrVCeG7KUWVn+0Hme1ukIEY+iMIlJYUqUYspWYWXtHo+pc6TECk0G6/zakOjEE0fdeZxA509mU1mtIuUiShM4gojNm1FKcFiIhie6/DalWDDmqrKy9oxGbChuP+8eDSGFpUe99KkPoILWCy1ljY/VH61VXUEUQBJqlteTk5HDhhRfi8WRWwbCMmoW/8Y1v8Pzzz1PUU4dRUF+FseleL3sfOsbEsRm5TUk79lIL6z/bhK1IfYsDgGfAz/5fdqquoiAAAhStdmOwnrmLuZIJTIXY9/PO04YNJVMMnZpPlOoNhca58Qz62ffzTtWKAoNVR9Fqt/pyaYhWHtv/y048A+oMn7IVmdnwuSbsixSE2SiKJjpm2PvgMVVWndMLBlpsa+jq6uJLX/qS3OacRMYIoldffZV/+Zd/oUpqJFcolNuctKM3RzeD40fVuUHxjQXo/tsQM4PqciHHkCISo4en1FdIAjC7jdRfWarKErzAGUvQpsIzpDVtzUwWWoZYaVgLzNRfWYrZrcJCMhKMHp5SZZsBgJlBH10vDOFLQkRIqkVRKoRRrJJsbO+nJqQ2E9WRJXznO9/hxRdflNucOTIih2hqaorVq1czdHSUdVyIKGSMTksLBpuetXc0cOTxXob3TchtjkaacVbZKFzp4uifelUZMgbRsLFIKIKkrjQKAKouLiJviYOd32ub+7tUh8n1npc5ZV/VnEMEsOb2BkYOTtL5zIDcpqQdQQRRLxIOqPCLD4gGgbrLShncPc5Ep/oiQ1JBNhVcyF/qpP7KUl77bhvBGXV5iSVJ4nXji4StAXbu3ElNTY3cJmWGh+gzn/kMAwMDLGOj6sQQQNAT4tgzA4wdzZxNSjqpuqiQwhUuuc2QDZ1ZxGDXq1YMAYQD6hRDACP7J+h89uTNcCoFSyaJIQ3ofHaAkf3qPAiTIqhWDAFEghIGux6dWX37nhiFK1xUXZS8qKBUeos6/6OVzv9oTdr9xo9Oc+yZAYIedYkhiOYTrXW/FZ/Pxyc/+Um5zQEyQBA9/fTT/OQnP6F8uhGrkJ6uwRmHBP07Rgn71LkwGO0GVS8Io4em2P+LTrnNkI2W91dRsNwptxmyMd3nY+TA5Jv+PhXCRRNDmcfIgUmm+9QZKgxQsNxJy/uq5DZDNvb/olN1jTrno7foMNoNSb1nqnMjkyWKQr4w/TtGVRkqDxAZFKnzLeeJJ57gsccek9sceQXR1NQUH/nIR8ilkDLkd5fJwdIbqyle65bbDFlpe6yHvldH5TZDFkxOg2qLCQAggG88QNATltsS2chf6khLM15NDGUm5lwj+UsdcpshG0FPGN94QJWFFWIYrDpMzuSKgmyhd9sIbY/1JP2+yS4a89JTy0/6czI9RcVr3Sy9sTpp98smiqmk0FDKBz/4QTo6OmS1RVZB9E//9E8MDQ3RzFrVldiGaPz0VI8H76j6+hBAtA+Fu0GlXsFZKrcUsuwmdR4GACBB+5/6VFtMBKDxXeW4607/PUiWiNHEUObirrPT+K5yuc2QjfGj07Q/2afaU3KAZR+qoXKL+opJzcfdYEfUJ38fmA0hdN7RAFM9HlSYMYIgCKzK3Yjf7+dTn/qUvLbIVVThhRdeYMuWLTSyikqhXg4TNGQmr9nBkusq2HHvYVX2HgLQz54Mzqg0ZMacayTkDRPyqtdDJIgCgshZc8gWU2Qh08WQ2osqiHoBKYJqq41BNGxKb9HhU+nhoK3EjH88qNp50OQysO7ORg7+pvu04cPJYLHFFk71EJ2Oqn99ZVHPUDM9dHBAeo0///nPvP3tb5fFBlkEkdfrZfny5QwfHWcdW1TpHcptysHkMNC3XZ2hYjHU2qlbI8qym6oJ+cIc/HW33KZkPImIokwXQ6AJIg1ovr4SnVlk7wPH5DZFQybStRdIRBgtRAzNJ1FhVLIhF/9EUJU5ZZIk8bru70jOIPv27aO4uDjtNsjioPva175GV1cXLaxTpRiCaCNSZ41NbjPkY/bXrmYxVPaWfMpa8+Q2Q1baHutRZbnhGM5qG0uur1hQqEi84iYbxJBG1EO05PoKnFXqXQ+OPdOfkjySbKKsNY+yTflymyEbc3uBFG8J09GMOtEwOle1HXupJcnWZAeCILC2aBOTk5N84QtfkMWGtAui9vZ2vvrVr1IWrMUmpLbXRibT9dwgB3+j3lPxhqvKqL+yVG4zZEVvEtEZVVxQAfCPB1UtihGifViSXXJdE0PZQyQkIerFDKj5Kh/ekYBqw6Zj6Ew69CqutgpQf1UpDVeVpfw58YiieL1DMRIRRQd+00XXc4MJPU8JRPp0VNPEww8/zMGDB9P+/LSHzF199dX85bGn2cTb0Qn6dD46IxBEcNXZGWtTbxI5QP4yJ4IAQ2+os/+GBjgqrbgbcqI9eNSbPhE35wqdyzYxpIXMaSBA1UVFjLVNMdnlkdsaDZkoWO5EkmB4b/r2BecKoUtUEM0n3hA6d4Od8aPTquzNF5bCbOUpmlY1sGPHDnS69B0ap/U44k9/+hOPPfYYjaxUpRgCcNfnsPT91VjyTXKbIivDeydULYZMLkNKKupkE2a3EVe1TdViKJF34GyCJ9vEkMYJVD0fSOCqtmF2p778fCYj6gVMLnWW34boAWk6xRBkXgidJd/E0vdX46pTZwSVTtDRumQzr7/+Ovfee29an502D5Hf72fZsmWMHplkNZtVmzsEYC0w4Rnyy22GbJS/NZ+hvROqDpFY8Q+1+McDHHrkuNymaMhIyw2VSBIceDh+78ipnqJsFUOahwia31sJgrrHQAOa3l2OyWlkz/3tcpsiGyaXgYJlTo7/fTitzz2dpygZ3qH5LNRTpPY9IsBe0ysYC3UcOHAAq9WalmemzUN033330dHRQSOrVCuGREP051bzi27M0VN2Xj6WPHV7yNr+0EP3i0NymyEv6pwGTqJn6wi920YS+ux8AZStYkgjSu+2EXq3JvYeKAqVzwndLw6pvriEJc9E6Xn5GHPSG0WU7Eaup2OhfYtie8TYnlGN1PqW09/fz9133522Z6bFQzQ+Pk5tbS3WMTfNwppUPy5jWXVbHaOHp+h6Xr1JcxDNo5IkVB0qpXaMDgNr72hg30PHtJyBRVC6NSfrxZDmIdIAcFRZWfqBal677zCBqZDc5mjIhQCCgKz5M+Vb7Un3Dp3KubxFlVsKyW3M4fUfHk2pHZnMcGM7+zv2cuDAAWpra1P+vLR4iL7+9a/j9/uppTkdj8tMBOh5ZZjRtuzevCwKIXriIUVQtRgq2ZBL4UqX3GbISiQYofPZAbzD6vWWAhSucmFyJp4zkO1iSCOKyWmgcJVLbjNkxTvkp/PZgaRXXMw2Cle6KNmQK7cZ8iFFxZBoEGTzGGZCXtFo2xQ9rwyr2mtaOFiNwWDgvvvuS8vzUi6Ient7+fa3v02hpxKToM766gBI0YTB6R6v3JbIhqvWzsbPL1nUBlAJWAvNqi+qEfKG6d06QtCjzs7sADqzSOPV5YvqO1H0ioOiVxxJtEpDDuxlFhqvLkdnUm/Z5aAnOieEvOqdEyCaP2ItNMtthqyYnAY2fn4Jrpr4m6gmg/GbWnEeAeeR1D3jXB6i6R5vtPCUis8HIuMixTPVfP/736etrS3lz0v57Psf//EfWCwWqmlK9aMyFpPLQO1lJejN6u454xn0ceyZAfwT6i2mAHD08V5VNyMFcNbYsBWpe9EP+yK89JV9CXclny+ENFGU3YwenOKlr+wj7Fdhnd152IrM6m5YDhz76wBHH++V2wxZ8U8EOfbMAJ4hn9ympFQUnQu9RUftZSWqrjxYSQNms5kPfOADKX9WSgXRkSNH+PGPf0zeaDl6Qb2/UEueCWe1jUhI3YtdYCpE36ujcpshK2o+AZ5PzduKKV6v4rCQWaSIhBSJ/wjwdAJIE0XZS6LvgdIoWZ9LzSXFcpuREah9reh7dVSWXLLxm94cypZsUbTQanORYARntU3VRah0gp7lZavZsWMHe/fuTemzUvqN++pXv4oubKCculQ+JuMZPzrNrh8cUXVstKPSSllrntxmyE79lWW0vL9KbjNkZ/dP2jn21365zZAVZ42N5usrEcT4gsQ14aM8BFGg+fpKzTvy1wF2q7jkdIylH6ii/soyuc2QFwHKWvNwVKan5PK5SHUI3emIhCR2/eAI40dTn9OUyZgO5GGSLNxzzz0pfU7KBFF3dzcPPPAAVTSgE9QbKmbJN6EzqvukB8BeaiF/qVNuM2Sn79WRaKKkypHCEmGfuj2mgjBbcTEOz8C5xJAmlrITKSIhiNF3Qs2EfGGksHoPDmMcf3mYvldVXoZdgvylzkXlWMbL6bxDp7JYUbRQ79B8dCYRS556mxaLgkitpZlf/vKXPPPMM6l7Tqpu/P/+3//DbrdTRupL5WUyDe8so/Fd5XKbITu9W0fY/WPt5G+y28NEx4zcZsiKs8rGkusqEPXq3v2Nt8+wP45S0wsVO5ooyk72/6qL8XZ1zw2iQWDJdRU4q9TtKZvomGGyW2tHsPvH7RnZnyvdnqLGd5XTcLW695El4SqsVivf/va3U/aMlAiioaEhfvjDH+IaK1Z17hDAwd90cexZdSfQiwbNQwaQU26hSOWldQEEHYg6QdUhpEBcgjBekaOJouxE7YcEkaCEqBNQcVDJHEWrXOSUq7gy7zzSsYdYiHdoPomIokS8QwDHnhng4G/U3adNCIqUzNTw1FNP0dOTmubFKXnLvvOd7yCKIhXUp+L2WUVgKqT6XivVlxSx4lZ1ewoBXDV2Slvz5TZDduL1jCiV+qvKWP6hmnNel6i40URRdrH8QzVa3giapyxGaWu+bGWnM4kVt9ZSfUmR3GaclnTlFXmH/VqzYqCcOiwWC1/84hdTcn9BkqSkHtN6PB7Ky8vJGcunUViZzFtnFYIosOymarqeG2SiU92Tu73MgilHz8hBrYlkNGdEbivkRW/Rqb7XCICjwopoEBlvP3PCbDJEzUDr5KLvkUqab6gE4IDKRbKrzk4kENFCpdDmCNDWihh5S3LwT4VS2sMxXu/QmZg4iw8gUe9QDGe1jcothex94JiqK1JOrehh14HX6OnpIT8/uQfMSfcQ/fKXv2R8fFz1leX0Fh3+iSCBGU3VT/d4NTE0i7bAwZrbGyjfXCC3GbIz2e1JuRhK5n00Usv40WlNDAHlmwtY84kGuc2QHW2tiDJycCorxBCk1lsUmA7hnwiit6g7BSGnu4hwOMyvfvWrpN87qSMrSRLf+973yJOKsArqdvUGZ0Ic/t1x1YfLuevtWnU5oiWW13yiHoNVC44/8sceRg5kttciHeQ1O7Dkn76/hCZi1Icl30Res/Z7HzkwyZHHU5MjkE0YrDrWfKJe9aXYIVptzl2fHXvK04mixXqHIBo2d/h3xwnOqNtzypievHAx3//+9wmHkzsWSRVEW7duZdeuXar3Dol6AVedHUHdQh4Ad0MOhStdcpshOyFPmLGj0wQ9Kp/MgNFDU6o/KACov6qU3MacN/19KsSQJrAyn9ymHOqvKpXbDNnxDvsZPaRFFARja4YWZULRKhfuhjfPlYslmd6h+aQqt0gQo6G1ai++UutYwoEDB7jvvvuSet+k5hDdeOONPPrz37OJdyCouKFCbmMOLe+rYse9h/GNBeQ2R3a0WGiNGNYCEzllFgZ2j4N6w6CB6PcCQTip70qqhUsm5hNpOURRBJ0AkqTNlQIUrXQx1ePFM6QdnGikbg+RKkE0H9cDi/cOxTC7jay7s5H9v+xk9LB6Dw0kSeJ11wusXreKp59+Omn3TZoPY2hoiN/85jeUU6dqMQQweniK177Xpomh2ddA9Qs80YRInVlzGTqrbdRcWqJ6MQTR78V8MVTwsouIlLp3JBPFkMYJpLAmhgCQoObtJTirtVAxnVlUfU8mmLeHSPLWMpli5XQ0fXxfUg+5fGMBXvtem6rFEIAgCOSPV/Dcc88ltQR30lbfhx9+mEgkQglVybplVqOFBEH1xUUsvbFabjNkR2cSWf6hGnIbtbClvu2jbPvvA3KbITsmh4Hm91Zizo12Hy942ZXS52liKPMx5xppfm8lJoe6e/cBbPvGAfq2j8pthuzkNTpYfnMNOqN2mLb0xmqqL05++e1UiyJIrudf21tGKaESnU7Hl7/85aTdM2nfsoceeghXqACjcPokYbXgbrCz9MZqRIO6vWQQ7TczvG9CbjNkJ+yPsP07hxg9pG1KQfMYQjQ8KpZjeKoYSraXSBND2YMgkqLugNmFNkdEGTk0yfbvHCIc0AZkeN9EyvpTpUIUNX1830l/LnrFkRRhJBpElt5YnTVFJlKFXjBQV13H448/nrR7JmXqPXz4MNu2bdO8Q0Q7bfsng0SCWkzQePs0A7vG5DYjI/CPBwn7tUVtyXUVWpENoqEP+3/ZRc7j1tP+eypD5zQyE99o9J3wjwflNkV2Cle5WHJdhdxmyE7YH9Heh1kGdo2dtU3BYkmmKDpVDM1nsaIoEowQmAwSCWl7THN7Hn19fezZsycp90vKqvvzn/8ch8NBPiXJuF1WM3FshiOPaSVDzW4j7gZ70mN+s5HSjXmUbMiV24yMIDAVIuTTKu0hQMFLrrNekgxRpHmHshBtziTkDROY0qqrAZRsyKV0Y57cZsiPEI3AMbuNKXtEOsLnYPGiqO2xHiaOpcZblk24Q4Xk5+dz//33J+V+i15xJUnioYcewj6Zi05Qd48VY44eW5FZbjMygrwlOTRdq53wARgdeow5Wl4AQPuf+7SSukDdr0tpfKoMzuE0XIwo0sRQdiGIAm/9t2UULnfJbYrsjB6aov3PfXKbkRGYHAaMOXq5zcgImt5dQd6S5Jffno/rgVcWJYzO5h2az2JFka3IrPr3QhRESt3l3H///QSDi/ekLloQvfbaa7S3t1NM5aKNyXYKV7lZfksNgqgd8fW8MsJr323TqokBx54eoPOZAbnNkB1RL2CwqfvQJIbXFWBg6ZiWL6IxhxSRaHush8njHrlNyQgMNp3q+60AHPvrAMf+qq0fSPDafW30vDIityWyI4gCy2+poXCVW25TZKcgWMbU1BR/+9vfFn2vRS/Hjz32GG63Gxf5izYm2+l5eZg9P2lHimgqANAaykE0/EVb04Foye2Nn29W/alWwcsugrYQE+UL2/gm4iXSvEPZycCuMXyjKm/XABgdBjZ+vlkrvR1DW0eA9O4pMrn6nBSR2POTdnpeHk6yRVnIMTPFxcU8+eSTi75VUgTRFVdcgShoR51SWNIayQEml4FlH6yeKymsZpzVNjbd3YLJqYXMTfd62f+rTgLT6hXKsYpypkkD1uGFV+SMRxRpYih7cdXasBVrYdeBqSD7f9XJdK9XblNkx+Q0sOnuFq0fEWDJM7Lsg9WYXOlZT+MVRQsNl5tPotXnPEP+k/rYqRVBEDj//PN56KGHCIcXl5+8KBXT2dnJ7t272f1Q26KMUAI5ZRYary1HZ9KEoagXCfnChLXkeXwjATqe7sc/qVUKCnrC0fwhlc7h88trO4/bKDjsjOvzCxFFmhjKbqovKaZojRYGgxTNIwp6tDXEPxmk4+l+zXNItNhGyBdG1KXPXbYQUdT08X0JiaH5xCuKdCaRxmvLsZdZFvVcJTC6f4qBgQFeeWVxXr1F7d7/+Mc/YjAYyKN4UUYoAdEoYrTptdLKRBuHHfxNt7aYEV3M+l4dVa0ImE9uUw65jalNiM1UTu01NLhknO71Q3Hf52yiSBND2c8bP+ug48/9cpuREeQ2qne+OAkJ+l4d1Q7ViB6qHfxNN96R9IrDs4mixQqh+cQjisL+CEabXmvaC4T3m7FYLLz88suLus+iBdGWLVvQC1o40ETHDHsfPCa3GRmByWXQCkvM4q63ayEwsxQsdVK4yiW3GWnnVDEEgAgRQ/JUsiaGlEHYH9FyUGcpWuUmf1l8XlSlYis2q74RZwxBFNIWMjefTCzJvffBY0x0aOW3dZKOSy+9lD/84Q+Luk/Cgsjv9/Piiy9y7Gmt+gkCGO3qThSfz8oP11FxfoHcZmQENZcWa41IZzn06HEO/rpbbjPSymnFEJDX5sDZnVhOwKleIk0MKYfitW4qLyyU24yM4MCvuzj86HG5zcgICle6qH6bFokDUHF+ASs/XCfLs08tyZ1M79B84hFFRrteK7gBDO4fZevWrfT29iZ8j4QF0fbt2/F6vbjRNr7WAhMbPreEnHItlhPg4MNdDLw+JrcZGcGu/zlC13ODcpuhIQNnEkMAupCAGEp8FYuJIk0MKQudUUSv5aFqnELXc4O8/r9H5DYjIxh4fYyDD3fJaoPrgVdSJoZiLEQU5VRY2fC5JVgLFl6gR6lYp9xEIhG2bduW8D0SnnlfeOEFHA4HObgSfrhS8E8EOfBwFzP9PrlNyQgmuz34x7V4ZwApAuGAllcGsPzmmpQ31csUDv9o/Vn/fbB5grGa6UU9QxNDyqPnlRHatRwiINrce/nNNXKbkRGEAxEkbRkBwD8eZLJb/l5d6Zh/C152nfVgbabfy4GHu/BPaPst+g0UFhayY8eOhG+RsCB6/vnn2bx5M4Kg+erC/ggjByeJhLTYb0ellZINuXKbkRHYisw0v7cSg00Lp0QA74ifkFf5q3pMDL20r+HMFy1yqhjaNL64G2hoZDghbwTviF8LBwIMdj3N763EVqTlowKUbMjFUWmV24y0HUqdSRRFghIjBye1Yl5Ey2+vW7eO3/3udwnfIyFBFAgEePnllzn8hLxuy0yh9Lw8rfThLDnlVoq07skACDoBQScQCWqTFRIc+WMvE53KTgA91TN0JlFU+7dico8m5i3TxJByqdhcwLpPN8ptRkYw0TnDkT/2ahU6gUggMreeaEQLbuSUyy+IIHWi6NRc0TOJInuZhdLz8lJiQ7Yx1ePh0KFDDA3FX8EVEhREr7/+Oh6PB5eWPwRAybpccko1QQTQ8/Iwr//wqNxmZATTvV72/6JTC5kDRL2AQeGFR84UJnc6UTRcP8lMfvwhtpoYUjZjR6boelbLOYxhsOsR9ZoICAci7P+F1qg2xus/PErPy8NymzHHQOtkUoXRmdornE4U5ZRaKFmnReUARA4aiUQi7N27N6HPJySIdu7ciV6vx45WEhPgte+20bd9VG4zNDIM0SBo4R6zOKpsbPzcEowOZZboP1fO0KmiaLLMg98ZX9y3JoaUz3Sfj8E943KbkRGYHAY2fm4JjqrEqjEqDmF2TdHIWJIhis7VgPtUUdS3fZTXvtu26OcqAZPfjsViYdeuXQl9PiFBtGvXLlpaWtAJuoQeqqFMBBHWfrJBa6Y3S8M7y1n6gWq5zcgIZvq87PtFJ8HpkNymJJ1ziaEYc6JIAvugGb1v4fOnJobUgTFHT26TNn8CBKZD7PtFJzN9mlcEYNmN1TS8s0xuMzKC3MYc1n6yISMPHNNVbEHjzYiCSElJCb/+9a8T+3wiH9q5cydDeyYSeqDSKD0vj2UfrJbbjIxA0AkM75/UKp7M0vfqCMdfSiyWVWkEPWHG2qYU13RyoWIoxkv7GhAiULYrH+vowkqlamJIPThr7LTcUKXligBSRGKsbYqgJyy3KRlB99+H6HtVi0SBaGXf4f2TGRtOmWgI3bm8Q/OZL4qWfbBayyOaxYKNnp6ehD4rSJIU1w4lGAySk5NDlX8JlcJZqiipBHe9HVuxmeN/z5x4Vg2NTMNeZsFaYGLw9XG5TUka8YqhOSSJ8xvbiegkJN3Zp181iKHmGyoBOPArrUiPqBcQjSIhTQQAULTKxcygX8ud0chaFtpkNR4xNJ+hTeOUvzWfmX4fY0cW18pBCfRI7RwSX2dqagqrNb7CG3H/Bg4cOIDf79f6D80ydmRaE0OzGOx6LPlag7AYhStdmN1Guc3ICFy1dio2F8ptRtJIWAwBCAJ/a6vTxJDGm4iEJE0MzaN8cyGuWrvcZmQEZreRwpUuuc3IGCz5pqwo1LMQT1GiYgiiniL/10OaGJolBxeRSIRXXnkl7s/G/Vs4ePAggFZQYRZ7mQWd1lkcgKKVLlbcqjXSg2j4YMPVZeSUa9UHAY6/OMRr9x2W24yksCgxBFjCEptHA7zxet0Zr9HEkDqx5BlpuLoMg03LzwV47b7DHP+7FnYMkFNhpeHqMi2ccpaVt9ZmjUA8myhajBiKIQYFKv6knAPHxeCyRyvuPf7443F/Nm55ffToUVwuF4YJ7eRbNAis+nAdhx7tZugNLaeqf9cYY+3aKQWAFJZ46Sv7tMbFCmOxYghAJ0k4QhJn2vJqYki9CDoBc64RUS8CmqdI4wTDeycYemNc68s0yxsPdmRVvvJA6+SbwueSIYYA7EMWSt7Ixf9ikMHNY0m5Z7YSmYG8vDxEMf6xjfsTR48epa7uzCebaiISktj5gzbNVTlLyBNmpi/+3iqKRUJxRQQSperiIqouyu4TrGSIIYBpvcgThSbGDOKbynFrYkjdeAb9vPHT7NropZKqi4qourhIbjMyAikiaWJoHjN9vqwLL01VBbrpfB8dm/qRREmrQAc0NzfT398f9+fiFkRHjhzh+GsDcT9IkUjRBSzkza4vZaooWZ+rldyexVpoovmGSoxZEOOcDoIzoayuFpUsMXQ6YqJIE0MaGicT9IQIziivVH8iGO16mm+oxFqo5elCtPR2yfrsa0gaE0XJ8g4BRIwRAjmhuTLkahdFvQcH2bZtW9yfS8hDZEFLcgRwVtmo3JLdp97JxFVnx16q5cwACIKAAEQ0DxEAvVtH6N06IrcZGUF+IMKNPV6cwcjc3/XfXSujRRqZgiXfxHn/1Iy9xCy3KRmBNm+cIBKREEALw57FXmbBVZede9FUeIry2hxY5rVyCG9Zk/RnZAuFpfn09fXF/bm4BFEgEKCnpwcLWudoAHOuEXd9dn4hU8GBX3XR9fyg3GZkBDMDPvb/qivrXPqpQmcWM7ZnxEJo/Mj2pN1rRiewy6HHJ0bHo+7n0XdEzQuYRpTgTIiu5wfxT2leEYiWIdeZtaJFEA1J3/+rLmYGtLB0gK7nBrO6VH+yIwJsw2aMnmhmauyATa1ryvSeEB6Ph6mpqbg+F9dMMzw8jCRJGNFctgADu8bY/eN2uc3QyEAEUcjILtpyseKWWqovye5cgGSJIq9OYF+OAb9OmBNDMdS6gGlECXnD9G4dITitCSKA6kuKWXGz5j2dQ5hdWzQUQTJFUVfrIBPlnjdFG6hxTYlplMHB+A7o4xJEQ0NDJz1MQyOGziSy7s5GnDWa9xCgbFMeGz+3RG4zMob2P/fRvzP7q98kQxSZwhIlvjD1vzj9pleNC5hGFFEv4KyxobdoZbcheujY/pf4Q1+UysbPLaGsNU9uMzICZ42NdXc2Zn3bk2SKojOFXqttTXEURKv5/e1vf4vrcwkJIoMmiABovKac2stK5DYjM5BgaN8EAS3UA4DRw1Mc/VOv3GZkDBMdM3gG/XKbkRQWK4rygxEuGw5gPEvnArUtYBpRDFY9y2+qwV6i5WJCNPR4omNGbjMyhqN/6mW0Lb4wIKUSmAoxtG9CEZX3kiGK7PdXsmTJmfdfalpThOnogZLPF194qeYhWgTjHdNMdnnkNiMjCAcidD4zgHdYGZvexeIZ9DO8PzUlNrORwhUuRVVHWowosv5OYts2A/5zfFXUtIBpRPFPBdn+nUNMdmkiAKLVOgtXuOQ2I2MY3j+pmIOlxeId9tP5zADhQOTcF2cBixVFExMCY2NnD6dUy5oieKPVfY1nO3U8DXELIpPJhC7+fq6KZPD1cYb3aQ1ZIdqk1lpo0rpoz2IvMWdtBZxUUPOOYtwKG49ERFHdz8NEIgI+n8BCkszUsoBpzCKBfzxIJKSAY+8k4K7PoebtxXKbkTG46uxaBcJZBF10zyEalLPnSFQU9d9dy9CQjoGBc4faqmFNEQURp9NJR0dHfJ+L5+LJyUmcTqdW9nEWW5EZg00ThwD2YgtrPt6A2R2fIlcqRWvcVF+U3UUEksm2rx+k5xXllc+NRxTFCijY7RHq60OI4sI2vWpYwDSiiHqB2stLsBVrm16AnpeH2faNg3KbkTFUX1xE0Wq33GZkBGa3kTUfb8BWrKzw0nhFUSxvyGCQsNkW5i1Tw5oiiiK7du2K7zPxXOz3+zGbtYk6xtIbqyhao01OEI31fv3HR/GPB+Q2JSNof7KfPf+nVSBUAwsRRfOryRkM4HDE5wFQwwKmAQgCjnIrBqtWVEHjzez5aQftf+6X24yMwD8e4PUfH8WjwDLkCxVF84solJREWL584TncSl9TXC4XZWVlcX0mbkFkMiknD2Cx7H3gGAO7sr9yVjIIByJM93i1UI9ZpIhEJKiNRYyW91UpumfX2UTRqaW1x8ZEdu40EInE52lX+gKmAZFghNd/eJTxdi2HCMBdb6flfVVym5ExRIIRJK3ZNwCRkMR0j1cxOUSnci5RdGpFuf5+kT174otYUvKa4nA4UptD5PP5NEE0D8+QX+sXMYslz0jFBQVZ3XwzmZS15lH+1gK5zcgYogu53FakltOJolPF0GJR8gKmoXEqUiQ6d2hEKX9rgVZ2exZRL1BxQQGWPOWG6Z9JFJ2uvHYgIODxxF+CXKlritfrjTuHKC456fP5MBqN6IzZXfc9WVRcUMjooUlm+pXnso0Xa4GJ4jW5DO4aI+TTFjCdSYfOIGrflVnaHusBUPx4NN/+Gm33nVhgdLo3n+bm5kaorw+zY4c+bi8RABevRvfi7sWYmVHEGk0q/d1YCKJRZPVH62l/spexI9NymyM7U8c9TB33aO/GLAarjnBA0MYD0JtFitfk4hnwKbrdx+iWSfL+6pz78+CXq0+7rthsEvn5ETo7Ewi3VdiaAhAMBhkeHo7rM4IkSQv2v1555ZXs3r2bD3/4w3Ebp6GhoaGhoaGhoaGhkUp+9rOfUVJSwksvvbTgz8TlIXK73bhcLg7+pitu4zQ0NNRL03sq6H9tVDVNFh3/aWP8l4UpfYa4L75wgEyl7C35APS8FN9pnobycdbYKF6by6HfdsttioaGrPR9tI6iv6c2+kYpawpAXl4eRUXxVfqNSxA5nU5EUWT4Da3hpMbJOGts1F5azJ7/6yDs10LmGt9VjjFHz94Hj8ltSkYg/O44Uz1efKPKr0JY8LKLKbzoPtN52lhvvV7CapWYnFxYL6LToXt+5+KMzCAKZhtvao2MAQFyyix4RwKEvMnNP8tGpvt9THZ5tHdjlmUfrCYwFeLw74/LbYrs6EwiK26uof2pfsUftB3+0XoAOi5Nfl5qDCWtKQDDVcNYLPGVZI8rENVkMuE/V3t1FbHyI3UUrnTJbUZGEPKEmeic0SrgzDKwe4zebcrru5MoQ29MqEYMnQuXS2L16hD6BFuYKW3h0jiB3qRj5T/U4ayyyW1KRuAbDTD0htb8PEbvthEGdmuVbSFayXWic4aQR9kHBzExFOPoB06fI1RUFGb16mBCz1DimiJJEnZ7fJVt4xJEZrNZE0TzGD86hU/ruwNE+xC1/7lfKzU9y0THDKOHp+Q2I2PIX+rEnKvcakBwejFU/F9v7kU1NiawfbueUAJ5wEpcuDROEPKH2fn9NsbbtYIKEK1emr/Uee4LVcLo4SnFe0MWSiQo0f7nfmYU2IcoxqliKMbpRJHPJzA2Fn/EgVLXFJvNRlNTU1yf0TxEi6Dz2UEmOz1ym5ERCDoBs9uIoNPKbgNYC03aKe88Gt9VhrtOuX2IzuYZOlUUhcOx8qjxfVeUunBpzEOKtnNQam+VeHHV2mm4Or7mikrGWWXDWqi1PgHl7znOJIZinCqKJiZEjh2LL+xAyWvKzEz8BwdxCSKbzcb0tHZyFcPkNGDMSTDuRWHYCk2su7MRa742WQMUr8ul5h3FcpuRMWz9+gH6dozKbUZKWEiY3HxRZLVGqK0NIYoL96YqeeHSOIFoEKl+WxHWAm0eBejbMcq2bxyQ24yMofYdxRSvzZXbjIzAWjC751CgQDyXGIoxXxQZjRImk7amxBgZGaGzszOuz8QliPLz85mamiIiKTtmc6EseU8FlVtSW0kqW/COBHjjZx34xrQQQoDOZwZ44/+UU7FlsUSCEigwmnIhYihGTBQZjZCXF0Fc4Oyr9IVL4wSiXiC30YHBrh20ASChhWHPY8//ddD57IDcZmQEvtHZPceIsvYcCxVDMWKiqLo6TEvLwuKwlb6mSJKE1+tlzZr4ms7GJYgKCgoACKCFzQEcebyX7heH5DYjIwgHIkwcm9FCPWYJ+yNatb151F1RQv4yZeUCxCOGYhT/Vzvj4yLbtxsJhc4d6qH0hUvjZELeMDu/16blicySv8xJ3RUlcpuRMWjrygmUuOeIVwzFOPoBHV1dOg4fPndTVjWsKSGChMNhmpub4/qcJogWwcyAD/94YlU9lIagEyhrzdNCPWZx1dmpu6JUbjMyBlEvIorKifVORAzFOF2hhdOhhoVLQ+NsiKKAqI9rm6Jo6q4sxaXgXMx4sBaYKGvNU0wOUaJiKIbPJzAzc/bvilrWFMEVFcniQsMwZklIEAU1QQSAs9pGyQYtnheiJTArzi/EWmiW25SMQG8SMbuVXVUtHtr+0MPgnnG5zUgKixFDAOYxI63v8Jw13lstC5fGyRgdBtZ+spGc8vj6ZyiVwT3jtP2hR24zMgazy4jepAlEAGuhmYrzCxXR6mOxYgjAeLWEy3Vmb5ma1hTRHR0HfZy9LeK6WvMQnUxOuZXcphz6XlVmsnhcSLD1a1rya4zh/ZNaM0EFslgxBBA2hZkq9pB31yC9/179pn9X08KlcTKRYIThfRMEphOoya6hePY9dExuEzKG4X0TDO/L/h5VyRBDAHWeEF2bdfDHN/+b2taU4Y5or67W1ta4PidIkhSXvM7Ly8M9WkKNEF9snoaGhnpZcWstniEfR/7YK7cpCZMMMXQ6+u+unft/tS1cAM03VAJw4FddMluikWnUv7MMa76JPfcvLMxUQyObSJYYOpW6n58ofKbGNaVTOkyP9QjT09MIwsJDKuP2vdbV1eFBS/jUeDN1V5RSeaFWdQ8gp8JK690tWtjcLMdfGmJw97jcZiRMMsWQEAbTpAFhtqhCLKdIjQuXxsmIBgFbkVkxeRGLZfD1MY6/pBUuAjDnGmm9u0ULp5yl8sLCrM7TTZUYghOV59S6pliaRJxOZ1xiCBIQRPX19XjRehFBdIJa/fF6RdbBTwTfqF8rMjGLbyxA5zMDhHxaiXqA0UNTTHZlZxPjZHuGDB491a8UYZo2zP2dWhcujZOxFZlZ/bF6LLnaQQrAZJeH0UNTcpuREYS8YTqfGcCnrbEA+MeDeEe09A0AdyDCNf0+HMETOUQLLd6jREZHRyktjV8sJ+QhspZqkzVEJyillX1cDD2vjDCwa0xuMzKC4HSI3m0jhLyaIILoRs9ZY5PbjLhJRZhc0Bqi87wB/PboxmZo03jSn6GRncwM+Hn9R0e1fm6zOGts2Iq0Qj0Q3W/0bhshqOWXATCwa4zerSNym5EwjR/ZnrR7hUToM4n4Zyu5vmVpG5C6MO9Mx+QwsGXLlrg/l5Ag6u3tJaw1ZyXkDdP+ZJ/mFZlF1AuYtZPNOVy1NkxOw7kvVAFFa9zUXFostxkZgaQDnzOIpJc0MaRxEpFghOleL5FQ9lfOSga1lxZTtMYttxkZgclpwFWbfYdKqcKca0TUa6GlAFN6ka1uI36dMCeG1EpEiNDZ2UlVVVXcn41bEDU2NgLgQXNjAxjsek0EzFKw3MXaOxoQFNRvZjG0vK+K3MYcuc3ICDqfGWDP/R1ymxEXqTpdE0ICeUccGGbiKwmqoXwseUYqLyhENGillQF2399B5zMDcpuREeQ25dB8Q/ybPCUiiAJr72igIMubfSfLS+QIRrCEpdOKIbV5iYyVEAol5kWNe9Zdvnw5giAwxXhCD1QadZeVUJ/FiX3JZLRtijf+r4M4Cxcqltfua9NCCGcJByJEgtkTWprKRUSICDh7rHg+6k3ZMzSyE5PTSNFqN6JWVAGIesy0kPQoAzvH2PlddZ/+x5AkiTf+r4PRI9mfz54MUbRpPMiVkTO3f1GTKOrriVayveqqq+L+bNxltwGamprwHo7QJKyK+4FKw5JnJBKWtLA5DY2z4Ky2UbTazeHfHZfblHOSjsVDC5U7gVZ2W+NMNF5TzsDOMSY6tcq2Gsom0apzb1nahsGjA0kgaDu7Z0QN606btIdIhZeurvjXk4T88mvWrGEK7eQbwDsS0MTQPMpa87CXamVBAYpWuyl/a77cZmQEol7AaNdDhh98a2JIQyMzEEQw2vWIhgyfNNJE+VsLKFrlktuMjMBeaqGsNU9uM5JKIp6iWIhc0Bo+pxgCdXiKIkV+KioqEvpsQoJo9erVhOx+LTQK0Jt1VL+tCEuelkcEULJeE0QxjHY9Jqf2XgCMHZlm74PHIIOnjHSKoVW31ZG/1JHy52lkF/lLHay6rU5uMzICKQJ7HzzGmALCopKByWnAkKMV6YGoICpepyxBBPGJopgYMk7rKTjkRAxqBweSJDE6PUxBQUFCn08oq3f16tVMT0/jYRob6k4aj4Qi5C1xMn50Bu+IVip1x72H5TYhY+h+UWsomC2k2zM0cWyGwJRWPlfjZAJTISaOaeFhGm/m6BO9cpuQMfTvGKV/x5lzZpTO/OIJep8O+4CF4fqJBX224GWXYqMU/HiZmZnhlltuSejzCeUQTUxMkJubS1NkNWVCTUIP1tDQUA8mp4G1dzSw7+edGbfh08Lk5EXLIdI4Hc5qG0s/UMVr323DP6GFpWuoh7PlEyWrrLYS16R+utgrvUp/fz9FRUVxfz6hkDmn08mqVasYZziRj2somLxmB2s+US+3GRmBo9JK690tmFxamENwJkTHU/34RjPLiyqXGDI6DBhsupQ/WyO7MNh0GB3afAHgGw3Q8VQ/wRnNk2pyGWi9uwVHhVVuUzKCNZ+oJ69ZuSHHZwqdO60YSjAMXYn5RLrmAAUFBQmJIUhQEAFs2bIFQ6Wk5REBhatcbPj8ErnNyAj84wFGDk0haGVj8Y4G6HxmgLBfKxsbCUn0bR/FP5k5J71yeoaWvr+Kis2FKX++RnZRcX4hS9+v9ZoB8E8G6ds+qjWpBcL+CJ3PDODNsAMlORB0AiOHpvCPK3ssThVFZxJDdc+V4OjRhDLA2PQoa9euTfjzCQuiCy64gK6uLnx4En64Upju9dL9t0FNBADTfT46nxlACmuLWHA6RO+2EULesNymZASOKivWQpPcZqSNs4UktP3hOL3bRtJnjEZW0Lt1hLY/ZH5p+nRgLTThqNI2egAhb5jebSOatwyQwhKdzwww3eeT25S0caYwOUGCkbopfI7ExKGSvER+yUdXVxcf+tCHEr5HwoJo8+bNCILAGFriuGfQT9+ro5oImMXsNmLO1aqrAeSUW7Sqe7PUvaOE4nW5cpsBpH4hOFd89nSfD9+Ysk84NeLHNxZQ1UbvbJSsy6X2HSVym5ER2Est5JRr6wiAOdeI2a2O/UXjR7afNWdIEmG8appATuJCuXSrMgqjRaqizpnNmzcnfI+EBZHb7WbVqlWMMpjww5WEtdCEu94utxkZQeM15VReoIUDAVRdWETZJq0XEURL6B57ql9WG8ZvamX8plba/qdZVjtym3LIX+qU1QaNzCN/qZPcJmVsUBZLx1P97HvwmNxmZARlm/KpujCxvAilUbmlkMZ3lcltRto42+GabciMaSrxnEODqJzolUnzMPn5+ZSVJf5uJCyIAK688kr87ikikpYjUbTaTfXbiuU2IyNo+8Nx2v/SJ7cZGcHBR7o5/KgWAgMQ9IRlzQcYv6n1pD+nShQtpHpPbmMO+S3KTQrWSIz8Fge5jZoggmjeYdCjnA3bYjj86HEOPtIttxkZQfuf+2h7rEduMzKCgkPOhPOH5ouhbPcSSZLE0MQgN9xww6Luk1DZ7Rg7duxg/fr1rOUC3EJijZCUgs4kEglG0LShhsbpyW3KwV1n5+if0i+WTxVD82n42IGkPUeJpUxTjVZ2W+N01F1RwljbNKOHp+Q2RUNDdk4b5h0BMSwQMcS3jT+TZ6j3vOz8rk1Io2znWV544QXOP//8hO+zKA/RmjVrKC0tZQitYVjYr4mhGHqzjrorSlSVQH8mrIUmllxfgd6ilVjWGUSMMnRaP5sYguR5ijQxpKGRPIx2AzrjorYoikBv0bHk+gptPSW6ntZdUYLerL719LTri0hcYsgghhUVJhdDXOHFarWyadOmxd1nUR8WRa688koMdRGt/DZQdXERNW/XwubCwQiOChsGm15uU2QnEpLQGXXoTNrCPrR3ggMPp9cLcC4xFGOxoiheMVS0xk2LVl5Z4xRa3l9F0Rq33GZkBAce7mJo74TcZsiO3qxDZ9Rp5ccBg02Po8JGOKCdPhcccJJ/eOFh1wsRQtkaOjc0PcDatWvR6xe351z0Lu2d73wnR48eZYbsdLUlE/9EEP945vRZkQspLLHrf44w0TEjtymy4xsNsO+hY9p7MZ8MrU6fqChKxDMUmAriGdSqiWmcjGfIR2BKmysydY6QA99YdA3JtKbWcjDRMcOu/zmCFFGnOJy/1oQsYULmhXl74vEKZZso8koztLe3c+eddy76XovKIQLw+XwUFxeTO1FKnbB00QZpKAedUdROcmbRmUTVN2g12HSs/3QTB37dxVjbdMqft1Dv0KnEk1OkhcktHi2HSONU3A05NF9fwfZvHyI4o7wQn3jQ1o4TaHuKKPG0jUgkRC6bcolGKro4MLiHoaEh7PbFVXpetIfIbDbznve8h366tLA5wOQ0aLG+gLPGxnn/2IzRkf6ckUyj4eoyWt6nhUcFPWE6nu7HM+SX2xTZEXQCJqdBOwnXOIEQXT+0Bt9RT1nH0/1alTmiYZQNV6unzPSZMDkMnPePzThrbHKbIjumKQN6r/ryqE5FkiS6Z9ppaWlZtBiCJAgigA9+8IN4mWECrfN63eWl1FyqNZOb6fNx5PFewn5tQet/bZSuF7R+XUjQ9+poWsIHE/UOwcJD5xbjHXJWWVn/6SZM2oGBxiwmh4H1n27CUZlYGV0l4R8P0vfqKGhnrHQ9P0j/a6NymyE7IX+YI4/3MqM1LqbgoJOi/a5zXpdoAYVsCZubYpzhkWH+8R//MSn3W3TIHEAkEqGmpoZwl55mYU0y7MpazG4jQU9Ic3FraJwGe4kZnVHHRGfq8ssWI4bmc67QucUIIr1Zh63EzFS3R/XJ0lrIXBRRL5BTYWWmz0fIp+6DJGeVjXAgzLS2+dXQeBM6k0jR426CttPPE8mqJJfpoXOH2Y2/cJLjx48vuqACJMlDJIoiH/jABxigW/VNWn1jAU0MzWLJM1K6MU9uM+RHgKJVLi2UEig9L5/KCwtTdv9kiSE4u6dosblDIV+YiY4Z1YshjRNEQhITHTOqF0MAlRcWUroxX24zZMdaaKJolUsLrQVKN+ZhyTPKbUZGEPZH6H3b6SOylFhW+3REhAijtj42bNiQFDEESRJEADfeeCMhglpPIqB4XS51V5bKbYbs2EosVJxfoPWSkKD6kmKcVVrs89Ene9n7wLGU3DuZYijG6URRMgopCDpBW+A1TsKSb6J0Y56WQwTsfeAYR5/U9hLOahtVlxSrPnRQZxSpOL8AW7FFblNkp/7KUorX5Z7235IthjI5dG5MHGR6epobb7wxafdM2k61paWFzZs3082RZN0ya4kEI0S0SiiM7J9g238f1KrCAK9+6xB927U48LAvknUlU+eLoqRVlZOg6qJCbMXm5NxPI+uxFZmouqgQtOJESBFJi7QgmnO5/VuH5DZDdsKBCNv++yAjB7S+VOHAif3l/PVILZ6hGF2hNtatW8f111+ftHsm9ej+9ttvZ5xhpiV1v7SDu8fpeKpfbjNkR4qg+pOtGFJYGwiIVtFqvr4Sc25yPSOp8A7Np+1/mpNaYluKSLxyzwGG900m7Z4a2c3wvkleuecAKo86x5xrpPn6ymgVRg1t7YghofrvBkDHU/0M7hmf+7NBDKdUDGWil0goCTHCALfeemtS75tUQXTNNddQXFzMcY4m87ZZiWgQtPKQQOFKF2vvaJDbDNmxFZtZ/fF61ZchjwQjiAYBUZ/csCDXA68k9X6nMlEPnf+RWtGloaERLS4hGgQiQXXvfk0OA6s/Xo+tSPMir/1kA4UrXXKbITvOGhui4eS1M9WFDzKxsEKfoQOLxZJU7xAkWRAZjUZuu+02+ugiJKm723bBchfLbqxGb1F3rfiZAR8Dr4+pPi4+MBVismsGQd3DQNATZt/PO/EMJr8XUapFESRXFDW8s4yyTVriuEaUsk35NLxT6zfjGfSz7+edWg8iASa7ZghMq3svJegEBnaNMTOg7oqDeouOZTdWU7Dc9aZ/S4Vo6T1vKiPFUFgKcbBzPx//+MfJy0tu0a6klN2eT09PD1VVVdSFl1Mp1Cfz1lmFziiit+rS0nNFQyPbSGXH8WSHz02cZhqr+tfFi6+KCwrwjwVPCn9QI1rZ7SiFK1yYXAa6/zYktymyksq5QUMjmzG5DIQ84dN+P5IZ2paJQijGaF4Pu0a2cvToUWpqapJ676SX/yorK+O6666ji8OqLsEdDkQ0MTSLMUdPwQqX3GbIjs4kklOuVclpek8Fze+tTNn9k+kpOp0YguR4irpfGFK9GNI4weCecdWLIYDm91bS9O4Kuc2QnZxyCzqTyiu0AgUrXBhzklNWOdvxjwfPeFiQLBGTyWJIkiQ6pcMsX7486WIIUiCIAO666y58eOinOxW3zxpMTgOrbqtTfSUpR5WN+itL0ZvVHT5YtMrN8g/VqD58sG/bCN0vpnbjlwxRdCYxFGOxokjUC9pCrzGHMUef9Ny6bKT7xSH6Xj19jxW1IOgEln+oRvV5M3qLjvorS3FUqjsf21ZsZtVtdSktNJKpIXLzGaSHkZER/uVf/iUl9096yFyMq666imcff4FWLkVQaeKEIEL9VWX0vDKckpyJbEHQCQiiliSrt+rQm3T4xgJym6IaEg2fO5cYmk+i4XOVFxZStMqt+rK6WshclPWfaWJg1xhdzw/KbYpGBmB2Gwn5w4RUnkulM4pEwpKqq+1ZC02UteZz5I8956y0l0joXKYLIYh6h17lGTZcvJa//vWvKXlGyvyxd999Nx6mVN2oVYpA2x96VC2GIFo2VO1iCCDkCWtiiKhnpGi1G5Mr9RX3MrnQwuDucQ4/ejzJ1mhkK4cfPa76EEqTy0DRarfmKQN8YwHViyGIph+oWQxBtNBI2x/OLYYSIRvEEABLPEwxzu23356yR6RMELW2trJlyxY6OEiKnFBZg6PCiqvWLrcZsuKotLLuU42qD5srWOak+pIiuc2QnborSskpS08+VbyiKB7vUIxERJFvNMBE50z8D9NQJBOdM/hG1X1gklNmpe6KErnNkJ3qS4ooWOaU2wxZ0Zt1rPtUI45Kq9ymyIqrzo6jYuFjsFCBkw0hcvPZc3wX1dXVvPOd70zZM1KasffP//zPTDHGMH2pfEzGU3peHiXrc+U2Q1a8IwFGD02qPn9GZ9ZhtKs7byQSknjlnv1pbUq6UFGUiBiKEa8oMtj0lJ6Xp/rS/BrRXInS8/Iw2NQ9Nwzvm+CVew4QCan7ENVo16NT+eGhoBMYPTSJd0TdhwQl63Ip3Zjc8tLZJIQARqVBhqb7+c53voNOl7rvRcpyiCAa83fRRRex/fmdnMfbVJtLpDOJhP1ayJiGhtycLadoMWJoPgvNKbIVmVlxay17ftrOTL96e2xoOUTRpOkVt9Sy+ydHVR9iraGhcTKJ7CHPlEuUbWJIkiT25r9ESXkxO3fuTKmOSKmHSBAEvvrVrzLDJH2od7GLvchqPwkWdAIFy52q95AgoPoxKFjmZOmN1Wl/ruuBV07rLUqWGIKFe4pmBny8cs9+VYshjSgz/dF3Qe1iaOmN1eSrPFTMaNeDOs+O5zDa9RQsd6o+oiS2Z0zGgXq2hcjFmHQPMjDcz4c//OGUO1VSXuR+48aNXHvttbSzj4ik3gRBZ5WNDZ9rwpJvktsU2RD1AvVXleGsUXcJzcZryml6j7r7bAQ9Ybwj8m3+Ul1sIRl9ijQ01IZ3xK/6QgJN11XQ+K5yuc2QFWetnfqryhBVLIgs+SY2fK4JZ1Vi+6X54icbhRBARIqwb2wXb3/721NaTCFGSkPmYhw8eJClS5dSH1lOpdCQ6sdlJIIuWllrcPcYkaB646P1Fh0hr7oXPHuJGQSB6V6v3KaonvGbWpPqHTqVc4XPNb+3ktFDkwy8Pp46IzIcLWQOila5yG1ycOBh9Y6BRhR7qQVJkpjpU7fnWO17BdEgULjSzcCusYSr7JVuzclaMQQwWdXP9s6X2LVrFytXrkz589LSBnnJkiXceuutdHCAoKTOBDkpLNG/Y1TVYgiYm+AEUb0nP9N9Pk0MAQarLqWN5hbCsk+8IevzfWMBgipe9DWiBL1aSX6T04DBqu6wcoDpXq+qxVBsb6BmMQQQCUb3jGoVQyEpxP7h11m3bl1axBCkSRABfPnLX8ZkN9LO/nQ9MiMp25RP+Vvz5TZDVlreX0X129RdejqvxUHxWrfcZshK8/uqqLpQvvegfGu0FP5bLk2NKFpIcYWOp/oZPZS9i5ZGchg9NEXHU/1ymyErVRcV0XxDldxmyErxWjd5LQ65zZCVmkuLaHm/ut+D8rfmU7Yp8X1irKBCIk1aM4UODhAKhfj+97+ftmemTRCVlpbyr//6r3RzhClpPF2PzTh0BhFRn7Zhz0iG9k4w1qbuTaCj3IqjUt25VEef6KXzuQG5zQBSJ4rOhagXMOaou8CGBhhz9KpvRtr57ABH/6TeRu4AjkobjnJ1990ZPTzF0N4Juc2QFVEvIhrinw9Kt+ZktQiKEXL66KKNu+66i3Xr1qXtuWnJIYoRCARYuXIl/QeHWcsFqi3DraGhIS8x79CpvPTU8qTcf6Glt6suLqJgqZMd9x5OynOzES2HCNbd2cjQvgk6n8mMAwINDY3sQkllto9W7mRyeoLu7m6s1vQdEKTVVWE0Grn33nsZZ5h+utP56IxCEKFotVvV8dK2IjMVmwvkNkN2dCb1egt1JpGqi4vSWnmxfKv9jGIIkuMpWqgYAhh8fYzDvz++6GdqZDeHf3+cwdfH5DZDNiz5JqouLlL3fGhW788eo2JzAbYis9xmyIbBqqNotRshzlfhbF6hbPMYDdHLsa4O7r777rSKIUizIAJ429vexrvf/W7a2ENICqb78RmBzqSj5tJi3PXZ9aImE0uBicKVLnRG9S4Cte8oYdlNNXKbIRuRkETBUidml7yFFU5lMaIoHjEE4B0JMNnlSfh5GspgssuDd0S9RRXMLgMFS51EQuotOrT8gzXUvqNYbjNkQ2cUKVzpUnVrEnd9DjWXFqMzLuywXCkhcjEEU4TD7Obyyy/ns5/9bPqfn86QuRhdXV00NzeT6ylhibA63Y/PCNReUhIBUO/aB4C9zILBomPsyLTcpqiCs3mGTkci4XPxCiK9RUfhShfDeycITIfifp4SUHvInNGuJ3+Zk8Hd4+peE1SOu8FO0BNmukflFUhVvjdY6N4wHiGULWFz48s7eX3/Lvbt20djY2Pany/L8XxlZSVf/epXOc5RxqQhOUyQndgLby1Q6WnI7IRntOtV6yWa7vFqYgjS0pU9XjEEUU9RPN6ieMUQRE9Fqy4swpxrjPuzGsrAnGuk6sIidAZ1zoNAWuaATGesbVq1YkhnFDHYZ4vLqFQMxfaC5xJDiXiFssGLNCGN8NqeHdx4442yiCGQSRAB3H777bzlLW9hPzsIS+o8GS1Y5mT1x+pl78UiFzqjyNpPNlC0Rr3lp3PKLYsqr5ntuOrstN7Vgt6cuny6RMTQfBYiihIRQwD+iSCv3LNfC5tTMZNdHl65Zz/+SXWGkOstOlrvasFVt7jvaTZTtimfnHKL3GbIRtEaN+s+2aDaw1GT08Dqj9VTsMx51uuyQdgkQkQIs58drF23lh/96Eey2SHb2yeKIvfffz+SOcxR9sllhqwMH5hk3y868U+ocyEMByIc/E03AzvVm0xsKzJTuNwZdxKlUvAM+uh8dgApw48FzyaKEhVDGhoa0apSnc8O4BlUZzNSQYTCFS5VFxMY2DXGwd90Ew5E5DZFFvwTQfb9opPhA5NnvEapYghgelkfPp2HH//4x+j18rWhkCWHaD7f+MY3+OIXv8h6LsQp5MlpiqyIekHVCaWqReXx0qlmsd6hUzldXtFiBVH9laX4J4N0/02d4cNqzyGqOL8Ak8PAkcfV3YNH9WhrgSo5194vmUIoE3OJJqUxtvMs111/HQ8//LCstsh+Lv3Zz36WDRs2sE/FoXMVmwtYfkut3GbIRsEKF0uuq5DbDHmYnQf1FvWWYLfkGclrTn539mSLIXizpygZ3iHvaEC14VIaEJgM4h1Vb4W5vGYHljz15tDNzf0qFUNLrq+gYIVLbjNkY/kttWdsQaJkrxBAWIqGyq1YuYKHHnpIbnPkF0Q6nY6f/exnSJYQh9kttzmyMN4+Tf+OUdUmloY8IQLTIQRRnQPgqrOz8fNLMDrUmUuWt8RB3RWlcpuxYGKiKFmhcj0vDzP4+nhS7qWRfQy8Pk7Py8NymyEbdVeUkrsk+Qci2YDJYWDj55eoNn9KEAUCUyFCHnUehiNA/45RxttPLq6ktHLaZ2JiaRde3TQ//elPMRjk3//IHjIX40c/+hG33XYbK2ilUCiT2xwNjbShM4rkL3UytHeCSFB9MdSiQUQKS0iR5E1FqfAOncrx85JTIVDQCZhdBtX2oVF7yJwlz4hvPIgUzoilOO0IooCgE1Q79xUsczK8b0K1+TMaJ5NKIZRJIXPDUh+v8xI333wzP/3pT+U2B8gAD1GMD3/4w1x77bXsZwc+SZ0VlyrOL6D2shK5zZAHAQqWO1WZWBoORBjYNabKDQFAJBhRrRgCyG3MYe0djaoOm1QreouOtXc0ktug/NPgMyFFJFXPfQO7xlQphmxFZgqWO1UbGVN7WckZQ+VSgYiUlrVxIfgFH/vZweWXX879998vtzlzZIwgEgSBH/3oRxSVFbKXV8kQx1VaCc6ECEyp1HUMVJxfiFulGwOdSaT6kiLVxtJXnF+QNWFzyRRDABPHZtjzf+2q3BSpnXAgwp7/a2eic0ZuU2Sh7srStG4KMwlLnpHqS4rQmTJmG5ZW3I05VJxfKLcZshGYChFMQ6igiISYQQlqkiTRU7kfi9PMT3/6UwQhcxSxfPXtTkNubi4PPfQQF110ER3SQWppltuktNL/mnrLTyPB7h8dVe2mMBKSyFviYLLLo8rQqcBUKCleokw5AYuHkDfMZKc6veJqRwpLqv7d+8cDBKfVeQhoyTOR2+Sg87lBuU2RheMvDtG3bUS1xSSO/z31VUUzSQjF6KKN9mPt/Pd//zeFhZkliDMmh2g+//qv/8pXvvIVVrOZPKFIbnPSTunGPMLBiGr781gLTHiG/HKboZGFpFoQJds7FKN4XS7eYT8Tx9TnKVBzDpGz2oYl3xQtqqOhoRLUvMYXr3Uj6kV6t42c8ZrF5hGdTQilag1bCJOGEbYHnudzn/8c3/jGN2Sz40xkpK/23/7t37j00kvZyzZV5hOZc42Y3eoMnXLX21nziQasBSa5TZEF0SBgUmm1OWOOflEhg9kqhgCKVrnIqbCm7P4amYmjwkrRKpfcZsiCJc+IMSejglTShslhQDRkTqhQOrEWmljziQbc9dnnzU8GJldq93eZ6BUCENxh9hu3s3zFcu655x65zTktGekhAhgZGWHt2rWMdU6yli3oBC3hWBUIUVE01ibfKYacLLupmkgwwv5fqu+0fNlN1YT9EQ48HP/Pnm2FFDROoGYPkZppfm8lOpPI3geOyW1K2ml5XxWiXmDvg8fkNkUW3A12xo5MqzZc7lwk4iFaqBCSYx2LSBF2Ci8guCI8//zzrFixIu02LISMPZ7Jy8vj0UcfZdOmTRz2v04za+U2Ke3kL3MiiAJDe8blNiV9SMyJIUEESWUpRcf+OpCWRMtM5OgTvQQ9YbnNOC2aGNLQSC5tj/VgsKrzoPPok70YVFhVMramq/HAs2CFCykiMbx3Iun3zlSvUIwOy15mQpO88MQLGSuGIEND5mKsWbOGH/zgB/TQQY/UIbc5acdVY8NZpc4wmvK35rPsphq5zUg7071e/ONBuc2QBe9IgJA3fkGUzaFyMfKXOlj90bqUP0cjs1j90Tryl6qzKWnIG1ZlARkA/3iQ6T6f3GaknWUfqqH8rflymyELziorrmpbUu+ZaRXkTkdo6QQd3sP8y7/8C62trXKbc1YyWhAB3HLLLXz0ox/lILsYk1JflSOTOPJ4L0f+2Cu3GbIw1e1leP+EKnsUOKtttLy/SpU/e+WWQorWuOU2I+34x4OMtU8jiCr8pasUQScw1j6tygOQojVuKrdkVoWptCBAy/urcCZ5Y5wVCDC8b4Kpbq/clsjCkT/2cuSJ5O3nEhVC6azEOiGN8re9z3LBBRdw9913p+25iZLxggjg3nvvZcuFF7CHV/BIKnK1zr7vzhqb6hJvJzpn6Ht1VJUxxiF/GCkkoTerL6RCb9HF9XMrwTsEMNXj5djTA0ltUKuR2UhhiWNPDzDVo74Not6sU2UjYr1ZhxSSCPkzMzQ4pUjQ9+qo6npuFa12nxDAC5zee8+bOuO/ZYNXCEAsDLNHfJnzNm3kz3/+Mzpd5n/fM7aowqmMjo7S2trK8cN9rOdCDIJ6qrDVvL0YS66J/b/slNuUtFN5QSGBmZBWllbjTShFDMUw5xqJBCOqa86s1qIKxhw9okHEN6rOsDEN9VC8LhejTU/XC+rrudTy/iq8w346nuqP63OnK6yQLCGU6rUtJAXZl/8yoXCIAwcOUFSUHe1zssJDBNGmrU888QTmXAN7eIWIirLtjz09oEoxBKAzi+hV2snbWW1TZfl10SBisGdsvZeUsfymGkrW58lthkaaKNmQx7KbquU2I+0Y7HpVlpw2u43qDJUD9CYRnVmd6/j+X3Ry7K8Di7pHtniFIFpR7g224fP7ePDBB7NGDEEWCSKA+vp6fve73zFtGKfmH9xIkoRoEBB0JyZXnVGcy70QRCH651lEg4CoX+C1+jdfK4ixa0nytTEjTr5W0AmIBmEujMZeZqHsLflnvfbEzyqeGBfhlJ9VJyAaTh6XhK5d1Bgu7NqOv/TT88rwgscwGeO98DFMwnifOoY6Ye5nb7y2nKI1riSNd3reWVF/8rgkMt4rbqmh+uKis45hxd9zIBZ1IoEQEk6EI4Rn/xx7TkhACAsnXxs7T4mc/trYCVo6x3v/rzrp3Tqc/Hc2nmtlmCOEeXvjROaI+WN49msza47of210rsR8InPEgq7NwDmi5pIiVtxSu6BrF/fOJmlOTtI+onCli6ZryxH18YxhPNdm7hzRs3WEzmcHT39tHGP45nHJ3DmirDUPW5E5Okaxj8YzR0igC4EYC+KKZ107x7WpnCNMl3kZ1w3xyCOPcMUVV5BNZJUgAjj//PP58Y9/zE9+8hOOcZAVt9ZSc2kxACaXgda7WnBWRU9hSjfmsv4zTXOfXXZjNXWXlwJgsOlovauF3IaoW7JotYuNX2yeu7b5hioari4Hoi9p610t5DU7AShY5qL1rpa5L0TTuytYcl3F3Gdb72qhcIULgNwmB613taCb9XLUX1UWTZifZcPnl1C8zg2Aq9ZO610tc83q6i4rYfm8SmvLb6qmdGMegk7AUWGl9a4WzLlRD0L1JUWs/PCJKlVrPlFPxeYCAGzFZlrvasFWaAag8oIC1ny8fu7aVR+po/riqIq35BppvauFnPJodbuy1nzW3dl4woaba6l9R0l0vB3R8XbVREOXStbnsuFzJ8Z76Qeqqb8yOt56S3S83bPjXbgqOoYxllxfSeM10fEWdAKtd7WQvzQ63vlLnbTe1YK9JGp/4zXlNL+3cu6z5/1TM4WzOVbuhhxa72qZi0+vu6KUpTdWz127/rNNlKzPjY53jY3Wu1owOaONUGvfUcyKm08s1OvubKBsU1SA5pRZaL2rBUtetGFs1UVFrLrtxBiu+Xg9lRdEk4RthdHxthdH7a3YXMCa209cu/If6qi+JDre5tnxdlRGx7v0vDzWfaoRKQJ7ftyOs9pO3eXR8Tba9dExrIuOd/FaNxu/sGTuvi3vr6L+nWUA6EzRdza3KVrBqmDFKeP9ngqa3h19ZwUx+s4WLI+OYV7z7Ds7O/E1XF1G8w0n3tmNX1wyV/jAXR8db4Nt9p29vJRlHzzxzq7/TBOlG6Pj7ayaHW9XdLxrLi1mxa0nxnvtHQ2UvzWf9if7GDk0SetdLXMNeiu3FJ5Uha30pVLcbVEbDNMGqp6uwjQevdbZ7qTsb2Vz15ZsLcF9MHqt3qun6ukqzGPR342j00HFcye+u0Xbi8jdF7U33XOEbyxA0BNe1Byx/tONlJ0X9TJlyxxhK4o+c1FzREt0jogtztkwR6z/VNPcPimROSLGsptqsmqOEPXzNpMkNkcA2EstZ50jVn+0jqoLo+NtzTdF39lSCwDlb8ln7Scb5q5Nxz7i+EvDGHMM5DbJu49I5xxRsNxJ8bpcyjZlwD4izXNEwXIXjiprwnOEeSq6rhkno78bV7uLshfnrWuvlOA+NLuueaLrmmksel/HMQflz5fPXVv8ajG5+6P26vy6lM0R0gXjPPnkk3z84x/nbW97G9lG1uQQncpXvvIV/vVf/5U1Ba1U6OuY6fchGkRyG+xMdM4QnAljyTNiLTAxcjCaoOassRH2R5ju9SLoBPKacpjs8hCYDmF2G7GVmBnZPwmAo8qKFJaYOu5FECFviYOp4178k0FMTgM5ZRaGD0yCFJ1UEGCyywNAfouDqdnyycYcPY4KKyMHp5AiEjllFkSDyMSxaGJhXrODmQEfvtEABrseZ6WV0cNTREIS9hIzOrOOiY7otblNOfjGg3gGfOitOlzVNsaOTBMORLAVmzHY9IwfjZ5suxty8I8H8Az50Zt1uGptjLVPE/ZFsBaaMDkNc70A3PV2AlMhZgZ86Iwi7no74x0zhLxhLPkmLHlGRg9Fx9BVayPkDTPd50M0COQ25DDR6SE4E8Kca8RWaGbkYHQMndU2wsEI0z3zxrvbQ2AqhMllIKfUwnBsvCutSBJMdXtAgPxmB1M9XvwTQcxuA8tvruX4y0P0bRslp9yCIAonjfd0nw/fWODEeB+aQgpL2Mss6OaP9xIHM4Oz423T46yyMto2RSQoYSsxY7DoGG+fHe/GHLyjAbzDfvQWHa6aeeNdZMaYo482lyPaaM4/EcQz6EdnFnHX2hlvnyHkC2MtMGFyGRlrmx3DOjvBmRAz/SfGe+LYDEFP9J215JvmxttZY0MKS0x2eRD1ArmNOUx0eQhOz453kZmRA7PjXWUjEoow1eNFEAXyluQwedxLYDJ42vFGgsnuee/s7HibHAZyyi2MHJxEihAdb53AZKfnxDvbPzvedj2O+e9sqQWdSZx7Z/OW5OAZ8uMdCWCw6nBW2xhtmyYSnH1nrXrG26fnxts3NvvOxsb76DRh/+w76zAwdmSa0q05WAbNRMwhgo4gQlDAMmzBl+cjYoxgmDKg9+jxFkWT1c1DZiLGCAFnACEkYBmy4Mv1ETFF0E/rMU4b8RRHfzbzsJn+22ZkmSN840EKljsZ3juxqDnCOzL7zmbJHFG5pZCQL8zB33QnPEecOt7ZMEc0XVPO8ZeGmezyLHqOiK1r2hxhODHe899Zk4i77sQ7ay0wYXYbGT0ce2ftBD2hlO0jZgZ8SGEpY/YR6ZojzG4jhStdHPxtd3S8ZdxHpHuOmOj0IIWlhOeIyhcdmIfNJ69rXj3ewnOva4ZpA4YZA56iE+taRB/B5woihAX8HyHpc0Sv1Ml+tnPbbbfxv//7v2QjWSuIJEnizjvv5Pvf/z5LIxsoEsrP/SGFYHIYKD+/gPYn+5DCWfnrixvRIBAJquNnnU/RGjeVFxSy497DqvldQ/SUMBKMMPD6+Jv+bX6yaSriquVqwuqut1NzaTG7f9JO2K+eHEk1FlXQmUVW3lpLx1P9c5shNVC0yoVoEOnbrp4iOYJOYN2djXS9MMjAzjG5zUk7okEkElTHfCboBGovK+H434bwTy6unH4yiwZFTunhcbYqdokgtczw3IG/cPPNN/PjH/8YQRDO/aEMJGszlwVB4Dvf+Q4jIyM88sgjGAJGcgV19DXQ23Q4q2yYHAZ8Y+qoUBQTQ3lLHEwci3pe1MDEsRm6RXX13wKwFpkJn+Z3fGrlnQhCUkWRXGIIYOzINGNHjsj2fI30EfZF2Pl99f2uLfkmdKbML7+bbLpfHJrzLqgBvSW6Rxk5OKkaMQTRw2pnlY1+2+iiBVGySLUYGpOGeKPtFZYuXcr3vve9rBVDkMUeohiBQIB3vvOdvPTSS7RMb8QhuOU2KT0IqK5Hj96sY92nGul8dkBVJ4waJzhdKVJIjqdITjGkZtToIdLQUDIl63OpuqiIHd85rJrDyzmStDdbrIfoVCEUI5mCyGeb5g3dK6xZs4bHH38cq9WatHvLQdYVVTgVo9HII488wtKlS2nP3820NCm3SelBiia8NV1bPpdUqnRCvjC7fnBEfWJIgKqLi8htPL0YUCwCJ5XfPpMYgjNP/tnG0g9UUf227ClTqpEY1W8rPikpXg0Y7HoU8jVdMLmNOVRdXKS6n7tv+yi7fnBENWLIWmii6dryaNGLDDioTsd6GMnz8zp/Jz8/n9///vdZL4ZAAYIIwGaz8cQTT1BSUkJH0W5mVCKKpAgYcwxz1XvUQMwNHUuIVAUSWPNMGB0GuS1JK43vKmfJeyrOfeEsi1kEMsU7NLx/ci75WUO5THRMzyUxq4Ul11XQ+C715PoCGB0GLHnGjNgkpwNBFMgpj1byy5SQsXRgsOox5hjmWqTIRQQhLWLII01zyLQTh8PBH/7wBxwOR8qfmQ6yPmRuPoODg1x44YWMjY1R3bcCm6CyE3WVYMzRs+5TjRx9oo+BXepLUlUL9lILCDDd4z2rd+hUEgmfyxRBpEa0kDl1YC+zgATTvV65TdFIEUVr3NRdXsKO7xwmMBWS25ysJp6QuXhE0GJD5sSSEK+HXsblcvH8889TUlKyqPtlEorwEMUoLCzk2WefxeVy0Vn6Bh5JPZuc2stKqL1MOS/m2QhMhdjz0w7ViSFBJ5C/zCm3GWljutfLdE/8m6d4T8gySQzFytXOb9anoSxEQ/R3PL/BoRqY7vGqSgzlL3Oe1HxUDQzsHGPP/R2qEUO1l6dm35UqMbRYvNIM270vEAqFeOqppxQlhkBhggigqKiIZ599lpycHLrK96pGFM0M+Jjp98ltRtqIbZStBSbVLDqOSitN15TPNbJUA84aG5UXxl89MltzisxuY7RZabFFblM0UoSt2MzSD1TPNR9VA5UXFuKsscltRtqwFZlpuqZ8rpmu0hF0wlwus5pE70yffPuudIXHxfBKM/RUH8DtdvOXv/yFqirl5UAqKmRuPr29vWzZsgWfz0dF91KsQvJqumc6eouOkFf5yYx6s471n2mk87lBereOyG1OWjC5DPjH1RObXbTaTfnNefStH0jo+OZc4XOZ5B2CaLdvo0Ndv2M1hsyZXAYCk0EkNVQkFmD5TTUM7h47bV8xpaKmubr0vDyqLixk+7fUUVUu1Xuss3mIFiOCEg2X05VGeNXzHHa7nZdeeomKioXn9mYTivMQxSgtLeW5557DbDbTUbKbaWlCbpPSQl6zg3WfbMTkVP7pY8gXZv8vulRVdS62wBqs6ujlMbBrjL6NiYkhyD5PkRRBNZsoNeMfV4kYApDgjZ91qEYMxeZmNX2P+7aPsv8XXaoQQyangXWfbCSvOb2FBNLtEYoxI03xhrQVgIcfflixYggULIgAysrKePHFF8nPz6ctbyeTkvJzTsaPTtP5/AD+CXVMxhOdM0hhCZPLgKjPrs1votReXsLSG6vlNiMtxIop6D2JV1I80yKSad6hGIUrXVRdpI4m02qk6qIiCle65DYjbagpNBBg6Qerqb1cWbkVZ0I0CJhcBqSwxESnOqpj+ieCdD4/wPjR9K0fsh3slfs5UrATp9PJG2+8QWtrqzx2pAlFCyKI5hQ9//zz1NfXcyDnVcakIblNSinhQIS+V6MeE3uJWRWJu6JeYOWttVScr45N5MDOMTqe6pfbjLRhHbBQ+ULZokVRtniL9Gadqkrpqw2DTRftV6ICTC4D6z/VpKoeah1/6Wdgp/IPXwEqNhey8tZaVRxG6owi9pJo/m7fq6OEA6l38cq5bk2KI/x96GnMZjMvvPACZWVlstiRThSbQ3QqU1NTXH311WzdupUm71ryhWK5TUopol5g3acaGXh9nM5nBuQ2J+U4q21M93kJ+9USh6IOSrfmIIQELCNmPPleSFKkoIiUsR4itaHGHCK1IOgE3PV2xtuniQRVsdVQFTqTiL3EwsQx5XuHqi4uomilix33HiYSSt27XL7VnhIRFE/+0Kg0yCHbazQ0NPD73/9ekQUUToc6jqmAnJwcnnjiCS6++GL2GbYxIB2X26SUEglJ7Huok67nB+U2JS1MHJsh7I+gt+ow2tVxur7kugpKN+bJbUbKeOf+aKEMSS/hKUqeGILMDZeLIYio4tRVbYh6gSxxVCYFKSwxemhKFWKodGMeS65Tbn7FfIw5evRWHWF/RBViCKDr+UH2/bwzpWII5M97FVZ42KN/mU2bNvH3v/9dNWIIVCSIACwWC48++ijvec972Ctso0s6sqDP6Zrq0TXVp9i65DMz4JvLr6k4v0Buc9JCy/uqVBO/7RnyKz5XbJ3jGABiQKRgTx7GSXXkI2z43BKK1+XKbYZGkilZn8vGzy+R24y0YCsy0/DOMnRmdWwz/BNBPIN+uc1IC7WXldDyPnVslCvOL5jLk5oZyL7WJj+tfJGfVr64oGuPS+0888afaWlp4Xe/+x02m3pK5QOo4yh9HgaDgYceeoiSkhK++c1v4pNmaGAFgnBmVR4+dOQkURQ+tDAhlSk4K20ULHfR++oIYZ+yQ8qOPtFLYFodTeGU7P2LeYcgKop2jFdjmNGj8+uAxEXgYrt0p4ujf+rLysVX4+yMtk3jn1TH/GTM0WPJM6omjHnk4CQjByflNiMttP+pD4MKIjF0ZpGC5S7840EGx8flNicu5ougt5euOuu1kiTRX3yEg/27uf3jt/Otb30Lg0Edh4/zUU0O0em49957+fSnP811113H0K+D6IQzx+SczkOUTcJI1AtRV68A52jNoghEg4Al16T4TaXOLFJ1YRE9Lw3jn1SOt2i+IIqxY7J60ffNFkGkJrQcIo1sxuQwUPaWfDqfG1D8gaOt2Ix3xK+KEMjYXmlu75QGYlVVF8PpvEFnE0QRKYJ4ySR//etf+cIXvsDXvva1szoIlIw6fNln4M477+S3v/0tjz32GOHzRwhKgbg+n02hdJGQhKgXWH5TjSpKvlZfUkzzeysRlP6GR8BVY8My2yVcyaxzHEP0iximEzuZzCYxZLTrKdmQq+URKQhRL1CyIVcVOY6WPCN6lfRKsxSYcNXYkBTegkcQofn6SqovUXZBKoi2Plh+U01axdBiiSc0LkZICiJcPMHf/vY3vvKVr/D1r39dtWIIVBgydyrXXnstzzzzDFdddRV+gqyS3opFUGbcZCQkMdXjwTus/DjnrucH6ds+qvjmh+FAhJ0/OKIKrx9A0a4CIvoIA+uUXT7f6DBQ87ZiJjpm8Awp//uqBsxuIzVvK2bquFfxYb01l5agM4q88bMOuU1JOeNHp1UxB0sR2PeLToIzyn53AbzDfqZ6PFkjhhJByA+zn1fwvurlqaee4oILLpDbJNlRdcjcfA4dOsRll13G8Y5eVtKKS8h/0zXn8gZlUwgdQE6Zhaker9xmpBYB8ppyGDmYPd6BRBD1AsVrc+nbPqIIEXi6kDmA0ISVPcFiIsb4f8hs8hAhgCCgiN/luVBTyJwggiSh+M2z3hKt9qlkMS+IULI+j/7XRhW9cQbIW+Jg5NCk4t9bufdEiYTMncsrdLpwuQlplD28jMVl5uc//zmXX3553M9VIkoPKFowTU1NbNu2IVKtjgAAdJdJREFUjdbzN/IaL9AjxX+ylS3hcwAFK1wsv6VW8V3E85pyWHJdJZY8o9ympBRLnomqi4uwl1nlNmXRnEkMAeidHtbkt6fRGpmQ1CGG1IYUQfGbSoCQN6xoMQRgL7NSdXERljxlhytb8owsua5C8c11TS4Dy2+ppWC5U5bnp0IMnY7g0nFeE55nTetqDhw4oImheWgeolMIBAJ88pOf5Ic//CEV1NPACsR5iSgLFT3Z4C1yVFqZ7PLIbUbKseQZ8Y7Elx+WjegtOkLe7A9kP5sgAgj05uI7UMnhteMLPtLJKu/QLKUb83BUWjn4m265TUkpavEQLbmugskuD73bzv5+ZzUCrLi5hu6/DzHWltm9vpKBUubcc6GWNVTOPVE8gmihQmi+d0iSJI6KezkWOURrayvPPfccJpOyxXy8aB6iUzAajfzP//wP9913H8c5ym5eirvYAmRHwYXYF794rVu2U5F0EJvIi9flYsxRbtpcyBsGAZw1ysyBiyGaA+hyPKyxds/1KVIi/smg4k/Z1YRnyK+oSpCnQ2cU8Qz7CUwpO8/EWWMDAUWLIWOOfq4XmpLFUMFyJ8Vr3QAZL4YSKZwAINgk3jC8wrHIIf793/+dF198URNDp0ETRKdBEATuuOMOnnr6KSLuANt5lhkpesIcr+cnG4SRvdSCvcQitxkpRWcSqXhrAblNDrlNSSn5zQ6W3ViNOTc7QwTP5R0C0OdOY9twGNEY3YwoVRSNHJhUdK8ptdH1/CAjB5Tdpybsj3Dkj73M9Cu33YE518iyD1aT36zstSS3yUH5W/PRmZS9TbSXWLCXZvb+JxEhFPMOeaRpdpleYFI3yp/+9Cf+7d/+DZ1OHRUg40ULmTsHbW1tvPOd76Tt4BGWsp5CoWxRAifTQ+lMDoNiTzF1JlEVTQJtxeas3ZAsRBBBNBcj2JOPzj2Nzh79Wc/Upygbw+VimBwGBJ2Ab0y5J7RqCJkzu41IYUmxcytEf0ZbiTkq+hS+q8jmOTYelLxmZtJe50weokS8QTHeXrqKIamXfWynpKKYH/7wh7zjHe9I+H5qQNnSPwk0NDSwbds23vXuq9nDK7RJewgePJzw/TLZY2RyGFhze4Niw+diE3tes4Pyt7y5iqBSiC3U1kIFu8QlgZnXGgj25M39lRI9RUveW0nF+QVym6GxSCrOL2DJ9RVym5FSchtzqLu8FEFUbh+T2JyqZDFU/pZ88ma9X0oVQwUrXKy5vR6jQ/6iUqcTQ4mGxsW4tGQl4y3d7OZlLrvqHezZs0cTQwtAuQkVScThcPCb3/yGb3/723zus59jglFWhUox6e0J3zMmijLJY+SfDHLk8R7Fh3VY802Kb2Sav8xJ0zXl7LjvMP7xzDgFSyaCTsJ52XZE08m5Cuscx87oKcpG2v5wXBV9P5TOsb/2Y7Ape7nt3TbC4J5xpLAy3UMml4HVH63n0KPHGd43Ibc5KcNaZAYFi1qAkf0TIEkEMsRDFGMxIijG4HCIXbzI2L4hrrvuOn7xi1+g1yt77kkWWshcnLz44ou8973vZaRvjJWV15JrrVz0PTNJFMUwOQ2UrM+l89kBZZf/FVBkeIcgCjhrbIwfza5KTwsNmZtPJKCbyyeKERNF2RwupxbUEDKndJQcWjUfV52diY5pZa6JCl0LYwgiVF1URN+roxkZKpcMMfTT3+Tx6X/ah9Vu5Ve/+hUXXnjhou+pJrSQuTjZvHkzO3fupPWCjezo+iUdI9tYrKbMxDA6e4mZ3CYHOrNyk++shSbW3t6AVYHeIikizYmhTAgLWAiJiCHP3iom/7qGU7+CSgmfEw0Cte8oyfikX40zYy+zUPuOEkS9ck/dV364jooLlBvaGZtDx48qUwxZC02svaNB0WHWOrOO3CYHthKz3KYAJ8TQYsPjIFpS+74fj3Pbp7aTm5/Lyy+/rImhBNAEUQIUFxfz17/+lS/+4xc5PPQcu47/lkBo8eUaM0kYjRycYtcPjhDyhNGZRAw25Qkj/3iQ8WMzBKaVG5KU1+xg7R0NmN3ZWXXuXBjLhrEuP30TZSWIokhQIqfCquhy8UrHlKMnp9xCJKTc4/fOZwcYPahMb6zZbWTdJxvm8mqUSGAqxHjHjCLDqw02HTqjSMgTZtcPjjB6KDPe02QIIYAjx8ycf42XT//LMJ+885McPHiQurq6JFioPrSQuUXyxBNPcPPNNzM17mN5yZXk2aoXfc+Dn4wmijfcsW3R90oGjdeUY8038fqPjsptSsrQW3RIkkTYp6zjP0EnkL/UydCecblNOSffOLaVFz0NSb3nYy15575IQ1a0kDmNTKdwhYuhfROKy4/SmUUEBEI+5fZTWnVbHZ4hP4d/d1xuU07iL72vL/oez7/s4T3/MIHPH+EnP/kJ73vf+xZvmIrRPESL5IorrmDPnj1s3nIeO7p/xeHB54lIyZlc2r67MSn3WSydzw5w9Mleuc1IKc03VNJwVZncZiQdKSzNiaFM9vJ949hWADZb2+L+rBTUMbO9kdDIydV6lCSGRINyw62UjpJ/d/YyC/VXlaIzKnMrEZszlVosouGqsrkDCaVy9Mk+Op8dkNuMpOLzCXzsn0Jc8p5elq9YywsvvKCJoSSgzFkszZSUlPCXv/yFr33taxwbfZVtnQ/hCYwl5d5t390ouzDyTwSZOu4FoPYdJYoMHeh4qp9jzyhr0pyPo9LK+k83YSvOjPjpsxG3KNKFCU9biPiUGRZoL7Vw3j+2KDLXTelYC02c948tis0BM9r1mN1GwgFledYh2mto/aebcFRa5TYlZRx7ZoCOp/rlNiPp5DU7qH1HCQBT3R78E8oJBTzWHWTlJZP8+IFO7r77n3n22WdZv3693GYpAk0QJQlRFPniF7/I1m2vUFBm5eVjP6V3Yu+iCy7EkFsUQbRymd6qQ2dQ3msz3ePFNxpA0AmUnpcXrbijICa7PbT/pR/PYOb1z4h5h+YTjygSRHBcuBtj2YmiDEryDnkGfbQ/2UtAK7+ddQSmQ7Q/2ZuR37tkMHpoir0PHJPbjJTgGfTR/pd+JrsXnx+cUQhQel4egijgGw0w3euV26KkozOK6K06BAVtVSIR+N8HI6y5pJtA0MRPfvIT/vM//xOdLnMjP7INBb0umcGGDRvYuXMn73v/9bzR9zi7e/+QlIILIL8okiIShx89zuBsCFbekhzFVU6yl5ip3FKIPQs8KXEhQf+OUaRIZofOzSdeT1EkoCfQoxwhFCMSkuh/bYyQR7lx/kol5AnT/9qYIgsq5DbmoDMpcwthsOmQItE5U2mlqO3Fs2tcqbLWOFEvkNsUDZse3D3O4UePK6Yi4OhYmAuujfCJL7Zz0cVXs3v3bm655Ra5zVIcypzNZMbhcPDggw/y8MMPEzIO8VLHjxmcWvjmbsl9Zy4/nAkhdAAGu57GayooWOGS25SkMnXcy47vHGa6T5knuma3kXV3Ns4tHHJzOu9Qovg7ipnZtoQnVimv/K/ZbYx6LjWyitLz8hRZ4VFnFGm8ppyi1W65TUk6uU05rLuzUZG/N4DpPh87vnN4LgxeKRSscNF0bQUGe+ZX5IynoMKjTwRZcWEX+w6O8IUvfIFHHnkEl8uVMtvUjCaIUsj111/P3r17ufSyi9jV8whv9D5OMJycjbbcwig4HWLX/xxhYGc0V0pJJ4Uhb/QkvnJLITWXFstsTXLxjQVo/0s/4+3Z0bA1Hi+Rua4X52WvKjKfwZJvonJLYdZ49zTAYNNTuaUQS77yNtbhQITXvttG/2ujcpuSdMbbZ2j/Sz++sYDcpiSVmkuLqdxSCJxY45RAbO8xsHOMXf9zhKBC2mhMTkW45L0i1324k2UrLmLfvn18/etfRxCUFZWTSShnF5uhFBcX89hjj/HTn/6Uabp4ueMnjMwcS9r95RRFsQUjlnyaU6asxOHAdEiRPYoGdo4RCUoYbHoEUb7JdaHeoYWKIkEf4fG1DgQRxVW9GjsyxdavHSA4o5yNjNIJzoTY+rUDjB3JjsOHhaIzighi9OeLBJUTTyaIAgabnkgwMnfQpyQCM8pbz3LKLCcVC1KKiP3Lc35WXdTFth3Hue2223jyyScpK1NeFdxMQ1m7hgxFEARuvvlm3njjDTadv54d3b9if/9ThML+pNw/5i2SSxx5h/0cf2lIcWFm/TtG6Xl5GCArqrPFg6gXWPWROirOlye8LN5QuXg8RSturaXq4qJ4TcpsJBSXy6AKFPh7q7q4iBW31sptRtKpOL+AVR+pU1xebGzt6nlpOJoTpSCm+3wcf2kI73By9lJyM+OJcNkHzVz+/m4qa1p54403+N///V+tcEKa0ARRGqmsrOTpp5/mu9/9LiOBg7zU8ROGppPb7FQOURQJSRz/+zBSRMKca6TlfVWKCu0xOQ2s/HAthQrKl4qEJI4+2Uvfq2fOV8s0FiqKjv99SJGhPMVr3az8sPI2okpl5YdrKVqjvByb/tdGOf73IbnNSDp9r45w9MleRRXAKFzpYuWHazE5DXKbkjQMNh0t76vCnGtEikT3Hkr4nT35jJcVW7p44cU2brrpJp599llqa7X5Pp1ogijNiKLI7bffzt69ezn/ovPYefw37O59DH9oJmnPkNNbpDeJiAZBUaEU/okg+37eyeAb43KbklRGD00R9ITRmcS0LpiLKaRwNlEUK7U9cnAKz6AyTgzn4xnyM9o2pbiS8IpEgNG2KcWcXM/HM+hn5OCU3GYkDZPTgM4kEvSEGT2knJ8Log1l9/28U1F9eCIhCdEgoFdI3vLIaJjN1+i48sYeauo3s3fvXn72s5+h12d+cQiloYw3Kgupqanhz3/+Mw888AABfT8vtf+Inok3kta3COQRRtN9PvY+cIxwIILBqqN4rTJOSCc6ZkCKNlqsfUexojalTdeU03htudxmLJiFeIpMLgPLb67B5FLOyehkl4fuF4YUF4KlSCTofmGIyS7l9LAxu42K+04BNF5bTuM12TP/nRMh2kDdWmgCaXbtUgDFa90YrDrC/gh7HziW9SH64bDEzx6eYen5XezZ28PHP/5xnn76aerr6+U2TbVogkhGBEHggx/8IAcPHuT6972bvX1P8Fr3w3gC40l9jlzeotwlDiq3FKK3KCd8zpJvIqfMqqjmtB1P99P2+560PCtZZbZPFUWnNmINTocI+8LoTcp59yB6mu2qtclthsY5cNXaFBWmBNFiCmFfWDFVvGK0/aGHY0/3y21G0tAZRHLKLVjyTXKbkjT0Fh2VWwrJXeKQ25Sk0NkdZOUlEW79dB8XXvxu2tra+P73v6/lCsmMICXTJaGxKJ588kk+9rGPcby7F8fVb8dx0WaEJH9BGu7YltT7nQu9WUfIF0Y0iFgLTMroii0AEtHTqqBEJKiMMs+CKOCosqb0RDGZfYcAXvQ0AG8WREql8sJCile7efWbh+Q2JWk031AJwIFfdclsSfLY8Lkm+l8bo+v5QblN0TgDzhobk50epIgytkCiIRquHvKE59aobMdeasEz5CcSjMztJbIaXYRuqZ3jpt1YrHl8+tOf5p//+Z/ltkpjFuUccyuAyy67jH379nHnp+5g/Pd/ou+/voXv8JGkPiPdYXSxCaz0vDyW3VitjHLIswvNkusrabxGOaUwi9e6abmhCoM1NadUyRZDEPUUnU0MmXONlL9VOY1ae7eO8Np3F15xT0MeXruvjd5t2VOw5FyUv7UAc65y+inFEvOVVPSi6Zpymq+LHi4oQQzpjCLLbqyea0id7WJoTBpij/vvHI68zs23fIKjR49qYijD0DxEGcru3bu5/fbbeemll7CuW4X7mivRu5xJu79kjNB42/ak3S9G+1dbAaj9p1dO+ntBBGuhmZl+X7RPjEmX9c3h7CVmIiEJz1D6E6elTSsBEF7enbybCmDNN6Xk5/nd8VcBOBJKvjftC9XnnfHf8loc1LytmNd/eDTr3zelokQPkZLQW3Ssuq2Ojqf6GTkwKbc5ScNaYMIz7FeEeIDozyPoBWayPLdGb9ER9oeRItGS4Z5BH1IWB2EIuWH2jr5Gn9RFY2Mj//7v/8773vc+uc3SOA2aIMpgIpEIDz74IF/84hcZmpjAdfnbyLnwrUkJo5OMJ2aYZAujM4miGBUXFFC02s3O77YpolwmAtRdUUrftpG0iqOYKIIkCyOgZEMuQ29MJE1ExAQRJFcUnU0MxRB0AlJYAe/ZLCXrc7GVWDjyWHryvlKN0gRR/TvLmO71Kqrni1K+Q3qLjoLlTvpeVcbvxlpgomRjHkef6FWEsBP1AmvvaKR/5yjdf8vu0u4RKUKfuYN2aT9Go5Fvfetb3HLLLYiiAqJkFIr2m8lgRFHkQx/6EIcOHeKO225j7PdPzIbRJbd30eEfrufwD9cn9Z4QFUYxcTSf/h1jdDzVPyeGsr0Rnt6sw15iwehIbxL1fBEkbVp5kkBaDAabnorzC3HX25Nyv/liCKBen95pRwpLGKw6ciqsaX1uqgj5I5q3K4MJecOEA1l8pD2PnAorBqtOEWIIwF1vp2JzIQabMkoaGx0G7CUW9ObsTsaP7QEiIYn2p/rof21MZosWh1Tr5VWe4YBvF5dccgk7d+7kH/7hHzQxlOFoHqIs4vXXX+f222/n5Zdfxrp2Je6rr0Cfl3gM9Hwv0XwW6zE6nQiC03uMSjbkUrIul9d/dFQxvYvspZa0FY84mwhajNdIZxYJ+5KzqTtVEMVYrKdoId6hGA1Xl2EvtbDrB8nNydNYPErzECmJ1R+vZ7rHS5tCvJGQ3LlNLtK5xqQa0SCw6rZ6+raPZL3nzid56HYcpHOynSVLlvDggw+ybt06uc3SWCCaIMoyYmF0d911F31DQzguOh/npRciWsxx3+tMgijGYoTRmUQRnCyMLHlG3PU5iklAdtfbWfqBanb9zxFmBtITy70Qz1Ci4qhwhQuDTUfPK4n9fs4khmIsRhTFI4gMNj1SRFKMZ0VnEjHnGrM+XwCUJYhsJWZ8owHC/uzecMfQW3QIokBwJrtLbZe15hGcCTO4Z1xuUxaNrcjM6o/Vs/ehY4wfnZbbnKRQujGPsSNTeEcCcpuSGJYwIyXH2X10J/mFedxyyy3853/+p9ZcNcvQBFGWMj09zde//nX++7//G79eh+uqd2BvXY8Qh0v2XIIIEhdFZxNEMU71GOW3OCg9L5+9Dx7L6lLWzhpb2pvhLTRcLl5hVHlhIUa7niN/7I3bpnOJoRiJiKJ4xNB8RIOAzigSnMluYVTz9mLym51s/3b2l99WkiBa/+kmhg9M0PGX7O5rY7DpCAciivHa119VSmA6RNdzyiiDLscak0xEg8iyD1bTs3WYkf3ZW6hDkiT66KQ/t52JiQk+9rGPcc8995CTkyO3aRoJoAmiLKe7u5u7776bhx56CENpMe53X4VlSeOCPrsQQRQjXmG0EEEUIyaMcsot5Lc46XgquzcTMfKW5FCyIY8Dv+pKS05BvDlE8YqjeBOrFyqIIH5RlKggWnFrLf6JIIce6U7o85mCaTZfzT8ZlNmSxaMkQWRyGJCAQJb/XpreXYHJaWDP/e1ym7IolFIMQmcUab6hkt5tI4wempLbnKRQc2kxw/snmDqenaF/QpOPXf3bGB4f4r3vfS+f+tSnaG1d+L5HI/PQBJFCePXVV/nsZz/LSy+9hGVZM+5rrsRQXHjWz8QjiGLEI4ziEUVwssfIWW2j6qIi9v+yM2vDnHIqrBSucHL0ib60PTORwgoLEUa2IjMt76ti/y87FxQKGI8YirFQUZSoGAJwVFrxTwbxj2f3hlVJKEkQKQWTy4DJYWCyyyO3KQkT75yV6dRdUcLgngmmurPzd6K36Gh5fxWdfx1gojN7vVseaYo23mCIXioqKvj5z3/O5s2b5TZLIwloJS8UwoYNG3jxxRf59a9/TdG0l4H/+iYjv/gtobHxM35GCMT/609VRTo4uSpdOBDBM+zPWjEEMNXtmRNDOWUWcpsy040eq1B3NjHlHfUzvH8C39i5Y7wTEUOwsOpzixFDAJNdHvzjQQQxenqczeQ1O6i/qlRuMzRmqb+qlLxmh9xmLApBJyCI4B8PZrUYAvCNBRjeP4F3JP194pJFblMO9jILAEef6MtaMQTR6oueIT/hLA2H90tehpYcYZvur5grdDz44IN0dHRoYkhBaIJIQQiCwHXXXceBAwf4xje+gengEYa/8t+MPfo44enknsikWhjtuXPVXJ8VW5GZFbfWYszJ3gTFwlUuylrzU/6cxfYjOpMwigQlOp7qJxyIYLDpMdpT87tIS0luIRo6V3lBQeqflUIEMRqLT3brOmUgRH8XQpavqJUXFLLiltqsfqeMdj0Gm55wIHJSe4dspKw1n6JVLrnNSBhjjp4Vt9ZiLTQBcOSxnqyrjifkRDjCG+ywPMuRrjZuuOEGDh06xI033oguCT0hNTIHLWROwUxOTvLNb36T//f//h+iKCJesImcCzcjmoxz1yQSNnc6zhRKF2/Y3OlY/q1dlG8u4PDvjmd1PLjOKBIORDA5DSnvVZKsnkTwZpG1/EM1REIR9v28803XJuodOpXThc8t1js0n8JVLmb6fcz0Z38oTbajhcxlDrZiM7YiM4O7x+U2JWGWfqAKUS/yxs865DYlIXRGEb1Fh38iOLdmZCuCTqDxmnKOvziUdWGLYSlEn+UYx6SDSJLE5z//eT7/+c/jcrnkNk0jRWiCSAUMDg7yX//1X/zgBz/A7XYTvKAV+1s2Iuj1SRNEMU4VRskQRDFq/+kVTA4DLR+o4tAj3XgGszMUYsWttQRnQhx4OLUbwGSKIjghjMy5RqSI9KY8nGSJoRiniqJkCiLFIEQ9qNks7JQgiGzF5uiGT1tNZcfkMiCIAr7R7Czh3PzeSgxWHXt+mp2CzlpoounaCvb/ojM7i77oInjrR2ifOMzQ0BBve9vbuOeee1i5MrnrqUbmoQkiFXHs2DH+/d//nQceeABdrhvnFW/Dtm41WJIfHxETRskURAC2SITVIT8D/7knenImkHWbEHOuEUEA70gg5VWQki2KYggv70bUC1ReWEj334b47dGtKXlOTBSlQgwJOoGlH6hiaO8EAzuzszN6yfpcat5ezLZvHMza3jfZLoh0JpGNX1hC+5/76d+RnY0li9a4KVjqZN8vOrPSC68ziVScX0DXc4NZGyIXWwsseUYkiewTdLNrsc4kUnd5KZ3PDuCfyB5BJEkSA3TTaT7ElG+CK6+8ku985zvU1tbKbZpGmtAEkQrZt28fX/rSl/j973+PviAfx5UXYdu4CiEF8bCNt21PuiiKYZQkru4Z4eiTfdnZoE6A5TfVMHFshq4XUtMfI1WCCMBik1i+JsLBnx/lga0vpOw515RvSNm9Ky8sZKJjholj2Vn1SG/RYXIZsrpBa7YLIog2ZPWPB7O2CIyz2oazxpa1fXpyyi0sua6SvQ8ewzucfZEDlRcU4qy28cYDHVl3wAfgqrNTd1kJr//4KGFfdh3MSJJEqHmCPb07GZsY5YorruBjH/sYV155pdymaaQZTRCpmF27dvEf//Efs8IoD8eVF6dEGDV/a5y2DyW/oIBBklgV9NO9fBrrNW0pjbce/mMj+VcdTvp9i9fl4hn0sePfWmj8hx1Jv3+M7t8uA6D8m8n93QqihBQR+N3DPyIc1qHXJ39DmEpBpCE/ShBEGvIw38OezT2HHJVWrIXmrPMwxtZco11P+Vvz6XxuMGs81REhwrCuhyPBfXiYprm5mfvvv5/zztNCs9WKJog03iyMrrgI23mrkyaMmr81Pvf/qRBG7uXDiBG44A0DQ38coOeVkaQ/Y/iPJ5rdpkIYHf7xWjaNhThuFjF/clfS7w8nRBEkXxhV1UXYtKmX6674M6KYvCklLWJIgKZryxnvmMnK0DlroYnqi4s49MjxrEzAzmZBpDOKNL27nGN/HcAzlH2eieK1bpzVNg49ejz7PBNCtMDLxLEZup7PPs9WblMO7oYcjj7eK7cpCVHWmkfx2lx2/uBIVgnRiBRhgG76co8yOjrKVVddxZe+9CU2bNAO3tROlhcJ1UgGq1ev5ne/+x27du3iqreez+j//Ya+f/l/TL+0HSm0+BP/A59xzf1/w8+G5/5LFmNv5BMR4GhJmGOfy2PsiQa8v2tg4o8NSXvGfBE0/MfGuf+SRdNHd2IKS4jA4Z+sm/svmVS8Z+/c/x//bHjuv2QwOizw/HOlSRVDaUMC/0T2hjuF/RFEg4ghRaXQNc6Mwa5HNIhZcyp+KkFPOJrnkYVfWyQY2jvBWNuU3JYkhKATMJh1WdUPTdAJc+0vRtumOf7ScNaIoYgQIbR8gq3CU+xjOw0NDfziF7/gscce08SQBqB5iDROw+7du/mP//gPHn30UXR5bhxvPx/bpnUnleuOl/leolNJhtfIvfxkgfWW/QZ8BonXGkLRf7+ibdHPAM4ogpLlNYqJoGWTIXrMImPG6JlFMsPp5nuKTiUZnqP//safKSsaxGJe3Im5FiqnDrLZQ6SRfvQWHY4KK6OHs08IWQtNuOvsKYliSAdLrqvAYNfzRhZVwAtLYfo4Rre+jZnQNJs2beK+++5jzZo1cpumkWFogkjjjOzZs4evfvWrPPzww+Tl5RF4yxpytpyHaLPGfa+zCaIYixVG80WR3Sugi8CETcLiB11EYNoiLVoYLcQrtFhxdPRHa7lqIMAhu44Dp2lGmwxxdDZRBIkLI1Ensf4tEbZseo3/396dx8dV3/f+f51l9hlpRqN9X73JNtjGBgMGzA5OCVuAJiGkCTcpNEubBdrb9LZpe5vb+6PZCCEpBG4CCQmEQEhYAg1gAgWMMeB9lyxr39fRrOf8/pjRaGTJtmRrGaHP8/GwPT7zPed856szo/Oe7/d8z/rVp36T2LkKQxVX5BPqi9D81vw7YXHm2gj1ReZdb8V8DUSaTcWWaZmX0/8XnuPHlmmh7g+tc12VKSu5IIeCs7LYeu8BjMj8OtYL1mWRv8rHBz85PG9mw3Nk2zCiBqHeCK58O0bUnBcTV0TMMEM17ext2UkgEODGG2/ktttu4+qrr57rqok0JYFInNThw4f5j//4Dx566CF0XUc5dxWeSzeg+zKntJ3JhCI49WB0bC/RiBX1Ojl9Ki+vDI+5A/uphqPJDpU71WC0/ydnoZkmMQBFoWIoRqtdZXiCoRWnE45OFopGTDUc2ewmoSA8/fiDGIYy5WF0c9kzVHZxLqH+6Ly7uFl3aJz9tSUcfLZ53l0HNV8DUd5qH9WbCnn7nr3zbrhl/llZ2DJ0jrw8j669GbnFggI2j2Xe3OPG4tbJLHXSubsfmGeTPyiw5guL6D00wKHnWua6NpOiZhnURfbRajYQDAZZt24d999/PytWrJjrqok0J4FITFpbWxvf//73ue+++wgEAljPPpOMKy7Ekp8zqfUnG4hGnEowmigUqQY4Q/EeImsEyto1DufHiCXO86cajE7l2qGphqORoXOaYXJDS4h9bp0PMo9/jcipBqPJhqIRUwlHLrfJZVd18dHL/4gvs3/S68lQuVPjKXYw2BzENObXR/p8DUSKquAutDPQODzXVfnQs2dZWXpzKft/0xi/Ae48UnJBDnmrfWz7wYF50SukWhSKzsmm9d1uIoEYjmwbwe5w2n+uBMxBjrCPVq0BXdf567/+a7785S9TUFAw11UT84QEIjFl/f39/PjHP+bb3/42bW1t2FfVknHZBqxVZSjKiS8QnWooGjHZcHS8XqIR+T0qK+p1Xl0eJmKZYP1JhqNTnVBhKsFoJBTZYiYRFQxFoTAYo8uiEjrBhbhTDUdTDUUjThaOLFaT8mqTQ/sUfvPYg5PaZrqEocJz/Dj8Ng49Oz9ngJpP5msgmo+qPlLIcEeI5rfn15BQzapSeWUB9S+3ERmMznV1Tkp3aLjy7fTVDaGoCppNnTe9iLpDY/Wd1Rz8fTPd+9L/Oq2Qf4AO3xH2H9pPTk4Ot9xyC3/zN39DWVnZXFdNzDMSiMQpCwaDPPLII9xzzz3s378fa3kxnkvPx7lmBYo+cW/GqQaiEdMRjFQDDBW0GJx1wMLekih9rrFvg8kEo9OdZW4y4Sh1pjnVNLmxOUSdU+Md3wRpbgKTDUenGopGnCwcWW0m//5vz1NR0nTcMukShgByz/Di8Fvn15AioPKqAkK94Xl10fZ8DERF6/3YMq0cfmF+DCMaUXZxLsNdYdo/6J3rqkyKr9rNUGuQ8DwIQakqLs/HvzSDd+89kPY9KxC/sXD5xXns+VUDRtRE1ZX07s3SDAZzu9jdvIN+uvH7/dx+++384z/+Iw6HY65rJ+YpCUTitBmGwQsvvMB3v/tdXnrpJTRvBu6L1uO+8Gw0t2tM2dMNRKlOFI5O1lMEYA/BmXUWtpdHCNjBEoWIxpjrjOD44Wg6p90+UThKDUWOaLy3KKoq5IQM+iwKYXXy07aeKCCdbigaMVE4Kq82yM4z+dsv/D90beILodMpEM1XpRtzCfdHaH13/lxHNB8DUf4aH9YMCw2vzK/APJ8omsKav6qhc3cf9f/VNtfVOSndrmH3WxlsGkazqmhWNe2DnG7XiAZj2LwWqj9SxIFnmgin8bVZETNME4dpdR1hcGiAiy66iK985Sts2rQJVZW7yIjTI4FITKudO3fyve99j0ceeQRFUdDXrcRzyflYCvOSZaYzFMHxg9FkQlGSCRfutNCeabCndOKhDRMFo+kMRTBxMJrwfkSmyfUtYdptKq/7J9dbdKyJwtF0haIRo+HIxGqDcEjhiV88hK7FSB1dma5hKGuxh5Lzc9jxszqMiHxUzoT5GIjmE9WisuJT5Rz9U8e8map6pIfC6tHjoWIevPWqrykio8TJtvum5xYPM638sjx8VR7e+9HBua7KSQ2Z/QSWdbD30G4Arr32Wm666Sauv/76Oa6Z+DCRSC2m1fLly3nggQc4evQo3/jGN/AcOErLP36b9u/+hOEde7FHYngLVJTEkef0Krj9o2fG3nwVW6JTSbeBt0BFTZxTOzMVPNmjZTPzFOxuhZqfdrL0sU6KYlH0RL7PNGL4+0fLZvcpuIfj/9ejkNujoie+vHMNK2T3KewtjtHsN/D3K+R2q2QOKWixeFlLBHqerSH0ZA36z0dDUOWdjWQE4ttVDcjrVbAmvmBzhuL/H+EbVMhMlFUSZW3h+HOORNnOZ+I3fI0+thh3gR2IB5eS4RjOxBAGZ9SkJGjwQq6FrV4df9igajCafL54OIYr8dgeMykZjqEm2iUrbJCbmJZ5/0/OYugHq2j5Ufx+DLpDY+XfHWGkAyczCDlDoz/b/AHwJGZbtcSgsB/0RHbMCELu4GjZvMH4ssavxGj9cgzjdgMjBmDyz/9xG7954fJk2dvOuwhnji3ehhYFX40H3RH/odt9VrxV7mRZT4kTV168XRQtXtbiipe1ZVrw1aSULXLgyo+XRQFfjQdr4ual1gwLvhpPsqy70IG7cHSoha/GgzXDwnBXmEBXCG+VJ3nMuvLteIpTyla7sXnjodTi1PDVeJI3W3Tl2ckoGZ2m3lvlxu6zJtvbV+NBtcTLOnNsZJSNls2scOHwx8tqNhVfjQctcV8qh99KZvlo72tmuQtHti3ZDiUX5qDbE22YZcVbOVo2o9SJMzfR3nqivZ2JNvRa8FWntGGxY7S91ZH21lPaO6UNixzJYzbZ3olp460ePV428XZwF9hxF422ocWlY8tItKE7XlZJ9HyeqL31RHureqINc21klKa0d6Ube1aive0j7Z1ow2wbmWUpbThRe9tS2rsiXtZX48a3yJ1yzKonPGYzSsa3t+VE7Z1/THsnjlnbRMfsSHtzgvY2TUIDkeRxNvIabJmJ9naNP2Y9Jztm9ZRjdkx7u5LtrdmPOWazbcc9ZjVroqxdpfqaIpb9eRmZFS7CA/EwlFHmTMvPCFdh/P1hcev01Q2y65H4/XnS9TMia0kGjmwbmlUl1Bel8fWOeBum4WeEK9+GZXWI98zXeZMXOXz0INdddx0NDQ388pe/lDAkpp0EIjEjcnJy+Pu//3vq6+t55JFHWGZz0/H9h2n4h3voUt4mRgCAwkUaZStGrzdatF7HVxj/4HV5FZZusKAn7gebV61RfuZo2ZqzLfhLEh/+HoVLwsMsfaqbmp92snZ7P8v2jZ4snFFnobgzXtYZUjj7gAVXKP7JW9ylcka9hTafQZ/LZPkRnaVNGqsO69gTZT3BeNnCbo3Vhy30PFtDz7M1lHyxnGWPxL91tUZh/UEL3kToye9VWXt4tL7LmjSqW+N10I14Wf9QvGxuv8r6g6M9PUtaNHLvqqTzd4vo+u0iLuuIUJAIMnkhg8s6IoRVhaCmsLI/yjk9Uc7rjiexSzsiFCcu4M1JlLUmQs6ygRhre0aHRGzsjFA2bLD/J2fRc89Kaj9eRsXn9gFQ3QVrUuYUOLsRSnvjjzNCcOERcCU2VdkDa1MuD1rbBBWJsq5IvGz/7QaNXzHoq4D9h4uBeM9Q1ZUF5J+VFW9Dt4Xaj5clf8H6l3hYckNJcrsVl+VTcLY/3oZ2jdqPl+EujJ8g+Go8LL25NFm2dGMexefFew81i0rtx8uSJ2/eChe1Hy9LhpySDTmUXpCYLVGB2o+X4a10MdwZonvfAMtuLkVLBIyic7Mp25jS43lzKVmJX/ruQge1Hy/DkjhZK1iXRfnl+cmyi68vxr80A4ifvNd+vAyrJ/5zz1/jo+qqwmTZRR8tJmeFFwBHlpXaj5clT5Ryz/BR/WdFybJVmwrJW+WL7/NsP2UX5eHMi5/QZNdmsui64mTZyisKKEi0t8Wlx9swf6S9M1h842h7l1+aT+E58fbWbPE2HDnR81a5WXbLaHuXXZRL8fnxNlQ1hdqPlyUDR2b5SHsn3nPn51B6YW5y3YxiJ97ESVZGcbwNR8JI0TnZlF8y2oZLPlaCf3G8Dd358bK6M/4+K1jrp+KK0VmlFl1fTPay+O0BHDnx9rZlxMvmr/ZRtWm0bM2fFZF7Rry97b5EeydO7nNWeqm5pghFU1h8fQk1f1ZE3up4e1s98TYcOWHPXpbB4utH27viinwK1yWOWUf8mHUVxNswa5GHJTeltOHFeRStjx+zqjXehiMny94qN7UfH71QvPTCHEo2xNtQURPtXZFow1JXog01jKiJaUDeqqzkuktvLkue1HqKnPE2TLR34dl+Ki4dPb6X3FiCf0n8+Hbl2+PHdyI05J+VReWVKW14bTE5y+Pt7fQn2jsRvPLO9FL9kdHju/ojhcn2tnnj73tHlo3OnX2Eh6Isuna0DdP1M2LRNYVUXllARomTxdeXEE18RqfrZ0TNnxVStN6PNcNC1VUFBHvj38il02dERAlzxNzP5sBzPP/u78hZ4uWnP/0pHR0dPPbYY+Tmjn5uCDGdZMicmBWmafLWW29x33338etf/xqALHs15Tmr8bmKiEUSvTc2MKJgxEBRQbdAJAyYoOnxZdFEr8qJyqo6qImysT0HGHq6hpgKMS3eO2OJxa8XMhOTK2gGhBN5xBoBQ4mXCVrBE4CaZp2dZVGi2tiylkh8G967oe3fFWyJ65BGJm3QDQiNlE2M/Ijq8TqmllUTdQrpgBIvCxA5pmz0D9kMrA5hMSCoAoqC1TCxGPEbdAzpCrnBGDEFumwaqmliTSlrMUwUE8KJbyftMZOoEr8maaRsSAVTUaj5pUH7Z8OEE5nOFoWYAlEtXl9ror6mEu8pUk2SZa3ReBtGNVAS9U8tq5kQ0uC8+9rpPTzIUGuQWNiIv3anRnTYwDRMVIuCZlGJBOIBT7drmKYZv/noSNmggRmLXwis2VQiQ/Gyml0Fk+SNSi2uE5S1qaBALDhaNhYyMKImihafXnnJjaXsfbyBQGfohGV1e6K+Zvybb0VViAbj+7E4NWIRAyNioqgKuuOYspqSnI1Kd2oYERMjYsSPb4dGdDiGaUxQ1qFhxkxiYQPNrmJ16wS7I4k2VFEtCtHA+LLj2vBE7X2yNpygvUfa5UTtvfSWUlRNSV7QnWzDlLKKckwbhk/Q3intMl3tndqGukNDs8ZnDZvUMXui9j6mXaarvRVNwVvhpPrPitn5s7r4sLOTHbMnau+RNjxJe49tw5O0d0q7uArs5CzP5Mgf28a193HbcI4+I2wZFkwDosNRNJtGZCiKETXHtWE6fEZYMy2UXZhL3UutxMIGVrce//zi2Dac28+IWMRgQOthsLKN/XX7UFWVa6+9lksuuYTPfvazaNqp3ShciKmQQCRmXWdnJw8//DA//vGPOXToEG5bLqW+VRRk1qJrtmnfX2zP6Jjunmdrpry+b0BhWYPOW0sixDSwhSFkHV8u+2ujj9v+7+QnOpgq4/nRa6Z614THPX9BZxhfxOS3+VY4yTToJ1P589GPh5Y7p/fu5HoMLjkM+7Mh+j92Tuu2p5uiQtkleTS+3jlvps9N3sgyzc2ra4jmSZtC/KS2+PzsZMhIZ7lneilc52f7w3UYkfSu7JmfryLQFmT/08efMXOuWVw6kaEoqkVl+a3l1L3UysDRwFxXaxzDEiO6pI8Pdr9HX7SHvLw8Nm7cyPe//31yciZ3f0MhposEIjFnDMPgpZde4v777+d3v/sdLpcLr15NiW81Hvv0dounhqIRpxKOtBhc+r6VfcVR6vPG/+JODUUjZiIcpYaiESPhSDVNnDGTQV3FHTXIDZkcdqqnHI5SQ9GI6QpHI1OgAyz/eh199UNpf8I55tvTNGXLtLDi0xXs+01jWp4IpZovgSijxMmi64vZ8f/qCPWl70xcx/Y4pC0lPkyqry5+oaKiKmk7RXXOikz6GwKE+iLYMi2EB6JpW9eCtVmUbsxl63f3p+1nVCQzwKHeffRndDAwMMDatWv5p3/6J6644gqZLU7MGQlEIi0cPXqUBx54gAcffJCWlhYyHYUUec+gIGPptPQaTRSIRkwpGJlQ0KPS4zYIWiGnVwEFOjLjb6OJAlGq6QxHE4WiESPhaHl/lNqBKE8W2IhOYXruY00UikZMRzhyhuHP9sHBpxpp39572tubSWf+jyqG2oMc+G36fkMMUH5pHq3begh2j+9FTCfzJRDZs6zkr/al/RTQNR8twplr54MHDs11VU4od6WX6msKeffeA2kdMFWLwpovLKL5rc60vb+Xt9INCvQeGsTq0fEUO+na0z/X1RojakZoo5He7BZaOpvJy8vj9ttv56abbmLlypVzXT0hJBCJ9BKJRHjmmWd46KGHeOGFF7DZbPisVRR5z8DnLEE5jSFgJwpFI6baa7TqoI5mwtaa+AVCign+uya37nSEoxOFohFWxaB9dRRbzGTFQJTtGfqU7l004kShaMTphCPfMPTYoeRjO9Gsatp+u5lZ7iLYGybUm74ncfPJfAlE84XdZ8WWaYn3tqah1Pe2K9/OUGtwjms0nmZTKT4/h6Y3OokGY8lrc9KJopIcCrn05lJiEYP9v2mc20odwzRNetVOQou7OXB4P+FwmA0bNnDBBRfwd3/3dzidzpNvRIhZIoFIpK2mpiZ+9rOf8dBDD3Hw4EEcFi9F3pUUeVdgt2RMeXuTCUSpJhWOzPgkCzEN/P0Kqw5beH1pGPffT61upxqOJhOIRuRaoqzxDPNUqZWgNn3D507kVAKSdzh+bdGeBw4x0Dg85fVni6IpZJQ40/bEE+LTK1tcOu3v9851VY5rPgSi3DO9RAaj9BwcPHnhOZJZ7qL/aAAzlr6/0j3FDmo/Xs6On9Yx1JZ+QWiExaVx5ueqOfBME72H0u9nbs2wcMZnKtn/VCN9R4bS7gskMzPKQH4bO/buYJhB/H4/V111Ff/2b/9GSUnJyTcgxByQQCTSnmma/OlPf+Khhx7iiSeeIBgMkuUop8h3BrnualRVP/lGEqYaikZMJhy5ggolHSp7i2OgwJJ7VfrbDcJTPKefajiaSihSMDFRUDFZnxlgS4lGh21qY7anGopGTDYcaQYs7oS92VB0U/pOtlB4jp/Si3LZ+v39ydmZ0k3FFfnYvVb2/Cp9w8Z8CERLby4l2Bum7g+tc12VCelOjbVfXsSRV9ppfis9h3VB/EuE4nOzaXqzEyOaXqceniIHpRvz2PPLI/HZ4NLsmiarRyez3EXHjj4Ayi7Ope393vQZEmsx6bG3Ud9/kB61HVVVueaaa/jiF7/IBRdcINcGibQngUjMK/39/Tz++OM89NBDvPnmm2RlZeEyyyjIXI7XUXTSIXWnGohSTSYc6TG47L+tNOyM0nbIOOXZqSYbjqYSigDsqsFqzzDbB+0MxrRkUJpo1rqJnGooSjWZgOQKw8aXA+x/qpHhrjT5xT9CAWe2jUDH9M6+N51Sh9Wkq/kQiCD929KZY4tPqZxmv9EdfiuLritm76+PpuUw05HgY8+yUnllAQefaYpPU54uEr878s/KomxjLlu/lz6TJZimST/dtNBAt7OFQCDA2WefzW233cYVV1xBZWXlXFdRiEmTQCTmrT179vDwww/z2GOP0djYiMPipSBzGQWZy3Hb/MddbzpC0YgThSM9Br6/i59Ela7UcGYo7H391H/RniwcTTUUjTLZ6B2iMWThwPDoBBaTCUfTEYzg+OHIFYZVLfB2MeTfnL69RSUX5tC1uz9tw5Ej28ZwZ3rWLd0DUTq3nTPHhn9pBkdf65jrqhyXZlOpuaaIupda0y4QFZ2bTfayDD548PBcV2VCy/68lKH2EEf+2IaiKaiakhZhaMgcoD+3jebIEXp6eigsLOTCCy/kE5/4BJs2bZrr6glxSiQQiXnPMAxee+01fv7zn/PEE0/Q19fH6tWrGWryUZCxDJvFPW6d6QxFI44XjrK/Bt58FasT2g8bqBrk12i0H44lbzI7VccLR6cSihRMKuwReqMq3VEdp2oQMyFkjg5xOFE4mq5QlGqigGSNwvm/6KH+v1qTNwVMB6pFYeVfVNKytZu2bT1zXZ1xnLk2Vt9Rw66f16flNTDpHIh81W5qP1HOtvsPEGhPv1CUt9pHwVlZbH/4MEYkfX6VW5wa5ZfmU/dSa9pNRmBxaqgWlVBfBE+xA3eBg5at3WnRs6bbNfLW+Gh5uwsjapK/xkeoL5IW79uQGSS2rI/2cAsHDx7E4/FQW1vLl770JW666Sa5eaqY9yQQiQ+VYDDIc889x6OPPsqzzz5LNBrlkksuoWWXlTzP4uQU3jMRiFIdG45Sp+P2ZCss3WDhgxfDhIZA0yF2GiM0jg1Hp95TFLfOE8CtGbzc6yI+XmO8YwPSTISiVC13hvAH4OxGeLkCcv48vXqLUq83SLdrDyA+uULPwcG0OOk7VjoHIpR4KOo5MPcnpKnS/XizunWWf6qc/b9tYrApvSZGOfNzVQx3hdn35NG5rkrSyKQIdp+VVX9Zxa5Hj9CfDvcPcxgYiwZQ/AavvPIKiqJQW1vLP/zDP7Bp0yYcDsdc11CIaSOBSHxo9fT08OSTT/Loo4+yefNm7HY7H/nIR9j/ZoQcTzXKviOzU49na8bdn0jVwEh8cbryMgu9bQYN26fnm9S2/6ucViiyKCZOzaAvqmFXDUpsEQ4NWzFOEo5mOhTFmbTcGUYzYP2PO2h8vYNYaO6HkIzwL8ug7KJctj9cl3bfjKertA5EaUh3aKz8iwqOvNKeVveaGZmq+ujm9rSaMEHRFArXZdGxs4/wQBRXvp1QbyRtblxbfmke3ko37/9n/L5RqkWZ294+h8GAu4uyi/J45plnCAaDnHnmmdxxxx1cf/31ZGef3hduQqQrmfZDfGj5fD5uv/12Xn31VRoaGvjmN79JXV0d25t+y38f+SEZ1xm0mkeJmjN7Aa1v0wFiew6M6ZUyUn4XH90Vo7sxflLv8StUrNZRT2P0Qd5dJgWvdJD7w/8+pfUjpkJfNF6BbEuMGmeY0dsWjf9F7X3XivddK91LbOgvv3uKtZ4shYIf2qj+uYW8dTlY3ZOfYXA2DLUE6do3kDYnW6kKz/ZT+4myua7GvFH7yXIKzz7+tYhzJRqM0b1/gMGW9Op5sbp18s704sq3z3VVxlA1haJzs8kocwEw1Bqc0/enalGovLoAT3G8d6VzTz8Nm9uTz89FGDIsMdrMo3hvgNeiv+ft9s0cOHCAf/zHf+Sdd97hvffe43Of+5yEIfGhJj1EYsE5fPgwv/71r3niiSfYunUrdrudq666igNPNZFNAbpimZV6aEvHX3OUVaySX62x+9X4xceZuQoDXeaYADUVEw0NbL/z3KnVE5MYChomG31DbB+00x45cRBJDWPRi9dMaX+TpaomhqGgYFIWPkrLlq60uOB4hCvPTqg/kjY9Rd4qN+5CB42vd6TV0Lm07CFSoPj8HAabh9PmPjS6Q8OWYUmr+/doVpWCdX4a34gfU6qupEXvkLfSReWVBbz/wGGMiDHnvS6qRcFT7KSvLn7PshW3VdC8pWtOe/iiZpROWii6wssf//hHotEoa9as4cILL+Saa67hwgsvnLO6CTEX0uvrVSFmQWVlJXfddRd33XUX9fX1yXC0ky2oqPjNfHIpJmcWw9GI7kYj2VukW2HJBgv178en7p6raX9jiaFymmLSGdEYiMU7ljO0GAFDJWqe2k1eT5dhxPfrcpkUr82m9/Agg81p8q25AotvLKG/YYiDv2ue69oA0HtoMG1O7tOeCY1/Sq+Z28ovyyejxMm2Hx5Im0DryLZRfF42PQcHGGoNzmkY0qwqtkwLgY4Qw51h+o4E4gEtMje9LjB6fVfuGT4qr8xnyz37iAZj7Php3ZzUJ2pG6KSFYFkP9Y11RGNR7F1nceONN/KFL3yB8847b07qJUQ6kB4iIRKOHDmSDEdvv/02Kio+csmhkBwKsCkzewHpRD1GNhdEQmBEoWS5RkaOyq5Xpj517fEmkZhqb9Eok4t9QwxEVd4ZcE5Y4nhD9maix0jTTJSXtgFQfF42be/1zPlMdPYsK5GhaFpd44QCReuzGWwZTn5bPdfSrYcos8KFu8BB05udaRM8IH6NjsWlz/mNOC0ujbwzfTS+0RmvV2JCgLm2+IZiHH5b8lqcubbi0xX0HRmi4ZV2NKuK7tTmZNrxkBlkwNfJYFYXhw8fwjANFi1axNq1a/mXf/kXKioqZr1OQqQjCURCTKChoYEnn3yS3/72t2zevBmADHyJcFSIi4yT3gT2dEwUjjJyFOxuhfa6eG9R9Tqdpj0xAn2TewtPZma9qQQku2qgAUOGit8SpdgWYeegPdmjBMcPRammMyDZbSZragPsf7oxLaaqhfgJ5OLrSzj0XHNa3Fx2+afK6TkwQNObXXNdFSD9AlHRej++ag87H6mf66rg8FupurqQfb85SmQoPYZe+qrdLLq2mPcfOESob+7uK6TqCuWX59O5s4/+hgB2nxUjahAemJubqjpzbZRsyGX/042YMZO8VT6CPWH66mf3iwfTNBmin9jiQRo662jragUUKirKue666/jSl75EWZlcSyjEsSQQCXESXV1dPPfcczzzzDM89euniRHFgYtsCsihEC/ZqMrMzU9yvJ6jmnMsHNwSJThg4slWMGIw1HPyt/NkpxyfSjgqskWosId5vc8JKDhVg4Ax2iZTmeDhdAOSppnEYgr6y+9SvCGHngPx4TxzxeLWWXRtMYeebSbYM/eBCIW06vlIt0AEpE0b2X1WqjYVsv/pRiKDc3OiD+DKt+Or8SSHEc5lr5DNa0n2tCy/tZzWd7vp3D031+K4C+youkr/0QAOv5Waa4vZ9+TRWe8JMkyDkK+fYFEve3bvJWAMYtEtLF22lK9+9atcffXVMiGCECchgUiIKQgGg7z66qv89re/5ZlnnqG5uRkdC9nkk0MhfvJn/LqjiQLS4vN1FGDv6/GTJrtbITh4/Lf2qdyHabIByakaXJE1yNv9DprDo21xqrPenWpA0lST1dX9NL3ZSfsHvae0jemm6gquAgcDaXCPEf+yDLr3Dsz5PWzSJRApqkLWEg9dc3RyncpT4mSoZTgtJigAyD3DS9H6bD74SXySgrniX5rBkhtL2Pr9/XPWO2XPsiaHLS778zJM05yTYzdqRlBqhznafYT6lsNEieDxeLjsssu4/fbb2bhxI3Z7es34J0Q6k0AkxCkyTZNt27Ylw9EHH3yAgkImfrLJx08+bjJndGgdJAKSEp+EIRoCt19hxSVWdvxXmMFu87jfdp/uzWmPH5BMCq1R2sI6MRSqHCGihsKRkPWUQ1GqqQQkRTExTdBf3kbJBTkEe8J07Og77TqcqqJzsynZkMM739tHLDh3J5YOv5XVd9aw51cNdO8fmLN6QPoEoqxFHpbeXMq2Hx6Y06GNml1l7ZcXc/RPHTT9d+ec1SNnRSZ2n5Wjr8V7heZqUpfcM73oNo3mt7tQdQVfjYeuvf2z24OX+Ax1Fzk48/YqPnjwEANNw1icGpHh2KzUxTRNIr4A0dIB9mzfR6/ZiYlJQUEBn/3sZ7nmmmtYtWoVui5zZQlxKiQQCTFN6uvree6553jhhRd47nfPESOGFTt+8vCTj588LIp1RuugLa1B1SAzT6WnxQATFq3XiYSh7t3xQ25ONxSlOl5AOtM9TMRU2DVkR8PEoRk473172vY7uYBksrgmSnBnM01vzN1JJkp8Ou65HMI3wu6zpsUQvnQJRJA+beLKt8en157D387F52Xj8Ns48EzTrO/bnmUl3B/BiJqUX5qHZlM59GzLrNcDoOojheh2jX2/PgpKPDj3Hhqcld67iBlGqQ3S2HGEhvYjhAlisVhYv349N910E5deeimLFy+e8XoIsRBIIBJiBoRCId544w1eeOEFXnjhBXbs2AFAJlnJcJRB1qz0HvlLVEwDupsMbC6oXGPh8LsRQolrfaczFKUaG5BMQKHMFmaVJ8jzXW4y73trRvYLJwpJ8XqUh47gLnKw9/GjM1aHkym/NA+rW2f/07N/wpnKmWsj0B6as/2nQyCa6zYAWHRtEeHBKPX/1TZndVh6Uyn9TYE5/dLA4tJZ95XFHPhdE+3v9876/m1eC9WbCjn4+2ZCfRH8SzJQNIXOXTPfs2yaJrHcAMN5fezdsZc+ugEoKCjgE5/4BJdffjlnnXUWPp9vxusixEIjgUiIWdDY2Mgf/vAHXnjhBZ7+9W+JEsGClSzy8JNHFrnYlYmnr55Ornw7FddUsu/NCEYU8ms0oiGTtj/sm/F9A3TeuR6/JUZHRAdM1mcM0/v04fgQmBl0bEDK9sdwOkyaf/YBQHzoyyxP0529LAOLW6dlS/es7jeVt8rN8k+W896PDs7ZDT/nOhC58u2s+nw1Ox+pp/fw3M1MWLAui8hgdNYnCEg99ovPzybQEaJ73+wOo/QvzSD3DG/yGMiscNHfEMCMzc7pSc5KLxZHYlieRWXpTSXU/7FtVnpyg2YA/Yww9Y31NHU1ECGMzWbj4osv5vrrr+eCCy5g0aJFM14PIRY6CURCzLJoNMrbb7+d7D3aunUrAE7c+MjFRw5Z5GBVZv6C2JpriojaPTTsiEHdIfJXZ9H2Xg/R4ZkPB6quUPTVM2kIWlC+twVXvh2rR6fnwOydlEYvXkNeboya8hDv3rt/zqY2zjvTS7AnQt+R2b83kK/aPadTlM91IIK5a4PMMhc2n2VOekIgPiX8mi8u4tCzzbN+bZ2vxk24P8pQW5DMChe5K7wceq55Voai6Q6NvFU+Wt/tJhYyKLskD6tLn5XhgWEzRKx0kAFHNwf3HSJA/LgrLS3l1ltv5dJLL2Xt2rW4XK4Zr4sQYpQEIiHmWGdnJ5s3b+bll1/m5ZdfZu/evQC4yCCL3ERIyp7x648yy1ws+3gp7957gPBglMwKF9FgjKGW2ek5KL80j6xFHrb98CAQP2mZjWCm2zWylniSJ6W5Z3jp2tM/q9MKL/t4GcNdIer+0Dpr+zyWxaUTGZr9qZ3nMhDN1WseUXFFPg6/jd2/ODJr+9SsKv6lGcmZF3PP9NK9d4BocBbeaynv6dV/VUP3vv5ZGyLoKrCj2zX66oawenTWfKGG3b9omPEvISJmmD69C3VJkMOH6ugdjvcIZ2dnc+2113LFFVdwzjnnUFxcPKP1EEKcmAQiIdJMc3Mzr776ajIg1dXVAfEbw8Z7j3Lxko2mTP9sQoqmJIeprLitglB/hP1PNaJoClk1HnoODWBEZu4jY+SEyerROevLi9jzq6P0HJi94Ts2r4U1f1XD3l8fnd1hQwooSnwWr4xSJ0PtwVmdhc5X42bJx0p5/8cHZ32GtbkKRA6/lTM/X83exxtmtXdIt2s4c230NwTiM7eZzOrkCVmLPSy5sYR37zswq/fLyVrkYclNJWz93n7CA9EZ/8JDtSj4qjx0749PLb/oumJsGRZ2/DT+eZr6WTedYmaUXjoxKgO0DbbQ2h6fDMLr9bJ27Vpuu+02LrzwQglAQqQZCURCpLm6ujpeeeWVZEBqaWlBQSGDLLz48ZJNJn6sim16d6zET96iwzEySp2s/IvK5LUmzlwbsZAxY/cCUS0KObWZdO7pJxYyKLkgB92hzUoPisWtJ2+CWX5ZPsNdIdq29cz4fiE+tfGaLyyie38/h1+Yvd4iRVPIPcNL23s9sz6z2Zz1ECmQt8pH+we9s3atCkDllQVkLfLw7g/2z9o01nmrfTj8Nupfih9Tqcf4TKq4Ip/ocIyjr3Wg2VSyl2bQsatvxr5UsWVa0GwqgfYQrjw7q/6ymu0PH6a/IRAPYMHpnyI7rIToM7oYcvcS9A7Q3NSEYRr4fD4qKyv5/Oc/z6WXXkpFRcX07lgIMa0kEAkxj5imyb59+3j55Zd57bXXeP3112lqio97d+FJhiMv2ThwTessdql3iK/9RBkAu34eH+rjrXTT3zA0Y+P/88/KQrepNL7RiaorlFyYS8uWLsIDM3tSV3V1AUNtQVrf7UGzqai6MuPXGdkyLESDMWJhI97mfZFZDSmzNVRxxFwEotl+jSjxk/VQbwTNqqLbNUL9M9s7Y3FpGFGTWMgg/6wsXLk2Dj03s1NXWz06Bev8HN3cjhE1KT4vm2jIoHXrzEwcouoKGaWu5GQYtZ8sxzTM5BDE1M+s6WCaJkp2lObOZvroJJg1QFd3fEa+wsJCcnNzueqqq7j11ltZsmTJjM8iKoSYPhKIhJjHTNOkoaGB119/Pfln586dAFixJ3uQvPhx40VV1GnZr2ZVsbh0gj1hnDk2Vt9Zw46f1dFXN4QzxwYKMzaNsbvATu0nynn/wUOEeiN4ih1Eh2MzPtSr9MJcCtZmseU7+2alR0HRFM760iI6dvTO2nUWniIHyz9VwY6f1jHYPDwr+5ztQOQudLDitgp2/qyOgabZeY3ll+aRs9zL1nv3z9qxs+4ri2nZ0k3D5vYZ3ZfDb0V3aAw0DmP3WTnjs5Xs/Hn9jF176My1gQmBjhCZFS5WfKqCbT88QKAjhN1nJTIUnbbr/wzTQK+M0trXQmtXMwPWHobDAQBqa2spLy+ntraWO+64g7KyMglAQsxjEoiE+JDp6enhzTffTAakLVu2EAqF0NASw+yyySSLDLKmbZidI9tGsCeMGTOp+WgRrjw77//nISB+7UD/0cD0fiOfuHM8wPJPlRMNxpL3FHL4rTMSjjS7iqfQQe/hIRRVoWpTAU3/3TmjQSyj1EmwJ0x4IDo7w5wUKFznp2Vr96wNI5vtQKRoCgVnZdG8pWvGe95GfmZWj47dZ6W/ITBj+3L4rRSdm82hZ1swDRNvpYuB5uEZuRYt9T229KZSNLvKzp/Vx59MeW9OB92hkVHipHt//Jq+Mz9XxVBbkAO/bULRFOw+K8Od0/PlS9gMQVmQYfcAh3Ydpo8uYsTQdZ3169ezZs0asrKyuO222ygtLZ2WfQoh0oMEIiE+5EKhENu2bUsGpDfeeIOuri4A7DiT4SgDHx586Kc5WYOiKdgyLAR7wuhOjXO+vpS9Tx6lc2cfzlwbzmzbtN5rRdEULA6N8GB09Fqn/zzIUEsQzarOyGxx9iwry24pZc/jRxnuDGHzWggPRGcuRCiw6i+r6asb4vALMzvsacRsXWcym4FoNmeVq7yqgMxyF+/96OCMBS9FU7B6dEK9ERzZNpbeVMLuXzYQ7J6BLwQS7yV3gZ0zP1fN9ocO0380gNWjEwnEpu/YVyB7aQaBzhCB9hA5yzNZdH0xb9+zl2gght1nJdQfOe39xcwo/fQwZO9DKQ1xtL6RwXA8dDmdTi6++GI2bNhAeXk5l112mdwMVYgPOQlEQiwwpmlSV1fHO++8w5YtW9iyZQvbtm0jEIh/e+0iIxGSfGSQhZvM0xpqZ3FpxMImRsSg+PwcCs7K4p3vxm8EW3i2n4GmAAON0zN0SdEUvJXu5Mx0S28pxYgY7HuyMVGAGTk5XfmZSsIDEfY+cXT6N56QWe4iPBhluDM0/Sehx7A4NdZ8YRH1L7fN2PUfI2YrEBWszaJ0Yy7bfnBgxm7Cq2gKFqdGeCCKI9uG1a3TVz9z0zov+VgJVo+F7Q8dnv6Np7xXFt9Qgqor7PlV/Gfkq/HQe3hw2o4/T7EDT5GT5rfjX9Ss/ZvFtLzTTePrHagWFc16etfuGYqBVhblaH0j/WY34awhuno6MU0Th8NBXl4e69at47rrrmP16tVUVVWhadq0vDYhxPwggUgIQTQaZffu3WNC0o4dO4jFYqioePAme5Ey8OHEc8rj5VN7bVbdUU3bth6a3+7CmWMj/6wsjrzSNm3DfDIrXCgK9B4ewuG3svKzlez8Wf2034HenmVFs6gMtQVxFzoovTCX/b9tJDpDJ97Lby3HiBrsfmzmQkT28kx6DgwQC83sVGizFYg0m4qvxkPnzpm7AemyPy9F1VV2PlI/I9vXnRqLPlpMw+Z2BpuHceXZiUWMae8RcuXbWf6pcj548DDB7jDeShemCX110xPuNLtK2cY8Wrd2E+gIUXi2n7xVvnhvGpxWz65pmgQYxH6mSXNzE63tLQyqfcSMGJqmsWLFCgoKCqioqODzn/88y5YtQ9en/xYGQoj5RT4FhBDous7KlStZuXIln/3sZwEIBAK8//77yZD0zjvvsOvAOwCoaLjNDDx4cZOZ/FdXLCfdV+qJznv3H0w+tmVayCx1YiSer7yqgMhQlKOvdcQLnELvTuoJXCxs0LKlO3m9QeVVBSiawqHfN09toxNIPSFVdQXTMJPXTOUsz2SgaZhgz/SdtB56vgXNGu+1s3p0VF2d1u0DyeBgcWroTn3artOYbY5sG9FAlEggNiNhyO6zYkQNwgNRGjZ3TPsQTbvPirvIQefOPqLDMUzDRNXjX0YMtU1fsK/6SCFmzOTw8y0Md4Zo2dKNEYm/lt7DpxiEUt6zJRfkYHHpHH6+BSNsklnmonv/AIGOEM1vdyV7h4DJt6EtRl+sj/5IDxSF6I/20tbWhkEM3ofc3Fw2ffxKVq5cSVZWFjfccANZWVmn9lqEEB9q0kMkhJi07u5u3n//fd5//30++OADPvjgA3bv3k0kEp/a1oErJSB58ZCJHecp9SYVn5dNZDhG27YebJkWVt9Zzc5HjzBwNIDVrWPEzNOaqCH3DC+KqtD2Xg+6U2PV56vZ9+uj9B+dvgvfFVVh7V8vounNTpre7EKzqygo8fuhTJOqqwvwVXvYeu/+GRkOuPTmUqwenQ8enIFhWcx8D9EZt1cSHogmh3tNKwXO+uIieg4OTOuU1rpdw8QkFjQoWu+ncH02W7+7H9OYvh9wRqmTxTeU8N6PDhIdjpG3yocZM2nf3nvq9XZoqJpCeDCKp8TJ8k+Wse2+g4T6I+St9mFxaDS+0Tnl7ZqmSZAAlpoYPcFumo+2MKT1EYjFp9vWdZ3S0lKysrK46aabWL16NbW1teTn55/yaxFCLCwSiIQQpyUcDrNnz55kQBoJSyMTN+hYxvQiecjERQbaFCZvsDg1cs/00fZeD9HhGJVXFeCtdLPtvgMA5J7pZeBo4JRnfLO4dYrW+2l6s4vIYJSyi3Nx5dmTQ9IUVTnlk1FVV0ABI2JSvCGH4vXZvH3P3mk7uVV1BYffxlBbEN2ukbfKS8s73dN2TyiLS0e1KNN6P5dUMx2IbF4LRsSctskUVF2hYG0Wbe/1Eg3GcOXZGe4KTVt7K6rC2V9bQuN/dyauoVEwDU75ep3UY3fZn5cy2Bqk4ZX2ccf8qXD4rXiKnbR/0AvA6r+qoffQIIdfaEF3aPEb377fM6VrthSHwRCD9AS6MHKDDFsHaG5sIUr8+HM6nZxzzjmsXLmSWCzGRz7yES666CKsVuspvQYhhAAJREKIGWCaJs3NzWMC0gcffMD+/fsZ+chx4MJFRvKPmwxceCYVlGwZFqwZOgONw/ETyK8voe6lVtq29eAuclCwJovDL7Sc8vAlX40Hu9dCyzvdKFr8BPXQs8107OxDs6qYhnlKJ8AWl4Yr30HvoUFQYM0XajjySvu0DeXyL8mg5poitt67f9pvPKrqCmUX53H0Tx3Tuu2ZCES6Q6NkQw5HXm6b9psF606Ns764iAO/baJr7/TMlpi9PJOyjbm8+4MDYIK3ys1Q6/ApTSSg6gqKqhALG+Qsz6RqU2E8gMdMCtZmEeyNJCcdmSrNqlJ5ZQEt73Yz2DRM3mofFZfl8/b/Fw/4nmIH4f7opG46GzOjDDGApdogoPRz9EAzQ/QzTHx4nqIolJWVkZmZyaZNmzj33HOpqqqipqZGJjwQQkw7CURCiFkTCATYuXMnu3btYteuXezevZtdu3bR0DB6MhwPSh6ceJL/OvFgxXb8oXdK4pvwmIm3yk3Jhhx2/L86IP6teKg/wqFnW0ABb4WbgcbApMOSalHIO9NHz6FBgt1hCs/xU3phLm/93z1gxi9AD/aGpzwRhGpRKFqfTdeefgIdIXJWZJK1KIN9T57eTHUjF6QrmsIZn6nkyKvtp3wCnMqeZWX5reXs+00jA9M4rHAmApGnxMni64vZ+Uj9tEw44KvxUHZRLh88dBgzZk7LdO6Lbyihe38/HTv6cObY8C/NoOnNTozI1H4la3YVu9canyhEgXPuWkrD5naa3+rCnmXFV+Wm7f2eSW9Xs6p4ip301g2CCVWbCrB5LOxO/HxWfLqCo3/qoPfQIIqW6H06zqZN0yRCCGuNSU9fDx3tHUQ9QQLaAL29vclyXq+Xc845h9raWgDOO+88Lr/8clwu15TaQgghTpUEIiHEnBsYGGDPnj1jQtK+ffuor6/HMOInnjqWlJDkTj524Dphr1L28kyMsEH3/gEc2TbW/FUNO35aR1/9EL4aN55CJw2b2yddV5vXgjvfkewdWPuVxbR/0MuRP7ZhcelkLfLQuatvyifM/qUZeCtcyWtRqv+skPbtvfQfObXwodlUyi/Np/mt+M1jXfl2osMxQn2nPvQtdfiV7tSmZRa96QxEqXU6nWGOEJ/kQ3doDLUGcWTbKDzbT/1/tZ7yrHuZZS5yVmZy8HfxSTyqNhXQe3iIrj1T62XSrCrZtZl07x8gMhSl7JI8cld6eec78ans/UsyGGwdntIQx9KLchloDNBzcJDMChcrPlXBuz/Yz3BXmKxFHlSLSueu4/diGpqBtcKk/Wg7fcE+1KIoQ7F+2ls7kkPdFEWhoqKCiooKNE3j8ssv5/zzz2fJkiVkZmZOqQ2EEGK6SSASQqStUCjEwYMH2bdvH3v37mXfvn3JP6nfMFux48SNAzdOXCmP3eNmvrP7rIQHIhhRk4J1WWTVeNj18yNA/BqI9vd7aHyjE92h4a100XNg8IThxu6zYsRMwv0RfDUelt1SGr+J5HCM/LPiM1pN9V4+mlVl6c2lNL3VSc+B+Emqf0kGdX9oPeWT/NpPlKGoyrRMCV203k/Rudm8+4MDpz0t93QFIs2msuYLi2h8o4Pmt7pOvsJJLL+1HNMwk8fGVCmqQsUV+XTt7aevLh6+i87JZs+vGqYcllOPI92pcfZXl7D7l0foOTCINcOCqiknnGVQs6r4atz0Hh4iOhyj+Lxscs/wsu2H8Vkeaz9RRveBAVq2dKPqClaPZfz2HAZKboTW+vb4tNY1Cj09PXR1dhFidLa7zMxMCgsL8Xg8XHPNNcnAs3r1apnhTQiRtiQQCSHmHdM06ejo4ODBg8k/hw4dSj7u7h4NIBasOHBhx4UDZ+KxM7lMU0avR8hf42OoLchA4zDeKjfLP1nOlu/sI9wfoei8bKxunbo/tAKJoXLd4XEnt6pFSQ5PqrgiH0yoe7EV1aJy1pdq2P90E72HBqc0WUHO8kxyz/Sx69F6ACqvLqDv8CBdeyc/FE61KFhcOqHeCO4CO4uuL2HXo/Wn1GOkOzR81W46dpz+tU/T2UOUsyKTnoODp3SNk81rofYT5ez7zVGGWoLYvBYiQ9EpDWHzL8kgs9LF4UQvX+0ny2l7v2dS14ilTv7grXKz6Noitn5/P0bEHHMcwdhjbIRmVbFnWZP32Kq4Ip/wYJSmNzqxZVhY+zeL2floPb2HBvEUO3Dl2Wl9tye5fsyMoReZBBmio6mTsHUYa7lCR2Mn/YE+IowGpKysLDIyMigoKODSSy+loqICVVW54IILKC8vP+V7lAkhxFyR+xAJIeYdRVHIzc0lNzeXc889d9zz3d3dyYB06NAh6uvrqa+vp66ujoMNO4hGR2fVspp2HDix4+LAVgc2nNhx0H/QSde/96AO6yiKQixkENPj4UdR4cz/UcWh51to3dqNp8hBwTo/h55tJhY2sHp0YmEjGZ4AFA1at/Ykr2nJX+2jaH12/FokoPAcP4GOUHzChWN07OyjI+Wk2urSUS3x+xB5SpyUX5zH3icaTjiblxExk+ErFjHpqxtMXvxeeI6fQHtw0vebiQ7HkmEo90wvvio3+37TOCPTfp+QAouvL6bn4CDtH/ROOaB5K104c+00v9VFqC9CX91gMmhMJqhaXBpLbiyl/o+tDDQOo1oUrK7RX6sjAXbCfVe5cebYkr1Zqz5fHZ9Z7k8dBLvDtG7tQdEUiJjJ40izqWhWlfBAFM2qUrWpkJYtXQw0DZOz0kvllQX89//eBSbEgkay9y7YF2bzv7/HcGQQ9woLh44eoe9oH0p2jKgtRHtTJ2GC0BSvm67rlBaXEjVUzr3kHNatW0dWVhaZmZlcdtll5ObmTqmdhRAi3UkgEkJ86GRlZZGVlcXatWvHPReLxWhqaqKuri4ZkkYC09GjR6lv3E04nPg2fBgUVOymA9s7DuyJsGQzHPR+vx0tZEEzrbgtdmwZFmKJG1lWf6QQ00z0eiiw5GMlNP13Jw2b2+MzzeXZaXm3m97Do+HHvzgDVR+k99AgzlwbtZ8sZ9cj9QQ6Qrjy7KhWNTmZwd4nRideMA2T0ECESKJXZOnNpYQHoxx6Nn6tiivfTqA9iJnSkTXcGRpz3xz/4gwUTaH38BBWj05muYvO3f2Tmuo5ForflHTWwxCACeHB6KSHoCmaQvayDPrqhwgPRHEXOPBWueOhxGTCewkpKjhz7cmel6pNhVjdOnt+FQ+goYEII+MsOnb0jQllnpL4jYaH2oI4c2zU3lrOrkfrCbSHcBc68Fa4koFo16P1DPeEceXZCQ9GaNjcjqfYQdG52fGftwmLrysGYPcvG4hFDGwZFkyLiZIb48ihevbdu5doThhLPjy3eQtBMwAZUQaGBoiN9JptTwSeylK8Xi+apnHrp25l8eLF2Gw2qqqqWLVqFboupwdCiIVDhswJIUQKwzDo7Ozk6NGjx/3T0tKSvBntCB0LNhzYsOO0u7BrDtQhC3aLg+oLS+jbGSTcalJyVj7VVxUlv8mvvDKf8FCMxj91oKiQs9xLoDNE1mIPTW90EgsbVF9ThCvXlrw5au0ny2l7r4fOXX3oDg1Hto3BpmFMwyS7NgMjYsYnkfBbWfOFRex8pI7ew0NklDpxZNto29Yz0UsHIGell+qPFLLlnr3Ewga+Gjeh3giBjtBJ2y5rkYf81T72Pnl00kPNpjpkTrUoLLmhhNZtPXTvP/mQQWeODZvXQs+BQTSryrqvLeHg75vpOMENSPNW+xjuDNHfEMBb6Wb5reVsvXc/we6RSQYUOnf1o6gK7iIHw50hosMxsmszyVs1OrTxjNsrGWoPcfCZJjSbStG52XTv68eZbad9Ry+YULwhB4tTi/cCKXDu39dy8LlGOg51o3oNXNVWmne1Y8lXaDnQTjA6jJplEBgeoq+nf8xQNgBN03C73SxZsoSKigpisRjZ2dlcfvnlFBcX43K5qKmpkcAjhBAp5BNRCCFSqKqaHI63Zs2aCcsYhkFXVxctLS3j/jQ3NycfN7YcJhgMsv2/3hpdeStY3rViMW1YsXHgHQ9WxU7UNHHoTjKqK+juGKD55SYKVuRStbGE7fcdweLUKTo3m8hglGBPiGgwfq2J1a2z6Npi3vr/9hANxG8Uqts1uvcPEOyNcOTVNkL98SGCmeUu/IszkoFo+afK6dzVR+u7PWh2NT573u4+evYPJHtdKi7Lp+fgIHUvto67Qe64domZhAOxZBiyZVpOa1a7VLYMC6H+SPw6m0AM4zi9V8feEDRvlQ9ftZueAweJhQ3e+fY+jKhBZrmLwdZhYkGD/DU+smsz2fmzegAKzsqia28//Q0BQgPheBsmXoev2h3vjdvVj25XOeMzlex7qpHIUJRoMP6zyV3pxeLW2f3LBiKBKGd8sZyDrzTSeLSJqDOMVu2kp6MZPQfe2LuLsBEkmhthODTMa//6O8JmInz2AvWJ19WhU1hYSGlxMYZhkJGRwUUXXURBQQHd3d2cccYZrFy5Er/fj6qq09LmQgixUEgPkRBCzBDTNOnr66Ojo4OOjg7a29uTjyf6097ePjpc7xgaOk6HA4tmwxxUsOo2ClfkMFQfRg3rZGS7KVieTe+eYax2Cza7HSWsUHlJEU2vdGHRrSiKSuXlBbz344OoqkLFFQUEe8Mcfq4FX7Wb2k+U8/5/HmSwJUjR+dnY3BbqXmxBtahklrtQdTV549fIYJSi9X40u0bDK/Fpy3WHlgxKrnw7qz5fzfaHD9PfcPypwyfTQ5RR6mTlX1Ty3o8PJoeupe6rdGMusWCMpje7sLp11nxxEQeeacSImvTVD2FEDCquKCDUH6HpjU7cBXbO/Fw1u35eT8/BQaquLsDmtVL3hxaMmMmqv6yOP8YgakYovCCLQy83gcVEcRhEwhFsuRotuzqx+FX6O/vRs1S6jvaiOA0GuocIx0KEY2HC4Yl71iwWCw6Hg7KyMgoKCggGg7hcLs4//3xycnJobW2ltraWFStW4Pf78fl8MlmBEELMEAlEQgiRJkzTZGBggK6uLnp6eujt7aWnpyf5J/X/3d3ddHd309fXl1yeOlnERBQUdM2CRbXgyLCjhFUsugWbw46GRkaem6HGEK4cB4oBzmwHXbsGcOXYySyOD50bbApi89jIrslgsCWExaYRC5jYPFYyS1x07x2AmIKiqGQWu2h9pweHz4Z/USaqotK4uRPVouHy2xhqClFySQ6KotDwX+24im1EwjFCfSGKz8/GVEz6GgfpbRikYG0Wge4gRswgGo2RtdhNoDPIUHcQ1QoGJo5sC137+gkOhPDWuNFsCn1HBwl0h8ha4ma4L4QRM4gEI1gyNfraBjGIYqgxwpEwkWiE4YEgMSVKOBzmZL8edV3HZrPh9XopKChA13VCoRCrV68mLy+Pzs5OnE4n559/Pj6fj56eHqqrq6moqMDj8UjAEUKINCGBSAghPgRM0yQQCDA0NMTQ0BCDg4Nj/gwMDCSf6+7upqurC0VRGBoaorm5mWAwSCQSIRAI0N/fj6qqRKNRYrEYgUAARVGIRqPJP7HY6d+UdSZomoaux2cGVFUVXdex2+2Ew2EcDge6rqPrOtFolOLiYhwOB6FQCIfDQWVlJVlZWdTX17No0SKqqqoIh8P09PRw9tln4/P5GB4eJjMzk+LiYpxOp4QaIYT4EJBAJIQQ4pREo1GGhoYwTTMZnPr6+lBVlVAoRDAYJBAI0Nvbi9vtpr29HcMw6O7uRtM0/H4/O3bsAGDlypXJa68qKyvxeDyoqkpbWxtnnHEGTqeTlpYWMjIyyM/Px+l00tTURFlZGZmZmZimSTgcTk4JbRiGXEsjhBBiUiQQCSGEEEIIIRYs+fpMCCGEEEIIsWBJIBJCCCGEEEIsWBKIhBBCCCGEEAuWBCIhhBBCCCHEgiWBSAghhBBCCLFgSSASQgghhBBCLFgSiIQQQgghhBALlgQiIYQQQgghxIIlgUgIIYQQQgixYEkgEkIIIYQQQixYEoiEEEIIIYQQC5YEIiGEEEIIIcSCJYFICCGEEEIIsWBJIBJCCCGEEEIsWBKIhBBCCCGEEAuWBCIhhBBCCCHEgiWBSAghhBBCCLFgSSASQgghhBBCLFgSiIQQQgghhBALlgQiIYQQQgghxIIlgUgIIYQQQgixYEkgEkIIIYQQQixYEoiEEEIIIYQQC5Y+1xUQ4sOora2N3t7eua6GEEKIDxmv10teXt5cV0OIDxUJREJMs7a2Nj52/cdAm+uaCCGE+LCx2+088sgjEoqEmEYSiISYZr29vaCBvi8DZdiKkhyYqqKoSvyhkvJv4rGiqpBYnFxJUUAdX3ai9Y//OGWbavI/KcsTD1RltLCijA6oHSnH6DbN1OcZ3Y+Z3NbocjO1HiPrpw7WTa1H4rF53MejK5kpL2Xc4F8lpaySUpaU7SRfC+O3n7IMRcE8pq4TrjNu/ZR2SV1/gn2lPj9mG8fWBcbV5dh1TvY8k3z+uMtOVGbM8+aEz5sT1sEcu71xr8Ucv30lvo/j7n/MtiZYHzPlcDdHi6aUVVK2pRyzL0UZu/5o0fHrq4qZsg8zsU58+chjJWU5gIqZrHd8/dFtjexnZJ1jnx/Zl8rov8llCuOfV47ZVsrjkX/VlHUUjOS2RpapipFSdmS5kWwfjdF6a4myI/vRFBMlsUxLqauWsq/k+oqJRsq+knU1Uuoysr4xuo/jrDNSx5GPEFUxJqxraluqpNQvpa4j2xnTLsntgpY4SkaOFU0BJfE/DWXM43g5BTXxWFVUVBSONOn873u99Pb2SiASYhpJIBJihigBHTVgSQlB6pjHwMjZSWKRmnI2ND4QKamBJjX4pJYds/zYssesf2y4SqmLqaScjU4QspIhJ/X5xClavMDo8tFTxXiZkafHBJLk9lMeqxMtP84y9dhtnaBs8nllfNmUEDhhoEoNM8d7nFxfSXk8vl5jy078eMLnOcnzJ1n/ZPufMBwy/rVOtK+xz58kEB1Tdsw+x5U9TiBKXZ7c/0SBZhKBKPXxBOsrKeFlonVGD5fRE3clWS9zzPLkdlKWjZxkM8E6KGbKa0gJRKnrHye8jFt23OcnCgyjwUFLWSe1LMTDQOqy0bIpy1IfHxMyNMVATTRW6rbij0k8Hg1hI4FBU0YDhzbyMcbo/sduy0hZZ+SxMbrdlLqMhhsjWVctpU00Uus3NhCNrfPY+o3Ue3TZaODRUsKPpoyUU1OWxf8nhJgZ8u4SQgghhBBCLFgSiIQQQgghhBALlgQiIYQQQgghxIIlgUgIIYQQQgixYEkgEkIIIYQQQixYEoiEEEIIIYQQC5YEIiGEEEIIIcSCJYFICCGEEEIIsWBJIBJCCCGEEEIsWBKIhBBCCCGEEAuWBCIhhBBCCCHEgiWBSAghhBBCCLFg6XNdASE+rExnFENRUZJfO6goqhJ/qKT8m3isqCokFidXUhRQx5edaP3jP07Zppr8T8ryxANVGS2sKKNfl4yUY3SbZurzjO7HHLPPRNnRDaQsG/mLcc8l1zEY3Zcy8ni0rJnyUsZtK+WlkLL+2OeVCcqOe6kpD44pd+w649ZPaZcJ6pVa/9TnzQnqkrqPMduaYJ2TPT9RXSd6/rjLTlRmzPPmhM+bE9bBHLu9ca/FHL99Jb6P4+5/zLYmWB8z5XAfPYCUlLJKyraUY/alKGPXHy06fn1VMVP2YSbWiS8feaykLE9uJ1kXk3FthZnclqmYGCnPm2PKxP81EstUZfQ1qowsM5P7P/bxyL9qyjpK4s058nGiYqIqRkrZkeVGsn20kdeHiZYoO7IfTTFREss0RttKS9lXcv2UbakpH0Oj+1SSjzUUlEQJLVnORE00pqooo4+TzxsT1jXZVpjJx8fWdWQ7Y9olpX5aYl8jPypNASXxv3hdRx/Hy6XUT1FRUTjSJKdtQswEeWcJMc0Mw0DXdaKL++e6KvODecy/02Si824hPixG41Dyu4MFKDXhLpwBL7quYxgL96cuxEyQQCTENFNVlWg0yje+8Q3KysrmujpCCCE+JI4cOcK//uu/oqoLJwAKMRskEAkxQ8rKyli8ePFcV0MIIYQQQpyAfMUghBBCCCGEWLAkEAkhhBBCCCEWLAlEQkwzv9/Ppz/9afx+/1xXRQghxIeI/H4RYmYopmlO89xOQgghhBBCCDE/SA+REEIIIYQQYsGSQCSEEEIIIYRYsCQQCSGEEEIIIRYsCURCCCGEEEKIBUsCkRBCCCGEEGLB0ue6AkJ8WITDYX7yk5/w4osvMjAwQFVVFbfffjtr166d66oJkXaefPJJvv/977Nnzx76+/vJyspi2bJl3HHHHdxwww1zXT0hTmrPnj288MILvPfee7S2tpKRkUFtbS233347JSUlABiGwR/+8Ac2b97MgQMHGBgYoKCggIsvvphbbrkFm82W3F4oFOI73/kOe/bsob29HcMwKCws5Oqrr+a6665D18eesg0MDPCjH/2I1157jVAoxNKlS7nzzjtZvHjxmHI33XQTra2t4+p/zTXX8LWvfS35/+eff55vfetbE77Wp556Sqb6Fh9qEoiEmCbf+ta3ePXVV/nYxz5GcXExzz//PHfddRff+973WLly5VxXT4i0cf/993PnnXdSUFDAddddh9/vp7W1lS1btvDUU09JIBLzwi9+8Qt27NjBxo0bqaqqoquri6eeeorbb7+d+++/n8rKSoLBIN/61reora3lox/9KD6fj127dvHwww+zbds2vvvd76IoChAPRPX19Zxzzjnk5+ejqio7d+7kBz/4AXv27OF//a//ldy3YRjcfffdHDp0iFtuuYXMzEyefvppvvzlL/PAAw8kA9mImpoabr755jHLiouLJ3xdn/3sZykoKBizzO12T0eTCZG+TCHEadu1a5e5YcMG8xe/+EVyWTAYNG+55RbzL//yL+ewZkKkn9WrV5tWq9Vsa2sb91xnZ+cc1EiIqdu+fbsZDofHLGtoaDAvueQS85//+Z9N0zTNcDhsbt++fdy6Dz/8sLlhwwbznXfeOel+vvOd75gbNmwY89744x//aG7YsMF85ZVXkst6enrMq666yvzmN785Zv2Pfexj5l133XXS/Tz33HPmhg0bzD179py0rBAfNnINkRDTYPPmzWiaxjXXXJNcZrPZ2LRpE7t27aKtrW0OaydE+rFYLFgslnHLZViOmC9WrFgx7hguKSmhvLycI0eOAPHjfMWKFePW3bBhA0Cy3Ink5+cDMDg4mFy2efNmsrKyuOCCC5LLvF4vGzdu5PXXXyccDo/bTiQSYXh4eBKvDAKBALFYbFJlhfgwkEAkxDQ4cOAAxcXFuFyuMcuXLl0KwMGDB+eiWkKkpVtuuYWhoSGWL1/O17/+dZ577jn6+/vnulpCnDbTNOnp6SEzM/OE5bq7uwEmLBeJROjt7aWtrY3XXnuNX/7yl+Tn51NUVJQss3//fmpqalDVsadxS5cuJRgMcvTo0THLt23bxuWXX84VV1zBTTfdxBNPPHHcun35y1/myiuv5PLLL+dv//Zvx21LiA8juYZIiGnQ1dU14TfbI8s6Oztnu0pCpK2vfe1r+P1+7r//fv7jP/6De+65B13X2bRpE9/5zneoqKiY6yoKcUpeeuklOjo6+MxnPnPCco899hgul4uzzz573HOvvfYa3/zmN5P/X7JkCXffffeYSRW6u7s544wzxq078junq6uLqqoqACorK1m5ciUlJSX09/fz/PPPc++999LZ2ckdd9yRXNdms3HVVVexatUqXC4X+/bt4/HHH+fOO+/kwQcfJC8vb2qNIcQ8IoFIiGkQCoUmHP5jtVqTzwsh4hRF4TOf+Qyf+cxn6Orq4k9/+hOPPfYYjz/+OAcOHGD79u1omjbX1RRiSo4cOcJ3vvMdamtrufLKK49b7pFHHmHr1q185StfwePxjHt+1apVfPvb32ZwcJB3332XgwcPEgwGx5QJhULJ3y+pJvqd83/+z/8ZU+bqq6/m61//Oo8//jg33HADubm5AFx88cVcfPHFyXIbNmxg3bp1fPGLX+SRRx4ZMyOdEB82MmROiGlgs9mIRCLjlo+M406dWlUIMcrv93Pttdfyq1/9iosvvpjdu3fLEFMx73R1dXH33Xfjcrn4l3/5l+MG+j/+8Y88+OCDbNq0iWuvvXbCMllZWZx11llcdNFFfPWrX+Xcc8/lK1/5Cl1dXckyNpttwuuEJvM7R1EUbrrpJmKxGO+///4JX9fKlStZtmwZ77777gnLCTHfSSASYhr4/f4xv6xGjCzLzs6e7SoJkbZeffVVTNMcsywSiSSvq7Db7XNRLSFOyeDgIHfddReDg4Pcc889x/28f+edd/i3f/s31q9fz1e/+tVJb/+iiy5ieHiY119/PbksKyvrhL9zTjY5yUiv0GSu3cvNzZVr/MSHngyZE2IaVFdX89577zE0NDRmYoXdu3cnnxdCxF177bVkZGRwzjnnUFZWRiQS4aWXXmL37t3ceOONlJWVzXUVhZiUUCiUnHjg29/+NuXl5ROW2717N9/4xjdYvHgx3/zmN8fdZPVk+wAYGhpKLqupqWH79u0YhjFmYoU9e/Zgt9vH3YfoWM3NzUB8ZrqTaW5unlQ5IeYz6SESYhpcdNFFxGIxnnnmmeSycDjMc889x7Jly+RiVCFSfOtb32LVqlVs2bKFH/zgBzz66KO43W7uv/9+fvGLX8x19YSYlFgsxj/90z+xa9cuvvnNb7J8+fIJy9XX13P33XeTn5/Pv//7vx93OFtvb++4nlOA3//+9wAsXrw4uezCCy+ku7ub1157bcz6r7zyCueee27yWqL+/v5x02dHo1F+/vOfY7FYWLVq1Zj1j/Xmm2+yb98+1q1bd5xWEOLDQXqIhJgGy5YtY+PGjfznf/4nvb29FBUV8cILL9Da2srdd98919UTIq3ccccdY2a3EmI+uu+++3jjjTc499xzGRgY4MUXXxzz/OWXX04gEOBrX/saAwMD3HLLLbz55ptjyhQWFiaD1IsvvsgzzzzD+eefT2FhIYFAgC1btrB161bOPfdc1qxZk1zvoosu4te//jXf+ta3qK+vJzMzk6effhrDMMbMcPfGG2/ws5/9jAsvvJCCggIGBgZ46aWXqKur43Of+9yYoXV33HEHixYtYvHixbhcLvbv389zzz1Hbm4ut95660w0oRBpQzEn+jpCCDFloVCIn/zkJ7z44osMDg5SWVnJ7bffLt+sCSHEh9CXvvSlE05K8Nprr9HS0sLNN9983DJXXnkl//N//k8A9u7dy2OPPcbu3bvp6elB0zRKSkq4/PLLuf7668cNsxsYGOCHP/whr7/+OqFQiCVLlnDnnXeyZMmSZJl9+/bx8MMPc+DAAXp7e9F1nZqaGm644QY2btw4ZnsPPPAAb731Fi0tLQSDQfx+P+vXr+fTn/40WVlZp9BCQswfEoiEEEIIIYQQC5ZcQySEEEIIIYRYsCQQCSGEEEIIIRYsCURCCCGEEEKIBUsCkRBCCCGEEGLBkkAkhBBCCCGEWLAkEAkhhBBCCCEWLAlEQgghhBBCiAVLApEQQgghhBBiwZJAJIQQQgghhFiwJBAJIYQQQgghFiwJREIIIYQQQogFSwKREEIIIYQQYsH6/wFTfoMN/sT/gAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb1f3H8fe92sOSvPce2XuQhBAIewQIEEaYIexZRmnhBwVKS+mAslpoyx5lFCgNM+wdQvbesR3vvYf2/f2hWDiJ7XjIlmSf1/P4gciS7pF0fXU/95zzPZKiKAqCIAiCIAiCIAgjkBzsBgiCIAiCIAiCIASLCESCIAiCIAiCIIxYIhAJgiAIgiAIgjBiiUAkCIIgCIIgCMKIJQKRIAiCIAiCIAgjlghEgiAIgiAIgiCMWCIQCYIgCIIgCIIwYolAJAiCIAiCIAjCiCUCkSAIgiAIgiAII5YIRIIgCMNARkYGGRkZwW7GoLn//vuRJImvv/66V/dfsmQJkiRRWFg4qO3qTmFhIZIksWTJkqBsPxyF8z48VPtbX/8OBEHoHRGIhBFFkqTD/ogvGkHoHUmSOOaYY4LdjKAJ1df/4osv9upY1/ETrNAoHKrjs3vxxReD3RRBGFHUwW6AIATDfffd1+3vwvUKpTCyffHFF8FuQkh56KGHuPPOO0lOTg52U4bc5MmTezzGAXz66af8+OOPJCYmEh0dPUQt61k478NDtb/deOONXHDBBaSlpQ3qdgRhpBGBSBiR7r///mA3QRACKjs7O9hNCCmJiYkkJiYGuxlBMXnyZCZPntzt71etWsWf/vQn9Ho9y5YtIyIiYuga14Nw3oeHan+LiYkhJiZm0LcjCCONGDInCN0oKCjAZrMRFRXFvn37Dvhda2srY8aMQaVSHTDErmMceX5+Pn/9618ZPXo0er2elJQUbr31Vpqamrrc1tq1aznnnHOIi4tDp9ORnp7O9ddfT3l5+SH3rays5Je//CWjRo3CZDJhs9kYNWoUS5YsIT8/33+/ww296Gq4T+fx6a+99hpHHHEEZrP5gF6ztrY2HnroISZPnozJZMJsNjN79mxef/31nt/Qg3TMF2hpaeHWW28lNTUVg8HA5MmT+d///geA2+3mwQcfJDc3F71eT3Z2Nn/7298OeS6n08nf/vY3Tj31VNLT09HpdERFRXH88cfz8ccf97j9xsZGbrzxRpKTk9Hr9YwdO5YnnngCRVF6/VqOOeYYJEnC4XBwzz33kJmZiU6nIzs7m9/+9rc4nc5DHtPx/ldUVHDllVeSnJyMSqU64PP6z3/+w7x587BarRgMBiZMmMBDDz2Ew+Ho9vV05fXXX2f+/PnYbDb0ej1jxozh97//fZfPA7Bjxw6WLl1KRkYGOp2OuLg4jjrqKJ5++mng530L4Jtvvjlg+NXBFxt++uknFi1aREJCAlqtltTUVK655hrKysq63PbatWs5+eSTiYiIwGKxcPzxx/Pjjz92ed+edDWno/O8nsLCQi644AJiYmLQ6/VMnz6dDz74oFfP3ZfX37Hdvmyrr59XX5SUlLBw4ULsdjvPP/88M2bM6PVjX3zxRc455xyysrIwGAxYLBaOPPJIXn311UPu+9///hdJkpg1axYul+uA323ZsgWj0UhSUhJVVVX+27vah51OJ0888QRTp04lMjISo9FIRkYGZ555Jp9//nmv2j0Ux+VA7G/HHHMMl19+OQCXX355l8Mau5tD1HE8qamp4eqrryYxMRGdTse4ceN44YUXunx9DoeD+++/n6ysLHQ6HZmZmdxzzz04HI6QHQ4qCINGEYQRBFD6stu/9dZbCqDMmTNHcblc/tsvvfRSBVDuv//+A+5/2WWXKYByxhlnKDabTbn66quVX/3qV8qkSZMUQJk2bZrS3t5+wGPef/99RavVKhqNRlm8eLFy5513KieccIICKElJSUp+fr7/vq2trUp2drYCKCeccIJy++23K7fddptyzjnnKDabTXn//ff9933hhRcUQHnhhRe6fS+OPvroA2677777FEBZsGCBotPplEWLFim//vWvlWuvvVZRFEWpr69XpkyZogDK1KlTlRtvvFG5/vrr/W26++67e/3epqenK0lJScqsWbOUvLw85YYbblCuuuoqxWw2K7IsK59//rly9tlnK8nJycqVV16p3HDDDUpcXJwCKG+88cYBz1VeXq7IsqzMnTtXueKKK5Q777xTueyyy5SoqCgFUJ555pkut5+YmKhMnz5dycnJUW677TblxhtvVBITExVAuf7663v9Wo4++mj/556YmKjcdNNNym233eZ/XxYsWKB4vd4DHgMoEyZMUNLT05Vx48YpN954o3LzzTcrH330kaIoinLXXXcpgBITE6Nce+21yi9/+Utl3Lhx/s/N4XAc8nrS09MPadvll1+uAEpKSoqydOlS5bbbblPmzJmjAMoxxxxzwH6tKIrywQcfKAaDQZFlWTn11FOVO++8U7n22muV2bNnKxkZGYqiKMr69ev9+0p6erpy3333+X+++uor/3M999xzikqlUoxGo3LBBRcod9xxh7Jw4UJFlmUlMTFR2bdv3wHb/uGHHxSDwaCoVCrl3HPPVe666y7llFNOUbRarXLyyScrwAHP35OOv8WCggL/bQUFBf7XHRsbqxxxxBHKLbfcolx66aWKTqdTZFlWvvzyy8M+d29ef3+31dfPqy9aW1uVqVOn9vlvtYNer1emTZumXHbZZcqdd96pXHXVVUpycrICKPfcc88h97/hhhsUQLnjjjsOaMOYMWO6fP1d7cOLFy9WAGX8+PHKzTffrPz6179WLrnkEiUzM1O5/fbbe9XuwT4ud97GQPa3F154QTnzzDMVQDnzzDMP2K/q6+sVRfn5GH3w3wGgTJo0ScnLy1PGjx+v3HjjjcpVV12l2Gw2BVBefPHFA+7v9XqV0047TQGU3Nxc5bbbblNuuukmJTk5WVm4cGGX3w+CMJyJQCSMKB2BqPMXTeefhx566JDHXHfddQqg3HnnnYqiKMqLL76oAMr8+fMVj8dzwH07vhSjo6OVwsJC/+0ej0c5++yzFUB54IEH/Lc3NzcrUVFRiizLyrfffnvAc/3xj3/0B58O7733ngIot9xyyyHtdDgcSlNTk//fAwlERqNRWbdu3SGP6Xh9f/rTnw64vb29XTnppJMUSZKU9evXd7m9g6Wnp/vDgt1u99/+7bffKoASGRmpTJ8+3X8ioCiKsnfvXkWj0SiTJ08+4LnsdrtSXFx8yDYaGhqUcePGKZGRkUpbW1uX2z/yyCMP2H5tba2SlZWlAMo333zTq9fSEYhyc3OVuro6/+3t7e3KrFmzFEB5+eWXD3hMx754ySWXHHKSu2LFCgVQUlNTlfLycv/tLpdLWbBggQIoDz744CGv5+CTyY594Kyzzjrk9Xd81o899pj/turqasVisSgajUb5+uuvD3mdB7/HPZ007dy5U9FoNEp2drZSUlJywO8+//xzRZZlZeHChf7bvF6vMmrUKAVQ/ve//x1w/8cee8z/fgUiEHV1MWP58uUKoJxyyim9en5F6fn192dbff28+sLr9SqLFi3yP//BAb039uzZc8htDodDOfbYYxW1Wn3I52y325UpU6YokiQpH3/8saIoirJkyRIFUO69995DnuvgfbihoUGRJEmZNm2a4na7D7l/TU1Nr9o92MflztsY6P52uON2T4EIUK644ooD3qutW7cqKpVKGTNmzAH3f/nllxVAOeqoow64uFJfX+//OxSBSBhJRCASRpSOL43ufqxW6yGPaW9vVyZNmqRIkqQ8+eSTislkUmJjY5WysrJD7tvxpdj5y7XD3r17FVmW/VfZFUVRXn31VQVQFi9efMj9XS6XkpGRoQD+K+kdgeiuu+467GsdSCDqKnDV1NQoKpVKmT59epfPt2HDhkOuBvekI5B0dZKVmZmpAMoXX3xxyO+OOeYYRa1Wd3mC1JVHHnmky3DTsf2DT3gU5ef3bsmSJb3aRkcgOjj0KIqifPXVV/6rxJ0BilarVSorKw95zJVXXqkAyj//+c9Dfrdz505FlmUlMzPzkNdzcCCaPHmyolarDwiVHdxutxIdHa3MmDHDf9vDDz+sAMrNN9/c08s94DV0d9J0yy23KIDywQcfdPn7hQsXKiqVyh/iv//+ewVQ5s2b12VbO3rbAhGI0tPTu9x/0tLSlOjo6F49v6L0LhD1ZVt9/bz64p577lEAZfLkyUpLS0u/nqM777zzjgIoL7300iG/27Vrl2I2m5XY2FjlL3/5i/8z7uo9OXgfbmxsVMDXQ9+fANdhsI/Lnbcx0P1tIIHIaDQqjY2Nhzxm3rx5CqA0Nzf7bzvuuOO6vejT8fpFIBJGElFUQRiRlD7MD9Hr9bz55ptMnz6dm266CUmSePvtt3ucQHv00UcfcltWVhapqakUFhbS0NCAzWZj3bp1ABx77LGH3F+tVjNv3jwKCwtZv349aWlpHH300SQnJ/PHP/6RdevWceqpp3LkkUcyefJkVCpVr1/T4cycOfOQ21avXo3H4+l2nkTHPIHt27f3ejs2m63LidRJSUkUFBQwbdq0Q36XnJyM2+2moqLigIpOW7du5S9/+Qvffvst5eXl2O32Ax5XWlp6yHOp1WrmzJlzyO0dY+fXr1/f69cCXX/uc+fORaVSdflcGRkZxMXFHXJ7T/tFXl4eKSkpFBQU0NjYiNVq7bItbW1tbNy4kZiYGB577LEu76PT6Q74vFauXAnAKaec0uX9+6Jj3s8333zD6tWrD/l9VVUVHo+HXbt2MW3aNP9r7uo9VKlUzJ07l7179w64XUC3fy+pqan9mq8UiG315/Pqrddff53f//73xMfHs2zZMkwm0yH3KSws7HK+Yee/9aKiIv70pz/xxRdfUFRURHt7+wH37epvLDc3l3/84x9cfPHF3HHHHcTExPDaa6/16nhlsVg4/fTTef/995k8eTLnnHMORx11FEcccQRGo/HwL/wgg3VcPpyh2t9yc3OxWCxdbgegvr4es9kM+I5tsix3efybO3duwNokCOFCBCJB6IW8vDwmTpzIihUrGDt2LCeeeGKP94+Pj+/y9oSEBPbt20djYyM2m43GxkaAbsNVx+0NDQ2A7wRh5cqV3Hfffbz33nt88skngK/y0PXXX88999yDRqPpz0s8pJ0Hq62tBXzBqKsT3A4tLS293k53J/Nqtbrb33f8rvNE7ZUrV3Lsscfidrs57rjjOOOMM7BYLMiyzIYNG1i2bFmXE9JjYmK6PFHpeP0dn09vdfW5q9VqYmJiDpg8fvB2Dtab/aKoqIiGhoZu38P6+noURaG6uprf/va3vWp/x34WiNLBHfvLX/7ylx7v17G/dLzmnv52AsVms3V5u1qtxuv1Bmw7fdlWfz6v3li1ahVLly5Fp9Px7rvvdnsCX1hY2OV2OwJRfn4+M2fOpL6+nqOOOooTTzwRq9WKSqWisLCQl156qduiDyeeeCIWi4WmpibOPffcPu1fb775Jn/605947bXX/KXE9Xo9ixYt4uGHH+52f+nKYB2XD2eo9reetgPg8Xj8tzU2NhIVFeX/XWd9eU8FYbgQVeYEoRf++Mc/smLFCmJiYti6dSsPPfRQj/evrKzs8vaKigrg5xP9jv923H6wjmpGnU96U1JSeO6556iqqmLLli088cQTREdH88ADD/DAAw/47yfLvj9vt9t9yPMe7ou8o4JWZx1tuPXWW1F8w227/Pnqq696fO7B8Pvf/5729nY+/fRTPv74Yx577DEeeOAB7r//fo444ohuH1dTU3PASUKHgz+n3urqc3e73dTU1HR55bar97nzdvuyX3T3HFOmTOnx8+rcW9pxQtXVlf6+6th+Y2Njj9vuuGrfcf/D/e0MV/35vA6ntLTUX1HumWeeYfbs2d3e95hjjulxW3/961+pra3lueee4+uvv+aJJ57gd7/7Hffffz8nnXRSt8+rKAqXXnopTU1NxMTE8K9//Ytvv/2216/BYDBw//33s2vXLoqKinj11VeZO3cur776KosWLer188DgHpfDjcVioa6ursvvh+7eJ0EYzkQgEoTDWLFiBffeey+jRo1iy5YtjBo1ivvuu4/vv/++28d88803h9yWn59PcXExGRkZ/hPPKVOmABxSQhV8J9LfffcdAFOnTj3k95IkMW7cOG666SY+++wzAH+5aoDIyEgAiouLD3nsmjVrum17d2bOnIksy/42hZI9e/YQFRXVZZnYrj6LDm63mxUrVhxye8fn0fH59FZX2/r+++/xeDx9eq6e9os9e/ZQUlJCZmZmt1eEAcxmM+PGjWPr1q3U1dX1aruzZs0C6LZU+cFkWe4yUHZ+rt7uLx37eFfvocfj6fHvLVh6ev191Z/PqydtbW2cccYZlJeX8+tf/5pLLrlkQM+3Z88eAM4555xDftfT39hf/vIXli9fzkUXXcSXX36JRqPhwgsv9Pcg9kVqaioXXXQRn3zyCTk5OXz//fd9ep6hOC4PVEePdaD2q+5MmTIFr9fb5fEvFP/WBGGwiUAkCD2or69n8eLFqFQq3njjDeLj43nzzTdRq9VceOGF3Z64PP744wesXeT1ernjjjvwer3+dSYAFi5cSFRUFK+//rp//kaHxx57jIKCAo4//nj/MJetW7d2efWu47bO4+qnT5+OLMu89tprtLW1+W+vq6vjV7/6VZ/fi7i4OC666CLWrFnD7373uy6/sPfu3UtBQUGfn3ugMjIyqKurY9OmTQfc/txzz/mHFXbnrrvuOmCoT11dHb///e8BDviseuN3v/sd9fX1/n/b7XbuuuuuPj/X0qVLAV/PV3V1tf92j8fDL3/5S7xeL1dcccVhn+e2227D6XSydOnSLnsF6+vr/fMlAC677DIsFgtPP/10l1fxS0pKDvh3dHR0l4Eb4MYbb0Sj0XDrrbeya9euQ37vdDoPCEtz5sxh1KhRfPvttyxbtuyA+/7tb38L2PyhQOrp9fdHXz+v7iiKwmWXXca6des4/fTT+cMf/jDgtnWsD3RwSPjkk0949tlnu3zMypUrufvuu8nJyeHpp59mwoQJPProo5SWlnLZZZcdtrerurqazZs3H3J7a2srLS0tqNVqtFptr1/DYB2XAyk6OhrwzdcaTJdeeikA99xzzwHrpDU2NvK73/1uULctCKFIzCESRqSuigJ0WLhwoX+V96VLl1JUVMQTTzzhv23SpEk88sgj3HjjjSxZsoT33nvvkOfoKHRw/vnnY7Va+eSTT9i4cSPTpk07IIyYzWaef/55zj33XI4++mjOPfdc0tLSWLt2LZ9++ikJCQn885//9N//s88+44477mD27Nnk5eURFxdHSUkJy5YtQ5Zl7rjjDv99ExMTueiii3jllVeYPHkyp512Gk1NTXz00UfMmzevzwUDwHdiunv3bu69915eeeUV5s6dS3x8PGVlZWzfvp3Vq1fz+uuvk5mZ2efnHohbbrmFTz75hLlz53LeeedhtVpZs2YN33//PYsWLeLtt9/u8nGJiYk4HA7Gjx/PGWecgcvl4u2336a8vJzrr7+eefPm9akdY8aMYdy4cSxatAiNRsOyZcvYu3cvp512Wp+u0M+ZM4df/epX/PnPf2b8+PEsWrQIk8nExx9/zJYtW5g7d+4Bn3V3li5dytq1a3nqqafIzs7mpJNOIi0tjbq6OgoKCvj222+5/PLL+cc//gHgn/C+aNEi5s+fzymnnMLEiRNpampi06ZNFBcXHxB4jzvuON544w1OP/10pk6dikajYd68ecybN4/Ro0fz/PPPs3TpUsaNG8fJJ59MXl4eLpeLoqIivvvuO2JjY9mxYwfg6/F87rnnOOGEEzjnnHM4++yzycnJYcOGDXzxxRecfPLJLF++vE+fx2Dr6fX3R18/r+488sgjvP3228iyTG5u7gFDabuyZMmSbhf17XD99dfzwgsvcO6557Jo0SKSkpLYsmULy5cv57zzzuPNN9884P4NDQ0sXrwYWZZ54403iIiIAODaa6/liy++4O233+avf/0rt99+e7fbLC0tZcqUKUyYMIGJEyeSmppKU1MTH3zwARUVFdx8883+5+2NwTouB9Ls2bMxGo089thj1NbW+ufO3XTTTQEdonfppZfyxhtvsHz58gOOf++88w4zZsxg586d/mHXgjAiDFr9OkEIQRym7Dadyp0+8cQTCvsX8+vKWWedpQDKX//6V/9tHaVX9+7dqzz88MPKqFGjFJ1OpyQlJSm/+MUvuiyJqiiKsmrVKmXhwoVKTEyMotFolNTUVOXaa69VSktLD7jftm3blFtvvVWZNm2aEhMTo2i1WiU9PV0555xzlB9++OGQ57Xb7covf/lLJTk52b8mzB/+8AfF5XL1WHa7p9LGDodDefLJJ5XZs2crFotF0Wq1SmpqqnLssccqjz76aK/XBuluIVFF+bmMdVe6Km+rKL6FFI844gjFbDYrVqtVOeGEE5Rvvvmm2zK2HdtvaGhQrr/+eiUpKUnRarXK6NGjlccff7xPZX472mu325W7775bycjIULRarZKZmancf//9B6xz1KGr9/9gr7/+unLkkUcqZrNZ0el0ytixY5Xf//73hywi2fn1dOX9999XTjvtNCU2NlbRaDRKfHy8MmPGDOXuu+9Wtm/ffsj9t2zZolxyySVKUlKSotFolLi4OGXevHmHlAGvrKxUFi9erMTFxSmyLCvsX+Ors02bNimXXXaZkpaWpmi1WiUyMlIZN26ccvXVV3dZVn3NmjXKSSedpJjNZsVsNivHHXecsmLFil7tm531VAb5sssu6/IxPe13Xenp9Q9kW339vA7W8dp7+9Pb9/SHH35Q5s+fr9hsNsVsNitHHnmk8u677/pLy3f+7DvW9+l8fOzQ0NCgZGZmKhqNRvnpp5/8tx+8D9fX1yu//e1vlfnz5/v/PhMSEpSjjz5aee2113r9NzrYx+XO2wjE/vbxxx8rs2bNUkwmk/8z6njenspud3c86e6Y2d7ervzmN7/xH6/S09OV//u//1NKSkoU8C0OKwgjhaQofZihKQhCj5YsWcJLL71EQUHBYa+4CsHV8fkUFhYO+LmOOeYYvvnmmz5NeA+0hIQErFYrO3fuDFobBCEUieNy33z22WeceOKJ3HnnnYctICQIw4XoDxUEQQhzdXV11NTUkJKSEuymCIIQJsrKyg65rba2ljvvvBOAs846a6ibJAhBI+YQCYIghKnGxkYefvhhPvnkEzweT5/LEAuCMHLddtttbNy4kTlz5hAbG0tJSQkff/wxdXV1XHPNNV0u0C0Iw5UIRIIgCGGqvr6ehx56iMzMTB566CGuueaaYDdJEIQwcfbZZ1NZWcn7779PQ0MDer2ecePGccUVV/SqiqUgDCdiDpEgCIIgCIIgCCOWmEMkCIIgCIIgCMKIJQKRIAiCIAiCIAgjlghEgiAIgiAIgiCMWKKogiAIgjBkFEVBURS8Xi8ul4u6ujpkWSY6Ohq1Wo0kSQD+/wqCIAjCYBOBSBAEYRjzeDw4HA5aW1uprKyksbERlUpFS0sLO3bsQKVSIcsyVVVV5OfnExMTg9frpby8nLa2NmJjY3G73ezduxeTyYTRaKSxsZHy8nIiIiLweDw0NjbidDrRaDS4XC7a2tr8wcftduN2u1EUBY/Hg9fr9f+3K7Is+9vU8aNWq/1hSZZlDAYDarUal8uFXq/HarWiUqloamoiMTERi8VCe3s7bW1tZGVloVarqa6uxmg0kpiYiCzL1NTUkJWVRVxcnL+do0ePxmw24/F4sFqtxMfHYzKZ0Ol0qFSqIf7kBEEQhKEiqswJgiCEKEVRaG1tpbCwELvdTnt7O8XFxezZs4eIiAgaGxvZtWsX9fX1qNVqGhsbKSwsRKVS4XQ6aWpqorW1lcMd5mVZxmQyIUmSv6fG6XSiKAoGg8EfGGRZ9t+/c3BRq9WoVCoMBgNarRZFUdDr9ZjNZmRZxuVyYbPZMBgMeDweFEUhNjYWtVrNhg0bAJg4cSJut5uamhokSUKtVmO322loaECtVuPxeGhpacHhcCBJEk6nk/b2dtxu9yFBqyNseb1eNBoNAO3t7UiShFarxe12U1tb639/uwtnHSRJwmQyYbFY0Gq1eDweMjIysFqtuN1uIiMjycvLw2q10tzcTE5ODqmpqRgMBvR6PRkZGf73VxAEQQg9IhAJgiAMkfb2dmpra6msrGTTpk24XC5aW1vJz89n165d6PV6qqurKSoqorm5mfb2dlwuV5fPZTAYiIyMRKvVYjQayc7Oxmq1Ul9fT3JyMklJSahUKt7713LsZS4kjxpDhB6NSoO7wYtWr8OWZMYUacAca8QYa8AYo0Nn1fi34fUoOBpd2OudOJpcOJtduFrcOFvcOJtdOFvcuFrceN3B/RpRaWU0JjUakwqNSY3WrEYboUFn9f3obVq0Fg2yyhdIFEXB0eCircZBW42d1po2WhvsNJY342hzoLbJuDwu2pvtKCo3+iQNZ1x9Mh6Ph7KyMkpLS4mMjKSxsZG9e/fS1taG0+mkvr6e9vb2Ltuo0WgwGAxERESQlpZGbGwsdrudvLw8srKyMJlMaDQaJk6cSHx8PNHR0RgMhqF8GwVBEEYsEYgEQRAGoKNXo7S0lHXr1mG322lsbGT37t3+IWlVVVWUlZV1ebJsNBqJjIxErVYzevRoEhIS8Hq9REREMHbsWP5x48tY4yLwNEtI7TIaWYsGDZLS+yFc+igt5kQ95kQDpgQDpgQ9WpNvxLTiVWivc9JWbae9xkF7nRNHvQt7gy8EMcjfEJknJwJQsLx8cDckgTZCg96mwRClxRCjwxCt8/03Sosk+8KSs8VFa4Wdlgo7rRXttFbYaa9z9vp9UCQPLly4vE4UgxdVhEJjVTPX/u1Stm3bRktLC5IkUVlZyfbt23G73dTX19PW1nbIcxkMBpKSkoiLi8Pj8TB69Ghyc3OxWq3o9XqmTp1KcnIyMTExqNViBLwgCEJ/iUAkCILQjba2NrZt20Z1dTVVVVVs27aNTZs2oVKpKC8vp6CggMbGxkOGXMXGxhIdHY1Go2Hy5Mn+eSufP/897ioFDTrMZhNSmxq5D8GmNzQmNZY0I5ZUI+YkX/hR63zbsDc4aa2w+36q9gegWieKN3hfA9NuygVg7ZO7g9YGSZbQR2owxukxxesxJegxJxj8vWUep4eWcjvNJW00FbfRXNKGq9UT0DZ4ZQ+KwU1rSytOHKjjJI5fOtc/n2vDhg24XC5qa2uprq4+4LGyLGO1WsnMzPQH6okTJzJ27Fji4uKIjY1l7NixGI3GgLZZEARhuBCBSBCEEUlRFKqrq9m6dStr167F7XZTUlLChg0bqKiooLGxkZqamgMeExkZiclkYsKECaSkpKDVavnx7XW4KyV07J8z06ZGUoZuRQNjnA5LmglLihFLmhF9pBbwhZ/mknZaKtppLW+npdyOuz2wJ/HDndqg2h+O9EQkG4lINaKz+EKSvd7pD0cNBa201ziGrF2K5MVrdPvmVGFHHa8we9FUnE4nJSUlbNmyhdbWVurq6g54XExMDFarlYSEBCZPnkxKSgoqlYrp06f7w5OY5yQIwkgkApEgCMNWfX09+fn5rF69mvz8fH+BgnXr1tHQ0IDdbvff12q1kpqaSkREBDExMcycOZPXf7OMqLhI5GYNqnYdKin4lcZ0Ng22LDO2TBO2TDMakxqvR6G1op2m4v09GMVtOJvdwW7qsKS1aLCkGIhINRKRYsScqEdWyThbXDQUtNJY0EpDQQuOhq7nfg0lj+LBY3DgjXBRV1XP4t+dyapVq6ipqaG5uZni4mIaGxv999fr9dhsNqZOneovBJGVlcX06dPJzs4mMjIyiK9GEARh8IhAJAhC2Oro5dmzZw9ff/01NTU1VFZWsnXrVnbv3n3AvAydTkdeXh6ZmZmoVCrGjRvHe7//AqPKjFFtQnaG5hwMlVbGlm0mMseMLdOMPlKL4lVoLmunsaCFhoJWmovbgl7YoL8mX5MNwIZ/7g1yS/pHVktY0oxYM83YMkyYkwxIsoS9wUnD3hbqdjfTkN+K19VzJbtg8WrdtLlbafO0cOZvjmfLli14PB4KCgrYtWsXDsfPPV9Go5Hc3FzGjRtHXFwcMTExzJ8/n5ycHGJjY0XvkiAIYUsEIkEQQp7T6WTLli188803NDQ0sGfPHtasWUNRUdEBvTzR0dGMHTuW9PR0tn23C0+5Cp3TgEFlRu3RhM0Jm86mISovgqg8C9YMI7JKpq3aTkO+r/ehsbAVjyM0T7D7Ku+sZAB2vVsa5JYEhkonY0kzYcsyEZkTgTFGh9ftpbGwlbrdzdTvbsFe7wx2M3tFURQ8KjdtnhYc2jZUiR7GHpXHvn372L59+wFDSvV6PampqUyfPp3c3FxsNhtHH30048ePR6vVBvFVCIIgHJ4IRIIghIympiZ27NjB9u3b2bFjB1999RVlZWWUlZXh8fjmv9hsNsaNG0dSUhL5q4pw7ZMxYMKkikD2Bn9IW3+ZEvXEjLUSlReBKU7/80n0rmbqdjeHxBAsoe/0kVqi8iKIzI3Amm5EVvvCbc32Jmq3NdFaaT/8k4Qor+yhzdNCGy1o0r1kH5FOWVkZW7dupb6+HgCVSkVSUhLx8fHMnj2byMhIpk+fzsyZM4mPjw/yKxAEQfARgUgQhCGlKIq/5HBH8On4/9LSn3sJ0tLSSEpKom5XE3KdHpMUgVVnQ3Zoenj28GJK0BMzzkrMWCuGKC2uNjd1O5up29VMQ34LHufw6AXqiTFeB0Bb5dAVJQgWWSNjyzIRPcpC1OgINAY17bUOarY3UbO1kdaK8A1HB/PqXDQ6GmhVmvFGO7BmGSkpKaG8/Ofy6tHR0SQnJ5OWlsaxxx5LfHw8s2bNIiMjw78IsCAIwlAQgUgQhEHjcDjYtm0bGzZsYOPGjWzcuJFNmzb5q1+p1Wpyc3MZM2YM6/67DRMRmLBgJAK1FJpzegbKGKsjdsL+EBStw9XmpnZ7E9VbG2ksbB30dX9CzczbRwGw6pGdQW7J0JJksGaaiRlrIXq0BY1RTXudk5qtjVRtrKe9NjyG1fWVGzceq50mewOeSAe2bBN79uyhpqYGt9tXCMRkMjFu3DgSExOZPHky8+fPZ8aMGaJsuCAIg0YEIkEQAqKqqsofejoC0I4dO3C73UiSRE5ODpMmTWLd29sxY8FEBAbMyNLwvxKsNqiIHW8lbnIkEUkGXO2+EFSztYnGwhaU4d8R1K3o0REA1O5oDnJLgkeSwZphImasLyirDSqaS9uo2thA9ZbGEVEu3YsXxebCoW+hydlA4tQYNm/eTGVlJYqiIMsyKSkppKenc9JJJ5GYmMi8efPIzs4Om7mBgiCELhGIBEHoE7fbza5du/zhpyMAVVRUAL6ruxMnTmTSpEl8/Y+fMGPDjHXY9vh0R5IhMieCuEk2okZFABL1u5up3FBP/e6WoC6GKoQuSSURlefbbyJzIgCF+l0tVG6sp25X84jrQfSqPDQrjZDoIHl6LNu2baOkpMRfQTIyMpLRo0eTnp7OpEmTOPHEE5kwYQIazfAZWisIwuATgUgQhG55vV52797NqlWrWL16NatWrWLjxo3+ym6pqalMmjSJLR/sIQIbEVgxYB7RV2y1Fg0J0yJJmBqJ1qyhpbzdd6V/cwOutuF/pb+vMo6LA6Dwi6ogtyT0aIwqYsZbiZ8UiTnJgKPJReX6eirW1o3odaYURcET4cBuaqGutZaYCRHs3LmT2tpawDcUNysri7Fjx3LaaacxduxYZs6ciVo9si7KCILQeyIQCYLgV1paekD4WbNmjX/hxry8PGbMmMGqf2/eH35saCRRTreDLdtM4vQoovIi8Li8VG9qoGJtfVhXERsK03+RB8Cax3cFuSWhzZSgJ2FaFLETrKg0MnW7milfU0fD3pZgNy1keLQumj0NkOLEmm1k+/btlJWVAb6y4BMmTGDChAlMmjSJY445hvHjx4viDYIgACIQCcKIVV9fz5o1aw4IQB0VoBITE5k5cyZblu3BQhQWIkX46YJKJ5MwNZKE6VEYonS0VrRTvqaO6s2NI6JCnDD0VFqZ2AlWEqZHYU4wYK93Uraqlsp19WKf64JX68ZhaaHd2ETcmChWrlxJQ0MDAPHx8SQlJXHEEUcwd+5cTjnlFKKiooLbYEEQgkIEIkEYAbxeL1u3buX777/nhx9+YNWqVezevRsAq9XKjBkz2PN58f7wE4VeMgS5xaFNZ9WQNCua+CmRyCqJmq1NlK+ppbmkPdhNE0aQiGQDiTOiiRlvxev2UrmunrKfanE0ijWreuLS2XGYW6hprUafLbF3717a231/u/Hx8YwePZoFCxZwxBFHMGvWLDEfSRBGABGIBGEYam9vZ/Xq1f4AtGLFChoaGlCr1UyZMoVZs2bx5ZMrsRCFcYTP+ekLc5KB5NkxxIy14LZ7KF9TR/mqOlytI3c+x0BNuiILgI3P5Qe5JeFLG6EmcUY0CdMjUetU1GxvouzHGppLRUDvDUVRsGtacUa1kjY3jrVr11JSUoLb7cZoNDJq1ChOO+00f1CyWq3BbrIgCAEmApEgDAM1NTX88MMP/gC0Zs0aXC4XFouF2bNns/uTEmxEYyUK1Qir9hYItiwzqfNisaabaK91ULqylqqN9Xhd4vA5UKPPTQVgx1vFQW5J+JM1EnGTIkmeFY0hWkdDQQvF31XTWNAa7KaFHa/kxh3XTqNciz5VxZYtW2htbUWlUjF27FgmT57MrFmzOPXUU8nIyAh2cwVBGCARiAQhzCiKQkFBAd9++60/AO3YsQOAlJQUXCUSNqKxEYMZq+j9GYDIXDOp8+KwpBhpLmmj5IdqaneOvNLHQviJHh1BylFxRCQZaCpuo/i7Kup3iwIM/aUoCs6IVuy2ZsqqSmg3NfsXmM7JySEjI4P58+dz6qmnMmnSJHHcFYQwIwKRIISB0tJSvvrqK7788ku+/PJL9u3bhyRJTJgwgbpNLdiIwUYMekms5B4IUaMiSJsXhznJQGNRK8XfVotqXoNEa/X1WDobxbDDwWDLNpM2LxZLmomW8naKv62mdkdTsJs1LLiNdtrMTVS3VuC0tlJWVoaiKMTHxzNx4kSOOuooFi9eTE5OTrCbKgjCYYhAJAghqKamhq+//tofgHbu3AnAxIkTqd/URhRx2IgRld8CLDLXTPqx8ZgTDL7hRt9W01gohhsNppm3jwJg1SM7g9yS4c2aYSL1qFhsWWZaytvZ92Ul9XtEyA8kRe+hQamhPbKBNl0zhYWFAMTFxTFr1iyOPfZYFi9eTFxcXHAbKgjCIUQgEoQQ0NjYyLfffuvvBdq4cSPgW/undZebKOKIJBatpAtyS4cnS6qR9OPisaabaCxsZd9XlTQVtQW7WSNC7EQbANWbGoLajpHigH19Xyv7vqikqVjs64PBo3VSL9XgjGui3lXrX9YgJSWF6dOns2jRIk466SRiYmKC3FJBEEQgEoQgcLvd/PTTTyxfvpxPP/2UNWvW4PV6SU1NxV0s+wOQGAI3uIxxOjKOjSdqlIWW8nYKv6gUQ+OEESEyZ39vaKKBul3N7PuyUiwiPMgcUjv26EYaVDXUOCqpr69HkiRycnI44ogjuOKKK5g9ezY6nbjwJQhDTQQiQRgipaWlfPLJJ3z88cd89tlnNDY2EhUVhabOuD8AxWHAJCbjDgFthJqM4+KJnWjDXu9k35dV1GxtDHazRqTUebEAFH9bHeSWjEwx4yykz49HH6WlakMD+76sxNki5nMNNkVRsKvacKe0UG2voLqtgubmZvR6PZMnT+bss8/m7LPPJjs7O9hNFYQRQQQiQRgkDoeDH374geXLl7N8+XI2b96MJElYlEiiSSCaeCxEiQA0hGS1RPKcGFKOjMXj9FL0dSWV6+tRvMFu2cg141bfHKLVj4o5REEjQcK0KNKPiUPWSJR8X0PpjzV43eL0YKgoioLd0kyzuZZqdzmVNRV4vV7S0tKYMWMGV111FXPnzsVkMgW7qYIwLIlAJAgBVFBQ4A9AX3zxBa2trcTHxyNX6okmgSjixDygIIkZZyHj+AS0EWrKVtZS/G01HqdIQoLQQaWTSZ0XR9IRUThb3BR+XknNFtFzGgwuxYkzuYlqdzk1jkoaGhrQarVMmjSJ0047jfPOO48xY8YEu5mCMGyIQCQIA+D1evnpp5947733WLZsGdu3b0etVmN224ghgWgSxFpAQWZK0JN1ciLWdBO1O5oo+LQCe70z2M0ShJClj9SSeUIC0WMsNBW3sffDMjG/KIg61kBqsdRR7S6norYct9tNcnIyRx55JNdffz1z5sxBo9EEu6mCELZEIBKEPmpra+Pzzz/nvffe4/3336eqqoqYmBg0NWZiSSSKONSS+GIKNpVWJv3YeBJnRNFW4yB/eTmNBaKEdqiZsCQTgM0vFgS5JcLBrBkmsk5JxBijo2xVLUVfVYle1RDgVly4kpup8pRR0VpKc3MzZrOZuXPncvbZZ3PhhReKoXWC0EciEAlCL1RWVvLhhx+ybNkyPvvsM9rb2xk1ahT2nQqxJGElWvQChZDosRayTk5ErZPZ91UVZT/VgjjShaSxi9MA2PZ6UZBbInRFkiFpVgxpR8fhtnvI/6Sc2m1iYddQoSgK7RFNNNtqqHaVU1FRgUajYcqUKRx//PFce+21pKamBruZghDyRCAShG7s3LmT//3vfyxbtoyVK1f6CiJ4I4khiViSMEkRwW6icBCdTUP2qUlE5UZQu72J/OXlOJpcwW6WIIQ9nVVD1smJRI+2UL+nmb0flYuhpyGoVWnGkdJAWWsxlQ2+dY8yMjI47bTTuOiii5g1a1aQWygIoUkEIkHoZNu2bbz11lu89dZbbN26FaPRiKnNRixJxJAoCiKEKgmSZ0WTNj8eV5ub/I/KqdvVHOxWCb2g1ssAuO1iKFY4iMqLIOuURDRGNfu+rKRsleh9DVUu2UmjsZqmiGpKaopwOp1kZGRw7LHHcumll3LUUUchy3KwmykIIUEEImFEUxSFrVu3+kPQ9u3bsVgsGJtsxJNCFPGoJFWwmyn0wBCtJffMFCJSDJT9VMu+L6vwusTJdbiYebuv7PaqR0TZ7XAha2Qyjosn6Yhomopa2f1eKe214dNblLTy0N79slnD+wKKovZSL1XRHFtDaX0RbW1t5Obm+heEnTdvnghHwogmApEw4iiKwubNm3n77bd566232LFjB1arFWOjjTiSiSYeWYSg0Le/Vyj92HgcjS52LSulubgt2K0S+ihheiQAFWvqg9wSoa8saUZyzs9Cp4OiLyso/bEmJHuLugpA3RnuwQhAkb20RdZT2l5EtbeM9vZ2UlJSOP300znrrLM47rjjRDgSRhwRiIQRY/Pmzbz55pu89dZb7Nq1C5vNxplnnsm5557L8ccfzwLDxcFuotBLB/QKraxl35eVYhFJQQgC5dgpZGR4SEnx0FLazq7/lYRcb5EIRN17r/VlXn/9dT777DPee+892traiI2N5dJLL+XUU09l/vz5omCQMCKIQCQMa0VFRbz++uu8+uqrbNmyhcjISBYuXMiiRYs4/vjjOU1/UbCbKPRR4owoMk5IwNkkeoWGg6TZ0QCU/Vgb5JYI/eE5ZioAFouXUaPc6HRQ8HEpFWuD3+PXlyB0sJEWjADeb3uFN998kzfeeIMff/yRxsZGUlJSWLRoETfeeCPZ2dnBbqIgDBoRiIRhp76+nrfffptXX32Vb7/9FoPBwJlnnslFF13EiSeeKEJQmNIYVeSekUzUKAtlq2op/KxC9AoNA2IOUXjrCEQAsqyQne0hKclLTY3Erl1qvJ+tH/I2DSQIdWUkhqP3Wl/m1Vdf5eWXX2bNmjXY7XbGjh3LggULuO2224iPjw92EwUhoEQgEoYFu93Ohx9+yL///W8+/PBD3G43xx9/PBdddBFnnXUWZ1uXBruJwgDYss3kLUxGkiR2LSulfvfIO0EZtjqmKog6GGGrcygCiI72kpfnBmDnTjV1dTKqr9cNejtiV9jQyJ5B3cZIDEfvNr3Ak08+yTvvvMO6detQq9VMmDCByy67jKVLl2I2m4PdREEYMBGIhLDl9Xr59ttvefXVV3n77bdpbGxk2rRpXHzxxZx//vlcmnxzsJsoDJCkksg4Pp7kWTHU72lm1/9KcbW6g90sQRA6OTgQAWg0CqNHu4mKUigpkcnPV6EovrkogxGOYlfYDty+CEaD4qWSx3nmmWd4+eWXyc/Px2Qycdxxx7F48WLOPfdcVCpRkEgITyIQCWGnqKiIl156iRdeeIGCggIyMzO5+OKL+fx3P2GSLMFunhAgOpuG0eemYYrTUfh5JWU/iTkmw9H4SzIA2PJKYVDbIfRfV4HIRyE52UtWloeWFolt29Q4HAdO0A9EODo4DHUmgtHgcVvtzLp2PM8++yw1NTVERUVxzTXXcMEFFzBx4sRgN08Q+kQEIiEs2O12li1bxvPPP89nn32G0Wjk/PPP5/LLL+f+ox4TVXCGmai8CPIWpuC2e9j+nyJaK+zBbpIwSEQgCn/dByKfiAgvY8e6Ualgxw7fELqDDSQY9RSIOhvMcDSSg5GiKFz/zoW8/PLLfPrpp7S3tzNu3DiuueYarrjiCoxGY7CbKAiHJQKRENLWr1/P888/z7///W/q6+uZO3cuS5cu5eWl76GW1MFunhBoEqQfG0/q3FhqdzSxa1kJHruYXCIIoexwgQhArVYYNcpNTIxCUZFMQYEK6PpCVl/CUW/DUGciGA0er9rDCQ/M5MUXX2Tnzp0YDAZOPPFErrnmGk4++WRx8VIIWSIQCSGntraW1157jeeff54NGzaQkJDAZZddxrd/2oBJCmz1ICF0aExqRp2TgjXdROEXlZSuqAl2k4ShIIoqDAu9CUWgkJLiG0LX2OgbQudydX+C3Jtg1J9A1EEEo8HVrm4h/dwoPv74Y+rr6xk9ejSnnHIKt912GykpKcFuniAcQAQiISQoisKPP/7I008/zVtvvYXH4+H0009n6dKlPHr6C8iSWDV7ODMnGRhzQRoSsOOdYpr2ibWFRgpRdnt46F0g8rFYfEPoFAW2blXT0tLz8b27YDSQMNSZCEaDy4uX6/6zmCeffJIffvgBgNNPP53LLruMM844A1kW3+9C8IlAJARVc3Mz//73v/nHP/7Bxo0bycrK4pprruGDX3+HTtIHu3nCEIidYCX3jGRayu1s/08RrhZRRW4kSZqzf2HWFaJoRjjrSyAC0GoVxo1zYzIp7Nqloqqqd9XJOoejQAWiDiIYDT6vwcXYpal8+OGHFBQUkJaWxkUXXcSdd96JxSKKIgnBIwKREBRbtmzh6aef5pVXXqG1tZUFCxZw3XXX8fApz4oxxiOFBBnHxZNyZCyV6+vZ82EZikccjgQhHPU1EAFIkkJenoeEBC/Fxb7S3N3NKzqY6ut1AQ9EHUQwGnyKonDpS2fw9NNPs3r1arRaLfPnz+e2227juOOOC3bzhBFIBCJhyDgcDt555x2efvppvv/+exISErjyyiv5+vfr0EuiCs1IotLJjDo7lcgcMwWfVVC2UvQOjFTx0yIBqFxbH+SWCAMVu8JGxf9l9fFRvtLc2dke6ut984o8nsOHor0X+XqUjhy3ux8t7b3BCkciGP3MrrSRtzSBd999l/r6embMmMHChQv5xS9+gclkCnbzhBFCBCJh0JWVlfHUU0/x1FNPUV9fz/z587nuuuv46Kkv8Nqh7KdaJFkidoKVhvwWnM1iyFS40JhUaIxq2qodAMRPttFe56SpqA2dVUP6cfHs+7ISR4OL+CmRRI2KIH95OeMuTEcfpaVyfQN7PyxDY1KTsyCJfV9V0lblwJJmJCLF6C+soI/U4rZ7cLcP7poiQuAYYnSoDSqai33zwTJOiKd+TwuNBa2YE/VknpzIjv8UM+XabNQGFTveKqZuZzMRKQZS58ay890SPA4vkbkRyBqJ2m1NAGjMat/ivOKbK+Qc3GNTc28majXY7b6Ak5LioblZorFRxmTykpHhYdcuX2GF3Fw3CQle2tslNm9Wk5vrpqZGpqJChV6vkJHhoaBAhcMhYbV6aZ4vsdvkqzRqc3mZOKYAj25wK3MMRjjqCEZJK/tfMCgcw5Wkkogdb6WpuA17nRNrhomEmTYmzB/Diy++yMqVKzEajVx44YXcc889pKenB7vJwjAnZrIJg2bt2rVccsklZGRk8Pjjj3PGGWdw7tyLUH0dzb/O/w9qrcY/OkJjVpO3MAVjrG/eUMw4C6PPS+3t6AlhEMWMsxKR6uvBM8TomHxNNoZoLQDJs2MYc8HPX1SJM6OxZZl9/5BAa1Yjq32HGVebG7fdw6QrspBUEhVr62nc1+q7q+z76TjJNcbpiZtk8z/v6HNTST8uHgC1UcXo81IxxuoAkDWS2E+CxJphQh/l2xcsaUam35KHZv9JavKsaLJOTvTfNyLZiC5CA4DHpWCvc6IoCuue3k31lgbcbT+fbCqA1+3bGaLHWIifaPP/bsYteSROjwLAlKAn65REVDrfPibJYkcYctL+v0FA26ImaX00Kqfv8xh3fj2TTmgl4Q/5ACQkeDEafZ+rooAk+X4AGhokystlZFlhyhQXLhf+CnSy7Jtz1HFfm83L2E5zDU+ocdK2No0ftuayeUM26Svi0Lb49kNDvZaIckNAXqrLq8Ll7d1cp+6UzWo+4CcQklZGdPmTstJ8wE+wpR8XT87pSb5/KJBzejKWFN93i+JVkGUV79z4BeafUjhr+mLmzp3Lm2++SVZWFsceeyzvv/9+EFsvDHeih0gIKI/Hw//+9z8ee+wxvv/+ezIyMrj55pt577ZvUEuaHh8rqyUUr+/AGDUqgsjcCPZ+UAbAqEWp1GxtpHZ701C8jBFFpZOJGWOhbnczrlYPSbOiiZ9kY/0/9wIw5doc6nY3s++LSjQmNWlHx1KyogZHgwutRYNaJ/t7iHoSmRvB6EWptFbZ2fb6vgNOgA/HFK/H4/Rir3eis2nIWZBM/sdltNc6SZsfR+x4G2uf3AVARIqBtmoHHoeo4xxokbkRRKQYKPqqCoAZt46iamM9+76sQmfVkDAtitIfa3C3e1AbVSheJbDrSEkQmW2mrdqBo9GFLdtM5vHxbHhmL4oXxpyfhtetsPOdYgAiUo20lrf7w5UwcCqdjDFWR3NJOwDTbsqjeksDRV9VkfxpDHE7bFSOrcdl9KBpVSF7ZBwWl//xhxtSp9EojB/vK7awbVvXi7jCz0PmwNdD5JKgVS1jdnuZ0Oxmg0XD1Il7iNllwVStZ9+Rvn0244c4GpPbqM9oQeWQMVXraYlvx6vp2z7S296ivoaegfQUdUfuRXdqyayWgG/XGKdj1FkpbH1tH85mN/FTIpHVEuWr6wBfL9Hh5o16JDdTbsni1VdfpaqqimnTprF48WJuuukmtFptwNssjFwiEAkB0djYyHPPPceTTz5JYWEh8+bN45ZbbuHvZ/97wEUSJJVE7pnJVG1ooCG/BZVe9p3sij231ySVhCFaS1uVL7hkL0jC2eii+LtqdBYN02/JY8vLhTQWtmJJM2JONFD2k29ejySDMsBz2oRpkWSfmkTdzmZ2/rc4oCeopng9+kgttTuakGSY9esxFH1TTemKGjQmFTqrlpay9oBtbyTRRqgZdU4q+Z+U01puJ2F6FNGjItj6732+31s0uFpcA9o/xlyQBsD2N4oG3N7IHDOKAg17W9BHapl+cx5b/11I/Z4WjHG+IXyipHvfmZMMOBqduFo9JB8ZQ9q8WFb+aTuK19eDZ69z0lppB/pW+a27cCTLCmPGuImOVtizR0VZ2aG9Mp0D0eEcOWa3fzxMZKEZu9VJe6QTY62OlDUx5M+rwG3wELU3Ao1dReW4BgC0zWpcRjdKD5vqKhgFoucnWMHoYH0OShIYonW01zhQ6WSyT02i6Osq7PXOPm+7M0VRuPL1Rfzxj39k48aN2Gw2br75Zm644Qbi4uIG9NyCACIQCQNUUFDAo48+ygsvvIDD4eCCCy5g5ytlWKTIQdvmmPP3n0C9OfATqOFKUkkkTI2koaCV9hoHCdOjyDo5kR//sA3Fq5AyNxZXi4vKDQ2Ar3dusK6ipx8bT+pRsZT9VEv+J+WDHmR1Ng1el9fX23VENBnHx7PyzzvwurxoI9RijtphZJ6YgNqgYveyUiRZIm9hMiUramitsA/K9iZcngnA5hcKAvvEEpji9LTXOfG6vGSdnIgty8S6p/YAvhP5puI2Uea9Gx1/K7JGZtavRlPwWQXlq+rQmFTIGhlHg6vLx/Wn8lvXwUghO9tDSoqXfftkCgsPrEDXl0DUoasCDJJHQpEVkMBaYkTlVFGX1QxeyPs8marRDTSktaJtUWOs1dGY0tplQNLInkGZyxPoYNSfUHSwnkJS+nHxJEyNZPVjO/G6Budg77S1opnq5LvvvgNgwYIF3H333Uyd2vdKh4LQQQQioV82bdrEn/70J958801sNhvXXXcd3/x+PTopMGO1e2JJNSKpJBoLWwd9WyFPwh8wkufEoLNoyF9eDhLMumMM+cvLqdrUgMakRmfV0FLePnQ9axLknJZEwrQoCj4tp/THoa8kJ8m+eU9tVQ6QfEO8KtfWU/RN1ZC3JVQZY3XknZXC9jeKcDS5iJ1oQ1ZLVK4bflXftGY1zhY3Kq3MEXeMZu+HZVRuaEBn0SBrZdprDj/0cyRIOyaO+Cm+k1oU39CntmpHr44dAymF3VUwSknxkJ3toaxMZvduXyjqTxjqrFeV6RTQN2pwGTx4dF4spUbidtjYc2wZSBC33YZb76YuswUUqJ7bMGjH1lDpLTqcklktqLQyxrifh1QOJq/eSep5kbzzzju0tbVx/PHHc9ttt3HSSScN+raF4UcEIqHXFEXh+++/549//CMfffQR6enp/PKXv+S/N32BSlIPfYMkiJtgo2pTw9BvO0jUBhWyWsLZ7MacbGDCpRms/8de7PVO4qdGorNoKPp6/8l+p7A01CRZIu+sFGLGWti9rDRkPiNrpglHowt7nZPoMRaiR1nY/V4pindkHQbjp0QiayTKV9X5hrWctn9YS93AhrWEE5VORvEqeF0K6cf6rmqv+usOFC+otDIe58iZgybJErlnJFO7s4na7U3oo7TorBoaC/p+0SlQawN1DkcJCR7y8jxUV8vs2KFiz4WB+b7pc8luBX8nVfRuC269hz3nl6KP0jLlmmw2v1xIS2k72gg1XrcS8KqYIRuMFIjeEk1jdiNuo6/H1bv/jRqKCniKyssZjxzN7373O2pqapgwYQKPPvoo8+fPR5ZF7TChd8SeIhyW1+vl/fffZ+7cucybN4+ioiJeeeUVsvdNY9nN3wQnDOEb1557ZjLWzOG7ToHGpCIq7+cvwQlLMkmdFwtAe42Dom+q8Th9X7qV6+p/DkMQtDAkqyXGXJBG9OgIdrxVFDJhCKCxoPXnk37JV8CjIwyZEvRBbNngklQSMeOsyGrfSYohWoshxlelz+Pwsuu/JUELQzNuHcWMW0cN+XY9Dq9/SE/RN1VsfrkAxeurmDbj1lHEdqpsN1x17POKV0FRFP/Jvr3O2a8wFEgJf8j3V6erqFCxbZuamBgv48a5UQXoAsYPW3P5YWtu7x/QaTpsbW4Te84vBcDj8FD0TbW/hzF1XhwTlmT67xuVF4HGNLBeLSCglek6eANQolNlV6Gr16Gy//waO4LWwZXvBoPkkXn/lu+YWDuPv/zlL7S2tnL88ceTm5vLU089hccjlmsQDk/0EAndcrlcvP766/zpT39i27ZtHHnkkdx11108uuCFARdKCBS1UdWnamWhTpIhZryNlrJ22mscxE+2kXN6Miv/tB2P04s52YCr2Y2jqevx+8Gm0smMXZyOOdHAtjf2Bf2kqrdMCXqmXJPDllcKacgPfLWlYOmYG6azaZh+cx7bXi+ifndorVmSerRvQnRxiAxjlNUSsRNsNOxtwdHkIm6yDUO0jn1fVAa7aQFlyzIz/pIM1v9zT8DnhwWql6iziv/LwmbzMn68mxqDzGcxWpwBLrPelx6j6jkN3f5OZ9GgiVDTUtqOSisz69dj2P1+KVUbGjDG6jAlGqjZ0jDgYjUhNb+oU+/ZwXoKXYPRg6QoChe/sIBHHnmELVu2kJOTw5IlS7jtttswGAZ/WL8QnkQgEg7hdDp56aWXePDBB9m3bx8LFizg17/+Nb+d93iwm9atQFRCCxZrhglTgp6ylb45Nkf8cjRF31b5hjNpZSSVFBYLkqr1KsZfkoE+UsvW1wqHZAx5INmyzP4wFD/ZRuO+tgFXRgqm9GPjiMyJYMO/fOXTtRYNzhAN0qEs6YhoDDE69n7oWwLAlm2mYW94hmZ9pBZrutFfTKXzPh9IgxGIOrQ+lMG4aW6a1BKfxOoCHorg8MGopzDUFbVBheJR8Di9JM6MInVeHKse3gFA0qxoWivs/Z4TG+xhdCq7Cskj+YbK9fBR9LYnKtAB6eZll/Lkk0/y2WefER0dzfXXX8/dd9+NTqcL6HaE8CcCkeDndDp58cUXefDBBykuLubcc8+l6D/1mCVrsJvWo4lXZNGwt+XA4WIhTK1XkXxkDJXr6rHXO0meE0P0qAg27a+yJWukQavOM1jUehXjL81AZ9Ww5eVCfwnecCSpJKZen0vF2jpKV9QEuzm9J0H85EhaK9ppKbdjTjZgiNJSvbkx2C3rUewE3/El1NsJvjWuJl2Rzcbn82kuDr/y3clzYkiYFsm6p/Ycdv2XgRjMQATQdradMdfl0KwavFAE3Qejvgaig3U+xk+8PJPanc2UrqhBH6klfmokpT/U4Lb37SJYsHqLrLutWPZZKD6uuFcLZPd1iF6gApLL2oZ3QjPff/89UVFRXHXVVdxzzz2YTMN3yL3QNyIQCYcEofPOO499b9aFfBDqEDfJhqPRFdJV52LGWdGYVJSvqkPWSEy9IZe9H5RRvyc8rzR31tEzpLNp2PxSgX+to3DWeZHg+Mk27I2ukB3+17l3dOr1OVRuaAirIDfzdt/8oVWP7AxyS3rHlKD3DzHLOT2JpqI2qjY2BLdRPbBmmtBZNVRtaECSJSSZQV+odrADUfWcBkzxesZfmkGjVcPyIQxFAw1DPYnMMZN9WhLr/r4br1sh6YhonC1uarb2/mLBUAcjySWhadPgtPa+N72/85YCEY5apSY0c+1899132Gw27r33Xq666ioRjAQRiEYyp9PJCy+8wB/+8AeKi4s5//zzKXyjDrNkCXbTwp42Qk3KkbEUfVOFu91D+rHx6Kwadr1bEuymBdRwDEMHG7s4nfZaBwWfVgS7KYeISDEw5rw0Nj6bj6PJNajrSQ0WfaRvtflwHJ6YfVoSTUWtVG9uRK1XoXiVkKtOl3lSAoYoLdteH7p124YiEIGvHPiESzNxNLn437TIQQtFHfKuWj2oz3/I9s5KwdHoZN+XVagNKtKOjqPkh+rDrqUWUnOLejDQgg4DCUhuazsRR8l8+OGHWK1WrrzySu69917MZvOA2iSELxGIRiCXy8ULL7zA73//e0pKSsI+CBlidKj1ctDnrESPsSCpJGq2NKIxq5l0RRY73iqmpSy85tL0lkovM+GSTHS28B8mdziSLKF4FaLyInC1umkuDd5n2nmdD1kjk3Z0LKUranANo+Ii4Sjr5EQic8ys/VsfSzkPgohkA2qjmvrdzf59d6jF/+j7PvEqgS9m27mXpnMo2vxyAdufnBbw7XUY6kDUmTnZwOhFqWx8Nh9Xq5uY8VYUj0Lt9qZuHzMUwchSYMFtdNMW378hpIGocgf9D0ceqx3VdDtffPEFCQkJXHrppdx3332i+MIIJALRCOL1evnPf/7Db37zG/bu3Rv2QahD1qmJWFONrP/n3iHdrtasJm6yjdIfa1E8CrlnJgOwe1npkLYjGFRamfGX+gooDPcw1NnYC9Nxt3uC2tOXeWICMeOtrHlsZ9gWEuls1KIUAHa+Hd69p9oINcY4PQ17W3yV6ibaqNpQH5TPKO+sFNQGFdte2zf0G9+vIxB1CGQwOnjYmjFWx4QlmbTXOtnySiFel5ddz8wI2PaCGYS6k3tmMiiw+71SJJVE8uxoqjY04Gw5tPcokMHo4FAUtzYOh9VBY87A5gAGKhhB/8KRXddK5AlqPvjgA2JiYrjrrrv4xS9+IdYxGkFEIBoBFEXhk08+4a677mLDhg0sWLCA6g/sREi2Xj+HalQOnp17Bq+RAyBrZDQG1ZCUojYl6JHVEs0l7RhjdUy8IovNLxT4AkEQF0IdSrJaYuyFvtLam18qCHjJ3lAmyb6iC16Xgilej73Biccx+Ge8UXkRKF6F+j0tqI0qZLU8bCrGTbrStwDnxmfzg9ySwInKi2DUolTWPbUbR8PQfE4qnYzepqW10o6skVA8SlAD88GBqLOBhqOu5vGYE/WMvyyTltJ2tr62z180IhDBKBQDEeD/zjEl6JmwJJNNz+XTVu0gIsWA160ccGwOdjW63ghkKOrwQtp3nJQ0udf3d0W00TaqmtWrV5OWlsY999zDFVdcIYLRCCAC0TD3448/ctddd/HNN98wd+5cHnrooV6Xz1aNyvH/f6iGoUEn+YafdAzHG3dROl63wvY3fePxJZU0qNWaQo0kw+jz0rBlmdn6SiFNYVhpK1CmXJdDS1n7kPQIjjk/DVe7hz3vDf/ex+FCY1T5hjFKkHNaEmU/1dJWPXhz7HLPTMacaGD9P0LjWN1TIOrQ32DUXWEDS5qRcRdn0JDfwo7/FB0QCAcSjEI2EHXS+btozAVpSLLk7yGMSDH4hvkqvmA0kLk3XQWrQAajwQpFHXobju76/DpuuOEGduzYwZgxY3jqqac45phjAt42IXSIQDRMbd26lbvvvptly5YxceJEHnroIf562vOHXVC1cwjqEOphKPu0RGq2NQWuCpjkWzfC3ebBmmFiwmWZrP/XHlrL7WhMalxt7hHRE9SVvLNSiBlnZfsb+4ZFhbyB0Edp8dg9/pPeQO4Tsloi44QEarY00lTcFpal2AUfnUXD2IvS2b2sdHDmE+7f9zRGFSq9CntdaBSn6E0g6tDXYNRTpTdbtpmxi9Oo2drU5dDWvgajcAhDh5BAY1TjanVjStQz5eocNr9UQGNhq28x83ZPwI5XSbOiiR1vPaSHN2XlwIoTBDoYdQ5FHQ4XjhRF4aLnT+ORRx5h69atTJ8+nT//+c/Mnz8/oG0TQoMIRMNMeXk599xzDy+88AKZmZn87ne/4/mL/ttjEOoqBHUI9TAkyTDuogzKV9dRu6P7yaV9Mf6SDFytbnb+twRJBnOSIegFG0JB1qmJJE6PYufbxdRsC8x7PRyotDITL8+k6LtqagP4voy7OIOqDfVUbwn99XkGYvrNeQCseWJXkFsyNPIWJlOzrYm6XQMvIRw91kLqUbFsfqEg5Krb9SUQdehtMDpc6evoMRZGL0qlfG0d+R+Vd3mf3gajsAxEB4lINdJc0gYKjDonBY1RzZZXCgPy3JY0IxGpRkp/6F2p/74EpaEIRR16CkeKonDyX2bxyCOPUFlZyXnnnce9997L2LFjA9o+IbhEIBom2tvbeeSRR/jjH/+IXq/n/vvv592bvkKWuv6C6SkEQegHoUAyJegZc34am14owNnkwpphwm33jKi5MYeTelQs6cfGs/v9UirX1Qe7OSFFkiHj+AQq1tbRXtv/q/Nas5rchSnkLy+nvWb4lS/vTsbx8QAUfl4Z5JYMPlktkbswhaqN9dTvHngPqyFaS8K0KAo/rwjJAhv9CUUdegpHvVkLKH5KJLlnJFPweUWPJ+s9BaPhEIYOZkrQo9araCxsRWfRMOHyTLa/WRTU77ueQtJgD6HrSnfhSJG8nPTHWTz44IO0tbVx4YUX8uijjxIZGRnwNgpDTwSiMOf1enn99de56667qKio4Oabb2bNI7vRSNou73+4IAThFYZUOrlfk9oTZ0QhqyVKf6xFpZVJPz6e0h9qcDQOj4nqgRQ30UbeWSns+6qS4m+rg92ckCbJErETrP1aqFNSSYw+N5WS76qDWtZbGDo5C5JorbJTvqquT4+Lm2SjenNjUMpp98VAAlGHroJRbxdHTTsmjrSj49j532KqN/fc09pVMBqOgagznVVD8pEx7Pu8Eo/TS/LsaLxuhfLVfdsfjXE6JFkKaKg6OCQNZW9Rh26DkcZD0vlmXnvtNWJjY7nuuuu4++67UalUAW2jMLREIApjK1as4NZbb2XVqlWcffbZVPy3DaN06JWW3oSgDuEUhgDGXpCG16Ow463iHu+n0snET46kYl09XpeXtPlxyGqJws+G/1XpgbBmmHxDtzY1iAn9vRCVF8Hoc1NZ/8+9verl0Vk15CxIYvd7pYddbHG4ihrlm6Rdt3PgQ8jCTcbx8bRVOaja1NDrxxhidEy5Jpvt/ymmfndg3rN9D8w+4N/p9/4YkOcNRCDq0DkY9TYQAeSekUzsRCtbX91HY2HP80wPDkXDPRAdLOOEBLxuL0VfVSFrZBKmRlK5of6wFx3HX5qBx+5l+38Gb/HflJXmoISiDl2FI7u6DeN8N59++imZmZk88sgjnHXWWQFsoTCURCAKQ4WFhfz617/mP//5D1OnTkVaF0GkFHvAffoSgjqEWxgCsKabQKLLLzpJJaGzaLDXO9FZNUy7MZet/z78l6LgY4zVMXFpFs0lbWx7fV9IDskJRTqLptcl4FV6mTHnpZG/vJy2qpEzTK6zmbePAmDVIzuD3JLgSpsfh7vNQ9lPtYe9b1/2sd44OBAdrL8BKZCBqINXkfsUiCQZxi5OJyLFyKYX8nv1d9YRjEZaIOrMmmFi3EXprP3bbhyNLvSRWhyNri57JXUWDc5W95BWXA1UGfG+hKIOB4ejG9+9mFtvvZWCggJmz57N3//+d6ZMmRKQ9glDRwSiMGK32/nzn//MQw89RFRUFLayJBJJP6BgQn+CEIRnGDqc3DOTMSXo2bB/wVaVVg65icehSmtWM/HKLNztnpCcsB0O0o6JQ6WVKfi04oDbtRYNmSfEs+fDMjx28b6a4vUAI2Zx3+5kHB+Pq9VN6Y9dB6LMExPwOLwUfVMV8G0fLhB11pdwNBiBCKBydt+Kl6i0MhOWZKIxqtn47N4uFy8VDtX5O3PKNdm0VNhDduHxgQSk/oQiODAYKYpCvaWcfHkbLS0tLFmyhMcffxyj0djvdglDSwSiMPHRRx9x8803U1RURJIri0zGoJbU/Q5AHcI5CEWP9h0Aa3f4ho1oTCrGX5pJ/sflNBa2YozVAQzq2h/DkayWmHh5FhqTmo3P7R2xQ7kGKnFGFLJWPmRCt86iYcziNHa9WzJie4WEniVMi8TV7jmgamHykTF4nd4+z+/orb6Eog6HC0ehEojAd5Fn0pXZOFtcbH6xAK9bnPr0RefvU2umiayTE9nycgGuVg8AWackYq9z9qqHcyj0JyD1Nxh1OClpMl7ZQ21qEdvLNmO1WnnggQe4+uqrxcKuYUAEohBXWFjILbfcwrJly4gijlFMxiRZBhyEILzDEPh6gLQWNY0FrZR87zvpzDo5gcr1DSP+avNAjDonhag8C5uezxfvY4Doo7XEjbdR/H31iFrItzdyFyYDsPt/oXnlORjyFqbganNT8GlFwIfHdac/gaizrsJRKAUiAFOinomXZ1G7ves1ioTeMcXriZtso+ATX+93ytxYDLFamva1hWQV0r6Eo4GGIvAFI7u2laKo7RSVFzJ9+nRef/11cnIGft4mDB4RiEKU3W7n4Ycf5sEHHyQmJobIkhQSRx192IVVeyucw5DWokHxeHG1ekicHknclCg2PZcf8hWXwkHK3Bgyjktg+3+KqN0u1hoKBFOCnklXZuN1edn670KxptVBJl+bDcCGf+wNcktCjNQxjyODne8UD/rf40ADUWcd4SjUAhFAzDgLoxelUfh5BSW9XDtH6J4kS0y8IovKdXVUrK1HY1IhqWScQxDi+6M34SgQoQjA61U4emY6hcoOqqurufjii3nsscewWAbn70IYGBGIQtAnn3zCjTfeSGFhIcnubHLyTkMtd11Guz/COQxJMsy8fTQV6+rZ90Wlf5V2YeAicyMYuziN4m+rKfo68PMURiJrhonGfa3ETbRRs70Jr5iLJfSFBFOvz6W5pG3Q524EMhB1SL/3x0EJRQMJROArYJF6VCzb3ygKyAK5AiCBxqgm7ZhYYsZaWfXIjrAoxNNdQApUKAJoaVWYd5yNraUbsdlsPPfcc5xxxhkBe34hMMSgxhDScQXh5JNPpq7MxRGpSxg9+qwRH4ZsWSamXJuDrJZQvLDtjSLMSQayT00UYShADDE6Rp2TQt2OZhGGAkQfpWX8JRlEj7FQtbEBr9OLMU6HKUEf7KYJIc6UoPfN2VBgwz/3sPejcsC3T3Wz1nZI2vfAbHY+PY6dT48LdlMOUPRVFbU7msg7O8U/N0YYIMU33Fpn07LtjSIUr28+6pRrc7BlmYLdum6VzWr2/3R2edFRAduG2SSxbmUj33+Qy+gcD2eeeSZHHXUU+fn5AduGMHCihygEKIrCv//9b2655RYURSFJN5sky/iADY/rEE5hyJrpO4A2FrSij9SSPDuafV9V4W73TeCMHmPB4/DSkD/w1d5HOpVOZvJV2Xg9CpueyxcV5Qao82LB5kQ9LeU/z8Mad3EGildh22v7gtW8kDPtxlwA1v5td5BbEjrGXpiOJEtsfbXQf5ukkph2Yy4125oo/Kyi+wf302D0EAFYD/raGXXd1gE/50B7iABkjcykK7KQVBIbn9krjnsBYIjR4Wp1+7+n1QYV6fPjKP2xFnu9E1uWCUXxfa+Huo6eo0D2FIHvfO/PTxt46LF9uN1uHnvsMa688kpRdCEEiEAUZAUFBVx33XV88sknJFjGMjruOHTqwF5NCZcgJGtkvC7fl9LYC9LwOL3s/K+Y+DrYRp+Xii3TzIZ/7cVe7wx2c8Ka2qBi8jXZFH1dRdWGhkN+rzGp8bq84uSrk6xTEgHI/7g8yC0JHSqtjKyR/BW8OlhSjbTXOXG1Dk7lx8EIRQcHog4DCUaBCETg63GbfHU2DXta2PF2z4t7CwM36uwUZK3M9jd8C7h2/s4PVYMVjIpKVfzingbeW17JuHHjeOmll5g2bVpAtyH0jYikQeLxeHj00UcZP34827ZtY2rKIiYlnRHQMLTjpuiwCUOGaC0zbx+FJdVXs3/nuyXdhqHkOTH+tUuEgUmaFU3MGCu7/lciwlAAuNs9lK2spWFv1z2XrlY3HqcXjVlNytyYIW5daMr/uFyEof1S5sagMavxOL2HhCGApuI2XK1uVDpf74YtyxyEVgZGKAyls9c52f2/UmLGWUmaFR3UtgwXcZNt5J6Z3OXvdv63xF/dz5JmZObto9BHBW5KwGDoGE53UtLkQxZkHYi0ZA/vvhDB80+Oo7q6mlmzZvHAAw/gcIilGIJFBKIg2Lp1K7Nnz+b2228nRjeGPP0iYs2BKce446Zo/0/ujT8F5DkHizXDRMrcWADaa50Uf1NFe53vpLxjyNHBZI1E4vQojCIQDVhEioGM4xMoWVFN3U4xsXggkmZFE5nrOzktW1l72LWbrGlGEmdEozGph6J5Ic2aafIPkR3JNGY1iTOisaYdfiFHxavQVu3A0Rj+FzE6glGwwlHtjiZKVtSQcXwCEaliEc2B8rq8Pfb6dHy3d3zn2/d/56fMjcWaEfrHgY5gFKhwdNkiB9u/tXLRogR++9vfkpuby9dffx2Q5xb6RgyZG0Iej4e//vWv3HPPPWRnZ2Npm47N0PWVlN7YcVPXV7RCOQjJGhlJ9h0UE2dGETPWyuaXCvpeHEFUlxsQtVHFlGtysNc72fJyQVhUAwplY85Lo6WineJvq3v9mHAYLjIUZt4+CoBVj+wMckuCrz/7hCRD4oxoylbVDviYOJRD5npyuOF0gRoy10GSYfylmegjtWz45x5cbYf2zgmDSIIJl2VSs7WR8tV1qHQyipewPD5+Urah34/96CstN97VSklJCb/+9a+577770GpDuwdtOBGBaIjs2bOHJUuWsGLFCtIjZ5ATMw+V3Perw92FoA6hHIaQYPrNeVRvbmDfl/2rZNZ5wrrQf+MuSseUaGDDP/cctjdD6JqsltBaNL4rnP0M6CqdTOYJCRR9XYWzZWR+DhH7e0Sai9qC3JLg0JrVpB0TR8FnFf06tllSjYy7OJ1NLxbQWj6whZRDJRB16C4YBToQge9zmHxNNq0Vdrb+WxQ9GQhZLRGRaux38YT0Y+OJnWBlzRO7wvrCZ3/CUWsr3HK/mxdfKyI9PZ033niDmTNnBr5xwiFEIBpkXq+Xf/zjH9xxxx0kJCQQ455NpDG1148/XACC0A5BOpuG5DkxFHxSgeJRiBoVQWuFHUdj3xdtM8bpmHx1NpueL6ClTCxu2V/Jc2LIOD6eLa8UhkW1n1CVfVoitkwza/++u99f2hqjiglLMtn7YTmN+8RnMRJZ001knZrIlpcK+t0zoTao/JW9ZI2E19W/HTLUAlGHg4PRYAQiAFuWmfGXZJD/STllK2sHZRsjQex4K6POSWXVX3f064KbzqrBFK+nblczkkoi86QESlfU4GgIzcVee6svAWnZpzpuuLOO6upq7r33Xv7v//4PlUo1eI0TRCAaTMXFxSxdupTPP/+cVNsU8uLm92pNod6EoA6hGoY0JhWuVg+GaC3jLspg2+v7aKse2GRBtV5F7EQrFWvqUbxit+0PU4KeSVdmUbaylsLPK4PdnLCmManQWbUDD+cjfPhn9mlJAOz9sCzILQmiAO0DyXNiiJtoY8Mze1E8fX/CUA1EHTqC0WAFIoCMExJIOiKKjc/m01oxsB63keqA3vMBMsbqGLs4nS2vFmKvc/rPLcJdb8JRY7PEtb928Z93Cxk1ahRvvvkmkyZNGvzGjVAiEA2S1157jeuuu46IiAgS5LnEmDJ7vH9fQhCEbhACyFmQhCnRwMZn9ga7KUInskZi8tU5eJ1eNj6XL0JlP+ijtGSekMCu/5UEdOimJEPmiYnU72mmfs/IWltr6vW+gjLrngqPipiBEpljJjIngoJPywM2h88Qo8OWaaJ8dV2/Hp+y8ueqdT98OiEgbQpkIOpge/nHwD/pfpJKYtIVWcgamQ3/2tPv3jZhcEy+KpuW8nb2fDB8LqAcLhy9+Z6Wm++uoqmpiT/96U/84he/CPg6lYIIRAHX3NzMjTfeyMsvv0yiZSxj4k9Eo+q6IlpfQ1CHUAtDkgzxUyJpLmmntdKOOVGPrJFpCuCcAFOinqjcCEpX1OB1i122P7JPSyJuko0N/9xDe234V6cKBmOcjuxTk9j5TnHA516NPjeV+t3NVHaxfpEw/MRPthGZG8GOtwZn/ZuoURG01zppr+l9z3znQHSw/gakcAtE4FsGYvLVOVRvbhhWJ95DSWfVMOqcVPZ8UEpbVeBKSVvSjHhcXlrL7ZgS9EQkG6hcXz9sCgN1F46qamSW3GLnky+KmDt3Lu+88w5xcXFD27hhTgSiAFqzZg2LFy+moqKCzIhjSLKOP+Q+/Q1BEJpBSPECEky9PpeKtXWDNu46bpKN5DkxrH96ZF1FDpSoURGMvSCd3e+XUrmuPtjNCTs6qwZHk2tED20Twojku5LeVNRG/vLer/HUUyDqrC/hKBwDEfgu8uWekcz2N/dRu0MsS9BXkiyRtzCZkh9qaK0cnKGHSbOiSZgaybqn94DS6ZxkmOgqHD36jIbfPFSI0WjklVde4ZRTThn6hg1TIhAFgNfr5ZFHHuHuu+/GoIpmYtKZmLSR/t8PJAR1CLUwZEk1MvrcVDY8sxdnsxtZLYmemxClMamYen0uTfva2P6fomA3J+zIaolpN+VRub6eoq/7Vx2xL1KOjMHt8FKxpn/DnsLNlOt8Q+ZGysWOxBlRqLQyJT/UDOp21HoVbofHF+J7OUept4Gos8OFo3ANROArpx+RZmTdU7txi1LcIanj3EMboWbyVdnseKuYpuLhV7GyczjasFXN4mtr2VtQx9KlS/n73/+ORqMJXuOGCbEq4ABVVFRw6aWX8tlnn5ERdQS5sfOQJVVAQhCEVhDSmNQY43Q0FrTSWmmnanODf+LuYIYhjVGF2+4Vc176KfvUJFBg9welwW5KWPK6FXa/VzpklQ01JjWSauScfLWUDr+Tl56oDSrU+sGvFuW2+/YhY6yO0eelseM/RYctbFMyq6XPoejIEzf7/z9Q845CxZ4PS5l6fS7Zp/iGyQp9F5FqxNXqDkiBha50nHsoHoWqzQ3+3ihrpom2Kgeu1uGxnEHnhWA/KdvApi8t3PB/Zp599ll++OEH/vvf/zJq1KjgNXAYED1EA/D5559z4YUXIssyKdpjqLlzekCfP5TCEED2qYnYssys/dvuId3uqEWpaIwqtrxcOKTbHQ5ixloYfW4a298qonbb4FVmGo4GOkFdEEKBWq8i48QECj4tx2M//Hii/vQSdaUjHIVzDxFAzDgroxelimNoP02/JY+aLY1DXtV02o251Oe3kP9R74eMhqOl/9rC9XdUIMsyDz/8MJdffnmwmxS2RCDqB6/Xy0MPPcRvfvMbdKNyiFlyIaqIwHyJdAiJMCRBxvEJNJe0Ubu9CbVRheJRhnxhVGOcDrVBRdO+kXUleaDURhXTrs+lsbCVHW+Lq5t91VHCeOOze4MyHDRuog1dpIbib6qHfNtDKSLZAEBz6fBeWyz16Fgc9S6qNjUErQ1qgwqVVu5xHbhABaIOW54KfK/RUAYi8BU8saabWPfU7n6vFTVS6ayafq07OFAqnYykknC3eYgeYyEixeALZcPwjNepOMiP2khpfTFLlizhn//8pxhC1w9ysBsQburr6znjjDO45557sJx8HHE3XBnQMJR7409BD0Mq3f7dQgFthBqN0Te8w93mGfIwBNBW5RBhqB+yT0kCCfZ+JKok9Ufpiho2PhecMASgMavRWYb/l9qYC9IYc0FasJsx6HQWDRpzcEep556RzKhzer8weCDYXv5xyANMoHWskdWxZpbQe8EIQwAeh9c/70tjVKGN0PjDkP8cZ5jQSjpG1c1gYuJUXnzxRU488UT27dsX7GaFHdFD1Afr1q3jnHPOobGxEc0FZ2EYPyagzx/sIAS+8eaTrsxmy6uFNIfAxMTMExOo39tCw96RtTbLQEWPsTDmvDR2vF1EzVYxzKO31AYV4y/OoPDLSrHPDZHIXN8Fpfrd4v0ebDqrBlkt9Vh2P9A9RCWzDv1cGy4d2AKwwQhY0WMtjDk3TVSd64fMExNQ6VXseS/481gtqUbGXZzBxmf3Dnix+FDUoK1ml249KpWKl156idNPPz3YTQobwysmD6LnnnuOOXPmUOZ1Y7z12mEVhlRamai8CADaqh3s+6qS9hA4UEiyL6BpTKL2R1+odDJZpyRSu71JhKE+8ji9tJS3Y68PnXWaInMjSJ4dmCItoah+d8uwDkPJs6OJzI0IdjMA39X69lonkiyRdkwcsiY4pwDh2GtUu62J2p1NZJ2ShEorTp36orXSHjLFU9qqHez7stIfhqLyIobV52lzxjLNezQaRcdZZ53FX//6V7zeYVSLfBANn71gkDgcDq666iquvPJKNDOmkHDb9aijowb8vIrWi6L1hsQQubjJNvLOTvF3I5etrPVXKAomxQtb/72P6iCOuQ9H6fPjUWll9n4shsr1muQbHqp4FPZ8UDZoFZH6w5ygx5JmCnYzBk3miQlknpgQ7GYMGkuaCVNC14tzB4s+UkPC9CjMScFtV7gFo/yPylHrZdKPFQti9kXVxgYq1obG+nduu4eyn3zrJap0MnlnpxA32RbcRgWYqlXHhKY5ZBhzuf322zn++ONpaRm+F50CRQyZ60FVVRVnn302q1evJuK8hZhnzxjQ8ynaA1N63tWrB/R8AxE7wYpar6J8dR2SSkJjVOFsDq3ylMY4XUBXuB4JzIl6Jl2ZTcFnFYO2SO5wlHZ0HPFTI1n75K7QW0+rl2vIhKtpN+UCsPbJoa1eOaRC8DOUNTJe16FXjodiyFx3ejuULpghKnl2NBknJLDxmb20lA/OgqPDkc6qISLFEHKjFrQRalxtHhSPQuKMKNx2D9WbG4PdrIBpS61hdfkPpKSk8M0335CaOrRzCMOJ6CHqxoYNG5gxYwZ79uwh6qar+h2GOnqCQikMAZgSDP6rlopHCbkwZErQM/W6XKwZw/fKeMBJkL0gmdYqu/8KmNA7Zatr2ftRWeiFIfCfSEekGIifGtnzfcPQ2id3D8swFD81kogUXwW9UAtDgD8MpR0TR/KcmCC3xqc3PUbB7lEqXVlLa6WdnAXJvqAr9ErUqAiyT0tCVofWm+ZsdvvXUzQlGkKuN3egjMUxzIk8gebmZqZNm8ZHH30U7CaFLBGIuvDOO+9w5JFHUqF4UN90JbqsjD49vrsQBL4gFIwwJKkkJl6RRfwU3wlV4WcV7Hk/dIdUtVba2fJqIU1FrcFuSthInB6FOVHPng/KQvIELBTZskyodDLuNg91O0N7onRkbgRxE23iJCwcSBA3yRYyc4d6JBFy+1RID6VTYM/7ZZgS9STNHL5z+wKtcn09qx/dGZoXnfbb814phZ/51kuKnxLJxKVZSKoQ++PoB021kTE1R6BS1CxcuJCHHnoo2E0KSSIQdaIoCg888ACLFi2C0bnE33Y96khb7x7bQwjqEIwgpN1ftlfxKNTvaaa9JkyGoCnQsLcFRcwF7BWNSU36cfFUrKmjZZiv5xIosloid2FKyFwdP5zib6rY/FLBsAu7k6/OZvLV2cFuRmApsPnFAoq/qQp2Sw6r6KsqSn+oASDlh8AOlxuoUA1GLWXtlK+pI+2YODQmVbCbExa8LgWvSwm58N2d9hoH9Xua/b1H2jBfAkEnGRhbP5v02Cz+7//+j1tvvRWPJ/hzxUOJCET72e12Fi9ezH333Yd1wYnELL0IWavt8TG9CUEdghGGjLE6pt+chy3b9yVX/E01TSFQSvtwrBkm8s5KCVoFpHCUcVw8ikeh8MuhXQ08nHndCpuez6f42/BY+FTxAgoYorXYskLrxHUg2moctIXLhZpesGWbMURrQSGsLuhEjYog+btkZEfoHXdDMRgVfVWFoiikHxsf7KaEDXOygZm3jQqLcNFU3Ob/brBlm5l+cx6GGF2QWzUwslcmvWw8eZqJPP7448ybN4+mptCa0xVMoXfkC4K6ujpOOOEEli1bRsyVl2A75QQkqevLGH0JQR2GMgxJsuQPQG3VDna/V0rTvvAadqbSyqi0XU/4FQ5lStQTN9nGvq+q8NjFe3Y4kkoi+cgYJFnC0eDyXwEMF6lHxZF2dGywmxEwu/5bwq7/lgS7GQGTdnQcqUeFXxWy5tJ2WhNb8WpC9xgSSqHI3e6h6Ksq4qdEDrt5J4OlvdpB1cYG8IbXMbdpXyu73yv1j7CxZZuR5DDp6jqIJEmkufOYk3Asa9asYebMmVRXh8dFwcE24gNRYWEhRx55JNu3b+fLL7/ENGVisJs0ILETrIxdnI42wrd2T/WmhpAes9uVul3NbH+zKNjNCBtZJyXSVuWgYm1dsJsSFiKSDaTOjcUYG55X+/YuL2Pzy4XBbkbAGGK0GGJ67o0PJ1teLmDv8tCdn9kdV4ubhlENIIPKoRp2QzMHQ/maOtqqHWSdnBjspoQFj9NL4eeVOFtCq4jT4Xjdin/5D22EmrGL04kdbw1uowbIUBHJu+++S21tLRMmTGDVqlXBblLQjehAtG7dOmbPno3T6WTFihUsXv9Dl/frT69Qh6HoHTLF64nfX0e/alMD6/+xJ+SqxvWWPlLrD3PC4cWMtWBNN5H/Sbk4gemlpqI2Vj++k9bK8CyZ67F7UTwKWrM67IdwAEy4LJMJl2UGuxkDZojRoTGr8bqVsO6pVdlVJH+bjKlMVPg8LAXyl5djTTcRM84S7NaEBUklETfZhj4yPC+COJvdrP/HHqo2NwC+4gum+PDsIXx0wQt89tlnSJLEcccdx3vvvRfsJgXViA1Ey5cvZ968eaSmpvLjjz9y4ucH7ggDCUEwtNXkosdYSJwZ7V/rImwKJ3Qh7eg4xl2UEexmhAVZLZFxQgK1O5poLAivYZHBYErUkzLXN9QsnE9YO+SdlTIsrkznf1xO/sflwW7GgGWdnMios1KC3YwB8+g91I2uoy0u9OebhoLGglZqdzSRcUJCyJWUDlWZJyaE9ZIa7TUO3wVICRJnRBE9JnzD8B1TH2TNmjUkJydz/vnn88wzzwS7SUEzIhdmffHFF7nyyis59dRT2TB/FrLu5ysV/Q1AnQUiCOX/8ecF6rLuPHTcdPxkGwpQtaHBVxZSUcJqAm93VDoZnVUjFmTthZS5MaQdE8e6p/Zgr3MGuzkhL3FmFLETbGx+sSDs5g11RR+lxdXmHhbhbjhQ61WoDSrs9eH7t3jwoqyyQwaZAc0r6svCrOFKH6ll6g257PuyktIVNcFuTshTaWU8zuFx3JJkCSRfJd+4yTYkoHJDQ7Cb1WcexYNyTD3ffPMNv/nNb/jtb38b7CYNuRE3Nunxxx/nlltu4aqrruKTCdnIKlVAQlCH/oahzgGos67CEIA52YjiUaiiYVic3HXwOLwiDPWCWq8i5chYKtbUiTDUS+Wr6qhYUzcsLhwA/s9dpZWRZAm3PTxLqKYd6ytAUPRl6Jeo7opar0LxKrjtnrD9DLqkQMKqBBw2B7UT+rfQ80gIQwD2eicV6+pInRtLxbo6cZHiMDrCkKSSwv78RelUIMKcYEBShWcgUkkqlG+iOeuss3jggQdQqVTce++9wW7WkBoxgUhRFH7/+99z77338qtf/Yo30mJAp6Aw9GGou/BzsM5hSJIhZ0Eydbubqd3exN4Pw2/S7uFknZxIe52D8lWiOMDhpMyNQZIJm5LRwZQwPQqv20vVhoZhE4Y6m7g0i6aSNvZ+EJ7HhLiJNiB8A1HG8fFEpBhZ/489wW5KYElQN7YOl8kV7JaEheJvqomfFEnKkbHs+0Isf3A44y7OoK3aTsEnFcFuSsDkL/956G/0WAtRORHs+aA0bL53JCQa/wu33nor9913Hzt37uSVV15BlkfG7JoREYgUReFXv/oVDz/8MA8++CD/iFUhSYG9KtFTGOptAOrs4J6hjj8oeRismtwdr9sbdhXxgkEboSZxZjSlK2pwtQ2jK9KDxBinC/urkD0p+LQirOcNrnlsV7CbMCDF31YPqyp5ndmjfYVHJLeEyqHCbQrPYj1DwdXqpnRlDcmzYyj/qTbsKqkNtaqN9WFb/Kk35P1lucMlDHWQJInNjxVz44038re//Y3GxkaWLVuGSjX8FyAe9nOIPB4P119/Pf/617944okneNjQHvBtdBWG+hOCOnSEIbVRxdgL0in8ooKmfWKCq+CTfVoSMWMtrHliFx5HmB1thUEjyeH35Rvuhtt7fvAcog4xG2LQtGoon1PuK97TSyNlyFwHlU5m+s151GxvCtseWyHwrOkm0o+LZ9vr+3C3h89FzFl3j+bBBx/k7LPP5rXXXkOrHZ4XfjoM634wt9vNJZdcwrPPPssLL7wwqGEo/4+zD/jpr6w7f/R/4bjbPLTXOEZEr4klzYisGb69X4Gij9QSPyWSku+rRRg6jNR5sUTmdn2CN9yotDJTrs0Jy7UxJi7NYuLSrGA3o89iJ1iZcm0OKu2w/hoFoCG3gZpJNX0KQyORx+Gl+LtqEqZEoo8a3iePgWBJMxI/NTLYzRh0HreX9hrHz2EoTP6OVj64g2eeeYZ3332X4447Drs9PJeq6K1heyR3u91cfPHFvPXWW7z55pvc5w78+HR1nXrAAaizrDt/xBCtZdoNuf5FI3e/V0pLaeCDXCiR1RLjLs4gcXpUsJsS8tKOicPV6qZ8tZhn1SMJzEkGDFHhv05Pb3icXqq3NNJaFX5fWM4WF86W8Jun0lppp3pL47CpltVd7xCA2+TGZXaBF9StI2Kkfb+Vr67D2eIm9ajYYDcl5NkyzSRMGf6BqKW0nd3vlQK+IdzTbsjFEB0egfmNq5bz1FNP8eOPP3LKKafgcoXfsbq3huWQOY/Hw6WXXsqbb77Jm2++yW31ewPyvGMebfD//+7LYgLynB2y/28lildBUklkn5JI8ffVOBqG7453MJ1Ng8fhDavu5KGmj/KF5fzl5SIQCYIQUD0Fog6R2yMxVZoomVfSq8upI23IXIfEmVFknZTI2r/tDusy7INNkqUDqrSNBDqbhtS5sez9uBzFo4TNe3DR86dx9dVXM23aNL766iv0+vBcjLYnw66HyOPxsGTJEt58801ef/31AYehMY82+H86BDIMZd35I5P/vpFpN+eitWhQPAp7PigbUWEIwNHgEmHoMFLnxuJsdVOxrj7YTQlp6cfGE5FsCHYzgkJn0TDu4gx0Nk2wm9JrWrMarTl8eh10tv3vsSV83uNAacpoonpS9TA8cwisynX1uFrdpIheoh51BIGRNFze0eBizwdlKB4FrUXD9JvzsKQag92sw/r30g95/PHHWb16NcceeywOR/gW8unOsDqseb1errjiCl577TX+/e9/88vGgn49T1chqENAw9BdvuIJrVV2arc34R0mQy/6QpIlxl+SgSUt9A8IwaSzaYibZKN0Rc2wrpg2ULJawpppwhAzMobKHcy1/6KC2hA+FYEmX5PN5Guyg92MXut4b13tw7dCVnc8Bg+OSAcooLL3vI+N1N4hAK9boWRFDXETbWF1cSIY4ifbmHHrKN8CpyOM1+mlZnunoc4h/hb894Yvefzxx1m1ahUXXnghTufw6v0cNkPmvF4vV111FS+++CKvvPIKd7WV9OnxXYWfgwUyDE19ZjNZJyey6bn84bWYXx9pTCqyT0mi6NsqsSBrD7IXJBE92sKax3aOiCIbAyIB4i0KG3GTbQBUheFihsNJb4bMdbDttmEuMVM6rxRF1fUf20gOROC7ODP9F6Oo3SkqzvVEH6nFmmGiatPwWmS+r9R6FROvyCJ/eTkNe0P7b+fK1xdx4YUXcvTRR/Ppp5+iVodPD39PhkUPkaIo3Hrrrbzwwgu8+OKLfQpD3fUEHSxgYUhRyLrzR9oq7TTkt4TF2NHB5Gr1sOPtYhGGeqC1aIifbKP0xxoRhnqQOCPK1zMk3iJ0Vg2pR4fHcJ2qDQ1hE4bSjo5DZxVX/FuSW6gdV9ttGBJ8vUSlP9YQP9mGdgQOr+wte72TyvX1IzoMgW/4YEN+C22VoV8Y59nFb/PnP/+Zr7/+mrPOOoth0q8yPALRH/7wB5544gn+/ve/c4+j/LD372lIXFcCFYbSPC7Ozq9GVks4W9zkf1w+bCoU9ZclzRjy3cTBljInGo/TS4UopNAtWS2RODOayJyRUWb7cAzRWhKmRYXFiVjK3BhS5ga2SM1g0Fo0xE8bnuWU+9I7BOA2ummP81U/ldziAN6d8tV1eJxeko6IDnZTQprOphnxVfk8Ti/5H5fjbHEjqyUmX51N9GhLsJvVreV3rOS+++7jgw8+4Oqrrx4WoSjsA9G//vUv7rnnHn7729/yR01zt/frawjqEJAwtH9HiXh0M00lbSIA7GdOMjDx8qywmFAYLCq9TPyUSMpX1Y348NwTr1thwz/3UPZTbbCbEhIa8ltZ8/gunE2hX5wlaWY0STND/4TR2eRizeO7aCxoDXZTQoZ1r5XElYkgDk1d8rq8VKypJ2FaJCpd2J9uDRq9TUvSrOgRWaikSxI0FbfRVh3avUXf/3YLt912G88++yy/+tWvgt2cAQvrOUTvvPMO5513Htdffz3LJqYgSYcmjb4GoM4CEYZSPS7y3C4K7t8ohvJ0wZxsoKWsXbw33Ug+Mob0Y+JY/dhOXK0jd65ZTyJzzLRW2nE2j7xJ7oej1qswxOpoLm4LdlPCWkSqkfZqx7Cd79nXHqIO2kYt2mYtLcktB1zoG+nzhzrTmNXMuCWPfV9UUvqjuGDTpY59R5wHHEqCsYvTqVhTR92u7i/6B1PcYi2vvfYa//rXv7jqqquC3Zx+C9tLFl988QUXXngh559/PssmJB8ShvrTG9RZoIbJ2ZHRrK9FVotuoa60lIow1B1ZLZE0M5qqzY0iDHVHgqyTE0k5MvSHXAVD+nHx5C1MDt1e6f3tCunjowR5C1NIPy4u2C0ZNF4k/09fOK1OWlJaRCGTHrha3FRvaiRpVkxo7+fBpPh+RmKlucOR1TLuNg+uttC94Ff5moPzzz+f6667jueeey7Yzem3sAxEmzZtYuHChaSmprL7iDFIssyoVjeLNrb6g5AlVkJn6t/zDzQMJXjczHLaQVGIuHsVu/5Xgtclvi0600aoGXNBGvrI4Tce35xk8K9CrTGpyDghwV96NXaClTHnp/nvO+7iDDJOSAB8cxSOvHcctizf1dqcBUnoLBrKfqwBYMJlmb6TW3xD6Y741WgicyMAXy/JuIsz/M8bN9lGzHir/98RqUZU+rD8c++ZAhue2cu+r6qC3ZKQVPR1JZuezw/ayao5yeAvQhCRYmDCkkx/2eqc05OYtDSLCZdlMufuccRP9a1Yb8syM/WGXP/9InPNROVFBOcFACiw6fm9FH09MvaxzuGotyHJusdK9NbQH/bYVyq9TESnId0x463+qojgO353zFuMzI3giF+N9h9n8xYmM+GyTABKf6xBZ9GQvSAJAFu2mSPvHeef45d5YsIBx+8x56cRu//4rbNpyDghAY3J9/dgiNFhThp+66xFpBiY9evRomjJQbwuL7v+V0JziW/OXs6CJKwZ/Ty5HSBthPqA84qsUxPJPjURSZKoecdNTk4O1113HcuXLw9K+wYq7M6QKioqWLBgATk5OSRecxFNei1jHm3A9m4rTVU/D2TOnq4hIcd3AFFpIC5TRtWLv7OBhqHICTXY0puINDnIuXfVgJ5rOFMbVKi0ctgsxqoxqfyLR2pMajJP+jnkJM+JYfrNef775pyeROL+SbSSSiYqLwKNyfdYj8OLs+XnKz3VWxpoyPcNL3G3u9nzQZl/3LAp0UBLeTtt1b4KfCUraqjcX41LcSuU/FBDe63vd16Pgqv15+e1ppv8c7NUOplJS7OI3B+0osdamHp9jv9qXPToCGxZwTnADoQ+UotKJ+NxePE4xCSGrrhaPbhaPUgqaUjmMFgzTAdMIB93YTpxk2wAuNs9OBpcSPubUbmhgeLvqvG6vLRUtPvn5rha3dTvbvYPT4sdbyN+ii8sSTJMvDwTa+bQ7K8qnYykkvzv43CUtPLwYfNw4cij9+A2uMOyl8iWZSJ6tO89kFQSU6/PIXqsbzJ7ZJaZSUuz/H87llQj1vSf9z1Xmxvv/upo7bUOSn6oQdlfCbRyQwMlK3wXs9qqHTSXt/uDTFu1gz0flOHev5ZVQ34L1Zsb/M/rbHH754xqTGqi8iKQVL42JM2MImd/sAKYfnMeyXN85y06m4bMkxL83zdas9ofpEJdW7WD4m99xwOha7JGRmfTotIOzam7JEPCtEj/fhuRYmT0Oamojb59qrXc7pvyAEgeicn62SQnJ3PJJZdQWFg4JG0MpLCaQ9TW1sYxxxxDaWkpq1at4ooT/97tfVVqkFTgdoAtQWLUkRrWf+TE2Q4aPbi6mKvW1zAUOaHG//8RbRLxDTJ7knxfmpGn7e7TcwnBp7NqcLd78Di9ROaaiR5tYc/7vvUjJl+TTXNJG3s/LEdrVjP+0gx2LyuludT3JWdK0FO5rt73PBYNbodnQCfp1nQTE5ZksuWVAhryBziJWwJDtA5nswuPw4s52UD0aAv7vqgEYNxF6Thb3OxeVopKJzPjF6PY8U4xDXtbMMToMMZoqd3ZHHInOxOWZOJxetn22r5gNyXkTboyi9ZKu39/DhSVXib5iBiqNjVgr3eSPCeG6DEWNj2XD4A+Souz2T3wk5z9Q7LUehWZJyZQtqqW1go7CdOjiB1vZfNLBYOyf+acnoQpXs/GZ/MD/+QhojeBqDtyN296SM0hkiB6VARtNU7aaxzYss2MPieV1Y/vxOPwkntmMhqT2n8cST8untodTbSUtqPSyWgjNL4LTwPcv2xZJsZfksmm5/NpGsCcPpVORq1T4dhfMCV+aiStFb4T04hkA7lnJrPl5UKcLW6yT0siItnAhn/tBXz7c+32Jur3tKDSyqgNKhyNoV94RehaytxY6nY2+S+aBoohWkt7rW/R1anX51Cxrp6ylb6pH5Is9Vjg6aWSx5k+fToqlYr169cTExM+w9nDJhB5vV7OP/98PvroIybFn4/FkNCnx8tq8O6/gD7pJA315V6KNv18xa83YahzADpYWpVMZqWK78e68KhEIOqJJEvoIzX+P7hgiZtsQ/EoVG9uRBuhZuZto9n62j7qdzcTPcZC/ORItr3u+5I0JxlwtblxNAzNl8eoRamY4nSse2rPkGyv44RTpZdJnB5N9ZYGHA0uUubGkjQrmlUP7wB883Vaytup2tgAku+zDNb6EdoINSqdivYasYbV4UTmmLHXOwPyN6c1qzHG6WjIb0XWSEy7MY89H5RSv7t/J8Hy/qud3n5UUbRm+npCi7+tBnxDjcrX1AVsYUNDtBZ9pJb6PSF0gh9gAwlEHWQUUMBSYKHydy3Ubm8KQMv6RlJJvnX9FN+x3ZxgIH+5bxmOI345mtKVNZR8X4POpiF2vI3yNbV47N4hnf809YZcWsrb2fXfvi0c3186mwaNUe2/ij/2wnQq19dTu72JqLwIxi5OZ9Vfd+BsdhM7wYqkkoK6JpjGpCJmnJWKNXUooqOoR7JGZtIVWZStqvVfjA2E2AlWcs9MYc3jO3E2u5Fk+vxZuKxtrHJ8xZgxY1i5ciUaTXgMgwybIXP33HMP77zzDnlRp/Q5DMHPYQhg30YPNft8n7DOBEWXRnX5mMgJNQf8HEzthsQ631tYFOvlu3EiDPWGJc3ItBvzMMbpBn1b5iQD2gjf8IGYsRZm/XqMf6iYNc1ERIpvWJmz2c2WVwtpKvb1xtRub/KHIYCWsvYhC0Mak5ro0RYq1gbuIHdY+08IPHYvJd9X+19ryffVrP3bLv/dpP1XiABM8Xpm3zkGU7we8A1h6xhWOJgk2ffjbHaLMNRL9XtaBh6G9o+WSp4TQ84C31w2r0th9aM7+x2GAKbflMv0m3L79djGglZ/GFJpZbweBa/bd2w3Jeh965wNQHutc1iHoUDxIuGVJLSNOt/iyENAa1b756AefCySJAmpUwGDNX/bRcn3vu9wR4OLku+rfWEIhrTnu2JNHTFjLUM2jM3R4PKHIYBtr+3zh9XGola2vFror84ZkWLEmuYbDiipJGbdOYaY/UMHtRHqIZm3pLVoyDwhAWOsftC3Fe68Li8bntnrD0PRYyz9HhatMaqwZfuG1NfuaGb7G/v8+0V/gqmm0cg025Fs2LCBX/ziF/1qUzCERQ/Ryy+/zGWXXUZe3LFkxhwR0OdOvcCIFliuNRA5sW8lMbPKVeSWqfhikhP3/vNAEYYOT1ZLWDNMg3KiETUqAn2klrKVtSDB7LvGsu/LSspW1qKP0hKVF0HF2rqQLnKRclQsqUfFsuqRHSE9N8Z/NW+tb5XxvLNT0Nu0vkn8+K40NRa0HjBnKhCSjogmYVok6/+5d8Svbt4XWrOvkMnej8oPOEk6HFktMXFpFuWraqnc0IDaoELxKgHbNxNn+i5Ila8K7MLD2aclEZFiYMM/9/b5seZkA9mnJLLtjSJcAd5/Q0kgeocOoEDZ7MEpDaw1q7Fmmqje3AjAxCuysNc52fVuCZJKImFaJDVbQ7sip0ovM/O20RR/W03J99XBbk63ZI1EwrQo6nY1Y69zkjw7mrRj4vnxj9tAgaRZ0djrndTtDPxnLWukkP5+DkUqncz0m/Mo/q7ad+7TR5knJRCVZ/Fd/AzgW1+uL2Br+1p+85vf8MADDwTuiQdJyAei9evXM2fOHKL1eYxLPLXLtYYGovkPoPFItBh8Xe2HLaijQES7RLPRd3+9E+z7L4iJMDR0JJVvqJYhRkfemcnseKcYR4OL1KNjMScY2P5mEeCryONocOJ1h/Ru/jPJN0m2oaCVPe+VBrs1faIxq9EYVbRVOdAYVcy8fTQ73i6mdnsTpgQ9xlid/2RmIIxxOqzpJspXB/YEetiTIPeMZMp+8s2/ORxbltlf8CP1qFga8ltoLu19kAoFGrMaV4sbfaSW0eemsuPtYux1h+8pMyXqSZoZze73SkNu7lwgBToQlc3ynSDHjLdSv6t5wItJx06w0lbtoLXCTvQYC6MXpbLqkR242jwY43S42jxhF1hzzkjGlmVizeOBPfkcTLJaQmfT+nvkx1yQRkt5O8XfVKOzaRh9Tiq7lpXSXuPwfzcLQ0tr0eBsdoHi+45sqzr86Am1XoXb7kHWSKh0qkH5WypJ3M7uyh288847nHnmmQF//kAK6SFztbW1nH322WixMSbhpICFIc/23Xi276bmYXBoocWgIHlh1k4NGRU9vyWZlSrmbtOgdQGSCEN9pTGpyTk9qW8rUktgjP15GMaEJZlkneQbNulqddNe6/QP4yr+ptofhgDaaxzhE4aAqNwI9DYtFavDbwG//2fvveMkqct9/0+Fzrl7ZnpyzpvzLrJEEURBEVGPgBiAI4I53Mu993fu65x77wl6jseEmAOiiB4TICogQdKybA6zOznn7p7Ouap+f9R0TdgJHaq7q7vr/XohLlNd9Z3a6vp+n+/zeT5PzB8XXsKxIIMj/3ZBaCRnaTWg/iq7cGzlHkvaksngXEQOhtKBA/r/MJlUMGRq0mHrnY3QVfLSlfGX57MWDFUfsK1wphOTxARPUARCzgiii4XoCZek9QhMh9H/h+IOhrKFQk+j7eYaWDtSD7a0FSpU7rEIf2642i7YWi/0+3Dk3y4gFuQzQMG5SMEFQwAw/aYTapMS1rY8WsmnCBvnVsiTL/xyDOMv8RkugiQQckaFv4vmGyoFu3Fgce5OYelmqNFg72faBac8meSIevlgSKGlsOPuFiHzvh72XRbsfqANCh0FNsZl7btUM9MBm74M9913H4aHh7NyDbGQbEDEMAxuv/12eL1e7Ky9BRSZ2ZcjEQQxF/jAZeGPKzXrHAG49Cyf+VkDcnGja7SCwdH2GKLL1vNyMJQ8KiMNQ61W0Pmvh6FmqX+JfacFuz7eKlhNTr3hxPw5PtMQDzHo+/1EUru+hUDlHgt8k0H4pzdftEodJsoKO4UTr8zj5MP894QgCdRdUQHjol5dbVWibItx06Z8tJZC9wcboLYWX++qXKKxKdH4Vvsl/11poIVeQJ7hAE5+byCp4ClTai8vQ+3l2XUiCjki6P3NBNg4B1pLYe8D7YId+Goa32oX+ogVM6LL5RaJ+eM4/s2+pLLBBEmgbItRqAUy1utQd0WF8C448e1+ofaHjXMZZ5ykQGA6DN9kULCSL3TCrij6fj8h2OTPn/Vg6ii/oUepSOz6eCvsO/nfVWVSwFCzcS1SeCEKZ49XsOeXSY1YkEHPL0aFGmSCWntedV70YvT52axLTAmORLtnL/x+P975znciGpXuWk2yj9w//uM/4plnnkGT/jpolOa0zrE6CEqwOhgCABBAXy0Dp5GXwmmWZRvLPQSuOa2EJgKwJPhjFpGDodTwT4dx8uEBYZcvgbZchbItRuHP3bcv9S9x9npx5sdDYBate50XvPCOpW9bKlUUehqWVgNmT+bQTCGHJDJ1HMsX4id+T0uLHq3vqEFiO97YoBWaci5HqaNB0kTB9K6SKkqjArYu0yUGGNYOI+qvqhAKcwM5CsqPfb0fx76eu/doPMRg+JlpIXu5PFut1NP8vUklgy1zCYmC7IShzXJoDQVjQ8LsgkPrO2qELNDsyQW8+Z+9vFscUFDZ/VSYPeVe7E9XGD2CUsE7FhSMG5goizM/HoKzl/9zxQ4zum9vEI4t22Jcof4A+AX98DMzwjMkkzqekQA4hoPKqMDeT7ULzd4BvgEuraYQDzGiutNthJrQYIf6EC5evIg777wzJ9dMB0nWED311FO46aab0FZ+JZrLL0vps6uDn9WsGQytommGQvvkklmCIg60TFPoq2HALgsh5WAodZZrVsu3mrEw6EfUG0Pt4XJU7bHiza/1AuCzBhF3tKSsN2sO2dBwjR1v/Lu0zRSyQaLBKgjgwBc7Mf2GC2MvzYFS8o0x5SBIZBathlVmBYx1WmE3X/h7KBEIisDeT7Zj9vQCxl6Y4/9bGjazhUi26ocS2Hdb0Hx9Jd78Gu9SyTF8hqf+ygpUHbDija9c5K3+S+yZA/h5cP/nOzDy19m0iuALFYIEVGaloOjY99kOTL/pwsQr81AZFTC36DF/zg2SImFq1MF5Mff27cUEQRGov6oCk686+AweAez+RBs8w34MPj2d8/E4K8dxcvoNPPzww/j4xz+e8+tvhuQCoomJCezYsQNU1IZddbcmXTe0WSCUIJmASBkDKl0kyr0kzjTFEVtHrScHRKlRtsWEjltrce6REfgmQzjwxU70/34Cjh4v7ywT50pas7/r460IzkfQ+5vxfA8lryh0NDiOQzzIoGqfFY1vrUT/U5MITIXy3ruqmFDoaTRcXQFTgw4nHh7IWyH0lsUd4/M/z0+DXXOzHkFHBEo9jXiIQXih+J+xbMjlVgdEtIZadBP14cAXuzDy7Aym33SB1lIgCAKxQGlnADreWwdtmQonv5OjXnNShOANG9gYh7ItRrS9qxZvfOUizE06dP9dAy78egzOHjkoEgNaTaH1pmpMvuZAaCGKeDD3m4wcx2G48jSm3BN44403sH379pyPYSMkVbXGMAw+9KEPQaPRoL1sc0e5ZIOgBMkEQwAQVQDzZhYN8xQ0YQIx/aULBTkY2hxKTaJiuxlzZ9xgwixMjVqEnFH4p0JgYyze+MoFwV6z1G02dZVq6OxqjDw3k++h5J3lCyVHjwcRbwyN19rh7PXB0qLH1BEn5s648zfAAoekCeiqNKg5aIPKpMCp7+XXvnw9jXuuSDjpdb2vDhqbChOvzgt1KzLpUbHdjOoDNpz6Pm953vtf4/BN8jLnfCzEpMjcqQVsuZ03LslFrZ4k4Zbmfsd5L1x9/JrAPeSHdzwIY50Wzh7vJWsJmdQx1mugNisR9cfz9h0kCAKNrq3wGt14z3vegwsXLkiqaaukaoi+8pWv4MUXX0QVfSWU9NoN9darC9qMpIIhDqh2kiBZIKQCJmws9g0oBEOFBHIwtD76KjVMTXyxPKUg0XRdJfRVfBHl0J9ncOKhfqEwttSDoOXYd5oR9cWwMCg3gVxOLMDA1evDye8OYup1B1z9PgSdfIGfuVmHuivKU3IwkgHqrqxA1/vrMfLcDM79bCTvhernHhnBuUdG8joGADj3sxGM/20ezovZ6aNTzEwd8qHuinLh3R90RuAa8IGkCTTfWAWdXS3p/kD5YGHQj6gvJhgOyCytCdg4hzM/GsLIc7MAAH2VBk3XVYJS8EtWU5MO+iq5eWvSEEDz26vhmwwi4omBoIgVNdu5hIzR6MIejIyM4HOf+1xexrAekgmIjh49iv/v//v/0Gg9CJuuYcXP0g2CEiSbGdJEgZ1DNCoX+NsyZ2HRXx0Hu2zBJQdDKyFpArZOg+AKVH2oDHWHywHwhbVHvnwBnuEAAN5NSnYIuxSCBMq3mjF31lPSksG1IGkCtJoCx3CIBRmMvTAH/6L9s8bG9yNK3DNDrUYOjjaApBPW9HM4+5NhhBdiYCIsSAWZ9yxNPiEoAqSCr2OZfN3B91IhCXS+tw7GurU35goZ0eRyHKBaUAn/39Sog7aM/7N/MoSxF+bAxjlEvXFES1wetyYcMHfGjfJtJtlRbQ0sbQZ0vb8eAO96eeTLFwSjhbrD5ag+xDtTEiS/Bkm832TWgFvc8HmZt0ov6+LliQkn31yjchqwxb4TDz30EH73u9/lZQxrIYmvoc/nwwc/+EHo6HK0VhwW/nsmQVAqKOIAOD4r9ML2KKZs/I5pQM1hrIIVFllyMMRDKUmozPwXSVOmQtf7GwQrzaGnp3HuZyPCsYkdH4WeRtU+G9RmOSBajblZD4WOxrwsA7uEih1m7P10u+B8tpzpN13Cs6YyK7DjYy0o68rPrpfUsXYYsOeBdigN9IqeIiRNYM8Dbajau3HPimyy//Md2P/5jrxdv2qvFXseaFuxoOIbFUpiepQeixsQuhktao5Ugg7yyvtzj4ys2R9s4pX5nLlZFRrz5zxQaGmYGvWbH1xisDEW8SAjfC+XK0rO/WwEQ4umAIYaDbre3wDNYjCutiiFFh0yENavYVdUCCjnz3lw4tv9iHj4vmyUOvf3q3y6EZWWKnz0ox/F/Px8zq+/FpIwVbj77rvx+OOPY1flHdAqLaIGQZtlhygGuPKcEmPlDAaq10jpc0D3OAWPlkPwrt6Ur+94sn3Fn8tu6kv5HFJguRPQltsbAILA+UdHAPAvoFIoRM4WbTfXwFCnxYmH5IB7NQotBVOTHo7zm/c00ddoEJgJg2M4NF1fCZIi8uKkI0VoLYXq/TaM/23uEge1ih1meEYDiLhjeRlbogdRvup2VGYFTA06zJ12r3uMpVWPhYHikLPe3LPkanbM25jSZ23nreBIDq6uBRAMoPQpMXzD5i5ptIZCxXYzpt4oHUe1ZNnzQBs8owEMPDmV76EULMvXIFvuaAQ4TjBpKUUXw+XYd1lQudeKMz8cEuzsl1N7eTnsu8w4+fBAzm3uWX0Ux4gXceWVV+KJJ57I6bXXIu+mCs8++yx++MMforvqBqgGHWAg3qSYjFSOoYC+6jicxnW+MARAMwRM35rD6s43q4OdzSjUYEhfrcH2jzbh1PcGEZyLYOS5WaEJGwA5GMoAPt1vxNSb8kJhLWJBJqlgCIAgpQP4LvYJGQqlJGFtN8DR4ykJO+XlVB+0YfbUAuJBBmMvzq15zEaBQC7It4FBxB3DnNu97s9NTTpsub0Rp74/CP9UaN3jCoHlwRAA7DWOrPjzJQESy2eCghUhcDSHqCEq7DhzFBAxJ/fu19iUaLjWDvewH8G5yOYfKCHmz3tQtc+KwT9Or7lgLWVImoDSqNi08fryNcjAk5Og1Xx/J51djR33NOPMD4eKotl5OgQdEbh6ves+W/Nn3Ij6Ynnp+UX6lego34Enn3wS3/ve93DvvffmfAzLyWuGyOfzYdu2bfCNhrALh5O22E6GzYKhxlkSDAmMl2+8Qir7AjD75czHVWjBUNP1fAHjwFNTIEgClXssmD/nSbsfzM57WzB7agHTRy+VVJQyllY9ttzeiBMP98sLhVW031IL50Wv0OQvXWxdRnTcWotjX+8rqWZ/SqMCu/6+BQN/nNrUulZfrUHjtXb0PDaa84nRvtsMAJg94c7pdUkFge4PNGDkr7ObBjo6uxqB2cJfUK0OiNaD44DjvkZQIQr1L9VgbqcDgcpLm2GvttreiFLfqV8PbYUKu+9rw/mfjxRNFlIsmq6vhLXdgOPfTE89QWsolG81Yeb4AjiWQ+tN1WCiLIb/Iru5roV9lwUkTawpfc0WHMehr/wYPJEF9PX1wW635+zaq8lrhui///f/jvn5eezClaIGQ5vCAYYQiTi5cuIv+8KlhyaCIZoB9GECbl1x7uAojQo0XF2BkedmEQvEEZgJC4XWHMtl/AWZP+cpXWvRDSjrNiHoiMjB0CoIkgA4iLJj6rzgxbGv9SHq54Ohnfe2YPpNF2ZPFnFdAwFEvTEc+2ZfUja1sWAcLMOB1tKIenMrnWu4mp8Acx0Q0RoaLMMhFtw8SE4EQxU7zdBXa4T6hWIkMlSJ8EA19lx3AoQRYG8ah00TTVletxomwoIgIRhYyPAE5yIIzodRtsUkB0SrmD7qwtwpd9qfj4eYFWsX32RIaDGg0NNovNaO0Rfmcv7OyxXWDgPiIQbesUs3M9ZCU6YUnPxyBUEQaA3uwJvE8/jUpz6Fxx9/PKfXX07eAqKXXnoJ3/72t9GOndAQOlHPvV52iGQBQ4iAR8dh+lv8JFiW5Dm7JyjYvSSe3Zb6F0eq2SF9tQZKPQ1Xnw9MlIG+SgOVWYFYIC66jGbyNbmvx2pkudz6cCyHvt9PiHa+RDBEUAScF73CAldboQI4IDhfPAFp09sqodDS6Pv9RNI9OyLuGHp+kZ/GqKe+O5iX60a9afzOHJDLvbtcEXfzbnq0OQjKFICyxgGwBEBxIDW8HGm5vC7d4Gj7R5vhmwoVdUCZDo4eL6oP2DDw1FRee4JJDbHl+MvNPVQmBfRVGjBRXvVibTcg6o8XvCx2OVX7bIh4okkHRCPPzgr/X1epRsgRyYligAoq0W7bhl/96le48cYbcdddd2X9mmuRF8lcKBTCtm3b4Bh0Yy+uyolUruwLQP02CuWNFE4+HQWbhPJruVROEwFAAKEUTdKkFgwpDTRiQQYcw6HlHVXQ2TU486OhrF7TUKcFE2aKatEpBuYWPbbeIcvlVkMpSRgb+A732bYhb393LbQVKpz6Xn4W5dnA1m2EQkNh5njqGTBDjQZKgwLOi8XdHd7WaUTUF4NvMv3Fj1JPC4F2IbCeXI7jAO8zu0GZAtAfTN446IluW8pjsLQZEPFE5ffdKhKyuXM/G4Z7KJDv4UiKyj0WMDEu6y6s2z/ajMBMCINPT4OgCCi0VFFIrEkFkXLPR5ImsPfT7Zg95cboX2c3/4AIcByHC9Y3EGT9GBwchNWae+fTvHgT/tu//RvGxsbQjb1Zk8qVfWHlPwAwcYHBxZdjKQdDAG/JXQzB0L7PdMDWwfehGHl2Fmd+nN1gCAAa32pH7WJvIpklrB0GhFzy4mA1llY9uj9QD6Uh+z0S+p+YxIVfjQHgnYq23NEIpVE6nbNTIdHjy9njTSsYAoCKXRZU7c/tRNT1/nqh30iuqNpvRUUGDTGVBhq7H2jLW3PDTGECKnhf3AbGpwZBAPrLz0O3P/vz1UK/T37frUFwLoKwOwprR2E+T9nEUKOFzp79JqxnfrzUCNbWacC+z3RAaci771jGpBoMAXxj3PM/H8XEy7mzwyYIAh3xXQiFQvjHf/zHnF13xRhynSEaGhpCd3c3qiKNaCW2iXpuquvS7JDWRKB5L42+12KIJrkZuJ6JQq2ThCVA4Gz95hGVVIKhyj0W2DqNggWlrdMA91Agp93pSZrv6SF3Kl/J3k+3w9Xrw9CfZfnIatRW5abOQmKjr1Kj4Ro7Ljw+BjbOQWVUIFIg2nJtuQo7/74VF381Bldf8oXuqyEVJNhYbus7tn+0GQCynqleTaa/q323BY5znpy+SzPh5h4nmIAKlC4CLk7C/+oWaLYNg7amXreSTnYogbFBi/KtZgz+UbaZXk7z26tgbTfg2NelsXYoZSglCXOzDs6L/Lt0y+0NcF5Mf6MpH3S9rx6hhShGns3MQEJpoNH5vnoMPDmZk82MaesgLrrP4OWXX8ahQ4eyfr3l5DxD9NnPfhaIkGhCV06uF49yiIU4sCLMWRTLmytIGYIiUHPIBl0lv6MSdsfgnw4JVqnOi76cT+BsnJODoVVoK1RQm5UZLV6LmVwHQwDgnw7j/M95lzVKRWLXfa2o2pe/hqWpEJyPoPe343D1Z/Y8JQIElUkBMkfFtWd+NJSzYIhUkEJ39kwDv9kTC2CiLJR6GhqbtBtO39zjRLi/Gt6/7AUbpUDQLAxXnk0rGMoUSklCW6aSm2euwtXng9qs5OsaZS6ByOHjwkRZIRgCAfinQwgv9mnTVapRc8gmmE5JFVe/D77x5GqHNoJjOMR88bQdhlPF7m6CTq3HvffeC1aMhXsK5PSN9PTTT+OJJ55AO3aAIsRNRa7ODhnKCJAUEA0Bva/FEU8ysN3IYnu0nMXJJmlmhxITMsdysO+2Ql+tAQC4B/0YfX4u67UY62HrMqL93bX5ubiEsbYbwEQZeEZlvfhymq6vRPst+X9emAiLvt9NwNHD90Ayt+ihr9HkeVSXQqlIGOv5gnhnj1eU7zmlIrH7E62o3JO+pEyqVO21YPcnWkGpxJv6Wt9Zjdaba0Q7n5joazQwt+gBAMq6eegOXAShyGxhk0l2CAAW+v04+9Phgsms5QrPSADxCANruyybWwEB7PtcB+y787Q5xQGjz8/BPchvHuirNbDvtgoOqFLdDJk9uSBKLWgsyODCr8YQ9cVBKghhvskWJEtiq3Evzp07h1//+tdZvdYl187VhSKRCD796U/DigpUQNzJY3UwRCmAzrcoUNVOpXSeZPoNESyg3EBFk49gyL7bgl0fbwWtoQAOOPlw/wo3lXxSjI5MYmBtM2Bh0C87Cq3COx6UTJDo6vMJmc3q/TbUHErWkzJ31BwsQ9f76kXN5jARFhceH8PM8dz0otj7mXbs/UxqTa7TZfqYCz2/HBPV9nnw6Wlc/NW4aOcTk9pDZajezwcwpDoGZY1TMu9kbYUqp7v+UodjOLgH/bC2G/I9FGnBAeN/mxcl2yEGsycWcPLhfoADaC2FXfe1wr5LWptH2nIVDFnYwKs+WIauD9SLuqG0FtoZC6oNdbjvvvvg8STXmF0McvY6+uY3v4nh4WG0Y2fWew4xMeD8izFMXhQ/xXe4l8aWibUDrVwGQy03VqHmED/ROS94cf7no0JKk5PQxpujxyuqfXIxQGsoGOq0WJDlcpfg7PFKJphfTs8vRzHw1CQAwNysQ/t7akEq8r+yHPvbHM78ZFj0uh/3UIAvxs3Brzh32i26zf+aEHyBsWdY3IA74o0hFoiDUpJ5X8ySCgLt76mFuZlvZdH/1CR6fpkfO/WN0JTxrmqJ7JUMj6vfB0Otht/clBGYOeaSVGPkxBorHmRw/tFRoXl4zSEbmm+syuPIeKoO2ND6zmrRzzvxyjzO/mQ4J33EOsid8Pl8+OIXv5j1ayXISUDkdrvxz//8z6hkGqAnxE0HL88OVXdQaNrFS/GCHi4l+Ugy2SEA6KlhMGTPfcRB0gQqdpqFHbVYkEF88aGMhxh4RqSxq74cggQUusJ3aREbc4seBEHAJTfhW0HFDjM0ZRLVz3MQevqQChIkuWRlStK5D4z0VWpoy/keSiFHdgpdLa167HmgLeu1HmMvzGHshbmsXoNSktjzQHYX4JV7LGi/pTYvi9nEM8jGOJAUIWQMmTCLm8+L1+csU7lcgpAjgrOPDAsyJBke96AfBEHA1CRub8ZCR6GlULHDzDfslhiekQDiYX4zOh5hEQ/y/58g+UbO+Zgfhp6exvnHxsQ/MQfBWKH57VWouSx7qgnKq0JnzRY8+uijmJ/PjdtdTgKiL3/5y4hEImjOspFCPMYhFk1dgpRsMAQADiMHj/bSa2QtO7Q4NI1NhbabamCo5fWbYy/OSXInfTm6Sg0OfKETuqrsW2YWEuYmHQJzYcQKqIdJtiFIAg1X22Fplf6OsavXh4v/xUuktBUq7Ptch2Bikivqr6pA8w3Z3YkMzIbh6vNlfRFStsWYdftqgiTg6vMhOJe9XebJI06c/M5AzoqPE+gq1dj3uQ6hGP/ir8fh6pV+9tkzHJCUmkEKRH1xBOfDMDdL/z2YS9Q2FdrfXSvZep0EsycWMPYiv7ljqNWi7aYaoR1CLrLtCTiWQzTLDqnxECMEgtnCOloPkiRx3333ZfU6CbJuuz01NYXW1lbYQw1oJbaKeu5EdkhnJhBwp/9rpBIQKWNAnZPEhI1FZLFdSbaCoforK2Bs0OLcIyMAAIWeLqhFNKUiYW7Sw9Xvk2tllrH3U+1w9cl225dA8AvXQnpWaA2Fqv1WTLw8D47lF6eB2XDWTUxImgClpgrqfbAe+z/fAQA4+h/JNwWVMgRJwNquX3KpyspFAJ1djcBMGAQJ1B2uwNRR55rB2HoNWVNFrOyQAAG03VyDhX4fHD3F3Qg4FZrfXgVLqwHHvynbbycgSICkyYIz4li+Ztt2VxM8IwGMvZTdbLjKqEDT9ZUYeW4W4YXcuLXqKvl3UTZw1o3i7NRJHD16FLt27crKNRJkPUP0T//0T9BoNGhEh2jnpLrahGDIXEVi23UKaE3phd+pBEMAb73dNUVBHxY/3CdIAvbdFl4KA8AzFoDj/FJBWaEtfpgIC+dFb0EtcLONyqyA2qKEe1iWiqyAAMCh4J6VeIjB+Et8MESpSWz/SDNqDoq8cFyGsU4LpYHmrexz9D4o325G+TZT1s5/5ifDOPOT4aydv3ybCeXbzVk7/2psXQZ0vLceakv2drNrDtqw/SPNoNQkOBYYe2musIIhYGnTQIIyqHziHvJDY1VCZS7MBtHZgGNRcMEQsHLNNn/ODc8YX9qgLVfBvtuSlew7qSRBqymwOZpLtRUq7Ly3BZa27NRPWiZrodFo8OCDD2bl/MvJakA0MDCAH/zgB7C5akET2flyu6dZXPhbjK8ZygEhJfDUrhicBv56YmSHloqzOdQdLhf0w57hQEE1AltN5V4rjHXZtWgsNMxNenAsJ8mar3xBKUkc+EJn3gvSM4UJszj702HhO2tu0Yu+KG66vhJN11WKes7NMDfqsmq1GnZGEXZmbyfTWK+FuTF3NRmO816cfLhf9N1ZtUUpSKlmji/w1tXhwlskLqf/D5NwnMudi1Qh4BkJgGM5mJtk2dxy7LstaJOovX0yzBxfEAxdTE061B0uR0KgJaZBT8gRwbmfjWRdMpcgOBfB+Z+PYiHDHnjrQbIU6iLteOaZZ/DKK69k5RrCtbJ58n/9138FxShQixbRzpnIDNV0U9Db+IfIM5teMJRqdggAv5O9+DExgiFrhwH7P9sJWkOBY4ETD/Vj+mhu7G6zTeUeC4wNckC0HFOTDv7pUE5cWgoGAph83Zm1lHsu8U+FhJ3MxmvtqD1cLur5z/1sBEN/yazzeKr0PzmJwT9mT97Zfmst2m/NXu+pwT9Oo//Jyaydfy1CiwGemNa3dYfL0XitHQC/W+6fCol27o3ISnZoGQodndVsWqHBRFj4pkJyHdEq2CgLJlocDd6nj7pw4qEl6+79nxVvQzBXDbWXkzBHMdRqUCfynAcAVUwjjAYj/vf//t+in3s5Wbtz4+PjeOSRR9CANlCEuK47BAmYK0jorekPP61gaJHuCQrbx9L/nYz1Wlg7+IffOxbE+MtzYON8UJf4dzFw6ruDmHjFke9hSApzkw5ukW1/Cx0mwmLilXlEcrSjlSvO/GgII8/wwYu5RY+Knea0z6W2KkGpSDARFrFAjqWzi68kU4MuKxIPrVUFrVV8d0GCJJY2ZPLwWi3fbsb2jzZDZUpfHVGx0yw44w0/M4MzPx4Sa3iSofuDDWi4xp7vYUgKz0hA3kxcxfw5D4b+nNvNoGwirPliHMZfnoN3sc+StcOQUUa+87Y6dL63TpQxpoq+WgNzsx4EJe48QbAEWvXdeOGFF3D8+HFRz72crAVE//Ef/wG9Xo8aNIt2TqqrDSTF60nPvxTDTH9+dgsCKg54JMXCuGXPh32XBZW7+UZe8RCDydedovcRkZEeaosSSr0CXok0HpUCJE2g+oCtKPtusHFOcOExN+lQ1p1+HU7bTTXouDU/kxzAB2TbPtwkbOSIyanvD+LU9wdFP6+1w4DtH27OW/bBcc6NMz8eQsSTfqBfvsUE06LcLx5mUtowy7R+6IluW9azQwDQ/4cJDP5xKuvXKSR840GoDAq5jmgVtJoCpS6ubr5sjMXk60uGKJW7rbDvXNboNcXYYvJ1B6aP5UdlNH3UhbOPDINjONHtxk2zVbBYLPjGN74h6nmXkxWXufn5eTQ0NKAy1IgWYoto57Xf0IHabgrn/hpDPAN5drLZIfZPa3usu/ekdnEVw+HmmQiOWhQY1VLo/PiJog+AqvZbYes0Cg55MvyOcccttXj933oKXvsvFvpqDbZ/pAmnvjeI4Hx2+ulIBYIkwLEc9DUaVO21YuhP00kXCiv1NGgNldd7pK9Swz9dWLJGqYyZ1lBJ2XFTShLNb6/C9DEX/JMh4ZlJh6+MHFn3Zy8H29b9WYJcBEMya0NrKBz8Uhd6fzuO+bNyjVWCQw92YezFOUy+Ll5vLSlCKkiwMRa2TiOa3laJU98fzLmdfybQago77m7G+N/mMXfGLdp558pHcN55EmfPnkVXl/htfLLSNfPrX/86SJJEHVpFOyfV1Qafg8X8CJF2MMRc6AcAsH+6LLOxcBy0cQ5+mgBHrB1cKVgOdSEWQzoKEYpAv56GR0Gg/WPHUApL4ZAzKkvDVmGs1SA4H5aDoWX4p0I48uULQpPTYiaxsFXqaSgNCjBJbIoQFAFwQNQfRzTPLpOJwIKgxLVG3/vJdgDAMRFthhNjlEIwVHt5OSr3WHD8W/2b3jcmxkJpUECp56fmdIOhzTis7d/w519sPJiV665H7VvKwHHA5GuyxBrglSNBRwTGOq0cEC3jwq/GESryjTMAwoZ50BHB7KkFIRgq22rCQr9v3RpkgiRQvs0E95AfUV/+5ot4mMHcaTc8IqthyhbqoFL14B/+4R/w61//WtRzA1mQzAWDQXz729+GLVANJSGOLtxQqwFJAZEAMHlh4yiZudC/7j8AMPeJzIIh954o7GEWt01Hod1gKHUhFpc7Y9AuShxOmWhUfPxERtcuJNyDfky8nJvuwoWCoU4L70RuCqELiVIIhpbj6vXh/KMjALcoRftI07p1JjUHbdj18RbJdGivOWTDznvEM8kBAEevB45ecRd9O+9pQc0haWQ4HD0eDD8zs24wpDIpsO0jTXwDRw44/+hIxo1VN8oOSRFSSYLKQzG4lPGOB2WX1lW4B/1FV2u6ESFHBON/49dRSgON9nfVbGhvrdTTaH93LbQVuW0UvhbjL88j4omBpAkYasUxlyHjFFqsnXj66afh9Yrfu0z0N9Bjjz0Gt9stmrMcpSTRfUczqjsurTFYL+hZDzGCIQBwKEk8XaFAeNXd2+6JY98C/2Ud1pL4dbUKQZF1lIWCoVYDSilPcAkoJQldhRq+xcJJGb4n077PdEBXmf+Xd74gaQLxILOuUYKrz4fJI86sZQpSxTMa5PXpIr7WRp6Zxcgzs+KdkACmj7kkY20fdkXhvLD+5B0LxBEPMqJr7tMl19khABh7YS7rDSsLDd9YAFq7Wp5Hl6EpU6HuCvFdzAqBqC+OY1/vE3pTNl5XidrLV96LiDeGV//veXgk1Oew5rIydP9dg2jPsWmiCuFwGP/3//5fUc63HFG/aRzH4aGHHoKNs0NLiGMZyURZnPvxIMZ+35tS8JNNohSBGTUFhiSgj7OgFxcrMRKILu7kcgSB0LIJrv1jx/Iy1nyg1NPY8bEWoRhYBtDXaECQhOAkIwOABRwXPAi7ctNNW4oE5yK48PgY2DgHhY7CngfaVuwKB+cjmD0hnV5k/qkQZo65RHVts7QZxG3qxwEzx1ySkMstp/ntVai9nK9LNdZpseeBNih0FNg4hwuPjyE4V/xSoI0gFQSURtlEIIF3PAiCEG93vRhQW5So2mcFrS0+E55kiPrjwruXiTBgIrxMiVKSgsqAYzhwElLlT7zqwLlHRkRrrKsmNGioaMZjjz0GhhG3rkrUgOjIkSM4efKkKNkhpVEh9PAIzIYz1qyLlR0CAHActnrjsIcZ3DIdRaef/0u5YKBx2nRpWVYpBUMAEAvGceLhftH1o4WMoUaLeJhByFHai57lRLwxDP9lpiA7kGcFDnCPBBB0RPjM+AfroS0X3446UwgSaLjWLthBZ0rbzdVou7lalHOZW/RouNYOQoKb6jF/XHAdDDoicI8EsmIHXmhyuQTdf9eAlrdX5XsYkiHkjCIeYaCrkgOiBAv9Phz9j17Eg4VjMJAtxv82j+k3eTe5yj0W7P5EK6ydBnS+L39upGvBMRwCs/zmVO3hcigNmVsX1MSbMDExgd/97ncZn2s5ok4bDz30EDTQwYbMO6mbGnWo3GWRhB3v8mBIG+ew2xPHVm8cpjiH58oVuKjP/xilBMfyO99y89El9JVq+Kfl+qHllHUbi85CNRNiQQaDT00hHmKgsihgatRLMsvKsYDOrs6ov85yzv9iFOd/MSrKuVQmBXR2taR2SBOEF6KoOVQGSkkiHuL/rmMSW9jlQy6XYPjZGYw8Vzx9ZsQgMBOGvoQlxTLJMX3MhZ7HxsDFORAgUH91hSiBh5jQGgqVuyyizGkqhxEGyoTvfe97IoxsCdFWI/Pz8/j1r3+NWrSAWMd5LaXznXHjxLf7RbEazDQ7BABYdCfXMBw6/Az+ZFeiT09jWk0hvkHBc6llhwCgfKsJVfut+R6GpNBVqYVdEhleC955Wz30dnn3cy1CjigmXp2Hq48vrpdKfUmCnl+MiiblC0yHERBJ3jZ7YgE9IgVXYpH4u/OOB+E470HVAavk/j6lQGA6jJCzdOWza+GfDkEvZ4hW0HlbnaAekuFhYxw8IwEsDPgx8vwsqvZYodBLKyCKhxic+Ha/KK6JBEGgq24r/vrXv2JgYECE0fGIFhA9/vjjYFkWVWjI6DytN1XDvotvSpVKE7ps4d4TxRZvHNfN82YJThWJX9Wo4EnCEacUgyEA0FaoYKiW3XESUCoSGqtKtEVfMRByRPDGv1+Ua6rWwFCnhcaqxPhLvEsPQRLYcXcLai5buy9aviAoArYuY8bnaXtXDdreVZPxeWxdRtE7pGdKzWVl2PGxZhAkgYgnhtmTbtRdXpG1RW4mcrl8ZocS1ByywdoufvPfQiUwHYbGppKNFZbhmwjK0vN1ICgCIUcER/+zV1hvdH+wAdUHpOG4mVjT23dZ0HpTZjJp/VQFKIrCV7/6VTGGBkDEgOjRRx+FOV6emdU2wd+wZPpzJEu62SEVwUJN8uPwKAjMqUgQi1kihiBw0BXDHnfp2D+mwujzc+j7/US+hyEZdHZe8uCfkSVzy4kF4pJxT5MS9VeUo/G6Jdkxx3KYPuaCe5B3DiIlYk9sadGj87110NiUGZ1HX6XJOEDQ2JTovK0O5mZx6poyJfF35B70Y/r4gvCchxei8kbABpga9dBWSK9uLl8kZNal7MS5msnXnRu6NpYy7e+qwdY7G5dq7gnANx5EyMkHkEo9DYUEDCnYGMsHRxnsX5ExCtX6Orz44ovgOHHWEQQnwpn6+vrQ0dGBbTgIO1Gb1jlImshKRii9gIjDdZYApkwEXrWtrZPv9sbBkEDvOmnJUs0OyVxK9QEbGt9qx+v/0iPJ2oZ8sOWORkwdcWBhQDr2oFKBIAnQWgqxdRqxbrurCYHZMIb+PJ3jkV2K2qJEeEEaMiepjKX5hiro7Gqc/enwuscQJECpKNG7zxd6hkhmFQRw6MFujP51FlNvOPM9GklAKghoy1SSc5GUAsZ6LUiahHto7Xm19aZqmBp0OP6t/Lk0ryaTtb9HN483/S/hmWeewXXXXZf5WDI+A4Cf//znMBqNKEN6DjE6uxp7P9UOfZW4uyCpBEMkODSro1AQHAACL9bQeNO8vgazx0jLwdAaKLQUDn6pC6Ym6RWD5wtdJV8/JAdDPJSSRMwfQ1w23bgEguQzQusFQwAw9YYTjgu8Djvf2aJEAJJPSU/i2vkOhhJ/F44Lnk0Xr1vuaETLjeI6qhVVMCQt5WP+4IDgXFhQGcgAlhYDdt7bKolMh9TwjgXXDYYAYOTZWUG9Q6lJVO235lVmrK/WYO+n2tPOChsCNhgMBvz4xz8WZTwZz2Icx+HRRx+F3msFRaT3gIYXopg97UZwPn+6UAXBYYsujHIFvxCZV5GIbvCgKFgOWgnUOEkNluUw8ep8SfeWWY22XFXyPUaWw0RZ9P1+Um5SuwpKTWL/5zthad1Y9uW86IV3lL93be+qQedt+bVZ7XxvXUY1QLvvb8Xu+1vT/nzbu2rQ8d4834Pblu6BdzQI58WNJT3jf5vHxCuOXAytoCBpAge+1InyraZ8D0UyhBwRaMpkGWEC94gfJ787IFjYyyxhadNvGDzHwwx8E7wM09ykR8PVdtB5dHoNzoUxe9qNSJrlJyRI1Fub8Oc//1mUnkQZ34njx49jaGgIlahP+bMESUChpcBEWYz+dTbnJgoWmsEhYxAEOEQ4En92GTAVTc5Kdpcnjuvn5EX/apgwi4lXHYh45PqqBJoyFYJyEaiAyqQAqZC3gNdi6ogT/pnkpSAzx1yYPcW7veVrp2/21ILQDyMdPCNBeEbSD46n33Rh7lQemtcSS/d89pQbMyncA89IQHadXAM2zmHsxTlZDrWMoCMiyX5k+YIJswjMyIqLtWh6WxXKt5uTOtZ5wYs3v9aLWIABQRHo/kA99NW5dTRk4xxG/zoLJspCoaVAbODYvB7acRsWFhbw1FNPZTyejAOiJ554AhaLBWak7oBUf1U5dtzdkpWJfCO5HLXYDS/OARTBQUXyf45x/DhWNGFdh149tWZ9USnL5QC+uDnXXyopozTQoFWU7IqzjPZbatF2c+auYsUGE2Yx/vL8hnK51XhGAljo5yUSTddXYsvtmbl8psPCgB+ekfSbMA/+cQqDf5xK+/MJu9lcs+WDDWh6G29+sdDvS7kRtalJh6brM+/ZlylSk8tNH3XJ78tlBOcjoNWU5GyU80nNZWWSMVCREie/M4CxF2aTPj7RK1KhpUAqSKFJeq7bAhAU76Raf1XqdupG1gqDwYBf/OIXGY9DlIDoHe94B8g0WoNPH3Vh+JnpJUeMHNCtDeOwOQCAg4+h8IpHhzCb+tg9ChJzqpWfK/VgCAAq91rR/m55sZsgIXWQM0RLDD49hfGX5/M9DEmhtihRfdCWUebMcc6DuTNu/g8EclqHoTTQ6LytDkpj6s1aTY26tJr1KY0K/pq5bEC47L7OnXHDcT79nhoKLQWdXS3KhmAm9UNSQ6GjYd9pluuIFkmUEshZoiWsbQbZjXANOIZLS2kV9cVx7mcjwkbEtg83of6qCrGHty4cw2H4mRlMH01daUAQBA4fPoznn38eLJtZ2jCjgGh0dBSnT5/G6UdTc6xQW5QgFSSi/jicF32ZDGFNVmeHFAQnWGjPRGkMhda3iU0mOwQA5hiLLd7kd3JLhbEX5nD+59JqjJhPtGUqsAyb94JvKRGci8g1VavQV6lRd7gcyGBvyDsWFJre1R0ux7a7mnK2qGQiLJQGBVRpBCcdt9ai49bU3UlVBhpKg0LY5cw6BO/wV3c5v4s5f9YD71j6Uj/HeS/OPTKS0w3BQkBbrkLrzTVQmzOzcy8WwgtRsHEWWrmOSODsT4cxdUR23VtNx611MDdnbmg1fdSFhQF+ba400KBU2a8zcl70IuqPg1SQUFtS++47XwvC4XDg4sWLGY0ho9/yySefhEKhgA2ppf0731eH1ndm1pQpeThcbgpgu47XJLviNMYiSmS6UiiLcNjliQu9ieTsEA8TZeX6oWVoylR893V5zQOAtwWtvVzuMr4aR48XR/+jV7Q6SvdwgM9eJE6X5cCIibI486Mh+CZT77XV+5sJ9P4m9b5lvskQzvxoSJB5ZI3EveMAx3kP3BnIA9ci1clfTKQmlwP4wP71f7kgbyIl4ICQKwqNnCGS2QRKRaZVh7OauTNuwXyh6foqbL2zMeNzJkvrTdUpGwVp3RYolUp861vfyujaGQdEV111FWgiNZlE728mMJqCzjEV+OwQh0plDCqCBUDglF+NM4HNbSuTzQ4BwICewqN1anCEnNdfTvMNVaLsUBQLGptKaIomA2gr1CjbYsz3MCRFQjIlZpNa33hQMDqw77Zg+0ebc6ILVxpomFtS0/Z7RgIp1yCZW/Q5kcqRNIEdH22GfbcFAG/gIKY7oq3TiL2fak9LapigmORyAP89YEVszl4MhF1ROWO2jKp9Vuy4pyXfw5AcPb8YFb2ecvjP0xj8E9/zTqGjYGnLbu3W6POz6P1tahtkFEFhz549ePHFFzO6dtoBUSQSwcsvv4yRZ5MPbPTVGoDgbSTTtdlLBpoA9hpCqFPz11iI02nVCSWLnB1aQmdXg9bKxZ8J1GYFwgtyxizBzDEXTn13MN/DkBSVeyzY+6l2pFGGmRTB2TAW+n05cfGsuaws5f46LTdWpfGZatRclrqRT6qwcQ6ufh+CWXKEcw/7cf7nI4gFci+/lmJ2KEHNZWWSMJyQCmF3FGpz+kFzsRGYC8N5YWNrexlxiPrj8C9m/iu2m9F+S21W+85F3DG+lolASgZdzCSJ3t5eeDzp13Wm/Vu9+eabCIVCsCA5+QulJrH1Q42oOWhL95IbQqsplH9xNyhwiHMEnl/QY2CDWqHVpJIdAoCKCIsbZyPouv9EqkMtas7+dBiOc+k/kMWGyqRAxCNLP2TWxzsexPgr81mzkfVNhjD+N97EwtphwLYPN2VtQht/aT7lgNfUrIcpRceoU98dwPhL2THmoJQktn24CdZ2AwC+Z1A6UsBkYCIsFgb8ch3RKpgom7vasAIg4o5BJWeIBLyjQUy8IhvzLEehp/GWf9iyaR+7TJh83YlT3x0EE2VBKgg0XGsHrc5Og9yaQ2XY+qFGUEn2SaLGdWBZFs8880za10x7VnzppZdgNBphgDmp45kwi3OPjGTUr2IjKDWJBnUMJppvzhRkSWRTOB8nAB9NyLUhMuui0NMgaTKr2dBCgqQJvvFollPuhUZgOozZE7npoxMLMgjMhrNWdxMPM/xkSRNJa9lPfKsfJ76VnDEPQRIgaQJMlM1aY0YmyiIwG0YslJvGj5oyFVrfWZ2W21yxyeUSzBxzYezFuXwPQzKE3VFQChIKnay+AHiZsb5KndVMRaHBRFgMPDWVdcOiRI24zq6Gfac56YAlVaaPOnHukREw4eTmKi1ngF6vx+9///u0r5n2b/Liiy/i8OHDIJKooTE2aAEA/qmQqLINXaUa7bfUAgS/g/Jnpx6ueOovjFSzQwDgUpKY/dIZeRdrGaZGHQ5+qQuqDPTwxYTaxN+HsFvOEAH8JDb9ppM3mZABwC+Gy7eZsiaXW41vPIihRT24oU6L7g/Ui+4gRKlI7P10Byq2m0Q9LwBU7DBj76c7RF8IUSoS3R+oh6GOn6uG/jQtaq3QRpA0AUOtNqf24VKWyyWgF3ujyEAwmJBlczxKA42d97ZCXyP3PEzAxljMnlhAxJubDVjfRAhvfq2P3/Al+P6CusrNa/WThY1z8E/xmXlTw+Z16QRBYNeuXTh69Gja10zrDRyNRvHaa6+hJtiCBqJjw2N1djW2f7gZ538+In7zPALQWJVQ6mhE/XGUffv1lE8Rv2YPrGk49RHgMPfLrYhSAJfixl7tVzdOMRKvnU59QBIg7I5i/JV5xIKyHTkAQeIgu+7xMBFWkG7J8Jibdai7okKwy84lJE2AZTjRs0VMhMXoC7NwDydnlLDr460A+KaCm+Ee8gMExB9zlAXLcDlvSAgAgZlwUr/7an43cRQb7WkOxAt3s45SkTj4xS5c/M24LMEGBJWByqLMmnyzkIh6Yzj53QF5c20ZlJKEqUkHz2gg6axKpiSkvkodDY01O5JOS6seW25vxMnvDCCwSS2n70IUI+4RBAIB6HSpm3sRHMelnLI5evQoDhw4gH24BibCuunx+hqNUJSVKRU7zLB1GHHhV2OinC9+zZ60Phf9cARvGwSebgM8KQTFmwVD61GoQVIpU/OWMtS9pRxHvnwh30ORBBqbEgRFyD2IVkEqyLy7amnKVKi7vAyDf5rOeda77V18I+f+P0zm9LqUikTL26sw/opDaEiYTyglmVKgxwdEqXNL7f60PpdrrO0G+KZCiPnlDTYAOPClTky+6sDEq458D0VGgujsauz6eCtOfX9QyKzki67318N50Yu5025RzpdsDBFS+fBq+C/45S9/ife///0pXyetfPSJEydA0zT02FgSoa/iIwVRgqHFjbtYII6INyaK13q6wdD0JyLwqoC/NQDBFDLY6QZDhYKmTJWSK0ixozIqcpa+LgRqLitD+7tSb8BZ7OQ7GAJ48w+1RSlqcb+pScdLmjeh/w+TSQVD7bfUwtQknqU/x3BQW1VQmfIvQ6rYbsb+L3SKMq8VC64+nxwMLSPqi0Ohl2uIEtQcssHSZsj3MCRDYC6MI1++gMBMfoMhgiQQ8cSWnDNFeKUlYohETLEeqogOSqUybdlcWgHRyZMn0d3dDYpYf4FvrNdi572tMNRmvkBuur4S7e/mJ9aFAT+G/jwtas+OdIhRwKSR/3e2KZTsUPVBW8r2ucWMYlHKKcMz/OwMLv7XeL6HIRl0lWrs+vsWqCRQF+Ae9OPMj4fBxjkoDTSarq8UpX6DVlOb1ijpqtTQbTLRUSpSFDcjUkGi6fpKKA002DiHMz8agntQZCl3GnjHgxh8airpxUOxZ4cAvia1Yrs538OQDDF/HErZVEHA1KSHzi5ezUrBwwHxEJM1t9Kkh8FyGPrztFAi035LrSgW+oZaDXbe2wpjvXbdY0iQqK2txfHjx9O6RlrfrhMnTmD+jAcVG7y8vWNBnH1kWOh2mw4ERYBjOPjGg6IX0WaSHQIAmgEaPMCUAQglsZ4pBancyLMzsuvLMpQ6Ws4QLYMJs2DCsuY7ARvnJCkJ0tnVsLYZMP7SPNgMHl/PcACeJOqItnywAQBw9D961z2GibDoeWw0/cEsQtIErG0GuAf9iPryHwglCC9EhcJ5GR5Lmx7GWi3mzrjzPRRJEPXHc2q8IXV6fpH5+6CY0JSpUPuWMow8N4NYIDcOmcngGfILUuDEmj4dfBMhnH1kGN6xjc1uYuMkZhQzaV0j5dVrLBbD2bNnN7TbVlv44qpkJsP12HJHIxqvtQMAHD1ezJ5yp32ubKBkgL2TgDH/0nPJwERYRH3SWtzlE4WezkvDRUlCAK03VW+a8i4lQo4IBp6cyknD1FRYGPDj+EP9iIcZUCoStZeXZyTlMtZpoS1XrfvzgSenMPDk1Lo/15arYKxbf1dwMwiSQO3l5aBUJOIhBscf6hff4EcEjHVaWDs2lwClmx0qNEaencWZHw/nexiSIRaIQylL5mTWgaQJqC3KpJyfc8nsKTccPXwT3ca32rHljsa0z5WIKRIxxlpUVVair68PCwupt7JIOSC6cOECIpHIugGRqVGHPQ+0bSqBWHMwCkKwn50/64azNzudiDPNDgFAUAk8vg2YTaKlSilkhwCg7opylG0R32q3UFHKkjkBSkVCZ1eDUhV3HV0q6Ks1WevhkDGLMZqxXoeag7aMFmKtN9egcs/65juuPh9cfb51f16514rWm2vSvr5ST6PmoA3G+sX6I2nFnwIVO82oOVSWtfMXklxO5lKi/jiU+vzLa6VC/ZUV6P67+nwPQzIEZsI4+5NhSa85nBe9mD/rBgAQJL/mTxV9lRp7HmiDqXHtelK1Xw+O4/Daa6+lfO6UZ7mLF3mP6vUMFTyjAfT+dhyB6Y3t8VZD0gR2fbwVM8cXMPmaQzR3inxTKsEQwKdspVAgLgUIigCtoeQM0SJMmMXpHwzlexjSgQC2fbgJo8/PYuqIM9+jWZeFfh+OfaMPTJQFQREo6zambBF+7pHhDTPHjdfxSoCRZ2fX/PnQn6bTkgqVbzPB0eNFxBsTfgcpM/j0tKimFoWO2qJEx6216P/DJILzshQj6o+D1lAZyY6KCf90CLGQPL8WEt7RILyjvOSt+lAZKndbcPLhgZRUEv7pMHp/Ow7P6NoKNGWAVxP09yfX7Hs5KW9PDg4Owmw2Q0FcmrKiVCTAAY7zyWd2aA0fMLBxDhOvOOC8kJ2sUAIxskMAoIwDVw0D1tz07isI+n47gcnXpbu4yyWJjuJS3q2RySMccOp7g3npP5QqiUDC2m5A2801G8oV1iIRDK2XDSvrMqGsa+0NtsRnUpXiqi1KtN1cA2s7L0GTejAEIKlFbimYKSRgIgwCs2Gw8uIfABBf7O+n0MpZdoDPLE8fdeV7GJLB0qrHoQe7QBfI8+Hs8WLiFYcQDCVigWRwnPcCHNY27ImRKCsry11A1NLScsl/15arsO+zHUKn72RQaCnseaANFTvMAIDZkwsFU1jKEUCM3Lgpayllh2RWQi8u5OIh6RQ35pPybSbs/3ynIImV4WuICimD6LzgxfFv9Qvv6FTe9ZZWPfZ/rnNNi+tj3+jDsW/0XfLfVSYF9n+uE+aWJHTJiyRqjcILURz/Vn/WN9jEhFKR2PqhxnWlIKVGLMhg4MkphF2FsSbINvEwP5eI4bZYDNBqCrpKuSY1QcgZxegLc2ALYPMH4N/Rsyf5Op+KHWbseaAtpWDfWKfFvs92rFmfarVacf78+ZTHlPLyZGBgABPHL5U2hN1RjL88n1TPoUQkGAsyGH1+Fq7+9fXjYiJWdgjg7bZfbQAW5LY7AHiJ2MEvdcHWZcz3UCRBYtJiInJABADBuQgmjzjybgkqFaztBtQeLs/3MFIm4uFt52zdRmz/cBPUSXYn94wGMPLsDGLB5APAWDCOkWdn4B1LzpxHbVVi20eaYOs2rhhroZAwpWHja39JSik7lEChowpmxzvbxMP8c7GZjX2pYOs2Ytfft+Z7GJIhvBDF1BGn5Ex6ksHV78Po87OIBReD/iSyRb6pEMb/Nr92EiVAYnQ0dRfCtDJEGly6Y8fGOEy+6ti0P5DaqsTeT7fD0sqfY+b4AuJB6S4a1wqGAPDpOhYg1vl1SzE7NP7qvKz1XiQxacUjcgQAAIHZMCblDusCaosSpg36KUgdZ48XZ348JOzeb9ZLiY1xmH7TBTZ26Qtzxz0t2HHPpaqDjT6znMS1w64ozvxoCM6ewskKrabvdxMZtaooNrZ/pBm1l2XPaKKQYOQM0QqcF704+d2BfA9DMih0FMzNuoJUYcSDDGaO89kiS6seez/dvulmG8dwmHzNsWYASHpV8HhSl6OndOui0SgmJyehwVJKn6QJ7LynRQhw1iPxJQ67ohh9fhbe8dwW36SbHVoPJQO87zxQI+LcW8jBEMfwAXHIIQdEAECr5AzRcrQVKmgr1rdeLjWm3nDi/M8Lu49GYuFu7TBgzwNtSWWLat9ShppVC9zwQgThhZXvjZrLylD7ls0XwhqbEnseaBPsqgs9mCAVxJoGEqWYHQKA/j9MCgulUie+OJdQckAEgF9EB2ZSM+8qZoz1Omy9swlkgfeC9I4HMfr8rLDZttkGgKVVj533tICkl+pXjFoTFhYW4HKlVmOW0p1zOBzgOA5KLC1sCJqAfyaE0AY6X321Bvs+2wF9Na8vmz7qAlMAO+frZocAxEngtTrAtYZkLt3sUCFD0gSMDVo5nb8IpSLBsdymu9ulQsNVdjS+NfNu1TLSY2HAj77fTQoT2EbNmUklCUqx8ue9/zWB3v+aWPHfKAUJUrH+eRLXCDmj6PvdJBb6pddXKB2ab6hC1/tlK+EE3vFgwdQVZxs2xoFlODlDtIjSqEDDNRVQ6OT7AfCOoG9+rRdMWPpr641gIqxglsHHDu1C7LAWIVcU/pkQCGopIFJwfIwyMjKS0rVTWr3Oz88DwIqAiAmz6xY+JiY0/3QIoy/MIjiXn2he7OwQALAkMGrm+xEtpxSlcgCgMiux/cPNGzZgLCUoNSXs6MkA/U9NYuDJyXwPQzLseaANlXss+R6GKHAMB8d5Xp5gatJh72fWlzuMvTCHsZfmVvw3tUV5iXPd2EtzGHtx5XHC8VYl9n6mHaYmXqngOO/ZVKpdKEwdcWLwT9Mr/lupZocAwNyiR9lWubddAibCCIY9pY5CS6F8m1kOEBdh41zB1U1uRnAujNEX5uCf5jP/a22ShV1RDDw5tSLJQkf5LPvY2FhK10srIFIsBkT1V1XA0ra2VM7YoMW+z7RDY1MCHAqu2Guj7BDA1w41LgA6efMKAP9QHvtmn5zCXoRSkgWRBc0V8SCTsnVyMTNzYgH+FHu1FQL+6RAmX3UsbZCt4cJJkAQqdpiFHb3tH23C9o828T+jFn9GrvVB/l9hVxSTrzqESbKYCM5HkjImKhWsHQbYF11oZfgsEUnLARHANyI99vU+hJzyIgzgG5a2vKNqRaak0GHjHN+nj+Pl0fs+0w5jw9q1t5Y2PeqvquA/5+aD5Hg8tTVH+hkiAtBXqi/Z2UsUdPknQ5h6w5n3iDUb2SGAN1Q4NAHYlpVClWp2CAA4lkPYFS2ooDebkDQh34tl1F9VIfSEkQEmX3PAP1V8C18mzGJi0TxDV6XG7k+0XTJHqMwKtN1cI9hLDz0zg6FnZgAA5iYd2m6uucSkQW1RYvcn2gSb3YlXHQUvDVkLlUmBmkO2tDq4L6cYskMAMPT0dMHX2okJy7AraiVkZBLQWhqGai2IIn08It4Ypt5wChtGq80j1BYlPz8QgAL8nHP6dGpr65QDIpVKBQo0wAE9vxxb0RjL1KTDnk+2Q6GnwcY5jP9tviAXhZtlhwC+hujxLcB4htn8YgiGAEBTpkLT9ZXrNl8sNUi5m/gK9FXqNXvQlCKkgoSxXrthjUwxEA8x8IwELtkUC7uiePNrvXAP8nU/jrMeOBYb1C4M+PHm13ovkWBHPDF4RgJCL5ZiRW1Rou6KCig0vOQjXbmcTHHCxrmiygBkgsqowK77WjesLykl3IN+nPr+YEGuuZOBjS3FFEo9jT2fbF/Rs236qAsXfjkGcABJkNDpdHC73SldI6UZ2ev1wmQyQVuuFhrgLScwE4bzolcyjaGylR0CABB8HVGiMWspGiksR6GlYG7Sg1xL6lKCEHJAtIKex8Yw/abcVRwAtGVKbP9IMy8nLmIi7hgG/zgFjuWgtiix9c5GKI18UJyQT9IaCnVXVqDuygqh90TiZ0qjAlvvbITKrADHchj84xQi7uLSyK/GMxLAkX+7gIg3/d+zWLJDAFC2xYStdzbmexiSgWM4OUO0CBNj4R7yF/0micylMFEWzoteBGYvlZ0b67TQlKmg1+sRiaTmepxSQBSJRKBWq1G114rWm2sAgs8K7by3BZSKRDzEYPgvM2AkEhClQzLZIYCvIbp8FCjPwNyoWLJDAOAdC+LkdwaExlqlDkGRYOWASGYNAnMRHP9WX0n17KKUvOsis2zx0nR9JbZ+qBGVuy2o3G3Btg81oun6JSdCJsyAYznBwr7UkLNDfJYx5Cyd78lmsHEOJFXcmeVkSaw31zL0KkXKuo3Y//nOtesviwwmymL4LzOIhxhQKhI7723hTXYIoPXmGlTttUKj0SAWS21j6dKGBxsQiUSgUqkw9OdpvlcCx8sfAjPhNYtn80lWs0OLUCwfUZZ6dkjmUkhSzhAtZ++n2zH+0hxmT7nzPZS8wzFcyRUCB2bDQi2IQkuh4a2VmD/rxsKAX5DOmVv0YBkWrTfXYOS5GcSDTMnVj9BqCt1/V497738hrc8XU3YIANxDfriHisNSXQw4RpbMCRCAxqpE1Bcv6E14sQg6Ipg+6gTHldi6g+DVaWFXFOCAcz8bQdQbA1vHwul0pnSqlLYawuEwFAoFDLUatL6jGgRFIOKJof+JyaIocE02OwTwUrmXmoDZjfvRrksxZYcAfjGz7zMdguyl1CEoQs4QLWPmuAuBOXmnF+Cb1DZdX1n0NUTrobapYKzVIDgXFoIhgNfAh+ajMNZqoLGVpn0/x/LBMk3LjowAb06j0Ke0b1vUsAwHUg6IAPBZ5z0PtMPckuYirMgIzkUw/vI8UGLLDibMov+JSUQ8MRAUgdYbq2Co1YAkSYRCqRkXpTQjO51OuN1uqK0qEBQBWkutcMMhFeTS7gWx2Dwv8UeKWLEASO1YYsWuyIpjSWJFI0CSJsC+dffinzhQFAdi8QkhCP7PwrEkB5LkhGNphpfCAfy/aQbCw0Wx/D8JaAYgWT47tHRebo3zgh/DshMvHwP/u25yD1M5Np17mOH9JmkCEXcUs6cWAHLJ/WO9Y5efd+lYJHHs2vcllWMzu4fJH0tQwPI304b3MI37vfJ3TRybzH1J5djk7mEyx068wruqSeUdsfp3zd79Ji45VqGjYW7Wg1KK+Mymcmye3hEJgrNhnPzuAGIBBkqjApf9z25c9j+7oTRSiAXiOPndAQSXacNF/35L+F5xLIf/940nYC9zgeOAaJQGw/IHMwyJaHQpOIjFKcTi/AYUxwHvbT5YdO/Tih1m7P9sR2rPWxG/T0GsXO+W8vsUAM78eAiekUBJvSPWu4cKHQVjg7Zk11ykgo9JCIqA2qoEy7JQKlOr000pIOrp6QFJkvBNBHH+56Ooe0s5dnysRfj5ngfaUHd5OQBAX6XBoQe7hUad9VdVYNfHl47deW8LGq7hPcO1ZSocerAbhhreLaT2sjLs/WSbcOz2jzQL2nKVSYFDD3YL7hJV+63Y97kO4dgtdzaivZXfXVMogMOXRWG18pFMpZ3F5YeWpCpbu2PobOePnft4FLf1APUe/mcNbuC2HiAR1xwaB94ytnQvbusB3n8esFezsJYDl13Dgl6cq9q6OWzZtRQ9HbiSRVUtfyKzlT9WaeAPbn57Fbbd1SQcu+/T7ag5ZAMAGGu1OPRgt1B83XitHTvuXrqHuz/Riror+Puts6tx6MFu6Oy8LW3dFeXY/YlW4dgdd7eg8Vo7AN7P/dCD3TDW8sYYNYds2PfpduHYbXc1ofntVQAApYHGoQe7YW7md2Eq91qw//OdS/f79ka03lSDkDOKqSNOHPxCF6ztRgBAxQ4zDj3YLRzbeVs92t9TC4B/mA892I2yLbxNn63bhEMPdgtfnPZ3167o2H7wv3XBvssMALC2GXDowW7QWn4x0PKOamxZVni773MdqNpvBQCYGnU49GC34HDWdH0ltn+kWTh27yfbUHtZGQDAULP4zJbxz2zDNRXYee/S/d718RbB515bzj+z+ir+ma27vBx7Hlh6Zs1NemGXW23h77epnn9mqw/asPczS/d7651NaLmRv98KPX+/La2L93uPBQe+uHS/u/+uAW031wDgXw6HHuyGtZO/3+XbFu/34guj47116HhvHf8HAjj0YDfKty3ew04jDj3YLby42m6uQfffNQjXOfDFTqFxqKVVj0MPdgs7tS03VmHrnUvP7N7PtKP6IP/Mmur5+52wWm66rhI7PtYCQ60GtJaSzDui5R3VAABaS/H3sI23BLfvMuPgf+sSju16fz3a380/s6SCf2Zt3fwzW7aFf2YTL+z299Si87alZ/bQg92oWOyhYm3n7zetpuAZDiAwE0bne5eO3f/5TlTu5e+3uZm/38X2jgB4SRh/v/lntv6qCpA0CZImUX8Vf21r29K9AoDWm2qw5fbGkrlXf3rhCsTiFMIRJb750w9haJR/Ts73t+KbP/2QcOyTz12Dp1+4EgBwa+OBonyfLgz40fPLUez4WAuaruO/36X8PtXalLAsy4iU9Pv0v3cjOBdBPMSU3DvikvdpuxHWdiO2f7i5ZNdcOz7Wgrq3lOP8z0fhmwiBoiiMjo4iFQguBcHhu971Lhw7dgxv0b8NGqsKnrEAFFpakD1Y2w0IL0QRnI+AVlMwN+uwMOgHE2GhrVBBZVRgYYA/1tKqR9QXR2A2DEpFwtKih3s4gHiIgaZMBY1VCVefDwD/QMdCcQSmwyAVBKxtBnhGA4gFGGhsSmjL1XBe9ALg/zKYKAv/VAgERcDWYYB3PIioL877lFep4ezhjzU2aMExHHwTIYAAyrqM8E2EEPHGoDIpYKjRwHHBC3CAoY73d/eO8Y2HyrqN+Ni/zaK9aRQKOo6pWTtaGkdBUyymZssRZyjUV/O9NfqGG1BuXYDF5EUgqMFn3v0WuPp8YOMc9FVq0BoK7qEAfw87DAg5owg5IqC1FMyNOiwM+MFEWejsaij0S/fb0mZAxBNFcC4CSk3C0qzHwpAfTHjxfpuUWOhfvIctesT8i/dbScLSqod7JIB4cPF+25Rw9Sbutw7xEAP/dBgkTcDaboBnNIhYIA61VQmdXQ3nhaX7zcZYhJxRaMqUUJkU8I7x91tlVsBQrYEjcb/rteA4wDceXLrfkyFEPDGojLwUU7jftRoQFAHvKH+/bd1GBKbDCC9EoTTQMNZp4ez1gWM46Ks1oJQkPCP8PbR1GhGcDyPkjEKho2Bq0MHV7wMb46CrUkOhoQVdurXdgJBr8X5rKJiblp5ZnV0NpYFe8cxGvDH+fiee2SHeClhbroLasvTMbr2rERRN4vQPh4T77RkJIBbkn1lNmUq436YmHZgI/8wm7rd3LIioPy546wv3u0EHlmHhmwiBIPnf1TsRQtQbu/R+LzpBeseXnlnfVAgRdwxKowLGWg2cF73gWP5+kxQJz+jiPewy8rrchSiUehrGeu3SM1utAaUi4Rle9sw6Ivz91lIwLX9mK/lnduvtjej7wwTiQaak3hHC/V71zBpqNCAVy57ZLiMCs7wOWqGjYWrQFt07wjd56f22tOmFheP5x0bh7vdL8l6p3rkLajUHp4tfEFgtLKJRwB8gQVEcrBYWbg+JWIyAVsNCo+GPnf5EBJU+IEoBLi2vMqj2AvM6IKwA9BHAHAYmFts3VHmBq0aBi2cIOGYJ2Co4eN0EohECag0HvZGDY5ZfdBvN/NTtdRMgjpwu6vepuUWPWCCOwEy4pN+nO+5uBhNlce6REeF+l+r71NSog8qshOO8BwoNlfd3RL7fp0yMhb5aA4WaKsk1l7lFj1gwDlO9DmFXBG9EXoDdbscbb7yBZEkpILr//vvx3HPPYY/6MJpvqMKJhwcQ85e21jldJ6BiK361dRvRdVs9Xv/XHjCRwq8ny5T299RCqaeFiavU0ZarEPHG5GcD/GKj9eZqnPrOYElaxioNNGouK8PIszPgWKD7g/V8X7vHxkCQQON1lZh81YGoxOaWdIx6UqlLBQCCA7Y9QsLvA6IRYvMPLP/s66dTOr4Q0JarYKzXYub4Qr6HIgm2fqgRUV8cfb+byPdQ8g6tobDn/jb0/X5CWEDLlDYKPY3d97Vi6M9TeN37PFpaWvDcc88l/fmUJHNqtRoEQWD+rAfHvtGHmD8OkiZg6zamPPBiwNZpxAe635LvYUgC95AfJ78zILu9JGABolhbRqdBcD4iB0OLRDxRzJ1yl6zphtKggK3TCF0VvzPOsXwNDKUioavUwNZpFPoVFTpV307NHIIjgDN3sSkHQwDAHdqR8mekjrFei6a3VW5+YIlAEETJFc2vRzzE4I1/vygHQ4voq9T8d6UElx1l3UaQNIGYP45j3+jD/FkvWJaFQpHaPJJyQBSJRFC13yrobm2dRnTcUltyXegJikDX++thXNYpNxWKrccEE2b5JlnyyxoAeOvLEnwxrUf9VRUrukqXMiFnFGMvzoGNlU6ASClJVB/gdfr+qRCOf7MfFTvM2HnPshqHe1pQsdOM49/sh3+KdweqPmBbWVSeR+jnj2f9GgoGaHUCCqX8IgWAmeMLeP1fLuR7GNKBAORJVmYtlEYFLG2GktuIVZkUaL+lFrbF2r+2m2tQtd+KWCyWXVMFlUqFSCSCiCeGoCMCEMD8OQ+OP9SPiCcGEBAKwYodjuFw5MsX4DjvKTr5WzqoLUo0XGsHpZbG4iXvcCiJBmnJYmnVC4XBpQ5JE9BXqUvKdttQq0H91RXQLBbPciyHib/NY+CpKeGYgaemMP63eXAsv+DTlKlQf3UFDLWavIxZLFLJEmliwJ4pwPux9ILlYswSySxBkATY0tlH2RBaQ2HH3c0wLNZ2lTquXh9OPNQvvD+LHXOzHiCAiCeG4w/1Y/6cByD4fkwRTwyxWAwaTWpzR0ozsk6ng9/vh6vXh7EX5oSNioib7wZr6zRiyx0NgkNHsRMPMRk13yymLJFCR6Gs2wRaKfchAgCWYeV+Ecs4/YMhzJ6U6wAAfvNg572t0NmLvNcOwRcsA4B7KIBjX+9DyLFUUxP1x4WiXAB8kfyyuqGQI4JjX+9bUfyc76xrtrNEXjXw+DbAqQEmPl969WWrqdhhRvsttfkehmSgFERJZZY3guM4+KfDYEqwDrPU0diU2HJHA2wdfFYoEYOAA8ZemIOr14dwOAydLjVVSkoBUVlZGXw+H1iOAQjefnG5DMZ5wYtT3x0UurDrqwt7Z28jCIpA+y21wu5lqWeJfBMhHP9mHyLeWL6HIgmYKAdSIlIfGWkRckVx8rsDCMyENz+4gLG2G9D1vnphgywe4hculIrEzntbBMvf5RhqNNh5TwsoFbniM5oyFbreVw9ruyFHoxeXVGuJMgn8iilLxMbYkjQeWQ9SQcoB0SJMmMXgH6cQnJcbfgO8A97eT7Wv6A9UbCRiipAzilPfHRScDgHefa9qv5Xv1cVxCAaDKC8vT+n8Ka3YEiePIgJwQFm3CfpVk1pgsaGeuUWPnfe0QFepTmlAhQJBACqjImPZSzFliWSWYGMsqBKSRG1G1/vq0XCNPd/DkAQcwyEwEwYbL05pQ+Kd7+r14cTDA8IGWQJKSSLkjCDsuXTzJOyJIeSKXFI3FHJEcOLhAcGmNp/zSjazRDUe4KphCOqLUs8SOXq8GPrTdL6HIRn4gKg43xupQlAEVEaF0Gi01Il4opg/50HyvtGFha5SjZ33tMC82IcrMLtyQ1Ffo0FZtwngAFYRB8uyqKioSOka6QdEAM49MoLJVx1rHuse9OPsT4eFXdCEdrxYYOMczv50WOgdAKSfJSqGoEhjU2L3/W3QVhTX33O6MFEWpLJ4d2pSxT3sh38qmO9hSIbay8uKst7S1mnEzntbhKzQcolcgqgvjt7fTKzZsiHm538W9V36s8S5NDYldt7bIhTRFhMMCYRpZCwNLJYsEaVc1qleBqSCACNniAAA+ko19n22Q2iAXuoE5yIYfX42ozIOKZKIHQIzYZz96bDQE2o1k686hDYnrJqfPyorU3OoTCsgii0GRIniLVuncU0noIQ+3FCrwZ7722Csl4vfipV4hIWrzydbKy8iZ4hWMv2mC86LvnwPQzJYWg1CR/liQKHnu8A7e704/+jIJVmhBNZ2A8zNm+u6zc26deVxIWcU5x8dgbPXu+LaUicZ2dyMAThSl4PBFAgdt9ah873yDUlAyZI5gaAjgnOPjiDslmX6wGLbArs673WWYmKs12LP/W2CvHp5zWkCSknC1sVvjiViElbDB0T19fUpXS+jDBHAT0bt76kVBrQWvokQen45KnQcLoZsEaUicejBbqFoOEGpZoli/jhGnp3h3QZl+AwRTRbVyykTlHq6qAKATDn7k2FMveHM9zBEwdrBa9fVViXAQTBBWIuKHWZU7LRsek77TgsqdpjX/bl7KABwgNqqxN5Ptee8tihbsjlVnG/Oupx0ZXPFkCUaf2UeE6+trUIpRUiaLFqpbaowERbuQb8cIC5ibtZj18dbQasK39gqESN4x4LoeWwUvsnQusfauo1ov6V2xcYYq+LXoY2NjSldN2WXOavVijCWpC8xfxwnvt2PudPuDT+b0H6rrUrsvq91wwCqEGDjHEafn0Vw7lJJSKkaLGjKVKDVhf9lFIOErEEqPVTyTe3l5ei4Vd7pLSYSxbvuQT+G/jSNsGvtrNByLv56HANPTm56XP+Tk7j46/FNjwu7ohj60zQWFmUUUi8o3ixLdNUwsHdqw0NKCt94EL5xWWoLQJhbZZMJHo1NieoDNllSuYh72I9T3xtAPFLYz4ety4jd97XyG2wAXH0bK0vmTrlx4qH+FRLsCBWCQqFAdXV1StdOebXW0tKCIFbuACYs73T2zQtdw64oLjw+Btei3KFQLbo5hsPUG06EFzZfBCRLIWeJCBLYc3/bJRmzUiXhjkVr5AARACZfd+Dir8fyPQzJULHDjN33t+V7GGljbtFjz6faoTQqwMa5pCzVExNcMkXhiWMSn9mI2ZML4BgOSqMCez7VLhTdZptsZIlOVAP91kv/e6lmiSp2mOXM8iKJuSQxt5Q62go1Gq61o8T6kK4LE2bhnw4XbN/eRCzg6vXiwuNjSW2wJWKO1cqkIOtHWVkZSDK1ECflgKi1tRUhXFrUpK/WYNfHW2Fq2Fwf7urzgWMBhZbCzr9vReXeNWYAiUOQBMwteii0ay94S006x7HA6R8NwdUv14kAQDzIT1oKbWHUN2SbiCe2bl1JKRJ0RDB/1l2wkkrfZBCzJxcQD15qfrAWljYD9jzQlpJcWlOmwp4H2mBpSy7AiQfjmD25AN+ktDMKG2WJ5nWAu3i7VaRMy43VMCaxpigF6MW1RizJ71yx47zgxev/3CNLCBfR2JSov6qiIBt+V+61Yue9rVBoKXDs5lkhgLfZ3vXx1jXb+/ij3pSzQ0CaGSJt9aW7dv6pEM7/fASe0fX146uJBRlceHxMkNtpylQFs0Cg1SS23tEIQ61sFJHANx4UAoFSJyZniFagtijR+Fa70F+m1PFPhjD+t/mC2s0z1mux894WUGoSTJjF2AtzSS9G3EN+XPzV2Jquc+sRckRw8VdjG9YkLYeNcxh7YQ5MmAWtprDz3paCMvLRR4A2B0Cv8wotxSzR6//Sg9kTrnwPQxIo5AyRzAYojQrYd1pAKgpkEU0s1QrNnXbjwq/GEEth/egZCeD8z0fgn7q0vigYD6ChoSHlIaUVEE1NTYHhLh34wgCfOVLokl8EJoriSJrAtruaUH9Var7h+SIWYnD0P3vhHlrbAhAovSxR5R5LzuQqUiexc75eBrHUoNQkbF0mOWO2DF2lOilJmFQIu2MIzkVApKFR4RguLZdB50VfejayBG9Dm20HKjFlc+YwsHMG4ApkPZMrOLlmHoAsmVtN1X4r2t9dk+9hSAbPcABvfq23YDal66+qwLa7mkDSBNgYu66d9lokYoxEzLEcjuDgcrnQ1pa6JD3lgKi9vR0AEMTak5upQYd9n+lIuR8NG+fQ89gopo/yzkvaCpW0d5M5IOqNyenaZZRtMcFYVzg7stmEjXNgYqwcACwSmA7j+Df7RK25K3Q6bq1D9X5bvoexITq7Gp3vqwNJE4h6Y+j7/UTKC7LO99bxHcTTpGq/FR0pWi/HQwz6fj+BqDcGkibQ+b66pGpcc8VasrkJE/BfW/heROtRSlkiY50WW25vkPY6IIfQGgpMjJXXHIvEgwwiXlk+WEhQKlKIDaaPOtHz2GjKz7POrsa+z3SsW57DmiJgWRZbt25NeXwpv2m2bdsGgiDgg3vNn3vHAxj6ywxCjtQXPv6pEGIB/oXfcUstWt6RugYwV9BaCq3vrN7UFKKUskTnHhnB2Itz+R6GZIgHGVkyJ7MuPb8YxchfZ/M9jA3hWA4KLZ3Rcxx0RhD1pp+piXpjCDmTl9qthtZQUGhpoUeFlJGzQ0twHL+pJNsq8yi0tJwdWsb8OQ9Gn5f2+zOXGGo12HVfq6T7srW8oxodt9QCAGIBZk2522YE5yMY+ssMvONrS6nDWj5Zc/nll6d87pQDIoPBgLa2tnUDIo4FZo65wLFcRpbD538xitHFxYK2XAW1RVrSEpImoatUg0zidyyloEhmiVgwLumXU67ZdlcTag5JOyOSS8ILUUku9jQ2JZpvrOJlZ/MRnP3JMKK+9Hdix16Yy6gpr/OiD2MvpL/REvXFcfYnwwjORwACaL6xSlR303RlcyuyRBxwQz9Q5xFpUGtQaFki30QIF381LkvmFlEaaER9cp+/BLSWKpx6mRwQDzFwD/nTkxhnEbVFKThFjv51Fud/MZr2uSglCY7lFmOMtY/xU16Yzebc1BABwO7du+HDxjarhhpNWtK5BFFfXLDSa7jGjvbFqFIqRL0xnP7BEALT4XwPRTLUXl4udxVfRsQbg8ogB0QJXP0+BNbo21WqKA002m+plVwdkUJHw9yogzLDYF5tUaJqv1WUPiEERaBqvzXjjTGlnv/dFDppfS8pDpjRA0HF5semK5srNGgtBUJWywkoDQpEZYmYQPffNaD57dJVEeWakDOK4b/MSC6L2H5LLRqutgPg3WbT3VxLSOUMNRvbcLqjLjQ3N6dV65rW62bXrl2I6yPguPUjUf9MGJNHHAgvZL6j0fvbcfT+lm/Sp7YqYWktvML9UsgShZwR+KZTT4EWK1FvDEpjEiucEmHyNUdKhZPFDhNhobYqJSGrVJkUqLuiHADfHfzEwwMZZYUA3ha19rJyMYYHAKh9SzlMjZlZMEd9cZx4eADeMd6au+6KcqhM+f+OMiRwqgpwyiWYAl3vq0fbu6S1EZpPVEYFInKGSGDkmRlMv+HM9zAkA0ERUFuVkmhUa2nTCxt9vb8dR+/vNm+yvRkhVxSTRxzwz6yfhOA4Di6fI636ISCDgMjv9yO4Rj8iYWAMh/G/zYONsRn/BbExTmj+WrHDjJYbq/P+l66rVOPAFzpz0jSuUIIi5wUvJl915HsYkiHijUNlyP9iSypQahIG2XRDgImyOPPDIfgn87+JoK/SwL7bspQ5EUF1MXtyAce/1SeKhINjOBz/Zl9SDWA3Pxn/L4WOhn23BfqqzBv/ZCqbswYBdQpr3VIwVxj96yymjsjzSQJeMidniBJ4x4MIzMoKnQTaMhX2frIdujRVWWJBUARabqxGxQ4zACDijiXVjHuzc7IxFuN/m99wPuEMMQQCARw4cCCt66QVEO3fvx8kScKNzV9W2nIV9n66HfpN0lzJMvbCHE7/aAgcw0GhpVB/ZUVedKQxfxyTR5yIBpJ/QaWbJSoUSJooqF5S2SbqjUGho/MevEsFW7sROz7aDJKW78dy8iXfUugo2HdbAADOi16c+FY/Yim8zzYiUaMjpiNW4lxi1f/EAnGc+FY/nBe9ALAYEOYnW3doHNgyn5dLSxbveBB+WZIOgF8QKrRyDVECgiRQfcAGlVnecEwQckVx5idDeWmATioI1F9ZwTdWZTic/uFQRnWfy9HXaLD30+1JJR9CJr4I8/rrr0/rWmkFRCaTCTt37kwqIAo5I5g77UbYJd5fUszPT9qGOi3suy0g6dwLjaP+OCZemU/Z8z2ZoGggzl7yz1dGjqQ71JxhatJhz/1tGdceFAsJeYNKls0B4LtPH/9WH1iJFX3mE0ubHge+0AllHmrNbJ1GNFxtFyR7YgUvlIrEjntaUH1QfAONmkM27LinRTQr5sTvTGsoNFxth7XDKMp5U+WvzUCPeOpCAADx+uk1/ykElAYaVfutsuX2Ion3QyQDt8ZiQqGl0HCtHRpbfrMhUoKNsfCOBsFEc+9CQtIk7LstggIksUYXg7ArirnT7qScRt2kE3a7HS0tLWldK+1Z+KqrrsJ/Of4L3Bi3YfESx0JwiyMVRMaps+W4en1YGOAlGaSCRNtN1Rh9YS4nvU5oNQVthQq+yVDKkpCBeHoP7FdGjuCLjQfT+mwu8I2HcOZHQyl1Gy5mElbDKqNC7r8DIB5mEA/Lz8ZyvGNBXPz1WM7uC6UiYWrUwdXrw8zxBTjOe0W/NhNh0fOLUYQc4htozJ12wzcZAhMRd9KPhxiceKgf8TCDuU9chiplDI4YjVgKPtjuPWl+xz1q1H3sWHqfLVK05So0XVcJxzkP5DcGoDbzWdGE0VSpE/XH8fo/9+R7GJKCUpKo3GeFs8ebk/WG2qJE/dUVGHhyEvEQg2PfEEcevRxSQSAeYoQYYjNckXns2rUr/eul+8Err7wSY2NjCCOY1PGUmsTu+9oEXaFYJP4CVCYFtOWqDY0exMRQq8H2jzRDkUZBtJSDmkyIhxl4x4OSs33MF4nJS2WRM0QJat5ShrIt+dmFlyJMhIWjxyvqRtFGVO6xou3mGqElQrYCMe9YMCsbI7EgIxgiiE3iXtAEh92GMBrVqS0qzMfTk/LtXYihcm/6jWuLEfdQAK//S4+8ubaI2qoExy7VUsvIrIZUEKi9rCxnLWo4joOuXAWVib+e2Ou+ip1m7L6vDZQ6uTCFVUcxOzuLq6++Ou1rph0QHT58GARBYAHJCZ+ZMIvpYy54RtduppQpIUcEJ787yL8wCGD7R5pQ1p29hZdnNIDj3+pLqYZoOekGRVKXztVcViZavVihw8Y5hD1RaCRmq5xP9HY11BZZ5rAcjU2JxuvsWau9o5QkjA28lGHqiAMnvzOQNVlF1X4rut5Xn5VzL6fr/fWo2p+dICLOEXh+QYeBEP+9LVPEQRPZC1gpQLaXXgO5/9ASaosSEW+sIJoL5wJbpwFb7mjM9zAkRSzA4I2vXIR7KHtOrmXdRmz7SBNA8GYJJ787mBUlAAB4RgKYPuYCE07uRRCy8bWg7373u9O+ZtqvYYvFgp07d8KF5AunJl9zIOKOgaCIrBZWkzQB/0wYocW0YTZ0yGyM44vX8vB+knJQVLnbAn2lOt/DkAxhVxRqqxwAJOj97QQmXpGrx5dDqymUbTFlzf450R+MpAlwLLLqVBXxxBCYy34hfGA2nDX5UMW3X0OIJcGBAAkO+40htGuy1z/rDYsCL/19c9bOX4hsuaNRMPyQATQWpah12IUOE+XkeqocklhDhxeiCMyEs75+JygCEXcMk68l7zLppuZRUVGB9vb29K+d9icBvPOd70TE4gOb4lbO1jsb0XRDVSaX3hA2xmHoT9NC09Su99ej7eYaUa9hqNWg6W2VGZ2jGKVzx7/Vj5njIljjFgkhl5whktkY32QIx77WJ6ochlKR0FfzmdqJV+Zx+odDojq+rYer14exF8VxF9qIsRfn4Or1Zf06LAi8uKBDX4jf1LDQzIbZolRlc5YoCypHMu9CIjATkutllqG2KoUNXhnAPeTHwBOT+R6GtCCAHR9rhqVN3D6dbTfXoOv9fNbfPx3G0J+msyrxbrqhClvvbEzpMxzHYcI1hsOHD2d07YwCoptvvhkLCwvwILXmWFNHnJg55srk0ikx/vI8Zk/zi3SlnhbF9UtlVMDcnPmDV6zSORkePkMkB0QJtBUqHHqwGzo5i3gJYmayG6+rRMettQDB9zvKRe1B3ZXlOXXLUxpo1F0psjXbGgRZEnGOAMBhnzGIrTqRMmAch+vno9jtlnvLrGbkuVm5ifMy1FY5Q7QchV5uZ3EJHBCYCyMeyrzuTmVUCG7Bs6cXMP5y7lQdM8dcmDqSWkwRKwvA5/Phtttuy+jaGc3Au3fvRnV1NeYxldLnnBe9CMyEAQI56RLuGQ7AO7rYmfzKcmy9qynjczp6vDj5nYGMz5MJUgyKag7Z0P2B7NcQFAohZwS0ispbfxOpEV6IYeylOURFtOUsBjRlKhz4YieM9ek3rqVUpNCrYeyFWZx7ZCRnkl6NTYnq/bacWsyrTApU77flcMOBwMtuHS4E+HtsoDbOFm1+OgJ/qlCiZzGI7PvhXjEGWfCoTAq5VcEyFFoKtIqSnUqXseWDDWi+ITOFTjEy8OQUfBOZN/re9uEm1F3BbzZ5R4PwDGen9n85iVggMBMWesMli0c3D61Wm1H9EJBhQESSJN75zndC0cKm5e7WcI0d2z7clNNIf+TZWfT+ZhwA73xXc8iW90aRmUjnpBYUhZxReEX4QhYLiV09uV8CDxtjMfmaQ9Q+BcVAyBHB0J+mEcygQLX1phq031ILgC+wzaXkKOSM4s3/7IVvMnfffd9ECG/+Z29Od85DLIkIRwLgsM8Qwm59Zr+vR0EiIDcqXkHt5WXYckdDvochGbTlfDY9OJ+9OrZCY/BP05h+M3cqo0JBoaWSdmVbDkkTqDlkEz578b/GMfxsclbXYkBQBLZ9uAkN19rT+ryTmcXevXuhUmW2zspYo3HzzTdjcHAQAaSu554+6sTAk5M5tWlmoiz8U/wkZmrQofZweVpSlbrD5dj6oUbRxlUs9USuPp9cNL+MkDMKluGgrZAlYgnUFiXKtpjyPQzJMXN8IeVGz5SaFLq1jzw3g55fjmVjaBuiMilAKcmc1Citho1zoJRkTpQGKyHwuleLcwH+e60lWSgWs0XJ1BFRHIfr56IoE7mfUjEw9sIcen8zke9hSAZthQpsnEXYJQdECXzjQQTn5Puxmu0fbUbd5anLiCkVhbrDFTDV6wAA/qkQ2Fju3k0cw2HgyUlMv5GaVA4AWGMUExMTGWeHABEComuvvRYmkwmzGE/5s1FfHO4hPhVnatBlOpSUcfX6cOxrfYgFGBAUgS23NwiddjfDNxVKOa2XLb4yckQymSKC5JvqkQrZRxYAOJZDyBGBrkLOECUwN+vQ9q4aWQO+BrWHy2FpMyR9fOd769F2E28YE3HHhGbAuaT1ndVC0W0+6PpAPVreUS3qOSu+/dqmx4RYEkGWf8/tNoSw35h8fyQ1A7AAovJr8hJiQQaB2ew7FRYK2go1Qo6IbEO+iEJPo/qgDXQaPSCLnf4nJjFzIjlTK0OdFltubwBBEogF4njza71w9WXfqGY1ibW/eyiQlpTebZmFQqHAhz/84YzHkvHrWK1W473vfS9mMJZ2U1RDnRbbPtyUkX4+XRL9OGg1BY6DUJCWaFy4Hu5BP6aPyinb1SiNCuz+RBuMSQaWpUBgLixniJYxd9qNI/92QW7guwbGWi20ZRtnGJR6WjAvGP7LNPp+n9/d9P4npzD87Ezerj/8zAwGnkqtjlVsjvs0OOPnv+MakoVmk2xZgCbwbIUSXnnjaAW6SjWab6jadP4tJbQVKgTkbIiAxqpEwzV2UPJ35xK8Y8FNJcRCU+4QA46DEFhmqzfdRhjr+bW/oTa93pUcx2HUM4CDBw/CYsncpl+UJ+rOO+9ECIGU3eYS+MaDOP3Dwax1IE+GWCCOnl+MCk2mtn6oEY3XrV+0p7EpBamKWGQqm5NClijiieHMj4bgm8jf36XUCM6FobPLAVECNs7JwdA69Dw2isnXN36PbrmjEY1v5d9NwflIVvsKJUPUG+NNcvJEYCacl8zYckIsCR/DLyy26MK4fj4KrLNBqItzKI+wa/681I0VlAYapkYdmBzKdaSOrkKN4LycMUvgHQvi9X/ukfsQrYGlTQ9rx/oKg8brKgVL65Ajgp5fjCIWyN/84R3j1/7pGkHELEE4F5z40Ic+JMp4RAmIDh8+jPr6ekwjff164oZY2w3QlOVfXjTxigPOCx4AvOVloqdHgua3VwuLEjEp+KCIA7zjwbzsNkiVwGwEtJqCUnZOEqg7XI7mt2evF1khQ5CArmplAK0pUwk7eX2/n8DQn6bzMbQVaCtU2P2JVqgt+beVV1uU2P2JVsFlL5+c9mvwsk0BEARUDAfTqsV9W4DBdfNRyIKfS1no9/PurfJ+CQA+QKTVlFwvI5MU5VvNsO9YmSnRV2sEJ07nBQ8mXk2+2Wm20JarYG3nA7dMXPGchino9XrceeedooxLlICIJEncfvvtmMV4yk1aV0AA9VdXoGpv/jtUOy96hb+o6v02dNxaBywreRh4chIjz+VPJiJlbF1GVO615nsYkiE4x+/u6ez5X6xJhWggLltvr0P1wTJs/3CTIG0gKALb7mpE7VvKAPAZkXg4814TmcIxHLzjQUQ8+bcDjnii8I4HwbH5X0nHOALOxb+7bd443j4bBbksG3TKSOEpuxIMIdfQrUauPV1Jol9bYE7OECVofnsVGq5Jz42s2On73QQu/GpZYoIAOt9bh+r9/HrMNyGN2vfKPRbUX1WxYk2dKhzBYsQ5gLe+9a0Zu8slEO3tc8cddyCOWMo9iVbAAeceGcHQn6UVaAz9ZRrnfjYMcIBCR6Pj1jpwLJe1ZoeFniUy1Ghgbsy9SYZUiXhiiIcY6CvT08kWI7MnFjCRw2ZvhcTsyQWc/uEQtBUqkDQBjuHQ89gYRl+Yy/fQVhByRjHw5JQkir05lu/BEXLmPzgDlpzmTppoPFeuBEsQoFgO9jADEMSGtUOlKpvT2dU4+N+6LsmOljKGai1iwXhOGisXCmFXFGG3NL7nUkRpoNFxay0UOhrggLOPDGPoLxJbU/95Bud+NpJRJjha7UUgEMB9990n2rhEC4i6u7tx+PBhjCOzZqUJUwNdlZp3opLChhEH4YWkMiugtipRfdAGQ60ma8WfhRwUjTw3i4v/lbrrYDHjmwpdIrssdRR6Ghpb/uVWUiMeYhD1xbH1Q02w7+az5f6pkKTqrhLvP6lhqNWg+qAt38MQYEgCjsW2Dp3+OG6ci6FLrn1Yk4gvhqE/T8vysGXoq9VCmxAZnqk3nJhN0kmtlKCUJGxdRrTfUguNVSXUuEfcMUlIUAkSaHtXjbDhkVjrp8sYM4CGhga87W1vE2N4AEQMiADg/vvvhxsO+DlPxudSaGioLUqQEnOb8U+GcPr7g7C2GaCxqbD7gTbJysPynSmSWcI3GZTkAjKfdLynNit1eIWMrdMAEAATYRCcC0si+7IaggTKt5pgqJGek6ShRovyrSZpbKSt4qKewnk9hUkNBYLj0BBk1jVeKEXiQQYzx1ySCvzzjb5aC58cEAmQCoKvh5HVpiuo3GvF7vvb+H5VC1Gc+v4g/Dlskp0MpJKE2qKEQkNnfK6YLozR6RFRrLaXI+q0ccstt6CyshITGMz4XO4hP87+ZBhMmJVkv5IT3x7A/FkPxl6Yg3vQD4C3EBTTbrpQm7UqjQrs/XR7XmzUpYp/KgSlXiEbKyxj8OlpDDw1me9hSAZtuQqd76uHpUUPjuWbHIec0tst51jg9A+GMHU0PVfRbDJ11InTPxgSJZBMphdRKjAkiaNWBbwKEjVhFtc4YjDH5MU/AIAAai8vy0ODXemiMiqg1NOSW9jmE2OdFns/2Q61WVYWGOu0whrLPejH2ItzcA8GMPBkflsQrAVBEWDCLM7+ZBjuIX/G53Nax6HRaPCZz3wm88EtQ9SASKlU4t5778U0xhDnxJEFUEoSO+9tEaQjUoJjOcyeXEB4gdezVu21ou7KClGvUYjSuZg/hvlznrzaOUoN3+KkZqiRs0QJQo4IYoH8mwPkE1JBonIP/24Lzkdw4qF+LAzwE8b43+bhGQ7kc3iXoNDRS65yUlzLL45JbVHyGnqJ0OGLY4dn6X04oaHw2yol3EoS4Dh0+OKglxlClFodkdqsRO1byoX+WjKAfnGukDNES/gmQjj702G5hghA3ZUVqFpUJ4UXopg9uQCO46DQ0ZJKIlTusWDnvS2ilZdwNIOB2V684x3vgNlsFuWcCUQXFtx7770AxWEKo6Kcj4mymD/rhndUOgsDY50Wez7ZdsnLu/e3E+j9DV87o6/RYMfdzVDoM3/BF1pQxLHA6F9nJVPgLAVi/jginpgcEK2i9nC5ZCWnucBYr0XT9VVCLdXq74zKpEDLO6ol475VfdCG7R9rBkFKZ8JdDUES2HFvG2rf0Qqqqw1UV1texpEwVgAANQtoVknBPIt/p6Y4hwPuOOwRCeojc0R4IYo3vnJB2DiS4e2SI94YYrIbpwATZeEZCUhzMybLKPQ0dtzdLNQi9/5mHL2/XdmUW2NV4sAXOiUlz/eMBDB/1i1aKxZ/jRORaAT/63/9L1HOtxzRZ9mamhrcdtttGENfZhbcy5h4xYGQMwqCJCTxFx0LxuG84F2zKEz4byyH4HxEeJkZajV51bXnOihSGmhZMrcK32RQknUX+UShpYT+OqVCwpQF4KUOx77eu+HmgblZJxnzifGX5tDz8xFJ2FuvB8dyuPByDBM9S+/nRGC0/J9cctpE44h1bTmYR0HiV9UqTC5+D7Z44zCWWmNSgt9IK8WF7noY67Ryg/NVVB+wwdyiz/cwcgZBQljzxgJxBOcjQt3hWuvPiCeGnsdGJWFMwq95CYScUUy8Ik7vI47j0O8+hz179mDHjh2inHM5WVmiP/jggwgjiBmI6zRWfcCKLXc0glbndwEVckYx8tws2Pj6b2//dBj9f+DrI2gNhW0fbkLla43B3QAAmw9JREFUnvR3wsWoJ8plUFS524rO2+pzdr1CwDsehL5GI6l0dr4Z/stMydlvG+u1qN5vA7XoPraRbDDiieH4N/sRmMl/HxKCBNg4B/90/seyGYEFDizvcL0uawVJYgdM+jiLDn8cxCbmCeHFd4KC5dDtY0oqW6Q00DjwxU4YRKy/LXQIioChRgOPhJQxUsDabigplUXlHiu23dXEbxpyQP8fJjd8/7JxDq4+X8YObplCqylsuaMR1QfEVX8Eq11wuV34h3/4B1HPm4DguOzY3Nx00014/qmXcAhvAyFSAzqC5HsV5HtCVluVAAehdigZtBUqRNwxMFEW1QdtoFUUxl5Kva/IZkHNy8HNJ/InurNvS6vQUgBJyOn+Zeiq1Nh1byvO/GgI3nF55y8BSROgNRSivuJ9Vsq2mKC2KDHxCh/8kTSx4YbKamgNBWuHAXOn3Fka4ebX3/XxVvT/YVKUotjldH2A3zi58MuxTY5MHqqrDSY7gdZ9Cpx+Jop4murd2S9vPnexfypb92dV7UFs98bxmyoV4knKDCmWA0MAIAhc8+NRhBeicJzP3LlVqih0FKr22jD5hgNMuHQCwY0w1mux/SPNOPmdAQRmpb8BISMe9VdWIB5hMHXECUpJQmVS8JmhJLF1GsDGOaEWNV/oq9QIzIrnlMpxHM7aXoatwoaenh5xTrqKrFUw/o//8T/w1FNPYR5TqECNKOfkWAjBUN3hcriH/fBN5F5z3HCNHQoNxTeWSpLlKUyCIkAsJrkIkoDGpkz6gf9i40Hc3JOZu9PNPc6sB0WxYGkXy69FYCaMeISBsVEnB0TL6P5gA5gIiwuPi7cglhpqiwLa8qVu2qkEQwBgaTOg+foqLPT78mNEwQFzZ9zwzxROjUfAzWF+NPv3inz7+nIQ5qY+nFGRaE4z46O9pbborbljASatzcFixtSgQzzMIDAnB0OlgLZchZAzAo4FCAqCioSJsikFQwBg321FzB/PS0BkqNXA1KTHxMvzoicuIlUezE3P4T++9h+innc5WcsQAcDVV1+N4y+exn5cI1qWCOAflq13NsJ5wYupN3Jv/arU06BUpCimAWVbTeh4Ty2Ofb0PEU/yznyZBkVA9jNFTddXwjMcgKvPl9XrFBLdH2wAQRI4/+hIvociGQw1GsRCDMKu4jLhaHtXDYJzYUy+Ls47SqGjitKVL1sZIjFIJkO05vUZoMxHYNbMoeymPlHGUnNZGbRlKvQ/UTxW9aSCRMUOM190XUIywc3YckcjOIZDz2PimFMVA1X7rKjcY8XJ7wzkeyiiojIpsO8zHbj4X+MFnwmuPmCDrcuIcz8bEb2f2IWKI1DplOjv7wdJZqcgP6tl/v/zf/5P+LAAB6ZFPS/HcDj3yLAQDCW0+Lki6o+L5qDm7PHg3M9GhGCo7V01sLQZRDn3ZogRVG2E2qzkpXMyAp7RAIx1+TXYkBq+yVDRBEMkvbSADrujiIooGY0FGBAUkfOi4so9FlTsMOf0mmJS3kiiojm3X7iaBRL7B2moRXyso74Ywp6lEy5/1goVQ7UGzTdU5r0uWFIQgLFOA8+YXD+0nMBMGHNn3PkehihY2gxoexevnIp4Yjj7yDCcFwo3GEqswafecOLcI8OiB0PRSh8mZyfwpS99KWvBEJDlgOjaa6/FVVddhQGcg9iJqIQu0dSow95Pt0NTptr4AyJBqyk031C11IsjQzgWQq8RkiZWeLWrzAqozGs7E4mV3clmUHTh8THM5qnmQap4RwKglBR0VaVTGJoMZd1GNFwjbg+vXEOpSex5oB3l280AgPGX5jF/VtxJrnK3BV3vq8+pM5+uUg19lTpn1xMbnYWAzpzeVGf/Unrz1piNxQvdMYRFNAecP+vB+Et8DVrFdjN2P9AGSl3YOyue0QDe+MrFlNQRxY6+WgNKSUmq1YgU8I4HMfmaOG5l+WD5eo4g+B6biU0Nz3BAtFobQ40GO+9tydkmg6ZMhb2fboepUQcAov0eCTiOQ2/sNJqbm3HPPfeIe/JVZPVtShAE/vVf/xUBeDGN7NQH+CaDmHzVkbOO7godBVOTLiu7c2ycw8Vfj2Ohn5eY1V5ejq13Nq57fCEERcWwiykm/ukQ4hEG5qbSsQ5NhhUNPwuMRANFJsxi8ogDvizWh80cd+HU9wZy6iI0+MdpDP15JmfXE5uRkwyGT+TGsINkAauPAAjAn8U9D+94EFNHnIIJgb4QnbcWpwZZKrcSS4se8TADv9yQdQWWNn1BbwBsvbMJtZeXAwBcfT5c/PV4yrWkyRALMvBPh0DkaO0VckYw+aoDvsnszHvBahdmHTP4p3/6p6xmh4AsB0QAcODAAbznPe/BEM6D5cSfxNkYh4lXHQDHO9AlotRsEXJGcfLhgZQL3dJh+M/TQqG5Qkth570t0NlX7tRKOSjS12hw6MHuFcXkpU4iI2gpoV4KyTD9pgu9v5nY/ECJYWrUYefdLUKzvKkjzpTcJ1OFYxebtxLIunSOpHMvz8smJjsBMsubpk3zJC7rp6HIcvwVXohi6gj/ztbXaLDz7pasz31iU77NjD2fbAOpkDfNlmNu0cM97Bd9p72Q0diU2PLBRugLSFmhs6ux894WoWzgwuOjGP6zuOUjaxFeiGLgyamsO/yaGnX8epQDJl51gI2JH9xxBIuLgVPYvn07PvjBD4p+/tXkJNz+f//v/yFKhjGBoaxep+ayMtRfWdiym+WwcU5wpyOVvIlDQlpgadMLwdET3TZRAiOxg6LQfAQDf5wStY6iGFgY8MFQp8157VshUAjBs8qsgH23BQDfhfvsT4Zzvptr6zBiywcbstqw1dbFX0NlWlu2W0gotUDXYQWsNdn9zg1WsHi5I45Y1vxbL8U/GcLZnw7DM8JLrOy7LetKraVEcC6M2RMLWVlIFSqUioSxVgv3YH4tk6VGyBnFm1/rzWr2XQx0djUsbfwmUsQTQ8gZBblYBhGci2QlI7QWtIbK+jug/soK1Fy2fssBMfDVzWHBs4CvfvWrohqzrUdOVmSdnZ346Ec/imFcQIzL3u5p/xOTQkaFSLLnQ6psu6sJTW+rzMq5NyLijqH3N+OIh/ksW/0VFajaxze9IkjxpGliBkVMlMXsiYW8NwmTGguDfpAUAXNTYe3oZhv7Lgt2/n0raIkbcVjbDai7ohykgn995qN5ovOiF6e+NyiauctazJ/14OR3BoqiviMaBE4/E4NjLDvb7poIYAzyUjmPbuWix/Fke1auuZxEMEQqSNRfUQFrjox5MiEwE+bVHTIC5iY9CJLIew8ZKRLxxHIWUKQCSROCSVLVfivqruA35eNhBr2/GUfEnfv3Z+s7q9F2szjtblaTWFtfeHwsq46XnIJBj+MUrrjiClx77bVZu85ycrZF/Y//+I9Q6ZUYQnYaKgG8+1w8zIBSkth5TzMqdppFv8bMCRcWBvJvI336R0MYfo7X9ds6jdj/+U48vVec7JiYQZHOrkb5NpNo5ysGIu4Ygo4IzK3SX7TkEscFD849Moy4BHtY1V9dgboreP33zLEFnPhWP9hYfjUtiYaNZVtMotfqJbKXuZAG54qQl19MUVnYOO2corBviAbyvF5jYyyOf6sPM8cXAAB1V5Sj/mrpqSas7YacuakWEuZWPYKOSFFsQohJ8w1VKN8qvXWEQkth/+c7Ye00AgCGn53BmR9lVwmVDGMvzmHgqSnRz1ux04yd9zSDUpKIhxnR3eSWM1c5gnAkjG9+85tZu8ZqchYQVVdX4x/+4R8wjgH4OHdWr8VEWTh7fVlp2jp/1gP3kATcXzgIBbW+iRBG/jqLeJDBE902BI63IjZrzuj0YgVFllY9Gq/NfUZN6rgHfXId0SqYMAvvmHQkEbSGEnbD2DgnBEAcy0lmp1JpVKDt5hrYusVbLJA0gT33t6Fyj0W0c0oFewuJnTcoRa8lOt3A4PXWmGAUkE/YOAeO5YT/n3hWCZLIqTvhRpRtMcFewFbu2cLSrJflcmtAq0nJGDSZmnRofnsVAN7AYOSvs/AvrjWZMJv3TRGA38jKRisL30QIzl4fmGh2NwPjxjDOT5zG7bffju3bt2f1WsvJaRHDpz/9aXR2dqIXp0S34V7N2ItzCDkiIEgIev9M0VdrJFm4GvHGMHPMBYBfzMw+YwIX5UXsjE+D2LwprWbnYgRFk0ecePNrvRmfp9hYGPBDbVbmzC6+UFBoKXS9vx66yvzaPFNqEns/1Q77LjMAYOLledEarIpJ1BvDiW/3Y17E/hwcy2H0hTksFOHCzD3DYvxcXLSC9ToHCU0EYEkgKEFn8snXHJh4mbfqtu8yY++n2iXh1NX3uwn0/b7wTFSyibZcBbVFKQkFitTo+/1kXlt4GOu1UFv5ek1aTUFbphICtJljLkS80svo1V1RDkurOJuu9t0WECQQckQw9uKcKOdcD47jMKg5C4vFktPsEJDjgEipVOIb3/gG3HBgBuM5uaaxQYfmG6oucWdLh8q9VjRcYxdhVNmDjXM497MR/Pl6PgKKDFUicKRz6efR1Kp9Mw2KsplSLWQ8IwEwUQa2Tlk2spxYiG8+urwfV66gtRSqD/DmJEyYxeAfp+Do8eZ8HKmSkNdY2w0o6zZmfD6OBWZPLuRF+55tIgFgbphNa4NoNSQLdExTqHPmP8BIBscFLwb/OCUoC6oP2PJSr5cIyKSSZZUKtk4j4hEG7mEJKFAkBKUms1YTvtl1AQAE0P6eWth38RvrzgtenPvZiOSfX1ODTgjiMkFnV6P5hioYG3KTDAjXuDA+M4r/83/+DwyG3K6Pcv4mv+6663DrrbeiH2cQ57I/4XqGAzj+jT5Bb5+JxefAE5PoeWxUrKFlnSe6bdBsH4bhmlMgCICN0HA/cRCRsfKUzpNpUNR8QxUar5N2IJlr2DiHhX4/bJ2ZL2CLCg7o+cVoXqRzOrsa9VdXCJPI/DlPQRmC2DqNgpY9Xar2W9FwbfF/V+u3UahszWz6Y0ngpa4Y+qoKwx85HmQwf45vFKy2KtFwTQV0FblNa5E0gX2f6ihKOWamWDuNWOj3yZuIq2i81o4d9zTn9Jpl3Ubs/1wn39yUA87+eBijf53N6Rgy5dzPRjB91JX25xNr5cBsGMe/0QdPDgJ1jmZw1nscO3fuxN///d9n/XqrycvW1le/+lXQWhIDOJeT6yVsn2suK8OOj7VkpEUtpAUSADy5xQZKxxdGExQL3e4BKCrcAIBwbw0CJ1qSOs/NPc60A6OQM5JVN6xCxXnRC0ONFkqj9C1yc43KrMhJs8n6KyvQ8Z5aAPzmyZv/2ZsV7XUuGHhqEn2/W5QhpfmKI4glx6RCxvHv/D/rQRCJ/0kdU5DA/gEaNAPeXlsapQ0pEXZFcfSrvYI7Xcettai7MrWNsnTgWA6DT08VpRwzE5RGBQzVGjgvynK51Uy/6cLIs9kPRppvqET1QV4h4BkJYOjpKbBxfrOjUE0uCBKCG2oqkDSBHXe3oOYQfz9y1TplrnoYwVAQP/jBD7LehHUt8jL11dfX41//9V8xgUEscPM5u66rz4eZE660Up11V5Sj/d21WRhV9kn0KCJoFqrmGZDqxS83xYKg+QCPYwkETzeD8W+8Y5hOUDT9pguzJxZS/lyx4+r3gWVYWTa3Bi03VKExS5kKfbUGSj0vHQ3Mh+Fb1kOIiRTGbv9acCwADtCUqbD7vta0ejpNveHMyeIjVyQCo9XB0egZBjP9yW1u2b+0cr4gWUDBpFY7nQvr7VRZ/qz7JkOCo6DSQAuNhsWGY/nMazHKMTPB1mEAy7By/dAaBOcicA+JH0CrzAo0vtUubAAxUVYwzokFGcyeckteFrcZez7Zjto0egWxcQ4zx11w9eXueYyW+XFu7DTuvvtu7NmzJ2fXXU7e9gLvv/9+vOUtb0EPjoHhchN9hhwRIYVYtsWYUsFZ2BVFYC6craFlnbUat6pbp6HdPgIAYP0aREYqwMV5TXncpQfjvXRSPOZtRPWR1BfwmjIVlIYcdissAJgIC/dQQJbNrcHA09Po+YX48lSSJrD1jkbBaMXZ48XUEemZJWRC1B+DbzKU0q4eqSBRtd8qGSenbLA8OHL8O0BSQGUrCTLJ15ImCoADFvQcXm2Pg5GGYZsoTB1xwrlYL2ffZcHWOxpFfxYMtRq03FiV1o51sWPrNMIzHCjoDZlsoKtUo/qATbSstcamhK6K3/SlVRQqtpuhtvIbR6PPzwl29cXCyHOzmD/nTvp4S6teqEOdPurKmbKHI1mcj7+J+vp6fO1rX8vJNdcib28mkiTxox/9CJyawSDO5/z6ti4TylKwqp0/58Hka8XbRI4yBmG+6QgoEy+hCJ1rROBEGwCA44BT06045m0Ujk81KNr+kSZU7raKNt5iwXnRC1ODTjJ2uFIh6l1swifCmszUoMOOe3ipLBvncPpHQxh/OXeZ6VzDhFn0/2ES8RADWkslZShjatSi8dpKKLSls2nh+yegbi8N/HdyQ3kdANBx4KoeBVpnlwqti5Xxl+dx+kdDYOMcL525pwUmEQqqlQYFtOXqvPfvkhq0hoKpUQfnRekbuOQafbUG1QdtGblCqi1LxgItN1aj4Sq+L1dgNoyj/9mLkKN4eq2txnHek1JQU9Ztgq0r9/2eHLWjcHvd+MlPfgKVKn/OuwSXbf/rTfjKV76CL33pS9iHq2EiLs1iZA2C18tzLAeNTYmQK7quBsLWaURgNozwQmHWFiwnWckbxxBgw0qcZKqg9ChQ+1o1pg7MIGyNgGAIcBR/s6YOJpdS1dnVCC9Es+5fX2godBT2f64TA3+ckmWFqzA2aNH53jqc/O4gYilqmNVWJWgNBf9kCCqzAg1X2TH87DRigcKqAcyU1puqYWrQ4fhD/ZtqvCg1KTiQ5ZKuD9QDAC78cky0cy78sS2p4xTxxTqgDSj7AjD7ZQJVCwQcBm7T49c9z0196X0wjyh0FJquq8Loi7OIuGMw1GgQCzEFW2cnRSr3WNByYzXe+I+LkmxKnXcIpNzbJ7H5ZazXYvtHmnHyOwMIzIahMioQDcRLyriibIsRCh29vsECAWisSoScURAkwbfEyeHtidmC+JvzT7jrrrvw4x//OHcXXoO8564/97nPYf/+/TifQ+kcAIDjCzxJmsC2u5pQf9X63byb3laJiu3m3I0ti6wlnVvNMW8jjgcacJJZbD6mj2Nm1xzCZn4npeysDfYTvC412UxRYDYsB0NrEAvwNqsV28z5HorkCMyEMXfanfTktVxW0fS2SqEGKeKOoe/3EyUXDAHA8F9m0PPLsQ0nuISrXj6CoQSEPj/93WI0AA7QhdZO+VQ7SWi/RKLspj7EPtQL0y19KLupryCDm3SIBRj0/X5CqPlpuNaOpuuWGm0nK2Uy1mvzYqVfCJRvM2Nh0C8HQ+uR4uK887Y6tN5UAwDwTQRx4fExhJz82iXijZVUMAQA2nI1jHXrv18brq7AtruaQNJ8giCXwRBLsujh3kRNTQ0efvjh3F14HfKeIQKAixcvYvfu3bCGKtFF5L6YylivRXAugnh47RcSqSBAkERR6XtXZ4qWy+E2QzOvBsESCNpDoMIUqt6w4/x/jiIws36NFa2m0Pi2SkwfdW54XClSscOM9nfX4uh/9iIqwQZvhYDKpMCOu5tx8dfj8I4FoTTQiAWZkpv81oUAOt5TB99kcEXNFEkT2PfZDkwdceZNRtj1gXoQeh16X42DudAvyjmTzRABQNskheZZCs/tiF5SF7RllALNEBj75IW0xrHcTKEYgiiCIqDQUoj64jDWa9F5Wx1O/2BoQxcuggT2fbYTc6cXMPJc8Rh2iIHKqMC+z3ag93cTojZXLgb0NRp03VaPsz8d3lCdo6tUo/O9dTj702FEfXFYOwxgY1xWjBiKEVpNQVuhykuri5n6flyYOIe//OUvuPbaa3N+/dVIYsums7MTX//61zGJYcxxkzm/vncsiHiYAa2hsPPeFpga+WiapPkGkWyMK6pgCOAzRce8jcI/qRAqDyNo5525CBYI28Kw/JrXfdZfVYGmt1Ve8hkmykBbpoIiD40ApY7zghdMjEX51txrdwuBih3mNTO0piYdai/nrYIjnhhmji8IHcOjvtKSRWwKB4RckUsWFmycw4XHxzB7ShpyTaqrDVRX8sGMGIyXM3izLSYEQxQDmP18xuh8PYPTTekrFxLZpGIIhgC+0XbUx9+PiHfxO7cYDNVeXg5T06U70RwLnPreACaKuAY3Xcq2msDEWLjk+qFL4PtmudcMtpveVimoesLuKDwjAaF5q6vXJwdDa2BsWMrSmhp12HlPC2gNhXiYyUswFKp049zoaXzqU5+SRDAESCQgAoC7774b73nPe9CDYwhzuf/LAfiXfWA2jLCbXzTUXl6O3Q+0Fa3zUrL1PxsR1zJwbHWBVbCoPmJALBAX3K0oJYmtdzZCV6kGxwJnfjQE95DchXs1TJSFq8+H8m1yQLQWxnot9LW846GhTiu4FWrLVbxT5OLXc+zFOdnOdwPGXpiDq5f/zlcfsAlSOe9YUFjkSoVcBkVhJeAyLAbPHNA+RWFfvwIkC/7ZKs7Xf8ZE3DGMvTjH/4HgHaq0ZfzGmNJAw1Cr4SV1BL9BIUvCLqV8qwmuXp8sJ1+D8EIUI8/NgmM56CrV2Hpno7CgjwbiiAX4dxYTZjHw1FTB9grKBbSGwpbbG1Gx0wyADyIDc+G8bRqymhhOel7Hjh078O//vomjTQ6RTEBEEAS+//3vw15TgXM4inwo+Zgo784UccdAUHx2aPiZ6YL3ot+IqYM+UQKjBMQ3Y4IbH62lwMY5QYpYuceC5hsq5QXGGsyfdUNfqUmrd0yxM/LsLIaengZJE9hyewPKF7NF00ddOPuT4ZxqnosBSkWiap8VLTdWCU1ppUhOs0UcsLePRtc4hb5qBq93xsBKZnYsADjg7E+GMf0mX7hdvt2MLbfz9va7P9Em9P2SWUJTpoK+SpOSLXKpQJC8lLbqAO9My0RYsHFOcGOdfNUhPGsymxMPMTj74yEodDQIikDEHUP/HybzEohzHIcB02mQJIHf/e53eWnAuh7SGQkAq9WKRx99FB7CiWFczN9ACMBYq0H5djNC86XhpiNmUJQwWoi4Y+h5bFTYtVeZlag+UAZDjQYggC23N8DYoBXtuoXMQr8fsVBcWOzL8FTtt2LPp9pAkHx26NT3BzH5qiy9yQQmwuLkdwYwc2wBntEAbJ0GUGpJTQUryEVg1DJDocxLwqPlwFCAXyNH2Zkw+aoDp74/CN94CDMnXNj1iVZU7ZfbLizHvtOMWDCOhQFZ3gXwkq4ttzcABKC1q2HrMEJl5LPY4YUov5aQs0Bpw7FA5R4rbF2GvG5KexqmMDY9gq9//eto+v/b++/4uM467/9/nTNdMxqVUe/Fvdsp2CEJKZBOSCGFGkpgKUtdIPvde++9gb132f3dC2GXEkpIgIQEkkAgkN4d24ntxN2WbdnqvZeRpp/z+2OkkWTLtspI0z7Px0PJeObMzCVpdM55n+u6PldlZewaMo24Owpedtll/PM//zN1HKZXj80EzNKLc6m+oZh3fnyckc5wAYBUOHFfiFA0WeMrnRz7UzOeHj9Gq2FsZejwiUfu2gyW3xq/V6sXmq7pdB8cJH99Zmr3oCmw7tNVkYVT+2vdnPxbGzaXmbUfr4wMyRHzowV1eo8O0X1okCXvL6ZgY1asm3ROUQ9FOpjHzq9aXCH2VwVpy5GhS9Hi7fMz0umlfWcfJ//WRn9t+MS/4Lws1n26KqX3c4oKeeuz6Dow8yqayWj5raWRoeJaQCfk1zBaDYy0e9n5X0dpeKkjxi1MfOPnriOdXg786iTLPlASs6rJ/rxh9jTv5IMf/CCf+tSnYtKGs4m7QATwf/7P/+Gqq67iEDtjMp+o+9AgLdu6I2Voc1Y5WfvxysiY+2S2oKFIh+6DgwS9IYKeEEcfb8bdFi7OoIV0gp6JMebr764if/wkLUUOnJ17+jGnm8heNrtFbxNd9vJ0Vn24PPwPHfprhyNlUr39fnqODDHa7Wfvz09E5sCIubNmmam+vii87pBPY+99J2jbGR5+kr0sHUuGKcYtPLNo9hataDHw7hoTigY+M7Rna5iCsLbeSJoUwpwXRVVYdksJ9nwruqbTc2QoUtDD0+On//hwZKjrqg+Xk708xfZ5y9IxO4x07o2PYiYLbuwYnr8pi/V3V0XuDnqDaGOB0N3m4ejjzZHzgMBIUIZDz5M1O3wh0bXKCYC3P8CR3zfRfXBg0dsSSgvwjnsby5Yt43e/+92iv/9MxGUgMhgMPPLIIxSVF3KANwnpizMZ015gRTEoePv9dO0fiNzfc2SI/Q/URRajM1ji8scWNQsZiiwZJsqvzD+tUEXvkSFOPtMe/ocS7hkYPyl2LXey+VsrMVoNkddIxkIXI51ehltHKdgU/1fr50NRFZbdVBIuiEB4CFfAHYz8Tpu3djPUePqFkPFy7aopuf/+FprNZcZZYkMfmxvpdwfD608oUPG+AgovXMQFsudorsHIGCQSdlpyNI6UhtAnfZw0BbLcCg6vfMbmw5xuxJZtDn+uTjHYOBIp8a4aFQLuYKSKa9YSB8tuKolUDEtW+RuzGW4ZZbTLF+umRJ1qVCIXVYxWA5u/tRLXWOD19PjCPYVjv96TT7fTe2TotOevv7sKZ2nyj8pZKOPnqN4+P/sfqJvyMx446UbXIC3PQmbV4qz/pisax+xvYzQaefrppzGb47NzIW73+i6Xiz/96U/4LKMcZ9+Cv59qCldEK3tP7rSPu1vDPRl56zM574tLk7589EKFIoNZJX9DJtass/xB6ND0elekFORIl5emrV2R4gzLb51YeE0xKOSuzYiEpUTXubefrCXpkUpqySJntZOlHwj/zsYXRFaN4d3PYMMItU+1zqh4SeGF2Wz6/BIUQ3KfMC2k/hNu9v785Ok/bx32//Ikza+HK4flrHZSeEF8z/uYbTA6/4SJdQ3hkzW3Tacza+oQuZABtq4J0JUpQ+fmwzcYYP/9dYx2n/2EXwvq1D7VymBDuPqoalQnFogEln6gmJzVzgVv72IypxvJWuKgI0l6h4xWA7lrMyL75CU3FrP81lIAgt4QTVu7GBkLfkNNozS93nXWnh+D1cBot4/AaHxVvkwUpjQD5/39UvLWZwIT566nKt6SQ9ll+YvSpo6SE3T2dvDggw9SVVV17ifESNwGIoBNmzZx33330Uo9rXr9gr2PooIW0Dj0UANNr599ccL+E26at3UTSIESotEORUVvpTPa7WPX94+d80A5mbfPP2UxyRN/a6Vle/j3ZM+zsPyWUiyZ4ZMc10onxRflRK3di6374CBaUJ8YLphoxnKKMc3A2rsqcZaFr/Lpp5xfHn2imd45rL0xcDL890fs15NOSDmrMyKla6cT8muRykP2AhvpJRNXaeO5Z+5MwUjVoLrNgN0T/mAeKQuyr+ocE7OV8FpERb0T3+9sFnpNdZnVjjkPL+89OsTRJ5qn3De+73CWpbH2rkqM4xcjE/SaSP6GLLSgTs+hwVg3Zc6KL8rBtTIcVC1ZJpbfUoo9Lzy/s2VbNyf+NrGeZNtbvZHRNTMRcAep/Usrnt7UKGgVbYHREC3bes5ZrOPE39o4/EgDwIJeUB4p6eFw0wG+9rWvcfPNNy/Y+0RD/B7hxnzyk5/k7/7u7zjKXvr16K+kvvL2MireG15IdKTj3HXZAyNB2neFx9tnLXWw9hOVST2ELpqhCCZ6i+ZzhX+0yxcZauBu9/LW/68mUvzClmMJV7Ebs+kLSyJXSgxWFVuOJa4PpCG/RvfhwXAgiuN2jpvc01d1XSGr7iwDwovq+YYCkb+n3pohav8y/0WXPb1+Ovf0nxawxLmZ040su6l4xnPUGl/u5PiTLUB4KNOFX1uO2Rm/84tgIhiNHpjo2SrvNpA1ttDqUJqOdwbn6gX9KhvqjFjlnGzWyq/Ip+Td0bkoVfuXVnprwhdO9JCObygQWc9o1Z3lVF1XGNn2rKMO4oUSnkfTc3gwvtceUsLH0vHqk3nrM9n0hSWRh9OLbdhc4QA00hE+Brvbw8fgycfnuXCWpckIgFkyWFTWfqKSrKXhYehtO3sj6zSdiR7Sw/PkFVjz8Qqqri086/ZzEcgdYXf7Ni6//HL+8z//M+qvH20JcSb/P//zP1x2+Xs4wJuM6vMvUWmwqpH5Cn0nhudc9jLoCTHa7YuMf05W0Q5FVc/ksPmelVGbvB30hCJd8C1vdHP08fAVRkUNF8gY7QnvnLOXOTnvi0sxjF3pLjg/m/yxhcrGt48HHW/3Yc00k700/iYa567JiIztdpancf6Xl4VDJuF5X10HJ656Hn+yheEzdNfPV+l7ciMrlYuZ8Q8Heft/jtN9ePZXpkc6vTS/0YV/KNy7Un5FHhmVizP+fLZyy1Vu8Y7gPuCi93AOr67105I7u310q0vjlfX+GYUnMdXBB+toeDH6FWKHWz2RgA7QdXCA/trwsSkt18L5X14WqajlLE0jd038LXTtWp6ONdNM2+7ec2+8CCYf8/I3ZFJwfvhCgsGsct4Xl0aOQaM9ProPDUa2P/p4My3bxi5Q60wpiDQf5nQj6z5ZFZlzJGYm5NMY7fbN7fegQ8NLnZECHxanKSrLMIQcft52b6WiooKnnnoqrtYbOpP4byFgNpt54oknqFxWwT62E9DnftlONamc/6VlkT/8zj39DNTNLRANt3g4+XQbAI4iG5VXFyTtlY1oLuDqT/czsHZgwa+Q6Vp4gv74GNq+Y0MceKBuYkhQvoW0PCsQDslb/ml15AqLo9BK0bsmTS5fxF+ru83DUPPo1PdfJIoaLi4y3uuZuyYj0usD4XHHWWM9DO42L4d/14BvMPz32F87vGjDQLSAjhZM7gsR0WR2mkAJh6K5VG7yDwdpfTN8EqeoCs5SO9axCxo2l5m8dZkxnQi/dLORwmXhYR8DnRpvmqyMnxr0Hc6h/2D4a8YU8JpB0cGafPPeF4TZYTxtMe6F1HNoMFLK2zvg5/DvGnC3hXspspalU7Rl4ve96s6ySEAyWNRwAaUYnP0UXuhiqGmEkfZFLGM46c+y6F0uHIXhY17WUgdb/ml1ZF+flmfFnh++uBXyaRx4oI6+4+FjvrvVQ/PW7gXvmfcPB9lzX62szTQDikGh8uoCHEXhETEnn25juGVuFyAH6tyRokWVVxew5iMV82qbZgxx0LQDi9XCiy++iMPhmNfrLZaECEQQXrT16aefxppt4gBvos3iLzOjws6K28OT/LSAxsmn26JedtDmMuMosCV9mciohCKTxnDlEAWv2s69bRSFfBpDzRPVy04+3U79C2PrHGhQ91x7pKvfUZxG0eaJQLL2E5VUXRMeWmmwqFReXRAZJ29KM0S9VHHbrl4yqxyk5UZ/3R2T3UBGxcTV/bLL8iLfq8luZOPfLSGjPPx40BvCNzzR9b7/VydpfDl89VcLaPSfcEfWklpMrTt6aNkmC7TO1Ko7y1h6Y3FUXkvXdA7+pp7OfQMAZFY5qLy6AH1sXlf+xizSSxbmb1sZO7nLyFdYfYUpcrLnGdbxe8LvH/BCg9GEppwe0MaD0UzD0fo6IxfUmpJ+vx4N5Vfms/au2Cy0qAX0sX1R+Lyg8eVODvzqZPhBBXzDQQJjV88zyu1s/LslmNLChWuKt7im9DZnVNgx2aM/pyItz0JmpYO2sSH30WLJMEWKPFmzzVReXRAJOVXXFE75nRRtceEoDveijXb5qHuuPfLZrn+hg5NPt0e2HWoejcnol9EuX3wPJ4wXOjgKbNhc0e3GPvlMOyefCV/ot2SYWPepqlnNCdTQOJmzl+GRYZ588kkqKiqi2r6FlDCBCGDJkiU8+eSTuE0DVHwqE4NNjRwQbS5zZAI3wNq7KiMLfumajoKC0RbeafQcGSIwEt0rWN0HBzn4m3p0TceabZ5yMp1s5hqKVHTUsb2vwWvAWe+kZEd8XDkI+TU63u6LrITd8XYfb//38cjj7Tt76T0a/r6NNgNZ1Q6MYwedgvOy2fCZ6si2K+8oo/TScLVCo9VA1TUT4Skt1xJZEwDCn9tIRTkl3F2tGBR6jwziGwpQtGXic2RMM0Q+wyhgz5/oybFmm6cstlZ4QXakMIPRauD8ry6L9H5lL3ey5mMVkSukiqpEru77h4Psu/8kA/XhK3T9J9yRXlA4vThCLCnq2BXP4sUN1omo9qnWKYVJoql9dx+7f3g8cmJV9C4XmZXhz1paroW1d1VGLhik5VqmhCVjmiESchQVLPaJ0OPMVcgpG/+Qwvk3msmrCv876AfvkI5h7E+n5XCI3uaJD+fS35w7LM8kHNUVhthfGUyI+XyxVv9CByeemv88wWiJ7Kv08NXzgZPhfdpAvZt995/E7x670KMoU/aFaz5eQfay8D46a2k65391WWQIUf7GrCmVF/PWZ0b27QaLij3fOlFYxmaYKAABFG124RsK0FsziGJQsDgnAr053TjlxNa1yhm5GGbNNlN1TUFk4nvppbmsvGOi137DZ6vJPy/cJqNFDR+bxo4TvUeHaN818Xf/9g+P0/F2OJD5BgN0vN0XN+FDMSis+lBZpMdDTK9oswvrWEn7g7+pp/tgdEdlBEaCkflgRqsB31AA/3D4vKjq2kKW3FAU2TZ7WTome3gnrBgUDFaVtOv9NHc2cd9993HppZdGtW0LLaECEcCll17K/fffzwMPPEBgc0/kQFt4oYvq6yZ+Ue52T2RS2VDTKDWPNUVtnOu5ZFY5KDgvG9WUvEfR2YSiyUFonMFrIPN4JqYREyVvxUcoOpueI0OR0rC+gQB7fnoistPo3NvPkd83RrYdbBxhtCv8mMGqklHpiASX7BXOKZ/TZTeXUPqe8NVJc7qJC762nIwKO7oGIx0e8jdkRQ6EK28vo+rqcC+V0Wpg4+eWkDk2jyOj3M6ym0sir5uWa4kcYIO+EF37B/ANhHdqPYcHefu/j0dOGBpf6aR1x8QJpLvVE5Nen9nSdchdm0FGmaxXcUZju6CRDm+k8MhCGL8yD7D3ZyfClQAJn2D6hwORIVTFF+VQedXE5N3z/34Zliwz7moT6TkKm663YB77dWYXqxQsGTuh1KHpUJDhnvDncqRf5+TbQULnKBg3U5PD0eSQNJSmM2TXw2EveXfn86OEh6IHPaEFmzMYTVpAn1KKuHVHD42vhEvN65rO2z88Ts+R8EmmbyC8JuF4T4nNZcY23muvwLKbSiK96ZmVDjZ+bklkf111dSErbwsHF4NVJX9DFiMdHnQt3At1wdeWY3aETybL3pM3Zf+95LoispeHQ5nBMnYMGQtlo11eBhtHItseebSRrrH5H+52L3t+eiKyrx9sGKHnlHV+4pUpzQCKIkOhz0I1KRScl01m1eKcM410ejn2RHPkfMDd6on8jRssKqs+VB4ZbZKzOgP9kgH+9re/cc899/DJT35yUdoYTYquJ2b92n/5l3/hX//1X1llOI8irTJ8RURnUcYuz4RqVNCCOia7kYxKe0KX2DybUxdenezUEDSFDoqmoBsmtmnZnBrjhsc/GxA+wGohHd9AANWo4Cy3427zEPSEcBRZWfepKhpf6aJ1Rw+OIhtaUAsP61PAUWjD0xsu6qGoY5WoE/Kvee4UVZl28UcRVvLuHDIqHRz+XUNcfDZUk4rBrER66LOWOCjeksPQKidbs8xkBzRcPx9Gi8JuvPau6FQ6U3SdK/0efC+00rpdhmmequD8bErencPe+07ETW/DolHCPZq6Fj5BtLksuNs9oIeHyKlGFXebh5J351B2eR4HHqzD3erFaDPgKLIx1DiCFtSxZJpQDUqk1PTkY4QQuWsyGKgfITASjKvPhsluIOTX0QIanupetp94lQ996EM88sgjsW7anCRcD9G473znO/z93/89R/W9dOotBD2huAlDQOQDm7smg6qrC5O2NPepPUXjvUFnDUMACuEwNOkkPhF6iqJh8s7M0+uPXM3TgjoDJ92Rnkx3m5euA4MUbXahGBTcbZ6JcqZ6uPjC+JVLXSMuTngX23gYylmdsSDj/hOdu93DwMnhuPlsaAFtynDl/hNuQmO9S35VocNi4PCXM2PUuunpikKbamSkPf57P2Kh/8QwLdt7Ui8MAegTQ/NCPg13myfytzba5cPd5kExKBRtdtG1bwB3a7iXNugJMXDSHTkW+AYCU9bdiZcT3sWUlhf9+bLJIDxnuTBSFCSePhuBkRBaQGO0oJ83617nfe97Hw8//HCsmzVnCXuWrigK//3f/80dd9zBMfMe+vSuWDdpWm07e9n7sxOEfBoGs0rWkuQ76W/bPDyzEHQK07CJ0ldKMbknChKUvOVImWA0E63buzE7jFPmB4mpDBaV6usKyVkVf2V2Y22gbiRSHS6R1Hwtk5qvZca6GRFHTGYG6kbOvWEK8g0EIvNSxOny1mdishtp2SG9i2dic5nZ9PmlSXl+NFdZSxwYzCohn8ben52gbWd87se9OUPs6n6dTZs28be//S0hymufSeK2HFBVlV//+tdcfvnlHHfsYUjvj3WTpjU+lylvfSbLP1g6MTE+icxluFswLYi72I1mPP3KooSiME+vn96aofBChzKHYVohn8ae+07QvltOysZZs8wsu7kk4fc18RSKjDYDy24uSYwFQBdBRoWdjZ9bIj2zZ6NAyUU59B4Zwtsnq/yeibffz8Hf1kfm6aY6o83A8g+WRhaVP9ciq7ESzPbw9vBWlixZwssvv4zZnNj7xoQORBBeo+iPf/wjq1evpi5nP249ficQtu/uY98vThL0hFAMStJdDWnZ7J5VMNINOv0r+gnZph/qKKEorGV7DzaXBddK57k3TlGBsYpRGRX2yKLLqcySYcKabZ5S7CBRxUtvkRbQsGabo15iP1EFPSEGG0eiXrE1mbhWOrG5LLRs7451U+KarsFg/UhcDQeLhawlDhRVIegJse8XJ+P6Il8o08c7/q3k5uby+uuv43Qm/vlJwgciALvdztNPP01hYSH1+fsZieNQNH6VKGelk5V3liflwXU2oUgJKthb7ai+6T+KEorCc4UG6tyUXpwb66bENZPdwKoPl5O3ISvWTYm5wYYRDvyqLqlOMGIdjLSgzoFf1clV7DEjnV7qnm0/94YprPTduQzUuSMVScXpzOlGlt9SkpTnQrNhyTCx8s5ycsaW5YjnHsWQ08cebStpaWm8/vrr5OXlnftJCSApAhGAy+XipZdewuVy0VB4kBE9CguILqDuQ4Ps+/mJyLo3mdXJdeI/01CkaAo5B3Ow9lvPuI2EImje1o2j0JZ0n5NoCoyE2H//yZSfz1C02RUp0ZuMYt1bZLCqSb3O3LmkF9tY8/GKhB+OudAyqx04imzSO3QOZocRa7aZoC81exrHj+m+wQD7fn6C7jivSBx0+NirvIHFYmHbtm1UVsZmMeaFkFRHzby8PF555RUyMzNpLDrIqB7fZZxHu8MVw7KWOFjz0Yqkq7Iyk1CkmTWar2xmtGD0rNuleigarB9huGWUsvckx5WYhTJehc+eb0UxpN7QOZvLTNlleTgKkntxw1j2FjkKbJRdlhf1FeIThhK++BBPVV3jUfnleQw1j0oxjnNwt3vZf38dIW/iD++drbQ8C2s+WhGZPjF+ThivQg4f+43bMBqNvPbaayxZsiTWTYqqpApEAPn5+bzyyiukp6fTVHIo7kMRhEvP7v35icjJnGtFetJMoJ9RKDJpU8pvn0mqh6LG17pwlqYl3dyzaDPaDKz7dBUF56Xe0DlPr5/dPzyWMsO6YhGMBhtG2P3DY1PKJKeS4RYPx/7YHDel3ONR1lIH6cVpNL7aGeumxDXVpGJ2pthQOWXsHI/wBby9Pz9B/4n4P08NpfvZb9qOwWDgtddeY+XKlbFuUtQlXSACKCgo4JVXXsFms9FcejghQtFIR3iMcVqehRW3l5GVREOjzhmKNCjaXoSj+dzfcyqX5R446WawaYSyy/Nj3ZS4FvSEOPy7hpQbOucsS0MxKCl5pXUxglHdf2yJ3A55NRSDgrMsbUHfM56kl9hY/sFSDOakPG2IqvLL8hlsHGGwPjUuTMyVa6WTC766DGNa6gy/zKp2sOL2ssiIoPFzv3imOQPsN25DURRee+01Vq9eHesmLYik3bMVFRXx6quvYrVaqS/cj1uP73GZ40a7fOz5SW3kikHOamdSHIDOGopUGCkcIZAemPHrpWooanq1i/QiG9nL02PdlLg21DiKroE125y0iyJPZjCrrPpweUrPbYGJYLQYvUbFm12s+nB5UuyfZ8JoNaAalchCumJ62cvTcRTZaHo1PtdGjCd9x4Y48kgjwdHkHn5pMKvkrA4XS+g/4WbPT2onFlmPc8EML3uU1wGSOgxBEgcigOLiYt544w1ycnKodcXvOkWnGh+KYUozsOT9xeSsSY4FJ89WlnuwehBf1ux2EKkYigYbRhiod1N2mcwlOhfFoLD2rkpKL03+n1XIr7H//jrad6VWr9jZVP3jm1T945sL9vptu/rCcx/8qREQ+k+4qfl9kwyVO4eyy/IYqHcz2Ci9Q+cS8mkJMVxsvnLWZLDk/cWYxnrCEmW4rT9zlLeDr2G1WtmxYwdr1qyJdZMWVFIHIgjPKRqf/FWTvot+PXEqvgRGQ+z5SS2de8NBLnddJtbsxJ/Ie6ZQZO2xYuue3WTwVAxFTa924Siw4VqV+HX/F5Ie0jn6eBNNryX3lVqT3QiAp8eXFOsORdtCBSMtoOHpCV/EGf8dJKO8dZlUX1eYNPNaF1LOaieOAlvS73OiIXt5OpVXFcS6GQvGmm0md10mAJ17+9nzk1oCCdQT5ncNs9v7KllZWezYsYPly5fHukkLLukDEUB2djYvvvgi559/Pkdsu+jRO2LdpBnzDwdBB0WF0otzyFubGesmRcV0oSi9OX1G84hOlWqhaKh5lL7aYSquyEdR5SzlbIZbPGgBDZPDmLTrXKz+aDnV1xfFuhlxbzwYRTscVd9QxOqPlkf1NeOJohIOQ9IzdFaKQaHiygL6jg0x1HT2qqkifBEhmQsq5K3LpPTinPDfjz52LpcgfAVDvDX0KsXFxezcuTOpSmufjaLresrs5jweD7fffjvPP/88KwLnka+UxLpJs6IaFXQ9fOU7b30mWlCn53BizI06k8lhRgkq6AZ9XlciZ7MobCJLy7Ww8XNLqHu+XYZJzcDaT1QS8mkcebQx1k2JOmdZGiGfxkhn/E/Onc7KO8sYWZvFS7nR7f1e9tndM9pucrGEc5kuTNnzrRgsqpwEp7iid7movKqAPfediPQcitSSszoD1ajQtX8AxaCgKCTc4tje0gHeagtXkXv99dfJykqdaq3J288/DZvNxp/+9Cfuuusufv/73+PTvZQpiVNHffIfVka5HU1L/EDUstkdCUW6cez7CwFzLDoz/lrJHoxGu3107uun7D15dO0fIOSToVJnc+JvbQQ9iTNcYSYUVUHX9KQ5EVf8Krp58T/Hp4ac2QQkYEoQVQwKeiixToDOpPr6Qrz9AVp39MS6KXHPYFEpvTSXjr39EoZmwJplJjASTLr5d5mVdlDDgUgP6QnXqTpc1sGupu1ceOGFvPLKK6SlpU4VTUixQARgMpl4+OGHKSws5Ac/+AFefYSlrENREmvoUe1TrZGeFNdKJxkVduqea0/IYQ3j4aXkLQfOeifpzem0XtI6r56ikrccSR+KGl/tIndNJqWX5NLwkqx3cTbjJykGs4qjyJYU6/QsvbEIXRvbFySJWIWiyeYakJbeWAwK1P4lOX4fAXeI4GjiDPOJpdJLclGNiswdmqHq64tA1zn8uwTvsVeg6ppCBhtG6K0Z4sTTbQl5DqbrOt1l9Rxo3MMNN9zAk08+idGYcvEg9QIRgKqqfP/736e8vJyvfvWrbL5tI92PBTAoCVYLf+wPz2g1YLQYJv4QE3S8d8tmN1XPm9EMYwu1zjOjJnsoCriDtOzopvTiXNp39+EbnHnZ8lRV/O4cCjZl8fZ/H0+4oQyn6j02TIJdx5kRxR+e2hrrYDRupnOO+k8Oo8dHk+dn7PjR9Lqc3M+ExWmi6F0uWrb1EHBLgJyJE39txWhNsPOtycbPsfTx86+x6fgJeEjRFY3Qe/o48NoePve5z/GTn/wEVU2J8gKnSak5RNP505/+xEc+8hEuvPBClK2ZmJTEruLmLE9j6fuLOfib+oSaxDdZtIskJHMoUk0q539pKYMNIxz7U0usmxP3VKOCOd2Etz8xyp6mgvE5RC9nWE97bD6haKZziMQEg1Vl3SeraHy5k77jw7FuTkJYfmsJGeV23v5RrVR5TAHmdCNr76qk9qnWhB+urJmDdFQf59ixY/zbv/0b99xzT6ybFFOpGQMnueWWW3j55Zc5dOgQb/MqHj2xh9IERkL01Q5HwpA5PfE6AQ0eAxm1GSDHlnPSAhoNL3eSuzYTZ3lqjfedCy2o4+33o6hQeGF2uAJQgil5d064DLKIS9XXF1L87pxYN2NOtIDOYMMII12JWaBjsWVU2Mldk0n9S50Shmao+voiXCsTb8mI8XMp/3CQvtrhhCqhPR0tPcAB+3bq6up4+OGHUz4MgQQiAC666CJ27NhBXmUOu3iFAT1xJ5F6enzUPx8uK25zmTn/K8vIWpJYZal7P+zD2ejENBqdkpwlbzmSujR31/4BhppHqb62KCFP8GMhLd9KxZUFpJckXogMjIbwp8jQHMWvRobQJQr/cJBgAp4smdIM6CGdumfb8Q3I8NtzUVSouraQwaYRug8MxLo5iUEBo0VFNSTWWN+sJQ7O/8oybK7wCKL65zsSunhGIGeEXaGXCWoBXnzxRe68885YNykupPyQucm6u7v54Ac/yBtb32AFmyhWErz2uhKuhd99aBA9pJNRYcfd5kmIyi7jFbTiefjcwMe3kPnb6C/4OBf2AisbPltN/fMdtO3sjXVzEoIxzZCQJ67J5mxD5k41myF0MmRu5vLWZ4ZLRv/0BIGR1Ajb8zVeZnvfL04mbMl7cWaTC/AoBoXcNRl0HRhIyHlCkw0XdvF253YqKip44YUXqKqqinWT4kZiXXpbYLm5ubz44ot85rOfoYZ3OKbvQ0vkWbI6kfKPikFh+QdLE2Yoh67pqEaF1ouiO4QxWgFr4ONbpvw/1kY6vHS83UfZZXmY7Ik3TDIWxsNQ8UU5ZFTaY9yac3OtdFJ2ed68i40ksoTpLVKg7PK8hBka1HtsiIaXOyUMzZDJbqTssjza3+mTMDQLztK0hNl/Fb87h+UfLI2U0u/aP5DQYUjXdTpLT7KzbSsXX3wx+/fvlzB0igQ5uiwes9nMz372M370ox/Rwkn2s52AnvgTsPWQzr6fn6D1zfBwwJzVTvLWZ8a2UWdhSjNw4TdWkL08PepFEeY7hO7UEDTw8S1xEYwaX+lC13Qq35cf66YkDiU8DyC9yBbrlpyTxWnCmmVO6INyNCTEMDodbFlmLM7oDPtdKDaXGaPNQMir0bmnP9bNSRgV781H13SaXpFKfDOVlmdh3aeqyKqO3+HreeszyVkdvojR+mYP+35+IinWFdPNIU4W7eVQ8z6++MUv8sorr2C3x/9FwMUW50eV2FAUhb//+7/nhRdfQMvys5tXGNETv+KOfzhIyBvu8XKW2smsit8dU2A0RMNLnbjbPMDCVIqL9nC8WIeioDf8M8tbn0VGuezsZkSHI4820rJ9bN5gHF+9bNvZy3GpJBgR78Ho2J9a4n746rJbSlny/qJYNyOhZFTYyd+QRcNLnQS9MuR2pka7fOz75UkG6uK36mtmlSPciwWEvFrCVuqdTMv0sc/+Bu29rfziF7/gxz/+ccqW1T4XmUN0DrW1tdx4443UHj3Bai4gTymOdZOiZ6yWftZSB2WX5nHo4QZCvvgfIhjLeUUzCT2xnle09pOVmO1G9v7sRMKvtbOYspelU3ZZHgd/Wx+5cBAPspY4sGabad/VF+umLIjZzCE6m1PnF8XLHKLCC7Px9vnpPxF/J4LWLDNaQEuZIh3zpRoVNn5+Cf6hIAd/Ux/r5oh5MlhV1nykgqbXu8J/nwm6huOZeAr7ead3O+nOdP7yl7+wZUvsR7LEM4mJ57B06VJ27tzJTbd+gAO8Sa1+ILHnFU029ocfHA0x3OqJhCFbjiWGjZqq8ILs06rkLcQQupmYaQ9QrIfQnXiqFUuGidL35MWsDYlotMfHcMsomj++jojpxWlxPcwkXsRrj1FWdTrpxfFTzVA1KpRdlodiUPD2+yUMzULpe/KwOE3U/rU11k1JKBmVdlZ9uByDJT7+PsfPcUJejeE2D0HPWE9ffO3650zXdbpK69je9jKr16zm4MGDEoZmID4+nXHO6XTy+OOP84Mf/IAmatnDVny6J9bNiprhVg91z7UDkJZr4bwvLo2bUt3Zy6Y/mVjseUVzCTixCkWeXj/NW7spuSgHe8H8rrqnEm+fn5PPtKNrOpZMU9yUMG96vYsjv2+KdTMSRrwFoyO/b6Tp9fiZa2IvsFJ4fnakhLCYGXuBlZKLcmh6vRtvX+LPK15UOgQ9obgYgZK1xMF5X1xKWm44FNU9285wa/Kcz4VsAY4X7OZg814++9nPsnPnTvLzZV7xTMiQuVl64403uOOOO+ht72ct7yJLyY11k6Iue1k6fbXDoEP+pixGO71xu8NYiPWFTg1b8w02sRhCp6gKGz5bHS6mcf/JpLnytRhUo8J5X1pG14EBGl/ujFk7MirsGNMM9B4ZilkbFkO0hsydaunf74zq682Xa5WT4GiIwYbYL/6tmlRZSHQ2FNhwdzWKQWHfL06QLINEUkV6sY20fGu4cIgC2UvT6Tue+PPCT+XPdbN3dDs6Ovfddx8f/ehHY92khBI/l9ESxCWXXMKePXvY8p53sYetNOrHSLZM2Xc8HIZQoGBTFplxMFzHZDdMe3/LZveCDqGLRi9PLIbQ6ZpO7VOt2AusFG9JjFLr8UIL6tT+pYXWHbFdoNm10knBpuyYtkFET8GmbFwrYleGe+kHisNl20HC0CwVb8nBXmil9qlWCUOzZC+wxnwYfma1g4JNWZE5QskWhnRdZ6iijW09L5BfkM/u3bslDM2BBKI5KCgo4KWXXuJb93yLWg6yn+349cRdtfiMdNh/f12kAlfxFhcr7yhb9GYseX8Rq+4sP+s2CxGKGr8b3RCz2KHI3eahbWcv5ZfnxfyAlGgG6kYIekIYbQaKL4pNoKx7tp2a3zfG5L1F9NX8vjEyNDkWRjq9jHYl4XFqgaXlWii/PI+2t3ojVU/FzJVekhuTSoYr7yijeIsLgJbtPey/vy4pR0qELAHqi/exq34HH/jABzh48CArVqyIdbMSkgSiOTIajfzHf/wHf/vb3yAnyFu8SK8eu+E1C2m8Dr+n1z9xQBhbv2UxdLzTT/1LHefcLpqhaPsLawEYXBK1lwQWv7eo8ZVOvP1+lt9cgqLGcU3pOJVRYad4Sw7m9MVb7Na10hkpm54KVQI3XzWEoz7552SM/y4zyu2LumDr+DzCtrd66Tk8uGjvmwwUVWHZzSV4+vw0xHD4bCI79qeWRVsuIKPCHlk6wd3mwdMb3q8kw1pC0/HmDvG28RU6+tv58Y9/zJ/+9CesVpk3PFcSiObp+uuv58CBA1z63ovZyxvU6geTpwrdKfqOD9P8RjcQrte/9q5K7PkL/8fnbvMw1Dg6o23Hh9DNJxyNh6Fx0Q5FsHi9RVpQ5/iTLaTlWyl9T/LNd1tovTVDvPPj4/iHg4tWZCFvfSZ5GzIX581i6Pm2fTzfti/y7xU/6mXFj+J73Z5oyNuQSd66zEV5r9w1Gay/uxpLZnwvEBuvSt+TS1qeleN/bknak+qFpod0fIOBBX8fe4GVtXdVRtZXbH6jO+mGxo3T0Oguq2db1wsUFRexa9cuvvjFL8a6WQlPAlEUFBYW8vzzz/Of//mfNHGct3mVUT3+1pyIpoGTbvb94gQjnV4Aqq8vIntZ+oK9n6PYRtW1hbN6zlxC0alhaNzgkoXpLVoM7nYvzVu7KL04l/Ri26K8ZzIZr4y09KYSltyw8EM/av7QxMmn2xb8fWJpchA6VbKHopNPt1Hz2OJUDew+PMiRRxrwDSz8CWmySS+2UXpxLs1buxhp98a6OQlp9UcrKDh/4eZBZi9Lp/r68HnBSIc3vPDryeQ+9wql+6jJfYsDTXv41Kc+xcGDB1m9enWsm5UUJBBFiaqqfOtb3+KtnW+RW53NTl6iXW9MuoILk7nHDhKKQcFsN6IYw33VRpsB1Rjd4VlGq4H0YhtG6/TFFc5kpqFo+wtrzxiGJkvUIXTNb3Qz3OZh2c0lqCYZOjcX/ceH6T+xcFccC87LIi3PAnryDpU7tVfoTJK5t0gL6qBDWp6FgvOyov76iqqw5IaicO+9Hp4PJ2ZHNYWHyrnbPJFREWKWFBhuGcXbH93hsKpRwWgzRG6b7SYUQ/iYluxzvEZLe9nhewFvwMMf//hHfvWrX2EySe9vtEggirILL7yQPXv28KGP3slhdnOQnclZcGESPaRT81hTpDxwxZX5rL+7OqrvMXDSzf776wh6Q7N+7rmG0M0kCE2WkEPodDj+ZAtmp4nKq2fX0ybCug8N0ns0HIhcK52Rg3A0KKpCwXnZuJbHrgrZQpppEDpVMgcj1wonBedlR31un2pUsOVasGTIidJcVV1TiNlp4vifW5JyIv6i0KHpta6o99isv7uaiivD6+r0HBmi5rGmpB/OGDIHaCw+yI6mVznvvPOoqanh5ptvjnWzko4EogXgdDp56KGH+MMf/kDI5eEtXqBbT+4hMJM1b+um/oVwNSWDVaX6+qKoTUqfz1j4U0PRTHuFprNQQ+hyd2RG90Un8fb5qXuuncLzsnGtSs4T78VgyTSx7OYScqL4M9Q1nQMP1NG8LfmuRs8lCJ0qGUNR8xvdHHigDl2LzsmcwaJichgJ+TUOPliftPMnFlrO6gwKNmVT92x7ZFK+mL289ZmRnpz5MKcbqb6+CIMlfLpa/0J7Uu4nz8STP8Bu48s09zTyve99j23btslCqwtEAtECuv322zl06BBX3fA+9rODw/puAnry72B9A4HIMA2by0JmlSOydsN8gpE938oFX1mOszxtzq/Rstk9ryB0qoXoLVrIUNS5p5/uQwMsfX+xTLSeI99AgD0/raX7YLhi17yu8CtQeXUBZqcpMpQqWcy1V+hMkq63aGxoZLjXtiBSHWuult9SyvJbSqLTthRlzTKz5P1FdB8coHNvf6ybk7Cs2WaW3liMo3DuRZfGzxV0LVzEaXzpiIG6kZSYE6ebQrSU1rC94yWqqqvYs2cP//iP/4iiyJD3haLoyTzJJU7ous5vfvMbvvKVr+AbCrCK83EpKZjwFTj/S8voOTJIw0tzK2HqWumk/8QwWmD+H9torzOUcWJ+z1/6uZrT7uu+aGB+LzoNg1llw99VE/SEOPBAfdSuUKeijEo7S99fzMFf1+Mbmv1B2pJpYu3HKzn+5xaGmmZWSTHezTYE/f65y9i5o5Bjb8zu53f0S66zPr7073fO6vVixVmWxrKbSjj42/p5neil5VrQdfD0JPcQ7YWiqArrPlWJ0WZg389PEvInZ7XYxWJMMxD0hOZ0kafivfnkrMrg7R8dT6qLRDPlyx9i/8hOvD4P//AP/8D//b//F1WV/ouFJoFoETU1NfHJT36SV155hRKqWcIajEpqXaXPqLDjdwfx9PjIqLTjLEujeWt3zHZ68RSKpgtEsDChyFFoZd2nq2jf1Uf9C+de40lMz+wwUnxRDvUvdsz5M6yokAyV+ufaGzTXQDTuTMEoUQIRzP0zkFFhJ39TFseflLku81V5VQGFF2Zz4Fd1kYJBYpEoUHppLkNNowzWj2DLsWB2GBlsSK2CIJpRo6v4JIca9rN8+XIeffRRNm7cGOtmpQyJnIuorKyMF198kR//+Mf0pbXzFi/So8du5fJYGGwYiVzBTMuxkFFmjxzI03It53y+YlCourYwaovClv/Lm5T/y5tReS2Y+9yiM4UhCA+hi/YwOne7l4YXOynekrOg5dKTnd8dDAfKsaph+RtnVjUsLdfCsltKMJjVhA9D0R4aN1vJMJRO18I9t8tuKZnRfnCcooLRoqIa5VA+H9nL0inekkPDS50ShuYpo9LOeV9ahslx7uHxkc+6Hl6wOG1sWJynx5dyYcibN8A7tpc52nKYr371qxw+fFjC0CKTvegiU1WVL37xixw6dIhLr7qYfWznoL4Tv556O+H23X0ceqgBCI853vSFpWQvP/vJuR7SsbksmOzzn6w5WTRDESTG3KK2nb30Hh1i2c0lWLPMUX3tVORa4aTwgplVDTM5jFjSTQldlj/WQehUiR6MdB0s6aZzn0gq4Yn/EJ5PceTRJrRAgqfqGLJmm1l2cwm9NUO0vZW4n594EXAH6TkySMAdPOt22cvT2fSFpVizw8eeQ79toH1332I0Ma5o1iBNJYfZ1vkShUWFvPnmm9x7770YDNE9xxHnJkPmYkjXdR5++GG++tWvMtznZinrKaQsZSfNZVY7GGwYQQ/plF2eR8iv0bq9Z1HbEO0hdHDuYXRn6x06k2gNozNYVNbfXY0e0tn/qzo5sZon1aSiBTRMDiNaQIss6ppMoh2C5jtk7kyOfsmVUMPmZipriYOVd5az7xcnGO2S+ULzoZpU1t9dhaIq7P+lzBtaaCXvzkE1qzS92oViUMiosCf9Qqpnous6o6W97O/dhaZpfPOb3+Tb3/62zBWKIfnJx5CiKHzsYx/j6NGj3P6R2zjCbvbyBh49tbqKxw2cdE+sJ6ADY5P9DRY1PKxrUk40WFQszujPv4r2EDo4e2/RXMIQRG8YXcinUfOHJiyZJpbeWDzv10t144Fy2U0lrPhg6WmPV19XGK4olqCK3kqc4ZWJHIaqrimg+rqp64WNlzDuP+Fmz09qJQxFwdIPFGPJMFHzhyYJQ1GQXmzDtWLSPkIJD0ccL5mt68DYj1kP6SkbhkLpfk4U7eHN5tdYv349Bw8e5Lvf/a6EoRiTn34cyM3N5eGHH+aZZ57BUWblTV6gQT+GluiTC+ah6bUuWt8MD1/IWprOitvLMNnDQ0lUo8Kaj1dS/t6Fq9S3EKEoXofReXp81P6lldw1GRRflDP/RglOPt0WqaQ4eQidu8ObkCeyRW+lJ1QYSnQjnb4pc1lsORYu+OoyMqscAHj7k3/5hoVWvMVF7uoMav/cKpX5osS10knZe/JQjeF9nsluZOUdZWQtDe87Wnf00PR6VyybGFMaGgPlrWzzPMvgaD8//elP2bFjB0uWLMDJgZg1GTIXZ9xuN//7f/9vfvjDH2LHyXI2kK3kxbpZMWfJMOEbDA+p2fTFpQycHKZlRy/+OZQ6nq2FqkQ3196hM5nvMLryK/MpuSiHQw83MFifmr2UC2HVh8rwDQY4+UxiFlCZLgg9WPZG1F5/IYbMhY7NswZ+HDE7TfiHAhRemE3n3v6oLDmQ6jIq7az5aAUtO3pofHluS0CI6ZVekkvu2gz2/DT8Nzj52J3KfLnD1AT30NPXzQ033MADDzxAbm5urJslJpEeojjjcDi499572bdvHxvevZY9bOWgvhOf7ol102IqskNVoHV7N537B/APBciotFN+Zf78Fsc8h4XoLcr8bXRfE+bfW9T4SicDdW5W3FYamegq5s/d5iV/UzYZldGpjLiYFqNX6K0XnOhuCeCnMjmMbPriEs7/8jLsBVbad/VJGIoCm8vMytvKGKhz0/iKhKH5UlSF8ivzI5Vf+04M07qjJzLEPdXDkGbz01RyiDe6nic9w8EzzzzDX//6VwlDcUh6iOKYpmk89NBDfOtb36K3q48qVlHKElRFcixA4QXZOMvSMNmNHPptAxCecDzYOLpgxQGi0Vs0OWBFu3LcuLn2FhmsKus/XY2iwP776wh6Q9FtWIrK25BJ1/4BKq8qwN3mofvgYKybdFYzCULR6iX66tdvBOD43uiE8GTpHVJUWHpjMaO9PlreWNziMsnKaDOw/u4qtKDOgQfqkrLoyWJQTSoZ5Wn0nwjPAVrz8QrQdYJejaOPN8e2cXFCQ2O4rIMDHe9gMBj4+te/zre//W2pHhfH5Mw6jqmqyl133cWxY8f4wpc+Ty0H2MlL9OmpOwZ3MnO6Ef9wMBKGTHYjqz5UjmulEwjvtKNtvr1Fpz6/+6KBBVl4da5FF0JejSOPNGK0GVh5R9mC9rwlO0ehlfTSNAC69g0AYLQY4n7NmMWcK3R10YbI7WQJMvNhsKgsu6kYa7YZXYPjf26NhKH00jTshdYYtzBxKarCytvLMFoMHHm0UcLQHIwfU3NWOln1ofLI8heHfttA264++muHY9m8uOHPG+Zg9hvsbtzBFVdcwbFjx/jXf/1XCUNxTnqIEsi+ffv44he/yI4dO8inhCWsxaYk3jCchWTJMBEYCaIFdaquKcBRlMaBB+oW5L1m21t0rjC1UL1FMPseI2dpGms+XkH3oUFq/9K6MI1KcituL8VgNnD44YZpHy/a7GKkwxs3CxDOJQjNp5doPAytvLMMgJrfNwFgWD73CcaJHqpUk8raj1fQ+GoXA3VTK3Ct/mgFIX+Io4/JFfi5WHpjMblrMzj42waGm0dj3ZyEs+7TVQy3jFL/fAeqUcFkN6b8cLhThew+WrJqqW0+SmVlJT/5yU+49tprY90sMUPxfalSTLFhwwbeeOMNfv3rX6MWhniT5zmhHySop+5OSVHBlDZx1cU3GEALhjN+14FBWt8MX101mFXWfKwCe370rrDOprdoJtsuVG8RzL7HaKh5lNqnWsnfkEXJxVJ5bi6OP9nC0cebpn9Qgawl6aSX2Ba3UdOIRQW5yT1Dp0r0UDNbqik8B8NkD69dtf9XdaeFIYCjjzdx/MmWGLQw8RW/O4f8jVnUPtUqYWiG7AVW1nysAoM5fJrYuqMnMtRXC+pTwpCjyIazLC0m7YwHmjFET1kDb3ifpb2/hX/+53+mtrZWwlCCkUCUYMaH0R0/fpz/9b//F522JnbwHK16XUKvej9Xqz9aQdV1RdM+5m7z0FszBIAxzYCu6QQ84TkxrhXOyNC6+ZjJukWzHWYXL8Go++AgTa93UXFlATlrMmb1Psd/ecEcWpf4HEU21n+mGrPDiBbQzzwsR4fDv2ugZWzh4bwNmWRWOxatneMhaL5B6JNNl8z6OWcLQ+PmEooSNUipRpXcNRmkF589HId8GlpAx+wwsv4z1TiKYh+mE0Hu2gwq31tA09auuJ+7F2uulU5cK8LHxcBoCF3TMY5dcOytGcLdNn1xp8ILsim/cuGWwYhXuq4zXNrF27aXOdS6jw9+8IPU19fL8LgEJYEoQTkcDr773e9y7Ngxbv/obdSwh528RK+eWlVzml7romVb9zm38w0EOPy7xkiZ7uxl6eSsGgtESnitI8Uw9/ky04We+S7yulChCGYejJpe66JzXz/LbiqOrIEyU8d/eUHKBaOAO4i3z0doJkU99LEvwLXcSfbShQ9EJW85Yrqe0EzC0LhEDTgzYbQZqLy6AINZJegJ8c6Pauk7PrP5F6GghrfPR8AdXOBWJr7MagdLP1BC595+ml6VubenUgzKlEXPc1Y5w/8G/EPhY6Zv4NwjUGr/0srRP5yhNzxJ+fOGOeh6g51NW1m7di3vvPMOjz76KDk5MqIiUckcoiSxa9cuvv71r7N9+3ZyKGQpa7Er8+8BSWaKCroWnqy8/lNV7PvlSdxtHkx2A4HRUORkNR7Ecn6RosLKO8rJqEjj4G8azniVcLLpgtCyz+yeaxPjXmaVg6GmkchwzblQVAVd03GtdKKaVLoPDESlbSVvTQ1aGtEvlDGTuURnCkOnziE61UzmFCVaeLJkmFj7yUqOPdHMcMvcl1RQTQrOUvu0Q+xSnaPIxtq7KhhsGOHI75vian8eU0p4mHlgJISjyMaGz1Sz/4E6hptHI8dEcWbBDC9N9hrqWk9SWVnJD37wA2666aZYN0tEgQSiJKLrOk888QTf+ta3aG5upiBURiUrsSpJPLZXgaJ3uRhsHGFk0srus2XLsURWK1/9kXK0gE7NY02R94iXg2msgpFqUljzsUps2Wb2P1CHt89/1tc6W89QsgUjo9XA+V9ZRtPrXbS91Tvv16u6thCjzcDxP819vsipIWiyhQhEcPZQdLaeoXMFIjh7KEqUMGTLsVDy7hxO/LUNXdOjcvJZtNlF2XvyePu/j0uJ/Ems2WbWf6oKT5+fQ7+tn9eFiqQw6Ri28vYyFKPCkUcagfC6TJ7es+/PzyazykHRZhdHH29K6nWyQmkBOl0nOdpyBKfTyT/+4z/yzW9+E1WVgVbJQn6TSURRFG677TZqamr4f//v/+F1DbHb8jK1+gH8ui/WzVsYOhRd6MJZMr/QNx6GABpf7YoUY0jLtfCub6wgLc8yr9ePllgNo9MCOkcebSQwGmTNxyowO4xzfp/xoXSJPpxOMSigQNAbYv+v6qIShgDqnm2n9s/hMJRZ7aDq2sIZDecsecsR+TobdZHT/WyGyZ1JooSes1FUcBTaMDvDfzvRuBLf9lYv+381tl6YwryG/SYLs8PImo9WEBgNcuTRxpQPQ/Z8a/gYlhs+hrW+1UPTaxPDB+cThgB0TSfkDSVtGNLMQbrK6tjmf4b67pN87nOfo7GxkXvuuUfCUJKRHqIkNjQ0xA9+8AO+//3vo6oquUOllLEUgzL3k9lUY043UnBeNs1vdKOHdKquLSTk12h8OfZztRaytwimD19mp4n1n6oi6Atx8Df1BEenvyo927CTiL1Gaz5egbvdQ8OLC/dZyFuXiWulk5o/nN5bea7gczaL1Us0kzA0kx6icaf2FMV7UHKtdJK3LnPi97eAKt6Xj6PQFlmXLRWZ0gys/UQlBrOBAw/U4RtKzQqs5VfmYzCp1D3XjmJQKL0kl453+vAPy7yzmdINIfqL2zjSuZ9QKMRtt93G97//fQoKCmLdNLFAJBClgK6uLv793/+d++67j6ysLDI7CymmClWRqxuzVXhhNnpIp+Odfkx2A0tuKKb+hQ68/fO7yjYfix2MbC4zaz9RhX84wKHfNkw7VGeuvT+JFIzyN2Yx0uXF3Tr9HJCit9Jp2zz3hQojxQ90QAHroIncvbl0XtBJ0D7/E5uFDkUz7RmaTSCCiVAUz2HIYFEJ+TQyKu3krsmg7tn2Be+pSC+2kZZnpXNv/4K+T7wyWg2svasCk93IgV/Xn3NYbzKxZpmpvKqAE39rJTASouC8LBSDQvuuvgV/b1OagaBPQw8lx6mkhoa7tIujAwdwu91ce+21/PCHP2TJkrmvjyYSgwSiFNLQ0MC3v/1tfvvb32LV06hkFQWUJnwwKt7iwllqn5jzs0js+Vaqri2k5g9NBD0hCi/IBoVFOQidaqFDEUwNRmm5FtZ+ohJvv59DDzWcVl56vsPh4jUYlV2WR9ATom3nzIbHRbOim3nEgLPRSd+KPlDB5DYRsAeYa65ZyEA0m2Fysw1EEA5F8RqIVt5Zhh7SOfp47BZQLdrswmg1TBkalcwMFpU1H6/EmmHiwK/rpwyBTlaFF2aDDu27+zDaDKy8o4y6Z9sZ6Zz7XNq52PDZaoZbRzn5dPuivm+06eiMlvRydGg//YP9XHrppdx7771s2rQp1k0TiySxz4TFrFRUVPDrX/+agwcPcvVN7+MIu3mTF2jTG9ASuLSMdzDAcOviL7Y30unl4K/rCY6tbWTJMGHNNAOgGhWqry/EmmVelLYs5NpF4ybPMRrt9nHooQZs2RZWf7gc1RTdXUm8zjNSDAqKMTbzNPz2EH2rwmFI9akUbSvC0TL3YXMq+oLMJ4rGnKFzibcwlLXEgWlsXl377r7IHMRYUQxKyswnUk0qqz9cji3LzKGHGpI2DFmzzFRfX4g6tv+xZpqxZJgACHpCHPx1/aKHIYD65zto3734FwGjRUdnpKSbvRmv8mbza1RUVfDyyy/z+uuvSxhKMdJDlML27t3Ld7/7Xf785z9jw04lKymgLOF7jOKBLcfCqjvLOPxII94+PzmrnRhtRjreXpwDx2L1GDmKbKz5eAUj7V4O/64hMixoIYJMrHqNii/KwT8UoPvQ7Bd1jPaaP5EAo4O1x4ov04du0rG32tFMGp682ZdwjmZP0VyGCM6lhyieGCwqF3x1OU2vdc2453Ax5a7NwJxuonVHbEPaQlBNCqs+VI6jKDx3aiZLAiSSgvOzCY4G6TkyhM1lZtWHyjny+6akDX2LSUNjtKSXY8MH6R/oY+PGjfzbv/0b1157baybJmJEznxT2MaNG3nyySfZs2fPWI/R27zJ8wnXY2TJNGG0xdeq0J4eH+/8uDYyjt1eYCOjfKwSngLVNxRhz7cu2PsvVo+R7QkLhx9uwFFkZfVHKjCYF26XEqteo7RcC9bsufX0zWcO0XQi4UUBb64X3RQOSGldadi6bOMboYRmHnKi0UvUtnk46t9rPEsvDl8IUI0KIZ/G3p+diMswBOGehfEKY8nEYFZZ/ZEKHEU2jvyuMSnCkD3fSvUNRZF/Z5TbsReG/649vX7e+XFt3IUhZ3naxCLnCUBDw13cxd6M13ir+XUqqyp45pln2LNnj4ShFCeBSESC0d69e7nm5qsSLhit/XglpZfmxroZZ9X4cifH/hgupWy2G0kvskXCQ/aydMqvyF+Q9x0PRgsZjqyPWWi5uBd7gZXVH63AYFn43crZSoTPl2JQWHZTMVlLwsPRav/SSvPW7gV5r2jp3tgdHk4H2DvslLxaguqf+e9hPqEoVYKQOd2IvSB8ESMwGiLk1yIXYnyD8VvNrHlrN7V/aQUga6mDZTcVJ/xwOoNFZfXHKrDnWzn8UANDzYs/ZDpayq/IJ3tZuCfZYFFJL7JFljU49sfmuKhoejY5K50UXuCKdTPOSUPDXdLFXuervNWylcqqCp599lneeecdCUICkEAkJtmwYQN/+tOf2LdvH9fecjVHeJsdPEezfoKQHr/lOo882hiTQgZz5XcH2feLk5GDuCXDNOUK7orbSsleHt2hVrCwaxh5s/y0XNaDvdLKmo9XYlmkikPjwSga4Wh8HpQe0kFVoj4vKlrOOMRtrLm+TB8DSwfQzOGLGZnHMzEPRn8uW6r1Ci25voiqawoB8Pb7qfl9U8KVMVaNKqhKpCJYvH7Gz8ZoM7D24+FFog/+tp7hM1R5jFfZy9NZcVtp5N9peZbIXKChplH2/eIkfnfifK4aXurk4G/qY92MM9INGkNlHexxvsJbzVupWlIVCULXXHNNrJsn4ojMIRJndODAAf7jP/6DP/zhD7hcLpzdeZRQjUlZnEIBqUhRFZZ+oJjugwP0n3CTvSyd0ktyw5Xc/BqKqqBr8/+TXajeFcuQiZJ3cvD2GXlqqQXvAl2Jfvfq2rM+PtvwZ8+3svaTlRz8TT0j7dGfmLxgc4nOtV1ApeDNAgaWDTBaMIrBYwAFQtbp14+ayXyiaIegeJ1DZHGaWPuJSo4/2cJQ8yiWDBNBT7hnKBk4CsMXL2I1GX8uTGkG1nysAlO6icMPNcR1u8f31QazypqPVdC0tZv+2mGyljjIXZtJ7V9ao7IvjxeqSYmrxVk1c5CBwjaO9xxhZGSELVu28O1vf5v3ve99sW6aiFOJd3lILJp169bxyCOPUFtby2233Uar9STvOF7huL4frx77q3Jmh5H1d1cl1fh4XdM5/mQL/SfcAARGgwy3eSInYWvuqqDy6vDCcIqqzPl7X6hhdD5ngOYLujGZdD5wwsuqJ2JzpXMmPUc2l5m8deHHR7q8tGzrxjcQv0OfJptpIQTNpNF2SRuj+eHeyMyTmRTsmlhYUAnOLrAme49Q1hIHpZeEh9/6hgL0Hh0iMFZF0jcYSJowBOAdCNCyvZuRrnCoyFuXic0Vvxe7xgOqyW6MvxCnhHt6FDX891R1TQFrPl4BQMivMdzmIegJ7wv7T7g5/mRLUoWhvPWZXPC15ZGhfrEUsvnpLDvJdp5lf/M7XHzxxezatYvt27dLGBJnJYFInFNVVRU/+clPaGho4Mtf/jKDGV3sNL3AEf1tRvTYniAFRoJJvRr5cIuHumcn1ndo29lL39Hwz9xRZGXTF5biKAzPa0gvsZFZNbsyzAsRjPyOIPv2mTAYYMOGAGufDFL9u+l7JOZq++GlM952cjhSjcrE3K0VTsouywufxOjQsq0nUkI92mIaJBQiaxX1Le+je314PpTqVyl9uXSiGIN+5p6nZB0epxgU8tZnRoYsWbPNOMvtkZ9X/QsdcTeJPVqCnhAt23pAD19cKbssj+zl4cnxBrMaKe8cD9JyLaz7dBWqUeXAg/GxzlBmlYP0kvDfjqPQxqbPT+yLe48O07ZroshG3bPtDLfE/iLiQuk9OkTTq134R2I31C+Y7qWltIatvqc53nGEm266iZqaGp599lnOP//8mLVLJA4ZMidmbWhoiJ///Of84Ac/oLOzkxy9iHKWkoELRVn4g6jBoqIYFIKjC3PymihUo0J6cRpDzSPoGiz9QDHWTHNkPPfyW0vp2NPHYP1I+ARvBn/p0RpK1/FPVZjNOmvXBrFYdA4dMjI0FA4iJz8SnYqA5xo2F6ET/v41qH69kP5yN31Vwyghhe73DCzaldpoD5uD+RVDUAIKjlYHI4UjaBYtPNdo2EzXeV2RHqjFCEGLPWTO5jJjc1noOz6MalS48BsrqHuuna59A4vy/vFKURUUFbSgTsnFORRd6GL3D48R67o6ztI0Vn2oHO+gn8O/aySw2PNrxvadGZV2CjZlRYrjrL2rEu+An9q/tKKo4Cy1M9w6Gll6IFVlVNhxd3gIeRfngxPIG6HVdIKTrSew2+18+MMf5tvf/jaFhYWL8v4ieUggEnPm9Xp56KGH+K//+i+OHz+OkyzKWEoeJQu6ltHauyrRghqHf9e4YO+RqAxmlZBfQzUprPhgKW07exmoGyF3bQZV1xSy6wfH0EM6GZV2gp4QIx3TDzuZbzDq+KeqcHsMOmvWBElP16mpMdLbO/VzMZ9wdNZANBaC0tts5JzIoP6SDlDA0WHD5/QTSJs+TC90qfJYzSWaCVunDaPHSM2d7SgGhY1/V039Cx30n3CjqCzYifFCByKDWSVnlZO+E24C7iDlV+STuyaDt//neOTxZBoKFw2WTBOOQhu9NUOgwHl/v5SmV7vmtBbXfGQvS2f5B0txt3o48vtGQr6F/T3ZC6wYbQYG60dQjQoXfG05dc+1031wkMwqB0XvyuboE81oAV0+N9NQDArnf3kZnfv6aXq1a8HeR1c0PMX91PuO0t7VTm5uLp/+9Kf5//6//w+nM3FKgIv4IoFIzJumaTz33HP88Ic/5MUXX8SClRKqKaYKszL/+T2KqpC7NoPBxhF8AwEchVYCo6G4LnUbb9JyLWRWO2h7KzyMY/2nqxjp9nHiqVaMVgMrbi+l/oUORjq8mNONGK0GRrt9cwpG42FonKLorFwZJCdH5/hxAx0dp4eguQSjSCDSweBTCVk10KBiRz79FcMMloxiGTLh6LbSV+FGN8xuV6cqGp1bhmbdrrOJt16iyVo2uyO3jVYDpZfm0rGnH0+Pj6LNLgovcPHOj8Ihwp5vxTcYIOidfy/tQgSi3HWZqAaFzr39GG0G3vWNFdT8oYm+48MYLCpaUI9UWhNnp5oUirfk0Ht0iNEuH/mbsije7GLvz06ga+G5nP6R4Ix6oGcjf2MWS24oovfoEMf+1BK131daroWgN4R/OIi9wErlVQXUPNZEyKux9MZi0nIt7P9VHQBFm10MnHQz2h37IXqJwpJpIjhWlt61yokC9ByJzn40ZA4wWNBBbe8Rht3DrFq1ii9/+cvcfffdGAzxtRahSDwyh0jMm6qqXHfddbzwwgscPHiQj939UVosJ9hlfZEa/R3c+ux3hjaXedJibzoV7y3AtSL8b3e7V8LQLI12+yJhCODAg3XUvxCem6SaVQKjIbRA+GpnwaZs1nysAgj3mDj/zYazNbyorBJUsHdZUQMzHxqp6wpHjhhpa1NZvjxERUWQU8+eqn8XOvc8o7FrN9aQzurhAAZfePeVeyyDst1j61CpMFQ0is8RHlbjcwborR6edRgal/+mc8pXMmnZ7J7yNVnQG5oyf2aocYTWHRNrMa36cDnFF+UA4bLxlVcVYLKHJ1SrRoUZ1nyYl4wKO9Ysc+T2+V9dFpkfll5si8zvCHpCvPkfNfQdDw//C/k0CUOzoAV0mrd2M9oV/iyMdnrp2j8Q6TFc+4lKKq8KF+ow2Q0UbXZhTJvfyWn5lfksvbGYjj19HH2ieVa/L4NFJXtZeqSkeN6GTKqvmxg+tebjFeRvyhr73jQCoyEM5nB7615o58CDdZFt297qlTA0S76BieIj2UvSI/PSFINC8UU5cyq8EHR6aCs9xjbtGQ60vsOF77qQV155hcOHD/N3f/d3EoZEVEgPkVgQ3d3d/OIXv+AnP/kJ7e3tuMinOn0lZQUVDIxVUHOtdBL0hhisH8HsMLL81lLqnm9npMNLycU5FF7oYvcPjgEyrGUxGW0GLE5TpIpT9fWFuFs9dO4boPTZXMrfyqdhSyc+Z4Dsk+mkd9lo3BIeHpFXk0HH85l0dRkwmXQKCjQ6O1X8foW0NI2SEo2CAo2eHoWODhWfT2FkRMVo1MnL0+jpCW+blaVhuEhnZ2b4hPf6Lh/dZpVdmSYcQY2bO308n2Nm6aY6zG4jBr+KJ9sf9Z+Fqpz7MzfbXqRY9RKdGnrmw5ptRgvq+IcCpJfYWHZTCQceqCMwGqL6hiIcBVb23x8+sVz6gWK6Dw0ycNKNxWnCtdJJ575+Qj4Ne6GV6msLCYyGqPl9E66VTjw9Pka7fVgyTRRsyqZlezchn0bppbk4Cm3U/CHck/Sub66g7a1emt/oxpplJn9TFq07Fq4whpieszyN4GiI0W4fztI0Vn+0gj0/rcU3GKDyqgIcxTYOPhie11h1TQF9tW4GTroxO4y4VjrpOjhAyKthz7didhrJ35AV/ozs7Y8EErPDSO66TDr39RMcDZG7NgNHkY365zsA2PCZanqODtHyRjf2QisbP7uEfb84gbvdS/6GTBzFNk4+Hb4AZM+34hsKyOdksYzNwUrLs7D+09UceKCOkU4vhRdm4yxNi8zJyt+YxWi3l+EWDwaLSkZlGp2j7TQEjtPYVo/D4eCDH/wg//Iv/0JlZWVsvyeRlGJfI1EkpdzcXP7X//pffPOb3+Sxxx7j3nvvZdee1zhuyCRHL6WICore5WK0y8tg/QihgIbfHYh0HLTv6qN1R0/k9SQMLZ6gJzTlZGH8RAKg+dpuOuz9ZD4frmbnyfITMk/8btSgijrW72w265SWhujvV/D7FfLyNLKyNA4fNrJyZZDs7BBdXSrHj6sYjVBdHWJkJLyt2ayT16RR/XSIkx8xUOMw4Bkraes2KDxUZAVFYSnhqnaxdKaeo2gPtzsbDWVKKIpm+JmOt28ifA63eHjnxxPzubr29dNnnbhia7QZIj03thwz5Vfm03N4kJBPo/C8bNJyLAw2hcuCV19fNHYS3I0pzUjumoyx8ORntMs7ZT+w9+cnCbjDPcXefj+NL3cu6PcspjfUODpxu3mUN793JPLvvtph3G0T1dVsLgvmsXW+rC4zlVcV0Fc7TMirUXhhNrlrM0GHmj80UX1dEf7hIE2vdWFyGCm5OIf+2mGCoyFUk4px0mesY08fnp7wZ3K008fO/zpKYKziWee+ATonFcyIq3LdqWBstzTa5eOt/zwS6Vn0u4N4Jy1zULzFRfehQQZ7hhku72Z3Zw19fX2Ulpby3e9+l6997Ws4HLOroirEbEgPkVgUuq6zbds2fvazn/HHP/4RgCxfPiVULVp1OrEwTp1ndOoconGKoqOqEAopOBwaa9YE0XU4dMjIyMjMRu+eOtdoxpXm5mgmPURzMR6W5tNblAxlsFWjworbytB1nZrfN8Xd4o5icdjzraz8UBmKonDk0UZGOrzhuV4BPanW6xHT03WdQI6bDlsTde216LrOli1b+MpXvsItt9yCqsrsDrHwJBCJRdfT08ODDz7Iz3/+c06ePImDDEqoooAyjIop1s0TczQejM4UiE5lNocr0KWl6Rw9aqSnZ3YHvZMfMSx4IIKFCUWL2XsU7xa77LaILzmrnCz9QDGeXj9HHm3EPxzbHl+xeDRDCHdBN/We43T3dpGdnc3tt9/OPffcQ0VFRaybJ1KMBCIRM5qm8eKLL3Lffffx17/+FbvdTsZwLiVU41AyYt08MUehyzbNeFtV1Vm+PERenkZTk0p9vYHZzsgv+Pe6c280DwvdS5TqJBClKAUqrsyn5N25dB8coPavrdI7mCJC2V66HE2c6DiG3+9nw4YNfP7zn+eTn/wkRqPM5BCxIYFIxIXm5mZ++ctfcv/999Pe3o6TbIqpIJ9S6TVKUDMPRjolJRpVVeH5RjU1RoLBmYciw2t7IrejtbDsqSQULRwJRKnHaDOw/NZSMivt1L/YMaUCpkhOuimEu7CHZm8dbZ2tpKen8/73v5977rmHdevWxbp5QkggEvElEAjw1FNP8cADD/Dcc89hsVjI9ORRRAWZ5MhcowQ1k3CUmamxcmUQTYPDh4243TMbQjc5EE0WzXAkgWjhSCBKLfYCKyvvKMNgUjn6RDODDSOxbpJYILqu488bpsvSTF3HCYLBIOvWreMTn/gEn/vc57BarbFuohAREohE3GptbeW3v/0tDzzwACdOnMCGnSIqKKQcq5IW6+aJOThXMLJYdFatCuJw6NTWGujoUDnXELozBaLJ5huOFioQgYQiCUSpI39TFlXXFDLa7ePoH5rwDcl6cskoZPMxkNNJ/WAtA4P9uFwubrrpJr7+9a+zatWqWDdPiGlJIBJxT9d13njjDR544AEef/xxvF4vWVouRVSSSyGqIouyJZqzBSNF0Vm6NERhYXgNo9paA6HQ/EPRZHMJSNJLtDAkECU/g1llyQ1F5K7NpOOdPuqea0cLyqlHMtFVHW9RP62hehrbGzAajWzZsoXPfvaz3HnnnbJ4qoh7EohEQhkaGuKxxx7jgQce4M033yQ7O5u0vkwKKJPy3QnqTOEoLy/E0qUh/H6oqTn7ELrZBqLJZhqOpJdoYUggSm72AisrbivFZDdy4q9t9BwejHWTRJTouk4wb4SetDYauk8yMjJCVVUVd9xxB1/+8pcpKCiIdROFmDEJRCJh1dTU8OCDD/Loo4/S0tKCDTsFlFJAGXZl+sUyRfyaLhhZreEhdHa7Tl2dgdbW6YfQzScQnepsAUlCUfRJIEpehRdmU/m+Aka6fBx7ohlvv//cTxJxL5DuYSCzg8bBkwwMDpCRkcFVV13Fl770JS655JJYN0+IOZFAJBKepmls3bqV3/3udzz++OMMDg6yadMmhvcEKaAUi2KLdRPFLE0OR4qiU1UVoqREo7dX4dgxI4HA1FAUzUB0qskBSQJR9EkgSj4mu4Gl7y8me7mT1rd6aHipEz0kpxqJLGT1M5zTTY+hnYaGBiwWCxdffDGf/OQnueOOO6Rctkh4EohEUvF6vTzzzDM8/PDDPP300wSDQa688kpaX+wnj2Ip4Z2AxsNRdrbG8uXhRRuPHzfS2zsxhG4hA9FkuTsyJRRFmQSi5OJa4WTJDUXoOpz4ayt9x4dj3SQxR7o5xGh+H+6MPg4dOoSqqmzYsIE777yTz3zmM2RkyHqBInlIIBJJq7+/nz/+8Y88/PDDvP7661itVm644QaOPtFMDoUYFbmilUhCl23CZNJZtixITo5OR4fKiRMTBRcWKxSdKv/N6A7PTLVQJIEoORgsKlXXFJK/IYvemiFq/9ZKcDQU62aJWdKMIbwFA2jFHt555x0CgQDLly/nlltu4Qtf+AIlJSWxbqIQC0ICkUgJzc3NPProozz22GO888472Gw2rr32Wo7/qVXCUQLKuWM9S5aECAbh2DEjAwMqsQpE05lPSJJAJBJNRrmdpTcVY7QZqHu2na79A7FukpiFkBrCm9ePXu6NhKCysjKuv/56vvCFL7BmzZpYN1GIBSeBSKScuro6nnjiCR5//HHefvttrFYr1157LbVPjocjGVaXCCwZJpZ+oJjMSgetrSpNvz1EyL9ww9nmazYhKZVCkQSixGWwqFS8N5/C810MNoxw/M8t+AZlbaFEoBlDePL70Yo97NmzJxKCrr32Wj772c+yadO5F9MWIplIIBIpraGhIRKOdu3ahYqKiwLyKCFXwlFCKPjIeiorQwTdAU483UZ/bXzOWZBAND0JRIkpe1k61dcXYbCoNL7cSfvuvlg3SZxDeE7QAJ2hZpo6GwgGg5SXl3PNNdfw6U9/mgsuuCDWTRQiZiQQCTGmsbExEo527tyJikoWeeRSRC6FUq0ujlkyTFRfX0T20nS6Dw1S91wbgZHEmb8wXVhKlVAkgSixmOwGqq4pIndNBn21w5z8Wxu+IekVilchq5/R3H66Qq00dTQSCoWorKzkuuuu4+6772bDhg2xbqIQcUECkRDTaGpq4o9//CN/+ctfeP311wFwkjUWjoqw45RFYONQzpoMqq4pRFGh4YUOOvcNxLpJ4hwkECWO/A2ZVFxVABrUPddO9yFZZDXe6LpOMMPDkLObdk8LHT3tKIrCsmXLuPrqq/nMZz4jc4KEmIYEIiHOobe3l2eeeYannnqKJ5/4MyGC2LCTQyG5FJFJDqqinvuFxKIw2gxUXlVA/oYsBhtHqHu2nZFOb6ybJc5AAlH8sxdYqb6uCGdpGl37B6h7vp2gJ3F6YJOdhkYgz02/tZOW/kYGhgYwmUxs2LCBG264gbvuuovy8vJYN1OIuCaBSIhZ8Hq9vPbaa/zlL3/hqaeeoq2tDSMmcigglyJcFMi8oziRUWGn6tpC0nIstL/dR9OrXQS9chIXbyQQxS+j1UD5FXkUnJ/NaJePk8+2MdQ4GutmCcLzgTx5g/TQRlN3A16vF6fTyZYtW7j11lu54447cDqjuySAEMlMApEQc6TrOnv27ImEo/3796OgkIGLHApwUYCDDBlaF0OKCoUXuCi7LA89pNPwSiede/tB9npxQwJRfMrfmEXFlfkoBoWm17po392LHr9FHJOerusEsjy403vp8rfR1tWKpmkUFxdz+eWXc+edd3LNNddgMBhi3VQhEpIEIiGipKGhgWeeeYbnnnuOZ/76DCFCmLHiIh8XBbjIx6SYY93MlGSyG6l4bz75G7IYbvNQ/0K7XOmOExKI4ktGhZ3KqwpwFNro2t9P/YudBEaCsW5WSgqZA3hzBulTu2jta8I94sZkMrFmzRre+9738pGPfIT169fHuplCJAUJREIsAJ/Px/bt23nuued47rnnOHjwIAAZZEfCkZNs6T1aZOklNqquLiS9JI3eY0M0vNSJp8cX62alNAlE8cGWY6HyfflkL3My1DxK/QvtDLd4Yt2slKLrOsGcEYbsvXSMttLR046u6xQWFnLRRRdx4403csstt+BwOGLdVCGSjgQiIRZBS0sLzz//PM899xx/fuIvBAlgwkw2+bjIJ5s8rEparJuZMnJWO6m4sgBLhomOvf00vdolV8FjRAJRbJnsBsouy6dgUxbegQANL3fQeyQ1Sr7Hg5DdjydrkF46aO1pZtQzisViYf369Vx11VXccccdUhVOiEUggUiIRRYMBtm5c2ek9+jtt98GIA0HWeSRRS7Z5GJWrDFuaXJTDAqF52dTemkuqlGh9c1eWt/sIeSTiRKLSQJRbBgsKsVbcija7ELXdJq3dtO+uw89JKcEC0mzBvBkDzJo6KF9qI3+gfCCtmVlZVx88cXcfPPN3HDDDVitsv8XYjFJIBIixnp6enj99dd55ZVXeOWVVzh69CgAdpxkkzcWknJk/tECMVhUSi/JpfBCF1pQo/XNXtp39hLySzBaDBKIFpfBrFK02UXxlhwUg0L77l5a3uiRCowLRDMF8bmGGDT10uFuo6evG4C8vDzOO+883ve+93HrrbdSVlYW45YKkdokEAkRZ9ra2njttdciAam+vh4ILwwb7j3KI5McDIoxxi1NLmaHkZKLcyk4L4uQX6N1Rw9tu/rQAhKMFpIEosWhmhQKL3RRclEOBrNKxzt9NL/RI0NFo0wzhvC7hhk099I12k5Xbye6rpOVlcWmTZu44ooruOWWW1ixYkWsmyqEmEQCkRBxrr6+nldffTUSkNrb21FQcJJNJi4yySEDF2bFEuumJgVzupGSS3Ip2JRFyKvRsqOHjrf7pMdogUggWlgGi0rh+dkUbc7BaFPp3NNP8xvd+IclCEWDZgnidw0zZOqjx9NFR3c7mqaRnp7O+vXrueyyy7j55pvZuHGjFNERIo5JIBIigei6zrFjx3jllVfYunUr27Zto7W1FQA76ZFwlEkONuxyAJ4Hi9NEyaW55G/IRAvotO/uo21nD4ERGVoUTRKIFobJbqRos4vC87NRjQqd+wdoeaMb32Ag1k1LWLquE3L48GQOMaj00u3upLe/BwCn08maNWu46KKL+MAHPsBFF12EqqoxbrEQYqYkEAmRwHRdp6mpiW3btkW+Dh06BIAZa6QHKRMXDjJRFTlAz5Y53UjR5hwKzstCNSh07hugdUcP3n5/rJuWFCQQRZcl00TJRTnkb8xCC+l0vN1H61u9BNzSIzRbGhqhbA8jaQP0hbrpGuzAPeIGoLCwkHXr1nHppZdyww03sGbNGglAQiQwCURCJJn+/n7efPPNSEDatWsXPp8PA4axYXY5ZJCNk2wZZjcLBqtK4fkuit7lwpRmoKdmiLa3emStlnmSQBQdzrI0ii504VrpJOgJ0bqzl/bdvYS8MtRzpnRbEH/WCG7zAD3eTjp62gkEAhiNRioqKti0aROXXXYZ119/vRRBECLJSCASIsn5fD727NkTCUjbt2+nt7cXACtpkXDkJIt0sjBKsYazUo0KeRuyKN7swuay4G7z0Larl+5Dg1KyeA4kEM2dYlDIXZNB0btcOAptjPb4aN/VS+fefrSgfBbPRlNC+LNG8NiHGNT66B7qYnBoAIC0tDRWrlzJhRdeyHvf+16uuuoqWQxViCQngUiIFKPrOvX19ezevZtdu3axa9cu9uzZw+joKBAu950xFpCcZOMgQ4banUHWEgeFF7rIXppOYCRIx55+2t/uwz8k8zRmSgLR7JnTjRScn03BedmY7Ub6jg/TtquXgZPuWDctLmlohLI8jNqHGNL76R3ppnegB13XMZlMlJeXs3btWrZs2cJVV13F2rVrZfibEClGApEQgmAwyJEjR6aEpIMHDxIKhVBRSScz0ovkJIs00qVgwyTWbDOFF2STvyELg1mlv3aYjr399NcOo8uIpbOSQDQzigrZy9LJ35hN1hIHoYBG175+2nb14e2T+WzjdHT0LD8exzDDaj+9o91093URDAZRFIXi4mJWrlzJ+eefz+WXX84ll1wii6AKISQQCSGmNzo6yr59+yIhaffu3dTW1gKgYsCBk3QycZAR+b9RMcW41bFlMKvkrs0gf2MW6cVp+N0BuvYP0Lm3H0+vnLRORwLR2VmzzeRvzCJ/QyZmh4mhllE69/TTc3gw5UvBa4YggYxRvDY3w8oAA55+ega6CQbDBSRyc3NZsWIFmzZt4tJLL+Xyyy8nKysrxq0WQsQjCURCiBnr6+tj37597Nu3j/3797N//36OHDlCIBAeImbDPikgZZJOBlbSUrI3yZ5vJX9jJrlrMzGlGRlsGqFr3wA9NYMy0X0SCUSnM1oNuFY5yVuXSUa5nYAnSPeBATr29DPa5Yt18xbdeLlrf/ooo6YhhoID9Ll7GBib86OqKgUFBSxZsoT169fzrne9i8svv5yioqLYNlwIkTAkEAkh5sXv91NTUxMJSONhabxwgxHTlF6kdDKw48SQIsUbFIOCa0V4qFNmlR1d0+mvddN9aJC+40NogdTeBUsgClONCtnL08ldk0nWUgeKojBQ56Zr/wA9NUMpU7BDN4YIZXjx2Ny4lUEGfH30DvTg9XmBcMGD8vJyli9fzoYNG9iyZQsXXXSRFD0QQsyLBCIhRNTpuk5bW9uUgLR//36OHz/O+C7Hhh07zsiXAyd20pM6KJkdRnJWZ5C7JoP0kjRC/hC9x4bpOTRI/0l3ypz0TpbKgUg1KmRWOchZ5SR7hROjxcBQyyjdBwfoOTyY3IsAmzSCGV58aSOMKMMMBwbod/cxMDgQ2SQvL4/q6mpWr17NeeedxyWXXMLKlSul4IEQIuokEAkhFs3o6CiHDh3i8OHDHD58mCNHjnD48GGamiZOhsNBKZ000iP/TyMdM5akGnpnzTKTsyYcjux5VkL+EP21bnqPDdFXO5wyw+pSLRAZLCrZy9JxrXCStSQdg1lltNtL96FBug8OJtWCv7quo6UFCdo9+G0eRtVhhgND9A/3RUpcA2RlZVFaWsqyZcsi4efd73432dnZsWu8ECKlSCASQsTc8PAwNTU1U0LSsWPHaGhoQNPCwcCIaVJIckRu27AnfK9SWq6F7OVOXCvSSS9OQwvpDDaM0HdsiL7jw/gGk7eMdyoEImuWmawlDrKXpZNR6UA1KAy3jNJ7dIjeo0MJX3BDN2loGT78Ni9egxt3aIgh7wD9g/2RoW6KopCdnU1paSlLly5lzZo1nHfeeWzevBmXyxXj70AIkeokEAkh4pbP5+PEiRMcO3aMo0ePcuzYscjXwMBAZDszVtJwYMNBGvZJtx0JV/nOnG4cC0dOMirsqAYFT6+P/pNu+k+4GWwYQQskT+9RMgYi1aSQUWEna0k6WdUObC4LWkhjqHEiBPmHg7Fu5qzolhBBhxe/xYPPOMqI7sbtG2JwZAC3e2L9I6vVSlFREeXl5SxZsoRVq1axYcMGzjvvPNLT02P4HQghxJlJIBJCJBxd1+nu7ubEiRORr5MnT0Zu9/X1RbY1YcaGHSt2bKSN3U6L3GdQDDH8Ts7OYFHJrLSTWR0+sbZmmcMn1k2jDNSNMNQ4wnCbJ6HnHiVDIFIMCuklNjLK7WSU23GWpaEaVbz9fvpPDEeCbDyXydYNGqF0P6E0Lz6jF68yymhoGLfXzZB7kFHPaGRbm81Gfn4+JSUlVFZWsnz5ctasWcOGDRsoKytLqqGtQojUIIFICJF0+vr6IgHp5MmTNDQ00NDQQH19PU1NTZF1SiDcu2QjDSt2rNiwkIYVG1bSsGCLq7lL1mwzWdUOsqodOCvsGC0GtKDGcIuHwaYRhhpHGW4ZjesT71MlYiBSTeqUAJReYkM1qgQ9IQYbR8LDHWuH42bBVF3X0dNCaHY/AYsXv8GLFw/e0Ahuv5uhkUFGRkYi26uqSlZWFvn5+RQXF1NeXs6yZctYtWoV69evp7i4OG7+JoQQIhokEAkhUkooFKK1tZX6+vpISBoPTM3NzbS0tOD3T5zIKqhjQSkcksZvh8OSFcvYl7rYPU1KeK2j8R4JZ7kds92IrumMdHpxt3sYbvXgbvMw2uVD1+JzVx/vgUhRIS3PSnqxDUdxGulFNtJyLSiqQmA0yGBjOIgONoww0uWFRf4x64pGyB5AswQIWXwEjH58igePNsqofwS3Z5hh9zCh0ETFOoPBQGZmJjk5ORQWFlJeXk51dTXLli1jzZo1LFu2DJMpsYaaCiHEfEggEkKISTRNo6enh+bm5jN+tbe3RxajHWfENBaUrJOCUjg0mbFgxoIJCybMqMrClA22ucw4y+2kF9vCJ+55VhRVQQtqjHR4GW73MNrpZbTLx0i3Ny4q2cVTIDJYVOz5VtLyrNjzLdjzbdgLrBhMaiRoDrd5cLd6GG4ZZbR7YRZJ1XQN3RZCtwUJWQKETAECqhcfPryaB29glFHfCCOjI3i8ninPVVWVjIwMcnJyyM/Pp6ioiNLSUiorKyOhp7y8HIMhfoeKCiHEYpNAJIQQs6RpGr29vbS3t5/21dbWNuXfXq/3tOebMGOaFJLCgWn8PuvY4yaMmDFhxohpTkOUVKOCvcCKo8hGelEajiIrNle4dwPANxRgtMvLaLeP0W4f3j4/nn4//qHFq2oXi0BkcZqwZpuxZpuxucyk5Vqx51mxZIR7RbSQjqfHx0iXF3dbuKdtpN2DFpz94VLXdTRzEN0aQrdo6KYgQWOAgOongBef7sMX9OILevH4PHh8o3g8ntNex2g0kpGRQVZWFi6Xi/z8fAoKCiKBZ7yXp7S0VMKOEELMkgQiIYRYILquMzg4SHd3N93d3XR1dUVuT/fV1dU1ZbjeZAaMY+FoPCyZImFp/H4jJowYMWDAgHHKlxEjCiqqUcXmMmPPs5KWZyEtN/x/a5Y5Erq0oIZ3IIC33x/58g8H8A8Hx74CcwoH04l2IFIMCuZ0IxanCbPTFP5/uhFr5lgAyjajGsM9dLqm4xsMMNrtZaTLx2inl5EuL54eP1pIQ1c0dJOGbtTQjSE0o4ZuCqEbNTRDiJAaIEiAAH4Cmh9/yI8/5MMX8OHz+/D5vPj80/ciGQwGHA4HTqeTzMxMsrKyyM7OJicnh7y8PAoKCiguLqasrIyysjJyc3Nl3o4QQiwQCURCCBEndF1neHiY3t5e+vv7GRgYoL+/P/J1rn9PLhYxHQXltKBkGItLBsWI2WzGbDVjshkx20yYbCbMaeEvo8mAqqoYDOH/oynofh0tAARBH//yh/+v+XUIAhoQUiCkoIfGbwOagoJK+dW5qIpCy9ZeUDQ0RQcFMOooRlCMoBt0FAOghu9j7P7xLww6GAE1vI2maYRCITRNIxgIEQoECfpDY7dDBINBgoEggWCAoBYgEAoQDAUIBMNf/oAfv9/PuQ6Pqqpis9mw2+3Y7fZIwBkPOeNBJycnh9zc3ClBJzs7WwKOEELECQlEQgiRBHRdZ3R0lJGREUZGRnC73ad9TXf/qfeNjo4SDAYJBAKn/X/y17nCV6xMDm2T/3/ql8ViwWazRb7S0tIiocZut5Oenj4l4DidTjIyMsjOzo705jidTgk1QgiRBCQQCSGEmJNQKHTG0DQ6Gp4L4/V68fl8+Hy+Kbf9fj+hUIjDhw8zOjpKVVUVRqMRo9GIyWTCYrFgsViwWq2R/49/mUwmzGZzZLvxbSwWCwaDAaPRiMFgkLAihBBiRiQQCSGEEEIIIVLWwtR+FUIIIYQQQogEIIFICCGEEEIIkbIkEAkhhBBCCCFSlgQiIYQQQgghRMqSQCSEEEIIIYRIWRKIhBBCCCGEEClLApEQQgghhBAiZUkgEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyJBAJIYQQQgghUpYEIiGEEEIIIUTKkkAkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsiQQCSGEEEIIIVKWBCIhhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlGWPdACGSUWdnJwMDA7FuhhBCiCSTmZlJfn5+rJshRFKRQCRElHV2dnLbLbeBIdYtEUIIkWysVisPPfSQhCIhokgCkRBRNjAwAAYwHnOieMwokYGpKoqqhG8qk/4/dltRVRi7O/IkRQH19G2ne/6Zb096TTXyj0n3j91QlYmNFWViQO34dky8pj75cSbeR4+81sT9+uR2jD9/8mDdye0Yu62f8fbEk/RJ38ppg3+VSdsqk7Zl0utEvhdOf/1J96Eo6Ke0ddrnnPb8ST+Xyc+f5r0mPz7lNU5tC5zWllOfc67HmeHjZ7zvbNtMeVyf9nF92jboU1/vtO9FP/31lfB7nPH9p7zWNM9Hn/Rx1yc2nbStMum1lFPeS1GmPn9i09Ofryr6pPfQx54Tvn/8tjLpfgAVPdLu8PMnXmv8fcafc+rj4++lMvH/yH0Kpz+unPJak26P/1+d9BwFLfJa4/epijZp2/H7tcjPx8BEuw1j246/j0HRUcbuM0xqq2HSe0Wer+gYmPRekbZqk9oy/nxt4j3O8JzxNo7vQlRFm7atk3+WKpPaN6mt468z5ecSeV0wjH1Kxj8rBgWUsX8ZUKbcDm+noI7dVhUVFYXGViP/9qNMBgYGJBAJEUUSiIRYIMqoEXXUNCkEqVNuA+NnJ2N3qZPOhk4PRMrkQDM5+Ezedsr9p257yvNPDVeT2qIrk85GpwlZkZAz+fGxU7TwBhP3T5wqhrcZf3hKIIm8/qTb6nT3n+E+9dTXOsu2kceV07edFAKnDVSTw8yZbkeer0y6fXq7pm47/e1pH+ccj5/j+ed6/2nDIad/r9O919THzxGITtl2ynuetu0ZAtHk+yPvP12gmUEgmnx7mucrk8LLdM+Z+LhMnLgrkXbpU+6PvM6k+8ZPspnmOSj6pO9hUiCa/PwzhJfT7jvj49MFhongYJj0nMnbQjgMTL5vYttJ902+fUrIMCga6tgPa/JrhW8zdnsihI0HBoMyETgM47sxJt5/6mtpk54zflubeN1JbZkIN1qkrYZJPxMDk9s3NRBNbfPU9o23e+K+icBjmBR+DMr4duqk+8L/EkIsDPnrEkIIIYQQQqQsCURCCCGEEEKIlCWBSAghhBBCCJGyJBAJIYQQQgghUpYEIiGEEEIIIUTKkkAkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsiQQCSGEEEIIIVKWMdYNECJZ6WlBNEVFiVx2UFFUJXxTmfT/sduKqsLY3ZEnKQqop2873fPPfHvSa6qRf0y6f+yGqkxsrCgTl0vGt2PiNfXJjzPxPvqU9xzbduIFJt03/h9OeyzyHI2J91LGb09sq0/6Vk57rUnfCpOeP/VxZZptT/tWJ904ZbtTn3Pa8yf9XKZp1+T2T35cn6Ytk99jymtN85xzPT5dW6d7/Iz3nW2bKY/r0z6uT9sGferrnfa96Ke/vhJ+jzO+/5TXmub56JM+7hMfIGXStsqk11JOeS9Fmfr8iU1Pf76q6JPeQx97Tvj+8dvKpPsjrxNpi85pPyv0yGvpio426XF9yjbh/2tj96nKxPeoMn6fHnn/U2+P/1+d9Bxl7I9zfHeioqMq2qRtx+/XIj8fw/j3h45hbNvx9zEoOsrYfQYmflaGSe8Vef6k11In7YYm3lOJ3DagoIxtYYhsp6OO/TBVRZm4HXlcm7atkZ8VeuT2qW0df50pP5dJ7TOMvdf4r8qggDL2r3BbJ26Ht5vUPkVFRaGxVU7bhFgI8pclRJRpmobRaCS4fCjWTUkM+in/j5LpzruFSBYTcShy7SAFTU64qTPgxWg0ommp+1sXYiFIIBIiylRVJRgM8s///M+Ul5fHujlCCCGSRGNjI//3//5fVDV1AqAQi0ECkRALpLy8nOXLl8e6GUIIIYQQ4izkEoMQQgghhBAiZUkgEkIIIYQQQqQsCURCRJnL5eITn/gELpcr1k0RQgiRROT4IsTCUHRdj3JtJyGEEEIIIYRIDNJDJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpCwJREIIIYQQQoiUZYx1A4RIFn6/n1/96le88MILDA8PU11dzd13380FF1wQ66YJEXf++Mc/8j//8z/U1NQwNDREdnY2q1at4vOf/zy33nprrJsnxDnV1NTw3HPPsXfvXjo6OnA6naxevZq7776b0tJSADRN4/nnn+f111+ntraW4eFhCgsLueKKK7jzzjuxWCyR1/P5fNx7773U1NTQ1dWFpmkUFRVx3XXXcfPNN2M0Tj1lGx4e5mc/+xlbt27F5/OxcuVKvvCFL7B8+fIp291+++10dHSc1v4bb7yRb3zjG5F/P/vss3zve9+b9nt98sknpdS3SGoSiISIku9973u89tpr3HbbbZSUlPDss8/yrW99i//+7/9m3bp1sW6eEHHjvvvu4wtf+AKFhYXcfPPNuFwuOjo62LVrF08++aQEIpEQHnnkEQ4ePMjll19OdXU1vb29PPnkk9x9993cd999VFVV4fV6+d73vsfq1av5wAc+QFZWFocPH+bBBx9kz549/PCHP0RRFCAciBoaGti8eTMFBQWoqsqhQ4f48Y9/TE1NDf/yL/8SeW9N07jnnns4efIkd955JxkZGfz5z3/mK1/5Cr/85S8jgWzc0qVLueOOO6bcV1JSMu339elPf5rCwsIp9zkcjmj8yISIX7oQYt4OHz6sX3LJJfojjzwSuc/r9ep33nmn/rnPfS6GLRMi/mzatEk3m816Z2fnaY/19PTEoEVCzN6BAwd0v98/5b6mpib9yiuv1L/73e/quq7rfr9fP3DgwGnPffDBB/VLLrlE37179znf595779UvueSSKX8bL7/8sn7JJZfor776auS+/v5+/dprr9W/853vTHn+bbfdpn/rW9865/s888wz+iWXXKLX1NScc1shko3MIRIiCl5//XUMBgM33nhj5D6LxcL111/P4cOH6ezsjGHrhIg/JpMJk8l02v0yLEckirVr1572GS4tLaWiooLGxkYg/Dlfu3btac+95JJLACLbnU1BQQEAbrc7ct/rr79OdnY2l156aeS+zMxMLr/8crZt24bf7z/tdQKBAB6PZwbfGYyOjhIKhWa0rRDJQAKREFFQW1tLSUkJdrt9yv0rV64E4MSJE7FolhBx6c4772RkZIQ1a9bwzW9+k2eeeYahoaFYN0uIedN1nf7+fjIyMs66XV9fH8C02wUCAQYGBujs7GTr1q38/ve/p6CggOLi4sg2x48fZ+nSpajq1NO4lStX4vV6aW5unnL/nj17uOqqq7j66qu5/fbbefzxx8/Ytq985Stcc801XHXVVfzjP/7jaa8lRDKSOURCREFvb++0V7bH7+vp6VnsJgkRt77xjW/gcrm47777+P73v89//dd/YTQauf7667n33nuprKyMdROFmJMXX3yR7u5uPvWpT511u0cffRS73c673vWu0x7bunUr3/nOdyL/XrFiBffcc8+Uogp9fX2sX7/+tOeOH3N6e3uprq4GoKqqinXr1lFaWsrQ0BDPPvssP/rRj+jp6eHzn/985LkWi4Vrr72WjRs3YrfbOXbsGI899hhf+MIXuP/++8nPz5/dD0OIBCKBSIgo8Pl80w7/MZvNkceFEGGKovCpT32KT33qU/T29vLGG2/w6KOP8thjj1FbW8uBAwcwGAyxbqYQs9LY2Mi9997L6tWrueaaa8643UMPPcTbb7/N17/+ddLT0097fOPGjfzgBz/A7XbzzjvvcOLECbxe75RtfD5f5Pgy2XTHnP/4j/+Yss11113HN7/5TR577DFuvfVW8vLyALjiiiu44oorIttdcsklXHjhhXzpS1/ioYcemlKRTohkI0PmhIgCi8VCIBA47f7xcdyTS6sKISa4XC5uuukm/vCHP3DFFVdw5MgRGWIqEk5vby/33HMPdrudf/3Xfz1joH/55Ze5//77uf7667npppum3SY7O5vzzz+fyy67jH/4h3/goosu4utf/zq9vb2RbSwWy7TzhGZyzFEUhdtvv51QKMS+ffvO+n2tW7eOVatW8c4775x1OyESnQQiIaLA5XJNOViNG78vJydnsZskRNx67bXX0HV9yn2BQCAyr8JqtcaiWULMidvt5lvf+hZut5v/+q//OuP+fvfu3fz7v/87W7Zs4R/+4R9m/PqXXXYZHo+Hbdu2Re7Lzs4+6zHnXMVJxnuFZjJ3Ly8vT+b4iaQnQ+aEiIIlS5awd+9eRkZGphRWOHLkSORxIUTYTTfdhNPpZPPmzZSXlxMIBHjxxRc5cuQIH/zgBykvL491E4WYEZ/PFyk88IMf/ICKiopptzty5Aj//M//zPLly/nOd75z2iKr53oPgJGRkch9S5cu5cCBA2iaNqWwQk1NDVar9bR1iE7V1tYGhCvTnUtbW9uMthMikUkPkRBRcNlllxEKhXjqqaci9/n9fp555hlWrVolk1GFmOR73/seGzduZNeuXfz4xz/m4YcfxuFwcN999/HII4/EunlCzEgoFOLb3/42hw8f5jvf+Q5r1qyZdruGhgbuueceCgoK+M///M8zDmcbGBg4recU4G9/+xsAy5cvj9z3nve8h76+PrZu3Trl+a+++ioXXXRRZC7R0NDQaeWzg8Egv/vd7zCZTGzcuHHK80/15ptvcuzYMS688MIz/BSESA7SQyREFKxatYrLL7+cX/ziFwwMDFBcXMxzzz1HR0cH99xzT6ybJ0Rc+fznPz+lupUQiegnP/kJ27dv56KLLmJ4eJgXXnhhyuNXXXUVo6OjfOMb32B4eJg777yTN998c8o2RUVFkSD1wgsv8NRTT3HxxRdTVFTE6Ogou3bt4u233+aiiy7ivPPOizzvsssu44knnuB73/seDQ0NZGRk8Oc//xlN06ZUuNu+fTu//e1vec973kNhYSHDw8O8+OKL1NfX89nPfnbK0LrPf/7zLFu2jOXLl2O32zl+/DjPPPMMeXl5fOxjH1uIH6EQcUPRp7scIYSYNZ/Px69+9SteeOEF3G43VVVV3H333XJlTQghktCXv/zlsxYl2Lp1K+3t7dxxxx1n3Oaaa67hn/7pnwA4evQojz76KEeOHKG/vx+DwUBpaSlXXXUVt9xyy2nD7IaHh/npT3/Ktm3b8Pl8rFixgi984QusWLEiss2xY8d48MEHqa2tZWBgAKPRyNKlS7n11lu5/PLLp7zeL3/5S9566y3a29vxer24XC62bNnCJz7xCbKzs+fwExIicUggEkIIIYQQQqQsmUMkhBBCCCGESFkSiIQQQgghhBApSwKREEIIIYQQImVJIBJCCCGEEEKkLAlEQgghhBBCiJQlgUgIIYQQQgiRsiQQCSGEEEIIIVKWBCIhhBBCCCFEypJAJIQQQgghhEhZEoiEEEIIIYQQKUsCkRBCCCGEECJlSSASQgghhBBCpKz/P2KoJodZUV86AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('z').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the Z-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "cd627fef", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gc1dm375ntRatV771Z7r0XmsH0XozpEDoECBD44A0JJIEkkADJG9IogQBxIG+oAdOLMTbuxt2WJctW7337+f5Y71qyJFtlpS2e+7p82d6dnXnmTDu/eZokhBAoKCgoKCgoKCgoKCgch8jBNkBBQUFBQUFBQUFBQSFYKIJIQUFBQUFBQUFBQeG4RRFECgoKCgoKCgoKCgrHLYogUlBQUFBQUFBQUFA4blEEkYKCgoKCgoKCgoLCcYsiiBQUFBQUFBQUFBQUjlsUQaSgoKCgoKCgoKCgcNyiCCIFBQUFBQUFBQUFheMWRRApKCgoKCgoKCgoKBy3KIJIQUFBIQLIzs4mOzs72GaMGD/96U+RJIkvvvhiQMtfc801SJJEWVnZiNrVH2VlZUiSxDXXXBOU7YcbL730EpIk8dJLLwXblEEzmsdakiROOOGEEd+OgsLxhiKIFI4rJEk65p+BTrgUFI53jvfJWajuf2dnJ0VFRahUKr755ps+l/n2229Rq9Xk5eXR1tY2yhYq9Eekv9hQUAhV1ME2QEEhGDzyyCP9fqc8jBTCkU8//TTYJoQUjz/+OA888ABpaWnBNmXUMRqNvPLKK8ybN4+rrrqKzZs3Yzab/d+3t7dz5ZVXAvDKK68QFRUVLFP9nH/++cyePZuUlJRgmzJo0tLS2LFjB9HR0SO+rR07dmA0Gkd8OwoKxxuKIFI4LvnpT38abBMUFAJKXl5esE0IKVJSUsJych0oZs6cyUMPPcTPfvYzfvjDH/L888/7v7vrrrsoKSnh//2//8fcuXODaOVhoqOjR0VQjAQajYYxY8aMyrZGazsKCscbSsicgkI/lJaWYrVaiY2NZf/+/T2+6+jooLi4GJVK1SPEzpe3sG/fPn77298yZswY9Ho96enp3H333bS2tva5rfXr13PhhReSmJiITqcjKyuLW2+9laqqql7L1tTUcO+991JUVITJZMJqtVJUVMQ111zDvn37/MsdKya/r3Cf7nkar732GrNmzcJsNvfwmnV2dvL4448zefJkTCYTZrOZOXPm8Prrrx99QI/AFxrS3t7O3XffTUZGBgaDgcmTJ/PWW28B4HK5+MUvfkFBQQF6vZ68vDz+8Ic/9FqXw+HgD3/4A2eccQZZWVnodDpiY2M55ZRT+OCDD466/ZaWFm6//XbS0tLQ6/WMHTuWZ599FiHEgPflhBNOQJIk7HY7Dz/8MDk5Oeh0OvLy8vjZz36Gw+Ho9Rvf+FdXV3PDDTeQlpaGSqXqcbz+9a9/sXDhQqKjozEYDEyYMIHHH38cu93e7/70xeuvv86JJ56I1WpFr9dTXFzMz3/+8z7XA7Bz506uu+46srOz0el0JCYmsmDBAp577jng8LkF8OWXX/YIOT3yZcOaNWu46KKLSE5ORqvVkpGRwU033URlZWWf216/fj1LliwhKioKi8XCKaecwrffftvnskejrxyi7rkeZWVlXHbZZcTHx6PX65k+fTrvvffegNY9mP33bXcw2xrs8eqPhx9+mBkzZvDCCy/4r6m3336b559/nqlTpw7qxdDu3bt54IEHmD59OgkJCf771I033sjBgwd7LOtwOJgxYwaSJPHOO+/0WtdVV12FJEk89thj/s/6u19t2bKFpUuX+s/FhIQEpk6dyl133YXT6Tym3d2P+c6dOznvvPOIjY3FZDIxf/58Pvrooz5/Z7fbeeKJJ5gwYQJGoxGLxcKCBQv417/+ddRtdKf7OfjnP/+ZCRMmoNfrSUpK4sYbb6SlpcW/7BdffIEkSezfv5/9+/f3OKe6r/dY9+0333yTmTNnYjQaiY2N5bLLLqOioqLPfVy7di2nnnpqr2ttsPl6CgoRgVBQOI4AxGBO+zfeeEMAYu7cucLpdPo/v+qqqwQgfvrTn/ZY/uqrrxaAOOecc4TVahU33nijuP/++8WkSZMEIKZNmya6urp6/Obdd98VWq1WaDQasXTpUvHAAw+IxYsXC0CkpqaKffv2+Zft6OgQeXl5AhCLFy8WP/rRj8Q999wjLrzwQmG1WsW7777rX/bFF18UgHjxxRf7HYtFixb1+OyRRx4RgDjrrLOETqcTF110kfjxj38sbr75ZiGEEE1NTWLKlCkCEFOnThW33367uPXWW/02PfTQQwMe26ysLJGamipmz54tCgsLxW233SZ+8IMfCLPZLGRZFp988om44IILRFpamrjhhhvEbbfdJhITEwUg/vnPf/ZYV1VVlZBlWcyfP19cf/314oEHHhBXX321iI2NFYD461//2uf2U1JSxPTp00V+fr645557xO233y5SUlIEIG699dYB78uiRYv8xz0lJUXccccd4p577vGPy1lnnSU8Hk+P3wBiwoQJIisrS4wbN07cfvvt4s477xT//e9/hRBCPPjggwIQ8fHx4uabbxb33nuvGDdunP+42e32XvuTlZXVy7Zrr71WACI9PV1cd9114p577hFz584VgDjhhBN6nNdCCPHee+8Jg8EgZFkWZ5xxhnjggQfEzTffLObMmSOys7OFEEJs3LjRf65kZWWJRx55xP/n888/96/r+eefFyqVShiNRnHZZZeJ++67T5x33nlClmWRkpIi9u/f32Pb33zzjTAYDEKlUomLL75YPPjgg+L0008XWq1WLFmyRAA91n80fNdiaWmp/7PS0lL/fickJIhZs2aJu+66S1x11VVCp9MJWZbFZ599dsx1D2T/h7qtwR6vY7Fz505hNBpFQkKC2Lx5s0hISBAGg0Fs3759UOt5/PHHRXR0tDjvvPPEHXfcIX70ox+JJUuWCEmSRHJysjh48GCP5UtKSoTFYhGxsbGivLzc//kLL7wgAHHyyScLt9vt/7yv+9XmzZuFXq8XBoNBXHrppeKBBx4Qt956qzj11FOFRqMRbW1tx7TbdxwWLlworFarWLBggf/+oNfrhSzLve4ndrvdf02PGTNG3HvvveLWW2/1338efPDBPrdx9dVX9/jcdw5efPHFwmKxiGXLlol77rnHfw898cQTe6zjkUceEdHR0SI6OrrHOfWf//zHv9zR7tsXX3yx0Ol04uKLLxb33nuvWLBggX8fbDZbj998+eWXQqfTCbVaLS655BLx4IMP+u/7p59++qCuNQWFSEARRArHFT5B1P1h0/3P448/3us3t9xyiwDEAw88IIQQ4qWXXvI/zLo/0IU4/ACMi4sTZWVl/s/dbre44IILBCAeffRR/+dtbW0iNjZWyLIsvvrqqx7reuKJJ/zCx8c777wjAHHXXXf1stNut4vW1lb//4cjiIxGo9iwYUOv3/j271e/+lWPz7u6usRpp50mJEkSGzdu7HN7R5KVleUXC90f1l999ZUARExMjJg+fbpoamryf1dSUiI0Go2YPHlyj3XZbDZx4MCBXttobm4W48aNEzExMaKzs7PP7c+bN6/H9hsaGkRubq4AxJdffjmgffFNngoKCkRjY6P/866uLjF79mwBiJdffrnHb3zn4pVXXtlrkrtq1SoBiIyMDFFVVeX/3Ol0irPOOksA4he/+EWv/TlSEPnOgfPPP7/X/vuO9dNPP+3/rK6uTlgsFqHRaMQXX3zRaz+PHOO+ziEfu3btEhqNRuTl5fWaLH/yySdClmVx3nnn+T/zeDyiqKhIAOKtt97qsfzTTz/tH69ACKK+XmZ8+OGHAhCnn376gNYvxNH3fyjbGuzxGih/+MMfBCB0Op0AxLPPPjvodRw8eLDXpFoIIVasWCFkWfa/NOnO8uXLBSDmz58vXC6X2L59uzAajSIxMbHHeS1E3/ere+65p8/zQQghGhsbe91/+6L7cbj33nt7fLd27VqhVquF1WoVLS0t/s9/+ctf+o9P92uzpqbGf9/45ptvem2jP0GUkZHRQ/w7nU6/WFmzZk2P3/T3YsPH0e7bUVFRYsuWLT2+W7p0qQDE8uXL/Z+53W6Rn58vAP8LGB/PPffcoK81BYVIQBFECscVvht9f3+io6N7/aarq0tMmjRJSJIkfv/73wuTySQSEhJEZWVlr2V9D8DuosdHSUmJkGXZ/5ZdCCH+8Y9/CEAsXbq01/JOp1NkZ2cLwP8w9QmiI99Q9sVwBFFfgqu+vl6oVCoxffr0Pte3adMmAYj77rvvmLYJcViQ7N27t9d3OTk5AhCffvppr+9OOOEEoVarhcvlGtB2nnrqqT7FjW/7RwpRIQ6P3TXXXDOgbfgE0ZGiRwghPv/8c//b/e4AQqvVipqaml6/ueGGGwQg/vznP/f6bteuXUKWZZGTk9Nrf46cSE2ePFmo1eoeotKHy+UScXFxYsaMGf7PnnzySQGIO++882i722Mf+hMEd911lwDEe++91+f35513nlCpVH4Rv3LlSv+b/L5s9XnbAiGIsrKy+jx/MjMzRVxc3IDWL8TABNFgtjXY4zVQPB6P/14ye/bsXt7K4TJhwoRe56OPm266SQDiRz/6kRg/fryQJEmsWLGi13JHE0R9LT9QfMchOjq6xwsjH77z5KWXXvJ/lp+fLyRJEjt27Oi1/N/+9jcBiGuvvbbXNvoTRH15qH2est///vc9Ph+OIOrLQ//ZZ5/5x9/H119/3ctD5cPtdovCwkJFECkcdyhFFRSOS8Qg8kP0ej3Lly9n+vTp3HHHHUiSxJtvvnnUhO1Fixb1+iw3N5eMjAzKyspobm7GarWyYcMGAE466aRey6vVahYuXEhZWRkbN24kMzOTRYsWkZaWxhNPPMGGDRs444wzmDdvHpMnT0alUg14n47FzJkze322du1a3G53v3kSvnj+HTt2DHg7Vqu1z2IAqamplJaWMm3atF7fpaWl4XK5qK6u7lFBbNu2bfzmN7/hq6++oqqqCpvN1uN3fcXRq9XqPpPKfTH6GzduHPC+QN/Hff78+ahUqj7XlZ2dTWJiYq/Pj3ZeFBYWkp6eTmlpKS0tLf0mond2drJ582bi4+N5+umn+1xGp9P1OF6rV68G4PTTT+9z+cHgy/v58ssvWbt2ba/va2trcbvd7N69m2nTpvn3ua8xVKlUzJ8/n5KSkmHbBfR7vWRkZAwpXykQ2xrK8RooL730kj+XavPmzezZs4fCwsJ+l/Fxwgkn+K8FIQSvvvoqL730Eps3b6apqQm32+1fVqvV9rntp59+mlWrVvHUU08B8OCDD3LqqacOyO5LL72UZ555hvPOO4+LLrqIU045hXnz5g2pgMjUqVP7rKZ3wgkn8Pe//52NGzdy9dVX09bWxt69e0lLS+uzgIHvmhzMvWH69Om9PsvIyACgqalpwOsJ1HZ8ts+fP7/X8rIsM3fuXHbv3h0wuxQUwgFFECkoDIDCwkImTpzIqlWrGDt27DEf6ElJSX1+npyczP79+2lpacFqtfqTavsTV77Pm5ubAbBYLKxevZpHHnmEd955hxUrVgAQHx/PrbfeysMPP4xGoxnKLvay80gaGhoArzDqa4Lro729fcDb6W8yr1ar+/3e9133hOrVq1dz0kkn4XK5OPnkkznnnHOwWCzIssymTZt4++23+0xIj4+P73Oy6tv/7knPA6Gv465Wq4mPj6e2trbf7RzJQM6L8vJympub+x3DpqYmhBDU1dXxs5/9bED2+86zQJSq9p0vv/nNb466nO988e3z0a6dQGG1Wvv8XK1W4/F4AradwWxrKMdrIJSVlfHDH/4Qq9XKI488wt13381VV13FN9980+Pcf+mll/jyyy97/d4niO655x6efvppUlJSOO2000hLS8NgMPh/e2ThGR96vZ4zzzyT77//HrVazW233TZg22fOnMnXX3/NL37xC958801eeeUVAIqKinjkkUdYunTpgNd1rPPKd/4N9p48EPo6B3z3se6icrgMdDvHutb6+1xBIZJRBJGCwgB44oknWLVqFfHx8Wzbto3HH3+chx56qN/la2pqKCoq6vV5dXU1cHii7/vb9/mR+KrMdZ/0pqen8/zzzyOEYPv27Xz22Wf87//+L48++igej8dfuUmWvUUkXS5Xr/Ue62Huq6DVHZ8Nd999N7/97W+P+vvR5uc//zldXV18/vnnvSowPf7447z99tt9/q6+vh63291LFB15nAZKTU0NmZmZPT5zuVzU19djsVh6Ld/XOHffbnV1dZ9vw/s6L/pbx5QpU/zel2Phm1BVVFQwYcKEAf3mWNtvaWnpc9/7W76mpqbP7/u7RiKFoRyvY+HxeLjyyitpa2vjtddeY+nSpaxdu5bXXnuNxx9/nIcffti/7NEqitXW1vLss88yfvx4Vq1a1cvTcrQKkytXruQ3v/kN8fHx1NfXc9111/Hhhx/2e+4fyZw5c3jvvfew2+2sX7+eDz/8kN///vdcfvnlJCQkcMoppwxoPcc6r4ZzTw43fNdjf2PS3+cKCpGMUnZbQeEYrFq1ip/85CcUFRWxdetW/9vJlStX9vubvt607tu3jwMHDpCdne2feE6ZMgXoezLicrn4+uuvAW+4x5FIksS4ceO44447+PjjjwH8pXUBYmJiADhw4ECv365bt65f2/tj5syZyLLstymU2Lt3L7Gxsb3EEPR9LHy4XC5WrVrV63Pf8fAdn4HS17ZWrlyJ2+0e1LqOdl7s3buXgwcPkpOT06/3AcBsNjNu3Di2bdtGY2PjgLY7e/ZsgH5LlR+JLMv9vuH2rWug54vvHO9rDN1u91Gvt2BxtP0fLEM5Xsfi17/+NStXruSyyy7ze1P+93//l7S0NB599NEBh33t27cPj8fjL9HcnYMHD/Yo99+dhoYGli5dikaj4bPPPmPZsmV89NFH/OpXvxr0vuh0OubOncujjz7Ks88+C9Dvi46+2LBhA21tbb0+P/Jaj4qKIi8vj4qKCvbs2dNr+c8//xzo+54cCFQqVUC9Rn3h29e+rimPx9PnPVFBIdJRBJGCwlFoampi6dKlqFQq/vnPf5KUlMTy5ctRq9Vcfvnl/U5cnnnmmR4hJB6Ph/vuuw+Px8O1117r/9zXE+P111/352/4ePrppyktLeWUU07xex22bdvW59s732fdO5hPnz4dWZZ57bXX6Ozs9H/e2NjI/fffP+ixSExMZNmyZaxbt47HHnusz4d2SUkJpaWlg173cMnOzqaxsZEtW7b0+Pz555/3hxX2x4MPPtgjnK6xsZGf//znAD2O1UB47LHHesTq22w2HnzwwUGv67rrrgO8nq+6ujr/5263m3vvvRePx8P1119/zPXcc889OBwOrrvuuj69gk1NTT28EVdffTUWi4XnnnuOr776qtfyR/abiYuL61NwA9x+++1oNBruvvvuPvMRHA5HD7E0d+5cioqK+Oqrr3pNdP/whz8ELH8okBxt/4fCYI/X0di0aROPPPIIaWlp/PGPf/R/brVaeeGFF3C5XFx55ZUD6m3k62/lE/c+2tvb+cEPftCnFxq85/zBgwf53e9+x4QJE3juuefIz8/nf/7nfwY06V61ahVdXV29Pu/rfncsWlpaePTRR3t8tm7dOl599VWio6M5//zz/Z9fd911CCG47777euxvfX293wPvu0YDTVxcHHV1dX3ud6Dw5WF9/vnnvV5+/OUvf1HyhxSOS5SQOYXjkqM1JDzvvPOYPHky4H3olZeX8+yzz/o/mzRpEk899RS3334711xzTZ+NB32FDi699FKio6NZsWIFmzdvZtq0aT3EiNls5oUXXuDiiy9m0aJFXHzxxWRmZrJ+/Xo++ugjkpOT+fOf/+xf/uOPP+a+++5jzpw5FBYWkpiYyMGDB3n77beRZZn77rvPv2xKSgrLli3jlVdeYfLkyZx55pm0trby3//+l4ULFw66YAB4J6Z79uzhJz/5Ca+88grz588nKSmJyspKduzYwdq1a3n99dfJyckZ9LqHw1133cWKFSuYP38+l1xyCdHR0axbt46VK1dy0UUX8eabb/b5u5SUFOx2O+PHj+ecc87B6XTy5ptvUlVVxa233srChQsHZUdxcTHjxo3joosuQqPR8Pbbb1NSUsKZZ57JlVdeOeD1zJ07l/vvv59f//rXjB8/nosuugiTycQHH3zA1q1bmT9/fo9j3R/XXXcd69ev549//CN5eXmcdtppZGZm0tjYSGlpKV999RXXXnstf/rTnwBvTtVrr73GRRddxIknnsjpp5/OxIkTaW1tZcuWLRw4cKCH4D355JP55z//ydlnn83UqVPRaDQsXLiQhQsXMmbMGF544QWuu+46xo0bx5IlSygsLMTpdFJeXs7XX39NQkICO3fuBLwez+eff57Fixdz4YUXcsEFF5Cfn8+mTZv49NNPWbJkCR9++OGgjsdIc7T9HwqDPV79YbPZuOKKK3A6nbz00kt+b7GPU089lVtuuYU//vGPPPTQQzz55JNHXV9ycjKXXXYZ//znP5k8eTKnnnoqLS0tfPzxx+j1eiZPnsymTZt6/Obpp5/m3Xff5cILL+Tmm28GvN6X5cuXM2fOHJYuXcqmTZt62dadX//613z22WcsWLCAnJwczGYz27Zt44MPPiAmJoYbb7zxqHZ3Z+HChfztb39jzZo1zJs3j6qqKpYvX47H4+HPf/5zj7DOe++9lw8++IC3336bSZMmccYZZ9DZ2ckbb7xBbW0t999/f58FCQLBySefzNq1a1myZAkLFy5Ep9MxadIkzj777IBtQ5Zl/va3v7FkyRLOOeccLrzwQvLy8tiyZQsff/wxp59+Oh988IE/7FpB4bggmCXuFBRGG45RdptuZV+fffZZAd5mm31x/vnnC0D89re/9X/mK7NaUlIinnzySVFUVCR0Op1ITU0VP/zhD3v0uujOd999J8477zwRHx8vNBqNyMjIEDfffLOoqKjosdz27dvF3XffLaZNmybi4+OFVqsVWVlZ4sILL+zRF8OHzWYT9957r0hLS/P3hPnlL38pnE7nUcu3Hq3cqt1uF7///e/FnDlzhMViEVqtVmRkZIiTTjpJ/O53vxP19fX9/rY7Rysv6ytj3Rd9lVMWwtvgdtasWcJsNovo6GixePFi8eWXX/Zbfty3/ebmZnHrrbeK1NRUodVqxZgxY8QzzzwzqNLEPnttNpt46KGHRHZ2ttBqtSInJ0f89Kc/7bN/S1/jfySvv/66mDdvnjCbzUKn04mxY8eKn//8572a+3bfn7549913xZlnnikSEhKERqMRSUlJYsaMGeKhhx7qs7Tw1q1bxZVXXilSU1OFRqMRiYmJYuHChb3KgNfU1IilS5eKxMREIcuy4FCPr+5s2bJFXH311SIzM1NotVoRExMjxo0bJ2688cY+y6qvW7dOnHbaacJsNguz2SxOPvlksWrVqgGdm905WtntI8sj+zjaedcXR9v/4WxrsMfrSHwlz49WPr2jo0MUFBQIWZYH1G+ro6ND/L//9/9EXl6e0Ol0Ij09Xdx6662ivr6+176sW7fOf2/qq4T4M888IwBx7rnn+j/r6zpdsWKFuOaaa0RxcbGwWCzCaDSKwsJCcccdd/To83Y0uh+H7du3+5tmGwwGMXfuXPHhhx/2+buuri7xi1/8QowbN07o9XphNpvFvHnzxGuvvXbUbXSnv3uVEIfL8R95vbS3t4ubb75ZpKWlCZVK1Wu9g71vH+08XL16tTjllFN6XWu33XabAAbcU05BIRKQhBhE/WEFBYWjcs011/D3v/+d0tJSf5iJQmjiOz5HlhoeCieccAJffvnloMq5B5rk5GSio6PZtWtX0GxQUAg1ysrKyMnJ4eqrr+all14Ktjlhwbx581izZg0tLS2YTKZgm6OgMCoo/lAFBQWFMKexsZH6+nrS09ODbYqCgkIY0NnZ2Wee2ksvvcSqVas49dRTFTGkcFyh5BApKCgohCktLS08+eSTrFixArfbzUUXXRRskxQUFMKA8vJypkyZwuLFi8nPz8flcrFx40ZWrlyJ1Wr1N9JVUDheUASRgoKCQpjS1NTE448/Tk5ODo8//jg33XRTsE1SUFAIA5KSkli2bBlffvkln3/+OXa7neTkZK699loeeuihPvufKShEMkoOkYKCgoKCgoKCgoLCcYuSQ6SgoKCgoKCgoKCgcNyiCCIFBQUFBQUFBQUFheMWRRApKCgoKCgoKCgoKBy3KEUVFBQUFBRGHSEEXV1dVFRU4HA4yMjIICoqyt/LSZaV93UKCgoKCqODIogUFBQUIhghBDabjfb2djo6Omhvb/f/aW1tpbOzk46ODqqrq7HZbAgh6OzspLq6GovFgiRJ1NbW0tTURGpqKk6nk3379iFJEnFxcXR0dFBRUYHZbEav11NbW4vNZsNqteJyuWhsbMTj8aDVarHb7djtdjweDx6Pp097ZVlGlmW0Wi16vR673Y4sy8TFxaFWq2lubkatVpOamkpLSwsOh4OkpCSsVisHDx4EYOzYsWg0Gnbu3InFYqGoqIjW1lYqKiooLi4mLi6Oqqoq3G43CxYswGw2U1paSnp6OmPGjEGj0dDW1kZeXh7x8fFotVpUKtVoHjYFBQUFhVFEEUQKCgoKIYpPnDQ1NdHU1ERzc7P/3339v6Ghgba2NhwOB+3t7bS0tNDV1dWv+PAhyzIajQaDwUBcXBxCCNrb24mOjiYmJoaGhgZcLhdarRaNRkNXVxcajYbY2FhMJhOdnZ3Ex8dTUFDAnj176OjoYN68eeh0OtasWYNarebEE0/E4XCwevVqMjIymDZtGjt37mTdunUIIRg3bhxTp07lm2++oaamhlmzZmEwGPjkk09wuVzMnTsXu93ON998g1arZezYsWzbto3W1laSkpIwmUxUVFTgdrvp7OzE6XTS3NxMS0sLdrud2tpaOjs7OXjwIGq1mrq6Oux2O6+//voxx0eSJLRaLXFxcZjNZtrb24mKiqKgoAC9Xk9DQwOTJk0iKyvLP94LFy7EarXicDhIT08nMTERSZICeXooKCgoKAQIpey2goKCwihht9upq6vz/6mtre3xf99nDQ0NfsHjdDr7XJfBYCA6OhohBFlZWSQlJdHR0UFXVxfz5s3DbDazYcMG2io7qV3fijnOSOHpGVR/20xbiZ2cE1JImRDPxt+XIiMz9aY87B0utr9ajjZKzcy7i9j9TgW1m5qJLYoiZXos217dD8AVf4rF7VZxzXkf4fHA8hUnMGfSDrJTa+iya6mqiyE5vgmj3sHqLcXUNFg598Rv+9yPf354Aqs/srDjn+V9fl9wbhodNTYqVzeg0suYkwy013ThtnmIzjKROifO/9sJ1+YgXIKCB9ficUPrV5PQ5VVgyKynqySF9nVjiDnrG9QmB82fT8Jj1xBz2lpcDkHF6zMgvhJt4V6ad8bQujUZTf5u3IYWmtam42zXMGvWLNrb2/nyyy+RZZnExETKy8uprKxECOEf/77QaDRYLBYA0tPTyc7OxuPxIITgpJNOIiEhgZaWFrKyspg8eTIJCQnodLpBnV8KCgoKCkND8RApKCgoDAO3201dXR1VVVV9/qmurvYLn9bW1l6/NxqNREdHEx8fT3p6OpmZmeh0Os4//3wyMjJ4449vkVQUx7636tCgYdyFubgaBQe/aMDg1jD2siz2raimaV07WQsySD8xnm+f2AFA7pIsrFonKqkBuV0m2hFPFyqE1IHUpMESG4VGq8Hj9FCzuQWPy+speWfHWg7WlKK/xE5CTBv7Dibz6vun8Mr3+0iMbWF/ZaLfflmGpad/0WOf/rXiRBZO28LcyduZPXHHsMZ3z9sV/n8nT40lc1Ei3/1uJwAt+zto2d/h/778s1qEEGx9JQFjgo6pt8ay4ckWWkol9HEyan0J7T+L5vztdegy6hBuGUmSUMlqTAYL5nEHMeSYiIsyY4uNImqWEVmjp7MwGXe7nqhpnxMvwGxZgnHsfkzj9mOvyKV902lEL9iC2tJF03dZtB/UoZm8ic4WJ9UfFuHU1bNw0vns3LmTDRs2EB8fj9PpZPv27TQ3N/PZZ5/R2dnZa9+1Wi2JiYlkZGSgUqlQq9WcfPLJpKSk0NHRQV5eHtOmTSMhIUEJ6VNQUFAYBoogUlBQUOiHrq4uDh48yIEDB3r8qayspLKykqqqKmpra3G73T1+l5CQQHJyMklJSRQVFTFr1iza2tpY989tSJ1q0qckkTk1hR3PV6CyqZl4eQ6t+zspW1FDi0GiYOEEtr9Ywfr6fSQVZ5JiiqFR8ooVs9GES/Zuz9bsoqPGhrPDBUDV+kaaStpBAgS47R6s2SYqVzfgcXjQx2hRG1SsqNiIza6hvdPAQz9oQ5a9gQJNrSZiLF6B8cHKmSTGNnPeSavITKnl+vM/IN7qFXRZqbU99tfjkdi8O5eJBfsw6BxcdfbHJMY1Bfx4VK5poKWsA7fNgyRD4qQYajY1waE4h+7iqLPezqa/ltBRYwMgc0EixkQdm/5Swn/GJqCzgr3ZDiSABIbY3TjawW1P4PQPJNwdBiS1d8ydNVbU1nYAhEfCetJGVCbvemWDE7W1/fD/nWaiYtVYc40IAbEtSRjyXEgZb1AwzUj6nGJM48qQdS4WbT4RZ52VmFM24Ohys//1SbiiDuBO3EdzqZaOHekkJyfjcDjYuHEjtbW1bNu2jbq6uh7jolKpMBqNpKenk5ubi1qtRqvVcuaZZ5KRkYHBYGDMmDHExMQE/JgoKCgoRAKKIFJQUDguEUJQV1dHaWkpZWVllJWV9RI+9fX1PX7j8+Kkp6f738z/3xMfopX0xKXEkFKYSPWXrcgNMpPPz6WtqouSl6uoMdoYf1U2uXGFtHV1IVfqaLB1opK8t+ADX9eh1nvf8HucHlJnxtJRbaOr3o67y43HJZA1Mh6nh73vV+Kyeyfqwi3Y/0UdvtQUfYyWydfnsvEvJXRU22ir6OLGB/cx/ak9h/Zgo39f9Donep0TX9D0jn0ZvPnxIn647P+wmDs576RvsJi8Xgu1ykNqYkO/Y1nXFM1/v55JjKWd7NSaoy47HIRb0F7pDUmzZJrIOzOFtopOOmvtfSyMf1mAkg8q0Vk0AGgtGmb8sIgdy8tp2NkKAroaHP5lPzhdAPuBBACSpzuY+rhXDLpbTDR/Mh3rKeuQ9U4klRvT+FIklXcgo6btRrgOeWtcKiS1G0nnFayuRgu2PemYJ+4DQB3dgSa+xWuTQUXm4hpUUS7U1jic4yy0JRVhPXEjst7JmLWzcDVFEXPqOtxODxUrsuiSa7DpKmkqlbDvySUqKoqWlhY2bdpEXV0db7zxRo8hiY+PJzk5GSEEU6ZMYfz48ej1euLi4li8eLGS56SgoHDcouQQKSgoRCxNTU3s27fPL3qO/Lt7vkd0dDQZGRk9/rz+k3fQY0SPAR1GksZ737DXb2tFY1Ix60dj2P7Pchp3txE/1kLKjFi+f7kMBERnGXF2uf2TdVkjIakk3DYP5lQ9+WeksvXV/bi63OSdnoLWombH8gMAxI2Joq2yC0erq9c+acxqrNkm6rZ6J9KTrs+hq9HB7v9UIKslnvqsntz0KvS6vnOPuvPmxwuINneweM4GbHYN5VWJ5GZUoVYdvciAj6q6WJLjG5EkaGkzEh3VO+zrWBwrh+ho6Cwa7K3e/TSl6Omosg3od5JKIibP7PU2OTzknJqMNkrDrn8fOOZvVToZa56ZBctLkVQeWr8di7tdT8ziDQDY9ieiSWxGZXD0+q27U4erMQpduldot3w9AdloI2raHjx2DS1fTsI8fRea2DY8djWSyuP3UrmaTXgcGrSJzQgPNH8+BUPBQfSZddgPxtP6zQTizl2JrHdiK08EAXJSFc3VdqrWWmhra2as5Ty2bt3Kpk2bAKiurqalpcVvn8FgICoqivT0dGbPnk1SUhIul4uTTjqJSZMmKR4mBQWFiEURRAoKCmGLz8uzd+9eSkpK2Lt3b48/jY2N/mXNZjM5OTnk5OSQnZ1NdnY2L93zBgZM6DGikbQgS8Tkm+mss2NvdhJXbKHgnFTWPLkL4RYUnpeGxyXY+14lAAnjo2kp68DR3lu46GM0mBL1NOxqA2DGDwup3dLM/s9r0UVryFiYQPkXtTjaev/2SGKLorA1OeissRFXbGHMRRl899ROnJ1u9DFaHG1OPC7vrXxF5aZ+19PWYWD1lmIWTd+CVuNi/fYCjHobxbnHFgJHUtcUzZ/+dRYXn/olY3IODuq3sx64xf/v6YmdaA42DUkQ+YgbE8WYSzLZ8Me9dNX34S065u8taEwqqtc3IWtksk5M5OCqepx9HNcjkdUS2igNtiYHGqOKmT8aw843D9Cwo5WzV3XibjegTaunP8eLECBJXrHUuTUb47j9qEw22rfkYi9LIu4cbzEK+8F4b2ieubfoc3dpcdZa0WXWIknQ9l0RwiNjmb0D4ZZpeGseUTN3osuow92ux9VqQpvcyLdtubjrnNhLbTR0NXK+9izeffddbDYbbW1t7N27t8dLA5PJRGxsLAsWLCAvLw+73c7MmTNZsGABCQkJindJQUEhbFEEkYKCQsjjcDjYs2cPO3bsYMeOHezcuZOdO3eyZ88e2tra/MulpKSQn59Pfn4+X734HUbMhwSPCQ1a/4RNpZNxHwo7S54eiz5GS9knNQDMeaCY/Z/XULmmEX2sltgCM9UbmvA4j36rVOlk0ufFU7ulma56B2lz4shYkMDq3+wEAdY8E7YmJ7bG3p4DALrdinUWDeY0Aw07vGFa039YSO2mZsq/rEVWH/I02fv34nQXRUJAp02HyWCnuc3EC/9ZwtLTPyclobHf3x8N3wQeYN/BZHLSqvud7HcXPv0RCEEEEJ1joqW049gLHgNTip5xl2ex+W/7sLc40RhVODvdx/7hIVQ6GeEWeFyCzBMSSZxoZd2zuwGIG2uh/WCX36sFcP72uj7X42oz4Gk3oE1pRHig4a35GMfuxzjmAK5WI7ayZIxjypG1RxdtwiXTVZKKNrUBdVQXnbvS6diaQ/wFXyNJ0L45j/2ymZbMdq9XySXh0XjPReEWUO2msaWZ9spW3BudaOvVeDweSkpKqKysPDxuJhPR0dHMmjWLKVOmYDabKSgo4NRTT0Wr1Q54/BQUFBSCgSKIFBQUQobW1lZ27tzpFz0+AVRSUuIvXBAbG0txcTHFxcV88bc1ftFjxOzPyTmSmHwzjg4XHVU2LJlGJl6by7rf78bW5CRlhlcQlX5UDYDGpPYXKTgWGQviURtUlH5Ug6SSmHZrPiUfVtG0px2VVkZ4vBNjBnCbNSXpcXa6cLS5SJ4eS/YpSXz35E48LoFKL+O2DSyMrTsrKjex4pvplFYkc9PF7yFJ3gIIviIKg8Xllnnz44WMzy9jfH5Zj+8GIn76IlCCyEf8+GgSxkez840D3gn9UDhUlAJgyi35NO9rp3RF9ZBW5Tt2slpi1n1jKP24hup1jWij1GiMan/Rh6Nx/vY6hEtGCAlZ48ZeGUf7hgJiT1+DpBK0b8xH0joxjdt/zHUJAcKuQdZ7RVn7hnxUUV0YCipYW1FE9spUDsyswRZrR9eiQeVQ0ZnQt43uJjftVW201jZj396FvMfb02rnzp00NHjzyFQqFbm5uWg0GqZMmcLixYvJzMwkOzubnJycQYykgoKCwsihCCIFBYVRRQhBTU1ND2+P798VFYdLLGdmZlJcXMz2FSWYsGAiChMWtNKxe7PE5JuJG2Pxh7ZNuTmflrJ29n1YjUonE1tooXFP21G9LN2RVBLCLTCnGhhzcTpbXijF0eYiZUYsKp3Mwa/7fst/LHw5MJLsnSxXfFvPga/qkDUy4C2wMBTiii3Ymh10VNl4+fsy2jsN5KZX9evJGShCwAcrZ1CUfZDL//e84a3sEIEWRNY8M3FFUZT8typg63O0OemstWNK0aO3av2eu8HS/bhmLEwgbXY8a57cifCIHvlQg+XUN43IGheGggrcnTqaP52KZe5WNHFtCLcMsmdAx97jUOOoimWTyYJHI4jfEYOxUUf5PK8YTNwaS3tSp1cg+WYO/azXVWmnbW8b9Q31tJa0Ir530tLSQnX1YWGZmppKcXExOp2OvLw8zj//fIqKikhKSlLKiCsoKIwqiiBSUFAYMex2O9u3b2fTpk1s3ryZzZs3s2XLFn9uj1qtpqCggOLiYjb833a/6DEShbofb48PlU5GY1R7czdMKqbcUsCetw7StLeduGILSZOtbP9nOYhDb+ntA7/VdQ+pm3htDm0VXZSuqEJjVJE2L4HK1fUDyv05Gmlz48lYkOCdELsFxgQdXQ12xNA0UA+m3JxP4+429n/mDQM8Wl7RQHC5ZU796Q10OAM/SQ20IOqOIV6HrckxdE/REWSdnERsQRQb/7R32OuSZDDE6eissyOpJGbdO4YDX9VS8e3wKvRpo9Skzo7n4Dd1uDrdLP5HNM5GCzGneIs+eBzqY4bZ+RAC1jTke0PoBKRuSKA1rZ325C6MtXqStsZRPq8Kt86DplONW+P2h9v1h7PTSdf2DmxbO6m0VVHUmsc333xDXV0dHo/35Nfr9RQXF7Nw4UJSU1NJT0/nggsuQK/XD2tsFBQUFPpDEUQKCgoBoba21i96fAJo586duFwuJEkiPz+fSZMmseHNHZgPeXwMmJEleUDr15hUxBZa/H1nii/JRKWT2fpKGQDpCxJo2N7So3wywEBejUsqCVkl4ba7SZgQTcE5aaz+9Q48TkH8WAv2NhdtBwZfQa3nRmDiNTnUbmmmen0TumgNhjgtzaUdh9+2DxGtRUPB2ansfb8Se7Ozh6DzMVhR1D0ErijGTobZyWcHTXhEYBPnR0oQyWqJ6T8spGZjE/s/qz32DwaIb2x1Vg35Z6ay591KHEP07PiRwJpjoqvBgb3FSfL0WBInRLPlpdJhnxtRGUZ0UWrqt7cia2Rm3z+GPe9UUPd9C+dubkSSBdIAqgquasnr8X9NuxpzjZGm3FaQIO27RDxqD1VT68EDlgoTHYlduHUDU/gel4f2ijbad7bhXNuFlWh2797Nnj17EEKgUqkoLi7GZDIxadIkLrzwQiZMmEBSUhKyPLB7iIKCgkJ/KIJIQUFhULhcLnbv3u0XPz4B5AuFMZlMTJw4kUmTJvHFn9ZgxoqZ6GN6fPoiY2ECHdU2Gne3YckwMuGaHDY8560kZkzQ4XGL/osUHE0ICYHaoMLV5c1LmvmjMVSuqefgynq0Fg3RWUYadrT6K7cNFXOqgaQpVkre94ZvZSxIoPVAJy1lw0/+h8OhfLJGovjSLPZ/Wk37UUpPH00UHS0HSC0JLFo3jfbAt64bSQ+RJdNIR7UNtyMAbrcjMKfoyTo5mR3/3I/HJfzHIhBEZ5uwZBg5cCgUM+/MFGo2NvfoqzQUZLVEXLGFlv2dOFqdpM9PIHVWHN89tRPAf030V+gBegsjH5oONZJHwhHlRNOuJmtlCgdn1WCLcWCqMaBr09CYP/hQQ3eLm87vW6muq2Fqy0Q++OADampqsNm857nZbGbq1KnMnj2bhIQExo0bx+LFi1GrlTaLCgoKA0cRRAoKCv3i8XjYs2cP3333HWvXruW7775j8+bN/slIRkYGkyZNYut7e4nCShTRGDAPufxubFEUSZNj2LHcOzkuviyTlrIOKlc3IMkgqeRj59X4tn3krU0CSZIQHkHanDjS53vD1RDesssdtbb+xdUg0EapkTUytkYH0dkmchYns+3VskFVKhsIMflm8s9OY+Nze3HZBr7uFZWbBlwAIdXkpMGmwu4euTfwIymIfGjMaqKzTNRvazn2wkNAbVAx5eZ89r5bQdPe9oCuW2NUMW5ZNqUfVdOyvwN9rBaP0zPskE0AfazWWxp+p9fLM+veMRz4uu7Q9SYhhOjlofKJpf6EkQ/JJSFkATJYS6MwNOm83iMgZUM8rWkddCQNTeAJj/B6kza20LW+nVh1LFu2bOHAAW/5eL1ez8SJEzGZTCxevJjzzz+fwsJCxZOkoKDQL4ogUlBQ8FNRUdFD/Kxbt87fuLGwsJAZM2bw3avfHxI/Vm/vniEgqyU8LoGskZl0fS7lX9TQsLMNa66ZxIlW9rxbEbC37eD1pEz/YSHln9dSs7HJPxFs3N0akJyd7ky+MY+uBju7/j243jwDRaWVcTs8aIwqUufEc+CrugEVX/B5hwYqhmRJcEJ6B+VtGvY2H7uQxVCwvvwtxZdlAoyoIMpYkEDS1Bg2/O+eYXv9+kLWyGQsTKDi23pcnW7/MRoJii7MwBCnZdNfSgK6XkmG2MLDLwaSpsSQeUIi657dPaBrMelby8C244HErXG0pXbQGW/DVG0gbm80B2bXINQCyS0hVEM7Ru4aB/s2uKmprmFmYxyfffaZv9qd0WgkJSWFCy64gNmzZ5Obm8uECROU4g0KCgqAIogUFI5bmpqaWLduXQ8BVFXlDe1KSUlh5syZbH17LxZisRAzZPEDh/IuHB4QkHNaMlFpRra8sA+A7FOSqN/eOuxwoCNJmRlL0pQYNv3ZO3FMnh5L6/4OOusG37jzaBgTdRRfmsnWl8uwtzgxJuiwtzhHZEKcOiuO1FlxbPjjwCb2/YXIDVQUaWUPDo9Ev6XEBon15W97fTYagggJNIbB9RMaKrJaYuptBVSubqByzfAKJPSFSiuji9bQWWdHZ9Uw/spsdiwvp7M2wOd1gg5Llonqdd4CKFNuyqN6YxNV3w2uf9WxhJKuWYu5xkhDUTMA6d8mYbPaqS9uBg/IbumYhRqOpKQl3v9vV7uNjt3VaNbVIu1toq6uzt8/KTo6mkWLFjF58mQsFguXXXYZaWlpg9qWgoJCZKAIIgWF4wCPx8O2bdtYuXIl33zzDd999x179uwBvJOCGTNmsPeTA4fETyx6yTCs7UkqCY1BhaPdhSFex9Rb8vn+pVJaD3RiyTSiMamHXLq4P2SNRNGFGVStbaS5pJ2odAOWDCMVqxuGnZh+JLpoDcZEHU172pE1ErmnpXBgZR325mEm1/eDrJHwOAX6GC3ROSZqNjT1u+xAiyf0J4pkSVBgdVDSrMUVgAIKfYmg7oyKIDqEt3luAuVf1gbUA3kkSVNjaCntwNbk8B+7kUBn1ZAxP4F9H1bhcQliCsx01tqxtwT4PJQgbXYcrQc6aTvYhTXPTMqMWHb9+8CQ9u1oIslcbcCl9WCLtaNv1JH+XSL751fhNLtQ2VR4tG7EACLfuouiI3HUt2FYXUtdeSWZHSZWr15Ne7s31DE/P5+srCyKioq46aabGDdunOJFUlA4DlAEkYJCBNLV1cXatWv9AmjVqlU0NzejVquZMmUKs2fP5rPfr8ZCLMZh5Px0xxCvo6ve+5Z63LIsPC7hzQWSIGlyDI27WgP+hj4624Q11+wvL114fjq1W5ppLglsHseR5JyaTGxRFOt/v2dEtwPecK+4sRY2/3UfwtP37XooZbX7E0TRWjczk7tYU22g1TH4ieCxBNCRjKYgMiXpGXdFNtteK6PjKMUnAoUkS0z+QS7121v9BRJGkml3FNK4q9XfZHiksOZ5Q1t3/8cbFpp1UhLN+9qHVSykL5GkssuY6gy0pnWABCnr45E8EpUz6kB4Czk4Ta6jOjCPJox8CJdAv6uFg1UVnGnP4+233+bAgQN4PB6io6NJSUlh0aJFLF26lJkzZ2IwDO+FkYKCQuihCCIFhQigvr6eb775xi+A1q1bh9PpxGKxMGfOHPasOIiVOKKJRTWEam99IWtkVDoZZ7sLa56Z8Vdks/4Pu+lqcBCVZsDt9AQ8jAcJYvLMdDU4sDU5SJxkJWlKDFtfLg14LlCPzcoS467Iom5LMzWbmlHpZYRbjNibf+9GAQGmZD3mZD01m5p7fD3c3kI++hJGsiQGVV57sCKoO6MpiOBw/tpokTTZSnu1jY5qm/+YjhSyRkJSSbhtHpKmxJAwIZpt/9jfr5AOBJIM46/KoWZjE7Wbm9HHaDHEaWkqaR/2vh4pkrRtGmS3hM3qQNOuJntlKhXTaulMsKGyyXjUAqHuvdGBiKIjcXc6ad9ThW1zBdp1tRw8eJCOjg7UajUpKSlcfPHFLFiwgClTppCVlTXkfVRQUAgNFEGkoBBmCCEoLS3lq6++8gugnTu9ZXPT09NxHpSwEoeVeMxEB8T740Nn1fjDwibflEd7ZRd7361EVktYsky0lHWMSCiSLlqDvcWJJMOMe8ZQudpbInuksWQZad3v7T+UdVIizaUdtJQGpmT20UidFUdMQRTbXi3rNakMlBDy4RNEWtlDtsXJ3hbtgMTQcERQd0ZbEIFXFKUvSKByTQOuUcgrAkCCccuyadrTNiK5RUcSnWMiOttE+efeHkzdz+WRJH1+PKmz472lvMXhazdQ+ESS5AZDo56uWDtCJUj8PhZ9q5byeV7vmLpThcvg9nuPhiKKuiPcHjrL6tF8W0n71gq66lv9Ve2Sk5M544wzmDFjBuPGjWPu3LlKmJ2CQpihCCIFhTCgoqKCzz//nM8++4zPPvuM/fv3I0kSEyZMoHFLO1bisRKPXjIGdLuSDLLaWxAhYXw0hReks+Y3O3F1ubFkGLG3OUcsb8ZHyoxYsk9JYs2TO/E4BRqzGmf78EsOHwtLppGJ1+ay+fkS2g4GtuDDsYjONmHJPNSHRgReBB3JrAduIcnoYnycja8rjDg8fSdpBEoEdScYgkhjUjH5xnxK3q+kcXfb6GxUOtSHqjxwfagGSlS6gUnX57HlxX20lo+8KPJdo7JGZta9Yyj7pJqqtYMrxjAYkr61oO5UobarscXYUTlkcj5Lo3piA+2pncguCY8sKGkbnig6Ent1K1FfVXOwrBxznYvvv/8eIQRpaWksXryYgoICTj75ZGbNmhXQ7SooKAQeRRApKIQg9fX1fPHFF34BtGvXLgAmTpxI05ZOYknESvywKr/1hyRL/hCbabcXUL+9lf2f1aA2qIhKM9BcOjJeoO6MuSSDlrIOqr5rRBulxpiop3nf8ENwjkV09qG36l9436pHpRloqxgdMWTNMxNbGMW+D6r8n420EPLh8xL1FSo3EiKoO8EQREBAG6kOhdzTU2jc3Tbi+W4+up/LmSck0lLWMfLCTAJrrpnOGhuOdheps+KwZBnZ+a8DI7rZ5G8sGBr02KIdeLQe4nZFY64xsn9BFSWt8UgeBlSYYbCo6m2oV1ex62ApSfucbN68GfC2LDjhhBOIi4vjuuuuIz8/P/AbV1BQGBZKK2cFhRCgpaWFr776yu8F6v4g7djtYgKziSEB7fc6EgMXAdeL+HEW8s5I5bvf7kK4BWWfVNPV4G1W6upyB7zppA9tlJrESTEcXOlNPO+steNo9XqBHG0uHG0jPGk8lNuhj9USnWXyi8LREkPgbe6pt2p5v3wLavUIJkQdQadNS7bFwf5WjV8MjbQICgWEWyDJ3nLsdd+34OoapdA5vGJMb9Wi1o9eWJXvXJZkiegsE/ZWp1cQjWRek6CH4LO3OHvkFaYvSKB2U1NAmsx2p3peK3C4imVbgp3kv1pBgnxzA5mfp7M9x0F1vNu77wG6p7rj9bjPyiGbHADm1iygc9NBqnaX8dFHH1FWVsbjjz/OxIkTGTt2LOPGjeP222/HarUGxgAFBYUho3iIFBSCgMvlYs2aNXz44Yd89NFHrFu3Do/HQ0ZGBq4DMrEkEkNCwEPg+mL8Vdk07Gyl6rtG9DFaYgujqN7QNKBmn8NBkiU0JhWONhdR6QbGXZ7N5udL/AJstCi6MAN7q4Oyj2tGdbvgTYKPLYyiflsrKyo3IQQEMOVrQGzdm82HK2fwxc/3jUqfniMJlocIvKFzU28toOS/VdRvaxn17fuIH2ehcXfbyBbp6IfsxcnoLOoRayTcH4Y4LZNuyGPbP8poq+hCG6XG2eEe0QIQ4C0Gkzw1BvmXgp1OK1lVahIbVawdaw+YMOoPTXkb1bvLad5cjmvtQZqampBlmWnTppGSksLSpUu56KKLUKuVd9UKCqONIogUFEaJiooKVqxYwQcffMDHH39MS0sLsbGxaBqNhwRQIgZMAS2C0BfR2SZSZ8V5S2ID6fMTaK/qGrXQHR9jL/dWZtr+2n5gdKt/ac1qnJ3eyVfytBicHW4adga2L9JASJoSQ+7pqWx8p4u3P/q/Ud8+wGmpk72Nc+2j55XqTjAFERDUfQfvuTjtjgL2fVDVq5LgaBA3xoLGpKJ6fZP3JYXR2z9sNOh+zR95PxgtrHlmzCkGdj4cBQKm7NKyP8VFY/TInhNCCDwHWihfX41z0z66NpfQ1dVFdHQ006ZNo6ioiAceeIDMzMwRtUNBQcGLIogUFEYIu93ON998w4cffsiHH37I999/jyRJWEQMcSQTRxIWYkdcAAGkzIyls85OS2kHURlG0ufFs+etCly20fMIaEwqcpeksv/zGmyNDqLSDbhsHn/votFCpZOZcVcR+z+voeq7kUv0PpYNZHgngDqThL3Dexv+71f/GfFtn5Y62fsPCWILo2jcNUpFBfoh2ILIR2xRlLfAQhCeiN0rsQVToKXOiiPzhETWPr1r1G0wxOtQ62TaKrowxGnJPCGJfR9W4uwYvXuUWq+i4Lw0Dn5TT9Vfk4ltkTF3ypQnH73X0XBpbDMhudzY9lXSvrkE9eo91JZXIIRg/PjxZGVlce6553LVVVeh0+lGzhAFheMYRRApKASQ0tJSvwD69NNP6ejoICkpCblGTxzJxJKIVhr5B5raoMKaY6J+u9frMeGaHJr2tvtzdEYLWS1hStLTVtGFpJIYf1U2+z+rGZXyv0cSk2/250DFjbHQXNoelImnZWYeY0/Ws+MzG+0Nvbc/UqLIL4QOEVsURfGlmWz4495RF6XdCQVBZIjXMfXWfHb8s3z0qs71QVSagXFXZLP1lTLaK0e3siF4xZg1x+z3lsYUmGnaM7qeY/CWCM86KYmtL5ch3IKodAMd1bZR7R8F3hynmDwz379UCoD5HwU0RLtxagK7ncY2U6/PRGsH7d+X0rlhD+71e2lvb8dkMjFjxgxyc3O59957KS4uDqwhCgrHMYogUlAYBh6PhzVr1vDOO+/w9ttvs2PHDtRqNWaXlXiSiSM54L2A+kNSSai0Mq4uN/FjLRRekMHap3d5S1SPcEPI/shclEjqrDjWPLUzqBW9zGkGJt+Qx/cvldKyf3RLHvtQ5XsTrSUJUoo1VO109tlMNtCC6Egh1B1DnHbUc7aOJBQEEYTGWEgqidTZcVR+Wz+ijYYHQnSWiQnX5LDpryVBEWc+JJXErHvHULm6gfIva4NgACC8oY0z7i5i578P0LC9FbVBReu/s+inQv2g6UsU+RBuD879NbRv3otqzV7q9pXj8XgYM2YMY8eO5YILLuCyyy5Teh8pKAwDRRApKAySzs5OPvnkE9555x3effddamtriY+PR1NvJoEUYklELQX4FeIAmHJzPq0HOih5vwpJJaHWyUFJks9dkkJHjY2ajU2ojSrUOhW2ptGfaKq0MnHFFmo3NwNgTNT1qHA1anYcEkIZkzTUl7roaj32LXe4ouhoIghAa9HgaB3Z/lEDJVQEkY9QGRtDvI6ECdH+xqrBoPs1kzjJSsOOVtyO0Vdq+hgtLrsbV6ebpCkxmJL07Puw6tg/DDAaowqX3YNwC/LOTMWSbmDjn0sAaP8gd9hhdUcTRd0R7V10bC+jfe0u3N/tpqOjg8TERE488UTGjBnDnXfeSWxs7PCMUVA4zlBKmSgoDICamhref/993n77bT7++GO6urooKirCUGtlOmOJro8bFS9Qd6IyjBSck8bm50tw2zyUflSNrdkrPIRbjKoYMiXr6ai2ef8jeRu6Arg6vZOYYBBTYCbvjFRaSjuwtzpHXQz5hBCASg0xqSpsrYKu1pFLWD+WEAJvifNptxew950K6rYGr7JaKJIwIZr8s9NY//vdAS8FPVii0gzEFkZR8U19UEQI4L9mdBYNeWek4nF5qN82+sVHur9QkWR6CI8e954Rpvs9teLbehqs3hdfar2Khe+p2PNOBW0HvOHA7R/mDnr9sVEdAxJFktmAeWYx5pnFSDe5ce46SNPG3XzzzTcsX76cX/3qVyxevJhx48Zx6aWXMnny5EHboqBwvKF4iBQU+mHXrl289dZbvP3226xevdpbEMETQzypJJCKSYoadZsSJkQDUPd9CxqzmqwTEin/onbUqkL1hTlFz+Qb8/n+5VJaSoMTjuZDH6PFmmuien0TABqz2hsyOIp0F0KSDLIa3A7vvwcTBjUYL9FAhFB34sdFHyrzHOS4LELLQ6TSysQUmIMy6e8LXz8slV7G4xAjXpL6aHS/lpKnxdC8ryMont/uROeYmHBVDhv/speOqtERRX2hjVKTuSiR/Z/X4uxw9bhP+xiMQBqop6hPW0rrqP5+Nx1rd2Lb6W2AO2vWLE477TTmzp3LqaeeOuR1KyhEMoogUlDoxvbt23njjTd444032LZtG0ajEVOnlQRSiSdlVAoiHIk5zeCN4RdQcG4aHreg5L3KUbejO9HZJqJzTP5wHmuuieZ9wRVDAGlz4kieHsfG5/aMegJ2dyHkI2+2Fn2UzLaPBz9ZG4ggGqwQCkVCSRCFKhOvzaGr0cGetyuCbQqyWmLKLQVUrW2gcnVDcI2RwJpz+N6TeWIiLaUd3oazQST/rFQkWWLPOxUggTnVQHu3Js/HEkfDEUTd0da307FhD3Wbd+HaXIrNZqOwsJClS5eyePFiZs+ereQdKSgcQhFECsc1Qgi2bdvmF0E7duzAYrFgbLWSRDqxJKGSgvfAMCbomHprAdteLfNWSAtScQQfvr4hiZOtJE2OYesrZUEtlgDeZHhTioH6rS0gHbJxFBtc9iWEfBhjZDQ6aKkemiemP1E0VCFUcG4a9mZncJLT+yEUBVHmokT0MRp2vxV8AQLeFw7ODjcdNcHzgnRH1sh4XB4QED8+mo6qrpAoSDH+ymxqNjZRu7l5VPua9W0QILyhu+Muz2bDH/fQWdc7bLc/cRQoUeRD3enA/O0+dm7fjrSpjJaWFpKTk/nBD37AhRdeyPjx4xVxpHBcowgiheMOIQTff/89b775Jm+88QY7d+4kOjoaY4uVRNKIIwk5iCIoY2ECUelGf4NCS6aR1gOdQRVCABOuzqG9uovSFdXBNeQIsk9JIiY/io1/3juqY9SfEJJVkFykoXKHc9j2HCmIhusRSp0dh7PdFVK5Q6EoiBLGR6Mxq4PvATkSCdLmxFP1XUNwJ/vd7JlyUz5Ne9so+6Qm2Nb0IHdJMqYkA9//vTS4hkhgST90DwfGLcui9UAnB77quwVCd4EUaFHkw2N3krByH/s3baNzx36am5uJj49n2bJlXHvttUycOHHUc2IVFIJNgApGKiiEPt9//z0PP/wwY8aMYdKkSfz+979n1qxZvPfee9TU1DBOmkGClDrqYkhSSaTMiMUQ7w3Ha6/sornkcO+P1vLgiaGYAjOy2vtgrF7f6O9rFGwMcVpiCswAlH9Ry+a/lQRdMPowx8ukjdNgsITehKJydUNIiaFQpW5rS+iJIcAYryNjQQJRacZgm+JFwOa/lVD+hdfjGFNgxhCnDbJRXuq2tVK93tt4WVZL/vvFqCPwiyGApr3t/jLmhngdKTNikVSje6+QdRoaTi7C/KMLqKmp4c9//jNFRUW8/PLLTJ48maSkJC6++GI2bdqE8s5c4XhB8RApRDTl5eW8/vrr/OMf/2Dr1q3ExMRw3nnncdFFF3HKKadwpn5Z0GzTmNQ4O1xIMky7s5ADX9VRs6EpaPYcic6iYdqdhex5+2CP5OBQoOCcNAwJOrY8vy8o2z9amByASustpBAI/vvVf4btGTIm6IgbY6Hi2/rQ8Cx0IxQ9ROCdRKfNiad+R2tQG9ceiUov47YFvxhGX0y8PpfOOjt73wmNUEMfCROiKTg3nXXP7g6Jkuo+kqbGkLEggfW/343wHH4m+Gj/MHfEvER98f3ZD/DJJ5/w2GOPsW3bNtra2sjPz2fKlCn89Kc/ZezYsaNmi4LCaKMIIoWIo6mpiTfffJN//OMffPXVVxgMBs4991yWLVvGqaeeGlQR5CNxspW801P57rc7cds9SCop6Lk44O07kjIjlpL3vT0+QqFZpQ+NUYUuWkN7lQ2VVkYIMaq5Qj76FEMSFM7X0Vbnpmpn4KraaZ/vpGvR8EOREidZSZ+fwMbn9ga1UllfhKogkmSJqbfmc+DrOn8vq1AibU4cUelGdr55IGS8o7JGQpIk3A4P5hQ9thZn0MruH0n3e1nemSlUfdfYZ07PaOO796v0MjPvHkPJB5XUbmrutVz5GxNGxR5bu9fDt/fyH/Hxxx/zm9/8hm+++Qan08mCBQuYNWsW119/PWPGjBkVexQURgtFEClEBDabjffff59XX32V999/H5fLxSmnnMKyZcs4//zzuSD6umCbSNqcOJydbmo3N6MxqYnOMtKwszXoHem7E5VuIP/sNLb9oyzofViOpOiCdAwJOjYdaoQYTPoSRenjNbQ3eWiuGP4EUPt8Z4//B0IUBbsgR3+EqiACQnbMAGIKojCn6PvNRQk2k2/Ko7POzu7/OxhsU3qgjVIz7ops9r5TQVu3ym/BRpIhboyFlv2dODtcJE6yojGqqPi2d+jmSIsjnyjysfncm3nvvfd45ZVX+Pjjj5FlmbPOOouLL76YM888E6vVOqL2KCiMBoogUghbPB4PX331Ff/4xz948803aWlpYdq0aVxxxRVceumlXJV2Z7BNRB+rxdbofSuZf3YqjlZXSFX4AkibF090hpHtITghlWQJrVmNvdWJxqwGQY+QkmDiE0U6k4S9IzC30SOFkI/hCCJTkp6OWlvITuxDWhABSGBK1IdMhbe+0EVrsLeETigYeMO/kMDZ7kJn0eBod4WcdxJg7NJMWvZ3UrGqPtim9CBzUSJai5q973pbLHR/lnRnJMTRkYKoOytmncd//vMf/vOf/7B27Vp0Oh2XXHIJ11xzDSeccAKyrKSmK4QniiBSCDvKy8v5+9//zosvvkhpaSk5OTlcccUVfPLYGkySJdjm+THE65h2WwHbXiujaU/7sX8wikgqCVkt4bZ7iCkwY0zUU/FNaE0IwJsrZE7RszEEvEJHosrPITZdRcF8HZvf78LWNvRbaX9CqDtDEUWyWmLmj8ZQsaqeA1+Hpich1AVRxoIE0ubG891TO0Mu/wq8E+Wpt+Sz698HaNjZFmxz+mTKzfm0V3Z5+/KEGGnz4umstdG0px2VTsbjEiERvtydmIIoxl2exfo/7D5qCHMgxdHRRJGP6LJaxu2sYu3atZSUlBATE8PZZ5/Nz372M7KzswNmi4LCaKAIIoWwwGaz8fbbb/PCCy/w8ccfYzQaufTSS7n22mv56YKnQ6ZEaEyBGWuu2V+aOm5MFI172kPuATvx+ly66uwhOUEBr2dIeAT6WC1qvcpflSnUUBfmEJepor5saGFyAxFCPobqJTIl6XG0O3F2hEYux5GEuiDSmFRozZqQ9hAljI+mfntrSHpgwNuY1GVzY2t0+K/tUKTgnDQM8Tq2vBCcYi39IakkYgvMfsGbc1oyzSXt3t50/RAIcTQQUQTeVhYvpM/gJz/5CZs3b6azs5MZM2awYMECHn30UUym0SsMoaAwVBRBpBDSbNy4kRdeeIFXX32VpqYm5s+fz3XXXcfL172DWlIH2zzA+xZeVsu4bG4SJkSTMN7KjuXlIffQNyXp6Wp04HF6vUK2JmdIVc/ykTY3ntiiKLb+vTSk8qu6Y04z4OryTvCOVXGuPwYjhiBAeUQhSKgLonAi1F8gSLK3n1nDztY+c2OCjSFeh96qoWlvOyqtjD5GG3JCWJIlii/NpO77Zuq2tqDWq/C4PEf1Xg5VHA1UEHXHY3fwc10Wjz/+OLt27cJqtXL55ZdzyimncM455yjNXxVCFkUQKYQcDQ0NvPbaa7zwwgts2rSJ5ORkrr76ar761SZMUlSwzevFlFvyadnfwb7/VgXblH5R6WRm3F3Ega/qQi5W/kii0g1YMk0hbeeEq3Nw2dzsWF4+aEE0WCHUncGIorgxUaTOjmfbq/vxOENUWRIegkjWyIxblkXFt/U07grNsDSA4kszUetVwW9GehTS5sbTur8jpAoa9EXa3HgyFiaw9ne7cNtD9/rJPSOF6CwTG5/bO6DlByuOhiKKfIiqWq5o1fPCCy9QU1NDbm4ud955J8uWLSM+Pn7I61VQGAkUQaQQEggh+Pbbb3nuued44403cLvdnH322Vx33XX87uwXkaXQSdRUG1Skzo6j4pt63A4PMflmOuvt2JtDK6kZIH5cNA07WhAer1ejo6orJL0u5hQ9iZNj2PdB6IrK7qh0MpIs4eryhqENRBQNRwj5GIwgsmQZiR8bHfJjGg6CCCD39BTqt7fQun/4x3GkUBtUCI8I6Ql8d3JPT6FmUxMdVaHlhQGvN8uUYqC9ostbAa44mvptodWPDUBn1WCM1/m9Wmnz4qlc3eC/Nx2NgYij4QgiH5LTyc31GtasWcP777+PEIKpU6fy1FNPMW/evJAJeVc4vgmdWabCcUlbWxt/+tOfmDJlCvPmzWPVqlU8+uijzHEtoe0tFc+c8/eQEUM+M2S1RMr0WEzJesDbeTwUxZAxQUfRBelYc70d2tsrQlMMAWgtGswpBlS60DjWfSJB5omJqI0q3HbPgCYcPgIhhgAMXyYNeNnW/Z0hL4bCiX0fVIW0GAJwdblx2z2ojSoyT0z0lg0PUVQ6GXOKAZ1FE2xT+kR4vPdMAGuu2Vv2P14XZKt6Y292+nOJTCl6UqbHIqu9B/5Yj87Mi7/3/+kPvXn4feiERsNzKbDhvFkkPnU/S5cupby8nAULFjB+/Hiuv/56Dh4MrfLsCscfiodIIShs3bqV5557jldeeYWOjg7OOussbrnlFp48/W8h+bYoeVoMKTPi2PjnvSAImUaqR6LSySRNiaFytTc+X2fVhKRYA0CC2IIoGneHbghSd/QxWiZcm8Pu/xykpbSj1/d9eYkCJYS6MxAvUfxYC531djprQy9H7EjCxUME3sbFhngdDdtbg23KUYnOMVF4fjpbXtgXutf/EcQWRtG4py1ky8N3v5emzo6jZmNTSHri/M8mCabclE/V2gaq1zcN+Pd9eY0C4SU6EuHx8Hz6DB577DFWrlyJ0Wjkiiuu4IorrmD+/PkB356CwrFQBJHCqGG32/n3v//Nc889x8qVK0lOTuaGG27gi59vQC8Zg21eL7RRalRama4GB6ZkPdZcM5VrGkJSCPmw5poYc0kmm/5S0mfPilAitiiK4ksy2fDc3pAs7tAXslrqN3m5uyAaCSHkYyCCaMrN+TTuaWP/p6FfiCGcBFH2KUnE5Eex8U8Dy9cIJkc7V0MNQ7yOqbfks+Nf5SGdowXewhWTb8xj57/Kad7X+8VIqCCpJFJnxdG8r52OahuGeB1uu3tQDbe7i6OREEU+NLVNXNFh4K9//SuVlZXk5eXxyCOPcPHFF6PX60dsuwoK3Qnh+BSFSKGyspKHH36YjIwMli1bRl1dHf/4xz8YWz2XylWNjD8n37/sxGtzSBgfDXiT6yffmOdt8AekL0ig8Px0/7Ljr8wmaUoM4K2gNvnGPHRWb/hF6uw4xlyc4V927NJMUmbEAmCI8z7QfOEPydNjGXt5ln/ZMRdlkDYnjjEXZ5J7egqTb8wDoGJVPQkTohl/VbZ/2cLz0slYkACAxqhi8o15RKUbAG/+zsTrcv3L5p+VStZJiQCotDKTb8wjOsdbjjS2KMq/HYDcJcnknJoMeMMeJt+YR0yBN/TNmmdm8o15/rCI3DNSmHCNdzLevK+DrgY7piTvQ8SSaWTyjXmo9d7KPpmLEik4J82/nQnX5JAw0Qp4S+NOvjEPbdSh8Z4XT9EFh8d73BXZJE31jrcxUcfkG/PQx3gfkqmz4ii+NNO/bPGlmaTM9I63bwJhTPCOd8qMGMYty6JxVxsb/7SXzEWJpM3zJthqLRom35iHOdU7hokTrUy4+rDQKDg3jYxF3vFWG7zjbcn0iun4sRYm3XB4vPPOTCHrZG+ImayRmHxjnj98MLbQO96+kJKc05LJXeIdbyTveMcWeQt4JE62Muu+MWhMKjwuQdZJSeSdlerfzsTrc4kfZ8G9t5SoBJlJN2lRO7zHJrnUSPb2w4VACjdEE1vlHQdjq5ri76xobF4jkvYbyNl6eNn8TdHEV3iPo75DRfF3VnSdKgxfJpEyI9YvJADGXJJB6uw4wPsmW3gEjbu8XoykKTGMuyL7sA3np5M+3zveGrPae86mecc7YUI0E649PN7556SRecKhc1Z/6JzN8p6zccUWJv2g2zl7RgrZiw+Nt9o73jH53vGOyfees5LKOy7Zi5PJPT3F/9voLBNxY7w9xKKzTUy+Mc8fPpl5YiL5Z3cb7yDeIw58VcfGP+/13yPA2xR18o15/hDaxMnWkLhHTLwuF7VBJv+cNPLPTiXvjMPjPemGXOKKveMdCvcI4RF0Ndj9L3F89wgfRRdmhMw9wtboYN0zu8k+JZnYoihSZsYSN9biPWe13oX7u0cAWDIOjbfRO94ZCxMoOPfweI+/KpvESd7xNqUcOmcPhRWmzY2n6KJu5+zlWSRP8463If7QeMd6xzt5agyWTCMd1Tb/en3nms566Jw99Jzo7x6RefH35F27gyV7BQk2rzcst93NmVWHX7bNr3cypckrsrRuwTmVDpK7vMtmdbg5p/LwsnManMxo9C6r8niXTe9040yM4eMkDefedD0PP/wwCQkJXHXVVSQkJHDmmWdSWhq6RUIUIofQqFusEJGsX7+ep59+muXLl6PT6bjuuuvY+lopBfnZvHzdO8iSjK3R0SMXo62yC0e794bpsnloO9iJx+29udqbHNCtlHV7VRf2Vm8Ig9txaFmn93t7i5MO7eFE3fZqm7+Tu9spvMs6vOt1tDppr+pCpZPJPCERe5sTW7OTPW8fRHgEaXPi/aERjjYX7VWHqyN11NlwHLLB4/au17ess91Fe+VhT0FnnR2X3buvwuNd1rfvzk43bQe7LVvvgEPOWyGg7WAnzk7vsq5OF20HO31fI6skTMl61EYVrk43bQe7cHb4xtC7Xl8JcFuTA7fj8Hi3V3bhaDs0Lnbvsr63yrZmB3QLX2yv6vLv6+HxPnRsWhx0VB8up9pRc3i8PU7vsm6HB51VQ+aiJJr2tfvHpKPWhr3Z+9D0uA4te2ic7G3OHuPdWWf32+sfQ5t3WUeHq0flqs46u/98EJ5DY9jlHRdnR88x7Kq3H95X33gfGkOVVkZ4xOExbLSj6ji8r+0VXTjb3fBpOpKti/YKA+LQqhwGN0I+fM52WFw4td4xc6sF7dEu//d2gxvJc3i8O6NcOHXeZT2yd1mPLOhaVIOhKMo/0TlyvMFrv+86cvQaQxu2pkNjeOicdfnO73ZXj5LNXXU2/3kn3PQYb2e7i7aKzm7L2vG4jxjvziPO70MD3tVgR1Yd3ldXl/vwOdvlO2c5NN6hc49wH/p/Z70N26HwqcPnbGjeI4zxOtoru+hqPOyFbasIvXtES1kHbocHa66JjEVJ1G8/XMAg1O4R/nPULchYkEDldw09x7C/e0T38XYfHu/unrz2qi6/F8dtPzSGLo9/vLtfNx3VNuytLv8Y9hjvVmePe0TNpiach64bbZQaSfIWM4Jj3yPsXzeQ+l0jMfV22v44hbpuuZ7NGgnbIZs8EtTpJByHdt2mkqjTSd2WlXH7brOHlvX91qaSaDRr+G+sGpF/LnNPmItx3RY+/fRTCgsLufjii7ngggu44IILkGXlXb5C4FFC5hQCitvt5q233uLpp59m5cqVZGdnc+edd/LOPV+ilkIzedaHrJaYdEMe+z+vCf2wjRgt1lyTPzZcpZNDMp69F5L37Wnl6vqQbRQ6JD49/JbcoB6ZnI2BhMrpY7RMuSWfba+U0XogtAsA+AinkDnwvuEfd2U2G/64J2zyc8IJjUlF6ux49n9WE7L5RN3pfu9NnhZD874ObE2hH66cdWISm/9WMuywyt0vTguQVT2ROr3v6z0dndyrtfLUU09RXl7O2LFj+elPf8r555+PWq2801cIHIrMVggILS0t/Pa3vyU/P5+LLroIWZb5v//7P/LKpvHfH60KWTFkyTIy7Y4C1AZvONTGP+0NeTEE3nCl1Nnx/hCkUBdDydNivOEZAvZ/WhMWYih1dhzZpxyjqtun6T3E0Egx0HLbLpub8i9qe7ztVQgs7VVdlH9RG/LX3JFkn5LkD6sMZZwdbm/um/CGOfpCwkIV33kgqSTS5sQTNyb0euUdiS9c2eMSqA0qpt1RgCVraHm8hdeup/Da9QG28DCyychvNQ649xYee+wx4uPjueSSS0hOTuaqq66iqWngBSMUFI6G4iFSGBalpaX87ne/48UXX8Rut3PZZZex65VKLFJoP8R8FYPURhVZJySy/4taXJ2hPUnXRWswpxpo2NEK0qGkaWfoX76SSmLSdbk07GzlwNd1wTZnwKTOikNjUnvfVPfFUYRQoLxEg+k7FK6Em4coXMk6KQlnh4vKNQ3BNmXAZCxIIG6Mhc0v7AvpYjY+ZM2hQhbC+9KqvbKrRyhrKHLkM3C4lUkD6THyeYmOxHGggqzPV7Nu3Tp0Oh1XXHEFS5cuZdGiRQHbtsLxhyKIFIbEli1b+NWvfsXy5cuxWq3ccsstfPnzjegkQ7BNOybZi5OJH2th/e93h2xfnr7IPiWJuDEWNvxxT3jYLR0KJ7F5wqri1TEZgEdouIJoKEIoKt2AJctE5bcN/lyGcCAcBZEkS6TOiaO1rKNHTopC4PHdO1R6770kHJBkmHprAfU7WsOi0qMPSYZpdxZSv62Fso+Hb/dwxVF/gsiHu6WV620yv/vd72hra+Pcc8/lJz/5CVOmTBnWdhWOTxRBpDBghBCsXLmSJ554gv/+979kZWVx77338n93fIpKCu1YXmOCDkkt0VFlQx+jRWNS0XYw9CcyGpMaY4KOlrIOZLWEpJLCJlQnd0kylgwTm/5WEha5AD7yzkylo8ZG9brG3l8OIjxuqKJoqF6h5OmxJE+NYdNfSob0+2ARjoIIvFXdqjc09X2ehDDJ02MxJekoeT+MmvZKMPmGPFoPdLDvw+pgWzMgVDoZ4RZ4XILobBOddXZ/IYtQJirdgLPDja3JgSlFj3AJOuuG1xZhqMLoWILIh9pm55wDDbz11luUlpZSXFzMPffcw/XXXx+SfQ0VQhNFECkcE4/Hw/vvv88TTzzBqlWrGD9+PD/+8Y958cr/IB+rFXaIMOHaHJwdLnb+60CwTRkUeWemEp1lZMNze8NKVIBXhOpjtWGRk9Wd7MXJdNbaqN3c3POLQeYKDVYQHQ/hcX0RroIoXEmcZMWYqKfs4/AQFj7ixkTR1eAY9uR81JFg6i35tOzvpOT9ymBbMyjGXJKBxqjm+5cCV/Z6sOJooKIIQLjdPKiO5mc/+xnV1dXMmjWL22+/ncsuu0wpwKBwTBRBpNAvTqeT119/nV/96lds376defPm8eCDD/K7s14M+bcukgwpM+NoLmmns86ONkqNs8MdFqFEkkpCH6Olq96OSicjqyR/Od1QR6WTSZsbz4Eva8MjrG8gDLFowmAE0XDFkNqg8pYWDv3TuxdhLYgkUOtVPcqCK4wskgwZixKpWFUfNt5yjVGFxy1w2z0Y4nXYmhxhkRMlqSQ0RhWONhfGBB3WPDNV3zUE5N4+UGE0GEHkQ7jd/DFnPL/+9a/56quvSExM5IknnmDZsmVotSPXYFYhvAmP1/sKo4rD4eCvf/0rBQUFXH311eTm5vL1119jWJXC02e/FPJiyIvkbUx3qImko80VFmIIIPe0ZMYuzQLJW8EoXMQQgDnFQPKUGHTW8HvojLk4w9+s0s8wKsh1uY5dWbFrUU1APEP5Z6Yybln2sNejMDjGLcsm78zUYy8YgsQVW3o0pg0X9DFakqfEYE4J/XxVH85Ot1e8STB2aRa5pyUH26QBIdzC3xPJkmUieWoMEJjn/0Cr0wnj4MMMJZWK28p3sP+ys3n++ecpLCzkuuuuIycnhx/84Ae0tLQceyUKxx2Kh0jBj8Ph4KWXXuIXv/gFBw4c4OKLL6b8X02YpehgmzYgtFFq8k5PpeSDShxtLiSVFBZv4XyoDd43zdooNRqjmo4a27F/FCJ0H+twLKAgqyXyz0qldkszzfs6vB8GoJz20bxEgQyRM6foUelUtJR1BGydo0U4e4iis0247W7aq8LnWvVhzTWRONHK3vcqw/J69dkcbvd5U5IeZ6cLR5vLf88PF3xjfeSzNhAczWM0FC/RkTgqqyn8eh1ffvklaWlpPPTQQ1xzzTUYDOEjrBVGFkUQKfQSQpdccgn7lzeGjRDyodLJjFuWzb4Pq2ivDP2CCd3JOjmJ2MIoNv15b9iFmvnKatdtbabi2/Ap6dsvAe4r1JcoOl7zhfoinAWRQnBJmxNHwnhr2JTl7o4kw+Sb8mnc3RZWlegAzKkGcpeksO3VsoCHLfYljAIhiPzrOljF3LJqXn/9daKiorjxxhv5+c9/jk6nC9g2FMITRRAdxzgcDl588UV++ctfcuDAAS699FLK/tmIWbIc+8chgjnVQO5pyWx7bX/YxJP3hSFehzFRR8P21mCbMiRSZ8fRvK+dztowS3gGCs9Pp2Zjk9e7MgJNVrsLopEQQhkLE2ir6KK5pD3g6x4Nwl0QWfPMRKUawqrHVneis00kTYlh938OBtuUQWNK0hOdY6JydXi+iIkba6GzxkZXgyPYpgwZlU5m3OVZ7FtRHfAXkd3FUSBFEYCuopqoD79g48aNpKamcv3113PXXXdhtVoDuh2F8EHJIToOcTqd/OUvfyE/P59bbrmFuXPnMksspn65K3zE0KEwZkebE2enG5U2/E7luGILYy/PQpKhq94edmJIpZex5npztCpXN4SlGFLpZDRGlfc/IyCGujNSXiFLpglDXPjlbEUKhjitP1cxXNEYVah04XcP7aix+cWQNdeESh9e+9CwvZWuBgeSDGMvz+qdwxgGqLQyzk43jrZDL34CmGI80DyjoWBPS6b++stI/p8fsWjRIh599FGys7P54x//iMMRvgJVYegoHqLjCI/Hw7/+9S/+53/+h5KSkrD0CAEkjI8mbW48m58PvzCJ7lgyjCRNiaHkv+EXww+QeWIiSVNiWP/s7rC0vwcjKYZODr8376NJuHuIFIKPrJaYdmchNRuaKP+iNtjmDBpZLZF3RirVG5toO9AZbHOGjKSSmHR9LgdX1VO/NfCFC/b876yAr9NH3N5q0vfu4b333iMlJYVLL72UX/3qV0q57uMIRRAdBwghWLFiBQ8++CCbNm3irLPOou49G1GSNdimDQ4JEN7+NomTYyj/vCbsJuI6i4akqTFh+dDuheSt+GRrHLm3abLJ++bd0xH4YgHZi5PZcnkCDQbvK82chBFosDnCYkhjUuHsCJ+k7L6IFEEU7sfCnGogfpyFso/DK5/Fhz5Wi63JEZal548k84REajY0YW8dWnPnYCGrJTJPTKJ2U5O3X9ShZ3agGQlhpOrwehcd1dUkfv4pGzZsYOLEifzyl7/kjDPOCJPqugrDIbz8ywqD5ttvv+XEE0/k9NNPx2w28/XXX2N7Xx92Yih1VhwTrsoBoLPOTtnH1WEnhsA76UicaEVjCs+3TpIM+WenYkzUgWBUxNCR/w4EKp2M4aR4jCM53xhhMSTJEtNuLyRlZuyIbkfh2KTMjGXa7YVIcvhOmnTRGqKzzWEZOgeH7kUCjIk68s9OJUx6hvdCY1KTONGKOTX8qp95XIKyj6v9YmjC1TmkzooL+HYKbltDwW1rArpOt8mbg6xNTqZ56TI+/fRTYmJiOOuss8jNzeXf//53QLenEHqE6S1D4Vhs27aN8847j7lz59LU1MT777+PbmUSP1v4TLBNGxyH5hftVV007W0LaHzyaOJ7uDXsbGX9/+7B2RGYUqWjjUqrwpSoRxt17B47wyHQAuhI9v59PB9kSxyIOvxZaV2AhMXJB0cpTE6w+z8HadzdNgrbUjgajbvbDhUlCL+XND4adrSy+W8lYV2cBkAbpcGUqEelVQXblCHh7HCx/n/30LDTm1MajsLIR9OeNtqrDhVaGIFn90gIIx8/2LCJ8jPP5rnnnsPhcHDRRRdx1llnsXLlyhHZnkLwUULmIoyqqioefvhhXnzxRXJycnjsscd4Ydn/haW7N+vkJIxxOnb8K7xDaaKzTUy4OodNfyuhvSK8yoF3Z7T6Cx1NDA03dK70nxMpaBJUG6FN1/uaGHbYnJIvNGgiJWQuUtDHaonONlGzoSnYpgybcOyJ1h1zmoHJN+Tx/d9Lw7LHWHeKL82ks87O/s9GLiRzuKF0vrC5IxEeD49nZfDggw9SWlrKiSeeyMsvv0x6+sgW4lEYXRQPUYTQ1dXFz3/+cwoKCnj77bd59tlnyd43mRev+E9YiiGAtgOdNJWE8dvvQ8PeUtbB9y+XhrUYSpsTx8TrcpFUI3sujaRnqPSfE1F5BGMbBRn9VKgelpdolMVQzmnJ3tBFhZDAmKgj57TkYJsxbOLGWEibEz/i1/pII6kkJl6XS9qcwIdsjRbtFV18/3I3MRTGh6RpbxttB0e2YMRIeYwkWeb/HahA/sFN/OAHP+D777+nsLCQ2267jZqa8My5U+iN4iEKczweD6+//joPPvgg1dXV3Hnnnax7ag8aKTzL8GYvTkalkyl5rzLYpgwLbZSa8VflUPJ+Zdi/2QPvZM+aY6Zyzcj1+xioGBqKl6j0nxP9/1Z5BB4JRD8vCobkJRplMaQ1qxl/dQ4l71XSsj+8z69I8RBFZ5vIOzOVrX8vxdEeniGx4M0TlOTw9qz4SJ0dR3NJuzenJczxn18vl+JoC9/zCyD/rFRcdveIF/AYiseoPy9Rdzw2G5e0tfDUU09hNpt55plnuPLKK5FlxccQziiCKIxZtWoVd999N9999x0XXHAB1f/XiVEyB9usYZE42YqslqleNwIVv0YRSYac01Ko+LYee3N4VQrqjjFBR2e9fcRTIwbrGRqoKOouhOK7BO0asKmP/pp1UIJICZEbNpEiiCINjUmN3qqhLYw9234kMMbrwloY6awa0ubEs+/DqnBOVQMgeXosHqeH2s3No7K9wQijgQgiH5baWtJ3bOO9996juLiYO+64g1tuuWUoJiqEAIqcDUPKysq49NJLmTdvHi6Xi2ksovU/ctiKoayTEslclAhA7abmsBZD8eMsGBN0CA/s+6AqrMWQSisz4ZocMhYkjOh2RipMrrsYQghmVgmm1xx7JjHgsLkgiqFwbER8vBApxyZ3STJ5Z6YG24yAkLEggQnX5IT1sbE3O9n3QZW/9UT82PDqH9id6nWNfjGUuSiRrJMSR3R7IxVK15qYyPZFJ7Jy5Uo6Ojq49dZbueCCCygpKQn4thRGnvC9OxyH2Gw2Hn30UYqLi1m5ciVjmU7MhhxipJGdsI40bocHtyN8+3f4kGRIn59A4iRrsE0JCG6Hhx3/Kvd3gh8JhiqGjvW7HmIIQJL4JEtifWKAgvCDKIbUBhWz7h9DbFHUsRdWGFVii6KYdf8Y1PrwrHDWndKPqtn6clmwzQgIlasb2LG8HLcjvCvo+UicZCV9QUJY5xT5cDvco1bZcKQq0l317RpUt9xG5mWXsXbtWoqLiznnnHNobAzfl7vHI0rIXJjw3//+lzvvvJPy8nJSnbnkUIxaCs9eNgApM2LxuEVEVDJCArVOhcvmRqWXcdvC+6ErqyXiii3UfR/4TuM9tjNMz1B/YXNHiiGdS+CWwTXIHjH9hs4FOUxOpZWJH2uhcU972JZv704khcxpTGpiC8zUb2+NmMm3SisjqSRcXeH/0gogYaKVhu0tYZ8j5XvWqPUqXHZ32IfRASRNjUFWSVStHXkh0V8Y3WBC5vrC43Bg+mgFO1d+TXp6Os8++yxnn3122Ba3Op5QPEQhTllZGeeddx5nnnkmTSVtTHeeSIE0IazFEIAhQYchNjwLPxxJ/tlpjL08CyDsxRBAbJGF/LPT0EWPXK+hQITJ9bWOXp4hYFqt4NQyAYF49xMCOUNuh4eaTc0RIYYiDWeHi5pNzREjhgAmXJNDzqnhXz0PvHk4+WelRoR31fesGXt5FvlnRUZooyFWiyF+dCpn9hdG52vQOlRkrZaus84m7Z4fUavTc+655zJu3DhWrVo1rPUqjDyKhyhEsdlsPPnkk/ziF78gPj6emIPpJJIW1m8ZorNNyGqJpr391DwOU0xJejRmNc0lkbNfOosGe+vI5D8FMmeou5eoLzEEYHIIzE6oMQ3+2vF7iUJACPnIWJBA3dYWbE2OYJsSECLJQwSgj9GSMD6aA1/XBduUgBCdbcLW5MDeEr75kN0ZyXtbMLDmmXG2u+iosQXblIASU2DG4xSjVqW1u8douF4iH0IILJs3sf/99+jq6uLHP/4x999/P6YRbjyuMDQUD1EIsmLFCiZMmMDPfvYzkmxZ5B+cTpKUHtZiCLxhckmTY4JtRkDQGFXeRFAJOmpsESGGYgujiBvjTdQNBzHUfX39iSGEoEMrDUkM+QkhMaS1aEidHYfOOnLeO4XhobNqSJ0VhzYqvL34PlrKOiJGDMHhe1tcsYWYgvD3FDWXtHvFkOQtUKQ2hn/+GkDSpBhSpg+jL9wgGYnCC5Ik0TZ5CtYf3Ydh/gKeeOIJMjIyePbZZwO6HYXAoAiiEKKuro4rrriCJUuWUGV0McN1UtiHx2nNakxJegB2v1XBzn8fCLJFgcGUYiBxYgw6S+RMTGOLokiYED1i6x+VanLdSOoQnL1PYHAOwwkeQmIIwNHqZM2TOyOit1Wk0lLWwZond4Z9r5juaMxqptySjyXLGGxTAkbC+GjixoS/IPKhs2hInBiDOcUQbFMCws5/H2D32xUAmJL1aM2jMw8aicILsl5P7JLTKbjzh1hj4/jhD3/IZZddRlVVVcC3pTB0lJC5EEAIwauvvspdd92FEALDlfMZ84wm7D1CAMWXZKIxq9nywr5gmxIQ1AaVP7lYVkdG88LuSCoJ4Q78Pu1+fjoAY+7cEdj1PjYBAFVq7w7oVpugoFmwNkmCIVxLOZdtGbZ9Cscm0kLmIpXcJSlUb2ikszZ8e/l0Z6TudcGk+zOp+7Mq3Jl4XS7Odhc7/jW694h9v54T8HUKIXB/tJHOTSvo6Ojg9ttv51e/+lVEzPfCHcVDFGRKS0s5/fTTufLKK3GNSybxd9cQc9KksL84fG77kv9WsuOf+4NsTWDQGFVMvbWAxMlWgIgRQ7lnpGDJ8L75HUkxFPD1HhJD/dGsl1ibLEeMGJJkiZk/Kgrr/iPHC/FjLcy8pwgpgp6w+z6sihgxBIfvdZYMI7mnpwTZmsDgeyYlTbYy9daCiAmf2/HP/ZT8txJgVPcp9/5vyb3/24CuU5IkYgqnknnu7eTkF/Kb3/yGxYsXs2fPnoBuR2HwRNDtOrxwu9387ne/Y/z48Wzfvp2s/7mMjB9dgNoa/sl2uUuSGX9lNkjgaHfh7IyMt1TOTjflX9bSuKst2KYEDJVWxpSgR2MamYfMkWJo57PFgVnvEWLIXXk4lEcSgtlVHqy2oYm7UBRD4H2jXbm6gY4ImpRGKh21dirXNCCpIusRa0zQkX92akT0v/GhMakxJerDumnrkTTsaqP8y1pcEfTsdbS7QIIJV2aTu2R0qx4GWhQBuHVRaBZcRe5ZN1JSUsLYsWO5+uqrcbkiJ9Q23FBC5oLAtm3buPbaa1m3bh0xZ0wn6YoTURl7lppMPi+woUWjiTFBhy5aEzHV5ExJerRR6ojZn9GiP8/QcMPm+vMM+cLmjE7BSQcE36ZINBgG2XsoRMVQJKOEzIUP5jQDBWense3VsojKkYpkYvLNONoipwpdTL4Ze4uTzrrgvBgKRBhdVGnP/wunDdXm99m8bjWTJk3i+eefZ8qUKcPejsLgiJxXImGA2+3mN7/5DVOnTqW9vZ2cX11D6o1LeomhcCRuTBRjL8tEkqGzzh5R4iF1Vpy3K3gEoTGpGHdFNvoR6gV1tDC54XiJjhYm5/MSdWok3suJPDEUNyZKqS4XRuismohK2gdor+hi45/2RqQY0sdqGXdFNpoICTPzkb4ggdRZccE2I2A07W2ns86OJMPYyzJH/RobkTA6jR7P9AvJO/8OXC4XM2bM4PLLL1e8RaOMIohGib1797Jo0SJ+/OMfYzljGtKj52EsSg+2WQHD2eXG2eUeUr5GqLP3vUq2vxYZeVA+VDrvQ98TRg0kj5UzBBDXJTA7xKDPw1AXQ0hQcG66vyy6QugTX2yh4Jz0iAov86GzajCn6INtRkDx3QtV+sgSRNtf28/e9yqDbUbgkaTD844gMBJhdMakTOS5lzNl1lyWL1/O/Pnz2bVrV8C3o9A3SsjcCOPxePjTn/7EfffdR3JyMuKGBZjGZR7zd+EQMqfSyiROtlL1XWOwTQk4xgQdRRdmsONf5dgaI6MB5mgx0CIKgwmdG4gYAjjN1Y4H+Cxz4O96Ql4MHUJWS0iyhDuMROxAiNSQOZVWRnhExBRf6c64ZVkgSWz7R1mwTVEYIIY4LWMuzmTXvw8ELdxsJEmZGUvtpuag3B8HG0Z3ZMhcX3RUlyF9/yFlZWUsW7aM559/HllWfBgjiTK6I8iBAwc47bTTuO2229AvKkb3y4sHJIbChegcE1knJkVkGI+z00VHdRfOjshyWZuS9Yy7InvEKvUMpqLcQEPnBiqGAD5RmVidMvBX8uEihsBbQSrSxFAk43Z4IlIMAex9N3Kqhx6J2ugNJzYlR5YHzNEemc80AH2MlqwTk4jOCU5RqpEIozMlZ6M/4RrGTZ7GSy+9xEknnURp6QCUlMKQUQTRCPHaa68xfvx4duzYQdZPLyf15jNQGUYmX2O08XVgb9zVxrpnd2Nvjpwu5jqLBpVOxtnhZvdbFbjtkTUBldUSHqcHty3w+zUS5bUHLIaEQCMEbkmiUzMwQRROYqjgnLSIygM4XkidHUfBOWnBNiPg2FudeFwioiqz+XDbPXicHmR1ZMU6uu0edr9VgbPTjUono42gpuK2Jgfrnt3trwDrm6OMNoEWRrJGj5hxMbnn3ExpaSljx47l7rvvRgnsGhki724WZNra2rj66qtZtmwZ0uRMLL++nKgpeYNaRyiHyxkTdUy/sxBrnhkgYhq/+RhzSQb5Z0feBMZH28EudiwvR3gCe0MdqhgKVBnuVJebi1s7MHk8PUpw90c4iSEAe5szaLHyCkPH2enG3hY5L4y6o4vWMOPuIqy54d8qojvCLdixvJy2g13BNmXEKDg7jeJLMoJtRkDxzUWseWam31mIMTF4xaqOJYzacga3vqj0Aiyn/oC8wjE8/fTTXH755bS0tAzTSoUjUXKIAsi6detYunQp1dXVRN9wMjEnThzSekJZEIG36VvtlpaAT6pDAVOSHpfNjb0lsiYxcWOiSBhvZdd/DoZc89X+cokGEypn8HjIdbrYptWAJPlLcB9JuAmh44FIzSE6HkibE0fd9y3eHjERhqSSKDo/nbqtzTTsjJzec+AVsyqdHFGNdn1IskTixGhqNjUH2xSg//yigeQR9UXTng00r3kXg8HA448/zrXXXjsM6xS6o3iIAoDH4+E3v/kNc+fOpYIOUp68eshiKBSRZIm8s1KxZHrfvNdsao4oMSSrJdLmxYMEHTW2iBNDPlx2d8iJIejbSzQYMQTQJcts02n91eX68hKFqxjSWTUj1jhXYeTRmNQRmWcJUPFtQ0SKIfB6ilwOD5H4ytje4vSKIQnS5sVHVHig8Ai/GLJkGsk7KxVJDt7+BTq3KKZgKqnn3IZareGGG27gl7/8JW63Ej0QCBRBNEyqq6tZsmQJ999/P9FnTyfniWvRpcQG26yAo7NoghaXO9JEZRjJmJeAIS78+0H1R8PONva+G/jSq0HNGzrEFJudbMfRRWy4iiGArBOTGLs0K9hmKAyRsUszyTohKdhmjBjxYy1knpgYbDNGhL3vVPjzUiIRQ5yOjHkJRGUcO8w4HNFGadCFQK5UoHOLdJZ4Es66ncQpJ/Lwww8za9Ys1q9fH7D1H68oIXPD4JNPPuHyyy9HlmX0t5w86Fyh/giVkDmNSY1KK2Nrivyy0yqdHHEFFADixlqIzjKx78MqCPCVHmgxNObOHYMWQwjBoi47tSqZHbreRUtUqZ1hLYbAmyCsMaojptP8kUR6yJwpSY+z0xWRzUzBW+7YkmFk178PBtuUkUGC3CUptJR10LCjNdjWBJxIffYdiT5Gi9vhCXqVPV8I3VBD5o6kvWI3tZ+9hsfj4c0332TJkiWBWfFxiOIhGgIej4df/OIXnHrqqXSmRRHz62UBE0OhRME5aRScG7kFBjIWJpA2Nx4gYh8Iaq3srQQV4mIIBu8ZAkCS+NKo71MMQXh7hnw42lwRK4aOBzpqbBErhgCqvmuMXDEEILw9pdS6yJwu+Z59aXPjyViQEGRrRo6C89IoOCc12GYE3FtkTiuk+JJ70MRncMYZZ3DXXXdht0debthoEJlX+AjS1NTEOeecw8MPP0y2GEP2T5aitgamyk5buYW28sB3orefOWNIvyt5v5Ld/4ncB50kS0iqyImd7sXsidToM9lTE9hyzXuemR3Q9QEUXr9u0L9RC0Gyy0V/Qf7596werllBx5JpJHtxEpJypw5bJBmyFyf5czAjlegcE7ImMk/UPW9XhEyS/kghqSL7ebj7/w5S8n5VsM3wk/DctyQ8FxhhZNdZyDzjevKkcTz77LNMnTqV+vr6gKz7eCIy714jxIYNG5g6dSqrVq1iMvMwvX0Rkmr4Q9hdCBXcuWbY6/NhP3PGoMVQVIaRsZdlIqsl7K3OiCww4EsgLf+iloNf1wXZmpEh9pwJZOQKAu0a8okhqT1w+WQ+MTRYAZPpdHFqhw1jH4IoEsQQeKtBWTJMiMh0YB4XCA9YMkzoooOfyzBSaKPUjL8im7gxUcE2ZUTJWJhAbFFk7uPBr+so/6IWIKKKLPiwtzixtzqR1RJjl2aGTN5UoISRJMmYbr6Wk4vPoLq62j9XVRg4iiAaIM8//zxz586loayFsU2zcb19UkDW290jFGgx5EP3/toB/85XhSyYVVlGEp1Vw7Q7C4nOjqzeGT2YPRGDEUyWkRFDgWQoniEf+zRq3jEb6JR73sYiRQwB1H3fwpYX9gXbDIVhsuWFfdR9H7l9QxxtLjb+aW9E7yOAKVmPITYyGqz3R3SOiWl3FEZsZURJlkAwIhVXh0OgvEV1J5zE2MbZtB7sZOHChdxyyy1KI9cBEpllwwKI3W7n9ttv529/+xtp5FLIJFSSiuHe9kciNA6GHh5nStbTUW2jvbKL7RGa3AzeB3ftpmbaqyKw6d7sw6XeK8p8gjYwwjbUxBBCgCTRrOpZjjqSxBB4H96RVOL+eCbSj2VnXeTnLez814FgmzDitFd2UbulOWLz3twOT485jm/uEwr4RFHdLX33LhooesnIDNUiGorK+NOf/kRHRwd/+ctf0Ov1gTAzYlE8REehtraWk08+mZdffpmxTKdYmopKUlH9Vu++KQOlvzyh4XiHfKFxQxVD2ig1k67PJWlKzJBtCHkk0Fo0CLdg/2c1kVdE4ZAYMlsESWm+ULnhi6E9z8wOPTEELOyyM6Or5wQs0sSQIU7LnAeLMacZgm2KwjAxpxmY82AxhrjI9i7knJZM4QXpwTZjxEmaGoMpJTInl267h/2f1iDcAq1FE6h3aiFJ0pQYJl2fG3ItRYYbRld3yxxwy8Rtz2U8M3njjTcoLi5m06ZNgTMyAgmtsyCE2LRpE+eeey52u52JjnlYpeElpgerWMJAwuUcbS62vbqflv0dgTArJMlYmEDytFjW/343HmeEvaXt5hmyxkN8kqCmUhp2+lAoCiEfVWoV3bPbIk0MAbi63JR+XE1XfeS/eY90uurtlH5cjasrshsoth3sRKWN8CbCEqRMj6V+eysdVaHhWRgJZI3E5BtyqVrXyIGvIjPXtmZTE7YmR8h6wwLhMUqWMomPjmd9w9csXryYDz74gOnTA18lNhJQ+hD1wb///W+uuuoqVJ1aJjEXvXQ4+W6w3qGBCqHBeIgG4wk6miBKmGhFpZGoXt804PWFK2qDCkuGkcbdEdRkr5sQ6o4sCzyeI17rrR5c+emBiCFhHtxDZKBiaO9vByfEIlEMHU9Eeh8ihchDVkt4XJE/dYotjKK1vBOXLbKFPEDytBjcTkHdluZgm9IvgxVG3b1MTo2djY6VOPRdPPTQQzz88MOBNi/sUULmuiGE4NFHH+Wiiy4iqjOW6ZzQQwwNhsGU0B4pMXQszCl6zCmRHY5jiNeh1qtwdbkjWgxptIKYBG+oXC8xNEgG6hkaTKW5QHmGJCGYaHNg9HjIv2d1RIuh+HHRGOJ1wTZDIUAY4nXEj4sOthkjjjZK7e1nE8GhVj4xFFsYhcYUuR6xxt1tuGxu1HpVxN+LzCkGzCEeBjmcUDqNU8c0TiA1KoP/+Z//4YYbbsDjibDUgWGihMwdwmazcc0117B8+XJyGUsOxUhSzzv6QLxDoVQsoT/vkK8zdemK6uGaFfIUXZBOV4ODXf+OoGTYPjxDiSmQnitY95WEe4gv80YiRA4CJ4YALB7BeLsD+Q87aA/YWkOTvNNTOPhNHRVKyFxEEFsYRfrceOq3RXYlNq1FQ9qceOq3t9DV4Ai2OSOGSidTcF4aB76qo3J1Q7DNGVHyzkrFEKtl019Kgm3KiLH3vUr/v31zpFBloKF0dbfM6SGgVJKKnLqJWDNieOGFF2hoaOCVV17BbDaPqL3hghIyBzQ2NnLuueeybt06CmyTSZL6Tgo9liAaihg6lndoOB6hvgRRdJaJ4ksz2fLSPjprI3+ipYvWIAQ4WiOkn1I/YXIg0OnBbuvntewxQuaGKoaOFTY3VDF0tLC5gvvWhFzJ1BFBAlkV+aE5x0vInKyW8LhFoFuDhSSSSjourlFdtCYie/UdidaiQZI4LvbVmKhj4jW57FheHhZ51ccSRf15lOpEJTt160lMTOSLL74gNzd3JMwLK477kLmysjLmzZvHjh07+Oyzz/oVQ5FCW0UnB7+pi/gSqbGFUUgqCXuLM3LEUJ8IjGZvRbl+xVCEoBIClRDHxUQLAEHEi6HjCY/r+BBD4O3xIquliGzw2R2fQDAmRnY4meNQk3ZJJRFbGJmNaX101tk5uKqOtorOYJsyoiRIqfztb3+jubmZ0047jb179wbbpKBzXAuiDRs2MGfOHBwOB6tWreIn837b77JH8w4NJl9ooAynjHZfWDKM6KI1eFyCg9/UR/SDWWtWU3RRBokTrcE2JXDMntindyg2AabOExhMxzig/XqWRq6aXCBD5QAKHE4urWxBUkX2JAsgfX48uWekBNsMhQCTd0YK6fPig23GiCOrJabfVRTZrRwOYYjXMfWWAmIKIlsoACROslJ0UQYacwRnWwg4uLIej0ugi9YQlTG0PPLR4lh5RUfzIP39qrfZtGkTsiwzY8YMXnjhhZEwMWw4bgXRhx9+yMKFC8nIyODbb7/ltjEPDXodIyGEIDCFE3qEy0mQd2YqmYsSh73ecMDR7u2aXrMxQqrnHUXMNNbBtvUSXR1DEwmhXFr7SNS/3krpx9XHhYfI2enG2R6apWAVho6j3YUzwktvg9cbVvpRNU17Iz3Tz1tSfdurZTTtjaCiPf1Qs6GJjX/ae9zcmzJPSCT/zNSwKBAy1IILN+X/mFWrVmG1Wrn55pt56623Am9cmHBc5hC99NJL3HDDDZxxxhm0v6tCJR37bUd3D1GgRNCR+UOB9AgdmT+kMatx292R14PnCBImWqn7vjlyPGBHEUN9ltc+Gt3yiAIphLrnEQVKDB2ZQxTJ1eSOd46XHCKFyOd4KceNBAkTrCFdojoQyBoJlVaFsyP8BGB3z9BAhJLQeDCe5uT999/nmWee4fbbbx9J80KS485D9Mwzz3Dttddy3XXX0fGuZlBiaCQ9QoEUQz40JjX556Sh0so4210RL4YsmUYKz02LjFLi/YTI+VCpBdMXCuISB39Mw6GaXHcBlH/PapKnx5IQSSGQR0FWS+ismmCboTBC6KyaiM+t8ZEw0Ury9NhgmzEqxBVbmH5nISp95E+rzCkGCs9Nw5IZ2uFkw8XjFDg7XKi0MvnnpIVVifXuHqOB9C+SnDKd72r5wQ9+wB133MFVV1010iaGHJF/5R5CCMFjjz3GXXfdxf3338++vzYiSwPb/XATQj70MRos6QbU+vC5iIdDa3kn657dTXtlV7BNGR5HEUI+hICqconW5sGtOhzEUHd8wsicosecHNo9IgKFJdPIjB8WoY/RBtsUhQCjj9Uy44dFIZ+XECjMyfqQ7+0SKFrLO6la23hchPS2V3ax7tndtJZHduEBH2q9Cku6ISzvyYMJpZMkib1/rufcc8/llVde4aGHHuJ4CiI7LkLmhBDcf//9PPnkk/ziF7/gs4c29OoxdDT2PDsr4DZlfCyQPCMz9DUz1GT+9NAFIBGw8LEja9oHCvsZM9D9t++eSQNBpZWJLYyibmvv/h7202eg+2Do6+6PhuvnEPd84Mei/KdzyfxwZOLumwtN1E0L/DlX8EMlnC2QqHQyUelGmksiP/8CjrOQOQmsuWbaDnaGdJ8TBYWBkjA+msbdbbgdEX4+d59LBXBeFaqc9utZ3HfffZx22mm88847aLXhJwYHSwSXCvHidru59dZb+ctf/sKzzz7LOz/8KqhiKONj71U0EmKoeqYGhGDxpnJcS1LY92FVQC7agbhbh4L9jMB4x+LHWshZkkJzaYc/1td++sh43hquH5mxKP/p3AEvm1XgwdYlUXPw2Odxc6FpOGYdldESQsdLrw8fbrvnuBFDxx2C4/LYHk/XcNLUGPQxWvZ/WhNsU0YcjUlN3lmpyB9WUbOpOdjmjCyH5lK5S1JQ62V2v1URXHtGmBX3r+H+++/n17/+NZdccglvvvkmanVkS4aI3juXy8VVV13F8uXLefHFF3n1uveDZotPCAWa6plH5BpIEs2lHQFJ7DxSCAXSOxQoMQRQs6mZppJ2nB2uERNCEBpiCAQqNcgDiPaMBDEkyRKTb8qjYlU9B1fWj8o2g036vHhaD3QeN+EoxxuWTCOWDKO3/cFxQPr8BNLmxPHdU7sQIxQVEUrIagmV9vjIRnB2uNjwv3twtIVf0YGh0nqg87jJAdzwm30899xz3H777VxyySX84x//wGiM3HDfiBVELpeLK664gn//+98sX76cP1+yPGi2jJYY0gsPNkmmdnPzsNcd6l4h8Mb1mtMM/5+9/wyM5CrT9+Grqjp3q4NyznlytozTOOGIMeAEzmRMMEtawwZYfu8Cy/53ARMWDCbYgA2Y4IDBOeAw48k5SiONNMpZ6txd74eSNBp7bI80kqq76lzfPK6uunX69KnznCcxdHiM0bNWzNl9X898GUIwU2MIQKJ5rzk8QwBqUmXf744SHowu2DP1Jnuxj3gkKQwig+LKdZC92Gcag6h31xCj7UFTGEMAnRsH9JawoEwaQ/4qD6MdQRJhY4fO9e0+Hppv9VgMX4L8oU88zR///Efe+973csYZZ/Daa69htxuzEbEhjzESiQS33HILf/jDH3jggQd0M4ZKnlTnxRjqWmt9gzGUoSa4Sh2jWD29sITejzelhTEEWmhC/XtLSFyxek7vO5359ArN1BhyOFWy81XeLg7yrYyhnM2nd7KlR77Q8JFx04TbAGz78WG6NplrU2UmujYNsO3Hh/WWsWBEhmIMHxnXW8bCImkHG2apFqnYZerfV0K+CRrxTpJZl8HqT9XiyDR+bs3d776Pr371q+zZs4cPfOADxGLGfB8bziBKJBLceuutPPjgg/z2t7/l/655YNb3mm3+0EIaQpOMIrNZctB5Gk6/+TSE5toYAmj2lbPxgIt4Yn7c13qFyLVd4jnpv2fmQkWd+qbhckO1bsN4hgAkRaL23UW4cox5GiUQmAVXjp3adxchKeYINZIVicqL88mqn/vqtKlIIpJk2z2H6XilX28pC8bQ4TGa/95JeMAc0QvP/es2HnroIf7yl79w6aWXEgwaL4LBUCFzyWSSD37wg/zmN7/hN7/5DT+57ncL+vz5Co2Dk+QKTSCrKj6SDEoKh5jdScV8GUIw914h0ELl5MuXEwlKhCJz/4JNrRC54xxrleg5xkmbsRrJEJrElmHBlWOOkr2TFJ2ZTVa9lx33NustRTCPLL29kv69w6baQLpyHNgyLESGjHm6PJ1kXGXLjw4RDyX0lrJgTBoG7gIHkcEY8bCx//ZkXKV7yyAA7jwHwb6I4Uuuf//q+7nn3nv44Ac/yEUXXcTzzz9vqEILhvEQJZNJPvzhD3Pfffdx33338dMb/rCgz5+JMTSTCnNv5RUCaCDKheo41llWT083rxBA7o1LWFEfQZbnfvGZiTE0k2tnEyI3HbtT+1vjsdM3hmYSNqdnSe3IUIxt9xwm2BvRTcNCM9YZom/PG8vHC4xF/95hxrrCestYMIK9Ebbdc9gUxtAkk8aQWcLmAGSrxOKbyilcl6W3lAVDscssubWCoiZz/M2/vv0xvvWtb7FhwwZuvfVWEgnjGL6GMO1UVeWzn/0sP//5z/nlL3/Jz2/804I9Ww+v0HT2YqNbUojNoJQ4pJ9XCI6X0j5yTKV3UDmpp+R0SI0qcm/E5lBZdZbKgZ3Q13Xi32xEzxAAEtgzrERGzLOBAhhuGWe4xWT5FibETJ6h6di9ViKjMcP3cJkke7GP2ncXsel7B4maYC1LxlR2/fIIwV7zGPuJSJLdvz7CWKd5/ua/f3EDv3ngN9xwww20t7fz9NNPoyiK3rJOG0N4iP7zP/+T733ve/zgBz/gV7c8vCDPnK88IXh7rxBAQE3gUZMkJYk+aWZ2bTp6hSKXrkGSVBy2JKoqMRY89an7dqW4+z/YlHLG0PQ8omgY9m+XGOg9/v+Nli/0erwlLtZ8tg53nrlC5nwVbhSHIZZlwVugOGR8FfP3+01F3HkO1ny2Dm+xccv2vp6B/aPs/8NRoqPGN4YmGe8OoyY1z5gkmyNnbLQ9hJpQcQRsuPPN8c665/rf84lPfILnn3+eL3/5y3rLmRPS/s37k5/8hH/5l3/ha1/7Gn+845kFeaaehtAkK9Uwq9WZnUikUwW5qfteumbKoCnOTbBuSQSLMnfjn6r5Qici0d8jkZwoHjEXhtBbhc3pbQwBjHeF2fv7Nsa7zXPqZvNYWHJzBb5Sc22UzYivzM2SmyuwegwRpHFKjHeb7zedjCXp3zdqGo/YJIpDZsXHqilYk6m3lAWl8tICKi7O11vGgrHvB1184xvf4L/+67/4n//5H73lnDaSqs4y+SQFeOihh7j22mv5xCc+wd7vdyLNMGzs7Xh9lbm5MoROlkN0qobQJFZVRUElLL3Rpi3795ff8G9zZQi9vjnrXBlC9r++9oZ/e71nR5ZVAhlJ+odn7pq1P/7G+8+VMZT1sxPHZK4ModK/jVFYpuJ0qxzeIwHSnHqFele9cR6mgjFkWiRw+G3ExuMkosbu5TGdhutLAdj7QJvOShYOxSZjdVsID0VNt1k2I1WXFxLqi3Bsg3lCJQM1HoaPjJOMmWeCWz0WkrEkiYh51m+A+jvy+f73v8/nP/95vv3tb+stZ9akrYfomWee4f3vfz/XXHMN+37UNWUMKTYZJuwiST6xY7RslU7oMPxW1zZ/dy3KpK2oqpQ/nUSaeHNJqCjy8X4wsqQiS5M/eu3/veW104oB9K2x0LNGOyWUVBWLqsLEc2VVPa4BsKgqZckodjVJHIgjvem1slVGUqQJr9AZWKRpGlBRpOPXKqjIHNf/VtfKVmmqdGrkstUn/q3S5N86ca18knGR3uRay/HvJnLpauKXrz7hWpslSTIJ/cPKG8bw5Pc9+XgrNpmBD55B/webkN7mb1WkmYyLNt5tXz1z6nuUpn03lmnfjaKqyNPm1ptd23aJh2RSJR4HzRhyoUivm1vTNbx+Hp702uPjMn1+139hI7Wf1YwhSebE343ljb+bqVAI6STXWk/tWkk58drJMXRm2ai8pAC7z3r896lIyFb5DdeecN83vVY6odzvXK0RJx+XyWtPZQxfd60K4cEoalI95fF+szGc9bWnMoZzOd4WiennWCeOy1yPtzTja09/DE9+bSKWJDYef919T3EMlTfO2ZmM95zO2be89o1jaHEqVF1WgCvP/rbXvt0Yvv08TJ01Ih5KkIgkFny8T3kMZ3LtKa4RI61BknFV03aaa8Sbj0tqrRGxsTjJuIrdZyGrwXuKYzgH4/36MVzgNWLv9zs588wz+c53vsOjjz5KupKWBtGOHTt497vfzfr16yn0llD5zgJAi1ltuqsRX5l2il64LpM1n62b+tziG8upuqwQAKtboemuRjJrMgDIW+Fn3Rcbpq69YDTM2WMRSp5UKX9GZf3yELkBrZpGfmaC9ctDUy/yxRVRllQer4S1fnmIgizt2hy/dq1lwqnRUBZlebVWnrJrrZX3qqNUo8UX55PgOnUU58SmdbUa5kL1eIL1Veoo6whTTYyciWsz0E4iVqgRLpl27fIvLSLrsysA8FuSXJkzhs+iXVvvjnJB5vFr12cGafRo+j2Kdm2mVdNf7Ypycdbxa5fcWknZR5YSuWwNdpvKeavCBLzafYtzE5y1/Hg4xPKaKPXl2t9mUeC8VWGyfNq1BVkJzlt1/NraO5ZQe3UxkUvXIEtw3uowuZmahsqiGGevjOCya59dVBVlafXx2v/nrgpTkK1dm+VLct7qMNaJSJT6ihjLa49fu+ZLjVR4NE3Z9gSXF43hnAjBW+yPcFbO8dr6F+aPU52hfTZgS3J50RieiTFs8EU4N/f4tSs/Xo3/X7Tx9pHkWkYJTHw3i4hwOWNT176TcZajjXfGxLU5aPrriHLVtGtzC0HNtjJU68auqFxaPka2U7u2LCPGxaXHr12bF2JZtjamFhkuLR8j36Vtuoo8cS4tP37tqtwQF7drGmr/aQNNdzWSs8SvjWGDl6a7GqcWvpqrimi4vmzqs+u+WE/eyoA2LtUZNN3ViNWtDXjVZYUsvqni+Hh/to7CdVrYhK/MTdNdjVNVlyouzmfp7ZXHNX2yhuKzsrH7rGTWZrDmzrqpHkSl5+Wy4qNVU9eu+GgVZetzAXBl22m6q5GMQicAxe/IZtWnaqauXXp75VQYw1yuEQ3Xl1FzVTGgvcia7mokq8EHQM5iP013NU69NOveW0L9NSVTn226q5Hcpdp4Z9Zp412wNpPCM7KovrKIxvcfH++1n68nf7U23v5KD013NWLLmBjvSwtYcvO08b6zlqIztGpH3hIXTXc1TjUOLL8wj2UfOj6GKz9RTcnZOQC48x003dWIO1eLfy89N4eVH6+eunb5h6sovyAPAGemTRvviVyQoqZsVn+6duraJbdWUnnJxJrs1cbbX6HlxBWsyWTt546P96IPlE/liVmc2ngHJsY7d7k2hpPUX1tK7dXaeEuKRNNdjWQv0sY7u9FH012NUy/y2quLabiudOqzZ/xzA7nLtfEO1Ghz1uLUFuWqywtZdGP58TH8p7qpUB9/xcSc9WlztvKSfJbeenzOrv50DUVnZgOQUeSk6a5GnFnanC07P4/lHzk+his/Xk3pudqcdedq4116nvbfJWfnsPKO49cu+2AV5Rdq4+2YGG9vqTbehWdksfozx8d78c0VVF2mjbfNY9HGsEob7/xVAdZ9oX7q2sb3l1H9riJAq47VdFcjmXXaxi1n6evG+30l1L1Xm7OSzJysEYlokpzFfurec/y3MJs1AsBTqI13OqwRrc9007t75LTXCMWujXe6rBFZDV5Wf6aWqssLT2uNqL5CG++0WSNur6Ly0gJkq3Taa4RnIicpldcISZJwvppPVVUV73vf+/jzn/9MOpJ2IXNdXV2sXbuW7OxsfFvLyK7yEwvGGe8KI1tlMms8DLeOExtP4Myy4cqxazG8aAnLiUiSsWMhJEUiqy6DkbYg0bG4lgxX4KB/zwgAjhtWoaowPK4goZLjTzA8LhOJyThsSbyuJD1DCiDhcyeQgKFxBVDJ9ScYCcqEozJ2axKfO0nvsIKqSnhdCUYaFLonCiGUqDGGkBmVFBxqklwSdGAhIUlkqglsqHRNXFusxoio0CdZsKGSR4JjWIhLEgE1gQOVTsmCq0sl3xZnPCExmlCwSiq5tjg9UQsxVcKrJHAqKt1R7b55tjjhpMRwXMEiqeTZ4vRGFaKqTIaSwKMk6YxqP/bywQixuMRoUEaWVbJ9CYZGFaJxCac9icelVYADCGQkSCQlRsZlJGliDMcUIjEJh31iDAc1DX5PQhvvsYkxzEwwMqaNYYYrQUl+nL3NVlRkfJ4EkgRDo9pzcjPjjI7LhCIydquKLyNB7+DEeLuTKLLK8IDESJmNAkeMkbjCeFzGLifJsifoDltIqBI+awKbrNIb0TTlO+KMxyVG4wo2OUm2PUFP2EJclfBaEzgUlZ6whfESiUI1RhCZIUnBqqoUEKcLC1FJwqcmcJPkmKSNYYEaJ4zEoKRgUVUKidONQkSS8aoJvCRpx0INMaQuCCVkhqOaZyzPFWcgrBBJyLgtSby2BJ1B7b5ZjjgJVWIoos3ZfHecwbBCOCHjtCTx2xN0jlsAiUx7HBVQ79FCCbMbvYx2hIgMx7B7rWQUO+nfN4KahIxiJ5IiMdKqGYBZDV7Gu8KEB6PYPBa8pS4GDoySjKt4Cp0odnmqUlpWfQbB3gih/ihWl4Kv3M3AwTGSsSTufAdWl4WhZs1Qy6zNIDwYJdgbweJU8Fe4GTw8RiKSxJVrx+61MnhIuzZQ7SE6Gme8O4xilwlUeRhqGSceSuDKseMI2Bg4oP3u/ZWeeVkjvGUu1ITKaHsISYasei+j7SEiIzHsPisZRU769o6Aqm08kGCkLXh8vI+FiAzFsGVY8Ja4cOdrY9e7YwjZKjN8ZPz4eHeHCQ9EsXos+KaPd4EDxaFMjXdmXQah/iihvggWl4K/3M3goTES0YnxdlsYOjwxhjUZRIYmxtuh4K90M9g8RiI8Md4+K4MHTzLeNplA9fHxdmbbcWbZGNg/Od5u4qEEY51hZKtEZk0Gw61BYuNxHJk23LkO+vdpY+grd1N6Xi7xcIJ9vz+qjffRINHROHa/lYxCJ32T413qQlVh9GgQJMhumDZnXzfeGcVOJFk6YbzHOifm7MR49+8fRU2oeIqcKNPHu97LeM/EeLst+MpcDBwcJRlTcRc4sDoVhprHp+ZsaGBivCfn7OR452l9d6bmbI2HyHCMYE8ExSFT/94SxnsiHHmyC1eOHbvfxuDBiTGs8hAb1+bs5HgPHxknFtTmrDPbPjXe0+esbJHIrM1guC1IbGxivPMc9O+dGO8yN8l4ktGOEJIskVWfwUh7iOhI7KTjjQojR6fNWbFGzHqNsLoVys7P4+jzvbNeI/r3jaImVTKKnGmzRuStCDByNIjVpcx6jUjEkox1TBvvVF8jXArjXRFi4/HTWiMClR6GmseJhxNpsUb4611sCr1Af38/mzdvpqbm+KFDOpBWBlEwGOS8886jo6ODjRs3cmvJnfP2rPCVa+flvo5HNtL6tRnmmKgq1cRowUriLfKkqu5pBaDzytI3vWa2BPZrnpLEPFTAUifd1CdtaqYy5dudJXJM89SMlM2uce1bkftCNwAtH5jbRMoMNcFlsVH2PtDKkbOWzum9J/H/6pW3v2iBkRQJWZFMlUNjdsyYQ2R2FJtMMqEavpHldPyVbhquL2Prjw4RHoy+/QcEaY9slchd6qdr86DeUhaM7+z8KhdeeCF5eXn84x//wOPxvP2HUoS0CZlLJpPccsst7N69m+JjDfNqDM0Hjkc24nhk46w+m0GSVWqYfOIn/f9V97ROGUPzwaQxNB+ob1GW02pRWbMoQoZ79pvjSWNoPpg0huaDwNc28Nr/7J86iZ5rUtEYAu2Ucd0X601VfUsgMBM2j4V1X6wnUJ0+G6W5YKh5nNf+Z78pjSFPgYPlH66aCkEzC/4KDxUXF0yFJJqBO5d8lfKuJTQ3N3PBBRcQiaRPY/W02XX8y7/8Cw899BBL1DPwSgG95ZwyszWCpjMqKfwZD5HXVZSbTyMI9DOEJpFllVBYJhyZuYcoXQ2h0q++jGyRSEoQD899B+hUNYQmGesIceiRY8TGTm78GxW738qqO2rYdd+RqRAOgbHxlrpYfFM5m79/kMiwefrURMfiHHrkGKMdIb2lLDjxcAIkkBWJZNw83rHIcIzQQFQrChCa+/daqjJwYJRN391PLGievxnAI/lY4T+DF197ihtvvJHf//73eks6JdLCQ/SrX/2Kb3zjG1Sri8mVivSWc8qctjGkqlSqUSRVnZExVPDI6YeevJkxpIRP39B4M2NIVU7890hUZtdhG7H4qRtEciz5psaQt/X0Dbw3M4Yqft112vcu/apWLr2wKZuVn6iZihScKyMm1Y0h0DZLPduH9Jax4CQiSVqe7CLUnz6naYLTI9QfoeXJLlOGh/ZsHzLdoQcAEqy6o4bCM7L1VrKgxIIJ9j90lOiIeQz/SWLBBJIMucv8ektZUGztPpZlruUPf/gDP/7xj/WWc0qkvEG0detWPvrRj1JAOaXUvv0HUoC3C487WZ+gk5FJknVqmGyOny7Md3gc6O8ZAigviOHzzOxUZT69QjD/nqFJBvaP0P5i75z2J0kHY8jut1Jyds5UJSUzEQ8l6Nw4QGzcXCeJZiY2rn3ncROdmE+i2GVKzs6ZqiZnGlQ4+kIvAwdG9FaiCxklLoonqtaZiYxiF9VXFuGZqHJoFrIHSiimik9+8pPce++9est5W1J659Hf38973vMerGEn9ayY88arb8VsvTtzESI3yYCk8BfJQ+9ElbmFMITmyxhSZemUjSFJUskOJHA7T80ieCuv0FxxKsbQbL1E040hgGBPhJ4dQyf822wNGv+vXkkLYwjAleOgcF0W6kkaFxsdT6GTjGJzvSwFWqUrs22SANSkSuG6LFw5Dr2lLDg9O4YI9pjTE+zOtZNVm3FCTxwzMNIWZPP3DjB2zHxhorUsIz8vn8997nP09PToLectSdkcokQiwQc+8AFGRkZYyhkoUmon482lIYSqUkycdiwEJXneDSFIDa/Q1PWqxKY99re/kJl7hbyt0RlVm1sor9DUv52by8jR4FSZ2dMhXQyhSQYPjrLhv/fpLUMXis7MxupU2HXfEb2lCBaQsvV5U+FEZiIZU037WwetzHdGiZOjz/fqLWVB6doyaKqKa9OJTIQLZtZlTJXDNgOyJFM9sJw9GRu57rrrePLJJ7FYUtP0SFkP0de+9jWeeOIJygYacUpuveW8JXNqDAG5JDhXDZFFIiW9QqeaRzQTr9Akbo+Ky5FES6B568+mgldotpzMGELSEq3frCLNTAycdDOGgNOtrp7WHPhjO/tMtikWwL6HjnLgT+16y9APk/7mHZk2fKVu8/39E85/Z5YNV+6pHXoaCU+Rk8bry/CWufSWsqBYwg5Kehp48cUXueqqq/SW86akpEH06KOP8vWvf51KtZEsaW77u8wlp1NK+63okSxsf2gY/0875vze00klr9AkFfkxFlVGeasEmlQJkTsZpxI2d1JjCECFXfcdoWvTwKyeDekVIjcdV66dM77QYMqXJGghRHGTVSISQDyYMGWIKJj7N9+1aUDzBpvzq6f26mJKzs7VW8aCM9YRYvMPDk41MDYTASmHpqVn8de//pUHHnhAbzknJeUMovb2dm655RayKaCcer3lvCnzYQgBBFTNKxQaOr0N/1tVmpvPXCGYvTEEsOuIjZ2HbLzZ0dlcGEJvVW0u94XuhfcMTeDMOr1eBeloCE0SDyfpeLWP8ID5enQodpn6a0tw55kvn8LsuPMc1F9bYspCIuGBKB2v9pmyqMQkp7vmpyv7/nCUA382p2c01Kflj7nzzbfe27dmkycV89GPfpQjR47oLecNpNQqnEgkuPnmm3E6nTSyekGLKJwqc+UVOlmluUw1wWXqON6C+YuvnG9D6HSMIUVWUVWJUOLk+WKp6hV6PW/mJXorY8hd4GDVJ2vf1pX+ZkZPOhtDANGRGEdf6DVVb45JFJuMYpVRVfP97WZHVVUUq4xiS6lX8YKQjKscfaGX6KgJy28D3jIXqz5Zi7vAfBvjyFAMNaGact4D+CrcrPhotekKqkiSRIO6ioyMDNavX08wmFqespSajd/+9rd57rnnyOuowialnht9vrxCoFWQC/y0nb1/G2Wkc35eEHNpDL0+j+h0DCEAryvB2UtDeJxvNHrmI0Tu9V6i+fYKvZUxBBDsjrDnt62zasqZ7sYQEuStCGB1pXbhlPkiOhpn969bTVt5yswEeyLs/nWraY0Cq0shb0XAfLk0aJXH9vy2lWC3OX/37jwHaz9Xh8eEBuFwyzi77jtiyqpzFslKo3slbW1t/Mu//Iveck4gZQyijRs38q//+q+UqbVkSqkVWzpfuUKTVN3TimLT3gjDHXP/YkzlELlJQhGZlk4rY6ET7zXfXiHQoXjCSVCTKgMHRk8ppny6AZT2xhDgCNiovqLQlCV4AdOVoBW8EbPOAVeOg+orCnEETBg6psLAgVHT5pCN94Rpe76X8JD5mrUCU5VkLQ7zHQSqB+2UJ+v57ne/y4svvqi3nCkkNQXiNEZHR1mxYgW9hwdYzXpkKWXstHnFUlwEgNUpsey9XlpeDtLfPLeLQ7h2/opSxOf5RF8Jz29suaN1fst/Jg42n9J1vjI3ucv8HP7rMVOGjIEWNpaMJ1Hn3/5NOcouyCOr3suWHxzUW4ouNFxfCsDeB94879HIrLyjhv59I7Q+PX8HM6mKJINskUlETfjDB2SrRNWlhfRsH2K4dVxvOYIFJnuRj+orCtn8/YPExs3lJVZVlW22F0m4omzZsoWKigq9JaWGh+izn/0s3d3dLGadaYyh6cTCKkc3hRhqn7sfRLy9g3j7/FWpszyzGcejc+M1qyqMUpB5/G93PLpxzu79Zlif2nzKBstsmMm9FYeM1WMxrTEEkIia0xgC6N8zTOsz5tsMCzRan+mmf8+w3jJ0QU1iWmMItH5MVo8FxWG+fc8kuUv9lJ2fWlFBC8XQ4TGOPN1NLGguYwi0fKJVgbMIh8N86lOf0lsOkAIG0ZNPPsnPfvYzisdqcUkeveUsKFMGiwrd+6IkonOzIZ5PQwg0Y2juULFbVSyK9rdPN4SsT83lc44zX/cFzRCaqaE1sH+UPb+Z/+a7qUrj+8vIWeLTW4ZujHWG6d87orcMgU707x1hrDOstwzdyFnio/GGMr1l6Mae37SaqlHn67E4FWweq94ydCEeTmhtNkx6FprskakKL+Gxxx7j4Ycf1luOvgbR6OgoH/7wh8kklyL0d5fpQf0lHnLr5i5++vXG0FwaL5ZnNs+xMQQgsafVztFe67x7heCNxtBceolmcy+7z2raYgIASBAeihIzcQ+e7EXeN23GKzA+jkwb2Yu8esvQjVgwQXgoasrCCpNYXQp2nzmNgmMb+jn48Pwe4qY6+asCLLqxXG8ZupBPKbnWQm666SZaWlp01aKrQfTP//zP9Pb20sCqlCyxPd9IMoz1xgmPnl7IwGR43HyHyJ2M0zFiZEkly5sA1AUJkZtvz9BsKD0vl8U3m/MwAAAVmv/aydDhMb2V6Ebtu4sJVJnLOy44TqDKQ+27i/WWoRtDh8dofrzTtKfkAItvqaD0PHOGjU0SqPEgW8y3DwQIDUQZ7QhiwowRJElieeY6IpEIn/nMZ/TVoldRheeff57zzjuPWpZTKlXrISFlmCyuMBtOxQiKn79q1veHt/cyha9YO6v75vrjLKmMsOl7B4i8RaWZ2IWnp/9UDCGlpnLW9z8dL5Nl4mRw3KQhM45MG/FQwtTNGSVZQpIxbQ6Z2YsqyBYJNYlpq42BFjZlcSqmbMwMWh+6yFDMtOug3W9l9adr2ff7oyJ82KR00MJedTN/+9vfeOc736mLBl0MolAoxJIlS+g7PMRqzjOldyizLgO710rnawOzMohm6g2ajVE0k/C42RhFjkc34syyEep/65fg6RhEp+oVmq1BNJ+FGczA4pvLiYcT7PvdUb2lCHTC7AaRABquLUVxyOz61RG9pQh04lT2AkanYG0mkeGYKXPKVFVlm/IPVF+M3bt3k58/fxWS3wxdHHTf+ta3aGtro5HVpjSGADyFTnwV7ll9dr6LJsBcF054I47HtBC5U1kAZxPqNtMQuZkaNrMpnvB6it6RTVFT1mndI905+HCHKcsNT+Ird1N/bYlpQ0UEmoeo/toSfGWzex8YgSNPd5k+j6SoKYuiM7P1lqEbU3sBEy+F/nIPnkKn3jJ0QZIkVuWdycjICF/4whd00WBZ6Ac2NzfzzW9+k6JYJW4pY6EfnzK0Pdsz9cOPt3ecspdotsaQ5ZnNp+wlmk9jaDJXqOZdRahJlUOPHpvT+89nntAkc+UVsthlVHNGSEzxVqGSpkDS+rCYNVxOoIVKyhY5BWq+6ofZPQMAil0xZQ7JdKqvLESSJNMax3t/32bqXLpkp0K5UseDDz7IV77yFerr6xf0+QseMnfVVVfx94ef5EzeiSItuD2mO5IM/ioPgwdPTCJ/O4NoLrxCb2cQna4h9HZhc9MLJ2Qv9iFJ0Lvz1PtvvF3o3FwYQ28XOidC5OYOb6mLQE2G1oPHxC8BsyNC5gRIUHZ+HoMHRxlpC+qtRqATOUt8qCr07TJnX65JAjUehg6PmbI3X0JN8CpPULe8hk2bNqEoC1eFd0HPI/7617/y8MMPU8syUxpDAIHqDBa9vxxntv2UP2OIELnXVZHr2zU8I2Po7UgnzxBoSaRmD5NyBGz4y92mNobMPgcExzH1XFDBX+7GETB3+XnZImH3m7P8NmgHpGY3hpzZdha9vxx/lTkjqBRJoan+bLZt28b3vve9BX32gnmIIpEIixcvZuDQCCs427S5QwCuHDvB3sgb/v1kXqK5NoZO5iWaS2PoZF6i1xtDxWdl07treFbhUifzEs21MfR6L9F8eIWWfrCSyFCU/Q+1z/m9BelD4/WlqCrsfdC83hHhIYKG60pBMvcYCKDuvcXYfTZ23GveSAS730rOYh/t/+jTW4puvNke0Uzssr+CLVdh7969uFyuBXnmgrlp7r77blpaWljDBaY1hmSrRDKmntJEN6JXCMCWYaHojGzGOsOnnT+Sbl6h6Rz8S4fp48WRMLV3CKDj1X69JQhSgGMbxDwATL8mHH2x15RhUtNxZtkpPCObnu1DREfjesvRhck94uSe0YxUhpewqesZvvzlL/Od73xnQZ65IB6ioaEhKisrcQ0GaJBWzvfjUpblH6li4MAobc/1vOk1luKieTeG4uevmldjKHzF2rdstCrJoKrM+sUXu3DVvBtDSk2lyBeaR2xeK6s+WcPu+4+InAGTIzxEAgBvmYtFHyhn890HTLsRFgASSBKmNwxLz8slszaDbT85rLcU3eirbWZPyy727t1LZeXse0WeKgtyRv1f//VfRCIRKmlYiMelJhJ0vNLHwMG3ri9vVM8QoFXUsmpNCE/nFDCdPUOg9RrIXeaft/unA8lYktZnugn1mTssIHe5H7vPvDkDAg27z0rucr/eMnQl1Buh9Zlu01dczF3mp2Btpt4y9EPVjCHZKpm6BPfAwVE6Xukz9Rjk9pRjtVq5++67F+R5824QHTt2jO985zvkBkuxS+asrw6AqiUMjnWE9FaiG/5KD+s+X2/6DaAr1zGjohpGJB5KcOzVfmJB89YdVxwytVcVm7bvhOA4niIntVcVo9jNG0cbC2prQjxk3jUBtPwRV65Dbxm6YvdZWff5evwVHr2l6MZYR0grPGXi84HkkEz+eDk//OEPOXjw4Lw/b95D5j72sY/x+9//nqUDZ2ORzLkRtvutFDVl0/ZsD/GweRd7W4aFrAYvnRsH9JYi0BlfhZt4MMF4d1hvKboiydrxn5o071tPhMyJeTCJO8+BxaUw3DKutxSBzhSszaR/74ipwyctToXS83LpeKXPtD37Emqczd5nqKurY+PGN0/FmAvm9Tjq0KFD/PSnPyVroNi0xhBoSYK+cjfJuLmDYqOjcdMbQ2Y+AZ5OxUX55K8xcVjIBGpSNf0mWCDmwSQFazKpuDBfbxkpgdnfFZ0bB0xtDIEWWu4rd+PMMm9EiSJZWFK0gk2bNrFr1655fda8/uK++c1voiSsFFM1n49JeYYOj7H1R4dMHRvtLXVR1JSltwzdqb6iiMb3l+ktQ3e2/6yZI0916S1DV3wVbhquLZ3yDgjMiyRLNFxbiq/CrbcUXTnyVDfbTVxyepJFHyij+oq3btZueCQoasrCW7owJZdTkWRcZeuPDjF0eExvKbpi35uFXXXyjW98Y16fM28G0dGjR/nVr35FGTUo0sJ1mk01nNl2FJu5T3oAPIVOshf59JahO50b+7VESZOjJlQSYXN7TCVpouKi8AyYHjWpIsnanDAz8XACNSF+D+0v99G50eSl2FXIXuQTOZZo3kJnlnmbFsuSTKWzgd/+9rc8/fTT8/acecshuvPOO/nVr37FssFzTB0ut/T2SmJjcfb+zrzx8QLBdHxlbgrWZnLgT+2m9poKNEQOkWAS2SpR++5iOjcOMNwq8ogEAtAaN1vdFlM37FWtSV61/p3169fzyCOPzMsz5qUxa29vLz/5yU/ID5Wb2hgC2Pf7NhS7eT1kALJVJhkztzcAIKPYiSvbTve2Ib2l6IqkgKxIpjeGZIsYA8GJmH1OJGMqsiJh4qCSKfKW+wn2RRhtN29l2knMvoc48nQ3iYh5C3IBSDGZgmgFTzzxBB0dHRQVzX1I6bzEcn33u99FlmVKqJ6P26cV0dG46XutlF+Yx9Lb57+pVqrjr/BQ2JSttwzdGWoeZ4/wBlB9ZRFLbqnQW4YgRVhyS4XIGwH2PNDGULPwDhU2ZZu67PQkS2+vpPzCPL1l6EqoL2L6AhMAxVThdDr54he/OC/3n/OQuWAwSHFxMRmD2dRKy+by1mmFJEssvrmctmd7TO/69xQ5sWdY6N/31k1pzYCWM6K3Cn2xOBXT9xoB8Ja4kK0yQ83mTpgVIXMa/ioPyWiSkaNBvaXojlgjxLtikqz6DCKjcVP3cATwlbspPS+XXb86Yuq809GlHWzdu5mOjg6ys+f2gHnOPUS//e1vGRoaMn1lOYtTITIcIzourPqxjpAwhiYQLzhYeUcNxWfn6C1Dd0aOBk1vDAmOM3R4TBhDQPHZOaz8RI3eMnRHvCs0+veNmt4YAoiOxYkMx7A4zV2kK+NoHolEggceeGDO7z2nI6uqKj/4wQ/IUvNwSeZ29cbG4xz4U7vpw+UC1R5RXQ6txPLKT1RjdYng+EOPdNC/d0RvGbqT1eDFmW3e/hKCE3Fm28lq8OotQ3f6945w6NEOvWXojtWlsPIT1aYvxQ5atblAtbn3lKG+CAf+1E5s3NyeUwYtZCXy+eEPf0giMbdjMacG0auvvsrWrVtN7x2SLRL+Kg+SuQ15AAI1GeQu8+stQ3fiwQSDh8eIBU2+mAED+0dNf1AAUH1lIZm1GXrLEKQImXUZVF9ZqLcM3Qn1RRjYLyIKYpPvDBFlQt5yP4EasVZKshZaK1vMXZ+/0lvP3r17ufvuu+f0vnOaQ3TjjTfyx1//mTO5BMnEDRUyazNovKGMTd87QHgwqrcc3RGx0IJJXDl2MoqcdG8fAvOGQQPa7wJJMn3fFZFDpCEpEqiqWCslyFvmZ7QjRLBXHJwIxB5iEkfAxupP17Lnt60MHDDvoYGqqmzzP8+K1ct58skn5+y+c+bD6O3t5fe//z3FVJnaGAIYODDK5h8cFMbQxDQQC5mWEKk4hMvQV+6m4uIC0xtDoP0uzG4MCY6jJoQxBIAKFe8swFcuQsUUh4yvTIzD1O/C3FtLwoNRNv/goKmNIQBJksgeKuHZZ5+lo2PuwmvnbIf24IMPkkwmKaBsrm6Z1oiQICi/II9FN5brLUN3FLvMklsqyKwV+QGdrw2w4b/36i1Dd+xeKw3XleLING/3ccGJODJtNFxXit1r7t59ABu+vZfO1wb0lqE7WbVeltxagWITh2mLbiyn/AJzl98GsbecpIBSFEXha1/72pzdc85+Zffffz/+eA42ydxJwoEaD4tuLEe2mvwoA63fTN/uYb1l6E4ikuS17+5nYL8oJADCYwhaeJTIMRS8HklmnroDphdijdDo3z/Ca9/dTyIqBqRv97DoT4XWpHbRjeWmLzJhkaxUlVfx6KOPztk952TpPXDgABs2bBDeIbRO25GRGMmYCIUZah6je+ug3jJSgshQjEREvNTqrykRRTbQQh/2/LaN8IDJw2oFU4QHtDkRGYrpLUV3cpf7qb+mRG8ZupOIJMV8mKB766BoUwAkY0miIzGScbHHdDRn0dnZyY4dO+bkfnNiEP3617/G6/WSTcFc3C6tGT4yzqGHRclQR8BGoMZj+phfgMJ1WRSszdRbRkoQHY0TD4tKe+J3IXhTxNwgHkoQHRXV1QAK1mZSuC5Lbxn6I2kROI6ACDM++HAHw0eEtywQzyU7O5t77713Tu532gaRqqrcf//9eEYyUSRz91ixZVhw5zn0lpESZNVnUPceccIHYPNasGWIvACA5r91ipK6QO5SP+/4t0UibE4whSRLnPXvi8ld4tdbiu4M7B+l+W+destICexeK7YMi94yUoK695aQVS/KbwO48xymnxeyJFMYKObee+8lFjt9T+ppv443b95Mc3Mz+ZSetph0J3d5gCW3VSDJ4oiv45V+Nn//oKgmBhx5spvWp7v1lqE7skXC6jb3ockkI0eDHHrkmMiVEEyhJlUOPtzBSHtQbykpgdWtmL7fCsCRp7o58pR4f6DC5rsP0vFKv95KdEeSJZbcVkHu8oDeUnQnJ1bE6OgoL7zwwmnf67QNoocffphAIICf7NMWk+50vNzHjp81oyaFFQCIhnKghb+Idzqgldxe9/kG059qgZYvIvLrBK+ne+ugyCsDbF4r6z7fIEpvTyLeI4DYU0yiJlV2/KyZjpf79JaiP0cc5Ofn8/jjj5/2rebEILr88suRRewHakIVjeQAu9/K4pvKRUlhNCPgzC83YveJkLmxYyH2PNBKdEy81Nz5DvyVYrMnOBF/pRt3vgi7jo7G2PNAK2PHQnpL0R27z8qZX24U/YgAZ5aNxTeVY/eL92mwNyL62KH1JDrnnHO4//77SSROLz/5tKyY1tZWtm/fzvb7D56WCCOQUeSk9j3FKHZhGMoWmXg4QUIkzxPuj9LyZBeREVEpKBZMaPlDYg0nf2WA8gvz9ZYhSDHKL8wnb6UIg0HV8ohiQfEOiYzEaHmyS3gO0YptxMMJZEW4yxS7TO17ivEUOfWWojsDe0bp7u7mlVdeOa37nFbsyiOPPILVaiUrJl7ssk3G5raI0spojcP2/f6o3jJSgshIjM6NosEgQGZdhrbRMXmXbYDmv3WJXmWCN7Dzly2iZcMEmbVa8rzp1wsV8Q6ZIBZMiL3FBIlIEpvbIpr2Aok9DpxOJy+//DJnnXXWrO8jqao669X3ne98J6qqoj7lm7UAgfGw+61ER+IilwoIVHuIjsUZ7wrrLUV36t5TjGSR2Pc78UITHKfheq0gz94H2nRWIkglGq4tJRFPcuCP7XpL0R13vgObx8LgIdGHR5IlbF6L6M8kOAH3u2L09vby0ksvzfoeszYtI5EIL774IkeeFNVPkMDmEYnikyz7UBUl5+ToLSMlqLg4XzQinWD/H9uFMTRB6fpc8leJ0CjBieSvClC6PldvGSnB3t+1CWNogtxlfsovEpE4ACXn5LDsQ1V6y0gZbB6LKLgB9OwZ4NVXX+XYsWOzvsesDaLXXnuNUChEALHxdeXYWfu5ejKKRSwnwL4H2+jeJipoAWz9v0O0PdujtwxBimGxyyLUQfAGFJuMReShCl5H27M9bPvxIb1lpATd2wbZ96DwJgNklLhY+7l6XDl2vaXojms0QDKZZMOGDbO+x6xX3ueffx6v10sG/lk/3ChEhmPsfbBNhEVNMHI0KNzZE6hJSERFXhnAklsrRFO9CZr/1iX6aQjeQMcr/TT/rUtvGSlBVn0GS26t0FtGSpCIJkXPsgkiQzFGjopeXQDjXSH2PthGZFjst+iykpuby6ZNm2Z9i1kbRM899xxnn302kiR8dYlIkv59IyTjImfGW+qiYG2m3jJSAneeg4brSrG6RTglEoT6I8RD4q0uEAjenngoSag/IsKBAKvHQsN1pbjzREl2gIK1mXhLXXrL0J1kTKV/34go5oVWfnv16tX86U9/mvU9ZmUQRaNRXn75ZQ48JtyWAIVnZInShxNkFLvIE92TAZAUCUmRSMbEYoUKhx45xnDruN5KUoI1d9ZRfLYINxacSMnZOay+s1ZvGSnBcOs4hx45Jsr0A8locup9IoC85QEyioVBBOApclJ4RpbeMlKC0Y4g+/fvp7e3d1afn9XR9bZt2wgGg/hF/hAABaszURMqYx2iiVzHy32ie/IEY8dC7PlNq94yUgLZIqE4FGKiKSsArc90E+wVIbaCExk8NCrCX6Zh9VhIhBOmj75IRJPiXTKNbT85rLeElCGj0EnB6kyOvSpCsJP7bCSTSXbt2sX69etn/PlZeYi2bNmCxWLBgyi3DbD5+wfpfE30CRCciGyVRLjHBN4yN+s+V4/NKzqMA/TsGGKsUxhEghMZ6wzTs2NIbxkpgd1rZd3n6vGWufWWkhpIiN5lgjfQ+doAm79/UG8ZKYE94sHpdLJ169ZZfX5WBtHWrVtpbGxEkZRZPVRgTCQZVn2qZqqhntmpeVcxiz5QrreMlGC8M8Tu37QKD9EEmXUZ2DJEbpngRGwZFq2BsYDoWJzdv2llvFNEXgAsvrGcmncV6S0jJciszWDVp2rEgaPgBGRJpqCggN/97nez+/xsPrRlyxZ6dwzP6oFGo/CMLBbfVK63jJRAUiT69oyIkI8JOjf20/7S7GJZjUYsmGDw4Kho1ov2O2m8vgxfuTj5FpyIr8JD4/VlIlcEUJMqgwdHiQUTektJCY7+o5fOjSISBbTKvn17RpAt4ncCsPimcpFHNIETNx0dHbP6rKSq6ox2KLFYjIyMDMoi9ZRKNbN6qJEIVHtw5zto/4fImxEI3gxPkRNXjp2ebUN6S0kJLC6FZDRp+twIgIbrSwHY+4Ao0iNbJGSbTFwYAQDkLfcz3hNh7JjwEgkEb0bxWdmMd4UZPDSmtxTd6VCb2S9vY3R0FJdrZoU3Zuwh2rt3L5FIRPQfmmDw0Jgwhiaweiw4s0WDsElyl/lxBGx6y0gJ/JUeSs7O1VtGyhAPikRxwRtJxlVhDE2j+Oxc/JUevWWkBI6Ajdxlfr1lpAzObDtWjwg7Bmj/R58whibIwE8ymeSVV16Z8WdnbBDt27cPQBRUmMBT5EQRncUByFvmZ+ntopEeaGFRNVcVkVEsyrEDtL/Yy+a7D+gtIyWwui3UXFWEM0sYy4ITcWbZqLmqCKtb5OcCbL77AO3/EGHHABklLmquKhLhlBMsu71SGIgTKHZZtH6ZwO/R+mA++uijM/7sjM3rw4cP4/f7sQ6Ll7lslVj+oSr2//EovTtFTlXX1kEGm8UpBYCaUHnp67tF42LBG5AtEo5Mm9jYCN6ApGhzQ7bIgPAUCY7Tt2uY3p1Doi/TBDvvaxH5yhNk1nmpu7qYl/9/u00feZAch6ysLGR55o6KWRlEVVVVsGXGzzIcybjKlh8dJDoqKmeBFgYkwj2mocIMU/QMS9kFeaCqtD7To7cU3YkMx9j58xa9ZQhSkGBPRMyNaZSdnwcStD7drbcU3REFaU5kXLQtmGLw4ChbfnSQZELMEYCGhga6urpm/LkZm1CHDh2ifbNYnABQtRdYPCSMAICCNZmi5PYErlw7DdeXYhMxzgDExuOiWpRAIJgRsWCc2Lg4cASweSw0XF+KK1fk6YJWertgTabeMlKCeChBsCcivIcTHNvXw4YNG2b8uRkbRIcPH8aJSHIE8JW5KT1PJIpP4q/y4CkUcawAkiQhAUlxqgfAsVf7RSftCTyFTs745wZRgETwBpzZds745wY8BQ69paQEYt04TjKpIoEIw57AU+TEXyX2opOUnpeLTzQxBiC3MJvOzs4Zf25Gx9fRaJSOjg7qWTnjBxkRR6aNQLWHtudEGBCIsrnTGe8Os0eMxxSKQ0aNq6aPbwaIjsRoe65HnHwL3kBsPE7bcz1ERBg2oOXbSRaJRDiptxTdiQcT4p0yjbZnxb5rOoFqD5HhGMOt43pL0Z2xHXGCBBkdHSUj49SjlmZkEPX19aGqKjbEySZA99ZBurcO6i1DkIJIsqTlD4n9PwBLb6tkuGWM5r/NPK7XaETH4uLUW3BS4qGEmBvTKL8wH1+5m63/d0hvKamBpHmIRD6R4PVs/2mz3hJShkkbpaenZ0YG0YxC5np7e094mEAwiWKXWf3pWnwVwmULUHRmFus+V6+3jJSh+W+ddG0RhwcAFqeCr8ItqswJ3oBskfBVuLE4Rdlt0A4dm/8+89AXo7Luc/UUNWXpLSMl8FW4Wf3pWtH2RPAGvDleAF544YUZfW5WBpFVGEQA1F5dTOWlBXrLSA1U6N09LCruTTBwYJTDfz2mt4yUYbhlXEv6FOApdLLk5gqsblFwQ3AiVpeFJTdX4CkQuZighR4Pt4gQoEkO//UYAwdH9ZaREkRH4/TuHhZRGBNUXlZA7dXFestICaQx7UApHJ5ZJcIZvZGFh+hEhlrGSMbErxEgEU2K0qjTCPZEhAEwjdylfsa6QmJMgJHWcV777n6io6KHhuBEIqMxXvvufmJj4mAJtGqdnnwnPTuG9JaSEvTtGdFbQsoQ6ouIPcc0RlqDyBYRdQAghTTTxmabWb/UGXuI7HY7yszbFxmSnm1D9O0WDVlBa1LryrWLMKAJPAUOUQFnGhWX5BMQ4wFo/csiQzFxsil4IypEhmKi+MgEgeoMKt6Zr7eMlMFf5REVCCeQFG3PIVvFngOgb/cwPduH9JaREsiSjM/no6VlZj3dZmQQjYyM4PP5RNnHCdx5DhH2MoEn38nKj9fgCMzMIjcqeSsDlJ+fp7eMlGHDf+2j4xWRLA7gzndQeVmBOM0TvAHZIlF5WQHufLHpBeh4uY8N396nt4yUofyCPPJWBPSWkRI4AjZWfrwGd74ILwWwui2488S6MYksy2zdunVmn5nJxZFIBIdDDPgki24sI2+lWJxAi/Xe9tPDRIaiektJCZof72LHL0TVF8EbsboUvMUuEAdLgtcjSXiLXVhdoqiC4I3s+HmLqNQ5QWQoyrafHibYPbM8EaOSvzLAog+U6S0jZfD7/RQVFc3oMzNyb0QiEex2kT80ya5fHSEWSugtIyVIRJOMdYT0lpEyqEkVVbTOmKLxhjI6X+tn8NCY3lJ0Z6h5nG0/Oay3DEEKkowlxdyYRqDaQ8GaLPb8tlVvKSlBMiZeKpMk46rYc0yja+sg/ftEjtkkXq93fnOIwuGwMIimEeyNiOTXCZxZNkrOzRFhQBMUNWVRfFaO3jJShmQsKQxEgUAwI9SkMAKmU3xWjii7PYFskSg5NwdnlgjTB4iNxQn2iqJFk4RCoRnnEM3IQxQOh7HZbCg2UfcdoOTcXAb2jzDeJVy2rhw7+Ssz6dk6SFx0FUexKyhWWfxWJjj4cAeAGA+0U+/KSwvZ+n8HRZVKtCbGIOYGgGyTWfHRapofPya8qcBoe5DR9qCYGxNYXQqJqCTGA7A4ZPJXZhLsDot2H2i5qZl1Xo4+36O3lJQgFovR19c3o89Iqqqe8hv5iiuuYPv27XzoQx+asTiBQCAQCAQCgUAgmE9++ctfUlBQwEsvvXTKn5mRhygQCOD3+9n3+7YZixMIBOal7n0ldG0eEE0WBW+g6B3ZAHS8NLPTPIHx8VW4yV+Vyf4/HNVbikAgSCOysrLIy5tZpd8ZGUQ+nw9ZlunbKRK3BCfiq3BTeXE+O37RQiIiQuZq312MLcPCrvuO6C0lJZD+1M5oR4jwgKhCaHEqOLNsjHaERC8iIGepHxBNJwGQIKPISag/SlwU7GGsK8xIW1DMjQkW31ROdDTOgT+36y1FdxS7zNJbK2h+oksctAneQF9ZH07nzEqyzygQ1W63E4mIpK1Jln24itxlfr1lpATxYILh1nHUpNjhAXRvH+TYBtF3Z5LencPCGJrAV+5m2QerUOwiD0BwIha7wrIPVuErc+stJSUID0Tp3Sman09ybEM/3dsH9ZaREqhJleHWceJBcXAAkLvMz7IPVeotI2VQVRWPZ2bN4GfkIXI4HMIgmsbQ4VHCou8OoPUhEv0RjiNOrE4ke5GPsU7hIQIYah5jyw8PCk+q4A3EIwm2/PAgkeGY3lJSAmeWDXe+k77dwigCGDgwqreElCEZU8WeYxrhoShDzaIQyyRut5u6uroZfUZ4iE6D1md6GGkN6i0jJZAUCUfAhqSIstsArly7OOWdRu27iwhUzey0xqgkIkmtPKpwpgpej6q1c0hEhbEM4K/0UHPVzJorGhlfmRtXrmh9AmLP8XpGWoO0PiMqzE0yPj7zQ+kZGURut5uxMWGBTmL3WbFlzMjJZljcuXZWf7oWV7ZYrAHyV2dScUm+3jJShlf/ay+dmwb0lpESuHLslF+Uh2wVL3LBichWmfKL8nDliHUUoHPTABu+vVdvGSlD5SX55K/K1FtGSuDKmdhzCAMRAFuGBbvPqreMlKG/v5/W1pk1dJ6RQZSdnc3o6ChJVcRsAtS/r4TS83L1lpEShPqj7PxlC+FBERIF0Pp0Nzt/MbOmYEYmGVOFR2QCq8dCZq0XWRE5RIITkS0SmbVerB5x0AaAiujVNY0dv2ih9ZluvWWkBOGBiT1Hv9hzAJSuz6PufSV6y0gJVFUlFAqxcuXKGX1uRqtuTk4OAFEiOHDN6EFG5NCjx4hHhHEIkIgmGT4i8mYmEfkhJ1J1eQHDrUH6dolcgOGWcbb84KDeMgQpSDyUEHNjGtmLffjKXBx+rFNvKSmBeK8cR+w5TuToCz1Y7IreMlKCODESiQQNDQ0z+tyMjiinG0QCrZBAZEgkv4IWz1vUlCVCPSbwV3mourxQbxkpg2yRkWURIiYQCE4dWZaQLcKTOknVFYX4RS4moIXMFTVliRyiCSJDMca7w3rLSAkkv3ZwIMszWztmZRDFhEEEaOVzC9aKeF7QSmCWnJOLK9eht5SUwGKXcQRsestIGQ7+pYOeHUN6y0gJMoqdrPpULTaviPcWnIjNa2XVp2rJKJ5Z/wyj0rNjiIN/6dBbRsrg8NuwiHL9ALhyHZSckytafUxQsDYTX7ko5AQgBzSDyGKZWejxrEPmBJBR7CKzLoPOjSJZHBVe/ZZIfp2kb8+IaCYoOCnRsTh9u4dJxkT4i+BEkrEkfbuHiY7F9ZYiSEF2339EbwkpQ9/uYVGOfRo5S/wM7B8RYYRAX4vWq6upqWlGn5NUVZ2ReZ2VlUVgoIAKaWaxeQKBwLwsvb2SYG+YQ48c01uKIMVouL4UgL0PtOmsRJBqVL+rCFe2nR33NustRSAQpAmt6gE6XIcYGxtDkk49pHLGvteqqiqCCAtU8EaqLi+kdL2ougeQUeKi6cuNImxugvaXeunZPqS3jJRAUiTceQ5RdlvwBmSrNjdEXoRGz7ZB2l/q1VtGSuDItNH05UYRTjlB6fpckacrOCnOOhmfzzcjYwhmYRBVV1cTQvQiAm2BWvHxalEHf4LwQEQUmZggPBil9elu4mFRhRBgYP8oI22iiTGAM9PGio9V4xb5doLX4c5zsOJj1TgzxUEKwEhbkIH9o3rLSAnioQStT3cTFu9YQCsiEOoX6RugNYJf8fFqHGLdAGBgYIDCwpkbyzNudlBVVYWr8HkQVTCJhxIMHxkXXcUn6HilX28JKUNsLM6xDWI8JnHnObC4FIZbhHc5PBhl2z2HCfaKl7ngRMa7I2y757Do5zaBr8JNPJgQ1bPQ9hvinXKc7q2DektIGSZLkMdD4gAWwO61ct555834c7MKmTt27BgJ0ZyVeChB8+OdwisygWyRxAnFNPyVbtE5eoK8lQEqLs7XW0ZKkIyrjB0LiaIKgjeQjCW1uREXlbMAKi/OJ29lQG8ZKYHdZ8VfKaqITeLItCFbRGgpaN6y5sc7hUEEJKUkra2tlJWVzfizMzaIamtrAQgi3NigdZ0XRoBGzhI/qz5ZgyT6zQDQeEMZmbUZestICVqf7mbHvS16y0gJZKtM6bm5OLPEuiE4EWeWjdJzc5GtorQywPZ7W2h9ultvGSlBZl0GDdfPfJNnRCRZYtUna8hZ7NNbSkrgyLRh9cw44MuQ2EohHp9dlc4Zr7pLlixBkiRGGZrVA41G1aUFVIvEPgAGDo6y8xctzLBwoWHZfPdB4dafIBFNCo/IBLJFIm9FQHgPBW/A7rORtyKALIoqAJrHTISka3RvGWTL9w/qLSMlUFWVnb9oYeCQyGcHqL68kKpLC/SWkRJ0dmiVbK+88soZf3bGZbcB6urqCB1IUictn/EDjYYzy0YyoYqwOYHgLfCVu8lbEeDAn9r1liJIMUTZbcGbUXt1Md1bBhluFbmHAsGbYfdbkWSJ8IDIPTyo7iBZEqKtbebvk1n55VeuXMko4uQbINQfFcbQNIqasvAUirKgAHkrAhSfla23jJRAtkjYPBYQB98CgeAUkGSweSyiPP0ExWflkLfcr7eMlMBT6KSoKUtvGSlDZCgmjKEJknkRSkpKZvXZWRlEK1asIO6JiNAowOJQKL8oT+QDTFCwRhhEk9g8Fuw+MS8ABg+Nseu+IyCWDACWf6SK7EVevWUIUozsRV6Wf6RKbxkpgZqEXfcdYVCERQFaUQVrhgizBc0gyl8tDCLQopTKL8pDcYi8Q1VVGRjrIycnZ1afn1UW1ooVKxgbGyPIGG7MnTSejCfJqvcxdHicUL+w0Dd974DeElKGoy+KhoKCkzN8ZJzo6OwSPwXGJToaZ/iICA8TvJHDjx3TW0LK0LVpgK5NA3rLSAnsPhtZ9T7anu3RW4ruRAgxPj7ObbfdNqvPzyqHaHh4mMzMTOqSKyiSKmb1YIFAYB7sPiurPlnD7l+3ig2f4AREDpHgZPjK3Sz6QBmbv3+QyLAISxcIBG9NF23sUjfS1dVFXl7ejD8/Kx+bz+dj+fLlDNE3m48LDExWg5eVn6jWW0ZK4C110fTlRux+EeYQG4/T8kSXiHOewOa1YnUressQpBhWt4LNK9YLgPBAlJYnuoiNC0+q3W+l6cuNeEtcektJCVZ+opqsBhFyLDgRpSFKTk7OrIwhmKVBBHDeeedhLVVFHhGQu9zP2s/X6y0jJYgMRenfP4okysYSGojS+nQ3iYgoG5uMq3S+NkBkRJz0Aix6fxklZ+fqLUOQYpSck8ui94teMwCRkRidrw2IJrVAIpKk9eluQuJACUmR6N8/SmRIjAXAus/XkyuKbQAwODbAqlWrZv35WRtE5557Lm1tbYQJzvrhRmHsWIijL/QIIwAY6wzT+nQ3akK8xGJjcY5t6Bfdoyfwlrlw5dr1lpESHPxLO8c29OstQ5BiHHu1n4N/EaXpAVy5drxlwiMCEA8lOLahX3jLADWh0vp0N2OdYb2l6I6kSLS90MPYsZDeUnQnooZpa2vjlltumfU9Zm0QnX322UiSxCAicTzYE6Fz44AwAiZwBGw4MkV1NYCMYqeoujdB1SUF5K/O1FtGSjDWGSY8KE44BScSHoyKjd4EBaszqbxENJsErapaRrF4jwA4Mm04AmJ/AZpx2LlxgGBPRG8pupMs05wzZ5999qzvMWuDKBAIsHz5cgYQlS1AO80KVHv0lpES1F5dTOm5IhwIoGx9HkVnil5EoJXQPfJEl94yUoLMugyyF/n0liFIMbIX+cisM3fl1klanuhi931H9JaREhSdmU3Z+tnlRRiN0vNyqX13kd4yUoJAtUdEXUww4ugjOzuboqLZz41Zld2e5IorruD7R75PcjCJLJm7BnreigD+Sg+Dhw7pLUV3Dv6lnZgIEwNg30NHSYRFDhFALCjmxCSZtRlYHAp9u4f1liJIIbIbvcTDCQb2j+otRXeScZVkXKwZAAf+2C76zEzQ/LdOrE5RkAag/KJ8hprHaPm7uQ8aVVWld7iH66+//rTuM6uy25Ns2rSJNWvWsIpzCUiza4RkFBS7TDKWRBV7X4HgpGTWZRCo8nD4r516SxGkEKLstuBkVF1ewODBMQYOCONQIDgZkgyyVTZ94aZhdYDXeIbnn3+ec845Z9b3Oa0jh5UrV1JYWEgvomFYIiKMoUksDoWqywuEKxctlLL+2hIs4kQLxSpjE53WBQLBKWDzWFFswiticSrUX1si3qdo79OqywuwOMT7FEBNYnpjCEBeGsLlcnHmmWee3n1O68OyzBVXXIG1KinKbwNlF+RR8c58vWXoTiKWxFvixuo+rYhMQ5CMqyg2BcUuXuy9u4bZ+6DwAgDkrQzQKMorC15H4/vLyFsZ0FtGSrD3wTZ6d4mQUotDQbEpovw4YHVb8Ja4SUSFEVDxznzKzhd5ZQC9Y92sWrUKi+X09pynvUt717vexeHDhxlHuLUjwzEiQ6LPippQ2fp/hxhuGddbiu6EB6Lsvv+ImBfTEdXpiY7GCPaIamKCEwn2homOirVCrBHHCQ9q7xDR1BqGW8bZ+n+HUJPCOIwMxURfPyCkjtPc3MynP/3p077XaeUQAYTDYfLz88kcLqRKWnTaggTGQbHJ4iRnAsUu4nytboU1d9ax93dtDB4c01uOIEUQOUSC1xOoyaDh2hJe+85+YuPmLqwg3h3HEXsKwevpL2ljb88Oent78XhOr9LzaXuIHA4H73vf++iiTYTNAXafVcT6Ar4KN2d8qQGbV+SM1FxVROMNIjwqFkzQ8mQXwV7RM0FSJOw+qzgJFxxH0t4fosG35ilrebJLVKZEC6OsuUqUmbZ7rZzxpQZ8FW69peiOK9euvT9MjqqqHB1vprGx8bSNIZgDgwjgpptuIsQ4w4jO61WXFVJxsWgmN94Z5tCjx0hExAuta/MAbc+Lfl2o0LlxQIQPAr4yF2vurMMuDgwEE9i9VtbcWYe31KW3FN2JDMXo3DgA4oyVtud66No8oLcM3YlHEhx69BjjonExle8soOqyQr1l6M4oQ/T19/GlL31pTu532iFzAMlkkoqKChJtFhqklXOhK21xBGzEgnHh4hYIToKnwIFiUxhuNXd+mcWh4C5wMHo0aPpkaREypyFbJDJKXIx3homHzX2Q5Ctzk4gmGBObX4HgDSh2GavLQnjQ3HllB9hOJHeE9vb20y6oAHPkIZJlmQ984AN0c5SkyWtPhwejwhiawJllo3Bdlt4y9EeCvOV+EUoJFJ6RTen6XL1l6E48nGC4Zdz0xpDgOMm4ynDLuOmNIYDS9bkUrsvWW4buuHLt5C33i9BaoHBdFs4sm94yUoJEJGl6YygpJRlwd7J27do5MYZgjgwigBtvvJE4MdGTCMhfnUnVFcKd6S5wUnJOjugloUL5hfn4ykTs8+HHj7HrV0f0lqE7kiKJF7zgBJzZdgrXZYkcImDXr45w+HGxl/CVuym7MN/0oYOKTabknBzc+U69pehO9RWF5K/O1FuG7gzKPYyNjXHjjTfO2T3nrFFMY2MjZ599Njtf3EsexXN127QkGUuSFJVQ6N8zTN/uYdMv5gAb/3c/akIMRCIsfhcAqFB2fi7RsRihfnOf9Ak03Hl2ys7PpfM1kYurJlUSEbFedm4coGvzoN4ydCcRTbLhv/chibMCElGxvwRoix9k9erVXHvttXN2zzk9ur/jjjsYoo8x1dzN1Hq2D9HyRJfeMnRHTSKMoQmEMaRh91lpuLYUR6a5PSNqUuWVb+ylb/eI3lIEKULf7hFe+cZeTB51jiPTRsO1paKK1gTi3TGBiul/GwAtT3TRs2NIbxm6IhXE6aeb22+/fU7vO6cG0dVXX01+fj7tHJ7L26YlslUS5SGB3GV+Vn2yRm8ZuuPOd7Di49WmL0OejCWRrRKyRRz1CQSCNyJbJGSrRDJm7t2v3Wtlxcercec59JaiO6s+VUPuMr/eMnTHV+FGtop3Z6e1BafTOafeIZhjg8hms/GRj3yETtqIq+YurZuzxM/iG8uxOBW9pejKeHeY7m2Dpo+Lj47GGWkbN73LPxZMsPvXrQR7RC+imncVUXSmSBwXaBSdmU3Nu0S/mWBPhN2/bhU9iCQYaRsnOmbuvZSkSHRvHWS829wVBy1OhcU3lpOzxK+3FF1JqHH2te7h4x//OFlZc1u0a07Kbk+no6ODsrIyqhJLKJWq5/LWaYVik7G4FNFzRSA4CaLjOJScm0NkMGb68AdRdlsjd6kfu9/K0Rd69ZaiK2JtEAhOjt1vJR5MmPr3MZDVwdb+Vzl8+DAVFRVzeu85L/9VVFTENddcQxsHTF2COxFNCmNoAluGhZylfr1l6I5il8koFlVy6t5XQsN1pXrL0J2jz/ea3hgSHKdnx5DpjSGAhutKqXtvid4ydCej2IliN3mFViBnqR9bxpzV/0prIkMxUxtDqqrSqh5gyZIlc24MwTwYRAB33XUXYYJ0cXQ+bp822H1Wln+kCne+uWOAvWVuqq8oxOIwd/hg3vIAS26pMH34YOeGfo6+KDZ+skUSL3rBFLYMi8itA46+2EvnRnNX2pMUiSW3VJg+b8biVKi+ohBvqbnzsd35DpZ/pMr0hUZ66KC/v59//dd/nZf7z3nI3CRXXnklzzz6PE1cjGTSxAlJhuori+h4pc/UOROSIiHJIknW4lKw2BXTN1QTaJSuzyVveYDX/ne/3lJ0RYTMaaz5bB3dWwdpe65HbymCFMARsBGPJIibPJdKsckkE6qpq+25cu0UNWVz6JEO01baU1WVjTzN2gtW8dRTT83LM+bNH/vlL3+ZIKOmbtSqJuHgXzpMbQyBVjbU7MYQQDyYEMYQmmckb0UAu9/kp13bhzjwx3a9ZQhShAN/bDd9CKXdbyVvRUB4yoDwYNT0xhBo6QdmNoZAKzRy8C/mNYYAqA8yyhB33HHHvD1i3gyipqYmzjvvPFrYxzw5odIGb4kLf6VHbxm64i11sfoztaYPm8tZ7KP8wjy9ZehO1eWFZBSZO58qPBBluHVcbxmCFGG4dZzwgLkPTDKKXFRdXqC3DN0pvzCPnMU+vWXoisWhsPoztXhLXXpL0RV/lQdvibnHAGBH+1bKy8t517veNW/PmNcA9q985Stc9NxF9NFJDoXz+aiUpvCMLCRZYqh5TG8puhHqjzKwf8T0+TOKQ8HmMXfeSDKu8so39pj+1M/qtpCzxEfP9iHiIXESbGYsToXcZX56dw4TG4/rLUc3+nYP079vxPRrg81jIWzyw0NJkRjYP0Ko39yHBAWrM1ETKiNHg3pL0Y0BtYfesS5++uu/oCjz97uYtxwi0GL+zj//fF57bgtncJFpc4kUu0wiYmZfp0AgeD3uPAdLb69kx8+bGe8yb48NkUOkJU0vva2S7T87bPoQa4FAcCJm3kOqqsqu7JcoKM5ny5Yt82pHzGtNR0mS+OY3v8k4I3Ri3pfd5EQ2e5NWSZHIWeIzvYcECdOPQc5iH4tuLNdbhq6Md4d55Rt7TG0MCTTGu7S5YHZjaNGN5WSbPFTM5rGAOc+Op7B5NO+52SNKJveMZjWGAEYCPXT3dfGhD31o3p0q817kft26dbznPe+hmd0kVfOGhfjK3Kz9XB3ObLveUnRDtkhUX1mEr8LcJTRrry6m7n3m7rMRCyYI9Zt78ycQCE4k1B8xfSGBumtKqH13sd4ydMVX6aH6yiJkExtEzmw7az9Xh6/MvPulpJpk9+BW3vnOd85rMYVJ5jVkbpJ9+/axaNEiqpNLKJVq5vtxKYmkaJW1erYPkoyZNz7a4lRMny/hKXCAJDF2LKS3FIHONFxXysD+Ebq3DektRTdEyBzkLfeTWedl74PmHQOBhqfQiaqqjHea23Ns9r2CbJXIXRage+ugaXPqRsq6eK31JbZu3cqyZcvm/XkL0ga5vr6e22+/nRb2ElPNmSCnJlS6Ng2Y2hgCphY4STbvyc9YZ1gYQ4DVpZi+0Vx4MErMxC99gUYsJEry231WrC5zh5UDjB0LmdoYmtwbmNkYAkjGtD2jWY2huBpnT982Vq9evSDGECyQQQTwta99DbvHRjN7FuqRKUnRmdkUn5WttwxdaXx/GeUXmbv0dFajl/xVAb1l6ErDDWWUrTf3PGh5oouB/aN6yxDozMD+UVqe6NJbhq6UnZ9Hw/VlesvQlfxVAbIavXrL0JWKi/NofL+550HxWdkUnWnufWILe4nH4/zwhz9csGcumEFUWFjIv/3bv3GUQ4yqQwv12JRDscrIlgUb9pSkd9cwgwfNvQn0Frvwlpo3Nhjg8GPHaH22W28ZuiJbJGwZ5i6wIQBbhsX0zUhbn+nm8F/N28gdwFvqxlts7p4zAwdG6d01rLcMXZEtMrLVvOtB3BemjYPcddddrF69esGeuyA5RJNEo1GWLVtG174+VnGuactwCwQCAUDZBXnkLPKx6XsH9JaiGyKHCFZ/upbe3cO0Pm3uAwKBQGBuVFXlcOkWRsaGOXr0KC7Xwh0QLKirwmaz8b3vfY8h+uji6EI+OqWQZMhbETB1vLQ7z0HJ2Tl6y9AdxW5eb6Filym7IM/UlRd7tg1y4M/tessQ6MyBP7fTs21Qbxm64cy2U3ZBnrnXQ4d5//ZJSs7OwZ3n0FuGblhdCnkrAkgmngq9HONIWwtf/vKXF9QYggU2iAAuuugi3vve93KQHcTV2EI/PiVQ7AoVF+cTqM7QW4puOHPs5C7zo9jM+8uvvKSAxTdX6C1DN5JxlZxFPhx+8xZWCPVHGWkzbwdygcZIW5BQv3mLKjj8VnIW+UjGzZlADrDkpgoqL8nXW4ZuKDaZ3GV+Ux+QBaozqLg4H8VmzsNyyZ7kANu57LLL+Kd/+qeFf/5ChsxN0tbWRkNDA5nBAuqlFQv9+JTA7CUlkQDzvvsA8BQ5sToVBg+N6S1FoBMWp0LuMj99u4aJjsX1lqMLZg+Zs3ksZC/20bN9yNzvBJMTqPEQCyYY6zB5BVKT7w3MvDccWtLKtj1b2b17N7W1tQv+fF2O50tLS/nmN79JO4cZVHv1kKA7kxPelWPS05CJBc/msZjWSzTWERLGEJi6K7tikylbn4cj06a3FIFOODJtlK3PQ7Gacx0ETL0GTDJ4cMy0xpBik7F6JorLmNQYmtwLmtUYGlb72bxjEzfeeKMuxhDoZBAB3HHHHbzjHe9gD5tIqOY8Gc1Z7GPFx6pN24tFscms+lQNeSvNW346o9hp6vKa/ioPTXc1YnGYM0QgMhzjlW/sEWFzJmakLcgr39hDZMScIeQWp0LTXY34qzx6S9GNojOzySh26i1DN/JWBlj9qRrTHo7afVZWfKyanMU+vaXoQlJKsIdNrFq9invuuUc3HbrNPlmWuffee1EdCQ6zWy8ZutK3d4Tdv2klMmzOF2EimmTf74/SvcW8ycTuPAe5S3ymTaIM9oRpfaYb1azHggKByVFVldZnugn2mLMZqSRD7lK/qYsJdG8dZN/vj5KIJvWWoguR4Ri7f9NK394RvaXowtjiTsJKkJ/+9KdYLPq1odAlh2g63/72t/niF7/IGtbjk7L0lKIrskUydUKpaTF5vLQAqq8oJDIS4+gL5gwfNnsOUck5Odi9Vg49au4ePKZHvAtMidn3fiPqIK/xDNdcew0PPvigrlp0P5f+p3/6J9auXctuE4fOlZydw5LbKvWWoRs5S/3UX1Oitwx9mFgHLU5zhowBOLNsZDWYtzt7aCBq2nApAURHYoQGzFthLqvBizPLvDl0U2u/SffE9deWkLPUr7cM3VhyW6VpW5AkVC1Ubumypdx///16y9HfIFIUhV/+8peozjgH2K63HF0Yah6ja9OAaRNL48E40bE4kmzOAfBXeVj3+XpsXnPmkmXVe6m6vFBvGbrR8XIfPduG9JYh0InubUN0vNyntwzdqLq8kMx6cx6I2L1W1n2+3rT5U5IsER2NEw+a8zAcCbo2DTDUbM7iSsOL2ggpY/z85z/HatV//6N7yNwk99xzDx/5yEdYShO5UpHecgSCBUOxyWQv8tG7a5hkzHwx1LJVRk2oqMmUWIoWHEmRcPitpu1DY/aQOWeWjfBQDDVh0vkvS0iKZNq1L2exj77dw6bNnxGYkz61k228xK233srPf/5zveUAKeAhmuRDH/oQ73nPe9jDJsKqOSsulZyTQ+WlBXrL0AcJcpb4TJlYmogm6d46aMoNAUAyljStMQSQWZvBqk/Wmjps0qxYnAqrPllLZo15m3SrSdXUa1/31kFTGkPuPAc5S3ymjYypvLTAtKFyESnMHjZx2WWXce+99+otZ4qUMYgkSeKee+4hryiXXWwkRRxXC0psPE501KSuY6DknFwCJt0YKHaZ8gvzTBtLX3JOjmnD5oaPjLPjF82m3BSZnUQ0yY5fNDPcOq63FF2ouqLQtJtCZ5aN8gvzUOwpsw1bUAK1GZSck6u3DN2IjsaJmTBUUFVVOkr34PQ5+PnPf44kpY5FrF99u5OQmZnJ/fffz/nnn0+Luo9KGvSWtKB0bTZv+WlU2H7PYdNuCpNxlax6LyNtQVOGTkVH46b1EsVDCUZazekVNztqQjX1dx8ZihIbM9+mEMCZZSezzkvrsz16S9GF9hd76dzQb9piEu3/MGdV0TYO0nykmf/+7/8mNze1DOKUySGazr/927/x9a9/nRWcTZaUp7ecBadwXRaJWNK0/XlcOXaCvRG9ZQgEC0b+6kxCfRGGj5jPU2DmHCJfuRtntl0rqiMQmAQzv+PzVwWQLTLHNvTrLWXBGbH281r0OT73+c/x7W9/W285byAlfbX//u//zsUXX8wuNpgyn8iRacMRMGfoVKDaw8pP1ODKsestRRdkq4TdpNXmbBkW04YM5i33k1Hi0luGYIHxlrjIW+7XW4YuOLNs2DJSKkhlwbB7rcjW1AkVWkhcuXZWfqKGQLU5K+vZ/ebc30mBBHtsr7Fk6RK+8Y1v6C3npKSkhwigv7+fVatWMdg6wirOQ5FEwrEpkDSjaPCgOctQLr65nGQsyZ7fmu+0fPHN5SQiSfY+aL6/3cyY2UNkZhquK0Wxy+z61RG9pSw4jTeUIVskdt13RG8puhCo8TB4aMy04XJmI6km2SI9j+RP8txzz7F06VK9JZ2UlDWIALZs2cKZZ55JdqSQBmmV3nIWnOzFPiRZonfHkN5SdEGSQTVZSpGn0EksGCcyZL5Gnc4sG7FggngoobcUwQIiDCJzYnEqWF2KKXMm7X4rVqfCWGdYbykLihnf6ZPkLPWjJlX6dg3rLWXBOezYQXu8heeff56mpia95bwpKRkyN8nKlSv50Y9+RActdKgtestZcPwVbnxl5gyjKT4rm8U3V+gtY8EZOxYypTEEEOqPmtYYyl7kZcVHq/SWIVhgVny0iuxF5mxKGg8lTGkMAUSGYqYzhgAW31JB8VnZesvQBV+ZC3+5W28ZC0580TAtoQP867/+a0obQ5BiVeZOxm233caGDRv4yY/vwaV6CEjmKdF56NFjpnUpjx4NaRXnJEw3Br5yN0VnZrPnt62m+9tLz8slMhIzXUGRyFCMweYxJFkybbU9syEpEoPNY6Y8AMlbGcDutdL2nMkqrElauFzHy33mK6AiQd/uYYLd5iymcOiRY6bruTSsDrB51/Oce+65fPnLX9ZbztuS8gYRwPe+9z0OHDjAP559iTXq+bgkkyTjTeyLfBVuHD4r3duGdJWzkAy3jpu2N0c8kkCNq1gciuk8JhanYsrS66MdIUY7QnrLECwgakLlyJPdesvQBYtDMWUjYotDQY2rxCPmWtcBUKFzo/mqKeatCBAejGoGsInOuuTcBDt6X+aMM9bxt7/9DUVJ/d97SucQTWdgYICmpibaD3SyhvVYJfNU6ah4Zz7OTLvmMTAZpefmEh2Pi7K0AsPjyLSRjCVN15zZrDlEtgwLslUmPGDOsDGBechfnYnNbaHteZN5BIHG95cR6ovQ8kSX3lIWjLgaY3f2y8QTcfbu3UteXnq0z0npHKLpZGZm8thjj+HItLKDV0iaKDPvyJPdpjSGABSHjMWknbx95W5TlueUrTJWT1o4r+eUJTdXULAmS28ZggWiYG0Wi28u11vGgmP1WExZctoRsOEzYQ4JgMUuozjM+R7f85tWjjxlHk9wUk2ykw2EI2Huu+++tDGGII0MIoDq6mr+9Kc/MWYdouKDAVRVRbZKSMrxxVWxyVNxmpIsaf89gWyVkC2neK3ljddK8uS1zPG1kyJOvFZSJGTr8ZwCT5GTondkv+W1x/9W+fi4SK/7WxUJ2XriuMzq2tMaw1O7tuXvXXS80nfKYzgX433qYzgH4/36MVSkqb+99j3F5K30z9F4L8yclS0njstsxnvpbRWUX5D3NmM4R+OdQmvEngdaOfZq39zP2Zlcq8MaIU3bG89mjZg+hm99bWqtEV2bB6ZKzM9mjTila1Nwjai4MI+lt1We0rWnN2dTa43IXean7j3FyJaZjOFMrk3dNaLj1X5an+k5+bUzGMM3jkvqrhFFTVm48xzaGE1+dIH3Ead07RyPof3SEENKLw899BCXX3456URaGUQA55xzDj/96U/52c9+xhH2sfT2Siouzge0UpZNdzXiK9NOYQrXZbLms3VTn118YzlVlxUCYHUrNN3VSGZNBgB5K/ys+2LD1LUN15dRc1UxoE3SprsayWrwAZCz2E/TXY1TP4i695ZQf03J1Geb7mokd6kfgMw6L013NaJMeDmqryyi8f1lU9eu/Xw9+asDAPgrPTTd1TjVrK7q0gKWTKu0tuTmcgrXZSEpEt4SF013NeLI1DwI5RfmsexDx6tUrfxENSVnawUo3PkOmu5qxJ3rAKD03BxWfrx66trlH66i/ALNindm2mi6q5GMYq26XVFTNqs/XXtcw62VVF5SoI23Vxtvf4WW01WwJpO1nzs+3os+UE71Fdp4W5zaeAcmxjt3uTaGk9RfW0rt1dp4S4pE012NZC/Sxjt7kY+muxrxFGj6a68upuG60qnPnvHPDeRONDcM1GTQdFfjVHx61eWFLLqxfOraNf9UR8GaTG28K9w03dWI3ac1Qq28JJ+ltx5/Ua/+dA1FZ2oGaEaRk6a7GnFmaQ1jy87PY/lHjo/hyo9XU3purjbeudp4e/I1vSVn57DyjuPXLvtgFeUXauPtmBhvb6k23oVnZLH6M7WoSdjx02Z85R6qLtPG2+axaGNYpY13/qoA675QP3XfxveXUf2uIgAUuzZnM+u0ClY5S1833u8roe692pyVZG3O5izRxjCrYWLOTix8NVcV0XD98Tm77ov15K3U5mygWhtvq3tizl5WyOKbjs/ZNZ+to3CdNt6+sonx9mvjXXFxPktvPz7eqz5ZQ/FZ2TQ/3kn//hGa7mqcatBbel7uCVXYVny0irL12ni7su3anC10AlD8jmxWfapm6tp0WSPCg1FiwcRprRFr7qyl6AzNy5Qua4Q7T3vmaa0RjdoaMflyToc1Ys1n6qb2SbNZIyZZfHNFWq0RsmXaZpLZrRGgtShIpzWi/aU+bBlWMuv03Ucs5BqRs8RH/upMis5MgX3EAq8ROUv8eMtcuu4jJlmoNUI9d4jHH3+cj3/841x00UWkG2mTQ/R6vv71r/Nv//ZvrMxposRSxXhXGNkqk1njYbh1nNh4AmeWDVeOnf59o4BWnCARSTJ2LISkSGTVZTDSFiQ6FscRsOEucNC/ZwQAb5kLNaEy2h5CkiGr3stoe4jISAy7z0pGkZO+vSOgaosKEoy0BQHIbvQyOlE+2ZZhwVvion/fKGpSJaPIiWyVpyrMZDV4Ge8OEx6IYvVY8JW6GDgwSjKu4ilwoDgUhlu0azPrMggPxQh2h7G4FPzlbgYPjZGIJnHnO7C6LQwd1hqaBmoyiAxFCfZGsDgU/JVuBpvHSISTuHLt2H3WqeangWoP0dE4491hFJtMoNrDUMs48VACZ7YdZ5aNgf3aGPor3cRDCcY6w8hWicyaDIZbg8TG4zgybbhzHfTv08bQV+4mEUsy1jFtvI8GiY7GsfutZBQ66Zsc71IXqgqjR4MgQXaDl9GOEJHhGI6AlSW3VtL+ci+dGwbIKHYiydIJ4z3WGSY8GD0+3vtHURMqniInyvTxrvcy3jMx3m4LvjIXAwdHScZU3AUOrE6FoeaJ8a7NIDQQJdQXweJU8FdMG+88B7YMi9ZcDq3RXGQ4RrAnguKQCVR6GGoeJx5O4MqxY/fbGDw4MYZVHmLjcca7jo/38JFxYkFtzjqz7VPj7atwoyZURtqCyBaJzNoMhtuCxMYmxjvPQf/eifEuc5OMJxntCCHJEln1GYy0h4iOxE463qgwcnTanJ0Yb7vXSkaxk/59I6hJtPFWJEZag8fnbNfEeHsseKfP2UInil2emrNZ9RkEeyOE+qNYXQq+cjcDB8dIxibmrMvCUPPY1HiHByfm7OR4Hx4jEZmYs17r8fGePmftMoGq43PWlWPHEbAxcGByznqIBeMpv0aEh2LkLPHRt2v4tNaIUP/EnE2TNaL0vFzi4QT7fn901mvE68c7HdaIuquLaX+pj5G24GmvEZNzVqwRqblGjHeHURNqyuwjFmqNcARs5C7zs+8PR7Xx1nEfsdBrxHBrEDWhpsw+Yr7XiGNqK3t4jY985CP8+Mc/Jh1JW4NIVVU+/elP88Mf/pBFybXkScV6S1ow7F4rxefk0Px4J2oiLb++GSNbJZIxc/yt08lbGaD03Fw2fe+Aab5r0E4Jk7GkqSorBqo9VFycz/afNZOImCdH0oxFFRSHzLLbK2l5omtqM2QG8pb7ka0yna+Zp0iOpEis/nQtbc/3mK6dAGje82TMHOuZpEhUXlpA+wu9REbMU05fbRzn2b1/59Zbb+WnP/0p0vQ46DQibTOXJUniu9/9Lv39/Tz00ENYozYypVy9ZS0IFreCr8yN3WslPGiOCkWTxlBWvZfhI9qJiRkYPjLOUblXbxkLjivPQcIk3/Ekg4fGGDx0SG8ZggUgEU6y5Yfm+66d2XYUe+qX351rjr7Ya6q+Qxantkfp3zdiGmMItMNqX5mbLveAaQyiQbWXnQdfYdGiRfzgBz9IW2MI0thDNEk0GuVd73oXL730Eo1j6/BKAb0lLQwSpqppD1oPh9WfqaX1mW5TnTAKBEbGjB4igcDIFKzJpOz8PDZ994BpDi+nMNHeLOweY6fyCitXruTRRx/F5XLpLem0SLuiCq/HZrPx0EMPsWjRIpqztzOmjugtaWFQtYS3uvcUTyWVGp14OMHWHx0ynzEkQdkFeWTWZuitZGGRMF357UUfKKP8ovQpUyqYHeUX5Z+QFG8GrB7L8WpbJiGzNoOyC/JM93d3vjbA1h8dMo0x5Mq1U/eeYq3ohUmMoWRWhG38g+zsbP785z+nvTEEBjCIANxuN4899hgFBQW05G1n3CRGkZoEW4Z1qnqPGZh0Q08mRJoCFVxZdmxeq95KFpTadxdT/76St7/QQPTtGZlKfhYYl+GWsakkZrNQf00Jte82T64vgM1rxZllM80mWZIlMoq1Sn5mCRkDsLos2DKsUy1SjE5QHWO/fQter5e//OUveL1evSXNCWkfMjednp4e1q9fz+DgIOWdS3FLJjtRNwm2DAurP1PL4cc66d5qviRVs+ApdIIEYx0hvaUI5hERMmcOPEVOUGHsmPg9G5W8lQGqLitg03cPEB2N6y1HMA/IBXG2xV/G7/fz3HPPUVBQoLekOcNQBhFAd3c369evZ3h4mPJjS3FJHr0lLQiVl2qTsvnxTp2VLAyeIqfpNsqSIpHV4KVv17DeUgTzhGKT8Za6GG4dN01VRbMZRLJVxlfmYqQtSCJqnoRzs5G92Ef/3hFTVQcF7SDLLEZv5WUFoJpn3xVSx9kTeBVJktiyZQtlZcYK+zVEyNx08vLyeOaZZ8jIyKCteBdB1RwlTce7w4x3hfWWsWBMGkOuHPsJHZiNjLfURd3VxVONLM2Ar8JN6XpzVI8EcARsWrPSfKfeUgTzhDvfwaIPlE81HzUDpetz8VW49ZaxYLjzHNRdXTzVKNPoSIo0lctsFmMIYLzTPPuukDpOR/leAoEAf//73w1nDIEBPUSTHDt2jPPOO49wOEzJ0UWm8RSBVvIyHjJ+MqPFobDms7W0PtvDsVf79ZazINj9ViJD5onNzlsRIGeJj133HTFFHL4ka3kHZvqOzeYhAu13HB2JoZrBQSTBkpsr6Nk+aKq+YmZaqwvPyKJsfS6v/a85qsqZZY81iVKYZGPwWTweDy+99BIlJcbM7TWsQQTQ0dHB+vXrGRsbo6xzMR7Jp7ekeSerwUvNlUVs/fEhIsPGX4x9ZW5G2oOmC0uwuhRiQfMsyALjYkaDSGBczLg2S4qEt1gL9TU6dp+VFR+t5uAjHaYojDKujtJauJNQKMRjjz1GU1OT3pLmDcOFzE2nqKiIF198kezsbA5mbWFENX4C/tDhMVqf6zaFMQQw3DqOmlCx+63IFnOEzlVeVsCiG8v1lrGgmCm8KHeZn7LzzRMmaDbKzs8jd5lfbxkLhpl+uwCLbirXcktMgGyVsPutqAnVFMYQQGQ4Rutz3QwdNkE6RnGEQzlb8Pl87Ny509DGEBjcIAItp+i5556jurqavRkbGVR79ZY0rySiSTo3an16PAUOFJvhv2Jki8Sy2yspOcccm8juLYO0PNGlt4wFI7M2gzWfqTPNxsriUExVSt9sWN2K1q/EBNj9VtZ8ps5UPdRa/t5F9xbjH74ClJydy7LbK01xGKnYZDwFWv5u58YBwxdEGZH7+UfvkzgcDp5//nmKior0ljTvGDpkbjqjo6NcddVVvPrqq9SFVpEt5estaV6RLRKrP1NL97YhWp/u1lvOvOMrdzPWGSIRMfYiZUZkq4y/0s3goTHThUaaAREyZ1wkRSJQ7WGoecw0VRPNhGKX8RQ4GT5ifO9Q2QV55C3zs+l7B0jGjT2XB9Qe9rs3U1NTw5///GdDFlA4GaYxiABCoRDXXnstf//736mPrSJPMnaTOHeeg2BfxFSbSItLQZYlomPG74FQf00JI21Bjm0wR0EJMyHJWpNDo794wVwGkWyRSCZUUxQIMRuF67LwlrrY9/ujekuZd2wZFpIJlbiJcqUkRcKVbWe829hV5aSlQZ7d/QTr16/nT3/6E263eapDmsNvP4HT6eSPf/wj73vf+9glbaBNPaS3pHllvDs8lV9Tck6O3nIWhMYbykwTvx3sjZgmV8ziUKh5V5FpSo6v/Vw9+asz9ZYhmGMK1mSy7vP1estYENx5DmreVYTiMMc2IzIcI9gT0VvGglB5aQGNN5jDa1ByTs5UnpTRjaF2tZmnd/6NxsZG0xlDAKYLVLdardx///0UFBTwP//zP4TVcWpYiiQZNwbWV+omZ4mfYxv7SYSNHVJ2+LFjpvAOAbQ916O3hAUjHkngzLJh9VjA+BGgHP5rp+FfvmZk4OAYkRFzrE+2DAvOLJtpwpj7943Qv8/4VccAmv/aqa3FBkdxyOQs8RMZitEzNKS3nHlDVVW68g+xr2s7d3z8Dv73f/8Xq9UcObvTMVXI3Ov53ve+x5133sk111xD7+9iKJKit6R5Q7ZMhN9ImCJcQ7ZKODON795WHDJl6/PoeKmPyIg5vEUCY2GmkDmB8bB7rRS9I5vWZ7sNf+DozncQ6o+YIx9sYq80tXcyKEk1iXzhCE899RRf+MIX+Na3vmVoB8FbYQ5f9pvw6U9/mj/84Q88/PDDJM7pJ6ZG9ZY0byTjKrJFYsnNFaYo+Vp+YT4N15UiGX2GJ8Ff4cY50SXc6FhcCs4sm94y5h2bx0LB2kxTVG8yC7JFomBtJjYTnKw7s2xYXMY9YJyOM8eOv8KNavB0GkmGhmtLKb/Q2AWpQGt9sOTmCsMbQ3E1hnTBMC+88AJf//rX+a//+i/TGkNgwpC51/Oe97yHp59+miuvvJIIMZarZ+GUjBk3mYyrjHYECfUZP8657bkeOl8bMHwn+EQ0yZYfHTKF1w+0F3IikmDPb43tTbB5rVRclM9wyzjBXuP/Xs2AI2Cj4qJ8RttDhg/rrbi4AMUms/OXLXpLmXeGDo+ZYg1Wk7D7N63Exo09dwFCfRFGO4KGNoak7AR7eIXQxhBPPPEE5557rt6SdMfUIXPT2b9/P5deeintLcdYRhN+KVtvSfNORpGT0Y6Q3jLmFwmy6jLo3zeqt5J5RbZI5K/KpPO1fkMbga4cO9GxOPGQ0Y9jQZIw9Hc5iZlC5iQZVBXDb54tTgWbx2JoY16SoWBNFl2bBwy9cQbIqvfSv3/E8PPWFHsiYFgdYAcv4/Q7+PWvf81ll12mt6SUwOgBRadMXV0dGzZsoOmcdWzmeTpUY59s5Sz1s+S2SsM3u8yqy6D+mlLDh1k5s+yUXZCHp8ilt5R5JdgbMb4xBKCawxgyG2oSw28qAeKhhKGNIQBPkYuyC/JwZhk7XNmZZaP+mhLDN9e1+60sua2SnCU+vaXMK7FFQ2yWnmNl0wr27t0rjKFpCA/R64hGo3zqU5/iJz/5CSVUU8NSZIMmonhLXYy0BfWWMe84s2yE+o2bHzaJxamYwlgI1HgoPiuHnb9oMfTm0ix9TcziITJF3zAJlt5awdF/9DJ4cExvNfOOWdZcs7xDjbwnUlWVw/IujiT309TUxLPPPovdbmxjfqYYc6d/GthsNv7v//6Pu+++m3YOs52XDFtsYfKHn78qYOhTkcmFPH91JrYM46bNxUMJkMBXYcwcuEmio3FCfREUm7GXr8hIzPCn7GYi2BsxfCVIxSYT7IsQHTV2nomvwg0ShjaGbBmWqV5oRjaGcpb4yF8VADCsMSS5VXZaX+FIcj9f/epXefHFF4UxdBKMvaOYJZIk8clPfpInnnyCZCDKazzDuGrcHBRPoRNPgVNvGfOKYpcpOSuHzDqv3lLmlewGL4tvLMeRadwQwfGuMIceOWb4/ib9e0dM1WvK6LQ910P/XmP3qUlEkhx65BjjXcZtd+DItLH4pnKyG4z9Lsms81J8VjaK3djbRE+BE0+hcfc/QXWMrfbnGVEG+Otf/8q///u/oyjmqAA5U0TI3Ntw8OBB3vWud3Fw3yEWsYZcqUhvSfOK3Ws17CmmYpcNv4kGrVeEkTckgFYso8HL2LEQkSFjzlfQfo+SIhEeNO4JrRlC5hwBG2pCNezaCtrf6C5waEafwXcVplhjMfY708h7nUl61WPs5jUKSvL5yU9+wiWXXKK3pJTG2Kb/HFBTU8OGDRt493uvYgevcFDdQdKg2c52r5WVd9QYNnxucmHPavBS/A7jVhGcfFG7co3rEpdkierLufUQjQAAZqpJREFUCskyuMev/rpSSs7J0VuG4DQpOSeH+mtL9JYxr2TWZlB1WSGSbNw+JpNrqpGNoeJ3ZJM14f0yqjGUs9TPyjuqsXmNWVRKVVWGGo+ynZe59MpL2LFjhzCGTgHhITpFVFXlO9/5Dp/7p8/hI4slrMMuGc/NmrPER//eEUOXES05Owdnjp0Df2zXW8q8kb3YR93VxWy6+4BhPShmSGh25dqJjceJjRv37zSDh8jqVrC6LQR7jJ0TZuTfpN1vZfWnatn/x3b6dg/rLWfeqH1PMcHeCO0v9uotZd6QLRJZDV56dxrve4yqYXaxkUF6ed817+M3v/kNFotxc6fnEmEQzZAXX3yR6667jv7OQZawjoBkzNNbu89KwZpMWp/pNnb5XwlDhndIsoSvws3QYeNXejJyWIcZMINBZHTM8hv0V3kYbhkz5jvRoO/CSSQZys7Po3PjgGFD5eTaCC8ffRaXx8UDDzzA+vXr9ZaUVoiQuRly9tlns2XLFprOXccWXqBV3Y8RbUpPgYPMOi+Kw7jJd65cO6vuqMGVY7zQMjWpThlDRg0LACg9N5dlH6rSW8a8IVslKi8pMHTSr9HxFDmpvKQA2WLcULJlH6qi5FxjHg7C8TV06LAxjSFXrp1Vn6wxdJi14lDIrPPiLnDoLWXOUVWVNvUgTx14jMzsTF5++WVhDM0CYRDNgvz8fJ566im++KUvcpCdbOcloqqxQiH6942y9UeHiAcTKHYZq9t4hlFkKMbQkXGiY8YtEZvV4GXVJ2twBIxZda5/3witz3TrLWPeSMZUMkpchi4Xb3TsGRYyip2GDkNufaabgX3GrMTqCNhY/amaqbwaIxIdjTPUMm7I8GqrW0GxycSDCbb+6BAD+401TyVvkkM5WzjAdj716U+xb98+qqqMe0g4n4iQudPkscce49Zbb2Wkb4xFrCFLytNb0pxTe3Uxrmw72+45rLeUecPiVFBVlUTYWMd/kiKRvchH744hvaUIBCdFhMwJUp3cpX56dw+jJoy1XVIcMhIS8bAx874Aln+kimBvhAN/Ml7O8IDawwHXFhJqgp/97GfccMMNektKa4SH6DS5/PLL2bFjB+dceBZbeZGD6k7DVaFrfaabw48f01vGvNJwfSk1VxqvpLqaUKeMISN6+UBrBll9ZSGeIuOGlclW44ZbGR0jf3eeIifVVxYatkny5JrZs2PIcMYQQM2VRVMHEkbl8OOdhosiSEpJjmUfZAsvsHL1Sp5//nlhDM0BxlzFFpiCggL+/ve/861vfYs2DrCJZwmqxklmjwzHGG0PAVB5SYEhQwdanujiyNPGWjSn4y11sebOOtz5xoufTsSSOAI2bB5jhpV5Cp2c8aVGQ+a6GR1Xrp0zvtRo2Bwwm8eCI2AjETXWISBovYbW3FmHt9Slt5R548jT3bQ80aW3jDknq8FL5SUFAIweDRIZNk4oYEgdZ2/mK+zt28FXvvIVnnnmGdasWaO3LEMgDKI5QpZlvvjFL/LqhlfJqcpkA0/RqbYaquCCJEtYXAqK1XjTZqwjRHggiqRIFJ6RpVXcMRAjR4M0/72LYI8B+2eosOtXRwwXGz5JsCdM8+PHiI4bN9fNqETH4jQ/fsyYvztgYP8ou351RG8Z80KwJ0zz37sYORrUW8rcIkHhGVlIskR4IMrYsZDeiuYcxSZjcSlIBtuqDHm72MBTWF1Wfvazn/H//t//Q1GMGfmhBwabLvqzdu1atmzZwg03Xs9uXmMnGwxTcEFNqhz4Yzs9EyFYWfUZhquc5ClwUHpeLh6jeVJU6No0gJo0cOicQyazNkNvGXNOMq7StXmQeNC4cf5GJR5M0LV50JAFFTJrM1DsxtxCWN0KalJbM41WitqTP/GOKzTWO062SGTWaet/z/YhDvyx3TAVAWNqlLaSnWwa/gdXXn0F27dv57bbbtNbluEw5mqmM16vl/vuu48HH3yQRFaIV3mCXtVYOThWj4Xaq0vIWerXW8qcMtoeYtN3DzDWacwTXUfAxupP1069OIxE3vIAtVcXGzKfwRGwaZ5LQVpReEaWISs8KjaZ2quLyVsR0FvKnJNZl8HqT9ca8nsDGOsMs+m7B6bC4I1CzlI/de8pwWqw0OlBWzev8ATdw1184Qtf4KGHHsLv9+sty5CIKnPzTFdXFx/+8Id59NFHKaCMWpZhlYyx0DoCNsKDUcCYjflKz8tFscmGi7HOWxmgd+cQyZixfvqyVUKxKcQMGFoWqMmg7r3FbL77ALFxY3mKjFplzuq2sOpTNex/6CiDB42TUzqJ1W0hEU0YcB2RyVnio3vLoN5S5pSKi/NJRJO0Pdejt5Q5ZfreY/qeJN2JqzF6Kg+zp3kXF110ET//+c8pKjJe4adUQhhEC4Cqqvzyl7/kM5/5DJGRGI2sNlR5bne+gyW3VLD7/iOMdhjn1Cl/dSaKTabj5T69pcwLVreFeCiBmjTWEiDJIFtkYyV6T0amGuurAoxrEAGG/N4Um0wynjRMONIkkixhcRrzQAWg6B3ZJCJJLQzQIGQUOVl0Yzk7f9nCeJdxojqGLH3sim1EdsGNN97ID3/4Q5ErtAAYL7YkBZEkiVtvvZWdO3fyjvOb2MqL7FO3EleNUfkk1Beh/aVew4WZdW0amDKGjFadTbZILP9wFSXnGK+7/NLbKym7wDgHDoC2oTbQpto0GPB7K7sgj6W3V+otY84pOSeH5R+uMlxe7OS7q+OlPkMZQ6CF/7W/1Euozxh52gk1Tl9tM5tiz7Hm7FXs3LmTH//4x8IYWiCEQbSAlJaW8uSTT/L973+fAVcnr/IkfWqn3rJOm2Rcpf0ffahJFUemjcYbygyVuG/3WVn2oUpyDZQvlYyrHH78GJ0b+/WWMue0/6OXrs3GevED5K8KsOxDxtuIGpVlH6okb6Xxcmy6Ng/Q/o9evWXMOZ0b+zn8+DFDFcDIXeZn2YcqsfusekuZM6xuhcYbynBk2lCT2t7DCN9Zv9TFKzzB3iO7ufnmm3nmmWeorBTr/UIiDKIFRpZl7rjjDnbt2sU5F5/FNl5ip7qBqGoM74rFLiNbJUPFlUeGY+z+dSs9O4f0ljKnDOwfJRZMoNhlQ70w+/eNEuwxxonhdIK9EQYOjhquJLwhkWDg4KhhTq6nE+yJ0L/POCXu7T4ril0mFkwYrnR/z44hdv+61VB9eJJxFdkqYTFIhcOoGqGjci9bk/+gaf06du3axS9/+UssFmMVh0gHRA6Rjqiqyv3338+dd97J6MAYNSyjgFIkyRg7HqtLIavBS9dm4ySnunLt5K8M0Pz3LsOEwjReX4riVNj58xa9pcwZdr+V2ncXc+DP7USGjLMZMCKGziEyEI6AjZqrigz3m1pyWwXxUMI480+CyncW0LVlwFAHQ/mrAvTvHSFmkPYDqqrSY2lnX3wbdo+Vm266ibvvvluEx+mIMUzsNEWSJG666Sb27dvHtR+4hj28xlZeJKSO6y1tTsis91J6Xi4Wp3F+4M5sOxlFLkM1p215souDf+7QW8acEhuLkwgnsNiNM/dAO832V7r1liF4G/yVbkN5XUErppAIJ4iNGavowMG/dHDkSeNUElWsMhnFTpzZdr2lzBkWp0Lpeblk1nv1ljInhNRxWsq3sTO+gauvvYqDBw+KwgkpgPAQpRCPP/44H/vYx2hv66CSRkqpQU7zVssWh0I8nEC2yrhy7Mboii0BquYBS8RUkjFjlFuSZAlvmYvhFmMY5EakdH0u+SsCbPyf/XpLmTOM6CFa+7k6ujYPGq7EsZHwVbgZaQ0apsqmbNXC1ePBxNQ7Kt3xFDoJ9kZIxpJTe4m0RklyVG3mUGIngewAd955J1/5ylf0ViWYIL132wbj0ksvZffu3Xz6zk9xiJ1s4CkG1PR+oU4uYIVnZLH4xnJjNM2ceNHUX1tK7dXG6QuQvypA4/VlWF3GOaVyZNooPss4lfSOvdrP5u8f1FuG4G3YfPdBjm0wTsGS4rNycGQao38eHE/MN1LRi7qri2m4RjtcMIIxpNhkFt9YPtWQOt2NoUG1lx2Bf7A/sY2P3fExDh8+LIyhFEN4iFKU7du3c8cdd/DSSy+RRwm1LMUuOfWWNWskGVy5Dsa7wkgyKHaFeCi9FzhPgYNkXCXYa5A4bQlc2Xbj/D1AVqOXiovy2faTw2k/34yKET1ERsLiVFj+kSpanuiif++I3nLmDFeOnWBfxBDGA2h/j2SRGE/z9hcWp0IikkBNaiXDgz3htO55JWUm2DWwmU61jdraWr761a9yww036C1LcBKEQZTCJJNJ7rvvPr74xS/S3zNAJY2UUJ32YXQl5+aQtyLAlu8fNES5TCSouryQzg39hjEmCtZm0rtz2BBGhKRIqAkDzLMJCtZk4i5wcuhhY+R9Gc0gqn5XEWPHQobq+WKU35DFqZCzxEfnRmN8N64cOwXrsjj82DFDGHayRWLVJ2vp2jLA0RfSu7R7Uk3S6WihWd2DzWbjf//3f7ntttuQ5fTevxkZ8c2kMLIsc8stt7B//34+8amPc5Adhgij69o0SMsTXVPGULo3wrM4FDwFTmxeYyRRW90WSs7JJVDt0VvKnKAmVKwuhYwSl95S5oR4JGkIQ9WoxEMJEtE0PtKeRkaJC6tLMYQxBBCo9lBydi5WtzFKGtu8VjwFTiyO9A5zntwDJOMqzU90pn1lWrUyxEaeZm94KxdeeCFbtmzhgx/8oDCGUhzhIUojtm3bxh133MHLL79MHsVUswSnlN4VpwrWZlKwOpNt9xw2TO8iT6Ez7YtHKA6ZRNgYmzqAmquK8BQ62fqjQ3pLEbwOo3mIjMSKj1cz1hHioEG8kWCMtc0I75hJZKvE8o9U0/laf9p77sJqkKPefbSONFNfX899993H6tWr9ZYlOEWEuZpGLF++nBdffJFf/OIXyAUJXuHvHFJ3ElfTtyfE0OExujYPGsYYClR7WP7hKtx5Dr2lnBaTG4bcpX6KmrJ0VnP6HHmqm52/ME6fJcUu4y5I7zlmRNwFDhSDNIwE2PmLFo483a23jNOmqCmL3KV+gLQ3htx5DpZ/uAp/lTE8+MmYStemAYYOj+ktZfY4E/RXtvIyfyfkGONLX/oSO3fuFMZQmmGcldskTIbRHThwgK/861fodrbxMn+jQ20mHZ19of7oVDWm7EYvS2+vRE7jHj+Dh8bY+asWxrvTO7F1EkeWzRD9LGLjceKhBLJVwupO7/ASgNLzcmm8rkxvGYLX0XhdGaXn5eot47SxuhWthHMoQWw8/fsOObPtOLKMUSVvvDvMzl+1pLUBIVtllt5eSVaj1lfo2IZ+Qv1RnVXNHFVVOaYeYYvjeXYc2cLH7/gYhw4d4pvf/CYWizHCMs2ECJlLc44ePcqXv/xl7r//fjz4qGEpWVKe3rJmRUaxk+xGHy1PGKNJXlZ9BgVrs9j7QJshcgqMkFi99PZKIsMx9j90VG8pp4V9Il8tMpK+3uFJjBQyZ/daUYFomn8vde8twe6zsuPeZr2lnBZGWLNAK0HdcH0pxzb0M7B/VG85c0LFxfn07RlmtD09Q/+kujBbuzbQN9TLddddx2c+8xmampr0liU4DdL3KF4AQElJCffddx8bNmxg2TsWs5UX2aa+xLiafuVRR9tDU8aQr9zN0tsrsTjT9zQ/Op4g1B8xhDHkznOw+lO1aR8KeOSpLo48nf4Gd2QkZghjyGhERmJpbwwBHHm6iyNPpffvxChrFkAimiTUHyEWTN9iKhanwtIPVuIr0/KeW57oSktjKKiOsl19mSf3PYozw8ELL7zAAw88IIwhAyAMIoOwdu1aXnzxRX73u9/hKbezUXmavepmwmpQb2mzIhFNEuyLpHU1rdGjQQ4/1glARpGTzLoMnRXNntBAhL49w4QH0y+sYTojbUEiQzEkWTs9TmeyGrxUX1motwzBBNVXFpLV4NVbxmkhKRKSDJGhGCNt6fnumCQ8GKVvzzCh/vRthZBZl4GnSOs/ePixTkaPpu93Eg8lCPZGSMTS84AwooborT/EBuUpHCUK9913Hy0tLZx99tl6SxPMEcIgMhCSJHHNNdewd+9evv3tbxPOGuE1+9McVHcQVdPrpTB2LDTVZ8Wd52Dp7ZXYMtI3Jjd3uZ+ipmy9ZcyaZEyl5YkuEtEkVrcFmyd9vwskLXSu9NwcvZWcFpKsxeKT3nadMZC07yLNW8RRem4uS2+rTOs5ZfNYsLotJKLJE9o7pCNFTdnkLffrLWPW2DIsLL29Eleulod66OGOtKuOJ2UkOcRONjmf4VDbQa6//nr279/PjTfeiKKkbwSL4I2IHCIDMzIywv/8z//w//1//x+yLJMzUkIpNShSem1m3XkOis/O4cCf2tM6HlyxySSiSew+a1r3KllySwXJeJLdv27VW8qsyV3uZ7wrzHiXMYpfpDNGyiFKd9z5Dtx5Dnq2D+ktZdYs+kAZskVm5y/Ts6qkYpOxOBUiw7Gpd0a6IikStVcX0/5ib9oVGkqocTqdRzii7kNVVT7/+c/z+c9/Hr/fr7c0wTwhDCIT0NPTw3/+53/yox/9iEAggL+7gCIqkdPwONPutdL4gTL2P3SUYE96eb0mWXp7JbHxOHsfTM8NoCPThppUiQylf65E2iNpBwbpbNgZwSBy5zu0DZ94m+qO3W9FkiXCA+kZ3ttwXSlWl8KOn6enQefKtVP3nhL2/KY1PfMclSSh6n6ahw/Q29vLRRddxDe+8Q2WLVumtzLBPJN+O2LBjMnNzeU73/kO+/fv55JLLuGAtJ1X+DvH1FaSapqdPkkw3hU+vhlPw9COA39un0pYTsc8lvBAlMhQDNkiUX5RXtr2XZEUicU3l5O3MqC3lFlTsDqTZR+qTNvvwAgodpllH6okf1Wm3lJmTd7KAItvKk/L9Qi076D8ojxki0RkKJaWxtDk2B95qosDf0nDRrgTUycyHNMOB9JsKqmqSpfaxgbL07y073lWrVrF/v37+etf/yqMIZMg3qImory8nF/84hfs3LmTd777IvbwGq/wBMfUI2ljGEWGYxz4UzuJaBKLQ2HVHTVp16AuPBDVei5IsPjGckrPTc++JXa/jZzFflw56dmnSE2ojBwNpuXmaZLeXcNs/1kziUh6/H6NSCKSZPvPmunbPay3lFkTHogy0h5M25BkV46dnMV+7P707DVUem4ui28sB0nrzZdua5K/ysOqO2pQHDKJSJIDf2onMpwe3iFVVYnVD7HF9yy72Mg5F5zFI488wiOPPEJlZaXe8gQLiAiZMzFbt27lP/7jP/jzn/+MEzcVNJBPadqE0il2mbL1uRz9Rx+xsXhaxlvnr84k2BNO24pO0/t8GKXnh2BhMULInEAfjLL+eEtduHIddG0a0FvKjJh859o8ForPyqb12Z60OZxJSkn6lA4OxXYTZIyGhgbuvfdezjjjDL2lCXQiPXa+gnlhxYoV/OlPf2LLli0THqNNE6F06eExSkSSNP+ti9hYHEmRWP6RKoqasvSWNSO6Ng1MGUNVVxSmXWnuyQ1I6XnHTzjTDgnq3luctqFzrlw7jTeUotjEcr7QKDaZxhtK09ZLmr8qQN17i9P2d7v4pnJKz9M87OlmDGXWZVB1hVY2f6QtmHbGUFFTFss/UoWkSETH4jT/rSstjKGkmqRTbWWb/zl2xDZwwZXr2bBhA3v27BHGkMkRb1DBlGG0detWLrn64rQzjADUpEr7S30MHBwDtHKf6RQPLykSVoeCJKeP5ukMHhqld/dweiaVq1ooZrr2vEpEkshWGWs6l0JPU6weC7JVTouN4MmIBRNaaFOa/m57dw0zeHBUbyWzYmrNT7P31GT7i4GDY7S/1Jc2hmhSShJfMsyr0hPs5jVqamr4zW9+w8MPP8zatWv1lidIAUTInOANbN++nf/4j//gj3/8Iw5clFFLIeVpVa57yW0VxMbi7Pv9Ub2lzIqipiwGD4+lZSW9zNoMRo4G09bAECwsImROMBMsTgVviYuBA+lnCLly7QT+/+3deXgc5Z3g8W8dfXdL3Wrd9+1Dvo05DQZzGDAhXCEJhJAACcMEJslOZubJ7OyT3c3kmAyZ3cBkSJhANsCEQGCSwGAMhMMBAhjjA9+yLcm677ulvmv/aKnVsmV8IKlb6Pd5Htmt6req3n5VXVW/eq8KJy3v9CQ7K2dk4WeKMDl1ds+hEfAiRoQ2GmjSD+ELD3P++efz4IMPsmrVqmRnTaQYqSESx1m+fDnPPvssu3bt4vrPf5pD6ofsyXqbemM/IWNudPY8/HwrTW92AbFhWG2Zc6dJi6orZC9zk17iSHZWTptqUqm8Jp+8NXNzxK2yDbnknzu3ml2Os2dbZLS5WaRZ1PiEk3NN/rleyjbkJjsbZyRvTQaV1+THJiWeY9JLHWQvc6Pqc6dWyJZpweI2AdD0ZheHn29Nco5OTcgI0l/ZzPvOV6hVd7Hxhqt54YUXePvttyUYElOSGiJxUnV1dfz4xz/m0UcfRdd1MobzKKYaq2JLdtZOScXGPNzlLj7419o50zQksYNw5uI0BhpHCA2Hk5yrU2NJN8XmnzCI9U2YI2UOULI+m8BgeM6159dtGud8ayGHX2ilY3tfsrNzWuZqDVHOKg+VG/N57/4Dc642NPesDCxpOkdf60x2Vk7d+LlEAYvLNGfmuDE5ddKL7XTvGwTm2OAPCqy+t5r+I0Mc2dSW7NycEjUjSn3oIO1GI36/n7PPPpuHHnqIpUuXJjtrIsVJQCROWUdHBw888AA//elPGRkZIStUQAkLcCipPRCAoilY3SZGe4KY7Bq5qzNoebebaCj1D31VV1h9bzXt23tp+lNXsrNzWhw5VqpvKGT/U41zbhjZuchVaGO41Y8RTf3jOtFcDYgUVcGZb2WoeTTZWfnEs2aYWfTZYmr/szk2x80cUnRRFjmrPGz/10NEw6n/3VRNCgXnZtL+QS+hkQi2TAv+3mDKn1dGjGGOcpB2rRFd1/nGN77B17/+dfLy8pKdNTFHzL06Z5E0OTk5fO9736OxsZHvfe97RHP9vKu8zC7jHfqNblI1tjYiRmzeH8BVZCdvTQaqPjcO/WjYYMfPD9P8VjcA6WUOdJuW5FydmqAvzHDLKMGhuVGzlSj/XC8VG/OTnY3TMtQ8mvI3LZ8kRtSYc8FQxTX55J8z95qEhobHziW+uXEu0W0a6WWxJs/Nb3Wz8+dH5kQwBKDqKnlnZ+AqsgMw2h1I6fNKwDtEc+Ue3lVfJpwzwr333svBgwf54Q9/KMGQOC1SQyTOmN/v5/HHH+f++++ntraWNDwUU0U2hSk9l5GqK0TDBqqusOizxTS81oGvLfWfOiqqwur7qujeN0jDK+3Jzs5pMTt17DlW+o8MJzsrpyR7uRub1zy3mhQB5VflEegPzqlO23OxhqjgPC+WdDN1m+dGM6JxJeuzGe0J0rmrP9lZOSWeSie+dj/BOdJceFzZFbl4F6XxwYOHUjqYGOfIs1K6Pof9TzXGr40pHcBpUYaze9jXuptBevF6vdx111185zvfwWabG035RepJ3btWkfKsVitf+cpX2L9/Py+88ALnXH4We9jK22yi3thP0EjNEdLGT/S6XQdFibf/162pXfNiRA0+fKSOpi2xm3RngQ3NOje+wvnneqncmD9nhpjt3NU/54IhgLA/MucmJ56LIsEo4cDc6jcEcPS1zjkTDCmaQsXV+XNmkBPdquEsiN2MN77RyYeP1KV8MDR+zQuPRkBRYtdESNlgKGQEaTAO8K7lFd5t3cKqi5fx3HPP0dnZyQ9/+EMJhsTHIjVEYlrt2bOHn/zkJzz++OMoioLXn0cRVTiVtGRn7aRW/kUlfYeHaPhjR7KzckpWfa2KwaYRDj/XkuysnJwSqyUKDoVT/+ljgowFLorWZrH7sfo50edsLpqLNURziWpSWfrFUpre7JozQ1WPnyPMLj1WOzQHvnqV1xaQVmRn+08PJTsrp6T08hw8FS52/OxwsrNyUj5jkJHFXRw4sg+A6667jptvvpkbbrghyTkTnyRz4/GymDOWLFnCv//7v9PU1MQ//MM/EM3z8y4vs8N4k26jDd2h4alyxScgdeRacRVOPNXxVDrjQ3zq9lja8SFK7dkW0ort8bTucifWDHMsrXUs7dhQrLZMy6Rhq9PLHNi8sbSaRcVT5YoPUWzzmkkvc3D0tQ669g6QVmIno9qFI9eKaoqlHe+3Y/WYcVc449tNK7LHh95VdQVPlQuTPZbW4jbhqZxI6yq04ci1ArHmb54qV3wyTUuaCU/VxOAUznwbzjzrRLlUueIT4pldOp4qF3seq+foq+048qxkL0uPv++pcmJJj5Whaby8x2pmHDnWeNtwAHeFE6tnrAxtx5R31rHl7YiXt2YdK0NzQnmXJpR3qSM+1LlmVvFUuoiEYjUXi28pYfEtJRNlWGLHnjVWhiblI8vbVWTHkTNWhtpYGTrGyjvdhKcqIW3BRHmjjJXhWHmbpyrv/ITjsMqFOS02EMdITwB3hYvxVqAfdcya7MeXd9rJytuUUN4lE2mnPGbNCcfsCcrbkm6iaF1W/OmvNcOMu3wibVrx8ces/lHHbM4xx6xDTyjvhDIsSDhmlamPWcYqCJ151vjTdACTQ8eSNlaGTj1lzxEQ+355qp0Jx2zqniNiI7MZBIZC8eNs/DOk3DmiyoVmVam8toDFny8hvcwR639opO45wpEf+36YnDoD9cPsfTw2P0+qniMyFqZhy7SgmVUCA2Ga34oN1JOK5whHrgXTqgA7jLd4h5epazrM9ddfT2NjI7/5zW8kGBLTTgIiMSOysrL47//9v9PQ0MDjjz9OyaoCdvI2bwY20VfcRMQcGzK14NxMSi+dmA9j4WeK8C6I1SY5c23U3FISr8bPW+OlbMNEJ8nqGwrJXJwOgC3LQs0tJVjSYmlzV3mo2DiRtupTBWQvdwOxC2jNLSXxC3fWMjdV1xbQWzuEr81PxdX5lKzPofr6QswunZpbSuIX48zFaSy4oTC+3bINueSfHWvSods0am4pwZEXuxBmVLtYeHNxPG3J+hwKzssEQDUr1NxSEr8Quiuc1CQECcXrsii6MBuIXWRqbikhvSx2EUordlBzSwlhf5SQL0LhBVmUXZlP5TUFACz6bEn8guUqsMfKcOzGLv8cL2WX5UyU901FeBfGLliOXCs1t5TEb8Byz8qg/MqEMryukKwlsfK2e8fKe+ymKmeFm8prJgYhqLwmP17eFreJmltKsGXEyjDoC0+6sai4Mo/cs2LzFpmdsbTjF1jvQhcLbyyaKO/Lc8kb6xSuW2Pl7cyPlaGnysWiz06Ud/ElORReECtvzaTGynvs5s1dFivD8SCn6MIsii/Kiv2iQM0tJbjLHYx2B+g9OMTizxajjQUYBednUnLJRBku+mwxGWMXfWd+7Jg1jd2s5Z2dQekVE8f3ghsK8S6KHd/27FgZml2xMsxd7aHiqokyrP50IVlLY2Voyxg7ZsdulLKXe6j8VMFEGW7MJ2elJ7bPc7yUXJyDPWfsmK1Jp/r6iWO2fEMeeWPlbXLEjm9n7nh5p7HgponyLr1sYl4mzRIrw/EbPXeFk8WfSzi+L86mcG2sDFVt7JgdCzjSS8fLO3a3U7g2i+J12fF10wrtuMeO2bTCWBmOByOpdI5QNIUFNxRR9akCclbFyjuVzxGaRSMaNjCikLNyYm6wVD5HdO8ZIOgLU33dRBmm6jmi+tp8yq/MI63IzoIbiggHYg99UvUcUfWpfArO82JOM1FxVR7+/thgQ6l0jggpQY4atWwZ2cSLHzxP1kI3v/rVr+jq6uLJJ58kO3vivCHEdJImc2JWGIbBu+++y09/+lOeeeYZADyBHIrNlXjUTCJjFxKTXSMSjBINGyiagm5VCY1EwIg9RVS0iT4/JrtGJBQlGjJQVAXdduK0ul0jGjKIhqIoauzGJDwawYjGnvCqJoXwyFham4YRNdCtGoHBEI5cC0Vrs6l7sY1wIIJmGtvPeNqIEeu3ocTyFPZHMSKxjqmaRSXkm+ijZBjGxGd1nDitZlXBYFLaSOCYchlPa1HRrCqKoRAYDJFWbCMaMhhu80+ZVlEUwv4pyvAk5T25DE9S3gnl8lHlXXxxNv11w/ja/ZPLcDSKETVQTcrk8k4sw5OU91RleMK0FhUUiPinLm9nvpWFNxVz4OlGRroDH5n2uDJUT1DeH+OY/ajy1qwqZqeOvzc0VoZTHN8nOmY/qrw/xjH7UeW96HPFqJoS79B9SsdsEs8Ruk1DM6uERyOndswm6RzhLrNT+alC9jxWH2t2drJjNonnCEeelawl6Rx9tePE5+RjyzBJ5whLmgkjCuHRMJpFI+QLEw0bx5VhKpwjzOkmStZlU/9KO5FgFLNTj52/OLYMk3uOiISiDGl9DJd3UFt/EFVVue6667j00ku588470bTU7t8rPhkkIBKzrru7m1/+8pf8/Oc/58iRIzhJp5BycilGV0zJzt5xXEV2yi7PZc/jsX4kJodOKIWHf62+rhB7joWdPz+S7Kx8JNWksuzLZbS+15PyHb0VFUouzaH5re65MwnnHJkUd071IZojZQqxm9rCtZnxICOVZa9wk3+2lw9/WU80lNqZXXF3BSMdfmp/n7p9N8evUapJZcltpdS/0s5Q00iys3WcqClCeOEAu/btYCDcR05ODpdccgkPPPAAWVlZyc6emGckIBJJE41GeeWVV3jooYd4/vnncTgcpA9lUUgFTiU92dmbkmZWOesb1TS+3knb+73Jzs6UFFXB7NIJDISwpJtIK7bTtXsg2dmakqIq8ZGY0sscDDT4Uv6Gc9LT0xRlSTex9EtlHPzP5pS8EUo0VwKitCI71TcUsvv/1RMYCCU7Oyd0bI1DylJizaQG6n2xXxPOBakma2k6g40j8XNqcCicsnnNW5NB8SXZbPu/tSl7jgqlj3Ck/yCDaV0MDQ2xZs0a/uf//J9s2LABVZWeHCI55MgTSaOqKhs2bOD3v/89DQ0NfOMb3yCSN8q7vMJW4zVajDrCRmrdeESCUQ4/30rPgUEg1kbaXe48yVqzy4ga8Ru2zMVplF6WO6lDdSoZv6mwpJuoubWU7LH28KlsyRdKKb8qtSf8CwyE6N47kNI1mXNN0Beme+9ASgdDEJuLqua20mRn46Syl7qpuXWij1GqBhiqSaH0slwyF8f69QQGQimXV3e5Mz6wRM+BQQ4/35pywVDYCNFi1LPX+2e29G8ilDPMfffdx86dO3nvvfe46qqrJBgSSSU1RCKlhEIhnnvuOR599FE2b96MxWLBPZpNPqW4yURRUuvGvvqGQjRdZf/TsafbikrKNU8Zb1eu2zQKzs+k+a2ueBvuVOLIteJrj02Qq5nVlLugj0svdeDvDxLoT+0b47lirtQQzRVWjxlLuilW25qCEr/bid/5VKJZVArXZtHydjdhfyR+Dk0lideaRZ8tJhKKUvufzcnN1DEMw6Bf7SawoJdDdbUEg0EuvPBCLrroIr797W9jt9tPvhEhZokERCJltbS08Nhjj/Hoo49y+PBhbDjIp5Q8SrAqqXMiHb/Ap5c6qL6ukF2P1hEcTL2bZXeFk6prC9j588PxDrGpyJFjZentZez9dQNDzaPJzs4JKZpCWpE9ZW88ITa8ssmh07mzP9lZOaG5EBBlr3ATGg7Td3g42Vk5ofRSB4NNIxiR1L2kuwpt1NxSyu5f1ePrSL1AaJzJobHiq5Uceq6F/iOp9zc3p5lYfkc5tb9rZuCoL+UeIBnpYYZyO9h9YDejDOP1ernqqqv4/ve/T1FR0ck3IEQSSP2kSFkFBQV8+9vfpra2li1btnDz7TfRZq/nz+pmdhhv0mE0EzWSf2M/fiEKDIbo/LAvHgxlLXPH51hIBf1Hhtn2k1pCIxFUXaHmC6W4ClJvZu/RngDN73Qz3Ja6N0wQa6u/6HPF8fk5UpG73BkfolqcOe+CtElz3aQa3a6x+PPF5K3JOHniJBpu89PyTjejPYFkZ+U4rgIbNV8oRdUVQr4I235Sm1LBkNmlk7U01rc2OHatCQzFrjUpEQyZDPpc7eww3uL1wefYfvh9rrrhCl5//XU6Ozt5/PHHJRgSKU1qiMScMjg4yNNPP82jjz7KO++8Q0ZGBvZeN7kUk443ZZrUjQ++cPTVDto/6Eu50anMTp3Kawuo29yGvzeYsh2aLW4TC28qovZ3zYz2BJOdnckUsGdaGOlKvZu7canYhPNYc6GGCFK/LO1ZltiQyin2NbZ5zVRfX8iBZ5pSspnp+LnPmmGm/Mo8Dj/XEhumPFWMXTtyz8qg5JJstv0kdQZLMAyDQXppo5FeexsjIyOcc8453H777WzYsIHy8vJkZ1GIUyYBkZiz9u/fzy9/+UuefPJJmpubseEglyJyKcahJP+puGZWiUYMjIhB6WU52LMs7HsyNW/6lt9VTve+QVr+3J3srExicZsouzyXQ8+1pGS/p3FF67Lo2TeYssGRLdPCaHdq5i3VA6JULjt7lgXvojSa/tSV7KyckGZRqbq2gPpX2lMuICo4P5PMxWns+kVdsrMypcWfL8bXGeDoqx0omoKqKSkRDPmMIQazO2gNHaWvr4/8/HzWrVvHrbfeysaNG5OdPSHOiDSZE3PWokWL+NGPfsTRo0d5/fXXufWuz9Ob3sY7vEzvyjqOGrUEjOT1QYkEo/H2/AMNPnoODgGg6goFF2SiW1OkqZUCnbv6GWyM9YWxpJswpUgzsEB/iAO/bSISiKLbNKquLUiZvI1TTQreBWm4ilKnX1sie7aF1V+rwlOZuk2+UpWn0snqr1Vhz7YkOytTchXZ8S5MS7lRJE322HdVt8Um3jzw29SpHTLZtfjIdoONvtgcaClSfLpVo+CCTFQ9lqHe2iEGj8bOy8ke6j9g+BlZ1EFDxU7e4SUaR4+wYMECfv3rX9PY2Mivf/1rCYbEnCY1ROITxe/3s2nTJp544gleeOEFwuEwl156KS2v9JFNQUpM/JpWbKfm1hK2P3SYQH8o5TrELrixCJvXzM6HU2tiV2eBjepPF7D7sQZCqdSkhclzqKRi80NPlTM2IEBqZQtI8RoiJRYU9R1Knb4kkPrHm9mps+SLpdT+oYXhltQaGGXFVysY7Qly8NmmZGclbvwaYPWYWfkXFex94iiDqTB/mC1KtHoIxRvl9ddfR1EUampq+B//43+wceNGbLbU64MqxJmSgEh8YvX19fHss8/yxBNPsGXLFqxWK9dccw0Hnmkikzx0JXkDHqgmhWgo9tVb8dUK+uuGafhjR9Lyk0i3aljcJnzt/lhH3iXptG7tTanRq1RdoWhddsoNIe5dnEbJxdl8+Mv6lBumN1WldECUgnSbxrIvl3H09U569g8mOztx40NVN23pJBpOnXOFoinkn51B154BgkNhHLlWAv2hlJm4tvSyHNzlzvgDqMRrQ1LYogw5eyi5OIfnnnsOv9/PihUruOeee7jhhhvIzMxMXt6EmEHSZE58Ynk8Hu666y7eeOMNGhsb+V//639RX1/PHt7jPdtLpF0fpd1oImzMfm1D4gWvcUsn3WM3Nq4iO+VX5yW1CUzYH4nPDZJe4qDg/ExULUXalIxx5FrJWeHG7EydUfwAfG1+eg4OpczNVqL8c7zU3FqS7GzMGTVfKCX/HG+ys3GcsD9Cb+0Qw22pVfNidurkrHDjyLUmOyuTqJpCwfmZpJU4APC1+5P6/VRNCuVX5+EqjNWudO8fpHFLZ/z9ZARDUVOEDqMJ943wp/B/8V7nFg4dOsR3vvMd3n//fXbs2MFXv/pVCYbEJ5rUEIl5p66ujmeeeYbf/va3bNu2DavVylVXXcWh37WM1Rwlr1mdd3Ea+Wu87P5VPQDpZQ6GmkeS+sRw/ImlalJZ8ZVy6ja30V+X/Ll3VF2JPYlWoPCCLNq29qRU00NHjpXAYChlaorcFU6c+Taa3+pKqaZzKVlDpEDh2iyGW0dTZuhl3aZhSTOl1Pw9mlkl72wvzW/Hjqn4dzLJ3OUOyq/MY+e/1xENRZNe66KaFFyFdgbqY+fNpbeX0bq1J6k1fGEjTDdtFGxw8+qrrxIOh1m9ejXr1q3j2muvZd26dUnLmxDJIAGRmNcaGhriwdHWrVtRUfGSSzaFZCU5ONKtGmd/awF1m9tp39ab9L4Cuk2jZH0OzW92ERgMYc+2EOgPJT0IceTGJnLd83gDw60p8tRcgVV/WcVgo4/Dz7cmOzcpLSUDohRUeW0BaUV2tv/boZQJaJ35NpbcNjbRantyAzXNrGJJNzHSFcCSZqLwwiyOvtaR1AcS4+fs3LMyKL8yl633H0xq7VTYCNFNG/6SPhqa6wlHwpx11llUVlZy7733csEFFyQtb0IkmwREQow5evRoPDh67733UFHxkE0W+WSRh0WZ/Q6kFreJ8EiESDBKyfps0ood7P5/9bOej6msuLuC0e4AB59tTnZWJg1MUXhBJh07+giNJLdmxpphJuQLp1QfJxQoOC+T4bbR+NPqZEu1gCi9zIEzz0bLO90pE3hArI+OyaHj703ufFwmh0bOCg/Nb8eG6E+VQWEW3FiIzWtJmcFgln6pjIGjPhpf70Qzq+h2LSkj7QUMP0OeboYzeqirO0LUiFJdXc2aNWv47ne/S1lZ2aznSYhUJH2IhBhTUlLCX//1X/Puu+9y9OhR7v+X+1mybgEH2M6bvMBW41Xqjf0MGwPM1nOExBqY/rqxIWKJdRRecGNRUocD3vfroxx9Ldb2Pa14rO+Tnpy+RuNlZEk3UXBeJs785I9+5O8NEglEMTk0ltxWis1rTnaWwIiNmuZMsX4eqcSZa8VT4UyJYMjmNbPktlJMjtjw1ckOhgCceTYKzsuMD12drGBI1WN9cdKKY8PdH32tk31PHk1KXiA2vP2CG4tQxvpbdu7qjz90iASjsxYMGYbBsDHAQHULuzPe4k3+i5197xGJhvnGN79BQ0MDBw8e5IknnpBgSIgEqdUjWYgUUVxczDe/+U2++c1v0tPTw6ZNm3juuef43TO/5wh7seEg08gji3zcZKIqM/9sYaDBx0BD7AJrdulY3Kb4yG9pxXaioSjDbbPXbCU4NDEYhdmlY/da4v0HLG5Tcp6GDoTY9sDETO6FF2bRd2gouc15FAXDACP5D9EB2PN4Q0rc7Keqlnd6aHm3J9nZAGLHjGEASnIHNXHkWvFUuWh+s4u+w8OTvmOzbfzcEg0b2L2W+MAq/r7ZDxadeVZUXWWwaQQjYmBxmzC7dAL9ITp29M1aPqJGlIBnEH9BP/v3HWAkOozpiIlFixfxo3/5J66++moZEEGIk5Amc0KcBr/fzxtvvMEf/vAHnnvuOVpbW9ExkUkuWeTjJTcp/Y4Wf64YFNj3ZKzZkTXDnLSnyRa3ibPuq+bAb5voOZC8TsOqSWX5neW0vNMdr1lLNlVXcOTZGEqBOUa8i9PoPTCU9DlsUqXJnKIqZCx00bMv+UNZu4rs+NpGU2KAAoDs5W4Kzstk1yOxQQqSxbsojYU3FbHtgVoCA8mZ6DXx3Lr48yUYhpGUYzdshFBqRmnqPUpDWx1hQrhcLi6//HLuuusuLrnkEqxWqQkW4lRJQCTEGTIMg+3bt8eDo127dqGgkI6XTHLxkouTdJTZeLqrgMmmERqJ4Cq0sfzOCnb+4khsUkSF2a0RUMC7MI2+Q0NEwwb553gJByJ07uyfxUyMZUWdqJkpuigLf1+Qrt0Ds56PcQXnZ1J0YRbv/+QgEX/ybixtXjOr/rKK/U810ls7lLR8QOoERBnVLhZ9tpjt/3aI0Z7kNU3TrCprvr6Apje7aPlzd9LykbU0HavHTNOfuoDJ36XZlL3CjW7RaH2vB1VX8FS5Yg9aZvmchhGbHHrFXRXs+sURhlpGMdk1QqORWcmLYRiEPCOEi4fY/+FB+o1uDAzy8vK48847ufbaa1m5ciW6Lg1/hDgTEhAJMU0aGhrYtGkTmzdvZtPzm4gQwYwVLzl4ycVLDiZl5vuRqLqCu8IZu9E1YOFNRYRGIxx5ITmjnVVszCfsj3D01Q5UXcGcZkpK7VXVtQWM9ARoeTt5N5koseG4kz0iF4DVY05KM6NjpUpABKlTJo5ca2x47SRenQsvyMTmtXDouZZZ37c1w0xwMNYsrvSyHDSLypEX2mY9HwAV1+SjWzUOPtMESixw7j8yPCu1dyEjiFLjp7nrKI2dRwnix2Qycd5553HzzTdz2WWXsWDBghnPhxDzgQREQsyAQCDA22+/zebNm9m8eTO7d+8GIJ2MeHCURsas1B5l1qRjRAx6DgxicZuo3JjP4Rdak9LHJ3uFm6pPFbD1Xw4S8s3+hLjjCi/IxFlg48DTTUnLQ+llOZidOrW/n/0bzkT2bAsjnYGk7T8VAqJklwFA9XUFBIfDNPyxI2l5WHRzMYMtI0l9aGBy6Jz93xZw6PmWpNQqx8+R/9VKYCCEd2EaiqbQvXfma5YNwyCSPcJozgAHdh9ggF4A8vLyuPXWW7niiis466yz8Hg8M54XIeYbqVsVYgZYLBbWr1/P+vXr+dGPfkRzczMvvfQSmzdv5vfP/IE69mHCTIaRg5ccMsjGqthnJC+JF3LdqgEQ8sWGpM4/x0toJDxrzci6dg8QGAjFg6HFnyumY2f/rPc1GumefPNrsmuzPkz3cOsoJmdyT8HuCidLvlDKjp8dTqkJP2eTI9fKyrsr2fN4A/11yZuEdah1lNDw7D8kSDz2h1pHGO2e/cDQuyiN7OVu9v+mkZAvzJ4nGhhsnL1+dlnL3JhssWZ54+dG3aYRGAjN+LnJb4ygLw/S0NxAS08joc4glgEL669azw033MBFF11EdXX1jOZBCCE1RELMunA4zHvvvRevPdq2bRsAdpx4yMZDFhlkYVZmvkNs1bUFBH1hjr7agWZVyV2VQceOvlmZzFDVFSquzqdzd2x4WkeuFbNLp+/Q7N6UZi1zU3F1Hh88WBu/GZptOSvc+PtCDByd/bmBPJVO+g4nLxBIhRqiZJVBeokDi8eUlJoQiM0ptPq+ao680Drrfes8VU6Cg2F8HX7SyxxkL3VzZFPrrDRF020aOSs9tH/QSyQQpeTSHMwOfVaaBwaNAJHiYYZsvRw+eIQRYsddcXExt912G5dddhlr1qzB4XDMeF6EEBMkIBIiybq7u9myZQuvvfYar732GgcOHADAQRoZZI8FSZkz3v8ovcTB4luK+eDBQwSHw6SXOQj7I/hmaSjv0styyKh2sf3fDgOxm5bZCMx0q0bGQlf8pjR7uZue/YOzOqzw4ltKGO0JUP9S+6zt81gmh56UZozJDIiS9ZnHlW3Ixea1sO/Xszd/jmZW8S5Ki4+8mL3CTe+BIcL+WfiuJXynV32tit6Dg7PWRNCRZ0W3agzU+zC7dFbfW8W+XzfO+EOIkBFkQO9BXein7kg9/aOxZnCZmZlcd911bNiwgXPPPZfCwsIZzYcQ4qNJQCREimltbeWNN96IB0j19fUApOEZqz3Kxk0mmjL9za0UTYnPbbT09jICgyFqf9eMoilkVLnoOzJENDRzp4zxGyazS+esr1ez/6km+g7N3ihoFreJ1V+r4sAzTfQenMXR15TYVDNGNDanlK/TP6uj0HmqnCz8TDE7f3541kdYS1ZAZPOaWXF3JQeebpzV2iHdqmHPtjDYOBIbuc1gVgdPyFjgYuFNRXzw00Oz2o8wo9rFwpuL2PaTWoJD4Rl/4KGaFDwVLnprY0PLV19fiCXNxO5fxc6niee66RQxwvTTTbR8hI7hNto7Y4NBuN1u1qxZw+233866deskABIixUhAJESKq6+v5/XXX48HSG1tbSgopJGBGy9uMknHi1mxTO+OldjNW3g0QlqxnWVfLo/3NbFnW4gEojM2F4hqUsiqSad7/yCRQJSii7LQbdqs1KCYnHq8L0fp5bmM9gTo2D47kywqKqy+t5re2kHqNs9ebZGiKWQvd8cmk5zlK0LSaogUyFnpoXNX/4zcGJ9I+ZV5ZFS7+OBfa2dtGOucVR5sXgsNr8SOqcRjfCaVbcglPBqh6U9daBaVzEVpdO0dmLGHKpZ0E5pFZaQzgCPHysq/qOTDX9Yx2DgSC8D80z9EdlAJMBDtwefsx+8eorWlhagRxePxUF5ezt13381ll11GWVnZ9O5YCDGtJCASYg4xDIODBw/y2muv8ac//Ym33nqLlpZYu3cHrnhw5CYTG45pHcVufIZ4gJpbSwDY+x+xpj7ucieDjb4Za/+fe1YGukWl+e1uVF2haF02bVt7CA7N7E1dxdV5+Dr8tH/Qh2ZRUXVlxvsZWdJMhP0RIsForMwHQrMapMxWU8VxyQiIZvszosRu1gP9ITSzim7VCAzObO2MyaERDRtEAlFyz8rAkW3hyKaZHbra7NLJO9tL05ZOomGDwgsyCQeitG/rnZH9qbpCWrEjPhhGzRdKMaJGvAli4jlrOhiGgZIZprW7lQG68WcM0dMbG5EvPz+f7OxsrrrqKm677TYWLlw4O3PQCSGmhQREQsxhhmHQ2NjIW2+9Ff/Zs2cPAGas8RokN16cuFEVdVr2q5lVTA4df18Qe5aFVX9Zxe7H6hmo92HPsoDCjA1j7MyzUnNrKTt/cYRAfwhXoY3waGTGm3oVr8smb00GW//PwVmpUVA0hbP+qpqu3f2z1s/CVWBjyRfL2P2reoZbR2dln7MdEDnzbSy9vYw9j9Uz1DI7n7H0shyylrjZ9mDtrB07Z/+3BbRt7aVxS+eM7svmNaPbNIaaR7F6zCy/s5w9/9EwY30P7dkWMGCkK0B6mYOlXyxj+78dYqQrgNVjJuQLT1v/v6gRRS8P0z7QRntPK0PmPkaDsdHvampqKC0tpaamhnvuuYeSkhIJgISYwyQgEuITpq+vj3feeSceIG3dupVAIICGNtbMLpN0MkgjY9qa2dkyLfj7ghgRg6pPF+DIsbLz4SNArO/AYNPI9D6RH5s5HmDJF0sJ+yPxOYVsXvOMBEeaVcWVb6O/zoeiKlRszKPlz90zGoilFdvx9wUJDoVnp5mTAvlne2nb1jtrzchmOyBSNIW8szJo3doz4zVv438zs0vH6jHP6FDSNq+ZgvMzOfJCG0bUwF3uYKh1dEb6oiV+xxbdXIxmVdnzWEPszYTv5nTQbRppRfbYRNPAiq9W4Ovwc+gPLSiagtVjnrahwoNGAEr8jDqHOLK3jgF6iBBB13XOO+88Vq9eTUZGBrfffjvFxcXTsk8hRGqQgEiIT7hAIMD27dvjAdLbb79NT08PAFbs8eAoDQ8uPOgfc7AGRVOwpJnw9wXR7Rrn/s0iDjzbRPeeAezZFuyZFrr3Td/cHoqmYLJpBIfDE32dHj6Mr82PZlZnZLQ4a4aZxZ8rZv/TTYx2B7C4TQSHwjMXRCiw8i8qGaj3Ubd5Zps9jZutfiazGRDN5qhy5VflkV7qYMfPDs9Y4KVoCmaXTqA/hC3TwqKbi9j3m0b8vTPwQGDsu+TMs7Liq5V8+Ggdg00jmF06oZHI9B37CmQuSmOkO8BIZ4CsJelU31DIe/cfIDwSweoxExgMfez9RYwwg/Thsw6gFAdoamhmOBgLuux2O+vXr+fCCy+ktLSUyy+/XCZDFeITTgIiIeYZwzCor6/n/fffZ+vWrWzdupXt27czMhJ7eu0gbSxI8pBGBk7SP1ZTO5NDIxI0iIaiFK7NIu+sDN7/vweB2MSwQy0jDDVPT9MlRVNwlzvjI9Mt+lwx0VCUg882jyVgRm5Ol91RTnAoxIHfNk3/xseklzoIDocZ7Q5M/03oMUx2jdX3VtPwWseM9f8YN1sBUd6aDIovyWb7vx6asUl4FU3BZNcIDoWxZVowO3UGGmZuWOeFnynC7DLx4aN107/xhO/KghuLUHWF/U/F/kaeKhf9dcPTdvy5Cm24Cuy0vhd7ULPmmwtoe7+X5re6UE0qmvnj9d2LKlG0kjBNDc0MGr0EM3z09HVjGAY2m42cnBzOPvtsrr/+elatWkVFRQWapk3LZxNCzA0SEAkhCIfD7Nu3b1KQtHv3biKRCCoqLtzxWqQ0PNhxnXF7+cRam5X3VNKxvY/W93qwZ1nIPSuDo693TFszn/QyB4oC/XU+bF4zy+4sZ89jDfjap7d/gzXDjGZS8XX4cebbKF6XTe0fmgnP0I33kttKiYaj7Hty5oKIzCXp9B0aIhKY2aHQZisg0iwqnioX3XtmbgLSxZ8vRtVV9jzeMCPb1+0a1Z8upHFLJ8OtozhyrERC0WmvEXLkWlnyxVJ2/aIOf28Qd7kDw4CB+ukJ7jSrSsklObRv62WkK0D+OV5yVnpitWnwsWp2DcNghGGsKwxaW1to72xjWB0gEo2gaRpLly4lLy+PsrIy7r77bhYvXoyuT/8UBkKIuUXOAkIIdF1n2bJlLFu2jDvvvBOAkZERdu7cGQ+S3n//ffYeeh8AFQ2nkYYLN07S4//riumk+0q80dnx0OH4a0u6ifRiO9Gx98uvyiPkC9P0p65YgjOo3Um8gYsEo7Rt7Y33Nyi/Kg9FUzjyX62nt9EpJN6QqrqCETXifaaylqQz1DKKv2/6blqPvNiGZo7V2pldOqquTuv2gXjgYLJr6HZ92vppzDZbpoXwSJjQSGRGgiGrx0w0HCU4FKZxS9e0N9G0esw4C2x07xkgPBrBiBqoeuxhhK9j+gL7imvyMSIGdS+2MdodoG1rL9FQ7LP0151hIJTwnS26KAuTQ6fuxTaiQYP0Ege9tUOMdAVofa8nXjsEnHoZWiIMRAYYDPVBQYDBcD8dHR1EicBOyM7OZuMtV7Js2TIyMjK48cYbycjIOLPPIoT4RJMaIiHEKevt7WXnzp3s3LmTXbt2sWvXLvbt20coFBva1oYjIUBy4yIdK/Yzqk0qvCCT0GiEju19WNJNrPrLSvY8cZShphHMTp1oxPhYAzVkL3ejqAodO/rQ7Ror767k4DNNDDZNX8d3RVVY841qWt7ppuWdHjSrioISmw9lmlRcnYen0sW2B2tnpDngos8WY3bp7PrFDDTLYuZriJbfVU5wKBxv7jWtFDjrvmr6Dg9N65DWulXDwCDij1Jwnpf88zLZ9n9rMaLT9wdOK7az4MYidvzsMOHRCDkrPRgRg84P+8883zYNVVMIDodxFdlZ8oUStv/0MIHBEDmrPJhsGs1vd5/2dg3DwM8IpqoIff5eWpva8GkDjERiw23ruk5xcTEZGRncfPPNrFq1ipqaGnJzc8/4swgh5hcJiIQQH0swGGT//v3xAGk8WBofuEHHNKkWyUU6DtLQTmPwBpNdI3uFh44dfYRHI5RflYe73Mn2nx4CIHuFm6GmkTMe8c3k1Ck4z0vLOz2EhsOUrM/GkWONN0lTVOWMb0ZVXQEFoiGDwguzKDwvk/fuPzBtN7eqrmDzWvB1+NGtGjkr3bS93zttc0KZHDqqSZnW+VwSzXRAZHGbiIaMaRtMQdUV8tZk0LGjn7A/giPHymhPYNrKW1EVzvnWQpr/3D3Wh0bBiHLG/XUSj93Fny9muN1P4+udxx3zZ8LmNeMqtNO5qx+AVV+rov/IMHWb29BtWmzi2519p9VnS7FF8TFM30gP0Ww/o+YhWpvbCBM7/ux2O+eeey7Lli0jEolwzTXXcPHFF2M2m8/oMwghBEhAJISYAYZh0NraOilA2rVrF7W1tYyfcmw4cJAW/3GShgPXKQVKljQT5jSdoebR2A3k3yyk/pV2Orb34Sywkbc6g7rNbWfcfMlT5cLqNtH2fi+KFrtBPfJCK117BtDMKkbUOKMbYJNDw5Fro//IMCiw+t4qjr7eOW1NubwL06i6toBtD9ZO+8Sjqq5Qsj6Hpje7pnXbMxEQ6TaNoguzOPpax7RPFqzbNc66r5pDf2ih58D0jJaYuSSdkkuy+eBfD4EB7gonvvbRMxpIQNUVFFUhEoyStSSdio35sQA8YpC3JgN/fyg+6Mjp0swq5Vfm0fZBL8Mto+Ss8lB2eS7v/XMswHcV2ggOhk9p0tmIEcbHEKbKKCPKIE2HWvExyCix5nmKolBSUkJ6ejobN27k/PPPp6KigqqqKhnwQAgx7SQgEkLMmpGREfbs2cPevXvZu3cv+/btY+/evTQ2TtwMxwIlF3Zc8f/tuDBjOXHTO2XsSXjEwF3hpOjCLHb/v3og9lQ8MBjiyAttoIC7zMlQ88gpB0uqSSFnhYe+I8P4e4Pkn+uleF027/5oPxixDuj+/uBpDwShmhQKzsukZ/8gI10Bspamk1GdxsFnP95IdeMd0hVNYfkd5Rx9o/OMb4ATWTPMLLmtlIP/2czQNDYrnImAyFVkZ8ENhex5vGFaBhzwVLkouTibXY/WYUSMaRnOfcGNRfTWDtK1ewB7lgXvojRa3ukmGjq9S7JmVbG6zbGBQhQ4928X0bilk9Z3e7BmmPFUOOnY2XfK29XMKq5CO/31w2BAxcY8LC4T+8b+Pku/VEbTm130HxlG0cZqn06wacMwCBHAXGXQN9BHV2cXYZefEW2I/v7+eDq32825555LTU0NABdccAFXXHEFDofjtMpCCCHOlAREQoikGxoaYv/+/ZOCpIMHD9LQ0EA0Grvx1DElBEnO+Gsbjo+sVcpckk40GKW3dghbpoXVX6ti96/qGWjw4aly4sq307il85TzanGbcOba4rUDa/7bAjp39XP01Q5MDp2MahfdewdO+4bZuygNd5kj3hel8lP5dH7Yz+DRMws+NItK6WW5tL4bmzzWkWslPBohMHDmTd8Sm1/pdm1aRtGbzoAoMU8fp5kjxAb50G0avnY/tkwL+ed4afhj+xmPupde4iBrWTqHn48N4lGxMY/+Oh89+0+vlkkzq2TWpNNbO0TIF6bk0hyyl7l5///EhrL3LkxjuH30tJo4Fl+czVDzCH2Hh0kvc7D0i2V88K+1jPYEyah2oZpUuveeuBYzqkUxlxl0NnUy4B9ALQjjiwzS2d4Vb+qmKAplZWWUlZWhaRpXXHEFa9euZeHChaSnp59WGQghxHSTgEgIkbICgQCHDx/m4MGDHDhwgIMHD8Z/Ep8wm7Fix4kNJ3YcCa+dx418Z/WYCQ6FiIYN8s7OIKPKxd7/OArE+kB07uyj+e1udJuGu9xB36HhjwxurB4z0YhBcDCEp8rF4s8VxyaRHI2Qe1ZsRKvTnctHM6ss+mwxLe9203codpPqXZhG/UvtZ3yTX3NrCYqqTMuQ0AXneSk4P5MP/vXQxx6We7oCIs2isvreaprf7qL13Z6Tr3ASS24rxYga8WPjdCmqQtmGXHoODDJQHwu+C87NZP9TjacdLCceR7pd45y/Xsi+3xyl79Aw5jQTqqZ85CiDmlnFU+Wkv85HeDRC4QWZZC93s/3fYqM81txaQu+hIdq29qLqCmaX6fjt2aIo2SHaGzpjw1pXKfT19dHT3UOAidHu0tPTyc/Px+Vyce2118YDnlWrVskIb0KIlCUBkRBizjEMg66uLg4fPhz/OXLkSPx1b+9EAGLCjA0HVhzYsI+9tseXacpEf4Tc1R58HX6GmkdxVzhZ8oVStv6fgwQHQxRckInZqVP/Ujsw1lSuN3jcza1qUuLNk8o25IIB9S+3o5pUzvqrKmp/30L/keHTGqwga0k62Ss87H2iAYDyq/MYqBum58CpN4VTTQomh06gP4Qzz0r1DUXsfaLhjGqMdJuGp9JJ1+6P3/dpOmuIspam03d4+Iz6OFncJmpuLeXgfzbha/NjcZsI+cKn1YTNuzCN9HIHdWO1fDVfKKVjZ98p9RFLHPzBXeGk+roCtj1QSzRkTDqOYPIxNk4zq1gzzPE5tso25BIcDtPydjeWNBNrvrmAPU800H9kGFehDUeOlfYP+uLrR4wIeoGBHx9dLd0EzaOYSxW6mrsZHBkgxESAlJGRQVpaGnl5eVx22WWUlZWhqioXXXQRpaWlZzxHmRBCJIvMQySEmHMURSE7O5vs7GzOP//8497v7e2NB0hHjhyhoaGBhoYG6uvrOdy4m3B4YlQts2HFhh0rDg5ts2HBjhUbg4ft9PxTH+qojqIoRAJRInos+FFUWPGVCo682Eb7tl5cBTbyzvZy5IVWIsEoZpdOJBiNB08Aigbt2/rifVpyV3koOC8z1hcJyD/Xy0hXIDbgwjG69gzQlXBTbXboqKbYPESuIjul63M48NvGjxzNKxoy4sFXJGQwUD8c7/yef66XkU7/Kc83Ex6NxIOh7BVuPBVODv5n84wM+/2RFFhwQyF9h4fp3NV/2gGau9yBPdtK67s9BAZCDNQPxwONUwlUTQ6NhTcV0/BqO0PNo6gmBbNj4rI6HsBOue8KJ/YsS7w2a+XdlbGR5d7swt8bpH1bH4qmQMiIH0eaRUUzqwSHwmhmlYqN+bRt7WGoZZSsZW7Kr8zjz9/bCwZE/NF47Z1/IMiWf9rBaGgY51ITR5qOMtA0gJIZIWwJ0NnSTRA/tMTypus6xYXFhKMq5196LmeffTYZGRmkp6dz+eWXk52dfVrlLIQQqU4CIiHEJ05GRgYZGRmsWbPmuPcikQgtLS3U19fHg6TxgKmpqYmG5n0Eg2NPw0dBQcVq2LC8b8M6FixZojb6H+hEC5jQDDNOkxVLmonI2ESWldfkYxhjtR4KLPxMES1/7qZxS2dspLkcK20f9NJfNxH8eBekoerD9B8Zxp5toeYLpex9vIGRrgCOHCuqWY0PZnDgtxMDLxhRg8BQiNBYrciizxYTHA5z5IVYXxVHrpWRTj9GQkXWaHdg0rw53gVpKJpCf50Ps0snvdRB977BUxrqORKITUo668EQgAHB4fApN0FTNIXMxWkMNPgIDoVx5tlwVzhjQYnBlHMJKSrYs63xmpeKjfmYnTr7n4oFoIGhEOPtLLp2D0wKylxFsYmGfR1+7FkWam4rZe8TDYx0BnDm23CXOeIB0d4nGhjtC+LIsRIcDtG4pRNXoY2C8zNjf28DFlxfCMC+3zQSCUWxpJkwTAZKdoSjRxo4+OABwllBTLmwactW/MYIpIUZ8g0RGa81+3As4Ckvxu12o2kat33xNhYsWIDFYqGiooKVK1ei63J7IISYP6TJnBBCJIhGo3R3d9PU1HTCn7a2tvhktON0TFiwYcGK3erAqtlQfSasJhuV64oY2OMn2G5QdFYulVcVxJ/kl1+ZS9AXofnNLhQVspa4GekOkLHARcvb3USCUSqvLcCRbYlPjlrzhVI6dvTRvXcA3aZhy7Qw3DKKETXIrEkjGjJig0h4zay+t5o9j9fTX+cjrdiOLdNCx/a+qT46AFnL3FRek8/W+w8QCUbxVDkJ9IcY6QqctOwyql3krvJw4NmmU25qdrpN5lSTwsIbi2jf3kdv7cmbDNqzLFjcJvoODaOZVc7+1kIO/1crXR8xAWnOKg+j3QEGG0dwlztZclsp2x6sxd87PsiAQvfeQRRVwVlgY7Q7QHg0QmZNOjkrJ5o2Lr+rHF9ngMPPtaBZVArOz6T34CD2TCudu/vBgMILszDZtVgtkALn//caDm9qputIL6o7iqPSTOveTky5Cm2HOvGHR1EzooyM+hjoG5zUlA1A0zScTicLFy6krKyMSCRCZmYmV1xxBYWFhTgcDqqqqiTgEUKIBHJGFEKIBKqqxpvjrV69eso00WiUnp4e2trajvtpbW2Nv25uq8Pv9/PhH9+dWHkbmD4wYzIsmLFw6H0XZsVK2DCw6XbSKsvo7Rqi9bUW8pZmU3FJER/+9Cgmu07B+ZmEhsP4+wKE/bG+JmanTvV1hbz7z/sJj8QmCtWtGr21Q/j7Qxx9o4PAYKyJYHqpA++CtHhAtOSLpXTvHaD9gz40qxobPW/fAH21Q/Fal7LLc+k7PEz9y+3HTZB7XLlEDIIjkXgwZEk3faxR7RJZ0kwEBkOxfjYjEaInqL06dkLQnJUePJVO+g4dJhKM8v6/HCQajpJe6mC4fZSIP0ruag+ZNenseawBgLyzMug5MMhg4wiBoWCsDMc+h6fSGauN2zuIblVZfkc5B3/XTMgXJuyP/W2yl7kxOXX2/aaR0EiY5feVcvj1ZpqbWgjbg2iVdvq6WtGz4O0DewlG/YSzQ4wGRvnTPz5P0BgLPvuBhrHP1aWTn59PcWEh0WiUtLQ0Lr74YvLy8ujt7WX58uUsW7YMr9eLqqrTUuZCCDFfSA2REELMEMMwGBgYoKuri66uLjo7O+Ovp/rp7OycaK53DA0du82GSbNgDCuYdQv5S7PwNQRRgzppmU7ylmTSv38Us9WExWpFCSqUX1pAy+s9mHQziqJSfkUeO35+GFVVKNuQh78/SN2mNjyVTmpuLWXnw4cZbvNTsDYTi9NE/cttqCaV9FIHqq7GJ34NDYcpOM+LZtVofD02bLlu0+KBkiPXysq7K/nwl3UMNp546PBTqSFKK7az7Mvl7Pj54XjTtcR9FV+STcQfoeWdHsxOndX3VXPouWaiYYOBBh/RUJSyDXkEBkO0vN2NM8/Kiq9Wsvc/Gug7PEzF1XlY3GbqX2ojGjFY+ReVsddECRsh8i/K4MhrLWAyUGxRQsEQlmyNtr3dmLwqg92D6BkqPU39KPYoQ70+gpEAwUiQYHDqmjWTyYTNZqOkpIS8vDz8fj8Oh4O1a9eSlZVFe3s7NTU1LF26FK/Xi8fjkcEKhBBihkhAJIQQKcIwDIaGhujp6aGvr4/+/n76+vriP4m/9/b20tvby8DAQHx54mARU1FQ0DUTJtWELc2KElQx6SYsNisaGmk5TnzNARxZNpQo2DNt9OwdwpFlJb0w1nRuuMWPxWUhsyqN4bYAJotGZMTA4jKTXuSg98AQRBQURSW90EH7+33YPBa81emoikrzlm5Uk4bDa8HXEqDo0iwURaHxj504Ci2EghECAwEK12ZiKAYDzcP0Nw6TtyaDkV4/0UiUcDhCxgInI91+fL1+VDNEMbBlmug5OIh/KIC7yolmURhoGmakN0DGQiejAwGikSghfwhTusZAxzBRwkTVCMFQkFA4xOiQn4gSJhgMcrLLo67rWCwW3G43eXl56LpOIBBg1apV5OTk0N3djd1uZ+3atXg8Hvr6+qisrKSsrAyXyyUBjhBCpAgJiIQQ4hPAMAxGRkbw+Xz4fD6Gh4cn/QwNDcXf6+3tpaenB0VR8Pl8tLa24vf7CYVCjIyMMDg4iKqqhMNhIpEIIyMjKIpCOByO/0QiH39S1pmgaRq6HhsZUFVVdF3HarUSDAax2Wzouo6u64TDYQoLC7HZbAQCAWw2G+Xl5WRkZNDQ0EB1dTUVFRUEg0H6+vo455xz8Hg8jI6Okp6eTmFhIXa7XYIaIYT4BJCASAghxBkJh8P4fD4Mw4gHTgMDA6iqSiAQwO/3MzIyQn9/P06nk87OTqLRKL29vWiahtfrZffu3QAsW7Ys3veqvLwcl8uFqqp0dHSwfPly7HY7bW1tpKWlkZubi91up6WlhZKSEtLT0zEMg2AwGB8SOhqNSl8aIYQQp0QCIiGEEEIIIcS8JY/PhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFsSEAkhhBBCCCHmLQmIhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFsSEAkhhBBCCCHmLQmIhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFt6sjMgxCdRR0cH/f39yc6GEEKITxi3201OTk6ysyHEJ4oEREJMs46ODj5zw2dAS3ZOhBBCfNJYrVYef/xxCYqEmEYSEAkxzfr7+0ED/WAayqgZJd4wVUVRldhLJeH/sdeKqsLY4vhKigLq8WmnWv/ErxO2qcZ/SVg+9kJVJhIrykSD2vF0TGzTSHyfif0Y8W1NLDcS8zG+fmJj3cR8jL02Tvh6YiUj4aMc1/hXSUirJKQlYTvxz8Lx209YhqJgHJPXKdc5bv2Ecklcf4p9Jb4/aRvH5gWOy8ux65zsfU7x/RMu+6g0k943pnzfmDIPxuTtHfdZjOO3r8T2ccL9T9rWFOtjJBzuxkTShLRKwraUY/alKJPXn0h6/PqqYiTswxhbJ7Z8/LWSsBxAxYjnO7b+xLbG9zO+zrHvj+9LZeL/+DKF499XjtlWwuvx/9WEdRSi8W2NL1OVaELa8eXRePloTORbG0s7vh9NMVDGlmkJedUS9hVfXzHQSNhXPK/RhLyMrx+d2McJ1hnP4/gpRFWiU+Y1sSxVEvKXkNfx7Uwql/h2QRs7SsaPFU0BZew3DWXS61g6BXXstaqoqCgcbdH53oNu+vv7JSASYhpJQCTEDFFGdNQRU0IQpE56DYzfnYwtUhPuho4PiJTEgCYx8ElMO2n5sWmPWf/Y4CohL4aScDc6RZAVD3IS3x+7RYslmFg+casYSzP+9qSAJL79hNfqVMtPsEw9dlsfkTb+vnJ82oQgcMqAKjGYOdHr+PpKwuvj8zU57dSvp3yfk7x/kvVPtv8pg0OO/6xT7Wvy+ycJiI5JO2mfx6U9QUCUuDy+/6kCmlMIiBJfT7G+khC8TLXOxOEyceOuxPNlTFoe307CsvGbbKZYB8VI+AwJAVHi+icIXo5bdsL3pwoYJgIHLWGdxLQQCwYSl02kTViW+PqYIENToqhjhZW4rdhrxl5PBGHjAYOmTAQc2vhpjIn9T95WNGGd8dfRie0m5GUiuInG86ollIlGYv4mB0ST8zw5f+P5nlg2EfBoCcGPpoynUxOWxX4TQswM+XYJIYQQQggh5i0JiIQQQgghhBDzlgREQgghhBBCiHlLAiIhhBBCCCHEvCUBkRBCCCGEEGLekoBICCGEEEIIMW9JQCSEEEIIIYSYtyQgEkIIIYQQQsxbEhAJIYQQQggh5i0JiIQQQgghhBDzlgREQgghhBBCiHlLAiIhhBBCCCHEvKUnOwNCfFIZ9jBRRUWJP3ZQUVQl9lJJ+H/staKqMLY4vpKigHp82qnWP/HrhG2q8V8Slo+9UJWJxIoy8bhkPB0T2zQS32diP8akfY6lndhAwrLxfzjuvfg6USb2pYy/nkhrJHyU47aV8FFIWH/y+8oUaY/7qAkvjkl37DrHrZ9QLlPkKzH/ie8bU+QlcR+TtjXFOid7f6q8TvX+CZd9VJpJ7xtTvm9MmQdj8vaO+yzG8dtXYvs44f4nbWuK9TESDveJA0hJSKskbEs5Zl+KMnn9iaTHr68qRsI+jLF1YsvHXysJy+PbiefF4Liywohvy1AMognvG5PSxP6Pji1TlYnPqDK+zIjv/9jX4/+rCesoY1/O8dOJioGqRBPSji+PxstHG/98GGhjacf3oykGytgyjYmy0hL2FV8/YVtqwmloYp9K/LWGgjKWQounM1DHClNVlInX8fejU+Y1XlYY8dfH5nV8O5PKJSF/2ti+xv9UmgLK2G+xvE68jqVLyJ+ioqJwtEVu24SYCfLNEmKaRaNRdF0nvGAw2VmZG4xj/p8mU913C/FJMREOxZ8dzEOJEe78afCi6zrR6Pz9qwsxEyQgEmKaqapKOBzmH/7hHygpKUl2doQQQnxCHD16lH/8x39EVedPACjEbJCASIgZUlJSwoIFC5KdDSGEEEII8RHkEYMQQgghhBBi3pKASAghhBBCCDFvSUAkxDTzer186Utfwuv1JjsrQgghPkHk+iLEzFAMw5jmsZ2EEEIIIYQQYm6QGiIhhBBCCCHEvCUBkRBCCCGEEGLekoBICCGEEEIIMW9JQCSEEEIIIYSYtyQgEkIIIYQQQsxberIzIMQnRTAY5JFHHuHll19maGiIiooK7rrrLtasWZPsrAmRcp599lkeeOAB9u/fz+DgIBkZGSxevJh77rmHG2+8MdnZE+KkduzYwde//vUp33vooYeoqamJ/757925+9rOfUVtbi8Ph4JJLLuErX/kKdrv9uHUPHjzIL3/5S3bv3k0wGCQ/P59PfepT3HTTTfE0W7du5bXXXmP//v0cPXqU7Oxsnn766ZPm+eWXX+Yf//EfsdlsvPTSSydMFw6H+fKXv8zRo0e55557+PznP3/SbQsxl0lAJMQ0+cEPfsAbb7zBZz7zGQoLC3nxxRf527/9W37yk5+wbNmyZGdPiJTx0EMP8Zd/+Zfk5eVx/fXX4/V6aW9vZ+vWrfzud7+TgEjMKTfeeCOLFi2atKygoCD++tChQ3zzm9+kpKSEe++9l87OTp566imam5v553/+50nrbd26lW9/+9tUVVVx++23Y7PZaGlpoaura1K6P/7xj7z22mtUV1ef8pxEIyMj/OxnP8Nms5007bPPPktnZ+cpbVeITwIJiISYBvv27ePVV1+d9CRtw4YNfOlLX+Khhx7ioYceSnIOhUgdv/jFLzCbzezcuZPs7OxJ7/X09CQpV0KcmeXLl3PxxRef8P2HH34Yl8vFAw88gMPhACAvL48f/ehHbN26lbPPPhsAn8/H97//fc4991y++93voqon7tXw1a9+lb/9279F13X+7u/+jvr6+pPm87HHHsNut7Ny5UreeuutE6br6+vjV7/6FbfccguPPPLISbcrxCeB9CESYhps2bIFTdO49tpr48ssFgsbN25k7969dHR0JDF3QqQek8mEyWQ6bvmpPu0WIpWMjIwQDoePW+7z+di2bRtXXHFFPBiC2AMzm83G66+/Hl/2xz/+kd7eXr7yla+gqiqjo6NEo9Ep95eZmYmun/oz7aamJn7729/yta99DU3TPjLtz3/+c4qKirj88stPeftCzHUSEAkxDQ4dOkRhYeGkCx4Qb0Zx+PDhZGRLiJT0uc99Dp/Px5IlS/ibv/kbNm3axODgYLKzJcQZ+cEPfsCVV17J5Zdfzte//nUOHDgQf6+uro5IJMKCBQsmrWMymaiqquLQoUPxZdu2bcPhcNDd3c2tt97Khg0buOqqq/jxj39MIBD4WHl88MEHWblyJeedd95Hptu3bx+bN2/mvvvuQ1GUj7VPIeYSCYiEmAY9PT1TPtkeX9bd3T3bWRIiZX3rW9/ikUceIT8/nx//+Mds3LgRr9fLddddd0pNf4RIBbqus27dOv7qr/6K73//+9x5553U1dVx7733UltbC0w0AT3R9SHx2tDc3EwkEuHv//7vOfvss/nud7/L1VdfzR/+8Ad++MMfnnE+33nnHd5//33uvffej0xnGAY/+clPWL9+PUuWLDnj/QkxF0kfIiGmQSAQmLL5j9lsjr8vhIhRFIU77riDO+64g56eHt58802efPJJnn76aQ4dOsSHH3540mY9QiTb0qVLWbp0afz3tWvXcvHFF/PlL3+Zhx9+mPvvvz9+7j/R9SEYDMZ/Hx0dxe/38+lPfzo+et26desIhUI899xz3HHHHRQVFZ1WHkOhEA8++CCf/vSnKS0t/ci0L774InV1dfzv//2/T2sfQnwSSA2RENPAYrEQCoWOWz5+sbNYLLOdJSHmhPGaoaeeeor169ezb98+aWIq5qzCwkLWrl3Ljh07iEQi8XP/ia4P4w/NYOI6cemll05Kd9lllwGwd+/e087P008/zcDAAHfcccdHpvP5fDz88MN8/vOfJycn57T3I8RcJwGRENPA6/VOOTrW+LLMzMzZzpIQKeuNN97AMIxJy0KhEL29vQBYrdZkZEuIaZGdnU0oFMLv98ebyp3o+pB4bRhPm5GRMSmdx+MBYGho6LTyMTw8zGOPPcY111yDz+ejra2NtrY2RkdHMQyDtrY2+vr6APjNb35DKBRi/fr18XTjQ30PDw/T1tY2ZVAnxCeFNJkTYhpUVlayY8cOfD7fpIEV9u3bF39fCBFz3XXXkZaWxrnnnktJSQmhUIhXXnmFffv2cdNNN1FSUpLsLApxxlpbWzGbzdhsNsrKytA0jYMHD7J+/fp4mlAoxKFDh7jkkkviyxYsWMC2bdvo6uqiuLg4vny8n5Hb7T6tfAwNDTE6OsqTTz7Jk08+edz7n/3sZ1m7di3f//736ejoYGhoiC9+8YvHpXv88cd5/PHHeeSRR6iqqjqtPAgxV0hAJMQ0uPjii/nNb37Dc889F5+HKBgMsmnTJhYvXixNEIRI8IMf/IDNmzezdetWnn/+eRwOBxUVFTz00EPceeedyc6eEKekv7//uCDl8OHDvP3225xzzjmoqorT6eSss87i5Zdf5vbbb8dutwPw0ksvMTo6OikguuSSS/iP//gPXnjhBVavXh1f/sILL6BpGitXrjyt/Hk8Hr73ve8dt/yZZ55h7969fOc734nXSt14441ceOGFk9L19fVx//33c9VVV7F27Vry8vJOa/9CzCUSEAkxDRYvXswll1zCww8/TH9/PwUFBWzevJn29nb+7u/+LtnZEyKl3HPPPdxzzz3JzoYQH8t3vvMdLBYLS5YswePx0NDQwPPPP4/VauXuu++Op7vrrrv42te+xn333ce1115LZ2cnTz31FGvWrOGcc86Jp6uurubqq69m06ZNRCIRVqxYwc6dO3n99df5whe+MKl53ZEjR+KTq7a0tDA8PMyvfvUrINYi4YILLsBqtR4X5AC8+eabHDhwYNJ7CxYsOG5o8La2NgBKS0un3I4QnyQSEAkxTf7+7/+enJwcXnrpJYaHhykvL+ef/umfWLFiRbKzJoQQYppdeOGFvPLKKzz99NP4fD7cbjcXXXQRX/rSlygsLIynW7BgAf/yL//Cz372Mx588EHsdjsbN26cFDSN+9a3vkVOTg4vvvgib775Jjk5Odx7773cfPPNk9LV1tbyyCOPTFo2/vuVV17JBRdcMAOfWIhPLsU4tmerEEIIIYQQQswTMsqcEEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFsSEAkhhBBCCCHmLQmIhBBCCCGEEPOWBERCCCGEEEKIeUsCIiGEEEIIIcS8JQGREEIIIYQQYt6SgEgIIYQQQggxb0lAJIQQQgghhJi3JCASQgghhBBCzFv/H97cTvyivR+sAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0QAAAIJCAYAAACFqP0oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddZhc5fnw8e8547I7s+4ucRdiBEmAAAECxVIsBJdSoJTCC79SoaVepIUKVjwFCkGDEyRA3D3r7jo7/rx/THaIbJLdze7Ozu7zua5cLbMz59wzc+accz9yP4oQQiBJkiRJkiRJkjQMqaEOQJIkSZIkSZIkKVRkQiRJkiRJkiRJ0rAlEyJJkiRJkiRJkoYtmRBJkiRJkiRJkjRsyYRIkiRJkiRJkqRhSyZEkiRJkiRJkiQNWzIhkiRJkiRJkiRp2JIJkSRJkiRJkiRJw5ZMiCRJkiRJkiRJGrZkQiRJkjQEZGZmkpmZGeow+s0vfvELFEXh888/79bzlyxZgqIoFBUV9WtcR1JUVISiKCxZsiQk+w83zz77LIqi8Oyzz4Y6lB4byO9aURROPvnkft+PJA03MiGShhVFUY75r7s3XJI03A33m7PB+v4dDgcjRoxAo9Hw9ddfd/mcb775Bq1WS05ODq2trQMcoXQkQ71hQ5IGK22oA5CkUHjggQeO+Dd5MZLC0SeffBLqEAaVhx56iHvuuYeUlJRQhzLgzGYzzz//PLNnz+bKK69k06ZNWK3W4N/b2tq44oorAHj++eeJiIgIVahB559/PjNmzCApKSnUofRYSkoKO3bswGaz9fu+duzYgdls7vf9SNJwIxMiaVj6xS9+EeoQJKlP5eTkhDqEQSUpKSksb677yvTp07nvvvv45S9/yY9//GOeeuqp4N9uv/129u3bx//7f/+PWbNmhTDK79lstgFJKPqDTqdj5MiRA7KvgdqPJA03csicJB1BYWEhdrud6OhoiouLD/pbe3s7o0aNQqPRHDTErnPeQkFBAX/5y18YOXIkRqOR1NRU7rjjDlpaWrrc17p16/jBD35AfHw8BoOBjIwMbr75ZiorKw97bnV1NXfddRcjRozAYrFgt9sZMWIES5YsoaCgIPi8Y43J72q4z4HzNF566SVOOOEErFbrQb1mDoeDhx56iIkTJ2KxWLBarcycOZOXX3756B/oITqHhrS1tXHHHXeQlpaGyWRi4sSJvPnmmwB4vV5+85vfkJeXh9FoJCcnh7/97W+HbcvtdvO3v/2Ns846i4yMDAwGA9HR0cyfP5/333//qPtvbm7m1ltvJSUlBaPRyOjRo3n00UcRQnT7vZx88skoioLL5eL+++8nKysLg8FATk4Ov/zlL3G73Ye9pvPzr6qq4tprryUlJQWNRnPQ9/Xf//6XuXPnYrPZMJlMjBs3joceegiXy3XE99OVl19+mVNOOQW73Y7RaGTUqFE8+OCDXW4HYOfOnSxdupTMzEwMBgPx8fGceOKJPPHEE8D3xxbAypUrDxpyemhjw3fffceFF15IYmIier2etLQ0brjhBioqKrrc97p161iwYAERERFERkYyf/58vvnmmy6fezRdzSE6cK5HUVERl156KbGxsRiNRqZOnco777zTrW335P137rcn++rp93Uk999/P9OmTePpp58O/qaWL1/OU089xeTJk3vUMLR7927uuecepk6dSlxcXPA8df3111NWVnbQc91uN9OmTUNRFN56663DtnXllVeiKAq//vWvg48d6Xy1efNmFi9eHDwW4+LimDx5Mrfffjsej+eYcR/4ne/cuZNFixYRHR2NxWJhzpw5fPjhh12+zuVy8bvf/Y5x48ZhNpuJjIzkxBNP5L///e9R93GgA4/Bf/7zn4wbNw6j0UhCQgLXX389zc3Nwed+/vnnKIpCcXExxcXFBx1TB273WOft1157jenTp2M2m4mOjubSSy+lvLy8y/e4Zs0aTj/99MN+az2drydJQ4KQpGEEED057F999VUBiFmzZgmPxxN8/MorrxSA+MUvfnHQ86+66ioBiHPPPVfY7XZx/fXXi7vvvltMmDBBAGLKlCmio6PjoNe8/fbbQq/XC51OJxYvXizuuececdpppwlAJCcni4KCguBz29vbRU5OjgDEaaedJn7yk5+IO++8U/zgBz8QdrtdvP3228HnPvPMMwIQzzzzzBE/i5NOOumgxx544AEBiIULFwqDwSAuvPBC8bOf/UzceOONQgghGhsbxaRJkwQgJk+eLG699VZx8803B2O67777uv3ZZmRkiOTkZDFjxgyRn58vbrnlFnHdddcJq9UqVFUVH3/8sbjgggtESkqKuPbaa8Utt9wi4uPjBSBeeeWVg7ZVWVkpVFUVc+bMEddcc4245557xFVXXSWio6MFIP797393uf+kpCQxdepUkZubK+68805x6623iqSkJAGIm2++udvv5aSTTgp+70lJSeJHP/qRuPPOO4Ofy8KFC4Xf7z/oNYAYN26cyMjIEGPGjBG33nqruO2228R7770nhBDi3nvvFYCIjY0VN954o7jrrrvEmDFjgt+by+U67P1kZGQcFtvVV18tAJGamiqWLl0q7rzzTjFr1iwBiJNPPvmg41oIId555x1hMpmEqqrirLPOEvfcc4+48cYbxcyZM0VmZqYQQogNGzYEj5WMjAzxwAMPBP999tlnwW099dRTQqPRCLPZLC699FLx05/+VCxatEioqiqSkpJEcXHxQfv++uuvhclkEhqNRlx00UXi3nvvFWeeeabQ6/ViwYIFAjho+0fT+VssLCwMPlZYWBh833FxceKEE04Qt99+u7jyyiuFwWAQqqqKTz/99Jjb7s777+2+evp9HcvOnTuF2WwWcXFxYtOmTSIuLk6YTCaxffv2Hm3noYceEjabTSxatEj86Ec/Ej/5yU/EggULhKIoIjExUZSVlR30/H379onIyEgRHR0tSkpKgo8//fTTAhDz5s0TPp8v+HhX56tNmzYJo9EoTCaTuOSSS8Q999wjbr75ZnH66acLnU4nWltbjxl35/cwd+5cYbfbxYknnhg8PxiNRqGq6mHnE5fLFfxNjxw5Utx1113i5ptvDp5/7r333i73cdVVVx30eOcxeNFFF4nIyEhx2WWXiTvvvDN4Dj3llFMO2sYDDzwgbDabsNlsBx1Tb7zxRvB5RztvX3TRRcJgMIiLLrpI3HXXXeLEE08Mvgen03nQa1auXCkMBoPQarXi4osvFvfee2/wvH/mmWf26LcmSUOBTIikYaUzITrwYnPgv4ceeuiw19x0000CEPfcc48QQohnn302eDE78IIuxPcXwJiYGFFUVBR83OfziQsuuEAA4le/+lXw8dbWVhEdHS1UVRVffPHFQdv63e9+F0x8Or311lsCELfffvthcbpcLtHS0hL87+NJiMxms1i/fv1hr+l8f7///e8Peryjo0OcccYZQlEUsWHDhi73d6iMjIxgsnDgxfqLL74QgIiKihJTp04VjY2Nwb/t27dP6HQ6MXHixIO25XQ6RWlp6WH7aGpqEmPGjBFRUVHC4XB0uf/Zs2cftP/6+nqRnZ0tALFy5cpuvZfOm6e8vDzR0NAQfLyjo0PMmDFDAOK555476DWdx+IVV1xx2E3uqlWrBCDS0tJEZWVl8HGPxyMWLlwoAPGb3/zmsPdzaELUeQycf/75h73/zu/64YcfDj5WW1srIiMjhU6nE59//vlh7/PQz7irY6jTrl27hE6nEzk5OYfdLH/88cdCVVWxaNGi4GN+v1+MGDFCAOLNN9886PkPP/xw8PPqi4Soq8aMFStWCECceeaZ3dq+EEd//73ZV0+/r+7629/+JgBhMBgEIB599NEeb6OsrOywm2ohhPjggw+EqqrBRpMDLVu2TABizpw5wuv1iu3btwuz2Szi4+MPOq6F6Pp8deedd3Z5PAghRENDw2Hn364c+D3cddddB/1tzZo1QqvVCrvdLpqbm4OP//a3vw1+Pwf+Nqurq4Pnja+//vqwfRwpIUpLSzso+fd4PMFk5bvvvjvoNUdq2Oh0tPN2RESE2Lx580F/W7x4sQDEsmXLgo/5fD6Rm5srgGADTKcnnniix781SRoKZEIkDSudJ/oj/bPZbIe9pqOjQ0yYMEEoiiIee+wxYbFYRFxcnKioqDjsuZ0XwAOTnk779u0TqqoGW9mFEOKFF14QgFi8ePFhz/d4PCIzM1MAwYtpZ0J0aAtlV44nIeoq4aqrqxMajUZMnTq1y+1t3LhRAOKnP/3pMWMT4vuEZO/evYf9LSsrSwDik08+OexvJ598stBqtcLr9XZrP3/+85+7TG46939oIirE95/dkiVLurWPzoTo0KRHCCE+++yzYOv+gQCh1+tFdXX1Ya+59tprBSD++c9/Hva3Xbt2CVVVRVZW1mHv59AbqYkTJwqtVntQUtnJ6/WKmJgYMW3atOBjf/rTnwQgbrvttqO93YPew5ESgttvv10A4p133uny74sWLRIajSaYxH/11VfBlvyuYu3sbeuLhCgjI6PL4yc9PV3ExMR0a/tCdC8h6sm+evp9dZff7w+eS2bMmHFYb+XxGjdu3GHHY6cbbrhBAOInP/mJGDt2rFAURXzwwQeHPe9oCVFXz++uzu/BZrMd1GDUqfM4efbZZ4OP5ebmCkVRxI4dOw57/pNPPikAcfXVVx+2jyMlRF31UHf2lD322GMHPX48CVFXPfSffvpp8PPv9OWXXx7WQ9XJ5/OJ/Px8mRBJw44sqiANS6IH80OMRiPLli1j6tSp/OhHP0JRFF577bWjTtg+6aSTDnssOzubtLQ0ioqKaGpqwm63s379egBOPfXUw56v1WqZO3cuRUVFbNiwgfT0dE466SRSUlL43e9+x/r16znrrLOYPXs2EydORKPRdPs9Hcv06dMPe2zNmjX4fL4jzpPoHM+/Y8eObu/Hbrd3WQwgOTmZwsJCpkyZctjfUlJS8Hq9VFVVHVRBbNu2bfzxj3/kiy++oLKyEqfTedDruhpHr9Vqu5xU3jlGf8OGDd1+L9D19z5nzhw0Gk2X28rMzCQ+Pv6wx492XOTn55OamkphYSHNzc1HnIjucDjYtGkTsbGxPPzww10+x2AwHPR9ffvttwCceeaZXT6/Jzrn/axcuZI1a9Yc9veamhp8Ph+7d+9mypQpwffc1Weo0WiYM2cO+/btO+64gCP+XtLS0no1X6kv9tWb76u7nn322eBcqk2bNrFnzx7y8/OP+JxOJ598cvC3IITgxRdf5Nlnn2XTpk00Njbi8/mCz9Xr9V3u++GHH2bVqlX8+c9/BuDee+/l9NNP71bcl1xyCY888giLFi3iwgsvZP78+cyePbtXBUQmT57cZTW9k08+mf/85z9s2LCBq666itbWVvbu3UtKSkqXBQw6f5M9OTdMnTr1sMfS0tIAaGxs7PZ2+mo/nbHPmTPnsOerqsqsWbPYvXt3n8UlSeFAJkSS1A35+fmMHz+eVatWMXr06GNe0BMSErp8PDExkeLiYpqbm7Hb7cFJtUdKrjofb2pqAiAyMpJvv/2WBx54gLfeeosPPvgAgNjYWG6++Wbuv/9+dDpdb97iYXEeqr6+HggkRl3d4HZqa2vr9n6OdDOv1WqP+PfOvx04ofrbb7/l1FNPxev1Mm/ePM4991wiIyNRVZWNGzeyfPnyLiekx8bGdnmz2vn+D5z03B1dfe9arZbY2FhqamqOuJ9Ddee4KCkpoamp6YifYWNjI0IIamtr+eUvf9mt+DuPs74oVd15vPzxj3886vM6j5fO93y0305fsdvtXT6u1Wrx+/19tp+e7Ks331d3FBUV8eMf/xi73c4DDzzAHXfcwZVXXsnXX3990LH/7LPPsnLlysNe35kQ3XnnnTz88MMkJSVxxhlnkJKSgslkCr720MIznYxGI2effTZbtmxBq9Vyyy23dDv26dOn8+WXX/Kb3/yG1157jeeffx6AESNG8MADD7B48eJub+tYx1Xn8dfTc3J3dHUMdJ7HDkwqj1d393Os39qRHpekoUwmRJLUDb/73e9YtWoVsbGxbNu2jYceeoj77rvviM+vrq5mxIgRhz1eVVUFfH+j3/m/nY8fqrPK3IE3vampqTz11FMIIdi+fTuffvopf//73/nVr36F3+8PVm5S1UARSa/Xe9h2j3Ux76ygdaDOGO644w7+8pe/HPX1A+3BBx+ko6ODzz777LAKTA899BDLly/v8nV1dXX4fL7DkqJDv6fuqq6uJj09/aDHvF4vdXV1REZGHvb8rj7nA/dbVVXVZWt4V8fFkbYxadKkYO/LsXTeUJWXlzNu3LhuveZY+29ubu7yvR/p+dXV1V3+/Ui/kaGiN9/Xsfj9fq644gpaW1t56aWXWLx4MWvWrOGll17ioYce4v777w8+92gVxWpqanj00UcZO3Ysq1atOqyn5WgVJr/66iv++Mc/EhsbS11dHUuXLmXFihVHPPYPNXPmTN555x1cLhfr1q1jxYoVPPbYY/zwhz8kLi6O+fPnd2s7xzqujuecHG46f49H+kyO9LgkDWWy7LYkHcOqVav4+c9/zogRI9i6dWuwdfKrr7464mu6amktKCigtLSUzMzM4I3npEmTgK5vRrxeL19++SUQGO5xKEVRGDNmDD/60Y/46KOPAIKldQGioqIAKC0tPey1a9euPWLsRzJ9+nRUVQ3GNJjs3buX6Ojow5Ih6Pq76OT1elm1atVhj3d+H53fT3d1ta+vvvoKn8/Xo20d7bjYu3cvZWVlZGVlHbH3AcBqtTJmzBi2bdtGQ0NDt/Y7Y8YMgCOWKj+UqqpHbOHu3FZ3j5fOY7yrz9Dn8x319xYqR3v/PdWb7+tY/vCHP/DVV19x6aWXBntT/v73v5OSksKvfvWrbg/7KigowO/3B0s0H6isrOygcv8Hqq+vZ/Hixeh0Oj799FMuu+wyPvzwQ37/+9/3+L0YDAZmzZrFr371Kx599FGAIzZ0dGX9+vW0trYe9vihv/WIiAhycnIoLy9nz549hz3/s88+A7o+J/cFjUbTp71GXel8r139pvx+f5fnREka6mRCJElH0djYyOLFi9FoNLzyyiskJCSwbNkytFotP/zhD4944/LII48cNITE7/fz05/+FL/fz9VXXx18vHNNjJdffjk4f6PTww8/TGFhIfPnzw/2Omzbtq3L1rvOxw5cwXzq1KmoqspLL72Ew+EIPt7Q0MDdd9/d488iPj6eyy67jLVr1/LrX/+6y4v2vn37KCws7PG2j1dmZiYNDQ1s3rz5oMefeuqp4LDCI7n33nsPGk7X0NDAgw8+CHDQd9Udv/71rw8aq+90Orn33nt7vK2lS5cCgZ6v2tra4OM+n4+77roLv9/PNddcc8zt3HnnnbjdbpYuXdplr2BjY+NBvRFXXXUVkZGRPPHEE3zxxReHPf/Q9WZiYmK6TLgBbr31VnQ6HXfccUeX8xHcbvdBydKsWbMYMWIEX3zxxWE3un/729/6bP5QXzra+++Nnn5fR7Nx40YeeOABUlJSePzxx4OP2+12nn76abxeL1dccUW31jbqXN+qM7nv1NbWxnXXXddlLzQEjvmysjL++te/Mm7cOJ544glyc3P5v//7v27ddK9atYqOjo7DHu/qfHcszc3N/OpXvzrosbVr1/Liiy9is9k4//zzg48vXboUIQQ//elPD3q/dXV1wR74zt9oX4uJiaG2trbL991XOudhffbZZ4c1fvzrX/+S84ekYUkOmZOGpaMtSLho0SImTpwIBC56JSUlPProo8HHJkyYwJ///GduvfVWlixZ0uXCg52FDi655BJsNhsffPABmzZtYsqUKQclI1arlaeffpqLLrqIk046iYsuuoj09HTWrVvHhx9+SGJiIv/85z+Dz//oo4/46U9/ysyZM8nPzyc+Pp6ysjKWL1+Oqqr89Kc/DT43KSmJyy67jOeff56JEydy9tln09LSwnvvvcfcuXN7XDAAAjeme/bs4ec//znPP/88c+bMISEhgYqKCnbs2MGaNWt4+eWXycrK6vG2j8ftt9/OBx98wJw5c7j44oux2WysXbuWr776igsvvJDXXnuty9clJSXhcrkYO3Ys5557Lh6Ph9dee43Kykpuvvlm5s6d26M4Ro0axZgxY7jwwgvR6XQsX76cffv2cfbZZ3PFFVd0ezuzZs3i7rvv5g9/+ANjx47lwgsvxGKx8P7777N161bmzJlz0Hd9JEuXLmXdunU8/vjj5OTkcMYZZ5Cenk5DQwOFhYV88cUXXH311fzjH/8AAnOqXnrpJS688EJOOeUUzjzzTMaPH09LSwubN2+mtLT0oIR33rx5vPLKK5xzzjlMnjwZnU7H3LlzmTt3LiNHjuTpp59m6dKljBkzhgULFpCfn4/H46GkpIQvv/ySuLg4du7cCQR6PJ966ilOO+00fvCDH3DBBReQm5vLxo0b+eSTT1iwYAErVqzo0ffR3472/nujp9/XkTidTi6//HI8Hg/PPvtssLe40+mnn85NN93E448/zn333cef/vSno24vMTGRSy+9lFdeeYWJEydy+umn09zczEcffYTRaGTixIls3LjxoNc8/PDDvP322/zgBz/gxhtvBAK9L8uWLWPmzJksXryYjRs3Hhbbgf7whz/w6aefcuKJJ5KVlYXVamXbtm28//77REVFcf311x817gPNnTuXJ598ku+++47Zs2dTWVnJsmXL8Pv9/POf/zxoWOddd93F+++/z/Lly5kwYQJnnXUWDoeDV199lZqaGu6+++4uCxL0hXnz5rFmzRoWLFjA3LlzMRgMTJgwgXPOOafP9qGqKk8++SQLFizg3HPP5Qc/+AE5OTls3ryZjz76iDPPPJP3338/OOxakoaFUJa4k6SBxjHKbnNA2ddHH31UQGCxza6cf/75AhB/+ctfgo91llndt2+f+NOf/iRGjBghDAaDSE5OFj/+8Y8PWuviQKtXrxaLFi0SsbGxQqfTibS0NHHjjTeK8vLyg563fft2cccdd4gpU6aI2NhYodfrRUZGhvjBD35w0LoYnZxOp7jrrrtESkpKcE2Y3/72t8Lj8Ry1fOvRyq26XC7x2GOPiZkzZ4rIyEih1+tFWlqaOPXUU8Vf//pXUVdXd8TXHuho5WU7y1h3patyykIEFrg94YQThNVqFTabTZx22mli5cqVRyw/3rn/pqYmcfPNN4vk5GSh1+vFyJEjxSOPPNKj0sSd8TqdTnHfffeJzMxModfrRVZWlvjFL37R5fotXX3+h3r55ZfF7NmzhdVqFQaDQYwePVo8+OCDhy3ue+D76crbb78tzj77bBEXFyd0Op1ISEgQ06ZNE/fdd1+XpYW3bt0qrrjiCpGcnCx0Op2Ij48Xc+fOPawMeHV1tVi8eLGIj48XqqoK9q/xdaDNmzeLq666SqSnpwu9Xi+ioqLEmDFjxPXXX99lWfW1a9eKM844Q1itVmG1WsW8efPEqlWrunVsHuhoZbcPLY/c6WjHXVeO9v6PZ189/b4O1Vny/Gjl09vb20VeXp5QVbVb6221t7eL//f//p/IyckRBoNBpKamiptvvlnU1dUd9l7Wrl0bPDd1VUL8kUceEYA477zzgo919Tv94IMPxJIlS8SoUaNEZGSkMJvNIj8/X/zoRz86aJ23oznwe9i+fXtw0WyTySRmzZolVqxY0eXrOjo6xG9+8xsxZswYYTQahdVqFbNnzxYvvfTSUfdxoCOdq4T4vhz/ob+XtrY2ceONN4qUlBSh0WgO225Pz9tHOw6//fZbMX/+/MN+a7fccosAur2mnCQNBYoQPag/LEnSUS1ZsoT//Oc/FBYWBoeZSINT5/dzaKnh3jj55JNZuXJlj8q597XExERsNhu7du0KWQySNNgUFRWRlZXFVVddxbPPPhvqcMLC7Nmz+e6772hubsZisYQ6HEkaELI/VJIkKcw1NDRQV1dHampqqEORJCkMOByOLuepPfvss6xatYrTTz9dJkPSsCLnEEmSJIWp5uZm/vSnP/HBBx/g8/m48MILQx2SJElhoKSkhEmTJnHaaaeRm5uL1+tlw4YNfPXVV9jt9uBCupI0XMiESJIkKUw1Njby0EMPkZWVxUMPPcQNN9wQ6pAkSQoDCQkJXHbZZaxcuZLPPvsMl8tFYmIiV199Nffdd1+X659J0lAm5xBJkiRJkiRJkjRsyTlEkiRJkiRJkiQNWzIhkiRJkiRJkiRp2JIJkSRJkiRJkiRJw5YsqiBJkiQNGCEEQgj8fj8ej4eGhgZUVSUmJgatVouiKADB/5UkSZKk/iYTIkmSpCHM5/Phcrlob2+nurqa5uZmNBoNbW1t7Ny5E41Gg6qq1NTUUFBQQGxsLH6/n8rKShwOB3FxcXi9Xvbt24fFYsFsNtPc3ExlZSURERH4fD6am5txu93odDo8Hg8OhyOY+Hi9XrxeL0IIfD4ffr8/+L9dUVU1GFPnP61WG0yWVFXFZDKh1WrxeDwYjUZsNhsajYaWlhaSkpKIjIyko6MDh8NBdnY2Wq2W2tpazGYzSUlJqKpKXV0d2dnZxMfHB+McOXIkVqsVn8+HzWYjISEBi8WCwWBAo9EM8DcnSZIkDRRZZU6SJGmQEkLQ3t5OUVERTqeTjo4OSktL2bt3LxERETQ3N7N7924aGxvRarU0NzdTVFSERqPB7XbT0tJCe3s7xzrNq6qKxWJBUZRgT43b7UYIgclkCiYMqqoGn39g4qLVatFoNJhMJvR6PUIIjEYjVqsVVVXxeDzY7XZMJhM+nw8hBHFxcWi1WjZu3AjA+PHj8Xq91NXVoSgKWq0Wp9NJU1MTWq0Wn89HW1sbLpcLRVFwu910dHTg9XoPS7Q6ky2/349OpwOgo6MDRVHQ6/V4vV7q6+uDn++RkrNOiqJgsViIjIxEr9fj8/nIzMzEZrPh9XqJiooiPz8fm81Ga2srubm5pKWlYTKZMBqNZGZmBj9fSZIkafCRCZEkSdIA6ejooL6+nurqajZv3ozH46G9vZ2CggJ2796N0WiktraWkpISWltb6ejowOPxdLktk8lEVFQUer0es9lMTk4ONpuNxsZGUlJSSE5ORqPR8Na/VuCs8KD4tJgijOg0OrxNfvRGA/ZkK5YoE9Y4M+Y4E+ZYAwabLrgPv0/gavbgbHTjavHgbvXgafPibvPibvXgbvPiafPi94b2MqLRq+gsWnQWDTqLFr1Viz5Ch8EW+Ge069FH6lA1gYRECIGryYOjzoWjzkl7nYP2JifNla24HC60dhWPz0NHqxOh8WJM1nHu9Qvw+XxUVFRQXl5OVFQUzc3N7Nu3D4fDgdvtprGxkY6Oji5j1Ol0mEwmIiIiSE9PJy4uDqfTSX5+PtnZ2VgsFnQ6HePHjychIYGYmBhMJtNAfoySJEnDlkyIJEmSjkNnr0Z5eTnr16/H6XTS3NzMnj17gkPSampqqKio6PJm2Ww2ExUVhVarZeTIkSQmJuL3+4mIiGD06NH849bnsMVH4GtVUDpUdKoeHToU0f0hXMZoPdYkI9YkE5ZEE5ZEI3pLYMS08As6Gtw4ap101LnoaHDjavTgbAokQfTzFSJrQRIAhSsq+3dHCugjdBjtOkzRekyxBkwxhsD/RutR1ECy5G7z0F7lpK3KSXtVB+1VTjoa3N3+HITiw4MHj9+NMPnRRAiaa1q58W9Xsn37dtra2lAUherqanbs2IHX66WxsRGHw3HYtkwmE8nJycTHx+Pz+Rg5ciR5eXnYbDaMRiOTJ08mJSWF2NhYtFo5Al6SJKm3ZEIkSZJ0BA6Hg+3bt1NbW0tNTQ3bt29n8+bNaDQaKisrKSwspLm5+bAhV3FxccTExKDT6Zg4cWJw3srHT3+Ft0agw4DVakFxaFF7kNh0h86iJTLdTGSaGWtyIPnRGgL7cDa5aa9yBv7V7E+A6t0If+guA1N+lAfAusf2hCwGRVUwRukwxxuxJBixJBqxJpqCvWU+t4+2SietZQ5aSh20ljnwtPv6NAa/6kOYvLS3tePGhTZeYf7SOcH5XBs3bsTj8VBfX09tbe1Br1VVFZvNRlZWVjChHj9+PKNHjyY+Pp64uDhGjx6N2Wzu05glSZKGCpkQSZI0LAkhqK2tZdu2baxbtw6v10tZWRkbN26kqqqK5uZm6urqDnpNVFQUFouFcePGkZqail6v55vX1uOtVjCwf86MQ4siBm5FA3O8gch0C5GpZiLTzRij9EAg+Wkt66CtqoP2yg7aKp14O/r2Jn6o05o0+5MjIxEpZiLSzBgiA0mSs9EdTI6aCtvpqHMNWFxC8eM3ewNzqnCiTRDMvHAybrebsrIytm7dSnt7Ow0NDQe9LjY2FpvNRmJiIhMnTiQ1NRWNRsPUqVODyZOc5yRJ0nAkEyJJkoasxsZGCgoKWLNmDQUFBcECBevXr6epqQmn0xl8rs1mIy0tjYiICGJjY5k+fTov/99youOjUFt1aDoMaJTQVxoz2HXYs63YsyzYs6zoLFr8PkF7VQctpft7MEoduFu9oQ51SNJH6ohMNRGRZiYi1Yw1yYiqUXG3eWgqbKe5sJ2mwjZcTV3P/RpIPuHDZ3Lhj/DQUNPI4l+fx+rVq6mrq6O1tZXS0lKam5uDzzcajdjtdiZPnhwsBJGdnc3UqVPJyckhKioqhO9GkiSp/8iESJKksNXZy7N3714+//xz6urqqK6uZtu2bezZs+egeRkGg4H8/HyysrLQaDSMGTOGtx78BLPGillrQXUPzjkYGr2KPcdKVK4Ve5YVY5Qe4Re0VnTQXNhGU2E7raWOkBc26K2JN+QAsPGf+0IcSe+oWoXIdDO2LCv2TAvWZBOKquBsctO0r42GPa00FbTj9xy9kl2o+PVeHN52HL42zvu/+WzduhWfz0dhYSG7d+/G5fq+58tsNpOXl8eYMWOIj48nNjaWU045hdzcXOLi4mTvkiRJYUsmRJIkDXput5utW7eycuVKmpqa2Lt3L2vXrqWkpOSgXp6YmBhGjx5NRkYG27/cja9Sg8FtwqSxovXpwuaGzWDXEZ0fQXR+JLZMM6pGxVHrpKkg0PvQXNSOzzU4b7B7Kv/8FAB2v1Ee4kj6hsagEpluwZ5tISo3AnOsAb/XT3NROw17Wmnc04az0R3qMLtFCIFP48Xha8Old6BJ8jH6xHyKi4vZsWPHQUNKjUYjaWlpTJ06lby8POx2OyeddBJjx45Fr9eH8F1IkiQdm0yIJEkaNFpaWti5cyc7duxg586dfPbZZ1RUVFBRUYHPF5j/YrfbGTNmDMnJyRSsLsFTrGLCgkUTgeoP/ZC23rIkGYkdbSM6PwJLvPH7m+jdrTTsaR0UQ7CknjNG6YnOjyAqLwJbhhlVG0hu63a0UL+9hfZq57E3Mkj5VR8OXxsO2tBl+Mk5IYOKigq2bdtGY2MjABqNhuTkZBISEpg5cyZRUVFMnTqV6dOnk5CQEOJ3IEmSFCATIkmSBpQQIlhyuDPx6fz/5eXf9xKkp6eTnJxMw+4W1AYjFiUCm8GO6tIdZevhxZJoJHaMjdjRNkzRejwOLw27WmnY3UpTQRs+99DoBToac4IBAEf1wBUlCBVVp2LPthAzIpLokRHoTFo66l3U7Wihblsz7VXhmxwdym/w0Oxqol204o9xYcs2U1ZWRmXl9+XVY2JiSElJIT09nVNPPZWEhARmzJhBZmZmcBFgSZKkgSATIkmS+o3L5WL79u1s3LiRTZs2sWnTJjZv3hysfqXVasnLy2PUqFGs/992LERgIRIzEWiVwTmn53iZ4wzEjdufBMUY8Di81O9ooXZbM81F7f2+7s9gM/0nIwBY/eddIY5kYCkq2LKsxI6OJGZkJDqzlo4GN3XbmqnZ1EhHfXgMq+spL158NictziZ8US7sORb27t1LXV0dXm+gEIjFYmHMmDEkJSUxceJETjnlFKZNmybLhkuS1G9kQiRJUp+oqakJJj2dCdDOnTvxer0oikJubi4TJkxg/Ws7sBKJhQhMWFGVod8SrDVpiBtrI35iFBHJJjwdgSSoblsLzUVtiKHfEXREMSMjAKjf2RriSEJHUcGWaSF2dCBR1po0tJY7qNnURO3W5mFRLt2PH2H34DK20eJuImlyLFu2bKG6uhohBKqqkpqaSkZGBmeccQZJSUnMnTuXnJycsJkbKEnS4CUTIkmSesTr9bJ79+5g8tOZAFVVVQGB1t3x48czYcIEPv/Hd1ixY8U2ZHt8jkRRISo3gvgJdqJHRAAKjXtaqd7YSOOetpAuhioNXopGITo/cNxE5UYAgsbdbVRvaqRhd+uw60H0a3y0imZIcpEyNY7t27dTVlYWrCAZFRXFyJEjycjIYMKECZx++umMGzcOnW7oDK2VJKn/yYRIkqQj8vv97Nmzh9WrV7NmzRpWr17Npk2bgpXd0tLSmDBhAlvf2UsEdiKwYcI6rFts9ZE6EqdEkTg5Cr1VR1tlR6Clf0sTHsfQb+nvqcx58QAUfVIT4kgGH51ZQ+xYGwkTorAmm3C1eKje0EjVuoZhvc6UEAJfhAunpY2G9npix0Wwa9cu6uvrgcBQ3OzsbEaPHs3ZZ5/N6NGjmT59Olrt8GqUkSSp+2RCJElSUHl5+UHJz9q1a4MLN+bn5zNt2jRWv7hlf/JjR6fIcrqd7DlWkqZGE50fgc/jp3ZzE1XrGsO6ithAmPrjfADWPrI7xJEMbpZEI4lTookbZ0OjU2nY3Url2gaa9rWFOrRBw6f30OprglQ3thwzO3bsoKKiAgiUBR83bhzjxo1jwoQJnHzyyYwdO1YWb5AkCZAJkSQNW42Njaxdu/agBKizAlRSUhLTp09n6/K9RBJNJFEy+emCxqCSODmKxKnRmKINtFd1ULm2gdotzcOiQpw08DR6lbhxNhKnRmNNNOFsdFOxup7q9Y3ymOuCX+/FFdlGh7mF+FHRfPvttzQ1NQGQkJBAcnIyJ5xwAnPmzOHMM88kOjo6tAFLkhQSMiGSpGHA7/ezbds2vvrqK77++mtWr17Nnj17ALDZbEybNo29H5fuT36iMSqmEEc8uBlsOpJnxJAwKQpVo1C3rYXKtfW0lnWEOjRpGIlIMZE0LYbYsTb8Xj/V6xup+K4eV7Ncs+poPAYnLmsbde21GHMU9u3bR0dH4LebkJDAyJEjWbhwISeccAIzZsyQ85EkaRiQCZEkDUEdHR2sWbMmmACtWrWKpqYmtFotkyZNYsaMGXz62LdEEo15mM/56QlrsomUmbHEjo7E6/RRubaBytUNeNqH73yO4zXhmmwANj1VEOJIwpc+QkvStBgSp0ahNWio29FCxTd1tJbLBL07hBA4de24o9tJnxPPunXrKCsrw+v1YjabGTFiBGeffXYwUbLZbKEOWZKkPiYTIkkaAurq6vj666+DCdDatWvxeDxERkYyc+ZM9nxQhp0YbESjGWbV3vqCPdtK2tw4bBkWOupdlH9bT82mRvweefo8XiMvSgNg56ulIY4k/Kk6hfgJUaTMiMEUY6CpsI3SL2tpLmwPdWhhx6948cZ30KzWY0zTsHXrVtrb29FoNIwePZqJEycyY8YMzjrrLDIzM0MdriRJx0kmRJIUZoQQFBYW8sUXXwQToJ07dwKQmpqKp0zBTgx2YrFik70/xyEqz0ra3HgiU820ljko+7qW+l3Dr/SxFH5iRkaQemI8EckmWkodlH5ZQ+MeWYCht4QQuCPacdpbqagpo8PSGlxgOjc3l8zMTE455RTOOussJkyYIM+7khRmZEIkSWGgvLyczz77jE8//ZRPP/2U4uJiFEVh3LhxNGxuw04sdmIxKnIl974QPSKC9LnxWJNNNJe0U/pFrazm1U/0tkCPpbtZDjvsD/YcK+lz44hMt9BW2UHpF7XU72wJdVhDgtfsxGFtoba9CretnYqKCoQQJCQkMH78eE488UQWL15Mbm5uqEOVJOkYZEIkSYNQXV0dn3/+eTAB2rVrFwDjx4+ncbODaOKxEysrv/WxqDwrGacmYE00BYYbfVFLc5EcbtSfpv9kBACr/7wrxJEMbbZMC2knxmHPttJW2UHxp9U07pVJfl8SRh9Noo6OqCYchlaKiooAiI+PZ8aMGZx66qksXryY+Pj40AYqSdJhZEIkSYNAc3MzX3zxRbAXaNOmTUBg7Z/23V6iiSeKOPSKIcSRDk2RaWYy5iVgy7DQXNRO8WfVtJQ4Qh3WsBA33g5A7eamkMYxXBx0rBe3U/xJNS2l8ljvDz69m0alDnd8C42e+uCyBqmpqUydOpULL7yQM844g9jY2BBHKkmSTIgkKQS8Xi/fffcdK1as4MMPP2Tt2rX4/X7S0tLwlqrBBEgOgetf5ngDmacmED0ikrbKDoo+qZZD46RhISp3f29okomG3a0Uf1otFxHuZy6lA2dMM02aOupc1TQ2NqIoCrm5uZxwwglcc801zJw5E4NBNnxJ0kCTCZEkDZDy8nI++OAD3n//fT766COam5uJjo5G12DenwDFY8IiJ+MOAH2Elsx5CcSNt+NsdFP8aQ1125pDHdawlDY3DoDSL2pDHMnwFDsmkoxTEjBG66nZ2ETxp9W42+R8rv4mhMCpceBNbaPWWUWto4rW1laMRiMTJ07kggsu4IILLiAnJyfUoUrSsCATIknqJy6Xi6+//poVK1awYsUKtmzZgqIoRIooYkgkhgQiiZYJ0ABStQops2JJnR2Hz+2n5PNqqjc0Ivyhjmz4mnZHYA7Rmr/KOUQho0DilGgyTo5H1SmUfVVH+Td1+L3y9mCgCCFwRrbSaq2n1ltJdV0Vfr+f9PR0pk2bxnXXXcecOXOwWCyhDlWShiSZEElSHyosLAwmQJ988gnt7e0kJCSgVhuJIZFo4uU8oBCJHRNJ5vxE9BFaKr6tp/SLWnxumQlJUieNQSVtbjzJJ0TjbvNS9HE1dVtlz2koeIQbd0oLtd5K6lzVNDU1odfrmTBhAmeffTYXX3wxo0aNCnWYkjRkyIRIko6D3+/nu+++46233mL58uXs2LEDrVaL1WsnlkRiSJRrAYWYJdFI9oIkbBkW6ne2UPhhFc5Gd6jDkqRByxilJ+u0RGJGRdJS6mDfuxVyflEIda6B1BbZQK23kqr6SrxeLykpKcyePZubb76ZWbNmodPpQh2qJIUtmRBJUg85HA4+/vhj3nrrLd5++21qamqIjY1FV2cljiSiiUeryAtTqGn0KhmnJpA0LRpHnYuCFZU0F8oS2oPNuCVZAGx5tjDEkUiHsmVayD4zCXOsgYrV9ZR8ViN7VQcBr/DgSWmlxldBVXs5ra2tWK1W5syZwwUXXMAPf/hDObROknpIJkSS1A3V1dW8++67LF++nI8++oiOjg5GjBiBc5cgjmRsxMheoEEkZnQk2QuS0BpUij+roeK7epBnukFp9OJ0ALa/XBLiSKSuKCokz4gl/aR4vE4fBR9UUr9dLuw6WAgh6IhoodVeR62nkqqqKnQ6HZMmTWL+/PnceOONpKWlhTpMSRr0ZEIkSUewa9cu3nzzTZYvX863334bKIjgjyKWZOJIxqJEhDpE6RAGu46cs5KJzougfkcLBSsqcbV4Qh2WJIU9g01H9oIkYkZG0ri3lX3vVcqhp4NQu2jFldpERXsp1U2BdY8yMzM5++yzueyyy5gxY0aII5SkwUkmRJJ0gO3bt/Pqq6/y6quvsm3bNsxmMxaHnTiSiSVJFkQYrBRImRFD+ikJeBxeCt6rpGF3a6ijkrpBa1QB8DrlUKxwEJ0fQfaZSejMWoo/raZitex9Haw8qptmcy0tEbWU1ZXgdrvJzMzk1FNP5corr+TEE09EVdVQhylJg4JMiKRhTQjBtm3bgknQjh07iIyMxNxiJ4FUoklAo2hCHaZ0FKYYPXnnpRKRaqLiu3qKP63B75E31+Fi+k8CZbdX/1mW3Q4Xqk4lc14CySfE0FLSzp63yumol71Fg5nQ+mlUamiNq6O8sQSHw0FeXl5wQdi5c+fK5Ega1mRCJA07Qgi2bNnCa6+9xquvvsrOnTux2WyYm+3Ek0IMCagyCRr89vcKZZyagKvZw+7l5bSWOkIdldRDiVOjAKha2xjiSKSeikw3k3duCvpIHSWf11D+TZ3sLQoDQvXjiGqkvKOEWn8FHR0dpKamcs4553D++eczb948mRxJw45MiKRhY8uWLSxbtoxXX32V3bt3Y7fbOe+887jooouYP38+C02XhzpEqZsO6hX6tp7iT6vlIpKSFAKqViHj1ASSZ8TQVt7B7jfLZG9RGHmr/TlefvllPvroI9566y0cDgdxcXFceeWVnHXWWZxyyimyYJA0LMiESBrSSkpKePnll3nhhRfYunUrUVFRLFq0iAsvvJD58+dztvGyUIco9VDStGgyT0vE3SJ7hYaC5JkxAFR8Ux/iSKTjEZFqIu+8VAw2HYUfVFK1Tvb4hZu3Hc+zbNkyXnnlFb755huam5tJTU3lwgsv5NZbbyUnJyfUIUpSv5EJkTTkNDY28tprr/HCCy/wxRdfYDKZOO+887jssss4/fTTZRIUpnRmDXnnphA9IpKK1fUUfVQle4WGADmHaOhQdQpZpyeRNDWa+l0t7HmrHK/DF+qwpF54q/05XnjhBZ577jnWrl2L0+lk9OjRLFy4kDvvvJOEhIRQhyhJfUomRNKQ4HQ6effdd3nxxRd599138Xq9zJ8/n8suu4zzzz+fC2xLQx2idBzsOVbyF6WgKAq7l5fTuEdWkBsyOqcqyDoYQ0Z0fgR556YghGDP8nIa97aFOiTpOLzR8gyPPfYYr7/+OuvXr0er1TJu3Diuuuoqli5ditVqDXWIknTcZEIkhS2/388XX3zBCy+8wGuvvUZzczNTpkzh8ssv55JLLuHKlNtCHaJ0nBSNQub8BFJmxNK4t5Xdb5bjafeGOixJko5BZ9GSd14K0XkRlH9bR9FH1Qi/vN0Id/8pe4R///vfPPfccxQUFGCxWJg3bx6LFy/moosuQqORBYmk8CQTIinslJSU8J///IdnnnmGwsJCsrKyuPzyy/n4199hUSJDHZ7URwx2HSMvSscSb6Do42oqvpNzTIaisVdkArD1+aKQxiH1j6Tp0WSdnkh7pZOdr5XiapYLJQ8VXpuTGTeO5cknn6Suro7o6GhuuOEGLr30UsaPHx/q8CSpR2RCJIUFp9PJ8uXLefrpp/noo48wm81ccsklXH311fzixIdlFZwhJjo/gvxFqXidPnb8t4T2KmeoQ5L6iUyIhj5rsomRF6WhMajsfkMOeR1qhBDc/PoPee655/jwww/p6OhgzJgx3HDDDVxzzTWYzeZQhyhJxyQTImlQ27BhA08//TQvvvgijY2NzJkzh6VLl/Lc0rfQKtpQhyf1NQUyTk0gbU4c9Ttb2L28DJ9TTi6RpHCnNWrIW5RCzIhISr+qpfjTarlm0RDk1/o47VfTefbZZ9m1axcmk4nTTz+dG264gQULFsjGS2nQkgmRNOjU19fz0ksv8fTTT7Nx40YSExO56qqr+OL3G7EoEaEOT+onOouWET9IxZZhoeiTaspX1YU6JGkgyKIKw0rKrFgy5yXQUupg56sleNplFbqhqkPbRsZF0bz//vs0NjYycuRIzjzzTO68805SU1NDHZ4kHUQmRNKgIITgm2++4YknnuDVV1/F5/NxzjnnsHTpUv56zjOoilw1eyizJpsYdWk6CrDz9VJaiuXaQsOFLLs9/ESmmRl5URrCDzuWFdNWKYfEDmV+/Nz038U89thjfP311wCcc845XHXVVZx77rmoqry+S6EnEyIppFpbW3nxxRf5xz/+waZNm8jOzuaGG27gnZ99iUExhjo8aQDEjbORd24KbZVOdvy3BE+brCI3nCTP2r8w6ypZNGM40UdoGXVxOuYEI3vfLqd2S3OoQ5IGgN/kYfTSNN59910KCwtJT0/nsssu45577iEyUhZFkkJHJkRSSGzdupUnnniC559/nvb2dhYuXMhNN93En858Uo4xHi4UyJyXQOrsOKo3NLL33QqET56OJGm4UDQKuQuTSZgYRdnXtRR9IucVDRdCCK78z7k88cQTrFmzBr1ezymnnMKdd97JvHnzQh2eNAzJhEgaMC6Xi9dff50nnniCr776isTERK699lo+f3A9RkVWoRlONAaVERekEZVrpfCjKiq+lb0Dw1XClCgAqtc1hjgSKVSST4gh6/REmgra2PlaKT6XnFA2nDiFg/ylibzxxhs0NjYybdo0Fi1axI9//GMsFkuow5OGCTlwU+p3FRUV3H///SQlJXHZZZeh0+n473//y4KR51HycS1GxYyiKsRPsKOPkJXjwonOosEcZwj+d8JEO5HpgeTWYNORf0EqBrsu8LdJUYy6NB2DXceEa7Kx51ioWt9Ixbf16CxaRl2Sjjk+sK3IdDMps2KD2zVG6dGa5IJ/4cQUayAi7fuGjszTErBlBW5urElGxl2dhc6iJePkeHLOTCJ6RKBgSkSqidGXpqMxBC5PUXkRxIz+fiiNzqoF2YkcFrQmTfD3D4GCCp3nB3O8gVGXpKOzaKj4rp6q9Q3YMi2MX5qNwaZj9KXpJEwKJMsG+/5ziS2wrch0MwkT7cHtmuMM6Czy/BBOFE3gmm+M1mNUzDR/5uOHp1/JP/7xDzQaDffddx/x8fFcd911FBcXhzpcaRiQCZHUb9atW8cVV1xBZmYmjzzyCOeeey4XzbkMzecx/OuS/6LV64I3NjqrlvxFqZjjAvOGYsdEMvLiNHnjMwjEjrEFb2xNsQYm3pCDKUYPQMrMWEZdmhF8btL0GOzZ1sB/KKC3alG1gdOMx+HF6/Qx4ZpsFI1C1bpGmovbA09VA/86h8uY443ET7AHtzvyojQy5iUAoDVrGHlxWjARU3WKPE4A5znTg/8Gii3TgjE6cCxEppuZens+OkugUSNlRgzZC5KCz41IMWOICNzQ+jwCZ4MbIQTrn9hD7dYmvI7vq40JwO8NHAwxoyJJGG8P/m3a7fkkTY0GwJJoJPvMpGDypKjyQBhwyv7fIIHEZOTFacHGi8x5CYy6KD341PgJdszx++eGis7ffeC1zcUOqjY0otGpTLgmG4/Th8cRmE+oalX0ByTC9mwrSdNjgtsdvTiD5BmBBhRTjD5wjooNnB8i0szEjrH13/uXui1jXgK55yQH/kNA7jkpRKYGri3CL1BVDa/f+gnW71I5f+pi5syZw7Jly8jOzubUU0/l7bffDmH00lAnh8xJfcrn8/Hmm2/y8MMP89VXX5GZmcltt93GW3euRKvojvpaVasg/IETY/SICKLyItj3TgUAIy5Mo25bM/U7WgbibQwrGoNK7KhIGva04mn3kTwjhoQJdjb8cx8Ak27MpWFPK8WfVKOzaEk/KY6yVXW4mjzoI3VoDSqOWtcx9xOVF8HIC9Nor3Gy/eXig26Aj8WSYMTn9uNsdGOw68hdmELB+xV01LtJPyWeuLF21j22Gwj0MDhqXcNq2E13kiDj26uPez9ReRFEpJoo+awGgGl3jKBmUyPFn9ZgsOlInBJN+Td1eDt8aM0ahF/07TpSCkTlWHHUunA1e7DnWMman8DGf+9D+GHUJen4vYJdr5cCgZvh9sqOYHIlHT+NQcUcZ6C1rAOAKT/Kp3ZrEyWf1WCK0ZN9ZjJ73ynH1eTBGKVHo1dpr+5+FTmdRcPoSzMwxxvZ+VpptxZxNccZ8Lr8uFs8GOw6UmfFUrKyFk+7l4x5CUTnWg86n1Vv7OyZ1hCdF0HdjpZhdb4YKOZ4AyPOT2XbS8W4W70kTIpC1SpUrmkAAr1Ex5o36lO8TLo9mxdeeIGamhqmTJnC4sWL+dGPfoRerx+ItyENEzIhkvpEc3MzTz31FI899hhFRUXMnTuX22+/nb9f8OJxF0lQNAp556VQs7GJpoI2NEY1cPGSR263KRoFU4weR00gcclZmIy72UPpl7UYInVMvT2frc8V0VzUTmS6GWuSiYrvAvN6FBXEcd4rJE6JIuesZBp2tbLrf6V9eoNqSTBijNJTv7MFRYUZPxtFycpaylfVobNoMNj0tFV09Nn+Bpve9gh1J0HSR2gZ8YM0Cj6opL3SSeLUaGJGRLDtxcAQFn2kDk+b57iOj1GXBnoQdrxS0vuN7BeVa0UIaNrXhjFKz9Tb8tn2YhGNe9swxxvQmjSypHsvWJNNuJrdeNp9pMyOJX1uHN/+fgfCH+jBcza4e5T0HIuqVRhxQRrRIyLY934lVWsbjmt7B57Dkk+Ioa2yg5YSB7ZMC2OvzGTNw7txt3hIOzEOvU0XbIgzxxvoqHfLYi89oYApxkBHnQuNQSXnrGRKPq/B2eg+rs0KIbj25Qv53e9+x6ZNm7Db7dx2223ccsstxMfH91Hw0nAmEyLpuBQWFvLXv/6VZ555BpfLxaWXXsqu5yuIVKL6bZ+jLtl/A7Xs+G+ghipFo5A4OYqmwnY66lwkTo0me0ES3/x2O8IvSJ0Th6fNQ/XGJiBwA9JfregZpyaQdmIcFd/VU/BBZb8nsga7Dr/HH+jtOiGGzPkJfPuHnfg9fvQRWtytQ6usd18NketMkLJOT0Rr0rBneTmKqpC/KIWyVXW0V/XPWjHjrs4CYMszhX27YQUs8UY6Gtz4PX6yFyRhz7aw/vG9QOBGvqXUIcu8H0Hnb0XVqcy4eySFH1VRuboBnUWDqlNxNXn6NwAlcCymzIil9Msaij+t6ZfdHHjuS5gUhc6ioeyrOhRVYeb/G03BikBCZoo1YM8KzHuUCdKRZcxLIHFyFGse3oXf0z+fk9vejm6ymy+//BKAhQsXct999zF58uR+2Z80PMiESOqVzZs38/vf/55ly5Zht9u56aabWPngBgyKqd/3HZlmRtEoNBe19/u+Bj2FYIKRMisWQ6SOghWVoMCMn46iYEUlNZub0Fm0GGw62io7Bq5nTYHcs5NJnBJN4YeVlH8z8JXkFDUw78lR4wIlMMSrel0jJSv75+ZqoPVFMmQx+hmT6WLTPgMuj0pa8W5UrUL1+qFX9U1v1eJu86LRq5zw05Hse7eC6o1NGCJ1qHqVjrpjD/0cDtJPjidhUuCmFhHoKXHUukLSK58yM4as05OoXFvPvvf6v0ElSAFrkglXswdPu5f4CXayzkjkuz/uBAHZZybhavZQvqou+Hw5agE0ehVz/PdDKvuT3+gm7eIoXn/9dRwOB/Pnz+fOO+/kjDPO6Pd9S0OPTIikbhNC8NVXX/G73/2O9957j4yMDO666y7+96NP0CghqA6nQPw4OzWbmwZ+3yGiNWlQtQruVi/WFBPjrsxkwz/24Wx0kzA5CkOkjpLP99/sh/ACragK+eenEjs6kj3LywfNd2TLsuBq9uBscBMzKpKYEZHseasc4Q/P02BvE6LkGC8aVVBaq0OjCkaluymo1OFwBYoTlJ4WGOaad9t3fRbrYKMxqAi/wO8RZJwaaNVe/ZedCH/gps7nHj5zShRVIe/cFOp3tVC/owVjtB6DTUdz4eBodEqYaCf3nBTqtjez+40Q/l4POKemnxKPq9lD9fpGjNF6Jt2Qw5bnimgr70AfocXvFXg7uj9PMqwpkLswmdIva/u/57ALQuPn3D+fxK9//Wvq6uoYN24cf/3rXznllFNQVVk7TOoeeaRIx+T3+3n77beZM2cOc+fOpaSkhOeff56c4iksv21laJIhAuPa885LCZbyHYp0Fg3R+RHB/x63JIu0uXEAdNS5KFlZi88duOhWr2/8PhmCkCVDqlZh1KXpxIyMYOerJYMmGQJoLmzH2bB/LLsSKODReXNlSTSGMLKe60kypCiChCgvqhJ4r2aDH7Mx8P99foWtRYbDkiGAPY+ewJ5HT+jDqA837Y4RTLtjRL/uoys+lz84pKdkZQ1bnitE+AMV06bdMYK4AyrbDVWdx7zwC4QQwSpuzgb3oEmGAKo3NrHz1VJiRkYy6tJ0VG2IqgkecE4t+awm2Ivqc/koWVkb7GFMmxvPuCVZwedG50cM6bLg+ggdkWlmDJFHL5zUXxSfytu3f8n4+rn88Y9/pL29nfnz55OXl8fjjz+OzzdMElPpuMgeIumIPB4PL7/8Mr///e/Zvn07s2fP5t577+WvC5857kIJfUVr1vSoWtlgp6gQO9ZOW0UHHXWuYMvot7/fgc/tx5piwtPqxdUy8K1w3aExqIxenIE1ycT2V4oH1U3V0VgSjUy6IZetzxfRVNAW6nC6pTsJkaoI/ELBqPcze4yTTfsM1LUc+cbswGSoK/3RY5R2UmBCdOkgGcaoahXixtlp2teGq8VD/EQ7phgDxZ9Uhzq0PmXPtjL2ikw2/HNvv80P62u2LAujL02nrcrJ9peKB21lOEOkDl2ElrbyDjR6lRk/G8Wet8up2diEOc6AJclE3dam4y5WI3VNCMHlzyzkz3/+M1u3biU3N5clS5Zw5513YjL1/7B+KTzJhEg6jNvt5j//+Q+/+c1vKC4uZuHChfzsZz/jl3MfCXVoR9QXldBCxZZpwZJopOLbwBybE+4aSckXNVSubkCjV1E0SlgMvdAaNYy9IhNjlJ5tLxUNyBjyvmTPtgaToYSJdpqLHcddGam/dCcZykl2Exvp47udRkDBoPPj8hx9UMCxEiIY2sPoupJ8QgymWAP73g1UHrPnWGnaFx5J86GMUXpsGeZgMZUDj/lwYU0xMeayDJwNbrY+XzRok6IDaU0ahE/gc/tJmh5N2tx4Vv9pJwDJM2Jor3KG7ZxYfYQWVad+3/M+yNy2/Eoee+wxPvroI2JiYrj55pu57777MBgMx36xNKzIhEgKcrvdPPvss/zmN7+htLSUiy66iJL/NmJVBveiduOvyaZpX9vBw8UGMa1RQ8rsWKrXN+JsdJMyK5aYERFs3l9lS9Up/Vadp79ojRrGXpmJwaZj63NFfVqCd6ApGoXJN+dRta7h+wnTg0xXCZGCICnGR2uHQqtDQ6TZh9kgqGrU0J2Va7uTDB2orxKjuHGB80vtluY+2V5/ikg1MeGaHDY9XUBrafiV706ZFUvilCjWP743rCulWRKNjL0iE2ejm60vFPXtWlcD4MBz/Pirs6jf1Ur5qjqMUXoSJkdR/nUdXufgbwQDSDspjuQTYvjuDztDHcpReWwO/ONa+eqrr4iOjua6667j/vvvx2IZukPupZ6RCZF0WCJ08cUXU7ysYdAnQp3iJ9hxNXsGdQtb7BgbOouGytUNqDqFybfkse+dChr3hlfrbFc6e4YMdh1b/lMYXOsonB24SHDCRDvOZs+gGf53aDKkIBD7Z3vPGOWkskFLcXXPx/L3NCHqdLyJ0fSfBOYPrf7zruPazkCxJBqDQ8xyz0mmpcRBzaam0AZ1FLYsCwabjpqNTSiqgqIyJBaqtSQYGXtlJq4mD1ufLwqbBOJoonKt5JydzPq/78HvFSSfEIO7zUvdtsHbWKDRqxhj9LRXhkcjWLvSgm6Oky+//BK73c7Pf/5zrrvuOpkYSTIhGs7cbjfPPPMMv/3tbyktLeWSSy6h6JUGrEpkqEMLe/oILamz4yhZWYO3w0fGqQkYbDp2v1EW6tD61FBMhg41enEGHfUuCj+sCnUowMEJkc3iY3y2i9U7jbg8anDOUE/1NhnqdDxJkTEqsNr8YB2eeDQ5ZyfTUtJO7ZZmtEYNwi8GXXW6rDMSMUXr2f7y0Fu3zRxvYNyVWbhaPGx9bmgkRQfKPz8VV7Ob4k9r0Jo0pJ8UT9nXtUNuLbVQ8No6iDhR5d1338Vms3Httdfy85//HKvVGurQpBCRCdEw5PF4eOaZZ3jwwQcpKysL+0TIFGtAa1RDPmclZlQkikahbmszOquWCddks/PVUtoqwmsuTXdpjCrjrsjCYA//YXLHoqgKwi+Izo/A0+6ltTw036nznOloVIHV5Ke5XYNGFWQleSiu1uHx9i6pOd5k6EDDbX7RgbIXJBGVa2Xd3/aEOhQiUkxozVoa97QGj92h6sCkaMtzhWE3fK67rCkmRl6YxqYnC/C0e4kda0P4BPU7WkIaV/KMGJyNbhp2tYY0jt7y2Zxopjr55JNPSExM5Morr+SBBx6QxReGIVl2exjx+/288sorjB49mhtvvJHZs2dzgjiNumXesE2GAJKmR5N7dvKA71dv1ZI6JxZFE7ihjM6PICon0LrkafOy9pHdQzcZ0quMvTxzWCRDQPCGMnFqNEnTY0IaS3aSh/FZbhQEPr/C3nJ9r5OhvtabEt0jLkxlxIWp/RDNwCr7upZ971cCgSGXCZOjUEJ0hU2aHkPStGiAIZ0MAThqXGz5TyEGm44xP8xE1Q3N25q28g7WPrIbT3ugdygqx0p0XmBJBkWjkDonFr114JfAsGVYsCSE15IFB9I0G+ETO7MNC5g6dSp/+MMfyMjI4K9//St+/9BMrqWuyR6iYUAIwQcffMC9997Lxo0bWbhwIbXvOIlQ7KEOrU+oOhWdSTMgpagtiUZUrUJrWQfmOAPjr8lmyzOFgYRgmKxUrmoVRv8wUFp7y38Kw6Zkb19Q1MDNh98jsCQYcTa5B6TKVXR+BK5p+dS3aNBpBaoijlkx7lj6smfoQBHpLSQu2tHt50+4NhuATU8WdPs1tTfNJO6Jb3oc20CJzo9gxIVprH98z4AtVKkxqBjtetqrnag6BeETYVt5szesSUbGXpVFW3kH214qDuuiEd22/5pjSTQybkkWm58qwFHrIiLVhN8rhtW5ua94Ihw4RtSyZs0a0tPTuf/++7nmmmvkAq/DgEyIhrhvvvmGe++9l5UrVzJnzhweeuihQV0+e9BRAsNPOofjjbksA79XsGNZYDy+olGGx4V3P0WFkRenY8+2su35IlrCsNJWX5l0Uy5tFR3sWV5+xOcU/3JWr7ef8cCq4P8fdUk6ztgodpT0XanY/kyIgB4lRT1Re9NMgEGdEAHozBo8Dh8okHt2MhXf1eOo7b85dnnnpWBNMrHhH3v7bR+DXWS6mTGXZ9JU0MbO/5YMq4TwwGvRqEvTUVSF7S8VA4HqiK3lHcOiwa6v3PvxTdxyyy3s3LmTUaNG8fjjj3PyySeHOiypH8mEaIjatm0b9913H8uXL2f8+PE89NBD/OXspwfNgqp9KefsJOq2t/RdFTAlsG6E1+HDlmlh3FVZbPjXXtornegsWjwO77C9sOSfn0rsGBs7XikeEhXyjocxWg/R8XidosvewX3XZfR62xohmCScFCs6ahUtGiGIW+PhwPLZQu39b7m/k6FOfZ0UdSZDnQZ7UgSBRTpHX5bBnuXl/TOEdv+xpzNr0Bg1g3Y9mIFiz7EyenE6ddtahlwRm25TQGfW4mn3YkkyMun6XLb8p5DmovbAYuYdvj67hiXPiCFurK1HPbzhQgjBZU+fzZ///Ge2bdsWHFJ3yimnhDo0qR/IPsAhprKykmuuuYZx48axZcsWXnzxReI25/HXhc8MyWRIUcEUbUBr0PTZNsdenknOgiQAWkra2fTUvmBJUU/78E2Gss9KIm6cjd3/Kx12yZA2NeWwf15zHF6nQKODcedFEJ3Z81LXR+IDIvFj2X+wxa3xcuhaQopfHPQv1A5NhgCq3hx1zNdNvS2fqbflH/N5hyZDR3pssHG1eNjwxN5gMpS/KIXo/Ig+2XbM6EgmXp+DRq/icfiGfTIE0LSvjV2vlxE31kb2WUmhDic0BMG5Ru2VTjY9XUBzcaDBMOfMJMZentlnu2qr6KAuxIUd+ouiKLx0zXskbhvJH//4R8rKypg3bx6XXnop27dvD3V4Uh+TCdEQ0dHRwYMPPkheXh7Lly/n0UcfJbNgIs9c/saQTIQ6CT9sfb6I+p29PyFbEo1M/XE++sjADW3pl7WU7V+QU/gJefW6wSDtxDiSp8Ww950K6rYPzYvfgQ5Nfo7G74XmCi+Oxu9L/vamd8gk/JzqbydS+EBR+FQxU6R0P8nqbnLUX71DR3KspKhuezN124++zko4JD7doWoVFK1KXw3McFQ7aS5sx+8dRmPDuqF+Rwt736kgeVoMKbNjQx1OyLWWOoINeWVf11H6ZS0Q6L2c+uN8LIm9L4rQUuKg/OvBuYB1X1EUhQ/u/o4xNbP4/e9/z4oVK5g4cSJLliyhsbEx1OFJfUQOmQtzfr+fl19+mXvvvZeqqipuu+021v55DzpFH+rQBoTGoPZqUnvStGhUrUL5N/Vo9CoZ8xMo/7oOV/PATIAOJ/Hj7eSfn0rxZ9WUflEb6nD6xbGSnu5SVIjJ1vPdyYnQw4YIVQhOFB1sVfTUKwdXi0pc3fvj8tChdf2REHXVO3So3g6f604yFA5D57qSuzCZ9honlasbevS6+Al2arc0D/kKcscr/eR40k+KZ9f/SqndMngXNw0Vg01HyuxYij+uxuf2kzIzBr9XULmmZ8ejOd6AoirDpoiD0PlIvsTKSy+9RFxcHDfddBP33XcfGk3fjVSRBp7sIQpjq1atYubMmVx++eVMmzaNaZ55bPpL8bBJhgBGnJ/KyIvSjvk8jUEl+YSYYElWnVWLbn+JUp/bT8F7lTIZ6oIt00LuuSlUbWgcsslQX7Kl6MiebSaS7iXpFuHnFH87JuHHryisVM19mgxB93uOeqs7yRAcuacoekQE0SO6HkLW3Z6hcO1B8jp9PV43xxRrIHdhMvYcuYDksZR8XkP1hkbyzkvBlmkJdTiDjqvZQ8F7lcHFhHVWXfC6qOoC10yN4di3idkLkkifG9+vsQ4mikdD5QsdzFTPYPz48TzwwAPk5eXxxhtvhDo06TjIhCgMFRUVcckllzB79my8Xi9TOImWN1TMyvC7QJZ/U3/E1ixFo2CMCiSHWqOGzPkJRKQEFlsr+ayGoo+qByzOcGSOMzDqknSaC9vY986RK6lJ32sq9bDxtWZalP0thcfogPegoAKGAZqYZnx7dUgXT+0qKcpdmEzuwsPXEQvXJKcnij6upmZzEwDpp8STfMKx17jqqHOx7rE9NO4Jz4UwB9red8ppLmxn1CXpmOP7rkrjUFT0URUln9UAgeqqmfMT0BoD5zJjlB7lCIVc9rxZzs7XSwcszsHC6DXj/yiSN998E4ALLriAWbNmsWHDhtAGJvWKHDIXRpxOJ3/4wx946KGHiI6Oxl6RTBIZQ3qO0PHIOy8FS6KRjf/cBwQWE+1sCZOOTm/VMv7abLwdPrY8UzjkP7e+GjIH388fGud3ogPWK4aDhs+ZhZ9JwskaxYS7G7/d4+0hOpDh3TWHPdabxVQ7dbd36FAHDp/rXNTxwMV9e5sMhevQOYDM+Ql42r2Uf1Pf5d+zTk/E5/JTsrJmgCMLfxq9yrglWejMWjY9uQ93mzfUIYWFA6+Zk27Ioa3KedRlBoYzIQSNkZUUqNtpa2tjyZIlPPLII5jN5lCHJnWT7CEKE++99x5jx47lwQcfJMGZQX7FdJKVzGGdDMWMjCBm5PdDbXQWDZNuyg0OjShfVcfu/31fdnWo39T3FVWrMHpxBgqBdSyG+ufWl8nQgVyKilNRupxLFIkfczeG1fV3MgSQd9t3A95rdGBPUXu1s0+SoXBX9HF1MBlKnBJFzOjIg/7ubvcGSv5LPeZz+4Nr8oy6NB1VO3yvmz1x4Ll/1//KKN9fbMiWZWHSTbnoLN/Pmck+M6lbPZxDlaIoRLcmM7n1FMakTuC5554jMzOTf/zjH/j9Q/saOlTIhGiQKyoqYtGiRZx99tk07mtlqucU8pRxaA+ZZzAcRY+IJHFaNKlzAlWEPO0+mgvbAmssAI5aV78uhDhU5Z2XginWwPaXi3G3yhuw3tqt6NmuBIboRPh9jPM7UYXAoai8r1hoUgbXBNyeJka97R3q1JkU5S1KIW9RICk93mRoqCRTkWkWIlMDLcuG/dUvy7+u6/Fkd+l77jYv25cVY443kntO/zSCDGUHXk+9Dh9NBW142gPX2tQ5cWiMKj6PvPFX/RriirOYrszDpLVw0003ccIJJ7B37/BdMDlcyIRokHI6nTz44IOMGjWKdevWMY4ZTOJELErksV88xOkjdegsGvYsL6dhRwsxo2zBsc0FK6oOam2WeiZ1TixxY+3sfrNMfo59JEr4WEg7I3ETzf7S3IO4Z3cge4uq3hyFJdGIJdE4ZJKZvrD7zTIKP6rClmVhym35xIyS5/2+0F7pZM/yMuLH20mV5bh7rb3aSeEHVQAoqkLMqEhaSxxUr29EZ9EEl7AYzoxuC3mVU5iVcioVFRWMHj2apUuX0tIy9JetCFdyDtEg9MEHH3DrrbdSVFREijeHLEbJHqH9FBWm/2QkVesbKf6kOrhKu3T8ovIiGL04ndIvain5fPjMU+iP+UOdEoSXGqGSqXgpE1o8avfboAZiuNyxHGl+0fH2Dh2ocz5RXyZE4TyX6CAKTL45j9Yyh5y70YfST4kn7cQ4drxSQsNuWZyiTyigM2tJPzmO2NE2Vv95J0J2GAHgw0tDeinbyjdht9t56qmnOPfcc0MdlnQI2UM0iNTW1nL55ZezYMEC6vc2M817qhweB9izLUy6MRdVqyD8sP2VEqzJJnLOSpLJUB8xxRoY8YNUGna2DqtkqD9FCB+nCgdpio9CRY9HVbELH1HCd+wXDxID0VtU9eYo2Tt0CEuiEXOcAQRs/Ode9r1XCYAxWo8ir9rHreSzGup3tpB/QWrgc5aOn4ARP0jFYNez/ZUShD8wH3XSjbnYs4d3yXMNWuJKsphjWYDGoee8887jxBNPpKCgINShSQeQp9ZBQAjBCy+8wKhRo3j//fcZzTQmM3dYD4+zZVmwZQVOos5GDy0l7cE1hFpLHVStbaB+p2zZ6wsag8roS9NxNXvY/WbZsV8gHZVOCBCCVkXDB4qFEr5v0JgsnEwQ4TWv7dCkqC97hwDO2KZyWnRbn24z3BOsjFMTyDojCQC/V+D3+FE0CmOvyCRjXmKIoxsadr9RjqvJw8iL09Ho5a1QX9j3XiW7/1dGa6kDCKxl1FLSjrMx0Nttz/7+uj4caVuMjHXMZGbayWzatImxY8fyr3/9SxZdGCTkkLkQKyws5KabbuKDDz4ggTRGMAG9Ygx1WCGh6lT8+ydljr40HZ/bz67/yRv0/jby4jTsWVY2/msfzkZ3qMMZUH1dYa702jTOEu1sVgwUdLFAslH48aLgHcBy270dLteVPY+e0OcJ0cRSBaXEwOa2vj3vhfOwOY1eRdUpwUnrnSLTzHQ0uPG0y2InfcEYrWfi9Tk07W1j52vDbx2dgTbiglRUvcqOV0qAg6/5w43f6GWfbgvFLfsYM2YM//nPf5gyZUqowxrWZLNIiPh8Pv76178yduxYtm/fzkRmM045YdgmQ6YYPdN/MoLItEBlpV1vlB0xGUqZFRtcu0Q6PskzYogdZWP3m2XDLhnqD25FZaeip5Kuh7k6FRWvomAUfsYI1zEXbh1s+mMI3cY00efJEEDBH8Kvlyh1Tiw6qxaf239YMgTQUurA0+5FY1CZcE029uzhtxh3X3I2uNnzZjmxY2wkzxi+JaP7UvxEO3nndd3QtOt/Zex+I3Bdj0w3M/0nIzBGH95wNByoTi15rZOYkzSf2tpaZsyYwa9+9StcrvAaQTCUyIQoBLZt28bMmTP5yU9+QowjmZzSycQqSaEOa8DZMi2kzokDoKPeTenKGjoaAjflPlfXrUaqTiFpajRmmRAdt4hUE5nzEylbVUvDLjn88HgkjjVgTwskQTsVAx3HmOgRj4984cZ4hElwfVlQoa8lLtpx0MKqxyu+BeJ0fdfj0ZoV+Jd9d3j1EOmsWpKmxWBLP/ZCjsIvcNS6cDXLRozjVb+zhbJVdWTOTyQiTS6iebz8Hv9Re306r+2d13zn/mt+6py44BqCw4mxys7YhtlkR4zgl7/8JXl5eXz++eehDmtYkkPmBpDP5+Mvf/kL999/Pzk5OVh3JGJThlerlKpTUdTASTFpejSxo21s+U9hz4sjyOpyx0Vr1jDphlycjW62Plc4bKsB9dWQufTL4/CsKqf0i9puv+bA4SLFv5x10N8G43C5IzlwkdXeWLhFBZfC+/URx37yUbRmHfzf4ZYQQe+GECkqJE2LoWJ1vTwn9pKiwtgrszBG6dn4z714HOFT+GRIUGDcVVnUbWumck0DGoOK8DPshtN5YtoosuygrKyMn/3sZzzwwAPo9cOzBy0UZEI0QPbu3cuSJUtYtWoV6SKPbMagGWQLM/Y7Babelk/tliaKP+1dJTONQT1i75HUfWMuy8CSZGLjP/cO68VXu5sQVZ6TfthjGgRGjaDdpwKCuCe+7fH+NQaVrNMSKfm8Bnfb4d+D6+xpPd7mgQYiIerU28QophU0q63Ue3tXTfPQRKhTuCREequW9JPjKfyoqlfntsg0M2Muz2Dzs4W0V8q1w3pLb9Uy8YYc2qucbHuxONThhDVVqxCRZqa5sL1Xr884NYG4cTbWPrp72CX5QvVTGb2PnfVbyMjI4JVXXmH69OmhDmtYkEPm+pnf7+fxxx9nwoQJVFZWMlnMJU8ZP2ySIYNdR/ZZSSgaBQQUrKikal1jr7Zljjdwwk9HYk029XGUw0vKrFjsOVZ2vV46rJOhI6k8J/2wf10Za3Uxy+ZAQRDosuw5VaMQmW7GFNN16V/Du2sO+jeY9XYoXX0EvUqGOofGhTtTjIGINDOqpnfHUEupgzUP7w4mQ6pu8C76O5i527zsfqOcqNwIOZ/oOMWMjGTclVnoI3rXyFG1roGC9ytBgKJRyD4rCYN9eCz2qvhVkuvymBNzOk6nk9mzZ/PrX/8an0/2WvY32UPUj0pLS1m6dCkff/wxqWSTy/hhs6aQzqLB0+7DFKNnzGWZbH+5GEft8U0W1Bo1xI23UbW2EeGXh21vWBKNTLg2m4pv6yn6uDrU4YScNjXliAnPsRgUP2aNoNEbaNzodVWz4xj+eawepFAmUd3tMZpUrKCWG9jY2r15gd1NgsKlhwjosyHAKbNiiR9vZ+O/9yF88hzZG5mnJZJ8QjSbniygvUr2uPWGqlXQR+qC84OOhznOwOjFGWx9oQhngzt4bzEcCI2Psug97KrZyogRI1i2bBkTJkwIdVhDlkyI+slLL73ETTfdREREBPHlWcQow2ftiNyFyViSTGz6975QhyIdQNUpTLw+F7/bz6anCoZlUuk99eCypo0jejY+26LxM9bqYl2LEa84uCX+eMo8KypknZ5E495WGvf2fE2erhKjwdKjdKzE6PTtKrSrfNJw9IppPe0NGuwJUVSulajcCAo/rOyzOXymWAP2LAuVaxr6ZoPDkKJRmHBNNqpOZeO/9uL3DL/z5GA28boc2io72PtORahDGTDOuGZ2+jfQ0tLC73//e3784x+jdGPpBqln5JC5Ptba2spVV13FZZddhrnFRm75lCGfDCkqJE6JCpbCrlrXQOEHlX26D0uSkbS5cahaeRLorazTkzDYdOz6X+mwSoa8p04J/jteGgR6RaBV+vbzE37QR2jRW3vXgzyYh9Udaxjdh6P9fZ4MhQO9VYs+QtunBU066lzBZCh6RASm2K6HYkpHJnyCXa+XYojUkX3G8Kv+2lcMNh3jl2Zjju/bY7Dgg0oq1wWOcUuikcQpURyjqGfYM9bamNB6IhnR2dxxxx3MnTuXmprezcOWjmx4jN8aIGvXrmXx4sVUVVUxhmkkKRmhDqlfKWrgRk4ISJ4RS9W6BtqrnbT1w8ReS7yR2DG2HlXxkr4XPSKCpKnR7Hm7nI76oV+qty+SnwOZVT8dfoUWn4Yvm0z0ds7Q0ex8tW8WhhzMSVFPCy8MxUSoU/XGJqo3NvXPxhVIPymelhIHBSv6tnFqOOiod1OwopK8c1No3NtK/U65LEFPuVu9uJrcfd6T0VLiCP5/W6aFxMlRVK0PzEvuvCcZihS3hozqscQkJbBu3WpGjx7N888/z5lnnhnq0IYMOWSuD/j9fv785z9z3333YfJYGcsJmJWhvWBeZJqZkRelsfHf+3C3elG1Cn6vPJQGI51Fw+Sb82gpdrDjvyWhDqff9CYJ6s6QOQ2C02LaKXbq2NF+5NbO4xkyd6DU2bF4XX6q1g7dYU8HJkan7VBRWjV80vj9GiR9kQgN1iFzSdOi0ehVyr6u69f9aI0avC4fwZof8vTcY6MuTici3cz6x/fglaW4B6XOew99hJaJ1+Ww89VSWkodx35hGPNZXWzXraGuuZalS5fy97//HZ1ueBSd6E9DvKOx/1VVVbFgwQLuvvtukj1ZTOWUIZsM6SxabFmBm5b2aic1W5qCE3f7MxnSmTUoqhwq11s5ZyWDgD3vlIc6lD53PMPhujt/yIfC+lYj+xwDsx6EzqJFZx7aVSgPHEbXYBY0er+/FA3lXiEArUmDztL/gzO8zkAyZI4zMPnmPMxxcvhcT+19txxFgZwzk0MdStiKSDNjjO6/c2fnvYfwCWq2NNFeHRihYsuyDMjvLBQ0bQbGNMxiZOw4nnzySSZOnMiuXbtCHVbYkz1Ex+Hjjz/mhz/8IaqqklydN+TnCuWclYQ928q6v+0Z0P2OuDANnVnD1ueKBnS/Q0Hs6EhGXpTOjldLqN/eEupw+kRfDYc7VkIUofERq/dR2HHsi3lf9Q4NR1VvjkLzgb3PE6HB2kM00LRGDZmnJ1L4YSU+5xAdT9SPYsfYGHlh2pA6hw6kqbfnU7e1ecCrmk65NY/GgjYK3hvaQ0Y7YprZ5l2Dqqr86U9/4uqrrw51SGFLJkS94Pf7eeihh/i///s/okQcY5mOXuleydiwokDm/ERayxzU72hBa9YgfGLAF0Y1xxvQmjS0FA/tbvC+pjVrmHJzHs1F7ex8rW/mp4RSX88LOlZClGd2kWb08nmDGf8x5gz1R0IUP96OIUpH6cqhPW8uIsVE+S1jqdP2bWvuYEuI0k6Kw9XooWZzU8hi0Jo0aPQqrmZPyGIIRyMvSsOWYWH943vwyKFzPWKw6UJyvGkMKopGwevwETMqkohUUyApG4J3vG7hoiB6E+WNpSxZsoR//vOfcghdL8ghcz3U2NjIueeey/3330+mGMkkThxyyZDGsP+wEIHKV53Dd7wO34AnQwCOGpdMhnoh58xkUGDfe8OnPGnfCFwx9zgMrOxGMtRfdFYthsihf1EbdWk6p7g6Qh1GvzNE6tD1sopgX8k7N4URP0gLaQzhaN+7gXNoztly6FxPhSr59rn8wXlfOrMGfYQumAwF73GGCL1iYETDNMYnTebZZ5/l9NNPp7i4ONRhhZ2hdVT0s/Xr1zN58mRWrVrFRGaTo4wZcrXgzXEGpt85kog0MwC7/1dG1brGkMWTdXoi9pyhOSerP8WMiiRurI1971XIFs0e0CuCk6McxOu9QGD+UKiUr6pj79tDP5nd81Y5qwxDq1GpK3vfrqB8Vf8WUjiWghWV7FleFtIYwpHH4WPvexXEjrYRMzIi1OGEnazTE8k9NyVk+69a18ju/wWO+8g0M9PvHDnk5tQpikJcZRZT9HNZv349kyZN4u233w51WGFFJkTd9NRTTzFr1izqi5oZ3TiDWGXorE+g0atE5wdO8o5aF8WfVdNR6wpxVIESmuY4w5CdGNlfNAaV7DOTqN/RQt02Oea9J7wCmrwaHL7Bc2qMyosgZWZMqMPoN4172ijXDt2esJSZMUTlDY6baFezh456N4qqkH5yPKpu8Bzng1399hbqd7WQfWYyGr383HqivdpJW/ngGOXhqHVR/Gk1jv33ONH5EUPq+7S745jiPwmdMHD++efzl7/8Bb9fzh3sjqFzFPQTl8vFddddx7XXXkusK4WpnIxJsRz7hWEkfqKd/AtSg93IFd/WByoUhZjww7YXi6kN4Zj7cJRxSgIavcq+94d+70JfURAYVT9+FDa2GmkbRAmRNdFIZPrQOuccKOv0RKa6+m7tMp/Fj88yeG4AItMtWBIHVw+YMUpH4tRorMmDK67BruC9SrRGlYxT40MdSlip2dQU0pEmB/I6fVR8Vw8EGg/zL0glfqI9tEH1MU27gXEts8g05/GTn/yE+fPn09bWFuqwBj1ZVOEoampquOCCC1izZg257vEkK5mhDqnPxI2zoTVqqFzTgKJR0Jk1uFu9oQ7rIOZ4A46a0PdUhRNrkpEJ1+ZQ+FEVFd/WhzqcPtWfRRVGWlxkGj18VG/p1TC5fq0yN8TXkJnyozy8MUbeMB/f0NhDk6C8W747ru31qUH4Hao6Fb9n8CSO4SJlZgyZpyWy6d/7+mUR8qHKYNMRkWoadKMW9BFaPA4fwidImhaN1+mjdktzqMPqM460OtZUfk1qaiorV64kLU3OITySwdMMOshs3LiRadOmsXfvXsa7Zw+pZAjAkmgKtloKnxh0yZAl0cjkm/KwZQ7dlvE+p0DOwhTaa5zBFjCpewocOja1GkI6Z+iI9t9IR6SaSJgcFdpY+sG6x/YcVzI02HqEOiVMjiIi1RT4j0GWDAHBZCj95HhSZsWGOJrwUf5tPe3VTnIXpjAYTxeDVfSICHLOTkbVDq4Pzd3qDa6naEkyDbre3ONlLo1lVtRptLa2MmXKFN57771QhzRoyYSoC6+//jqzZ8+msaSFvOop2JXwH7+vaBTGX5NNwqTADVXRR1WDesJ2e7WTrS8U0VLSHupQwkbS1GisSUb2vlMxKG/ABqM4nRedInALlUr34J7HEpUXQfx4u7wJ22+wJkIAKBA/wT5o5g4dlYI8pnpCBApkWJKMJE8P/3uDgVK9oZE1f93Vr4u4H6+9b5VT9FFgvaSESVGMX5qNogn/H4eu1syouhPQCC2LFi3ioYceCnVIg5KcrX4AIQS//vWveeCBB0ggldFMRaOE90ekj9ThbvEgfILGva101IXJEDQBTfvkmNfu0lm0ZMxLoGptA23lQ7+EcV+I2eNiygwPxU4dO9qPXXEo1Iuvlq6soUQw5JLdidfnMMrRzrvm7vUGD9ok6EACtjxbSDgUIS35rCb4/xWNEmwtl46sraKDyrUNpJ8cT+3WJjztoZ9zO9j5PfuPq0E4fLQrHXUuGve2Bn8PnfdS4cqgmBjdOJOShG38v//3/6ipqeFPf/oTGo0m1KENGuF9t9+HnE4nS5YsYdmyZWQzmixGhX1JbXOcgYk35LL95WKa9rWFzQKPtkwLCZOi2PtOhRzj3k2Z8xIQPkHRpwO7Gng48/sVvmg04/Qf/DsPdeJzJGL/T8EUo8dg09NUMDQaDBx1LtpTu9eTEg7JkD3HiqvJTUe9m3CaoRs9IoLsM5LY9NQ+eYPfDSWf1RA31kbGqQmDerTFYGJNMTH60nQ2/rtg0CcXLaUOWkoDlfHsOVZGL85gwz/2hk+jchdUv0pGxVhUnYFHHnmE1atX8/777xMZGRnq0AYFmRABDQ0NnHfeeaxdu5ZxzCBBSQ11SL2mqAq2LAtN+9pw1LrY81Y5LcXhNexMo1fR6OWE3+6yJBmJn2hn33uV+JzyMzsWRRGkpvgoK9dg+ft3hNsstbQT4zFG6YZMQrT7f2UUzDj6RN9wSIQ6pZ8Uj7PBze43w2u9n9byDmq3NePtCJ/POpS8HT5KPqsh+8wkKtc00F4lCywcS0eti5pNTeAPo5YCoKW4nT1vlQeTIXuOlebCdkSYvQ8IrFeU7s0nLjGONWu/ZPr06Xz55ZfExcWFOrSQG/ZziIqKipg9ezY7duzg008/DetkCALV40YvzkAfEch1azc3Deoxu11p2N3KjmUloQ4jbGSfkYSjxkXVuoZQhxIWIiMEGWk+zObw+l102reigi3PFYU6jD5jitVj8w+dHomtzxWyb0X49Rh42rwUf1KN8Au59ls3Va5twFHrInvB0FmXsD/53H6KPq7G3Ta4ijgdi98rgst/6CO0jF6cQdxYW2iDOk6mqijeeOMN6uvrGTduHKtXrw51SCE3rBOi9evXM3PmTNxuN6tWreLns/8S6pB6xZJgJGF/Hf2azU1s+MfeQVc1rruMUfpgMicdW+zoSGwZFgo+qAyLcdmh5DOq+IwqDW4tX2820uILz+PM5/QjfAK9VYspNvxXWx93VRand3S9aOOgLpxwCFOsAZ1Vi98rwrqnVh+hZcqtecSNC+8bvgEhoGBFJbYMC7Fj5LCj7lA0CvET7Rij9Md+8iDkbvWy4R97qdnSBASKL1gSwrMy3V8XPsNHH32EoijMmzePt956K9QhhdSwTYhWrFjB3LlzSUtL45tvvuGWkfeFOqReixkVSdL0mOBkxXAe45p+UjxjLssMdRhhQdUqZJ6WSP3OFpoLw2tY5EDpTIJ8RpUIs5+MJA8g8PrCe34gQP75qUOiZbrg/UpW6w+/oQiXRKhT9oIkRpwf3iMMIHDDV/hhFQ27WkMdSlhoLmynfmcLmaclDrqS0oNV1umJYb2kRkedK9AAqUDStGhiRoVvMvzTyb9h7dq1pKSkcMkll/Dvf/871CGFzLBcmPXZZ5/l2muv5ayzzqLtbU1YVpJLmGhHADUbmwJlIYUITroOZxqDisGmkwuydkPqnFjST45n/eN7cTa4Qx1Ov+vuwqw+Y9ftPKnxXhJjvKzbaUCIwI2L4b01fRbfQDNG6/E4vGHdG9Gp4A8zg/+/rxKhgV6YVWvUoDVpcDYOnd+i1qxB+AQ+V/gfY/3JGKVn8i15FH9aTfmqulCHM+hp9Co+99A4phRVASWwnmP8RDsKUL2xKdRh9ZhP+BAnN7Jy5Ur+7//+j1/+8pehDmnADbseokceeYSrr76apUuX0v62LiyTIQBrihlrYmDRP+EbGskQgM/ll8lQN2iNGlJnx1G1tmFYJEMA2k/XHfFvB/YEHUlZjfagZCjcORvc+Jx+NHoVrTF8S6emnxrPJFdgQnq49QpB4Leo0at4nb4hlQwBjLsyi6zTE0MdxqDnbHRTtb6BtDlxaI5yDpICOpOhobDGj/CLYGlua6IJa4opxBH1jkbRoFkZw/nnn8+vfvUrfvWrX4U6pAE3bH65nWsM3X777dx9990U/LsBVQmft6+okHduSrBrdt+7FRSsqAxxVH0re0ESSdOjQx1GWEidE4uiQukX4VFKvb8cKwkCSInzkhQbmFM3VJKhA41fmk3G/IRQh9Fr8ePtZPu8YZkMAWTOT2D80uxQh9EvCt6vpOTzmmM/UaJ0ZS2KRiF1tqzW1R1jLs8kM4zPW10pWFHJvncD92UxoyPJOzeFMLrNREGh+X8Kd9xxBw888ACXXXYZfn94npd7I4y+qt4TQnD33Xfz85//nN/85jes+8O+sFtjqLMHSB0CLSpH4vf6w64iXijoI7QkTY+h/Jt6PI6hU52ru7rTG3Qgq8mP1TR0T+qFH1ZRFsaJ8dqHd/PfOHOow+i10i9qKfxwaDVOdWoubsfd6kXVKWE7CX6geNq9lH9bR/IJMeit4TnyZCDVbGoc0vPUVDVwrxZuo3cURWHLw6XceuutvPTSS5x77rn4fMPjPmPIJ0Q+n48bb7yRP/3pTzz66KN8dv+GsEmGtGYN45dmE5kRuFnY81Y5tVubQxxV/yn6uJrq9Y2hDmPQS5sbj9/jp/yb4TVW3blwereToAPtKtGzp1TXDxENDk0FbbhaPGHVEjlUKCq4Wjw0FQztoia5C1MYedHR14qSoHxVHX6Pn7ST40MdyqBXu6WZ5qKh+7up3drMnrfKAbBlWBi/NButKXyGNu/8exX3338/7733Hpdccglu99AaDtyVIX0J9Xq9XHHFFTz55JM888wzvPXjL0IdUvfsz9e8Dh8dda5h0WsSmW5G1YVHohpKxig9CZOiKPuqdthMdHYunI5z4fQevy4r2UOMrbNla2gfWxq9yqQbc8NybYzxS7M5u6Ej1GH0WNw4G5NuzEWjH9KXUQBKVtaw63/htdBsKPhcfkq/rCVxUhTGaNmjdiyR6WYSJkeFOox+5/P66ahz4e3Yfz0Kk8vRt7/Zyb///W/eeOMN5s2bh9M5tBcfHrJncq/Xy+WXX86rr77KsmXLeHHpu6EOqVtMMXqm3JKHOS6wvsiet8ppKw+/m4WeULUKYy7PJGmqnD90LOknx+Np91K5ZmgvwtqZBPUmEQJQEESY/ZiNR29McJ01rVfbH2x8bj+1W5tprwm/C5a7zUOHGiZ3CAdor3ZSu7V5yFTLOhpngztQalhBDp07hso1DbjbvKSdKOcSHYs9y0ripKGfELWVdwR7i8zxBqbckocpJjx+R69ct4LHH3+cb775hjPPPBOPxxPqkPrNkEyIfD4fV111Fa+99hqvvPIK/7x4WahDOiZl/w2Bs8lDc1E7Ps/Qv8h28nsF6x/fE5alKgeSMVpP3FgbZV/VDtlew+NJgg4kUNi8V09pdfgMUThepV/UhmWFxp3/LeVTe98sbCjM3uC//uaocQ27oiZZpyUy9srM4PVKOpzwCcq+riV+fPguPjpQSr+sZdNTBaEOY0D53H6ai9pxNgUSi3D4Lb1208c8+eSTfP3118ydO3fI9hQNuYTI5/OxZMkSli1bxssvv8w/Lnol1CEdU2SamSm35aGP1CF8gr3vVOBqGrpZeFdcTZ7vu5OlLqXNicPd7qVqCM6z6qtECCAnxUOkxU9gXMLgv9j0JUOkjjGXZ2Kwh8+cKb1Vi9l7fA1AA5UEARjs+z/jyPD5jPtKxbf17Hq9FOEfmg0yfaV6fSOedi+pspfoqDqPo+E0XN7V5GHvOxUIn0AfqWPqbflEpg3+ojIvLn2XRx55hDVr1nDqqaficoVf49uxDKmEyO/3c8011/DSSy/x4osv8q9L/hvqkI5u/zmgvcZJ/Y4W/MNg6MWhFFVh7BWZRKYP/hNCKBnsOuIn2ClfVRdc82Ao6GkiJI7RmqaqgqhIH2bj8PstAXj2NyqE0+TdiTfkcE5j74YFD2Qi1Knzs/V0DOx+BwNXi4fWssB3pZOV1I7I7xWUraojfrw9rBonQiFhop1pd4wIi56SvuZ3+6nbccBQ50H+Efzvlk955JFHWL16NT/84Q+HXKGFIZMQ+f1+rrvuOp5//nmef/55nlz8WqhDOip7jpXJN+ehNWrwufwUflCF1zn8eki0JhVvh29YvveeSJ0Th6fDR9XaoTF3qC97hA7k9yus3WGgqj58EoK+5Pf42fZCEe2V4TOkoeiTatZZeza0KBSJUKf2SifbXijC7xk6DRM9lX5yPBOuyR4SC2v2l6q1DXg7fKTOkb1ER9Nc7KDoo+pBnwz0B6/TR+EHVfhcfrRGDZNvzsOeYw11WEf15o8+58UXX+TNN99kwYIFeL1Dp2FoSCREQgjuuOMOnnnmGZ599lmeufyNUId0TI5qJ00FbcN+6IGn3cfO10rDcu7DQNFH6kiYaKf8m7ohMXeoPxIhgNR47/6eoeE3VO5QBpuOtJPC40asZmMTe03db0UPVSIEkH5SPAabbPGv3tjIvvcqh1RvdV/zewXl39SRMNGOfhgOr+wuZ6Ob6g2Nw/5YEn5BU0EbjurB35j15OLX+MMf/sDnn3/O+eefjxBD47sbEgnRb3/7Wx599FH+/ve/89xVb4U6nCOKGRnJxOtyULUK7jYvBe9XDosKRUcTmW4e7veux5Q6Kwaf209VmFeW669eIQBVEaTGew8os919Q6XS3IFMMXoSp0SHxY1Y6pxYxrUde+hFKHuFYH/DxBRZThkC8yAa9wQW1RxO8z96qnJNAz63n+QTYkIdyqBmsOuGfVU+n9tPwfuVuNu8qFqFidfnEDMyMtRhHdGKn37LAw88wDvvvMP1118/JJKisE+I/vWvf3H//ffzy1/+kv/d8mmowzkqR52LljKHTAD2syabGH91dlhMKAwVjVElYVIUlasbwjZ57s9EqJNfKKzeZqC0Ws5rAGgqaGftI7txtwz+4izJ02MY3XHkOEOdCHVyt3hY+8humguH7mKSPZU6J44J1+TIRYGPwO/xU7W2kcQpUWgM8kM6EqNdT/KMmGFZqKRLCrSUOnDUDu7eoq9+uZU777yTJ598krvvvjvU4Rw3RYRxWvf6669z8cUXc/PNN7Pjb5UoyuDLNKJHRJA4JZrtLxdD2H7S/ceaYqKtokN+NkeQMjuWjJPjWfPwLjzt4TvPqq8TIuWAoaYxNh9tDhWXp/e/f8N7a/oirEFHa9RgijPQWuoIdShHtefvJ3T5+PEkQvlXr+v1aw8VkWamo9Yl5zoewpJoxJJopEYumXBEOquWabfnU/xJNeXf1Ic6nMGp89Qt7wMOp8DoxRlUrW2gYXdrqKPpUvxiPS+99BL/+te/uO6660IdTq+FbZPFJ598wg9/+EMuueSSQZsMAXjavXgdPlTt4Iwv1NrKZTJ0JKpWIXl6DDVbmsM6Gepfgvx0DxlJPe8JMby3JvhvqMqYl0D+opTB2yu9Py6NEHBA29xg6RUCQIH8RalkzIsPdSSDTnuVUyZDx+Bp81K7uZnkGbHyPuBIRODfcKw0dyyqVsXr8OFxDJLzYReqX3JxySWXcNNNN/HUU0+FOpxeC8uEaPPmzSxatIi0tDSc32hQFIWEyVGMvzor+BxbhiVki6LZMi3kLEwGoLWsg91vlg3rikRd0UdoGXVp+pBcuM6abAquQq2zaMg8LTFYejVunI1Rl6QHnzvm8kwyT0sEAnMUZv98DPbsQJWZ3IXJGCJ1VHxTB8C4q7ICN7cEhtKdcPdIovIiAIjKtTLm8szgduMn2okdawv+d0SaGY0xLH/ux6CweruBfeVHH2pxYPIz1JOgA5V8Xs3mpwtC1uhgTTYFixBEpJoYtyQrWLY695xkJizNZtxVWVxZ6yDfGbjgJyluLihzY9g/yTrV4SPNEcIGAQGbn95Hyec1oYthkEubGxe85g0lGqNKxAFDumPH2oifaA/+95jLM4nKDZyvo/IiOOHukcHzbP6iFMZdFbgnKf+mDkOkLvgZ2XOszP75mOAcv6zTEw86f4+6JJ24/edvg11H5mmJ6CyB340p1oA12dQ/bziEIlJNzPjZSFm05BB+j5/db5YFy93nLkzGlmkJSSz6CO1B9xXZZyWRc1YSiqJQ97qX3NxcbrrpJlasWBGS+I5X2N0hVVVVsXDhQnJzc5lkmE1HbaBl2Nngpqno+7HduecmkzQtGvh+HsZAjeHV6FWMdj2qLuw+3gGjNWnQ6NWwWYxVZ9Gg37/uhs6iJeuM75OclFmxTL0tP/jc3HOSSdo/iVbRqETnR6CzBF7rc/lxt33f0lO7tYmmgjYAvB1e9r5TERw3bEky0VbZgaM2UIGvbFUd1ftbY4VXUPZ1HR31gb/5fQJP+/fbtWVYgnOzNAaVCUuzidqfaMWMjmTyzbnB1riYkRHYs0Nzgj0eJoMfjUbg8yn4fIe3LA635KcrnnYfnnYfikYZkPOfLdNy0ATyMT/MIH6CHQBvhw9Xkyc436R6YxOlX9bi9/ip1yhURAZ6hpwaKDOruPc/L6fdT35rYP6cIgRnV7pJ6tg/n66fR3xrDCqKRgl+jlLXXC0eXE3huSaJPdtCzMhAw5KiUZh8cy4xowOT2aOyrUxYmh387USmmbFlfH+u9Di8+Pcn7h31Lsq+rkPsrwRavbGJslWBxixHrYvWyo5gIuOodbH3nQq8+9eyaipoo3ZLU3C77jZvcM6ozqIlOj8CRROIIXl6NLkHJJ9Tb8snZVYsEEiess5IDF5v9FZtMJEa7By1Lkq/CJwPpK6pOhWDXY9GPzD3looKiVOigsdtRKqZkT9IQ2sOHFPtlc7AlAdA8SlMNM4kJSWFK664gqKiogGJsS+F1Rwih8PBySefTHl5OatXr2ZJ2u1HfK5Gr6JoFbwOH/YcK6MXp7P20T24WzzoLNqDbh77gjneQHR+JGVf1fbpdqWBY7Dp8Hb48Ln9ROVZiRkZyd63K4DA4pGtZQ72vVuJ3qpl7JWZ7FleTmt54CJnSTRSvb4xsJ1IHV6XD5+r9yd2W4aFcUuy2Pp8IU0FxzmJWwFTjAF3qwefy481xUTMyEiKP6kGYMxlGbjbvOxZXo7GoDLtxyPY+XopTfvaMMUaMMfqqd/Vety9DH05j0jxCyaPdOHzwaY9huDjwzn5OZoJ12bTXu0MHs99RWNUSTkhlprNTTgb3aTMiiVmVCSbnyoAwBitx93qPeZNzu5nphz174oQCEVB7xNMb/SyI0JDvUFlZIuP7HYf7yfqEIcMm+6LOUS55yRjSTCy6cmC496WFCIKxIyIwFHnpqPOhT3HysgfpLHmkV34XH7yzktBZ9Gy/aViIDDMtH5nC23lHWgMKvoIXaDh6TjPf/ZsC2OvyGLz0wW0HMecPo1BRWvQ4NpfMCVhchTtVYEb04gUE3nnpbD1uSLcbV5yzk4mIsXExn/tAwLHc/2OFhr3tqHRq2hNGlzNg7/witS11DlxNOxqCTaa9hVTjJ6O+kADx+Sbc6la30jFt/WoWgVFVY5a4Ok/ZY8wdepUNBoNGzZsIDY2tk9j609hkxD5/X4uueQS3nvvPcY6ZhKpRPXo9Rq9GvwSJ9+cS8PuVoo+ru6z+BImR5E8PYZNTxXIFo5jUFQFY5Qu+IMLlfiJdoRPULulGX2Elul3jmTbS8U07mklZlQkCROjAsUwCAz98Ti8uJoG5uIx4sI0LPEG1j++d0D2hwKIwA1u0tQYarc24WrykDonjuQZMaz+004Ashck0VbZQc2mJlAC32V314/o68IKRo0frUbQ7lRlInQMUblWnI3uPvnN6a1azPEGmgraUXUKU27NZ+875TTuaevV9lS9yt4nJuBVe97qmdzhJ97lZ6NdC0Iwr8bLzggNlls29CqWQ5li9Bij9DTu7d17G25SZsXibHRTv6NlwPetaJTAun4icG63JpooWFEJwAl3jaT82zrKvqrDYNcRN9ZO5dp6fE5/8Nw3ECbfkkdbZQe7/1c2IPsz2HXozNpgK/7oH2ZQvaGR+h0tROdHMHpxBqv/shN3q5e4cTYUjRLSOWE6i4bYMTaq1jYg5G3UUak6lQnXZFOxuj7YGNsX4sbZyDsvlbWP7MLd6kVR6fF34bE5WO36jFGjRvHtt9+i04XHMMiwGdN1//338/rrr5PrmNDjZAg4KKMt/LCKms1NQOCE0Tmmvac0BpWYUYGu9er1jWz89z6ZDHVDZLqZKbfmY443HPvJx8mabEIfERg+EDs6khk/GxUcKmZLtxCRGhhW5m71svWFIlpKA70x9TtagskQQFtFx4AlQzqLlpiRkVSt67uT3DHtvyHwOf2UfVUbfK9lX9Wy7m+7g09T9rcQAVgSjMy8ZxSWBCMAxih9cFhhf1IQKAhYvhbv/9bJZKgbGve2HX8ytL8DJmVWLLkLA3PZ/B7Bmr/u6nUyBDD1R3lcWNa731aFSQ0kQ4BOgF8B3/6rmiXRGFjn7Dh01LtlMtQDEckmTLH9f16HQGLeOQf10HORoigoBxQwWPu33ZR9FRi+5mryUPZVbSAZggGdX1e1toHY0ZEDNozN1eQJJkMA218qDiarzSXtbH2hCHdrYLRMRKoZW3pgOKCiUZhxzyhi9w8d1EdoB2Tekj5SR9ZpiZjjjP2+r3Dn9/jZ+O99wWQoZlRkr4dF68wa7DmBIfX1O1vZ8Upx8LjoTWKqazYzxT6bjRs38uMf/7hXMYVCWCREzz33HA899BC5YizxSspxb69xbxuOmkAXY85ZyYy6NP0Yr+hawqQochcmBw/C4b7Scne1ljnY9mJR8DvoS9EjIkiesX8OgwLjlmQROyYwCbCtyknJyhqU/deiPW+VU/B+ZfC1Tfvavr9IhlDC5CiEX1C9cQAToqM48DPZ904F1RsCcblbPRR+VIWjLvA9pp8Sz8iLv/8txY2z9UuClBbrZcZoJ4pGViTqCb1Vy4Rrs3t8Y9O5SGDC/rlApV/WsuGffddzWfplLZvtx3+D6FEVPovXUbV/UnvilGiyz0zq1basKSYmXJuNbgAS/KFk52ullH3ZP8PG9VYtceO+n9A98pJ00k8OVP5z1Lko/KgKd2sgsa7e0Mi+d74fHjoYzusA1ZsaEX5ImBQd6lDwOf007fs+2S94v5I9b5UDgbkjJZ/X0FYVmM8aN9YWKBCx/5SbPCOG6BERfR5Te6WTb/+wg/bqwb3+zmDRec+pMajkLkwmYVLPOwsAUk+MI+esZFACiVZfNAIZq+yMMkziiSee4Oc///lxb28gDPohcxs2bGDWrFlEORMZzZQ+L6+ts2jRGtVA62k3u87N8YbAzbwC+ghdWCx+ONQomsBQLVOsgfzzUtj5eimuJg9pJ8VhTTSxY1kJEKjI42py4/cO6sP8e0pgkmxTYTt791+cwoXOqkVn1uCocaEza5j+k5HsfK2U+h0tWBKNmOMMlGbk09sa0Mr+k7/F5Ccqwk9ZjRbD+7J3qNsUyDs3hYrv6mmvOvYNhz3bGiz4kXZiHE0FbbSWdxzjVb3z/9l77zhLyjrf/1Pp5Hw659w9PaknzyBDEBFQBEEwAYqKrKysaa/+lhv23g13113vmjGtEbOugoBIUjIMk0NP93TOuU/Ooap+f1Sf6jAdTqiT6/168dLprlP1dJ2q53m+6fPdqoYoUWL1Q4yORsQbhcqsQMedtbj0XxMI2reOlGkrVag6aBU2iHkydeQSJTuMcPR7Um4mXbrTCP9CCL7ZIKzbDOi4oxbH/+MSIn4WmjIlIn4WEW/uyhGvR8st1TA1aXHya/1582yRNAGlSYHAkvNr2/vr4J0JYOKlBShNDDreU4v+P0whsBgS12aZzKIwMIJDgF+xR90CWkUhGmRBMgQoJZWWd2myshcDc5fwu9/9Drfeeqvk55eSnI4Q2Ww23H777WCCanRgT1p6DUV8UQRsYRAkge13NaDy4Oaem8qDFuz+WLOgssFDNoYShNHSaHlXVWIdqQlAU7qchrHz3kY03SBIVa/8/gBg4qUF0RgCgMBiKH+MIQCWVj1UJgVmT+RfA7+INypOwhE/i2P/1is2kjO36FF3TTlixlB1SQRaVXybJYLlRWMIAHwBEpPzsuc+YXhg4A9TcRlDxkYtdtzTAG2FkLoy8cpC2oyhqkNWdLqkWYhVujBUumWDJ7bAExSBgC0kztcxlaSN8M0EMfAH2RhKBkZHo/WW6qQiCJoyJSr2LXu5668tF2WtHQMeHPu3XkSWJNj986G8M4YAYOaEDSqjApZW6SMs6YKL8qIxBAC9vxrHxEtCJJAgCQRsYfG7aLqxQpQbB5bW7gS2bvpqNfZ/pk1UypOJj7BbMIYYDYXd9zVvuZct32PG3gdbwWgpcBE+be9S9Ww7rLoSPPDAAxgZGUnLNaQiZw0ilmVx1113we12YxcOgyLSm3PLczw8k/4NQ7Wx9Jy50w70/GIM0Wz2xchjlAYa+hoNuOjmm2F99XL/kvIuM/Z8okWUmpx+04aFbhcAQcq3/7HJuLy++UDFPjM8U354Z/I/ZYANc6KncPLVBZz59gAAgCB4NFZGYdIJ75BayaHcHAVBrN59rjWEGJrH7rYQ1HEaUjLro7Yq0PC28st+rtDTKN8rbEZdIz6c+d5gXMZTqtRcWYJdrtTm07WG0FoCiyH0/W4SXJQHraGw/8E2UQ58LQ1vKxf7iMkkTsQbxalv9GPhgmvLYwmSQMl2g1gLZKjTovaqMtHBdfpbA2LtDxflU4445QK+mSA8U/6k05tyjaA9jP7HJhENCu/wwgUXpo8LDj1KSWLPJ1pQ3iX8rUojA3315im7QUcYth63KM8vkxgRP4ueX4yJNcgbpZbbLrkx9pe5tLcTIHgSba798Hq9uPnmmxEO5+5eLWcfuX/4h3/As88+i3p7J9REZnqkjL84D/eYIIe5sjmYqUmH/Z9qg9LAgIvycI2lKINcxHhngjjz7UHRyxdDU6pEyXaD+O/Ou5b7l9j63Dj/o2GwS4IVtl433OPJy5bmKoyOhrlFL9boFBqxSB3PE3j1ggrTNsEDaDWw6KgLi954syYKhrh846NgeFAkEInKtUOpoDAwsG67vL7L0m5A3TVlYk2kL0NG+cmvDeC/apJTIdrKEFqPaIDFyLMzYvRyZbRaoaOFe5NIBFvmMmIF2TFBm5XQagqG+pjYBY+Wd1aLUaC5Mw6c+EqfoBYH5FV0PxHmzjqX+tPlR4+gRHCP+0XhBjbM4fyPhmHrE/5dttuEzrvqxWNLthtWZX8AwoZ+5NlZ8RmSSRzXqA88y0NpYLD/U21is3dAaIBLqyhEA6yk6nSboSLU2K06gkuXLuGee+7JyDWTIScNoieffBL/9E//hCa+E1aiIuPXrzpkRdf9zeLGwDsdwPx5J8IS9y4qRmiVsACQDIHyPWZx42HpMKDx+uUC6HPfHxZ7OkX9rNCluTDXRpGynUbwHC9GvwoR1ZPHl/4fAZ4XDJvJBQavdasBFiBZDrtaw6gtF941iuRB08IX7wuQOH1JiegKgyh004GMjr8QcI34cOqb/Qh7o4IE8VKh+uxJO04/PJBS/6xk4KJcwpLbyRhCIrywIY0GhIa1uz7ahLprheL8sDeK0w/3wzUiO71SpXyvGfsebAWtpsRG3ABQddCKbe+rAwhBwerE1/owc8IOoHiEiRa7XeA5HqU7TdkeSnrhAc9kQMyomXx1YVVPr8a3V8LSLjhClQYG5XvMIBkCtIqCtcOw7ill4ifsi2L+vHNZaZAAWm+tQf1byzI+FtWiAbvLD+A3v/kNvvOd72T8+vGQc6IKk5OT2L17N0i7ErtxRVrqhraCVlOwbtPD3KzH4BPTYihYJjVKthvR/p4adD8yCs9UAIc+34GBxyax2OMGyRCCNzCnnsbMsucTLfAvhND3u4lsDyWtrO1HRKzZBCkYHjwvRIJqyqJoqY2gd4SBx0/CHySwNiFdFlZIDkZHo/7aMhjrtTj97cGsbUa331UP3w4Dnq3YOk0tXiOo7s4LcV/f1KSDfzEEhY5GNMAi6MjdlI58glZTMDZo4Rj04NDnt2H0uVnMnLCD1lAgCELy5uj5RvsdtdCUKHHmOxnqNZeLEIJgAxfhUbLdgNZba/Dmly7B1KhF5wfq0fvbcdh6Mt/TqhChVRRa3lWFqdcXEXCEs1L2wfM8RirOYdo5iTfffBO7du3K+Bg2I6ciRCzL4kMf+hDUajU6sT8rxhAgpFQ4h3xQmhRQmeXUiWShVCQqD1pALcngGhs0CNjC8E4HwEU4vPmlXiwuTXZcpLiNIW2FCtpyFebPFWa63HqsrRGKEY4QYlrcvJ1C9xCDxuooKkuiOLA9hAprcW+kUoWkCehrNWi+qRLachXOfm8oq555giLiWoiSjghtgXPYi7A7guZ3VKLr/mbUXJk/ndVzlbJdJuy4uwG2Xje4CI++/5rAYs9S3aefLXpjCADmzzqgLVeJwiVFCb+09gNYvOjGm1/qBRfh4Bz2wj3hh6FWSK1cu5eQSRxDnRoqkwJhbzRrNfAEQaDBvgM6nQ633347IpHcEiXLqafrS1/6El588UWUTzVDQWSmudtaSrYL3ZpDrgjmzznQcWcdSFquWYgXXaUKxkah5otiSDReXwFdpVBEOfz0rJCSs1QYG5sIZYDyLhPCnggcQ4XfBFL15PF1DaH1CEcJLDppvNmtxPgMDZuTgj8oTFsWA4vGqgjCN+1P53ALjtqry7DtfXUYfX4W3T8dzXqhevcjo3h6k+hQSulxiYzjp6OYeHkBtkuetF+r4CCA2qtKxbnfbwvBPugBSRNoeodgeKe7eDvfcAx5EfZERMEBmeU9ARflcf6Hwxh9fg4AoKtUo/H6ClDMknO1UQtdZREbkolCAE03VcEz5UfIFQFBEatqtjMJGaGxDfswOjqKz33uc1kZw0bkjEF0/Phx/K//9b9Qz7fBQmQ+vxEQhBRab62GdZvwoDgGvZh4dQFckeQ1JwNJE7B26EVVoKojJag9WgpAKKw99u+9Yj5+zZUlUFlk9aa1ECRQusOE+Quugo+SRd62D5G3xd9zhiR40BQPnicQYUkMTzFw+4RpS6PiYdJz4JdS6PQ16mRbHBUFMcfOxEvzuPDjEQQdEbAhDiRD5mST20wZQgRFgGRIsCEOU28sCr1USAIdd9SKHmqZdSCW3jkA4AFjgxaaEsGR6Z0KYPyFeXBRHmF3VK6/XQ8emD/vROlOo6yotg7mVr1Qawah7vHYv/eKQgu1R0tRdUSI5BKksAeRHdebwC85fJaaJpdsE9ITV4qHZRKlTY/t5V14+OGH8eijj2ZlDOuRE6+hx+PBBz/4QWiiejRhe8avHwvDhlwRnP7WABaXitqD9rCgwlHgm9REoRQklCbhRVKXKLHtffWilObwUzPo/umoeGzM48PoaFQesEJlkg2itZiadGC0NBbOO7M9lLSRqCEUo7KExVt2B0FRl7+Ek/M0zvQJz5PSxGD3x5pRsk0uxF0PS7se+x5sg0JPr+opQtIE9j3Yisr9m/esSCcH/7Yd7x9f3UQwE4ZQjMr9Fux7sHXVhkpoVJgTy2POUtJpwO6PNYtrQfcjo6I4wkomX13ImJpVvrHQ7QKjoWFs0G19cJHBRThE/az4Xq7MKOn+6SiGn5oBILTo2Pa+eqiXjHGVWSEKeMhAdBIG7WHRoFzoduH0twYQcgkpa9lIRSydaUCFuRIf/ehHsbCwkPHrr0dOiCrcd999+PWvf41d3iuhITI7MZA0gT0PtGLujENUNVtL49sr4J0OFLT611ZQSlJUn9p+Vz1AELj4s1EAwgQkFyInT+st1dDXanD64YFsDyUtbGQIcczWkzBD87AYWMzZt2rSx8N6/iJ8s0HwLI/GGypAUgSGlhbNYofWUKg6aMXEy/Pg12TIle02wTXmQ8iZnXzumitLsPieapw30ZIZQomIKihNDIz1Wsyfc254jLlFB8dg4aezbkXzOyrBRXmMPDsLgiKgLVctK1htAq2mULbLhOk386/hdLrZ92ArXGM+DD4xne2h5C0r9yDb724AeB4Xfz4GYPXepRgp32NGxX4Lzv9gWJSzX0nNlaUo32PCmW8PZlzmntOFcZJ4EVdffTUef/zxjF57PbJuRj/33HP4wQ9+gBpvW8aNIUDIVZ14eX5T7zylJEGrC69fQLzoqtQ49PkOaMoED8zo83MYfGJK/L1sDCWPEO43iAXHhUSyUaFV54gScRhDAEDAOxUQxQH88yGxyTKlIFG6ozjTUqoOW0GpSET9LMZfvNwYAoD5c86sGUMAMPnqoqTGUKKEnJFNjSFjoxbb72qArmrzhpKFCEESKN1hFD3uvrkg/AtCNI9n+biMIUBoBlx/Xbm4hsgss3DRBes2g5h2LrMMSRNxpdmv3IMMPjEl1h5py1U49PmOoq438i+GYO9zr2sMAcDCeScmXl7ISs8v0qtAu2o3nnjiCXzve9/L+PUvG082L+7xePDxj38cFpShGo0ZvXblAYvYKXr+nBMh98YbgsEnptdNBShkGm+oQMvNVQAA32wQI88sN0rzzQXFUGu8dN3fjMqD2UvLyVVMTVrQagqLFwvLIErVEAKAzqYwSs3xF2Kv7Ek0d8Yhduo2NevQ+u5qMNp4DKvCQWFgUHu0dFVTvo3QVamx456GrOThl+81YXs4tPWBEkMyBHbcs7Wh4xrx4cx3BuPe/BcSjJZC67urYWoWnqHZU46kGkd7JgM4/h+X4J/P/Pec6yxedIFR0zA1ZaYBfT5Rf125kJGSACFXRHSGhdwRjDwzC9+c8Ny1vKsKjTdkvrdlNvFM+DHx8sYpaSH3skOofI8ZlQcyu08zzJehtrQen//85zE3N5fRa68lqwbR3/3d32FhYQHbsC/jEtuaMiXU1vjrWSgFWdBeBoVBEJSIbRp9s0F4ljYAPMdj5oQd0UDyKkEL3S74ZoOSjLWQKOk0wr8YKpiNQiJRITKycRoDQQjeKikSem29bpz8ar9o0Hfd3yw6QwoWAgi7Izj5jf64+nhE/FFwLA9ak3mjsf7acuzKwjpIq2lwLI+If+uC/9gGq6zLhKZ3VG5xdH5TvseMro83AxCEcU5+tR+23tR7wbAhDgQJuTZrDf75EPwLQZRsN2Z7KDnHzHE7Lv0m+b580QCLmRN2MTrimQqI+xBGR6P11mqxOXwhYmnXw1AXvzCMukQBTWlmo7gEQaDFvxscx+FTn/pURq+9lqzNTC+99BK+9a1vocbfBjWRGc8ISROi5v/QH2fEsGo8NLytHO131KVraFlBV6WGpU0PAGDDLHSVarFAdv6cU9JC2KnXF+Ee90t2vkKg0NLlpIgKxeB5Aj3DCiw6pUlVDXuFTS9BEbBdcosbXE2ZMuMLQLppfHsF2m6tAQCwwfhy50POCHp+MYbwJpHydHH2u0P4U3PGL4uwW/ibE0oX5IEstcdLK5rS5ffANx+Erc8tKg/G3h0p2PXRJtRfVy7Z+QqFxR43rB2GnFR7zCZBR1icq6Vg7rRDjIYojQx0lWqwYcHRa2nTF1xabOUBK8p2m+I+fvS5ObHuVluhyljGAOVXoE21E7/5zW/wk5/8JCPXXI+siCoEAgHs3LkTi0NO7Mc1GYsO1V9XjvLdJpz8en/C+ZJKIwOeR1Y2DFKi0NOI+FnwLI/md1ZCW67G+R8Op/Wa+loN2CAr5p7LCJiaddhxdwNOf3sgryNEqRhC6wkrUCQPk4GDzUkiER1t5Z9OJHz9tnfXQFOmxNnvDSX82VzF2mkAo6bElMFE0FerodAzsF3KbHf48d/ulPR8W4kqWDsMCHsi8Ewlnwan0NGSGgvZpOv+Zvjng+h/bGrrg1PA3KpHyBXO6/kuHWjKlNj7QCu6fzoC57Av28PJKSr2mcFG+LSrsO76aBN8swEMPTUDgiLAaCgxqyCfIRki4Z6PJE1g/6fbMHfWibE/ZyZ8z/M8ei1vws95MTQ0BIsl8yUWWYkQ/du//RvGx8fRif0ZTZWbfGUBF38xllTxWMgVKQhj6MBn2mFtF6JCo8/N4fyP0msMAUJ0rWapN5HMMpZ2PQL2/N4cpBoVWi9tzmpisbs1DKUivvdU+acTSRlDADDw+BR6fzMOQFAq2n53Q96mUMSKj2097qSMIQAo22POeK3ftvfV4aqxzPrlKg9aUJZCQ0yFnsbeB1uz1twwVZQGBtvvboDKLDwzvb8ex8Dj6TWGAMAx4Mnr+S5d+OdDCDrDsLTn5/OUTvTVGmjL01+ucP5Hy41grR16HPhMOxT6/K87TdQYAgSxsYs/H8PkK5mTwyYIAu3RPQgEAviHf/iHjF13JRk3iIaHh/HFL34R1ZEmaAl92q+nKVNi18eaoNDTYMNcSnUspTuNaLoxvwryKvaZxaLEsCeKS78dF+Vj2TCXkR5LF386ipFnZPnjtVha9XAMeLI9jKSRMkVuJfN2Gm+cVyIU3nx6SsUQisFzvJgyRatIgOcRXaopUeaRYaQpVWLvX7eKKbDJMvLMLLofGZVmUHHCaGkoM+yI7X5kFCPPzib9+bAnipFnZ+EYyC8p7tgzHfFHAZ4XnnkIDr/1FAjTgaFeg+Z3VmXmYnmEvd+T8vtbiAw8PoXR55J/V+OGX9oTAXAMeHHpt+NihGj7XfWo2Jdfdafb3luHhuuT36/6ZoNgwxwUehq7PtaUEYVIyqNEi64TDz/8MN544420X28tGTeIPvvZzwIhEo3YlpHrRYMcIh6hYDhVSIYEpcht+W2CIlB9xCrWSgWdEXhnAmLmke2SR3zpMwUX5RHxJS/IUIhoypRQmRSw9+efQSSFnPZKVkeJhPc0ENp4apLCEFoP70wQF38uRJApJYk9D7RkXHEnWfwLIfT9fgL2FA1sbum7UBoZkHH0iZKC8z8cxnPNqWcKWPQ+8b+NIBlS7M7ObSLqEQ9zpx3ChkFHJyTQky0qD1iw54EWUEpS9AB7ZzIvdEMpSGhKlHLzzDXY+z1QmRSyNPkGZLJtAhvmYLu0NJcSgHcmgOCS40xboUL1EWvO13vZBzzwTKRet82zPCKeaEqiWolQ7myEVqXD/fffD47L7F41ozPSU089hccffxxt2A2KSG8o0lCnAckQCLsj6P3NOKL+1L/MudOOjKQVJENsQeY5HuV7LWJxoHPIi7G/zGckErQe1m0GtL27JjsXz2EsbXqwYRausfzLF2eeP5W2c7fWRbC9af1+NOkyhNaDDXHof3RSFLwwNeugq869gltKSYoqQrYetyTvOaUksfevW/LGI7qVEbSSyv1m7P3rFkmVzlpurkLLLdWSnU9KdNVqUTJ7sceF/kcns96k0jHgxYWfjGTcMZfruEZ9iIZYWNrktLlVEMCBz7WjfG+WnFM8MPaXeTiHhGiwrkqN8r0WUbkuV50hc2ccktSCRvwsen8jRMtIhkhItS4ZSI7EDsN+dHd347e//W1ar3XZtTN1oVAohE9/+tOwoAxlSO/iQSlJbHt/HaoOl0h+boIkcq5Ja/leM/Z8okUYFw+c+faApApxqVCIikxSYGnVwzHkFRuJFjuxKJHLQ8HhWT0tZdIQWom93yNGNqsOWlF9RPr5JFWqD5dg23vrJI3msCEOvb8ex+ypzPRe2/+ZNtx6KbH3IJ5o0HrMnLSj51fjkhoFQ0/NpCQNnE5qjpSg6qAVABDxsTkVkdaUKYuyWfJG8CwP55BXTptbCw9MvLwgSbRDCuZOO3Dm2wMAD9AaCnseaMm5Ng6aUiX0aXDgVR0uwbb316VdOl8za0aVvhYPPPAAXK7MqfBmbDr6xje+gZGREbShK+1CCmyIw4Ufj2DyVekLwnbe24jGFPIypaL5HZWoPiIsdLZeNy7+fEwMaWYqFzweFnvc6H9sMtvDyCloNQV9rQaOHNqc5ArzDgrTC0L0OFuG0Hr0/GoMg08K0WFTkxZtt9eAZLJv7Y+/PI/zPx5JOf1rLc5hn1CMm4E/cf6cEyOm+I5NxggSIYQCY9eItFHZkDuCiC8KSkFmfTNLMgTabq8Rm3wOPDmFnl+NZXVM66EuEVTVYtErGQH7gAf6GnXOOV2zzexJu6Ty26kS22NF/Swu/mxM7NNVfcSaE33KKg9Z0XKz9HV6k68u4MKPRzISZW4nu+DxePD5z38+7deKkRGDyOl04l/+5V9QwdZDR6QvHFx9RQmabhIeRv98KC1pYmN/nsP0mzbpT7wFJE2grMsketQifhbRpYcyGmDhGs291CuChNjoVWYZU7MOBEHAPphfBdkrSUfaXGVJFFoVl1OGkAi/3NOHZEiQ5LKUaaZ6NaxEV6kS+sbwQGAxPapd5hYd9j3YmvZaj/EX5nG+Yut7mLQhBKFuZd+D6d2AV+wzo+22mqxsZmPPIBfhQVKEGDFkg5kRzkmUwGIIFx4ZEdOQZAScQ14QBAFjY2Z6M+YLjIZC2W4TCDL7Tqi1uEZ9iAYFZ3Q0xInlGQQpNHLOxvow/NQMLv5yXPoT8xBVIptuqkT1FenLmqDcSnRUb8fPfvYzLCxkRu0uIwbRv//7vyMUCqEpzUIK0SArSa3QZrjGfJn1VCy9S2qrEq3vqoa+RsjfHH9xPmfS4jZCW6HGof/WAW1l+iUz8wlToxa++SAiBdLDRAoIgkdTdQRlM6PZHsqW2Ps8uPRfQoqUpkyJA59rF0VMMkXdNWVoujG9nkjfXBD2fk/aNyEl2w2od268a08pKrQEQRKw93vgn0/f3D11zIYz3xnMWPFxDG2FCgc+1y4W41/67QTsfbkffXaN+HIqmyEXCHui8C8EYWqSI2crUVmVaHt3Tc7W68SYO+3A+IvzAAB9jQat76oW2yFkItoeg+f4tLeJiQZY0RBMF5axOpAkiQceeCCt14mR9sas09PTaGlpQXmgHi3EjrRcQ1uhSklOOxFoteCpWLjgTLtyWt3VZTDUa0QZXEZH59UmmlKSMDXqYB/wyLUyK9j/qTbY+z0Yfjr/pcilUptz1ytAgIf1x2/m1bNCqylUHrRg8pUF8NzSXDQXTLtXnqQJUCoqr+aDjTj4t+1gjQwe3bZ6x5CKEaS7Mf391TaCIAlY2nTLKlVpuQigLRfWPYIEao+WYfq4LePGWEoQQOst1XAMeLDYk9lGwLlM002VMLfoceob/dkeSs5AkABJk3knxLFyz7bzw41wjfow/tJ8Wq+pNDBovKECo8/PIehYX6BIatK5B7fVjuHC9BkcP34ce/bsScs1YqQ9QvSP//iPUKvVaEB7Ws5vbtWj6/7mjElVUgyJ+reWQ22V/noESaB8r1lIhQHgGvdh8eJyQVm+bX7YEAfbJXdebXDTjdLEQGVWwDkip4rEiBlDPAgs3ns428NJiGiAxcRLgjFEqUjs+kgTqg9b03Y9Q60GCj0tSNlnaD4o3WVC6U5j2s5//scjeL5x9c9SjQitpHSnEaW7TJKdbyus2/Rov6NObHqaDqoPW7HrI02gVCR4Dhh/aT6/jCFg2WmQg2lQ2cQ57IXaooDSlD990NINzyHvjCFg9Z5todsJ17gwr2lKlSjfa05L9J1UkKBVlCStZuJBU6ZE1/3NMLemp37SPFUDtVqNhx56KC3nX0laDaLBwUF8//vfh9VeA5pIz8vtGPDg4s/GMtb9OuSO4I1/7YF7XDrFk+XibB61R0vF/GHXiC/pjvO5QMV+Cwy16ZVozDdMjTrwHJ+TNV+Zxl2vgLteAZrgcUOlD+Wq/DL418IGOVz4yYj4zpqadZJvihtvqMi4qIupQZtWqdWgLQyPSpgDpUiPW4uhTgNTQ+ZqMhYvunHm2wOSe2dVZoWYSjV7yiFIVwfzb5O4koE/TGGxO3MqUvmAa9QHnuNhapTT5lZSvteM1hyVt4+H2VMOUdDF2KhF7dFSxBK0pBToCSyG0P3T0bSnzMXwz4dw8edjaWsyT3IUakNtePbZZ/Hqq6+m5RritdJ58i9+8YugWAY1aJb83LVXlUJfs9RrZzjD3nYJDW9Lux4HP9sBWk2B54DTDw9g5nhm5G7TTcU+Mwz1skG0EmOjFt6ZQNZ7gUhFsuIK7vrVhsKQl4E7IkxHto8dSXlc2cI7HRA9mQ3XlaPmaKmk5+/+6SiGn8lA1/YVDDwxhaE/pi+9s+09NbhinJfcEIox9McZDDyR2f5xAZtgDEkpfVt7tBQN15UDELzl3umAZOfOJoyWTms0Ld9gQxw80wG5jmgNXJgDG86zKOgGzBy34/TDy9LdBz/bIZlCZaYaaq8kJo6ir1GjVuI1DwAq2QYY9Ab87//9vyU/90rSducmJibwyCOPoB6toAhpVXcIioCpUSc2H8009deVi2p2yWCo08DSLjz87nE/Jl6ZBxcVrKzY/xYCZ787hMlXF7M9jJzC1KiFU2LZ33wiFhVaSZQnMOBRIsAWVlOS8z8cxuizgvFiatahrMuU9LlUFgUoJQk2xCHiy3AkbWlKMtZr05LiobEoYWal3+gQJLHskMnCtFq6y4RdH22C0ph8dkRZl0lUxht5dhbnf5S92qh00fnBetS/tTzbw8gpXKM+2Zm4hoVuF4afzqwzKJ2Ie74Ij4lX5uFe6rNkadenFJHvuLMWHXfUSjLGRNFVqWFq0oGgpF0nCI5Ai64TL7zwAk6dSl9j+LTtQP7jP/4DOp0O1WiS9LwkTYBneVx4ZCRrkZSgI4ygPcF0iBXPR/keMyr2Co28ogEWU2/YJO8jIpN7qMwKKHQM3GOFZRDFGyVaawgBAAkeTbowFOTq5z+fo0QxuCgvqvCYGrUo6Uy+Dqf1XdVof092FjlAMMh23tsoOnKk5Ox/DuGNXdKnPFva9dh1b1PWog+L3U6c/9EwQq7kU1dKtxthXEr3iwbZgnKYxRj4wySG/jid7WHkFJ4JP5R6Rq4jWgOtokCpCstxxkU4TL2xLIhSsdeC8q4VjV4TtC2m3ljEzMns7I1njttx4ZER8Cwvudy4ca4SZrMZX//61yU970rSojK3sLCA+vp6VAQa0Exsl+y8ZbtMqL2qFOe+P5x2uT8podUUuu5vxsgzM7Bd8oBkyII3gCoPWmDtMIgKeTKCx7j9thq88W89eZ/7v5bN1ObWM4RimBgWV5b58dKcBp7o6kiy9QdvSDa+XIAgCfAcD121GpX7LRj+00zchcIKHQ1aTcG/kJlayfXQVargnUmPkpD3aWkdZzGVuXSOORFoNRWX6AGlINF0UyVmTtrhnQqIz4xMcUGrKRz+wjb0/X4CCxfkGqsYRx7ahvEX5zH1RuZ7QWaS2B7R2mFA49srcPY/h/JKNIVWUdh9XxMmXl7A/HmnZOedLx3FRdsZXLhwAdu2Sd/GJy2m9te+9jWQJIlatEh6Xte4D/PnnFk3hgiKELyOmxjAlJJEyQ7BIxwNsJg744B/UYgqFboxBAg59MWcGrYehho1/AvBgjOGgI2jRJsZQwDgjFD407QOnujlU1EhRIlWEtvYKnQ0FHoGbBzzAEERIEgCYW80q8YQANGwkDodYv/ftOGq09L2cYqNMReMoZorS9F1f3Nc942NcFDoGSh0QkPrYjGGat5SktYmj/lGNMDCvxiSRYnW0PubCSxeLHyJ9tge0b8YwtxZh2gMlewwglJuvG0nSAJlu01Q6OmMjHMjokEW8+eccEmcDVPiqIVSqcTf//3fS3reGJIbRH6/H9/61rdg9VVBQUgjTa2vUYOkCYScEUy8kpmOtZthrNdi/6faoDRsHM42t+rRdmu1+GBOvLyQto7yuYhzyIvJHPiucgl9rQbuycIohI6HrYwhAR4sTyCjXeuyjL3Pg4s/GwX4pVS0jzRuWGdSfdiKPZ9ozpkO7dVHrOj6uLQiOYt9LsxZJHRy8UDXx5tRfSR98ueJsNjjwsizsxu2H1AaGez8SKPQwJEHLv5sNC8aq0oJqSBBZaEYPJdxT/hlg2gNziEvQhlST8sFAoshTLws7KMUehptt1ZvKm+t0NFoe3cNNGWZbRS+HhOvLCDkioCkCVEALVXIKIVmSweeeuopuN3SG8aSz0C//OUv4XQ6JVOWoxQkOj9Qn1PeI+90ABd+MnJZcXPNlaVouF4oDl286MLJr/Uj7MlvKeFk0deoQSnkBS4GpSChLVPBMyGdXHuuEYsSrSecsB4aisPbK3wwMhtvhgstSrQWkiYQ9bMbCiXY+z2YOmbLmUiBa8wv5KdLaJ+NPjuHvgbpNjkEgJmT9pyRtg/aw7D1brx4R3xRRP2s5Dn3+cT4C/Npb1iZb3jGfdCUq+R1dAXqEiVqr5JexSwfCHuiOPm1frE3ZcP1Fai5cvW9CLkjeO2fL8KVQ30Oq68oQecH6iV7jo2TlQgGg/jnf/5nSc63EknfNJ7n8fDDD8PKl0NDSCMZyYY5dD8yisnXcketLBpk4Rr1gYvyUBoZ8Ytmw+yynDIPhPOskapUKHQ0dn+sWSwGlgF01WoQJCEqyRQq8UWFBHgA0wEavnXS5VZSyEaRfz6E3l+Pg4vyYLQU9j3Yusor7F8IYe507vQi804HMHvSLqlqm7lVj1K7dEsRTwCzJ+05kS63kqabKlFzpeDYM9RqsO/BVjBaClyUR++vxzPWSy9XIRkCik2yLooN94QfBCGdd70QUJkVqDxgAa2RVrk4Xwh7o+Lcy4ZYsCHBmUgpSDHLgGd58DmUlT/52iK6HxmVrLGuilCjvqwJv/zlL8FKrE4qqUF07NgxnDlzRpLokMLAiD08fHPBDdMNskX1ESv0dRrs/esWVOwTFEFmjtvF8GYxE/FHcfrbA5Lnj+Yz+moNokG2oNMmqdYmlL08F/fxAZZEt0uFKF+8nvFV8IBz1Af/YkiIjH+wDppSadKOpYQghdYDMTnoVGm9pQo7hlNXgms2LmJn2IuDsxEQOehUj3ijYv2rfzEE56gvK3LguUrnB+rRnEI7i0IjYAsjGmKhrZQNohiOAQ+O/0cfov78ERhIFxMvL2DmhKAmV7HPjL1/3QJLhx4d782eGul68CwP35zgnKo5WipJfVN1tBGTk5N49NFHUz7XSiRdNh5++GGooYUVqXdSNzZoUbHHDFqdW54AhZ5G3bVlqDpSAo1ViZ5fjWdN4jBX4TnB810ozUelQFehgnemcOuHqNZEVcJ4VKkjYIj4doSFHCWKEfGzGHpyGtEAC6WZgbFBl5NRVp4DtOWqlPrrrOTiL8Zwqj05R0GzcVH8DwDoIAWlR5FTHtIYQUcY1UdKQClIRAPCdx2RN3YiI8/NYvT5wukzIwW+2SB0FdmvB5HJbWZO2tHzy3HwUR4ECNRdW5Z1YYW10GoKFXvMkqxpykUD9JQR3/ve9yQY2TKSyW4vLCygpqYG9eEO1BNtUpwSJE3kXN8FXaUKnXc14MKPRwra258KpTuMoDVU1vpE5SL7/qYV9n4PRp4prAV/I0No/qrNGy3qaRZvrfDj1QU1bKH4Ju5Ck+HeDIIiUHNlCebPOsXC1FybC6UkEdntmPGzEXNHckuFKvbdKY0MKvaZwUY4TL9hK+jvU0YaGm+ogKVVj1PfHMj2UHKGjjtr4Z0NyqJNG6AuUWLXvY3o/vkofDmWNizlOuaun8HJ8TfQ19eHlhZpFK0lixD9+te/BsdxqER9SudpeVcVyvcIKWi5smBUHbai8wPC3+WdCeLEV/pkY2gTNGVK6KtkdZwYlJKE2qLMuckpVRKPCi3jiVJ4eloLeyj+CHAxRIkAQY1QbVFg4iVBpYcgCey+rzmnhGUAwWizbjOkfJ7WW6uxY2DraNPKSNB66GbVIHIs4FJ9RQl2f6wJBEkg5Ipg7owTtVeWQSenQa1L9RErLG3SN//NV3wzQaitSllYYQWeSb+8/9oAgiIQWAzh+Ff6xP1G5wfrUXUoNxQ3Y3v68j1mtLyrKqVz6abLQFEUvvzlL0sxNAASGkQ/+9nPYIqWpia1TQg3LJ7+HOmG0VBglnpBBBZD8Ez6RWUlnuXRdFMl6q/b3AterIz9ZR79j01mexg5g7ZcSHnwzhZOytxWxlA8tUQhjgSfgFxZsUSI6q4qRcP1y2nHPMdj5qQdziFBOYjMEXlic7MOHXfUQm1Nrf5HV6mG0bfx37SVIQQAjJdGxdkSaGy5kV4U+46cQ17MnHKIKoFBRxhv/r9LBS+ukizGBh00ZblXN5ctYmnWWjltTmTqDdumqo3FTNut1dhxT8NyzT0BeCb8CNgEA1Kho8HkgCAFF+EE4yiF8mEyQqFKV4sXX3wREiW6SZMy19/fj/b2duzEYZQTNUmdI9dSQvY92ArXqA+DT06v+/uqQ1awES6nFKBkcpOqQ1Y0vK0cb/xrT07WNiRKIpGh9VPneBwpCWDIq8B8cOt0uWIxhGIQJAFaQyGygUrlzg83wjcXxPDTMxke2eWozAoEHeGUz7NeytxWRtBaGD+NiDqKuSuyu1lqurES2nIVLvxkZMNjCBKglFRedZ+XyQIEcOShToz9eQ7Tb9qyPZqcgGQIaEqUOacimQsY6jQgaRLO4fVlt1veVQVjvTanUjBT2fu7tAs44X0Jzz77LK6//vrUx5LyGQD8/Oc/h8FgQAmSU4jRlquw/1Nt0FVmzwtCUAQqD1pAqYRb0v/YJEaf39jLPf2mTTaG1oHRUDj8hW0wNuZeMXi20FaoBKXEIjOGNoImgBBLIBrH/Sg+Y0iICG1kDAHC3LPYK/SiyHa0KGYMSZ3Sk4gxREQJgAcimmhW+/vGvovFXteWm9ftdzeg+R2yotqGyMKTAjzgnw+KWQYygLlZj677W3Ii0pFruMf9GxpDADD63JyYvUOpSFQetICgsvey6arU2P+ptqSjwnqfFXq9Hj/60Y8kGU/KqxjP8/jZz34GndsCikjuAQ06wpg754R/IXt5obSKRP215TA1ClKynsmAKJG6HpSCzDkVj1yA43hMvraAoD11r3GhoClVFkSPkWSMofVS56I8gdMONezhjd8f6w/eKDpjiFKROPi3HTC3bC5nbbvkhntMSLlqvbUaHXdmV2a1445atN5anfTn936yBVeeETZ88aTHraXighUV57KbI99x5/I9cI/5Ybu0eZRq4uUFTL6aO731cgWSJnDoCx0o3WHM9lByhsBiCOoSOY0whnPUizPfHdx0f1asmFt1mxrP0SALz6SQhmlq1KH+2nLQquw51fzzQcydcyLkTK4xNwkSdZZGPP3005L0JEr5Tpw6dQrDw8OoQF3CnyVIAoyGAhvmMPbnuYynzOmq1Oh8fx0IkkDEx+LEV/vizk2tu7YMO+5pSO8A8xA2yGHytUWEXNJ1ns931CVK+OUiUBE1xYGKU2672Jg+ZoN3Nv5UkNmTdsydFSLV2fL0zZ11iP0wksE16ofdkPxi5qzzwF2dhZ5nxPI9nzvrxGwC98A16hN7c8gsw0V5jL84L6dDrcC/GMrJfmTZgg1y8M0WRsaF1DS+vRKlu0xxHWvrdePEV/sQ8bEgKAKd76+DriqzYi9clMfYn+fAhjkwGgoEmfgappmwwuFw4Mknn0x5PCkbRI8//jjMZjNMSFwBqe6aUuy+rznjCzlJC9djwxxIhgSjFSJbifTNmT1px8DjU2kZXz6jtioy/lLlMgo9DVpJ5b0qjhSpcjH2WYLoMm+84Sm2yFAMNshh4pWFTdPl1uIa9cExIKRINN5Qge13pabymQyOQS9co8kbJEN/nEZPcyThyFCMgDUEf2nmN9DbP1iPxrcL4heOAU/CjaiNjVo03pB6z75CY+a4Pe/nSynxL4RAq5ZFnmQE9UZTkzSNoQuJM98ZxPgL8TdHj+15GQ0FkiHBhoV/x/bImYKgBCXVumtKE/6sgbNAr9fjF7/4RcrjkMQgeuc73wkyidbgM8ftGHl2ZlkRIwPUXVuGnR9uBCCEort/OoqwJ/4NSIyALSyGHmWWqdhvQdu7k0+fKTRiqQ75HCFK1RhamzZ3zqHEgGd9ZbJiNYZUZgWqDltBMskvRIvdLsyfdwr/IJDROgyFnkbHnbVQGBJv1mps0GJH1JPw5+gAhYozJaCDGawlWHFf5887sXjRlfSpGA0Fbbkqqzn8uQijpVHeZZLriJaIlRLIUaJlLK16WY1wHXiWTyrTKuyJovuno6IjYue9jai7pkzq4W0Iz/IYeXY2qd6VBEHg6NGj+Mtf/gKOSy1smJJBNDY2hnPnzuHczxJTrFCZFSAZEmFvFLZLiS+EiUIpl+t9HAOelNI7YqhLlKg6nBva7rnE+AvzuPjzsWwPI2fQlCjBsZwkSlzZQKrI0EqjyBOl4I6s3sQWY83QSnSVKtQeLQVS8A25x/1YuCBs0GuPlgqOnwxtKtkQB4WegTKJusr299QkVQNEhyjQQQosnaHcGUJQ+Ku9UvBiLlxwwT2evHz24kU3uh8ZzahDMB/QlCrRcks1VKbU5NwLhaAjDC7KQSPXEYlc+MkIpo/JqntraX9PLUxNqQtazRy3wzEo7M0VehqUMv11RrZLboS9UZAMCZU5sXff9rofi4uLuHTpUkpjSOmvfOKJJ8AwDKxILOzf8d5atNycWlOmRNhxTwMabxAUfTyTgWUvagroq9SCBS17sVbBhjm5fmgF6hIlArZwShvdbEC1NkmaJhfDooiiVR/CyhtSzIZQjMUeN47/R59kdZTOEZ8QvYidLs3zFBvmcP6Hw/BMJR417/vdJGZ3Jb65CZrCmDwyB55O88sVu3c8sHjRBWcK6YHrkejiX+i4x/14419789aJJDk8ELCHoZYjRDJbQCnJpOpw1jJ/3ilmQDXeUJnRevmWd1UlLBSkcZqhUCjwzW9+M6Vrp9SH6IYbbgDP8+CfT0wRRl2iBBflklaWiAdzqx7eaT8iPhb6ajVCrgjCCeTmyyRH042VsPe74RzOQpFzDrL97gawYRaXfjOR7aEkRDqMIQDQ3GRGgzaCF+cFL5ZsDAn50+mMEpTvNaN8jxndPxlJu3CNQk9DU6YSm8jGS/kbhoSO1yyoENZHEFVdLsYwd0S6PkQkTWDnhxsxe8aRljYL1g4Dtr2vDse/0oewW3YkyazPtvfVgaAI9PxCzr4AgMoDFpR1mXHuP4eyPZSCR6GjoTAy8E4FwGgp6KrUYt1qOlCaGJA0mXAdoe/wFJxOJ3p6epK+dtIRolAohFdeeQWjz8VfwKWrUgOEULuTTmOIUpBou60apTtNAADPVEA2hjKEtlwFWiMXf8ZQmRgEHfm30WEHhtNy3lGfAi/Oa4s+RW4lFfvM2P+pNiRRhhkX/rkgHAOejKh4Vl9RknB/neZ3VKL0ojn+D/BAaY8ZphF9gqNLHC7Kwz7ggT9NinDOES8u/nwUEZ+8Pq2k+ooSWXBiBUFnGCpT4vV5hYpvPhi3IrBMaoS9UXiXIv9lu0xou61G8r5zKwk5I4IxRCAhgS52ikRfXx9cruTrOpP+q06cOIFAIAAz4lOFoFQkdnyoAdVpqruhVRTqrysHyRBgwxzOfncorTmm+loNdt7bKDZylRG48JMRLHYn/0AWGkojg5BLTv2IUfbynGwIrcE94cfEqwtpk5H1TAUw8fICAMDSrhfmrTQtaBMvLeDsdxPz2hqbdNDYEmg8SQATb5mFvTk9GyJKQWLnvY2wtAkG18TLC0mlAsYDG+LgGPTKdURrYMNcQqqvhU7IGYFSrqkScY/5MfnqQraHkVMwOhpv+fvtW/axS4WpN2w4+92hJYVmAvXXlYNWpUfUpvpICXZ8qCHuPTY1oQXHcXj22WeTvmbSq+JLL70Eg8EAPUxxHc8GOXQ/MiqJoMF6UCoS5V0msSlVuutYuPBSoby8jslsAKOjQdJkWqOh6UTqKBFJAV0f1CL6vw9Iet58xzcTTEs61npE/Cx8c0FRXlVqokFWWCxpIu5c9tPfHMDYVTPxXYADCJYAR/PgFOn5G9gwB99cEJFAZho/qkuUaLm5SlabW8HsSTvGX5zP9jByhqAzDIohwWjl7AtASDPWVarSGqnIN9gQh8Enp9PeBD62t9aWq1DeZUpbUGDmuA3dj4yCDcY3z2t4PXQ6HR577LGkr5n0X/Liiy/i6NGjIIitJ3FDvQYA4J0OSJq2oa1Qoe22GoAQPCgnvtqfMSls31wQA3+Ykr1YKzA2aHH4C9ugTEJ6txBRGYX7EHTmb4RISqNo/H3lGIACntTV/gsGdYkSpTuNaUuXW4tnwo/hPwnGh75Wg87310muIEQpSez/dDvKdiVWWxoPhmktGl6qAhmV1niglCQ6318Hfa2wVg3/aQaeieQV5BKBpAnoazSiEqqMAL3UG0UGosCEnDYnoNDT6Lq/BbpquedhDC7CYe60A6EM1SJ6JgM48dV+weFLAG231UBbkUCkfwu4KA/vtLCfN9ZvrZxHEAT27NmD48ePJ33NpGabcDiM119/Hf1/HN/yWG25CrvubUpPGI8A1BYFFEtek4ymHRDChC2rzC0TdIYx8eoCIn45Hx6AmOJQ7Kp7I3dVYOSuCkQIAt2EEh6Cwvj/uSLbw8oJTE1aNN5QmZWu6yRNgGN5yaNFbIjD2AtzcI7EJ6yy5xMtqHs1vnoRvyUIW6sT3AbKcskKKrBhDhzLZ7whIQD4ZoM4853BvI0kpwNKSeLw57fB0p7+OrF8IPZsKGVFQgBA2B3Bme8Oyr0gV0ApSFja9Rkt44jtuRVaGmpLep5Nc4sOO+9tFLO/NsPTG8bo6Ch8vuREvZK6c2fPnoXf74cpjvoh31wQZ78/BMegNKoUZbtN2PbeOuHcM0Gc+8FwVgQTdFVqHP78NrlZ2gpCzgimXl/MSPF2PqA0MYgG2LyPIqYSJRq5a3mjq+dZmPjlNCTZKBL6PZz8Wn9Wru0a8eHSbycAXohUtb27WrJo0dxpR9yOAO9MACFDfFHUqIaFu1YaBUtKSaLt3dVC82QeuPTbCbjiNOLSgZz+swwb4tDzyzG4JJY4z1fYMIdIICpmHRQ7PCc4ErhIfq+tUqIyK9D5/nqoLZnfk4a9UZz7wTB8s4L4zLb31aFst0mSczsGvTj7/SH44hC20XpNiEajePLJJ5O6VlIz8OnTp0HTNHTYPCVCVylYdF4pClKXHHcRXxQhd0QSrfVUCNhC6PnVWNF7/1eiLlEmpApS6CgNTMbC17nISmMIALYhjMNYPRfIRhFyYlFXGhmozIrEo+wEcfl/SxgbtUJK8xYM/GEKc7u2qC3lgfJzVqhty4v9Fcahy/5LBJ7lobIoocyBTWbZLhMO/reOrK9ruYS934OIrA4rEvZEwejktMoY1UesMLfKEcQYvvkgjv17L3yz2Y2aESSBkCuyrJwpwZQWsyFiNsVGKENaKBSKpNPmkjKIzpw5g87OTlDExuoShjoNuu5vgb4m9Q1y4w0VaHu3sLA6Br0YfnoGPJfdKAQb5GDv8+S9919Kqg5bE5bcLWQYLV0wcu+JRonWGkMAcAYqvAqNVEPKe7QVKuz5q2Yoc6AuwDnkxfkfCX2KFHoajTdUJF+/scI4otXUllEnbaUKCtfm94CMEihBENu1M0kZP+J5GBKNN1RAoafBRXmc/+Fwwj2T0oF7wo+hJ6flFOwVGBu0KNtlyvYwcoaINyqWB8gAxkZdXGlURQMPRANsVtKvVw2D4zH89IyYFdZ2W40kEvr6GjW67m+BoW7jPQQJEjU1NTh16lRS10jq7Tp9+jQWzrtQtsnk7R7348IjIynleMYaFnom/DmXTkApSJTsMMIx4EHYUxib3lQZfW42576nbKLQ0gUVIWIHhuNq2LqeMQQAEYJAZJ0d3/j/uQJ1/+f1lMeXb3BRHp7pQM55wbXlKlha9Zh4aQFcCo+va8S3nIIWixyt0wd8+wfrQZ4iMPLW6ct+t8rwuSr5scQgaQKWVj2cQ16EPdk3hGIEHWGxcF5GwNyqg6FGg/nzzmwPJScIe6Oy8MYK5Ca1q1GXKFHzlhKMPj+LiC8zCpnx4Br2inWqqTQh90wGcOGREbjHNxe7iUyQmGVmk7pGwrvXSCSCCxcubCq3rVoq/EslH3v73Q1ouK4cALDY48bcWWfS50oHtJpCyzurhPxzGQBC3rdsHC7D6Oiia7i4kTFE8DwO8gFY+PUn6mJMnQsshjD4xHTO1dw5Br049fAAokEWlJJEzZWlKaVyGWo1y7WWa9LqAGDwiWnMb18tO74yChR1ahFZSF6xjiAJ1FxZCkpJIhpgcerhAclqWqXEUKuRRQRWMPrcHM7/aCTbw8gZIr4oFHLKnMwGkDQBlVkRl/JzJpk768RijyB20/C2cmy/uyHpc8VsCtUm4iKVFRXo7++Hw5F4K4uEDaLe3l6EQqENDSJjgxb7HmyFdotcv3UHwxCi/OzCBSdsfbnbiTjkiuC1f7qY1SLcXKP2qlKUbJdeajdfURRQylyMzVLnNjKGACEUbQYLZpPGXcVmFOmq1Lnb2HnpazLUaVF92JrSRqzlXVWo2Gte/cMVhpG93wNfuZBJsF46XGCoCp4T7esFl+JCoaNRfdgKQ92SdGtu2Z8iZV0mVB8pyfYwZHKUsDcKhS776bW5Qt3VZej8QF22h5Ez+GaDuPDjkZzec9guubFwwQkAIEhhz58oukoV9j3YCmPD+lLcKq8OPM/j9dcTzzpJeDW+dOmSMKgNBBVcYz70/X4CvpmtFSFWDYQmsOcTLag6LCwI8+eccI9lpg+EjDSoS5RQGmQPFiCEhmk1VZARovWMos2MIUBIl3uG0GGO2Pz5KBqjiAB23tuI8i7z1sdmEceABye/3i8I2VAESncm7vDo/ukohp/ZIIWBINBwfTlKLhk3rAvS7R2A8ZpzawNLW1K60wiCIhByR3Dy6/1wDHgSHHlmGXpqBhd+LEdEYqjMCuy+r0lWcl0i7I2CVlNyA98lvDMBOHKg/k8mftxjfsyfcwIAqo6UYM8nWhJudeCdCaLv9xNwja0fjFD4hBqjgYGBhMeXsEE0NDQEk8kEhrg8ZEUpSYAHFi/GH9mh1YIwAxflMfnqImy9uRsVWgmtorD9rnpZVW0F/b+fxNQbtmwPIyeIdRTPZW+NVGxlDMmsAw+c/d4QFi64sj2SLYnlf1va9Gi9pXrTdIX1iKXRbhQNK+k0wjq//jm5MA2CAChNYt3XVWYFWm+phqVNSEGTutdSOshoH708gA2x8M0Fwcn3BQAQXervx2g2FrMqJuz9Hswc30Kdsogwt+hw5KFtQn/MPMDW48bkq8ttWmK2QDwsXnQDPNYX7ImQKCkpyZxB1NzcfNnPNaVKHPhsu9jpOx4YDYV9D7aKeuVzZxx5U1jK80JDQz7ZPA6ZgoZe2vxFA7lT3CglsShRvMZQAx/GbbwHRBzvS7FEiQKLobyKINp63Tj1zQFxjtbXatYVSVgPc4sOBz/bvq7E9cmvD8D6rmOX/Zz1qWB7/AqEZyxxXePRzlIYltafoCOMU98cyBsHGyAs7js+1LBhKkixEfGzGHxiGkF7fuwJ0k00KKwltCo/NrzphlZR0FbIKnMxArYwxl6YB5cHzh9AmKPnzgh1PmW7Tdj3YGtCxr6hVoMDn21fN4JssVhw8eLFhMeUsEE0ODiIyVNzl/086Axj4pWFuHoOxSzBiJ/F2F/mYM/xVIb1YEMcLv028dTAQoWgCBz+wjZYtxmyPZScILZosaHCNIiAxKS4naBwCQrwceY9FbpRZGnTo+bo1o2tc41Y3zVrpwG77m2EKs7u5K4xH0afn0PEH78BSCrD0O0eAlPqjOt4lUWBnR9phLXTsGqs+UJMlIaL5seGJhMwWipvPN7pJhoUngupmifnO9ZOA/b8VUu2h5EzBB1hTB+z5ZxITzzYBzwY+8scIv4loz+OaJFnOoCJlxfWD6L4SIyNJa5CmFSESA3dZT/nIjymXlvcsj+QyqLA/k+3wdwinGP2lANRf35uGkmGkPtGrGDitQX4FxJLbSlUYotWtMD7VMUrl+0kKPQSidUCFLJRpDIrYNykn0KuY+tx4/yPhkXv/Va9lLgIj5kTdnCRy9eH3fc1wfHsvst+TtAc1K1TIOjN3yHWqwLPA0F7GOd/OAxbT/5EhdbS/+hkSq0qCo1dH2lCzRWy0AQAsHKEaBW2S26c+e5gtoeRMzBaCqYmrShMlk9E/SxmTwnRInOLDvs/3bals41neUy9vriuAUi6lXC5Ek9HT+jWhcNhTE1NQY3lkD5JE+j6eLNo4GxE7CUO2sMY+8sc3BP5LZhAqylc8d+3wyrLpAJYejhfW0RgUTaIAIBWFn6EKBFMPAvTBpLbG1H3tBc4vCtNI8ou02/acPHn+d1HI7Zxt7Trse+TLXFFi2reUoLqK6yrfhZ0hEFqV0fa/b118PdurSAVdath/9MhhKdKVo0pXyEZQu41s4KBP0yJG6ViJ7q0llCyQQRA2ET7ZuUMnRiGOi123NMIMs97Qbon/Bj7y5zobNvKAWBu0aHr482rxBkMGiMcDgfs9sRqzBK6c4uLi+B5Hgose3oJmoB3NoDAJnm+uio1Dny2XRQgmDluB5vnnnM2zKHvdxPwTMsvJCAYxoZ6jRzOX4JSkuA5fl2PeKERT5RoJ0LoQvzGct3TK9SDCtQoKhQcg170PzYlLmCbNWcmGRIUs/r3fb+bhPEtq/O9eZYEH914IeQiwu9oQwD6Q71QVBaGmEvTjZXY9j5ZSjiGe8KfN3XF6YaL8OBYXo4QLaEwMKh/axkYrXw/AEER9MRX+8AG83xvHeJEsQzBdmjbVLwsYA/DOxtYpb7I8IKNMjo6mtC1E9q9LiwsAMAqg4gNchsWPpJLC593JoCxF+bgny8c44FneSx0uxB251eeerpQmhTYda8skRqDUlGiR68Y2MooOg4V3sTWBbB1T3tXG0MxCswo2vdgKyr25bbkdrzwUU5UFjU2arH/060bRovGX5zH+EsLq36mMjOIelY/G9odo9DuXF+COupRw/7kEYRnhfunqpvHYzsLI61q+pgNQ3+ayfYwcgZTsw4lO+TedjHYECsK9hQ7jIZC6U6TbCAuwUX5vKub3Ar/fBBjL8zDOyNE/knm8mc/aA9j8InpVUEWOixE2cfHxxO6XlIGEbNkENVdUwZz6/qpcoZ6DQ58pg1qqwLgkbfFXhtBkEKfi/VUk4qRoD2Mk9/ol0PYS1AKMu+joImymVEUIkgEtkhuXtcQWkkBGUWzpx3wFqAgi3cmgKnXbcsOsnVqLAmSQNkuo+jR2/WRRjj/vBeAEBkKjlSAZy//IL/0OlG6ADQd46At+SfGsxX+hVBcwkTFgqVdj/IlFVoZIUpE0rJBBAiNSE9+rR8BmxxBBISGpc3vrCyoPlVclMf0MRvAA2qrAgc+0wZD/fq1t+ZWHequKRM+5xSM5Gg0MRXX5CNEBKCrUF3WkyK25/FOBTD9pq3gLNYYJE2i/fZa6GvkPkQAwHM8gvZwQRm9qUDShHwvVrCTD6Ka33gu2NIYilEgRtHU64vwThfexpcNcph8bREAoK1UYe8DLVCZVzuNlCYGrbdUi/LSw8/NQtslFEeH503wnGgH618dMWK9KjiePoSIXQeCADTbxkEq8keyPF6URgbVR6xJdXAvRIafmsn7Wjsp4Vgu4UaWMsUBraGhr9Ik3MA6Xwi5I5h+0yY6jNb6V1VmhSDDTgAMBLvk3LlzCV0jYYNIqVSCAg3wQM+vxlc1xjI2arHvb9rA6GhwUR4TLy8U7KaQDXN47Z8vYjGPFY2kRF2iROMNFRs2Xyw2SIooykaLG0WJLOCgxfr3I25jKEaeG0UkQ8JQp1k3/F9IRAMsXKM+hFyrDZegPYwTX+uHc6nL/OIFN9QN8wAAZaUdlpvfAK1fbSyS6hCYMkdBGkErUZkVqL2qDIxaFlaQuRwuyhdUBCAVlAYGex5o2bS+pJhwDnlx9j+HCnbPzUWWbQqFjsa+v2lb1bNt5rgdvb8aB3iAJEhotVo4nc6ErpHQiux2u2E0GqEpVYkN8Fbimw3CdsmdN42hUoVneWywxys6GA0FU6MOJClP1oDQl6kYDSJgfaPoJUKDfuLyupKEjaEYeWwUaUoU2PWRJiGduFBYp0FryBnB0FMz4DkeKjODHffUQ2EQNvphj2DY0GoKtVeXwnuhAVyIBs8DlEZIgWH9Sjhf6ALrVYGgeOj394PSXZ5m+Ghn/vVz2gjXqA/H/q0XIbk2FQBQst2IHfc0ZHsYOQPP8nKEaAk2wsE57BUb1soUD2yYg+2SG765y9cDQ60G6hIldDodQqHEVI8TMohCoRBUKhUq91vQcks1QAhRoa77m0EpSUQDLEaemQVbBAYRQQId763dMJ+x2HCP+3HmO4NiY61ih6BIcEVqEAHxKc8lbQzFyFOjyDcfwqlv9hdVzy5KQYJn+VUKSI1vr8COe+pRsceM4HAlnC/sge/scqNFgokCJAc+IhdNFyvRAIuArXjek63gojxIqrAjy/ES22+uJ+hVjJR0GnDwbztAFIFTmg1zGHlmFtEAC0pJouv+ZhgbtQABtNxSjcr9FqjVakQiiTmWEorLh0IhKJVKDD89I/RKWGqG55sNFmWDUpImQRRqwqZMSpBk8UaIYtT9n9fF5qq38B50Q4nhpShRysZQjMO7gGPnpTlXhuBZvugKgX1zIVz8haD4w2go1F9XjoULLjiGPHAO+fDu7nlEZi3gCQ6e4+3Q7hoGqYrAdHV+fbepQqsodH6gDiPPz8GT5736pMA57IVzWKK5ogDgWTllToQA1BYFwp5oUTjht8K/GMLMcRv4daL1BQ0hZKcF7WGAB7p/OoqwOwKuloPNllg7hoRcDcFgEAzDQF+jRss7q0BQBEKuCAYen8p77fNE4Tmg5xdjcI36sj2UnMDUrMOBz7SDVsveXEBImSvmCFGMWKRoEAo4ITwbkhlDMfIsUqQpE+rtCq6GKM6FWGVVwFCjhn8hCOeQMH8SBKCotIMx+hFZNIL1xBd5L6R0OUAQpwnYwuAixbWebgRJE2B0cj1VDI7lQcoGEQAh6rzvwTaYmtdXOi42/PMhTLyyUHRlHGyQw8DjUwi5IiAoAi3vqIS+Rg2SJBEIJCZclNCKbLPZ4HQ6obIoQVAEaA21Sg2HZMhl7wWx1KAv9k+KWLUBSOxYYpVXZNWxJLGqESBJE6tybBM9NqZcQZCI41gi4WPFvxUr/9Yt7mEixyZzDyW43yFnGHNnHQCJFfcwPfd77X2R/H5L8MwSFLByZtr0Hqb4fCd2DxM5Nr57uNWxFM+jh1DCTlBoeM4DgojdFx4UxYv3iSB4kNTyPSMpHgQZ57Fv2Zk3cwSjpWFq0oFSFNccEcM/F8KZ7w0h4mOh0NO44r9vw8Kvr0LUqwCpDsP09hOgTF7RvuKjJPjo8vm4CLUsy11g94rneAw9NS22L1j9vBXffFq224SDn21P7Hkr4PkUxOr9bjHvuQDg/I+G4Rr1FeWea+09ZLQUDPWaopsjVt5DWkOBoAioLApwHAeFIrE63YQMop6eHpAkCc+kHxd/Pobat5Ri98eaxd/ve7AVtVcKHjtdpRpHHuoUG3XWXVOGPZ9YPrbr/mbUv1XQDNeUKHHkoU7oqwW1kJorSrD/b1rFY3d9pAmNN1QAEGRJjzzUKapLVB604MDn2sVjt9/TgOZ3VgEAaA2FIw91wtKqBwCU7zHh8P+3TTx22/vq0PbuGuFGMASOPNQJa6fQBK5kuxFHHuoUv4y222vQcedyB/EjD3XiLf9rO8r3mGFpM+DIQ51ig7CWd1Vj+10N4rEH/7YDFfvNAABTkw5HHuoUUg4BNN1UiZ0fbhSPPfDpNlQfsQIADDUaHHmoUyy+briuHLvvW76He/+6BbVXCfdbW67CkYc6oS0X5GprryrF3r9ezsfffV8zGq4rByDouR95qBOGGsELW33EigOfbhOP3fnhRjTdVAkAUOhpHHmoE6YmwQtTsd+Mg3/bsXy/72pAy7uqEbCFMX3MhsP/bRssbQYAQNluE4481Cke23FnHdpuF+43QQn3u2S7cL+tncL9jr04be+uWdWx/fD/tw3le0wAAEurXrjfGuF+N7+zCttXFN4e+Fw7Kg9aAADGBi2OPNQp9otqvKECuz7SJB67/29aUXOF0NRRX730zJYIz2z9W8vQdf/y/d7ziWZR515TKjyzukrhma29shT7Hlx+Zk2NOqitwnlUZuF+G+uEZ7bqsBX7P7N8v3fc04jmdwj3m9EJ99vcsnS/95lx6PPL97vzA/VovaUagDA5HHmoE5YO4X6X7ly630sTRvsdtWi/o1b4ByE8s6U7l+5hh/DMxiau1luq0fmBevE6hz7fITYONbcIz2zMU9v8jkrsuGf5md3/mTZUHRaeWWOdcL9jcvyN11fg5rkFlPBRNP3Zg31X8qhtEpZ0nQE48jYemiUHX10Ljz1XLC/3XUd41LcI/9ZohWP1Sz0aaxqB/UeXj911kEfjh7YDyK05omyph8rKOcI14oNvNoiOO5aPLZg5gueFOWLl/f5gPVpuXrrfKgpH/m6beL/rri1b6qtCwdct/I2RWStsv78K/FJzPc/JdrheXo4C2v7wFgSGqvBoZ2l+3yusP5+23VYDkiaEe/VQZ1HPp45BL3p+NYbdH2tG4/XCHqCY51ONVQHziohIse25Vs2nf9cJ/3wI0QBblHsuAKvmCEubAbvubSq6OUK83x9rRu1bSnHx52PwTAZAURTGxsaQCASfQMLhrbfeipMnT+IturdDbVHCNe4Do6FF+VRLmx5BRxj+hRBoFQVTkxaOIS/YEAdNmRJKAwPHoHCsuUWHsCcK31wQlJKEuVkH54gP0QALdYkSaosC9n6h8Z6pSYdIIArfTBAkQ8DSqodrzIeIj4XaqoCmVAXbJTcA4ctgwxy80wEQFAFrux7uCT/CnqigU16pgm1JKttQrwHP8vBMBgACKNlmgGcygJA7AqWRgb5ajcVeN8AD+lpB3909LuR1l3QaoDQrYL/kBhvmYKjVwNbnAc/y0FerQTKkmE5n3WaAb07IcWS0NIz1Gtj7PeCiPHSVKtBqCs5h4VhLux4BWxiBxRBoDQVTgxaOQS/YMAdtuQqMbvl+m1v1CLnC8M+HQKlImJt0cAx7wQaX7rdRAcfA0j1s1iHiXbrfChLmFh2coz5E/Uv326qAvS92v7WIBlh4Z4IgaQKWNj1cY35EfFGoLApoy1Ww9S7fby7CIWALQ12igNLIwD0u3G+liYG+Si1KkxvqNOB5CLnxsfs9FUDIFYHSIKRiive7Rg2CIuAeE+63tdMA30wQQUcYCj296n7rqtSgFCvud4cB/oUgArYwGC0FY70W9gEPuAgPbaUKjJoW89ItbXoE7Ev3W03B1Lj8zGrLVVDo6VXPbMgdEe537Jkd9iEaZKEpVUJlXn5md3y4ARRN4twPhsX77Rr1IeIXnll1iVK838ZGLdiQ8MzG7rd73I+wNypq64v3u14LjuXgmQyAIIW/1T0ZQNgdufx+LylBuieWn1nPdAAhZwQKAwNDjRq2S27wnHC/SYqEa2zFMzu7dL91NAx1K57ZKjUoJQnXyIpndjEk3G8NBePKZ7ZCeGZ33NWA/gsEohEg6Af8PgI0w8NkARw2gI0S0Oh4KFWAY1GYoM0lPMIhwOchQNE8zFbAaQeiEQJqLQ+1BrAvCMearDwiEcD37IWcmiPE+73mmS3kOeIXvUOYt5mwrWkCADA6VQ6aZlFTvogoS6JvtAa15Ysw6Py4NFKF3z57LXgeuPjLMTgHvEV1r9bOp6YWHXbc1YBLv5uArde96tks5vnU1KxDxBeFbzZY1PPp7vuawIY5dD8yKt7vYtpzrZxPjQ1aKE0KLF50gVFTRTNHxPZcnqnV95uNcNBVqcGoqOKdI/xRGOu0CNpDeDP0AsrLy/Hmm28iXhIyiD75yU/i+eefxz7VUTTdWInT3x5ExFvYfSFk4sPaacC2O+vwxhd7wIbk/Pe222ug0NHiwlXMOD90GHqGQ4AlobuUxkLxPBFXMDXp0HJLFc5+Z6jgJGOfmT675TFunxpvnO3E2w6fBkXx+PmT1+DkCwb0/HIcBAk0XF+BqdcWES7GtYUAzC16+GYDojR5MaMpVcJQp8HsKUe2h5IT7PhQA8KeKPofncz2ULIOraaw75Ot6H9sUtxAyxQ3jI7G3gdaMPz0NN5w/wXNzc14/vnn4/58QilzKpUKBEFg4YILJ7/ej4g3CpImYO00JDzwQsDaYYDSwGx9YBHgHPbizHcGZbWXGBxkBUIRAp4IhShHwNmm3frwZMgTYwgAQq4w5s86i1Z0w+PToG+0FjOLFgRDDCha0GOglCS0FWpYOwxQFOu8ygOOAY9sDC1hqNOg8e0V2R5GzkAQRNEVzW9ENMDizf93STaGltBVqoR3pQi3HSWdBpA0gYg3ipNf78fCBTc4jgPDJLaOJGwQhUIhVB60iHm31g4D2m+rEfMFiwWCIrDtfXUwNKRpg5dnsEFOaJIlT9YAIEhfFuHEtBbnh44AANpMIVhVwiZPcqMoj4whAAjYwhh/cb7glMQ2iw6FwjTevNAOngeqy2z45Psfx4X+Jvzg0ZtE8YSujzejrMuEU98YgHdaUAeqOmRdXVRe4FAqEhX7LbKy2hKzpxx44197sz2M3IEA5EVWZj0UBgbmVn3ROWKVRgZtt9XAulT713pLNSoPWhCJRNIrqqBUKhEKhRByReBfDAEEsNDtwqmHBxByRQACYiFYocOzPI79ey8WL7qyPZScQGVWoP66clCq4tm8bAqPomiQthkxYwgAyjRRaOhlA0AyoyjPjCFAUOjRVaoKT3Z7E6bmS/DiiS4sOoVFi6I4XLm3G+84+iZi6/fgk9OYeHkBPCds+NQlStRdWwZ9jTpbw844Sj2DphsroSoyB6NMfBAkAa6w/ChJQ6sp7L6vCfra+CT6Cx17nwenHx4Q589Cx9SkAwgg5Irg1MMDWOh2AYTQjynkiiASiUCtTmztSGhF1mq18Hq9sPd5MP7CvOioCDmFbrDWDgO2310vKnQUOtEAW/TNN2MwWgolnUbQCrkPEQBwLFfU/SJWGkMA8Oq0FhPe1fNCykZRHhpDgOA86Lq/BdpyZbaHklY4jkDfqKBw1FQzi7/54KMoNbvF3+u1ATRWz4n/do36VtWkBhZDOPm1/lXFz4UedfUvhPD6P1+EZyqx/hmFStluE9puq8n2MHIGiiEKLrKcLDzPwzsTBFtgdZgyW6O2KrD97npY2wUHW8wGAQ+MvzAPe58HwWAQWm1ie4yEDKKSkhJ4PB5wPAsQgvyicUXKmK3XjbPfHRK7sOuqCtezR1AE2m6rKSrv5WZ4JgM49Y1+hNyRbA8lJ2DDPMgiSvVZyVpjaNNjkzWK8tQYAoCAPYwz3x0Ue80UAuuly/WPVeO3z16FRYewaGlUwroQDDH4z9+9A5NzJZd9Rl+tRtfHm0EphXcnGhA2O+oSJba9tw6WNn2a/gKZXISLcAUnPJIKJEPKBtESbJDD0B+n4V8IZXsoOYG5VY/9n2pb1R+o0IjZFAFbGGe/OyQqHQKC+l7lQYvQq4vn4ff7UVqaWOPuhHZssZOHEQJ4oKTTCF31aoPANycs8qZmHbo+3gxthSqhAeULBAEoDUxRpb3IxA8X4UAV4bOxkTG0vyyAdvP6C1fCRlEeG0OAkG7rmw2CixZedJnngZkFoR9Fe8Mk/urOJ1GyIioEAOEIA4vRDaPOd9nng64IAvbQZXVDgcUQTn97UJSpLdR1xdKux/a76rc+sEhY7HFj+E8z2R5GziAYRIU3byQDQRFQGhix0WixE3KFsdDtQvy60fmFtkKFro83w7TUhytma8TQVatR0mkEeIBjouA4DmVlZQldI3mDCED3I6OYem1x3WOdQ15c+MmI6AVVlxRWeggX5XHhJyNi74BiR21VYO8nW6EpK6zvOVnYMAdSUbiemkRZCFBwhTaebuI2ivLcGIpRc2VJQdZbXhqpxfd/fxMWHQYQBFalyMUw6Px4z9tehV57eVpYxBtF3+8m11VZCywK647aqkDX/c1iEW0hwUX54pQb3wBKsaJTvQxIhgArR4gAALoKFQ58tl1sgF7s+OdDGPvLXMGVccRsB99sEBd+MiL2hFrL1GuLYpsTbknAqaIiMYXKpAyiyJJBFCvesnYY1lUCijVt0teose+TrTDUycVvhUo0xMHe75F7EC1RjBGizVLlxjwKzPo3LxTf0igqEGMIEHrNxDrKFwIen5Ap0N4wibve+efLokIx+kZrMDy59SJlatJumB4XsIVx8WejsPUJ1ygkRTbnkBcDf5jK9jByhvb31KLjjtpsDyNnoOSUORH/YgjdPxtF0Cmn6QNLbQvKVQVVZ2mo02DfJ1uhX8pEi9kUK6EUJKzbBOdYzCbh1IJBVFdXl9D1UooQAcJi1HZ7jTig9fBMBtDzqzGx43AhRIsoJYkjD3UKhb4yiHijGH1uVlAblBEiRDRZUJPTZmxVN6SkOOiYrWsBnG3a9Q2jAjKGAODCj0cw/aYt28OQhK+/vohv/upW2Fx6kCSPpprZDY8939+Is33NW56zvMuMst2mDX/vHPYBPKCyKLD/U20FU1vEaCg5BWgFE68uYPL19bNQihGSJgsy1TYZ2BAH55BXNhCXMDXpsOcTLaCV+S9sFbMR3ON+9PxybFORGWunAW231axyjHFKYR/a0NCQ0HUTVpmzWCwIYrnbfMQbxelvDWD+nHPTz8Zyv1UWBfY+0LKpAZUPcFEeY3+Zg39eLuiLoS5Rglbl/8soBbG0hmLooRKPiEKLMYy9ZfGLCKwyigrMGCoUYsW7TTUzuPGKk7AYPFt+5o7rX8HNVx3b8riBJ6Zw6bcTWx4XtIcx/KcZOJbSKPK9oHj73Q1oekdVtoeRM3gm/PBM+Lc+sAiIra2yyISA2qpA1SGrnFK5hHPEi7PfG0Q0lN/Ph3WbAXsfaIHKIqjS2vs3X1fmzzpx+uGBVQqlISoAhmFQVZXYXJrwbq25uRl+rA5bxSTvtOVbF7oG7WH0/noc9qV0h3yV6OZZHtNv2hB0hLM9lJyAIIF9n2yVI2ZLxNSxaLVsIALAsFuBU/OJFcI727QFawyV7TZh7ydbsz2MpDE167DvU21QGBgwNIs92waxWT9AngdsLj0IAlDEESmMFY7HFsXNmDvjAM/yUBgY7PtUm1h0m48MPz2D2RP2bA8jZyjbbSqo1NJUiK0lsbWl2NGUqVB/Xfmm804xwQY5eGeCedu3N2YL2Pvc6P31OIL2rffWMZtjbWaSn/OipKQEJJmYiZOwQdTS0oIALi9q0lWpsecTLTDWb10cbe/3gOeE9ICuv2pBxX5LosPIOgRJwNSsA6ORN7wAwHPAuR8Owz6wtZe4GIj6hUWL0RROfcN6xCuxHYiS8EUSe1cW9vEY+NrhZIaV8/gXQ1i44MzblErPlB9zZxyI+uMTABgYr8a3fnULFhzxZwaoS5TY92ArzK3xGThRfxRzZxzwTOVvRME97r9MPamYaX5HFQxx7CmKAXpprxGJ850rdGy9brzxLz1yCuESaqsCddeU5aXyccV+C7rubwGjocBzW0eFAEFme88nWtZt7+MNuxOODgFJRog0VZd77bzTAVz8+ShcY/GrrkX8LHp/PS6m26lLlHmzQaBVJHbc3QB9jSwUEcMz4RcNgWInIkeIVqGhOXSYQ6DJ+BavhX3Lxw187XDBGUbeqQAmXl7IK2+eoU6DrvubQalIsEEO4y/Mx70ZaaqZwZ1vf3ld1bmNCCyGcOk342Jj1q3gojzGX5gHG+RAqyh03d+cV0I+KrMClQctebmhSRdv/GsP5k7LETMAYOQIkcwmKAwMyrvMIJk82UQTy7VC8+ec6P3NOCIJ7B9doz5c/PkovNOX1xf5oz7U1yfeviApg2h6ehosf/nAHYNC5IjRxr8JjBXFkTSBnR9uRN01iemGZ4tIgMXxr/TBOby+BGAxUrHPnNfpKlIS85wXegTR9MgbcR3HkDwqtREo4jCIVhpDKyk0o0hboYorJSxXCDoj8M+HQKzIUVmvIetaeB6gKQ4djVvXBK3FdsmTnIwsIcjQ5pMClbZChYbrKlCwjUSShJdr5gHIKXNrqTxoQdu7q7M9jJzBNeLDia/25Y1Tuu6aMuz8cCNImgAX4TaU016PmI0RszlWwhM87HY7WlsTT0lP2CBqa2sDAPixfkjLWK/Fgc+0J9yPhovy6PnlGGaOC8pLmjKl2K08J+GBsDsih2tXULLdCENt/nhk0wkX5cFGuIJPmQPiM4pcYQovTOrgj6b2TheSUdT+nlpUHbRmexiboi1XoeO9tSBpAmF3BP2PTSa8Ifvd80dx/EL7hr9/pWdzT17lQQvaE5RejgZY9D82ibA7ApIm0PHe2rhqXLOJrdeNN74opwDFMNRqsP2u+tzeB2QQWk2BjXDy87FE1M8i5JbTB/MJSkmKtsHMcRt6fjmW8POsLVfhwGfaNyzP4YwhcByHHTt2JDy+hGeanTt3giAIeOBc9/fuCR+Gn5lFYDFxsQHvdAARn7DYtt9Wg+Z35q7aDq2h0HJzVd6KQqSD7kdGMf7ifLaHkTNE/WzRpMzFGynaio2iQysplBS6nl+MYfTPc9kexqbwHA9GQyf9HPM8YDW5YdCtX9dz6O8e2PIcYXcEAVvyap60mgKjocUeFTlNHgwxU/C84FSSZZUFGA0tR4dWsNDtwthfcnv+zCT6GjX2PNCS033Zmt9ZhfbbagAAER+7brrbVvgXQhh+ZhbuifVTqYMaIVhz5ZVXJnxugucTj8+3t7cj0M+hneja9DhKQYINJzeZKfQ0CJJAyBWBplQJLsrnlKKbwsBg23trMfjHafhm5CJYmcvpur8ZnukAhp6czvZQMsZmIgtHKvyY89MYdq/vRIjHGFpL66e3lnCWSQy1VYHKQ1YM/2lmyw16PClz67HSENpf5gcz6UDvr8aTOldCEEDTTZWYedOGgC131hNAmC8mXlmArTf+OiuZ4qHlXVXQlqtw7vvD2R5KTkBrKHARTlSkLHbUVgUq9lsw8fJCThnOKrMCJE3AvxCC0siA53iEPclF9uKxKeZqhzDhHoHdbl+V3h0PScWi9+7dCw8cmx6jr1YnlToXI+yJilJ69W8tR9uSVZkrhN0RnPv+sGwMraDmylK5q/gKQu4IlPrc9dakg80iRXMBGp7I+lNOMsYQkN/RIoWeRtttNTlXR8RoaZgatFCk6Gm0u3Q43t2OKLv8nR/6uwfiigqthaAIVB60QGVO7V4pdMLfxmhz670kaQLOES9C7vypeUo3tNykdhUKPYOwnCIm0vmBejTdlLtZRJkmYAtj5JnZnDKGAKDtthrUX1sOQJDHTtYYiqXK6asvV5VbiTNsR1NTU8LGEAAktSrs2bMHTz75JHgvv+FFvbNBTB1bRNCR+gTf9/sJcQFTWRRQWxTrFlPJZJeALYQkAo4FS9gdgb4Ia6pMj7yxbqRo2CVdZGgtA187nHfRIjbEQWVR5ERapdLIoGy3CRMvL8A97sfpbw+mnL41NlOON8524tM/vxYcn7ryUc1bSsFFUssUCHuiq/622qtKMX/OeVkfi0zDRXmMPien/6xk23vrEHJF0P/oZLaHkhMoDUxCKr6Fzuizs0lnIBUiBEVAaWQQckWSE6KREHOrDgFbGEF7GH2/n0DEl7ohH7CHMXVsEd7ZjYMQPM/D7lnEtTuuTuoaSRtEXq8XfnihxfqNOHmWF2RlIXxRqXxBXIQXm7+W7TahbKcJpx4eyOqXrq1QYcfdDbjwkxH4F5LPby8k5FSP1YTcUZTomWwPIyusZxQxJA8dw8IRSo93PhYpyhfDiA1zOP+D3Eh/0VWqUb7XjNlTDmHxSmFqXRkBIgleEmOIZ3mc+ka/NAXlS6dgtDTK95rhnw9l3SDSVakRckdWdVsvdsb+PAcuKm94Yyj0dNLe9ULEPZG//cbSgaZEiT2faMHZ7w0KDVqzBEERaH5HFebPOzH+wry4d0/1nFyEE22KjeD1Efg8Phw6dCip6yS1Mzl48CBIkoSTW9zQIIqhKVVi+z0N6P31OLxTiRdQrWX8hXnMnLCDZ3kwGgqVB6yYfH0h43mkEW8UU8dsCEtg+RYKJE1AaVIIBdByoAhhdwSMlk7ZIZCvrDWKyjRR7CkN4qlRnbhJliI6tJZ8ixYxWloSD1ri16VgaTdg7rQDtktuOAY9CRscG6W/aRkWvggpiTEUIzY2tVUhSf1PxBfF6W8OiOct32uGvc8tCvtkkvbba+AY8gp1WzIA5A3vSgiKAKOhEfbIKZUAQJAEKg9YYOtzS7LhLgQC9jDO/3g4K7WRJEOg5opSzJywIeJnce4Hw5I5d3TVamx7Xx0u/nR0y+BDwOgCPMANN9yQ1LWSMoiMRiO6urowc3oR1WjcfIC2EObPORG0S/clxW60vlaD8r1mTB+3gYtkdhELe6OYfHVza7XYMDZqsf2DDTj+5UuyJwtAaGnxUhqYnBIEySQrjaJ5P40XJrWIiX2lwxiK0f+D/Sl9vuNTvRv+jvNJl7ZibtVl7Z2xdhhQd005bL1uRAPsKmMoXrGEQ393eWokTfA4WuVHn0OJkQ0ENJKl+ogVtVeX4cRX+sCGUo8exP5mWk2Jee5zpzevj00H5380ItfLrEChp2HdZsD8Oack33O+o1iqRZVrzAQYDYX668rhXwzJBtESXISDeyw7TgSSJlG+1wzvbAD2Po+kke6gPYz5c864lEadpA3l5eVobm5O6lpJ565cc801+K/F/wI/vnEdESA0VRtbkpYlGULSSI69zwPHYD94lgfJkGh9VxXGXpjPyOaTVlHQlCnhmQoUpfd/PTwTAZz/4XBC3YYLmbBbNoiAZaEF54eOIMKlLzKUKUjt+v0PgMSNJfe4H5d+O45oMPl3hmrZ3Cm16lgGMJRTcEyy+PHjjyIYUkD9t8k9mxtFh6I8cHxWDe8GAhqpMH/OCc9UQPJNcjTA4vTDA+L3YGnXwzXqy9hmPBsRwlxGU6pE4/UVWOx2QV5NAJVJcCxkO7UzVwh7o3jjX3qyPYycglKQqDhgga3HnZH9hsqsQN21ZRh8YgrRAIuTX++XfC9MMgSiAVa0IbbCHlrAnj17kr9esh+8+uqrMT4+jiDis0gpFYm9D7SibLcp2UuuS+wLUBoZaEqVGSvq19eosesjTWByoCA6V4gGWbgn/LKBuERs8VKai7OOaC2mR95AszGESm16F3Vel9rmcrPokNSwIQ6LPe6kHUWJGEMAUN7KoPmQEhQNEASgVkm9cPIACNhDNMKc9AZRxM/CPZ4eL2jMGKIUJFpvqUbFPktarrOWhreVo2J/Zq6VLziHfXjjX3tk59oSKosCPMfL0RCZDRHS1kpSVuKMF57noS1VQmkUrif1vq+sy4S9D7SCUsW3jnCqMObm5nDttdcmfc2kV6yjR4+CIAg4EF/aGBvkMHPSnjaVlMBiCGe+OyRMGASw6yONKOk0pOVaAOAa8+HUN/vlGqI1VF9RAt0WsojFAhflEXSFoc4xWeVsUjI1D9Snz+ueqjGUCsmm0qmtCjRcXw5IV26zCpIGDGXCVD/TG8H5pwJg03SbGgwR7C8LIN1FhNveV4fKg+kxItgwhzPfGcT0sUUAgKFeA0qRvnw2giLkdLl14OVMORGVWYGQO5IfzYUzgLVDj+13N2R7GDlFxMfizS9dgnM4fQrMJZ0G7PxII0AAIWcEZ747hMBiekTFXKM+zJy0gw3GNxEErIKo17vf/e6kr5n0NGw2m9HV1QU75uP+zNTriwg5IyAoAiSdptUfQnG/dzaIwFLYkFJKv9pwEV4oXpPnp1VU7DVDV6HK9jByhqA9DJUluV5chUjf7ycR+LvTaTl3No2hVKBVFEq2G6E0pieSWL2dQeuVSpAUwPNAOMDjqZcfTcu1AlEC7jCJtFl3S/jmgmlNHwp7ouA5YS3puKMWNVeWpO1aI8/MYua4PW3nz0e2392A8r3mbA8jZ1CbFZLWYec7bJiX66kySGwPHXSE4ZsNpn3/TlAEQs4Ipl5fjPtzTmoBZWVlaGtrS/7aSX8SwM0334yQ2QMuQVfOjnsa0HhjZSqX3hQuwmP4TzNi09Rt76tD6y3Vkl5DX6NG49srJD1nIXDqmwOYPZX5ouRcJWCXI0Tr0frpY5IqwUllDGUyXS6GZyqAk1/tTzgdZrN0OYoBtBZhep+6GEH3M0FwGcg+mvMz6Hem3wEw/uI87H2etF+Hi/I494NhTL4qLMy6KrWk0SJNmRIElV7jMR/xzQbkepkVqCwK0cErAziHvRh8fCrbw8gtCGD3x5pgbtVJetrWW6qx7X11AADvTBDDf5pJq6pz442V2HFPQ0Kf4Xkek/ZxHD16NKVrpzSz33LLLXA4HHDBltDnpo/ZMHsycx6xiVcWMHdO2KQrdDSUhtQ9sUoDA1OTtA+eTOEhRIhkgyiGpkyJIw91QrsURcwneezNkEJ5TspIdv0eBdquVAIEwEWBkC/doWweraYQVFTm8pwUehq1V5em/TohZ0RoAEkA7e+pRcP10jnCtt/dgPq3lkl2vkJh9Pk5OIfk5usxVBY5QrQSRkfLjoS18IBvPohoIHXPl9LAQKETNNfmzjkw8UrmFJVnT9oxfSwxmyJS4oPH48Gdd96Z0rVTWoH37t2LqqoqLGA6oc/ZLrnhmw0CBNKWJrIS14hPlCOsvboUOz6cWCHyeiz2uHHmO4Mpn6fQqD5iRef767I9jJwhYAuBVlJgtLL4BgAEHRGMvzSP8ApZzlSNonyODsVQlyhx6PMdMNRpkj4HxQBqo7BJmDgfxsU/BzOW0qtleDQaIlDRmcshVhoZVB20Zs7hwAPdj4xg/EVB8UhTqkzZiO3+yYicLrcGpZGRxGlZKDAaCrSSKmql0rVs/2A9mm6UM3TWMvjENDyTqff73HlvI2qvEpxN7jE/XCPpqf1fScwW8M0GYbvkTuizLu0CNBpNSvVDQIoGEUmSuPnmm8E0c0mpu9W/tRw7723MqKU/+twc+n43AUBQvqs+Yk1rPmSxEbCF4ZbghSwUYl49tVWuIwKEXglTry9e1qcg2RS6fK0bWktgMYThP83An0KBatMhJVquEJ6zSBAIpz0qtIwvQuL5CS2cocwZ/p7JAE58pS+jnvOQKyI2bm27rQYtN6eWih2wheXUsDXUXFmC7XfXZ3sYOYOmVIimb9WUspgY+tMMZk7IjoS1MBoqblW2lZA0geojVvGzl/5rAiPPxSd1LQUERWDnvY2ov648qc/b2Dns378fSmVq+6yUczRuueUWDA0NwYfE87lnjtsw+MRURmWa2TAH77SwYTfWa1FztDQpL1/t0VLs+FCDxKPLf+z9Hrlh7QoCtjA4loemTBaaiKEyK1Cy3bju7xIxinLFGJKqUevsKQeiccoMx+qHKAWg1AkOnfEzYfS9lPlNk5rmQBE8OD45xxIzmXzNIRflQSnIjGQarKXnV+MY/fMsAEBpYhLaiBAUge13N0BXJStyrmX8hXn0/W4y28PIGTRlSnBRDkG7bBDF8Ez44Z+X78dadn20CbVXJp5GTCkp1B4tg7FO6LHnnQ6Ai2Qu/ZlneQw+MYWZNxNLlQMAzhDG5ORkytEhQAKD6LrrroPRaMQcJhL+bNgThXNY2EwY6zdudpgu7H0enPxqPyI+Vlig7qqHvja+lBXPdCDhsF4xQJBCKgnJyDqyAMBzPAKLIWjL5AhRDFOTFq23Vm8YGc5GXVE20+VWUnO0FOZWfdzHt12pQtNB4dkK+XiE/Vs7l6RWmNtpDeJAeXJR4VjT3lTY9v46NL+zKuXzJErYHRGFMFrfVY2OO+JPFWa0NHiOT6khb6ES8bPwzQWzPYycQVOmQmAxJMuQL8HoaFQdtoKWe0BexsDjU5g9HZ+DSV+rwfa76kGQBCK+KE58tQ/2/vQL1awltvd3DvtWpdLHi9M8B4ZhcO+996Y8lpR3rSqVCnfccQdmMZ50U1R9rQY7721MKX8+WdiwMMvQKgo8D7EgbSslIeeQV879XgeFgcHev26FIU7DshjwzQflCNEK5s85cezfeuUGvutgqNFAU7J5TYxCR0OhFozJ0VMhDL2RXU/p+UUVeuzZM/hHnp3F4JOJ1bFKTf9jkxh5ZgaAIPYQK0jeiLA7gp5fjMmF8mvQVqjQdGNlWvs+5RuaMiV8cjRERG1RoP6t5aBkp+tluMf9W84psXcrGmDB8xANy9heOJMY6oS9v74muUg5z/MYcw3i8OHDMJtTl+mX5Im65557EIAvYbW5GJ4JP879YChtHcjjIeKLoucXY2KTqR0fathUTUhtVUBpkgs/1xJyRXD+h8PwTGbvu8w1/PNBaMtlgygGF+W3NIa2qinKlXQ5qen55Rim3th8Ht1+dwPq9ghGU8DFIxzIpmHJI8iScIcT89aaHnlDkugQIBThhrPckyTsiYo1Hg1vq9i0aaTSwCS9ASh0FHoaxgYt2Aym6+Q62jIV/AtyxCyGe9yPN/6lR+5DtA7mVh0s7RtnGDRcXyFKWgcWQ+j5xRgivuytpe5xYe+frBBExOyHzWHDhz70IUnGI4lBdPToUdTV1WEG40mfI3ZDLG16qEuyn140+eoibL0uAILk5dpc76abqtDwNlnl5DJ4wD3hz4q3IVfxzYVAqygoZOUkkdqjpWi6aeteZOsZRVIbQ6mky0lVP7QSggS0lasNaHWJUvTk9T82idGT2fcY6xkWV1f7oaETe9elMoRWojIrsPevW6Apzf7aMfynGfQ/JtTA0GoKauvqiF/ZHhM6P1Avywavg2PAK6i3ysFjAIKBSKsouV5GJi5Kd5hQvnt1pERXpRaVOG29Lky+Fn+z03ShKVXC0iYYbqmo4tn009DpdLjnnnskGZckBhFJkrjrrrswh4mEm7SuggDqri1D5f7sd6i2XXKLX1TVQSva31O7qvn64BNTGH1+Nkujy22s2wyo2G/J9jByBv+84N3Tlmd/s5YrhH3RuPOFpW7imutUHS7BrnsbxdQGgiKw88MNqHlLCQAhIhLNgUwrDoAjRCEQjW9jL2VUaC0hVxjuCT94Lvs76WiQFdpKAKh5Swl2fni1kurESws494NhOWV0HeTa09XE+rX55uUIUYymmypR/9bk1MgKnf5HJ9H7mxWBCQLouKMWVQeF/ZhnMjdq3yv2mVF3TdmqPXWi8ASHUdsg3va2t6WsLhdj80TnBLj77rvxr//6r1jANMpRk9xJeKD7kVFJGktJyfAzM1AeWwR4oRi26cZKjDw7g7CnMNN2UkVfrYbKpMho891cJuSKIBpgoatQwzEgNxsEgLk4Cz9XEjOK+n+wX+rh5BRzZxxwDHqE2oHZILgoj55fjouF5jGFuWzji1A4v7h1qly6jKCV8JzQgyPXGH9xHos9bvAsD5ImoK1SwxNHnn8xoi1XYffHm3HuB0PwzcgGAADoqzSI+KOieIeM0MpCTqncGIWeRuPbKzD89CwiviguPDKSc9L+w0/PChkPKfiEwlVu+CZ9eOCBByQbl2TumM7OThw9ehQTSK1ZacwY0laqBCWqXHAY8RAnJKWJgcqiQNVhK/Q1arn4cx1Gn5/Dpf9KXHWwkPFMB2SJ3TUwOvqydKJ4aPvYSbR97KQkY8i1dDlAmAPDnih2fKgR5XuFaLl3OpBTEYVj57fBrNzccZXOiNBG6GvUqDpszeg1N4OL8mKbh4r9Fuy6txGVB+Xo+XqEPBEMPz0jp4etQFelEp8fGYHpN21JOdQKHUpBwrrNgLbbaqC2KMUa95AzkhMpqAQJtN5aLaaDpxr4GGcHUV9fj7e//e1SDA+AhAYRAHzyk5+EE4vw8q6Uz8WoaajMCpA5ZnB4pwI4959DsLTqobYqsffBVjk9TGZLPFN+uZB6De2316RUhyeVUZRLWDv0AAGwIRb++WBOSu2yLIHfvngApnUMopgRlGlDKIa+WoPSHcbccKStYeakHVPHbHAOeQFi6buWEYn6WcyetOeU4Z9tdFUaeGSDSIRkCKEeRi6/W0XFfgv2frJV6FflCOPsfw7BO5Vbzw2pIKEyK8CoU09Mi2iDGJsZlURqeyWSpcwBwG233YaKigpMzg6hA3tTOpdz2AvnsJBeRFBEzk2Sp781CIIkQJAEXKOCp9hQpxFFBYoZhYHBro80ov/RyawqB+YS3ukAFFeVQWFgsq6IlSsMPTWDaCC1tNOYUZRMGl2u9B6KoSlVouO9dej5xRgcg17Y+z0I2KT1lkvRg4iieLw6rRH3JNkyftZj+rgN00k098sEfJTH6LNC3am5VYeO99bhzLcHRXW6ooYQ6q0WLrhyLr0nWygNDBQ6Ouc2ttnEUKvBjnsacfLr/Qg6ijvt1FCrAQhBqc055AXP8nAO+XIyLZ+gCLBBDhd+PCLJ+WyWCahZNT7zmc9Icr4YkvrRFAoF7r//fsxgHFFemkmNUpDour9ZTB3JJXiOx9wZh/hiVu63oPbqsiyPKvtEvBEsdLuyKueYa3iWFjV9tRwlihFYDCHik6ZeUMo0uniQKl2OZEhU7BPmNv9CCKcfHoBjUFjQJl5egGskPWl5yeL1q2B36WB65BiMjxzLKWMIgJgaojIrwGgl9felRMU+M2qOLneQdwx4cfrhAdEYqthnLmpBAZVJgZq3lEKhz53vLNvoltYKOUK0jGcygAs/GUHQWdzGEADUXl2GyqXspKAjjLkzDvA8D0ZL55SCZcU+M7rub5asvISnWQzO9eGd73wnTCaTJOeMIfkMfP/99wMUj2mMSXI+Nsxh4YIT7rHc2RgYajXY9zetl03efb+fRN/vhNoZXbUau+9rArNFg75ChOeAsT/PIWCTJ60YEW8UIVdENojWUHO0VNKU00wbRqliqNOg8YZKsZZq7TujNDJofmeVuFnOlqDCDVVduKGqC5/7q6vxlR/cDILMnQV3LQRJYNfHmnKqlojRXN6sNfZdjJFafQAAk29JREFUq60KNN5QmZXG5LlC0BHGm1/qFR1HMoJccsgdQSRONc5igA1zQkZObiUMZQRGR2P3fU1iLXLf7ybQ9/vJVceoLQoc+m8dOZWe7xr1YeGCU7JWLN5qG0LhEP7n//yfkpxvJZLv1qurq3HnnXfisV89jhq+CaQEydyTrwq66QRJQFelSkm3XAoi/ihsve51i8LEn3E8/AshcTLT16iFwugcrAlIBwq9UAMmp8wt45nyQ19dvJue9WA0iTX0jJeVRtF66XTZTJdTWRSwtOkxvVRPcvJrfZtGykxNWqitClHKOd3cUNW14e8mXpqHrceVE/LWG8FzPHp+MSbK3ecCE68sbPi7gC286hmoOmyFvd9TXEp0BIpmbYwXQ61GbnC+hqpDVvgXQ0IdXhFAkIJh7JkMIOJbav7MC3PvevvPkCuCnl+O5YQwibDnDSJgC4t7+FTheR4Dzm7s27cPu3fvluScK0lLjP6hhx5CEH7MQlqlsapDFmy/uwG0Kj2bqHgJ2MIYfX4OXHTjTYF3JoiBP0wBEJrz7by3ERX7ikd8oWKvBR131mV7GDmFe8IPXbU6p8LZ2WbkmVlMbrJZlAKpo0appssZ6jSoOmgFpRSm382MoZArglPfGJDUGIpFezb6byMIckk1LQ8kkb3TAXBRPuviCkojI6R7b/HKx54BSkmi6qC1qKJFCj2NQ5/vgL62eP7mrSAoAvpqNVw5lBmTC1ja9EWVZVGxz4KdH24UJaoH/jC16fzLRXnY+z1Zb11Dqyhsv7sBVYek3fP6q+ywO+34+7//e0nPG4PgeT4trr53vetd+MuTL+EI3g6CkGYDSJBCr4JsL8gqiwLgkVBRn6ZMiZAzAjbMoeqwFbSSwvhL82kcZXZhNBRAEnK4fwXaShX23N+C8z8cLnrhjZWQNAFaTWWkr9fglw/HdVzb/7qw4e+SMYhKthuhMisw+apg/JE0salDZS20moKlXQ+bd+NaSsUPtn6mAlfPxX3Ntdff84kWDPxhShS7kYpt7xccJ72/Gt/iyMQwNenQems1znxnMGsbhMoDFtRcWYpT3xwAF2fvlJXPRs2VpQg6wli8mLpya67CaClU7rdi6s1FsEE5TAQITpNdH2nCme8Miv3HZIqDuqvLEA2xmD5mA6UgoTQyCQmvWDv04KK8WIuaLXSVKvjmpFNK5XkeF6yvwFpmRU9PjzQnXUPaClz++3//73jyySexgGmUoVqSc/IcRGOo9mgpnCPerKTP1b+1HIyaQvdPR+P+zMoQJkERIJaCXARJQG1VFJzSUMSfW811cwHfbBDREAtDg1Y2iFbQ+cF6sCEOvb+WdkOcCv3/tHPD31FVCXx3PA8QBLSLPBQhHvg/SoAAEl0jzHMMmgY1CByxIarIQroaD8yfd8I7mz81Ht7ZAObPO7NabzBzwo758864jSEAqwxlTalSTJEpVCI+tqCdg8lgrNciGmThy6G0T5n0oSlVImALgecAgoKYRcKGuYT3huV7LYh4o1kxiPQ1ahgbdZh8ZUHywEWo0oX5mXn8x1f/Q9LzriRtESIAuPbaa3HqxXM4iLdKFiUChIdlxz0NsPW6syKxqtDRoJSkJKIBJTuMaL+9Bie/1l9wcqONN1TANeKDvd+T7aHkDJ0frAdBErj4s9FsDyVn0FerEQmwaa+ZiDc6tBlxG0M8jytmeDiVBHqshGgYNZbak7swD+j5aMrGULIRonSSrghRNiFpAsZGraQSuNVXlEBTosTA41OSnTPbkAyJst0moeg6JEeHYmy/uwE8y6Pnl9KIUxUClQcsqNhnwZnvDGZ7KJKiNDI48Jl2XPqvibyPBFcdssK6zYDun45K3iqnt+wYlFoFBgYGQJLpyYVOa4b1//gf/wMeOLCIGUnPy7M8uh8ZEY2hWC5+pgh7o5IpqNl6XOj+6ahoDLXeWg1za2E07FOZFGkrms9XXGM+GGrVWa9tyCU8U4GCKSCnOF40frwMgUAsBp+qQ4gAogoeBAsYbEzK40yEin1mlO02ZfSaUlK225Txtg0lO4zY9t46SWWkw54Igq7l94Sk878WUV+lRtONFVmvC84pCMBQq4ZrXK4fWolvNihEfAsAc6serbcKmVMhVwQXHhmBrTd/jaHYHnz6TRu6HxmR3BgKV3gwNTeJL3zhC2kzhoA0G0TXXXcdrrnmGgyiG1IHomJ5icYGLfZ/ug3qEqWk598IWkWh6cZKqMwKSc7HcxB7jZA0sUqrXWlioDRldvMjJb2/HsfcWWe2h5FTuEd9oBQUtJXFUxgaDyWdBtS/NX09vKSIDm2FguVx6xCPRrfw7/OlBEaMy5vWpKNDKyiZUaHpghFUOPHNcLLRIW2FCrpKVVKfzQV0lWroKjI7/vmzTpz5zqCkdXELF1yYeEmoQSvbZcLeB1tBqfLbs+Ia8+HNL10quOyIVNBVqUEpqJxqNZILuCf8mHpdGrWybLByP0cQQo/NmFPDNeKTrNZGX61G1/3NGXMyqEuU2P/pNhgbtACkV4vkeR59kXNoamrCxz/+cWlPvoa0zqYEQeCLX/wifHBjBulJh/BM+TH12qLkHd03gtFSMDZq0+Kd46I8Lv12Ao4BIcWs5spS7LinQfLrZJJC8GJKiXcmgGiIhalRl+2h5BSMlpbMyZBReB4lAcHZE6YI9FoILKbR1l2oCqL3gANsBuuIhv44g+GnZzN2PakZfnoGQ09Jm6WwESRNCB3kcXlPKSlxT/gxfcwmihDo8lF5a2lpkFPlVmNu1iEaZOGVG7Kuwtyqy2sHwI57GlFzpdCc2d7vwaXfTiQkrBMvET8L70wARIb2XgFbCFOvLcIzlZ66aH+VHXOLs/jHf/zHtEaHgDQbRABw6NAh3H777RjGRXC89IX2XITH5GuLAC8o0MWs1HQRsIVx5tuDGRFBGHl6Riw0ZzQUuu5vhrY8fzy1umo1jjzUKRQGywBYjgiam2WDaCUzJ+zo+93k1gcmgVTRofXqh8r9wE2jPKxLRlGvlYBHkcaFiARCWhbg0586R9IETAX0nJqadWl30FTss2D73fWCTG4aCTrCmD4mpIzrqtXouq857Wuf1JTuNGHf37SCZGSn2UpMzTo4R7xyX6YVqK0KbP9gA3R5lFmhLVeh6/5msWyg99djGHk6/Y6ZoCOMwSem067wa2zQCvtRHph8bRFcRHrjjic4XPKdxa5du/DBD35Q8vOvJSPm9v/9v/8XYTKISQyn9TrVV5Sg7ur0pd1kGi7Ki+p0pEIQcYilFphbdTlvHAUWQhj84zTCsvT2KhyDHuhrNRmvfcsHpDae05EqpwvzaHEIk/+cBni2joAtw6+iaUGBlnNGKH3p23hbtxmw/YP1UBrzN203htLIYPsH62HdZkjrdaaP23D+RyMZlfn2TgVw4ScjcI0KKVble815kWrtnw9i7rQjLRupfIVSkjDUaIqm8Wi8BGxhnPhqHzw5rs6qLVfB3Co4kUKuCAK2MMilMgj/fCgtEaH1oNVU2ueAuqvLUH1FSVqv4amdh8PlwJe//GVJhdk2IiM7so6ODnz0ox/FCHoR4dOXRjDw+JQYUSHI9Ny8nR9uROPbK9Jy7s0IOSPo+90EokFhoa27qgyVB4SmVwSZm6lpbJjD3GlH1puE5RqOIS9IioCpMb88uummfI8ZXX/VAjrHhTiqvcCuRR40J4gnzGmJLUUTUq0fUtOrayycpWH0HnAI0aI0sXDBhTPfGSyI+o6QK4Iz3xnEwoX0FC4rDYzoLZWyiW68xIwhkiFRd1UZLHkgzOObDQrZHTIipkYdCJLIeg+ZXCTkimTMoEgEkiZEkaTKgxbUXiU45aNBFn2/m0DImfn5s+XmKrTeIk27m7XE9ta9vx5Pq+Ilz7DoWTyLq666Ctddd13arrOSjLmo/+Ef/gFKnQLDSE9DJUBQn4sGWVAKEl0fb0JZl0nya8yetsMxmH0Z6XM/HMbI80Jev7XDgIN/25GTG0ltuQqlO43ZHkZOEXJG4F8MwdSS+5uWTLLY60L3IyOIStTDSsro0D7ai50LwmI8YAb+0EwgmianS1wQQEAvpM6Z55QgJLaLYtHLQuqPFvtb0hGZrbumDO131Ip1MdmCi3A49c1+zJ5yAABqrypF3bW5lzVhadMXjJqqlJhadPAvhgrCCSElTTdWonRH7u0jGA2Fg3/bAUuHEHkeeW4W53+Y3kyoeBh/cR6DT05Lft6yLhO6Pt4ESkEiGmQlV5NbyXzFKIKhIL7xjW+k7RpryZhBVFVVhb//+7/HBAbh4Z1pvRYb5mDr86SlaevCBRecwzmg/sJDLKj1TAYw+uc5cSPZdFMljDkSfTC36NBwXeYjarmOc8gj1xGtgQ1ycI/nTkqEkuNBLqljRkkC7NJsyREE2GwaQytgQiTqe/Uwz0uXakjSBPZ9shUV+zIrVZ0JKvaZsfeTrZJH1IeemkbPL8ay2gQ2BhflwXO8+P9jXnWCJNJe2xQvJduNKM9jKfd0YW7Syely60CryJzJgjE2atF0UyUAQcBg9M9z8C7tNdkglxNzgH8hlJZWFp7JAGx9HrDh9Ba4RQ1BXJw8h7vuugu7du1K67VWktEihk9/+tPo6OhAH85KLsO9lvEX5xFYDIEgIVkPCl2VOicLV0PuCGZPCik5JE1AU6IUJRdVFgUMdZqsjW3qmA0nvtqXtevnKo5BL1QmRcbk4vMFRkNh2/vqoM2wTPJaFDyP93h8aA0L9W/dJUsNVnOMiIpDzyE77JXSRXJ4jsfYC/NwFODGzDHkxfgL86LBkCplu0xQGhlwUR5BR+710pp6fRGTrwhS3eV7TNj/qbacUOrqf3QS/Y+lR0QlX9GUKqEyK3IiAyXX6H9sKqstPAx1GqgsggoqraKgKVGKBtrsSTtC7tyL6NVeVQpzizRO1/K9ZhAkEFgMYfzFeUnOuRE8z2NIfQFmszmj0SEgwwaRQqHA17/+dTixiFlMZOSahnotmm6slESAoGK/BfVvLZdgVOmDi/Lo/ukobL1CM5TyPWa03V4j/j7Ti2E6Q6r5jGvUBzbMwtohp42sJBJgQVCr+3ElQzLpckqOx7ZQGOB5hAkCb6iVGGWka6yZLsJqwVtnXFTAPJe6gc1zwNwZR1Zy39NNyBnB3BmHJApeJE2g9upSlO0ypX6yDLDY68bQH6fFzIKqQ9aspFnH1qBcrAfJJtYOA6IhFs6RHMhAySEoFZm2mvCtrgsAIIC222tQvkdwrNt63ej+6WjOP7/Geq1oxKWCtlyFphsrYajPTDAgWG3HxOwY/umf/gl6fWb3RwSf7lDNOtxxxx144nd/xBW4ATSRfjUchY4Wlc5IhkhJ1YZWU3knEqA0MAi5I6DVFA58th0Dj01iscedses33VgJjuUw+lxyjSELlY47aqE0MTj3/eznHBcaCRlEvCCOUBmN4q2+IB7XaeChlg2y9eS2E0GKhqxrRRXWo75HD5IHRrav72GOpzFr5UELFHoGY3/O3Lu67f11AIDeX6WnV9161F9XjrA7gpkTqX03tIoShW7yCZVFgT1/1YyeX46LggyZgKQJHPxcB0b/PCvWOckI7P54M4L2UNraD+Qrze+shL5Gg7PfHcrYNUs6DWh9dw1OfLkP0SALpZEpurqulXvllXvodMLTLE6o/oym5iacOnUq7X2H1pKV2PmXv/xl0BoSg+jOyPViX2T1FSXY/bHmlHJR880YAiCGc7kIh+GnpsUFsOqwFU03pr++J2ALpbVJYb5iu+SGvloDhSH3JXIzjdLEJN1sMhFjqCsYwlUBId1shqLwW4N2lTGUT4x1eDDSuWQMJenzIYhlxaRChiCTVyLVVqiw7b11YmFxPhK0h3H8y33iWtD+nhrUXl2a9uvyHI+hp6YLMh0zFRQGBvoqNWyX5HS5tcycsGfEmdp0YwWqDlsBCBkcw09Ng4sK0dR8NYYIUlCeTBSSJrD7vmZUHxHuR6Zap8xXjcAf8OP73/9+xo0hIEsGUV1dHb74xS9iEkNw8AsZu66934PZ0/akQp21V5Wi7d01Wx+Yw3BRHnNnnYgsiS9wUV4sjiNIoOFt5WnRrp85YcfcadkbuBb7gAccy8lpc+vQfGMlGq5LT3pqSZSFmhOeewdFYZEixShROAO9DhIlnugQAGE2JwCVj0Lnm2aovMvpUPFEhwBg+k1bUURyR5+bw/SbtqQ+S9IEKCWJzOdWSAsbWs4b9EwFRBU+hZ6Grio9DTB5DljodhVkOmYqWNv14FhOrh9aB/98CM5h6Q1opYlBw9vKRQcQG+bARYR3IuJnMXfWmfNpcVux72/aUJNEryAuymP2lB32/sw9j+ESL7rHz+G+++7Dvn37MnbdlWTNF/jJT34Sb3nLW9CDk2D5zFifgcUQZo4LKRIl2w0JFZwF7WH45jPfXyKdzJ60Y+wvQoGcyqJE2S6TWLuhq1RBbU09/zSGukQJhT736zEyCRvi4Bz2wdqR3maR+cjgUzOCalcStHzu2Ia/o3ge1/sColjCGEOjR6nYsI9Qquly2SCi4OAzRBFRxl8oQzIkKg9ackbJKROQNCH8zXF6UGORXM9kQKghiKRXaSmTTB+zwdazXHe64+4GyZ8FfY0aze+oTMpjXehYOwxwjfhWGakyQjS26pBVsqi12qqAtlKoJ6eVFMp2maCyCHWXY3+ZL7g0ztHn57DQ7Yz7eHOLDiWdwn5k5rg9Y5k9PMnhYvQE6urq8NWvfjUj11yPrM1MJEnihz/8IXgViyFczPj1rduMKOmMX9d+oduFqdcLt4lcYDGE41/pg39e8BLWXVOOppuqxN+rzKkZR7s+0oiKvZaUzlGI2C65YazX5owcbq4Qdi814UtyT9byuWPifxXRKG72+kHxPFiCwFM6DS4oCzdNkWV4jHV6wDI86DABtWfrZ8vYoEHDdRVgNMXjtGA0NBquq4CxfmsVTkpJouv+5rR3Zs8FJl5ZwLkfDoOL8kLqzMebYZSgoFqhZ6ApVRWUISkFtJqCsUEL26XM1fXmC7oqNaoOW1MSQVm5d2l+RxXqrxH6cvnmgjj+lT4EFgun19paFi+6EjJqSjqNsG7LfL+nxZoxON1O/PjHP4ZSmT3l3ayIKqzkS1/6Er7whS/gAK6FkbBm7sKEkC/PczzUVgUC9vCGeffWDgN8c8GclFVNFwRFQKGlEXJHoK1QYc9fteD8j4bhHveDpImEQ8nachWCjnDa9evzDUZL4eDnOjD4x2k5rXANhnoNOu6oxZnvDiGSYA6zyqIArabgnQpAaWJQf005Rp6bQe8/HUjoPPkiqLARdb066J0MTj50acu6IkpFigpkmSQbogoxEvmbrR0GuEZ9eVs3lAyMlkLj9ZUYe3EOIWcE+mo1IgE2LT1OipWKfWY0v6MKb/7HJcmaUhcUBBKuiYztUQx1Guz6SBPOfGcQvrkglAYGYV+0qNRvS7YbwGhpMTvqMghAbVEgYAuDIAmhJU4Gb0/E6sfLtj/hwx/+MH70ox9l7sLrkHWDiGVZXHHFFeg+3otDuA4UkVkPJUkT2P+pNsyecWD8hfX11fd/qg3z55wYfym9+uu5CkkTMLfoYO/3gOeAtttqQNIELv02M9Lphc72uxtAUgQu/GQk20PJKSglidqjpZh8bTEuMROChOhJ3PZ+oei9+5HRTT+zlQBDPhpEK+uFKAUJhYHZ1AuqsiiyusHNpkEUY6N7ULLdAEpJyc6KJXZ8qAFsiEPvr4XvauU7txmGOg18s0HZIbYOO+9tBBvmkk4RlllNx5214KI8+h+dBEECljYDHIOevK8HSpa6a8qgtirR97v192v1by1DeZcZJ7/en/F7xJEcLphegVKtxMDAAFSq7PYfzLpBBACXLl3C3r17YQlUYBuR+WIqQ50G/vnQhp4/kiFAkISc37uEqUkHkiZg7/dAoaex88ONuPRfE/DNblxjRasoNLy9AjPHbZseV4yU7Tah7d01OP6VPoRzsMFbPqA0Mth9XxMu/XYC7nE/FHoaET+bsCdwpYEkRf2Q1AZRvOIIl0EA7bfXwjPlx/SxZTEBkiZw4LPtmD5mw8QrmRO4WUm2DaLaq0pRdciKE1/pu2xD0HhDBWglhYHHp7IytlyDoAgwGgphTxSGOg067qzFue8Pb6rCRZDAgc92YP6cA6PPF75gRyIoDQwOfLYdfY9OYuG8M9vDySl01Wpsu7MOF34ysml2jrZChY47anHhJyMIe6KwtOvBRfi0CDEUIrSKgqZMCfd45utlZ+sG0DvZjWeeeQbXXXddxq+/lpxIGO/o6MDXvvY13H///bDyFSgjqjN6/diDQKsp7LinASPPzsI16gNJLxlCYQ4ZjSHmOCsnGoIk4Br1IegUJqy6a8pAKUiMPDu76jNsmIWmRAkmC40Acx1brxvsOzmU7jAWdJ1aspTtNgE8ML9mw2Bs1EJfrcHkqwsIuSKYPeUQJebDnuSEWjYTZMgWASlOwgMBe+iyjQUX5dH76/GiSgdey9wZB1yjPtEYIhkC2jIVPFMBjDwzu8Wniwue5cV3K+ReeueWjKGaK0vhmfLDtaaxKM8BZ783CK6I0pTipWSHEWyEg12uH7qMqJ/FQrdzXWO78e0VYMMcxl+cR9AZhmvUJ8ro2/tkpb71MNRr4JsRorTGBi0ar69A989GEQ2wWTGGAhVOdI+dw2c/+9mcMIaALIoqrOW+++7D7bffjh6cRJDPjrITz/JCrdDS5r7mylLsfbC1qJSXEiXkimDwyeXu5xFfVNSspxQkdtzTAG2FCjwHnP/hMJzDchfutbBhDvZ+D0p3Zr6YMR8w1GmgqxFkgPW1GlGtUFOqFJQil17P8RfnZTnfTRh/YV7cLFQdsopdzN3j/qQNyEIg7IkubwgIoO7qMnS8rw4EJc/7mxFyRjD+4lIaOSEoVGlKhIJohZ6GvkYtqIMRwj2W62Mup3SHEfY+j5xKuA5BRxijz8+B53hoK1TYcU+DqIIb9kUR8QlzFhvkMPjkdN72CsoEtJrC9rsaUNZlAgAEnYJqcrZqqTh1BGdcb2D37t34f//v/2VlDOuRMwYRQRD4z//8T5RXl6Ebx5GNTD42zGHgD1MIOSMgKGIp0jFTtLmnyTBzwi5GOWgNBS7Ki6mIFfvMQiNYeZ9xGQsXnNBVqKEpzZ7CSq4y+twchp+aAUkT2H5XPUp3mQAIsqAXfjwiB28ThFKSqDxgQfM7KtF+e373VpOSbe+rQ8PbyjH+0gK6HxktqsLrlOGBCz8ewcwJIUW0dJcJ2+9qQPleM/b+dSsUupxIRskp1CVK6CrVCckiFwsEKaTSVh4SlGnZEAcuyotqrFOvLYrPmszWRAMsLvxoGIz2/2/vvuPbus9D/3/OwSZAkAS4NymJ1LSWLW/HI/GO98p07DjTmf01ddube9ubtE17m6SZtZ3GdoYdJ57x3vKQPLT3JMW99wCIjfP7A+QhaUnWIon1vF8vSiBwADwAgXPO8x3P14hiUAgMhah7pj0uibimadRn7UBVFZ5++um4LMB6NIkTCeByuXj44YcZVvppZH/8AlHAWWoj77RsfL3pO5TkVAWGQux9tFlvtbdkmyk+M5fMEhsosOQzFTiPo+RtOhis8xDyhfWTfRFTtMbF6m8tQFFjvUPb/+cQ7e/KsMJTEQlE2XZfPV2bBxlu9uJemInBmlCHgjlXck4uWZV2vJ1+oqFoSpfinQvt7/ax/X8OMdrqo2vrACu/Pp+iNbLswlQFK7IJjYUZrJe5LhAb0rXkMxWgQEaBFXetE4sz1ovtHwzGziWkF+ikaVEoXO3CvSgzro3SwxUdtHQ28fOf/5yqqqr4BXIECXcUvPDCC/n+979PA3vo1+IzAbPsvDzmXV3Cll8dxNsdKwAgJ+6nrnltNweeasXXF8RoNYyvDB1rhc1blkXtjenbWq1FNXp3DVOwPDu9e9AUOO2L1RSsygFiieKh5zuwuc0s+3yVPiRHnJpoWKN//wi9u4eZ/8kSClfmxDukuJhoce7dOUTds+307h6Oc0Spwz8QxNvtp3PDAIee72CwLnbiX7g6h9O+WJ3W+zlFhfzlOfTsHErrnsjaG8v0oeLRkEYkGMVoNeDt9LPhx/tpel3m8J2qiXNXb7efnQ8coubaUvLj1PAazB9la+sGbrrpJu688864xPBREi4hAvinf/onLr30UnazIS7ziXp3D9O2vlefF5O72Mmyz1fpY+7FSdKgd9cwYX+EsC/C/sdb8XTEpoxHI9q00srL76qmYOIkLU0OnN1bBzFnmnDVZMY7lDnlqs1k8acrYr9oMFg3iq8/1kLvHwzSt3eEsd4g2+6vlwmzM8CaY2beVcWxNXgCUbbdW0/HhtjwE1dNJpas1F20dqqKi/M57c5qFFUh6AnTv28Eo9XAvKuKT3kh6nSnqAo1N5RiL7CiRTX69o7ohTt8fUEGD47qQ10Xf7oCV22a7fNqMjE7jHRvS5Ny7uPH8IJVOSy/q1q/OuwP68U2PB0+9j/eqp8HhLxhGQ59iqyuWEOie7ETAP9giL1/bqF319CcxxLJCLHFs56amhoeeeSROX/+45GQCZHBYOBPf/oTxRVF7OR9ItrcTMa0F1pRDAr+wSA9O4b06/v2jrDjwQZ9nQqDJSHftqRgyTJRcUnBYYUq+veOcOjFztgvSqxnYOKk2F3r5Ky/W4TRatAfIxULXXi7/Yy2j1G4KrVb6xVVoea60lhBBGJDuEKesP43bX2nl5HmwxtCJsq1qyb5/p0Km9uMs9SGNj43MugJo0U1UKDyE4UUrZnDBbLnmMGiYsmOJXw9O4dper0r9trHRcNRnKU2bG5JiE6FOdOIzWWe9t5OGG726iXeVaNCyBPWl7TIme+g5rpSvWJYqipY6WK0bYyxntQbmqkaFb1RxWg1cNbfLcI9nvD6+gKxnsLxP++hFzrp3zty2P2X31WNs0xG5ZysiXNU/0CQHQ82THuPhw550KKQkW8hu9o+J/FoSpQD9s0YjUZeeOEFzObE3L8m7JmF2+3mqaeeImAZ4yDbZ/35VFOsIlr5x/KOeLunPdaTkb88m9V3L5Dy0SfJYFYpWJH90S2wGrS83aNXfvL2+Gl5p0cvzlB7YxnzPxkrza4YFPKWZenJUrLr3jZIzvxMvZJaqshd4mTBtbG/mRbVUI0KqjG2+xlu8lL3bPtxFS8pWuNi1dfmSwWwUzBY72Hb/YcOf7812PE/h2gdX4A6d4mTojNSa97HolvKmX917HPo6wsc1uMYDWtsu/+QzOs4RYHhEDt+28BY70ef8EfDGnXPtjPcFKs+qhpVVKOiJ1ILri0hd4lz1uOdS+ZMIznzHXSlSO+Q0Wogb1mWvk+ef00JtTeWARD2R2h5pwfveOI30jIWW+D+I3b1BquBsd4AobH0rXx5KkwZBlZ/Y0FsuQomz10/rOTsXMovLJiTmLpK6+nu7+Khhx6iurr62HeIk4RNiABWrVrFvffeSzuNtGuNs/Y8igrRUJTdf2yi5e2PXpxwsN5D6/peQlJC9KSM9QbY+JMDxzxQTuUfCE5bTLL++Xba3o39nez5FmpvKNNbfd2LnJSckzuzQc+h3l3DRMPa5HDBZDOepxgzDCy7vQpneayV78Or2e9/opX+k1h7Y+hQ7PtH/NeTTkq5S7L00rVHEglG9cpD9kIbmaWTrbTJ2DOnGhVKzs3Ve3waX+2i7pm2Y97PYFbJXSJl8E9G9jzHSQ8v798/wv4nWqddN7HvcJZnsOz2KowTjZFJ2iZSsCKHaFijL4nnq5Wck4t7USxRteSYqL2hDHt+bH5n2/pe6p+fXMi444N+fXTN8Qh5wtQ9046vXwpanYzQWIS29X3HbNSpf76DPX9qApjVBmVvaR97Wnby3e9+l+uvv37WnmcmJPwR7o477uArX/kK+9nGoDbzK6kvuqWcyo8XArEhOcea4BjyhuncGBtvn7PAwbIvVMkQupNwKi38Yz0BfaiBp9PPB/9vn178wpZriVWxG7fq6/P1lhKDVcWWa0noA2kkGKV3z3AsIUrgOCdM7emrvrKIxbeVA7FF9QIjIf371L9vhLpn2o/4GCfC1x+ke+vgYQmWODZzppGa60qOe45a8xvdHHw6ljzkzHew5ru1mJ3JMb9o4qRZ06BotUtP7Lzd/uNac8lVk0nNdSUp11M7FyouLqD03JlplKp7pp3+fbGGEy2iERgJ6esZLb6tguori/Rtk2LelxKbR9O3Zzix1x5SYsfSieqT+cuzWfX1+frNmSU2bO5YAuTtih2DPZ2xY/DU4/PJcJZnyAiAE2SwqCz7QhU5C2LD0Ds29OvrNB2NFtFi8+QVWPr5SqqvKPrI7U9GKM/Lps71XHTRRfzHf/zHjD/+TEuKM/lf/OIXXHjRx9jJ+4xppz6UwWBV9fkKA/WjJz08IuyLMNYb0Mc/i+PjLM/grHsWzdjk7bAvonfBt63rZf/jsRZGRY0VyBgbL6HrqnGy+u4FGMZbugtPd1EwvlDZxPaJoGvzANZsM64FiTfROG9plj6221mRwenfqoklmcTmffXsmmz1PPh0G6NH6a4/VWUfy6P8wvxZeexUFRwNs/kXB+ndc+It095uP63regiOxMreVlycT1bV3Iw/P1H5y7M549u1GCwqWkRjy6/qps0JPR69e4bZ/IuDab1g7cna9VADTa/NfIXY0XafnqAD9OwaYrAuNuQxI8/C6d+q0StqOcsyyFuaeD187tpMrNlmOjb1H3vjOTD1mFewIpvC02NDZA1mldV3L9CPQWN9AXp3D+vb73+8lbb14w3UGtMKIp0Kc6aR0+6o1uccieMTCUQZ6w2c3N9Bg6bXu/UCHxanaUaWYYg4gmz2vENlZSXPPvtsQq03dDSJHyFgNpt54oknqKqpZDvvEtJOvitVNamc/s0a/YvfvXWQoYaTS4hG23wceqEDAEexjarLCqVl4zh4u/20vNk96y1kWjQ2QX9iDO3AgRF2PtgwOSSowEJGvhWIJcln/+MSvYXFUWSl+Mwpk8vn8M/q6fAx0jo2/fnniKLGiotM9HrmLc3Se30gNu44Z7yHwdPhZ88jTQSGY9/HwbrRORsGEg1pRMPSEHG8zE4TKLGk6GQqNwVHw7S/HzuJU1QFZ5kd63iDhs1tJv+07LhOhK+9oZTis2Lfl8FDHuqem5yTdqSJ/cekjb9XCknTKxZvZofxsMW4Z1Pf7mG9lLd/KMieR5rwdMR6KXJqMik+e7KXavFt5XqCZLCosQJKcTj7KVrjZqTFi3e8N2VOTPlaFp/pxlEUO+blLHBw9j8u0ff1GflW7AWxxq1IIMrOBxsYOBhLOD3tPlrf6Z31nvngaJit99bJHL7joBgUqi4rxFEcGxFz6IUORttOrgFyqMGjFy2quqyQpZ+pPKXYosYIu0zvYbFaeO2113A4HKf0eHMlKRIiiC3a+sILL2B1mdjJ+0RP4JuZVWln4S2xSX7RUJRDL3TMeNlBm9uMo9AmZSKPQyQQpf39/hlrVTqR5x1pnaxeduiFThpfHV/nIAoNL3fqXf2Okgz9BAtg2ReqqL48NrTSYFGpuqxQHydvyjDMeKnijo39ZFc7yMib+XV3THYDWZWTrfvlF+brr9VkN7LyK/PJqojdHvZHCExpJd/xwCGa34i1/kZDUQbrPfpaUnOp/b0+2tbLAq3Ha/Ft5Sy4pmRGHkuLauz6fSPd24cAyK52UHVZIdr4vK6ClTlklto+4hFO3sRJbPY8B6fdUaWf7Pn6gwRHY71XIU+Yvt3DM7K+S821JSy+tfzYGwoqLilg2e3xWWgxGtLG90Wx84LmN7rZ+cCh2I0KBEbDhMaPN1kVdlZ+ZT6mjNhwyJKz3dN6m7Mq7ZjsMz+nIiPfQnaVg47xIfczxZJl0os8WV1mqi4r1JOc6suLpv1Nis924yiJ9aKN9QRoeLlTP2dpfLWLQy906tuOtI7FZfTLWE8gsYcTJgoNHIUzXxHz0IudHHox1tBvyTJx2p3VJzQnMEqUQ7nbGPWO8vTTT1NZWTmj8c2mpEmIAObPn8/TTz+NxzRE5Z3ZGGyqfkC0uc36BG6AZbdX6Qt+aVENBUVfhK9v7wgh78yejPfuGmbX7xvRohpWl3naybQ4nMlhpPgsd8IMU4sEo3RtHtBXwu7aPMDmnx/Ub+/c0E///lhrmdFmIGeeA+P4QadwtYsVX5qnb7vo1nLKLohVKzRaDVRfPpk8ZeRZ9DUBIPa51ecpKLHuasWg0L93mMBIiOKzJz9HxgyD/hlGAXvBZE+O1WWettha0RkuvTCD0Wrg9O/U6L1frlonSz9Xqb/3iqrorfvB0TDbf3uIocZYC91gvUfvBYXDiyPEk6KOt3iWzM7Jdyqpe7Z9WmGSmdS5aYBNPzuon1gVn+kmuyr2WcvIs7Ds9iq9wSAjzzItWTJmGFDG9+GKQcGaY9Y/l86KKcOeFFjztwspWBXr2Q+PhRnrD+oFIlre7qFvz4kX6TiW9vf7qXvu1Oe+pYPGV7uofzZx3it9X6XFWs+HDsX2aUONHrb/9hBBz3hDj6JM2xcu/XwlrprYPjpnQSanf6dGH0JUsDJnWuXF/OXZ+r7dYFGxF1gnC8vYDJMFIIDis9wERkL07xtGMShYxnttYbxM+ZQTW/dip94YZnWZqb68UJ/4XnZBHoumJOkrvjyPgtWxmIwWNXZsGj9O9O8foXPj5Pd+888O0rU5lpAFhkN0bR5ImORDMSgs/lS53uMhjqz4LDfW8ZL2u37fSO+umR2VEfKG9flgRquBwEhIb2yqvqKI+VcX69u6ajIx2WPnL4pBwWBVybgqSGt3C/feey8XXHDBjMY22xLkdPT4XXDBBfz2t7/lwQcfJHRWn36gLVrjZt6Vk38oT6dPn1Q20jLGvsda5qxHIrvaQeFqF6pJhs8djcVpouLiAn1iZqLr2zuil4YNDIXY+t/1+k6je9sge//crG873OxlrCd2m8GqklXl0BMX10LntM9pzfWllH0s1jppzjRxxndryaq0o0XB2+WjYEWOfiBcdEs51ZfFeqmMVgMrvzqf7PF5HFkVdmquL9UfNyPPoh9gw4EIPTuGCAzFdmp9e4bZ/POD+glD89pu2t+b7G3xtPvi0utzojQN8pZlkVUu61Uc1fguyNvl1wuPzIaJlnmAbffVxyoBEjvBDI6G9CFUJefkUnXp5OTd079Rg2V8MryzLDYnzZIV+9290Dm5JpIW+5yOtMS+g55OP/XPts96C7a3268PJUmGIidxocSGood9kVmbMziToiFtWini9vf6aF4bKzWvRTU2/+wgfXtjJ5mBodiahBOfM5vbjG2i116BmutK9d707CoHK786X99fV19WxKKbY4mLwapSsCIHb5cPLRrrhTrju7WYHbGTyfKP5U/bf8+/shhXbSwpM1jGjyHjSdlYj5/hZq++7d5Hm+kZn//h6fSz9b/r9X39cJOXvr0z31AwG0wZBlAUGQr9EVSTQuFqF9nVczMEzdvt58ATrfr5gKfdp3/HDRaVxZ+q0Eeb5C7JQjt/iOeff5577rmHO+64Y05inEmKpiVn/dr/83/+Dz/84Q9ZbFhNcbQq1iKiMSdjl4+HalSIhjVMdiNZVfakLrE5Wybeo3Qz9XXb3GaiEY3AUAjVqOCssOPp8BH2RXAUWzntzmqa1/bQ/l4fjmIb0XA0NqxPAUeRDV9/rKiHoo5Xok6zt1NRlZObI5ImSs/NJavKwZ5HmhLis6GaVAxmRe+hz5nvoOTsXCKhKAf/2oaj0MZo21hi7RcUWPKZSoYaPbS/K8M0P6zwdBel5+ay7d76hOltmDMKKEqsN8pgUbG5LXg6faDFhsipRhVPh4/Sc3MpvyifnQ814Gn3Y7QZcBTbGGn2Eg1rWLJNqAZFLzWdrsdGcWR5S7MYavQS8oYT6rNhshuIBDWioSi+ef28W/8mn/rUp/jTn/4U79BOStL1EE34v//3//KNb3yD/do2urU2wr5IwiRDgP6BzVuaRfVlRVKa+wgS5Us916a+bl9/UG/Ni4Y1hg559J5MT4efnp3DsaGFBgVPh2+ynKkWK74w0XKpRUmIE965NpEM5S7JmpVx/8nO0+lj6NBownw2oqHotOHKg/UeIuO9SxF/lOEmb+LtFzQYOjSKtzPxez/iYbB+lLZ3+9IvGQLQJofmRQJRPB0+/bs21hPA0+FDMSgUn+WmZ/sQnvZYb2PYF2HokEf/rAeGQtPW3Um478AcyMhPjtEicy02Z7lIHz6cSJ+NkDdCNBRlrHCQ9xve5hOf+AQPP/xwvMM6aUl7lq4oCj//+c+59dZbOWDeyoDWE++QjqhjQz/b7qsnEohiMKvkzE+OahtzISPPwpr/r3ZWCgekivZ3ezE7jNPmB4npDBaVeVcWkbs48crsxttQg1evDidOXvv7/Qw1eI+9YRoKDIX0eSnicPnLszHZjbS9J72LR2Nzm1n1tQVyfjRFznwHBrNKJBBl2331dGxIzP24P3eEjb1vs2rVKp5//vmkKK99NMkbOaCqKr/73e+46KKLOOjYyog2GO+QjmhiLlP+8mxqbyqbnBif5nwD4+Oz07Fl8Tj5+oP07xuJLXQocxiOKBKIsvXeejo3yUnZBGuOmZrrS2VfM4OMNgM115cmxwKgcyCr0s7Kr86XntmPokDpObn07x3BP3Dyy4WkOv9gkF1/aNTn6aY7o81A7U1l+qLyx1pkNV7CLh+bR99h/vz5vPHGG5jNyb1vTOqECGJrFD355JMsWbKEhtwdeLTEnUDYuWmA7b85RNgXQTEoad8aokU0ml7v1iu7iSNre7cPm9uCe5Hz2BunqdB4xaisSru+6HI6s2SZsLrM04odiFMTDUWxuswzXmI/WYV9EYabvTNesTWVuBc5sbkttL3bG+9QEpoWheHGBBwuO8dy5jtQVIWwL8L23xxK6Ea+SHaALcF3yMvL4+2338bpTP7zk6RPiADsdjsvvPACRUVFNBbswJvASdFEK1HuIieLbqtI+4OralLIPy1bWhk/gqfDx1CDh7Lz8uIdSkIz2Q0s/nQF+Sty4h1K3A03edn5QEPan2DMpGhYY+cDDdKKPc7b7afhpc5jb5jGys7NY6jBo1ckFYczZxqpvaE07c+FLFkmFt1WQe74shyJ3KMYcQbYGn2HjIwM3n77bfLz8499pySQEgkRgNvt5vXXX8ftdtNUtAuvNhrvkD5S7+5htt9fr/eOZM9Lz94i1agy/5pinOX2Y2+cxlrX9+IosqXt5+R4hLwRdvz2UNrPZyg+y62X6BUzz2BV03qducwSG0s/XynDMY8he54DR7FNeoeOwewwYnWZCQfSs6dx4pgeGA6x/f56ehO8InHYEWCbsg6LxcL69eupqorPYsyzIaWOmvn5+axdu5bs7Gyai3cxpnniHdJHGuuNVQzLme9g6Wcr07LKStgXYcOP99O/L3F79RLBcKOX0bYxyj+WGi0xs2WiCp+9wIpiSL+hcza3mfIL83EUyuKGs8VRaKP8wvwZXyE+aSixxodEquqaiCouymekdUyKcRyDp9PPjt82EPGn3/DejHwLSz9bqU+fmDgnTFQRR4AdxvUYjUbeeust5s+fH++QZlTSrkP0Ubq6urjwwgvxer2Uty0lQ0n8VnV7oVVfANC9MJP+A4lTKnfOKKTfaz4B2fNiifOeR5oYrE/sZD+ejDYDZ3y3lqbXu+jcmH69RQarmlQnF4tuiy1eue/PLXGO5Pgl23ss5lbOAgdLPl0ZKxTQKAnR0agmFaPNQHAkjeYRK+CuzaR/f2wU09Rzv0QWyQyyw7geVVV56623WLJkSbxDmnEp1UM0obCwkLVr12Kz2Wgt25PwPUWA/oXIyLew8JZyctJoaJSiwoqvzKNgpcz9+ChDhzwMt3gpv6gg3qEktLAvwp5HmtJu6JyzPAPFoMiJ+hyI+KMoBgVneUa8Q5kzmaU2am8qw2BOydOGGVVxYQHDzV5Jho7BvcjJGd+pwZiRPsMvc+Y5WHhLuT4iKBmSoagzxA7jehRFSdlkCFI0IQIoLi7mzTffxGq10li0A4+W2OMyJ4z1BNj66zq9ByB3iTPlD0BaFPr2DDPWk/g7hnhrebOHzGIbrtrMeIeS0Eaax9CiYHWZ02JRZINZZfGnK9J6bstcKznLzeJPV6T8/nmC0WpANSr6QrriyFy1mTiKbbS8mZhrIyaSgQMj7P1TM+Gx1B5+aTCr5C6JFUsYrPew9dd1k4usJ7hwlp+tytsAKZ0MQQonRAAlJSWsW7eO3Nxc6tyJu07Rh02sWG3KMDD/kyXkLk39BSfb1vcx2iYrwR/LcJOXoUYP5RfKXKJjUQwKy26vouyC1H+vIsEoO37bkJZDBOOlY+NAbO5DmqyjNljviQ1rlGHNH6n8wnyGGj0MN0vv0LFEAtG0GP6duzSL+Z8swTTeEzZxjpfogtljbA6/hdVq5b333mPp0qXxDmlWpXRCBFBQUKBP/tqXuZFBLXkqvoTGImz9dR3d22KJXN5p2VhdqTuRN6vKnvZrMx2Pljd7cBTacC9O/rr/s0mLaOx/vIWWt1K7pdZkNwLg6wvIukNzKBqK4uuLtfJO/A1SUf5p2cy7skgWhj4OuUucOAptKb/PmQmu2kyqLi2Mdxizxuoyk3daNgDd2wbZ+us6QknUExZ0j7LJ/yY5OTm899571NbWxjukWZfyCRGAy+Xitdde4/TTT2evbSN9Wle8QzpuwdEwaLF5NmXn5ZK/LDveIc2aotUuClbJPKJjGWkdY6BulMqLC1BUOUv5KKNtPqKhKCaHMWXXuVjy2QrmXVUc7zDS1ryri1ny2Yp4hzFrFBUpeHMcFINC5SWFDBwYYaRlLN7hJDyT3YjZmZr7ZIg1JJSdlxv7/mjj53JJIlA4wgcjb1JSUsKGDRtSqrT2R0nJKnNH4/P5uOWWW3jllVdYGFpNgVIa75BOiGpU0LRYy3f+8myiYY2+PckxN+p4GMxq2gw/OVUZeRZWfnU+Da90yjCp47DsC1VEAlH2Ptoc71BmnLM8g0ggirc7OefgJWOVuansBVYMFlVOgtNc8Zluqi4tZOu99XrPoUgvuUuyUI0KPTuGUAwKikLSLY7tLxvig463WLRoEW+//TY5OenTSJ0WPUQTbDYbTz31FDfddBO7lQ20aPXxDumERMMaWiT25cqqsJNVlVqLmU4kQ+m4fsyJGusN0L19kPKP5adF0YBTVf98B3XPtsc7jBk10Ts40jKWtMlQKvB2+/VkKJX2XfOuKqLknNx4h5EUDBaVsgvy6No2KMnQcbDmmFOyGEl2lR1nRey8TItoSZcMjZZ38W7rG6xevZoPPvggrZIhSLOECMBkMvHwww/z3e9+l4Ns56C2g2TsJKt7tp1DL3QAsdKV1VekxhjvkrPdrPxqai32NVua3+xBNaqUnZ8X71ASnq8vQMgbxmBWyapMjYaEBdcUs+CakniHIcYtuKaE+VenztDFkCdCeCx5hvnEU9n5eahGReYOHad5VxWz8OayeIdx6hSovqII96LYfN76FzqoT8KGN03T6ClrYEPzeq666irWr19PRkb6LCkwIe0SIgBVVfnJT37Cz3/+c1qVety3GIhoyTPZTTeexxmtBowWw+QY7yROjIabvLS/35fUr2GuhDxh2t7rpfhMd8rOj5lpJefmUntjKaox+T9g/QdGGawfjXcYYtzgoVEGDqbA32P8q9Hydg/d24fiGkoysDhNFJ/ppv29fkIeSSCPR/1z7TS93h3vME7exOFDmzj/UvXfk42mRIlc2M/Olq189atf5ZlnnsFoTN0iMR8lreYQHclTTz3FZz7zGdasWYPyTjYmJbmruDkrMljwyRJ2/b4xqSbxiZOjmlRO/+YChpu8HHiqLd7hJDzVqGDONOEfTI6yp+kg2ecQpRKDVeW0O6ppfqM7NZK7OVB7YylZFXY2/7JOqjymAXOmkWW3V1H3bHvSzxuMmsN0zTvIgQMH+Nd//VfuueeeeIcUV2nZQzTVDTfcwBtvvMHu3bvZzJv4tOReOyDkjTBQN6onQ+bM5Mv0LU4TZR/Lk16i4xANRWl6o5u8Zdk4K9Kvi/tERcMa/sEgigpFa1yxCkBJpvTc3FgZZJGQ5l1VRMm5yTn3JhrSGG7y4pVFso9LVqWdvKXZNL7eLcnQcZp3VbE+xCyZTJxLBUfDDNSNJlUJ7SOJZobYaX+XhoYGHn744bRPhkASIgDOOecc3nvvPfKrctnIWoa0vniHdNJ8fQEaX4mVFbe5zZz+7ZqkW9vHZDdQvMaNLYXXXJpJPTuGGGkdY94VxUl5gh8PGQVWKi8pJLM0+ZLI0FiEoAzNSVjB0TDhJDxZMmUY0CIaDS91EhgKxTuchKeosfkjwy1eencOxTuc5KCA0aKiJlnxkZz5Dk7/dg02d+ycpPGVrqQunhHK9bIx8gbhaIjXXnuN2267Ld4hJYS0HzI3VW9vLzfddBPr3lnHQlZRoiR57XUlVgu/d/cwWkQjq9KOp8OXFKWtFVVBi8pH83jZC62s+PI8Gl/pomNDf7zDSQrGDENSnrimGhkyF3/5y7NjJaP/u56QV5Lt4zFRZnv7bw5JlccUZDCrOIptDDd5UQwKeUuz6Nk5lJTzhKYaLephc/e7VFZW8uqrr1JdXR3vkBKGtCdPkZeXx2uvvcaXvvwl9rGFA9p2olriJw9HpcV6D7SIhmJQqL2pLGmGcmhRDdWoyMKjx8nb5adr8wDlF+ZjsiffMMl4mEiGSs7JTYoS9u5FTsovypehpMlAgfKL8pNmaFD/gRGa3uiWZOg4mexGyi/Mp3PLgCRDJ8BZlpE0+6+Sc3OpvakMxaCgRTR6dgwldTKkaRrdZYfY0PEO5513Hjt27JBk6EMkIfoQs9nMfffdxy9/+UvaOMQO3iWkJf8EbC2isf3++lgFNyB3iZP85dnxDeojmDIMrPnbhbhqM+MdStJoXtuDFtWo+kRBvENJHkpsHkBmsS3ekRyTxWnCmmNO6oNy2tDAlmPG4kzs6o82txmjzUDEH6V762C8w0kalR8vQItqtKyVMtvHKyPfwml3VpMzL3GH8OcvzyZ3SawRo/39PrbfX6+v/ZjMNHOEQ8Xb2N26nbvvvpu1a9dityd+I+BckyFzH+H111/nlltuITAYYjnnYldS5+S8+vIijDYDB59O3Mpkhae7GKwbJTAs49mPV8HKHBZcU8Ku3zUy3JzcBULmjML0kvWyR5xTMmQufpZ/aR6B4SD7H2uNdyhJI6vSrlcZ694mSeSJcBTb8Hb5SNSBNzXXlxL2hWl4uSveocyYaHaAHcr7eLyj/OpXv+Kuu+6Kd0gJSxKiY6irq+Oaa66hbn89SziDfCWFFkIcP/nLWeCg/IJ8dj/cRCSQoHsqcdyW3VGF2W5k2331SbdSdjy5ajIpvzCfXX9oJOJPnO9BznwHVpeZzo0D8Q5lVqR6QlS0xoV/IMhgvSfeoRzGmmMmGopKkY7jpBoVVn5tPsGRMLt+3xjvcMQpMlhVln6mkpa3e2LfzxRrEPMVDbKl/10ynZk888wznH322fEOKaHJkLljWLBgARs2bOC6G69lJ+9Tp+1M7nlFU41/8cNjEUbbfXoyZMu1xDGo6YrOcCVdlbx4q3+2HUuWibKP5cc7lKQy1hdgtG2MaDCxjoiZJRkJPcxEfLSceZlkliRONUPVqFB+YT6KQcE/GJRk6ASUfSwfi9NE3XPt8Q4lqWRV2Vn86QoMlsQ45Zw4x4n4o4x2+Aj7xovrJNau/6RpmkZPWQPvdrzBkqVL2LVrlyRDxyExPp0Jzul08vjjj/PTn/6UFurYyjsENF+8w5oxo+0+Gl7uBCAjz8LquxckTBLiqkmsk4lk4OsP0vpOL6Xn5GIvtMY7nKThHwhy6MVOtKiGJduUMCXMW97uYW+K9p6kg71/bqbl7cSZa2IvtFJ0uksvISyOj73QSuk5ubS83Yt/IPnnFc8pDcK+SEKMQMmZ72D13QvIyIslRQ0vdTLanjrncxFbiIOFm9jVuo0vf/nLbNiwgYICmVd8PGTI3Alat24dt956K/2dgyzjTHKUvHiHNONcNZkM1I2CBgWrchjr9qfUDiMdKKrCii/PixXT+O2hlGn5mguqUWH1N2vo2TlE8xvdcYsjq9KOMcNA/96RuMUwF1J9yNwE92In4bEIw03xn9unmlRZSPREKLDirnkoBoXtv6lP2Dkw4sgyS2xkFFhjhUMUcC3IZODgaLzDmnHBPA/bxt5FQ+Pee+/ls5/9bLxDSioJ0gaaPM4//3y2bt3K2R87k628Q7N2gFTLKQcOxpIhFChclUN2AgzXMdkN8Q4hqWhRjbpn27EXWik5OzlKrSeKaFij7pk22t+L7wLN7kVOCle54hqDmDmFq1y4F8avDPeCa0tiZdtBkqETVHJ2LvYiK3XPtksydILshda4D8PPnuegcFWOPkco1ZIhTdMYqexgfd+rFBQWsGnTJkmGToL0EJ2kcDjM97//ff7jP/6DXApZzBmYlcSZezOTJurwl5ztxlluZ99f5rYld/4ni7HnW9nxQMOcPm8qqLq0kKIzXGy7/1BSr6wdL0abgYKVOXFLjlSjkvKFMdKlhyjef8vis9wER8P07RmOWwzJKCPPwoovz6Nz0wCNr6ZO9bG5svDmMkwOI7semtsiFItuLWekxUv7+/36OUwqilhCNLt309B+iOuvv54//elPWK0yVP5kSA/RSTIajfz7v/87zz//POSG+YDX6NfiN7xmNk3sSHz9QTwd40PnxtdvmQtdWwZpfF0ORCejeW03/sEgtdeXyiK3JyGr0k7J2bmYM+dusVv3IidZFbHvVqonQ+lk4m+ZVWGf0wVbJ+YRdnzQL8nQCVJUhZrrS/ENBGmK4/DZZHbgqTYOPjU3y3tkVdr1hV89HT58/bG5XqmaDPnzRthsXEvXYCe/+tWveOqppyQZOgWSEJ2iq666ip07d3LBx89jG+uo03alThW6Dxk4OErrul4AsqsdLLu9CnvB7H/5PB0+RprHZv15UlE0rHHw6TYyCqyUfSz15rvNtv59I2z51UGCo+E5K7KQvzyb/BXZc/NkYs7lr8gm/7TsOXmuvKVZLL9rHpbsxF4gNlGVfSyPjHwrB//alrIn1bNNi2hzspagvdDKsturyK6ODfFvXdebckPjJkSJ0lveyPqeVykuKWbjxo3cfffd8Q4r6cmQuRkSjUb58Y9/zN/f8/dkks1SziRDif/cm9nkKLLi6fQDMO+qYgbrRmdtB+QosZF/WjYNL3XOyuOnurIL8ij/WD47H2yQAhknqeaGUqLBKPXPd8zuEymgGlJ/qNyEdBkyN0E1KkQj2twUOlEgu8rOUEP8Czkkm8wSG6fdWU3L2z20vtMb73CS0pLPVtK/f4SuzbOzhpqrJpOcBQ4OvRA7L3AU2yZHsaSoSGaA/dYtdPV2cscdd3DfffdhMkmDx0yQHqIZoqoqf/d3f8cHGz4gb56LDbxOp9accgUXpppIhhSDgtluRDHG+qqNNgOqcWaHZxmtBjJLbBitUlzhZLSu62W0w0fN9aWoJhk6dzIGD44yWD97LY6Fq3PIyLeAJkPlUlk0HEuGMvItFK7OmfHHV1SF+VcXx3rvNSQZOgmqKTZUztPh00dFiBOkwGjbGP7BmS1RrhoVjDaDftlsN6EYYse0VE+Gxsr6eS/wKv6QjyeffJIHHnhAkqEZJAnRDFuzZg1bt27lU5+9jT1sYhcbCGqpPZldi2jse6xFLw9ceUkBy++aN6PPMXTIw47fNhD2R2b0cdOGBgefbsPsNFF1WVG8o0lKvbuH6d8fS4jci5z6QXgmKKpC4WoX7tr4VSETc8u90EnhateMz+1TjQq2PAuWLDlROlnVlxdhdpo4+Nc2WbLgZGnQ8lYPQ4c8M/qwy++aR+UlsXV1+vaOsO+xlpQfzhgxh2gu2cV7LW+yevVq9u3bx/XXXx/vsFKOJESzwOl08sc//pG//OUvRNw+PuBVerVZHmaTQFrX99L4aqwL22BVmXdV8YxNSpex8CfPPxCk4eVOila7cC+WE++TZck2UXN9Kbkz+B5qUY2dDzbQul5ao9NF67pedj7YgBadmZM5g0XF5DASCUbZ9VBjys6fmG25S7IoXOWi4aVOfVK+OHH5y7P1npxTYc40Mu+qYgyW2Olq46udabWf9BUMscn4Bq19zfzoRz9i/fr1stDqLJGEaBbdcsst7N69m0uv/gQ7eI892iZCWurvYANDIX2Yhs1tIbvaoa/dcCqJkb3AyhnfrsVZkTETYaal7q2D9O4eYsEnSyS5PEmBoRBb/7uO3l2xil2n1MKvQNVlhZidJn0olUgT40MjY722hXp1rJNVe0MZtTeUzkxsacqaY2b+J4vp3TVE97bBeIeTtKwuMwuuKcFRdPJFlybOFbRorIjTxFpGQw1eAkOzX6Qh3jRThLayfbzb9TrV86rZunUrf//3f4+iyJD32SIJ0SwrLCzk2Wef5aGHHsLrHEzp8txH4mn3seWXBwl5w6DAaXdUU/nxk2vd8Hb72fdYS8qPE55t9c91EBoLs/CmMinFfZImDshZVXZWf2MBFufJJZeWLBPuWidWSU7TljU79hk41SFuTa93cehFKTpzshRVofbGUkLe8OwXTklx/oEgG36yn6HGk5u/VvnxAk67oxoUCHnDbPnlQTxpVAwoUDDCJstaGrrq+Id/+Ae2bdvGokWL4h1WypMqc3OopaWFO+64g7Vr11LKPOazFKOSXidCWZV2gp4wvr4AWVV2nOUZsQo+8imcU44iK6d9sZrOjbLY4KkwO4yUnJNL42tdJ/0ZVlRI0Ur9xyXdqswdycl+BrIq7RSsyuHg0zLX5VRVXVpI0RoXOx9o0AsGiTmixCqhjrSMMdzoxZZrwewwMtyUXgVBosYoPSWH2N20g9raWh599FFWrlwZ77DShvQQzaHy8nJee+01fvWrXzGQ0ckHvEafll4tesNNXnx9sSITGbkWssrt+oE8I89yzPsrBoXqK4rmbFHYVOXp9NP0WjclZ+fiqsmMdzhJK+gJxxLK8aphBSuPr2pYRp6FmhtKMZjVtE6GRIwWBYNZpeaG0uPaD05QVDBaVFSjHMpPhasmk5Kzc2l6vVuSoVOUVWVn9TdrMDmOPTxe/6xrsQWLM8aHxfn6AmmXDPnzh9hie4P9bXv4zne+w549eyQZmmOyF51jqqpy9913s3v3bi649Dy28y67tA0EtfTbCXduGmD3H5uA2JjjVV9fgKv2o0/OtYiGzW3BZJfy26eqY0M//ftHqLm+FGuOOd7hJD33QidFZxxf1TCTw4gl05TSZfnFidE0sGSajn0iqcQm/kNsPsXeR1uIhiSrPllWl5ma60vp3zdCxwf98Q4n6YU8Yfr2DhPyhD9yO1dtJqu+vgCrK3bs2f2HJjo3zc56RYksag3TUrqH9d2vU1RcxPvvv89//dd/YTDIOc5ckyFzcaRpGg8//DDf+c53GB3wsIDlFFGetpPmsuc5GG7yokU0yi/KJxKM0v5uX7zDSmkGi8ryu+ahRTR2PNAgJ1anSDWpRENRTA4j0VCUSEDez2ORIXMnJme+g0W3VbD9N/WM9aT2kg6zTTWpLL+rGkVV2PE/h4gE5fs6m0rPzUU1q7S82YNiUMiqtM94We5koWkaY2X97OjfSDQa5Xvf+x7//M//jKpKP0W8yDsfR4qi8LnPfY79+/dzy2duZi+b2MY6fFp6dRVPGDrkmVxPQAPGy9EaLGpsWNeUPNFgUU96IruYFAlE2feXFizZJhZcUxLvcJLeREJZc10pC28qO+z2eVcWxSqKCfERqi8vZN6V09cLmyhhPFjvYeuv6yQZmgELri3BkmVi319aJBmaAZklNtwLp4zyUGLDESdKZmsaMP42axEtbZOhSGaQ+uKtvN/6FsuXL2fXrl384Ac/kGQozuTdTwB5eXk8/PDDvPjiizjKrbzPqzRpB4im8eSClrd6aH8/NnwhZ0EmC28px2SPDSVRjQpLP19FxUlWqxPT+foC1D3TTt7SLErOyY13OCnh0AsdNL0eqyY5dQidp8svJ7LimLzdgWlzWWy5Fs74Tg3Z1Q4A/IOpv3zDbCs5203ekizq/tquz2sVp8a9yEn5x/JRjbF9nsluZNGt5eQsiCVJ7e/10fJ2TzxDjKsoUYYq2lnve4nhsUH++7//m/fee4/58+fHOzSBDJlLOB6Ph//9v/83P/vZz7DjpJYVuJT8eIcVd5YsE4HhWKnjVXcvYOjQKG3v9RMcSf31COZKxSUFlJ6Ty+6Hmxg+yXKp4nCLP1VOYDgkJZGPQobMfTSz00RwJETRGhfd2waJhuSQfaqyquws/Wwlbe/10fxG+iyDMRfKzs8jb1kWW/+7Hph+7E5ngbxR9oW30jfQy9VXX82DDz5IXl5evMMSU0gPUYJxOBz813/9F9u3b2fFucvYyjvs0jYQ0NKnBv+R6DtUBdrf7aV7xxDBkRBZVXYqLimQ9XRmQPPaboYaPCy8uUyf6CpOnafDT8EqF1lVUhlRHD+Tw8iqu+dz+rdqsBda6dw4IMnQDLC5zSy6uZyhBg/NayUZOlWKqlBxSYFe+XWgfpT29/r0Ie7pngxFbUFaSnezrucVMrMcvPjiizz33HOSDCUgSYgS1PLly3nnnXf43e9+h5Yf4D1eoVk7mNbD6ADQoHv7EN5OP0VnuChclUNmiQ1tfL5RznwHqkk+1idFg/1PthLyRljy6QqMVqlyMxNa3u6h/vl2hpu8VF1WSN6yrHiHJJJAeCyMp91Hy9vdeLvSrwrpbDDaDCz+dAWB0RD7n2iVtZtOkmpSyZkfG76pRTUyS2yUnZ/LwpvL8Hb66d4+lPbvbZQow+UdvBt5hbb+Fr7//e9TV1fHFVdcEe/QxFHImWMCU1WV22+/nQMHDvD1b36NOnaygdcZ0NJ3DO5U5kwjwdEwu//QBMTGKy/+VAXuRU4ASYxOQsQfZe+fmjHaDCy6tVx63k6Bo8hKZlkGAD3bhwAwWgyyZow4KoNFpea6EqwuM1oUDv61nbZ1sUqbmWUZ2IuscY4weSmqwqJbyjFaDOx9tFkqQJ6EiWNq7iIniz9VoS9/sfsPTXRsHGCwbjSe4SWMYP4ou1zr2NT8HhdffDEHDhzghz/8oZTSTnAyhyiJbN++nbvvvpv33nuPAkqZzzJsigzDmcqSZSLkDRMNa1RfXoijOIOdDzbEO6yk4yzLYOnnK+ndPUzdM+3xDicpLbylDIPZwJ6Hm454e/FZbrxd/rRbgPDDZA7RJNWksuzzlTS/2cNQw/QKXEs+W0kkGGH/Y61xii65LbimhLxlWez6QxOjrWPxDifpnPbFakbbxmh8pQvVqGCyG9N+ONyHRewB2nLqqGvdT1VVFb/+9a+lRyiJSFNlElmxYgXr1q3jd7/7HWpRhPd5hXptF2EtfXdKigqmjMlWl8BwiGg4luP37Bym/f1Y66rBrLL0c5XYC6SF9XiMtI5R92w7BStyKD1PKs+djINPt7H/8aOc5CuQMz+TzFLb3AYlEo5qis3BMNlja1fteKDhsGQIYP/jLRx8ui0OESa/knNzKViZQ92z7ZIMHSd7oZWln6vEYI6dJra/10fvrmEAomFtWjLkKLbhLM+IS5yJIGqM0FfexDr/S3QOtsnwuCQlCVGSmRhGd/DgQf7X//5fdNtaeI+Xadca0nLV+yWfraT6yuIj3ubp8NG/bwQAY4YBLaoR8kUAcC906kPrxJH17hqm5e0eKi8pJHepzHs5Ho5iG8u/NA+zw0g0pB19WI4Gex5pom184eH8Fdlkz3PMYaQiUahGlbylWWSWfHRyHAlEiYY0zA4jy780D0exJNPHI29ZFlUfL6TlnR79hF4cmXuRE/fC2HExNBZBi2oYxxsc+/eN4Ok4cnGnojNcVFySfstgaJrGaFkPm21vsLt9OzfddBONjY0yPC5JSUKUpBwOBz/4wQ84cOAAt3z2ZvaxlQ28Tr+WXlVzWt7qoW197zG3CwyF2PNIs16m21WTSe7i8YRIia11pBhkvsyHtbzVQ/f2QWquK9HXQBFHF/KE8Q8EiISOY36Chj7x2F3rxLVA3t90YbQZqLqsEINZJeyLsOWXdQwcPL75F5FwFP9AgJAnPMtRJr/seQ4WXFtK97ZBWt6UubcfphiUaYue5y52xn4HgiOxY2Zg6NgjUOqeaWf/X9JryGswf5Rd7nVsaHmHZcuWsWXLFh599FFyc2VERbKSOUQpYuPGjfzN3/wN7777LrkUsYBl2BXpAfkoigpaNDZZefmd1Wz/n0N4OnyY7AZCY5G0r5IzQVFh0a0VZFVmsOv3TUdtJUxn2dUORlq8+nDNk6GoClpUw73IiWpS6d05NHMBJrB0nENkyTKx7I4qDjzRymjbyX+fVJOCs8x+xCF26c5RbGPZ7ZUMN3nZ++cW2Z9PUGLDzEPeCI5iGyu+NI8dDzYw2jqmHxPF0YWz/LTY99HQfoiqqip++tOfct1118U7LDEDpIcoRaxZs4Z169bx2GOP4ai0sNHwBvu0Lfi1FB8vrcQmp59M9aWJHf9o6xhbfl2nn+jXXFfKopvLpz1HOtOisP+JFrzdAZZ8ukLWKPoQo9XAwpvLKDzddUqPM1E6PqvSrpe0FanDlmthwbUlKKpCYDjEll8cPKVkCKBwtYuFN5dJifwPsbrMLPl0Bd7uAPsfl/LaU49hi24uZ8G1pUBsWPmWXx3U51WdTDKUXe1g8acrUE2pfaCMZIToKNvPOyMvMuDt59///d+pr6+XZCiFSEKUQhRF4eabb2bfvn3853/+J373CJssb1Cn7SSoBeId3uzQoHiNG2fpqU3o9PVNvj/Nb/boxRgy8iyc+bcLyci3nNLjJ7toSGPvo82ExsIs/VwlZocx3iHFnWJQQIGwP8KOBxro+KB/Rh634aVO6v4amzyfPc9B9RVFMpwzBSgqOIpsmJ2x785MtMR3fNDPjgcaCPsjoCCfE8DsMLL0s5WExsLsfbT5lHptU4G9wBo7huXFjmHtH/TR8tbk8EFff/CUHl+LakT8kZRdNDhqDtNT3sD64Is09h7iq1/9Ks3Nzdxzzz2oqpxCpxIZMpfCRkZG+OlPf8pPfvITVFUlb6SMchZgUORk9niZM40UrnbRuq4XLaJRfUURkWCU5jfSa67WBLPTxPI7qwkHIuz6fSPhsUi8Q4qbpZ+vxNPpo+m12fss5J+WjXuRk30T4/MVUq61O5WHzLkXOck/LXvy7zeLKj9RgKPIpq/Llo5MGQaWfaEKg9nAzgcbCIykZwXWiksKMJhUGl7uRDEolJ2fR9eWAYKjMu/seGmGCIMlHezt3kEkEuHmm2/mJz/5CYWFhfEOTcwSSW9TmNPp5J//+Z85dOgQd9xxB63mOvYWvE+rVk9UBgofl+BomJa3etAisbNQX3+AwFCsRc1kjy1eas1JnyFkwZEQu//YiCkj1gqbzkN1encN07d3ZFafo2fnkH4ybS+ycvo3a9Lq85asDJbYoTXsjxAaC6MaZ7/npn/vSFpXUTNaDSz9XGyftOsPjWmVDFlzzCy6tVxfKDUwFMQ3EBv1oEU0Wt7qmbVkyJRhSKmeyShRRsq62JTxBttbN3HJJZewd+9eHnnkEUmGUpwkRGkgPz+fn/3sZxw4cIDLL7+cg8oO3ucVOrTmlEiMSs52s+iW8mNvOAM6Nw7QtWUQALPDhNFmiA1XIVZ6tGjNqc0jSQa+/iC7/9CIJcvEks9W6Cd/6aD8wnyKz3QD0L1tEE/73BWYiPijDBwcxT+ekNvckhglokW3lbPgmhIAhhu91D/XMSfDtkbbfXRvi+2bis9yU35h/qw/Z6IwWFSWfK4Sc6aJXX9owj9wasPAkkHRGhdFZ8SON2F/BKPNgNlhAqBryyCdGwfmJI4ln62k+vLkTxQ0NLylfWxzvsnGlvWsWLGCTZs28fzzzzN//vx4hyfmQPqcyQgqKyv53e9+x65du7jsuk+wl028z6t0aE1JnRj5h0OMts998Qhvt59dv2skPL62kSXLhDU7dpKqGhXmXVWUsq35Y70Bdv+xCZvLwpJPV6Ca0mNXohgUlDlo7T8S/2CQhpc7QYv1Tq786nwKVubEJRYxXc58B6bxeXWdmwb0OYjxohiUlGq1/yiqSWXJpyuw5ZjZ/cemafNBU4k1x8y8q4r03kZrthlLViwBCvsi7PpdI95u/5zH1fhKF52b5ib5mg2xRKiXbVlv8n7rW1RWV/LGG2/w9ttvs2rVqniHJ+aQzCFKY9u2beMHP/gBf/3rX7Fhp4pFFFKOqqTHye1ssuVaWHxbOXv+1Ix/IEjuEidGm5Guzcl74DgSR7GNpZ+vxNvpZ88jTSk5gbnknFyCIyF6dyfWcKTsagejbWNEglHylmUR9kcZrDu+tWwSSbLPITJYVM74Ti0tb/XQsWFmCmvMpLxlWZgzTbS/F98kbTaoJoXFn6rAURybO5VqSwIUnu4iPBamb+8INreZxZ+qYO+fW1I26ZtLUaKMlfZzYHQXg0MDrFy5kn/913/liiuuiHdoIk7kzDeNrVy5kqeffpqtW7eO9xhtHh9Kl1w9Rpbs2NC1ROLrC7DlV3X60A17oY2sivFKeArMu7oYe8GJlwpPNJ4OH3sebsJRbGXJZyoxmFNvl5KRZ0nIUuNDDR4iwdj31F3rxFUzXqpbYU7mrKSzzJJYQ4BqVIgEomy7rz4hkyGI9SxMVBhLJQazypLPVOIotrH3keaUSIbsBVbmXV2s/55VYcdeZANiQ5W3/Kou4ZIhZ0XG5CLnSSBKFE9JD9uy3uKD1repqq7kxRdfZOvWrZIMpbnUO3sRJ2wiMdq2bRuXX39p0iVGyz5fRdkFefEO4yM1v9HNgSdjpZTNdiOZxTY9eXDVZFJxcUE8wzslo20+dv+xCXuhlSWfrUz6OUWKQaHmuhJ9LaC6Z9ppfac3zlF9tP1PtNLwUhcAuUuyOOM7tQnXSJDszJlG7IWxRozQWIRIMKq/x4HhxJ3A3/pOL3XPtAOQs8BBzXUlST+cbmLOkL3Ayp4/NjHSmrzr7VVcXICrJhOIva7MYpu+rMGBJ1sTvqJp7iInRWe44x3GMUWJ4intYZvzTT5oe4eq6kpeeukltmzZIomQACQhElOsWLGCp556iu3bt3PFDZexl828x8u0avVEtMQt17n30eY5m0A6E4KeMNt/c0g/iFuyTNNacBfeXIarNjNe4Z2U0TYfu//QiC3XzNLPVyXlyfjEPCgtooGqJN28qImFXUfbxmh5u0ef21Z+Ub5+Ii9O3vyriqm+vAiIzefa9+eWpCtjrBpVUBW9amayfcYBjDYDyz5fhc1lZtcfGhmdw8ImM8FVm8nCm8v03zPyLfpcoJGWMbb/5hBBT/J8rppe72bX7xvjHcZRaYYoI+VdbHWu5YPWd6ieX60nQpdffnm8wxMJJPn2hmLWLV++nCeffJIdO3Zw/aeupU7dye68d2nU9hHSEq96z1hvAP9g4sV1vDo3DeillRVVIRrW9BMWV00my79YrfcmKWritux6Ov3s/n0TliwTy26v0kvAJgN7gZU1/18t9qJY4nDwqTb6981uSe3ZEhgK6ZOcDRaV3EVOrNmxEy5LlglzpqxDdjwsThOnf6sGZ1lsqOuhlzrZ+6fmOEd1avr3jXDwqVhPtaPIypq/qU2qobumDAPLPl+JOcvE7j804e2c+yICx2tiX20wqyz/YjU5C2KNXFpEIxrW9Nv3/bklqYsSTMwbVU2JdWyKmsMMVLSwwfoqm1reZfGSxbz66qts3rxZEiFxRJIQiaM67bTT+NOf/kRdXR0333wz7dZDbHGs5aC2A78W/1Y5s8PI8ruqU2p8vBbVOPh0G4P1HgBCY2FGO3z6XJGlt1dSdVmsxKmiKgn32icq7xkzDCy7vQqz0xTvkI7K5jaTf1o2AN4eP23rewkMJe7Qp5MRCUTZ+t/19O+PFVsoOz+PpZ+v0m9PtJOYeMuZ76Ds/Njw28BIiP79I4TGe9oCwyH9e5gK/EMh2t7txdsTSyryT8tO6FLuFqeJZV+owmQ3xq2i2lEpsZ6eiSSn+vJCln6+EoBIMMpoh4+wL9brM1jv4eDTbXqPbirIX57NGd+t1Yf6xVPEFqS7/BDv8hI7Wrdw3nnnsXHjRt59910+8YlPxDs8kcAkIRLHVF1dza9//Wuampr41re+xXBWDxtMr7JX24xXi29Vq5A3nNIL8I22+Wh4qVP/vWNDPwPjJ7eOYiurvr4Ax3ivRmapjexqR1zinMrXF2DXQ42oJpXld1Zjy02cpE01KpNztxY6Kb8wP3YSo0Hb+j59mFmqanyti4NPtQKxoUdnfm+R3nKdjhSDQv7ybH3IktVlxllhh/E8sfHVroSbxD5Twr4Ibev7QIs1rpRfmI+rNjY53mBWE6owR0aehdO+WI1qVNn5UGNC/E2yqx1klsYKHjiKbKz62uS+uH//KB0bJ4tsNLzUyWhb/BsRZ0v//hFa3uwh6I3fUL9wpp+2sn28E3iBg117ue6669i3bx8vvfQSp59+etziEslDym6LEzYyMsL999/PT3/6U7q7u8nViqlgAVm4UZTZP4gaLCqKQSE8ltonr8eiGhUySzIYafWiRWHBtSVYs836eO7aG8vo2jrAcKM3doI3x990s8PIks9WYnYa2ftoC6NxnvisqHDGd2vp+KCftnf7UI0KWpSUaqk9EQazSv6KbHp3DxMei1B+YT72Aqs+fHOuzHXZbZvbjM1tYeDgKKpRYc3fLqTh5U56tg/NyfMnKkVVUNTYEKjS83IpXuNm088OEO+6Os6yDBZ/qgL/cJA9jzQTmuv5NeP7zqwqO4WrcvTiOMtur8I/FKTumXYUFZxldkbbx1Jy6YETkVVpx9PlI+Kfmw9OKN9Lu6meQ+312O12Pv3pT/PP//zPFBUVzcnzi9QhPUTihDmdTr73ve/R2NjI/fffT06Nnc28xSbW0qW1zHplusW3VVB7femsPkcyiIY1hpu9+glL3TPt7H00NsdBNSkYzAoT+Wne0izO/N5CvbpUVpV91ifaBz1hdj7UwFh3gKWfq9QrKc2lvKVZrP7mAlBAi8KhFzvp3RNbTyga1tI2GYLYUJ7OjQN6w4Kn08dwkxeI9Zys+vp8vdJeMi9NZjCrFKzI1hdOzV+eoxdHiIY1Nv30QNonQxBrGJg4me/dPcyhlzpj+xYFVn9zAXlLs+Y8JldNJks+V6kPxZ3tZMheaCWryg7EGpzO/N5C/XUrSqx3eWKY6d5Hm/XqfVoUhpu9aZ8MKQaFmutLKTk7d1afR1NiawjtyXuXt7tfYjgwxD333EN7ezv333+/JEPipEgPkThl0WiUl19+mZ/97Ge89tprWLBSyjxKqMasnPpwKUVVyFuWxXCzl8BQCEeRldBYJKFL3SaajDwL2fMcdHwQG8ax/IvVeHsD1D/bjtFqYOEtZTS+2oW3y48504jRamCsd2aGpSgGhdobSnEvdFL/fAfd2wZn5HEnnyBWyjzoCaOosPKr82l/v5/ubYPYC6y4ajNpf68v7U9WToTRaqDsgjy6tg7i6wtQfJabojPcbPnlQSBWhCIwHCLsP/Ve2tnoIco7LRvVoNC9bTA2NPBvF7LvLy0MHBzFYFGnFS4RH001KZScnUv//hHGegIUrMqh5Cw32+6rR4vGeoKD3vCM90AXrMxh/tXF9O8f4cBTbTP298rIsxD2RwiOhrEXWqm6tJB9j7UQ8UdZcE0JGXkWdjzQAEDxWW6GDnlmbF+YDizZJsLjZendi50oQN/emSlQEzGHGC7soq5/L6OeURYvXsy3vvUt7rrrLgyG5CniIxJTErf7iUShqipXXnklr776Krt27eJzd32WNks9G62vsU/bgkc78Z2hzW2estibRuXHC3EvjP3u6fRLMnSCxnoDejIEsPOhBhpfjc1NUs0qobEI0VCsq6lwlYuln6vUt513VRH5y7OBWGu7qybzhNYa0iIa+59opXPLAAuuKaH8ovxTei3GDAPFZ7n1KnZVlxay9PZYoQAtCj07hxgbnyju7fbT+k6vJEMnKOyPTJs/M9Lspf29ybWYFn+6gpJzYq3AliwTVZcWYrLHemBUo6LPwZlNWZV2rDlm/fLp36nR54dlltj0+R1hX4T3/30fAwdjc+8igagkQycgGtJofaeXsZ7YZ2Gs20/PjiG9Z3rZF6qoujRW6MVkj303jRmndnJacUkBC64poWvrAPufaD2hv5fBEttHTZQUz1+RzbwrJ3sMln6+koJVOeOvLUpoLILBHIu34dVOdj7UoG/b8UG/JEMnKDA0WXzENT9Tn5emGBRKzsk9qcILYaePjrIDrI++yM72Law5cw1r165lz549fOUrX5FkSMwISYjEjFq6dCn/8z//Q2trK9///veJFvn5gFfZpq1jxNFH9vzJSf/uRU59eILZYWTZ7VX6MC73IidV48NatChs+eXBaSf04tRoUfQx3sGREAeeaMXXHytd3rGxnz2PTC8vPDH0zpZrYfGnKvQT0dLz81j+pXn6dtWXF5K3LDbExJhhmDwAatC1aYCurQOUnZ/HwpvKyFng0Ev+GqwqRWe49INl9jwH1ZcX6o+77I7Jky6DWaXiogKsrljvY/fWQeqfb9e3bVvfl3RrkyQ6T6efri2TPXu7ft9I5+ZYqWBzpjE2HHJ8sEHV5UUs/2K1vu2Ca0vInhf73lucJorPdOsJtb3IimnKybN7kVOvnGjJNlFxcYG+bdkFeSy6tVzfduHNZfpwpsBwiN5dw/qQ0IaXOql/rkPfdiLZF6dutN1H27t9+u91z7XTvTX22bC5LFRcVIBhPBmpurSQZXdMVjWsvrxQ/yyYHUaKznBhsI5/Fgqs5CxwsPDmMkrPzaVr60BsfTkttm3JObl6opW3LEuvtgmw4kvzKB2vDmh1mVn8qQoycmP7KEX/J2bPw5Pr1vn6gxx4opXgeGGeiD8a9zlTqaTu2XYO/jU258rmNlP+sXy94aRojYvaGyeHvheszNEbMQwWFddCB6HyUeqKtvDW8Au0DDTymc98hoMHD/L6669z0UUXzf0LEikt/jUSRUrKy8vjf/2v/8X3vvc9HnvsMf7rv/6LjVvf4qAhm1ytjGIqKT7TzViPn+FGL5FQlKAnpA+76Nw4QPt7kwfdVCp3m+jCvsi0amuHXpiscufp8LHhx/v120dbxgiPTY7rN1gMscUfiZ3ElJ6Xy1CDh6AnTO7SLHLmZbL/sRZqri8jpyaT3l1D1D/XgclmpOrSQrzdfoKeMGaHEZt7crhl16YBvYJRYCjE+z/aq98mLbhzzz8wue7XaJuPLb+q03/v2T7IgHUyyTHaDHrPjS3XTMUlBfTtGSYSiFK02kVGroXhlljBjXlXFY+3yvdiyjCStzSL7u2DRAJBxnr80/YD2+4/RMgTO5H1DwZpfqN7Vl+zOLKR5sliKSOtY9O+mwN1o3g6JhsnbG4L5vG1g6xuM1WXFjJQN0rEH6VojYu8Zdmgwb6/tDDvymKCo2Fa3urBNL4vGawbJTwWQTWpGKd8xrq2DuDri30mx7oDbPjxfkLj+4vu7UN0T5kjllDlutPB+DF9rCfAB/+xV084g54w/inLHJSc7aZ39zDDfaOMVvSyqXsfAwMDlJWV8YMf/IDvfve7OBzxr6IqUpfMIRJzQtM01q9fz3333ceTTz4JQE6ggFKq56w6nYgvRVVQTQqRQBR7oZXFn6oALTY5WU5S0pNqVFh4czmaprHvzy2oJoVoSA5J6cZeYGXRp8pRFCW2P+jyx+Z6hdK78Em60DSNUK6HLlsLDZ11aJrG2Wefzbe//W1uuOEGVFUGM4nZJwmRmHN9fX089NBD3H///Rw6dAgHWZRSTSHlGJXEXchTzCxzppFFt8WGthx8up3+/TMz8VYkl7kuuy0SS+5iJwuuLcHXH2Tvo80ER+O3lo2YW1FDBE9hL42+g/T29+Byubjlllu45557qKysjHd4Is1IQiTiJhqN8tprr3Hvvffy3HPPYbfbyRrNo5R5OJS5L/Eq5p5qVFhwXSl5S7JoXd9L89ruOV8vScSXJERpSoHKSwooPTeP3l1D1D3XLr2DaSLi8tPjaKG+6wDBYJAVK1bwta99jTvuuAOjUWZyiPiQhEgkhNbWVv7nf/6H3/72t3R2duLERQmVFFAmvUZpoORsN5UfL2So0cuBJ1unzWESqU0SovRjtBmovbGM7Co7ja91ScGcNKCZIniK+mj1N9DR3U5mZiaf/OQnueeeezjttNPiHZ4QkhCJxBIKhXj22Wd58MEHefnll7FYLGT78immkmxyZa5RCsuqtLPwpjIioSj7/tKCt0vmFaUDSYjSi73QyqJbyzGYVPY/0aovBixSj6ZpBPNH6bG00tBVTzgc5rTTTuMLX/gCX/3qV7FaZ3dxcCFOhCREImG1t7fzhz/8gQcffJD6+nps2CmmkiIqsCoZ8Q5PzAKL08TCW8qwF1g59ELHtOpQIjVJQpQ+ClblUH15EWO9Afb/pYXAiKwnl4oitgBDud00DtcxNDyI2+3muuuu42/+5m9YvHhxvMMT4ogkIRIJT9M01q1bx4MPPsjjjz+O3+8nJ5pHMVXkUYSqyKJsqUQxKMy7sojCVS56dg5x6IUOKbuewiQhSn0Gs8r8q4vJW5ZN15YBGl7ulMWSU4ymaviLB2mPNNLc2YTRaOTss8/my1/+MrfddpssnioSniREIqmMjIzw2GOP8eCDD/L+++/jcrnIGMimkHIp351i8pZlMe+qYkKeMPufaJUhdClKEqLUZi+0svDmMkx2I/XPddC3ZzjeIYkZomka4XwvfRkdNPUewuv1Ul1dza233sq3vvUtCgsLj/0gQiQISYhE0tq3bx8PPfQQjz76KG1tbdiwU0gZhZRjV5zxDk/MAGuOmYU3lZFRYKHptW46Nsjk61QjCVHqKlrjouoThXh7Ahx4ohX/YPDYdxIJL5TpYyi7i+bhQwwND5GVlcWll17KN7/5Tc4///x4hyfESZGESCS9aDTKO++8wyOPPMLjjz/O8PAwq1atYnRrmELKsCi2eIcoToFiUKi8pICSs3MZODBC3bPthMakCl2qkIQo9ZjsBhZ8sgRXrZP2D/poer0bLSKnGsksYg0ymttLn6GTpqYmLBYL5513HnfccQe33nqrlMsWSU8SIpFS/H4/L774Ig8//DAvvPAC4XCYSy65hPbXBsmnREp4J7GcBZksuLYEgPrn2hk4MBrniMRMkIQotbgXOpl/dTGaNv49PSjf02SlmSOMFQzgyRpg9+7dqKrKihUruO222/jSl75EVpasFyhShyREImUNDg7y5JNP8vDDD/P2229jtVq5+uqr2f9EK7kUYVSkRSvZmDIMzP9kCe6FTrq3D9LwcieRgBRcSGaSEKUGg0Wl+vIiClbk0L9vhLrn2wlLT27SiRoj+AuHiJb42LJlC6FQiNraWm644Qa+/vWvU1paGu8QhZgVkhCJtNDa2sqjjz7KY489xpYtW7DZbFxxxRUcfKpdkqMklL88m+origj7I9T9tV3WMklikhAlv6wKOwuuK8FoM9DwUic9O4biHZI4ARE1gj9/EK3CrydB5eXlXHXVVXz9619n6dKl8Q5RiFknCZFIOw0NDTzxxBM8/vjjbN68GavVyhVXXEHd0xPJkQyrSwaWLBMLri0hu8pBx8Z+mt/olvLcSUgSouRlsKhUfryAotPdDDd5OfjXNgLDsrZQMogaI/gKBomW+Ni6daueBF1xxRV8+ctfZtWqVfEOUYg5JQmRSGtNTU16crRx40ZUVNwUkk8peZIcJYWiNS4qLykg7ItS/0IHg3UyZyGZSEKUnFw1mcy7qhiDRaX5jW46Nw3EOyRxDLE5QUN0R1pp6W4iHA5TUVHB5Zdfzhe/+EXOOOOMeIcoRNxIQiTEuObmZj052rBhAyoqOeSTRzF5FEm1ugRmyTIx76piXAsy6d09TMPLHYS8Mn8hGUhClFxMdgPVlxeTtzSLgbpRDj3fQWBEeoUSVcQaZCxvkJ5IOy1dzUQiEaqqqrjyyiu56667WLFiRbxDFCIhSEIkxBG0tLTw5JNP8swzz/D2228D4CRnPDkqxo5TFoFNQLlLs6i+vAhFhaZXu+jePhTvkMQxSEKUPApWZFN5aSFEoeHlTnp3yyKriUbTNMJZPkacvXT62ujq60RRFGpqarjsssv40pe+JHOChDgCSYiEOIb+/n5efPFFnn32WZ5+4q9ECGPDTi5F5FFMNrmoihrvMMU4o81A1aWFFKzIYbjZS8NLnXi7/fEOSxyFJESJz15oZd6VxTjLMujZMUTDK52EfdIDmyiiRAnlexi0dtM22MzQyBAmk4kVK1Zw9dVXc/vtt1NRURHvMIVIaJIQCXEC/H4/b731Fs888wzPPvssHR0dGDGRSyF5FOOmUOYdJYisSjvVVxSRkWuhc/MALW/2EPbLSVyikYQocRmtBiouzqfwdBdjPQEOvdTBSPNYvMMSxOYD+fKH6aODlt4m/H4/TqeTs88+mxtvvJFbb70Vp9MZ7zCFSBqSEAlxkjRNY+vWrXpytGPHDhQUsnCTSyFuCnGQJUPr4khRoegMN+UX5qNFNJrWdtO9bRBkr5cwJCFKTAUrc6i8pADFoNDyVg+dm/rRpIhj3GiaRijHhyezn55gBx097USjUUpKSrjooou47bbbuPzyyzEYDPEOVYikJAmREDOkqamJF198kZdffpkXn3uRCBHMWHFTgJtC3BRgUszxDjMtmexGKj9eQMGKHEY7fDS+2ikt3QlCEqLEklVpp+rSQhxFNnp2DNL4WjchbzjeYaWliDmEP3eYAbWH9oEWPF4PJpOJpUuX8vGPf5zPfOYzLF++PN5hCpESJCESYhYEAgHeffddXn75ZV5++WV27doFQBYuPTly4pLeozmWWWqj+rIiMksz6D8wQtPr3fj6AvEOK61JQpQYbLkWqj5RgKvGyUjrGI2vdjLa5ot3WGlF0zTCuV5G7P10jbXT1deJpmkUFRVxzjnncM0113DDDTfgcDjiHaoQKUcSIiHmQFtbG6+88govv/wyf33iGcKEMGHGRQFuCnCRj1XJiHeYaSN3iZPKSwqxZJno2jZIy5s90goeJ5IQxZfJbqD8wgIKV+XgHwrR9EYX/XtH4h1W2ojYg/hyhumni/a+VsZ8Y1gsFpYvX86ll17KrbfeKlXhhJgDkhAJMcfC4TAbNmzQe482b94MQAYOcsgnhzxc5GFWrHGONLUpBoWi012UXZCHalRof7+f9vf7iARkosRckoQoPgwWlZKzcyk+y40W1Wh9p5fOTQNoETklmE1Rawifa5hhQx+dIx0MDsUWtC0vL+e8887j+uuv5+qrr8Zqlf2/EHNJEiIh4qyvr4+3336btWvXsnbtWvbv3w+AHScu8seTpFyZfzRLDBaVsvPzKFrjJhqO0v5+P50b+okEJTGaC5IQzS2DWaX4LDclZ+eiGBQ6N/XTtq5PKjDOkqgpTMA9wrCpny5PB30DvQDk5+ezevVqPvGJT3DjjTdSXl4e50iFSG+SEAmRYDo6Onjrrbf0BKmxsRGILQwb6z3KJ5tcDIoxzpGmFrPDSOl5eRSuziESjNL+Xh8dGweIhiQxmk2SEM0N1aRQtMZN6Tm5GMwqXVsGaF3XJ0NFZ1jUGCHoHmXY3E/PWCc9/d1omkZOTg6rVq3i4osv5oYbbmDhwoXxDlUIMYUkREIkuMbGRt588009Qers7ERBwYmLbNxkk0sWbsyKJd6hpgRzppHS8/MoXJVDxB+l7b0+ujYPSI/RLJGEaHYZLCpFp7soPisXo02le+sgret6CY5KIjQTopYwQfcoI6YB+nw9dPV2Eo1GyczMZPny5Vx44YVcf/31rFy5UoroCJHAJCESIolomsaBAwdYu3Yt77zzDuvXr6e9vR0AO5l6cpRNLjbscgA+BRanidIL8ihYkU00pNG5aYCODX2EvDK0aCZJQjQ7THYjxWe5KTrdhWpU6N4xRNu6XgLDoXiHlrQ0TSPiCODLHmFY6afX003/YB8ATqeTpUuXcs4553DttddyzjnnoKpqnCMWQhwvSYiESGKaptHS0sL69ev1n927dwNgxqr3IGXjxkE2qiIH6BNlzjRSfFYuhatzUA0K3duHaH+vD/9gMN6hpQRJiGaWJdtE6Tm5FKzMIRrR6No8QPsH/YQ80iN0oqJEibh8eDOGGIj00jPchcfrAaCoqIjTTjuNCy64gKuvvpqlS5dKAiREEpOESIgUMzg4yPvvv68nSBs3biQQCGDAMD7MLpcsXDhxyTC7E2CwqhSd7qb4TDemDAN9+0bo+KBP1mo5RZIQzQxneQbFa9y4FzkJ+yK0b+inc1M/Eb8M9Txemi1MMMeLxzxEn7+brr5OQqEQRqORyspKVq1axYUXXshVV10lRRCESDGSEAmR4gKBAFu3btUTpHfffZf+/n4ArGToyZGTHDLJwSjFGj6SalTIX5FDyVlubG4Lng4fHRv76d09LCWLT4IkRCdPMSjkLc2i+Ew3jiIbY30BOjf2071tkGhYPosfJapECOZ48dlHGI4O0DvSw/DIEAAZGRksWrSINWvW8PGPf5xLL71UFkMVIsVJQiREmtE0jcbGRjZt2sTGjRvZuHEjW7duZWxsDIiV+84aT5CcuHCQJUPtjiJnvoOiNW5cCzIJecN0bR2kc/MAwRGZp3G8JCE6ceZMI4Wnuyhc7cJsNzJwcJSOjf0MHfLEO7SEFCVKJMfHmH2EEW2Qfm8v/UN9aJqGyWSioqKCZcuWcfbZZ3PppZeybNkyGf4mRJqRhEgIQTgcZu/evdOSpF27dhGJRFBRySRb70VykkMGmVKwYQqry0zRGS4KVuRgMKsM1o3StW2QwbpRNBmx9JEkITo+igqumkwKVrrIme8gEorSs32Qjo0D+AdkPtsEDQ0tJ4jPMcqoOkj/WC+9Az2Ew2EURaGkpIRFixZx+umnc9FFF3H++efLIqhCCEmIhBBHNjY2xvbt2/UkadOmTdTV1QGgYsCBk0yycZCl/29UTHGOOr4MZpW8ZVkUrMwhsySDoCdEz44hurcN4uuXk9YjkYToo1ldZgpW5lCwIhuzw8RI2xjdWwfp2zOc9qXgo4Ywoawx/DYPo8oQQ75B+oZ6CYdjBSTy8vJYuHAhq1at4oILLuCiiy4iJycnzlELIRKRJERCiOM2MDDA9u3b2b59Ozt27GDHjh3s3buXUCg2RMyGfUqClE0mWVjJSMveJHuBlYKV2eQty8aUYWS4xUvP9iH69g3LRPcpJCE6nNFqwL3YSf5p2WRV2An5wvTuHKJr6yBjPYF4hzfnJspdBzPHGDONMBIeYsDTx9D4nB9VVSksLGT+/PksX76cM888k4suuoji4uL4Bi6ESBqSEAkhTkkwGGTfvn16gjSRLE0UbjBimtaLlEkWdpwY0qR4g2JQcC+MDXXKrrajRTUG6zz07h5m4OAI0VB674IlIYpRjQqu2kzylmaTs8CBoigMNXjo2TFE376RtCnYoRkjRLL8+GwePMowQ4EB+of68Af8QKzgQUVFBbW1taxYsYKzzz6bc845R4oeCCFOiSREQogZp2kaHR0d0xKkHTt2cPDgQSZ2OTbs2HHqPw6c2MlM6UTJ7DCSuySLvKVZZJZmEAlG6D8wSt/uYQYPedLmpHeqdE6IVKNCdrWD3MVOXAudGC0GRtrG6N01RN+e4dReBNgUJZzlJ5DhxauMMhoaYtAzwNDwkL5Jfn4+8+bNY8mSJaxevZrzzz+fRYsWScEDIcSMk4RICDFnxsbG2L17N3v27GHPnj3s3buXPXv20NIyeTIcS5QyySBT/z+DTMxYUmronTXHTO7SWHJkz7cSCUYYrPPQf2CEgbrRtBlWl24JkcGi4qrJxL3QSc78TAxmlbFeP727h+ndNZxSC/5qmkY0I0zY7iNo8zGmjjIaGmFwdEAvcQ2Qk5NDWVkZNTU1evJz7rnn4nK54he8ECKtSEIkhIi70dFR9u3bNy1JOnDgAE1NTUSjscTAiGlKkuTQL9uwJ32vUkaeBVetE/fCTDJLMohGNIabvAwcGGHg4CiB4dQt450OCZE1x0zOfAeumkyyqhyoBoXRtjH694/Qv38k6QtuaKYo0awAQZsfv8GDJzLCiH+IweFBfaiboii4XC7KyspYsGABS5cuZfXq1Zx11lm43e44vwIhRLqThEgIkbACgQD19fUcOHCA/fv3c+DAAf1naGhI386MlQwc2HCQgX3KZUfSVb4zZxrHkyMnWZV2VIOCrz/A4CEPg/Uehpu8REOp03uUigmRalLIqrSTMz+TnHkObG4L0UiUkebJJCg4Go53mCdEs0QIO/wELT4CxjG8mgdPYIRh7xAez+T6R1arleLiYioqKpg/fz6LFy9mxYoVrF69mszMzDi+AiGEODpJiIQQSUfTNHp7e6mvr9d/Dh06pF8eGBjQtzVhxoYdK3ZsZIxfztCvMyiGOL6Sj2awqGRX2cmeFzuxtuaYYyfWLWMMNXgZafYy2uFL6rlHqZAQKQaFzFIbWRV2sirsOMszUI0q/sEgg/WjeiKbyGWyNUOUSGaQSIafgNGPXxljLDKKx+9hxDPMmG9M39Zms1FQUEBpaSlVVVXU1taydOlSVqxYQXl5eUoNbRVCpAdJiIQQKWdgYEBPkA4dOkRTUxNNTU00NjbS0tKir1MCsd4lGxlYsWPFhoUMrNiwkoEFW0LNXbK6zOTMc5Azz4Gz0o7RYiAajjLa5mO4xctI8xijbWMJfeL9YcmYEKkmdVoClFlqQzWqhH0Rhpu9seGOdaMJs2CqpmloGRGi9iAhi5+gwY8fH/6IF0/Qw4h3GK/Xq2+vqio5OTkUFBRQUlJCRUUFNTU1LF68mOXLl1NSUpIw3wkhhJgJkhAJIdJKJBKhvb2dxsZGPUmaSJhaW1tpa2sjGJw8kVVQxxOlWJI0cTmWLFmxjP+oc93TpMTWOprokXBW2DHbjWhRDW+3H0+nj9F2H54OH2M9AbRoYu7qEz0hUlTIyLeSWWLDUZJBZrGNjDwLiqoQGgsz3BxLRIebvHh7/DDHb7OmRInYQ0QtISKWACFjkIDiwxcdYyzoxeMbZdQzSiQyWbHOYDCQnZ1Nbm4uRUVFVFRUMG/ePGpqali6dCk1NTWYTMk11FQIIU6FJERCCDFFNBqlr6+P1tbWo/50dnbqi9FOMGIaT5SsUxKlWNJkxoIZCyYsmDCjKrNTNtjmNuOssJNZYouduOdbUVSFaDiKt8vPaKePsW4/Yz0BvL3+hKhkl0gJkcGiYi+wkpFvxV5gwV5gw15oxWBS9URztMOHp93HaNsYY72zs0hqVIui2SJotjARS4iIKURI9RMggD/qwx8aYyzgxTvmxef3TbuvqqpkZWWRm5tLQUEBxcXFlJWVUVVVpSc9FRUVGAyJO1RUCCHmmiREQghxgqLRKP39/XR2dh7209HRMe13v99/2P1NmDFNSZJiCdPEddbx200YMWPCjBHTSQ1RUo0K9kIrjmIbmcUZOIqt2Nyx3g2AwEiIsR4/Y70BxnoD+AeC+AaDBEfmrqpdPBIii9OE1WXG6jJjc5vJyLNiz7diyYr1ikQjGr6+AN4eP56OWE+bt9NHNHzih0tN04iaw2jWCJolimYKEzaGCKlBQvgJaAECYT+BsB9fwIcvMIbP5zvscYxGI1lZWeTk5OB2uykoKKCwsFBPeCZ6ecrKyiTZEUKIEyQJkRBCzBJN0xgeHqa3t5fe3l56enr0y0f66enpmTZcbyoDxvHkaCJZMunJ0sT1RkwYMWLAgAHjtB8jRhRUVKOKzW3Gnm8lI99CRl7sf2uOWU+6ouEo/qEQ/sGg/hMcDREcDY//hE4qOTiSmU6IFIOCOdOIxWnC7DTF/s80Ys0eT4BcZlRjrIdOi2oEhkOM9frx9gQY6/bj7fHj6wsSjUTRlCiaKYpmjKIZI0SNUTRTBM0YJWqIEFFDhAkRIkgoGiQYCRKMBAiEAgSCAQIBP4HgkXuRDAYDDocDp9NJdnY2OTk5uFwucnNzyc/Pp7CwkJKSEsrLyykvLycvL0/m7QghxCyRhEgIIRKEpmmMjo7S39/P4OAgQ0NDDA4O6j/H+n1qsYgjUVAOS5QM4+mSQTFiNpsxW82YbEbMNhMmmwlzRuzHaDKgqioGQ+x/ogpaUCMaAsKgTfwEY/9HgxqEgSgQUSCioEUmLgNRBQWVisvyUBWFtnf6QYkSVTRQAKOGYgTFCJpBQzEAauw6xq+f+MGggRFQY9tEo1EikQjRaJRwKEIkFCYcjIxfjhAOhwmHwoTCIcLREKFIiHAkRCgc+wmGggSDQY51eFRVFZvNht1ux2636wnORJIzkejk5uaSl5c3LdFxuVyS4AghRIKQhEgIIVKApmmMjY3h9Xrxer14PJ7Dfo50/YevGxsbIxwOEwqFDvt/6s+xkq94mZq0Tf3/wz8WiwWbzab/ZGRk6EmN3W4nMzNzWoLjdDrJysrC5XLpvTlOp1OSGiGESAGSEAkhhDgpkUjkqEnT2FhsLozf7ycQCBAIBKZdDgaDRCIR9uzZw9jYGNXV1RiNRoxGIyaTCYvFgsViwWq16v9P/JhMJsxms77dxDYWiwWDwYDRaMRgMEiyIoQQ4rhIQiSEEEIIIYRIW7NT+1UIIYQQQgghkoAkREIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdKWJERCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbkhAJIYQQQggh0pYkREIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdKWJERCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibRnjHYAQqai7u5uhoaF4hyGEECLFZGdnU1BQEO8whEgpkhAJMcO6u7u5+YabwRDvSIQQQqQaq9XKH//4R0mKhJhBkhAJMcOGhobAAMYDThSfGUUfmKqiqErsojLl//HLiqrC+NX6nRQF1MO3PdL9j355ymOq+i9Trh+/oCqTGyvK5IDaie2YfExt6u1MPo+mP9bk9drUOCbuP3Ww7tQ4xi9rR708eSdtyks5bPCvMmVbZcq2THkc/bVw+ONPuQ5FQftQrEe8z2H3n/K+TL3/EZ5r6u3THuPDscBhsXz4Pse6neO8/ajXfdQ2027Xjni7dsQYtOmPd9hr0Q5/fCX2HEd9/mmPdYT7o035uGuTm07ZVpnyWMqHnktRpt9/ctPD768q2pTn0MbvE7t+4rIy5XoAFU2PO3b/yceaeJ6J+3z49onnUpn8X79O4fDblQ891pTLE/+rU+6jENUfa+I6VYlO2Xbi+qj+/hiYjNswvu3E8xgUDWX8OsOUWA1Tnku/v6JhYMpz6bFGp8Qycf/o5HMc5T4TMU7sQlQlesRYp76XKlPimxLrxONMe1/0xwXD+Kdk4rNiUEAZ/82AMu1ybDsFdfyyqqioKDS3G/nXX2YzNDQkCZEQM0gSIiFmiTJmRB0zTUmC1GmXgYmzk/Gr1ClnQ4cnRMrUhGZq4jN122nXf3jbD93/w8nVlFg0ZcrZ6BGSLD3JmXr7+ClabIPJ6ydPFWPbTNw8LSHRH3/KZfVI1x/lOvXDj/UR2+q3K4dvOyUJPGJCNTWZOdpl/f7KlMuHxzV92yNfPuLtHOP2Y9z/WM9/xOSQw1/rkZ5r+u3HSIg+tO205zxs26MkRFOv15//SAnNcSREUy8f4f7KlOTlSPeZ/LhMnrgrelzatOv1x5ly3cRJNke4D4o25TVMSYim3v8oycth1x319iMlDJOJg2HKfaZuC7FkYOp1k9tOuW7q5Q8lGQYlijr+Zk19rNhlxi9PJmETCYNBmUw4DBO7MSaff/pjRafcZ+JydPJxp8QymdxE9VgNU94TA1Pjm54QTY95enwTcU9eN5nwGKYkPwZlYjt1ynWx34QQs0O+XUIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdKWJERCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbkhAJIYQQQggh0pYx3gEIkaq0jDBRRUXRmx1UFFWJXVSm/D9+WVFVGL9av5OigHr4tke6/9EvT3lMVf9lyvXjF1RlcmNFmWwumdiOycfUpt7O5PNo055zfNvJB5hy3cQ/HHabfp8ok8+lTFye3Fab8lIOe6wpL4Up959+u3KEbQ97qVMufGi7D9/nsPtPeV+OENfU+Kferh0hlqnPMe2xjnCfY91+pFiPdPtRr/uobabdrh3xdu2IMWjTH++w16Id/vhK7DmO+vzTHusI90eb8nGf/AApU7ZVpjyW8qHnUpTp95/c9PD7q4o25Tm08fvErp+4rEy5Xn8cPRaNw94rNP2xNEUjOuV2bdo2sf+j49epyuRrVJm4TtOf/8OXJ/5Xp9xHGf9yTuxOVDRUJTpl24nro/r7Y5h4fWgYxredeB6DoqGMX2dg8r0yTHku/f5THkudshuafE5Fv2xAQRnfwqBvp6GOv5mqokxe1m+PHjFW/b1C0y9/ONaJx5n2vkyJzzD+XBN/KoMCyvhvsVgnL8e2mxKfoqKi0Nwup21CzAb5Zgkxw6LRKEajkXDtSLxDSQ7ah/6fIUc67xYiVUymQ3rbQRqamuGmz4AXo9FINJq+f3UhZoMkRELMMFVVCYfDfP/736eioiLe4QghhEgRzc3N/Mu//Auqmj4JoBBzQRIiIWZJRUUFtbW18Q5DCCGEEEJ8BGliEEIIIYQQQqQtSYiEEEIIIYQQaUsSIiFmmNvt5gtf+AJutzveoQghhEghcnwRYnYomqbNcG0nIYQQQgghhEgO0kMkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbxngHIESqCAaDPPDAA7z66quMjo4yb9487rrrLs4444x4hyZEwnnyySf5xS9+wb59+xgZGcHlcrF48WK+9rWvceONN8Y7PCGOadu2bXz7298+4m333nsvS5Ys0X/ftWsX9913HwcPHsRut3PRRRfxpS99iYyMjMPue+DAAR566CF27dpFMBikuLiYT37yk9x00036Nhs3bmTt2rXs27eP5uZm8vPzeeyxx44Z86uvvsq//Mu/YLPZeOWVV466XTgc5o477qC5uZmvfe1rfOpTnzrmYwuRzCQhEmKG/OhHP+Ktt97i5ptvprS0lJdeeom/+7u/4+c//zmnnXZavMMTImHce++9fP3rX6eoqIjrr78et9tNV1cXGzdu5Omnn5aESCSVG2+8kUWLFk27rqSkRL9cV1fHd7/7XSoqKvjGN75BT08Pf/nLX2hra+M///M/p91v48aN/MM//AMLFizg9ttvx2az0d7eTm9v77TtXn/9ddauXUtNTc1xr0k0NjbGfffdh81mO+a2Tz75JD09Pcf1uEKkAkmIhJgBe/fu5Y033pjWknbZZZfxhS98gXvvvZd77703zhEKkTh++9vfYjab2b59O/n5+dNu6+/vj1NUQpyc5cuXc+GFFx719t/85jdkZmbyi1/8ArvdDkBRURH/7//9PzZu3MiaNWsA8Hq9/Nu//RtnnXUWP/zhD1HVo89q+PKXv8zf/d3fYTQaueeee2hsbDxmnH/4wx/IyMhg5cqVrF+//qjbDQ4O8vvf/55Pf/rTPPDAA8d8XCFSgcwhEmIGvP322xgMBq655hr9OovFwlVXXcWePXvo7u6OY3RCJB6TyYTJZDrs+uNt7RYikYyNjREOhw+73uv1snnzZi699FI9GYJYg5nNZuPNN9/Ur3v99dcZGBjgS1/6Eqqq4vP5iEajR3y+3NxcjMbjb9NubW3l8ccf5+6778ZgMHzktvfffz9lZWV84hOfOO7HFyLZSUIkxAyoq6ujtLR02gEP0IdR1NfXxyMsIRLSbbfdhtfrZenSpXzve9/jxRdfZGRkJN5hCXFSfvSjH3H55ZfziU98gm9/+9vs379fv62hoYFIJEJtbe20+5hMJhYsWEBdXZ1+3ebNm7Hb7fT19fGZz3yGyy67jCuuuIKf/OQnBAKBU4rxl7/8JStXruTss8/+yO327t3Lyy+/zDe/+U0URTml5xQimUhCJMQM6O/vP2LL9sR1fX19cx2SEAnrb//2b3nggQcoLi7mJz/5CVdddRVut5vrrrvuuIb+CJEIjEYjH/vYx/jWt77Fv/3bv/HFL36RhoYGvvGNb3Dw4EFgcgjo0Y4PU48NbW1tRCIR/vEf/5E1a9bwwx/+kCuvvJJnnnmGf//3fz/pON9//302bdrEN77xjY/cTtM0fv7zn3PxxRezdOnSk34+IZKRzCESYgYEAoEjDv8xm8367UKIGEVRuPPOO7nzzjvp7+9n3bp1PProozz22GPU1dWxc+fOYw7rESLeli1bxrJly/TfzzvvPC688ELuuOMOfvOb3/DjH/9Y3/cf7fgQDAb1330+H36/n2uvvVavXvexj32MUCjEs88+y5133klZWdkJxRgKhfjlL3/JtddeS2Vl5Udu+9JLL9HQ0MAPfvCDE3oOIVKB9BAJMQMsFguhUOiw6ycOdhaLZa5DEiIpTPQM/eUvf+Hiiy9m7969MsRUJK3S0lLOO+88tm3bRiQS0ff9Rzs+TDSaweRx4pJLLpm23cc//nEA9uzZc8LxPPbYYwwPD3PnnXd+5HZer5ff/OY3fOpTn6KgoOCEn0eIZCcJkRAzwO12H7E61sR1ubm5cx2SEAnrrbfeQtO0adeFQiEGBgYAsFqt8QhLiBmRn59PKBTC7/frQ+WOdnyYemyY2Nblck3bLicnB4DR0dETisPj8fCHP/yBq6++Gq/XS2dnJ52dnfh8PjRNo7Ozk8HBQQD+/Oc/EwqFuPjii/XtJkp9ezweOjs7j5jUCZEqZMicEDNg/vz5bNu2Da/XO62wwt69e/XbhRAx1113HU6nk7POOouKigpCoRCvvfYae/fu5aabbqKioiLeIQpx0jo6OjCbzdhsNqqqqjAYDBw4cICLL75Y3yYUClFXV8dFF12kX1dbW8vmzZvp7e2lvLxcv35inlF2dvYJxTE6OorP5+PRRx/l0UcfPez2W2+9lfPOO49/+7d/o7u7m9HRUT7/+c8ftt0f//hH/vjHP/LAAw+wYMGCE4pBiGQhCZEQM+DCCy/kz3/+M88++6y+DlEwGOTFF19k8eLFMgRBiCl+9KMf8fLLL7Nx40aee+457HY78+bN49577+WLX/xivMMT4rgMDQ0dlqTU19fz7rvvcuaZZ6KqKg6Hg9NPP51XX32V22+/nYyMDABeeeUVfD7ftITooosu4pFHHuGFF15g9erV+vUvvPACBoOBlStXnlB8OTk5/Ou//uth1z/xxBPs2bOHf/qnf9J7pW688UbOP//8adsNDg7y4x//mCuuuILzzjuPoqKiE3p+IZKJJERCzIDFixdz0UUX8Zvf/IahoSFKSkp4+eWX6erq4p577ol3eEIklK997Wt87Wtfi3cYQpySf/qnf8JisbB06VJycnJoamriueeew2q18pWvfEXf7q677uLuu+/mm9/8Jtdccw09PT385S9/4YwzzuDMM8/Ut6upqeHKK6/kxRdfJBKJsGLFCrZv386bb77JZz/72WnD6w4dOqQvrtre3o7H4+H3v/89EBuRcO6552K1Wg9LcgDWrVvH/v37p91WW1t7WGnwzs5OACorK4/4OEKkEkmIhJgh//iP/0hBQQGvvPIKHo+H6upq/uM//oMVK1bEOzQhhBAz7Pzzz+e1117jsccew+v1kp2dzQUXXMAXvvAFSktL9e1qa2v56U9/yn333ccvf/lLMjIyuOqqq6YlTRP+9m//loKCAl566SXWrVtHQUEB3/jGN7jlllumbXfw4EEeeOCBaddN/H755Zdz7rnnzsIrFiJ1KdqHZ7YKIYQQQgghRJqQKnNCCCGEEEKItCUJkRBCCCGEECJtSUIkhBBCCCGESFuSEAkhhBBCCCHSliREQgghhBBCiLQlCZEQQgghhBAibUlCJIQQQgghhEhbkhAJIYQQQggh0pYkREIIIYQQQoi0JQmREEIIIYQQIm1JQiSEEEIIIYRIW5IQCSGEEEIIIdLW/w8HxjtKOjfv4AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,0), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()\n", + "\n", + "hp.mollview(map_pointing_zx.project('x').contents, rot=(0,90), unit = u.s, title = \"Exposure map projected in the X-axis pointing\")\n", + "hp.graticule(color='gray', dpar = 30)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5a6488b4", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "65fd936705e540f7a3340adb29e6e9fe", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/138 [00:00 + + + + + + DC2 Image Analysis, Crab, Image Deconvolution — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DC2 Image Analysis, Crab, Image Deconvolution

+

updated on 2024-01-30 (the commit 26cfdeacb25335bd511a91c4f8a29bdeb36408f2)

+

This notebook focuses on the image deconvolution with the spacecraft attitude (scatt) binning method for DC2. Using the Crab 3-month simulation data created for DC2, an example of the image analysis will be presented. If you have not run through Crab-DC2-ScAtt-DataReduction.ipynb, please see it first.

+
+
[1]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
+
+
+
+
+WARNING: version mismatch between CFITSIO header (v4) and linked library (v4.01).
+
+
+
+
+
+
+
+
+Welcome to JupyROOT 6.24/06
+
+
+
+
+
+
+
18:45:19 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69
+                  will not be available.                                                                           
+
+
+
+
+
+
+
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
18:45:19 INFO      Starting 3ML!                                                                     __init__.py:35
+
+
+
+
+
+
+
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36
+
+
+
+
+
+
+
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37
+
+
+
+
+
+
+
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40
+
+
+
+
+
+
+
         WARNING   Multinest minimizer not available                                           minimization.py:1357
+
+
+
+
+
+
+
         WARNING   PyGMO is not available                                                      minimization.py:1369
+
+
+
+
+
+
+
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94
+                  require the C/C++ interface (currently HAWC)                                                     
+
+
+
+
+
+
+
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
18:45:20 WARNING   No fermitools installed                                              lat_transient_builder.py:44
+
+
+
+
+
+
+
18:45:20 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
[2]:
+
+
+
## Crab location
+
+source_position = {"l":184.600, "b": -5.800}
+
+
+
+
+
+

0. Files needed for this notebook

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5

+

From docs/tutorials/image_deconvolution/Crab/ScAttBinning - inputs_Crab_DC2.yaml - imagedeconvolution_parfile_scatt_Crab.yml - crab_spec.dat

+

As outputs from the notebook Crab-DC2-ScAtt-DataReduction.ipynb - Crab_scatt_binning_DC2_bkg.hdf5 - Crab_scatt_binning_DC2_event.hdf5 - ccm.hdf5

+
+
+

1. Read the response matrix

+

please modify “path_data” corresponding to your environment.

+
+
[3]:
+
+
+
path_data = "path/to/data/"
+
+
+
+
+
[4]:
+
+
+
response_path = path_data + "SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5"
+
+response = FullDetectorResponse.open(response_path)
+
+
+
+
+
[5]:
+
+
+
response
+
+
+
+
+
[5]:
+
+
+
+
+FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'
+AXES:
+  NuLambda:
+    DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+  Ei:
+    DESCRIPTION: 'Initial simulated energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Em:
+    DESCRIPTION: 'Measured energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Phi:
+    DESCRIPTION: 'Compton angle'
+    TYPE: 'linear'
+    UNIT: 'deg'
+    NBINS: 36
+    EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]
+  PsiChi:
+    DESCRIPTION: 'Location in the Compton Data Space'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+
+
+
+
+
+

2. Read binned Crab binned files (source and background)

+
+
[6]:
+
+
+
%%time
+
+#  background
+bkg_data = BinnedData("inputs_Crab_DC2.yaml")
+bkg_data.load_binned_data_from_hdf5("Crab_scatt_binning_DC2_bkg.hdf5")
+
+#  signal + background
+Crab_data = BinnedData("inputs_Crab_DC2.yaml")
+Crab_data.load_binned_data_from_hdf5("Crab_scatt_binning_DC2_event.hdf5")
+
+
+
+
+
+
+
+
+CPU times: user 55.8 ms, sys: 253 ms, total: 309 ms
+Wall time: 327 ms
+
+
+
+
+

3. Load the coordsys conversion matrix

+
+
[7]:
+
+
+
%%time
+
+ccm = CoordsysConversionMatrix.open("ccm.hdf5")
+
+
+
+
+
+
+
+
+CPU times: user 1.09 s, sys: 25.8 ms, total: 1.12 s
+Wall time: 1.12 s
+
+
+
+
+

4. Imaging deconvolution

+
+

Brief overview of the image deconvolution

+

Basically, we have to maximize the following likelihood function

+
+\[\log L = \sum_i X_i \log \epsilon_i - \sum_i \epsilon_i\]
+

\(X_i\): detected counts at \(i\)-th bin ( \(i\) : index of the Compton Data Space)

+

\(\epsilon_i = \sum_j R_{ij} \lambda_j + b_i\) : expected counts ( \(j\) : index of the model space)

+

\(\lambda_j\) : the model map (basically gamma-ray flux at \(j\)-th pixel)

+

\(b_i\) : the background at \(i\)-th bin

+

\(R_{ij}\) : the response matrix

+

Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.

+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \delta \lambda_{j}^{k}\]
+
+\[\delta \lambda_{j}^{k} = \frac{\lambda_{j}^{k}}{\sum_{i} R_{ij}} \sum_{i} \left(\frac{ X_{i} }{\epsilon_{i}} - 1 \right) R_{ij}\]
+

We refer to \(\delta \lambda_{j}^{k}\) as the delta map.

+

As for now, the two improved algorithms are implemented in COSIpy.

+
    +
  • Accelerated ML-EM algorithm (Knoedlseder+99)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \delta \lambda_{j}^{k}\]
+
+\[\alpha^{k} < \mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k})\]
+

Practically, in order not to accelerate the algorithm excessively, we set the maximum value of \(\alpha\) (\(\alpha_{\mathrm{max}}\)). Then, \(\alpha\) is calculated as:

+
+\[\alpha^{k} = \mathrm{min}(\mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k}), \alpha_{\mathrm{max}})\]
+
    +
  • Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \left[ w_j \delta \lambda_{j}^{k} \right]_{\mathrm{gauss}}\]
+
+\[w_j = \left(\sum_{i} R_{ij}\right)^\beta\]
+

\(\left[ ... \right]_{\mathrm{gauss}}\) means that the differential image is smoothed by a gaussian filter.

+
+
+

4-1. Prepare DataLoader containing all neccesary datasets

+
+
[8]:
+
+
+
dataloader = DataLoader.load(Crab_data.binned_data,
+                             bkg_data.binned_data,
+                             response,
+                             ccm,
+                             is_miniDC2_format = False)
+
+
+
+
+
[9]:
+
+
+
dataloader._modify_axes()
+
+
+
+
+
+
+
+
+... checking the axis ScAtt of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Em of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Phi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis PsiChi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+...checking the axis Em of the event and response files...
+    --> pass (edges)
+...checking the axis Phi of the event and response files...
+    --> pass (edges)
+...checking the axis PsiChi of the event and response files...
+    --> pass (edges)
+The axes in the event and background files are redefined. Now they are consistent with those of the response file.
+
+
+
+
+
+
+
+
+WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.
+
+
+WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.
+
+
+
+

(In the future, we plan to remove the method “_modify_axes.”)

+
+
+

4-2. Load the response file

+

The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size.

+

So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work.

+
+
[10]:
+
+
+
%%time
+
+dataloader.load_full_detector_response_on_memory()
+
+
+
+
+
+
+
+
+CPU times: user 903 ms, sys: 3.59 s, total: 4.49 s
+Wall time: 5.01 s
+
+
+

Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space (\(\sum_{i} R_{ij}\)). Currently, it is mandatory to run this command for the image deconvolution.

+
+
[11]:
+
+
+
%%time
+
+dataloader.calc_image_response_projected()
+
+
+
+
+
+
+
+
+... (DataLoader) calculating a projected image response ...
+CPU times: user 2.15 s, sys: 2.65 s, total: 4.8 s
+Wall time: 5.1 s
+
+
+
+
+

4-3. Initialize the instance of the image deconvolution class

+

First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation.

+

please modify this parameter_filepath corresponding to your environment.

+
+
[12]:
+
+
+
parameter_filepath = "imagedeconvolution_parfile_scatt_Crab.yml"
+
+
+
+
+
[13]:
+
+
+
image_deconvolution = ImageDeconvolution()
+
+# set dataloader to image_deconvolution
+image_deconvolution.set_data(dataloader)
+
+# set a parameter file for the image deconvolution
+image_deconvolution.read_parameterfile(parameter_filepath)
+
+
+
+
+
+
+
+
+data for image deconvolution was set ->  <cosipy.image_deconvolution.data_loader.DataLoader object at 0x2b607db10>
+parameter file for image deconvolution was set ->  imagedeconvolution_parfile_scatt_Crab.yml
+
+
+
+

Initialize image_deconvolution

+

In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.

+

I describe parameters in the parameter file.

+
+

model_property

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

coordinate

str

the coordinate system of the model map

As for now, it must be ‘galactic’

nside

int

NSIDE of the model map

it must be the same as NSIDE of ‘lb’ axis of the coordinate conversion matrix

scheme

str

SCHEME of the model map

As for now, it must be ‘ring’

energy_edges

list of float [keV]

The definition of the energy bins of the model map

As for now, it must be the same as that of the response matrix

+
+
+

model_initialization

+ + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the method name to initialize the model map

As for now, only ‘flat’ can be used

parameter_flat:values

list of float [cm-2 s-1 sr-1]

the list of photon fluxes for each energy band

the length of the list should be the same as the length of “energy_edges” - 1

+
+
+

deconvolution

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the name of the image deconvolution algorithm

As for now, only ‘RL’ is supported

parameter_RL:iteration

int

The maximum number of the iteration

parameter_RL:acceleration

bool

whether the accelerated ML-EM algorithm (Knoedlseder+99) is used

parameter_RL:alpha_max

float

the maximum value for the acceleration parameter

parameter_RL:save_results_each_iteration

bool

whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration

parameter_RL:response_weighting

bool

whether a delta map is renormalized based on the exposure time on each pixel, namely +\(w_j = (\sum_{i} R_{ij})^{\beta}\) (see Knoedlseder+05, Siegert+20)

parameter_RL:response_weighting_index

float

\(\beta\) in the above equation

parameter_RL:smoothing

bool

whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20)

parameter_RL:smoothing_FWHM

float, degree

the FWHM of the Gaussian in the filter

parameter_RL:background_normalization_fitting

bool

whether the background normalization factor is optimized at each iteration

As for now, the single background normalization factor is used in all of the bins

parameter_RL:background_normalization_range

list of float

the range of the normalization factor

should be positive

+
+
[14]:
+
+
+
image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 100.0
+- 158.489
+- 251.189
+- 398.107
+- 630.957
+- 1000.0
+- 1584.89
+- 2511.89
+- 3981.07
+- 6309.57
+- 10000.0
+nside: 8
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10.0
+  background_normalization_fitting: false
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 10
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 2.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

(You can change the parameters as follows)

+

Note that when you modify the parameters, do not forget to run “initialize” again!

+
+
[15]:
+
+
+
image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 20")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:background_normalization_fitting = True")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:alpha_max = 10")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:smoothing_FWHM = 3.0")
+
+image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 100.0
+- 158.489
+- 251.189
+- 398.107
+- 630.957
+- 1000.0
+- 1584.89
+- 2511.89
+- 3981.07
+- 6309.57
+- 10000.0
+nside: 8
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10
+  background_normalization_fitting: true
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 20
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 3.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

4-5. Start the image deconvolution

+

With MacBook Pro with M1 Max and 64 GB memory, it takes about 10 minutes for 20 iterations.

+
+
[16]:
+
+
+
%%time
+
+all_results = image_deconvolution.run_deconvolution()
+
+
+
+
+
+
+
+
+#### Deconvolution Starts ####
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Iteration 1/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+
+
+
+
+
+
+
+
+WARNING RuntimeWarning: invalid value encountered in divide
+
+
+
+
+
+
+
+
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 6.383992036768139
+    loglikelihood: 23020491.843640238
+    background_normalization: 1.0601311215130675
+  Iteration 2/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 3.623693254892361
+    loglikelihood: 23787078.312391542
+    background_normalization: 0.9812080588835854
+  Iteration 3/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 4.754331827455719
+    loglikelihood: 24062347.36776291
+    background_normalization: 0.9889832567754694
+  Iteration 4/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24100868.36162518
+    background_normalization: 0.9853598178541682
+  Iteration 5/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.3279853605979435
+    loglikelihood: 24262736.203220718
+    background_normalization: 0.9866072495745218
+  Iteration 6/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5.670443384185757
+    loglikelihood: 24350147.041354418
+    background_normalization: 0.9913375987634248
+  Iteration 7/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24364951.62048164
+    background_normalization: 0.988470546497861
+  Iteration 8/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 6.071670008786414
+    loglikelihood: 24424020.48509694
+    background_normalization: 0.9895862691562303
+  Iteration 9/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 6.422815741504944
+    loglikelihood: 24450211.195517786
+    background_normalization: 0.9938902344364399
+  Iteration 10/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24466176.96588525
+    background_normalization: 0.9884096079114113
+  Iteration 11/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 6.748558816310641
+    loglikelihood: 24480651.402792968
+    background_normalization: 0.9901152715531214
+  Iteration 12/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 7.338999823632587
+    loglikelihood: 24427198.88031438
+    background_normalization: 0.9971667543280367
+  Iteration 13/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.573221723840575
+    loglikelihood: 24515704.1840233
+    background_normalization: 0.9840562801688233
+  Iteration 14/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24521511.682864733
+    background_normalization: 0.9907725667489528
+  Iteration 15/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 7.453466242079951
+    loglikelihood: 24529448.60930462
+    background_normalization: 0.9919747556588937
+  Iteration 16/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 7.93231998200381
+    loglikelihood: 24494561.43656476
+    background_normalization: 0.9966116121955169
+  Iteration 17/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24534998.92439188
+    background_normalization: 0.987024209017416
+  Iteration 18/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 6.4952411015155125
+    loglikelihood: 24489955.411851242
+    background_normalization: 0.9900001865729486
+  Iteration 19/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24538590.74839551
+    background_normalization: 1.0018420710427285
+  Iteration 20/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> stop
+--> registering results
+--> showing results
+    alpha: 8.476365597600235
+    loglikelihood: 24450646.0177122
+    background_normalization: 0.9986575244367942
+#### Done ####
+
+CPU times: user 1h 8min 37s, sys: 3min 5s, total: 1h 11min 42s
+Wall time: 10min 27s
+
+
+
+
[17]:
+
+
+
import pprint
+
+pprint.pprint(all_results)
+
+
+
+
+
+
+
+
+[{'alpha': <Quantity 6.38399204>,
+  'background_normalization': 1.0601311215130675,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252830>,
+  'iteration': 1,
+  'loglikelihood': 23020491.843640238,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252860>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253af0>},
+ {'alpha': <Quantity 3.62369325>,
+  'background_normalization': 0.9812080588835854,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253130>,
+  'iteration': 2,
+  'loglikelihood': 23787078.312391542,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532526b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253190>},
+ {'alpha': <Quantity 4.75433183>,
+  'background_normalization': 0.9889832567754694,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252530>,
+  'iteration': 3,
+  'loglikelihood': 24062347.36776291,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532526e0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252a10>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9853598178541682,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532517b0>,
+  'iteration': 4,
+  'loglikelihood': 24100868.36162518,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953251870>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253df0>},
+ {'alpha': <Quantity 5.32798536>,
+  'background_normalization': 0.9866072495745218,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532520b0>,
+  'iteration': 5,
+  'loglikelihood': 24262736.203220718,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253910>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252b90>},
+ {'alpha': <Quantity 5.67044338>,
+  'background_normalization': 0.9913375987634248,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252c20>,
+  'iteration': 6,
+  'loglikelihood': 24350147.041354418,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953250a60>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953250e80>},
+ {'alpha': 1.0,
+  'background_normalization': 0.988470546497861,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c4550>,
+  'iteration': 7,
+  'loglikelihood': 24364951.62048164,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c7fa0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c6080>},
+ {'alpha': <Quantity 6.07167001>,
+  'background_normalization': 0.9895862691562303,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252470>,
+  'iteration': 8,
+  'loglikelihood': 24424020.48509694,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252740>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953250340>},
+ {'alpha': <Quantity 6.42281574>,
+  'background_normalization': 0.9938902344364399,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253c70>,
+  'iteration': 9,
+  'loglikelihood': 24450211.195517786,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253730>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252b00>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9884096079114113,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b606c160>,
+  'iteration': 10,
+  'loglikelihood': 24466176.96588525,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c7a30>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252890>},
+ {'alpha': <Quantity 6.74855882>,
+  'background_normalization': 0.9901152715531214,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252710>,
+  'iteration': 11,
+  'loglikelihood': 24480651.402792968,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953251b40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253cd0>},
+ {'alpha': <Quantity 7.33899982>,
+  'background_normalization': 0.9971667543280367,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532515a0>,
+  'iteration': 12,
+  'loglikelihood': 24427198.88031438,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253460>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953251540>},
+ {'alpha': <Quantity 1.57322172>,
+  'background_normalization': 0.9840562801688233,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532505e0>,
+  'iteration': 13,
+  'loglikelihood': 24515704.1840233,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253dc0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532518d0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9907725667489528,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c7e80>,
+  'iteration': 14,
+  'loglikelihood': 24521511.682864733,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c73d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953251480>},
+ {'alpha': <Quantity 7.45346624>,
+  'background_normalization': 0.9919747556588937,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953251ed0>,
+  'iteration': 15,
+  'loglikelihood': 24529448.60930462,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953250e50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c6ce0>},
+ {'alpha': <Quantity 7.93231998>,
+  'background_normalization': 0.9966116121955169,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252950>,
+  'iteration': 16,
+  'loglikelihood': 24494561.43656476,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532535b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9531c1c30>},
+ {'alpha': 1.0,
+  'background_normalization': 0.987024209017416,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252620>,
+  'iteration': 17,
+  'loglikelihood': 24534998.92439188,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953250700>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9531c38b0>},
+ {'alpha': <Quantity 6.4952411>,
+  'background_normalization': 0.9900001865729486,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953252590>,
+  'iteration': 18,
+  'loglikelihood': 24489955.411851242,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x953253c10>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9531c0670>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0018420710427285,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9530c4520>,
+  'iteration': 19,
+  'loglikelihood': 24538590.74839551,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9532502b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9531c3730>},
+ {'alpha': <Quantity 8.4763656>,
+  'background_normalization': 0.9986575244367942,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9531c1f00>,
+  'iteration': 20,
+  'loglikelihood': 24450646.0177122,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9531c1bd0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x9531c2230>}]
+
+
+
+
+
+

5. Analyze the results

+

Examples to see/analyze the results are shown below.

+
+

Log-likelihood

+

Plotting the log-likelihood vs the number of iterations

+
+
[18]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['loglikelihood'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("loglikelihood")
+
+
+
+
+
[18]:
+
+
+
+
+Text(0, 0.5, 'loglikelihood')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_36_1.png +
+
+
+
+

Alpha (the factor used for the acceleration)

+

Plotting \(\alpha\) vs the number of iterations. \(\alpha\) is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts.

+
+
[19]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['alpha'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("alpha")
+
+
+
+
+
[19]:
+
+
+
+
+Text(0, 0.5, 'alpha')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_38_1.png +
+
+
+
+

Background normalization

+

Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1.

+
+
[20]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['background_normalization'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("background_normalization")
+
+
+
+
+
[20]:
+
+
+
+
+Text(0, 0.5, 'background_normalization')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_40_1.png +
+
+
+
+

The reconstructed images

+
+
[21]:
+
+
+
def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['model_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the reconstructed images in all of the energy bands at the 20th iteration

+
+
[22]:
+
+
+
iteration = 19
+
+plot_reconstructed_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_1.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_2.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_3.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_4.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_5.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_6.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_7.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_8.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_44_9.png +
+
+

You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures.

+
+
[ ]:
+
+
+
for result in all_results:
+    plot_reconstructed_image(result, source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))
+
+
+
+
+
+

Delta image

+

checking the difference between images before/after each iteration

+
+
[23]:
+
+
+
def plot_delta_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['delta_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the difference between 19th and 20th reconstructed images.

+
+
[24]:
+
+
+
iteration = 19
+
+plot_delta_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_1.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_2.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_3.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_4.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_5.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_6.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_7.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_8.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_50_9.png +
+
+

You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures.

+
+
[ ]:
+
+
+
for result in all_results:
+    plot_delta_image(result, source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+

Integrated flux over the sky

+

Define the Crab spectral model

+
+
[25]:
+
+
+
iteration = []
+integrated_flux = []
+integrated_flux_each_band = [[],[],[],[],[]]
+
+for _ in all_results:
+    iteration.append(_['iteration'])
+    image = _['model_map']
+    pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr
+
+    integrated_flux.append(np.sum(image) * pixelarea)
+
+    for energy_band in range(5):
+        integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)
+
+plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')
+plt.xlabel("iteration")
+plt.ylabel("integrated flux (ph cm-2 s-1)")
+plt.yscale("log")
+
+colors = ['b', 'g', 'r', 'c', 'm']
+for energy_band in range(5):
+    plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = "energyband = {}".format(energy_band))
+
+plt.legend()
+
+
+
+
+
[25]:
+
+
+
+
+<matplotlib.legend.Legend at 0x2fe95c4c0>
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_55_1.png +
+
+
+
+

Spectrum

+

Plotting the gamma-ray spectrum at 11th interation. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all of the pixels at each energy band.

+
+
[26]:
+
+
+
energy_truth = []
+flux_truth = []
+
+with open("crab_spec.dat", "r") as f:
+    for line in f:
+        data = line.split('\t')
+        if data[0] == 'DP':
+            energy_truth.append(float(data[1]))# * u.keV)
+            flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)
+
+
+
+
+
[27]:
+
+
+
def get_differential_flux(model_map):
+    pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr
+
+    differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths
+
+    return differential_flux
+
+
+
+
+
[28]:
+
+
+
iteration = 10
+
+result = all_results[iteration]
+
+model_map = result['model_map']
+
+differential_flux = get_differential_flux(model_map)
+
+energy_band = model_map.axes['Ei'].centers
+
+err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers
+err_energy[0,:] *= -1
+
+plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')
+plt.plot(energy_truth, flux_truth, label = 'truth')
+plt.xscale("log")
+plt.yscale("log")
+
+plt.xlabel("Energy (keV)")
+plt.ylabel(r"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)")
+plt.title(f"Spectrum, Iteration = {result['iteration']}")
+plt.grid()
+plt.legend()
+
+
+
+
+
[28]:
+
+
+
+
+<matplotlib.legend.Legend at 0x952f92b90>
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_59_1.png +
+
+
+
+

Plot All

+
+
[29]:
+
+
+
title = ["100-158.489 keV",
+"158.489-251.189 keV",
+"251.189-398.107 keV",
+"398.107-630.957 keV",
+"630.957-1000 keV",
+"1000-1584.89 keV",
+"1584.89-2511.89 keV",
+"2511.89-3981.07 keV",
+"3981.07-6309.57 keV",
+"6309.57-10000 keV"]
+
+position = {"l":184.600, "b": -5.800}
+
+i_iteration = 19 # ==>20th iteration
+th = -5
+
+fig = plt.figure(figsize=(30, 15))
+gs = GridSpec(nrows=3, ncols=4)
+
+ax0 = fig.add_subplot(gs[0, 0])
+ax1 = fig.add_subplot(gs[0, 1])
+ax2 = fig.add_subplot(gs[0, 2])
+ax3 = fig.add_subplot(gs[0, 3])
+ax4 = fig.add_subplot(gs[1, 0])
+ax5 = fig.add_subplot(gs[1, 1])
+ax6 = fig.add_subplot(gs[1, 2])
+ax7 = fig.add_subplot(gs[1, 3])
+ax8 = fig.add_subplot(gs[2, 0])
+ax9 = fig.add_subplot(gs[2, 1])
+
+axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]
+
+ax_spectrum = fig.add_subplot(gs[2, 2])
+ax_likelihood = fig.add_subplot(gs[2, 3])
+#ax_background = fig.add_subplot(gs[1, 3])
+
+#plt.subplots_adjust(wspace=0.4, hspace=0.5)
+
+image = all_results[i_iteration]['model_map']
+
+for i_energy in range(image.axes['Ei'].nbins):
+    plt.axes(axes[i_energy])
+
+    data = image.contents[:,i_energy]
+    data[data < 10**th * image.unit] = 10**th * image.unit
+
+    hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = "s-1 sr-1 cm-2")
+    hp.graticule(color='gray', dpar = 10, alpha = 0.5)
+    hp.projscatter(theta = position["l"], phi = position["b"], lonlat = True, color = 'red', linewidths = 1, marker = "*")
+
+###
+
+plt.axes(ax_spectrum)
+
+energy_band = image.axes['Ei'].centers
+
+err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers
+err_energy[0,:] *= -1
+
+differential_flux = get_differential_flux(image)
+
+plt.plot(energy_truth, flux_truth, label = 'truth')
+
+plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')
+plt.xscale("log")
+plt.yscale("log")
+plt.xlim(90, 10000)
+plt.ylim(1e-8, 2e-3)
+
+plt.xlabel("Energy (keV)")
+plt.ylabel(r"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)")
+plt.title(f"Spectrum, Iteration = {iteration+1}")
+plt.grid()
+plt.legend()
+
+###
+
+plt.axes(ax_likelihood)
+
+iterations = [_['iteration'] for _ in all_results]
+loglikelihoods = [_['loglikelihood'] for _ in all_results]
+
+plt.plot(iterations, loglikelihoods, linewidth = 1.5)
+plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = ".")
+
+plt.xlabel("Iteration", fontsize = 12)
+plt.title("Log-likelihood")
+plt.grid()
+
+###
+#    plt.axes(ax_background)
+
+#    plt.plot(iterations, background_normalizations, linewidth = 1.5)
+#    plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = ".")
+
+#    plt.xlabel("Iteration", fontsize = 12)
+    #plt.ylabel("Background Normalization", fontsize = 12)
+#    plt.ylim(0.7, 1.4)
+#    plt.title("Background Normalization")
+#    plt.grid()
+
+#    plt.savefig(f"fig_{i:03}.png")
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-ImageDeconvolution_61_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution.ipynb b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution.ipynb new file mode 100644 index 00000000..cb8bcbf1 --- /dev/null +++ b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-ImageDeconvolution.ipynb @@ -0,0 +1,2451 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# DC2 Image Analysis, Crab, Image Deconvolution\n", + "\n", + "updated on 2024-01-30 (the commit 26cfdeacb25335bd511a91c4f8a29bdeb36408f2)\n", + "\n", + "This notebook focuses on the image deconvolution with the spacecraft attitude (scatt) binning method for DC2.\n", + "Using the Crab 3-month simulation data created for DC2, an example of the image analysis will be presented.\n", + "If you have not run through Crab-DC2-ScAtt-DataReduction.ipynb, please see it first." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "e751bbd5", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING: version mismatch between CFITSIO header (v4) and linked library (v4.01).\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Welcome to JupyROOT 6.24/06\n" + ] + }, + { + "data": { + "text/html": [ + "
18:45:19 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=73384;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=253950;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780618;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=145040;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=274993;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=446945;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566296;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=336412;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=128353;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=344711;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=593746;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667323;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725443;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=820810;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=18755;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=696406;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=254806;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278253;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
18:45:19 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=622556;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289295;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=323977;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382258;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=767092;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=658960;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881727;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27896;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=643709;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737409;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=944509;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=657198;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=454390;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289349;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=304829;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=256744;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=25866;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279713;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
18:45:20 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988111;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=864717;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
18:45:20 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m18:45:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780461;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448217;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987990;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=929178;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155167;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23710;file:///Users/yoneda/Work/Exp/COSI/cosipy-2/cosipy-2-venv/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "505142cb", + "metadata": {}, + "outputs": [], + "source": [ + "## Crab location\n", + "\n", + "source_position = {\"l\":184.600, \"b\": -5.800}" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Files needed for this notebook\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/ScAttBinning\n", + "- inputs_Crab_DC2.yaml\n", + "- imagedeconvolution_parfile_scatt_Crab.yml\n", + "- crab_spec.dat\n", + "\n", + "As outputs from the notebook Crab-DC2-ScAtt-DataReduction.ipynb\n", + "- Crab_scatt_binning_DC2_bkg.hdf5\n", + "- Crab_scatt_binning_DC2_event.hdf5\n", + "- ccm.hdf5" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 1. Read the response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "573a7c60", + "metadata": {}, + "source": [ + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "98a778c2-73cf-467b-96b6-affc42f17102", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = path_data + \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "\n", + "response = FullDetectorResponse.open(response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "eab660b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "response" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 2. Read binned Crab binned files (source and background)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "04e15347-6b38-42de-a7c5-cd99b2ae66ac", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 55.8 ms, sys: 253 ms, total: 309 ms\n", + "Wall time: 327 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background \n", + "bkg_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "bkg_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_bkg.hdf5\")\n", + "\n", + "# signal + background\n", + "Crab_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "Crab_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a409aa7b-9bd8-443b-be46-ee5a053f8349", + "metadata": { + "tags": [] + }, + "source": [ + "# 3. Load the coordsys conversion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "daaf836a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 1.09 s, sys: 25.8 ms, total: 1.12 s\n", + "Wall time: 1.12 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ccm = CoordsysConversionMatrix.open(\"ccm.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(Crab_data.binned_data, \n", + " bkg_data.binned_data, \n", + " response, \n", + " ccm,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "59d48019", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "241505ad", + "metadata": {}, + "source": [ + "(In the future, we plan to remove the method \"_modify_axes.\")" + ] + }, + { + "cell_type": "markdown", + "id": "2a662f5e", + "metadata": {}, + "source": [ + "## 4-2. Load the response file\n", + "\n", + "The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size. \n", + "\n", + "So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0ab4b84c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 903 ms, sys: 3.59 s, total: 4.49 s\n", + "Wall time: 5.01 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()" + ] + }, + { + "cell_type": "markdown", + "id": "5bc6a570", + "metadata": {}, + "source": [ + "Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space ($\\sum_{i} R_{ij}$). Currently, it is mandatory to run this command for the image deconvolution." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0a5c9a02", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 2.15 s, sys: 2.65 s, total: 4.8 s\n", + "Wall time: 5.1 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.calc_image_response_projected()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_Crab.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_Crab.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 158.489\n", + "- 251.189\n", + "- 398.107\n", + "- 630.957\n", + "- 1000.0\n", + "- 1584.89\n", + "- 2511.89\n", + "- 3981.07\n", + "- 6309.57\n", + "- 10000.0\n", + "nside: 8\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a27500612cd453d841ffdc68bad7e61", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.383992036768139\n", + " loglikelihood: 23020491.843640238\n", + " background_normalization: 1.0601311215130675\n", + " Iteration 2/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.623693254892361\n", + " loglikelihood: 23787078.312391542\n", + " background_normalization: 0.9812080588835854\n", + " Iteration 3/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.754331827455719\n", + " loglikelihood: 24062347.36776291\n", + " background_normalization: 0.9889832567754694\n", + " Iteration 4/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24100868.36162518\n", + " background_normalization: 0.9853598178541682\n", + " Iteration 5/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.3279853605979435\n", + " loglikelihood: 24262736.203220718\n", + " background_normalization: 0.9866072495745218\n", + " Iteration 6/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5.670443384185757\n", + " loglikelihood: 24350147.041354418\n", + " background_normalization: 0.9913375987634248\n", + " Iteration 7/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24364951.62048164\n", + " background_normalization: 0.988470546497861\n", + " Iteration 8/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.071670008786414\n", + " loglikelihood: 24424020.48509694\n", + " background_normalization: 0.9895862691562303\n", + " Iteration 9/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.422815741504944\n", + " loglikelihood: 24450211.195517786\n", + " background_normalization: 0.9938902344364399\n", + " Iteration 10/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24466176.96588525\n", + " background_normalization: 0.9884096079114113\n", + " Iteration 11/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.748558816310641\n", + " loglikelihood: 24480651.402792968\n", + " background_normalization: 0.9901152715531214\n", + " Iteration 12/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 7.338999823632587\n", + " loglikelihood: 24427198.88031438\n", + " background_normalization: 0.9971667543280367\n", + " Iteration 13/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.573221723840575\n", + " loglikelihood: 24515704.1840233\n", + " background_normalization: 0.9840562801688233\n", + " Iteration 14/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24521511.682864733\n", + " background_normalization: 0.9907725667489528\n", + " Iteration 15/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 7.453466242079951\n", + " loglikelihood: 24529448.60930462\n", + " background_normalization: 0.9919747556588937\n", + " Iteration 16/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 7.93231998200381\n", + " loglikelihood: 24494561.43656476\n", + " background_normalization: 0.9966116121955169\n", + " Iteration 17/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24534998.92439188\n", + " background_normalization: 0.987024209017416\n", + " Iteration 18/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.4952411015155125\n", + " loglikelihood: 24489955.411851242\n", + " background_normalization: 0.9900001865729486\n", + " Iteration 19/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24538590.74839551\n", + " background_normalization: 1.0018420710427285\n", + " Iteration 20/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 8.476365597600235\n", + " loglikelihood: 24450646.0177122\n", + " background_normalization: 0.9986575244367942\n", + "#### Done ####\n", + "\n", + "CPU times: user 1h 8min 37s, sys: 3min 5s, total: 1h 11min 42s\n", + "Wall time: 10min 27s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0601311215130675,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 23020491.843640238,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9812080588835854,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 23787078.312391542,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9889832567754694,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 24062347.36776291,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9853598178541682,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 24100868.36162518,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9866072495745218,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 24262736.203220718,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9913375987634248,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 24350147.041354418,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.988470546497861,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 24364951.62048164,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9895862691562303,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 24424020.48509694,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9938902344364399,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 24450211.195517786,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9884096079114113,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 24466176.96588525,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9901152715531214,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 24480651.402792968,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9971667543280367,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 24427198.88031438,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9840562801688233,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 24515704.1840233,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9907725667489528,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 24521511.682864733,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9919747556588937,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 24529448.60930462,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9966116121955169,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 24494561.43656476,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.987024209017416,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 24534998.92439188,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9900001865729486,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 24489955.411851242,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0018420710427285,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 24538590.74839551,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9986575244367942,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 24450646.0177122,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHMCAYAAADF4Oz/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxiElEQVR4nO3dd1hUV/4G8HeAoVfpVUSwUOwlFqwJUWP5aWJJNtaQaokplrDR6GpM19VoNKaRRF01Zk1bRbFHiR0MAipEGFFpQ52hDDDc3x+EiRPawDDMAO/nefZZuPfce7/HEXlz7rnnigRBEEBEREREdTLSdwFEREREhoxhiYiIiKgBDEtEREREDWBYIiIiImoAwxIRERFRAxiWiIiIiBrAsERERETUAIYlIiIiogYwLBERERE1gGGJiIiIqAEm+i6gPSkpKcHevXuRmJiIpKQkyGQyvPHGGxg/fnyzzrdkyRLExcXVuc/Y2BgnT57UoloiIiLSBMNSCyosLERkZCRcXV3h7++P2NhYrc43e/ZsTJw4UW1baWkpPvroIwwcOFCrcxMREZFmGJZakKOjIw4ePAhHR0fcuHEDzz33nFbnqysQHT16FADwyCOPaHVuIiIi0gzDUgsyNTWFo6OjRm3Pnz+PXbt24datWxCJROjduzdefPFFdOnSpcHjoqOjYWFhgeHDh7dEyURERNQITvDWgyNHjmDFihWwsLDA888/j7lz5yItLQ0LFy5ERkZGvccVFBTg8uXLGD58OCwsLFqxYiIioo6LYamVlZSUYPPmzZg4cSI++OADPP7443jqqaewY8cOAMCuXbvqPfb48eNQKpW8BUdERNSKeBuulV2+fBlyuRxjx45FQUGBaruRkRF69uyJq1ev1nvssWPHYG9vjwEDBrRCpURERAQwLLW6u3fvAgCWLl1a534rK6s6t9+/fx8JCQmYNm0aTEz4sREREbUW/tZtZVVVVQCAN998E506daq139jYuM7joqOjAfApOCIiotbGsNTKPD09AaDJt9OOHTsGT09PBAUF6ao0IiIiqgMneLeyQYMGwcrKCrt27UJlZWWt/Q/OY6px69YtSCQSPPzww61QIRERET2II0st7Pvvv4dcLkdubi4A4Ny5c8jOzgYAPP7447C2tsarr76Kt99+G8888wzGjh0Le3t7ZGVl4fz58wgODsYrr7yidk7egiMiItIfkSAIgr6LaE9mzJiBzMzMOvft27cP7u7uAIDY2Fjs3r0biYmJKC8vh7OzM3r16oVp06ahe/fuqmOqqqowffp0ODg44PPPP2+VPhAREdFfGJaIiIiIGmBwt+GSkpIQFRWF2NhYZGZmwtbWFkFBQQgPD4e3t3eTzvX+++/jl19+wZAhQ/Dee+/V2l9SUoKvv/4aJ0+eRG5uLuzs7BAUFIR//vOfMDc3b6kuERERURtmcGFpz549iI+Px+jRo9G1a1fk5ubi4MGDCA8Px/bt2+Hn56fReW7cuIHDhw/D1NS0zv1yuRxLlixBTk4OJk2aBE9PTxQUFOD3339HRUUFwxIREREBMMDbcPHx8ejRowfEYrFqW3p6OubPn4+RI0di1apVjZ5DEAS89NJL6Ny5M65evYouXbrUGlnauHEjjh07hs8//xweHh7NrresrAwSiQSdO3dmwCIiImqHDG7pgJCQELWgBADe3t7w9fWFRCLR6BxHjhxBamoqnn322Tr3y2QyHDp0CJMmTYKHhwcqKipQXl7erHolEgmeffZZjWtr6/744w99l9Bq2Nf2qyP1l31tvzpSf/XdV4O7DVcXQRCQn58PX1/fRtuWlJRgx44dePrpp+Ho6Fhnm/j4eJSXl8PLywurVq3C2bNnUVVVhaCgILzyyisICAho4R60HwqFQt8ltBr2tf3qSP1lX9uvjtRffffV4EaW6hIdHY2cnByMGTOm0baRkZEwMzPDjBkz6m1T8362nTt3Ijs7GxEREXjllVdw//59LF26FFKptN5jpVIpbt68qfpfRxlRIiIi6qgMfmRJIpFg06ZNCAoKwrhx4xpsm56ejgMHDmD16tX1TuwGgNLSUtXXmzZtgqWlJQAgICAAL774Ig4ePFjvLbyffvoJkZGRtbanpqZCqVRq0KO2TS6XIzExUd9ltAr2tf3qSP1lX9uvjtRfXfU1MDBQo3YGHZZyc3OxYsUKWFlZYd26dfW+ZLbGli1bEBwcjFGjRjXYriZIDRs2TBWUACAoKAju7u64fv16vcdOnjwZw4YNU30vkUiwfv16dOnSRW0xyfYqMTFR479cbR372n51pP6yr+1XR+qvvvtqsGFJLpdj+fLlkMvl2Lp1K5ycnBpsf+XKFVy4cAHr169HRkaGartSqYRCoUBGRgZsbW1hZWWlOpeDg0Ot8zg4OEAul9d7HScnp0ZrISIiovbDIMOSQqHAypUrkZ6ejo0bN2o0sbvm/WtvvvlmrX05OTmYOXMmFi1ahBkzZqhGgOqamySVSuHj46NdB4iIiKjdMLiwpFQqsWbNGiQkJGDDhg0IDg6us51UKkVxcTE8PT1hYmKCfv364e23367V7oMPPoCbmxtmz56tWtDSx8cH/v7+OHv2LAoKCmBvbw8AuHjxIrKzs/H444/rrH9ERETUthhcWNq2bRvOnTuHoUOHQiaT4ejRo2r7w8LCAFQ/yRYVFaV6Oa2rqytcXV1rne/jjz+Gg4MDQkND1bYvWrQIr732GhYtWoTJkydDLpdj//798Pb2xpQpU3TXQSIiImpTDC4spaSkAABiYmIQExNTa39NWNJWv3798MEHH+CLL77Azp07YW5ujtDQULzwwgtqk76JiIioYzO4sLRlyxaN2kVERCAiIqLRdvv3769334ABAzBgwACNayMiIqKOp00sSklERESkLwxLRERERA1gWCIiIiJqAMMSERERUQMYloiIiKhZqqoE3InNxh8x91GlrNJ3OTpjcE/DERERdRTKCiUkV7KReTMftq6WCAj1hJmVWN9lNaqirBLJZ+7h+uE0FGWVAABunryLMS/3gbl1/S+yb6sYloiIqE1RVihRJq+AQlaBMnk5FPIKKGTlyM6Wo7N7GawczPVdYoMEQYA0tQjJp+/ij5gMKIorVPsu77sF/2Ee6BnmA0cfWz1WWbeSQgWSjkqQGH0HCnmF2r77Cbn4adVveOS1fnDwstFThbrBsERERHohVAkoL6lUCzxl8goo5OUok1VUb5M/EIj+3F6pUNZ7zpRfTsIlwB5dBrnBd6AbbJwtWrFHDSspVOCPs/dx68xd5KfX/cL2SoUSN06k48aJdLj1cEBgWGf4DnCFkYl+Z80U3JMj/lAaUs7eg7JC/XabR5Aj8tJlKCsqR1FWCX566zeMXtgHPv1c9FRty2NYIiKiJhMEAZUKJSpKK1FeWomKsj+/Lqn8a9sD/19RVvlXMJJVBx+FvAKC0NKFAdm3CpB9qwAXdt2Ak58dugxyhe8gN9i5WbXwxRqnrKxCemw2bp25h/S4HAhK9Q4bmxr9GexccT8hD8ln7qKirDoMZt7IR+aNfFjam6HHWG/0GOMNy1YcNRMEAZk38hH/v1TcuZqttk9kLELXIe4ImdAFjr62kEtLEf3RFeRKZKgoVeLoR1cwcGY39JrkB5FI1Go16wrDEhERQVlZhTtXsyHPKa0ddEorUV72wNd/BqIWDzoNEBmLYGYlhrmNGGbWpjC3FsPMxhRm1mLV12lJ6ZCnKlFw769RG+ntQkhvF+LS3lvo5GNTHUwGuer8NlGupAi3Tt/FH+fuo0xWUWu/Szd7dBvpBb/BbjC1rJ6j5DvQDQNmdkPK2XtIPCpBwb1iAEBJgQJXv09B7A9/oMtANwSG+cC1u4POaq9SViHtUhbif0lFzu1CtX1iC2P0GOODoHGdYe3416idtZMFJr71EM58Go/UC5mAAFzaewt5d2QIfS4EJqbGOqu3NTAsERF1cCUFChzbdBXZyQWtcj2xhfFfgcfaVBWAzKzrCEN/BiSxhUmjIxRVrjIEvhSIgntypF7KRNrFLOSmFan2592RIe+ODFcOJMPOwwpdBrmhyyA3dOps0yKjH2VF5UiJuY/k03eRK5HV2m/ZyQwBwz3RbaQX7NzrHuUytTBB4COd0fNhH2Qk5iHxqASSy1kQBEBQCrh9PgO3z2egk48N7IPFCPCrhNi8ZX6VV5RV4tbpu7h+KA2ynFK1fVadzBE03hc9Rnupwt3fic1NMGZJH8T98AeufJcMAPgjJgOFmSV45NV+sOpk2HPJGsKwRETUgUnTChH90VUU55Y12tbEzBhiCxOYWphAbP7A1w/+v6UJxOYmde4TW5rAzEoMYx3Pv7H3tEZfT3/0/T9/FGWVIO1iJlIvZSIn5a9RksL7xYj74Q/E/fAHbFws4PtncHLuatek4FSlrEJ6XA6Sz9zDnavZqPr7bTaxEToPcEW3EZ7wCHGCkZFm5xaJRPAIcoRHkCPkuaW4cbx6HlNZUTmAmuAH3D11Et1GeqHnwz71BrDGlOSXIeHoHdw4dkdtsjkAdOpsg5DHuqDrQ+4azZsSiUToO9UfDl42OPXJNVQqlJDeLsQPb8bgkVf6wiVAdyNiusSwRETUQaVeyMDpHfGqCdNWncwxYEY3mNuZQmz+97BjDCPjtrc0n62rJXpN8kOvSX6Q55Yi7WIW0i5lIvNmPvBnrpFllyL+l1TE/5IKK0dz+A50RZdBbnDp5lBvuMm/K8Ot0/eQcvYeSgvLa+137mpXfZvtIXeYWWu3FIC1owUGzOiGvlO7IvVCJhKP3kF2SgEAoLykEtcPp+H64TR49XJCYFhnePVx1iiU5d+VqSZtV1WqhzyvXk4IeawLPIIdmzXq5jvQFZPXDsHRj65AnlOK0gIFfll3AcPDg9FthFeTz6dvDEtERB2MUCXg6n9TEPvfFNU2F397PPxqP1jam+mxMt2ydrRA8HhfBI/3RUmBAml/3qrLSMqDUFUdFopzy5AQJUFClAQW9mbwHeAK30GucO/ZCRWlSvzx230kn75Xay4PAFjYm8F/uAe6jfDUyZwoY7Ex/Id7wn+4J6S3CxHz3TXkJpaqnk67+7sUd3+XwsbZAj0f9kG3UV4wt1Ff80gQBGQk5SH+f6lIj81R22dkLELXYR4InuDbIssWdPKxwf+tG4pjm2ORmZSHqkoBZ3bEIz9djoFPdtd4lM0QMCwREXUgFWWVOL3jd6RdzFJt8x/ugeHhwW1+Em5TWNqbIfCRzgh8pDPKisohuZKF1ItZuH9dqrqVVlqgQNKxO0g6dgdm1mJUlFXWGoExMhahc39XBIz0hFcvp1YbfXPys4P/JCeEveSPW6fuIvHYHcj/nGckyynFxf/cxJUDyeg61B2BYZ3RyccGqRcyEf+/VEhTi9TOJbYwQc+HvRH0qG+LzysytzXFhDcG4rdvkpB07A4AIP5/qci/K8PoRX3axAKcAMMSEVGH8eDj3QAAETBoVneETOzSLh7vbi5zW1N0H+2N7qO9oSiuwJ2r2Ui7mIm7v0tVozZ/X4DR0dcW3UZ6outQj1qjN63J3MYUvSb5IfixLrgbl4PEoxLc/V0KAFBWVOHW6Xu4dfoeTC1NUF5SqXaslaM5gsf7ovuo+idttwQjEyMMWxAEB29r/PZNEgSlgLvXpPhpdfUClvYe1jq7dkthWCIi6gCybuUjeuNV1QRhsYVxu1s4sCWYWYkREOqJgFBPVJRVIj0uB6kXMnH39xyYmJmg6xB3BIz0NLjVtY2MRPDp5wKffi4ozChG0rE7uHX6riogPRiUHH1t0WtiF3QZ5Naqi10GPtIZ9p7WOP7vWCjkFSjMKMZPq3/DmMV94NXbudXqaA6GJSKiZlJWKCGXlqEoqwSy7BLVO7L8h3vAqYudnqv7y60zd3H28+uqW0g2LhYIe71/u3slRUsTm5vA7yF3+D3kru9SmsTO3QoPze6J/tMD8Me5+0g4egf56TJ49XZGr4ld4B7YSW8jiR6Bjvi/9UNx9KMryE+Xo7ykEkfev4xBT/VA8ARfgx3hZFgiImpAmbwcsuxStUAky67+nzy3TPVE1YOuH06DTz8X9JvmDyc//YWmqioBacfycf+8RLXNPbATxr7cV6+3jqh1iM1N0GOsD3qM9YGyQgljsWHMSbNxscSkNUNwevvvqjWkLuy+gbx0GYYtCDLIuXMMS0TUoVUpq1CcVzM6VDsU/X2eh6buXM3GnavZ8O7rjH6PB8C5lUNTeUkFTnx8Dfev/TWZt+cjPhgyu6fe3zNGrc9QglINUwsTPLy0L65+n4zYg38AAJLP3EPh/WI8/ErfVn2tiyYYloio3VNWVkGWXYLCjGIUZpZAciMXd366VB2IpKW13telCTNrMWxdLGHjYgkbV0vYuljAxtUSBffkuPbjbRTnVS/ymB6bg/TYnFYNTYUZxTj60RUU3q9+XYbISIQhc3si8JHOOr82kaZERiL0n94NDt42OL3jdyjLq5CdUoAfVsXgkVf7t/p/YDSEYYmI2gWhSkBxfll1IMooRlFmieprWU6pah2dv9T91vcaIhFg5WQBWxdL2LpawsbF4s//r/5ffY88ewQ6ovsoL9w8dbf+0DTNH85d7Vug17Xduy7Fic1xqpWYTSyMEPbqAHgEOerkekTa8nvIHbZulqqV5EvyFPhl7XmMeD4EXYd66Ls8AAxLRNTGlMnLUZRRjMKMEhRmFv85WlQdjmpWotaU2Nz4gZGhvwUiJ4tm364yFhsj8JHO6D7KC7dO30Pcj3+oXieiCk19nNF3mj9c/O2bdY2/EwQBSdF3qh/N/jMY2ntawW+KHYMSGTwnXztMWT8UxzfFIutWPpQVVTi59Rry0uUYMD1A3+UxLBGR4aksV1aPDNWEoT8DUeH94lrr3TTGxMwYdu5WsHOzgp2HFWzdLJFXko1egwNhbmuq06dvjMXG1Sspj/TErTP3EPfDA6EpLgfpcTnw6u2Mfo9rF5qqKqsQ83UibhxPV23z7uuM0Qt7IyUtWdtuELUKSzszTPjnQJz7KhG3Tt0FAFz78Q/kp8vgNla/K8szLBGRXgmCgKLMEmTeyENGUh6ybuZDJi2t8ymz+oiMRbB1sawORe5WsHOzhO2fX1vam9UKRImJhbCwa71/fI3Fxug51gfdRlSHpms//gG5tDo03b2Wg7vXcuDV2wn9pvk3+UWjZUXlqtdJ1AiZ2AUDZ7Wt10kQAdU/K6HPBsOxsw3Of3sDQpWAO1ezkXNHDF+PLrB1bd7LgrXFsERErUoQBBTckyMjKQ+ZSfnIvJGHkgKFRsdadTKHnXv16NBfwcgKNs7Nv2XWmlShaaQXkk/fRdyPtyGXVr+i4u41Ke5ek8KrlxP6TvOHa7fGQ1NeugzRH16B7M/XXBiZiBAaHoKAEZ467QeRLolEIgQ96gt7D2uc2FI9/65UWoGbJ+9i4KzueqmJYYmIdKqqSkDenSJkJuUj40Yesm7koUxW/600Y7EROvnY/BWG/gxEtm6WEJu3j3+yjE2M0GOsDwJGeiH5z9tzqtD058tQGwtNkitZOLXtGirKqudpWdiZ4pFX+zV5ZIrIUHmGOGHyv4YgeuMVCKZK9Nfj3KX28S8PERmMqsoqSNOKkJmUVx2ObuY3uFaR2NwYrt0c4NajE9x6doKzn63BrQmjK8YmRugxxhsBIzyR/OufoSlHPTR5hjih3+N/hSZBEPD7z7dxad8t1a1KR19bPPJaP1g7WuirK0Q6Yeduhclrh+BG0o1We0lxXRiWiEgrygolcv4oRMaN6ttqWbfyG3wqzdTSpDoY9XCAe89OcPS11es/gobA2MQIPUZ7o1todWiKfSA03YuX4l68FJ4hjug9pStunryLP87dVx3b5SE3jHy+F0zMOkbApI7H1FIMEwv9/v1mWCKiJqksVyI7uaB6ztGNPGQnF6jezF4Xc1tTuPWoHjly79kJDt42nHhcDyMTI3Qf7Y2A0L9GmmSq0JSLe/G5au37PxGAPlO7Guz7tIjaC4YlItKIskKJxKN3EPfDH6oFD+tiaW8Gt57VwcithwPsPa35y7yJ1ELT2XuIO/hXaAKql0MY+WIvdBnkpscqiToOgwtLSUlJiIqKQmxsLDIzM2Fra4ugoCCEh4fD29u7Sed6//338csvv2DIkCF477336m137949zJ07F+Xl5di5cyd69OihbTeI2g1BEHD7twxc3ndL7Rd2DWtnC7j36AS3ntWjR7aulgxHLcTIxAjdR3kjYLgnUs7ex/WoNIiMRBjxXAgcfW31XR5Rh2FwYWnPnj2Ij4/H6NGj0bVrV+Tm5uLgwYMIDw/H9u3b4efnp9F5bty4gcOHD8PUtPE3a3/88ccwNub9fqK/y0jKw8XdN5Bzu/CvjSLAb7A7vPs5w71HJ1g7cVKxrhmZGKHbKC90G+Wl71KIOiSDC0szZszA6tWrIRb/9d6lMWPGYP78+di9ezdWrVrV6DkEQcDmzZvx6KOP4urVqw22vXjxIi5duoQnn3wS33zzjdb1E7UHBffkuLj3Ju5cyVbb7hHsiEFPdYeTr+G84JKISNcMLiyFhITU2ubt7Q1fX19IJBKNznHkyBGkpqZi/fr1ePHFF+ttV1lZiS1btuCJJ56ApycXcSMqKVTg6oFk3Dx5V+3Fsw7e1hj0VA949XLiLTYi6nAMLizVRRAE5Ofnw9fXt9G2JSUl2LFjB55++mk4Ojb88sjvvvsOMpkMc+bMwZkzZ1qoWqK2R1lehdj/puD3X26rFjkEqidr958egICRXnyCjYg6rDYRlqKjo5GTk4MFCxY02jYyMhJmZmaYMWNGg+1yc3Px9ddf46WXXoKVlebvmpFKpcjN/evxXU1Hu4gMUVWVgOTTdxG79z7KZX+FJLG5MXpN8kPweN92s2o2EVFzGfy/ghKJBJs2bUJQUBDGjRvXYNv09HQcOHAAq1evbnRi944dO+Dh4YGJEyc2qZ6ffvoJkZGRtbanpqZCqax/Ib72Qi6XIzExUd9ltIr23FdBEFDwRxkkx/NRkvPAMgAiwLWvNbxH2MPUuhzJt2/pr0gdas+f7d+xr+1XR+qvrvoaGBioUTuDDku5ublYsWIFrKyssG7dukafWNuyZQuCg4MxatSoBtslJCTg6NGj2LRpE4yMmrZy8OTJkzFs2DDV9xKJBOvXr0eXLl3Qvbt+XvDXmhITEzX+y9XWtde+StMKcXH3TdxPUF/g0Ke/CwbN6g57T2s9VdZ62utnWxf2tf3qSP3Vd18NNizJ5XIsX74ccrkcW7duhZOTU4Ptr1y5ggsXLmD9+vXIyMhQbVcqlVAoFMjIyICtrS2srKywfft29OrVC+7u7qq2BQUFAKoDWlZWFlxdXeu8jpOTU6O1EBkiubQUl/ffQsq5+6p3igGAs58dXIaZY8j4fvorjojIgBlkWFIoFFi5ciXS09OxceNGjSZ2Z2dXP+L85ptv1tqXk5ODmTNnYtGiRZgxYways7ORmZmJmTNn1mr7xhtvwNraGocOHdK6H0SGoLykAnE/3kZCVJraa0lsnC0wYGY3+D3kjqQbSXqskIjIsBlcWFIqlVizZg0SEhKwYcMGBAcH19lOKpWiuLgYnp6eMDExQb9+/fD222/XavfBBx/Azc0Ns2fPVi1o+frrr0OhUKi1u3r1Kr7//nu89NJL6Ny5c8t3jKiVKSurkHTsDmL/mwKF/K95SWZWYvT5v64IDPOBsZiLsRIRNcbgwtK2bdtw7tw5DB06FDKZDEePHlXbHxYWBgDYuXMnoqKisG/fPri7u8PV1bXOW2cff/wxHBwcEBoaqto2aNCgWu3kcjkAoE+fPnzdCbVpgiAg7WImLu29haKsEtV2IxMRgh71RZ8pXWFmLW7gDERE9CCDC0spKSkAgJiYGMTExNTaXxOWiDoyoUpASX4ZirJLUJRVgqLMkuqvM0sgyy5BeUmlWvuuQ90xYEY32LhY6qliIqK2y+DC0pYtWzRqFxERgYiIiEbb7d+/X6PzjR8/HuPHj9eoLVFrqKqsgkxaiqKsEsiy/gxFf/5Pll2iNv+oPm49O2HwP3rA2Y+vJyEiai6DC0tEHUlFWSVk2aV/hqBiVRAqyiyBPLdM7ZUjmhCJACsnC9h7WKHnwz7w6efC15MQEWmJYYmold27LsW1H2+j4J4cJQWKxg/4G2OxEaydLWDravnA/6xg62oJa2cLGJs0be0wIiJqGMMSUSsRBAHXD6Xh4p4bEBoZMBJbmFSHIBdL2LpZwuaBr60czCHie9qIiFoNwxJRK6gsV+LcFwlI/vWeapu5jRi27lbVIeiBUSIbV0uY25jy9hkRkYFgWCLSseL8MhzbeBU5fxSqtvWd2hX9Hg/gCBERURvAsESkQ9kpBTi28apqbpKJmTFGPB8Cv4fc9VwZERFpimGJSEdunbmLs59fR1Vl9QQlaycLPPJqPzj62uq5MiIiagqGJaIWVqWswsU9N3H9cJpqm1vPThj7ch9Y2JrprzAiImoWhiWiFqSQV+DEx7G4F5+r2tbzYR8MmdMTRnykn4ioTWJYImoh+XdliP7oqup9bCJjEYbOC0TPsT56royIiLTBsETUAiRXsnDqk2uoKFUCAMxtTfHw0r5w69FJz5UREZG2GJaItCAIAq79eBuXv7sF/LnQpGNnGzz8an/YOFvotzgiImoRDEtEzVRRVokzO+ORej5Tta3LQ24Y8VwIxOb80SIiai/4LzpRM8ilpYj+6ApyJbLqDSJgwPRu6D3FjytvExG1MwxLRE2UeSMPx/4di7KicgCA2MIYo17qjc79XfVcGRER6QLDElETJB2/g5jIRAjK6glKtq6WeOS1fnDwstFzZUREpCsMS0QaqKqswm/fJCHp2B3VNs8QR4xe3Afm1qZ6rIyIiHSNYYmoEaVFChz/dywyb+SrtgWP98Wgp7rDyJgLTRIRtXcMS0QNyJUUIfqjq5BLSwEARiYiDA8PRrcRXnqujIiIWgvDElE9pEnFuPjLeVQqqheatLQ3w8Ov9oOLv71+CyMiolbFsET0N0KVgKvfJ+PWQalqm3NXOzz8aj9YOZjrsTIiItIHhiWiv/n9l9uIPfiH6nv/4R4YHh4ME1NjPVZFRET6wrBE9ID8uzJcOZCs+n7wP3ogeIIvF5okIurAGJaI/lSlrMKZHfGoqqxeQ8ljiC1CHuui56qIiEjf+Nwz0Z/iD6Uh53YhAMDOwwo+I+31WxARERkEhiUiAPn35Lj65+03kQgY+XwIjEx4642IiBiWiFBVJeDXT+OhrKgCAARP6AKXAAc9V0VERIaCYYk6vOuH05CdUgAAsHO3Qv/pAfotiIiIDArDEnVohRnFuLL/VvU3IiD0uRAuEUBERGoYlqjDqqoScObB22/jfOHWnbffiIhIncEtHZCUlISoqCjExsYiMzMTtra2CAoKQnh4OLy9vZt0rvfffx+//PILhgwZgvfee0+1vbCwEIcOHcK5c+cgkUigVCrh4+OD6dOnY+zYsS3dJTJQiUfSkHWr+uW4tq6WGDCjm54rIiIiQ2RwI0t79uzB6dOn0b9/fyxZsgSTJk3CtWvXEB4ejtu3b2t8nhs3buDw4cMwNTWttS8hIQGfffYZbG1tMWfOHISHh8PMzAxr167Fl19+2ZLdIQNVmFmMS/tuqb4PfS4EJma8/UZERLUZ3MjSjBkzsHr1aojFYtW2MWPGYP78+di9ezdWrVrV6DkEQcDmzZvx6KOP4urVq7X2+/r6Ys+ePXBzc1Ntmzp1Kl555RXs2bMHTz75JCwsLFqmQ2RwhCoBv+6Mh7K8+vZb4KOd4d6zk56rIiIiQ2VwI0shISFqQQkAvL294evrC4lEotE5jhw5gtTUVDz77LN17vfw8FALSgAgEokQGhqK8vJy3L9/v3nFU5uQGC1B5o3q2282zhYYOJO334iIqH4GF5bqIggC8vPzYWdn12jbkpIS7NixA08//TQcHR2bdJ28vDwA0Og61DYVZZXg0l71229ic4MbYCUiIgPSJn5LREdHIycnBwsWLGi0bWRkJMzMzDBjxowmXaOoqAi//PILevXqBScnp3rbSaVS5Obmqr7XdLSL9E+oEvDrZ/GoVCgBAD0f8YFHUNMCNRERdTwGH5YkEgk2bdqEoKAgjBs3rsG26enpOHDgAFavXl3nxO76VFVVYd26dZDL5Vi6dGmDbX/66SdERkbW2p6amgqlUqnxNdsquVyOxMREfZfRLJlXZMhIrB49NLMzhm1focG+tOW+NlVH6ivQsfrLvrZfHam/uuprYGCgRu0MOizl5uZixYoVsLKywrp162Bs3PDTSlu2bEFwcDBGjRrVpOv8+9//xoULF/DPf/4T/v7+DbadPHkyhg0bpvpeIpFg/fr16NKlC7p3796k67ZFiYmJGv/lMiSynBJcPHFW9f2Yhf3gGVz/CCLQdvvaHB2pr0DH6i/72n51pP7qu68GG5bkcjmWL18OuVyOrVu3NnhrDACuXLmCCxcuYP369cjIyFBtVyqVUCgUyMjIgK2tLaysrNSO++qrr/DDDz/g+eefx6OPPtpoXU5OTo3WQoZFEAT8uvO66vZbjzHejQYlIiKiGgYZlhQKBVauXIn09HRs3LgRvr6+jR6TnZ0NAHjzzTdr7cvJycHMmTOxaNEitblM//3vf/HVV19h+vTp+Mc//tFi9ZNhuXkiHfcTqueZWTmaY9BT7X8EkIiIWo7BhSWlUok1a9YgISEBGzZsQHBwcJ3tpFIpiouL4enpCRMTE/Tr1w9vv/12rXYffPAB3NzcMHv2bPj5+am2Hz9+HFu2bMEjjzyCRYsW6aw/pF9yaSku7Lmh+j702WCYWoobOIKIiEidwYWlbdu24dy5cxg6dChkMhmOHj2qtj8sLAwAsHPnTkRFRWHfvn1wd3eHq6srXF1da53v448/hoODA0JDQ1XbEhMTsWHDBtja2qJ///6Ijo5WOyY4OBgeHh466B21JkEQ8Otn11FRWn37rdsoL3j1ctZzVURE1NYYXFhKSUkBAMTExCAmJqbW/pqwpA2JRIKKigoUFBTg3XffrbX/jTfeYFhqB26duot78VIAgFUnczz0dA89V0RERG2RwYWlLVu2aNQuIiICERERjbbbv39/rW3jx4/H+PHjm1wbtR3FuaU4v+uv22/Dw3n7jYiImqdNrOBN1BSCIODXzxNQUVoJAAgY4QnvPrz9RkREzcOwRO1O8pl7uHstBwBg6WCGh57uqeeKiIioLWNYonalOK8M579NUn0//JlgmFnz9hsRETUfwxK1G4Ig4OwX11FeUn37zX+4B3z6uei5KiIiausYlqjdSDl3H+mx1bffLOzN8NAc3n4jIiLtMSxRu1CSX4bzXz9w+21BEMytNX+ZMhERUX0YlqjNEwQB575MgKK4AgDQdag7Og+ovUApERFRczAsUZt3+7cMSK5UvxvQ3NYUQ+Z2jLdwExFR62BYojatpFCBmMhE1ffDFgTB3Ia334iIqOUwLFGbJQgCYr5MgEJeffuty0Nu6DLITc9VERFRe8OwRG1W6oVMpF3KAgCY24gxdB5vvxERUctjWKI2qbRIgZivElTfD50fBAtbMz1WRERE7ZXBvUiXqDEl+WU4+0UCymTVt998B7nC7yF3PVdFRETtFcMStQnlpZWQXMpCyrn7uH9dCkGo3m5mLcbQ+UH6LY6IiNo1hiUyWFXKKtz7XYqUc/eRdjkLyvIqtf1GxiKEPhsMSzvefiMiIt1hWCKDIggCcv4oRMq5+7j9WwbKisprtbFxtoD/cA/4D/eEnbuVHqokIqKOhGGJDEJRVjFSzt1Hytn7KMosqbXfzFoMv4fc4T/cAy4B9hCJRHqokoiIOiKGJdKbsqJy3L6QgZSz95GdXFBrv7HYCD79XOA/3ANevZ1hbMKHN4mIqPUxLFGrqixX4s7VbKScvY/0azkQlIJ6AxHgEeiIrsPc0WWQG0wtxfoplIiI6E8MS6RzVVUCMpPykHL2HlIvZqKiVFmrjYO3DQKGe6DrUHdYOVrooUoiIqK6MSyRzuTeKULK2fv4I+Y+SvIUtfZbdjKD/zAPdB3mAUcfWz1USERE1DiGJdKJMzvjcevU3VrbxRYm6DLYDf7DPODWsxOMjDhRm4iIDBvDErW4gvtytaAkMhbBu48z/Id5wKefC0xMjfVYHRERUdMwLFGLu/lAUOr5iA/6Px4Ac1tTPVZERETUfHwWm1pUVWUVks/cA1C9wna/x/0ZlIiIqE1jWKIWdSc2W7XqducBrrCw5atIiIiobWNYohZ18+Rft+C6j/LSYyVEREQto0lzluLi4pp9oT59+jT7WGobinNLcfdaDgDA2skcHiFOeq6IiIhIe00KSy+//HKz38l16tSpZh1HbcetM/cg/Lkgd7eRXlwWgIiI2oUmhaW5c+fWCkuJiYm4ePEivLy8EBISAgcHB+Tn5+P69etIT0/HoEGDEBgY2KJFk+ERqoS/noITVYclIiKi9qBJYWnBggVq31+7dg27d+/GsmXL8Nhjj6kFKUEQ8PPPP2PLli2YPXu2xtdISkpCVFQUYmNjkZmZCVtbWwQFBSE8PBze3t5NKRfvv/8+fvnlFwwZMgTvvfderf1nz57FV199BYlEAnt7e0yYMAFz5syBiQlXVGiq+wm5kOeUAgC8Qpxg7cRXlhARUfug1QTvL774Ag899BAmTpxYa8RJJBJh8uTJGDx4ML744guNz7lnzx6cPn0a/fv3x5IlSzBp0iRcu3YN4eHhuH37tsbnuXHjBg4fPgxT07ofWz9//jz++c9/wtraGi+//DJCQ0PxzTffYPPmzRpfg/7y4NpK3UdzVImIiNoPrYZQbt68iSeeeKLBNr6+vjhw4IDG55wxYwZWr14Nsfivt82PGTMG8+fPx+7du7Fq1apGzyEIAjZv3oxHH30UV69erbPNJ598gq5du+Kjjz5SjSRZWlpi165deOKJJ9C5c2eNa+7oymTlSLuUCQAwtxHDp7+rnisiIiJqOVqNLInFYiQnJzfY5tatW2rBpzEhISG12nt7e8PX1xcSiUSjcxw5cgSpqal49tln69yflpaGtLQ0TJo0Se2W29SpUyEIAiejN1HK2fuoqqye2e0f6gljE65IQURE7YdWv9UGDhyIixcvYteuXaioqFDbV1FRgV27duHSpUsYNGiQVkUKgoD8/HzY2dk12rakpAQ7duzA008/DUdHxzrb3Lp1CwDQvXt3te1OTk5wdnZuNADSXwRBwM1T6arvubYSERG1N1rdhnvxxRfx+++/4/PPP8eBAwfQo0cP2Nvbo6CgADdu3EBBQQEcHR3xwgsvaFVkdHQ0cnJyak0wr0tkZCTMzMwwY8aMetvk5uYCQJ1hytHRUbW/LlKpVG2/pqNd7VXOH4XIT5cDAFy62cPBy0bPFREREbUsrcKSi4sLdu7ciU8//RQnT57Eb7/9ptpnamqKsLAwPP/88/WO8GhCIpFg06ZNCAoKwrhx4xpsm56ejgMHDmD16tX1TuwGgPLyclWNf2dqaoqSkpJ6j/3pp58QGRlZa3tqaiqUSmWD9bUHcrkciYmJqu//+N9fwdGmm7Havrbu731tzzpSX4GO1V/2tf3qSP3VVV81XdpI62fkHR0dERERgeXLl+POnTsoLi6GlZUVvL29mzRXqS65ublYsWIFrKyssG7dOhgbGzfYfsuWLQgODsaoUaMabFcTkmpC04PKy8thZlb/+8wmT56MYcOGqb6XSCRYv349unTpUuu2XnuUmJio+stVUVaJS0knAABic2MMn9YPYvP2s+zCg31t7zpSX4GO1V/2tf3qSP3Vd19b7DebiYkJ/Pz8Wup0kMvlWL58OeRyObZu3Qonp4ZfnXHlyhVcuHAB69evR0ZGhmq7UqmEQqFARkYGbG1tYWVlpRrpys3Nhaur+pNbubm56NmzZ73XcXJyarSWjiL1fCYqyqpH0/yGeLSroERERFSjxX67xcfHIzk5GSUlJbC0tERAQABCQkKadS6FQoGVK1ciPT0dGzduhK+vb6PHZGdnAwDefPPNWvtycnIwc+ZMLFq0CDNmzEBAQACA6qUPHkyqUqkUOTk5mDx5crPq7mhuPDixm2srERFRO6V1WIqPj8e7776Le/fuAah+OqpmgUovLy+sXLkSwcHBGp9PqVRizZo1SEhIwIYNG+o9ViqVori4GJ6enjAxMUG/fv3w9ttv12r3wQcfwM3NDbNnz1aNfHXp0gU+Pj74+eefMXnyZNXtvR9++AEikQgjR45s0p9BR5R/V4bsWwUAAAdvazh3bfxJRSIiorZIq7CUmpqK119/HWVlZRgwYAD69u0LR0dH5OXlITY2FpcuXcLrr7+OHTt2aDQ6BADbtm3DuXPnMHToUMhkMhw9elRtf1hYGABg586diIqKwr59++Du7g5XV9dat9QA4OOPP4aDgwNCQ0PVtr/00kt444038Nprr2Hs2LG4ffs2Dh48iIkTJ2pca0emtmL3KO9mv2CZiIjI0GkVliIjI1FRUYH3338fgwcPVtv3j3/8AxcuXMAbb7yByMhIrFmzRqNzpqSkAABiYmIQExNTa39NWNLW0KFDsX79ekRGRmLz5s2ws7PD008/jXnz5rXI+dszZWUVUn6tHkk0MhHBf7iHnisiIiLSHa3CUlxcHEaNGlUrKNUYPHgwRo0ahStXrmh8zi1btmjULiIiAhEREY22279/f737QkNDa404UePuXMlCmax6EVLfAW4wt6l/mQYiIqK2TqsVvIuLi+Hu7t5gG3d3dxQXF2tzGTIwN0/ypblERNRxaBWWHB0dkZCQ0GCbxMRErRalJMOiKKzE3XgpAMDa2QIeQfxsiYiofdMqLA0bNgxxcXH4/PPPoVAo1PYpFAp8+eWXiI2NxfDhw7UqkgxH9jU5UP3OXHQf5QWRESd2ExFR+6bVnKW5c+fit99+w65du/DTTz+hZ8+ecHBwQH5+vurdcB4eHpg7d25L1Ut6VFUlICuu+j1wIhHQbYSnnisiIiLSPa3Ckp2dHbZv344dO3bg+PHjOH/+vGqfqakpxo8fjxdeeAG2trZaF0r6dz9eivKi6hW7vXo7w8rRQs8VERER6Z7Wi1La29tj5cqVeP311yGRSFQreHfu3BkmJnz9RXuitrYSJ3YTEVEH0aLvhuvatWtLnY4MTGmRApLLWQAAc1tT+PR10XNFRERErcMg3w1Hhifl1/uoUlbP7A4Y4QkjE62eDSAiImozDO7dcGR4BEH42+tNeAuOiIg6DoN7NxwZnuzkAhTcq34KzsbbDPYe1nquiIiIqPUY3LvhyPA8OKrk2odBiYiIOhatJp5o+m642NhYbS5DelReWonbv2UAAMQWJnDsaannioiIiFoX3w1HDbp9PgOViuq1lboOdYexKSd2ExFRx8J3w1GDbp5MV33dfbS3HishIiLSD74bjuqVly5DTkohAKBTZxs4deFK7ERE1PHw3XBUr1tqywV4q5aEICIi6kj4bjiqk7JCieRfq9fOMhYbwX+Yh54rIiIi0g++G47qlHY5Gwp5BQDAd6ArzKzFeq6IiIhIP/huOKrTrVOc2E1ERARoOcGb2idZdgnuxecCAGxdLeHes5OeKyIiItIfrUeWLl++jH379uHGjRuQy+UQBKFWG5FIhJMnT2p7KWolt07/NbG720gviIw4sZuIiDourcLSqVOnsHbtWlRVVcHV1RWdO3eGsbFxS9VGelBVJeDW6eqJ3SIREDDSU88VERER6ZdWYenrr7+GqakpNmzYgP79+7dUTaRH936XojivDADg3dcFVg7meq6IiIhIv7Sas5Seno6xY8cyKLUjait2j/LSYyVERESGQauwZGtrCzMzs5aqhfSspFABydVsAICFvRm8+zjruSIiIiL90yosjRw5EleuXEFlZWVL1UN6lPLrPQjK6gn63UZ4wsiED0sSERFp9dvwueeeg7W1NdasWYOsrKyWqon0QBAE3Dyp/hQcERERNXGC98yZM2ttq6ysRGJiIs6ePQtra2tYWVnVaiMSibB3797mV0k6l3UzH4UZxQAAt56dYOde+3MkIiLqiJoUlupaQ8nY2BguLi4NtqlrGxmWmw++NHc0R5WIiIhqNCks7d+/X1d1kB6Vl1Qg9UImAMDU0gRdBrnpuSIiIiLDYXBvuk1KSkJUVBRiY2ORmZkJW1tbBAUFITw8HN7eDb+jLC4uDnv37kVycjIKCwthbW0Nf39/zJ07FyEhIWptq6qq8PPPP+PHH3/EvXv3YG5ujm7dumHOnDm12rZ3f/yWgUqFEgDQdZgHTEy5sCgREVENg3vcac+ePTh9+jT69++PJUuWYNKkSbh27RrCw8Nx+/btBo+9e/cujIyMMGXKFCxduhQzZ85EXl4eFi9ejAsXLqi1/eSTT/DRRx/Bz88PCxcuxMyZM5Geno4lS5YgMTFRl100OA9O7OYtOCIiInVNGlmKjIyESCTC1KlTYWtri8jISI2OE4lEmDt3rkZtZ8yYgdWrV0MsFqu2jRkzBvPnz8fu3buxatWqeo+dOHEiJk6cqLZt6tSpmDVrFr777jsMHjwYQPWk9B9//BGjRo3Cm2++qWo7atQozJo1C9HR0QgMDNSo3rYuV1IE6e1CAICjry2cfO30XBEREZFhaVJY+uqrryASiTBmzBjY2triq6++0ui4poSlum6BeXt7w9fXFxKJpCnlAgDMzc1hZ2cHuVyu2qZUKqFQKODg4KDW1sHBAUZGRh1qoU1O7CYiImpYk8LS5s2bAUD19FvN97omCALy8/Ph6+urUfvi4mJUVFSgsLAQR44cQWpqKmbPnq3ab2ZmhsDAQERFRSEoKAi9e/eGXC7H119/DRsbG0yePFlHPTEsleVKpPxa/dJcY7ERug710HNFREREhqdJYalPnz4Nfq8r0dHRyMnJwYIFCzRq/9Zbb+HixYsAALFYjMmTJ2POnDlqbd58802sWbMG69evV23z8PDAtm3b4OFRf2iQSqXIzc1Vfd+c0S5DkXYpC+Ul1auvdxnsBjMrcSNHEBERdTwiwcAXQZJIJHjhhRfg6+uLrVu3wti48Se1kpOTUVBQgOzsbERFRcHT0xNLliyBpaWlqk1eXh62b98OS0tL9O/fH3l5edi9ezfMzMywdetW2Nvb13nuL7/8ss65WhEREfDx8WluN/UiYVcWCtPKAABBs11h19m80WPkcjmsra11XZpBYF/br47UX/a1/epI/dVVXzWdn2zQYSk3NxcLFy5EZWUlduzYAScnpyafo6KiAuHh4fDx8cG6desAVE/wfuaZZ9C3b18sXbpU1TY9PR1z587F9OnT8eKLL9Z5vrpGltavX4/PPvsM3bt3b3J9+lKUVYz9r5wBANi6WWL6RyMgEokaPS4xMbHDTH5nX9uvjtRf9rX96kj91Xdfm3QbbuTIkRr9Qv07kUiEkydPNukYuVyO5cuXQy6XY+vWrc0KSkD1bbhhw4Zh9+7dUCgUMDMzw7Vr15CamopFixaptfX29kbnzp1x/fr1es/n5OTU7FoMya3T91Rfdx/l1azPlYiIqCNoUljq3bt3q/xSVSgUWLlyJdLT07Fx40aNJ3Y3dD5BEFBSUgIzMzPk5+cDqF6Y8u8qKyuhVCq1ul5bkHkjT/V1QKinHishIiIybE0KS1u2bNFVHSpKpRJr1qxBQkICNmzYgODg4DrbSaVSFBcXw9PTEyYm1d3Iz8+vtRyATCbD6dOn4eLiotpXsxL48ePHVWsvAcDNmzeRnp6OSZMm6aJrBqUoswQAYG5rCkuHxucqERERdVQG97qTbdu24dy5cxg6dChkMhmOHj2qtj8sLAwAsHPnTkRFRWHfvn1wd3cHACxbtgzOzs4IDAyEg4MDsrKycOjQIeTm5mLNmjWqc3Tv3h0DBgxAVFQUiouLMWjQIOTm5uL777+HmZkZpk+f3mr91YeKskqUFCgAVM9XIiIiovq1WFhKS0uDRCJBWVkZHn300WafJyUlBQAQExODmJiYWvtrwlJdJkyYgBMnTmD//v2Qy+WwsbFBYGAgVq9ejd69e6u1feedd7B3714cP34cFy9ehFgsRq9evfDMM8+0uafamqoou0T1tZ2rlR4rISIiMnxah6WkpCR88MEHau9tqwlLcXFxWLZsGd566y0MHz5co/NpeqsvIiICERERatumTZuGadOmaXS8mZkZ5s6dq/HK4u1JzS04ALB15cgSERFRQ7R6kW5qaiqWLl2KjIwMTJ8+XW3+D1A9IdzOzg6nTp3S5jLUwmRZD4Ql3oYjIiJqkFZh6csvvwQAfPbZZ1i4cCF69Oihtl8kEiEoKAg3btzQ5jLUwooeCEs2LgxLREREDdEqLMXFxWHkyJHw8qr/Bayurq5qiziS/hVxZImIiEhjWoWl0tLSWo/q/51CoahzPSPSn6KsYgCAmZUY5tameq6GiIjIsGkVlpydndUmdtfl1q1bDb6YllqXskIJeW71++A4uZuIiKhxWoWloUOH4tKlS7h8+XKd+0+cOIHExESEhoZqcxlqQbLsUuDPtwHyFhwREVHjtFo6YPbs2Th16hSWL1+OcePGIS+v+hUaBw8eREJCAo4fPw43NzfMmDGjRYol7anNV+LIEhERUaO0Ckv29vb4+OOPsX79evzvf/9Tbf/3v/8NAKoFIa2trbUqklpOzXwlALBhWCIiImqU1otSenh44JNPPkFycjISExNRVFQES0tLBAYGomfPni1RI7Ug9QUpuXo3ERFRY7QKS2fOnMGIESMAAAEBAQgICKiz3ccff4zFixdrcylqIVw2gIiIqGm0muC9bt06XLt2rcE2H3/8Mb7//nttLkMtqCYsic2NYWHLZQOIiIgao1VY8vDwwBtvvFHv8gFbt27FgQMHNH4vHOlWVWUVZNJSANWTu0UikZ4rIiIiMnxahaUPPvgAlpaWWLZsGbKystT2ffLJJ/juu+8wfPhwrF27VqsiqWXIc0shKKvXDeDkbiIiIs1oFZZcXFzw4YcfQqFQ4LXXXkNhYSGA6qC0b98+DB06FGvXroWxsXGLFEva4eRuIiKiptMqLAGAr68v3nvvPeTk5GDZsmXYunUr9u3bhyFDhmDdunUwMdH6gTtqIZzcTURE1HRahyUACAoKwpo1a5CSkoIDBw7goYcewvr16xmUDAwXpCQiImq6JqWZqKioBvcPHDgQiYmJGDZsGI4dO6a2b9y4cU2vjlrUg2HJjmGJiIhII00KS++8806dT1AJggCRSARBqJ48vHHjRrVtIpGIYckA1KzebSw2gqWDuZ6rISIiahuaFJZWrlypqzpIx6qqBNXIko2LJURGXDaAiIhIE00KS+PHj9dVHaRjJXllqKqsHvnj5G4iIiLNtcgEbzJ8nNxNRETUPAxLHQTDEhERUfM06TbcyJEjYWRkhG+++Qbe3t4YOXKkRq/MEIlEOHnyZLOLJO3VTO4GGJaIiIiaoklhqXfv3hCJRDAzM1P7ngwfV+8mIiJqniaFpS1btjT4PRmumttwImMRrJ24bAAREZGmOGepAxCEB5YNcLaAkTE/diIiIk3xt2YHUFpYjkqFEgBvwRERETVVk27DRUZGNusiIpEIc+fObdaxpL2iTE7uJiIiaq4mhaWvvvqqWRdhWNIvLhtARETUfE0KS5s3b9ZVHaRDamGJq3cTERE1SZPCUp8+fXRUBumS+rIBDEtERERN0aSw1BqSkpIQFRWF2NhYZGZmwtbWFkFBQQgPD4e3t3eDx8bFxWHv3r1ITk5GYWEhrK2t4e/vj7lz5yIkJKRW+4qKCuzduxdHjhxBZmYmrKys0L17d7z++utwcXHRVRdbXVH2n8sGiKqfhiMiIiLNaRWWsrKyGm0jEolgZWUFKyvNnsLas2cP4uPjMXr0aHTt2hW5ubk4ePAgwsPDsX37dvj5+dV77N27d2FkZIQpU6agU6dOkMlkiI6OxuLFi/Hee+9h8ODBqraVlZVYsWIFrl+/jokTJ6Jr166QyWRISkpCcXFxvddoawRBUE3wtnKygLHYWM8VERERtS1ahaUZM2ZovIK3vb09RowYgXnz5qFTp04NnnP16tUQi8WqbWPGjMH8+fOxe/durFq1qt5jJ06ciIkTJ6ptmzp1KmbNmoXvvvtOLSzt378fcXFx2Lp1KwIDAzXqQ1ukkFegvKQSAGDrwltwRERETaXVOkuPPvooevXqBUEQYG1tjT59+mDMmDHo06cPbGxsIAgCevfujYceegimpqb48ccf8eyzz0IqldZ7zpCQELWgBADe3t7w9fWFRCJpco3m5uaws7ODXC5XbauqqsKBAwcQGhqKwMBAVFZWoqysrMnnbgs4uZuIiEg7Wo0sPfnkk1i4cCHmzp2Lp556Cubmf71GQ6FQYM+ePThw4AC2bdsGHx8f7Nq1C1988QW++eYbvPrqqxpfRxAE5Ofnw9fXV6P2xcXFqKioQGFhIY4cOYLU1FTMnj1btT8tLQ1SqRRdu3bFBx98gKioKFRUVMDPzw9LlixBv379NK7N0HGNJSIiIu1oFZa2b9+OwMBALFiwoNY+MzMzzJ8/H4mJidixYwfeffddzJkzB+fOncP58+ebdJ3o6Gjk5OTUeZ26vPXWW7h48SIAQCwWY/LkyZgzZ45q/927dwEA3333HWxsbPD6668DAL799lssW7YMO3fuRNeuXes8t1QqRW5urur75ox2taaayd0AV+8mIiJqDq3C0vXr1zF16tQG23Tr1g0HDx5UfR8YGIiff/5Z42tIJBJs2rQJQUFBGDdunEbHPP/885g5cyays7MRFRWFyspKKJVK1f7S0lIAQElJCT7//HO4uroCAPr164cnn3wSe/bsqXdu1E8//VTnSuapqalq1zAU6Tf/uuWZU5yBksTcBlo3Ti6XIzExUduy2gT2tf3qSP1lX9uvjtRfXfVV0znLWoWlqqoq3Lt3r8E2d+/ehSAIqu+NjY1hamqq0flzc3OxYsUKWFlZYd26dTA21uxJroCAANXXYWFhCA8PxzvvvIN169YBqB71AoDg4GBVUAIAV1dXhISE4Pr16/Wee/LkyRg2bJjqe4lEgvXr16NLly7o3r27RvW1ppR9v6m+7jskBCZm2j0Nl5iY2K4nxD+IfW2/OlJ/2df2qyP1V9991SoshYSE4PTp0zh+/DjGjh1ba//Jkydx5swZDBgwQLXt7t27cHR0bPTccrkcy5cvh1wux9atW+Hk5NSsGsViMYYNG4bdu3dDoVDAzMxMdf26nspzcHBAcnJyvedzcnJqdi36UDPB29LBTOugRERE1BFpFZZeeOEFLFy4EOvWrcOePXsQEhICBwcH5Ofn4/r160hJSYG5uTleeOEFAEBhYSEuX76Mxx57rMHzKhQKrFy5Eunp6di4caPGE7sbOp8gCCgpKYGZmRm6du0KExMT5OTk1GorlUphb2+v1fUMRXlJBcqKygFwcjcREVFzaRWWunbtiq1bt+Lf//434uPjkZKSorY/JCQEL7/8smqytLW1NX744Qe1p+b+TqlUYs2aNUhISMCGDRsQHBxcZzupVIri4mJ4enrCxKS6G/n5+XBwcFBrJ5PJcPr0abi4uKj2WVpa4qGHHsJvv/0GiUSCzp07A6h+Si4hIQGTJk1q3h+IgVFfNoCTu4mIiJpD69ed+Pv7Y+vWrcjKykJKSgqKi4thZWUFf39/tflAQPV8JWtr6wbPt23bNpw7dw5Dhw6FTCbD0aNH1faHhYUBAHbu3ImoqCjs27cP7u7uAIBly5bB2dkZgYGBcHBwQFZWFg4dOoTc3FysWbNG7TzPPfccrly5gqVLl+Lxxx8HAHz//fewsbFRW2agLVMLSxxZIiIiapYWezecq6trrXDUHDWjUzExMYiJiam1vyYs1WXChAk4ceIE9u/fD7lcDhsbGwQGBmL16tXo3bu3WltfX19s2bIFn376Kb799luIRCL069cPL774IpydnbXuhyFgWCIiItJei4WlnJycWiNLzQkdW7Zs0ahdREQEIiIi1LZNmzYN06ZN0/ha3bt3x8aNG5tUX1vCsERERKQ9rcPS3bt3sXHjRly9erXWvn79+uHVV1+Fl5eXtpehZuDq3URERNrTKixlZWVh0aJFyM/Ph4+PD3r37g1HR0fk5eXh2rVruHLlChYtWoRPP/20RW7RUdPUjCyZ25rC1FLcSGsiIiKqi1ZhKTIyEvn5+Xj11VcxefJkiEQitf0//vgjNm7ciK+//hrLly/XqlBqmkqFEiX5CgAcVSIiItKGVmHp4sWLGDp0KKZMmVLn/ilTpuD8+fO4cOGCNpehZlB/JxzDEhERUXMZaXNwQUEB/Pz8Gmzj5+eHgoICbS5DzVCUybBERETUErQKS/b29khLS2uwTVpaWrtZEbstKcri5G4iIqKWoFVYGjhwIM6dO4dffvmlzv3/+9//EBMTg0GDBmlzGWoGrt5NRETUMrSaszR//nzExMTgww8/xHfffYc+ffqgU6dOqqfh0tLSYGdnh3nz5rVQuaQprrFERETUMrQKS66urti2bRs+/PBDxMXF1bol17dvX7z22mtcNkAPasKSqaUJzKy5bAAREVFzab0opbe3NzZv3qzRu+GodSgrlCiWlgKoHlX6+5IOREREpDmDezccaU+WUwpBqP7a1pXzlYiIiLTRpLD07rvvNvtCK1eubPax1DTqk7s5X4mIiEgbTQpLhw8fbtZFRCIRw1Ir4uRuIiKiltOksLRv3z5d1UEtiGGJiIio5TQpLLm5uemqDmpBXL2biIio5Wi1KCUZpprVu03MjGFhb6bnaoiIiNo2hqV2pkpZBVkOlw0gIiJqKQxL7YxcWgZBWb1uAG/BERERaY9hqZ0pyuayAURERC2JYamdKcosVn1t68KwREREpC2GpXZGfUFKrt5NRESkLYaldoZrLBEREbUshqV2pmaNJWOxEaw6meu5GiIioraPYakdEaoEyP6c4G3jYgGREZcNICIi0hbDUjtSkl8GZUUVAMCGk7uJiIhaBMNSO1L4wHwlO07uJiIiahEMS+0IJ3cTERG1PIaldoQv0CUiImp5DEvtiCyLq3cTERG1NIaldqQoq3r1bpGRCNaOFnquhoiIqH0w0XcBf5eUlISoqCjExsYiMzMTtra2CAoKQnh4OLy9vRs8Ni4uDnv37kVycjIKCwthbW0Nf39/zJ07FyEhIfUeJ5PJ8I9//AMFBQX417/+hVGjRrVwr3RPEATVnCUbZwsYmTAHExERtQSD+426Z88enD59Gv3798eSJUswadIkXLt2DeHh4bh9+3aDx969exdGRkaYMmUKli5dipkzZyIvLw+LFy/GhQsX6j3uyy+/hEKhaOmutKrSonJUlCkBcL4SERFRSzK4kaUZM2Zg9erVEIvFqm1jxozB/PnzsXv3bqxatareYydOnIiJEyeqbZs6dSpmzZqF7777DoMHD651zO3bt/HDDz9g3rx5+OKLL1quI62Mk7uJiIh0w+DCUl23y7y9veHr6wuJRNLk85mbm8POzg5yubzO/Vu2bMGIESPQq1evJp/bkHByNxERkW4Y3G24ugiCgPz8fNjZ2WnUvri4GAUFBZBIJNi5cydSU1PRv3//Wu1OnjyJ69ev44UXXmjpkltdzeRuALB15YKURERELcXgRpbqEh0djZycHCxYsECj9m+99RYuXrwIABCLxZg8eTLmzJmj1kahUOCTTz7BjBkz4O7ujszMTI3OLZVKkZubq/q+OaNduvDggpQ2vA1HRETUYgw+LEkkEmzatAlBQUEYN26cRsc8//zzmDlzJrKzsxEVFYXKykoolUq1Nrt370ZlZSWefvrpJtXz008/ITIystb21NTUWtdoTVlpfwW4e7kSZBTq5iW6crkciYmJOjm3oWFf26+O1F/2tf3qSP3VVV8DAwM1amfQYSk3NxcrVqyAlZUV1q1bB2NjY42OCwgIUH0dFhaG8PBwvPPOO1i3bh0AICMjA//5z3/wyiuvwNKyaaMwkydPxrBhw1TfSyQSrF+/Hl26dEH37t2bdK6WdKXwPgDA2skcwb2CdHadxMREjf9ytXXsa/vVkfrLvrZfHam/+u6rwYYluVyO5cuXQy6XY+vWrXBycmrWecRiMYYNG4bdu3dDoVDAzMwMX375JZycnNCnTx9kZGQAAPLy8gAABQUFyMjIgKurK4yMak/pcnJyanYtulImL4eiuAIA5ysRERG1NIMMSwqFAitXrkR6ejo2btwIX19frc8nCAJKSkpgZmaGrKws3Lt3D7NmzarVduPGjQCA//3vf7CxsdHquq1FxhfoEhER6YzBhSWlUok1a9YgISEBGzZsQHBwcJ3tpFIpiouL4enpCROT6m7k5+fDwcFBrZ1MJsPp06fh4uKi2hceHo7CwkK1drdv38YXX3yBJ598EsHBwbCwaDuvC+HkbiIiIt0xuLC0bds2nDt3DkOHDoVMJsPRo0fV9oeFhQEAdu7ciaioKOzbtw/u7u4AgGXLlsHZ2RmBgYFwcHBAVlYWDh06hNzcXKxZs0Z1jrrWVLK2tgYA9OzZE6GhoTrqnW5wQUoiIiLdMbiwlJKSAgCIiYlBTExMrf01YakuEyZMwIkTJ7B//37I5XLY2NggMDAQq1evRu/evXVWs74VcUFKIiIinTG4sLRlyxaN2kVERCAiIkJt27Rp0zBt2rRmXbdv3744c+ZMs47Vt8IHF6R0YVgiIiJqSW1iBW9qWM0Eb0t7M4jNDS7/EhERtWkMS21ceWklSgvLAXByNxERkS4wLLVxXDaAiIhItxiW2ji1F+hycjcREVGLY1hq49SehOPq3URERC2OYamNezAs2fE2HBERUYtjWGrjuHo3ERGRbjEstXE1q3ebWYthZiXWczVERETtD8NSG1ZZrkRxXhkATu4mIiLSFYalNkyWzcndREREusaw1IYVcY0lIiIinWNYasNq5isBDEtERES6wrDUhnFkiYiISPcYltowrt5NRESkewxLbVjNbTixhQnMbUz1XA0REVH7xLDURikrqyCXlgKovgUnEon0XBEREVH7xLDURslzSiEI1V/zFhwREZHuMCy1UWqTu10YloiIiHSFYamN4uRuIiKi1sGw1Eapr7HE1buJiIh0hWGpjVK7DceRJSIiIp1hWGqjasKSsakRLO3N9FwNERFR+8Ww1AZVVQmql+hy2QAiIiLdYlhqg4pzS1GlrF43gPOViIiIdIthqQ3iC3SJiIhaD8NSG8TJ3URERK2HYakNUgtLHFkiIiLSKYalNohhiYiIqPUwLLVBNat3GxmLYOVooedqiIiI2jeGpTZGqBJUI0s2LpYwMuKyAURERLpkou8C/i4pKQlRUVGIjY1FZmYmbG1tERQUhPDwcHh7ezd4bFxcHPbu3Yvk5GQUFhbC2toa/v7+mDt3LkJCQlTtysrKcOjQIZw9exa3b99GaWkpvLy8MGnSJEyaNAnGxsa67mazlRQooCyvAsDJ3URERK3B4EaW9uzZg9OnT6N///5YsmQJJk2ahGvXriE8PBy3b99u8Ni7d+/CyMgIU6ZMwdKlSzFz5kzk5eVh8eLFuHDhgqrd/fv3sXnzZgDAzJkz8dJLL8HNzQ0bN27Eu+++q9P+aYvzlYiIiFqXwY0szZgxA6tXr4ZYLFZtGzNmDObPn4/du3dj1apV9R47ceJETJw4UW3b1KlTMWvWLHz33XcYPHgwAKBTp06IjIxEly5dVO2mTJmCd999F4cOHcLcuXPh5eXVwj1rGTXzlQCGJSIiotZgcCNLISEhakEJALy9veHr6wuJRNLk85mbm8POzg5yuVy1zd7eXi0o1QgNDQWAZl2ntagvSMnVu4mIiHTN4MJSXQRBQH5+Puzs7DRqX1xcjIKCAkgkEuzcuROpqano379/o8fl5eUBgMbX0QfehiMiImpdBncbri7R0dHIycnBggULNGr/1ltv4eLFiwAAsViMyZMnY86cOQ0eU1FRge+++w7u7u7o0aNHve2kUilyc3NV37f2KFRNWBIZiWDtzGUDiIiIdM3gw5JEIsGmTZsQFBSEcePGaXTM888/j5kzZyI7OxtRUVGorKyEUqls8Jh///vfSEtLw3vvvQcTk/r/WH766SdERkbW2p6amtroNbQlCAIK7ssAAKa2xrh564ZOr1cXuVyOxMTEVr+uPrCv7VdH6i/72n51pP7qqq+BgYEatRMJgiC0+NVbSG5uLhYuXIjKykrs2LEDTk5OTT5HRUUFwsPD4ePjg3Xr1tXZ5j//+Q+2b9+OZ555BnPnzm3wfHWNLK1fvx6fffYZunfv3uT6mqK0SIHdL5wAAHiGOGL8G4N0er26JCYmavyXq61jX9uvjtRf9rX96kj91XdfDXZkSS6XY/ny5ZDL5di6dWuzghJQfRtu2LBh2L17NxQKBczMzNT2Hz58GDt27MCUKVMaDUoA4OTk1OxatMXJ3URERK3PICd4KxQKrFy5Eunp6Xj33Xfh6+ur9fkEQUBJSYna9l9//RXvv/8+RowYgVdeeUWra7QGTu4mIiJqfQYXlpRKJdasWYOEhASsXbsWwcHBdbaTSqWQSCSorKxUbcvPz6/VTiaT4fTp03BxcYGDg4Nqe1xcHNauXYtevXph1apVMDIyuD+KWtTCElfvJiIiahUGdxtu27ZtOHfuHIYOHQqZTIajR4+q7Q8LCwMA7Ny5E1FRUdi3bx/c3d0BAMuWLYOzszMCAwPh4OCArKwsHDp0CLm5uVizZo3qHJmZmYiIiIBIJMKoUaNw6tQptWt07doVXbt21Wk/m6MokwtSEhERtTaDC0spKSkAgJiYGMTExNTaXxOW6jJhwgScOHEC+/fvh1wuh42NDQIDA7F69Wr07t1b1S4jI0O1SOWmTZtqnWfevHmGGZay/xxZElW/RJeIiIh0z+DC0pYtWzRqFxERgYiICLVt06ZNw7Rp0xo9tm/fvjhz5kyz6tOnmgneVg7mMDE13Jf9EhERtSeGP1GHAAAKeQUU8goAnK9ERETUmhiW2gjVLThwvhIREVFrYlhqIzi5m4iISD8YltoItZElNy5ISURE1FoYltoItdW7+SQcERFRq2FYaiMeXJDShrfhiIiIWg3DUhtRE5Ys7ExhamFwKz4QERG1WwxLbUBFWSVKCxQA+AJdIiKi1saw1AaoT+7mLTgiIqLWxLDUBnByNxERkf4wLLUBD07u5sgSERFR62JYagPURpb4JBwREVGrYlhqA4qyHly9mxO8iYiIWhPDUhtQcxvOzFoMM2uxnqshIiLqWBiWDFxluRLFeWUAOLmbiIhIHxiWDJwspxQQqr/m5G4iIqLWx7Bk4IoyH5yvxLBERETU2hiWDJzasgGc3E1ERNTqGJYMHNdYIiIi0i+GJQMny+IaS0RERPrEsGTgakaWxObGMLc11XM1REREHQ/DkgGrqqyqfhoO1aNKIpFIzxURERF1PAxLBkwmLYVQVb1uACd3ExER6QfDkgHj5G4iIiL9Y1gyYJzcTUREpH8MSwbswZElG4YlIiIivWBYMmCFD6zebcewREREpBcMSwasZmTJWGwESwdzPVdDRETUMTEsGaiqKgGy7OqwZOtqCZERlw0gIiLSB4YlA1WSV4aqypplA3gLjoiISF8YlgwUJ3cTEREZBhN9F/B3SUlJiIqKQmxsLDIzM2Fra4ugoCCEh4fD29u7wWPj4uKwd+9eJCcno7CwENbW1vD398fcuXMREhJSq318fDx27NiBW7duwcrKCqNHj8azzz4LS0v9h5OiByZ3c2SJiIhIfwxuZGnPnj04ffo0+vfvjyVLlmDSpEm4du0awsPDcfv27QaPvXv3LoyMjDBlyhQsXboUM2fORF5eHhYvXowLFy6otU1OTsYrr7yCsrIyLFq0CI899hh+/vlnvPXWW7rsnsYK1Rak5OrdRERE+mJwI0szZszA6tWrIRaLVdvGjBmD+fPnY/fu3Vi1alW9x06cOBETJ05U2zZ16lTMmjUL3333HQYPHqzavnPnTtjY2GDLli2wsqoOI+7u7nj//fdx8eJFDBo0qIV71jQhE7rAq5cTZFklcOxso9daiIiIOjKDG1kKCQlRC0oA4O3tDV9fX0gkkiafz9zcHHZ2dpDL5aptxcXFuHz5MsLCwlRBCQAeffRRWFhY4OTJk83vQAuxtDeDZ7ATeoz1gYWtmb7LISIi6rAMbmSpLoIgID8/H76+vhq1Ly4uRkVFBQoLC3HkyBGkpqZi9uzZqv23b9+GUqlE9+7d1Y4Ti8UICAhAcnJyveeWSqXIzc1Vfd+cAEdERERtR5sIS9HR0cjJycGCBQs0av/WW2/h4sWLAKoD0OTJkzFnzhzV/pqw4+joWOtYR0dHXLt2rd5z//TTT4iMjKy1PTU1FUqlUqP62jK5XI7ExER9l9Eq2Nf2qyP1l31tvzpSf3XV18DAQI3aGXxYkkgk2LRpE4KCgjBu3DiNjnn++ecxc+ZMZGdnIyoqCpWVlWpBRqFQAECt230AYGpqivLy8nrPPXnyZAwbNkytvvXr16NLly61Rqrao8TERI3/crV17Gv71ZH6y762Xx2pv/ruq0GHpdzcXKxYsQJWVlZYt24djI2NNTouICBA9XVYWBjCw8PxzjvvYN26dQAAM7PqOUAVFRW1ji0vL4epqWm953ZycoKTk1NTukFERERtmMFN8K4hl8uxfPlyyOVyfPjhh80OKGKxGMOGDcOZM2dUI0o1t98enHtUIzc3l2GIiIiIVAwyLCkUCqxcuRLp6el49913NZ7Y3dD5BEFASUn12kVdunSBsbExbt68qdauoqICycnJ8Pf31+p6RERE1H4YXFhSKpVYs2YNEhISsHbtWgQHB9fZTiqVQiKRoLKyUrUtPz+/VjuZTIbTp0/DxcUFDg4OAABra2sMGDAAR48eVQUoADhy5AhKS0sxevToFu4VERERtVUGN2dp27ZtOHfuHIYOHQqZTIajR4+q7Q8LCwNQvahkVFQU9u3bB3d3dwDAsmXL4OzsjMDAQDg4OCArKwuHDh1Cbm4u1qxZo3ae8PBwLFy4EIsXL8bkyZORnZ2Nffv2YeDAgWqLVxIREVHHZnBhKSUlBQAQExODmJiYWvtrwlJdJkyYgBMnTmD//v2Qy+WwsbFBYGAgVq9ejd69e6u17d69OzZu3IgdO3bg448/hqWlJR577DE8//zzLdshIiIiatMMLixt2bJFo3YRERGIiIhQ2zZt2jRMmzZN42v16tULn3zySZPqIyIioo7F4OYsERERERkShiUiIiKiBjAsERERETXA4OYstTU1C112lBfq3rlzR+OV1Ns69rX96kj9ZV/br47UX132tXPnzjA3N2+wDcOSljIzMwEA69ev13MlRERE1FSfffZZo+92FQmCILRSPe1SQUEBLl68CHd39wbfKdce1Lw0+M0330Tnzp31XY5Osa/tV0fqL/vafnWk/uq6rxxZagX29vYNrv3UHnXu3LnRFN5esK/tV0fqL/vafnWk/uqzr5zgTURERNQAhiUiIiKiBjAskcYcHR0xb948ODo66rsUnWNf26+O1F/2tf3qSP01hL5ygjcRERFRAziyRERERNQAhiUiIiKiBjAsERERETWA6yx1cElJSYiKikJsbCwyMzNha2uLoKAghIeHw9vbu8FjDx8+jHfeeafOfQcPHjS4iYexsbF4+eWX69y3fft2BAUFNXh8Tk4Otm7dikuXLqGqqgp9+/bF4sWL4eHhoYtytbJhwwZERUXVu//777+Hs7Nznfu+/PJLREZG1tpuamqKY8eOtVSJzVZSUoK9e/ciMTERSUlJkMlkeOONNzB+/PhabdPS0rB161bEx8fDxMQEQ4YMwaJFi2Bvb6/Rtc6ePYuvvvoKEokE9vb2mDBhAubMmQMTk9b5p1OTvlZVVeHIkSM4ffo0kpOTIZPJ4O7ujjFjxmDWrFkwMzNr9DpLlixBXFxcre2DBg3Chx9+2JJdapCmn219f799fHywa9cuja7VFj5bABgxYkS95xgwYAA2btzY4HVmzJihetPEgyZPnozXX3+9ecU3UVN+zxjqzyzDUge3Z88exMfHY/To0ejatStyc3Nx8OBBhIeHY/v27fDz82v0HM888wzc3d3VtllbW+uqZK09/vjj6Nmzp9o2T0/PBo8pKSnByy+/jOLiYjz99NMwMTHB/v37sXjxYnz55Zews7PTZclNNnnyZAwYMEBtmyAI+Oijj+Dm5lZvUHrQa6+9BgsLC9X3RkaGMRBdWFiIyMhIuLq6wt/fH7GxsXW2y87OxuLFi2FtbY1nn30WpaWl2Lt3L27fvo1PP/0UYrG4weucP38e//znP9GnTx+8/PLLuH37Nr755hvk5+fjtdde00XXatGkr2VlZXjnnXcQFBSEKVOmwMHBAQkJCfjqq69w9epV/Pvf/4ZIJGr0Ws7Oznj++efVtrX2f/Bo+tkC1eF9+fLlatusrKw0uk5b+WwB4M0336y17caNGzhw4AAGDhyo0bUCAgIwc+ZMtW1eXl5NL7qZNP09Y9A/swJ1aL///rtQXl6utu3OnTvC2LFjhX/9618NHnvo0CEhNDRUSEpK0mWJLebq1atCaGiocPLkySYfu3v3biE0NFRITExUbUtLSxNGjRolfPrppy1Ype5cu3ZNCA0NFb755psG233xxRdCaGiokJ+f3zqFNZFCoRCkUqkgCIKQlJQkhIaGCocOHarV7qOPPhIefvhhITMzU7Xt0qVLQmhoqPDjjz82ep3Zs2cL8+fPFyoqKlTbdu7cKYwYMUJIS0trgZ40TpO+lpeXC7///nutY7/66ishNDRUuHTpUqPXWbx4sTBnzpyWKVoLmn62b7/9thAWFtbs67SVz7Y+7777rjBixAghKyur0bbTp08Xli9frlWt2tL094wh/8waxn8qkt6EhITUSuve3t7w9fWFRCLR+DwlJSVQKpUtXZ7OlJSUoLKyUuP2p06dQo8ePdRGpDp37ox+/frh5MmTuiixxR07dgwikQgPP/ywxscUFxdDMLDVRUxNTTUa8Th9+jSGDh0KV1dX1bYBAwbA29u70c8sLS0NaWlpmDRpktrw/dSpUyEIAk6dOtXs+ptCk76KxWKEhITU2h4aGgoATfo5rqysRElJSdOKbEGafrY1lEoliouLm3SNtvTZ1qW8vBynT59Gnz594OLiovFxFRUVKC0tbfL1WoKmv2cM+WeWt+GoFkEQkJ+fD19fX43av/zyyygtLYVYLMbAgQOxcOHCRuc76dM777yD0tJSGBsbo1evXnjxxRfRo0ePettXVVXh9u3bmDBhQq19PXv2xKVLl1BSUgJLS0tdlq2VyspKnDx5EsHBwbVumdZn5syZKC0thYWFBYYPH46FCxeiU6dOOq60ZeTk5CA/P7/O90j17NkT58+fb/D4W7duAUCt452cnODs7Izk5OSWK1ZH8vLyAEDjW8Tp6el49NFHUVFRgU6dOmHixImYN29eq83haaqysjKMHz8eZWVlsLGxwdixY/HCCy80+nPY1j/b8+fPQy6X45FHHtH4mKtXryIsLAxKpRJubm6YPn06pk+frsMqG/f33zOG/jNrmD8FpFfR0dHIycnBggULGmxnZmaG8ePHo2/fvrCyssLNmzexf/9+vPTSS/j888/V/uvAEJiYmGDkyJF46KGHYGdnh7S0NOzbtw+LFi3CJ598gm7dutV5XFFREcrLy+v8r8CabVKpFD4+PjqtXxsXL15EYWGhRv/A2tjYYNq0aQgKCoJYLMbvv/+OgwcPIikpCZ999pnG80L0KTc3F0Ddc24cHR1Vn6mpqWmzjq/Zb8j+85//wMrKCoMHD260rYeHB/r27Qs/Pz+UlZXh1KlT+Oabb5Ceno61a9e2QrVN4+joiCeffBLdunWDIAi4cOECfvjhB/zxxx/YvHlzgwGvrX+20dHRMDU1xciRIzVq7+fnh169esHb2xtFRUU4fPgwPv74Y0ilUrz44os6rrZ+f/89Y+g/swxLpEYikWDTpk0ICgrCuHHjGmw7ZswYjBkzRvV9aGgoBg0ahMWLF+Pbb79ttSctNBUSEqJ2u2L48OEYNWoU5s+fj507d9b71I9CoQCAOicX1vzg1rQxVMeOHYOJiQlGjx7daNu//xfnqFGj0LNnT6xbtw4HDx7E008/rasyW4ymn1l9//CWl5ertf378fq8VaWJb7/9FpcvX8arr74KGxubRtuvXLlS7ftHH30UH3zwAX7++WfMmDGj0SdFW9vfJ6KPHTsW3t7e+Oyzz3D69GmMHTu23mPb8mdbXFyM3377DYMHD9bocwWAd999V+37CRMmYNmyZdi/fz8ef/zxJt3Kayl1/Z4x9J9ZzlkildzcXKxYsQJWVlZYt24djI2Nm3yOXr16ITAwEFeuXNFBhS3Py8sLw4cPR2xsbL1zrmoeva6oqKi1r+YHVJPHs/WlpKQEZ8+exaBBg5r91N4jjzyCTp06tZnPVdvPrOYf3Jq2fz/ekD/v48eP4/PPP8djjz2G//u//2v2eWqenrp8+XILVaZbM2bMgJGRUaP1tuXP9vTp0ygvL2/SLbi/E4lEmDFjBpRKZZ3LRehafb9nDP1nlmGJAAByuRzLly+HXC7Hhx9+CCcnp2afy8XFBUVFRS1YnW65uLigoqICZWVlde63tbWFqalpncO4Ndu0+fPStbNnz6KsrEyrf2CBtvW51gzF1/eZ1XymzT3e0NYQq3Hp0iVs2LABQ4YM0fpR6ZoRB5lM1hKl6ZyZmRlsbW0b/TvaVj9boPrWlbW1NYYOHarVeWo+29b+eW7o94yh/8wyLBEUCgVWrlyJ9PR0vPvuuxpP7K7P/fv3NV5AzBDcv38fpqamamsKPcjIyAh+fn64ceNGrX2JiYnw8PAw6Mnd0dHRsLCwwLBhw5p9DkEQkJmZ2WY+V2dnZ9jb2+PmzZu19iUlJcHf37/B4wMCAgCg1vFSqRQ5OTmq/YYkMTERb775Jrp37461a9dqPTH7/v37ANBmPvOSkhIUFhY2Wm9b/GyB6vpiY2MxYsSIBkODJvTx2Tb2e8bQf2YZljo4pVKJNWvWICEhAWvXrkVwcHCd7aRSKSQSidrj9gUFBbXa/fbbb7h58yYGDRqkq5Kbra56U1JScO7cOQwcOFC16GJWVlatx61HjhyJGzduqAWmO3fuIDY2FqNGjdJl2VopKCjA5cuXMWLECJibm9faX1df6/pz+uGHH1BQUKDRZGFDMXLkSMTExCArK0u17cqVK0hPT1ebu1VZWQmJRAKpVKra1qVLF/j4+ODnn39Wuz37ww8/QCQSaTy5trWkpaVhxYoVcHNzw3vvvdfgLQeJRKL2Z1JcXFzr1oUgCPjmm28AQOOFD1uLQqGoc/7J119/DUEQ1P6OtofPtsaJEydQVVVV7whxXX0tKiqqNb2gsrISu3fvhlgsRt++fXVacw1Nf88Y8s8sJ3h3cNu2bcO5c+cwdOhQyGQyHD16VG1/WFgYAGDnzp2IiorCvn37VI+ev/jii+jWrRu6d+8OKysr3Lp1C4cOHYKLiwtmz57d6n1pzFtvvQUzMzMEBwfDwcEBaWlp+Pnnn2Fubq42YfTtt99GXFwczpw5o9o2depU/PLLL1ixYgVmzZoFY2Nj7N+/Hw4ODpg1a5Y+uqOR48ePQ6lU1vsPbF19nT59OsaMGQM/Pz+YmpoiPj4ex48fR0BAACZPntxapTfo+++/h1wuVw25nzt3DtnZ2QCqV2i3trbG008/jVOnTmHp0qV44oknUFpaiv/85z/w8/NTe6VETk4OZs+ejXHjxiEiIkK1/aWXXsIbb7yB1157DWPHjsXt27dx8OBBTJw4UevR15bsq5GREV5//XXIZDLMmjULv/32m9rxHh4ear+cZs+ejT59+mDLli0Aqh+5Xrt2LR5++GF4enpCoVDg119/RXx8PCZNmlTno9y61Fh/ZTIZnnnmGTz88MOqJ1AvXryI8+fPY/DgwRg+fLjqXG39s33wTQjR0dFwcnKqN+DU1ddz587hm2++wciRI+Hu7g6ZTIbo6Gikpqbiueeea7Vbjpr+njHkn1mGpQ4uJSUFABATE4OYmJha+2v+EtdlzJgxOH/+PC5duoSysjI4Ojpi0qRJmDdvnkGuxxMaGoro6Gjs378fxcXFsLe3x4gRIzBv3rxGl/63tLTE5s2bsXXrVnzzzTeqd8M15Z1F+nDs2DE4ODigf//+Gh/zyCOP4Pr166rJpK6urnjyyScxZ86cOken9GHfvn1q77s6c+aMKvCFhYXB2toarq6u2LJlC7Zu3YpPP/1U9Z6phQsXanQbY+jQoVi/fj0iIyOxefNm2NnZ4emnn8a8efN01a06NdZXAKpfsJ9++mmt48eNG1fvf8kDgKurK3r37o0zZ84gLy8PRkZG6Ny5M1577TW9hGNNPtuhQ4fi0qVLiIqKQlVVFTw9PfHcc89h1qxZGr2Wp618tjVh6c6dO7h586ZqErum/Pz80LlzZ0RHR6OgoAAmJiYICAjA2rVrNXoytqVo+nvGkH9mRYKhLc9LREREZEA4Z4mIiIioAQxLRERERA1gWCIiIiJqAMMSERERUQMYloiIiIgawLBERERE1ACGJSIiIqIGMCwRERERNYBhiYiIiKgBDEtEpHcZGRkYMWIENmzYoO9SWsThw4cxYsQIHD58WN+lEFELYFgiIoO0ZMkSjBgxQt9l1Km9hTsiahhfpEtEeufs7Ixvv/0WVlZW+i6lRYSGhiIwMLDV3upORLrFsEREemdiYoLOnTvru4wWY21trXpjPBG1fSJBEAR9F0FEHVtGRgZmzpyJcePGISIiot7bbzX7a/zxxx/49ttvERcXh6KiIjg6OmLYsGGYP38+7Ozs6jz/U089hc8++wzXrl1DUVER9u3bB3d3d5w5cwYnT57EjRs3IJVKYWJigq5du+KJJ57AqFGjVOc6fPgw3nnnnTrr27x5M/r27atq88Ybb2D8+PFqbeLj4/Htt98iISEBCoUCbm5uGDNmDJ566imYm5urtR0xYgT69OmDNWvWYPv27Th//jxKS0vh7++P559/Hn379m3qHzURNQNHlojI4MybNw9RUVHIzMzEvHnzVNsDAgJUX589exZr1qyBSCTC8OHD4eLigrS0NPz3v//FxYsX8emnn8LGxkbtvPfu3cOLL74IPz8/jBs3DkVFRRCLxQCAnTt3wsTEBCEhIXB0dERBQQHOnTuH1atX4+WXX8bjjz8OAPD398cTTzyBAwcOwN/fH8OHD1ed383NrcF+nTx5Ev/6178gFosxZswY2Nvb49KlS4iMjMTFixexefNmmJmZqR0jl8uxcOFCWFtbIywsDPn5+Th58iRef/11fPbZZ/Dz82vWnzERaY5hiYgMzoIFCxAXF4fMzEwsWLCg1v7CwkK8/fbbsLOzw7Zt29RCyvHjx7F27Vp88cUXWLp0qdpx8fHxmDdvXp3nfP/99+Hh4aG2raSkBC+99BK++OILPPbYYzA3N0dAQACsra1VYamuc9WluLgYH3zwAYyNjbF9+3Z07doVAPDcc8/hX//6F06cOIG9e/di7ty5aselpKTg//7v/7B06VIYGVU/k9OvXz+8//77+O9//4vXX39do+sTUfPxaTgianOOHDmC4uJiPPfcc7VGc8aOHYtu3brh+PHjtY7r1KkTZs+eXec5/x6UAMDS0hLjx4+HXC7HjRs3tKr57NmzkMvlmDBhgiooAYCRkRFefPFFGBsb17nUgIWFBV544QVVUAKqb0caGxtrXRMRaYYjS0TU5iQkJAAAEhMTce/evVr7y8vLUVhYiIKCAtjb26u2+/v7q267/V1+fj52796N8+fPIysrCwqFQm2/VCrVqubk5GQAQJ8+fWrtc3V1hYeHB9LT01FSUgJLS0vVPi8vL7XvgeoJ8Z06dYJcLteqJiLSDMMSEbU5MpkMAHDw4MEG25WVlal97+DgUGe7oqIiPPfcc8jKykJISAgGDBgAa2trGBkZISUlBWfPnkVFRYVWNRcXFwOoHt2qi6OjI9LT01FcXKwWjupbTsHY2BhVVVVa1UREmmFYIqI2pyZMREZGNmmCs0gkqnP7//73P2RlZeGZZ56pNWdo165dOHv2bPOL/VNN6MnLy6tzf8329rLWFFF7wjlLRGSQauboKJXKWvsCAwMB/HU7Tls1t/IefLKtxu+//15vbU0Z2al5ki8uLq7WvqysLNy7dw8eHh61brkRkf4xLBGRQbK1tQUAZGdn19o3YcIEWFpa4rPPPkNqamqt/WVlZU0KUjWTxOPj49W2R0dH4/z587Xa29jYQCQS1VlbfYYPHw5ra2scOnRIrWZBEPDpp59CqVTWWpOJiAwDb8MRkUHq168fTp06hVWrVmHw4MEwNTWFv78/hg0bBnt7e7z11ltYvXo1FixYgEGDBsHHxwcVFRXIzMxEXFwcgoOD8eGHH2p0rbCwMOzZswebN29GbGwsXF1dkZKSgqtXr2LEiBE4c+aMWntLS0v06NED165dw/r16+Hl5QWRSIRHH3203rWWrKyssGzZMvzrX//CCy+8gNGjR8Pe3h5XrlzBzZs30bNnT8yaNUvrPzciankMS0RkkCZOnIiMjAycOHECe/bsgVKpxLhx4zBs2DAAwJAhQ/DFF1/gP//5D65cuYLLly/D3Nwczs7OGD9+PMLCwjS+louLC7Zs2YLt27fj8uXLUCqV6NatGz766CNkZ2fXCksA8Oabb+Ljjz9GTEwMiouLIQgCevXq1eDClKNHj0anTp2wa9cunDlzRrWC99y5c/HUU0/VWpCSiAwDX3dCRERE1ADOWSIiIiJqAMMSERERUQMYloiIiIgawLBERERE1ACGJSIiIqIGMCwRERERNYBhiYiIiKgBDEtEREREDWBYIiIiImoAwxIRERFRAxiWiIiIiBrAsERERETUAIYlIiIiogb8PxFHvpEz2wYvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAG5CAYAAACQpg7iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUX0lEQVR4nO2deZgddZX+37r71ntn30PWTkLCEhCykQAxgIRRFtEBWRQUQfAnjIrjjKIoKDgOjgwDCERAFEZEYWQLMawhkED2zkZIOnun9777Urd+f9yuulW3b3ffpZZv1T2f58nzpO9W37pL1VvnvOccThAEAQRBEARBECbCZvQCCIIgCIIgioUEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpoMEDEEQBEEQpsOyAiYWi2H37t2IxWJGL4UgCIIgCJWxrIBpaWnBDTfcgJaWFqOXojn79u0zegm6UUn7ClTW/tK+WpdK2l/aV/2wrICpJOLxuNFL0I1K2legsvaX9tW6VNL+0r7qBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMBwkYgiAIgiBMh8PoBRAEQRAEYS4++t896Ojpgaf3GCZ/ZpQhayABQxAEQRBEwaT5NDa9sA8AEDt4wDABQykkgiAIgiAKJhFOSf93B5yGrYMEDEEQBEEQBRMPJ6X/k4AhCIIgCMIUxEMJ6f9uPwkYgiAIgiBMQDxEERiCIAiCIExGTJFCchm2DhIwBEEQBEEUDEVgCIIgCIIwHSRgCIIgCIIwHYoqJDLxEgRBEARhBigCQxAEQRCE6VCUUZOAIQiCIAjCDMgjMC4fCRiCIAiCIEyAKGAcHhtsNs6wdZCAIQiCIAiiYEQTr8NrrIQgAUMQBEEQREEIaYEEDEEQBEEQ5iIRSQFC5v8ODwkYgiAIgiBMQDycrUAyOgLjMHTrA3Do0CE89thj2LZtG3p7ezFixAicd955uPLKK+HxeIxeHkEQBEFUJPIKJIfXbuBKGBQwra2t+PrXv45AIIDPf/7zqK6uxo4dO/D4449j9+7duOeee4xeIkEQBEFUJEoBQxEYBa+//jpCoRAefPBBTJo0CQCwcuVKpNNpvPbaawgGg6iqqjJ4lQRBEARRecjHCBgtYJjzwITDYQBAXV2d4vaGhgbYbDY4HMxpLoIgCIKoCBQRGDLxKjnllFMAAL/4xS+wd+9etLa2Ys2aNfjb3/6GSy+9FF6vN+/z2tvbsXv3bulfS0uLnssmCIIgCMvDUgqJEwRBMHQFefj973+Pp59+GvF4XLrt6quvxg033DDgcx5//HGsWrWq3+0/+MEPMH78eC2WyQyhUAiBQMDoZehCJe0rUFn7S/tqXSppf62+r/tf78SxD4MAgJOuqMaIaXVDPKM0mpqahnwMk/mYUaNGYe7cuViyZAmqq6vx/vvv4+mnn0Z9fT0uvfTSvM9ZuXIlFixYIP3d0tKCu+++G5MmTcL06dP1WrohNDc3F/RhW4FK2legsvaX9tW6aLm/giCA44xrZ5+L1T/bE29uAZARMNUNAUP3lTkBs2bNGtx33334wx/+gOHDhwMAlixZAkEQ8PDDD+O8885DTU1Nv+c1NjaisbFR7+USBEEQBsAnebz/+504sOE4zvjnGZi2eKzRS6oIFCZe8sAoeeGFFzB16lRJvIgsWLAAsVgMe/fuNWhlBEEQBAskoim89suPsOsfhxALJrH95QNGL6liYMkDw1wEpqurK2+ZdCqVAgDwPK/3kgiCIAhGiPbE8eovNqLjQK/iNkIfRAHj9DrAGTiJGmAwAjNu3Djs3bsXhw4dUty+Zs0a2Gw2nHTSSQatjCAIgjCS3tYIXvrxeoV4AYBYKAkG61EsiZhCcgecBq+EwQjMlVdeiQ8++AC33HILvvCFL6C6uhrr1q3DBx98gM997nPkcyEIgqhAOg704tVfbEC0JzOLx1/vgdNrR/eRMAReQDKagstn/EnVygiCIEVg3H7j32vmBMy8efPw4IMP4oknnsALL7yA3t5ejBo1CjfccAO+9KUvGb08giAIQmeO7ujA6v/4CMloxkJQO8aPFd+fjw+f2Y3uI5nmp7FgkgSMxiSjKQjpTKSLIjAD0NTUhPvuu8/oZRAEQRAGs/+DY1j74BakU5kT5/CptVj+L6fBE3DBU+WSHhcLJlA9wmfUMisCeQWSJ+Aa5JH6wKSAIQiCIIjm1S1Yt6oZ6LO3jDtlGM699RQ43JkpyPIogLw6htAG+XtMERiCIAiCyEEQBHz8/CfY9JdPpNumLh6DRV+bDZsjW3uSG4EhtKW/gEkZtxiQgCEIgiAYIp0WsO6JHdi1JluJevLFkzH/ymn9Ou56quQRGBIwWiNPIWVMvCRgCIIgCAKpBI83H9yCAxtapds+c/UMzL5gUt7HuxURGEohaY08yuUOOJFC1MDVkIAhCIIgGCAeTmL1rz7C8V1dAADOzmHJN07GlAWjB3yOR+bDoBSS9igiMAGnwfEXEjAEQRCEwUS6Ynj1FxvReTAzJNDhtuO8/3cKxp48bNDnyT0wcYrAaI7CA+N3Ipw2cDEgAUMQBEEYSM+xMF65dwNCbZl0hKfKic9+93QMO6l2yOfKK2Fi5IHRnH4m3t5BHqwDJGAIgiAIQ2jb143XfrlR8q8EGr244M75qBnlL+j5DrcddqcNfDJNHhgdUKaQXCRgCIIgiMrj8LZ2vPEfHyMVz3TXrRtXhRXfPx3+Ok/Br8FxHNxVTkQ641SFpAPKFJLx8sH4FRAEQRAVxb51R/HWQ1uR5jMd6kbOqMP5t59W0nwdT5ULkc44YsEEBEHoV2pNqIcoYDKRL7vBqyEBQxAEQejI9lcOYP1TO6W/J8wfgaU3z4XDVdoJUWxpn04JSMV5OD10WtMKliZRAyRgCIIgCB0QBAEbn92DLS9+Kt02Y9k4nH39LNhspUdN3FXKUmoSMNqQmUSdSdN5SMAQBEEQlYCQFvDOI9uw560j0m2nfGEKTr10StkpH/lQwXgwiarBK6+JEknFeWmgppuBQY4ACRiCIAhCQ1JxHrv+tw1de/u6tnLA2dc2oen8Caq8vqeKmtnpQf8xAsZDAoYgCILQhHg4idfu2yiJF5uDw9Kb52LSmaNU24Y8GhCjidSawdokaoAEDEEQBKERm/+6Dyf2dAMAnF47zv/OaRg9q0HVbVAERh9IwBAEQRAVQ9unPdL/L/rXM9E4uUb1bcgHOsYpAqMZ8j47rKSQbEYvgCAIgrAmsd7MSc/m5DQRL4ByHhJFYLSDxQgMCRiCIAhCE0RB4fRpd6qRl/TSQEftyJ1EzQIkYAiCIMqAT6VxtLkDqQRv9FKYQkgLiPcJGIdPu66tborA6EKMwQgMeWAIgiBKJB5O4u8//QCdB4OYeMYInPftU41eEjPEQ0kImbYhmkZgnB47bHYOaV6geUgaopyDxEYfGIrAEARBlEAqwWP1f3yMzoNBAMDR7R0Gr4gtorJoiFPDCAzHcZIPhiZSawelkAiCICyAkBbw1kNbcXxnp3RbIpKiNJIM0cALAE6/toP/xHECMYrAaAaZeAmCIEyOIAhY/9RO7P/geL/7oj10AhWR+1EcGqaQgGwlEp9IIxUnEakFooCxO20lD95UGxIwBEEQRbD1//Zjx2stAADOxqFhYrV0X7QnbtSymEMRgfFqe6qRRwQoCqMN8XDmfZUPzzQaEjAEQRAFsvedI9jwx93S34tumI2Jp4+Q/iYBk0XPFBL1gtEeMQLDioEXIAFDEARREIe3tuHtR7ZJf59+xTRMWzIW3lq3dBulkLLEdDLxAsp5SNQLRn1SCR58Ig2AHf8LQAKGIAhiSNr392DNf26CwGfqgmeePx5zL5kMAPDWZE+eFIHJoq8HhuYhaQmLFUgACRiCIIhB6W2N4NVfbEQyljGHTpg/Amdd0wSO4wAA3hpZBKabBIxItFe/CIwnQPOQtEQe1WJlDhJAAoYgCGJAor1xvHrvBsnPMWJaHZbePBc2Gyc9RiFgKIUkIUZCbHYOdjc3xKPLgyIw2iIaeAGKwBAEQTBPMpbC67/8CL2tEQBA7Rg/zr/j1H4lpPIUUoRSSBKi6PNUu6RolVYoxglQBEZ15FEtD0MChrlRAj//+c/x6quvDnj/888/j2HDhum4IoIgKo10Ko1//GYz2j7tAQD46t1Y8b35ilSFiMNlh8vnQCKSIg9MH4IgKASM1sgjMHGKwKiOcowACZgBWblyJU4//XTFbYIg4Fe/+hVGjhxJ4oUgCE0RBAHvPr4Dhza3AQBcPgdWfHc+Ao3eAZ/jrXGTgJGRjKaQ7jM8y0uctUJehUTjBNSHxS68AIMCZvbs2Zg9e7bitq1btyIWi+H88883aFUEQVQKH/3vXux58zAAwObgcN53TkX9+KpBn+OtcaHnWBjJKI9UgmemU6lRyA28Xh0iMC6fA5yNg5AWyAOjAcoqJOoDUxRvvPEGOI7DeeedZ/RSCIKwMDvfOIjNf92X+YMDzvnmXIxuahjyeUojL0Vh5E3s9IjAcBwnRQaoCkl9KIVUIqlUCmvXrsXs2bMxatSoAR/X3t6Ojo7sNNiWlhY9lkcQhEU4sKEV657YIf39matnYvJnBj7myFE0s+uOo2qYT/X1mQl5FCTjgdE+KuKpciHWm6AIjAZQCqlEPvzwQ/T09AyZPnrxxRexatWqfrfv378fPG/t4V6hUAjNzc1GL0MXKmlfgcraXyP3tfdQDM1/OAEhY9vA6LOqYRsfKXg9oXiP9P892/ehPTm4gLH659q6Kyj9vyvUgUCI03x/07bMSTYV57F96w7YHNpWPg2EFT/bzhPd0v/3H94H+4lM8kbLfW1qahryMcwLmDfeeAMOhwNLly4d9HErV67EggULpL9bWlpw9913Y9KkSZg+fbrWyzSU5ubmgj5sK1BJ+wpU1v4ata9dh4P46M8fIJ3KqJcpC0djyTdOBmcr/ARobz2Eg292AwAaqodjZtP4QR9v9c81+ck+7EMnAGDS9AmIBjo1398jI2PoPdSa2ebYk+Cv92i6vYGw4me7W+gEEIPNwWH23FlSWbzR+8q0gIlEInj33XdxxhlnoKamZtDHNjY2orGxUaeVEQRhBcKdMbz6i42SSXHMnEYsunFOUeIFIA9MLrkm3mha+216ciZSGyVgrIj4+3AHtO/pUwxMm3jfffddqj4iCEITEpEkXvvlRoQ7YgCAhonVOPfbp8DuKP6wqPTAkAdDbxNv7nZooKO6ZCdRs+N/ARgXMKtXr4bX61WkhgiCIMqFT/JY/R8fo/NgxqtRNcyLz373dLi8pQWlaaCjkv4mXu2Rm0vJyKsefCotzQFjycALMCxguru7sXHjRixevBgeD4UCCYJQByEt4M2HtuJYc8aj4alyYsX358Mni6IUi7zXCY0TyEZgOBun21W7PAJDAkY9WK1AAhgWMGvWrAHP85Q+IghCNQRBwAd/2IX9648DABxuO5b/y+moGeUv63XtTrt0oo7RQEdJQLgDzqL9RKUiP7lSLxj1iIdkgxwphVQYb7zxBurq6nDaaacZvRSCICzCtr/vx/ZXDgDIRAfOvXUehk+pVeW1PX1pJEohZU28evlfcrdFERj1YDkCw2wV0kMPPWT0EgiCsBCfvHsEHz6zW/p70ddmY9wpw1V7fV+tGz1Hw0jGeCRjKTg9zB5eNSUZS4FPZMqO9PK/ADkmXorAqIZyjABbAobZCAxBEIRaHNnWjrcf3ib9fdrlUzHtnLGqbsNbLS+lrtwIgHyYolfHCIy7iky8WsDqGAGABAxBEBan63AQb/z6Y2k68oxzx2HeP52k+na8tVSJBBhTgQQAbp8TYosSKqNWD2UKiZ1BjgAJGIIgLE7z6welMtAJp4/A2dfN0qQZFzWzy6DoAaOjgOFs2YGOFIFRD0ohEQRBGESwLSL9f8FXZ8GmUVWMTyZgIt0kYAB9TbxANkIQIw+MasgjMB5KIREEQeiH6Efh7JymngxlM7vKjQBEDUohAVnBlIymwKd0mF9QAShSSFUkYAiCIHQj2hcN8Va7NO1JohgnQCkkAMoGf3ogP8FSJZI6xMPUB4YgCEJ3hLQg9SSRe1S0QOmBqdwIjMLEq3MKiXrBqI8oBDkbB2eJoza0ggQMQRCWJRZKQEhnqo80FzDVVIUEGGfiBXK78ZKAUQPRT+QOOJmaRA2QgCEIwsLIIyG+Wm1PpjaHTTqBRsnECwDw6Fy1oozAUApJDVidRA2QgCEIwsLIhYTWERj5NqK9CQiCoPn2WESag+R3wubQ9xQjF0xxSiGVTTqVRjKaAsBeCTVAAoYgCAsjT+XoIWDEidapOC/1nqk0pDlIOqePAIrAqE08wm4PGIAEDEEQFiYiSyHJy5y1QllKXXlpJD7JS1fseht4AeVJNkYemLJheYwAQAKGIAgLo4jA1OqXQgIq0wcjj3oYHYFhfZyAkBZweEsb2vf3GL2UAWF5EjXA8DRqgiCIcpGLCJ8uHhhZBKa38iIARnbhBXIGOjIegTmwsRVr/nMTOBuHK/5jMaqG+4xeUj9YHiMAUASGIAgLE1WkkHQQMLWVHYExsgsv0Jfm6Kv0Zb0PTOvuLgCZSMyJfWxGYZQpJLYGOQIkYAiCKIBMQzjznZDFFJLNwcHl1z7gXOkDHZVdePW/YrfZbXD7MttlPYUkn5cV7Y4ZuJKBoRQSQRCm5sj2drzz6HaE2qNYdMNsTD9nnNFLKhhRRHhr3Lo04ZKnkCLdbEcAtMDoFBKQSSPFw0nmIzByAcPq8E95Cknvnj6FQAKmCPgkj2PNneho6YWn2mWqAzlBFEsiksSHf9yNXWsOSbd9+v4x03zv02lBOqHq4X/J3Y4ZI1blYuQYAWm7ARd6EUEikkKaT8NmZzPREFVEYNgUWxSBsRB8Mo1Xf7ERADB8aq1pDuQEUSyHt7Xj3Ue3IdSuDG2zeqWYj1gwAbGXnEeHEmqgz/fBARAohWSEBwboP9BRD+9TKSgjMKymkGSDHEnAmBuXz4mq4V4ET0TReTCIdFqATcPptgShN4lIEh/8YTd2r81GXRxuO4BMc7ZIl3lOyooKJB1KqIGMB8NT5UKsN8HsVbWWxAw28QI5zewYFTCpeLZfDsBuupFMvBajYWI1gMwXsPdY2ODVEIR6HN7ahue/965CvIxqqselv1iI+vFVADIHND6VNmqJRaF3F97stlzS9ittnAATKSRFLxg2hUFuJJN5Ey8HuHzsxTvYWxHjNEyoxoEPWwEAHS29qB0TMHhFBFEemajLLuxee1i6zemx44wvz8CMZePA2ThFBCPaHUeg0WvEUotCHgHRV8C40XUoBD6ZmSPj8rEXetcKsfeN02OHw2U3ZA2KbryMViLlCphYMHNhYNd5dtRQiCZet98JjsFsAwmYIhEjMADQfqAXJ5092sDVEER5HN7Shnce3Y5wZ/YKcPSsBiy6cTaqhmUba8kFTMQsAkYRgdEvGqAspU5UlIARPTBGRV9yt81qM7t8/qhYTxz+BrZ+VyxPogZIwBSNXMB0HOg1cCUEUTqJSBLrn96FPW/mRF3+uS/qklNy7K2TCRiT+GAiPfp7YHK3FemOo2aUX7dtG0k6LUhX7Eb5XwBlBIbZFFKe31Ckmy0Bk04L0jBHFg28AAmYovHVuuGpzpj0Og70QhAEXfpLEIRaHNrchnd/lxN1md2ARTfMQdWw/AdQ5UmZzXx9Lnp34ZW2VV2ZAx3jwQQgVn0ZKGDMMJE63/eCtQq/RCQpfZ4kYCwCx3FonFiNw1vbEQ8lEe6MIcCQaiaIgYiHk/jg6Z3Y89YR6Tanx44z/3kGpueJusjx1Xqk/5ulRb58ncalkMzxXqkBCwbezLblZdSMRmDy/IZY+12xPokaIAFTEg19AgbIpJFIwBCsc2jTCbzz2HZEOrMHyTFzGrDwawNHXeTkpkXMgNhIzu60wenV71DnrZVHYNg8gWpBlIEeMADgNkEEZqAUEksom9ixV0INkIApiVwfzITTRhi4GoIYmHg4ifVP7cTet2VRF68dZ/7zTExfOrbg9KfCA8PYgXYgxCtab60+YwREKjYCI5+DZGQExs/+RGozpJBYn0QNkIApiYYJZOQl2OfgphN493fbFVd7Y+Y0YtENs4uuIvJWucDZOAhpwRQm3nQqjVjfFaSe6SNAOZGatZOSlrDQxA4AbA4bXD4HEpEUswMdxe+Fzc4hzWeMJpRCKh4SMCVQPcIHp9eOZJRHRwsJGIIt4qEk1j+dG3Vx4DNXzcC0cwqPusjhbBy8NS5EuuLMHWjzEZUZSvWagyTiqXKB4wBBAGIVlEJiYYyAiDvgRCKSYnKgYzotINYXgakdG0DnwSAgKKvmWEAhYKpIwFgGzsahfnw1Wnd3IdQeQyyYMNS0RhAiBz/ui7rIRMbYkxux8IbZZXu1fLXujIDpiTM/RkNp4NVXwNhsHDzVLkR7EsydlLSEhUnU8u0HT0QRDyeZ+67GerMzuvz1HkS64n2jJ9j6rsTDss+TIjDFsXv3bjzxxBPYtm0bEokERo8ejYsvvhiXXXaZ0UsDkPHBtO7uApDpyDtmdqPBKyIqmUQkifd/vxN738mJulw9A9OWlBZ1yUVMjQhCJl2gd2SjGBQl1Dr2gJG2WeNGtCchjROohFYLUVm0w2t4BKZv+wKQCCcNF1Ry5G0IfLUe+GpjiPUmEOlm67vC+iRqgFEB8+GHH+LOO+/E1KlTcc0118Dr9eLIkSNoa2szemkSjTk+GBIwhJG888h27P/wuPT32LmNWPS12ao2xlKME+iKsy1gDCqhzm7TDSCIdEpAIpxi9gSgJiylkOSl1KxFyOUjLny1LsV3JR5OwsNIxQ9VIZVAOBzGz3/+c3zmM5/BT3/6U9hsbM2GEKGOvARLtH3aDQCwOTgsvH42pi4Zo/qVXG4pdYOqr64uYgk1oH8KKbNNZTO7ihAwfREYu9MmTTA3CsVAxxBbRl55BMZb64avTjlnjEkBw2gKiTl18MYbb6CzsxM33HADbDYbotEo0mn2pt/Wjg3AZs+cIMjISxiJkBYQ7qsMqh0TKNmoOxReE3XjjRjogQFy3qsK8cFIc5CqXYanQdw5ERiWUEZg3IrvJ0tVa3IB4/IzF+sAwGAEZuPGjfD7/Whvb8e//uu/4tChQ/B6vVi+fDluueUWuN35D0bt7e3o6OiQ/m5padF0nXaHDXXjqtBxoBc9R8NIxXnDrzqIyiQaTEDoK8X013mGeHTpyLvxsnSgzYfcA+OrNSqF1H8tVkVIC1LTOBbSNfIoBmul1PLfjq/WzWyTSLEPjMvngM3OXKwDAIMC5vDhw+B5Hj/4wQ9w0UUX4cYbb8TmzZvx/PPPIxQK4Uc/+lHe57344otYtWpVv9v3798Pnuc1Wau9JvO6ggB89NZWVI01xhMQCoXQ3NxsyLb1ppL2FShsf0PHsyfIOKKavT9B2cH1yKfH4W5W98Ss5mfbfrRT+n/Lsf2wd+h7AO4KhaT/H9jdgnhNl+J+q32Pk1EeQjojonlbot++6b2/7T1h6f8t+w4hNVy/KPlQ+3r8YNbLebjtEELh7O/qwO6DSNb3aLq+Qgn3RAEAnAsD7o+Wn2tTU9OQj2FOwESjUcRiMVxyySW47bbbAABLlixBMpnEiy++iOuvvx7jxo3r97yVK1diwYIF0t8tLS24++67MWnSJEyfPl2TtQqHWnBiS+bDq+Lq0dQ0QZPtDEVzc3NBH7YVqKR9BQrb34OxE9iKYwCAMZNHoqlpqiZrCQ2PYtsTGaOwh/Op/jmo+dk2p9oBxOFw2zFn3mxVXrMYjvDt2Pu3TES42lOHpiblMchq3+PuoyFsQGayecOo+n77pvf+HhU6sAeZcS81vvp+77+WDLWv+9LrAUQAACefPgtt+3qw5y+ZtVa5a9HUNFOPZQ6KkBbwfjSTxaiqG/i3bvT3mDkBI6aIzj33XMXt5513Hl588UXs2LEjr4BpbGxEY6O+lUBKI29Q120ThEikK+tH8ddrl0IyU4dZ0WdgRAVSZruyFFKv9VNI8plDRpdQA7kTqdl6/0X/mNvvhMNlV1b3MfK7SsZSUq8alg3ozCW2GhoytQ319fWK2+vq6gAAwSA7QqFhQhXQ51UjIy9hFGFZa395RYPa2B026WDGsoDhk7yUvzeiB0xmu7IqJIbfK7VgqYkdoDTxslSFJAiC5IkSvyMsXhgoK5CM/zwHgjkBI6Z7cnu+tLdnQmy1tbV6L2lAnB4Hakb6AQBdh4JIp9irliKsT7hTFoHR0MQLZAVStK/pFovIIx5GVCABGRMp19f9tRIGOrIyB0laQ4DNKqRkNIVUPOOdFE3xLq9DKgBhUsBQBKZwli5dCgD4+9//rrj973//O+x2O0455RQjljUg4mBHPplG99HwEI8mCPWRD1f01Wt7whbD3XwyjUQ4pem2SkVRgWSQgOFsnJRKqYQyatYiMHanHU5PRhTEGZpIrSjvl0VexN8VK9G6mAkmUQMMemCmTZuGCy+8EC+//DJ4nse8efOwefNmrF27FldddZXuPpehaJhYhU/XZwyUHQd6UT++yuAVEZWG6IGx2TnNm2ApS6ljTB7cFF14DSihlrZd40KkO45YTwJCWpAiMlaEtQgMALirXEjGogp/jtHIo3Fy74u31o3e1ggSkRRSCR4Ol7EtOcwSgWFOwADAHXfcgREjRuCVV17BO++8gxEjRuCWW27BFVdcYfTS+qEw8rb0YirGGLgaohIRU0i+Oo/mJ8ncfH3dWPYEu/wkYVQKCeh7r1qCSPN9LeIZiExohSJtx4iA8QScCLVFEQ8lmRGQ8mhpvggMkBHgVcN9uq4rF3nUigRMkTgcDlx33XW47rrrjF7KkMgFTDuNFCB0hk/y0tWS1ukjoP84ARaRp2yMnNekbGYXt7SAYS2FBGTXIaQFJCJszKNSRGBkFXK5FwbGCxj2xwgADHpgzIa32i2dODpbepk1NhLWRH5F56/V1sALKA+0rOTrc1FMojaojDp321bvxiumkDg7x0zbeblgiTHig1F04ZUZ7lm7MDDDIEeABIwqiEbeRCSF4ImowashKgl5BRJFYDJEBzBK6k1uBMbKSHOQqoyfgySiGOjISCVSoSkko4mbxMRLAkYFGnN8MAShF3IRoXUJNcDegTYfzHhgKkTACIIgRWBYSR8BOQMdGekFEx0gvclaLxizmHhJwKiAsiMvCRhCPxQRGA2b2OXbBgsH2nyI6Rqn12FoNYcyWsVGBEALkjEefDLTA4sVAy/AZjde8Tdjd9oUqTbWIpvkgakgciuRCHPSdSSEE590G72MolD2gNE+AuP0OKT+GvJts4R4lWuk/yV3+1aOwLBo4AWU3g1WJlKLvxlvjVuRalN4yxj4rsTDfRcBHjvsDnZlAhtuK5MTaPTC7XciHk5SBMaEJCJJfPjH3di15hAA4PzvnIoJp48weFWFoZiDpEMKCcgcbJPHI0xcKeaSSvBIRDIN9nwG+l+AykkhsdgDBgA8VWx14+VT6WzFYM5301uV6dwspAUmLgzEdbKcPgIoAqMKHMehfkKmH0akK27pg5XVOLjpBP783Xck8QIAx3Z2Grii4tA7hQRkD77ytuisoKhAqjZWwLj9TnB2cZyA8SdQrVBEYKrZOeHJmzqyMA9J4c3K+a1yNk6K2BntLRMEIStgGE4fASRgVIN8MOYi2hvH2t9uxuv3fYRIp/KAEeowTyWZeLXm8jng9OgTUM3txssSipOEwREYlk5KWsJqCom1CIz8O5CvP5EYsYv2JpBOG9eOIxXnkeYz22e5hBogAaMa5IMxB4IgYN+6o3j+X97BvnXHpNvHzGmUJouHO9g6KQ+EIAgId2W78OqFwsjLQLhbjrICyfiDrxgFivZmxglYkWiQvS68QGaUgAgLVUiKHjB5xLX4uxLSgqGCyywGXoAEjGo0Ukde5gl3RPH6/R9h7W+3SPNR3H4nlnzjZKz4/unSVZFZBEwinAKfyFR/6JU+Atgr+ZTDSg8YaQ01spMSI83U1EaZQmJHwDhcdmnKMwt9YAYa5CjdJvdMGfi7UgiYKrYFDJl4VaJmlB92pw18Mk0pJMYQ0gJ2rT2ED5/ZhWQ069mYdOZInHVtkyRc/A0eRLrjiPTEwafSTLvvAUjRFwDw61CBJMJayaccpQfG+JOpr1bZjddoX44WKEy8DKWQgIwJNRXnmYjARIeKwOT8rhom6LKsfiia2DEegSEBoxI2uw3146vQtq8HvccjSERTcHnp7TWanmNhvPO77TguM+Z6a91YcF0TJs4fqXisv96Dtn09gJCp7qkaZuw8kqGQVyDpmkJiuJldZIBpv0bRrxJpHHvDL8uFVQ8MkFlPuCOGWDABQRAM7RJcaAoJAKIGpmblgpT1KiQ6w6pIw8TqzAkQmblII2fUG7yiyiXNp7H95QP46M97pSZbADDtnLE488sz8v4w/Q1ZERDuMIGAkZmP/TqmkFhuZsdKF958a2BN7KmFdMLjlL4TFhB/5wIvIBlNweUz7oQ8VHpT/l2JGFjJapYxAgAJGFXJNfKSgDGGjpZevPPINrTvz6byqoZ5sfBrszNm3QHwN3il/4dM4IMJGxSBUXhgWDPxdrMxyDHfGqxaSi1GYNx+J2w2NuYgiSi78SYNFTCS2OfypzdZSc0qTbzG/4YGgwSMiohDHQEqpTYCPslj0wv7sOWlTyH0lQGCA2avmIjTLp86ZJlxQBGBYb+UWtGFV8cIjNvvhM3BIZ0SmOt5JK7H5XPA7jRujICIQuwx9l6phTQHiQHPUS4eWQQhHkoAI4yLqoqixFPlgi2Pv46V1KxZ5iABJGBUpX5cFTgOEAQSMHrTuqcL7zy6Dd1HwtJttWMCWHzjbAyfWlfQa8iNsGaoRDLKxMtxHHy1boTaY8ymkFioQAKUaYGYBSMwqQSPZCxjjGfBNJ2LOycCYxSCIEiiZCBvFivVfZRCqlAcbjtqRgfQfSSErsMhU1SymJ1kLIWNz+7BjtdbADHoYucw75KTMO+SyUVdhcsjMKFO9gWMGIHhOP3TJd4+ARPrTSCdSue9otSbZCyVPZky4H8BlA3LWBN7asByBRKQ08zOwDL2eCgpNYcbSMA4XHa4fA4kIimKwBQICRiVaZhYje4jIaR5AV2Hg2icWGP0kizL4a1tePd3OxBqz6Z7hk2uwaIb56B+fPHVHt46jzSPxAwRmEifyPLWuGGz6ysgMt14M4b1aE9c4R8yCrnHJF+nUyNw+R3ZdFuvBQUMoz1gROSiysheMIV2iPbWupGIpAz2wMiqkBgvozb+ssli0EgB7YmFEnjrf7bi1Xs3SuLF7rLhzH+egYt/clZJ4gUAbDZO8pKw7oFJ82npoKjHFOpcWDEcymGtCy+QSbdJ3XgZeZ/UhOUSakAZQTAyhaTwqw0iYMT7UnEeiWhK83XlQ0wh2V02OFzG+8gGgyIwKtOoEDBBA1diTTp2hrHpv95RXG2PaqrHohtmo3qEv+zX9zd4+vpGJJFK8Mz+gKM9CQh9KTM9S6hFmBcwjHhggMxawp196ba0wFylTjlEGZ1ELaKsQjIuAqPowjtIdDDXyGtELzGzTKIGSMCojjiVGqAIjNqse2IHdq9ul/52eh0486oZmH7OWNUaVAXqvTiBbgAZI2/NqPJFkRYop1DrH4HxMtgLRnmSYOdkKq5FEDJpDFb8OWogj8AwaeJlZCK1ogvvIBccuUZeI44/2UnU7H2euZCAURlPwIVAoxeh9ig6D/ZCSAvgLHTFZRSpOI/mNw5Kf48/bTgWXDdL9eobRTO7TnYFjKILb73BERhGesGw6IEB+jcos6qAYTGFxMpE6qG68Oa7z4gLg1SClxp/ehifgwSQB0YTRB9MMsajtzVi8GqsQbA9KlUZTZg/Aud/51RNSodzu/Gyilw0+A2IwLDSs0IOa114RZTjBKxVSh1jPIXkcNthd2ZOc4ZGYAr8bnoN/l2ZaRI1QAJGExomZtNINJlaHeSVRrWjA5rNNFGWUrNr5FWmkMgDA+QMcmTIA6MY6MjIe6UWrFchcRwnTVRmJgIzyO/V6N+VvNTcDB4YEjAaQB151SfUlhUTVY3aRRzk5cCmicAYUIXkqXFD1JDMCBi5B4ahk2m/gY4WIsp4Hxggk9YHMtEFQXS+64z4e3W47YN2BFdENg34rpipBwxAAkYTGqmUWnXkEZhAo3Y9R8ySQjJqDpKIzcbB03dijnSz8T6JB3x3wMlEYz0RS6eQ+iIwLp+D2aadorDik2mk4rwha5BaHgwRGTR6zpjZUkiqmHh5nkdPTw+Syfw5xhEjRqixGdPgq/fAU+VELJhER0uv4WPcrYBCwAzTTsB4q1xS4zGWBzqKJl67ywaXzxgvvq/WjWh3PFPSbbBZXRAEadbQUCcJvVEOdLRWBEYUMKxGX4D+vWCGmommNqkEj0Qk09NlqHSvfM6YEZFN5RgBdj9TkbI+yd27d+ORRx7Bli1bkErlb7rDcRzWrl1bzmZMB8dxaJhYjSPbOhDrTSDSFTckzG8lgjpFYDgbB3+9B8ETUaab2YU7Mwc3f53HMHHsq3WjA4DAC4gZXB6cjPHgE5nqCZYMvEBOFRIj6TY1SKfS0omZRf+LSG433ioNL4DyES2wBwygnDNGKaShKTnmt3fvXtxyyy3YsWMH5s+fD0EQcNJJJ2H+/PmoqamBIAiYO3culi9fruZ6TQN15FUXMQLj9GvfHVL0wSQiKSRjxnTDHIxkLIVkX5dOI7rwirA0aTnKaA8YQJyMnTnUWimFxHoFkogiAmPAPKRCS6hFxN+VOGdMT8yWQipZwPz+978HAPzP//wP7rnnHgDAokWLcN999+G5557DJZdcgv379+Paa69VZaFmg4y86sGn0lI+2F2jffhXHi1jMY2kLKE2LtqgMBwa3AuG1RJqoG+cQJ+oslIKyQwGXiC3G6/+pdSKBosFCBh5D6Nor76Cq2IiMNu2bcOCBQswceJE6TbR4e12u/Htb38bjY2NePTRR8tepBmRR2DaW0jAlEO4I9sDRg8BE1AYedlLIxndhVfaNkOl1KyOERARRVUsmECa1/eqWitYb2In4pY1ZIsbEIGJlhiBAfT/XcXD5iqjLvlsEA6HMXr06OwLORyIRrMHe5vNhnnz5mHNmjVFve6mTZtw22235b3voYcewqxZs0pbsM7UjPTD4bYjFecpAlMmofbsCVuXCAzjlUjyLrx+A7rwihh5oM1F0QOGsRQSIIsKCcYOFVQT+X6wnEJiKQJTiIBRdrmOAajRYll5MVsKqeSzQW1tLYLB7LDC+vp6HD58WPGYRCKBWKy0E8Cll16KmTNnKm4bM2ZMSa9lBJyNQ/2EKpzY041QWxTxUNIUipZF5D1g3DXaD1dkPYUUlk+2pQhMv+2zNEZARFFKbREjr2IOEsMRGI/suBs3oJld0SkkRS8YnVNIfVVINgcHh5vNQbZyShYwEydOxMGD2dk0c+bMwTvvvIPt27dj9uzZOHDgANauXYsJEyaU9Ppz587FOeecU+rymKBxQjVO7OkGAHS09GL0rAZjF2RS5BVI+qSQZM3sOtkTMBFWUkh1LHlg5BEYFgVMTim1Ba5lzGLiNToCU14KSd/jT3YStcsUrT9K9sCcddZZ2Lp1K9rbM9OBv/zlL0MQBNxyyy24+OKLcd111yEUCuGqq64qeXGRSGTA8mwzQJVI6hDSWcD4GffAKLvwGphCYqg8mHUPjI+hii21YH2MgAgrVUicjSvIK6ScM2aMiddjkmxByWeDSy65BEuXLkVVVWbuz5QpU/DrX/8aTz31FI4ePYrp06fj0ksvxVlnnVXS699zzz2IRqOw2+04+eSTcdNNN2HGjBkDPr69vR0dHR3S3y0tLSVtV00UAoaMvCWjt4BxB5ywu2zgE2lGU0iyCIyBJ2uHyw6334l4OGl4N15JwHBsTtFVRmAScDYauBiVMIuJ1+l1wGbnkOYFQ1JIYgTGW+MqqNmjUalZPslLnYrNYnco+WzgcDhQX1+vuG3OnDn45S9/Wd6CHA4sWbIEn/nMZ1BTU4MDBw7g2WefxS233IL//u//xrRp0/I+78UXX8SqVav63b5//37wvDHto9MpAZwNENLAkd1taG5u1mQ7oVBIs9dmgc6jGfFn99gQS0V02VdnwAa+M41gWwQ7duwwLJya77Ptbs14zxw+G3bv3W3EsiRsXgDhTKqt3PepnO9xT1sIAOD02bBr966S16AVvTLRefjToxg2wmX632zH8S7p/weO7oO9beCAvtHHKLvXhnSIR7BL++OHfF+FdLZDNOcRCtp2ms/Oa+o41qXb+5YIZrMdiXSsoO1q+bk2NTUN+RhjepAPwpw5czBnzhzp74ULF+Kcc87Bddddh0ceeQT3339/3uetXLkSCxYskP5uaWnB3XffjUmTJmH69Omar3sg9ozrQmdLELGOFKZNma5JE7bm5uaCPmwzkk4LeD+Y8VrVjPAjEAjosq8HRoVwtLMD6aSAKROmGXZFkvvZCmkB68OZ96N6mN/wz/3AiBCi7R1IpwRMnTQNLl/p71Op32NBEPBB9BAAIFBv/HuSj566MLajFQDgswcQCLiYXGcxNPMdAOJwuO2YM3f24I81+Bi1s64DXaEQ+Jig+Trk+xrpieN9IfN7rR9ZU/C2N1cdy/h14nbd3reuw0FsxBEAQOOo+oK2a/TnWraA6ejowJ49exAMBpFO5+9vsGLFirK2MXbsWCxcuBBvv/02eJ6H3d5fBDQ2NqKxkb24bMOEanS2BCGkBXQeDGL4lFqjl2QqIl0xCH1XJFqOEMhF7oMJdUaZCalm+ohk3g9frfHjKeRG3khXvCwBUyqJSAp8MnPs8dWymcrITSEBbK6zGEQTL8vpIxFxrg+fyAx01KvCRm5uLybd6631IBbMpGb1mqWnbGLH/mcKlCFg4vE47rvvPqxZs2bAEeXiG1+ugAGA4cOHI5lMIhaLwe/3l/16etEwsRp7386o2o6WXhIwRSIvoa7SUcAEcnrBNIyvHuTR+hFmpAeMSG4vmNoxAd3XwHIXXhGn1yH5qjLr1f99UhMhnfWTsGzgFZH7omKhBAJufY4lxfaAyT7Wha5DGRtCIpzS5QLKbD1ggDIEzMMPP4zVq1dj3LhxOPfcczFs2LC8kRG1OHr0KFwuF7xefQdxlUsjVSKVRajfEEd9qoL8jJZSRxjpASOtgYFeMGYQMJlxAm6E2qKWGCcQDyUhXreaIQLjkUUU4sGkolWClkSL7AEjIo+uRrpj+gsYRiLOQ1GygFm7di0mTpyIRx99FC6Xel/g7u5u1NbWKm775JNP8N577+HMM8+EzVZy5bch1I+vkv5PAqZ45F14A8O8iOomYNjsxivvAWPkHCQRZcmnUQKG7S68Ir4+ARMLJhVGTTMin4PkNUEExq3oBaNfJVKpERivLBUa6Y6jbmzVII9Wh1i4ggRMKBTCeeedp6p4AYAf/ehHcLvdmD17Nurq6nDgwAG89NJL8Hg8+PrXv67qtvTA5XOieoQPva0RdB4MIs2nYbObS4QZSbBNGYGJ6qQlclNIrKDowmvgJGoRFsYJFNvp1Cjk4ioVMaYyUi3M0gNGxKPoBaNfM7tIidFBIy4MKiqFNH78eHR1dQ39wCJZtGgRVq9ejeeeew7hcBi1tbVYvHgxrr32WowdO1b17elBw8Rq9LZGwCfT6DkW1kVNWwV5Cqmq0Yu2w4M8WEWU4wTYaWYnn4PkYywCY1gKqZv9FBKgFFeJkMkFjGISNfsnO3maS89eMAoTbxG/V68ihaSXgDHXIEegDAFz5ZVX4le/+hUOHz6sqrC47LLLcNlll6n2eizQMLEa+z84DgBoP9BLAqYIRAHjcNsVU2W1xuVzwul1IBlNsRWB6ZR14WXMA2NYCkkWDWBxDpKIXFwlw+aeSG22CIy7yphuvJESxbW8mk6veUhxK6eQNm/erPh72LBhOOOMM/D1r38dl19+OaZNmwafz5f3ufPmzStnjaYnd6TA1IXGDaWMhRKw2W1weZlrAdQPQRAkARNo9OjeTC7Q4EHX4RDCnfqVMg6F2PHWZi+sLbnWOL0Oaeq6Ud14lREY49+TgZCvzfQRGJN04RUxah6SaNh2+RxF9QBTmHi79PldWTqFdNttt+U9gAuCgCeeeGLQg/ubb75Z0uKsAiszkY7v6sTLP/sQTq8Dl923iOlwO5C5shb7e+jZA0bE3ydg+GQasWAC3mrj3y/RxOurcxfUllxrOI6Dr9aN3taIokJKT8STBGfjFGZN1lBGYMwtYExn4jVgIrUgCFIEpth0r1zs6pdCyggYzs7BaYILXKAIAXPNNdcwcQVqRnw1bvhq3Yh0x9FxoNewq/kNf9qTmQcSSuLwtnZDI0GFEGrLLaHWF7kPJtwRM1zA8EleunpkoYRaxNsnYBKRFFIJXpNu04MhGiU91S7YGBB1A2ElAWO2FJIREZhkLDtbqNiLRXlkU6+yezGF5PY7TXOuL1jAXH/99Vquw/I0TKxGZHMbEpEUQu0xVA3T94R8fFcnWvdkTdfB1oiu2y8FhYFX5/cL6F9K3TipRvc1yJFfibHgfxHJ9cFUDc+fStYCIS0g1ucR8DGcPgKUvoYkpZB0xeVzgLNxmQZ8OnlgoiWWUAPGRDbF98Us/hcAoHpenTA6jbTlpU8Vf/eaTMAYEYEJ1Ge3ycJUarmBl4UKJBEjK5Hi4WxPFdZTovL1JcwegelLw9hMkm7gOE46MesVgZF7wkqJmIrfFzGyqSXpVBrJqLkmUQMqzEJqb2/HP/7xD+zduxehUAiBQABTp07FsmXLmJxNZBQKAdPSi4nzR+i27c5DQRza1Ka4rfe4CQSM0SkkeQSm0/hSakUJNQM9YEQU85B0FjCKLrwM94ABAKcnmxYwfRWSbIyAWdINnionYr0J3SIwke7yGiwqIps9cVQN0y6yqahAMomBFyhTwPzlL3/BQw89hGQyqZiH9Prrr+PRRx/FN7/5TXz+858ve5FWoGGCcRGYrTnRFwDobQ3ruoZSCBocgWGtG69cwLDQhVdE0cxOZyOvWbrwinhrXAieiJraAyMIgpRCMoP/RSST6gojGePBJ3nYndp6taLyCEwJ4jr3d6WpgJFVIHlMMsgRKEPArFmzBg888ABqampw9dVX4+STT0Z9fT06OzuxZcsW/PnPf5buX7ZsmZprNiVVw71SXxE9BUywLYp9644ByIQGq4f70PZpD2LBJOLhJNNqWxwjYLNzJR0AykU+L4W9FBJDERgDU0hmmIMkx1vrRvBEFKloGnwqDbvDfFn8ZDQlpe3M4H8RkU9YjoWS8NdpK2AUEZgSjl+5ERgtMWMPGKAMD8wzzzyDmpoaPP744/jKV76CefPmYfz48Zg3bx6uueYaPPbYY6iqqsIzzzyj5npNC8dxaJiQaWAX7owpTHBasu3l/RDSmYNN0/IJqJ+QbaLHupE32wPGa0jJsMNtl37MzEVgWEohyXpWRHXuBVNqozCjkK8xZtKhjvLGgWYooRZRTKTWoZS6HBNv7nO0vjAwYw8YoAwB09LSgqVLlw7ocxk+fDiWLl2KlpaWkhdnNeQ+mPYW7aMwsd4Edq89BCBzMp61fAKqR2TDkD0MC5h4OIlkNAXAmPSRiJhGCnfFkE4bO4AvXGJbcq0xNgIj68LLuAcGUHYKjujUYVVtzFaBJOLOmUitNQoTb20JJl4du1ybcRI1UIaACQQC8HgG/1C8Xi8CgUCpm7Acelci7Xi9BXwiYxacfs5YeKpdqB7pl+5n2QejNPAaF20QIx0CL+jWj2EgxCZ2Tq8DTg87lR/ugBM2eyZCpvc4AWUKif2TqXyNRn+fSkUxB4kiMAMippDsThtc/uJ/r7pGYMLmm4MElCFgFixYgHXr1iGVSuW9P5VK4b333sPChQtLXpzV0FPAJGMpNL+eiX5xdg6zL5wEAIoIDMuVSIoSagN6wEjblvlgjEwjCYKAcF8KyV/PVqSBs3FSaoQ8MIMjX6NRs6PKxWxN7ETk5tS4DhOpxXSqt8ZdUqWWnpPeKy6FdNNNN8Hr9eL222/Hjh07FPdt374dt99+O3w+H77+9a+XvUirUDc6ALsz85ZrLWB2rz0kfSmnnD1aagSnEDAMp5CMrkASUVYiGVdKnYikpGgaSwZeEfFqMdqbQJrXr0RYFAE2O2eKA69CwJg1hRQ0aQpJxwhMOpWW+s14a0t7jzIl6pn/UwopPyXHob/61a8ilUqho6MDN998M+x2O2pqatDT0wOez5QINjQ04Ktf/arieRzH4U9/+lN5qzYpNocNdWMDaN/fi57jYSRjKU1SAXwqjW0vH5D+PvniSdL/nR4HvLVuRLvjTAsYo5vYicgFjJGVSMoSavYEjFf05AgZEaPXGkUR4KlxMTEbaigUM25MmkIyr4lXvwiMPDJYiv8FAGx9kc1Id1yHFFKFCRhBEGC32zF8+HDF7Q0NDf0eN9jflUbDxGq07+8FBKDzYBAjptWpvo19645K6Y7xpw5H3dgqxf3VI3yIdscR7Y5rJqLKRe6BqTJQwAQUzeyMEzDybbNk4BVRlHx2xXURMEJakE6mPhOkjwB9S2O1wqwmXuU8JG0jMJEyK5BEvH0z9KI9CQhpQTORrozAmOczLfnM9dxzz6m5jooh1wejtoAR0gK2vrRf+vvkiyf3e0z1CB9ad2fmIvW2RhRN9lhBjMBwnLElw/56Njww8gZxLJVQixhRiRQLJaQWAWbwvwAWTCGZKAIjjyxoPU5AUd5fYgoJyPyuOtA38yuY0Ox7HhMnUXOAywSjIUTM10XJ5MjFQrsGPpiDm06g+0gIADBieh1GTu8vkKpHsu+DEQWMr94Dm4HNvuSGWSMFTLjLPBEYvQRMtMxGYUbgcNvh9GYaqJndxMvZzOE7EnH5nZKnJK5xBEbZA6b0Cw6FkVfDiJ04XsHld5oiFStCAkZn6sdXAX3fD7WNvIIgYMuL2bEBc/NEXwCgeoSslPo4e6XUyVhKukIy0v8CAHanXfIthAychxRhtAuviLJiQh+hp6hAMlEkwFvdZ3g2awopmJ1abKqTnY2Dq09wxTSehxRRqbw/NzWrFWIKyUz+F6CIFNKqVatK2gDHcbjmmmtKeq4VcXocqBnlR8/RMLoOB5FOpVWLMLTu7sKJvd0AgLpxAYybNyzv42oYr0RixcAr4m/wItqTQLQrjjSfhs2uv+5ntQuviFxU6TUPKWKiQY5yvLVu9LZGpCnDDpe2Le3VRvQdmUk0iniqXIiHktqnkLrUueDQI7KZTgtIRDLtUCwrYJ544omSNkACpj+NE6vRczSMdEpA15GQah4UefTl5IsnD3h1VMW8gMmerNkQMB60f9oDQcgcmIxYk9iFl+PYbNjm07FrqLQdxSBHEwkY2ecX600w8R0vlGQsW85vJv+LiLvKCRzrm+ek4sVjLuWOERDx6mD6TigmUZvrMy1YwDzwwANarqOiaJhQLQ1Y7DjQq4qA6TjYi0Ob2wBkOtee9JlRAz7W7XdmRssHk0w2s5NHYKoMbGInEqhXllIbccIRIzDeGrchEaCh8Na4MqlRQU8PjPwkYZ4Dr1xsRbqNEcSlYtYeMCKKSqRQUrPxE1J0kCsvUqWIwGgU2TRrDxigCAEzb948DZdRWfTryLuk/NeUVx7NuWjSkFcW1SP8iAW7Ee6MMRfGVqaQjE+XyFM2mWZ26pe+D0aaT0snax+D6SMAsNlt8FS5EOtN6CdgFB4Y80RgfDXaX1VrhVm78Ip4ZCfoeCihmYARf6+eKldZUR6F2NXou2LWHjBAGWXUcnieR09PD5LJ/HnFESNGqLEZy6AQMCoMdYx1p/Dp+5mIjjvgxLQlY4d8TvVIH0580g0ACJ6I9OsVYyTBNtY8MHIBo38lUrQnAbF9EosVSCK+OjdivQlEu+MQBKGk9unFEDWrB0YxD8lcpdRm7QEj4tahF4wgCJKILze1Kf+9a5WaNesYAaBMAbN792488sgj2LJly4AzkTiOw9q1a8vZjOXwVLngb/Ag3BFDR0tv2Q2Kjq7vlfphzFoxoaDGdLkzkVgSMCyaeEVCBjSzY70Lr4iv1o3OliDSvIB4MKn5Fbp48rc5OLh85uldoYevQSvk5lczChiPDr1gUrE00qnM8bjcCI/DZYfL50AiktIwhWTOQY5AGWXUe/fuxS233IIdO3Zg/vz5EAQBJ510EubPn4+amhoIgoC5c+di+fLlaq7XMohRmGSUR++J0n0o0d44TmzO9H1xuO1oOn9CQc+TC5gexkqpRQHjrXExkdoKGByBCStKqNmNNPh06lkhbUNMq9WWNizPKMzczC5q0iZ2IopxAhpFYJIhXvq/Gr9X8fuildg1cwqpZAHz+9//HgDwP//zP7jnnnsAAIsWLcJ9992H5557Dpdccgn279+Pa6+9VpWFWg25cbecfjDNr7VIan/GsnEFXxVVj5T1gmGoEolPpaUTEwvRFyBzEBLPj0YMdDRLBCbXnKol6bQgnYDM5H8BzD2ROmbSOUgi8jb5MY3mISVkAkaN6jhRBCVjPJKx/JmOcpCnkDwmSyGVLGC2bduGBQsWYOLEidJt4pwjt9uNb3/722hsbMSjjz5a9iKtSGOukbcEkrEUml8/CADg7BxmXzix4OfmppBYIdwRBfr8HqwIGJvdJg0rNGKgY1jeU6Ke3ZO1Il+vcS+YWG/WF2Qm/wuQ44HpNZmAMX0VkvYTqRURGBW+m1pfGCg8MCb7TEsWMOFwGKNHj5b+djgciEazV6c2mw3z5s3DRx99VN4KLYoaRt5d/zgkhf+mLBiNQEPhJ3x3wCn5BliKwLBm4BUJ9M1EivUmwCf5IR6tLhHFGAF2IzA+HbvxyiMXLPbFGQyHyw67OxPS06tiSy3MXoXk1mEitSICo4KA0brHUszEJt6SBUxtbS2CwaD0d319PQ4fPqx4TCKRQCxm3PwYlvE3eKR8YykRGD6VxraXZUMbPzepqOdzHCelkUIdUd1PygPBWg8YEb+BU6nl22M6hSSb+aL1iVlRgWSiJnYiTn/fPCSTeWAUAsZkfglAnwhMQuUIjNbdeM3cB6ZkATNx4kQcPHhQ+nvOnDnYsGEDtm/fDgA4cOAA1q5diwkTCjOVVhocx0k+mGhPQnGVXQj73jsqzcepm+YtqYpISiMJQPCEcXN+5LDWhVdELmD0TiOJ1Qd2lw0uP7vVNnoOdIyYXMC4+gRMMpoZJ2AWpDlIfqehQ1ZLRR5hiGtUhaR6CklrARPOCjlXpURgzjrrLGzduhXt7e0AgC9/+csQBAG33HILLr74Ylx33XUIhUK46qqrVFus1ejX0K5AhLSALS9lxwaMPbumpO1XMzhSgLUSahEjK5FEceuv8zBdbaNHzwrp9WWRCzN14RVxBrLVdWYqpRbnIJkxfQRk/GyiiNEjAmOGFJIYgXH5HLCZaDgnUIaAueSSS/D888+jpiZz8pwyZQp+/etf44wzzkBNTQ1OO+003HvvvVi8eHFZC3zyySexePFiS85TkguY9iJ8MAc/PoGeo5nS55Ez6lA1trQfSfVIuYBho5Ra6YFhJ10i7wWjp4DhE2lp0BrLJdRAtmcFoP1AR6UHhu33JR9iCgkwTyUSn+SRjGa+i2Y08IqIaRKtPDBiBMbhtsPlLT9iqnkExqSTqIEyGtk5HA7U19crbpszZw5++ctflr0okRMnTuDpp5+G18vOlbialBKBEQQBm1/cJ/099+LJCKK9pO1Xj5CVUjNSiSRGYFw+B1w+dn5QinECOnpg5FdzLE6hzsVb68403SIPzKC4FBEYc/hgFE3sTBqBATLiq7c1gng4qcl0+UQ4M+xSrTEFWkZghLQgDXOUl5ibBaaTmP/93/+NpqYmTJ8+3eilaELNKD8c7syBrFABc3xXJ9o+6QEA1I2rwth5w0revjICY7yASacFSRywZOAFlCmkkI69YBK98qZY7AsY8WCbivNIRNXvWSGinERtvgOv05899JolhWT2MQIibpmRV97ETQ1SCR58LCNg1CrvdwecsNm1qVpLRFNSOwKzVSABDAuYzZs346233sK3vvUto5eiGTYbh/pxGfNt8EQUicjQP6YtL2Yrj+ZePKksT4S32gWnJyOgWBAwka4YBD7za2LJ/wKIU6Az77WuEZhgVgSwnkICtM/XS6/dkzU2O1UI0+uN3AOjR9diNTB7F14RxURqlY28ygnp6vxeOY6TxJDaAsbMFUgAowKG53k88MADuOiii3DSSScV9Jz29nbs3r1b+tfS0qLxKtWhmH4wHS29OLylDQAQGObF5LNGlbVtjuMkI2+wLYp0Kl3W65VLiNEeMADA2ThpErSeHhizpZDkUSIte8HIh+WxbGweCIUHxiwpJEUXXvOd7ETkJ2q1xwnIBYaaDRZFMRQLJpDm1TtOm3mMAKDSNGq1+dvf/obW1lb8+te/Lvg5L774IlatWtXv9v3794Pn2S1TTLhC0v93rN+LLqF1wMfueaFN+v+wUz3YtXsXACAUCqG5ubm0Bfgy742QFrBp/TZ46437Erdty74XYb437z6Vta9lYvNkDhzxUBLbtmyH3am9/peLpRPdxxBr7tJ8m+XQG8+K8L3bPx30+5xLoZ9tmheyV44u3rDvQzkkuezn2nqo3RT7cHRv9rPt6G1Dc3PhqVQjf7e59EZ7pP/v3fkpOtPHVXvtjl3ZSHYo0aPaPqfsfUJLALZu3A5XlTqn7u592c8wGC1+vVp+rk1NTUM+hjkB09PTg8cffxxf+cpXUFtbW/DzVq5ciQULFkh/t7S04O6778akSZOY9tAM8/Rg38vrAADOmG/ADy14IoL3mzNRJU+VE0uunC/5Z5qbmwv6sPMR3robHTszJdnDq0ZjXFPpnppy2bTnEwAdAICTZk/EpKaR/R5Tzr6WS+u4BHoPHQMAjBs2EbWjA5pvc/fzWdE669QZqBruG+TRxuPqOoqWNzIiq87fiKamwhssFvrZhjtjWI9MD6qGkbWGfR/KYXtqB4BuAIAz7TbFPkS27wGQ+WxPmjkJY4s4Vhj5u83FduwgDq7tBgAMrx2B6U3jVHvt5iMtADK/2YlTx2Fa01hVXrdzXBpdew4BAMYOm4DGyaW1zshlX/dRNOMEAGDMxFFF/V4B4z9X5gTM7373O1RVVeHSSy8t6nmNjY1obGzUaFXaUTc2AM7GQUgLaB/EyLvt7/sls9Wsz06UxEu59JuJNFeVly2JUFv2qrSKsRQS0L+UWg8BkwiqO9lWaxQeGI28HYoKJJPNQRKxOTi4fA4kIilzmnhN7IFxKzwwKqeQZO0DvCr+XrVqEmn2FBJTHphDhw7hpZdewmWXXYb29nYcO3YMx44dQyKRQCqVwrFjx9DbW/rkZhZxuOyoHZM5EXYfCeXtyhntiWP3m5kxDQ63HTOXj1dt+yz1gmG1iZ2IopRaJx+MaOJ1B5ywO9URrVqi6FmhUS8Ys/eAERHfK7MIGLmJ12viKiTFOAGVe8FENDDxAjm/KxW/L/JuxB4TllEzFYFpb29HOp3GAw88gAceeKDf/V/84hdx2WWX4dZbbzVgddrROLEaXYeCENICug6HMCwnPLjjtRbwyYz/Ysaycap+0RS9YAyuRBIFjMNtV5Q6soKilLpT+1JqIS1IERgzGHgBfcYJmL2EWsRb40bP0TCSMR7JWApOD1OH435YJQIjr0JS28SrVXRQEdlU8cLA7BEYpn4xkyZNws9+9rN+t//ud79DJBLBrbfeqpiAbRUaJlZh7zuZ/3cc6FUImEQ0hebXM94Xm53DnAsnqrptX60bdpcNfCJtaDM7QRAkARNo9DJZWeLXeZxALJSA0FdwYIYeMECmAaHdaQOfTGtWRi2/AlXzKldvfDXydFvCNALG6bWbIho4EPKGbapHYPrEBWfjVO2VI480qhqBMfEkaoAxAVNbW4tFixb1u/1///d/ASDvfVZgsI68u/5xSGolf9KC0QofhhpwtkwpddehEIInIkinBUPmYUR7E1KUicX0EaC/gBGHdQLm8L8AmdJ8X60bwbaohhEYi6SQZNGjaE9c4UdjEdEvYsZUgxz5FG21PTDid9Nb7VL1OCr//av5u4qFsvtvxggMUx6YSkWcSg0oBQyf5LH95WzjupMvnqzJ9sU0UpoXENaxy6ycEKMzkOR4qlxS6bQeE6nDsgnlZkkhAVnzYjyUBJ9Uv4VBtFueQjKxgNHB8KwW6bQgpRvMnD4CAJsj2/xQzYnU6bQgpTfVNpfLv+eapZAoAqMNv/nNb4xegqa4fE5UDfcieCKKzkNBKQryyXtHpZDkhNNHoG6MNlUvuZVIVcP0vxKUG3hZGyMgwnEc/PUe9LZGENbBAyM3wfpNEoEBcn0wCdU/z2ivPAJj3pOpMgLDdjO7eDAB9FVBml3AABkjbzKaUjUCEwsmIKQzb5LaEVO7wwZ3wIl4KKlJCsnptcPmMF88w3wrtihiGikV59FzLAwhLWDrS8qxAVrBwkwklrvwyhHTSMkoX9Doh3KQjywwiwcGAHy12bVGNejGK4bQnR47876RwZB7YLQeflku8hO9mecgiYhpsEQ4iXSf6CgXravjRFEU7Y5DENRZszSJ2m/Oz5QEDCPkppFaPmpFz7FMWfPImfUYPrVOs20rIjBGCRjGS6hFAjIPktZpJHkExldv1giM+ifmmBimN3H6CMhJCzCeQopapAJJROwFIwiQpjGXi1Yl1CLi94VPpiVfZDkIQjYtaEb/C0AChhlyjbxbXvxU+nuuRt4XEUUp9XFjesEE5QKG0RQSoK+RNyL3wJgqAqOdgOGTvHTQNb+AMU8KSTEHyQoRmCr1jbxyb4oWAkbt31UyxkvDc83ofwFIwDCDXMDsfecI2vZl5nXUj6/C2Lnadhj2N3hgc2Qc80ZHYGwOThFaZw2lgNHWByOaeG12dUsytUbegVTtZnbySICZ/S8A4DFRBCZmkUnUIopeMCqVUkc07hAt99Wo0aLA7JOoARIwzOCrdUsHBvnVzskXT9a8J4rNxkkzdnpbI5IRTS8UPWAavOAMKOMulICsGkivFJKvzs30e5KLlhGYqEbTfo1ANGYC6pyQtMQqTexE3BqUUuuVQsrdVqnEw+YuoQZIwDADx3FolEVhgEwqZfJn+g801ALRB8Mn04rUhR4kwikko5lyW5b9L0DOPKRO7d4nPslLJw0zGXiBnK6hagsYi3ThFRFPStHehGrGTC1QCBgTRQMHQtmNV50ITFRjAaP2hYHZm9gBJGCYoiFHwJx80STY7Pp8RDUjsz6YHp3TSCGT+F8A/Twwiqs5E5VQA5mTA2fPRIzUjsAouvAynGosFFGEpeI8kjH1e+aohWIOEkVg8hLRODroVfnCQCFgTCpKScAwhFzAeKpdmLZEnVHshWBkJZKyAontaIPL54DTk2mjrmUERtkDhu33JBfOxkknZvUjMNbowiuix/RuNbBaCkkegVFrnID4Xbe7OThc6o9a0DIC46EIDFEuI2fWw+7KfCRzL54Mh1u/eSO5zez0JGiSHjBAXzO7vihMqCOqWdhf2QPGfCdqMToS7Ymr1mcDyOnCa3IPDJBbSs1uJZIYpbA7bboel7TCrUEVkigqXAFt3h+1U7NWMPGatwuUBfHVuPFPP1uAUFtU88qjXJTN7PQtpTZDF145/novuo+EwSfSiIeSmngC5D4kn4nGCIiI4kIQMlfvankClBEY80cCcuchsYoYgfFUu5gctFosalchJaIppOKZFKBTIwHj9DqkwbvqmHjNL2AoAsMYdWMCGDdvmO4HiUCjV/ItGJtCMoGA0cEHEzZxCglQduONqNiN12opJDM0sxPSAmJ9RlcrGHgB9Qc6yiMiWkVgxEGpudsrlbjJBzkCJGCIPmx2G6r6xEPv8YiuFRGigOE4c5ysAw3yUmptesFEzJ5CkvesULEXjDRGwOvQxGegNwoBw2gpdTySlForWMHACwB2p13ysslP5KUij4hoFYEBspHNeLj8QalUhURYCjGNlIrzuubjRQ+Mr95jioFi8snQWhl5FREYE6aQtOoFI34vtShTNQJvLfvdeK1m4BVx981DiqlQRh3RIQID9B+UWg7yFJKLBAxhdowYKZCMpaQrATP4XwB9UkiiB8bu5kw5sFALAZNK8EhGMzNgrOB/AXKakzGaQrJaDxgRcZxAPJQsu3mnHikkQN1BqeJx1+G2mzaaSQKGkDCilNps/hdA2cxOi268giBIZdRaHgy1xKuBgLGa/wXomyvUZ3dj1QNjtTECImIERkgLZQ9H1C+FlH3/y47ASJOozRl9AUjAEDKUlUh6CZisADCLgAloPA8pEclWNLiqzBd9AZQeGNUETLf1BIzNYZMMpdEyT0haYdUUkmKgY5k+GLn41C+FVPrFkxUmUQMkYAgZRvSCCbZlt2MWAeP0OODyZYSFFikkeQm1q8qkEZga9U28ijECtdY5kYrRqmhPnMlxAnKPiCdgnffdrRgnUJ6AkTee1DIC41OpbxCfSINPpgGQgCEsQtUwL8Tqbb16wSgjMOYxq4pppHBnTPXhl3IDr1kFjN1hk65w1YrARCyYQgIAb3VmX/hkWvL4sIRVU0jKCEx5Rl7xO25zcHB4tDutqjXpXVFCTSkkwgrYnXb4xVLqVn1KqZVN7HyDPJItxDRSmhcQ7VU39C8voTargAEAb5/hMNIdU+W7FLXYHCQRxYwbBiuR5N9vq5RRA8poUrm9YMTvpq/WrWkPL7X6K8Us0MQOIAFD5CCmkRKRlGpTWgdDLmDk1T2s49fQBxNRRGDM6YEBsvn6dEpQlGyWimKMgEWqkAD2u/FatQrJrdJE6nQqLb1HWo+3yHRCzvy/HLEr31+3idOCJGAIBcpKJO3TSKKA8da4TFXK51c0s1PXBxO2gAcGyGlmp0IaSVGFZJE+MEBOKTWDzezE6ARn5+Dym1dQ56JWN155hErryKDNxsHTt41yIjBWGCMAkIAhcqgeme0F06NxJRKf5KVog1kMvCKB+ux61TbyWiWFpHYvGIUHxkKpDLWMmVohzUGqssYcJBG15iHJv9t6CGufOOm9J1Gy/84KgxwBEjBEDjU6ViLJIxcBkzSxE1GkkFTuxiulkDjz9oEB1I8sxPpO7m6/E3aned+XXFhOIQmCIEUnrJQ+AtSbSK0YvKqDgBG9ZQIvlFz+TSZewpLo2QvGjE3sRPwazkMSU0jeGjc4m3mveNWehySKICuVUAO5Jl62BEwyxkvltlaKegE5Jt4yIjDyqJkeAkaNHkuUQiIsSdVw/TwwigokswkY+TwkFVNI6bQg+UX8JhziKEfNFFIylm3uZ6USaoBtD4xVDbxApoW+3ZU5BZbTB0buRdEjhaTGAFBKIRGWxOGySydnzVNIbeaNwDhcdqknhpoppEwzs8z/fSYc4ihHzXECVhwjICKvLIkx5oGxag8YEVGUlRWB6dY5AqPC70ouYDyUQiKshJhGioeSZZnbhkLRxM5kHhggG4WJdMWRVqmZndzAa/aJy2pGYBRdeC1UQg1kKkvEkl7WBjoqxwiY90Q3EGIlUiyYKLlXkfy7rY+AkXmmVEkhmff3RAKG6IeilPqEdlGYoIk9MEC2mZ2QFhDtUicKI+8B4zd5BMbpccDpzZhtyy2j1vskoTc+RscJWDmFBGR7wQi8UHIXZEUKSYfooFfRzK68CIzdaZPSaGbEvCsnNEM5E0k7H4zogXH7nXB5zddfQoup1PIeMP46cwsYINs5tJyeFUBOCqnaegJGjCqlU+VPRlaTqCyFZDUTL5Dbjbe0aLOYQvJUOWFzaH9KVTOF5PY7TV0aTwKG6Ie8F4xWlUhpPi2ZX800A0mOFqXU4U5ZpMHkJl4g64NJRnkkY6WfmJWDHM3/vuSihjFTC6w6iVpEPg8pXkJJsiAIkjiXR0a0RC5gyk0hmdnAC5CAIfKg7MarjYCJdMWlJkwBE81AkiNP8agVgVH0lDB5CglQzwejNPFa70SqEDC9DAmYYGWkkIDSIjCJcArpVOY45tOpvN/htsPZF7Eu5TeVSvBSRZ/ZBQxzcfv9+/fjiSeewO7du9HZ2QmPx4MJEybgS1/6EhYsWGD08iqCah2a2Sl7wJjzRB3QYB5SJDeFFFTlZQ0j92qxRhbdK4aozt1O9UYuyiLd7FQiVVIEppSmcPLUqE+nCExmW270RFMl9Q2yioEXYDACc/z4cUQiEaxYsQK33norvvKVrwAA7rzzTrz44osGr64ycHoc0klCq14wZjfwArkDHdVNIdmdNkvMnVEvAiNLIVkwEsBqMztJwHDmP9nlQ75PpfSC0XuMQO62SknNWqUHDMBgBOass87CWWedpbjtC1/4Am644QY899xzWLlypUErqyyqR/gQ7Y4j2pNAIppS3WRr5h4wIv46D8ABENQTMGIExl/vMbW5TsQr7xpaRjdesbxYL6Ok3rDqgRFNvJ6AEzYTd4UeCEUEpoQUUlRRHaefwMu9MKgZWfjxWSFgTNwDBmAwApMPu92O4cOHIxQKGb2UikGeRgpq4IMxcxdeEZvDJg3iC6lg4k3FeakCxQoGXkCdCIwgCFJUwmpN7EQUAx172UshWTF9BORWIZUbgdE3hSRSrOClCIwORKNRxONxhMNhvPfee/jggw+wdOnSAR/f3t6Ojo4O6e+WlhY9lmlZlDORwmiYWK3q6ys8MCZsYifib/Ag0h1HtCcOPpWGvYzogLySyWeBEmog50BbYmokGU2BT/TN47GogFEMdGQkAiM3e1rRwAsoTbylNO1UzkHS7z0qp8t1PCwb5EgCRhsefPBByfNis9mwePFi/L//9/8GfPyLL76IVatW9bt9//794Hleq2UyQSgUQnNzs6qvGUxmvS97tx5AtKpL1dfvONIDALA5Oew7uLfgdIkW+1oOvLPvoCcAWz7YBk9d6QeEnpasgIkJYTQ3NzO3v8WSjGZ/e22HOwbdl4H2NdqZPbEkEDX1+yGSu69CWpDSkZ2tPUzsY7wn661IIF7Wmlj9HovCGAA6jncVvcZjB9qk/x9tP4yu5lZd9rUrnM1G7N/dglh14cfnI/t6pP+3dbVCaC49s6HlvjY1NQ35GGYFzOWXX45zzjkH7e3tWLt2LXieRzI5sEJeuXKlokqppaUFd999NyZNmoTp06frsWTDaG5uLujDLoZ2Tw/2vNAOAPAIAVVfXxAEfBA8BACoHu7HrFmzCn6uFvtaDr2TdqJz1wEAwKj6cRg1s77k1/qk6yiAVgDAuJNGo6lpEnP7WyyCIOBj51HwyTS4pHPQfRloX4/v6sQmHAUAjJwwHE1NMzVbr17k29fNNa2Z6EvcxsRn3r6/Bx/hCABg+JiGstbE6vdYEARsdB4Bn0zDIbiKXuP+v3wAIJNin3P6LLi8Dl32tZpvxycvZjIO1e46NDUVfo4Lb92NFnQDAE6aMQljmhpLXofRnyuzAmbChAmYMGECAGDFihX4zne+g+9///t4+OGH816tNzY2orGx9A+CUFKlYS+YaE8CfDJz5WNWA6+Icip1eaXUijlIFugBAwAcx8Fb40aoPYpoid14FT4Di6aQAMBX4+ozzmfGCRht4rb6GAEg8/10B5yIdMVL8sCIaVGH2w6nx6728gakHG+Zsoza3CkkU5h4AeCcc87Brl27cOjQIaOXUhG4/U7Joa92KbXCwGti/wugbjde+YHIbxETL5A92MaCSfCp9BCP7o/CZ2BhASOKszQvKE4yRhG1+CRqEVGcxUPJoudQiZV1vlq3roJTYfou0lumrEIy9+dqGgETj2c+JKpE0o/qEZmmY5HOuGTmUwMrNLETkTezK7cbrxVNvICylLoUI6/Vu/CKsFZKLY/AWHEOkogYheCT6aKOc6lEtmpQ78igO+CEzZ4RTEVHYCxUhcScgOnq6m9GSqVSeO211+B2uzFx4kT9F1WhKCqRVJxKbYUeMCLygY7l9oKRD3K0Shk1kBPuLqEXjELAWLALr4hXVsUijzoZRSWkkADlvhXTC0b+vdR7Qjpn4yTRVHQZdV90j7Nzuqa9tIA5D8z999+PcDiMuXPnYtiwYejo6MDq1atx8OBB3HzzzfD5zDk3x4zkjhSoH1elyutaoQuviLfWDc7OQeCF8j0wfSd3d8AJh8vcBxY55Q6fqxQPjHzKNgvdeGMVkkKSRyHiwUTBaW25GPcacMHhq3Uj3BlDtDeBNJ+GzV5YPMIqk6gBBgXMsmXL8Pe//x1/+9vf0NPTA5/Ph+nTp+Mb3/gGFi5caPTyKgrlUEf1fDBW8sDYbBz8dW6E2mNleWAEQZC68FopfQSU38wu1heN4Dhrn0hZGydg9TlIIooITBHzkBQRGAOEtSSahEzzQ3+Bxw1x6rbZ00cAgwLm3HPPxbnnnmv0MggA1bLBe2pWIokCxubgLHFF7a/3ItQeQyyYRCrBlxQ9iQUT0lRbf7353xM55QoYcYyAu8plyXb2IqwNdIxafBK1SKnjBCLdxqWQgBwjb3e8IAHDp9JIxvqaE1pgthVzHhiCHbSYSi0IgiRgAg1ecBY4Iakx1FEejrZaBKaceUjyMQJGnCT0RI2uxWoiRmBcPkdZHaZZR9mNt4gIjMET0kvpxmulEmqABAwxCO6AEy5fJkinVgQmHk5K3VnN7n8RUaOUWt4Dxkol1ADgk82IiRTZCyYRTkmRKStXIAG5HhjjIzDSHCQLR1+A3HlIJorAlOAts1IFEkAChhgEjuOkNFKoIwo+WX4ptVVmIMlRllKXZuQNyw+GFmliJ+KpdkH0ChZr4lWWUFtL2OXiDjjB9ZXGGh2BSafSUomwlf0vgDKFFC+imZ3CXG6QiTffWgbDSpOoARIwxBBIaSQBCJ4or8oGAEJt2Stws06hzsVfX34ptTICYy0BY5OVfEaKPDFHKkjAcDZO6rditICplAokAHCXGIERxTjHGROlKimFJEuRUQSGsDzVKo8UCFmohFpEDQ9MuFPugbHeiVo82EZ7EpnBhQUiT6VYuQeMiNTbo8j3SW0qxcAL5Jh4i/DAiKLBW+M2xFxeUgqJPDBEJaFoZqdCKbUyhWSNSINfhW68cm+I1VJIQPZgK/BCUTNn5Admn8U9MEBWwAhpQRHu15tK6cILAE6vQ0rdFZpCEtKCJK6NEtbKqjVKIRFEP8RxAoA6lUhWamIn4q1ywebIHADDnaWl2cQUEmfn4LXgFW8p4W6gsjwwQM5JycA0UqV04QUyXj9xH2MFisZYMBshM6o6zu60S1EUMvESRB6UERgVUkh9YwQ4G6eY5Gxm5PtScgpJPhTOAqXluZTaC6ZSxgiIsFJKXUkeGADw9J3MC40ORgwuoRYRvy+R7nhBgyiVKSTzf64kYIhB8Va7pHkZanpg/PXugltfmwFxJlIikkIimirquXwqLV3xWs3AKyL39USL6AWj8MBURApJNg/JwIGOldKFV0TsBcMnChvoGDW4hFpEjEryyWzV2GBQComoKOSl1MG2KNKpdMmvlYylpB+QVdJHIgGFkbe4NJKiiZ3FuvCKlBqBER/L2ThLdA4dCsVEagN7wcircayY0szFEyjOyGt0Dxhp23XFGXkphURUHGIlkpAWFB6WYrFiBZKIPB1WbBopophCbdEITKkppN6+So9qlyVTa7nIBQwrHhh3JQgYeTfeAkqpWUltFustkyZRc4DLy9wkoaIhAUMMiVql1KL/BbCggJFXIhXZjVcuYKzWhVfEW0I3XhYqPfRGvp8xAyMw8jJqq1chAcpoRCE+GEXU1MgITE1xnimxysodcFrigoAEDDEkCiNvGZVIQQt24RUJNJTezE7RA8YixuZcfLUllHyGkxD4yhgjIKLwwDAQgXG47XC4ix9OajaUE6mHjsCwmEIqZM6YGIGxgoEXIAFDFICilLqMXjCh9uyJ3coRmGI9MOEu63bhFVGUfBZo4q20EmogY6y09fUkMTSFFKyMOUgi7iLHCTCTQqopPIWU5rNGXysYeAESMEQBqFVKLU8hWWWMgEg5zeyUk6ite6IutuRTWYFk3fdFDsdxim68RiCkBekkXgkVSEBuBKbwFJLL54DDZVyEqpiy+0Q4W6VkBQMvQAKGKABfrRt2V+arUk4KSW7ilZ/wrYDb75RC7WTizY94pVpoyacyTF8ZJ1Igm0aK9cSRNmCcQDyUhKgvKyUCo6hCKsLEa7SwLiaFZLUxAgAJGKIAOI6T0kjBE5GSD6qigPHWug29atECjpM1s+uMFRRhEAn3mX6dXrslKgMGothKpEpMIQFZoScIxU1HVotKM/ACykqrod7zZCyFZCzTK8boiKnT64DdmTmNDxWBUQxypBQSUUmIaaQ0LxTt8QAAPslLJ61AozWjDGJUKRXnFeHawRAEQbpysnL0BSi+Z0XFChiDS6krrYkdAEWPoaEiMKxUIAGZCyd5anYwrNYDBiABQxSIopS6hDSS3BdiNQOvSEBRSl2YyEtGU1LnT6saeEWKj8BUVhdeEaOb2SnGCFRZ40Q3FC6fQyorjg/hgWFNWIsRu3goCT45cBfhGKWQiEqlpsxeMFbuASPiL6GUOtwp978YfzDUkmIqJgBllKZS+sAAxo8TqMQIDGfjpJP6kBEYRkqo861hMMFrtTECAAkYokDEcQJAiQJGZuCtslgPGBFlKXVhAkYejrbKcMuBKDWFZLNzljngFoLRAx0raRK1HDHaNFQEhpVBjiKFRjaVKSRrfK4kYIiCUKaQiu8FY+UxAiKB+uJLqcNdlROB8cm78XYN/f5ExC68NW5wnPm7hhaKspkdmXj1QjypJ2P8oKkYVgY5ishF1GAXBlSFRFQs/nqP5HYvLQJjfQ9MKc3sIvIuvBb3wBQztyWdFhCTSlUr5yQKAN5qhiIwFSRgCu3Gq0ghMXDRUVIExiIRTRIwREFwNg5VwzPCo7c1AqHIUupgW1b0WFbAyAc6FjgPSTEHyeIpJJfXIfXKGbJiIpiQepGwEKbXEy+lkAyh0HlICm8WQyZeYCgBIyujpggMUWmIvWD4ZLqgFIAcMQLjDjgt2+vE5XPC2bdvBZt4K6QLr4h4tTiUBybCWKWHnrh8DtgcfeMEuo2rQrI5OOn7XAkUOpFaFAk2O8eEEPAVmkISIzAc4KIIDFFpyH0wPUWkkdJ8WopIWDX6IiKWUhfazC4iRmo45WRZqyKKtEQkhVRiEJ9BBY4REJH39jAyAuOpdlWU98hTYARGFDDeWja8WcWmkNw+J2wWmEQNkIAhiqDUmUiRrriUcrK6gBF9MHwyrQjFD0S4OyNgvDVu2BzW/zkqwt2DtD5XhukrJ40hIvpgYsEE0nxat+0KgiCdvL0VlD4CciIwA3hg0nxaen9YMPACfT6lPj1SiImXhaiRWlj/iEmoRqnN7IKKHjDW9nn46wvvBZNOC4h2s3Uw1JpCrxblkYdKeW/kSEJPKGw2j1okIimk+czFRiUZeAHlROqBIjDRngTQF1hl5Xtps9ukarGBflNCWsgKGIukjwASMEQRiB4YAOhtLbyUuhJ6wIgEiphKHevJRqasbuAVUebrB35/KrULr4hRzeyUXXgr630vJALDanNFcS0R2TFFTiKSkoQXRWCIiiTQ6AFnz8Qqi0khVUIPGBFFKfUQ4wQqzcAL5PSCKTACU2keGCB3nICOAqZCK5CAwqqQWOvCKyKuReCFvOIrHrZeBRJAAoYoApvdJkVQeo9HCp64XKkCZqgITERWam31OUgi3rrCPDARxkpV9caoeUiKCEyFpZAUfWAGSNspquMYFDBA/gsDK/aAAQDmauR27tyJV199FZs2bcLx48dRXV2NWbNm4Wtf+xrGjRtn9PIqnuoRfvQejyAV5xHtSRR0FRKsgDlIIoEi5iEpuvDWs3Mw1JJC2+SLJ2270waXj7nDlObIU0h6TqSu1CZ2QF9pMQdAyPQhykeUoUnUcnInmNejSnG/FSdRAwxGYJ555hm89dZbOO2003Drrbfi4osvxpYtW/C1r30Nn376qdHLq3gUlUgFjhQQIzAOt91SP558KJrZDRWBkc9BqpAITLEmXm9NZZXyihg1D6mSPTA2W3bmVmyAeUjMppDkc8byRDatOEYAYDACc8UVV+Df//3f4XRm3+Rly5bhuuuuwx/+8Af827/9m4GrI6pzplKPnFE/6OOFtCCdyKuGeS1/MhJFWjyUHNoDo5hEXRkCxh1wwmbnkOaFAQWMvFS1EtNHQE4KSUcTb1QWgamkOUginioX4qGk6VJIyknv/S+clCkk63yuzEVg5syZoxAvADBu3DhMnDgRLS0tBq2KEKkZUVwvmGhvAnwy08fC6ukjkWwzuzjSg4xckEdgKiWFxHFctmJiAA9MrDdbqsrSSUJPjBroWMkmXiBbSp2MppBO9e+/I49usCSulRG7/t8Xq6aQmIvA5EMQBHR1dWHixIkDPqa9vR0dHR3S3yR2tKF6pKyUuoBeMJVk4BXxN3jR0RKEkBYQ7Y4PWCItjmOwO22WMtYNha/WjXBHTGrSZrMrr6MUJdTV7Jwk9MTpdcDutIFPpo1LIVViBCagHOiYmyYSIzDugBN2hhpP+oYwx8csOAcJMImAWb16Ndra2nD99dcP+JgXX3wRq1at6nf7/v37wfMDtyy3AqFQCM3NzbpsK80LktGttaVjyO2278j6ZMLp3rLXqee+lkqCywq77R/tRNWY/Cfh3vbM4xx+G3bu3Jn3MWbY32Lh7X0HUwHYsmE73NWZw5C4r137sqI3nCz/O8MihXyuDh8HvgcIdkZ0ew+6TvRm/sMB+w7uVS3la5bvcYzPHq+at+yEb1hW0AiCIKWF7V4MuD9G7CufyEaL2o929tv+iSPt0v8Ptx5ER+qYKtvVcl+bmpqGfAzzAqalpQW//vWvMWvWLKxYsWLAx61cuRILFixQPO/uu+/GpEmTMH36dD2WahjNzc0FfdhqsaOxDcG2KJI9acycOXPQg9yWfZ8CyPx4Tpo1ESc1jSpr23rvaykkP9mH4x/tAQAMrx6JSXn2ORXnsS6WiRLWjawacJ/MsL/F0jkujc49hwAAY4dPwLDJNQCy+7qn/TB24gQAYPyUMWhqmmDYWrWikM9177ButPX0IBVJY8a0GbqMmtiabAWQSR/NmjVLtdc1y/c4uGkXTmzZDwAYM3wcRs1skO6Lh5J4nz8IAKgbWc3cb/Zj71Ekozy4pKPf9g/9fSOAjDhrmjtDtcim0Z8r0wKmo6MD3/ve9+D3+/HTn/4Udrt9wMc2NjaisbFRx9VVLtUjfQi2RZGIpBAPJgcNNSu68Fp8jICIPGU0UC8YRQl1hRh4RZTh7hiAGsX9rHY71Rv5cM9oMKFLpZpo4q1EAy8AeBTjBJRGXtYnpHtr3EhGIwWYeK2TQmIniZdDKBTCd7/7XYRCIdx///0kThiimJECleqBERmolDqiEDDsHQy1RN6NN1+FjdIDU5knUkD/brzJWEpKRVSi/wUA3PJxAjm9YOTfVRZ/s6JfJxnlkYylFPeJAsbpdfTznJkZJvckHo/j+9//Pg4dOoR77713UPMuoT/yUuqeISqRQn1N7GwOjsmrFi0opBdMJfaAERmqF0yU0VJVvVHOQ9K+EqmSe8CI5Jp45bDeHVpxYZAjeK04iRpgUMDwPI8f//jH2LFjB+666y7Mnj3b6CUROSib2Q0sYARBkCIwgUYvOJu1e8CI+GUl0aEBesEoesBUyCBHkaEFjHyQI3snCr3w6tzMrpK78Ip4BplIzWoTOxFvrax7s0zwCkJ2PpKV0kcAgx6YBx98EO+99x7OPvtsBINBvP7664r7ly9fbtDKCJHcZnYDEQ8nkYxlKsAqJX0EAHanHd4aF6I9iQIjMOwdDLVEMQ8pj4ARb3O47XB6Bva9WR29U0iV3gMGyEkh5URgzJJCApST3pPRlDSh2moRGOYEzCeffAIAWLduHdatW9fvfhIwxlM13CeVUg/mgalE/4uIv8GLaE8Cke440ql0vwqSSjbxeqtd0vcnX9tzaYxAdWWOERDRe6BjNEjeI88gE6lZTyF5B4hsWnWMAMCggPnNb35j9BKIIXC47PDXexDuiA2aQgq1ySuQKk3AeND+aQ8gAOGuuDTFWyTSyfbVnJbY7DZ4q12SwJOTTqWlK99K9r8AOQMddRgnQCkk5Qk+HhwkAsPgd1OZms1+llatQAIY9MAQ5kBMI8VDyX6hVhFFBGZYZQmYgMLI298HI0Zg3AEnHK7KS5OIB9toT1wKbwM5s3gYvMrVE70HOpKJNyOuxennA0Vg7C4bnF7mrv1zqvuyEV7lGAFrfa4kYIiSUJRSn8gfhQm1Z39ElZdCkgmYTqUPRhAEqYy60tJHIt6+g22aFxQHWEUPmBprHWyLxelxwOHOiFsy8eqHKN4G8sD4at1MpjYHMvFaOYVEAoYoCWUlUn4fTLDCPTAiuc3s4sEk0qlM1KHSDLwivtr86ZEo483C9EYUcXp4YOSN2ypZwIgDHePhJNJ8pi9OKsFLQkAe6WAJT8AFzp4RVvIIjCKyRikkgiisEkn0wHA2TlFaXAkEGgbuBaMw8FZYCbWIV3YSkHcOlXc7ZdFnoDeiiIuHkuDzTEdWE0UExmInumKQp89E0aIo7a9lU9xxNk4SvAOaeKus9bmSgCFKQhGBGUjA9EVg/PVuS3V/LARFCinHA1PJJdQiA/WCUfaAYfNEoSfyKFRM4zSSeKXu9jt1mbvEKopmdn1RKXlEg9UIDJBdW6w3gXSft4xMvASRQ/XwwZvZJWMp6YdTaekjQMyTZ/6fm0Kq5BJqEXnlldz3EmW8VFVvFN14NU4jiQbqSk4fAcoohThOQFFCzWgEBsheGAhCVvAqTbwkYAgCTo9D+rHk6wVTyT1ggEw1gyhOck28lTwHSUQRgZFFpFgfmKc38vcgomEEhk/ySEYz83MqtQJJJF8EhvUuvCL5vi9KE6+1PlsSMETJiGmkaE8CiahyeJi8B0wlChggm0aK9SaQSvDS7fIeMP4K9cBQCqkw9CqlJgNvFvk4gXgo831U9oBh9zeriGx25YnA+Nkr/y4HEjBEyciNvMEcH0ywgnvAiAxUSk0ppIG7hoonCqfHDqfHWgfbUtBroCONEcgiHycQk1JI7Jt4gfzND0UB43DbYXdaq+cUCRiiZBS9YHLSSPIUUqV14RUJyEqp5QJGTJlwdq5iW7Y7XHapYVg0Txk1pY8yyN+HrsNBzbYjHyNAERjZOIGQmEIyl4kX6J9Cspr/BSABQ5TBYJVIobbKbWIn4q/PX0otihlfrbtiJnTnQwx3R7rjEAQB6ZSARCSTiiQBk6FmlB82R+Y7sm/dMWx/Zb8m25FHYLzV1jvRFYPcJyKaeEWRzXFsC7zcFFJmEnVfdRkJGILIIk8h9eRUIskjMPJUSiXhz9MLhk+lpZNFpRp4RcSrxVQ8YyBNhrM+IZbD9HriqXLhzH+eKf29/qld2PvOEdW3QymkLPL9lyIwfdEMT40bNoYvOnJNvKk4LzXNtFoJNUAChiiDwZrZiR4Yb627Imf9AMpmdqG+XjDydIm/Qv0vIrk+mERIJmAoAiMx67MTcMoXpkh/v/3wNhzcdELVbcQohSThzplILaQFyVzOcgUS0L/DtZXHCAAkYIgycPmc0sFO7oFJJXjpRF2p/hcgJ4XUlzaSe2EqtQuvSG4lkjwC4yMBo+DUS6dg5vnjAQBCWsCa/9yE47s6VXt9moOUxe7IDmuMB5OIhRIQ+EwUg3VhbXfapUhLtCueU4Fkvc+VBAxRFmIUJtKZCVcCSr9HpfpfgMzBztY3m0R8T+Q9YCq1C6+IokS4O46kIgJjvYNtOXAch7OvacLks0YBAPhkGq/f/xE6WnpVeX25iddb4SkkAPD0RStiwYSyB4wJfrNiZDPSE7d0EzuABAxRJoo0Ut9UakUTu2GVG2XgbJwUZREFTLhLfjCs3PcGUJ4MIt1xJBQeGPZPFHrD2TgsuelkjD25EQCQiKTw6r0b8jaSLBaKwCgRfTCJcFLRt4n1FBKQXSOfSCN4IpvaJwFDEDkop1LnETAVHIEBsj6YeDiJZCyljMBUeApJYTjsjiMZTue9j8hid9hw7rdPwfAptQAyjf9e+fkGxfeqFEQB4/Rar1dIKYjjBAQB6D4Skm43w/dSLv67ZGv3kIAhCCX5esEEqQuvRG4pddhkV3Na0i+FFCYTbyE4PQ4s/+5pqBsbAJD5vb1y70ZFuqBYRBNvpVcgicjfB3n/HTOkkOS/q+7DWQFDERiCyCFfJZKiiV2FduEV8cua2YU6Y8o5SBUegVGkkLpyq5DoRDoYnoALK74/X7pA6DoUxOv3fyT50Iohzacl8UPpowzyk33XIRNHYEjAEMTAUAppcAKKXjBRqQuv02uHy1vZrfKdXgfsrswhSF6F5PI5Krb0vhj89R5ccOd8SXS07unCmgc2IZ1KD/FMJTFZ5IYiMBkUERhZGsYMUVP5GuVVj1SFRBA5eAIuqWwvG4HJ/GjcAWfFz7PJbWaX7cJb2dEXIFNZIx5s5VVIZrjKZYWaUX6s+P7pUtnvoc1teOvhbRDSQsGvoezCa72TXCnIoxXyqJbZBIwcisAQRB7ENFKoI4pkLCWdpCs9+gIoBUzX4ZB0MKx0A6+IKOTi4ST4hNhrg06ixdA4sQbL7zgVdmfmcL7vvaN4/6mdEITCRAw1setPvkiU0+uAw81+ZHCgCj4SMASRBymNJACtu7ukq79KnUItJ1CffQ/a9nVL/zeDGVAP8l0tUgl18Yya2YBlt86TZms1v9aCzS/sK+i5ihLqAAkYIL+AMUP0Bci/TrvTZsm0LAkYomzkRt4jOzqk/1dyF14Rd5VTujIWU2sA9YAR8eYRcpRCKo0Jp43AohtnS39/9Oe9aF7dMuTzKALTH3dV/2iFWYS1y+eQjjkiVoy+ACRgCBWQl1If3Z4VMIFGOklzHJd3mKW/3hwHQ63Jd7VIYwRKZ9risTjjn2dIf69b1Yx9644O+hxqYteffJEos0RgOI7rJ7ZIwBDEAMgrkeStzckDkyHQ0P99oAhMhrwpJPLAlMXJF03C3JWTM38IwJsPbcXhLW0DPp4mUfcn3wnfLAIG6L9WK06iBkjAECogTyFB5hskD0yGvBEY8sAAIA+MVpz+xWmYvnQsAEDgBbzxn5twYm9X3scq5iBRBAYA4HDZ+xl2zfS97B+BsebnSgKGKBtPtQtOb3+DGEVgMuSrOKr0JnYi5IHRBo7jsOCrszFx/ggAmVLg1375kaKrrAilkPKTG40ydQSGUkgEkR+O4xQ+GABweuyWDVsWSyA3AsORz0MkvweGTqJqYLNxWHrLXIye1QAgU6r+yj0bEGyLKB4nmnjtTpspyoT1Ivekb6YITO7xhQQMQQyCIo2ETPSF4ziDVsMW/hwPjLfaBZuDfnpAxizJ2ZXfEw+JO9WwO+047zunonFyDYDMyIZXfr4BkZ7sTC4xAuOpdtFvVoaZIzC5kU0rDnIESMAQKtFPwJD/RSLXA0MG3iycjVOYdt0BJ+wk7lTF5XVgxXdPR82oTJS0tzWC136xEYlIEkJaQCzYNweJDLwKPDml1GYSMGTiNYhIJILHH38cd9xxBy666CIsXrwYr7zyitHLIoZAXokEkP9FTm4KiZrYKZGPVaAKJG3wVLtwwZ3zJT9Wx4FevH7/R4j0xKXGk2TgVeKWCTqbnTNVGoZSSAbR09ODVatWoaWlBVOmTDF6OUSB5HpgSMBkcXodcHqy3gIaI6BEfrVIBl7tCDR6seLO+dLJ7PiuLqz+1cfS/WTgVSJPu3hr3aZKr+WmkKgKSScaGhrwwgsv4H//939x0003Gb0cokAoAjMwuc3s/JRCUkACRj/qxgSw4nunS2bd9k97pPsohaRE/n6YzXTvrXYBMr1FKSSdcLlcaGhoMHoZRJH4at2wu7JfpyrqwqvAL5uJRCkkJfLqDjP5DMzKsJNqcf53ToXNkWOepgiMAnnaJV+5P8vY7DaFAKMUEuO0t7dj9+7d0r+WlqFngBDqkVtKHRjmG+TRlYc8AkM9YJTIBR15YPRhzJxGLL1lHuRZERIwShQRGBMKa/nvyqoCxmH0AtTixRdfxKpVq/rdvn//fvA8r/+CdCQUCqG5udnoZcA3nkPXIcA/0oX9Rz4Bd1T9nDEr+1osXGOmbNXu5tCVOo5g88Ct3eWYdX+LIepOZsLdAhD391p+fwFGPtcAMPmCeux7pRMcB0RcnWhu7t/oTg2Y2N8iSSXTsLs58HEBQl2s4PWzsq/eMRzQAgTGuLBn325NPDxa7mtTU9OQj7GMgFm5ciUWLFgg/d3S0oK7774bkyZNwvTp0w1cmfY0NzcX9GFrzcwZAto+24O6sQE4Pdp8tVjZ16JpAmadHoS31gVvdeFXc6bd3yKZPmMa9uzag1MXzjV6KbrAyufa1AScdn4YdoetX78iNWFlf4tl6gNTEe1JoH5cVcHPYWVfZ84Q0LaiB/Xjq+BwadOg0Oh9tYyAaWxsRGNjo9HLqGg4G4fhU2qNXgaz1I8v/CBYaQQavfDUWzPMzTq5FYREFm+1u6gLDpaohOOxZTwwBEEQBEFUDiRgCIIgCIIwHSRgCIIgCIIwHUx6YJ5//nmEQiF0dHQAAN577z2cOHECAHDppZciEAgYuTyCIAiCIAyGSQHz7LPP4vjx49Lfb7/9Nt5++20AwPLly0nAEARBEESFw6SAee6554xeAkEQBEEQDEMeGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAcJGIIgCIIgTAeTfWDUIB6PAwBaWloMXon2HDx4EHa7NuPSWaOS9hWorP2lfbUulbS/tK/qMWHCBHg8ngHvt6yAETv53n333QavhCAIgiCIYnn00Ucxffr0Ae/nBEEQdFyPbnR3d+PDDz/EqFGj4HK5jF6OZrS0tODuu+/GD3/4Q0yYMMHo5WhKJe0rUFn7S/tqXSppf2lf1aViIzC1tbVYvny50cvQjQkTJgyqVK1EJe0rUFn7S/tqXSppf2lf9YFMvARBEARBmA4SMARBEARBmA4SMCanoaEB1157LRoaGoxeiuZU0r4ClbW/tK/WpZL2l/ZVXyxr4iUIgiAIwrpQBIYgCIIgCNNBAoYgCIIgCNNBAoYgCIIgCNNBAoYgCIIgCNNh2UZ2Zmbnzp149dVXsWnTJhw/fhzV1dWYNWsWvva1r2HcuHGDPveVV17BPffck/e+F154gUl3/KZNm3Dbbbflve+hhx7CrFmzBn1+W1sbfvvb32LDhg1Ip9M45ZRT8K1vfQujR4/WYrll8fOf/xyvvvrqgPc///zzGDZsWN77Hn/8caxatarf7S6XC2+88YZaSyyJSCSCP/3pT2hubsbOnTsRDAZx55134oILLuj32AMHDuC3v/0ttm3bBofDgbPOOgu33HILamtrC9rWu+++iyeeeAItLS2ora3FhRdeiK985StwOPQ7nBWyv+l0Gq+99hreeust7N27F8FgEKNGjcKyZctw5ZVXwu12D7mdW2+9FZs3b+53+xlnnIH7779fzV0akEI/24G+2+PHj8fTTz9d0LaM/mwL3dfFixcP+Bqnn346/uM//mPQ7VxxxRXSuBs5K1euxB133FHa4oukmPMMq79ZEjAM8swzz2Dbtm1YunQpTjrpJHR0dOCFF17A1772NTz00EOYPHnykK/x1a9+FaNGjVLcFggEtFqyKlx66aWYOXOm4rYxY8YM+pxIJILbbrsN4XAYV111FRwOB5577jl861vfwuOPP46amhotl1w0K1euxOmnn664TRAE/OpXv8LIkSMHFC9ybr/9dni9Xulvm834QGpPTw9WrVqFESNGYMqUKdi0aVPex504cQLf+ta3EAgEcMMNNyAajeJPf/oTPv30Uzz88MNwOp2Dbmf9+vX413/9V8ybNw+33XYbPv30Uzz55JPo6urC7bffrsWu5aWQ/Y3FYrjnnnswa9YsXHLJJairq8OOHTvwxBNP4OOPP8Z//ud/guO4Ibc1bNgwfP3rX1fcpueFSKGfLZAR09/97ncVt/n9/oK2w8JnW+i+/vCHP+x3265du/DnP/8Z8+fPL2hbU6dOxRe/+EXFbWPHji1+0SVS6HmG6d+sQDDH1q1bhUQiobjt4MGDwrnnniv85Cc/GfS5L7/8srBo0SJh586dWi5RVT7++GNh0aJFwtq1a4t+7h/+8Adh0aJFQnNzs3TbgQMHhHPOOUd4+OGHVVyldmzZskVYtGiR8OSTTw76uMcee0xYtGiR0NXVpc/CiiAejwvt7e2CIAjCzp07hUWLFgkvv/xyv8f96le/Es477zzh+PHj0m0bNmwQFi1aJPztb38bcjtXX321cN111wnJZFK67ZFHHhEWL14sHDhwQIU9KYxC9jeRSAhbt27t99wnnnhCWLRokbBhw4Yht/Otb31L+MpXvqLOokuk0M/2Zz/7mbB8+fKSt8PCZ1vovubj3nvvFRYvXiy0trYO+djLL79c+O53v1vWWsul0PMMy79Z4y/diH7MmTOnn6odN24cJk6ciJaWloJfJxKJgOd5tZenKZFIBKlUquDHv/nmm5gxY4YicjNhwgSceuqpWLt2rRZLVJ033ngDHMfhvPPOK/g54XAYAkMtnFwuV0FRgbfeegtnn302RowYId12+umnY9y4cUN+XgcOHMCBAwdw8cUXK0LPn//85yEIAt58882S118sheyv0+nEnDlz+t2+aNEiACjqt5xKpRCJRIpbpEoU+tmK8DyPcDhc1DZY+WyL3VeRRCKBt956C/PmzcPw4cMLfl4ymUQ0Gi16e2pQ6HmG5d8spZBMgiAI6OrqwsSJEwt6/G233YZoNAqn04n58+fj5ptvHtI/YzT33HMPotEo7HY7Tj75ZNx0002YMWPGgI9Pp9P49NNPceGFF/a7b+bMmdiwYQMikQh8Pp+Wyy6LVCqFtWvXYvbs2f1SfgPxxS9+EdFoFF6vFwsXLsTNN9+M+vp6jVdaPm1tbejq6so7+G3mzJlYv379oM/fs2cPAPR7fmNjI4YNG4a9e/eqt1gN6ezsBICC05uHDh3CZz/7WSSTSdTX1+Nzn/scrr32Wl09P4USi8VwwQUXIBaLoaqqCueeey6+8Y1vDPkbNPtnu379eoRCIZx//vkFP+fjjz/G8uXLwfM8Ro4cicsvvxyXX365hqscmtzzDOu/WfZ+AUReVq9ejba2Nlx//fWDPs7tduOCCy7AKaecAr/fj927d+O5557DN7/5Tfzud79TqGhWcDgcWLJkCT7zmc+gpqYGBw4cwLPPPotbbrkF//3f/41p06blfV5vby8SiUTeKybxtvb2dowfP17T9ZfDhx9+iJ6enoIOfFVVVfjCF76AWbNmwel0YuvWrXjhhRewc+dOPProowV7DYyio6MDQH7/RkNDg/R5ulyukp4v3s86f/zjH+H3+3HmmWcO+djRo0fjlFNOweTJkxGLxfDmm2/iySefxKFDh3DXXXfpsNrCaWhowJe+9CVMmzYNgiDggw8+wF//+lfs27cPDzzwwKCCy+yf7erVq+FyubBkyZKCHj958mScfPLJGDduHHp7e/HKK6/gv/7rv9De3o6bbrpJ49UOTO55hvXfLAkYE9DS0oJf//rXmDVrFlasWDHoY5ctW4Zly5ZJfy9atAhnnHEGvvWtb+Gpp57SzeFeDHPmzFGE2hcuXIhzzjkH1113HR555JEBqy3i8TgA5DWRiT8o8TGs8sYbb8DhcGDp0qVDPjb36uycc87BzJkz8dOf/hQvvPACrrrqKq2WqQqFfl4DHQwTiYTisbnPNyrFUgxPPfUUNm7ciO985zuoqqoa8vHf//73FX9/9rOfxX333YeXXnoJV1xxxZAVenqSazQ+99xzMW7cODz66KN46623cO655w74XDN/tuFwGO+//z7OPPPMgj5TALj33nsVf1944YX4l3/5Fzz33HO49NJLi0pDqUW+8wzrv1nywDBOR0cHvve978Hv9+OnP/0p7HZ70a9x8skno6mpCR999JEGK9SGsWPHYuHChdi0adOAPh6xDDWZTPa7T/zhFFKqahSRSATvvvsuzjjjjJKrpc4//3zU19eb4rMt9/MSD4LiY3Ofz/JnDQBr1qzB7373O1x00UX4p3/6p5JfR6xc2bhxo0or044rrrgCNpttyLWa+bN96623kEgkikof5cJxHK644grwPJ+3bF5rBjrPsP6bJQHDMKFQCN/97ncRCoVw//33o7GxseTXGj58OHp7e1VcnfYMHz4cyWQSsVgs7/3V1dVwuVx5w5DibeW8Z1rz7rvvIhaLlXXgA8zz2Yph5IE+L/HzLPX5LPY4EtmwYQN+/vOf46yzziq7dFS8Og8Gg2osTVPcbjeqq6uH/H6a+bNdvXo1AoEAzj777LJeR/xc9f4tD3aeYf03SwKGUeLxOL7//e/j0KFDuPfeews27w7E0aNHC246xApHjx6Fy+VS9DyRY7PZMHnyZOzatavffc3NzRg9ejTTBt7Vq1fD6/ViwYIFJb+GIAg4fvy4KT7bYcOGoba2Frt37+53386dOzFlypRBnz916lQA6Pf89vZ2tLW1SfezRnNzM374wx9i+vTpuOuuu8o23x49ehQATPGZRyIR9PT0DLlWs3627e3t2LRpExYvXjzoibwQjPhchzrPsP6bJQHDIDzP48c//jF27NiBu+66C7Nnz877uPb2drS0tCjKjru7u/s97v3338fu3btxxhlnaLXkssi35k8++QTvvfce5s+fLzVqa21t7Vd6umTJEuzatUshYg4ePIhNmzbhnHPO0XLZZdHd3Y2NGzdi8eLF8Hg8/e7Pt6/53qe//vWv6O7uLsgQygJLlizBunXr0NraKt320Ucf4dChQwofUCqVQktLC9rb26XbJk2ahPHjx+Oll15SpBX/+te/guO4gg2UenLgwAF873vfw8iRI/GLX/xi0JB5S0uL4n0Jh8P9Qu+CIODJJ58EgIIbpulBPB7P62f4/e9/D0EQFN9Pq3y2APCPf/wD6XR6wChqvn3t7e3tlxZPpVL4wx/+AKfTiVNOOUXTNYsUep5h+TdLJl4GefDBB/Hee+/h7LPPRjAYxOuvv664f/ny5QCARx55BK+++iqeffZZqQT3pptuwrRp0zB9+nT4/X7s2bMHL7/8MoYPH46rr75a930phB/96Edwu92YPXs26urqcODAAbz00kvweDwKY+DPfvYzbN68GW+//bZ02+c//3n83//9H773ve/hyiuvhN1ux3PPPYe6ujpceeWVRuxOQaxZswY8zw944Mu3r5dffjmWLVuGyZMnw+VyYdu2bVizZg2mTp2KlStX6rX0AXn++ecRCoWkcPF7772HEydOAMh0WQ4EArjqqqvw5ptv4tvf/jYuu+wyRKNR/PGPf8TkyZMV7drb2tpw9dVXY8WKFfjBD34g3f7Nb34Td955J26//Xace+65+PTTT/HCCy/gc5/7XNlRSrX312az4Y477kAwGMSVV16J999/X/H80aNHK04aV199NebNm4ff/OY3ADIlqHfddRfOO+88jBkzBvF4HO+88w62bduGiy++OG9pq1YMta/BYBBf/epXcd5550lVfx9++CHWr1+PM888EwsXLpRei/XPtpDvscjq1avR2Ng4oOjIt6/vvfcennzySSxZsgSjRo1CMBjE6tWrsX//ftx44426pcsKPc+w/JslAcMgn3zyCQBg3bp1WLduXb/7xS9WPpYtW4b169djw4YNiMViaGhowMUXX4xrr72W2V4hixYtwurVq/Hcc88hHA6jtrYWixcvxrXXXjtka22fz4cHHngAv/3tb/Hkk09Ks5CKmdNhBG+88Qbq6upw2mmnFfyc888/H9u3b5dMgyNGjMCXvvQlfOUrX8kbxdGbZ599VjHf5e2335YE2PLlyxEIBDBixAj85je/wW9/+1s8/PDD0lyVm2++uaAQ/Nlnn427774bq1atwgMPPICamhpcddVVuPbaa7XarQEZan8BSCe+hx9+uN/zV6xYMeBVLwCMGDECc+fOxdtvv43Ozk7YbDZMmDABt99+u+6CtZDP9uyzz8aGDRvw6quvIp1OY8yYMbjxxhtx5ZVXFjTugpXPtpB9BTKR3t27d0tG5UKZPHkyJkyYgNWrV6O7uxsOhwNTp07FXXfdVVA1oloUep5h+TfLCSy18yQIgiAIgigA8sAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBEEQBGE6SMAQBDEgx44dw+LFi/Hzn//c6KWowiuvvILFixfjlVdeMXopBEGUCQkYgiCK4tZbb8XixYuNXkZerCa4CIIYGBrmSBDEgAwbNgxPPfUU/H6/0UtRhUWLFqGpqUm3ib8EQWgHCRiCIAbE4XBgwoQJRi9DNQKBgDRNmCAIc0PTqAmCGJBjx47hi1/8IlasWIEf/OAHA6aOxPtF9u3bh6eeegqbN29Gb28vGhoasGDBAlx33XWoqanJ+/pf/vKX8eijj2LLli3o7e3Fs88+i1GjRuHtt9/G2rVrsWvXLrS3t8PhcOCkk07CZZddhnPOOUd6rVdeeQX33HNP3vU98MADOOWUU6TH3HnnnbjgggsUj9m2bRueeuop7NixA/F4HCNHjsSyZcvw5S9/GR6PR/HYxYsXY968efjxj3+Mhx56COvXr0c0GsWUKVPw9a9/HaecckqxbzVBEEVCERiCIArm2muvxauvvorjx4/j2muvlW6fOnWq9P93330XP/7xj8FxHBYuXIjhw4fjwIED+Mtf/oIPP/wQDz/8MKqqqhSve+TIEdx0002YPHkyVqxYgd7eXjidTgDAI488AofDgTlz5qChoQHd3d1477338O///u+47bbbcOmllwIApkyZgssuuwx//vOfMWXKFCxcuFB6/ZEjRw66X2vXrsVPfvITOJ1OLFu2DLW1tdiwYQNWrVqFDz/8EA888ADcbrfiOaFQCDfffDMCgQCWL1+Orq4urF27FnfccQceffRRTJ48uaT3mCCIwiABQxBEwVx//fXYvHkzjh8/juuvv77f/T09PfjZz36GmpoaPPjggwrhsGbNGtx111147LHH8O1vf1vxvG3btuHaa6/N+5q//OUvMXr0aMVtkUgE3/zmN/HYY4/hoosugsfjwdSpUxEIBCQBk++18hEOh3HffffBbrfjoYcewkknnQQAuPHGG/GTn/wE//jHP/CnP/0J11xzjeJ5n3zyCf7pn/4J3/72t2GzZeohTj31VPzyl7/EX/7yF9xxxx0FbZ8giNKgKiSCIFTjtddeQzgcxo033tgv6nHuuedi2rRpWLNmTb/n1dfX4+qrr877mrniBQB8Ph8uuOAChEIh7Nq1q6w1v/vuuwiFQrjwwgsl8QIANpsNN910E+x2e96ya6/Xi2984xuSeAEyqTS73V72mgiCGBqKwBAEoRo7duwAADQ3N+PIkSP97k8kEujp6UF3dzdqa2ul26dMmSKljHLp6urCH/7wB6xfvx6tra2Ix+OK+9vb28ta8969ewEA8+bN63ffiBEjMHr0aBw6dAiRSAQ+n0+6b+zYsYq/gYzpub6+HqFQqKw1EQQxNCRgCIJQjWAwCAB44YUXBn1cLBZT/F1XV5f3cb29vbjxxhvR2tqKOXPm4PTTT0cgEIDNZsMnn3yCd999F8lksqw1h8NhAJkoUD4aGhpw6NAhhMNhhWAZqLTcbrcjnU6XtSaCIIaGBAxBEKohnuBXrVpVlImV47i8t//9739Ha2srvvrVr/bzoDz99NN49913S19sH6IQ6ezszHu/eLtVeuEQhFUgDwxBEEUhej54nu93X1NTE4BsKqlcxDSUvKJIZOvWrQOurZgIiFhBtXnz5n73tba24siRIxg9enS/dBFBEMZCAoYgiKKorq4GAJw4caLffRdeeCF8Ph8effRR7N+/v9/9sVisKHEjGoG3bdumuH316tVYv359v8dXVVWB47i8axuIhQsXIhAI4OWXX1asWRAEPPzww+B5vl/PGIIgjIdSSARBFMWpp56KN998E//2b/+GM888Ey6XC1OmTMGCBQtQW1uLH/3oR/j3f/93XH/99TjjjDMwfvx4JJNJHD9+HJs3b8bs2bNx//33F7St5cuX45lnnsEDDzyATZs2YcSIEfjkk0/w8ccfY/HixXj77bcVj/f5fJgxYwa2bNmCu+++G2PHjgXHcfjsZz87YC8Yv9+Pf/mXf8FPfvITfOMb38DSpUtRW1uLjz76CLt378bMmTNx5ZVXlv2+EQShLiRgCIIois997nM4duwY/vGPf+CZZ54Bz/NYsWIFFixYAAA466yz8Nhjj+GPf/wjPvroI2zcuBEejwfDhg3DBRdcgOXLlxe8reHDh+M3v/kNHnroIWzcuBE8z2PatGn41a9+hRMnTvQTMADwwx/+EP/1X/+FdevWIRwOQxAEnHzyyYM2s1u6dCnq6+vx9NNP4+2335Y68V5zzTX48pe/3K+JHUEQxkOjBAiCIAiCMB3kgSEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnSQgCEIgiAIwnT8fz0TXsm8lAztAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG5CAYAAAB802v0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGwUlEQVR4nO3deVzUdf4H8NfMAMMpyCGIAiIghwp4pqICWnhUbptZdmpWllY/bXMz3bZW1127SyvPXLVaU9M0bdUyExHvA7wAAQVElPscjgFmvr8/Jr46cjMzzACv5+PRI+Yz3+PzcRjmPZ/j/ZEIgiCAiIiIiBolNXYFiIiIiEwdAyYiIiKiZjBgIiIiImoGAyYiIiKiZjBgIiIiImoGAyYiIiKiZjBgIiIiImoGAyY9qKqqwtWrV1FVVWXsqhAREZEBMGDSg4yMDLz00kvIyMgwdlUM7tq1a8auQrvqSu1lWzuvrtRetrXzMnZ7GTBRqyiVSmNXoV11pfayrZ1XV2ov29p5Gbu9DJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZDJiIiIiImsGAiYiIiKgZZsauQGMqKiqwdetWJCQkIDExEWVlZVi0aBEmTZrUovPLysqwZs0axMTEQKlUIjAwEHPnzoW/v3+D99q8eTMOHz6MgoIC2Nvbo3///vjb3/4GS0tLfTeNiIiIOhiTDZhKSkqwadMmuLq6wtfXF3FxcS0+V61WY+HChbh27RqmT58Oe3t77N69G/PmzcP69evh4eEhHqtQKPB///d/yMvLw8MPP4xevXqhuLgYFy9eRE1NDQMmIiIiMt2AycnJCbt27YKTkxOSkpIwe/bsFp8bHR2Ny5cvY+nSpYiIiAAAjBs3Dk899RQ2btyId999Vzx23bp1yM7Oxtdffw13d3ex/Omnn9ZbW4iIiKhjM9mAycLCAk5OTm0698iRI3B0dMTYsWPFMgcHB0RGRuLgwYOorq6GhYUFysrKsG/fPkydOhXu7u6oqamBIAiwsLDQVzN0cutKAfLTS6Esq8bAB71haWca9SIiIupqTDZg0kVycjL8/PwglWrPaQ8MDMTevXuRmZkJHx8fXLp0CdXV1ejduzf+/ve/IzY2Fmq1Gv3798cbb7wBPz+/Bq+fn5+PgoIC8XFGRoZB2nHt+G1cPZwJAOg7sicDJiIiIiPplAFTYWEhQkJC6pXX9VgVFBTAx8cHN2/eBKAZlnN3d8fixYtRXl6OTZs2Yf78+di8eTOcnZ3rXWfPnj3YtGlTvfK0tDSoVCq9tUOhLBF/Tr6SCvty48+nUigUSEhIMHY12k1Xai/b2nl1pfayrZ2XodobFBTUouM6ZcCkVCobHFarK1MqlQCAyspK8bnPPvsM1tbWAAA/Pz/MmTMHu3btwksvvVTvOlOmTEFYWJj4OCMjA8uWLYO3t3eDq/DaqubadWQdLwUAuDm7wzvITW/XbquEhIQW/3J1Bl2pvWxr59WV2su2dl7Gbm+nDJjkcjmqq6vrldeVyeVyAHcCqLCwMDFYAoD+/fujZ8+euHz5coPXd3Z2brDnSd/ktubiz0pFjcHvR0RERA3rlIkrHR0dteYY1akrqxuaqwt6unfvXu/Y7t27Q6FQGLCWzZPb3B0w1Q8AiYiIqH10yoDJz88PKSkpUKvVWuWJiYmwtLQU8zDVDZ/l5+fXu0Z+fj7s7e0NX9kmWNrdFTCVs4eJiIjIWDp8wJSfn4+MjAzU1taKZeHh4SgsLERMTIxYVlxcjMOHD2PUqFHiUJynpyd8fX0RGxuL4uJi8djTp08jNzcXw4YNa7d2NERuc2ceFofkiIiIjMek5zDt3LkTCoVCHEo7duwYcnNzAQBTp06Fra0t1q1bhwMHDmDbtm3o2bMnACAiIgI7duzA8uXLkZ6eLmb6VqvVmDVrltY9XnvtNbz55pt47bXXMGXKFCgUCmzfvh0eHh7405/+1L4NvgfnMBEREZkGkw6Ytm3bhuzsbPFxTEyM2GsUFRUFW1vbBs+TyWT48MMPsWrVKuzcuRNKpRIBAQFYtGgRPD09tY4dPHgwPvroI2zYsAHr1q2DpaUlxowZg1deeUVrIrgxaAVMHJIjIiIyGpMOmLZv397sMYsXL8bixYvrldvZ2WHhwoVYuHBhs9cYOnQohg4d2qY6GpKZhQwycylUNWr2MBERERlRh5/D1NnV9TJVcZUcERGR0TBgMnF1ARN7mIiIiIyHAZOJq8vFpKpWo7Zaf9uuEBERUcsxYDJxctu7Ugtw4jcREZFRMGAycUwtQEREZHwMmEyc9vYoDJiIiIiMgQGTiWMPExERkfExYDJxllrJK5lagIiIyBgYMJk49jAREREZHwMmE6e1So4BExERkVEwYDJxWpO+mVaAiIjIKBgwmTgOyRERERkfAyYTx4CJiIjI+BgwmTgzuQxSmQQAoOQGvEREREbBgMnESSSSOxvwcg4TERGRUTBg6gDEgIlDckREREbBgKkDkNtoUgvUVKmgqlUbuTZERERdDwOmDkBr4jeH5YiIiNodA6YOgCvliIiIjIsBUweglbySARMREVG7Y8DUAcjt7g6YmFqAiIiovTFg6gC4PQoREZFxMWDqALgBLxERkXExYOoAOOmbiIjIuBgwdQCWnPRNRERkVAyYOgD2MBERERkXA6YOQDtxJVfJERERtTcGTB2AuZUZJFIJAPYwERERGQMDpg5AIpFAbmMGgAETERGRMZgZuwKNqaiowNatW5GQkIDExESUlZVh0aJFmDRpUovOLysrw5o1axATEwOlUonAwEDMnTsX/v7+Wsc9/vjjyM7Ornf+lClTsGDBAr20RR/kthaoKqthHiYiIiIjMNmAqaSkBJs2bYKrqyt8fX0RFxfX4nPVajUWLlyIa9euYfr06bC3t8fu3bsxb948rF+/Hh4eHlrH+/n54YknntAq6927t17aoS91ySurK2qhVqkhlbFzkIiIqL2YbMDk5OSEXbt2wcnJCUlJSZg9e3aLz42Ojsbly5exdOlSREREAADGjRuHp556Chs3bsS7776rdbyzszOioqL0WX29u3vid3V5LSy7WTRxNBEREemTyXZTWFhYwMnJqU3nHjlyBI6Ojhg7dqxY5uDggMjISMTGxqK6uv5Ks5qaGlRWVra5voamvVKOw3JERETtyWR7mHSRnJwMPz8/SKXa8WBgYCD27t2LzMxM+Pj4iOXnz59HVFQUVCoV3NzcMG3aNEybNq3R6+fn56OgoEB8nJGRof9G3EM7F1M1ABuD35OIiIg0OmXAVFhYiJCQkHrldT1WBQUFYsDUt29fBAcHw8PDA6Wlpdi/fz+++OIL5OfnY86cOQ1ef8+ePdi0aVO98rS0NKhUKv015C6lFcXizymJ15FfY2WQ+zRHoVAgISHBKPc2hq7UXra18+pK7WVbOy9DtTcoKKhFx+kcMKWnp+PHH39EUlISysrKoFar6x0jkUiwdetWXW/VYkqlEhYW9ef41JUplUqx7P3339c6ZvLkyfjrX/+K7du3Y+rUqejRo0e960yZMgVhYWHi44yMDCxbtgze3t71VuHpi5CZgcyYEgBAD0c3+AX1Msh9mpOQkNDiX67OoCu1l23tvLpSe9nWzsvY7dUpYIqPj8eCBQtQU1MDmUyG7t27QyaT1TtOEARdbtNqcrm8wXlKdWVyubzRcyUSCR5//HGcPn0a8fHxDU4Gd3Z2hrOzs/4q3ALcHoWIiMh4dAqY1q5dC5VKhbfeegsTJ05sMFgyBkdHR605RnXqypqbTF7Xq1RaWqr/yrURAyYiIiLj0WmVXGpqKsaPH48HH3zQZIIlQJNXKSUlpd7wYGJiIiwtLevlYbrXrVu3AGhW1pmKujxMAAMmIiKi9qZTwGRpaWn0oCI/Px8ZGRmora0Vy8LDw1FYWIiYmBixrLi4GIcPH8aoUaPEuUylpaX1JmnX1tbiv//9L8zNzTFo0KD2aUQL1F8lR0RERO1FpyG5ESNG4OLFi/qqSz07d+6EQqEQh9KOHTuG3NxcAMDUqVNha2uLdevW4cCBA9i2bRt69uwJAIiIiMCOHTuwfPlypKeni5m+1Wo1Zs2aJV7/2LFj+OabbxAeHo6ePXuirKwMBw8eRFpaGmbPnt3mPFCGwDxMRERExqNTwDR37ly8+uqrWLFiBV5++WVYWlrqq14AgG3btmnt8xYTEyP2GkVFRcHW1rbB82QyGT788EOsWrUKO3fuhFKpREBAABYtWgRPT0/xuL59+8LLywsHDx5EcXExzMzM4OfnhyVLliAyMlKvbdGVhbU5IAEgcEiOiIiovekUMP3jH/+AlZUVdu3ahf3798PDwwPW1tb1jpNIJPj8889bff3t27c3e8zixYuxePHieuV2dnZYuHAhFi5c2Oi5/v7+9dIKmCqpVAK5tTmU5TUMmIiIiNqZzmkF6lRWViI5ObnB4yQSiS63oT/Ibf8ImDgkR0RE1K50CpiOHDmir3pQC9StlFOW10BQC5BIGYgSERG1B5PdfJfqk9v9MfFbAKoraps+mIiIiPRGrwFTZWUl8vPzUVlZqc/L0h+0cjGVM7UAERFRe9F5L7mamhp8//332L9/P27fvi2W9+zZE5MnT8b06dNhbm7exBWopeS2d/bHUypqAFcjVoaIiKgL0SlgUiqVmD9/PhITEyGVStG7d284OTmhoKAAt27dwoYNG3D8+HF8/vnnTe7fRi3D7VGIiIiMQ6eA6b///S8SEhIwbtw4vPLKK3B1vdPlkZubizVr1uDQoUPYsmULnn/+eZ0r29XdPSRXxYCJiIio3eg0h+n3339Hv3798N5772kFS4BmA9t3330X/v7+OHTokE6VJA32MBERERmHTgFTdnY2hg0b1uQxQ4YM0crWTW2nvT0KJ30TERG1F5033y0uLm7ymOLiYr1vmdJVaa2SYw8TERFRu9EpYAoKCsKhQ4eQlpbW4PPp6en4/fff0b9/f11uQ3/gkBwREZFx6DTp+9lnn8WZM2cwe/ZsPPjggwgNDUX37t1RVFSEuLg47N+/H7W1tXjmmWf0Vd8uTXtIjgETERFRe9EpYBo4cCDeffddfPTRR9i1axd2794tPicIAmxsbLB48WIMHDhQ13oSOCRHRERkLDonroyMjMR9992H2NhYJCcno6KiAtbW1ujXrx9Gjx4Na2trfdSTAEhlUphbmaGmspYBExERUTvSOWACAGtra0RFRSEqKkofl6MmWNqaawImDskRERG1G26+28HUzWNSKmogCIKRa0NERNQ1tKqH6cCBAwCAsWPHwtraWnzcEhMnTmxdzahBdQGToBZQU1kLC2vu00dERGRorQqYli9fDolEgv79+8Pa2lp83BRBECCRSBgw6Ync5q4NeMtrGDARERG1g1YFTG+//TYAwMnJSesxtR+t1AJlNbBzMWJliIiIuohWBUyTJk1q8jEZ3t0BUxUnfhMREbULnSZ9x8fHIycnp8ljcnJyEB8fr8tt6C7MxURERNT+dAqY5s+fj/379zd5zC+//IL58+frchu6i/b2KNyAl4iIqD3oFDC1ZFl73aRv0g9uj0JERNT+DJ6H6ebNm7CxsTH0bboMDskRERG1v1Zn+n7//fe1Hh89ehTZ2dn1jlOpVMjNzcXFixdx3333tb2GpEV7SI4BExERUXtodcB095wliUSC1NRUpKamNnisRCJBQEAAXnvttbbXkLTIbbXzMBEREZHhtTpg2rZtGwDN3KTp06dj2rRpeOyxx+odJ5VKYWdnBysrK91rSSL2MBEREbW/VgdMbm5u4s9vv/02+vXrp1VGhiUzk8LcUoaaKhUDJiIionbS6oDpbkxcaRxyW3NNwMQhOSIionahU8BUR6lUIikpCfn5+aipafhDvLV7yVVUVGDr1q1ISEhAYmIiysrKsGjRohYHaWVlZVizZg1iYmKgVCoRGBiIuXPnwt/fv9FzsrKyMGPGDFRXV2PdunUICAhoVZ3bi9zGHIr8KigV1UzbQERE1A50Dph+/PFHbNiwAeXl5Q0+39bNd0tKSrBp0ya4urrC19cXcXFxLT5XrVZj4cKFuHbtGqZPnw57e3vs3r0b8+bNw/r16+Hh4dHgeV988QVkMlmr6mkMdRO/1bUCapUqmFvqJe4lIiKiRuiUh+nIkSNYsWIFevTogblz50IQBISFheGll17C8OHDIQgCwsPDsXDhwlZf28nJCbt27cIPP/yAOXPmtOrc6OhoXL58GYsWLcLzzz+PRx99FCtXroRUKsXGjRsbPOf06dM4c+YMpk2b1uq6tjfmYiIiImpfOgVMP/zwA7p3747Vq1fj8ccfBwD4+fnh6aefxocffoh33nkHR48ebdOkcAsLCzg5ObWpXkeOHIGjoyPGjh0rljk4OCAyMhKxsbGortbeUqS2thYrV67EY489hl69erXpnu2JK+WIiIjal04B0/Xr1xEWFgZLS0uxTK1Wiz8/8MADGDx4MDZt2qTLbVotOTkZfn5+kEq1mxcYGIiqqipkZmZqlf/www8oKyvDc88916Lr5+fn4+rVq+J/GRkZeqt7S3B7FCIioval0+SX2tpaODg4iI/lcjnKysq0jvH19cXevXt1uU2rFRYWIiQkpF55XY9VQUEBfHx8xJ83b96MuXPntngLlz179jQYBKalpUGlUrW94i1UXF4i/pyadB3FkhyD37OOQqFAQkJCu93P2LpSe9nWzqsrtZdt7bwM1d6goKAWHadTwOTk5ISCggLxsaurK1JSUrSOyc7ObveJ1EqlEhYWFvXK68qUSqVYtmbNGri7u+Ohhx5q8fWnTJmCsLAw8XFGRgaWLVsGb2/vJlfh6YssJxMZh4oBAD0cXBEQ5Gnwe9ZJSEho8S9XZ9CV2su2dl5dqb1sa+dl7PbqFDAFBgYiOTlZfHzfffdhx44d+O677xAWFoaLFy8iJiYGQ4cO1bmirSGXy+vNUwIglsnlcgDAlStX8Ouvv+Kzzz6rN3zXFGdnZzg7O+unsm3AITkiIqL2pdMcpoiICFRXV+P27dsAgGeeeQYuLi74+uuv8fzzz+PTTz+FlZUVXnnlFb1UtqUcHR21er7q1JXVDc2tXr0awcHB6NmzJ27fvo3bt2+juLhYPDYnp/2Gulrj7oCpipO+iYiIDE6nHqaxY8fWW4n2n//8Bz///DNu3boFV1dXTJgwAS4uLjpXtDX8/Pxw8eJFqNVqrZ6jxMREWFpainmYcnNzkZ2djSeeeKLeNRYtWgRbW1vs27ev3erdUnKbuzbgZcBERERkcHrPeGhnZ4cnn3xS35dtVH5+PsrLy9GrVy+YmWmaEx4ejujoaMTExCAiIgIAUFxcjMOHD2PUqFHiXKYFCxZozWcCgPPnz2Pnzp2YO3cuvLy82q0drSG345AcERFRe9IpYDpw4AAsLS3FoKQh165dQ0pKSqszfQPAzp07oVAoxKG0Y8eOITc3FwAwdepU2NraYt26dThw4AC2bduGnj17AtAMFe7YsQPLly9Henq6mOlbrVZj1qxZ4vWHDx9e754KhQIAEBoaatJbo9RhDxMREZHh6RQwLV++HBKJBKNHj8bf//53cTL13WJiYrB58+Y2BUzbtm1Ddna21rViYmIAAFFRUbC1tW3wPJlMhg8//BCrVq3Czp07oVQqERAQgEWLFsHTs/1WlBmKmYUMMgspVNVqBkxERETtQOchOQcHBxw9ehSvv/463n//fTg6OuqjXgCA7du3N3vM4sWLsXjx4nrldnZ2WLhwYau3ZZk0aVKLN/g1JrmtOSoKlVCW118NSERERPql0yo5AHjkkUcwe/ZsJCcn4+WXX8a1a9f0US9qRt3Eb2UZe5iIiIgMTeeACQCefvppLFmyBKWlpXj11Vdx4sQJfVyWmlCXWkBVo0ZtteGzixMREXVlegmYAM3KtBUrVsDS0hKLFy/GDz/8oK9LUwO4AS8REVH70VvABAABAQFYu3Yt+vTpg6+++gqffvppu+yt1hVxpRwREVH70XseJldXV3z11Vf4xz/+gZ9++gmWlpb6vgXh3u1ROPGbiIjIkPTaw1TH2toa77//Pv785z+jqqrKELfo8iw5JEdERNRudOphOnLkSKPPSaVSzJ8/HxMmTKiXTZt0xyE5IiKi9qP3Ibl7BQYGGvoWXRInfRMREbUfgwzJkeHJbe/agJf7yRERERlUq3qYwsPDIZVK8c0338DDwwPh4eGQSCTNnieRSHD48OE2V5LqYw8TERFR+2lVwBQSEgKJRCLuGVf3mNofAyYiIqL206qAaeXKlU0+pvajNembQ3JEREQGxTlMHZSZXAapmaZ3r0rBPExERESGxICpg5JIJOLEbw7JERERGVarhuQ2bdrUpptIJBLMmDGjTedS4+Q25qgsVjJgIiIiMrBWBUwbN25s000YMBlG3cTvWqUKqhoVZOYyI9eIiIioc2pVwLRixQpD1YPaQHs/uVpYOzBgIiIiMoRWBUyhoaEGqga1hfb2KNWwdpAbsTZERESdFyd9d2DMxURERNQ+9LaXnEqlQklJCWpqGv7gdnV11det6A/aQ3IMmIiIiAxF54Dp6tWrWLduHS5cuIDa2toGj+HWKIahPSTHgImIiMhQdAqYUlJS8Nprr0Emk2HYsGE4fvw4fH194ejoiOTkZBQXFyM0NBRubm76qi/dxdLurg14GTAREREZjE4B0+bNmwEAa9asQZ8+fRAeHo4xY8Zg5syZUCqV+OqrrxAdHY23335bL5UlbdwehYiIqH3oNOn70qVLCAsLQ58+fcQyQRAAAHK5HPPnz4ezszPWr1+vUyWpYZz0TURE1D50CpjKy8vh7u4uPjYzM0NlZeWdi0ulCA0Nxblz53S5DTXi7oCJ+8kREREZjk4Bk4ODA8rKysTHjo6OuHnzptYx1dXVqKqq0uU21AhO+iYiImofOgVMffr0wY0bN8THAwcOxJkzZ3D58mUAQHp6Og4fPgwvLy/dakkNMrcyg0QqAcCAiYiIyJB0mvQ9cuRIfPnll8jPz4ezszOeeuopxMTE4LXXXoOdnR0UCgXUajWeeeYZfdWX7iKRSCC3NUdVaTUnfRMRERmQTgHTn/70J0RGRsLOzg4A4Ovri88++wzffvstbt26BX9/f0ydOhUjR45s1XUrKiqwdetWJCQkIDExEWVlZVi0aBEmTZrUovPLysqwZs0axMTEQKlUIjAwEHPnzoW/v7/WcV988QXi4+ORnZ2N6upquLq6Yty4cZg+fTqsra1bVWdjkdv8ETCxh4mIiMhgdAqYzMzM4OjoqFU2cOBAfPjhhzpVqqSkBJs2bYKrqyt8fX0RFxfX4nPVajUWLlyIa9euYfr06bC3t8fu3bsxb948rF+/Hh4eHuKxSUlJCA4OxuTJk2FhYYGUlBRs2bIF586dwxdffAGp1PR3jqmb+F1TWQt1rRpSM9OvMxERUUejt61R9MnJyQm7du2Ck5MTkpKSMHv27BafGx0djcuXL2Pp0qWIiIgAAIwbNw5PPfUUNm7ciHfffVc89quvvqp3vru7O1atWoXExET0799f57YYmlZqgYoaWHXjBrxERET6ppeAqbi4GOnp6cjPz290e5SJEye2+HoWFhZwcnJqU12OHDkCR0dHjB07VixzcHBAZGQkDh48iOrqalhYWDR6fl1WcoVC0ab7t7d7V8oxYCIiItI/nQImpVKJzz//HL/++itUKlWDxwiCAIlE0qqASRfJycnw8/OrN5wWGBiIvXv3IjMzEz4+PmJ5bW0tFAoFamtrcf36dXz99dewtrZGYGBgo/fIz89HQUGB+DgjI0P/DWkhJq8kIiIyPJ0CphUrVmDfvn3w8fFBeHg4nJycIJPJ9FW3NiksLERISEi98roeq4KCAq2A6erVq5gzZ4742NPTE8uXL0e3bt0avceePXuwadOmeuVpaWmNBo6GUlpRLP6ckngNBbWGnayuUCiQkJBg0HuYkq7UXra18+pK7WVbOy9DtTcoKKhFx+kUMB05cgT+/v5YvXq10QOlOkqlssEht7oypVKpVd6nTx98+umnqKysxOXLl3Hu3DmtbOUNmTJlCsLCwsTHGRkZWLZsGby9veutxDO4mxnIjCkBALg69oRfUC+D3i4hIaHFv1ydQVdqL9vaeXWl9rKtnZex26tTwKRWqzFo0CCTCZYAzR521dX1twmpK5PLtef42NjYYOjQoQCAMWPG4ODBg1i8eDG+/vpr+Pr6NngPZ2dnODs767nmbcMhOSIiIsPTaQ16QEBAva1QjM3R0VFrflGdurLmJpPXTRY/dOiQ/itnAFqTvpm8koiIyCB0CpheeOEFnDlzBsePH9dXfXTm5+eHlJQUqNVqrfLExERYWlpq5WFqSE1NDdRqNcrLyw1ZTb3R6mEq4wa8REREhqDTkNyAAQPwySefYNGiRejXrx98fHxgY2NT7ziJRIIZM2bocqsG5efno7y8HL169YKZmaYp4eHhiI6ORkxMjJiHqbi4GIcPH8aoUaPEuUxlZWWwsrISz6vz888/A0D7z0VqI62AiT1MREREBqFTwFRSUoK1a9eirKwM586dw7lz5xo8ri0B086dO6FQKMShtGPHjiE3NxcAMHXqVNja2mLdunU4cOAAtm3bhp49ewIAIiIisGPHDixfvhzp6elipm+1Wo1Zs2aJ14+Pj8eKFSsQERGB3r17o6amBhcvXkRMTAwCAgIQFRXVln+Sdie3uTPBnXOYiIiIDEPntAKXLl3CiBEjMH78eL2mFdi2bRuys7PFxzExMYiJiQEAREVFwdbWtsHzZDIZPvzwQ6xatQo7d+6EUqlEQEAAFi1aBE9PT/G4vn37YtCgQYiNjUVBQQEEQUCvXr0wY8YMPPnkkzA3N2/w+qbGwtoMkAAQGDAREREZik4B06lTpxAaGooPPvhAX/URbd++vdljFi9ejMWLF9crt7Ozw8KFC7Fw4cJGz+3Vqxf+9re/6VRHUyCRSiC3MYdSUcMhOSIiIgPRadK3IAgICAjQV12ojepWyrGHiYiIyDB0CpgGDhyI1NRUfdWF2qhu4reyogZqtWDk2hAREXU+OgVMc+fORVJSEnbu3Kmv+lAbiCvlBKC6gr1MRERE+qbTHKbvv/8ePj4++OKLL7Bz585G0woAwNtvv63LragJWskrFTWwtK2/NQwRERG1nU4B0/79+8Wfs7KykJWV1eBxEomEAZMBye2YWoCIiMiQdAqYtm3bpq96kA64PQoREZFh6RQwxcfHw9HREcOHD9dXfagNuAEvERGRYek06fuDDz7AqVOn9FUXaiPtgIn7yREREembTgGTk5MTVCqVvupCbWRpwx4mIiIiQ9IpYAoLC8PZs2dRXc1eDWPikBwREZFh6RQwvfTSS7C0tMQ777yDtLQ0fdWJWkl+VxoBTvomIiLSP50mfb/wwguoqalBamoqTp8+DQsLCzg4OEAikWgdJ5FIsHXrVp0qSo27Nw8TERER6ZdOAZMgCDAzM0OPHj3qlTf1mPTLwubOy8iAiYiISP90Cpi2b9+ur3qQDqQyKSyszVBdUcshOSIiIgPQaQ4TmY66YTmmFSAiItI/nXqY7lZbW4vMzEyUl5fDxsYGHh4eMDPT2+WpGXJbc5TlVUKpqIGgFiCRSpo/iYiIiFpE54imtLQUa9aswW+//aaVXkAul+P+++/H7NmzYW9vr+ttqBl1qQUEAaipqoWFtXkzZxAREVFL6RQwlZaW4pVXXkFWVha6deuG4OBgODk5obCwEElJSfj5558RHx+P1atXo1u3bvqqMzVAK7WAooYBExERkR7pFDBt3rwZWVlZmD59OmbOnAkrKyvxuaqqKmzevBlbtmzBN998g9dee03nylLj7k1eadejiYOJiIioVXSa9B0bG4vQ0FDMmTNHK1gCAEtLS7z88ssIDQ3F0aNHdaokNe/uXExVnPhNRESkVzoFTAUFBRgwYECTxwwYMAAFBQW63IZagNujEBERGY5OAZONjQ2ys7ObPCY7Oxs2Nja63IZaQCtgYi4mIiIivdIpYAoNDUV0dDTOnj3b4PPnzp1DdHQ0QkNDdbkNtQC3RyEiIjIcnSZ9z5w5EydOnMCCBQswYsQIhISEwNHREYWFhYiPj8epU6cgl8sxc+ZMPVWXGnPvKjkiIiLSH50CJm9vb3z88cdYvnw5Tpw4gRMnTkAikYh7x7m7u2Px4sXw9vbWS2WpcRySIyIiMhydE1cGBwdjy5YtuHTpElJSUsRM335+fhg4cCAkEmacbg+c9E1ERGQ4etm7RCKRIDg4GMHBwfq4HLUB5zAREREZDjff7SRkZlKYW8oAAMpy5mEiIiLSJ517mIqLi7Fv3z4kJSVBoVBApVLVO0YikeDzzz/X9VbUDLmtOWqqVOxhIiIi0jOdAqZr165h/vz5KCsrEyd6N6S185gqKiqwdetWJCQkIDExEWVlZVi0aBEmTZrUovPLysqwZs0axMTEQKlUIjAwEHPnzoW/v794TElJCfbt24djx44hIyMDKpUKnp6emDZtGsaPH9+q+poKua0FFPlVUCpqIAgC548RERHpiU4B01dffYXS0lI899xzePDBB+Hi4gKZTKZzpUpKSrBp0ya4urrC19cXcXFxLT5XrVZj4cKFuHbtGqZPnw57e3vs3r0b8+bNw/r16+Hh4QEAuHLlCtavX48RI0bgueeeg0wmw5EjR7BkyRJkZGRg1qxZOrejvdXNY1KrBNQqVTC31MsUNSIioi5Pp0/UK1euYPTo0XjhhRf0VR8AgJOTE3bt2gUnJyckJSVh9uzZLT43Ojoaly9fxtKlSxEREQEAGDduHJ566ils3LgR7777LgCgT58+2LJlC9zc3MRz//znP+ONN97Ali1b8OSTT9bbH8/U3b1SrqqshgETERGRnug06dvMzAy9evXSV11EFhYWcHJyatO5R44cgaOjI8aOHSuWOTg4IDIyErGxsaiu1kyIdnd31wqWAM3Q4ZgxY1BdXY1bt261vQFGop2LiRO/iYiI9EXnrVGuXr2qr7roRXJyMvz8/CCVajctMDAQVVVVyMzMbPL8wsJCAIC9vX2jx+Tn5+Pq1avifxkZGbpXXA+YWoCIiMgwdBqzmTt3Ll555RV8//33ePLJJ/VVJ50UFhYiJCSkXnldj1VBQQF8fHwaPLe0tBQ///wzgoOD4ezs3Og99uzZg02bNtUrT0tLa3CVYHspLi8Rf76WlIYSaa7e76FQKJCQkKD365qqrtRetrXz6krtZVs7L0O1NygoqEXH6RQwffvtt+jbty/Wrl2LPXv2wNfXFzY2Ng0e+/bbb+tyqxZTKpWwsLCoV15XplQqGzxPrVbjn//8JxQKBebPn9/kPaZMmYKwsDDxcUZGBpYtWwZvb2+tlXjtTZabiYxDxQAAl+6uCAzy1Ps9EhISWvzL1Rl0pfayrZ1XV2ov29p5Gbu9OgVM+/fvF3++detWo/N+JBJJuwVMcrlcnKd0t7oyuVze4Hmff/45Tp06hb/97W/w9fVt8h7Ozs5N9kAZi9yGG/ASEREZgk4B07Zt2/RVD71xdHREQUFBvfK6soYmk2/cuBG7d+/Gyy+/jAkTJhi8jobC/eSIiIgMQ6eA6d5VZi2Vk5OD27dvIzQ0VJfbN8jPzw8XL16EWq3WmvidmJgIS0tLMQ9TnR9//BEbN27EtGnT8PTTT+u9Pu1Je5UcAyYiIiJ9Mcpecvv27Wt2nlBL5OfnIyMjA7W1tWJZeHg4CgsLERMTI5YVFxfj8OHDGDVqlNb8pkOHDmHlypV44IEH8Nprr+lcH2NjDxMREZFhmGxmw507d0KhUIhDaceOHUNurmbV19SpU2Fra4t169bhwIED2LZtG3r27AkAiIiIwI4dO7B8+XKkp6eLmb7VarVW9u6EhAT8+9//Rrdu3TBkyBAcPHhQ6/4DBgyAu7t7O7VWP7TTCjAPExERkb6YbMC0bds2ZGdni49jYmLEXqOoqCjY2to2eJ5MJsOHH36IVatWYefOnVAqlQgICMCiRYvg6Xln1VhGRgZqampQXFyM999/v951Fi1a1OECJjMLGWQWUqiq1RySIyIi0iOTDZi2b9/e7DGLFy/G4sWL65Xb2dlh4cKFWLhwYaPnTpo0qcWb+XYklrYWKC+s4pAcERGRHhllDhMZTt08JgZMRERE+sOAqZOpC5hUNWrUKo2XdZyIiKgzYcDUyXDiNxERkf4xYOpk7k4tUMWJ30RERHrBgKmTYS4mIiIi/TNKwGRjY4MePXoY49adnvaQHAMmIiIifTBKwPT444+3KG0AtZ7c9q4NeDkkR0REpBetysO0adOmNt1EIpFgxowZbTqXWodDckRERPrXqoBp48aN9cokEon4syAI9coFQWDA1I44JEdERKR/rQqYVqxYUa9s69atOHv2LKKiohAcHAxHR0cUFhbiwoULOHjwIIYNG4YnnnhCbxWmprGHiYiISP9aFTCFhoZqPf75558RHx+P9evXw9vbW+u5iRMn4rHHHsPcuXMxevToeueSYWgFTOXMw0RERKQPOk36/uGHHzB+/Ph6wVIdHx8fjB8/nhO825Hl3ZO+2cNERESkFzoFTFlZWejWrVuTx3Tr1g23bt3S5TbUCjILKWTmmpeVq+SIiIj0Q6eAycHBAadOndKa7H03tVqNU6dOwd7eXpfbUCtIJBJx4reyjAETERGRPugUMN1///24du0a3n77baSmpmo9l5KSgrfffhtpaWl44IEHdKoktU7dPCb2MBEREelHqyZ93+v5559HcnIyTp48iVOnTsHS0hIODg4oLi5GVVUVBEHAkCFDMHPmTD1Vl1qiLmCqVapQW62CmYXMyDUiIiLq2HQKmORyOT755BMcOHAABw4cwPXr15GTkwNbW1sEBARgwoQJmDhxolauJjK8u3MxVZfXMGAiIiLSkU4BE6CZMzNp0iRMmjRJH/UhPdBOLVAD6+6WRqwNERFRx2eUveTIsORMLUBERKRXOvcwAUBtbS0yMzOhUCigUqkaPIaJK9sPt0chIiLSL50CJkEQsGHDBvz444+oqKho8tjo6GhdbkWtwO1RiIiI9EungGnz5s349ttvYWtriwkTJsDFxQUyGScYG9vdAVMVUwsQERHpTKeAad++fXB1dcX69euZnNKEcEiOiIhIv3Sa9F1YWIgxY8YwWDIx2kNy3ICXiIhIVzoFTG5ubigvL9dXXUhPtFbJcUiOiIhIZzoFTI888ghOnDiBoqIifdWH9ECrh4n7yREREelMpzlMo0ePxsWLFzF37lzMmDED/fr1g42NTYPHurq66nIragVzSxkkMgkElcAeJiIiIj3QKWB64oknIJFIIAgC3n///UaPk0gkOHz4sC63olaQSCSQ25ijqrSak76JiIj0QKeAacKECQbZJ66iogJbt25FQkICEhMTUVZWhkWLFrV4+5WysjKsWbMGMTExUCqVCAwMxNy5c+Hv76913KFDh3D8+HEkJCQgKysLoaGhWLlypd7bYwxy2z8CpnJO+iYiItKVTgHT4sWL9VUPLSUlJdi0aRNcXV3h6+uLuLi4Fp+rVquxcOFCXLt2DdOnT4e9vT12796NefPmYf369fDw8BCP/emnn3D16lUEBASgtLTUEE0xmrp5TDWVKqhr1ZCacRccIiKittLL1ij65uTkhF27dsHJyQlJSUmYPXt2i8+Njo7G5cuXsXTpUkRERAAAxo0bh6eeegobN27Eu+++Kx77t7/9DS4uLpBKpZgxY4a+m2FUWrmYymtgZS83Ym2IiIg6NpPsdrCwsICTk1Obzj1y5AgcHR0xduxYsczBwQGRkZGIjY1FdfWdISpXV1dIpSb5T6AzS27AS0REpDc6T/puCYlEgq1bt+pyqxZLTk6Gn59fvUAoMDAQe/fuRWZmJnx8fHS6R35+PgoKCsTHGRkZOl3PELRSC3ClHBERkU503ny3IeXl5VAoFAA0w2tmZu038ldYWIiQkJB65XU9VgUFBToHTHv27MGmTZvqlaelpUGlUul0bX0pqSgWf05JvIaCWmu9XFehUCAhIUEv1+oIulJ72dbOqyu1l23tvAzV3qCgoBYdp1Mks3379kafu337Nr788ksUFRXh008/1eU2raJUKmFhYVGvvK5MqVTqfI8pU6YgLCxMfJyRkYFly5bB29u73ko8o7mZgcwjJQAA1+494RfUSy+XTUhIaPEvV2fQldrLtnZeXam9bGvnZez2GmwCT8+ePbFkyRKUlZVh/fr1hrpNPXK5XGueUp26Mrlc98nPzs7O8Pf3F//z8vLS+Zr6pj0kx9QCREREujDojGczMzMMHTq0XZNWOjo6as0vqlNX1tbJ5B2N9ga8nMNERESkC4MvEVMqle2a48jPzw8pKSlQq9Va5YmJibC0tNTKw9SZ3b0BbxUDJiIiIp0YNGC6cOECDh06BE9PT4NcPz8/HxkZGaitrRXLwsPDUVhYiJiYGLGsuLgYhw8fxqhRoxqc39QZaeVhYsBERESkE50mfc+bN6/BcpVKhfz8fGRnZwNAm5JC7ty5EwqFQhxKO3bsGHJzcwEAU6dOha2tLdatW4cDBw5g27Zt6NmzJwAgIiICO3bswPLly5Geni5m+lar1Zg1a5bWPeLj43HhwgUAmqCqsrISmzdvBgCEhIQgNDS01fU2FRySIyIi0h+dAqb4+PgGyyUSCezs7DBs2DA8/vjjGDZsWKuvvW3bNjHgAoCYmBix1ygqKgq2trYNnieTyfDhhx9i1apV2LlzJ5RKJQICArBo0aJ6PV3nz5+vlx5gw4YNAICZM2d26IDJwsoMEgkgCMzDREREpCudAqYjR47oqx71NJWyoM7ixYsb3M/Ozs4OCxcuxMKFC5s8f9asWfV6nToLiVQCCxtzKBU1UCq4So6IiEgXnXNfEAJwZ1iOQ3JERES60VsK7traWmRmZqK8vBw2Njbw8PBo1wzfVF9dwFRdUQu1WoBUKjFyjYiIiDomnSOa0tJSrFmzBr/99ptWwki5XI77778fs2fPhr29va63oTaQ29xZEVhdXgNLu66xQpCIiEjfdAqYSktL8corryArKwvdunVDcHAwnJycUFhYiKSkJPz888+Ij4/H6tWr0a1bN33VmVro3pVyDJiIiIjaRqeAafPmzcjKysL06dMxc+ZMWFlZic9VVVVh8+bN2LJlC7755hu89tprOleWWkd7exTOYyIiImornSZ9x8bGIjQ0FHPmzNEKlgDA0tISL7/8MkJDQ3H06FGdKkltw+SVRERE+qFTwFRQUIABAwY0ecyAAQMa3NuNDE97SI6pBYiIiNpKp4DJxsZGK7lkQ7Kzs2FjY6PLbaiNLDkkR0REpBc6BUyhoaGIjo7G2bNnG3z+3LlziI6O7tAZszsyrQ14yxgwERERtZVOk75nzpyJEydOYMGCBRgxYgRCQkLg6OiIwsJCxMfH49SpU5DL5Zg5c6aeqkutwUnfRERE+qFTwOTt7Y2PP/4Yy5cvx4kTJ3DixAlIJBIIggAAcHd3x+LFi+Ht7a2XylLrcNI3ERGRfuicuDI4OBhbtmzBpUuXkJKSImb69vPzw8CBAyGRMLu0sdybh4mIiIjaRqeA6f3330ffvn3x+OOPIzg4GMHBwfqqF+mBxd09TOVcJUdERNRWOk36/u2331BUVKSvupCeSaUSWFhrYmL2MBEREbWdTgGTu7s7cyyZuLphOQZMREREbadTwDR58mScOHECeXl5+qoP6VldaoHq8hoIasHItSEiIuqYdJrDFB4ejri4OMydOxdPPvkkAgIC4Ojo2OBEb1dXV11uRW1Ut1JOEIDqylqtlXNERETUMjoFTNOnTxfTCKxcubLR4yQSCQ4fPqzLraiN7l0px4CJiIio9XQKmCZMmMC0ASaOySuJiIh0p1PAtHjxYn3VgwzEkhvwEhER6UynSd9k+pi8koiISHcMmDo5uc2dDXgZMBEREbWNTkNyTzzxRLPHSKVSWFtbw9PTE2PGjMG4ceN0uSW1EnuYiIiIdKdTwCQIAlQqFfLz8wEAMpkM9vb2KCkpgUqlAgA4OzujqKgIqampOHz4MH7++Wd88MEHMDfnaq32wEnfREREutMpYNqwYQPefPNNeHp64sUXX0RQUJCYZiAhIQEbNmyAQqHApk2bUFJSgi+//BInT57Etm3b8Mwzz+irDdSEu9MIsIeJiIgMoShLAQgCuve2M3ZVDEanOUxr1qxBdXU1PvnkE/Tv319MMSCRSNC/f3989NFHqK6uxtq1a9G7d28sWbIErq6uOHTokF4qT827u4epiqvkiIhIz7KTCvHjW0ex861YHFoRh7LcCmNXySB0CpiOHTuGESNGQCpt+DIymQwjRoxAbGwsAEAul2Pw4MHIysrS5bbUClo9TBySIyIiPTu/MxXCHztvpZ3Kxo6/HsWZrVdRXVlr3IrpmU4BU3l5OSoqmo4ky8vLUV5eLj62t7fX5ZbUSlIzKcytZAA4JEdERPqVm1qMW1cKtMpUNWpc2HMdP/zlCK5GZ3aafUx1Cpj69OmD3377Dbdu3Wrw+Vu3buHQoUPo06ePWJabmwsHBwddbkutVJdagAETERHp04W918Wfhz8dgOCH+0JqppmeU1lSjaPrLmP3O8dxO7HQWFXUG50mfT/zzDN49913MWvWLDz00EMYMGAAunfvjqKiIly+fBn/+9//UFlZKU7wrqmpwZkzZzBs2LBmr11RUYGtW7ciISEBiYmJKCsrw6JFizBp0qQW1a2srAxr1qxBTEwMlEolAgMDMXfuXPj7+9c7NjY2Fhs3bkRGRgYcHBwwefJkPPfcczAz0+mfx2TIbc2hyK+EsrwGgiBwOxsiItJZUZYCGWdyAADWDnL0j/KEzFyGgHG9cXrLVaT/8VxBein+989T8B7uhuFP+cOuh7Uxq91mOkUE4eHheOutt/DFF1/ghx9+wI4dO8TnBEGAlZUVFixYgPDwcABAVVUV3nrrLXh7ezd77ZKSEmzatAmurq7w9fVFXFxci+ulVquxcOFCXLt2DdOnT4e9vT12796NefPmYf369fDw8BCPPXnyJP72t78hNDQU8+bNw/Xr1/HNN9+gqKgIb775Ziv+NUxX3TwmQSWgpkoFC6vOEQgSEZHxXLyrd2nA5D6QmWumf3RztcH9bwzGrYQCnPw2EYUZZQCAtNPZuBGXiwGT+iDkTz4d7rNI59o++OCDCA8PR2xsLFJTU1FRUQFra2v4+vpi9OjRsLW1FY+1s7PDmDFjWnRdJycn7Nq1C05OTkhKSsLs2bNbXKfo6GhcvnwZS5cuRUREBABg3LhxeOqpp7Bx40a8++674rGrVq2Cj48PPvnkE7FHydraGt999x0ee+wxeHl5tfi+pure5JUd7ZeUiIhMiyK/EqnHNNNxLKzNEDDes94x7kFOeORfYUg+chNntyWjqrRanN+UfOQmhj7RD35je0Mq7RijHnr55LS1tcXEiRMbfV6lUkEmk7XqmhYWFnBycmpTfY4cOQJHR0eMHTtWLHNwcEBkZCQOHjyI6upqWFhYID09Henp6XjjjTe0ht/+/Oc/49tvv0V0dDRmzJjRpjqYEvk9G/DauVgZsTZERNTRXdqXBkGlmcwdFOXV6BdxqVSCgEgP9L3PDfE/Xcfl/WlQ1wri/KaEX29gxLOB6Bno2J7VbxOdJn3/+OOPzR6jUqmwZMkSXW7TasnJyfDz86uX7iAwMBBVVVXIzMwUjwNQb16Ts7MzXFxckJKS0uD18/PzcfXqVfG/jIwMA7RCf+S23E+OiIj0o6q0GlcP3wQAyCyk6D+x+ZEYC2tzDH/SH499NAZ9hrmK5XXzmw59bvr5m3TqYVq5ciUcHR3FYa97qdVqLFmyBDExMbrcptUKCwsREhJSr7yux6qgoAA+Pj4oKCjQKr/32Lrn77Vnzx5s2rSpXnlaWpq4JYwpKS4vFX++djUNJbLcNl9LoVAgISFBH9XqELpSe9nWzqsrtZdtNbwbR4pRq9R81rmE2CDt5rVWne8+wRI2/q5IO1iIihzNl/i009lIP5cN9/u6oXeYPWTy+v05hmpvUFBQi47TKWAaOHAgli1bhm7dumHw4MFaz9UFS0eOHMGjjz6qy21aTalUwsLCol55XZlSqQQAVFdXa5Xfe2xjOaamTJmCsLAw8XFGRgaWLVsGb2/vBlfhGZtZ7k1koAgA4OLgisCg+mPNLZWQkNDiX67OoCu1l23tvLpSe9lWw6qurMW5z6IBABKZBOHPDGnbNI8g4L6Jgtb8JkEFZB0vReGVqgbnNxn7tdVpSO7999+Hh4cH3nnnHa3hK7VajX/+85+Ijo7GI488gnnz5ulc0daQy+ViMHS3ujK5XA7gTqDU2LF1x93L2dkZ/v7+4n+mPjH83knfREREbXH190xx1wjfUe46zYmtm9/0+KdjG8zf9NM7x3E7seGRHmPQKWCysbHBxx9/DFtbW/z1r3/FrVu3IAgCli5dit9//x1/+tOf8MYbb+irri3m6OjY4HDavUNwdw/RNXRsWyedmxqtgInboxARURuoalS4tC9NfBz8cPMpglqi6flNp/Hb5+dRmmP8+U06BUyAJuj45JNPoFar8eabb+K9997D4cOH8dBDD+Evf/mLPurYan5+fkhJSYFardYqT0xMhKWlpZiHyc/PDwBw9epVrePy8/ORl5cnPt/R3btKjoiIqLVSY2+hokgzpcVrSA90722n1+vX5W+a/M5wOHrduXb66Rzs+GsMMn4vQnWF8b706xwwAYCHhwc+/PBDFBUVISYmBg899BD++te/6uPSzcrPz0dGRgZqa+9s8hceHo7CwkKtyebFxcU4fPgwRo0aJQ7FeXt7w9PTE3v37tWarL17925IJBIx4WZHp7UBL4fkiIioldRqQWsblJApfQ12r7r8TaNfGgDLbprPa3WtgKzjpbh+Mttg921OqyZ9N7Qy7G6BgYFITU2Fk5OT1rESiaRN+Yx27twJhUIhDpkdO3YMubmaFV5Tp06Fra0t1q1bhwMHDmDbtm3o2bMnACAiIgI7duzA8uXLkZ6eLmb6VqvVmDVrltY95s6di0WLFuHNN9/E+PHjcf36dezatQsPPfSQ1h54HZmFDYfkiIio7TLOZKM0WzMs1jPIET38uhv0fg3lb7LsboZ+4b0Met+mtCpg2rhxY4uO27x5s9bjtgZM27ZtQ3b2nWgyJiZG7DWKiorSyiJ+N5lMhg8//BCrVq3Czp07oVQqERAQgEWLFsHTU3uF2KhRo7Bs2TJs2rQJK1asgL29PZ555hnMnDmz1fU1VWYWMpjJZahVqtjDRERErSIIAuJ/ap/epXvVzW8KGOeBpMtXIZXpZWCsTVoVMK1YscJQ9WjQ9u3bmz1m8eLFWLx4cb1yOzs7LFy4EAsXLmz2GmPGjGnxli0dldzGnAETERG1WtblAhSka/L5OfXphl4Dndu9Dt1crWFb0PDK9fbSqoApNDTUQNUgQ5PbmqO8sArK8hoIggCJpGPs3UNERMZ14ac7iSlDpvTtsp8fxuvbonZVt1JOVaOGqlrdzNFEZIoEQUDW5XwU3Cht/mAiPchNLcbthEIAQDc3a/QZ7mbkGhmPTgHT/v378eKLLyI/P7/B5/Pz8/Hiiy/i4MGDutyG9ODu1AJVTC1A1CGd+yEF+/99Bnv+fgJFN8uMXR3qAi7suTN3KfjhvlqZt7sanQKmAwcOwNzcHM7ODY9nOjs7Qy6X43//+58utyE9kNtwA16ijiz9TA7id2uGRlQ1alzen27cCnVBglowdhXaVVGWAhlncwAA1t3l8BvtbuQaGZdOAVN6enqzyR19fX2Rnp6uy21ID7g9ClHHVZylwJE1F7TKUo/dYm9xO0qOvolvZ/+GvUtOihvPdnYX78q7NGCyN2TmMiPWxvh0CpjKy8thZ9d0pk8bGxsoFApdbkN6wO1RiDqm6spaHPzsPGoqNR/S5laatTqqajWSo28as2pdglot4OR3iYhZdwnVFbXIuVqklcCxs1LkVyL12C0AmlXWAeM8jFwj49MpYHJyctLadLchqamp6N7dsAmuqHnsYSLqeARBQMyaiyi5VQ4A6O5hiwf/Plx8PuHgDai72DBRe6quqMHBj8/h8r50rfKLe6+jLK/SOJVqJ5f+lwZBpfndCoryhIVVqxbVd0o6BUxDhw7FmTNncObMmQafP336NE6fPo3hw4c3+Dy1H+3tUdiNT9QRXNx7HelnNHNILKzNcP8bg+Hcxx69QzTzRhV5lciMyzVmFTut0pwK7HnvJDLj8wAAEqkErv00X/5VNWqc3pJkzOoZVFVpNZIOZwIAZBZS9J/Qx7gVMhE6hYxPP/00fv/9d7z11luYMGEChg4dCmdnZ+Tn5+PMmTP49ddfYW1tjaefflpf9aU24pAcUcdy82Iezm5LFh9HvBoCezcbAED/KC/cvKBZnXzllwx4DXFt8BrUNrcTC/DbZ3Fib7zcxhzj5w+CU59u+OHNGFSVViPtVDZuJRTAPcjJyLXVvyu/pIvpZwIiPcT93Lo6nQImd3d3fPDBB1iyZAn279+PAwcOiM8JggAXFxcsWbIE7u5de2a9KeCQHFHHUZZbgcNfXoDwx2jb4Km+8BzUQ3y+d4gLurlaozSnArcuF6AoS4HuvRreKopaJ+n3TBzbeEUcjrJ3t0HUgiFisDr0iX6IXX8ZAHDym0Q88q9RRt2uQ9+qK2uR8OsNAIBEJsHAB72NXCPTofOgZHBwMLZu3YrY2FgkJiaivLwctra2CAwMRFhYGMzNzZu/CBmcpQ0DJqKOoFapwm+fnRffpx6DXDDoz75ax0ikEgRFeeLkt5phoYRfMxD2fP92r2tnolapcXrLVa10Db2DnRH5eqjWlIZ+4b2RePAGCtJLUXijDFcP30Tg/Z4NXLFjSvo9UxyF8A1zh62zlZFrZDr0MovL3NwckZGRiIyM1MflyADktnflYeKQHJFJEgQBsRsuoyBDk5Sym5s1IuaGQNJAskC/sb1xdnsKapUqpMRkYdgT/WBhzS+obVFdUYPfv4gXhzkBoP9EL9z3dEC93iOpVIKRM4Lw85KTAICz25PRd0RPrV78jkpVo8LlfWni4+CH22+T3Y6g8/QjUpNkFlLIzDUvN3uYiExTwq83kBqrWcptJpfh/jcGa/Vu3E1uYw7fPxIJ1ipVSI7Jard6diYl2eX46d0TYrAkkUkw+oX+GPlcUKNDbW7+3eEzqicAzd/TczubXi3eUaTE3kJFkRIA4DXUlcO899BLD1Nubi7i4uKQn5+Pmpr6H8YSiQQzZszQx62ojSQSCeQ25qgoVjJgIjJB2UmFOPldovh47MsD4ejRdJ67/hO8kHRIs5op4dcM9I/yarA3ihp260oBDq24a3K3rWZyd0smcg9/0h8Z53JRq1Qh8eANBIzzaPb1MmVqtaCVqDJkCnuX7qVzwLRq1Srs2LEDavWdDV0FQRB3M677mQGT8cntNAETswMTmZbyoiocWhkvTjQe+KA3+o7o2ex53Xvbwb2/E25dKUBpdgVuXsqHR4iLoavbKSQduoFjmxLEf3OHXprJ3d1cbVp0vo2TFUKm9MW5H1IgqAWc/CYRkxYPEz/7Opr009koza4AAPQMckQPXwfjVsgE6TQkt3fvXmzbtg2DBg3C0qVLIQgCJk6ciHfffRdTpkyBTCZDREQEPv/8cz1Vl3RR17WvqlajtrprpPanjqe6ogapsVkozSk3dlXahapWjUOfx6GyWDMU4t7fCcOm92vx+UFRXuLPCb9k6L1+nY1apcbxzQmI3XBnJVzvEBdMWTKyxcFSnYEPesPWRTMp+taVAnHftY5GEAStTXZD/uRjxNqYLp16mPbu3Qs3Nzd89NFHkEo1sZebmxvGjx+P8ePHY9y4cfjLX/7CyeAm4t6J32YWXXtfIDI9BRmlOPR5HEpzKiCzkCJqwRD0GtDw5t6dxclvE5GbUgwAsHW2ROTrIa1apu45pAdsna2gyK9E5oU8lGSXi0vgSZuyvAa/r4xH1qU7k7sHTOqD4U8HQNqGoUwzCxnuezoAhz6PAwCc+i4JvUNcOtzf1qxL+ShILwUAOPXphl4DOl9uKX3QqYcpIyMD9913nxgsAYBKdafnIjQ0FCNHjsTWrVt1uQ3pCXMxkSlLjrmJPe+eQGmOZlhAVa3Grx+dw80LeUaumeEkH7mJxIOanDcycynGzx8Mq27yVl1DKpUg8IE/lrULEK9H2kpul2PPuyfEYEkqk2DMSwMw4tnANgVLdfoMc4V7f02AUZZXWW8blY7g7t6l0D/17bDDioam8yo5W9s7s+gtLS1RUlKi9byHhwfS0tLuPY2MQM5cTGSCaqtViP36MmLWXIKqRjMXUtxgtkaNg5+e75Tbf+RfL8Gx/1wRH4c93x8ufe3bdC3/iN7iKtir0TdRU1Wrlzp2FreuFGDPuydQclszzCu3NcekxcPhH6n7hrISiQQjngsUJ9vH/3QN5YVVOl+3veSmFuN2QiEAwL6nDbyGuRm5RqZLp4DJxcUFeXl3vv316tULiYmJWsekpaXByoqJr0wBe5jI1JTlVmDvP04i6fdMsSxgvAee+ioSfYZrtvtQ1ahx8LPzyDjXMeeHNKSqtBq/fX5eDBADxnugX0TvNl/P0s4CPmGaFAM1lbViagICEg5mYP/yM2L+ue69bfHIslHoGeiot3s4etiJyStrlSqc/v6q3q5taHf3LgU/5K1Tb1tnp1PANGDAAFy5cucb0ujRo5GSkoKPPvoIJ06cwNq1a3Hq1CmEhIToXFHSnfZ+clwpR8aVGZeL3X87Ls6dkFlIEf5KMEa/MADmlmYY91qouFJMXSvg0OdxSD+Tbcwq64VapcbvX8RDka/phejh64CRM4J0vm7/uyd//5oBoW5flS5KrVLj+MYrOL4xAYJa82/hMcgFD/9jBOx6WOv9foMf8xX/xl47dgs5yUV6v4e+Fd0sEyeqW3eXi3m9qGE6BUwTJkxAr169kJ2t+SM2ffp0+Pr64ueff8aiRYuwZcsWuLq6Ys6cOXqpLOmGQ3JkCtRqAWe3J+OXj86J3/q7uVpjytKR8BvbSzxOaiZFxKvBYoJAtUrAoZXxSDt12yj11pez25Nx60oBAMDK3gLj3xgEmZnuOYSd+nSDq393AEDRTYU4zNIVKRU1OPDBWSTcNZ9r4IPeeODNIQbLhm5pa4Eh0/zExyc23wnUTNXFn+9Mlxk42Rsy8441Wb296bRKbtCgQRg0aJD42NraGmvWrEFsbCyysrLg5uaGUaNGcUjORHBIjoytslSJw19ewK3LBWKZ1zBXhL88sMEPMqlMivC5mlVjKUezIKgE/P7FBUSoAZ+RzecpMjXXT97Gxb2aDymJTILx8wbBprul3q7ff4IXcq5qejau/JIhTkbuSioLarBnw535SlKZBKNfGKDTkGdLBYzzQOJvmSjKLEN+WimSj9zUyzwpQ1DkVyL1mGboVm5jDv9xpllPU6KXTN8AUFJSgtTUVJSXl8POzg4PPfQQ7O3bNoGRDEN7SI4BE7Wv3JQiHFoRL06IlUglGDa9HwY+6N3kqhypVIIxLw+ERCZBcvRNCGoB0V/GQ1Cp4Tu6V6PnmZqim2WIWXtJfDzimQC4BehvHg0A9BnqCuvuclQUKXHjXA7K8iph59I1vrCqalS4eSEfFzdmQ1WlmRtmaWeO+98YrPd/58ZIZVKMnBGIfctOAwDObEuG931uJrnH36X/pYl5qIImeMHCSm/hQKel87/Q7du3sXLlSpw8eVJrzFwikWDkyJF4/fXX0bNnx/sm2BnJbe7Kw8QeJmongiAg4dcbOPVdItR//IG2srfAuP8LRc/AlvWASKUSjHlxAKRSCZJ+z4QgANGrL0KtFtBvrOF7DnRVXVGDg5+eR61Sk3bFd7S7VsJJfZGaSRE43hPndqRAEIDE3zIw/MkAvd/H2ARBQFluBXJTS5CbWoy81GIUZJRCXXvnM6i7hy2iFgyBnYv+5ys1xT3ICd7D3ZB2OhtVpdWI23UN9z1tWq9BZakSSYc1Cy3M5DKt+W/UOJ0CpqysLLz66qsoKipC7969MXDgQHTv3h1FRUW4fPkyjh07hoSEBKxatQru7pxMZmwckqP2VlNVi6PrL+P6iTvzjtwCumPc66GwbuVQlEQqQdis/pDIJJpcQwIQs/YSBJVgssMeADQ9YqsuittOOHnZYfQLAwyW68Z/vAfidqdCXSvg6uGbGDzVr/mTTJxSUYO8a8XIvVaMvNQS5F0rRlVZ43/DPAf3QMSrIUbrNRn+dABuxOVCVaPG5QPp8I/sDQd309nINuGXDKiqNb1w/pG9YdnNopkzCNAxYFqzZg2Ki4vx5ptv4uGHH9b6AyAIAvbs2YPPPvsMa9aswdKlS3WuLOnG3FIGqUwCtUqAkvvJGVVBeimun8qGR4hzuw0XtLeiLAUOfX4exVl3tjgZ+KA3hj3RD9I2TnKWSCUYNTMIUqkEV37JAATg6PrLUKsFBI731FfV9Sp+9zXcOK/JIyW30QwRmckNN7nW2l6OviN6IjX2FpSKGlw7fgvoYbDb6Z26Vo3CG2VicJSbWizOR2qKfU8bzf5njlUYM22wUZfH27lYIfjhvoj7MRWCSsDJb5MwceFQo9XnbtWVtZr3DjTz6AZO9jZyjToOnQKmc+fOISwsDFOmTKn3nEQiwZ/+9CecPHkSZ8+e1eU2pCcSiQRyW3NUllRzDpMRXTt+CzFrNUkaL/x0Db0GOmHItH6darPL6ydvI2btJXEIytxKhrEvB8N7uO5J8cREgTKJmFX52B/7ghlimEsXmXG5OLczRfNAAkS+FmKQJe33CoryEnMxJfySgX7PdDf4PdtCEAQo8qs0vUepmgApP61EzE/VGLmtOXr4OqCHrwNcfO3h0tdB7EFPSEgwiVxCwQ95Izn6JsoLq3DzQh5uxOXCc5DxI9ek3zNRXaFJbOob5g5b564xx00fdAqY1Go1+vTp0+Qxffv2RVxcXKuvXV1djQ0bNuDXX39FWVkZfHx88OKLL2LYsGHNnnvo0CFs2bIFGRkZsLKyQlhYGF555RU4ODhoHVdYWIi1a9fixIkTqKiogJeXF5555plOvfedGDBxSK7dCYKAuB9TcX5nqlZ51qUCZF06AY9BLhgyzQ/OfTruYglVrRqntyThyoE7m8B297DD/fMHwb6n/vY3k0gkuO/pAEhlEnHV2fFNCVCrBAyY1Edv99FFSXY5Dn91AfhjWs3Qx/uhd4hLu9y7h68DXHzskXetBAUZZSjLtAb6t8utm6RWqZGdVCTOO8q9ViJuOtwYqUwCpz7d4PJHgNTD1x52PaxNfvsOc0szDH/KH4e/vABAs2dgr4HOekkh0VaqGhUu7/sjlYAECH64r9Hq0hHpFDD169cP6enpTR6TlpYGf3//Vl97+fLliI6OxrRp09C7d2/s378fb731FlasWIHg4OBGz9u9ezc+/fRTDBkyBK+++iry8vKwY8cOXL16FWvWrIFcrtmnqby8XJx/9dhjj8HR0RGHDx/Ge++9h9raWjzwwAOtrnNHoJn4XY6aKhVUtWqjvnm7ktpqFY6uu4Rrx+/M5fEa5orCjFKU5VYCADLj8pAZl4c+w10x5DE/dO9tZ6zqtkl5YRUOrYxDbnKxWOY72h2jXxhgkCEoiUSCYdP9IZFKceGnawA0H0pqtYDgB407zFBTVYvfPosTv8l7DXNFyJT2/XAKmuCFI6suAgBuny0DJrbr7euprqjBvn+fQf71kiaPs+th9UfA54Aefg5w8rLrsPmB+o7sicTfbiA7qQil2RW4ciAdwQ8ZL0hJib2FiiJNgOo11BXde5nOvKqOQKeA6aWXXsIbb7yBn3/+GQ899FC95/fs2YPTp0/js88+a9V1ExIScOjQIcyZMwdPPvkkAE2SzJkzZ2L16tVYvXp1g+fV1NRg3bp1CAkJwaeffip+AxkwYADefvtt/Pzzz5g6dapYt6ysLHz22WcYMmQIAOCRRx7BK6+8gq+++goREREwNze9paC6uje1gLV96zb6pNarLFXi4Kfn7wQSEmD4k/4Y+KA3BJWA5JgsxP2YKi63Tz+dg/QzOfAZ5Y7Bj/rqtWfGULIu5+PwlxdQVaqZGyc1k2DkjCAEjPMwaE+ARCLB0Mf9IJVJEPejpufu9H+TIKjUCJniY7D7NkUQBMR+fRlFmWUAAHt3G4S/PLDde0T63ueGU98loaq0GgWJFSgvrIKNo/5yPrWGWi3g8JcX6gVLFtZmcPGx1wRHfwyvtXbzYVNWN3y8+2/HAQGI25UK39G9YO3Q/m1UqwVc3HtnG5QQ9i61WqsCpk2bNtUrGzRoED7++GNs3boVAwcOhKOjIwoLC3Hp0iXcvHkTw4YNw/nz5zFw4MAW3+fIkSOQyWRac6PkcjkefPBBrFu3Djk5OXB1da133vXr16FQKDBu3DitP051yTMPHTokBkwXLlyAg4ODGCwBgFQqRWRkJFavXo34+PgWDf91NPeulGPAZFhFN8vw60fnUJan6UUyk8sQMTcEfYZpfn8lZhIEjPOA72h3XD2cififrmuGKATN9grXT9yG39heGPRnn3ZfHt0SglrAhT3Xce6HZNRlFbF1tsL4+YPavJFsa0kkEgx5zA9SqQTndmjmC53Zmgy1SsCgP/u2Sx3qqGvVuPi/NLEn0dxKhgfeGGyUPDwycxkCxnkgfvc1QAASf7uBoY/3a/d6AMCZ768iM16z76jcxhzDn/aHq1932Pe0ETet7ayc+9gjINIDSb9noqZShbPbrmLsy42PkhhK+ulscaWme3+nTjVnsr20KmDauHFjo89lZmYiMzOzXvnp06dx5swZzJgxo8X3SUlJQe/evWFjo/3NOjAwEACQmpraYMBUU6OZl1M37HY3uVyOlJQUqNVqSKVS1NTUNHicpaXmG9jVq1cbDZjy8/NRUHAnU3FGRkaDx5kibo/Sfm5eysehz+NQU6kZlrHuLkfUgiFw9q4fSJhZyNB/Qh/4R3gg4WAGLu69jqqyGghqAcnRN5F6NAv+kR4IfcTHaL0E91IqahC9+gIy4+5swN07xBkRc0Ngadf+y5QHPeoLqZkEZ7YmAwDO/ZACtUrA4Km+Bu3dqa6oQeaFfNw4l4PM+DxxGA4Awl8JhoMRhz0C7/fEhb3XIagEJP2eiUF/9mn34a3k6Ju49L+7spvPH9TlMpAPedwP10/eRnVFLZKPZCHwfk+4+Di02/2LsxQ4X7f4AGj34eHOolUB04oVKwxVDy0FBQVwcqr/hqory8/Pb/C83r17QyKR4NKlS5g8ebJYfuPGDRQXFwMAysrKYG9vD09PT5w7dw7Z2dlwc7uzcufixYtN3gPQDOc11NuWlpYGlUrVbPuMqaSiWPw5NfEaClWt67VQKBRISEjQc61MV1vbm32uDNcPFIoTfm3cLBDwuDNyK7OQm5DV5LlmfYGQV9xw+0wZsk6WQlWlhlolIPG3G0g6fANuQ+3Qa5Q9LGz0+8HXmrYqbitxdWc+lMV3ggOPcHv0Hm2N65mpTZxpWOa+gNd4B2QcKgYAxP2YirycXHhEOGgFTbr+HitLalGYXIHC5EqUZlRBaGBRV++wbqiwKUSCkfd0c/S3QkFCBapKqxH74zm4DGy/AK70RhWufJcjPvaO6o5iSQ6KE3KaOEs3pvo3yj3MDukHNdvWHFpzDgNnuukcyDfXVmVpLTJjSpB7QXHnb1FPCxRLc1CSkKvTvY3BUK9tUFDLNr9uVcAUGhralrq0mlKpbHD+kIWFhfh8QxwcHBAZGYkDBw7Ay8sLY8eORV5eHlasWAEzMzPU1taK5z700EP46aef8N577+G1114TJ30fPXq0yXsAwJQpUxAWFiY+zsjIwLJly+Dt7d2mCe7tKisDmUc08wh6OLqhX1DrsiQnJCS0+JerM2hte9VqAaf/m4Tr++98SHoN0STRM7ds3ZTBgYMA5dM1uLwvDZf3p6OmSgVBBdw+VYa8+Ar0n+CFgQ95w9JWP705jbW1qqwa+WklyL9eqvl/WikU+ZXi83Jbc0S+FoLewe2zAqw5QUHAZfc0nPw2CQBw81gpHB2dMWx6P/EDqrWvqyAIKEgrRcb5XNw4l4OCjLIGj7OwNoNHqAv6jugJzyE9TGIll6O0ED8vPQUAKL5ci/An2uf9W5ZXgZ9WnhCDyaAHPDHqWcMv1TPVv1EB/dT4MSEWxVnlUGRVw6LQAX5jdNvap9H3rKIaF/ZcR8Ivt7VSNFg7yPHA60M67EpcY7+2Jrl5jFwuF4fX7lZdXS0+35gFCxZAqVRi1apVWLVqFQAgKioK7u7uiImJETcC9vHxwbvvvotPPvkEr776KgDA0dERr7/+Oj755JMmNwx2dnaGs7Nzm9tnTBySM5zqyloc/jJea4hq4IPeGPakf5vzwshtzDFkWj/0n9AHF36+joRfNRl6a5UqzR/EgzcwYFIfDJzcRy/zZJoLju7l4mOP8fMGmVwulwGTvCGRSnFis+bb6MW916FWqXHf0wEtDmJUNSrcSijEjXO5yDifg4rChr9E2TpbwWtID3gNdYWbf/c2J+U0FFf/7rBxNUd5Tg3yrmkSQRp6/kpNVS1+/fi8uAjAfYATRjwXaNB7mjqpmRQjng3Egfc1eQnPfH8VfYa5tvqLVFNqqjRJKS/uva41NGxhbYbgh/ui/wQvvd6vqzHJfzknJyfk5eXVK6+bN9RUsGJra4vly5cjJycHt2/fhpubG9zc3DBnzhw4ODjAzu7OUu2IiAiEhYUhNTUVarUa/fr1E3NGeXiY7lYLumjP7VFyU4qQfbUIPiN7wsbJtD5Q9U1RUIlfPz6Hwj96HiQyCcKe748APe0AbtnNAvc9FYCBk71x4adrSDx0A+paATWVtYj7MRUJv2Qg+GFvBEW1/A+iGByllSL/egluJ+fjeEnz8/HM5DI49ekGjxAXDHywj8ku+e4/wQtSmQTH/nMFAHB5XzoEldDkB3eVohqZcXm4cS4XNy/moaaq4SF2l7728BzSA55DesDRw84kepIaI5FI4DbUDtf+p+n1TPg1w6ABk6AWEP3VBXGVYDc3a4z/v0GQykwrkDSG3sEu8BzSAzfO5aKiWIn43dcwbLruoxLqWjWuRt/E+R9TtfJaycylCJrghZApffXWE92VmWTA5Ovri7i4OJSXl2tN/K4bu/T1bX7li6urqzgxvKysDMnJyQgPD693nLm5uTiZHNBkLweAoUNNI429vsnvetMYMtt3bmox9i45BUEtaDaffMof/pEenXJFTN71Ehz8+Bwq/vhDZWFthvHzB6HXAP33Qlo7yDFyRhAGPuSN+N3XcDX6JgSVAGV5Dc5sTcalfekImdIXgfd7wsziTiBzb3DUXM9RnbrgyNm7G5z72sPZ2x72PW1MIpNySwTe7wmJTILYry8DAnDllwyo1QIcht85piS7/I9epFzkXC2CoBbqXUdmLoV7fydNkDS4B2xauQ+esTkPsMHNI2VQKmpw/cRtDH86wGArZM9uT0bGOc38GAtrM0S9OUTri1pXN+KZANy8kAd1rYBL+9LgH9kb3VzbljpEEARcO3Eb57YnozSnQiyXSAC/8N4YMtW3039ZbU8mGTBFRERg69at2LNnj5iHqbq6Gvv27UNQUJAYCOXk5KCqqgpeXk1vh7Bu3TqoVCpMmzatyeMyMzPx008/YdSoUZ22h8ny7h6mJjav1EXd0FTdB09NZS1iN1zBtRO3MealAW3+42CK0k5nI3rVBXEjS7seVpjw16EGXxll62SF0S8MQPBDfRG3KxWpR7MgCEBVaTVOfZeES/9Lg+9od5TmVCD/esuCI6m5BC59HTTBkbc9nPt2rOCoMQGRHpBKJYhZd0mzvP7gDbjk2KDi0lVknMtFcZaiwfPktubwHKwJkHoHO3fooQyZuRT+kb1xcW8a1CoBVw9lYtCj+k+5kBKbhQt7NLl+JBJg3P+FGnWVoCnq5mqj6Snecx3qWgGnvkvCA28Oaf7Ee9y8lI+LG7NRnn1Dq7zPMFcMebwfk1IagEn+BQgKCkJkZCTWrVuH4uJi9OrVCwcOHEB2djYWLlwoHvevf/0L8fHxiImJEcu+++47pKWlISgoCDKZDEePHsWZM2fw4osvavUkAcCzzz6LyMhI9OjRA7dv38ZPP/2Ebt264c0332y3trY37cSVhtmA98TmBDF7tZW9BSpLNPe5nVCInQtjMXRaP/Sf1KdDfxALgiYJXN0SdkAzV+SBNwa3687f3VytEf5KMEIe7ovzP6bi+glN/p+KIqW4ZUhDtHqOvO3h7N0Nt4pvoP8AE9g/wwD6hfeGRCZBzOqLEAQg72I58i5er3dcNzdreA1xhdeQHujRr3uH/h29V+D9Xrj0cxoEAUg8dAMhU/rqdb5VbkoRYtdfFh/f92ygySwEMDUhf/JBSkwWKoqVyDiXi5uX8tF7YMt6pPOuFePM1mTculKgVd4zyBHDpvszv5IBmWTABACLFy+Gq6srfvnlFygUCvTt2xcffPBBsyv1fHx8cPToURw7dgxqtRo+Pj5YsmRJg/vD+fr6Yt++fSgqKoK9vT0iIyMxa9YsdO9umhtV6oO5lRkkUgkEtWCQOUzXjt9CSkzWH/eS4eF/jERZbgWOfn0ZirxKqKrVOPXfJFw/eRtjZg+Eo0fH2v4D0OyXduw/V5AcfVMs8x3tjjEvDTDafB6HXrYY93ooQv/kg3M7U5Bx5s6y7YaCI3t323rBwO3SzhMcNMRvdC9IpRJEf3VBTLIJCeDq1x2eQ3rAa3CPTt0bYudiBc8hrsg4m4OKIiXSzuTAZ2RPvVxbUVCJg5+eF1dkBYzzQP8JprURsimxsDLDsOn+OLJGk8bm5DcJeHT56CYD2OJbCpzbnoK009la5U5edhg23R+9gp1Nei5dZ2CyAZNcLsfcuXMxd+7cRo9ZuXJlvbKRI0di5MiRLbrHe++91+b6dVQSiQRyGzNUldXoPWAqy6tA7IYr4uNRz/dHN1drdHO1xtQPRuPs9mRc+SUDEIC8ayXYvfgYQh/xQciffDrMnnZVimoc+jwOt+/KrTNkmh9CH/ExiT9Wjp52eOCNwSi6WYbiW+VwcLdpMDjqqnxGucPSzgLnf0mE/1BveAxygVUXynbff4IXMs5qgumEXzP0EjDVVNXi4CfnxZ5kt0BHjJwZZBLvB1PmO9odCb9lIC+1BMVZ5Uj47QYGTOxT77jywiqc35mK5CM3tebX2fWwgtsoG4x9bGinnBtqikw2YCLDkdtaaAImPU76VqvUiP7qopjV2ifMHX6j7+QYMbc0w8jngtB3RE/ErLuEklvlUKsEnN+ZirTT2Rjz0kCT70ouuV2OXz46K24vIDOXInxOMPqO0M+3dH3q3tuuw23e2156DXRGicyp1TnIOoOeQY5w6GWL4iwFcq4WoSC9FE59urX5eoJawJE1F1GQXgpA8yF+//xBHeYLkDFJpBKMfC4Ie949AQA4vyMFPqN6invpKRU1uLD3Gq4cyNDKpWRlb4FBj/rCP9IDV5OTGCy1I/5Wd0F1uZiqK2qhVjWQorgN4ndfQ06yJoutrYsVwp5vOLmYa7/u+PO/wzQ9MjLNG70oU4G9753Aqf8moVZpmpnSbycWYM97J8RgybKbBR58Z7hJBktEjZFIJAiK8hQfX/lVt22dzv+YivTTmh4rcysZohYMMcq2OB1VD18H+I3VfLGsrqjFuR9S/sixdg3b5kfj4t40MVgytzLDkGl+ePyzcAQ94MWg1AjYw9QF3T3xu7q8VudJytlXi8Sd4iVSCSJfDWkyiaKZhQxDH+8H7+FuiFl3CQXppRAE4NL/0pBxNgejXxoA9yDT2Wsq+chNxH59GWqVpju8u4ctohYMMcnNcIma4zemF85uS0Z1RS2uHbuF4U/6tynIuXbitvi+hwQY91ooezXbYNh0f6SfyUZNpQpJv2eKOZrqSM0kCIryQugUn3ZdUEL1MUTtgrRXyuk2LFddUaM1iXbwo75w7deySfNOfbrhT/8ciWHT+0FmrvlVLM2pwL5lpxH79WVUVxg3E7mgFpDxexFi1l4Sg6XeIc54+L0RDJaowzK3NEO/cM1wpKpGjauH62+a3py86yWI+WPCMgAMfyoAHoN66K2OXYm1gxyDHvkjxYMAMViSSIB+4b3w+KfhGPFMIIMlE8CAqQvS3h6l7akFBEHAsf9cEXP8uPp3R8gjPq26hlQmRcgUHzz6/mi4+t8JtJJ+z8SOt47ixvn23yBSVatGbmoxDq2MQ9bxUrE8KMoLUQuG6GULEiJjCnzAE/hj6kvibzdaNTRfXlSFg5+cE4eK+oX3wsDJfQxQy66j/6Q+sO95Jz+d15AeePSD0Rj7crDJbTvUlXFIrgvS1/YoqbG3cO24Ju+PhbUZIuaGtHk1ln1PGzz09/uQeOgGznx/FTVVKlQUKvHrx+fgM6onRjwXKE6G1LeKYiVyU4qQk1KM3JRi5F8v0ZpkKZEAI54LRP8JfQxyf6L2Zu9mA48QF2TG50GRX4Ub53PRZ5hbs+fVVqvw2yfnUVGk6QVx9e+OsFn9uSJORzIzKR78+31IPXYLbv0c0MOv86a26cgYMHVBdwdMVW0ckivNKcfxjXdSCIS9MAB2Lrp9E5JIJQh6wAseoT1w7D+XcfNCPgDg2vHbyLqUj5EzgtB3ZE+d/jirVWoU3ihDbkoxcpKLkJtSjLK8xrNgSy0keGDeYA43UKcTFOWFzHjNnp0Jv95oNmASBAExay8h73oJAM2mw/fPH2Syewl2NNYOcgQ/6G3salATGDB1QdpDcq0PmNS1ahz+6oK4Manf2F56S4AHaBLsTXhrKFJjb+Hkt4lQKmpQVVaDw19ewLXjtxE2qz9sHFu2l1dVaTVyUjSBUc4fvUfNrcSz62GFHn7d4ernAGW3EgZL1Cn1DnZGNzdrlGZX4NaVAhTdLGty0nb87mtiJnkzuQwPLBjcpXJYETFg6oK0NuBtQ8B0/sdU5KVqvmV2c7XGyBkNpxDQhUQigd+YXugV7IwTmxKQdkqT3fbG+VzcTizEfU8HwD+yt1Zvk1otoChT03ukCZCKxDQAjZGZS+HiY48efg7o4dsdPfo5aG1KWrfhM1FnU9eje/LbRACajYlHvzCgwWPTTmfj3A8pf5wIRL4WAifPtudvIuqIGDB1QbrMYSrJqMKVnzR5VyQyCSJeDYGFleF+jazt5Rg/bxDSz2Tj2MYEVBYrNZv5fn0Z147fQlCUFwozSpGTXIy868WoqWy698jW2RI9/Lqjh58DXP0c4OjVjflMqMvqF94LZ7cno1apQmrsLQyb7q/VAw0A+eklOLL6zoq4YU/0g9cQ1/auKpHRMWDqgrQDppavklMqapCyOx/4I4XAkMf82i07d59hbugZ6IRT/01E8hHNXnW3Ewq1tii5l9RMAmdve7j20wRIPfwcYNO9ZUN5RF2BhbU5/Mb2QuLBG6hVqpB85CYGTr4zj6aiWImDn5wXh7F9R7sj+OG+xqoukVExYOqC2pKHSRAETW6kMs0fzp5Bju3+h1Nua46xLwej7yh3xP6xme/drB3lcP1jWM3VzwFOfbpxQipRM4KivJB48AYAIPGgZj8ziVSiWRH36XmUF1QB0GSlHv3iAK6Ioy6LAVMXZGFtrsnBIrR8SC75yE1xl2y5jTki5gQbbUPX3gOdMfWD0bh6OBPlhUpxDpKtE/OVELVW9162cO/vhFtXClCaU4HMC3nwCHVB7NeXkZtaDACwcbTE/X8ZDDMLfgGhrosBUxcklUogtzaHsrymRQFTye1ynNicKD4e/dIA2Bg5ODG3NMOASVyCS6QP/Sd44daVAgBAwq8ZKLqpQGrsLQB3VsRZO3BFHHVtDJi6KLntHwFTM0Nyqlo1Dn8ZL85hcB1kC+/hzSe4I6KOw2NwD9i6WEGRV4mbF/Jx82K++Fz4nGA497E3Yu2ITAOXB3VRdSthlOU1ENRCo8ed+yEZ+Wma7UHse9qgzwPMQEvU2UilEgTd73mn4K6FHfyCRKTBgKmLEid+C0B1RW2Dx2RdzsfFn9MAAFKZBJGvhUBmwV8Zos6oX2Rvrfd335E9Efrn1u0NSdSZ8dOvi9JeKVc/tUBVWbUm98of3zSHPtEPzt7slifqrCxtLRD8kGblq1ugI8a+PJAr4ojuwjlMXVS97VHuykMnCAKOrr8sbrDpPsBJKzcLEXVOg6f6InC8B6zs5ZAYaRUskaliwNRFNZXtO+n3TGSczRGPC58TzD+eRF2ARCKBNZO7EjWIQ3JdVGPJK4uyFOLeUgAw9uWBzI5NRERdHgOmLuruDXiryjQBk6pGhcNfxkNVrQYABD7gyT2jiIiIwICpy2po0veZrckozCgDADj0ssV9TwcYpW5ERESmhgFTF3XvpO+bF/JweX86AEBmLkXk6yHcBoGIiOgPnPTdRd3dw1RyqxzXT9wWHw+b7g8nz27GqBYREZFJYsDURd0dMN29DULvEBf0n+hljCoRERGZLA7JdVF3D8nVsexmgbGvMFkdERHRvRgwdVFSmRTmVtodjOEvD4S1PXckJyIiuhcDpi7s7mG5/hO84DGohxFrQ0REZLpMdg5TdXU1NmzYgF9//RVlZWXw8fHBiy++iGHDhjV77qFDh7BlyxZkZGTAysoKYWFheOWVV+Dg4KB1nEKhwLfffouYmBjk5eWhe/fuGDJkCJ5//nm4unb+/EMeIS5I/O0GXHzsMexJf2NXh4iIyGSZbMC0fPlyREdHY9q0aejduzf279+Pt956CytWrEBwcHCj5+3evRuffvophgwZgldffRV5eXnYsWMHrl69ijVr1kAu1ww5qdVq/OUvf0FGRgYeeeQReHh44ObNm9i9ezfOnDmDb7/9FtbW1u3VXKMYOSMQ/SJ6w8nTDlIzdjYSERE1xiQDpoSEBBw6dAhz5szBk08+CQCYMGECZs6cidWrV2P16tUNnldTU4N169YhJCQEn376qTh5ecCAAXj77bfx888/Y+rUqQCAK1euICkpCfPnz8ejjz4qXsPT0xPvv/8+zp49i7Fjxxq4pcYllUnh0tfe2NUgIiIyeSbZrXDkyBHIZDJMmTJFLJPL5XjwwQdx5coV5OTkNHje9evXoVAoMG7cOK2VXqNGjYKVlRUOHTokllVUVAAAHB0dta7h5OQk3o+IiIgIMNEeppSUFPTu3Rs2NjZa5YGBgQCA1NTUBucY1dRo9kRrKNiRy+VISUmBWq2GVCqFv78/rKys8PXXX8POzg6enp7IysrC6tWrERAQgCFDhjRav/z8fBQUFIiPMzIy2tROIiIi6hhMMmAqKCgQe3ruVleWn59f7zkA6N27NyQSCS5duoTJkyeL5Tdu3EBxcTEAoKysDPb29nBwcMA//vEPfPjhh3jjjTfEY4cPH46lS5fCzKzxf5o9e/Zg06ZN9crT0tKgUqla0sQOS6FQICEhwdjVaDddqb1sa+fVldrLtnZehmpvUFBQi44zyYBJqVTC3Lx+YkULCwvx+YY4ODggMjISBw4cgJeXF8aOHYu8vDysWLECZmZmqK2t1TrX3t4efn5+ePTRR9GnTx+kpqbi+++/x/vvv4+lS5c2Wr8pU6YgLCxMfJyRkYFly5bB29sb/v6de7VZQkJCi3+5OoOu1F62tfPqSu1lWzsvY7fXJAMmuVwuDq/drbq6Wny+MQsWLIBSqcSqVauwatUqAEBUVBTc3d0RExMDKysrAMCtW7cwf/58LF68GBEREQCAMWPGwM3NDcuXL8fJkycxYsSIBu/h7OwMZ2dnXZpIREREHYhJBkxOTk7Iy8urV143b6ipYMXW1hbLly9HTk4Obt++DTc3N7i5uWHOnDlwcHCAnZ0dAGD//v2orq7GqFGjtM4fPXo0AODSpUuNBkxERETUtZhkwOTr64u4uDiUl5drTfyuG7v09fVt9hqurq7ixPCysjIkJycjPDxcfL6wsBCCIECtVmudV1tbCwCdfi4SERERtZxJphWIiIiASqXCnj17xLLq6mrs27cPQUFBYiCUk5PTohVq69atg0qlwrRp08QyDw8PCIKAw4cPax3722+/AQD8/Pz00RQiIiLqBEyyhykoKAiRkZFYt24diouL0atXLxw4cADZ2dlYuHCheNy//vUvxMfHIyYmRiz77rvvkJaWhqCgIMhkMhw9ehRnzpzBiy++KKYlAIBJkyZh69at+Pjjj5GcnAxvb28kJyfjf//7H7y9vTt90koiIiJqOZMMmABg8eLFcHV1xS+//AKFQoG+ffvigw8+QGhoaJPn+fj44OjRozh27BjUajV8fHywZMkSREZGah1nb2+P9evXY8OGDTh+/Dj27NmDbt26YfLkyXjppZcaXKVHREREXZPJBkxyuRxz587F3LlzGz1m5cqV9cpGjhyJkSNHtugeLi4uePvtt9tcRyIiIuoaTHIOExEREZEpYcBERERE1AyTHZLrSOqyh3eFPeVu3LgBmUxm7Gq0m67UXra18+pK7WVbOy9DttfLywuWlpZNHsOASQ+ys7MBAMuWLTNyTYiIiKi11q9f3+zWZhJBEIR2qk+nVVxcjNOnT6Nnz57ifnedUd2eee+88w68vLyMXR2D60rtZVs7r67UXra18zJ0e9nD1E4cHBwQFRVl7Gq0Gy8vr06/yfDdulJ72dbOqyu1l23tvIzZXk76JiIiImoGAyYiIiKiZjBgohZzcnLCzJkz4eTkZOyqtIuu1F62tfPqSu1lWzsvU2gvJ30TERERNYM9TERERETNYMBERERE1AwGTERERETNYMBERERE1AwmruziEhMTceDAAcTFxSE7OxvdunVD//798eKLL8LDw6PJc/fv34/ly5c3+NyuXbtMcvVGXFwc5s2b1+Bzq1evRv/+/Zs8Py8vD19++SXOnDkDtVqNQYMG4fXXX4e7u7shqquTf//73zhw4ECjz+/cuRMuLi4NPvef//wHmzZtqlduYWGB3377TV9VbLOKigps3boVCQkJSExMRFlZGRYtWoRJkybVOzY9PR1ffvklLl26BDMzM4wcORKvvfYaHBwcWnSv2NhYbNy4ERkZGXBwcMDkyZPx3HPPwcysff58tqStarUav/zyC44cOYKUlBSUlZWhZ8+eGDduHKZPnw65XN7sff7v//4P8fHx9cqHDx+Ojz/+WJ9NalJLX9vGfr89PT3x3XffteheHeG1BYCxY8c2eo2hQ4fi008/bfI+jz/+uLiF192mTJmCBQsWtK3yrdSazxpTfc8yYOritmzZgkuXLiEyMhI+Pj4oKCjArl278OKLL2L16tXo27dvs9d44YUX0LNnT60yW1tbQ1VZL6ZOnYrAwECtsl69ejV5TkVFBebNm4fy8nI888wzMDMzw/bt2/H666/jP//5D+zt7Q1Z5VabMmUKhg4dqlUmCAI++eQTuLm5NRos3e3NN9+ElZWV+FgqNY1O6ZKSEmzatAmurq7w9fVFXFxcg8fl5ubi9ddfh62tLV566SVUVlZi69atuH79OtauXQtzc/Mm73Py5En87W9/Q2hoKObNm4fr16/jm2++QVFREd58801DNK2elrS1qqoKy5cvR//+/fGnP/0J3bt3x5UrV7Bx40acP38en3/+OSQSSbP3cnFxwcsvv6xV1t5ffFr62gKaAP6tt97SKrOxsWnRfTrKawsA77zzTr2ypKQk7NixA8OGDWvRvfz8/PDEE09olfXu3bv1lW6jln7WmPR7VqAu7eLFi0J1dbVW2Y0bN4Tx48cLS5cubfLcffv2CWPGjBESExMNWUW9On/+vDBmzBjh8OHDrT73v//9rzBmzBghISFBLEtPTxciIiKEtWvX6rGWhnPhwgVhzJgxwjfffNPkcRs2bBDGjBkjFBUVtU/FWkmpVAr5+fmCIAhCYmKiMGbMGGHfvn31jvvkk0+E+++/X8jOzhbLzpw5I4wZM0b46aefmr3Ps88+Kzz//PNCTU2NWLZu3Tph7NixQnp6uh5a0ryWtLW6ulq4ePFivXM3btwojBkzRjhz5kyz93n99deF5557Tj+V1kFLX9t//etfQlRUVJvv01Fe28a8//77wtixY4WcnJxmj502bZrw1ltv6VRXXbX0s8aU37Om8XWRjGbgwIH1InYPDw/06dMHGRkZLb5ORUUFVCqVvqtnUBUVFaitrW3x8dHR0QgICNDqmfLy8sLgwYNx+PBhQ1RR73777TdIJBLcf//9LT6nvLwcgomla7OwsGhRz8eRI0cwatQouLq6imVDhw6Fh4dHs69Zeno60tPT8fDDD2t15f/5z3+GIAiIjo5uc/1boyVtNTc3x8CBA+uVjxkzBgBa9V6ura1FRUVF6yqpRy19beuoVCqUl5e36h4d6bVtSHV1NY4cOYLQ0FD06NGjxefV1NSgsrKy1ffTh5Z+1pjye5ZDclSPIAgoKipCnz59WnT8vHnzUFlZCXNzcwwbNgyvvvpqs/OfjG358uWorKyETCZDcHAw5syZg4CAgEaPV6vVuH79OiZPnlzvucDAQJw5cwYVFRWwtrY2ZLV1Ultbi8OHD2PAgAH1hlAb88QTT6CyshJWVlYYPXo0Xn31VTg6Ohq4pvqRl5eHoqKiBjfqDAwMxMmTJ5s8Pzk5GQDqne/s7AwXFxekpKTor7IGUlhYCAAtHi7OzMzEhAkTUFNTA0dHRzz00EOYOXNmu83paa2qqipMmjQJVVVVsLOzw/jx4/HKK680+z7s6K/tyZMnoVAo8MADD7T4nPPnzyMqKgoqlQpubm6YNm0apk2bZsBaNu/ezxpTf8+a5ruAjOrgwYPIy8vDrFmzmjxOLpdj0qRJGDRoEGxsbHD16lVs374dc+fOxddff631DcFUmJmZITw8HCNGjIC9vT3S09Oxbds2vPbaa1i1ahX69evX4HmlpaWorq5u8NtgXVl+fj48PT0NWn9dnD59GiUlJS36I2tnZ4dHH30U/fv3h7m5OS5evIhdu3YhMTER69evb/E8EWMqKCgA0PAcHCcnJ/E1tbCwaNP5dc+bsu+//x42Nja47777mj3W3d0dgwYNQt++fVFVVYXo6Gh88803yMzMxJIlS9qhtq3j5OSEJ598Ev369YMgCDh16hR2796Na9euYcWKFU0GeR39tT148CAsLCwQHh7eouP79u2L4OBgeHh4oLS0FPv378cXX3yB/Px8zJkzx8C1bdy9nzWm/p5lwERaMjIy8Nlnn6F///6YOHFik8eOGzcO48aNEx+PGTMGw4cPx+uvv45vv/223VZftMbAgQO1hi5Gjx6NiIgIPP/881i3bl2jq4GUSiUANDjhsO7NW3eMqfrtt99gZmaGyMjIZo+995tnREQEAgMD8c9//hO7du3CM888Y6hq6k1LX7PG/vhWV1drHXvv+cYctmqJb7/9FmfPnsVf/vIX2NnZNXv822+/rfV4woQJ+Oijj7B37148/vjjza4gbW/3Tk4fP348PDw8sH79ehw5cgTjx49v9NyO/NqWl5fjxIkTuO+++1r0ugLA+++/r/V48uTJ+Otf/4rt27dj6tSprRrW05eGPmtM/T3LOUwkKigowMKFC2FjY4N//vOfkMlkrb5GcHAwgoKCcO7cOQPU0DB69+6N0aNHIy4urtF5WHXLsmtqauo9V/cmbcnSbWOpqKhAbGwshg8f3ubVfA888AAcHR07zGur62tW90e37th7zzfl1/vQoUP4+uuv8eCDD+KRRx5p83XqVlWdPXtWTzUzrMcffxxSqbTZ+nbk1/bIkSOorq5u1XDcvSQSCR5//HGoVKoGU0kYWmOfNab+nmXARAAAhUKBt956CwqFAh9//DGcnZ3bfK0ePXqgtLRUj7UzvB49eqCmpgZVVVUNPt+tWzdYWFg02KVbV6bLv5mhxcbGoqqqSqc/skDHem3ruuUbe83qXtO2nm+KecYA4MyZM/j3v/+NkSNH6ryMuq7noaysTB9VMzi5XI5u3bo1+zvaUV9bQDOMZWtri1GjRul0nbrXtr3fz0191pj6e5YBE0GpVOLtt99GZmYm3n///RZP9m7MrVu3WpxgzFTcunULFhYWWjmH7iaVStG3b18kJSXVey4hIQHu7u4mPeH74MGDsLKyQlhYWJuvIQgCsrOzO8xr6+LiAgcHB1y9erXec4mJifD19W3yfD8/PwCod35+fj7y8vLE501JQkIC3nnnHfj7+2PJkiU6T9a+desWAHSY17yiogIlJSXN1rcjvraApn5xcXEYO3Zsk4FDSxjjtW3us8bU37MMmLo4lUqFf/zjH7hy5QqWLFmCAQMGNHhcfn4+MjIytJbhFxcX1zvuxIkTuHr1KoYPH26oKuukoTqnpqbi2LFjGDZsmJiYMScnp95S7PDwcCQlJWkFTTdu3EBcXBwiIiIMWW2dFBcX4+zZsxg7diwsLS3rPd9QWxv6d9q9ezeKi4tbNIHYVISHh+P48ePIyckRy86dO4fMzEytuVy1tbXIyMhAfn6+WObt7Q1PT0/s3btXa6h29+7dkEgkLZ5w217S09OxcOFCuLm54YMPPmhy+CEjI0Pr36S8vLzeMIYgCPjmm28AoMXJEduLUqlscD7K5s2bIQiC1u9oZ3ht6/z+++9Qq9WN9hQ31NbS0tJ6Uw1qa2vx3//+F+bm5hg0aJBB61ynpZ81pvye5aTvLu6rr77CsWPHMGrUKJSVleHXX3/Vej4qKgoAsG7dOhw4cADbtm0Tl6TPmTMH/fr1g7+/P2xsbJCcnIx9+/ahR48eePbZZ9u9LS3x3nvvQS6XY8CAAejevTvS09Oxd+9eWFpaak0i/de//oX4+HjExMSIZX/+85/x888/Y+HChZg+fTpkMhm2b9+O7t27Y/r06cZoToscOnQIKpWq0T+yDbV12rRpGDduHPr27QsLCwtcunQJhw4dgp+fH6ZMmdJeVW/Szp07oVAoxO73Y8eOITc3F4Amk7utrS2eeeYZREdHY/78+XjsscdQWVmJ77//Hn379tXafiIvLw/PPvssJk6ciMWLF4vlc+fOxaJFi/Dmm29i/PjxuH79Onbt2oWHHnpI555YfbZVKpViwYIFKCsrw/Tp03HixAmt893d3bU+oJ599lmEhoZi5cqVADTLsZcsWYL7778fvXr1glKpxNGjR3Hp0iU8/PDDDS7zNqTm2ltWVoYXXngB999/v7gy9fTp0zh58iTuu+8+jB49WrxWR39t79414eDBg3B2dm40yGmorceOHcM333yD8PBw9OzZE2VlZTh48CDS0tIwe/bsdht+bOlnjSm/ZxkwdXGpqakAgOPHj+P48eP1nq/7JW7IuHHjcPLkSZw5cwZVVVVwcnLCww8/jJkzZ5psrp4xY8bg4MGD2L59O8rLy+Hg4ICxY8di5syZzW4TYG1tjRUrVuDLL7/EN998I+4l15o9jozht99+Q/fu3TFkyJAWn/PAAw/g8uXL4gRTV1dXPPnkk3juueca7KUyhm3btmntjxUTEyMGfVFRUbC1tYWrqytWrlyJL7/8EmvXrhX3pXr11VdbNKQxatQoLFu2DJs2bcKKFStgb2+PZ555BjNnzjRUsxrUXFsBiB+ya9eurXf+xIkTG/1GDwCurq4ICQlBTEwMCgsLIZVK4eXlhTfffNMoAXJLXttRo0bhzJkzOHDgANRqNXr16oXZs2dj+vTpLdrCp6O8tnUB040bN3D16lVxYntL9e3bF15eXjh48CCKi4thZmYGPz8/LFmypEUrZvWlpZ81pvyelQimlsKXiIiIyMRwDhMRERFRMxgwERERETWDARMRERFRMxgwERERETWDARMRERFRMxgwERERETWDARMRERFRMxgwERERETWDARMRERFRMxgwEZFJuH37NsaOHYt///vfxq6KXuzfvx9jx47F/v37jV0VItIDBkxEZLL+7//+D2PHjjV2NRrU2QI8ImoaN98lIpPg4uKCb7/9FjY2Nsauil6MGTMGQUFB7bYbPBEZFgMmIjIJZmZm8PLyMnY19MbW1lbcaZ6IOj6JIAiCsStBRHT79m088cQTmDhxIhYvXtzoUFzd83WuXbuGb7/9FvHx8SgtLYWTkxPCwsLw/PPPw97evsHrP/XUU1i/fj0uXLiA0tJSbNu2DT179kRMTAwOHz6MpKQk5Ofnw8zMDD4+PnjssccQEREhXmv//v1Yvnx5g/VbsWIFBg0aJB6zaNEiTJo0SeuYS5cu4dtvv8WVK1egVCrh5uaGcePG4amnnoKlpaXWsWPHjkVoaCj+8Y9/YPXq1Th58iQqKyvh6+uLl19+GYMGDWrtPzURtQF7mIjIJM2cORMHDhxAdnY2Zs6cKZb7+fmJP8fGxuIf//gHJBIJRo8ejR49eiA9PR0//vgjTp8+jbVr18LOzk7rullZWZgzZw769u2LiRMnorS0FObm5gCAdevWwczMDAMHDoSTkxOKi4tx7NgxvPvuu5g3bx6mTp0KAPD19cVjjz2GHTt2wNfXF6NHjxav7+bm1mS7Dh8+jKVLl8Lc3Bzjxo2Dg4MDzpw5g02bNuH06dNYsWIF5HK51jkKhQKvvvoqbG1tERUVhaKiIhw+fBgLFizA+vXr0bdv3zb9GxNRyzFgIiKTNGvWLMTHxyM7OxuzZs2q93xJSQn+9a9/wd7eHl999ZVWoHLo0CEsWbIEGzZswPz587XOu3TpEmbOnNngNT/88EO4u7trlVVUVGDu3LnYsGEDHnzwQVhaWsLPzw+2trZiwNTQtRpSXl6Ojz76CDKZDKtXr4aPjw8AYPbs2Vi6dCl+//13bN26FTNmzNA6LzU1FY888gjmz58PqVSzVmfw4MH48MMP8eOPP2LBggUtuj8RtR1XyRFRh/TLL7+gvLwcs2fPrterM378ePTr1w+HDh2qd56joyOeffbZBq95b7AEANbW1pg0aRIUCgWSkpJ0qnNsbCwUCgUmT54sBksAIJVKMWfOHMhksgbTEFhZWeGVV14RgyVAMzQpk8l0rhMRtQx7mIioQ7py5QoAICEhAVlZWfWer66uRklJCYqLi+Hg4CCW+/r6ikNw9yoqKsJ///tfnDx5Ejk5OVAqlVrP5+fn61TnlJQUAEBoaGi951xdXeHu7o7MzExUVFTA2tpafK53795ajwHNJHlHR0coFAqd6kRELcOAiYg6pLKyMgDArl27mjyuqqpK63H37t0bPK60tBSzZ89GTk4OBg4ciKFDh8LW1hZSqRSpqamIjY1FTU2NTnUuLy8HoOnlaoiTkxMyMzNRXl6uFSA1lmpBJpNBrVbrVCciahkGTETUIdUFFJs2bWrVpGeJRNJg+f/+9z/k5OTghRdeqDeH6LvvvkNsbGzbK/uHusCnsLCwwefryjtLLiqizoRzmIjIZNXN2VGpVPWeCwoKAnBnaE5XdcN6d694q3Px4sVG69aaHp66FX7x8fH1nsvJyUFWVhbc3d3rDb8RkfExYCIik9WtWzcAQG5ubr3nJk+eDGtra6xfvx5paWn1nq+qqmpVMFU3cfzSpUta5QcPHsTJkyfrHW9nZweJRNJg3RozevRo2NraYt++fVp1FgQBa9euhUqlqpeziYhMA4fkiMhkDR48GNHR0fj73/+O++67DxYWFvD19UVYWBgcHBzw3nvv4d1338WsWbMwfPhweHp6oqamBtnZ2YiPj8eAAQPw8ccft+heUVFR2LJlC1asWIG4uDi4uroiNTUV58+fx9ixYxETE6N1vLW1NQICAnDhwgUsW7YMvXv3hkQiwYQJExrNxWRjY4O//vWvWLp0KV555RVERkbCwcEB586dw9WrVxEYGIjp06fr/O9GRPrHgImITNZDDz2E27dv4/fff8eWLVugUqkwceJEhIWFAQBGjhyJDRs24Pvvv8e5c+dw9uxZWFpawsXFBZMmTUJUVFSL79WjRw+sXLkSq1evxtmzZ6FSqdCvXz988sknyM3NrRcwAcA777yDL774AsePH0d5eTkEQUBwcHCTySsjIyPh6OiI7777DjExMWKm7xkzZuCpp56ql7SSiEwDt0YhIiIiagbnMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTMYMBERERE1gwETERERUTP+H1siAVLH1RX1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "4b8cdf58", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "2769b6e5", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC+CUlEQVR4nOzdd5gT1cIG8HdmkmyyvVKXXhX4FAUERUEEFVDBCooC9opi7703VOx6VUC5gMrFhoiAIChNVIpI7x22900yc74/Qobsbsqk7CbLvr/n2YdlM3PmbMnMvHOaJIQQICIiIiIiIgIgR7sCREREREREFDsYEomIiIiIiEjHkEhEREREREQ6hkQiIiIiIiLSMSQSERERERGRjiGRiIiIiIiIdAyJREREREREpGNIJCIiIiIiIh1DIhEREREREekYEomIiIiIiEjHkEhEREREREQ6hkQiIiIiIiLSMSQSERERERGRjiGRiIiIiIiIdBEJiTt37oQkSZAkCWPHjo1EkQ1S//799Z8jEZEvY8eO1c8VO3fujHZ1dJMmTdLrNWnSpGhXhyJM0zSceuqpkCQJ48aNi3Z1qBq+/4hqWrRokf6+eOqpp6JdnYgqKipCeno6JEnChx9+GPHy66wlcdKkSXjqqaeOu1+QP998843+PRcUFES7OnSU0+nE/Pnz8dBDD2HAgAFo2rQp4uLikJiYiHbt2mHkyJH45ptvoKpqUOX+888/GDduHDp37ozExESkpKSgW7dueOihh7Br165a+m6IqCFyOBz4+OOPcc455+jnsOzsbFx44YWYMWMGhBARP+ZHH32Ev/76C1arFQ8//LDP7Xbu3ImZM2fi4YcfxrnnnouMjAz9Jq1///4hHTuS59ddu3bhoYceQrdu3ZCSkoLExER07twZ48aNw/r160OqXyDLli3Dddddh3bt2iE+Ph7p6ek49dRT8dxzzyEnJ6dWjhkN3bp103/XCxYsCHr/3377Td//xBNPDKkOBw4cwPfff4+nnnoKF1xwAZo2baqX2bp1a8PleIYLIx9GgrnT6cS0adNwySWXoHXr1oiPj4fFYkHjxo3Rv39/PP/88zh48GBI33cwXnjhhSp1N9rAk5+fjwkTJmDgwIFo0qQJ4uLiEB8fj5YtW+LCCy/EJ598goqKCkNlFRYW4tVXX0X//v3RqFEjWCwWNG3aFP369cPEiRNRVlYWxncYWy688EL9Z/3JJ58Evf/u3buhKAokSUJ6err+M05OTsbdd98NAHj00UeRn58f0XpDRMCOHTsEAAFAjBkzxus2/fr107dpKMaMGaN/zzt27Ai4fUP8GdW1X375RaSnp+s/Z38fPXv2FFu3bjVU7quvvirMZrPPspKSksS0adNq+bujhiLYc0td+eyzz/R6ffbZZ9GuznFrx44donv37n7PXwMHDhT5+fkRO2Zpaalo0qSJACDuvPNOn9tNnDjRb7369esX9LEjeX794osvRGJios+yLBaLmDBhQtB19EXTNHH33XcLSZJ8HrNx48ZiwYIFYR8rFt5/r7/+ul6Hq6++Ouj9r7vuOn3/V155Jej9v/vuO79/f61atTJc1sKFCw3dKxj9mW/btk2cdNJJActJSkoSU6ZMCfp7N2rjxo0iLi6uyjF93bt7mjNnjsjKygpY/zZt2og///zTb1k//fSTyMjI8FtO27ZtxapVq8L+fj1/j08++WTY5YVi5syZeh369u0b9P7PPPOMvv9tt91W5bXCwkKRlpYmAIiHHnooUlUWQghhQgS0bt26Vp5aNjSLFi2KdhWOe/v27UNeXh4AID09HQMHDkTv3r3RtGlTOBwOrFy5ElOmTEFRURH++OMPnH322Vi5ciWaNGnis8wPPvgA999/PwDAbDbjmmuuQb9+/eBwODB37lx8/fXXKC4uxjXXXIPU1FScf/75dfK90vFr0qRJ7E7WQBUUFGDw4MHYuHEjAOCEE07Addddh+zsbGzduhUfffQR9uzZg/nz5+OSSy7Bzz//DJMp/Ev9e++9h4MHD0JRFDzwwAM+t6veA8Nms6FDhw5Yu3ZtSMeN5Pl19uzZGDNmDFRVhSRJuOyyy3DeeefBbDbj119/xeeffw673Y577rkHSUlJuOGGG0Kqs6eHH34Yb7zxBgAgISEB119/PXr16oWSkhLMnDkT8+bNw6FDhzBs2DAsWbIEJ598ctjHjKarr74aDz74IJxOJ/73v//hvffeQ1JSkqF9y8rK8NVXXwEAFEXBNddcE/Txq//9mc1mdO3aFX///XfQZXkaMWIERo4c6XebU045xedrRUVFOPvss7F7924AQEpKCq699lqccMIJSEhIwK5duzB9+nSsW7cOxcXFGDNmDNLT0zF06NCw6l2dEAI33ngjKisrkZCQgNLSUkP7rVy5EsOGDYPdbgcAtGvXDtdccw3atGkDp9OJLVu24NNPP8Xhw4exY8cODBw4EOvWrUPz5s1rlLVw4UJceOGFcDgcAIDevXtjxIgRaNasGQ4fPoxZs2bhl19+wfbt23H++edj6dKl6NChQ+R+CFFw4YUXIjMzEzk5Ofjtt9+wbds2tGvXzvD+kydP1j+/9tprq7yWnJyM22+/Hc899xzefvtt3HfffcjIyIhMxSMaOf1oiK1ksfq0vyH7/PPPRbdu3cR///tfUVFR4XWbvXv3ii5duui/u9GjR/ssb//+/SI+Pl4AECaTScybN6/GNp5Pd1u0aCHKy8sj9v0QxZJYaMk43o0fP17/GZ9//vk1zie5ublVWhnfeeedsI/pcDhEixYtBABx7rnn+t121qxZ4vbbbxeffvqpWLNmjXA6nVV6GwXTkhjJ82tpaalo1qyZvu2kSZNqbPPzzz8Lk8kkAIjExERx8OBBw3X15q+//tJbEFNSUsSaNWtqbPPkk0/qderZs6fQNC3k48XK+2/YsGF6PT755BPD+02ZMkXf74ILLgjp2L///ru48cYbxQcffCD++OMPUVlZKYQQYbckhtsC5dkSdPLJJ4vc3Nwa22iaJh599FF9u5NOOimsY3rz3nvvCQAiISFBPP3004ZbEgcMGKBve+211wqHw1Fjm9LSUjFw4EB9u7vuuqvGNhUVFaJly5b6Nr5avt544w19mwEDBoTyrepioSVRCCHuuusuvR6PP/644f0WL16s79e1a1ev22zevFnf5vnnn49UlQVDYi1iSIw9+fn5hi7C69at0393NptNlJaWet3O84bt/vvv91ne5ZdfHtGbNqJYFCs3qcerQ4cOCYvFot/kHTp0yOt269at08NJkyZNhNPpDOu4s2bN0n+voXSDCzUkRvL8+uabb+rbXH755T7Luv/++/Xt7rvvPsN19Wb48OF6We+++67XbTRNE7169dK3++GHH0I+Xqy8/7755hu9Hmeeeabh/TyDyMyZMyNap2iHxDPOOEMva/bs2T63czqdonHjxvq2RUVFYR3X0549e0RycrIAIF5//fUqfy/+QmJFRYVQFEV/WFNQUOBzW897p1NOOaXG69OnT9df79Gjh9/7sSFDhujbzp8/P6jv1VOshMTVq1dX+Ts0+kDIswv266+/7nO7nj176g/LwnnY5KnWZzd1z9j566+/6l/zNuDX14Q2mqbhyy+/xIgRI9CmTRvEx8cjKSkJnTt3xq233op169b5rdtTTz2lH8PdnXPBggW48sor0aZNG1it1hozBDqdTsydOxf33nsv+vbtqw+oTUpKQseOHTF27FgsXrzY5zHdMw96Ng+3adOmxvfs62dlZHbTFStW4KabbkKnTp2QlJSEhIQEtGvXDmPGjMEvv/wScP/qkwiUlpbitddeQ48ePZCWloaEhAR06dIFDz/8cOQHwkZRamqqoZ9v165d0blzZwBAeXk5tm7dWmMbIYTeNSbQbH933nmn/vmMGTOCrXZYli1bhltvvRUnnngiUlNTYbVa0bJlS4wYMQKzZ8/2u6+3WcF2796Ne++9F507d0ZCQgJSU1Nx+umn47333oPT6TRUp5KSErz55psYNGgQmjVrhri4OKSnp6Nnz5544okncOTIEb/7V3+vqKqKSZMmYdCgQWjevDlMJpPXCQoOHTqEBx54ACeeeCISEhKQnp6OXr164fXXX9cHybdu3drrBAc//fSTfkzP36c/d955p77PnDlzDO1jRKDZTWvr9/bDDz/gwgsvRJMmTWC1WtG6dWuMGjUKy5YtC/p7sNvt+OSTT3DRRRehRYsWsFqtSE1Nxf/93//h3nvv9Tlr66ZNm5CQkABJkpCSkoIdO3b4PEZ+fj5atmwJSZKgKIrf83Z98M033+jdva688ko0atTI63Zdu3bFgAEDAAAHDx6scv0Nxeeffw7A1XX04osvDqssoyJ9fvX8+l133eWzrHHjxunnlS+//DKoOnsqLi7W3/PJyck+Jwap/r3VxfXhjz/+QFZWFiRJQlxcnNfvM5x7r6FDh+p/m7/99hu2b98esE67d+/GwoULAQCZmZm48MILQ/zuYtPhw4f1z/11nVQUBW3bttX/b7Q7qBG33norioqK0L17d7/vgepyc3P1bryNGjVCSkqKz207duyof+6t7p73p1dffbXf+7HRo0frn//3v/81XN9QubuASpIEWZb1buLV/fTTTxg7diw6dOiApKQkxMfHo127dhg7dix+++03n+WfdNJJ6N69OwDX5Fnuv3d/PLtgm0wmXH311T63HTVqFABgz549kRu+Fomk6W/iGs8WRH8f3tL91q1bxcknn+x3P1mW/Tbbenbl+OWXX8Ttt9/utRzPlr7+/fsbqvOYMWP0rgyePFsQA+3v62fli8PhEDfeeGPAsq+44gpRVlbmsxz3dv369RPbtm0TJ554os+yWrVq1SBbQt1PZQCI5cuX13jd84mZry4Abqqq6k/wZFmO6NNBX0pKSsSIESMC/q0MHTrUZ32qP4GbM2eOSE1N9VnWoEGDfHbjdfvxxx9Fo0aN/NYpKSlJfPvttz7L8Hyv5Obmir59+3r9u/X0yy+/6IO7vX1069ZN7N69W7Rq1crr/qqqijZt2ggAIi0tLWC34fLycv14LVu2FKqq+t0+GIF6KUT69+Z0Ov2e12RZFi+//LLhlow//vhD/1n6+rBYLOKDDz7wuv9HH32kb9enTx+fLWWXXXaZvt2jjz7q92daH1x66aX69/P111/73fbVV1/Vt/XXChdIRUWF3uXzrLPOCqmMUFoSI3l+LSwsrNLtM9B70XO4wfr16w3Vt7rvv/9eLyNQ18nDhw/r22ZlZYV0PCGMtSTOnTtXn7gnMTHRaxfeSNx73XPPPfq2TzzxRMC6e3bH9NZNMVy+rgv+RLIFyvMaZbQlMSMjI2LXjWnTpgkAQlEUfTIYoy2J5eXlejdss9nstyXxn3/+0cscPnx4jdc9WwfnzJnjt85//fWXvm2TJk2MfaNeGPk9/vXXX/rP3WQyic8//7zGNocPH67S2u3r4/rrrxd2u93rcTwn9vI3lMnNswv2sGHD/G67Zs2aiL+Haj0kLlmyRMyaNavKSXfWrFk1PjZs2FBlv61bt4rMzEx9n759+4qXXnpJTJs2TXzxxRfi7rvvrnLD5+sX7xkSBw8erP+xPfTQQ+KLL74QkyZNErfddpvYv3+/vs9pp50mEhMTxbBhw8QzzzwjpkyZIr788kvx1ltviZtuukkkJCT4/UX8+eefYtasWeLss8/Wt/vwww9rfM/VZ38yEhJHjhypb2O1WsXNN98sJk+eLL744gsxfvx4kZSUpL9+3nnn+Wxydm/TvXt30blzZyFJkhg2bJh4//33xYwZM8SLL75Ypd94MF1GjgeVlZVVbqoPHDhQYxv3STfQCdbN8/e7YsWKWqj1MRUVFaJ379768dq1ayceeeQR8fnnn4vp06eL5557TnTs2FF/fcCAAV4vRp4n12HDhon4+Hhhs9nEzTffLCZNmiSmTZsm7r333irvCX83Dl9//bXebcVsNotLL71UvP322+LLL78U//nPf8SoUaP0WQxlWfY545/nz9L9vj7ppJPESy+9JKZPny4++ugjcccdd+jbr1+/Xr/Rdf/dv/7662LGjBli4sSJelegPn36iObNm/u8mXjhhRf0Mr744gu/v4PPP/9c3/bpp5/2u22wggmJkfi93Xbbbfp2FotF3HjjjWLy5Mni888/F+PGjdN/tp7d63zdpC5dulTfXpIkcf7554sJEyaIGTNmiEmTJombb765yu/KVzmegclb3f/zn//or/fu3dvrGJr6plOnTn5/7548/wYGDx4c8jEXLFiglxNq98tQQmIkz6/Lli0L6vie768ZM2YYqm91L774YlABw/1wCoDPbsSBBAqJ//3vf/Xza1ZWlvjjjz9qbBOpey/PkN+6deuA3d/atWunb7969epQvn2/3GWHGhK7du0qunXrJhITE4XVahXZ2dniggsuEO+//77fB/Jung9t/I1JfOyxx/TtnnrqqWC+RZ9ycnL0WUnHjx+vf91oSBRCiKFDh+rbXnfddT7HJA4aNEg/ty9cuLDGNu7rNRBcSAQgjhw5Yuj7rS5QSPzll1/0h0zx8fHixx9/rLFNbm5ulb/Rk046STz99NNi6tSpYtq0aeLRRx/V7x38/TxzcnKqDBkoLi72W3fPUPrNN9/43VZVVf0BUOfOnf1ua1RMLoGhqqo45ZRTBAARFxcnvvzyS6/bHTx4UH/aJcuy+Oeff2ps4xkS3Se8wsJCv8efP3++3zd9Tk6O/lRIlmWxfft2r9tFegkMz77cjRs39vqEc+fOnVWe0Psan+H5M7FYLOL777/3+n16lhVOsCktLfX6cCCUj0BTK0eC5w2+t371Qogqg76N3ASMHj1a397bU6pIqj6Wx9sJ3W63V6nT+++/X2Ob6lOAt2zZUmzevLnGditWrNCfNKalpXltldq9e7d+Im7ZsqVYu3at17qvWLFCpKSkCAAiOzvb6xO56j0Uxo8f7/eJq+dT3Ntuu83rttXPFd5uJg4ePKjfZAW62TzrrLME4Hpyu2fPHr/bBiuYkBju781z0HxqaqrXKck3btyoL4/g7ya1qKhInwAlNTVVLFq0yOv3t2XLFv0hVUJCgtebg7y8PJGdna3/jJcsWaK/tmnTJj0AJycni23btnk9jlEbNmyI2Pkr1BsdVVX135WiKAFD7/bt2/XfRbt27UI6phBVH4x89dVXIZURSkiM5Pl18uTJQQXOJ554Qt/+2WefNVTf6q699lq/74Xq3OcLAFX+loPhLyROnDhRb01t1aqV2LRpU439I3nvJYQQPXr00Ovzyy+/+Kz3r7/+qm/XvXt3499wEMINif4+mjZt6vf7E6Lmg9uUlBQxfvx48dFHH4mpU6eKF154QXTr1k1//dZbb43Yg61rrrlGAK6xap6hJJiQuHnz5io9gNq1ayeeeuopMWXKFPHpp5+Khx56SG+Ji4uLE59++qnXcjzfF2+99ZbfY3re8wIQv/32W9DfuxD+Q+LXX3+tLweSnp4uli5d6rUM9wNQSZLEm2++6XWb4uJice655+rH8hWCPXu4+Po5CeG6n3e/Zxs1amTo78HdE1KSJL8tvkbFZEj0XE9k4sSJfrfdtGmT3jJx44031njd88YvISFB7Nu3z9D3FMi2bdsCXkQiHRI9Z6zz9qTDbcWKFVUuBt66Ynm+8Z555hmfZX388ceGtgvE828k3A8jF/lw5OXliaZNmwa8Mbr77rv1bd5+++2A5Qa7faj279+vP6m65JJL/G5rt9tF27ZtBQDRoUOHGq9Xv0guXrzYZ1mjRo3yu924ceP0G9y///7bb70++eQTvaypU6fWeN3zvXLqqaf6DYh//PGHvm3Xrl39TuLhWa6vmwnPSTK8BS8hXOcl9zZDhw71+72GItiQGM7vzXOmQm8zQrr98MMPVY7p7cbYcw217777zu/36NmC5Wu2tkWLFglZlvXfV35+vrDb7eLUU0/V943EA5nqDxDC+fD2dN2IwsJCvYyMjIyIb+/LVVddpZfj68FOIKGExEieX9966y39tXvvvTdgWcFu783FF1+sl+HtIWy423vjKyR6zpjZpUsXsXfvXq/7R/LeSwgh3n33Xb08f13rPINDoOOGKtB53ZuFCxcKSZJEr169xIMPPig+/fRT8dVXX4mPP/5Y3HTTTfrDTMDVRfHnn3/2W15ZWZm46aabhNVq9Xl+OOecc/yer4P1008/6WVXH8IRTEgUwhVaBg4c6HfNz1tvvVVs2bLFZxmePTwCzebr2XoJhD6pk6+Q+MEHH+jXj+bNm/vsWv7nn3/q+99zzz1+j5WXl6f/XQwaNMjrNrNnz9bL89eF3/NBWaDjut166636PqE+bPIUkYlrIs09SD45ORk33nij3207duyIXr16AQB+/vlnv9teeumlaNasWUTq2LZtW33tvBUrVkSkTH927typr/PTrVs3DB482Oe2vXr10ict2LVrF/7880+f2yqKgjvuuMPn6+5yAODff/8Nttr1jqqqGDlyJA4cOADANQD/sssu87ptSUmJ/rnVag1Yts1m0z8vLi4Os6a+ffnll/rkFvfdd5/fbc1mM0aMGAEA2LJli8/JQgCge/fuOPPMM32+7u9vRQiBqVOnAgDOOeecgGuBjRgxQl/bLdD7+vbbb4cs+z6Vffvtt1W2VRTF57ZGBvPfcsst+uf/+c9/vG7j+fWbbropYJm1KZzfW2VlpT75RuPGjf0Omh86dChOOOEEv3Vxn9s7duwYcGKKAQMG6OdrX38D/fr1w0MPPQTAda675ZZb8Nhjj+nnvFGjRvmtc30SrfPNrl279M/T09NDLidYkfx+o/Gzi4Xrg6qquPHGG/H8888DAE4//XQsWbLE69p1QOTvva688kr9e585c2aVn4lbWVkZvv76awCAxWLBVVddZeA7qxudOnXCpk2bsGLFCrz00ku49tprcdlll+GGG27Ahx9+iB07dmDIkCEAXBMeXnnllSgqKvJZns1mw9NPP43x48f7vGYtXLgQL774or4OajhKS0tx8803AwAuueQSXHTRRWGV16pVK0yYMMFvOVOmTMErr7zi82/4sssuQ2pqKgDXBEpPPPGE1+3eeeedGhPr+fvZBuuZZ57BLbfcAk3T0KlTJyxduhQnnnii123d7wtJknDvvff6LTctLU3/m1i8eDEqKytrbHPeeefp17YlS5Z4nXxNCIEpU6bo/6++NqK/47t5nrtDFf4Ku7VgyZIlAICmTZvip59+Cri9+6Zv165dKC8vr3Ky9eTvRqm6oqIiTJ06FT/++CPWrVuHnJwcn7NM7d2713C5oVq5cqX++bnnnhtw+3PPPRcLFiwA4Aqx7pN5dR07dqzyR1Wd58UknFlOW7duDSFEyPvXlbvuuku/4LVs2bJeLljufv8Arr/Nb775xu/2nr/XDRs2eJ0VFHAteOuPv7+V9evXIy8vDwCQlJQUsE4AkJiYiIKCAmzYsMHvdoHe16tWrdI/P/vss/1u657t15+zzz4bHTt2xObNmzF58mQ899xzMJvN+usOh0Of2bhZs2YRXww5WOH83tasWaM/cOjXr5/fgA24HgD4+n0VFhbqC6o3btzY8N8AAL9/A08//TQWLFiAFStWVJkZsk2bNnjvvfcCHsOIp556yucM3Mc79/sWqNuQSOGpqKjA5ZdfjlmzZgEAhgwZgq+++grx8fE+94n0vVdaWhqGDx+O6dOno7S0FF9//XWNWV6//vprPVBcdNFFkVsEPAKaNm3q9/W0tDTMnDkTvXr1wrp165Cbm4v3338fDz74oNftJ02ahFtuuQWVlZW45JJLcPfdd+Pkk0+G2WzG1q1bMWXKFEyYMAFz5szB8uXLMXv2bPTp0yfk+j/yyCPYtWsXkpOT8fbbb4dcDuAKwePHj8e7774Lk8mEBx54AKNHj0b79u3hcDiwevVqTJgwAbNmzcLHH3+MlStX4ueff64xA3NKSgreeOMNPfQ899xz+OWXX3DFFVegWbNmOHLkCGbNmoX58+fDZrMhNTVVf2jv72GwUZqm4Y477sC7774LAOjZsyd+/PFHZGZm+tzH/b5ITU2tci/uizsYVlZWYvv27TUeniqKgtGjR+Oll16CEAKTJ0+ucX1ZsmQJtm3bBgDo0aMHunbtauj783z/RGJlgpgLiSUlJcjNzQXgmuo82Om28/PzfYZEX0/Pqlu4cCGuuuoqHDx40ND2kXy64Yv7TQJUnWLYF89tPPetzt8bAwDi4uL0zysqKgIetz579NFH9RNH48aNMW/ePL8/H/cNLGDsZ1NeXq5/npSUFEZN/fNsDbziiiuC2tffSSWcvxXPOs2cORMzZ86MSJ2AwO/r/fv36597Ti3uTVpaGlJTU1FQUOBzG0mScNNNN+G+++7DoUOH8P333+OSSy7RX//uu+/06c6vvfbagMGqtoXze/P82bVv3z7gsfxts2fPHmiaBsB1AfR8mBGIv78Bk8mE//73vzj55JP1m03315KTkw0fI9ZF63zjvuFRFMXntbU2RPL7jcbPLtrXh4ceegiFhYUAXEsNfPbZZ3rvDG9q697r2muvxfTp0wG4QlL1kOj5IPa6666rsb+/h0nx8fGGHprXJqvVikceeQRXXnklAGD27NleQ+LHH3+s9yq555578Prrr1d5vUuXLnj55Zdx+umnY/jw4cjPz8cVV1yBLVu2GGqJrm758uV45513AAAvvPBC2L3oxowZoy9DMXPmzCqtiXFxcejbty/69u2Le+65B2+88QbWrFmD22+/XV++wdPYsWNRUlKCe+65Bw6HA0uXLsXSpUurbJOUlISpU6fiySef1O9h/TVoGDVx4kT9fTFw4EDMmjWrynvVG/f9S35+fkjvC2/Gjh2Ll156CYCr9fXJJ5+sshxIoPeFL57XPM9zSqhiLiS6f3mhcj/19sbIBW7Lli0YOnSo/sPt1KkTBg8ejA4dOiA9Pb3Km/Wmm27CkSNH9PVjapNn031CQkLA7T3/6P11XYnEk5njwXPPPYcXXngBgOumev78+QHDuLvLBADk5OQEPIb7Alx930gL5z3k7/0Tzt9KbdUJCPy+dvcAMJlMVVr8fElISPAbEgHXCf7RRx9FZWUlPv744yoh8eOPPwbgCpPXX399wOPVtnB+b57dw/y1QLj5OzeF8zfgcDj8vp6ZmYn09HT9XNe2bVuceuqpIR8vFiUmJsJkMsHpdKKgoABOp9PvTX+kzjfuhwiqqqKsrMzQ30EkRPL8Go1zdbSvD55rn5aWlgbsyVNb914DBw5EdnY29u7di8WLF2Pnzp16b5Vdu3bp67k1a9bMa+Dzd1PeqlUrv0Mk6opnDxRv3UQrKir0bvHp6el47rnnfJY1bNgwnHfeeZg7d67eE2jkyJFB1cdut+P666+Hpmk47bTTcOuttwa1f3UrV67UA+L555/vt7vp888/j0mTJiE/Px8zZ87E/v37vQbUO+64A0OGDME777yD+fPnY+fOnXA4HMjOzsaQIUNw9913o3Xr1lWGQ7mHeIUj2PcFUDv3L506dcLpp5+OpUuXYseOHVi8eDH69esHoGoXbKvVqj+AMMKzrpF4qBdzIdEz3Jx11llhLwIcrBdffFEPiI8++iieffZZn4t9BuqzH0meTxaNLK7qeXNXm61WRpWVlQUcW2ZUy5Ytccopp0SkLAB45ZVX8PjjjwNwPamaN2+eoaZ9zxBp5ELl2T/cSGtwqNzvIUmS4HQ6Y+JBgOf7+oknnsDTTz9dZ8d2Bxen0wmHwxEwKBp5f2VkZOCyyy7D1KlT8fPPP2P37t1o2bIldu3ahXnz5gFw3Ry1adMm/G8gijx/b2VlZQG39/ez8yxr9OjRepfcSLjtttuqvL82b96Mxx57DC+//HJEyt+4cWNExggBQN++fQO27nojyzLatWuHTZs2QVVV7N2712fXcCBy5xvPLqZ5eXl1FhIjeX6Nxrk62teHF198EdOnT8fSpUsxa9YsjBgxAjNmzPB5/qutey9ZljFmzBg8//zzete6J598EgAwefJk/SZ99OjRUe91ESrPLn7eHjAuW7ZM77Z9+umnB7x5HzhwIObOnQvAFdCCDYnLli3Tx5e3a9dOfwBenXueCwBYu3atHl47deqEyy+/XH/Nc2zgwIED/R7bZrPh9NNPx+zZsyGEwKpVq3yGyrZt22LChAk+yyopKcGePXsAuB5S+hozGIy77roLGzZswKxZs7Bs2TI9kPu7T3YPfXFf4yPl2muv1VtQJ02apIdEzy7Yw4cPD+qhUaSHB8RcSExJSUFiYiJKSkrqZKxfdfPnzwcANGrUCM8884zPgFhcXFzll1HbPPvGb9myJeD2nttEarKecBw+fDjoZnpfxowZE7Gxgm+88YbeNSQlJQVz584NOKmKm2eQ9Dc5EODqB+8+IcuyHHCCj3A0b94cq1evhhAC+/btQ4sWLWrtWMHUya2u39fNmjXTx8Jt374dnTp18rltfn5+wFZEt1tuuQVTp06Fpmn49NNP8dRTT+HTTz/Vu1RGe8KaSPA8d2zdujXg9v62qa2/galTp+qTIp166qnIycnBrl278Nprr+G8886rMjFPqKZPnx6xBxsLFy40NPbVm65du2LTpk0AXOccfyHRcyyu0fEs3rRu3Rq///47ANcNSHZ2dshlBSOS59cTTzwRsixD0zSsXr0amqb5fXgWiZ9dMPU/cuSIfvOZlZVVYxxXKJKSkvDTTz/h/PPPNxQUa/Pea+zYsfrkOVOmTNEnK/F8UFS9G6pbfZjLIFArsGe3fSNd4FNSUvTPjTy0rM7zZ+ZuAQzk77//1t9Dw4YNqxIS67r+bosXL9a/lz59+vjtOWGU2WzGjBkzMHLkSPzvf/8zFBSbN2+OgoICHD582NCDZqOuuOIK3HXXXXrL4TvvvIOEhAR89tln+jZGJ6xx88wlrVq1CruOddbE4HlCDvSmP+usswC4buiM3JhE0qFDhwC4Jj3wdxGZP3++fjPoSzDfcyCeE8+4Wyr88Wy18zVpTUP37rvv4p577gHguqDOmTMHPXv2NLx/ly5d9Bum9evX+72wLl26VB+7esYZZ9Rq6677aRQQeGbQutK9e3f94rJgwYKA751I6tGjh/75woUL/W7r7vpkRN++fdGlSxcAwKeffgqHw4FPP/0UgOsh07Bhw4KvbIw56aSTYLFYAAC//vprwK717smyvMnMzNSfBC9fvjwiY7l37NiB2267DYCrxXjatGn44osvoCgKNE3D6NGjq9zA1XfnnXee/rm7pcEXz4lHzj///JCP6Rl23AG1LkTy/JqcnKxP4FRYWIjly5f7LGvPnj16K0zLli1Dbr3o37+/3lV38eLFfscHef4uw/ldVecOimeccQYAYNasWbjiiit8dt+urXuv9u3b6xOMbd++HUuWLMHixYuxfft2AK7WNX8P72KdZ6urt1Zgz2Dlbhnzx7O1KhYm8olW/T3DUiSHbriD4qWXXgoAelD0dU1y31NVVFRg8eLFEatHcnKyXoeSkhLMnDkTO3fu1P+esrOzA7bcVuee5E2SJHTr1i3sOtZZSPTsyhDoycKYMWP0z31Nj1tb3F1ptm/f7jPYqarqs/neUzDfcyCtW7fWu1iuWbPGb1BctWoVfvnlFwCuJwmxMDbHPbtpJD4i0Yr48ccfY9y4cQBcN5c//vhj0LOISZKkP20TQvidPWzixIn65+4lJ2rLyJEj9Rv7l19+Oey/vUhQFAWjRo0C4LqA+Fo6ojZ4hrV3333Xb9B56623girbPb34nj17MH78eP1GdsyYMRF72hhNcXFx+nTehw4d8vtUes6cOQFnonWf28vKyvRB+6FSVRWjRo3SL+wTJ05Ehw4d0LdvXzzyyCMAgH379uGGG24I6ziAa3bTSJ2/Qm1FBFxdj9zv7WnTpukTJFX3zz//6NeAJk2aVHlwFKzTTjtN/7wulntyi/T51fPr/t7nb7/9tn7tD3biL0+JiYn6e6eoqMjndUsIoU8wUr2ekeAOin379gXgmgjGV1CszXsvzxaRSZMmVfl5BNtaEksqKyur3A+6f+eePB+0LF++3G+XRVVV9fFoQNWHnEb179/f0LnIM4SNGTNG/3r1yYI86//VV1/5vYbu3LlTP0/Ishzy0KCFCxfqP4e2bdvqYSpSTCYTpk+fri9xtmzZMpx//vleg+Lo0aP1z59++umIzkNS/X3h2QV7zJgxQQ0XUlVV7wXRuXPnyEzcFt4yiy6eC+X6WpDzzjvv1Lf59ddf/Zanqqro2bOnvv1dd90lKisrfW5fVlYmPvvsMzFt2rQar3kugmxkEeNBgwbp20+YMKHG63a7vcrCr/CzOOuECRP0bSZPnhzw2J4LeXszY8YM/fWmTZuKDRs21Nhm165dol27dvp277zzjtey3K8bWdg4mG3rg8mTJ+uLwcbHx4e8uLUQQuzbt0/Ex8fri+nOnz+/xjaeC9a2aNFClJeXh1F7Y+699179mGeffbY4cOCAz21VVRXz5s0Tzz77bI3XfC1C602gbffs2SNSU1MFABEXFxfwPXHo0CHxzDPPiDVr1tR4LdB7pbq+ffvq2992221CVdUa21RfMN3IossFBQX679/zY/PmzYbqFaoxY8box9qxY0eN1yP5e1uyZIn+elpamvj7779rbLN582bRtGnTKj8Dz8W83UpKSkSrVq0EACFJknjllVe8/i7cCgoKxFtvvSXmzZtX47XHH39cP9Zll11W5TWHwyH69Omjv/7hhx/6/RnUJ+PHj9e/r8GDB9c4n+Tl5Ynu3bsHvAYYVVFRIRISEgQAceaZZ4ZUhuc9QjDXkUieX0tLS0WzZs30bSdNmlRjm3nz5gmTySQAiMTERHHw4MGA34+/c9Bff/2lX2tSUlK8nsueeuopvZyePXv6LMsIz59F9fdfcXFxlfPgsGHDhN1ur7JNJO+9qisuLtb/jhITE0ViYqJ+DS4sLAzp+w1GMOd1IYTYsmWLePXVV0VRUZHPbfLy8sSQIUOqnB/z8/O9bnvaaafp2/Xu3Vvk5ubW2MbpdIpbbrlF365Ro0aipKSkxnZG//4C8fx78XXvLoQQR44c0X93AMStt94qnE5nje1yc3OrfJ9DhgzxWt727dvFrl27fB7v559/1heklyQprHs0Ifxf4xwOh7jsssuq/G68/T1eeuml+jYjRozw+zfrcDjEzJkzDZ17NU0TrVu31r/Xxo0b68fZsmVLUN/nmjVr9H3Hjx8f1L6+1NmYxHPOOUd/2nf99dfj7rvvRqtWrfSByu3bt9enT5dlGTNnzkSfPn2wb98+vPXWW/jyyy9x+eWX46STTkJKSgpKSkqwe/durFq1CgsWLEBpaSmeffbZsOs5btw4vZXunnvuwaJFi3DeeechIyMDW7ZswZQpU7BlyxacffbZ2LJli98uMOecc47++QMPPIAjR46gU6dOer/q5s2bB9UcfMUVV2DWrFmYPn06Dhw4gFNOOQVjx45Fnz59oCgKVq1ahU8++UR/EnLuuefqXbHIZc6cObjuuuv0JzXXXXcdCgoKAq7Zdsopp6Bly5Y1vt6sWTO8/vrruPXWW+F0OjF48GCMHj0a/fr1g9PpxJw5c/SnYSaTCR999JHf6aw9x8Du2LHD75gjf1588UWsXr0aCxYswMKFC/UncX369EFWVhbsdjsOHjyot0ofPHgQ55xzDh577LGQjmdEdnY2pk+fjosuugiVlZUYM2aMvjBvhw4dYLPZUFhYiM2bN2P58uX4/fffoapqwLUNjfjwww/Rs2dPlJWV4b333sOyZctw9dVXIzs7G4cOHcKMGTPw+++/o0+fPti9ezf27dtn6AleSkoKRowYUeWJbP/+/dGhQ4ew6xwr+vbti9tuuw3vvfce8vPz0bt3b4wZMwZ9+/aFLMtYuXIlPvnkE5SWlmL48OF+30sJCQn45ptv0K9fPxQVFeGBBx7Ahx9+iEsvvRQnnngiEhMTUVRUhO3bt2PlypVYtGgR7Ha7vpix22+//aY/vc/OzsZHH31U5XWTyYSpU6fi5JNPRlFREe6++27069evXndpc3vyySfx008/YePGjZgzZw5OOeUU3HDDDWjevDm2bt2KDz/8UO8S1r9//7DHxsbFxeH888/HzJkzsWrVKpSUlAScMr76ecRzxr0dO3bUeP2UU06pMkOwWyTPr/Hx8fjoo48wbNgwqKqKa6+9FrNnz8bgwYNhMpnw66+/YsqUKfrsh2+88QYaN24c+AfkR/fu3fHAAw/g5ZdfRmFhIU4//XTccMMN6NWrl969zD0kIDExscbfcSQlJiZizpw5GDJkCJYsWYJvv/0Wl19+Ob766iu910Nt3nslJibi8ssvx6RJk6pMrHfppZdGfKma119/3efSAwUFBTX+/tq0aVOjO2NJSQnuv/9+PP744xg0aBB69uyJVq1a6bNf//HHH5g+fbr+t+1edsfXJCNvvfUW+vfvj4qKCixfvhydO3fGmDFjqqyTOHXqVL2rM+D6GzQym31ty8zMxPPPP4/x48cDAN5//30sXrwYV111VZV1EidPnowjR44AcF0bqy/z4fbnn39i5MiROPPMM9G/f3+0b98eJpMJe/fuxZw5c/RhC5Ik4Z133gmr90UgJpMJ06ZNgyRJ+Oqrr7B8+XJ9jKLn3+Wnn36KzZs3Y926dZgxYwbmzp2LK664Aj169EBaWhrKy8uxb98+/P3335g3bx7y8/MNdZGVJAljx47Ve6u4h7ydeeaZhpad8uQ5nGb48OFB7etTJJKmkZZEp9NZ5SlW9Q9vT7D3798vzjnnHJ/7eH4oiiI+/vjjGmUE25IohBAPP/yw32OdccYZ4vDhw/oTcX9Ppq688kqf5VT/WRlpHXE4HOKGG24I+PO47LLLRFlZmc9y3Ns1tJbE6q1FRj+8tYp4evXVV4XZbPa5f1JSkqGnrZ77eGshCkZlZaW44447hKIohr7H0aNH1ygjki1SbsuWLRNt27Y1VKfExESxdu3aGmUE25IohBC//PKL3pLp7aNr165i9+7donnz5gKA+L//+z9D5a5YsaJKOVOnTjVcp1DVZUuiEK7z9zXXXOPzZyfLsnjllVf8tmR42rhxY5XWLn8fcXFxYs6cOfq++fn5+rlXlmW/5/UvvvhCL6d79+5+W0Xqkx07dgT8+Q0cONBnq0awvvnmG73cKVOmBNw+2POrv1YMISJ3fhXC9TfhbsXy9mGxWLz2IvIUTEuOpmli/Pjxeouit49GjRqJBQsWGKq/P0befyUlJeKss87St7voootqtChG4t7Lm19//bXG/r/88ku433YN7vOD0Q9v9zZ///234f1btmxp6P7y559/Fk2aNAlYXkJCgvj00099llPXLYlur732mrBYLAHr37p1a7F8+XKf5Xz11VcBy2jcuLGYMWNGyN+bJyPXOIfDIa644gp9u9NOO61Ga2FhYaEYMWKE4b+Lxx9/3FD9duzYUeP84O/370uvXr30v0dN04Le35s6C4lCCFFeXi5eeukl0adPH5GWllbl5tXfjcyiRYvEzTffLLp06SJSU1OFoigiOTlZnHjiiWLEiBHi/fffF/v37/e6byghUQgh5syZI4YOHSoyMzOF2WwWTZs2FQMGDBAff/yxcDgcQghhKCQ6nU7x/vvvi/79+4vMzEy9K4u3n1UwN77Lli0T119/vWjfvr1ISEgQNptNtGnTRlx99dWGLjb+To7hbBvraiskCiHEunXrxO233y46duwoEhISRFJSkujatat48MEHxc6dOwPuX1paWuVGxVt3lFBs2bJFPPTQQ+K0004TWVlZwmQyifj4eNGmTRsxZMgQ8cILL3gNYkLUTkgUwnVC/uKLL8QVV1wh2rRpIxITE4XJZBLp6emiR48e4sYbbxQzZszw2tVGiNBCohBCHDx4UNx3332iU6dOwmazidTUVNGjRw/x2muvidLSUqFpmrDZbAKA6N+/v6EyNU3Tu8akp6eLioqKoOoUiroOiW7ff/+9GDp0qMjKyhJxcXGiZcuW4sorrxRLly4VQhi7SXXTNE18++23YsyYMaJjx44iOTlZKIoiUlNTxUknnSRGjx4tJk2aJPLy8qrs53mRfuihh/weQwghRo0apW9/7733Bty+vrDb7eKjjz4SAwYMEI0bNxYWi0U0a9ZMDB06VEyfPj1iNwlCuK5jLVu2FADEoEGDAm4f7PnVyA1quOdXTzt37hQPPPCA6NKli0hKShIJCQmiY8eO4vbbbxf//PNPwP1DuUlfunSpGDt2rGjbtq2wWq0iNTVVnHLKKeKZZ54RR44cCar+vhh9/3kLit4eoIRz7+WNpmlVhsO0bt06on+nbpEIiRUVFeKnn34STz75pDjvvPNE586d9Xu45ORk0b59ezFy5EgxderUoB4+FRYWinfffVcMGTJENG/eXFitVmE2m0VWVpbo16+feO655/wODxEieiFRCNd754knnhB9+/YVWVlZwmw2C6vVKrKzs8WFF14oPv74Y78NFEIIkZOTIz744AMxYsQIccIJJ4j09HRhsVhE8+bNxTnnnCMmTpwoCgoKQv6+qjN6jXM6nVWuL96CohCubuTjx48X3bt3FxkZGcJkMonExETRoUMHMXz4cDFhwgSxbdu2oOo4YMAA/bgJCQmiuLg4qP03b96s7//8888Hta8/khBhTrtJRBExd+5cfWa7O++8M+hJVCh869atw//93/8BMP47mD9/PgYNGgTAtQbTm2++WZtVJIqKN954A/fccw8URcHOnTvrbCkMIiLy74knnsCzzz6LhIQE7Nq1K2Kz4kZ/lW0iAnBsjc6kpKRaHRtIvnnOMmh0LOT777+vf348rI1I5M0tt9yCJk2aQFVVvPLKK9GuDhERwTV78rvvvgvANa9KJJdNYUgkihHukHjPPfcgKysryrU5/ixZssTv+ozvvvuuPnFE8+bNccEFFwQsc/Xq1fpELQMHDgx5TTWiWGez2fDUU08BAD766KMqC2wTEVF0TJw4EXl5ecjIyMADDzwQ0bLZ3ZQoBuTk5KBRo0bIzMzEtm3baiwGTeFr3749KioqMHjwYHTv3h1ZWVlwOBzYtm0bZs2ahb///lvf9vvvv/cZEn/66SdomobNmzfjlVdewYEDBwC4Ztx0L1pNdDzSNA09e/bEX3/9hTvuuMPv2oVERFS7ioqK0KZNG+Tl5eGDDz7Q126OFIZEImoQ2rdvj23btvndxmaz4eOPP8aoUaN8buO5TImb0fGLP//8M8rKygJX1ovMzEx9QWwiIiKi2sSQSEQNwvLlyzFz5kwsX74c+/btQ25uLsrKypCWloaOHTti4MCBuPXWWwOujeYOiYmJiejYsSNuvfVWXHfddYbWVWzdujV27doVUv379euHRYsWhbQvERERUTBM0a4AEVFd6N27N3r37h12OXyuRkRERMc7tiQSERERERGRjrObEhERERERkY4hkYiIiIiIiHQMiURERERERKTjxDVERBR1qqqivLwcZWVl+ofn/0tLS1FZWQm73Q673V7lc2//t9vtUFUVmqZV+df9oWlaldcA18y1vj7cs9fKsgxFUWAymWA2m/UPX/+3WCyIi4uDzWaD1WqF1WpFfHy8/rnn1202GxITExEfHw+TiZdnIiKKHl6FiIgoIoQQKC4uRlFREYqKimp8XlhYqH/N/W9paSnKyspQUVER7erHlPj4eCQmJlb5SEpKqvL/5ORkpKamIiUlBampqUhNTYXNZvO6licREVEwOLspERH5pGkaCgsLkZeXh/z8/Br/Vv9cVdWwjqcoCuLj46t82Gw2JCQkwGq1Yt6kxZAEAFUChARoEqABkub+3OP/AgCO/ivg2t59xRPHvi65v+bxMjxzloSjG3r8XxKuARuSgJDd/xdVXhPy0cIV18f5Nw5ARUUFysvLUV5ejoqKCv3/7n8rKyvD+vlZLBY9MHp+pKWlITMzE5mZmcjIyEBmZiYSEhIYKImIyCuGRCKiBkpVVeTn5+Pw4cM4cuQIjhw5UuPznJwcOJ3OoMqNj49HcnIykpKSkJycjOTkZPz63+WQnBLglCE5ZcAhuf5VJUiqBKiuz6EBEhpucBFHQ6UwaYBJAIoGYRKA6ei/isBFd52rt8wWFBTo/9rt9qCOZbVa9cDoDo8ZGRlo1KgRGjVqhCZNmiAjI0PvaktERA0HQyIR0XFKVVXk5OTgwIEDNT4OHjyI3Nxcwy1/KSkpSE9PR1paGlb/9C8khww4ZEj2Y//qXxMNN+RFi8DRlkyzgDBrEGYN8Ph34PVnIjc3Fzk5OcjJyUFJSYmhck0mExo1aoTGjRujSZMmNf5t1KgRzGZzLX93RERU1xgSiYjqscrKSuzbtw+7d+/G3r17qwTBQ4cOBWwFVBQFGRkZyMrKQqNGjbD4ixVApQzJrkA6+i/sDH7HGyELwKJCWLSjHyquePRCvQX50KFDyMnJCfgQQZZlNG7cGM2bN0d2djays7PRvHlzNG/eHE2bNkVcXFwdfUdERBRJDIlERDFO0zQcOnQIe/bsqfFx6NAh+DuNK4qCJk2aoGnTpvjrh/WQKpRjH3bZFQAbcPdO8k1AAHEaRJyqfwwZNwAHDx7EoUOHcPDgQb9dXCVJQqNGjfTg2KJFC7Rq1QqtW7dGo0aN2I2ViCiGMSQSEcUIVVWxf/9+7Nixo8rHvn37/N6MJyYmomXLlsjOzsaC//x+LARWKq5WQYZAqgUCwtWl1aZCWFVc+eww7N27F/v27cPevXtRVlbmc1+r1YqWLVuidevWenBs1aoVmjVrxuU/iIhiAEMiEVEdc7cM7ty5E9u3b9fD4K5du3yGQbPZrLfGLP3vn5AqTJDKFEjlJsApMQhSTHEFSAFhdULYVFz13HDs2bMHO3fuxJ49e3x2gzaZTGjRogXatm2Ldu3aoV27dmjfvj0yMzM5EysRUR1iSCQiqkVOpxM7d+7Eli1bsHnzZmzZsgVbt2712coSFxeH1q1bY8viXZDKTJDKTJDLFKBSYRCk44KAgLCqEPFOiHgV59x0Onbt2oXdu3ejvLzc6z4pKSlVQmO7du3QunVrWCyWOq49EVHDwJBIRBQh5eXl2Lp1K7Zs2aJ/7NixAw6Ho8a2JpMJLVu2xM7l+10tgmUmyGUmoIJhkBom9xhILd4JEe/E2Tf2xtatW7Fnzx6vE+goioKWLVuiU6dO6Ny5Mzp37ox27dpxshwioghgSCQiCoHT6cSOHTvw77//YsOGDdiwYQN27tzpdRKZxMREtG/fHutmb4ZUaoJUYoJUbuKMoUQGCEm4Wh0TnBj+yLnYtm0btm7diuLi4hrbKoqCtm3b6qGxU6dOaNu2Lcc5EhEFiSGRiCgAIQQOHz6Mf//9Vw+FmzZtQmVlZY1t09PT0bFjR/zx5TpIpSbIJSZ2FSWKMAEBWDRoiQ6Menk4Nm7ciI0bN6KwsLDGthaLBe3bt8cJJ5yArl27omvXrmjcuHEUak1EVH8wJBIRVeN0OrF582asXbsW69atw/r165GXl1dju4SEBHTu3Bmrv9kIqdgEudgMyaFEocZEpHdXTXTgimeHYtOmTdi0aRNKSkpqbJuVlYWuXbuiW7du6Nq1K9q3b8/WRiIiDwyJRNTglZWVYf369Vi3bh3WrFmDf//9t0Yrobsb27bFe11hsNgMqZwthESxTJ8kJ8mBYY8Mwrp167Bt27YaYxzj4uL0lsZu3bqhW7duSExMjFKtiYiijyGRiBqcwsJCrF69GmvXrsXatWuxdevWGjeNSUlJ6NatG1ZMXesKhSVmSBoDIVF9J2QNIsmJMW9din/++Qfr16+vMb5RlmV07NgRJ598Mrp3787QSEQNDkMiER33ysrKsHbtWvz555/466+/sHXr1hoTzDRu3BhH1hVCLjJDKrK4ZhxlKyHRcU9AQNhUiGQHzr2rL9asWYN9+/ZV2YahkYgaGoZEIjru2O12/Pvvv/jrr7/w559/4t9//63RUtiqVSvsWX4YcpEZcpEFUiXHEhKRi7Co0FLsOP/es/D333/7DI09e/ZEz5490aVLF5jN5ijVlogo8hgSiajeE0Jg165dWLFiBVauXIm1a9fWGFPYpEkTHF5dALnQArnAwglmiMiwQKHRZrOhe/fu6NmzJ3r16oXs7GxIEnsiEFH9xZBIRPVSWVkZ/vzzTz0YHjx4sMrraWlpKNxcBrngaCis5MyFRBQZwqJCS7Wj/229sGrVKhQUFFR5vUmTJnor46mnnoqkpKToVJSIKEQMiURULwghsGPHDqxYsQIrVqzA2rVr4XQ69dfNZjNOOukk/P3lRsgFcRxTSER1QkBAJDhx3QeX448//sC6devgcDj01xVFQdeuXXH66afjjDPOQIsWLdjKSEQxjyGRiGKW0+nE6tWrsWTJEvz+++84fPhwldebNWuGg6vyIefHQS60cPZRIoo6IQtoKXYMf3IgVq5cid27d1d5vXnz5jjjjDPQp08fnHTSSVyfkYhiEkMiEcWU0tJSrFixAr/99huWL19eZSFsi8WC7t27Y9W0fyHnWSBVsLWQiGKbiFNx6xej8Pvvv2P16tVVekAkJCSgV69eOOOMM9C7d28kJydHsaZERMcwJBJR1OXk5OD333/Hb7/9hr/++qtKV620tDQUbiiHnGd1jS1kayER1VNC0aCl2jHontOxbNmyKmMZFUVB9+7d0b9/f5x55plIS0uLXkWJqMFjSCSiqDh8+DAWLVqEhQsXYv369VVea9GiBfYvy4WcGwep2MzWQiI67ggIiCQHRr52AX7//Xds375df02WZfzf//0f+vXrh7POOgtZWVlRrCkRNUQMiURUZ3JycvRguG7duiqvdenSBRtn74KcGwe5nGN0iKhh0axOXPvRpVi8eDE2btxY5bUuXbqgf//+6NevH5o0aRKlGhJRQ8KQSES1Kjc3F7/++isWLlyItWvXwn3KkSQJ3bp1w7+zdrhaDO1ct5CICHCNY7xx0gj8+uuv+Oeff6q81qVLFwwaNAhnn302u6QSUa1hSCSiiCstLcWiRYvw888/Y82aNdA0TX+ta9eu2PDdLig5DIZERIEIi4pbp47C4sWLsXr1av1Bm6Io6NGjBwYNGoS+ffsiPj4+yjUlouMJQyIRRYTT6cQff/yBn3/+GUuWLIHdbtdfO/HEE7Hph91QcqwMhkREIRJmFTd9PhLz58+v0iU1Li4Offv2xcCBA9GrVy+YzeYo1pKIjgcMiUQUMiEENm/ejJ9//hkLFixAXl6e/lqrVq2w99dcKEeskCoZDImIIkmzOjHqnQsxf/587N27V/96cnIyzjnnHAwZMgQdO3aEJHHiLyIKHkMiEQUtJycHc+fOxdy5c7Fz507966mpqSj+txLyYRukEhNnJSUiqmUCAiLRieHPn1PjYV27du0wZMgQDBo0CKmpqdGrJBHVOwyJRGSIqqpYuXIlfvjhByxduhSqqgJwLXDv3CdBPmxzrWMoGAyJiKJBQECk2nHWXadW6fZvMplwxhlnYMiQIejZsydMJs4gTUT+MSQSkV+HDh3C7Nmz8eOPP+Lw4cP617t06YJN3+yGnGOFpMpRrCEREVUnTBpumz4Kc+bMwaZNm/SvZ2Zm4rzzzsMFF1yA5s2bR7GGRBTLGBKJqAan04mlS5fi+++/x8qVK/XZ9JKTk1G6wQn5kA1yGZ9EExHVB1qCA8OeH4B58+ahsLBQ//ppp52G4cOHo3fv3lAUjh0nomMYEolIl5OTg++++w7fffddlXEt3bt3x7rp21ythuxOSkRULwlJ4LEFd+CHH37AypUr9a83btwYF110EYYOHYr09PQo1pCIYgVDIlEDJ4TAv//+i5kzZ2LRokVwOp0AgLS0NBStrXS1Glaw1ZCI6HgirE5c8tog/PjjjygqKgLgGrvYv39/DB8+HN26dePMqEQNGEMiUQNlt9vxyy+/4H//+1+V9ba6deuGDV/thpwbx1ZDIqLjnJAF7vvhBnzzzTf4999/9a+3bdsWl112GQYNGoS4uLgo1pCIooEhkaiBOXLkCL755ht8//33KCgoAHB0htI9MpT98ZBLuQgzEVFDpCU4cN7jp2PevHmorKwE4OpVcvHFF2P48OFcRoOoAWFIJGogduzYgenTp2PevHl6l9KsrCzk/VEO5aANkpMzlBIRESAUDTd8fjm+/vprfVZri8WC8847D5dffjlat24d3QoSUa1jSCQ6jgkhsGbNGkybNg3Lli3Tv37SSSdh/fSdri6lXPCeiIi8EJLAwz/fihkzZlQZlnDaaadhxIgROPXUUzlukeg4xZBIdBxSVRW//fYbpk2bpo8xkSQJ0hELlL0JkEvYpZSIiIwREBDJDvS+vSt+++03fVmkDh06YNSoUejXrx+X0CA6zjAkEh1H7HY75syZg+nTp2Pfvn0Ajo433KVA2RfPWUqJiCgswurEhS/2x48//ojy8nIAQIsWLTBq1CgMGjQIZjMfQhIdDxgSiY4DlZWV+OGHH/Df//4XR44cAQAkJSWhbL0G5UA8JAfHGxIRUeQIk4ZRH16Ar7/+GsXFxQCARo0a4corr8QFF1zAGVGJ6jmGRKJ6rKKiAt999x2mTZuG3NxcAEcno1lRAeWgFZLGcEhERLVHKBqun3IZZsyYgby8PACuGVFHjhyJiy++GFarNco1JKJQMCQS1UPl5eX49ttvMX36dP2i3LhxY+T+Xgb5kI3rGxIRUZ0SksC4/12DqVOn4uDBgwCA9PR0XHXVVRg2bBhbFonqGYZEonrEbrfju+++w+eff478/HwAQJMmTZCzpBTyYYZDIiKKLiEJ3PvD9Zg8eTL2798PAMjIyMDVV1+NCy+8EBaLJco1JCIjGBKJ6gGn04m5c+di0qRJOHToEACgWbNmOLyoBPIRK8MhERHFFCEJjP92LCZPnqxft7KysjB69GgMHToUJhMnUiOKZQyJRDFM0zT8+uuv+OSTT7B7924Arots/tIKthwSEVHMc3dDnTJlij6xWnZ2Nm666Sb069eP6ywSxSiGRKIYtWrVKnzwwQfYvHkzACAlJQUlq1XXbKUaL6pERFR/CEnglhkjMWXKFBQUFAAATjzxRNxyyy04+eSTo1o3IqqJIZEoxuzcuRPvvfceli9fDgCIj49H5QYJyv54SCpnKyUiovpLKBqu+nAoZsyYoa+z2KdPH9x8881o27ZtlGtHRG4MiUQxIj8/H5999hm+//57qKoKRVGAPRYouxMhORkOiYjo+CHMKoa82Fe/5smyjCFDhuDGG29EWlpatKtH1OAxJBJFWWVlJb766it88cUXKCsrAwDIuXFQdiRCruDAfiIiOn5pVifOuK8bFi1aBABISEjAmDFjcOmll8JsNke3ckQNGEMiUZQIIfD777/j7bffxoEDBwAAHTt2xI6vj0Au4hThRETUcExY8wTefvttbNy4EYBrcps77rgDffr04eQ2RFHAkEgUBXv37sVbb72FFStWADg6Y+lvla7lLMCLIRERNTwCAvfOvh4ffvgh8vLyAAA9e/bEuHHj0Lp16+hWjqiBYUgkqkPl5eX44osvMH36dDgcDphMJogdFih7EiBpHHdIREQkFA2XvT0IX331lX6tHDlyJEaPHg2r1Rrt6hE1CAyJRHVk8eLFmDhxIg4fPgwAkPItMG1PglzOcYdERETVCasTPe7shKVLlwIAmjRpgrvvvht9+vSJcs2Ijn8MiUS17MiRI3jzzTexZMkSAK6LXM7Ccsi5cexaSkREFMATv96Jt956S3/IetZZZ+HOO+9Eo0aNolwzouMXQyJRLdE0Dd9++y0+/PBDlJWVuZa02Gk92rWU4ZCIiMgoIWu49O2B+PLLL6GqKmw2G66//npceumlrusrEUUUQyJRLdixYwdeffVV/PPPPwAAqcgM09YkyGWczpuIiChUWrwDncc0x7p16wAAXbp0wUMPPYRWrVpFuWZExxeGRKIIcjqd+Pzzz/H555/D6XTCZrPB8Y8J8gEbu5YSERFFgIDAuFnX4P3330dZWRksFgvGjh2LkSNHwmTiOH+iSGBIJIqQHTt24Pnnn8fmzZsBAHKuBaZtyZDs7AZDREQUacKiovu4dvpyUp06dcJDDz2Edu3aRblmRPUfQyJRmFRVxfTp0/Hpp5/C4XAgKSkJ5askrnlIRERUywQE7vvxBkycOBElJSVQFAXXXnstRo0axbGKRGFgSCQKw549e/DCCy9g/fr1AAA5zwLTVrYeEhER1SVhVnHafSfoM4l37doVjz32GJo1axblmhHVTwyJRCEQQuD777/H22+/jcrKSsTHx8O+2gT5MFsPiYiIosHdqvjmm2+irKwMNpsNd911FwYPHgxJ4rWZKBgMiURBKioqwiuvvILFixcDAKQCC8xbkiFVsvWQiIgo2kScis7XN8PatWsBuNZVvO+++5CamhrdihHVIwyJREFYs2YNnn32WRw+fNg11mGrDcq+eLYeEhERxRABgbFThuOTTz6BqqrIyMjAk08+iZNPPjnaVSOqFxgSiQxwOp2YMmUKpkyZAk3T0Lx5cxyeXQ65hOseEhERxap3NjyHZ599Frt374Ysy7juuutw9dVXQ5blaFeNKKYxJBIFkJeXh6effhp///03AEA+ZIVpexIklRcYIiKiWCdkDWc/fQrmzp0LAOjZsycee+wxpKWlRblmRLGLIZHIj3Xr1uHJJ59ETk4ObDYbHKvNUI7Yol0tIiIiCoKAwD0/XIc33ngDlZWVyMzMxBNPPMHup0Q+MCQSeSGEwMyZM/Huu+9CVVVIZQpMG1Ihl5vqtiKSBPAtSkREFBFavBPNLk7Erl27IMsybrvtNlx++eWc/ZSoGoZEomrKysrw6quvYsGCBQAA+UgcTFuSIWl12L3UfbHi25OIiCiihCxw9tPd9e6n5557Lu6//37ExcVFuWZEsYMhkcjDgQMH8PDDD2P79u2u2Uu3xEPZb6u72UurP8nk25OIiCjiBARu+XKk3mOoY8eOeP7559G4ceNoV40oJnDmDaKj1q5di5tvvhnbt29Heno65L+SYdpfR8tbSBIDIhERUR2RIOHDK2ZgwoQJSElJwebNm3HjjTdi9erV0a4aUUxgSyIRgDlz5uDVV1+F0+mEVGKC+d9USHal9g/sbwwE35pERES1TsSpaHVVGrZs2QJFUXDvvffiggsuiHa1iKKKIZEaNFVV8eGHH2L69OkAADknDqbNKZC0Omo99IdvTSIiojohZIGznvg/zJ8/HwBw9dVX44YbbuB6itRgMSRSg1VZWYlnnnkGS5YsAQAouxOg7E6o/e6lRmZQ49uSiIioTgkIXPnxYEyePBkAMGDAADz88MOc0IYaJIZEapCKiorw8MMPY926dTCbzRDrbFByann9w2Cm1+bbkoiIKCrumX0dXnnlFaiqim7duuH5559HampqtKtFVKcYEqnBOXToEO677z7s2rULiYmJqFxqhlxkqb0DhrL2Et+WREREUfPSHw/h8ccfR0lJCbKzszFhwgQ0adIk2tUiqjMMidSgbNu2Dffffz9ycnKAShnm9WmQy0y1d8BQF+fl25KIiCiqNJsTGUPNOHjwILKysvD666+jdevW0a4WUZ3gaFxqMNatW4dx48YhJycHUqkCy5r0mgFRkgA5zFlN3ctZhBoQJTn8OhAREZFxXq7ZcrkJed850bp1axw5cgTjxo3Dhg0bolA5orrHkEgNwt9//4377rsPJSUlkArNMK9Nr7nEhSS5AprQQjuIrEAymVxlhMq9r6aGuH+YAZWIiKghEsLrtVOyK9g/vRQnnHACCgsLMX78ePz1119RqCBR3WJIpOPeypUrcf/996O8vBxSvgXm9WmQVI8//aOth5JyNDSG0tVTViDJYQQzSYakhFsGgyEREVFYvDxolZwytn2ag1NOOQXl5eW4//77sWzZsihVkKhuMCTSce3333/Hww8/DLvdDjnPAvO/qcfWQPQIhyGHs6Oth+79hSaCb4mU5PDDIQMiERFR5FS7tkqqjH/e3oszzzwTDocDjz32GIMiHdcYEum4tXjxYjz22GNwOByQc+Jg2pAKSUi1Eg5DwtZDIiKi2OYRFiUhYcVLm9CvXz8GRTrucXZTOi4tX74cjzzyCJxOJ+TDVpg2J0OC60SvdyutRm8F9PeWCNCt1FBLYoCWQ6GJwGMSjYRDvrWJiIiC4+/6evS6KiSBPo+cgF9//RVmsxnPP/88evfuXUcVJKobbEmk485ff/2Fxx57zBUQj8S5AuLRGUN9BURdGAHRkHC7lgJsPSQiIoqGo62KkpCw7IUNOOuss/QWxZUrV0a7dkQRxZZEOq6sW7cO9913H8rLyyHnWmDalAYJxsKdzxa8IMKhz5bEIMKhz3oEGw751iYiIgpOENdaAQ2nPdQJS5YsgdVqxYQJE9C1a9darBxR3WFIpOPG5s2bMX78eNcyF/kWmDdmQA5iOYoa4SyElsMaITGElsMa9Qi15ZBvbSIiouAEec0VkkD3u1tjxYoVSEpKwjvvvIM2bdrUUuWI6g5DIh0XDhw4gFtvvRV5eXmQCs2wbMqEpAXXm7pKOAuxa2mVkBhi19Iq9Qinaynf2kRERMEJ4borZA0dbsjC+vXrkZmZiXfffRdNmzathcoR1R2GRKr3ioqKcNttt2H37t2QSk2w/JtVdR1Eg4TmeiuEM2YwYmUEu4yG14L41iYiIgpKiA9nhUlD85EJ2LFjB7Kzs/Huu+8iLS0twpUjqjucuIbqtcrKSjz88MPYvXs3UKnAsjEzpIAIuIJduJPKRKoMIiIiqj8kp4x9X5agSZMm2Lt3Lx555BFUVlZGu1pEIWNIpHpL0zQ8//zzWLduHeCUYNmYAckRYPZSLySTCZLNBsliCbkukSgDkgwoiutfIiIiCo7HmoYhF6EYmAnd1752BbmznUhKSsL69evx0ksvgR32qL7i3SjVW//5z3+waNEimM1mmDdnQC43B7W/O9jBbIYUxkVFMpkAc3DHrlmIDEmRw6pHzTLZIklERA1QBK5/oYZFucKE5557DoqiYMGCBZg0aVLYdSGKBoZEqpd++eUXfPHFF67/bEqGUhQX1P7uYCdJUsjBzDNkhuxo66Gk8K1IREQUMRFoVQQQUlB8oMeLuPfeewEAn332GebPnx92PYjqGieuoXpn69atuO2221BRUQHToRSYdqcAqpd1Bb3wbPWrHg6F0wlhtwdVRg2qaqgMV0Gyz3AoVA3C6TBWjj98exMRUUPhLxQavB5KJpPvIgzeawCAbLNh2CunYfr06bBYLHj33XfRqVMnw/sTRRubL6heKSgowCOPPIKKigrIRTaY9hmfOSxSrYeR6FrK1kMiIqI6FIVWxW8eWI7TTz8ddrsdjz/+OIqKisKuA1Fd4V0q1RuqquLpp5/GwYMHIVWYYNmRBQmS66Tt58QdibGHEelaCtTO2EMiIiIKrI4mtpHjXENgJEj46/29aNasGQ4ePIjnnnsOmhaBJa6I6gBDItUbX3zxBf7880/YbDZYtjeGpPo/SVcPh3XSeqgo3mc4jVbrIcMoERE1BMFc72p7Yhv52LVeUhU8++yzsFgsWL58+bH5FIhiHEMi1Qtr1qzBZ599BgBwbkiAXOF/qYmYmZgGYOshERFRrKnDiW3u6P4c7r77bgDAJ598gj///DPs4xLVNk5cQzGvsLAQ1113HY4cOQIlNxGWXVk1thGqCqiq34lpAvGcuCassYeek9f4mZzGb12EADTByWuIiIiMCCfweVwn/U1cE7CYoxPbyDab19cHPH4iZs+ejYyMDEyaNAkpKSkhH4uotrElkWKaEAIvvvgijhw5AqnCBPOeDJ/bht16qCiQbLaItR6G072U6yUSERHVkaOtiuEERCBwq+KC5/5By5YtkZubi9dffx1sp6FYxpBIMW327NlYunQpzGYzLDsaQdJq/slKNivk5OSwJqYBACnOAslqDae6rnIsZsg2a1h1EUIAIkKD23kRIiKi41mkHoZK4d8WS4oCyeb9XkISMh5//HEoioJFixZh7ty5YR+PqLYwJFLMOnToEN555x0AgNiRBLk8rsY2ks3qavlDGK1vFjOkpMSwA6KkyJAsZr8zrRqhP1k0MIOagcLC25+IiKihkCXXNTwSYdFHULzz1Bdw3XXXAQDefPNNHDhwIOxjEdUGhkSKSUIIvPrqqygrK4NUEgfT4eQqr0s2K+T0NFdADOcJosXsCodhT4kthx0OAUSu64kQDIhEREShkKWIBUVvYfHzW+ehW7duKCsrw0svvcRupxSTGBIpJv34449YuXIloEmw7MqEhGMhTm899JiZTIqzAHE1Wxp98tF6GGyX00i2HkY0IBIREZFhkqnaXAQhtirKSUk1y64WFCVI2DwtH3Fxcfj777/x008/BV1fotrGkEgxJycnR+9matqfBrnStdyF39bDYFoC66L10Gzyvl6iF37DYbBdThkQiYioIYnUeETZRznBtir6KKd6q6JsN+vdTt99910UFBQYPwZRHWBIpJjz/vvvo7S0FFLpsW6m3loPQ+IOiGGI2dZDBkQiIqLIi1D3U6Bqq+JnN85B+/btUVRUhHfffTci5RNFCkMixZTVq1dj3rx5kCQJlt0ZkG02w2MP/XY5jeDkNDE19tBVWOTKIiIioprcQdFPWPTW1dQbd6uiBAn33XcfJEnC3LlzsWrVqkjVlihsDIkUM5xOJ958800AgHw4EQpSgms99LVNkN1LfY1LDDog+uhyGnRA9NfllAGRiIgaqgh1Na0xHtEXWfLfquiry6qv49qsuLvXy7jkkksAAG+//TacTmdQZRDVFoZEihnffPMNtm/fDqgK4srbRGbm0hhb2oLdS4mIiGJMkOHOSKuiUZLNih9fWIeUlBTs2LEDs2fPDrtMokhgSKSYUFxcjE8//RQAYMlvBkmYQwqIepfTMCencbcmht299GhrYtjh0LM1keGQiIgaurpuRayuWqui0a6mXuugKRg7diwA4JNPPkFpaWnIZRFFCkMixYRp06ahpKQEkt0KU2lWyOWIBBuQmRp26yEQufGHEcWASEREFDnBtiJ6219RICXEh1XMR7fMRcuWLVFQUIAvvvgivDoRRQBDIkVdbm4uvv76awCApaB5lTURgyHirdCSwl/aAooMWMyAyRReOZoAVBUAIIVT1tFyhCYiN9U3ERFRfRWj10LJZgt9X0i49dZbAQBfffUVDh8+HKlqEYWEIZGibsqUKaioqICkJUNWmoRUhmdA1BLiIJJCfKLn2XoYznIZmgCE5vo8nKeUmoBwB0QgYlNwExERNXRG1zMORMnMOFZmGEHxqfE/46STToLdbsd///vfSFSNKGS846SoOnDgAL7//nsAgMnZHlKQIUjEW6E2Tq3ZghjsU0Z362H17qWhPK30DIjhOBoQa4jRJ6hEREQNUrXrsmSzhRQWJfnY2MQffvgBOTk5kagdUUgYEimqZsyYAafTCVlLhyLSg9q3SvfSaifooFoT/Y09DKY10d291EtAlBQluC6nvgIiwNZEIiJquCI1YU0ttCLWOEYIvZEeuu0HdOvWja2JFHW826SoKSgo0Kd6VpytAQBavAUiMfDTN0PjD41cSIxMTmOknECth7JkLCi6xx/6CojB1ImIiOh4EovXvgD3IUaDota6qWsXSHpr4nfffYfc3Nxwa0gUEoZEippZs2ahsrISkpYEWaS5vuilVdCTz+6lwfLVvdSbQK2JRruXBhqbWH38oT9sTSQiIgpJpFoRjR3MFRQDhkX52HX9kTt+RJcuXWC32/G///2vlitI5B3vNCkqKioq9BOfSW1dZUZTX62J/rqXeqPFW7x3OQ1laQtvx/PTvdRnMb5aE/11Lw2mTkRERMejGLzm+etqWsXR+xZfQdHdiqhvDgkjR44E4GpNrKysDKueRKFgSKSomDt3LgoLCyEJG2St2rqIXkJgSMtbeAuToa59WL01MdTJaby1JoYSEAG2JhIREQUpoq2IwQZXX0FRrnk9f+6BRWjSpAkKCwsxb968ECtIFDreZVKdE0Lgu+++AwAoajYkL3+G7tZEEW+F2igl5O6lVVoTQw2Ibu7jhzl7qd6aaHT8oZE6ERERHa9i8FpnuBWxumrdT6u3IuqbQcLFF18MAPj6668hhIGhKEQRxJBIdW7Dhg3YsmULIGQoajPvGx1d71BLsrqesIV6gZAkOFPjoWWmhBcQAVdrosUS/vIWsgSIIMYf+sPWRCIiIkMiNqNpk0bhBVfP7qdeWhHdPn3zX8TFxWH79u3YsGFD6McjCgHvMKnOuVsRZa0RJJi9blORZUX+CUmoaBz6orQAoJllCIsMoYT5FFLTgEq762RuDu8iIxxOCFWFFG5oBQAtjFZIIiKi+iACrWiSyezqwRPuw1ng6L1AEMta+VDUqwVKWvperkuCGf369QMA/Pjjj2EfjygYDIlUpyoqKrBw4UIAgEltXvP1LCvyOyeiLMsEzQSIQDOC+qGZZQiz609cjbdASza4bmKNgjTA4Qy5Hp6EwwnhPFrW0WUxQsaASEREDUUku1uGERSVJo2O/SfMoKiZJQhFQknLeJ9hceEPOQCABQsWoKKiIqzjEQWDIZHq1O+//47y8nJIwgpJpFZ5rSLL6hEOXV8rT1dQkRXcYrSaWYYab9IDIgBARmitiV4ComRSgm5NFA4ntPKKYwExXAyIRETU0AgRUliUTF56LYUaFKt3DzWbQgqLRT2z9c+Fciws1jicSEPTpk1RWlqKJUuWBH0colAxJFKdWrBgAQBAVptUWfbCHRBFtb9IEWS482w9rC7o1kRfLYh+xg94U6X1sEZZIbQmMiASEVFDFqlWxSCDYpVWxOqCDIqauea9jbegKEHCoEGDAACLFi0K6hhE4WBIpDpTXFyMFStWAAAUrYn+dV8B0c1oa6K/gAgAkAFnUpyxoBigi6nR1kS/AVGvVxBBkQGRiIjIcFD02oroyWBQVJo0CvyQ2GBQ9GxFrM5bUJz+n00AgBUrVqCsrMzQMYjCxZBIdWbFihVwOByQtATIIrHK+ENfARFwtSaWZZlQ0ch3UAwYEN0CtUy6J6gJNAZRlgMGRUMB0SihMSASERF5ChAUAwZENyMT2hjtRRQgKBb1zPbaiuip+jhFSSSiRYsWsNvtWLp0qbF6EIWJIZHqjPvEJmtZXscf+iNk35PYGA6IR6nxFqgpCV4KCnKCGj8XjKADor/WRE2N7IB9IiKi40UdTGjjt5upN36CYqCA6OY5TlGChP79+wMAxyVSnWFIpDrhdDr1rqZqcrOArYfelKcrVVoTNbMM1WoKKiACAGRATaw2PjHEGUyrtyaGNUGNt6DI1kMiIiL/vExoY7gVsbpqQdFQN1NvvExoU9yj5qzugbiD4oxPXOskrlq1CqrKewOqfQyJVCfWr1+P4uJiQDKjrElW0AERONrtNNPV7VRvPQz1L9iz22k4S1x4dDuNaPdSgAGRiIgoGEeDYsgB0c0zKIYSED0dDYrFPZpDtYRWllAklGU3QWJiIoqLi7Fx48bw6kRkAEMi1Ym///4bAOBMaBTWwvZCBlRLcN1LfVHjLdASreGvgSjLgKZGJiDKEiRZYkAkIiIKRQRnPg26m6kvZlPIAdFNmBT06NEDAPSeWUS1iSGR6oQ7JKq2zLDKESagrJGM8qzg1imsTq5UYSosh6QKIC68soTdAVFRCUkKPfzqVBVCVYFIlEVERNTASCaTa7K3MCmNMl0tis7wH9oeGtAM5enhX9d79uwJ4Ng9FVFtYkikWme327F+/XoAQHHb0EOiMAGaCdAUCeUZoQdFuVKFXGJ3BUT4nhDHUJ3sDoiKCtd/FCX0oKiqEHa7KyC6MSgSEREZJpk8xgCGGxQ9u5mGERQPn90MapwEIUthB8Xxm1YCADZu3AhnJIe3EHnBkEi1bvPmzbDb7VCtFpSeGIeSFsGdJIUJUK2ugCiOBidNkUIKd3pA9OyOYjGH1JqoB0TN40IUSlB0tx4SERFRSKoERLcQg6LSyMsD7RCDotN67J7AHRRDCYv7z1GhNrYhOTkZlZWV2Lp1a0j1ITKKIZFq3aZNrkVg7Y1SIJkFKlrbDQdFd+uhkCQ9ILpVpElBtSZ6DYgAIEkQVktQQdFrQHQLJigGCohsTSQiIvLLa0B0CzIoKo0yfU9WE2RQPHx2s5rVkYNvVdx/jgrJ5hqK0qVLFwDAunXrgqoLUbAYEqnWbdmyBQBgz0wBAEgmDcIUeGC5Z0D0Jphupz4DopvBoCjsDmhFxb4Don5AA28toy2IDIpEREShE5qhsOg3ILoZDIqHz25WpRWxRpWCCIqS7dgxTzjhBADH7q2IagtDItW6zZs3AwDsmcn61yqzHX5bEwMFRDcjQTFgQHST/HdhFZWVx8Khv4B4tCy/rYnBdjFlUCQiIqrBbytidYGCotHlLgIExUABUa+OgaC4f0DVOr+8xzVpzfbt2wOWTxQOhkSqVU6nEzt37gQA2DOOhUTJpPnsdmo0ILr5C4qGA6Kbj/GJwu6AqLQHDoeefHU7DXUMIoMiERGRLqiA6OYjKCqZ6cGV4yMoGg2IenX8BMX9AzRI8VUnqHGkJwEAdu7cyclrqFYxJFKtOnjwIJxOJzRFhpporfKat6AYbEB00xQJWrX1F4MOiIDXbqd+xx8GUj0ocpIaIiKisIUUEN2qBUUlMx0IpTwvQTGYgKhXx0tQ9BYQAcCZHA+r1Qq73Y79+/cHfSwioxgSqVbt3bsXgOuk5q0lzHN8YqgB0a0y1TWRjVypwpRfHnxA1Ct1LCiGFRDd3EExEgGRrYlERNTAhRUQ3Y4GxZADoptT1cOit4lqDFdHllCRduwa7y0gul6QkJ2dDQAMiVSrGBKpVukhMSXB5zaV2Q4UtwkvIAKu1kTV7BpXKKkitIDoJkmAEIAjyC6mPgghItOCGM73RERERDo5MSG8gOgh/7SmIbUietIUV4ti9XGI1TVp0gSAq7cWUW1hSKRadejQIQBHWxJ9iEushKlrEYrahnesuCINcQUqnPEmqElxYZUllVVAFJcAkgxJUcKrmKpCOCIwboABkYiIGjpZgdDCvx7KSUmALEGUl4ddVv4Z2XDGSTCVh1+vc25ajlvOWOh3G3dIPHDgQNjHI/KFIZFqVW5uLgBAjfce2ixWBxJslbBZHIjvUICS1qGdYOOKNFhzVUiagFAkOBLNIQdFPSCq4bcgQlWh2R1HCw7j7caASEREDZ187KFt2EHRPZu5EGEFxfzTXQERACQNYQXFAdcvR5f4fWhsLsQNJ//uc7uP9/4D4NiDeKLawJBItSovLw8AoNqqzhhqsTqQklKGBFulfp6OM6mwdQw+KHoGRLdQg6LXgKgoobUmegZE/QAhvOUYEImIqKGTa16HQw2KclJStYJCC4r5p2fX6GIaalAccP1ydEvYq/+/mSUfN5z8u9ew6L6nKiwsDPo4REYxJFKtOhYSj4U1d+uhSdFQfVnCOJMKa4dCw0HRW0B0E4r/dQ+r89uCGGxQ9BYQ9QMF8bZjQCQioobOS0B0CzYouruZ1iwo+KDoawxisEGxekB0a2bJ18OiJ83KkEi1jyGRalVpaSkAQLOaARwLiP6ym9XshLVDIYrb+D/B+guIbkbHJxrqYmo0KPoLiPoBDbz1GBCJiKih8xMQ3YwGRZ8BUS/IeFDMPz3b7+tGg6KvgOipelDU4lz3VAyJVJsYEqlWlR892QqTYiggulnNTgiz75OrkYAIGOt2GtQYxEBB0UhA1A/s5+3HgEhERA2dgYDoFigoBgyIekGBg6K3bqbeGAmKgQKim2dQdIfEkpISQ/sShYIhkWqVOySaEoXhgOgW36rIa7dTowHRzV9QDGmSGl9BMZiAqFfAy1uQAZGIiBq6IAKim6+gaDgg6gX5DopGA6Kbv6DY7/qVxuuEY0FRKK57B4cjyHsOoiAwJFKtcTqdUI+uDWhLcgZ1fgaOdTv1DIrBBkQ3b0ExrFlMqwfFUAKiXhGPtyEDIhERNXQhBES36kEx6ICoF1QzKAYbEN28BcV+16/EyQm7gy6rmSUfV520CoDrPkvwvoFqCUMi1RrPE5cshbbArGdQDDUg6vXxCIoRWebCHRTDCYhu4SyPQUREdLwIIyC6uYNiyAFRL+hYUAw1ILp5BsVQA6JbY9OxsYjFxcUhl0PkD+9MqdZIVYJh6E+6rGYnVKsGCIQcEPVaKBIkpwaUV0RkHUShqhBOZ9jlEBERUeRIcXHhBUQ3IeBokRFWQNTrpAEtRmwPKyACgOxx9+7usUUUaQyJVGuqhMQwsl3O3lQk7FZQmSqjMs0UVp0s+ZVQjhQCkgSYwitLOJ0Q4bYg6oVp7GpKREQNW4i9jqqTra6hJZG4Rjs7toAwy0jcZw+7rMyxu9Ah8TA2lzcJqxzPzkfx8fFh1orIO4ZEqjWyx6OugU02hlRGzt5UJG41QbEDQgHKM0IPipb8SpgOFQBOFZBlSCYl5KAonE6IikpXuAMghdWdhQGRiIgaOHdAFOH18pGtccfK0rSwgqKzYwsIi+teRnFoYQXFzLG7cELyQQBApWYKKygOtuwD4HoYb7FYQi6HyB+GRKo1kiTBZrMBAMbY1mJIi/VB7e8ZEN1CDYpVAqJbiEGxekB0CykoMiASEVFDV70FMcSgWCUguoUYFD0DoluoQdEzILqFGhQvS9wNqdIKwNWKKEWo9ZWoOoZEqlUJCQkAALnChvHpf+C87A2G95XsUpWA6BZsUPQaEN2CDIq+AqJe56Cm2GZAJCKiBs5XyAkyKHoNiG5BBkW1Q3aNgOgWbFBMH7O7RkB0q9SCe0h9WeJuJMpWlFW4vk92NaXaxJBItcodEkvLZKQp8bg3Y4WhFkX3OERfjAZFvwHRzWBQDBQQ3QwFRQZEIiJq6AK1ghkMin4DopuRoChJUDtkQ4vzP8OqoaAouQJil5QDfjcz2proDogAUFbuun1399Yiqg3hzdxBFEBSUhIAoLDEdUJLU+IxPv0PAMCPe7p43cdbN1Nv3EERMCEu3/sMo5Kq+Q+IbrIMyXR0fh0vs5UaDYj6cWXJ56K+DIhERNTgGe0mKTS/y0QZCohuR4OiZDF7rY/avnnAgOimOPzcD0hA+ujAARE41u20o+0grDl2dPrqMJr8UQhzqQpHgoIDvVLQfowdicmJ+j75hUfvqdLSDNWVKBQMiVSrsrKyAAA5ecdO8O6gODp1BaYUnFYlLBoNiG7+gqIlvxJKTpHxyvoIisEGRDevQZEBkYiIGrpgx9H5CIpBBUQ3b0ExyIDolrjPjpLm1SaOCSIg6lUqA7o8sx89vtsFxVn1HqH574UQ7wAYkQzxbCZglZGb56pnRkZGUPUlCgZDItUqd0g8klv1xJumxCNNAcan/wFVyJi794SgA6KbUIDy9KpB0VA3U2+8BUVNC3kQfZWgyIBIREQNXagTrVQLiiEFRDfN45oeYkAEjnU71YOiBKRdsyeogGiucOKmcUvQ/s8jPreRHAC+KAK22SGmNkNOvuvnkJmZGXSdiYzimESqVe4TWPWQ6OYep2gzO0IKiG7C5AqKlWmm0AOim8cYxUishaiPUWRAJCKihizcmTiPPrANKyC6i7I7wgqIbvr4xKMBsWvq/qD2v/jV1Wj/55GAy0kLANKyCkhP5CCnbBgAtiRS7WJIpFrVtGlTAMD+Q75PwBPzemDP3gw4E8I7ljABil1AyS8NPSC6yTKgqSF1MyUiIiIPkhR+QHQXZTZFrqzEhLACopvi0FDSXAo6ICbllKPn9ztcdQmwrf76jCLs2b4dAJCdnR1cRYmCwJBItapVq1YAgN37TT4b0g7ZkwG7jMpMFZVhjMFOOKAicVsRIEkQCTbA28B0g0RlJURpmes/fgbMGypLE4AWZmglIiKqjyK4jp/kXjheDf9BsJyeCsgyzAeLwyrqQG8bDvS2QbMA3yzuFdS+p32zAyZnkL2MHMCe3bsBAC1atAhuX6IgMCRSrWrevDkURUFZuaz3off09JET8dN618Q1wiTCCoqKXUCqcOhPLIXZFFJQFJWVECWlEKrnmIXQ3ioMiERE1GDVRkAEIIQIPSi6A6LiakGUHM6Qg+KB3jY44wHn0eUKzUXB3Su0/8v3OERfci0WlKsqFEVB8+bNg96fyCiGRKpVZrMZzZo1AwDs2lt1nqSnj5yIyat7Q5Qf6+oRalBMOKAiYWe1k3wIQdFrQNTLC+7twoBIREQNVi0FRLdQg6JnQNTLDyEoHjzNpodDT98sMd6aGFfqffkuf7bHuw7atGlTmM2h95giCoQhkWpd+/btAQCbth87mekBsazmBLvBBsWEAyqSNxe5WhGrCzYoqpr3gKiXZ+wtw4BIREQNVi0HRLeggqIsQ85MrxEQ9eM4jAe2g6fZ4PAxj4K5UDYcFCsTgl9kYHOia73ETp06Bb0vUTAYEqnWde7cGQCwaeuxoHbInuw1ILoZDYp+A6KbwaAoKishysv9HxBwBcUwxykSEREdl+ooILqJQDOHHw2H3loQqzPSmugvIOrlGAyKKX0N3HNUszEpCQBDItU+3ulSrTvhhBMAABu3uU72z+V0xk//nhhwv0BB0VBAdAsQFP12M/VZpve3D1sRiYioQarjgKjz1ZroOf4wQEAEAnc7NRIQ3QIFxesyfofpKitEkD1G3SHR/QCeqLYE385NFKSOHTtClmUczgUe3twZM3ad7rcV0ZM7KNpTJVgKZMTlH3tNn6jGqKNBUQIAj7UPQwqIeplylSUyGBCJiKhBilZAhKs1UVLVqkGw2gQ1ho99NCg6miRV+XowAdHNXFjzYfJ1Gb8DABorGrRGCiout8H233LXOoh+yhIADsXF4XBcHBRFQceOHYOrDFGQ2JJItS4+Pl4/mX0/v5XhgOgmTAKaVavSquh1ohojvLUoBhqHGLBM19uIAZGIiBqkSK1baLEEHRDdqoxPDDEg6vWoNj4xlIDo5tmaeF3G72isaGisHLvnKH46BfbeFkPrJK46JQOAq6tpfLyXWXOIIoghkerEKaecAgCw7s4PsKVv7lZFpVIY72bqzdGgKOKtgKYZG4doBAMiERE1NBEMiOFyB8VwAqKb+XAJDp5mCysgAse6nboDYg02CQWfp6N8VLzPrqfCDJSPisfawbcAALp37x56hYgMYkikOnHqqacCAKwHjwCBBpn7IUwCmiKFVQYAQJIgVdihlZQGHvRORERENUUqICoKoEXmWizZbGEHRABwZCQgbbMzrIDoJszCe0B0s0kofjkFOSsboeTBJNjPssBxihn2sywoeTAJOSsboeilFPy1Zg0AhkSqGxyTSHWiW7dusFgsQFkFzIUlcKQmBd7Ji8RtJmRsqICIcz1ukyqDX2NIp2mAqkJSFAiooV+ghAahqq6LJQMnERHFMnewC+d6Fcnxh4oSsRnD5fh4QJEhSssgJYTeHdPeLBWaRYG5SEW4t8r2TBXCpKHfypvwa6+P/G4rshSUjUtE2bjEGq+d/f0oZB5eAYvFgv/7v/8Lq05ERrAlkeqE1WrVWxNtew+EVEbiNhMa/1kBpdQBIQEizgwtMQ4iLvgTuFRWAa3o2JhGSVEAOYSLnjsg6gVF7sJJREQUUZ7XqFCvV7UZEEN8WCvHx+sBEQCgqhClZSGV5Q6Ibo3+Du1htD1T1QMiAJTlxKPfyptCKuvM5bfA9E8BAKBHjx6wWq0hlUMUDIZEqjN9+/YFAMTvPRTS/qZyQCn1mJVUAoQiQ8SZgwqKUlkFtILCGlNmhxwUaxxAYlgkIqLY4u26FOy1qi5aEIMMino4VKqV5WtZDD+qB0QAMBepQQdFdzh0B0S3spzgWzfPXH4LKnJs6G13/ezd91JEtY3dTanOnH766ZAkCXG5BVBKy6Em2Azvm7jNhIx/K7y+JiQAwXQ/PdrN1BvXRUtzjVMMdKGq3opYozB2PyUiohgQiXAXyfGHQES6mFZpPfTCaLdTe7NUAKgREN2C6Xbq2XrojZFup4ArHAJARY4NSmkZNm7cCADo3bu3oXoQhYstiVRnMjIy0K1bNwBAwq59hvdL3GZCo78qq7QiVufufhqoRbF6N1OvZDlwq2KggKgfkC2KREQURYGuQ0auU5EMiJIcOCAaaE0MFBABGOp26mjqaj30FRDdjLQmBgqIgKs1sf8f/rudulsPK3JcD9MTdu4HAJx88snIzMwMWA+iSGBIpDo1aNAgAEDCjr2G9zGVA6YSe8DtAgVFX91MfYlo91MiIqK6FMzQB3/bRTogGuUnKBoKiG5+rvmOpqlQ44zNhBqo26mRgOhWesR366Y7IHo6tagSAHDuuecaKp8oEhgSqU4NGDAAZrMZloJimPOLAm6fuM2E9A2Vhsv3O6GNn26mvngNikZbEasUxKBIRER1JJRrTiTGLPoqOkIzmNaYoMYgb62JwQREN1e306rsGSrsGcYDopu31sSzVtxcIyCa84uwfft2mM1m9OvXL6hjEIWDIZHqVFJSEvr06QMASNy+J+D2RlsRPXmb0MZQN1MfOKENERHVG5EafxgLAdGjNdHnBDVGVHuwG0pAdMtafawse4YKYdYgzMEFRKBqa+JZK27GWStuRrmXFsbEbbsBAH369EFSUmjLhxGFgiGR6tzQoUMBAAnb90By+u66EWwrYnVVup+G0IroSVIUSEcvTEG3ItYojEGRiIhqQbjXlwg/zIxIC6ImQmo9rE6UlsHRNDWsgAgAlkLXfYs7IIbj7FU36uHQW0CUnE4023cEAHDRRReFdSyiYDEkUp3r1asXmjZtCsXuQPyu/T63C6UVsTohAVKFA6K0NOwLnxAi/IBIREQERDaQRaosI5PKGClGUSLWxVQym8IOiAAgWeNgyikJKyACgBonI31DaK2H1cm/pnoNh27xu/ajpKQEzZo1Q48ePcI+HlEwGBKpzimKgmHDhgEAkjbv9LpMROI2E9I3Vrq6eYbR1VMpLAdy8yFUDZDl8C6imgBE+BcFLotBRNTARWJRe/e+EQuakbkl1Je4CLccs8kVECUJojK8B8aSzeaaudzue5Z0I9Q4GZABS7GKRr+Fvopc8gYzkjeYYS4RSN7ooxwhcEa+a+mviy66CLLMW3aqW/yLo6gYMmQILBYL4vIKEXc4t8brpjLA5LnkRahBUVUhPC8KIQZFoapsRSQiovBFsvUwUqoHxBADY42AGOKDVXc41L9HLfQHtJLNBpiO1SvuQOBJ87xxB0Q3W56BdZm9cIdDc4nrgbG51PuDY+uhXGzatAlxcXEYMmRISMciCgdDIkVFamoqBg8eDABIWb+1ymuJ20xI3+RlLGKQQVEpLAfyC72UE0JQZCsiERGFy9e1J9hrUiRbD2OwBdHb9xdsa6Jks9UIiAAgVQTfKlk9ILoF25roDog1vu6lNXFooesB99ChQ5GamhrUcYgigSGRoubKK6+EoiiwHTgCS26B/vUarYiegul+Wr0VsUo5MqAohi60bEUkIqKwRWJR+2C2C1hOgFtAg+FRH3/oSxAPWH0FRABBtSbq4dDkvV5GWxPVONlnQASMtyZ6di/1pnproiWvAKtWrYKiKBgxYoShYxBFGkMiRU2zZs0wYMAAAEDyv67WxMTtPloRq4vEkhSAsVZFtiISEVE4Yq2LqdHWwwDb1cb4Q3+MtCZ6az2ssY2B1kQ9HIZ5p1y9e6nP7TYda028qsL1+YABA9C0adPwKkAUIoZEiqpRo0YBAOJ3H4CpsBimUj+tiNX5CYo+u5p6Lcd3UIxYKyIDIhFRwxPsxDL+tq3PE9T4edBaY/yhP5rmMyj66l7qi7/WRH+th9U1+t13l9Pkjb5bD6vTxygWFOPXX38FAFx11VXGKkFUCxgSKaratm2LM888ExKAtNUbgy/AV/dTf11NvZbjo/tppFoRiYioYYm15S2A0AKil31qe/yhX166nQbqXur12F5aEwN1L/XGlluzy2nyRrMrIBYH/4D48gIHNE1Dv3790K5du6D3J4oUhkSKuhtvvBGyLCN+70GkbjwYWiEeQTGoVsQa5RxrVeRYRCIiCkm4y1pEopwqZUZ4/cNQVHvgGlJA9FanIFoPq/NsTQyne6lna6I7HIYSENNWFeL333+HLMu44YYbgq8IUQQxJFLUtW7d+tj0zpUbIBBi10x3UAy2FbFGOUdbFQG2IhIRUXAisqh9jK1/KMl1Pv7QH1FpD7p7qde6VNhDaj2szt2aGGrrIQBACPSNKwDgWiasVatWoVeIKAIYEikmXHvttYiLi4OQCqBJR0IvKFIT2gCQIrkGFRERxa76OrFMHZUjRWyyOCkiAVhS5KC7l/quE8K+G447UhFeQASglBzE2rVrYbFYcO2114ZXIaIIYEikmJCVlYXLL78cAKBKmyEQWjfPsLqaenI4oIXTGumJk9YQEcUud2AJN+BJUsRa7ar8G245YYpYQFQU18PXMIdxSGZX105RXBKJWsG2qzis/eOOVECudKLRH2WhF6KpaKvtBgBcdtllyMrKCqtORJHAkEgxY9SoUcjIyICQyyHs2yBXGFt/qAqHM7yupp7Y1ZSI6PgVqS6d7nLCDXeRWtg+UuMPZSkyAVFRjgXEcOrj7qbqpkbmGi2Xloe0X9yRCj0gAoCp2MDyXV5krC1Byr/rceDAAWRlZWH06NEhlUMUaQyJFDMSEhJwxx13AAActt0QlYWhBcVwORwQzggdl62IRESxx1dgCTbIuMNhbbX6BVtujLYe1giIQbYmVgmHbkKLWmuiOxy6A2KoMtaWQCrKhRK/FwBw++23Iz4+PqwyiSKFIZFiyoABA9CjRw9AErAnbgfKK6EUVRgKixHragpwVlMiouNVoCBoNCj6614aTFg7XscfRqD1EPAREN3quDWxeuthdWmbKgyVk7G2BBlrS6Dkl+KUi2yw2+3o0aMHzj77bMN1JqptDIkUUyRJwt133w2z2QwtrgCqOQdwOCGV2wMHxUh2NSUiouNPRNcujOD4w7rYxoCY7l4aZUZaD01FgUOiOxwq+aVwxuVi6dKlMJlMuOuuuzhhHsUUhkSKOS1atMBVV10FALAnb4eQHICmQSq3G25VjAnsakpEFDuCuQH3t63RgBhom+N0/KHX7qXe+OmxYzgcCg2iJIwJYwzy13polGfrIQAI2Q5bq0MAgKuvvppLXlDMYUikmHTNNdegXbt2gOx0BUUIQNN8tipGrKupqkZuPCIREcWGWGpBDCXYeds+lloPgei1Hkbomu1tXGKg7qXeeOty6tl6CAACAvakHSgsLET79u1xzTXXhF5xolrCkEgxyWKx4JFHHoGiKFCteVCtOcde9NaqGKmupprG8YhERMeTUIOL537VZzA1XIbs//+hiqWAGMHupdFUfVxiqJPTeHY5zfintErroZtqzYFqzYOiKHjkkUdgNptDrzhRLWFIpJjVoUMHjB07FgBgT9oBTfaYXtpPqyIREVFkl7gIo1tnpNc9rK/dS705+lA22gHRUyith95krC2BklszIGpyJeKyXd1Mx44di/bt24d1HKLawpBIMW3UqFHo3LkzIKuwp2x1dTv1dLRVUaqwu4JjrOB4RCKi6IlU91JZqbsJagIWEZnJcmKpeykQgYAYwaUwIrG0hXw4Hxn/lNYIh4Crm2nHc5woLi5Gp06dMGrUqHCqS1SrGBIppplMJjz22GOw2WzQLEVwJOytuZGmucYkCBFeUHSPR4zUgsZERFT3Ijb+MHauA+5gF27Ai0hAjKVrpCZcH2EONxFl5RBl5TDtyw2rHPlwPkRFJZRc76HVkbAHa9euRXx8PJ588kmYTLHTgkpUXYy8y4l8a9myJe69914AgDNhL1SLjwlqNM0VFFU1tLCoaRCaRwtgrFwEiYjImBgLiO5uneGEs0gEu4h1L/X8uWiR6TEjHCG22kXq+GXlrvsGVYWorAy8gxfy4Xw9IPqiWgqgJu0HANx///3Izs4O6VhEdYV3wVQvnHvuubjwwgsBCahM3gIh271vqGnHwmIkup/G0hNTIiLyLSLjDyN3zo9UuIuFMo4WFJlyqgtlsrgIBER362FIx/fgDof+AqKQ7UhodwhCCFx44YU455xzwjomUV3g3S/VG3feeSfatm0LKA5UpmyGgJ8QGG6rYnXBXBw5HpGIqG5FKiBGiLdgFkxY89fyF2w5YfMTnEVdX+/c3Uu91SWIcYmerYehMtJ6CAACGtoPsCMvLw9t2rTBuHHjQj4mUV2SRJ2/w4lCt2vXLtx8880oKyuDqawxLMVtIZVXQissAhw+xiTI7hnhpGOfe+NwQDMyrkEECJ18SxER1Z16EBDdhIEWMCPBLlA5ddl6KCkRmEzHGhd4IyM/u4w0v6+LsqPLXPgJh6J5I79lyIfzXdv5C4cWM5CceHQ9xO1Q4w8jMTERH3zwAVq2bOm3fKJYwZZEqldatWqFJ554ApIkwRl/CA7bQdekNb4CIlA7XVCJiCj66lFAjMTrkaiDwUJi51rnp/UwGJFqPQzUtRSAPpGO03YIavxhSJKEJ554ggGR6pUYOQMQGXf66afjpptuAgA4knZAtRnsYhLJLqixdAElImpoIrYGYmQnqKmr/SPRFdVP4eGXESSfk9fEyNhDOafQUNdST6q5EFrabgDAzTffjN69e4d8fKJo4F0u1UtXXXUVBg0aBEhARZNd0OIMTn/NiW2IiOq3GJzBNJr7u8uorwERQM0AF4HWwyrhMNzWw7LyoAKiZrHD2mYfVFXFwIEDceWVV4Z8fKJo4d0t1UuSJOGBBx5A586dAUWFvcNhCFMQF4FoTmxDREShOQ5mMPXc53joXhrxqS1ipWtpCK2HACBMTqSdVY7CwkJ07twZDz74IKRIPdggqkOcuIbqtdzcXNx22204cOAApFIL4jY1hqQFeaE7OpmNUNXQ12tyExonriEiqg0x1L3UVVR0b/yFJmKm9TAik9dYLOGXEW8DAAhn6NdyKc41iY4+yU0QhKyiovVuCFslmjdvjvfeew9paf4n0yGKVWz+oHotIyMDr732GlJSUiAS7LC3OwIhBRnS3F1QNRF45lIiIqp7MRIQ3d06ox0Q3XU5XkSivULY7RBOZ+gBUQi9i2pIARECldn7IWyVSE1NxauvvsqASPUaQyLVey1atMDLL78Mq9UKLaUC9lY5EAjjgiM0hkUiolgRQwGRqgnzWimEcAXEMLqYCrvd9RFq0HSHw/KKkHsTCQjYG++FllQKq9WKl156CdnZ2aHVhyhGMCTSceHEE0/EM888A0VRoGWWwdEiL7ygCDAoEhFFGwNi7IpAQAx3ghp3OAwrIB4Nh2EFxKx9UDNLoSgKnn76aZx44omh1YcohjAk0nGjd+/eeOihhyBJEtTGJXA0z4MWbtBjqyIRUXSEGxAjMEFNrHQtjTlhXBePl9ZDANDKy2DP3A+1UQkkScIjjzyCPn36hFweUSwxRbsCRJF03nnnweFw4JVXXoHatATQANPeVEiyHN7sYu4LImcxJSKqXWw9jF1hhkMAYYfDKmUFXwmI8grXp2GEQ1FeDgEBR9M8qI1dazU/+OCDrqW5iI4TDIl03LngggvgcDjwxhtvQG1eAggJ5r3JEJIMyFL4YZFBkYiodjAgxq5wA2K46x6G03LoqkTYLYei3DWhjXA64Wxe5LrHAHDPPfdgyJAhodeNKAYxJNJx6eKLL4bD4cA777wDNbsYAGDamwRJlSAUxWtQlBQZEApEoHWV2KpIRBR5DIjREejhZwNqPZRtVt/FlJe7Zk+FgLPFsYB4xx13YPjw4aHVjSiGMSTSceuKK66A0+nEBx984AqKigbTrhRIquq7VVGSARhcfJdhkYgoMmIgIDa4cGhEFFsPo9K1VFFqFuPReigg4GxVCLVpKQDgtttuwxVXXBFa/YhiHEMiHdeuuuoqxMXF4a233nKd1GUB045USEIDVESuCypw7AZFkoAIrPlERNQgMCDGnhhoPQw2HOqtgBEcdwhAX3dRQMDZpgBq4zIAwN13342LL7445PKJYh1DIh33Lr30UthsNtdkNo3LIBQB87Y0SEJyXQg9wmJY3F12OBsqEZExkZjBNNwqMCBWVV9bD02miI871L8mCTja5kPLKocsy3jwwQcxePDgkI9BVB9IIqxRwET1x8KFC/HMM89AVVXI+VaYt6RB0qrdYBwNeQHHJQbCtxURkX8MiLEj3Aec7m6aIQZEyWIGVDWsiWmko3UINSDKNqurBdNZdX8ha3B0yIOWVglFUfDYY4/hnHPOCbmeRPUFQyI1KMuWLcPjjz8Ou90OqcQMy8YMSM6qYxCEJsK7WPItRUQUWD0PiUITYe8fC3WIyPfgZSyf4TJUFbLFHHJAdIfCiNShekA0q7B3yoVIdCAuLg5PP/00Tj/99JCPQ1SfMCRSg/PPP//g4YcfRmFhIaQKBeaNmZArjvW8FpoAtKMtiaHexPBtRUTkXz0diyg8WstCDVjhlhHJOkTkewghoHn22JHMoY1+Eg4nIDTX8UP4W9Dr4C7Dg2Z1wtE5B8KqIiUlBS+99BK6dOkSUj2J6iNOy0gNTteuXfHee++hadOmEFYV9i5HoCXaq27kvnkRgoGPiKg21MNzqwh3rT9NRKSMaNYhIt9DmEM6hMOpB0QAQQdEoaquOgjN6xIgWqIdtn4VEFYVTZs2xXvvvceASA0OWxKpwcrLy8NDDz2EjRs3ApoE89Y0KHk2ANVaEz0ZffLNtxURUWBR7nIaTCuar2BktIz6vr+vMiRZMvx78BUOjbYk6uMNqw0JkUzm4I5ffX+PVkQ1owxSl1LY7XZ06tQJL7/8MtLT0w2VT3Q8YUsiNVjp6el466230KdPH0AWcHTMgyO7CAJ+Ap7RlsVIdKMiIqJaZbRFLBZa/6K9v88yDAREveXO2+4GuqpWaTn0E/ACHt/L/vo2EHBkF8HRIR92ux19+vTBW2+9xYBIDRZbEqnBczqd+OCDD/Dll18CAOQ8K0ybUyGp8B8IAwVBvrWIiAKL4dZEI+Gqwe/vJ6QZ6VYaqBWxSrdSb/sHaEXUw6HPAmTAJOBonw8t3bW+4pVXXombbroJShiT4RDVdwyJREfNmTMHr732GhwOB6RSE8wb0yGVG7h58XWDw7cWEVFgMRoSjba+Nfj9fQQpo+MOfYVEX11La+zvIyT66lpag024ZjBNcMJsNuP+++/H+eef738fogaAIZHIwz///IPHHnsMeXl5gEOGeVMK5AKLsZ293ejw7UVE5F8MhsRgumdW3z/Yrp3R3D8i33u1n38wk9JIigJUr7/BcKjv7+v4BvbX0uyI76OisLAQ6enpeO6559C1a1djlSc6zjEkElVz+PBhPProo9i0aRMgAGV3IpQ98ZBg8EbG84aHby8iIv9iKCSGMnYvmvtHPaB6tCKGMmOpZytiMOFQ39+jFTGYcCggoLYog9aqBEIIdOrUCc899xwaN25s+NhExzuGRCIvKisrMXHiRHz//fcAACnfAvOmFEjOIG5GPJfRICIi72IkJIY6uUs4+0fz2BHZ/2hIDCkgHm1FDCUc6vtLclDhEACESYOjYwFEmmvpq4suugjjxo1DXFxcUMcnOt4xJBL5MWfOHEyYMAGVlZVAxdHup8UGu58SEZEx4QTFCITEcGf/jNax63XdzaaAk9IEqIDr3yD21xLtcHQuAOI0xMXF4d577+X4QyIfGBKJAti2bRsef/xx7N27F9AAZVcilH1BdD8lIiL/otyaGBVeFnGv0/3DEc6x3aFOkkMPiMEeEgJq81KgXTlUVUV2djaeffZZtGvXrk6OT1QfMSQSGVBaWopXXnkFCxcuBHC0++mWZEh2To9NRBS2+hYSPYNOqPtGe/9wQp4QgBzk9S8SgdB9yxrE34uwqHB0KIRIdXUv7d+/Px544AEkJiaGXx+i4xhDIpFBQgh8//33ePvtt13dTx0STFuSoeRZo101IqL6L5Sg6Bka6iIoRjPgVQ9Zoe7v/pmFGvKECP7nXf3Y4fyug9hfTa9AQm+BwsJCWK1W3HnnnRg6dCikcB9KEDUADIlEQdq1axeeeeYZbNmyBQAgH7DBtCMJksaLDhFRyIK9ca8eGmozJEYqoIVaRjj7Vw9oQHA/L2/7Gw2YnvUOIeTV2M/g/kIWcLYuhta0DADQoUMHPPnkk2jZsqXx4xI1cAyJRCGw2+34z3/+g+nTpwMApDIFpi3JnNSGiCgc4YSH2giKvrpIBhuworm/t9u8YEJeqPt7C5duRn/Pvm5R/eyvJdnh7FAIYXPNejpixAjceOONsFh4fSYKBkMiURhWrVqF559/Hrm5ua41FffFQ9mVCEmwVZGIKCRGAoS/8BCJoOhv/JyR8gONvwtURqT29xXQwtkf8B8SfbUeVq+D3+MHuDX1sr+QBNRWxdCyyyGEQFZWFh588EH06tXLf1lE5BVDIlGYiouLMXHiRMydOxfA0VbFzSmQS8wB9iQiohrCDRDBjrXTyzU4sYq/gGWkjLrY39/PyEjA87e/r5BpJBy69/fHyG1ptTK0xKOth/Gu1sPzzz8f48aNQ1JSUuCyiMgrhkSiCPntt9/w2muvIS8vz9WquDceym62KhIRBc1XkDAaIMId7+ezbB/lhltGpPY38vPxFhLrcv9wfrfVyhCygNqiBKJlOTRNQ3p6Ou677z707dvXeFlE5BVDIlEEFRUV4a233sK8efMAHG1V3JYMuZBjIYiIDPMWJIINEeF26axRZpjhzlsZkdrf6M/G28/F17hDXzxDotHWw+p1qHL8EG5DJQlaSiUc7YqAo2MPBw4ciLvuugspKSnBl0dENTAkEtWCJUuWYMKECa6xigDkQ1bXDKjOerjgMxFRNHiGiVBuVXx1qwx1vT53uApnvb9wy6i+f7A/F28BL5TwHUo49Cwj1H0BCLOAs00RtEYVAIDMzEyMHz8eZ511VtBlEZFvDIlEtaSkpAQfffQRvv32WwghXOsq7kiCfNgKCeyCSkTkV7ghsXqrWbjhLtzF4MMtw3P/UG/dZCW8MsL9nbjLCCUcQkDLqoCzbTFgFpAkCcOHD8dNN92EhISE0OpCRD4xJBLVsn/++QevvvoqduzYAQCQCiwwbUuCXG6Kcs2IiGJciIGiyv7HA/cC9uHeskXi5xmF20bN5oSzXTFEqh0A0KZNGzzwwAPo0qVLndeFqKFgSCSqA06nE9OnT8ekSZNgt9uPLZexJwGSyi6oRES1IpyQ6A5m4Qi3jAZ+iyYUDWrLUqBlJVRVhcViwdixYzFy5EiYTHzQSlSbGBKJ6tD+/fsxceJELF261PUFuwzTzkR2QSUiirRQwln1W6JYKaOBERDQGlXA2boEsLi6x5555pm4/fbb0axZsyjXjqhhYEgkioLly5dj4sSJ2Lt3LwBAKjLDtD2JaysSEUVCsMEs1EXf66qMBkRLcLi6liY7AAAtWrTAXXfdhV69ekW5ZkQNC0MiUZQ4HA589dVXmDx5MsrLywEByIetMO1KhGQPcTFoIqKGLlKhzGg5tV1GAyEsKpytS/RZS202G8aOHYvLLrsMZjMfoBLVNYZEoijLycnBBx98gJ9//tn1BQ1Q9iVA2RvP8YpERMEwEsrCWfA9mHIiVZfjnFA0qNmlUNo5XWP2AZx77rm4+eabkZWVFeXaETVcDIlEMeLff//Fe++9h7Vr17q+YJdg2pMI+aANkuB4RSIivwKFslAXew+ljEiWc5wSkoDWuBzOliWAxfXzOPnkk3H77bejU6dOUa4dETEkEsUQIQR+++03fPDBB9izZw8AQCpToOxKhJwbx8ltiIi88RXIwl0LMNRyIlHGcUpAQMuohNqqBCJeBQC0bNkSt9xyC8444wxIx8uyJUT1HEMiUQxyOp34/vvv8dlnn6GgoAAAIBWbXOMVCywMi0REnqoHi3AWeo9kGeGUc5wRENDS7K5wmOgEAKSkpOC6667DhRdeyCUtiGIMQyJRDCstLcW0adPw1VdfuSa3ASAVmmHalQi5yBLl2hERxQB3KIvEQvOxVM5xREu2w9mqBCLFNWNpfHw8rrjiCowYMQIJCQlRrh0RecOQSFQPFBQUYOrUqZg1a5Y+sF/Kt7jCIpfNIKKGSpIYxmKYluhwhcM013XLYrHgkksuwVVXXYXU1NToVo6I/GJIJKpHjhw5gs8//xw//PADnE5Xdx05zwJlTwLkYrYsEhFR9GnJdjhblOrhUFEUXHDBBRg9ejRnLCWqJxgSieqh/fv3Y/Lkyfj555+hqq6B/1KBBaY9CZAKzRyzSEREdUpAQKTY4WxZqncrVRQFgwYNwtixY9GsWbMo15CIgsGQSFSP7du3D1OnTsWcOXOOhcVCsysscoIbIiKqZfqENC1KIZJd4dBkMmHw4MEYNWoUwyFRPcWQSHQcOHToEKZOnYrZs2fD4XBdpKViE5R9CZBzuHQGERFFlr6URYtSfbZSi8WCCy+8ECNHjkTjxo2jXEMiCgdDItFxJCcnB9OnT8e3336LyspK1xcrFJj2xUM+ZIWkydGtIBER1WtCFtAal8PZrAywuXqwWK1WDB8+HCNGjEBGRkaUa0hEkcCQSHQcys/Px6xZszBr1iwUFha6vuiQoByMh7LfBsmhRLeCRERUrwizCrVZOdQmZYDZdeuYnJyM4cOH47LLLuNspUTHGYZEouNYRUUFfvrpJ8yYMQP79u1zfVED5MNWV1fUci5eTEREvmnxTqjNSqE1qgCOdkZp3rw5Lr/8cgwePBg2my26FSSiWsGQSNQAqKqK3377DdOnT8f69ev1r0v5Fij74yHnc5IbIiJy0SejaVoGkW7Xv961a1eMHDkSZ5xxBhSFPVKIjmcMiUQNzLp16zB9+nT89ttv0N/+FTKUA/FQDtkgOTlukYioIRImDWrjcqhNyvXxhpIk4ayzzsKIESPQtWvXKNeQiOoKQyJRA7V//3588803mD17NoqLi11fdHdFPRAPudQc3QoSEVGd0BIcUJuVQcs61qU0MTERQ4YMwcUXX4zmzZtHt4JEVOcYEokauIqKCixYsAD/+9//sGXLFv3rUpEZygEb5BwrJMGuqERExxMhCWiZFVCblUEkOfWvd+jQARdffDEGDhwIq9UaxRoSUTQxJBIRAEAIgX/++QezZs3CokWL4HQevWlwSFCOWCEftEEuY+siEVF9psU7oDUph5pVoc9SajKZcPbZZ2P48OHo2rUrJIkPBokaOoZEIqohNzcXP/zwA3744QccOnRI/7pUbIJyyAb5iBWSyrGLRET1gVA0aFkVUBuXV2k1bNSoES666CJccMEFSE9Pj2INiSjWMCQSkU+qquLPP//E7NmzsWTJkmOti6oEOScOykEbpGIzZ0YlIooxAgIi2QG1cTm0zArg6GSkJpMJZ5xxBoYOHYqePXtyllIi8oohkYgMKSgowNy5c/HDDz9g165d+telMgXyESuUwzZIlbzZICKKJhGnQs2qgNa4HOLoDKUA0Lp1awwdOhTnnXceF74nooAYEokoKEIIrF+/Hj/88AN++eUXVFRU6K9JhWbX+MUcK5fSICKqI8KkuSahyaqASHHoX7fZbBgwYAAuuOACnHjiiRxrSESGMSQSUcjKysrw66+/Yt68efjzzz+PrbuoAXJ+HOTDVsh5cZwdlYgowoQkoKVXQmtUAS2tUl+6QpIkdO/eHeeeey769++P+Pj46FaUiOolhkQiiogjR45g/vz5mDdvHrZu3XrsBacEOccKJScOUoGF4xeJiEIkICBS7K7upJmVgOn/27vz6CjrQ//jn2cmmWRCAiEYITERWcJyCzQsBhWJKFtKS2sBe1x61XL9WT1aeo7Xc/SkKm1txSvHSm89V3s913pam9qrHqGeW8Uii1vYEVC2sEWBJM1CNjJZZub5/TEz30z2hazwfp0zZ555vs/3+3wzPGg+PN/n+238FW78+PFauHCh5s+fryuvvLIfewngUkBIBNDjTpw4oQ8++ECbNm1ScXFxY0GDJUdpMDBWuLjDCAAdsGXLjq+Xb0Sd/CNqJVfjr20jR47UggULtHDhQo0dO7YfewngUkNIBNBrfD6fPv/8c23evFkfffSRKioqGgsbLDlKo+QsiSYwAkAY2wreMbyiVv4RdWY9Q0kaNmyYMjMztXDhQk2bNk0OB89/A+h5hEQAfcLr9erzzz/Xli1b2gyMjtJoOcoJjAAuP7Zlyx9fL/8VtfInNA2G8fHxyszM1Lx585Senq6IiIh+7CmAywEhEUCf83q92r9/vwmM5eXljYW+4KQ3ZYEXs6QCuFTZEf7A5DMJdfLH1zd5xjAhIcEEw2nTphEMAfQpQiKAfhUKjNu2bdOnn37a9BlGW7IqI01gdHj4JQnA4GXLlu32mWBoD21Q+FxeV1xxhQmGU6dOZaF7AP2GkAhgwLBtW8eOHdOnn36qTz/9VHl5eU3KrRpnICyej5JVGcmwVAADnm3Zsoc2NAbDsAXuJSktLU1z5szRnDlzNGHCBNYyBDAgEBIBDFhFRUUmMO7bt09er7ex0GfJUR4ZGJp63iWrjruMAAYGO8or//D6wGtY02GkkZGRmj59uubMmaMbbrhBI0eO7MeeAkDrCIkABoXq6mrt3LlTubm52rlzp86fP9+k3PI4ZZ13BUJjhUuWn3+NB9A3bIdf/vgG+ePrZA+vb3G3MD4+XrNnz9acOXOUkZHBAvcABjxCIoBBx+/36/jx49q5c6d27NihL774Qj5f2C9lfsmqdMlR7pKjIlJWVaQsERoB9AxbtuxYb2A20vjgs4Vhc2w5nU5NmTJFGRkZysjIUFpaGktVABhUCIkABr0LFy5o79692rFjh3bu3KnCwsKmB3gtOSojZVUEgqN1IYLQCKDTbNmyhwRCoT2sXv6hDU2GkEpSUlKSCYUzZszQkCFD+qm3AHDxCIkALim2beurr77S7t27tXfvXn3++eeqqqpqepDXCgxJDd1prCE0Amhky5YdEwqFDS2eK5Sk2NhYpaena+bMmcrIyFBKSgqTzgC4ZBASAVzSQkNT9+3bp71792r//v2qqalpelDoTmOlK/BeHckzjcBlxLZs2XEN8g9tkD20Xv64hiaL2UtSTEyMvvnNb2r69OmaPn26xo8fzxIVAC5ZhEQAlxWv16tjx45p79692rt3r7744gvV1tY2PcgvWdWRweAYKUelS5aX54mAS4Ud6Zc/rj6wNMXQBtmxTZ8plCS3261p06Zp+vTpSk9P14QJE1jQHsBlg5AI4LLm9Xp1/PhxHThwQF988YUOHDigsrKyFsdZNU5ZVZFyVAXvNF6IYJ1GYBCwrcDQUTuuQf64BtlDG1rMPipJCQkJmjp1qqZOnaopU6YQCgFc1giJABDGtm0VFBTowIEDOnjwoA4ePKjTp0+3PNCvQFAMD44eJ882Av3Ili3b7QsEwtgG2XENsod4W9wllKQxY8ZoypQpJhgmJyfzTCEABBESAaADFRUVOnTokA4fPmxelZWVLQ/0WoHQWB0h60LwbiPBEegVtmzZ0T7ZsV7ZscFQGOttMcGMJMXFxWnSpEmaNGmSpkyZoilTpiguLq4feg0AgwMhEQC6yLZtnTt3TocPH9aRI0d0+PBhHT16VPX19S0P9skERhMeayKYGAfoAtsRHDIa2yD/EK/s4EvOlr/CREVFaeLEiSYUTp48mbuEANBFhEQA6AFer1enTp3S4cOHdezYMR0/flwnTpxQXV1dy4NtBe4wVgcDY41TjpoIqZa7jri82bKlaJ/8Mb5AKBwSGC5qu31q7a+Gy+XSuHHjlJaWZgLh6NGjeZYQAC4SIREAeonP59OZM2d0/Phx5eXlmffz58+3UUGyPBHB4Eh4xKXLDBWN8coOBcIYr2y3V2pjVYmEhASNHz9e48ePV1pamsaPH6+UlBSWoQCAXkBIBIA+ZNu2SktLdfz4cR0/flynTp3S6dOnlZ+f3/pwVakxPHqcgfdaZ+M2S3NgALMj/LLd3kAgdPsC2+5AKGxtMhkpcHfw6quv1jXXXGPuEo4bN04jRozo284DwGWMkAgAA4DP51NBQYFOnTql/Pz8zoVHSWqwWgbHWqesWmdgIh3uQKKX2U5/IPhFBwNgKAxG+1osSB/O5XJp9OjRuuaaazRmzBiznZSUxHBRAOhnhEQAGMBC4fH06dM6c+aMzpw5o6+//lpnzpxRcXFx+5W9lqw6p6xah6w6Z2DYap3ThEjLx11ItM+WLTmDQ0OjfbKjfFK0T3aUX3ZUYF9rs4mGS0xMVEpKinldffXVGjNmjEaOHMlQUQAYoAiJADBIeTwenTt3zoTG0PvZs2dVVlbWcQOhEFnnkOoD71Z9+DZ3Iy9ltmwpwpbtCoQ+ufyBbZdfimoMgh2FQCnwvGB4EExJSVFqaqqSk5Pldrv74KcBAPQkQiIAXILq6upUWFiowsJCFRQUqKCgoMnn8vLyzjXkUyA01juCL6fU4JDVYAXfg8GywcmyHgOALVty2FKkX3akHQh8kX7ZkcH3YAgMhEJfm88FNpeQkKBRo0aZV1JSkkaOHGk+R0dH9+4PBgDoU4REALgMeTweFRUVqbCwUCUlJSouLm7xXlFR0bVGfWoMjg0OyeuQ5Q2ESbPd2rtNuGyN7bClCL9sZ/A9IvCuCFt2+HswBIaCYFuzg7Zl2LBhSkxM1IgRI5SYmKgrrrhCiYmJSkxMNGGQEAgAlxdCIgCgVXV1dSotLTXBsaSkROXl5Tp//rx5P3/+vMrKytqfXKcjPkk+h+SzZPksKfiy/FazfY7Atl+S3wq8bEtWk8+BbcsfPM4O7lPz7cBbR0Np7cYDw97twLulwF07y5btCG0H3x227LBtORQIew5/4Bk/Z+BZPzntQBgM/xwMhZ29y9cal8ulhIQExcfHKz4+XsOHD1d8fLxGjBhhQmBo2+Vydf9EAIBLEiERAHBRbNuWx+NpEhzLy8tVVVVlXpWVlaqqqlJ1dbX5XF1drX7/X5CtpsGxSRhUqwu49yWHw6HY2FjFxsYqLi7OvEKfY2NjTQgMBcH4+Hi53W5ZFndoAQDdQ0gEAPQLv9+vCxcuqKqqSh6PRzU1Na2+N9+uq6tTfX29Ghoamry3ts/v9/fqz+B0OuVyuRQZGWle4Z9D2y6XSzExMXK73eYVHR0tt9vdYr/b7TYhMCYmRg4Hs9ACAPoWIREAcMny+XyybVs+n09+v7/V7fB3y7LkcDjMe+jVfL9lWYqIiGAJBwDAJYmQCAAAAAAwGMMCAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAIiQAAAAAAg5AIAAAAADAi+rsDANAVtm2rtra2v7sBAF0SHR0ty7L6uxsA0CmERACDSm1trRYvXtzf3QCALtm4caPcbnd/dwMAOoXhpgAAAAAAgzuJAAYt184rZdnBf+uyHLIclmQ5JIclWZYsR6gsuN+yJIclK3SMKbNMHfOSwvY5mpYHKpp9tmU1/pNbWBtmv9V4rvB9thVoxpQ5Au0G9lumLFTHDu4z5VJjG47g8aFyNT1HkzrB7tuOVsqaHK8mfWzcZ7Uoa1FH4f1oVq429rfRXlv9aFGnvXbNfrtl/bA6pjysLTu4X2H1AmV2WH8C5VZ4mTk2VGabNq3w4y3blJlLLLQ/1FzwmMClYJvPoTqO4OdAWeBzqJ4ps2xZaqznCO4zL9mmnsNSk/2B+v7Gegod75czVCf4ubEtv2nPGda+U4H9zlB75li/nKE2FeqHv/F4NbYdaNMvhwLnD5QF2nMG91nyyxmqH1bHKQXqKXCe0PcR+hw4lx3cVrDMliP4vThlySHJGfzDdsgK7rPktCw55JAV/JNrqHdq+f8bJQAYbAiJAAYvnxX8dU2BkKhgoAv+9t1YZkmOxkRkBRJXsJFQWnCoRQpoTGBNk0mozRapQc32hZ9DrexrXk+N4TAsJLbYFxbqwj8372LT41up42inrK0fo0U/2vix2ytr66vqbnthbbYWIHs1JLZWruafbdN2eD/Cz9lamQmVCjsm/PgWdexWzmU3eYWHxMbgGXy1VaZQkAw0GR4oQ2FSCoU9mZAVXhYIif7GkGWFh6zAtsOyAgEu+C6zbZl6gXYUbDNUV8F6wf2tlYXVcQYDrtP0MxQS7Q5DYnh7ztD3oab7HArvY9ifIQAMIgw3BQAAAAAYhEQAAAAAgEFIBAAAAAAYhEQAAAAAgEFIBAAAAAAYhEQAAAAAgEFIBAAAAAAYrJMIYPBy2rLtwALagXX/rLB3q9kC96H3sG2F77PDtjtRFrZoXuOS523tb3y3m2yrST1bkuzQ/sY2bVmSLVM3vNy00WRxv/C+tPLZbtKlZt9HG6/mx3ZmLcT2yjp9rk6WhZ+y3Xp2B23abfSxjXUSm7VrhZeZY5utexjaDh1vha9PGNoX1r5pzw5rr3vrJNpqrGdbdtOXAu+BMjXZ77dsyfI3tqnQufxh6zkGjwmW25bftKcm7QffQ+cKfnYEjwm9S2qxzx/21zq07bckvxrXSfQH91lqa53E4ML3CqzHGPozC312BOs0X3vRYcoss7ajJNOWQ1ZgvUdZsoIXSUN9a38vAWDgIyQCGLTqM/7Z313oHaHfwbupecYBQsIvLX9/dqTbwlM6g6EAoLfwX1gAg0ptbW1/dwEAAOCSxp1EAINKVFSU2d6wYYOio6P7sTe4FNXW1up73/ueJK4x9ByuIwCDCSERwKBiWY0DKKOjo+V2u/uxN7jUcY0BAC5HDDcFAAAAABiERAAAAACAQUgEAAAAABiERAAAAACAYdm2fRGrcQEAAAAALiXcSQQAAAAAGIREAAAAAIBBSAQAAAAAGIREAAAAAIBBSAQAAAAAGIREAAAAAIBBSAQAAAAAGIREAAAAAIAR0d8dAHDpqqmp0RtvvKFt27apsLBQDodDqampuuWWW7R8+XJFRkZ2u+2ysjLl5OQoNzdXRUVFioqK0pgxY5SVlaVvf/vbsiyr3fpnz55VTk6Odu3apbKyMrndbk2YMEFLly7VvHnzut0v9J2BeH0988wzev/99ztsf/PmzYqI4H/BAICBybJt2+7vTgC49BQWFmrVqlUqLCyUJEVHR8vv96u+vl6SlJaWpnXr1ikuLq7LbR89elSPPvqoKioqJElut1v19fXy+XySpIyMDK1Zs6bNkJCbm6vVq1ertrZWkjRkyBB5PB75/X5J0pIlS/TYY491GDTRfwbq9RUKiS6XS7GxsW2e4+2335bT6exy3wAA6AuERAA9zuv16r777tPJkyc1YsQI/exnP9OsWbPk9/u1ZcsWrV27VjU1Nbruuuv03HPPdant6upq/fCHP1RZWZmuvvpqPfHEE5o0aZIaGhr07rvv6sUXX5TX69Wtt96qRx55pEX9c+fO6Uc/+pE8Ho+mTp2qxx9/XKmpqeau1GuvvSZJeuCBB3TnnXf2xNeBHjaQr69QSMzKylJ2dnZP/cgAAPQpnkkE0OPef/99nTx5UpL09NNPa9asWZIkh8Oh+fPn69FHH5Ukbd++XXv27OlS22+88YbKysoUFRWl5557TpMmTZIkRUZGatmyZVq5cqUk6d1339XXX3/dov6rr74qj8ejhIQEPfvss0pNTZUkxcTEaOXKlVq6dKkk6U9/+pOqqqq68dOjtw3k6wsAgEsBIRFAjws9kzV9+nRNmTKlRfn8+fOVlJTU5NjO2rhxo2kjOTm5RfmyZcvkdrvl8/n0j3/8o0mZx+PRtm3bJEm33nprq0MRf/jDH0qSLly4oI8//rhLfUPfGKjXFwAAlwpCIoAeVVtbqy+++EKSdN1117V6jGVZmj17tiRp165dnW77q6++UlFRkSSZ+s3FxMRo2rRprbZ98OBB1dXVtVs/KSlJo0eP7nLf0DcG8vUFAMClgpAIoEfl5+ebCWDGjBnT5nGhsrKyMlVWVnaq7dAQw47aHjt2rCTp9OnTbdYPHdNe/VOnTnWqX+g7A/n6Crdnzx7deeedWrBggbKysnTPPffoP//zPxmiCgAYFAiJAHpUSUmJ2U5MTGzzuCuuuKLVOu0pLS3tUtsXLlxQTU1Ni/PExcUpKiqqw/rh58PAMJCvr3DFxcUqKChQVFSU6urqdOrUKb311lu69957tX79+k71BwCA/sIiTQB6VPgvze0Fsejo6Fbr9EbbMTExkgLPJDYvb69+Z/uFvjOQry9JmjBhgiZNmqQbbrhBiYmJcjqdqq2t1Y4dO/Tyyy/r7Nmz+s1vfqP4+HjW4wQADFjcSQQAoIesWLFCy5Yt06hRo8w6iNHR0brpppv08ssvmwl1/uu//kusQAUAGKgIiQB6VPhdldAkMa0JLWTfvE5vtu12u1uUt1e/s/1C3xnI11dHhg0bpn/913+VJBUWFurYsWOdrgsAQF8iJALoUeHPghUXF7d5XPhzYuF12jNixIgutT1kyJAmv8SHzlNVVdVuCAjVDz8fBoaBfH11xje+8Q2zXVBQ0KW6AAD0FUIigB41evRoORyB/7S0NztoqCwhIUFDhw7tVNvhM5K213ZolsprrrmmzfrhM1m2Vb+9GS7RPwby9QUAwKWCkAigR0VHR5sFznfs2NHqMbZta+fOnZKka6+9ttNtp6amauTIke227fF4dODAgVbbnjp1qpmQJHT+5goLC5Wfn9/lvqFvDOTrqzO+/PJLsx16PhEAgIGGkAigx2VlZUmS9u3bp0OHDrUo37Jli86dO9fk2M6wLEuLFy+WJG3evLnV4XrvvPOOPB6PnE6nFi5c2KTM7XbrpptukiStX79e1dXVLern5ORICjxrNnfu3E73DX1noF5fHU1EU1lZqddff12SdOWVVyotLa3TfQMAoC8REgH0uKysLI0dO1a2bevJJ5/Unj17JEl+v19btmzR2rVrJUmzZ8/WzJkzm9R99dVXlZmZqczMzFZ/Sb/99tuVkJCg2tpaPfbYYzp69KgkqaGhQevXr9f//M//SJKWLl2q1NTUFvVXrlwpt9ut0tJSPf7442Zxc4/Ho9dee00bNmyQJN19992Ki4vroW8EPWmgXl8ffPCBfvazn2nr1q06f/682V9XV6ePP/5YDz74oAmvDz74oBk2CwDAQGPZzMENoBcUFBTopz/9qQoLCyUFhgn6/X7V19dLktLS0rRu3boWQezVV1/Va6+9Jkn661//2uqQvKNHj+rRRx9VRUWFpMBdv/r6enm9XkmBYYBr1qyRy+VqtW+5ublavXq1maUyNjZWHo9HPp9PkrRkyRI99thjsizrIr8F9JaBeH299957WrNmjfnsdrvlcrlUXV1tri2Xy6WHHnpI3//+93vgWwAAoHcQEgH0mpqaGr3xxhvatm2bCgsLZVmWUlNTNX/+fC1fvlyRkZEt6nTml3hJKisrU05Ojj777DP985//lMvl0tixY5WVlaUlS5Z0eJfm7NmzysnJ0a5du1RWVia32620tDR997vfZZHzQWKgXV+FhYX6xz/+oS+//FL5+fmqqKiQx+NRTEyMrrrqKs2YMUPf/e53lZyc3KPfAwAAPY2QCAAAAAAweCACAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAvea3v/2tMjMz9ZOf/KS/u4J+Vl1drW9/+9vKzMzURx991N/dAQC0I6K/OwAAaOnChQvKy8vTkSNHdPToUR09elRnz56VbduSpL/+9a9KSkrqlXPbtq0VK1aouLhYd911l3784x93q528vDytX79eknT//ff3YA/718mTJ7Vz504dPHhQJ0+eVGlpqXw+n+Li4jRu3Dhdf/31ysrKUmxsbH93dUCJjY3V7bffrldeeUW/+93vNHv2bEVFRfV3twAArSAkAsAAtGrVKuXl5fXLuY8cOaLi4mJJ0ty5c7vdzksvvSSfz6fZs2dr6tSpPdW9frVq1Sp9/vnnrZaVlZWprKxMu3bt0uuvv67s7GxlZGT0bQcHuBUrVujNN99UUVGR3nrrLd1111393SUAQCsYbgoAA1DojqEUuAMzffp0JSQk9Mm5P/74Y0lSYmKiJk+e3K02Dhw4oN27d0vSJRUEQuE5Li5OS5YsUXZ2tl588UW98sor+uUvf6nrr79eUiAwZmdna//+/f3Z3QHH7XZr+fLlkqScnBzV1NT0c48AAK3hTiIADEBLlixRfHy8Jk6cqJSUFFmWpVWrVqmsrKzXzx0KiXPmzJFlWd1q4y9/+YskKSkpSd/85jd7rG/9LSUlRXfffbfmz58vl8vVpGzixImaN2+e/vznP+v3v/+96uvr9fzzz+uPf/xjP/V2YFq0aJFeffVVVVVV6f/+7/9022239XeXAADNcCcRAAagFStWaMGCBUpNTe12UOuOr7/+Wvn5+ZK6P9S0uLhYubm5kqTFixf3af9729q1a/Wtb32rRUAMd9dddyktLU2SdPr0aZ04caKvujcoJCUladq0aZKkv/3tb/3cGwBAa7iTCAAwQrNOhoa4dsemTZvk9/slSbfcckun6ni9Xm3evFmffPKJjhw5ovLycvl8PsXHx2vs2LGaNWuWFixYoBEjRjSpl5mZKUnKyspSdna2vvrqK7311lvatWuXSkpKNGTIEE2YMEF33nmn0tPTTb26ujq999572rhxo86cOaPa2lolJydr4cKFuu222y56QpUZM2aYZ0q//vprjRs3rtttnT59Whs2bND+/ftVUFCg2tpaxcbGKi4uTklJSZo5c6ZuvPFGXX311d1q3+v16oMPPtCWLVt08uRJVVRUyLIsDR06VPHx8Zo8ebJmzZqlOXPmKDIysknd5t//6dOn9c4772j37t0qKSmRx+PRr3/96xb/4HDLLbdo//79ys/P15EjRzRp0qTufTkAgF5BSAQAGKGhptdff70iIrr3v4jPPvtMUuC5vdGjR3d4/PHjx/XUU0/pzJkzLcqKi4tVXFysHTt26MSJE8rOzm6zna1bt+qZZ55RbW2t2VdXV6ft27drx44devTRR7V06VKVlJQoOztbR44caVL/1KlT+u///m9t375dzz///EUFRa/Xa7Ydju4P2tmwYYPWrVsnn8/XZH9FRYUqKip05swZ7dq1SydOnNCTTz7Z5fbLy8v17//+761OkhT67vPy8vS3v/1NOTk5SklJabOt9957T88//7zq6+s7PG/4REafffYZIREABhhCIgBAklRSUqLDhw9L6v5Q0/r6en355ZeSpMmTJ3c41DQvL08PP/ywPB6PJGn69OlatGiRRo8ercjISJWWlurQoUMdrqt34sQJbd68WcOHD9f9999vzr1nzx796U9/Um1trV544QWlp6frV7/6lY4fP65bb71VN954o+Lj43X27Fn98Y9/1IkTJ3TgwAHl5OToRz/6Ube+A0nau3ev2R4zZky32jh58qQJiEOHDtXSpUuVnp6u+Ph4+Xw+lZaW6ujRo9q+fXu3h/SuW7fOBMSZM2dq0aJFSkpK0pAhQ3ThwgXl5+dr//79ZvhwW44ePapNmzZp6NChuu222zR16lRFRkbq9OnTGjVqVIvjx4wZI7fbLY/Ho71792rlypXd6j8AoHcQEgEAkqRPPvlEtm3L5XJp9uzZ3WrjxIkT5i7axIkT2z3W6/XqqaeeMgHxpz/9qZn5MtwNN9yg++67T0VFRW22lZeXp7S0NK1bt05xcXFm/7/8y78oJSVFq1evltfr1cMPP6zKykqtXbtWs2bNMsdNmDBB1157re6++26VlJRo/fr1uvvuu+V0Orv080uBIbunTp2SFAjKqampXW5DkrZs2WLuIL7wwgvmOcdwc+fO1X333aeKioout19XV2fC99y5c/WrX/2qRdhMT0/X9773PXk8nnbviJ46dUopKSl68cUXm8zC29bsuE6nUxMmTND+/ft17Ngx+f3+i7rjCgDoWfwXGQAgqXGo6axZs+R2u7vVRviQ0Y6W7Ni0aZPOnj0rKTCba2sBMdzIkSPbLX/88cebBMSQefPmKTExUZJ0/vx5LVu2rElADImNjdW3vvUtc9zp06fbPV9rSkpK9Jvf/EaSZFmWHnzwwS63ERKayTY2NrbVgBhu2LBhXW6/qqrKBPr09PR270a63e4Oh98+8sgjXVqmJXRsbW2tSkpKOl0PAND7CIkAAFVXV2vfvn2Suj/UVJJKS0vN9tChQ9s9NhRKJemOO+7o9jmlwPDFtoKUZVlNyhYtWtRmO+HHnTt3rkt9qK2tVXZ2tgl3zSfL6apQsK2urtaWLVu63U5bhg0bZmZp/fDDDy9qzcLExMRWg3d7wq+P8OsGAND/CIkAAOXm5srr9crpdGrOnDndbqeurs5st3ZXL9yxY8ckBe4odWaCm/Z0VD+8L+3NAhp+XFdCU0NDg5544gkzGc6NN96o++67r9P1W7No0SJz92716tV66KGH9Oc//1kHDhwwQ3QvRmRkpLKysiRJhw4d0g9+8AOtXbtWH374YZcDcndmbw0PieGTDQEA+h/PJAIAzF29KVOmKD4+vtvthD/D19Esl+Xl5ZIa75hdjOjo6HbLw4dStjeUNvy5uNAyHh3xer168skntXPnTklSRkaGfv7zn3frecZwycnJevbZZ/XMM8+ouLhYBw8e1MGDByUFvudJkyYpMzNT3/nOdzoM5G35yU9+ovr6em3cuFGVlZV699139e6770oKhPeMjAwtWbKkwzuiHd01bk34Pyh0dyZdAEDv4E4iAFzm6uvrtWPHDkkXN9RUCjw/F1JZWXlRbQ0GXq9Xq1evNst+zJo1S7/+9a/NMM6LNXPmTP3lL3/RL37xCy1ZssQsQeHz+fTll1/qpZde0h133GECaldFRUUpOztbr7/+uv7t3/5NM2bMMCG6rKxM77//vlatWqUnnniiSahrrjuTzoRPthN+3QAA+h//dAcAl7ndu3eb4YsXGxLDlzvoKCTGx8erqKho0E5aEgqIobuwM2bM0Jo1ay5qfcXWuFwu3Xzzzbr55pslBe7A7tmzRxs3btT27dtVWVmpJ598Ujk5ORoxYkS3zpGamqp77rlH99xzj3w+n/Ly8vTZZ59pw4YNOn/+vD766CO98sorevjhh3vs56qqqjLbHU1KBADoW9xJBIDLXCjkpKWlKSkp6aLaCl8T8Kuvvmr32NASGaWlpR0eO9A0D4jTp0/Xs88+2+MBsTXx8fGaP3++nnvuOd16662SJI/Ho08++aRH2g8NZV25cqVefvllM5R306ZNPdJ+SH5+viQpKSlJMTExPdo2AODiEBIB4DLm9/v16aefSgpMtnKxRo4cqSuuuEKSdPjw4XaPzczMNNs5OTkXfe6+4vV69fOf/9wExPT0dP3Hf/xHh89F9oaMjAyzHXrGsyclJSWZdR67sxZjW8rLy83yJ9/4xjd6rF0AQM8gJALAZezgwYMmXISHtosRCi75+fm6cOFCm8fdcsstJoD8/e9/19tvv91uu0VFRT3Sv4vh9Xr1y1/+0ixC35sBcdu2bR0Gv9CzpJJ01VVXdan9c+fOaffu3e0eU1BQYO74JScnd6n99hw6dMhsX3fddT3WLgCgZ/BMIgAMQGfOnDEzWYaE1t+TpK1btzaZhdTtdmvevHldPk/oblhycnK3ljFozc0336y///3v8vv92r17t2666aZWj4uIiNAvfvELPfTQQ/J4PPrtb3+rjz76SIsXL9bo0aMVGRmp0tJSHTlyRFu3btXEiROVnZ3dI33srqefflpbt26VFAhlDzzwgAoKCtqtM3z4cA0fPrzL53r77bf19NNPa+bMmZo5c6auueYaDRs2TA0NDSoqKtKmTZvMXeBRo0Z1eemSoqIiPfLII0pOTtacOXM0efJkjRw5UlFRUaqoqNChQ4e0fv16M0vt8uXLu/wztGXXrl2SAs9bXn/99T3WLgCgZxASAWAAOnjwoNasWdNm+UsvvdTk86hRoy4qJPbEUNOQWbNmKTExUcXFxdq4cWObIVGSxo8fr9/97nd66qmndO7cOe3bt0/79u1r9djQM4z9KXxR+7Nnz+qBBx7osM69996rlStXdut89fX1ys3NVW5ubpvHXHXVVVqzZk27S3u059y5c3rzzTfbLHc4HLrjjjv0/e9/v1vtN+f1evXhhx9KCty97u7yHQCA3kNIBIDL1PHjx81dsIud1TSc0+nUsmXL9Pvf/17bt29XeXl5u2svTpgwQa+//ro2btyojz/+WHl5eeb5t+HDh2vcuHG69tprtWDBgh7r42CwevVq7dy5U/v379fJkydVVlZmhp8OGzZM48eP19y5c7Vo0aJuLbkxbdo0vfjii9q9e7cOHTqkoqIinT9/XhcuXFB0dLSSk5M1bdo0fec73+mxu8ySzDUhSStWrOixdgEAPceybdvu704AAPreH/7wB/3hD3/Q8OHD9c4773Rrrbu2VFdX6/bbb1dlZaV+/OMf66677uqxtjG4PfbYY8rNzdXMmTP1wgsv9Hd3AACtYOIaALhMhYaa3nDDDT0aEKXA4uihYPjGG2+opqamR9vH4HTo0CHl5ubKsizdf//9/d0dAEAbCIkAcBlqaGjQ3Llzde+992rZsmW9co7ly5crJSVFFRUV+t///d9eOQcGl1deeUWStHjxYk2ePLmfewMAaAvDTQEAvebw4cPKzc1VbGysfvCDH/R3d9CPqqur9eabb8q2bS1btqzd51QBAP2LkAgAAAAAMBhuCgAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAwCIkAAAAAAIOQCAAAAAAw/j9bGbWbcOB2/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACox0lEQVR4nOzdd3hT1eMG8PfepOletKXslj0EWQIiKBtRVEQQByi4BQU3XxX3/Dlxb5EhAoqAIiJ7CTJF9l5ltXTvNuOe3x9pbpM2s02bpn0/z5Onae65956kTXLfe849RxJCCBARERERERHVcLKvK0BERERERETkDgZYIiIiIiIi8gsMsEREREREROQXGGCJiIiIiIjILzDAEhERERERkV9ggCUiIiIiIiK/wABLREREREREfoEBloiIiIiIiPwCAywRERERERH5BQZYIiIiIiIi8gsMsEREREREROQXGGCJiIiIiIjILzDAEhERERERkV9ggCUiIiIiIiK/4JUAe/r0aUiSBEmSMGHCBG9ssk7q37+/+joSETkyYcIE9bPi9OnTvq6OaubMmWq9Zs6c6evqkJcpioLu3btDkiRMnjzZ19UhP8HPBaLyanN2MplMaNu2LSRJwnPPPVcl+6i2FtiZM2filVdewSuvvFJdu/S5JUuWqM85KyvL19WhEkajEatXr8azzz6LgQMHomHDhggMDERYWBhatmyJ22+/HUuWLIHJZPJou/v378fkyZPRrl07hIWFITIyEp06dcKzzz6LM2fOVNGzIaK6RK/XY9euXfjmm2/w4IMPonv37tDpdNUSEL755hv8+++/CAoKcnpQcvr0afz666947rnnMHToUMTExKj169+/v9v7sw4+7tzWr1/vcpsFBQX49ttvMXz4cDRp0gRBQUEICgpCo0aNMHToUHz88cfV8n394IMP2tTd3WOjCxcu4LXXXsPVV1+NuLg4BAQEqN9dt956KxYsWOD2d1dycjJefvllXHnllYiJiUFgYCCaNGmCa6+9FjNmzIDRaKzEM6xZOnXqpL7Wa9as8Xj9v//+W12/Q4cOHq8vhMDmzZvx6quvYtiwYWjatCmCgoIQEhKChIQEjBw5EnPmzEFxcbHLba1fv96j94Wrz4ScnBysX78eH3zwAe644w60adMGsixX6UnSixcvYunSpXjllVdwww03oGHDhur+EhMTPd6eN9/XRUVF+PLLLzFs2DA0aNAAgYGBiIuLQ69evfDWW28hPT3d4/rVVJMnT1Zf9xdffNHj9QsKChAZGQlJkqDVanHhwgUAgEajwQsvvAAA+PDDD3H8+HGv1hsAILzg1KlTAoAAIMaPH2+3TL9+/dQydcX48ePV53zq1CmX5evia1Td1q5dK+rVq6e+zs5uPXr0EMePH3dru++9954ICAhwuK3w8HAxb968Kn52VFd4+tlSXX744Qe1Xj/88IOvq1MrdevWzennVlW97vn5+aJBgwYCgJgyZYrDcp988onT+vXr18/tfVr/P7lzW7dundPt7dixQzRv3tzldurXry9WrFjhdj09tW7dOiFJks0+X375ZZfrzZw5U4SFhbmsf+fOnV1+LsyePVuEhIQ43U7Xrl3FiRMnKv18a8LnwgcffKDWYdy4cR6vf++996rrv/vuux6te/DgQdGoUSO3/ofbtGkjdu7c6XR769at8+h94ew1z8rKKve/WPbm7e+Y33//3en+EhISPNqeN9/XO3fuFImJiS6389dff1XiFTBzJztVtV27dql1aNasmVAUxaP1Z8+era5//fXX2ywzGo2iTZs2AoC4/fbbvVltIYQQWnhBYmIihBDe2FSd5s7ZY6qc8+fPIyMjAwBQr149DB48GFdeeSUaNmwIg8GA7du3Y/bs2cjJycGOHTswYMAAbN++HQ0aNHC4za+++grPPPMMACAgIAB33XUX+vXrB4PBgBUrVmDhwoXIzc3FXXfdhaioKAwbNqxanivVXjNnzmRXvDqqbOuapYWgqnt5fPHFF0hOToZGo8HUqVPdrl9wcDBat26NvXv3Vmr/kydPxsCBA52W6dixo8NlZ86cweDBg5GdnQ3A/LpNmDABrVu3hlarxcmTJzF79mycOnUKly5dwo033oht27ahS5culap3WYWFhXjggQcghEBoaCjy8/PdWm/x4sW455571GOtLl26YMyYMWjWrBny8/Nx4MABzJw5Ezk5OdizZw8GDhyIvXv3IiwsrNy25syZg7vvvlv9fejQoRgxYgTi4uJw9uxZzJs3Dzt37sTu3bsxdOhQ/PPPP4iLi/POC+Aj48aNw//+9z8YjUYsWrQIX3zxBcLDw91at6CgAL/88gsAc8vSXXfd5dG+09PT1Zap0NBQDB48GFdddRWaNGkCANi7dy9mzpyJlJQUHD16FIMGDcLmzZtx2WWXudz2bbfdhttvv91pmW7dujlcJoSwOX6XJAmtWrVCWloaMjMz3Xl6Hiv7GREQEICOHTti9+7dHm/Lm+/rAwcOYODAgcjJyQEAXHbZZbjrrrvQvHlzZGVlYfny5fjtt99w6dIljBw5EqtXr8ZVV13l+QtQg3Tr1g2XX3459u7di6SkJKxduxaDBg1ye33r45B77rnHZpnlu+L+++/Hzz//jBdffLFCvRcc8nokdqAuti7W1FaSumzOnDmiU6dO4qeffhJFRUV2y5w7d05cdtll6t/u7rvvdri9CxcuqGextVqtWLVqVbky1mefmzZtKgoLC732fIhqkprQ0lLbPfHEE+Kll14Sv/32mzh//rwQQoiXX365Sl93g8EgmjZtKgCIoUOHOi27ePFi8cgjj4gZM2aIPXv2CKPRaNPSUNEW2Mo+L+sWtGuvvVYUFBSUK2MwGMTdd9+tlhsxYkSl9mnP1KlTBQDRuHFj8cQTT7jdAtuiRQu17EsvvWS3pSQtLU1cfvnlarnp06eXK3Pp0iWbVtwvv/yyXBlFUcTjjz+ulrnnnnsq+nSFEDXnc2HEiBFqPb7//nu317NuZbrhhhs83u+mTZtEYmKi+Oqrr0ROTo7dMpmZmTbHyddcc43D7Vm3wLrTcu9Mbm6uuP3228V7770n1q5dK7KysoQQtsfs3j5+3bx5s3jggQfEV199JXbs2CGKi4uFEKJCLbDefF/36tXLppXeYDCUK7Nw4UIhy7IAINq2bWu3jLtqQgusEEJMnz5drcddd93l9npnzpxRW+9jYmLUv6O17OxsERQUJACIBx54wJvVFgywVYgBtubJzMx0q4vEvn371L9dcHCwyM/Pt1vO+kv+mWeecbi9W2+9VS332WefVbj+RDVZTTlQrWuqOsAuXrxY3f7s2bM9Xr8mBNjGjRur2zpw4IDDcpmZmUKr1QoAol69epXaZ1m7du0SGo1GABC//vqrzd/NWRA5duyYWi4+Pl6YTCaHZZcuXaqWveWWW8ot/7//+z91+ahRoxxux2QyiU6dOgkAQpZlcfToUY+eq7Wa8rmwZMkStR5XX3212+sNHDhQXe/XX3/1eL+5ublCr9e7LJeSkmLTrfvkyZN2y3kzwDpSlQHWkYoEWG+9r7du3apup3Hjxk4bGiZNmqSW/e6779yua1k1JcBeunRJvQQuNDRU5ObmurXea6+9ptZ/8uTJDstZjn+Dg4MdnsCpiCofhdgysu6GDRvUx+xdZO5oAANFUfDzzz/jtttuQ/PmzRESEoLw8HC0a9cOEydOxL59+5zW7ZVXXik3wMOaNWtwxx13oHnz5ggKCip3kbrRaMSKFSvw1FNPoW/fvqhfvz50Oh3Cw8PRpk0bTJgwARs3bnS4T8sIobNmzVIfa968ebnn7Oi1cmcU4m3btuHBBx9E27ZtER4ejtDQULRs2RLjx4/H2rVrXa5fdkCN/Px8vP/++7jiiisQHR2N0NBQXHbZZXjuueeqrBuJL0RFRbn1+nbs2BHt2rUDYO7yZe8CdCGE2q3I1aicU6ZMUe8vWLDA02pXyj///IOJEyeiQ4cOiIqKQlBQEJo1a4bbbrsNy5Ytc7qu9WARlvdoUlISnnrqKbRr1w6hoaGIiorCVVddhS+++MLtQT/y8vLw0UcfYciQIWjUqBECAwNRr1499OjRAy+99BJSU1Odrl/2vWIymTBz5kwMGTIEjRs3hlartTsQREpKCqZOnYoOHTogNDQU9erVQ8+ePfHBBx+goKAAgPmSCHsDSfz111/qPq3/ns5MmTJFXWf58uVureMOV6MQV9Xf7Y8//sCNN96IBg0aICgoCImJiRg7diz++ecfj5+DXq/H999/j5tuukkd0CQqKgqXX345nnrqKYcDhxw5cgShoaGQJAmRkZE4deqUw31kZmaiWbNmkCQJGo3G6ec2OTZnzhwA5u7AI0eO9HFtKubSpUvq/datWzssFxUVpXaXdbd7rzuMRiPuv/9+mEwm3HTTTbjlllvcXte67i1btoQsOz50a9OmjXrfXv2tjw+cdYWVZRljx44FYD4Omz9/vtv1ragdO3YgLi4OkiQhMDAQP//8c7kylTkmHD58OOrXrw/APCjTyZMnXdYpKSkJ69atAwDExsbixhtv9Ph5hYWFISAgwGW5+vXr45prrlF/d3V8S957X1u/L2699VYEBQU53JZ19/uffvrJo/pWRGpqKnr06KF+pz/55JN2L9us6LFeXFwcbrjhBgDm18be+84e64xTtvuwNcvnSGFhIRYuXOjWtt3ijRTs7CyC9VkcZzd7Z5GOHz8uunTp4nQ9WZbFiy++6LBu1mc4165dKx555BG727E+w9S/f3+36jx+/Hi7TebWLa+u1nf0WjliMBjEAw884HLbY8aMsduVwsJSrl+/fuLEiROiQ4cODreVkJBQJ1uQe/Toob4GW7duLbfcupW2Y8eOTrdlMplERESE+j/rzbNQjuTl5YnbbrvN5f/K8OHDHdan7Jne5cuXi6ioKIfbGjJkiMOu2RZ//vmnqF+/vtM6hYeHi99++83hNqzfK+np6aJv3752/2+trV27VkRHRzvcZ6dOnURSUpJISEiwu77JZFIHioiOjnbZFbywsFDdX7NmzZy2mnjKVe8Ob//djEaj0881WZbFO++843ZLizuDbuh0OvHVV1/ZXf+bb75Ry/Xu3VsYjUa75UaPHq2WmzZtmtPX1J9VZQtsUVGR2irkrFujMzWhBbZJkybqttxtqenSpUul9mnt7bffFgBEWFiYSEpKEkIIt1tgjx8/rpZr0KCB08+SP/74Qy37+OOPl1tu/V1/6NAhp3VetGiRWvbKK69074na4c7fccWKFWrX5rCwMLuX43jjmPDJJ59Uy7700ksu627dyvTYY4+5+5QrzLq31vz58+2WYQtsKW+9r61bVe11q7eWkZGhltVoNA576LniTgvsqVOn1IGQAIi33367XBlvHOtZD6zlzuf8xo0b1fKdO3d2WtZ6oDBvXpZR5QF206ZNYvHixTbXFC5evLjcrewH6fHjx0VsbKy6Tt++fcX//d//iXnz5okff/xRPPHEEzYHo47exNZfENddd536BfDss8+KH3/8UcycOVNMmjRJXLhwQV2nV69eIiwsTIwYMUK89tprYvbs2eLnn38WH3/8sXjwwQdFaGio0w+0Xbt2icWLF4sBAwao5b7++utyz3nXrl0267kTYG+//Xa1TFBQkHjooYfErFmzxI8//igef/xxER4eri6/9tprHXaXtZTp2rWraNeunZAkSYwYMUJ8+eWXYsGCBeLtt98WzZo1U8t50t2mNiguLrY54L948WK5MvPmzXP54WPN+u+7bdu2Kqh1qaKiInHllVeq+2vZsqV4/vnnxZw5c8T8+fPFG2+8YfOhOHDgQLsHRdZflCNGjBAhISEiODhYPPTQQ2LmzJli3rx54qmnnrJ5Tzg7eFi4cKHahS4gIECMGjVKfPrpp+Lnn38W3333nRg7dqzalUWWZbFmzRq727F+LS3v686dO4v/+7//E/PnzxfffPONePTRR9XyBw4csOma1bVrV/HBBx+IBQsWiE8++UT06dNHDUOWLkn2vkTfeustdRs//vij07/BnDlz1LKvvvqq07Ke8iTAeuPvZv3lrtPpxAMPPCBmzZol5syZIyZPnqy+tjfffLPLA9UtW7ao5SVJEsOGDRMffvihWLBggZg5c6Z46KGHbP5WjrYzatQop3X/7rvvbA6+K3OtUk1XlQF2zZo16raffvrpCm3DGwG2R48eom3btiIkJESEhISIhIQEMXr0aPHjjz+69be1Pnnt7Fo56/fWzJkzPXmaDh09elS9Duyjjz5SH3c3wAohRMeOHW3KuroGNjAwUBw+fLhcmfbt26vb8STAhoeHezxCqYWrAPvTTz+pn/txcXFix44d5cp465jQ+sRzYmKiy+fUsmVLtfx///1XkafvEesTDP/884/dMtaf7x07dhSdOnUSYWFhIigoSDRp0kTccMMN4ssvv3TaiOGKvwRYb72vJ06cqC73JMACsPv/6g5XAXbv3r3q6NUajcbuddveOtYzGAwiPj5e/V52Nfq49bXH1p9pjlg+d8LCwhyecPZUjZxGx2QyqVMFBAYGip9//tluueTkZPVsnCzLYv/+/eXKWH9BWD70srOzne5/9erVTt/4aWlpaouPLMsOr1Pw9jQ68+fPV5fHx8fbPdt0+vRpm5YNR9dbWr8mOp1OLF261O7ztN5WZUJXfn6+3RMXFbmVDf5VwTp8dOvWzW6ZV1991e2DDyGEzSACc+bM8XKNbZW9NtfeAZ5er7epk70P7bLD9Tdr1szutVDbtm1Tz25GR0fbbc1LSkpSW6GbNWsm9u7da7fu27ZtE5GRkQKAaNKkid1rh8r27Hj88cedtkpYt9BOmjTJbtmynxX2vkSTk5PVAy1XB+LXXHON+sVz9uxZp2U95UmArezfzfpMa1RUlN0pHg4fPqxOseLsQDUnJ0cdDCgqKkqsX7/e7vM7duyYegItNDRUpKamliuTkZGhnn3XaDRi06ZN6rIjR46o4TwiIqLSU4EcOnTIa59f9p5LZVVlgLU+afPLL79UaBveCLDObm3bthV79uxxuq3U1FTRqlUrdZ0GDRqI5557TsyYMUPMnj1bvPzyy+r3nSzL4vXXX6/Qcy1LURT1s+CKK66wOXjzJMD+/fffNiecunTpIt566y0xd+5c8c0334jHHntM/XyNjIwUy5Yts7sd6xPrznq5CGF7vSwAce7cOY+fvxDOA+wnn3yits4kJCSII0eOlFvfm8eEQghxxRVXqPVZu3atw3pv2LBBLde1a1f3n3AFbdq0Sd1fXFycwwN9d6fRadiwodPn54y/BFhvva+tj+eeeOIJp/u0vl4WcH0y2xFXjX+WRpSgoCCxZMkSu9vw1rGeEEI8/fTTahlnvRPy8/PVxrKAgAC3vtMmTJigbtvVZ7W7amSA/fXXX9Wyn3zyidOyR44cUVt07I1wZf0FERoaqo7aWFknTpxQt+voDeHtANu1a1d1+Z9//ulwO9u2bbP5QrD3IWj95nvttdccbuvbb791q5wr1v8jlb1V9cXuGRkZomHDhi4P2qxHkPz0009dbtfT8hV14cIFodPpBGB/EA9rer1eHd2ydevW5ZaX/aLcuHGjw22NHTvWabnJkycLwBw2du/e7bRe33//vbqtuXPnlltu/V7p3r270/C6Y8cOtWzHjh2dnv2z3q6jL1HrLl6OBjY5cuSIWmb48OFOn2tFeBpgK/N3sx6501mLlHXXRXsHqkLYzsX4+++/O32O1i1/b775pt0y69evV0eETEhIEJmZmUKv14vu3bur63rjZFHZkxuVubmaq7Sy9fN2gL3zzjvVbTs66eRKZQKsVqsV/fr1Ey+++KKYNWuW+OWXX8QXX3whxo0bp7ZqAuYWQlcHRunp6WL06NHqMYO925gxY1x+Pnniq6++Uj/3/v33X5tlngRYIYT477//bC5tKXvTarVi2rRpTo9zXnjhBbX86NGjHZazHsTJcnMUCF1xFGCnTZumPn7ZZZc5DMjePCYUQojPP/9c3Z6zWQbuuecet/dbWcXFxTYjSL/33nsOy1rmEe7Zs6f43//+J2bMmCF++eUX8e2334oHH3xQPQFs+Z9YuXKlx/XxlwArhHfe16tXr1bLNm7c2OklNWUvRazowJyOstNvv/0mgoODBWA+GbVhwwa763vzWE8Ic081S32c9U6YNWuWWs7Vfi3eeecdr34nC1FDA6ylG1pERIRbU4707t3b4T+99ReEsw+qirC0ODgaVt2bAdb6Ne7UqZPLbQ0aNEgtb6/l1LJMo9GIjIwMh9uxDuqVmYjYXwKs0WgUQ4cOVfflLHxYX4v87bffutz2888/r5Z/6623vFltGx999JG6ny1btrgs/9xzzzn8P7UOQq7OQFuHzrLXLiqKIurVqycA19NwCGG+psPSMmjv7239XpkxY4bTbVkfsLnqGmTdZc7Rl6h1sJo6dardMs8884xaxlUrR0V4EmAr83crKipSvyDj4+Nddv2x7p5oL0hZWkfatGnj8jkKIdTuU85Cj/X76rbbblOnKQEgxo4d69Z+XKnLAdbSvR6oeAtcRQPssWPHnIaxpKQkm0DXrl07l/+jJ06cEPfff7/Dv49OpxNjxoyxuayoos6dO6e2ij755JPllnsaYIUwd8G3d82/5VavXj0xdepUh6PenjhxQv1sdfbdZd0a48n3iT1lA6zRaLT5G1x11VVOj0O8eUwohPkkteXkh6NRV61bmXQ6nUhLS3P7+VbEfffdZ/OZbW98FYsLFy44HRU6IyNDXH/99er2YmJiXPY8LMufAqwQlX9fG41Gm5bc8ePH2/0sWbJkSbmgXNHjOXvZ6fvvv1e336BBA6fd1r15rGfRs2dPl99V1r047PXetMd63Io33njDrXVc0aIG2rRpEwCgYcOG+Ouvv1yW12g0AMwTGhcWFiI4ONhuuauvvtrtOuTk5GDu3Ln4888/sW/fPqSlpTkckfDcuXNub7eitm/frt4fOnSoy/JDhw7FmjVrAJhHLO7Zs6fdcm3atEF0dLTD7TRu3Fi9X5nRiBMTE+2OmlbTPPbYY1i5ciUAoFmzZjaTNPsLy/sHMP9vLlmyxGl567/roUOH7I7eCwBXXnml0+04+185cOAAMjIyAADh4eEu6wSYR27MysrCoUOHnJZz9b7euXOnen/AgAFOy1pG5XZmwIABaNOmDY4ePYpZs2bhjTfesBlh0mAwqKPzNWrUCMOHD3e5zapUmb/bnj17oNfrAQD9+vVTP2sdGTRokMO/V3Z2Nvbu3QsAiI+Pd/t/AIDT/4FXX30Va9aswbZt22xG+G7evDm++OILl/twxyuvvOJwpPzazvK+BYB69epV675btWrldHnTpk2xfPlydOzYEcnJyTh8+DAWLlyI2267zW75t99+Gy+88AIURcH999+Phx9+GB06dAAAHDx4EF999RW+++47/Pzzz9i6dStWrVplM6qvpyZNmoScnBwkJCTgtddeq/B2APPooHfffTcWLVqE0NBQvP322xg9ejSaNWuGgoICbNu2DW+//TY2bNiAd999F7t27cLvv/+OkJAQm+20aNEC06ZNw6uvvgoAeOCBB/Drr7/ipptuQmxsLM6fP4958+Zh+/btiIuLQ1FREXJzcwHA6ejH7ioqKsKtt96KxYsXAwCuv/56/PLLL+Xqac3bx4TR0dG4+eabMX/+fOTn52PhwoXlZoVYuHCh+rxvuukmxMTEuP0cPfXee+/h+++/BwBERkZiwYIF0Ol0Dss3bNjQ6faio6Px66+/omfPnti3bx/S09Px5Zdf4n//+59X611TeON9rdFo8OWXX2LYsGEwmUyYNWsWdu3ahbvuugvNmzdHVlYW/vrrLyxevFidpcAyUr433hcA8M477+DZZ58FYB5tfOXKlWjRooXD8lVxrHfvvfeqeWPmzJnljonOnDmjzujSoEEDDBs2zOk+LazfP16b2cQbKdibLbC5ubmVOrtd9myt9RlOZ91ura1du7bc9VzObi1atLC7HW+2wFqfafn6669dbst63r7nnnuu3HLLMncGZ7KU9eTMuT+ybsmJj4+3ey2OtZrahdi6+6Snt7Ldda1b8pwN8lO2bNnWBOu5CT292evuYv1ecTVQhXW3LHfm4rNcd+LsLPD777+vbrPsvIALFy5Ul1XVyLeetMBW5u9m/Tny/PPPu6yX9edU2ZZA68FTPL0FBAQ43e+JEydsBrDTarUOB0CpjaqyBdbS7Uyj0VR4GxVtgXWXZYRfAOKuu+6yW8b6891Zd9CPP/5YLXfFFVdUuE4LFixQt/PHH3/YLeNuC6zRaBRXX321AMzXgG7fvt1uOZPJZDO4maNBtxRFEc8995x6qZG9W3x8vNi6davNwEiuvhMdsW6Bte7eOm7cOJcDcHn7mNBixYoVTv8nrVuZ7B07OrvOfcWKFW6/Nl9//bW6n9DQULF582a313XFeqBJTwfi9JcWWG+/rxcuXKiOhm3vptPpxNdffy1GjhypPubOMbk91p+L1u+Lzp07i+TkZJfre/NYzyIrK0vtvmyvd4L1tcKOeqDZs2rVKnW9SZMmub2eM945beBF2dnZlVrf0lpgj6OWWWvHjh3D8OHDkZycDABo27YtHn/8cXz++eeYN28eFi9erN4sc0qZTKZK1dkdljOBABAaGuqyvKXlouy6ZXnrzJG/e+ONN/DWW28BMM/1tnr1apdn3qOiotT7aWlpLveRnp5ud11vq8x7yNn7pzL/K1VVJ8D1+9rSc0Kr1bo1F587768JEyYgMDAQAPDtt9/aLLP8LkkS7rvvPpfbqmqV+bvl5eWp9521kFg4e+0q8z9gMBicLo+NjbVpHWzRogW6d+9e4f1RKcv/uclkUudKrmmsWwkOHz5cbvn58+fx3nvvAQDat2+PRx991OG2Jk+ejPbt2wMw997YunWrx/XJyMhQ5wW/9dZbK90L49dff1VbW+655x706NHDbjlZlvHJJ5+o7/mvv/7a7ntHkiS89dZb2L17Nx566CG0bdsWoaGhCAkJQYcOHfD8889j//796N69O3JyctR14uPjK/U8ANjMOZ2fn++yZ1ZVHRMOHjwYTZo0AQBs3LjRZt5p61amRo0a2e31NnLkSIe3Bx980K26zZ49Gw8//DAA8/fY0qVLcdVVV3nw7Jxz9b7wd1Xxvh41ahSOHz+OF198EVdccQWioqKg0+mQkJCAe++9Fzt37sSDDz5oczzXoEGDSj8X6/dFYWGhW7miKo6rIiMj1bm+8/Pz8euvv6rLhBCYPXu2+ruzuV/Lsq6rO1nMHTWuC7F18LrmmmuwYcOGat3/22+/jcLCQgDAtGnT8Prrr0OSJLtlH3jggWqrV3h4uHrfncnVrQ88rdf1lYKCArVrbmU1a9YM3bp188q2AODdd9/Fiy++CMDc9WbVqlXo2LGjy/WsA671l58jZ86csbuut1neQ5IkwWg01oiTFNbv65deekntvlYdLKHKaDTCYDC4DLHuvL9iYmIwevRozJ07FytXrkRSUhKaNWuGM2fOYNWqVQDMB0jNmzev/BPwIeu/mzvhxdlrZ72tu+++22YS9MqaNGmSzfvr6NGjeOGFF/DOO+94ZfuHDx/22gFg3759ERsb65VtVQfrEwMZGRlunciobtbd07KyssotX7lypRrkBg0a5PA7HTB/bg4cOFDttr59+3aX3fDLWrp0KS5dugQAiIuLwxtvvGG33MaNG23uW8r16tULQ4YMUZctW7ZMvT948GCn+27UqBHat2+PAwcOIDc3F4cOHcLll19ut2znzp3x1VdfOdzWgQMH1APp1q1bIzIy0um+3fH2229j/vz52LJlCxYvXozbbrsNCxYscPi5XFXHhLIsY/z48XjzzTchhMCsWbPw8ssvAwBmzZqlBuu7777b5aUTFTFv3jzcc889EEIgMDAQS5YscXmJi6dcvS/8XVW9r+Pj4/Haa6857fZ/8OBB9b6jE0qeGD16NCIiIvDpp5/i6NGjGDBgANatW4dGjRo5XKeqjvXuuece/PTTTwDM3YjHjx8PwNxl+cSJEwDMlya1a9fO7W1WxaUoNS7ARkZGIiwsDHl5edVybWlZq1evBgDUr18fr732msM3RG5urs0fpKpZX/Nw7Ngxl+Wtyzh7A1SXS5cuqWd1Kmv8+PFeuzZ1+vTp6nUhkZGRWLFiBbp06eLWutYhd9euXU7LKoqC3bt3AzB/cVrOBFaFxo0b47///oMQAufPn0fTpk2rbF+e1Mmiut/XjRo1Uq+9PHnyJNq2beuwbGZmpttf9A8//DDmzp0LRVEwY8YMvPLKK5gxYwYURQEAt8/C12TWnx3Hjx93Wd5Zmar6H5g7dy7mzp0LAOjevTvS0tJw5swZvP/++7j22msxcODASu9j/vz5Xjvpsm7dOreuta4pEhMTsXnzZgDmgxBLq1VN4qp3y4ULF9T7ERERLrdnHdTcOaFVlnWrorvXYa9btw7r1q0DYB6LwTrAVnf9LazDoidjiDgTHh6Ov/76C8OGDXMrxFblMeGECRPw5ptvAjC3hr700ksAYHNyrey1sRauWo6d+eWXX3DXXXdBURTodDosXLjQrbFNPFVdvb58xVfvi4MHD6q97lq2bOnymmR3ffLJJ5AkCZ988olbIbaqjvUGDhyIZs2aISkpCRs2bMDp06eRmJiIH374QS3jSesrYBtgExISvFLPamuasT4z4OqNf8011wAwH2y6c9DkTSkpKQDMA4A4O5uxevVq9UDVEU+esyvWgzBZWnicsW7tdDSAU133+eef48knnwRg/lJdvny5R2fSLrvsMvVg7sCBA06/XLds2aJ2xerTp0+Vtor369dPve+tVu/K6tq1q/oFs2bNGpfvHW+64oor1PuWA0RHLN3G3NG3b19cdtllAIAZM2bAYDBgxowZAMwnwEaMGOF5ZWuYzp07q4OJbNiwwWW3JsvAcfbExsaqA2ts3bpVfT9UxqlTpzBp0iQA5pb2efPm4ccff4RGo4GiKLj77rttDuLIc9Yn6o4cOeLDmjhmHbTs9W6xPrg9e/asy+1Zt+ZX5eA97vK0/klJSer9ytTf+kSxNy+HsITYPn36AAAWL16MMWPGOLxUoKqOCVu1aqUG85MnT2LTpk3YuHEjTp48CQC46qqrnJ7wrIglS5bgzjvvhMlkglarxYIFC3DDDTd4dR8Wrt4X/s5X72vrIOfty4Q+/vhjPPbYYwDMPYn69+9vE9StVdWxnqV3AlDabdgy2Blg7gLsaKA8R6wHYnTUI8TjenplK26w7gbi6syH5YUDoJ4Rqy6W7lEnT550GDpNJpN6vaQznjxnVxITE9Vus3v27HEaYnfu3Im1a9cCMJ/pqAnXgllGIfbGzRutr99++616jVJoaCj+/PNP9O7d26NtSJKEW2+9FYD5Tf7pp586LPvJJ5+o9z1943vq9ttvV0PHO++8U+n/PW/QaDQYO3YsAPOXyHfffVdt+7YOkp9//rnTEPbxxx97tO2HHnoIgPnL8/HHH1dPYowfP96t621rusDAQFx//fUAzCf3LN2K7Fm+fLnLEaMtn+0FBQX4v//7v0rVzWQyYezYsWoQ/uSTT9C6dWv07dsXzz//PADzNVL3339/pfYDmEch9tbnlz+1vgLm7qwW27Zt82FN7MvIyLB531r+X61Zh/Bly5Y5HRciJycHy5cvV3+3PgHmrgkTJrj1v2DpsgoAL7/8svr4Rx995LD+8+fPd7rvv//+W/0cio6ORsuWLT2uP2A+SN+xYwcA80lXT78fXbGE2L59+wIwBztHIbYqjwmtW5Jmzpxpc3zhaSuTK3/++Sduu+02GI1GaDQa/PTTT7j55pu9ug+L4uJim+NUe+8Lf1fd72vAfDmJ5VgvKirKK98vZX300Ud4/PHHAZh7UzoKsVV5rDdhwgS1B+rs2bPxyy+/qJcm3nLLLR5fTmD57ggPD1dPZFeaN0aCcmcU4ilTpqhlHE3Ka2EymWzmdnvssceczolVUFAgfvjhBzFv3rxyy6xH+XNn/r0hQ4ao5T/88MNyy/V6vc3k1nAyYtqHH36olpk1a5bLfbsaqdl6VMOGDRuKQ4cOlStz5swZ0bJlS7WcowmWLcvdGRHSk7L+YNasWeroiyEhIZWal/H8+fMiJCREAOaRT1evXl2ujPUIjE2bNnVrHrvKeuqpp9R9DhgwQFy8eNFhWZPJJFatWiVef/31csucjVDradmzZ8+qI/wGBga6fE+kpKSI1157TezZs6fcMk/mlRZC2MybOGnSJGEymcqVKTvXpzsjIWZlZal/f+ubszn6vMGTUYgr+3fbtGmTujw6OtruZPBHjx4VDRs2tHkN7I2Gm5eXJxISEgQAIUmSePfdd+3+LSyysrLExx9/LFatWlVu2Ysvvqjua/To0TbLDAaDOhckKjFKpL+oylGIi4qKRGhoqEAFRjK1qMgoxFu2bBHffvutKCoqcljm7NmzNvMWtm7d2u6otnq9XjRp0kQtN2LECLujlxcUFIibbrpJLdexY0ehKEq5ctbvmYrMWWnh7ijE+/fvF7Isq2UdzTt55swZm7ksHY32eeDAAXHp0iWH+/vxxx/V+Z+DgoLE4cOHPXpeZZWdB9Zabm6uzefziBEjyo0W781jwrJyc3PV/++wsDB1BNqQkBCP5051ZtWqVercsxqNRvz0008V2s6xY8fEe++9J3JychyWKTsPbHR0tMjMzPRoPxUdhdj6O8DT0Ys9fU95+32dkpIiDh486HB/u3btEk2bNlW3M3PmTLefmz2ustPjjz9u89lmbx5ubx3r2WP9P2D9/W7vONeZrKws9Zj75ptv9mhdZ6rtGthBgwaprVD33XcfnnjiCSQkJKgXx7dq1Uqd802WZfz666/o3bs3zp8/j48//hg///wzbr31VnTu3BmRkZHIy8tDUlISdu7ciTVr1iA/Px+vv/56pes5efJktXXzySefxPr163HttdciJiYGx44dw+zZs3Hs2DEMGDAAx44dc9ptdNCgQer9qVOnIjU1FW3btoVWa37ZGzdujE6dOrldtzFjxmDx4sWYP38+Ll68iG7dumHChAno3bs3NBoNdu7cie+//15tkRg6dKjavY7Mli9fjnvvvVdtXb/33nuRlZXlcv6sbt26oVmzZuUeb9SoET744ANMnDgRRqMR1113He6++27069cPRqMRy5cvV7tdaLVafPPNNwgKCnK4H+trrk+dOuVwTlZX3n77bfz3339Ys2YN1q1bhxYtWmDUqFHo3bs34uLioNfrkZycrLbmJycnY9CgQXjhhRcqtD93NGnSBPPnz8dNN92E4uJijB8/Hh9++CFuuukmtG7dGsHBwcjOzsbRo0exdetWbN68GSaTySsDW3z99dfo0aMHCgoK8MUXX+Cff/7BuHHj0KRJE6SkpGDBggXYvHkzevfujaSkJJw/f96tAREiIyNx22232XQp6t+/P1q3bl3pOtcUffv2xaRJk/DFF18gMzMTV155JcaPH4++fftClmVs374d33//PfLz83HzzTc7fS+FhoZiyZIl6NevH3JycjB16lR8/fXXGDVqFDp06ICwsDDk5OTg5MmT2L59O9avXw+9Xo85c+bYbOfvv/9WWxeaNGmCb775xma5VqvF3Llz0aVLF+Tk5OCJJ55Av379vN4d0Bd2795tMzIkYDsY0KJFi8p1s7zvvvsqPKBYYGAghg0bhl9//RU7d+5EXl6eTe8ie8p+jliPQHnq1Klyy7t164ZbbrnF5rGUlBQ88MADeOqpp3Dttdeie/fuaNy4MYKCgpCeno7Nmzdj4cKF6qCL4eHhWLBggfr9ai0gIACffPIJRo0aBSEEfvvtN7Rv3x533323Oh7BoUOHMHv2bLWbYUBAAD777DOnA8NUl8suuwxTpkxRW2aff/55/P777+o8sIWFhdi6dSt+/PFHtRWqadOmNi281v78809MmzYNgwcPRt++fdXvmdOnT2PJkiXqPJA6nQ7z5s2r0vdNWFgYli9fjuuvvx6bNm3Cb7/9hltvvRW//PKL2oulKo8Jw8LCcOutt2LmzJk2g1+OGjXKresq3fHff/9hxIgRKCoqUrcdHBzs8rijXbt25QbKycvLwzPPPIMXX3wRQ4YMQY8ePZCQkIDQ0FBkZWVhx44dmD9/vvqe02q1+Omnn5xeA7to0SL8+++/No+dOnVKvf/BBx+Ua3FzNDCZuz744AOH84FmZWWV+4xo3rx5ue663n5fJyUloUePHujZsycGDRqEdu3aITg4GMnJyVi9ejWWLVum9uCaOnWqTc+AqjB9+nRIkoTp06eruWPdunU240lU5bHePffco3ZDv3jxIgBzr05Px5VYv369eszt1R4H3kjB7rTAGo1Gm7NsZW/2zj5euHBBDBo0yOE61jeNRiO+/fbbctvwtAVWCCGee+45p/vq06ePuHTpktqS4Oxs0R133OFwO2VfK3dalQwGg7j//vtdvh6jR492Oj+mpVxda4Et28rm7s1Vq8Z7770nAgICHK4fHh7u1tlg63UqO/dacXGxePTRR4VGo3HrOd59993ltuHNljyLf/75R51b0tUtLCxM7N27t9w2PG2BFcI8v7OlBdjerWPHjiIpKUk0btxYABCXX365W9vdtm2bzXYcza/mTdXZAiuE+fP7rrvucvjaybIs3n33XactLdYOHz4sunbt6tb/QGBgoFi+fLm6bmZmpvrZK8uy08/1H3/8Ud1O165dnbba+Avr19jdW2V6mQghxJIlS9RtzZ4922V5T+tn77jBeg5iV7eOHTva7alR1o8//igiIiJcbi82NlYsW7bM4XaquwVWCHPryVNPPWXTEuvo1rlzZ6dztr733nsut9GiRQuxZs2aCj83a+58LuTl5YlrrrlGLXfTTTeVa4n1xjGhPRs2bCi3/tq1ayv7tFUVec86+p/YvXu32+s3a9bMrfe+9feJuzdHrMs4O4axfIa7e3N2/Omt9/WOHTtcbiM8PNzpfLOecCc7CSHEk08+qZZr1apVuZZYbxzr2ZOXl1duTtyXXnrJ4+c5ZswYAUAEBwc77TngqWprgdVoNFi1ahU+/vhj/Pbbbzh8+DBycnKcXo/WsGFDrF69Ghs2bMC8efPw999/4/z588jNzUVoaCiaNGmCTp06oX///hgxYoTXRgJ76623cM011+Czzz7Dtm3bkJ2djdjYWLRv3x533HEHJkyYYPcsrz1z5szBNddcgwULFmD//v3Iysqyme/JU1qtFt9++y3uu+8+fPfdd9iwYQMuXrwIRVHQoEED9OnTB/fcc49XRt4k9z399NMYNmwYvvrqK6xatUptwUtISMDw4cMxceJElyOvWU9TotPpKn32V6fT4dNPP8Vjjz2G77//HuvWrcPJkyeRmZkJnU6H+Ph4tG/fHn379sUNN9zgUW+Ayrjyyitx5MgRLFiwAL///jt27NiB1NRUFBUVISIiAi1atEDXrl0xePBgDB8+3K15Wd0xYMAAHD58GO+//z6WLl2KpKQkBAYGolWrVrj99tsxceJEBAcHq6PluTvUe48ePRAZGYns7GzUq1cPo0aN8kp9axKNRoPZs2djzJgx+Oqrr7B9+3bk5OQgPj4effr0weTJk9G7d2+3r09v27Ytdu3ahaVLl2LRokX4559/kJycjPz8fISHhyMhIQGdO3fGwIEDcdNNNyE6Olpd9+GHH1bPpk+dOtXpNaVjx47F8uXLMXfuXOzevRvPP/883n///cq8FHXSDTfcoI5KOWfOHNx1111Vvs/Bgwfjt99+wz///IPt27fj3LlzSEtLQ05ODsLCwtCwYUP07NkTo0aNwvDhw93qMTF27FgMGTIEM2fOxMqVK3HgwAG1FahevXro1KkTrrvuOkyYMKHGjdoqyzLef/993HvvvZgxYwY2bdqE48ePIycnR/08v+KKKzB69GjccsstTo9Rbr/9dgQEBGDdunU4dOgQUlJSUFxcjPr166NTp0645ZZbcOeddzrtLeRtlrEorr/+emzcuFFtYf7ll1/U6/yq6pjw6quvRsuWLdUpQhITE2vstert27fHX3/9hX/++Qdbt27FmTNnkJaWhqysLISEhKB+/fq44oorcOONN2L06NHqa1ebeet93b59e8ycORPr1q3Drl27kJycjOzsbMTExKBly5a48cYbMX78eK/M++qJDz74AJIk4YMPPsDx48fRv39/rF+/Xm2JrapjvdDQUIwZM0YdnFKSJIejcjuSk5ODpUuXAgDGjRvn1QFMJSEqOTwuEXnFihUrMGzYMADAlClTPB5QiCpv37596gh57v4NVq9erU558dhjj5UbgIWoNpg+fTqefPJJaDQanD59ukZOp0NERDXHjBkzcN9990GSJOzfv997AzihGkchJiLnLHMQh4eHV+m1qOTYZ599pt5399rbL7/8Ur1fG+Z+JbLn4YcfRoMGDWAymfDuu+/6ujpERFSDWX9X3HbbbV4NrwADLFGNYQmwTz75JOLi4nxcm9pn06ZNTuef/fzzz9XBgBo3buzW3Hz//fefOhDH4MGDvf4BTVRTBAcH45VXXgEAfPPNNw7nJiQiIpo3bx6OHDkCnU7nlUF2y2IXYqIaIC0tDfXr10dsbCxOnDjh1esEyKxVq1YoKirCddddh65duyIuLg4GgwEnTpzA4sWLsXv3brXs0qVLHQbYv/76C4qi4OjRo3j33XfV0fn+/vtv9OnTp1qeC5EvKIqCHj164N9//8Wjjz7qdO5rIiKqm0wmEy677DIcOXIEzz77LN5++22v74MBlojqhFatWqmDdDgSHByMb7/9FmPHjnVYxt7w++5eL7ty5Uqbwbo8ERsbi759+1ZoXSIiIqLaggGWiOqErVu34tdff8XWrVtx/vx5pKeno6CgANHR0WjTpg0GDx6MiRMnIj4+3ul2LAE2LCwMbdq0wcSJE3Hvvfe6NQpqYmKiOoKup/r164f169dXaF0iIiKi2qLaptEhIvKlK6+8EldeeWWlt8NzfkRERES+wxZYIiIiIiIi8gschZiIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILHMSJiIhqFUVRUFhYiIKCAoe3oqIi6PV66PV6FBcXq/ft/a7X62EymaAois1Pe48pigLAPFq1o5tlxGpJkqDRaBAQEKDetFqt3fuWW1BQEIKDgxEUFOTwfnBwMIKDgxEaGorQ0FBotfyqJyKi2oPfakREVOMIIZCXl4ecnBzk5OQgNzfX7n3rx/Ly8lBYWIjCwkJfV79GCQ4ORlhYGMLCwhAeHq7et75FREQgKirK5hYcHGx33mMiIiJf4ijERERULYQQyM7ORkZGBjIzM21+ZmVllfvdYDBUan8ajQbBwcEICQkpdwsODsaqmRshCQCKZHUDJHu/CwAo+SkACMtjVvcFzNuzKmq5D5v7ovQxCeaVZPNPUfLT+jHIgJBLHtMAkAWGPTgARUVFKCwsRFFRkcP7laHT6RAZGYmoqCj1Z1RUFOrVq4fY2FjExMQgNjYWsbGxCAsLY9glIqJqwQBLRESVpigKMjMzcenSJaSmpiI1NdXmfmpqKtLS0qDX6z3abnBwMCIiIhAREYHw8HBERERg47xtkIwSYJStfsqAUYJkkgCTBJhkc/hE3Q1VQhKARgBaBUIrAE3JT62A0CqARmDE49eqLdpZWVnqrbi42KN96XQ6NcxaB9vY2Fg0aNAA9evXR2xsLDQaTRU9WyIiqisYYImIyCVFUZCeno6LFy/iwoULuHjxonpLSUlBamoqTCaTW9uKiIhAdHQ06tWrhz0rD0IyyIBeU/JThmSQS++LuhtAfUnIAghQIEpulvvQKhjywDVIS0tDeno60tPTkZOT49Y2NRoN4uLi0KBBA8THx5f7GR8fD51OV8XPjIiI/B0DLBERAQD0ej0uXLiAs2fP4ty5czZBNSUlxWXrqSzLiImJQVxcHOLi4vD3TzvMIbRYA6nkJ0Np7aOGXZ0JQqdABCoYM+0GpKWlITU1FcnJyW6d4JAkCfHx8WjcuLF6a9KkCZo0aYJGjRohMDCwmp4RERHVZAywRER1iKIoSE1NxdmzZ3H27FkkJSXh3LlzOHv2LJKTk9VRdO3RaDSoX78+GjZsiP/+PAipSGO+FWtKw2kd7rJLjgkIQKdABJkgAk0QgQqGTxmIlJQUJCcnIyUlxeU1u3FxcWjSpAkaN26Mpk2bIjExEQkJCWjQoIE6sjMREdV+DLBERLWQoii4ePEiTp06pd5Onz6Ns2fPOr2+MSQkBM2aNUOTJk2wbsY/5nBaElRRzIBKVUNAAAECIsgIEWzCnW/cjPPnz+P8+fM4d+4c8vLyHK6r0+mQkJBgc0tMTESTJk04hRARUS3EAEtE5MeEELh06VK5oHr69GmHLVparRaNGjVC06ZNsXXBbkiFGkiFWkiFGsDAkEo1i0DJwFPBRoggE8a9fQuSkpJw5swZnD171mHXdo1Gg8aNG6Nly5Zo0aIFWrVqhVatWqF+/focMZmIyI8xwBIR+Qmj0YikpCQcO3bM5uaodcrSMnVi81lI+VpIBVrIhRqgSMOQSrWCgACCTFBCTBDBRgyZ2BdnzpzB6dOnHc4HHB4ejpYtW6q3Vq1aoXnz5rzGlojITzDAEhHVQMXFxThx4gSOHTuGo0eP4tixYzh58qTd1iaNRoOmTZsiacdFSAXmoCrla81dfxlUqQ5Sr7kNMUIJNWLQQ1fh+PHjOHPmjN3BpGRZRtOmTdG2bVu0a9cObdu2RevWrREUFOSD2hMRkTMMsEREPmYymXD69GkcOnQIhw4dwsGDB3H69Gm7B9rBwcFo3bo1Dvx1DFJegNqyypF9iVwTkoAIMUKEGnHLC8Nw4sQJHD9+HNnZ2eXKajQaJCYmom3btmjfvj3atm2LFi1acKofIiIfY4AlIqpmqampOHjwoBpYDx8+bLe7Y1RUFFq3bo1/Fx2AlB8AKY+tqkTeZmmtVUKNuPuDW3D48GEcPnwYGRkZ5coGBASgZcuWaNeuHTp16oSOHTuiQYMGvKaWiKgaMcASEVUho9GIEydOYM+ePdi3bx8OHjyI1NTUcuWCg4PRrl077F16BFJuAOTcAE5LQ+QjaqgNM+COt2/C4cOHceTIEeTk5JQrGxMTg44dO6q31q1bs5WWiKgKMcASEXlRUVERDh48iH379mHPnj04cOBAudZVWZbRvHlznNp8AXKuFlJugLkbMMMqUY0lIIBAE5RwI0a+OBT79+/H0aNHy3X11+l0aNu2rRpoO3fujIiICB/Vmoio9mGAJSKqhNzcXOzZswd79+7F3r17ceTIkXIHtKGhoejYsSN2LjgAOaekK7Ai+6jGROQtQhYQYQbc+/kY7N+/H/v37y93Pa0kSWjVqhW6dOmCLl26MNASEVUSAywRkQeKioqwb98+/Pvvv9i1axeOHj0KRVFsysTGxiLjUC7kHB2knJKBlti6SlTrCQiIIBNEhAHXPdUPe/bsQVJSkk2ZsoG2S5cuCA8P91GNiYj8DwMsEZETRqMRhw4dUgPrgQMHYDAYbMo0adIEF3amQ84OgJyjA4p57SoRmYkAE5RIA4b/rz92797tMNBeccUV6NmzJzp27Mg5aYmInGCAJSIq4+zZs9i+fTu2bduGPXv2lLuGNS4uDun7cyFn6yBn6SDpNT6qKRH5G1eBNjAwEF26dEGPHj3Qs2dPJCQkcJRjIiIrDLBEVOcVFRVh9+7d2LZtG7Zt24bz58/bLI+MjETuiSJzWM3ScSobIvIaEWCCEqXH4Meuwo4dO5Cenm6zPC4uDj169ECPHj3QvXt3REVF+aaiREQ1BAMsEdU5QgicPXsWW7duVVtZ9Xq9ulyr1aJTp07Yu+iYObTyGlYiqgYCAiLEiAe+ux07duwo99kkSRI6dOiAPn364KqrrkLz5s3ZOktEdQ4DLBHVCUajEfv378emTZuwefNmXLhwwWZ5/fr1kbYnF3KmDnK2DpKJowQTkW8JWUBE6DHqjWHYvn07Tp48abO8QYMGuOqqq3DVVVehS5cunH+WiOoEBlgiqrUKCwuxY8cObNq0Cf/88w9ycnLUZVqtFp07d8Z/C49AzgiEVMhuwURUswmdCZMXjMfmzZvx77//2rTOBgcHo0ePHmqgZVdjIqqtGGCJqFbJzMzE5s2b8ffff2Pnzp02B3gRERHIO6aHnBEIOVPHuViJyG8JWUCJKsZ1/7sGW7Zssbl2VpZldO7cGddccw369euH2NhYH9aUiMi7GGCJyO+lp6djw4YNWLduHfbu3Qvrj7WGDRvi0s5syOmB5jlZ2cpKRLWMgIAINWLsxzdhy5YtOHr0qM3yjh07ol+/fujXrx8aNGjgo1oSEXkHAywR+aXMzExs3LgRa9euxX///WcTWtu2bYvjK8+ZQ2sBB2AiorpFBJrwwMzbsH79ehw4cMBmWbt27XDNNdegf//+aNKkiY9qSERUcQywROQ3srKysHHjRqxbtw67d++Goijqsg4dOuDIH0nQpAdBKua8rEREgPm62Ylzx2LDhg3Yu3evzedmu3btMHjwYAwcOJDdjInIbzDAElGNVlhYiE2bNmHlypXYtWsXTCaTuqxdu3Y4tvwcNGkMrURErogAEyb/PB4bNmzA7t271c9TSZLQrVs3DB48GP369UNYWJiPa0pE5BgDLBHVOCaTCbt378aKFSuwceNGFBYWqsvatGmDEysuQJMWCKlY68NaEhH5L6FVMGn+WKxevRr79+9XH9fpdLjyyisxePBg9O7dG4GBgT6sJRFReQywRFRjnDx5EitWrMDq1auRmpqqPt64cWMkb8mCnBoEuYihlYjIm0SgCeO/GYlVq1bh9OnT6uOhoaEYMGAArr/+elx22WWQJI4nQES+xwBLRD6VlZWFlStXYsWKFTh27Jj6eHh4OPKPGqG5FAQpl6MHExFVNctoxqPfvbbcicRmzZph+PDhGDp0KGJiYnxYSyKq6xhgiajaKYqCf//9F0uXLsWmTZtgNBoBAFqtFkqKBvKlIMgZgZAEQysRkS8ICIhIAwY+3RPr169HcXExAECj0aBXr14YPnw4evfuDa2WvWKIqHoxwBJRtUlLS8Py5cuxbNkyXLhwQX28bdu2OPHnBcipQZCMsg9rSEREZQmNgscX34Nly5bZTMsTHR2NIUOG4MYbb0RCQoIPa0hEdQkDLBFVKZPJhO3bt2Pp0qX4559/1FEvQ0NDUXhcgSY5GHJ+gI9rSURE7lCCjRj9/lCsWLECGRkZ6uNdu3bFyJEj0bdvX7bKElGVYoAloiqRlZWFP/74A0uWLMGlS5fUxzt27IjDi5IgpwVBUthFmIjIHwlJ4NWNT+CPP/7AP//8o84vGxMTgxtvvBE33ngj4uLifFxLIqqNGGCJyKuOHDmCRYsWYc2aNdDr9QCAiIgI5B8yQk4JhlzAM/NERLWJCDThtk+uwx9//IHMzEwA5mtl+/Tpg5EjR6Jbt24cwZiIvIYBlogqzWg0YsOGDVi0aBH27dunPt6uXTsc/73k2lYOyEREVKsJSeC5lROxZMkS7NmzR328WbNmGDVqFIYNG4bg4GAf1pCIagMGWCKqsMzMTPz+++/47bffkJaWBsB81l1cDIDmYjCnvyEiqqOUECOGv3Y1Vq5ciYKCAgDm3jgjRozAyJEjERsb6+MaEpG/YoAlIo+dPXsWCxYswF9//aV2E65Xrx6y/ys2B1eDxsc1JCKimkBoFEycfyd++eUXdfR5rVaLQYMGYcyYMWjdurWPa0hE/oYBlojcdvDgQcybNw8bN26E5aOjffv2OLbkvHlQJnYTJiIiOwQEXlo/BT///DP27t2rPt6tWzfcdttt6NWrF2SZ06gRkWsMsETklKIo2LZtG3766Seba5rkDB0050Ih5bCbMBERuU8JM6Df092wbt06dWq1hIQEjBs3DoMGDeI0PETkFAMsEdllNBqxatUqzJ8/H6dOnQJg7valnNdCcy4UciEPMIiIqOJEoAm3fDAYS5cuRX5+PgCgQYMGuPPOO3HdddchMDDQxzUkopqIAZaIbBgMBqxYsQJz5szBxYsXAQAhISEoPgpoLoRA0vP6ViIi8h6hUTDhh5H4+eefkZWVBcA8rsJtt92GESNGICQkxLcVJKIahQGWiAAAer0ey5cvx48//oiUlBQAQHR0NHL+NUCTHAzJxGuTiIio6ghZYOKCOzBv3jxcunQJABAeHo4xY8Zg9OjRCA0N9XENiagmYIAlquOKi4uxbNkyzJ07F6mpqQBKRhTeqYcmOQSSwutbiYio+ghJ4Mml92Lu3Lk4e/YsAPMUPLfffjtuueUWtsgS1XEMsER1lNFoxJ9//olZs2apwTU2NhZZ24ohpwQzuBIRkU8JCDy3aiJ++OEHJCUlAQAiIyNx5513YuTIkQgKCvJxDYnIFxhgieoYRVGwdu1afP/99zh//jwAoH79+sjYUmgOrpwKh4iIahABgal/PYgffvhB/d6qV68e7rzzTowYMYKDPRHVMQywRHWEEAJbtmzBd999hxMnTgAAoqKikLvLZL7GlcGViIhqMAGBp5bdh5kzZ6qDDDZo0AD33XcfhgwZwnlkieoIBliiOmDfvn344osvcODAAQBAWFgYCvcL86jCCr/wiYjIfwhJYMriu20ugWnVqhUefvhh9OjRA5LEE7JEtRkDLFEtdv78eXz11VfYsGEDACAwMBDG4xpozodCMjK4EhGR/xKywD2zRmLu3LnIy8sDAHTr1g0TJ05E27ZtfVw7IqoqDLBEtVBubi5mzZqFRYsWwWg0mrtVXQiE9kwoJAPncSUiotpDaBXc/OEALF68GAaDAQAwZMgQPPTQQ6hfv76Pa0dE3sYAS1SLGAwGLFmyBLNmzUJOTg4AQMrUQXsqHHKB1se1IyIiqjoi0IQBL3THypUrIYRAUFAQxo4di9tvv50DPRHVIgywRLXEjh078PHHH6tTDTRv3hznlmZCzuKXNhER1R2fHXoDn376Kfbu3QvAPNDTxIkT0b9/f14fS1QLMMAS+bmUlBR89tln6nWuUVFRyNthMk+JA35RExFR3WOZQ/bLL7/EpUuXAACXX345HnvsMbRu3drHtSOiymCAJfJTer0e8+fPx5w5c1BcXAyNRgMkBUKTFArJxAGaiIiIhCww9tvh+Omnn1BcXAxZljFq1Cjcd999CAkJ8XX1iKgCGGCJ/ND27dsxffp0dUJ3KTsA2hPhkAsCfFwzIiKimkfoTOjzv05Yt24dACA2NhZTpkxBv3792K2YyM8wwBL5kczMTHz66adYvXo1ACAmJgbZWwyQU4PYXZiIiMiFN7c+Y3MCuFevXnj88cfRuHFjH9eMiNzFAEvkB4QQ+Ouvv/D5558jJycHsixDOhvE7sJEREQeEpLAnd9ej7lz58JgMECn02H8+PG44447oNVyxH6imo4BlqiGO3fuHD744APs2rULACDlaaE9HgE5j92FiYiIKkoJMqLzw82xc+dOAEDr1q3x7LPPcpAnohqOAZaohjKZTPj555/x/fffQ6/XQ6fTwXREB82FEEiC3YWJiIgqS0Bg6l8P4pNPPkFOTg40Gg3GjRuHu+66CzqdztfVIyI7GGCJaqBz587h7bffxr59+wAAUpYOAcfDIRWxaxMREZG3iQATek+9TJ2Srnnz5vjf//6HDh06+LhmRFQWAyxRDaIoChYvXoyvv/4aRUVFCA4OhmGvlnO6EhERVYNpax/B9OnTkZmZCVmWceedd+Kee+5BQAAv2yGqKRhgiWqI5ORk/N///R/+/fdfAICUFYCAY5GQijU+rhkREVHdIbQKrnmhszrif5s2bfDCCy8gMTHRtxUjIgAMsEQ1wsqVK/Hhhx+ioKAAgYGBMB3UQb7IVlciIiJfmbb2Ebz//vvIycmBTqfDxIkTccstt3DeWCIfY4Al8qGCggJMnz4dK1asAABIOQHQHo2AzGtdiYiIfE7oTOj8SHPs2LEDgHne2P/973+IjY31cc2I6i4GWCIfOXz4MF599VWcP3/ePK/r6WDzvK5sdSUiIqoxBAQm/nIHvvzyS+j1ekRGRmLatGm48sorfV01ojqJAZaomimKggULFuDbb7+F0WhE/fr1kbnaADmHw/UTERHVVN+efA+vv/46jh07BgAYO3Ys7rvvPmi17DVFVJ0YYImqUU5ODt544w1s3boVACCnBUJ7LAKSSfZxzYiIiMgVIQlc/95VWLJkCQDg8ssvx0svvYT69ev7tmJEdQgDLFE1OXr0KF544QUkJydDp9NBORgIOZkDNREREfmb51ZPxLvvvouCggJERkbihRdeQK9evXxdLaI6gQGWqBosW7YM06dPh16vB4o0CDgUCTmfc8oRERH5KxFkRMId9dQuxffeey/uvvtuyDJ7VRFVJQZYoipUXFyMjz/+GH/88QcAQM7QQXskkl2GiYiIaoGyXYqvvvpqTJs2DSEhIb6tGFEtxgBLVEXS0tIwbdo0HDp0CJIkQT4VAs05jjJMRERU2zzxxz344IMPYDAYkJiYiDfffBNNmzb1dbWIaiU2AxFVgSNHjuChhx7CoUOHEBERAe2+SGjPhTG8EhER1ULTb/gBn376KWJjY3H69Gk89NBD+Oeff3xdLaJaiS2wRF62fv16vPnmmyguLoZUoEHAwShIRRxin4iIqLYTASa0ua8B9u/fD0mS8Mgjj+DWW2+FJPEENpG3MMASeYkQArNmzcKMGTMAAFKGDgG83pWIiKhOEZLAtf/XC0uXLgUA3HLLLXj00Uc5XyyRlzDAEnmBwWDAu+++ixUrVgAANOdDoDnFLsNERER1kYDAfXNH4csvvwQA9O7dGy+//DIHdyLyAgZYokoqKCjAiy++iB07dkCj0UA6HAJNCr+giIiI6rppax/BG2+8Ab1ej9atW+Odd95BbGysr6tF5NcYYIkqISMjA1OnTsXRo0cRFBQE464gaDIDfV0tIiIiqiE+2vcKnnvuOWRlZaF+/fr48MMP0axZM19Xi8hvMcASVdDZs2fxzDPP4MKFC4BeRsDBKMh5Ab6uFhEREdUwItCEBqNCkJSUhMjISLz//vto27atr6tF5Jc4ugxRBRw/fhyPPPKIObwWaqDbG83wSkRERHZJxRok/1yItm3bIjs7G4899hj+++8/X1eLyC8xwBJ56NChQ5gyZQqysrIg5Wmh2xvNaXKIiIjIKcko49TMDHTt2hUFBQV4+umnsXnzZl9Xi8jvMMASeWDfvn144oknkJeXByknAAH7oiEZNL6uFhEREfkBySTjwGfn0adPH+j1erzwwgtYs2aNr6tF5FcYYInc9O+//+Lpp59GQUEBpOwABByI4hyvRERE5BFJSNjxzjFce+21MJlMeP311xliiTzAo28iN+zYsQNTp05FYWEhpEwdAg5EM7wSERFRhUiQsO7F3bj++uuhKAreeOMNrF271tfVIvILHIWYyIU9e/bg6aefRnFxMeQMHbSHoiAJydfVIiIiIj8nIDDoze5Yvnw5NBoNXnrpJQwYMMDX1SKq0diEROTEwYMH8b///Y/hlYiIiLxOgoQ103Zh2LBhMJlMeO2117B+/XpfV4uoRmMLLJEDx48fx5QpU8wDNmUFIOBgNCSF4ZWIiIi8S0Bg4Bvd8Ndff0Gr1eLdd9/FFVdc4etqEdVIDLBEdiQlJeHRRx81T5WTE4CA/VGQFHZYICIioqohINDnxcuwbt06BAcHY/r06ejQoYOvq0VU4zDAEpWRnp6OiRMnIjk5GVKe1jxVDgdsIiIioiomJIHLH2uGnTt3IjIyEp9++ikSExN9XS2iGoUBlshKQUEBpkyZgqNHj0Iq1CBgTz1IRoZXIiIiqh5CVtDyvlgcOnQIcXFx+OKLLxAfH+/rahHVGDwyJyphNBrx8ssv4+jRo4BeNs/zyvBKRERE1UhSZJz4IQ3NmjVDamoqpk6divz8fF9Xi6jG4NE5EQAhBD744ANs27YNMEkIOBgFqUjr62oRERFRHSQZZSQvLEBMTAxOnTqFV199FSaTydfVIqoRGGCJAMybNw/Lli2DLMvQHomEnBfg6yoRERFRHSbpNXjrrbeg0+mwdetWfPHFF76uElGNwABLdd62bdvw9ddfAwDkY6HQZAT6uEZEREREwJTLXsK0adMAAL/88gt+++03H9eIyPc4iBPVaWfPnsVDDz2EvLw8yMnB0B4PhwTO9UpEREQ1x10zb8R3330HjUaD6dOno0uXLr6uEpHPMMBSnZWfn4+HH34YZ86cMc/1ui8akmB4JSIioppFQKDfq52xatUq1KtXD9999x1iY2N9XS0in2AXYqqThBB46623cObMGaBYRsChSIZXIiIiqpEkSNjw6h60aNECGRkZeOWVV2A0Gn1dLSKfYIClOmnRokXYtGkTAgICEHAoCpJB4+sqERERETkkKRJef/11hISEYO/evfjmm298XSUin2CApTrn6NGj6kh+4nAQRxwmIiIiv3BvwpN47rnnAADz58/Hxo0bfVwjourHa2CpTikoKMD999+Pc+fOQU4PhPZQJAdtIiIiIr9y86f9sWDBAoSHh2PmzJmIi4vzdZWIqg1bYKlOmT59Os6dOwcUy9Aei2B4JSIiIr+zeMo6tG3bFrm5uXj77behKIqvq0RUbRhgqc5Yt24dVqxYAVmWEXAkEpKxiv/9JS+EY0nyznaIiIio1pCEhBdeeAGBgYHYuXMnFi1a5OsqEVUbBliqE7KysjB9+nQAgHQ6GHKOzn7BmhI6GVyJiIjIifubP41JkyYBAL766iucPn3atxUiqiYMsFQnfPTRR8jKyoKUr4XmbGj5At4KjDVlG0RERFTrfT5qLnr16gW9Xo8333yTU+tQncAAS7Xe+vXrsXbtWkAA2qMR5ed7LRsYKxIgHQVgT7bFVlciIiLygAQJuz85gbCwMBw5coRdialOYIClWi03N1ftOqw5Gwo532rKHH9qdWWwJSIiIjskgwYTJ04EAHz//fdISUnxcY2IqhYDLNVq3333HTIzMyHla2y7DnsrEPJaVyIiIvKxj0fMwuWXX47CwkJMnz4dnCWTajMGWKq1jh07ht9++w0AoD1Z0nXY3cDoTouoN8IrERERUSVJkPD0009Dq9Viy5Yt2LBhg6+rRFRlGGCpVhJCYPr06VAUBXJqIORsne9aXSt7bWxl1iEiIqI64YEWz2Ds2LEAgC+++ALFxcU+rhFR1WCApVppxYoV2L9/P2CSoD0dwelxiIiIqNab99ByxMXFITk5GQsXLvR1dYiqBAMs1TpFRUX45ptvAJgHbpL0moptyDpo1pTgyvBLREREDkiKhIceeggAMGfOHGRmZvq4RkTexwBLtc6iRYuQlpYGFMnQXLAz56snZA1DIxEREVWfSh53vDvsG7Rr1w4FBQWYMWOGlypFVHMwwFKtkpubi7lz5wIAtEnh5ed89YRUQ98eDNRERES1WyW+6yVImDRpEgBg6dKlOHPmjLdqRVQj1NAjdKKKmT9/PnJzcyEVaCGnhVR8Q9bhtbJBtqYGYSIiIqpZvHT50tSe76BPnz5QFAVz5szxQsWIag4eWVOtkZmZqQ5YoD0bAQkVGelX9m7gtGyLIZaIiIg8VYkxNCZMmAAAWL16Nc6ePevFShH5Fo+qqdb49ddfUVhYCCkvAHJmkGcruwqungZQbwfhcttnN2IiIqJaxdl3ewW+9yd3egW9e/dmKyzVOgywVCsUFBRg8eLFAADthXBIkCDJknsh0ttB09H2vL4fhlgiIqI6w83vfUmrVe+PHz8eALBq1SqcP3++SqpFVN0YYKlWWLZsmfna10IN5AwPWl+rK7wSERERVZaHXYof7/I6evXqBZPJhAULFlRhxYiqD4+2ye8ZjUb8/PPPAADNxXCba1+dtsJWpFuws2U+ae1lKywREZHf8/T73EF569ZXi9tvvx0AsGLFCuTm5npcNaKahgGW/N6GDRuQkpIC6GVoUt0YebiqBmoiIiIiqi5uht5ne7+H5s2bo7CwEMuWLaviShFVPR55k9/7/fffAQCaS6F2531VW2G9EVzLrl+R7bEVloiIiCwq8z1u1aXYXusrYJ4X9tZbbwUALFq0CCaTqeL7I6oBGGDJryUlJWH37t2AALSXHLe+SrJ3Qp5Nl+Sa0vIqhK9rQERERBXhrZPQLrbz8agfER4ejuTkZOzatcs7+yTykRpyBE5UMZbWVzkrCJLe/plHaDSQAgMhBThY7iabEFyZ8CqUStXDdlsMr0RERH7LSyfDNeHhkEOcnMgXEoYMGQIA+PPPP72yTyJfYYAlv2U0GrFy5UoAgCbFzoe2JbhqtYAsQ6rEWU7r8Fqp1lyGVyIiIgJKW029EWJlCZAlyCEhDoPsH69sAgBs2rQJOTk5ld8nkY8wwJLf+vfff5GVlQUYZMjZZabO0WjU4ApZLn3Mw1ZYSZa81v2Y4ZWIiIhU1sG1EiFWEx5e+otVkC1LLtChdevWMBgMWLNmTYX3R+RrDLDkt1avXg0A0KQH2w7eZB1erXnYCussuHocar0VXoVgeCUiIvJ39o5HKjrYpL1jEgch1tKNeP369Z7vh6iGYIAlv1RcXIxNm8xdYTTpwaULHIVX6+VutMK6E1DdDrHeDK9ERETk3yQnc9QDHoVYm9bXsuyE2O/v/xUAsGfPHmRkZLi9H6KahAGW/NLu3buRn58PFMuQcnXlrnd1SJYhabVOQ6xXuwwzvBIREZE1dwKqG2U04eH2W1+tlbkuVtJr0b59eyiKgo0bN7pTW6IahwGW/NKWLVsAAJqsYEgabfnrXZ1x0pXY0/DqsDyvdyUiIqKyPBlQ0lWIdfeYpcx1sf379wcABljyWwyw5HeEEGqAlbNDXLe62lOmK3FlBmsqtx6vdyUiIqKyXHUdtruO/fJOuw47UhJiv3/I3I147969KCoq8nw7RD7GAEt+5+TJk7h06RJgkqApCPU8vAI2XYm91mUYYJdhIiIisq+iIw2XGdzJra7DjsgSNHIE6tevD71ejz179lRsO0Q+xABLfmf37t0AADk/CJLk2bQ4Nio5N6w1r4ZgIiIiql28cbxhCbKVPOaQZBk9e/YEAGzbtq3y9SKqZgyw5HdKA6z9ibo9EhBg7oJcCUIREIoXW0zZ+kpERFR7WMKrF3ppaRs3hBQZUent9OjRA0DpMRWRP2GAJb+iKAr27t0LANDoGlR6e5IkVSrEejW4AgyvREREtVklQqy2cUNAIwOSVOkQ+8aLawEAp06dMs/qQORHGGDJryQlJSE7OxuABqaYRpDiYyu8LUv34Yp2I7YbXit6fQvA8EpERFTb2DvGqGiI1VgdY5SE2IoEWWOHRAhdCBo2bAhFUXDo0KGK1YfIRxhgya8cPXq05F4EoNXC0CDS4xArSVL50OphK6zTlteKhFiGVyIiotrF2QlyD0OstnFD+9v3sDXW2CERik4DAOjYsSMAYN++fR7VhcjXGGDJr1gCrCSZP6yFVgY0GrfXdzj/qwddid3qNuxuiOVUOURERLWPO7273AyxatdhJ/tyN8RawisAtG/fHgBw7Ngxt9YlqikYYMmvlA2wAGCIC3OrFdZVV2F3QiwHayIiIiKvcRFiXYZXCzdCrLFDos3vn322FYB5ekIif8IAS35DCIETJ04AsA2wQiu77Ers7nWuzkKsx+HVWSsswysREVHt5OnYGg5CrNvh1Wq/jkKsddfh0uLhAIALFy6goKDA/f0Q+RgDLPmN7Oxs5ObmlvwWarPMWYj1dJAme+Ur3PJqL8QyvBIREdVOFZ3v1V6I9SS8Wu2/bIi1F17NRXWIiYkBAJw+fdrzfRH5CAMs+Y1z586V3AuCJJX/ILZ3PWxFRxi2tMJ6ZY5X6xDL8EpERFQ7VfSYw0IoapDVNqrEVIFlQqy98GrRtGlTAOZWWCJ/UbHJL4l8wBJgJSnEYRlDXBgCFAUiObXi4RXm4CtkGZIsee+6V4ZXIiIickFTLwrQuj9ApV0lIdbQuJ7TYg0amINycnJy5fZHVI3YAkt+IyUlpeSe4wCr6DTQN4mC1Ci+UvsSRiOEwQhI5hBbuY0pDK9ERES1nRe+6zUx9cy9yYqKK72ti5+GIGua82tbLQH24sWLld4fUXVhgCW/kZ6eXnIv0O5yIUsQMqBoJOgbRQAN4iq0HzW8WlQmxDK8EhER1R2V+M5XwyvMA1dWJsRe+DgEbWJS0SIqHTnP5DosN3v2LgDWjQRENR8DLPmNjIwMAIAk2QZYIUsQGnN4tVA0EvSNIz0OseXCq0VFQizDKxERUd1Tge9+6/BaupmKhdgLH4egbewl9XdLiLUfZHUAzANlEvkLBljyG5YAa/mwBUpbXYWdbOlpiHUYXiuC4ZWIiKju8vQYQGP/mldPQ2zZ8GrRIiodLaLSkf10ns3jkhQAgAGW/AsDLPmN/Pz8knvmAGsJr86oIbZhfafl3Aqv7rbCMrwSERGRm8cCmhjnAy25G2IdhVdrLaPTyoRYtsCS/2GAJb9RWFgIAJAkjVvh1ULRSE5H8/Oo5dVViGV4JSIiIgsXxwT2ug7b34zrEOsqvFrYhlhzC2xhYSGMRi/1QiOqYgyw5DcsAVZIWrfDq4W+fqjdVtgKdRt2FGIZXomIiKgsB8cG7obX0s04DrHnPgr1qEqlIbb0gIoBlvwFAyz5jeJi84e2kD2fG00dmdgqxFbqmteyIZbhlYiIiBwpc4zgaXgt3Uz5EHvuo1C0j/N8FOGW0WnIebJ0mh2DweDxNoh8gQGW/IawfPhLFZvSxnp6Ha8M2GQJsQyvRERE5ErJsYKmXnSFwmvpZkpD7NkKhleLFjHp6n3OBUv+ggGW/IZkCa6VCIuKRoLQBVQ4BJclFAZXIiIico+kDQC02kpvRwiBI5MboUMlwitgdWwFdiEm/8EAS35D8kLo1KUXQU7LhBQUCEkXULmNCcV8IyIiInJBKgmuIjun0ts6+kwLmKKN2Hk6oVLbEVaNAvXrO5+xgaimYIAlv6Ep6W5z7tqKBVldehE0F9MgSq7xqFSIFQqEyVT6u5dadImIiKj2kbRaQDIfdguTUqkQe/SZFjDVM7eWmoo1lQqxr8T/od4PCgqq8HaIqhMDLPmN4OBgAMAHV8zFqVGeXTtSNrxaVCjElg2v6sYYYomIiMiWdXi1qGiItQ6vFhUNsW82+R2R+kD195CQEI+3QeQLDLDkN0JDzUPExxo0WDjsM5y6xf0QK5lM5cKrusyTEOsovKobY4glIiIiM3vh1cLTEHv06ZblwquFSe/ZIf2bTX5HQ40OhYXm9YKDgyHLjAXkH/ifSn7DEmALCiS0DwAWXveZWy2xuvQiyJcynZZxK8S6Cq/qxhhiiYiI6jpn4dXC3RB79OmWMMU4meZGSG63wlrCKwAUFJmPWSy93Ij8QeWHQSOqJuHh4QCAnDxzaG0fACwc9hlG41E0/9V+sHTUddgeKcjcjUbo7Zf1aMRhSeLUOkRERHWUO+HVQpgUODv1fewpF+G1hKlYg51nmuGKhCREZhRg4O+H0WH3RQQXGFAYEoCD3Rqh14OnUV9TGlazss3HVNHR0W7VlagmYIAlvxEXFwcASM8obXW1hNgDAxrh5XW32ARZT8KrhcMQW5ERhxliiYiI6hxPwquFyM6BFBlR7vFjT7WEMdb94xhtjsDIF/7FrRv/hdZoe9zSecd5iBmAcUwYil+LBoIkpGeaj6liYmI8qi+RL7ELMfkNS4BNy7DtNtw+ABgddgELhn2uXhdbkfBqUa47sbtdh+1ujN2JiYiI6oqKhFfAfldiT8NroN6AWR/OwB1rd5YLr2r9DEDA3DwEj7sEFCrIKAmwsbGxHteZyFcYYMlvWD5c09LtdxzoGCCw4LrPcW6wrsLh1UINsZUJr+rGGGKJiIhqu4qGVwvrEOtpeAWAV35ait5HTsFV3y8BQPNPMQJfzkJ20QQAbIEl/8IAS36jYcOGAICLKY57vk/cPxYN/jFBRIR5ZZ+VDq9ERERU+0lSpcKrhTApkEKCPQ6vcdm5GP33LnNVXJS1LNf+nIezJ04AAJo0aeJhTYl8hwGW/EZCgnl0veQULRw1rmZlhSIwywBjXDgQU/EBCYTeAFFcXOH1bTfG62CJiIhqrZKeVsJY8Z5fAKBpFA9No3gIjYxWP3h2Av22jTug8/Cku2QAzh4/DgBo2rSpR+sS+RIDLPmNmJgYhIaGQhESLiSXn/Lm6t3j0GixeVh4oZUqF2IVxTzqsCRX7owqwysREVHtVeYyoYqGWE2jeIgALUSAuZdZwMUsj9bvdeSUx/sslGWkFhUBAJo1a+bx+kS+wgBLfkOSJPUDNum8bYDt9984BM+MRlC6Xn2soiHWbutrRUIswysREVHt5WCMC09DrCW8luVJK2xYkee9xk6FhAAAoqKiEBFRfgRkopqKAZb8SqtWrQAAx0/q1Mf6/TcOgT9EIzhNX668pyFW6A0QhYX253z1wrUtREREVAt4aYBGR+EVMLfCuhti84J0rguVcTQ8HADQtm1bj9cl8iUekZNfad++PQDg6InSD+qMzFC74dXC3RDrNLxauBti2fpKRERU+0iSW+HVnVZYZ+HVIuBiFlrNchFiJYEW16W63F9Zh8PMA14ywJK/YYAlv9KuXTsAwLGTgVAUc+trwyWuzzq6CrFuhVcLVyGW4ZWIiKj28bDV1VmIdSe8WgScdxJiJYGF/b9Eo7uiIcoPD+LUYbbAkp9y751DVEMkJiYiKCgIBYVFGLB6JAKX2e86bI8lxEpRIdBkFQDpmaULLYM2uUuSAWFnknCGVyIiotqngl2GhdEASWubLD0JrxYB57MAWM3VWhJcAaB7oA6oD2BMBDA3BwLOp9IRAPK0WpwKDQVQ2ruNyF+wBZb8ilarRceOHQEAQb/o3Q6vFkIrQQnW2rTGVnjKHF4TS0REVPt56XpXoGLh1UJthS0Jr90DdebwWkK8HgvRO8iteWD/6xkLAfPow7GxsRWqD5Gv8Aic/E63bt0AANrcSxXehtoaGx7mftdhexhiiYiIai8vhFdhNJTO8VrB8AqUdiW2hNdygmWIuY0gxkU47E4sAgAxLgK7R08FAHTt2rXC9SHyFXYhJr/TvXt3AIBABoQQkCrarUcrQWg1FQ+vFpbuxOw+TERERGVIGg2UtAxIDetXflt6xX54tQiWId6rD0ytB/FTDqQthUC+AoTKEFcFA3dGAHFa/PvsHgAMsOSfJCF41E3+xWQy4cYbb0ReXh7kgCuhUaIqtJ2A1HyIM+fNXYhN7s+1ZhcDLBERUe1UiVZYSaMpuSNDTmhcqWoY4yIgtDLSLwvCvy99WeHtdH1jAiL3roAsy1iyZAmioqIqVS+i6sb+j+R3NBoNevfuDQBQcAmK1vN/Y+vwCpi/YCS5gl9QDK9ERES1VwW/49XwCgBCgbhYsUufjHERangFgJgDRej2+sQKbevy9ych8ug5AEDHjh0ZXskvMcCSX+rbt6/5jikZpgDJ8xCrN6jhVSXJtl827mB4JSIiojLsHU+I4mKPQ6wluIoyxzkx+4s8rtPl709CvcMGXNExGADQp08fj7dBVBMwwJJf6tWrFwICAgClABB5MOlkGIO1bgXZgEt5Tr9APA6xREREVLu5ebJa0micHkeUO3nuhHWrqz3utsJe/v4kNbxC6PHff/8BYIAl/8UAS34pJCQEPXr0MP9iOA9IgJABk052GmIDUvMhki64/AJxK8Sy9ZWIiKjucPGd7+6xgzutsKbYcKfhFTC3wnZ9Y5LTMpd/YA6u9Q6XHPcYLsJoNKJVq1Zo1qyZ6/oS1UAMsOS3hgwZYr5jOF/6pSK5CLH2ug474PSLiOGViIiISnjSe8tVV2JTbDiUAPe2F7uv0OGyyz+YhHqHbI95Lm9jHu9DPYYi8kMMsOS3+vbti9DQUEAUAqaM0gUOQmxAar7H155UanAnIiIiql3snLyuyKVH9k6mm2LDPQqvFl3fLN8K2+nD8uEVSgH27t0LSZIwePBgj/ZBVJMwwJLfCgwMRL9+/cy/GM7ZLiwJsTbXxXrQ+mq7LbncSIJsfSUiIqIKj5tRpiuxJbh6Gl4BIHZvaStspw8nodOHkxBz0M7xjv4sAPPcr3FxcZ7XmaiG0Pq6AkSVMXz4cPz555/mbsRB7QHJanJvCRAlQVaXVlDh4evVzckShMLgSkREVKcJAUlb+UNooTdAgmddhh3p+tYkGINhP7gCgFAQE56B9HTgxhtvrNS+iHyNLbDk1zp27IhWrVoBUAD9OfuFJEAyKhVrfbXZTsnbha2vREREdZowmSq/EVkCLqVXOrwCQKOlZxFzwMlxjjEF6enpiI6OxjXXXFPp/RH5EgMs+TVJknDzzTebf9Gfthsugy4WAGcvVnpfwmQCFC98YREREZH/krwwNkZJ12OluBgBh5IqvBldUhp0SWkQRcUIPZzqsFz3Duafw4cPN09DSOTHGGDJ7w0ZMgRhYWGAKACMKeWWy8UGKIWeT/hNREREZMMqvFa4FbbMdbNKbl6FNmMJrqKo2Fyf/AL7BU1Z2LVrFzQaDW666aYK7YuoJmGAJb8XHByMESNGmH8pPm7TCht0sQA4l1zpfbD1lYiIqI7zYstrWZ62wlrCa1n2WmEH9DS3uA4aNAgNGjTwaD9ENREDLNUKt956K3Q6HaBkAaZ09XG2vhIREVGlSJLD8Op2K6xG4zC8Au63wurOpkN3Nt1ueAXstMKa8rBhwwYAwB133OFeXYlqOAZYqhXq1auH4cOHm38pPg7Ae62vREREVEdVYaurp3Rn0yEKiyBcnJi3boW9cWA4FEVB79690bJlS6/Ug8jXGGCp1rj99tuh0WgAUxpgzPRa6yu7DxMREdVBboZXp62wHoTXgMMOZlNAaXh1qz6WVlilAH/99RcA4M4773S7HkQ1HQMs1RoNGzbE0KFDzb8UH4YAp7shIiIiDznpMuw2F12G7VFycso9pnYZrsAJ+Wv7BMBgMKB79+7o3Lmzx+sT1VQMsFSr3HvvveZrYU3pULJPVnp7bH0lIiKqQyoYXG1aYSvRZdi6FdbdLsP2BB8/g5UrVwIAHnzwwQrXh6gmYoClWiU+Ph633HILAEAfn8pWWCIiInKPD1pdy7K0wla01dWi683hEEKgf//+aN++faXqRFTTMMBSrTNu3DiEhYVBhBigxDqYE42IiIgI8E6XYW8xmSodXk1B+diyZQs0Gg0eeOABL1aOqGZggKVaJyIiAuPGjQMAGJpmQchKxTYkFPONiIiIai/hnd5awmCs3AZMJghFwHQxpeJ1gEDjfub7w4cPR9OmTStXJ6IaiAGWaqVRo0ahcePGgE6BsXFWhYKoUITXvtSIiIiolqvoSW+TSQ2vQMWDsJKVDUPgOZw8eRIRERG4//77K1YfohqOAZZqpcDAQDz++OMAAFPDfJiC9GxNJSIiIvt81QpbElwt4bWilKxsKChGYHsDAPPATVFRUZXaJlFNxQBLtVavXr3Qv39/QAKMLbKhKIp5lEB3giy7DxMREZGn3D12KNPqWpaSle3WZpSsbChZ2RAGI/pP64z8/Hy0a9cOw4cPd7fGRH6HAZZqtUcffRTBwcEQEXoo9c0DOpm7Bjv/gmH3YSIiIqoSbrS6utOSawmuwmCEElmElStXQpIkPPnkk9BUcjRkopqMAZZqtfr16+Pee+8FABib50AEmr8QhCLcb40lIiKi2q86Tlw7aXV1l3WrKwAIjYKo/ubAesstt6Bdu3aVriZRTcYAS7Xe6NGj0bFjR0AjYGiZZTM3rN3WWHYfJiIiogqy23rqosuwPfa6EVu3uloYE7ORmpqKxo0b48EHH6xQnYn8CQMs1XoajQbPPfccAgMDIaL0UBrYzg1btjWW3YeJiIiowsqeBK/gQE3WIbVsq6u66egiKPGFkCQJzz33HIKDgytcbSJ/wQBLdULTpk3x8MMPAwCMCTkQQeXPjrpzbSwRERGRWyrQ6mqPvVZXABBaEyL7SgCAW2+9FZdffnml9kPkLxhgqc4YOXIkunbtau5K3CYTQir/hcIQS0REVId5qweWN6bHEYrdVlcAEBDo/lgLpKeno1mzZnjggQcqUVki/yIJwb6SVHekpKTgvvvuQ05ODjQXQqE9HVm+kFDYhZiIiKiukqSKr2s5fpAkQKpEO5HlWES2P5qwsVEeTIk50Ol0+Oqrr9CqVauK74vIz7AFluqU+Ph4PP/88wAAU6N8mOoV+rhGREREVCtYn/yu6Ilwy0CSTtZXwvRAy3wAwOTJkxleqc5hgKU656qrrsIdd9wBADC2ylKn1iEiIiLymPDS4I+W4OpkW0KjIGaoFiaTCQMGDMBNN91U+f0S+RkGWKqTHnjgAVx22WWAVsDQNhNCZpdhIiIigmdh1GvB1fXlSwICXackIDk5GQ0bNsQzzzwDqTLdnYn8FK+BpTorJSUF999/P7KzsyGnBkN7LAqSt86iEhERkf9yFQzdOVZwcP1q6TYU97ZVsh1jQjZMjfMRGBiIzz//HG3atHFdB6JaiC2wVGfFx8fj9ddfh0ajgRJXCFPjPF9XiYiIiGq6auoubM0UWwBTY/N1r88++yzDK9VpDLBUp3Xp0gWPP/44AMDULBemekW+rRARERHVTN7opeVmd2FrSqgecscCAMC4ceMwaNCgytWByM8xwFKdN2LECNx8882ABBjbZEMJMfi6SkRERFRTVOMgTeVW0ZkQOQjQ6/W46qqrcP/991e+HkR+jgGWCMCUKVPQtWtXQCNguCwLItDk6yoRERGRr1XjIE3lVtMoaDQmDGlpaUhMTMQLL7wAWeahOxEHcSIqkZubi0cffRSnTp2CVKBBwN56kIz8oiAiIqIKsAwEVYFDbSEJGDpmQkQaEBcXhy+++ALx8fFeriCRf+LROVGJ8PBwvPvuu4iLi4MIMcHQIYvT6xAREVHFVLDrsYCAsW02RKQBoaGhePfddxleiawwwBJZiY+Px/vvv4+wsDCICIP5CwQMsURERFT1BASMLXKhxBZDq9XizTffRMuWLX1dLaIahQGWqIzmzZvj7bffhk6ngxJTDGObHIZYIiIiqlICAqbEPCiNCgEAzz//PLp16+bjWhHVPAywRHZ07twZL7/8snmO2PpFMLZiiCUiIqKqY2qaD1MT83Q5Tz31FAYPHuzjGhHVTAywRA5cffXVeOmllyDLMpQGRTC2zGWIJSIiIq8zNs6HKSEfAPDoo49ixIgRPq4RUc3FAEvkxIABA/D8889DkiQoDQthap7HEEtEREReY2xUAFPzPADAgw8+iDFjxvi4RkQ1GwMskQtDhw7F1KlTAQCmxgUwtWBLLBEREVWesXE+TC1yAQATJkzAuHHjfFwjopqPAZbIDcOHD8dTTz0FADA1KuQ1sURERFRhAgLGZnlqy+vdd9+Ne+65x8e1IvIPkhAVmKCKqI5avnw53nnnHSiKAjk1ENqjkZCE5OtqERERkZ+wjDZsGbDpwQcfZMsrkQcYYIk8tH79erz22mswGo2Q03XQHo5iiCUiIiKXBASMLXOhNDRPlTNlyhSMHj3ax7Ui8i8MsEQVsHXrVrzwwgvQ6/WQsgIQcCgKkok98omIiMg+IQkY22RDiSuGJEl45plncMMNN/i6WkR+hwGWqIJ2796N5557DgUFBZDytQg4EAVJr/F1tYiIiKiGERoFhg5ZEJEGaLVaTJs2DYMGDfJ1tYj8EgMsUSUcO3YMU6dORXp6OlAsI+BAFOSCAF9Xi4iIiGoIoTPBcFkmRKgJoaGheOONN9C9e3dfV4vIb7HPI1EltG7dGl999RUSExOBQAWGyzOhRBb7ulpERERUAyghBkRcD4hQE2JjY/HZZ58xvBJVEltgibwgNzcXzz//PPbs2QMogPZ4BDSXgn1dLSIiIvIRU71iBHQvRmFhIRITE/Hee+8hPj7e19Ui8nsMsEReotfr8dZbb2Ht2rUAAM35EGhOhUECRygmIiKqKwQETI0LoLTIhxACXbt2xRtvvIHw8HBfV42oVmCAJfIiRVEwc+ZMzJw5EwAgZeoQcDiSIxQTERHVAUISMLbOgVK/CAAwYsQIPPbYY9BqtT6uGVHtwQBLVAXWr1+Pt956C0VFRZAKNdAejIJcyC8vIiKi2koEmGBonw0RYYBGo8GUKVMwcuRIX1eLqNZhgCWqIseOHcPzzz+PlJQUwChBezQCmowgX1eLiIiIvEyJ0CNigIz09HSEh4fjtdde42BNRFWEAZaoCmVmZuLFF1/E3r17AQCacyHQnOZ1sURERLWB5XpXtCqEyWRCYmIi3nzzTTRt2tTXVSOqtRhgiaqY0WjEV199hZ9//hkAIGUHmK+LNWh8XDMiIiKqKKFRzNe7xpqnzxs8eDCefvpphISE+LhmRLUbAyxRNVm/fj3+7//+DwUFBYBeRsCRSMjZOl9Xi4iIiDykhBhgbJ8NEWyCVqvF5MmTcfPNN0OS2MOKqKoxwBJVo7Nnz+Kll17CiRMnAAFokkKhORvKLsVERER+QEBAaVgIuX0x9Ho96tevj9deew0dOnTwddWI6gwGWKJqVlRUhOnTp2P58uUASroUH42EVMwuxURERDWV0Cowts6GEqMHAPTq1QvTpk1DVFSUbytGVMcwwBL5yMqVK/Hhhx+auxQbJWiPh0OTFuzrahEREVEZSmQxIvprkJ6ejoCAAEycOBGjRo1il2EiH2CAJfKhCxcu4PXXX8eBAwcAAPKlIGhPhEMyyT6uGREREQlJwJSQB6VpIYQQSEhIwMsvv4xWrVr5umpEdRYDLJGPGY1GzJ49G7Nnz4aiKECRjIBjHOCJiIjIl5RQA4xtciBCjQCAESNG4JFHHkFQEOd0J/IlBliiGmLfvn14/fXXkZycDACQLwRDezoMksLWWCIiouoiJAFT03ygeRFMJhOioqLwzDPP4Oqrr/Z11YgIDLBENUpBQQG+/PJL/Pbbb+YHijQIOBoBOYetsURERFVNCSlpdQ0zt7r2798fTz75JAdqIqpBGGCJaqCdO3finXfeQUpKCgBAcyEYmtPhkBQOFkFERORtQhIwNcmH1LIYRqMREREReOKJJzBw4EAO1ERUwzDAEtVQ+fn5+OKLL7B06VLzA0UytCcioMkM9G3FiIiIahElXA9jqxyIUBMAoE+fPnj66acRExPj45oRkT0MsEQ13Pbt2/H++++XXhubGgjtyXBIBs4bS0REVFFCo8CYmAelYSEAICoqCo8++iiGDBnCVleiGowBlsgPFBYWYsaMGVi4cCFMJpN53tjTYZCTgyGBX7JERETuEhBQYophbJELBCoAgOuvvx4TJ05EZGSkj2tHRK4wwBL5kaNHj+L999/H4cOHAQBSTgC0J8Ih5wf4uGZEREQ1nwgywtgiF0o9PQCgSZMmePrpp9GtWzcf14yI3MUAS+RnTCYTFi9ejG+//RaFhYWAAOTkYGjPhEEycsodIiKisoRsHqRJbqmHwWCAVqvFnXfeibvuuguBgRxbgsifMMAS+alLly7h888/x7p168wPGCRoz7BbMRERkYXaXbh5LhBk7i7co0cPTJkyBQkJCT6uHRFVBAMskZ/bvXs3PvroI5w6dQoAIOVpoT0ZzrljiYioTlNCzN2FRZS5u3CDBg0wefJk9O3bl4M0EfkxBliiWsBoNOK3337D999/j7y8PAAloxWfDoNUrPVx7YiIiKqPCDDB2CwfaFwMRVGg0+kwduxY3HnnnewuTFQLMMAS1SJZWVn49ttv8ccff0AIASiA5mIINGdDeX0sERHVakIWMDXOh66dYh4jAkC/fv0wadIkNGzY0Me1IyJvYYAlqoWOHz+OL7/8Ejt27DA/YJSgORsKzYUQSILdpoiIqPYQEFDqF8GYkKdOi9OhQwc88sgj6NSpk49rR0TexgBLVItt374dX3zxBU6ePGl+oEg2D/SUGsSBnoiIyK8JCCjRepgS8yBCjQDM17k+9NBDGDhwIK9zJaqlGGCJajmTyYQVK1bgu+++Q1paGgBAytdCkxQKOT2QQZaIiPyOEqmHMSEPIsIAAAgLC8Pdd9+NW265BTodBzEkqs0YYInqiKKiIvzyyy+YN2+eOtCTlKs1zx+bpWOQJSKiGk8JM5iDa7R5ZOHAwECMGjUKd955JyIiInxcOyKqDgywRHVMbm4u5s+fj4ULF6qDXEjZAeauxZx6h4iIaiAl1ABTs3woMcUAAK1Wi5tuugnjxo1DbGysj2tHRNWJAZaojsrMzMTcuXOxZMkS6PXmM9lSVgC0Z8MgZQewRZaIiHxOCTPA1DQPSoz5e0qWZVx77bWYMGECRxYmqqMYYInquNTUVMyePRvLli2D0WgeBEPKDoD2bCi7FhMRkU8oEXoYm+arXYUlScKAAQMwYcIEJCYm+rZyRORTDLBEBABISUnBTz/9hGXLlpW2yOZqoTkbCjmDgz0REVHVEhAQkQYYm+ZBRJkHZ9JoNBg8eDDuuusuNGvWzMc1JKKagAGWiGykpaVh/vz5+P3331FUVASgZNTicyGQ04I4jywREXmVOh1O03x1VGGtVovrrrsOY8eORaNGjXxcQyKqSRhgiciurKwsLFiwAIsWLVIHe0KxDM2FEGiSgyGZZN9WkIiI/JqQBJT6hTA1LoAIMQEAdDodbrjhBtxxxx2Ij4/3cQ2JqCZigCUip3Jzc7FkyRL8+uuvyMjIMD9olKBJDobmQggkvca3FSQiIr8itApMDQtgalgI6BQAQGhoKG688UaMGTOGowoTkVMMsETkFr1ej1WrVmH+/Pk4c+aM+UEFkNOCoDkfAjk/wLcVJCKiGk0JMsLUuABK/SJAYz78jI+Px+jRo3HDDTcgNDTUxzUkIn/AAEtEHlEUBdu2bcP8+fOxe/du9XEpKwCaiyGQ0zngExERmZkHZtLD1KgQIlYPy2FnmzZtcPvtt6N///7QarU+riUR+RMGWCKqsMOHD2PBggVYv349TCbz9Usols3di5ODIRnYvZiIqC4SGgWm+kVQGpZe3woAV111FW677TZ06dIFksSTnUTkOQZYIqq0lJQU/P7771i6dCmysrLMD1q6F18MhpQbwFZZIqI6QAkxwNSw0KabcHBwMIYNG4aRI0dyDlciqjQGWCLyGr1ej/Xr12Px4sU4cOCA+riUqzV3L04LgqQwyBIR1SZCElBiimFqWAARaVAfT0xMxMiRI3HttdciJCTEhzUkotqEAZaIqsThw4exePFirFmzBnq93vygUYKcGgRNSjCkPC1bZYmI/JgSbIQSXwhT/SJ1NGGNRoOrr74aI0eOZDdhIqoSDLBEVKWysrLw559/YunSpTh//rz6uJSvhSY5GHJqECQj55QlIvIHQlagxBbD1KAQIqK0tbVevXq46aabcOONNyIuLs6HNSSi2o4BloiqhaIo2LNnD/744w9s2LChtFXWcq1sSjCkbF4rS0RU0wgIiHADTPFFUOJKr23VaDTo1asXhg8fjt69e3M0YSKqFgywRFTtcnNzsXLlSixbtgzHjx8vXVCkgeZSEORLQZCLeCBERORLQmeCKa4ISv1CiNDSkYQbN26M4cOHY9iwYYiNjfVhDYmoLmKAJSKfEULg6NGj+OOPP7B69Wrk5+ery6RcLTSXgs0DPxnYxZiIqDoIjWIekKl+EUSkHpZOMYGBgejfvz+GDx+Ozp0789pWIvIZBlgiqhGKiorw999/Y+XKldixY0fpvLICkDN15lbZDI5iTETkbUISUKKLocQVQYkpBqzOGV5++eUYMmQIBg0ahLCwMN9VkoioBAMsEdU4GRkZWLt2LVauXInDhw+XLjBJkNMCIacFQc7SQRIMs0REFSEgICIM5i7CsUVAQOnhYEJCAoYOHYrBgwejYcOGPqwlEVF5DLBEVKOdOXMGq1atwsqVK5GcnFy6wChBTmeYJSJyl4CAiDTAFFMEJbZYnfoGAGJiYjBo0CAMHToUrVu3ZhdhIqqxGGCJyC8IIbB//36sXr0aGzZsQEZGRulChlkiIrvU0Bpb0j3YKrSGhYXh6quvxpAhQ9C1a1doNBof1pSIyD0MsETkd0wmE/bt24f169djw4YNSE9PL11olCBnBJq7GmcF8ppZIqpzhCQgIvUwxRRDiSkCdKWHeuHh4bj66qvRv39/dO/eHQEBAT6sKRGR5xhgicivmUwm7N+/H+vWrSsfZk2AnK0zt85mBEIysHWBiGonoVGg1Cs236L1gLb08C4yMlINrd26deN8rUTk1xhgiajWUBRFbZndvHmz7TWzAKScAHPrbEYgpAINJLB1loj8lwgywlQSWkWkAdYfadHR0ejbty8GDBiALl26MLQSUa3BAEtEtZIQAidPnsTff/+NzZs3245mDACFGmgyAiFn6iBl87pZIqr5BAREuEFtaRWhJpvlzZs3R58+fdCnTx+0b98essw5tImo9mGAJaI6IS0tDVu2bMHmzZuxa9cu6PX60oUlXY2lzEDzIFCFbJ0loppBBJqgRJm7BStRtl2DNRoNOnfurIbWRo0a+bCmRETVgwGWiOqcgoIC7Ny5E1u2bMH27duRlpZmW6BIhpxpbp2Vs3WQTGzFIKLqIWQBEaE3B9boYogQ21bWiIgI9OzZE3369EHPnj0RHh7uo5oSEfkGAywR1WlCCJw6dQrbtm3D9u3bsXfvXhgMhtICCiDlBkDOKgmzuQHsbkxEXiMgIEKNUKLMLawiUg9YnTOTZRkdOnRAz5490bNnT7Rt25bT3RBRncYAS0RkpaCgAP/9958aaM+fP29bwARIOeYwK2fpIOVp2d2YiNymBtZIPUSkAUqkbbdgAIiLi0OvXr3Qs2dPdO/ena2sRERWGGCJiJw4d+4cdu7cid27d+Pff/9Fdna2bQGjBDknAJKlhTafgZaISgkIiGATRJQeSqT5hgDbQ6+QkBB07twZ3bt3R8+ePZGQkABJ4ucIEZE9DLBERG5SFAWnTp1Sw+x///2HvLw820JGydzlOCcAck5Jl2OFB6JEdYWQBESYAUqEASLCACVcD+hsD7WCg4PRqVMndO3aFV27dkWbNm04zQ0RkZsYYImIKshkMuH48eP4999/sXv3buzduxcFBQW2hRRAyteaw2yOOdhKBl6/RlRbCK1iDqvh+pKfBptrWAEgMDAQnTp1QpcuXdC1a1e0b9+egZWIqIIYYImIvMRkMuHkyZPYu3cv9u3bh3379iE1NbV8wUIN5NwAc0ttnhZSHgeGIvIHQhIQIUZzC2u4ESJCX26UYACIjIxEp06d0KlTJ3Ts2BFt27aFTqfzQY2JiGofBlgioioihEBKSooaZvft24eTJ0+i3MduSSutlBegBlvORUvkWwICIsgEEW6ACDNCCTdAhBoAOx0omjVrpgbWTp06oUmTJryGlYioijDAEhFVo9zcXBw8eBCHDh1Sb1lZWeULGiVIeVrIeQFquGWoJaoaAgIIMkEJNZrDalhJV2Bt+UOk0NBQtGvXDu3atcNll12Gjh07IioqqvorTURURzHAEhH5kKWV1jrQHj16FIWFheULmwCpoKSlNl9rDrb5WkiKXL4sEdkl5JJuwKEGc2AtudkLqzqdDq1bt0a7du3Qvn17tGvXDk2aNIEs8z1HROQrDLBERDWMyWTCmTNncPDgQRw9ehTHjx/HiRMn7IdaAXPLbL7WHG4tN7bWUh0nIIBABUqIsSSwmkOrCDHB3ltDp9OhefPmaNWqlRpWW7RowcGWiIhqGAZYIiI/oCgKzp8/j+PHj+P48eM4duwYjh07hvT0dAcrAFKhFlKBpjTU5mshFTHYUu1iDqomKKEmiOCSsFpys3e9KmAeZKl169Zo1aoVWrVqhdatW6Np06YMq0REfoABlojIj2VkZKih9tSpUzh9+jTOnDmDoqIi+ytYgm2hpuSmVX/CKDHcUo0lNApEcElIDTKZ74cYIYIdB1WtVoumTZsiMTHRJqzGxMRwkCUiIj/FAEtEVMsoioLk5GScPn1aDbWWW3FxseMVjVJpqC3S2NxnuKXqIDRKaTi1DqrBRiDA8eGKTqdDs2bNkJiYiISEBCQmJqJ58+Zo1KgRW1WJiGoZBlgiojrCEmzPnDmDs2fP4ty5czh37hzOnj2LS5culZ/ex5pJglQkQyrWAEUaSMUac8gtuc+AS+5QA2qgCSJIAQJNpb8HmpyGVACIiYlBkyZN1JsltDZs2JBBlYiojmCAJSIiFBcX4/z582qgtfw8f/684+tsrRklc5AtliHpZUh6DaRiGdBrzL8z5NZqAgLQCIhABdCZIAIVCJ0JQmf1e5DJ7ki/ZUVHR9uEVMutcePGCAkJqYZnQ0RENRkDLBEROVVcXIxLly7h4sWLSE5OVn9a7mdkZLi3IQXmQGsJuQYZMJjvw2D+3fIYTAy7NYGQBRCgQJTcLPehK3kssDSkOroOtayoqCg0aNAADRs2RIMGDWxu8fHxDKlEROQUAywREVVKUVERUlJSkJKSgtTUVKSlpdn8TE1NRVZWlmcbNcE21BplSEYJMNreL/dTYei1R0gC0CoQWtuf0AoI659lwqq7odQiIiICsbGxiIuLQ0xMDOLi4hAbG4v69eujYcOGiI+PR3BwcNU8SSIiqhMYYImIqMrp9Xqkp6fbhNusrCxkZmYiMzNTvZ+VlWV/vlt3mQCYJMBUEmaNEqBIkExSyeOW+yWtvAoAxVwGAuZ1rH6HIpkfK7kPyzemKAnKAupjrlqMRWlBq5/C/FMCIJvvC1mo91FyX1jdh1xSRiMAjWLuuqspWWa5X3ITcklQ9TCIWtPpdIiKikJ0dDSioqLUm3VAtQTWwMDAiu+IiIjIDQywRERUoxQWFtqE28zMTOTm5iIvLw+5ubnIyclBbm6uzS0vLw+Kovi24lZhFgJlgqrVTx+RJAlhYWEICwtDeHi4zc3ymHVAjY6ORnR0NIKDgznlDBER1RgMsERE5PcURUFBQQFyc3NRUFCAgoICFBYWqjfr3y33CwoKUFxcDIPBAL1er/603AwGg81jVR2QNRoNAgIC1JtOp3P4Mzg42O2bJZyGhoZCluUqfQ5ERERVjQGWiIjIDSaTCUII9aeiKHbvm0wmKIoCWZYhyzIkSXJ6X5IkaLVaaDSV6OdLRERURzDAEhERERERkV9gXyIiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyC1pfV4CIyFeEECgqKvJ1NYiIPBIUFARJknxdDSIin2CAJaI6q6ioCNdee62vq0FE5JEVK1YgODjY19UgIvIJdiEmIiIiIiIiv8AWWCIiALrt9SGJknN6kgxJlgBJBmQJkCRIsmVZyeOSBMgSJEsZdZmkrgPJ6nH1sdJtqstQulxIUumpRal0O+rjVutZPyZKNqMukwHA8rikLrOsI0oeE9brWLYhl5RX17Fdrm4TgEDJY7KdZTblYVPH0sfK1sPOOrBdx2Y5nKxntU176zrapg2n6wib9ctuT11utS1R8jjKrAdJWK1vXi5ZL1PLCnUdSS1nVb5kO5IkSv8FSx4v/VMLdbkMof5uXgbIJb+bl5l/t6ynLpMEJJSuJ5c8pt5g/ThsHi9dR1EfkyEgSwo0lmUlv6vLS+4DgEZ9TEAD8+MaSSmzngJNyX0A6n21PEq3J8O8vgzz/s3LLOuZH5OgQGNZH5Z6KNAA5vVg3p/luVl+N+9LlNxHaV1gfptpIKlvd40kQYZU8phU8rtc8q8jwaDXYNQDDUBEVNcxwBIRAYBJKj2UlGRIKAmbJcmgdJkEyKVpTTKnwZKNWNKOjDLpxCrZyOXTVWnKsHocZR6z3gfsPFZ2PZQGV6sAW+6xco/DTiAuuxxWQbr0aTlc5uhp2K2HO+u48VJ5YZuuQ6+XA6y95Sj7u7DzuLDZp71llmBVusx6ubBaz+oxCDvbLL1ZB9jSUFxyg+PH1eAowSqglgZdwBJEoQZA62XmAKuUBkDJHP7M65UEQUkyh8uSxy331fKQrMIyoJFKf2oAq7BpZ1nJy2j+XZQEYKEGVvN6wmWAtbc9GaWPmX+3rqPV35CIqA5jF2IiIiIiIiLyCwywRERERERE5BcYYImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/AAEtERERERER+gQGWiIiIiIiI/ALngSUiAgCNgBCK+b4E80SQ6k+p9HSfzTyqVvdh/ZgovW/zuINlVpOCCgeTm5Y+XvpT2NyHzXoCAIQ6G6e6REACBNR1Rdl1StYrr+xjlolPbapU5vVwcCtbtjJzvTpb5mybbuxPsrfc5jF787naWV6ujg7mgYXtcsl6mVq2dJuS9RyvlvI287Ja/3s5mAcWFZ8HVuD/27v3qKjr/I/jzwG5jIKi5iokmRaoW7oqpJlJpoVE2QW1U7lrrtt2OZWd03aO/kizsqLNU9nJs108a24Z2VYnzbOVZeJtRUUzdSWQvFBeIC4KIgwwML8/aKZBYYCZAb5fez3O8TTM9/t5fz+8/YS85/P5fr6/tnNYHI3/4P4+jd6vd8Wr//U6OMBS7/a8Wkej4w5LPQ63fjhw/PL1L/919uOXrwN+OSfA7X339xr60RAuAKi3/Prfen59Dmz9L+9ZaO45sBYCaHi+bCC//p05vw74pc25z5YNcB2zuMX7NVYAFtfXDX8tFmprmvr/UkTkt0cFrIgIUDP6587uQvtw1gc+OLd0FoHGQ6u+MzviNfeRrQVpIiJmoZ/YIvKbZbPZOrsLIiIiItIGmoEVkd+skJAQ1+s1a9YQGhraib0xF5vNxm233QYod95Q/ryn3PGb/J5FRJxUwIrIb5bF8uui2NDQUKxWayf2xryUO98of95T7kREfnu0hFhERERERERMQQWsiIiIiIiImIIKWBERERERETEFFbAiIiIiIiJiChaHw+HjEwJFRERERERE2p9mYEVERERERMQUVMCKiIiIiIiIKaiAFREREREREVNQASsiIiIiIiKmoAJWRERERERETEEFrIiIiIiIiJiCClgRERERERExBRWwIiIiIiIiYgpdOrsDIiKtUVlZyapVq9i0aRMFBQUEBAQQHR3NxIkTmTp1KkFBQV7HLi0tJT09nczMTAoLCwkJCWHgwIEkJSVx8803Y7FYPLY/fvw46enpZGVlUVpaitVqJTY2lilTpjBhwgSv++UvRszdCy+8wJdfftli/A0bNtClS+f9U9UeuTtz5gzfffcdBw8e5ODBg+Tm5lJaWgrA//3f/3HTTTe1Ko7Rxx0YM39mGXsiItI0/WQWEcMrKChgzpw5FBQUABAaGkptbS05OTnk5OTw9ddfs2TJEsLDw9scOzc3lyeeeIKysjIArFYrlZWV7Nu3j3379rFx40bS0tKa/UU7MzOThQsXYrPZAOjWrRtnzpwhKyuLrKwskpOTmTt3botFcHsxcu4AgoODCQsLa/Z4Z+UN2i93W7duJS0tzae+GX3cgbHzB8YeeyIi0jwVsCJiaHa7nXnz5lFQUEDv3r158skniY+Pp76+noyMDBYvXkxeXh6LFi3ipZdealPsiooK5s6dS1lZGZdccgnz589nyJAh1NbWsnbtWpYuXcrOnTt5/fXXefzxx89rf+LECZ5++mlsNhvDhg1j3rx5REdHu2adVqxYweeff84ll1zCPffc46+UtJqRc+c0ceJEUlNTff1W/a49cwfQq1cvYmJiiI2NZfDgwcyfP7/VbY0+7sDY+XMy6tgTERHPVMCKiKF9+eWXHD58GIBFixZx5ZVXAhAQEMCkSZNwOBw8++yzbN++nd27dxMXF9fq2KtWraK0tJSQkBBeeukloqKiAAgKCiIlJYXKykrefvtt1q5dy/Tp04mOjm7Ufvny5VRVVdGrVy9efPFF10xS165dmT17NiUlJaxdu5b33nuPKVOmeDXL6Qsj587o2jN3iYmJrV4m3BSjjzswdv5ERMTctImTiBia8161kSNHun4Jdjdp0iQiIyMbndta69atc8VwFmDuUlJSsFqt1NXV8fXXXzc6VlVVxaZNmwC4/fbbmywS/vjHPwJw9uxZtmzZ0qa++YNRc2cG7Zm7wMBAr/tlhnEHxs2fiIiYnwpYETEsm83G//73PwCuvvrqJs+xWCyMGTMGgKysrFbH/vHHHyksLARwtT9X165dGT58eJOx9+/fT3V1tcf2kZGRDBgwoM198wcj587o2jN3vjL6uANj509ERMxPS4hFxLDy8/Opr68HYODAgc2e5zxWWlpKeXk53bt3bzG2c3ljS7EHDRrEjh07OHr0aLPtBw0a5LF9fn4+R44cabFP/mTk3LnbvXs399xzDz///DNdunShb9++xMXFcccdd3TasuP2zJ2vjD7uwNj5c2fEsSciIi3TDKyIGFZxcbHrdZ8+fZo976KLLmqyjSclJSVtin327FkqKyvPu054eDghISEttne/Xkcwcu7cFRUVcfLkSUJCQqiurubIkSN8/PHHzJo1i9WrV7eqP/7WnrnzldHHHRg7f+6MOPZERKRlmoEVEcNyL3o8/bIeGhraZJv2iN21a1eg4V7Ec497at/afvmLkXMHEBsby5AhQ7jmmmvo06cPgYGB2Gw2duzYwZtvvsnx48d55ZVXiIiI6PBnmrZn7nxl9HF37jWNlj8w9tgTEZGWaQZWREQ63LRp00hJSaFfv36uTXlCQ0O57rrrePPNN10b/PzjH//A4XB0ZlflAqOxJyJibipgRcSw3GfsnBvXNMVmszXZpj1jW63W8457at/afvmLkXPXkh49evCnP/0JgIKCAg4ePNjqtv7Q3t+fL4w+7s69ptHy15LOHnsiItIyFbAiYlju98gVFRU1e577/XPubTzp3bt3m2J369at0S/ZzuucOXPG4y/pzvbu1+sIRs5da1xxxRWu1ydPnmxTW1+1Z+58ZfRxB8bOX2t05tgTEZGWqYAVEcMaMGAAAQENP6Y87abqPNarV69W72TqvoOrp9jOXV8vvfTSZtu77wzbXHtPu7G2ByPnzujaM3e+Mvq4A2PnT0REzE8FrIgYVmhoKFdeeSUAO3bsaPIch8PBzp07AbjqqqtaHTs6Opq+fft6jF1VVcW+ffuajD1s2DDXBjXO65+roKCA/Pz8NvfNH4ycu9Y4cOCA67XznsSO0p6585XRxx0YO3+t0ZljT0REWqYCVkQMLSkpCYA9e/aQnZ193vGMjAxOnDjR6NzWsFgsTJ48GYANGzY0uVTw008/paqqisDAQG688cZGx6xWK9dddx0Aq1evpqKi4rz26enpQMP9fePHj2913/zFqLlraWOc8vJyVq5cCcDvfvc7YmJiWt03f2mv3PnKDOMOjJs/M4w9ERHxTAWsiBhaUlISgwYNwuFwsGDBAnbv3g1AfX09GRkZLF68GIAxY8YQFxfXqO3y5ctJSEggISGhySLrrrvuolevXthsNubOnUtubi4AtbW1rF69mn/+858ATJkyhejo6PPaz549G6vVSklJCfPmzeOnn34CGmYfV6xYwZo1awCYOXMm4eHhfspI6xk1d1999RVPPvkkGzdu5NSpU673q6ur2bJlCw899JCruHnooYdcy1E7UnvmDuD06dON/jhVVlY2er+pzZqMPu7AuPkzw9gTERHPLA7tES8iBnfy5Ekee+wxCgoKgIYlivX19dTU1AAQExPDkiVLzvtlffny5axYsQKADz/8sMnlgLm5uTzxxBOUlZUBDbNWNTU12O12oGF5Y1paGsHBwU32LTMzk4ULF7p+UQ4LC6Oqqoq6ujoAkpOTmTt3LhaLxccseMeIufviiy9IS0tzfW21WgkODqaiosKVt+DgYB5++GHuuOMOP2TBO+2Zu4SEhFb1YdasWcyePfu8940+7sCY+TPL2BMRkeZ16ewOiIi0JDIykhUrVrBq1So2bdpEQUEBXbp0YeDAgUyaNImpU6cSFBTkVezBgwfzr3/9i/T0dLZt28bPP/9MaGgogwYNIikpieTkZI+zMGPHjuWdd94hPT2drKwsSktLCQsLIyYmhltvvZUJEyZ4+V37hxFzN3LkSP76179y4MAB8vPzKSsro6Kigq5du3LxxRczatQobr31VqKionz99n3SnrnzldHHHRgzf2YZeyIi0jzNwIqIiIiIiIgp6OYOERERERERMQUVsCIiIiIiImIKKmBFRERERETEFFTAioiIiIiIiCmogBURERERERFTUAErIiIiIiIipqACVkRERERERExBBayIiIiIiIiYggpYERERERERMQUVsCIiIiIiImIKKmBFRERERETEFFTAioiIiIiIiCmogBURERERERFTUAErIiKm8Nprr5GQkMCjjz7a2V2RTlZRUcHNN99MQkICmzdv7uzuiIhIB+rS2R0QEZH2dfbsWfLy8sjJySE3N5fc3FyOHz+Ow+EA4MMPPyQyMrJdru1wOJg2bRpFRUXMmDGDBx54wKs4eXl5rF69GoD777/fjz3sXIcPH2bnzp3s37+fw4cPU1JSQl1dHeHh4Vx22WWMHTuWpKQkwsLCOrurhhIWFsZdd93FsmXLeP311xkzZgwhISGd3S0REekAKmBFRC5wc+bMIS8vr1OunZOTQ1FREQDjx4/3Os4bb7xBXV0dY8aMYdiwYf7qXqeaM2cO3333XZPHSktLKS0tJSsri5UrV5Kamsro0aM7toMGN23aND766CMKCwv5+OOPmTFjRmd3SUREOoCWEIuIXOCcM63QMHM1cuRIevXq1SHX3rJlCwB9+vRh6NChXsXYt28fu3btArigihRnYR8eHk5ycjKpqaksXbqUZcuW8eyzzzJ27FigoZhNTU1l7969ndldw7FarUydOhWA9PR0KisrO7lHIiLSETQDKyJygUtOTiYiIoLBgwfTv39/LBYLc+bMobS0tN2v7Sxgx40bh8Vi8SrGBx98AEBkZCR/+MMf/Na3zta/f39mzpzJpEmTCA4ObnRs8ODBTJgwgffff5+33nqLmpoaXn75Zd59991O6q0xJSYmsnz5cs6cOcN//vMfpk+f3tldEhGRdqYZWBGRC9y0adO44YYbiI6O9rqI9MZPP/1Efn4+4P3y4aKiIjIzMwGYPHlyh/a/vS1evJibbrrpvOLV3YwZM4iJiQHg6NGjHDp0qKO6ZwqRkZEMHz4cgM8++6yTeyMiIh1BM7AiItIunLvDOpcte2P9+vXU19cDMHHixFa1sdvtbNiwga1bt5KTk8Pp06epq6sjIiKCQYMGER8fzw033EDv3r0btUtISAAgKSmJ1NRUfvzxRz7++GOysrIoLi6mW7duxMbGcs899zBixAhXu+rqar744gvWrVvHsWPHsNlsREVFceONNzJ9+nSfNxcaNWqU6x7mn376icsuu8zrWEePHmXNmjXs3buXkydPYrPZCAsLIzw8nMjISOLi4rj22mu55JJLvIpvt9v56quvyMjI4PDhw5SVlWGxWOjevTsREREMHTqU+Ph4xo0bR1BQUKO25+b/6NGjfPrpp+zatYvi4mKqqqp4/vnnz/swZOLEiezdu5f8/HxycnIYMmSId8kRERFTUAErIiLtwrl8eOzYsXTp4t0/N9u2bQMa7hMdMGBAi+f/8MMPPPXUUxw7duy8Y0VFRRQVFbFjxw4OHTpEampqs3E2btzICy+8gM1mc71XXV3N9u3b2bFjB0888QRTpkyhuLiY1NRUcnJyGrU/cuQIb7/9Ntu3b+fll1/2qYi12+2u1wEB3i+cWrNmDUuWLKGurq7R+2VlZZSVlXHs2DGysrI4dOgQCxYsaHP806dP87e//a3JDcOcuc/Ly+Ozzz4jPT2d/v37Nxvriy++4OWXX6ampqbF67pv6rVt2zYVsCIiFzgVsCIi4nfFxcV8//33gPfLh2tqajhw4AAAQ4cObXH5cF5eHo888ghVVVUAjBw5ksTERAYMGEBQUBAlJSVkZ2e3+NzQQ4cOsWHDBnr27Mn999/vuvbu3bt57733sNlsvPrqq4wYMYLnnnuOH374gdtvv51rr72WiIgIjh8/zrvvvsuhQ4fYt28f6enp/PnPf/YqBwDffvut6/XAgQO9inH48GFX8dq9e3emTJnCiBEjiIiIoK6ujpKSEnJzc9m+fbvXy7SXLFniKl7j4uJITEwkMjKSbt26cfbsWfLz89m7d69rSXhzcnNzWb9+Pd27d2f69OkMGzaMoKAgjh49Sr9+/c47f+DAgVitVqqqqvj222+ZPXu2V/0XERFzUAErIiJ+t3XrVhwOB8HBwYwZM8arGIcOHXLNPg4ePNjjuXa7naeeespVvD722GOuHWrdXXPNNdx3330UFhY2GysvL4+YmBiWLFlCeHi46/3f//739O/fn4ULF2K323nkkUcoLy9n8eLFxMfHu86LjY3lqquuYubMmRQXF7N69WpmzpxJYGBgm75/aFiGfeTIEaChiI+Ojm5zDICMjAzXzOurr77quq/W3fjx47nvvvsoKytrc/zq6mrXBwPjx4/nueeeO68QHjFiBLfddhtVVVUeZ5KPHDlC//79Wbp0aaPdspvbxTowMJDY2Fj27t3LwYMHqa+v92mmWkREjE0/4UVExO+cy4fj4+OxWq1exXBfBtzSY3/Wr1/P8ePHgYZdl5sqXt317dvX4/F58+Y1Kl6dJkyYQJ8+fQA4deoUKSkpjYpXp7CwMG666SbXeUePHvV4vaYUFxfzyiuvAGCxWHjooYfaHMPJueN0WFhYk8Wrux49erQ5/pkzZ1wfNowYMcLjLK7Vam1xSfXjjz/epkc9Oc+12WwUFxe3up2IiJiPClgREfGriooK9uzZA3i/fBigpKTE9bp79+4ez3UWzAB3332319eEhiWpzRV5Foul0bHExMRm47ifd+LEiTb1wWazkZqa6io8z904qq2cRXdFRQUZGRlex2lOjx49XLspf/PNNz49k7VPnz5Nfijgifv4cB83IiJy4VEBKyIifpWZmYndbicwMJBx48Z5Hae6utr1uqnZUHcHDx4EGmbiWrPZkycttXfvi6fdet3Pa0tBV1tby/z5810bQ1177bXcd999rW7flMTERNes58KFC3n44Yd5//332bdvn2vZtS+CgoJISkoCIDs7mzvvvJPFixfzzTfftLl492aXZfcC1n3jLRERufDoHlgREfEr52zolVdeSUREhNdx3O8ZbWk32tOnTwO/zjT6IjQ01ONx9+WxnpZHu9+H6XwUUEvsdjsLFixg586dAIwePZqnn37aq/tn3UVFRfHiiy/ywgsvUFRUxP79+9m/fz/QkOchQ4aQkJDALbfc0uKHBc159NFHqampYd26dZSXl7N27VrWrl0LNHywMHr0aJKTk1ucSW5ptr0p7h92eLvjtYiImINmYEVExG9qamrYsWMH4NvyYWi4X9OpvLzcp1hmYLfbWbhwoevRQfHx8Tz//POupbm+iouL44MPPuCZZ54hOTnZ9Riburo6Dhw4wBtvvMHdd9/tKp7bKiQkhNTUVFauXMlf/vIXRo0a5SrwS0tL+fLLL5kzZw7z589vVHCey5sNmNw3nnIfNyIicuHRx5QiIuI3u3btci1J9bWAdX9kSksFbEREBIWFhabdwMdZvDpnr0eNGkVaWppPz49tSnBwMNdffz3XX3890DBzvXv3btatW8f27dspLy9nwYIFpKen07t3b6+uER0dzb333su9995LXV0deXl5bNu2jTVr1nDq1Ck2b97MsmXLeOSRR/z2fZ05c8b1uqUNukRExNw0AysiIn7jLMBiYmKIjIz0KZb7M09//PFHj+c6H7NTUlLS4rlGc27xOnLkSF588UW/F69NiYiIYNKkSbz00kvcfvvtAFRVVbF161a/xHcuT549ezZvvvmma3n2+vXr/RLfKT8/H4DIyEi6du3q19giImIsKmBFRMQv6uvr+e9//ws0bDzkq759+3LRRRcB8P3333s8NyEhwfU6PT3d52t3FLvdztNPP+0qXkeMGMHf//73Fu/DbQ+jR492vXbeU+xPkZGRrufYevOs2eacPn3a9QilK664wm9xRUTEmFTAioiIX+zfv99V+LgXlL5wFlX5+fmcPXu22fMmTpzoKo4+//xzPvnkE49xCwsL/dI/X9jtdp599lk2b94MtG/xumnTphaLUue9ywAXX3xxm+KfOHGCXbt2eTzn5MmTrpnSqKioNsX3JDs72/X66quv9ltcERExJt0DKyJygTt27Jhrx1kn5/NFATZu3Nhot2Cr1cqECRPafB3nLGJUVJRXj0JpyvXXX8/nn39OfX09u3bt4rrrrmvyvC5duvDMM8/w8MMPU1VVxWuvvcbmzZuZPHkyAwYMICgoiJKSEnJycti4cSODBw8mNTXVL3301qJFi9i4cSPQUDA++OCDnDx50mObnj170rNnzzZf65NPPmHRokXExcURFxfHpZdeSo8ePaitraWwsJD169e7Zs/79evX5scfFRYW8vjjjxMVFcW4ceMYOnQoffv2JSQkhLKyMrKzs1m9erVrN+mpU6e2+XtoTlZWFtBwf+/YsWP9FldERIxJBayIyAVu//79pKWlNXv8jTfeaPR1v379fCpg/bF82Ck+Pp4+ffpQVFTEunXrmi1gAS6//HJef/11nnrqKU6cOMGePXvYs2dPk+c675ntTBkZGa7Xx48f58EHH2yxzaxZs5g9e7ZX16upqSEzM5PMzMxmz7n44otJS0vz+HggT06cOMFHH33U7PGAgADuvvtu7rjjDq/in8tut/PNN98ADbP+3j4CSEREzEMFrIiI+OyHH35wzR76uvuwu8DAQFJSUnjrrbfYvn07p0+f9vhs2djYWFauXMm6devYsmULeXl5rvste/bsyWWXXcZVV13FDTfc4Lc+msHChQvZuXMne/fu5fDhw5SWlrqWFPfo0YPLL7+c8ePHk5iY6NVje4YPH87SpUvZtWsX2dnZFBYWcurUKc6ePUtoaChRUVEMHz6cW265xW+z84BrTABMmzbNb3FFRMS4LA6Hw9HZnRAREXN75513eOedd+jZsyeffvqpV8/ybE5FRQV33XUX5eXlPPDAA8yYMcNvscXc5s6dS2ZmJnFxcbz66qud3R0REekA2sRJRER85lw+fM011/i1eAUICwtzFa2rVq2isrLSr/HFnLKzs8nMzMRisXD//fd3dndERKSDqIAVERGf1NbWMn78eGbNmkVKSkq7XGPq1Kn079+fsrIy/v3vf7fLNcRcli1bBsDkyZMZOnRoJ/dGREQ6ipYQi4iIKXz//fdkZmYSFhbGnXfe2dndkU5UUVHBRx99hMPhICUlxeN90SIicmFRASsiIiIiIiKmoCXEIiIiIiIiYgoqYEVERERERMQUVMCKiIiIiIiIKaiAFREREREREVNQASsiIiIiIiKmoAJWRERERERETEEFrIiIiIiIiJiCClgRERERERExBRWwIiIiIiIiYgoqYEVERERERMQUVMCKiIiIiIiIKaiAFREREREREVNQASsiIiIiIiKmoAJWRERERERETEEFrIiIiIiIiJjC/wO3tHJUsuDnJgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACoW0lEQVR4nOzdd3hT1eMG8PfeJN2li7IpZZSNijJkKMhGREQRUGQ5ARfKV4YTcYIKP/dAERBkiyiIspWNMgTZo2WVUuhu05Hknt8fIZeUZrZp07Tv53nyNE3OvTlZN/e959xzJCGEABEREREREVE5J3u7AkRERERERESuYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJDLBERERERETkExhgiYiIiIiIyCcwwBIREREREZFPYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJHgmwCQkJkCQJkiRh1KhRnlhlpdS1a1f1dSQismfUqFHqtiIhIcHb1VHNnTtXrdfcuXO9XR3yMEVRcNttt0GSJDz77LPerg75iC1btqjbhalTp3q7OkTlRmxsLCRJQmxsrLer4nGPP/44JElCx44dIYTw+PrLrAV27ty5mDp1aqXaeP3888/qc05PT/d2degao9GIDRs2YPLkyejWrRtq1qwJf39/hISEoGHDhhg6dCh+/vlnmEwmt9b733//4dlnn0XTpk0REhKCsLAwtGrVCpMnT8bZs2dL6dkQUWWSnJyM+fPn49FHH0Xr1q0RHh4OnU6HqKgotG3bFhMmTMDRo0dL5bG/+eYb7Nu3DwEBAZgyZYrNMp7cvlofEHHlsmXLFofrS0lJwbp16/Duu+/igQceQL169QotXxoSEhKwYsUKTJkyBb169UJUVJT6eF27dnV7fWlpaZg5cyZ69OiBGjVqwN/fH0FBQYiJiUH//v3x3XffIS8vz6V1ZWRk4IMPPkDXrl1RrVo1+Pn5oWbNmujSpQs++eQT6PV6t+tXXvXv31993b/77ju3lz937hw0Gg0kSUJkZKTLr7FFUlISli5dipdeegndunVDkyZNEBUVBZ1Oh4iICNxyyy0YO3Ystm/f7vI6TSYTFi5ciPvuuw916tSBv78/IiMjccstt+DVV1/FuXPnXF6XEAJr1qzBww8/jLi4OISEhECn06Fq1aro2LEjXn75ZZw+fdqt5+zIpUuX8Ouvv2Lq1Km45557ULNmTfX9KW6YO3v2LCZPnoxWrVohLCwMISEhaNq0KZ599lkcPnzY6fKWMOnuxdl2pzxbsWKF+jzuuOOOYq2jR48e6jqWLFmi3v7KK69Aq9Vi586dWLBggaeqfJ3wgPj4eAFAABAjR460WaZLly5qmcpi5MiR6nOOj493Wr4yvkZlbdOmTSIyMlJ9nR1d2rZtK06dOuXSej/44AOh0+nsris0NFQsWrSolJ8dVRbublvKyvfff6/W6/vvv/d2dSqcZ599Vmg0GqfbLlmWxYQJE4TRaPTYY+fk5IgaNWoIAOK5556zWcbT21frz5Mrl82bN9td18GDB50u72mffPKJw8fr0qWLW+tbu3atiI6Odvo86tevL/bu3etwXb///ruIiopyuJ4GDRqIf/75pwSvgNnmzZvVdb7xxhslXl9xrFixQq1D586d3V5+2rRp6vLjxo1ze/lJkya5/Dm+//77RVZWlsP1nTp1Stx8880O1xMSEiLmz5/vtG5XrlwRXbt2dVovPz8/MX36dLef+41++eUXh49Tr149t9e5YMECERIS4rDuM2fOdLiOevXqubW9ASAkSRIJCQnFfCWuP2ZxnrMn5OfnF9oOuLrPa3H27FkhSZIAICIiIkReXl6h+x999FH1+eXn53uy6kILD4iNjS2V5uHKxpeP4viKixcvIjU1FQAQGRmJHj164Pbbb0fNmjVhMBiwZ88ezJ8/H5mZmfj7779x1113Yc+ePahRo4bddX711Vd46aWXAAA6nQ7Dhw9Hly5dYDAY8Mcff2D58uXIysrC8OHDER4ejj59+pTJc6WKa+7cueyiWwkdOXJEbbls0aIFunXrhlatWiE8PBzJyclYs2YN1q5dC0VR8NFHHyEjIwOzZ8/2yGN/8cUXSEpKgkajwcSJE22WKY3tq8Wzzz6Lbt26OSzTsmVLu/fd2OKr0WjQtGlTnDlzBrm5uU4fvzhufMzAwEDExcXh4MGDbq9rz549GDBgAAoKCgAADRs2xPDhw1G/fn0YjUacPHkSc+bMQXJyMuLj49GjRw8cOnQItWvXLrKuzZs3o3///jAYDACA22+/HUOGDEGtWrWQnJyMlStXYtOmTThz5gz69OmDHTt2IC4urhivQPnRv39/VK1aFVevXsW2bdtw+vRpNGzY0OXl582bp14fPXp0seqg0+lw2223oU2bNoiLi0O1atWg0Whw+fJlbN26FT/99BOMRiN++uknpKSkYNOmTZDloh0lL126hK5du+LChQsAgJiYGDz66KNo2rQp9Ho9Nm/ejEWLFiE7OxujRo1CUFAQHnjgAZt1MhqN6Nu3L/755x8AQEBAAEaMGIGbb74ZEREROH/+PH799Vds27YNBQUFmDRpEkJCQjBu3LhivQZA0e+FTqdDy5YtsX///mKtb82aNRg5ciRMJhMkScKgQYPQu3dv6HQ6/Pnnn/jhhx9QUFCAF198EaGhoXj88cdtruebb75xqdfBypUrMX/+fADAXXfdhXr16hWr3uWBn58fhg0bhk8++QSAed/irbfecnn5efPmqfnv4Ycfhr+/f6H7p0yZgjlz5uDs2bOYM2cOxowZ47nKezQOO1AZWxfLaytJZfbDDz+IVq1aiR9//LHIkSKLCxcuiBYtWqjv3YgRI+yuLzExUQQFBQkAQqvVivXr1xcpY92KULduXZGbm+ux50NUnrAFtnT16tVLDBs2zGGr2LJly4RWq1Xfh40bN5b4cQ0Gg6hbt64AIHr16mW3nKe3r578PJ06dUqMGDFCfPzxx2L79u0iJydHCFG41cXTVq5cKZ5++mkxZ84c8e+//wqj0Viox5o7LbDdunVTlxs9erQwGAxFyuTk5IgePXqo5Z5//vkiZfLy8kRMTIxaZvLkyTYfb9asWWqZbt26uVxPW8pDC6wQQjz//PNqPV577TWXl/vrr7/U5Vq2bFmsx46Pj3faqnrgwAFRtWpV9bEWL15ss9zgwYPVMt27dxfZ2dlFymzbtk3dN4mKihJpaWk21zV//vxC+yf2WhO/+eYbtVzVqlVtfv5ctX37dvHEE0+Ir776Svz9999qy5xl/e60Rubk5IhatWqpy86dO7dImXXr1qnbxJCQEJGUlFTsugshRPv27dXHW7BgQYnW5e0WWCGE2L9/f6HXXlEUl5dt2LChuqy936WOHTsKAKJJkyZurdsZBthSxABb/qSlpbn0BTp06JD63gUGBqo7OzcaP368Wu6ll16yu74HH3xQLffZZ58Vu/5E5RkDbOlKTU11qdyECRNcCoiuWrlypbo+R10SPb19LYvPU2kGWFuKE2Dz8vLUruNarVakp6fbLWv92t56661F7l+8eLF6f5s2bRy+X3fffbdadsOGDS7V1ZbyEmAPHDhQrB11SzdIAOKjjz4q1TrOnDlTfazhw4cXuT8xMVHtshkYGCguX75sd10zZsxQ1/Xqq6/aLDNs2DC1zOeff+6wbrfddpta9uDBg+49MRcUJ8D+3//9n7rcgw8+aLfcSy+9pJb73//+V+w6Hj58WF1PWFiY0Ov1xV6XEOUjwAohxC233OL2QU/rAzutWrWyW+7zzz9Xy9lq5CmuUh+F2DKy7p9//qneZuskaHuDOymKgqVLl2LIkCGoX78+goKCEBoaiqZNm2Ls2LE4dOiQw7pNnTq1yInWGzduxEMPPYT69esjICCgyEieRqMRf/zxByZMmIDOnTurgxuEhoaicePGGDVqFP766y+7j2kZIdS6y0n9+vWLPGd7r5Urg0ns3r0bTz75JJo0aYLQ0FAEBwejYcOGGDlyJDZt2uR0+RsHkcjJycGHH36INm3aICIiAsHBwWjRogWmTJmCtLQ0p+vzFeHh4S69vi1btkTTpk0BALm5uTh16lSRMkIILFu2DACcjsr53HPPqdetT3IvCzt37sTYsWPRvHlzhIeHIyAgADExMRgyZAjWrFnjcFlbo0eeO3cOEyZMQNOmTREcHIzw8HB07NgRX3zxBYxGo0t1ys7Oxv/93/+hZ8+eqFWrljr4RNu2bfH666/jypUrDpe/8btiMpkwd+5c9OzZE7Vr14ZWq7U5EMTly5cxceJENG/eHMHBwYiMjES7du3w0UcfqV2H7I0K+Pvvv6uPaf1+OvLcc8+py6xdu9alZVzhbBTi0nrfVq9ejf79+6NGjRoICAhAbGwshg0bhp07d7r9HAoKCvDdd9/h3nvvRd26dREQEIDw8HDcdNNNmDBhgt3RlY8fP47g4GBIkoSwsDDEx8fbfYy0tDTExMRAkiRoNBqH221fEBER4VK5Bx98UL3u7DfSFT/88AMAcxfYgQMH2i3nye0rXZeSkqJ2u6xWrRrCwsLslm3cuLF6PScnp8j91vsHjzzyiMP3a8SIEer1H3/80a06F4elW68kSZBlGbNmzbJZ7vfff8eoUaMQFxeH0NBQBAUFoWHDhhg1ahS2bdtmd/0333wzWrduDcA84M/mzZud1kmv16u/81qtFo888kgxnpnrmjdvrl5PSkoqcv+WLVvULpu9e/dGtWrV7K7L+v1btGiRzTLJycnqdWfdxJ19trzBen/q+eeft1vu2WefVT/rS5cuLfbjff/99+r1oUOHIjAwsNjrcpXJZFJH9LXst2dkZBQpd+7cObzyyito164doqOj4efnhxo1aqBnz5748ssv1dMPbLHuFu/q6UnW5Rx1qx8yZAi0WvMZq5bfEo/wRAp2NIiTdcuro4uto3KnTp0qdFTA1kWWZYddQd544w217KZNm8TTTz9tcz3WLaSunMxuea62Tkq2bnl1try918oeg8EgnnjiCafrHjx4sMMjQ5ZyXbp0EadPnxbNmze3u6569epVyhbktm3bqq/Brl27itxvfaTbWbcik8kkqlSpon5mMzMzS6vaquzsbDFkyBCnn5V+/frZrc+NR87Xrl0rwsPD7a6rZ8+edrsOWvz222+iWrVqDusUGhoqVq1aZXcd1t+VlJQU0blzZ5ufW2ubNm0SERERdh+zVatW4ty5c3aPiJpMJlG/fn0BmAcrcNYVPDc3V328mJgYYTKZHJZ3h7PeHZ5+34xGo8PtmizLYvr06S63mP3999/qa2nv4ufnJ7766iuby1t3Z+vQoYPdwYoGDRqklnvllVccvqYViXUrQdOmTUu0rry8PLUr4p133umhGjrfvgrBFliL3NxctQukTqdz2AL733//qeu/7777itxv3aq6du1ah4+7b98+tWyNGjVcqqstrrTA7tu3T1SvXl0A5lbmH374oUiZ5OTkQl2p7V0ee+wxUVBQYPNxrAfWcqV3gnUX2wEDBrjztIvFurXKVgusdavqpEmTnK7Pst8BQBw7dqzI/Y888oh6v7MW2DZt2ggAQqPRiJSUFNeflIvs/Xbbk5GRobZGh4WFOf2NtT514fDhw27Xz2AwqJ9RAGL37t1ur+NGzlpgc3Nzxb333lvoO21r3+Pdd98V/v7+Dr8XcXFx4vjx4zYf5+rVq8LPz08AEMHBwU67u+fk5IjQ0FB1m5ScnOywfOvWrQUAERkZ6bF9oVIPsFu3bhUrV64s9MFZuXJlkcvRo0cLLXfq1KlC5wJ07txZvP/++2LRokViwYIF4oUXXii0M2pvo2gdYPv27atuiCdPniwWLFgg5s6dK8aNGycSExPVZdq3by9CQkLEgAEDxLRp08T8+fPF0qVLxccffyyefPJJERwcrK7T1jkme/fuFStXrhR33XWXWu7rr78u8pxvHCXQlQA7dOhQtUxAQIB46qmnxLx588SCBQvE+PHj1Q8UANG7d2+7XWQsZVq3bi2aNm0qJEkSAwYMEF9++aVYsmSJeO+99wqdJ3PHHXfYrVNFlJ+fX2iH/9KlS0XKLFq0yO7n3hbr99cTGz5H8vLyxO23364+XsOGDcXLL78sfvjhB7F48WLx9ttvi8aNG6v3d+vWzeZGxXrHY8CAASIoKEgEBgaKp556SsydO1csWrRITJgwodB3wtEBpeXLl6td4XQ6nXjggQfEp59+KpYuXSq+/fZbMWzYMHU0Z1mW7XZlsX4tLd/rm2++Wbz//vti8eLF4ptvvhHPPPOMWv7w4cPqTrjlc//RRx+JJUuWiE8++UR06tRJDUO1a9e2+4Py7rvvqutwdu7LDz/8oJZ98803HZZ1lzsB1hPv27hx4woFyyeeeELMmzdP/PDDD+LZZ59VX9v77rvPaeDYsWOHWl6SJNGnTx8xc+ZMsWTJEjF37lzx1FNPFXqv7K3ngQcecFj3b7/9Vr3/9ttvL9E5W75myZIlhX4HSmLjxo3qukrS9c6aK9tXIQoH2LZt24omTZqIoKAgERQUJOrVqycGDRokFixYUKL31hcCrBBC9OvXT13u0UcftXsObM+ePdXvlq1RmS3bS8C9AAtAXLlyxeX6WnMWYDdt2qQGraCgIPHbb78VKZOSklLofLubb75ZvPnmm2LhwoVi0aJF4pVXXlG33Y5+k93dUbcOzD///HNxnr7LTp06Veg5rFy5skiZ6dOnq/e7G2CXLVtW5P5ly5ap97t6DuyoUaPcfm6usKzf1QC7c+dOt75L1r+bS5Yscbt+q1atUpdv0aKF28vb4ijApqWliTvuuEN9zMcee8zmwVrrU9nCw8PFmDFjxHfffafmFussUqNGDbvbW+vf1Dlz5jist/WBHVsHym40duxYtby9A5buKpfT6JhMJnHrrbcKAMLf318sXbrUZrmkpCS1hVaWZfHff/8VKWMdYAFzEM7IyHD4+Bs2bHDYenn16lW1xUeWZXHmzBmb5Tw9jY71uSvVq1e3eQQpISGhUMuGvfMtrV8TPz8/8euvv9p8ntbrKknoysnJsXngojgXZ9MDeIJ1+LB1HpEQQrz55psOf5RvNGLECLW8raPLnnTjubm2dnYKCgoK1enLL78sUsZ6xwMwtySeOHGiSLndu3erLQS2hlIXQohz586pP6YxMTF2z6HZvXu3CAsLEwBEnTp1bB5Jv7Fnx/jx4x0e1bNuoR03bpzNsjduK2z9oCQlJakB29kP5p133ikA89Hq8+fPOyzrLncCbEnfN+vzXMLDw20O1HDs2DF1ihVHwTMzM1MdDCg8PFxs2bLF5vM7efKkegAtODjY5o5zamqqqFOnjvoab926Vb3v+PHjajivUqWKOH36tM3HcdXRo0c9tv0qbghwR/fu3dX34ZNPPinRuqwP2tjaAS4OV7avQrg+jU6TJk3Ev//+W6y6+EqAPXHiRKGeKw0bNhRTp04V8+fPF3PmzBGTJ09WW4f8/f3t7oCOHj1aXcfHH3/s8DGt9zkAiG3btrnzVFWOAuzy5cvVlqPIyEixY8cOm+uwHByTJEn83//9n80yWVlZolevXupj2Qvo1j0zHO2oJyQkqC181apV89hBsPj4eHV7sHz5cvHVV1+JUaNGicDAQLVeo0ePtrnsvHnz1DIDBw50+DhJSUmF3r+33367SBlFUcTAgQPVMgEBAeLJJ58UX3zxhVi0aJGYMWNGod/PgQMHOg39xeXot9cW69fClUaE119/XS3/1ltvuV2/AQMGqMt76lxoewE2MTFRtGrVSn08e4Ot/fzzz2qZHj16iKtXr9os99VXX6nlhgwZYrPM6tWr1TLOettYh2JHveUs5s6d6/J2x1XlMsBaz9fl7Mf3+PHjaovOE088UeR+653S4OBgcfHiRZeekzOnT592+kXwdIC1NMEDsHmE0mL37t3qRrdevXo2j9hYb9SmTZtmd12zZ892qZwz1p+Rkl5c2VCVRGpqqqhZs6bTnbYXXnhBLfPpp586Xa+75YsrMTFRPcJ8//33OyxbUFAgGjRoIABz95Ib3RiE/vrrL7vrsh4Mwla5Z599Vg0b+/fvd1iv7777Tl3XwoULi9xv/V257bbbHIbXv//+Wy3bsmVLh3NjWq/X3o+o9YBctkKhEObtkqVMv379HD7X4nA3wJbkfbP+0bY1wqOF9Y8fYDvAfvTRR+r9v/zyi8PnaN3y984779gss2XLFiHLsvp+paWliYKCgkKDjXjiYNGNBzdKcnE0V6knWPcMqV69us0RSt3x8MMPq+vzxMAtrm5fhTAHWK1WK7p06SJee+01MW/ePLFs2TLxxRdfiEceeUQEBASo6wkNDS1WiPWVACuEOVD16NFD/X23dRk7dqw4efKk3XVY90xo27atw4GMrFt9AYjVq1e7VV8LewH2q6++Ur+/tWvXttutc+/everyL774osPHSk1NVQ+A9uzZ02aZNWvWqOtztKNufZDa2eO648svv7T7/jVq1MhhV95Tp06pZYOCghx23fzggw8KrdteDwqj0ShefvnlQj34brzceuutYvXq1R4dRfZGzn57b/Txxx+ry0yYMMHj5a1dvny5UDd+Z11mXWUrwJ44cULExsYKwHzAZtasWXaXv+mmmwRgbj13tq0fPny4ug927ty5IvcbjUZ12yxJkt0Dv9YHdqpXr+7SgZ3du3err/1jjz3mtLwrPDKIk6dZTvKtUqUKnnjiCYdlGzdujHbt2gEA1q1b57DsAw88gFq1anmkjg0aNFDnrtu9e7dH1ulIQkKCOkdWq1at0LdvX7tl27Vrp86Xd/bsWezdu9duWY1Gg2eeecbu/dbz7h05csTdavsck8mEoUOH4tKlSwCAfv36YdCgQTbLZmdnq9cDAgKcrtv6ZP+srKwS1tS+pUuXqifr/+9//3NYVqfTYciQIQCAkydP2h04BwBat26NO+64w+79jj4rQggsXLgQANC9e3fccsstDutlfdK/s+/1008/bXOuPItVq1YVKqvRaOyWdTQIhIX1PGbffvutzTLWtz/55JNO11maSvK+5efnq4NPVa9e3eEAJv369UOzZs0c1sWybW/cuDH69+/vsGy3bt3U7bW9z0CXLl0wefJkAOZt3ZgxY/Dqq6+q27xhw4aV+qAr5cmRI0cKfd4+/fRTBAcHl2idZ8+eVa9HRkaWaF3ubF8BoHPnzjh79iy2bNmCadOmYcSIERg0aBDGjh2LH374ASdOnEDbtm0BmLepQ4YMKTLHZEVSr149zJw5E/fee6/dMvPnz8eMGTPs/sYMGjQI4eHhAIC///4br7/+us1yn332WZFB/jIzM4tXcRumTZuGMWPGQFEUNGnSBDt27Cg0gJE1y3ZDkiRMmDDB4XojIiJw9913AwD++usv5OfnFynTu3dvdduydetWmwPBCSHUuT6B4s/96g6dToeePXuiffv2dss0bNgQd911FwDzAFPDhg2zOXfprl27igyOau/902g0eOmll/D6668XmcfTYt++fXj//feLNWBfaSnLfbAffvhBHezwnnvuQXR0tFvLu2rv3r3o1KkTEhISoNVqMX/+fIwfP95m2X///VedU3rs2LFOt/WW30KTyYSNGzcWuV+j0WD48OEAin7+rVnP/frII4+o+2qOWA9AaP2bUhLOH9ULtm7dCgCoWbMmfv/9d6flLTukZ8+eRW5urt1RwRztxN0oMzMTCxcuxG+//YZDhw7h6tWrdkdds0wmXZr27NmjXu/Vq5fT8r169VI/oLt371ZD/o0aN27scGRL60nQSzIacWxsrPqBL8+ef/55dWc5JibG5dHYyhPL9wcwfzZ//vlnh+Wt39ejR4/aHL0XME9274ijz8rhw4eRmpoKAAgNDXVaJwAICQlBeno6jh496rCcs++1ZYJ2AOoPvz2WUbkdueuuu9C4cWOcOHEC8+bNw9tvvw2dTqfebzAY1BHIa9WqhX79+jldZ2kqyfv277//qgdDunTp4jD8A+aDE/ber4yMDPXHtnr16i5/BgA4/Ay8+eab2LhxI3bv3l1oRMr69evjiy++cPoYrpg6dardkfLLi6SkJPTv31/dMRs3blyh0YiLy/K9BUoeYN3dvjZq1Mjh/XXr1sXatWvRsmVLJCUl4dixY1i+fLl6UK4iMRqNGD9+PD7//HNotVpMnDgRI0aMQKNGjWAwGHDgwAHMnDkTK1euxOzZs7Fnzx6sW7euyCi1YWFhmDVrlhrI3n77bWzatAmDBw9GrVq1cOXKFaxcuRIbNmxAYGAgwsPD1QMOjg4UukpRFDzzzDP4/PPPAQBt27bFb7/9hqpVq9pdxvKbFh4eXmhfyB5LaM3Pz8eZM2eKHFjTaDQYMWIE3n//fQghMG/evCLf761bt+L06dMAgDZt2qBly5YuP0dnxowZox4ILSgowKVLl7B582bMmDEDX375Jb7++mu8/fbbmDJlis3lP/nkE9x+++3IycnB+vXr0aJFCzz66KNo0qQJ9Ho9tmzZgh9//BEGgwENGjTAmTNnANh//37//XcMHToUGRkZ6Nq1K6ZMmYL27dsjMDAQ586dw7Jly/DOO+9g27Zt6N69OxYvXowBAwZ47PXwBdajDz/66KOl8hgbNmzAwIEDkZ2djaCgICxfvtxhY5X1vl5+fr7T39SLFy+q1+39po4ePRozZswAYD4Y9sYbbxQaqby4B3aioqLU656a2aTcBdjs7GykpKQAME+X4GjIflvS0tLsBljrHTVHNm/ejIcfftjmEOa2ePKopD2WHxCg8FDm9liXsV72Ro5+NAAUOhqXl5fn9HF92SuvvKL+qFavXh3r1693+PpYdq4B116b3Nxc9XpoaGgJauqYdSvq4MGD3VrW0YalJJ8V6zqtWLECK1as8EidAOff68TERPV6gwYNHJaNiIhAeHg40tPT7ZaRJAlPPvkk/ve//+Hy5cv49ddfcf/996v3//LLL+rUBKNHj3Ya+kpbSd4369fOWZhwVub8+fNQFAWA+YfX+sfXGUefAa1Wix9//BG33HKLGt4st1WpUsXlx/Blqamp6NWrl7qjOmjQIHzyySceWbclDGg0mhJNGeHu9tVVUVFReP7559Wd/TVr1lTIADty5Eh1KpsVK1YUaoX19/dH586d0blzZ7z44ouYNWsW/v33Xzz99NPqFDDWRo0ahezsbLz44oswGAzYsWMHduzYUahMaGgoFi5ciDfeeEPdh3B1GidHPvnkE3UKkB49emDlypWFfkttsfx+pKWlFWuf0JZRo0bh/fffB2B7R9364IqtwLJu3TqbLZ8W9913n0v18/PzQ7169TBq1CgMHToU99xzDzZu3IiXX34ZYWFhGDduXJFlWrZsibVr12LQoEFITk5GQkJCkZZ0SZLw+uuvIysrS52OyNb79/vvv6Nfv35QFAWDBg3CkiVLCgXdRo0aYcqUKejevTvuvPNO5OXlYfjw4Thx4oTaC9FbymofbM+ePTh8+DAAc8Oao1BZXJcvX0a/fv1QUFCAiIgIrFmzBh06dHC4jPV+1ZtvvunW49n7XjRt2hQdOnTAzp07ER8fjz///LPQgX3rAzvt2rVDixYtXHo8699i6/ehJMpdF2Jbcxu5w9E8R678+J48eRL9+vVTw2uTJk3Uo56LFi3CypUr1YulC0FZdFmy7u7gSpcw6y+2o64SnjiiWhG8/fbbePfddwGYd/g3bNjg9ECBpRsWAFy9etXpY1gOzNy4rKeV5Dvk6PtTks9KadUJcP69tvSc0Gq1hVpK7XHl+zVq1Cg1+M2ePbvQfZb/JUnCY4895nRdpa0k75t1F62goCCn5R29diX5DBgMBof3V61atVDrYIMGDXDbbbcV+/F8SUZGBnr16qXO99q/f3/8+OOPHjtwYvmcm0wmhzvsjhRn++oO6x2sY8eOeWy95cWePXvU8NqnTx+HXYjfeecdNaisWLGi0EEoa8888wyOHTuGF154Aa1atUJoaCgCAgLQqFEjPPfcczh48CD69+9f6HfLE4HFes7pnJwcl3pmlcbvR5MmTdCxY0cAQHx8fKE5ovV6PZYvXw7A3DX1oYceKrL8k08+iYEDB9q9FEdAQADmzJmjbrPfeust9aDfje644w6cOHEC06dPR+fOnREZGQmdTodatWphyJAh2Lp1K958802n79+ECROgKApkWcbHH39s9/eiXbt2GDVqFADzPmV56J1WVvtg1q2vI0aMKJWD0kIINUsUFBQ43e8BSm+/yrpV1dKbzMLVuV9vZF1XT82dW+5aYK2D15133ok///yzTB//vffeU48OvPLKK3jrrbfsTvTt7PxcT7I+WuTKBNLWO56l2drnKr1e7/RcRlfFxMTg1ltv9ci6AGDGjBl47bXXAJiPUK5fv96l7kLWO2COzh21sO7378mdtxtZvkOSJMFoNJaLgxTW3+vXX3/d7aOFJWEJVUajEQaDwWmIdeX7FRUVhUGDBmHhwoVYt24dzp07h5iYGJw9exbr168HYG5dqF+/fsmfgBdZv2+uhBdHr531ukaMGFHkh7Ekxo0bV+j7deLECbz66quYPn26R9Z/7NgxjwWjzp07e6TlETDvSPbu3Vs957d3795YtmyZSwdqXGV9YCA1NdWlAxnWirt9dYd19zRHvSd8lfW5qD169HBYNjAwEB07dsSaNWsghMA///xjN/A2aNAAM2fOtLuu7OxsnD9/HoD5AJa9c1Td8fzzz+Po0aNYuXIldu7cid69e+OPP/5wuJ9iOZ3Eso31lNGjR6stz3PnzkWXLl0AAMuXL1cP/N93332lesD5RjExMWjWrBkOHz6MpKQkHD9+3O7YAmFhYZg4cSImTpxod33W4xpYzhe3iI+PV+9v3ry50zFievToga+//hoAXOrKXdrKYh8sLy8PixcvVv8vre7DNWrUwPTp0zFs2DDk5OSgX79+WLNmjfqZtMX6N3XTpk1OT5Fy1ZAhQ/D8888jNzcXy5cvx2effYbg4GDk5OSoPToCAgIwdOhQl9fpyVNRLMpdgA0LC0NISAiys7PL5NzSG23YsAEAUK1aNUybNs1ueM3Kyir0hpS2mjVrqtdPnjzptLx1GU8NXFUSycnJxT4qeaORI0d67OjfrFmzMGnSJADmz94ff/zhdIAhC+udMEcDZQHm834sg3DJsux0sJuSqF27Ng4cOAAhBC5evIi6deuW2mO5UyeLsv5e16pVSz338syZM2jSpIndsmlpaS7vAI8ZMwYLFy6EoiiYM2cOpk6dijlz5qhHzL09eJMnWG87Tp065bS8ozKl9RlYuHChOkDYbbfdhqtXr+Ls2bP48MMP0bt370KDVBXX4sWLPXbQZfPmzS6da+1MdnY2+vbtqw4i2K1bN/z88892B2EprtjYWGzfvh2AeSekTp06Li9bku2rO8qqd4u3WLeiutItPiwsTL3uygE5e/766y+1hbRDhw4uDdbijE6nw5IlSzB06FD89NNPLoXY2rVrIz09HcnJyS4dhHTV4MGD8fzzz6strpYddesWN3utTK4EpuKyfh1KckAmLS1N/e0LDg5G69atC93vrc+VpzRv3hyyLENRFBw4cEBtSbbHejwMVw+i/fTTT+p70KlTp1JtfBgyZAgkSXI5xJbWb2qVKlXwwAMPYMGCBcjOzsby5csxcuRILF++XG0cGzhwoFvbWuu8VK9ePY/Us8yaZqw/VM66jNx5550AzDubruw0edLly5cBmAcAcfRF2LBhg92uHRbuPGdnrAdhsrTwOGLd2mlvAKfK7vPPP8eLL74IwPyDsXbt2iJHKB1p0aKFujN3+PBhhxuQHTt2qOdKd+rUqVRbxa03dp5q9S6p1q1bqz+QGzdudPrd8aQ2bdqo1zdv3uyw7JYtW1xeb+fOndXzP+bMmQODwYA5c+YAMB8AqwiDXNx8883w8/MDAPz5559OT5ewNbKhRdWqVdUWnF27dnlk7ID4+Hj1HLHg4GAsWrQICxYsgEajgaIoGDFiRKFwU1Ho9Xrcc889arC888478euvv7o0Eqe7rHf0jh8/7vJyJd2+usO6p1Zp7mB6i3W4sLSIOmLd0mTdOu0u6yDnydMhLCH2gQceAAA1xNrbJlh+0/Ly8gp19S0py446YD4gtGLFCiQkJKifpzp16jht8fY0IYR6jiHgfAwDR3788Ue1q+iwYcOKbB+89bnylCpVqqiDFGZkZGDXrl12y54/f15tbY6JiXG5N4HlNx0ovdZXa4MHD8bChQuh1WqRk5ODu+++225P1NLc17PVjbi43YeBwoNG3XTTTSWr3DVlFmCtm7qdHbkZOXKket3eEO+lxdI96syZM3ZDp8lkUs/nccSd5+xMbGys2m3233//dRhi//nnH2zatAmA+UhHeTgXzDIKsScunmh9nT17Np599lkA5h3f3377zekJ8zeSJEkd5VMIgU8//dRuWesBVUp7gJGhQ4eqoWP69Onl4kipRqPBsGHDAJh/BO1NP1MarIPk559/7jCEffzxx26t+6mnngJg/nEcP368ehBj5MiRHu3G6S3+/v7qlBSXL19Wz8OzZe3atU5HjLZs2/V6vTqASnGZTCYMGzZM3en95JNPEBcXh86dO+Pll18GYB518fHHHy/R4wDmUYg9tf0qaetrXl4eBgwYoO7UdOrUCWvWrHG7a6+rrKf0cHXKOE9sX12Vmppa6Htr+bxWJNYHEZYtW+ZwG5aQkKC+T7IsF/t0m82bN6vngTZo0EANep6i1WqxePFidRqlnTt3ok+fPjZD7IgRI9Trb775pkfHHbHeEZ87d26hKUJGjhxZ5qfg/Pzzz7hy5QoA82BnDRs2LNZ6kpOT1V4jOp3O5lQsjRo1UkPt+fPniwzkdSPrrrTWB4a9yXp/ytHv96effqq+r64Obnn27Fl1XzokJMTtQTGLa/Dgwfjxxx+h1Wqh1+tx99132zy43qZNG/Ug+pIlS9SBpjzhrrvuUmek2LJlC7Zs2aL+5tStWxfdu3d3a33Wvx2Opolyiycmk7WemHvkyJE2yzz33HNqmT///NPh+kwmk2jbtq1a/vnnnxf5+fl2y+v1evH999+LRYsWFbnPegJ6VyaQ79mzp1p+5syZRe4vKCgQo0ePLjTBs71Jl2fOnKmWmTdvntPH7tKli8MJ1ZcsWaLeX7NmTXH06NEiZc6ePSsaNmyolvvss89srstyvysTqbtT1hfMmzdPnYQ5KCjIpc+FPRcvXhRBQUECgNBqtWLDhg1Fynz//ffqa1i3bl2Rm5tbgtq7ZsKECepj3nXXXeLSpUt2y5pMJrF+/Xrx1ltvFbnP3gT0tjgre/78eREeHi4ACH9/f6fficuXL4tp06aJf//9t8h9zr4rN+rcubNafty4ccJkMhUpY72tcPS9tpaenq6+/9aXEydOuFSv4ho5cqT6WPHx8UXu9+T7tnXrVvX+iIgIsX///iJlTpw4oU6Abrl8//33RcplZ2erE7dLkiRmzJhh872wSE9PFx9//LFYv359kftee+019bEGDRpU6D6DwSA6dOig3v/11187fA18RX5+vrj77rvV59W+fXuRkZFRqo+Zl5cngoODBQBxxx13OC3vqe3rjh07xOzZs0VeXp7dMufPnxft2rVTX4+4uDhhMBjcehzL59Gd3SHrfR53d6Osl3X1N/XKlSvqewBAjB07VhiNxiLlUlJSRPv27dVyd999t831nTlzRpw9e9bu461bt06EhYWp39OS/EYK4XgbYzAYxKBBg9T7b7/9dpuf6QceeEAtM2TIEIefe4PBIFasWGF3/8eaoigiNjZWfa7Vq1dXH+fkyZNuP1dbTp48KaZPn+70u7p+/Xr1N9LRtluv14vdu3fbXc+pU6fETTfdpK5n6tSpdssOGTJELdeoUSO7n4t33nlHLefv7y/Onz9vs5z198LWb5Mj7vz2WuTk5IhatWqpy86dO7dImfXr1wutVisAiJCQEJGUlOTSuqdOnaqud/To0S7XyR2W7Y+t57xs2TK13va2pb/88otax5iYGLFnzx6Hj3f48GExZswYl+pmvU9k/fv+6quvurS8tdatWwsAIioqyuFvvjvK7BzY7t27q61Qjz32GF544QXUq1dPHc2rUaNG6hQMsixjxYoV6NChAy5evIiPP/4YS5cuxYMPPoibb74ZYWFhyM7Oxrlz5/DPP/9g48aNyMnJwVtvvVXiej777LNq6+aLL76ILVu2oHfv3oiKisLJkycxf/58nDx5EnfddRdOnjzpsNuo9RGKiRMn4sqVK2jSpIl6Hknt2rXRqlUrl+s2ePBgrFy5EosXL8alS5dw6623YtSoUejQoQM0Gg3++ecffPfdd+oRzF69etkcgr0yW7t2LR599FH1SNyjjz6K9PR0p/Nn3XrrrYiJiSlye61atfDRRx9h7NixMBqN6Nu3L0aMGIEuXbrAaDRi7dq16lFsrVaLb775xmE3P+tzruPj4+3OyerMe++9hwMHDmDjxo3YvHmzegS9Q4cOiI6ORkFBAZKSktTW/KSkJHTv3h2vvvpqsR7PFXXq1MHixYtx7733Ij8/HyNHjsTMmTNx7733Ii4uDoGBgcjIyMCJEyewa9cubN++HSaTySMDE3z99ddo27Yt9Ho9vvjiC+zcuROPPPII6tSpg8uXL2PJkiXYvn07OnTogHPnzuHixYsuHXkPCwvDkCFDCnW169q1K+Li4kpc5/Kic+fOGDduHL744gukpaXh9ttvx8iRI9G5c2fIsow9e/bgu+++Q05ODu677z6H36Xg4GD8/PPP6NKlCzIzMzFx4kR8/fXXeOCBB9C8eXOEhIQgMzMTZ86cwZ49e7BlyxYUFBTghx9+KLSebdu2qb1g6tSpg2+++abQ/VqtFgsXLsQtt9yCzMxMvPDCC+jSpYvD8599wahRo/Dbb78BMHfLHTt2rNpC4IirU3rY4u/vjz59+mDFihX4559/kJ2dbXfaE09uXy9fvownnngCEyZMQO/evXHbbbehdu3aCAgIQEpKCrZv347ly5ergy6GhoZiyZIlDs/T/O677xAfH1/oNutzDG/c/kVERGDChAkO6+7Mjeu0Ho0zPj6+yP233nproWm5AHM30nfeeUdtRfvyyy/x119/4eGHHy40D+y8efPU1ruwsDB89NFHNuu0d+9eDB06FHfccQe6du2KRo0aQavV4sKFC1i7dq16KoAkSfjss888cs62PVqtFosWLYIkSVi2bBl27dqlnhNr3cV1zpw5OHHiBA4dOoQlS5bgjz/+wODBg9GmTRtEREQgNzcXFy9exP79+7F+/XqkpaW51O1ZkiSMGjVK7WVhOY3sjjvucGnqMFdkZ2dj0qRJeOONN9C9e3e0adMGsbGxCA0NhV6vx5kzZ7Bu3bpCLaCdOnXC5MmTba4vJycH7du3R4sWLdCnTx+0aNECoaGhuHr1Kv766y+sXLlSnVbmoYcecvi7/u6772L9+vVITU3FqVOn0LJlSzzyyCO4/fbbC80Da92C9sYbb7h1LrwtH330kd2pXNLT04vUuX79+jbfz6CgIHzzzTcYMGAATCYTRo8ejTVr1qBv377QarX4888/MX/+fHX061mzZqF69epO6yeuzQ9sURbdh280aNAgSJKEoUOHQq/Xo1+/fli9enWhfaL+/fvj9ddfx7Rp03Du3Dm0b98evXr1Qo8ePVCnTh1IkoSUlBQcPnwYW7ZswZEjR6DRaPDll186ffyRI0di2rRpEEIUmo7TMhq1q1JSUgqNku+xXg2eSMGutMAajcZCrSA3XmwdaUpMTBTdu3e3u4z1RaPRiNmzZxdZh7stsEIIMWXKFIeP1alTJ5GcnOzwyInFQw89ZHc9N75WrrQqGQwG8fjjjzt9PQYNGiT0er3d9VjKVbYW2Btb2Vy92GpNsvbBBx8InU5nd/nQ0FCbPQRuZL2Mu0cvb5Sfny+eeeYZodFoXHqOI0aMKLIOT7bkWezcuVM0aNDApTqFhISIgwcPFlmHuy2wQgixadOmQke3b7y0bNlSnDt3TtSuXVsAEDfddJNL6929e3eh9SxcuNDlOhVXWbbACmHefg8fPtzuayfLspgxY0ah3gaOvjPHjh1Tj8g6u/j7+4u1a9eqy6alpanbXlmWHW7XFyxYoK6ndevWDnvy+ALr1kJ3LiX1888/q+uaP3++3XKe3L6uXLnS5eVbtmxps6fGjay3G65c7P22u9MC6+5rYW8fSgghPvzwQ+Hn5+d0HbGxsWLXrl1217Ns2TKn66hevbpYsmSJ09fUFa5sYwwGgxg8eLBazlbvgoyMjEIths4ur732mkv1i4+PV3sNWC5z5swp6dNW7d+/3+U6y7IsnnzySZGdnW13fVeuXHG6Hj8/P/Hqq6+61Nq1d+9eERcX53SdWq1WvP322w7XZV3e0T6Mu9syZ/ufCxYsECEhIQ5fD1u9Ku3ZuHGjumzjxo1dXs5druSIFStWFGqJ3bRpU5Eys2fPFlWqVCnRds2Wu+66q9Cyd955p9vP8YsvvlCXt9VLsbjKLMAKIURubq54//33RYcOHUREREShHWtHO1lbtmwRTz31lGjRooUIDw8XGo1GVKlSRTRv3lwMGTJEfPnllyIxMdHmssUJsEIIsXbtWtGvXz9RtWpVodPpRM2aNUW3bt3E7Nmz1S5KrnzwjEaj+PLLL0XXrl1F1apV1Q+hrdfKnZ3ynTt3iscee0w0atRIBAcHi8DAQFG/fn3xyCOPiI0bNzpd3tWNgrtly7vSCrBCCHHo0CHx9NNPi8aNG4vg4GARGhoqWrZsKSZNmiQSEhKcLp+Tk1NoY5uSkuKBZ2zuvjR58mTRvn17ER0dLbRarQgKChL169cXd999t3j33XdthkQhSifACmHeWVmwYIEYPHiwqF+/vggJCRFarVZERkaKNm3aiCeeeEIsWbLE7o94cQKsEEIkJSWJ//3vf6JJkyYiMDBQhIeHizZt2ogPP/xQ5OTkCEVRRGBgoAAgunbt6tI6FUVRu9tFRkY67PLoKWUdYC1+/fVX0a9fPxEdHS38/f1FTEyMeOihh8SOHTuEEMLlACuE+XVbtWqVGDlypGjcuLGoUqWK0Gg0Ijw8XNx8881ixIgRYu7cuSI1NbXQctY7sJMnT3b4GEIIMWzYMLX8hAkTnJYvz7wVYI1Go4iJiREARM+ePe2W8+T2NSsrS6xatUpMnjxZdOvWTTRu3FhERkYKrVYrwsPDRbNmzcTIkSPFL7/84nKXNF8PsEIIkZCQIF5//XXRuXNnER0dLXQ6nQgICBB16tQR/fv3F7Nnz3Z48FoIIa5evSq++uorMWTIENGsWTMRGRkp/Pz8RO3atUX37t3FJ598ItLT0x2uwx2ubmOMRmOh77e9LvL79u0T48ePF61btxZRUVFCq9WKkJAQERcXJ+677z4xc+ZMcfr0abfq2K1bN/Vxg4ODRVZWlrtP0y5FUcTevXvF+++/LwYOHCiaNWsmQkNDhUajEUFBQaJ27dqiZ8+e4s033xSnTp1yuj6j0SiWLFkinnrqKXHLLbeI6tWrC51OJ6Kjo0WbNm3Ea6+95tJ6rOXm5op58+aJgQMHitjYWBEUFCS0Wq2IiooSt99+u5g8ebJLr6n1Z7ksA6wQ5u/GxIkTRYsWLURoaKgIDg4WjRs3Fk8//bT477//3Hg1hHjkkUfUx37vvffcWtYdruQIIcwh1tJIYi/EpqWliY8++kj06tVL1KpVS/j7+wt/f39Ro0YNceedd4qXXnpJbNy40a0uvPPnz3d7X/hGHTt2FABEkyZNhKIobi9vjyRECYfHJSKP+OOPP9CnTx8AwHPPPef2gEJUcocOHVJHyHP1PdiwYQN69uwJwDzH4f/93/+VZhWJvGLWrFl48cUXodFokJCQUOIuhEREVLGdPn1a7Yr/5ZdfYsyYMR5bd9kOr0ZEdlnmIA4NDS3Vc1HJvs8++0y97uq5t9bnklSEuV+JbBkzZgxq1KgBk8mEGTNmeLs6RERUzr333nsAzDOiePo8YgZYonLCEmBffPFFREdHe7k2Fc/WrVsdzj/7+eefq4MB1a5dG/fcc4/TdR44cEAdoKZHjx4uzy1H5GsCAwMxdepUAMA333yDxMRE71aIiIjKrfj4eMyfPx8A8NZbb6nTO3oKuxATlQNXr15FtWrVULVqVZw+fRqhoaHerlKF06hRI+Tl5aFv375o3bo1oqOjYTAYcPr0aaxcuRL79+9Xy/766692A+zvv/8ORVFw4sQJzJgxQx2db9u2bejUqVOZPBcib1AUBW3btsW+ffvwzDPPOJz7moiIKq/HH38c3333HTp06IDt27cXmmXDExhgiahSaNSoEU6fPu2wTGBgIGbPno1hw4bZLWNrI+zq+bLr1q2DXq93Xlkbqlatis6dOxdrWSIiIqKKggGWiCqFXbt2YcWKFdi1axcuXryIlJQU6PV6REREoHHjxujRowfGjh3rdI44S4ANCQlB48aNMXbsWDz66KMuzW0WGxuLs2fPFqv+Xbp0wZYtW4q1LBEREVFFYX/GbyKiCuT222/H7bffXuL18JgfERERkfewBZaIiIiIiIh8AkchJiIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIHcSIiogpFCIHc3Fzo9Xqbl9zcXOTm5iI/Px8FBQWFLrZuKygogMlkgslkgqIoRa7f+Bcwj1btykWj0UCn00Gr1UKn06kXe/8HBAQgICAAgYGBha7f+H9AQABCQkIQHBwMnU7n5XeEiIjIcxhgiYio3BFCQK/XIyMjA1lZWcjMzERmZqbN65a/2dnZakDl+ITXWcKsrUtoaKj6Nzw8HGFhYQgPD0d4eDhCQkI8Pvk8ERFRSXEUYiIiKhNCCGRnZyMlJQVpaWlITU1FWlpakeuW/wsKCkr0eJIkISgoyOYlMDAQG+ZvhaQAUCSrCyDd8D+EZC4HCRC4drl2HVbXBSBZbrO6G9YZUALUeyTLRZhP6JEEhARAFoVugwwIy/+yADQCd4/pjtzcXOTl5SEvL09tVb7x/5LQarWFAq31pWrVquolKioKYWFhDLtERFQmGGCJiKjEhBDIyMhAcnIyrly5ol5u/D8vL8+t9QYEBCA0NBShoaGoUqUKQkNDsX3Z35CMMmCUIRkk81+jDBglwCRBMkmASTaHUVTeUCUgAK0ANAqE1nxdaBVAc+2vVuC+F/ogOzsbGRkZSE9PV/+6G351Oh2ioqIQFRVVKNhWrVoVNWrUQPXq1REdHQ2tlh2/iIioZBhgiYjIKSEE0tLScOnSpUKXxMREJCUl4erVqy63mIaEhCAiIgIRERH4b9NxoECGZJAhFciAwXJdY76uVN4A6k1CFoBWgdApgM7813K991NdkZKSgpSUFFy9ehXp6ekurVOWZURFRamB1tbfgICA0n1iRETk8xhgiYgIAGA0GnHp0iWcP38eFy5cQGJiohpUk5KSnLaeSpKEiIgIVKtWDdHR0di+5B9I+RpIBbL6FwUahtIKRkgC8FMg/EwQfgrgp2DoGwOQkpKC5ORkJCUlITk5GQaDwem6qlatijp16qB27dqoXbt2oetBQUFl8GyIiKi8Y4AlIqpEhBBISUnBhQsXcP78eZw7dw7nz5/H+fPnkZiYqI6ia4skSYiOjkbNmjVxaN1xSHkaczC99hcFMiTBcEpFCQhzS26ACcJfgfA3of8LPXD58mX1kpOT43AdkZGRaqCtU6cO6tWrh9jYWNSqVYtdk4mIKhEGWCKiCkgIgeTkZMTHx6uXhIQEnDt3Dnq93u5y/v7+qFu3LurWrYu/5u8uFFKRr2FApVIjtNcCbqARI6YPwoULF3Dx4kVcuHABGRkZdpfTarWoW7euGmjr1auHevXqoW7duvD39y/DZ0BERGWBAZaIyIcJIZCamoqEhAScOXOm0F97LVqyLKNmzZqoU6cO/vnpEKRczbWL1tyKWokHPqLySWgs4daEkR+Yw63lgIy9Aacsn/P69eujUaNGaNCgARo1aoRatWpBluUyfgZEROQpDLBERD5CURRcvHgRJ06cwMmTJ9WLvUF0NBoNYmJicHZPIiS99voljy2pVDEICMBfgQg0Qgkyou9zXXH27FkkJCQgKyvL5jKBgYFo0KABGjZsiEaNGqFhw4Zo2LAhz7ElIvIRDLBEROWQwWBAfHx8oaB66tQpm61NkiShdu3aSPz3CqQcq6Cay6BKlZN6zm2QCUqQEb2fvQOnT59GfHy83dGya9eujcaNG6Np06Zo0qQJmjRpguDg4DKuOREROcMAS0TkZUIIXLhwAUePHsWRI0dw5MgRnD592uaorX5+fmjYsCGOb0qAnKOFlK0zh1WO7EvklICACDRBBBsx5K17cOrUKZw+fRpXr161WT4mJkYNtE2bNkVcXByn+iEi8jIGWCKiMpaenq6G1aNHj+Lo0aM2uzuGhIQgLi4OB1cfh5SthZSjg6TX8BxVIg8TWgUi2IDRnw7G8ePHcezYMVy+fLlIOVmWERsbi2bNmqFly5Zo2bIlYmJiIEn8ThIRlRUGWCKiUqQoChISEnDo0CH8+++/OHLkCBITE4uU8/PzQ1xcHI6ti4eUpYWcrQPyGFaJvEXoFCghBoz46H4cO3YMx44dQ2pqapFyVapUUcNsy5Yt0bRpU7bSEhGVIgZYIiIPMhgMOH78OA4ePIiDBw/iv//+Q2ZmZpFyMTExuPB3MuQsnbkbcI6W56sSlWMCAvAzh9rBb/fDf//9h2PHjhU5p1aj0SAuLg4tWrRAy5YtccsttyAqKspLtSYiqngYYImISiA3N1dtXT106BCOHDlSZIc2ICAAzZs3x78/H4ecqYOUpYNk4jQeRL5OSAIi2Iinvn0Yhw8fxqFDh2yeTxsTE4PWrVvjlltuYaAlIiohBlgiIjcYDAYcOXIE+/btw969e3HkyBEYjcZCZcLCwpB1Jg9Spg5yhh9bV4kqCcu0PkqoAQNe6YGDBw/i1KlTuHFXi4GWiKj4GGCJiBwwmUw4deoU9u3bh3379uHgwYNFprKpVq0arv6XCTlDBynTzzx9Dc9dJSKYB4hSqhRg4Bu9cODAAbuBtm3btmjbti1uueUWzklLROQAAywR0Q2Sk5OxZ88e7N69G/v27SsyQnBYWBiyTuVBTveDnOHHwZaIyGXOAq1Wq0WrVq3UQBsXFwdZ5ikHREQWDLBEVOkZDAYcOnQIu3fvxq5duxAfH1/o/qCgIORdMEJK94Oc7meed5WBlYg8QGgVKGEF6De5K/bs2YNLly4Vuj8sLAxt2rRRA210dLSXakpEVD4wwBJRpXT58mXs2rULu3fvxt69ewt1C5YkCc2bN8ex3xLMgTVLx8BKRKVOQAABJjy9cAT+/vtv7Nu3D3q9vlCZuLg4dOzYER06dEDTpk3ZOktElQ4DLBFVCoqi4NixY9i+fTu2bdtWpJU1PDwcmSfyIKf6QU73h2TkTiEReZeQBESoAQ992B9///03jh07Vqi7cWRkJG6//XZ06tQJbdq0QWBgoBdrS0RUNhhgiajCMhgM2L9/P7Zu3Yrt27cXmt5ClmU0b94cR9fEQ071N48UzFZWIirHhFbBhFWPY+fOndizZ0+h1lk/Pz+0bt0aHTt2RMeOHVG9enUv1pSIqPQwwBJRhZKdnY1du3Zh27Zt2LVrV6EdvMDAQOSfVyCn+ENOYysrEfkuIQmIKgW4d2p37Nixo8i5s82aNUOXLl3QpUsX1K5d20u1JCLyPAZYIvJ5WVlZ2LZtGzZt2oS9e/cWmpc1MjIS6YdzIaf6m89n5XysRFTBCAiIQBMem/0gduzYgUOHDhXqahwXF4c777wTXbp0QWxsrPcqSkTkAQywROSTsrOzsW3bNmzevBl///13odBar149XNh2BXJKAKRsdg0mospF6Ex4dulI/Pnnn9i/fz9MJpN6X2xsrNoy27BhQ0gSt49E5FsYYInIZ+j1ejW07tmzBwaDQb2vQYMGOLv5MuSrAZBztV6sJRFR+SG0Cl5Y+Si2bNlSpIdKTEwMevbsiR49erCbMRH5DAZYIirXDAYDdu3ahT/++AO7du1CQUGBel+9evVw4a+rDK1ERC4QGgUT1zyFLVu2YM+ePYW2py1atECPHj1w1113ITIy0ou1JCJyjAGWiModIQSOHDmCP/74A5s2bUJmZqZ6X926dZG4PdUcWvUMrURExSE0Cib88jjWr1+Pffv2QVEUAIBGo8Ftt92GHj164I477kBwcLCXa0pEVBgDLBGVG4mJiVi3bh3WrVuHCxcuqLdHRUUh/d9cyFcCON0NEZGHCZ0JTy14CBs2bMDRo0fV2/38/HDHHXfg7rvvxm233QZZ5sjtROR9DLBE5FV6vR4bN27EH3/8gYMHD6q3BwQEoOAcoEkOgJTux9BKRFQGRIARj3wxAOvXr8f58+fV26tXr44+ffqgb9++qFWrlhdrSESVHQMsEZU5IQSOHj2KX3/9FZs2bUJubi4AmEfDTNVBkxwAOcUfksKj/URE3iAgIEKM6Df1TmzYsAHZ2dnqfa1bt0a/fv1w5513IiAgwIu1JKLKiAGWiMpMVlYW1q1bh19//RVnzpxRb4+JicHFP1OhuRIAqUDjxRoSEdGNhCQwZd1YrFmzBnv37lXnmA0ODka3bt1wzz33oFmzZl6uJRFVFgywRFSqhBD4999/sXr1amzZskUd9dLPzw/GCzI0SYGQMnXsIkxE5AOEvwmPfHkv1q5di0uXLqm3N23aFPfddx+6devGVlkiKlUMsERUKvR6PX7//Xf89NNPOHfunHp7w4YNcXZdMuTkAEgmdhEmIvJFAgIz/nkZq1evxp9//qnOyx0aGoq+fftiwIABqFu3rpdrSUQVEQMsEXnU+fPn8dNPP2Ht2rXQ6/UAgMDAQOTHw9zams1RhImIKhKhVTD6+/uxatUqJCUlqbe3adMGAwcORIcOHaDVctozIvIMBlgiKjFFUbB792789NNP2L17t3p7TEwMEjensbWViKgSEBB4a/sE/Pzzz9i1a5d6rmx0dDQGDhyIe++9F1WqVPFyLYnI1zHAElGx5eTk4LfffsNPP/2EixcvAjCPJCyl6KBJDOL0N0RElZTwN+HB/+uN1atXIyMjA4B5erS+ffviwQcfRJ06dbxcQyLyVQywROS2q1evYtmyZfjll1+Qk5MDAAgJCUHucQWaS4GQ8thVjIiIzCMYT1j9GJYuXYrTp08DMB/o7Ny5Mx588EHcfPPN5inUiIhcxABLRC5LSEjA4sWLsW7dOhiNRgBAvXr1cHFjqrmbMOdtJSIiGwQEpv89BUuXLsXOnTvV25s2bYrBgweja9euPE+WiFzCAEtEDgkhcOjQIfz444/YsWOHeruUoYPmQjDkNHYTJiIi1ymBRvR9sxN+//13dWq1atWq4aGHHsI999wDf39/L9eQiMozBlgisklRFGzfvh0//vgjDh8+DODa+a1X/KC5GAQ5y8/LNSQiIl8mtAqGz74XK1euRGpqKgAgIiICDz74IO677z6EhIR4uYZEVB4xwBJRIYqi4K+//sK8efPU85X8/PxgPKsxB1ee30pERB4kJIFnfxqOhQsXqtPwhISE4P7778egQYMQHh7u3QoSUbnCAEtEAACTyYQtW7Zg3rx5SEhIAAAEBwcj7xigSQyEZNB4t4JERFShCUngpd+ewIIFC3D27FkA5pGL7733XgwbNgwRERFeriERlQcMsESVnNFoxKZNmzB//nycO3cOwLURhY8IaC4Gcf5WIiIqUwICr295Dj/88AOOHz8OwBxkBw4ciIceeogtskSVHAMsUSWlKAr+/PNPfPfdd2pwDQ0Nhf4/xTyHK4MrERF5kYDAOztfwpw5c3D06FEAQGBgIAYNGoQhQ4agSpUqXq4hEXkDAyxRJSOEwO7duzF79mycPHkSABAWFobsf03mOVwZXImIqBwREHhr+wR89913OHHiBADzKS4PPvgghgwZguDgYC/XkIjKEgMsUSVy8OBBfPPNNzh48CAAICgoCPlHJba4EhFRuScg8Mafz2POnDnqIINhYWEYOXIkBgwYAJ1O5+UaElFZYIAlqgTOnDmDr776Crt27QJgHlXYdEYLzYVgSEYGVyIi8h0CAq9sfLrQKTC1atXCE088gbvuuguyzN81ooqMAZaoAktJScGcOXOwZs0aKIoCjUYDccEP2vPBkAo4qjAREfkuAYHnfh6BOXPmqPPINmnSBGPGjMFtt93m5doRUWlhgCWqgPLy8rB06VIsXLgQubm5AAD5qj80CSGcx5WIiCoUIQsM/64/Fi1aBL1eDwBo3749nnnmGdSrV8/LtSMiT2OAJapAFEXB+vXr8c033+DKlSsAAClLC218KORMPy/XjoiIqPQIrYL+H9yJVatWwWg0QqPR4P7778eoUaMQGhrq7eoRkYcwwBJVEMeOHcOsWbPUqQaqV6+OlD9zIV8NgATJy7UjIiIqG9+fm4XPP/8c27dvB2Ae6Onxxx/HPffcA42Gp88Q+ToGWCIfl5GRgW+++QarV6+GEAKBgYEoOKoxjyysMLgSEVHl9O7uifj000+RkJAAAGjYsCGee+45tG7d2rsVI6ISYYAl8lEmkwmrV6/G7NmzkZmZCQCQkwOgjQ+BZOARZiIiIgGBscsewpw5c5CVlQUA6NWrF8aNG4fIyEgv146IioMBlsgHHTlyBDNnzlQndJdytNCe5nmuREREtgitgrvf74RVq1ZBCIGQkBA89dRT6N+/P6fdIfIxDLBEPkSv12P27Nn46aef1B/gvH8lyJcCeZ4rERGRE58cnoaPPvpIPQDcrFkzTJgwAY0bN/ZyzYjIVQywRD5ix44dmDlzJpKTkwGwuzAREVFxWLoVz549G3q9HrIs44EHHsDjjz+OwMBAb1ePiJxggCUq51JSUvDJJ59g8+bN5hvyNNCdCoWc7u/dihEREfkw4WdC58k3YdOmTQCAWrVqYeLEibj11lu9XDMicoQBlqicEkLgjz/+wCeffILs7GzIsgzpXAA050I4ujAREZGHvL3zf/jggw/UHk4DBgzAmDFjEBwc7OWaEZEtDLBE5VBKSgo+/PBDdQ47KVsL7ckqkHN0Xq4ZERFRxSM0Cu6e3gk///wzAKBatWp46aWX0L59e+9WjIiKYIAlKmc2bdqEWbNmISMjA1qtFuJUADQXgjhIExERUSmb/s8UzJgxA4mJiQCAfv364dlnn0VQUJCXa0ZEFgywROVERkYGZs2apZ6LI2VroT1RBbKera5ERERlRcgCA2Z1wfLlyyGEQK1atfDqq6+iZcuW3q4aEYEBlqhc+Pvvv/HOO+8gNTUVGo0GiA+A5nwwJMFWVyIiIm/4YN8reOedd3D58mXIsozhw4dj5MiR0Gq13q4aUaXGAEvkRQaDAd9++y0WLVoEAJD0GmhPhEHOZqsrERGRtwmNgq5vtMa6desAAE2bNsVrr72GunXrerlmRJUXAyyRl1y4cAHTpk3DsWPHAADypUBo40M5wjAREVE5M3n9GHz00UfIzs5GQEAAXnjhBfTt29fb1SKqlBhgibzgjz/+wMyZM5Gbm4vQ0FDk7pGhSQnwdrWIiIjIjoVJn+Pdd9/Fvn37AAB9+/bF+PHjERgY6OWaEVUuDLBEZSg/Px+zZs3Cb7/9BgCQMnTQHQ+DVKDxcs2IiIjIGQGB4d/3x/fffw9FURAbG4tp06YhNjbW21UjqjQYYInKSGJiIl577TWcPHkSsixDig80D9TE6XGIiIh8yvR/pmDatGlITU1FQEAAXnzxRfTp08fb1SKqFBhgicrAzp078dZbbyE7OxswSNAdC4Oc4e/tahEREVExCZ0JNz0di3/++QcAcO+99+L555+HTseBGIlKEwMsUSkymUyYO3cu5s2bBwCQMnXQHWOXYSIioorA0qV4zpw5EEKgVatWmDZtGqKiorxdNaIKiwGWqJTk5ORg2rRp2LlzJwBATrw2yjDndiUiIqpQpm1/Ue1pFR0djbfeegvNmzf3drWIKiQGWKJSkJiYiClTpiA+Ph5+fn5QDgVAc4WjFBIREVVUc87OxMsvv4yzZ89Cp9NhwoQJuPvuu71dLaIKhwGWyMMOHDiA1157DRkZGUC+DN3RcMjZPB+GiIioohMaBe0nNsXWrVsBAEOGDMHYsWMhy7KXa0ZUcTDAEnnQ6tWrMXPmTBiNRkhZWuiOhvN8VyIiokpEQGDYd/3w/fffAwDuvPNOvPrqqwgI4HzvRJ7AAEvkAUIIfPPNN1i4cCEAQL7iD+3JMEgKz3clIiKqjCatewrvvfceDAYDmjVrhvfeew+RkZHerhaRz2OAJSoho9GI6dOn448//gAAaM4FQ3OO87sSERFVdh/ufxWvvPIKMjMzUaNGDcyYMQOxsbHerhaRT2OAJSoBvV6P119/HXv27IFGo4F0LBiayxysiYiIiMzmnJ2JiRMn4uLFiwgJCcH06dPRqlUrb1eLyGcxwBIVU1paGiZNmoRjx44BJgnaY2HQpPl7u1pERERUzgitgsaPV8d///0Hf39/vP3222jfvr23q0XkkzgkGlExJCUlYdy4cebwapCgOxTB8EpEREQ2SUYZJ75JRvv27ZGfn48pU6Zg48aN3q4WkU9iCyyRmy5evIjx48fj8uXLQJ4M3X8RkPO03q4WERERlXNCErjj9VbYuHEjJEnChAkTcO+993q7WkQ+hQGWyA1nz57FCy+8gKtXr0LSa6D7L4LT5BAREZHLBAT6ftABq1atAgCMHTsWDz30kJdrReQ72IWYyEWnT5/Gc889Zw6vORroDjG8EhERkXskSFj70k4MHz4cAPDll19i8eLFXq4Vke9gCyyRC06dOoXx48cjMzMTUrbW3PJq5PEfIiIiKr6Hvu2LuXPnAgCefvppDBkyxLsVIvIBDLBETiQkJOC5555Deno6pKxr4dXE8EpEREQlZx1in3nmGQwePNi7FSIq57gXTuTAxYsX8eKLL5rDazbDKxEREXnWj4//hpEjRwIAPvvsMyxbtszLNSIq37gnTmTH5cuXrw/YlKNheCUiIiKPkyBh0RNr1RD76aef4vfff/dyrYjKL+6NE9mQmpqKF154AUlJSZByNTznlYiIiEqNJcRazoGdPn06tm/f7uVaEZVPPAeW6AZ6vR7PP/88jh8/DuTJ8DsYydGGiYiIqNQJCHR7+1b8/vvv8PPzw4cffohbbrnF29UiKlcYYImsGI1GTJkyBbt37wYMEvz+jYSUp/V2tYiIiKiSEBBoOykO27dvR3BwMD755BPExcV5u1pE5Qb7RBJdI4TAzJkzzeHVJEF3OILhlYiIiMqUBAl/f3ASN998M3JycjBp0iRcuXLF29UiKjcYYImumT9/PlavXg0IQHu8CuRsnberRERERJWQpEg4+lUi6tevj6tXr2LKlCnIzc31drWIygUGWCIAGzduxHfffQcA0J4OhSY1wMs1IiIiospMMsl47733EBYWhhMnTuDtt9+GoijerhaR1zHAUqV38uRJvP/++wAAzYUgaJKCvFwjIiIiImBknefx7rvvQqfTYevWrZg9e7a3q0TkdQywVKmlp6fjlVdeQX5+PqQ0P2gSQrxdJSIiIiLVizdPw6RJkwAACxcuxLp167xcIyLvYoClSstoNOKNN964PtfrsTBIkLxdLSIiIqJCPugzG8OHDwcAfPjhhzhz5oyXa0TkPQywVGl9+eWX2L9/P2CSoD0aDsnErwMRERGVT0ue+gNt2rRBXl4eXnvtNeTk5Hi7SkRewT12qpS2bduGZcuWAbg24rCe0+UQERFR+SVBwuuvv47o6GicP38e06dPhxDC29UiKnMMsFTpXL58+fqgTReDOOIwERER+YQHI5/AtGnToNVqsWXLFvVgPFFlwgBLlYrRaMRbb72FzMxMSFlaDtpEREREPmV8q6l4+umnAQBfffUVTp065eUaEZUtBliqVObNm4eDBw8CRgm642GQBAdtIiIiIt/y5YOL0KlTJ/XAfH5+vrerRFRmGGCp0jh8+DB++OEHAID2VCikPJ73SkRERL5HgoSJEyciIiIC8fHxnB+WKhUGWKoU8vPz8d5770FRFMjJAdBcDfR2lYiIiIiKbXDUk5g8eTIAYOnSpdi7d6+Xa0RUNhhgqVL4/vvvce7cOaBAhvZMqLerQ0RERFRir3eaiQEDBgAA3nvvPej1ei/XiKj0McBShXfkyBEsXrwYwLWuw0Z+7ImIiKhiWDtpJ2rVqoXk5GR8++233q4OUanjnjxVaAaDAe+///71rsOcMoeIiIgqEEmRMGHCBADATz/9hGPHjnm5RkSliwGWKrTly5cjISEBKJDYdZiIiIgqpJfbz0DPnj2hKAo++OADGI1Gb1eJqNQwwFKFdfXqVcydOxcAoE1g12EiIiKquJ555hlUqVIFJ0+exPLly71dHaJSwz16qrC++OIL5ObmQsrUQU5m12EiIiKquAZHPYmxY8cCAObOnYu0tDQv14iodDDAUoV04MABbNiwARCA9nQoJEjerhIRERFRqZrV/3s0bdoUer0ec+bM8XZ1iEoFAyxVOIqi4LPPPgMAyEmBkHN0Xq4RERERUemTIOHpp58GAPz666+Ij4/3co2IPI8BliqcLVu24MSJE4BRgvZsiLerQ0RERFRm/tf6bdx5551QFAVffPGFt6tD5HEMsFShGI1GfPfddwAAzcWgkg3cJLHbMREREfmeMWPGQKvVYvfu3fjnn3+8XR0ij2KApQrl999/x/nz5wGDBE1iUPFXZAmvDLFERETkY0bXexEDBgwAYB7QSQjh5RoReQ4DLFUYBQUF+P777wEAmgshkEzF+HhLEkMrERER+bxhw4bBz88PBw8exP79+71dHSKPYYClCmPdunW4cuUKkC9Dc6kYra/2gisDLREREfmYh6qPQ79+/QCYW2GJKgoGWKoQFEXB4sWLAQCaxGBIws2WVIZUIiIiqgis9mmGDRsGnU6HAwcO4MCBA96rE5EHMcBShbB9+3acO3cOMErQXA50fUF2GSYiIqIKaljNZ3D33XcDAH788Ucv14bIMxhgqUJYtGgRAEBzKajwua+OwilbaImIiKgisbG/MnjwYEiShF27dpkHuiTycQyw5POOHDmC//77D1Dg+rmvDKRERERUCTwaOwEdOnQAAKxYscLLtSEqOQZY8nmrVq0CAMhXAyAZNEULWIfVknQZZuglIiKi8srBfsqgQYMAAGvXrkV2dnZZ1YioVDDAkk/LysrCpk2bAACaJAetr54615XnzBIREZGPmdx+OurVq4fc3Fx1v4nIVzHAkk9bt24d8vPzIeVoIWXpbBeS5OsXIiIiogpG0mohae3sBwGQIKlT6vz2229lVS2iUsE9evJpa9euBQBoLgdCwg0to9dCqyRLkGQPt5qyFZaIiIjKi2sH6SWtzm6Q/XbUMmg0Ghw5cgQJCQllWDkiz2KAJZ917tw5nDhxAlAA+coNU+fYCK6SLLEVloiIiCoUSau1cVvRECsZNOjYsSOA6w0ARL6Ie/PkszZs2AAAkNP9IRmtp86RPd/iagtbYYmIiMjb7ByctxVie/bsCQDYvHkzhBClWi2i0sIASz5JCIGNGzcCMI8+rHISXj3eCssQS0RERF5iq/W18P2FQ+zbPT9HQEAAkpKScPz48dKsGlGpYYAln3T27FnzZNwKIKf6Fzrf1Rl2JSYiIiJfJ2m1Lu3PWJ8XKymSOifs5s2bS7V+RKWFe/Hkk3bu3AkAkDL8ICna0hmoyVVshSUiIqKy5ubBeEuI7dq1KwBg69atnq4RUZlggCWftH37dgCAJi2wWMGVXYmJiIjIVznrOmx/OR3e6f05NBoNLly4gMTERA/XjKj0McCSz8nKysJ///0HANCkBzgpbR+7EhMREZGvcbXrsD2y5I8WLVoAAP7++29PVYuozHDvnXzOv//+C0VRIOVqIRUU7whkqWArLBEREZU2Dxx8b9euHQBg9+7dJV4XUVljgCWfc+DAAQCAnOlX4nV5rBVWCPOFiIiIqJTIoaGQA4vf+8yibdu2AMz7VIqilHh9RGWJAZZ8jiXAagqqeGR9JQ6xDK5ERERUyuTQUEgaGZClEofYF3p/hYCAAGRnZ+PcuXMeqiFR2WCAJZ+i1+tx6tQpAIBGioYcEuzdCjG8EhERURmQNFa77ddCbHGCrKZ6NCStFs2aNQMAdVwRIl/BAEs+5dSpU+bzX406yAiAFBrqkRBbrFZYhlciIiIqA3JoqI0bJbdbYzXVowGtBgDQsmVLAMChQ4c8UkeissIASz7lxIkTAADZcC20amRAo/HIut0KsQyvREREVAbUrsN2C7gRYrXX95ksLbAnT54sSfWIyhwDLPkUNcAWBKm3SUFBHutK7FKIZXglIiKiMuA0vKoFnYdYTfXoQv+/NXoxAODs2bMwGo3FriNRWWOAJZ9y+vRpAIBsuB5goZE91pUYcBJiGV6JiIioDLgcXtUF7IdY667DFpLJD4GBgTAYDLhw4UJJqkpUphhgyWcIIdQNrGy8YQPt4RBrpwKlt24iIiIiK26FVwsbIdZWeAUACRIaNGgA4HoDAZEvYIAln5GSkoLc3FxAAJLRv2iB0joflnO8EhERURmyOWiTywvfEGJthFeLunXrAgAuXbpU/McjKmNab1eAyFWW1lfJ5A/JzrEXKSgIsiKgZGWVZdWIiIiIPELy9y9e66u1ayFWquI4CNeoUQMAAyz5FrbAks9ITk4GYKf11UIjQ6oSUrIjlwCEIgChmP+RpBKti4iIiMgVkr8/JEmCKDCUeF3HPonD0XerOyxTs2ZNAAyw5FsYYMlnpKSkAAAkk85xQUkqUYgtFF6t1klERERUWizhFQCgKCUKsUdnNUJEVBYiIrJx9M2qdsvNevEnANcbCYh8AQMs+QxLgJUVJwEWKHaItRlerdZJRERE5GmFwqtFMUPs0VmNEFn1+qlUEZHmEGsryFoaBTIyMtx+HCJvYYAln5GamgoAkEwunrrtZoh1GF6JiIiISkmR8GrhZoi9MbxaRERmm4Ps1MJzwUIx71NlZmbCZDK5/DhE3sQASz4jJyfHfEVxY+wxF0Osy+GVrbBERETkQZK/g7E9AJdDrL3wai0iKqtQiJUU8wjFQghkZ2c7ryxROcAASz4jNzcXACAJNz+2kgTI9oOn2y2vDLFERETkATa7DtviQoh1Fl4trEOsBBlQzPtVDLDkKxhgyWfk5eWZrwj353qVQoJttsIWu9swQywRERGVgMvh1cJBiD06M86txy7UEnutYcBgKPnIx0RlgQGWfIYlwLrdAgvY7Epc4nNeGWKJiIioGNwOrxY2QuzRmXGIjM50e1WWECvBXA8GWPIVDLDkM4QQ164UcwVWIdZjAzYxxBIREZEbih1eLaxC7NGPihdeLSKisiA05nXt37+/+HUiKkMMsOQz1I19STKjJAEaGZKDc2KJiIiISoUklSy8WigKLo5ugchqxQ+vNzIajR5bF1FpYoAln+GJDb7IzYPIzgEkGZLG/XNpi66wuM3BREREVKlc249RijG3640Sx9yKgipA1uGoEq8LknlfpkWLFiVfF1EZYIAln6G5FjgTe0cWa3mRmweRkQlhutZ1uKQhluGViIiIXGF9EF4oJQqxiWNuRUGY+bomVypRiJ3RfAWqhJrnfw0ODi72eojKEgMs+YygoCAAwPDbN+H0o7XdWrZIeLUobohleCUiIiJX2OpBVswQax1eLYobYmc0X4FYbQby8sxxwLKfRVTeMcCSz7BsWKMNmXhn6EL3QqzJVDS8WrgbYhleiYiIyBWOTn9yM8QmPlU0vFpoct07zcoSXk0moKCAAZZ8CwMs+YyQkBAAQG6ujFv8E/HO0IU49ZjzEKue9+qIqyGW4ZWIiIhc4crYHS6G2MSnbkVBuOMyrrbCWsIrAOTnXY8CDLDkK7TergCRqywBNjvLHDRv8U/Eu0MW4hUxDA3nXLS5jN2uw7ZIMiQNIEwmj9WZiIiIKiF3Bp50Mq2fK+EVuN6VOLRFCiLTsjFw3b+47b9zCNYXICfID/+0isFNT19ALe31g/qZGeZ9quDgYPj5+bleZyIvYoAlnxEdHQ0ASE+7/rG1tMQeHFAXS1bdWSjIuhVeLRyFWLa+EhERkTPFmDVBKTBA9tMVud3V8GoRlGnApGmb8MC+PdAZC+//dNgfD7EIyHwwEFemVoEIkNR9qqgoD4xmTFRGGGDJZ1gCbFpq4Y/tLf6JuMU/ES2GXsDreBgN51wsXni1sBViGV6JiIjImeJO+XetK7F1iL30pHvh1d9QgNkLZqP92dP2q2cAwn7Mhe6MEYnzI5GezgBLvofnwJLPsBdgLW7zv4hpQ39E/LA6xQ+vFtbnxDK8EhERkTMlna/e6nzYS0/eivwI9xZ/Ze3PaH/2NJzttQgAQbsMiJ6aCdn0BgCgatWq7teXyEsYYMln1KxZEwBw5YoWip1s+vLf96Pu+ixIwR4aiIDhlYiIiMqKUACdzu3wWjUrE/cf+BsA4CxGW+6vsiwX50+cAADUru3e9IRE3sQASz6jevXq8PPzg9Eg4+qVoueJAICS6gftlUxIIcGQq4QU/8GEwsGciIiIyHUlPOgtBwVBDgqCJEmo/2OSW8sO2r8bOsW9/RbJAFw4cAAAEBMT49ayRN7EAEs+Q6PRoG7dugCAS4lFA2zvbc+i0Y955n9kuUQhViiCra9ERETknmLuO8hBQZA0muunL12+6tbybRPsn/fqyLm0NABQ96+IfAEDLPkUyxHCSxcLD/Xee/szaPCZAl1S+vUbixtiheJ0SHsiIiIim9wMsZbweqP6iy67vI7ggny3HhMA0nQ6pAOQJIkBlnwKAyz5lLi4OABAQnyAelvv7c+gwaeicHi1cDfEWroOs/WViIiISpm98AoASLricojN8fN3+7GPh5j3jerWrYugIA+NHUJUBhhgyac0bdoUAJBw5vqGWknxtx1eLVwNsQyvRERE5Aku7Es4DK8WLobYGgNTXa2ZyhJgLftWRL6CAZZ8SpMmTQAAV5L9kJ0lo/f2Z9BoUZ7zBZ2FWIZXIiIi8iQH+xQuhVcLJyH2sxFfo8GIEAjb41vadbRKFQDX962IfIXtCTWJyqnQ0FDUrVsX58+fx7BVD6LBGgHdpXTXFr4WYjWBgRC5uVAys9W7OGgTEREReZwQReaHdSu8WiRdAVC90E2fjfgaANA90AQEaoHBVYCFmRBwPJWOuHb5LzoaMJnQvHlz9+pC5GVsgSWfc8sttwAAqv2W4np4tZBlQKct3BrLQZuIiIioDBQrvF5Tf3Gyev3j4bPRPdBkDq/XiLeqQnQIcGke2FMdIpBpMiEwMJAtsORzGGDJ59x6663mK4YrxV+JpUtxcCC7DhMREVHpEeL6HK/FDK8AgEvJqL84GR8Pn41eQYai9wfKEAtrQTxSxW53YqEDxCNVcOCZzwAAN910E7Radsgk38JPLPmc1q1bAwAUPz2EbICkuHnSh4UsAyX5ISEiIiJyRpKg5OZBExJc8lVlZtsOrxaBMsQH1YCJkRA/ZkLakQvkKECwDNExEHi4ChCtxb7/Owjg+j4VkS9hgCWfExkZiQYNGuDMmTMwBmVBlx1ZrPWIbD2UjEzzP5LEVlgiIiLyLMv5rx44VUkKDgI0GnR+9ils+/Rrx4WjtcDzkRDPF73r9v89gbDL6wEAbdu2LXG9iMoauxCTT+rUqRMAwBSYDqF1vxVVZOuhpKWZuw9bSFKRgRaIiIiIiuWGfQpTdk7xVhMcpIZXAAjbfQGdn3uqWOtqP2kswo7EIz8/H9WqVUOjRo2KtR4ib2KAJZ/UuXNnAIBJlwahk90PsYqpcHi1xhBLREREJWFrX0IobodYNbjecMpT2O6Lblep/aSxiNqXil4PNQBgbgyQuM9DPogBlnxSkyZNEB0dDUgmKLp0QKeFCPR3KcgW6jpsDzfoRERE5C5nvbnc6Eps3epadD3C5VbY9pPGquFVQGDbtm0ArvdmI/I1DLDkk2RZxh133AEAMPolX//B0GkdhlibXYftYYglIiIiV7m436Do9c5X5Si8XhO26wI6Pe84xLafbA6uUftSzY+tTUNaWhrCwsKuz+pA5GMYYMln9erVCwBg8kuBgNF8o7MQ66jrsC0MsUREROSMG/sLwmRyGGJdCa8W4Tsv2L2v/eSxiNqbWui2roNqAwC6devG6XPIZzHAks9q1qwZ6tSpA0gKTH4p1++wE2Jd6jpsCwd3IiIiInuKsY9g62D6jYM1uarT+DFFbms3pWh4FTDhr7/+AgD07NnTrccgKk8YYMlnSZKE3r17AwCMfkk33ln0vFh3W1+LPmDxlyUiIqKKpwT7BtatsPYGa3JF+I7z6vV2U8ai3ZSxqPpPapFyJr8ryM3NRa1atdCiRYviVZqoHGCAJZ/Wp08fyLIMRZcBRb6hO47VebEoMEDJzC75AzLEEhERkQd6Z1kOqhen1fVGHV8Yg7avmIOrrfAKAA1uM+/29+/fn6MPk09jgCWfVr16dXTs2BEAYPRPtF1IkgCTCcJoKMOaERERUYUlhEdWo+j1JQ6vABD222FE77EdXAFA0WTh2LFj0Gq16NevX4kfj8ibGGDJ5913330AAKP/ZQjYOKckIxumtHTPPJiHfrCIiIiIhMkE05WrxV5eycg0j+9hMAAXk+yW6/5QLQBA165dER4eXuzHIyoPGGDJ57Vp0+baYE4mGP1tbLyNRoiCgpI/EMMrERERWXhov6C4+yhqcDWYe5iJvHzb5aR8rFu3DgAwcODA4lWSqBxhgCWfJ8syhgwZAgAwBpyHwPVJwj3a+kpERERUCtxthVXD641stMIOHNsABoMBN910E1q1alXcKhKVGwywVCH06dMHUVFREHIBTH7J1+9g6ysRERGVljJuhS3UZdjWem5ohRWSEatWrQIAPPzwwyWrJFE5wQBLFYK/vz8GDx4MADAEnIeAYOsrERERVRg3dhm2K/H6gfzhE1tCr9ejfv36uP3220u5hkRlgwGWKowBAwYgNDQUQpMLk+6K51pfiYiIiOzx1IjEV1Ps3+eg1bVIdXJzzX9hxJIlSwCYW19lmbv9VDHwk0wVRlBQEAYNGgQAMASehYCHuv2y+zARERGVMiW/6CBMzroMOzLkhcbIyMhA3bp10b17d09UkahcYIClCmXIkCGIiIiA0OSiQHvB29UhIiKiyqAUWmFd7jJsqzqXE9XW1yeeeAJardYj9SMqDxhgqUIJCgrCyJEjAQDGWhkQsuJkCSfY+kpERERlxNIKW9xWV4u+L9+E3NxcNG3aFF26dPFU9YjKBQZYqnD69++P2rVrA34KTLX1JVuZJHmmUkREREQuKGl4VfwN+OWXXwAATz31FCTuy1AFwwBLFY5Op8MTTzwBADDVzoHwMxV/ZWyBJSIiIld4Yp9BCCg5xT/4LiBwy+N1YTQa0a5dO9x2220lrxNROcMASxXSXXfdhZtuugnQCBjrZ3q7OkRERESOWQKwUrwD70qBAcbgLOzevRtarRbPPfecBytHVH4wwFKFJEkSXnzxRWg0GihV82EKz/N2lYiIiKiiK04rrBAlbr1VCgwQMKLqXf4AgKFDhyImJqZE6yQqrxhgqcJq0KABHnzwQQCAsUEWhOTmgE7sPkxERESlyc6+hlLg2jmwSoHBXFYxYehXfZCUlITq1atj+PDhnqwlUbnCAEsV2qhRoxAdHQ0EmmCqk+ORo5xEREREJeJsf8SFbsSW4ArFBCXIgB9//BEA8OyzzyIwMNBTNSUqdxhgqUILCgpSzwEx1c2BEnLtiCZDLBEREXmDB7oLq+EVgJAEYodEwWg0olOnTrjjjjs8UUuicosBliq8Ll26oHv37oAEGBtnQEjXfjgcHf1kwCUiIqLicLQP4cb+ha1uxNatrhamOjk4efIkqlSpgv/973+cNocqPAZYqhTGjx+PyMhIiCATTPWyC9/JsEpERESlqTinMFmF1BtbXdXbgw1AA/NAlePHj0dUVFSJq0pU3jHAUqUQFhaGl156CQBgqq2HUqWgcAGeG0tERESlwQNdhm9sdQXMXYdjBkXAZDLhzjvvNPc2I6oEGGCp0ujUqRP69u0LSIChcQaE1saoxAyyRERE5Akemh7H3oBO/T7shNOnTyMsLAwvvvgiuw5TpSEJwb11qjxycnLw+OOP4+LFi5BT/KE9GgYJ3OATERGR7zBF5cHYLAMA8MEHH6B9+/ZerhFR2WELLFUqwcHBmDp1KnQ6HZSofJhq6b1dJSIiIiKXCX8j/NsYAQAPP/wwwytVOgywVOk0adIEzzzzDADAFJt9fWodIiIionJMSAINhkcjJycHLVq0wOOPP+7tKhGVOQZYqpTuu+8+dO3aFZABQ9N02+fDEhEREZUTAgK932+PY8eOITQ0FG+88Qa0Wq23q0VU5ngOLFVa2dnZeOKJJ3Dx4kVIGTro/ouAJHg+LBEREZU/php6GBtlQZIkvP/+++jQoYO3q0TkFWyBpUorJCQE7733HoKDgyHCDDA2zIIAj+cQERFR+aKEFUA0MY/b8dRTTzG8UqXGAEuVWmxsLF5//XVIkgSlRi6UmrnerhIRERGRSvibENRZgclkQo8ePfDQQw95u0pEXsUAS5Vehw4dMGbMGACAsUEWlPB8L9eIiIiICBAaBbUHhyIjIwONGzfGpEmTON8rVXoMsEQAhg4dit69ewMSYGiaASWYIxMTERGR9whJoMW4OoiPj0dkZCTeeecd+Pv7e7taRF7HQZyIrikoKMBLL72E/fv3AwUy/P6NhJSv8Xa1iIiIqJIREDA2yYASnY+goCB8+umniIuL83a1iMoFtsASXePn54d33nkHDRs2BPwUGFqmcXodIiIiKnOm2Gwo0fnQaDR4++23GV6JrDDAElkJCQnBBx98gOrVq0MEmmBokQYhs5MCERERlQ1j7RyY6phHHJ4yZQratGnj5RoRlS8MsEQ3qFq1Kj788ENUqVIFItQIQ/N0hlgiIiIqdaYaepjqZwMwT5fTq1cvL9eIqPxhgCWyoV69epg+fToCAwMhwgtgaJoOITHEEhERUekwVcuFsVEWAGDYsGF4+OGHvVwjovKJAZbIjhYtWmDGjBkICAiAiCyAkSGWiIiISoGpai5MTczh9cEHH8STTz7J6XKI7GCAJXLg5ptvxnvvvQc/Pz8oUQUwNsmAAEMsEREReYYpKg+iRQ6EEBgwYACeeeYZhlciBxhgiZy47bbb8M4770Cn00Gpmg9j0wy2xBIREVGJmaJzIVpmw2QyoW/fvnjhhRcYXomcYIAlckH79u0xbdq06yG2GQd2IiIiouIzVdfD1DQLJpMJffr0wcSJEyHL3DUnckYSQnAvnMhFe/bswSuvvIL8/HxIGTrojoRDMvHHhoiIiFxnrKmHqaH5nNf77rsP48ePZ3glchEDLJGbDh48iEmTJiEnJwdSpg66wwyxRERE5BpjnRyYYs1T5QwZMgTjxo1jt2EiNzDAEhXD8ePHMWHCBGRmZkLK0ZpDbIHG29UiIiKickpAwFQ/G6baegDAqFGjMHr0aIZXIjcxwBIV05kzZzBhwgSkpKQA+TJ0hyMg67XerhYRERGVM0ISMDbOgBKdDwAYO3YsHnroIS/Xisg3McASlUBSUhJeeuklnD17FjBK0B0Nh5zh5+1qERERUTkhNAoMzdMhwgzQarWYMmUKevbs6e1qEfksnrhHVAI1atTA559/jptuugnQChhapMEUnevtahEREVE5IPxNqPVQMESYAcHBwfjggw8YXolKiC2wRB6Qn5+Pd999F5s3bwYAaM4GQ3M+GBJ4XgsREVFlpIQWIPQuCampqahatSo++OADNGzY0NvVIvJ5DLBEHqIoCr744gssXboUACBf8Yf2ZBgkhSGWiIioMjFF50JulYeCggLUr18fM2bMQPXq1b1dLaIKgQGWyMN++eUXzJo1CyaTCVK21jxXLEcoJiIiqvAEBEz1smGqax5puHPnznj11VcRFBTk5ZoRVRwMsESl4MCBA3jttdeQkZEBFMjQHQ2DnMXBnYiIiCoqoVHMIw1HFQAAhg8fjsceewyyzCFniDyJAZaolFy6dAkvv/wyTp8+DSiA9nQo5MuBPC+WiIioglGCjKh5XzDOnTsHPz8/TJo0iYM1EZUSBliiUqTX6/Hee+/hzz//BADIyQHQnqrC82KJiIgqCFN0LrQ3FyAvLw/R0dF466230Lx5c29Xi6jCYoAlKmVCCCxatAizZ882nxebo4H2WDjkXK23q0ZERETFJCQBY/0sKLXM0+e1adMGr7/+OsLDw71bMaIKjgGWqIwcOHAAU6dORWpqKmCSoD1ZBZqrAd6uFhEREblJ+JtgaJoOEWoEAIwYMQKjR4+GRsNBG4lKGwMsURlKSUnBtGnTsH//fgCAfCkQ2vhQdikmIiLyEaaoPAS0NSE7OxuhoaF49dVX0aFDB29Xi6jSYIAlKmNGoxHff/89fvjhBwCApNdAezwMco7OyzUjIiIie4QsYGyQCaVGHgCgWbNmmDp1KmrWrOnlmhFVLgywRF6yZ88evPvuu+YuxQqgSQiBJjGIoxQTERGVM0qwATXuDcb58+chSRIeeeQRjB49Glotx7MgKmsMsERelJ6ejvfffx87duwAAEhpftCdqALJwHNoiIiIvE1AwFRLD6lxHoxGI6Kjo/HKK6/g1ltv9XbViCotBlgiLxNCYNWqVfjss89QUFAAGCRoT1WBJoUDPBEREXmLCDDCEJcJEWYAANxxxx2YOHEiwsLCvFwzosqNAZaonEhISMC0adNw6tQpAIB8xR/a01UgGWUv14yIiKjyEBBQauRC29KAvLw8BAYG4umnn0b//v0hSTzNh8jbGGCJyhGDwYD58+djwYIFMJlMQIEM7elQtsYSERGVAeFvMre6hhcAAFq3bo1JkyahVq1aXq4ZEVkwwBKVQ8ePH8e7776L+Ph4AGyNJSIiKk2WVlddKyNyc3Ph7++PMWPGYODAgZBl/vYSlScMsETlVEFBAebNm4cff/zR3BprkKCND4WcHMCRiomIiDxECTLC2CgToor5XNdWrVphypQpqFOnjpdrRkS2MMASlXPHjh3D+++/jzNnzgAApHQ/aE+FQs7j0P1ERETFJSQBU90cSA3yYTQaERgYiMcffxz3338/NBrOBkBUXjHAEvkAo9GIJUuW4PvvvzePVKwAmvPB0FwIhiTYGktEROQOJawAxoaZEEEmAEDHjh3xwgsvoHr16l6uGRE5wwBL5EMSExPx0Ucf4e+//wYASHoNtKerQM7w83LNiIiIyj+hM8EYmw2leh4AIDIyEuPHj0eXLl04wjCRj2CAJfIxQghs2LABn332GdLS0gBcG+QpPhRSAbs8ERER3UhIAqaaevi3VKDX6wEAAwYMwJNPPonQ0FAv146I3MEAS+SjMjMz8e233+KXX36BoiiASYLmfBA0F9mtmIiIyEIJy4exQRZEsLm7cNOmTTF+/Hg0b97cyzUjouJggCXycSdPnsTHH3+MgwcPmm/I00B7JgRyqj9HKyYiokpL+JtgjM2CEp0PAAgLC8NTTz2Fu+++m1PjEPkwBliiCkAIgY0bN+KLL77A1atXAQBSmh+0CSGQc3Rerh0REVHZERoFpjo50DQ0oqCgALIsY+DAgXj00UfZXZioAmCAJapA9Ho9FixYgCVLlsBgMAACkJMDoD0bwvNjiYioQhOSgFIjF8G3ysjIyAAAtG7dGs899xwaNmzo5doRkacwwBJVQImJifjmm2+wadMm8w0KoLkYDM2FIEgmdpsiIqKKQ0BAicyHKTZbnRYnJiYG48aNQ4cOHTi6MFEFwwBLVIEdOXIEX3zxxfXzYwskaM+HQE4K5EBPRETk85QqBTDWy4YIMwAAwsPD8dhjj6Ffv37QarVerh0RlQYGWKIKTgiBbdu24auvvsL58+fNN+bJ0J4LgZwcwIGeiIjI5yjBBpjqZUOJLAAA+Pn5YciQIXj44YcRHBzs5doRUWligCWqJIxGI1avXo158+YhJSUFACDpNdCcC4F8lSMWExFR+acEGs3Btap5ZGGNRoO7774bI0eORLVq1bxcOyIqCwywRJVMXl4efv75ZyxcuFAd5ELK0UJzNphT7xARUbkkAoww1s0BahZAURRIkoQePXpg9OjRqFOnjrerR0RliAGWqJLS6/VYtmwZFi9ejJycHACAlK2F5nww5BQGWSIi8j4l0AhT3RxINQ0wmcwDNHXu3BmPPfYYRxYmqqQYYIkquczMTCxevBgrVqxAbm4ugGstsueD2bWYiIi8QgkywFQ3B6JaASy7qu3atcOjjz6K5s2be7l2RORNDLBEBABIT0/HsmXL8NNPP11vkdVroLkQzMGeiIioTCjBBphicqBE5au3de7cGcOHD0ezZs28WDMiKi8YYImokKysLKxYsQLLli1DVlaW+cY8DbQXgyBfDoSkMMgSEZHnCAiIKgaY6uSoowpLkoSuXbti+PDhaNSokZdrSETlCQMsEdmk1+uxcuVKLFmyBOnp6eYbDRI0l4KguRQIyaDxav2IiMi3CQgoVfNhqp0DEWoEAMiyjB49euCRRx5BbGysdytIROUSAywROZSXl4fffvsNS5cuRWJiovlGBZCTA6G5GAQ5lxPFExGR64RGgal6Hky1coAABYB5HtfevXvjoYce4qjCROQQAywRucRkMmHr1q1YtGgRjh49qt4up/hBczEYUqaO58kSEZFdws8EU009TDVzAa159zMsLAwDBw7EwIEDERER4eUaEpEvYIAlIrcIIXDo0CEsXrwY27dvV0eHlLK10CQGQb4awPNkiYhIpYQYYKqlh1zLCKPR3FW4Tp06GDJkCPr06QN/f38v15CIfAkDLBEV27lz57B06VL8/vvvKCgwD7wBgwTN5UBoLgVByud5skRElZGQBZSqeTDV1KvntwLATTfdhKFDh6Jjx46QZdmLNSQiX8UAS0Qllp6ejjVr1mDVqlVISkoy3ygAOdXfPOBTuh+7FxMRVQLC/1o34eq5gM68i6nT6dCtWzcMHDiQc7gSUYkxwBKRx5hMJuzcuRM//fQT/vnnH/V2Sa+BnBQEzeUASCYecSciqkgEBJSIAig19RBRBvXUkho1auDee+/FPffcg/DwcO9WkogqDAZYIioV586dw8qVK7F27Vro9XrzjQogXw2A5nIgpAwO+kRE5MuEvwmmarnm1tZrowkDQNu2bTFw4EB06NABGg1PJSEiz2KAJaJSpdfrsW7dOqxatQqnT5++fkeuxnyubHIApALu4BAR+QIhCSiR+TDVyAUir7e2hoSEoG/fvrjvvvtQt25dL9eSiCoyBlgiKhNCCBw/fhyrV6/Ghg0brrfKCkBO9YN8ORByqj9bZYmIyiElyAilei5M1a6f2woArVu3Rr9+/dClSxeOJkxEZYIBlojKXG5uLrZs2YI1a9bg4MGD1+8okKG5EgA5OQBSjpZhlojIi4RWMY8kXC0PoopBvb1q1aro27cv7r77btSuXduLNSSiyogBloi86uzZs/jtt9+wdu1apKenq7dLORrIVwKhuRLA6XiIiMqIkM1dhJXoPCgR+cC1cfc0Gg06duyIe+65B23btoVWq/VuRYmo0mKAJaJywWAwYM+ePVi3bh22b99+fV5ZAFKGDprkAMhXOYoxEZGnCQiIsAKYquVBicoHtNd3DePi4tCzZ0/06tULkZGRXqwlEZEZAywRlTvZ2dn4888/sW7dOuzfv//6HYp5bln5SgDkNH9ICrsYExEVh4CACDZCic6DKToP8L8+inCNGjXQs2dP9OzZE7Gxsd6rJBGRDQywRFSuXb58GRs2bMC6desQHx9//Q6TBDnND/LVAPPgTwyzREQOCQiIEKP5vNaq+UCASb0vNDQUd911F3r27IlWrVpBltnbhYjKJwZYIvIJQgicOnUKGzZswObNm5GUlHT9ThMgp/lfC7N+kBTueBERATeG1rxC87X6+/ujQ4cO6NmzJ9q3bw8/Pz8v1pSIyDUMsETkcyxT8mzevBlbtmzBpUuXrt9pCbMp/uaWWZ4zS0SVjICACDVAqZoPU1Th0BoYGIgOHTqga9euaN++PQIDA71YUyIi9zHAEpFPE0LgxIkTaphNTEy8fqcCSJl+kFP8oUn152jGRFRhCVlACc+HEpUPJaIA8CscWjt16oSuXbuiXbt2CAgI8GJNiYhKhgGWiCoMS5jdsmULtm/fjoSEhEL3Szna6y2z2Zxnloh8m/Azmae8icyHEl6gTnkDACEhIejYsSO6dOmCdu3awd/f33sVJSLyIAZYIqqwzp8/jx07dmD79u04ePAgFOV6iwTyZfOIxml+kDP82NWYiMo9deTga6FVhBoL3V+zZk107twZHTt2xM0338y5WomoQmKAJaJKISMjA7t378a2bduwe/du5ObmXr9TAaRMnfnc2XQ/SDlsnSWi8kHoFHPX4IgCcyurVddgSZLQvHlzdOrUCZ06dUJsbCwkidsuIqrYGGCJqNIpKCjAgQMHsH37duzZswcXL168oYBsbpm1BFojW2eJqGwI6doATBHm0CpCCreyBgYG4rbbbkOnTp3QoUMHREZGeqmmRETewQBLRJXehQsXsGfPHuzZswf79u1DXl7e9TsFIGVrIadf62qc6cc5Z4nIYwQERJAJIszcwqqEFQDawrtmcXFxaNeuHdq1a4eWLVtCp9N5qbZERN7HAEtEZKWgoACHDh3C7t27sWfPHpw5c6ZwAQWQsnSQM/zMrbNZOkiCgZaIXCMgIAKvBdawAihhhkLdggEgLCxMDaxt27ZlKysRkRUGWCIiB5KTk/HPP/9g//792LdvH65cuVK4gOnaVD0ZfpAzdJCyGWiJ6DoBAfiboIQbrgXWAsC/cGD18/NDq1atcOutt6Jdu3aIi4uDLPPUBSIiWxhgiYhcJITAhQsX1DC7f/9+pKWlFS5kAqRscwutlKWDnKnjCMdElYhlpGBRxQClSgGUKoYigVWn06FFixZo3bo1WrdujebNm8PPz89LNSYi8i0MsERExSSEwNmzZ7F3717s378fBw4cQGZm5g2FAEmvNY9ynKmDnOkH5Msc5ZioghAaxTzoUhUDlFADRKihyDmsWq0WzZo1UwNry5YtOS8rEVExMcASEXmIoig4d+4c/vvvPxw8eBCHDh0qOsIxYJ6DNtPc3VjO0kHK1kJS2EpLVN6p56+GGqCEGCCqGCCCjbjxeFRwcDBatmyJli1bolWrVmjWrBkCAwO9U2kiogqGAZaIqBSlpKTg0KFDaqg9efIkTCZT4UKWVtosLeRsnXlgKL2W59ISeZH53FXFHFQtgTXEWKR1FQBq1KiBVq1aqZfY2FhoNBov1JqIqOJjgCUiKkO5ubk4evRooUuRgaEA87m0OTrI2VrzwFA5WoZaolIiIAA/BUqIESLYEliNRUYHBoCAgAA0btwYTZs2RYsWLdCqVStUrVrVC7UmIqqcGGCJiLzs6tWrOHbsmBpojx07huzs7KIFlWsttTna6+E2R8tBoojcICQBEWiECDFCBBuhBF/rBqwrujuk0WjQsGFDNG3aFE2bNkWzZs1Qr149aLVaL9SciIgABlgionJHURRcvHgRR48exfHjx3Hq1CmcPHnSdqgFgDwZco5VK61eCylXw9ZaqtQsraoiyAglyBxWRbARIsgI2Djmo9FoUK9ePcTFxamBtVGjRhxsiYionGGAJSLyAUIIXL58GSdPnsSpU6fUUJuUlGRnAZhDrF5b+MJgSxVMkaAaZIQIMpmDqo3zVQHzIEuNGjVCo0aNEBcXh0aNGiE2NpZT2RAR+QAGWCIiH5aVlaWG2fj4eCQkJCAhIQE5OTm2F1AAKU8DKfdamM29dj1PAxRweh8qv4SsmEcADjRBBBivX3cQVDUaDWrXro169eqhYcOGalitUaMGJImfdSIiX8QAS0RUwQghcOXKFTXMWoJtfHw89Hq9/QVNUpFQK+VqzOHWwHBLpU/I4no4DTCZz1W9FlRtDahkodFoUKdOHdSvXx+xsbGoV68eYmNjUbduXbaqEhFVMAywRESVhHWwPX/+PC5cuKBeLl26BEWxHxBgAqR8DZBvDrRSngZS/vW/MEgMuOSUkBWIAAXC3wQEmCD8rwVVf/MFfo53ScLCwlCnTh31EhMTg/r166N27drQ6XRl9CyIiMibGGCJiAgGgwGXLl1Sg611wL169arjcAsUDrgFMqQCDaR82dwt+dptbMWt2IRGgfBTAD8ThL/5uvAzAf7mvyLAZHOk3xuFhoYWCqnWl9DQ0DJ4JkREVJ4xwBIRkUMGgwFXrlzBpUuXkJSUpP61XL969Spc+ilRYA60BdcCbYEMyWC+wPL32m0wsUW3PBCSAHQKhO5aOL12HTqrgOp37T4756HeKDQ0FDVq1ECNGjVQs2ZN1KhRA9WrV0fNmjVRvXp1hlQiInKIAZaIiEqkoKAAycnJSEpKwpUrV3D16lX1r+V6amqqayHXQkHhUGuUAaPk5K9sHqSKwbcIIQlAKyC0CqBVILQC0CqAxnLbtb86YQ6r10Kqq6HUIiQkBFWrVlUv0dHR6vVatWqhevXqCAkJKaVnSURElQEDLBERlTqj0YiUlBQ10KakpCAtLQ1paWlIT08vdN3uCMquUACYJHMLrkm2ui4Vvq5YXRfX/lcASbH8j2u3SZAUXC9j+cUUAHDt/2u3OQvO4nrBG/4K83VJALJ5ICPI126TBSAJCPn6dcgwB0+NADQC0CjmZa79LzTXlrdc1yqApvgvqVarRUREBMLDwxEeHq5ej4yMLBJSAwMDi/9ARERELmCAJSKiciU/P79IqM3MzERWVpbDi8lk8m7FrcOt5bqEooHVi0JCQhASEoLQ0FD1r/X1sLAwREREFAqsISEhnHKGiIjKDQZYIiLyeUII5ObmIisrCzk5OcjNzUVubi70er3T6waDQb0UFBSolxtvK+2ALMsydDoddDod/Pz84OfnV+h/6+uBgYEuXyzhNDg4GBpNCZpiiYiIygEGWCIiIhcoiuLSxWQyQVEUyLIMSZIgy7J6sf7fcl2SJGg0Gmi1Wm8/RSIionKPAZaIiIiIiIh8guztChARERERERG5ggGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+QevtChAReYsQAnl5ed6uBhGRWwICAiBJkrerQUTkFQywRFRp5eXloXfv3t6uBhGRW/744w8EBgZ6uxpERF7BLsRERERERETkE9gCS0QEwG9PNcAkQZIlQJLVv5Al4FpXPUmWzdela39lCZL0/+3de1TUdf7H8eeA3BQUNVchWdPCy5auCmlmkqkhUXZB61Ru5rJdT2V7Ws+x5ZdRWdHmqWzrbBfPWltGttUJ66yGa15bUdFMXUkkL+QNlouCKBeB+f0xzJcBZgYYQOaLr8c5nPnO93P5fmY+89V5z/fz/Xzqfge056vbb2xDo30N67Q91qdb7ft9qK/Dvt/+k2PjfRYLVvtoQkvdcx/bE6sFh2NhlLFaLHXP6+u01jXF1hYcyjRMb1DGnsfHSZpj/gZpjvsat8NFGer3OaYDRhtcHatBfhftaFynwdnxjDLWhmUa1Wek0zjdWp+H+rz1dVuNNEuT/I5ptu36x/p6LBZr/UfQcb+RZkv3wbbtWManLt2WZjuWsc/xkfpyPo3/6tJsz2my31am1tjng+05gK+l/rmPpWGaj8XqkG7FF1seW7lah3K1+DrWWbdtz+9YzgdrXdlafOvSbMey5fe1WLFQi2/dc8cyvmArh+149tdmf247ltVI87HUtcXYthinta/Fgg+Wun0WfOvefB98sGDhfJUvMx8cgIjIxU4BrIgI2ILXWtsXRSz1j/WRAbavmhYL+NRHa8bXzwaRkA80jlDqo0OaRD0Wh7INIqiW7MdFOnWBLg0C2Ab7GlTh8LxJQNw43UmZJi+5UX5nzXXaDhd/rtJcvVWe1udQp8uAuXGA6qybHdNpnO4igG2c3iitcQBbv9/a4JjO0uxBan2aY7qzMlYnx2r45xjANvlzleYssMVqPDfSqE/3pWGaLYCtrQ8A69JsAWDdo8ViCy7rPvv2bXt+Xyz4GgEs+FrqH32xH8u27TTNeG6tC2Ydg9T6oNVdAGuvrz6AravXoX7bsez5HfpQROQipiHEIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFREREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiC1oEVEQHwtWKl1rZQo4VGj8aCjI3WUbU0WvfU/met325JmsMipFYXi5s621+/z766Jg2fW43VOI0UKxawYpS1Ni5TV64pF/usDkkN1ja1ODbfzfqrFjdpjQ7rSZq7tV7dpdk33ZZztp6rk/QmbXSxDixNy1ma5HdMc1jj1eKQF/v6q44fLxfrwOL5OrBW6stZG//VpVnr1sJtvL/WYgVLbf1xqHtuf100TLfWpVkdjm010hzaUffcp27bpy7Nvu34WOtwWtda6h9r616yT912bd1H1Pk6sBZ8sK0va0+z1O33xWEtWYc67eu8GuvY1qXZ1rG11NdZ92+EbVVqC+ernJ2DIiIXHwWwIiJA1bj/dXYTOoY9PmgDS6NHEaj/WFmpD/rMxfGTrQFpIiJmoX+xReSiVVFR0dlNEBEREZFW0BVYEbloBQQEGNsrV64kMDCwE1sjLVVRUcFtt90GqN/MRP3WfvTeicjFTAGsiFy0LJb6QbGBgYEEBQV1YmvEE+o3c1K/iYiIpzSEWERERERERExBAayIiIiIiIiYggJYERERERERMQUFsCIiIiIiImIKFqvV2sYVAkVEREREREQ6nq7AioiIiIiIiCkogBURERERERFTUAArIiIiIiIipqAAVkRERERERExBAayIiIiIiIiYggJYERERERERMQUFsCIiIiIiImIKCmBFRERERETEFLp1dgNERFri3LlzrFixgo0bN5KXl4ePjw8RERFMmTKFmTNn4ufn53HdxcXFpKamkpGRQX5+PgEBAQwePJi4uDhuvvlmLBaL2/LHjx8nNTWVzMxMiouLCQoKYujQocyYMYPJkyd73K6uwBv77eWXX+bbb79ttv5169bRrdvF+d9kR/TbmTNn+PHHHzlw4AAHDhwgOzub4uJiAP785z9z0003tagenW8iIhc3i9VqtXZ2I0RE3MnLy2PevHnk5eUBEBgYSG1tLVVVVQBERkayZMkSQkJCWl13dnY28+fPp6SkBICgoCCqqqqoqakBYNy4caSkpLj8wp6RkUFycjIVFRUA9OjRg/LycmprawGIj49nwYIFzQbBXZG39ps9gPX39yc4ONjlMb788kt8fX1b3Taz66h+W716NSkpKU7TWhrA6nwTERENIRYRr1ZdXc3TTz9NXl4effv25fXXX2fNmjWsWbOG5ORkunfvTk5ODosWLWp13WVlZSxYsICSkhJ+/etf8/7775Oens6aNWv44x//SLdu3di+fTtvvfWW0/InTpzgueeeo6KigpEjR/LJJ5+wevVqVq1axdy5cwFYtWoVn376aVveAlPy5n6zmzJlCmlpaS7/LsbgtSP7DaBPnz6MHz+e++67jxdffLFVZXW+iYgIKIAVES/37bffcujQIQAWLVpEdHQ0AD4+PkydOpX58+cDsHXrVnbu3NmqulesWEFxcTEBAQG8+uqrDB8+HAA/Pz8SEhJITEwE4JtvvuHo0aNNyi9btozy8nL69OnDK6+8QkREBADdu3cnMTGRGTNmAPDxxx9z5swZD169eXlzv4lrHdlvsbGxpKWlsXjxYh588EFiYmJaVV7nm4iIgAJYEfFy9nsVx4wZw1VXXdUkferUqYSFhTXI21Lp6elGHeHh4U3SExISCAoKoqamhn//+98N0srLy9m4cSMAt99+u9PhlL/73e8AOHv2LJs3b25V28zOW/tN3OvIfmvLFW2dbyIiYqcAVkS8VkVFBf/9738BuOaaa5zmsVgsjB8/HoDMzMwW1/3LL7+Qn58PYJRvrHv37owaNcpp3Xv37qWystJt+bCwMAYNGtTqtpmdN/ebuNaR/dZWOt9ERMROAayIeK3c3FxjcpbBgwe7zGdPKy4uprS0tEV124dJNlf3kCFDADhy5IjL8vY87sofPny4Re3qCry53xzt3LmTe++9l2nTphEXF8f999/PX//614t22HFH9ltb6XwTERE7BbAi4rUKCwuN7X79+rnMd8kllzgt405RUVGr6j579iznzp1rcpyQkBACAgKaLe94vK7Om/vNUUFBASdPniQgIIDKykoOHz7MF198wdy5c0lLS2tRe7qSjuy3ttL5JiIidhfnAnciYgqOgYe7L62BgYFOy3RE3d27dwds9+Q1TndXvqXt6gq8ud8Ahg4dyvDhw7n22mvp168fvr6+VFRUsG3bNt59912OHz/O66+/Tmho6EW1rmhH9ltb6XwTERE7XYEVEZGLyqxZs0hISGDAgAHGxEKBgYFcf/31vPvuu8YkRX/729/QUukiIiLeRQGsiHgtx6tm9glcnKmoqHBapiPrDgoKapLurnxL29UVeHO/NadXr17cd999AOTl5XHgwIEWlzW7jn5v20Lnm4iI2CmAFRGv5XivXUFBgct8jvfhOZZxp2/fvq2qu0ePHg2+FNuPc+bMGbdf9u3lHY/X1Xlzv7XElVdeaWyfPHmyVWXNrCP7ra10vomIiJ0CWBHxWoMGDcLHx/bPlLtZRe1pffr0oWfPni2q23EmU3d122c/veyyy1yWd5wh1VV5d7O6djXe3G/iWkf2W1vpfBMRETsFsCLitQIDA7nqqqsA2LZtm9M8VquV7du3A3D11Ve3uO6IiAj69+/vtu7y8nL27NnjtO6RI0caE93Yj99YXl4eubm5rW6b2Xlzv7XEvn37jG37/bAXg47st7bS+SYiInYKYEXEq8XFxQGwa9cusrKymqSvX7+eEydONMjbEhaLhenTpwOwbt06p0NFv/rqK8rLy/H19eXGG29skBYUFMT1118PQFpaGmVlZU3Kp6amArb78SZNmtTitnUF3tpvzU3KVFpayvLlywH41a9+RWRkZIvb1hV0VL+1lc43ERGxUwArIl4tLi6OIUOGYLVaWbhwITt37gSgtraW9evXs3jxYgDGjx9PVFRUg7LLli0jJiaGmJgYp4HO3XffTZ8+faioqGDBggVkZ2cDcP78edLS0vj73/8OwIwZM4iIiGhSPjExkaCgIIqKinj66ac5evQoYLsC+OGHH7Jy5UoA5syZQ0hISDu9I+bgrf22Zs0a/u///o8NGzZw6tQpY39lZSWbN2/m0UcfNQK0Rx991BhSe7HoyH4DOH36dIM/u3PnzjXY72yyJp1vIiICYLFqjQAR8XInT57kySefJC8vD7ANdaytraWqqgqAyMhIlixZ0uRL67Jly/jwww8B+Oyzz5wOB83Ozmb+/PmUlJQAtqs3VVVVVFdXA7ahiCkpKfj7+zttW0ZGBsnJycYX7uDgYMrLy6mpqQEgPj6eBQsWYLFY2vgumI839tvq1atJSUkxngcFBeHv709ZWZnRZ/7+/jz22GPccccd7fAumE9H9ltMTEyL2jB37lwSExOb7Nf5JiIi3Tq7ASIizQkLC+PDDz9kxYoVbNy4kby8PLp168bgwYOZOnUqM2fOxM/Pz6O6hw0bxj/+8Q9SU1PZsmUL//vf/wgMDGTIkCHExcURHx/v9irchAkT+OCDD0hNTSUzM5Pi4mKCg4OJjIzk1ltvZfLkyR6+avPzxn4bM2YMDz74IPv27SM3N5eSkhLKysro3r07l156KWPHjuXWW28lPDy8rS/ftDqy39pK55uIiOgKrIiIiIiIiJjCxXVzj4iIiIiIiJiWAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFREREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiCAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFRERU3jzzTeJiYnhiSee6OymSCcrKyvj5ptvJiYmhk2bNnV2c0RE5ALq1tkNEBGRjnX27FlycnLYv38/2dnZZGdnc/z4caxWKwCfffYZYWFhHXJsq9XKrFmzKCgoYPbs2Tz88MMe1ZOTk0NaWhoADz30UDu2sHMdOnSI7du3s3fvXg4dOkRRURE1NTWEhIRw+eWXM2HCBOLi4ggODu7spnqV4OBg7r77bpYuXcpbb73F+PHjCQgI6OxmiYjIBaAAVkSki5s3bx45OTmdcuz9+/dTUFAAwKRJkzyu55133qGmpobx48czcuTI9mpep5o3bx4//vij07Ti4mKKi4vJzMxk+fLlJCUlMW7cuAvbQC83a9YsPv/8c/Lz8/niiy+YPXt2ZzdJREQuAA0hFhHp4uxXWsF25WrMmDH06dPnghx78+bNAPTr148RI0Z4VMeePXvYsWMHQJcKUuyBfUhICPHx8SQlJfH222+zdOlSXnjhBSZMmADYgtmkpCR2797dmc31OkFBQcycOROA1NRUzp0718ktEhGRC0FXYEVEurj4+HhCQ0MZNmwYAwcOxGKxMG/ePIqLizv82PYAduLEiVgsFo/q+PTTTwEICwvjt7/9bbu1rbMNHDiQOXPmMHXqVPz9/RukDRs2jMmTJ/PJJ5/w3nvvUVVVxWuvvcZHH33USa31TrGxsSxbtowzZ87wr3/9izvvvLOzmyQiIh1MV2BFRLq4WbNmMW3aNCIiIjwOIj1x9OhRcnNzAc+HDxcUFJCRkQHA9OnTL2j7O9rixYu56aabmgSvjmbPnk1kZCQAR44c4eDBgxeqeaYQFhbGqFGjAPj66687uTUiInIh6AqsiIh0CPvssPZhy55Yu3YttbW1AEyZMqVFZaqrq1m3bh3ff/89+/fv5/Tp09TU1BAaGsqQIUOIjo5m2rRp9O3bt0G5mJgYAOLi4khKSuKXX37hiy++IDMzk8LCQnr06MHQoUO59957GT16tFGusrKS1atXk56ezrFjx6ioqCA8PJwbb7yRO++8s82TC40dO9a4h/no0aNcfvnlHtd15MgRVq5cye7duzl58iQVFRUEBwcTEhJCWFgYUVFRXHfddfz617/2qP7q6mrWrFnD+vXrOXToECUlJVgsFnr27EloaCgjRowgOjqaiRMn4ufn16Bs4/f/yJEjfPXVV+zYsYPCwkLKy8t56aWXmvwYMmXKFHbv3k1ubi779+9n+PDhnr05IiJiCgpgRUSkQ9iHD0+YMIFu3Tz772bLli2A7T7RQYMGNZv/559/5tlnn+XYsWNN0goKCigoKGDbtm0cPHiQpKQkl/Vs2LCBl19+mYqKCmNfZWUlW7duZdu2bcyfP58ZM2ZQWFhIUlIS+/fvb1D+8OHDvP/++2zdupXXXnutTUFsdXW1se3j4/nAqZUrV7JkyRJqamoa7C8pKaGkpIRjx46RmZnJwYMHWbhwYavrP336NH/605+cThhmf+9zcnL4+uuvSU1NZeDAgS7rWr16Na+99hpVVVXNHtdxUq8tW7YogBUR6eIUwIqISLsrLCzkp59+AjwfPlxVVcW+ffsAGDFiRLPDh3Nycnj88ccpLy8HYMyYMcTGxjJo0CD8/PwoKioiKyur2XVDDx48yLp16+jduzcPPfSQceydO3fy8ccfU1FRwRtvvMHo0aN58cUX+fnnn7n99tu57rrrCA0N5fjx43z00UccPHiQPXv2kJqayu9//3uP3gOAH374wdgePHiwR3UcOnTICF579uzJjBkzGD16NKGhodTU1FBUVER2djZbt271eJj2kiVLjOA1KiqK2NhYwsLC6NGjB2fPniU3N5fdu3cbQ8Jdyc7OZu3atfTs2ZM777yTkSNH4ufnx5EjRxgwYECT/IMHDyYoKIjy8nJ++OEHEhMTPWq/iIiYgwJYERFpd99//z1WqxV/f3/Gjx/vUR0HDx40rj4OGzbMbd7q6mqeffZZI3h98sknjRlqHV177bU88MAD5Ofnu6wrJyeHyMhIlixZQkhIiLH/N7/5DQMHDiQ5OZnq6moef/xxSktLWbx4MdHR0Ua+oUOHcvXVVzNnzhwKCwtJS0tjzpw5+Pr6tur1g20Y9uHDhwFbEB8REdHqOgDWr19vXHl94403jPtqHU2aNIkHHniAkpKSVtdfWVlp/DAwadIkXnzxxSaB8OjRo7ntttsoLy93eyX58OHDDBw4kLfffrvBbNmuZrH29fVl6NCh7N69mwMHDlBbW9umK9UiIuLd9C+8iIi0O/vw4ejoaIKCgjyqw3EYcHPL/qxdu5bjx48DtlmXnQWvjvr37+82/emnn24QvNpNnjyZfv36AXDq1CkSEhIaBK92wcHB3HTTTUa+I0eOuD2eM4WFhbz++usAWCwWHn300VbXYWefcTo4ONhp8OqoV69era7/zJkzxo8No0ePdnsVNygoqNkh1U899VSrlnqy562oqKCwsLDF5URExHwUwIqISLsqKytj165dgOfDhwGKioqM7Z49e7rNaw+YAe655x6Pjwm2IamugjyLxdIgLTY21mU9jvlOnDjRqjZUVFSQlJRkBJ6NJ45qLXvQXVZWxvr16z2ux5VevXoZsyl/9913bVqTtV+/fk5/FHDH8fPh+LkREZGuRwGsiIi0q4yMDKqrq/H19WXixIke11NZWWlsO7sa6ujAgQOA7UpcSyZ7cqe58o5tcTdbr2O+1gR058+f55lnnjEmhrruuut44IEHWlzemdjYWOOqZ3JyMo899hiffPIJe/bsMYZdt4Wfnx9xcXEAZGVlcdddd7F48WK+++67Vgfvnsyy7BjAOk68JSIiXY/ugRURkXZlvxp61VVXERoa6nE9jveMNjcb7enTp4H6K41tERgY6DbdcXisu+HRjvdh2pcCak51dTULFy5k+/btAIwbN47nnnvOo/tnHYWHh/PKK6/w8ssvU1BQwN69e9m7dy9ge5+HDx9OTEwMt9xyS7M/FrjyxBNPUFVVRXp6OqWlpXzzzTd88803gO2HhXHjxhEfH9/sleTmrrY74/hjh6czXouIiDnoCqyIiLSbqqoqtm3bBrRt+DDY7te0Ky0tbVNdZlBdXU1ycrKxdFB0dDQvvfSSMTS3raKiovj00095/vnniY+PN5axqampYd++fbzzzjvcc889RvDcWgEBASQlJbF8+XL+8Ic/MHbsWCPALy4u5ttvv2XevHk888wzDQLOxjyZgMlx4inHz42IiHQ9+plSRETazY4dO4whqW0NYB2XTGkugA0NDSU/P9+0E/jYg1f71euxY8eSkpLSpvVjnfH39+eGG27ghhtuAGxXrnfu3El6ejpbt26ltLSUhQsXkpqaSt++fT06RkREBPfffz/3338/NTU15OTksGXLFlauXMmpU6fYtGkTS5cu5fHHH2+313XmzBlju7kJukRExNx0BVZERNqNPQCLjIwkLCysTXU5rnn6yy+/uM1rX2anqKio2bzepnHwOmbMGF555ZV2D16dCQ0NZerUqbz66qvcfvvtAJSXl/P999+3S/324cmJiYm8++67xvDstWvXtkv9drm5uQCEhYXRvXv3dq1bRES8iwJYERFpF7W1tfznP/8BbBMPtVX//v255JJLAPjpp5/c5o2JiTG2U1NT23zsC6W6uprnnnvOCF5Hjx7NX/7yl2bvw+0I48aNM7bt9xS3p7CwMGMdW0/WmnXl9OnTxhJKV155ZbvVKyIi3kkBrIiItIu9e/cagY9jQNkW9qAqNzeXs2fPusw3ZcoUIzhatWoVX375pdt68/Pz26V9bVFdXc0LL7zApk2bgI4NXjdu3NhsUGq/dxng0ksvbVX9J06cYMeOHW7znDx50rhSGh4e3qr63cnKyjK2r7nmmnarV0REvJPugRUR6eKOHTtmzDhrZ19fFGDDhg0NZgsOCgpi8uTJrT6O/SpieHi4R0uhOHPDDTewatUqamtr2bFjB9dff73TfN26deP555/nscceo7y8nDfffJNNmzYxffp0Bg0ahJ+fH0VFRezfv58NGzYwbNgwkpKS2qWNnlq0aBEbNmwAbAHjI488wsmTJ92W6d27N7179271sb788ksWLVpEVFQUUVFRXHbZZfTq1Yvz58+Tn5/P2rVrjavnAwYMaPXyR/n5+Tz11FOEh4czceJERowYQf/+/QkICKCkpISsrCzS0tKM2aRnzpzZ6tfgSmZmJmC7v3fChAntVq+IiHgnBbAiIl3c3r17SUlJcZn+zjvvNHg+YMCANgWw7TF82C46Opp+/fpRUFBAenq6ywAW4IorruCtt97i2Wef5cSJE+zatYtdu3Y5zWu/Z7YzrV+/3tg+fvw4jzzySLNl5s6dS2JiokfHq6qqIiMjg4yMDJd5Lr30UlJSUtwuD+TOiRMn+Pzzz12m+/j4cM8993DHHXd4VH9j1dXVfPfdd4Dtqr+nSwCJiIh5KIAVEZE2+/nnn42rh22dfdiRr68vCQkJvPfee2zdupXTp0+7XVt26NChLF++nPT0dDZv3kxOTo5xv2Xv3r25/PLLufrqq5k2bVq7tdEMkpOT2b59O7t37+bQoUMUFxcbQ4p79erFFVdcwaRJk4iNjfVo2Z5Ro0bx9ttvs2PHDrKyssjPz+fUqVOcPXuWwMBAwsPDGTVqFLfccku7XZ0HjM8EwKxZs9qtXhER8V4Wq9Vq7exGiIiIuX3wwQd88MEH9O7dm6+++sqjtTxdKSsr4+6776a0tJSHH36Y2bNnt1vdYm4LFiwgIyODqKgo3njjjc5ujoiIXACaxElERNrMPnz42muvbdfgFSA4ONgIWlesWMG5c+fatX4xp6ysLDIyMrBYLDz00EOd3RwREblAFMCKiEibnD9/nkmTJjF37lwSEhI65BgzZ85k4MCBlJSU8M9//rNDjiHmsnTpUgCmT5/OiBEjOrk1IiJyoWgIsYiImMJPP/1ERkYGwcHB3HXXXZ3dHOlEZWVlfP7551itVhISEtzeFy0iIl2LAlgRERERERExBQ0hFhEREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiCAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQUFMCKiIiIiIiIKSiAFREREREREVNQACsiIiIiIiKmoABWRERERERETEEBrIiIiIiIiJiCAlgRERERERExBQWwIiIiIiIiYgoKYEVERERERMQU/h84PrCbopSzMQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACq2ElEQVR4nOzdd3gU1cIG8HdmS3pPSIAAoXfpSLuCNBVEURH0qqBYrvopUhTRCyKiXhEVwY6NphRFUBQQEFB6V2qoCSWQAuk9u3u+P5YdNsn2bLLZ5P09zz7Z7J6ZObvJ7sw758w5khBCgIiIiIiIiKiakz1dASIiIiIiIiJHMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFtwTYxMRESJIESZLw6KOPumOVtVK/fv2U95GIyJpHH31U+a5ITEz0dHUUCxYsUOq1YMECT1eH3MxgMKBLly6QJAnPP/+8p6tDXoLHiESWVdd9uTssWbIEkiQhNDQUqampbl9/lbXALliwAK+//jpef/31qtqkx61evVp5zZmZmZ6uDl2n0+mwadMmTJkyBf3790fdunXh4+ODwMBANG3aFA888ABWr14NvV7v1HqPHj2K559/Hq1atUJgYCBCQkLQvn17TJkyBefPn6+kV0NEtUVJSQk2b96MWbNmYcSIEejQoQPq168PX19fBAQEIC4uDsOHD8e3336LgoICt29//vz5OHjwIHx9ffHKK69YLHPixAl8/fXXePrpp9GzZ080adIEwcHB0Gq1qFOnDv71r39h2rRpOHfunMPbzcrKwuzZs9GvXz/UqVMHWq0WdevWRd++fTFv3jzk5+c7vK78/Hx8+eWXGDp0KGJjY+Hr6wtfX1/Uq1cPgwcPxty5c922vxZC4NSpU/j+++8xadIk9OvXD8HBwRUOc7t27cLYsWPRtGlT+Pv7Izw8HF26dMGbb76Jq1ev2lzWPEw6e/Nmzz//vPI6pk2b5vTy+fn5CAkJgSRJUKvVuHz5coXqU1hYiG+//RZ33XUXGjduDH9/f4SGhqJVq1a455578NFHHyEpKclqXdavX4+ZM2firrvuQrt27RATEwOtVougoCA0b94co0aNwg8//ODUcUxJSQm+/PJLDBgwQDkuio2NxbBhw7B8+XIIISr0msvS6/X47rvvMHz4cMTGxsLHxwfh4eHo2LEjpk6digsXLji0Hmf+h2195szDpDM3b841KSkp0Gg0kCQJAQEByMnJcXodb775pvJePPPMM8rjDz74IFq0aIGsrCyr+4sKEW6QkJAgAAgAYsyYMRbL9O3bVylTW4wZM0Z5zQkJCXbL18b3qKpt3rxZhIeHK++zrVu3bt3EmTNnHFrv7NmzhUajsbquoKAgsXTp0kp+dVRbOPvdUlW+/fZbpV7ffvutp6tT45w4ccKh7y4AIi4uTuzYscNt287LyxMxMTECgBg3bpzVcjfffLND9dNoNGLGjBl2t7t+/XoRERFhc11NmjQR+/fvt7uuffv2icaNG9utW506dcTvv//u1PtjycSJE21ux9rxkjUGg0FMmDBBSJJkdZ3R0dHijz/+sLoO8+M1Z26NGzd2+X1w5Bixsh04cECpQ8OGDYXBYHBq+UWLFinLDxkypEJ12bRpk2jSpInd93zOnDkWl1+3bp3Df7ebbrpJnDhxwm6dEhISRKdOnWyua+DAgSIjI6NCr93kzJkzokOHDja3FxgYKBYtWmR3Xc78H9v6/zPfrzpzW7hwocvvQ3XYlw8bNkypw1dffeX08k2bNlWW37t3b6nnTJ8bWZbF8ePH3VVlIYQQarhBXFyc28/M1EZbt271dBVqvKSkJKSnpwMAwsPDMXDgQPTo0QN169ZFSUkJ9u7di0WLFiE7Oxv79u3Drbfeir179yImJsbqOj///HO89NJLAACNRoNHHnkEffv2RUlJCX7//Xf8+OOPyMnJwSOPPILQ0FDcfvvtVfJaqeZasGABu+jWYk2aNMHNN9+Mtm3bomHDhvD390dOTg6OHDmC5cuXIykpCYmJiRg0aBD27NmDdu3aVXibn376KZKTk6FSqTB58mSbZUNCQtC9e3d06tQJTZs2RVhYGPR6Pc6fP4+1a9fir7/+QklJCaZPnw6dToc33njD4nq2bNmCYcOGoaSkBADQo0cPjBo1CvXq1UNqaipWrVqFzZs349y5c7j99tuxc+dONG/e3OK6zp8/j4EDByIrKwsAEBMTg0cffRTNmzeHWq3GuXPnsGjRIiQkJCA1NRXDhg3Dnj170LFjR5ffs7KtX0FBQWjQoAGOHz/u0vpeeeUVzJkzBwAQEBCAxx9/HN27d0dubi5WrlyJjRs3IiUlBXfffTe2bdtmse516tTBqlWrHNrezJkzcfDgQQDAY4895lKdq4vOnTvjpptuwuHDh3HhwgVs3rwZAwYMcHh58+/birwXP/30Ex544AGUlJRAlmXccccd6N+/P+rVqwchBJKSkrBnzx6sX7/e7rratGmD7t27o1WrVkpvgszMTBw8eBDLli1Deno6Dh8+jL59++Kff/6xehyTmZmJO+64A/Hx8QCA1q1bY+zYsYiNjcWZM2cwf/58XLx4EZs2bcK9996LDRs2QK12PT5cuXIF/fr1w6VLlwAADRs2xNixY9GqVSvk5+djy5YtWLp0KXJzc/Hoo4/C398f9913n931tm3bFm+++abNMg0bNrT63Lhx4zB8+HC72zl9+rTyHRgUFIQRI0bYXaY6e+yxx7BmzRoAxv/zxx9/3OFlt23bhrNnzwIwvv/dunUr9fy///1vTJs2DefPn8eMGTOwbNky91XcrXHYhtrYulgdzqxQaYsXLxbt27cX33//vSgsLLRY5tKlS6Jt27bK32706NFW13f58mXh7+8vAAi1Wi02btxYrox5q1SDBg1EQUGB214PUXXCFtjKlZubK86dO2ezTH5+vrjrrruUv8Ptt99e4e2WlJSIBg0aCABi8ODBNsseP35clJSU2CyzZMkSpRVRrVaLS5culStTWFgoGjZsqLyOKVOmWFzXnDlzlDL9+/e3us2xY8cq5W677TaRn59v8XWOHj1aKXf33XfbfB32fPHFF2LChAniu+++E/Hx8cJgMIgtW7a41Bp58OBB5T0LCQkR//zzT7ky06dPV9bdrVs3p1sZzWVkZAhfX1+l9eTChQsur6s6tMAKUfp/5ZFHHnF4ufPnzyvvfUREhCgqKnJp+0ePHhU+Pj4CMPYasPQ3NCksLBQpKSkWn7t69aq4fPmyzW1du3atVG+Ip59+2mrZ8ePHl/q+KHuMcu3atVKtsx9//LHNbdszcuRIZV0DBgwQubm55cps375dObaKiIiw2fJrWlffvn0rVC9Hvfzyy8o2n3jiiQqtqzrkhOLiYhEZGanUw9Geh0KU/l597733LJZ59dVXBQChUqnE+fPn3VVtwQBbiarDPyaVlpGR4dBO/ciRI8rfzs/PT+Tl5VksZ/7F/9JLL1ld3/333++2L3+i6ooBtnpITU0VKpVKCYiuHnCbrFq1Svm7OtKlzxHmIfvrr78u9/yyZcuU57t27Wrze3vIkCFK2U2bNlksU79+faXMsWPHrK4rIyNDqNVqAUCEh4c7/8LscDXADh8+XFnuk08+sVjGYDCI7t27K+V+/fVXl+v5ySefKOsZNGiQy+sRovoE2NTUVOVSn4CAAJGTk+PQcm+88YZS/+eff97l7ffo0UMAEMHBwW49kLfm4MGDpU6eW5KSkiK0Wq3ynlgLzUeOHFFCfExMjNDpdC7V6fLly8p6/Pz8rG5PCCHeffddpf5Tp061Wq4qA6xOpxN169ZVtlnRyzSqS04wP5adNm2aQ8vk5eWJoKAgZT+TnJxssdyxY8eUdf/3v/91W50rfRRi08i6f/75p/KYMxdBGwwGrFixAqNGjVIudA8KCkKrVq3wzDPP4MiRIzbr9vrrryvbMHXR/eOPP/Dggw+icePG8PX1LTf6l06nw++//45JkyahT58+yqARQUFBaNGiBR599FH89ddfVrdpuhB84cKFymONGze2ezG5M6MQ79mzB0899RRatmyJoKAgBAQEoGnTphgzZgw2b95sd3nTdvr16wcAyMvLw3vvvYeuXbsiLCwMAQEBaNu2LV555RVkZGTYXZ+3CA0Ndej9bdeuHVq1agUAKCgowJkzZ8qVEULghx9+AAC7o3KOGzdOub98+XJnq10hu3btwjPPPIM2bdogNDQUvr6+aNiwIUaNGoXffvvN5rJbt24t9xm9cOECJk2ahFatWiEgIAChoaHo1asXPv30U+h0OofqlJubiw8//BCDBg1CvXr1lMEbunXrhtdeew1paWk2ly/7WdHr9ViwYAEGDRqE+vXrQ61WIy4urtxyKSkpmDx5Mtq0aYOAgACEh4eje/fueP/995WBYOLi4iBJUrnl169fr2zT/O9py7hx45Rl1q1b59AyjrA3cmFl/d1+/fVXDBs2DDExMfD19UVcXBweeugh7Nq1y+nXUFxcjK+//hp33XUXGjRoAF9fX4SGhuKmm27CpEmTrI7IePLkSQQEBECSJISEhCAhIcHqNjIyMtCwYUNIkgSVSmXze7smiYqKQlRUFADj/szewD72LF68GADg5+eHe+65p8L1A4zdH02Sk5PLPW++H3v44Ydtfm+PHj1auf/9999bLGM+Cqa1bsaAcR9heu/y8vKslqtKOTk5yvdHcHCw1YFoyu6HKrKv+fbbb5X7Y8eOdXk9zkhLS0O3bt2U766JEydavDzN1X1aVFQU7rzzTgDGv+2KFSscqpf5sZyr3Ye3bduG3bt3AwAmTZpksyuru9j7jAHGwUaLi4sBGAfdqVOnjsVy7dq1Q//+/ZV1mR/TO2Pr1q3K3/S2226zuj2g9Od66dKlLm3P3davX48rV64AAFq1aoVevXpVyXa/+uorqNVqSJKE2NhYHDt2rFyZihxXmf9fL1q0yKHLQleuXKkM+jRkyBBER0dbLNemTRvlcoYlS5a475JTd6RgW2fXzFtebd2mT59ebr1nzpwRHTt2tLmcLMs2zxaYd6nZvHmz+L//+z+L6zE/89GvXz+H6jxmzBiLZ7YdvRDc1ntlTUlJiXjyySftrnvkyJEWu0iZmMr17dtXnD17VrRp08bquho1alQrW5C7deumvAe7d+8u97x5K227du1srkuv14vg4GDlfzY7O7uyqq3Izc0Vo0aNsvu/MnToUKv1MW8tmD59uli3bp0IDQ21uq5BgwZZ7ZptsnbtWlGnTh2bdQoKChI///yz1XWYf1auXbsm+vTpY/H/1tzmzZtFWFiY1W22b99eXLhwQTRq1Mji8nq9XhkAJiwszG5X8IKCAmV7DRs2FHq93mZ5Z9g7a+vuv5tOp7P5vSbLspg1a5bDLbCODKaj1WrF559/bnH5+fPnK+V69uxptTVgxIgRSjl3nvmt7jIzM5WWJo1GU6HLFgoLC5WufLfccovb6mjeK8VSC6x5q+q6detsrsu8pSkmJsZimdjYWKWMoy2wHTt2dO5FOcCVFtg1a9Yoy9x55502y6ampiplo6KiXKqj+b4tLCzM7ne6PY60wCYkJIgWLVoo5f73v/+VK+OOfdovv/yilHPk//mvv/5Synfo0MGZl13KY489pqzn7NmzLq/HGeYtX9ZaYO+77z6lzI8//mhzfbNnz1bK2upxZot5q+rLL79st7zpuAmAiI+Pt1jG/Hi2st17773K9mbNmlXh9TnSAvvWW28pZVq2bGmx9d4dx1WdO3dWym7evNlu3fv376+UX7Vqlc2yEyZMUMoeOnTI7rod4ZZBnGwxDes+depU5YyBpQEETK1dJmfPnkWPHj2UM8d9+vTBnXfeiUaNGkGv1+PAgQNYsGABMjIyMHPmTMiybHco69mzZ2PdunXK4A3t2rWDTqfD3r174ePjo5QrKChAYGAgBgwYgC5duiAuLg6+vr64cuUKjh07hu+++w55eXlYuHAhQkND8eGHH5bajulC8Hnz5mHLli0AgC+++KLcmSZXzsA98sgjykXQvr6+GDNmDHr16gWVSoX9+/fj66+/Rk5ODlasWIGsrCysW7fO5pnr7OxsDB06FCdPnsTdd9+N22+/HeHh4Th37hw+++wzXLhwAefPn8fo0aNrTesFYGwdOn36tPJ7o0aNypU5evSocr9Lly421yfLMjp16oQ///wTBoMBJ06cQPfu3d1X4TKKioowcOBA5Yxv06ZNMWrUKLRu3RoajQZnzpzBokWLcOrUKfz2228YPnw4Nm7cCFm23inj77//xuzZsyGEwH/+8x/07NkTPj4+2L9/Pz7//HPk5eVh48aNeOutt6wOyrJy5UqMGjUKer0eGo0Gd911F/r164fo6GhkZ2djy5YtWLFiBXJycnDPPfdg48aNyllfax5++GFs374dHTp0wIMPPoi4uDhkZ2fj8OHDSpnjx4/jzjvvVFpZO3XqhIcffhixsbFISUnB8uXLsWPHDowaNcpqa6Qsy3jyySfx6quvIiMjAytXrsRDDz1ktV4//vij0nvh8ccft/neViZ3/N3GjRuntEJotVqMGTMGffr0gSzL2Lt3L77++mu8/PLLDg2AsWvXLgwcOBD5+fmQJAm33XYbBg8ejPr166OgoAC7du3C4sWLkZ+fj6effho+Pj7lWpyefPJJ/P7771i5ciV27dqFGTNmlKv7119/jR9//BGAcfAfb57qwBk6nQ7PPfecMvDRkCFD4Ovr6/L6duzYoXxu3PWd9dtvv+Gnn34CYNyPDRkypFwZ4eJZ+uTkZFy9ehWRkZGlHr/77rvxySefAAAmTpyIVatWwc/Pr1QZnU6H8ePHK98B48ePd6kO7ubMviYqKgqNGjXC+fPnkZaWhtTUVJutXJZ88803yv1///vfpY6PKsORI0dw++234/Lly1CpVJg/f365Vl937dPuuOMOREdHIyUlBdu2bcO5c+fQpEkTq3Vz1+BNpuOniIgINGnSBJcvX8bcuXPxyy+/4Pz589BqtYiLi8PgwYMxbtw4xMbGurwtwNjCbN5T6N5777VYzpn/ra5du1pczhmufq4B4/9Jy5YtrT5/8uRJ9OnTBydOnEBOTg7CwsLQsmVLDBgwAP/5z39sDsbpiKtXryqDHanV6lItxJVBCIHx48dj3rx5AIBu3bph7dq15b7b3HVc9dhjjymDti1YsAC33nqr1bqdP39eyTdRUVEYOnSozdfSo0cP5f7vv/9eocHxFO5Iwe6eRkev1ytnAnx8fMSKFSsslktOTlZaaGVZFkePHi1XxrwFFoDo06ePyMrKsrn9TZs22Wy9vHr1qtLiI8uy1UE13D2Njvk1QdHR0RbPIicmJpZq2bB2vaX5e6LVasWaNWssvk7zde3Zs8fua7AmLy9PrFq1yi23AwcOuFwPRy1evFh53Z07d7ZYZsaMGaVauewxHxxk8eLFbq5xaWWvzbU0qEpxcXGpOn322Wflypi3FgDGlsRTp06VK7dnzx6l1cLaGfsLFy4oZ1MbNmwoDh8+bLHue/bsESEhIQKAiI2NFcXFxeXKlO3ZMX78eJstnOYttM8++6zFsmW/K8q2wAph/M4xtWzZO9t7yy23CMA4cMHFixdtlnWWMy2wFf27mbdAhIaGWpyuJD4+XplixXSz1AKbnZ2tDAYUGhoqtm7davH1nT59WhnAJyAgQKSlpZUrk56errSqqVQqsW3bNuW5kydPioCAAAEYrzeraIvHiRMn3Pb9Zem1uEKv15da7+LFi8Wrr75aakqDuLg4kZiYWKHtvP3228r6fvjhB6eW3bdvn1K/5cuXiw8++EDccccdyvpUKpXF1lchSrdYzZ071+Z2zPeNAMT27dvLlUlLSxPNmjVTysTExIhXXnlFfPPNN2LRokVi+vTpyv5OlmUxc+ZMp16ro1xpgTV/Lxy5ttz03QOg1OfCEcXFxSIqKkpZ3h37W1vHiNu2bVN6h/j6+orVq1dbXIe79mlCCPHiiy8qZV577TWr9Ta/xk+j0bj82c3IyFC217FjR/H777/b7A3k6+vr8NQsOTk5ymfsp59+EgsWLBATJ04sdZ1mx44dLQ6CpNfrle9/lUpld/C1c+fOKets2rSpK2+FWLhwobKOe+65x2bZ5OTkUu/Lm2++abGctffR/Obj4yM+/PBDl+psYj4I2LBhwyq0LhNr+/Li4mLx4IMPKs8NGjTI4jXb7jyuunbtmjLImL1rxM2PfydMmGD3dSYmJjr8d3dUtQywK1euVMrOmzfPZtmTJ08qg1U8+eST5Z43PygNCAgQSUlJDr0me86ePaus19qOzt0B1nwUuLVr11pdz549e5SL5Bs1amSxe535B/uNN96wuq4vv/zSoXL2uDr3nKVbZQ8CkZ6eXurL39pBm3mXiI8++sjuep0t76rLly8rgzLce++9NssWFxcr89E1b9683PNlg9Bff/1ldV0PPfSQzXLPP/+8sqO014Xk66+/Vtb13XfflXve/LPSpUsXm+F13759Stl27drZHHzCfL2WAqwQpbs+WgqFQhi/l0xlhg4davO1usLZAFuRv9vdd9+tPL9gwQKr6/n1119LbdPSgfb777+vPP/LL7/YfI1//PGHUvatt96yWGbr1q1ClmXl75WRkSGKi4tFly5dlGXdcbKo7MmNity2bNlS4foIYeyibm0bgYGBYuzYsW4Jy//+97+V9Vo7OLLGVnfP3r1725yv9KuvvlLK2htRd+jQoaXWbW3womvXrokRI0YoxwyWbiNHjnRbFzdLXAmw99xzj7KMpZPNFS1v7qefflKWrUiXWXPWjhF//vln4efnJwDjyMp//vmnxeXduU8TonTX2ri4OKv/W+Zhy952bTGfv7l+/frKybXOnTuL999/Xyxfvlx8+OGHomfPnqX+F1euXOnUusvewsPDxYQJE6wOQpmVlaWUjYiIsLstZ8tbcubMGWUd/v7+IjU11WpZ8y7LAMSLL75osRxgDNTPPPOM+Oyzz8SKFSvEwoULxeTJk8vNt2vrhIU9N910k7Iee11mHWVpX56bmysGDx6sPD5q1CirA/G587hKiNLHN998843FMgaDodSJUkf3C6bPuqsnP8qqlgHWNNpecHCwQ9fumD70lg44zQ88bE2H4gpTi4O1a1LcGWDN3+P27dvbXdeAAQOU8pZaTk3PqVQqkZ6ebnU95kH9gQcesLtda7wlwOp0ulJfHLbCh/m1yF9++aXddZuGEgcg3n77bXdWu5QPP/xQ2c7OnTvtln/llVes/p+aH2x16tTJ5nrMvxzLXrtoMBhEeHi4AOxPwyGE8QvcdGbY0t/b/LNi7UvWZOrUqUpZa2fkTcwP3qwFWPNgNXnyZItlXnrpJaWMrWtOXOVMgK3I362wsFA5cIyOjrY78mTr1q2VdVkKsKYeMy1atLD7GoUQol69egKw3dpt/rkaNWqUmDx5svL7Qw895NB27PG2ANunTx+xZMkSi2fZndW7d29lvZamu7HFWoCNjo4WM2bMsNkzITMzs9R129ZGIf3oo4/Krf/777+3ut6zZ8+KJ554wup7p9VqxciRI+1OU+IqVwLsoEGDlGUsTdVWlvlJB1vvhSV33nmnsqy9lm9HWTpG/Prrr5UTCTExMeLvv/+2urw792km5qM1W/tM3nrrrUoZZ08EmNu1a1e5/zNrPYGmTJmilImIiLA4xYw5WwH2zjvvFKtXr7Ya0JOSkpSy9evXt/s6iouLS31OXGX+vg4aNMhiwN61a5cS9E23p556yuL6rJ34EMJ4TGd+DAA43ytBCCH279+vLF+nTh27rdWOKrsvT0tLK/W/+X//939WT9C7+7hKCOO1tKZtW9vv/vnnn0qZLl26OPpSlf25Vqut0BRfJpV+Dawrtm3bBgCoW7euQ5M5q1QqAMY+2QUFBeWuazH517/+5XAdsrOz8d1332Ht2rU4cuQIrl69anVEQtNkzJVp7969yv3BgwfbLT948GD88ccfAIwjFlu7dqlFixYICwuzup769esr9ysyGnFcXJz7Rh6rRC+88AI2bNgAwHiNsvn1L97C9PkBjP+bq1evtlne/O964sQJi6P3AqWvYbDE1v/KsWPHkJ6eDsA48be9OgFAYGAgMjMzceLECZvl7H2u9+/fr9y3dU0HAGVUbltuvfVWtGjRAqdOncLChQvx5ptvQqPRKM+XlJQo14vWq1fP7rUhla0if7d//vlHGaGyb9++ynetNQMGDLD698rKylKuS46Ojnb4fwCAzf+BGTNm4I8//sCePXtKjbrauHFjfPrpp3a34YjXX3+92l1D6+vrq3ynCiGQkZGBv//+G1999RWWLl2K7du3Y/78+fjxxx+VUXVdYfrcAkB4eLhTyy5btkwZsyE/Px8JCQlYs2YN3n33XUyfPh1z5szBsmXLcNttt5VbNiQkBHPmzFGuO3zzzTexefNmjBw5EvXq1UNaWhpWrVqFTZs2wc/PD6GhocrooNauN//f//6HqVOnwmAw4IknnsDTTz+tjNR6/PhxfP755/jqq6+wYsUK7N69Gxs3bkSLFi2ces3eLDk5WTnm0mq1Nq/xr4hZs2ZhypQpAIzXsm7YsMHmdaiVsU8bO3ascly1YMGCct/958+fV2auiImJwe23325zm7YYDIZSv7du3Rpz5861+H/69ttv448//sC+fftw7do1fPfdd3jqqaesrrtVq1bK94Ber8e1a9ewd+9efPzxx/j111/x66+/YsSIEViwYAECAgJcfg3uNG/ePPTo0UMZf6Ft27YYO3YsWrZsifz8fGzduhXff/89SkpK0KRJE5w7dw6A9c/1LbfcYnVbKpUKM2fOREpKCr788ksAwFtvveX0rADmo3I/8sgjUKvdH58uXLiAp556CidPngQATJ8+3eZ+pzKOq0zjUSQlJeGvv/5CQkICGjduXKqMq9eFR0RE4PLlyyguLkZeXp6yf3dZhSOwcG8LbE5OToXObpftImx+5txWt1tzmzdvLnc9l61bkyZNLK7HnS2w5mcgv/jiC7vrMp+375VXXin3vOm5f/3rX3bXZSpbVZNEe4p5S050dLQ4efKkzfLVtQuxefdJZ29lu5WYtxbYmxus7Mi35sxH0XT2ZqkbmPlnxdb16kKU7vbjSIuUqdXHWgusEEK89957yjrLdvP68ccflecqa+RbZ1pgK/J3M/8eefXVV+3Wy/x7qmwLrPnIps7eNBqNze2ePXtWuVYNMM5Jt2vXLrv1ranML/24+eabK3S229QFT6VSua1+iYmJyrysGo3GZuvbRx99pFx3bukWFBQkfvnll1KX2Pz+++/l1mP+/W7r0qS5c+cq5bp27eqW12uuOnchnjVrlrLc/fff7/By9pgfI5quwwOMXZStzR1pzp37NJPMzEylS6Ol6/3Mr/Gz1NNm27ZtNq91N29VPHz4cKk6vfvuuzZf7xdffKGUHTlypN33xxrzlkdLf09PdCE2+euvv2yOmitJknjttddKHTdZOpZ1VFJSknJpnY+Pj93jBnOFhYWlrlm2NYq5s8z35abPhiRJ4tNPP7W7rLuPq0zMezCUPSYwvy7cx8fHZg/Ossx789jqOu4ozwyLaUNWVlaFlje1FlhirWXW3OnTpzF06FBlzqyWLVti/Pjx+OSTT7B06VKsWrVKuZnOauv1+grV2RGmuZYAOHQWzfzMhvmyZXlqZNTq5s0338Tbb78NAIiMjMSmTZvsnnkPDQ1V7jsyz+K1a9csLutuFfkM2fr8VOR/pbLqBNj/XJt6TqjV6lItpdY48vl69NFHlZE5TWd1TUy/S5KExx9/3O66KltF/m65ubnKfX9/f7vlbb13FfkfMI2oa01kZGSp1sEmTZrYHVGzJnviiScwYMAAAMYeOI70ZLLG9H+u1+uV0YgrqlGjRnjnnXcAGP+2pu9eS5577jnEx8djwoQJaN++PYKCguDr64tmzZph3LhxOHz4MIYNG1bq+7XsaKNJSUmYPXs2AGPr13PPPWd1e88//zxat24NwNh7wzTqrSdV1b6mKuZ+NR/lvaCgwKHjp8rYf4SEhChzGufl5WHlypXKc0IILFq0SPndUivT1KlTcc8991i9mc87XPZvYO+7yfz5s2fP2ixry4wZM5TjmB9++AHHjx8v9XxgYKDSkpiZmWl3PnB3HsP861//wqlTpzBr1iz06dMH4eHh0Gg0qFevHkaNGoVt27ZhxowZNj/XzqhXr57yXhQVFdmcP7ys1atXK636N998c6n5dd3J9P4LIRyag7qyjqvMR/0vOyfsjz/+qGSK4cOH2+zBWZZ5fR3JY/ZUuy7E5sHrlltucXmyZFf973//Q0FBAQDgv//9L2bOnGl1Gponn3yyyuoVFBSk3HfkH9v8wNN8WU/Jz89XuuZWVMOGDdG5c2e3rAsA3n33XUybNg0AEBYWho0bN6Jdu3Z2lzMPuImJiXbLnz9/3uKy7mb6DEmSBJ1OVy1OUph/rl977TXMmDGjyrZtClU6nQ4lJSV2Q6wjn6+IiAiMGDEC3333HTZs2IALFy6gYcOGOH/+PDZu3AgAGDhwYLmuN97G/O/mSHix9d6Zr2v06NFKN2t3ePbZZ0t9vk6dOoWpU6di1qxZbll/fHw84uPj3bKuPn36lJsGoTLcfvvtymUkW7duxR133OHSesxPDKSnpzt0IsPR+pmYumpa06RJE3zwwQdWn8/NzcXFixcBGE+0lD3A3LBhg3ISZMCAATanlpMkCf3791e62O3du9duN/zKVhX7ml27din/47GxsQ5dquSKESNGIDg4GB999BFOnTqFW2+9FVu2bEG9evWsLlNZ+7THHnsM33//PQBjt8gxY8YAMHZZNgXHHj16lJvm0VmxsbEICAhQvh9DQkJsljd/viIhRZZlDBo0CKdOnQIA/Pnnn6U+G7Iso2nTpjh58iT0ej0uXbpk9RIiwP3HMCEhIZg8eTImT55stYx56O7WrVuFthcREaHcz8zMdHg582mlKuvEDgCsWLECjz32GFJTU/HSSy8BAF588UWr5SvruKpFixbo3bs3duzYgYSEBPz111/o27cvgIpNK2Xq7qzVat3Snb3aBdiQkBAEBgYiNze3Sq4tLWvTpk0AgDp16uCNN96wuqPLyckpdW1QZatbt65y33x+UmvMy9jaMVSV1NRU5WxnRY0ZM8Zt16bOmTMHL7/8MgDj/54z81OZh9wDBw7YLGswGHDo0CEAxp2G6Qx/Zahfvz7+/vtvCCGQlJSEBg0aVNq2nKmTSVV/ruvVq6dce3nu3Dmb88hlZGQ4vGN7+umn8d1338FgMOCbb77B66+/jm+++Ua53snWdUvewvy748yZM3bL2ypTWf8D3333Hb777jsAxpaLq1ev4vz583jvvfdw22232Z1H2BHLli1z28HBli1bHLrWuqLMT1w6c7BWVlxcHHbs2AHAeABS0fkpTdxVP8A4x6aplaBnz57lrk+7fPmycj84ONju+swDhCMntCqbM/uatLQ0JWhERUU5PAeseevrmDFjKvXE57x58yBJEubNm+dQiK2sfVr//v3RsGFDXLhwAX/++ScSExMRFxdX6r2wdpBu76SLOUmS0K5dO+zZsweA/VBq/ry9sGuPvc9Zu3btlGsuDxw4YDPAmo8n4chJ/orKyMhQ9t0BAQHo1KlThdbnSgvypUuXlFzg7++PBx54oEJ1sKVNmzbYsmUL+vfvj5SUFLshtjKPqx577DHle3/BggXo27cvEhMTlf/72NhYDBo0yKl1mjJTw4YNbZ5EdFSVNc2YfxkKO4P5mC7IPnfunEMHTe6UkpICwDgAiK0v8E2bNpW7ML8sZ16zPeaDMJlaeGwxb+101+TzNc0nn3yCiRMnAjB+ya9bt86pM3xt27ZVDuaOHTtm8wtk586dyM7OBgD07t27UlvFTWfKALit1buiOnXqpBw4/vHHH3Y/O+5kPvm6aeJta5w5KOnTpw/atm0LwHiGtqSkRDlTW6dOHdx9993OV7aa6dChA7RaLQDj2Xt73f1MLX6WREZGKmf/d+/erXweKiIhIQHPPvssAOMBztKlS7FkyRKoVCoYDAaMHj261EFLbWK+76xIi6/5garpQNcd3FU/oHT4stRt3zy0mlpqbTFvaTJvtfGUfv36KV25//rrL6WXmCW///67ct/RgYfy8/OVAdAkSXK6ZcUVc+fOxQsvvADA2GOiX79+pU40mKusfZosy0qrq6nbcF5eHn788UcAxm6Oo0aNcsu2zHtA2DsJYf58RVs67X3OzAdQM//fscT8UoSKDGrlqO+//17p6vrQQw/B19fX5XVduXJFaYnWarVo1KiRQ8stWLBAOV657777HDoBVhGmEBsdHQ0AeOmll5TLH8qqzOOqkSNHKr1tfvzxR+Tl5WHhwoVKlhk9erRTJ7kSExNRWFgIALjpppvcUscqC7DmTd32zmiavlAAY7N4VTL9wc6dO2c1dOr1epvX7Jg485rtiYuLU7rN/vPPPzZD7P79+7F582YAxmuNqsO1YKZRiN1xc0fr65dffonnn38egPHAd+3atejZs6dT65AkCffffz8A487vo48+slp23rx5yn137RCteeCBB5TQMWvWrGrRgqBSqZQRLc+fP4+vvvqqyrZtHiQ/+eQTmyFs7ty5Tq37P//5DwDjQfH48eOVkxhjxoxx6Hrb6s7HxwdDhgwBYDy5Z+puZ8m6devsjhht+m7Pz89XroF0lV6vx0MPPaQE4Xnz5qF58+bo06cPXn31VQDGax+feOKJCm0HMI5C7K7vr6pofc3NzS31t+rVq5fL67r55puV+6YWJHeYP3++cr8i9duyZYsSOJo0aYL77ruvXBnzEP7bb7/ZHBciOzu71Ail5ifAPCUwMFD5HGZnZ1vdBwoh8PHHHyu/O7qvWblypfI5uuWWW9C0adOKVdhBH374IcaPHw/A2GvMWoitzH3ao48+qrQGLVq0CD/88INyCda9995b4RZQkwceeEDZzrfffmv1elMhRKn9Y0WC4qVLl7B27Vrld0ufs+HDhyvv7dKlS0tdu2vu6NGjynFlTExMqZMKlSE1NVXp9aLRaJT/E1eZvsMB4wkRR7uwmn/WKrP7sLnWrVtjy5YtyjW/kydPthhiK/O4KigoCCNGjABg3J/8+OOPpa4LN79O1hHm+w7zfUqFVHgYKOHYKMTjxo1Tytias0kIIfR6vejWrZtS/oUXXrA6ia8QQuTn54tvv/1WLF26tNxz5qMQOzL/nvl8ax988EG554uLi8Vjjz1WajQva6OVfvDBB0qZhQsX2t22vZGaly9frjxft25dceLEiXJlzp8/X2qC4Y8//tjiukzPOzKysDNlvcHChQuV0ej8/f0rNC9jUlKS8Pf3F4Bx5NNNmzaVK/Ptt98q72GDBg0cmtu4oiZNmqRs89ZbbxVXrlyxWlav14uNGzeKmTNnlnvO1gi1zpa9ePGiMsKvj4+P3c9ESkqKeOONN8Q///xT7jln5pUWQog+ffoo5a3Nv1d2rk9boxCbZGZmKn9/89upU6ccqpernBmFuKJ/t23btinPh4WFWZws/dSpU6Ju3bql3gNL88Dm5uaKRo0aKSMtvvvuu1bnuBPC+P7OnTvX4tyX06ZNU7Y1YsSIUs+VlJQo84MDjo3c7g3eeOMNcfToUZtlkpOTS80D3rx5c5v7T3sKCwuV+RjtjVr/888/ixUrVticI1Gv14v33ntP+Q4GIDZv3myx7Llz58T58+etrmvDhg2lRu609l1eXFwsYmNjle3dfffdFkchzc/PF3fddZdSrl27dhZHcDb/zDjyPWFtWWfmND948KDynoWEhFj8Xnz99deVdXfr1s3hdffr18+pYxVn2TtGHD9+fKn/V0vzDbtrn2aJ+f7E/HvM0v68Ih555JFS+yFL/1vmI8A2aNDA4md38uTJIjEx0ea2zpw5Izp06ODQ8Zv5+3/HHXeUO0ZJT08vNcq3teNKIUq/l5b2AUIYP2d79uyxWXfz2QNef/11q2WnTJli8ztCp9OV2lcAEFu3brVa3tzWrVuVZZo2beqWuUvLsrUvP3HiRKkZUWbNmlVueXceV5Vl/l1l/rno06ePU69RiNKzcNgadd4ZVXYN7IABA5RWqMcffxwTJkxAo0aNlHkFmzVrhmbNmgEwdutYuXIlevbsiaSkJMydOxcrVqzA/fffjw4dOiAkJAS5ubm4cOEC9u/fjz/++AN5eXmYOXNmhev5/PPPK62bEydOxNatW3HbbbchIiICp0+fxqJFi3D69GnceuutOH36tM1uo6ZRIAHjGZS0tDS0bNlSuT6nfv36aN++vcN1GzlyJFatWoVly5bhypUr6Ny5Mx599FH07NkTKpUK+/fvx9dff62cSR08eLDSvY6M1q1bh7Fjxypn4saOHYvMzEy782d17twZDRs2LPd4vXr18P777+OZZ56BTqfDHXfcgdGjR6Nv377Q6XRYt26d0jqgVqsxf/58m91gzK8LSEhIsHk9ii3/+9//8Pfff+OPP/7Ali1blJaJnj17IioqCsXFxUhOTlZa85OTkzFgwABMnTrVpe05IjY2FsuWLcNdd92FoqIijBkzBh988AHuuusuNG/eHH5+fsjKysKpU6ewe/du7NixA3q93u7crY744osv0K1bN+Tn5+PTTz/Frl278PDDDyM2NhYpKSlYvnw5duzYgZ49e+LChQtISkpyqHtMSEgIRo0aVaoLY79+/dC8efMK17m66NOnD5599ll8+umnyMjIQI8ePTBmzBj06dMHsixj7969+Prrr5GXl4fhw4fb/CwFBARg9erV6Nu3L7KzszF58mR88cUXuO+++9CmTRsEBgYiOzsb586dw969e7F161YUFxdj8eLFpdazfft2pRdMbGxsqdY8wPhZ++6779CxY0dkZ2djwoQJ6Nu3r83rn73BypUr8dprr6FDhw645ZZb0KZNG4SHh0MIgZSUFOzZswc///yz0kIVGBiIhQsXKi0srvDx8cHtt9+OlStXYv/+/cjNzbU6f9+5c+cwYcIEREZGYvDgwejYsSPq1q2rfLaPHz+O1atXlxpZddKkSVY/4wcOHMADDzyAf/3rX+jXrx+aNWsGtVqNS5cuYd26dUqXdUmS8PHHH1tt3dZoNJg3bx7uu+8+CCHw888/o3Xr1hg9erQyHsGJEyewaNEipfuwRqPBxx9/XKFrtTIzM/Hee++Vesy8e/KhQ4fKfef279/f4nXbnTp1wuTJkzFr1ixkZWWhV69eeOKJJ9C9e3fk5uZi5cqVSvfawMDAcp8JaxISEpTBMoODg5VWl6o0Z84cSJKEOXPmKMdXW7ZsKXWNX2Xu0x577DHlPTDNJdyoUSO3XD9vbvbs2di+fTsSEhLw6aefYvfu3cp+KDk5GUuXLsWuXbsAGL/DFi9ebPGz+8UXX2D27Nno0aMHevXqhZYtWyI0NBQ6nQ6XL1/G9u3bsXbtWqX7bUxMjM3WuenTp2P9+vWIj4/HunXr0LlzZzzxxBOoX78+zpw5gy+++ELpet+vX78Kj++Ql5eHm2++GW3btsXtt9+Otm3bIigoCFevXsVff/2FVatWKd1NH3zwQZt/w88++wyzZs1Cr1690Lt3b7Ro0QIhISEoKCjA8ePHsWLFCmUeWcA4OKujrcfm+3Xzlvqq0qpVK2zduhW33norrly5oozXYj7oVWUeV/Xt2xeNGzdGQkKC8rkAnB+8Cbhx+VZcXBw6dOjg9PIWuSMFO9ICq9PpSrWClL1ZOvN/+fLlUmeSbd1UKpX48ssvy63D2RZYIUqfAbN06927t0hNTVVaEmydgX3wwQetrqfse+VIq1JJSYl44okn7L4fI0aMsDnPlalcbWuBLdvK5ujN2plEk9mzZ9udq9BSD4GyzJdxZO5gW4qKisRzzz0nVCqVQ69x9OjR5dbhzpY8k127dilzS9q7BQYGisOHD5dbh7MtsEIY53c2nam0dGvXrp24cOGCMj/lTTfd5NB69+zZU2o91uYddKeqbIEVwvj9bd56UPYmy7J49913S/U2sPWZiY+PL3VG39bNx8dHrFu3Tlk2IyND+e6VZdnm9/qSJUuU9XTq1KlCLZHVgXmLir1bx44dxYEDB9yy3dWrVyvrXbRokdVyc+bMcbh+QUFB4sMPP7S53R9++MHueqKjo8Xy5csdeh1LliwRwcHBdtcZGRkpfvvtN6vrcbQF1vzYyNGbrc+rwWAQ48ePL9V6XfZWp04d8ccffzj0fghRuifDk08+6fByznDkGFEIISZOnKiUa9asWbmWWHfs0yzJzc0VgYGBpZZ97bXXKvKSrTp9+rTdz3FYWJhYv3691XWYz6Vr79avXz9x5swZu/VKSEiw+508cOBAkZGRYXM9jrTApqWl2a23VqsVU6dOtdlDx5n3wt/fX3z00Ud23weT7OxspeeJLMvi4sWLDi/rDHv7ciGM+0vzFtB33nmnXBl3HFdZYj4fMmB5zmR7jh8/riw/depUp5a1pcoCrBBCFBQUiHfeeUf07NlThIWFlfoSsvWlvXXrVvGf//xHtG3bVoSGhgqVSiWCg4NFmzZtxKhRo8Rnn30mLl++bHFZVwKsEEKsW7dODB06VERGRgqNRiPq1q0r+vfvL7788kule5QjAVan04nPPvtM9OvXT0RGRgq1Wm31vXLmoHzXrl3i8ccfF82aNRMBAQHCz89PNG7cWDz88MMO7bxM22GAdexmL8AKIcSRI0fE//3f/4kWLVqIgIAAERQUJNq1aydefvllu919hDBOEG3+5X3t2jU3vGLjDnPKlCni5ptvFlFRUUKtVgt/f3/RuHFjMWTIEPH2229b/TKrjAArhPFEzJIlS8TIkSNF48aNRWBgoFCr1SI8PFx07dpVPPnkk2L58uUiNzfX4vKuBFghjN0rX3zxRdGyZUvh5+cnQkNDRdeuXcV7770n8vLyhMFgUCa379evn0PrNBgMyk40PDxcFBYWOlUnV1R1gDVZs2aNGDp0qIiKihI+Pj6iYcOG4sEHHxQ7d+4UQgiHA6wQxvft559/FmPGjBEtWrQQwcHBQqVSidDQUNGhQwcxevRosWDBgnITpY8aNUrZxpQpU2xuQwghHnroIaX8pEmT7Javzq5cuSIWLFggnnzySdG9e3cRFRUlNBqN0Gq1IjIyUnTp0kU89dRT4vfff7d74OcMnU4nGjZsKACIQYMGWS1XWFgoNm7cKF599VUxaNAgERcXJ/z9/ZV9dtOmTcU999wjPv30U4e+365evSo+//xzMWrUKNG6dWsRHh4utFqtqF+/vhgwYICYN2+eyMzMdOq1pKSkiFmzZokBAwaImJgY4ePjI3x8fETdunXF4MGDxZw5c+wepHsqwJrs3LlTPProo6JJkybC19dXhIaGis6dO4s33nhDpKWlOfxe6PV65e8KQOzatcvhZZ3h6DGiEKW7ClsKsUJUbJ9mzdixY5XtSpIkzp0759TyziguLhZfffWVGDRokKhXr57QaDQiPDxc9OzZU7z11lt2//8SEhLE559/LkaPHi06deokIiIihFqtFj4+PqJOnTqiZ8+eYty4cWL79u1O12v+/Pmif//+Ijo6Wmi1WlGvXj0xdOhQsWzZMoe60DoSYHU6nVi+fLn4z3/+Izp27Ciio6OFRqMRUVFRomvXrmLatGkOhW4hhNi9e7d4//33xYgRI8RNN90k6tatK7RarfDz8xOxsbFiyJAh4v3333f6eOqrr75SXsdtt93m1LLOcCTACiHEyZMnRb169WyG2IoeV1mSmJgoZFl2+PNryauvvioAY0Ojre7ezpKEqODwuETkFr///rsyYMO4ceOcHlCIKu7IkSPKCHmO/g02bdqkDCf/wgsv4MMPP6zMKhJ5xJw5czBx4kSoVCokJia6bTodIiKqmfR6PZo1a4bExESMGjUKy5Ytc9u6q2wUYiKyzTTXWFBQUKVei0rWmY/g6ei1t5999plyvybM/UpkydNPP42YmBjo9Xq8++67nq4OERFVc0uXLkViYiJkWcb06dPdum4GWKJqwhRgJ06ciKioKA/XpubZtm2bzXnSPvnkE2Xgk/r16+POO++0u86///5bGbRo4MCByjynRDWNn58fXn/9dQDGKXCszdlJRESk1+vx5ptvAjAOgmUaMM9d2IWYqBq4evUq6tSpg8jISJw9exZBQUGerlKN06xZMxQWFuKOO+5Ap06dEBUVhZKSEpw9exarVq3CoUOHlLJr1qyxGmDXr18Pg8GAU6dO4d1331VG59u+fTt69+5dJa+FyBMMBgO6deuGgwcP4rnnnrM59zUREdVeS5YswSOPPIKQkBCcOnUKderUcev6GWCJqFZo1qxZqek7LPHz88OXX36pTA5uiaWh9B29XnbDhg3Iz8+3X1kLIiMj0adPH5eWJSIiIqopGGCJqFbYvXs3Vq5cid27dyMpKQnXrl1Dfn4+wsLC0KJFCwwcOBDPPPMMoqOjba7HFGADAwPRokULPPPMMxg7dqxD88bGxcWVmgfSGX379sXWrVtdWpaIiIioplB7ugJERFWhR48e6NGjR4XXw3N+RERERJ7DFlgiIiIiIiLyChyFmIiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8gocxImIiGoUIQQKCwuRn5+v3AoKCsr9XlxcjKKiIhQXFyu3sr+bbjqdDgaDAXq9XrkZDAblMfPnTGRZhiRJNm+yLEOj0UCtVkOj0Sg3tVoNrVarPG763cfHB76+vvDz8yv109L9gIAABAYGQqvVevCvQURE5F4MsEREVC0VFBQgOzsbWVlZyMnJQXZ2NrKzs63ez83NVYKqwWDwdPWrDa1Wi8DAQAQGBiIoKEi5b34LCgpCaGhoqVtgYKBD00MRERFVJY5CTEREVSYvLw/p6elIT09HRkZGuZ/m9wsLCyu8PX9//1I3Pz8/5efmJTsAAyAZJEC5Xf9dSIAexp8GCZK4fl/g+s04H3Cp3wUgmR4ze9p0H8p9YXYfgHx9QVkYV2v2OyQByIC4/hOyAFQCQ54egMLCQhQWFqKgoKDcfVOQrwiVSoXg4OBSoTYkJARhYWGIjIxEZGQkIiIiEBkZidDQUIZdIiKqEgywRERUYUII5ObmIjU1FampqUhLS1Nu5r87G6o0Gg2Cg4MRHByMoKAgBAcHY+fK/ZBKZEAnQ9JJxp8lEqCXAb0ESS8B129SqfRYuwgYwy7UAkJtMP5UXf+pFoDKgHtfHILc3FxkZWUhKysLmZmZyMzMRF5enlPbUqlUCA8PLxVqIyIiEBUVhejoaERHR6NOnTrszkxERBXGAEtERHYJIZCdnY0rV65YvKWlpTncYurn54fw8HCEhYXh+NbTQIkMqUSGVCwb7xcbf0exbGz9rMUh1FOEJACNAUJjANTGn0JjfGzI//XHtWvXcPXqVVy9ehUZGRlw9FAiIiICMTExqFOnDmJiYhAdHa38rFu3Lvz9/Sv5lRERkbdjgCUiIgCAXq9HamoqLl68iIsXL+Ly5culQqojrachISGoU6cOoqKisHvlIUhFMqRiFaQiGbj+UzKwq2lNIiAArQFCa4DQ6gGtAQ/NvBdXr15FWloakpOTkZKSgqKiIrvrCgsLQ/369VG/fn3ExsYiNjZW+T0oKKgKXg0REVV3DLBERLVMZmamElLNb0lJSSguLra5bEREBOrWrYvjm89AKlRBKlJd/ykDRSpIgq2lVJ7A9a7MvnoIH+Nt+Eu3ISUlBSkpKUhOTkZOTo7NdYSEhJQKt40aNUJcXBxiY2PZNZmIqBZhgCUiqoGEEEhPT0diYiLOnTun/Lx48SKys7OtLqfRaJSWr51LD0AqVBmDqSmsGhhQqXIIlcEYcP30eOz9kUhKSsKlS5eQlJSEa9euWV1OpVKhXr16aNSokRJqGzVqhIYNG7JLMhFRDcQAS0Tk5bKzs0uF1MTERCQkJCArK8vqMtHR0WjQoAEO/nIMUoEacoEKUoEaKJJ5zSlVO0I2QPjpIXz1ePzDB3Dx4kWcP38e58+fR25urtXloqOjERcXh2bNmqFZs2Zo2rQpYmNjoVZzFkEiIm/FAEtE5CWEEEhOTsbp06dL3dLS0iyWl2UZ9erVw+W/0yDlq6/fVJAK1WxJpRpBuf7WTwfhr8edkwbg/PnzSExMREZGhsVltFotGjdujKZNm6Jp06ZKuOU1tkRE3oEBloioGtLr9bh48SJOnTqFU6dO4fTp0zhz5ozV6wRjYmKQejwdUp76RlgtYFCl2kuoDRD+Ogh/HYZO6o8zZ87g3LlzKCgosFi+Tp06aNGiBVq2bInWrVujZcuWCAkJqeJaExGRPQywREQeJoRASkoKjh8/jhMnTuDEiRM4efKkxVFb1Wo1GjdujLPbL0LO1RgDa54akp4j+xLZIyAAXz0MATo8POsenDlzBmfOnEFycrLF8nXr1kWrVq3QsmVLtGrVCi1atEBgYGAV15qIiMwxwBIRVbHc3FzEx8fj+PHjOH78OOLj45Genl6unJ+fH5o2bYrjG85CztNAyr3essqRfoncSqgMEAE6/Gf+Q4iPj0d8fDwuXbpksWzDhg3RqlUrtGvXDu3atUPjxo2hUqmquMZERLUXAywRUSUSQiApKQmHDx/G4cOHcfToUVy4cKFcOZVKhaZNm+LMnxch52gg5WggFag4oBKRhwiVASKwBGM/HoX4+HicPHnSYkutv78/2rRpowTaNm3asJWWiKgSMcASEbmRXq/HmTNncOTIESW0WmpdjYmJQeqRDEg5GmNgzdPwelWiak6oDTAEleDh2cNx9OhRHD9+HPn5+aXKSJKExo0bK4G2Y8eOiImJ8VCNiYhqHgZYIqIKKC4uxvHjx/HPP//g8OHDOHbsWLkDWrVajVatWuHEunOQcrSQc9SQStjlkMjbCQgIfx2eX/Iojh49iqNHj+Ly5cvlysXExKBTp07o2LEjOnXqxEBLRFQBDLBERE7Q6/U4ffo0Dhw4gIMHD+Lw4cPlBlsKCAhA/sUSyNlayNkaSLlsXSWqLYRGD0NwCUbMuAOHDx/GyZMnodfrS5VhoCUich0DLBGRDUIInD9/Xgmshw4dQm5ubqkyYWFhyDqVDzlbCyn7+sjAvHaViAAI2QARXIKR/xuKv//+G/Hx8RYDbdeuXdGtWzd06dIFwcHBHqotEVH1xwBLRFRGZmYm9u7di71792L//v3lrmENCAhAwQUdpCwt5EwtpHwOtkREjhEqA0SQ9UAryzJatWqFbt26oVu3bmjTpg3UarUHa0xEVL0wwBJRrafX6xEfH489e/Zg9+7dOHnyJMy/GrVaLUpSANkUWHPZwkpE7iFUBhiCS3DP64Owb98+JCYmlno+ICAAnTt3VgJt/fr1PVNRIqJqggGWiGql9PR07N27F3v27MG+ffuQnZ1d6vlmzZohYctlyJk+xm7BnHuViKqA0Oox8acnsG/fPuzfvx9ZWVmlnm/QoAF69eqF3r17o127dmydJaJahwGWiGoFIQQSEhKwfft2bN++HfHx8aWeDwwMRH5iCeQMH8gZWkjFHCWYiDxLQEAE6vDoJ/dh3759OHLkSKnuxoGBgejRowd69uyJHj16ICgoyIO1JSKqGgywRFRj6fV6HD16FNu2bcOOHTuQlJRU6vnmzZvj3ObLxsCarWG3YCKq1oTKgP9ueA47d+7E7t27S7XOqlQqtG/fHj179kSfPn3QoEEDD9aUiKjyMMASUY1SWFiIffv2YceOHdixY0epAzytVgtdMiBf84Gc7sO5WInIawkI42BQ7w7Bzp07kZCQUOr5xo0bo2/fvujbty+aNGkCSeIJOiKqGRhgicjrFRQUYPfu3di8eTN2795dal7WoKAg5J0tMYbWDC0kg+zBmhIRVQ7ho8czSx7Cjh078Pfff0On0ynPxcbGol+/fujbty9atGjBMEtEXo0Bloi8UmFhIXbv3o0tW7Zg165dKCwsVJ6LiYlB2sEsyNd8OQATEdU6QmXAi2uexJ9//ol9+/ahuLhYeS4mJkZpmW3Tpg1kmSf1iMi7MMASkdcoKirC3r17sWXLFuzYsQMFBQXKc/Xq1UPKnkzIV30h5XGaGyIiwBhmX1n/LP7880/s3r271Mm+6OhoDBgwAIMGDULTpk09WEsiIscxwBJRtabX63Hw4EFs2LAB27ZtQ35+vvJcTEwM0vZnQ05jaCUiskfIAtP+eB5//vkndu7cWer7tHHjxhg0aBAGDhyImJgYD9aSiMg2BlgiqpbOnj2LDRs2YOPGjbh69aryeJ06dXDtYK6xpTWXoZWIyBVCFpi66Tls3LgRu3fvRklJifJc+/btMWjQIPTr1w+hoaGeqyQRkQUMsERUbVy7dg2bNm3Chg0bcPr0aeXxoKAg5J3SQZXqCymH090QEbmTUBkwftVj2LhxI/7++2+YDg1VKhVuvvlmDBkyBD179oRGo/FwTYmIGGCJyMOKioqwbds2/P7779i3bx8MBgMAQK1Ww5Csgpzma5zyhgMxERFVOqHV44kFI7Fp0yacOnVKeTw0NBSDBw/GkCFD0KRJEw/WkIhqOwZYIvKIhIQErFmzBhs2bEB2drbyuJStgSrV19hFWMfRMYmIPMXgp8P979+G9evXIz09XXm8VatWGDJkCAYMGICgoCAP1pCIaiMGWCKqMgUFBdiyZQvWrFmDY8eOKY/XqVMH1/bnQU71hVyo9mANiYioLAGBN7ZPxG+//YadO3dCr9cDALRaLW655RYMHToUnTt35vyyRFQlGGCJqNKdOnUKv/76KzZu3Ii8vDwAxmurRKoacrIf5Awtr2slIvICQmPAU4tH4bfffkNCQoLyeMOGDTF8+HDcdtttbJUlokrFAEtElaK4uBibN2/GTz/9hPj4eOXxevXqIWVnNlQpvpBKVB6sIRERuUpA4KNjM/Hbb79h48aNyrzcvr6+GDhwIIYPH44WLVp4uJZEVBMxwBKRW6WlpeHnn3/GL7/8gszMTACARqOB/rIMVbIfpCy2thIR1SRCZcBzPzyCVatWlWqVbdu2LYYPH45+/frBx8fHgzUkopqEAZaIKkwIgSNHjmDlypX466+/lOujoqKikL6vwBhcOSATEVGNJiDw/qFpWL16Nf7880/odDoAQEhICIYNG4Z7770XkZGRHq4lEXk7BlgicllRURE2bdqEn376qdS8rVKWBqrL/pCv+bC1lYioFhIaPcZ8dQ9+/vlnpKamAjBOjzZgwACMHDkSzZs393ANichbMcASkdNycnKwevVqrFy5UplawcfHByXnZaiu+EHO42T3RERkbJV9bes4rFixAocPH1Ye79SpE0aNGoUePXpAltlDh4gcxwBLRA5LSUnBihUr8OuvvyoDdkRHR+Pq7jyoUthNmIiIrJt37A388MMP2LJli3KpSYMGDTBy5Ejcdttt8PX19XANicgbMMASkV1nz57F0qVL8ccffygHHVKuGqokf8hXfSEJdhMmIiLHCK0e980ZhDVr1iA3NxeA8TrZESNG4N577+U0PERkEwMsEVkkhMChQ4fw/fffY+/evcrjUqYW6kv+kDI5mjAREblOqAx4eumD+OGHH3DlyhUAgL+/P+655x7cf//9CA8P93ANiag6YoAlolKEENi/fz8WLlyoXK8kyzKQooHqUgCvbyUiIrcSEJiy4WksXrxYmYZHq9XizjvvxIMPPojo6GgP15CIqhMGWCICYAyue/fuxYIFC3Ds2DEAxgMIXaIK6qQASEUqD9eQiIhqMgGBGdsmYPHixTh+/DgAQKVS4bbbbsPo0aNRr149D9eQiKoDBliiWk4IgV27dmHBggWIj48HYAyu+gTjNa5SMYMrERFVHQGBWftewZIlS3DgwAEAxiA7ZMgQjB49mi2yRLUcAyxRLSWEwIEDBzB//nwluPr4+EB3VmUMriUMrkRE5FlzDk/Ht99+i3379gEANBoN7rzzTjz88MOIiorycO2IyBMYYIlqoWPHjmH+/Pk4dOgQAMDPzw/FpyWokgIglXAqHCIiql7e/3savvnmGxw8eBCAsafQXXfdhYcffpiDPRHVMgywRLXI2bNn8dVXX2HHjh0AjGeyDYkaqC6xxZWIiKq/dw+8iq+//loZZNDPzw8PPPAARo0aBX9/fw/XjoiqAgMsUS2QnJyML7/8Eps2bYIQwjiq8GUt1BcDOTgTERF5FQGBd/ZOKXUJTFhYGB599FEMGzYMarXawzUkosrEAEtUg+Xm5mLJkiX48ccfUVxcDACQ03yguhAIuYA7eCIi8l4CAv/94/8wf/58JCUlAQBiY2Px1FNPoW/fvpAkzlVOVBMxwBLVQDqdDmvWrME333yDrKwsAICUqYE6IYjzuBIRUY0iJIH/+/EhLFiwABkZGQCAtm3b4vnnn0ebNm08XDsicjcGWKIaRAiB3bt349NPP8X58+cBAFK+CqrEIMjpWkjg2WgiIqqZhMqAf38xFMuXL0dBQQEA4LbbbsN//vMfREZGerh2ROQuDLBENcTFixcxb9487NmzBwAQEhKCvIMGyMl+kASDKxER1Q5LUz/DV199hbVr1wIwDvT08MMPY+TIkfDx8fFw7YioohhgibxcQUEBFi9ejOXLl6OkpARqtRoiUQvVxQBIek6JQ0REtdO8Y29g3rx5OHbsGAAgJiYGzz77LK+PJfJyDLBEXkoIga1bt+Ljjz9GWloaAEBK10J9LghyIQdoIiIiEhB4+ff/4PPPP1f2lTfffDPGjx+P+vXre7h2ROQKBlgiL3ThwgXMmTMHBw4cMD5QKBuDa7oPr3MlIiIqQ8gCD35xB77//nuUlJRAq9XikUcewYMPPgitVuvp6hGRExhgibxISUkJvv/+eyxatEjZAevPaKC6FADJwOBKRERkyzfnP8CcOXOwf/9+AEDDhg0xceJEdO7c2cM1IyJHMcASeYmjR49i9uzZSEhIAGDsLqw5GwSpiN2FiYiIHCUgMGXD0/j444+Rnp4OABg8eDCee+45hIaGerZyRGQXAyxRNZeXl4f58+dj9erVEEIAxZKxu/BVX3YXJiIicpFQGTD03T7K/jU0NBQTJkzArbfe6umqEZENDLBE1dju3bsxe/ZsZeAJOcUX6oQgSDqOLkxEROQOc4/OwKxZs5QeTn379sX48eMRERHh4ZoRkSUMsETVUF5eHj755BP8+uuvxgcKVNCcCYKcxfnriIiI3E1IAv/+cggWL14MvV6P4OBgjBs3DoMGDeKUO0TVDAMsUTVz4MABvPPOO0hJSQEAqJL8oTofyEGaiIiIKtmnJ9/GO++8g9OnTwMAevXqhZdffhlhYWEerhkRmTDAElUTBQUF+OKLL/DTTz8ZHyhUQXMqGHI2h/cnIiKqKkISGLPgbixYsAAlJSUIDQ3Fyy+/jN69e3u6akQEBliiauHkyZN44403cPHiRQCAfMUP6sRASHpe60pEROQJn59+BzNnzsS5c+cAAMOGDcNzzz0HPz8/D9eMqHZjgCXyIIPBgBUrVmD+/PnQ6XRAkQzN6WDImbzWlYiIyNOEJDB8bj+sWLECABAbG4upU6eiTZs2nq0YUS3GAEvkIenp6Xj77bexd+9eAIB81QfqM8EcYZiIiKiaeWffFLz99ttIS0uDSqXCE088gQcffBCyzH02UVVjgCXygL179+Ktt95CRkYGtFotDMd9ICf7cV5XIiKiauqnrG/w/vvvY/PmzQCAm2++Gf/9738RGhrq2YoR1TIMsERVSK/X45tvvsHixYsBAFKeGuqTIZDz1R6uGREREdkjIPDCz2Mwd+5cFBcXIyoqCq+//jrat2/v6aoR1RoMsERVJDMzE2+88Qb2798P4PpATQlBnB6HiIjIy3x26n+YPn06Ll68CJVKhSeffBIPPPAAuxQTVQEGWKIqcPz4cbz22mtITU0F9BLUZ4KgSuMohkRERN5KqAy4ZVoHbNq0CQDQu3dvTJ06FQEBAR6uGVHNxgBLVImEEFi9ejU++ugj6HQ6SPkqqOND2WWYiIioBijbpbhRo0Z4++230aBBA09XjajGYoAlqiQlJSX44IMP8NtvvwG4Psrw6WDO7UpERFTDzD06A9OmTUNaWhoCAwMxbdo09OzZ09PVIqqRGGCJKkFmZiamTp2Kw4cPQ5ZlSGf9oUry5yjDRERENdSytM/x2muv4ciRI5AkCY8//jgeeeQRSBL3/UTuxABL5Gbnzp3DlClTkJycDOgkqE+GQJXh4+lqERERUSUTksAd7/bEzz//DAAYMGAApkyZAh8fHgcQuQsDLJEb7dq1CzNmzEB+fj5QoILmeCjkAl7vSkREVJuM+3k0PvjgA+j1etx000148803OV8skZswwBK5yapVq/Dhhx9CCAEpSwPNiVBIOl7vSkREVBu9s28Kpk2bhtzcXNSvXx/vvvsuB3cicgMGWKIKEkLgq6++wuLFiwEAcrIv1GeDIQle80JERFSbfXluNiZPnozk5GSEhITgrbfewk033eTpahF5NQZYogrQ6XSYPXs21q1bBwBQnQ+A6mIAB2siIiIiAMDyq19gypQpiI+Ph0ajwfTp03HLLbd4ulpEXosBlshFBQUFeO2117Bnzx5AAOozQVCl+Hu6WkRERFTNCFng5pdbYtu2bZBlGZMnT8aQIUM8XS0ir8QAS+SCnJwcvPTSSzh+/Digl6CO50jDREREZJ2AwMC3u2Lt2rUAgOeeew4jR470cK2IvA8DLJGTMjMzMWnSJJw+fRookYwjDedoPV0tIiIiquYEBO79uD+WLVsGAHjkkUfwxBNPcK5YIicwwBI54dq1a5gwYQISExOBYhmao2GQ8zlNDhERETlGQODRRcMxf/58AMC9996LF154gSGWyEGc44PIQampqRg3bpwxvBbJ0BxheCUiIiLnSJCwcPTPmDRpEiRJwk8//YS5c+eCbUpEjmELLJEDUlJSMG7cOFy5cgUolKE9GgapkOGViIiIXDd+zaN49913IYTAfffdh3HjxrEllsgOtsAS2WHqNnzlyhWgQAXtkXCGVyIiIqqwD4ctwOTJkwEAK1euxLx589gSS2QHAyyRDZmZmZg4cSIuXbpkbHk9EgapSOXpahEREVENUTbEfvzxxwyxRDYwwBJZkZOTg0mTJiEhIQEouh5eixleiYiIyL3m3rVQCbE//PADFi1a5OEaEVVfDLBEFhQUFGDy5MnGqXKujzYsFbHbMBEREVWOuXctxAsvvAAA+Prrr7F69WrPVoiommKAJSpDp9Ph9ddfx7Fjx4zzvB4NhVzA8EpERESV6/P7l+HRRx8FAMyZMwebN2/2bIWIqiEGWCIzQgjMmTMHu3btAvQSNMdDIedrPF0tIiIiqiW+f2Ithg8fDiEE3nzzTezdu9fTVSKqVhhgicwsXrwYa9asAQSgPhkMOUfr6SoRERFRLSJBwtoXd6J///7Q6XSYNm0azp496+lqEVUbDLBE161fvx5fffUVAEB9LgiqdF/XVuSO+ds4BxwREVGtJUHC9plH0alTJxQUFGDKlClIT0/3dLWIqgUGWCIAhw8fxrvvvgsAUF3yh+qKv/MrkSSGVyIiInILSUiYOXMmYmNjkZKSgv/+978oKirydLWIPI4Blmq9lJQUTJs2DTqdDnKaD1SJgc6vxF3BleGViIiIrrsv9HHMmjULQUFBOHbsGN555x3OEUu1HgMs1WpFRUWYOnUqMjIyIOWqoT4dAglOhEh3hE4GVyIiIrJibKOJmDlzJlQqFf744w8sXrzY01Ui8igGWKq1hBCYPXs2Tp48aZwu50QoJIOT4bWiGFyJiIjIjpe7/g8TJ04EAHzzzTfYv3+/h2tE5DkMsFRr/fjjj9iwYQMgAE18KKQilWMLstWViIiIqti8uxdh6NChMBgMmDFjBlJTUz1dJSKPYIClWik+Ph6fffYZAECVEAQ5y4Hpcqp6kCYGXCIiIjIzfvx4NG/eHFlZWZg+fTpKSko8XSWiKscAS7VOXl4eZsyYYRy06aoPVJf97C/EQZqIiIjIw+70exgzZ85EYGAgjh07ppyMJ6pNGGCpVhFC4P3330dSUhJQKEN9Otj2oE2cGoeIiIiqkTGxL+C///0vAOPlULt37/ZwjYiqFgMs1Spr167Fpk2bjNe9ngyBpLfxEahI6DQFX7a6EhERkZu9/q8Pcd999wEA3nnnHWRmZnq2QkRViAGWao3Lly9j3rx5AADV+UDIORaue61uobM61YWIiIiqlo1jgKeffhpxcXFIT0/H7NmzOT8s1RoMsFQrGAwGzJo1CwUFBZCyNFBd8i9fiEGRiIiIqhsrxyd3+j2MqVOnQq1WY9u2bVi3bl0VV4zIMxhgqVZYs2YNDh06BOglaMpe98pWTiIiIqrOrByr/F+r/+Lxxx8HAMydOxcpKSlVXTOiKscASzXelStX8OmnnwIwdh2WCtU3nmRwJSIiourI0jGKhce+fWQV2rVrh4KCAsydO7cKKkbkWQywVKMJITB79uwbXYdNU+Z4W6urN9WViIiIKk+ZYxgJEl566SWo1Wps374df/31lwcrR1T5GGCpRvvzzz+xf/9+wIAbU+YwDBIREZG3MzueearpZDz44IMAjF2J8/LyPFUrokrHAEs1VkFBAT7++GMAgOpSAOQiDcMrERERVX+OHq+YtcaOHj0a9evXR1paGr788stKrByRZzHAUo21ZMkSpKamAoUyVEmBnq5OxTF8ExERkSWShDv9HsaLL74IAFi9ejUSEhI8XCmiysEASzXSxYsXsWzZMgCAOiEYkoHhj4iIiGowScKU7rPQt29fGAwGZQBLopqGAZZqpM8//xwlJSWQMrSQ0308XR33YSssERFRzVbBff3TTz8NtVqNPXv2YM+ePW6qFFH1wQBLNc7x48exbds2QFxvfUUFdgRSNfuICOHpGhAREVE19mjDCbj33nsBAJ9++il0Op2Ha0TkXtXs6Jyo4ubPnw8AkFP9IBeo7ZS2obqFV4AtsERERGTXmDFjEBwcjISEBKxfv97T1SFyq2p4hE7kuv379+PgwYPGaXMuBbm+IvPwWh2DLBEREdU8bjpRfW/Ykxg9ejQAYNGiRWyFpRqFR+ZUYwghlNZXVXIApCIXWl8lmYGViIiIvN5dd92FsLAwJCcnY8OGDZ6uDpHb8EidaoyDBw8iPj4e0EuuTZtjK7hWp1DLbsREREQ1j5v378MCH8UDDzwAAFi8eDFbYanGqEZH5UQV8/333wMA5FR/SCUq44OOBs/qFFAdwRBLRERElpgd0wwfPhwhISFISkrCxo0bPVgpIvfxsqN2IstOnz6Nffv2GUcevhzg+ILsMkxEREQ11F1BjymtsMuWLYPgbAZUA/DInWqEpUuXAgDkq37lr321FlCdDa7VLeiyFZaIiKhmcNc+3cKxyt133w0/Pz8kJCTgwIED7tkOkQdVsyNyIuelpqZiy5YtAADVZQevfa1uYZSIiIioEtwT+gTuuOMOAMCPP/7o4doQVRyP4snr/fbbb9Dr9ZCytJDzNJYLmQJrRbsMV7fgy1ZYIiIi71aJra8m9913HwBg165duHTpknu2R+Qh1exonMg5Op0Ov/76KwBAleJvu7C7wmd1C7FERETknaroRPTYxi/h5ptvhhACa9eurZJtElUWHomTV9uzZw/S0tKAEhnyNT+LZSRZgqRRQ5JrYGslB2MgIiLyXm4aTFL28YGstdIL7bqhQ4cCANavX88pdcirMcCSV1u3bh0AQJXmB0mUDqim4AqVyv0brg6tsAyvRERE3su89bWixxWyDMgyZK3GapB9c9BnCAkJwdWrV40zNxB5qWpwFE7kmtzcXOzevRuAce5Xc5IslQ+uKlXNaIUVguGViIjI25UNrS62xso+Pma/3Aiy5TYnJAwePBiAsRWWyFsxwJLX2rZtG4qLiyHlqyHl35g6x2J4rQyeaIVlcCUiIvJ+tq59dfb4QrZQ3kqINQXYXbt2oaCgwLntEFUTDLDktTZt2gTg+tyvMO4I7IZXd7fCVmWIZXglIiLyfpJk//jBweOLUq2v5Z4sH2L/r+1rqFu3LgoLC7Fnzx6HtkFU3TDAklfKzc3FwYMHAVwPsM5c7+qNXYkZXomIiGoGR09+2ykn+/hYbn0tVaj0dbESJPTr1w8AsGXLFsfqQVTNMMCSV9q3b59x7td8NVTFmqrpMmxNZbfCMrwSERHVDM5Om2PrGMNeeDUvZ9Yaawqwu3fvRklJiXP1IaoGGGDJK+3cuRMAIGf6uhZevaErMQdrIiIiqjkc6TpscbnygzvZ7DpszfUQ+3z71xEeHo6CggIcOXLE+fUQeRgDLHkdg8GgjD6syvK3U9qG6tyVmMGViIioZqnoye7ryzvUddgaWYZKq0W3bt0AAHv37q1YnYg8gAGWvE5CQgKysrIAvQQpz4UzkObc2XJaHeaGJSIiourH2a7DVtcjux5eTWSZAZa8Go+4yescOnQIACDn+kASFdwhyBIkT14/awlbX4mIiGoOU3gVhgqvShUWAsnfr8LrMQXYM2fOIDs7u8LrI6pKDLDkdf7++28AgKo4xD0rrE4hluGViIio5qpAiFWFhQCyCpDkCofYf3d7Gw0aNAAAHDt2rELrIqpqDLDkVYQQyoADshwJOTjYwzUqoyLdiBleiYiIahZLXYddDbGy2cn26yHWlSArx9SBUMlo3749AODo0aOu1YfIQxhgyaukpaUhIyMDEICsCwRCAt0TYt3ZCutKiGV4JSIiqllsXffqZIhVhVnodXZ9dGJnQqwpvAJAu3btADDAkvdhgCWvcurUKQCApPOHBNm4c3DXSMKeCrEMr0RERDWLI4M2ORhila7DVrfleIg1hVcAaN26NQDg9OnTEDwWIS/CAEtexRRgZV3AjQeDAtzXlbgqr4flPK9ERES1m50Qaze8mjgQYuWYOqV+f3bI51CpVMjNzUVqaqr9bRBVEwyw5FXOnj0LAJBLzAKsJLmvKzHgvhDLaXWIiIhqH2enzLESYh0Or8p2rYdYOTqqVOsrAEiQ0bBhQwDAuXPnHN8OkYfxCJu8yqVLlwAAst639BPuDrHuYi3EsuWViIio5nF1vldLIdaZ8Kpsv3yIlaOjINSW19W0aVMADLDkXRhgyWsYDAYkJSUBACS9hTOM3nI9LMMrERFRzeNqeDURBiXIWhy0yeF6lA6x1sIrAMTGxgIALl++7Pr2iKqY2tMVIHJUWloaiouLASFB0vtYLhQUANkgYKiuk3IzvBIREZENsp+va62v5kzT7AQFwtaRR926dQEAycnJFdseURViCyx5jZSUFACApNdCgpWznO7qSmwQgDBAckeLrnm3oIqenSUiIqIaS/b3B2QZKCqq8LpOzmmI+JnhNsvExMQAAK5cuVLh7RFVFQZY8hrXrl0DAEgGre2CFQ2x18OrsrqKhFhXJysnIiIi71LBXlZKeAWM09pUIMTGv98AEeG5iAjLxcnp1rsjv/zvBQCA1NRUTqVDXoMBlrxGeno6AEAyaOwXdjXElgmvyupcCbHWwitbYYmIiGomF0OgeXi9sSrXQmz8+w0QGZGj/G4KsZaCrOmYqri4GAUFBU5vi8gTGGDJazgVYAHnQ6yV8OoSe+thiCUiIqqZXAmxsuVDcmdDbPx7pcOrSUTY9dbY18qGWBkQxmOSrKwsh7dD5EkMsOQ1cnNzjXcMTow95miIdSC8OtwK62gIZoglIiKqmZwIsbK/v51VORZi499rgMjI8uHVXER46RArQYJ0/bgqu7oOgElUBgMseQ1T1xZJODkyn73pdZxoebUbYp1twWWIJSIiqpkcCLGWug5bXpX9EGsvvJpEhOciflqo2cqNAVZpKCCq5hhgyWsUFhYa7zgbYAHj9DqWWmFd6DZsNcS62v2YIZaIiKhmshFiHQ2vN1ZlPcTGv9fAqWpFRuQoIVYSxjoUFxc7tQ4iT2GAJa9hCrCmL1qnWOpKXIFrXsuF2IpeO8sQS0REVDNZCLHOhtcbqyofYh3pOmyJEmKvXwOr0+mcXgeRJzDAkteo8PDukgTJ1BLrhgGblBDrroGfGGKJiIhqJrNjGFfD641V3Qix8bMbuhReTSIjcmDQGrsOr1+/3uX1EFUlBljyGpIbAp5QyZBUsu1rYj2F868RERHVXEIAklyh8HpjVQIXxzRHZJT7Bl5iF2LyFgyw5DVkN3zhS/mFMOTlQ1KpAJUL19KaEW6ddofhlYiIqEaTVZBkCaLQ+bldy0p6qj1KggUyjkVWeF3h0XoAwK233lrhdRFVBQZY8hqmAJvWM9Cl5aX8QhiycwC98Yu6IiGW4ZWIiIgcdj28AgCEoUIhNump9igOMR47qApRoRD7ZsvVCA4sAQAEBQW5vB6iqsQAS17D//o8aUPa7cXZMdFOLVs2vCqPuxBiGV6JiIjIYebh1cTFEGseXk1cDbFvtlyNBuosFBYY40BAQIDT6yDyBAZY8hqmABtSnIeZI7/H2dFOhFi9vlx4NXEmxDK8EhERkcMshVcTJ0OspfBqoip0rlqm8AoARYXGOGA6ziKq7hhgyWsEBhq7Dhfky2ivvYKZo753qCXWdN2rzTIOhFiGVyIiInKYrfBq4kCIlSTJZng1cbQV1jy8AkBhobGODLDkLdSergCRo0zXZuTlGoNme+0VzBz5Pabh32i6MMXiMta6Dlssq1JBAA6VrRCGVyIioprNkfBqYuPkuCRJuPREO7vhFbjRlTis7VWEZ+Rh+O9/o/ORC/AvKEa+nxYHbmqE1s9eRrQ6T1mmpFhCQb7xuCosLMyx+hJ5GAMseY3ISOOZxcyMG/+2phB7+M6G+OHXPqWCrDPhVVnGSoh1W+srwysREVHN5kx4vU4UFkHy9Sn1mBJeQx0/dvDPKcGLM7bgvgN7odGVPm7pcSgR4nsg435/JE8PgfCVkJVpDK9arVbp6UZU3THAkteIiooCAGSkl+7q2157Be21V9Du/kuYLh5A00UpLoVXk7Ih1q1dh4mIiKjmciG8AlC6EptCrCvh1aekBF8t+hI3J561WkYqAcK/z4fPOR3OL4xAVqYxCkRERECSXKg3kQfwGljyGqYAm5mhttiQ2cEnCTNGLkPiqBiXw6uJ6ZpYXvdKREREDnE1vJqYQqwL4RUApq5djZsTz8LeUgJAwO5ixMzIQoA0H8CNXm5E3oABlrxGnTp1oFKpUFIsK11eypp64G7EbsmH5O/nno2y5ZWIiIjskaSKhVcTYQA0aqfDa2RONu49uM9YFTtlTc+H/ZCPS/HxAID69es7WVEiz2GAJa+h0WhQt25dAEByktZiGUOGD9RXc4HgQEhBrl/LIfR6iBKdy8uXXyFbX4mIiGqk611vRQUHgZQDAyAHGudibbLsmlPLjjiwFxqDc9uXSoCL27YBABo2bOjUskSexABLXqVRo0YAgOQrmnLPDdv5LJouKzb+IssVC7GG64FTko23imB4JSIiqpnKXDfqaoiVAwOM0/mZpvRLuerU8t1tXPdqy4UrVwAADRo0cGl5Ik9ggCWvYjpDeKVMC+xdO59F4y8kaFJzbjzoYogVen35HZCrIZbhlYiIqGayMuiRsyFWCa9lONMKG1Bsey5ZS/QAzhuMl0qZGgiIvAEDLHmV5s2bAwAuJNwYav6unc8i7gsJmuSc8gs4GWJtdh2uaEssERER1QxuGrHXWngFAKRcdTjE5ml97Bcq46KfHwokCX5+fmyBJa/CI3LyKq1atQIAXLqghe56ztRn+FgOryYOhliHrnt1JsSy9ZWIiKhmkSSHwqsjrbA2w6tJylU0WZ5ud111hzt3zSwAnAwKAmBsHFDZqwdRNcIAS16lfv36CAoKgq5ExuWLWty181k0XVFsf0E7IdapQZscCbEMr0RERDWLk62utkKsQ+HVJDnNZoj9/KEv0Hh0EET54UFsig8OBgC0bNnSuQWJPEzt6QoQOUOSJLRq1Qr79u3D5A2DELfTStdhS66HWDnAHyIvHyIn98ZzBicDpyRbn2KH4ZWIiKhmcbHLsNDrjXPLm3EqvJokpwEIL/XQ5w99AQDo52cA/NTAyGDgu2wI2J5Kx/T84bg4oKgIbdq0ca4uRB7GFljyOh07dgQAhG/PcDy8msgyhEZdqjXW4qBNjuA1sURERDWfm653BVwMr9eZt8J+8tB89PMzGMPrdWJmJERPX4fmgc3o6Y8zxcYebB06dHCpPkSewiNw8jqdO3cGAAj9NQi42Npp6lLs71ex+V7Lhli2vhIREdUcbgivQq+/McdrRa41vd6V+JOH5mOAn4UT734yxHf1IB4OttqdWGgA8XAwjs78BUIINGzYEJGRka7XicgD2IWYvE7Lli3h7++P/Px8CHUeJJ2Lc73KcsV2JCam7sQMr0RERFSWJMOQVwA52MXjFfNV5RVYDq8mfjLE7DrA5HCI77Mh7SwA8gxAgAzRyw/4dzAQpcbB5UcB3GgUIPImbIElr6NWq5VuxDrfLJfXI+Xmw5CZBUl2X9cgIiIiqkEqenL6ek8tly5VKruqoEBAltFrwtP2C0epgRfCIZbXh/i1AcTy+sAL4UCUGt1efRo7d+4EAHTr1q3C9SKqagyw5JX69OkDAND7XDNe0+okKTcfhmvpwPUdiiRLrgdZtr4SERHVXK7u48tcZmTIzrVS0M5qggKV8AoAYfuS0WuiAyHWgq7TnkHYsWRcuXIFWq0WXbt2dWk9RJ7EAEteqVevXpAkCULOgcGnxOkQK3Q6CF35a1+dDrEMr0RERFSWhYEehV7vdIhVgqtcen2h+1OcrlLXac8g8p8cjHnuJgBAly5d4Ofn5/R6iDyNAZa8Unh4ONq2bQsA0KuvQvioYPD3cSjISrn5EFnZ1p9nl2IiIiIy5+jJakm2OUuBM12JzVtdyz1nEA63wnad9owSXgHgr7/+AmBsDCDyRgyw5LVuueUWAIBelWIcJVAlQfiobIZYU9dhS62vpco5EmLZ+kpERFR72NvnOzi9niOtsLbCq0nY3mT0nGQ7xHZ9zRhcTeHVIOXh5MmTUKlU6Nu3r0P1JapuGGDJaw0cOBCyLEPIWTBI+cYHJdsh1lrXYUtshliGVyIiIjJxYm54e12JHQmvJuF7kq0+1/W1ZxD5d06pxx58qiUAoHv37ggNDXVoG0TVDQMsea3IyEhl+HeDbPYFbiXE2us6bEmFBnciIiKimsXSyWsnwquyGgtdicsO1uSoni+Wb4XtOr18eBUQ2LRpEwBg0KBBTm2DqDrhPLDk1W677Tbs378felUyVPrGkHA9bCohVgWpRA+pROdU62tZkixBGK7vtNj6SkRERIBL4dXEkJsHOTDAuBoXgqtJ+O4bJ/G7Tn8GABB5KKdcOYOcgaSkJPj5+aF3794ubYuoOmALLHm1W265BYGBgRByAQxyeuknza6LlYqKnW59LYstsURERAQh7A7W5NBqSown1SsSXk16vPQ0urz+DCIP5VgMrwDQ57ZQAMDgwYM5+jB5NQZY8mp+fn64/fbbAQB61SXLhSQJ0Btcbn0th62vREREtZckGXtjVXQ1sgRDbl6FwysAhK8/haiDloMrAAgUKaMP33333RXeHpEnMcCS1xs+fDgAwKC6CoNUUO55VXouDNfSyz3uLGEQbtlhERERkZeS3NMbS+nVpdfDkJLm8npEVrbxVlwC+bz1uWEf/r+W0Ov1aNu2LZo1a+by9oiqAwZY8noNGzZE165dAQB61cXyBUp0EMXF7tkYW1+JiIhqp7Lh1cWT2mUvSRJFRS6txxRcRXGJ8ffCQsvloMfKlSsBAPfee69L2yKqThhgqUZ44IEHAAB6VRIEboRVtr4SERFRhUiS+1tey3C2FdYUXsuSL6aWe+zZVzohMzMTMTExuPXWW53aDlF1xABLNUK3bt3QokULQDJApzZrhWXrKxEREbnKXnB18OS2vWn5HG2FNe8ybPH5/NKXUgkYsGzZMgDAqFGjoFZzAhLyfgywVCNIkoSHH34YgHEwJwGd21pfiYiIqBaq5FZXZ5XtMmyNeSvsy2//C1euXEFISAiGDh3qlnoQeRoDLNUY//rXv9CgQQNA0hlHJHZT6yu7DxMREdUiznYZtnGM4Ex4tdWN2Fara7my11thBQQWLVoEABgxYgR8fX0drgtRdcYASzWGSqVSWmF16vMQspumzQHYfZiIiKg2cGOrq7Mtr5a6EdvrMmzLhNe7IzExEcHBwbjvvvucXp6oumKApRpl8ODBaNy4MSDpUKxJrPD62PpKRERUS1QkvJodK1Sky7B5K6yjXYYtkS4l45tvvgEAPPTQQwgMDHS5TkTVDQMs1SgqlQpPP/00AEBXJwtC64ZWWLa+EhER1VxuGmXYlVbXskytsK62upo89kFfpKamIioqilPnUI3DAEs1To8ePdChQwdABnSxOZ6uDhEREZFDhEFUOLwKlR5LliwBAIwdOxY+Pj7uqh5RtcAASzWOJEl45plnAAD6qHwYAlwbyIndh4mIiGoBN/W0Enp9xZY3GOthyMqu0Hpun9oB2dnZiIuLw2233VahdRFVRwywVCO1adMGgwYNAiSgpHEmBFzcObH7MBEREVUiYRBKeDX97tJ6Cgqgl7Pw888/AwDGjx/PeV+pRmKApRrr2WefRWBgIERgCfRReZ6uDhEREVVXHmqFdTWslltPQQEMeh2ajYqCEAIDBw5E586d3bJuouqGAZZqrIiICDzxxBMAAF2jbBhUOod3FOw+TERERJWlbKtruecLChxbT0GB8abXY/zPY3D8+HH4+/vj2WefdVdViaodBliq0e6++260aNECUAvoGmUBwuD42U52HyYiIiI3c+Q4xKEy14Or0OshNHp89tlnAIwDN0VGRla4nkTVFQMs1WgqlQqTJk2CLMsw1CmEPrxQCbHu6rZDRERENUAVnLh2x7GHeasrAAgIdB3fHDk5OWjRogWnzaEajwGWarzWrVvjwQcfBADommZDqA3G7sFWWmPZfZiIiIhcZek6WFdOnFvqRmze6mpiiCrEzp07oVar8eqrr3LgJqrxGGCpVnjsscfQuHFjQGuArmnWjVGJrbXGsvswERERuYHLowqbj0xcptVVeVyrh29n42Njx45FkyZNXK8okZdggKVaQavV4tVXX4VKpYIhsgiGyMIbT9pojSUiIiJyhbsuV7LU6goYuw53eq4JcnNz0apVKzzwwAMV3haRN2CApVqjZcuWGD16NIDrXYl9dKULmEIsuw8TERHVTu6aTscdJ8WFwWKrq8njS+7Fnj17lJP07DpMtQUDLNUqjzzyCNq2bQuoBUpaZkJIZbsOM7wSERGRi4S4fqvg8YQwAEJYDa+GwGLMnz8fADBu3DjExcVVbHtEXoQBlmoVtVqN119/HcHBwRBBOujjcjxdJSIiIqoJzFtvXW3JFQYlvFotojIgfLAGer0e/fv3x7Bhw1zbFpGXYoClWic6OhqvvvoqAEBfL984tQ4RERGRK0ytrhVej8HuugQEbn6pJVJSUlC/fn289NJLkCSp4tsm8iIMsFQr9erVSxnsQNc8CwZfnZ0liIiIqFZwJoy6LbjabnU1eXTh3di2bZvSoywgIKDi2yfyMpIQnC+EaiedTocXXngBR44cgZSvguZwBCS9zCl0iIiIajt7rZqOHCvIKjvrMNhfl1k99GGF0LfNghACkyZNwt13322/DkQ1EFtgqdZSq9V44403EBUVBeGvNw7qBIZXIiIisqGKugubb8vgp4O2azGEEBg+fDjDK9VqDLBUq0VERODtt9+Gj48PRFgxB3UiIiIiy9xxrasT3YWVRVQGRN/li/z8fHTo0AHPP/98xepA5OUYYKnWa9myJV555RUAgL5+PvR1CjxcIyIiIqo2qnCQpnKLSALt/68BLl26hOjoaMycORMajabidSHyYgywRAD69++PMWPGAAB0zbNhCC3ycI2IiIjI46p4kKZSi0Gg7+sdcODAAfj5+eHtt99GaGhoxetD5OU4iBPRdQaDAW+99RY2btwI6CVojoRBzuVZTiIiInKBaQAmFw+1dXE50MfmQ6VSYdasWejevbsbK0fkvdgCS3SdLMuYMmUKunbtCqgEStpkQnB6HSIiInJFBboe6+vmQx+bDwCYPHkywyuRGQZYIjMajQZvvvkmWrRoAWgNKG6bCaHRe7paREREVEvoIwuhb5YLAHjyySdxxx13eLhGRNULAyxRGf7+/pg1axbq1q0L+OlR0i4TQm3wdLWIiIiohtOHF0K0zYUQAnfffTcefvhhT1eJqNphgCWyICIiAu+//z4iIiIgAnQoaZcBoWKIJSIiosphCC2C1CEfer0eAwcOxPjx4yGZrqMlIgUDLJEVsbGxmDNnDsLCwiACGWKJiIiochhCiiF1zkdJSQn69u2LV199FSqVytPVIqqWGGCJbIiLi8MHH3yA4OBgiCAdStpmQsgMsUREROQehqBiqLsXori4GL169cJrr70GtVrt6WoRVVucRofIASdPnsSECROQm5sLKUsDzfFQSHqe/yEiIiLXGUKM4bWgoABdu3bF//73P/j4+Hi6WkTVGo/AiRzQsmVLvPfeewgMDIQIKTF2J+bATkREROQifVgRpC55KCgoQLdu3fD2228zvBI5gC2wRE44deoUJk2ahKysLEh5KmiOhkEq4TUqRERE5Dh9RCHQPg86nQ69e/fGjBkzoNVqPV0tIq/AAEvkpMTEREycOBFXr16FVHA9xBYxxBIREZF9+qgCiDZ50Ov16N+/P6ZOncprXomcwABL5ILLly9jwoQJuHLlClAkQ3MsDHI+dz5ERERkmYCAvn4+9I1zAQB33HEHJk+ezNGGiZzEAEvkorS0NEyYMAEXLlwAdBI0J0IhZ7H7DxEREZUmIKBvnAt9/XwAwH333Yfnn38esszhaIicxQBLVAHZ2dl45ZVXcOTIEcAAqE+FQHXV19PVIiIiompCSAK6FlkwRBUBAJ555hk88MADkCTJwzUj8k487UNUAcHBwfjggw/Qt29fQAZ0rbKgq58HAZ4XIiIiqu2EyoDWz9aFIaoIarUa06ZNw4MPPsjwSlQBbIElcgODwYBPPvkEP/zwAwBAvuIH9bkgSII7KCIiotrI4KtDzD3+uHjxIgICAvDmm2+iS5cunq4WkddjgCVyoxUrVuCTTz6BEAJSpgaa+FBIOnZ0ICIiqk0MoUXw6aFDbm4u6tSpg1mzZqFp06aerhZRjcAAS+Rm27dvx8yZM1FQUAAUqqA5HsoRiomIiGoBAQF93QKI5nkwGAxo27Yt3nrrLYSHh3u6akQ1BgMsUSVISEjAK6+8gsuXLwN6CeqTwVClc3AnIiKimkpIArqmOTDEFAAAbr/9drz44ovQajlDAZE7McASVZKsrCxMnz4dBw8eBACozgdAdTEAEnhdLBERUU0itHo0fywax44dgyRJeOaZZzBq1CgO1kRUCRhgiSqRTqfDxx9/jJ9++gkAIGVooTkZwutiiYiIaghDSBH8+whkZWUhMDAQ06ZNQ8+ePT1dLaIaiwGWqAqsX78e77//PoqKioAiGZr4EMg57FJERETkrQQE9A3yYIjLhxACzZs3x8yZM1GvXj1PV42oRmOAJaoiZ8+exWuvvYaLFy8CAlAlBEF12Y9diomIiLyMUBuga5EFQ3gxAGDo0KEYP348fHx8PFwzopqPAZaoCuXl5eHdd9/Fli1bAADyVR+ozwSzSzEREZGXMIQUI7S/GmlpadBqtZg4cSKGDBni6WoR1RoMsERVTAiBn376CZ988gl0Op2xS/GpEMhZ7FJMRERUXQlJQN8wD4aGxi7DsbGxmDFjBpo3b+7pqhHVKgywRB5y8uRJvPHGGze6FF/yh+pCICTBLsVERETVifDRodmYaBw/fhyAscvw888/D39/fw/XjKj2YYAl8qCCggJ89NFH+PXXXwEAUo4a6pMhkAvVHq4ZERERCQgYogqh7aRDfn4+AgMD8eKLL6J///6erhpRrcUAS1QNbN26FbNnz0ZOTg6gl6BOCISczAGeiIiIPEVoDNA1zYYhsggAcNNNN2Hq1KmIiYnxcM2IajcGWKJqIjU1FW+99RYOHToEAJAyNdCcDoFUpPJwzYiIiGoXfUQhAnoAWVlZUKlUePTRR/HQQw9BrWYPKSJPY4AlqkYMBgNWrVqFL774AoWFhWyNJSIiqkJCfb3VNcrY6tq0aVP897//RbNmzTxcMyIyYYAlqoaSkpLwv//9D4cPHwYASJlaaE4HszWWiIioEggIGCKKENRLRkZGBlQqFR5++GGMHj0aGo3G09UjIjMMsETVlMFgwE8//YQvvvgCRUVFgF6C6nwAVJf92RpLRETkJkKrN7a6RhQDAOLi4vDqq6+iVatWHq4ZEVnCAEtUzV28eBHvvvsu/vnnHwCAlKuG+kww5FyeESYiInKVgIC+bgG07XQoKCiAWq3Gv//9bzzyyCPw8fHxdPWIyAoGWCIvYDAYsHbtWnz22WfGkYoFoLrsD9WFAEh62dPVIyIi8iqGgBLommVDBOkAAO3atcNLL72Exo0be7hmRGQPAyyRF0lPT8fHH3+MTZs2GR8okqE+FwT5mg+7FRMREdkhVAboG+YBDYug1+sREBCAp59+GsOGDYMs84QwkTdggCXyQnv37sUHH3yAy5cvAwCkDK0xyBZweH8iIqKyBAQMdQoR3EON9PR0AEDfvn3xwgsvIDIy0sO1IyJnMMASeanCwkIsWbIEy5YtQ3FxMbsVExERWWAIKIGuaQ5EcAkAoEGDBnjhhRfQvXt3D9eMiFzBAEvk5S5fvoyPP/4Y27dvNz5QLEOdGAg51ZfdiomIqNYSagN0jXIh6hVCCAE/Pz+MGTMG999/P6fGIfJiDLBENcSePXvw0Ucf4cKFCwAAKUcNdWIQ5Cyth2tGRERUdYQkoK+XD992Anl5eQCAgQMH4plnnkFUVJSHa0dEFcUAS1SDlJSU4Mcff8TChQuRn58PAJCvaaFK5PWxRERUswkIGCILEdnPH8nJyQCA5s2b4/nnn0fHjh09WzkichsGWKIaKD09HQsWLMCaNWug1+sBAcjJflBfCIBUovJ09YiIiNzKEFwMXeMcZVqcqKgoPPXUUxg0aBBHFyaqYRhgiWqw8+fP44svvrhxfaxeguqSP1SX/TnQExEReT2Dfwn0jfJgiCgCAPj5+eHhhx/G/fffD19fXw/XjogqAwMsUS3w999/49NPP0V8fLzxgRIJqosBUCX7QzJwoCciIvIuwlcHXcM8iOgiCCGgUqlw55134rHHHkN4eLinq0dElYgBlqiWMBgM2LJlC77++mtcunTJ+GCRDPXFAMgpfpAEgywREVVvQquHrmEepPrFxktkANx6660YO3YsGjVq5OHaEVFVYIAlqmV0Oh3Wr1+PhQsXIiUlxfhgoQrqCwGceoeIiKolodFDH5sPVWOdce5zAD169MATTzyBFi1aeLh2RFSVGGCJaqni4mKsWbMGixcvRnp6OgBAKlBBdTEAcpovW2SJiMjjhFYPXWwe1HF6Jbh26NABTz31FNq3b+/h2hGRJzDAEtVyhYWFWLVqFb7//ntkZWVdf1CG+hK7FhMRkWcIH2NwlRuUQKczjizctm1bPPbYY+jWrRskifsmotqKAZaIAAD5+fn4+eefsXz5cqVFFkUyVJcCoErx42BPRERU6Qy+Ougb5EGqV6Jc49qxY0eMGTMGnTt3ZnAlIgZYIiqtqKgIa9aswdKlS5GWlmZ8sFiG6rI/VMl+kHScfoeIiNzLEFACfWweEF0Cg8EAAOjWrRtGjx6NDh06eLh2RFSdMMASkUXFxcVYt24dvvvuOyQnJxsf1EtQpfhClRQAqUjl2QoSEZFXExAQocXQ1c+HCCtWHu/VqxdGjx6NNm3aeLB2RFRdMcASkU06nQ6bN2/G0qVLcfbsWeODApCv+kCVFAA5V+PZChIRkVcRkoAhqhD6+vkQAcbrW1UqFfr27YuHHnoIzZs393ANiag6Y4AlIocIIbB//34sW7YM+/btUx6XsjRQXQqAnKHlFDxERGSVUBugjymAvl4+oDV2E/bz88Odd96JESNGoG7duh6uIRF5AwZYInLamTNnsHz5cmzatEkZZEPKV0G+4g9Vqi8kPa+TJSIiI4OfDvq6+dA2ESgsLAQAREVF4b777sOwYcMQFBTk4RoSkTdhgCUil6WmpmLlypX45ZdfkJeXZ3xQL0FO9YXqij/kfLVnK0hERB4hIGCIKIK+bj5EaInyeLNmzTBq1Cj0798fGg0vQSEi5zHAElGF5efnY8OGDfjpp5+QmJioPC5laoxB9poPuxcTEdUCQqM3dhOOKQB8jN2EZVlG7969ce+993IqHCKqMAZYInIbIQT+/vtv/PTTT9i+fbvSvRhFMlTJfsZpeEo4ejERUU0iICCCS6Cvmw+5rh46nXFgptDQUAwbNgx33XUXoqOjPVxLIqopGGCJqFKkpKTgl19+wZo1a5CZmWl8UAByug/kFD/I6Rz0iYjImwm1Afo6BTBEF0AE6JXH27Zti3vuuQf9+vWDVqv1YA2JqCZigCWiSlVcXIytW7fi559/xpEjR248USRDleoLVYofpEJeK0tE5A0EBAxhxTBEF0COudHa6uPjg4EDB+Kee+5BixYtPFxLIqrJGGCJqMqcP38ev/32G9avX3+jVRbXr5VN8YN8zReSga2yRETVjfDRQx9dAH30jWtbAaBVq1YYOnQoBgwYgMDAQA/WkIhqCwZYIqpyJSUl2LFjB3777Tfs3bsXyteQToKc5gtVmi+kbA27GBMReZCQDcaRhKMLIUKLlceDg4MxaNAg3HnnnWjatKkHa0hEtREDLBF5VEpKCtatW4e1a9ciOTn5xhOFMlSpfpDTfCEXsIsxEVFVEJKAIbQYhqhCGCKKANWNw8SuXbti6NCh6NOnD3x8fDxYSyKqzRhgiahaMBgMOHToEDZu3IitW7ciPz9feU7KUd9omeUoxkREbiUgIIJKoI8qhCGqENDcODSMjY3FoEGDcPvtt6Nu3boerCURkREDLBFVO4WFhdixYwc2btyIPXv23JiORwBSphaqNF/j3LJ62bMVJSLyYgY/HQxRhdBHFQJ+N0YRDgsLQ//+/TF48GC0atWK87YSUbXCAEtE1VpmZib++OMPbNy4EcePH7/xhAGQM7WQrzLMEhE5yuCngyGyEIbIwlJT3/j6+uKWW27BoEGD0KVLF6jVvHSDiKonBlgi8hoXL17Epk2bsHXrViQkJNx4wjzMpvtA0jHMEhEB17sH++tgiCwyhlb/G6FVrVajS5cuGDRoEPr06QN/f38P1pSIyDEMsETklRITE7F161Zs2bKlXJiVMrVQXfMxhlleM0tEtYyAgAjQwRBRPrRqNBp069YN/fr1Q+/evREUFOTBmhIROY8Bloi83vnz55Uwe+7cuRtPCEDK0UBO9zF2My5QcWoeIqqRhCQgQoqhDy+CIbwI8L0xV6tWq0X37t3Rr18/9OrVi/O1EpFXY4AlohrFFGa3b9+OkydPln6yQAWVKcxynlki8nJCbYAhrMjY0hpaDKhvHNL5+Pige/fuuPXWW9GzZ08EBAR4sKZERO7DAEtENVZqaip27dqF7du34+DBgygpKbnxZIkEOcPYzVjO1PK6WSKq9gQEhJ8ehuutrCK4BObn4SIiItCrVy/07t0bXbp04VytRFQjMcASUa2Qn5+PvXv3YseOHdi1axeys7NvPGnqapyphZyhhZTD1lkiqh6EygBDaDEMYcUwhJbuGgwAzZo1Q+/evdG7d2+0aNECssyTcURUszHAElGto9PpcOzYMezYsQN79uwpPQgUYGydzdQaW2gztZCKORAUEVUNAQERqDN2DQ4rhggq3cqq1WrRoUMH9O7dG7169UJMTIznKktE5AEMsERU66WmpmLfvn3Yu3cv9u3bh9zc3FLPS3lqY5DN0kLO0nDOWSJyGwEB+OphCCk2trSGFgOa0odmDRs2RPfu3dG9e3d07NgRvr6+HqotEZHnMcASEZnR6XQ4ceIE9u7di7179yI+Ph6lviYFIOUaA62cpYWUrYVkYHdjInKc8LkeWK/fynYLDggIQJcuXZTQylZWIqIbGGCJiGzIzMzEgQMHcPDgQRw8eBBJSUmlCxiuXz+bdT3Q5mgYaImoFKE1D6wlgJ++1PMqlQpt2rRBp06d0L17d7Rp0wZqtdpDtSUiqt4YYImInJCSkoJDhw7h0KFDOHjwIFJSUkoXMABSrgZytgZStgZyNkc4JqpNTCMFi+BiGIJLIIJLICwE1pYtW6JTp07o1KkT2rdvDz8/Pw/VmIjIuzDAEhG5SAiBK1euKK2zhw4dwrVr18qVk/JVxjCbo4WUpYFUqOIox0Q1hJAFRGDJ9bBaDENQSblrWGVZRvPmzZXAetNNN3FeViIiFzHAEhG5iSnQHjlyBIcPH8bRo0fLj3AMAMWSMczmqCHnaozdjjkwFFG1pwy4FKiDCCqBIagEIrAEKPPx9fHxQZs2bdCuXTu0b98ebdu2RVBQkGcqTURUwzDAEhFVouzsbBw7dgyHDx/GkSNHEB8fj+Li4nLlpAKVMcjmaCDnqiHlaiAJttISeZLQ6GEI0hlbWE1hVVP+sCkiIgLt27dXAmvz5s15DSsRUSVhgCUiqkLFxcU4efIkTpw4gfj4eJw4caL8wFCA8VraPGOQlXPVkPI0kPLVHCCKqJIIjR4iQGdsXb0eWOFjKFdOo9GgadOmaN26Ndq0aYP27dujbt26kCR+NomIqgIDLBGRh2VlZSE+Pl4JtMePH0dmZmb5guJ6S22uxjg37fWAy0GiiBynDLIUoIMIKDEG1gAdoC0fViVJQlxcHFq1aoXWrVujVatWaNKkCbRarQdqTkREAAMsEVG1I4RASkqK0kp75swZnD592nKoBYAi2Rhm89TGVtp8NaQCttYSCY0Bwl8H4a+Dwd/Ysir8dYCqfFlJktCgQQM0a9YMLVu2ROvWrdGiRQv4+/tXfcWJiMgqBlgiIi8ghMC1a9dw5swZJdCePn0aSUlJsPg1LgAUqiDnq42jIDPYUg0lIACNAcJffyOoXr9Zul4VAHx9fdG0aVM0a9YMzZo1Q/PmzdG4cWNOZUNE5AUYYImIvFh+fj7Onj2L06dPIzExEQkJCUhMTERWVpblBUzBtkBlDLMFKuOtUA0UyZzeh6otIQsIXz2En+76z+v3bQRVSZJQt25dNGrUSAmszZs3R7169aBSWWiGJSKiao8BloiohhFCICMjo1SgNf3Mzs62vqAexjlqC9Q3fhaoIBWqgGKGW6p8QjILqX76G0HVV2ccUMnKv6AkSahXrx7i4uLQuHFjxMXFoVGjRmjYsCFbVYmIahgGWCKiWsI82F68eBEXL17EpUuXcOnSJVy+fBk6nc76wgYARSpIRcZAKxXKN+4XMeCSY4QsIHz0gM/1cKr8NFx/vPxASuYCAwMRGxur3Bo0aIDGjRujQYMG8PHxqaJXQUREnsQAS0RE0Ol0SElJwaVLl5Rge/HiRSQlJSElJQV6vd72CgwwBtkiGVKxCtL1nyi+HnSLZYbcGk7IAkJrDKFCq4fQGoxBVWsw3nz1Fkf6Lcvf3x+xsbGoX79+ubAaEhLC6WqIiGo5BlgiIrJJp9Ph2rVruHLlCpKTk5WfpvtpaWn2Ay5gvP62WIZUbBZuS4w3032YftdJDLvVgJCuD5CkMSg/lfvXgym0xhZUqB07nPDz80PdunURExOj/IyOjlbuBwcHM6QSEZFVDLBERFQhOp0OaWlpSE5ORlpaGq5evYq0tLRS99PT0x0LuSYG3AizJTIknQToZOOctzrJ6k/oGXwtERCAWkCorwdNtQHC2k+NAdBe/+lgKDXx8/NDZGQkIiMjERUVhYiICERFRSEqKkoJrEFBQQyoRETkMgZYIiKqdHq9HhkZGUqgvXr1KjIyMpCZmYmMjIxSt9zcXNc3ZACgvx5k9RKgl433DVKZx83uCwkwSMZu0AbT77j+mARJ3LgP0x5TAMD1368/Zi84C5jtbiXcGJBIEtd/F4Bs7Ipruo/r94Vy//pPlTCWU12/rxKAymDlceF0EDWnUqkQEhKCsLAwhIaGlvppCqqmn/7+/gynRERUqRhgiYioWikpKVGCbWZmJtLT05GdnY3c3Fzk5OQgJycH2dnZyv3c3FxkZ2fbHoSqqgiUCrU3QiqsjqBblfz8/BAUFFTqFhgYqNwPDg4uF1SDgoIgy7Knq05ERASAAZaIiGoAIQQKCwuRk5OD/Px85Ofno6CgQPlpft/8sYKCApSUlKCkpATFxcUoLi5W7pd9rLIDsiRJ0Gg00Gq10Gq10Gg0ys38d61WCz8/P4duvr6+SkANDAyEWq2u1NdARERU2RhgiYiIHGAwGJy6SZIESZIgyzIkSYJKpSr1uyzLpZ4zPU9ERETWMcASERERERGRV+BFLUREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCX6//buPiqqOo/j+OfOiAKhYuYqBJmamlu5GKSZwZoWktWp1DqZZ6211moz220tW05qaWbqMXVzT1uera0tcrc6aW4lrqmZiQ+YokUaoVg+wPKgKMqIMLN/DHMZHgacAYWL79c5nLlzf/f3vT/m0sNn7sMPAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAlkCABQAAAABYAgEWAAAAAGAJBFgAAAAAgCUQYAEAAAAAltCmuQcAAM3F5XLJ4XA09zAAwC/BwcEyDKO5hwEAzYIAC+CC5XA4NGLEiOYeBgD4JTU1VSEhIc09DABoFlxCDAAAAACwBM7AAoCktlt/IVUYMmyGZNjMV9kqL9MzDBk2m2RUrjcMs83wbGcYVeuNqn7V1tWo6d6uqt3l6Wfzavex3mUYVe8luSpLyTDkskmS4V5n7ktmH1fl+6p+RlV/W1Wbu0/1du+aLs82NvmsZ9b1GmPVa81x1GyvOkZ1tUsyx+BrX9XW+xhH9d+rap91tVX1cVXbX639eNpVs91VrY9n26pxucw2w3t7w/xtK9tcNV49NV0yDFe1Py9PTfehqWq3Vdartq5yuarNa53Xq7te1XvvH8ld2/1eVW1e+7MZTnOde1unJMluVL337uN5X9Xukl3OyjaX7IbTq59Tdq9+9sr1djlr9bPJ09cpe7U29/Z2wyVDTtk945PT7GOX3P3kaXN/HnZ59ukyx+F+X/kqVS4blZ+VZDcM2WTIrspXw9NmkyFDZ8rsGv27bgKACx0BFgAkd3h1uv9HUUbVq5k0DEOGPMG1cn1lOjHciVBVacerX60EZauRlKqlDK9+qrHO13r5fvUKh+ZyzVeznOFV1qg1xOrtNWuqMkj7qlf746hVt862+vqdxUcVaL3KV1/h9pwFWKN2gPVuqxlgq9a7aozfVavN8NSsq73OPq469lXjRzIDbM0fn21mqPQKtl5B12xTVXtVEJVXgHVWD4CGJwBWvhqG7PLUcy+7X41q/dy1JLsh87Wqn3vZu01SZWj1bOsJwN4h1T3mhgJstX1570fV92czt/c6hgBwAeMSYgAAAACAJRBgAQAAAACWQIAFAAAAAFgCARYAAAAAYAkEWAAAAACAJRBgAQAAAACWQIAFAAAAAFgC88ACgCTZXXLJ6Z780VD1V8k9X6lNNeZR9bR5vTeMynkyvfo11OY1EanLx+Smda2vWud+dXm1uyTJZVRb597GkFyqVs/l3aeyX20+1rm8mqrNbWp4D7+e+VeNwOd6ra+toXoNtXle6u1Xc/5VH+21xuhjHljVXjZq7ce7zVXj1VPTM++q95+Xj3lgzXqBzQPrknvZVePH0+aqnAvXbKus6TRckuH02k/le1X+PqrZLrkMp7t2ZR1Xtbbq621e+/Is13x1j8P9j7X3q7PyY7JVLjsr/0TrngfWkE1G1byycn/mdnnmnq2a69X7vc1cdvcz56+trGWTIbvhaTNkyNCZsrr+GQSACw8BFgAklQ38X3MP4dxw1XgNQM18Cnh4IqSzoQ1bLE/C54I0ALAK/o0NAAAAALAEw+VyNeJ7eQCwLpfLJYfD0dzDQB0cDofuvPNOSdKKFSsUHBzczCOCB8em+QUHB8swuCYCwIWJS4gBXLAMw1BISEhzDwMNCA4O5ji1UBwbAMD5xiXEAAAAAABLIMACAAAAACyBAAsAAAAAsAQCLAAAAADAEngKMQAAAADAEjgDCwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALKFNcw8AAGBtp06d0rJly/Tll18qNzdXNptN0dHRGjZsmEaPHq2goKCAaxcVFSklJUVpaWnKy8tTu3bt1KNHDyUlJem2226TYRh19jt48KA2btyonTt3Kjs7W0VFRbLb7brkkkvUv39/3X333erbt2/A47KKlnhsfHn66ae1ZcsWSVJMTIz+8pe/BDw2AEDrZbhcLldzDwIAYE25ubmaPHmycnNzJUnBwcFyOp0qKyuTJPXu3VuLFi1S+/bt/a69d+9eTZkyRcXFxZKkkJAQlZWVqaKiQpI0cOBAzZkzp1YI2717tx5//PFq60JDQ3XmzBmdOXNGkmSz2fSb3/xGDz30kN/jsoqWeGx8+fzzzzVnzhzzPQEWAOALlxADAAJSXl6uZ599Vrm5uercubNeeeUVrV69WqtXr9aMGTMUGhqqrKwszZo1y+/aJSUlmjp1qoqLi3XZZZfpjTfeUGpqqlavXq0//OEPatOmjbZu3apXX321znHZ7XbFx8dr5syZWrlypVatWqXVq1fr9ddfV//+/eV0OvX222/rP//5T1N8FC1OSz02dSksLNSSJUsUFham7t27+z0eAMCFhQALAAjIqlWrtG/fPknSrFmzFBcXJ8l9dnP48OGaMmWKJGnz5s3avn27X7WXLVumoqIitWvXTvPmzdOVV14pSQoKCtKoUaM0YcIESdLKlSv1888/V+t76aWX6p133tHs2bM1dOhQdezYUZJkt9vVr18/LVy4UL169ZIkvffeewH+9i1bSz02dXnllVd04sQJ/f73v1enTp38GgsA4MJDgAUABGTVqlWSpAEDBujqq6+u1T58+HBFRERU2/ZspaammjUiIyNrtY8aNUohISGqqKjQf//732ptv/jFLxQdHe2zdlBQkBITEyVJhw4d0okTJ/wamxW01GNT09q1a/XVV18pJiZGt912m1/jAABcmAiwAAC/ORwOffvtt5Kk66+/vs5tDMPQoEGDJEnbtm0769o//fST8vLyJMnsX1NoaKj69+/vd22Ptm3bmsue+zZbC6scm+LiYi1evFht27bV008/7fdDnwAAFyYCLADAbwcOHJDT6ZQk9ejRw+d2nraioiIdP378rGp7Ln1tqHbPnj0lSTk5OWdV19uOHTskSZ07dzYvMW4trHJsFi9erKNHj2r8+PH1njEHAMAbARYA4LeCggJzuUuXLj63u+SSS+rsU5/CwkK/ap88eVKnTp06q9qS9O2332rjxo2SpNtvv73VnfmzwrH5+uuvtWbNGvXo0UP333//We0bAACJAAsACIB3KGnXrp3P7YKDg+vs01y1jx07ppkzZ8rpdCoqKkpjx449q35W0tKPTUlJiRYsWCCbzaZnnnlGbdowJT0A4OwRYAEAF4RTp07pz3/+s3JzcxUaGqqZM2cqNDS0uYd1wfnrX/+qgoIC3XXXXbrqqquaezgAAIshwAIA/OYd/E6fPu1zO4fDUWef8127tLRUU6dO1XfffaeQkBDNmzdPV1xxxVmNx2pa8rFJT0/Xp59+qi5dumjixIlntU8AALwRYAEAfvO+fzI/P9/ndt73Vnr3qU/nzp39qn3RRRfVG8A84TUjI0MhISGaO3eu+ZTc1qglH5t58+ZJkh577DFJ7rPi3j+eh085nU5zXWt7SjQAoHG48QQA4Lfu3bvLZrPJ6XRq//79Pqdr2b9/vyTp4osvVocOHc6qtucJtp7+l19+eZ3beZ6I66tdqgqvO3fuVHBwsObOnauYmJizGodVteRjk5ubK0maOXNmvfvZtWuXkpKSJEmzZ89WfHz8WY0PAND6cQYWAOC34OBgXX311ZKkLVu21LmNy+XS1q1bJUnXXXfdWdeOjo5W165d661dWlqqXbt21Vu7tLRUzzzzjHbu3GleNtzaw6tkjWMDAECgCLAAgIB4zpDt2LFDmZmZtdrXrVunw4cPV9v2bBiGoREjRkiS1q5dqyNHjtTa5uOPP1ZpaansdrtuueWWWu2e8Op92fCFEF49Wuqx2bBhQ70/nmMUExNjruPsKwDAGwEWABCQpKQk9ezZUy6XS9OmTdP27dslue9fXLdunebPny9JGjRokGJjY6v1ffPNN5WQkKCEhIQ6Q9B9992niy++WA6HQ1OnTtXevXslSWfOnNHy5cv197//XZJ0xx13KDo6ulpfh8OhZ5991gyvF8qZV28t9dgAANBY3AMLAAhImzZtNGfOHD355JPKzc3VH//4RwUHB8vpdKqsrEyS1Lt3b02fPt3v2mFhYZo7d66mTJminJwc/e53v1NoaKjKyspUXl4uyX156qRJk2r1Xb9+vXbs2CFJqqio0IwZM+rd16xZs3TNNdf4PcaWrKUeGwAAGosACwAIWEREhP7xj39o2bJl+vLLL5Wbm6s2bdqoR48eGj58uEaPHq2goKCAavft21dvv/22UlJStGnTJv3vf/9TcHCwevbsqaSkJI0cOVI2W+0LiVwul7lcVlamoqKievfjCV2tTUs8NgAANJbh8v4vPQAAAAAALRRfjwIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwCwhMWLFyshIUFPPPFEcw8FzaykpES33XabEhIStGHDhuYeDgDgPGrT3AMAAJxbJ0+eVFZWlvbs2aO9e/dq7969OnTokFwulyTpX//6lyIiIs7Jvl0ul8aMGaP8/HyNGzdOjzzySEB1srKytHz5cknSxIkTm3CEzWvfvn3aunWrdu/erX379qmwsFAVFRVq3769evXqpcGDByspKUlhYWHNPdQWJSwsTPfdd5+WLl2qV199VYMGDVK7du2ae1gAgPOAAAsArdzkyZOVlZXVLPves2eP8vPzJUnx8fEB13nttddUUVGhQYMG6Zprrmmq4TWryZMna+fOnXW2FRUVqaioSNu2bdO7776r5ORkDRw48PwOsIUbM2aMPvjgA+Xl5enDDz/UuHHjmntIAIDzgEuIAaCV85xpldxnrgYMGKCLL774vOz7q6++kiR16dJF/fr1C6jGrl27lJ6eLkmtKqR4gn379u01cuRIJScna8mSJVq6dKlmzpypwYMHS3KH2eTkZGVkZDTncFuckJAQjR49WpKUkpKiU6dONfOIAADnA2dgAaCVGzlypMLDw9W3b19FRUXJMAxNnjxZRUVF53zfngA7ZMgQGYYRUI33339fkhQREaFf/epXTTa25hYVFaXx48dr+PDhatu2bbW2vn37aujQoXrvvff0+uuvq6ysTAsWLNA777zTTKNtmRITE/Xmm2/qxIkT+vTTT3XPPfc095AAAOcYZ2ABoJUbM2aMbr75ZkVHRwccIgPx888/68CBA5ICv3w4Pz9faWlpkqQRI0ac1/Gfa/Pnz9ett95aK7x6GzdunHr37i1JysnJUXZ29vkaniVERESof//+kqRPPvmkmUcDADgfOAMLADgnPE+H9Vy2HIg1a9bI6XRKkoYNG3ZWfcrLy7V27Vpt3LhRe/bs0bFjx1RRUaHw8HD17NlTcXFxuvnmm9W5c+dq/RISEiRJSUlJSk5O1k8//aQPP/xQ27ZtU0FBgS666CL16dNH999/v2JiYsx+p0+f1ueff67U1FQdPHhQDodDkZGRuuWWW3TPPfc0+uFC1157rXkP888//6xevXoFXCsnJ0crVqxQRkaGjhw5IofDobCwMLVv314RERGKjY3VjTfeqMsuuyyg+uXl5Vq9erXWrVunffv2qbi4WIZhqEOHDgoPD1e/fv0UFxenIUOGKCgoqFrfmp9/Tk6OPv74Y6Wnp6ugoEClpaWaPXt2rS9Dhg0bpoyMDB04cEB79uzRlVdeGdiHAwCwBAIsAOCc8Fw+PHjwYLVpE9h/bjZt2iTJfZ9o9+7dG9z+xx9/1PTp03Xw4MFabfn5+crPz9eWLVuUnZ2t5ORkn3XWr1+vl156SQ6Hw1x3+vRpbd68WVu2bNGUKVN0xx13qKCgQMnJydqzZ0+1/vv379cbb7yhzZs3a8GCBY0KseXl5eayzRb4hVMrVqzQokWLVFFRUW19cXGxiouLdfDgQW3btk3Z2dmaNm2a3/WPHTumP/3pT3U+MMzz2WdlZemTTz5RSkqKoqKifNb6/PPPtWDBApWVlTW4X++Hem3atIkACwCtHAEWANDkCgoK9P3330sK/PLhsrIyfffdd5Kkfv36NXj5cFZWliZNmqTS0lJJ0oABA5SYmKju3bsrKChIhYWFyszMbHDe0OzsbK1du1adOnXSxIkTzX1v375d//znP+VwOLRw4ULFxMToxRdf1I8//qi77rpLN954o8LDw3Xo0CG98847ys7O1q5du5SSkqLf/va3AX0GkvTNN9+Yyz169Aioxr59+8zw2qFDB91xxx2KiYlReHi4KioqVFhYqL1792rz5s0BX6a9aNEiM7zGxsYqMTFRERERuuiii3Ty5EkdOHBAGRkZ5iXhvuzdu1dr1qxRhw4ddM899+iaa65RUFCQcnJy1K1bt1rb9+jRQyEhISotLdU333yjCRMmBDR+AIA1EGABAE1u48aNcrlcatu2rQYNGhRQjezsbPPsY9++fevdtry8XNOnTzfD65NPPmk+odbbDTfcoIcfflh5eXk+a2VlZal3795atGiR2rdvb67/5S9/qaioKM2YMUPl5eWaNGmSjh8/rvnz5ysuLs7crk+fPrruuus0fvx4FRQUaPny5Ro/frzsdrtfv7/kvgx7//79ktwhPjo62u8akrRu3TrzzOvChQvN+2q9xcfH6+GHH1ZxcbHf9U+fPm1+MRAfH68XX3yxVhCOiYnRnXfeqdLS0nrPJO/fv19RUVFasmRJtadl+3qKtd1uV58+fZSRkaEffvhBTqezUWeqAQAtG/+GBwA0Oc/lw3FxcQoJCQmohvdlwA1N+7NmzRodOnRIkvupy3WFV29du3att/3ZZ5+tFl49hg4dqi5dukiSjh49qlGjRlULrx5hYWG69dZbze1ycnLq3V9dCgoK9Morr0iSDMPQY4895ncND88Tp8PCwuoMr946duzod/0TJ06YXzbExMTUexY3JCSkwUuqn3rqKb+mevJs63A4VFBQcNb9AADWQ4AFADSpkpIS7dixQ1Lglw9LUmFhobncoUOHerf1BGZJGjt2bMD7lNyXpPoKeYZhVGtLTEz0Wcd7u8OHD/s1BofDoeTkZDN41nxwlL88obukpETr1q0LuI4vHTt2NJ+m/MUXXzRqTtYuXbrU+aVAfbz/Prz/bgAArQ8BFgDQpNLS0lReXi673a4hQ4YEXOf06dPmcl1nQ7398MMPktxn4s7mYU/1aai/91jqe1qv93b+BLozZ87oueeeMx8MdeONN+rhhx8+6/51SUxMNM96zpgxQ48//rjee+897dq1y7zsujGCgoKUlJQkScrMzNS9996r+fPn64svvvA7vAfylGXvAOv94C0AQOvDPbAAgCblORt69dVXKzw8POA63veMNvQ02mPHjkmqOtPYGMHBwfW2e18eW9/l0d73YXqmAmpIeXm5pk2bpq1bt0qSBg4cqOeffz6g+2e9RUZG6uWXX9ZLL72k/Px87d69W7t375bk/pyvvPJKJSQk6Pbbb2/wywJfnnjiCZWVlSk1NVXHjx/XypUrtXLlSknuLxYGDhyokSNHNngmuaGz7XXx/rIj0CdeAwCsgTOwAIAmU1ZWpi1btkhq3OXDkvt+TY/jx483qpYVlJeXa8aMGebUQXFxcZo9e7Z5aW5jxcbG6v3339cLL7ygkSNHmtPYVFRU6LvvvtNrr72msWPHmuHZX+3atVNycrLeffddPfTQQ7r22mvNgF9UVKRVq1Zp8uTJeu6556oFzpoCeQCT94OnvP9uAACtD19TAgCaTHp6unlJamMDrPeUKQ0F2PDwcOXl5Vn2AT6e8Oo5e33ttddqzpw5jZo/ti5t27bVTTfdpJtuukmS+8z19u3blZqaqs2bN+v48eOaNm2aUlJS1Llz54D2ER0drQceeEAPPPCAKioqlJWVpU2bNmnFihU6evSoNmzYoKVLl2rSpElN9nudOHHCXG7oAV0AAGvjDCwAoMl4Aljv3r0VERHRqFrec57+9NNP9W7rmWansLCwwW1bmprhdcCAAXr55ZebPLzWJTw8XMOHD9e8efN01113SZJKS0u1cePGJqnvuTx5woQJ+tvf/mZenr1mzZomqe9x4MABSVJERIRCQ0ObtDYAoGUhwAIAmoTT6dTXX38tyf3gocbq2rWrLrnkEknS999/X++2CQkJ5nJKSkqj932+lJeX6/nnnzfDa0xMjObOndvgfbjnwsCBA81lzz3FTSkiIsKcxzaQuWZ9OXbsmDmF0lVXXdVkdQEALRMBFgDQJHbv3m0GH+9A2RieUHXgwAGdPHnS53bDhg0zw9Fnn32mjz76qN66eXl5TTK+xigvL9fMmTO1YcMGSec2vH755ZcNhlLPvcuSdOmll/pV//Dhw0pPT693myNHjphnSiMjI/2qX5/MzExz+frrr2+yugCAlol7YAGglTt48KD5xFkPz/yikrR+/fpqTwsOCQnR0KFD/d6P5yxiZGRkQFOh1OWmm27SZ599JqfTqfT0dP3617+uc7s2bdrohRde0OOPP67S0lItXrxYGzZs0IgRI9S9e3cFBQWpsLBQe/bs0fr169W3b18lJyc3yRgDNWvWLK1fv16SOzA++uijOnLkSL19OnXqpE6dOvm9r48++kizZs1SbGysYmNjdfnll6tjx446c+aM8vLytGbNGvPsebdu3fye/igvL09PPfWUIiMjNWTIEPXr109du3ZVu3btVFxcrMzMTC1fvtx8mvTo0aP9/h182bZtmyT3/b2DBw9usroAgJaJAAsArdzu3bs1Z84cn+2vvfZatffdunVrVIBtisuHPeLi4tSlSxfl5+crNTXVZ4CVpCuuuEKvvvqqpk+frsOHD2vHjh3asWNHndt67pltTuvWrTOXDx06pEcffbTBPg8++KAmTJgQ0P7KysqUlpamtLQ0n9tceumlmjNnTr3TA9Xn8OHD+uCDD3y222w2jR07VnfffXdA9WsqLy/XF198Icl91j/QKYAAANZBgAUANNqPP/5onj1s7NOHvdntdo0aNUqvv/66Nm/erGPHjtU7t2yfPn307rvvKjU1VV999ZWysrLM+y07deqkXr166brrrtPNN9/cZGO0ghkzZmjr1q3KyMjQvn37VFRUZF5S3LFjR11xxRWKj49XYmJiQNP29O/fX0uWLFF6eroyMzOVl5eno0eP6uTJkwoODlZkZKT69++v22+/vcnOzksy/yYkacyYMU1WFwDQchkul8vV3IMAAFjbW2+9pbfeekudOnXSxx9/HNBcnr6UlJTovvvu0/Hjx/XII49o3LhxTVYb1jZ16lSlpaUpNjZWCxcubO7hAADOAx7iBABoNM/lwzfccEOThldJCgsLM0PrsmXLdOrUqSatD2vKzMxUWlqaDMPQxIkTm3s4AIDzhAALAGiUM2fOKD4+Xg8++KBGjRp1TvYxevRoRUVFqbi4WP/+97/PyT5gLUuXLpUkjRgxQv369Wvm0QAAzhcuIQYAWML333+vtLQ0hYWF6d57723u4aAZlZSU6IMPPpDL5dKoUaPqvS8aANC6EGABAAAAAJbAJcQAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwBAIsAAAAAMASCLAAAAAAAEsgwAIAAAAALIEACwAAAACwhP8DU8dVtjGtVoUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACpNElEQVR4nOzdd3xTVeMG8OfepEn3pBQoLXuDyBSRobIU3KKIIrh/4kBfxdeJouLeqOirgkwRAUEREUFAhshGkD0KlNGW0j0z7vn9keaSttlNm7R9vp9PPoTk5OQkTXLvc8+550hCCAEiIiIiIiKiaiD7uwFERERERERUdzF0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG5+EzhMnTkCSJEiShHvuuccXVdZLV155pfo+EhE5cs8996i/FSdOnPB3c1QzZ85U2zVz5kx/N4d8TFEU9OjRA5Ik4fHHH/d3c6gWsf4uXHnllf5uClGV1OV99SlTpkCSJLRs2RIlJSU+r7/GejpnzpyJyZMnY/LkyTX1lH63dOlS9TXn5OT4uzlUxmQyYfXq1Xjuuedw9dVXo3HjxtDr9QgPD0erVq1wxx13YOnSpTCbzR7V+++//+Lxxx9H+/btER4ejqioKHTp0gXPPfccTp48WU2vhogIMBgM6Ny5s7ozJEkS1q1b59Pn+Oqrr7Bz504EBwfj+eefd+sxx44dw+TJk3HZZZehUaNG0Ov1aNy4Mbp3747x48dj4cKFDn9rT5w4gblz5+KJJ57AgAED0KZNG8TExCAoKAhxcXHo3bs3nnrqKezZs8ej13Hy5Ek899xz6NKlC6KiohAeHo727dvj8ccfx759+zyqyx1paWl45ZVX0KdPH8TFxUGv16Np06YYNmwYZsyYAZPJ5LIO2wM67lyc/e09qcf2EkgHuDz1wQcfqK/j7rvv9qqONm3aqHVs2bLF48cXFRVh8+bN+PTTT3HPPfegc+fO0Gq1Vfq+Go1GfP311xg0aJC6L9O0aVNcf/31WLBgAYQQbtclhMCCBQtw3XXXoWnTpup3ddCgQfjmm2/c+pza+u233zBq1Cg0a9YMwcHBaNiwIa644gp89NFHKCws9PSluuTL9yKQ7dixQ/3MNGvWzKvX9cADD6h1vPPOO+rtEyZMQExMDFJSUvDee+/5stkWwgdSUlIEAAFAjBs3zm6ZgQMHqmXqi3HjxqmvOSUlxWX5+vge1bQ1a9aI2NhY9X12dunVq5c4evSoW/W+9957IigoyGFdERERYv78+dX86qi+8PS3paZ8++23aru+/fZbfzenXpk8eXKl3521a9f6rP7CwkLRqFEjAUBMmDDBZXmTySReeuklodPpXP7WZmdn261j1KhRbv1WS5Ikxo8fL4xGo8t2zZ07V4SHhzusS6fTiQ8//NDTt8eh2bNni9DQUKft79atmzh27JjTemy/W+5cnP3tPanHegkPDxeFhYVevw/WegYOHOh1HVWRlpYmtFqtACBCQ0NFXl6eR49fv369+ho6duzoVRtc7Xt4+n1NSUkR3bp1c1rn4MGDHX6/bGVlZYmrr77aaV3du3cXJ0+edFlXSUmJuOOOO5zW1apVK/HPP/949Hqd8eV74Uog7Kt36dJFbcPq1as9emxhYaGIiIgQAIRGoxFnz54td/9rr72m7reeP3/el80WWvhA8+bN68wRBH/y9VFpquzMmTPIysoCAMTGxmLw4MHo06cPGjduDKPRiK1bt2L27NnIy8vDtm3bcNVVV2Hr1q1o1KiRwzq//PJLPPPMMwCAoKAg3H333Rg4cCCMRiNWrlyJRYsWIT8/H3fffTeio6NxzTXX1Mhrpbpr5syZHL5Kqv379+PNN98EAISFhVVLL8K0adOQlpYGjUaD//73v07LmkwmjBkzBgsWLAAAxMfH49Zbb0X37t0RExODgoICHDlyBKtXr8a2bduc1hUaGoqePXuiR48eaNOmDWJjYyFJEs6cOYPVq1djxYoVEELgiy++QEFBAWbPnu2wruXLl2PcuHEwm82QJAkjR47EsGHDEBQUhD///BNz5syBwWDAU089hYiICDzwwAOev1E25syZg7Fjx6r/Hzp0KG688UbEx8cjNTUV8+fPx/bt27Fr1y4MHToUmzdvRnx8vMt6H3/8cVx99dVOy3Tu3NnhfUuWLHGr/f/73//w22+/AQBuv/12hIaGuvW4QJSQkIDhw4fj559/RlFREX744Qfcf//9bj/e9vf23nvv9aoNFXv0k5OTYTAYkJaW5nFdOTk5uPbaa3Hw4EEAQIcOHXDfffehadOmOHr0KL766iukpqZi9erVuOWWW/D7779Dq7W/y28wGHDjjTdiw4YNAICkpCQ89NBDaN26NU6fPo0ZM2bgwIED2LlzJ6699lps3rwZkZGRDts2btw49bsfFxeHhx56CF26dEFmZibmzp2LrVu34tixY7jmmmuwZcsWJCUlefz6q+u9qC3uvfdePPXUUwAsn81Bgwa5/djFixcjPz8fAHDNNdegcePG5e5/4okn8M477yA/Px/vv/8+3n77bd813KcR1olAODJQ0wK1N6I+mzNnjujSpYv47rvvRElJid0yp0+fFp06dVL/dmPHjnVY39mzZ9Wj2FqtVqxatapSGdsj1ElJSaK4uNhnr4cokLCns+aZzWbRp08fAUBcf/315ba1vurpNBqNIikpSQAQQ4cOdVn+xRdfVNtw7733ivz8fIdlz54967CH8vDhww5/p63++OMPodfr1ef7+++/7ZYrLCwUTZo0UcvNnDmzUpnff/9d7Q0LDw8XaWlpTp/bmYyMjHI9ql988UWlMoqiiCeffLLce+VITX+3TCZTufdr48aNVarPWo+/ejqFEGLJkiVqO/r37+/242x7hrRardefi7Fjx4o33nhD/Pbbb2oPku1+oiffV9vPzTXXXFNpv+LChQvlev4+++wzh3V9/PHH5Xozs7Kyyt1fXFwshg0bppaZOHGiw7qWLl2qlktOTq7UM2o2m8W9996rlhk5cqTbr9kRX74X7giEPJORkaGOrvO05962R3vRokV2y9x5550CgIiJiREFBQW+arZg6KxGDJ2BJzs7WyiK4rLc3r171b9dSEiIw2FFtj92zzzzjMP6brvtNp/94BEFKobOmvfJJ58IACIsLEycPHmyWkKn7c767NmznZbdu3evGtxuuukmnzy/KxMmTFDbN2nSJLtlbHesb7vtNod1PfPMM27tXLvy9ttvq/XceuutDsuZzWZ1qJwsy+Lw4cN2y9X0d2v58uXq87Vt27bK9QVC6DQYDCI+Pl4AliHZroY0W82ePVtt//XXX+/TNnkTOtPT09Vh62FhYSI9Pd1uub179wpJkgQA0ahRI2EymSqVMRqN5d6Tf//91+FzhoWFCQBCr9eLzMxMu+UuvfRS9fUsX77cbpmioiKRnJysltu7d69br9tRu3z1XrgrUPLMTTfdpLZj+vTpbj3m5MmT6vsQFxcnSktL7Zaz/f5//fXXPmtztc9ea53l6c8//1Rvs3eCuqMJhhRFwQ8//IBRo0ahRYsWCA0NRUREBNq3b4/x48dj7969Tts2efLkSidp//HHHxg9ejRatGiB4ODgSifIm0wmrFy5Ek8//TT69euHhg0bQqfTISIiAm3btsU999yD9evXO3xO68ySs2bNUm9r0aJFpdfs6L1yZ0asLVu24KGHHkK7du0QERGBsLAwtGrVCuPGjcOaNWtcPr7iTHKFhYV4//330bNnT8TExCAsLAydOnXC888/j+zsbJf11RbR0dFuvb+dO3dG+/btAQDFxcU4evRopTJCCCxcuBAAXM7mOGHCBPW6ddhJTdm8eTPGjx+Pjh07Ijo6GsHBwUhOTsaoUaOwfPlyp49dt25dpe/oqVOn8PTTT6N9+/YICwtDdHQ0+vbti2nTprk90UBBQQE+/vhjDBkyBE2aNIFer0dsbCx69eqFl19+GefPn3f6+IrfFbPZjJkzZ2LIkCFITEyEVqtF8+bNKz0uPT0d//3vf9GxY0eEhYUhNjYWvXv3xgcffICioiIAltMFJEmq9PjffvtNfU7bv6czEyZMUB+zYsUKtx7jDlez11bX3+2XX37B9ddfj0aNGiE4OBjNmzfHXXfdhc2bN3v8GgwGA6ZPn44bbrgBSUlJCA4ORnR0NC655BI8/fTTDictOXToEMLCwiBJEqKiopCSkuLwObKzs5GcnAxJkqDRaJz+btdGJ0+exIsvvggAeP3115GcnFwtzzNnzhwAQEhICG6++WanZT/66COYTCZIkoSPPvqoWtpTUceOHdXrjoYq2v7uPvHEEw7revzxx9XflR9++MHrNtluh51NXCPLMu666y4Alv2d77//3uvn9KVvv/1Wve7tcFJPFRUVYcSIEepv16hRo2AwGCqV27dvH5566ilceumliI2NhV6vR2JiIm644QbMmzcPiqLYrT8oKAhjxowBYNl+u3uKgi+G1vrS0qVL1fdl9OjRaNiwod1ynTt3Vodhp6WlldsPt1qzZo26vR00aBA6depkt66GDRvijjvuAACUlpbip59+qlTmyJEj2L17NwDLpEvDhw+3W1dISAgefPBB9f9V+Z758r3wNdv80blzZ5w5c6ZSmczMTLzxxhvo378/GjVqBJ1Oh/j4ePTv3x/vvvsuCgoKHNZv+1l097M8a9Ys9XTIu+66Czqdzm65oUOHqkP9rb//PuGL5OpsIiHbIwLOLq+88kqleo8ePVruqIm9iyzLDo9sCiHEK6+8opZds2aNePTRR+3WY9sTeeWVV7rV5nHjxtk9SmB75MrV4x29V44YjUbx4IMPuqz79ttvF0VFRQ7rsZYbOHCgOHbsmOjYsaPDupo1a1Yve2p79eqlvgf2hmzZ9oZ27tzZaV1ms1lERkaqn1lPJzHwRkFBgVsTcYwYMcJhe9auXVvuO7pixQoRHR3tsK4hQ4a4HA7366+/ioYNGzptU0REhPjpp58c1mH7Xblw4YLo16+f3c+trTVr1oiYmBiHz9mlSxdx6tQp0axZM7uPN5vNokWLFgKwDDlxNUy6uLhYfb7k5GRhNpudlveEq1EUvv67mUwmp79rsiyLd955x+3emG3btqnvpaOLTqcTX375pd3Hf/XVV2q5yy+/3OFR65EjR6rlXnzxRafvaW1kHfLWvXt39T3wdU9nSUmJegrBgAEDnJYtKipSy3oyfLGqbHsn7e0P5Obmqkf3o6KiXH4XbU+v2Ldvn1dtst2mHjhwwGnZH3/8US3bp08fu2VqsqczMzNT7T2yN9GIN2z3Oey5cOGCOkwcgHj00Ucr/Z2MRqOYMGGCkGXZ6W/HZZddJs6dO2f3efbs2aOWa968ucuRT7Y9Qw0aNBAGg8Gr1++INz2dt956q/oYR8Mjrd577z21rL3RWE8//bR6//vvv++0roULF6pl7Y0W+PTTT9X7H3vsMad1bdu2TS3bq1cvp2Wd8eV74S5X++pms1k8/PDDapm+fftWGrIshOU7bR227eiSkJAg/vrrL7vPYzQaRUJCggDc77lv1aqVWveuXbuclr355pvV7bujnm1PVfuZtFOmTEFmZiZeeukldSpyeyexW3uVrI4dO4Y+ffogMzMTANCvXz9cd911aNasGcxmM3bs2IGZM2ciOzsbr7/+OmRZdrkcy3vvvYcVK1agUaNG6nTVJpMJW7duhV6vV8sVFxcjPDwcgwYNQo8ePdC8eXMEBwfj3Llz2LdvH+bNm4fCwkLMmjUL0dHR+Pjjj8s9z4QJE3DTTTdh6tSpWLt2LQDLCfkVj8B4c1T67rvvVo+EBgcHY9y4cejbty80Gg22b9+O6dOnIz8/Hz/88ANyc3OxYsUKpz17eXl5GDFiBA4dOoQbb7wR11xzDWJjY3H8+HF88cUXOHXqFE6ePImxY8fWuV4CZwwGA44cOaL+v1mzZpXK/Pvvv+r1Hj16OK1PlmV069YNf/75JxRFwYEDB9C7d2/fNbiC0tJSDB48GH///TcAoFWrVhg1ahQ6dOiAoKAgHD16FLNnz8bhw4exfPly3HTTTVi1ahVk2fHgh927d+O9996DEAL/93//h8svvxx6vR7bt2/Hl19+icLCQqxatQpvvPEGXnvtNbt1LF68GKNGjYLZbEZQUBBuuOEGXHnllUhISEBeXh7Wrl2LH374Afn5+bj55puxatUqlxNmjBkzBhs3bkTXrl0xevRoNG/eHHl5eeWWUdi/fz+uu+46tTezW7duGDNmDJo2bYr09HQsWLAAmzZtwqhRoxz2+smyjAcffBAvvPACsrOzsXjxYrWHwp5FixapowTuv/9+p+9tdfLF323ChAnqyA2dTodx48ahX79+kGUZW7duxfTp0/Hss8/ipptuctmezZs3Y/DgwSgqKoIkSRg2bBiGDh2KxMREFBcXY/PmzZgzZw6Kiorw8MMPQ6/XVxoV8uCDD2LlypVYvHgxNm/ejFdffbVS26dPn45FixYBAPr06VPnluuaM2cOVq5cCY1Gg6+++goajaZanmfTpk3q98bVb9aOHTsqlV2zZg2mTZuGzZs3IzMzEzExMejatStuu+02jBs3DkFBQVVq3/bt2/HFF18AsIw4sdcTu3//fvXo/qWXXuryu9izZ091f+Xff/8t15PqLuvzeWrfvn0QQjjdbk+bNg1vv/02UlNTAVgmaurVqxduuukmjBo1qsqTpMybN0/tPbI30YivpaamYtiwYThw4AAA4JVXXqn0fRVC4Pbbb1f3Hxs3bow77rgDXbt2RWhoKE6ePInvv/8eO3bswJYtWzBo0CBs27at0uRHXbp0QY8ePbBjxw6cOHEC69atw1VXXeWwbbY9Q2PGjKny59UXPNn36Nmzp93H+buuSy+9FBqNBmazWf1+erPupS/b7wulpaW46667sHjxYgDA8OHDsXDhwkqfw08++QRPPvkkAMtkaSNHjkTfvn0RFxeHzMxM/Pbbb/j555+Rnp6OwYMHY9u2bZV+h7RaLcaMGYMPPvgAQgjMmjULr776qsO2bdiwAceOHQNgef8vvfRSp6+lT58+WLJkCRRFwerVqzFq1CgP3w07fJFcfb1kitlsFt27dxeAZez4Dz/8YLdcWlqa2hMqy7Ldsei2PZ0ARL9+/URubq7T51+9erXTXsLMzEy1Z0WWZXH8+HG75Xy9ZMr3339f7uiHvSOwJ06cKNeD4Oj8Qdv3RKfTiWXLltl9nbZ1bdmyxeVrcKSwsFAsWbLEJ5cdO3Z43Q53zZkzR33d3bt3t1vm1VdfLdeb5MrYsWPV8nPmzPFxi8ureK6pvYk6DAZDuTbZm+jCtscMsPTY2TvnaMuWLep5XDExMXZ7zU6dOqX29iYnJ4s9e/bYbfuWLVtEVFSUACCaNm1q98hyxREUTz75pNPeC9ue0EceecRu2Yq/FRV7OoWw/OZYT953dW7SgAED1J6C1NRUp2U95UlPZ1X/brZLBURHR4vt27dXKnPw4EF1OQ3rxV5vTF5enjohTXR0tFi3bp3d13fkyBH1nJ+wsDC707ZnZWWJpk2bqu/xhg0b1PsOHTqknn8UGRnp9rlbjhw4cMBnv1++mII+IyNDxMXFCQDiP//5T7n7fN3T+eabb6r1LVy40GnZjz76SC370Ucficcee8zpUfxOnTo53H5WtG/fPvU9XLhwofj000/Fbbfdpn5+AYjJkyfbfeysWbNc7qPYevnll9Xyr7/+ulvtq+iqq65S63A2akOI8ud/AhCnT5+uVMbdJVPatWtX5aUobEeYLV68uEp1WVnrq/i7uX//fvU3QZZlMW3aNLuPtz0nd8yYMXbnWVAURbzwwgtquWeffdZuXZ999plaxtlEgYqilOsZ8uUSH1ae9nSazWb1M6/RaFwuE3T8+HG1/latWlW633Yfz9V+qtFoFBqNRgCWCZUq9hLbfubdeS2253V6s4309XvhLkf76rm5ueXeg7vvvttum7Zt26a2+9JLL3W4DM2yZcvU/Y3LLrvMbpl///1XfT5XPfe2Ezh98sknLl/nunXr1PIVtzPeCsjQuXjxYrXs1KlTnZY9dOiQ+iV48MEHK91vuyMZFhYmzpw549ZrcuXYsWMuN0q+Dp22s2/9+uuvDuvZsmWLOhykWbNmdoee2W6kXnvtNYd1ff31126Vc8X2M1LVizs7DVWRlZUlGjdu7HJH6z//+Y9a5tNPP3VZr6flvXX27Fl1aNQtt9zitKzBYBAtW7YUAESbNm0q3V8xvKxfv95hXXfddZfTco8//ri6cXA1rGP69OlqXfPmzat0v+13pUePHk4Dp+0wns6dOzudQMC2XnuhU4jyk0I5mvTj0KFDapkRI0Y4fa3e8DR0VuXvduONN6r325vx0+qXX34p95z2QucHH3yg3v/zzz87fY1//PGHWvaNN96wW2bdunXqULtmzZqJ7OxsYTAYRI8ePdTH+uIAT8UDElW5+CIIWtfAS0pKqjQzrK9Dp3UWQwAODxRZPfvss2rZtm3bqt/3MWPGiBkzZojvvvtOPP/886JBgwblvmf2hp45q7vipWvXrmLBggUOH2udbAmAePrpp10+l6fl7XnppZfUOpzN0Gk7kZD1Yu8A+rfffiu0Wq0YOHCgmDRpkpg1a5ZYuHChmDZtmhgzZowIDg5WHx8REeF1QNq5c6daT3x8vM+Gk1rrtA2dmzdvVteu1Ol0DjsYiouL1VMyevXq5XJ4dP/+/QVgOeBk7zSIrKwsdcbjsLAwh7Mr//nnn2q7HR18ripPQ2dubq5aPi4ursrlbU85cTbLtDvlbfdR3ZkcyNPyFfn6vXCXvX319PT0cq/nqaeechgAr7/+evV7au8Ak61JkyapdW7atMluGdtTwdasWWO3jO0MzDqdzq3hsunp6Wq9gwYNclneHf4Z7+WC9aTVyMjIcicb29O2bVt1GM/vv//utOytt96KJk2a+KSNLVu2VNdu3LJli0/qdObEiRPYtWsXAMvwkGuvvdZh2d69e6tDEk+ePIkdO3Y4LKvRaPDYY485vN92aOP+/fs9bXatYzabcccdd+DcuXMAgBEjRmDkyJF2y9qe4B0cHOyy7pCQEPW6dY2k6vDDDz+oQ6MmTpzotGxQUJA6ZOLIkSMOJ28BLENS+/fv7/B+Z58VIQTmzZsHwDJZgathHbZDxFx9rx999FGnw+VsJzx49NFHnQ5DdDbBiNXDDz+sXv/mm2/slrG9/aGHHnJZZ3Wqyt+ttLRUnQApISFBnYTDnhEjRqBDhw5O22L9bW/bti2uv/56p2Wvvvpq9ffa0Wdg4MCBeO655wBYfusefvhhvPTSS+pv3l133eW0zbXRL7/8op5i8fnnnyM8PLxan+/kyZPq9djYWKdlc3Jy1OuHDx9GcHAwVq9ejTlz5uDee+/F6NGj8eabb2L//v3o0qWLWv8LL7zgdfsiIiIwdOhQdO3a1WEZf/xW33vvvepv2KJFixz+Vjz77LOVJkTMy8urVK5fv344efIk1q1bh9deew1jx47FyJEjMX78eMyZMweHDx9Gr1691DZbT2Pw1IwZM9Tr1Tmc9LfffsOgQYOQlZWF8PBwLF++HLfddpvdsitXrkRGRgYA4D//+Y/L4dHW73xeXp56iomtmJgY3HjjjQAskyhah+FXFGgTCAG+/yz7sr6a/p4Fyj7Y8ePHccUVV6j76G+99RY++OADu8OFs7Oz1QkcR48ejcTERKd1226/HG0HbT+bthOY2rKuFw8A119/PeLi4pw+L2D5nljZbgeqIiBXR7UuUNu4cWN1YWJnrDuRJ0+eRHFxcbkPli1nO14V5eXlYd68efj111+xd+9eZGZmOlxw+/Tp027X662tW7eq14cOHeqy/NChQ/HHH38AsIRiR+fitG3bttwHqyLbL0RVZrFt3ry51+e41KQnnnhC/WInJye7PSNYILF+fwDLZ3Pp0qVOy9v+XQ8cOGB31lfAMr7fGWeflX379iErKwuAZSfRVZsAIDw8HDk5Oep5Po64+l5v375dve7s3B0A6mzOzlx11VVo27YtDh8+jFmzZmHKlCnldsyMRqP6w9+kSROMGDHCZZ3VqSp/t3/++Uc9gDFw4ECX5w0OGjTI4d8rNzdXPc82ISHB7c8AAKefgVdffRV//PEHtmzZUm6G0hYtWmDatGkun8MdkydPDohzQvPz8zF+/HgAloOoroK7L1i/t4Dr0Flx1tCXXnrJ7ncqPj4e8+bNQ9euXSGEwLfffot33nnH6YLzb7/9trpIeWlpKU6dOoWVK1finXfewXvvvYepU6fif//7H8aNG+fBq6s+LVu2xIsvvqieY/Xggw9i8eLFuOGGG9CgQQOcOXMG8+fPx9atWxEfH4+SkhJ1p9BeqGrdurXT50tKSsKKFSvQuXNnpKWl4eDBg1i0aJFH52GVlpbiu+++U/9/3333uf1YT8ydOxf33XcfjEYj4uPj8euvv5Y7364i221adna2y98O21lCDxw4YPczeN9996mzps6cObPSeeNFRUVqGNXr9bjzzjtdvCqqj/755x9cc801SEtLU8+vd/a92bRpk/o7qdFoXH6WjUajet3RdnD06NF46qmnUFJSgkWLFuGzzz6rdDDSmwMoQUFBiIiIQH5+vs9WsQi40FlQUIALFy4AsEyN72p69oqys7Mdhk5XRxSs1q5dizvvvNPh1OsV2Tsq6WvWnjfAEhRdsS1j+9iKGjRo4LQe2wmWSkpKXD5vbfbiiy/i888/B2DZKV61apXT98f2S+3Oe1NcXKxej4iIqEJLnbPtrbz99ts9eqyzH5aqfFZs27R48WL1JPuqtglw/b0+e/aser1ly5ZOy8bExCA6Orpcj01FkiThoYcewsSJE5Geno5ly5bhlltuUe//+eef1aPy9957b7VN8OKuqvzdbN87Vzu9rsqkpqaqG9sNGzaU25F0xdlnQKvV4rvvvsOll16q7rRbb3MWYmqjZ599FqdPn0ZkZCSmTp1aI89ZWloKwLKD5GjbalXxd83ZSKUuXbqgT58+2Lx5M0pLS7Fp0yanI3hs6fV6tGnTBm3atMFdd92FgQMHYu/evbjnnnsQHx9faakGf/1Wv/LKKzAYDHj77bchhMBvv/1W6UB6QkICfvrpp3Kv3dmBYGfi4uLwxBNP4PnnnwcALF++3KPQ+dNPP6kHGXr16oXOnTt71Q5ndu7cibFjx0IIgeTkZKxatcrlPo3t9uPRRx/16Pkc/XYMGTIETZs2xenTp7F+/XqkpKSgRYsW6v22PUM33nhjpQMuO3fuxKlTpxw+b79+/Vz+9nrD15/l8PBw9T0qKSlxOXLCWX01/T0LhH2wgQMHIjc3F3q9HgsWLFB70B2x/Sx/8cUX6iRo7nD0WY6OjsbNN9+M+fPnqz33tgdRrCMkAEtn3jXXXOP2c0ZGRiI/P7/ce1cVATe8Njc3t0qPt7emk5WrDSZgGWI4YsQINXC2a9cOTz75JD7//HPMnz8fS5YsUS/WNWy8GcLiKduhAGFhYS7L234ZnQ0j8NeMmoFmypQpePPNNwFYdtJXr17tckMYHR2tXrfOsuyM9WBKxcf6WlW+Q86+P1X5rFRXmwDX32vrCAWtVuvWUDF3vl/33HOPGta+/vrrcvdZ/y9JEu6//36XdVW3qvzdbIcvVZx9zx5n711VPgO2R3vtadCgQbmdwpYtW7qcybC22bBhA7788ksAluFbvjpVxBXr59xsNqsz0zpi+7uWlJTkcM08K9u/kXVWRU/FxMSU69G2N3ujv36rJUnCm2++iV27duH//u//0K5dO4SFhSE0NBQdO3bECy+8gH///Rc9evRQD15LkoSEhASvn9O2V+/gwYMePdZ2bc7q6uU0m83qqKeSkhK31giuju2HLMsYO3YsAMvpH7Nnzy53v6ueoalTp+Lmm292eKmu2VHDw8PVYds5OTku3z9Xn2VPvhsmk0n9nAYFBVX6va/p75mv3wtvWJ/TZDK5FXyra1/I2RBb2xmYx44d69GBcGt73clP7gi4nk7bsDRgwIAaWcDV1ltvvaUm+hdffBGvv/66w2mcXZ1v6ku2R2UcDfO1ZbuzWJ29au4qKipyeW6eu5KTk9G9e3ef1AUA7777LiZNmgTAsgOzatUqt47w2oZSZ+dCWtmOiXent9pb1u+QJEkwmUwBcWDB9nv98ssvO53W29esG0aTyQSj0egyeLrz/YqLi8PIkSMxb948/P777zh16hSSk5Nx8uRJrFq1CgAwePDgckfOayPbv5urwAE4f+9s6xo7dqzDc0+88cgjj5T7fh0+fBgvvfQS3nnnHZ/Uf/DgQY934B3xtgdkxowZEEIgJCQEmZmZmDJlit1ytu/DnDlzsHHjRgCWUQ/e/O7YhvmsrCynBx/atWunXo+KinJZt22ZquyMXXHFFeowsG3btqGwsLDcDrG/f6u7du2qHjCwZ9++ferB6zZt2rj13jlie66WsxEbFZ05c0bdRoeEhGD06NFet8GZXr164brrrsMzzzyDjIwMXHXVVVi7dq3TZWlsfzuOHz/us9/Ve+65Rz3YPHv2bLz88suQJEldSgWwjKQZMmSIT57PF2RZRqtWrXDo0CGYzWacPn3a4SkxgOvPctu2bZGSkgLA8t1wVtfp06fVz2nr1q0r7Ru3bdtWXSbQ1ffMZDKpw6DDwsLcHoloy9fvhTeWL1+OESNGoLCwUF1CzdnoAtvP8owZM3x2rvCgQYOQlJSE1NRU/Pnnn+rfUpQtpWJVcRi5M0ajUc0Srk6tcFfAhc6oqCiEh4ejoKCgRs6VrGj16tUAgIYNG+K1115zGDjz8/PLnetS3WzXybJdP9IR2zI1dUTcmYyMDI+HSjsybtw4n51r+dFHH+HZZ58FYPnsrVy50uUkN1a2wdTZZE2A5Vwn60nmsiy7nHClKhITE7F7924IIXDmzBkkJSVV23N50iarmv5eN2nSRD2X8Pjx4+V2jCvKzs52e0ft4Ycfxrx586AoCmbMmIHJkydjxowZ6hBSf08g5Au2vx1Hjx51Wd5Zmer6DMybN0+dpKpHjx7IzMzEyZMn8f7772PYsGEu13l1x/fff++zAyVr165169zhiqxHqouLi/HKK6+49RjbSWE6d+7s1Y5W8+bNsWnTJgCW0Nm0aVOHZS+55BL1ujsh0rZMVYKWJEkICwtDfn4+hBDIy8srFzo7duwIWZahKAp2794NRVGcHoyzPQ+8OoaYVmR7cN2TuSfs8bY3Z9asWepv1y233FKlv4crEydOhCRJmDhxoho816xZg06dOtktX/G3w1ehs02bNujXrx82btyI48ePY/369Rg4cKBbPUMzZ87025wPnTt3xqFDhwBY9j2cBS1Xn+XOnTtj5cqVal3Ofpvcqctqx44dTgPO7t271QDbsWNHr9botD6nr94LbwwcOBC//vorhg8frgZPIQTuuOMOu+WrazsoyzLGjRuHKVOmqEHzlVdewfr163H8+HEAwOWXX4727du7XadtxrG3Vr1X7fRJLe48kc0PvKsJZQYMGADAsoPozo6OL6WnpwOwTELhbKO0evXqSpMmVOTJa3bFdiIga0+KM7a9iq4W9K6vPv/8czz11FMALL3BK1asUGf/c0enTp3UHbB9+/Y5/QH566+/1GEp1qPy1WXgwIHqdV/1LldVt27d1PPr/vjjD5ffHV+ynaDCehTWEevRbXf069dP3UmaMWMGjEajupPfsGFDl+d21AZdu3aFTqcDYNkxdnUqgXXyMnsaNGig9mb8/fffPjkXPiUlBY888ggAy9Hy+fPnY+7cudBoNFAUBWPHji23E06es905s+7cOdK+fXs1EKSmpqrnNjtie7CuKj0Pubm5OH/+PABLAK04M2NkZKQ6oVZubq7dGU2tUlNT1Vmck5OTnfbA+YpteKnqkHzbAOvJe2rbhuoaWmvr6aefxgcffADAclD66quvxr59++yWrc5tWsVhiRWH2nrSM1RThg0bpl63BkZHbM8htncuX6DW5S5/PGdFAwYMwIoVKxAeHg6z2YwxY8aoM4zbK2sN2L7+LNt+VmfPng0hRJVmYLaduMj2gGKV+GLdFXfW6bSuSwM31gJasGCBWnb06NFVapvt+mrurIEUHR2trk/laI0dk8kkevbsWW6dMXus6xLCzTWIXK3T2b17d/X+33//3WE927ZtK7d2nbN1Ol0tcO9p2driq6++UtcyDQsLK7ewvCds197873//67Cc7dqOn332mbfNdsupU6fUdTrbtGkjCgoKvK7Ldr3HV155pUplx48fr97/v//9z+s2CeHZur++XqfT1tSpU9XyjzzyiHr9mWee8eTleMyTdTqr+ne76aab1Ptnz57tsJ5ff/1VLQfYX6fznXfeUe9//vnnXbxK50wmk7j88svV+qZPn67eZ7u22U033VSl56ltfL1O55o1a9T63Fmz8vnnn1fLT5kyxWG5PXv2qL/B4eHhorCw0Os2fvjhh+pz9uzZ024Z27U3b7/9dod1PfPMM2q5iRMnet0md82YMUN9viuuuKJKdV24cKHcGtP21ji2Z/369epjWrRo4XSBeW852o+w/ds1bNjQ7hqlBQUF6tqusbGx4uzZsz5rV35+vggLCxMoWzfR9nesqn8Pd3i6TqcQQmRkZKjb+PDwcJGenm633N69e9XvWKNGjexu+4xGo4iPjxcAhCRJdt9/ISxrNlrfp+DgYIfrPLqznnxxcbFITk72aP/YEV++F+5ytP+xfv16ER4eLgDL+sTfffed3cdfe+216uNXrlzpdTvsGTBgQLn339qekJAQkZub61Fdb7/9tlqXs3WQPVFjoXPChAlqmT///NNpfWazudxip0888YQoLS11WL6oqEh8++23Yv78+ZXu8zR0DhkyRC3/4YcfVrrfYDCIe++9t9zOlaOdU9sf01mzZrl8blc70rZhvHHjxuLAgQOVypw8eVK0atXKZcCpz6Fz1qxZ6o9PaGholXbMzpw5I0JDQwUAodVqxerVqyuV+fbbb9X3MCkpye5i1b729NNPq8951VVXiXPnzjksazabxapVq8Trr79e6T5fhpfU1FT1oI5er3f5nUhPTxevvfaa3UXOPQmdQgjRr1+/cuHQ3uLitr8V7obOnJwc9e9vezl8+LBb7fJWTYbODRs2qPfHxMSIXbt2VSpz+PDhcju7jkJnQUGBaNasmbqD8+677zpd6D0nJ0d88sknYtWqVZXusw2WI0eOLHef0WgsF0irepCjNvF16CwpKVF3Nvv37++yfGZmpvo9Dw4OttuGjIwM0aVLF7Wd9g7Ybdq0SXz11Vcufy/nzZsn9Hq908+dEJbF0Zs0aaKWmzlzZqUyq1atElqtVt2BTUtLs1uX7T6Ps9+gffv2iYyMDIf3z507V91hDg4OFgcPHrRb7q+//hJff/21KCkpcVhXamqq6N27t9qmNm3aCKPR6LC8rXvuuUd93KuvvurWYzzlbD/io48+Uu+Pj4+3G3w+/fRTtcwll1zi8jf277//dvvgn+3vqe3v2DfffOPW46vCm9AphBBPPvmk+rhrr7220vckKyurXAB0drD7448/Vst1795dZGVllbu/uLhYXHPNNWoZZwdjli5dWm4bevLkyXL3m81mcd999zn87bZlu012lC18/V64w9n+x4YNG1wGzx07doigoCB1m7pixQqnz3fixAnx9NNPOwzUtmz3N20/y2PGjHH/BZa5+eabBQAhy7K4cOGCx4+3p8ZC508//aSWad26tfj888/FL7/8IlasWCFWrFghjhw5Uq78qVOnRGJiYrk3b8KECWL69Oli0aJFYubMmeK1114TN9xwg7pBtLfT7Gno/Pnnn8ttTG644Qbx+eefi++//168/vrrok2bNuqOfNOmTZ3unP7zzz9qPQkJCeL9998Xy5YtU1/znj17ypV3Z0f6jjvuUMuEhISI8ePHi9mzZ4t58+aJ//znPyIyMlK9f+jQoQ6PWNbX0Pnrr78KjUajvqbHHntMLFmyxOWl4g+nrS+++EKtLygoSNx///1i9uzZYsaMGeK2225TA65Wq3X542L72bMXJtxlMBjEoEGDyn1WxowZIz7//HPxww8/iLlz54r3339f3H333aJRo0YCgBg0aFClenwZXoQQ4rffflN3sgCIrl27ikmTJonZs2eLhQsXim+++Ub897//FQMGDFD/TvZ6oT0Nnfv27SsXDrt16yY++OADsWDBAjF16lRxxRVXCADi8ssvV393WrRo4VbdFQ9CXXnllW49ripqMnQKIcr14ur1evHQQw+J2bNni7lz54oJEyaov8G2vaKOdv537dpV7neqVatW4r///a+YOXOmWLRokZgxY4Z46aWXxNChQ9XPypw5c8rVsWHDBvXz0bRp00o7SUIIcfz4cfV5QkNDHe7Q1zW+Dp1CCHHrrbeqvyOuRioJIcT8+fPV3z2NRiPuvvtu9cDwCy+8oPasWH8DioqKKtWxZMkSAVh6n2699VbxxhtviFmzZqnb/xdeeEF07dq13Hdv5MiRTnvpfvnlF/VzI0mSuO2228SMGTPE7Nmzxf3336/uCAIQX3/9tcN63A2d7733ntDpdGL48OHizTffFN9995347rvvxJtvvlkuIOp0OrFkyRKH9Vjfi8jISHHbbbeJt99+W8yZM0csXLhQfPnll+Luu+8WISEhan0RERFi586dDuuzZdvTJ8uy021dVbjaj7ANPvHx8XZ7v8aOHauW0Wq14pZbbhEff/yxWLBggfjuu+/EJ598Ih544AHRokUL9bfFHevWrSv397T+ZuTl5VXlJVfyxx9/iBdffLHc5ZJLLikXDCren52dbbeu7Oxs0b59e/WxHTp0EB988IH4/vvvxZQpU0RSUlK5bZLBYHDYrtLSUtG/f3+1fFJSkpgyZYr4/vvvxfvvvy86dOig3texY0eRk5Pj9HWOGjVKLR8XFydeeOEFMX/+fPHZZ5+V+9w3btxYnDp1ymE97oZOX74X7nC1/7Fx40aXwfObb75RfyMBS6/6lClTxLx588QPP/wgvvzyS/Hkk0+WG1WZmprqsm0FBQXqc9te/vjjD49eo20PuC/3aWosdJpMpnK9DRUv9nZ2zp49W27H2dlFo9HY3Uh4GjqFKD88yN7liiuuEBkZGeoRe2c9IqNHj3ZYT8X3yp0daaPRKB544AGX78fIkSPtbsitXG0AvC0b6Cr2Zrl7cbQDbfXee++V22GpeImIiLDbE1+R7WOqEjqFsGxIHnvssXIh29ll7NixlerwdXgRQojNmzeLli1butWm8PDwSgdnhPA8dAphGSZo7YGxd+ncuXO5g12XXHKJW/Vu2bKlXD3uDmmripoOnSaTSdx9990O3ztZlsW7775b7iirs+/MwYMHyx15dnbR6/XlDtZkZ2erv72yLDv9XZ87d65aT7du3ZyOmKkrqiN02vZeOBtibevbb79Vw4yjy8CBA8X58+ftPt4atNy56HQ68eKLL7rVszd37ly7O2W2ddkb5WTLk9Dpqu0tW7Z0uUPoyXvRuXNnu6NDHJk+fbr62CFDhrj9OE/Z/s0dsR0CbS94KooiXn/99XI9264+X+5QFKXSNsne9rCqvNn/cLYfkJKS4vJ3dPDgwQ6Dq62srCxx9dVXO62re/fubh2UKCkpKddBYu/SqlUrl59Td0Onr98LV9zZ/9i4caOIiIgQgCWf2Nsv+Pnnn0VCQoJbn4O4uDiHv5UVVTwQ3rx5c4+HzNsOM/dlj3+NhU4hLF30b7/9trj88stFTExMuZ1hZztG69atE//3f/8nOnXqJKKjo4VGoxGRkZGiY8eOYtSoUeKLL75wOMbfm9AphBArVqwQI0aMEA0aNBBBQUGicePG4uqrrxZff/21umFzJ3SaTCbxxRdfiCuvvFI0aNBAHbpj773yZEd68+bN4v777xetW7cWYWFhIiQkRLRo0UKMGTPGrSManvwoe/oDHsiqK3QKYTln4NFHHxVt27YVYWFhIiIiQnTu3Fk8++yz4sSJEy4fX1hYWG7Hx1fDGY4cOSKee+45cdlll4n4+Hih1WpFaGioaNGihXoE3l6wE6J6QqcQloMnc+fOFbfffrto0aKFCA8PF1qtVsTGxoqePXuKBx98UCxYsMDh+ajehE4hhEhLSxMTJ04U7dq1EyEhISI6Olr07NlTvP/++6KwsFAoiqL2GLh7dE9RFBEVFSUAy/lGzobA+UpNh06rZcuWiREjRoj4+Hih1+tFcnKyGD16tPjrr7+EEMLt0CmE5X376aefxLhx40Tbtm1FZGSk0Gg0Ijo6WnTt2lWMHTtWzJw5s1Ivpu1R9Oeee87pcwghxF133aWWd+ecxNquOkKnyWRSz8HyJJicOHFCPP/88+KSSy4R0dHRQqfTicTERHHLLbeIH3/80emOkMlkEhs3bhSvvvqqGDFihGjdurUIDw8XsiyL8PBw0axZMzFixAjx3nvviTNnznj0ek6cOCH++9//ik6dOomIiAgRFhYm2rZtKx599FGH57TZcjd0pqamio8//ljceOONom3btiIqKkoEBweL5ORkMWLECDF9+nS3TrfIz88XP/30k3juuefE1VdfLdq2bStiY2OFVqsV0dHRokOHDmLcuHHi559/djpc3R7bzgB3Dox6y939CNvz5B31eJ49e1a89tprYuDAgaJRo0ZCp9OJ4OBg0bRpUzF48GAxadIksXnzZo/a99prr5X7m/rqu2PL16FTCMuopq+++kpcffXVIiEhQeh0OtGkSRMxYsQI8f3333sUNhRFEd9//70YMWKEaNKkidDpdCIhIUFcffXV4quvvnJ7uLbVihUrxG233SaSkpKEXq8XDRo0EJdffrn48MMP3ZprwpPQKYRv3wtn3N3/2LRpk8vgWVRUJL788ktxww03iKSkJBESEiJ0Op2Ij48Xl19+uXj88cfFsmXLPDpganuOtjvbdXvuvPNOAViG/1ZlXpCKJCGqOK0qEfnEypUr1RnVJkyYgE8++cTPLap/9u7dq87S5u7fYPXq1eo6bk888QQ+/vjj6mwikV989NFHeOqpp6DRaHDixAmnS6cQEVHtlJeXhyZNmqCwsBDPPvss3n77bZ/V7f9V44kIwMU1YiMiIvDSSy/5uTX102effaZev+qqq9x6zBdffKFerwtrcxLZ8/DDD6NRo0Ywm8149913/d0cIiKqBlOnTkVhYSEiIiIwceJEn9bN0EkUIKyh86mnnkJ8fLyfW1P3bNiwwen6oJ9//jm++uorAJYFnK+77jqXde7evRtLly4FAAwePLhG1vQj8oeQkBBMnjwZAPDVV1/h7Nmz/m0QERH5VF5eHj766CMAwDPPPIMGDRr4tH4OryUKAJmZmWjYsCEaNGiAY8eOISIiwt9NqnNat26NkpISXHvttejWrRvi4+NhNBpx7NgxLFmyBLt27VLLLlu2zGHo/O2336AoCg4fPox3330X586dAwBs3LgRV1xxRY28FiJ/UBQFvXr1ws6dO/HYY4/h008/9XeTiIjIR6ZMmYJJkyahRYsW2L9/P4KDg31aP0MnEdULrVu3xrFjx5yWCQkJwddff4277rrLYRlJkird5u75n7///juKiopcN9aOBg0aoF+/fl49loiIiMifGDqJqF74+++/sXjxYvz99984c+YMLly4gKKiIsTExKBt27YYPHgwxo8fj4SEBKf1WENneHg42rZti/Hjx+O+++6DLLs+W6F58+Y4efKkV+0fOHAg1q1b59VjiYiIiPxJ6+8GEBHVhD59+qBPnz5VrofH6YiIiIg8w55OIiIiIiIiqjacvZaIiIiIiIiqDUMnERERERERVRuGTiIiIiIiIqo2nEiIiIhqDZPJhKKiIqeX0tJSGAwGGAyGctft3WYymWAymaAoCsxmc6V/ba9bp0CQJEmdrdj2uizL6uzGsixDq9VCq9UiKCio3MV6m1arhU6nU/8NCQlBcHAwgoOD7V4PCQlRL+Hh4QgJCXFr1mQiIiJ/Y+gkIqIaZTKZkJeXh7y8POTn5zu9bv23sLAQxcXFMBgM/m5+wJBlGWFhYQgPDy93iYiIKPf/qKgoREdHIzo6Wr2u0+n83XwiIqpHOHstERFVmclkQlZWFrKzsyv9W/F6bm5ulZeesfYMhoaGIjQ0FGFhYer/g4ODsXLGOkiKBCgAFEm9SLb/F2X/FwCEpYdSvS7KrsNyXVL/r94ESDYNUq+Li9clALLl/0Iuq8R6mwxAEpanlYXlohEQssCw+69ESUkJiouLUVJSgpKSEhQVFZW7bjKZqvT+hYaGqkHUNpDGxcWhQYMGaNCggXpdr9dX6bmIiIgYOomIyCmDwYDMzEycP39evWRkZCAjI0P9f1ZWlkdBUpIkhIeHIzIyEhEREYiMjERkZCTWzN4EySQDJsnyr1GGZJIAswTJLAPmsutCcv0kdZRAWWjVKBBaAWgVS2Atuy60AtAoGPHoYOTn5yMnJwc5OTnIzc1Fbm4uzGazR88XHh5eKYg2aNAA8fHxSEhIQKNGjRAZGakOLSYiIqqIoZOIqJ4zGAxIT0/HuXPncO7cOZw9exZpaWk4d+4c0tPTkZ2d7VY9Go0G0dHRiI2NRUxMDLYv2wPJWBYcDbLlukGGZNQARgkSGFJqmkBZj2qQAgQpNv8KIEjBwLv7IDMzExcuXEBmZiZKS0vdqjckJAQJCQlqCK34b1xcHM8/JSKqxxg6iYjqgfz8fKSmpuL06dM4ffq0GjDPnTuHzMxMl72UOp0O8fHxaNiwIeLj4/HH9I2QDBqgVIZUqoFkKAuXDJJ1hhpQdQqgM0PoFAidgpsmDkNmZiYyMjKQnp6OrKwsl3XpdDo0adIEiYmJaNq0KZo2bYrExEQkJiaiYcOG0Gg0NfCKiIjIXxg6iYjqCIPBgLNnzyI1NRWpqak4deoUTp8+jdTUVJe9lSEhIWjUqBEaN26MLYt2ASUaSCUaS6As1ViGuzJQkh1CFhA6MxBshtCbIfQKBj/YD2lpaUhPT8f58+edDunVarVo0qSJGkSTk5PRrFkzNG/eHNHR0TX3QoiIqNowdBIR1TKlpaU4deoUUlJS1MuJEyeQlpYGRVEcPq5BgwZISkpCYmIiVny2zhIqy4Ilh7tSdREQgN4MEWKGCDbjlheuxenTp3HmzBmcPXsWRqPR4WOjoqLQrFkzNYRa/42Pj+c5pEREtQhDJxFRgDKZTEhNTS0XLlNSUnDmzBmH4TI0NBTJyclo2rQp1k7fDKlYC6m4LFyaeU4dBRZLIFUggk0QIWbc+uJwnDx5EidPnkRaWprDYd+hoaFo1qwZWrZsidatW6NVq1Zo1aoVIiIiavgVEBGROxg6iYgCQFFREY4dO4bDhw/jyJEjOHLkCFJSUhwujREZGYkWLVpg74rDkIu0lnBZpOF5lVRnCFlAhJggQi2B9IoxPXDy5EmcPn3a4XDdhIQEtGrVCq1bt1bDaGJiIicxIiLyM4ZOIqIalpOTUy5cHjlyBKdPn7bbqxMSEoKWLVviwB/HIRVpIBdqIRVpGS6p3hKSgAg2W8JomAmX3dEVx48fR1pamt3ywcHBaNWqFdq3b4927dqhffv2SEpK4uRFREQ1iKGTiKgaFRcX49ChQzhw4AAOHDiA/fv3IyMjw27ZBg0aoE2bNti6YA+kQi3kgiDL7LAMl0QuCY0CEWYJosMmDMCxY8dw/PhxGAyGSmVDQkLQtm1btG/fXg2jiYmJPE+UiKiaMHQSEfmI2WzGyZMnsX//fjVkpqSk2B0K2LRpU7Rp0wbrv90GuUALqTDIso4lEfmMgLBMYBRuxM0vDcOhQ4dw+PBhlJSUVCobHh6O9u3bo1OnTujcuTM6duzIc0SJiHyEoZOIyEtFRUX4999/sWfPHuzduxcHDx5EcXFxpXINGjRAhw4d8NfsXZALgiAVaDmpD5GfCAiIUEsQve6/V+PQoUM4evSo3Vl0W7Rogc6dO6uXpk2bsjeUiMgLDJ1ERG66cOEC9u7diz179mDPnj04evRopVlkQ0JC0K5dO+z95TCk/CDI+UGQDDx3jCiQCUlYzhGNMGLQo33x77//4syZM5XKRUVFqT2hXbt2Rfv27REUFOSHFhMR1S4MnUREDpw9exa7du3C3r178c8//9jdCW3UqBEuueQSrJm2GVJeEKQiLc/BJKoDRJACJcKA214fjn379uHgwYOVzg/V6/Xo0qULLr30UnTr1o0hlIjIAYZOIqIyFy5cwM6dO7Fz507s2LGj0myYkiShZcuWSNlwFnKeDnIeezGJ6gshCYgwE5RIA/rd2wO7d+9Gbm5uuTIMoURE9jF0ElG9lZ+fj927d6sh88SJE+Xu12g06NChAw6sOA7JGjJ5LiYRwebc0CgD+t3fA7t27bIbQi+55BL06tULvXr1QsuWLXlOKBHVSwydRFRvmEwmHDhwAH///Te2bduGw4cPlzsnU5IktG7dGsfXnoGUy5BJRO5zJ4TGxcWhZ8+e6N27N3r27ImYmBg/tZaIqGYxdBJRnZaZmYmtW7diy5Yt2LZtGwoKCsrdn5SUhDNbMyHn6CDn6iCZGDKJqOqsIVSJLkXP0Z2we/dulJaWlivTpk0btRe0S5cu0Ol0fmotEVH1YugkojrFZDLh33//xZYtW7BlyxYcPXq03P0RERHo3bs3/vxiG+QcHc/JJKIaISQBEWnEyDevwfbt23HkyJFy94eEhKBnz5644oorcPnll7MXlIjqFIZOIqr1CgoKsGXLFmzYsAFbt26t1JvZvn17HPk9FXK2DlJ+EGeXJSK/E0FmKNEGDJpwObZt24asrCz1PkmS0KFDB/Tt2xd9+/ZFq1ateC4oEdVqDJ1EVCtlZGRg06ZN2LhxI3bt2gWTyaTeFxUVhV69emHd51sh5+ghGTlklogCl4CACDfhro9vwF9//YXDhw+Xuz8hIQGXX345+vbti+7du3MYLhHVOgydRFQrCCGQkpKCDRs2YNOmTTh48GC5+5OTk3FmUybkLD17M4moVhM6M5SYUvQe1wU7duwody5oWFgYLr/8cgwcOBCXXXYZgoOD/dhSIiL3MHQSUcASQuDo0aNYu3Yt1q5dizNnzqj3SZKETp064cCyE5Cz9JCLtX5sKRFR9RCygBJlwPDnB+Cvv/5CZmamel9wcDD69OmDgQMH4vLLL0doaKgfW0pE5BhDJxEFFCEEjh8/rgbN1NRU9T6dToeePXti66y9lh5NIycBIqL6Q0BARBhx8xtDsH79eqSlpan36XQ69OrVCwMHDsQVV1yBiIgIP7aUiKg8hk4iCggnTpzAmjVrsGbNGpw6dUq9XafToU+fPvjrq38gZ+kgKTw/k4hIQECEmXD7+9fizz//xOnTp9X7goKC0KdPHwwePBh9+/aFXq/3Y0uJiBg6iciP0tPTsWrVKqxatQopKSnq7TqdDpdddhk2f/0P5Gw9JDODJhGRI5Y1QU24a+oNWLduHU6cOKHeFxoaigEDBmDw4MHo3r07tFqeikBENY+hk4hqVGFhIf7880+sXLkSu3fvhvUnSKvVonfv3tj67b+WobMMmkREXlFCjbj9g2uxevVqpKenq7fHxsbiqquuwpAhQ9ChQwcuw0JENYahk4iqnclkwvbt27Fy5Ups3Lix3EyM3bp1w94fjkHOZNAkIvIlAQERacSIlwdi7dq1yM3NVe9LTEzENddcg2uuuQYJCQl+bCUR1QcMnURUbY4dO4YVK1Zg9erV5RY+T05Oxpn1WdCcD4ZUysmAiIiqm5AElGgDrnyiJzZu3IiSkhIAlpnAe/bsieHDh6Nfv348/5OIqgVDJxH5VFFREdasWYNly5bhwIED6u1RUVEoOGCAnBECqUDLdTSJiPxEyAqUBqXoMqoVdu3apd4eERGBIUOGYPjw4Wjbtq0fW0hEdQ1DJxFVmRAChw4dwrJly7B69WoUFxcDADQaDa644gr89eUeyNk6SIJBk4gokIhgE+6YOgIrVqzA+fPn1dtbt26N4cOHY9iwYVx+hYiqjKGTiLxWUFCAVatW4ZdffsGRI0fU2xMTE5G2MReajGCupUlEVAsICIhoA/pP6I4NGzbAaDQCAPR6PQYPHoybbroJ7dq183Mriai2YugkIo8dO3YMixcvxqpVq9RJgXQ6HQYMGIA/P9oBKTeIw2eJiGopoVUwfv6dWLZsGY4fP67e3qFDB9x00024+uqree4nEXmEoZOI3GIymbBx40YsXrwY//zzj3p7ixYtcOqPTEuvpomzzxIR1RUCAiLCiIFP98C6detgMpkAAJGRkbj22mtx4403omnTpn5uJRHVBgydRORUTk4Oli1bhqVLl6rn+2g0GgwYMAAbP9kNKY+9mkREdZ0IUnDP9Jvx888/Iy0tTb39sssuw2233YZevXpx3U8icoihk4jsOnz4MBYvXow//vgDBoMBABAdHY38PUZo0kIgGXiuJhFRfSMgoMQY0OO+dti6dSusu5EtWrTA7bffjsGDB3PoLRFVwtBJRCohBLZt24bvvvsOO3fuVG9v3749jv58FvL5YM5AS0REACwz397w9lVYvny5Omt5TEwMbr75Ztx0002Ijo72bwOJKGAwdBIRTCYT1qxZg/nz5+PYsWMALENor7rqKvz5wQ5I+RxCS0RE9gmNgvtnj8SiRYvU0zB0Oh2GDRuG2267Dc2bN/dvA4nI7xg6ieqxoqIi/PLLL1i4cCHS09MBACEhITAclaA5GwqplENoiYjIPUISUOJK0fqmxjh48KB6e9++fTF27Fh07NjRj60jIn9i6CSqh3JycrBw4UIsXboU+fn5AIDY2Fjk7jRAcy4Ekpmz0BIRkXcEBESkEX0e7YyNGzeq5312794dd999N7p3785Jh4jqGYZOonokKysL8+fPx08//YSSkhIAQFJSEs6tyYGcEcLzNYmIyKeUEBOGTLoMK1euhNlsBgB07NgRY8aMQd++fSHLPMhJVB8wdBLVA5mZmWrYtM5E2759exxdcg7yBT3P1yQiomol9GZc//ZALFu2TN0OtWzZEvfccw8GDBjA8ElUxzF0EtVhGRkZ+O677/DLL7+oG/lOnTrh8IIzkHJ0DJtERFSjRJAZt00dhiVLlqCoqAgA0KpVK9x3333o168fh90S1VEMnUR1UHZ2NubMmYOffvoJRqMRANClSxccnJ/KsElERH4nNAru/N8ILFy4EIWFhQCAtm3b4v7770efPn0YPonqGIZOojokPz8fCxYswMKFC9U107p27Yr9c09ByuWyJ0REFFiEVsGoz6/BokWL1O1Whw4dcP/996NXr14Mn0R1BEMnUR1QUlKCxYsX47vvvlNno23fvj2OLUyDlMueTSIiCmxCq+DWTwZjyZIl6kR3PXr0wMMPP4x27dr5uXVEVFUMnUS1mMlkwvLly/Htt98iKysLANC8eXOcXpHNCYKIiKjWEUFm3Pj+VVi6dKl6esjgwYPxwAMPoEmTJn5uHRF5i6GTqBYSQuDvv//GF198gRMnTgAAGjVqhMz1RZAzghk2iYioVhN6M658sTtWrVoFIQS0Wi1uvPFGjBs3DtHR0f5uHhF5iKGTqJY5duwYPv/8c2zfvh0AEBUVhYKdCjRpXGeTiIjqFiXMiG7/1xpbt24FAISGhmLs2LEYOXIkdDqdn1tHRO5i6CSqJTIzMzF9+nSsWLECiqIgKCgISkoQNKlhkMxc34yIiOouJaoULW5tiMOHDwMAEhMT8cgjj3CZFaJagqGTKMAZjUYsWrQIM2fOVGf2u+qqq7Dp3T2QSrV+bh0REVHNEBB4ZsWD+PLLL3HhwgUAQM+ePfHYY4+hZcuWfm4dETnD0EkUwHbs2IGPPvoIp06dAmCZRv7o92mQ8zmkiIiI6ichKxj1xTVYsGABDAYDNBoNbrjhBtx///2IjIz0d/OIyA6GTqIAlJ6ejmnTpmHt2rUAgOjoaBRsVThJEBERURmhN6HP052wfv16AJZt5SOPPIJhw4ZxyC1RgGHoJAogRqMRCxYswOzZs1FSUgJZliGd1kNzMpznbRIREdmhRBmQeH2UOpv7pZdeiqeeegrNmzf3a7uI6CKGTqIAsW/fPrz77rtISUkBAFxyySU4MOs05MIgP7eMiIgosAlJ4N7ZN2PmzJkoLS2FVqvFHXfcgbFjxyI4ONjfzSOq9xg6ifysqKgIX331FZYsWQIhBKKiolC4VUA+z6G0REREnhB6M3o+0RZ//fUXAMsa1hMnTkTv3r393DKi+o2hk8iPNm3ahA8//BDnz58HAMjpwdCmREAycSgtERGRt8yxJYi9Uo+MjAwAwPDhw/Hoo48iIiLCzy0jqp8YOon8ICcnBx999JE6UVCTJk1w/vciyDl6P7eMiIiobhCyghs+HIjFixdDCIG4uDg8/fTT6Nevn7+bRlTvMHQS1bANGzbg/fffR3Z2NjQaDXBSD82pcEgKh9ISERH5mhJhQKPrwpGamgoAGDx4MCZMmIDo6Gj/NoyoHmHoJKoh+fn5mDp1KlauXAkAaNGiBU7/mMuJgoiIiKqZkAVGfjYY33//PRRFQXR0NJ555hn079/f300jqhcYOolqwNatW/HOO+/g/PnzlmVQTgVblkER7N0kIiKqKUq4EU1vjlJnir/uuuvw2GOPITQ01M8tI6rbGDqJqlFpaSmmTZuGJUuWAAASExOR8WsR5Hydn1tGRERUPwlJ4JZPr8aCBQsghEBiYiJeeukldOrUyd9NI6qzGDqJqklKSgomT56sHk3VnA2B5kQEz90kIiIKAEqUATGDgpCRkQGNRoO7774bY8eOhVar9XfTiOochk4iHxNC4Oeff8ann34Kg8GAmJgYFGwQnJmWiIgowAiNggGTumL16tUAgE6dOmHy5MlISEjwc8uI6haGTiIfysvLwzvvvIMNGzYAAHr37o3dnx6HZNT4uWVERETkyLO//x8+/PBDFBQUIDIyEi+88AL69u3r72YR1RkMnUQ+cuDAAbz88stIT0+HVquFOBwMzdlQSOBwWiIiokAn9Ca0vDseBw8eBADccccdeOihhzjclsgHGDqJqsg6nHbq1KkwGo2WyYJ+KeZSKERERLWMkASu/7A/Fi9eDIDDbYl8haGTqApKSkrw4Ycf4rfffgMAyBf00B6OhGSW/dwyIiIi8pY5rgTBvcwoKChAVFQUJk+ejB49evi7WUS1FkMnkZfOnDmDSZMm4ejRo5a1N4+FQnOGw2mJiIjqAqE3o8WYOBw6dAgajQbjx4/HbbfdBknidp7IUwydRF7Yvn07Xn75ZRQUFFhmp10PyLlce5OIiKguEbLAVa92w8qVKwEAw4YNw8SJE6HXc0Z6Ik8wdBJ5aMmSJZg6dSrMZjM6deqEI9+mQzJwdloiIqK6SEDg/xaMwrRp02A2m9GuXTtMmTKF53kSeYChk8hNJpMJU6dOxdKlSwEAckYwtEciIQkOsyEiIqrrlCgDQvspyM3NRUxMDN566y107NjR380iqhUYOonckJ+fj5dffhk7duyAJEmQU8KgOc3zN4mIiOoToTcjeXQ0jh49Cr1ej0mTJmHAgAH+bhZRwGPoJHLh3LlzeOaZZ3Dq1CmEhITAuEMHTVawv5tFREREfiA0Cro92RJbtmyBJEl45JFHcPvtt3OCISInGDqJnDhy5AieeeYZZGVlIT4+Hjm/m7n+JhERUT0nIDD8/b7qKTc33XQTJkyYAK1W69+GEQUoLiZI5MCOHTvw+OOPIysrCy1atEDucsHASURERJAg4deJf+HRRx+FJElYunQpJk2ahNLSUn83jSggsaeTyI4//vgDb7zxBkwmE6TcIATtj4Zk5jEaIiIiKs8cVwK5azEMBgO6deuGN998E2FhYf5uFlFAYegkquDHH3/Exx9/DACQz+uhPRzFGWqJiIjIISXSgKA+pSgqKkK7du3w3nvvITo62t/NIgoYDJ1ENubPn48vvvgCAKA5GwLN8QjOUEtEREQuKWFGhF2lICcnB8nJyfjggw+4lidRGYZOojKzZs3C9OnTAQCaU2HQnApj4CQiIiK3KSEmxFyrQUZGBhISEvDJJ5+gSZMm/m4Wkd8xdFK9J4TAN998gzlz5gAANCfDoE0N93OriIiIqDYSejMa3RqKU6dOoWHDhpg6dSqDJ9V7DJ1Urwkh8MUXX+D7778HAGhSwqE9w5P/iYiIyHsiyIxGt1mCJ3s8ibhkCtVzM2bMUAOn9lgEAycRERFVmWTUIG1hEZKTk5Geno4nnngCZ8+e9XeziPyGoZPqrblz52LWrFkALIFTcy7Uzy0iIiKiusIaPJOSkpCeno4nn3wSaWlp/m4WkV8wdFK9tGjRInz11VcALENqGTiJiIjI1ySjBumLi5GUlIS0tDQ8/fTTyMnJ8XeziGocQyfVO8uXL8fUqVMBWGap5ZBaIiIiqi6SwRI8ExISkJqaimeeeQZFRUX+bhZRjWLopHrlr7/+wnvvvQcA0JwOheYUAycRERFVL8mgQdZyE6KionDo0CG88MILKC0t9XeziGoMQyfVGwcOHMDkyZOhKArk9GBoToRzHU4iIiKqEXKJFkXrNAgJCcHOnTvx+uuvw2w2+7tZRDWCoZPqhbNnz+K5555DSUkJpGwdtEcjGTiJiIioRsmFQTBtDUZQUBDWr1+PadOm+btJRDWCoZPqvJycHEycOBHZ2dmQCrQIOhgFSXgZOCXJcqmKqj6eiIiIai05VwexxzKB4cKFC/HTTz/5uUVE1Y+hk+o0k8mESZMm4fTp00hISEDQvmhIZi8+9r4Im9Z6iIiIqF7TXAjGAw88AAD4+OOPsX37dj+3iKh6MXRSnTZ16lT8888/CA0NRdavJkhGjeeV+CpsMnASERFRmdn3/IyhQ4fCbDbj5ZdfxsmTJ/3dJKJqw9BJddYvv/yCpUuXQpIkGLbrIBdrPavAV0NpGTaJiIioAgkS1k3+B126dEFBQQGee+455Ofn+7tZRNWCoZPqpL179+LDDz8EAMgnwqDJDvasAg6lJSIiomomCQmHvklHo0aNcObMGbz11lsQQvi7WUQ+x9BJdc6FCxcwadIkmEwmyJl6aE6XrcXpTghk7yYRERHVhLJ9Bckk48JKI4KCgrBx40bMnz/fzw0j8j2GTqpTFEXBlClTkJWVhRYtWkB7JMq9pVFqeqIghlIiIiIqIxcEYcKECQCAr776Crt27fJzi4h8i6GT6pTvvvsOO3bsQHBwME4vzoekuPER50RBRERE5Gef3jIXw4YNg6IoePXVV5GZmenvJhH5DEMn1Rl79+7F9OnTAQCmvW5MHMRlUIiIiChASJCwdvJutGzZEllZWXjnnXd4fifVGQydVCfk5+fjtddeg9lshnw+GHJGiPMH+Oq8TQZOIiIi8hFJkZC6KA86nQ5btmzBkiVL/N0kIp9g6KQ64eOPP0Z6ejoSExOhPRbp+DzOQAqKgdIOIiIicl81b7/lYi0efvhhAMC0adO4fifVCQydVOtt2LABq1atgizLyPi1GJLZwcda4sediIiIfKCaD2J/OWoBevXqBYPBgClTpsBoNFbbcxHVBO6FU62Wl5eHDz74AAAgnQqBXKCrXEiSGTiJiIjI96opeEqQ8M+0E4iMjMShQ4cwd+7cankeoprCPXGq1T799FNkZWVBKtJAcyq8coGKYZPhk4iIiLxlL2R60+vpRnnJoEHRNku5uXPncpgt1WrcA6daa/PmzVi5ciVkWbasxylsfsBrS+8mz+skIiKqG6phmy5nBqNPnz4wGo344IMPOJst1Vq1YK+cqLLS0lJ88sknAAApNbj8sNraEDaJiIio7vFx8JQgYednRxEcHIzdu3fj119/9Wn9RDWFe+dUK33//fc4e/Ys4uPjLw6rdbd3k6GUiIiIqour4bYeBlOpVIv77rsPgGU22+zs7Kq0jsgvuPdNtc65c+cwZ84cAED2RgMkpZYMpXWEQ2yJiIgCXzWct+mub+5ajDZt2iA/Px8zZszwWb1ENaUW76lTffXZZ5/BYDBAytVBvhBauwMnERER1V0+WlpFgoQTP14AACxbtgwpKSlVrpOoJnFvnWqV3bt3Y8OGDdBoNNCmREGClz/kgRZU2dtJREQUuKq6nbY+vgr1yHk6DBw4EIqiYNq0aVVrD1ENC7A9byLHhBD43//+Z7l+Rg+5KKhqFQZa8CQiIqK6S5KqvO+x+cN90Gq12LJlC7Zs2eKjhhFVP+51U63x119/Yd++fdDr9dCmRvi7Ob4jhOVCREREdZokVy14SiVa3HLLLQCAL774Aoqi+KppRNWKoZNqBUVR8PXXXwMATMeDIBk1vqnY372dDJtERESBzVenwJTtc1Q1eP70zAaEhYXh+PHjWL9+vW/aRlTNGDqpVvjjjz9w/PhxhIeHQ3s2wvKDXdsxcBIREdUbtvsuavD0InxKZhkjR44EAMyaNYu9nVQrMHRSwBNCYO7cuQCAkgMSJLOPP7Y13dvJ4bRERES1g497OcvfJHnd6/n9Y78jNDQUx44dw6ZNm3zRQqJqxdBJAW/Lli1ISUlBSEgINGnh/m5O1TBsEhER1TvORmh5EjwljeX0Isks49ZbbwUAzJw5E4L7FxTgGDop4M2fPx8AYDimKdfLWeuG2HKDQEREVHvU4HJm3gy3/eGJVQgJCcGRI0ewffv2amwdUdUxdFJA279/P3bt2mVZl7M6ezmrc4gth9MSERHVX+72YroYbmvt5VT/b9Jg+PDhAIBFixZVrY1E1YyhkwLawoULAQAiTQ/JUHnG2oDv7WTYJCIiqn182Mvp6b6KJ8Ntl03aCEmSsHnzZqSmpnrTPKIawdBJASs7Oxt//vknAEB7Lqz6n9DXvZ0MnERERPWbl/sWFYfbVuzltJJLtOjTpw8A4Mcff/SujUQ1gKGTAtaKFStgMpkgFQRBLtI5LOfT3k5/r9tJRERE/uWjXk5Jo6nSPoq7s9tun3EYALBy5UqUlpZ6/XxE1Yl72BSQFEXBsmXLAACadCe9nBoNJK3W4RFAd6k/7L5UgxMQEBERUd0kh4VCCglxfH+uHgkJCSgoKMDGjRtrsGVE7mPopIC0d+9enDlzBjBL0Fyw80NrDZuSBMgyUMUjieWus7eTiIiofvJhL6evSJJkuYSE2A2fEiRk7igCACxfvtxnz0vkS9y7poC0evVqAIDmQggkpcLHVKOxCZtl5zpIksc/8NXSu1npSdjbSURERN6xDZm24bMizflQAMCOHTuQkZFRY+0jchdDJwUck8mEdevWAQDkir2ctoHTloe9nb5apJmIiIjqiADt5bR3W8XgKZdqcckll0AIoU7CSBRIuGdNAWf79u3Izc0FDDLkXP3FOxwFzjLu9na607vp0+DJ3k4iIqJ6waeB08l5nPaC5/6fTwKAeuCeKJAwdFLA2bBhAwBAkxUCCVLl8zcdkWVIGtnpD77f1vVk8CQiIgpcAbadlkJC7PZylitT4TxP6xwYe/fuxfnz56u9jUSeYOikgCKEwObNmwEAcnaw3fM3nXIyzLY6F2cmIiKiWqqWDKt1VE4Nn0YNOnfuDACcxZYCDveoKaAcPnwYmZmZgFmCXBjqunfTjorDbKsyYRCH2RIREZErNTWs1uFjyoLnwV9PAQC2bt3qs/YQ+QJDJwWUv//+GwAg5wVDhpu9mxXZDLP123BaRxg8iYiIAkeAbZfdGVbr8LGSBE1JJABg586dMBqNvmwaUZUwdFJA2blzJwBAkxviXeC0quLanbY4zJaIiKgOqsXDah2RS4IRHR2N4uJi/Pvvvz5qFVHVcU+aAobBYMC+ffsAAHKh50NLKpKkqodFoQgIRVS5LRcr9GFdRERE5D1fbJMl2Wf7Cpr4BpAiwqvWHEjo2bMnAGDXrl1VbhORrzB0UsA4cOAADAYDoARBExxXtcoUBQAgaWSvg6dPwybAwElERBRofLhtrsp+gya+AaDRAJJU5eD559IUAGBPJwUUhk4KGHv37gUAaExRQEwU5KhIzytRFDVwqrwYZmt3w1GVXlMGTiIiosDk7Tbazn6B18HTdohuWfD0KnwmJkCjRAEA9u/fD7PZ7F17iHyMoZMCxqFDhwAAsikSkCSImEjPgmfFsFnG02G2TjcY3gRPBk4iIqLA5um22sn+gKfBUxPfwE79kue9nokJlskUzWEIDQ1FUVERUlJSPGoLUXVh6KSAcfjwYQCAbC77gfVkuRQHgdPK3WG2bm0o3A2eQjBwEhER1Rbubrd9tT8Bm2G1Dp/Lg+BZts8kQUK7du0AAEeOHHHvsUTVjKGTAkJ+fj7OnTsHwCZ0AhBR4a57O10ETitXwZMTBhEREZGvtuGu9itcBk4rd4JnYkK5/+7dnA4AOHbsmOv6iWoAQycFBOuPomTWQxLai3e4GmbrZuBUq3MQPD0OnM6OcjJwEhER1W6OtuUenmbjaP/C7cCpPq+T4Nm4YaWRYbI5DABw/Phx95+DqBoxdFJAOH36NABAUkIr3+koeHoYOFUVJhbyuofT3oaHgZOIiKhuqLhN9+Vs+N6s7WkveDZuCGgr1yUxdFKAYeikgJCamgoAkM0O1ueseH6nt4ETFycW8sm6WrYbIAZOIiKiusW6bffhut92Jw5yV8XgaSdwAoBcdhA/KysLJSUl3j8fkY8wdFJAuNjT6SB0wub8zioETpUsQfJiKRUiIiIib8kREd71ctqyBs/GDR0XEVqEh1vCaVpaWtWej8gHGDopIGRkZAAAZCXYcSFJgoiOgBwTXaXnEkIAZUcbqxw8hU0AlhhiiYiI6hTrtl1U/YC3JioS0MgQpYYq13X4vYY4OjnMaZlGjRoBgDpRI5E/MXRSQLhw4QIAQFJ0zgvKcpWCpxo4bTYeXgdPH2yAiIiIqJaownbfGjit9VQleB56Nx4JsXloGJOPoy85Plifsj8bwMUD+0T+xNBJfqcoCrKzs8v+4yJ0Al4HT3uB08rj4Olow8PeTiIiorrB3jbdi+BZLnDa1ONN8Dz0bjwaxeap/7cGT7vhUwQBAHJycjx+HiJfY+gkv8vLy4PZbAYASGU/kC5Zg2d0lFvFnQVOj7mqg8GTiIiodnO2Lfd0X6Ji4LSpx5PgeeidhuUCp1XDmHw0jMnHkRfLz4th3afKzc11v61E1YShk/yuoKDAckVoIHnykZRly1IqLno83Q2cbvV2uruhYfAkIiKqndzZhru5P6BxtM64TT3uBM9D7zREozjn4TEhNq9c8JQUy7rneXmVgypRTWPoJL8rLi62XBFezOYmy5UWRLblaQ+n0+Dp6ZFNBk8iIqLaxZNtt4v9ArvDah3U4yp4ugqcVrbBUxKW0Kke3CfyI4ZO8jvr+lGS8HLR5cgwu72d3g6ptRs8vR2Wy+BJRERUO3izzXawf+B24LSpx1HwPPSO46VR7LkYPC3PbzBUfbZcoqpi6CS/Uxct9qanE7A7sVBVz+EsFzyreh4ogycREVFgq8q2usJ+gseB06aeisHTnWG19iTE5iHtZsvkQiaTyfO2EPkYQyf5nRCi6pXYBE9fTRokyZLvlkVh8CQiIgpMvthGl+0veB04beqxBs+Db3sXOK2iM9MAALt37/a+PUQ+wtBJfif5KpDJMqDVWurjGppERERUgySNpmqB00ooSLm3GRo3qOKsszzeTQGEoZP8Ti6bCMgQ4+Xw2jJSYTFEfj4QFARJq61yu4Tigx5YtTIf1kVERES+4aMD35I2CJAliILCKtd14uF2MEQpOHskvkr1iKQIAECTJk2q3CaiqmLoJL+zhs6G4Tk4OibWqzqkwmKInFwIc1kPZxWDp/DVmp4AAycREVEg8nHgBCynDFUleJ54uB0M0Zb9D7lUqlLwHNloBwAgISHB6zqIfIWhk/wuNDQUACBKFLx16zyPg2elwGnlZfBk4CQiIqrjqiFwWnkbPG0Dp5W3wfPVNj8hzFgK4OJ+FpE/MXSS31l/DEuKZXTRn7MEz7s8CJ5mpXLgtPIweDJwEhER1XHVGDitPA2eJ/6vcuC0kks9a++rbX5CkjYPJcWW3XyGTgoEDJ3kd+Hh4QCAkhIZigJL8BzpXo+neh6nM24GTwZOIiKiOq4GAqeVu8HzxP+1gyHG+f7H2aPu9XZaAydg2a8CGDopMFR9thWiKrKGTgAoLJQREaGoPZ7P4y60nptl93EOh9XaExQECYBwtlYVAycREVHdVYOB00oI4XQSWXcCJwDIJRLOHo1Hk9bnEZNdiBtW7EG3vakILTagKESHnZckocP4s0jQFqmPyc+1TNAYExPjVluJqhNDJ/ldUFAQoqOjkZOTg5wsLSIiLOtTWYPnv8ObYt6vA8uFT48C58Unchg8fTZTLQMnERFR4PFD4LQSBYWQwsMq3e5u4LQKyTfhsdf+xG1btiHIVP5xvXeegJgH5NwWiozJkRDBEnKyLaEzLi7Oo/YSVQcOr6WAEB9vGTaSnVX+OEgX/TmMjt6GKbd+p57n6VXgtLIz1Nanw2qJiIgosPgxcAL2h9mefMizwKk3GvHt11/jzk1bKgVOtX1GIOa7IiSNzYJUIpCTY9nfYeikQMDQSQHBUei0ulR/FlNGfoeUW+O8D5xWNsGT53ESERHVYX4OnFa2wfPkQ+1QGuvZvsfLS5eiz7HjcLWnIQCE/m1Aw8l5yM+xrM/ZoEEDL1pM5FsMnRQQGjduDAA4nx7ksMxLO25C4oYSSDbngFYFAycREVEd5qPACUmuUuC0EkJA0mo9DpwN8vJw67btlqa4KGu9P+jHUmRlWU5LSkxM9LClRL7H0EkBITk5GQCQdlbnsIwxV4+gC0UQUeGQoyK9fzKzGcJkgiRLlg2JxK8BERFRnePDA8LC6GQiQjfIkZGQIyMBSUKbuXkePfb2rVuhM5s9eswZbQgAyyRCERERHj2WqDpwb5sCQrNmzQAAaWft93Ret3k8Wi60/OAKjVS14KlcPMIoydLF8Okt9nISEREFpqpuo232D7wNnnJkJCStBpLWMrGPnG5/Vn5HLjt23OPnPBViCZ1JSUkeP5aoOjB0UkCw9nSezwiCwVB+8Mh1m8cj6esg6M5fPAnf6+BZ1stZkdfBk4GTiIgosHm7rbazX+Bp8LQGzopaz3OxxriNsNJSj54TAFLK1ua0HtQn8jeGTgoIcXFxiImJgRASTp+8OMTWXuC08jh4ms0QBoPDuz0OngycREREtYOn22wfnHrjKHACgCbtgtvBs1Cv9/i5D5UNqW3btq3HjyWqDgydFBAkSUL79u0BACeOB6u3G3OC7QZOK7eDp4vAqbajqkNtiYiIqHZzsR/gTm+ns8Bp5W7wTLr+vMsytgSAQ2WTLlr3rYj8jXvXFDAuhk7LEb3r/x6PFotcnzjvMni6GTit3Aqe7OUkIiKqXVxtuz2YXNBZ8HQncFq5Cp6zbpmG5LFREI4n96/kXHAw8oKCEBQUhBYtWrj/QKJqZH9RRCI/6NChAwDg2JFgXLd5PJp+EwR9huNeTltCIwFR4ZAiQiHlF0HJtZkZTvF8WRRJliAU2f6SKgycREREtZMQ9pdS8WKUkzCaIAWV35X2JHBaadIuACg/w+ysW6YBAK4IloFgGbg9EpiXBwHny6YIAHsiLQfh27RpA53O8aoARDWJPZ0UMLp06QKNRoPz6Tokfm1yO3BaCY0EEaQp3+vpYOIgd9jt8WTgJCIiqt0qbst9dFqNN4HTqvX8i72dM275ElcEy5bAWUa83gDi8mC31unc2SYWAHDppZd61Rai6sDQSQEjLCwM7dq1AwBoc856XY863DYs1KNhtfZwLU8iIqI6yBo8q7h9F0aTugant4ETADRnL6D1/HzMuOVLDAi2UyBEhpjXBGJMpMOhtiIIEGMisbtxZwBA9+7dvW4Pka9xeC0FlB49emD//v0wB+VCa2zkdT1CI0HSai0bE3tDZD2u0Ad1EBERUWCQfDNxoCRLEPn5kGOiq1yXnF9iP3BahcgQ7zUE/hsL8V0epL+KgUIFCJMh+oYAd0birKJH2uPp0Gg06Ny5c5XbROQr7L6hgGI9KqdosqAEef/xlPOKoGTnAL6ejdbeeSBERERUe1i35VU8oCzJlnq8PY3HlggPBTQyLp/4sOvC8VrgiViIBYkQvyRBLEgEnogF4rW4ZcogAJZTlkLL1uokCgQMnRRQunbtivDwcEAywKwvgAjyfKiKnFcE5fyFixuBKgyRFYqovFFi8CQiIqp9JKnyNtzL4GkNnFZKdo5X9YjwUEvgLBuaG7PrAvr8143gaUePV8cjJO0MAOCKK67wqg6i6sLQSQFFq9WiT58+AABFOg9Fr/U8eJrsTB4kSx73etoNnFYMnkRERLWHD7fbFQMnYOnt9DR4qmGzwrmgsTsueNymHq+OR+y/eZC1uQCAvn37elwHUXVi6KSA079/fwCAggwICVD0WpjD9G6FT3VYrcMCPhxua++IKREREQUWV9tqN3s7JVmyGzjVajwYZmvbu2lPn2fc6+3s8ep49Hh1POL+LYaC8zCbzUhOTkZSUpLbbSGqCQydFHAuu+wy6PV6QCqCQJ5lYyFLLns9Kw2rdVjQdfB02stZEYMnERFRYHJ3G+1im+8sbNpyp7fTVeAEgNidF3DZs+Odlun+miVsxv1bbHlunAMAXH311W61lagmMXRSwAkNDUW/fv0AAApslk6RXARPe8NqHXESPD0KnDZtIyIiogDio22zu4ETcD3M1p3AaRW3PdPhfd1fG48Ge4sv1otSyNpsAMCQIUPcayxRDWLopIA0dOhQAICCNAjYBEAHwdPlsFp7fL0GJ4MnERGR/3l7+oudA86eBE61GjsHwCtOGOSuy56r3NvZ/fXygROw7C+ZzWZ06NCBQ2spIHGdTgpIvXr1QkxMDLKzsyFEJiQ0vHhnWfCETgvZYIJkNHvWy2nLujFRLOt5etXLaUuSLi44TURERDWrmicMcpeSnaOu3elN2LSK23axt7P765YA2mBP+cApIKDgNICLB+2JAg1DJwUkrVaLa665BvPnz4cZpyDbhk6g7CimZZIhbV6x11OVq2TJEjxhrlo91rYxeBIREdUsXwROoUDSeBcQy1VTdiC8KoHTqvfz42EMkxC/p8j+cyEHQiqAXq9n6KSAxeG1FLBuuOEGSJIEIV2AQKH9QpIEyaz4ZGFmCKXKC0Vb6mHgJCIiqq2E4oPtuCRDyc2rcuAEgAa/HUP8P/YDJwC1l3PQoEGIiIio8vMRVQeGTgpYiYmJ6N27NwDAjFS7ZbSZBRCZWVV/MrMZwuyDXk4iIiLyD18d9K3qAeiyuSKE0QScSfe+nqxcy8VgRNCJDLtFBAzQ6i1DcG+44Qbvn4uomjF0UkC75ZZbAACKdAYCxkr3S0YTlNLSmm6WY+zlJCIiqvW87u2sMDmhUlziXT1lYRMGy76PKCq2W8yMkzAYDGjfvj06dOjg3XMR1QCGTgpol112GZo3bw7ABKVCb6c2q5C9nERERHSRP3s7Hc2G72lvpzVwVlCxt1PAhLDI8wCAO++8ExJn0acAxtBJAU2WZdx1110ALEfzhM1EP1Kpkb2cREREVC3c7u10sfya272dNsNp7banqOIyKaeRn5+Ppk2bon///u49B5GfMHRSwBs0aBAaNWoESAYoOAPAh72cREREVLfUZG+nr9b6rjCc1hFrb6eAgtiGlv2gO++8ExofzLhLVJ0YOingabVa3HHHHQAAM1IgoPiul9NXQ2vZy0lERBQ4fLRddtrb6UngdDbE1knvZqX2lPV2KjiD8+fPIy4ujsukUK3A0Em1wogRIxAXFwdIJZXO7SQiIiKqFvZ6O10Mp7XH7hBbF8NpHTYJJkTFpQEAxowZA51O59HjifyBoZNqBb1ej3vvvRcAYBZHoWSdr3ql7OUkIiIiF8r1dlZlOK1tb6ebw2ntyjmArKwsNG7cmMukUK3B0Em1xvDhw5GcnAzIJhhiM/3dnIs4WxwREVHg8eW5nV70blak9nZ60bupNkVjhq5pLgDg/vvvR1BQUJXaRFRTGDqp1tBqtXjooYcAAOZG+RBBJj+3iIiIiMhNQqlS4AQAY4NMFBYWonXr1hg8eLAPG0dUvRg6qVbp378/OnXqBMgCxsQc7ytShPcLP1fE4bVERER1WpVPxyk7N1TJyfW6CkVfCpGQBwD4v//7P8gyd+Op9uCnlWoVSZLw+OOPQ5IkKPFFUEKLAG/Co1C8W/iZiIiI6h9v9xkq7m94GV7NRYUwNDwLs9mMfv364bLLLvOuPUR+wtBJtU7Hjh3VE+eNLXIgYPYuePoCezmJiIgClw+30x73dvro4LZSVAQlugBKZCl0Oh0ef/xxn9RLVJMYOqlWeuihhxAdHQ0RaoK5UYHlh93sZvj05dBaIiIiqh/cDZEuRlMpRUVuVaMUFUEpKoKAEZF9LLvsd999Nxo3buxeO4gCCEMn1UoREREYP348AMDUNB+KvmxSIaG4Dp4cWktERETVwZ39Czd6TJWiIks5sxmmpDxcuHABiYmJGD16tA8aSVTzGDqp1rrmmmvQtWtXQCNgapkNgbKw6UmvJxEREdVtNXUqjA8OaFt7N63B1BxZAnOjQgDAxIkTodPpqvwcRP7A0Em1liRJeO655xAcHAwlygBzQmH5AvZ6PTlrLREREXnJ7nmdXoygsjfE1rZ3EwCERoGxVQ4A4KabbkKPHj08bi9RoGDopFotMTHx4jDbZnlQgius3Vmx15NDa4mIiMhbFfchvN2nsAmvFXs3rUzJuYDejMaNG+Phhx/27nmIAgRDJ9V6N954I3r27GlZu7OVzTBbW+6c60lERETkDh8dxK7Yu2llji6BOcHSG/r8888jNDS0ys9F5E8MnVTrybKMZ599FmFhYRARBpia5tsvKBTOWktERFQf+fKUGB+ETWE22+3dBAARZEboZZaRW7feeisuvfTSKj8fkb8xdFKdkJCQgKeeegoAYE7MhzmypHqfkOdzEhER1S4+2nZ7vF6no8fbC5wQMLTJQm5uLtq0acNhtVRnMHRSnTFkyBBcf/31gAQYW2dDBFVto0BERETkK8JsdhlYTU3zISINCAkJweTJk6HX62uodUTVi6GT6pQJEyagZcuWgE6BsXWW/fM7iYiIiGqQO72j5shSKEkFACzLoyQlJVV3s4hqDEMn1Sl6vR6vvfYaQkJCoEQZYErK83eTiIiIqJ5yp3cTAITOhNDLjRBCYMSIERgyZEgNtI6o5jB0Up2TnJyMiRMnAgDMiQUwx1lmfxOK4HIpRERE9VkNzcngTti03i9kBYZ2lvM427ZtiyeeeKImmkhUoxg6qU4aMmQIRo8eDQAwtsqBEmbwc4uIiIioPvBkoiEBAWOrHIgwI2JiYvDGG28gODi4GltH5B8MnVRnPfTQQ+jTpw8gCxjaXuDEQkRERFRt3B1Ka8vcpABKXDG0Wi1ef/11JCQkVFPriPyLoZPqLI1Gg5dffhnNmjUD9AqM7bMgZE4sRERERL7lzTIq5rgSmJtZ1hb/z3/+g0suucTXzSIKGAydVKeFh4fjrbfeQkREBESEEaa2OZzRloiIiHzCm95NAFAiDZAvKYIQArfccotlyTeiOoyhk+q8pk2b4o033oBOp4MSVwpTq7yqBc8amoSAiIiIApO3YRMAlBAjjB2yYTAY0L9/fzz++OM+bh1R4GHopHrh0ksvxaRJkyBJEpRGxTA3LfR3k4iIiKg2qsLBZ6Ezw9gpG9AKdO7cGS+//DI0Go0PG0cUmBg6qd4YOHAgnnzySQCAuVkBzA0ZPImIiMhNQlQtcGoVGDtmA3oFycnJeOutt6DX633YQKLAxdBJ9crNN9+Mu+++GwBgap0Pc1yxn1tEREREAa+Kp9YIjQJjxyyIMBNiY2Px3nvvISoqykeNIwp8DJ1U7zzwwAOWE/YlwNQuF+bYYp6nSURERJVVsXcTAIRkhrFDNkSECVFRUfjwww/RuHFjHzWQqHZg6KR6R5IkPP3007jmmmsswbN9LsyxpT7ZsBAREVEd4It9AiEgJAXGjjkQUUaEh4fjgw8+QMuWLX3TRqJahKGT6iVZlvHss89i0KBBZcEzB0p0qeVOhk8iIqL6ywdh0xI4BYztcyCijQgNDcX777+Ptm3b+qaNRLUMQyfVWxqNBi+++CIGDBgAyICxYw7MMaUXCzja6EhSzTSQiIiIao67B52d7QeUPV7IwtLDGWtAcHAw3n33XXTs2NFHDSWqfRg6qV7TarV45ZVX0K9fP0AGTB1zYI4ruViAvZ5ERER1m4+G0qqBU6PA2CkbIsaAkJAQvPPOO7jkkkt80FCi2ksSgnvURCaTCW+88Qb++OMPQADaI5HQZIRULmg9usmvDRERUe1j20vp7bbcSR1CWxY4I0wIDw/He++9h06dOnn3PER1CEMnURmz2YwPPvgAv/zyCwBAeywCmnOhfm4VERER+YwvDh5Lkt3HiyAzjJ1zIMIss9S+//77aNeunffPQ1SHMHQS2RBC4LPPPsPChQsBAJqTYdCkhkECz+MkIiKq9xwETiXYBGOnHCDEjNjYWHz00Udo0aJFzbePKEAxdBJVIITAjBkzMGvWLACAnBYC7dEIBk8iIiKqRAk3wtgpGwgSaNy4Md5//30kJSX5u1lEAYWhk8iBpUuX4uOPP4aiKJCzdNAejIKkcO4tIiIisjDHlMLUPhfQCLRr1w7vvPMOYmNj/d0sooDD0EnkxMaNG/Hqq6+itLQUUoEWQfuiIRk1/m4WERER+Zk5oQhKu0IoioLLLrsMr776KkJDORcEkT0MnUQu7N+/H88++yxyc3OBEhlB+2MgF2n93SwiIiLyAwEBc4sCmBOLAADDhw/HxIkTodVy34DIEYZOIjecPn0azzzzDM6cOQOYJWgPRUKTFezvZhEREVENEhoFpna5UGINAIB77rkH9957LySJ8z4QOcPQSeSm3NxcvPzyy9i1axcAQHMiDJrTnNmWiIioPhDBJhg75kCEmqHX6/H888/j6quv9neziGoFhk4iD5hMJnz22Wf48ccfAQDyeT20R6IgKQyeREREdZUSZYCxfQ4QJBAfH48333yTa3ASeYChk8gLP//8Mz766COYzWbLBEMHoiGVcoIhIiKiukRAWM7dbF0Ms9mMDh064I033kCDBg383TSiWoWhk8hL//zzDyZNmoScnBzAJEF7mOd5EhER1RVCo8DUNg9KXCkAYNiwYZg4cSL0er2fW0ZU+zB0ElVBeno6Jk+ejH379gEANKmh0JwM53meREREtZgSZoSxfS4QYkZQUBAmTJiAG264gRMGEXmJoZOoioxGI7744gssWrQIACDlBiHoYBTX8yQiIqqFzA2LYWqdB8hAo0aN8Nprr6F9+/b+bhZRrcbQSeQja9euxTvvvIOioiLAICPocCTkHA7BISIiqg2ERoGpVT6UhiUAgMsuuwwvvfQSoqKi/NwyotqPoZPIh1JTUzFp0iQcP34cAKA5EwrNiXBIgsNxiIiIApUSYYCxXR4QbIZGo8G9996LMWPGQJZlfzeNqE5g6CTysdLSUkybNg1LliwBAEgFWmgPRUEu1vq5ZURERGRLQMDctBBoVQKz2YxGjRph0qRJ6NKli7+bRlSnMHQSVZO//voLb731FnJzcwEF0B6PgJwWwkmGiIiIAoDQm2FsmwsRZQQADB48GE899RTCw8P93DKiuoehk6gaXbhwAW+99Ra2bt0KAJCzdNAejYRk4CRDRERE/iAgoCSUwNQiH9AKhISE4D//+Q+GDRvG2WmJqglDJ1E1UxQFixYtwv/+9z8YjUbLmp7HIyBnBLPXk4iIqAYJnRmm1nlQYg0AgE6dOuHFF19E06ZN/dwyorqNoZOohpw4cQJvvvkmDh48CIC9nkRERDVFQECJL4GplaV3U6fT4f7778ftt98OjYbbYaLqxtBJVINMJhO+//57fPvttxd7PY9FQD7PXk8iIqLqIHRmy1IocaUAgPbt2+OFF15A8+bN/dswonqEoZPID1JSUvDmm2/i0KFDAAApW4ego5GQSnm0lYiIyBcEBJTGxTA1KwC0AlqtFvfeey9Gjx4NrZYzyhPVJIZOIj8xmUyYP38+Zs2aBYPBAJglaE6FQXM2lOt6EhERVYESaoSpdT5EpGVm2o4dO+KZZ55Bq1at/NwyovqJoZPIz1JTU/H+++9j165dAACpUAvt0QjI+To/t4yIiKh2EbKAOakA5qZFgASEhobioYcewo033shzN4n8iKGTKAAIIfDbb79h2rRplnU9BSCnhUB7MhySSfZ384iIiAKeOaYUppb5QIgZANC/f3888cQTaNiwoZ9bRkQMnUQBJCcnB9OmTcNvv/1mucEoQXsyHHJaCCcaIiIiskMEm2Bqma8ug9KgQQM8+eSTGDBggJ9bRkRWDJ1EAWjnzp345JNPkJKSAgCQCrSWWW455JaIiAhA2VDapoUwNy0EZECr1eK2227DuHHjEBoa6u/mEZENhk6iAGUymbB06VLMmDEDBQUFAAA5IxjaE+Fc25OIiOotAQGlQSlMzfOBYAUA0KtXLzzxxBNITk72c+uIyB6GTqIAl52dja+//hrLly+HEMIyy+3pUGjOhEFSOOSWiIjqDyXCAFOLAnVW2kaNGuHxxx9Hv379IEncJhIFKoZOolriwIED+OSTT7B//37LDaUytKfCIacH83xPIiKq04TeBFPzAijxpQCA4OBgjB49GnfeeSf0er2fW0dErjB0EtUiiqJg7dq1+N///oe0tDQAZUuspIRDzuFGl4iI6hahVWBOKoS5cREgA5IkYfjw4bj//vvRoEEDfzePiNzE0ElUCxkMBvz444+YPXu2er6nlK2D9kQ45MIgP7eOiIioaoQsYG5cZJkkKMiyq9qrVy888sgjaNWqlZ9bR0SeYugkqsXy8vIwe/ZsLFmyBEaj5fwWOVMPzclwyMVaP7eOiIjIM0ISUBoVw5RUCOgskwS1aNECjz76KHr37u3n1hGRtxg6ieqAs2fPYvr06Vi9erVlsiEByOeDoT0VBqmE4ZOIiAKbgIDSsASm5AJ1RtpGjRrhvvvuw5AhQ6DRcNZ2otqMoZOoDjl+/DhmzJiB9evXW24QgJwWAm1qGJdZISKigGNd/sScXAARagYAxMXFYezYsbjuuusQFMRTRojqAoZOojro0KFD+Oabb7BlyxbLDQogp4dAezoMUinDJxER+ZeAgBJfAnNSoRo2IyMjcdddd+Hmm29GcHCwn1tIRL7E0ElUh+3ZswfffPMNdu/ebblBAHJGsKXnk8NuiYiohgmpbBht00IgxBI2w8PDMXLkSNx+++0IDw/3cwuJqDowdBLVA7t378bs2bOxfft2yw1l53xqUsM44RAREVU7IQkoCcWWsFl2zmZUVBRuv/123HzzzQybRHUcQydRPbJv3z7Mnj0bmzdvttwgAPmCHpozoZDzdf5tHBER1TlCo8CcUAxzYhGgt4TN2NhY3HHHHbjhhhsQGhrq5xYSUU1g6CSqhw4dOoTZs2djw4YN6m1SbpAlfGbpIUHyY+uIiKi2EzozzE2KYG5UDGgtu5rx8fG48847cd1110Gv1/u5hURUkxg6ieqxlJQULFiwAL///jtMJhMAQCrWWMJnRggkheGTiIjcp4QaYU4sghJfAsiW25KSknDHHXdg2LBh0Ok4qoaoPmLoJCJkZmbixx9/xNKlS1FQUGC50ShBczYUmnOhkEyyfxtIREQBS0BARBtgSiyCiDGot3ft2hWjRo1C3759IcvcjhDVZwydRKQqKirC8uXLsXDhQqSlpVluVCwz3mrOhUIu5HppRERkIWQBJb4Y5ibFEGGW0TKyLOPKK6/EqFGj0KFDBz+3kIgCBUMnEVViMpnw559/4vvvv8ehQ4fU26W8IGjOhUDODIYkOPSWiKg+UoJNUBoXw5xw8XzNkJAQXHfddRg5ciQaN27s5xYSUaBh6CQih4QQ+Pfff7FkyRKsW7dOPe8TBhmatBBo0kIgGTT+bSQREVU7AQElthTmxsXlhtAmJibixhtvxIgRIxAREeHHFhJRIGPoJCK3XLhwAb/88gt++uknZGZmWm60LrlyLhRSbhBnvSUiqmOEVoG5UTHMjYrU9TUlSUKfPn1w8803o3fv3jxfk4hcYugkIo+YTCZs2LABS5Yswe7duy/eUayBJj0Emoxg9n4SEdVi1omBzAnFUOJK1VloIyMjMWLECNx4441o0qSJfxtJRLUKQycRee3YsWNYsmQJVq9ejaKiIsuNApCzdJDTQ7jmJxFRLSL0ZpgTimFuWKz2agJA+/btcfPNN+Pqq6/m+ppE5BWGTiKqsuLiYqxbtw7Lly/Hnj17Lt5RKkOTEQxNegikEq3/GkhERHYJSUCJK4U5oRgi2gDrccLw8HAMHToUI0aMQJs2bfzbSCKq9Rg6icinTp48ieXLl+O3335DTk6OeruUGwRNRrBl5lszz/8hIvIXAQERboLSsBjm+BIg6OKuYPfu3XHdddehf//+7NUkIp9h6CSiamE0GvHXX3/hl19+wdatW6H+1CiAnKWHnBEMOVvPpVeIiGqICDbBHF8CJb4EItSs3h4fH49rr70Ww4cP57maRFQtGDqJqNplZGRg9erVWLlyJVJSUi7eYZQgZwZDcz4YUh5nvyUi8jWhVaDEl8AcXwIRaVRv1+v16N+/P4YOHYpevXpBo+EEcERUfRg6iahGHT16FL///jtWr159cekVACiRoTkfAjlTD6lQywBKROQlIStQYkuhNCyBEm1QZ5+VZRk9evTA0KFD0b9/f4SGhvq3oURUbzB0EpFfmM1m7N69GytXrsSff/6J4uJi9T6pWAM5U285/5MBlIjIJaEpC5oNSqFElwI2HZft2rXDkCFDMGjQIMTFxfmvkURUbzF0EpHflZSUYNOmTVizZg22bNkCg8Gg3scASkRkX7mgGXNxPU0ASExMxKBBgzBkyBA0a9bMf40kIgJDJxEFmKKiIvz1119Yu3ZtpQCKYg00mXrIF4IhFTCAElH9I7TWoFl+6CwAJCcn48orr8SVV16JVq1aQZL4G0lEgYGhk4gCVlFRETZv3oy1a9fi77//Lh9ADbJlFtwLesi5OkgKd66IqG5Sgk2WoBlXapkMyObnrnnz5mrQbNGiBYMmEQUkhk4iqhWsAXT9+vXYsmULioqKLt5pBuScsgCarYdk5DqgRFR7CQiISKMlaMaWllveBABatmypBs3mzZv7p5FERB5g6CSiWsdgMGD37t3YtGkTNm3ahIyMjIt3CkDKD7L0gmbreB4oEdUKQqNAiTaoQRNBF3fPNBoNunXrhiuuuAJ9+/ZF48aN/dhSIiLPMXQSUa0mhMDRo0exceNGbNq0CYcPHy5fwCBDztZBztZDztFBMrEXlIj8T0BAhJugRJdCiTFUGjYbHh6Oyy+/HFdccQV69+6N8PBw/zWWiKiKGDqJqE5JT0/HX3/9hS1btmDnzp0oKSm5eKcApAKtJYBm6yDlB7EXlIhqjAgyQ4kxWHo0Y8r3ZgJAUlKSGjS7dOkCrVbrp5YSEfkWQycR1VkGgwF79+7Fli1bsGXLFqSkpJQvYJQg5+osPaC5OkjFGoZQIvIZIQuIyLKQGW2ACDeVuz80NBQ9evRA79690atXLzRp0sRPLSUiql4MnURUb2RkZGDbtm3YunUrtm3bhoKCgvIFSmVLCM3VQc4JAkoZQonIfUIWEBEGKFHGspBpLLekCQC0a9dODZmdO3dmbyYR1QsMnURUL5lMJhw4cAA7d+7Ezp07sW/fvvJLsgBAiaz2hMq5OkgGjX8aS0QBSUgCIsISMJUoA0RE5ZCZkJCAbt26oWfPnujVqxdiYmL801giIj9i6CQiAlBaWop9+/Zh586d2LVrF/bv3w+zufwyBSiRIefpIOcFWc4H5cy4RPWK0CpQIoyWIbORRktPZoVjUfHx8ejWrZt6ady4MdfOJKJ6j6GTiMiOoqIi/Pvvv2pP6JEjRyqHUJMEKS8Icn4Q5LyyiYkU7lwS1QUCAgg2Q4k0WgJmhAEizFypXGxsbLmQ2bRpU4ZMIqIKGDqJiNxQVFSEAwcOYM+ePdi7dy/27duH4uLi8oUUWHo/8y1BVCoI4uRERLWE0CiWJUzCjZYhs5FGQKdUKpeUlIQuXbqol6SkJIZMIiIXGDqJiLxgMplw/Phx7N27F3v37sWePXuQmZlpp6BkCaEFQZDytZZ/eW4okV8JSUCEmSzhsixkihAzKh4fCgoKQrt27dClSxd07twZXbp0QXR0tF/aTERUmzF0EhH5gBACaWlp2LdvHw4cOICDBw/i0KFDlScnAiyz5OYHQSrQQioMglyoBQwye0SJqoGQBESo6WIvZrgRIsxUacIfwDLpT/v27dGhQwd06dIFbdu2hV6vr/lGExHVMQydRETVxGQyISUlBQcOHFAvJ06cgKJUHrIHowSpwBJApUIth+YSeUFoFYgwI5Rwk6UnM8wEEWI/YEZFRakBs0OHDmjXrh1iY2NrvtFERPUAQycRUQ0qLi7G4cOHceDAARw5cgRHjx7FqVOnKk9SBABmQCqy9IZKRVrIhRpIxewVJRKSgAgxQYSay3oxjVDCTIDezgEdAJGRkWjdujXatm2L9u3bo3379pxVloioBjF0EhH5WWlpKVJSUnD06FEcOXIER44cwbFjxypPVGRlkiy9oUVaSMVlYbRICxgZRqluUYfGhpogQszlrjv6qCcmJqJ169Zo3bo12rRpg1atWqFhw4YMmEREfsTQSUQUgBRFwZkzZ3D06FEcPXoUJ06cwIkTJ3DmzBn7w3MByxDdYq1lWK7135Ky61zKhQKUgAB0iiVUBpeFS2vADHYcLsPDw9GsWTO0aNFCDZgtW7ZEWFhYzb4AIiJyiaGTiKgWKS0tRWpqKk6cOIGUlBT137NnzzoOowBQKl8MoyWaskBadp2BlKqZgACClIuB0jZcBpsAJxM6R0REoEWLFmjWrBmaN2+OFi1aoHnz5oiLi2PvJRFRLcHQSURUB1jD6MmTJ3H69Gn1kpqairy8POcPNkiQSst6Rcv+he3/GUrJBTVUBpsh9GaIYKXsXzOgt9zmLFhqNBo0atQITZs2VS/NmzdH8+bNERsby3BJRFTLMXQSEdVxubm55UKo9d9z586hoKDAdQUGGVKpbFlftOxf9f/W+xQ704NSnaAOf9UpEDqz5brecl3oFKAsaNqbIdaWLMtISEgoFyytl8aNG0Or1dbMCyIiohrH0ElEVI/l5+cjLS0NaWlpOHfuHM6dO1fu/0VFRe5VZJIgGWRLD6lBhmSULRMbGWXL7Uab2wR7rfxNQAAaYQmNQQpE0MV/RZAC2IZKneLwvEpbsiyjYcOGaNSokd1Lw4YNGSyJiOophk4iIrJLCIH8/HycO3cOGRkZyMzMxPnz53H+/Hn1emZmpvvB1MoaUI0yJJNsmQDJJFtuL/dvhds4M28l1vAIrYDQKpYgqVUu/t/236DyAdNVz6QtWZYRGxuLBg0aID4+Hg0aNFAv1lAZHx/PUElERHYxdBIRUZUUFRWpYfT8+fPIzs5GVlYWcnJykJ2drf6bnZ1tfz1Sd5kkwCxBMkuAYnPdbL0u21yXACEBCixlFQmSgrLbLt4uWcsICbBuDctdt/zjKvCKiwVt/hWWfyUAsgBkASEDkETZ/y3XhSzKl9GUBUmNzfWKt8sCKAuZnoTHisLCwhAdHY2YmBjExMQgOjoa0dHR5UJlfHw8YmJioNE4OSmTiIjICYZOIiKqEUIIFBQUqAE0Ozsbubm5yM/PR35+PvLy8tTrthePe1KrpfEoH0Rtw2UAdMBqtVpERESol/Dw8HL/RkRElAuV1us6nc7fTScionqAoZOIiAKayWRCQUEB8vPzUVxcjOLiYhQVFbm8bjAYYDAYYDQaK123vc1gMFT7a9BqtQgKCoJOp4NOp0NQUJD6f+v1oKAgBAcHIyQkxO2LNVAGBwdzhlciIgpYDJ1ERFSvCSGgKIpHF1mWy10kSVL/1Wg05f6v1Wohy5zdl4iI6i+GTiIiIiIiIqo2PPRKRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Yahk4iIiIiIiKoNQycRERERERFVG4ZOIiIiIiIiqjYMnURERERERFRtGDqJiIiIiIio2jB0EhERERERUbVh6CQiIiIiIqJqw9BJRERERERE1Ubr7wYQEVUHIQRKSkr83QwiIo8EBwdDkiR/N4OIyKcYOomoTiopKcGwYcP83QwiIo+sXLkSISEh/m4GEZFPcXgtERERERERVRv2dBJRnafb2hCSkAFJhiSXDVuTZECWAEmCJMuAJFluAyzXZQmSTRnb2y1lpYv/t95nW16SAJTdV3abkCTLoT6pfJ0VbxfW+2Tr/WVVSRKEeqjQersESCj3GKHeZvN4lNUhS2V1XbwfgPoc6mOs5QHLc/5/e3cfFWWd/3/8dTGiYKiYmUKQqam5Wy6GaaaypYZkdSq1G9ez1VY/a09le9pOFieztLTymHrsbGvuWrlGtdVJqy1xLc1c8a4ULZIIb8obiJtAUQYYZn5/zFyXMzDczTAO+H0+zvFwcX0+n/f1mbmwfHFdc33q1jPbfMbJ51i+82hgjNf3p8d5vqqRcX6OV28efmr6aHSMq/5xfI7lqvNaT4+T1zgZLutwLuN0u+HdZtU221zWsYw6/Q3D5fPjaB7D8PQ1PDXdP1Iua5/7R9Vl1XS3ufcZhsu3zXDJkO/+CM92hGese1u+bdYY5+lxMvs7ZTNOb1vjdLq/2W622WTud3rtd7prmTW96ln9PV8j5B7rnof7+O42p2ye791vv1M2zz5zjM1zziLk6et5beb26Tm6PHPQ6f2S53tDEZJshqEIzwl17zM8+yJkyJDNiJC9ytDk/9dbAHC2InQCOPvVGu5//hnuf+RJ8gRMT+iUJ3RGmInOnSIMd4KTb3rxjPObeiJ8E5Hh3VYvtTSy7Z2O6rabm2Z49PpqdTe8Shl1yhu+IdBnnJ/xkif8NtBm+Pnjdx5NjGnJWxVkzeYF1VYMnd7H9Wn3Hzq9x9Tr76fNsOq46tR0+Y7x7udzLJdvm1foPB1ivQJsQ21eYdQndHrti5BvWDUD2+nQaQZST0AzzNDmZjMMRRiGbJLPV8mrvwxPLclmHsuzbbNqN9BmbZ+ev82a5+mQ6T1/f6Gzbj1r/j77zDme/sUEAJytuL0WAAAAABAyhE4AAAAAQMgQOgEAAAAAIUPoBAAAAACEDKETAAAAABAyhE4AAAAAQMgQOgEAAAAAIcM6nQDOfjaXXC6ne11Cc5FAc9vwLKLns56lUWcdTMNrv8urvYm2OgtFuhpYfLLu/tPfm+1+tl3mtruvNcZ1ettVb7y8FpQ8XbM+wz3YqNOt7tqbPvvrvSw1a51OBdjWWM0mjme9rEbH1F1vs249V/36fsd5vfte44xG1uk0vGobdfq718Q02+oco+46nQp8nU6XZ6zLs9/l2XZ52lxe65R673caLslwer1u81hOz7qennavebgMp/s45nE9NeU5Tt39EZ7vvb+6j3R6n9Pz19rptRan05Cccv+1d3q1GfK3TqfhGWe41/30vN/mtuS13qfXtnksa51RmeuMuuu59xnWPsOzba/y9/cQAM4ehE4AZ73q4b+Eewqh4fk3fKDqZkrAZP5oOcM9kYCZiZwbugCgLeC/xgAAAACAkDFcLlcQvycHgLbJ5XLJbreHexpoJXa7XTfddJMkac2aNYqKigrzjBAozmXjoqKiZBjcewDg7MLttQDOSoZhKDo6OtzTQAhERUVxbs8SnEsA+L+B22sBAAAAACFD6AQAAAAAhAyhEwAAAAAQMoROAAAAAEDI8PRaAAAAAEDIcKUTAAAAABAyhE4AAAAAQMgQOgEAAAAAIUPoBAAAAACEDKETAAAAABAyhE4AAAAAQMgQOgEAAAAAIUPoBAAAAACETIdwTwAAcPY4deqU3nnnHX355ZcqKChQRESEEhMTNXbsWE2ePFmRkZEB1y4tLVVGRoaysrJUWFioTp06qW/fvkpLS9P1118vwzD8jispKVF2drZ++OEH68/x48clSUuWLNHQoUMDntPZri2ez8OHD2vz5s3avXu38vPzVVpaKpvNpvPOO09DhgzRLbfcokGDBgU8LwBA6zNcLpcr3JMAALR/BQUFmjFjhgoKCiRJUVFRcjqdqq6uliQNGDBAixcvVpcuXVpcOzc3V4899pjKy8slSdHR0aqurlZtba0kafjw4Zo/f77fELRixQq98cYbfusSOhvWFs/n3r179eCDD/rs69y5s2pqalRTUyNJioiI0B//+Efde++9LZ4XACA0uL0WABA0h8OhJ554QgUFBerRo4defvllrVu3TuvWrdPs2bPVuXNn5eXlae7cuS2uXVFRoZkzZ6q8vFwXXnihXnvtNWVmZmrdunX6y1/+og4dOmj79u1aunSp3/GGYej888/X6NGjde+99+rxxx8P9uWe9drq+XQ4HLLZbBozZozmzJmjjz/+WGvXrtW6deu0bNkyDRkyRE6nU2+++aY++eST1ngrAACtgCudAICgffLJJ3rppZckSX/729906aWX+rSvX79ec+bMkSQtWrRIycnJza79j3/8QytXrlSnTp305ptvKj4+3qd91apVeu2112Sz2bRy5UolJib6tNfW1spms1nfHzt2TLfffrskrnQ2pK2ez19++UVVVVX1zrGppqZG06dPV35+vi644AK9/fbbzZ4XACB0uNIJAAja2rVrJUlDhw6tF1Akady4cYqLi/Pp21yZmZlWjboBRZImTZqk6Oho1dbW6r///W+9du/AieZpq+fz/PPPbzBwSlJkZKRSU1MlSUeOHNGJEydaNDcAQGgQOgEAQbHb7fr2228lSVdeeaXfPoZhaMSIEZKkHTt2NLv2Tz/9pMLCQkmyxtfVuXNnDRkypMW14V97P58dO3a0ts3PiAIAwovQCQAIyqFDh+R0OiVJffv2bbCf2VZaWmo9PbYp+/fvrzfen379+kmSDh482Ky6aFh7P5+7du2SJPXo0UPdunVr8XgAQOsjdAIAglJcXGxt9+zZs8F+5513nt8xjSkpKWlR7ZMnT+rUqVPNqg3/2vP5/Pbbb7V582ZJ0g033NDgsisAgDOL0AkACIp3KOjUqVOD/aKiovyOCVdt+Ndez2dZWZnmzJkjp9OphIQETZ06tVnjAAChR+gEAADt2qlTp/Tkk0+qoKBAnTt31pw5c9S5c+dwTwsA4EHoBAAExfsf91VVVQ32s9vtfseEqzb8a2/ns7KyUjNnztR3332n6OhovfTSS7r44oubNR8AwJlB6AQABMX7s31FRUUN9vP+3J/3mMb06NGjRbXPOeccQmeQ2tP5NANndna2oqOj9eKLL1pPvgUAtB2ETgBAUPr06aOICPf/Tg4cONBgP7Pt3HPPVdeuXZtV23yKaVO1zaeiXnTRRc2qi4a1l/NpBs7du3crKipKL774opKSkpo1DwDAmUXoBAAEJSoqSpdeeqkkadu2bX77uFwubd++XZJ0xRVXNLt2YmKievXq1WjtyspK7dmzp8W14V97OJ+VlZV6/PHHtXv3buuWWgInALRdhE4AQNDS0tIkuddIzMnJqde+YcMGHT161KdvcxiGoQkTJkiSvvjiCx07dqxenw8//FCVlZWy2Wy69tprA5k+6mjL59MMnN631BI4AaBtI3QCAIKWlpamfv36yeVyadasWfr6668lSU6nUxs2bNCCBQskSSNGjFBycrLP2BUrViglJUUpKSl+Q8gdd9yhc889V3a7XTNnzlRubq4kqaamRqtXr9Y///lPSdKNN96oxMTEeuOdTqfKysqsPydOnLDaKioqfNqqq6tb5w1p59rq+bTb7XriiSeswMkVTgBoHwyXy+UK9yQAAO3fsWPH9Mgjj6igoECS+zZNp9NpBbkBAwZo8eLF6tKli8+4FStW6I033pAkvfvuu4qLi6tXOzc3V4899pjKy8sluZ9oWl1dLYfDIcl9G+b8+fPVsWNHv/O6/fbbm/UannzySV133XXNe8FnubZ4PteuXat58+ZJkjp27KiYmJhGX8PcuXN12WWXtfCVAwBaW4dwTwAAcHaIi4vTG2+8oXfeeUdffvmlCgoK1KFDB/Xt21fjxo3T5MmTFRkZGVDtQYMG6c0331RGRoa2bNmiX375RVFRUerXr5/S0tI0ceJE6+E3aB1t8Xx6/568urpapaWljR7HDLEAgPDiSicAAAAAIGT4tTAAAAAAIGQInQAAAACAkCF0AgAAAABChtAJAAAAAAgZQicAAAAAIGQInQAAAACAkCF0AgAAAABChtAJAAAAAAgZQicAAAAAIGQInQAAAACAkCF0AgAAAABChtAJAAAAAAgZQicAAAAAIGQInQCAsFuyZIlSUlL08MMPh3sqCLOKigpdf/31SklJ0aZNm8I9HQBAK+gQ7gkAAAJ38uRJ5eXlad++fcrNzVVubq6OHDkil8slSXr33XcVFxcXkmO7XC5NmTJFRUVFmjZtmu6///6A6uTl5Wn16tWSpOnTp7fiDMNr//792r59u/bu3av9+/erpKREtbW16tKli/r376+RI0cqLS1NMTEx4Z5qmxITE6M77rhDy5cv19KlSzVixAh16tQp3NMCAASB0AkA7diMGTOUl5cXlmPv27dPRUVFkqQxY8YEXOfVV19VbW2tRowYocsuu6y1phdWM2bM0O7du/22lZaWqrS0VDt27NCqVauUnp6u4cOHn9kJtnFTpkzRe++9p8LCQr3//vuaNm1auKcEAAgCt9cCQDtmXtGU3FeIhg4dqnPPPfeMHPurr76SJPXs2VODBw8OqMaePXu0c+dOSTqrgoUZxrt06aKJEycqPT1dr7zyipYvX645c+Zo5MiRktwBND09XdnZ2eGcbpsTHR2tyZMnS5IyMjJ06tSpMM8IABAMrnQCQDs2ceJExcbGatCgQUpISJBhGJoxY4ZKS0tDfmwzdI4aNUqGYQRU4+2335YkxcXF6Xe/+12rzS3cEhISdOedd2rcuHHq2LGjT9ugQYN09dVX66233tKyZctUXV2thQsXauXKlWGabduUmpqqFStW6MSJE/rPf/6jW2+9NdxTAgAEiCudANCOTZkyRePHj1diYmLAwS8QP//8sw4dOiQp8Ftri4qKlJWVJUmaMGHCGZ1/qC1YsEDXXXddvcDpbdq0aRowYIAk6eDBg8rPzz9T02sX4uLiNGTIEEnSRx99FObZAACCwZVOAECLmU8VNW/pDcT69evldDolSWPHjm3WGIfDoS+++EKbN2/Wvn37VFZWptraWsXGxqpfv34aNmyYxo8frx49eviMS0lJkSSlpaUpPT1dP/30k95//33t2LFDxcXFOuecczRw4ED94Q9/UFJSkjWuqqpKn332mTIzM3X48GHZ7XbFx8fr2muv1a233hr0A24uv/xy6zO5P//8s/r37x9wrYMHD2rNmjXKzs7WsWPHZLfbFRMToy5duiguLk7JyckaPXq0LrzwwoDqOxwOrVu3Ths2bND+/ftVXl4uwzDUtWtXxcbGavDgwRo2bJhGjRqlyMhIn7F13/+DBw/qww8/1M6dO1VcXKzKyko9//zz9X6BMXbsWGVnZ+vQoUPat2+fLrnkksDeHABAWBE6AQAtZt5aO3LkSHXoENj/SrZs2SLJ/bnHPn36NNn/xx9/1NNPP63Dhw/XaysqKlJRUZG2bdum/Px8paenN1hn48aNmjdvnux2u7WvqqpKW7du1bZt2/TYY4/pxhtvVHFxsdLT07Vv3z6f8QcOHNBrr72mrVu3auHChUEFT4fDYW1HRAR+89GaNWu0ePFi1dbW+uwvLy9XeXm5Dh8+rB07dig/P1+zZs1qcf2ysjL99a9/9fvQKvO9z8vL00cffaSMjAwlJCQ0WOuzzz7TwoULVV1d3eRxvR8stWXLFkInALRThE4AQIsUFxfr+++/lxT4rbXV1dX67rvvJEmDBw9u8tbavLw8PfTQQ6qsrJQkDR06VKmpqerTp48iIyNVUlKinJycJtd1zM/P1xdffKHu3btr+vTp1rG//vpr/etf/5LdbteiRYuUlJSk5557Tj/++KNuvvlmjR49WrGxsTpy5IhWrlyp/Px87dmzRxkZGfrTn/4U0HsgSd9884213bdv34Bq7N+/3wqcXbt21Y033qikpCTFxsaqtrZWJSUlys3N1datWwO+hXnx4sVW4ExOTlZqaqri4uJ0zjnn6OTJkzp06JCys7Ot26Ubkpubq/Xr16tr16669dZbddlllykyMlIHDx5U79696/Xv27evoqOjVVlZqW+++Ub33HNPQPMHAIQXoRMA0CKbN2+Wy+VSx44dNWLEiIBq5OfnW1f5Bg0a1Ghfh8Ohp59+2gqcjzzyiPVkU29XXXWV7rvvPhUWFjZYKy8vTwMGDNDixYvVpUsXa/9vfvMbJSQkaPbs2XI4HHrooYd0/PhxLViwQMOGDbP6DRw4UFdccYXuvPNOFRcXa/Xq1brzzjtls9la9Pol9y3KBw4ckOQO3omJiS2uIUkbNmywrnAuWrTI+pyotzFjxui+++5TeXl5i+tXVVVZYX7MmDF67rnn6oXXpKQk3XTTTaqsrGz0iu2BAweUkJCgV155xecpyw09/dhms2ngwIHKzs7WDz/8IKfTGdQVYQBAePBfbgBAi5i31g4bNkzR0dEB1fC+RbapJV7Wr1+vI0eOSHI/rddf4PTWq1evRtufeOIJn8Bpuvrqq9WzZ09J0q+//qpJkyb5BE5TTEyMrrvuOqvfwYMHGz2eP8XFxXr55ZclSYZh6M9//nOLa5jMJxXHxMT4DZzeunXr1uL6J06csH5BkJSU1OjV0ujo6CZvN3700UdbtKyP2ddut6u4uLjZ4wAAbQehEwDQbBUVFdq1a5ekwG+tlaSSkhJru2vXro32NUOuJE2dOjXgY0ru2zUbCmaGYfi0paamNljHu9/Ro0dbNAe73a709HQrLNZ9eFFLmUG5oqJCGzZsCLhOQ7p162Y9hffzzz8Pas3Mnj17+g3yjfH++fD+uQEAtB+ETgBAs2VlZcnhcMhms2nUqFEB16mqqrK2/V119PbDDz9Icl/xas4DhxrT1HjvuTT2lFfvfi0JYTU1NXrqqaeshxONHj1a9913X7PH+5OammpdXZw9e7YefPBBvfXWW9qzZ491S3IwIiMjlZaWJknKycnRbbfdpgULFujzzz9vceAO5Om83qHT++FPAID2g890AgCazbzqeOmllyo2NjbgOt6fgWzqKaZlZWWSTl/RC0ZUVFSj7d63jjZ267D35wrNZV+a4nA4NGvWLG3fvl2SNHz4cD3zzDMBfR7UW3x8vF544QXNmzdPRUVF2rt3r/bu3SvJ/T5fcsklSklJ0Q033NBkwG/Iww8/rOrqamVmZur48eP6+OOP9fHHH0ty/zJg+PDhmjhxYpNXbJu6qu2P9y8oAn1SMgAgvLjSCQBolurqam3btk1ScLfWSu7PH5qOHz8eVK32wOFwaPbs2dYyMcOGDdPzzz9v3bYarOTkZL399tt69tlnNXHiRGvJktraWn333Xd69dVXNXXqVCvwtlSnTp2Unp6uVatW6d5779Xll19uhfLS0lKtXbtWM2bM0FNPPeUTEusK5CFA3g8/8v65AQC0H/zKEADQLDt37rRu1ww2dHovj9FU6IyNjVVhYWG7fYiMGTjNq8SXX3655s+fH9T6nv507NhR11xzja655hpJ7ivEX3/9tTIzM7V161YdP35cs2bNUkZGhnr06BHQMRITE3XXXXfprrvuUm1trfLy8rRlyxatWbNGv/76qzZt2qTly5froYcearXXdeLECWu7qYdEAQDaJq50AgCaxQxNAwYMUFxcXFC1vNek/Omnnxrtay6pUlJS0mTftqZu4Bw6dKheeOGFVg+c/sTGxmrcuHF66aWXdPPNN0uSKisrtXnz5lapb966e8899+jvf/+7devy+vXrW6W+6dChQ5KkuLg4de7cuVVrAwDODEInAKBJTqdT//vf/yS5H34TrF69eum8886TJH3//feN9k1JSbG2MzIygj72meJwOPTMM89YgTMpKUkvvvhik58rDYXhw4db2+ZnZFtTXFyctc5oIGuBNqSsrMxaLue3v/1tq9UFAJxZhE4AQJP27t1rhRXvEBgMMwgdOnRIJ0+ebLDf2LFjrUDz6aef6oMPPmi0bmFhYavMLxgOh0Nz5szRpk2bJIU2cH755ZdNBknzs7iSdMEFF7So/tGjR7Vz585G+xw7dsy6IhkfH9+i+o3Jycmxtq+88spWqwsAOLP4TCcAtGOHDx+2nlRqMtd/lKSNGzf6PGU2OjpaV199dYuPY16ti4+PD2jZC3+uueYaffrpp3I6ndq5c6d+//vf++3XoUMHPfvss3rwwQdVWVmpJUuWaNOmTZowYYL69OmjyMhIlZSUaN++fdq4caMGDRqk9PT0VpljoObOnauNGzdKcoe8Bx54QMeOHWt0TPfu3dW9e/cWH+uDDz7Q3LlzlZycrOTkZF100UXq1q2bampqVFhYqPXr11tXqXv37t3ipW4KCwv16KOPKj4+XqNGjdLgwYPVq1cvderUSeXl5crJydHq1autpxBPnjy5xa+hITt27JDk/rzqyJEjW60uAODMInQCQDu2d+9ezZ8/v8H2V1991ef73r17BxU6W+PWWtOwYcPUs2dPFRUVKTMzs8HQKUkXX3yxli5dqqefflpHjx7Vrl27tGvXLr99zc+AhtOGDRus7SNHjuiBBx5ocszdd9+te+65J6DjVVdXKysrS1lZWQ32ueCCCzR//vxGl4JpzNGjR/Xee+812B4REaGpU6fqlltuCah+XQ6HQ59//rkk99X1QJd7AQCEH6ETANCoH3/80bpKF+xTa73ZbDZNmjRJy5Yt09atW1VWVtbo2p8DBw7UqlWrlJmZqa+++kp5eXnW5we7d++u/v3764orrtD48eNbbY7twezZs7V9+3ZlZ2dr//79Ki0ttW637datmy6++GKNGTNGqampAS3RMmTIEL3yyivauXOncnJyVFhYqF9//VUnT55UVFSU4uPjNWTIEN1www2tdhVckvUzIUlTpkxptboAgDPPcLlcrnBPAgDQdr3++ut6/fXX1b17d3344YcBrbXYkIqKCt1xxx06fvy47r//fk2bNq3VaqN9mzlzprKyspScnKxFixaFezoAgCDwICEAQKPMW2uvuuqqVg2ckhQTE2MFzXfeeUenTp1q1fpon3JycpSVlSXDMDR9+vRwTwcAECRCJwCgQTU1NRozZozuvvtuTZo0KSTHmDx5shISElReXq5///vfITkG2pfly5dLkiZMmKDBgweHeTYAgGBxey0AIOy+//57ZWVlKSYmRrfddlu4p4Mwqqio0HvvvSeXy6VJkyY1+jlfAED7QOgEAAAAAIQMt9cCAAAAAEKG0AkAAAAACBlCJwAAAAAgZAidAAAAAICQIXQCAAAAAEKG0AkAAAAACBlCJwAAAAAgZAidAAAAAICQIXQCAAAAAEKG0AkAAAAACBlCJwAAAAAgZAidAAAAAICQIXQCAAAAAEKG0AkAAAAACBlCJwAAAAAgZP4/ChrM3TIQG1YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACqJ0lEQVR4nOzdd3xTVeMG8OfeJG3TPWmh7L03soeAOHgVEV7cgLgHPxXHixvUF+crigMnAg7EATgQ2SAoe0/ZLbtA98y45/dHmkvSJmnSJE3aPt/PJ5+mueeenI7ce597zj1XEkIIEBEREREREfmBHOgGEBERERERUc3F0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+w9BJREREREREfsPQSURERERERH7D0ElERERERER+45PQeeLECUiSBEmSMH78eF9UWSsNGjRI/T0SETkzfvx4dVtx4sSJQDdHNXv2bLVds2fPDnRzyMcURUG3bt0gSRImTpwY6OaQH61Zs0b9LE+ZMiXQzSEKCjU575jNZrRq1QqSJOGZZ57xy3tUWU/n7NmzMWXKlFq18Vq0aJH6M2dnZwe6OVTKZDJhxYoVmDx5MgYPHoy6desiNDQUkZGRaNasGW655RYsWrQIZrPZo3r37t2LiRMnonXr1oiMjERMTAw6dOiAyZMnIy0tzU8/DRHVJo0bN1YPeip6DBo0yKfv/emnn2L79u0ICwtzeVBy4sQJ/PTTT3jmmWcwbNgwJCQkeN0mX25f09LSMHnyZHTo0AExMTGIjIxE69atMXHiROzbt8+jui5cuIBXXnkF3bp1Q3x8PMLDw9GsWTNMmDABGzdu9Kgud9WWfc3111+v/t988cUXHq+fnp4OjUYDSZIQHx+P4uJij+u4dOkSli1bhmnTpmHUqFFo1KiR3WfMXbZhxZ2HO8fKQggsXrwYt912G1q0aIHIyEjodDokJiaiT58+ePbZZ3H06FGPf2arrKwspKSk2LXLlyc5CwsL8dlnn2H48OGoX78+wsLCEBYWhnr16mHYsGF477333D52Li4uxsyZM3HNNdcgJSUFoaGhSEpKQs+ePTFt2jRcunTJZ+0OtIkTJ6p/jxdeeMHj9QsLCxETEwNJkqDVanHmzBkAgEajwfPPPw8AeOedd3DkyBGfthsAIHzg+PHjAoAAIMaNG+ewzMCBA9UytcW4cePUn/n48eMVlq+Nv6OqtmrVKhEfH6/+nl09evToIY4cOeJWvW+99ZbQ6XRO64qKihLz5s3z809HtYWn25aq8uWXX6rt+vLLLwPdnBqpUaNGbm2/AIiBAwf67H0LCgpESkqKACD+7//+z2m5GTNm+LxNvty+fv311yIyMtJpXSEhIeKdd95xq67ly5eLOnXqOK1LkiTx5JNPevzzulJV+5rVq1erdb700kveN7wSfvrpJ7UN/fr183j9l19+WV3/oYce8nj93bt3V/gZc5ftcbI7j4p+5xcuXBCDBg2qsJ6QkBDxxhtvePyzCyHE+PHjy9Xnq/3Nli1bRJMmTSpsf506dcTSpUtd1rV161bRuHHjCuv5448/vG63O3nH37Zt26a2oWHDhkJRFI/Wnzt3rrr+ddddZ7fMZDKJli1bCgDilltu8WWzhRBCaOEDjRs3hhDCF1XVamvWrAl0E2q806dPIzMzEwAQHx+PoUOHolevXqhbty6MRiM2b96MuXPnIjc3F1u2bMGVV16JzZs3IyUlxWmdH3/8MZ566ikAgE6nw5133omBAwfCaDRi6dKl+PHHH5GXl4c777wTsbGxuOaaa6rkZ6Waa/bs2Ry+WsslJSXh008/dVkmMTHRZ+/30Ucf4dy5c9BoNHj66aedlis7QkSv16NFixbYvXt3pd7Xl9vXxYsXY9y4cTCbzZAkCaNHj8bVV18NnU6HtWvX4quvvoLBYMCkSZMQFRWFe+65x2ld27Ztw4gRI1BYWAgAuOqqqzBq1ChERkZi8+bN+OKLL1BQUIC3334boaGhePXVVyv18/vrd1EdXH/99UhMTMTFixexfv16HD16FM2aNXN7/Tlz5qjP77rrLo/fv+z/skajQevWrXHs2DEUFRV5XJ/VlVdeif/7v/9zWaZ169ZOl5lMJlx77bXYunUrACAsLAxjx45Fp06dEBcXh5MnT+LXX3/F+vXrYTAY8J///AeRkZF46KGH3G7j8uXLMXv2bMiyjJCQkEr1EjuTlpaGoUOHIicnBwCQkpKC8ePHo0WLFtBqtTh27Bjmzp2L48ePIyMjA9dffz02bdqEzp07l6tr3759GDx4MHJzcwEA7dq1w5133okmTZogOzsbS5Yswc8//4yMjAyMHDkSK1asQJ8+fXz2swRC165d0bFjR+zevRvp6elYtWoVhgwZ4vb6tscOZT8X1u37Pffcg++//x4vvPAC2rZt66umV12XWm3sxQvW3oja7KuvvhIdOnQQ3377rSguLnZY5tSpU6Jdu3bq327s2LFO6ztz5owIDw8XAIRWqxXLly8vV8a296dBgwaiqKjIZz8PUTBhT6f/WXs6GzVqVGXvaTQaRYMGDQQAMWzYMJdlFy5cKB5++GExa9YssWvXLmEymex6Bzzp6fTl9rWgoEDUq1dPLTt79uxyZZYtWya0Wq0AICIjI8W5c+cc1qUoiujatata15QpU8qV2blzp4iOjhYAhCzLYvfu3W7/3I5U9b4mGHo6hRDi0UcfVdvxwgsvuL3en3/+qa7Xvn37Sr33kSNHxNixY8V7770n/vrrL1FQUCCEsB9t4C5f9pDZ9lQ1aNBAnDhxwmG5Tz/9VC2XmJgojEajW/UXFBSovZATJ060+3l9cSw7YcIEtb6rr75aFBYWlitjNBrF2LFj1XIjRoxwWFfPnj3VMnfccYfDn/HHH38UsiwLAKJVq1Zu/x4cCYaeTiGEmD59utqOO++80+310tLShCRJAoBISEgQJSUl5crk5OSIsLAwAUDce++9vmy2YOj0I4bO4JOVleXWUIQ9e/aofzu9Xq/ubMp67LHH1HJPPfWU0/r+/e9/q+U++OCDSrefKJgxdPpfIELnwoUL1b/r3LlzPV6/sqHTl9vXd999Vy3z73//22ldTz31lFrO2dDYRYsWqWV69uzpdJ/y4YcfquVGjx7t4ietWFXva4IldO7cuVNtR6NGjdweSmgbbP73v//5tE2BDp233367WteHH37osmy3bt3Usu6e+Hj88ccFAJGamipyc3N9HjpTU1PV+vbt2+e0XFZWlnoSKD4+vtzyjRs3qvWkpqa6PMny0EMPqWU///zzSrc9WEJnRkaGOsw+IiJC5OXlubWe7ZDziRMnOi1n3Y7o9XqRm5vrq2b7JnS6+iPYhk1XD2cbNbPZLObPny/GjBkjGjduLPR6vYiMjBStWrUSDzzwQIUfopdeekl9j9WrVwshhFixYoW45ZZbROPGjUVoaGi5D5LRaBR//PGHmDRpkujbt69ISkoSOp1OREZGihYtWohx48aJtWvXOn1P27Dp6uHqd1WRjRs3invvvVe0bNlSREZGivDwcNG0aVMxduxYsXLlygrXL3sAkJ+fL9566y3RrVs3ERsbK8LDw0Xbtm3F5MmTRWZmZoX11UStW7dWf0+7du0qt1xRFHXjKUmSSE9Pd1rXunXr1Lr69+/vz2aX8/fff4sHHnhAtGnTRsTExIjQ0FDRoEEDMWbMGPHbb7+5XNfRgUdaWpqYNGmSaNWqlQgPDxcxMTGid+/e4sMPP3T7DGJeXp6YPn26GDp0qKhbt64ICQkRcXFxonv37uKFF14QGRkZLtcv+1kxmUziyy+/FEOHDhX16tUTGo3G4UH5uXPnxFNPPSXatGkjwsPDRVxcnOjRo4d4++23y53FLrv+kiVL3NpY25o4caK6zu+//+7WOu6o6ISWv/5uv/76q/jXv/4lkpOTRWhoqGjUqJG47bbbxN9//y2E8Cx0lpSUiM8//1xcf/31on79+iI0NFTExMSIDh06iEmTJjk9uDl48KDa4xMdHS2OHTvm9D0yMzPVHjpZll1ut6uLQITOm266ST0AcffgxlZlQqevt6+9e/dWy6xfv95pXenp6WpPQMOGDR2WufXWW9W6vv76a6d1FRQUqL2der1e5OfnOy3rSiD2Ne6GziNHjoimTZuqbXN2PeySJUvEuHHjRPPmzUVkZKTQ6/WiadOmYty4cWLdunUu29KlSxe1Le4c3xQUFIioqCgBWHqFz58/X+E6ngh06LzqqqvUupYtW+ayrO3/6oYNGyqse9OmTWqv4IIFC4QQwueh0/aaZIPB4LJs3bp1BQARGhpabtm0adPUeh577DGX9dgG1MGDB1e67e7+HTMyMkT37t3Vso8//rjDEybeHJ+NHDlSrf+LL75wq/3NmjVT19m+fbvTcrYn1mbNmuVW3e4I6tB55MgR0blzZ5frybLscsiFbehctWqVePjhhx3WY/tBcufibOvP6qhr2p+h02g0invvvbfCuseMGeNwyIKV7QHA0aNHRdu2bZ3W1ahRo1rZU9ujRw/1d7Bx48Zyy217QysavmM2m+2GWvnyzJEz+fn54uabb67wf2X48OFO21P2wGPJkiUiNjbWaV1XXXWV02HLVr///rvLyTcAy2QYP//8s9M6bD8rly5dEv369XP4f2tr1apVIi4uzul7dujQQaSnpzs9qDebzeqQo7i4uAqHrhUVFanv17BhQ2E2m12W94SnodPbv5vJZHK5XZNlWbzxxhtuh053JpEICQkRH3/8scP1bYeN9e7dW5hMJoflRo8erZZ77rnnXP5Oq4uqDp3FxcVqyB8wYECl6qhM6PTl9jUnJ0cNkjExMRV+Fm0vr3DUE5OQkKAuv3Dhgsu6hg8frpZdvHixy7LOBGJf407o3L59u0hOThaAJdx99dVX5cpkZGSIwYMHV7gfuvvuu50GENvJqVxd7mJlO/zU2bBMbwQ6dN5xxx1qXRX1dFqDj0ajEZcuXXJZ1mAwiA4dOpT7vfk6dNavX9/l58vKtqezc+fO5Zbb9l7OnDnT5XtmZmaqZTUajdPRaxVx5+94/PhxdTIeAOK1114rV8YXx2e//PKLWs6dbbPtkPNOnTq5LJudna1uM335GfJ76Fy3bp1YuHCh3UZ84cKF5R4HDhywW+/IkSMiMTFRXadfv37i9ddfF/PmzRNff/21ePzxx+0OIJ1tFG1D57XXXisAiJSUFDF58mTx9ddfi9mzZ4uHHnpInDlzRl2nZ8+eIjIyUowYMUK8/PLLYu7cueL7778X7733nrjvvvtERESEWuejjz5a7j23bdsmFi5cKK688kq13CeffFLuZ962bZvdeu6EzltuuUUtExYWJu6//34xZ84c8fXXX4vHHntMPbsHWMbKOxuKYi3TpUsX0bp1ayFJkhgxYoSYOXOmmD9/vnjttddEw4YN1XJV3TsXaCUlJXYH6WfPni1XZt68eR7tRGz/vps2bfJDqy8rLi4WvXr1Ut+vWbNm4tlnnxVfffWV+O6778Srr75qt1EcPHiwwwMx2wOPESNGiPDwcKHX68X9998vZs+eLebNmyeeeOIJu8+Eq5NAP/74o9BoNAKA0Ol0YtSoUeL9998X33//vfj888/F7bffrp4FlWXZ6Vlt29+l9XPdqVMn8frrr4vvvvtOfPrpp+KRRx5Ry+/bt089cLb+3//vf/8T8+fPFzNmzBB9+/ZVA4y1R8HRQb3tmVVXPRxCWK4ftpadOnWqy7Ke8iR0+uLvZrtzDwkJEffee6+YM2eO+Oqrr8TEiRPV3+2NN96olnMWOv/++2+1vCRJ4pprrhHvvPOOmD9/vpg9e7a4//777f5WzuoZNWqUy7Z//vnn6vJevXp5dR1PMLEeAEZGRoohQ4aoI3ESExNFjx49xNNPP+32rNvuWLlypfp7rOxMrJUJnb7cvm7YsMGj97f9fM2fP99u2dmzZ9Vl7gR/22OQys4iGoh9TUWhc9WqVWq4DQ8PdziS49KlS3Y9K506dRJTp04V33zzjZg3b5547rnn7IZaOvvZLl68KEJCQgTg3lBC25C7aNGiyvz4LnkbOps2bSq6d+8uYmJiREhIiKhbt6646qqrxFtvvSWys7MrrOuHH35Q63L3ms7x48dXWK916GVUVJQ4efKkw5/XF6HTtvPH1TWdtp9DR9dgP/jgg+pyT0InALFly5ZKtb2i0Ll792712nGNRuOwB9JXx2dGo1E96SNJkjh69KjLttsOOX/33Xcr/FnbtGmj7mucndj1VFDeMsVsNqsX6YeGhorvv//eYblz586pPaGyLIu9e/eWK2O7wQcs4TUnJ8fl+69YscJlL+HFixfVnhVZlp0O7/L1LVO+++47dXlycrLDM0QnTpyw60Fwdk2H7e8kJCRE/Prrrw5/Ttu6vAlKBQUFDk82VOZRNqz7g21g6Nq1q8MyU6dOdblTLsv2onhHZ4R9qez1P44OuA0Gg12bHG20bQ88AEuP3aFDh8qV27Rpk3pGMi4uzmGvWXp6unqQ0rBhQ6dD4zdt2iRiYmIEAFG/fn2HZ7/LjqB47LHHXPZe2PaEPvTQQw7Llt1WOBueaw3FFR28DhgwQN3x2O7AfcGT0Ont38327GhsbKzYunVruTIHDx5Ub6fhKizm5uaqw11jY2PFmjVrHP58hw8fVk96RUREOOxNyszMVM+YazQauyF6//zzjxqoo6OjK9wZV+TAgQM+235V1DNWEXdumaLRaMTkyZN9cqBge6Llhx9+qFQdlQmdvty+zpkzx6PQ9uKLL6rlX3nlFbtla9eu9ehnmTVrllr+7rvvrrC8I4HY17gKnT/++KN6aVJ8fLw6vL4s60koSZKcHuTm5eWJYcOGqe+1ZMkSh+VsRy24Gu534sQJtYemTp06fjnZ5G3odPWIiYkpd6KjLEVR7IZWhoWFifvuu0989NFHYt68eeLNN9+02+eNHDmywqC+f/9+9W/63nvvOf15fRE6L1y4IJo3b67WmZKSIp555hkxa9YsMXfuXPHSSy+px56yLJf7DFrZfi4ef/xxl+9pO7wWqPiksTMVdbJZOyvCwsKcnvDw1fGZEEI8+eSTapkXX3zRabtth5zrdDq39kO2t8xxdIlZZQRl6LS9N9OMGTNclv3nn3/UnhNHsyzZHkhGRESI06dPu/UzVeTo0aNOd0pWvg6dttc1uLo+bNOmTepGt1GjRg4PPGw/fC+//LLTuj777DO3ylXE03tUuXr4++LtzMxM9ToCVwda1ovtAYj333+/wno9LV9ZZ86cUc8K33TTTS7LGgwG9XqcFi1alFteNrz8+eefTuuyndzAUTnr9Y0ajUbs2LHDZbu++OILta5vvvmm3HLbz0q3bt1cBs4tW7aoZdu3b+/yQNy2Xme9GLYTdTgKckJYtkvWMsOHD3f5s1aGp6HTm7/biBEj1OWOzjZb/fbbb3bv6Sh0/u9//1OX//LLLy5/Rtsetv/+978Oy6xZs0a9/qhRo0YiKytLGAwGu8kzfHGCp+wJCW8e1rkFKqtRo0aiXr16YsKECWLGjBli/vz54quvvhIvvfSSOjTOl9vK2267Ta2vsjOwViZ0+nL7+t5776nLnnjiiQrrclX+559/VpeNGjWqwro8Le9IIPY1zkLnxx9/rH7mUlNTnQ6PtL2X4KRJk1y+V2Zmpnqi8aqrrnJYZvHixWp9roYS2gaRit63srwJne3btxePPfaY+Oyzz8QPP/wgZs2aJR599FG1x8r6qOg6OpPJJJ599lm70W1lH127dhW//fZbhZMvmc1m0adPHwFAdO/evdz+1NehUwhLL/jo0aPV43dHjzFjxrg8VlixYoVaNjU11eUlImUvravsJFvO8s7PP/8s9Hq9ACwnDpzNH+DL4zMhLKO4rO1p3Lix07+17Ym3it7X6o033vDpflQIIWQEoa+++goAEB0djXvvvddl2ZYtW+KKK64AACxbtsxl2VGjRqFevXo+aWPTpk3Vezdu2rTJJ3W6cuLECezYsQMA0KFDB1x77bVOy15xxRUYPHgwAMv9kLZt2+a0rEajwSOPPOJ0ubUeANi/f7+nza52zGYzbrnlFpw9exYAMHz4cIwePdph2fz8fPV5WFhYhXXr9Xr1eV5enpctde7777+HwWAAADz55JMuy+p0Otx8880AgMOHD+PEiRNOy3bp0gX9+/d3utzV/4oQAt988w0AYMiQIQ7vt2Xr5ptvhlZruY1wRZ/rhx9+GLLsfFP2888/25XVaDROyz766KMu3wsAHnjgAfX5559/7rCM7ev33XdfhXX6kzd/t5KSEixZsgQAkJycjDvuuMNpPcOHD0ebNm1ctsW6bW/ZsiWuv/56l2UHDx6sbq+d/Q8MHDgQkydPBmDZ1j3wwAN4/vnn1W3e7bff7rLN1dHXX3+NkydP4osvvsDEiRMxZswY3HHHHZgyZQp2796Njz76SP08zJkzR/3cVVZaWpr6PD4+3qu6POHL7Wuw1uWuYNnXvPzyy3jggQegKApatWqFv//+2+k9/KyfdUmS8MQTT7isNy4uDtdddx0A4M8//0RJSUm5MldffbW6PVi3bh2OHz9erowQAnPnzlW/r8y9Of0lISEB27dvx549ezB9+nTcc889GD16NO666y68++67OH78uF17H3jgAYc/o5VGo8FTTz2FF198EaGhoQ7LbN++Ha+//jo2bNjgsm0fffQR/v77b2g0Gnz66acu96e+Eh8fjzfeeMPl32jRokV47bXX1OOxsgYNGoTmzZsDsNyD/f777y93b1XAcgzw8ccf271mva+nL8yaNQs33XQTioqKkJKSgrVr12LAgAEOy/r6+Kxt27ZqBjpx4gTWrl3rsC5X9+Z0Ji4uTn1uux/whtYntfjYunXrAAB169bFH3/8UWF560FkWloaioqK7Da4tlwdeJWVm5uLb775Br///jv27NmDixcvoqCgwGHZU6dOuV1vZW3evFl9PmzYsArLDxs2DCtXrgRgCcXWf8qyWrZsafePVVZqaqr6PCsry93mltO4cWMIISq9flV59NFH1QPchg0b2n1Qqwvr5wew/G8uWrTIZXnbv+uBAwfQuHFjh+V69erlsh5X/yv79u1DZmYmACAqKqrCNgFAZGQksrOzceDAAZflKvpcW2+gDVhuyu3KoEGDKmzXlVdeiZYtW+LQoUOYM2cOXn31Veh0OnW50WhUb0per149DB8+vMI6/cmbv9uuXbvUHeTAgQNdBnbAckLB2d8rJycHu3fvBmAJsO7+DwBw+T8wdepUrFy5Eps2bcL8+fPV15s0aYKPPvqowvdwx5QpUzBlyhSf1OWtfv36uVz+4IMPIisrC8899xwA4NVXX8Xtt99e6fezfm6Bqg2dFDwURcEjjzyCDz/8EADQo0cP/P7770hMTHS6jnU/FBsba3f84ow1aJaUlODYsWPlTmBpNBqMHTsWr7/+OoQQmDNnTrnP5Lp163D06FEAQPfu3dG+fXu3f0Z/i4qKQpcuXZwu1+v1+OKLL3DmzBksXboUBoMBb775JmbOnOmw/B9//IFbbrkFOTk5GDRoEJ555hn07NkTer0e6enp+OGHH/Df//4X69evx5AhQ/Ddd99hxIgR5epJT0/HM888AwB47LHHXLbRl1577TU8//zzUBQF99xzDx544AH1BMb+/fvx8ccf4/PPP8f333+PjRs3Yvny5WjZsqVdHRqNBjNnzsQ111wDs9mMOXPmYNu2bbjzzjvRpEkTZGdn448//sDChQshSRIaN26sBjdfBes33nhDPfHZrFkzLFu2DE2bNnVa3h/HZxMmTFA/Y7Nnzy53HJOWloY1a9YAAFJSUnDNNde4fE+rhIQEh+3wRtCFzvz8fFy6dAkA8M8//2DkyJEerZ+VleU0dNoeXLmyevVq3HbbbTh37pxb5X15xsQZ2zM9ZT94jtiWcXaWCIDLnQYAuzNoxcXFFb5vdfbcc8+pO9Xk5GQsX77c5e/HekAMuPe7KSoqUp9HRUV50VLXbM+GjRkzxqN1XW1YvPlfsW3TTz/9hJ9++sknbQIq/lyfOXNGfe5qZwBYzuzFxsYiOzvbaRlJknDffffhySefxPnz5/Hrr7/ipptuUpf/8ssvyMjIAGA5o1hRUPM3b/5utr876xllV1yVOXnyJBRFAWDZ8drufCvi6n9Aq9Xi22+/RefOndVeHetr0dHRbr9HTTJp0iS8+eabyMnJwcGDB3Hs2LEK//edsYYBjUbjdN/qD77cvgZrXe4K9L5mxowZyMnJAQAMHToUCxcutGuTI9ZtflZWVqWO4xwZP348Xn/9dQDA3Llz8dJLL0GSJHW57UniCRMmlFt/2bJlKCwsdPq+N954o0ft9DVJkjBlyhQsXboUALB48WKH5f744w8MHz4ciqJg9OjRmD9/vl2Iat68OZ555hkMGTIEAwYMQHFxMe68804cOnRIHaFn9eCDDyI/Px+NGjXC1KlT/ffD2Xjuuecwbdo0AJb/rYkTJ9ot79atGz777DN06NABjz76KNLT03H77bdjy5Yt5eoaOnQo5s+fj/HjxyM/Px979+7Ff/7zH7syISEheP/99/HHH3+o/5euOlvctWjRIvUEc6dOnbB06VIkJye7XMcfx2e33HILHn/8cRQVFeHHH3/EBx98YPf5nDNnjtrpM3bsWHUUWUVs95+22xRvBN3wWuuGrbKsZ+UdcWeHefjwYQwfPlwNnK1atcJjjz2GDz/8EPPmzcPChQvVR1JSEgA47M73NdshMhERERWWt/2HczW8piqGUVQHr776qroRTExMxIoVKyoM97GxserzixcvVvge1pMpZdf1NW8+Q64+P978r/irTUDFn2vrCAWtVmvXI+mMO5+v8ePHq2Hts88+s1tm/V6SJNx9990V1uVv3vzdbIf1hYeHV1je1e/Om/8Bo9HocnliYqJdL1zTpk3RrVu3Sr9fdRcWFmbXw33w4MFK12X9PzebzS4P2H3Nl9vXYK3LXYHe15hMJvV5QUGBW6OW/LHNb9WqFfr06QMAOH78OP788091WWFhIX788UcAlv//W2+9tdz69913H0aOHOn0EQyuuOIKdZ928uRJh5+5J554AoqiQJZlvPfee0638VdccQXGjx8PwHIcWHbklnU0H2AZYuvOvs9bp0+fxltvvQUAaNOmjcvLuyZOnKj2eG/duhUbN250WG7UqFE4cuQIXnjhBXTv3h2xsbEICQlBo0aNMGHCBGzduhX33Xef3eeibPiuDNvPRVFRkVtZwB+fi5iYGPX/t6CgwO6kvjdDzm3b6qsTjkHX02kblgYMGOB0fLK/vPbaa2qif+655/DKK6/YnUmzVdH1pr5ke7bS2TBfW7YHi/7sVXNXYWFhhdfmuathw4bo2rWrT+oCgDfffBMvvPACAMvZr+XLl7s1LMc2lLq6FtLKdky8O73VlWX9DEmSBJPJFBQnFmw/1y+++GKVnVEFLgchk8kEo9FYYfB05/OVkJCA0aNH45tvvsGyZcuQnp6Ohg0bIi0tDcuXLwdgOQPbpEkT73+AALL9u7kTOFz97mzrGjt2rHqG2Bceeughu8/XoUOH8Pzzz+ONN97wSf0HDx70KrjZ6tevX4W9z75gOzTKVc99RWzDfGZmplsnH3zBl9vXYK3LXYHe1zz66KM4cOAAFi5ciA0bNuDqq6/G0qVLXR5bWC+PsG4XfeWuu+7C33//DcDSszlw4EAAwI8//qieYL/xxhv9emLXn2RZRlxcnHocmp2dbfeZO378uHrtfdu2bSucp2To0KH45JNPAKDcMGfr3AMpKSnYvn07tm/f7rAO2/DxwQcfqL/be++9t8KevbKWLVumnkQcMmSI0+NrwHIMM3jwYPXyis2bNzu9XCQ5ORkvv/wyXn75Zaf12c5Z0KNHD4/a7cjo0aMRHR2N999/H4cOHcKVV16J1atXu/yb+Ov47K677sK3334LwPK5GDduHAD7Iee9evVC69at3a7TH5dWBF3ojImJQWRkJPLz86vkWsmyVqxYAQCoU6cOXn75ZacfiLy8PLs/iL/VrVtXfX748OEKy9uW8dXkSd7IyMjw2ZnEcePG+exay+nTp6tDMWJiYrB06dIKJ7mxsg2mriZrAizXxFgngpJlucIJV7yRmpqKnTt3QgiB06dPo0GDBn57L0/aZFXVn+t69eqp1xIeO3YMrVq1clo2KyvL7QP0Bx54AN988w0URcGsWbMwZcoUzJo1Sx1CGugJhHzBdttx5MiRCsu7KuOv/4FvvvlGnSynW7duuHjxItLS0vD222/j6quvtpsoqbK+++47n50oWb16tVvXDnvLV71djRs3xl9//QXAchBSv359b5vmFl9uX9u2bQtZlqEoCnbu3Kn2Ejljex142ROQKSkpSEhIwKVLl5Ceno6LFy+6PIngqi53BXpfo9PpMH/+fNxyyy1YsGCBW8EzNTUV2dnZyMjIcOtkn7vGjBmDRx99VO3Z/OCDDxAREYEvv/xSLeOsN8edwB5oiqLYDaMs+9m1veTBncsHYmJi1OdlTwpae6zPnTunnnivyP/+9z/1+b/+9S+PQ6cv2++J/fv3q6MEmjVrZndM7Y0ZM2ZAkiTMmDHDreDpr+OzwYMHo2HDhkhPT8fatWtx4sQJNG7c2K3PhTO2GadRo0Y+aWeVdYHYbuArGpphnfXp2LFjbh3o+NL58+cBWCahcLVTWrFihXpw6YwnP3NFbCcCsvakuGLbq+hsEqHa7sMPP8SkSZMAWHqDlyxZ4tHZr3bt2qkHYPv27XN5IP3333+r1/727dvXr73P1jO/QMUzv1aVLl26qDuYlStXVvjZ8aXu3burz1evXu2yrPVie3f069cP7dq1A2CZvc5oNGLWrFkALCetHE3aUN106tQJISEhAIC1a9dWOHzIOnmZI4mJiepEERs3bvTJtfDHjx/HQw89BMDSoz1v3jx8/fXX0Gg0UBQFY8eOtQtftUVJSYndUDRvertsA88///zjVbs84cvta3R0tNpDkpOT43SYHmAZ0mjtEWnYsKHD2VmvvvpqAJb9uqttbGFhoXrtsl6vt9s2eyIY9jXW4Dlq1CgAUIOns8+x9WctLi62GwbrrejoaLUN+fn5+Omnn+xm7axfvz6GDh3qs/eralu2bFF7OVNTU8uNLLANaidPnqywPtteZtvRD4ESqPbbhi9fX/by3nvvqTPfHzp0CIMGDbIL17b8dXwmy7Lau2kdUltQUKAOOdfr9epMuO6yncCvY8eOvmmnT2pxg+3QqorOVlh/cYBlKF5Vsn7Ajx075jQoms1m9fo/Vzz5mSvSuHFjdUjprl27XAbPrVu3YtWqVQAsZyeC4dom6+y1vnj4opfzs88+Uy9ej4iIwO+//47evXt7VIckSfj3v/8NwPIhf//9952WnTFjhvrc0w++p2655RY1KLzxxhte/+/5gkajUWfQTEtLc3qrEX+wDX8ffvihy+D03nvveVT3/fffD8Cy83zsscfUg8Fx48b57Mx+IIWGhqq3Mjh//rw6fMeRJUuWVDjTsHXbXlhYqE4IUllmsxm33367etA7Y8YMtGjRAv369cOzzz4LwHL90D333OPV+wCW2Wt9tf2qil7Od955Rx0S16JFC7cmgXKmZ8+e6vOquD2Yla+3r7avu/qcv//+++q+39lEH7Z1zZgxw+mxwuzZs9X/z+HDh1f6mrlg2ddotVp899136m3ENmzYgGuuucZh8Bw7dqz6fOrUqT6d+8K2x2b27Nl2E6WMGzcuKC4pqQwhBF566SX1e+u211bz5s3V2+acPHlSHWrszHfffac+tz0BC1hOsrqzzbLt5Tp+/Lj6urujwmzZnsRavHixyzlHcnNz1Vt2OWq/uw4ePKh+ZmJjY32yTyjr3XffxWOPPQbAMtLQWfD05/HZ+PHj1dGZc+fOxQ8//KBeanfTTTfZ9Rq7w7q9j4qKcnprJI95dZfPUs5ulmrr//7v/9Qyzm6aamU2m0WPHj3U8o8++qgoKSlxWr6wsFB8+eWXYt68eeWW2d7U252bcl911VVq+XfeeafccoPBIO666y67m8w6u4n8O++8o5aZM2dOhe9te2N6R+bPn68ur1u3rjhw4EC5MmlpaaJZs2YV3gDXutydG3V7UrY6mDNnjpAkSQAQ4eHhXt2s/fTp0yI8PFwAEFqtVqxYsaJcmS+//FL9HTZo0EAUFRV50Xr3PPHEE+p7XnnlleLs2bNOy5rNZrF8+XLxyiuvlFvm7AbhjlRU9uTJkyI2NlYAEKGhoRV+Js6fPy9efvllsWvXrnLLKvqslNWvXz+1/EMPPVTu5tdC2G8rXH2ubWVnZ6t/f9vHoUOH3GpXZY0bN87lzbp9+Xdbt26dujwuLs7hzboPHTok6tata/c7+PLLL8uVy8/PV280LkmSePPNNx3+Layys7PFe++9J5YvX15u2QsvvKC+1+jRo+2WGY1G0bt3b3X5J5984vJ3UF28+uqrYv/+/S7LzJw50+6G67Nnz/bqPYuLi0VERIQAIPr371+pOmyPETzZj/hy+1pQUCDq1avn8veyfPlyodVqBQARGRkpzp0757AuRVFE165d1bqmTp1arsyuXbtETEyMACBkWRa7d+92+nPafm4cfZ59/btwh6vtgtFoFKNHj1aX9+rVS+Tk5JSrY9SoUWqZm2++2WEZ2zp/+uknp8csthRFEY0bN1a3I8nJyer7HD582OOf1VPWbZi7+5+8vDzx3HPPiQsXLjgtU1RUJCZMmKDWq9PpnP4sN998s1quefPmIi0tzWG5//73v2q50NBQcfLkSbfaW5btz+vs/9NRWUfHVgaDQdSvX18tM2LECFFYWFiuXGFhobjhhhvUcu3btxeKopQrd/78eZfbxG3btokGDRr4bHtYUd557LHH1OUtWrQQp06dKlfGV8dnjtgeG9nukx1tL1zJzs5Wj5NvvPFGj9Z1pcqu6RwyZIh6Bu7uu+/G448/jkaNGqm3E2jevLl6NlaWZfz000/o3bs3Tp8+jffeew/ff/89/v3vf6NTp06IiYlBfn4+0tPTsXXrVqxcuRIFBQV45ZVXvG7nxIkT1V7ESZMmYc2aNbj66quRkJCAw4cPY+7cuTh8+DCuvPJKHD582OUwlyFDhqjPn376aVy4cAGtWrVSpytOTU1Fhw4d3G7bmDFjsHDhQnz33Xc4e/YsunbtivHjx6N3797QaDTYunUrvvjiC/Ws47Bhw9ShZ2SxZMkSTJgwQT0rOmHCBGRnZ1d4r6SuXbuiYcOG5V6vV68e/ve//+HBBx+EyWTCtddei7Fjx2LgwIEwmUxYsmSJOrxBq9Xi008/dXlzb9triI8fP+70npkVee2117Bz506sXLkSq1evRtOmTTFq1Cj07t0bSUlJMBgMOHfunNprfu7cOQwZMgTPP/98pd7PHfXr18d3332HG264ASUlJRg3bhzeeecd3HDDDWjRogX0ej1ycnJw6NAhbNy4EX/99RfMZnOF99Z0xyeffIIePXqgsLAQH330ETZs2IA77rgD9evXx/nz5zF//nz89ddf6N27N9LT03H69Gm3zpbHxMTg5ptvthu6M2jQILRo0cLrNgeLfv364aGHHsJHH32ErKws9OrVC+PGjUO/fv0gyzI2b96ML774AgUFBbjxxhtdfpYiIiKwaNEiDBw4ELm5uXj66afxySefYNSoUWjbti0iIyORm5uLY8eOYfPmzVizZg0MBoN6o3mr9evXq6NN6tevj08//dRuuVarxTfffIPOnTsjNzcXjz/+OAYOHOjyet7q4IcffsDzzz+PLl26YODAgWjTpg3i4uJgMBhw5MgRLFiwQL1+GQDuuOMOu5FDlREaGoprrrkGP/30E7Zu3Yr8/PwKb5dRdjtiOxHJ8ePHyy3v2rWr3W2HrHy5fQ0PD8enn36KESNGwGw246677sLixYtx7bXXQqvVYu3atZg7d646I+X06dOdXq8mSRI+/fRTDBgwAIWFhXjppZfw119/YfTo0YiIiMDmzZvx+eefq70YzzzzjEf7ekd8va/xhlarxbx58yBJEn744Qds3LhRvcbTdvjkrFmzcOjQIezZswfz58/H0qVLMWbMGHTv3l2dLOf06dPYsWMHli9fjqysLLeGPkqShPHjx6sjEKyXRfXv39+rXn1HvvjiCxw/ftzuNdvr/sv+L8fFxeGJJ56we81kMuG///0v3njjDQwaNAi9evVC06ZNER0djby8POzatQvfffed3W36PvroI6c/y7Rp07B8+XJkZmbiyJEjaN++Pe644w706tXL7j6dtiMTXnrppSq7HtsVnU6HGTNmYNSoURBC4Oeff0abNm0wduxY9frjAwcOYO7cuerQWp1Ohw8++MDhHCvp6eno0aMHrrjiCgwZMgStW7eGXq/HuXPnsGLFCixevFjtZX/66ae93h5WZPr06ZAkCdOnT1ezwurVq+3mNPDn8dldd92lDjW33i6xUaNGHs9tYO0FB3x8KyFfJFd3ejpNJpNdb0PZh6Mz7GfOnBFDhgxxuo7tQ6PRiM8++6xcHZ72dAohxDPPPOPyvfr27SsyMjLUMzquekRuvfVWp/WU/V2503tjNBrFPffcU+HvY/To0Q7PHllZy9W2ns6yvVnuPhz12th66623hE6nc7p+VFSUw574smzXqeiMYkVKSkrEI488Ytfr4eoxduzYcnX4ssfMasOGDaJp06ZutSkyMtJhD4GnPZ1CCLFq1Sq1p9XRo3379iI9PV2kpqYKAKJjx45u1btp0ya7er755hu321RZVdnTKYRl+33nnXc6/d3JsizefPNNu54WV5+ZgwcPii5durj1PxAaGiqWLFmirpuVlaVue2VZdrld//rrr9V6unTp4nLETHXQqVMnt35nWq1WPP/888JoNPrkfRctWqTWPXfu3ArLe7p9dXbcYOWr7asQlv+JyMhIp3WFhIQ4HOXkyPLly0VSUpLTuiRJEk888YTDHhpnv6+Ktvu+/F244s52wWg0ijFjxqjlevbsWa43Mycnx65nrqLHCy+84Fb7jh8/rvbEWB+zZs3y9scux3Zf487D0fFgVlaW2+snJCSIH374ocJ2bdu2TbRo0cKtbcGrr77q1e/Alz2dVl9//bWIjo6usP2JiYli8eLFTuvZsmVLhXVERUWJGTNmVPKnt+dO3hFCiEmTJqnlmjdvXq7H0xfHZ47k5+eX2769+OKLHv+c1s+1Xq8Xubm5Hq/vTJWFTiEswwdef/110bt3bxEXF2f3y3Z1YLRmzRpx//33i3bt2onY2Fih0WhEdHS0aNu2rbj55pvFzJkzxZkzZxyuW5nQKYQQS5YsEcOHDxeJiYlCp9OJunXrisGDB4vPPvtM3ZG7EzpNJpOYOXOmGDRokEhMTFSH7jj6XXlyIL1hwwZx9913i+bNm4uIiAih1+tFkyZNxB133CFWrlxZ4frW92HodO9RUegUQog9e/aIhx9+WLRs2VJERESIqKgo0b59e/Gf//xHnDhxosL1CwoK7A58Ll265IOfWIjDhw+LyZMni549e4qkpCSh1WpFeHi4aNKkibjuuuvEtGnTnA798kfoFMJysPL111+LMWPGiCZNmojIyEih1WpFfHy86N69u7j33nvF/PnzRX5+vsP1KxM6hRDi3Llz4sknnxStWrUSer1exMbGiu7du4u3335bFBQUCEVRhF6vFwDEoEGD3KpTURR1GF18fLwoLi72qE2VUdWh0+rXX38Vw4cPF0lJSSI0NFQ0bNhQ3HrrreLvv/8WQgi3Q6cQlt/bzz//LMaNGydatmwpoqOjhUajEbGxsaJTp05i7NixYvbs2SIzM9NuPdsD2MmTJ7t8DyGEuP3229XyTzzxRIXlg9nu3bvFBx98IG6//XbRuXNnUb9+faHX60VoaKioW7euGDJkiHj55ZcdDunyhslkEg0bNhQAxFVXXVVheU+3rxWFTiG8377aOnHihHj66adFu3btRFRUlIiIiBAtW7YUDz/8sNi7d69HdWVkZIipU6eKrl27itjYWBEWFiaaNm0qxo8fr34uKmL7u3DnZKMvfxfOuLtdMJlMdp9JR8FTCCG2b98uHnvsMdGlSxeRkJAgtFqtiIyMFC1atBA33nijeOedd8TRo0c9auPgwYPV942IiBB5eXme/pgV8kXoNJvNYvXq1WLatGnihhtuEO3atRPJyclCp9OJyMhI0bhxYzFy5Ejx8ccfO93nOVJUVCTmzJkjRo4cKRo3bizCw8OFVqsVCQkJolevXmLy5Mke/04d8UfoFMIyNPaNN94QQ4YMESkpKSI0NFTdlg0bNkxMnz5dZGVluawjPz9fzJ49W4wbN060b99ePWZPSUkRffv2Fa+//rrL4auecjfvCGE/jNZR8BTCu+MzZ2yHaUuSJI4dO+bR+jk5Oepx0L333uvRuhWRhHByBTwRVamlS5fimmuuAQD83//9n8eT2pD39uzZo87S5u7fYMWKFbjqqqsAWO5n9+677/qziUQBMX36dEyaNAkajQYnTpwIiqF6RETkW7NmzcLdd98NSZKwd+9e300ihCqcvZaIXLPeIzYqKsqv11aScx988IH63N1rSWfOnKk+rwn35iRy5IEHHkBKSgrMZjPefPPNQDeHiIh8zHb7fvPNN/s0cAIMnURBwxo6J02ahKSkpAC3puZZt26dy/uDfvjhh+qENKmpqfjXv/5VYZ07d+5UJ84ZOnSozzfQRMFCr9djypQpAIBPP/3U6X3oiIioepo3bx7++ecfhISE+GRy1rI4vJYoCFy8eBF16tRBYmIijh496rMbetNlzZs3R3FxMa699lp06dIFSUlJMBqNOHr0KBYuXIgdO3aoZX/99VenofOPP/6Aoig4dOgQ3nzzTXWGuPXr16Nv375V8rMQBYKiKOjRowe2b9+ORx55xOX9IomIqPowm81o164d/vnnH0yePBmvvfaaz9+DoZOIaoXmzZvj6NGjLsvo9Xp89tlnuP32252WcTRtu7vXfy5btgyFhYUVN9aBxMRE9OvXr1LrEhEREQUSQycR1QobN27ETz/9hI0bN+L06dO4dOkSCgsLERcXh5YtW2Lo0KF48MEHnd6bz8oaOiMjI9GyZUs8+OCDmDBhglv39WzcuLF67zFPDRw4EGvWrKnUukRERESBpA10A4iIqkKvXr3Qq1cvr+vheToiIiIiz7Cnk4iIiIiIiPyGs9cSERERERGR3zB0EhERERERkd8wdBIREREREZHfcCIhIiKqNgwGAwoLC50+ioqKUFJSAoPBoH61fZR9zWQywWw2w2w2Q1EUh1+tz61TIEiSpM5WLMsyJEkq95BlGRqNBiEhIdBqtdDpdNBqtXbfWx9arRahoaEICwuDXq9HWFiYw+fW78PDwxEZGYmwsDCHt/AhIiIKNgydRERUpQwGA3Jzc9VHXl6ew+fW7/Py8tRQaTKZAt38oKHRaBAZGYnIyEhERUWpz20fUVFRiImJQWxsLGJjYxETE4OYmBhotdz9ExFR1eHstURE5LWSkhJkZmYiKyur3Neyr+Xn53v9fqGhoQgPD3f4CA0NxR+fr4YkJECRAAWAIkGyeW59SAKAkAABywNlvheWnkTJ+n1px6LA5edQnwub56VfZQFIAkIuraTMV/V1jQBkAaERuGr8ABQXF6O4uBhFRUXlvhYVFcFsNnv1+4uKilKDqO0jISEBCQkJSExMRGJiIuLj46HT6bx6LyIiIoZOIiJyqaioCBcvXkRGRgYyMjJw4cIFu0dGRgZycnI8qlOj0SAqKgrR0dHq1+joaKyYtQ4wSZBMMmCSAJMMyfrVLAGlDwm1d1ipgCWgQisgtALQKhAay1doBYTG8vXaBwYjNzcX2dnZyM7ORk5ODnJzcz2+12xsbCwSExPtwmhiYiLq1KmD5ORkpKSkIDw83E8/LRER1QQMnUREtVxRURHOnj3r8JGRkYG8vDy36gkJCUFcXBzi4uIQHx+PjQu2QzJqAIMMyWh5WJ/DVLuDY6AIlIZVnQLoFLuvQqeg3y09cOnSJVy6dAkXL150ezhzVFQUUlJSkJycrAZR6/O6desiJiaG158SEdViDJ1ERDWcEAJZWVk4efIkTp48idOnT9sFy+zs7Arr0Ov1qFOnDpKSklCnTh0s/XgtpBIZMGgglciQDBoGyRpGDaghZiBEgQhVIELMuP7Rq9Qe7nPnzrl1UiI8PBypqamoX78+UlNT7Z4nJCQwkBIR1XAMnURENURRUZEaLE+dOoX09HT1eUXXUUZFRaFu3bqoW7cu1n+zBVKxBijRQCopDZVm3mGLHBOa0kAaagZCzRBhZgwc2wvnz5/HuXPncOnSJZfrh4WFqUE0NTUVjRs3RqNGjdCoUSNERERU0U9BRET+xNBJRFTNFBQU4MSJEzh+/DiOHTuGEydOIC0tDRcuXHC6jiRJSElJQYMGDZCamopf3lkOqVhz+cFQSX4iJAERZobQmyHCTLh+0lCcPn0ap0+fxrlz56AoitN1k5KS1ABqDaONGzdGbGxs1f0ARETkNYZOIqIgVVxcjLS0NBw/ftwuYJ4/f97pOrGxsWjQoAEaNGiApR/+aQmURVpIRRrLbK5EQURIAiLUGkjNuOHJoUhPT8eJEydc9pDGxMSgcePGaNasGZo3b45mzZqhSZMmCAsLq8LWExGRuxg6iYiCQHZ2Ng4fPmz3OHnypNOZRhMTE9GkSRNsX7QPUqEWUmFpuDSxx5JqBqFRIMJNEOFmCL0JPUZ3RFpaGs6dO+fwcyHLMurXr28XRJs1a4Y6derwmlEiogBj6CQiqkJCCGRkZODQoUN2ATMjI8Nh+ZiYGDRt2hS7Fh+EXKi1BMwCLYfDUq0lZAGhN1kCaYQJXW5si6NHjyIrK8th+aioKLRo0QKtWrVCmzZt0KpVK6SkpDCIEhFVIYZOIiI/ys3NxYEDB7B//34cOHAABw4ccHpPy9TUVLRs2RJ/frkFcn5puDRqqrjFRNWT0JkhIkxQIky48t5eOHr0KNLT02E2m8uVjYmJQevWrdGqVSu0bt0arVu3RmJiYgBaTURUOzB0EhH5iMFgwJEjR9SQuX//fpw+fbpcOY1Gg8aNG6NFixZY/tFflwMmey+JfEpIwtIjGmnEtZMG4Z9//sHRo0cdBtHExES0atUK7dq1Q4cOHdC6dWuEhoYGoNVERDUPQycRUSVlZWVhz5492L17N/bs2YMjR47AaDSWK5eamoq2bdti9ccbIeXpLAGTk/oQBYSQBESEJYheNbEfDh48iLS0tHKz6Go0GrRs2RLt27dXH0lJSQFqNRFR9cbQSUTkBiEEzpw5g927d6shMz09vVw567C9rd/vhZyng5Sv4+Q+REFOyAIi0gglyoh+47thz549yMzMLFcuOTlZDaCdOnVC06ZNIcv8fBMRVYShk4jIAUVRcPz4cezcuVMNmo5u4dCkSRN06NABv7+1BnKeDijWQAJ7MYmqMwEBhCpQog24fvIQ7N27F0ePHi3XGxoVFYXOnTujc+fO6NKlC0MoEZETDJ1ERLD0ZJ4+fRrbt2/Htm3bsGPHDmRnZ9uV0Wq1aNWqFQ4uPQ4pNwRyLnsxiWoLISsQUSYo0QZ0+3c77NmzB0VFRXZlGEKJiBxj6CSiWuvixYvYvn27GjTPnz9vtzwsLAwdOnTA9h/3Q84JsQyVVdiLSUSXrw1VYgzofks77N69u1wIjY6ORpcuXdCjRw/06NEDdevWDVBriYgCi6GTiGqNkpIS7NixA5s2bcKWLVvKXZOp1WrRtm1b7Pv1qCVk5uk44Q8RucWdEFq/fn1cccUV6NGjB7p06YLw8PAAtZaIqGoxdBJRjSWEwKlTp7Bx40Zs2rQJO3fuhMFgUJdLkoSWLVviyMqTkLNDIOWGsCeTiHxCSKWTE8Ua0O76Zti3b5/drVo0Gg3at2+v9oK2atWKQ3GJqMZi6CSiGqWoqAg7duzAxo0bsXnzZpw5c8ZueVJSEnr16oUlb/5p6c3kNZlEVAWERoESY8C/nr0SW7ZsKXcP39jYWPTu3Ru9e/fGFVdcwV5QIqpRGDqJqNq7ePEi/vrrL6xfvx47duyw683UarXo2LEjdv10CHJWKKRCzi5LRIEnwkxQYg3ofVdnbN++HQUFBeoynU6Hzp07o0+fPujTpw+vBSWiao+hk4iqHSEE0tLSsH79eqxfvx779++3W56cnIyePXvi99fXWnozzezNJKLgJSQBEW3EyFeuwl9//VWuF7RJkyZqAG3Xrh2H4RJRtcPQSUTVgtlsxv79+7Fu3TqsX78ep06dslvetm1b/PN7OuRM9mYSUfUlICD0ZijxJWh/YzPs3bvX7lrQ+Ph4DBgwAAMHDkSnTp2g1WoD2FoiIvcwdBJR0DKbzdi9ezdWr16NtWvXIisrS12m0+nQtWtXbPtmvyVoGjQBbCkRkX8IrQIlrgSDHr4CGzduRH5+vrosJiYG/fv3x8CBA9G1a1fodLoAtpSIyDmGTiIKKoqiYM+ePVi9ejXWrFmDzMxMdVlkZCR69+6N1TM2W2ab5bBZIqpFhCSgxBpw9dN9sX79euTk5KjLIiMj0bdvXwwcOBA9evRAaGhoAFtKRGSPoZOIAk5RFOzbtw+rVq3C2rVrcfHiRXVZVFQU+vfvj+Vv/g0pJ4T3zSQiQukw3BgDhr8wCH/++afdCbqIiAgMHDgQQ4cORZcuXaDRcCQIEQUWQycRBczRo0exdOlSrFy5EhcuXFBfj4yMtATNtzdYejQZNImInBKwTEQ04uUhWLt2rd32ND4+HkOGDMHQoUPRunVrSBK3p0RU9Rg6iahKXbx4EStWrMCyZctw5MgR9fXw8HD0798fK9/ZxKBJRFRJ1gB67fP9sWbNGuTm5qrL6tevj6FDh+Kqq65CgwYNAthKIqptGDqJyO+Kioqwbt06LFu2DFu3boWiKAAs99Ds06cP/v5kl2UyIAZNIiKfEZKAEmfAwIndsH79epSUlKjLWrdujWuvvRZDhw5FVFRUAFtJRLUBQycR+YUQAjt37sSSJUuwdu1aFBUVqcvat2+Pg4vSIF8Mg2TiZEBERP4mNAqU+BJ0G9sGW7duVW/DEhISggEDBuDaa69Ft27deA9QIvILhk4i8qnMzEwsWbIEv/32m90NzuvWrYuMTbnQZIRBKuZ95YiIAkXoFJiTitBoaB0cO3ZMfT05ORnXXnstrrnmGtSrVy+ALSSimoahk4i8pigKtm7dil9//RXr169Xz6Dr9XoMHToUf7y6HlKeDhI4fJaIKFgICIhIE4ZPGYAVK1bY3QO0S5cuGD58OAYOHMjbrxCR1xg6iajSLly4gN9//x2LFy/GuXPn1Nfbtm2LQz+fgnwhFJLCoVpERMFOyAJKfDE639ES27Ztg/XwMCYmBtdddx1GjBjB3k8iqjSGTiLyiBAC27dvx4IFC/DXX3+pkwJFRkbi6quvxi/PrYZcqAtwK4mIqLJEqBm3f3Q9Fi9ejIyMDACAJEno2bMnRo4ciSuuuIL3/iQijzB0EpFbioqKsGzZMixYsADHjx9XX+/UqRP2fX8c8qUwSAqHzxIR1RQCAkp8CbqMa4ktW7aor6ekpOCGG27Av/71L8TGxgaugURUbTB0EpFLp0+fxsKFC/H777+r1/vo9XpcffXVWPzCOshFnBSIiKimU8JMuOmtofj999+Rl5cHANDpdLjyyisxZswYtGzZMsAtJKJgxtBJROUIIbBlyxb89NNP2Lhxo3ptT2pqKs6ty4XmfBgkM6/VJCKqbYQsoCQWo/kN9XDw4EH19S5duuDmm29Gr169eNsVIiqHoZOIVCaTCStXrsS8efPsptHv2bMnts36B3JWCGegJSIiAIASacTAJ7ti9erV6qzlDRo0wJgxY3D11VcjLCwswC0komDB0ElEKCwsxG+//Ybvv/9enTRCr9fjuuuuwy/PrIHM+2oSEZETIsSMUdOvwq+//qpehhEdHY0RI0Zg5MiRSExMDHALiSjQGDqJarFLly7hp59+wqJFi9QDhfj4eORsN0BzVs8htERE5DahUaDUKUad/lE4c+YMAECr1eKaa67Bbbfdhvr16we4hUQUKAydRLXQyZMn8d133+GPP/6A0WgEADRs2BBnVmZDzgiDJDiEloiIKkdAQEkoQZsxDbFnzx4AgCzLGDx4MG6//XY0a9YswC0koqrG0ElUi6SlpeGrr77CihUr1Ptrtm/fHge/Pwk5M5TXaxIRkU8pUQZ0u78VNm7cqL7Wt29f3HnnnWjbtm0AW0ZEVYmhk6gWOH78OObOnYtVq1apM9H26dMHW2YegJwXEuDWERFRTadEGNFvUiesWbNG3Q9169YNd911Fzp27Bjg1hGRvzF0EtVgR48exdy5c+128v3798fGGfsgF+gC3DoiIqptFL0JV73QE0uXLlVnvO3RowcmTJiAdu3aBbh1ROQvDJ1ENVB6ejq++OILrF69Wn1t4MCB+PvdPQybREQUcCLUjGte6YPFixer4bNXr16YMGECWrduHeDWEZGvMXQS1SDnz5/H7Nmz8ccff8BsNkOSJAwaNAjr/7cbciFve0JERMFFhJox9KUr7Ho++/bti7vvvhvNmzcPcOuIyFcYOolqgKysLHz11Vf4+eef1dlo+/bti83vH4BcyJ5NIiIKbiLMhCuf647ly5dDURRIkoRhw4bh7rvvRkpKSqCbR0ReYugkqsYKCwsxb948fP/99ygqKgIAdOnSBXtnn+AEQUREVO0oehP6P9UJq1atAgDodDrcdNNNuOOOOxATExPg1hFRZTF0ElVDZrMZS5Ysweeff47MzEwAQOvWrXH0h3OQckJ46xMiIqrWlEgjOkxojO3btwMAIiMjcfvtt2P06NEIDQ0NcOuIyFMMnUTVzObNm/HRRx/h2LFjAIDU1FScX5EP+RLvs0lERDWHgICINaDhiAQcPXoUAJCUlIQHHngAQ4cOhSRxn0dUXTB0ElUTx48fx0cffYRNmzYBAKKiolC4S0BzNhyS4I6XiIhqJgEBJakYCQP0OH/+PACgffv2mDhxItq0aRPg1hGROxg6iYJcXl4eZs2ahUWLFsFsNkOr1WLkyJH4+Yk1kExyoJtHRERUJYQkMH7Ojfjqq6/UeQyuvfZa3HvvvUhMTAxw64jIFYZOoiClKAqWLl2Kjz/+GFlZWQCA/v37Y+P0/ZCLefsTIiKqnUSIGVe+0A1Lly4FAOj1etx5550YM2YMQkI4iR5RMGLoJApC//zzD959913s27cPANCwYUOc/T0XcjYnTyAiIgIskw21uC0F+/fvB2DZV06aNAldu3YNcMuIqCyGTqIgkpeXh88++ww///wzhBDQ6/Uw7NdAc4bXbRIREZVlvd4zurdWnc192LBheOihhxAfHx/g1hGRFUMnURAQQmDt2rV499131Z3m0KFD8ee0nZAMmgC3joiIKLgJjYLhb/bDokWLIIRAZGQk7r//flx//fWQZc5/QBRoDJ1EAZaRkYHp06fjr7/+AgA0aNAA537Ph5zD61KIiIg8oUQa0WRMIg4dOgQAaNOmDZ5++mk0a9YswC0jqt0YOokCxGw2Y9GiRfjss89QWFgIrVYLcSwUmpMRHEpLRERUSQICSt0ihHQwq/vXO++8E3fccQd0Ol2gm0dUKzF0EgVAeno6XnvtNXWioHbt2uHQV+cgF3JWWiIiIl8QIWZcMak11q9fDwBo1qwZJk+ejFatWgW4ZUS1D0MnURVSFAU//vgjPv30UxgMBoSHh8OwRwP5rB4S2LtJRETkSwICSmIJInoCOTk50Gg0uPXWWzFu3DiEhnJGeKKqwtBJVEXOnDmD1157Dbt27QIAdO/eHbs/OsGJgoiIiPxMaBX0e7YDVq1aBQBo1KgRnn/+efZ6ElURhk4iPxNC4JdffsFHH32EoqIi6PV6GPdoIZ9j7yYREVFVMicUI7qvBpmZmdBoNLj77rtx6623QqPhCWAif2LoJPKjrKwsTJs2DZs2bQIAdOzYEQe/OA2phNduEhERBYLQKuj1dBv8+eefACz75meffRb16tULcMuIai6GTiI/2bx5M6ZNm4bMzEyEhITAfDAEmjPh7N0kIiIKMAEBpU4xdJ2MKCoqQnh4OB599FFcc801kCTup4l8jaGTyMeMRiM+//xzzJs3DwDQpEkTnPopB3Ihp2knIiIKJiLUhFYT6mHPnj0AgCFDhuCpp55CeHh4gFtGVLPIgW4AUU1y8uRJPPzww2rgvPHGG3H6mwIGTiIioiAklWjxz8zzuPfee6HRaLBy5Urcc889OHLkSKCbRlSjsKeTyEfWrFmD1157DUVFRYiKikLRJhmazLBAN4uIiIjcoEQZEDtUiwsXLiAkJAQTJ07EDTfcwOG2RD7A0EnkJZPJhE8++QTz588HUDpZ0OdneCsUIiKiakZoFXR7vDk2bNgAABg6dCiefPJJDrcl8hJDJ5EXLl26hClTpqj33tScCofmRCQnCyIiIqqmBATMqYVA8yKYzWY0bNgQ06ZNQ8OGDQPdNKJqi6GTqJJ27dqFl156CZmZmQgPD4dhmw6aSxxOS0REVBPYDreNiIjAiy++iN69ewe6WUTVEkMnUSX8/PPPePfdd2E2my2z0/6YC7mI994kIiKqSYTOjNb31sPu3bshSRImTJiAO++8E7LMuTiJPMHQSeQBk8mEDz/8ED/99BMAy9Tq617ZA0nhcFoiIqKaSEgC173VB4sWLQIADBgwAM8++yyv8yTyAEMnkZvy8vIwZcoUbNmyBQCgOREJzalwXr9JRERUC5iTCyG1LYbRaETTpk3xxhtvIDk5OdDNIqoWGDqJ3HDy5Ek888wzSE9PR1hYGEw7Qnn9JhERUS2jRBkQdaWEzMxMJCYm4vXXX0fLli0D3SyioMcB6UQV2LNnDx588EGkp6cjKSkJ5g3hDJxERES1kJwXgvylMpo0aYKLFy9i4sSJ+PvvvwPdLKKgx9BJ5MK6devw+OOPIzc3F23atEHObwJygS7QzSIiIqIAkUo0OP1tPrp3746ioiI8++yzWLBgQaCbRRTUOLyWyImff/4Z06dPh6Io6NOnD7a+fYQTBhEREREAywRDV03rgcWLFwMAbrvtNtx///2QJB4rEJXF0ElUhhACX375JWbPng0AkM+FQXskmhMGERERkR0BAXP9Qpgb5wMArr/+ekyaNAkajSbALSMKLgydRDYURcH06dPx888/AwA06RHQpEcwcBIREZFT5uRCKK0KoCgKrrzySjz33HMICQkJdLOIggZDJ1Eps9mMN954A3/88QckSYLmcCQ053gPLiIiIqqYOaEYUsdCGI1G9OjRA6+++ir0en2gm0UUFBg6iQCYTCa8+uqrWLVqFTQaDaR9EdBc5I6CiIiI3KfElkDbowRFRUVo164d3n77bURERAS6WUQBx9BJtZ7BYMDUqVOxbt06aLVaYE8Eb4lCRERElaJEGRDWz4S8vDwGT6JSDJ1UqxkMBjz//PPYuHEjQkJCoOwIhyYrNNDNIiIiompMiTAibIAReXl5aN++Pd5++22Eh/OSHaq9eJ9OqrVMJhOmTp2KjRs3IjQ0FGIbAycRERF5Ty7QofhPHSIjI7F37148+eSTKCwsDHSziAKGoZNqJbPZjGnTpmHdunWWHs6tesg5DJxERETkG3KBDiXrQtTg+dRTT6GoqCjQzSIKCIZOqnUURcHbb7+NFStWQKPRQNkRzsBJREREPicX6FCy3hI89+zZgxdeeAFGozHQzSKqcgydVKsIIfD+++9j8eLFkGUZ0t5IDqklIiIiv5HzdSj5S4ewsDBs3rwZ06ZNg6IogW4WUZVi6KRa5dtvv8VPP/0EAJAPRnKWWiIiIvI7OS8E5q1h0Gq1WLlyJd577z1wLk+qTRg6qdZYtmwZPvnkEwCA5mgUNBm8DycRERFVDTk7FNgbAUmSsHDhQsyePTvQTSKqMgydVCts27YNr7/+OgBAcyoc2rOctpyIiIiqluZiGDSHIwEAX375JZYsWRLgFhFVDYZOqvGOHj2K559/HiaTCfKFUGhORFa+MknyXcOIiIio1tGcC4cmPQIA8NZbb2Hnzp2BbRBRFWDopBotKysLkydPRkFBATp27AjtoRhIqERwlCQGTiIiIvIJTXoErrzySphMJjz//PM4depUoJtE5FeS4FXMVEOZTCY8/vjj2LVrF+rXr4+MH0sgmSpxnqVs2ORHhoiIiLwkZIGmE+Jx8OBBNGzYEDNnzkRUVFSgm0XkF+zppBrr/fffx65duxAeHo7zvxR7HjjZu0lERER+IikSjs29hKSkJKSnp2Pq1Kkwm82BbhaRXzB0Uo3022+/YeHChQAAw7YQyEVazypg2CQiIiI/k4waZC9XEBoais2bN2POnDmBbhKRXzB0Uo2zf/9+TJ8+HQCgSYuEJrP0XpzuBEn2bhIREVFVKD3ekAt0MO+xHKvMmTMHmzZtCmSriPyCoZNqlLy8PEyZMgVGoxH9+/eH5lSEeysybBIREVGAaC7oMWLECAgh8Morr+DcuXOBbhKRT3EiIaoxhBCYMmUKVq9ejbp16+LSQjMks1y2UPkVPQ2b/MgQERGRt8ocfwhJoOmEOBw8eBCtW7fGBx98gJCQkAA1jsi32NNJNcavv/6K1atXQ6PR4OIfJeUDZ1ns3SQiIqIgIQkJx76+iOjoaBw8eBCzZs0KdJOIfIahk2qEY8eOYcaMGZZvjoZDzq/gzKA3YZNBlYiIiPxAKtGicJPl8HzevHnYuXNnYBtE5CMMnVTtmUwmvPrqqzAYDLjiiiugOR3uvLCvejcZPImIiGonPx8DaDLDcN1110EIgWnTpiE/P9+v70dUFRg6qdr7+uuvceTIEURHR2PnB8chgYGQiIiI/MjPl+iseHEr6tWrh3PnzuG9997z2/sQVRWGTqrWjhw5ot7TqnCLBMmoCXCLiIiIqNbwU/CUzDIu/FEMWZaxdOlSrFu3zi/vQ1RVGDqp2jKZTHjttddgNpshXwqFfDGsahvAIbZERES1i6N9f2V6Pd0oL+eFQErXAwDeffddFBYWevYeREGEoZOqrXnz5uHw4cOIjo6G9mg0h9USERFR4PjhZLTmZCRSU1Nx4cIFfPbZZz6vn6iqMHRStXTu3DnMnTsXAFC4lcNqiYiIKAj4OHhKioSMpZYezgULFuDAgQM+rZ+oqjB0UrX0wQcfoKSkBJ07d4Z8oYqH1RIRERE5U9FwWw+DqZwTimHDhkEIgbfeegsmk8nLBhJVPYZOqnY2b96MP//8ExqNBvu+PBnYYbW8rpOIiKh28MN1m+5a88pOREdH48iRI1i8eLHP6iWqKgydVK0YjUbMmDHD8s3JUMiFusA2iIiIiMgZH91aRTLJKNwhAABffPEFCgoKvK6TqCoxdFK1smjRIqSnpyM+Ph6a9MhAN8eCvZ1EREQ1m7f7euv6XtQjnw9Hw4YNkZ2dja+//tq79hBVMYZOqjYKCwvx1VdfAQByN5sgmb3495X4r09ERERVSJK8Ov6QhIQzf+QCAH744QecPXvWVy0j8jseeVO18cMPPyA7OxupqamQM/SVr4iBk4iIiALFi+MQOSsUXbt2hcFgwOeff+7DRhH5F4++qVrIycnBd999BwDIWFMICZW8RYrtht6X4ZNDbImIiGomX+3jfXAMIkHC3tknAQArV67EyZMnfdEyIr9j6KRq4dtvv0VBQQFatGgB+VIlejklmT2cREREFDwqeWwiF4agT58+UBRFvWc5UbDjUTgFvby8PCxatAgAcOLXS57fIsXVBp29nUREROSMP3o5PVnmxNZPDgMAVqxYgVOnTlW2VURVhqGTgt7PP/+MoqIiNGnSBHJ2GABAkt28GJ+9m0RERBTs3DxekTSWy4vkghD06tULZrNZnWSRKJjxiJyCWklJCX788UcAwKnl2e73cgZqOC17O4mIiGqGqt6ne3jssv3zowCAZcuW4cKFC/5qFZFPMHRSUFu2bBkyMzNRp06dctdyOu3t9DRssjeUiIiI/MVHxyXWXk4rOT8EHTt2hNlsVi9DIgpWPNqmoCWEwPz58wEAmZtLIAk3zjgGQ4BkbycREVH1Fuh9uZvHMwd+tFzP+csvv6CkpMSfLSLyShAcoRM5tmvXLqSnp0Ov10NzIdxhGbW309vhtMEQVomIiKhm8fbYpHT9sr2cVnJmGJKTk5GTk4MVK1ZU/r2I/IxH2hS0fvnlFwCA4YQEyVwF/6qcyZaIiIh8tA93FhQ9r8j58YkECZe2FAEAfvvtN9+8H5EfMHRSUMrOzsbatWsBAJqMCOcFJRmSTmvp8SQiIiLyho9PGvvi+ETWh0EKDXW6XHMhHBqNBvv27cOJEye8fj8if2DopKC0cuVKGI1GSPk6yAUh5QtIMqDRANaNua96KTnMloiIiLxk28vpdfCUZUCWIYWGOgyfklEDcUEHAFiyZIl370XkJzzCpqBkvS5Bc9HBtZySfDlsWslS8PV2cogtERFR9eHH/bZUyeMUWR9m883l8FmWde6LpUuXwmw2V7qdRP7C0ElB58yZM9i3bx9kWYamzG1SHAZO22W+wN5OIiIiqiRX13J6HDxlB8ckDoKnnB2GqKgoZGZmYs+ePZ69B1EV4NE1BZ1Vq1ZZnmTpIBltNtyuAifg295OnwVY9nYSEREFvSqcPMjdYxW7Xs5yC+2DpyQkFB619HCuXr3arfqJqhJDJwWddevWAQBkay9n2es3XdFoOMyWiIiI3BeA/XRFxyqyPsxxL6ddIfvrPOVMy3HT2rVrOcSWgg5DJwWVzMxMHDhwAACgyQqruHfTEQ6zJSIioirm6S1SXAbPigKnbbnS8CnnhCIyMhKZmZnYv3+/R20h8jceVVNQ2bBhAwBAytdBMuk8D5wAh9kSERGRewJ8T05HEwy5HFbrjCxDDglDYZqlh3PLli2Vag+RvzB0UlCxhk5Ntr5ygdPKl8NsGTyJiIhqniDaL1uPWdwaVuuMLEOTb7m3+ebNm33VNCKfYOikoKEoCnbu3AkAkHP1rgu7g8NjiYiIyM8q28tZrh5ZqnzgLKUpiAQAHDhwADk5Ob5oFpFP8Kicgsbx48eRm5sLvV4PqTDE+wplyTc7AqF4XwcACOGbeoiIiMh7vtgv+/AEtyYxAXJkhFd1SEYtGjduDCEEdu3a5aOWEXmPoZOChrWXsyQ7BJqoGK/qkiQJkiR5HzwZOImIiGouH+yfhSIgFO/q0SQmlM7UL3sdPE/tLwQA7Nu3z6t6iHyJoZOCxu7duwEAGmMMEBsFOTra4zrUsGnzfaUxcBIREdV8ld1Pl+nl9Cp42p4gLw2elQmfUnIiZJPl+Gnv3r2Vbw+RjzF0UtA4dOgQAEA2Rlou7vcweDoNmJXp7WTgJCIiqj083V87GVZbmeCpSUwo/2LprVA8CZ5ScqJlHWMUAOCff/6BwWDwuD1E/sDQSUEhLy8Pp0+fBgDIptINrCRB0rj3L+qqR9PjYba+CJxCMHASERFVJ+7uuyu4jtOT4KkOq3XGk+BZOgmRZA5DVFQUDAYD0tLS3G4LkT8xdFJQOHLkCABAModCEjr1dREVUWFvpztDaN0Onr4KnERERFQ9+eg6z4pUGDit3AieUnLi5eeQUHDJcmx07NixiusnqgIMnRQUjh49CsCml9OqgmG2nlyzWWHwZOAkIiIiwPn+3IPZal0FT7cDp5WL4CknJZS71YpsCgfA0EnBg6GTgsLJkycBAJLJwf05nQTPykwS5HQdBk4iIiKyVXa/XonbozgNnpWZWd9B8JSTEiC05eti6KRgw9BJQeHUqVMAANkc5rhAmes7vZqVtmxvJwMnEREROWLdv3txP86ywdPhxEHuKhM8HQVOAJDMlpP4Z86cqfx7EfmQNtANIAIuh07JWegEICLDIZsViLw8r95LkiQIlO4AfDVLLREREZETQhGQZAlyVFTlejltWYOnPgzOTnlL5lAAwPnz56EoCmSZ/UwUWPwPpIBTFAUZGRkAXIdOaDRAXDSkGM/v32lLCAEIBZIseXXm0o43Pa9EREQUnKz7dy9PUl8OnDJESYnXzdr/3/rY/4LzHlNJCYVGo4HBYEBmZqbX70fkLYZOCrjc3FyYzWYAgKToHBeybvQlCYiJqnTwFEIApe8FwLfBk4iIiGquSgZP28CpVuVF8Nz/Sj1ExxcgOq4QB56JdfyekKAYLD2q58+fr/R7EfkKj7Yp4C5dumR5omghlf2XlKTyvYiVDJ5lA6dana+CJ3s7iYiIag5H+3UPg6ejwKlWVYngaQ2cVtbg6Sh8Wk/k5+TkePw+RL7G0EkBZx32Ua6X01WI8zB4OgucPsfgSUREVP252p972uPpIHCqVXkQPPe/bB84raLjCi3hc3Kc/QKGTgoiDJ0UcAUFlg2oXeh0J7y5GTzdCZy8vpOIiIgAuLcfdyN4qr2cFVXlRvDc/3I9RCeUD5y2ouML7IKnJCzzhTJ0UjBg6KSAKyoqsjwRpf+OnoQ2SYLkYkY2T3o4GTyJiIhqOU/23y6Cp6thtQ6rMhhdLq8ocKrlbIKnpFhCZ35+vlvrEvkTQycFnDV0SkJTqbAmoiIc9nZWZkgtgycREVEtVZn9toPg6WngtNbjLHjun1rPoyZdDp6W9zcaXQdaoqrA0EkBV6IOK6nkv6ODYbbeXMPJ4ElERFTLeLO/tgmelQqcNvWUDZ77p9ZDdKJ7vZy2ouMLcKmXHgBDJwUHhk4KOCGstzb2YoNvEzx9MWkQgycREVEt4Yv9dOn9vysdOG3qsQbPygZOq+j9xwEAP/74Y+XbQ+QjDJ0UcJK6sRcuy7lRESSt1qY+IiIioioiyd4FTiuh4MS4xl4FTqJgw9BJAWcNiflNwryrp7AYoqAA0OkgabVe1SUULwOwXWU+rIuIiIiCjqS1zMAv8r0Pimn3toIhWiD/eIxX9ZR0rAsAGDx4sNdtIvIWQycFnFw6+2yr+idx7LY6lapDKiyGyMuDMJdeV+FF8FQDp6f34XJYGQMnERFRUPNyX20NnAAgzIpXwTPt3lYwxFjaI5dIXgXPK+qkAwASEhIqXQeRrzB0UsCFh4cDAEINJXjs3z97HDzLBU6rSgRPBk4iIqJaqJL7bNvAqVZVyeBpGzitKhs8n26zDCEGy0SNERERHq9P5GsMnRRw1o1hSZGE1qFnMfHfv3oWPBWlfOC08iB4MnASERHVYh7uux0FTrUqD4Ono8BpJRs8m6vi6TbLkKrNgqHYsp5er/dofSJ/YOikgLMNnQDQLvS0JXjenlThuup1nK64ETwZOImIiMjdfbirwKlW5WbwdBU4LRXB7d5Oa+AEgJLS0GkdUUYUSN7NtkLkA1FRUQCAwvzL50DahZ7GxNG/4X1xPZp+m+FwPafDah3R6SABECaT8zIMnERERCSEy9uouBM41arMissbwlUYOEtZh9k2ijuNm5btQPd96YgoKkGBPhRb2jfCwqs6Y3yvDWrgBICCHMtxVVxcnNvtJfIXhk4KuKQkS49mfo4MsxnQaCyvW3s8D1xXDyt+72YXPj0KnFZOgqfPZqpl4CQiIqoZnARPTwKnWlV+AaTI8tdVuhs4ASDUaMSLPy3CTdu2IKTMvcj77DyGR75bg3P/jsbhF5OghFrCZl625YCKEwlRMODwWgq4uLg4aDQaCEVSz8pZtQs9jdHxW+yu86xU4LQqM9TWp8NqiYiIqOYoczK5MoETcDzMNv0ezwLnrFmf4ZbNG8sFTiuNSSB1Xg46jT8NuViBogB52ZZjqsTExEq1m8iXGDop4DQaDeLj4wEAuVmO/yWtvZ5po+pUPnBalQZPXsdJRERE7qhs4LSyDZ7p97RCSaz7xw0v/rIIvY4dRUVrCABxm4rQ4pULKMyToZglSJKkHmMRBRJDJwWFunUtNzDOzHA+4vt/W69Cvb+KIPly6m/2cBIREZEzPjypLMwKoNF4FDgT83Jx07YtAODy2lDb5XV/zEHOQcvz5ORk6HTeBWYiX2DopKDQqFEjAMDFMxrnhXJ00F4qgoiJhBwdVfk3M5shTCZIsgRIsuVBREREVFbpdZ3CybBWd8mxMZBjYyBJEprPy3Z7vTFbNjsdUuv0vYyAaYkRANCgQQOP1iXyFx5tU1BQQ+dZxz2dd/89Dk0XWDagQpa9C57K5d5NSZYuh8/K4tBaIiKimsd2IiGhVDp4yrExkDQyJI3lWEM+n+n2ulccO1qp98w6Znmvhg0bVmp9Il9j6KSgYN0oXjhdPnTe/fc4NP5Shu5CofpapYNnaS9nWZUOngycRERENY+jW6ZUInhaA2dZzb/LcWv9iJISj97P6qQ5DABDJwUPhk4KCs2bNwcAXDyrgcFm+2oNnCEZ5W+u7HHwNJshDAaniz0OngycRERENY+Le3R6MheEs8AJAPK5S24Fz4LQULffz0oAOKKxzH/RqlUrj9cn8geGTgoKiYmJSEpKghASzp64fMG7yA5xGDjV5e4GzwoCp5XXQ22JiIioepIk14GzlDu9na4Cp1rGjeC5uWmzCt+rrIyQEORIOmg0GjRr5vn6RP7Ao2sKGq1btwYAnD5uCZ13bxiHJgvLD4Utq8Lg6WbgtHIreLKXk4iIqOZwI2yqKhhm607gVMu6Cp4S0PuVAxAeTj57INZyPNS0aVOEVqKnlMgfnN+fgqiKtWnTBuvWrcPJwzrcHe18WK0jQpaBmEhIkeGQ8guh5OZdXqh4flsUSZYgFNnxMBoGTiIioprDk8BpJRQIMyBp7Gfd9yRwquucuwQgxqY9wBf/ngkA6BWmBcZEA9/kQsD1bVOsyzd2SwLyLcdVRMGCPZ0UNDp16gQA2Ls3Co1mSW4HTishyxA6rX2vp5OJg9xWtseTgZOIiKjmqEzgtCpzYlqOifI4cFo1m59b2h7gs9GfYEAYMCCs9G1eSYToHebWfTpF7zAcjI8GAHTp0qVSbSHyB4ZOChpt2rSBXq+HptgI3aWMStejDreNCPdoWG1ZdrdT4XWeRERENYs3gbOUMJshx0RZAqe28gMINWcvotn8XHw2+hMM0pcZZaWXIb6pB3FHtNOhtkIHiDuikfNpKo6ftKTVzp07V7o9RL7G4bUUNLRaLTp16oSNGzfCHJoDuSiy0nUJWS435MUrHsxWR0RERLWDJEsQ+QWQY2MqLlwBOb+ofOC00ssQb9UBno6H+DYX0t9FQIECRMgQffTAbdFAkhY7N4VBCIFGjRohISHB6zYR+Qq7byiodOvWDQBgDsmE0FU+NMp5BVCyc3zfQ+mDs6JERERU/VlPbnt1GU8pERUByDJ6P/mA64JJWuDReIj5qRC/NYCYnwo8Gm95HcAzn1suVerRo4fXbSLyJYZOCip9+vQBAAgpC+YwUangKecVQLmYadkJeDk8ViiifC8ngycREVH158U8DWVHUynZFd9z02EToiLUwAkAcdsuotdTFQRPJ7q99AB02WcBAH379q1UHUT+wtBJQaVBgwZo3LgxAAFFugglTOt58DSVmTxIli6HTw84DJxWDJ5ERES1kqPLd4TJ5HHwVMOmbH98Er/1osdt6jblQcTtOwtIRkRGRqqTMxIFC4ZOCjr9+/cHAChSBiABSpgWSmSIW+FTHVbrcKHnwdMlN28iTUREREHKg95OSaNxOV+EJ8NsbXs3HXG3t7PblAfRbcqDSNhbCEU6DwDo2bMntF5MakTkDwydFHQGDBgAABDSBQgYAQkQslRhr6fdsFqnhdwLni57Octi8CQiIqq+3Aie7k5O6E5vZ0WBE7D0dvZ62nXw7DbVEjYT9hZCQEDBOQDA4MGD3WorUVVi6KSg07JlSzRs2BCAAgU2t04p7fV0GjzLDqt1poLg6VHgVNvG4ElERFQTeTIbfkXDbN0JnFbxW5wPs+029UEk7Cm8XC8yAakEUVFR6Nmzp9vtJaoqDJ0UdCRJwtVXXw0AUKQzZRY6Dp4uh9U64o/7bzJ4EhERVU9Oejsrc/s1RyfAy04Y5K6e/3mw3GtdX7YPnACgSJZezkGDBiEkJMSj9yCqCgydFJSuuuoqAJZZbAXsN6zqdZ7husvh091eTlsOJhiqVC+nXdsYPImIiGoCb+73bXsi3NmEQe5I2HxBfd715QfR9eUHkbjb/rhIwKSGzmHDhlWyxUT+xauMKSilpKSge/fu2Lp1K8zSKWhFS/sCEiC0MoRGhjavsNJTlQOwBE9F9i5s2rVN8moadiIiIgoAIQBJ8ipsqlWVngivTO9mWT0nPwhDpISk3QUOlys4A8CMRo0aoWPHjl69F5G/sKeTgtbIkSMBAApOQ8DsuJAESIrw/sbMcmkPpa+CJxEREVVLwuzkmMMTkgwlN8/rwAkACUuPImmn48ApIKBIpwAAI0aMgMQRVxSkGDopaPXu3Rt16tQBJCMUnHdYRnupAMqFS96/mdnsm50MwF5OIiKi6shXga30sh1hNEGccXz84pbsXMvDYIQu7YLDIgLZEFI+QkND1fkwiIIRQycFLa1WixtuuAEAoEhpECgf5iSjCcJgqOqmERERUU1SJnBW+kR0mQkKRXFJ5eopDZswGC31FBY5LGaWTgCwXMsZFRVVufciqgIMnRTURowYAb1eDyHlQcC+R1N7qQDiYqb3b8JeTiIiotpJknzew1mWx72d1sBZRtneTgV5ENIFSJKEW265xbP3IKpiDJ0U1GJiYnD99dcDAMzSMbtlktEEpaSSZxCJiIiodqsgbLp9QrqCW7C53dtpM5zWYT1lejuV0l7OAQMGoEGDBu69B1GAMHRS0Lv55puh1WohpGwoyALgw15OX2IvJxERUfXg595Nj5UZTuuMtbdToAiSNgMAcNttt/mmDUR+xNBJQS8pKQnXXHMNgMu9nT7r5TSbLffmJCIioprPw+G0Lns7PQmcZzOcL3PRu1muPaW9nWbpOMxmM7p27Yo2bdq43w6iAGHopGrhtttug0ajgZAuQYGPezh9cZsU9nISEREFN1/2bnrYw6kUFZd/sYLhtM4IFEDSngUATJgwwaN1iQKFoZOqhfr166vXdirmg1Au+ug2KezlJCIiqvm8CJx2vZ3eDKe17e10czitI0rhPpjNZvTu3RsdO3asfHuIqhBDJ1Ub48aNg16vh6LLhyk82zeV+qKXk4iIiIKTr2anrUTvZllqb2clejetzGFFMEdmQ5Ik3HfffV61h6gqMXRStZGQkICbb74ZAGBKzYaQ2EtJRERE1YRQvAqcAgLGZMtEQsOGDUOzZs182Toiv2LopGrllltuQWxsLITeBHNSXuUrUoTvhtbyek4iIqLg5KN9tNf38y4dWaVk51S6CnN0HpTIQoSEhPBaTqp2GDqpWgkPD1eHk5jq50DIBqAy4VEoHFpLRERE7qnsMUPZ441KhldzcT4MyecBWCZXrFu3buXaQxQgDJ1U7Vx33XVo164doBEwNs6xbMwDNSEQezmJiIiCW6B6O310clspLISpbjYQYkbdunVx++23+6ReoqrE0EnVjizLeOKJJyDLMpSEIphjii0bdrPZvfDpy6G1REREVDu4GyIrGE2lFBa6VY1SWGh56IqBBpb7cz766KMIDQ11rx1EQYShk6ql5s2bY9SoUQAAU+NsCLl04+5OryeH1hIREZE/uHN84UaPqVJYaLm1m9kEY9NsmM1m9O3bF3369PFBI4mqHkMnVVsTJkxAUlIShN4MU4Pcyws86fUkIiKimq8qLofxwQlta++mNZiaU/Ihog3Q6/V49NFHva6fKFAYOqnaioiIwNNPPw0AMNctgBJVYl/AUa8nZ60lIiKiSnJ4XWclRlA5GmKrhs3S91DCjDA1tMzU/8gjjyAlJcXzBhMFCYZOqtZ69uyJ66+/HgBgbJZ1eZitVdleTw6tJSIiosoqewxR2WMKm/BatncTKL0nZ7MsQBbo0aMH/vWvf1XufYiCBEMnVXsPP/wwUlJSIMLMMDVycv+rQM5wS0RERDWLj05il+3dtDLXy4eIMqqjuiRJ8vq9iAKJoZOqvfDwcEyePBkAYE4uhDmuyHFBoXDWWiIiotrKV5fF+CBsCrO5XO+mlRJZAtGkAAAwceJEJCcne/1+RIHG0Ek1QteuXXHrrbcCsAyzVUJN/n1DXs9JRERUK3l8v05n6zuoR2gUGFpkwWw2Y+jQobj22mu9ei+iYMHQSTXGvffei3bt2gFaAWOLTAiJwZCIiIiCgzCbXQZW9TrOUDNSU1PxxBNPcFgt1RgMnVRjaLVaTJkyBdHR0RCRRpgaOrm+k4iIiKgKudM7ak4pgBJfDJ1OhylTpiAiIqIKWkZUNRg6qUZJTk7Gs88+C8ByGxVzfPkpyYmIiKiWquLLYyrq3bRSokogmuUDAB566CG0atXK300jqlIMnVTj9OnT5/L1nc2zoYQbAMAyiRBvl0JERER+5k7YtC5XQk0wtMyE2WzGkCFDcNNNN1VFE4mqFEMn1Uj33XcfevbsCcgChlaZEDrvLvonIiIicocnEw0JWYGxZSagU9CyZUv85z//4XWcVCNJQnAaTqqZ8vLy8OCDDyI9PR1SXgh0exMg+eqWKfzYEBERVU8+CHWSRlPuNU9ntRUQMLXOhZJQhLi4OHz66ae8PQrVWOzppBorKioKr732GiIjIyGiDDA1y4YAwyIRERH5VmVuo2JumA8loQharRavvPIKAyfVaAydVKM1aNAAU6ZMgSzLUOoUwdwwP9BNIiIiohrC3YmCyjInF8LcoAAAMGnSJHTs2NHXTSMKKgydVONdccUVmDRpEgDA3KAA5hQvZ7Tl0FoiIqJarbJhEwDMccUwNcsFAIwfPx7/+te/fNk0oqDE0Em1wg033IDx48cDAExNc2GOLw5sg4iIiKh68uLksxJpgKlVDiAB1113He666y4fNowoeDF0Uq1x11134frrrwckwNQqG0pUSaCbRERERNWFEN4FTr0JxrZZgEagZ8+eePLJJzlTLdUaDJ1Ua0iShMcffxx9+/YFZMDYNhtKhCHQzSIiIqJg5+WlNSLMBGO7TEAn0Lp1a0ydOhVardZHjSMKfrxlCtU6xcXFeOqpp7Br1y7AJEG3Jw5ygc79KdT5kSEiIqq+POlddLbP96AOEWKCoUMmEKagSZMmeO+99xAbG+t+G4hqAPZ0Uq0TFhaGN954A+3atQO0Asb2WVDCTV4PmyEiIqIawhfHBEJA6EwwtM8CwhQ0bNgQ06dPZ+CkWomhk2ql8PBwvPXWW2jdujWgKw2eepNlIcMnERFR7eWDsGkJnGYY22cBejPq1auH6dOnIz4+3jdtJKpmOLyWarXc3Fw8/vjjOHz4MGCQodsbB7nQ5hoLZ8Nn+LEhIiKqnrzdt7saWltahwixBE4RbkadOnXwwQcfICUlxcOGEtUc7OmkWi06Ohr/+9//0LRpUyBEgbFDJpQI4+UC7PUkIiKq2Xw0lFYNnKEmGDpmQoSbkZKSgvfee4+Bk2o9hk6q9WJjYzFjxgy0adPGMtS2QxaU6DKz2jJ8EhERVX+2vZQ+DpuA5bYoho6WazhTU1Px/vvvIzU11bv3IKoBGDqJYOnxnD59Ojp37myZXKhdNpQYB/fxZPgkIiKq/nwcNgFAiTDC2CELCFXQuHFjvP/++0hOTvbufYhqCIZOolLh4eF488030bNnT0BjCZ7mhOJAN4uIiIh8xduTx5LkcH0lxmAJnCEKWrRogRkzZiAxMdGLhhLVLJxIiKgMo9GIV155BWvWrAEEoDkeCe2ZiEA3i4iIiIKQObEYppY5gAx07NgRr732GqKiogLdLKKgwtBJ5IDZbMb777+PBQsWAAA0p8OhOR4JCR7cUJqIiIhqLAEBc2ohzE3yAQCDBg3Cc889h9DQ0AC3jCj4MHQSOSGEwHfffYeZM2cCAOSLodAeioGkMHgSERHVZgIC5ib5MKcWAgBGjRqFRx55BBqNJsAtIwpODJ1EFVi5ciWmTZsGo9EIKVcH3YEYSEbuVIiIiGojoVFgapkDJcEy0/1DDz2Em2++GZKr+3cS1XIMnURu2LFjB5577jnk5+cDxTJ0B2IhF+gC3SwiIiKqQiLUBGPbbIgIM0JCQvDMM89gyJAhgW4WUdBj6CRyU3p6Op555hmcPHkSMEvQHoqG5lJYoJtFREREVUCJNsDYJhvQCSQkJOC///0v2rZtG+hmEVULDJ1EHsjLy8PUqVOxefNmAIAmPQKa9AhOMERERFSDmZMLYWqeB0hAq1atMG3aNCQlJQW6WUTVBkMnkYdMJhM++eQTzJ8/HwAgXwqF9lA0JDNve0tERFSTCEnA1CwPSkoRAGDw4MGYPHkywsI40onIEwydRJW0ZMkSvP322zAajUCRBrqDMbzOk4iIqIYQoSYY2+RARJogSRLuvvtu3HnnnZwwiKgSGDqJvHDw4EG8+OKLOHfuHKAA2qPRkM+HcbgtERFRNWaOL4GpZQ6gFYiJicGLL76IHj16BLpZRNUWQyeRl3Jzc/Hf//4XGzZsAADI58OgPRrN+3kSERFVMwIC5kb5MDew3H+zbdu2mDp1KpKTkwPcMqLqjaGTyAcURcG3336Lzz//HIqiQCrQQvtPDORCbaCbRkRERG4QoWYYW+ZAxBgBAKNGjcJDDz0EnY6XzhB5i6GTyId27NiBqVOnIjMz0zLc9ngU5LN6DrclIiIKYubEYpia5wJagfDwcDz11FO8/yaRDzF0EvlYZmYmXnvtNWzatAkAIGeGQHs4BpKRs9sSEREFEyErltlpk4sBAO3atcMLL7yAevXqBbhlRDULQyeRHwghsGDBAsycORMGgwEwyNAdioacHRrophEREREAJdIIU6scCL0ZkiThzjvvxPjx46HV8tIYIl9j6CTyo6NHj+Lll1/G8ePHAQDyGT20JyIhKez1JCIiCgQhCZgbFMDcoACQgKSkJLzwwgvo3LlzoJtGVGMxdBL5WUlJCWbOnIkFCxZYXijWQHc4GnJOSGAbRkREVMsoEUaYWuZCRJgAAIMHD8akSZMQHR0d4JYR1WwMnURVZNu2bXj99ddx/vx5ANZezyjeWoWIiMjPhCRgrl8Ac0NL72ZMTAwmTZqEK6+8MtBNI6oVGDqJqlBhYSE++ugj/PLLL5YXikp7PXPZ60lEROQPSoQRpua5EFGW3s3+/fvjiSeeQHx8fIBbRlR7MHQSBcCWLVvwxhtvICMjAwAgn9NDezwSkpnXehIREfmCkAXMDfNhTi0EJCAqKgqPPfYYhg4dCkniKCOiqsTQSRQgBQUF+Oijj/Drr79aXjDI0B6LhHwxjPf1JCIi8oISWwJj8zwgzAwAGDhwIB599FEkJiYGuGVEtRNDJ1GA7dq1C2+//TbS0tIAAFJWCHRHoiCVcMp2IiIiTwidAlOTPCh1LPfdTEpKwuOPP45+/foFuGVEtRtDJ1EQMBgMmDdvHr766ivLfT0VQJMeCc3pcEiCvZ5ERESuCAgoKUUwNcoHdAKSJGHUqFG45557EB4eHujmEdV6DJ1EQeTkyZN4++23sWPHDgCAVKSB5lgUNFmhAW4ZERFRcFKiDDA1y4OItEwU1Lx5czz55JNo27ZtgFtGRFYMnURBRgiBZcuWYebMmcjMzAQAyJkh0B6LglTMIbdEREQAIHRmmBrnQ0m2DKWNjIzE3XffjREjRkCr5f6SKJgwdBIFqYKCAsyZMwc//PADzGazZcjt6XBoTkZAUjjLLRER1U5CEjDXLbTcc1NrGUp73XXX4b777kNcXFygm0dEDjB0EgW5tLQ0vP/++9i8ebPlhRIZ2vRIyOc5yy0REdUeAgJKQgnMjfMh9JZZaVu3bo3HHnuMQ2mJghxDJ1E1IITAX3/9hQ8++ABnzpwBAEgFWmiPR0LO5vWeRERUsymRRpia5EHEGAEA8fHxuOeee3DddddBljn6hyjYMXQSVSMGgwELFizA3LlzkZ+fD8ByixXtiUjIBboAt46IiMi3RKgZpsZ5UJJKAAChoaG49dZbccstt3BWWqJqhKGTqBrKzc3F3LlzsXDhQhiNRkAAckYYtOmRkEo0gW4eERGRV4ROgbl+Acx1CwEZkCQJ1157Le6++24kJSUFunlE5CGGTqJq7MyZM/j000+xatUqywsKIJ/TQ3syApKR4ZOIiKoXoVFgTi2EObUQ0FgOUbt3746HHnoIzZs3D3DriKiyGDqJaoD9+/fj008/xfbt2y0vmCVozuqhORUBycRrXYiIKLgJWcBcrxDm+pYZaQHLJEH33HMPevToAUnixHlE1RlDJ1ENsm3bNnz++efYt2+f5QWTBM2ZcGhOh0MyM3wSEVFwEbKAObkI5gYFQIgCAGjSpAnuvvtu9O/fn2GTqIZg6CSqYYQQ2LhxIz7//HMcPnzY8qKxNHyeYfgkIqLAE7ICc90iyzDa0rBZr149TJgwAUOGDIFGw0tEiGoShk6iGkpRFPz555/44osvkJaWZnnRVDrs9jSH3RIRUdUTGmvYLAB0lkPQ5ORk3HHHHbjuuuug03EmdqKaiKGTqIYzm834888/MXfuXBw9erT0RQmac3poToVzwiEiIvI7oVUs12zWK1Sv2UxNTcXtt9+Oq6++mmGTqIZj6CSqJRRFwV9//YW5c+fin3/+KX0RkM/roTkdDrlYG9gGEhFRjSN05tKwWaTORtuwYUOMHTsWgwcPhlbLfQ9RbcDQSVTLCCGwefNmzJkzB3v37i19EZAvhVrCZ15IYBtIRETVnhJugjm1AEpSMVB6NUezZs0wduxYDBgwgNdsEtUyDJ1EtZQQArt27cK8efOwYcMG9XUpV2cJn5dCIYGzBhIRkXsEBESMAabUQoh4g/p6+/btceutt6Jv376QZc4nQFQbMXQSEU6cOIH58+dj2bJlMBqNAACpSGMJnxl6SArDJxEROSYkASWxGObUQohIEwBAlmX0798fN998M9q3bx/gFhJRoDF0EpHq0qVLWLBgARYtWoS8vDzLi0YJmvN6aM6GQyrhcCgiIrIQWgXmlCKY6xYCoZbbnoSFhWH48OH497//jXr16gW4hUQULBg6iaicwsJCLFmyBN9//z3Onj1reVEAcmYoNGf1kLJDOPSWiKgWEhAQUUaY6xZBSbx8vWZ8fDxGjRqFESNGIDo6OrCNJKKgw9BJRE6ZzWZs2LABCxYswNatW9XXpUIN5LPh0GSEQTLz+hwioppOyAJKUjHMdS8PoQWA1q1bY+TIkRgyZAhCQjgRHRE5xtBJRG5JT0/HwoULsWTJEhQWFlpeNEuQM8KgOauHXMh7rBER1TQizGQZQptcBOgsh4whISEYPHgwRo4ciTZt2gS4hURUHTB0EpFHCgsLsWzZMixYsAAnTpxQX5fytNCc00O+yN5PIqLqTEgCSkIxzCnFELGXZ6FNSUnBjTfeiOuuuw6xsbGBayARVTsMnURUKUII7Ny5EwsXLsT69ethMpUOtzJLkC+GQnNODylPx2s/iYiqCSXCCHNykeXemqW9mpIk4YorrsDIkSPRs2dP3l+TiCqFoZOIvJadnY2lS5fit99+Q1pamvq6VKiBfF4PTYYekpG9n0REwUZoFMu1milFdtdq1qlTB9dddx2uvfZa1K1bN4AtJKKagKGTiHxGCIG9e/di8eLFWLVqFYqLiy0LFEDOCoWcEQY5MxSSYO8nEVGgCAiIWAPMdYrtZqDVarXo378/hg8fjm7durFXk4h8hqGTiPyioKAAq1atwm+//YYDBw5cXmCSIF8Ms8x8m8vht0REVUFAQESaLL2aScVAiKIua9KkCYYPH45hw4bxWk0i8guGTiLyu+PHj2PZsmVYvnw5MjIyLi8olqG5EAb5gh5yoTZwDSQiqqFEqMnSo5lUDBFuVl+PiYnBlVdeiWuuuQZt2rSBJPEEIBH5D0MnEVUZRVGwa9cuLFu2DGvWrEFBQYG6TMrXQr4QBs3FMEglHNJFRFRZQqdYZp+tUwwRbVRfDwkJQb9+/TBs2DD06NEDOh1vdUVEVYOhk4gCoqSkBH///TeWLVuGjRs3wmy+fAZeytNahuAygBIRuUXozFASSmBOLIaIMcJ65YIsy+jatSuuuuoqDBgwABEREYFtKBHVSgydRBRw2dnZWLNmDVavXo1du3ZBUS5fa3Q5gIZCKuEQXCIiKxFiEzSjLwdNAGjdujWGDBmCIUOGIDExMXCNJCICQycRBZnMzEz8+eefjgNoviWAypdCIRVpOAkREdU6IsQMc2IJlITyQbNt27YYOHAgBg0axNucEFFQYegkoqCVmZmJdevWYfXq1di5c6d9AC3SQL4UarkFC2fBJaIaSkBARJigJJRAiS+xu5cmALRv3x6DBg3CwIEDkZycHKBWEhG5xtBJRNVCVlYW/vzzT6xbtw7bt2+HyWRz4GWUIGdaAqicFQJJkQPXUCIiLwlJQIk1QIm3BE2EXj7hJsuyGjQHDBiAOnXqBLClRETuYegkomqnoKAAmzdvxl9//YUNGzYgLy/v8kIFkLNDLgdQXgdKRNWA0JmhxBksPZqxJYDNHGp6vR49evRA37590bt3b95Lk4iqHYZOIqrWTCYT9u7di/Xr1+Ovv/7C6dOn7ZZLRRpL+MwKhZwTAknhMFwiCjwhCYhoI5S4EiixhnLDZpOSktC3b1/07dsXnTt3RmhoaIBaSkTkPYZOIqoxhBBIS0vD+vXrsWnTJuzdu9fuVixQACknxNITmhUKqZCTERFR1RFhJktvZlwJlBgjoLE/BGvVqhX69OmDvn37okWLFpAkbp+IqGZg6CSiGqugoADbt2/Hpk2bsGnTJpw/f96+QIlsCaDZIZZeUAPvCUpEviO0CpQYg+X6zFgDoDfbLY+Pj0ePHj1wxRVXoEePHhw2S0Q1FkMnEdUKQgikp6dj06ZN2Lx5M3bu3AmDwWBXRirSQCoNoHKODpKRIZSI3Cc0lpApYoyWIbMR9kNmtVotOnTogB49eqBnz55o1qwZZJkTnxFRzcfQSUS1UklJCXbt2oVt27Zhx44dOHTokN0tWQBAKtBYekBzSntCTTw4JKLLhEaBEm2EKO3NFBEmlB2x36RJE3Tp0gXdu3dH165dER4eHpjGEhEFEEMnERGAvLw87Nq1Czt27MCOHTtw5MiRcmWkQg2k3BDIuTrIuTqgmNeEEtUmIsRsCZnRBstXByGzYcOG6NKli/qIi4sLTGOJiIIIQycRkQPZ2dnYuXMntm/fjh07diAtLa18IYMMOVcHKVcHOTcEUoEWkmAIJaoJBAREhAkiyggl2ggl2gCEKeXKpaam2oXMxMTEALSWiCi4MXQSEbkhOzsbe/fuxZ49e7Bnzx4cPHgQJpP99VowA1KeDnK+zvI1TwcYZPaGElUDQqdAiTRaQmaU5Su09odIsiyjWbNm6NixI9q3b48OHTqgTp06AWoxEVH1wdBJRFQJJSUl+Oeff7B7927s2bMHe/fuRV5eXvmCBhlyng5SnlYNo5KZ14YSBZLQKBCRpsshM9LosBczPDwcbdu2RYcOHdChQwe0bduW12QSEVUCQycRkQ8oioK0tDTs27cPBw4cwMGDB3Hs2DH7+4SWkoo0lvCZr4VcoLMMy+UkRUR+ITQKRLjpcsiMNEKEm8tdiylJEho0aIA2bdqgTZs26NChA5o2bQqNhrNYExF5i6GTiMhPiouLcfjwYTWEHjhwAKdPn3ZSWIZcoIVUGkLlfB1QwqG5RO4SEECIAiXCZAmWESbLQ1/+xA8AJCcno3Xr1mjdujXatGmDVq1aISIioopbTURUOzB0EhFVoZycHPzzzz84cOAADh8+jCNHjuDMmTOOC5skSwAt0EIqtHmwV5RqOSErEOFmSw9mhMkSNCOMgM7xIU1SUhKaNWumhszWrVsjPj6+iltNRFR7MXQSEQVYfn4+jh49iiNHjuDw4cM4fPgwTpw4AaPR6HgFgwypUAu5UHM5iBZoea0o1ThCo0DozaU9liaIcBOUcJPD6y8BQKPRoGHDhmjRogWaN2+OFi1aoFmzZoiNja3ahhMRkR2GTiKiIGQ0GpGeno5Dhw7h2LFjOHHiBE6cOIHz5887X6lEtlwvWqSFVFz6tUhjec5buVCQEhBAmBkizGwJmHoTFL2lFxOhjsMlAMTHx6NRo0Zo0qSJGjIbN26M0NDQKmw9ERG5g6GTiKgaKSwsVAPo8ePH1a8ZGRnOVxIAii3hUy66HEZRrIFUwkBK/icggFDF0ltpEy5FadiEi076hIQENGnSBI0aNULjxo3VR0xMTNX9AERE5BWGTiKiGqCgoABpaWlIT0/HqVOncPLkSZw6dQqnTp1CUVGR8xUFLMN1rQFU/Wp5DQaGUqqYGipDS3ss7b4qQIjrYBkSEoLU1FTUr18f9evXR4MGDdSQGRUVVXU/CBER+QVDJxFRDSaEwKVLl9QAag2jJ0+exNmzZ1FSUlJBBbAM2zVoIJV+hUG2BFODDKlEZjCt4YRkmRVWhJghQhSIUEuItDy3BEuEKuVuQVKWTqdD3bp17YKl9XlSUhJkmdckExHVVAydRES1lBAC2dnZOHv2LM6dO6d+tX1uMBjcq8woqcEUBhmSUQaMlq+S4fJzGHkbmGAgIACtgAhRAJ0Cobv8VegUILQ0VIYoQIjz6ypt6XQ6JCcnIyUlBXXr1kVKSgqSk5PV5wkJCQyWRES1FEMnERE5pCgKsrKycO7cOVy4cAEZGRm4ePEiLl68iAsXLqhf3Q6mgKXn1CRdDqImGTDJkExS+a/Gy9/DLDGsOiAgAE1pgNQqNl8VCK2w/6qzDZiiwp5JWzqdDgkJCUhMTERSUhISExPVhzVkxsfHM1QSEZFDDJ1ERFRpQgjk5eXhwoULahDNzMxEVlYWsrOzkZWVpT7PycmBorjXa1b+jQCYJUv4LP16+XlpKFXKvK5IgAJAWJ5LCiyvicvLJOv3ovQ9gMvfl76vO2FXWFewFpUASKWvyQKQS4epyqWvy5efC+tz2fK60JQGSdvnmtLnsgA0iuW5tnSZF1k8OjoasbGxiIuLQ1xcHGJjYxEbG2sXLJOSkhAdHc1ASURElcbQSUREVcJsNiMvLw9ZWVlqMM3NzUVeXl65R25uLvLz85GXl4fi4uJAN/1yKLXuMe3CZUBaZCckJARRUVHqIzIy0u77qKiocsEyJiYGWq020E0nIqJagKGTiIiCmsFgQF5eHvLz81FcXIzCwkIUFRWhqKjI5XODwQCj0Wj31dFrRqPR7z9DSEgIdDqd+rD93vZ5WFgYwsPDodfryz3CwsKg1+vV5eHh4WrA5L0piYgomDF0EhFRrSaEgNlshhACiqI4fG42m6EoCoQQEEJAlmXIsgxJktSvGo3G7ntrGa1WC0kKgu5QIiKiAGHoJCIiIiIiIr/hrABERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkNwydRERERERE5DcMnUREREREROQ3DJ1ERERERETkN9pAN4CIyB+EECguLg50M4iIPBIWFgZJkgLdDCIin2LoJKIaqbi4GFdffXWgm0FE5JGlS5dCr9cHuhlERD7F4bVERERERETkN+zpJKIaL2RzHUhCBiQZkiwBUun5NlkCJAmSLANS6evWYW2yBEmS1TKQJMtz4PL31tes65QtD/t1hCRZTvXZrg+Ue139Xl3PUhUkCUJG6TcofV0CJNitI9TXyqyv/swovxxlXrN+LztYZru+3TLbr1K5ZQ7Xgf1y2++tbXD2XnbPnbSjbJ0ql+uIcu0qWx8k4aBN4nLdjuoqXQ/qv4ewrxPWZTZfS+uzlpckYfuvo76H5U9zeTkAyBB2r8mlzy8vu/ya3TJJQMLl12Wb12VJQIb1ddgvU9dR1O+t7yVLCjTqusrl9Wy+19jUDQAaWF9XbMoppctK61S/Kmo7rOvJsK5buo66zFJeIwlI6jLLa9Z1NMDl9WB5H6l0fY1dG0Xp96VtKv2zWL6XIAPQSBJkSNCU/qFlSKWvyZAgQSPJMJRoMPLeOiAiqqkYOomo5jNLlsM/yXKQp4bO0qN5yzIJkGXYphQJcpnkYbOew9RTprxku8zRc9vvHb3uaD3YhFyooVP9CtvXyjwvXWYXoOzWc7BOuR9ZKt9MydFDcr7M6Tpu/qq8rLPioOrj0CmVD522y8qGzsuvl61POFx2OZzaLLf7/v/bu/eoqOv8j+OvEVFQUJBMIdG08LKmYaBmhnkpRcqt0Mpy11y2LXcrO6f1HF1+mbZWtnksO3rWWk/mVpLdjppt6WbhpRUUzZAiCW+oICwXuQriMPP7A+frIMNlBqYB9/k4h8Mwn8/n/fnMfMfLm8/n+/lY67av15e1bpld0mn7knT554bKrkhGjaTziufsk1Uvu59rk06L8XsaL5lqkzeTXfJ26XPlJamDyWT33XSpr9p2tbEkL9Plj7CXydau9rvDMuPx5fHXJqvWSwmttVlJ55XxOlwas+o8Zxvj5b4A4GrF8loAAAAAgNuQdAIAAAAA3IakEwAAAADgNiSdAAAAAAC3IekEAAAAALgNSScAAAAAwG1IOgEAAAAAbsM5nQCufl5WWa2WS+dO2p1L2cFUe55kB9U971JX/Gx8We3KrviSLp11aP9c3QMhrQ0cPnnl85d/trW74rHV1s7W5lKMSxWtqlte5wRAq33sy+3rPWe9osj+/M1mnY9parhMjbRvblljMZvoz6Sm2jg6b/PKeFYHMRo4p1P125nqnMd5qUy2Mrvvl9ra6teejXn57a3bxxXndMr1czqtl9paL31JMh5bZXtedctklcVklUyWS7Hs+7Jcej325bVlVpOlNo5d7MtldZ+3nY9pvXRWpv13ScZjy6U/1rbvuvTYoto/9pZLP9veqvrndJrU4VKpl2rPAzWZLj++fJZo3bM/bX11MGLYzhm1O0tUJuM506XH1Rcc/TkEgKsHSSeAq171qP96egjuYf//eheYrvgO2Ng+WhZPD8RltmyeBV0A0BbwtzEAAAAAwG1MVqu1Bb8nB4C2yWq1qqqqytPDgIuqqqp07733SpK2bNkiHx8fD48IzuIausbHx0cmE+sPAFxdWF4L4KpkMpnk6+vr6WGgFfj4+HAt2zmuIQD8b2N5LQAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AAAAAgNuwey0AAAAAwG2Y6QQAAAAAuA1JJwAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AAAAAgNuQdAIAAAAA3IakEwAAAADgNiSdAAAAAAC36ejpAQAA2rbz589r48aN2rVrl3Jzc9WhQweFhoZq4sSJmj59ury9vV2OXVRUpISEBCUlJSkvL0+dO3dW//79FR0drbvvvlsmk6nR9tnZ2UpISFBKSoqKiork6+urgQMHatq0aRo/fnyD7ebNm6fvv/++0dg9e/bUp59+6sKranva4jUsLCxUamqqfv75Z+OrtLRUkvTGG29oxIgRzeo/IyNDH330kb7//nsVFxfL399fQ4cOVWxsrCIiIlx+XQCA1mOyWq1WTw8CANA25ebmat68ecrNzZUk+fj4yGKxqLq6WpIUFhamlStXyt/f3+nYGRkZmj9/vkpKSiRJvr6+qq6uVk1NjSRp1KhRWrZsWYMJUVJSkhYvXqyqqipJUteuXVVZWSmLxSJJiomJ0YIFCxwmPbak09fXV76+vg7jBwUF6e2333b6dbU1bfUarlu3TuvXr3cYt7lJ5+eff64VK1YY/fn5+amiokK2/9rMmTNHcXFxTr8uAEDrYqYTAOCQ2WzWwoULlZubq6CgIP3f//2fIiMjZbFYlJiYqOXLlyszM1NLly7Vq6++6lTs8vJyLViwQCUlJerbt6+ee+45DR48WBcvXtTWrVu1evVq7d+/X6tWrdKzzz5br31OTo6WLFmiqqoqDRs2TAsXLlRoaKgxo7d+/Xp98cUX6tu3rx555JEGx/HQQw9d1UlJW76GJpNJ1157rQYOHKhBgwYpKCjIqTH88MMPRsIZFRWlZ555Rtdee61KSkq0du1affbZZ1q/fr2uv/56TZw40anXBgBoXdzTCQBwaNu2bTp+/LgkaenSpYqMjJQkdejQQZMmTdL8+fMlScnJyTp48KBTsTdu3KiioiJ17txZr776qgYPHixJ8vb2VmxsrJEIbt26VadPn67Xft26daqsrFSPHj30yiuvKDQ0VJLUpUsXxcXFadq0aZKk9957T2VlZS68+qtDW76Gs2fP1ieffKKXX35Zjz76qNNLYd98803V1NRowIABeuGFF3TttddKkrp376758+dr1KhRdeoBADyHpBMA4NC2bdskSSNGjNBNN91Ur3zSpEkKDg6uU7e5tm/fbsQICQmpVx4bGytfX1/V1NToq6++qlNWWVmpXbt2SZLuu+8+h8tCf/Ob30iSKioqtGfPHqfGdjVpq9dQkry8vJzqz15OTo4OHz4sSZo5c6Y6dqy/cMv2GcjNzVVqaqrLfQEAWo6kEwBQT1VVlX744QdJ0q233uqwjslk0ujRoyVJKSkpzY596tQp5eXlSZLR/kpdunTR8OHDHcZOS0vThQsXGm0fHBysfv36OT22q0lbvoYtZR+vof6HDRumLl26uKV/AIBzSDoBAPVkZWUZG/L079+/wXq2sqKiImPn0abYlns2FXvAgAGSpJMnTzbY3lansfYnTpxosM5XX32lBx98UJMmTVJMTIz+8Ic/aO3atSooKGj0NbQHbfkatpTtmgYGBiowMNBhHS8vL/Xt27dOfQCAZ5B0AgDqsU+6evbs2WC9a665xmGbxhQWFjoVu6KiQufPn6/Xj7+/vzp37txke/v+rpSdna2CggL5+PiooqJCGRkZeu+99/Tb3/5Wu3fvbtbraava8jVsKds47cfuiG1sjX0GAADux+61AIB67BOExhI7Hx8fh23cEdu2VLKysrJeeWPtHY0rPDxcU6dO1ciRIxUUFCSTyaTy8nLt2bNHb775ps6dO6clS5Zo1apVGjp0aLNeV1vTlq9hS9n6b+ozYBtbaya8AADnMdMJAPifExcXp6lTp+qaa64xzvH08/PT1KlT9fe//11+fn4ym81as2aNh0cKAED7R9IJAKjHfkbKtmmPI1VVVQ7buDO2r69vvfLG2js7u3bdddfp/vvvl1S7aVFJSYlT7duKtnwNW8oWq6nPgG1srdk3AMB5JJ0AgHrs75XLz89vsJ79PYBN3V9nExQU5FTsrl271kkabP2UlZU1mvDY2tv311y240WsVqvOnj3rdPu2oC1fw5ayjbOpe1BtY3PlMwAAaD0knQCAevr166cOHWr/iWhs509bWY8ePdStW7dmxbbfcbax2LYdUq+//voG29vvotpQ+8Z2V72ateVr2FK2a3ru3DkVFxc7rFNTU6NTp07VqQ8A8AySTgBAPT4+PsZs3759+xzWsVqt2r9/vyRp5MiRzY4dGhqqXr16NRq7srJShw8fdhh72LBhxgYxtv6vlJubq6ysLKfHZvPjjz9Kqj3Hsnfv3k63bwva8jVsKft4DfWflpZmbCDU2v0DAJxD0gkAcCg6OlqSdOjQIaWnp9crT0xMVE5OTp26zWEymTRlyhRJ0jfffONw+eqmTZtUWVkpLy8v3XXXXXXKfH19dccdd0iSNm/erPLy8nrtExISJNXeyxcVFVWnzGq1Njq+nJwcbdq0SVLtMtuAgIDmvbA2qK1ew5YKCQnR8OHDJUkffvihzGZzvTobNmyQJPXu3Vs333xzq/YPAHAOSScAwKHo6GgNGDBAVqtVixYt0sGDByVJFotFiYmJWr58uSRp9OjRioiIqNN23bp1GjdunMaNG+cwIZk5c6Z69OihqqoqLViwQBkZGZKkixcvavPmzXr77bclSdOmTVNoaGi99nFxcfL19VVhYaEWLlyo06dPS6qdXVu/fr22bNkiSZo9e7b8/f3rtN2wYYNeeuklJScnq6yszHi+oqJC27Zt05/+9CeVlZWpY8eOmjt3rkvvXVvRlq+hxWJRcXGx8WV/LcrLy+uUVVdX12v/xBNPyMvLS0ePHtWSJUuM+zdLS0v12muvGTOgc+fOlZeXl9PvHQCg9ZisTf3KFwDwP+vs2bN65plnlJubK6l2yabFYjGSgLCwMK1cubJeYrdu3TqtX79eUu1MVHBwcL3YGRkZmj9/vrE7bJcuXVRdXW3MWo0cOVLLli1Tp06dHI4tKSlJixcvNnYw9fPzU2VlpWpqaiRJMTExWrBggXEkiqOx2frt2LGjysvLZbFYjFgLFiwwZlTbs7Z6Dc+ePauHHnqoWa/hL3/5i6ZOnVrv+c8//1wrVqwwrrmfn58qKiqM2ew5c+YoLi6uWX0AANyno6cHAABou4KDg7V+/Xpt3LhRu3btUm5urjp27Kj+/ftr0qRJmj59ury9vV2KPWjQIP3zn/9UQkKC9u7dq//+97/y8fHRgAEDFB0drZiYGGMjHEfGjBmjd955RwkJCUpJSVFRUZH8/PwUFhamX//61xo/frzDdhMmTJAk/fDDD8rOzlZpaakqKirk7++vfv36aeTIkZo2bZp69Ojh0utqa9ryNWype+65R2FhYfrwww+Vmpqq4uJiBQYGaujQoYqNja03ewsA8AxmOgEAAAAAbsM9nQAAAAAAtyHpBAAAAAC4DUknAAAAAMBtSDoBAAAAAG5D0gkAAAAAcBuSTgAAAACA25B0AgAAAADchqQTAAAAAOA2JJ0AAAAAALch6QQAAAAAuA1JJwAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AgMe98cYbGjdunJ5++mlPDwUeVl5errvvvlvjxo3T7t27PT0cAEAr6OjpAQAAXFdRUaHMzEwdOXJEGRkZysjIUHZ2tqxWqyTpww8/VHBwsFv6tlqtmjFjhvLz8zVr1iw98cQTLsXJzMzU5s2bJUmPP/54K47Qs44fP679+/crLS1Nx48fV2FhoWpqauTv768bbrhBY8aMUXR0tPz8/Dw91DbFz89PM2fO1Nq1a7Vq1SqNHj1anTt39vSwAAAtQNIJAO3YvHnzlJmZ6ZG+jxw5ovz8fElSVFSUy3HWrFmjmpoajR49WsOGDWut4XnUvHnz9P333zssKyoqUlFRkVJSUvT+++8rPj5eo0aN+mUH2MbNmDFDH3/8sfLy8vTJJ59o1qxZnh4SAKAFWF4LAO2YbUZTqp0hGjFihHr06PGL9L1nzx5JUs+ePTVkyBCXYhw+fFgHDhyQpKsqsbAl4/7+/oqJiVF8fLxWr16ttWvX6q9//avGjBkjqTYBjY+PV2pqqieH2+b4+vpq+vTpkqSEhASdP3/ewyMCALQEM50A0I7FxMQoICBAgwYNUp8+fWQymTRv3jwVFRW5vW9b0jl27FiZTCaXYnzwwQeSpODgYN18882tNjZP69Onj2bPnq1JkyapU6dOdcoGDRqk8ePHa8OGDXrrrbdUXV2tFStW6N133/XQaNumyZMna926dSorK9O//vUvPfDAA54eEgDARcx0AkA7NmPGDN15550KDQ11OfFzxenTp5WVlSXJ9aW1+fn5SkpKkiRNmTLlFx2/uy1fvlxTp06tl3DamzVrlsLCwiRJJ0+e1LFjx36p4bULwcHBGj58uCTps88+8/BoAAAtwUwnAMBptl1FbUt6XbFjxw5ZLBZJ0sSJE5vVxmw265tvvtG3336rI0eOqLi4WDU1NQoICNCAAQMUGRmpO++8U0FBQXXajRs3TpIUHR2t+Ph4nTp1Sp988olSUlJUUFCgrl27auDAgXrkkUcUHh5utLtw4YK+/PJLbd++XWfOnFFVVZVCQkJ011136YEHHmjxBje33HKLcU/u6dOndcMNN7gc6+TJk9qyZYtSU1N19uxZVVVVyc/PT/7+/goODlZERIRuv/129e3b16X4ZrNZ//73v5WYmKjjx4+rpKREJpNJ3bp1U0BAgIYMGaLIyEiNHTtW3t7eddpe+f6fPHlSmzZt0oEDB1RQUKDKykq99NJL9X6BMXHiRKWmpiorK0tHjhzR4MGDXXtzAAAeRdIJAHCabWntmDFj1LGja/+U7N27V1LtfY/9+vVrsv7Ro0f1/PPP68yZM/XK8vPzlZ+fr3379unYsWOKj49vMM7OnTv18ssvq6qqynjuwoULSk5O1r59+zR//nxNmzZNBQUFio+P15EjR+q0P3HihP7xj38oOTlZK1asaFHiaTabjccdOri++GjLli1auXKlampq6jxfUlKikpISnTlzRikpKTp27JgWLVrkdPzi4mL9+c9/drhple29z8zM1GeffaaEhAT16dOnwVhffvmlVqxYoerq6ib7td9Yau/evSSdANBOkXQCAJxSUFCgn376SZLrS2urq6v1448/SpKGDBnS5NLazMxMPfXUU6qsrJQkjRgxQpMnT1a/fv3k7e2twsJCpaenN3mu47Fjx/TNN98oMDBQjz/+uNH3wYMH9d5776mqqkqvv/66wsPD9eKLL+ro0aO67777dPvttysgIEDZ2dl69913dezYMR0+fFgJCQn63e9+59J7IEnfffed8bh///4uxTh+/LiRcHbr1k3Tpk1TeHi4AgICVFNTo8LCQmVkZCg5OdnlJcwrV640Es6IiAhNnjxZwcHB6tq1qyoqKpSVlaXU1FRjuXRDMjIytGPHDnXr1k0PPPCAhg0bJm9vb508eVK9e/euV79///7y9fVVZWWlvvvuO8XFxbk0fgCAZ5F0AgCc8u2338pqtapTp04aPXq0SzGOHTtmzPINGjSo0bpms1nPP/+8kXA+88wzxs6m9m677TY99thjysvLazBWZmamwsLCtHLlSvn7+xvP/+pXv1KfPn20ePFimc1mPfXUUyotLdXy5csVGRlp1Bs4cKBGjhyp2bNnq6CgQJs3b9bs2bPl5eXl1OuXapconzhxQlJt4h0aGup0DElKTEw0Zjhff/114z5Re1FRUXrsscdUUlLidPwLFy4YyXxUVJRefPHFeslreHi47r33XlVWVjY6Y3vixAn16dNHq1evrrPLckO7H3t5eWngwIFKTU3Vzz//LIvF0qIZYQCAZ/A3NwDAKbaltZGRkfL19XUphv0S2aaOeNmxY4eys7Ml1e7W6yjhtNerV69GyxcuXFgn4bQZP368evbsKUk6d+6cYmNj6yScNn5+fpo6dapR7+TJk43250hBQYFee+01SZLJZNIf//hHp2PY2HYq9vPzc5hw2uvevbvT8cvKyoxfEISHhzc6W+rr69vkcuNnn33WqWN9bHWrqqpUUFDQ7HYAgLaDpBMA0Gzl5eU6dOiQJNeX1kpSYWGh8bhbt26N1rUluZL08MMPu9ynVLtcs6HEzGQy1SmbPHlyg3Hs6+Xk5Dg1hqqqKsXHxxvJ4pWbFznLliiXl5crMTHR5TgN6d69u7EL79dff92iMzN79uzpMJFvjP3nw/5zAwBoP0g6AQDNlpSUJLPZLC8vL40dO9blOBcuXDAeO5p1tPfzzz9Lqp3xas6GQ41pqr39WBrb5dW+njNJ2MWLF/Xcc88ZmxPdfvvteuyxx5rd3pHJkycbs4uLFy/Wk08+qQ0bNujw4cPGkuSW8Pb2VnR0tCQpPT1dDz74oJYvX66vv/7a6YTbld157ZNO+82fAADtB/d0AgCazTbreNNNNykgIMDlOPb3QDa1i2lxcbGkyzN6LeHj49Nouf3S0caWDtvfV2g79qUpZrNZixYt0v79+yVJo0aN0pIlS1y6H9ReSEiIXnnlFb388svKz89XWlqa0tLSJNW+z4MHD9a4ceN0zz33NJngN+Tpp59WdXW1tm/frtLSUm3dulVbt26VVPvLgFGjRikmJqbJGdumZrUdsf8Fhas7JQMAPIuZTgBAs1RXV2vfvn2SWra0Vqq9/9CmtLS0RbHaA7PZrMWLFxvHxERGRuqll14ylq22VEREhD744AO98MILiomJMY4sqamp0Y8//qg1a9bo4YcfNhJeZ3Xu3Fnx8fF6//339fvf/1633HKLkZQXFRVp27Ztmjdvnp577rk6SeKVXNkEyH7zI/vPDQCg/eBXhgCAZjlw4ICxXLOlSaf98RhNJZ0BAQHKy8trt5vI2BJO2yzxLbfcomXLlrXofE9HOnXqpAkTJmjChAmSameIDx48qO3btys5OVmlpaVatGiREhISFBQU5FIfoaGhevTRR/Xoo4+qpqZGmZmZ2rt3r7Zs2aJz585p9+7dWrt2rZ566qlWe11lZWXG46Y2iQIAtE3MdAIAmsWWNIWFhSk4OLhFsezPpDx16lSjdW1HqhQWFjZZt625MuEcMWKEXnnllVZPOB0JCAjQpEmT9Oqrr+q+++6TJFVWVurbb79tlfi2pbtxcXF68803jaXLO3bsaJX4NllZWZKk4OBgdenSpVVjAwB+GSSdAIAmWSwW/ec//5FUu/lNS/Xq1UvXXHONJOmnn35qtO64ceOMxwkJCS3u+5diNpu1ZMkSI+EMDw/X3/72tybvK3WHUaNGGY9t98i2puDgYOOcUVfOAm1IcXGxcVzO0KFDWy0uAOCXRdIJAGhSWlqakazYJ4EtYUuEsrKyVFFR0WC9iRMnGgnNF198oU8//bTRuHl5ea0yvpYwm83661//qt27d0tyb8K5a9euJhNJ2724knTdddc5FT8nJ0cHDhxotM7Zs2eNGcmQkBCn4jcmPT3deHzrrbe2WlwAwC+LezoBoB07c+aMsVOpje38R0nauXNnnV1mfX19NX78eKf7sc3WhYSEuHTshSMTJkzQF198IYvFogMHDuiOO+5wWK9jx4564YUX9OSTT6qyslJvvPGGdu/erSlTpqhfv37y9vZWYWGhjhw5op07d2rQoEGKj49vlTG6aunSpdq5c6ek2iRv7ty5Onv2bKNtAgMDFRgY6HRfn376qZYuXaqIiAhFRETo+uuvV/fu3XXx4kXl5eVpx44dxix17969nT7qJi8vT88++6xCQkI0duxYDRkyRL169VLnzp1VUlKi9PR0bd682diFePr06U6/hoakpKRIqr1fdcyYMa0WFwDwyyLpBIB2LC0tTcuWLWuwfM2aNXV+7t27d4uSztZYWmsTGRmpnj17Kj8/X9u3b28w6ZSkG2+8UatWrdLzzz+vnJwcHTp0SIcOHXJY13YPqCclJiYaj7OzszV37twm28yZM0dxcXEu9VddXa2kpCQlJSU1WOe6667TsmXLGj0KpjE5OTn6+OOPGyzv0KGDHn74Yd1///0uxb+S2WzW119/Lal2dt3V414AAJ5H0gkAaNTRo0eNWbqW7lprz8vLS7GxsXrrrbeUnJys4uLiRs/+HDhwoN5//31t375de/bsUWZmpnH/YGBgoG644QaNHDlSd955Z6uNsT1YvHix9u/fr9TUVB0/flxFRUXGctvu3bvrxhtvVFRUlCZPnuzSES3Dhw/X6tWrdeDAAaWnpysvL0/nzp1TRUWFfHx8FBISouHDh+uee+5ptVlwScZnQpJmzJjRanEBAL88k9VqtXp6EACAtuudd97RO++8o8DAQG3atMmlsxYbUl5erpkzZ6q0tFRPPPGEZs2a1Wqx0b4tWLBASUlJioiI0Ouvv+7p4QAAWoCNhAAAjbItrb3ttttaNeGUJD8/PyPR3Lhxo86fP9+q8dE+paenKykpSSaTSY8//rinhwMAaCGSTgBAgy5evKioqCjNmTNHsbGxbulj+vTp6tOnj0pKSvTRRx+5pQ+0L2vXrpUkTZkyRUOGDPHwaAAALcXyWgCAx/30009KSkqSn5+fHnzwQU8PBx5UXl6ujz/+WFarVbGxsY3e5wsAaB9IOgEAAAAAbsPyWgAAAACA25B0AgAAAADchqQTAAAAAOA2JJ0AAAAAALch6QQAAAAAuA1JJwAAAADAbUg6AQAAAABuQ9IJAAAAAHAbkk4AAAAAgNuQdAIAAAAA3IakEwAAAADgNiSdAAAAAAC3IekEAAAAALgNSScAAAAAwG1IOgEAAAAAbvP/8eBpS/VUKbEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACsE0lEQVR4nOzdd3hT1eMG8PfepOletGVTyt6yBERQNvoVFRERFQXc4sCN4t64cfwUt4AioCgoInuJbBDZe68W6N4Z9/z+SHNJ2uykTdK+n+fJQ0juOGl7c897z7nnSEIIASIiIiIiIqIgJwe6AERERERERETuYIAlIiIiIiKikMAAS0RERERERCGBAZaIiIiIiIhCAgMsERERERERhQQGWCIiIiIiIgoJDLBEREREREQUEhhgiYiIiIiIKCQwwBIREREREVFIYIAlIiIiIiKikMAAS0RERERERCGBAZaIiIiIiIhCAgMsERERERERhQQGWCIiIiIiIgoJfgmwx44dgyRJkCQJY8eO9ccma6S+ffuqP0ciIkfGjh2rflccO3Ys0MVRTZ06VS3X1KlTA10c8jNFUdC1a1dIkoRHHnkk0MWhEMHvBaKKqnN2MplMaNWqFSRJwsSJEytlH1XWAjt16lS88soreOWVV6pqlwE3b9489TPn5OQEujhUxmg0YtmyZXj22WfRv39/1KtXD+Hh4YiJiUGzZs1wyy23YN68eTCZTB5td9euXXjkkUfQunVrxMTEID4+Hh06dMCzzz6L48ePV9KnIaKabOHChbjrrrvQunVrxMfHIzo6Gk2bNkX//v3x2muv4b///vPbvr766iv8+++/iIiIcFopOXbsGH799VdMnDgRgwcPRlJSklpR69u3r9v7sw4+7jxWrVrlcptFRUX4+uuvMWTIEDRs2BARERGIiIhA/fr1MXjwYHz88cc+na//+ecfyLKsliktLc3rbdlz5swZvPbaa7jiiiuQkpKCsLAw9dw1YsQIzJ492+1zV3p6Ol5++WVcdtllSEpKQnh4OBo2bIirrroK3333HYxGo1/LHkgdOnRQfyfLly/3eP1//vlHXb9t27Yery+EwNq1a/Hqq6/i6quvRqNGjRAREYGoqCg0btwYw4YNww8//IDS0lKX21q1apVHx4WriwZ5eXlYtWoVPvjgA9x6661o2bKlzd+wJxdJi4qKsH79enz66acYO3Ys2rdvD61W69Ex6g1/HtclJSWYMmUKrr76atStWxfh4eFISUlBjx498NZbbyEzM7NSPkMgPPLII+rv5sUXX/R4/aKiIsTHx0OSJGi1Wpw5cwYAoNFo8MILLwAAPvzwQxw6dMiv5QYACD84evSoACAAiDFjxthdpk+fPuoyNcWYMWPUz3z06FGXy9fEn1FVW7FihahVq5b6c3b26Natmzh06JBb233vvfdEWFiYw23FxsaKmTNnVvKno5rC0++WqvL999+r5fr+++8DXZxq7ciRI6Jfv34uv8eGDh3ql/0VFhaKunXrCgBi/PjxDpf75JNPnJanT58+bu/T+u/JncfKlSudbm/z5s2iSZMmLrdTu3ZtsXjxYrfLaVFSUiJat25ts63GjRt7vB1Hpk6dKmJiYlyWv2PHji6/F6ZPny6ioqKcbqdz587i8OHDPpc7GL4XPvjgA7UMt99+u8fr33XXXer67777rkfr7tmzR9SvX9+tv+GWLVuKLVu2ON3eypUrPTounP3Mc3JyhCRJTtf35Bzjqn7l6hj1hj+P6y1btoi0tDSX21m0aJHP5XYnO1W2rVu3qmVITU0ViqJ4tP706dPV9a+55hqb94xGo2jZsqUAIG655RZ/FlsIIYQWfpCWlgYhhD82VaNV1pUpuuj06dPIysoCANSqVQsDBw7EZZddhnr16sFgMGDTpk2YPn068vLysHnzZvTr1w+bNm1C3bp1HW7ziy++wNNPPw0ACAsLwx133IE+ffrAYDBg8eLFmDNnDvLz83HHHXcgISEBV199dZV8Vqq+pk6dyq54Ndj+/fvRv39/9Wr3pZdeiuuuuw5NmjRBREQEzp07h+3bt2PBggV+2+fnn3+O9PR0aDQaTJgwweFy5Vv/IiMj0aJFC+zYscOn/T/yyCPo37+/02Xat2/v8L3jx49j4MCByM3NBQDUrVsXY8eORYsWLaDVanHkyBFMnz4dR48exblz53Dddddh48aN6NSpk9tlfP3117Fv3z5ER0ejsLDQ7fXcMXfuXNx5551qXatTp064+eabkZqaisLCQuzevRtTp05FXl4etm/fjv79+2PHjh2IiYmpsK0ffvgBo0ePVv8/ePBgDB06FCkpKTh58iRmzpyJLVu2YNu2bRg8eDDWr1+PlJQUv36eqnb77bfjmWeegdFoxG+//YbPP/8csbGxbq1bVFSEX375BYC5ZemOO+7waN+ZmZnqsRodHY2BAwfi8ssvR8OGDQEAO3bswNSpU5GRkYEDBw5gwIABWLt2Ldq1a+dy2yNHjsQtt9zidJkuXbo4fE8IYVN/lyQJzZs3x4ULF5Cdne3Ox7NR/vhPTU2FXq9Henq6x9tyhz+P6927d6N///7Iy8sDALRr1w533HEHmjRpgpycHCxcuBC///47zp07h2HDhmHZsmW4/PLLK+VzVZUuXbrgkksuwY4dO3DixAmsWLECAwYMcHt963rInXfeafOe5Vxxzz334Oeff8aLL77oVe8Fh/weiR2oia2LwdpKUpP98MMPokOHDuKnn34SJSUldpc5deqUaNeunfq7Gz16tMPtnTlzRr2KrdVqxdKlSyssY331uVGjRqK4uNhvn4comARDS0t1V1RUJFq0aCEAiKioKPHzzz87XFZRFHHy5Emf92kwGESjRo0EADF48GCny86dO1c89NBD4rvvvhPbt28XRqPRpqXB2xZYX/+erFvQrrrqKlFUVFRhGYPBIEaPHq0u50nr9fbt29VeONatff5qgW3atKm6zZdeesluS8mFCxfEJZdcoi43efLkCsucO3fOphV3ypQpFZZRFEU89thj6jJ33nmnT2UPlu+FoUOHquX49ttv3V7PupXp2muv9Xi/a9asEWlpaeKLL74QeXl5dpfJzs62qSdfeeWVDrdn3QL78ssve1wea/n5+eKWW24R7733nlixYoXIyckRQtjW2T2pv44ePVq8+eabYtGiReL8+fNCCNu6sL9bYP15XPfo0cOmld5gMFRYZs6cOUKWZQFAtGrVyu4y7gqGFlghhJg8ebJajjvuuMPt9Y4fP6623iclJYnS0tIKy+Tm5oqIiAgBQNx7773+LLZggK1EDLDBJzs7260uEjt37lR/d5GRkaKwsNDuctYn+aefftrh9kaMGKEu93//939el58omAVLRbU6e+aZZ9Sf8dy5c6tkn3PnzlX3OX36dI/XD4YA26BBA3Vbu3fvdrhcdna20Gq1AoCoVauWW9s2Go3i0ksvFQDEddddZ/N5/RFgDx48qG6vTp06wmQyOVx2/vz56rI33nhjhffffvtt9f3hw4c73I7JZBIdOnQQAIQsy+LAgQNelz9YvhfmzZunluOKK65we73+/fur6/36668e7zc/P1/o9XqXy2VkZNh06z5y5Ijd5fwZYB3xNsDaU5kB1l/H9YYNG9TtNGjQwGlDw4MPPqgu+80333hd9mAJsOfOnVMvvkVHR4v8/Hy31nvttdfU8j/yyCMOl7PUfyMjIx1ewPFGpY9CbBlZd/Xq1epr9m4ydzS4k6Io+PnnnzFy5Eg0adIEUVFRiI2NRevWrTFu3Djs3LnTadleeeWVCjePL1++HLfeeqva3ar8TepGoxGLFy/Gk08+id69e6N27drQ6XSIjY1Fy5YtMXbsWPz9998O92kZIXTatGnqa02aNKnwmR39rNwZhXjjxo2477770KpVK8TGxiI6OhrNmjXDmDFjsGLFCpfrlx9Qo7CwEO+//z4uvfRSJCYmIjo6Gu3atcPEiRO96kYSrBISEtz6+bZv3x6tW7cGABQXF9u9AV0IoXYrcjUq5/jx49Xns2fP9rTYPlm/fj3GjRuHtm3bIiEhAREREUhNTcXIkSNddjG0HizCcoyeOHECTz75JFq3bo3o6GgkJCTg8ssvx+eff+72oB8FBQX46KOPMGjQINSvXx/h4eGoVasWunXrhpdeegnnz593un75Y8VkMmHq1KkYNGgQGjRoAK1Wa3fwlIyMDEyYMAFt27ZFdHQ0atWqhe7du+ODDz5AUVERAPMtEfYGX1m0aJG6T+vfpzPjx49X11m4cKFb67jD1SjElfV7+/PPP3Hdddehbt26iIiIQFpaGkaNGoX169d7/Bn0ej2+/fZbXH/99eqAJgkJCbjkkkvw5JNPOhw4ZP/+/YiOjoYkSYiPj8fRo0cd7iM7OxupqamQJAkajcbp93YoKCwsxJQpUwAA/fr1ww033FAl+/3hhx8AmLsDDxs2rEr26W/nzp1Tn7do0cLhcgkJCWp3WXe7AX/00UfYsmULYmJi8Nlnn/lWUDusy96sWTPIsuOqW8uWLdXn9spvXT9w1hVWlmWMGjUKgLkeNmvWLI/K7I3NmzcjJSUFkiQhPDwcP//8c4VlfKkTDhkyBLVr1wZgHpTpyJEjLst04sQJrFy5EgCQnJyM6667zuPPFRMTg7CwMJfL1a5dG1deeaX6f1f1W/LfcW19XIwYMQIREREOt2Xd/f6nn37yqLzeOH/+PLp166ae05944gm7t216W9dLSUnBtddeC8D8s7F33NljnXHKdx+2ZvkeKS4uxpw5c9zatlv8kYKdXUWwvorj7GHvKtKhQ4dEp06dnK4ny7J48cUXHZbt5ZdfVpddsWKFeOihh+xux/oKU9++fd0q85gxY+w2mVtfbXK1vqOflSMGg0Hce++9Lrd988032+1KYWFZrk+fPuLw4cOibdu2DrfVuHHjGtmC3K1bN/VnsGHDhgrvW7fStm/f3um2TCaTiIuLU/9m/XkVypGCggIxcuRIl38rQ4YMcVie8ld6Fy5cKBISEhxua9CgQQ67Zlv89ddfonbt2k7LFBsbK37//XeH27A+VjIzM0Xv3r3t/t1aW7FihUhMTHS4zw4dOogTJ06Ixo0b213fZDKpA0UkJia67ApeXFys7i81NdVpq4mnXPXu8PfvzWg0Ov1ek2VZvPPOO263tLgz6IZOpxNffPGF3fW/+uordbmePXsKo9Fod7mbbrpJXe755593+jMNBdOmTVM/jyddIH1RUlKitgo569boTDC0wDZs2FDdlrstNZ06dXK53cOHD6s/H0uXXX+3wB46dEjdXt26dZ1+l/z555/qso899liF963P9Xv37nW6399++01d9rLLLvO6/O78HhcvXqx2bY6JibF7O44/6oRPPPGEuuxLL73ksuzWrUyPPvqoux/Za9a9tWbNmmV3GbbAXuSv49q6VdVet3prWVlZ6rIajcZhDz1X3GmBPXr0qDoQEgAxadKkCsv4o673xx9/qMu58z3/999/q8t37NjR6bLWA4X5a1BBIfzUhdjZL2HNmjVi7ty5NvcUzp07t8Kj/BfpoUOHRHJysrpO7969xdtvvy1mzpwpfvzxR/H444/bVEYdHcTWAfZ///ufegJ49tlnxY8//iimTp0qHnzwQXHmzBl1nR49eoiYmBgxdOhQ8dprr4np06eLn3/+WXz88cfivvvuE9HR0U6/0LZu3Srmzp1rM0Lkl19+WeEzb9261WY9dwLsLbfcoi4TEREh7r//fjFt2jTx448/iscee0zExsaq71911VUOu8taluncubNo3bq1kCRJDB06VEyZMkXMnj1bTJo0SaSmpqrLedLdpjooLS21qfCfPXu2wjIzZ850+eVjzfr3u3Hjxkoo9UUlJSXisssuU/fXrFkz8dxzz4kffvhBzJo1S7zxxhs2X4r9+/e3WymyPlEOHTpUREVFicjISHH//feLqVOnipkzZ4onn3zS5phwVnmYM2eO0Gg0AoAICwsTw4cPF59++qn4+eefxTfffCNGjRqldmWRZVksX77c7nasf5aW47pjx47i7bffFrNmzRJfffWVePjhh9Xld+/ebdM1q3PnzuKDDz4Qs2fPFp988ono1auXGoYsXZLsVTzfeustdRs//vij09/BDz/8oC776quvOl3WU54EWH/83qxP7jqdTtx7771i2rRp4ocffhCPPPKI+rO94YYbXFZU161bpy4vSZK4+uqrxYcffihmz54tpk6dKu6//36b35Wj7QwfPtxp2b/55hubyrcv9yoFi7vvvlv9TDt37hQlJSXio48+Et27dxfx8fEiKipKNGvWTNx5551++45Zvny5us+nnnrKq234I8B269ZNtGrVSkRFRYmoqCjRuHFjcdNNN4kff/zRrd+t9cVrZ/fKWR9bU6dOdbndAQMGCACia9eu6oUUfwdYIYRo3769TX3H1T2w4eHhYt++fRWWadOmjbodTwJsbGysxyOUWrgKsD/99JP6vZ+SkiI2b95cYRl/1QmtLzynpaW5/EzNmjVTl//vv/+8+fgesb7AsH79ervLWH+/t2/fXnTo0EHExMSIiIgI0bBhQ3HttdeKKVOmOG3EcCVUAqy/jutx48ap73sSYAHY/Xt1h6sAu2PHDnX0ao1GY/eipb/qegaDQdSpU0c9L7safdz63uOPPvrI5We1fO/ExMQ4vODsqaCcRsdkMokuXbqoX8KOBqlIT09Xr8bJsix27dpVYRnrAGv50svNzXW6/2XLljk98C9cuKC2+Miy7PA+BX9PozNr1iz1/Tp16ti92nTs2DGblg1H91ta/0x0Op2YP3++3c9pvS1fKkSFhYV2L1x48ygf/CuDdfjo0qWL3WVeffVVlydLa9aDCPzwww9+LrGt8vfm2qvg6fV6mzLZ+9IuP1x/amqq3XuhNm7cqF7dTExMtNuad+LECbUVOjU1VezYscNu2Tdu3Cji4+MFANGwYUO79w6V79nx2GOPOW2VsG6hffDBB+0uW/67wl7FMz09Xa1ouaqIX3nlleqJxx8D6VjzJMD6+nuzvtKakJBgd4qHffv2qVOsOKuo5uXlqYMBJSQkiFWrVtn9fAcPHlQvoEVHR6uDgVjLyspSr75rNBqxZs0a9b39+/er4TwuLs7nqUD27t3rt+8ve5/FXR07drSpTFtfGLb3ePjhh32uLFhftPnll1+82oY/AqyzR6tWrcT27dudbuv8+fOiefPm6jp169YVEydOFN99952YPn26ePnll9XznSzL4vXXX3dZvm+//Vb9+7M+L1VGgP3nn39sLjh16tRJvPXWW2LGjBniq6++Eo8++qj6/RofHy8WLFhgdzvWF9ad9XIRwvZ+WQDi1KlTXpXdWYD95JNP1NaZxo0bi/3791dY3591QiGEer8yYO6Z58jq1avV5Tp37uz+B/bSmjVr1P2lpKQ4PHbdnUanXr16Tj+fM6ESYP11XFvX5x5//HGn+7S+XxZwfTHbEVeNf5ZGlIiICDFv3jy72/BXXU8IIZ566il1GWe9EwoLC9XGsrCwMLfOaWPHjlW37eq72l1BGWB//fVXddlPPvnE6bL79+9XW3TsjXBlXSmNjo4Wp0+fduszuXL48GF1u44OCH8H2M6dO6vv//XXXw63s3HjRpsTgr0vQeuD77XXXnO4ra+//tqt5Vyx/hvx9VHZN7tnZWWJevXquay0Pf744+oyn376qcvterq8t86cOSN0Op0A7A/iYU2v16ujW7Zo0aLC++VPlH///bfDbY0aNcrpco888oha2du2bZvTclkqhgDEjBkzKrxvfax07drVaXjdvHmzumz79u2dVuitt+uo4mndxcvRwCb79+9XlxkyZIjTz+oNTwOsL78365E7nbVIWXddtFdRFcJ2LsY//vjD6We0bvl788037S6zatUqdUTIxo0bi+zsbKHX60XXrl3Vdf1xsaj8xQ1fHr5U4CxXyAGoV9Xr168vXnzxRTFz5kzxzTffiBEjRtjM6+hscA133Hbbbeq2HF10csWXAKvVakWfPn3Eiy++KKZNmyZ++eUX8fnnn4vbb79dHd0SMLcQuqoYZWZmiptuukmtM9h73HzzzS6/n4QQ4uzZs2qLX/kKb2UEWCGE+O+//2xubSn/0Gq14vnnn3daz3nhhRfU5W+66SaHy1kP4mR5OAqErjgKsM8//7z6ert27RwGZH/WCYUQ4rPPPlO352yWgTvvvNPt/fqqtLTUZgTp9957z+GyK1euFJIkie7du4tnnnlGfPfdd+KXX34RX3/9tbjvvvvUC8CWv4klS5Z4XJ5QCbBC+Oe4XrZsmbpsgwYNnN5SU/5WRG8H5nSUnX7//XcRGRkpAPPFqNWrV9td3591PSHMPdUs5XHWO8H6VhZX+7V45513/HpOFiJIA6ylG1pcXJxbU4707NnT4YnCuuLh7IvKG5YWB0fDqvszwFr/jDt06OByW5ZuTYD9llPLexqNRmRlZTncjnVQ92Ui4lAJsEajUQwePFjdl7PwYX0v8tdff+1y288995y6/FtvveXPYtv46KOP1P2sW7fO5fITJ050+HdqHYRcXYG2Dp3l711UFEWd4NzVNBxCmO/psLQM2vt9Wx8r3333ndNtWVfYXHUNsu4y56jiaR2sJkyYYHeZp59+Wl3GVSuHNzwJsL783kpKStQTZJ06dVy25ll3T7QXYC2tIy1btnT5GYUQavcpZ6HH+rgaOXKkmDBhgvr/UaNGubUfV4IlwIaHh9tsq0ePHuq0F9bmz5+vHj+A466I7rB0rwe8b4HzNsAePHjQaRg7ceKETaBr3bq1y7/Rw4cPi3vuucfh70en04mbb77Z5rYieyxd2FNTU0VBQYHDz+vPACuEuQu+vXv+LY9atWqJCRMmOBz19vDhwzZ/G47OXdatMZ6cT+wpH2CNRqPN7+Dyyy93Wg/xZ51QCPNFasvFD0ejrlq3Mul0OnHhwgW3P683rG8P6Ny5s93xVSzOnDnjdFTorKwscc0116jbS0pKctnzsLxQCrBC+H5cG41Gm5bcMWPG2P0umTdvXoWg7G19zl52+vbbb9Xt161b12m3dX/W9Sy6d+/u8ndl3YvDXu9Ne6zHrXjjjTfcWscVLYLQmjVrAAD16tXDokWLXC6v0WgAmCc0Li4uRmRkpN3lrrjiCrfLkJeXhxkzZuCvv/7Czp07ceHCBYcjEp46dcrt7Xpr06ZN6vPBgwe7XH7w4MFYvnw5APOIxd27d7e7XMuWLZGYmOhwOw0aNFCf+zIacVpamt1R04LNo48+iiVLlgAwT8BtPUlzqLAcP4D5b3PevHlOl7f+ve7du9fu6L0AcNlllzndjrO/ld27dyMrKwsAEBsb67JMgHnkxpycHOzdu9fpcq6O6y1btqjP+/Xr53RZy6jczvTr1w8tW7bEgQMHMG3aNLzxxhs2I0waDAZ1dL769etjyJAhLrdZmXz5vW3fvh16vR4A0KdPH/W71pEBAwY4/H3l5uZix44dAIA6deq4/TcAwOnfwKuvvorly5dj48aNNiN8N2nSBJ9//rnLfbjjlVdecThSflVSFEV9HhYWhlmzZiE+Pr7Cctdeey0effRRfPDBBwCATz75xOXfgSOW4xYAatWq5dU2vNW8eXOn7zdq1AgLFy5E+/btkZ6ejn379mHOnDkYOXKk3eUnTZqEF154AYqi4J577sEDDzyAtm3bAgD27NmDL774At988w1+/vlnbNiwAUuXLrUZ1ddi7ty5+PXXXwEAn332GaKjo338pK4VFhZi9OjR+O233xAdHY1JkybhpptuQmpqKoqKirBx40ZMmjQJq1evxrvvvoutW7fijz/+QFRUlM12mjZtiueffx6vvvoqAODee+/Fr7/+iuuvvx7Jyck4ffo0Zs6ciU2bNiElJQUlJSXIz88HAKejH7urpKQEI0aMwNy5cwEA11xzDX755ZcK5bTm7zphYmIibrjhBsyaNQuFhYWYM2dOhVkh5syZo37u66+/HklJSW5/Rk+99957+PbbbwEA8fHxmD17NnQ6ncPl69Wr53R7iYmJ+PXXX9G9e3fs3LkTmZmZmDJlCp555hm/ljtY+OO41mg0mDJlCq6++mqYTCZMmzYNW7duxR133IEmTZogJycHixYtwty5c9VZCiwj5fvjuACAd955B88++ywA82jjS5YsQdOmTR0uXxl1vbvuukvNG1OnTq1QJzp+/Lg6o0vdunVx9dVXO92nhfXx47eZTfyRgv3ZApufn+/T1e3yV2utr5w763ZrbcWKFRXu53L2aNq0qd3t+LMF1vpKy5dffulyW9bz9k2cOLHC+5b33BmcybKsJ1fOQ5F1S06dOnXs3otjLVi7EFt3n/T0Ub67rnVLnrNBfsovW/6eYOu5CT192OvuYn2suBqowrpbljtz8VnuO3HWcvL++++r2yw/L+CcOXPU9ypr5FtPWmB9+b1Zf48899xzLstl/T1VvgXWevAUTx9hYWFO93v48GGbAey0Wq1PrY7BytKLAYC45pprnC5r3Y29Tp06Xu/T0u1Mo9F4vQ1vW2DdNWnSJHX7d9xxh91lrL/fnXUH/fjjj9XlLr300grvZ2dnq7eYOOqC6+8WWKPRKK644goBmO8B3bRpk93lTCaTzeBmjgbdUhRFTJw40aareflHnTp1xIYNG2wGRnJ1TnTEugXWunvr7bff7nIALn/XCS0WL17s9G/SupXJXt3R2X3uixcvdvtn8+WXX6r7iY6OFmvXrnV7XVesB5r0dCDOUGmB9ddxbTFnzhx1NGx7D51OJ7788ksxbNgw9TV36uT2WH9PWB8XHTt2FOnp6S7X92ddzyInJ0ftvmyvd4L1vcKOeqDZs3TpUnW9Bx980O31nPHPZQM/ys3N9Wl9S2uBPY5aZq0dPHgQQ4YMQXp6OgCgVatWeOyxx/DZZ59h5syZmDt3rvqwzCllMpl8KrM7LFcCAbh1tdfSclF+3fL8deUo1L3xxht46623AJjnelu2bJndK+/WEhIS1OcXLlxwuY/MzEy76/qbL8eQs+PHl7+VyioT4Pq4tvSc0Gq1bs3F587xNXbsWISHhwMAvv76a5v3LP+XJAl33323y21VNl9+bwUFBepzZy0kFs5+dr78DRgMBqfvJycn27QONm3aFF27dvV6f8HK+nvD1edr2bKleh7IyMiw+V16wvJ3bjKZ1LmSg411K8G+ffsqvH/69Gm89957AIA2bdrg4YcfdritRx55BG3atAFg7r2xYcMGm/effvppnD17FvHx8fjkk0/8UHrXfv31V7W15c4770S3bt3sLifLMj755BP1mP/yyy/tHjuSJOGtt97Ctm3bcP/996NVq1aIjo5GVFQU2rZti+eeew67du1C165dkZeXp65Tp04dnz+L9ZzThYWFLntmVVadcODAgWjYsCEA4O+//7aZd9q6lal+/fp2e70NGzbM4eO+++5zq2zTp0/HAw88AMB8Hps/fz4uv/xyDz6dc66Oi1Dnz+PaYvjw4Th06BBefPFFXHrppUhISIBOp0Pjxo1x1113YcuWLbjvvvts6nN169b1+bNYHxfFxcVu5YrKqFfFx8erc30XFhaqPU0AQAiB6dOnq/93NvdredZldSeLuSPouhBbB68rr7wSq1evrtL9T5o0CcXFxQCA559/Hq+//jokSbK77L333ltl5YqNjVWfuzO5unVlxXrdQCkqKlK75voqNTUVXbp08cu2AODdd9/Fiy++CMDc9Wbp0qVo3769y/WsA671yc+R48eP213X3yzHkCRJMBqNQXGRwvq4fumll9Tua1XBEqqMRiMMBoPLEOvO8ZWUlISbbroJM2bMwJIlS3DixAmkpqbi+PHjWLp0KQBzBalJkya+f4AAsv69uRNenP3srLc1evRom0nQffXggw/aHF8HDhzACy+8gHfeeccv29+3b5/fKoC9e/dGcnKyV+u2atUKR44cAQC7XYfLi4+PV88Fubm5Nr8Dd1lfGMjKynLrQkZVs+6elpOTU+H9JUuWqEFuwIABDs/pgPl7s3///mq39U2bNtl0v/7mm28AAG3btlW7fZZnXYbc3Fy88cYbAICIiAg89dRT7n0oKwsWLFCfDxw40Omy9evXR5s2bbB7927k5+dj7969uOSSS+wu27FjR3zxxRcOt7V79261It2iRQu3/uZcmTRpEmbNmoV169Zh7ty5GDlyJGbPnu3we7my6oSyLGPMmDF48803IYTAtGnT8PLLLwMApk2bpgbr0aNHu7x1whszZ87EnXfeCSEEwsPDMW/ePJe3uHjK1XER6vx5XFurU6cOXnvtNbz22msOt7dnzx71uaMLSp646aabEBcXh08//RQHDhxAv379sHLlStSvX9/hOpVV17vzzjvx008/ATB3Ix4zZgwAc5flw4cPAzDfmtS6dWu3t1kZt6IEXYCNj49HTEwMCgoKquTe0vKWLVsGAKhduzZee+01hwdEfn6+zS+kslnf83Dw4EGXy1sv4+wAqCrnzp1Tr+r4asyYMX67N3Xy5MnqfSHx8fFYvHgxOnXq5Na61iF369atTpdVFAXbtm0DYD5xWq4EVoYGDRrgv//+gxACp0+fRqNGjSptX56UyaKqj+v69eur914eOXIErVq1crhsdna22yf6Bx54ADNmzICiKPjuu+/wyiuv4LvvvlPvU3T3Knwws/7uOHTokMvlnS1TWX8DM2bMwIwZMwCYWyUvXLiA48eP4/3338dVV12F/v37+7yPWbNm+e2iy8qVK92619qeSy65BAsXLgTg3tV3S+sZ4F7gtSctLQ1r164FYK6EWFqtgomr3i1nzpxRn8fFxbncnvXPytFFmfXr12P9+vUut5WTk6NeII2Pj/cqwFZG+d1hHRY9GUPEmdjYWCxatAhXX321WyG2MuuEY8eOxZtvvgnA3Br60ksvAYDNxbXy98ZauGo5duaXX37BHXfcAUVRoNPpMGfOHLfGNvFUVfX6CpRAHRd79uxRe901a9bM5T3J7vrkk08gSRI++eQTt0JsZdX1+vfvj9TUVJw4cQKrV6/GsWPHkJaWhu+//15dxpPWV8A2wDZu3Ngv5ayyphnrKwOuDvwrr7wSgLmy6U6lyZ8yMjIAmAcAcXY1Y9myZTYDatjjyWd2xXoQJksLjzPWrZ2OBnCq6T777DM88cQTAMwn1YULF3p0Ja1du3ZqZW737t1OT67r1q1TK5O9evWq1FbxPn36qM/91ertq86dO6snmOXLl7s8dvzp0ksvVZ+vXLnS6bKWbmPu6N27N9q1awcA+O6772AwGPDdd98BMF8AGzp0qOeFDTIdO3ZUBxNZvXq1y25NloHj7ElOTlYH1tiwYYNNuPLW0aNH8eCDDwIwt7TPnDkTP/74IzQaDRRFwejRo20qcaHuf//7n/rc1UWzAwcOqLeP1KtXz6vWV8D2Qt3+/fu92kZlsw5a9nq3WFduT5486XJ71q35lTl4j7s8Lf+JEyfU576U3/pCsT9vh7CE2F69egEwD4p18803O7xVoLLqhM2bN1eD+ZEjR7BmzRr8/fffai+Hyy+/3OkFT2/MmzcPt912G0wmE7RaLWbPno1rr73Wr/uwcHVchLpAHdfWQc7ftwl9/PHHePTRRwGYv8P79u1rE9StVVZdz9I7AbjYbdgy2Blg7gLsaKA8R6wHYnTUI8TjcvplK26wPnm6uvJh+cEBUK+IVRVL96gjR444DJ0mk0m9X9IZTz6zK2lpaWq32e3btzsNsVu2bMGKFSsAmK90BMO9YJZRiP3x8Efr69dff41HHnkEgLni+9dff6Fnz54ebUOSJIwYMQKA+SD/9NNPHS5rfa+Upwe+p2655RY1dLzzzjs+/+35g0ajwahRowCYTyKWbnhVwTpIfvbZZ05D2Mcff+zRtu+//34A5pPnY489pl7EGDNmjFv32wa78PBwXHPNNQDMF/cs3YrsWbhwocsRoy3f7UVFRXj77bd9KpvJZMKoUaPUIPzJJ5+gRYsW6N27N5577jkA5nuk7rnnHp/2A5hHIfbX95e3ra+AuRXMctFs6dKlTm9d+Oqrr9Tn7o4UaU+PHj3U5xs3bvR6O5UlKyvL5ri1/L1asw7hCxYscDouRF5entrKDdheAAPg1u/46NGj6vKNGzdWX/e2G6d1+WfNmuV02X/++Uf9HkpMTESzZs282uf333+PzZs3AzBfdPX0/OiKJcT27t0bgDnYOQqxlVkntG5Jmjp1qk39wtNWJlf++usvjBw5EkajERqNBj/99BNuuOEGv+7DorS01Kaeau+4CHX+PK7dtW/fPrWul5CQ4JfzS3kfffQRHnvsMQDm3pSOQmxl1vXGjh2r9kCdPn06fvnlF/V2lBtvvNHjHj2Wc0dsbKx6Idtn/hgJyp1RiMePH68u42hSXguTyWQzt9ujjz7qdE6soqIi8f3334uZM2dWeM96FGJ3Rj8bNGiQuvyHH35Y4X29Xm8zuTWcjDL44YcfqstMmzbN5b5djdQ8e/Zs9f169eqJvXv3Vljm+PHjolmzZupyjiZYtrzvzoiQniwbCqZNm6aOvhgVFeXTqHinT58WUVFRAjCPfLps2bIKy1iPwNioUSO35rHz1ZNPPqnus1+/fuLs2bMOlzWZTGLp0qXi9ddfr/CesxFqPV325MmT6gi/4eHhLo+JjIwM8dprr4nt27dXeM+TeaWFEDbzJj744IPCZDJVWKb8XJ/ujB6ak5Oj/v6tH87m6PMHT0Yh9vX3tmbNGvX9xMREu5PBHzhwQB2Z1fKwNw9sQUGBaNy4sQAgJEkS7777rt3fhUVOTo74+OOPxdKlSyu89+KLL6r7Kj8arMFgUOeChA+jRAYj63l7L7vsMpfzwMqyLHbu3On1/kpKSkR0dLSAFyOZWngzCvG6devE119/LUpKShwuc/LkSZt5C1u0aGF3VFu9Xi8aNmyoLjd06FC7o5cXFRWJ66+/Xl2uffv2QlEUtz+nhSejEJefI92eXbt2CVmW1WUczTt5/Phxm7ksHY32uXv3bnHu3DmHZfrxxx/V+Z8jIiLEvn37nH4GV8rPA2stPz/f5vt56NChFUaL92edsLz8/Hz17zsmJkYdgTYqKsrjuVOdWbp0qTr3rEajET/99JNX2zl48KB47733RF5ensNlys8Dm5iYKLKzsz3aTzCMQmw5Vzhaz9/HdUZGhtizZ4/D8mzdulU0atRI3c7UqVPd/iz2uMpOjz32mM13m715uP1V17PH+m/A+vxur57rTE5OjlrnvuGGGzxa15kquwd2wIABaivU3XffjccffxyNGzdWb45v3ry5OuebLMv49ddf0bNnT5w+fRoff/wxfv75Z4wYMQIdO3ZUB6Y4ceIEtmzZguXLl6OwsBCvv/66z+V85JFH1NbNJ554AqtWrcJVV12FpKQkHDx4ENOnT8fBgwfRr18/HDx40Gm30QEDBqjPJ0yYgPPnz6NVq1bQas0/9gYNGqBDhw5ul+3mm2/G3LlzMWvWLJw9exZdunTB2LFj0bNnT2g0GmzZsgXffvut2iIxePBgtXsdmS1cuBB33XWX2rp+1113IScnx+X8WV26dEFqamqF1+vXr48PPvgA48aNg9FoxP/+9z+MHj0affr0gdFoxMKFC9VuF1qtFl999RUiIiIc7sf6nuujR486nJPVlUmTJuG///7D8uXLsXLlSjRt2hTDhw9Hz549kZKSAr1ej/T0dLU1Pz09HQMGDMALL7zg1f7c0bBhQ8yaNQvXX389SktLMWbMGHz44Ye4/vrr0aJFC0RGRiI3NxcHDhzAhg0bsHbtWphMJr8MbPHll1+iW7duKCoqwueff47169fj9ttvR8OGDZGRkYHZs2dj7dq16NmzJ06cOIHTp0+7NSBCfHw8Ro4cadOlqG/fvmjRooXPZQ4WvXv3xoMPPojPP/8c2dnZuOyyyzBmzBj07t0bsixj06ZN+Pbbb1FYWIgbbrjB6bEUHR2NefPmoU+fPsjLy8OECRPw5ZdfYvjw4Wjbti1iYmKQl5eHI0eOYNOmTVi1ahX0ej1++OEHm+38888/autCw4YNbVobAfOxNmPGDHTq1Al5eXl4/PHH0adPH793BwyEsWPHYu7cufjzzz+xYcMGtG3bFvfccw/atm2LwsJCLF68GL/88ov6Hff666+7NSidI+Hh4bj66qvx66+/YsuWLSgoKHDZHbn894j1/bpHjx6t8H6XLl1w44032ryWkZGBe++9F08++SSuuuoqdO3aFQ0aNEBERAQyMzOxdu1azJkzRx10MTY2FrNnz1bPr9bCwsLwySefYPjw4RBC4Pfff0ebNm0wevRodTyCvXv3Yvr06Wo3w7CwMPzf//2f04Fhqkq7du0wfvx4fPTRRwCA5557Dn/88Yc6D2xxcTE2bNiAH3/8UW2FatSokTooUXl//fUXnn/+eQwcOBC9e/dWzzPHjh3DvHnz1HkgdTodZs6cWanHTUxMDBYuXIhrrrkGa9aswe+//44RI0bgl19+UXuxVGadMCYmBiNGjMDUqVNtBr8cPny4W/dVuuO///7D0KFDUVJSom47MjLSZb2jdevWFQbKKSgowNNPP40XX3wRgwYNQrdu3dC4cWNER0cjJycHmzdvxqxZs9RjTqvV4qeffnJ6D+xvv/2Gf//91+Y1614EH3zwQYUWN8vAZOWtWLFC7QFoYRn/AwC+/fZbdawZi6eeesqre3T9fVyfOHEC3bp1Q/fu3TFgwAC0bt0akZGRSE9Px7Jly7BgwQK1B9eECRNsegZUhsmTJ0OSJEyePFnNHStXrrQZT6Iy63p33nmn2g397NmzAMw9SjwdV2LVqlXq+civPQ78kYLdaYE1Go02V9nKP+xd+T9z5owYMGCAw3WsHxqNRnz99dcVtuFpC6wQQkycONHpvnr16iXOnTunXh1ydoX11ltvdbid8j8rd1qVDAaDuOeee1z+PG666San82NalqtpLbDlW9ncfdhrTbL23nvvibCwMIfrx8bGunU12HodX696lpaWiocfflhoNBq3PuPo0aMrbMOfLXkW69evV+eWdPWIiYkRO3bsqLANT1tghTDP72xpAbb3aN++vThx4oRo0KCBACAuueQSt7a7ceNGm+04ml/Nn6qyBVYI8/f3HXfc4fBnJ8uyePfdd522tFjbt2+f6Ny5s1t/A+Hh4WLhwoXqutnZ2ep3ryzLTr/Xf/zxR3U7nTt3dtpqE0qKiorEiBEjXJ4THbXUeWrevHnqdqdPn+5yeU+/X+3VG6znIHb1aN++vd2eGuX9+OOPIi4uzuX2kpOTxYIFC7z5UQkh/N8CK4S59eTJJ5+0aYl19OjYsaPTOVvfe+89l9to2rSpWL58ubc/AhvufC8UFBSIK6+8Ul3u+uuvr9AS6486oT2rV6+usP6KFSt8/dgq68/vycPe9/G2bdvcXj81NdWteq/1+cTdhyPe1LEc1XVctcBa+Ou43rx5s8ttxMbGOp1v1hPuZCchhHjiiSfU5Zo3b16hJdYfdT17CgoKKsyJ+9JLL3n8OW+++WYBQERGRjrtOeCpKguwQghRXFws3n77bdGzZ0+RmJho88N2VslatWqVuP/++0W7du1EQkKC0Gg0Ii4uTrRt21aMHDlSTJkyRZw5c8buut4EWCGEWLhwoRgyZIhITk4WYWFhol69eqJ///7i66+/VrsouRNgjUajmDJliujbt69ITk5Wu3XZ+1l5Uilfv369uPvuu0Xz5s1FdHS0iIyMFE2aNBG33367Wycdy34YYN17uAqwQgixc+dO8dBDD4mWLVuK6OhoERsbK9q3by+eeeYZcezYMZfrFxYWqvvT6XQiMzPTD5/Y3OXo2WefFT169BApKSlCq9WKqKgo0aRJE3HNNdeIt956y25IFKJyAqwQ5gsxP/74o7j55ptFkyZNRExMjNBqtaJWrVri0ksvFffee6+YPXu2KCgosLu+NwFWCCHS09PFU089JVq1aiUiIyNFQkKCuPTSS8X7778vCgsLhaIo6iTeffv2dWubiqKok5DXqlXLaZdHf6nqAGsxf/58MWTIEJGSkiLCw8NFamqquPXWW8W6deuEEO5VVC0URRG///67GDNmjGjZsqWIi4sTGo1GJCQkiI4dO4rRo0eLqVOniqysLJv1Ro4cqe7j2WefdboPIYQYNWqUuvyTTz7pcvlQsmjRInHrrbeKtLQ0ERERIWJjY0W7du3E+PHj/dqN3Wg0itTUVAFADBo0yOXynn6/2qs35Ofni99//108++yzon///qJly5aiVq1aQqvVioSEBNGmTRsxZswY8ccffzjthl5eRkaGeOedd8SAAQNE3bp1RXh4uAgPDxf16tUTgwcPFpMnT/a4u2V5lRFgLXbv3i2efPJJ0b17d/XnYfk+HzFihJg9e7bdbtTWTp48KT766CMxdOhQ0bJlSxEfHy8iIiJEamqqGDJkiPj222/9equLu98L9kKsvYtOvtQJ7VEUxebWq7S0NK+6jjvizwBbUlIiFi1aJF5++WVx1VVXidatW6t1y7i4ONG8eXNxyy23iBkzZrh9wS7UA6wQ/jmuCwoKxNSpU8WYMWNE+/bt1fp/3bp1Ra9evcTbb7/ttIuup9zNTkLYdhW2F2KF8K2u58hdd92l7leSJHHkyBGP1s/NzVXrVPfee69H67oiCVHWrktEAbV48WJ1sJXx48d7PKAQ+W7nzp3qCHnu/g6WLVuGQYMGAQAeffRRtZsfUXUyefJkPPHEE9BoNDh27FhQTqdDRETB47vvvsPdd98NSZKwa9cu/w3ghCochZiInLPcFxIbG1up96KSY//3f/+nPnf33tspU6aoz6vD3K9E9jzwwAOoW7cuTCYT3n333UAXh4iIgpj1uWLkyJF+Da8AAyxR0LAE2CeeeAIpKSkBLk31s2bNGqfzz3722WfqYEANGjRwa26+//77Tx2IY+DAgX7/giYKFpGRkXjllVcAmKfocTQ3IRER0cyZM7F//37odDq/DLJbHrsQEwWBCxcuoHbt2khOTsbhw4cRGxsb6CJVO82bN0dJSQn+97//oXPnzkhJSYHBYMDhw4cxd+5cm5ES58+f7zDALlq0CIqi4MCBA3j33XfV0fn++ecf9OrVq0o+C1EgKIqCbt264d9//8XDDz/sdO5rIiKqmUwmE9q1a4f9+/fj2WefxaRJk/y+DwZYIqoRmjdvjsOHDztdJjIyEl9//TVGjRrlcBl7w++7e7/skiVLUFRU5LqwdiQnJ6N3795erUtERERUXTDAElGNsGHDBvz666/YsGEDTp8+jczMTBQVFSExMREtW7bEwIEDMW7cONSpU8fpdiwBNiYmBi1btsS4ceNw1113uTVvbFpamjofnaf69OmDVatWebUuERERUXVRccZvIqJq6LLLLsNll13m83Z4zY+IiIgocNgCS0RERERERCGBoxATERERERFRSGCAJSIiIiIiopDAAEtEREREREQhgYM4ERFRtaIoCoqLi1FUVOTwUVJSAr1eD71ej9LSUvW5vf/r9XqYTCYoimLzr73XFEUBYB6t2tHDMmK1JEnQaDQICwtTH1qt1u5zyyMiIgKRkZGIiIhw+DwyMhKRkZGIjo5GdHQ0tFqe6omIqPrgWY2IiIKOEAIFBQXIy8tDXl4e8vPz7T63fq2goADFxcUoLi4OdPGDSmRkJGJiYhATE4PY2Fj1ufUjLi4OCQkJNo/IyEi78x4TEREFEkchJiKiKiGEQG5uLrKyspCdnW3zb05OToX/GwwGn/an0WgQGRmJqKioCo/IyEgsnfo3JAFAkawegGTv/wIAyv4VAITlNavnAubtWS1qeQ6b5+LiaxLMK8nmf0XZv9avQQaEXPaaBoAscPV9/VBSUoLi4mKUlJQ4fO4LnU6H+Ph4JCQkqP8mJCSgVq1aSE5ORlJSEpKTk5GcnIyYmBiGXSIiqhIMsERE5DNFUZCdnY1z587h/PnzOH/+vM3z8+fP48KFC9Dr9R5tNzIyEnFxcYiLi0NsbCzi4uLw98yNkIwSYJSt/pUBowTJJAEmCTDJ5vCJmhuqhCQAjQC0CoRWAJqyf7UCQqsAGoGhj12ltmjn5OSoj9LSUo/2pdPp1DBrHWyTk5NRt25d1K5dG8nJydBoNJX0aYmIqKZggCUiIpcURUFmZibOnj2LM2fO4OzZs+ojIyMD58+fh8lkcmtbcXFxSExMRK1atbB9yR5IBhnQa8r+lSEZ5IvPRc0NoIEkZAGEKRBlD8tzaBUMuvdKXLhwAZmZmcjMzEReXp5b29RoNEhJSUHdunVRp06dCv/WqVMHOp2ukj8ZERGFOgZYIiICAOj1epw5cwYnT57EqVOnbIJqRkaGy9ZTWZaRlJSElJQUpKSk4J+fNptDaKkGUtm/DKXVjxp2dSYInQIRruDm56/FhQsXcP78eaSnp7t1gUOSJNSpUwcNGjRQHw0bNkTDhg1Rv359hIeHV9EnIiKiYMYAS0RUgyiKgvPnz+PkyZM4efIkTpw4gVOnTuHkyZNIT09XR9G1R6PRoHbt2qhXrx7++2sPpBKN+VGquRhOa3CXXXJMQAA6BSLCBBFugghXMGR8f2RkZCA9PR0ZGRku79lNSUlBw4YN0aBBAzRq1AhpaWlo3Lgx6tatq47sTERE1R8DLBFRNaQoCs6ePYujR4+qj2PHjuHkyZNO72+MiopCamoqGjZsiJXfrTeH07KgilIGVKocAgIIExARRohIE2574wacPn0ap0+fxqlTp1BQUOBwXZ1Oh8aNG9s80tLS0LBhQ04hRERUDTHAEhGFMCEEzp07VyGoHjt2zGGLllarRf369dGoUSNsmL0NUrEGUrEWUrEGMDCkUnARKBt4KtIIEWHC7ZNuxIkTJ3D8+HGcPHnSYdd2jUaDBg0aoFmzZmjatCmaN2+O5s2bo3bt2hwxmYgohDHAEhGFCKPRiBMnTuDgwYM2D0etU5aWqcNrT0Iq1EIq0kIu1gAlGoZUqhYEBBBhghJlgog0YtC43jh+/DiOHTvmcD7g2NhYNGvWTH00b94cTZo04T22REQhggGWiCgIlZaW4vDhwzh48CAOHDiAgwcP4siRI3ZbmzQaDRo1aoQTm89CKjIHValQa+76y6BKNZB6z22UEUq0EQPuvxyHDh3C8ePH7Q4mJcsyGjVqhFatWqF169Zo1aoVWrRogYiIiACUnoiInGGAJSIKMJPJhGPHjmHv3r3Yu3cv9uzZg2PHjtmtaEdGRqJFixbYveggpIIwtWWVI/sSuSYkARFlhIg24sYXrsbhw4dx6NAh5ObmVlhWo9EgLS0NrVq1Qps2bdCqVSs0bdqUU/0QEQUYAywRURU7f/489uzZowbWffv22e3umJCQgBYtWuDf33ZDKgyDVMBWVSJ/s7TWKtFGjP7gRuzbtw/79u1DVlZWhWXDwsLQrFkztG7dGh06dED79u1Rt25d3lNLRFSFGGCJiCqR0WjE4cOHsX37duzcuRN79uzB+fPnKywXGRmJ1q1bY8f8/ZDywyDnh3FaGqIAUUNtjAG3Troe+/btw/79+5GXl1dh2aSkJLRv3159tGjRgq20RESViAGWiMiPSkpKsGfPHuzcuRPbt2/H7t27K7SuyrKMJk2a4OjaM5DztZDyw8zdgBlWiYKWgADCTVBijRj24mDs2rULBw4cqNDVX6fToVWrVmqg7dixI+Li4gJUaiKi6ocBlojIB/n5+di+fTt27NiBHTt2YP/+/RUqtNHR0Wjfvj22zN4NOa+sK7AiB6jEROQvQhYQMQbc9dnN2LVrF3bt2lXhflpJktC8eXN06tQJnTp1YqAlIvIRAywRkQdKSkqwc+dO/Pvvv9i6dSsOHDgARVFslklOTkbW3nzIeTpIeWUDLbF1lajaExAQESaIOAP+92QfbN++HSdOnLBZpnyg7dSpE2JjYwNUYiKi0MMAS0TkhNFoxN69e9XAunv3bhgMBptlGjZsiDNbMiHnhkHO0wGlvHeViMxEmAlKvAFDnumLbdu2OQy0l156Kbp374727dtzTloiIicYYImIyjl58iQ2bdqEjRs3Yvv27RXuYU1JSUHmrnzIuTrIOTpIek2ASkpEocZVoA0PD0enTp3QrVs3dO/eHY0bN+Yox0REVhhgiajGKykpwbZt27Bx40Zs3LgRp0+ftnk/Pj4e+YdLzGE1R8epbIjIb0SYCUqCHgMfvRybN29GZmamzfspKSno1q0bunXrhq5duyIhISEwBSUiChIMsERU4wghcPLkSWzYsEFtZdXr9er7Wq0WHTp0wI7fDppDK+9hJaIqICAgooy495tbsHnz5grfTZIkoW3btujVqxcuv/xyNGnShK2zRFTjMMASUY1gNBqxa9curFmzBmvXrsWZM2ds3q9duzYubM+HnK2DnKuDZOIowUQUWEIWEHF6DH/jamzatAlHjhyxeb9u3bq4/PLLcfnll6NTp06cf5aIagQGWCKqtoqLi7F582asWbMG69evR15envqeVqtFx44d8d+c/ZCzwiEVs1swEQU3oTPhkdljsHbtWvz77782rbORkZHo1q2bGmjZ1ZiIqisGWCKqVrKzs7F27Vr8888/2LJli00FLy4uDgUH9ZCzwiFn6zgXKxGFLCELKAml+N8zV2LdunU2987KsoyOHTviyiuvRJ8+fZCcnBzAkhIR+RcDLBGFvMzMTKxevRorV67Ejh07YP21Vq9ePZzbkgs5M9w8JytbWYmomhEQENFGjPr4eqxbtw4HDhyweb99+/bo06cP+vTpg7p16waolERE/sEAS0QhKTs7G3///TdWrFiB//77zya0tmrVCoeWnDKH1iIOwERENYsIN+HeqSOxatUq7N692+a91q1b48orr0Tfvn3RsGHDAJWQiMh7DLBEFDJycnLw999/Y+XKldi2bRsURVHfa9u2Lfb/eQKazAhIpZyXlYgIMN83O27GKKxevRo7duyw+d5s3bo1Bg4ciP79+7ObMRGFDAZYIgpqxcXFWLNmDZYsWYKtW7fCZDKp77Vu3RoHF56C5gJDKxGRKyLMhEd+HoPVq1dj27Zt6vepJEno0qULBg4ciD59+iAmJibAJSUicowBloiCjslkwrZt27B48WL8/fffKC4uVt9r2bIlDi8+A82FcEil2gCWkogodAmtggdnjcKyZcuwa9cu9XWdTofLLrsMAwcORM+ePREeHh7AUhIRVcQAS0RB48iRI1i8eDGWLVuG8+fPq683aNAA6etyIJ+PgFzC0EpE5E8i3IQxXw3D0qVLcezYMfX16Oho9OvXD9dccw3atWsHSeJ4AkQUeAywRBRQOTk5WLJkCRYvXoyDBw+qr8fGxqLwgBGacxGQ8jl6MBFRZbOMZnzTu1dVuJCYmpqKIUOGYPDgwUhKSgpgKYmopmOAJaIqpygK/v33X8yfPx9r1qyB0WgEAGi1WigZGsjnIiBnhUMSDK1ERIEgICDiDej/VHesWrUKpaWlAACNRoMePXpgyJAh6NmzJ7Ra9oohoqrFAEtEVebChQtYuHAhFixYgDNnzqivt2rVCof/OgP5fAQkoxzAEhIRUXlCo+CxuXdiwYIFNtPyJCYmYtCgQbjuuuvQuHHjAJaQiGoSBlgiqlQmkwmbNm3C/PnzsX79enXUy+joaBQfUqBJj4RcGBbgUhIRkTuUSCNuen8wFi9ejKysLPX1zp07Y9iwYejduzdbZYmoUjHAElGlyMnJwZ9//ol58+bh3Llz6uvt27fHvt9OQL4QAUlhF2EiolAkJIFX/34cf/75J9avX6/OL5uUlITrrrsO1113HVJSUgJcSiKqjhhgiciv9u/fj99++w3Lly+HXq8HAMTFxaFwrxFyRiTkIl6ZJyKqTkS4CSM/+R/+/PNPZGdnAzDfK9urVy8MGzYMXbp04QjGROQ3DLBE5DOj0YjVq1fjt99+w86dO9XXW7dujUN/lN3bygGZiIiqNSEJTFwyDvPmzcP27dvV11NTUzF8+HBcffXViIyMDGAJiag6YIAlIq9lZ2fjjz/+wO+//44LFy4AMF91F2fDoDkbyelviIhqKCXKiCGvXYElS5agqKgIgLk3ztChQzFs2DAkJycHuIREFKoYYInIYydPnsTs2bOxaNEitZtwrVq1kPtfqTm4GjQBLiEREQUDoVEwbtZt+OWXX9TR57VaLQYMGICbb74ZLVq0CHAJiSjUMMASkdv27NmDmTNn4u+//4blq6NNmzY4OO+0eVAmdhMmIiI7BAReWjUeP//8M3bs2KG+3qVLF4wcORI9evSALHMaNSJyjQGWiJxSFAUbN27ETz/9ZHNPk5ylg+ZUNKQ8dhMmIiL3KTEG9HmqC1auXKlOrda4cWPcfvvtGDBgAKfhISKnGGCJyC6j0YilS5di1qxZOHr0KABzty/ltBaaU9GQi1nBICIi74lwE278YCDmz5+PwsJCAEDdunVx22234X//+x/Cw8MDXEIiCkYMsERkw2AwYPHixfjhhx9w9uxZAEBUVBRKDwCaM1GQ9Ly/lYiI/EdoFIz9fhh+/vln5OTkADCPqzBy5EgMHToUUVFRgS0gEQUVBlgiAgDo9XosXLgQP/74IzIyMgAAiYmJyPvXAE16JCQT700iIqLKI2SBcbNvxcyZM3Hu3DkAQGxsLG6++WbcdNNNiI6ODnAJiSgYMMAS1XClpaVYsGABZsyYgfPnzwMoG1F4ix6a9ChICu9vJSKiqiMkgSfm34UZM2bg5MmTAMxT8Nxyyy248cYb2SJLVMMxwBLVUEajEX/99RemTZumBtfk5GTkbCyFnBHJ4EpERAElIDBx6Th8//33OHHiBAAgPj4et912G4YNG4aIiIgAl5CIAoEBlqiGURQFK1aswLfffovTp08DAGrXro2sdcXm4MqpcIiIKIgICExYdB++//579bxVq1Yt3HbbbRg6dCgHeyKqYRhgiWoIIQTWrVuHb775BocPHwYAJCQkIH+ryXyPK4MrEREFMQGBJxfcjalTp6qDDNatWxd33303Bg0axHlkiWoIBliiGmDnzp34/PPPsXv3bgBATEwMincJ86jCCk/4REQUOoQkMH7uaJtbYJo3b44HHngA3bp1gyTxgixRdcYAS1SNnT59Gl988QVWr14NAAgPD4fxkAaa09GQjAyuREQUuoQscOe0YZgxYwYKCgoAAF26dMG4cePQqlWrAJeOiCoLAyxRNZSfn49p06bht99+g9FoNHerOhMO7fFoSAbO40pERNWH0Cq44cN+mDt3LgwGAwBg0KBBuP/++1G7du0Al46I/I0BlqgaMRgMmDdvHqZNm4a8vDwAgJStg/ZoLOQibYBLR0REVHlEuAn9XuiKJUuWQAiBiIgIjBo1CrfccgsHeiKqRhhgiaqJzZs34+OPP1anGmjSpAlOzc+GnMOTNhER1Rz/t/cNfPrpp9ixYwcA80BP48aNQ9++fXl/LFE1wABLFOIyMjLwf//3f+p9rgkJCSjYbDJPiQOeqImIqOaxzCE7ZcoUnDt3DgBwySWX4NFHH0WLFi0CXDoi8gUDLFGI0uv1mDVrFn744QeUlpZCo9EAJ8KhORENycQBmoiIiIQsMOrrIfjpp59QWloKWZYxfPhw3H333YiKigp08YjICwywRCFo06ZNmDx5sjqhu5QbBu3hWMhFYQEuGRERUfAROhN6PdMBK1euBAAkJydj/Pjx6NOnD7sVE4UYBliiEJKdnY1PP/0Uy5YtAwAkJSUhd50B8vkIdhcmIiJy4c0NT9tcAO7Rowcee+wxNGjQIMAlIyJ3McAShQAhBBYtWoTPPvsMeXl5kGUZ0skIdhcmIiLykJAEbvv6GsyYMQMGgwE6nQ5jxozBrbfeCq2WI/YTBTsGWKIgd+rUKXzwwQfYunUrAEAq0EJ7KA5yAbsLExEReUuJMKLjA02wZcsWAECLFi3w7LPPcpAnoiDHAEsUpEwmE37++Wd8++230Ov10Ol0MO3XQXMmCpJgd2EiIiJfCQhMWHQfPvnkE+Tl5UGj0eD222/HHXfcAZ1OF+jiEZEdDLBEQejUqVOYNGkSdu7cCQCQcnQIOxQLqYRdm4iIiPxNhJnQc0I7dUq6Jk2a4JlnnkHbtm0DXDIiKo8BliiIKIqCuXPn4ssvv0RJSQkiIyNh2KHlnK5ERERV4PkVD2Hy5MnIzs6GLMu47bbbcOeddyIsjLftEAULBliiIJGeno63334b//77LwBAyglD2MF4SKWaAJeMiIio5hBaBVe+0FEd8b9ly5Z44YUXkJaWFtiCEREABliioLBkyRJ8+OGHKCoqQnh4OEx7dJDPstWViIgoUJ5f8RDef/995OXlQafTYdy4cbjxxhs5byxRgDHAEgVQUVERJk+ejMWLFwMApLwwaA/EQea9rkRERAEndCZ0fKgJNm/eDMA8b+wzzzyD5OTkAJeMqOZigCUKkH379uHVV1/F6dOnzfO6Hos0z+vKVlciIqKgISAw7pdbMWXKFOj1esTHx+P555/HZZddFuiiEdVIDLBEVUxRFMyePRtff/01jEYjateujexlBsh5HK6fiIgoWH195D28/vrrOHjwIABg1KhRuPvuu6HVstcUUVVigCWqQnl5eXjjjTewYcMGAIB8IRzag3GQTHKAS0ZERESuCEngmvcux7x58wAAl1xyCV566SXUrl07sAUjqkEYYImqyIEDB/DCCy8gPT0dOp0Oyp5wyOkcqImIiCjUTFw2Du+++y6KiooQHx+PF154AT169Ah0sYhqBAZYoiqwYMECTJ48GXq9HijRIGxvPORCzilHREQUqkSEEY1vraV2Kb7rrrswevRoyDJ7VRFVJgZYokpUWlqKjz/+GH/++ScAQM7SQbs/nl2GiYiIqoHyXYqvuOIKPP/884iKigpswYiqMQZYokpy4cIFPP/889i7dy8kSYJ8NAqaUxxlmIiIqLp5/M878cEHH8BgMCAtLQ1vvvkmGjVqFOhiEVVLbAYiqgT79+/H/fffj7179yIuLg7anfHQnopheCUiIqqGJl/7PT799FMkJyfj2LFjuP/++7F+/fpAF4uoWmILLJGfrVq1Cm+++SZKS0shFWkQticBUgmH2CciIqruRJgJLe+ui127dkGSJDz00EMYMWIEJIkXsIn8hQGWyE+EEJg2bRq+++47AICUpUMY73clIiKqUYQkcNXbPTB//nwAwI033oiHH36Y88US+QkDLJEfGAwGvPvuu1i8eDEAQHM6Cpqj7DJMRERUEwkI3D1jOKZMmQIA6NmzJ15++WUO7kTkBwywRD4qKirCiy++iM2bN0Oj0UDaFwVNBk9QRERENd3zKx7CG2+8Ab1ejxYtWuCdd95BcnJyoItFFNIYYIl8kJWVhQkTJuDAgQOIiIiAcWsENNnhgS4WERERBYmPdr6CiRMnIicnB7Vr18aHH36I1NTUQBeLKGQxwBJ56eTJk3j66adx5swZQC8jbE8C5IKwQBeLiIiIgowIN6Hu8CicOHEC8fHxeP/999GqVatAF4soJHF0GSIvHDp0CA899JA5vBZroNuRyPBKREREdkmlGqT/XIxWrVohNzcXjz76KP77779AF4soJDHAEnlo7969GD9+PHJyciAVaKHbkchpcoiIiMgpySjj6NQsdO7cGUVFRXjqqaewdu3aQBeLKOQwwBJ5YOfOnXj88cdRUFAAKS8MYTsTIRk0gS4WERERhQDJJGP3/51Gr169oNfr8cILL2D58uWBLhZRSGGAJXLTv//+i6eeegpFRUWQcsMQtjuBc7wSERGRRyQhYfM7B3HVVVfBZDLh9ddfZ4gl8gBr30Ru2Lx5MyZMmIDi4mJI2TqE7U5keCUiIiKvSJCw8sVtuOaaa6AoCt544w2sWLEi0MUiCgkchZjIhe3bt+Opp55CaWkp5CwdtHsTIAkp0MUiIiKiECcgMODNrli4cCE0Gg1eeukl9OvXL9DFIgpqbEIicmLPnj145plnGF6JiIjI7yRIWP78Vlx99dUwmUx47bXXsGrVqkAXiyiosQWWyIFDhw5h/Pjx5gGbcsIQticRksLwSkRERP4lIND/jS5YtGgRtFot3n33XVx66aWBLhZRUGKAJbLjxIkTePjhh81T5eSFIWxXAiSFHRaIiIiocggI9HqxHVauXInIyEhMnjwZbdu2DXSxiIIOAyxROZmZmRg3bhzS09MhFWjNU+VwwCYiIiKqZEISuOTRVGzZsgXx8fH49NNPkZaWFuhiEQUVBlgiK0VFRRg/fjwOHDgAqViDsO21IBkZXomIiKhqCFlBs7uTsXfvXqSkpODzzz9HnTp1Al0soqDBmjlRGaPRiJdffhkHDhwA9LJ5nleGVyIiIqpCkiLj8PcXkJqaivPnz2PChAkoLCwMdLGIggZr50QAhBD44IMPsHHjRsAkIWxPAqQSrecbkqSLDyIiIqq5fKgPSEYZ6XOKkJSUhKNHj+LVV1+FyWTycwGJQhMDLBGAmTNnYsGCBZBlGdr98ZALwjzbAEMrERER2eNlHUHSa/DWW29Bp9Nhw4YN+PzzzyuhcEShhwGWaryNGzfiyy+/BADIB6OhyQr3bAMMrkREROSKF/WF8e1ewvPPPw8A+OWXX/D777/7u1REIYeDOFGNdvLkSdx///0oKCiAnB4J7eE4SO4eEa5ORDy0iIiIai5n9QRP6giShDu+vxbffPMNNBoNJk+ejE6dOvlcPKJQxQBLNVZhYSEeeOABHD9+vGyu11qQhOTeScWdq6g8tIiIiGouf13oliQICPR55RIsXboUtWrVwjfffIPk5GTfy0gUgtiFmGokIQTeeustHD9+HCiVEbYvwRxeAecnHN7rSkRERP7gTp2i7H0JEla/tgNNmzZFVlYWXnnlFRiNxiooJFHwYYClGum3337DmjVrEBYWZg6vBo3zFRhciYiIqDK4WceQFAmvv/46oqKisGPHDnz11VdVUDii4MMASzXOgQMH1JH8xP4IyAU65yswuBIREVFlc6O+cVfak5g4cSIAYNasWfj7778ru1REQYf3wFKNUlRUhHvuuQenTp2CnBkO7b4ESLBzwhDC9+DKQ4uIiKjm8qUeYalDONjGDZ/0wezZsxEbG4upU6ciJSXF+30RhRi2wFKNMnnyZJw6dQoolaE9FG8/vAL+aXVlyy0REVHN5GsdwMX6cx9dhVatWiE/Px+TJk2Coii+7Y8ohDDAUo2xcuVKLF68GLIsI+xAAiQj//yJiIjISjBdwJYkQLJfV5GEhBdeeAHh4eHYsmULfvvtN//skygEsAZPNUJOTg4mT54MAJCOR0LOc3Dfq4MTBREREdUQwTZwo4O6yT1Nn8aDDz4IAPjiiy9w7NixKiwUUeCwtk41wkcffYScnBxIhVpoTsZUXECSGV6JiIjoomALsXbqKZ/d9BN69OgBvV6PN998k1PrUI3AGjtVe6tWrcKKFSsAAWgPxl+c79Wi/AnBn0E2mE5+RERE5BlPW2P9ed63Vx8p95oECds+PYKYmBjs37+fXYmpRmCApWotPz9f7TqsORUNuTDs4ptsdSUiIiILZ+EzmC5Il6u/SAYNxo0bBwD49ttvkZGREaiSEVUJ1t6pWvvmm2+QnZ0Nqahc12EGVyIiIvJEEN8b+/EN03HJJZeguLgYkydPBmfJpOqMtXiqtg4ePIjff/8dAKA9HGvuOuxuqysDLhEREdlTFSHW3XpIWb1GgoSnnnoKWq0W69atw+rVqyu3fEQBxFo6VUtCCEyePBmKokA+HwE5LzxwoTSYrtYSERFRRZ6eq+0tH8jzvSTj3mYTMGrUKADA559/jtLS0sCVh6gSMcBStbR48WLs2rULMEnQHo9niyoRERH5VxB2KZ45bjFSUlKQnp6OOXPmBLpERJWCtXqqdkpKSvDVV18BADSnYiDpNd5tiKMRExERVX++nqP9HWR9qH9Iioz7778fAPDDDz8gOzvbX6UiChoMsFTt/Pbbb7hw4QJQooHmjJ05Xz3BllsiIiKqQpLGywvvZd695lu0bt0aRUVF+O677/xUKqLgwdo5VSv5+fmYMWMGAEB7MrbinK9ERERE1oQwP3zlx+n5fAmxEiQ8+OCDAID58+fj+PHjfikTUbBggKVqZdasWcjPzzdPm5MZ5Z+N+qsVlt2IiYiIgpcvIda6ruBLF2Cr4OpLiJ3Q4z306tULiqLghx9+8Ho7RMGIAZaqjezsbHXAAu2peEhgYCQiIiIP+Gv+VG9bY8utI2k0XgfZsWPHAgCWLVuGkydPerUNomDEAEvVxq+//ori4mJIBWGQsyP9u3G2whIREdUMnnYpdlZH8KD+4CyoehNiH7nkNfTs2ZOtsFTtMMBStVBUVIS5c+cCALRn4sytr5IMSWZgJCIiIi/4szXWD8u5G2KtlxszZgwAYOnSpTh9+rR75SAKcgywVC0sWLDAfO9rsdb/ra/+xlZYIiKi0OAqxHoSTv3Qm8vTLsWPdX4TPXr0gMlkwuzZs33eP1EwYIClkGc0GvHzzz8DADRnY23vffVnKyyn1CEiIqp5/DVKMeCwLuFpF2FHy9t7/ZZbbgEALF68GPn5+R7thygYsUZOIW/16tXIyMgADDI0F6IDXRz3sBWWiIgotJQPsd5e2La3nhfbcjf0Pnv5B2jSpAmKi4uxYMECj/dDFGwYYCnk/fHHHwAATUaM/Xlf2QpLRERE/lAJLbE+zflq1aXYYassJIwYMQIA8Ntvv8FkMnm9P6JgwNo4hbQTJ05g27ZtgAC056uo9ZUjEhMREdVcQvinLiDJkHQ6v90b68zHN81AbGws0tPTsXXrVp/3RxRIDLAU0iytr3JOBCS91u4yksZ8gpDC7L8fUAyxREREoUWSAKGYH/7gh15icnQk5GjHg1hKQsagQYMAAH/99ZfP+yMKJAZYCllGoxFLliwBAGjOxVR4X9LI5tAqV8KfObsSExERkQ8h1ubCuq8htmyUY2dB9s9X1wIA1qxZg7y8PN/2RxRArIVTyPr333+Rk5MDGGTIuRE270kauUJwlTQatsISERGR9+yds/3ZEutFkLUJrFZBtsJyRTq0aNECBoMBy5cv96WkRAHFAEsha9myZQAATVaUzeBN9sJrpWArLBEREQEeh1inF9Q9DbEORjW2F2It3YhXrVrl2T6Igghr4BSSSktLsWbNGgCA5kKU+rqr8Or3VlgO6ERERFQzuDpXuxli3aqHuBlind33ai/EfnvvXADA9u3bkZWV5dY+iIINAyyFpG3btqGwsBDQayAV6Dy635VdiYmIiMgj7p6jq3BwJzk60vWF9HL3xUp6Ldq0aQNFUfD333/7p5xEVYwBlkLSunXrAACa7AjIGk3VdBl2hF2JiYiIyJqDEOvxBXRnIdbd+ke5+2L79u0LAAywFLJY86aQI4S4GGDzor0Kr+xKTERERG7x9txcLsR6Xe+wM7iT067DjpSF2G8fMHcj3rFjB0pKSrwrE1EAMcBSyDly5AjOnTsHKBLkAi++wMuwKzERERE55es52V/diQE1xLrVddgRSYZGE4vatWtDr9dj+/bt/isfURVhgKWQs23bNgCAnB8BSQTRnzC7EhMREVF5QvHfBXNZ8rm+IUkadO/eHQCwceNGf5SKqEqxxk0hRw2wBREulnRN0mggaTQ+b8evhAh0CYiIiMhPPaIkbRigCPPDp+JI0DSoByQl+Fymbt26AbhYpyIKJQywFFIURcGOHTsAAFopxS/blMK0wRNiGV6JiIgCr7Ju5/EyxEqSBLl+XQiNDEgSpMR4n4rx9qN/AQCOHj1qntWBKIQwwFJIOXHiBHJzcwEhA1F1ICcm+GfDnk4a7ogv3XoYXomIiALPj+FV0oZVfNHLECs0ss1zKTHeuyBbvzagiUS9evWgKAr27t3rVXmIAoUBlkLKgQMHAACyKRaSRgMlMc4vIdavXYm9CbEMr0RERIFX2eHVwoMQa2l9LU9oZDXIuq1+bQituZ7Svn17AMDOnTvdX58oCDDAUkixBFhJiTG/oJH8NgesX7sSuxtihWB4JSIiqmachlcLN0KsTddhBzwJsZbwCgBt2rQBABw8eNCtdYmCBQMshRTrFlgLJT7Gb12Jq/R+WAZXIiKi4BGIaeychFh3wquFWyG2fm2b/37x9moA5ukJiUIJAyyFDCEEDh8+DACQLS2wAKCR/NaVGPBjiHXWCsvwSkREFDyqquuwu9vwILxaOA2xVl2HLWQlGgBw5swZFBUVeV1WoqrGAEshIzc3F/n5+QAASYm0fdPPIbZSB3VieCUiIgoegQ6vDlphPQmv1utUCLF2wisASEKHpKQkAMCxY8c83hdRoDDAUsg4deoUAEBSwiHBTgupP++HraxBnRheiYiIgkegw6uFVYiVJAlyvTpeb6p8iLUXXi0aNWoEwNwKSxQqtIEuAJG7LgbYSIfLKPExkBUFSnaO7zuUJUhCgvBx4nEiIiKq5nyZRs+irL4hJydCaH27iG4JsSIy3OlydeuaRzdOT0/3aX9EVYktsBQyMjIyAACSEuF4IX91JVYU84lEkiH5qzsxEJgBIoiIiMg+f/SMsoRXofi8KU1yLUCjgVSi93lbR9+NwfHXnLdVWQLs2bNnfd4fUVVhgKWQkZmZCQCQhPOriT6HWEWBMFmdhHwNsX44oREREVEl8dPtPUIRPp3zLeHVUiZfQuyxSVFIrZWNRok5OPGS4+r+jCnrAVxsJCAKBQywFDKysrIAmAcdcMnbEFs+vFp4G2LtncjYCktERBRcvA2x5boOextibcKrVZm8CbGW8GphCbH2gqylTpWbm+vxfogChQGWQsbFAOvmIAmehlhH4dVbzk5gDLFERETBxdMQ6+C+V69CrKOBIz0MsUffirYJrxaNEnPQKDEHx1+03Y8kzF2MGWAplDDAUsgoLCw0P3E3wALuh1h3wqsnrbDunLgYYomIiIKLuyHWxaBNnoRYTXItl2VyJ8QefSsajZOynC6TWivbNsSW1akYYCmUMMBSyCguLgYASMLDkflcTa/jScurOyHWk6uuDLFERETBxVWIdXPEYXdCrCYp0XHra7kyOQ2xkuQyvFqk1srGsRfMLa9S2YQkxcXFMBqNbq1PFGgMsBQyLAEW9uaAdUGJj7HfCutNt2FnIdabwRsYYomIiIKLoxDr4XQ5zkKsJikR0Howo6WTEHvkjSiPytU4KcscYsXFz8MAS6GCAZZCRmlpqfmJ8OLP1l5XYl/uebUXYn0ZbZghloiIKLiUD7FezvVqL8R6HF6tylQ+xB55Mxppye61vlprnJSF4xMvDoxpMBg8Lw9RADDAUsgQ6onEy7BnHWL9MWCTdYj1x1Q5DLFERETBxVL38DK8qpuxCrFeh1erMllCrLfh1SI15eKAT5wLlkIFAyyFDEkNeD7M16aRAF2Ye/ebEBEREfmJUASkMK1v4VXdmMChu+v4FF4B67oVuxBT6GCApZAh+aGFUiosgcgvgKTTQdJ5MJqxPUIxX1EFfL4ya96efyZSJyIiIj+R/NfTSi6rdyi5eT5v6+CDqTDEm7D/aD2ftiOs6h61a9f2tVhEVYIBlkKGpqzV9MS1MV6tLxWWADl55qAoS76FWOvwqu7Ah8OJ4ZWIiCi4lL9w7kOIlXVhF2dEMJl8CrEHH0yFIdFk/o9e9inETmzwp/o8IiLC6+0QVSUGWAoZkZGRAICn+szFoVsTPFrXJrxaeBti7YVXdUdeHFIMr0RERMHFUa8vL0KsTXi18DLE2oRXCy9D7Itp85GoL1X/HxXl2UjGRIHCAEshIzo6GgBQ15CHD4ZP8yjESibFflD0NMQ6C6/qzjw4rBheiYiIgourW5Y8CLF2w6uFhyHWbni10HtWpX8xbT7qa4pQUmJeLzIyErKjchIFGf6lUsiwBNjiIhkddOfMIfa2BJfrSYUlEAVFjhdwN8S6E17VnbpxaDG8EhERBRd3x9twI8Q6Da8WboZYp+G1jLutsJbwCgAlxebPa+nlRhQK/DAMGlHViI2NBQAUFJjvhe2gO4cPbpyGJ8UYNJ+ZY3cdqbAEyC0AFOdf+pYQCwBC76d50CTZ8QmO4ZWIiCi4eDpYpFAcXrB2K7xamJzXUQ6Ncx1eAahdiVs1OYuErEL876/duGT7aUQW6VEcpcP2jg3Q9v7TSNFcnEc2N88cBRITE90rK1EQYIClkJGSkgIAyM66+GdraYnddU0jfP9Xf5sg63Z4tXAWYj1pfbVmL8QyvBIREQUXb2c6sBNiPQqvZZTcPMjxcRVePzQuFfpabtZjAIQXmDD25fUYsW4Lwoy29Y+uW05ATAfyRkQi85U4iAgJOdnmOlVSUpJH5SUKJAZYChn2AixgDrEddOfQdvhpPI070Hxmjufh1cJeiPU2vFo4a4klIiKiwPLDNH0W3oRXAGpXYusQe+gBD8Or3oBpn36LngePOFxGMgDxPxVDd8SIs9NrISfb3KstOTnZ8zITBQjvgaWQYflyLR9gLTrq0vHe8B9w9MZE78KrhfU9sb6GVwvL1Vm2vhIREQUPf4TXsovUXodXC6v7YQ89kAp9kmf1mFd+/h09Dx6Bq5qGABC5wYCkV/Jg0t8NgC2wFFoYYClk1KtnHpzg3DnHgy09v2Mo6m40APHezRWrkiXfTkJERERUs/ij3mAyAZLkcXhNyc3HTeu3AgBcRXLL+3G/FOPk4cMAgIYNG3pYUKLAYQ2dQkbjxo0BAOcywmAw2P96LsqJhC5HD1OtGCAx3ut9Cb0BQq8HJBmSRgNJ9vEKraULsR+7KREREVEQKOtlJfR6Fws6JycmQE5MAAC0/L7Yo3VHrt0EnYvBoMqTDMDJQ4cAAI0aNfJoXaJAYoClkJGUlITo6GgIIeFcRsVW2Gu33I/UeWUnEa3sc4iFdddhSfY+xJa//5UhloiIKDj4emuP1QBOQhFeh1g5McHcglvWiqs9m+3R+j2c3PfqSLEs43xJCQAgNTXV4/WJAoUBlkKGJEnqF+yZ0zqb967dcj+SpkcjPLNUfc3bEKu2vlYogBch1tHgTQyxREREwcHbEGtnCh1vQqwaXstpOa3E7W3ElJS6Xqico1FRAICEhATExVUcAZkoWDHAUkhp3rw5AODY0XD1NUt4jThf8cvb0xCrhldHAzf50hJbYVsMsUREREHB0xDrYP5XAB4N/ugovAKA9nSW2yG2ICLc9ULlHIiNBQC0atXK43WJAokBlkJKmzZtAABHj0SorxXlRNoNrxbuhliX4dXC3RDrztQ5ksQgS0REFAzcCbGS7DS8qptyoxXWWXi1cDfEpg0573KZ8vbFmAe8ZIClUMMASyGldevWAIBjR8KhKMB1W+9Hoz/cOJG4CLFuh1cLVyHW03lfGWKJiIiCmxvB1cJVV2J3wquFqxA7++rP0PCOBAjHkzTYtY8tsBSi7E+oSRSk0tLSEBERgeLiEgxbMgq1/rLfddgeS4iV4qMg5xYB2bm2C3g636skQ5LtzBPraXhVtydxnlgiIqJAEsL+RWUPwqu6KUUAej0kne24HZ6EVwvt6SwA9W1em331ZwCA7uFhQG0AN8cBM/Ig4HwqHQGgQKvF0ehoABd7txGFCrbAUkjRarVo3749ACDh1yK3w6uF0MpQwrU2rbEOB21yhz/viQXYEktERBRo5S8mexFe1U2Vu8jtTXi1aDH9Yp1n5lVT0D08zBxeLft6PRmiZ4Rb88Bu654MAfPow8nJyV6VhyhQGGAp5HTp0gUAoCk85/U21NbY2BjPug7bYz1XrLetrzbbY4glIiIKKEuI9SG8qpvS6y/O8epleAWAsFOZaDG9FDOvmoLLIjQVF4iUIWbUh7g9zmF3YhEGiNvj8N9NEwAAnTt39ro8RIHCLsQUcrp27QoAEFIWhBCQXF5rtE9oZQitnROAVxuz05WYiIiISJKh5ORCrpXo86a0ucX2w6tFpAzxXm1gQi2In/IgrSsGChUgWoa4PBK4LQ5I0eLfZ7cDYICl0CQJwZvuKLSYTCZcd911KCgogAY9oFE8m+fVQptdBJw9Z+5CbDL51gorFPM2/IGHJBERUWBZ94byoRVW0lwMm5q6tX0pEURMJIRGg6zOidj4zhSvt9PllbGI27MYsixj3rx5SEhI8KlcRFWNXYgp5Gg0GvTs2RMAoMjnIDSe/xlbh1fAfIKRwrSAN/ez+rP1leGViIgocOxNb+fl7UHW4RUAlKxsr7YjYiLV8AoAtbZlo8ez47zaVqdJDyL+wEkAQPv27RleKSQxwFJI6t27NwBAiAyYtJLnIdZgVMOrNUmj8SzEWsKrP+59JSIiosDx4xgU5cMrYB400tMQawmuotz2av3reRjuNOlBJO0pRddOUQCAXr16ebwNomDAAEshqUePHggLCwNEEYACKGEylHCNW0FWm10EXMhy+L43IdYv2PpKREQUGK7Cq5vnekmjsRte1c3YuXjucFmrVld73G2F7TTpQTW8CqHHf//9B4ABlkIXAyyFpKioKHTr1g0AIJQzgAQIWYISJjsNseW7DjviVohl12EiIqLQ527Lq4sQ6yy4WnOnFdZVeAXMrbDdJzoPsZ3eNgfXpD3mKXiEkg6j0YjmzZsjNTXVrfISBRsGWApZgwYNAgAI02moY5FJcB5iHXQdtsdpiGXXYSIiotDnp27D7oZXwHVXYnfCq0XSVsfb6fT2g0jaXWrzWoe25vqRpQ5FFIoYYClk9e7dG9HR0QBKAGH1Be4gxLrqOmyP08Gd2HWYiIgoNNkbrMkdds79noRXdTN2LqaXH6zJXd2fq9gK2/GdiuFViGLs2LEDkiRh4MCBnhWYKIgwwFLICg8PR58+fQAAwnTK9s2yEGtzX6wHra/l2bTGcs5XIiKi0FXJgzW5y7oV1tFgTe5I2nJxOx3feRAd33kQybtKKywnTObRhzt37oyUlBQvSkwUHLSBLgCRL4YMGYK//voLQjkDIVpDknQX35QAIUkQYRJ02cUet76WJ2k0EDABJrD1lYiIKBT5I7wKBZI2zPfNlF1U96bVtbxuz4+DPl6yG1wBQAgFtRKykZkJXHfddT7tiyjQ2AJLIa19+/Zo3rw5AKViK6yFBEgmk9etr+UJRfg0qTkRERGFNmEy+b4RWYKSk+tzeAWA2ouOInmn/fAKAFDOITMzE4mJibjyyit93h9RILEWTiFNkiTccMMNAABhOnFxMCcrugtFQPoFn/clTCYIg9Fq5z4ePmx9JSIiqlr+Ovf62hOr7LYkoddDOnXW+81k5kDOzIEwGBBx6JzD5Tp3NO9vyJAh5mkIiUIYAyyFvEGDBiEmJgZAEaBU/PKW9EYIvd77ARucYUssERFRjeR1K2y5gSGV4hLvNlMWXIWhrCtyYZHd5YSSi61bt0Kj0eD666/3al9EwYS1bwp5kZGRGDp0KABAMR2yaYW12/rqRYit0Ppqsz0vDiO2vhIREQVGIFthHUzP52krrCW8lhdx+HyF1/r0No8PMmDAANStW9ej/RAFIwZYqhZGjBgBnU4HiFxAZKqvq62v5VVGSyxbY4mIiGoUt1thZcnx3PJwvxXWusuw3fIUFNr+XynE6tWrAQC33nqre2UlCnKscVO1UKtWLQwZMgQAoBgPAyhrfT2X6XilQHUpZusrERFRYFVlK6yT4OqJ8l2GHbFuhR1ydRwURUHPnj3RrFkzv5SDKNAYYKnauOWWW6DRaACRCaHkmFtfS5yMyGfhIsQ67T5sd3s8rIiIiGoKp62wHoRXZ92I5ew8l8FVLU9ZK6wQRVi0aBEA4LbbbnO7HETBjjVtqjbq1auHwYMHAwAU4z4IeHB1taq6FLP1lYiIKDhUZiusiy7D9tjrRixn55nDa6kbF+TLGdQvHAaDAV27dkXHjh09Xp8oWDHAUrVy1113ld0LmwWl8IRnK9vpUuxx62uFbfIQIyIiqu5sWmF96DJs3QprCa7ehFfd8eNYsmQJAOC+++7zujxEwYi1a6pW6tSpgxtvvBEAoE/J8KwV1qKy7otl6ysREVH1JBSvWl3Ls7TCetvqatH5xngIIdC3b1+0adPGpzIRBRsGWKp2br/9dsTExEBE6mGqVeDdRvwdYomIiKj68lePK0X4HF5NkYVYt24dNBoN7r33Xv+UiyiIMMBStRMXF4fbb78dAGColwUhezFPG/zQfVjdUNn+GYqJiIiCh7/Oy2Xh1ec6gyIAoUDJzPJ6EwICDfppAABDhgxBo0aNfCsTURBigKVqafjw4WjQoAGgM8FQJxNwd562ysYQS0REFFj+mkbPX3PAK0INrwAgjN4FYVFQCGNUOo4cOYK4uDjcc889vpeNKAgxwFK1FB4ejsceewwAYKqTD5OuJDAh1t7IhJUx/ywRERG55udW1/I8boW1BFd35pN1QhQUQpEN0LXRAzAP3JSQkODTNomCFQMsVVs9evRA3759AQkwNMmGYjKZr2q6EWSF0eif7sPOMMQSERFVnUoOrx4p1+panmUuV1dEQaH5YVLQ59n2KCwsROvWrTFkyBDfy0gUpBhgqVp7+OGHERkZCRGrhymlEFAEhElhl2IiIqKaIhi7DLtodXWnG7EluAqTAlN8CZYsWQJJkvDEE09Ao9H4Xk6iIMUAS9Va7dq1cddddwEAjI1zIHTmE4IwKW63xlY6dikmIiKqHMHU6go4bXV1lygqNj9MZffMahQkXGF+78Ybb0Tr1q19LSVRUGOApWrvpptuQvv27QGNgKFp1sW5YR20xvqt+7CnJyiGWCIiIv8IYKur3TqEiy7DdrdjpxuxKCqGMNjWU4ypOTh//jwaNGiA++67z6OyEoUiBliq9jQaDSZOnIjw8HAo8aUw1badG5atsURERNVIsLa6enhh27obsdrqWi4cmxKKYapdCEmSMHHiRERGRvqlyETBjAGWaoRGjRrhgQceAAAYU3OhhBtsF+C9sURERKEv2O519VeXYUPF3mFCa0Lc5eZeZSNGjMAll1zi036IQgUDLNUYw4YNQ+fOnc1diZtnQkiiwjJqiPXxZOMXDLFERETuC6bzph+mxxGKsNvqCgACAl0ebozMzEykpqbi3nvv9aW0RCFFEkJUrMUTVVMZGRm4++67kZeXB016DMKOJ1ZcSCgQlpZYb6/AWk5YlsPL25MqD08iIiL3BEPXYcv5X5Ihyd6XR5QFYEkbZvd9Y908GBvnQqfT4YsvvkDz5s293hdRqGELLNUoderUwXPPPQcAMNUtgCmxyPkKvlw9tQ6fDKJERESVK9DnWuv6gpd1B6EINbw6okSXQjQ1j+fxyCOPMLxSjcMASzXO5ZdfjltvvRUAYGiaBSXcjRGH/dGlWIjAn1yJiIjIv3zsKnxxM27MD6tRUGugDJPJhH79+uH666/3eb9EoYYBlmqke++9F+3atQO0AoYWFyAkN048fjpBuR1iGXaJiIiqnifnej8FV1etroD5vtdODzVEeno66tWrh6effhpSMN33S1RFeA8s1VgZGRm45557kJubC/lCFMIO14Ik3DuJAHB+j4xQ3Augzk48PDSJiIg8U1X3wbpRT5A0GhebEK63JcnqdgyNcmCqn4/w8HB89tlnaNmypcsyEFVHbIGlGqtOnTp4/fXXodFooCQXwVQ/3/yGu1dTq7I1loiIiIJDFXUXtt6XKalQrac8++yzDK9UozHAUo3WqVMnPPbYYwAAY8NcmBKLPduAP7oV895YIiIi/6jM86kfzvnudhe2pkTrIbU1D9p0++23Y8CAAT6VgSjUMcBSjTd06FDccMMNgAQYmmdDiTJ4vhEO8kRERFQ9VeEgTRXW0ZkQ19cEvV6Pyy+/HPfcc4/P5SAKdQywRADGjx+Pzp07AxoBQ9tsCJ3J841U9SBPREREVLmqcJCmCutpFNQfEY0LFy4gLS0NL7zwAmSZVXciDuJEVCY/Px8PP/wwjh49CqlIg7CdSZCMvkxmzkOLiIioygXLyLyWgaC8CMFCEjC0y4KINyAlJQWff/456tSp4+cCEoUmXsYhKhMbG4t3330XKSkpEFEmGNpkQ8gMoURERDWKvy5Ae9kzS0DA2DIHIt6A6OhovPvuuwyvRFYYYIms1KlTB++//z5iYmIg4gzmEwgYYomIiKo9f45F4eV2BASMTfKhJJdCq9XizTffRLNmzfxTJqJqggGWqJwmTZpg0qRJ0Ol0UJJKYWyRyxBLRERUnfkzuPoQXk2NC6DULwIAPPfcc+jSpYt/ykVUjTDAEtnRsWNHvPzyy+Y5YmuXwNg8jyGWiIiougmCVlcLU6NCmBoWAgCefPJJDBw40B+lIqp2GGCJHLjiiivw0ksvQZZlKHWKYWzKEEtERFQt+Du4+rgtY/0CmFLNc70+/PDDGDp0qD9KRlQtMcASOdGvXz8899xzkCQJSr1imNLyGWKJiIhCWRAFVwgBY71CmJqYw+t9992Hm2++2Q+FI6q+GGCJXBg8eDAmTJgAADA1KIKpSR6EO6MKBssw/kRERFS13YVd1QHKymJsUAhT03wAwNixY3H77bf7p3xE1RgDLJEbhgwZgieffBIAYKpfbL4n1g+TmxMREVElC7LuwhDCPNpwaoHa8jp69GjceeedfiggUfUnCeGvI5qo+lu4cCHeeecdKIoC+Xw4tAfiIQnJ8ZVWHl5ERERVy/qc7M152N453dPtONmGgIAprQCmhubRhu+77z62vBJ5gAGWyEOrVq3Ca6+9BqPRCDlTB+2+BHOIBSqesHh4ERERVS1J8u3862sAdrINAQFjs3wo9YoBAOPHj8dNN93k3T6IaigGWCIvbNiwAS+88AL0ej2knDCE7U2AZLLqke+Pkx8RERFVPcs53NfwWm59IQkYW+ZCSSmFJEl4+umnce211/pQUKKaiQGWyEvbtm3DxIkTUVRUBKlQi7DdCZD0mosL+HoFmIiIiEKPnfO/0CgwtM2BiDdAq9Xi+eefx4ABAwJUQKLQxgBL5IODBw9iwoQJyMzMBEplhO1OgFwUFuhiERERUZAQOhMM7bIhok2Ijo7GG2+8ga5duwa6WEQhi6MQE/mgRYsW+OKLL5CWlgaEKzBckg0lvjTQxSIiIqIgoEQZEHcNIKJNSE5Oxv/93/8xvBL5iC2wRH6Qn5+P5557Dtu3bwcUQHsoDppzkYEuFhEREQWIqVYpwrqWori4GGlpaXjvvfdQp06dQBeLKOQxwBL5iV6vx1tvvYUVK1YAADSno6A5GgMJLiYzJyIiompDQMDUoAhK00IIIdC5c2e88cYbiI2NDXTRiKoFBlgiP1IUBVOnTsXUqVMBAFK2DmH74m1HKCYiIqJqSUgCxhZ5UGqXAACGDh2KRx99FFqtNsAlI6o+GGCJKsGqVavw1ltvoaSkBFKxBto9CZCLefIiIiKqrkSYCYY2uRBxBmg0GowfPx7Dhg0LdLGIqh0GWKJKcvDgQTz33HPIyMgAjBK0B+KgyYoIdLGIiIjIz5Q4PeL6ycjMzERsbCxee+01DtZEVEkYYIkqUXZ2Nl588UXs2LEDAKA5FQXNMd4XS0REVB1Y7ndF82KYTCakpaXhzTffRKNGjQJdNKJqiwGWqJIZjUZ88cUX+PnnnwEAUm6Y+b5YgybAJSMiIiJvCY1ivt812Tx93sCBA/HUU08hKioqwCUjqt4YYImqyKpVq/D222+jqKgI0MsI2x8POVcX6GIRERGRh5QoA4xtciEiTdBqtXjkkUdwww03QJLYw4qosjHAElWhkydP4qWXXsLhw4cBAWhORENzMppdiomIiEKAgIBSrxhym1Lo9XrUrl0br732Gtq2bRvoohHVGAywRFWspKQEkydPxsKFCwGUdSk+EA+plF2KiYiIgpXQKjC2yIWSpAcA9OjRA88//zwSEhICWzCiGoYBlihAlixZgg8//NDcpdgoQXsoFpoLkYEuFhEREZWjxJcirq8GmZmZCAsLw7hx4zB8+HB2GSYKAAZYogA6c+YMXn/9dezevRsAIJ+LgPZwLCSTHOCSERERkZAETI0LoDQqhhACjRs3xssvv4zmzZsHumhENRYDLFGAGY1GTJ8+HdOnT4eiKECJjLCDHOCJiIgokJRoA4wt8yCijQCAoUOH4qGHHkJEBOd0JwokBliiILFz5068/vrrSE9PBwDIZyKhPRYDSWFrLBERUVURkoCpUSHQpAQmkwkJCQl4+umnccUVVwS6aEQEBliioFJUVIQpU6bg999/N79QokHYgTjIeWyNJSIiqmxKVFmra4y51bVv37544oknOFATURBhgCUKQlu2bME777yDjIwMAIDmTCQ0x2IhKRwsgoiIyN+EJGBqWAipWSmMRiPi4uLw+OOPo3///hyoiSjIMMASBanCwkJ8/vnnmD9/vvmFEhnaw3HQZIcHtmBERETViBKrh7F5HkS0CQDQq1cvPPXUU0hKSgpwyYjIHgZYoiC3adMmvP/++xfvjT0fDu2RWEgGzhtLRETkLaFRYEwrgFKvGACQkJCAhx9+GIMGDWKrK1EQY4AlCgHFxcX47rvvMGfOHJhMJvO8scdiIKdHQgJPskRERO4SEFCSSmFsmg+EKwCAa665BuPGjUN8fHyAS0dErjDAEoWQAwcO4P3338e+ffsAAFJeGLSHYyEXhgW4ZERERMFPRBhhbJoPpZYeANCwYUM89dRT6NKlS4BLRkTuYoAlCjEmkwlz587F119/jeLiYkAAcnoktMdjIBk55Q4REVF5QjYP0iQ308NgMECr1eK2227DHXfcgfBwji1BFEoYYIlC1Llz5/DZZ59h5cqV5hcMErTH2a2YiIjIQu0u3CQfiDB3F+7WrRvGjx+Pxo0bB7h0ROQNBliiELdt2zZ89NFHOHr0KABAKtBCeySWc8cSEVGNpkSZuwuLBHN34bp16+KRRx5B7969OUgTUQhjgCWqBoxGI37//Xd8++23KCgoAFA2WvGxGEil2gCXjoiIqOqIMBOMqYVAg1IoigKdTodRo0bhtttuY3dhomqAAZaoGsnJycHXX3+NP//8E0IIQAE0Z6OgORnN+2OJiKhaE7KAqUEhdK0V8xgRAPr06YMHH3wQ9erVC3DpiMhfGGCJqqFDhw5hypQp2Lx5s/kFowTNyWhozkRBEuw2RURE1YeAgFK7BMbGBeq0OG3btsVDDz2EDh06BLh0RORvDLBE1dimTZvw+eef48iRI+YXSmTzQE/nIzjQExERhTQBASVRD1NaAUS0EYD5Ptf7778f/fv3532uRNUUAyxRNWcymbB48WJ88803uHDhAgBAKtRCcyIacmY4gywREYUcJV4PY+MCiDgDACAmJgajR4/GjTfeCJ2OgxgSVWcMsEQ1RElJCX755RfMnDlTHehJytea54/N0THIEhFR0FNiDObgmmgeWTg8PBzDhw/Hbbfdhri4uACXjoiqAgMsUQ2Tn5+PWbNmYc6cOeogF1JumLlrMafeISKiIKREG2BKLYSSVAoA0Gq1uP7663H77bcjOTk5wKUjoqrEAEtUQ2VnZ2PGjBmYN28e9HrzlWwpJwzakzGQcsPYIktERAGnxBhgalQAJcl8npJlGVdddRXGjh3LkYWJaigGWKIa7vz585g+fToWLFgAo9E8CIaUGwbtyWh2LSYiooBQ4vQwNipUuwpLkoR+/fph7NixSEtLC2zhiCigGGCJCACQkZGBn376CQsWLLjYIpuvheZkNOQsDvZERESVS0BAxBtgbFQAkWAenEmj0WDgwIG44447kJqaGuASElEwYIAlIhsXLlzArFmz8Mcff6CkpARA2ajFp6IgX4jgPLJERORX6nQ4jQrVUYW1Wi3+97//YdSoUahfv36AS0hEwYQBlojsysnJwezZs/Hbb7+pgz2hVIbmTBQ06ZGQTHJgC0hERCFNSAJK7WKYGhRBRJkAADqdDtdeey1uvfVW1KlTJ8AlJKJgxABLRE7l5+dj3rx5+PXXX5GVlWV+0ShBkx4JzZkoSHpNYAtIREQhRWgVmOoVwVSvGNApAIDo6Ghcd911uPnmmzmqMBE5xQBLRG7R6/VYunQpZs2ahePHj5tfVAD5QgQ0p6MgF4YFtoBERBTUlAgjTA2KoNQuATTm6medOnVw00034dprr0V0dHSAS0hEoYABlog8oigKNm7ciFmzZmHbtm3q61JOGDRnoyBncsAnIiIyMw/MpIepfjFEsh6WamfLli1xyy23oG/fvtBqtQEuJRGFEgZYIvLavn37MHv2bKxatQomk/n+JZTK5u7F6ZGQDOxeTERUEwmNAlPtEij1Lt7fCgCXX345Ro4ciU6dOkGSeLGTiDzHAEtEPsvIyMAff/yB+fPnIycnx/yipXvx2UhI+WFslSUiqgGUKANM9YptuglHRkbi6quvxrBhwziHKxH5jAGWiPxGr9dj1apVmDt3Lnbv3q2+LuVrzd2LL0RAUhhkiYiqEyEJKEmlMNUrgog3qK+npaVh2LBhuOqqqxAVFRXAEhJRdcIAS0SVYt++fZg7dy6WL18OvV5vftEoQT4fAU1GJKQCLVtliYhCmBJphFKnGKbaJepowhqNBldccQWGDRvGbsJEVCkYYImoUuXk5OCvv/7C/Pnzcfr0afV1qVALTXok5PMRkIycU5aIKBQIWYGSXApT3WKIuIutrbVq1cL111+P6667DikpKQEsIRFVdwywRFQlFEXB9u3b8eeff2L16tUXW2Ut98pmRELK5b2yRETBRkBAxBpgqlMCJeXiva0ajQY9evTAkCFD0LNnT44mTERVggGWiKpcfn4+lixZggULFuDQoUMX3yjRQHMuAvK5CMglrAgREQWS0JlgSimBUrsYIvriSMINGjTAkCFDcPXVVyM5OTmAJSSimogBlogCRgiBAwcO4M8//8SyZctQWFiovifla6E5F2ke+MnALsZERFVBaBTzgEy1SyDi9bB0igkPD0ffvn0xZMgQdOzYkfe2ElHAMMASUVAoKSnBP//8gyVLlmDz5s0X55UVgJytM7fKZnEUYyIifxOSgJJYCiWlBEpSKWB1zfCSSy7BoEGDMGDAAMTExASukEREZRhgiSjoZGVlYcWKFViyZAn27dt38Q2TBPlCOOQLEZBzdJAEwywRkTcEBEScwdxFOLkECLtYHWzcuDEGDx6MgQMHol69egEsJRFRRQywRBTUjh8/jqVLl2LJkiVIT0+/+IZRgpzJMEtE5C4BARFvgCmpBEpyqTr1DQAkJSVhwIABGDx4MFq0aMEuwkQUtBhgiSgkCCGwa9cuLFu2DKtXr0ZWVtbFNxlmiYjsUkNrcln3YKvQGhMTgyuuuAKDBg1C586dodFoAlhSIiL3MMASUcgxmUzYuXMnVq1ahdWrVyMzM/Pim0YJcla4uatxTjjvmSWiGkdIAiJeD1NSKZSkEkB3saoXGxuLK664An379kXXrl0RFhYWwJISEXmOAZaIQprJZMKuXbuwcuXKimHWBMi5OnPrbFY4JANbF4ioehIaBUqtUvMjUQ9oL1bv4uPj1dDapUsXztdKRCGNAZaIqg1FUdSW2bVr19reMwtAygszt85mhUMq0kACW2eJKHSJCCNMZaFVxBtg/ZWWmJiI3r17o1+/fujUqRNDKxFVGwywRFQtCSFw5MgR/PPPP1i7dq3taMYAUKyBJisccrYOUi7vmyWi4CcgIGINakuriDbZvN+kSRP06tULvXr1Qps2bSDLnEObiKofBlgiqhEuXLiAdevWYe3atdi6dSv0ev3FN8u6GkvZ4eZBoIrZOktEwUGEm6AkmLsFKwm2XYM1Gg06duyohtb69esHsKRERFWDAZaIapyioiJs2bIF69atw6ZNm3DhwgXbBUpkyNnm1lk5VwfJxFYMIqoaQhYQcXpzYE0shYiybWWNi4tD9+7d0atXL3Tv3h2xsbEBKikRUWAwwBJRjSaEwNGjR7Fx40Zs2rQJO3bsgMFguLiAAkj5YZBzysJsfhi7GxOR3wgIiGgjlARzC6uI1wNW18xkWUbbtm3RvXt3dO/eHa1ateJ0N0RUozHAEhFZKSoqwn///acG2tOnT9suYAKkPHOYlXN0kAq07G5MRG5TA2u8HiLeACXetlswAKSkpKBHjx7o3r07unbtylZWIiIrDLBERE6cOnUKW7ZswbZt2/Dvv/8iNzfXdgGjBDkvDJKlhbaQgZaILhIQEJEmiAQ9lHjzA2G2Va+oqCh07NgRXbt2Rffu3dG4cWNIEr9HiIjsYYAlInKToig4evSoGmb/++8/FBQU2C5klMxdjvPCIOeVdTlWWBElqimEJCBiDFDiDBBxBiixekBnW9WKjIxEhw4d0LlzZ3Tu3BktW7bkNDdERG5igCUi8pLJZMKhQ4fw77//Ytu2bdixYweKiopsF1IAqVBrDrN55mArGXj/GlF1IbSKOazG6sv+NdjcwwoA4eHh6NChAzp16oTOnTujTZs2DKxERF5igCUi8hOTyYQjR45gx44d2LlzJ3bu3Inz589XXLBYAzk/zNxSW6CFVMCBoYhCgZAERJTR3MIaa4SI01cYJRgA4uPj0aFDB3To0AHt27dHq1atoNPpAlBiIqLqhwGWiKiSCCGQkZGhhtmdO3fiyJEjqPC1W9ZKKxWEqcGWc9ESBZaAgIgwQcQaIGKMUGINENEGwE4HitTUVDWwdujQAQ0bNuQ9rERElYQBloioCuXn52PPnj3Yu3ev+sjJyam4oFGCVKCFXBCmhluGWqLKISCACBOUaKM5rMaUdQXWVqwiRUdHo3Xr1mjdujXatWuH9u3bIyEhoeoLTURUQzHAEhEFkKWV1jrQHjhwAMXFxRUXNgFSUVlLbaHWHGwLtZAUueKyRGSXkMu6AUcbzIG17GEvrOp0OrRo0QKtW7dGmzZt0Lp1azRs2BCyzGOOiChQGGCJiIKMyWTC8ePHsWfPHhw4cACHDh3C4cOH7YdaAXPLbKHWHG4tD7bWUg0nIIBwBUqUsSywmkOriDLB3qGh0+nQpEkTNG/eXA2rTZs25WBLRERBhgGWiCgEKIqC06dP49ChQzh06BAOHjyIgwcPIjMz08EKgFSshVSkuRhqC7WQShhsqXoxB1UTlGgTRGRZWC172LtfFTAPstSiRQs0b94czZs3R4sWLdCoUSOGVSKiEMAAS0QUwrKystRQe/ToURw7dgzHjx9HSUmJ/RUswbZYU/bQqv/CKDHcUtASGgUisiykRpjMz6OMEJGOg6pWq0WjRo2QlpZmE1aTkpI4yBIRUYhigCUiqmYURUF6ejqOHTumhlrLo7S01PGKRuliqC3R2DxnuKWqIDTKxXBqHVQjjUCY4+qKTqdDamoq0tLS0LhxY6SlpaFJkyaoX78+W1WJiKoZBlgiohrCEmyPHz+OkydP4tSpUzh16hROnjyJc+fOVZzex5pJglQiQyrVACUaSKUac8gte86AS+5QA2q4CSJCAcJNF/8fbnIaUgEgKSkJDRs2VB+W0FqvXj0GVSKiGoIBloiIUFpaitOnT6uB1vLv6dOnHd9na80omYNsqQxJL0PSayCVyoBeY/4/Q261JiAAjYAIVwCdCSJcgdCZIHRW/48w2R3pt7zExESbkGp5NGjQAFFRUVXwaYiIKJgxwBIRkVOlpaU4d+4czp49i/T0dPVfy/OsrCz3NqTAHGgtIdcgAwbzcxjM/7e8BhPDbjAQsgDCFIiyh+U5dGWvhV8MqY7uQy0vISEBdevWRb169VC3bl2bR506dRhSiYjIKQZYIiLySUlJCTIyMpCRkYHz58/jwoULNv+eP38eOTk5nm3UBNtQa5QhGSXAaPu8wr8KQ689QhKAVoHQ2v4LrYCw/rdcWHU3lFrExcUhOTkZKSkpSEpKQkpKCpKTk1G7dm3Uq1cPderUQWRkZOV8SCIiqhEYYImIqNLp9XpkZmbahNucnBxkZ2cjOztbfZ6Tk2N/vlt3mQCYJMBUFmaNEqBIkExS2euW52WtvAoAxbwMBMzrWP0fimR+rew5LGdMURaUBdTXXLUYi4sLWv0rzP9KAGTzcyEL9TnKngur55DLltEIQKOYu+5qyt6zPC97CLksqHoYRK3pdDokJCQgMTERCQkJ6sM6oFoCa3h4uPc7IiIicgMDLBERBZXi4mKbcJudnY38/HwUFBQgPz8feXl5yM/Pt3kUFBRAUZTAFtwqzEKgXFC1+jdAJElCTEwMYmJiEBsba/OwvGYdUBMTE5GYmIjIyEhOOUNEREGDAZaIiEKeoigoKipCfn4+ioqKUFRUhOLiYvVh/X/L86KiIpSWlsJgMECv16v/Wh4Gg8HmtcoOyBqNBmFhYepDp9M5/DcyMtLthyWcRkdHQ5blSv0MRERElY0BloiIyA0mkwlCCPVfRVHsPjeZTFAUBbIsQ5ZlSJLk9LkkSdBqtdBofOjnS0REVEMwwBIREREREVFIYF8iIiIiIiIiCgkMsERERERERBQSGGCJiIiIiIgoJDDAEhERERERUUhggCUiIiIiIqKQwABLREREREREIYEBloiIiIiIiEICAywRERERERGFBAZYIiIiIiIiCgkMsERERERERBQSGGCJiIiIiIgoJDDAEhERERERUUhggCUiIiIiIqKQwABLREREREREIYEBloiIiIiIiEICAywRERERERGFBAZYIiIiIiIiCgkMsERERERERBQSGGCJiIiIiIgoJDDAEhERERERUUhggCUiIiIiIqKQwABLREREREREIYEBloiIiIiIiEICAywRERERERGFBAZYIiIiIiIiCgnaQBeAiChQhBAoKSkJdDGIiDwSEREBSZICXQwiooBggCWiGqukpARXXXVVoItBROSRxYsXIzIyMtDFICIKCHYhJiIiIiIiopDAFlgiIgC6TbUhibJrepIMSZYASQZkCZAkSLLlvbLXJQmQJUiWZdT3JHUdSFavq69d3Kb6Hi6+LyTp4qVF6eJ21Net1rN+TZRtRn1PBgDL65L6nmUdUfaasF7Hsg25bHl1Hdv31W0CECh7Tbbzns3ysCnjxdfKl8POOrBdx+Z9OFnPapv21nW0TRtO1xE265ffnvq+1bZE2esotx4kYbW++X3J+j11WaGuI6nLWS1fth1JEhf/BMtev/irFur7MoT6f/N7gFz2f/N75v9b1lPfkwQkXFxPLntNfcD6ddi8fnEd5f/bu/+oqOrE/+PPAVFQUMRchSTTQnNLVwU1M8m0kCi3FrVT6x5rWb/VntTa8nzscFJrrcw8pp0825YnckvJttq0di1M80clKpihm2HED/MXLD8ERQdxYL5/DHOZgWGAAYHB1+McDnfu+77f9z1c/PGa+77vt7HPBys+pmp87WU1r43ymm0AX2OfFV9s+31N1XXqVeNbsw0Y28bx1Lbng62+D7bz28rs9Wz7TFTja6+PvR/V+IKtHrbz2d+b/bXtXNaabWr7gu2PmS8m44+7r8mED6aafaaa1z41vzomLlX6Mv3/9UdE5EqnACsiAlBlqv2vpMkHEzVhsyYZ1JaZwKc2rZlsabCmEXva8aFOOnFINj7101VtynDYT519jufAxb669agNrg4Btt6+evtxEYjrluMQpGvfVoNlDb0Nl/1oSp0m/Khaoc3GQ28rB1hX5dR9bXWx3+p0Tldl9mBVW+ZYbnWo57APq4s2a78cA2xtKK75ouH9RnA04RBQa4Mu2IMoRgB0LLMF2OraAGiyhT9bvZogaDLZwmXNfvu2cTwmh7AMvqba777gEDZdlNX8GG2vrTUB2GoEVls9a6MB1lV7PtTus7127KPDNRQRuYJpCLGIiIiIiIh4BQVYERERERER8QoKsCIiIiIiIuIVFGBFRERERETEKyjAioiIiIiIiFdQgBURERERERGvoAArIiIiIiIiXkHrwIqIAPhasVqrbdsmbAtBGt9NtR/3Oa2j6rCN4z5r7bbT/gbKHBYFtTawuGnt/trvVqdtnOpZAazGapxGiRUTWDHqWuvWqalXX9199oVPnbpU5+fRwFfdY1uy1qu7MndtNuF8JlflTvtcrefqorxeHxtYBxbncpNjmXFsbZsmxzVe7cc7rcvq+OvVwDqweL4OrJXaelaT1fkLx/047a822quuPQ9WMFU7rFdrdSq3mqqxOvTDirXmdc13ez9qXvvUHOPjsN9xn60ftuZ8gGpT7fdqateBra7ZZ6KhdWBN+GBbX9aX2mtmf+1TU6fu2rI+RpnJob3atnwwGa9tl8XEpUpXfy5FRK48CrAiIkDl2P+1dxcuD3s+aIG60VkEnH+1qtuzIx5z/M3WgDQREW+hv7FFRERERETEK5isVmsLP5sXEfFOVquVioqK9u6G1FFRUcG9994LwObNm/H392/nHomuScfi7++PyaQxESJyZdIQYhG5YplMJgICAtq7G+KGv7+/rlEHo2siIiLtSUOIRURERERExCsowIqIiIiIiIhXUIAVERERERERr6AAKyIiIiIiIl5BsxCLiIiIiIiIV9AdWBEREREREfEKCrAiIiIiIiLiFRRgRURERERExCsowIqIiIiIiIhXUIAVERERERERr6AAKyIiIiIiIl5BAVZERERERES8ggKsiIiIiIiIeIUu7d0BERHpmC5cuMDGjRvZtWsX+fn5+Pj4EB4ezuTJk5k+fTp+fn4et11SUkJycjKpqakUFBTQrVs3Bg0aRGxsLHfffTcmk8lt/ZMnT5KcnExaWholJSUEBAQwZMgQpk2bxqRJkxqsl52dzbfffktGRga5ubmUlpbi5+dH//79GT16NPHx8YSHh3v8vtpCZ7wurlgsFubMmUNOTg4AsbGxJCYmevrWRESkkzBZrVZre3dCREQ6lvz8fObPn09+fj4A/v7+VFdXU1lZCUBERASrV68mKCio2W0fPXqUBQsWUFZWBkBAQACVlZVUVVUBMHbsWJYtW9ZgEEtNTWXJkiVUVFQA0KNHD8xmM9XV1QDExcWxcOHCemFr69atvPDCC077AgMDMZvNxrn9/PyYP38+9957b7PfV1vojNelIUlJSaxbt854rQArIiKgIcQiIlKHxWLhmWeeIT8/nz59+vDqq6+ydetWtm7dypIlS+jevTtZWVksXbq02W2Xl5ezcOFCysrKuOaaa3jrrbdISUlh69atPPnkk3Tp0oX9+/fz+uuvu6x/6tQpnnvuOSoqKhg+fDgbNmzg888/Z8uWLTz88MMAbNmyhffff79e3aqqKrp27UpMTAzLly836m3dupVVq1YxaNAgLl26xKuvvkp6enqz39vl1lmviyvZ2dmsX7+esLAwQkJCmv1+RESk81KAFRERJ1988YUxbHPp0qVERUUB4OPjw5QpU1iwYAEAe/fu5cCBA81qe+PGjZSUlNCtWzdeeeUVbrjhBsB25zM+Pp6EhAQAPvvsM44fP16vflJSEmazmZCQEF5++WVjuG/37t1JSEhg2rRpALz33nucO3fOqe6NN97Ixo0befbZZxk/fjw9evQwzh0ZGcmaNWsICQnBarWyYcOGZr2vttBZr0tdVVVVLF++HIvFwtNPP03Xrl2b9V5ERKRzU4AVEREnX3zxBQCjRo3ipptuqlc+ZcoUQkNDnY5tqpSUFKONsLCweuXx8fEEBARQVVXFl19+6VRmNpvZtWsXAPfdd5/LYbJ/+MMfADh//jxff/21U9k111zDVVdd1WDfgoKCiI6OBiAzM7MZ76ptdNbrUtcHH3xAZmYmU6dOZcyYMc16HyIi0vkpwIqIiKGiooL//ve/ANx8880ujzGZTIwbNw6AtLS0Jrf9yy+/UFBQAGDUr6t79+6MGDHCZduHDx/m4sWLbuuHhoYycODAZvfNzn63z/7cZkdxpVyX48ePk5SURHBwMHPnzm3yexARkSuHAqyIiBiOHTtmhLdBgwY1eJy9rKSkhLNnzzapbfvw18baHjx4MAB5eXkN1rcf465+bm5uk/rl6Pvvv2+0/fZwJVwXq9XK8uXLqaysZO7cufTq1avRvouIyJVHAVZERAxFRUXGdt++fRs8znEormMdd4qLi5vV9vnz57lw4UK98wQFBdGtW7dG6zuerym2b9/OTz/9BMA999zTrLqX25VwXf71r39x6NAhxo4dS0xMTJP6LiIiVx4FWBERMTgGE3dhxN/f32Wdy9m22WyuV+6uflP7BbahqytXrgRgxIgR3HXXXU2u2xY6+3U5ffo0b731Fv7+/jz11FNN6reIiFyZFGBFROSKVlxczP/93/9RXl7OVVddxeLFi/Hx0T+PbWnFihWYzWYSEhJcTiIlIiJip3+hRUTE0L17d2PbPjGPKxUVFS7rXM62AwIC6pW7q9+Ufp05c4a//OUvnDx5kpCQEFatWsWvfvWrRuu1tc58Xf7973+Tnp7OkCFDmDlzZpP6LCIiVy4FWBERMTg+Q1lYWNjgcY7PV7pbmsZRnz59mtV2jx49nMKO/Tznzp1zG7Ts9R3P58qZM2d48sknycvLo3fv3qxevdqYKbej6azXpby8nL/97W/4+Pgwb948Ll68yIULF5y+rFYrYFsf1r6vo80SLSIibadLe3dAREQ6joEDB+Lj40N1dTW5ubkNLtlin0k2JCSEnj17Nqltxxlqc3Nzufbaa10eZ5/Vtm65Y/2cnByGDRvmtr67GXXPnDnDE0884RReG+pPR9BZr8u5c+coLy8HYN68eW77+eWXXxpr0L799ttERES4PV5ERDon3YEVERGDv78/N910EwD79u1zeYzVamX//v0AjBkzpslth4eH069fP7dtm81mDh065LLt4cOHG5MM2c9fV35+PseOHXPbt5KSknrh1V3Y7QiuhOsiIiLSFAqwIiLiJDY2FoCDBw9y5MiReuU7duzg1KlTTsc2hclkYurUqQB89dVXnD59ut4xn3zyCWazGV9fX+68806nsoCAAG677TYANm3aZNy5c5ScnAzYnrOcOHFivXLHYcMhISG89tprHT682nXG6xIaGsru3bvdfvXv3994T/Z9uvsqInLlUoAVEREnsbGxDB48GKvVyqJFizhw4AAA1dXV7NixgxUrVgAwbtw4IiMjneomJSURHR1NdHS0yyD0wAMPEBISQkVFBQsXLuTo0aMAXLp0iU2bNvH2228DMG3aNMLDw+vVT0hIICAggOLiYp555hmOHz8O2O4Qrlu3js2bNwMwe/ZsgoKCnOqWlpY6hdeOPmy4rs56XURERJrDZLXPjiAiIlLj9OnTPPHEE+Tn5wO2IazV1dVUVlYCEBERwerVq+uFkaSkJNatWwfABx98QGhoaL22jx49yoIFCygrKwNsd+UqKyuxWCyAbYjpsmXL6Nq1q8u+paamsmTJEmNW28DAQMxmM1VVVQDExcWxcOFCTCaTU71169aRlJQE2O4a2mfPbcibb75pDK3tKDrjdWnM/fffT35+PrGxsSQmJjarroiIdD6axElEROoJDQ1l3bp1bNy4kV27dpGfn0+XLl0YNGgQU6ZMYfr06fj5+XnU9tChQ/nHP/5BcnIye/bs4X//+x/+/v4MHjyY2NhY4uLi3K7DOn78eN555x2Sk5NJS0ujpKSEwMBAIiIi+O1vf8ukSZNc1nOcudZsNmM2m932syPOdNsZr4uIiEhz6A6siIiIiIiIeAU9AysiIiIiIiJeQQFWREREREREvIICrIiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVERERERMQrKMCKiIiIiIiIV1CAFREREREREa+gACsiIiIiIiJeQQFWREREREREvIICrIiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVExCu89tprREdHM2/evPbuirSz8vJy7r77bqKjo9m9e3d7d0dERNpQl/bugIiIXF7nz58nKyuLzMxMjh49ytGjRzl58iRWqxWADz74gNDQ0MtybqvVyowZMygsLGTWrFk8+uijHrWTlZXFpk2bAHjkkUdasYftKycnh/3793P48GFycnIoLi6mqqqKoKAgrrvuOsaPH09sbCyBgYHt3dUOJTAwkAceeIC1a9fy+uuvM27cOLp169be3RIRkTagACsi0snNnz+frKysdjl3ZmYmhYWFAEycONHjdt544w2qqqoYN24cw4cPb63utav58+fz/fffuywrKSmhpKSEtLQ01q9fT2JiImPHjm3bDnZwM2bM4MMPP6SgoICPPvqIWbNmtXeXRESkDWgIsYhIJ2e/0wq2O1ejRo0iJCSkTc799ddfA9C3b1+GDRvmURuHDh0iPT0doFOFFHuwDwoKIi4ujsTERNasWcPatWv561//yvjx4wFbmE1MTCQjI6M9u9vhBAQEMH36dACSk5O5cOFCO/dIRETagu7Aioh0cnFxcQQHBzN06FAGDBiAyWRi/vz5lJSUXPZz2wPshAkTMJlMHrXx/vvvAxAaGspvfvObVutbexswYACzZ89mypQpdO3a1als6NChTJo0iQ0bNvDmm29SWVnJypUreffdd9uptx1TTEwMSUlJnDt3jv/85z/MnDmzvbskIiKXme7Aioh0cjNmzOCOO+4gPDzc4xDpiePHj3Ps2DHA8+HDhYWFpKamAjB16tQ27f/ltmLFCu6666564dXRrFmziIiIACAvL4/s7Oy26p5XCA0NZcSIEQB8+umn7dwbERFpC7oDKyIil4V9dlj7sGVPbNu2jerqagAmT57cpDoWi4WvvvqKb775hszMTEpLS6mqqiI4OJjBgwcTFRXFHXfcQZ8+fZzqRUdHAxAbG0tiYiK//PILH330EWlpaRQVFdGjRw+GDBnC73//e0aOHGnUu3jxIp9//jkpKSmcOHGCiooKwsLCuPPOO5k5c2aLJxcaPXq08Qzz8ePHue666zxuKy8vj82bN5ORkcHp06epqKggMDCQoKAgQkNDiYyM5NZbb+Waa67xqH2LxcLWrVvZsWMHOTk5lJWVYTKZ6NmzJ8HBwQwbNoyoqCgmTJiAn5+fU926P/+8vDw++eQT0tPTKSoqwmw28+KLL9b7MGTy5MlkZGRw7NgxMjMzueGGGzz74YiIiFdQgBURkcvCPnx4/PjxdOni2T83e/bsAWzPiQ4cOLDR43/++WcWL17MiRMn6pUVFhZSWFjIvn37yM7OJjExscF2du7cyUsvvURFRYWx7+LFi+zdu5d9+/axYMECpk2bRlFREYmJiWRmZjrVz83N5a233mLv3r2sXLmyRSHWYrEY2z4+ng+c2rx5M6tXr6aqqsppf1lZGWVlZZw4cYK0tDSys7NZtGhRs9svLS3l6aefdjlhmP1nn5WVxaeffkpycjIDBgxosK3PP/+clStXUllZ2eh5HSf12rNnjwKsiEgnpwArIiKtrqioiB9//BHwfPhwZWUlP/zwAwDDhg1rdPhwVlYWc+fOxWw2AzBq1ChiYmIYOHAgfn5+FBcXc+TIkUbXDc3Ozuarr76id+/ePPLII8a5Dxw4wHvvvUdFRQWrVq1i5MiRvPDCC/z888/cd9993HrrrQQHB3Py5EneffddsrOzOXToEMnJyfzxj3/06GcA8N133xnbgwYN8qiNnJwcI7z27NmTadOmMXLkSIKDg6mqqqK4uJijR4+yd+9ej4dpr1692givkZGRxMTEEBoaSo8ePTh//jzHjh0jIyPDGBLekKNHj7Jt2zZ69uzJzJkzGT58OH5+fuTl5dG/f/96xw8aNIiAgADMZjPfffcdCQkJHvVfRES8gwKsiIi0um+++Qar1UrXrl0ZN26cR21kZ2cbdx+HDh3q9liLxcLixYuN8PrEE08YM9Q6uuWWW5gzZw4FBQUNtpWVlUVERASrV68mKCjI2P/rX/+aAQMGsGTJEiwWC3PnzuXs2bOsWLGCqKgo47ghQ4YwZswYZs+eTVFREZs2bWL27Nn4+vo26/2DbRh2bm4uYAvx4eHhzW4DYMeOHcad11WrVhnP1TqaOHEic+bMoaysrNntX7x40fhgYOLEibzwwgv1gvDIkSO59957MZvNbu8k5+bmMmDAANasWeM0W3ZDs1j7+voyZMgQMjIy+Omnn6iurm7RnWoREenY9De8iIi0Ovvw4aioKAICAjxqw3EYcGPL/mzbto2TJ08CtlmXXYVXR/369XNb/swzzziFV7tJkybRt29fAM6cOUN8fLxTeLULDAzkrrvuMo7Ly8tzez5XioqKePXVVwEwmUz8+c9/bnYbdvYZpwMDA12GV0e9evVqdvvnzp0zPmwYOXKk27u4AQEBjQ6pfuqpp5q11JP92IqKCoqKippcT0REvI8CrIiItKry8nIOHjwIeD58GKC4uNjY7tmzp9tj7YEZ4MEHH/T4nGAbktpQyDOZTE5lMTExDbbjeNypU6ea1YeKigoSExON4Fl34qjmsofu8vJyduzY4XE7DenVq5cxm/L27dtbtCZr3759XX4o4I7j74fj742IiHQ+CrAiItKqUlNTsVgs+Pr6MmHCBI/buXjxorHt6m6oo59++gmw3YlrymRP7jRW37Ev7mbrdTyuOYHu0qVLPPvss8bEULfeeitz5sxpcn1XYmJijLueS5Ys4fHHH2fDhg0cOnTIGHbdEn5+fsTGxgJw5MgR7r//flasWMH27dubHd49mWXZMcA6TrwlIiKdj56BFRGRVmW/G3rTTTcRHBzscTuOz4w2NhttaWkpUHunsSX8/f3dljsOj3U3PNrxOUz7UkCNsVgsLFq0iP379wMwduxYnnvuOY+en3UUFhbGyy+/zEsvvURhYSGHDx/m8OHDgO3nfMMNNxAdHc0999zT6IcFDZk3bx6VlZWkpKRw9uxZPvvsMz777DPA9sHC2LFjiYuLa/ROcmN3211x/LDD0xmvRUTEO+gOrIiItJrKykr27dsHtGz4MNie17Q7e/Zsi9ryBhaLhSVLlhhLB0VFRfHiiy8aQ3NbKjIykvfff5/nn3+euLg4YxmbqqoqfvjhB9544w0efPBBIzw3V7du3UhMTGT9+vX86U9/YvTo0UbALykp4YsvvmD+/Pk8++yzToGzLk8mYHKceMrx90ZERDoffUwpIiKtJj093RiS2tIA67hkSmMBNjg4mIKCAq+dwMceXu13r0ePHs2yZctatH6sK127duX222/n9ttvB2x3rg8cOEBKSgp79+7l7NmzLFq0iOTkZPr06ePROcLDw3nooYd46KGHqKqqIisriz179rB582bOnDnD7t27Wbt2LXPnzm2193Xu3Dlju7EJukRExLvpDqyIiLQaewCLiIggNDS0RW05rnn6yy+/uD3WvsxOcXFxo8d2NHXD66hRo3j55ZdbPby6EhwczJQpU3jllVe47777ADCbzXzzzTet0r59eHJCQgJ///vfjeHZ27Zta5X27Y4dOwZAaGgo3bt3b9W2RUSkY1GAFRGRVlFdXc23334L2CYeaql+/fpx1VVXAfDjjz+6PTY6OtrYTk5ObvG524rFYuG5554zwuvIkSNZvnx5o8/hXg5jx441tu3PFLem0NBQYx1bT9aabUhpaamxhNKNN97Yau2KiEjHpAArIiKt4vDhw0bwcQyULWEPVceOHeP8+fMNHjd58mQjHG3ZsoWPP/7YbbsFBQWt0r+WsFgs/PWvf2X37t3A5Q2vu3btajSU2p9dBrj66qub1f6pU6dIT093e8zp06eNO6VhYWHNat+dI0eOGNs333xzq7UrIiIdk56BFRHp5E6cOGHMOGtnX18UYOfOnU6zBQcEBDBp0qRmn8d+FzEsLMyjpVBcuf3229myZQvV1dWkp6dz2223uTyuS5cuPP/88zz++OOYzWZee+01du/ezdSpUxk4cCB+fn4UFxeTmZnJzp07GTp0KImJia3SR08tXbqUnTt3ArbA+Nhjj3H69Gm3dXr37k3v3r2bfa6PP/6YpUuXEhkZSWRkJNdeey29evXi0qVLFBQUsG3bNuPuef/+/Zu9/FFBQQFPPfUUYWFhTJgwgWHDhtGvXz+6detGWVkZR44cYdOmTcZs0tOnT2/2e2hIWloaYHu+d/z48a3WroiIdEwKsCIindzhw4dZtmxZg+VvvPGG0+v+/fu3KMC2xvBhu6ioKPr27UthYSEpKSkNBliA66+/ntdff53Fixdz6tQpDh48yMGDB10ea39mtj3t2LHD2D558iSPPfZYo3UefvhhEhISPDpfZWUlqamppKamNnjM1VdfzbJly9wuD+TOqVOn+PDDDxss9/Hx4cEHH+R3v/udR+3XZbFY2L59O2C76+/pEkAiIuI9FGBFRKTFfv75Z+PuYUtnH3bk6+tLfHw8b775Jnv37qW0tNTt2rJDhgxh/fr1pKSk8PXXX5OVlWU8b9m7d2+uu+46xowZwx133NFqffQGS5YsYf/+/WRkZJCTk0NJSYkxpLhXr15cf/31TJw4kZiYGI+W7RkxYgRr1qwhPT2dI0eOUFBQwJkzZzh//jz+/v6EhYUxYsQI7rnnnla7Ow8YvxMAM2bMaLV2RUSk4zJZrVZre3dCRES82zvvvMM777xD7969+eSTTzxay7Mh5eXlPPDAA5w9e5ZHH32UWbNmtVrb4t0WLlxIamoqkZGRrFq1qr27IyIibUCTOImISIvZhw/fcsstrRpeAQIDA43QunHjRi5cuNCq7Yt3OnLkCKmpqZhMJh555JH27o6IiLQRBVgREWmRS5cuMXHiRB5++GHi4+MvyzmmT5/OgAEDKCsr45///OdlOYd4l7Vr1wIwdepUhg0b1s69ERGRtqIhxCIi4hV+/PFHUlNTCQwM5P7772/v7kg7Ki8v58MPP8RqtRIfH+/2uWgREelcFGBFRERERETEK2gIsYiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVERERERMQrKMCKiIiIiIiIV1CAFREREREREa+gACsiIiIiIiJeQQFWREREREREvIICrIiIiIiIiHgFBVgRERERERHxCgqwIiIiIiIi4hUUYEVERERERMQrKMCKiIiIiIiIV1CAFREREREREa+gACsiIiIiIiJe4f8DB3BjF7UsG/4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACvcElEQVR4nOzdd3hT1eMG8PdmdU9aKKvsIUNAZcqXIUtBBQEFRZa4UJHh3oL4A9ziQAWVoQIKgguQvTcie+9ZuvdK7vn9keaatNlJm6Z9P8+Th5CcnHvaJrn3vefccyQhhAARERERERFROafydQOIiIiIiIiInMEAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILDLBERERERETkFxhgiYiIiIiIyC8wwBIREREREZFfYIAlIiIiIiIiv8AAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILDLBERERERETkF7wSYM+fPw9JkiBJEkaNGuWNKiulbt26Kb9HIiJbRo0apXxXnD9/3tfNUcydO1dp19y5c33dHCoFAwYMgCRJuOeee3zdFPITPEYksq4iH/dPnToVkiShfv36yMvL83r9ZdYDO3fuXLz99tt4++23y2qTPrd8+XLlZ05LS/N1c6iIXq/H2rVr8fLLL+OOO+5A9erVERAQgNDQUDRo0ABDhw7F8uXLYTAYXKr38OHDGDduHJo2bYrQ0FBERESgZcuWePnll3HhwoVS+mmIqLIwP3Hhys1b+92///4bv/32GwDYrFMIgW3btmHy5Mm48847Ubt2bQQGBiI4OBh16tTBfffdhwULFiA/P9/h9jZu3OjSz+nopElGRgY2btyIDz/8EA8++CAaN24MlUrl1smgnJwc7NixA5999hlGjRqFFi1aQKPRKHVt3LjR6bpckZOTg9mzZ6Nfv36oVasWAgMDERgYiBo1aqB379749NNPnT7eyMvLw6xZs3DnnXciLi4OAQEBiI2NRfv27fF///d/SE5OLpWfwRfGjRun/G3eeOMNl1+fk5ODiIgISJIEjUaDq1evuvT61NRU/Pbbb3j99ddx5513olmzZqhatSq0Wi0iIiLQvHlzjBo1CqtWrXKp3j///BNDhw5F3bp1ERQUhIiICDRr1gwTJ07E0aNHXapr8+bNGDNmDJo3b47w8HBotVpER0fjtttuw4QJE3Dw4EGHdRQUFGDfvn345ptv8Pjjj+PWW2+FTqcrkxObiYmJeOedd3DrrbciOjoawcHBaNCgAR555BHs3LnT4evNw6Q3v3fKs3379ik/R506dSCEcLmORx99VKljxowZyuPPPvssoqKicO7cObz//vvebLaR8IJz584JAAKAGDlypNUyXbt2VcpUFiNHjlR+5nPnzjksXxl/R2Vt/fr1Ijo6Wvk927u1bdtWnD592ql633//faHVam3WFRYWJhYuXFjKPx1VFq5+t5SV77//XmnX999/7+vmVDjmf3dXbvPmzfN427Isi1atWgkA4t5777Va5ujRo6JGjRpOtalx48Zi7969dre5YcMGl35Oe++5tLQ0IUmS3de78llytB/ZsGGD03U5a8+ePaJevXoOfw9Vq1YVf//9t9269u7dK+rWreuwnlWrVnncbmeOEUvbvn37lDbEx8cLWZZdev38+fOV1/ft29fl7c+aNcvp93GXLl3EtWvX7NaXkJAg7rjjDrv1aLVaMWPGDIdty8nJEQ888IDDdqlUKjF+/HhhMBhs1nXLLbe4/Rn1xJo1a0TVqlVtbleSJPH888/brcP8GNyV26ZNm9xud3k47m/ZsqXShrVr17r02uzsbBEWFiYACLVaLa5evWrx/JQpUwRgPAZOTEz0ZrOFBl5Qt25dt1I7WSqtM7b0nytXriAlJQUAEB0djZ49e6JDhw6oXr06CgsLsXv3bsyfPx8ZGRnYs2cPunfvjt27dyMuLs5mnV999RVeeOEFAIBWq8Xw4cPRtWtXFBYW4u+//8aSJUuQmZmJ4cOHIzIyEnfeeWeZ/KxUcc2dO9evz/qSe5599lkMGDDAYblTp07hxRdfBACEhYVh8ODBHm976dKlOHDgAADg1VdftVomOTlZ6ZkKCQlBz5490alTJ9SqVQsAcPDgQcydOxcJCQk4efIkevTogW3btqF58+YOtz9kyBAMHTrUbplbbrnF5nNCCIvjFEmS0LBhQyQlJSE1NdXh9osrPkInPj4eBQUFuH79ust1OePChQvo2bMn0tPTAQBxcXEYNWoUGjVqBI1Gg7Nnz2L+/Pk4d+4cbty4gXvuuQe7du1C69atS9R15MgR3HHHHcjIyAAANG/eHMOHD0e9evWQlpaGlStX4rfffsONGzdw3333Ye3atejUqVOp/Fxl5ZZbbsHNN9+MgwcP4uLFi1i/fj169Ojh9OvNv29Hjx7tVhtUKhVatWqFtm3bokmTJoiLi4NOp0NSUhJ2796NxYsXIycnB5s3b0b37t2xb98+BAcHl6gnKysLvXv3Vj6PMTExGDNmDFq1agW9Xo8dO3Zg7ty5yM3NxUsvvQStVouJEyfabNdDDz2E5cuXAwDUajWGDBmC9u3bo2rVqrh69SrWrVuHFStWQJZlfPrpp9DpdHjvvfes1lX8c2Hq2S/NUWj79u1D//79kZOTAwDo1asXBg0ahNDQUOzevRvffvstsrOz8cEHHyAgIABTp061Ws/UqVORlJTkcHvbtm3DBx98AABo0KAB/ve//3nvh/GB0aNHY9KkSQCM73NXPhdLly5FZmYmAODOO+9E9erVLZ4fP348ZsyYgczMTHzwwQeYPn269xru1ThsR3k4y1DWymsvSWW2YMEC0bJlS/HTTz+JvLw8q2UuX74smjdvrvztRowYYbO+q1eviuDgYAFAaDQasWbNmhJlzHulateuLXJzc7328xCVJ+yBLR9eeukl5e/w6KOPeqXODh06CACiSZMmNsts2bJF1K1bV3z11VciIyPDapnU1FSL44EuXbrYrM+8B/att97yqP2ZmZli6NCh4v333xfr168XaWlpQgjLYxNX9tMjRowQ7777rli1apXSs2C+z/d2D+wjjzyi1N2nTx+Rk5NTokxhYaEYMWKEUq5///5W62rfvr1S5uGHHxaFhYUlyixZskSoVCrlb26tjLPKQw+sEEJ8/PHHSjuGDx/u9OsuXLig9N5XqVJF5Ofnu7ztK1euiOTkZIfbadiwodLG6dOnWy334osvKmVuvvlmcePGjRJljh07JqpVqyYACJ1OJ06dOmW1rs2bNyt1hYeHi/3791stt3LlSqFWq5VjHVu9aRMnThRvvvmm+O2338SVK1eEEEK89dZbpbZfkGXZotf37bffLlHm33//FeHh4Uov8sGDBz3a5pAhQ5TtTZ061aO6ykM2unHjhjKCMDg42OZ3tzXmowCWLFlitcxDDz0kAIioqCiRlZXlrWYLBthSxABb/qSmpjo1dOjQoUPK3y4oKEhkZ2dbLTdhwgSl3AsvvGCzvvvvv18p9/nnn7vdfqLyjAHW9/R6vahevbryd9i2bZvHde7fv1+pb8qUKTbLZWZmioKCAof1JSQkKCf+AIizZ89aLefNAGuLuwHWmtIMsDVr1lTqPnLkiM1yqampQqPRCAAiOjq6xPM7d+5U6qlZs6bdE6pPPfWUUnbOnDlut728BFjzA/WQkBCRmZnp1OtMwyABiHHjxpVqG3/99VdlW//73/9KPF9QUKAM2ZQkyW4Y+/nnny1OVFjz2muvOXUMI4QQgwYNUsr+/vvvTv9MpRlgly9frtTdvn17m8d3X3zxhVJu8ODBbm8vJSVFBAQEKGH40qVLbtclRPnJRgMGDFDa8e233zr1GmdP7Pz1119K3bNnz/Zam0t9FmLTRdGbNm1SHnNlkglZlvHzzz9jyJAhqFevHoKDgxEWFoamTZti7NixOHTokN22vf322yUmVVi3bh0efPBB1KtXD4GBgSUmb9Dr9fj777/x3HPPoXPnzqhatSp0Oh3CwsLQuHFjjBo1Cps3b7a5TdNEG/PmzVMeq1evXomf2dbvypnZyHbt2oXHH38cTZo0QVhYGEJCQtCgQQOMHDkS69evd/h603a6desGAMrwittuuw1RUVEICQlB8+bN8corr7g1vKq8ioyMdOr326JFCzRt2hQAkJubi9OnT5coI4TAL7/8AsD4+xw3bpzN+p599lnl/uLFi11ttkd27NiBsWPHolmzZoiMjERgYCDi4+MxZMgQ/PXXX3Zfaz6JiukzevHiRTz33HNo2rQpQkJCEBkZiU6dOuHLL7+EXq93qk1ZWVn45JNP0KtXL9SoUQMBAQGIjo5G27Zt8eabbyIxMdHu64t/VgwGA+bOnYtevXqhZs2a0Gg0qFu3bonXJSQk4MUXX0SzZs0QEhKC6OhotGvXDh9++KEy/Khu3bqQJKnE61etWqVs0/zvac+zzz6rvGblypVOvcYZjmYhLq2/259//ol77rkHcXFxCAwMRN26dTFs2DDs2LHD5Z+hoKAA3377Le69915lop/IyEjcfPPNeO6552xOqHPixAmEhIRAkiRERETg3LlzNreRmpqK+Ph4SJIEtVpt93u7oli1ahWuXbsGAGjatKlXhn4uWLBAuT9s2DCb5UJDQ6HVah3WV7VqVXTp0kX5v6P9OAE3btxQ7jdq1MhmucjISMTGxgIw7teLMz8+uP/++xEYGGizrhEjRij3f/rpJ5fa647ExES0bdtW+e6aNGmS1cvT3N2nxcbG4u677wZg/N38/PPPTrXL/FjO3eHDzmrWrJly39pw9L179ypDNlu1aoWWLVvarGvgwIEIDQ0FYJxUNDc3t0QZZ99XANC4cWPlvrX3li+YH0+ZJuqyZtSoUQgPDwcA/PXXX263/6efflImoOvVq5dyeURpM88yLVq0wJUrV0qUSUpKwrvvvov//e9/yvD02NhY/O9//8N7772HrKwsm/Wbv6+dvTxp3rx5yudz2LBh0Ol0Vsv17t1b+U4y35d4zBsp2N7ZNWcvirZ2dvX06dOidevWdl+nUqnEG2+8YbNt5md+1q9fL55++mmr9Zifee3WrZtTbR45cqTVMw7OTrRh73dlS2FhoXjssccc1v3AAw9YHWJkYirXtWtXcebMGdGsWTObddWpU6dS9iC3bdtW+R3s3LmzxPPmvbQtWrSwW5fBYLAYwuLKEA13ZWVlWQx1sXXr16+fzfYU7wFZuXKliIyMtFlXr169bA7NNlmxYoXdyRYA4wX/v/32m806zD8rycnJonPnzlbft+bWr18voqKibG6zZcuW4uLFi6JOnTpWX28wGJQJVKKiohwOBc/NzVW2Fx8fb3fiC1c5Gt3h7b+bXq+3+72mUqnEjBkznO6BdWYyGp1OJ7766iurr//mm2+Uch07dhR6vd5qucGDByvlXnvtNbu/04pi4MCBys/szAQuzmjQoIHyPvYW81EpixYtslqGPbD/qVWrllK3sz2wrVu3LvG8ea/qrFmz7G4zJSVFKatWq22ORHLEmR7Yc+fOicaNGyvlpk2bVqKMN/Zpv//+u1LO3vB1E/Mhtq1atXLlx3aLeW+VtR5Y817VIUOGOKzv5ptvVspbm5Dr9ddfV5531ANr/n3677//Ov0zlWYPbJUqVZS6HU0S1K9fP6XsX3/95db2zIcrL1682K06zDk67jcYDOLJJ59UynTq1EmkpKSUKPf9998rPfO2btWqVRPbt2+3up3CwkJlyLkkSeLMmTMO227aLwCwOfTc5L777lOOFZKSkhzW7YxSD7BbtmwRy5Yts7imcNmyZSVux44ds3jd6dOnRUxMjPKazp07i+nTp4uFCxeKH374QUycONHiYNTWzs38g3PXXXcJACIuLk68/PLL4ocffhBz584VTz31lMXMWe3btxehoaGif//+YsqUKWL+/Pni559/Fp9++ql4/PHHRUhIiFLn+PHjS2xz3759YtmyZaJ79+5Kua+//rrEz7xv3z6L1zkTYIcOHaqUCQwMFE888YSYN2+e+OGHH8SECRMs3sB9+vSxOZzCVKZNmzaiadOmQpIk0b9/fzFr1iyxePFiMW3aNBEfH2/3i7Qiy8/PtzjgtzYj4MKFCx3ulM2Z/3137dpVCq3+T15ennLNGgDRoEED8eqrr4oFCxaIRYsWialTp1ocLNxxxx1WA5b5AWT//v1FcHCwCAoKEk888YSYO3euWLhwoXjuuecsPhP2TigtWbJEuY5Gq9WKQYMGic8++0z8/PPPYs6cOWLYsGHKEC+VSiXWrVtntR7z36Xpc92qVSsxffp0sWjRIvHNN9+IZ555Ril/5MgRiyGLbdq0ER9++KFYvHixmDlzprj99tuVMGQaqlc8wAohxP/93/8pdfzwww92/wYLFixQyk6ePNluWVe5EmC98XczP+jV6XTiscceE/PmzRMLFiwQ48aNU3635sOQbB2obN++XSkvSZK48847xUcffSQWL14s5s6dK5544gmLv5WtesyHs1lr+5w5c5TnO3To4NE1fP4iMTFR+fxoNBqHM5k648yZM8rv0ZOhd8WZnzTdsWOH1TLm7+MWLVqIli1bitDQUBEYGChq1aol7r77bjFr1iy7J2sd8ZcAa37y3d41sOZtmDt3bokyY8eOVZ53JcACEHv27HGr7Y4C7MGDB5XZq9VqtdUhjN7ap7l6oG5+7fEnn3zi1s/vrBs3bljMCPvxxx+XKLN48WLleVcD7Pvvv1/i+T179ijPO3sNbLdu3Vz6uUorwF67dk2p19r+2l473Dm5d+DAAeX10dHRDk/WO8PecX9eXp7Ffq5v375WTyJ98sknSpng4GAxYsQI8dVXX4lffvlFzJo1S/Tv318Z6hscHGzzBNhzzz2n1PPmm2/abbf5iR1rJ8qKmzFjhlLe1glLV5XLZXQMBoNyliMgIED8/PPPVstdv35d6aFVqVTi8OHDJcqYv2EBYxBOT0+3u/21a9fa3SEmJSUpPT4qlcrm9TveXkZn0aJFyvPVqlWz+iY8f/68Rc+GrestzX8nOp1O/PHHH1Z/TvO6PAld2dnZVk9cuHMrHvxLg3n4uOWWW6yWmTx5slLGmd4B88k1FixY4OUWWyp+ba61g/eCggKLNlk7mCm+jEV8fLw4efJkiXK7du1SzvpHRUVZ/WK/ePGi0gsdHx9v89qdXbt2iYiICAFA1KpVy+o1dcVHdkyYMMFuD6d5D+1TTz1ltWzx7wprO8Tr168rAaFr1642tyeEEF26dFEOyDy9TqY4VwKsp3838x1VZGSk1aVPjh8/LuLi4iy2ae1AJSMjQ9SuXVupa+PGjVZ/vlOnTikn0EJCQqyeWU9JSVF6pdRqtdiyZYvy3IkTJ5RwHh4e7tTZZHuOHTvmte8vby8lYM58kpp77rnHK3X+9NNPdg+A3bFlyxalztjYWJs96M4uo1O9enWxfv16t9riLwE2MTHRYoKfuLg48corr4jvvvtOzJ8/X7z11lvK/lqlUol33nnHaj3m+62JEyfa3ab59bKA45N2tjjq5DCdLA4MDBTLly+3Woe39mlCCPH88887daBuvkSIVqv12mc3ISFB+T5YunSpmDNnjhg7dqzFSfPevXtb3fdt2rRJKdOmTRu729Hr9SI0NFQpb2tCN/PfrVqtFg899JCYOXOmWLRokfjoo48sei47d+4sEhISXPp5SyvAmv8uHO2PhRDiu+++U8qPGTPG5e2NHz9eeb23roW2ddyfnp5u0Qk2fPhwq+/5PXv2WIy4uHDhgtXt/PHHH8qxS/v27a2WOXz4sLK9unXr2p0vZvTo0UrZTz/91OHPuXHjRqe/d5xVLgPs0qVLlbIzZ860W/bEiRPKWaHHHnusxPPmH5yQkBBlVjRPmZ+VtrWj8HaAbdOmjfL8ihUrbNaza9cu5WxLnTp1rB4cmO+U7E3KMXv2bKfKOWL+HvH0VtqTQKSkpFhMgvLLL79YLTdx4kSlzGeffeawXlfLu+vq1atCp9MJAGLgwIF2yxYUFIj69esLAKJRo0Ylni9+ALl582abdQ0bNsxuuXHjxik7SEfDTb799lulrh9//LHE8+aflVtvvdVueDU/w9yiRQubB8vF67V1Rtd86KO1UCiE8XvJVKZfv352f1Z3uBpgPfm79e/fX3neWo+OyZ9//mmxTWsHKh9++KHyvKNJQNatW6eUfffdd62W2bhxozJTap06dURqaqooKCgQt956q/Jab5wsKn5yw5NbaawPamLe27Js2TKv1Pnqq686/TdzRn5+vsNeIZMNGzYISZJEu3btxEsvvSS+++478csvv4jZs2eLxx9/XDnRBRh7nFevXu1ye/wlwAohRHJyshg8eLByzGPt9sADD9j9fl27dq1StmbNmnZ7kYpfcuXuBIS2jhF/++03ERQUJACIiIgIm+tpenOfJoRxRI6pPfYO1OfNm6eUc7RdV6xcudLm369mzZpiypQpNvdT2dnZyu9CkiRx6NAhm9v55ZdfLOq2N4Lik08+EbGxsTbbVb9+fbFw4UKnJmkrrrQC7G+//abUO2jQIK+XN1dQUGAxKtTRMYyzrB33JyQkWBzvT5o0yeZ79J577hGA8bKry5cv293WG2+8odRpa3I/80vnbJ0UND+xo9PpnBoSnJCQoNTbo0cPh+Wd4ZVJnLzNdJFveHg4HnvsMbtlGzdujHbt2gEAVq9ebbfsoEGDUKNGDa+0sX79+sraoLt27fJKnfacP38e+/fvBwC0bNkSd911l82y7dq1wx133AHAuHbcvn37bJZVq9V45plnbD5vqgcAjh496mqz/Y7BYMDQoUOVSVD69etncw1F8wvi7U2EYRIUFKTcN03CUBp+/vlnFBQUAACef/55u2W1Wi2GDBkCwLh2pK2JcwCgTZs2dtc7s/deEULgxx9/BAD06NHD6tqE5oYMGQKNxrhMtaPP9dNPPw2VyvZX2W+//WZRVq1W2yw7fvx4u9sCgCeffFK5P2fOHKtlzB9//PHHHdZZmjz5u+Xn5yuTT1WrVg0PP/ywzXr69euHm266yW5bTN/tjRs3xj333GO37B133KF8X9t6D3Tt2hUvv/wyAON33ZNPPonXX39d+c4bNmyY3TZXJPv27cPBgwcBGCdJMk1W4ynz9Rujo6M9ru+pp55S2tmmTRu7E6I1adIEJ06cwK5duzB9+nSMHj0agwcPxqOPPoqvv/4a586dQ9++fQEYJ1988MEHlbVNK6Lo6GjMmDHD7kRCy5cvx7Rp05R9WHHdunVDw4YNARjXRX/iiSdKrN0JGL83v/rqK4vHvPm7/e677zBw4EDk5uYiLi4OmzZtspjYy5y392nNmjVTjhvPnz9vMcmoOW+s/eoK08SanTt3trmfCg4OViZSE0Jg+PDhVtcuPXnyZInPlr2/32OPPYZp06YhMjLS6vNnz57F9OnTsWrVKid/mtJXlsdgv//+u/J7btOmjcNjGHedPXsWt99+u3K8P23aNHz44YdWJ6dKTU1VJi178MEHUbNmTbt1m+8Lbe1Tzd/n5pOXmVuyZIny+7vnnntQpUoVu9sFgKioKOW+t9YE1nilFi/bsmULAKB69epOfVhMH/QLFy4gNzfX4k1qzpXFhjMyMvDjjz9ixYoVOHToEJKSkmzOWnb58mWn63XX7t27lfu9e/d2WL53795Yt24dAGPANn1ZF9e4cWOLN1Zx5h8IT2Yjrlu3rtXZBMub8ePHKx/s+Ph4p2djK09Mnx/A+N40LVBui/nf9dixY1Zn7wWADh062K3H3nvlyJEjSElJAQCEhYU5bBNgnNE0LS0Nx44ds1vO0ed67969yv3u3bvbLWualdue7t27o3Hjxjh58iTmzZuHqVOnWsy8WlhYqHzx16hRA/369XNYZ2ny5O924MAB5cCxa9eudsM/YDw5YevvlZ6ergSXatWqOf0eAGD3PTB58mSsW7cOu3btspiRsl69evjyyy8dbsMZb7/9ts2Z8suL77//Xrk/fPhw5QSQp0yfW8DzAPv+++/j22+/BQBERERg8eLFNmeuBIzHAPZERUVh6dKlaNeuHQ4dOoTk5GTMmjULL730kkftLK+mTZuG119/HbIs49FHH8WTTz6pzFp79OhRfPXVV5gzZw5+/vln7Ny5E2vWrLGYORYwHi/NmjULd955JwwGA+bNm4d9+/Zh+PDhqFevHtLS0rBq1SosW7ZMmY3dFALtnSh0xYwZM5QTTw0aNMDq1atRv359m+VLY5/2yCOPKMdVc+fOLfHdf+HCBWXliri4ONx55512t+mKO++8Uzke0uv1uHHjBrZu3YqPPvoIP/74I3788Uc888wz+Pjjj61+jt99911ltvF///0XzZo1w5gxY9CqVSvo9Xrs3LkT33//PXJyclC/fn2cPXsWgO2/3969ezFgwABcuXIFrVu3xptvvon//e9/iIiIwLVr1/Dnn3/i7bffxoEDBzBgwAB8/vnnGDt2rNd+H/7A/Pv1kUceKZVtHDhwAHfeeSeuX78OtVqNb775xu62tm3bBlmWARg/144+F4WFhcp9W/vUBx98EJMmTUJeXh6WLFmCzz//XNkPm7hzYker1SIsLAyZmZleW9mk3AXYrKwsJCcnAzAul3Dfffe59PrU1FSbAdbR2QmTDRs24KGHHrI6hbk1ZXHG1/xsavEdkjXmZWydiQWAmJgYu/UEBAQo9/Py8hxu15+99tpr+OKLLwAYD7DXrFlj9/dj/qF25ndjPoV9WFiYBy21z/yM8wMPPODSa+19sXjyXjFv09KlS7F06VKvtAlw/Lm+evWqct/eQRJgPCCOjIxEWlqazTKSJOHxxx/H888/j4SEBPzxxx8YOHCg8vzvv/+uLE0wevRoh6GvtHnydzP/3Zl6beyxV+bSpUvKznbLli0WB6WO2HsPaDQa/PTTT2jdurVyVtj0mGnZhIouPz/fYpkTbx5gmZaMADz73vrmm2/w4osvAgBCQkKwYsUKh8t2OCMwMBCvvvoqHnzwQQDGJTIqYoB97bXX8H//938AgJkzZ5ZYtu3WW2/F7Nmz0bJlS4wfPx4XL17EsGHDsGfPnhJ19ezZE4sXL8aoUaOQlZWFw4cPl/id6XQ6fPbZZ1i1apXy/W3vZLezli9frpzga9WqFf7++29Uq1bN7mtKY582dOhQTJw4Ebm5uVYP1M2XCBkxYkSJILl161arPZ8mvXv3RnBwsMP2aTQa1KhRAw888AAGDx6M0aNHY/78+fj8888RFBSE9957r8RrqlevjjVr1mDAgAE4ffo0EhMTMX369BLlRo8ejZtvvhkTJ04EYP3vd/DgQXTp0gW5ubno1KkT1q1bZ9GbGR8fj6eeegp33nkn2rVrh+TkZIwbNw6dOnVCq1atHP58pamsjsGuXbumdKYFBATYXUrME127dkV6ejoCAgKwePFi9O/f325588/FrFmzMGvWLKe3ZetzERkZifvuuw8LFy5EdnY2lixZYrHkp/mJnerVq7t0Yic8PByZmZlWl3NyR7kbQpyenu7R6029BdbYCrbmTp06hX79+inhtUmTJpgwYQK++OILLFy4EMuWLVNupnWNrA2/8Tbz4Q4hISEOy5t/sO0NlfDWGVV/N3XqVOXgICYmBmvXrnV4osB8qI29HZmJ6cRM8dd6myefIXufH0/eK6XVJsDx59o0ckKj0Ti1RqUzn69Ro0YpwW/27NkWz5n+L0kSxowZ47Cu0ubJ3818iJYzB2P2fneevAfMzxxbExMTY9E7WL9+fdx6661ub8/fLF++XDkgad++vcVakp4yP8Hh7sna+fPnK0Pvg4KC8Mcff3hlfVoT896z48ePe63e8uLKlSt4//33AQA33XST3ct+xo0bpwzl37t3L3bu3Gm13KBBg3D69Gm88cYbuO222xAZGQmdToc6dergkUcewd69e/H4449b7LdMl015wnzN6dzcXKeOn0pj/xEREaF0kGRnZ1ucVBVCYP78+cr/rfUyvf7667jvvvts3szXV3WWSqXCF198gYiICADGExW2gkbz5s1x6NAhfPnll+jRowdiY2Oh1WpRrVo13H333fjzzz/x3XffWbze2t/v5ZdfVgLFRx99ZHMobv369ZXh2waDwaWwVFrK6hhs/vz5yvt0wIABXjmRY43ps6HX650K5KV1XGVvGHHxEzuunKA3tdeZLOaMctcDax68unTpYvPahNIybdo05cP82muv4Z133rG5MLKj63O9yfxskTMLMJsfeJZmb5+zcnJyHF7L6Kz4+HjccsstXqkLAN577z288cYbAIxnKNesWYMWLVo4fJ15wLV37aiJ+bh/Z3rR3WX6DEmSBL1eXy5OUph/rt98801Mnjy5zLZtClV6vR6FhYUOQ6wzn68qVapg8ODB+PHHH7F69WpcvHgR8fHxuHDhAtasWQPA2MtRr149z38AHzL/u+Xk5Dgsb+93Z17XiBEjbF5f446nnnrK4vN18uRJvP7665gxY4ZX6j9+/LjXglHnzp0d9oq76rvvvlPue3t4m/mJAfPhxM5auHAhRo8eDSEEAgICsHz5codD+V1lfg2WvdET/mr16tXKSZwePXrYPCYBjN/7d9xxhzJEcPfu3TYvI6hWrRqmTJmCKVOm2KzP/Lr4tm3butN8C4MHD0Z4eDg+++wznDx5Et27d8eGDRvszk9SWvu00aNHKyMX5s6di5EjRwIwjhA5c+YMAOMlGE2bNvXK9pwRGhqKzp0746+//kJ+fj527txpc86TwMBAjB071u5wXnt/v/z8fKxduxaA8TjR1qVmJj179sQrr7wCwPKyNl8pq2Owshg+DBhHj/Tr1w/Z2dlKL6/pem5rzPep3333ndeu0+7Rowdq166NS5cuYdOmTTh//rxyGaD5ftu8Z9aRwsJCJZd4Yy4FoBwG2IiICISGhiIrK6tMri0tzvRhrlq1KqZMmWJzR5GZmenWztxd5tcCnTp1ymF58zLemrjKEzdu3HB5OLgtI0eO9Nq1qR9//LEydCoiIgJ///230xfnm4dcexNlAYAsy8pF+SqVyuFkN56oWbMm/v33XwghcOXKFdSuXbvUtuVKm0zK+nNdo0YN5drLs2fPokmTJjbLpqamOn0A/OSTT+LHH3+ELMv47rvv8Pbbb+O7775Thsn6evImbzD/7jh9+rTD8vbKlNZ7wHTNGGAcRpmUlIQLFy7ggw8+QJ8+fSwmqXLXokWLvHbSZcOGDU5da+2sy5cvK/ut4OBgDB061Gt1A7C4ftDVfd4vv/yC4cOHQ5Zl6HQ6LFmyxKk5HFxVVqNbfMV8KL8zw+JNPXiAcyfkbDl69KjSs9WgQQOH1yQ7a+bMmZAkCTNnznQqxJbWPu2OO+5AfHw8Ll68aHGgbh5YbIUC0zDK0mDe6eDJCRlZlrF161YAxvB/++23WzyflJSknBgJCwuze2IE8N77ylvi4uJQpUoVJCcn4+LFi0hKSrJ7ctB8PgxnOikAYPv27Thx4gQAY+dJz549PWu0HV27dsWKFSvQt29fJcQKIWx+p5fWPlWlUmHkyJGYOnWqElrfeustbN68WbmeumPHji6d2DHfd9SpU8c77fRKLc5syOyMmaPJfEwz0Z09e9apgyZvSkhIAGCcAMTeWb61a9cqB6q2uPIzO2J+ZszUw2OPeW+no7NqldUXX3yBSZMmATB+ea9cudKlM8zNmzdHrVq1ABgnKbL3BbJ9+3Zl+N3tt99eqr3iXbt2Ve57q9fbU23atFEOvNatW+fws+NNt912m3J/w4YNdsu6clDSuXNnNG/eHIDx7GdhYaHSE1a1alWH16/4g1atWimT7GzatMnhcD/TxHHWxMTEKENbd+7c6ZW5A86dO4ennnoKgLGnfeHChfjhhx+gVqshyzJGjBhhEW4qorlz5yqfp0GDBnn9ul/zAz3TgZwzli9fjoceeggGgwEajQaLFy/22szIxZmP1CrN0S2+Yv43vXTpksPy5j1NzswQaot5kPP25RCffvqpMuv7yZMn0a1bN4ugbq609mmmA3Xgv2HDpuv+AONQR3s9YKXF/LjXk9EaK1euVC6H69WrF+Lj4y2eN39fJSUlORy26q33lTf16dMHgPHvZ++9kZOTo8y7EBQUZPGessd8dMvIkSNLfURbly5dsHLlSoSGhsJgMODhhx/GokWLbJY1nXTw9rGeee/q/PnzIYTwaFZu80mjbr75Zk+bB6AMA6x5V7ejMzemLxTAONywLJmu8zp79qzN0GkwGJTrJe1x5Wd2pG7dusqw2QMHDtgNsXv37sX69esBGM90lIdrwUzDD7xx80bv6+zZs5VJMEwTinTs2NGlOiRJwv333w/A+OX52Wef2Sw7c+ZM5X5p7xCHDh2qhI4ZM2aUizOlarVaGRJz4cIFm8vPlAbzIPnFF1/YDWGffvqpS3U/8cQTAIwHlRMmTFBOYowcOdKp623Lu4CAAGWZkoSEBIuJgopbuXKlwxmjTd/tOTk5VicdcYXBYMCwYcOUIDxz5kw0atQInTt3xquvvgrAeO3go48+6tF2AOMsxN76/vJm7ytgOSNkaQxva9++vXLf2SXjVqxYgSFDhkCv10OtVuOnn37CgAEDvN42wDgM0nx/bHq/ViTmJxH++usvu/NaZGRkKEtfAZYn8Fxx/PhxZZ8WGRnplc9RcZ988gkmTJgAwDhqzFaILc192qhRo5QQMH/+fPzyyy/KUMeBAwda9DqWhX/++UcZ0aXVat0etp2Tk4MXXnhB+b/5fZOwsDAl1BYUFODXX3+1W6d5kHL3feVt5sdTM2fOtHncPnfuXGVf0a9fP6fmusjJycHPP/8MwHi8VxZLKQHGlRVWrFhhEWIXLlxYolzVqlWVSZS2bt3q1RDboEEDi87EVatWeXRix3zfYb5P8Yg3FpO1tUi1uWeffVYpY2uxahODwWCxmO748eNFfn6+zfI5OTni+++/FwsXLizxnPkCys4sLN6rVy+l/EcffVTi+YKCAjF69GiLBZ7r1Kljta6PPvpIKTNv3jyH27a2oLG5xYsXK89Xr15dHDt2rESZCxcuiAYNGjhceNz0fNeuXR22y5Wy/mDevHlCkiQBQAQHB3u04PyVK1dEcHCwACA0Go1Yu3ZtiTLff/+98jusXbu2yM3N9aD1znnuueeUbXbv3l1cu3bNZlmDwSDWrFkj3nnnnRLPbdiwQannrbfesrtNR2UvXbokIiMjBQAREBDg8DORkJAgpkyZIg4cOFDiOUefleI6d+6slH/qqaeEwWAoUcb8u8Le59pcWlqa8vc3v508edKpdrlr5MiRyrbOnTtX4nlv/t22bNmiPB8VFWV1AfeTJ0+K6tWrW/wOrC1Yn5WVJerUqSMACEmSxHvvvWf1b2GSlpYmPv30U7FmzZoSz5kvyj548GCL5woLC0XHjh2V57/++mu7vwN/tXHjRuVnbNCggc3F7j1l2qfUrl3bYdk1a9aIwMBAAUCo1Wrx008/ubXNU6dOiffff19kZGTYLJOSkiL69u1r8f5MTU11aTvm3yXWPkuuMP9curJfMX0mbL2uoKBA1KpVSynTv39/kZOTU6JcTk6OuPfee5VyLVq0sPqeSEhIEEePHrXZnn379onatWsr9cydO9fpn8UaR8eIEyZMUJ5v1KiRuHz5coky3tqnWWP+HjD/HrO2P3dHZmameOWVV8SNGzfsltu3b5+Ij493eDwthLB7HH39+nVxxx13KPWMGjXKZtmXXnpJKRcTE2N1fyuEEAsWLFCOmwCI3bt32/1ZzJnvW63tF2wx/7vYep0sy+KWW25Ryk2ePLlEmQMHDoiIiAgBQKhUKnHw4EGntj937lyL91xpsHcss2XLFhEaGmr3u3Tfvn1Cq9Uq338rV660u73z58+L5557TiQkJDhsm/mxq/nn4uGHH3b+Byxy3333Kb//5ORkl19vTZldA9ujRw+lF2rMmDGYOHEi6tSpo8xg1bBhQ2UJBpVKhaVLl6Jjx464cuUKPv30U/z888+4//770apVK0RERCArKwsXL17E3r17sW7dOmRnZ+Odd97xuJ3jxo1TejcnTZqEjRs3ok+fPqhSpQpOnTqF+fPn49SpU+jevTtOnTpld9hojx49lPsvvvgiEhMT0aRJE2U69po1a6Jly5ZOt+2BBx7AsmXLsGjRIly7dg233HILRo0ahY4dO0KtVmPv3r349ttvlbNMvXv3VobXkdHKlSvxyCOPKGfpHnnkEaSlpTlcP+uWW24pMfwGMF4j+OGHH2Ls2LHQ6/W46667MGLECHTt2hV6vR4rV65UzlppNBp88803dhfcNr8G5dy5czbXZHVk2rRp+Pfff7Fu3Tps2LAB9evXx6BBg9CxY0fExsaioKAA169fV3rzr1+/jh49euD11193a3vOqFWrFhYtWoR7770X+fn5GDlyJD766CPce++9aNSoEYKCgpCeno6TJ09i586d2LZtGwwGg1cmfPn666/Rtm1b5OTk4Msvv8SOHTvw8MMPo1atWkhISMDixYuxbds2dOzYERcvXsSVK1ecGioUERGBIUOGWAy169atm1eWBykvOnfujKeeegpffvklUlNT0aFDB4wcORKdO3eGSqXC7t278e233yI7OxsDBgyw+1kKCQnB8uXL0bVrV2RkZODFF1/E119/jUGDBqFZs2YIDQ1FRkYGzp49i927d2Pjxo0oKCjAggULLOrZunWr0utWq1YtfPPNNxbPazQa/Pjjj2jdujUyMjIwceJEdO3a1e71z/7I/H1n3pPkbQMGDMCHH36IS5cu4ezZszaXo/r333/Rv39/ZSjioEGDEBQU5PD7tWnTpiWup8rKysILL7yAN954A7169ULbtm1Rp04dhISEIC0tDXv27MGiRYuUmS1NSyfZuwb2119/xT///GPx2Llz55T7H374YYket6lTp1qta/369cpIJxPTPAcA8O233yrXJps8//zzbl2jq9VqMXPmTAwaNAhCCPz222+46aabMGLECGU+hWPHjmH+/PnKME+tVovPP//c6nvi4sWLaNu2Ldq1a4cePXqgadOmCAoKwvXr17F27Vr89ddfykiVF1980WJUXGn4+OOPIUkSPv74Y+X4asOGDRbX+JXmPm306NHKMHTTsoN16tTxyvXzgHECwWnTpuH9999Hly5d0L59ezRs2BDh4eHIz8/HxYsXsXHjRotL05o2bYoPPvjAZp19+/ZFtWrV0LdvX9x8882IiopCamoqdu3ahV9++UU5DuzevTs+//xzm/W89NJL+Pnnn3Hu3DkkJSWhXbt2GDJkCLp27Yrw8HBlHVjz3r3HH3/cZs/w/v37SyyTt3nzZuX+r7/+WuLSwDFjxrg94aEkSfjmm2/QpUsX5OTk4K233sK2bdswePBghISEYPfu3ZgzZ47Sa//KK684fdxdVpM32dK5c2esWrUKd955J7KysjB8+HAAUJYMA4zHprNmzcJjjz2G1NRU3HXXXbj99ttx1113oV69etBqtUhJScHx48exdetW5Tpg08gHe+6//36MGzcOWVlZFstxutoTrdfrlWuxu3Tp4rVJnMqsB1av11v0ghS/WTvzf/XqVdGjRw+brzG/qdVqMXv27BJ1uNoDK4QQr7zyit1t3X777eLGjRvKWVN7PTUPPvigzXqK/66c6VUqLCwUjz76qMPfx+DBg62eoTUxlatsPbDFe9mcvTk6a/j+++8rZ8Gs3cLCwqyOECjO/DWe9gbk5+eLZ555RqjVaqd+xhEjRpSow5s9eSY7duwQ9evXd6pNoaGhVs+WutoDK4QQ69evV3qArd1atGghLl68KGrWrCkAiJtvvtmpenft2mVRz48//uh0m9xVlj2wQhi/v4cPH27zd6dSqcR7771nccbW3mfm+PHjok2bNk69BwICAizOKqempirfvSqVyu73+g8//KDU06ZNG7sjefxNRkaGCAkJUX4Ply5dKrVt/fvvv8rvccqUKTbLmf/9XblZe9/t37/f6dfHx8c7tX83/9w4e7PFnX2Jre90Rz2wJj/88IMIDw93uJ2YmBjx119/2axnz549DusICwsTM2fOdPg7dYYzx4hCCDFp0iSlXMOGDUv0xHpjn2ZNVlaW0tNlur355pue/MgWUlNTXXqfDBo0yGEPmemzb+87+cknn7R7HGhy9uxZcdtttznVtmeeeUYUFhbarMud7wBb73lnemBN1qxZI2JjY21uQ5Ik8dxzzzk9SuX06dNKj3NERIRTv0d3OHMss3XrVhEWFiYAY9axdozx+++/i2rVqjn1+65SpYpITEx0qn3FR5zWrVvX5ZE+K1asUF4/Z84cl15rT5kFWCGEyM3NFdOnTxcdO3YUUVFRFl9C9g6yNm7cKJ544gnRvHlzERkZKdRqtQgPDxfNmjUTQ4YMEbNmzRJXr161+lp3AqwQQqxcuVL069dPxMTECK1WK6pXry7uuOMOMXv2bOXD60yA1ev1YtasWaJbt24iJiZGaDQam78rVw7Kd+zYIcaMGSMaNmwoQkJCRFBQkKhXr554+OGHxbp16xy+3rQdBljnbs4Mezl06JB4+umnRePGjUVISIgICwsTLVq0EC+99JI4f/68w9dnZ2cr29PpdF4bZnHq1Cnx8ssvi/bt24vY2Fih0WhEcHCwqFevnujbt6/4v//7P5tDakojwAphPBHzww8/iAceeEDUq1dPhIaGCo1GI6Kjo8Vtt90mHnvsMbF48WKRlZVl9fXuBFghjEOrnn/+edGkSRMRFBQkIiMjxW233SY++OADkZ2dLWRZFkFBQQKA6Natm1N1yrKsDE+Kjo4WeXl5LrXJHWUdYE3++OMP0a9fPxEbGysCAgJEfHy8ePDBB8X27duFEMLpACuE8ff222+/iZEjR4rGjRuL8PBwoVarRWRkpGjVqpUYMWKEmDt3rkhJSbF43ZAhQ5RtvPzyy3a3IYQQw4YNU8o/99xzDsv7izlz5ig/V58+fUp9e506dRIAROPGjW2W8WaAzcvLE6tWrRJvvfWW6NOnj2jatKmyDw0PDxcNGzYUQ4cOFT/++KPTJyb8PcAKYRz+O2PGDNGjRw8RFxcnAgICREBAgKhevbro3bu3+Pjjjx0Oo87KyhJz584VI0eOFC1atFCOc+Li4sTtt98upk+fbneIrqucPUYUwnKosLUQK4Rn+zRbHnnkEYuwc/bsWZde78jRo0fFJ598IoYOHSpatmypHMsGBgaKuLg40bVrV/HSSy/ZHMJb3J9//inGjx8v2rZtK2rUqCF0Op2Ijo4WN998s3juueecrsdEr9eLX3/9VQwdOlQ0bNhQhIaGKt/Ht9xyi3j22WedqtNXAVYIIW7cuCEmT54sbrnlFhEZGSkCAwNF/fr1xahRo5R9lLNef/11ZdtPPPGES691hbPHMtu2bXMYYnNycsRXX30l7r33XlG7dm0RFBQkdDqdiI2NFR07dhTjxo0Tf/zxh0sncjdv3uzwu9qRhx56SADGIc62juncIQnh4fS4ROQVf//9t3JB/rPPPuvyhELkuUOHDikz5Dn7N1i7di169eoFABg/fjw++eST0mwikU8sW7YMAwcOBGCcVd3VSe+IiKhyycjIQI0aNZCdnY2XXnrJ48kbzZXZLMREZJ/5guKleS0q2WZ+rZCz197OmjVLuV8R1n4lsmbAgAHKGtnTpk3zbWOIiKjcmzlzJrKzsxEWFobnn3/eq3UzwBKVE6YAO2nSJMTGxvq4NRXPli1b7K4/+8UXXyiTAdWsWdOpNSv//fdfZYKanj17KuucElU0kiQpZ8//+OMPZakPIiKi4jIyMvDxxx8DMC7j5MmaxtZwCDFROZCUlISqVasiJiYGZ86cQVhYmK+bVOE0bNgQeXl5uOuuu9CmTRvExsaisLAQZ86cwbJlyyxmEP3jjz9sBthVq1ZBlmWcPHkS7733njI739atW3H77beXyc9C5CsDBgzAb7/9hrvvvht//PGHr5tDRETl0NSpU/HGG2+gXr16OHr0qN0VONzBAEtElULDhg1x5swZu2WCgoIwe/ZsDBs2zGYZa8tSOHu97OrVq5GTk+O4sVbExMSgc+fObr2WiIiIqKJggCWiSmHnzp1YunQpdu7ciStXriA5ORk5OTmIiopC48aN0bNnT4wdOxbVqlWzW48pwIaGhqJx48YYO3YsHnnkEafWja1bt66yTqOrunbtio0bN7r1WiIiIqKKQuPrBhARlYUOHTqgQ4cOHtfDc35EREREvsMeWCIiIiIiIvILnIWYiIiIiIiI/AIDLBEREREREfkFBlgiIiIiIiLyC5zEiYiIKhQhBPLy8pCdnY3c3Fzk5OSUuOXm5qKgoEC55efn2/2/wWCALMswGAzKzfT/4v+aqFQqSJJk96ZSqaDVapWbRqOx+/+AgAAEBQUhKCgIgYGBCAwMtHk/NDQUoaGh0Gq1PvxrEBEReRcDLBERlTtCCOTm5iI9PR0ZGRnIzMy0+Nfa/aysLCWcyrLs6x+h3AgICFDCrOkWFhZW4v+RkZEWt9DQUKvrHhMREfkSZyEmIqIyIYRAVlYWUlNTkZKSYvGvtcfy8/M92p4kSQgKCkJISAiCgoIQHBys3IKCgrBuwVZABiRZApSb+f8BCON9SRTdFyi6Fd2H5eMSip4vyn0C/92Hcl+Y3QegKnqhSkBIlv+HJAAVIIr+hUoAaoG+T/ZAbm4u8vLykJeXV+K+6eYJtVqNiIgIJdCa7kdHR6NKlSqIiYlR/o2IiHBqLWQiIiJPMcASEZHHhBDIyMhAYmIiEhMTcePGDdy4cUP5v+nmaqjS6XQIDw9HWFgYwsPDER4ejm2/7IGkVwF6FSS9BBQW/WtQAXoJkkECDEXBE5W3B1HAGHahERAa2fivWrb4/32T7kJmZiYyMzORlpam3HJyclzallqtLhFqTbdq1aohLi4OsbGxHM5MREQeY4AlIiKHhBBIT0/H1atXce3aNYvb9evXcePGDRQUFDhVV0hICKKiohAdHY3D608ABSpIhcabcr9ABRSqjb2hVOaEJACtDKGVlX+FVgAaGXeO7Ybk5GQkJycjKSkJaWlpcOZQQpIkxMTEoGrVqoiLi1OCrenfuLg4BAUFlcFPR0RE/owBloiIAAAGgwHXr1/HpUuXcOnSJYuwev36dad6T6OiohAbG4vY2Fjs+OUfSAVqSPkqSAVqoOhfhtKKRQm7OhlCZwB0Mh6cPADJycm4ceMGEhISkJCQ4NQJjujoaNSqVQs1a9ZU/jXdDwkJKYOfhoiIyjsGWCKiSkQIgbS0NFy8eFEJquaBtbCw0OZrTT1o1atXx+G1JyHlqf+75auNvaeC4ZRKEigKuQEyRIABItCA/s/1xvXr15WAm5WVZbeOyMhIJczWqlULderUQd26dVGzZk0OTSYiqkQYYImIKiAhBJKTk3H27FmcO3cO586dw/nz53Hx4kW7QUGn0ykBYdtPe5WAiqKQyoBKpUWoZYggY7gd+f5gXLlyBVeuXMHly5eRmppq83VqtRo1a9ZE3bp1UadOHSXYxsfHIzAwsAx/AiIiKgsMsEREfi4tLQ3nzp1Twur58+dx9uxZm0FVkiTExcWhdu3a2Lf8EKRcDaRcNaRcjXGYbyWe+IjKJ6GWIQKN4faRj4fg4sWLuHDhAs6fP29zaLvpfV6vXj00aNAADRo0QMOGDVGzZk2o1eoy/gmIiMhbGGCJiPyEEAJXr17FqVOncOrUKZw8eRKnTp1CSkqK1fKmnqnL/yRAytFAytb8F1bZk0oVgIAAdDJEsB5ysAH9JnTH+fPnceHCBaSnp1t9TWBgIOrVq4eGDRuifv36aNiwIRo0aIDQ0NAybj0REbmDAZaIqBzS6/W4cOGCElJPnTqF06dPIzs722r5GjVq4PqhZEg5asuwyqBKlZTQGIOtCNHjrgndcPr0aZw9e9bm+sJxcXFo3LgxmjZtiqZNm6JJkyYICwsr41YTEZEjDLBERD4mhMC1a9dw9OhRHD16FMeOHcOpU6esztqq1WpRv359nNp0EaqsoqCarYEkq3zQciL/IiCM19mG6PHgu/fizJkzOH36NG7cuGG1fM2aNS0CbePGjREcHFzGrSYiInMMsEREZSwjIwPHjx+3CKzWhjsGBwejYcOGOLLqFKQsLaQs9qoSlQahkSFC9Hj0y6E4fvw4Tpw4gatXr5YoJ0kS6tSpg5tuugktWrRAixYtUKdOHahUPIFERFRWGGCJiEqREAIXL17EoUOHcODAARw5cgSXL18uUU6j0aBhw4Y4uf4CVJlaSJla4wzAnFCJyCeERoYILcTITwbjxIkTOH78OBITE0uUCw0NRfPmzZVAe9NNN7GXloioFDHAEhF5kV6vx8mTJ3Ho0CEcPHgQBw8etNq7WrNmTVzbnwwpU2sMrNnsWSUq74TWADlMjwen3YPDhw/j2LFjyMvLsyijUqnQoEEDJdS2bt0aVatW9VGLiYgqHgZYIiIP5Ofn4/Dhwzhw4AAOHTqEI0eOlDig1el0uOmmm3D4z9OQMooCq55DDon8nYCACNHjqbnDceTIERw+fBjXr18vUa5mzZpo06YNWrdujTZt2iA2NtYHrSUiqhgYYImIXKDX63HixAns27cP//zzDw4fPlxisqXQ0FDkXCyAlK6DKkNrvH6VvatElYLQGSCHFWLgW31w8OBBnDx5ErIsW5RhoCUich8DLBGRHbIs49y5c0pg/ffff5GTk2NRpkqVKkg9lm0Mqxk641I2vHaViAAItQw5vBCD37kT//77r81A27ZtW7Rt2xZt2rThmrRERHYwwBIRFZOcnIzdu3dj165d+Oeff5CWlmbxfFhYGLLPFUCVroOUpoOUy8BKRM5xFGjVajWaNWuGtm3bol27dmjSpAnUarUPW0xEVL4wwBJRpafX63HkyBHs2rULu3btwqlTpyyeDwwMRP5VGap0HVRpOuOESwysROQFQi1DjijAva/3wJ49e3Dp0iWL50NDQ3HbbbcpPbRxcXE+aikRUfnAAEtElVJiYqLSy7p3715kZWVZPN+kSROcXnPZGFgzeQ0rEZUNEWDAs4tHYc+ePdi3b1+J76Z69eqhU6dO6NSpE5o1a8beWSKqdBhgiahSEELg1KlT2Lp1K7Zt21ailzU8PBxZpwugSi3qZS3kQSER+ZaAgAgrxPBP78OePXtw9OhRGAwG5fmIiAh06NABnTp1Qrt27RASEuLD1hIRlQ0GWCKqsPR6PQ4cOICtW7di69atSEhIUJ6TJAlNmjTBqdWXoEot6mXlsGAiKseERsZLfz2JHTt2YOfOnRa9sxqNBq1atUKnTp1w++23o0aNGj5sKRFR6WGAJaIKJScnB7t378bWrVuxfft2iwO8gIAAFF4FVMkBUKUEcC1WIvJbQjL2zg58tze2b99e4trZRo0aoWvXrujatSvq1Knjo1YSEXkfAywR+b3s7Gxs27YNGzZswJ49eyzWZY2IiEDmyXxjaE0LgCSzl5WIKh45UI/Hvx+K7du34+DBgxZDjevWrYtu3bqha9euqF+/PiSJ34NE5L8YYInIL+Xk5GDHjh1Yv349du3aZRFaa9asieu7Uo29rBkcGkxElYvQyJjw62hs2rQJ+/btg16vV56rVauW0jPbpEkThlki8jsMsETkN3Jzc7Fz506sX78eO3bssAittWvXxtVtKVAlBULK4bqsRESAcZmeF/58HJs2bcLu3btLnOzr2bMnevbsyWHGROQ3GGCJqFzT6/XYs2cPVq9ejW3btiEvL095rmbNmri+Iw2qpABIOVyblYjIHqGW8cqqp7B582bs2LHD4vu0cePG6NmzJ3r06IHY2FgftpKIyD4GWCIqd4QQOHnyJP7++2+sW7cOqampynM1atRAwq40Y09rNkMrEZE7hErgpZVPYO3atdi9e7dyzawkSWjdujV69eqFrl27IiwszMctJSKyxABLROVGQkIC1qxZg9WrV+P8+fPK45GRkcg8UgBVYiCkLIZWIiJvEhoZz/w8HGvXrsXBgweVx7VaLTp27Ih+/fqhbdu20Gg0PmwlEZERAywR+VReXh42bNiAv//+G/v374fpK0mn00F/RYLqRhBUaTpIgqGViKi0iQADRs0eiDVr1uDcuXPK41WqVEGfPn3Qt29fxMfH+7CFRFTZMcASkU+cPHkSf/75J9asWYPs7GzlcSldC/WNION1rQau00pE5CtycCHum94Tf//9N9LT05XHW7Zsib59+6J79+4IDg72YQuJqDJigCWiMpOdnY21a9fizz//xIkTJ5THq1evjhs7M6C+EQQpX+3DFhIRUXFCEnhj/TisWLECu3btgizLAICgoCB069YNd999N1q0aMEleYioTDDAElGpEkLg2LFj+P3337Fhwwbk5uYCADQaDeRraqivB0FK1/G6ViIiPyB0Boz+dhBWrFiBS5cuKY83aNAAAwYMQK9evdgrS0SligGWiEpFXl4e1qxZg19//RVnzpxRHo+Pj8eVTSlQJwRB0nOIMBGRPxIQ+PjAW/jrr7+wbt065OfnAwCCg4PRp08fDBgwAPXq1fNxK4moImKAJSKvunbtGpYvX44///wTmZmZAIomZLqsMva2ZmjZ20pEVIEItYzHfxyC5cuX4/Lly8rjrVu3Rv/+/dGlSxdotVoftpCIKhIGWCLymBAC//zzD5YuXYrt27cr10dVr14dN7ZnGoMrJ2QiIqrQBASm734Zy5cvx7Zt25S1ZaOjo9G/f38MGDAAUVFRPm4lEfk7Blgicltubi5Wr16NpUuXWqzbKqXqoL4WDFUKr20lIqqMhM6Ah768G7///jtSUlIAGEfj9O7dGw888ADq1q3r2wYSkd9igCUil6WmpuLXX3/FsmXLkJGRAcA4G2X+GRiDay4XuyciIuMMxq+sHovFixfj+PHjyuPt27fHAw88gNtuu42zFxORSxhgichply9fxs8//4wVK1agoKAAAFCzZk1c35wB9Y1ADhMmIiKrTJM+LV68GFu2bIHp8LN+/foYMmQIevToAZ1O5+NWEpE/YIAlIoeOHTuGhQsXYvPmzcr1rVKmBurLIVAlB3CYMBEROU0E6nHPtG5YsWKFsrRadHQ0hgwZgv79+3MZHiKyiwGWiKwSQmD37t346aefsH//fuVxVYoO6sshnE2YiIg8ItQyxswfjCVLliAxMREAEBYWhkGDBmHw4MEIDw/3cQuJqDxigCUiC0IIbN++HfPmzVOuV1Kr1RBXtVBfCYEqh9e3EhGR9whJYNIfj+DHH3/EpUuXABjnVejfvz8eeOABxMTE+LiFRFSeMMASEQBAlmVs27YNc+fOxalTpwAAgYGBKDyjgvpKMKQCtY9bSEREFZmAwGvrnsYPP/yg7Id0Oh369u2L4cOHIzY21sctJKLygAGWqJKTZRmbN2/GvHnzcObMGQDGM98FJyWor4RA0nNiJiIiKjsCAu9sew4LFizA4cOHARiD7D333IOHH34YVapU8XELiciXGGCJKikhBHbs2IHZs2crwTU4OBj5xyWorwYzuBIRkU8JCLy/7zV8++23OHjwIAAgICAAAwYMwEMPPYSoqCgft5CIfIEBlqgS2r9/P7755hscOXIEABASEoK8Y2BwJSKickdAYMaeVzBnzhxlvxUYGIiBAwfioYce4mRPRJUMAyxRJXLs2DHMnj0be/fuBWA8k60/reZQYSIiKvcEBN7d8QK+/fZbZZLB0NBQDBs2DIMHD0ZAQICPW0hEZYEBlqgSuHTpEr7++mts3rwZAKDRaCBf1EJzKQRSISdnIiIi/yEgMGXrJItLYGJjYzFmzBj06dMHajX3a0QVGQMsUQWWnp6OuXPnYvny5TAYDJAkCdL1AGguhkLK5w6eiIj8l4DACysfw5w5c5CQkAAAqFevHp544gl07NgRksS1yokqIgZYogqooKAAv/76K+bPn4+srCwAgCpFB/X5MK7jSkREFYqQBB79cTAWLFiAzMxMAECbNm0wbtw4NGzY0MetIyJvY4AlqkCEENi0aRO++uorXL16FQAgZWugORsKVTqvDSIioopLqGUM/qwXlixZgoKCAqhUKtx999149NFHERkZ6evmEZGXMMASVRBnz57FJ598gn///RcAUKVKFaTvLIQqIRASOIyKiIgqhx+ufY6vvvoK69atA2Cc6GnUqFG47777oNVqfdw6IvIUAyyRn8vKysJ3332HZcuWwWAwGGcWPqWB+nIwJJkzCxMRUeX0wf7XMXPmTJw6dQoAULt2bYwbNw4dOnTwccuIyBMMsER+SpZlrF69Gl999RVSUlIAAKqkAGjOhXGCJiIiIhgneprw+yjMnj0bqampAIAuXbrg2WefRdWqVX3cOiJyBwMskR86c+YMPvzwQxw+fBgAIOWooTkbBlUar3MlIiIqTqhl3PfJHViyZAkMBgOCgoLwyCOPYNCgQdBoOLkhkT9hgCXyI/n5+Zg7dy4WLVqk7IALjqqhvhoMSfA6VyIiInu+OjUdH330EQ4dOgQAaNiwISZNmoQWLVr4uGVE5CwGWCI/sW/fPnzwwQe4cuUKgKLhwmfDIBVwuDAREZGzTMOKv/rqK2RkZAAA7rnnHowdOxahoaE+bh0ROcIAS1TOpaenY9asWVixYoXxgXwVNGfCoE4J9G3DiIiI/JjQyOg5pa2yf42NjcXzzz+Pjh07+rhlRGQPAyxRObZx40Z89NFHSEtLgyRJkK4EQnMhFJKBswsTERF5w/v/vIYZM2YoI5z69OmDcePGITw83MctIyJrGGCJyqGMjAx88sknWLt2LQBAylZDczocqkydj1tGRERU8QiVwH2fdscvv/wCWZYRHR2NiRMnomvXrr5uGhEVwwBLVM5s374d7733HlJSUqBSqSCdD4L6UggnaSIiIiplnxx6G9OnT8eFCxcAAD169MCkSZMQFhbm45YRkQkDLFE5kZWVhc8//1y5FkfKUUNzMgKqLK2PW0ZERFR5CElgyFd98NNPP8FgMCA2Nhavvvoqbr31Vl83jYjAAEtULhw6dAhTpkxBQkICJEmC6nIQ1BdCIcnsdSUiIvKFTw9PxtSpU3H58mUAwAMPPIDHHnsMAQFcc53IlxhgiXzIYDBgwYIFmDt3LmRZBvLU0J4MhyqD17oSERH5mlAJ3Dm9A37//XcAQL169fDmm2+iQYMGPm4ZUeXFAEvkIwkJCZg6dSoOHDgAAFDdCITmTBhnGCYiIipn3t4yATNmzEBaWhq0Wi2efvpp3HfffZAkjpQiKmsMsEQ+sGnTJrz33nvIzMxEUFAQCv/VQp0Y5OtmERERkQ0/J3+DGTNmYPv27QCAbt264cUXX0RoaKiPW0ZUuTDAEpWhwsJCfPnll1i6dCkAQMrUQHsiAlKexsctIyIiIkcEBB5f9ABmzZoFg8GAGjVqYPLkyWjSpImvm0ZUaTDAEpWRxMREvPXWWzh8+DAAQH052DhRE5fHISIi8iufHp6Mt99+G9evX4dWq8UzzzyDAQMGcEgxURlggCUqA//88w8mT56M1NRUQC9BczIc6pRAXzeLiIiI3CTUMtq90ARbt24FAPTs2RMvvvgiAgO5fycqTQywRKVICIGFCxfim2++gSzLkLI10B7jkGEiIqKKoPiQ4kaNGuHdd99FXFycr5tGVGExwBKVkry8PEybNg0bNmwAAKgSAqE5E861XYmIiCqY9/a9ijfffBPp6emIiIjAlClT0KZNG183i6hCYoAlKgWJiYl47bXXcPz4cWg0GuB4EFTXgyCB4ZWIiKgi+uHa53j11Vdx6tQpqNVqPP300xg0aBCviyXyMgZYIi87fvw4XnnlFSQnJwOFErTHIqHK0Pm6WURERFTKhEqg29utsXr1agDAPffcg4kTJxpPZhORVzDAEnnRunXrMG3aNBQUFEDKVkN7NBJSPndaRERElYWAwGML78esWbMgyzLatm2LKVOmICQkxNdNI6oQGGCJvEAIgR9//BHffPMNAECVooPmRAQkg8rHLSMiIiJfeGvzeEyZMgV5eXmoX78+ZsyYgWrVqvm6WUR+jwGWyEMGgwEzZ87EsmXLAADqK8FQnwvl9a5ERESV3OfHpuKll15CSkoKqlSpgunTp6NJkya+bhaRX2OAJfJAfn4+pk6dik2bNkGSJKjOhEBzlUOEiIiIyOiHa5/jxRdfxLlz5xAUFISpU6eibdu2vm4Wkd9igCVyU2ZmJl599VUcOHAAkAHNyQiok7h4OREREVkSahk3j6uDvXv3QqPR4M0330S3bt183Swiv8QAS+SGlJQUTJo0CWfPngX0RTMNp3OmYSIiIrJOSAK3v94cGzZsgEqlwvPPP4+7777b180i8jsMsEQuSkxMxMSJE3Hx4kUgXwXtkUiocrS+bhYRERGVcwICfWa0xx9//AEAGDt2LB588EEft4rIvzDAErng+vXrmDBhAq5evQrkqaA7HAUpj8vkEBERkXMEBAZ/2RM//fQTAGDEiBEYM2YMJImTPxI5g2t8EDnp8uXLeOaZZ4zhNVcN3aFohlciIiJyiQQJS59ahyeffBIAMH/+fHz77bdgnxKRcxhgiZxw6dIljBs3Djdu3ICUo4buUBSkfLWvm0VERER+6vuHl+GZZ54BYAyx3333HUMskRMYYIkcuHbtGiZMmIDk5GRI2RpoD0VBKmB4JSIiIs/MHvqLEmLnzZuH77//3sctIir/GGCJ7DBN2JSYmAgpRw3t4ShIhQyvRERE5B2zh/6Cp59+GgAwd+5chlgiBxhgiWxITU3FxIkTlWtejeGVHxkiIiLyrjkPLsFTTz0FAPj++++xZMkSH7eIqPzi0TiRFZmZmZg0aZJxqRzTbMMcNkxERESl5NuHlmLMmDEAgJkzZ2L16tU+bhFR+cQAS1RMQUEBXn31VZw5cwYoUBl7XjlhExEREZWyBaP/wKBBgwAA06ZNw86dO33cIqLyhwGWyIwsy/i///s/HDhwANBL0B6OhIpL5RAREVEZkCDhj4lb0KtXLxgMBrzxxhs4dOiQr5tFVK4wwBKZ+eqrr7B+/XpABrTHIqHK0fq6SURERFSJSJCw6e0D6NChA/Lz8/HKK6/g8uXLvm4WUbnBAEtUZOnSpVi0aBEAQHMqHKp0nXsVSZIXW0VERER+SZLcPiaQhIR/PjqLm266CRkZGXj55ZeRmZnp5QYS+ScGWCIAO3fuxMyZMwEA6vOhUCcGuV6JBzsqIiIiKke8uU93sy5JlvDuu+8iNjYWFy9exFtvvQW9Xu+dNhH5MQZYqvQuXbqEKVOmQAgB1fUgqC8Hu14JgysREVHF4839uxt1PVh1LKZPn46goCDs3bsXn3zyCYQQ3msTkR9igKVKLTs7G6+++iqysrIgZWihORMGCS7sYNjrSkREVLH5uDf2qaav4Y033oAkSfj999+xbNky77SFyE8xwFKlJcsy3nnnHVy4cAHIV0F7PBKScDG8EhERUeXg7SDrgsldZ+LJJ58EAHz++ec4evSod9pB5IcYYKnSmjdvHrZv326ccfh4FKRCtXM7FPa6EhERVV5l2Rtr9vy3D/+Krl27Qq/X480330RaWpp32kHkZxhgqVL6559/MHfuXACA5nQEVFlOLJfD4EpERESAT4YVS5Dw8ssvo3bt2rhx4wbeeecdGAwG77SByI8wwFKlk5aWhqlTpxonbUoIcm7GYQZXIiKiysGVfX4ZT/I0IHw0pkyZgoCAAOzZswfz5s3z3vaJ/AQDLFUqsizj//7v/5CUlAQpRw3N2TD7L2CvKxEREdlTxr2xTzZ+BS+88AIAYP78+Th06JB3tk3kJxhgqVL55ZdfsHPnTkAGNCciIcl2PgKe7IwYeomIiCoX832/p8cBDl7//l1z0KdPH8iyjKlTpyI7O9uz7RH5EQZYqjTOnj2Lr7/+GgCgORcOVY6N6169dSaVIZaIiMi/eCN4ltFMxePHj0dcXByuXbuGzz77zDvbJPIDDLBUKej1ekyfPh16vR6qlACorjtx3SsRERGRL0m2D9Xvi3gEr732GiRJwooVK7Bp06YybBiR7zDAUqWwaNEiHD9+HNBL0JwJhwT2jhIREZEfsBNin7/lXTz00EMAgA8++IBL61ClwABLFd758+fx/fffAwA0Z8MhFajLbuMcRkxERESeklQ2g+wvT69F/fr1kZ6eji+//LKMG0ZU9hhgqUKTZRnTp09HYWGhcehwYqCvm0RERETlUXk76WwtsFp5TBISXnzxRUiShFWrVmHfvn1l0Dgi32GApQptxYoVOHr0KIcOExERUcVgpTd2fMu3MWDAAADAhx9+iPz8fB80jKhsMMBShZWRkaHMOqy+GFq2Q4eJiIiISlOxEPv4448jJiYGly9fxoIFC3zUKKLSxwBLFdacOXOQnp4OKVsD9bVg3zWkvA1JIiIiIkvlbV9tZ+KmEuWKyg4IH43x48cDME5eee3atdJqHZFPMcBShXTy5En8/vvvAADN2TAOHSYiIqKKqyjEvnPH57j11ltRUFCAb775xseNIiodDLBU4Qgh8MUXX0CWZagSA6HKCPB1k8rfmV0iIiIyqij7aEkFSVLj6aefhiRJWLduHQ4fPuzrVhF5HQMsVTh79uzB/v37ARnQnA9zvyI7U9YTERERlQZJ7dmcHWObvo677roLAPDFF19ACOGNZhGVGzw6pwpFCIHZs2cDANTXg92fuInBlYiIqHIQwnjzlLdOfEsqSCrPeoUfffRRBAUF4ciRI9i0aZPnbSIqR3iUThXKpk2bcOLECcAgQX3Zzd7X4jsfhlkiIqKKz5MQa36s4MFxg9L76mGIfajGOAwZMgQAMHfuXMiy7HZdROUNj8ypwjAYDJgzZw4AQH0tDCpZ41oFpT1kuKJcY0NERFRReWu4rbvHFMWCsKSS3Auykgr3338/goODcfbsWWzdutX1OojKKQZYqjC2bNmCixcvAnoVNNdd7H11tJNhLywREVHl4OqQYnvHCC4cP1i99rUoCLsTYgfFPIlBgwYBAObNm8drYanC4FE5VQhCCPz0008AAHVCKCSDyvmzn2UZTtkLS0RE5B+82RvraTkXQqx5uQceeABBQUE4deoUe2GpwmCApQrhwIEDOH78OCBL0FwPVR63+2XPWYaJiIjIHkch1pVw6ukxh7NDis22c3/VpzBw4EAAwMKFCz3bPlE5waN3qhCU3tfEYEh6syE4tnYYnl6X4gn2whIREfkPb81SDNg8lnB66RwHQ4qtPT5o0CBoNBocPnzYeLKfyM8xwJLfO3/+PHbu3AkI4+RNxZX4MmevKxEREbmqeIh193jCGyfWbYVYK/U8VHM87rjjDgDAkiVLXNsOUTnEI3nye3/88QcAQJUWCFW+tmQBSWV58wR7YYmIiCqvUuiJdbr31Uod5kOK7Q0tHjx4MABg/fr1SE5Odm97ROUEAyz5tfz8fKxatQqAcfImWzxdEJyIiIgIgDHEeuOEtqSCpNN5Vpf5kGI79Tzb6h00b94cer0ef//9t/vbIyoHGGDJr23cuBGZmZlAvhqq9EDrhVQSJJ0OktbFdWFt8cZOi1PZExER+SdJAoRsvHmDF06yq0JDoAoJslumX79+AIAVK1ZwSR3yawyw5NdWrlwJANDcCIGEYjsAlQRJq3F/aE5p4U6DiIioYvAgxFqcWPc0xBb1xKpCgmwG2U/v/xGBgYG4ePEiDh8+7Nn2iHyIAZb8VlJSEvbv3w8AUCWHWD6pkkoEV0mt9n0vLMMrERGR/7I2h4U3e2LdCLIWgdUsyBYnySp0794dAJTLr4j8EQMs+a3169dDCAEpUwdVvuVZzHLX6wowvBIREVVULoZYuyfUXQ2xNmY1thZie/fuDQDYvHkz9Hq9a9shKicYYMlvrVu3DgCgTg7+70EH4dVnvbAMr0RERP7N0QoCToZYp45DnAyxdq97tRJiX+70ISIiIpCeno5///3XqW0QlTcMsOSXEhMTcezYMePar8nBLl3vWqYh1puLnxMREZFvOLv8XRlO7qQKCXJ8HFLsulgJErp06QIA2LBhg1eaSVTWGGDJL+3cuRMAIGXpIMnlcKImgMGViIiosrIRYl0+gW4vxDo7EqzYdbHdunUDAGzduhWy7KWwTVSGGGDJL23btg0AoE4Pciu8lnovLMMrERFRxeBs72txxUKs28cdViZ3crRkjlVFIfbV/32MoKAgpKam4vTp0+61iciHGGDJ7+Tn52Pfvn0AAHVmqNv1lFqIZXglIiKqGNwNrybeGk4MKCHWqaHDtkgqqIOD0aZNGwDA7t27vdU6ojLDAEt+59ixY8jPzwcK1ZBytb5ujiWGVyIiIjInZO+dMFdJ7odXE0mFdu3aAWCAJf/EAEt+xzRrnjozEBI8OzMqqdXeuX7WdIbV0zO1REREVKFIGi0gC+PNQ+oacZCiIjyup23btgCAI0eOGDsFiPwIAyz5HSXAylFeqc/Z2Ytt8ubwICIiIio/vD2yyoMQq64RB6FRQ6hVHofYMf2+RlRUFAoLC3Hy5EmP6iIqawyw5Ff0ej2OHDkCAJAC46CK9k6IdXnRcBNr4ZW9sERERBWHByFW0li51MnNECs0/51sN4VYd4KsqFkNklqFFi1aAAAOHz7sVnuIfIUBlvzKxYsXjUNdhBqSCIEcHeaVEOvWUGJ7Pa8MsURERBWHGyHWang1cTHEqmvElXhMqFUu98aKmtUAtfEYhQGW/BUDLPkV0zAXlSHUeP2rJHktLLo0lNiZYcMMsURERBWHCyHWqeMJJ0OsaeiwLS6FWPV/xyY33XQTAODUqVPOvZaonGCAJb9iCrCSHKY8JkeFem0osVMhlte8EhERVU5COBdknZ0p2EGIdRRelWY5E2JrVLX474ujFwMArl+/juzsbIfbICovGGDJr5w5cwaAsQdWIUleG0oMOAixroZX9sISERFVPHZCrMuXJNkIsc6GV6VJ9kJsjaoQGsvDfglaxMbGAgDOnj3r9HaIfI0BlvzK5cuXAQAqOcjyCS+HWKuTOrnb88oQS0REVPFYCbGSWu3eOq1WQqwr4VV5jbUQayW8mtSvXx8AAyz5FwZY8ht5eXlITEwEAEhycMkC3rwe1nxSJyF7PmyYIZaIiKjiMQuxbodXE7O1Yq1N2uR0k4qFWFvhFQBq164NALh69arb2yMqaxpfN4DIWVeuXDHeERpIsD6znxwRCpUQkFNSPd6epFYBQoYweFwVERERVVRCACoPw6sZdXSUW72vFk0qCrEiKMBuubg4Y1C+fv26R9sjKkvsgSW/kZCQAACQ5EDbhTQq7wwllmUIgwxIKtevZbGFvbBEREQVj8p4nCAMnp/xVsdEA2o1pLwCj+s69W4EzrxpP8BWr14dAHDt2jWPt0dUVhhgyW8kJycDACRh48vYFBBVHoZYU3hV6vViiCUiIqIKy5MQawqvxoqERyH29JQwxEVnoFpkJs68Yns92ikTfgUA3Lhxw+1tEZU1BljyGykpKQAASdZZPmHt2ld3Q2zx8Kpsw0shlr2wREREFYeq5LGBOyHWIrwqFbkXYk3h1SQuyhhirQVZSRiPqdLT0yFcWOeWyJcYYMlv/NcDa/YFbC8QuhpibYVXb2OIJSIi8n9WwquJyyHW5vJ9roXYU5PDLcKrSVxUpjHIvlysE0AYp8MxGAzIyspyejtEvsQAS35DWWTbFGCdCYLOhlhnwiuvhyUiIiLAbng1cTbEqqs4OEZxMsSemhyO6lXS7ZaJi86wCLES1IAwxoGMjJLBl6g8YoAlv5Gbmwug6MvWlQCoUgFqO291V3peGWKJiIgqNyfCq4mjEKuuEgVonFgUxIkQ6yi8mhQPsaZeWPbAkr9ggCW/kZeXV3TP9QApR4RY74V1Z9gwQywREVHl5EJ4NbEVYp0Or0pFtkPsqcnhLrXJPMRKRXGgoMDzmY+JygIDLPkNU4CVhBvh0dpQYk+ueWWIJSIiqlzcCK8mxUOsy+FVqahkiHVm6LA1SogtGkKs1+tdbw+RDzDAkt/weHY88xDrjQmbGGKJiIgqBw/Cq4kpxLodXpWK/guxJ90MryZx0RkQ6hwAwNatW91vE1EZYoAlvyF5I+SpVIBOa3u2PyIiIiJzXjzJLKlVnoVXEyFw/JmqqOFBeC2usLDQa3URlSYGWPIbKpXnb1cpOw8iMxtSYAAkne2FvZ0iZAhZAJIXPkZce42IiKj8MYVX4fkye6qi4w45Nc3juo4/XxtSdD6uJUd4XFdAqPEYpG3bth7XRVQWGGDJb5gCbEL7QLdeL2XnAWmZgGwcwuNRiDWFV6VyDz5KDK9ERETlT/GeVw9CrMr8eMNg8CjEHn++NlAlHwAgGySPQuzI+B0IDjX+XGFhYW7XQ1SWGGDJbwQHBwMAutx8EGcHufZlXTy8Ko+7E2KLh1elMjc+TgyvRERE5Y+tYcNuhFiVteMMN0OseXg1cTfEjozfgVhNBgryjD+r6TiLqLxjgCW/Yfpijdan49H7VrsUYiWDXCK8Ks+5EmJthVelMhc+UgyvRERE5Y+ja15dCLFWw6uJiyH2+HMlw6uJbHDtOl1TeAXAAEt+hwGW/EZoaCgAID9HQpOAa8YQO9hxiDVd92q3jDMh1lF4VSpz4mPF8EpERFT+ODthkxMh1m54NXEyxB5/rjYQYz28mjjbC2seXoUMFBZVywBL/sIL06ARlQ3TtRm5WcadS5OAa3h0wGrMEb1Rf6n1WfhsDR22WjYwAAAgCrwwC5+ksr1zY3glIiIqf1ydbVjINk9aS1oXDrEN9o9Rjk9yHF6B/4YSV6+SjqjUbNyz8iBaH7yE4NwC5ATpsL9VPELG5CNUk6e8JidTAoQESZIQHh7ufJuJfIgBlvxGTEwMACAr7b+dhakn9mTvOGxefbNFkHUlvCqvsRVine19tajMSohleCUiIip/3F0qx0qIlbQal5f+k1PToIqKLPH48Um1gVjH4dVEm6vHM9M3YNDmf6DVWx6DtPvnAuQFEi4MjsKhN2pADlAhO83YzqioKGi8sbwPURngO5X8RmxsLAAgK8Vyp9Ak4BqaBFxDwwE38B16ov7SdLfCq0mJEOtOeFUqs9MTS0RERL7nzXVe3QivAIxDidMzoIr4rxfU1fAaUFCIue/NQ4fj52yWUekF6i1KQdjZfGz/rh6y0oxRoEqVKq63mchHeA0s+Q0lwKZaf9veFHgFjwxYi4t9I90OrybKNbGehFelsqL2sveViIiofPFGeC06Ue12eDUpLIScbrw21dXwCgBvLfgTHY6fg6OjDQEgZnc2Wk69igbqNwH8N8qNyB8wwJLfqF69OgAgO12FgjzrZb450Bmx+wuBiFDPN6jix4OIiIic41F4NSksBLQal8NrTFomBm3eb2yHg7Km5+ssScWlEycAADVr1nSxoUS+wyN08hvh4eGIjIwEAKRet/7WFek66NILYIgOBaLcX9gbhXqIggJAUkFSqyGpPNgpmYYQe3GIEhEREXmBN0ZHFY20Enq9R9WoYmOgijX2hNb/2rV2Ddm0FzoHk0GV2J5e4PKuXQCA+Ph4l15L5EsMsORX6tSpAwBIuaYu8dzEXUMQv8IYFoVG5VGIFUIA5kOHJZV7Ibb49a8MsUREROWLJyHWbAInIQu3Q6wqNgbQqI03ALorqS69vv2x825t92JSEgCgdu3abr2eyBcYYMmvmM4QJl+1fOtO3DUEtRZpoUstUB5zO8Sael+LczXE2pq8iSGWiIiofHEnxFpZQsedEKuE12Jc6YUNyXNtyDEA5KlUuCYbj1VMHQRE/oABlvxKo0aNAAAJ5//7ojeF14CUkl/eLofYQj3k/HzL3ldz7vbElqiHIZaIiKhccSXE2lj/FYBLkz/aCq+AsRfW2RCbXbSCgitOh4TAIEmIjo7mJE7kVxhgya80bdoUAJBwTq3sZ0S6zmp4NXE6xDoKrybOhFhnls6RJAZZIiIifyKp7IZXE2d6Ye2FVxPdlVTU/8Zxsxrcmei4UDEnwsIA/HdsReQvGGDJrzRo0ABarRZ52SqkJ0qYtHsIaq90fHbSYYh1Nrya2Auxrq77yhBLRERUPtjrhXUiuCrVOBhK7Ex4NdFdTrEbYpd2/gpxw6MgtE43DwBwPNy45myTJk1ceyGRj2l83QAiV2i1WjRs2BDHjh3D+393Rs1/rA8dtsYUYqWIYKjSc4DU9P+eKz5pkzMkFSRVsXViXQ2vSl0S14klIiIqD4QoeXLZhfCqVCMLQK+HpLE83HYlvJroLqcAiLZ4bGnnrwAArQMCgKoAHggHfsyAgP2ldEzPH6xRAygsRLNmzVxqC5GvsQeW/E7r1q0BANFbU50OryZCo4IcoLHsjbU1aZMzvHVNLMCeWCIiovJCWK5E4HY1xU6OuxNeTerP+e/+z52/RuuAAGN4NW3rnRiIjoFOrQN7uWMorhUWQq1Wo2XLlm61h8hXGGDJ79xyyy0AACnf9es9TJTe2NAQ14YOW1O0VqxXMMQSERGVD0J4FF6VavT6/9Z4dTO8AoDuYgrqzzGG11sDdCULBKkgfqwB8XC4zeHEQguIh8Nx6OUfARivfw0ODna7TUS+wCHE5HduvvlmqNVqGAx5ECIHEtz74hUaFYTWSx8Bd4cOExERUfnkrZPKkgpySipUVT2f6VeTlmc9vJoEqSDerwq8GA3xUwak7blAtgyEqCA6BQEPhQOxGvzz7SEAQJs2bTxuE1FZYw8s+Z2goCA0b94cAGBQJbtdjyY5G0hKMfaeemMYsDdCLK+DJSIi8j1TePVw324aoSUKCj1tEeTwYAiVCu1eHeu4cKwGGB8NsbgmxJ+1IRbXBMZHA7EatP6/sdi5cycAoG3bth63i6isMcCSX7r99tsBALJ0A0Lt+ttYk5oDJCQqOxRJrYak1bgXZIXs0ppvtutheCUiIvIpa0vcuRlii19eJN9IcqseOTxYCa8AEH0gA21fcyLEWtF6+lOIOnod6enpCAsL4/Wv5JcYYMkvde7c2XhHpMCgNbgeYgv1Vs+GutwbawqvHEJMRETk37w4D4W1uTFEQaHLIdYUXE3h1aTKvxkut6n19KcQfTQfQwfVAwB06NABGg2vJiT/wwBLfql27dqoW7cuAAEhbkDWqWAI1DgVZE1Dh21xJ8R6jL2vREREvuMovDq5r5fUarsTO7oylNi819UaZ3thW09/SgmvQghs3rwZANCpUyen20JUnjDAkt/q0qULAEAYrkJIgFABsk5lN8RqkrMthg7b4lSI5dBhIiKiysNBiHV2RQJnemEdhVfA2Avb9nX7IbbVDGNwjT5atOygSMeVK1cQGBiIjh07OtVeovKGAZb8Vu/evY135CQIYfxiFpKDEGswOH32026I5dBhIiKiisELQ4ddWU7P0VBiZ8KrSZX9tocSt5rxFKocybd4bOA91QEA//vf/7h8DvktBljyW/Hx8WjatCkAARiuKY/bCrGa1By7Q4etsTu5E4cOExER+TdXw6uVfb87a8FbO5kuhwVBDgtyOrya3PZmyV7YVu+VDK9CyFi/fj0AoFevXi5tg6g84ZXb5Nf69OmD48ePQxguA+o6kIp2RKYQC6GCqlCGZJBtTtzkDEmthoABKOp19crQYSIiIvINL03Y5E54NZFvJClrw8phQRBu1hWz779e2FbvPQUAqHI4v2RB+QZSU1MRFRWF2267za1tEZUH7IElv9azZ0/odDpAZAAizeI58+ti1Rn5Lve+FmcxpJhDh4mIiPyTp+FVyA4na3KqmqKT6p6EV5Pb3hyLVu8/hSqH862HVwC3tjIe9vft25ezD5NfY4AlvxYREYE77rgDACD0F62WERIgyTJEod4r2xSyACQvfHQ4fJiIiKhseannVRgMnleikiAnpXgcXgGg2t+XUOWQ9eAKAELOxt69eyFJEu655x6Pt0fkSwyw5PcGDBhgvCNfUyZzMheQlAskFE2WYG2BcicJgwEw32F5I8QSERFR2fHWyWNPR2IVjegSBQVQnb/qdjXqpHSok9IhCgoQdMb2xFAP3BcHAGjXrh1q1Kjh9vaIygMegZPfa9asWdFkTjJgKNkLKxXoIfKKBVt3Q2zxa18ZYomIiColt3thi00MKefkuFWNKbiKggJje3JyrZYTohC///47AGDgwIFubYuoPOHRN1UIQ4YMAQAI/XkI8d9QYYve1+JcCLElel8t6nHjY8Thw0RERL7hy15YG8vzudoLawqvxVnrhX10RF3k5uaiXr166NChg0vbISqPGGCpQujWrRtq1qwJoNCiF9Zq76s5F4YU2515WFKxN5aIiKiScboXViXZXlsezvfCmg8ZttqeYr2wQhiwZMkSAMCwYcOU1RqI/BmPuKlCUKvVGDZsGABA6M9BCIP93tfivPWF7kyIZe8rERGRb5VlL6yd4OqK4kOGbQk6m6zcn/h0c6SmpiIuLk6Z9JLI3zHAUoXRu3dvxMTEAMgHDFcc974WZyPE2h0+bLUefqyIiIjKPS+FWLu9sC6EV9XFazafs9frWqI92cbeXCEM+PHHHwEYL7Xi0jlUUfBImyoMnU6HBx98EAAg9Kcg4MbkCjaGFNsdPmy1HhtDitn7SkREVLFY64V1MGTYGjkru8RjjoYM2/P0Y42QkJCA2NhY3H333S6/nqi8YoClCqV///6Ii4sDkA+9/pT7FRWFWJd7X0vUw48YERFRRWfRC+vBkGHzXlhnhwxbE3guAQsWLAAAjB49GgEBAW63iai84dE1VSg6nQ6PPvooAKCwSjKE2pPwWRRiXe19LVFP0ceMva9ERETlizevhXWj17U4Uy+su72uJoNfao709HTEx8fjzjvv9KhNROUNAyxVOD179kSjRo0AtYzCuFRfN4eIiIjIObLwOLzK6kL8/PPPAIDHHnuM175ShcMASxWOSqXCE088AQAwxGZADnBzJ+Dp8GET07UxnLqeiIiowhKFeseF7Cka8SUnp3hUTefHayEvLw/NmzdHly5dPGsTUTnEAEsVUtu2bdGxY0dAAgprJUG4sdi4EMLz4cPFubDuLBEREZWBslxSxxpZKOEVcD8Ii6xs6JGEtWvXQpIkTJgwgeu+UoXEAEsVkiRJGD9+PHQ6HeTwPBgiMn1zDaqtnRl3KERERBWOy+HTSyfKRVY2ZEMhavQyTtbUv39/NGnSxCt1E5U3DLBUYdWoUQMjRowAABTWToWMQuOQYGeCrLeGD9vDEEtERFQ+lHUvbLFe1xLVZGY5t7msbONNr8eY7+7B+fPnERERoUxoSVQRMcBShTZ06FDUrl0b0MnQ10wzDgt2IsSWyvBhazikmIiIqHJx4vjCmZ5cU3AVej3kAD2+//57AMDYsWMRHh7ucTOJyisGWKrQdDodJk2aBAAwVMuCISwPgNn6ruVlaRuGWCIioorPCyfHzXtdAUBAoNmIqsjNzUXr1q25bA5VeAywVOHdeuut6N+/PwCgsF4yhMo4vMdmb6y3Zx92FntjiYiIfMdLJ7Wt9p46GDJstR4rw4jNe11NDFWz8O+//yIoKAgvv/wyVCoe3lPFxnc4VQpjx45F9erVgQAD9LUt14Yt3htbZsOHbWGIJSIi8l/FT2C7eUxhHoSL97oqVQcUQt04B4DxWKdGjRpubYvInzDAUqUQHByMV155BZIkwVA1G4aIXIvnnb02tsywN5aIiMi/udHrao21XlfAOHS48UNVkJ+fj1tvvRX33nuvx9si8gcMsFRptG7dGoMHDwZQNJRYW3KYsDAYvDalPREREVVS3giuBoPVXleTB2Z2w+HDhxEcHIyXXnqJQ4ep0uA7nSqVxx9/HA0aNAC0MgrrJ0HAyg7G3YXIiYiIyL956zpYD+fSML3eVng1hOfihx9+AAC8+OKLiIuL82h7RP6EAZYqlYCAAEyePBlBQUGQw/Ohr5FeOhtiCCYiIqq83DwOEAaDw/ArtAaEdtBDCIF7770Xd9xxh1vbIvJXDLBU6cTHx+O5554DABhqZChL6xARERH5ijO9tgICzR+phtTUVNSvXx/jxo0rg5YRlS8MsFQp9e7dG3fffTcgAYUNkiB0jhcML3PlZUIpIiIiKjXO9LqaDPyoM/755x8EBgZi8uTJCAgIKOXWEZU/khA8SqbKKT8/H2PHjsXp06chZWuhO14Nkl7y+LoVAN4ZQsyPJhERkW94YSUASaO1+7wzxxuSSgLUagCAITobhQ2SAQBvvfUWevTo4XEbifwRe2Cp0goICMC7776LiIgIiJBCFNZLgRBeCK9EREREdjh7sty0Lr0cnA/ppkwAwMMPP8zwSpUaAyxVatWrV8fUqVOhVqshR+fAUDPT100iIiKiCsqV4cLKazQGRHSTUVBQgI4dO2LMmDGl1Doi/8AAS5Veq1atMGnSJACAvnYmDNG5Pm4RERERVTTuXKIkVDIaDItAYmIi4uPj8cYbb0BdNKSYqLJigCUCcM8992DQoEEAAH3jNMhh+T5uEREREVUE7vS6AsYZh2+bVB9Hjx5FWFgYpk2bhtDQ0FJoIZF/4SROREX0ej1ef/11bN++HdBL0B6KgSrX/gQMNnESJyIiIv/lhUmcILnfTyQgoK+fDjkuBzqdDh9//DFatmzpeZuIKgD2wBIV0Wg0ePvtt9G8eXNAI1DYLAVCx0mdiIiIqGwZamVBjsuBJEl48803GV6JzDDAEpkJDAzE9OnTER8fDwQYUHhTMoTazd5UIdiLSkRERC4xVM2CId44qeT48ePRpUsXH7eIqHxhgCUqJiIiAh988AGqVKkCEaJHYTMPQizAEEtEREROMcRkw9DIGF6HDRuGgQMH+rhFROUPAyyRFXFxcfjggw8QHh4OEVaIwqbJEJLe/QrZG0tERES2CBmG6ByIm7IghMCAAQPw+OOP+7pVROUSAyyRDQ0aNMCHH36I0NBQiIhCFN6UBiEZPJugiUGWiIiITIRsDK9ReRDNM2EwGNC3b19MmDABkjcmkiKqgBhgiexo0qQJPvjgAwQFBUFEFqCwaSqEJJQdjtsYYomIiCovs+MIOTIfUqtsGAwG9OzZEy+88AJUKh6iE9nCTweRA82aNcP777+PwMBAiKgCFN6UCqEqCqD2QqyjM6fsjSUiIqqY7C2hY3bsYIjKA1pnobCwEF26dMGrr74KtVpdBg0k8l8MsEROuPnmmzF9+vT/QmyzlP8mdrLWG+vK2m8MskRERBVfseMFQ0wuRMtMJby+9dZb0Gg0PmwgkX+QhOCRM5GzDh06hBdffBHZ2dmQMrXQHo2CpC8WVk3hVcjuBVPznlt+PImIiMqWN649NT+RbWW0liE2F3LTTMiyjF69euGVV15heCVyEgMskYtOnDiB559/Hunp6ZCyNdAeiYJUaGO4j7sfL9POkx9PIiKisuWtAGvjMiNDXA70DTIAAHfffTeee+45DhsmcgEDLJEbzp8/j4kTJyI5ORlSrtrYE5tn48wpP2JERET+w9MAayO8CggYamfBEJ8NABg8eDDGjRvH2YaJXMQAS+SmK1euYOLEibh+/TpQqIL2aBRUWdqSBfkRIyIi8h+eBEohrL5eSAL6BhmQq+UCAEaOHIlHHnmE4ZXIDQywRB5ITk7GSy+9hJMnTwIGCZoTEVCnBloW4keMiIjIf7gTKs339cVeL1Qy9E3SIEcXQKVSYeLEiejfv7+HjSSqvDgLMZEHqlSpgpkzZ6J9+/aAWkB/UxoM1XJ83SwiIiJyh6vhtfhKAsXDq9aAeqOiIEcXICAgAO+++y7DK5GH2ANL5AV6vR4ffPABVqxYAQBQXw6B+kIoJHAyJiIiIr/hbIC1tV83e70cXIjoOzVISEhAREQEZsyYgWbNmnmhkUSVGwMskZcIITB37lx8//33AABVSgA0JyMgGVQMsERERP7AUYB1tD8ver0hOg/aW/KRm5uLmjVr4r333kPt2rW91Eiiyo0BlsjL1q5di+nTp6OgoABSjhraY1GQcjk9PhERUbnmhfAqIGColQ1DnSwAwG233Ya3334b4eHhXmokETHAEpWC48eP47XXXkNiYiKgl6A9HglVms7XzSIiIiJbbAVYJw+VhRrQN0yHHJsHABg0aBCefvppaDQ2ltkjIrcwwBKVkqSkJLzxxhs4cuQIIAD1+VCorwT/d10sERERlR/FA6wLh8giyID4IZE4ffo01Go1JkyYwMmaiEoJAyxRKcrPz8eHH36IVatWAQBUSQHQnAo3XhdLRERE5YN5eHXx0NhQJR+BbfXIyspCZGQkJk+ejDZt2ni5gURkwgBLVMqEEPjtt9/w2WefobCwEMhVQ3s8Aqpsra+bRkRERIAxwLp4SCwgYKibBUMt4/J5LVq0wOTJkxEbG1saLSSiIgywRGXk2LFjePPNN5GQkADIgOZMONQJQb5uFhEREblIaA0obJoOEVEIALj//vsxduxYXu9KVAYYYInKUHp6Ot59913s3LkTAKC6EQjNmTAOKSYiIvIThqh8hHWWkJqaiqCgILz88svo3r27r5tFVGkwwBKVMVmW8dNPP2HOnDmQZdk4pPhEBFRZHFJMRERUXgmpaMhwTeOQ4fr162PKlCmIj4/3ccuIKhcGWCIfOXjwIN555x3jkGIBqC+EQH05hLMUExERlTNykB51hkTh9OnTAIxL5Dz55JMICAjwccuIKh8GWCIfyszMxEcffYR169YBAKR0LbQnIyDlq33cMiIiIhIQkONyoW5egPz8fERGRuKVV15Bx44dfd00okqLAZbIx4QQ+Pvvv/Hxxx8jNzcX0EvQnA2D6kYge2OJiIh8ROgMKGyUARFVAABo27YtXnnlFcTExPi4ZUSVGwMsUTlx5coVTJ06FUeOHAEAqFJ00JwOh1TA3lgiIqKyIiAgV81D4C0ysrKyoNPp8Pjjj2Pw4MFQqTjpIpGvMcASlSN6vR6LFy/Gd999Z1wzVi9BcyYMqkT2xhIREZU2oTVA3ygDcrSx17VZs2Z45ZVXUKdOHR+3jIhMGGCJyqFz585h2rRpOH78OABAlVzUG1vI3lgiIiJvExCQY/MQdJtAZmYmtFotRo8ejaFDh3JtV6JyhgGWqJzS6/VYtGgRvvvuO+j1emNv7PlQqK4HsTeWiIjIS0SgHoUNMyEijb2ujRs3xquvvor69ev7uGVEZA0DLFE5d/bsWUyfPl3pjZUytNCcDocqh2eEiYiI3CUkAUPNHKgbF6CgoAA6nQ6jRo1irytROccAS+QHDAYDli9fjm+++cY4U7EA1JeDob4UCklmbywREZEr5LAC6BtmQoToAQC33nornnvuOdSqVcvHLSMiRxhgifzIjRs38Omnn2LLli3GB3LV0JwNgzqVC6kTERE5IjQy9HWyIGrkQQiBiIgIPP300+jTpw8kiSeEifwBAyyRH9qyZQs++eQTJCYmAiia5OlcGKQ8DnkiIiIqTkBAjstF8C0SMjIyAAB9+vTB008/jcjISN82johcwgBL5KdycnLw3XffYenSpTAYDIAMqK+EQH0phMOKiYiIishhBdA3yIQINQ4Xrl+/PiZMmIDWrVv7tmFE5BYGWCI/d/78ecycORN79+41PpCvguZcGFRJAZytmIiIKi2hNUBfNwtytTwAQGhoKMaMGYP+/ftzkiYiP8YAS1QBCCGwdetWfPbZZ7h+/ToAQErXGoNsltbHrSMiIio7QiVgqJkNXVMZubm5kCQJ/fr1w+OPP87hwkQVAAMsUQWSn5+PRYsW4YcffkB+fj4AQJUYAM35UEj5PNtMREQVl4CAXC0PER20SE5OBgA0b94c48aNQ7NmzXzcOiLyFgZYogroxo0b+Pbbb7Fq1SoIIYzXx14LNl4fq1f5unlEREReJUfmQ18vS1kWp0aNGnjiiSfQrVs3zi5MVMEwwBJVYKdPn8asWbOwZ88e4wN6CepLIVBfC+ZET0RE5Pfk0ELjsjhRBQCAsLAwjBw5EgMGDIBOp/Nx64ioNDDAElUCu3fvxpdffomzZ88aH8hXQXMpBKqEIEiCQZaIiPyLHKyHIT4LcozxchmNRoOBAwdixIgRCA8P93HriKg0McASVRIGgwF///03vv/+eyQkJBgfzFNBczEUqhuBnLGYiIjKPRGgh75ONkS1fAghIEkSevfujdGjR6NGjRq+bh4RlQEGWKJKpqCgAH/++Sfmz5+PlJQUAICUo4b6YiiX3iEionJJ6AzQ186GVKvAuPY5gC5dumDMmDGoV6+ej1tHRGWJAZaoksrLy8OyZcvw008/IT09HQAgZWugvhTCIEtEROWCCNBDXzsHqlqF0OuNEzS1a9cOjz76KJo2berj1hGRLzDAElVy2dnZWLJkCRYvXoysrCwART2yl0OgSgzkNbJERFTm5CA9DLWyIdUoVHpc27Rpg9GjR6N169a+bRwR+RQDLBEBADIzM/Hrr7/il19+QUZGhvHBPDU0l4KhusHJnoiIqPTJwYUw1M6GqFoA0yFqu3btMGLECNx8880+bh0RlQcMsERkIScnB8uXL8fixYuRmppqfDBfBfXVYKivB0EycB1ZIiLyLjm0EIZa2cqswgBw++23Y/jw4WjWrJkPW0ZE5Q0DLBFZlZeXhz/++AMLFy5EUlKS8UG9BPX1IKivBkMqUPu2gURE5NcEBOTofBhq5kBEFAIAJElC165dMXz4cDRq1MjHLSSi8ogBlojsys/Px5o1a7Bo0SJcvHjR+KAMqJICob4SDFW21rcNJCIivyJUAnLVXBhq5EAEG69v1Wg06NGjB4YNG4a6dev6toFEVK4xwBKRU2RZxs6dO7Fw4UIcOHBAeVxK1UFzJRhSmo4zFxMRkU1CK8NQPQeG6jmA1nj4GRoaiv79+2PgwIGIjY31cQuJyB8wwBKRy44ePYrFixdj06ZNkGUZQNESPNeCoLoRCEnmdbJERGQkhxTCUD0XmngDCgoKAABxcXF44IEH0LdvXwQHB/u4hUTkTxhgichtV69exS+//IK//voLeXl5xgf1EtQJQVBdC4IqT+PbBhIRkU8ISUCOyYOhei5EeKHyeNOmTfHggw/if//7HzQa7iOIyHUMsETksczMTKxcuRLLli3DlStXlMelVB3UV4OhSuXwYiKiykDoDDDE5cIQlwvojCN01Go1unbtioEDB6Jly5aQJO4PiMh9DLBE5DWyLGPv3r349ddfsWPHDmUNP+SpoL4WDHVCECQ9hxcTEVUkAgIiogCG6rmQqulhMBgnZoqJicG9996Lu+++GzExMT5uJRFVFAywRFQqrl69iuXLl+Ovv/5CZmam8UEZUKUEGNeT5aRPRER+TWgNMFTLg1wtFyLIoDzepk0b3HfffejcuTOHCROR1zHAElGpysvLw7p16/Dbb7/h+PHjZk+ooL4RZOyVzeeaskRE/kBIAnJUPuRquZCqGpTe1qCgIPTp0wf33Xcf6tWr5+NWElFFxgBLRGXmzJkz+PPPP7F69er/emUFIKXpoL4eBFVKACTBXlkiovJGDtRDrpYLQ7U85dpWAGjRogX69euH7t27czZhIioTDLBEVOby8/OxZcsW/Pnnn/jnn3/+e6JQgioxEOobQZCyNBxiTETkQ0ItQ47Jh6FqLkTEfzMJR0VFoU+fPujbty/q1q3ruwYSUaXEAEtEPnX16lX89ddfWLlyJZKSkpTHpVw1VDcCoU4MhMTleIiIyoQyRLhqHuTofKBo3j2VSoX27dujX79+6NSpE69tJSKfYYAlonJBr9dj3759WL16NbZs2fLfurIApAwt1DcCoUoK5CzGREReJiAgwgthiM2DHJMHaP87NKxbty569+6NPn36IDY21oetJCIyYoAlonInJycHW7ZswerVq7Fv3z7IctH1VjKgStVBlRRovF7WwDBLROQOAQERrIccmwdDbB4Q+N91rTExMejZsyd69eqFhg0bct1WIipXGGCJqFxLSkrCunXrsHr1apw6deq/J2RAlRoAVVIAwywRkRMEBESIHnKVfMgxeRDB/y19ExISgq5du6JXr15o3bo11GrODk9E5RMDLBH5jXPnzmHt2rXYuHEjLl269N8TDLNERFYpoTUmD3JMvsV6rTqdDu3atUOvXr3QqVMnBAQE+LClRETOYYAlIr8jhMDZs2exYcMGbNy4ERcvXvzvSdMw4+SiYca8ZpaIKhkBARFqDK2GKvlAsdDavn17dO/eHR07dkRISIgPW0pE5DoGWCLya3bDrDBOAKVKCYAqOQAqzmZMRBWUUAnIEQWQo/ONswcH/HdNa0BAADp27Ihu3bqhQ4cOXK+ViPwaAywRVRimMLtx40Zs3boVZ86csXheylEbg2xKAKRMLdeZJSK/JrQGyNFFoTWyAFD/d0gXFBSEDh06oHv37mjfvj2CgoJ82FIiIu9hgCWiCuvatWvYvn07tm3bhv3798Ng+G8YHQok43WzKQFQpel43SwRlXvKzMFFoVWEFcL8PFzVqlVx++234/bbb0fr1q2h0+l811giolLCAEtElUJWVhZ27dqFbdu2YefOncjKyvrvSdNQ4zQdVKkBkLI07J0lonJBaGTIkQWQo4p6Wc2GBgNA06ZNcfvtt6NTp05c8oaIKgUGWCKqdPR6PQ4cOIBt27Zh9+7dltfNAkBhUe9sqs7YO1vI5SSIqGwICIiwQshRxtAqQvUWvawBAQFo06aNElpjY2N911giIh9ggCWiSu/atWvYvXs3du/ejX379iEnJ8fieSlLYwyy6Tqo0rWQZA43JiLvEBAQQQaIiAJjT2tkAaCxPDSrV68e2rdvj3bt2qFly5Zc7oaIKjUGWCIiM3q9HocPH8bu3buxa9cunDp1yrKADEhZRcON07WQMnWQZA7ZIyLnCAgg0GCcMTiiEHJEyWHBYWFhuO2229C+fXu0bduWvaxERGYYYImI7EhOTsa+ffvwzz//4J9//sH169ctC8hF18+m66BK1xlnNxYMtET0HxFgCqzGGwItA6tWq0Xz5s3Rpk0btG/fHk2aNIFazUsXiIisYYAlInLB1atXsX//fuzfvx///PMPkpKSLAvIgJSphSpDCylDB1WmFpKeQ46JKgvTTMEivBByeCHk8JKBVa1Wo1mzZmjTpg3atGmDFi1acFgwEZGTGGCJiNwkhMDly5eV3tl///0XqampJcpJ2WpImTqoMrRQpWuBfDVnOSaqIISqaNKl8ALI4YXGpW2KXcOqVqvRpEkTJbC2bNmS67ISEbmJAZaIyEtMgfbQoUPKrcQMxwBQoDL20GZpjT20WRquQ0vkBwQERKABIswYVOWwwhKzBANAUFAQmjdvjhYtWqBly5Zo3rw5goODfdNoIqIKhgGWiKgUpaWlWQTaEydOQK/XWxYSgJSrNg49zjQGWylbw2tpiXxM6AxFIbUQcqjeau8qAMTGxqJly5bKrX79+tBoND5oMRFRxccAS0RUhvLz83H8+HEcPXoUx48fx7Fjx0pODAUYr6XN1hhDbXZRL20OQy1RaRAQgE6GHKKHCCmECNNDDi0sMTswAOh0OjRq1AhNmzZF8+bN0bJlS1SrVs0HrSYiqpwYYImIfCw1NVUJs8eOHcPx48eRnp5esqCAMcRma4xr02YX9dRykigipxknWTIYg2qIXgmt0JU8HFKr1ahbty5uuukmNG3aFE2bNmXvKhGRjzHAEhGVM0IIXLt2TQmzp0+fxunTp62HWgDIU0GVrYGUo4WUozaGXPbWUiUnIACtDBGsh2wWWEWIHrByzkelUiE+Ph4NGzZE06ZNcdNNN6FRo0YIDAws+8YTEZFNDLBERH5ACIHExEScPn0ap06dUv69evWqjRcUXVebW9Rjawq2uQy2VLGYhv8qQTVIb1zGJlgPaK0f4gQFBaFhw4Zo2LAhGjVqhIYNG6JevXpcyoaIyA8wwBIR+bGsrCycOXMGp0+fxtmzZ3H+/HmcO3cOWVlZ1l+gBFs1pDzNfyE3Vw0UqLi8D5VbQiUgAvUQQQbjLVBvHAocrLc6sRIASJKEGjVqoG7dumjQoIESWKtXrw6VikPviYj8EQMsEVEFI4RAcnKyEmbPnz/vONgCgAFmobYo2OapIeUx3FLZMIZUQ8mgGmSwOqGSiVqtRs2aNVGnTh3UrVsXdevWRb169VC7dm32qhIRVTAMsERElYR5sL18+TIuXbqk/Hvt2jUYDAbbL5YBKV8NFAVaKV8NKU9V9K8aKGTAJceESkAEGCACDUDRv0L5VwZ0tkMqAISHh6NWrVrKrXbt2qhbty5q164NnU5XRj8FERH5EgMsERFBr9fj2rVrFsHWdEtMTLQfbgFj722+GihQQ8pXQSpQQSpQA/nGf6UCFXtxKzihkpUQKnQGCJ1sDKk62RhSAwxWZ/otLjQ01CKkmt/Cw8PL4CchIqLyjAGWiIjs0uv1SExMxPXr13H9+nVcu3YN165dU+4nJSVBlu33nAEABIwhNr8o0BaqIBWqLO7D9H+DxLBbDgipaCZfraz8K3Rm9wNkwBRWbVyHWlxISAiqV6+OuLi4Erfq1asjNDQUksS/PRERWccAS0REHiksLERiYqISZhMTE0v8m5KS4lzINZFhGWoLVYBeMq55a5As/2/2L2QGX2uEJAC1gNAUBU2NDFHiXxnQCouw6mwoNQkODkZMTAxiY2MRExOj3KpWraqE1LCwsFL6KYmIqDJggCUiolKn1+uRmpqqhNqkpCSkpaUhJSUFqampSEtLU/61O9GUIzIAg2QMuQaV2X1juIVegiRLlo+LoudkGJ8TxvvGxyRI4r/7MO0xBQAU/b/oMUfBWcBsdysV3QBAEkX/F4DKeJ2o6T6K7guz+1DBGEbVwviYWkCoZUBddL/oMaWMpuj/blKr1YiMjERUVBQiIyOV+1FRUUpQNf0bHBzs9naIiIicwQBLRETlSkFBgUWgTUlJQWZmpsUtIyMDWVlZFv93eJ1uWRCwCLWWQdUnLbIQHByMsLAw5RYaGmrxrymgmodUDuklIqLyhAGWiIj8nhACubm5yMzMRE5ODnJzc5V/TTdbjxcWFqKwsBAFBQXKzfR/88dLOyCrVCpotVpotVrodDrlfvH/63Q6BAcHIygoyOIWGBio3Dc9HxgYqITTkJAQaDSaUv0ZiIiIShsDLBERkRNkWXbpJkkSJEmCSqVSbqb/mz8uSRLUajXDJRERkRMYYIno/9u7+6iqqsT/458DgpCgqJlimqmJWen4gJoZZmpKlun4UJktK8dfNavSpnGNfZnUSksnl6OWazXlGrNSqrFWmmsqSvOhEp/KkAlRUsRn4kFAFITLPb8/LvdweRZELwfer7Vc99yzz95n3y0Wn3v2ORsAAACwBR9vdwAAAAAAgEtBgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALbQxNsdAABvMU1T+fn53u4GANRIQECADMPwdjcAwCsIsAAarfz8fI0aNcrb3QCAGomJiVFgYKC3uwEAXsEUYgAAAACALXAFFgAk+e++TioyZPgYkuFjvcrHkIqn6hk+Pq5to/jVx5BhFH8P6D6ueL+7Trl97jY9y1RSbrrr+XiUu/e7v3Isu88wZLpnExrF731cb0r2G5Ihq45Z/F6S6xh3G4b7s5S0V7bcs03TfYxPBWWex5cq89xXth+V1KmkXJLVh8rOVer4SvpRro4qqF+ujlmqH2Xbs8pVttwsOUYlx5Z8RtMqM8odb1p1jOL9Ja/u9kwZhlnqx8vdvuuvsqTcR65tWfsln+JyV5mrSWufx6urvZL3nn8kV9uu9yopU8m5fAyntc91rFOS5GuUvPcxSpf5GKZHuSlfOa3z+RpOj3pO+Rafy73tenVa9dzt+cgsruuUb6ky1/G+hilDTvkWv3d/Ntd7ueqp5HxGcRu+Vh+L+yfXWPjKlI9UvG0Utyf5GoZ8ZMhXxa+Gu8xHhgwVFvhqwv9rJwBo7AiwACC5wqvT9YuijJJXz2RgyB1cS9Ka4U6VpZJQcXlxrdLJxqd8ujI86laUnqrcr0rKZYXWUttlX63qhkezZQNx2fKybao4SFdSVll3K+zHpdS5hKGqbZsew1d96K3jAFu2vExZ2QBbsr9se2a5MndIrbjc9Njvuc+soE2zVB13gC37p9IyK1R6BFuPoGuVqaTcHfzcZa4A67QCoLvMFQCLXw1DvnLXcW27Xo1SwdHVluRryHotqefarrDMeu8OwKZHYHZtVxdgK2rPRyoOxa73rjL38R5/hwDQiDGFGAAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALbAOrAAIEm+pkw5XYs/Girzai3IWGYd1bLrrLr/mCV1Su2vpMxjIVKzksVNK9pfss+9uqZKvzc997uONWVIpkq1Z3rWKa5XXiX7TI+iUmuRGp7dr2L9VaOS/WXqVFZeXVlVbVa13/1SZZ2K1nOtoLxcHytZB1bl6xnlji85zvBc49Xjx1TWuqueP16VrAOry1sH1iyub5b54y4zi9fCtcqK++80TMlwlpxHxe9V/HlUutwsLjOLz+1uWyo5n+d+H49zubfLvrr64fpn7fnqLP7IPsXbzuIf0YrXgTXkI9f6su4yo3i/r0rWkpVU6r2PtW14tFfSlo8M+RruMkOGDBUWVPRvEAAaHwIsAEgqGPC7t7twZZhlXmuhTK4DLO746azuwHrLnfCZkAYAdsF/sQEAAAAAtmCYpnkZ38sDgH2Zpqn8/Hxvd6PRys/P19ixYyVJGzZsUEBAgJd71Hgw9t5TF2MfEBAgw2BOBIDGiSnEABotwzAUGBjo7W5Arl/I+bvwDsbeexh7AKg5phADAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABb4CnEAAAAAABb4AosAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwhSbe7gAAwLsuXLigjz/+WNu2bdOZM2fk4+Ojjh07atiwYZowYYL8/Pxq3XZmZqaio6MVGxur1NRUNW3aVJ07d1ZkZKTuu+8+GYZRZf2TJ08qOjpae/bsUWZmpgIDAxUWFqYxY8Zo6NChldY7ffq04uPjdfDgQR06dEhJSUm6cOGCJOmTTz5RaGhorT9TXWuI43/48GH9+OOPiouLU3JysrKysuTn56d27dqpb9++Gj9+vDp27Fjrz1VXGuLYf/PNNzpw4IAOHTqktLQ0ZWVlyel0KiQkRN27d9c999xTZX0AqO8M0zRNb3cCAOAdZ86c0YwZM3TmzBlJUkBAgJxOpwoKCiRJ3bp107JlyxQcHFzjtg8ePKhZs2YpOztbkhQYGKiCggIVFRVJkgYMGKCFCxdWGhJiY2M1b9485efnS5KaNWumvLw8OZ1OSdLo0aM1e/bsCoPA66+/rq+//rrCdutTgG2I4//NN99owYIFpfYFBQUpLy/POrefn59mzJihsWPH1vhz1ZWGOPaSNGrUKOXl5Vnvg4KCdPHiRRUWFlr7+vfvrwULFigwMLDGnw0AvI0ACwCNlMPh0PTp03XkyBG1bt1af//73xUeHi6n06ktW7Zo8eLFunDhgm6//Xa98cYbNWo7NzdXjz76qDIzM3XDDTfopZde0s0336zCwkJt3LhRK1askMPh0Lhx4/TCCy+Uq3/q1Ck98cQTysvLU8+ePfXiiy+qY8eO1hWz1atXS5KefvppPfLII+XqL1q0SHFxcQoLC1NYWJhM09S7774rqf4E2IY6/l999ZWWLFmioUOHavjw4erVq5eaNWumwsJC7d+/X2+++aaSk5NlGIaWLFmi8PDwWo9hbTXUsZekN998U2FhYbrtttt03XXXyd/fX6Zp6vTp01q3bp0+++wzSdIDDzygWbNm1XzwAMDbTABAo7Rx40YzIiLCjIiIMOPj48uVf/vtt1b53r17a9T2ypUrzYiICHPEiBHmyZMny5V/+OGHZkREhDl06FDz2LFj5crnz59vRkREmGPHjjVzcnLKlb/xxhtmRESEGRkZWWG5w+Eo9f7nn3+2PsupU6dq9FmulIY6/ikpKWZaWlqlfcvJyTHHjh1rRkREmM8//3yNPlddaahjfyleeeUVq3+FhYU1rg8A3sZDnACgkXJPse3Tp49uu+22cuXDhw+3rlRWNh23MjExMVYb7du3L1c+fvx4BQYGqqioSN9++22psry8PG3btk2SNG7cuAqncD766KOSpPPnz+v7778vV+7r61uj/npDQx3/G264Qddee22lfQsODtaQIUMkSYmJiTX4VHWnoY79pbjlllskSRcvXlROTk6N6wOAtxFgAaARys/P1//+9z9J0u23317hMYZhaODAgZKkPXv2XHLbx44dU2pqqiRZ9cu65ppr1KtXrwrbjo+P18WLF6usHxoaqk6dOtW4b/VFYx9/f39/SbLu6byaGvvY79+/X5LrvtyWLVvWuD4AeBsBFgAaoZSUFCs8dO7cudLj3GWZmZmXfLXmyJEj5epXpEuXLpKko0ePVlrffUxV9ZOTky+pX/VJYx//X375pdr2r5TGOPa5ublKTEzUokWLtHXrVknSQw89VO2TkAGgPmIZHQBohNLT063tNm3aVHqc51TQ9PR0NW/evNq2MzIyatT2+fPndeHCBV1zzTWl+hYcHKymTZtWW9/zfHbRmMd/8+bNOnTokCTp/vvvr1HdutBYxn7z5s165ZVXyu339/fXpEmT9Nhjj1XxSQCg/uIKLAA0Qu41USVV+YtyQEBAhXWuZNvuJUA8y6uqf6n9qk8a6/gfP35cS5YskST16tVL99577yXXrSuNZez9/f3VqlUrtWrVyron3NfXV5MnT9ZDDz1ki/vEAaAiXIEFAABXXEZGhv72t78pNzdX1157rebOnSsfH75Hv1IiIiIUEREhybVsUEpKitauXav3339fGzdu1IIFCyp8gBUA1Hf8nwMAGiH3lEVJ1kNjKpKfn19hnSvZdmBgYLnyqupfar/qk8Y2/mfPntVf/vIXnTx5Uq1atdLSpUt13XXXVVvvSmhsYy9JTZo0UdeuXTV37lxNmDBBmZmZevnll6vsIwDUVwRYAGiEPO/vS0tLq/Q4z/sFq1oaxVPr1q1r1HazZs1K/SLuPs+5c+eq/AXbXd/zfHbRmMb/7Nmzev7553X06FG1bNlSy5Yts56i6w2NaewrMmnSJEnS77//rp07d9a4PgB4GwEWABqhTp06WdM3q3qSqbusVatWl/QQG6n001Oratv9xNUbb7yx0vqeT2WtrH5VT3utrxrL+J89e1YzZ85UcnKyFV7Lnu9qayxjXxnPh0udPHmyxvUBwNsIsADQCAUEBFj3v+3atavCY0zT1O7duyVJ/fv3v+S2O3bsqLZt21bZdl5enrUeZdm2e/bsaT0Ax33+ss6cOaOUlJQa962+aAzjn5mZqZkzZ5a68lofvmxoDGNflVOnTlnbdpx+DwAEWABopCIjIyVJ+/btU0JCQrnyLVu2WL/suo+9FIZhaNSoUZKk7777TqdPny53zOeff668vDz5+vrqnnvuKVUWGBiou+66S5K0fv165ebmlqsfHR0tyfULuPtBNXbTkMffc9pwq1attHz58noRXt0a6tg7HI5q+7hmzRpru3fv3tUeDwD1DQEWABqpyMhIdenSRaZpas6cOfrpp58kSU6nU1u2bNHixYslSQMHDlS/fv1K1V21apWGDBmiIUOGVPhL+sMPP6xWrVopPz9fs2fP1sGDByVJhYWFWr9+vf79739LksaMGaOOHTuWqz9t2jQFBgYqIyNDL774oo4fPy7JdfVq9erV2rBhgyRp6tSpCg4OLlff4XAoKyvL+uMZBM6dO1eq7FJ+6b8SGur4Z2VllQqv9WHacFkNdezXrl2r+fPna+fOnTp37py13+FwKCEhQX//+98VExMjSRoxYkS9+3sBgEthmKZpersTAADvOH36tGbOnKkzZ85Ick2vdDqdKigokCR169ZNy5YtK/eL8qpVq7R69WpJ0ieffKLQ0NBybR88eFCzZs1Sdna2JNcVo4KCAisw9u/fXwsXLpS/v3+FfYuNjdW8efOsJ64GBQUpLy9PRUVFkqTRo0dr9uzZMgyjXN19+/Zp5syZlzQGy5cvV58+fS7p2LrWEMd/9erVWrVqlSTXFUX3k3Ur884771jTbq+mhjj2nn2TXOPv7++v3Nxcq64kDRs2TP/3f/9X5Vq1AFBfsQ4sADRioaGhWr16tT7++GNt27ZNZ86cUZMmTdS5c2cNHz5cEyZMkJ+fX63a7t69u95//31FR0drx44d+v333xUQEKAuXbooMjJSo0ePrnId0EGDBum9995TdHS09uzZo8zMTAUFBalbt2564IEHNHTo0Fp+6vqjIY6/0+m0tvPy8pSXl1dlPz2Pv5oa4tjfd999atGihX755RclJydbsw8CAwN13XXX6dZbb9WoUaPUq1evWn0uAKgPuAILAAAAALAF7oEFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAYAvLly/XkCFD9Nxzz3m7K/Cy3Nxc3XfffRoyZIi2b9/u7e4AAK6iJt7uAADgyjp//rySkpKUmJiogwcP6uDBgzp58qRM05QkffLJJwoNDb0i5zZNUxMnTlRaWpqmTJmip556qlbtJCUlaf369ZKkJ598sg576F1HjhzR7t27FR8fryNHjigjI0NFRUUKDg5W165dNWjQIEVGRiooKMjbXa1XgoKC9PDDD2vlypV66623NHDgQDVt2tTb3QIAXAUEWABo4GbMmKGkpCSvnDsxMVFpaWmSpIiIiFq38/bbb6uoqEgDBw5Uz54966p7XjVjxgz98ssvFZZlZmYqMzNTe/bs0Zo1axQVFaUBAwZc3Q7WcxMnTtS6deuUmpqqTz/9VFOmTPF2lwAAVwFTiAGggXNfaZVcV6769OmjVq1aXZVzf//995KkNm3aqEePHrVqY//+/dq7d68kNaiQ4g72wcHBGj16tKKiorRixQqtXLlSr776qgYNGiTJFWajoqIUFxfnze7WO4GBgZowYYIkKTo6WhcuXPByjwAAVwNXYAGggRs9erRCQkLUvXt3dejQQYZhaMaMGcrMzLzi53YH2MGDB8swjFq18dFHH0mSQkND9Yc//KHO+uZtHTp00NSpUzV8+HD5+/uXKuvevbuGDh2qtWvX6p133lFBQYGWLFmiDz74wEu9rZ9GjhypVatW6dy5c/rvf/+rSZMmebtLAIArjCuwANDATZw4USNGjFDHjh1rHSJr4/jx40pJSZFU++nDaWlpio2NlSSNGjXqqvb/Slu8eLHuvffecuHV05QpU9StWzdJ0tGjR3X48OGr1T1bCA0NVa9evSRJX3zxhZd7AwC4GrgCCwC4ItxPh3VPW66NTZs2yel0SpKGDRt2SXUcDoe+++47/fDDD0pMTFRWVpaKiooUEhKiLl26KDw8XCNGjFDr1q1L1RsyZIgkKTIyUlFRUTp27Jg+/fRT7dmzR+np6WrWrJnCwsL0yCOPqHfv3la9ixcv6quvvlJMTIxOnDih/Px8tW/fXvfcc48mTZp02Q8X6tu3r3UP8/Hjx9W1a9dat3X06FFt2LBBcXFxOn36tPLz8xUUFKTg4GCFhoaqX79+uvPOO3XDDTfUqn2Hw6FvvvlGW7Zs0ZEjR5SdnS3DMNS8eXOFhISoR48eCg8P1+DBg+Xn51eqbtnxP3r0qD7//HPt3btX6enpysvL02uvvVbuy5Bhw4YpLi5OKSkpSkxM1M0331y7wQEA2AIBFgBwRbinDw8aNEhNmtTufzc7duyQ5LpPtFOnTtUe/9tvv2nu3Lk6ceJEubK0tDSlpaVp165dOnz4sKKioiptZ+vWrXr99deVn59v7bt48aJ27typXbt2adasWRozZozS09MVFRWlxMTEUvWTk5P17rvvaufOnVqyZMllhViHw2Ft+/jUfuLUhg0btGzZMhUVFZXan52drezsbJ04cUJ79uzR4cOHNWfOnBq3n5WVpb/+9a8VPjDMPfZJSUn64osvFB0drQ4dOlTa1ldffaUlS5aooKCg2vN6PtRrx44dBFgAaOAIsACAOpeenq4DBw5Iqv304YKCAv3666+SpB49elQ7fTgpKUnPPvus8vLyJEl9+vTRyJEj1alTJ/n5+SkjI0MJCQnVrht6+PBhfffdd2rZsqWefPJJ69w//fSTPvzwQ+Xn52vp0qXq3bu3FixYoN9++03jxo3TnXfeqZCQEJ08eVIffPCBDh8+rP379ys6OlpPPPFErcZAkn7++Wdru3PnzrVq48iRI1Z4bd68ucaMGaPevXsrJCRERUVFysjI0MGDB7Vz585aT9NetmyZFV779eunkSNHKjQ0VM2aNdP58+eVkpKiuLg4a0p4ZQ4ePKhNmzapefPmmjRpknr27Ck/Pz8dPXpU7dq1K3d8586dFRgYqLy8PP3888+aNm1arfoPALAHAiwAoM798MMPMk1T/v7+GjhwYK3aOHz4sHX1sXv37lUe63A4NHfuXCu8zpw503pCrac77rhD06dPV2pqaqVtJSUlqVu3blq2bJmCg4Ot/bfccos6dOigefPmyeFw6Nlnn1VOTo4WL16s8PBw67iwsDD1799fU6dOVXp6utavX6+pU6fK19e3Rp9fck3DTk5OluQK8R07dqxxG5K0ZcsW68rr0qVLrftqPUVERGj69OnKzs6ucfsXL160vhiIiIjQggULygXh3r17a+zYscrLy6vySnJycrI6dOigFStWlHpadmVPsfb19VVYWJji4uJ06NAhOZ3Oy7pSDQCo3/gvPACgzrmnD4eHhyswMLBWbXhOA65u2Z9Nmzbp5MmTklxPXa4ovHpq27ZtleUvvvhiqfDqNnToULVp00aSdPbsWY0fP75UeHULCgrSvffeax139OjRKs9XkfT0dP3zn/+UJBmGoT//+c81bsPN/cTpoKCgCsOrpxYtWtS4/XPnzllfNvTu3bvKq7iBgYHVTql+4YUXarTUk/vY/Px8paenX3I9AID9EGABAHUqNzdX+/btk1T76cOSlJGRYW03b968ymPdgVmSJk+eXOtzSq4pqZWFPMMwSpWNHDmy0nY8jzt16lSN+pCfn6+oqCgreJZ9cFRNuUN3bm6utmzZUut2KtOiRQvracqbN2++rDVZ27RpU+GXAlXx/Pnw/LkBADQ8BFgAQJ2KjY2Vw+GQr6+vBg8eXOt2Ll68aG1XdDXU06FDhyS5rsRdysOeqlJdfc++VPW0Xs/jahLoCgsL9dJLL1kPhrrzzjs1ffr0S65fkZEjR1pXPefNm6dnnnlGa9eu1f79+61p15fDz89PkZGRkqSEhAQ9+OCDWrx4sTZv3lzj8F6bpyx7BljPB28BABoe7oEFANQp99XQ2267TSEhIbVux/Oe0eqeRpuVlSWp5Erj5QgICKiy3HN6bFXToz3vw3QvBVQdh8OhOXPmaPfu3ZKkAQMG6OWXX67V/bOe2rdvr0WLFun1119XWlqa4uPjFR8fL8k1zjfffLOGDBmi+++/v9ovCyrz3HPPqaCgQDExMcrJydHGjRu1ceNGSa4vFgYMGKDRo0dXeyW5uqvtFfH8sqO2T7wGANgDV2ABAHWmoKBAu3btknR504cl1/2abjk5OZfVlh04HA7NmzfPWjooPDxcr732mjU193L169dPH330kV555RWNHj3aWsamqKhIv/76q95++21NnjzZCs811bRpU0VFRWnNmjX605/+pL59+1oBPzMzU19//bVmzJihl156qVTgLKs2D2DyfPCU588NAKDh4WtKAECd2bt3rzUl9XIDrOeSKdUF2JCQEKWmptr2AT7u8Oq+et23b18tXLjwstaPrYi/v7/uvvtu3X333ZJcV65/+uknxcTEaOfOncrJydGcOXMUHR2t1q1b1+ocHTt21GOPPabHHntMRUVFSkpK0o4dO7RhwwadPXtW27dv18qVK/Xss8/W2ec6d+6ctV3dA7oAAPbGFVgAQJ1xB7Bu3bopNDT0stryXPP02LFjVR7rXmYnIyOj2mPrm7LhtU+fPlq0aFGdh9eKhISEaPjw4XrjjTc0btw4SVJeXp5++OGHOmnfPT152rRp+te//mVNz960aVOdtO+WkpIiSQoNDdU111xTp20DAOoXAiwAoE44nU79+OOPklwPHrpcbdu21bXXXitJOnDgQJXHDhkyxNqOjo6+7HNfLQ6HQy+//LIVXnv37q1//OMf1d6HeyUMGDDA2nbfU1yXQkNDrXVsa7PWbGWysrKsJZRuvfXWOmsXAFA/EWABAHUiPj7eCj6egfJyuENVSkqKzp8/X+lxw4YNs8LRl19+qc8++6zKdlNTU+ukf5fD4XDo1Vdf1fbt2yVd2fC6bdu2akOp+95lSbr++utr1P6pU6e0d+/eKo85ffq0daW0ffv2NWq/KgkJCdb27bffXmftAgDqJ+6BBYAG7sSJE9YTZ93c64tK0tatW0s9LTgwMFBDhw6t8XncVxHbt29fq6VQKnL33Xfryy+/lNPp1N69e3XXXXdVeFyTJk30yiuv6JlnnlFeXp6WL1+u7du3a9SoUerUqZP8/PyUkZGhxMREbd26Vd27d1dUVFSd9LG25s+fr61bt0pyBcann35ap0+frrJOy5Yt1bJlyxqf67PPPtP8+fPVr18/9evXTzfeeKNatGihwsJCpaamatOmTdbV83bt2tV4+aPU1FS98MILat++vQYPHqwePXqobdu2atq0qbKzs5WQkKD169dbT5OeMGFCjT9DZfbs2SPJdX/voEGD6qxdAED9RIAFgAYuPj5eCxcurLT87bffLvW+Xbt2lxVg62L6sFt4eLjatGmjtLQ0xcTEVBpgJemmm27SW2+9pblz5+rUqVPat2+f9u3bV+Gx7ntmvWnLli3W9smTJ/X0009XW+fxxx/XtGnTanW+goICxcbGKjY2ttJjrr/+ei1cuLDK5YGqcurUKa1bt67Sch8fH02ePFl//OMfa9V+WQ6HQ5s3b5bkuupf2yWAAAD2QYAFAFy23377zbp6eLlPH/bk6+ur8ePH65133tHOnTuVlZVV5dqyYWFhWrNmjWJiYvT9998rKSnJut+yZcuW6tq1q/r3768RI0bUWR/tYN68edq9e7fi4uJ05MgRZWZmWlOKW7RooZtuukkREREaOXJkrZbt6dWrl1asWKG9e/cqISFBqampOnv2rM6fP6+AgAC1b99evXr10v33319nV+clWT8TkjRx4sQ6axcAUH8Zpmma3u4EAMDe3nvvPb333ntq2bKlPv/881qt5VmZ3NxcPfzww8rJydFTTz2lKVOm1FnbsLfZs2crNjZW/fr109KlS73dHQDAVcBDnAAAl809ffiOO+6o0/AqSUFBQVZo/fjjj3XhwoU6bR/2lJCQoNjYWBmGoSeffNLb3QEAXCUEWADAZSksLFRERIQef/xxjR8//oqcY8KECerQoYOys7P1n//854qcA/aycuVKSdKoUaPUo0cPL/cGAHC1MIUYAGALBw4cUGxsrIKCgvTggw96uzvwotzcXK1bt06maWr8+PFV3hcNAGhYCLAAAAAAAFtgCjEAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABs4f8DXvdiF6mzDk0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC5jklEQVR4nOzdd3hT1eMG8PdmdU9aNoWyZSgoU5AhU1FBQVBRcKKgCMLXgXugoiIqDlRkCQooCD8HS0D2ngKyN4W2dO824/z+CLkkbXbSJmnfz/PkITQ3556kTe5971mSEEKAiIiIiIiIyM8pfF0BIiIiIiIiImcwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQQGWCIiIiIiIgoIDLBEREREREQUEBhgiYiIiIiIKCAwwBIREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBAZaIiIiIiIgCAgMsERERERERBQSvBNhz585BkiRIkoRHH33UG0VWST169JDfRyIiWx599FH5u+LcuXO+ro5s7ty5cr3mzp3r6+qQl+Xl5aFu3bqQJAmffvqpr6tDAWLDhg3y98Lbb7/t6+oQ+Y3KfN4/efJkSJKEhg0boqioyOvlV1gL7Ny5c/H2229XqS+v5cuXy685KyvL19Wha3Q6HdauXYtXXnkFt99+O2rVqoWgoCCEh4ejUaNGeOCBB7B8+XLo9XqXyj18+DDGjh2L5s2bIzw8HFFRUWjdujVeeeUVnD9/vpxeDRFVRZs2bcITTzyBli1bIjIyEmq1GrGxsWjXrh3Gjx+Pf//91+v7nDx5MpKSklCjRg2MHj3a6jb79u3DN998g8cffxzt27dHgwYNEB4ejuDgYNSqVQu9evXClClTkJyc7PR+k5OT8dZbb6FTp06oVq0agoKCULduXfTr1w+zZ8+GTqdzuqzMzExMmzYNvXv3Rs2aNREUFITQ0FAkJCTg7rvvxqxZs5w62bpy5Qr++OMPvP3227jrrrtQq1Yt+US0QYMGTtfHHatWrcKwYcNQv359BAcHo3r16ujSpQs+++wz5Ofn232ueZh05Vber6m83X333fJrmTVrlsvPv3DhApRKJSRJQmxsrMcn5NnZ2fj666/Rt29fJCQkIDg4GNWqVUOLFi3w4IMPYubMmcjIyLD63MzMTPzf//0fXn/9dfTv3x8tWrRA9erVoVarERUVhZYtW+LRRx/FqlWrXKpTfn4+pk2bhi5duqB69eoIDg5G/fr1MWzYMKxevdqlsjZv3oxHH30UTZo0QXh4OMLDw9G0aVOMGjUKO3fudKkse8wb0Jy52csg5mHSlVsgX6zdu3ev/Drq168PIYTLZTz55JNyGR999JH88+effx4xMTE4e/YsPvnkE29W20h4wdmzZwUAAUCMHDnS6jbdu3eXt6kqRo4cKb/ms2fPOty+Kr5HFW39+vUiNjZWfp/t3dq3by9OnTrlVLmffPKJUKvVNsuKiIgQCxcuLOdXR1WFq98tFWXOnDlyvebMmePr6lRKBQUFYujQoQ6/vxQKhRg3bpzQ6/Ve2e+lS5dEcHCwACCmTZtmc7saNWo49f0aHh4uvvvuO4f7/fHHH0VoaKjdstq2bStOnz7tsKyVK1eK+Ph4h3VLTEwUe/futVnO77//bvf59evXd1gXdxQVFYkHHnjA7r4bNWokDh48aLOMf/75x6nfT+lbz5493a63+T7feustt8vxxNKlS+U6dO3a1eXnv/vuu/Lzx4wZ41FdFi1a5NTnZNmyZVafP2PGDKd/b926dRNXrlxxWKd9+/aJhg0b2i1r+PDhori42G45eXl5Dv9GJUny2neTef5w5mbv78/8HNyV28aNG92uvz+c97du3Vquw9q1a116bn5+voiIiBAAhFKpFJcvX7Z43PS5iYiIEFevXvVmtYUKXtCgQQO3UjtZ2rBhg6+rUOklJSXJVzVjY2PRu3dvdOrUCbVq1YJWq8WuXbvw448/IicnB7t370bPnj2xa9cu1KxZ02aZ3377LV588UUAgFqtxiOPPILu3btDq9Vi9erVWLJkCXJzc/HII48gOjoa/fv3r5DXSpXX3LlzA/qqL7nvoYcewvLlywEASqUSw4YNQ8eOHVG9enVcvnwZ69atw4oVK2AwGPDFF19Ao9Hg448/9ni/H374IYqKihATE4NnnnnG7rZxcXHo1KkTbrrpJiQmJiIqKgolJSU4deoUli9fjv379yMvLw9PP/00VCoVHn/8cavlzJ8/HyNGjJD/37dvXwwcOBDx8fG4ePEiFi5ciD179mD//v3o27cvtm/fjvj4eKtl7dq1CwMHDkRJSQkAoFGjRnjkkUeQmJgInU6HkydPYvbs2UhNTcXZs2fRu3dvHDp0CHXq1ClTVuneOWq1Gq1atcL+/fvtvi+eGjlyJBYvXgwAqFatGkaNGoXWrVsjLS0NCxYswK5du3D69Gn0798fO3fuRL169cqU0apVKyxbtsyp/Y0dOxaXLl0CADz22GPeeyE+cPfddyMuLg5paWnYsmULTp8+jUaNGjn9/Hnz5sn3PXkvvvzySzz//PMAAI1Gg0GDBqFr166oUaMGdDodzp07h61bt2LdunV2y1EoFLjpppvQvn17NGvWDDVr1oRGo0FaWhp27dqFxYsXo6CgAJs2bULPnj2xd+9ehIaGWi3r/PnzuOOOO5CSkgIA6NChAx5++GHExcXh0KFD+P7775Geno6ffvoJkiRh/vz5VsvR6/UYPHiw3FobFhaGxx57DB07doRCocD+/fsxa9YsZGZm4osvvoAQAl988YW7b2UZPXv2lN9bW5o3b27zscmTJyMtLc3hfrZu3YqpU6cCMH6P3Hbbba5V1M889thjmDBhAgDjuUWvXr2cfu7SpUuRm5sLAOjfvz9q1apl8fi4cePw0UcfITc3F1OnTsWUKVO8V3GvxmE7/OEqQ0Xz11aSqmz+/PmidevW4ueffxZFRUVWt7l06ZJo2bKl/LsbMWKEzfIuX74stw6oVCrx999/l9nGvFWqXr16orCw0Guvh8ifsAW2fG3atEl+fyMjI8X+/futbrdy5UqhVCrl7yVPr3ynp6fL33OjRo2yu+3hw4eFwWCwu80HH3wgv47o6Gir38WpqakiPDxc3m7GjBlltjEYDGL8+PHyNo899pjNfd5+++0W22m12jLb5Ofni969e8vbjRs3zmpZW7duFU899ZT49ttvxe7du+VWKdPzyqMFdvny5XL5CQkJ4vz58xaP6/V68dhjj8nbDBkyxKP9HT161OJvLT8/3+2y/KEFVgghxo0bJ9fjjTfecPp55p+7Vq1aub3/v//+Wy6nXbt2ds8Lc3NzRUZGhtXHkpKSRHp6ut19nT9/XjRu3Fje35QpU2xuO2jQIHm7xx9/vEzL6Llz50RCQoK8zZ9//mm1nG+++Ubepm7duuLkyZNltrl8+bJo3ry5V1ovhXCuB6i3DRs2TN7n5MmTPSrLH7JRamqq3IMwNDRU5OTkOP1c8+/VJUuWWN3moYceEgBETEyMyMvL81a1BQNsOWKA9T+ZmZkOT66EEOLQoUPy7y4kJMTmwdv85OnFF1+0Wd79998vb/fVV1+5XX8if8YAW75ee+01p75vhBBi8ODB8ra///67R/v97LPP5LI2bdrkUVkmN954o1zmunXryjw+ZcoU+fHBgwfbLEev18td4BQKhThx4kSZbYqKiiwCfVZWls3yzL/7b775ZpdeU3kG2DZt2sjl//XXX1a3KSgosAgahw4dcnt/L774olzOU0895XY5QvhPgD1w4IDF78iZcwEhhHj88cfl53366adu7buoqEjUr19fvgCRnZ3tVjmu+O233+R633bbbVa3MX9PEhISbF5g/+uvvyzCtzXmwfSPP/6wWa+dO3fK27nTndtcRQfYjIwMERQUJH/fXLx40aPy/CUbmV/EmDVrllPPOX/+vJAkSQAQ1apVs9m93PxvZ+bMmV6rc7nPQmwaFL1x40b5Z64MrDYYDPjll18wbNgwJCYmIjQ0FBEREWjevDlGjx6NQ4cO2a3b22+/Le/D1EV33bp1ePDBB5GYmIjg4OAyM3nqdDqsXr0aEydORNeuXVG9enVoNBpERESgadOmePTRR7Fp0yab+zTNEGre5SQxMbHMa7b1XjkzG9nOnTsxatQoNGvWDBEREQgLC0OjRo0wcuRIrF+/3uHzTfvp0aMHAOPg/alTp6Jdu3aIiYlBWFgYWrZsiUmTJiEzM9NheYEiOjraqfe3VatWcleTwsJCnDp1qsw2Qgj8+uuvAIzv59ixY22WZ96txdQFrKJs374do0ePRosWLRAdHY3g4GAkJCRg2LBh+Ouvv+w+19rskRcuXMDEiRPRvHlzhIWFITo6Grfeeiu++eYbpydTycvLw+eff44+ffqgdu3aCAoKQmxsLNq3b48333wTV69etfv80p8VvV6PuXPnok+fPqhTpw5UKpXVSUdSUlLw0ksvoUWLFggLC0NsbCw6dOiATz/9FAUFBQCMQyKsTVqyatUqeZ+OuimZPP/88/JzVq5c6dRznOFoFuLy+r39+eefuPvuu1GzZk0EBwejQYMGGD58OLZv3+7yaygpKcGsWbNwzz33oF69eggODkZ0dDRuvPFGTJw40ebsysePH0dYWBgkSUJUVBTOnj1rcx+ZmZlISEiAJElQKpV2v7cDQWpqqny/SZMmdrdt2rSpfN/RxD6OmLoMJiQkoGvXrh6VZdKiRQv5vrUJncyPY4888ojNchQKBYYPHw7AeL6waNGiMtukp6fL3X6rV6+OqKgom+V5833zlpMnT+LAgQMAjL/3O++80+p2ISEheOqpp+T///LLL27tT6/XW3QTtdXF29tM3XolSYJCocBnn31mdbtVq1bJEwRFREQgNDQUjRo1wqOPPootW7bYLP+mm25C27ZtARi7zf7zzz8O61RQUCAf51UqFR5++GE3Xpnxd2GazPG9995DZGSkW+W4wtFnDLA8Hxk1ahSCg4OtbnfHHXegcePGAIA9e/bgzJkzFo9fuXIFx44dA2AcnjVgwACb9erQoYN8frV161ZcuHDBiVfjH37++WcUFxcDAPr06YO6detWyH7Ns0yrVq2QlJRUZpu0tDS8//77uO222+Qu5fHx8bjtttvw8ccfIy8vz2b55t3inR2eNG/ePHn46PDhw6HRaKxu17dvX3loh63u527xRgq2dwXE2UHR1q7KnTp1yuKqo7WbQqGw2xXkrbfekrddv369ePbZZ62WY95C2qNHD6fqPHLkSKtXHMxbXh0939Z7ZYtWqxVPPfWUw7KHDh0qCgoKbJZj2q579+7i9OnTokWLFjbLql+/fpVsQW7fvr38HuzYsaPM4+ZX6h11K9Lr9SIyMlL+m3Wli4a78vLyLLq62LoNGDDAZn1KXzlfuXKliI6OtllWnz59bHbNNlmxYoWoXr263TpFRESI//u//7NZhvlnJT09XXTt2tXq36259evXi5iYGJv7bN26tbhw4YJ8lbz08/V6vUhMTBSAsSuMo67ghYWF8v4SEhK8NpmOEI57d3j796bT6ex+rykUCvHRRx853QK7e/du+b20ddNoNOLbb7+1+vzvv/9e3q5z585Cp9NZ3W7IkCHydq+99prd9zQQvP766/LrcdQCa/7aDxw44PY+L1y4IJdjbziFq8y/X621wJofk44ePWq3LPOWpk6dOpV5vLCwUKhUKgFAqNVquy2whw8flssaNGiQS6/J1nePp7788ku57Oeee87utrt375a3bd++vVv7M5+kqkWLFm6VYc6ZFth9+/bJExupVCoxf/78MtukpqZadFm0dXviiSdESUmJ1f1Mnz7dpb/nH3/8Ud5+4MCBrrxsCz179hQARFBQkN1zM28yb/my1QJ7yy23yNvs2bPHbnnm589ff/21xWO7du2SH+vYsaPDut1zzz3y9ra+551R0S2wN998s7y/xYsXe1yeo/N+vV4vnnnmGXmbW2+91WrX8jlz5siTKdm61ahRQ2zbts3qfrRarfz5kyTJqUnxGjVqJJdtaziLyb333iufK6SlpTks2xnlHmA3b94sli1bZjGmcNmyZWVupQ9Qp06dEnFxcfJzunbtKqZMmSIWLlwoFixYIF544QWLk1FbX4rmAfaOO+4QAETNmjXFK6+8IhYsWCDmzp0rxowZYzFzVseOHUV4eLgYOHCgePfdd8WPP/4ofvnlF/HFF1+IUaNGibCwMLlMa2Nk9u7dK5YtWyZ/YQEQ3333XZnXXHqWQ2cCrPnsbsHBweLpp58W8+bNEwsWLBDjx4+3+APu16+fzS4ypm3atm0rmjdvLiRJEgMHDhQzZswQixcvFh9++KFFVyRbX36VVXFxscUJv7VZ/BYuXOjSF6f573fnzp3lUOvrioqKRKdOneT9NWrUSLz66qti/vz5YtGiRWLy5MmiadOm8uO333671YBlfuIxcOBAERoaKkJCQsTTTz8t5s6dKxYuXCgmTpxo8Zmwd0FpyZIlclc+tVotBg8eLL788kvxyy+/iB9++EEMHz5cHouhUCisntgKYflemj7XN910k5gyZYpYtGiR+P777y1O9I4cOWIxk2nbtm3Fp59+KhYvXiymT58uunTpIoehOnXq2DwJNR+7t2DBAru/g/nz58vbvvPOO3a3dZUrAdYbv7cxY8bI22k0GvHUU0+JefPmifnz54uxY8fK7615NyRbAXbbtm3y9pIkif79+4tp06aJxYsXi7lz54qnn37a4ndlqxzzLrLW6v7DDz9YhBprYx4DjXk4cXYMbI8ePTza56xZs+R9emv4g/ksqjVq1LB68eSGG26Qt3ElwEZERFg97g0YMEDe5vHHH7c5BrZPnz7y3+Y///zj0usyle/tAPv00087/DyYaLVa+XcfFhbmdDdZc6aTTQDik08+cbPW1zkKsOvXr5cv8IaGhooVK1aU2SY9Pd3ihPmmm24S77zzjvjpp5/EwoULxWuvvSZ/d9s7JqelpQmNRiO/P7m5uXbrbh6Yly9f7s7LFyUlJSIkJEQAELfccosQQojjx4+LMWPGiEaNGomgoCARGxsrOnToIN5++22H41udkZqaajG77GeffVZmG71eL9dLpVI5/I40v0A5evRoi8fMuwW7GmCfffZZl16bOfP80bBhQ9GuXTsRFRUlNBqNqFWrlujTp4/45JNP7F60ctbBgwflfcXGxjq8WO8Me+f9RUVFFse5O++80+pwts8//1zeJjQ0VIwYMUJ8++234tdffxUzZswQAwcOlLv6hoaGiiNHjlity8SJE+Vy3nzzTbv1Nh8X3qZNG4ev86OPPpK3X7RokcPtneGXy+jo9Xr5KkdQUJD45ZdfrG6XnJwst9AqFApx+PDhMtuYB1jAGIQdjT1Yu3at3StkaWlpcouPQqEQZ86csbqdt5fRWbRokcVB39of4blz5yxaNmydcJi/JxqNxup4hbS0NIuyPAld+fn5Vi9cuHOzt7yBt5iHD1vjoN555x27B+XSRowYIW9v7eqyN5Uem2vtwFRSUmJRJ2uTpJReciEhIcHqGLOdO3fKLRwxMTFWv9gvXLggn6QkJCSIf//912rdd+7cKaKiogRgnAjC2pX00j07xo8fb7eF07yFdsyYMVa3Lf1dYe0kNDk5WQ7Y3bt3t7k/IYTo1q2bAIxTy3s6TqY0VwKsp7838wNVdHS01av0x44dEzVr1rTYp7UT7ZycHFGvXj25rA0bNlh9fSdPnpQvoIWFhVmdhCgjI0PUrVtXfo83b94sP3b8+HE5nEdGRjp1Ndmeo0ePeu37y9MJlcw/20qlUjz00ENi+vTpYtGiRWLatGkWQa1r164iJSXFo/2NGjVKLm/37t0uPXfjxo3y6160aJGYMmWKxWcxJCTEalgRQlhcALbXG0MIy/GyAMSlS5fKbHPixAmLnh+NGjUSb7/9tvjxxx/F7NmzxSuvvCK3QAQFBYnZs2e79FqFKL8Aa/5eOBOqzS8+u/rdYz6hi0qlEsnJyW7W+jp7AXbJkiXymMLY2FibLUSmi2OSJInPP//c6ja5ubmib9++8r5WrlxpdTvz3gn2fs/nzp2TT/yrV6/u9kWw/fv3y/sbNGiQ+PHHH+XgaO0WHR0tVq9e7VTZKSkp8mds6dKl4ocffhCjR4+2uADft29fq8fR8+fPu/Q3u379enn7Xr162SwrNjbW4YUT8/GyvXv3duq1WuPsMjpRUVEet5iaTwI2duxYj8oysXXen52dbfG5f+SRR6z+/e3evVs+hrdp06bM5G4mf/zxh/y5tnWBwbz3SYMGDez+Ds0njPviiy8cvs4NGzbI27/wwgsOt3eGXwZY8/W6pk+fbnfb48ePy1cbrU00YH5SGhYWJpKSkpx6TY6cPn1aLve9996zuo23A2zbtm3lx20d9IUwnpSavnTr169vtXud+Qf73XfftVnWzJkzndrOEVfX6rJ3K+9uIhkZGaJWrVry/n799Ver273wwgvyNl9++aXDcl3d3l2XL1+WrzDfd999drctKSmR135r0qRJmcdLByF7E7gMHz7c7nZjx46VT7oddTcxb/X56aefyjxu/lm55ZZb7IZX81arVq1a2exuWrpcWwd08wm5rIVCIYzfS6ZtBgwYYPe1usPVAOvJ723gwIHy43PnzrVZzp9//mmxT2sB9tNPP5UfdzSx0Lp16+Rt33//favbbNiwQSgUCvn3lZmZKUpKSiy6xXnjYlHpixue3Fxt1bPm888/t7ueacOGDcXChQttdqN0xa233iqX6+rQh44dO1qtn1KpFP369RP79u2z+Vzz7tL2ZtQ1n8TJdLN2MVsIYyDp3bu3fHy0dhs9erTV2VOd4ei7w13mx35nJmZydXtz06ZNk5/rSZdZc7YC7Lfffit/fuvUqWOzZWjv3r3y8ydMmGB3XxkZGfIF0D59+ljdxrxrbbdu3WyWZX6R2tF+7Vm5cqVcTqNGjSx6R3z11Vdi8eLF4qOPPrLoqahWq60OXbJXdulbnTp1xLvvvmvzmGfeomhqGbbH0famC4qA7ZmKhbA8JgO2J4VyhuncslWrVmL8+PFi5syZ4tdffxWzZ88W48aNK7PerjsXpoQwniuZ9wp1dA7jLGvn/SkpKRaf4QkTJtgMk3fffbcAjD1PrF24M/fGG2/IZW7dutXqNuZDO9avX291G/O1XzUajVNdglNSUuRyS1/8cJdfBljTlbbIyEinlhzp3LmzzYOG+YmHN8fvCCHkFoe77rrL6uPeDLDm73Hr1q0dltWrVy95e2stp+YnEramahfCMqg/8MADDvdrS6AEWJ1OZ3EF1174MB+L7MzMaq+++qq8/QcffODNalsw705i62q2uUmTJtn8OzU/8Wjbtq3dcsxDZ+kxLQaDQcTGxgrAeDXYkby8PPmqorXft/lnxdEByfxE2Forsznzroi2TkLNg9VLL71kdRvzGTwdtR65w5UA68nvraioSL4YUqNGDbvhXwjLbp/WAqypx0zTpk0dvkYhhKhdu7YA7Ld2m3+uhg0bJl566SX5/8OHD3dqP474W4DNz88XP/zwg91xzTfddJPHsw8LIeRumWq12uXn2gqwDRs2FJ9++qndE5/Tp0/L3wH2vmP/97//lSnf3vfev//+a3FRpvQtLCxMPPXUU27NU+Dou8NdTZo0kct2JlybX3Rw5hhgzvxigLe+u6wFWPNw2KxZM5stR0Jc73UgSZJTjRAPPvigAIwt6dZ6leh0Ovm7RZIkq73oDAaDRZdlT2Z0Nh9uZLpZW9ZGq9VaXFC84YYbHLZk2gqwkiSJ4cOH2wwhQhiXgzJt36VLF4ev48SJE/L21r7DzX+n9erVs9rzJTk5ucycK84eD6zJycmxeyGsoKDAorVQo9HY7DVpz5IlS5w+prqi9Hn/6dOnLZY/+vDDD20+NyMjQ74A5Gh5MyEsL6zb6jVovhSSrXPtefPmydvYmyHeXElJifycxo0bO/UcR1TwQ5s3bwYA1KpVC6tWrXK4vVKpBGCcVa6wsBAhISFWt3NlseGcnBz89NNPWLFiBQ4dOoS0tDSbMxKaFvouT7t27ZLv9+3b1+H2ffv2lRfC3rlzJzp06GB1u6ZNmyImJsZmOeaLuHsyG3GDBg3k2cr82bhx47BmzRoAxhk3nZ2NzZ+YPj+A8W9z+fLldrc3/70ePXrU6uy9ANCpUye75dj7Wzly5AgyMjIAABEREQ7rBADh4eHIysrC0aNH7W7n6HO9Z88e+X7Pnj3tbmualduenj17omnTpjhx4gTmzZuHyZMnQ61Wy49rtVp5BvLatWvbnY2xInjyezt48CBKSkoAAN27d5e/a23p1auXzd9XdnY2/v33XwBAjRo1nP4bAGD3b+Cdd97BunXrsHPnTosZNRMTE/HNN9843Icz3n77bZsz5Ve0PXv2YNCgQUhKSkKbNm3w5ptv4rbbbkNUVBSuXLmCP//8E2+//TYOHjyIQYMG4auvvsLo0aPd3p/pc2vvOGHLjh075Pv5+fk4fvw4fv31V3zxxReYOHEiPvvsMyxfvhy33HJLmec2bNgQr732Gt555x0AwFNPPYWlS5finnvuQVxcHJKSkrBw4ULs2rUL8fHxKCoqQm5uLgDjzMSl6XQ6jB8/Hl9//TVUKhVeeukljBgxAo0bN4ZWq8WBAwcwbdo0LFu2DDNnzsSuXbuwZs0aVK9e3eXXHaj27Nkjr+xQs2ZNm7Mde8JgMOC5557D119/DQBo3749VqxYgbi4OJvPMR3ToqOjLc6FbDHNEltcXIwzZ87ghhtusHhcqVRixIgRmDJlCoQQmDdvXpnP9+bNm3H69GkAQLt27dCqVSunX2NpBoPB4v+9e/fGyy+/XGY7lUqFmTNnYuPGjbh06RKOHj2Kv//+2+45X//+/eVzK51Oh9TUVGzZsgXTpk3DTz/9hJ9++gnPPfccPvvsM6hU5XvKP2HCBPzyyy84cuQILl68iDZt2uCxxx5Dhw4doFAocODAAfzwww/IyMhAw4YN5ZmMrX1enRURESHPLG1NSEgIZs2ahcuXL2P16tUoKSnBxx9/jBkzZri0nzlz5sj3y2tW7oMHD6J///5ITk6GUqnE999/b3dfW7dulf+2lEqlw2OqVquV79s6pj744IOYMGECioqKsGTJEnz11VfycdjE/LzYfPZie9RqNSIiIpCbm+u9lU28kYK92QKbm5vr0dXt0lfnzK+c2+t2a279+vVlxnPZuzVs2NBqOd5sgTVvVfvuu+8clrVs2TJ5+0mTJpV53PSYM5MzmbZ1NOYv0Jm35NSoUUMcP37c7vb+2oXYvPukq7fS3XXNr5w7Wvjd3jinP/74w+06WevabP5ZcTSjo/l6k850qTS1atlrRZk6dapc5tKlSy0eM79SW14z37rSAuvJ7838e+TVV191WC/z76nSLbDms3a7enPU+nf69GmLCexUKpXYvn27w/oGmoMHD8pj52699VabPZROnz4tqlWrJgBjLxtPZiE2XeFv1KiR22WUtm/fPvn3FR0dbbNVzWAwiEmTJtnt8lujRg2xY8cOi0kdrX13P/TQQ/Lj9loWzb+n7XVdtsb0vEDtQjx69Gj5eY5muXaF+XeMqXsvYBz76GgSJSGE/Lfszs1WV8ljx47J2yQmJpZp6TRvtfvmm2/KPH/16tV2x7qbM5/VGYDNeV1MzHtF2erl44her7eY48La79PbXYiFEOLixYuiXbt2dn8n/fv3t5jTpXPnzm69Rlds375d3l+9evVceu7ly5flbt9BQUF2ey26yvxcxvTZCAoKcmrCMPPZyV292epeL8T1HgzWjuPm48Jr1arlsFeWOVNvntDQUKefY49X1oH1puzsbI+eb2otsMZWy6y5kydPYsCAAfKaWc2aNZOv2i5cuBDLli2Tb6Z1jUzry5Un05VlAAgLC3O4vfkVE/PnlubJla/KZPLkyfjggw8AAHFxcVi7dq3FeoDWREdHy/fT0tIc7iM9Pd3qc73Nk8+Qvc+PJ38r5VUnwPHn2tRzQqVSWbSU2uLM5+vRRx9FUFAQAGDmzJkWj5n+L0kSnnjiCYdllTdPfm/m68aFhoY63N7ee+fJ34D5lWNr4uLiEBsbK/+/YcOGVlv1At0rr7yCwsJCAMC0adNsrtnYsGFD/O9//wNgPD652tpgzvR3npOT43YZpbVt2xYvvfQSACArKwtffPGF1e0kScIHH3yA/fv34+mnn0azZs0QFhaG0NBQtGjRAq+++ioOHz6MW265Ra6fJEmoUaOGRTm7du3Czz//DMDYYnXPPffYrNv7778vtzYvXboUly9f9vj1eqoijjVFRUVYuHCh/P/yamUyX3M6Pz/fqZ5Z5XH8aNasGW699VYAwNmzZy3WiC4oKMCSJUsAAMHBwXjwwQfLPH/UqFG49957bd7Mlf4dOPpuMn/c1ArsKoVCga+//lpe83j69OllWr7K4++qbt262LFjBxYsWIC77rpLXo+0WrVquP3227FgwQKsWLFCXncdMLb2l7cOHTrI5woXL1602L8jP/74o3yeP2jQILd6ozjD9NnQ6XQoKipyuH15nVeZt6qaepOZ/9/0mR0xYoTDXlnmTPV1Jos5w++6EJsHr27dumHjxo0Vuv8PP/xQPkF47bXX8N5770GSJKvbmi8YXt4iIiLk+84srm5+4mn+XF8pKCiQu+Z6KiEhATfffLNXygKAjz/+GG+88QYAYze5v//+26nuQuYB99y5cw63Ny1iXvq53mb6DEmSBJ1O5xcXKcw/12+++abcLbAimEKVTqeDVqt1GGKd+XxVq1YNQ4YMwU8//YQ1a9bgwoULSEhIwPnz5/H3338DMHYTS0xM9PwF+JD5782ZA7699868rBEjRpQ5MHpizJgxFp+vEydO4PXXX8dHH33klfKPHTuGY8eOeaWsrl272u0uaUtxcTHWrl0LwPidbmtYiEnv3r0xadIkAHCq26UtsbGxSEpK8l63r2v69+8vf+9u2LDB7rY33XQTvv32W5uPHzlyRD7BbNKkiXzSbvLXX3/J93v37m13XyEhIbj11lvx119/QQiBPXv22A28FaFp06b4559/ADg+1uh0OiQlJQEwfveZDxGwZ9myZcjKygIAdO7cGc2bN3e7vvaMGzcOR48exbJly7B9+3b069cPq1evtnueYhpOYvqO9ZbHHnsM27ZtA2DsFtm9e3cAwJIlS+QL/4MGDfL4gnOzZs0s/l/677M088c9CSnh4eHo2rUr/vrrLxQXF2PHjh2444475Mfr1q2LkJAQFBYWIikpCTqdzm43Y2fPYZRKJYYPH47hw4fb3Oa///6T77dv397Zl+Q2hUKBmJgY+fw+KyvLqYuyQMV0HwaM31MDBgxAfn6+/N4NGzbM5vbmx9TZs2c73Z3XkV69eqFevXq4ePEiNm7ciHPnzsnDAM2P248++qjTZWq1WjmXmF9s9oTfBdioqCiEh4cjLy+vQsaWlmY6QahevTreffddm+E1NzdXHhtUEWrVqiXfP3nypMPtzbepXbt2udTJFampqWWuSrpr5MiRXhub+tlnn8ljUaKiorB69Wq0adPGqeeah9y9e/fa3dZgMGD//v0AjF+kpcfkeFOdOnVw4MABCCGQlJSEevXqldu+XKmTSUV/rmvXri2PvTxz5kyZkwlzmZmZ8kmcI8888wx++uknGAwGzJ49G2+//TZmz54tj0kZNWqUx3X3NfPvjlOnTjnc3t425fU3YBrnBRhbLtLS0nD+/HlMnToV/fr1w+233+7xPhYtWuS1iy7//POPU2OtS0tLS5NboiMiImwem0zMT4KduShjS4MGDeST25ycHERGRrpdljnzwOLsZ84W8wvd1sbEm7eiOlN/b7133lL6WGPvxPHAgQNymG/RooXDvxOTijpJV6vVWLx4MR544AH89ttvToXYOnXqICsrC6mpqU5dhHTW0KFDMW7cOLnF9auvvkJYWJjFe2ErFDhz0dqkevXqqFGjBlJSUgAYQ2m1atVsbm8eWh2FXUfsfc4UCgVatGiBvXv3QqfT4eDBg3Zbh83nk/BkTDDg+DPrbQaDweIinLMXJbZt24bjx48DMDaeOLoA5onu3btjxYoVuPPOO+UQK4TAAw88YHX78jqmKhQKjBw5EpMnT5ZD61tvvYVNmzbJ45Zdvchlnpfq16/vnXp6pRRndmTWCuSoy0i3bt0AGE82nTlp8ibTF0xiYqLdlqu1a9eWGZhfmiuv2RHzq+2mFh57zFs7HV2pr6q+/vprTJgwAYDxS37lypUuXQls2bIl6tatC8DYAmDvC2Tbtm1yF7cuXbqUa6u46SoyAK+1enuqbdu28onjunXrHH52vKldu3byfVMrhi2OWoLMde3aFS1btgRgvPqp1Woxe/ZsAMYTloEDB7peWT9z0003QaPRADCecDgaLmGaOM6auLg4tGjRAoBxch9vdEk9e/YsxowZA8DY2rRw4UIsWLAASqUSBoMBI0aMsOj2FsjMg1daWprDLmbmrSX2TpYdMT9RNZ3IeYP5sd2dFmlz5hc0rXXbN3/vLl686LA8b7133tKvXz/5/urVq+1uaz7xZf/+/Z0q/8KFC/JnNywszG6rjzeYQuzgwYMBQA6xtr4TTMe0oqIii66+noqMjJTrkJeXh6VLl+LcuXNyuKpbt67XAot5y6ejC97mj3vaW8vR58zZvy0hhMXjzv5tWXPkyBHs3r0bgLF1umvXrm6X5azdu3fLra916tRxuvXVdEwHjI0n5d2jrVu3bli5ciXCw8Oh1+vx8MMPY9GiRTa3NV2g8va5nvlFsh9//BFCCLcmbzIxnzTqxhtv9LR6ACowwJo3dTu6ojly5Ej5/ptvvlludbLG9Ed95swZm6FTr9fL4yXtceU1O9KgQQO52+zBgwfthtg9e/Zg/fr1AIxXOvxhLJip+4E3bt5ofZ05cybGjh0LwHjAXrFiBTp37uxSGZIk4f777wdg/HL/8ssvbW47ffp0+X55nxw88MADcuj46KOP/KIFwdSlCDCeHP7www8Vtm/zIPn111/bDWG2xuLZ8vTTTwMwnhSPHz9evogxcuRIr7US+FJQUJA8E2lKSoo8jtCalStXOpwx2vTdXlBQgClTpnhUN71ej+HDh8snvdOnT0eTJk3QtWtXvPrqqwCApKQkPPnkkx7tBzDOQuyt7y93Wl8B40W2hIQEAMbxS7/99pvd7c1Peswv4riqY8eO8v2dO3e6XU5p33//vXzfNBbRHXPmzJFPhrt06WL1e9w8hP/66692vwPOnTsnv06FQuHV4SruatKkiTzT6smTJ7Fy5Uqr2xUVFVmMyR86dKhT5c+bN0++qDhkyJAKGXakUqmwaNEiDBkyBIAxxPbv399qiB0xYoR8/5133vHqvCPmJ+Jz5861GOPnzcBiPo7W/G+/tMLCQsyfP1/+vydBcd++fXIYVqvVVi/Qm/+NfPfddzYvjK1cuVIOw+3atUPDhg3dqpNer8fzzz8v/980Vr88CSHw1ltvyf93dnbtgoIC/PLLLwCM53ve6qLryG233YYVK1ZYhFjz8ekm1atXl/8+tmzZ4tUQ26hRI4vGxFWrVsnjwkNCQlw+jzU/dpgfUzzijZmgnJmF+Pnnn5e32bhxo93y9Hq9xWK648aNE8XFxTa3LygoEHPmzBELFy4s85j5LMTOrL/Xp08feftp06aVebykpMRidjrYmXHQfEHwefPmOdy3o5maFy9eLD9eq1YtcfTo0TLbnD9/3mLtsq+++spqWabHnZlZ2JVtA8G8efPkWdRCQ0M9WpcxKSlJhIaGClyb+XTt2rVltpkzZ47F7HfOrG3sqYkTJ8r77Nmzp7hy5YrNbfV6vfj777/Fe++9V+YxezPUurrtxYsX5Rl+g4KCHH4mUlJSxLvvvisOHjxY5jFX1pUWQoiuXbvK248ZM0bo9foy25Re69OZmUSzsrLk37/57cSJE07Vy12uzELs6e9t8+bN8uMxMTFWF3A/ceKEqFWrlsV7YG0d2Ly8PFG/fn0BGNcp/Pjjj63+LkyysrLEF198If7+++8yj5kvyl56tlitViuvDw44N3N7IHj55Zfl1xQXF2f1syGEEPPnz7eYuXfXrl1u7/PixYtyOY888ojdbefMmSNWr15td+3K4uJii+8njUYjjh07ZnXbI0eOiNTUVJtlLViwQF6nODg42GY5V69eFWFhYfI+R48ebXX2zPT0dIu1a++88067r7c0V747TMw/f/aet3z5covtSq+bqtfrxeOPP27zM2GLwWAQDRs2dPr8zB32vmO0Wq0YMmSI/HinTp1EdnZ2mTIGDx4sbzNs2DCr25iXuXTpUpvnP+YMBoNo0KCB/J1Uo0YNeT/OrLnrittuu00u29o6sDqdTjz88MPyNh06dCizTW5urpg0aZLdz4UQQuzdu1ckJCQ4PDcXQohBgwbJ2z3xxBNlvpPPnz9vUdaff/5ps6zNmzfbnJk2OztbPPDAAxbnJva+K8yP89aOJ7m5ueK1114TV69etVlGYWGhxedCrVY7/XudO3euRV3Lg71zmc2bN4vw8HABGGeT//nnn8tss3fvXqFWq+Xj88qVK+3u79y5c2LixIkiJSXFYd3Mz13Nj+8PP/yw8y/wmnvvvVcAEAqFQqSnp7v8fGsqbAxsr1695FaoJ554Ai+88ALq168vz2DVuHFjNG7cGIDxqufSpUvRuXNnJCUl4YsvvsAvv/yC+++/HzfddBOioqKQl5eHCxcuYM+ePVi3bh3y8/Px3nvveVzPsWPHyq2bEyZMwIYNG9CvXz9Uq1YNJ0+exI8//oiTJ0+iZ8+eOHnypN1uo7169ZLvv/TSS7h69SqaNWsmD5KvU6cOWrdu7XTdhg4dimXLlmHRokW4cuUKbr75Zjz66KPo3LkzlEol9uzZg1mzZslXMPv27St3ryOjlStX4vHHH5evsD7++OPIyspyuH7WzTffLLd+mKtduzY+/fRTjB49GjqdDnfccQdGjBiB7t27Q6fTYeXKlfJVK5VKhe+//97mzKEALMYrnT171uaarI58+OGHOHDgANatW4d//vkHDRs2xODBg9G5c2fEx8ejpKQEycnJcmt+cnIyevXqhddff92t/Tmjbt26WLRoEe655x4UFxdj5MiRmDZtGu655x40adIEISEhyM7OxokTJ7Bjxw5s3boVer3e4dqtzvjuu+/Qvn17FBQU4JtvvsH27dvx8MMPo27dukhJScHixYuxdetWdO7cGRcuXEBSUpJTV96joqIwbNgwizFTPXr0QJMmTTyus7/o2rUrxowZg2+++QaZmZno1KkTRo4cia5du0KhUGDXrl2YNWsW8vPzMWjQILufpbCwMCxfvhzdu3dHTk4OXnrpJXz33XcYPHgwWrRogfDwcOTk5ODMmTPYtWsXNmzYgJKSEosWCcB4tdnUC6Zu3bplWjRUKhV++ukntGnTBjk5OXjhhRfQvXt3u+OfA8HLL7+MX375BWfPnkVaWho6dOiAYcOGoXv37oiMjJTXgTW/Ej9q1CiPJkmpW7cubrnlFuzduxcbN26EEMLmuMoDBw7gscceQ926ddGnTx/ceOONqF69OjQaDTIyMvDvv/9i2bJlFmNSp06davP3smLFCrz22mvo3bs3unbtKn8fnjt3DsuXL5cnp9JoNFi4cKHNcuLi4vD+++9j/PjxAIAZM2Zg06ZNeOihhyzWgZ03bx6uXr0KwPjZ/vTTT22+L59++qnNia2ysrLKfJcmJiZ6NCv5wIEDMWzYMCxevBjnz5/HzTffjKeffhqtW7dGeno6fvzxR/n9qFWrFqZNm+ZUuRs3bpTHtTVu3FhudakoKpUKCxcuhCRJ+PXXX7Fjxw55TKx51+/Zs2fjxIkTOHToEBYvXozVq1dj6NChaNeunTw5T1JSEvbv34+///4bmZmZTr3fkiTh0UcflXtZmIaR3XbbbfI5qbd8//336NKlCzIyMvDKK69g1apVuP/++xEfH4/z589j3rx5OHz4MABjjwtrE93pdDp8+OGH+OSTT9CtWzd07NgRjRs3RmRkJIqLi3HhwgVs2LDBYphb8+bNMXXqVJv1+vzzz7F9+3akpKRg1qxZOHz4MB555BFUq1YNhw4dwnfffScPxRg+fLjdtc2feeYZZGRkYMCAAbj55psRHx+PnJwcHDhwAIsXL0ZqaioAY6+IRYsWOT1G2xqdTof3338fH330EXr06IFOnTqhYcOGiIyMRG5uLg4ePIhFixbJq4oAwDfffOP077WixoXb0rVrV6xatQr9+/dHXl4eHnnkEQCWrfk333wzZsyYgaeeegqZmZm444470KVLF9xxxx1ITEyEWq1GRkYGjh07hi1btsjjmE3fhfbcf//9GDt2LPLy8nDlyhX55662ROt0OmzZsgWAsduztyZxqrAWWJ1OZ9EKUvpm7cr/5cuXRa9evWw+x/ymVCrFzJkzy5ThagusEJZrcFm7denSRaSmpsotCfaumpqvp1T6Vvq9cqZVSavViieffNLh+zFkyBC762OatqtqLbClW9mcvVm7+mfuk08+ka+CWbtFRERY7SFQmvlznFk72J7i4mLx3HPPyeuXObqNGDGiTBnebMkz2b59u8UVf3u38PBw8e+//5Ypw9UWWCGM6zubWoCt3Vq1aiUuXLggr1V24403OlXuzp07LcopvZZueajIFlghjN/fjzzyiM33TqFQiI8//tjiiq29z8yxY8cs1qq0dwsKCrK4qpyZmSl/9yoUCrvf6wsWLJDLadu2rd2ePIHizJkzDtdZNN2ee+45odVqPd6n+fq+mzZtsrnduHHjnP5OrV69usPvxE8++cRhOQ0bNhTr1q1z6nVMnTpVbrG1d2vQoIHYsWOH3bJMf4PO3mwdP51tgRVCiKKiIosWLGu3Ro0a2WyZt8b8c/3+++87/TxXOPMdo9VqxdChQ+XtOnbsWKaVNTs7WwwbNszp99zRGtgmZ8+eLbPW8OzZsz192Vbt2rVLJCYm2q13vXr1xJ49e6w+PzMz06W/u8GDBzvV2rZv3z6Hx+WHHnrI4Xdoy5YtnaqTvVZTE0ctsK68F9WqVRO//vqrw32anDp1Sv6biIqKcrjevLucOZfZsmWLvG62Uqm0eo7x+++/W/QecPReOPP+CyHK9Dht0KCB3VZza1asWCE//4cffnDpufZUWIAVwtiUP2XKFNG5c2cRExNjcWJt7yRrw4YN4umnnxYtW7YU0dHRQqlUisjISNGiRQsxbNgwMWPGDHH58mWrz3UnwAohxMqVK8WAAQNEXFycUKvVolatWuL2228XM2fOlE8InAmwOp1OzJgxQ/To0UPExcUJlUpl871y5aR8+/bt4oknnhCNGzcWYWFhIiQkRCQmJoqHH37YqYO5o4Oqu9v6u/IKsEIIcejQIfHss8+Kpk2birCwMBERESFatWolXn75ZXHu3DmHz8/Pz5f3p9FovNbN4uTJk+KVV14RHTt2FPHx8UKlUonQ0FCRmJgo7rzzTvHBBx9YDYlClE+AFcJ4srJgwQIxdOhQkZiYKMLDw4VKpRKxsbGiXbt24qmnnhKLFy8WeXl5Vp/vToAVQojk5GTxv//9TzRr1kyEhISI6Oho0a5dOzF16lSRn58vDAaDCAkJEQBEjx49nCrTYDDIC5DHxsaKoqIil+rkjooOsCZ//PGHGDBggIiPjxdBQUEiISFBPPjgg2Lbtm1CCOF0gBXC+L793//9nxg5cqRo2rSpiIyMFEqlUkRHR4ubbrpJjBgxQsydO7fMovHmJ7CvvPKK3X0IIcTw4cPl7SdOnOhw+0Cg0+nEb7/9Jh544AHRuHFjER4eLr93N998s3j++eddCjGOZGZmyl1wn3rqKZvb5eXlid9//11MmDBB9OjRQ9StW1cEBwcLpVIpoqKiRPPmzcUDDzwg5s2bZ/Ozbe7ixYvi888/FwMHDhRNmzYVUVFRIjg4WCQkJIgBAwaIWbNmuTwk49y5c+LNN98UXbt2FfHx8UKtVovg4GBRt25dcffdd4uZM2c6dbLqiwBrsnLlSnH//feLevXqiaCgIBEXFyc6d+4spk2b5tT7apKTkyMPgVAoFOLSpUtOP9cVzn7H6HQ6i8+3tRArhDFsjR8/XrRt21ZUq1ZNqFQqER4eLpo0aSIGDRokpk2bJk6fPu1SHW+//XZ5v2FhYSI3N9fVl+m0vLw88fnnn4vbbrtN1KhRQ6jVahEXFyd69uwpvvjiC4d/f//995/4/PPPxQMPPCBat24tnxcHBweLmjVriu7du4uXX37Z5e+AvLw88emnn4rOnTuLuLg4ERQUJOrVqyfuv/9+h11TTTZu3Chefvll0aVLF/nvMyoqStxwww1i9OjRYsuWLU7Xx1GA1ev14p9//hEffPCBuOeee0TLli3l9zM8PFw0aNBA3HvvveLbb7916XMhhBCvv/66vO+nn37apee6wtlzma1btzoMsQUFBeLbb78V99xzj6hXr54ICQkRGo1GxMfHi86dO4uxY8eKP/74w6ULuZs2bbL4HnN0jmDNQw89JABjF2dXfw/2SEJ4OD0uEXnF6tWr5QH5zz//vMsTCpHnDh06JM+Q5+zvYO3atejTpw8A4xqHn3/+eXlWkcgnxo0bh+nTpyM6OhqXL1/22mL0RERUOeXk5KB27drIz8/Hyy+/7PHkjeYqbBZiIrLPtAZxREREuY5FJdu++uor+b6zY29nzJgh368Ma78SWfPyyy8jJCQEWVlZFn/zRERE1kyfPh35+fmIiIjw+ozTDLBEfsIUYCdMmID4+Hgf16by2bx5s931Z7/++mt5MqA6dergrrvucljmgQMH5EmLevfuLa9zSlTZ1K5dG+PGjQMAfPzxxygoKPBxjYiIyF/l5OTgs88+AwC8+OKLHq/3XRq7EBP5gbS0NFSvXh1xcXE4ffp0hazDV9U0btwYRUVFuOOOO9C2bVvEx8dDq9Xi9OnTWLZsGfbv3y9v+8cff9gMsKtWrYLBYMCJEyfw8ccfy7PzbdmyBV26dKmQ10LkC/n5+WjWrBmSkpIwdepUTJw40ddVIiIiPzR58mS88cYbSExMxH///Wd3BQ53MMASUZXQuHFjnD592u42ISEhmDlzJoYPH25zG2vT/js7XnbNmjVut1zFxcWha9eubj2XiIiIqLJggCWiKmHHjh1YunQpduzYgaSkJKSnp6OgoAAxMTFo2rQpevfujdGjR6NGjRp2yzEF2PDwcDRt2hSjR4/G448/7tS6sQ0aNMD58+fdqn/37t2xYcMGt55LREREVFmofF0BIqKK0KlTJ3Tq1MnjcnjNj4iIiMh32AJLREREREREAYGzEBMREREREVFAYIAlIiIiIiKigMAAS0RERERERAGBkzgREVGlIoRAUVER8vPzUVhYiIKCgjK3wsJClJSUyLfi4mK7/9fr9TAYDNDr9fLN9P/S/5ooFApIkmT3plAooFar5ZtKpbL7/6CgIISEhCAkJATBwcEIDg62eT88PBzh4eFQq9U+/G0QERF5FwMsERH5HSEECgsLkZ2djZycHOTm5lr8a+1+Xl6eHE4NBoOvX4LfCAoKksOs6RYREVHm/9HR0Ra38PBwq+seExER+RJnISYiogohhEBeXh4yMzORkZFh8a+1nxUXF3u0P0mSEBISgrCwMISEhCA0NFS+hYSEYN38LYABkAwSIN/M/w9AGO9L4tp9gWu3a/dh+XMJ1x6/lvsErt+HfF+Y3QeguPZEhYCQLP8PSQAKQFz7FwoBKAXufKYXCgsLUVRUhKKiojL3TTdPKJVKREVFyYHWdD82NhbVqlVDXFyc/G9UVJRTayETERF5igGWiIg8JoRATk4Orl69iqtXryI1NRWpqany/003V0OVRqNBZGQkIiIiEBkZicjISGz9dTcknQLQKSDpJEB77V+9AtBJkPQSoL8WPFF1WxAFjGEXKgGhMhj/VRos/n/vhDuQm5uL3NxcZGVlybeCggKX9qVUKsuEWtOtRo0aqFmzJuLj49mdmYiIPMYAS0REDgkhkJ2djcuXL+PKlSsWt+TkZKSmpqKkpMSpssLCwhATE4PY2FgcXn8cKFFA0hpv8v0SBaBVGltDqcIJSQBqA4TaIP8r1AJQGdB/dA+kp6cjPT0daWlpyMrKgjOnEpIkIS4uDtWrV0fNmjXlYGv6t2bNmggJCamAV0dERIGMAZaIiAAAer0eycnJuHjxIi5evGgRVpOTk51qPY2JiUF8fDzi4+Ox/dd9kEqUkIoVkEqUwLV/GUorFznsagwQGj2gMeDBdwYhPT0dqampSElJQUpKilMXOGJjY1G3bl3UqVNH/td0PywsrAJeDRER+TsGWCKiKkQIgaysLFy4cEEOquaBVavV2nyuqQWtVq1aOLz2BKQi5fVbsdLYeioYTqksgWshN8gAEaSHCNZj4MS+SE5OlgNuXl6e3TKio6PlMFu3bl3Ur18fDRo0QJ06ddg1mYioCmGAJSKqhIQQSE9Px5kzZ3D27FmcPXsW586dw4ULF+wGBY1GIweErT/vkQMqroVUBlQqL0JpgAgxhtuRnwxBUlISkpKScOnSJWRmZtp8nlKpRJ06ddCgQQPUr19fDrYJCQkIDg6uwFdAREQVgQGWiCjAZWVl4ezZs3JYPXfuHM6cOWMzqEqShJo1a6JevXrYu/wQpEIVpEIlpEKVsZtvFZ74iPyTUBoggo3h9vHPhuHChQs4f/48zp07Z7Nru+nvPDExEY0aNUKjRo3QuHFj1KlTB0qlsoJfAREReQsDLBFRgBBC4PLlyzh58iROnjyJEydO4OTJk8jIyLC6vall6tK+FEgFKkj5quthlS2pVAkICEBjgAjVwRCqx4DxPXHu3DmcP38e2dnZVp8THByMxMRENG7cGA0bNkTjxo3RqFEjhIeHV3DtiYjIHQywRER+SKfT4fz583JIPXnyJE6dOoX8/Hyr29euXRvJh9IhFSgtwyqDKlVRQmUMtiJMhzvG98CpU6dw5swZm+sL16xZE02bNkXz5s3RvHlzNGvWDBERERVcayIicoQBlojIx4QQuHLlCv777z/8999/OHr0KE6ePGl11la1Wo2GDRvi5MYLUORdC6r5KkgGhQ9qThRYBIRxnG2YDg++fw9Onz6NU6dOITU11er2derUsQi0TZs2RWhoaAXXmoiIzDHAEhFVsJycHBw7dswisFrr7hgaGorGjRvjyKqTkPLUkPLYqkpUHoTKABGmw5PfPIBjx47h+PHjuHz5cpntJElC/fr1ccMNN6BVq1Zo1aoV6tevD4WCF5CIiCoKAywRUTkSQuDChQs4dOgQDh48iCNHjuDSpUtltlOpVGjcuDFOrD8PRa4aUq7aOAMwJ1Qi8gmhMkCEazHy8yE4fvw4jh07hqtXr5bZLjw8HC1btpQD7Q033MBWWiKicsQAS0TkRTqdDidOnMChQ4fw77//4t9//7XaulqnTh1c2Z8OKVdtDKz5bFkl8ndCrYchQocHP7wbhw8fxtGjR1FUVGSxjUKhQKNGjeRQ26ZNG1SvXt1HNSYiqnwYYImIPFBcXIzDhw/j4MGDOHToEI4cOVLmhFaj0eCGG27A4T9PQcq5Flh17HJIFOgEBESYDmPmPoIjR47g8OHDSE5OLrNdnTp10LZtW7Rp0wZt27ZFfHy8D2pLRFQ5MMASEblAp9Ph+PHj2Lt3L/bt24fDhw+XmWwpPDwcBRdKIGVroMhRG8evsnWVqEoQGj0MEVrc91Y//Pvvvzhx4gQMBoPFNgy0RETuY4AlIrLDYDDg7NmzcmA9cOAACgoKLLapVq0aMo/mG8Nqjsa4lA3HrhIRAKE0wBCpxZD3+uPAgQM2A2379u3Rvn17tG3blmvSEhHZwQBLRFRKeno6du3ahZ07d2Lfvn3IysqyeDwiIgL5Z0ugyNZAytJAKmRgJSLnOAq0SqUSLVq0QPv27dGhQwc0a9YMSqXShzUmIvIvDLBEVOXpdDocOXIEO3fuxM6dO3Hy5EmLx4ODg1F82QBFtgaKLI1xwiUGViLyAqE0wBBVgnte74Xdu3fj4sWLFo+Hh4ejXbt2cgttzZo1fVRTIiL/wABLRFXS1atX5VbWPXv2IC8vz+LxZs2a4dTfl4yBNZdjWImoYoggPZ5f/Ch2796NvXv3lvluSkxMxK233opbb70VLVq0YOssEVU5DLBEVCUIIXDy5Els2bIFW7duLdPKGhkZibxTJVBkXmtl1fKkkIh8S0BARGjxyBf3Yvfu3fjvv/+g1+vlx6OiotCpUyfceuut6NChA8LCwnxYWyKiisEAS0SVlk6nw8GDB7FlyxZs2bIFKSkp8mOSJKFZs2Y4ueYiFJnXWlnZLZiI/JhQGfDyX89g+/bt2LFjh0XrrEqlwk033YRbb70VXbp0Qe3atX1YUyKi8sMAS0SVSkFBAXbt2oUtW7Zg27ZtFid4QUFB0F4GFOlBUGQEcS1WIgpYQjK2zt73fl9s27atzNjZJk2aoHv37ujevTvq16/vo1oSEXkfAywRBbz8/Hxs3boV//zzD3bv3m2xLmtUVBRyTxQbQ2tWECQDW1mJqPIxBOswas4D2LZtG/7991+LrsYNGjRAjx490L17dzRs2BCSxO9BIgpcDLBEFJAKCgqwfft2rF+/Hjt37rQIrXXq1EHyzkxjK2sOuwYTUdUiVAaM/+0xbNy4EXv37oVOp5Mfq1u3rtwy26xZM4ZZIgo4DLBEFDAKCwuxY8cOrF+/Htu3b7cIrfXq1cPlrRlQpAVDKuC6rEREgHGZnhf/HIWNGzdi165dZS729e7dG71792Y3YyIKGAywROTXdDoddu/ejTVr1mDr1q0oKiqSH6tTpw6St2dBkRYEqYBrsxIR2SOUBkxaNQabNm3C9u3bLb5PmzZtit69e6NXr16Ij4/3YS2JiOxjgCUivyOEwIkTJ7B69WqsW7cOmZmZ8mO1a9dGys4sY0trPkMrEZE7hELg5ZVPY+3atdi1a5c8ZlaSJLRp0wZ9+vRB9+7dERER4eOaEhFZYoAlIr+RkpKCv//+G2vWrMG5c+fkn0dHRyP3SAkUV4Mh5TG0EhF5k1AZ8Nwvj2Dt2rX4999/5Z+r1Wp07twZAwYMQPv27aFSqXxYSyIiIwZYIvKpoqIi/PPPP1i9ejX2798P01eSRqOBLkmCIjUEiiwNJMHQSkRU3kSQHo/OvA9///03zp49K/+8WrVq6NevH+68804kJCT4sIZEVNUxwBKRT5w4cQJ//vkn/v77b+Tn58s/l7LVUKaGGMe16rlOKxGRrxhCtbh3Sm+sXr0a2dnZ8s9bt26NO++8Ez179kRoaKgPa0hEVREDLBFVmPz8fKxduxZ//vknjh8/Lv+8Vq1aSN2RA2VqCKRipQ9rSEREpQlJ4I31Y7FixQrs3LkTBoMBABASEoIePXrgrrvuQqtWrbgkDxFVCAZYIipXQggcPXoUv//+O/755x8UFhYCAFQqFQxXlFAmh0DK1nBcKxFRABAaPR6bNRgrVqzAxYsX5Z83atQIgwYNQp8+fdgqS0TligGWiMpFUVER/v77b/z22284ffq0/POEhAQkbcyAMiUEko5dhImIApGAwGcH38Jff/2FdevWobi4GAAQGhqKfv36YdCgQUhMTPRxLYmoMmKAJSKvunLlCpYvX44///wTubm5AK5NyHRJYWxtzVGztZWIqBIRSgNG/TQMy5cvx6VLl+Sft2nTBgMHDkS3bt2gVqt9WEMiqkwYYInIY0II7Nu3D0uXLsW2bdvk8VG1atVC6rZcY3DlhExERJWagMCUXa9g+fLl2Lp1q7y2bGxsLAYOHIhBgwYhJibGx7UkokDHAEtEbissLMSaNWuwdOlSi3VbpUwNlFdCocjg2FYioqpIaPR46Ju78PvvvyMjIwOAsTdO3759MXToUDRo0MC3FSSigMUAS0Quy8zMxG+//YZly5YhJycHgHE2yuLTMAbXQi52T0RExhmMJ60ZjcWLF+PYsWPyzzt27IihQ4eiXbt2nL2YiFzCAEtETrt06RJ++eUXrFixAiUlJQCAOnXqIHlTDpSpwewmTEREVpkmfVq8eDE2b94M0+lnw4YNMWzYMPTq1QsajcbHtSSiQMAAS0QOHT16FAsXLsSmTZvk8a1SrgrKS2FQpAexmzARETlNBOtw94c9sGLFCnlptdjYWAwbNgwDBw7kMjxEZBcDLBFZJYTArl278PPPP2P//v3yzxUZGigvhXE2YSIi8ohQGvDEj0OwZMkSXL16FQAQERGBwYMHY8iQIYiMjPRxDYnIHzHAEpEFIQS2bduGefPmyeOVlEolxGU1lElhUBRwfCsREXmPkAQm/PE4fvrpJ1y8eBGAcV6FgQMHYujQoYiLi/NxDYnInzDAEhEAwGAwYOvWrZg7dy5OnjwJAAgODob2tALKpFBIJUof15CIiCozAYHX1j2LBQsWyMchjUaDO++8E4888gji4+N9XEMi8gcMsERVnMFgwKZNmzBv3jycPn0agPHKd8kJCcqkMEg6TsxEREQVR0Dgva0TMX/+fBw+fBiAMcjefffdePjhh1GtWjUf15CIfIkBlqiKEkJg+/btmDlzphxcQ0NDUXxMgvJyKIMrERH5lIDAJ3tfw6xZs/Dvv/8CAIKCgjBo0CA89NBDiImJ8XENicgXGGCJqqD9+/fj+++/x5EjRwAAYWFhKDoKBlciIvI7AgIf7Z6EH374QT5uBQcH47777sNDDz3EyZ6IqhgGWKIq5OjRo5g5cyb27NkDwHglW3dKya7CRETk9wQE3t/+ImbNmiVPMhgeHo7hw4djyJAhCAoK8nENiagiMMASVQEXL17Ed999h02bNgEAVCoVDBfUUF0Mg6Tl5ExERBQ4BATe3TLBYghMfHw8nnjiCfTr1w9KJY9rRJUZAyxRJZadnY25c+di+fLl0Ov1kCQJUnIQVBfCIRXzAE9ERIFLQODFlU/hhx9+QEpKCgAgMTERTz/9NDp37gxJ4lrlRJURAyxRJVRSUoLffvsNP/74I/Ly8gAAigwNlOciuI4rERFVKkISePKnIZg/fz5yc3MBAG3btsXYsWPRuHFjH9eOiLyNAZaoEhFCYOPGjfj2229x+fJlAICUr4LqTDgU2RwbRERElZdQGjDkyz5YsmQJSkpKoFAocNddd+HJJ59EdHS0r6tHRF7CAEtUSZw5cwaff/45Dhw4AACoVq0asndooUgJhgR2oyIioqphwZWv8O2332LdunUAjBM9Pfroo7j33nuhVqt9XDsi8hQDLFGAy8vLw+zZs7Fs2TLo9XrjzMInVVBeCoVk4MzCRERUNU3d/zqmT5+OkydPAgDq1auHsWPHolOnTj6uGRF5ggGWKEAZDAasWbMG3377LTIyMgAAirQgqM5GcIImIiIiGCd6Gv/7o5g5cyYyMzMBAN26dcPzzz+P6tWr+7h2ROQOBliiAHT69Gl8+umnOHz4MABAKlBCdSYCiiyOcyUiIipNKA249/PbsWTJEuj1eoSEhODxxx/H4MGDoVJxckOiQMIASxRAiouLMXfuXCxatEg+AJf8p4TycigkwXGuRERE9nx7cgqmTZuGQ4cOAQAaN26MCRMmoFWrVj6uGRE5iwGWKEDs3bsXU6dORVJSEoBr3YXPREAqYXdhIiIiZ5m6FX/77bfIyckBANx9990YPXo0wsPDfVw7InKEAZbIz2VnZ2PGjBlYsWKF8QfFCqhOR0CZEezbihEREQUwoTKg97vt5eNrfHw8/ve//6Fz584+rhkR2cMAS+THNmzYgGnTpiErKwuSJEFKCobqfDgkPWcXJiIi8oZP9r2Gjz76SO7h1K9fP4wdOxaRkZE+rhkRWcMAS+SHcnJy8Pnnn2Pt2rUAAClfCdWpSChyNT6uGRERUeUjFAL3ftETv/76KwwGA2JjY/HCCy+ge/fuvq4aEZXCAEvkZ7Zt24aPP/4YGRkZUCgUkM6FQHkxjJM0ERERlbPPD72NKVOm4Pz58wCAXr16YcKECYiIiPBxzYjIhAGWyE/k5eXhq6++ksfiSAVKqE5EQZGn9nHNiIiIqg4hCQz7th9+/vln6PV6xMfH49VXX8Utt9zi66oRERhgifzCoUOH8O677yIlJQWSJEFxKQTK8+GQDGx1JSIi8oUvDr+DyZMn49KlSwCAoUOH4qmnnkJQENdcJ/IlBlgiH9Lr9Zg/fz7mzp0Lg8EAFCmhPhEJRQ7HuhIREfmaUAj0n9IJv//+OwAgMTERb775Jho1auTjmhFVXQywRD6SkpKCyZMn4+DBgwAARWowVKcjOMMwERGRn3l783h89NFHyMrKglqtxrPPPot7770XksSeUkQVjQGWyAc2btyIjz/+GLm5uQgJCYH2gBrKqyG+rhYRERHZ8Ev69/joo4+wbds2AECPHj3w0ksvITw83Mc1I6paGGCJKpBWq8U333yDpUuXAgCkXBXUx6MgFal8XDMiIiJyREBg1KKhmDFjBvR6PWrXro133nkHzZo183XViKoMBliiCnL16lW89dZbOHz4MABAeSnUOFETl8chIiIKKF8cfgdvv/02kpOToVar8dxzz2HQoEHsUkxUARhgiSrAvn378M477yAzMxPQSVCdiIQyI9jX1SIiIiI3CaUBHV5shi1btgAAevfujZdeegnBwTy+E5UnBliiciSEwMKFC/H999/DYDBAyldBfZRdhomIiCqD0l2KmzRpgvfffx81a9b0ddWIKi0GWKJyUlRUhA8//BD//PMPAECREgzV6Uiu7UpERFTJfLz3Vbz55pvIzs5GVFQU3n33XbRt29bX1SKqlBhgicrB1atX8dprr+HYsWNQqVTAsRAokkMggeGViIioMlpw5Su8+uqrOHnyJJRKJZ599lkMHjyY42KJvIwBlsjLjh07hkmTJiE9PR3QSlAfjYYiR+PrahEREVE5EwqBHm+3wZo1awAAd999N1544QXjxWwi8goGWCIvWrduHT788EOUlJRAyldC/V80pGIetIiIiKoKAYGnFt6PGTNmwGAwoH379nj33XcRFhbm66oRVQoMsEReIITATz/9hO+//x4AoMjQQHU8CpJe4eOaERERkS+8tWkc3n33XRQVFaFhw4b46KOPUKNGDV9XiyjgMcASeUiv12P69OlYtmwZAECZFArl2XCOdyUiIqrivjo6GS+//DIyMjJQrVo1TJkyBc2aNfN1tYgCGgMskQeKi4sxefJkbNy4EZIkQXE6DKrL7CJERERERguufIWXXnoJZ8+eRUhICCZPnoz27dv7ulpEAYsBlshNubm5ePXVV3Hw4EHAAKhOREGZxsXLiYiIyJJQGnDj2PrYs2cPVCoV3nzzTfTo0cPX1SIKSAywRG7IyMjAhAkTcObMGUB3babhbM40TERE5FOSBPj61NZGHYQk0OX1lvjnn3+gUCjwv//9D3fddZcPKkgU2BhgiVx09epVvPDCC7hw4QJQrID6SDQUBWpfV4uIiIgAz0Osad1WT8uwFmIh0O+jjvjjjz8AAKNHj8aDDz7o/n6IqiAGWCIXJCcnY/z48bh8+TJQpIDmcAykolLL5HjjwEdERETukcwmUXTnWOzp8x2UISAw5Jve+PnnnwEAI0aMwBNPPAFJ4uSPRM7gGh9ETrp06RKee+45Y3gtVEJzKNYyvEqS5QGLiIiIfMud47J54PTGsb1UGRIkLB2zDs888wwA4Mcff8SsWbPANiUi5zDAEjnh4sWLGDt2LFJTUyEVKKE5FAOpWGl8kMGViIjIf5VDCPVGGXMeXobnnnsOgDHEzp49myGWyAkMsEQOXLlyBePHj0d6ejqkfBXUh2IglZiFV2t4ACIiIvIvFRlk7Z0HmD1/5gO/yiF23rx5mDNnjmf1I6oCGGCJ7DBN2HT16lVIBUqoD8dA0irZ6kpERBSovHH89mIQnvnAr3j22WcBAHPnzmWIJXKAAZbIhszMTLzwwgvymFf14RhIOiWDKxERUaDzs27FPzy4BGPGjAEAzJkzB0uWLPGsXKJKjAGWyIrc3FxMmDDBuFROkQKaIzGQtCrHTyQiIqLA4UdBdtbw3/DEE08AAKZPn441a9Z4ViZRJcUAS1RKSUkJXn31VZw+fRooUUB9JBZSMcMrERFRpeUP3YoBzH/8TwwePBgA8OGHH2LHjh0el0lU2TDAEpkxGAz44IMPcPDgQUAnQX0kBorS67wSERFR5eMHrbESJPwxYQv69OkDvV6PN954A4cOHfKsTkSVDAMskZlvv/0W69evBwyA+lg0FAVq9wriOFkiIqLA5OPWWAkSNr7zLzp16oTi4mJMmjQJly5d8rxORJUEAyzRNUuXLsWiRYsAAKpTUVBkB/mmIpzhmIiIyLckhfHmozIkIWHfZ2dxww03ICcnB6+88gpyc3M9qw9RJcEASwRgx44dmD59OgBAeS4cyqshvqkIgysREZH/8DTEmspwoxzJIOH9999HfHw8Lly4gLfeegs6nc7z+hAFOAZYqvIuXryId999F0IIKJJDoEwKq/hKsNWViIjIP3mjNdZUjoserDEGU6ZMQUhICPbs2YPPP/8cQgjP60IUwBhgqUrLz8/Hq6++iry8PEg5aqjOREJCBQZJBlciIiLvKc9jqo+6FY+54Q288cYbkCQJv//+O5YtW+ZZHYgCHAMsVVkGgwHvvfcezp8/DxQroD4eC0lUcHglIiKiwOKD1th3enyFZ555BgDw1Vdf4b///vO8DkQBigGWqqx58+Zh27ZtxhmHj8dC0iq9c1ByhK2uREREga2iWmPNHp/1yHJ0794dOp0Ob775JrKysjzbP1GAYoClKmnfvn2YO3cuAEB1OhqKPE3F7NiV4MqQS0REVPFcCaYVOMmTBAmvvPIK6tWrh9TUVLz33nvQ6/We758owDDAUpWTlZWFyZMnGydtSgmF8mpo+e+Ura5ERESVUwVO8jQo6gm8++67CAoKwu7duzFv3jzP90sUYBhgqUoxGAz44IMPkJaWBqlABdXZyPLfKYMrERFR+fP18baCWmOfafYaXnzxRQDAjz/+iEOHDnm+X6IAwgBLVcqvv/6KHTt2AAZAdSIGkqEcPwJsdSUiIqpaTAHUG+Nj7fjkztno168fDAYDJk+ejPz8fM/2RxRAGGCpyjhz5gy+++47AIDqbBQUBWrrG/porTfr5TAAExERVRgvHb8lpdILhSjsljNu3DjUrFkTV65cwZdffun5/ogCBAMsVQk6nQ5TpkyBTqeDIiMIihTr414lhYeB0VvjYIiIiCigSUqlV4KsrTLujX4Sr732GiRJwooVK7Bx40aP90UUCHimTVXCokWLcOzYMUAnQXU6GhIsg6qkkLwTXomIiKji+XGPJW+FWGvl/O+WD/HQQw8BAKZOncqldahK4Bk3VXrnzp3DnDlzABi7DktaywNA6eAqKSTXp9C3tj0DLRERUZVjLWi60xprq5zSfn1uPRo2bIjs7Gx88803Lu2DKBDxDJsqNYPBgClTpkCr1Rq7Dl8NkR8LmFZXP76qTEREVGlUwDG9PFpjJSHhpZdegiRJWLVqFfbu3evxPoj8GQMsVWorVqzAf//9Z+w6fOZ612GPg6uxEM/LICIiIs8E2IVer0zwVKqccTe+i0GDBgEAPv30UxQXF3tlH0T+iGfgVGnl5OTIsw4rL0ZAKlE63epqtxsxJ2oiIiIiDzjqUuxsyDUvZ9SoUYiLi8OlS5cwf/58r9STyB/xLJwqrR9++AHZ2dmQ8lVQXgnzTasrl9MhIiLyfz5aPsebrbGDop7AuHHjABgnr7xy5YpXyibyNwywVCmdOHECv//+OwBAdT4aCoUXFhRnqysREZF/qQQXeL253M7kvt/hlltuQUlJCb7//nsv1I7I//CMnCodIQS+/vprGAwGKNJCoMwJcqscuRuxp8GVrbBERET+y0etr7ae70k5EiQ8++yzkCQJ69atw+HDhz2qE5E/YoClSmf37t3Yv38/YADUFyI9Kssr3Y6JiIjI+yrhhV1JqYSkUXtUxpiWb+GOO+4AAHz99dcQQnijakR+gwGWKhUhBGbOnAkAUKaEQSpRuV+Yv3UZ5gGIiIjoOiG8c2wUBuPNUwrJePO4HIXHIfbJJ59ESEgIjhw5go0bN3peJyI/4mdn6ESe2bhxI44fPw7oJaiSo90vyBReJYV/LLnD8EpERGSdt46RHoRYi26/Hpw3yMHVwxA7vMFEDBs2DAAwd+5cGAxeCOhEfoIBlioNvV6PH374AQCgSo2CpHNjDIk/TtbE8EpERGSfr0Ns6dDqbmus+aST10KsW0FWknD//fcjNDQUZ86cwZYtW1wvg8hP+dmZOpH7Nm/ejAsXLgA6BVSp0a4XYGfdV5+0wnqraxQREVFV4M0Q60KQtTvpkgvnD1aDqkLhdmvskNpjMXjwYADAvHnzOBaWKg0GWKoUhBD4+eefAQCqtEhIBgUklQpwdiY/troSEREFPm9e/HU2xDoKqc6GWHtL/rkQYiX19fk/hg4dipCQEJw8eZKtsFRp+NlZO5F7Dh48iGPHjgEGCaqrUc4/saK7DDuzL4ZXIiIiz1RQiHV6yRtvTPDkbJdis9mZh9Ydh/vuuw8AsHDhQs/2T+QnGGCpUjC1virTIyzGvtpthXUluHqrG7E97DJMRETkPRXRpdjVcwMb2zvdRdhBl2Lz1leTwYMHQ6VS4fDhw8aL/UQBjgGWAt65c+ewY8cOQBgnb3KKL7sMW9s3gysREZH3efP4WirEOt36Wpq1EGuv+7DVMmyEWCtr4w5P/B9uv/12AMCSJUtc2w+RH2KApYD3xx9/AAAU2aFQlJT9MrdohfWky3B5tcIyvBIREZWf8hoX68k5gdlz3V4up1SXYmutryZDhgwBAKxfvx7p6enu7Y/ITzDAUkArLi7GqlWrAACq9Eib20mS5J1WV2/PSMzwSkREVDG8GGLdbn01p5CgCA9zvfXVogyzLsVWWl9NxrWfgpYtW0Kn02H16tXu74/IDzDAUkDbsGEDcnNzIZWooMgJsbqNpFRCCgnxaEFwrzIfS2PnYENERERe5KVjrhxeDV4IxArJK+cnivhqUMRXs7vNgAEDAAArVqzgkjoU0BhgKaCtXLkSAKBMi4AEywOTpFRC0miM3Ye92fXXk1ZYdxdIJyIiIvd5+4Kx6WK0ByFWERoq3/c4xF5ribUXZKcP/wXBwcG4cOECDh8+7Nn+iHyIAZYCVlpaGvbv3w8AUGaGWzwmKZXXg+u1sClpNL5thbUVXtkKS0REFBDKdB32JMSWuhju1BI51oqpFmP2n+tBtjTJoEDPnj0BQB5+RRSIGGApYK1fvx5CCCjygiwmb7IIr+Z82QrLllciIiLfKO8LxW6EWPPW19JcDrHWxtDaCLF9+/YFAGzatAk6nc61/RD5CQZYCljr1q0DYNn6ajO8mh73ZiussyHWmfDKVlgiIiLv8+Lx1e7ETS6EWEVoqMOL6s6eq1i0vpZ5sGyIndRjOqKiopCdnY0DBw44tQ8if8MASwHp6tWrOHr0KCAAZVaY8+NdFVLFdSW2t/C5NQyxREREfsmpWYdNIdZRkHWyB5ejcxVFtRjHMxiXGhcrQUK3bt0AAP/8849T9SDyNwywFJB27NgBAJAKgqAQQWXGu9qlkDybst6crVZYdhkmIiLyLV9cGHYwuZO9rsPW2A2xzp7LlBoX26NHDwDAli1bYDDwfIUCDwMsBaStW7cCAFQ54W7NMiypVOXXldiT8MpWWCIiIs9VVNdhW6yEWGe6Dlvdv5XJnex2HbblWoh9rddXCAkJQWZmJk6dOuV6OUQ+xgBLAae4uBh79+4FACjzI9ybnKm8uhJ7o+WVIZaIiMgvuBVeTUqHWA8nkzSdszjVddgWhQLKuDi0bdsWALBr1y6P6kTkCwywFHCOHj2K4uJiQKuEpA12vyB/WRuWiIiIvMefLgRfC7Gudh22RdKoPR8GpVCgQ4cOABhgKTAxwFLAMc2apywIgwRPr2Z6oRXWfLImiR8pIiKiSkFSQLi7xqt5MRo1oNcDWs+XrdE1T0BJ7WiPy2nfvj0A4MiRI8ZGAaIAwrNtCjimAKtQVfesoGsHJY9CbHlN1uRPV4+JiIgChbeOn2YXpD0OsQoFhBAQQngUYnXNE2BQKyBUCo9D7MNP/oSYmBhotVqcOHHCo7KIKhoDLAUUnU6HI0eOAAC0cbWBmvGuF+LMFPfOsBJeJYXkvVZYhlgiIiLnlUN4NXE3xEpBQZbleBBiDWqzUH0txLoTZAsbx0GoFWjVqhUA4PDhw27Vh8hXGGApoFy4cOFaVxcVoIpAYd0I10KsjQOQy62wdlpeGWKJiIgClJ3jt6shVgoKsjpe1Z0Qq2ueULYcleutsYWN42BQGc8tGGApUDHAUkCRu7koIwFJglBKECon/4wdHHicDrFOdBv2aoglIiIi+yrogq8wCKeCrK3wKpfjQog1dR22WZYLIdYUXgHghhtuAACcPHnSqecS+QueYVNAuR5go+SfFdUMc9wK6+RVU4chtrzGvNrDVlgiIiLbyrHrsC0OQ6wTMwU7E2IdhVe5LCdCbGHjOIv/P//anwCA5ORk5OfnO9wHkb9ggKWAcvr0aeMdRaT8M6GU7HcldrXLj60Q62J4ZVdiIiKicuaD8GpiK8SWHvdqtww7IVbXrJ5T4VUuy06ILWxYzaL1FQAgaRAfbzx3OnPmjNP7IfI1BlgKKJcuXTLeUYRb/NxmiPXGZE2A2y2vDLFERETlxIfh1aR0iHXUddhqGTZCrEGjdL0+VkJsYcNqMGis16lhw4YAGGApsDDAUsAoKirC1atXjf9RhJV5vMx4WA/Cq9wKa77Gq7tlMcQSERH5Jy8cn00h1p3wKpdhCrHXgqyuWT3361MqxNoKrwBQr55xP5cvX3Z7f0QVTeXrChA5Kykp6do9NaDQWN2mqGYYQnTxwOVUj/cnKZUQSqVx8XEiIiLyH/52QVdSuB1eTYS4duG9VnW3Wl8tyroWYvXB9supWbMmAOM4WKJAwRZYChgpKSnGO4pQm9uYuhKLOjU825kwQOj1kFQqQOnhQcTUEsxZiYmIiLxD+HaIkDnp2nmCKCnxuCzUrwOoFFDlFntclOKdNGhetR9Ma9WqBQC4cuWKx/sjqig8o6aAkZ6ebryjsD85glBJKKoTDtSu7t6OhAHCbCyKJyHW3YXPbRfo5fKIiIgClR+FWACAQXgWYq+FVwCQ9MKjECu9cRU3RCejeVQKgv9nu3vwax+sAgCkpnrec42oojDAUsDIyMgw3pHsBNhrPYqE6tqkTq6G2FLhVS7WjRBrNbx60grL8EpERGTJxyFWKn1u4G6INQuvctluhljpjatoGX29RdUUYq0GWck4JCs7O/t6F2YiP8cASwFDboG1FmAlyOHVxOUQayO8yrtwYbyN3ZZXd0IsDypERETW+SjElgmvJu6EWJX1cwNXQ2zp8GrSPCoFzaNSEDSx1GPXAqxer0deXp7z9SXyIQZYChjyIttSqQmc7ORKU4h1OCbWQXgFYGyBdaIV1qluw66EWIZXIiIi+yo4xNoMryYuhFgpobb9x50MsbbCq7kbopMtQ6ykBGB8LTk5OQ73QeQPGGApYBQWFhrvSGYHDScaRYVKsnll07iBE+HVtDsHXYldGvPqTIhleCUiInJOBYVYh+HVxIkQKyXUhlA7Ls+ZEOsovJrcEJ0M9USzyZ0kNQCwBZYCBgMsBYyioiLjHVOAdWEG/aIaodZbYV0Irya2QqxbEzbZC7EMr0RERK4p5xDrdHg1sRNinQ2v8vZ2Qqx4Pc2larWMvmIWYo3nIiXemEWZqAIwwFLAkAMslC6FV+D6zMQWIdaN8GpSOsR6NNuwtRDL8EpEROSecgqxLodXEysh1tXwKj/PSogVr6ehdYztmYZtkUPstfMQnc69cyKiisYASwFDnh3PzcXLLZbX8SC8mphCrFeWyjEPsQyvREREnvFyiHU7vJqYhVh3w6uJeYh1N7yatIy+AhiMXYe3bNnidjlEFYkBlgLG9VmA3T8oCZUEfZgGCLK/lqwrdZIU7gVqIiIiqkIMApJG7VF4NZH0AqdHKDwKr6VptVqvlUVUnhhgKWAoFJ7/uWoyS6DMzIcUEgwpNNSzwoQwtgpLCs9DrHk3JTdbmImIiMjLrvWQEnq9x0UpwsOM/yane1zWsWfDEBpViE1JjTwuKzzc+Nrat2/vcVlEFYEBlgKGKcBevdm9FlhNZglUV3Mh6fSAJEEKC3E/xAphPJiZug97EmKtTRTBEEtEROQZT7sRl5qjwpMQqwgPA66dJwit1qMQe+zZMITGFgAAirUqj0LsuLgNiIowvq6IiAi3yyGqSAywFDBCr4XNMc3+xvm7XQt4FuHVxN0QWzq8yuW5EWLtTdXPEEtEROQZd0OsjVUC3Amx5uFVLsfNEGseXk3cDbHj4jYgXqlCYZHxtYZ62jONqIIwwFLAMH2xRpYAi/t97VKIlQzCMrzKD7gYYm2FV7k8F0KsM4ulM8QSERF5xtUQ62CddldCrLXwKpfjYog9NqZseDUp1qqcLge4Hl4BoLCQAZYCCwMsBYzw8HAAQEGBAi3UemOIvcfx8zSZJVCm21mc29kQ6yi8yuU5EWKdCa9m9SMiIiIPOBtiHYRXuTgnQqy98CqX42SIPTYmDKHVrIdXE2dbYc3Dq8EAFBUb68gAS4HCtcs1RD5kGpuRk2ucva+FWo/Ffb/BMPEs6v9h/cBkteuwNddCLACIAhsHCIPBcXiVy1NAUhisL7HjSng1qx+X1yEiIvKAEPYvCjsZXuXi9Hqby+s4E17lchzM/utMeAWMrbCbLzfEbbXPICK9CJ2XnUbjfakIytehOEyFk7dUR8vHkxGnvL4SQ3aOAkJIkCQJkZGRTtWXyNcYYClgxMXFAQDSM68fLEwtsf/1qIN3NgyyCLJOh1cTeyHWNOOwK6yFWHfCq1n9GGKJiIg8YCvEuhhe5eKshFhXwqv8nOR0GGpWK/NzZ8OrXJ9coPukYxi47iBUOstzhuY7UiC+B7RDw1D0bjQQLCEj0xgFYmJioFIxFlBgYBdiChjx8fEAgPR0yy/YFmo9hoRfsBgXq8nSuhZeTax1J3a267DV8rywxE6p+hEREZEHSl8MdjO8WuNOeAWsdyU+Ntq18BpUrMX3k3/C4NUHyoRXE0kLaH7KR+jDV4FCgYxrjQLVqpUNz0T+igGWAoYpwKZlWO+uY2qNvdRTCVVqjuvh1cQ8xHoSXuXyroVYT1pfiYiIyHvE9WXwPC7q2nhYd8OrXI5ZiD02Ogyhcc6HVwB4dfYqdDhyHo7OWAQA1fYSBL+VhTz9JwCu93IjCgQMsBQwatWqBQDIzFKhsMj6AeKF48NQ7V8J+pgwz3YmSZCU1z4enoTX8sBWWCIiIv+ikDwKryZCq4VQSi6H17jMPNy7/gAAwFEtTI+rf8nHxePHAQB16tRxraJEPsQASwEjMjIS0dHRAICky2qr26TnhEGTa0BRjRDo4j2YjKCoGKKgEFAqIWnU18OsO8S1cbDe6qLEcbBERESeMV0M9kLvKNMYWJHvWugsTdSqDlGrOgAgfrZrMwIPXrcPar1rr0XSApd27gQAJCQkuPRcIl9igKWAUr9+fQDARSsBtv/hhxCx0rjUjkEleRZizSdtUigAtZshVpSaxMnTEMvwSkRE5JnSPZk8CLGSUim3vAoh3A6xolZ1CLUSQq0EDEBwsmvltD9y3q39XkhLAwDUq1fPrecT+QIDLAUU0xXCi5c0Fj/vf/ghFP9SA8FZ1w9CbodYU+traa6G2NLh1cTdEMvwSkRE5Blbw3DcCLHm4VUuxo0QawqvpcXNcX44VFhhiUv7BIAihQJXDMbXbWogIAoEDLAUUJo0aQIAOHX2eoCVw2tm2YOPyyG2qBgiv8D2kjnutsSW5mqIZXglIiLyjKM5JFwIsdbCq1yMC8dsW+EVBiDkSr7TITY/RON4o1JOhYVBL0mIjY3lJE4UUBhgKaA0b94cAHDydJCc6dJywqyGVxODSkJRdSdCrKPwauJMiLXV+mpOUnh16n4iIiKywUsTIEpKpd3wauJMK6zN8GriQoht1CfN4TalHY+IAHD93IooUPDsmQJKo0aNoFarkZunREqqCnceeRARq8IdPs+gdhBinQ2vJvZCrDPh1ZyjEMvWVyIiIve5El7ttMLKwdWJ2YYddSV2GF5NnAixv9zyA6o/EgthfX5Lm45FGs+JmjVr5toTiXxM5esKELlCrVajcePGOHr0KB5b3xNFR2vabX01ZwqxUrVgBKUXQXU15/qD5pM2OV8ZSNBCmM/652p4NZEU1g+aDK9ERETuc6flVRjKXFx2ptW1TDFCAPkFkMIsZxR2OryaXAuxpf1yyw8AgJaaEKA6gKGRwE85ELC/lI7p8X9r1wa0WrRo0cL5uhD5AbbAUsBp06YNAMDwT4nT4dXEoJagD1ZYtsbamrTJGd4aEwuUbYlleCUiInKPJHnWbdjsorI74VUuptSx3OXwaiZu7vVW2F9u+QEtNSHG8Goq+704iM7BTq0De7lzJK5otVAqlWjdurVb9SHyFQZYCjg333wzAECV5/p4DxNTa6whMtS1rsPWqNWQNGpAIbnX+mrOFGIZXomIiNzjpfGuEAaPwqtcTH6BvMaru+EVBiDkcj7i5obJ4bWMEAXET7UhHo602Z1YqAHxcCQOvjIfgHH8a2ioa2vOEvkauxBTwLnxxhuhVCqh1xcA+nxA6fw08+YMaglCo4KkkAC9h4FRCMDT8EpERET+Q1J4HF4BAEolpOSrMNSr6XFRqny99fBqEqKA+KQ68FIsxM85kLYVAvkGIEwBcWsI8FAkEK/CvlmHAABt27b1uE5EFY0tsBRwQkJC0LJlS+N/tKnul5NaDOXldECl8rwbsMFgvFLr6YHO1GXJW1ePiYiIqhpv9GK61iNKaHWeFaNSAQoFRLHr67RaUADaqGAIlYQ2U8Y43j5eBYyLhVhcB+LPehCL6wDjYoF4FVp8PRo7duwAALRv396zehH5AAMsBaQuXboAAKSSZAg3euOEpBZDfS4VorjY+AOVCpLGzfGser3FRE5uh9jSkzh5On6HiIiIXGNliTt3Q6wpvJooLrlx0V0BaGOC5fAKALHHSnDTR06EWCtafDMG0UfTkJ2djYiICI5/pYDEAEsBqWvXrgAAqTgNBoXO5RCrKNFfD68mkuR6a6xebzywlQqfHrfElq4XEREROc+dVlgvrs1eOrwCgCgqci3EmrW6msKrSewx11t0W3wzBlGnDRjZqx4AoFOnTlCpOJqQAg8DLAWkevXqoUGDBpAgIBUlw6CSoA+SnAqyctdhW1wJsde6DlsjKSTng6yddeeMhTHEEhERucSVEOsgvDrbCiupVFbDq1xOUZFz9TELr1b3I+B0K2yLb8bI4RVCYNOmTQCAW2+91bm6EPkZBlgKWN26dQMAKAqSICRASIBBZT/Eluk6bIszIbZU12FbHIZYR+FVLoghloiIyOucbHl1FGLl4GojvJo4bIV1EF5Nqh0twU0f2w+xLWYYg2vUaeO5hlSSiaSkJAQHB6Nz587260HkpxhgKWD17dsXAKAoSgX0xiuajkKs1a7DttgLsTa6DtvitS7FDLFERETOc9QK66Vuw/ZaXUuz25XYyfBqEnvUdlfiFjPGIOqU5XnKg7dVBwDcdtttXD6HAhYDLAWshIQENG/eHBIElAVJ8s9thdiQ1GIor2S4thNbkzvZ6Tpsi9UQ62IZxoI4uRMREZHTrIVYK5M1OVWUlVZYV8KrXE7prsRWJmtyhiSAmz4p2wp7w7dlwyuEAevXrwcA9OnTx6X6EvkTjtymgNavXz8cO3YMivyL0Ic3lIOdKcRCBSh0ApL+Wuurs2NPzJkmd4LO2GXYya7DVotSSBDeWi9WkryzVAAREVFVUs6TNTlLcSkVhrrVXW51LS32v+utsDd8awyz0SfLnqcoCpORmZmJmJgYtGvXzq19EfkDtsBSQOvduzc0Gg0U2mxIJZkWj5mPiw3OKHG99bU0U5diN1pfzbk0uZPDwtgSS0RE5JDpgq8XwqvQ6hxO1uRUOUVFHodXwNgKe+PUMbjhuzGIPmmwGl4BoHOi8T248847OfswBTQGWApoUVFRuP322wEAyryzVrcREiBpDe61vpZmEBBCeOfqrQchmIiIiHxDUkgQJVqPwisASEoFlElpHoVXkzprMhB9ws55hTYPe/bsgSRJuPvuuz3eH5EvMcBSwBs0aBAAQFFwGdCXnaApLLkE6ovpnodOnQ6G4mLA4PlVXK91IyYiIiL7zOeO8PDisdyDytNyrs2tIYqKEPLfFbfLCbqch6DLeZCKSxB1LNfmdiO6xwEAOnTogNq1a7u9PyJ/wABLAa9FixbXJnMyWG2FVRTrIYquBVs3J20AYAyupYOnu2Wx9ZWIiKj8eXGoTenhP/K5havllJoYUuTluVWOKbhKxcYxsIq8QusbGkrw+++/AwDuu+8+t/ZF5E8YYKlSGDZsGABAmXcGMFyfIVBufS3N1eBpan21xsWyvNr6ykmciIiIrLMVXt1YRcBbKwnYWp4v5GiyS+WYwmtp1lphn7uzLgoLC5GYmIhOnTq5tB8if8QAS5VCjx49UKdOHUgGLZT55+SfW7S+luZK8LTW+lq6LGfLY+srERFR+fJSy6ujSRedbYWVlArba8sDELm2u/+aM+8ybE2ZVliDHkuWLAEADB8+HBInf6RKgAGWKgWlUonhw4cb7+eeBoTeduurOU+6FNsqzw62vhIREZUjZ9dKd+JislMrBjhTjp3g6orSXYZtMW+FnTSsKTIzM1GzZk150kuiQMcAS5VG3759ERcXB0lfBEX+Rfutr6XZC572ug+7Wpa3Wl8ZXomIiCy52rpo45js6nJ39s41XAmv9roR22t1LU1uhRV6/PTTTwCMQ624dA5VFgywVGloNBo8+OCDAABVznEI6F0rwFbwdNR92FZZpcrjzMNERETlpIK6DFtlJQg76jJstRgr3YgddRm2Z+KgBkhJSUF8fDzuuusul59P5K8YYKlSGThwIGrWrAlJXwRkH3W9gNLB09XWV2vlmXDsKxERkff5MrxeY94K60mXYfNWWGe7DFsTeSwT8+fPBwA89thjCAoKcrtORP6GAZYqFY1GgyeffBIAoI1MhlDqHDzDBlPwdKf11VZZ3sLuw0RERM6Pd7VHGFzuMmyzHDdaXcsUc60V1t1WV5NhoxsgOzsbCQkJ6N+/v0d1IvI3DLBU6fTu3RtNmjQBlAZoY6+6X5C3gycRERFVTl46ZxB6g8fh1aAowS+//AIAeOqppzj2lSodnqFTpaNQKPD0008DAHQxGTBo3OwCrC3xrPuwiTB4b/wrW1+JiIi8yuNj9LXwaigs8qweWh1gMEBKSvGonK4PxqCoqAgtW7ZEt27dPCqLyB8xwFKl1L59e3Tu3BmQBEriLkHotC6XIfQGz7sPy4Vx/CsREZFXeeuirrvH6NLzZrh5ziC0OmN4Nf2/xM3W17RM6AsuYe3atZAkCePHj+e6r1QpMcBSpSRJEsaNGweNRgNDRCF0YZmAzs3xsJ5g6ysREZHfc/lYbaPLsKutsELvpQvcaZkwlBSjVk8lAOOkls2aNfNO2UR+hgGWKq3atWtjxIgRAABtnXQYdEUQRUXOBVltiftXQEtj6ysREVH58EUrrL3xrk4GYaE3XOvpZWO/aZnO1SUtE0jLhCgpweMz78C5c+cQFRUlT2hJVBkxwFKl9sADD6BevXqAWg9t7QzAYDAGUwch1qvdh4mIiCjwWVnj3R1ycLUVXuFkN+JrwVWUlMCg0WLOnDkAgNGjRyMyMtLjehL5KwZYqtQ0Gg0mTJgAANDH50AfXgjAeGBwujXWH7D7MBERUbmy243Yi7MM2wuuTjFrdQUAAYEbhldDYWEh2rRpw2VzqNJjgKVK75ZbbsHAgQMBANqEqxCKawcOW62x3uo+7M3xr0RERGRdeXYjdqPVVRSVXcHAYZdha6x1IzZrdTXRx+fgwIEDCAkJwSuvvAKFgqf3VLnxL5yqhNGjR6NWrVoQQTpo66RbPFa6NZazDxMREZG7ra6lJ2Zypsuw1XLML6ZnZAEZWWUusBuCtFA0ygNgPNepXbu2W3UmCiQMsFQlhIaGYtKkSZAkCfq4XOgjCyw3cHJsLBEREVVyXhzr6pUuwxlZEEXFZVp2BQSaDI1CcXExbrnlFtxzzz2e7YcoQDDAUpXRpk0bDBkyBABQknAVQlU2rIqSEkCrZcspERFRFeStoT/utrpalKHTyeHVmvundcXhw4cRGhqKl19+mV2HqcrgXzpVKaNGjUKjRo0AtR4lDVIhUPZAJUxjaTwJsd4e/8qFyImIiKzz5jHS0wvYwmA8B7AROp0uRqcD9Hqb5egjCrBgwQIAwEsvvYSaNWt6tD+iQMIAS1VKUFAQ3nnnHYSEhMAQUQRdTQfrrF07ELnF2624DLFERETXSZJ/HRvNj/tungMInU4Orza3UekQ1r4YQgjcc889uP32293aF1GgYoClKichIQETJ04EAOhqZslL69jlL12K/elATURE5Cv+dDz05GK3eTGm4GovvEKgxcg4ZGZmomHDhhg7dqzH+yUKNAywVCX17dsXd911FyABJQ1SYVA7MXmTlw5QHvO3K85EREQVqZyPgcJOgCy7sXeCq6NWV5N7P+6Effv2ITg4GO+88w6CgoI83j9RoJGE8NbiWUSBpbi4GKNHj8apU6cgFWgQdKI2JJ0wHkScYW+GQmFw7QDoLn58iYioqqjAi7eSSm1/AyeCq+QgXMrnG/bOF5RKSCoVAEAXkwttg6sAgLfeegu9evVyWAeiyogtsFRlBQUF4f3330dUVBREaAm09a/C4MqVVLbGEhERVQx/OtZVUHdhAPLjhpBiSE2zAQAPP/wwwytVaQywVKXVqlULkydPhlKphD4mH/paOa4V4E/diomIiCobf7pQ64VjvivdheXnqHSIvK0EJSUl6Ny5M5544gmP6kAU6Bhgqcq76aabMGHCBACArm429DFOTOpUmr+EWH85yBMREXnKX45pFThJU5nnKAxoOCwcV69eRUJCAt544w0olUqP60IUyBhgiQDcfffdGDx4MABA2yQThnA31m9jaywREZHn/OmCbAVP0mTxPAjcMj4R//33HyIiIvDhhx8iPDzc4/oQBTpO4kR0jU6nw+uvv45t27YBOgmaI/FQFDqYxMEGYRD+EWb58SYiokDiJ8FV8kYrp6kMNyZ1FBDQJWZBX6MAGo0Gn332GVq3bu15nYgqAbbAEl2jUqnw9ttvo2XLloBKoKR5OoSmAmYSJiIiokpFGITL3YXN6evkQl+jAJIk4c0332R4JTLDAEtkJjg4GFOmTEFCQgIQpEdJszQIpR+0pBIREZHfEwZhDK8e0MXlQVcvFwAwbtw4dOvWzRtVI6o0GGCJSomKisLUqVNRrVo1iDAdSpozxBIREZF9ngZXANDF5kPfxLgiwvDhw3Hfffd5XCZRZcMAS2RFzZo1MXXqVERGRkJEaFHSLB0GsDsxERERWfJGq6swCOiiCyBuyIUQAoMGDcKoUaO8VEOiyoUBlsiGRo0a4dNPP0V4eDhEZAm0N2TAAL1XrrASERFRYPNWcBUGAX1MEUTLHOj1etx5550YP348JD+Z0IrI3zDAEtnRrFkzTJ06FSEhIRBRJdA2y4SQhFcOWkRERBSYvBVcAcAQVQTpxlzo9Xr07t0bL774IhQKnqIT2cJPB5EDLVq0wCeffILg4GCImGJom2dAKIxjYu0ewCR+vIiIiCoTZy9gSwrbrafmz9fHFAFtcqHVatGtWze8+uqrUHpjCR+iSoxn2EROuPHGGzFlypTrIfaGDHliJ2sHM3sHLiIiIgos3uwubKKvVgjRKlsOr2+99RZUKpWnVSWq9CQhBPtBEjnp0KFDeOmll5Cfnw8pVw310WqQdJbXgUzhVRgEIHw8ezE/3kREFEj8YNynZNYC6m5oNb+Qba0MfXwBDM1yYDAY0KdPH0yaNInhlchJDLBELjp+/Dj+97//ITs7G1K+Cur/qkHS2ujuwwBLRETkPD8KsJ60uEoKyebz9TXyoWuUDQC46667MHHiRHYbJnIBAyyRG86dO4cXXngB6enpkAqVxhBbbOPKKUMsERGRc/wgwHo6h4Wt8CogoK+XC329PADAkCFDMHbsWM42TOQiBlgiNyUlJeGFF15AcnIyoFVAfTQWijyN5UbeCK+mj6i7Bzh+xImIKFD4Q5jzJMAKg9XnC0lA1zALhhqFAICRI0fi8ccfZ3glcgMDLJEH0tPT8fLLL+PEiROAXoLqRAyUmcHXN/BW66snIZYfcSIiChS+DnTuhlfz432pMoTCAF2zTBhiiqFQKPDCCy9g4MCBHlSSqGrjLMREHqhWrRqmT5+Ojh07AkoBXfMM6Gvkl98OhWAgJSIi8hfCYPditVDrkTgyCoaYYgQFBeH9999neCXyEFtgibxAp9Nh6tSpWLFiBQBAmRQO5fkISJC82424NGeuVPMjTkREgSJQWmBtHdvNnm8I1SK2nwIpKSmIiorCRx99hBYtWnihkkRVGwMskZcIITB37lzMmTMHAKDICILqZAwkndd2YPsxewd8fsSJiCgQBEJ4dXRR+loZ+thCqNsWobCwEHXq1MHHH3+MevXqeaGSRMQAS+Rla9euxZQpU1BSUgKpQAX10WhIRV5Y283RR5UhloiIApm/B1gnelQJSYK+Th709XMBAO3atcPbb7+NyMhIb9SQiMAAS1Qujh07htdeew1Xr14FdBLUx6KhyA7yrFBnP6rWTgD4MSciIn/nrwHWyaFAQilB1ygLhnjjTMODBw/Gs88+C5XKCxexiUjGAEtUTtLS0vDGG2/gyJEjgACU5yKgvBxqHBfrLlc+ruYnAvyYExGRv/NlgLUWXl2Yw0IE65AwLBqnTp2CUqnE+PHjOVkTUTlhgCUqR8XFxfj000+xatUqAIAiPQiqk1GQ9O5O0+/Gx9V0QsCPOhER+St/an11cfJFfWwRgtvrkJeXh+joaLzzzjto27atlytIRCYMsETlTAiB//u//8OXX34JrVYLFCqhPh4NRb7a3QK9W0EiIiJf84fWVxeDq4CAvn4e9HWNy+e1atUK77zzDuLj471dQyIywwBLVEGOHj2KN998EykpKYBBgup0BJSpoa4XxI8sERFVNr5ugXWRUOuhbZYFEaUFANx///0YPXo0x7sSVQAGWKIKlJ2djffffx87duwAAChSg6E6E+lal2J+ZImIqDIJsPCqjylGRBcgMzMTISEheOWVV9CzZ09fV4uoymCAJapgBoMBP//8M3744QcYDAZjl+ITUVDkaZwvhB9bIiKqLAIkwApJQN8gF/raBQCAhg0b4t1330VCQoKPa0ZUtTDAEvnIv//+i/fee8/YpVgAygvhUF4Kc26WYn5siYiosgiAAGsI0aH+UOMsw4BxiZxnnnkGQUEeLpFHRC5jgCXyodzcXEybNg3r1q0DAEjZaqhPREMqUdp/Ij+2RERUGfh5eBUQMNQohLJlMYqLixEdHY1Jkyahc+fOvq4aUZXFAEvkY0IIrF69Gp999hkKCwsBnQTVmUgorgbbbo3lx5aIiCoDPw6wQqOHtnE2REwJAKB9+/aYNGkS4uLifFwzoqqNAZbITyQlJWHy5Mk4cuQIAECREQTV6UjrrbH82BIRUWXghwFWQMBQvRDBbQ3Iy8uDRqPBqFGjMGTIECgUbq7jTkRewwBL5Ed0Oh0WL16M2bNnG9eMtdUay48tERFVBn4WYIVaD13jHBhiiwEALVq0wKRJk1C/fn0f14yITBhgifzQ2bNn8eGHH+LYsWMArrXGnoqEpL3WGsuPLRERBTo/Cq8CAob4IoTcYkBubi7UajUee+wxPPDAA1zblcjPMMAS+SmdTodFixZh9uzZ0Ol0xtbY8xFQJIdA4qeWiIgCnZ8EWBGsg7ZRDkS0caxr06ZN8eqrr6Jhw4Y+rhkRWcMAS+Tnzpw5gylTpsitsVKOGqrTkVDk84owEREFMB8HWCEJ6GvnQ9m0BCUlJdBoNHj00UfZ6krk5xhgiQKAXq/H8uXL8f333xtnKhaA8lIolBfDIRn84wo2ERGR03wcXg3hJdA1zoEI0wEAbrnlFkycOBF169b1ab2IyDEGWKIAkpqaii+++AKbN282/qBQCdWZCCgzuZA6EREFEB8FWKEyQJeQC1G7CEIIREVF4dlnn0W/fv0g+UmXZiKyjwGWKABt3rwZn3/+Oa5evQoAUKRroDobAamIXZ6IiCgAeBIWhXD5+QIChpqFCG0L5OTkAAD69euHZ599FtHR0e7XhYgqHAMsUYAqKCjA7NmzsXTpUuj1esAAKJPCoLwYxm7FRETkv9wNr+anrC6UYYgoga5hDkS4sbtww4YNMX78eLRp08a9ehCRTzHAEgW4c+fOYfr06dizZ4/xB8UKqM5GQJEWZLl2LBERkT9wNcBaO1V1ogyh1kPXIBeG6kUAgPDwcDzxxBMYOHAgJ2kiCmAMsESVgBACW7ZswZdffonk5GQAgJStNgbZPLWPa0dERGTG2QBr7xTVThlCYYC+TgE0zfQoLCyEJEkYMGAARo0axe7CRJUAAyxRJVJcXIxFixZhwYIFKC4uBgAorgZBdS4cUjGvNhMRkY85E16dOTW1Uo6AgKF6IaI6qZGeng4AaNmyJcaOHYsWLVq4WlMi8lMMsESVUGpqKmbNmoVVq1ZBCGEcH3sl1Dg+VqfwdfWIiKiqshdgnT0ltVKGIboYuga58rI4tWvXxtNPP40ePXpwdmGiSoYBlqgSO3XqFGbMmIHdu3cbf6CToLwYBuWVUE70REREFc9amHT1VNSsDEO41rgsTkwJACAiIgIjR47EoEGDoNFoPKkpEfkpBliiKmDXrl345ptvcObMGeMPihVQXQyDIiUEkmCQJSKiCuCN8HqtHEOIFvqEPBjijMNlVCoV7rvvPowYMQKRkZEeVpSI/BkDLFEVodfrsXr1asyZMwcpKSnGHxYpoLoQDkVqMGcsJiKi8mUeYN08/RRBOujq50PUKIYQApIkoW/fvnjsscdQu3ZtL1WUiPwZAyxRFVNSUoI///wTP/74IzIyMgAAUoESygvhXHqHiIj8ktDooauXD6luiXHtcwDdunXDE088gcTERB/XjogqEgMsURVVVFSEZcuW4eeff0Z2djYAQMpXQXkxjEGWiIj8ggjSQVevAIq6Wuh0xgmaOnTogCeffBLNmzf3ce2IyBcYYImquPz8fCxZsgSLFy9GXl4egGstspfCoLgazDGyRERU4QwhOujr5kOqrZVbXNu2bYvHHnsMbdq08W3liMinGGCJCACQm5uL3377Db/++itycnKMPyxSQnUxFIpUTvZERETlzxCqhb5ePkT1EphOUTt06IARI0bgxhtv9HHtiMgfMMASkYWCggIsX74cixcvRmZmpvGHxQooL4dCmRwCSc91ZImIyLsM4Vro6+bLswoDQJcuXfDII4+gRYsWPqwZEfkbBlgisqqoqAh//PEHFi5ciLS0NOMPdRKUySFQXg6FVKL0bQWJiCigCQgYYouhr1MAEaUFAEiShO7du+ORRx5BkyZNfFxDIvJHDLBEZFdxcTH+/vtvLFq0CBcuXDD+0AAo0oKhTAqFIl/t2woSEVFAEQoBQ/VC6GsXQIQax7eqVCr06tULw4cPR4MGDXxbQSLyawywROQUg8GAHTt2YOHChTh48KD8cylTA1VSKKQsDWcuJiIim4TaAH2tAuhrFQBq4+lneHg4Bg4ciPvuuw/x8fE+riERBQIGWCJy2X///YfFixdj48aNMBgMAK4twXMlBIrUYEgGjpMlIiIjQ5gW+lqFUCXoUVJSAgCoWbMmhg4dijvvvBOhoaE+riERBRIGWCJy2+XLl/Hrr7/ir7/+QlFRkfGHOgnKlBAoroRAUaTybQWJiMgnhCRgiCuCvlYhRKRW/nnz5s3x4IMP4rbbboNKxWMEEbmOAZaIPJabm4uVK1di2bJlSEpKkn8uZWqgvBwKRSa7FxMRVQVCo4e+ZiH0NQsBjbGHjlKpRPfu3XHfffehdevWkCQeD4jIfQywROQ1BoMBe/bswW+//Ybt27fLa/ihSAHllVAoU0Ig6di9mIioMhEQEFEl0NcqhFRDB73eODFTXFwc7rnnHtx1112Ii4vzcS2JqLJggCWicnH58mUsX74cf/31F3Jzc40/NACKjCDjerKc9ImIKKAJtR76GkUw1CiECNHLP2/bti3uvfdedO3ald2EicjrGGCJqFwVFRVh3bp1+L//+z8cO3bM7AEFlKkhxlbZYq4pS0QUCIQkYIgphqFGIaTqerm1NSQkBP369cO9996LxMREH9eSiCozBlgiqjCnT5/Gn3/+iTVr1lxvlRWAlKWBMjkEiowgSIKtskRE/sYQrIOhRiH0NYrksa0A0KpVKwwYMAA9e/bkbMJEVCEYYImowhUXF2Pz5s34888/sW/fvusPaCUorgZDmRoCKU/FLsZERD4klAYY4oqhr14IEXV9JuGYmBj069cPd955Jxo0aOC7ChJRlcQAS0Q+dfnyZfz1119YuXIl0tLS5J9LhUooUoOhvBoMicvxEBFVCLmLcPUiGGKLgWvz7ikUCnTs2BEDBgzArbfeyrGtROQzDLBE5Bd0Oh327t2LNWvWYPPmzdfXlQUg5aihTA2GIi2YsxgTEXmZgICI1EIfXwRDXBGgvn5q2KBBA/Tt2xf9+vVDfHy8D2tJRGTEAEtEfqegoACbN2/GmjVrsHfvXhgM18ZbGQBFpgaKtGDjeFk9wywRkTsEBESoDob4Iujji4Dg6+Na4+Li0Lt3b/Tp0weNGzfmuq1E5FcYYInIr6WlpWHdunVYs2YNTp48ef0BA6DIDIIiLYhhlojICQICIkwHQ7ViGOKKIEKvL30TFhaG7t27o0+fPmjTpg2USs4OT0T+iQGWiALG2bNnsXbtWmzYsAEXL168/gDDLBGRVXJojSuCIa7YYr1WjUaDDh06oE+fPrj11lsRFBTkw5oSETmHAZaIAo4QAmfOnME///yDDRs24MKFC9cfNHUzTr/WzZhjZomoihEQEOHG0KqvVgyUCq0dO3ZEz5490blzZ4SFhfmwpkRErmOAJaKAZjfMCuMEUIqMICjSg6DgbMZEVEkJhYAhqgSG2GLj7MFB18e0BgUFoXPnzujRowc6derE9VqJKKAxwBJRpWEKsxs2bMCWLVtw+vRpi8elAqUxyGYEQcpVc51ZIgpoQq2HIfZaaI0uAZTXT+lCQkLQqVMn9OzZEx07dkRISIgPa0pE5D0MsERUaV25cgXbtm3D1q1bsX//fuj117vRoUQyjpvNCIIiS8Nxs0Tk9+SZg6+FVhGhhfl1uOrVq6NLly7o0qUL2rRpA41G47vKEhGVEwZYIqoS8vLysHPnTmzduhU7duxAXl7e9QdNXY2zNFBkBkHKU7F1loj8glAZYIgugSHmWiurWddgAGjevDm6dOmCW2+9lUveEFGVwABLRFWOTqfDwYMHsXXrVuzatcty3CwAaK+1zmZqjK2zWi4nQUQVQ0BARGhhiDGGVhGus2hlDQoKQtu2beXQGh8f77vKEhH5AAMsEVV5V65cwa5du7Br1y7s3bsXBQUFFo9LeSpjkM3WQJGthmRgd2Mi8g4BARGih4gqMba0RpcAKstTs8TERHTs2BEdOnRA69atudwNEVVpDLBERGZ0Oh0OHz6MXbt2YefOnTh58qTlBgZAyrvW3ThbDSlXA8nALntE5BwBAQTrjTMGR2lhiCrbLTgiIgLt2rVDx44d0b59e7ayEhGZYYAlIrIjPT0de/fuxb59+7Bv3z4kJydbbmC4Nn42WwNFtsY4u7FgoCWi60SQKbAabwi2DKxqtRotW7ZE27Zt0bFjRzRr1gxKJYcuEBFZwwBLROSCy5cvY//+/di/fz/27duHtLQ0yw0MgJSrhiJHDSlHA0WuGpKOXY6JqgrTTMEiUgtDpBaGyLKBValUokWLFmjbti3atm2LVq1asVswEZGTGGCJiNwkhMClS5fk1tkDBw4gMzOzzHZSvhJSrgaKHDUU2WqgWMlZjokqCaG4NulSZAkMkVrj0jalxrAqlUo0a9ZMDqytW7fmuqxERG5igCUi8hJToD106JB8KzPDMQCUKIwttHlqYwttnorr0BIFAAEBEayHiDAGVUOEtswswQAQEhKCli1bolWrVmjdujVatmyJ0NBQ31SaiKiSYYAlIipHWVlZFoH2+PHj0Ol0lhsJQCpUGrse5xqDrZSv4lhaIh8TGv21kKqFIVxntXUVAOLj49G6dWv51rDh/7d37+FRlQcex39nJgm5QgIiBIlcJFyKIEgEEaEIFhChuqAslq5V1ir7qPA8yj64rArUVlx5EHh0H61s0W01QtUVtNtKF8FbDQqKkArEcJVLiAkhVxKSmTn7x+SczCQzuZNw4vfzPPOcy3ve97xzafGX95z39FdEREQ79BgAOj4CLAC0oQsXLujgwYPav3+/Dh48qAMHDtSdGEry30tbFuEPtWXVo7TnCbXAxWDKlKJ88sV5ZMZVyUzwyBdfVWd2YEmKiopSamqqBg8erKFDh2rYsGHq0aNHO/QaAH6YCLAA0M7OnTtnh9kDBw7o4MGDKioqqnugKX+ILYvwP5u2rHqklkmigEbzT7Lk9QfVOI8dWhVV9z+H3G63+vbtqyFDhmjw4MEaPHgwo6sA0M4IsABwiTFNUzk5OXaYPXTokA4dOhQ61EpShUuusggZ5yNlnHf7Qy6jtfiBM2VKkT6ZsR75AgKrGeeRQvzNx+Vy6corr9SAAQM0ePBgDRkyRKmpqYqOjm77zgMAwiLAAoADmKapvLw8HTp0SNnZ2fby9OnTYSpU31dbXj1iawXbcoItOhbr8l87qMZ4/I+xifVIkaH/EycmJkYDBgzQgAEDlJqaqgEDBqhfv348ygYAHIAACwAOVlpaqsOHD+vQoUM6cuSIjh07pqNHj6q0tDR0BTvYumVURNSE3HK3VOni8T64ZJkuU2a0R2aM1/+K9vgvBY71hJxYSZIMw1CvXr3Ut29fXXXVVXZgTU5OlsvFpfcA4EQEWADoYEzT1NmzZ+0we+zYsYaDrSR5FRBqq4NthVtGBeEWbcMfUr11g2qMN+SESha3260rrrhCffr0Ud++fdW3b1/169dPKSkpjKoCQAdDgAWAH4jAYHvy5EmdOHHCXubk5Mjr9Yav7JOMC26pOtAaF9wyKlzVS7dURcBFw0yXKbOTV2a0V6pemvbSJ0WFD6mS1LlzZ/Xu3dt+paSkqG/fvkpJSVFUVFQbvQsAQHsiwAIA5PF4lJOTExRsrVdeXl794Vbyj95ecEuVbhkXXDIqXTIq3dIF/9KodDGK28GZLp8dQs0or8wonz+kRvn8IbWTN+RMv7XFx8cHhdTAV+fOndvgnQAALmUEWABAvTwej/Ly8nTmzBmdOXNGOTk5ysnJsdfz8/Pl89U/ciZJMuUPsReqA22VS0aVK2hd1rbXIOxeAkyjeibfSJ+9NKMC1jv5JCushrkPtba4uDglJyerZ8+edV7JycmKj4+XYfDdAwBCI8ACAFqkqqpKeXl5dpjNy8ursywoKGhcyLX4FBxqq1ySx/A/89ZrBG8HLOUj+IZiGqbkNmVGVAfNCJ/MOkufFGkGhdXGhlJLbGysLrvsMnXv3l2XXXaZ/br88svtkJqQkHCR3iUA4IeAAAsAuOg8Ho/OnTtnh9r8/HwVFhaqoKBA586dU2Fhob2sd6KphvgkeQ1/yPW6Atb94VYeQ4bPCN5vVpf55C8z/ev+fYYMs2Zd1r+YpiRVb1fvayg4mwr459aofkmSYVZvm5LLf5+ota7qdTNgXS75w6jb9O9zmzLdPsldvV69zz4monq7mdxutxITE5WUlKTExER7PSkpyQ6q1jI2NrbZ5wEAoDEIsACAS0plZWVQoC0oKFBJSUnQq7i4WKWlpUHbDd6n2xZMBYXa4KDaLj0KEhsbq4SEBPsVHx8ftLQCamBI5ZJeAMClhAALAHA80zRVXl6ukpISnT9/XuXl5fbSeoXbX1VVpaqqKlVWVtovaztw/8UOyC6XS5GRkYqMjFRUVJS9Xns7KipKsbGxiomJCXpFR0fb61Z5dHS0HU7j4uIUERFxUd8DAAAXGwEWAIBG8Pl8TXoZhiHDMORyueyXtR243zAMud1uwiUAAI1AgAUAAAAAOIKrvTsAAAAAAEBjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjRLR3BwCgvZimqYqKivbuBgA0SXR0tAzDaO9uAEC7IMAC+MGqqKjQ1KlT27sbANAkW7duVUxMTHt3AwDaBZcQAwAAAAAcgRFYAJAU9cXlkteQ4TIkw2Uv5TKk6kv1DJfLv25UL12GDKP674DWcdX7rTp19lltBpappty06rkCyq391p8ca+8zDJnW1YRG9bbLv1Gz35AM2XXM6m1J/mOsNgzrvdS0V7s8sE3TOsYVoizw+KCywH21+xGmTphySXYfwp0r6Pgw/ahTRyHq16ljBvWjdnt2uWqXmzXHqObYmvdo2mVGneNNu45Rvb9mabVnyjDMoJ+X1b7/q6wpd8m/Lnu/5Kou95f5m7T3BSz97dVsB74kf9v+bdWUqeZcLsNn7/Mf65MkuY2abZcRXOYyzIByU2757PO5DV9APZ/c1eey1v1Ln13Pas8ls7quT+6gMv/xbsOUIZ/c1dvWe/Nvy19PNeczqttw232s7p/8n4VbplxS9bpR3Z7kNgy5ZMit6qVhlblkyFBVpVuzf9lTAPBDR4AFAMkfXn3+/1CUUbMMTAaGrOBak9YMK1UGJaHq8upawcnGVTddGQF1Q6WnevcrTLns0Bq0XntpVzcCmq0diGuX125T1UE6TFm47obsR2PqNOKjam6bAR9fw6G3lQNs7fJaZbUDbM3+2u2ZdcqskBq63AzYH7jPDNGmGVTHCrC1X2HL7FAZEGwDgq5dpppyK/hZZf4A67MDoFXmD4DVS8OQW1Yd/7p/aQQFR39bktuQvayp518PWWZvWwHYDAjM/vWGAmyo9lxSdSj2b/vLrOMDvkMA+AHjEmIAAAAAgCMQYAEAAAAAjkCABQAAAAA4AgEWAAAAAOAIBFgAAAAAgCMQYAEAAAAAjkCABQAAAAA4As+BBQBJcpsy5fM//NFQraX9QMZaz1Gt/ZxV62XW1AnaH6Ys4EGkZpiHm4baX7PPerqmgrfNwP3+Y00Zkqmg9szAOtX16gqzzwwoCnoWqRHY/Xqev2qE2V+rTrjyhsrqa7O+/dai3jqhnucaorxOH8M8B1Z16xl1jq85zgh8xmvAz1T2c1cDf15hngOrlj0H1qyub9Z6WWVm9bNw7bLq/vsMUzJ8NedR9baq34+Cy83qMrP63FbbUs35Ave7As5lrdde+vvh/5914NJX/ZZd1eu+6p9o6OfAGnLJ/3xZq8yo3u9WzbNkJQVtu+x1I6C9mrZcMuQ2rDJDhgxVVYb63yAA/PAQYAFAUuXo79u7CxeHWWvZDLVyHWCz4qevoQMvWVbC54I0AHAK/h8bAAAAAOAIhmmaLfi7PAA4l2maqqioaO9uoBVUVFTotttukyRt2bJF0dHR7dwjNBffZcOio6NlGFwTAeCHiUuIAfxgGYahmJiY9u4GWll0dDTfawfBdwkAqI1LiAEAAAAAjkCABQAAAAA4AgEWAAAAAOAIBFgAAAAAgCMwCzEAAAAAwBEYgQUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI4Q0d4dAAA4y/nz57Vx40Z99NFHOnPmjFwul1JSUjRp0iTNnj1bkZGRzW67oKBA6enpysjIUG5urjp16qR+/fpp2rRpuvXWW2UYRr31T506pfT0dO3atUsFBQWKiYnRwIEDNXPmTE2cOLHB82dlZemPf/yjvv76axUWFiohIUFDhw7VrFmzNGrUqLD15syZozNnztTb9rBhw/Sf//mfDfahLXXE7zInJ0eZmZnKysrSt99+q+zsbJ0/f16StGnTJiUnJzeq/1999ZXefvttffPNNyopKVFiYqJGjBihOXPmaNCgQY3+HAAArcswTdNs704AAJzhzJkzWrhwoR3WoqOj5fP5VFlZKUlKTU3V2rVrlZCQ0OS2s7KytHjxYhUVFUmSYmJiVFlZKa/XK0kaPXq0Vq5cGTZUZWRkaNmyZaqoqJAkxcXFqby8XD6fT5I0ffp0LVmyJGxw+tOf/qTVq1fb54uPj1dZWZmsfybvuecezZ8/P2RdK8DGxcWpU6dOIY8ZMmSIVq5c2ZiPok101O/y6aef1vvvvx+y3cYG2A0bNujVV1+VJBmGobi4OJWWlkqS3G63Hn30Uc2YMaPBdgAArY8ACwBoFI/Ho/vuu09HjhxRt27d9O///u9KS0uTz+fTjh07tGrVKp0/f17XX3+9nn322Sa1XVpaqp///OcqKCjQlVdeqccff1yDBw9WVVWV3nvvPb3wwgvyeDy6/fbb9cgjj9Spf/r0ad17770qLy/XsGHD9NhjjyklJcUeYbTCyIIFC/Szn/2sTv2///3vevjhh+X1ejV+/HgtWrRIl19+uYqKirR+/Xq9++67kqTly5dr0qRJdepbAfbf/u3fdMsttzTpvbeHjvxdPvPMM9q7d68GDhyogQMHyjRNvfzyy5IaF2C3b9+u5cuXS5J++tOf6pe//KW6dOmi77//XuvWrdMnn3wit9ut559/XldffXWTPhsAQMtxDywAoFHef/99HTlyRJL01FNPKS0tTZLkcrk0efJkLV68WJK0c+dOffnll01qe+PGjSooKFCnTp307LPPavDgwZKkyMhIzZo1yx75fO+993TixIk69Tds2KDy8nJ17dpVzzzzjFJSUiRJsbGxmj9/vmbOnClJ+sMf/qCSkpI69V966SV5vV71799fK1as0OWXXy5J6tKlixYvXqzRo0cHHed0Hfm7/Nd//Ve98cYbWrFihebNm6ehQ4c2uu9er1cvvfSSJGnMmDFavHixunTpIkm6/PLLtXz5cvXr1y/oOABA2yLAAgAaxbosc+TIkSFHniZPnmyPboW7hDOcrVu32m306tWrTvmsWbMUExMjr9er//u//wsqKy8v10cffSRJuv3220Ne8vrzn/9cklRWVqZPPvkkqOz06dPat2+fJGnu3LmKiKg7PYRV/8yZM9q7d2+T3tulqKN+l5L/Et/m+vrrr+1LqufNm1enPDIyUnPnzpUk7du3T6dPn272uQAAzUOABQA0qKKiQn//+98lSddff33IYwzD0JgxYyRJu3btanTb3333nXJzcyXJrl9bbGyshg8fHrLtzMxMXbhwod76ycnJ6tOnT8j6gdvh6g8bNkyxsbEh6ztNR/4uW2r37t12H4cNGxbymMDPzOm/BQBwIgIsAKBBx48ftyfQ6devX9jjrLKCggIVFxc3qm3rUtaG2u7fv78k6dixY2HrW8fUV//o0aNB+63tpKQkJSUlhazrdrt15ZVXhqwfaOPGjZo1a5YmTZqkW2+9VQ8++KBee+21kJe6tpeO/F22lNVenz59wo7kJiUlKTExUVLd/gMALj4CLACgQfn5+fZ69+7dwx532WWXhaxTn7Nnzzap7bKyMvuxKIHnSUhICDsDcGD9wPMF1g/seyhW32rXD3T06FEVFxcrOjpaJSUlyszM1Msvv6x/+qd/UmZmZr3tt5WO/F22VFN/C439XAAArYfnwAIAGhQYMuoLFtHR0SHrXIy2rUt6y8vL65TXV792v6zthupbfQv1vsaNG6fhw4dr5MiR9uhcYWGh/vrXv+p3v/udCgoKtGTJEv3Xf/1XyPtC21JH/i5bqjV+CwCAi4sRWAAAWmjRokW66aab7PAqSYmJiZozZ47WrFkjt9ut0tJSvfLKK+3XSQAAOgACLACgQdYImSR7kp1QKioqQta5mG3HxMTUKa+vfu1+WdsN1bf61tj3ZfnRj35kPzv2b3/7m9r78esd+btsqYv9WwAAtBwBFgDQoMB7AvPy8sIeF3hPYEP3EVq6devWpLbj4uKCgoN1npKSknpDk1U/8HyB9Ru6n9HqW+36jWE9i7S0tFRFRUVNrt+aOvJ32VJN/S009nMBALQeAiwAoEF9+vSRy+X/J6O+mV+tsq5du6pz586Najtwttn62rZmqO3bt2/Y+oGz2IarX3t2XGv73LlzKiwsDFnX6/Xqu+++C1nfaTryd9lSVnvHjx+X1+sNeUzg76R2/wEAFx8BFgDQoOjoaF199dWSpM8//zzkMaZp6osvvpAkXXfddY1uOyUlRT169Ki37fLycu3bty9k28OGDbMn1bHOX9uZM2d0/PjxkPUDt8OdPzMz056wpynvzbJ//35J/hHHLl26NLl+a+rI32VLpaWlSfJPzmQ9K7e2wPfV2ucHADSMAAsAaJRp06ZJkvbs2WMHskA7duzQ6dOng45tDMMwNHXqVEnS9u3blZOTU+eYd955R+Xl5XK73frJT34SVBYTE6Mf//jHkqTNmzertLS0Tv309HRJ/nsWx48fH1TWq1cvDR8+XJK0adMmeTyeOvVff/11SVLPnj11zTXXBJU1dE/rgQMHtH37dknSDTfcIMMw6j2+LXTU77KlRowYoZ49e0qq+c4DeTwebdq0SZI0fPjwdp9RGgB+iAiwAIBGmTZtmvr37y/TNPXEE0/oyy+/lCT5fD7t2LFDq1atkiSNGTNGo0aNCqq7YcMGTZgwQRMmTAgZaubOnauuXbuqoqJCS5YsUVZWliSpqqpKmzdv1u9+9ztJ0syZM5WSklKn/vz58xUTE6OzZ8/qscce04kTJyT5R/teffVVbdmyRZJ09913KyEhoU79Bx54QG63W4cOHdLy5cvtexyLi4v13HPP2aNuCxYskNvtDqq7bt06rVmzRnv27Al6rEpRUZHeeustPfLII/J4PIqNjdW9997b0MfcJjryd+nxeFRYWGi/AkNwSUlJUFntP1a43W4tWLBAkrRz504999xzKi4uluS/73X58uU6fPhw0HEAgLZlmO09HSIAwDFycnK0aNEinTlzRpL/clSfz6fKykpJUmpqqtauXVsnWGzYsEGvvvqqJP8oZ3Jycp22s7KytHjxYnuSo9jYWFVWVtoh47rrrtPKlSsVFRUVsm8ZGRlatmyZPYNsfHy8ysvL7XsZp0+friVLloQdAf3Tn/6k1atX28fHx8errKzMHmG95557NH/+/Dr1nn76ab3//vuS/COQcXFxMgxDJSUl9jHdunXTihUr7JHeS0FH/S737NmjRYsWNeozWLdunUaOHFlnf+B7tL5TKwi73W49+uijmjFjRqPOAQBoXRHt3QEAgHMkJyfr1Vdf1caNG/XRRx/pzJkzioiIUL9+/TR58mTNnj1bkZGRzWp70KBB+u///m+lp6frs88+0/fff6/o6Gj1799f06ZN0/Tp0+3Jh0IZO3asXnnlFaWnp2vXrl0qKChQfHy8UlNT9dOf/lQTJ06s9/wzZsxQamqqNm3apL1796qwsFBJSUkaOnSoZs2aVWck0nLbbbepa9eu2r9/v3JyclRcXKyqqiolJSWpf//+Gjt2rKZPn674+PhmfS4XS0f+Lltq/vz5uuaaa/Q///M/+uabb1RSUqLu3bvrmmuu0T/+4z9q0KBBF/X8AIDwGIEFAAAAADgC98ACAAAAAByBAAsAAAAAcAQCLAAAAADAEQiwAAAAAABHIMACAAAAAByBAAsAAAAAcAQCLAAAAADAEQiwAAAAAABHIMACAAAAAByBAAsAAAAAcAQCLAAAAADAEQiwAAAAAABHIMACAAAAAByBAAsAcIR169ZpwoQJevjhh9u7K2hnpaWluvXWWzVhwgR9/PHH7d0dAEAbimjvDgAALq6ysjJlZ2fr4MGDysrKUlZWlk6dOiXTNCVJmzZtUnJy8kU5t2mauuOOO5SXl6d58+bpgQceaFY72dnZ2rx5syTp/vvvb8Uetq8jR47oiy++UGZmpo4cOaKzZ8/K6/UqISFBV111lcaOHatp06YpPj6+vbt6SYmPj9fcuXO1fv16Pf/88xozZow6derU3t0CALQBAiwAdHALFy5UdnZ2u5z74MGDysvLkySNHz++2e28+OKL8nq9GjNmjIYNG9Za3WtXCxcu1Ndffx2yrKCgQAUFBdq1a5dee+01LV26VKNHj27bDl7i7rjjDr355pvKzc3VW2+9pXnz5rV3lwAAbYBLiAGgg7NGWiX/yNXIkSPVtWvXNjn3J598Iknq3r27hgwZ0qw29u3bp927d0tShwopVrBPSEjQ9OnTtXTpUr3wwgtav369fvWrX2ns2LGS/GF26dKl2rt3b3t295ITExOj2bNnS5LS09N1/vz5du4RAKAtMAILAB3c9OnTlZiYqEGDBql3794yDEMLFy5UQUHBRT+3FWDHjRsnwzCa1cYbb7whSUpOTtY111zTan1rb71799bdd9+tyZMnKyoqKqhs0KBBmjhxol5//XX99re/VWVlpVavXq3f//737dTbS9OUKVO0YcMGlZSU6H//93915513tneXAAAXGSOwANDB3XHHHbr55puVkpLS7BDZHCdOnNDx48clNf/y4by8PGVkZEiSpk6d2qb9v9hWrVqlW265pU54DTRv3jylpqZKko4dO6bDhw+3VfccITk5WcOHD5ckvfvuu+3cGwBAW2AEFgBwUVizw1qXLTfHtm3b5PP5JEmTJk1qVB2Px6Pt27fr008/1cGDB1VYWCiv16vExET1799faWlpuvnmm9WtW7egehMmTJAkTZs2TUuXLtV3332nt956S7t27VJ+fr7i4uI0cOBA/exnP9OIESPsehcuXNBf/vIXbd26VSdPnlRFRYV69eqln/zkJ7rzzjtbPLnQtddea9/DfOLECV111VXNbuvYsWPasmWL9u7dq5ycHFVUVCg+Pl4JCQlKTk7WqFGjdOONN+rKK69sVvsej0d//etftWPHDh05ckRFRUUyDEOdO3dWYmKihgwZorS0NI0bN06RkZFBdWt//seOHdM777yj3bt3Kz8/X+Xl5frNb35T548hkyZN0t69e3X8+HEdPHhQgwcPbt6HAwBwBAIsAOCisC4fHjt2rCIimvfPzWeffSbJf59onz59Gjz+0KFDevLJJ3Xy5Mk6ZXl5ecrLy9Pnn3+uw4cPa+nSpWHb+fDDD/X000+roqLC3nfhwgXt3LlTn3/+uRYvXqyZM2cqPz9fS5cu1cGDB4PqHz16VC+//LJ27typ1atXtyjEejwee93lav6FU1u2bNHatWvl9XqD9hcVFamoqEgnT57Url27dPjwYT3xxBNNbr+wsFCPPvpoyAnDrM8+Oztb7777rtLT09W7d++wbf3lL3/R6tWrVVlZ2eB5Ayf1+uyzzwiwANDBEWABAK0uPz9fBw4ckNT8y4crKyv1zTffSJKGDBnS4OXD2dnZeuihh1ReXi5JGjlypKZMmaI+ffooMjJSZ8+e1f79+xt8bujhw4e1fft2JSUl6f7777fP/eWXX+oPf/iDKioqtGbNGo0YMUK//vWvdejQId1+++268cYblZiYqFOnTun3v/+9Dh8+rH379ik9PV333ntvsz4DSfrqq6/s9X79+jWrjSNHjtjhtXPnzpo5c6ZGjBihxMREeb1enT17VllZWdq5c2ezL9Neu3atHV5HjRqlKVOmKDk5WXFxcSorK9Px48e1d+9e+5LwcLKysrRt2zZ17txZd955p4YNG6bIyEgdO3ZMPXv2rHN8v379FBMTo/Lycn311VeaP39+s/oPAHAGAiwAoNV9+umnMk1TUVFRGjNmTLPaOHz4sD36OGjQoHqP9Xg8evLJJ+3wumjRInuG2kA33HCD7rvvPuXm5oZtKzs7W6mpqVq7dq0SEhLs/T/60Y/Uu3dvLVu2TB6PRw899JCKi4u1atUqpaWl2ccNHDhQ1113ne6++27l5+dr8+bNuvvuu+V2u5v0/iX/ZdhHjx6V5A/xKSkpTW5Dknbs2GGPvK5Zs8a+rzbQ+PHjdd9996moqKjJ7V+4cMH+w8D48eP161//uk4QHjFihG677TaVl5fXO5J89OhR9e7dWy+88ELQbNnhZrF2u90aOHCg9u7dq2+//VY+n69FI9UAgEsb/w8PAGh11uXDaWlpiomJaVYbgZcBN/TYn23btunUqVOS/LMuhwqvgXr06FFv+WOPPRYUXi0TJ05U9+7dJUnnzp3TrFmzgsKrJT4+Xrfccot93LFjx+o9Xyj5+fl67rnnJEmGYehf/uVfmtyGxZpxOj4+PmR4DdSlS5cmt19SUmL/sWHEiBH1juLGxMQ0eEn1I4880qRHPVnHVlRUKD8/v9H1AADOQ4AFALSq0tJS7dmzR1LzLx+WpLNnz9rrnTt3rvdYKzBL0l133dXsc0r+S1LDhTzDMILKpkyZEradwONOnz7dpD5UVFRo6dKldvCsPXFUU1mhu7S0VDt27Gh2O+F06dLFnk35gw8+aNEzWbt37x7yjwL1Cfx9BP5uAAAdDwEWANCqMjIy5PF45Ha7NW7cuGa3c+HCBXs91GhooG+//VaSfySuMZM91aeh+oF9qW+23sDjmhLoqqqq9Pjjj9sTQ91444267777Gl0/lClTptijnsuWLdODDz6o119/Xfv27bMvu26JyMhITZs2TZK0f/9+zZkzR6tWrdIHH3zQ5PDenFmWAwNs4MRbAICOh3tgAQCtyhoNvfrqq5WYmNjsdgLvGW1oNtrCwkJJNSONLREdHV1veeDlsfVdHh14H6b1KKCGeDwePfHEE/riiy8kSaNHj9by5cubdf9soF69eumZZ57R008/rby8PGVmZiozM1OS/3MePHiwJkyYoBkzZjT4x4JwHn74YVVWVmrr1q0qLi7We++9p/fee0+S/w8Lo0eP1vTp0xscSW5otD2UwD92NHfGawCAMzACCwBoNZWVlfr8888ltezyYcl/v6aluLi4RW05gcfj0bJly+xHB6Wlpek3v/mNfWluS40aNUpvvPGGVqxYoenTp9uPsfF6vfrmm2/04osv6q677rLDc1N16tRJS5cu1WuvvaZ//ud/1rXXXmsH/IKCAr3//vtauHChHn/88aDAWVtzJmAKnHgq8HcDAOh4+DMlAKDV7N69274ktaUBNvCRKQ0F2MTEROXm5jp2Ah8rvFqj19dee61WrlzZoufHhhIVFaWbbrpJN910kyT/yPWXX36prVu3aufOnSouLtYTTzyh9PR0devWrVnnSElJ0S9+8Qv94he/kNfrVXZ2tj777DNt2bJF586d08cff6z169froYcearX3VVJSYq83NEEXAMDZGIEFALQaK4ClpqYqOTm5RW0FPvP0u+++q/dY6zE7Z8+ebfDYS03t8Dpy5Eg988wzrR5eQ0lMTNTkyZP17LPP6vbbb5cklZeX69NPP22V9q3Lk+fPn6+XXnrJvjx727ZtrdK+5fjx45Kk5ORkxcbGtmrbAIBLCwEWANAqfD6f/va3v0nyTzzUUj169NBll10mSTpw4EC9x06YMMFeT09Pb/G524rH49Hy5cvt8DpixAj9x3/8R4P34V4Mo0ePttete4pbU3Jysv0c2+Y8azacwsJC+xFKQ4cObbV2AQCXJgIsAKBVZGZm2sEnMFC2hBWqjh8/rrKysrDHTZo0yQ5Hf/7zn/X222/X225ubm6r9K8lPB6PfvWrX+njjz+WdHHD60cffdRgKLXuXZakK664okntnz59Wrt37673mJycHHuktFevXk1qvz779++316+//vpWaxcAcGniHlgA6OBOnjxpzzhrsZ4vKkkffvhh0GzBMTExmjhxYpPPY40i9urVq1mPQgnlpptu0p///Gf5fD7t3r1bP/7xj0MeFxERoRUrVujBBx9UeXm51q1bp48//lhTp05Vnz59FBkZqbNnz+rgwYP68MMPNWjQIC1durRV+thcTz31lD788ENJ/sC4YMEC5eTk1FsnKSlJSUlJTT7X22+/raeeekqjRo3SqFGj1LdvX3Xp0kVVVVXKzc3Vtm3b7NHznj17NvnxR7m5uXrkkUfUq1cvjRs3TkOGDFGPHj3UqVMnFRUVaf/+/dq8ebM9m/Ts2bOb/B7C2bVrlyT//b1jx45ttXYBAJcmAiwAdHCZmZlauXJl2PIXX3wxaLtnz54tCrCtcfmwJS0tTd27d1deXp62bt0aNsBK0oABA/T888/rySef1OnTp7Vnzx7t2bMn5LHWPbPtaceOHfb6qVOntGDBggbr3HPPPZo/f36zzldZWamMjAxlZGSEPeaKK67QypUr6308UH1Onz6tN998M2y5y+XSXXfdpX/4h39oVvu1eTweffDBB5L8o/7NfQQQAMA5CLAAgBY7dOiQPXrY0tmHA7ndbs2aNUu//e1vtXPnThUWFtb7bNmBAwfqtdde09atW/XJJ58oOzvbvt8yKSlJV111la677jrdfPPNrdZHJ1i2bJm++OIL7d27V0eOHFFBQYF9SXGXLl00YMAAjR8/XlOmTGnWY3uGDx+uF154Qbt379b+/fuVm5urc+fOqaysTNHR0erVq5eGDx+uGTNmtNrovCT7NyFJd9xxR6u1CwC4dBmmaZrt3QkAgLO98soreuWVV5SUlKR33nmnWc/yDKe0tFRz585VcXGxHnjgAc2bN6/V2oazLVmyRBkZGRo1apTWrFnT3t0BALQBJnECALSYdfnwDTfc0KrhVZLi4+Pt0Lpx40adP3++VduHM+3fv18ZGRkyDEP3339/e3cHANBGCLAAgBapqqrS+PHjdc8992jWrFkX5RyzZ89W7969VVRUpD/+8Y8X5RxwlvXr10uSpk6dqiFDhrRzbwAAbYVLiAEAjnDgwAFlZGQoPj5ec+bMae/uoB2VlpbqzTfflGmamjVrVr33RQMAOhYCLAAAAADAEbiEGAAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI5AgAUAAAAAOAIBFgAAAADgCARYAAAAAIAjEGABAAAAAI7w/xAKP/4MehW5AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADgm0lEQVR4nOydd3gU1frHvzNb0gsl1NAEQhdBULigKM2CBRvIlWb9iQU7NlAB9aroxQLoRUUELKDYUEFBEVHpqDTpEEogAQLpyZY5vz82M8xuZmanJdlN3s/z7EPIzpw5u9k953zmfc85HGOMgSAIgiAIgiAIgiAiHL66K0AQBEEQBEEQBEEQeiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICEliCIAiCIAiCIAgiKiCBJQiCIAiCIAiCIKICWwT24MGD4DgOHMdh7NixdhRZK7nkkkuk95EgCEKNsWPHSm3FwYMHq7s6EnPnzpXqNXfu3OquDmEzgiDg/PPPB8dxuP/++6u7OkQUIbYLl1xySXVXhSAihkjty+1gwYIF4DgOqampyMnJsb38KovAzp07F8899xyee+65qrpktfPVV19Jr/nMmTPVXR2iHJ/PhxUrVuCJJ55A//790bhxY8TExCAxMRGtW7fGzTffjK+++gp+v99Qudu2bcP999+P9u3bIzExESkpKejSpQueeOIJZGZmVtKrIQiiNrJ69WqMHTsWbdu2RWJiIhITE5GRkYG77roL69atq5Rrzp49G5s3b0ZsbCyefPJJXefs27cPzz33HC688EI0atQIMTExaNy4Mbp3745x48bhs88+U21rDx48iAULFuCBBx7AxRdfjLZt26JOnTpwuVyoV68eLrjgAjz88MPYsmWLodeRmZmJJ554Al26dEFKSgoSExPRvn173H///di+fbvucvx+Pz766CMMHToU6enpiImJQd26dXHeeedh4sSJOHTokKF6aSG/OaTn8csvv6iWZaQc+SOaB9ivvfaa9DpGjRplqoy2bdtKZZj5jhUXF2PNmjV46623MHbsWHTu3BlOp1PX30wNr9eLd999FwMGDJDGMunp6bj66quxcOFCMMZ0l8UYw8KFC3HVVVdJn+fGjRtjwIABeO+99+Dz+QzVbdmyZRg+fDhatGiB2NhYNGjQAH369MH06dNRVFRkqKw1a9bgtttuQ+vWrREfH4+6devi/PPPx/PPP4+TJ08aKksPdr8XkUp2djZcLhc4jkNCQgIKCgoMl/H8889Ln+Fx48ZJvx8xYgQyMjKQl5enu78wBLOBAwcOMAAMABszZoziMf369ZOOqS2MGTNGes0HDhwIe3xtfI+qmp9//pnVrVtXep+1Hj179mR79+7VVe60adOYy+VSLSspKYl98sknlfzqiNqC0balqvjggw+ken3wwQfVXZ0aSWFhIbv55ps12y6O49gDDzzA/H6/bdctKipijRo1YgDY+PHjwx7v8/nYxIkTmdvtDtvWnj59WrGM4cOH62qrOY5j48aNY16vN2y9FixYwBITE1XLcrvd7L///W/Ycvbu3cu6du2qWa/ExEQ2b968sGXpQf7d0vNYuXKlallGypG/lqKiItP1F8vp16+f6TKscPz4ceZ0OhkAFh8fz/Lz8w2d/+uvv0qvoWPHjqbqEG7sofU3U+LAgQOsW7dummUOHDhQ9fslJzc3l/Xv31+zrO7du7PMzMywZZWWloZto1q3bs3+/vvvsGUJgsAeeughxnGcalkNGzZkP/30k563TBd2vhfhiIS+/Oqrr5bq8N577xk+v3Xr1tL569evD3pu3rx5DADjeZ7t2LHDriozxhhzwgZatmxp6C4PoYyZu2+EMY4ePYrc3FwAQN26dTFw4ED06tULjRs3htfrxfr16zFv3jzk5+djw4YNuPTSS7F+/Xo0atRItcx33nkHjz32GADA5XJh1KhR6NevH7xeL3744Qd8/vnnKCgowKhRo5CamorLL7+8Sl4rUXOZO3cupejWQvx+P2644Qb88MMPAICEhATceuutuPDCC8HzPP7880+8//77OH36NN544w0wxvDGG2/Ycu1Zs2bh+PHjcDgcmDBhguaxPp8PI0eOxMKFCwEAaWlpuOGGG9C9e3fUqVMHhYWF2LNnD1asWIENGzZolhUfH48ePXrg/PPPR9u2bVG3bl1wHIejR49ixYoVWLp0KRhjePvtt1FYWIh58+aplvXdd99hzJgx8Pv94DgON954Iy677DK4XC6sWrUK8+fPh8fjwcMPP4ykpCTccccdiuUcO3YMl1xyCY4cOQIAaN68OW677Ta0b98excXFWLlyJT755BMUFhZi7NixiI+Pxw033KD5Oo1w//33o3///prHdO7cWfW5L7/8Utd1/ve//2HZsmUAgGHDhiE+Pl5/JSOMhg0b4sorr8Q333yD4uJiLFq0CLfffrvu8+Xt7a233mqqDqGZBs2bN4fH48Hx48cNl3XmzBlcccUV2LlzJwCgQ4cOuO2225Ceno69e/di9uzZOHz4MFasWIHrr78eP/74I5xO5SG/x+PBtddei9WrVwMAmjVrhrvuugtt2rTBkSNHMGfOHPzzzz/YvHkzrrjiCqxZswbJycmqdRszZoz03a9Xrx7uuusudOnSBSdPnsSCBQuwfv167Nu3D5dffjnWrVuHZs2aqZb15JNPYvr06QAC7d3tt9+OCy64AIWFhVi8eDGWL1+O7Oxsqf7nnXee4feyMt+LaODWW2/FkiVLAAQ+50a+F6tXr8a+ffsAAJ06dULPnj2Dnv/3v/+NSZMmITMzE5MnT8ann35qX8Vt1WENamN0MRLurBDBzJ8/n3Xp0oV9/PHHrLS0VPGYI0eOsE6dOkl/u9GjR6uWl5WVxeLj4xkA5nQ62fLlyyscI79z3qxZM1ZSUmLb6yGISIIisJXLrFmzpPc3PT2d7dmzp8IxWVlZrH379tJxq1atsnxdr9fLmjVrxgCwwYMHhz3+6aeflq5/6623soKCAtVjs7KyVCOnu3fvVm2nRX766ScWExMjXW/t2rWKxxUVFbEmTZpIx82dO7fCMT/++KMUpUtMTGTHjx9XLGvYsGFSOQMGDGCFhYUVjvntt9+kvqFevXq6omBaVPV3y+fzBb1fv/32m6XyxHKqKwLLGGNffvmlVI+LLrpI93lFRUUsKSlJ6ufVPhfhGD16NHvhhRfYsmXL2IkTJxhjweNEIxHYBx98UDrv8ssvrzCuOHXqVFB0dsaMGaplvf7660GRxdzc3KDnS0pK2GWXXSYd8+ijj6qW9dVXX0nHNW/evEKU0u/3s1tvvVU65sYbb1Qta/PmzVLkNSUlRTFi++yzz0pl9ezZkwmCoFqeHux8L/QQCZ7g8XhY/fr1pXrozTxkjLHbbrtNOu/VV19VPOapp55iAJjD4bAlai1CAluJRMIHkwjm9OnTuhq4rVu3Sn+7uLg41dQpeSfy2GOPqZZ300036epICCKaIYGtXORiumTJEtXj1q1bJx3Xt29fy9eVD/zDpcRu3bpVksChQ4davrYexo8fL9Vv0qRJisfIB6Y33XSTalmPPfaY5uA0KytLGlTHxcWx7Oxs1bJeeeUVqayJEycaf2Eyqvq79d1330nXy8jIsFxeJAisx+NhaWlpDAikne/bt0/XeWIaJAB29dVX21onMwKbnZ0tpeYnJCSofga3bt0qfVYbNWrEfD5fhWO8Xm/Qe7Jt2zbVayYkJDAALCYmhp08eVLxuPPOO096Pd99953iMcXFxax58+bScVu3blU8bujQodIxM2fOVDxGEAR2wQUXSMd9++23isfpwe73Qg+R4gnysaxaGxqK3hs727dvl8p++umnbatzpc+BlYur1uPZZ59VLNvv97OFCxeyYcOGsZYtW7K4uDiWmJjI2rVrx+6++262ZcsWzbrJ786IjcOKFSvYzTffzFq2bCnduZV/cLxeL1u2bBl7+OGHWZ8+fVhaWhpzuVwsMTGRtW3blo0ZM0bzrrb8A6n10HqvwrF27Vp25513soyMDJaYmMji4+PZOeecw0aPHq1rLkBoZ1JYWMimTZvGzj//fJaamsri4+NZx44d2RNPPFHhDlRtQT5YVLrzJwgCa9q0qdTYHTp0SLWs1atXm7rzawd//PEHu/vuu1mHDh1YSkoKi4mJYc2aNWPDhg0L29ivXLmywnc0MzOTPfzww6xdu3YsPj6epaSksN69e7OZM2fqmoPGGGMFBQVs+vTpbODAgaxx48bM7XazOnXqsB49erBJkyaxnJwczfNDvys+n4998MEHbODAgaxJkybM4XCwFi1aVDjv+PHj7LHHHmMdOnRg8fHxrE6dOqxnz57s1VdflW5StGjRggGocP7SpUula95///26Xuf9998vnfP999/rOkcP4Tq9yvq7LVmyhF111VWsYcOGLCYmhrVo0YL9+9//Zn/88QdjzNggu6ysjL333nvs6quvZunp6SwmJoalpKSwLl26sIcffli1M9+5c6cU2UpOTmb79+9XvUZubq4UOeR53pZoZHWRlZUlvbd169YNeyNObL84jrN81/v666+XhE0rmsrY2TvyHMdV2YDsnXfekd6bO++8U/GY3r17S8doRRMPHTokDfqbN29e4fmPP/5YKiecoB8/flw6tnXr1sZeVAhVLbA33nijdL3//Oc/lsvTI7BFRUXsyiuvlI4dNmwYKysrq3Dctm3b2EMPPcS6du3K6tSpw9xuN2vSpAm7+uqr2YIFCzTnfj/00EOGB+ry+ZBffPGFrnP0YkZg//e//0nn3HHHHZrHDhgwQDpWaWz4ww8/SM8PHDhQs6zbb79dOvb999+v8Pzu3bul59u2batZ1tSpUzX/Dvn5+dL4PDk5WXP+9fz586WyRo0apXldLex8L/SiV2Dfffdd5nA4GADWtGlTRbm2Mq76+++/pXq0aNFCV6BHfmPnmmuu0TxWvLGht2w9RLTA7t27N+hujtKD53nNRkgusD///DO79957FcuRf3AuueQS3QKq1LhWpsB6vV525513hi172LBhrLi4WLUceWeyb98+1rFjR9WyWrRoUSsjyD179pTeA6W0NHmUtnPnzppl+f1+lpycLH1mjS4gYYbCwkJdi6AMGTJEtT6hIrR06VKWmpqqWtagQYPCpvx9//33rEGDBpp1SkpKYl9//bVqGfLvyqlTp1jfvn0VP7dyfv75Z1anTh3Va3bp0oUdOnRIVWD9fj9r1aoVA8Dq1KkTNhW8pKREul7z5s1tXVDHqMBa/bv5fD7Ndo3nefbyyy/rHmRv2LBBei/VHm63m73zzjuK58+ePVs6rnfv3oqRBcaCB+F23vmtDtavXy+9lgsvvDDs8ddcc410vNr7qIfS0lLphsHFF1+seWxxcbF0bFXeqJNHTZXGA3l5eUGpiOG+i/IpJNu3bw96Th5Vffzxx8PWTWz3AbCdO3cae2EyqlJgT548KUX4HA4Hy8rKslymfMyhxKlTp1ivXr2k4+69994Kfyev18vGjx/PeJ7XbDsuvPBCduzYMcXrbNmyRTquZcuWYQfTmZmZ0menfv36zOPxmHr9apgR2BtuuEE65/PPP9c8dtq0adKxSllijzzyiPS8WgqoyGeffSYdq5TF8NZbb0nP33fffZplbdiwQTq2Z8+eFZ5fsmSJ9PxVV12lWVZOTo50bFpamuaxWtj5XuhFj8C+8MIL0jHt2rVTvCFpx7iqe/fu0rE///xz2LrLb+x8+eWXmsfKbxz9+eefYcvWgy2LOGkhLnE9ceJEaXl6pQUE2rdvH/T/ffv2oVevXtLy2H379sVVV12FFi1awO/3Y9OmTZg7dy5Onz6NqVOnguf5sFv0TJs2DUuXLkWjRo2kJcx9Ph/Wr1+PmJgY6biSkhIkJiZiwIABOP/889GyZUvExsbi2LFj2L59Oz766CMUFRXhww8/RGpqKl5//fWg64wfPx5Dhw7Fm2++iZUrVwIILIbQoEGDoOOaN2+u6z2UM2rUKGkSdGxsLMaMGYN//etfcDgc2LhxI95//30UFBRg0aJFyMvLw9KlSzX3lc3Pz8eQIUOwa9cuXHvttbj88stRt25d7N+/H2+//TYOHTqEzMxMjB49Gr/++qvh+kYrHo8He/bskf7fokWLCsds27ZN+vn888/XLI/neXTr1g2rVq2CIAj4559/cMEFF9hX4RDKysowcOBArF27FgDQunVrDB8+HB06dIDL5cLevXsxb9487N69G9999x2GDh2K5cuXg+fVd9b666+/MG3aNDDG8H//93/o3bs3YmJisHHjRrzzzjsoKirC8uXL8cILL2DKlCmKZSxevBjDhw+H3++Hy+XCNddcg0suuQQNGzZEfn4+Vq5ciUWLFqGgoADXXXcdli9fHnaxkpEjR+K3335D165dMWLECLRs2RL5+flBW2vs2LEDV111FYqLiwEA3bp1w8iRI5Geno7s7GwsXLgQv//+O4YPH666PD7P87jzzjvx1FNP4fTp01i8eDFuueUW1Xp9/vnnOH36NADg9ttv13xvKxM7/m7jx4/Hhx9+CABwu90YM2YM+vbtC57nsX79erz//vt4/PHHMXTo0LD1WbNmDQYOHIji4mJwHIfLLrsMgwcPRtOmTVFSUoI1a9Zg/vz5KC4uxt13342YmJgK+4vfeeed+OGHH7B48WKsWbMGkydPrlD3999/H59//jkAoFevXlG/hRuzsFDi1q1bTZ/7+++/S9+bcG3Wpk2bKhz7888/Y9asWVizZg1OnjyJOnXqoGvXrrjpppswZswYuFwu03UDgI0bN+Ltt98GENge5rrrrqtwzI4dO6T377zzzgv7XezRo4c0Xtm2bRs6duwoPWf179CuXTvT54vMmjULL730Eg4fPgwgsEhWz549MXToUAwfPlx1sR69fPTRR/B4PACAyy+/HI0bN7ZcZy0OHz6Myy67DP/88w8A4Nlnn63wfWWMYdiwYdL4sXHjxrj55pvRtWtXxMfHIzMzE59++ik2bdqEdevWYcCAAdiwYUOFhae6dOmC888/H5s2bcLBgwfxyy+/4NJLL1Wt24cffij9zUeOHGn582oHRsYePXr0UDyvuss677zz4HA44Pf7pe+nfKxqpKy0tDS0aNECmZmZOHHiBHJyciqMt/Vg53thB4wxPPjgg3jzzTcBAD179sT333+P+vXrBx1n17jq1ltvxebNmwEEFnPS+l5kZmZKfpOWloYhQ4ZovpZevXpJP//www+WF9sCgIjcRsfv90t3AmJiYtiiRYsUjzt+/LgUoeV5XjGkLo/AAoH5QHl5eZrXX7FihWb08uTJk1LEh+d51RQ2u7fR+fTTT6XnGzZsWOHOMGOMHTx4MCiyoTbfUv6euN1uxflUJ0+eDCpr3bp1YV+DGkVFRezLL7+05bFp0ybT9dCLPCWle/fuisdMnjxZOkYtBV7O6NGjpePnz59vc42DCZ2bq5Qi6vF4gur09ttvVzhGHskDApHE3bt3Vzhu3bp10ry3OnXqKEbzDh06JEUjmjdvrpr+v27dOpaSksKAwEI1Sne8QzM7HnzwQc2oijxCe8899ygeG9pWqKUgi9slhZvLdfHFF0sRjMOHD2seaxQjEVirfzf59hGpqals48aNFY7ZuXOntMWK+FCKEuXn50spvampqeyXX35RfH179uyR5kglJCRIC57Iyc3NZenp6dJ7vHr1aum5Xbt2SXOUkpOTdc91U+Off/6xrf1Sei16yMzMlN5bIynEQPh0OC1efPFFqZzPPvtM89jp06dLx06fPp3dd999mhGBTp06aaaAy9m+fbv0Hn722WfsrbfeYjfddJP0+QXAnnvuOcVzP/zww7BjFDnPPPOMdPzUqVNVy7ruuus0y5GnEANgzz//vK7XqoTebXTatWuna3sSLeSZb4sXL7ZUlohYXmi7uWPHjqA0/1mzZimeL5/DPHLkSMWUUkEQpAVjAPUI+YwZM6RjtBZpFAQhaIsQq++rEkYjsH6/X/rMOxyOsNM/9u/fL5WvlMYuH+OFG6d6vV4pjdXpdFZogy699FJDr0U+Dza0j5Qv9KQn40DsbwEE9QVGsPO90ItaX+7xeNiIESOk5wYNGqQ4fcPOcdWpU6ektO2EhATN6SLy8e9DDz0U9nUePHhQd7upl4gU2MWLF0vHvvnmm5rH7tq1S/oQKc19kQ9KExIS2NGjR3W9pnDs27dPtYMTsVtg5SvKac2nW7dunZTy0qJFC8X0OnmHN2XKFNWy3n33XV3HhUP+GbH60DMAsUJubi5r3Lhx2EGbPCXirbfeCluu0ePNkpWVJaV/XX/99ZrHejweds455zBAec5KqAj9+uuvqmXdcsstmseJ80EdDkfYFJL3339fKuujjz6q8Lz8u3L++edryqs8Valz586q6aah5SoJLGPBC3IpSSFjgXZJPGbIkCGar9UMRgXWyt/t2muvlZ5XWrlV5Ntvvw26ptKg47XXXpOe/+abbzRf408//SQd+8ILLyge88svv0jphC1atGCnT59mHo+HnX/++dK5dtwsCr25YeVhdK9HOaKwA9qLlcg/8wBYjx49TF/z3//+t1ROuDUnHn/8cenYjIwM6fs+cuRINmfOHPbxxx+zJ598MmjFyxYtWuhaZ0Feduija9eubOHCharnvvHGG9KxjzzySNhraR2/d+9e6bn4+HjNeWXy9E3A2oqlH3zwAXM6naxfv35s0qRJ7MMPP2SfffYZmzVrFhs5ciSLjY2VrpOUlGRatjZv3iyVk5aWZlvKrFimXGDXrFkj7Y3qdrtVgxUlJSVSemTPnj3DpoBfdNFFDAjcvFKa6pGbm6troL5q1Sqp3mo3sq1iVGDz8vKk4+vVq2f5ePm0mnDz28MdLx+jqi3MpPf46667TnpOa8E6s8crYed7oRelvrywsJANHjxY+v3w4cMVpysyZu+4irHg8c2cOXMUjwm9sROuXxCJi4tjgPX1AESqJ6ctDPPnzwcAJCcn484779Q8NiMjQ0pV+vHHHzWPveGGG9CkSRNb6njOOedIe4OuW7fOljK1OHjwIP78808AgRSYK664QvXYCy64QEoPyMzMxKZNm1SPdTgcuO+++1Sfl6cZ7Nixw2i1ow6/34+bb74Zx44dAwAMGTIEN954o+KxhYWF0s+xsbFhy46Li5N+LigosFhTdRYtWiSlfz366KOax7pcLgwfPhwAsGfPHhw8eFD12G7duuGiiy5SfV7rs8IYw0cffQQAGDBgQNj0EXkaXLjv9b333quZEvj1118HHetwOFSPfeCBBzSvBQB333239PN7772neIz893fddVfYMisTK3+3srIyLF26FEBgH8WRI0eqljNkyBB06NBBsy5i256RkYGrr75a89j+/ftL7bXaZ6Bfv3544oknAATaurvvvhsTJ06U2rxbbrlFs87Rhrw/HDduHPbv31/hmOzsbIwZMybod/n5+aavmZmZKf1ct25dzWPPnDkj/bx7927ExsZixYoVmD9/Pm699VaMGDECL774Inbs2IEuXbpI5T/11FOm65eUlITBgweja9euqsfY2Va3bt1aSq0rLi7GLbfcIqVNy1m7dm2FNFgrf4e+ffsiMzMTv/zyC6ZMmYLRo0fjxhtvxLhx4zB//nzs3r1b2oOxoKBASik0ypw5c6SfKzNldtmyZRgwYAByc3ORmJiI7777DjfddJPisT/88ANycnIAAA899FDYFHDxO5+fny9No5FTp04dXHvttQCAoqIiaapBKHbs/Wo3do877CwvUsvSSySM6U6ePIn+/ftLfd69996Ljz/+GG63u8KxlTGukn/OxWlDocj3fj3//POltjwcderUARCYMsAsTMUQqfQ5sGYQNxBu3LixtIm2FuKANDMzEyUlJUEfKjlag7hQ8vPz8dFHH+H777/H1q1bcfLkSRQVFSkeK25mXpmsX79e+nnw4MFhjx88eDB++uknAAHBVpu7lJGRIX2olGjatKn0szifzwwtW7a05QNb2TzwwAPSF7t58+ZBHVi0IH5/gMBn86uvvtI8Xv53/eeff9CyZUvF4+RzGJTQ+qxs374dubm5AAIDznB1AoDExEScOXNGmhelRrjv9caNG6WfteZ0AMAll1wStl6XXnopMjIysHv3bnz44Yd4/vnngwZ5Xq9XavibNGkSdm5IZWPl7/b3339LN0P69eunKf9AoBNV+3vl5eVJ85IbNmyo+zMAQPMzMHnyZPz0009Yt24dFi5cKP2+VatWmDVrVthr6OG5556LiDm0Dz/8MBYtWoTt27fj8OHDOO+883DrrbfiggsuAM/z+Ouvv/Dee+8hNzcX55xzjiS4VuZfi99bILzACoIQ9P+JEycqfqfS0tLw0UcfoWvXrmCM4YMPPsDLL7+M5ORk1bJfeuklvPTSSwACN1YOHTqEH374AS+//DKmTZuGN998E//73/8qyHtl8Oabb6JXr17S/PFOnTrhtttuQ7t27VBcXIxffvkFH3/8Mbxer21/hzZt2mg+36xZMyxduhSdO3fG8ePHsXPnTnz++efSDUo9lJWV4eOPP5b+f9ttt5murxYLFizAbbfdBq/Xi7S0NHz//fdBcwpDkfdpp0+fDtt2HD16VPr5n3/+UfwM3nbbbVi0aBGAgKiGzrMvLi6WxDYmJgb//ve/w7wqgrDGoUOHcNddd2HXrl0AlOeCy6mMcZW4HsXRo0fx66+/4sCBA2jVqlXQMWZv7NSrVw9ZWVnweDwoKiqS+nezRJzAFhYW4tSpUwCAXbt2KS7IoMXp06dVBVY+UNNi5cqV+Pe//43jx4/rOt7KXVW9iBFBICCd4ZAfIz83lNDJ4KHIF7cqLS0Ne91o5umnn8bMmTMBBAbYy5cv13x/5F8+Pe9NSUmJ9HNSUpKFmmojj6IOGzbM0LlaNymsfFbkdVq8eDEWL15sS52A8N/rrKws6edzzjlH89g6deogNTU1KJIUCsdxuOuuu/Doo48iOzsbS5YswfXXXy89/80330jRgltvvTWs9FU2Vv5u8vcu3AA63DGHDx+WBGf16tVBg9JwaH0GnE4nPv74Y5x33nnSXXDxd1pCFI0kJiZi2bJluO6667Bx40YUFBRIC3zIufzyyzF27FjcfPPNAKB5kzIcZWVlAAI3itX6VpHQdk0rg6pLly7o1asX1qxZg7KyMvz++++amUVyYmJi0LZtW7Rt2xa33HIL+vXrh61bt2Ls2LFIS0vDlVdeGXS83W11586dsXTpUtx4443IycnBwYMH8cwzzwQdw3EcnnnmGRQUFGD69OkArP0d9FCvXj088MADePLJJwEA3333nSGB/frrr6UBcc+ePdG5c2fb67h582aMHj0ajDE0b94cy5cvDzumkfcf9957r6HrqbUdgwYNQnp6Oo4cOaI4UP/888+l9uTaa6+tcPNm8+bNOHTokOp1+/btG7btNYPdn+XExETpPSotLQ0rFVrl2Vm36hhf2flemOGaa65BXl4eOI7DzJkzMW7cOM3jK2Nc5XA4MHr0aPznP/8BYwwffvhhkERbubEj74/FxXKtEHEpxHl5eZbOF6MFSoTrfIFAGuWQIUMkeW3Xrh0efPBBzJw5E5988gm+/PJL6ZGWlgYAptJ0jCJPT0hISAh7vPyDoZXaUF0ro0Yazz//PF588UUAgQH/ihUrwnaqqamp0s/iatlaiDdmQs+1GyvfIa3vj5XPSmXVCQj/vRYzJ5xOp650OD3fr7Fjx0ri9+677wY9J/6f4zjcfvvtYcuqbKz83eQpVaGreSqh9d5Z+Qx4vV7N5+vXrx80wDznnHPCriIZraSnp2Pt2rVYsGABrrrqKjRq1Ahutxv16tVD//79sWDBAnz//fdBaa3idBcziJ9zv9+vmCorR96uNWvWLOxKoPK/kZiSZpQ6deoERdonT56sWS+72uqLLroIu3fvxssvv4y+ffuibt26cLlcaNKkCYYPH47Vq1dj8uTJQWVZ+TvoRR5t3Llzp6FzP/jgA+nnyoq++v1+KRurtLRUddV3OZXRf/A8j9GjRwMIpGLOmzcv6PlwUaY333wT1113neqjslamTUxMlNJAz5w5E/b9C/dZNvLd8Pl8UsDG5XJVaO/t/J5Vx/jKzvfCDOLfkjGmmvEpp7LGVfJshHnz5gVlT8pv7AwdOtTQTTl5ffX4WDgiLgIrF6+LL74Yq1atqtLr/+c//5Huqjz99NOYOnWq6jY04ebn2on87o6eD7Z84FmZ0T69FBcXh53LqJfmzZuje/futpQFAK+88gomTZoEIDAYWr58ua47z3LB1Zo7KiKfS6Ynim4W8TvEcRx8Pl9E3KSQf6+feeYZxUFmZSF2LD6fD16vN6zE6vl+1atXDzfeeCM++ugj/Pjjjzh06BCaN2+OzMxMLF++HAAwcODACqk30Yb87xZOXgDt905e1ujRo1Xn15jhnnvuCfp+7d69GxMnTsTLL79sS/k7d+40LANq2BGZcTgcuOWWWzS3cZLPZxbnRppBfmMgNzdX80aGfIuYlJSUsGXLj7EyGOvTpw+SkpJQUFCADRs2oKioKGhAWVltdUpKCiZMmIAJEyaoHmPX30Ev9erVk37WyiQJ5ejRo1IfHRcXhxEjRthdNQCB9+Cqq67CY489hpycHFx66aVYuXJl0FZFocjbjv3799vWro4dO1a6cT1v3jw888wz4DhO2l4HCGT4DBo0yJbr2QHP82jdujV27doFv9+PI0eOqE77AcJ/ljMyMnDgwAEAge+GVllHjhyRAjZt2rSpMDbOyMiQtlYJ9z3z+XxSqndCQkKFTKrqGF/Z+V6YYdGiRbj11luRk5ODxx57DID2OiaVNa7KyMhAnz598Pvvv+PAgQP49ddf0a9fPwDW5oWL2R1ut9sW4Y84gU1JSUFiYiIKCwurZG5pKCtWrAAANGjQAFOmTFH9UBYUFATNDaps5PuwyfcnVUN+jF0LV1khJyfHcDq4GmPGjLFtbur06dPx+OOPAwh89ozsTyWXXK2FsoDA3DBxES6e58MudmOFpk2b4q+//gJjDEePHkWzZs0q7VpG6iRS1d/rJk2aSHMv9+/fr7kP4+nTp3UP+u6++2589NFHEAQBc+bMwXPPPYc5c+ZIabLVvXiTHcjbjr1794Y9XuuYyvoMfPTRR9JCFueffz5OnjyJzMxMvPrqq7jsssvC7iOsh08//dS2wcHKlSt1zbW2ivzmr5H1H0Jp2bIlfv/9dwCBAUh6errqseeee670sx4hlR+jR3jV4DgOCQkJKCgoAGMM+fn5QQOkjh07gud5CIKAv/76C4IgaN7Yk8+bt5JGe/r0aantSUhIQLdu3UyXpRezkagPP/xQaruuv/56S3+PcDz66KPgOA6PPvqoJLE///wzOnXqpHh8aNthl8C2bdsWffv2xW+//Yb9+/dLA3X53q+jR49WnAYyd+7calsjo3PnztI8yU2bNmmKVrjPcufOnfHDDz9IZWm1TXrKEtm0aVOFecVy/vrrL0kAO3bsWGGsbWR8deLECUlg09LSTO0BK17TrvfCDB07dsTKlSvRv39/ZGdnh5XYyhxX3XrrrVK7P3fuXPTr1y/oxk56errhGzuiMzVv3twW4a+y0Iy8swi3mM/FF18MIDDY1DNospPs7GwAgQVAtDq4FStWVFiwIhQjrzkc8kWYxAiPFvJoZ7jN52srM2fOxMMPPwwgEKVeunSpoTvknTp1kgZz27dv12xA/vjjDyndRIwWVBbinTIg/Aq+VUW3bt2k+Q8//fRT2O+OncgXBxHvDqshNs566Nu3rzTgmjNnDrxer7SCZ4MGDaRVLqOZrl27Sqsfrlq1Kux0CXHhOCXq168vRVnWrl1ry9oBBw4cwD333AMgIAiffPIJFixYAIfDAUEQMHr06KABfW1h+/bt2LBhA4BAVLRv376my5IPzsRBsxrt27eX5OLw4cPSXHA15ANTK1kpeXl5OHHiBICAzMqjkEBg7pW4mFleXp7iyrQihw8flqKmzZs314wMhuPjjz+WUvVuueUWXSubWkV+48LIeyqXscpKH5bzyCOP4LXXXgMQuMHdv39/bN++XfHYyuzTQlddDU0n1pKw6uKyyy6TfhaFSw35QqiXX3551JR1ySWXSNMXfv3116D5pqHIr6VUll7srL9ZRIlt2LAhAOCxxx7DtGnTFI+tzHHVsGHDpGybzz//HEVFRRVu7BjJ7jt48KA0l1l+o9MSduzFo2cf2Kuvvlr3fkkLFy6Ujh0xYoSlusn379Ozx1Zqaqq0/5naxsQ+n4/16NEjaB87JcT9maBzT6xw+8B2795dev7HH39ULWfDhg1BeyNq7QMbuqm4EkaOjRZmz54t7ZWbkJBgeuNr+d6uEyZMUD1OvrfWjBkzzFZbF4cOHZL2gW3bti0rLCw0XZZ8P9Fnn33W0rHjxo2Tnv/f//5nuk6MGdtX2u59YOW8+eab0vH33HOP9PNjjz1m5OUYxsg+sFb/bkOHDpWenzdvnmo533//vXQcoLwP7Msvvyw9/+STT4Z5ldr4fD7Wu3dvqbz3339fem7SpEnS74cOHWrpOtGGz+dj/fv3l17/u+++a6m8n3/+WSpLzx6qTz75pHT8888/r3rcli1bpDY4MTGRFRUVma7jf//7X+maanveyvd2HTZsmGpZjz32mHSclX1bs7OzWVpaGgPAXC4X27Fjh+my9HLq1KmgPczV9noM5ddff5XOadWqlerYxwpq4wj5365BgwZs27ZtFc4tLCyU9g6uW7cuy8rKsq1eBQUFLCEhgQGB/XPl7VifPn1su44aRveBZYyxnJwcqY9PTExk2dnZisdt3bpV+o41atRIse/zer3S55TjOMX3n7HA51l8n2JjY9nJkycVj5Pv7fr9998rHlNSUsKaN28ednws39t11qxZiscIgsAuvPBC6Tit/bHDYfd7oQe1vnzHjh2sUaNG0nOvvPKK4vl2jqtCGT16tFT23Llz2TnnnCP9f/fu3YbK+vTTT6VzX375ZVvqV2UCO378eOmYVatWaZbn9/tZz549peMfeOAB1U18GWOsuLiYffDBB+yTTz6p8JxRgR00aJB0/H//+98Kz3s8HnbrrbcGDdTUBrryhvnDDz8Me+1wg3K52Ddu3Jj9888/FY7JzMwM2mBYTZZqs8B++OGHUqMeHx+vu9NQ4ujRoyw+Pp4BYE6nk61YsaLCMR988IH0HjZr1kxxY3W7eeSRR6RrXnrppezYsWOqx/r9frZ8+XI2derUCs/ZKUKHDx+WbhDFxMSE/U5kZ2ezKVOmsL///rvCc0YEljHG+vbtGySafr+/wjHytkKvwJ45c0b6+8sfRht3o1SlwK5evVp6vk6dOoqbpe/evTto4KwmsIWFhaxFixbSAOGVV15R/FuInDlzhr3xxhts+fLlFZ6TS+qNN94Y9JzX6w2SW7s79upk9erVqjdh8vLy2M033xz03bcqI6WlpdJg7aKLLgp7/MmTJ6XveWxsrGL7mpOTw7p06SLVU+nm3++//85mz54dtr386KOPWExMjObnjjHGioqKWJMmTYIGZKEsX76cOZ1OSQyOHz+uWFZxcTFbt26dap327t3Lzj33XOlazz33nOZrkH9vlL7Pf/zxB3v33XdZaWmpahmHDx9mF1xwgVRO27Ztmdfr1byuyNixY6XzJk+erOsco2iNI6ZPny49n5aWpigOb731lnTMueeeG7aNXbt2re4bifL2VN6Ovffee7rOt4IZgWWMsQcffFA674orrqjwPcnNzQ2SSa0b56+//rp0XPfu3Vlubm7Q8yUlJezyyy+XjtG6sfPVV18F9aGZmZlBz/v9fnbbbbeptt1yNm/eLI3VUlJSFMcCzz33nFRWz549VcuSj8O0xrJ2vhd60OrL//nnnyCJVRI/O8dVocjHBvLvRd++fQ29RsaCgz1//fWX4fOVqDKB/frrr6Vj2rRpw2bOnMm+/fZbtnTpUrZ06VK2Z8+eoOMPHTrEmjZtGvTmjR8/nr3//vvs888/Z3PnzmVTpkxh11xzjdS5Kg3AjQrsN998E9SZXHPNNWzmzJns008/ZVOnTmVt27aVBgbp6emaA92///5bKqdhw4bs1VdfZUuWLJFe85YtW4KO1zMolw9O4uLi2Lhx49i8efPYRx99xB566CGWnJwsPT948GDVwUttFdjvv/+eORwO6TXdd9997Msvvwz7CG2E5bz99ttSeS6Xi91+++1s3rx5bM6cOeymm26SGmCn08mWLl2qWb9wAxm9eDweNmDAgKDPysiRI9nMmTPZokWL2IIFC9irr77KRo0aJTWQAwYMqFCOnSLEGGPLli2T7hwDYF27dmWTJk1i8+bNY5999hl777332IQJE9jFF18s/Z2UouNGBXb79u1BotmtWzf22muvsYULF7I333yT9enThwFgvXv3ltqdVq1a6So79IbWJZdcous8K1SlwDLGgqLLMTEx7K677mLz5s1jCxYsYOPHj5faYHm0Vk0k/vzzz6B2qnXr1mzChAls7ty57PPPP2dz5sxhEydOZIMHD5Y+K/Pnzw8qY/Xq1dLnIz09vcIggzHG9u/fL10nPj6e7dy5U/N9iBY6derEGjduzO644w42a9Ys9tlnn7H333+f3X///axBgwbS+9q5c2fVyIxRbrjhBqkdCZdBxRhjn3zyidTuORwONmrUKOkm81NPPSVFOcQ2oLi4uEIZX375JQMCUbEbbriBvfDCC+zDDz+U+v+nnnqKde3aNei7d+ONN2oK+7fffit9bjiOYzfddBObM2cOmzdvHrv99tuZy+WSytKKXJ84cYIBYJ06dWKPPPIImzNnDvvss8/Y22+/zUaMGMFiY2OlckaMGKGZ9cFY+HZffC+Sk5PZTTfdxF566SU2f/589tlnn7F33nmHjRo1isXFxUllJCUlsc2bN2teU0QegeR5XrOvs0K4cYRcHNLS0hSjcvKIkNPpZNdffz17/fXX2cKFC9nHH3/M3njjDXbHHXewVq1aSW2LHn755Zegv4HYZuTn51t5yRX46aef2NNPPx30kN/oGDlyZIXnT58+rVjW6dOnWfv27aVzO3TowF577TX26aefsueff541a9YsqE/yeDyq9SorK2MXXXSRdHyzZs3Y888/zz799FP26quvsg4dOkjPdezYkZ05c0bzdQ4fPlw6vl69euypp55in3zyCZsxY0bQTZbGjRuzQ4cOaZb1+OOPS8cnJCSwBx54gH300Ufsf//7Hxs8eLD0XGJiouLNVRG9Amv3exGOcH35zp07g+RRSWLtGleFIgiC9F2SP+TZTno577zzGADWsmVLw+eqUWUC6/P5gqIgoQ+lgVNWVlbQIFzr4XA4FDscowLLWHAKlNKjT58+LCcnR4okaEVqRowYoVpO6HulZ1Du9XrZHXfcEfb9uPHGGxUHBSJ6vshmjo10QqNseh9qg3GRadOmBQ1+Qh9JSUmKGQKhhBvIGKGsrIzdd999QcKu9Rg9enSFMuwWIcYYW7NmTVAqitYjMTGxwo0exowLLGOBVEjxTqXSo3PnzkE3zs4991xd5a5bty6oHL1pe1aoaoH1+Xxs1KhRqu8dz/PslVdeCRokaH1ndu7cGRQd0HrExMQE3fg5ffq01PbyPK/Zri9YsEAqp1u3bpqZPNFCp06dwr5nN9xwAztx4oRt15RHVbTSyOV88MEHkhipPfr166daT1Ha9Dzcbjd7+umndUUcFyxYwBITEzXLUsq+kiMKbLg6TZw4UTPDQCRcu2/kvejcubOu6IrI+++/L507aNAg3ecZRf43V0Oe5q0ksYIgsKlTpwZF3MN9vvQgCEKFPkmpP7SKmfGH1jjgwIEDYdvRgQMHqkqwnNzc3KCpB0qP7t2767rBUVpaGhRsUXq0bt1a1+dUEAT24IMPSjfElB4NGjRgP/30k2Y5egXW7vciHOH6csYqSuxLL71U4Rg7xlVKTJ48OejchIQEXTcx5ezYsUM6f+LEiYbO1aLKBJaxQOj9pZdeYr1792Z16tQJGlhrDbJ++eUX9n//93+sU6dOLDU1lTkcDpacnMw6duzIhg8fzt5++23VORFmBJYxxpYuXcqGDBnC6tevz1wuF2vcuDHr378/e/fdd6VOUo/A+nw+9vbbb7NLLrmE1a9fX0pPUnqvjAzK16xZw26//XbWpk0blpCQwOLi4lirVq3YyJEjw36RGSOBNfoIJ7CMBeab3HvvvSwjI4MlJCSwpKQk1rlzZ/b444+zgwcPhj2/qKgoaPBz6tQpG14xY3v27GFPPPEEu/DCC1laWhpzOp0sPj6etWrVil155ZXsxRdfVG3MKkNgGQvciFmwYAEbNmwYa9WqFUtMTGROp5PVrVuX9ejRg915551s4cKFqvN3zQgsY4wdP36cPfroo6xdu3YsLi6Opaamsh49erBXX32VFRUVMUEQpEiG3kiqIAgsJSWFAYH5WVppfnZR1QIrsmTJEjZkyBCWlpbGYmJiWPPmzdmIESPYH3/8wRhjugWWscD79vXXX7MxY8awjIwMlpyczBwOB0tNTWVdu3Zlo0ePZnPnzq0QXZXf3X/iiSc0r8EYY7fccot0vJ45nJHOqlWr2OOPP8769OnDmjVrxmJiYlhKSgrr0KEDGzduHPvtt99sv6bP55PmrBmRnIMHD7Inn3ySnXvuuSw1NZW53W7WtGlTdv3117MvvvhCM1rq8/nYb7/9xiZPnsyGDBnC2rRpwxITExnP8ywxMZG1aNGCDRkyhE2bNo0dPXrU0Os5ePAgmzBhAuvUqRNLSkpiCQkJLCMjg917772q895C67Zw4UL2f//3f+y8885jDRs2ZC6Xi6WlpbEePXqwSZMmsb179+quTzhhKSgoYF9//TV74oknWP/+/VlGRgarW7cuczqdLDU1lXXo0IGNGTOGffPNN7qEWY48sKDnJqtZ9I4j5OsKqEVis7Ky2JQpU1i/fv1Yo0aNmNvtZrGxsSw9PZ0NHDiQTZo0ia1Zs8ZQ/aZMmRL0d7AytUgNuwWWsUC21ezZs1n//v1Zw4YNmdvtZk2aNGFDhgxhn376qaEpBIIgsE8//ZQNGTKENWnShLndbtawYUPWv39/Nnv2bN0p6SJLly5lN910k9RO1a9fn/Xu3Zv997//Nbw2xx9//MHGjh3LzjnnHBYbG8tSU1NZ9+7d2ZQpU3TdrDMisIzZ/16ooUdgGWNs165dQVMglCTW6rhKiYMHD0pr6oRzPDWeeuopBgQCjXZmeHCMWVwelyAIW/jhhx+k1ezGjx+PN954o5prVPvYunWrtEKe3r/BihUrpOXkH3jgAbz++uuVWUWCqBamT5+Ohx9+GA6HAwcPHtTcTocgCIIg/H4/2rRpg4MHD2L48OH49NNPbSu7yrbRIQhCG3EP4qSkJEycOLGaa1M7mTFjhvTzpZdequuct99+W/q5Juz9ShBK3H333WjUqBH8fj9eeeWV6q4OQRAEEeF88sknOHjwIHiex7PPPmtr2SSwBBEhiAL78MMPIy0trZprU/NYvXq15j5pM2fOxOzZswEENgi/6qqrwpb5119/4auvvgIADBw40NKekQQRycTFxeG5554DAMyePRtZWVnVWyGCIAgiYvH7/Xj++ecBBPZT7tChg63lUwoxQUQAJ0+eRIMGDVC/fn3s27cPSUlJ1V2lGkebNm1QWlqKK664At26dUNaWhq8Xi/27duHL7/8En/++ad07JIlS1QFdtmyZRAEAbt378Yrr7yCY8eOAQB+++039OnTp0peC0FUB4IgoGfPnti8eTPuu+8+vPXWW9VdJYIgCCICWbBgAUaNGoWUlBTs3r0bDRo0sLV8EliCIGoFbdq0wb59+zSPiYuLw7vvvotbbrlF9RiO4yr8Tu982R9//BHFxcXhK6tA/fr10bdvX1PnEgRBEARB1BRIYAmCqBWsXbsWixcvxtq1a3H06FGcOnUKxcXFqFOnDjIyMjBw4ECMGzcODRs21CxHFNjExERkZGRg3LhxuO2228Dz4WdktGzZEpmZmabq369fP/zyyy+mziUIgiAIgqgpOKu7AgRBEFVBr1690KtXL8vl0D0/giAIgiCI6oMisARBEARBEARBEERUQKsQEwRBEARBEARBEFEBCSxBEARBEARBEAQRFZDAEgRBEARBEARBEFEBLeJEEARB1CgYYygtLUVxcbH0KCkpqfB/j8eDsrIyeDwe6RH6f/Hh8/kgCAL8fr/0EARB+p38ORGe58FxnOaD53m4XC44nU64XC7p4XQ64Xa7pd+L/4+JiUFsbCzi4uKC/lX6OSEhAYmJiXC73dX41yAIgiAIeyGBJQiCICKSkpIS5OfnIy8vDwUFBcjPz0d+fr7qz4WFhZKoCoJQ3dWPGNxuNxITE5GYmIikpCTpZ/kjKSkJqampQY/ExERd20MRBEEQRFVCqxATBEEQVUZRURFyc3ORm5uL06dPV/hX/nNpaanl68XHxwc94uLipH9/XvA7IACcwAHSo/z/jAP8CPwrcOBY+c8M5Y/AfsBB/2cAJ/5O9rT4M6SfmexnAHz5iTwLFCv7PzgG8AAr/xc8AxwMV949AKWlpSgtLUVJSUmFn0WRt4LD4UBycnKQ1KakpKBOnTqoX78+6tevj3r16qF+/fpITU0l2SUIgiCqBBJYgiAIwjKMMRQWFiInJwc5OTk4ceKE9JD/36hUuVwuJCcnIzk5GUlJSUhOTsYfizeC8/KAjwfn4wL/ejnAzwN+DpyfA8ofXJA91i4YArILJwNzCoF/HeX/OhngEHD9o1eisLAQeXl5yMvLw5kzZ3DmzBkUFRUZupbD4UDdunWDpLZevXpIS0tDw4YN0bBhQzRo0IDSmQmCIAjLkMASBEEQYWGMIT8/H8eOHVN8nDhxQnfENC4uDnXr1kWdOnWw45c9gJcH5+XBefjAz57A/+HhA9HPWiyh1QXjGOASwFwC4Az8y1yB3115b3+cOnUKJ0+exMmTJ3H69GnoHUrUq1cPjRo1QoMGDdCoUSM0bNhQ+rdx48aIj4+v5FdGEARBRDsksARBEAQAwO/3IycnB4cPH8bhw4eRlZUVJKl6oqcpKSlo0KAB0tLSsHbxn+DKeHAeB7gyHij/lxMo1bQmwcAAtwDmFsDcfsAt4Jap1+PkyZM4ceIEjh8/juzsbJSVlYUtq06dOmjatCmaNm2K9PR0pKenS/9PSkqqgldDEARBRDoksARBELWMM2fOSJIqfxw9ehQej0fz3Hr16qFx48bY8fNecKUOcGWO8n95oMwBjlG0lKgIQ3kqc6wfLCbwGPrYZcjOzkZ2djaOHz+OgoICzTJSUlKC5LZFixZo2bIl0tPTKTWZIAiiFkECSxAEUQNhjCE3NxcHDx7E/v37pX8PHz6M/Px81fNcLpcU+frjk03gSh0BMRVlVSBBJSoH5hACghvnx62vDcPRo0dx5MgRHD16FKdOnVI9z+FwoEmTJmjRooUktS1atEDz5s0pJZkgCKIGQgJLEAQR5eTn5wdJ6sGDB3HgwAHk5eWpntOwYUM0a9YMm7/ZDq7ECb7EAa7ECZTxNOeUiDgYL4DF+cFi/bj99Ztx+PBhZGZmIjMzE4WFharnNWzYEC1btkSbNm3Qpk0btG7dGunp6XA6aRdBgiCIaIUEliAIIkpgjOH48ePYs2dP0OPEiROKx/M8jyZNmiDrrxPgip3lDwe4UidFUokagTT/Ns4HFu/HVY8MQGZmJg4ePIjTp08rnuN2u9GqVSu0bt0arVu3luSW5tgSBEFEBySwBEEQEYjf78fhw4exe/du7N69G3v27MHevXtV5wk2atQIOTtywRU5z8pqCYkqUXthTgEs3gcW78OQR/pj79692L9/P0pKShSPb9CgATIyMtCuXTt06NAB7dq1Q0pKShXXmiAIgggHCSxBEEQ1wxhDdnY2duzYgX/++Qf//PMPdu3apbhqq9PpRKtWrbDvt8PgC10BYS1ygvPTyr4EEQ4GBsT6IST4MPLl67B3717s3bsXx48fVzy+cePGaN++Pdq1a4f27dsjIyMDiYmJVVxrgiAIQg4JLEEQRBVTWFiInTt3YseOHdixYwd27tyJ3NzcCsfFxcWhdevW2PHjPvBFLnCF5ZFVWumXIGyFOQSwBB/+b/Yt2LlzJ3bu3IkjR44oHtu8eXO0b98enTt3RufOndGqVSs4HI4qrjFBEETthQSWIAiiEmGM4ejRo9iyZQu2bNmCbdu24dChQxWOczgcaN26NfauOgy+wAWuwAWuxEELKhFENcEcAliiF7fNGI6dO3di165dipHa+Ph4dOzYURLajh07UpSWIAiiEiGBJQiCsBG/34+9e/di69atkrQqRVcbNWqEnK2nwRW4AsJa5KL5qgQR4TCnACHJi5HThmLbtm3YsWMHiouLg47hOA6tWrWShPa8885Do0aNqqnGBEEQNQ8SWIIgCAt4PB7s2LEDf//9N7Zs2YLt27dXGNA6nU60b98e/yzdD67ADb7ACc5LKYcEEe0wMLB4H+5fMBbbtm3Dtm3bkJWVVeG4Ro0aoVu3bjjvvPPQrVs3ElqCIAgLkMASBEEYwO/3Y8+ePdi0aRM2b96MLVu2VFhsKSEhAcWHveDz3eDzXeAKKbpKELUF5vJDSPbixslXYMuWLdi1axf8fn/QMSS0BEEQ5iGBJQiC0IAxhszMTElY//zzTxQWFgYdU6dOHeTtLgaf7waXX74yMM1dJQgCAOMFsGQvhv1nCP766y/s3LlTUWh79OiBnj174vzzz0dycnI11ZYgCCLyIYElCIII4cyZM1i/fj3Wr1+PjRs3VpjDmpCQgJJDPnB5bvBn3OCKabElgiD0wRwCWJK60PI8j/bt26Nnz57o2bMnOnbsCKfTWY01JgiCiCxIYAmCqPX4/X7s3LkT69atw9q1a7Fr1y7Im0a32w1vNsCLwlpIEVaCqLVw5d99m4ZPzCFASPbiuucGYcOGDTh48GDQ8wkJCejevbsktE2bNrXlugRBENEKCSxBELWS3NxcrF+/HuvWrcOGDRuQn58f9HybNm1wYGUW+DMxgbRg2nuVIAgRTqE9sEto3X48/MUd2LBhAzZu3Ii8vLyg55s1a4Z//etf6NOnDzp37kzRWYIgah0ksARB1AoYYzhw4AB+++03/Pbbb9i5c2fQ84mJiSg+6AV/Ogb8aTc4D60STBBEGJREVo7FIRYDA0v0YezMG7BhwwZs3bo1KN04MTERvXr1Qu/evdGrVy8kJSVZuh5BEEQ0QAJLEESNxe/3Y9u2bVi9ejV+//13HD16NOj5tm3bYv/PWQFhzXdRWjBBEMYJJ7FyrAqtQ8DTP96HP/74A2vXrg2KzjocDnTp0gW9e/dG37590axZM0vXIgiCiFRIYAmCqFGUlpZiw4YN+P333/H7778HDfDcbjd8xwH+VAz43Bjai5UgCHswIrEidkRnk7wY9sqV+OOPP3DgwIGg51u1aoV+/fqhX79+OOecc8CZqSNBEEQEQgJLEETUU1JSgrVr1+Lnn3/G2rVrg/ZlTUpKQtE+b0BaT7vBCXw11pQgiBqLVUG0KrQxfoxbcAt+//13/PXXX/D5fNJz6enpuOSSS9CvXz9kZGSQzBIEEdWQwBIEEZWUlpZi7dq1WLlyJdasWYPS0lLpuUaNGuHE5jzwp2JpASaCIKoOu8TQhlTjR5fciVWrVmHDhg3weDzSc40aNZIisx07dgTP0009giCiCxJYgiCihrKyMqxfvx4rV67E77//jpKSEum5Jk2aIHvdGfAnY8EV0TY3BEFUE3ZHN22Q2SeX3YNVq1Zh7dq1QTf7GjZsiAEDBmDQoEFo3bq11ZoSBEFUCSSwBEFENH6/H5s3b8aPP/6I1atXo7i4WHquUaNGOLExH/wJklaCICKIykrRtSqzPMOkn+7HqlWr8McffwS1p61atcKgQYMwcOBANGrUyGpNCYIgKg0SWIIgIpJ9+/bhxx9/xPLly3Hy5Enp9w0aNMCpPwsD0lpoUVrlg0xqCgmCsJPKnmdqg8xOXHEfli9fjrVr18Lr9UrPdenSBYMGDcIll1yC1NRUixUlCIKwFxJYgiAihlOnTmHFihX48ccfsWfPHun3SUlJKNrtg+NEHLgCFzgrrZbSoJKaQYIgKoOqWizJbBtWXj/mEPDgF2OxfPly/PXXXxCHhg6HAxdeeCGuvPJK9O7dGy6Xy64aEwRBmIYEliCIaqWsrAyrV6/GDz/8gA0bNkAQBACA0+mEkO0AnxMH/nRM8EJMRpstrUEkNYEEQVQmVb3ir8X2kbn9uOODm7BixQrs3r1b+n1qaioGDx6MK6+8Euecc44dNSUIgjAFCSxBENXCgQMHsGTJEvz444/Iz8+Xfs/lu+A4ERdYjMmnsDqm3iZLz6CRmj+CIKqC6tq2Rk8bp1E3Ic6Hm14djGXLliE3N1f6ffv27XHllVdiwIABSEpKsqOmBEEQuiGBJQiiyigpKcHKlSuxZMkSbN++Xfp9gwYNcGpTUSDaWurULkSryTIySKSmjyCIqqS691610HYyMExZ/RC+++47/PHHH/D7/QAAt9uNiy++GEOGDEH37t1pf1mCIKoEEliCICqd3bt349tvv8Xy5ctRVFQEIDC3iuU4wWfHgz/t1rcYk1JzZXbARE0fQRBVTaQIXmj7Z6BezOXHXfOG47vvvsOBAwek3zdv3hxDhw7FZZddRlFZgiAqFRJYgiAqBY/Hg59//hlffPEFdu7cKf2+SZMmyP4jH46cOHBeh7FC5c2VlYEgNXsEQVQHkSKwIhbaVAaGt7ZNwXfffYfly5dL+3LHxsZi4MCBGDp0KDIyMuysLUEQBAASWIIgbObEiRP4+uuv8c033+DMmTMAAJfLBX+WA47sOHB5OqOtoTBmz+CPmjyCIKqTSJNYG2AOAfctGokvv/wyKCrbqVMnDB06FJdccgliYmKqsYYEQdQkSGAJgrAMYwxbt27F4sWL8euvv0rzo9LS0pC7sQSO4/HKCzJVF9TsEQRhFI6zr+2wU2I5HmBCRJTHwPDa5on46quvsGrVKvh8PgBASkoKrr76alx//fWoX7++fXUlCKJWQgJLEIRpysrKsGLFCnzxxRdB+7ZyeS44jiWAPxVjLtoKBAZRgL0DM8D6AFQceFLTSRC1D87Cdl5aZVmFk90gtNpm2lQWc/kx5t2h+Prrr5GTkwMgsD3agAEDMGzYMLRt29ZaPQmCqLWQwBIEYZiCggJ89dVXWLx4sbS1QkxMDLyHHAFxLTI4t1WEC4nSRoq8hg40qdkkiNqLknja1bZYIbT9BMy3oXaVxfFgYHjm53uxaNEibNmyRXqqW7duGD58OHr16gWej6AMHYIgIh4SWIIgdJOdnY1Fixbh22+/lRbsaNiwIU6uK4EjpzxN2OQgR5HqFFi1gSU1mQRBaImn0TbCLolVa0cB421pJZX15tZn8dlnn2HlypXSVJNmzZph2LBhuOyyyxAbG2usbIIgaiUksARBhGXfvn345JNP8NNPP0mDDq7ICcfRRPCn4sAxeVqdgcGNnYOkcOht6uwcmBIEUXPRI552tDtG0GpTRfS2reHKslAOc/txw2v9sWTJEhQWFgIIzJO98cYbcf3119M2PARBaEICSxCEIowx/Pnnn/j444+xfv166ffcGTecRxPB5SnMb9UzoNEzwNJbll7CNXN6B4/UXBIEIceutqOyU4mVCNfG6i3HQlmMF3D3x8Pw2Wef4dixYwCA+Ph4XHfddbjppptQt25d/XUgCKLWQAJLEEQQjDFs3LgRH374oTRfied5IDsGjqwE8EVujZM1BjF2DoaMotbMGRk0UlNJEIQSRuXTjvZICyNtrYham2u0LJPlMDA8sexOzJ8/X9qGx+1246qrrsKIESPQsGFDY/UgCKJGQwJLEASAgLiuX78ec+fOxfbt2wEEBhC+TCecWYngypw6ClEYvNg5mDJDaBNnZpBIzSRBEFqYlU872iclzLS7QMW2t4rLYWCYvGo85s+fjx07dgAAHA4HLrvsMowePRpNmjQxVx+CIGoUJLAEUcthjGHNmjWYO3cudu7cCSAgrv6DLjiOJoLz6lxRuLIGPlaQN292DTAJgiCUsCKfdrRVoZhtg4HgdrgaymFgeHndBCxYsACbNm0CEBDZK6+8EqNHj6aILEHUckhgCaKWwhjDpk2bMHv2bElcY2Ji4NvvhCPLgLhKBZYPVKwMduTlRArURBIEoRc757JaxWpbDATa42ouZ/pfE/HBBx9gw4YNAACXy4WrrroKI0eORFpamvW6EQQRdZDAEkQtZPv27Zg9ezb+/PNPAEBcXBw8ex1wZCUYF9dyOJ4DE2xoTkhgCYKIViJJYAF75BP2tO9Wy3ht81OYM2cONm/eDCCQKXTNNddg5MiRtNgTQdQySGAJohaxb98+vPfee/j9998BBO5kC4fccBwxEXFFYEAiYmVgIpbDBGZNYMXBml0STM0jQRBGiSSJtVFgRexo662U88qGx/H+++9LiwzGxcXh5ptvxvDhwxEfH2+6bgRBRA8ksARRCzh+/DjeffddrFixAowx8DwP7ngsnEeSgFJr4ipiZjBSYTBjVjzlgzSSV4IgqpsaLrGA9TbfSjnggf/88WjQFJg6depg7NixuPrqq+F06lh0kCCIqIUEliBqMIWFhViwYAE+//xzeDweAAB/Kg7Ow0ngS10AjA8elAYgRstRHcQYkU+lQVlV7h1LEAShRQ2T2Mpq+42WIS+HgeGpH/4Ps2fPxtGjRwEA6enpuOuuu9CvXz9wkfQ3IAjCNkhgCaIG4vP5sGTJEsyZMwd5eXkAAD7PDWdmCvji4H1c9Q4c1AYedpRhSF61BmIUfSUIIpKIFIGqpCisnOrsSxjHcM+nwzF37lycPn0aANCpUyfcf//96Nixo64yCYKIHkhgCaIGwRjD2rVrMWvWLGRmZgIAuBInnJnJ4M/EgoPx9C2twYZdZegS2HADMJJXgiAijUgRWKBSo7ByqrNPYbyAEbMuw8KFC1FSUgIAuOyyy/B///d/qF+/ftjrEgQRHZDAEkQN4fDhw3jzzTexbt06AEBKSgqK/gIcOQngmPG0LT2DjHDl6C1DU2D1DrrsEFhqDgmCsJtIkdgqElgRq/2CVhnhyvk46y289957+P777wEEFnoaOXIkhg0bhpiYGN3XJwgiMiGBJYgop6SkBPPnz8fChQvh9XrhdDrBDsXCeTQJnF97wKI0ODAyuLCjDFV5NTLYougrQRCRTC2VWKB6+5k3/n4Gb775JrZv3w4AaNSoEe655x6aH0sQUQ4JLEFEKYwx/PLLL5gxYwZOnDgBAODPxMB5MEVaoClsGbJBgdEBhV1lVBBYMwMsir4SBBHpRIIwVYPAilRXf8PAMOG72/HOO+9IfeWFF16IBx98EE2bNjVVD4IgqhcSWIKIQg4dOoTp06dj06ZNAACu1BFYoOm08jxXNZjATA8k7CgjSF7NDqxIXgmCiAYiQWCBapVYoPr6HcYLuHnmYHz88cfwer1wu90YNWoURowYAbfbHb4AgiAiBhJYgogivF4vPv74Y8ybN0/qgP37YwLpwirzXCMZsxvZhxRiQxnUDBIEUQVUt8RWwWrEkc77+17B9OnTsXHjRgBA8+bN8fDDD6N79+7VXDOCIPRCAksQUcK2bdswbdo0HDhwAEB5uvCBVPBlBjds53iA5wC/33xlxEGQRXkkgSUIotZhVWKttr8cD47nLLW/HM8F6mGl/XU4rPVDFspgYHj8+zswY8YM5ObmAgAGDx6M++67D6mpqdbqRBBEpUMCSxARTlFREWbPno2vvvoKjDHAy8N1qA74EzGG0oXB8eAcgYEPY8zcwEGUXwAwsndraBkAwITIEFhqAgmCqGrskljAeBtYLrBnTzfXBnIOh/k6AAH5FDErshbLYG4OV07tKfWvqampeOihh3DppZeaqw9BEFUCCSxBRDBr167FtGnTpIUnHCcT4DpcB/DxxjprmbwCJgRWLq6AOXkNTV2zQ2BJXgmCiEbsSCVWaFONnBuaBmy0PQ4SWDN1AIIFFDAuoTad//qmp/Dyyy9LGU79+vXDgw8+iHr16hkrjyCIKoEEliAikKKiIsycORPffvstAIArdcKVWReOgjhj8hkiriK6ywgVVxGjAlsZ8lpejrXzqfkjCKKasDMKK0dPu6ggsGdP19cuSmnEZq4voiTBgP4+zur5sjIYxzBixgDMnz8ffr8fycnJGD9+PAYNGkRb7hBEhEECSxARxqZNm/DSSy8hOzsbAODIToLraCo4wUD6r4q4iugtQ1FeAf0CqzHAougrQRC1nsqSWCB8G6khsYHTw7eRilFYvdcH1AUU0CehWuebLGPmlmfx0ksvYc+ePQCAf/3rX3j88cdRp06d8GURBFElkMASRIRQUlKC//3vf/jiiy8AAFyZE64D9eAojA06Lqx8WpVXLXEF9MlruJUuSWAJgiAqV2BF1NrKMAJ79nT1tlJTYMNdX8SqhFbC+YxjGP2/yzF37lx4vV6kpqbi8ccfR58+fbTLIgiiSiCBJYgIYNeuXZgyZQoOHz4MAHDkJMJ1pI4UdZWjKqBhxFXP+ZriKqIlsDoHUySvBEEQ5VSFxALK7aZOiQ2cXrHdVE0j1nt9ILyAiqiJaCWe//a2yZg6dSr2798PALj66qtx3333IS4uTt81CYKoFEhgCaIaEQQBixYtwuzZs+Hz+QCPA+6D9eDIV+8cFQVUp7xqna9LXgF1gTUwiCGBJQiCKKeqBFZE3n4aENjAqQoSq1cgQ68tYuR8JQmt5PMZx3DtK72xaNEiAEB6ejomTpyIjh076r8uQRC2QgJLENVEbm4uXnzxRaxfvx4AwJ+Og/tgPXD+MJ2pXEANiKva+brFVSRUYI0MnkheCYIgKhJFEhs4/Ww7aigKq3R9IwIqIhfRKjr/P789hBdffBEnTpyAw+HAHXfcgREjRoDnDb52giAsQwJLENXA+vXr8cILL+D06dNwu91gexLhOJGoa19XSUBNyGvo+Zbk1eiABSCBJQiCUMOKxJppj4FAe2pCYM+eHmhPDUVhQ68PWJNQs9c2cf7inLfx2muv4eeffwYAXHjhhXj66aeRmppqrg4EQZiCBJYgqhC/3485c+Zg/vz5AACu2AX3/vrgS91Vcn3GWEBCTQ5WJIG1MFiyJLAkrwRB1FSqOgpb4fRqEGgg0K6blVAgIKJWzjcIA8P4RTfjjTfegMfjQVpaGp577jl06dKlyupAELUdEliCqCLOnDmDKVOmYOPGjQDKF2o6XAccq6L0o/I0J2Z0o/dQzAooRV8JgiC0qaUSy7mclvomzukE8/lMn2+GWVufw7PPPovDhw/D4XDgzjvvxM0330wpxQRRBZDAEkQVsGPHDjzzzDPIyckBBA6ug/XgzE3QXwDPB+4wC4KxDdrl53McwJipQQLHcWejt2YhgSUIgtDGqsAC1SexVq/rcgIwd5OVc5afa1JizZ7PeAEXPd4eK1asAAD06dMHEydOREKCgf6dIAjDkMASRCXCGMNXX32Ft956Cz6fD1ypC+69BlKGRXEFzMmrKK6BypiW18DpUS6w1NQRBBHp2CGwUllVLLI2CSxgTWIBcyJr9vzQlOIWLVrgxRdfRLNmzQzXgSAIfZDAEkQl4fV68d///hffffcdAIA/Ew/3/nqKe7tWQC6uIkYEVi6uIgYFlgs5v9oFlqKvBEHUdOwUWKBqJdZGgRUx1Gc5Fc43IKJWz39901OYNGkSTpw4gcTEREyaNAm9e/fWfT5BEPohgSWISuDMmTOYOHEitmzZAp7nwR9OhfOYjlWGlcQV0C+vSuIKGJLXUHENnB7l0VeABJYgiMjHboGVyq0ika0EiQX0i6yShAL6RdTK+RzH4ePDr+OZZ57B1q1bwXEcbr/9dowaNUqxXyUIwjwksARhM/v378cTTzyB48ePA34eMYcagT8Tqy2gauIqEk5g1cRVRKfAqnWyJLAEQRBVQGWKTlVIbCUJLKBPYtUEVCojjIhaPZ+PiQHjGAZP7ISvv/4aADBgwAA88cQTiImJ0TyXIAj90FJpBGEja9aswT333IPjx4+DK3Mhdm+6dXkNRzh51QHHcXSHmCAIoibDBEs3ApnArN+ItADncJjfb1YsI4ygWj2feTzgGIflU3fgscceg8PhwE8//YRHHnkEZ86csXRtgiDOQhFYgrCJL7/8Eq+//joYY+AL4xCT2Ric3xG4a6wksHrFVS36qldcNaKveqWVIrAEQRBVQFXdSKysaGwlRmBDUe3XdEqqWjTV6vm8LNL6wk/3YNKkSSgsLETTpk3xyiuv0OJOBGEDJLAEYRHGGN577z3Mnz8fAODITYb7aANwrHz13lCBNRpxDRVYoxFXBYE1Em21LK8ACSxBEEQ4qiMLxm6RtVgeYExigYoiazTKGiqiVs/nQ1KF3/lrEiZMmIDjx48jJSUFL7zwAs4991xD1yAIIhgSWIKwgM/nw7Rp07B06VIAgOt4XThz6kqLNQXJq9lUYVFgzaYKhwis0VRhEliCIIgqoLqmcdghnaLIVoPAAsESazZNWBRRy+dzHDh38FZ5H++fhieeeAI7d+6Ey+XCs88+i4svvtjUdQiCIIElCNOUlJTgmWeewbp16wAGuI82gDM3JegY5vcHxMnsvB2r8gpIAmt2jisJLEEQRBVQ3esQ2BGNrSaBFWF+v6V5rlYlViwjNAoLAIwT0OOeJli9ejV4nseECRNw5ZVXmr4OQdRmSGAJwgQFBQV47LHHsGPHDkDgEJPZCI6CxOCDyqXVzIbqQQgWxI3nje0fq0BEzH8tL8fa+dTUEQQRwVS3wAIRIbFWBBYIyKeR/WMrAy4uFvB4K/yegeHSJzLw/fffAwDuu+8+DBs2rKqrRxBRD61CTBAGOXPmDB588MGAvPp4xOxvaru8cg4enNNpbWVgu+TVClalkyAIgogaqnOVYqkOPp/11YpdTmuR4DIP4HZVLBccVr60GzfffDMAYMaMGXj33Xet97UEUcsggSUIA5w6dQrjx4/Hnj17AK8DsfvS4SiOO3uAwwHExAAW0o84Bx+4g81zgYdReD7wsIjUoZoZkFjcroEgCIIgrGDLtjtmJVbMnHK7KogsBw5fP7URd911FwBg/vz5eOONN0hiCcIAJLAEoZOcnByMHz8eBw8eBOd1IHZ/Oviy8nkuNokr53SelVe/H8xrMIJbLq5W9nVljFnrSElcCYIgiAjBjMTK+16r0VgAFUSWA4cF963EI488Ao7j8MUXX5DEEoQBSGAJQgfZ2dm4//77cfjwYXAeJ2L2pYMvc1eOuFqMulpJO7YsriSvBEEQxomE+a81GLuisXaL7NtjvsGECRMkiX3zzTdJYglCBySwBBGGU6dO4aGHHsKxY8fAlbkC8uopl1c1cfX5ws5/rQxxjdSoq+qm9wRBEESNwaokVjZVKbKszKP+pExi37rlC0yYMAEAsHjxYpJYgtABCSxBaHDmzBk8/PDDOHLkSCDyur8peCG2+ue5AraIK0BRV4IgCKJ2YYdoh5XYcDsIyKKxoRI7Y8YMkliC0IAEliBUKCgowCOPPIIDBw6A8zoQc7A5eD7R3nRhM9iYLhxVc12t7i9IKXoEQUQikdI22bCHazQRaWnFM0Z+KUnsZ599hnnz5lkrlyBqMLWrtSIInZSUlGDChAmB1YZ9DsQcOQc8izddXo1LF6aoK0EQBFEDiCSRnXHbt3jggQcAAO+//z6++uora2USRA2FBJYgQvD5fHjuueewfft2wM8j9kgr8J4Y0+XVmHRhgMSVIAiCqJFUSVqxDt4dtxxjx44FAEyfPh0///yz5TIJoqZBAksQMhhjmD59OtasWQMIHGKOtARfFmuqrBqVLgyQvBIEQRA1mkiJxi58Yh2GDh0Kxhief/55rF+/3lJ5BFHTIIElCBnz58/HkiVLAAa4jzWDo9Rk2rAdUddyqj3qCliWVyZEyGIUkTLXjCAIAoicNqmWzX8NR3VHYzlw+OGlXejfvz98Ph8mTZqEffv2Wa4TQdQUqMUiiHKWLVuG9957DwDgymkMZ2Gy4TI4Bw8uxh2IvJoVV44DeAfgcFif5xoB8grYtI2O1XrY9X4QBEEQFbBtC51wq/fqwJasI6fT0qKNAMC5XOBcrvAHKp0LDmtmHUO3bt1QUlKCJ554Arm5uZbqQxA1BRJYggCwZcsWvPLKKwAA56n6cJ2pZ+h8UVzhclm7o85x1lKOYVPEFQAEFnhEwp15O+SVIAgikoiU6GsEwTnK+xtBsE1kLWNRYgHzIsuBw9SpU5Geno7s7Gw8/fTTKCsrs1wfgoh2ImBkShDVS3Z2NiZNmgSfzwdHYSpcJxsaOp9z8PaIK++wJK+23HEWiZSUXztWPCZ5JQiCiE5qUDQWgCmJHdZmAl5++WUkJSVh+/bteOmll2iPWKLWQwJL1GrKysowceJEnD59GrwnDjEnm4ODPoEMirqaJVRcLcirIkYXpBCjrpEApQwTBEFUPpGQZaOF0WisSp9nWzS2GtKK7+r3OqZOnQqHw4GffvoJ8+fPt1QHgoh2IrzVIojKgzGGadOmYdeuXYDfiZhTbcExfbJnW9TVBnGNlqiroXmwFHUlCKImU8PSh22b/6pFpERjgWqJxj5940d4+OGHAQBz5szBxo0bLdeBIKIVElii1vL555/jxx9/BBgQm9savD8GcDnBudU7lUqJuprE9rmukQClDBMEQRBqRNrc2CqIxnIJZ3dDmPXALxgyZAgEQcDkyZORk5Nj6foEEa2QwBK1kp07d+Ltt98GALjzmsFRpr3icKUs0hROXnkHoLAMf7VEXasixYxShgmCqA1EUvQ1gtKHpQWc9FDZ0ViNG9kVqOxFnkI+Lw8++CDatm2LvLw8PPvss/B6vZavTxDRRuS0XARRRRQVFWHy5MmBRZuK68BZqL1oU7Ut0qRwnK0LN1RD1FU1jZiirgRBEFFJlaQPK2GDxAKRE40F9KUVD+3wFKZOnYrExERs375duhlPELUJEliiVsEYw2uvvYajR4+C87kRc7ql6qJNnNNhPV0YsGWuK2Chkw1dyIlShgmCIKqHSIq+1gRCU4pNyrRtN4eraMud2/u+hqeffhpAYDrU2rVrLV+XIKIJEliiVvH9999jxYoVAANics8Bx5Q7G87pCHREZgcbLhc4t9u2ua4RsVCT3almVsUVIHklCIIwS7SmDysRaQs8OZ3gYmMtFRNOYp8f9QVuuOEGAMBLL72EM2fOWLoeQUQTkdN6EUQlk5WVhTfffBMA4MpvCocnqcIxzOUEi4uxfhfVwQfKsBh1Be8AZ7Uu4h1qq1FXO4TTTkheCYKIJmpg9LXa0oeVsGmBJ0PzX9XgeCDGbb0YlyswJlHh7rvvRsuWLZGbm4tp06bR/rBErYEElqgVCIKAl19+GSUlJeDLEuEqaFzhGOZyBjouK4MMBx9YeIm3ejfZpjRfQTgrelZE2gZ5ZQIDszN1uQYOBgmCIKqECIq+Ajal8IoybVViOf7sw1I5XGBMYVWIOU5VYod2eAoTJ06E0+nE6tWrsXTpUmvXIogoIbJaMIKoJJYsWYI///wTYDxiclsFzXtlLidYQpz1TsbBAzwPxnNgVmTRLskT5dVKZ27HHFXAXnElCIKINuiGmzrl/aW9ixTalDFkh8SKImuxHBYXoyiyD1z+P9x+++0AgDfeeAPZ2dnWrkUQUQAJLFHjOXbsGGbNmgUAcOc1Be8/Oy9FirrKcbvAYgx0NrKoa5C4upyBebB6sTPq6vfbI682oCqvdkQAaFBIEARhDJuir5WRPmzvmg82pRQbjcZyPLj4kPmvJqOxLFU21alchpUkdv6kTejcuTNKSkrwxhtvGLoGQUQjJLBEjYYxhmnTpkmpw+KWOczlBIuPVe9M9IqRRtTVUBRWS1ydTv3zYOVR15COm+MMzMeNxJRhgiCIaIRutBnGsMRqybQBieW05q0akliFv7mZaKxKOaHRWA4cHnvsMTidTvz222/49ddf9V+DIKIQEliiRrNq1Sps3LgRYBxiTgdSh22Z6woEyatpIjHqWpUpwxSFJQiCqDoiLfqq0X/anlKsp28M9/7YOTfWahkh0dh7BszAiBEjAARSiYuKiqxdgyAiGBJYosZSUlKCGTNmAABcBY3BcYnaUVc5WmnEainDRqmMua6RnDJMEARR26AbbJawNaUYiKy5sWFSioPShzXKkUdjR48ejaZNm+LEiRN49913rdWRICIYEliixrJgwQLk5OSA87nhLEk3HnVVOtboQk1q82CNSp5aGrHBhZpU04irU14pCksQRE0k0tqlKIq+hqIpsUbro9JfaqYPK56g8H4qzX9VPT9MSrHez48sGju0w1N49NFHAQBfffUVDhw4oK8MgogySGCJGsnhw4fx6aefAgBcJW3Aua1tKG426lrh2BqcMkyRV4IgCKKyqPSUYjOCr5RSbPTGhc3b7Tw9ejH69esHQRCkBSwJoqZBAkvUSN555x14vV7w3jpw+OqZK0RMI7a6PY4YhbUqeGIU1mLKsBSFjaSUYYrCEgRRk4i09iiKo69yKqQUW61PeR9qOPoaSrnI6o6+Vjg/OBqrK31Yo5y7774bTqcT69atw7p168yVRRARDAksUePYsWMHVq9eDTDAXXxO0J6vRmAuB1hsjOW5rpbmySoWaDHqShAEQVQOoogQlYrt0VibBN/y375cYv0pcZaKuf2yWbj++usBALNmzYLP57NWL4KIMEhgiRrH7NmzAQAOT0PwQoKpMpjLAeYK3Nm1XUDNwARA7IAs3nGWOn67Omw7sCMabOeAhiAIoqZQQ6KvcjhRFBmz3PZzLmegf7VD8uy4gcFxYBwHf7K1qU9jxoxBcnIyDhw4gGXLllmrE0FEGBE0giUI62zcuBGbN28GwMPBtTFVRpC8xjoDUViruJzmU5SYAPjPCh5noXO09a61Hdg0B5fklSCIaicSI6+RdKPSbnjZa7PSB8jfIwsSyyXGnxVYC58FX4MUALAssddeOwOjR48GAMybN4+isESNoga3bERtgzEmRV85vhk4GEvBYS4HhDiXJK+BguwZkDDeZIcWIq+W6hDawfOcLYMbzuzddLvEleSVIIjqJhLl1UYiMvoail19gVnRk9fLgsgyx9l+WZRYUyLLAddccw3q1KmD48eP48cffzReBkFEKCSwRI1h8+bN2LlzJwAePN/a0LlS1FWhs6mWKKyYMqwkrw4H4DK2WmFERl4tlxFhr4kgCCKSiLTUYTvhVV6bwX6BcylsTwcYTinmEuMVfmlcYsXoqxwmphQnGh+HXDlkOm6++WYAwPz58ykKS9QYSGCJGsPHH38MoDz6ysXAn+CCPyG8MMpThhWp6iisjqgr53Tqktiwm8BXRxSW5JUgiJpEDY++2kZlRl/l6MzM4VzO8P2fXuHTqpcBiZVHX5We0yuxngaJ0s9Dhw5FSkoKjh49iuXLl+s6nyAiHRJYokawZ88ebNiwAQAHnm+p6xzFlOHKJlwU1kDKcLiOvKqjrrokluSVIIiaRKTKa6RFX+1cDFEt+hpKuL5C73sURmIVo68VDrI+NxY4K7FhRVZ2mSFXvS5FYT/99NPIy8giCBOQwBI1gk8++QQAwHGNwHFnOxO1KKxWyrASdqURq0ZhtVKG1dBIJTbUQdkUhdWEFmsiCIKoGiJNXm3C1AKGKn2GauqwGlopxXrrFUZildKHlWAOXjMaK4++ilx77bWIi4vDgQMHsGnTJn31JYgIhgSWiHpycnKwcuVKAADvaBX2+LApw0rYeZc9NAprYaEmpQ69Ou+uKkZh7RBXgOSVIIjIIlKjr5FGdURf5Sj1HWYlP0RidUVfK1xbWWK10oeVUJVYhbf7mmvfwhVXXAEA+Pzzzw1dhyAiERJYIur57rvv4Pf7Aa4OOK7iHUwxCms1ZbhSorBWVxmWRWHDznfVorKisLTSMEEQNZFIlVeKvioj60cMR19DkUus2XqFSKze6GsooSnFStFXkRtuuAEAsGbNGhw5csTU9QgiUiCBJaIan8+Hb7/9FgDA881VjzOaMqwIx0GId4HF27QisdtVeVvkmMHuBZ3sirwSBEFEEjVcXm2luqOvoTBmz/vk85mLvsrhOIDn4WuUajj6KicopVjj7R4zdgEuvPBCMMbw/fffm74eQUQCEdjaEYR+1q1bhxMnTgBwgeMaKh7ji3eguFEMPCk6t7BRgXHlKT4WBy+czw94vIFy3Ma2w6lYqYAkRtLdciaUy7QdgwSKvBIEUdOxo620UV4jcuEmABBsuCnqcIDZsJUMFxsT6MfLPJbLCowrLBeDvIwEFKRr32AfMmQIAGDZsmW0pQ4R1ZDAElHN0qVLAQAc3xQcF9zp+uIdKK3ngjeeB3NwYA7zPYQkr0AgDdlkFJbz+QGf33Q9gislgPmFQKfOcfYNOkwOhJjAzsqrHZC8EgQRadgdfRXb2wiJnkbSzVCRoPRhKxIre22WJVYeDbYgsd6G5anDHGdZYgUnB+YACtJjVEV28pTfkZKSgpMnT5bv3EAQ0UlktJgEYYLCwkKsXbsWAMDzTYOe88U7AuIqm2/qTXIYjsIyDhCcfFB6DzO5FL6SvHJOp/EoLBPAfL6z8mon4h1zg4MpVXE1OygjeSUIItKoLHlV+7/Zckxiq7zaFH1VnPtqU7/HfD5TIssprYVhVmLl75MosSbeuvzWcdLPzAFJZEPhOB6DBw8GEIjCEkS0QgJLRC2rV6+Gx+MBkAggSfq9KK+hgw3GG4vCyqOuoRiNwqpGXo0OiORR19BO3K4orMGBR9ioq9HBFckrQRCRRlXNezXaXkZI5DYIu1OHlTAqsRp9o2GJVZuLa1BifQ2SK/5S2mrHWJUEp9KqxsoSKwrsmjVrUFJSYuxCBBEhRGDLRxD6WLFiBQCA5xtLd2nV5FVEbxRWS14Dz3MQ4t26JDZc2rDuKKxcXlULq9pUYt0pw3oHWSSvBEFEGpUhr1ptIsfrazNr+LzXsCsP65VYHa9Nr8QqRl/l6JRYX4Nk7YWbDEisPPoaipLE3j1uMRo3bozS0lKsW7dO30UIIsIggSWiksLCQmzevBkAwPGNg+a7ag02GM/Bk+rUlNhw8nr2OO1UYs7nB1fqCT/nlePCS6weebUTHanEts93JXklCKI2oFc8qyi6GvHzXrVQykYySTiJ5WJj9K2EXOYJK7K6Vh3WIbH5reMUo6/B1wqeF8txHC655BIAwMqVK8PXgyAiEBJYIirZsGFDYO9XJMCfkFxhvqsWWqnEeuVVRC2V2PBiTVr1NiqvVZBKbEpe1QZjJK4EQUQqlT3v1ezxNXjeqynU+keDr09TYo1u46MisYqpw2qEkdhw8ioSOi9WFNi1a9fC6/Xqrw9BRAgksERU8scffwR+cDcMG3VVIjSVWGmxJj0opRKbXWm4QhTWymJNlZhKbCnyGjroInklCCJSqW55VTuvhs971R19DSW0nzTZByot7hQ2dVgNT7Achk0dVkJlcSet1GE1mAMobOrGPfd+ibp166KkpARbt241XA5BVDcR2AoShDaCIEirD/sSG5saZMhTiY1GXSuUJUsltrRNjjyVWGuxpqpElkps2zY54uCL5JUgiEilqhZt0kslbLcTlfNew2FjfylKrO7UYcVCWJDEmh5rhCzupCd1WA3ByaEoPQY9e/YEAKxfv95cnQiiGiGBJaKOAwcOIC8vD4xzgMXUNV0O4zkwE1FXJYQ4FxDjtr7HK8cBArNnvqvNqcScXYMUJpC8EgRRu7BDPCNRXm3EsryKCILp6GsozOczL69SIQGJNZQ6rEa5xJqVVxHByZHAElENCSwRdfz5558AAOauZ6lDZxxQluKA1+DesKHwPgF8qS8gw3Em04xEfD5A8IOzQapFrN/RZgHptJNIi24QBEGI2Nk+6V1RWFdRnC03EmvMvFc1HA7bIrGc2wVWVma5HCE1CXypD44ik/vFyjjeOwHFDa2/76LA7t27F/n5+ZbLI4iqhASWiDr++usvAEBpWn3TZTAOYHzgYUVieZ8Azus/G1G0MvDx+cDExRQcDnAup/my5Kv68ryFOUXB8mp58CQXYZJYgiBqMnZGTGVtr23ZMFaJpNRhEbmcW5yCw4lrUjBmXWL5s/WxIrHHe8XD7w6MXaxKbLcFc9CsWTMAwPbt2y2VRRBVDQksEVUwxqQFB/Lb10V+c6OLLgGCI9D4S7/jg/+vlwryCoDFusxFYeXyKmJWYu1Kz1WJvJoePClFcUliCYKIJOxqkypJXrV+p6usmjjvNRwmJJYL3dbOgsSy1KQK9TErsX7ZvXZRYs2I7MluDCxGQJcuXQAA27ZtM1UfgqguSGCJqOLEiRM4ffo0GMehLC0ZRS39uiVWjLoq4UkyFoVVklcAAMeBxbmNSaySvIoYlVg1eTUahQ2TNmx48GR3CjJBEITdROANNa221mg7XKPnvQLa814NSGwFeRUxIbEsNUl52z4TEnu8V3zF8nnj0VhRXgGgc+fOAEhgieiDBJaIKnbv3g0A8KYkAQ4HmJOB6fA7LXkFjKUSq8qriF6J9fnASkvV5dUo4SKveiVW55xXXYMnJoQvKwIHjQRB1DLsnvdqSzHh66RXYiNx3muVyauIHfNiyyVWj8iqyqusPnolVkwdVr2WAYkV5RUAOnToAADYs2cPGC2uSEQRJLBEVCEKrKduivS74nTtKGw4eZWO0yGxYeVVRLa1jiJi1FVPh6EnCqu34wknsXYu2GSkHJJYgiCqiwiUV2OX1K5/JMqrrRh5fWEkVjX6Kqd8jYlwEqspr7L6hJPYcPIqXU+HxJ7sFjxW6P/j53A4HCgsLEROTk74ixBEhEACS0QV+/btAwB46p5djp45GYpa+lHQrOLHWa+8SsdrSKxueRXLUpsPq5UyrIaWxBq9a6omsSbkVXXgZEaCSWIJgqhqIlReDacHqxwfqfJaKYs26UVFYnXJqxwNia0w7zVMfdQk9viF+uRVuq6GxJ46jwVFXwEADh7NmzcHAOzfv1//hQiimiGBJaKKI0eOAAC8yYlBv2dOhsJWwRJrVF6l8xQWdTIqrwCUU4nNyKuIksRW8oJNeqgwcLISwSWJJQiiqqgh8qp2Xo2XVyuESKxheRVRkNiwqcMq9VGSWL+JNSGVJPbUeQxCrHLf3Lp1awAksER0QQJLRA2CIODo0aMAAF9SQoXnmZNBEFe9NymvIuKiTrxPgKPEa1xeReQSa0VeReQSa0Ve5VFYG9KGpYGTHenHkTC4IQiiZlPD5NWu8xWJVHm1KujlEmtaXkVkEmtKXmX1cRR5JJE9fmHFRZt0VylEYtXkFQDS09MBAFlZWaavRxBVjYWNJgmiajlx4gQ8Hg8Yx8GXEKd4THFTPzi/A4lHrIkU4wFfPA9noQNOj89SWeA4gLfxXpHA7Iu8ArRCMEEQhFkiSF6DyrGrXjVVXkXsWNgJCPTJLqd5eQ2pT2GzWFPR16AqlUtsSWPt19i4cWMAwPHjx61dkCCqEIrAElFDdnY2AATkVUUImYuh8BwfCgzuDxuKw8vAexi8SS74kqz1IpzHB660DHC5wLks3ukVysXV6kBAEM6uOGjDQIcJtHohQRBRQpTs9WqhMPvKsomIlFcgkNFkQ//FJQaywvjCUstl5bdPheAEEo5Zr9f4sV9hyhWfaR7TqFEjAMCxY8csX48gqorIa+UIQoVTp04BAPxxseoH8QxwMBS1NC+xDi+Do5SBYwzgYUliOY8PXHGpLR0kBAb4/YFyHQ7zgzC5vAKBO+wWBjxB8mrHwImW8icIorKIwCkKESuv0bpdjk7OTscRrPfR0pQcwZLE5rdPlRZt4n3MksTeP+prnBtzGK1dOXj+0sWqx9248hsAQE5ODm2lQ0QNJLBE1JCbmwsA8Cut7MuzwEPEpMQGyatUtjmJVZRXs1FYmbxK5ZuR2FB5FTEpsYqRVysDKOo8CYKoLCJw3mtNl1dbqQx5FbEgsWL0VcKkxMrlVcSsxN4/6mucF3tI+r8osUoi648NXNTj8aCkpMTwtQiiOiCBJaIGSWBjQ0SSV2ncDUqsorxK1wBgYG6LZuTVqMQqyKt0HSMSqyavIgYl1va0YZJXgiAqC5JX/UTivNfKlFcRExLLJSYof7ZMSKzadjlGJTZUXkVau3LQ2pWDyZd8EfR75nCAlU/LysvL019hgqhGSGCJqKGwsBAAIMTI5E9NXkV0SqymvJbjjXfqisLqShvWK7Ea8ipdT4/EhpNXEZ0SG1ZejQ6mSF4JgqgsSF71U1vlVcSAxKrKq4gBic1vn6r5vF6JVZNXORnu7GCJ5Tj4YwL2nJ+fH/YaBBEJkMASUYOY2sKc5R1QOHkVcTAIGn2WHnkNXC98KrGhOa/hJFaHvErX1ZJYvfIqEmYAozvyqndQRfJKEERlEYHyais1XV5tJKy8iuiQ2LDyKqJDYpVSh5XQI7Hh5FUkVGKF8q2ExEABQUQ6EdgaE4QypaWBTkBwOvTLazkl6cpRWN3yKqIhsaYWbFKTWAPyKl1fSWKNyqtUmMoqz0bThsMNrkheCYKoLCJUXm2LvtYGebUp+qpbXkU0JFa3vIpoSKxeeRXRkth7Ri3RXxCCJZY5Ap8lj8djqAyCqC5IYImoQRRY5jLRoSmkEhuWVxEFibW02nCoxJqQV6kecok1K6+AYiqx6TmvaoMskleCICoLklf9kLwqoyCxhuVVREFijcqriJLE3jNqCc6PPWi4LFFixTmwPp/Ffe8JoooggSWihrP7lposwMFQ1CIgsablVUQmsbZslSNKrAV5FREl1vJy+DKJtbxgU+hgi+SVIIjKguRVPySv2sgk1rS8isgk1qy8isgl1qy8imS4sxF78jQAYNmyZeYrRRBVCAksETVInaMV93Ey+BIY/G7OvLyKiN8en9+efV4jkcpYaITklSCIyqKmy6udRGKdAFsXbbIFJgRuMNvx2RIECPFuS/IqwvsYki7KsSSvoVAKMREtkMASUQPPWxcg1yknYk9yKEvmUJZsrZN0FfrgzC8FXE6wGBN7u8rx+cB8vsCAwuKggjEGMGbP3fDyaLAtgy8mBP6NwMU9CIKoAdQGebWrXpUgr5azfgB7Vxx2OGy5uczFxgY+W17r6bW+BilgPIfEI9ZFseymM6gfX4QZxwdYLqtpYy8A4NJLL7VcFkFUBSSwRNQgCuw5jXJMne865UT8MQ6cD2A8h7IU8xLrKvTBeboEnK9cytwu8xLr84F5vWfF3OEwPbhgTJaCzPPWJDYkldnSIEyUV6kwkliCIGyE5FU/lRh5tSSxdsuriAWJleQVAATBksT6GqSAOQN/Q97jtySxZTedQePkfAiMwxlPnCWJ7RYjIDkh8B4lJSWZLocgqhISWCJqiI+PBwBcE78NF3baZ+hcubyKmJXYCvIqYkZiQ+VVxITEBsmriFmJVZmHa2owFiqvUmEksQRB2ADJq36qIG3YlMRWlryKmJDYIHmVyjEnsXJ5FTErsaK8SlWyILHdYgTEcC4UlwReZ0JCguEyCKI6IIElogZRYPnSGLzZfIkhieV8CJJXEaMSqyqvIkYkVk1eRQxIrKK8iliNxIZgaFCmJq9SYSSxBEFYgORVP1U459WQxFa2vIoYkFhFeZXKMSaxSvIqYlRiS27MC5JXqUrlEmsEUV4BoLg0UD9xnEUQkQ4JLBE1JCYmAgCKink0cCTgzeZL0LvT3rDnuU45EXdCvePWK7Fh5VVEj8SGk1cRHRKrKa8iRiRWRyeva3AWTl6lwkhiCYIwAcmrfqphwSZdEltV8iqip3/TklepHH0SqyWvInoltuTGPDRNydM8Rm8UVi6vAKQILAksES2QwBJRgzg3I68g8LFt4EjA682/1YzEKqUOK6FLYv0svLyKaEmsXnkV0ZBYXfIqokdiBaZbPDUHaXrlVSqMJJYgCAOQvOqnGlcb1pTYqpZXEQ2J1SWvUjnaEutPCy+vIrxHux/XI6+hqcSuE340nXEGHUcdQ5frs9Bx1DE0nXkG3fK9QfJa5gkEBgCgTp06uupLENWNxQ2yCKLqqF+/PgDg5OmzHYIYiT3e1IEXj16JddtbS8/plVeRgMQCgAMx+cGdibTisBHcLjAAXJn37O+MyquIwwEgeLseQ/IqwvPgBEF5UGFAXkU4nrO+R6xUGEdb7BAEER6SV/3Ugq1yDMmriMAqvDeG5FUqp1xiQ/ab9aelQHAZ+xsmHvGgML3i/jp65FWqDuNQXOBC6Utu9Pp+F3hv8POpv5WCvXEaGJ4MNrU+EMsj90zg/XO73VKmG0FEOhSBJaKGtLQ0AMCJU8GdVQNHAs51xwbNizUqryJKkVjdqcNKhEZiy7e4MYUsEmtKXkWUIrEm5FWkwqDNZDmBwiJ0sEUQRGRA8qqfCJHXCjdMq1teRWQ3X03Jq1ROcJ9nRl4B5VRiI/IKAO4yH6Y89g36f11RXkU4L8AtyAf37yygRMDJ3EBd69WrZ+t6GQRRmZDAElGDKLAncx2KDihGY+s3yTMlryJyibUkryKixIp7vVpB7KzNyquIXGItyKuINHizWE6gMOpACYKoZEheqxQm3ybOJizJq7wcK/IqUp5KbFZeReQSa1ReAeDut1bh3L+PItxtcgaAW1MK7pmTOOl/C8DZLDeCiAZIYImooUGDBnA4HCjzcDh1WvmjOzP3ApzMSoEn2dq1GM+B9zE4irzW5FVepiDYkyLLcyR5BEHUPuxq92yU14gkwuRVgrfnfeccDtvkFQ6HPZ8rQQBzOS3Jqwjv8YPxnGF5rXOqCIOW/QMACPeKpOcX5uPIzp0AgKZNmxqrKEFUIzW8FSdqEi6XC40bNwYAZB5Vnr6dVZoKzsOjrL6AMgtrEcTlCog/7gFz8vAnxoC5LUwX9/rAlZSB43mAt9jpCgzMLwQGAlY6Xfk8WJ6zPKCT5sHaNTAkQScIQk4Ey6tt6wDYQYTKq5TxY/Emrm3iCgTmrXJcYF0Ki7CEwBY2ztPFlsopaBGHghZxYBxw9JuWhs697PsdcBm84c55gcOrVwMAmjdvbuhcgqhOSGCJqKJFixYAgEMKAvvsiU5Ysb0DAIA5GcrSzEss7wusOMw4DszBQ4h1mpNYrw9ccak0R4ZzOsxLrMCCU5CtSqwcCxJbYfBGEksQhJ1EsLyK2CaxVqZhRLK8yqOvJiW2MuRVxIrEsoS4s2X5/KYltqBFHPxuDn53oKyYXGPvU5e/j5i67qFjxwAAzZo1M3U+QVQHJLBEVCHeIcw8EiyTz57ohHmbeoMrPtvBmZXYuFwBcdnBCykwjjMusSHyKmJKYkPlVcSMxKqtQmxCYlUHbSSxBEHYQRTIq0i1Smy0yKuIQYmtTHkVMSOxQfIqYkJiRXkNxUgUNr7YeP39ADLLxyhigIAgogESWCKqaNu2LQBg14GzK/sqyauIJLF19ZUflysg4WiZ4rxXoxLL+YUK8io9Z0Ri1eRVxIjEqsmrVJb1dGIJkliCIKwQRfIqUi0SG23yarScKpBXESMSqyivIj79Cy2qySsQiMLqldiSeJW95zU4HBeHEo5DXFwcRWCJqIIElogq2rdvDwDYe9Al7R+eVZqqKK8izMl0zYnVklepLL0S6/UBHu2OkHM6wLlc4UVWz0BGj8SGk1epLH0Sq2ugxvH2DB5JYgmidhGF8ipSpXNiI1BeOY7TJ686+qOqlFe9sIQ4bXktR08UVkteRWJyGY4saal5DM8xpPQznrq8KykJQCA44LDzvSaISoYElogqmjZtiqSkJHi9HA4ccgbNe9UiXDqxHnmVygonseWLNuna6objtKOx4qJNetCSWL3yKpWlLbGGB2gksQRB6CWK5dVWwt28jFB5Bc/rj7xq9EvVJa9MI3oqiauessKkEuuRV5HYU+oSy3MMjzb7AdwIHsxgEHZncmDLhnbt2hk7kSCqmShv3YnaBsdxUhT2lU0tVFOHlRAltuCciinF4qJNelGVWCPyKkNRYsOlDitRBQs7mY4ukMQSBBGOGiKvlZ5KHMnyahQFia3WyCsTFCVWT9S1AioSa0ReRWJPBb9PPMcwofkyPNrsBzRz5sPfwIH8GwOrIevZBxYAtrRsCQDo2LGjoboQRHVDAktEHeeddx4A4O/1ybrlVYQ5GYTY8pTicolVWrRJV1kKEsv5BcPyKp0rl1gz8irC88F72xmNvgaVFSyxlgdlJLEEQahRQ+RVpNIktibJq4isj7JNXl1O82nDoRIbF2v+8xkiw4XNjcuriBiFFaOuzZz5aObMl54/MTkZxb1cuvaBzekVi72ewNina9eupupDENVFZLTyBGGA7t27AwBij50yvRy/OC8WgO7UYcVyyiXWnxgT+EWYea/h4JwB8TQtr3LKBxOm5VUqx8aFnexCbwoXQRDRQQ2TVxHbJbYmyqu8LDvl1Wo/US6xLCEOzGHt9TlPF6OweRwKm8fBF2O+TmIqsSivobBYDlnz6iLv33Gq6cTMBeT9Ow67nv8WjDE0b94c9evXN10ngqgOTGxsSRDVS7t27RAfH4/i4mK4TufBWzfVVDnMySC4Yfk2DuM4OMq8gdRhO+B4cA5e/9xXNcS9ZznOusTaCcdb2+tQJJJeE0EQ5qmh8goAXKQKJ2y4uQl75dW+cjhAYIDD+nvPOXgwOxZ+inEh8XApzrSJs1wWOCjKq3StWA45L6Xg1COJSF5Ygrg1HvBFDEICh5LebuQPj4M/zYHNX2wDcDYoQBDRROS19gQRBqfTKaURxx3NMV1O/BEHUg764I9xgLktfhX8LCCMHBdI3zUJEwRA8EsSaws8Lw1YTCEwSTg5nrM+ICN5JQhChORVb2G2RF/lfYGlfkF+vsp2cQYKkj4HtmQMAbb0M5wzEMW1enOaxceAcRz4UmsZWgBQWp+D4AQGf/lo2GP9aQ6cvi8RWR/VxZGv6iHro7o4fV8i/GkODPp5PP744w8AQM+ePS3XiyCqmshr8QlCB3379gUAxB89Ds5nvBOOP+JAnV1+OEoZGM/BH+OAL8FpSmQdxR7wRSWB//CcaYllggCIqcPlabuc02lOZAUhWPLMSqxMXuWYHpjZIa8EQdQMSF71Fma7vNpellmJVVi12NKaDXJMZjFxTqckr4Fy/KYllsXHgImvTQBS9pWYKqe0PifJKwDEHeMx6KvwEqvEoF/Gw72/DMeOHYPb7UaPHj1MlUMQ1UnktfoEoYN//etf4DgO7jNn4CwoMSyxjjLAWXK2c2M8B+bkDUdjHcUe8PnFwZ23BYkNgufOiqwRiQ2VV6k8i5HYEAwP0OySV4q+EkT0Q/Kqt7BKlVczfYLqOUYl1tb0Y4U6McGwxEriGvoaTSzOGCSv5TiKvIYlVhRXIWTSX/wx4+/doF/Gg8+JwaQ2rQEA559/PuLibEhrJogqJvJafoLQQd26ddGpUycAQGzWcXA+gC/jdIls/BEHkg8qd0ZiNFa3xIqpw6GIEut06hLZoOirYlk2pRSXS6yuQYtK9FVOlc/vInkliOiH5FVvYVUSeTUisbbdBA0jr7qjsOKNXtWC9AtsUNRV6XmdUVgWH6MoryKOEv2pxPKoa8ULQXcUdtAv4yV5BYBff/0VQCAYQBDRSOS1/gShk4svvhgAEH/0CMA4QODA+aApsWLqsDz6GopeiQ1KHVZCiqBqR2M15VVelh6JVYu+BpXFh4/G6pBXEV0DNpr3ShAEQPKqr6AqTxvWI7n6bnzqaOt1Rl7DSqze90dHFDacvAbKCZ9KLIqrmrwC0J1KXFpPQ17Lic8Kn0o8aFVAXEV5dRYUYNeuXXA4HOjXr1/YehBEJBJ5PQBB6GTgwIHgeR4xublwFBUFfsm0JdZRCk15FQknsYqpw2rYmVKsJbF65DWoPPtSijUHbjTvlSAIO7e+qunyGi6qqLcou9p3o+Vo9Yt2pQ0beX/CpBLrklcRjVRirahrKOFSiUvrcRBUtsEJJT5L/ZqDVo0Hnx0T9LvHm6UDAC644AKkpqbquwhBRBiR1wsQhE7q168vLf8ef+Tw2SdUJDb+iAPJmfrnsWgu7qSWOqyGisTqir5WKMfC4k4VylOQWAPRVzmKAzia90oQhJ17NtcGebWjKJvmtpqWYKX+0YS8KkZhzbxHSosRhi7WpBOlKKwReRVRSiUurccZkleRQV8/UvF3CvIKxrBixYrA84MGGbsIQUQQkdcTEIQBLrvsMgBAwqFDwZJTLrHyebF6o69ylBZ3Cps6rEZlLu5kNPoaVJ5MYk3Kq4gt2+yEQvJKENELyavegqpVXpXOtXW+q4XIa5DEWnmPZFFY1cWadJUTfCPcjLwCqJBKLIqrUXkFgPijZ8cVg1aNV5ZXADEnT+Lo0aOIi4tDnz59jF+IICKEyOsNCMIAF198MRITE+EsLkZMTsiesLJ5sQmZxqKvoQSlFBuNvsqRL+4EGIu+KpZVLp+W986zd4ViAJQ6TBC1HZJXvQXZljJsRztuVznS3ugh2+SYxo49yP2CqahrKFxJWdjFmvQgRmHNRF1DGfTNIxj86/3gs2MU5RUAhsW4AQCDBw+m1YeJqCbyegSCMEBcXBwuv/xyAEDiwQPKBzEOjlLAUWpNqBjPgfMI4ErLrHV+PAcIApjPvFAHlcWbvIusVp5dA8UIHHASBFFF1HB5tQ275NXhsHFLmsgqx/abq3aU5+DBFZVaklcAEGKcSDrisSyvAFD3bx7c8VjV5/nSUmn14Wuvvdb6BQmiGqnBvQJRWxg6dCgAIPb4cTiKiyo8H3+cQ9JRP8ABjA8EZs3gyvfAeaoQnF+wb0ESq2UILPDg+UBqsoX5SlKaVqRJrJ2LvxAEUfnUEnllgsXMF/G1WSyHk09LsSJU8kipVfnkeVs+B/alMZ9d2Zl59W9jo4jbBXAcOIs3oYXYQCTYUepH/S3m6xR7iiH2FIPDAyTvUz9uUnpT+P1+dOrUCW3atDF9PYKIBCK3ZyAInTRv3hw9evQAByBx3/4KzzvKQqKvnDmJ5XwCOK8s5desWPn8YJ7yzoqz2MkzIWR+kD2DBisSW2FQZ5sMk8QSRMRTS+RVxLTEhr42k+VwVtdUELEr6iqWJf8cmJxyo7jAoKmCQlZ2tjLlplxeRfiCYlPFCLHOoMi7O9+cwIri6vAE/u9Sq47fj8WLFwMArr/+elPXIohIIvJ7B4LQwc033wwASMg8CL7s7AqB8cc5JGYp3CU1KLGufA8cZxR6Bjuig6LEGt6qgCl36EYlVhDUV3q0MxJrVzSWIIjIpJbJq2nUXptBQVOVV6Myqna8mXIiMfKqkKJtOArrdlWQVwCmorCh8ipSf6uxOonyGopSFPa1tm1w5swZNGrUCJdeeqmh6xBEJFKDewiiNtGzZ09kZGSA9/uRuP9sFLZC9FWOgZTiCtHXoCc5/Z22PPoaVAZvPBobGn2VY2ck1uHQPZgMG40giSWImkktllfLqcQmCBt51Suf4Y4zUo7WjVidUdiwC0gZea+15hcbicKK4qpSL71RWCHWqSqvAODO0yew8pRhJSpEYQUBn376KQBg+PDhcIqLSBJEFBNdvQRBqMBxHEaOHAkASDywH5zXi7hslehrhZPNz4sNqYR90dhwqEVf5eiZF6sWfa1QVvhorO5BHEksQdQsarG8iuhq//RkougoJ+LShvXeMA0jsZUx31ULXVFYhahrhcvpiMJK4mpxwa7QlGE1kmWzqWZ3Ow/Hjh1DSkoKhgwZYun6BBEpRGdPQRAKXHTRRWjWrBl4rxeJBw/AaWTlYQ2JVU0fVixHQ2LVoq8Vygh3J5sBfr8+8QQiYl5sBUhiCaJmQPKqDyOvTUViDW9voyWoRuQ1XDlVnTKsJfmh8121YExdYlVShtXQisJqRV1D0Uoj1oq6huIS17NkDPPmzQMA3HjjjYiNVV+lmCCiiRrcWxC1DYfDIUVhk/bsAXw6W3oRlZRizfRhxXIMpBSrlqGRUqyVOqyGUn30Rl+DylGWWFMpdLRCMUFENySvQai2gza8Ns6u/VTNlqF0jpl+TiEKW9nzXTVR6gPDpAwrXlohChsuZVgJpTTicCnDWszo2AEHDx5EcnIybrjhBuMFEESEEv09BkHIGDx4MFq1agXe60XS/l3mCpFFYw1FXyuUI+sA9UZfK5RhU/QUqLZ5sZrQ4k4EEZ2QvCpi2yrssnIkeTWD/Dw7U4Zt6E8MR5TlKL3PNuynayTqGoo8CmslZVgehdWbMqxE8l4/5syZAwC45ZZbkJiYaLwQgohQak6vQRAIRGHvvvtuAABfvB8QSswVVC6xhqOvFcqxKxpbLsN65r5qIc6LBYxHXyuUFYjG2rKACUksQUQPJK/6sDPyagU7IrfycqxmvghClc931YJ5vYZThhWr4vObirqGIkZhzUZdRZ7o1ww5OTlIS0ujrXOIGkcN7jmI2kqvXr3QtWtXAAJQZjIKCwQk1mFjBJSZ2wsvUBfrnXRweRbufIcWZVedCIKIDqze/BIhedUuwg55DRRkvQyxHFuyeOzcc9b6wkimt7KrUBcD82+1quMXLMsr/B4sWLAAAHDbbbchJibGUp0IItKowb0HUVvhOA7jxo0L/Md7BPCfMVWOq8AHZ16JdYn1+c8uFGFFYgV/IPrKW5RPQQgMQHneHonleOsSa+V9IQii6rFLYm0gkm6iSXWx2qaJ5ejcfka9Qlzwv1bLsYpd/Y74/viN78MaXI4jUFZpWfhjNcvhwXgOztyi8MdqwHn94PwMqXut1WdENzfy8/PRsmVLXHbZZZbKIohIhASWqJF07NgRgwYNAgBwRVvAlRnv5DifAJSnDzMHb15kGQvuZJlgfnAjnsdz4Bw2DATKBxOWyymX2EgaSBIEEcHYFH2NlDbHtvavPIJnvU22KVpqZ9TVDnm1I+IKlIurQyrL9JSa8tfFxDqZnHLEef2BR3k1nEUm1swAkJDlQfyRE/j6668BAA8++CDt+0rUSEhgiRrLPffcg8TERDDkgyvLBO+xfifbsMTKo6+hGJFYMfoaipmBTmhHbXZgobSIhplorF3R1wiKCBFErcDMd86mhdtChbE6RVb12kbbtvL2vEJbbDQKq9aWG23jbY662iKvShiNworiGlqe0ShsubiykHKMRmFFceUsdmEJWR44Snzo0OY0GGMYOHAgunfvbq1QgohQSGCJGku9evVwxx13AAAE7AZfWgJXkU+XyIrpw0oYisaGRl8rPG9gYKJ2rBGJ1RoIRVJKMUEQ0YERia3kqGt1tDthr6m3jbcj6grYO9/VDuxOGbZcjkO1LENRWHnUNRSdUdjQqGsoSYf0CXVClgcJWR44S/x46PHzsGPHDsTHx+Oee+7RdT5BRCMksESN5tprr0VGRgYAHwS2E5yPwVEmhJVYefqw8gEmorFqWEkpFqnqlOJwKw/rlViKvhJE9KPn+1fDUoYBG+uiR171RGH1tP92HaOHCE4ZNl8Ory2vOtETddWTRiyKq7PED4YyvP322wACCzfVr1/fUh0JIpIhgSVqNA6HA4888gh4nofAHYOAbHBCQGL1RmO1qJJVitXSh5UINxDSM9C0a64SzYslCAKoUnmtqvbG0HW0btRFUuQ1Eue76kUr00ktZVgJrTRilZRho2hFXfUij7oCAANDzz4eFBQUICMjg7bNIWo8JLBEjadDhw4YMWIEAMCHHWDwgBOYajRWK31YCdWUYq35r6qFqURjjUQq1aKxRudR2SSxqtFYir4SRM1B7XtYDZHXypbYKo28ylFqw81Ip9Lx0TLf1VAZxqOuimnEJqKuSvNgOb9gWF6TDlcUannUVURAFv744w84nU489dRTtHATUeMhgSVqBbfeeitatWoFcJ5yiQ30IErR2LDpw0oopRSHm/+qhR1yZ8edfaXBiN5osByaF0sQNZ/QwT+lDZ9F3qZbWWlYLrE1cb6rrSnDNpRlNuoaMobg/AI4PzMceXUWnr0JHhp1FWEoRVzSQQCB1OFzzjnH2EUIIgohgSVqBW63G0899RQcDgcYlw0Bx6XntKKxRrG03U6FwmyaGyvWxeI2ARGZUkzRV4KITKpZXu2WXju3ybFn6zKbzo/WlGElxBvGkTTX1S9I8moFpagrEEgd7t6rFIWFhWjfvj1uvvlmS9chiGiBBJaoNbRr1w6jR48GAPi5HWAoDnpejMbyHp81MbJ1gSdmLuIpx7Z0NxuaC5sGtWfLi5zIDEEQ5URI5NUuia22lGE1IizyGjEpwxxvj7x6ffbMdRWjrhbklS9WjrqK3HFPa6xbt066SU+pw0RtgQSWqFWMGjUKnTp1AuCDD3+DITjCyQmyzsaCxHJeH+D12rPnoQ3pxJwdi3MYnUMbDrtkliSWICIDKdvD5rbCApEiwXA4rJdRHhWskVi9USv2Jxb+XpKIW+zrxKirw+B+sKHwxR7AVzHqKiLgDGbPng0AGD9+PFq2bGnpegQRTdTQlpAglHE6nXjuueeQnJwMxuXDj12Kx3GCTGLNiCxjYH75XKVq/KoJDExMrbJDZO2aowTYI/gASSxBVDeh30EbJJZZlRqLVIa8GtprVA7P27dKcE0itA/xGVy/QixGfG8tvr+crN/njK6lUQ5f7JHkVQ0GL+o1Ogi/34/+/fvj6quvNnUtgohWSGCJWkfDhg3x1FNPAQAE7hAEZCsexwksWGStYpes2UF1bSyvNqgliSWI6KUSv3t2SKwZEbVFXh0O+yKvEdy+mZZyqyj1GyY+L3ZkKIlRV6tI4qoprwy9LvYiOzsbTZs2xWOPPWZPajpBRBERMpomiKrlX//6l7TYgY/bBgb1VB/L0dgKBer82tkx/1WzHsa2b1DeXsB4p6k6ILVLYqkjJ4iqQ3Pf6chJJTaCbfKqgiHhi3B5BWDf9BIj/Z0N/YWUMqzw/nKlHv3l2CSu4aKuIrf+X0usXr1ayihLSEiwfH2CiDZIYIlay1133YUuXboA8MGLP8HgBV/qBVdccd+1CtFYqyKrNxpb2QNASikmCMIser5nEZJKrFdKK1teDREN8lrV2NRHhE0Z1rEFnh1R1yBxVZFXR16p9LOAHLz77rsAgAceeADt2rWzdH2CiFZIYIlai9PpxJQpU5CWlgZwRfBhC+AXwGncAa2UtOJIoCpSio0MZEliCSKyqeLvV1XMh61KedWMwoqLNUVRG1YlacSVHHU1VE4VpQsDZ+fSMhTCnbALjDEMHToU1157reU6EES0EiGjZ4KoHurVq4cXX3wRMTExYNxJ+Nz7dJ1XLdFYM8gXcApbj8qPxhoahFJKMUFEJka/UxGSSqwmqLbt8WrnfNdoa7fsXqVejtE+UmUhJzsWarI96qoTBi8aNstEcXExunbtivvvv99SHQgi2iGBJWo97dq1w5NPPgkA8LkPwxt3Qtd5NXaRp+pa4EkJSikmiMiiGr9LlRGFjbhtcqitCsZM+x/yObEj6lqVizSFwiDg3B55OHLkCBo2bIipU6fC5XJZrgtBRDMRMFomiOqnf//+GDNmDADAk3oAvpgzus+ttkWeKhN5Z6+2gFM47BoYAiSxBBHtRGAUtrpXGg5qV0leA4j9aVXNddVTRhUv0iSHgaHvvxOxadMmxMXF4cUXX0Rqaqrl+hBEtMOxalv/nCAiC0EQ8MILL2D58uUA4xF7sgMc3kRDZbDyARFX5gUrrbgYlLEK+XUtJKFdhoEUYjWYDWUIDGCC9QiKHYNgavIIwhx2CJYdUmLnzTEr2BB15cQyaoK88rw927nY8b7GuMt/sFCf2BjL9WDxsYEfDIqriCfhIHzxR+FwOPDyyy/jggsusFwngqgJRECohyAiA57n8cQTT6BHjx4AJ6Cs7i4IjtLwJ8qQ0opJkhSJmIEnQRDGIHkNxo7X4nRan+9qR+aPHWXwETSc5K1HXZkdc3o9XsPpwnK8sVnwxR8FAEyYMIHklSBkRFCLQxDVj8vlwvPPP4+MjAwwhw+l9XaC8V5zhTHBesRQqOS9YKuBiBmAEgRRddREebXQNnNO59nVhs1ix41SO8qwS16tbslmw5ZuTBCsy6vHG3hYKMePLPiSDwIA7rzzTlxxxRXW6kQQNQwSWIIIIT4+Hi+//DIaN24M5ixDSd1/wDiTEgvYk/ZKEksQRHVhNfpaE+XVShGivFqhJsprdZ4PG6OugmBNXtlx+BodAmMM1157LUaOHGm9XgRRwyCBJQgF6tWrh9deew316tUDc5egtO4/YMxjvkCKxlbAtq0rCIKoPEhexUoovxYDbTLndFqX10hJGQYiQ15rUNSVKy6FX8iG0PQQ/H4/Bg4ciAcffNCeecUEUcMggSUIFdLT0zF9+nTUqVMHQkwJSuvtAvOWWtvvjkS2AlU6OKW5yQShH5JXsRLWi6jslGG9bZtd4mqHvFqRz0gUV5NlccWlAXl1ngFrdgherxf9+vXDU089BYcd2zMRRA2EBJYgNGjZsiX++9//Ijk5GUJsMUob7AHzlVm+00ppxcHoisZGyDYcBFErqGZ5jZgMjapIGdYjg1URddVzjUiJulokEtKFRXGFzwe/Mw9cmyx4PB7861//wjPPPAOn02m9jgRRQyGBJYgwtG7dGq+99hoSExMhxBWjtOHeQDqx16fecbmc4MJtNF5borHlW+joISIGrARR24kAeY0I9L4OjTY4YlKG7UDH6wi7M2NNi7pqERer+pQorvD54I8rANfmKEpKStCjRw9MnjwZrnDjB4Ko5ZDAEoQO2rVrh1dfffWsxDbeB4ZyiVXqyDhO/152tUVkdRIxkReCqI2QvAaw+jrsmu9qlSqU1/BlVF/UtTrShZmrYgRVHnUFAF98PoSWR1BSUoKePXvixRdfREyM9f1nCaKmQwJLEDrp2LEjXn/9daSkpECILUFJ030QuDLA71cXWSOEiqwRCRapIRILRNBAliBqCySvAWyQV8PzREOPjaSFmqzKawREXY3Cud1n/2PjPFcx6goAvoQz8Dc7DI/Hgz59+uA///kPYmPVo7YEQZyFBJYgDJCRkYG33noL9evXB3OXorTJXghOT6BTs1NkgcAgykzHXcOisQRBVAEkr+orDRspopalDIcvI0qjrs7ym8eVIK4A4Es8DV/TI/D5fOjfvz+mTp0Kt1yaCYLQhGNhJywQBBFKVlYWHnroIRw7dgycz4XYrHPAe2V3TsW71j4fmNfCHrL+cjG2AGPMolAzMCt1MDAHVrUKNpRBKxAThAokr9YXa+I56/Jqsa23BfGzYOF1cJzFqKnVlXdtWPxIWsPC7N8kLjZwQ1smrQDAwOBLOQFP/WMAgCuuuAITJkyg1YYJwiAUgSUIEzRp0gQzZsxA8+bNwZxelKTvhT+28OwB5XdsmSBYFifm94dfGCNsIdUobzxnzwDX6gCT46wP1AmCsB0W5RkjnIMvl7ZqHFJZiBIGYSVlWBCsyasd2UNWzxcjpX6/aXllXq+qvHrqZUnyesMNN+Dxxx8neSUIE5DAEoRJ0tLSMGvWLHTp0gXg/Shtsh++xNNnDxCEQGfq9wciqWYkkufAORwBGTYroeLAxmxqmvg6ImGQaUOKH0ksQdhMtG9xZaFN4Ry8LfNEOSvtkh3iahWxDlbk1QqicFr5LPp8gXqYjOAyrzcgr36horxyAsoaZsKXehIAMG7cOIwfPx58dd70IIgohr45BGGB5ORk/Pe//0W/fv0AjqGs4SF4UnPAEOiMOQcf6AyZYE5k5XezBcFaNFYusmaJBIkFKBpLEHZSm9Pr7ZBXK5fnOPPyalfU1Uo5Vutgx81Rq6nXYtS1vB6cwb9pkLj6BcAdvAUO431oex0Pf2IenE4nJk2ahBEjRli7aUEQtRyaA0sQNiAIAmbOnInPPvsMAODMqwf3yabgwIH5/IDXE3yCuECTng7M5wPz+ir+nud1dYBMKRVK7KD1XL98Di3zhwxSjNxpt2serPITlsqt1YN3ghCxYzAdbXNh7ZZXg6mgoe03Y0y/jKlJo1GhlpfD8/pfg8r1OYWtY9TLUGh7HQ79fYtav6J3GxoxShpSDy5W3/nS+hYhfaP8fMFVhvp9inD48GEkJCTg+eefx/nnn6+vfgRBqEICSxA2smjRIsycOROMMfAlCYg93hLwcBUFVkSPyDIGeH3qCymFEVlpESel8/WKrN9fUWAB6wMNA2jOkyOJJQjr1JbFnKyKK6AuijoFUK3NZj6Fm5WhaEU89QqsUhl6BVbj+roEVqstN3K+UrvvdIZ/DSriCgBwu8JGYNXEVUQUWF9cAVwZOSgsLESDBg3w8ssvo3Xr1tp1IwhCFySwBGEzv/32G6ZOnYqSkhJwXjdij7UEV+ysMCcmCIdDe/CoFoUVCSex4RakCCeyagIrnR9m4FnZAnv2IEvXIJElajW1QWArO2VYhwBqttVa/YSeVF09AqsVvdWqv47rawqsnjZcz/la7Xy46KssVViJcNFXKVVYDbcL4Dn4Uk7C1+A4BEFAp06d8MILL6Bu3bradSMIQjc0B5YgbKZv375455130KRJEzCXByXpe+FLKtQ+ycpCT0D1z4+NpEWeLJ1Pc5KIWozl1c6r4CaVFaJ9vqtVrM51tXRtG1YXZoL5z1jIPFejBM1z1YIHPGlH4KmfBUEQcPnll+ONN94geSUIm6EILEFUEnl5eXj22WexefNmAIDrRBqc2angEGYAo5RWHC6NOJSQiKxmGrHCuYF6hFxfaR6s4vkqr89iFNbw4JaisQRhnJoaha0qeVWJYOoV1woRWKPiqFZPvdHb0PobuD6nNH/VSLutdb6e9lwpfVgrXTgUhfThcOnCcoR4oPVVDmzfvh0cx2HcuHEYPnw4LdZEEJUACSxBVCI+nw8zZszAF198AQDgCxMQc7gROL+OeUahIhsujVgJmciGTSNWODdQj/Lrh0sjrnC+wkCkKgU2cJLp6wXOp+aRqIVUo8RWisCarE/Y+a5KKAisEYEJElgzUc/Quhopw+EIPt/g9SukDxtts+XnGxFXEXn6sBFxLUeePmxEXAHAn1KG2E65yMvLQ2JiIiZNmoTevXvrvjZBEMYggSWIKmDZsmV47bXXUFZWBs7rhPtQYzhK4vSdLIosYCwKKxI6IDFzPscZF1ggWGKrah6s8okWLkpNJFHLqElRWCvyaiZlWCawZiJvksBWtbzKo68m04UlgTXbTsvPN9pmi9FXE+IKQIq+GhVXBgZf2in4Gp4CYwxt27bF1KlT0aRJE2PXJwjCECSwBFFF7Nu3D8888wwOHz4MMMB1PA3OUzpSikU4vlwiTe55x/PmBFY8F9CfRlzhfK56BTZwsoVzqZkkahlWJDYSBLa65ruWS6DZtFHmUVmxXg+ydtrUuQ6HpbmunMFthIKQn2umrY6JsTTHFWK03UD/xhx+lDXNgpBUBAAYMmQIHnzwQcTo3caHIAjTkMASRBVSVFSEV155BStXrgQAOPIS4c5qqC+lGAAEdnY+qxmsnCsWYUZggwqo4jRiG64bOJ+aSqIWEc0Ca+X6PGdZxEzLq89nun1mjAXqbaV9t/K6de5LrgTz+8G53abbaOYXwLldVbqQoD++CMkXlOLEiRNwu914+OGHceWVV1bZ9QmitkMCSxBVDGMMX3zxBWbOnAmfzxdIKT7SCI6ieH3n+2VRVKMDBosCG5Dn6lup1PIqpSSxBBEeOxadqa55sBblFbAQSTQpr1bShsUhnGl5ZCxwrjhVxHgBges7dezfqnS63w8wFhBQw+cG3i/OwZv7u4v9qIG/NwODt8FJ+BvkgjGG9PR0TJ48GW3btjV+fYIgTEMCSxDVxK5duzBlyhQppdh5sg5c2fXDphQHCSxgSmLFNGRTgy2rEhutacQACSxRO6hmgQ2cbqIONsgrgLNCZwQT8mppvisQtG2a4WuHtGWGBVQ8v7zunNtt7HSxD2MscG2Df295JpApeZZNx9Fbd8HlwTlDY7Fjxw4AgZTh+++/H/Hx+m4+EwRhHySwBFGNlJSU4K233sK3334LAOCLY+A+0hi8R71DrSCwInoHMDKBDZxmYuATrQJrw/VJYolaQTQu5GSTwALGo7BGJEqMOtohroAN8upwGOo/AATX3eHQ/X7JxVW6voHoq9IUFkMCW379oD4wjMAyMPhT8uHMyENxcTESExPx6KOPon///vqvSxCErZDAEkQE8Msvv2DatGkoKCgABC6wwFNuimI0VlVgAX2DkBCBPXuqzn0KqzmNOHB6NUZhAZJYouYTbVFYG+UVMBiF1Rl9/f/27jw8qvrQ//j7zGSbbKwRgqxCWFQQZHFBEBeQInTB5drai5brz9qnFvu03sc+VIuttXjr1eLV51rrrbVWUVtbRVoUREGLIosioAhlEWRLyEISskwmM3N+f0zmZCaZmcxMJslM8nk9T56ZOWe+3/OdycnM+eR7zveb6ODqF9Nnd6jy0QbAMG2PtgfTev2tykcXYMONvxB1+8MMghip/abdjWtQMZ78GgAmTJjAvffey8CBA6Pbpoh0CAVYkSRx6tQpHnzwQXbs2AGArcZBxvGB2BqDv9wjBli/SAc0YQKsr1gUB2GpHmATsH0FWOn2UinAJji8WtVGE2KjCK8dFVwhhs/scOWj6X0N1evqF0Xva6he16A2tBFg2xo4sM0AG6LXNXj7oQOsO78ax/m1VFVVYbfbufXWW7n55ptJi/N6XxFJHAVYkSTi9Xp59dVXeeqpp3A6neCxkV7cn7TTzb2xUQVYCH9Q0nQg1Z6DopQPseqFFWlbKpxG3EHh1ao+UjiLEF6DQlsHBFe/SJ/VUZWPFMYiBVd/+Ui9l20EV2v7YX4P0Yx43+YATlFMPdfyNZh2N67CEjy9zgAwcuRIfvrTnzJq1Kg22yMinUMBViQJHT9+nOXLl7Nr1y4AbDXZZBwfgK0xPfoA6xfqACdCL2xw0TAHFqkeYBOwfQVY6faSvRe2g8MrRO6FDRX+2tvbCtEFT6tt7Skfrvc1iuBq1REiwEYTXJvLh+59jXa6trABvI1e1+A2+F6DiYkn7ww5F9Rz+vRp7HY73/72t1m0aBHp6bGPkiwiHUcBViRJeb1e/va3v/HUU0/R0NDguza2pD9ppb18k63H+qcbeKASZYD1FQtxHW4SBFhfFeqFFekwyRxgOyG8WpsKFWJb9L52ZnANald7yrcMfzEEVyDk6cPhrnMN24aMEJfIxKDVa4ghuAIY6Wlg2PCmNdJYWGJd6zp8+HCWLl3K2LFjY2qPiHQOBViRJHf06FF+/etfs3PnTgCM+kwyjhZgq4njP8L+A54YAmxz0RAHSz29FxYUYqX7SoIA66vCaLmgfRXGMcJxUFALCK8deX1rxPYEhuc46gjqfY01uPrrCOh9jaXX1WK3+04BJvbgarUhMMBGcbpwKxnpuPueJu2cM9TX15OWlsa3vvUt/v3f/53MzMy42iQiHU8BViQFeL1e1qxZw5NPPukbqdgEe2k+6Sf6YHjjO5iL+Yu+iXXglgQB1leFTiUW6TBJEGKDAmwXhFcI6IVtCq9dFVyttrSzHiMtLe7gatWRkRFfcLXKp8cdXK060tJi7nX18zoaaBxajjfbCcD555/Pf/7nfzJixIh2tUlEOp4CrEgKqaio4IknnmD9+vUAGC476cf6YavMDjnlTkRtDOQUXR0KsL469DEq3VQSBFhfFUaXhVerDf5eyy4KrlY7DKP9Adhma9fpzthsze9FvGKca7cVrxfDbo85uJo2L42Fp6GwBo/HQ05ODnfccQcLFizAFu3USSLSpRRgRVLQ1q1befTRRzlx4gQAtuosX5B1RjcfH6AAm+B2KMRKt5QEAdbqgY23Hv/ft2FrV4iNdr7VkE3weNsdoPGa7auj6bPSf9puPPzfGW1NnRO5HV5feI03LHqbxoCI8fdhYuLpW0PeJA8VFRUAXH755dx11130798/vraISJdQgBVJUU6nk+eff56XXnoJl8vlO634VD7pJ6M8rTgRARZ8p2+15wDV9GJ6zejnfAxZRdcHaV89+jiVbiIRwdWqK/7Ph3afPtzybzvO4BVPeA06Pdb0xrftlp9t8XxOBtZhM+J7LQGfbVHNjxuyHV6rrkjT70QsH3jacwzvp9fRQOPgMry5DQAMGTKEu+66i2nTpsXeDhHpcgqwIinuxIkTPPHEE2zatMm3oNFG+vG+2CtyI59WnMgA6xfnAWZgAI0nyCZNLywoxErqS2R4hbgDbMjPgljqCvU3HUcvbKyBzwqugduPdbv+z7TA3mOIr44Asfa+hvqOiLn3NSC4WnXEEmBbBle/KNph2j00FlbgPasG0zRxOBzccsst3HDDDZoaRySFKcCKdBNbtmzh8ccf58svvwTAqM3wBdkaR+gCiQqwXrP1gWKsB6wtQqyvihgPGhViRdov0eHVqje2z4R2T58T6W85hgAWS3gNGVwhtvDaMrj6y0PsdbQUQ+9ruO+GmHpfQwRXaArA0fwOwgVXvwh1mIYXd0E1maMbqK2tBeDqq6/me9/7HgUFBdG1X0SSlgKsSDfS2NjIK6+8wh//+Efq6uoAsFVmk36iT8jrY+MdibiVcPXEcLAZLoBGG2STKsCCQqykno4KrxBTgG3zb76tutr6O44yUEYT9lqdJhzntkIG13jrCCOa3te2Dgmj6n0NE1ytOtrqfW0ruELzIFItmJh4+tTS72IbxcXFABQVFfGDH/yAiRMntt12EUkJCrAi3VBFRQXPPvssq1evxuPx+K6PLcvzXR/rDjgA6YjTiEOJ4oCzrQAaTZBNqhCrj1ZJFR0ZXIO203aAiuofVpHqifbvt41Q2FZ4Ddvb2lKkwBf4eRWunmh6X6P53Guj9zXa74GIAbaN4GrVES7ARhNc/UK0w5NTT+PZFZg5vutcCwoKuP3225k9e7ZGFxbpZhRgRbqxI0eO8NRTTzVfH+sxSCvpRdqpXr6BnjryNOJQ2jjwjCaARjrATUiAbWpLYurRx6skuc4Kr9BmgI3psoFQdcX6dxsmjIULem32traqKExIjtTb2rI8RK4jSuF6X2P5/A97+nCUwdXXjhCnD8cSXP0C6vBmuXzXufb2nXXkcDj49re/zQ033EBWVlZ09YlISlGAFekBPvnkE/73f/+XvXv3+hY02kgr6U1aSQ54E3QAG8vpyGEOPmMJoOEOdpOqFxYUYiU5dWZwDdpu67/9uEcgD6wrnr/ZMAGzZYCNurc1Ut3R9LZG0754Pt9a9L7Ge9jXqvc1huBq1dGy99UfXmOdk9Zux5vRiLvwNN5+tZimid1uZ/78+XznO9+hb9++sdUnIilFAVakh/B6vWzYsIHf//73HDt2zLfQZSftRD72slwMs50HtPFcT9vyYDbGENtcTYsDToVYkfC6KrxCq7/59kyfZdXVnr/VFiHRH/Ri7m0NV2e0va2h6oDW9cQqILy253AvqPc1juBq1eMPsPH0ujbxZnpxF1bCgDrfJTLAFVdcweLFixk2bFjMbRKR1KMAK9LDuN1u3nzzTf74xz9SUlICgOG0k3aiF7bynMhT70QS7WnEoQQciLYnfPoPhpPuVGJQiJXk0JXh1WqDrekmCdoCVuA0DCO+3taWdQWKt2c4QQy7LSGXiRh2e7uCq1VHoBiDq5nmobGwCvuQBt/c58DFF1/MbbfdxujRo+Nqk4ikJgVYkR7K5XKxevVq/vSnP1FRUQGA4UzDfiIfe0VO7D2y7QmwLSQsgCaCroeV7iIZwiskX4CFxPTm+utJRB2J0t732Gs2h/v2fIZ5TYz0tNhPFQa86W7cA6uDgusFF1zA7bffzvjx4+Nvk4ikLAVYkR7O6XTy6quvsnLlSqqqqgAwGuzYT8Z4arECbBR1JdHrkp5HATY1tCfA+j+vYpl7NpTAU59jmDc3bD1EN41PUNGMRtyF1RiFTtxuNwDnnXce3/nOd5g6dWpMc/SKSPeiACsiANTV1bFq1Spefvllq0cWl520k/nYS3MwzDYOPuK91isMhViRBOvqA/5EDuDUncUTYFt+RsUbYFt+jscbXlt+frcxjU9Q0cxG3IVVMMBpXeM6ceJEbrnlFi688EIFVxFRgBWRYA0NDaxevZoXX3yR0tJS38JGG2kledhP5WJ42pjXsDsGWFCIle4hiUYf9i1WGAkSS3iNNHdsrO9ruH9Axhpgw3xuR9P76nW4cA+swixw4m061Xjq1KksWrSICy64ILZ2iEi3pgArIiG5XC7eeOMNXnjhBYqLi30LPQb2shzsxfnYXGmtCyUwwIJCrEjCdUWATeT8r91ZtOG1rc+haENnW1P7xBJe2/isDjsPLSbefCfugdV4853W8ksvvZRFixZx7rnnRt8GEekxFGBFJCK3280777zDiy++yMGDB30LTbCdziatOA9bbWbzk7vzacSQ2AALCrHS+TozwEYZyBRgafu9as/csS1F+zndVoCN9vM5xOnDpmHi6VuLe0A1ZnZj0+bsXH755dx8880UFRVFV7eI9EgKsCISFdM02b59Oy+99BLbtm2zlhvVmaQV52OryvJNwaNe2BjrS7LXJ91bZwXYGK/j7PEhNtz7FcvnTaTw2lZva0uRwmuMn8mBva+m3YO7oAb3WWcgw3d9q8PhYP78+Vx//fUUFhbGVLeI9EwKsCISswMHDvDyyy+zfv16a5ANoz4N+6k87KXZGJ4ETCXRJOkCLCjESmrr6BAbxyBEPTrAJmLuWAgdOuM9KyZSXbFo6n31Zrlwn1VD+tBGnE7fqcIFBQVcd911LFiwgLy8vNjrFpEeSwFWROJ26tQp/vrXv/L6669TW1vrW+gxsJdlYy/OwVafnpDtKMSKJFBHBdh2zl/aI0NsIuef9b9/sfa2thQYXtvx2WtiYvZz4j7rDN78Bmv5qFGj+Ld/+zeuvPJK0tMT8x0hIj2LAqyItFtdXR3r1q3jb3/7G4cPH7aW26oysJfkYqtoOr04TkkZYEEhVlJTRwTYdobX5mp6YIhtr0T14PrZ7e0LrukePAU1uAfUWqcJ22w2pk+fzsKFCzUVjoi0mwKsiCSMaZp88skn/O1vf2PTpk3W6cU02Ek7lY39VA5GY3zzCvaYEAsKstKxEh0eEhRefVUlX7AxvWZStstiJO6SDau+GJmYmLku3ANqsA104Xa7AejduzcLFizgq1/9KgMGDEhcG0WkR1OAFZEOUVJSwuuvv87q1auprKz0LTTBdjoL+6lsbJWx98r2qBBr1Z2kr1lSVxIHWF91XR8WAz9rkqE9nSbG36WZ5sHTvw5PQQ1mtttaft555/GNb3yDWbNmkZGRkehWikgPpwArIh3K5XKxceNGVq1axe7duwNW2LCX+nplbQ0h5pQNoUcG2KDtJOnrl9TQkadtdoMQG+rzReG1NRMTby8nnrNqsZ3VaPW2ZmZmcvXVV/ONb3yD0aNHd2RLRaSHU4AVkU5z5MgR/vGPf/Dmm28298rSdK3sqRxsFQ4MM/IBY48Psdb2kvR9kOSTpFPnRK6qc9oc6fOkR4VXaPP358104+lfi6egFjI91vKxY8dy7bXXctVVV5Gbm9vRrRQRUYAVkc7X2NjI+++/zz/+8Q+2bt2K9THkNrCXO7CXZWOcyQh5inHSBljo/BAbtO0kfl+ka3T2QDkp0Asb7eeHwquPafPi7VuPp38t3l7NIwnn5+cze/Zs5s+fz8iRIzurlSIigAKsiHSxkpIS3njjDdasWUNxcbG13HDasZVlYy9zYHMGT7WgENtWG5L4/ZHO0VWjvCZhiI3186LHhVcI+r2Zhok334mnfx3ePvVgb37/pkyZwrXXXstll11GZmZmV7RUREQBVkSSg9frZceOHbz11lts3LiRuro6a51Rk+6bW7bcgdFoT+4AC8kRYgPpY77n6OrpSRIcYH1Vds5gbz0yuAIYNmsUYU+/Ojz96iC9+TNs8ODBzJ49m7lz51JYWNiFDRUR8VGAFZGk43Q6ef/993nrrbfYsmVL83Q8JtiqMrGVO7CVZWF4En+wnDDJFmL99JHfPXV1cA3UBSG2vf/U6qnh1ZvViKe/E2//Osys5lGE+/Tpw5VXXsmcOXMYO3as5m0VkaSiACsiSa2yspK3336bt956iz179jSv8DaF2TIHtookDbPJGmID6SsgtSVrsOjgU4kTeRZGTwuvXkej77rWfvVBU99kZWUxc+ZMZs+ezeTJk0lLi250eBGRzqYAKyIp4+jRo6xfv56NGzfyxRdfNK/wBvTMVmRhuJMozKZCiAUF2VSTrMHVrwN6YTtKdw+wJiamw42nXz3evsGhNS0tjcmTJzN79mwuu+wysrOzu7ClIiLRUYAVkZR0+PBhNm7cyIYNG1qFWaMqE3t5FrbTWRiN9q5rpJ9CrCRKsgdXvxQJsN01vJqYmNmNePo68farx3Q0h9b09HSmTp3KrFmzmD59Onl5eV3YUhGR2CnAikjKO3LkiBVmDx061LzC9A0AZavI8vXM1qeFnJqnU6RKiAUF2WSXzCG2BwZX02smRRD2jR7cgLePE08fZ9BcrRkZGUybNo1Zs2Zx6aWXar5WEUlpCrAi0q34w+ymTZvYt29f8Mp6O/bTTWG2OvQ8sx1KIVYSIRkDbIoEV2h/eG15/W1XhlczzYO3dwOePvV4ezcETXmTmZnJtGnTuOKKK7jkkkvIycnpsnaKiCSSAqyIdFunTp1i8+bNbNq0iY8//pjGxsbmlY0GttO+04xtVZmdd91sKoVYUJBNRskUYFMouEJ8YTPSgFGdHV5NTMwst9XLaua5CPw/XL9+/bj00kuZPn06kydP1lytItItKcCKSI9QV1fH1q1bef/999m8eTPV1dXNK/2nGldm+q6brUnv2N7ZVAuxoCCbTJIhwKZYcIXYwmY0oxx3Vng17V68vRrw9nLi6d0QdGowwKhRo5g+fTrTp09n9OjR2Gyp97sREYmFAqyI9Dhut5vPPvuM999/ny1btgQPAgW+3tmqTGyVWdhOZ3bMQFAKsdIeXRViu2lwjWVano4OriYmZk4j3t6+wGrmBveyZmRkcMEFFzB9+nQuvfRSBg4c2KHtERFJNgqwItLjnTp1im3btrF161a2bdtGTU1N0HqjNs13mnFVJrbqjMTOOasgK/Ho7ACbgsEVQofN9swh2xHh1cTEzPT4BmBq6mklPbiNQ4cOZdq0aUybNo2JEyeSlZWV8HaIiKQKBVgRkQBut5vPP/+crVu3snXrVvbu3UvQx6T/dGN/mK3OwPAm4OA+FYOsn75GOl9nBdhuEFzbE1gj1dseZoYbb34Dnl4uvPmtTwvOyclh8uTJVmhVL6uISDMFWBGRCCorK/noo4/4+OOP+fjjjzl+/HjwE7xg1GRgq8rw9dLWZGB4E3CQm4qBVl8nHa8ze15TNLx2lPaEVzM9oIc1vwEzKziw2u12zj33XCZNmsS0adM499xzSUtLa2+TRUS6JQVYEZEYlJSUsGPHDnbs2MHHH39MSUlJ8BO8YNSm+3pnz2T4bt0JuIY2lQJtor5WAsNaT/6q0vWuSSHaAGtiYjrcePNcePNcmLkNmI7WgXXMmDFMmjSJSZMmMX78eBwOR0c0W0Sk21GAFRGJk2manDx50uqd3bFjB+Xl5a2eZ9TbMaozsZ1pOuXYaU/MKMfJHmrb8/USKbT1hK+tZBhpGBRim0QKr6ZhYua6mgJrA948F6QF76M2m42ioiIrsE6YMEHzsoqIxEkBVkQkQfyBdvfu3ezatYtPP/209QjHAI02X5g9k46tJt132nGiBoZKxlAb69dMtOGtu319JUtobamHh9ig62mbBlwyc114cxrx5jVg5jRCi7coMzOTc889l/PPP5/x48dz3nnnkZeX18ktFxHpnhRgRUQ6UHV1NZ999hm7du1i9+7d7N27F5fL1ep5Rr3dF2TPpGOrycCoTccwExRokiXURvN1E2+IS9WvsmQNrS31wBBr2Azftas5Lry5jU2h1dVqhGCAfv36MX78eCuwFhUV6RpWEZEOogArItKJXC4X+/bt4/PPP2fv3r18/vnnrQeGAt+1tHXpvhGPa9N9gbYuLTEjHkPXhtpwXzuJCnPJ/LWWKoE1lG4eYs10j2/+1ZxGzNxGvLmNrUYHBkhPT2fkyJGMGzeOc889l/Hjx1NYWIiRyr9bEZEUogArItLFqqqq2Lt3rxVo9+zZQ2VlZesnmmDUp/nCbG06ttqm+4kYJAq6JtSaZseGuq7+iuuOoSbFg6x/kCUz290cWHMaIaP1/m8YBsOHD2fs2LGMGzeOsWPHcs4555CRkdEFLRcREVCAFRFJOqZpUlJSYvXSHjhwgP3794cOtQANNmx1Ab209WkY9entm84nWU477iid8dWn8NrlzHSPFVa92b6gama7wd76928YBkOGDGHUqFGMGTOGcePGMXr0aLKzs7ug5SIiEo4CrIhICjBNk/Lycg4cOGAF2v3793P8+HFCfoybgNOOrb4p1NY1hdr6tNiDbXcPs5D4QNudwmuSh1YTE9K9wUG16T7poffdrKwsRo4cyahRoxg1ahRFRUWMGDFCU9mIiKQABVgRkRRWV1fHwYMH2b9/P4cPH+aLL77g8OHDVFVVhS5gBds0DGfTT30ahtMODXFM79Mdw20ivhZTPcAmYWg1bSZmlrv5x9HUu+poDDmwEvh6VQsLCxk2bJgVWIuKihg0aBB2e4JOvRcRkU6lACsi0s2Ypsnp06eDAq3/trq6OnxBDxgN/kCb5hsZuSnk4rL17HDbUVMBJZMkCK2m4Q+pTeE0IKyS4SHcLmgYBoMGDWL48OGMGDGC4cOHM2zYMIYOHapeVRGRbkYBVkSkhwgMtkePHuXo0aMcO3aMY8eOceLECdxud/jCXnw9tA12X8h1+u/7Qi6NMQbcVA+3bX11pkKA7YLAatpMzAwPZLl986n6f5oehxpIKVBubi6DBw+2foYMGcKIESMYMmQImZmZnfQqRESkKynAiogIbrebkpISjh07ZgXbo0ePcvz4cUpKSvB4Wk8nEsQLRoMdXE2h1mXHcNl8j5t+YurFTdWA6/9KTcYA28GB1bR5MTO8kOHBbPohw+u73xRU2wqoANnZ2QwePJizzz67VVjt1auXpqsREenhFGBFRCQit9tNeXk5J0+epLi42Lr13y8tLW074ILv+luXrTnQNtowGm0Yjc338T92G22H3VQNuZ2pnaHVNJoGSErzQroHM92Lme71LWsRUkmL7nDC4XBQWFjIwIEDrdsBAwZY9/Pz8xVSRUQkLAVYERFpF7fbTWlpKcXFxZSWllJWVkZpaWnQ/YqKiuhCrp8XcPtDrd136zEw3DbfcrfRdBv8GG9T8O3p4bZFcDUxIc2Lmea7Jc2Lafcv8wat8wVUX1iNNpT6ORwO+vfvT//+/SkoKKBfv34UFBRQUFBgBda8vDwFVBERiZsCrIiIdDiPx8Pp06etQFtWVsbp06eprKzk9OnTQT81NTXxb8gLeAzw2HzTBXl8P4bHBh4C7hu+sNt0i4nvccB9/48R+Nj/jWkCND32nzXcRo+xScDXrdH0g9l83zDBZmLa/PdDLWv+Me2mbz5TO777NhPs3ublNhPT3hRCQ8x7Gi273U6vXr3o06cPvXv3Drr1B1X/bXZ2tsKpiIh0KAVYERFJKo2NjVawrayspKKigurqampqajhz5gxnzpyhurraul9TU0N1dXXkQag6i0lQqLUyrUHYEXQ7k8PhIC8vL+gnNzfXup+fn98qqObl5WGzdf0IxSIiIqAAKyIi3YBpmjidTs6cOUNdXR11dXXU19dbt4H3A5fV19fT2NhIY2MjLpcLl8tl3W+5rKMDsmEYpKenk5GRQUZGBunp6dZP4OOMjAwcDkdUP1lZWVZAzc3NJS0trUNfg4iISEdTgBUREYmC1+uN6ccwDAzDwGazYRgGdrs96LHNZgta518vIiIi4SnAioiIiIiISErQRS0iIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEtK6ugEiIl3FNE2cTmdXN0NEJCZZWVkYhtHVzRAR6RIKsCLSYzmdTq655pquboaISEzWrl2Lw+Ho6maIiHQJnUIsIiIiIiIiKUE9sCIiQMbWs8BjYNgMMGzWLbam0/QMA8NmA6NpuWFY6wz/8wyjebnRXC5oWYs6fc9rXm/6y9kC1odZbhpG82PAbKoKw8C0ARi+Zda2sMqYTY+byxnN5W3N63xlgtcH1mn6n2MjbH1WvQFtbL5t2Y6W65t/R6HWA1Ybwm0raHmYdgS/ruZthlrXXMYM2l6r7fjX03K9GVTG/9zmdpnWOiPw+Yb1apvWmS1u/XWaGIYZtHv56/T9aprX25rqC1rWdL95XcCygFtffc2PA3/AV7fvMc3rArZnM7zWMt9zvQDYjebHgWX8j5vXm9jxNq0zsRvegHJe7AHl7E3L7XhblbPhL+vFHrTO93y7YWLgxe5vH16rjB185fCv870fdvzbNK12+B433ULTfaPpvQK7YWDDwE7TreFfZ8PAoNFl57r/NxARkZ5OAVZEBHzh1es7UMRovrWShmFg4A+uTcub0onhS4Q0p52Acq0SlK1FUgpKGQHlaLEs3HLC3waEQ+t+y1urOiOgWqNVE4PXt6yTpiAdrr7Wb0erekOui1Quircq3vqabsOF2w4LsEbrABu4rmWAbV5utmi/2Wqd4a8z1PqQZcwQ22rxA1aAbfkTdp0VKgOCbUDQtdbRvL45iBIQYL3BAdDwB8CmW8PAjr8+333frRFUzlcX2A2s2+ZyvvuB64Cm0Op/rj8AB4ZUX5vbCrBB2wrcDsHbs1nPD/gdioj0YDqFWERERERERFKCAqyIiIiIiIikBAVYERERERERSQkKsCIiIiIiIpISFGBFREREREQkJSjAioiIiIiISEpQgBUREREREZGUoHlgRUQA7CYmXt/kjwbBt+Cbr9RGi3lU/esCHhtG0zyZAeXaWhcwEakZZnLTUMubl/luzYD1JoBpBC3zPccAk6D6zMAyTeVaC7PMDFgVNLepEdj8CPOvGvHP9RppXVv1tbXOfxOxXMv5V8Osb9XGMPPA0vq+0Wo7gevMFrf+Ov3zrgbuXmHmgbXqi28eWBPffbPFj3+d2TQXrrWuqU6vYYLhDdhO02OaXg8t14NpeH11N9VjBq0LXm4L2Jb/fstbXzt8f9aBt96mt8nWdN/btIuGngfWwIbRPK8svvfcjn/u2ea5XgMf26z7vnLW/LVNddkwsBv+dQYGBo2uUH+DIiI9jwKsiAjgmnaqq5vQMcwWt3FomU9F/PwR0tvWE5OWP+HrhDQRkVShT2wRERERERFJCYZpmu34v7yISOoyTROn09nVzZAU53Q6+drXvgbAqlWryMrK6uIWSSqKZT/KysrCMHROhIj0TDqFWER6LMMwcDgcXd0M6UaysrK0T0m7aT8SEQlPpxCLiIiIiIhISlCAFRERERERkZSgACsiIiIiIiIpQQFWREREREREUoJGIRYREREREZGUoB5YERERERERSQkKsCIiIiIiIpISFGBFREREREQkJSjAioiIiIiISEpQgBUREREREZGUoAArIiIiIiIiKUEBVkRERERERFKCAqyIiIiIiIikhLSuboCIiEi06urqeOmll3j33XcpLi7GZrMxZMgQrrzySq677jrS09PjrruiooKVK1eyefNmSkpKyMzMZMSIEcydO5drr70WwzAilj9+/DgrV65k27ZtVFRU4HA4GD16NAsWLGDWrFltbn/fvn38+c9/5pNPPqGyspK8vDzOO+88Fi5cyOTJk8OWO3LkCJ9++in79u1j//79HDhwgIaGBgDee++9mN6DnkD7UDDTNPnss8/YvHkzu3fv5siRI1RXV5OVlcXZZ5/N1KlTWbhwIQUFBfG8JSIiCWeYpml2dSNERETaUlxczJIlSyguLgYgKysLr9eLy+UCoKioiBUrVpCXlxdz3fv27ePuu++mqqoKAIfDgcvlwuPxADBt2jSWL18eNtxs3ryZZcuW4XQ6AcjJyaG+vh6v1wvAvHnzuOeee8IGmL///e888sgj1vZyc3Opra3F/xV96623snjx4pBllyxZwieffBJynQJsMO1Drfeh5557jv/7v/+zHhuGQU5OTlDZnJwcfvrTn3LZZZfF/L6IiCSaTiEWEZGk53a7+clPfkJxcTH9+vXj0UcfZd26daxbt45ly5aRnZ3N/v37eeCBB2Kuu6amhnvuuYeqqiqGDh3K7373O9auXcu6dev44Q9/SFpaGlu3buXxxx8PWf7EiRPcf//9OJ1Oxo8fzwsvvMAbb7zBmjVruPXWWwFYs2YNL774Ysjyn376qRU8ZsyYwSuvvMKaNWt4/fXX+epXvwrAs88+yzvvvBOyvN1uZ/jw4cyZM4c777yTG2+8Meb3oCfQPhR6H3K73eTk5PC1r32NFStWsG7dOtasWcO6det44IEHGDBgALW1tSxbtozDhw/H/N6IiCSaAqyIiCS9N998k0OHDgHwwAMPMGXKFABsNhtXXXUVd999NwAffvghH330UUx1v/TSS1RUVJCZmcmvf/1rxo4dC0B6ejoLFy60eq1Wr17N0aNHW5V/5plnqK+vp2/fvjz00EMMGTIEgOzsbBYvXsyCBQsA+NOf/sSZM2dalf/tb3+Lx+PhnHPO4ec//zlnnXUWAL169eLuu+9m2rRpQc9r6b//+7957rnnuPfee7nxxhsZOXJkTK+/p9A+FHofmjFjBn/+85/58Y9/zIUXXkhmZiYAmZmZXH755Tz22GNkZmbS2NjIyy+/HNP7IiLSERRgRUQk6b355psATJo0ifPPP7/V+quuuorCwsKg50Zr7dq1Vh2DBg1qtX7hwoU4HA48Hg9vvfVW0Lr6+nreffddAL7+9a+HPPX029/+NgC1tbX885//DFp34sQJdu3aBcBNN91EWlrroSn85YuLi9m5c2er9Xa7vc3XKNqHIPQ+VFRUFPGU6UGDBjFp0iQA9u7dG/Z5IiKdRQFWRESSmtPp5NNPPwXg4osvDvkcwzC46KKLANi2bVvUdX/55ZeUlJQAWOVbys7OZsKECSHr3r17tzVgUrjyhYWFDBs2LGT5wMfhyo8fP57s7OyQ5SU62ofatw9lZGQAWNfjioh0JQVYERFJakeOHLEOnEeMGBH2ef51FRUVVFdXR1W3/5TStuo+55xzAFpdAxhY3v+cSOW/+OKLoOX+x3369KFPnz4hy9rtdoYOHRqyvERH+1D8+5Db7bbCf6T2iYh0FgVYERFJamVlZdb9SFN59O/fP2SZSMrLy2Oqu7a2lrq6ulbbycvLs64djFQ+cHuB5QPbHoq/bS3LS3S0D8W/D7388stUVFQAMH/+/JjKioh0BAVYERFJaoEH+5EO8LOyskKW6ci66+vrW62PVL5lu/yP2yrvb1u0r0uCaR+Kbx/atWsXzzzzDABXX311xPmIRUQ6iwKsiIiIiAQ5cuQI9957L42NjYwYMcIapVlEpKspwIqISFLzDz4DWIPdhOJ0OkOW6ci6HQ5Hq/WRyrdsl/9xW+X9bYv2dUkw7UOx7UNHjx7lhz/8IZWVlQwdOpRHH31U+56IJA0FWBERSWqB1/aVlpaGfV7gNYttXQ/o169fv5jqzsnJCTqQ92/nzJkzEcOLv3zg9gLLt3W9pb9tLctLdLQPRb8PHT16lLvuuovy8nKGDBnCihUrtN+JSFJRgBURkaQ2bNgwbDbf11WkEVT96/r27Ut+fn5UdQeOqhqpbv9IscOHDw9bPnA02XDlW45S6398+vRpKisrQ5b1eDx8+eWXIctLdLQPRbcP+cNrWVkZgwcP5rHHHos6yIuIdBYFWBERSWpZWVmcf/75AGzZsiXkc0zTZOvWrQBMnTo16rqHDBnCgAEDItZdX1/Prl27QtY9fvx4a3Ac//ZbKi4u5siRIyHLBz4Ot/3du3dbA+/E8tqkmfahtveho0ePsmTJEsrKyhgyZAj/8z//o/AqIklJAVZERJLe3LlzAdixYwd79uxptX7Dhg2cOHEi6LnRMAyDa665BoB33nmHkydPtnrOq6++Sn19PXa7ndmzZwetczgcXH755QC89tpr1NTUtCq/cuVKwHft4YwZM4LWDRo0iAkTJgC+6Urcbner8i+88AIAAwcO5IILLoj6tUkw7UPh9yF/ePWfNqyeVxFJZgqwIiKS9ObOncs555yDaZrcd999fPTRRwB4vV42bNjAww8/DMBFF13UaqqPZ555hpkzZzJz5syQ4eKmm26ib9++OJ1O7rnnHvbt2wdAY2Mjr732Gr///e8BWLBgAUOGDGlVfvHixTgcDsrLy/nJT37C0aNHAV+v27PPPsuqVasAWLRoEXl5ea3Kf/e738Vut3PgwAHuv/9+61rF6upqHn30UatX7Y477sBut7cq73K5qKystH4Cp0kJXF5ZWYnX6430Nndr2odC70PHjh2zrnkdOnSowquIJD3DNE2zqxshIiLSlpMnT3LXXXdRXFwM+E4L9Xq9uFwuAIqKilixYkWrA/xnnnmGZ599FvD1UBUWFraqe9++fdx9991UVVUBvp4ul8tl9WZNnTqV5cuXk5GREbJtmzdvZtmyZdZIsLm5udTX1+PxeACYN28e99xzD4ZhhCz/97//nUceecR6fm5uLrW1tfi/om+99VYWL14csuwbb7zB8uXLQ65rKdzr7ym0D7Xehx566CHWrFkD+AaYijSXLfh6iUVEulJaVzdAREQkGoWFhTz77LO89NJLvPvuuxQXF5OWlsaIESO46qqruO6660hPT4+r7jFjxvDHP/6RlStX8sEHH3Dq1CmysrI455xzmDt3LvPmzbMGAQrlkksu4Q9/+AMrV65k27ZtVFRUkJubS1FREV/96leZNWtWxO3Pnz+foqIiXn75ZXbu3EllZSV9+vThvPPOY+HCha16BCU+2odaC+yVr62tpba2Nq7XLyLSWdQDKyIiIiIiIilB18CKiIiIiIhISlCAFRERERERkZSgACsiIiIiIiIpQQFWREREREREUoICrIiIiIiIiKQEBVgRERERERFJCQqwIiIiIiIikhIUYEVERERERCQlKMCKiIiIiIhISlCAFRERERERkZSgACsiIiIiIiIpQQFWREREREREUoICrIiIiIiIiKQEBVgREUkJjz32GDNnzuQHP/hBVzdFulhNTQ3XXnstM2fO5L333uvq5oiISCdK6+oGiIhIx6qtrWX//v3s3buXffv2sW/fPo4fP45pmgC8/PLLFBYWdsi2TdPk+uuvp7S0lJtvvpnvfve7cdWzf/9+XnvtNQBuv/32BLawax06dIitW7eye/duDh06RHl5OR6Ph7y8PEaOHMkll1zC3Llzyc3N7eqmJpXc3Fxuuukmnn76aR5//HEuuugiMjMzu7pZIiLSCRRgRUS6uSVLlrB///4u2fbevXspLS0FYMaMGXHX8+STT+LxeLjooosYP358oprXpZYsWcInn3wScl1FRQUVFRVs27aN559/nqVLlzJt2rTObWCSu/766/nLX/5CSUkJr7zyCjfffHNXN0lERDqBTiEWEenm/D2t4Ou5mjRpEn379u2Ubf/zn/8EoKCggHHjxsVVx65du9i+fTtAtwop/mCfl5fHvHnzWLp0KU888QRPP/00v/jFL7jkkksAX5hdunQpO3fu7MrmJh2Hw8F1110HwMqVK6mrq+viFomISGdQD6yISDc3b948evfuzZgxYxg8eDCGYbBkyRIqKio6fNv+ADt9+nQMw4irjhdffBGAwsJCLrjggoS1rasNHjyYRYsWcdVVV5GRkRG0bsyYMcyaNYsXXniBp556CpfLxSOPPMJzzz3XRa1NTnPmzOGZZ57hzJkz/OMf/+CGG27o6iaJiEgHUw+siEg3d/3113P11VczZMiQuENkPI4ePcqRI0eA+E8fLi0tZfPmzQBcc801ndr+jvbwww/zla98pVV4DXTzzTdTVFQEwOHDhzl48GBnNS8lFBYWMmHCBABef/31Lm6NiIh0BvXAiohIh/CPDus/bTke69evx+v1AnDllVdGVcbtdvPOO++wadMm9u7dS2VlJR6Ph969e3POOecwZcoUrr76avr16xdUbubMmQDMnTuXpUuX8uWXX/LKK6+wbds2ysrKyMnJYfTo0XzrW99i4sSJVrmGhgbeeOMN1q5dy7Fjx3A6nQwaNIjZs2dzww03tHtwoQsvvNC6hvno0aOMHDky7roOHz7MqlWr2LlzJydPnsTpdJKbm0teXh6FhYVMnjyZyy67jKFDh8ZVv9vtZt26dWzYsIFDhw5RVVWFYRjk5+fTu3dvxo0bx5QpU5g+fTrp6elBZVu+/4cPH+bVV19l+/btlJWVUV9fz4MPPtjqnyFXXnklO3fu5MiRI+zdu5exY8fG9+aIiEhKUIAVEZEO4T99+JJLLiEtLb6vmw8++ADwXSc6bNiwNp9/4MABfvazn3Hs2LFW60pLSyktLWXLli0cPHiQpUuXhq1n48aN/OpXv8LpdFrLGhoa+PDDD9myZQt33303CxYsoKysjKVLl7J3796g8l988QW/+93v+PDDD3nkkUfaFWLdbrd132aL/8SpVatWsWLFCjweT9DyqqoqqqqqOHbsGNu2bePgwYPcd999MddfWVnJj3/845ADhvnf+/379/P666+zcuVKBg8eHLauN954g0ceeQSXy9XmdgMH9frggw8UYEVEujkFWBERSbiysjI+//xzIP7Th10uF5999hkA48aNa/P04f3793PnnXdSX18PwKRJk5gzZw7Dhg0jPT2d8vJy9uzZ0+a8oQcPHuSdd96hT58+3H777da2P/roI/70pz/hdDr5zW9+w8SJE/nlL3/JgQMH+PrXv85ll11G7969OX78OM899xwHDx5k165drFy5ku985ztxvQcAH3/8sXV/xIgRcdVx6NAhK7zm5+ezYMECJk6cSO/evfF4PJSXl7Nv3z4+/PDDuE/TXrFihRVeJ0+ezJw5cygsLCQnJ4fa2lqOHDnCzp07rVPCw9m3bx/r168nPz+fG264gfHjx5Oens7hw4cZOHBgq+ePGDECh8NBfX09H3/8MYsXL46r/SIikhoUYEVEJOE2bdqEaZpkZGRw0UUXxVXHwYMHrd7HMWPGRHyu2+3mZz/7mRVe77rrLmuE2kCXXnopt912GyUlJWHr2r9/P0VFRaxYsYK8vDxr+bnnnsvgwYNZtmwZbrebO++8k+rqah5++GGmTJliPW/06NFMnTqVRYsWUVZWxmuvvcaiRYuw2+0xvX7wnYb9xRdfAL4QP2TIkJjrANiwYYPV8/qb3/zGuq420IwZM7jtttuoqqqKuf6GhgbrHwMzZszgl7/8ZasgPHHiRL72ta9RX18fsSf5iy++YPDgwTzxxBNBo2WHG8XabrczevRodu7cyb/+9S+8Xm+7eqpFRCS56RNeREQSzn/68JQpU3A4HHHVEXgacFvT/qxfv57jx48DvlGXQ4XXQAMGDIi4/ic/+UlQePWbNWsWBQUFAJw+fZqFCxcGhVe/3NxcvvKVr1jPO3z4cMTthVJWVsajjz4KgGEYfO9734u5Dj//iNO5ubkhw2ugXr16xVz/mTNnrH82TJw4MWIvrsPhaPOU6h/96EcxTfXkf67T6aSsrCzqciIiknoUYEVEJKFqamrYsWMHEP/pwwDl5eXW/fz8/IjP9QdmgG9+85txbxN8p6SGC3mGYQStmzNnTth6Ap934sSJmNrgdDpZunSpFTxbDhwVK3/orqmpYcOGDXHXE06vXr2s0ZTffvvtds3JWlBQEPKfApEE7h+B+42IiHQ/CrAiIpJQmzdvxu12Y7fbmT59etz1NDQ0WPdD9YYG+te//gX4euKiGewpkrbKB7Yl0mi9gc+LJdA1NjZy7733WgNDXXbZZdx2221Rlw9lzpw5Vq/nsmXL+P73v88LL7zArl27rNOu2yM9PZ25c+cCsGfPHm688UYefvhh3n777ZjDezyjLAcG2MCBt0REpPvRNbAiIpJQ/t7Q888/n969e8ddT+A1o22NRltZWQk09zS2R1ZWVsT1gafHRjo9OvA6TP9UQG1xu93cd999bN26FYBp06Zx//33x3X9bKBBgwbx0EMP8atf/YrS0lJ2797N7t27Ad/7PHbsWGbOnMn8+fPb/GdBOD/4wQ9wuVysXbuW6upqVq9ezerVqwHfPxamTZvGvHnz2uxJbqu3PZTAf3bEO+K1iIikBvXAiohIwrhcLrZs2QK07/Rh8F2v6VddXd2uulKB2+1m2bJl1tRBU6ZM4cEHH7ROzW2vyZMn8+KLL/Lzn/+cefPmWdPYeDwePvvsM5588km++c1vWuE5VpmZmSxdupTnn3+e//iP/+DCCy+0An5FRQVvvvkmS5Ys4d577w0KnC3FMwBT4MBTgfuNiIh0P/o3pYiIJMz27dutU1LbG2ADp0xpK8D27t2bkpKSlB3Axx9e/b3XF154IcuXL2/X/LGhZGRkcMUVV3DFFVcAvp7rjz76iLVr1/Lhhx9SXV3Nfffdx8qVK+nXr19c2xgyZAi33HILt9xyCx6Ph/379/PBBx+watUqTp8+zXvvvcfTTz/NnXfembDXdebMGet+WwN0iYhIalMPrIiIJIw/gBUVFVFYWNiuugLnPP3yyy8jPtc/zU55eXmbz002LcPrpEmTeOihhxIeXkPp3bs3V111Fb/+9a/5+te/DkB9fT2bNm1KSP3+05MXL17Mb3/7W+v07PXr1yekfr8jR44AUFhYSHZ2dkLrFhGR5KIAKyIiCeH1enn//fcB38BD7TVgwAD69+8PwOeffx7xuTNnzrTur1y5st3b7ixut5v777/fCq8TJ07kv/7rv9q8DrcjTJs2zbrvv6Y4kQoLC615bOOZazacyspKawql8847L2H1iohIclKAFRGRhNi9e7cVfAIDZXv4Q9WRI0eora0N+7wrr7zSCkdr1qzhr3/9a8R6S0pKEtK+9nC73fziF7/gvffeAzo2vL777rtthlL/tcsAZ599dkz1nzhxgu3bt0d8zsmTJ62e0kGDBsVUfyR79uyx7l988cUJq1dERJKTroEVEenmjh07Zo046+efXxRg48aNQaMFOxwOZs2aFfN2/L2IgwYNimsqlFCuuOIK1qxZg9frZfv27Vx++eUhn5eWlsbPf/5zvv/971NfX89jjz3Ge++9xzXXXMOwYcNIT0+nvLycvXv3snHjRsaMGcPSpUsT0sZ4PfDAA2zcuBHwBcY77riDkydPRizTp08f+vTpE/O2/vrXv/LAAw8wefJkJk+ezPDhw+nVqxeNjY2UlJSwfv16q/d84MCBMU9/VFJSwo9+9CMGDRrE9OnTGTduHAMGDCAzM5Oqqir27NnDa6+9Zo0mfd1118X8GsLZtm0b4Lu+95JLLklYvSIikpwUYEVEurndu3ezfPnysOuffPLJoMcDBw5sV4BNxOnDflOmTKGgoIDS0lLWrl0bNsACjBo1iscff5yf/exnnDhxgh07drBjx46Qz/VfM9uVNmzYYN0/fvw4d9xxR5tlbr31VhYvXhzX9lwuF5s3b2bz5s1hn3P22WezfPnyiNMDRXLixAn+8pe/hF1vs9n45je/yTe+8Y246m/J7Xbz9ttvA75e/3inABIRkdShACsiIu124MABq/ewvaMPB7Lb7SxcuJCnnnqKDz/8kMrKyohzy44ePZrnn3+etWvX8s9//pP9+/db11v26dOHkSNHMnXqVK6++uqEtTEVLFu2jK1bt7Jz504OHTpERUWFdUpxr169GDVqFDNmzGDOnDlxTdszYcIEnnjiCbZv386ePXsoKSnh9OnT1NbWkpWVxaBBg5gwYQLz589PWO88YO0TANdff33C6hURkeRlmKZpdnUjREQktf3hD3/gD3/4A3369OHVV1+Nay7PcGpqarjpppuorq7mu9/9LjfffHPC6pbUds8997B582YmT57Mb37zm65ujoiIdAIN4iQiIu3mP3340ksvTWh4BcjNzbVC60svvURdXV1C65fUtGfPHjZv3oxhGNx+++1d3RwREekkCrAiItIujY2NzJgxg1tvvZWFCxd2yDauu+46Bg8eTFVVFX/+8587ZBuSWp5++mkArrnmGsaNG9fFrRERkc6iU4hFRCQlfP7552zevJnc3FxuvPHGrm6OdKGamhr+8pe/YJomCxcujHhdtIiIdC8KsCIiIiIiIpISdAqxiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIilBAVZERERERERSggKsiIiIiIiIpAQFWBEREREREUkJCrAiIiIiIiKSEhRgRUREREREJCUowIqIiIiIiEhKUIAVERERERGRlKAAKyIiIiIiIinh/wPF0q2qw++UAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "5053ccef", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21f81d22", + "metadata": {}, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_reconstructed_image(result, source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "dc5d9f13", + "metadata": {}, + "source": [ + "## Delta image\n", + "checking the difference between images before/after each iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "924732e5", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_delta_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['delta_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "39e0754a", + "metadata": {}, + "source": [ + "Plotting the difference between 19th and 20th reconstructed images." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "cd0ce733", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACzSUlEQVR4nOzdd3gUxeMG8Hev5dIbCS2EXqQIKCAICiKogApWUBSwYEFR7Nh7V1QUewGEL6DyQ0VEeq8ivfdOQnpPruz8/rjcckmul9wleT/Pk4eQm5udS+52992ZnZGEEAJEREREREREAFTBbgARERERERGFDoZEIiIiIiIiUjAkEhERERERkYIhkYiIiIiIiBQMiURERERERKRgSCQiIiIiIiIFQyIREREREREpGBKJiIiIiIhIwZBIRERERERECoZEIiIiIiIiUjAkEhERERERkYIhkYiIiIiIiBQMiURERERERKRgSCQiIiIiIiKFX0Li8ePHIUkSJEnCmDFj/FFlndSvXz/l90hE5MiYMWOUfcXx48eD3RzF1KlTlXZNnTo12M0hP5NlGZdeeikkScL48eOD3RyqhJ8/oqpWrlypfC5ee+21YDfHr/Lz85GQkABJkvDNN9/4vf5q60mcOnUqXnvttVr3B3Lm999/V15zbm5usJtD5UwmE5YuXYqJEyeif//+aNiwIcLCwhAVFYWWLVtixIgR+P3332E2mz2qd/fu3Rg/fjzatWuHqKgoxMbGolOnTpg4cSJOnDgRoFdDRHWR0WjEd999h6uvvlrZh6WkpOCGG27AnDlzIITw+za//fZbbN26FXq9Hs8//7zDcsePH8fcuXPx/PPP45prrkFiYqJyktavXz+vtu3P/euJEycwceJEdOrUCbGxsYiKikK7du0wfvx47Nmzx6v2ubJhwwbce++9aNmyJSIiIpCQkIBLL70Ub731FjIzMwOyzWDo1KmT8rdetmyZx89fu3at8vz27dt71YZz585h/vz5eO2113D99dejYcOGSp3NmjVzux7bcOHOlzvB3GQyYdasWbj55pvRrFkzREREQKfToX79+ujXrx/efvttpKWlefW6PfHOO+9UaLu7HTw5OTmYNGkSBgwYgAYNGiAsLAwRERFITU3FDTfcgB9++AGlpaVu1ZWXl4cPP/wQ/fr1Q3JyMnQ6HRo2bIi+ffti8uTJKC4u9uEVhpYbbrhB+V3/8MMPHj//5MmTUKvVkCQJCQkJyu84JiYGTzzxBADgxRdfRE5Ojl/bDeEHx44dEwAEADF69Gi7Zfr27auUqStGjx6tvOZjx465LF8Xf0fVbfny5SIhIUH5PTv76t69uzh8+LBb9X744YdCq9U6rCs6OlrMmjUrwK+O6gpP9y3V5aefflLa9dNPPwW7ObXWsWPHRNeuXZ3uvwYMGCBycnL8ts2ioiLRoEEDAUA89thjDstNnjzZabv69u3r8bb9uX+dMWOGiIqKcliXTqcTkyZN8riNjsiyLJ544gkhSZLDbdavX18sW7bM522Fwufv448/Vtpw1113efz8e++9V3n+Bx984PHz//zzT6fvv6ZNm7pd14oVK9w6V3D3d37kyBHRuXNnl/VER0eL6dOne/za3bV//34RFhZWYZuOzt1tLVy4UCQlJblsf/PmzcV///3ntK5//vlHJCYmOq2nRYsWYsuWLT6/Xtu/46uvvupzfd6YO3eu0oY+ffp4/Pw33nhDef64ceMqPJaXlyfi4+MFADFx4kR/NVkIIYQGftCsWbOAXLWsa1auXBnsJtR6Z86cQXZ2NgAgISEBAwYMQM+ePdGwYUMYjUZs3rwZ06dPR35+Pv79919cddVV2Lx5Mxo0aOCwzq+//hrPPPMMAECr1eLuu+9G3759YTQasWjRIvz2228oKCjA3Xffjbi4OFx33XXV8lqp9po6dSqHk9VRubm5GDRoEPbv3w8AuOiii3DvvfciJSUFhw8fxrfffotTp05h6dKluPnmm7F48WJoNL4f6r/88kukpaVBrVbj2WefdViu8giM8PBwtG7dGjt37vRqu/7cvy5YsACjR4+G2WyGJEm49dZbce2110Kr1WLVqlX4+eefYTAY8OSTTyI6Ohr333+/V2229fzzz+OTTz4BAERGRuK+++5Djx49UFhYiLlz52LJkiVIT0/H0KFDsWbNGnTp0sXnbQbTXXfdheeeew4mkwn/93//hy+//BLR0dFuPbe4uBi//vorAECtVuPuu+/2ePuV339arRYdO3bEtm3bPK7L1vDhwzFixAinZS655BKHj+Xn5+Oqq67CyZMnAQCxsbG45557cNFFFyEyMhInTpzA7NmzsWvXLhQUFGD06NFISEjAkCFDfGp3ZUIIjB07FmVlZYiMjERRUZFbz9u8eTOGDh0Kg8EAAGjZsiXuvvtuNG/eHCaTCYcOHcKPP/6I8+fP49ixYxgwYAB27dqFxo0bV6lrxYoVuOGGG2A0GgEAPXv2xPDhw9GoUSOcP38e8+bNw/Lly3H06FFcd911WL9+PVq3bu2/X0IQ3HDDDahXrx4yMzOxdu1aHDlyBC1btnT7+dOmTVO+v+eeeyo8FhMTg0ceeQRvvfUWPv/8czz99NNITEz0T8P9GjmdqIu9ZKF6tb8u+/nnn0WnTp3E//73P1FaWmq3zOnTp0WHDh2Uv92oUaMc1nf27FkREREhAAiNRiOWLFlSpYzt1d0mTZqIkpISv70eolASCj0Ztd2ECROU3/F1111XZX+SlZVVoZfxiy++8HmbRqNRNGnSRAAQ11xzjdOy8+bNE4888oj48ccfxY4dO4TJZKow2siTnkR/7l+LiopEo0aNlLJTp06tUmbx4sVCo9EIACIqKkqkpaW53VZ7tm7dqvQgxsbGih07dlQp8+qrrypt6t69u5Bl2evthcrnb+jQoUo7fvjhB7efN336dOV5119/vVfbXrdunRg7dqz4+uuvxb///ivKysqEEMLnnkRfe6Bse4K6dOkisrKyqpSRZVm8+OKLSrnOnTv7tE17vvzySwFAREZGitdff93tnsT+/fsrZe+55x5hNBqrlCkqKhIDBgxQyj3++ONVypSWlorU1FSljKOer08++UQp079/f29eqiIUehKFEOLxxx9X2vHyyy+7/bzVq1crz+vYsaPdMgcPHlTKvP322/5qsmBIDCCGxNCTk5Pj1kF4165dyt8uPDxcFBUV2S1ne8L2zDPPOKzvtttu8+tJG1EoCpWT1NoqPT1d6HQ65SQvPT3dbrldu3Yp4aRBgwbCZDL5tN158+Ypf1dvhsF5GxL9uX/99NNPlTK33Xabw7qeeeYZpdzTTz/tdlvtGTZsmFLXlClT7JaRZVn06NFDKffXX395vb1Q+fz9/vvvSjuuuOIKt59nG0Tmzp3r1zYFOyT27t1bqWvBggUOy5lMJlG/fn2lbH5+vk/btXXq1CkRExMjAIiPP/64wvvFWUgsLS0VarVauViTm5vrsKztudMll1xS5fHZs2crj3fr1s3p+djgwYOVskuXLvXotdoKlZC4ffv2Cu9Ddy8I2Q7B/vjjjx2W6969u3KxzJeLTbYCPrupdcbOVatWKT+zd8OvowltZFnGL7/8guHDh6N58+aIiIhAdHQ02rVrh4cffhi7du1y2rbXXntN2YZ1OOeyZctwxx13oHnz5tDr9VVmCDSZTFi0aBGeeuop9OnTR7mhNjo6Gm3atMGYMWOwevVqh9u0zjxo2z3cvHnzKq/Z0e/KndlNN23ahAceeABt27ZFdHQ0IiMj0bJlS4wePRrLly93+fzKkwgUFRXho48+Qrdu3RAfH4/IyEh06NABzz//vP9vhA2iuLg4t36/HTt2RLt27QAAJSUlOHz4cJUyQghlaIyr2f4ee+wx5fs5c+Z42myfbNiwAQ8//DDat2+PuLg46PV6pKamYvjw4ViwYIHT59qbFezkyZN46qmn0K5dO0RGRiIuLg6XX345vvzyS5hMJrfaVFhYiE8//RQDBw5Eo0aNEBYWhoSEBHTv3h2vvPIKMjIynD6/8mfFbDZj6tSpGDhwIBo3bgyNRmN3goL09HQ8++yzaN++PSIjI5GQkIAePXrg448/Vm6Sb9asmd0JDv755x9lm7Z/T2cee+wx5TkLFy506znucDW7aaD+bn/99RduuOEGNGjQAHq9Hs2aNcPIkSOxYcMGj1+DwWDADz/8gBtvvBFNmjSBXq9HXFwcLr74Yjz11FMOZ209cOAAIiMjIUkSYmNjcezYMYfbyMnJQWpqKiRJglqtdrrfrgl+//13ZbjXHXfcgeTkZLvlOnbsiP79+wMA0tLSKhx/vfHzzz8DsAwdvemmm3yqy13+3r/a/vzxxx93WNf48eOV/covv/ziUZttFRQUKJ/5mJgYhxODVH5t1XF8+Pfff5GUlARJkhAWFmb3dfpy7jVkyBDlvbl27VocPXrUZZtOnjyJFStWAADq1auHG264wctXF5rOnz+vfO9s6KRarUaLFi2U/7s7HNQdDz/8MPLz89G1a1enn4HKsrKylGG8ycnJiI2NdVi2TZs2yvf22m57fnrXXXc5PR8bNWqU8v3//vc/t9vrLesQUEmSoFKplGHilf3zzz8YM2YMWrdujejoaERERKBly5YYM2YM1q5d67D+zp07o2vXrgAsk2dZ3+/O2A7B1mg0uOuuuxyWHTlyJADg1KlT/rt9zR9J09nENbY9iM6+7KX7w4cPiy5dujh9nkqlctptazuUY/ny5eKRRx6xW49tT1+/fv3cavPo0aOVoQy2bHsQXT3f0e/KEaPRKMaOHeuy7ttvv10UFxc7rMdarm/fvuLIkSOiffv2Dutq2rRpnewJtV6VASA2btxY5XHbK2aOhgBYmc1m5QqeSqXy69VBRwoLC8Xw4cNdvleGDBnisD2Vr8AtXLhQxMXFOaxr4MCBDofxWv39998iOTnZaZuio6PFH3/84bAO289KVlaW6NOnj933ra3ly5crN3fb++rUqZM4efKkaNq0qd3nm81m0bx5cwFAxMfHuxw2XFJSomwvNTVVmM1mp+U94WqUgr//biaTyel+TaVSiffff9/tnox///1X+V06+tLpdOLrr7+2+/xvv/1WKderVy+HPWW33nqrUu7FF190+jutCW655Rbl9fz2229Oy3744YdKWWe9cK6UlpYqQz6vvPJKr+rwpifRn/vXvLy8CsM+XX0WbW832LNnj1vtrWz+/PlKHa6GTp4/f14pm5SU5NX2hHCvJ3HRokXKxD1RUVF2h/D649zrySefVMq+8sorLttuOxzT3jBFXzk6Ljjjzx4o22OUuz2JiYmJfjtuzJo1SwAQarVamQzG3Z7EkpISZRi2Vqt12pO4e/dupc5hw4ZVedy2d3DhwoVO27x161albIMGDdx7oXa483fcunWr8nvXaDTi559/rlLm/PnzFXq7HX3dd999wmAw2N2O7cRezm5lsrIdgj106FCnZXfs2OH3z1DAQ+KaNWvEvHnzKux0582bV+Vr3759FZ53+PBhUa9ePeU5ffr0Ee+9956YNWuWmDFjhnjiiScqnPA5+sPbhsRBgwYpb7aJEyeKGTNmiKlTp4px48aJs2fPKs+57LLLRFRUlBg6dKh44403xPTp08Uvv/wiPvvsM/HAAw+IyMhIp3+I//77T8ybN09cddVVSrlvvvmmymuuPPuTOyFxxIgRShm9Xi8efPBBMW3aNDFjxgwxYcIEER0drTx+7bXXOuxytpbp2rWraNeunZAkSQwdOlR89dVXYs6cOeLdd9+tMG7ckyEjtUFZWVmFk+pz585VKWPd6brawVrZ/n03bdoUgFZfUFpaKnr27Klsr2XLluKFF14QP//8s5g9e7Z46623RJs2bZTH+/fvb/dgZLtzHTp0qIiIiBDh4eHiwQcfFFOnThWzZs0STz31VIXPhLMTh99++00ZtqLVasUtt9wiPv/8c/HLL7+I77//XowcOVKZxVClUjmc8c/2d2n9XHfu3Fm89957Yvbs2eLbb78Vjz76qFJ+z549yomu9X3/8ccfizlz5ojJkycrQ4F69eolGjdu7PBk4p133lHqmDFjhtO/wc8//6yUff31152W9ZQnIdEff7dx48Yp5XQ6nRg7dqyYNm2a+Pnnn8X48eOV363t8DpHJ6nr169XykuSJK677joxadIkMWfOHDF16lTx4IMPVvhbOarHNjDZa/v333+vPN6zZ0+799DUNG3btnX6d7dl+x4YNGiQ19tctmyZUo+3wy+9CYn+3L9u2LDBo+3bfr7mzJnjVnsre/fddz0KGNaLUwAcDiN2xVVI/N///qfsX5OSksS///5bpYy/zr1sQ36zZs1cDn9r2bKlUn779u3evHynrHV7GxI7duwoOnXqJKKiooRerxcpKSni+uuvF1999ZXTC/JWthdtnN2T+NJLLynlXnvtNU9eokOZmZnKrKQTJkxQfu5uSBRCiCFDhihl7733Xof3JA4cOFDZt69YsaJKGevxGvAsJAIQGRkZbr3eylyFxOXLlysXmSIiIsTff/9dpUxWVlaF92jnzp3F66+/LmbOnClmzZolXnzxReXcwdnvMzMzs8ItAwUFBU7bbhtKf//9d6dlzWazcgGoXbt2Tsu6KySXwDCbzeKSSy4RAERYWJj45Zdf7JZLS0tTrnapVCqxe/fuKmVsQ6J1h5eXl+d0+0uXLnX6oc/MzFSuCqlUKnH06FG75fy9BIbtWO769evbvcJ5/PjxClfoHd2fYfs70el0Yv78+XZfp21dvgSboqIiuxcHvPlyNbWyP9ie4NsbVy+EqHDTtzsnAaNGjVLK27tK5U+V7+Wxt0M3GAwV2vTVV19VKVN5CvDU1FRx8ODBKuU2bdqkXGmMj4+32yt18uRJZUecmpoqdu7cabftmzZtErGxsQKASElJsXtFrvIIhQkTJji94mp7FXfcuHF2y1beV9g7mUhLS1NOslydbF555ZUCsFy5PXXqlNOynvIkJPr6d7O9aT4uLs7ulOT79+9XlkdwdpKan5+vTIASFxcnVq5caff1HTp0SLlIFRkZaffkIDs7W6SkpCi/4zVr1iiPHThwQAnAMTEx4siRI3a34659+/b5bf/l7YmO2WxW/lZqtdpl6D169Kjyt2jZsqVX2xSi4oWRX3/91as6vAmJ/ty/Tps2zaPA+corryjl33zzTbfaW9k999zj9LNQmXV/AaDCe9kTzkLi5MmTld7Upk2bigMHDlR5vj/PvYQQolu3bkp7li9f7rDdq1atUsp17drV/RfsAV9DorOvhg0bOn19QlS9cBsbGysmTJggvv32WzFz5kzxzjvviE6dOimPP/zww367sHX33XcLwHKvmm0o8SQkHjx4sMIIoJYtW4rXXntNTJ8+Xfz4449i4sSJSk9cWFiY+PHHH+3WY/u5+Oyzz5xu0/acF4BYu3atx69dCOch8bffflOWA0lISBDr16+3W4f1AqgkSeLTTz+1W6agoEBcc801yrYchWDbES6Ofk9CWM7nrZ/Z5ORkt94P1pGQkiQ57fF1V0iGRNv1RCZPnuy07IEDB5SeibFjx1Z53PbELzIyUpw5c8at1+TKkSNHXB5E/B0SbWess3elw2rTpk0VDgb2hmLZfvDeeOMNh3V99913bpVzxfY94uuXOwd5X2RnZ4uGDRu6PDF64oknlDKff/65y3o9Le+ts2fPKleqbr75ZqdlDQaDaNGihQAgWrduXeXxygfJ1atXO6xr5MiRTsuNHz9eOcHdtm2b03b98MMPSl0zZ86s8rjtZ+XSSy91GhD//fdfpWzHjh2dTuJhW6+jkwnbSTLsBS8hLPsla5khQ4Y4fa3e8DQk+vJ3s52p0N6MkFZ//fVXhW3aOzG2XUPtzz//dPoabXuwHM3WtnLlSqFSqZS/V05OjjAYDOLSSy9VnuuPCzKVLyD48mXv6ro78vLylDoSExP9Xt6RO++8U6nH0YUdV7wJif7cv3722WfKY0899ZTLujwtb89NN92k1GHvIqyv5e1xFBJtZ8zs0KGDOH36tN3n+/PcSwghpkyZotTnbGidbXBwtV1vudqv27NixQohSZLo0aOHeO6558SPP/4ofv31V/Hdd9+JBx54QLmYCViGKC5evNhpfcXFxeKBBx4Qer3e4f7h6quvdrq/9tQ///yj1F35Fg5PQqIQltAyYMAAp2t+Pvzww+LQoUMO67Ad4eFqNl/b3kvA+0mdHIXEr7/+Wjl+NG7c2OHQ8v/++095/pNPPul0W9nZ2cr7YuDAgXbLLFiwQKnP2RB+2wtlrrZr9fDDDyvP8fZiky2/TFzjb9ab5GNiYjB27FinZdu0aYMePXoAABYvXuy07C233IJGjRr5pY0tWrRQ1s7btGmTX+p05vjx48o6P506dcKgQYMclu3Ro4cyacGJEyfw33//OSyrVqvx6KOPOnzcWg8A7N2719Nm1zhmsxkjRozAuXPnAFhuwL/11lvtli0sLFS+1+v1LusODw9Xvi8oKPCxpY798ssvyuQWTz/9tNOyWq0Ww4cPBwAcOnTI4WQhANC1a1dcccUVDh939l4RQmDmzJkAgKuvvtrlWmDDhw9X1nZz9bl+5JFHoFI53pX98ccfFcqq1WqHZd25mf+hhx5Svv/+++/tlrH9+QMPPOCyzkDy5e9WVlamTL5Rv359pzfNDxkyBBdddJHTtlj37W3atHE5MUX//v2V/bWj90Dfvn0xceJEAJZ93UMPPYSXXnpJ2eeNHDnSaZtrkmDtb06cOKF8n5CQ4HU9nvLn6w3G7y4Ujg9msxljx47F22+/DQC4/PLLsWbNGrtr1wH+P/e64447lNc+d+7cCr8Tq+LiYvz2228AAJ1OhzvvvNONV1Y92rZtiwMHDmDTpk147733cM899+DWW2/F/fffj2+++QbHjh3D4MGDAVgmPLzjjjuQn5/vsL7w8HC8/vrrmDBhgsNj1ooVK/Duu+8q66D6oqioCA8++CAA4Oabb8aNN97oU31NmzbFpEmTnNYzffp0fPDBBw7fw7feeivi4uIAWCZQeuWVV+yW++KLL6pMrOfsd+upN954Aw899BBkWUbbtm2xfv16tG/f3m5Z6+dCkiQ89dRTTuuNj49X3hOrV69GWVlZlTLXXnutcmxbs2aN3cnXhBCYPn268v/KayM6276V7b7bW76vsBsAa9asAQA0bNgQ//zzj8vy1pO+EydOoKSkpMLO1pazE6XK8vPzMXPmTPz999/YtWsXMjMzHc4ydfr0abfr9dbmzZuV76+55hqX5a+55hosW7YMgCXEWnfmlbVp06bCm6oy24OJL7OcNmvWDEIIr59fXR5//HHlgJeamlojFyy3fn4Ay3vz999/d1re9u+6b98+u7OCApYFb51x9l7Zs2cPsrOzAQDR0dEu2wQAUVFRyM3Nxb59+5yWc/W53rJli/L9VVdd5bSsdbZfZ6666iq0adMGBw8exLRp0/DWW29Bq9UqjxuNRmVm40aNGvl9MWRP+fJ327Fjh3LBoW/fvk4DNmC5AODo75WXl6csqF6/fn233wMAnL4HXn/9dSxbtgybNm2qMDNk8+bN8eWXX7rchjtee+01hzNw13bWzy1QvSGRfFNaWorbbrsN8+bNAwAMHjwYv/76KyIiIhw+x9/nXvHx8Rg2bBhmz56NoqIi/Pbbb1Vmef3tt9+UQHHjjTf6bxFwP2jYsKHTx+Pj4zF37lz06NEDu3btQlZWFr766is899xzdstPnToVDz30EMrKynDzzTfjiSeeQJcuXaDVanH48GFMnz4dkyZNwsKFC7Fx40YsWLAAvXr18rr9L7zwAk6cOIGYmBh8/vnnXtcDWELwhAkTMGXKFGg0Gjz77LMYNWoUWrVqBaPRiO3bt2PSpEmYN28evvvuO2zevBmLFy+uMgNzbGwsPvnkEyX0vPXWW1i+fDluv/12NGrUCBkZGZg3bx6WLl2K8PBwxMXFKRftnV0Mdpcsy3j00UcxZcoUAED37t3x999/o169eg6fY/1cxMXFVTgXd8QaDMvKynD06NEqF0/VajVGjRqF9957D0IITJs2rcrxZc2aNThy5AgAoFu3bujYsaNbr8/28+OPlQlCLiQWFhYiKysLgGWqc0+n287JyXEYEh1dPatsxYoVuPPOO5GWluZWeX9e3XDE+iEBKk4x7IhtGdvnVubsgwEAYWFhyvelpaUut1uTvfjii8qOo379+liyZInT34/1BBZw73dTUlKifB8dHe1DS52z7Q28/fbbPXqus52KL+8V2zbNnTsXc+fO9UubANef67Nnzyrf204tbk98fDzi4uKQm5vrsIwkSXjggQfw9NNPIz09HfPnz8fNN9+sPP7nn38q053fc889LoNVoPnyd7P93bVq1crltpyVOXXqFGRZBmA5ANpezHDF2XtAo9Hgf//7H7p06aKcbFp/FhMT4/Y2Ql2w9jfWEx61Wu3w2BoI/ny9wfjdBfv4MHHiROTl5QGwLDXw008/KaMz7AnUudc999yD2bNnA7CEpMoh0fZC7L333lvl+c4uJkVERLh10TyQ9Ho9XnjhBdxxxx0AgAULFtgNid99950yquTJJ5/Exx9/XOHxDh064P3338fll1+OYcOGIScnB7fffjsOHTrkVk90ZRs3bsQXX3wBAHjnnXd8HkU3evRoZRmKuXPnVuhNDAsLQ58+fdCnTx88+eST+OSTT7Bjxw488sgjyvINtsaMGYPCwkI8+eSTMBqNWL9+PdavX1+hTHR0NGbOnIlXX31VOYd11qHhrsmTJyufiwEDBmDevHkVPqv2WM9fcnJyvPpc2DNmzBi89957ACy9r6+++mqF5UBcfS4csT3m2e5TvBVyIdH6x/OW9aq3Pe4c4A4dOoQhQ4Yov9y2bdti0KBBaN26NRISEip8WB944AFkZGQo68cEkm3XfWRkpMvytm96Z0NX/HFlpjZ466238M477wCwnFQvXbrUZRi3DpkAgMzMTJfbsB6AKz/X33z5DDn7/PjyXglUmwDXn2vrCACNRlOhx8+RyMhIpyERsOzgX3zxRZSVleG7776rEBK/++47AJYwed9997ncXqD58nezHR7mrAfCytm+yZf3gNFodPp4vXr1kJCQoOzrWrRogUsvvdTr7YWiqKgoaDQamEwm5ObmwmQyOT3p99f+xnoRwWw2o7i42K33gT/4c/8ajH11sI8PtmufFhUVuRzJE6hzrwEDBiAlJQWnT5/G6tWrcfz4cWW0yokTJ5T13Bo1amQ38Dk7KW/atKnTWySqi+0IFHvDREtLS5Vh8QkJCXjrrbcc1jV06FBce+21WLRokTISaMSIER61x2Aw4L777oMsy7jsssvw8MMPe/T8yjZv3qwExOuuu87pcNO3334bU6dORU5ODubOnYuzZ8/aDaiPPvooBg8ejC+++AJLly7F8ePHYTQakZKSgsGDB+OJJ55As2bNKtwOZb3Fyxeefi6AwJy/tG3bFpdffjnWr1+PY8eOYfXq1ejbty+AikOw9Xq9cgHCHbZt9cdFvZALibbh5sorr/R5EWBPvfvuu0pAfPHFF/Hmm286XOzT1Zh9f7K9sujO4qq2J3eB7LVyV3Fxsct7y9yVmpqKSy65xC91AcAHH3yAl19+GYDlStWSJUvc6tq3DZHuHKhsx4e70xvsLetnSJIkmEymkLgQYPu5fuWVV/D6669X27atwcVkMsFoNLoMiu58vhITE3Hrrbdi5syZWLx4MU6ePInU1FScOHECS5YsAWA5OWrevLnvLyCIbP9uxcXFLss7+93Z1jVq1ChlSK4/jBs3rsLn6+DBg3jppZfw/vvv+6X+/fv3++UeIQDo06ePy95de1QqFVq2bIkDBw7AbDbj9OnTDoeGA/7b39gOMc3Ozq62kOjP/Wsw9tXBPj68++67mD17NtavX4958+Zh+PDhmDNnjsP9X6DOvVQqFUaPHo23335bGVr36quvAgCmTZumnKSPGjUq6KMuvGU7xM/eBcYNGzYow7Yvv/xylyfvAwYMwKJFiwBYApqnIXHDhg3K/eUtW7ZULoBXZp3nAgB27typhNe2bdvitttuUx6zvTdwwIABTrcdHh6Oyy+/HAsWLIAQAlu2bHEYKlu0aIFJkyY5rKuwsBCnTp0CYLlI6eieQU88/vjj2LdvH+bNm4cNGzYogdzZebL11hfrMd5f7rnnHqUHderUqUpItB2CPWzYMI8uGvn79oCQC4mxsbGIiopCYWFhtdzrV9nSpUsBAMnJyXjjjTccBsSCgoIKf4xAsx0bf+jQIZflbcv4a7IeX5w/f97jbnpHRo8e7bd7BT/55BNlaEhsbCwWLVrkclIVK9sg6WxyIMAyDt66Q1apVC4n+PBF48aNsX37dgghcObMGTRp0iRg2/KkTVbV/blu1KiRci/c0aNH0bZtW4dlc3JyXPYiWj300EOYOXMmZFnGjz/+iNdeew0//vijMqQy2BPW+IPtvuPw4cMuyzsrE6j3wMyZM5VJkS699FJkZmbixIkT+Oijj3DttddWmJjHW7Nnz/bbhY0VK1a4de+rPR07dsSBAwcAWPY5zkKi7b247t7PYk+zZs2wbt06AJYTkJSUFK/r8oQ/96/t27eHSqWCLMvYvn07ZFl2evHMH787T9qfkZGhnHwmJSVVuY/LG9HR0fjnn39w3XXXuRUUA3nuNWbMGGXynOnTpyuTldheKKo8DNWqJsxl4KoX2HbYvjtD4GNjY5Xv3bloWZnt78zaA+jKtm3blM/Q0KFDK4TE6m6/1erVq5XX0qtXL6cjJ9yl1WoxZ84cjBgxAv/3f//nVlBs3LgxcnNzcf78ebcuNLvr9ttvx+OPP670HH7xxReIjIzETz/9pJRxd8IaK9tc0rRpU5/bWG1dDLY7ZFcf+iuvvBKA5YTOnRMTf0pPTwdgmfTA2UFk6dKlysmgI568ZldsJ56x9lQ4Y9tr52jSmrpuypQpePLJJwFYDqgLFy5E9+7d3X5+hw4dlBOmPXv2OD2wrl+/Xrl3tXfv3gHt3bVejQJczwxaXbp27aocXJYtW+bys+NP3bp1U75fsWKF07LWoU/u6NOnDzp06AAA+PHHH2E0GvHjjz8CsFxkGjp0qOeNDTGdO3eGTqcDAKxatcrl0HrrZFn21KtXT7kSvHHjRr/cy33s2DGMGzcOgKXHeNasWZgxYwbUajVkWcaoUaMqnMDVdNdee63yvbWnwRHbiUeuu+46r7dpG3asAbU6+HP/GhMTo0zglJeXh40bNzqs69SpU0ovTGpqqte9F/369VOG6q5evdrp/UG2f0tf/laVWYNi7969AQDz5s3D7bff7nD4dqDOvVq1aqVMMHb06FGsWbMGq1evxtGjRwFYetecXbwLdba9rvZ6gW2DlbVnzBnb3qpQmMgnWO23DUv+vHXDGhRvueUWAFCCoqNjkvWcqrS0FKtXr/ZbO2JiYpQ2FBYWYu7cuTh+/LjyfkpJSXHZc1uZdZI3SZLQqVMnn9tYbSHRdiiDqysLo0ePVr53ND1uoFiH0hw9etRhsDObzQ6772158ppdadasmTLEcseOHU6D4pYtW7B8+XIAlisJoXBvjnV2U398+aMX8bvvvsP48eMBWE4u//77b49nEZMkSbnaJoRwOnvY5MmTle+tS04EyogRI5QT+/fff9/n954/qNVqjBw5EoDlAOJo6YhAsA1rU6ZMcRp0PvvsM4/qtk4vfurUKUyYMEE5kR09erTfrjYGU1hYmDKdd3p6utOr0gsXLnQ5E611315cXKzctO8ts9mMkSNHKgf2yZMno3Xr1ujTpw9eeOEFAMCZM2dw//33+7QdwDK7qb/2X972IgKWoUfWz/asWbOUCZIq2717t3IMaNCgQYULR5667LLLlO+rY7knK3/vX21/7uxz/vnnnyvHfk8n/rIVFRWlfHby8/MdHreEEMoEI5Xb6Q/WoNinTx8AlolgHAXFQJ572faITJ06tcLvw9PeklBSVlZW4XzQ+je3ZXuhZePGjU6HLJrNZuV+NKDiRU539evXz619kW0IGz16tPLzypMF2bb/119/dXoMPX78uLKfUKlUXt8atGLFCuX30KJFCyVM+YtGo8Hs2bOVJc42bNiA6667zm5QHDVqlPL966+/7td5SCp/LmyHYI8ePdqj24XMZrMyCqJdu3b+mbjNt2UWLWwXynW0IOdjjz2mlFm1apXT+sxms+jevbtS/vHHHxdlZWUOyxcXF4uffvpJzJo1q8pjtosgu7OI8cCBA5XykyZNqvK4wWCosPArnCzOOmnSJKXMtGnTXG7bdiFve+bMmaM83rBhQ7Fv374qZU6cOCFatmyplPviiy/s1mV93J2FjT0pWxNMmzZNWQw2IiLC68WthRDizJkzIiIiQllMd+nSpVXK2C5Y26RJE1FSUuJD693z1FNPKdu86qqrxLlz5xyWNZvNYsmSJeLNN9+s8pijRWjtcVX21KlTIi4uTgAQYWFhLj8T6enp4o033hA7duyo8pirz0plffr0UcqPGzdOmM3mKmUqL5juzqLLubm5yt/f9uvgwYNutctbo0ePVrZ17NixKo/78++2Zs0a5fH4+Hixbdu2KmUOHjwoGjZsWOF3YLuYt1VhYaFo2rSpACAkSRIffPCB3b+FVW5urvjss8/EkiVLqjz28ssvK9u69dZbKzxmNBpFr169lMe/+eYbp7+DmmTChAnK6xo0aFCV/Ul2drbo2rWry2OAu0pLS0VkZKQAIK644gqv6rA9R/DkOOLP/WtRUZFo1KiRUnbq1KlVyixZskRoNBoBQERFRYm0tDSXr8fZPmjr1q3KsSY2Ntbuvuy1115T6unevbvDutxh+7uo/PkrKCiosB8cOnSoMBgMFcr489yrsoKCAuV9FBUVJaKiopRjcF5enlev1xOe7NeFEOLQoUPiww8/FPn5+Q7LZGdni8GDB1fYP+bk5Ngte9lllynlevbsKbKysqqUMZlM4qGHHlLKJScni8LCwirl3H3/uWL7fnF07i6EEBkZGcrfDoB4+OGHhclkqlIuKyurwuscPHiw3fqOHj0qTpw44XB7ixcvVhaklyTJp3M0IZwf44xGo7j11lsr/G3svR9vueUWpczw4cOdvmeNRqOYO3euW/teWZZFs2bNlNdav359ZTuHDh3y6HXu2LFDee6ECRM8eq4j1XZP4tVXX61c7bvvvvvwxBNPoGnTpsqNyq1atVKmT1epVJg7dy569eqFM2fO4LPPPsMvv/yC2267DZ07d0ZsbCwKCwtx8uRJbNmyBcuWLUNRURHefPNNn9s5fvx4pZfuySefxMqVK3HttdciMTERhw4dwvTp03Ho0CFcddVVOHTokNMhMFdffbXy/bPPPouMjAy0bdtWGVfduHFjj7qDb7/9dsybNw+zZ8/GuXPncMkll2DMmDHo1asX1Go1tmzZgh9++EG5EnLNNdcoQ7HIYuHChbj33nuVKzX33nsvcnNzXa7ZdskllyA1NbXKzxs1aoSPP/4YDz/8MEwmEwYNGoRRo0ahb9++MJlMWLhwoXI1TKPR4Ntvv3U6nbXtPbDHjh1zes+RM++++y62b9+OZcuWYcWKFcqVuF69eiEpKQkGgwFpaWlKr3RaWhquvvpqvPTSS15tzx0pKSmYPXs2brzxRpSVlWH06NHKwrytW7dGeHg48vLycPDgQWzcuBHr1q2D2Wx2ubahO7755ht0794dxcXF+PLLL7FhwwbcddddSElJQXp6OubMmYN169ahV69eOHnyJM6cOePWFbzY2FgMHz68whXZfv36oXXr1j63OVT06dMH48aNw5dffomcnBz07NkTo0ePRp8+faBSqbB582b88MMPKCoqwrBhw5x+liIjI/H777+jb9++yM/Px7PPPotvvvkGt9xyC9q3b4+oqCjk5+fj6NGj2Lx5M1auXAmDwaAsZmy1du1a5ep9SkoKvv322wqPazQazJw5E126dEF+fj6eeOIJ9O3bt0YPabN69dVX8c8//2D//v1YuHAhLrnkEtx///1o3LgxDh8+jG+++UYZEtavXz+f740NCwvDddddh7lz52LLli0oLCx0OWV85f2I7Yx7x44dq/L4JZdcUmGGYCt/7l8jIiLw7bffYujQoTCbzbjnnnuwYMECDBo0CBqNBqtWrcL06dOV2Q8/+eQT1K9f3/UvyImuXbvi2Wefxfvvv4+8vDxcfvnluP/++9GjRw9leJn1loCoqKgq72N/ioqKwsKFCzF48GCsWbMGf/zxB2677Tb8+uuvyqiHQJ57RUVF4bbbbsPUqVMrTKx3yy23+H2pmo8//tjh0gO5ublV3n/NmzevMpyxsLAQzzzzDF5++WUMHDgQ3bt3R9OmTZXZr//991/Mnj1beW9bl91xNMnIZ599hn79+qG0tBQbN25Eu3btMHr06ArrJM6cOVMZ6gxY3oPuzGYfaPXq1cPbb7+NCRMmAAC++uorrF69GnfeeWeFdRKnTZuGjIwMAJZjY+VlPqz+++8/jBgxAldccQX69euHVq1aQaPR4PTp01i4cKFy24IkSfjiiy98Gn3hikajwaxZsyBJEn799Vds3LhRuUfR9n35448/4uDBg9i1axfmzJmDRYsW4fbbb0e3bt0QHx+PkpISnDlzBtu2bcOSJUuQk5Pj1hBZSZIwZswYZbSK9Za3K664wq1lp2zZ3k4zbNgwj57rkD+Spjs9iSaTqcJVrMpf9q5gnz17Vlx99dUOn2P7pVarxXfffVelDk97EoUQ4vnnn3e6rd69e4vz588rV8SdXZm64447HNZT+XflTu+I0WgU999/v8vfx6233iqKi4sd1mMtV9d6Eiv3Frn7Za9XxNaHH34otFqtw+dHR0e7dbXV9jn2eog8UVZWJh599FGhVqvdeo2jRo2qUoc/e6SsNmzYIFq0aOFWm6KiosTOnTur1OFpT6IQQixfvlzpybT31bFjR3Hy5EnRuHFjAUBcfPHFbtW7adOmCvXMnDnT7TZ5qzp7EoWw7L/vvvtuh787lUolPvjgA6c9Gbb2799fobfL2VdYWJhYuHCh8tycnBxl36tSqZzu12fMmKHU07VrV6e9IjXJsWPHXP7+BgwY4LBXw1O///67Uu/06dNdlvd0/+qsF0MI/+1fhbC8J6y9WPa+dDqd3VFEtjzpyZFlWUyYMEHpUbT3lZycLJYtW+ZW+51x5/NXWFgorrzySqXcjTfeWKVH0R/nXvasWrWqyvOXL1/u68uuwrp/cPfL3rnNtm3b3H5+amqqW+eXixcvFg0aNHBZX2RkpPjxxx8d1lPdPYlWH330kdDpdC7b36xZM7Fx40aH9fz6668u66hfv76YM2eO16/NljvHOKPRKG6//Xal3GWXXValtzAvL08MHz7c7ffFyy+/7Fb7jh07VmX/4Ozv70iPHj2U96Msyx4/355qC4lCCFFSUiLee+890atXLxEfH1/h5NXZiczKlSvFgw8+KDp06CDi4uKEWq0WMTExon379mL48OHiq6++EmfPnrX7XG9CohBCLFy4UAwZMkTUq1dPaLVa0bBhQ9G/f3/x3XffCaPRKIQQboVEk8kkvvrqK9GvXz9Rr149ZSiLvd+VJye+GzZsEPfdd59o1aqViIyMFOHh4aJ58+birrvucutg42zn6EvZUBeokCiEELt27RKPPPKIaNOmjYiMjBTR0dGiY8eO4rnnnhPHjx93+fyioqIKJyr2hqN449ChQ2LixInisssuE0lJSUKj0YiIiAjRvHlzMXjwYPHOO+/YDWJCBCYkCmHZIc+YMUPcfvvtonnz5iIqKkpoNBqRkJAgunXrJsaOHSvmzJljd6iNEN6FRCGESEtLE08//bRo27atCA8PF3FxcaJbt27io48+EkVFRUKWZREeHi4AiH79+rlVpyzLytCYhIQEUVpa6lGbvFHdIdFq/vz5YsiQISIpKUmEhYWJ1NRUcccdd4j169cLIdw7SbWSZVn88ccfYvTo0aJNmzYiJiZGqNVqERcXJzp37ixGjRolpk6dKrKzsys8z/YgPXHiRKfbEEKIkSNHKuWfeuopl+VrCoPBIL799lvRv39/Ub9+faHT6USjRo3EkCFDxOzZs/12kiCE5TiWmpoqAIiBAwe6LO/p/tWdE1Rf96+2jh8/Lp599lnRoUMHER0dLSIjI0WbNm3EI488Inbv3u3y+d6cpK9fv16MGTNGtGjRQuj1ehEXFycuueQS8cYbb4iMjAyP2u+Iu58/e0HR3gUUX8697JFlucLtMM2aNfPr+9TKHyGxtLRU/PPPP+LVV18V1157rWjXrp1yDhcTEyNatWolRowYIWbOnOnRxae8vDwxZcoUMXjwYNG4cWOh1+uFVqsVSUlJom/fvuKtt95yenuIEMELiUJYPjuvvPKK6NOnj0hKShJarVbo9XqRkpIibrjhBvHdd9857aAQQojMzEzx9ddfi+HDh4uLLrpIJCQkCJ1OJxo3biyuvvpqMXnyZJGbm+v166rM3WOcyWSqcHyxFxSFsAwjnzBhgujatatITEwUGo1GREVFidatW4thw4aJSZMmiSNHjnjUxv79+yvbjYyMFAUFBR49/+DBg8rz3377bY+e64wkhI/TbhKRXyxatEiZ2e6xxx7zeBIV8t2uXbtw8cUXA3D/b7B06VIMHDgQgGUNpk8//TSQTSQKik8++QRPPvkk1Go1jh8/Xm1LYRARkXOvvPIK3nzzTURGRuLEiRN+mxU3+KtsExGAC2t0RkdHB/TeQHLMdpZBd++F/Oqrr5Tva8PaiET2PPTQQ2jQoAHMZjM++OCDYDeHiIhgmT15ypQpACzzqvhz2RSGRKIQYQ2JTz75JJKSkoLcmtpnzZo1TtdnnDJlijJxROPGjXH99de7rHP79u3KRC0DBgzwek01olAXHh6O1157DQDw7bffVlhgm4iIgmPy5MnIzs5GYmIinn32Wb/WzeGmRCEgMzMTycnJqFevHo4cOVJlMWjyXatWrVBaWopBgwaha9euSEpKgtFoxJEjRzBv3jxs27ZNKTt//nyHIfGff/6BLMs4ePAgPvjgA5w7dw6AZcZN66LVRLWRLMvo3r07tm7dikcffdTp2oVERBRY+fn5aN68ObKzs/H1118razf7C0MiEdUJrVq1wpEjR5yWCQ8Px3fffYeRI0c6LGO7TImVu/cvLl68GMXFxa4ba0e9evWUBbGJiIiIAokhkYjqhI0bN2Lu3LnYuHEjzpw5g6ysLBQXFyM+Ph5t2rTBgAED8PDDD7tcG80aEqOiotCmTRs8/PDDuPfee91aV7FZs2Y4ceKEV+3v27cvVq5c6dVziYiIiDyhCXYDiIiqQ8+ePdGzZ0+f6+F1NSIiIqrt2JNIRERERERECs5uSkRERERERAqGRCIiIiIiIlIwJBIREREREZGCE9cQEVHQmc1mlJSUoLi4WPmy/X9RURHKyspgMBhgMBgqfG/v/waDAWazGbIsV/jX+iXLcoXHAMvMtY6+rLPXqlQqqNVqaDQaaLVa5cvR/3U6HcLCwhAeHg69Xg+9Xo+IiAjle9ufh4eHIyoqChEREdBoeHgmIqLg4VGIiIj8QgiBgoIC5OfnIz8/v8r3eXl5ys+s/xYVFaG4uBilpaXBbn5IiYiIQFRUVIWv6OjoCv+PiYlBXFwcYmNjERcXh7i4OISHh9tdy5OIiMgTnN2UiIgckmUZeXl5yM7ORk5OTpV/K39vNpt92p5arUZERESFr/DwcERGRkKv12PJtNWQZAmQJUBG+b/ShZ8JXPi/gOULNt+L8u9x4XvJ+n+bh2CbsySbw6Rk/RKASlieIwnLzRs2P4NKQJT/C5UA1ALXjb0KpaWlKCkpQUlJCUpLS5X/W/8tKyvz6fen0+mUwGj7FR8fj3r16qFevXpITExEvXr1EBkZyUBJRER2MSQSEdVRZrMZOTk5OH/+PDIyMpCRkVHl+8zMTJhMJo/qjYiIQExMDKKjoxETE4OYmBismrURklEFmFSQTFL5vyrALEEyS4BZAswqQAYk1N3gIiRLoBQaGdAIQC1DaASgkSHUln9vfOwapWc2NzdX+ddgMHi0Lb1erwRGa3hMTExEcnIykpOT0aBBAyQmJipDbYmIqO5gSCQiqqXMZjMyMzNx7ty5Kl9paWnIyspyu+cvNjYWCQkJiI+Px/ZFey2Bz6Cy/GtUQ1K+V0ESdTfkBYtAeY+lVoYo/7J8bwmWA+7rg6ysLGRmZiIzMxOFhYVu1avRaJCcnIz69eujQYMGVf5NTk6GVqsN8KsjIqLqxpBIRFSDlZWV4cyZMzh58iROnz5dIQimp6e77AVUq9VITExEUlISkpOTsXrGJsCghlSmgmRQQypTM/jVQkIlAJ0ZQidDlP97+wvXKz3I6enpyMzMdHkRQaVSoX79+mjcuDFSUlKQkpKCxo0bo3HjxmjYsCHCwsKq6RUREZE/MSQSEYU4WZaRnp6OU6dOVflKT0+Hs924Wq1GgwYN0LBhQ2z9aw+kUkvwk0rVkAxqS29gHR7eSY4JCEAnQ+jNEGGWr8GPXoW0tDSkp6cjLS3N6RBXSZKQnJysBMcmTZqgadOmaNasGZKTkzmMlYgohDEkEhGFCLPZjLNnz+LYsWMVvs6cOeP0ZDwqKgqpqalISUnBsu/XlYdADaRShkAKHIHy4a3hZgi9CXe8MRSnT5/GmTNncPr0aRQXFzt8rl6vR2pqKpo1a6YEx6ZNm6JRo0Zc/oOIKAQwJBIRVTNrz+Dx48dx9OhRJQyeOHHCYRjUarVKb8z6WVshlaghlWgglWgAk8QgSCFFCZB6M4TejDvfGopTp07h+PHjOHXqlMNh0BqNBk2aNEGLFi3QsmVLtGzZEq1atUK9evU4EysRUTViSCQiCiCTyYTjx4/j0KFDOHjwIA4dOoTDhw877GUJCwtDs2bNcGj1CUglWkjFGqiK1UCZmkGQagUBYQmPESaIcBOufuBynDhxAidPnkRJSYnd58TGxlYIjS1btkSzZs2g0+mqufVERHUDQyIRkZ+UlJTg8OHDOHTokPJ17NgxGI3GKmU1Gg1SU1NxfNNZSMWa8jCoAUoZBqluEhBAmAw53AQRacRV9/fE4cOHcerUKbsT6KjVaqSmpqJt27Zo164d2rVrh5YtW3KyHCIiP2BIJCLygslkwrFjx7B3717s27cP+/btw/Hjx+1OIhMVFYVWrVph198HIRVqIRVZholyxlAi14QkLL2OkUYMe/4aHDlyBIcPH0ZBQUGVsmq1Gi1atFBCY9u2bdGiRQve50hE5CGGRCIiF4QQOH/+PPbu3auEwgMHDqCsrKxK2YSEBLRp0wb//roLUpEWqkINh4oS+Zl15lU5yoiR7w3F/v37sX//fuTl5VUpq9Pp0KpVK1x00UXo2LEjOnbsiPr16weh1URENQdDIhFRJSaTCQcPHsTOnTuxa9cu7NmzB9nZ2VXKRUZGol27dtj++35IhVqoCrSQjOogtJiIlOGqUUbc/sZgHDhwAAcOHEBhYWGVsklJSejYsSM6deqEjh07olWrVuxtJCKywZBIRHVecXEx9uzZg127dmHHjh3Yu3dvlV5C6zC2I6tPQ1WohVSgs8wwyh5CopClTJITZcTQFwZg165dOHLkSJV7HMPCwpSexk6dOqFTp06IiooKUquJiIKPIZGI6py8vDxs374dO3fuxM6dO3H48OEqJ43R0dHo1KkTNv1vF1T5WkhFWkgyAyFRTSdUMkS0EaM/vQW7d+/Gnj17qtzfqFKp0KZNG3Tp0gVdu3ZlaCSiOochkYhqveLiYuzcuRP//fcftm7disOHD1eZYKZ+/frI2JUHVYEOUp7WMrEMewmJaj0BARFuhog24JrH+2DHjh04c+ZMhTIMjURU1zAkElGtYzAYsHfvXmzduhX//fcf9u7dW6WnsGnTpji18TxU+Tqo8nWQDLyXkIgshM4MOdaA6568Atu2bXMYGrt3747u3bujQ4cO0Gq1QWotEZH/MSQSUY0nhMCJEyewadMmbN68GTt37qxyT2GDBg1wfkceVLk6qPJ0nGCGiNzmKjSGh4eja9eu6N69O3r06IGUlBRIEkciEFHNxZBIRDVScXEx/vvvPyUYpqWlVXg8Pj4eeQdLoMrTQZWrg1TGmQuJyD+sobHfuO7YsmULcnNzKzzeoEEDpZfx0ksvRXR0dHAaSkTkJYZEIqoRhBA4duwYNm3ahE2bNmHnzp0wmUzK41qtFp07d8a2Xw9YQmEx7ykkosATEBCRJtz71a34999/sWvXLhiNRuVxtVqNjh074vLLL0fv3r3RpEkT9jISUchjSCSikGUymbB9+3asWbMG69atw/nz5ys83qhRI6T9lwtVTvkQUlkVpJYSEVkIlQw51ohhr1yNzZs34+TJkxUeb9y4MXr37o1evXqhc+fOXJ+RiEISQyIRhZSioiJs2rQJa9euxcaNGysshK3T6dC1a1dsmbUXqpwwSKVcp5CIQpsIM+Hhn0di3bp12L59e4UREJGRkejRowd69+6Nnj17IiYmJogtJSK6gCGRiIIuMzMT69atw9q1a7F169YKQ7Xi4+ORt78UqqwwqPLCuFYhEdVYQi1DjjNg4BO9sGHDhgr3MqrVanTt2hX9+vXDFVdcgfj4+OA1lIjqPIZEIgqK8+fPY+XKlVixYgX27NlT4bEmTZrg7IZsqLLDIBVo2VtIRLWOgICIMmLER0Owbt06HD16VHlMpVLh4osvRt++fXHllVciKSkpiC0lorqIIZGIqk1mZqYSDHft2lXhsQ4dOmD/ghNQZeuhKuE9OkRUt8h6E+755masXr0a+/fvr/BYhw4d0K9fP/Tt2xcNGjQIUguJqC5hSCSigMrKysKqVauwYsUK7Ny5E9ZdjiRJ6NSpE/bOOwZVtp6L2RMRlRNhJoz9aThWrVqF3bt3V3isQ4cOGDhwIK666ioOSSWigGFIJCK/KyoqwsqVK7F48WLs2LEDsiwrj3Xs2BH7/jwBdRaDIRGRK0JnxsMz7sTq1auxfft25UKbWq1Gt27dMHDgQPTp0wcRERFBbikR1SYMiUTkFyaTCf/++y8WL16MNWvWwGAwKI+1b98eBxacgjqTwZCIyFtCa8YD04dj6dKlFYakhoWFoU+fPhgwYAB69OgBrVYbxFYSUW3AkEhEXhNC4ODBg1i8eDGWLVuG7Oxs5bGmTZvi9KosSzAs4z2GRET+JOtNGPn59Vi6dClOnz6t/DwmJgZXX301Bg8ejDZt2kCSOPEXEXmOIZGIPJaZmYlFixZh0aJFOH78uPLzuLg4FOw1QJURDqlQw1lJiYgCzDJLqgnD3upf5WJdy5YtMXjwYAwcOBBxcXHBayQR1TgMiUTkFrPZjM2bN+Ovv/7C+vXrYTabAVgWuDedVUF1Xg9VbhgkwWBIRBQMAgIizoArH7ukwrB/jUaD3r17Y/DgwejevTs0Go7uICLnGBKJyKn09HQsWLAAf//9N86fP6/8vEOHDjjwxymoMvWQzKogtpCIiCoTGhnjZt2JhQsX4sCBA8rP69Wrh2uvvRbXX389GjduHMQWElEoY0gkoipMJhPWr1+P+fPnY/PmzcpsejExMSjab4IqLRyqEk6MQERUE8gRRgx9+yosWbIEeXl5ys8vu+wyDBs2DD179oRazUnFiOgChkQiUmRmZuLPP//En3/+WeG+lq5du2LX7KNQZek5nJSIqIYSksBLSx/BX3/9hc2bNys/r1+/Pm688UYMGTIECQkJQWwhEYUKhkSiOk4Igb1792Lu3LlYuXIlTCYTACA+Ph75uwxQpYdDVcr7V4iIahOhN+HmDwfg77//Rn5+PgDLvYv9+vXDsGHD0KlTJ86MSlSHMSQS1VEGgwHLly/H//3f/1VYb6tTp07Y99tJ9hoSEdUBQiXw9Pz78Pvvv2Pv3r3Kz1u0aIFbb70VAwcORFhYWBBbSETBwJBIVMdkZGTg999/x/z585GbmwugfIbSU2qoz0VAVcR7DYmI6iI50ohrX+qFJUuWoKysDIBlVMlNN92EYcOGcRkNojqEIZGojjh27Bhmz56NJUuWKENKk5KSkP1vCdTpEZBMnKGUiIgAoZZx//Rb8dtvvymzWut0Olx77bW47bbb0KxZs+A2kIgCjiGRqBYTQmDHjh2YNWsWNmzYoPy8c+fO2DPnBFRZYVzwnoiI7BKSwPOLHsKcOXMq3JZw2WWXYfjw4bj00kt53yJRLcWQSFQLmc1mrF27FrNmzVLuMZEkCVKGDuozkVAV6oLcQiIiqikEBES0ET0f6YC1a9cqyyK1bt0aI0eORN++fbmEBlEtw5BIVIsYDAYsXLgQs2fPxpkzZwCU3294Qg312UjOUkpERD4RehNueKcv/v77b5SUlAAAmjRpgpEjR2LgwIHQanlfO1FtwJBIVAuUlZXhr7/+wv/+9z9kZGQAAKKjo1G8V4b6XAQkI6/wEhGR/wiNjJFfD8Fvv/2GgoICAEBycjLuuOMOXH/99ZwRlaiGY0gkqsFKS0vx559/YtasWcjKygJQPhnNplKo08MhyZyMhoiIAkeoZdw37RbMmTMH2dnZACwzoo4YMQI33XQT9Hp9kFtIRN5gSCSqgUpKSvDHH39g9uzZykG5fv36yFpfAlV6ONc3JCKiaiUkgfFz78LMmTORlpYGAEhISMCdd96JoUOHsmeRqIZhSCSqQQwGA/7880/8/PPPyMnJAQA0aNAAmWuLoTrPcEhERMElJIGn5t+LadOm4ezZswCAxMRE3HXXXbjhhhug03HiNKKagCGRqAYwmUxYtGgRpk6divT0dABAo0aNcH5VIVQZDIdERBRahCQw4ffRmDZtmnLcSkpKwqhRozBkyBBoNJxIjSiUMSQShTBZlrFq1Sr88MMPOHnyJADLQTZnQxl7DomIKORZh6FOnz5dmVgtJSUFDzzwAPr27ct1FolCFEMiUYjasmULvv76axw8eBAAEBsbi8LtMtRpEZBkHlSJiKjmEJLAQ7OHY/r06cjNzQUAtG/fHg899BC6dOkS1LYRUVUMiUQh5vjx4/jyyy+xceNGAEBERATK9qugPhsByczZSomIqOYSahl3fj0Yc+bMUdZZ7NWrFx588EG0aNEiyK0jIiuGRKIQkZOTg59++gnz58+H2WyGWq0GToVBfSoKkonhkIiIag+hNWPwO72VY55KpcLgwYMxduxYxMfHB7t5RHUeQyJRkJWVleHXX3/FjBkzUFxcDABQZYVBfTwaqlLe2E9ERLWXrDeh91MdsXLlSgBAZGQkRo8ejVtuuQVarTa4jSOqwxgSiYJECIF169bh888/x7lz5wAAbdq0wbG5mVDlc4pwIiKqOyZtfxmff/459u/fD8Ayuc2jjz6KXr16cXIboiBgSCQKgtOnT+Ozzz7Dpk2bAJTPWLrOAFWGHhJ4MCQiorpHQOCpv+7FN998g+zsbABA9+7dMX78eDRr1iy4jSOqYxgSiapRSUkJZsyYgdmzZ8NoNEKj0UAcD4P6VCQkmfcdEhERCbWMWycPwK+//qocK0eMGIFRo0ZBr9cHu3lEdQJDIlE1Wb16NSZPnozz588DAKQcHTTHYqAq4X2HRERElQm9Cd3Gt8H69esBAA0aNMATTzyBXr16BbllRLUfQyJRgGVkZODTTz/FmjVrAFgOcpkrSqHKDuPQUiIiIhdeWTken332mXKR9corr8Rjjz2G5OTkILeMqPZiSCQKEFmW8ccff+Cbb75BcXGxZUmL43qoT0dBkhkOiYiI3CVUMm6ZfDV++eUXmM1mhIeH47777sMtt9xiOb4SkV8xJBIFwLFjx/Dhhx9i9+7dAACpQAvN4RioijmdNxERkbfkCCPajWqEXbt2AQA6dOiAiRMnomnTpkFuGVHtwpBI5Ecmkwk///wzfv75Z5hMJoSHh8O4WwNVWgSHlhIREfmBgMD4/7sLX331FYqLi6HT6TBmzBiMGDECGg3v8yfyB4ZEIj85duwY3n77bRw8eBAAoMoOg+ZIDCQDh8EQERH5m9CZ0fXRFspyUm3btsXEiRPRsmXLILeMqOZjSCTykdlsxuzZs/Hjjz/CaDQiOjoaJVtUUGVyzUMiIqJAEhB4esF9mDx5MgoLC6FWq3HPPfdg5MiRvFeRyAcMiUQ+OHXqFN555x3s2bMHAHsPiYiIgkFozbjsqXbKTOIdO3bESy+9hEaNGgW5ZUQ1E0MikReEEJg/fz4+//xzlJWVISIiAoYdGqjOh7P3kIiIKAisvYqffvopiouLER4ejscffxyDBg2CJPHYTOQJhkQiD+Xn5+ODDz7A6tWrAQBSrg7aw7GQyth7SEREFGwizIR29zbCzp07AVjWVXz66acRFxcX3IYR1SAMiUQe2LFjB958802cP3/ecq/D4Qioz3LmUiIiolAiIDBm2lD88MMPMJvNSExMxKuvvoouXboEu2lENQJDIpEbTCYTpk+fjunTp0OWZTRu3Bjn/y6FqpDrHhIREYWqL/a+iTfffBMnT56ESqXCvffei7vuugsqlSrYTSMKaQyJRC5kZ2fj9ddfx7Zt2wAAqvN6aI7GQDLzAENERBTqhErGVa91xaJFiwAA3bt3x0svvYT4+Pggt4wodDEkEjmxa9cuvPrqq8jMzER4eDiMO3RQZ4QHu1lERETkAQGBJ+ffg08++QRlZWWoV68eXnnlFQ4/JXKAIZHIDiEE5s6diylTpsBsNkMqVkOzPx6qEk2wm0ZEREReksONaHRTFE6cOAGVSoVx48bhtttu4+ynRJUwJBJVUlxcjA8//BDLli0DAKgy9NAcjoEkc3gpERFRTVd5+Ok111yDZ555BmFhYUFuGVHoYEgksnHu3Dk8//zzOHr0qGX20kMRUJ/j7KVERES1iYDAQ3OGKyOG2rRpg7fffhv169cPdtOIQgK7RojK7dy5Ew8++CCOHj2KhIQEqLbFQnMukgGRiIiolpEg4Zvhv2DSpEmIjY3FwYMHMXbsWGzfvj3YTSMKCexJJAKwcOFCfPjhhzCZTJAKNdDui4dkUAe7WURERBRgIsyMpnfE4dChQ1Cr1Xjqqadw/fXXB7tZREHFkEh1mtlsxjfffIPZs2cDAFSZYdAciuX9h0RERHWIUAlc+XInLF26FABw11134f777+d6ilRnMSRSnVVWVoY33ngDa9asAQCoT0VCfTKKw0uJiIjqIAGBO769DtOmTQMA9O/fH88//zwntKE6iSGR6qT8/Hw8//zz2LVrF7RaLcTuCKgzuf4hERFRXffkX/fggw8+gNlsRqdOnfD2228jLi4u2M0iqlYMiVTnpKen4+mnn8aJEycQFRWFsg06qPJ1wW4WERERhYj3Nj+Hl19+GYWFhUhJScGkSZPQoEGDYDeLqNowJFKdcuTIETzzzDPIzMwEylTQ7o2Hqlgb7GYRERFRiJHDTUgcrEFaWhqSkpLw8ccfo1mzZsFuFlG14N24VGfs2rUL48ePR2ZmJqRiDXQ7E6sGRCEsX0RERFR32Dn2q0o0yJ5vRrNmzZCRkYHx48dj3759QWgcUfVjSKQ6Ydu2bXj66adRWFgIKV8L7c6EqktcWA8Qkg8T1zBgEhER1TySZPcYLhnUODunGBdddBHy8vIwYcIEbN26NQgNJKpeDIlU623evBnPPPMMSkpKIOXqoN2TAMls89b3V+8hAyIREVHNZuecQDKpcOSnLFxyySUoKSnBM888gw0bNgSpgUTVgyGRarV169bh+eefh8FggCo7DNq98ZDk8p5Cf4ZDf/RCEhERUWiodI4gmVXY/cUZXHHFFTAajXjppZcYFKlWY0ikWmv16tV46aWXYDQaocoMg2Z/HCQhBSYcEhERUe1jc6yXhIRN7x9E3759GRSp1uPsplQrbdy4ES+88AJMJhNUGXpoDsZCgv37DSpwpyfQWR3sSSQiIqq53DjGC0mg1/PtsGrVKmi1Wrz99tvo2bNnNTWQqHowJFKts3XrVjz77LOWIaaZemgOxEJy913uKuT5I2QSERFRaHLntFiSICSBnhPbYvXq1dDpdHjnnXfQo0ePwLePqJowJFKtsmvXLjz99NMoKSmBKjsMmn2xliGm7nIU8tz9mDAkEhER1VwenBYLFXDZc22wZs0a6PV6TJo0CR07dgxg44iqD0Mi1RoHDx7EhAkTLMtc5Oig3RvnWUAEqoY8Tz8eDIlEREQ1l4fHfSEJdH2yOTZt2oTo6Gh88cUXaN68eYAaR1R9GBKpVjh37hwefvhhZGdnQ8rTQrvHZhZTT9iGPG8+GgyJRERENZcXx36hEmg9Ngl79uxBvXr1MGXKFDRs2DAAjSOqPgyJVOPl5+dj3LhxOHnyJKQiDbQ74yuug+gJB4vpevR8IiIiqpm8PAcQGhmN74jCsWPHkJKSgilTpiA+Pt7PjSOqPlwCg2q0srIyPP/88zh58iRQqoJ2T5z3ARHgkhZERETkMcmkwpk5BWjQoAFOnz6NF154AWVlZcFuFpHXGBKpxpJlGW+//TZ27doFmCRo98ZDMqi9q0ySfOsFlCRApQYkHz9Sksr3OoiIiKjaSQY1sv4yIjo6Gnv27MF7770HDtijmopno1Rjff/991i5ciW0Wi20++KgKtZ4Xomv4VCpww8fJYZDIiKiGk1VqsFbb70FtVqNZcuWYerUqcFuEpFXeFZKNdLy5csxY8YMAIDYHQ5Vns7zSvwRDtl7SERERDaevfQdPPXUUwCAn376CUuXLg1yi4g8x4lrqMY5fPgwxo0bh9LSUqhPR0BzPNqzCpyFQzcX0XUa6oTsQVv8VA8RERH5zo+nxTd9cRVmz54NnU6HKVOmoG3btn6rmyjQGBKpRsnNzcUDDzyAtLQ0y1qIe+IgwYMeQVe9h64+Du4MLXUn3LnTc8iQSEREVL38eFosINDt2VZYv349GjRogO+//x4xMTF+q58okDjGjWoMs9mM119/HWlpaUCJGtr9se4HxFCZmAbg0FIiIqI6QIKELR8fQqNGjZCWloa33noLsswLwFQz8GyVaowZM2bgv//+Q3h4OLT73FzqIhgT0zgqy3sPiYiI6hTJrMKbb74JnU6HjRs3KvMpEIU6nrFSjbBjxw789NNPAADjdq17M5mGysQ0AMMhERFRHTWu7Qt44oknAAA//PAD/vvvvyC3iMg13pNIIS8vLw/33nsvMjIyoErXQ3so1vkTfAmH1o+Dr8ta2N5P6K96iIiIKLACeFo84N1uWLBgARITEzF16lTExro4nyEKInZvUEgTQuDdd99FRkYGpBI1NEdczGQaar2H7EEkIiKqGQLcb7LkxX+RmpqKrKwsfPzxx2A/DYUynsFSSFuwYAHWr18PrVYLzf5YSLKdt6xKDUmj8TkgSmo1JI3WpzoAQFJJkNRqn+shIiKiGsjB+YgkS3j55ZehVquxcuVKLFq0qJobRuQ+hkQKWenp6fjiiy8AAPLBMKiK7AQ4lRqS1o37E52Q1GpIOp0laPpSjzUcsveQiIio+ghx4SsUSCqHQfHRi17CvffeCwD49NNPce7cuepsGZHbeDZLIUkIgQ8//BDFxcWQ8rVQn4moWEClhhQW5p+AqNFA8rUXUuXjPYyOK/Z/nURERLVVqAVFO+cX00b/gU6dOqG4uBjvvfceh51SSOIZKIWkv//+G5s3bwZkQHMopuJ6iPZ6D9Vqj4Z4Ouo9lNQqz+ph7yEREVFo8aZX0V9BzTYUWucmqBQUJUg48ONZhIWFYdu2bfjnn3/8s20iP+KZLYWczMxMZZip+kQUVCXlQc6PvYdQqwPbeyipLI8TERFRcASjh87eeYGdXkWpTKMMO50yZQpyc3OrqYFE7mFIpJDz1VdfoaioCFKB5sIwUz/cewj4JyBWe+8heymJiIjscxUEQ+VeRTu9ij/cNRetWrVCfn4+pkyZEsTGEVXFs08KKdu3b8eSJUsgSRI0h2MgqTTu9x46GXJqHV7qj4DI0EZERFTDVEdQdOf8wqZXURISnn76aUiShEWLFmHLli2BbyORm3i2SyHDZDLh008/BQBIZ/VQlej93nvoTkB0dF+ixwGRQ06JiIhCh6Og6Lf7Ed08R7DpVXy846u4+eabAQCff/45TCaTf9pC5COGRAoZv//+O44ePQoYJWjPJfhtaYsaN7zUfiOCt20iIqJQ5E24C5Xhp4ASFOc/swaxsbE4duwYFixYEOxWEQFgSKQQUVBQgB9//BEAoDkTB8ns5WL05UNOPe09rMzam+jz8FL2JhIREYUea1AMxKymHj1PBUnWYMyYMQCAH374AUVFRf5pE5EPGBIpJMyaNQuFhYWQirVQZ0R5XY8qLAyqqEi/zF4K3n9IREQUmvwR7vzYoyjpdD49/6sRvyA1NRW5ubmYMWOGn1pF5D2eAVPQZWVl4bfffgMAaM7EVlwT0QOqsDAgXG+5KudLQFSpAK3Wo/USHRKyf+rwRz1ERES1hYOF6oPJl9tkJCHh4YcfBgD8+uuvOH/+vL+aReQVhkQKuunTp6O0tBSqknBoSuK8qsMaECVJAnRaSPow7xqjUgHWcKj2cdkNfwVEIiIisi8EgqKk1dl87/15wxs3z0Dnzp1hMBjwv//9zx9NI/IaQyIF1blz5zB//nwAgDarASSVZ29JVVgYVHGxFwIiYPnX02Gi5b2H8EfvIcCASEREVF2CHRQrzT0gaTVehUVJpVLuTfzrr7+QmZnpj9YReYUhkYJqzpw5MJlMUBVHQl3i2b2Itr2HVYaXetKbaNt7WJmnvYkOhoZ6PHkNAyIREZH7gjT81LYXsepjngfFF67/AZ06dWJvIgUdQyIFTW5urjLVszY72fLDsDBL+HOhwvBSO9zuTXQWED3lIti5FRR5/yEREZH3qjsouji2uxsU1YkJlvKQlN7EP//8E1lZWT41j8hbDIkUNPPmzUNZWRmkUj1UJZEXHnCyw7U3vNQrngwvdac3kcNLiYiIQkOwh59W4tbwU5tzn5du/AkdOnSAwWDA//3f/wW4dUT2MSRSUJSWlio7Pm1OUsUZTR30JjodXmqPoyGn/u499CDcOexNZEAkIiLyn2oYfupsqKn98vaDorUXUSkHCSNGjABg6U0sKyvzroFEPmBIpKBYtGgR8vLyIBl0UBfGVi1QKUy5Gl5qj90hp94GRHu9if4KdgyIREREgRHIoOjpfANwEBTt1PPOiDlo0KAB8vLysGTJEm9aR+QThkSqdkII/PnnnwAATV6i/XURy3sTfR5eatubWI33Hzqj9Cby/kMiIqLAC0BQ9LQXseJzLww/rdyLqJSBhJtuugkA8Ntvv0EI4fX2iLzBkEjVbt++fTh06BAgS9DkxzkuGK73bHipHZIkQYqMhBQb43tAVKshqVUMdkRERDWNH4OiKiLCq17EyiStxmk9U59ehbCwMBw9ehT79u3zeXtEnmBIpGpn7UVUF8ZCkh3cyJ0YB1OrRkBinG8b02gArca3SW4AQJYBo9HyvadrMFYiZMGgSUREVJ382RMnSZD8MTKpfSvIKUmONyOr0bdvXwDA33//7fv2iDzAkEjVqrS0FCtWrAAAaPLsDLEoD4fGxEjIWhWEyoe3qEYDaMp34vowSBHh3tUjy4DZ7H07bDAgEhER1VyqiAjLN34IikKrglCrIKckOQyLq348BABYtmwZSktLfdoekScYEqlarVu3DiUlJZCMWqhKIyo+mBh3IRyqLT1/pvhwiAQ7E9s4o9EA+rALAbGcV72J9gKiys01GG0IWUCYzQyIRERE1c3PvYi230tqtXdhsX0r5VuhvhAWK1OVRKJhw4YoKirCmjVrvGkxkVcYEqlaLVu2DACgLoirOGFNeUC0hkMroZY860207T2szNPeRAc9iJ6GTfYeEhER1XxKL6Kt8qU2PA2KQlv13MZeUJQgYeDAgQCAlStXerQNIl8wJFK1KSgowKZNmwAAmoK4Cw84CIhWbvcmOguI5aRwvXtB0dUQUzd7ExkQiYiIgshPvYiqiAjnk994EhRtehErsxcUf3lzPQBg06ZNKC4udm8bRD5iSKRqs2nTJhiNRkhlYVAZ9BXuP3QUEAFLb6IxMRLC2SQ2bgREK6c9gdYJalzcgyhJksugyIBIREQURIEaZuqkjMug2L6V3V5EW5XvU5QMejRp0gQGgwHr1693t8VEPmFIpGpj3bGpi2Ls3n/ojFBLEI520B4ERACOh516OEGNs7DJgEhERFQ72B1m6oiLoOgqICrlbO5TlCChX79+AMD7EqnaMCRStTCZTMpQU7XGde+h3ToqDzt1MEGNO6oMO/V2BtNKvYmcoIaIiCgEVNcwU3scTWjjZJipI9ag+Ms76wAAW7ZsgdlPM64TOcOQSNViz549KCgoAGQNzDENPA6IgM2w04RYz3sP7VB6An1Y4sJ22Cl7D4mIiEJAdQ8zdfQ8215FN4aZOiLUKqBeKqKiolBQUID9+/d71yYiDzAkUrXYtm0bAEBS1QM03r/thFqC0PkeEAFYhp2G6XxeA1EJmwyIREREtYZHw0wdKQ+K3gZEhVqDbt26AYAyMosokBgSqVpcCImJPtUj1BLKkiNgToz2rUFGE0RBIWCWAa3WtzaZZQiT0bf2EBERke/8NcxUr/dbfaVXdkBpsgdLcDnQvXt3ABfOqYgCiSGRAs5gMGDPnj0AgMImDbyuR6gly0Q3KgmGxHDvg6LRBFFaCsi+7/gZEImIiEKEP4eZ2q7R7EO9pVe0hzlMglDD56D43JqtAID9+/fDZDL5VBeRKwyJFHAHDx6EwWCAWadDXrso5DUP8+j5Qi3BHKaCbDNUQ6ikijtwd9kJiJJG41VvIgMiERFRiPBjQFR6Ef1Qvznswj2N1qDoTVg8OSgaZYlRiImJQVlZGQ4fPuxVe4jcxZBIAXfgwAEAgCEuHrJWQn5LuB0Urb2H9m4cN8SHwVwvxv2GOOlB9DQoMiASERGFCH8HREcXoT3cTukV7atWoYbHvYonB0XDFC4ASUKHDh0AALt27fKoLUSeYkikgDt06BAAwBgbBwCQNYDsRh5TAqKjx1USDAl694adujHE1J2gKMwyZIORAZGIiKiWcRoQrdwMitZhpg6r8SAomsIvbPOiiy4CcOHciihQGBIp4A4ePAjgQkgEgMJU572JrgKiUs6d+xP9dA+i0nvIWUyJiIhCQ6DuQ/Rhm64ColKNG0Hx5KCK5zcf7tgNADh69KjL+ol8wZBIAWUymXD8+HEAgDEmVvm5rIHDYafuBkSlvLOg6GFAdNSbyOGlREREISbQ9yF6se3SPhe5FRCVapwExZPXRVfoRQQAY4zlNpvjx49z8hoKKIZECqi0tDSYTCYIlQrm8Io7QXtB0dOAqDxPJVkWm7XlZQ9i5aDIgEhERBRiqus+RA/bYNZ7cQ5jJyievC4apgg79UdEQq/Xw2Aw4OzZsx5vi8hdDIkUUKdPnwYAmCKj7E4+Y3t/orcB0coYF2bpTSxfA9GXIaaSWgVotQyIREREoSYUAqJtW8rbU9rnIu+rqRQU7QVEAIAkISUlBQAYEimgGBIpoC6ExEiHZQpTgdzWYT4FRKC8N1GrtoRRWfh2D6KkAsxmCLPZpzYRERFRaJI0Gt8Cog1j97Ze9SLasgbFk9c5n5CvQQPLmtNpaWk+bY/IGYZECqj09HQAgCnCcUg0RgtkdTUju63naxXa0uYboM4phtDrIEX4tmCtMBggl5b5b5Iaf95YT0REVFf56XgqaTSW6oy+39dn6t4W5jAV1GU+tk0CmrxwEANv/NdpMWtIPHfunG/bI3KCIZECKisrCwAgh9mfydQcLiDCzYBORn47k9dBUZtvgCarCJBlQJIgwsO8DorCYIBcUur/gMigSERE5L1AHEeF7FNQNHVvC5NeXV6X8D4oSkDqswfROeYUmuizMWjAFodFv9+7H8CFC/FEgcCQSAGVnZ0NADCHVZw1zBwuYIo3WQKiqnyHqvUuKFYIiFZeBsWABURH/yciIiLX/Hj8tPYiXqjbu6BYISAqdXkRFG0CopU1KNoLi7LOcuE9Ly/P4zYTuYshkQLKGhJtexKV3kO1uBAQrcqDYk4b94Ki3YBoJUl2J8txJOAB0dXPiYiIqKpABkRlG54HxSoBUanLg6AoASnPHKoQEK2a6LPRRJ+Na6/eWuHnsk4HgCGRAoshkQKqqKgIwIUdmhIQK4dDW1oZeRe57lF0GhDLuXt/YrUFRHcfJyIiouoJiMq23A+Kpu5tXdTlRlAsD4hdY086LdY0PLNCUGRIpOrAkEgBVVJSAgAQarV7AdFKK0PWOXnYjYAIwK1hp9UeED0tR0REVBdVZ0BUtuk6KNodZmq3LtdB0VVAtLINinL5Ws6FhYVuPZfIGwyJFFDWkGiKUrsfEMsVtrDfm+h2QLRyEhSDFhC9LU9ERFQXBCMgKtt2HBTdDohKXQ6CYnkvoiesQVGoLNs3GrmOMwUOQyIFjMlkgrl8nUE5Eh4FRAB2J7LxOCBa2QmKQQ+Ivj6PiIioNgpmQFTaUDUoehwQlboqBUU3h5na0zQ8E1f13W1pj8kEwXMIChCGRAoY2x2X8GKfCsASFNtagqLXAdHKJiiGTED01/OJiIhqg1AIiFY2QdHrgKjUVR4UJaDRM4e9CohWjcOyle8LCgq8bxOREwyJFDCSzcyiki/7fJ0Ms3UFDW8DotIQCTCbIcrKQicgEhERkX+pfAh0toQMVYNk3wKiUpcAHs7ApbEnfKpGsjl7t47YIvI3hkQKGKnC8hPeB6nw4zrEHTHDEKeDOT7StzYVFsOck1v+Hz+8/f0VED1YqoOIiKjW8sfxsDwgCtn3Y7S6SWMIjRrhp33vsTM+kY22cedxoqSeT/WobE5fIiIifGwVkX0MiRQwKpu9WLeWx7yqI/y4Dgn7zVCXCgiVhLJ6eq+DolRYDHN2DlB+1U1SSb4FRQZEIiIi//PluFipB9GXoKhu0hhCWz5k1WjyKSgan8jGRfHpAIAyWeNTUBwevg+A5WK8TudkKngiHzAkUsBIkoTwcMtEMS8lLkOvi4549HzbgGjlbVCsHBCVn3sbFBkQiYiIAseb46ODIabeBMUKAdHKy6BoGxCtvA2K98fugs5g6T2MiIioNGqLyH8YEimgIiMtYS6sLAKfpv7lUVBUGVEhIFp5GhQdBUTlcU+DIgMiERFR4HlynHRxD6InQdFuQLQymqA/4/76hAY7AdGqTPZsYp37Y3chXh2B4lLL74VDTSmQGBIpoKwhsahYhWR1JD5N/Qu92x92+TzrfYiOuBsUXQVEpZy7QZEBkYiIqPq4c7x0c5Iad4Ki04BobZLB6FZQNDyRjfYOAqKVu72J1oAIAMUllvMV62gtokDwcW5gIueio6MBAHmFlh1asjoSk5oswARxPTbsa2n3OfaGmdojVBLKEvUIA6DOKbJfRpZdBkQrSSVByCrHs54yIBIREVU/SXJ8DPZwFlMhC8uFYTvcCYhKkwzOF7IvnZCDji4CInBh2GnT8ExEZJah89zTaLIlB7oiEwyRGpzsnoBOY/IRp45WnpOTZzmnio+Pd6utRN5gSKSASkpKAgBkZl/opbP2KKY1VuO9M4MqhEV3A6KVUDsOilJhMcy5eR6112FQZEAkIiIKHntB0ctlLuwFRU8CopX+TCFKG0dV+XnphBx0TEhzux65GOj99hH0mn8EalPF19h8fRbElwCGl0C8WQ/Qq5CVbXndiYmJHrWXyBMcbkoBZQ2JGVkVd+TJ6khcrNNXuE/R04BoZQ2KtkNP3R1mao/Ps546rJgBkYiIyGu2x1F/rYMI7wIiYH/YqacBUVtqwoQJS9Fn3uEqAVHZjhGQZuRDuvMsUCIjM8dyjlKvnm9LaRA5w5BIAWXdgVUOiVbWXkVdtMGrgGhlGxR9CYhWFYKiv3oRiYiIyDeS5JeAaL0/0duAqDTHJih6GhAB4I5Jm9Fua7rL1aQFAGlDKaRXMpFZPBQAexIpsBgSKaAaNmwIADib7niH/uLZa4DDkSiL9u3tKNQSJKMMOb/Ap4BYsVIGRCIiotpIFRHhU0C0kgxG5LXQehwQYzJL0Psvy2gqV2ONlMfn5OPU0aMAgJSUFM8aSuQBhkQKqKZNmwIATp7VOMxb50pioC6RUNxAQnGS91cHw9NLoDp5DgAghYVB0ni/4xeyAGQ/BU2AQ02JiIj8xdEEcx5QR0UCKgnIzvWpnvNXJuP8lckw6ySsXdjZo+de8echaEwevhYjcOrkSQBAkyZNPHsukQcYEimgGjduDLVajeISlTKG3taDp3vhwMZmAAChhk9BUTKaIUrLLvxArfYqKDIgEhERhTgfgqISEAHAZPI6KJ6/MhnGSAnGSEtduhzPnt92m2c9jwCQpdOhxGyGWq1G48aNPX4+kbsYEimgtFotGjVqBAA4cbpiYHvwdC8sX94F2sILIcrboBieXgLplJ2drYdBkQGRiIiohvAiKKoiIy4ERCsvguL5K5KVcGjLk95EfZHJo20CwNEIy1qJDRs2hFar9fj5RO5iSKSAa9WqFQDgwNELOzN7AdHK06AYnl4C1dEzFXsRbXnZo+gzBkQiIqLA8iAoqiIjIKkdnPqa3A9s569IhjHK/jFel+N+UCyN9Pzc5GCUZcmNtm3bevxcIk8wJFLAtWvXDgBw4PCFkHimOM5uQLRyNyi6DIhWbgRFv/ciEhERUdCpIiOcB0QrN3oTnQVEK10OsOYf10GxwZUFLstUtj86GgBDIgUeQyIF3EUXXQQA2H9EB6D8PsRNzVw+z1VQdDsgWjkJihxmSkREVEM56U20hkOXARFwOezUnYBoFZbtvEfxhQaLEDUyHsLDEaPWkGi9AE8UKEEYg0d1TZs2baBSqXA+C7h3d3es2dYF2gL3drLWoFiaqIE+SyAi40KQkwwm9wOilVoNCYCwGVbCgEhERFTDCfnC+sbl3Oo9rMwaFBPiKvzYk4BoZW8imxcaLAIApGjCgWRAvj0a6pkFlnUQndQlAKSHheF8WBjUajXatGnjUVuIPMWeRAq4iIgIZWe25c9ktwOilVADZn3FXsXw9BJIp9O9a1Ag71FkQCQiIgoOmx5FrwKiVaX7E70JiFa2w05faLAIKZpwS0C0buqNBMi99G6tk7j10noALENNI8onsCEKFIZEqhaXXHIJACA8LdPrOqy9igA8G2Zqj1oNSaezXHX0Vy8iAyIREVFwCdm3gGiVk4/zVyT7FBABy7DTNf90VgJiFeEqGGfUh/muaIdDT4UWMN8Vje3XPQgA6Nq1q9ftIXIXQyJVi0svvRQAoMvJAITwuh6hBoQGgOx9HUpdZjOE0eBzPURERBQaJI3W94AIAPExSNhX7FNAtBIaYT8gWoWrYPqgHgxbUmGaGA/5Sj3kS8MgX6mHaWI8DFtSYXy/Hrbu2AGAIZGqB+9JpGrRqVMn6HQ6GMpKoCopgBwR41U9sUdkRO3OAHRay72FBh9Cnh+CZgVCsDeRiIgoSCSNFlBJEKVlkPRh3leUXA/QaqDJKwUQ6VObSpMEZA3QdulYHBjwnfPCSWqYH4uD+bG4Kg91/PlONDq/GjqdDhdffLFPbSJyB3sSqVro9XqlN1GfdQ7Ci3de7FEZ8f+mAwVFlh/otJAiIizDRj0kTKbA9CL60EtKREREnpM0WiUgAoAQwvtbUsoDolX9f4u8qqY0SVgCYvkQUnVaGNouG+tVXW0WPISYvRkAgG7dukGv13tVD5EnGBKp2vTp0wcAEJZxDlDB46CoKREXAqKVSrKERQ+CojCZIMp8uJ/R5QYEwyIREVE1UMKhquJIHuHNcbhSQAQATV6px0HRGg7lSvcYqs953rvZZsFD0J/VopvO8nqs51JEgcbhplRtLr/8ckiSBG1+DlSlxZD1ERASAAFIjpc4AmAZZhq967zjAp4MP/X3MFNHOPyUiIgoYGx7D+1xe9hpsmXW0MoB0cqTYae2vYf2tF02FgeudjHsFJZwCAD6s1qoSouxf/9+AEDPnj3dageRr9iTSNUmMTERnTp1AgDo005bfijBZa9i7JFKw0wdcaNHMWDDTB1ukD2KRERE/uYqIAJuDjtNSrSEQwcB0cqd3kRXARGw9Ca6Gnba5m9L76H+rKUy6zlTly5dUK9ePZftIPIHhkSqVgMHDgQA6NNOVXzASVDUlsiuA6KVk6AY8GGmjjAoEhER+Y07AdHK6bDTpERA5yLVlXM17NSdgGjlbNhpm78fgv5MxYo6yyUAgGuuuca9DRD5AUMiVav+/ftDq9VCW5gPTUFexQftBMXYo+WzmXrC0YQ21TXM1B4GRSIiIp9UnqDGXXZ7Ez0IiFaWYacVVZ6gxl3tlt9f5Wf2AqKmMA9Hjx6FVqtF3759PdsIkQ8YEqlaRUdHo1evXgAA/bkTVQuoytdCLH9naos96EWsUE/FCW2qfZipPZzQhoiIyCuOJqhxR5XeRC8ColX9LcXK944mqHGH6uyFGUrb/P2Q3YAIAOFnLOdKvXr1QnR0tOcbIvISQyJVuyFDhgAAws+eBMymqgXK71OMOe5FL2Jl1qAYzF7EyhgUiYiI3OZN72FlorTMEg59CIgAoMm1DP30pvewsnYr7kebhQ9Cf0ZrNyDCbEJyTjoA4MYbb/RtY0QeYkikatejRw80bNgQKpPxwgQ2dmhKBKTCYoePu81shjAZfa+HiIiIqpek8jkgAgC0WiC3wKeACACyToN6u8p8DogAkLwgDPrTjifc06edRmFhIRo1aoRu3br5vkEiDzAkUrVTq9UYOnQoACDi9DG7PWsxRwRidmcBajUklQqSt0tJlJTCXFgUWr13XBaDiIjIOUll+QIAs9m3qnQ6SGoV4ONtJ7JOA6glaPPLkLLCzkgoN9XbLlBvu0BYvhnx+xysASYEesiWC+U33ngjVCqeslP14juOgmLw4MHQ6XTQFuRCm5tV5XFtsXyhF1GlsoRFL8KVEAKQfTu4EBERUTWSKp6eCh9uGVECotX5bK/qsQZEq7DMEq/qsYbDsHzLuYmu0P45ijYnEwcOHEBYWBgGDx7s1baIfMGQSEERFxeHQYMGAQAijx+o8JjSi1iZp0GxpBRykR+Gq/oTexGJiIgckxycmnrYmyjpdFUDIuBVb2LlgGjVeKVnvYnWgFiZvd7Ea1SWmVSHDBmCuLg4j7ZD5A8MiRQ0d9xxB9RqNcKyzkOTn6P8vEIvYmUeDD9lLyIREVEN4iggwrPeRGs4rBIQrdzsTZR1GocBEQD0Ge71JtbbIVBvh/2ACFTtTdTk52LLli1Qq9UYPny4W9sg8jeGRAqaRo0aoX///gCAyOMHATjpRbTlw/DToKpp7SUiIqoOtvcfOuNGb6Ld3sPK3OhNVMKhg4Dorno7BMLyzAjLc972+P0XehNvjbT8279/fzRs2NCn7RN5iyGRgmrkyJEAgLDzZ6Euynfei1iZs6AYakNNGRCJiIiqcicclhOycBgUHQ4vdSQzx+FDznoPK2u8yvGQU2tAdIeuwFJOXZiPVatWAQDuvPNOt55LFAgMiRRULVq0wBVXXAEJQNThvZ5X4GD4KYeaEhERhTgPAqKVvWGnLoeX2lNWVuVHroaX2qM/X3XIqTK81M2AaGuouhSyLKNv375o2bKlx88n8heGRAq6sWPHQqVSQZ9xDpEHj3teQeXhp6HWi0hEREQVeREQ7VbjSe9hZTa9ib4ML7XtTXR3eKk9CTsysG7dOqhUKtx///0eP5/InxgSKeiaNWumTO9sDDsCAS+nui4PiiHXi8ihpkRERBbu3n/ojNns+fBSe8rKvOo9rMzam+ht7yEAQAhc2jAfgGWZsKZNm3rdHiJ/YEikkHDPPfcgLCwMsr4I5og87yuqiRPaEBER1QV+6j2EpPJ8eKkjfpicRp2R51tABABTOnbu3AmdTod77rnHp/YQ+QNDIoWEpKQk3HbbbQAAQ/wZCKnqmkHuEMUlkIs51JSIiMhv/BHu/DW8VK0GAIjSqvcUekN9OsO352fkAWUGxP973vtKhBkNY88AAG699VYkJSX51CYif2BIpJAxcuRIJCYmQugMMEacgTAYPa/EbIYweba4bUCxV5OIiGoya7jzNuT5Y3gpLOHQGhABQJi9u5hcmSgt9ep56ow8JSACgFRQ5FU9kbvToD21A+fOnUNSUhJGjRrlVT1E/saQSCEjMjISjz76KADAWC8LslToXVAkIiIi3/gj3Pm597Ayv/Umnsn0rLw1HJa5Xm/RmcjdaTAXZUJKsmz/kUceQUREhE91EvkLQyKFlP79+6Nbt26ASsDQ4DyEsQyiuMStsBhyQ03Zi0hERDWRo3DnSegLcEAE/NibWFJ1GQt7KvceVhZxMMuteiJ3pyFydxpETh4uubcRDAYDunXrhquuusrtNhMFGkMihRRJkvDEE09Aq9VCjimGObrAsnCu0eA6KIbaUFMiIqKaxh+9hwEYXhps7vQeujPk1BoORU4eTLEFWL9+PTQaDR5//HFOvEchhSGRQk6TJk1w5513AgAMjTMg1CZAFpag6GavIhEREXnInXDnrEw19B5W5q8hp443IJz2HrrLtvcQAITGhPCLLT2Yd911F5e8oJDDkEgh6e6770bLli0BjRmGlPOWtRNl4bBXkUNNiYiIvBQi9x9603voryGnVe5LLA+H6sx8jwKivSGntr2HACAgYGh8Hnl5eWjVqhXuvvtun9pOFAgMiRSSdDodXnjhBajVaphji2COK7jwoL1eRQ41JSIi8lwIDS8Npsr3JSrh0MMeRNshp5V7D63McQUwxxZBrVbjhRdegFar9b7hRAHCkEghq3Xr1hgzZgwAy7BTWWMTAp30KhIREZEbfFnWwpfnV64uVO49tPYe+ml4qW3voZWsMSGsg2Xk05gxY9CqVSuftkMUKAyJFNJGjhyJdu3aAWoZhtQ0y7BTW9ZeRYNvO3MiIqIq/BSC/MJfbbH2/IXA8FJLNb7fniGXeLfWYWXe9h5WaEtuHiL3pFcJh4BlmGmbEdEoKChA27ZtMXLkSF+aSxRQkhBCuC5GFDwnT57E2LFjUVJSAk16AnTpiVXKyGVlEGUBvnndE7wnkYioZrOGIOHDPW+2QSrU6gkRPvUi2vwuVFGRXldjDZmSWg1VTLT39eTmQTYYoXbQFkP9LJjqZyMiIgLff/89UlJSvN4WUaCF3t6CqJLU1FQ89dRTAABTcjbMUSE0QQ0REdU+tmHK1yGZ/myLL3WEYEAEAGE2e/lE/0xYI5eUWkYlyQLC6N3cBnJunhIQHTFHFcPcIAcA8MwzzzAgUsgLzT0GUSXXXHMNbrjhBkACypqkQWg4SQ0REfmZv8KUvTq8qTdQbanp/BAQ5ZLSCwHRl3rKw6GzgCg0JkR2K4EQAjfccAOuvvpqn7ZJVB1q4Z6DaqvHHnsMLVq0ALRmlNm7PzFUcKgpEVHN46/1/wLd81fdbQklQnYYED25L9G299Bb7vQeAoCQBFoNj0J2djaaN2+O8ePHe71NourEexKpRjlx4gQefPBBFBcXQ5MVC92ZZAiTCXJJCRAqb2WGRCKimsWdMOVO75U/6qmuOkKIW/cluvH7d3VfohIknYRDdWK88zpyLRPSOAuHkloNVbheWQ/RnJiPqKgofP3110hNTXVaP1GoqFl7EarzmjZtildeeQWSJMGUmAdjQq7lfoZQCYhERFSzuBuoXPU0hsrQ0BoWEF1y0nvoCb/1HroYWgpcuM/SlJgHc2I+JEnCK6+8woBINUot25NQXXD55ZfjgQceAAAYG2fAHO2fqa+JiKiOCZVQ5mnI9MdQ1BDicPKaELn30N2hpbbMkcWQU7MBAA8++CB69uzp9faJgqFm7k2ozrvzzjsxcOBAQAKMrTIh9JzIhoiIPBCsgFj5ObV89lKv+KH3sEI4rIbewwrP0Zugv6QQZrMZAwYMwB133OH19omCpRbtUagukSQJzz77LNq1awdoZBg65EJo/TMdNhER1WK+BCp/LI3hqL5g1hFKQmloqYe9hwAgtGbUG6JGXl4e2rVrh+eeew4S5yqgGogT11CNlpWVhXHjxuHcuXOQCjTQ7oqHJAf5gMmDARFRaKpNgUrIter1SCrfj52SRgMAEGbvg6aktvxOPQ2HACBUMowdsyCijGjcuDG+/PJLxMc7nwiHKFQxJFKNd+rUKYwbNw55eXmQcnTQ7o2DJIIY1BgSiYhCTy0KVCHD2uvn6+9WyO7NcOqsCrMZkkbrUxuE2ez1axGSgLFdNkR8GeLi4vDll18iJSXF+/YQBRn3mFTjNWnSBO+//z70ej1EvAGm1vmhu4YiERFVPwbEqny9788Pw0L9ce+hMJsdT3zjZhuEyejTTOkCAqaWORDxZdDr9XjvvfcYEKnG416TaoX27dvjjTfegFqthpxcClOLAgZFIiJiQLTH14Dnr4DoaxW+hMPyNijh0JeA2CIXcnIp1Go1Xn/9dbRv3963dhGFAO45qdbo2bMnJk6cCEmSIDcqgbl5IYMiEVFdVdtm/PQXX3sP/REwa0HvIQAIYYa5WR7kBiWQJAkvvPACevXq5X27iEKIJtgNIPKna6+9FkajER988AHMjYsBGVCfiIIE3idIRFRnMBxWFezew1DqOQR8CocQMgQEzKkFMDcqBgA899xzlqW5iGoJ7kWp1rn++uvxxBNPAADMTYphTi0KcouIiKjaMCBWFQq9hz4KhaGlyu9CCJhTCmFuYgmITz75JAYPHuxb+4hCDHsSqVa66aabYDQa8cUXXyghUX0ykj2KRES1GQNiRcEOd6EUDgHX4VDlZIbV8nAoIGBueiEgPvrooxg2bJhvbSQKQQyJVGvdfvvtMJlM+Prrry1BUS2gPsahp0REtRIDYkXuBjR76y2GwMQ0oTS01FqHgIC5RQHMjUoAAOPGjcPtt9/uWzuJQhTXSaRab+7cufjss88AAKq0cGgORwc2KHKdRCKi6sWAeIE34cz29xeM5wMV1kn0JiBKarWlHb6EQ9ueRJtwCJTPYtqqAHIDS0B84okncNNNN3ncTqKagiGR6oS///4bH3zwAWRZhuq8HppDMZAEgyIRUY3GcFiRt7135eHKa9a/gw91SGq1T72HkkZb8b5Db6jUVcIhAAhJwNQ6H3JyKVQqFZ577jkMGjTI67YS1QQMiVRnrFixAm+88QbMZjNU2Tpo9sdBkgMQ5hgQiYgCjwGxIn8MEQ0WX0OqLV8DYqXnC5UMU7s8yAkGqNVqvPTSS7j66qv90FCi0MaQSHXKhg0b8PLLL8NgMEAq0EC7Nx6S0c6JhiR5f6BhSCQiCjxfQqI1kAQzaPqjDTU5GPqLv05j7Rz3hdYMY/tciGgTwsLC8Prrr+Pyyy/3z/aIQhxDItU5u3fvxvPPP4+8vDygRA3tnjioSivN4WQb9Lz5iDAoEhEFnjcByzZY+RrQvH2+r21gOLQIYECU9SYYO+QC4WbExsbivffeQ4cOHfyzPaIagCGR6qRTp07h6aefxrlz5wCjBO3eOKgKdBcK2At5nnxUGBKJiALP04BVOVxVd8i0F+78UUdd489waKc+OcqIiL5m5OXloWHDhvjoo4/QpEkT/2yTqIZgSKQ6Kzs7GxMnTsT+/fsBGdAciIU6S3+hgKOg585HhiGRiCjwPAlYgQhovm7fkzoYDv0fDu3Ua65XAtXFpTAYDGjbti3ef/99JCQk+Ge7RDUI7/qmOishIQGfffYZevXqBagA00V5MKUWQsDFQUiSXIdAXnshIgoNQg7cun+erEXo723XJUL457jq5PgtIGBKLYSpXT4MBgN69eqFzz77jAGR6iz2JFKdZzKZ8PXXX+OXX34BAKgyw6A5GANJqF08E84PWuxNJCIKPGc9ce6EK3d68pzVE8jt1/VwCPgvHDqpX6hkmNrmQ04sAwDccccdeOCBB6BWu3EeQFRLMSQSlVu4cCE++ugjGI1GSEUaaPfGQTJoXD8RsH8QY0gkIgo8RyHL3YAVqJDn6/brekAM1NDSypvRmSwzmEaaoNVq8cwzz+C6667zz7aJajCGRCIbu3fvxksvvYTs7GzLhDYH4qDKC3O/gsofJwZFIqLAsheyPAlY/g55noY7X59f21RTOAQAObYUEb0F8vLykJCQgLfeegsdO3b0z/aJajiGRKJKzp8/jxdffBEHDhwABKA+GQX16UhI8CDwWT9WDIlERIFlG7K8CVj+DJm+br8uB8RqDIcCAuaUQsjNiiGEQNu2bfHWW2+hfv36/mkDUS3AkEhkR1lZGSZPnoz58+cDAKQcHbQH4yCZPJ0JTzAoEhEFkjVkeRuw/BXyqvu5tUU1hkMAEBoZxja5EPEGAMCNN96I8ePHIyzMg1FDRHUAQyKREwsXLsSkSZNQVlYGlKmg3R8HVaHO9ROJiKh6SCrfQlYwg5qvba/pAj0pTSVylAHGdrlAmIywsDA89dRTvP+QyAGGRCIXjhw5gpdffhmnT58GZEB9IhrqsxGeDT8lIqLQVNeDWrD4evrpQTgUEDA3LgJalsBsNiMlJQVvvvkmWrZs6VsbiGoxhkQiNxQVFeGDDz7AihUrAJQPPz0cC8nA6bGJiIg85s3ppxe3bwidGcbWeRBxluGl/fr1w7PPPouoqCjPt09UhzAkErlJCIH58+fj888/tww/NUrQHI6FOlsf7KYRERHVHNUUEM0JpYjsaZm9VK/X47HHHsOQIUMgca4AIpcYEok8dOLECbzxxhs4dOgQAEB1Lhya4zGQZB50iIiIXPLk1NOb3kOVgKlZAeSGxQCA1q1b49VXX0VqaqrHdRHVVQyJRF4wGAz4/vvvMXv2bACAVKyG5lAsJ7UhIiJyxd1TTy8CohxtgKl1HkS4GQAwfPhwjB07Fjodj89EnmBIJPLBli1b8PbbbyMrK8uypuKZSKhPRkES7FUkIiKyy9Wppze9h5KAuWkB5JQSCCGQlJSE5557Dj169PCykUR1G0MikY8KCgowefJkLFq0CAB7FYmIiJxydurpTe9hVHnvYYSl9/C6667D+PHjER0d7W0Lieo8hkQiP1m7di0++ugjZGdns1eRiIjIHkennV7ee2huUgiRWgJZlpGQkICnn34affr08bGRRMSQSORH+fn5+Oyzz7BkyRIAgFSihuZIDFR5YUFuGRERUQiofNrp5UyjcmwZjC3zgfJ7DwcMGIDHH38csbGxvraQiMCQSBQQa9aswaRJkyz3KgJQpYdDczwakkkV5JYREREFke1ppze9hxoZpub5kJNLAQD16tXDhAkTcOWVV/qrhUQEhkSigCksLMS3336LP/74A0IIy7qKx2KgytBDAoegEhFRHSSEd+EQAnJSKUzN8wGtgCRJGDZsGB544AFERkYGoKFEdRtDIlGA7d69Gx9++CGOHTsGAJByddAcjYGqRBPklhEREYU+OdwEU4t8iDgDAKB58+Z49tln0aFDhyC3jKj2YkgkqgYmkwmzZ8/G1KlTYTAYLBPbnI2A+lQUJDOHoBIREVUm1DLMTQqB1DKYzWbodDqMGTMGI0aMgEbDC61EgcSQSFSNzp49i8mTJ2P9+vWWHxhU0ByP5hBUIiKicsrQ0mYFgE4GAFxxxRV45JFH0KhRoyC3jqhuYEgkCoKNGzdi8uTJOH36NABAytda7lcs1Aa5ZURERMEjRxotQ0tjjACAJk2a4PHHH0ePHj2C3DKiuoUhkShIjEYjfv31V0ybNg0lJSWAAFQZemhOREMyqIPdPCIiomojdGaYmhYos5aGh4djzJgxuPXWW6HV8gIqUXVjSCQKsszMTHz99ddYvHix5QcyoD4TCfWZSN6vSEREtZpQyzA3LoK6pdFyzz6Aa665Bg8++CCSkpKC3DqiuoshkShE7N27F19++SV27txp+YFBBc2pSKjSIyAJ3q9IRES1h5AE5PolMDUpVO477NKlCx555BG0bds2yK0jIoZEohAihMDatWvx9ddf49SpUwAAqUQN9fFoqLLDOLkNERHVaAICcmIZzKkFEBFmAEBqaioeeugh9O7dG5IXaygSkf8xJBKFIJPJhPnz5+Onn35Cbm4uAEAq1FjuV8zVMSwSEVGNIiAgxxlgbloAEWUCAMTGxuLee+/FDTfcwCUtiEIMQyJRCCsqKsKsWbPw66+/Wia3ASDlaaE5GQ1Vvi7IrSMiInJNjjHA1LRAmbE0IiICt99+O4YPH47IyMggt46I7GFIJKoBcnNzMXPmTMybN0+5sV/K0UFzMgqqQoZFIiIKPXKUAabUQoh4y3FLp9Ph5ptvxp133om4uLjgNo6InGJIJKpBMjIy8PPPP+Ovv/6CyWQZrqPK1kF9OgqqAoZFIiIKPjnGAFPKhXCoVqtx/fXXY9SoUZyxlKiGYEgkqoHOnj2LadOmYfHixTCbLTf+S7k6aE5FQsrnPYtERFS9BARErAGmJoUQsZZhpWq1GgMHDsSYMWPQqFGjILeQiDzBkEhUg505cwYzZ87EwoULL4TFPC00p6M4wQ0REQWcgIAcb4A5pVC551Cj0WDQoEEYOXIkwyFRDcWQSFQLpKenY+bMmViwYAGMRstBWirQQH0mEqosPcMiERH5lbKURUqhMlupTqfDDTfcgBEjRqB+/fpBbiER+YIhkagWyczMxOzZs/HHH3+grKzM8sNSNTRnI6BKD4ckq4LbQCIiqtGESoacXAJTo2Ig3DKCRa/XY9iwYRg+fDgSExOD3EIi8geGRKJaKCcnB/PmzcO8efOQl5dn+aFRgjotAupzEZCM6uA2kIiIahShNcPcsBjmBsWA1nLqGBMTg2HDhuHWW2/lbKVEtQxDIlEtVlpain/++Qdz5szBmTNnLD+UAVVGuGUoagkXLyYiIsfkcCPMjYshJ5UA5YNRGjdujNtuuw2DBg1CeHh4cBtIRAHBkEhUB5jNZqxduxazZ8/Gnj17lJ9LOTqoz0VAlRPG+xaJiAiAzWQ0DYuUZSwAoGPHjhgxYgR69+4NtZojUohqM4ZEojpm165dmD17NtauXQvl41+qtgxFTQ+HZOJ9i0REdZHQyDAnl1iGlJbfbyhJEq688koMHz4cHTt2DHILiai6MCQS1VFnz57F77//jgULFqCgoMDyQ+tQ1HMRUBVpg9tAIiKqFnKkEeaGFYeURkVFYfDgwbjpppvQuHHj4DaQiKodQyJRHVdaWoply5bh//7v/3Do0CHl51K+Fuq0CKgy9ZAEh6ISEdUmQhKQ65XC3LAYItqo/Lx169a46aabMGDAAOj1+iC2kIiCiSGRiAAAQgjs3r0b8+bNw8qVK2EyWda9glGCOiMcqvRwqIrZu0hEVJPJEUbI9UtgTipRZinVaDS46qqrMGzYMHTs2BGSxAuDRHUdQyIRVZGVlYW//voLf/31F9LT05WfSwVaqNPDLb2LZt67SERUEwi1DDmpFObkYohok/Lz5ORk3Hjjjbj++uuRkJAQxBYSUahhSCQih8xmM/777z8sWLAAa9asudC7aJagytRbJrop0HJmVCKiECMgIGKMMNcvhpxYCpRPRqrRaNC7d28MGTIE3bt35yylRGQXQyIRuSU3NxeLFi3CX3/9hRMnTig/l4rVlsluMvSQyrjuIhFRMIkwE8xJpZCTSyDKZygFgGbNmmHIkCG49tprufA9EbnEkEhEHhFCYM+ePfjrr7+wfPlylJaWKo9JeVrL/YtZei6lQURUTYRGhpxYCnNSCUTshUlowsPD0b9/f1x//fVo37497zUkIrcxJBKR14qLi7Fq1SosWbIE//3334V1F2VAlRMGVUY4VNlhnB2ViMjPhCQgJ5RBTiqBHF+mLF0hSRK6du2Ka665Bv369UNERERwG0pENRJDIhH5RUZGBpYuXYolS5bg8OHDFx4wld+/mKmHlKfj/YtERF4SEBCxBstw0sRSQHPhFK5Vq1YYOHAgrr76aiQnJwexlURUGzAkEpHfHTlyBIsXL8bSpUuRkZFx4QGjBFWWHuqs8sDIHkYiIqeUYFivFHJCGaCTlcfq16+PAQMGYODAgWjRokUQW0lEtQ1DIhEFjNlsxvbt27F8+XKsXr0aeXl5Fx40SlBl2/QwMjASEQGwDCW9EAxLlfUMASA2NhZXXnklBg4ciIsvvhgqFe//JiL/Y0gkomphMpmwfft2rFixwmFgVGWFQZXLexiJqO4RkoAcZ4CcWDUYxsXF4corr0S/fv3QpUsXaDScSZqIAoshkYiqnclkwo4dO5TAmJube+FBswRVrg6q7DCosjlLKhHVXkIjQ44vg5xQCjneAKgvnJIlJCQowfDiiy9mMCSiasWQSERBZQ2Mq1atwrp16yrewygAKV8LVY7eEhpLeJJERDWXgIAIN5eHwjKIGCNs5/KqV6+eEgw7derEhe6JKGgYEokoZAghcPDgQaxbtw7r1q3DoUOHKjwuFastS2vkhEHK532MRBT6hCQgog2W5SoSyioscA8ArVu3Ru/evdG7d2+0adOGaxkSUUhgSCSikJWenq4Exm3btsFkMl140CxBlacrD406SGXsZSSi0CDCTJDjDZDjyiDHVRxGqtVq0bVrV/Tu3RuXX3456tevH8SWEhHZx5BIRDVCYWEhNm/ejA0bNmDz5s3Iycmp8LhUooaUE2a5nzFPB0nmvYxEVD2ESoYca4Acb4CIq9pbGBcXh8suuwy9e/dGjx49uMA9EYU8hkQiqnFkWcbhw4exefNmbNq0Cbt374bZbHNSJgNSviUsqnJ1kAq1kMAhXETkHwICIspoCYZxBogYA2BzXUqtVqNjx47o0aMHevTogdatW3OpCiKqURgSiajGKyoqwtatW7Fp0yZs3rwZaWlpFQuUD02V8sp7GYs0DI1E5DYBARFpghxrgIg1QI4xAJqKp08NGzZUQuEll1yCyMjIILWWiMh3DIlEVKsIIXDy5Els2bIFW7duxfbt21FQUFCxkKlSaCxmaCSiCwQERIRNKIytGgqjoqLQpUsXXHrppejRowdSUlI46QwR1RoMiURUq1mHpm7btg1bt27Fjh07UFxcXLGQSYIqX2dZbqOgfHiqzJM9orrCMgOpEXK0ASLG8q/tYvYAEBERgc6dO6Nr167o2rUrWrVqxSUqiKjWYkgkojrFZDLh4MGD2Lp1K7Zu3Yrdu3ejtLS0YiEZkAq1UBVoLfc25usgmXg/EVFtIbRmyNFGiBiD5d8oY4V7CgEgPDwcF198Mbp27YouXbqgTZs2XNCeiOoMhkQiqtNMJhMOHz6MnTt3Yvfu3di5cyeys7OrlJOK1ZAKtFAVlvc0Fmm4TiNRDSAky9BREW2EHGUJhpVnHwWAhIQEdOrUCZ06dULHjh0ZComoTmNIJCKyIYTAuXPnsHPnTuzatQu7du3C8ePHqxaUAalIWx4ctZbgWKLmvY1EQSQgIMLNlplHo4wQ0UaIyKq9hADQvHlzdOzYUQmGjRo14j2FRETlGBKJiFzIy8vD3r17sW/fPuUrPz+/akGTZBmmau1pLGJwJAoUAQGhN0NEGiGiTJZQGGWsMsEMAERHR6Ndu3Zo164dOnbsiI4dOyI6OjoIrSYiqhkYEomIPCSEwNmzZ7Fv3z7s378f+/btw4EDB2AwGKoWNkvlgVEDVVF5eCzmxDhEnhAqARFhtCxDEWn5V0SaAHXVU5iwsDC0bdtWCYUXXXQRewmJiDzEkEhE5AcmkwnHjh3Dvn37cPDgQRw+fBhHjhxBWVlZ1cIClh7GIq1l+Y1iDVTFGqCUvY5UtwkIQG+GHG6y3EcYabL0FIabYe+jodPp0LJlS7Ru3VoJhE2bNuW9hEREPmJIJCIKELPZjNOnT+Pw4cM4dOiQ8m9OTo6DJwBSiUYJjlIJwyPVTspQ0YjyMBh+4V84WFUiISEBrVq1QqtWrdC6dWu0atUKKSkpXIaCiCgAGBKJiKqREAJZWVk4fPgwDh8+jGPHjuH48eM4ceKE/eGqwIXwWKqx9ECWlP9bquHSHBTShEaG0Jssk8mEmyzBsDwQ2ptMBrD0DqampqJZs2ZKL2HLli2RmJhYvY0nIqrDGBLp/9u78+Ao6vz/46+eISGDCSRgFhI5BAVkFQW5RAVBFBBFXVBLly1lWX/qlopbLt/CSqmAqLhaKJZWedUqqxLvEtRFcVG81iCHCCgSI/eRZHOQkIRJQmb698dMf9JJJtcQGMDno2pqevrTn3d/JrSYF318ABwHAoGAcnNztWPHDu3atatl4VGSDlt1w2NlODxWekMP0uEMJI4y2xsMhUAnDLre609I7xYfH69evXrp9NNPV+/evc1yWloal4sCQIwREgHgOOaEx507d2rv3r3au3ev9uzZo71796qgoKDpzjWWrCpv6FXplcLvzmcrwFlINM2WLXnDl4a2D8hOCEjtw8vO5whPE3VLTU1V9+7dzatnz57q3bu3unbtyqWiAHCcIiQCwAnK7/dr//79JjQ67/v27VNxcXHzBUyI9EjVXlnVXlnVnlCYrPbIquZs5MnMli21s2XHB2THB6X4gOz2QdnxASk+aIJgcyFQCt0v6A6C3bt3V48ePZSeni6fz3cMvg0AoC0REgHgJFRVVaW8vDzl5eUpNzdXubm5dT6XlJS0rFBA4QAZCo3WYY902FP7Xu1aDnJmMtZs2ZLHluKCssMvud/jQyHQbh8KhY3dF1hf586d1a1bN/NKS0tT165dzeeEhISj+8UAAMcUIREAfoP8fr/y8/OVl5enwsJCFRQUNHgvLS1tXdGAZQKkddgTOgtZ45Fq3Mu166waK/Ruc6YyEttjS+2Csr3h93bB0Fm9dkHZzrs3KMXZsuMCJgg29nTQxnTq1Empqanq0qWLUlNTdeqppyo1NVWpqakmDBICAeC3hZAIAIioqqpKRUVFJjgWFhaqpKREBw4cMO8HDhxQcXFx0w/XaU5AUsAjBSxZAUsKWrXLAU/4PbTetJuXQiEzvKzwshVUaJ1tSc7/5exwu7MsNXsprV27oevdDr1bCp21s2zZntpleRReF152tvGG7u+TN9zmtSVvOAR6XG3hUNjSs3yRxMfHq3PnzkpOTlZycrJSUlKUnJysLl26mBDoLMfHx0e/IwDASYmQCAA4IrZty+/31wmOJSUlKisrM6+DBw+qrKxM5eXl5nN5ebli/r8gW3VDZJ0wqIgTuB9LHo9HiYmJSkxMVFJSknk5nxMTE00IdIJgcnKyfD6fLIsztACA6BASAQAxEQwGVVFRobKyMvn9fh06dCjie/3lqqoqVVdX6/Dhw3XeI60LBoNH9Tt4vV7Fx8crLi7OvNyfneX4+Hh16NBBPp/PvBISEuTz+Rqs9/l8JgR26NBBHg/3egIAji1CIgDgpBUIBGTbtgKBgILBYMRl97tlWfJ4PObdedVfb1mW2rVrxxQOAICTEiERAAAAAGBwDQsAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwCAkAgAAAAAMQiIAAAAAwGgX6wEAQGvYtq3KyspYDwMAWiUhIUGWZcV6GADQIoREACeUyspKTZgwIdbDAIBWWbFihXw+X6yHAQAtwuWmAAAAAACDM4kATljxa34nyw7/W5flkeWxJMsjeSzJsmR5nLbwesuSPJYsZxvTZpk+5iW51nnqtoc6mnW2ZdX+k5urhllv1e7Lvc62QmVMmydUN7TeMm1OHzu8zrRLtTU84e2ddtXdR50+4eHbnghtdbZXnTHWrrMatDXoI/c46rWrkfWN1GtsHA36NFXXrLcb9nf1Me2uWnZ4vVz9Qm22azyhdsvdZrZ12mxT03Jvb9mmzRxiznqnXHib0KFgm89OH0/4c6gt9NnpZ9osW5Zq+3nC68xLtunnsVRnfah/sLafnO2D8jp9wp9rawVNPa+rvleh9V6nntk2KK9TU844grXbq7Z2qGZQHoX2H2oL1fOG11kKyuv0d/XxSqF+Cu3H+Xk4n0P7ssPLCrfZ8oR/Ll5Z8kjyhv+wPbLC6yx5LUseeWSF/+QOV3s19f91EwCcaAiJAE5cASv865pCIVHhQBf+7bu2zZI8tYnICiWucBEnLXjUIAXUJrC6ycSp2SA1qN469z4UYV39fqoNh66Q2GCdK9S5P9cfYt3tI/TxNNHW2NdoMI5GvnZTbY39qKKt56oZKUAe1ZAYqV31P9umtnsc7n1GajOhUq5t3Ns36GNH2Jdd5+UOibXBM/xqrE1OkAyVdAdKJ0xKTtiTCVnutlBIDNaGLMsdskLLHssKBbjwu8yyZfqF6ihc0+mrcL/w+khtrj7ecMD1mnE6IdFuNiS663mdn4fqrvPIPUbXnyEAnEC43BQAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYDBPIoATl9eWbYcm0A7N+2e53q16E9w7765ludfZruUWtLkmzaud8ryx9bXvdp1l1elnS5LtrK+tacuSbJm+7nZTo87kfu6xRPhs1xlSvZ9HI6/627ZkLsSm2lq8rxa2uXfZZD+7mZp2I2NsZJ7EenUtd5vZtt68h86ys73lnp/QWeeqb+rZrnrRzZNoq7afbdl1Xwq9h9pUZ33QsiUrWFtTzr6Crvkcw9uE220raOqpTv3wu7Ov8GdPeBvnXVKDdUHXf9bOctCSgqqdJzEYXmepsXkSwxPfKzQfo/Nn5nz2hPvUn3vRY9osM7ejJFPLIys036MsWeGD5HB1pP8uAeD4R0gEcMKqHv6/WA/h6HB+B49S/YwDONyHVjCWA4maO6VzMRQAHC38DQsAAAAAMCzbto/g36sB4NiybVuVlZWqrKzUNddcI0latmyZEhISYjwy/BZxHKKlEhISZFmc2wdwYuByUwAnFMuy5PP56qxLSEhosA441jgOAQAnCy43BQAAAAAYhEQAAAAAgEFIBAAAAAAYhEQAAAAAgMHTTQEAAAAABmcSAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYBASAQAAAAAGIREAAAAAYLSL9QAAnPgOHTqkN998U19++aXy8vLk8XjUo0cPXXrppZo6dari4uKirl1cXKzMzExlZWUpPz9f7du3V+/evTVx4kRdeeWVsiyryf779u1TZmam1q5dq+LiYvl8PvXr10+TJ0/WmDFjmt1/dna23n77bf3www8qKSlRUlKSzj77bE2ZMkVDhgyJ+nuhbZ2Mx2Bubq42b96s7Oxs/fLLL8rJydGhQ4ckSW+99ZbS0tKi/k4AADTFsm3bjvUgAJy48vLyNHPmTOXl5UmSEhISFAwGVV1dLUnq27evFi1apKSkpFbXzs7O1qxZs1RaWipJ8vl8qq6uViAQkCQNHz5cCxYsaDQAZGVlac6cOaqsrJQknXLKKfL7/QoGg5KkSZMmafbs2Y3+kv/RRx9p4cKFZn+JiYmqqKiQ89fm9OnTNWPGjFZ/L7Stk/UYfPTRR/XJJ59ErEtIBAAcTVxuCiBqNTU1uu+++5SXl6cuXbroySef1KeffqpPP/1Uc+bMUYcOHZSTk6P58+e3unZ5eblmz56t0tJS9ezZUy+++KJWrFihTz/9VH/729/Url07rVmzRs8880zE/vv379fcuXNVWVmpgQMHasmSJfr444+1fPlyTZ8+XZK0fPlyvfHGGxH7//jjjyYgjho1Su+++66WL1+uDz74QFdffbUkafHixfr8889b/d3Qdk7mY9Dj8ei0007T2LFjdfvtt+u2225r9XcAACAahEQAUfvkk0+0fft2SdL8+fM1dOhQSaFfbseNG6dZs2ZJklavXq3169e3qvabb76p4uJitW/fXo8//rjOOussSVJcXJymTJlizuB9+OGH2rNnT4P+L7/8svx+vzp37qzHHntMPXr0kCR16NBBM2bM0OTJkyVJr732msrKyhr0f/755xUIBNSnTx/NmzdPv/vd7yRJnTp10qxZszR8+PA62yE2TuZj8P/+7//0xhtvaN68eZo2bZrOPvvsVo0fAIBoERIBRM25FG7w4ME655xzGrSPGzfOXBLX2GVzjVmxYoWpkZ6e3qB9ypQp8vl8CgQC+s9//lOnze/368svv5QkXXvttREvM/zTn/4kSaqoqNDXX39dp23//v3atGmTJOnGG29Uu3YNb992+ufl5Wnjxo2t+m5oOyfrMShJXq+3VeMFAKCtEBIBRKWyslI//vijJOmCCy6IuI1lWRoxYoQkae3atS2uvXv3buXn50uS6V9fhw4ddO6550asvXnzZlVVVTXZPy0tTb169YrY3/25sf4DBw5Uhw4dIvbHsXEyH4MAAMQSIRFAVHbt2mUevtG7d+9Gt3PaiouLdfDgwRbVdi4fbK52nz59JEk7d+5stL+zTVP9d+zYUWe98zklJUUpKSkR+3q9XvXs2TNifxwbJ/MxCABALBESAUSlsLDQLKempja63amnnhqxT1OKiopaVbuiosJMDeDeT1JSktq3b99sf/f+3P3dY4/EGVv9/jg2TuZjEACAWCIkAoiK+xfipn4JTkhIiNjnaNb2+/0N2pvqX39czufm+jtja+n3Qts6mY9BAABiiZAIAAAAADAIiQCi4jy0RZJ5QEckziTi9fsczdo+n69Be1P964/L+dxcf2dsLf1eaFsn8zEIAEAsERIBRMV9n1dBQUGj27nvAWvuHj9Hly5dWlX7lFNOqfNLtrOfsrKyJn/Bd/q79+fu39z9a87Y6vfHsXEyH4MAAMQSIRFAVHr16iWPJ/RXSFNPZnTaOnfurI4dO7aotvtpkE3Vdp4gefrppzfa3/2Uycb61396pfP5wIEDKikpidg3EAho9+7dEfvj2DiZj0EAAGKJkAggKgkJCWby8u+++y7iNrZta82aNZKkYcOGtbh2jx491LVr1yZr+/1+M+F9/doDBw40Dxtx9l9fXl6edu3aFbG/+3Nj+9+8ebN52Ehrvhvazsl8DAIAEEuERABRmzhxoiRpw4YN2rJlS4P2VatWaf/+/XW2bQnLsjRhwgRJ0ueff67c3NwG27z//vvy+/3yer26/PLL67T5fD5dcsklkqSlS5eqvLy8Qf/MzExJoXvBRo0aVactPT3dTJL+1ltvqaampkH/JUuWSJK6deum8847r8XfDW3rZD0GAQCIJUIigKhNnDhRffr0kW3beuCBB7R+/XpJUjAY1KpVq/TEE09IkkaMGKEhQ4bU6fvyyy9r9OjRGj16dMRfwG+88UZ17txZlZWVmj17trKzsyVJhw8f1tKlS/XPf/5TkjR58mT16NGjQf8ZM2bI5/OpqKhI9913n/bs2SMpdPZn8eLFWrZsmSTp5ptvVlJSUoP+t99+u7xer3799VfNnTvX3Jd28OBBPfnkk+bs0h133CGv19v6Hx7axMl8DNbU1KikpMS83EGzrKysTlukf8gAACBalm3bdqwHAeDElZubq3vuuUd5eXmSQpcABoNBVVdXS5L69u2rRYsWNfgl+OWXX9bixYslhc7WpaWlNaidnZ2tWbNmqbS0VFLojEt1dbX5hXjYsGFasGCB4uPjI44tKytLc+bMMU+QTExMlN/vVyAQkCRNmjRJs2fPlmVZEft/9NFHWrhwodk+MTFRFRUVcv7anD59umbMmNGyHxSOmpP1GNywYYPuueeeFv0Mnn76aQ0ePLhF2wIA0Jx2sR4AgBNbWlqaFi9erDfffFNffvml8vLy1K5dO/Xu3Vvjxo3T1KlTFRcXF1Xt/v3761//+pcyMzP17bff6n//+58SEhLUp08fTZw4UZMmTTIPLolk5MiReuWVV5SZmam1a9equLhYiYmJ6tu3r66++mqNGTOmyf1fddVV6tu3r9566y1t3LhRJSUlSklJ0dlnn60pU6Y0ODOF2DiZj0EAAGKBM4kAAAAAAIN7EgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAAAAAGAQEgEAAAAABiERAHDUPP300xo9erTuvvvuWA8FMVZeXq4rr7xSo0eP1ldffRXr4QAAmtAu1gMAADRUUVGhnJwcbd26VdnZ2crOzta+fftk27Yk6a233lJaWtpR2bdt27ruuutUUFCgadOm6fbbb4+qTk5OjpYuXSpJuu2229pwhLG1fft2rVmzRps3b9b27dtVVFSkQCCgpKQknXHGGRo5cqQmTpyoxMTEWA/1uJKYmKgbb7xRL730kp555hmNGDFC7du3j/WwAAAREBIB4Dg0c+ZM5eTkxGTfW7duVUFBgSRp1KhRUdd57rnnFAgENGLECA0cOLCthhdTM2fO1A8//BCxrbi4WMXFxVq7dq1ef/11ZWRkaPjw4cd2gMe56667Tu+8847y8/P17rvvatq0abEeEgAgAi43BYDjkHPGUAqdgRk8eLA6d+58TPb99ddfS5JSU1M1YMCAqGps2rRJ69atk6STKgg44TkpKUmTJk1SRkaGnn32Wb300kt66KGHNHLkSEmhwJiRkaGNGzfGcrjHHZ/Pp6lTp0qSMjMzdejQoRiPCAAQCWcSAeA4NGnSJCUnJ6t///7q3r27LMvSzJkzVVxcfNT37YTEiy66SJZlRVXjjTfekCSlpaXpvPPOa7OxxVr37t118803a9y4cYqPj6/T1r9/f40ZM0ZLlizRCy+8oOrqai1cuFCvvvpqjEZ7fBo/frxefvlllZWV6d///reuv/76WA8JAFAPZxIB4Dh03XXX6bLLLlOPHj2iDmrR2LNnj3bt2iUp+ktNCwoKlJWVJUmaMGHCMR3/0fbEE0/oiiuuaBAQ3aZNm6a+fftKknbu3Klt27Ydq+GdENLS0nTuuedKkj744IMYjwYAEAlnEgEAhvPUSecS12isXLlSwWBQknTppZe2qE9NTY0+//xzffPNN9q6datKSkoUCASUnJysPn36aOjQobrsssvUpUuXOv1Gjx4tSZo4caIyMjK0e/duvfvuu1q7dq0KCwt1yimnqF+/fvrjH/+oQYMGmX5VVVX6+OOPtWLFCu3du1eVlZVKT0/X5Zdfruuvv/6IH6hy/vnnm3tK9+zZozPOOCPqWjt37tSyZcu0ceNG5ebmqrKyUomJiUpKSlJaWpqGDBmiiy++WD179oyqfk1NjT799FOtWrVK27dvV2lpqSzLUseOHZWcnKwBAwZo6NChuuiiixQXF1enb/2f/86dO/X+++9r3bp1KiwslN/v1yOPPNLgHxwuvfRSbdy4Ubt27dLWrVt11llnRffDAQAcFYREAIDhXGo6cuRItWsX3f8ivv32W0mh+/Z69erV7Pa//vqrHnzwQe3du7dBW0FBgQoKCvTdd99p27ZtysjIaLTOF198oUcffVSVlZVmXVVVlVavXq3vvvtOs2bN0uTJk1VYWKiMjAxt3bq1Tv8dO3boxRdf1OrVq7Vw4cIjCoo1NTVm2eOJ/qKdZcuWadGiRQoEAnXWl5aWqrS0VHv37tXatWu1bds2PfDAA62uX1JSor///e8RH5Lk/OxzcnL0wQcfKDMzU927d2+01scff6yFCxequrq62f26H2T07bffEhIB4DhDSAQASJIKCwv1888/S4r+UtPq6mr99NNPkqQBAwY0e6lpTk6O7rrrLvn9fknS4MGDNX78ePXq1UtxcXEqKirSli1bmp1Xb9u2bfr888+VkpKi2267zex7/fr1eu2111RZWamnnnpKgwYN0sMPP6xff/1V1157rS6++GIlJydr3759evXVV7Vt2zZt2rRJmZmZ+vOf/xzVz0CSvv/+e7Pcu3fvqGps377dBMSOHTtq8uTJGjRokJKTkxUIBFRUVKTs7GytXr066kt6Fy1aZALikCFDNH78eKWlpemUU05RRUWFdu3apY0bN5rLhxuTnZ2tlStXqmPHjrr++us1cOBAxcXFaefOnerWrVuD7Xv37i2fzye/36/vv/9eM2bMiGr8AICjg5AIAJAkffPNN7JtW/Hx8RoxYkRUNbZt22bOovXv37/JbWtqavTggw+agHjPPfeYJ1+6XXjhhbr11luVn5/faK2cnBz17dtXixYtUlJSkln/+9//Xt27d9ecOXNUU1Oju+66SwcPHtQTTzyhoUOHmu369eunYcOG6eabb1ZhYaGWLl2qm2++WV6vt1XfXwpdsrtjxw5JoaDco0ePVteQpFWrVpkziE899ZS5z9Ft1KhRuvXWW1VaWtrq+lVVVSZ8jxo1Sg8//HCDsDlo0CBdc8018vv9TZ4R3bFjh7p3765nn322zlN4G3s6rtfrVb9+/bRx40b98ssvCgaDR3TGFQDQtvgbGQAgqfZS06FDh8rn80VVw33JaHNTdqxcuVL79u2TFHqaa6SA6Na1a9cm2++77746AdExZswYpaamSpIOHDigKVOm1AmIjsTERF1xxRVmu507dza5v0gKCwv15JNPSpIsy9Jf//rXVtdwOE+yTUxMjBgQ3Tp16tTq+mVlZSbQDxo0qMmzkT6fr9nLb++9995WTdPibFtZWanCwsIW9wMAHH2ERACAysvLtWHDBknRX2oqSUVFRWa5Y8eOTW7rhFJJuummm6LepxS6fLGxIGVZVp228ePHN1rHvd3+/ftbNYbKykplZGSYcFf/YTmt5QTb8vJyrVq1Kuo6jenUqZN5Sutnn312RHMWpqamRgzeTXEfH+7jBgAQe4REAICysrJUU1Mjr9eriy66KOo6VVVVZjnSWT23X375RVLojFJLHnDTlOb6u8fS1FNA3du1JjQdPnxY999/v3kYzsUXX6xbb721xf0jGT9+vDl7N2fOHN15551asmSJNm3aZC7RPRJxcXGaOHGiJGnLli264YYb9MQTT+izzz5rdUCO5umt7pDoftgQACD2uCcRAGDO6p1zzjlKTk6Ouo77Hr7mnnJZUlIiqfaM2ZFISEhost19KWVTl9K674tzpvFoTk1NjR544AGtWbNGkjR8+HDNnTs3qvsZ3dLT0/XYY4/p0UcfVUFBgTZv3qzNmzdLCv2czzrrLI0ePVpXXXVVs4G8MXfffbeqq6u1YsUKHTx4UB9++KE+/PBDSaHwPnz4cE2aNKnZM6LNnTWOxP0PCtE+SRcAcHRwJhEAfuOqq6v13XffSTqyS02l0P1zjoMHDx5RrRNBTU2N5syZY6b9GDp0qB555BFzGeeRGjJkiN544w3NmzdPkyZNMlNQBAIB/fTTT3ruued00003mYDaWu3bt1dGRoZef/11/eUvf9H5559vQnRxcbE++eQTzZw5U/fff3+dUFdfNA+dcT9sx33cAABij3+6A4DfuHXr1pnLF480JLqnO2guJCYnJys/P/+EfWiJExCds7Dnn3++FixYcETzK0YSHx+vsWPHauzYsZJCZ2DXr1+vFStWaPXq1Tp48KAeeOABZWZmqkuXLlHto0ePHrrlllt0yy23KBAIKCcnR99++62WLVumAwcO6KuvvtJLL72ku+66q82+V1lZmVlu7qFEAIBjizOJAPAb54Scvn37Ki0t7YhquecE3L17d5PbOlNkFBUVNbvt8aZ+QBw8eLAee+yxNg+IkSQnJ2vcuHF6/PHHde2110qS/H6/vvnmmzap71zKOmPGDD3//PPmUt6VK1e2SX3Hrl27JElpaWnq0KFDm9YGABwZQiIA/IYFg0H997//lRR62MqR6tq1q0499VRJ0s8//9zktqNHjzbLmZmZR7zvY6WmpkZz5841AXHQoEH6xz/+0ex9kUfD8OHDzbJzj2dbSktLM/M8RjMXY2NKSkrM9Cdnn312m9UFALQNQiIA/IZt3rzZhAt3aDsSTnDZtWuXKioqGt3u0ksvNQFk+fLleu+995qsm5+f3ybjOxI1NTV66KGHzCT0RzMgfvnll80GP+deUkk67bTTWlV///79WrduXZPb5ObmmjN+6enprarflC1btpjlCy64oM3qAgDaBvckAsBxaO/eveZJlg5n/j1J+uKLL+o8hdTn82nMmDGt3o9zNiw9PT2qaQwiGTt2rJYvX65gMKh169bpkksuibhdu3btNG/ePN15553y+/16+umn9dVXX2nChAnq1auX4uLiVFRUpK1bt+qLL75Q//79lZGR0SZjjNb8+fP1xRdfSAqFsjvuuEO5ublN9klJSVFKSkqr9/Xee+9p/vz5GjJkiIYMGaLTTz9dnTp10uHDh5Wfn6+VK1eas8DdunVr9dQl+fn5uvfee5Wenq6LLrpIAwYMUNeuXdW+fXuVlpZqy5YtWrp0qXlK7dSpU1v9HRqzdu1aSaH7LUeOHNlmdQEAbYOQCADHoc2bN2vBggWNtj/33HN1Pnfr1u2IQmJbXGrqGDp0qFJTU1VQUKAVK1Y0GhIl6cwzz9QzzzyjBx98UPv379eGDRu0YcOGiNs69zDGkntS+3379umOO+5ots/06dM1Y8aMqPZXXV2trKwsZWVlNbrNaaedpgULFjQ5tUdT9u/fr3feeafRdo/Ho5tuukl/+MMfoqpfX01NjT777DNJobPX0U7fAQA4egiJAPAb9euvv5qzYEf6VFM3r9erKVOm6IUXXtDq1atVUlLS5NyL/fr10+uvv64VK1bo66+/Vk5Ojrn/LSUlRWeccYaGDRumyy67rM3GeCKYM2eO1qxZo40bN2r79u0qLi42l5926tRJZ555pkaNGqXx48dHNeXGueeeq2effVbr1q3Tli1blJ+frwMHDqiiokIJCQlKT0/Xueeeq6uuuqrNzjJLMseEJF133XVtVhcA0HYs27btWA8CAHDsvfLKK3rllVeUkpKi999/P6q57hpTXl6uG2+8UQcPHtTtt9+uadOmtVltnNhmz56trKwsDRkyRE899VSshwMAiIAH1wDAb5RzqemFF17YpgFRCk2O7gTDN998U4cOHWrT+jgxbdmyRVlZWbIsS7fddlushwMAaAQhEQB+gw4fPqxRo0Zp+vTpmjJlylHZx9SpU9W9e3eVlpbq7bffPir7wInlpZdekiRNmDBBAwYMiPFoAACN4XJTAMBR8/PPPysrK0uJiYm64YYbYj0cxFB5ebneeecd2batKVOmNHmfKgAgtgiJAAAAAACDy00BAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAAYhEQAAAABgEBIBAAAAAMb/Byu41BM5SuR9AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACtXElEQVR4nOzdd3wT5QMG8OcuaboXXcy27C1LQARlI4qCCOJABbc4cKO4N24cPxFFkSEyREARkQ0iyBTZe6+WTrqbce/vjzTXpE3SpE2bpn2+n08+Te/eu3s7ktxz73vvKwkhBIiIiIiIiIiqOdnbFSAiIiIiIiJyBQMsERERERER+QQGWCIiIiIiIvIJDLBERERERETkExhgiYiIiIiIyCcwwBIREREREZFPYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJDLBERERERETkExhgiYiIiIiIyCcwwBIREREREZFP8EiAPXXqFCRJgiRJGDt2rCd2WSv16dNH/T0SETkyduxY9b3i1KlT3q6OasaMGWq9ZsyY4e3qkIcpioIuXbpAkiQ88cQT3q4O+Qi+LxCVVpOzk8lkQsuWLSFJEiZOnFgpx6iyFtgZM2bgjTfewBtvvFFVh/S6JUuWqD9zZmamt6tDRYxGI1avXo0XX3wR/fr1Q7169eDv74+QkBA0bdoUt99+O5YsWQKTyeTWfvft24cnnngCrVq1QkhICMLDw9G+fXu8+OKLOH36dCX9NERUm+j1euzcuRPffvstHnroIXTp0gU6na5KAsK3336Lf//9FwEBAU5PSk6dOoVffvkFEydOxKBBgxAVFaXWr0+fPi4fzzr4uPJYv359mfvMy8vDtGnTMGTIEDRs2BABAQEICAhA/fr1MWjQIHz++edV8nn90EMP2dTd1XOjCxcu4K233sI111yDmJgY+Pn5qZ9dt956K+bPn+/yZ1dSUhJef/11XHXVVYiKioK/vz8aNmyI6667DtOnT4fRaKzAT1i9tG/fXv1dr1mzxu3t//77b3X7Nm3auL29EAKbNm3Cm2++icGDB6NRo0YICAhAUFAQEhISMHz4cMyePRuFhYVl7mv9+vVuvS7Kek/IysrC+vXr8cknn+COO+5AixYtIMtypV4kvXjxIpYuXYo33ngDN954I+rVq6ceLzEx0e39efJ1XVBQgK+//hqDBw9G3bp14e/vj5iYGHTv3h3vvfce0tLS3K5fdfXEE0+ov/dXX33V7e3z8vIQHh4OSZKg1Wpx4cIFAIBGo8Err7wCAPj0009x7Ngxj9YbACA84OTJkwKAACDGjBljt0zv3r3VMrXFmDFj1J/55MmTZZavjb+jqrZ27VpRp04d9ffs7NG1a1dx7Ngxl/b70UcfCT8/P4f7Cg0NFXPnzq3kn45qC3ffW6rKDz/8oNbrhx9+8HZ1aqTOnTs7fd+qrN97bm6uqFu3rgAgxo8f77DcF1984bR+vXv3dvmY1v9PrjzWrVvndH/bt28XjRs3LnM/sbGxYsWKFS7X013r1q0TkiTZHPP1118vc7sZM2aIkJCQMuvfoUOHMt8XZs2aJYKCgpzup1OnTuL48eMV/nmrw/vCJ598otbhrrvucnv7++67T93+ww8/dGvbAwcOiPr167v0P9yiRQuxY8cOp/tbt26dW68LZ7/zzMzMUv+LJR+e/oz57bffnB4vISHBrf158nW9Y8cOkZiYWOZ+/vzzzwr8BsxcyU6VbefOnWod4uPjhaIobm0/a9YsdfsbbrjBZp3RaBQtWrQQAMTtt9/uyWoLIYTQwgMSExMhhPDErmo1V64eU8WcP38e6enpAIA6depgwIABuOqqq1CvXj0YDAZs27YNs2bNQlZWFrZv346+ffti27ZtqFu3rsN9Tp06Fc8//zwAwM/PD3fffTd69+4Ng8GAFStWYOHChcjOzsbdd9+NiIgIDB48uEp+Vqq5ZsyYwa54tVTJ1jVLC0Fl9/KYMmUKkpKSoNFoMGHCBJfrFxgYiObNm2PPnj0VOv4TTzyBfv36OS3Trl07h+tOnz6NAQMG4PLlywDMv7exY8eiefPm0Gq1OHHiBGbNmoWTJ0/i0qVLuOmmm7B161Z07NixQvUuKT8/Hw8++CCEEAgODkZubq5L2y1evBj33nuveq7VsWNHjBo1CvHx8cjNzcX+/fsxY8YMZGVlYffu3ejXrx/27NmDkJCQUvuaPXs27rnnHvX7QYMGYdiwYYiJicHZs2cxd+5c7NixA7t27cKgQYPwzz//ICYmxjO/AC+566678MILL8BoNGLRokWYMmUKQkNDXdo2Ly8PP//8MwBzy9Ldd9/t1rHT0tLUlqng4GAMGDAAV199NRo2bAgA2LNnD2bMmIHk5GQcOXIE/fv3x6ZNm9C2bdsy933bbbfh9ttvd1qmc+fODtcJIWzO3yVJQrNmzZCamoqMjAxXfjy3lXyP8PPzQ7t27bBr1y639+XJ1/X+/fvRr18/ZGVlAQDatm2Lu+++G40bN0ZmZiaWL1+OX3/9FZcuXcLw4cOxevVqXH311e7/AqqRzp0744orrsCePXtw5swZrF27Fv3793d5e+vzkHvvvddmneWz4oEHHsCCBQvw6quvlqv3gkMej8QO1MbWxeraSlKbzZ49W7Rv31789NNPoqCgwG6Zc+fOibZt26p/u3vuucfh/i5cuKBexdZqtWLVqlWlylhffW7UqJHIz8/32M9DVJ1Uh5aWmu7pp58Wr732mvj111/F+fPnhRBCvP7665X6ezcYDKJRo0YCgBg0aJDTsosXLxaPPfaYmD59uti9e7cwGo02LQ3lbYGt6M9l3YJ23XXXiby8vFJlDAaDuOeee9Ryw4YNq9Ax7ZkwYYIAIBo0aCCefvppl1tgmzRpopZ97bXX7LaUpKamiiuuuEItN3ny5FJlLl26ZNOK+/XXX5cqoyiKeOqpp9Qy9957b3l/XCFE9XlfGDZsmFqP77//3uXtrFuZbrzxRrePu3HjRpGYmCimTp0qsrKy7JbJyMiwOU++9tprHe7PugXWlZZ7Z7Kzs8Xtt98uPvroI7F27VqRmZkphLA9Z/f0+eumTZvEgw8+KKZOnSq2b98uCgsLhRCiXC2wnnxdd+/e3aaV3mAwlCqzcOFCIcuyACBatmxpt4yrqkMLrBBCTJ48Wa3H3Xff7fJ2p0+fVlvvo6Ki1L+jtcuXL4uAgAABQDz44IOerLZggK1EDLDVT0ZGhktdJPbu3av+7QIDA0Vubq7dctYf8s8//7zD/d16661quf/973/lrj9RdVZdTlRrm8oOsIsXL1b3P2vWLLe3rw4BtkGDBuq+9u/f77BcRkaG0Gq1AoCoU6dOhY5Z0s6dO4VGoxEAxC+//GLzd3MWRI4ePaqWi4uLEyaTyWHZpUuXqmVvueWWUuvff/99df2IESMc7sdkMon27dsLAEKWZXHkyBG3flZr1eV9YcmSJWo9rrnmGpe369evn7rdL7/84vZxs7OzhV6vL7NccnKyTbfuEydO2C3nyQDrSGUGWEfKE2A99bresmWLup8GDRo4bWh49NFH1bLfffedy3UtqboE2EuXLqm3wAUHB4vs7GyXtnvrrbfU+j/xxBMOy1nOfwMDAx1ewCmPSh+F2DKy7oYNG9Rl9m4ydzSAgaIoWLBgAW677TY0btwYQUFBCA0NRatWrTBu3Djs3bvXad3eeOONUgM8rFmzBnfccQcaN26MgICAUjepG41GrFixAs8++yx69eqF2NhY6HQ6hIaGokWLFhg7diz++usvh8e0jBA6c+ZMdVnjxo1L/cyOfleujEK8detWPPTQQ2jZsiVCQ0MRHByMpk2bYsyYMVi7dm2Z25ccUCM3Nxcff/wxrrzySkRGRiI4OBht27bFxIkTK60biTdERES49Ptt164dWrVqBcDc5cveDehCCLVbUVmjco4fP159Pn/+fHerXSH//PMPxo0bhzZt2iAiIgIBAQGIj4/HbbfdhmXLljnd1nqwCMtr9MyZM3j22WfRqlUrBAcHIyIiAldffTWmTJni8qAfOTk5+OyzzzBw4EDUr18f/v7+qFOnDrp27YrXXnsNKSkpTrcv+VoxmUyYMWMGBg4ciAYNGkCr1dodCCI5ORkTJkxAmzZtEBwcjDp16qBbt2745JNPkJeXB8B8S4S9gST+/PNP9ZjWf09nxo8fr26zfPlyl7ZxRVmjEFfW3+3333/HTTfdhLp16yIgIACJiYkYPXo0/vnnH7d/Br1ej++//x5Dhw5VBzSJiIjAFVdcgWeffdbhwCGHDx9GcHAwJElCeHg4Tp486fAYGRkZiI+PhyRJ0Gg0Tt+3ybHZs2cDMHcHHj58uJdrUz6XLl1Snzdv3txhuYiICLW7rKvde11hNBrxwAMPwGQyYejQobjllltc3ta67k2bNoUsOz51a9GihfrcXv2tzw+cdYWVZRmjR48GYD4Pmzdvnsv1La/t27cjJiYGkiTB398fCxYsKFWmIueEQ4YMQWxsLADzoEwnTpwos05nzpzBunXrAADR0dG46aab3P65QkJC4OfnV2a52NhYXHvtter3ZZ3fkude19avi1tvvRUBAQEO92Xd/f6nn35yq77lkZKSgq5du6qf6c8884zd2zbLe64XExODG2+8EYD5d2PvdWePdcYp2X3YmuV9JD8/HwsXLnRp3y7xRAp2dhXB+iqOs4e9q0jHjh0THTt2dLqdLMvi1VdfdVg36yuca9euFY899pjd/VhfYerTp49LdR4zZozdJnPrlteytnf0u3LEYDCIBx98sMx9jxo1ym5XCgtLud69e4vjx4+LNm3aONxXQkJCrWxB7tq1q/o72LJlS6n11q207dq1c7ovk8kkwsLC1P9ZT16FciQnJ0fcdtttZf6vDBkyxGF9Sl7pXb58uYiIiHC4r4EDBzrsmm3xxx9/iNjYWKd1Cg0NFb/++qvDfVi/VtLS0kSvXr3s/t9aW7t2rYiMjHR4zPbt24szZ86IhIQEu9ubTCZ1oIjIyMgyu4Ln5+erx4uPj3faauKusnp3ePrvZjQanb6vybIsPvjgA5dbWlwZdEOn04mpU6fa3f7bb79Vy/Xo0UMYjUa75UaOHKmWe/nll53+Tn1ZZbbAFhQUqK1Czro1OlMdWmAbNmyo7svVlpqOHTtW6JjWJk2aJACIkJAQcebMGSGEcLkF9tixY2q5unXrOn0v+f3339WyTz31VKn11p/1Bw8edFrnRYsWqWWvuuoq135QO1z5O65YsULt2hwSEmL3dhxPnBM+88wzatnXXnutzLpbtzI9+eSTrv7I5WbdW2vevHl2y7AFtpinXtfWrar2utVbS09PV8tqNBqHPfTK4koL7MmTJ9WBkACISZMmlSrjiXM964G1XHmf/+uvv9TyHTp0cFrWeqAwT96WUekBduPGjWLx4sU29xQuXry41KPkG+mxY8dEdHS0uk2vXr3E+++/L+bOnSt+/PFH8fTTT9ucjDp6EVt/QFx//fXqB8CLL74ofvzxRzFjxgzx6KOPigsXLqjbdO/eXYSEhIhhw4aJt956S8yaNUssWLBAfP755+Khhx4SwcHBTt/Qdu7cKRYvXiz69u2rlvvmm29K/cw7d+602c6VAHv77berZQICAsTDDz8sZs6cKX788Ufx1FNPidDQUHX9dddd57C7rKVMp06dRKtWrYQkSWLYsGHi66+/FvPnzxeTJk0S8fHxajl3utvUBIWFhTYn/BcvXixVZu7cuWW++Viz/vtu3bq1EmpdrKCgQFx11VXq8Zo2bSpeeuklMXv2bDFv3jzxzjvv2Lwp9uvXz+5JkfUH5bBhw0RQUJAIDAwUDz/8sJgxY4aYO3euePbZZ21eE85OHhYuXKh2ofPz8xMjRowQX375pViwYIH47rvvxOjRo9WuLLIsizVr1tjdj/Xv0vK67tChg3j//ffFvHnzxLfffisef/xxtfz+/fttumZ16tRJfPLJJ2L+/Pniiy++ED179lTDkKVLkr0P0ffee0/dx48//uj0bzB79my17Jtvvum0rLvcCbCe+LtZf7jrdDrx4IMPipkzZ4rZs2eLJ554Qv3d3nzzzWWeqG7evFktL0mSGDx4sPj000/F/PnzxYwZM8TDDz9s87dytJ8RI0Y4rft3331nc/JdkXuVqrvKDLBr1qxR9/3cc8+Vax+eCLBdu3YVLVu2FEFBQSIoKEgkJCSIkSNHih9//NGlv631xWtn98pZv7ZmzJjhzo/p0JEjR9T7wD777DN1uasBVggh2rVrZ1O2rHtg/f39xaFDh0qVad26tbofdwJsaGio2yOUWpQVYH/66Sf1fT8mJkZs3769VBlPnRNaX3hOTEws82dq2rSpWv6///4rz4/vFusLDP/884/dMtbv7+3atRPt27cXISEhIiAgQDRs2FDceOON4uuvv3baiFEWXwmwnnpdjxs3Tl3vToAFYPf/1RVlBdg9e/aoo1drNBq792176lzPYDCIuLg49XO5rNHHre89tn5Pc8TyvhMSEuLwgrO7quU0OiaTSZ0qwN/fXyxYsMBuuaSkJPVqnCzLYt++faXKWH9AWN70Ll++7PT4q1evdvrCT01NVVt8ZFl2eJ+Cp6fRmTdvnro+Li7O7tWmU6dO2bRsOLrf0vp3otPpxNKlS+3+nNb7qkjoys3NtXvhojyPksG/MliHj86dO9st8+abb7p88iGEsBlEYPbs2R6usa2S9+baO8HT6/U2dbL3pl1yuP74+Hi790Jt3bpVvboZGRlptzXvzJkzait0fHy82LNnj926b926VYSHhwsAomHDhnbvHSrZs+Opp55y2iph3UL76KOP2i1b8r3C3odoUlKSeqJV1on4tddeq37wnD171mlZd7kTYCv6d7O+0hoREWF3iodDhw6pU6w4O1HNyspSBwOKiIgQ69evt/vzHT16VL2AFhwcLFJSUkqVSU9PV6++azQasXHjRnXd4cOH1XAeFhZW4alADh486LH3L3s/S0VVZoC1vmjz888/l2sfngiwzh4tW7YUu3fvdrqvlJQU0axZM3WbunXriokTJ4rp06eLWbNmiddff139vJNlWbz99tvl+llLUhRFfS+48sorbU7e3Amwf//9t80Fp44dO4r33ntPzJkzR3z77bfiySefVN9fw8PDxbJly+zux/rCurNeLkLY3i8LQJw7d87tn18I5wH2iy++UFtnEhISxOHDh0tt78lzQiGEuPLKK9X6rF271mG9N2zYoJbr1KmT6z9wOW3cuFE9XkxMjMMTfVen0alXr57Tn88ZXwmwnnpdW5/PPf30006PaX2/LFD2xWxHymr8szSiBAQEiCVLltjdh6fO9YQQ4rnnnlPLOOudkJubqzaW+fn5ufSZNnbsWHXfZb1Xu6paBthffvlFLfvFF184LXv48GG1RcfeCFfWHxDBwcHqqI0Vdfz4cXW/jl4Qng6wnTp1Utf/8ccfDvezdetWmw8Ee2+C1i++t956y+G+pk2b5lK5slj/j1T0Udk3u6enp4t69eqVedJmPYLkl19+WeZ+3S1fXhcuXBA6nU4A9gfxsKbX69XRLZs3b15qfckPyr/++svhvkaPHu203BNPPCEAc9jYtWuX03p9//336r7mzJlTar31a6VLly5Ow+v27dvVsu3atXN69c96v44+RK27eDka2OTw4cNqmSFDhjj9WcvD3QBbkb+b9cidzlqkrLsu2jtRFcJ2LsbffvvN6c9o3fL37rvv2i2zfv16dUTIhIQEkZGRIfR6vejSpYu6rScuFpW8uFGRR1lzlVa0fp4OsHfeeae6b0cXncpSkQCr1WpF7969xauvvipmzpwpfv75ZzFlyhRx1113qa2agLmFsKwTo7S0NDFy5Ej1nMHeY9SoUWW+P7lj6tSp6vvev//+a7POnQArhBD//fefza0tJR9arVa8/PLLTs9zXnnlFbX8yJEjHZazHsTJ8nAUCMviKMC+/PLL6vK2bds6DMiePCcUQoivvvpK3Z+zWQbuvfdel49bUYWFhTYjSH/00UcOy1rmEe7WrZt44YUXxPTp08XPP/8spk2bJh566CH1ArDlf2LlypVu18dXAqwQnnldr169Wi3boEEDp7fUlLwVsbwDczrKTr/++qsIDAwUgPli1IYNG+xu78lzPSHMPdUs9XHWO2HmzJlqubKOa/HBBx949DNZiGoaYC3d0MLCwlyacqRHjx4O/+mtPyCcvVGVh6XFwdGw6p4MsNa/4/bt25e5r/79+6vl7bWcWtZpNBqRnp7ucD/WQb0iExH7SoA1Go1i0KBB6rGchQ/re5GnTZtW5r5feukltfx7773nyWrb+Oyzz9TjbN68uczyEydOdPh/ah2EyroCbR06S967qCiKqFOnjgDKnoZDCPM9HZaWQXt/b+vXyvTp053uy/qErayuQdZd5hx9iFoHqwkTJtgt8/zzz6tlymrlKA93AmxF/m4FBQXqB2RcXFyZXX+suyfaC1KW1pEWLVqU+TMKIdTuU85Cj/Xr6rbbblOnKQEgRo8e7dJxylKbA6ylez1Q/ha48gbYo0ePOg1jZ86csQl0rVq1KvN/9Pjx4+KBBx5w+PfR6XRi1KhRNrcVlde5c+fUVtFnnnmm1Hp3A6wQ5i749u75tzzq1KkjJkyY4HDU2+PHj6vvrc4+u6xbY9z5PLGnZIA1Go02f4Orr77a6XmIJ88JhTBfpLZc/HA06qp1K5NOpxOpqaku/7zlcf/999u8Z9sbX8XiwoULTkeFTk9PFzfccIO6v6ioqDJ7HpbkSwFWiIq/ro1Go01L7pgxY+y+lyxZsqRUUC7v+Zy97PT999+r+69bt67TbuuePNez6NatW5mfVda9OOz13rTHetyKd955x6VtyqJFNbRx40YAQL169fDnn3+WWV6j0QAwT2icn5+PwMBAu+WuueYal+uQlZWFOXPm4I8//sDevXuRmprqcETCc+fOubzf8tq2bZv6fNCgQWWWHzRoENasWQPAPGJxt27d7JZr0aIFIiMjHe6nQYMG6vOKjEacmJhod9S06ubJJ5/EypUrAQDx8fE2kzT7CsvrBzD/by5ZssRpeeu/68GDB+2O3gsAV111ldP9OPtf2b9/P9LT0wEAoaGhZdYJMI/cmJmZiYMHDzotV9breseOHerzvn37Oi1rGZXbmb59+6JFixY4cuQIZs6ciXfeecdmhEmDwaCOzle/fn0MGTKkzH1Wpor83Xbv3g29Xg8A6N27t/pe60j//v0d/r0uX76MPXv2AADi4uJc/h8A4PR/4M0338SaNWuwdetWmxG+GzdujClTppR5DFe88cYbDkfKr+ksr1sAqFOnTpUeu1mzZk7XN2rUCMuXL0e7du2QlJSEQ4cOYeHChbjtttvslp80aRJeeeUVKIqCBx54AI888gjatGkDADhw4ACmTp2K7777DgsWLMCWLVuwatUqm1F93fXoo48iKysLCQkJeOutt8q9H8A8Oug999yDRYsWITg4GJMmTcLIkSMRHx+PvLw8bN26FZMmTcKGDRvw4YcfYufOnfjtt98QFBRks58mTZrg5ZdfxptvvgkAePDBB/HLL79g6NChiI6Oxvnz5zF37lxs27YNMTExKCgoQHZ2NgA4Hf3YVQUFBbj11luxePFiAMANN9yAn3/+uVQ9rXn6nDAyMhI333wz5s2bh9zcXCxcuLDUrBALFy5Uf+6hQ4ciKirK5Z/RXR999BG+//57AEB4eDjmz58PnU7nsHy9evWc7i8yMhK//PILunXrhr179yItLQ1ff/01XnjhBY/Wu7rwxOtao9Hg66+/xuDBg2EymTBz5kzs3LkTd999Nxo3bozMzEz8+eefWLx4sTpLgWWkfE+8LgDggw8+wIsvvgjAPNr4ypUr0aRJE4flK+Nc77777lPzxowZM0qdE50+fVqd0aVu3boYPHiw02NaWL9+PDaziSdSsCdbYLOzsyt0dbvk1VrrK5zOut1aW7t2ban7uZw9mjRpYnc/nmyBtb7S8s0335S5L+t5+yZOnFhqvWWdK4MzWcq6c+XcF1m35MTFxdm9F8dade1CbN190t1Hye661i15zgb5KVm2ZGuC9dyE7j7sdXexfq2UNVCFdbcsV+bis9x34uwq8Mcff6zus+S8gAsXLlTXVdbIt+60wFbk72b9PvLSSy+VWS/r96mSLYHWg6e4+/Dz83N63OPHj9sMYKfVah0OgFITVWYLrKXbmUajKfc+ytsC6yrLCL8AxN133223jPX7u7PuoJ9//rla7sorryx3nebPn6/u5/fff7dbxtUWWKPRKK655hoBmO8B3bZtm91yJpPJZnAzR4NuKYoiJk6cqN5qZO8RFxcntmzZYjMwUlmfiY5Yt8Bad2+96667yhyAy9PnhBYrVqxw+j9p3cpk79zR2X3uK1ascPl3880336jHCQ4OFps2bXJ527JYDzTp7kCcvtIC6+nX9cKFC9XRsO09dDqd+Oabb8Tw4cPVZa6ck9tj/b5o/bro0KGDSEpKKnN7T57rWWRmZqrdl+31TrC+V9hRDzR7Vq1apW736KOPurydM565bOBBly9frtD2ltYCexy1zFo7evQohgwZgqSkJABAy5Yt8dRTT+Grr77C3LlzsXjxYvVhmVPKZDJVqM6usFwJBIDg4OAyy1taLkpuW5Knrhz5unfeeQfvvfceAPNcb6tXry7zyntERIT6PDU1tcxjpKWl2d3W0yryGnL2+qnI/0pl1Qko+3Vt6Tmh1WpdmovPldfX2LFj4e/vDwCYNm2azTrL95Ik4f777y9zX5WtIn+3nJwc9bmzFhILZ7+7ivwPGAwGp+ujo6NtWgebNGmCLl26lPt4VMzyf24ymdS5kqsb61aCQ4cOlVp//vx5fPTRRwCA1q1b4/HHH3e4ryeeeAKtW7cGYO69sWXLFrfrk56ers4Lfuutt1a4F8Yvv/yitrbce++96Nq1q91ysizjiy++UF/z33zzjd3XjiRJeO+997Br1y48/PDDaNmyJYKDgxEUFIQ2bdrgpZdewr59+9ClSxdkZWWp28TFxVXo5wBgM+d0bm5umT2zKuuccMCAAWjYsCEA4K+//rKZd9q6lal+/fp2e70NHz7c4eOhhx5yqW6zZs3CI488AsD8ObZ06VJcffXVbvx0zpX1uvB1lfG6HjFiBI4dO4ZXX30VV155JSIiIqDT6ZCQkID77rsPO3bswEMPPWRzPle3bt0K/yzWr4v8/HyXckVlnFeFh4erc33n5ubil19+UdcJITBr1iz1e2dzv5ZkXVdXspgrql0XYuvgde2112LDhg1VevxJkyYhPz8fAPDyyy/j7bffhiRJdss++OCDVVav0NBQ9bkrk6tbn3hab+steXl5atfcioqPj0fnzp09si8A+PDDD/Hqq68CMHe9WbVqFdq1a1fmdtYB1/rDz5HTp0/b3dbTLK8hSZJgNBqrxUUK69f1a6+9pnZfqwqWUGU0GmEwGMoMsa68vqKiojBy5EjMmTMHK1euxJkzZxAfH4/Tp09j1apVAMwnSI0bN674D+BF1n83V8KLs9+d9b7uuecem0nQK+rRRx+1eX0dOXIEr7zyCj744AOP7P/QoUMeOwHs1asXoqOjPbKvqmB9YSA9Pd2lCxlVzbp7WmZmZqn1K1euVINc//79HX6mA+b3zX79+qnd1rdt21ZmN/ySli5dikuXLgEAYmJi8M4779gt99dff9k8t5Tr3r07Bg4cqK5btmyZ+nzAgAFOj12/fn20bt0a+/fvR3Z2Ng4ePIgrrrjCbtkOHTpg6tSpDve1f/9+9US6efPmCA8Pd3psV0yaNAnz5s3D5s2bsXjxYtx2222YP3++w/flyjonlGUZY8aMwbvvvgshBGbOnInXX38dADBz5kw1WN9zzz1l3jpRHnPnzsW9994LIQT8/f2xZMmSMm9xcVdZrwtfV1mv67i4OLz11ltOu/0fOHBAfe7ogpI7Ro4cibCwMHz55Zc4cuQI+vbti3Xr1qF+/foOt6msc717770XP/30EwBzN+IxY8YAMHdZPn78OADzrUmtWrVyeZ+VcStKtQuw4eHhCAkJQU5OTpXcW1rS6tWrAQCxsbF46623HL4gsrOzbf4glc36noejR4+WWd66jLMXQFW5dOmSelWnosaMGeOxe1MnT56s3hcSHh6OFStWoGPHji5tax1yd+7c6bSsoijYtWsXAPMHp+VKYGVo0KAB/vvvPwghcP78eTRq1KjSjuVOnSyq+nVdv3599d7LEydOoGXLlg7LZmRkuPxB/8gjj2DOnDlQFAXTp0/HG2+8genTp0NRFABw+Sp8dWb93nHs2LEyyzsrU1n/A3PmzMGcOXMAAF26dEFqaipOnz6Njz/+GNdddx369etX4WPMmzfPYxdd1q1b59K91tVFYmIiNm3aBMB8EmJptapOyurdcuHCBfV5WFhYmfuzDmquXNAqybpV0dX7sNetW4d169YBMI/FYB1gq7r+FtZh0Z0xRJwJDQ3Fn3/+icGDB7sUYivznHDs2LF49913AZhbQ1977TUAsLm4VvLeWIuyWo6d+fnnn3H33XdDURTodDosXLjQpbFN3FVVvb68xVuviwMHDqi97po2bVrmPcmu+uKLLyBJEr744guXQmxlnev169cP8fHxOHPmDDZs2IBTp04hMTERP/zwg1rGndZXwDbAJiQkeKSeVdY0Y31loKwX/rXXXgvAfLLpykmTJyUnJwMwDwDi7GrG6tWr1RNVR9z5mctiPQiTpYXHGevWTkcDONV2X331FZ555hkA5g/V5cuXu3UlrW3bturJ3P79+51+uG7evFntitWzZ89KbRXv3bu3+txTrd4V1alTJ/UDZs2aNWW+djzpyiuvVJ9bThAdsXQbc0WvXr3Qtm1bAMD06dNhMBgwffp0AOYLYMOGDXO/stVMhw4d1MFENmzYUGa3JsvAcfZER0erA2ts2bJFfT1UxMmTJ/Hoo48CMLe0z507Fz/++CM0Gg0URcE999xjcxJH7rO+UHf48GEv1sQx66Blr3eL9cnt2bNny9yfdWt+ZQ7e4yp363/mzBn1eUXqb32h2JO3Q1hCbM+ePQEAixcvxqhRoxzeKlBZ54TNmjVTg/mJEyewceNG/PXXXzhx4gQA4Oqrr3Z6wbM8lixZgjvvvBMmkwlarRbz58/HjTfe6NFjWJT1uvB13npdWwc5T98m9Pnnn+PJJ58EYO5J1KdPH5ugbq2yzvUsvROA4m7DlsHOAHMXYEcD5TliPRCjox4hbtfTI3txgXU3kLKufFh+cQDUK2JVxdI96sSJEw5Dp8lkUu+XdMadn7ksiYmJarfZ3bt3Ow2xO3bswNq1awGYr3RUh3vBLKMQe+LhidbXadOmqfcoBQcH448//kCPHj3c2ockSbj11lsBmF/kX375pcOyX3zxhfrc3Re+u26//XY1dHzwwQcV/t/zBI1Gg9GjRwMwf4h89913VXZs6yD51VdfOQ1hn3/+uVv7fvjhhwGYPzyfeuop9SLGmDFjXLrftrrz9/fHDTfcAMB8cc/Srcie5cuXlzlitOW9PS8vD++//36F6mYymTB69Gg1CH/xxRdo3rw5evXqhZdeegmA+R6pBx54oELHAcyjEHvq/cuXWl8Bc3dWi61bt3qxJvalp6fbvG4t/6/WrEP4smXLnI4LkZWVheXLl6vfW18Ac9XYsWNd+l+wdFkFgNdff11d/tlnnzms/7x585we+++//1bfhyIjI9G0aVO36w+YT9K3b98OwHzR1d3Px7JYQmyvXr0AmIOdoxBbmeeE1i1JM2bMsDm/cLeVqSx//PEHbrvtNhiNRmg0Gvz000+4+eabPXoMi8LCQpvzVHuvC19X1a9rwHw7ieVcLyIiwiOfLyV99tlneOqppwCYe1M6CrGVea43duxYtQfqrFmz8PPPP6u3Jt5yyy1u305g+ewIDQ1VL2RXmCdGgnJlFOLx48erZRxNymthMpls5nZ78sknnc6JlZeXJ3744Qcxd+7cUuusR/lzZf69gQMHquU//fTTUuv1er3N5NZwMmLap59+qpaZOXNmmccua6Rm61EN69WrJw4ePFiqzOnTp0XTpk3Vco4mWLasd2VESHfK+oKZM2eqoy8GBQVVaF7G8+fPi6CgIAGYRz5dvXp1qTLWIzA2atTIpXnsKurZZ59Vj9m3b19x8eJFh2VNJpNYtWqVePvtt0utczZCrbtlz549q47w6+/vX+ZrIjk5Wbz11lti9+7dpda5M6+0EMJm3sRHH31UmEymUmVKzvXpykiImZmZ6t/f+uFsjj5PcGcU4or+3TZu3Kiuj4yMtDsZ/JEjR0S9evVsfgf2RsPNyckRCQkJAoCQJEl8+OGHdv8WFpmZmeLzzz8Xq1atKrXu1VdfVY81cuRIm3UGg0GdCxIVGCXSV1TmKMQFBQUiODhYoBwjmVqUZxTizZs3i2nTpomCggKHZc6ePWszb2Hz5s3tjmqr1+tFw4YN1XLDhg2zO3p5Xl6eGDp0qFquXbt2QlGUUuWsXzPlmbPSwtVRiPft2ydkWVbLOpp38vTp0zZzWToa7XP//v3i0qVLDo/3448/qvM/BwQEiEOHDrn1c5VUch5Ya9nZ2Tbvz8OGDSs1WrwnzwlLys7OVv+/Q0JC1BFog4KC3J471ZlVq1apc89qNBrx008/lWs/R48eFR999JHIyspyWKbkPLCRkZEiIyPDreOUdxRi688Ad0cvdvc15enXdXJysjhw4IDD4+3cuVM0atRI3c+MGTNc/tnsKSs7PfXUUzbvbfbm4fbUuZ491v8D1p/v9s5zncnMzFTPuW+++Wa3tnWmyu6B7d+/v9oKdf/99+Ppp59GQkKCenN8s2bN1DnfZFnGL7/8gh49euD8+fP4/PPPsWDBAtx6663o0KEDwsPDkZOTgzNnzmDHjh1Ys2YNcnNz8fbbb1e4nk888YTauvnMM89g/fr1uO666xAVFYWjR49i1qxZOHr0KPr27YujR4867Tbav39/9fmECROQkpKCli1bQqs1/9obNGiA9u3bu1y3UaNGYfHixZg3bx4uXryIzp07Y+zYsejRowc0Gg127NiB77//Xm2RGDRokNq9jsyWL1+O++67T21dv++++5CZmVnm/FmdO3dGfHx8qeX169fHJ598gnHjxsFoNOL666/HPffcg969e8NoNGL58uVqtwutVotvv/0WAQEBDo9jfc/1yZMnHc7JWpZJkybhv//+w5o1a7Bu3To0adIEI0aMQI8ePRATEwO9Xo+kpCS1NT8pKQn9+/fHK6+8Uq7juaJhw4aYN28ehg4disLCQowZMwaffvophg4diubNmyMwMBCXL1/GkSNHsGXLFmzatAkmk8kjA1t888036Nq1K/Ly8jBlyhT8888/uOuuu9CwYUMkJydj/vz52LRpE3r06IEzZ87g/PnzLg2IEB4ejttuu82mS1GfPn3QvHnzCte5uujVqxceffRRTJkyBRkZGbjqqqswZswY9OrVC7IsY9u2bfj++++Rm5uLm2++2elrKTg4GEuWLEHv3r2RlZWFCRMm4JtvvsGIESPQpk0bhISEICsrCydOnMC2bduwfv166PV6zJ4922Y/f//9t9q60LBhQ3z77bc267VaLebMmYOOHTsiKysLTz/9NHr37u3x7oDesGvXLpuRIQHbwYAWLVpUqpvl/fffX+4Bxfz9/TF48GD88ssv2LFjB3Jycmx6F9lT8n3EegTKkydPllrfuXNn3HLLLTbLkpOT8eCDD+LZZ5/Fddddhy5duqBBgwYICAhAWloaNm3ahIULF6qDLoaGhmL+/Pnq56s1Pz8/fPHFFxgxYgSEEPj111/RunVr3HPPPep4BAcPHsSsWbPUboZ+fn743//+53RgmKrStm1bjB8/Xm2Zfemll/Dbb7+p88Dm5+djy5Yt+PHHH9VWqEaNGtm08Fr7448/8PLLL2PAgAHo1auX+jlz6tQpLFmyRJ0HUqfTYe7cuZX6ugkJCcHy5ctxww03YOPGjfj1119x66234ueff1Z7sVTmOWFISAhuvfVWzJgxw2bwyxEjRrh0X6Ur/vvvPwwbNgwFBQXqvgMDA8s872jVqlWpgXJycnLw/PPP49VXX8XAgQPRtWtXJCQkIDg4GJmZmdi+fTvmzZunvua0Wi1++uknp/fALlq0CP/++6/NspMnT6rPP/nkk1Itbo4GJnPVJ5984nA+0MzMzFLvEY0bNy7VXdfTr+szZ86ga9eu6NatG/r3749WrVohMDAQSUlJWL16NZYtW6b24JowYYJNz4DKMHnyZEiShMmTJ6u5Y926dTbjSVTmud69996rdkO/ePEiAHOvTnfHlVi/fr16zu3RHgeeSMGutMAajUabq2wlH/auPl64cEH079/f4TbWD41GI6ZNm1ZqH+62wAohxMSJE50eq2fPnuLSpUtqS4Kzq0V33HGHw/2U/F250qpkMBjEAw88UObvY+TIkU7nx7SUq20tsCVb2Vx9lNWq8dFHHwk/Pz+H24eGhrp0Ndh6m4rOvVZYWCgef/xxodFoXPoZ77nnnlL78GRLnsU///yjzi1Z1iMkJETs2bOn1D7cbYEVwjy/s6UF2N6jXbt24syZM6JBgwYCgLjiiitc2u/WrVtt9uNofjVPqsoWWCHM79933323w9+dLMviww8/dNrSYu3QoUOiU6dOLv0P+Pv7i+XLl6vbZmRkqO+9siw7fV//8ccf1f106tTJaauNr7D+Hbv6qEgvEyGEWLJkibqvWbNmlVne3frZO2+wnoO4rEe7du3s9tQo6ccffxRhYWFl7i86OlosW7bM4X6qugVWCHPrybPPPmvTEuvo0aFDB6dztn700Udl7qNJkyZizZo15f7ZrLnyvpCTkyOuvfZatdzQoUNLtcR64pzQng0bNpTafu3atRX9sVXlec06+p/YtWuXy9vHx8e79Nq3/jxx9eGIdRln5zCW93BXH87OPz31ut6+fXuZ+wgNDXU636w7XMlOQgjxzDPPqOWaNWtWqiXWE+d69uTk5JSaE/e1115z++ccNWqUACACAwOd9hxwV5W1wGo0GqxatQqff/45fv31Vxw6dAhZWVlO70erV68eVq9ejQ0bNmDu3Ln4+++/cf78eWRnZyM4OBgNGzZE+/bt0adPHwwbNsxjI4G99957uPbaa/G///0PW7duxeXLlxEdHY3WrVvjjjvuwNixY+1e5bVn9uzZuPbaazF//nzs27cPmZmZNvM9uUur1WLatGm4//778d1332HDhg24ePEiFEVB3bp10bNnT9x7770eGXmTXPfcc89h8ODBmDp1KlatWqW24CUkJGDIkCEYN25cmSOvWU9TotPpKnz1V6fT4csvv8STTz6J77//HuvWrcOJEyeQkZEBnU6HuLg4tG7dGr169cKNN97oVm+Airjqqqtw+PBhzJ8/H7/99hu2b9+OlJQUFBQUICwsDE2aNEGnTp0wYMAADBkyxKV5WV3Rt29fHDp0CB9//DGWLl2KM2fOwN/fH82aNcPtt9+OcePGITAwUB0tz9Wh3rt27Yrw8HBcvnwZderUwYgRIzxS3+pEo9Fg1qxZGDVqFKZOnYpt27YhKysLcXFx6NmzJ5544gn06NHD5fvTW7ZsiZ07d2Lp0qVYtGgR/vnnHyQlJSE3NxehoaFISEhAhw4d0K9fPwwdOhSRkZHqto888oh6NX3ChAlO7ykdPXo0li9fjjlz5mDXrl146aWX8PHHH1fkV1Er3XjjjeqolLNnz8bdd99d6cccMGAAfv31V/zzzz/Ytm0bzp07h9TUVGRlZSEkJAT16tVDt27dMGLECAwZMsSlHhOjR4/GwIEDMWPGDKxcuRL79+9XW4Hq1KmD9u3b4/rrr8fYsWOr3aitsizj448/xn333Yfp06dj48aNOHbsGLKystT38yuvvBIjR47ELbfc4vQc5fbbb4efnx/WrVuHgwcPIjk5GYWFhYiNjUX79u1xyy234M4773TaW8jTLGNR3HDDDfjrr7/UFuaff/5Zvc+vss4Jr7nmGjRt2lSdIiQxMbHa3qveunVr/Pnnn/jnn3+wZcsWnD59GqmpqcjMzERQUBBiY2Nx5ZVX4qabbsLIkSPV311N5qnXdevWrTFjxgysW7cOO3fuRFJSEi5fvoyoqCg0bdoUN910E8aMGeOReV/d8cknn0CSJHzyySc4duwY+vTpg/Xr16stsZV1rhccHIxRo0apg1NKkuRwVG5HsrKysHTpUgDAXXfd5dEBTCUhKjg8LhF5xIoVKzB48GAAwPjx490eUIgqbu/eveoIea7+DVavXq1OefHkk0+WGoCFqCaYPHkynnnmGWg0Gpw6dapaTqdDRETVx/Tp03H//fdDkiTs27fPcwM4oQpHISYi5yxzEIeGhlbqvajk2P/+9z/1uav33n799dfq85ow9yuRPY888gjq1q0Lk8mEDz/80NvVISKiasz6s+K2227zaHgFGGCJqg1LgH3mmWcQExPj5drUPBs3bnQ6/+xXX32lDgbUoEEDl+bm+++//9SBOAYMGODxN2ii6iIwMBBvvPEGAODbb791ODchERHR3LlzcfjwYeh0Oo8MslsSuxATVQOpqamIjY1FdHQ0jh8/7tH7BMisWbNmKCgowPXXX49OnTohJiYGBoMBx48fx+LFi7Fr1y617NKlSx0G2D///BOKouDIkSP48MMP1dH5/v77b/Ts2bNKfhYib1AUBV27dsW///6Lxx9/3Onc10REVDuZTCa0bdsWhw8fxosvvohJkyZ5/BgMsERUKzRr1kwdpMORwMBATJs2DaNHj3ZYxt7w+67eL7ty5UqbwbrcER0djV69epVrWyIiIqKaggGWiGqFLVu24JdffsGWLVtw/vx5pKWlIS8vD5GRkWjRogUGDBiAcePGIS4uzul+LAE2JCQELVq0wLhx43Dfffe5NApqYmKiOoKuu3r37o3169eXa1siIiKimqLKptEhIvKmq666CldddVWF98NrfkRERETewxZYIiIiIiIi8gkchZiIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJHMSJiIhqFEVRkJ+fj7y8PIePgoIC6PV66PV6FBYWqs/tfa/X62EymaAois1Xe8sURQFgHq3a0cMyYrUkSdBoNPDz81MfWq3W7nPLIyAgAIGBgQgICHD4PDAwEIGBgQgODkZwcDC0Wn7UExFRzcFPNSIiqnaEEMjJyUFWVhaysrKQnZ1t97n1spycHOTn5yM/P9/b1a9WAgMDERISgpCQEISGhqrPrR9hYWGIiIiweQQGBtqd95iIiMibOAoxERFVCSEELl++jPT0dGRkZNh8zczMLPW9wWCo0PE0Gg0CAwMRFBRU6hEYGIhVM/6CJAAoktUDkOx9LwCg6KsAICzLrJ4LmPdnVdTyHDbPRfEyCeaNZPNXUfTVehlkQMhFyzQAZIHBD/VFQUEB8vPzUVBQ4PB5Reh0OoSHhyMiIkL9GhERgTp16iA6OhpRUVGIjo5GdHQ0QkJCGHaJiKhKMMASEVGFKYqCjIwMXLp0CSkpKUhJSbF5npKSgtTUVOj1erf2GxgYiLCwMISFhSE0NBRhYWH4a+5WSEYJMMpWX2XAKEEySYBJAkyyOXyi9oYqIQlAIwCtAqEVgKboq1ZAaBVAIzDsqevUFu3MzEz1UVhY6NaxdDqdGmatg210dDTq1q2L2NhYREdHQ6PRVNJPS0REtQUDLBERlUlRFKSlpeHixYu4cOECLl68qD6Sk5ORkpICk8nk0r7CwsIQGRmJOnXqYPfKA5AMMqDXFH2VIRnk4uei9gZQbxKyAPwUiKKH5Tm0CgY+eC1SU1ORlpaGtLQ0ZGVlubRPjUaDmJgY1K1bF3FxcaW+xsXFQafTVfJPRkREvo4BloiIAAB6vR4XLlzA2bNnce7cOZugmpycXGbrqSzLiIqKQkxMDGJiYvD3T9vNIbRQA6noK0NpzaOGXZ0JQqdA+CsY9fKNSE1NRUpKCpKSkly6wCFJEuLi4tCgQQP10bBhQzRs2BD169eHv79/Ff1ERERUnTHAEhHVIoqiICUlBWfPnsXZs2dx5swZnDt3DmfPnkVSUpI6iq49Go0GsbGxqFevHv774wCkAo35UagpDqe1uMsuOSYgAJ0CEWCC8DdB+CsYMr4fkpOTkZSUhOTk5DLv2Y2JiUHDhg3RoEEDNGrUCImJiUhISEDdunXVkZ2JiKjmY4AlIqqBFEXBxYsXcfLkSfVx6tQpnD171un9jUFBQYiPj0fDhg2xbvo/5nBaFFRRyIBKlUNAAH4CIsAIEWjCne/cjPPnz+P8+fM4d+4ccnJyHG6r0+mQkJBg80hMTETDhg05hRARUQ3EAEtE5MOEELh06VKpoHrq1CmHLVparRb169dHo0aNsGX+Lkj5Gkj5Wkj5GsDAkErVi0DRwFOBRogAE+6adAvOnDmD06dP4+zZsw67tms0GjRo0ABNmzZFkyZN0KxZMzRr1gyxsbEcMZmIyIcxwBIR+Qij0YgzZ87g6NGjNg9HrVOWlqnjm85CytVCytNCztcABRqGVKoRBAQQYIISZIIINGLguF44ffo0Tp065XA+4NDQUDRt2lR9NGvWDI0bN+Y9tkREPoIBloioGiosLMTx48dx9OhRHDlyBEePHsWJEyfstjZpNBo0atQIZ7ZfhJRnDqpSrtbc9ZdBlWoh9Z7bICOUYCP6P3w1jh07htOnT9sdTEqWZTRq1AgtW7ZEq1at0LJlSzRv3hwBAQFeqD0RETnDAEtE5GUmkwmnTp3CwYMHcfDgQRw4cACnTp2ye6IdGBiI5s2bY/+fRyHl+KktqxzZl6hsQhIQQUaIYCNueWUwjh8/jmPHjuHy5culymo0GiQmJqJly5Zo3bo1WrZsiSZNmnCqHyIiL2OAJSKqYikpKThw4IAaWA8dOmS3u2NERASaN2+Ofxfth5TrBymHrapEnmZprVWCjbjnk1tw6NAhHDp0COnp6aXK+vn5oWnTpmjVqhXat2+Pdu3aoW7durynloioCjHAEhFVIqPRiOPHj2P37t3Yu3cvDhw4gJSUlFLlAgMD0apVK+xZehhSth/kbD9OS0PkJWqoDTHgjklDcejQIRw+fBhZWVmlykZFRaFdu3bqo3nz5mylJSKqRAywREQeVFBQgAMHDmDv3r3YvXs39u/fX6p1VZZlNG7cGCc3XYCcrYWU7WfuBsywSlRtCQjA3wQl1Ijhrw7Cvn37cOTIkVJd/XU6HVq2bKkG2g4dOiAsLMxLtSYiqnkYYImIKiA7Oxu7d+/Gnj17sGfPHhw+fLjUCW1wcDDatWuHHfP3Q84q6gqsyF6qMRF5ipAFRIgB9301Cvv27cO+fftK3U8rSRKaNWuGjh07omPHjgy0REQVxABLROSGgoIC7N27F//++y927tyJI0eOQFEUmzLR0dFIP5gNOUsHKatooCW2rhLVeAICIsAEEWbA9c/2xu7du3HmzBmbMiUDbceOHREaGuqlGhMR+R4GWCIiJ4xGIw4ePKgG1v3798NgMNiUadiwIS7sSIN82Q9ylg4o5L2rRGQm/ExQwg0Y8kIf7Nq1y2GgvfLKK9GtWze0a9eOc9ISETnBAEtEVMLZs2exbds2bN26Fbt37y51D2tMTAzS9mVDvqyDnKmDpNd4qaZE5GvKCrT+/v7o2LEjunbtim7duiEhIYGjHBMRWWGAJaJar6CgALt27cLWrVuxdetWnD9/3mZ9eHg4so8XmMNqpo5T2RCRxwg/E5QIPQY8eTW2b9+OtLQ0m/UxMTHo2rUrunbtii5duiAiIsI7FSUiqiYYYImo1hFC4OzZs9iyZYvayqrX69X1Wq0W7du3x55FR82hlfewElEVEBAQQUY8+N3t2L59e6n3JkmS0KZNG/Ts2RNXX301GjduzNZZIqp1GGCJqFYwGo3Yt28fNm7ciE2bNuHChQs262NjY5G6Oxtyhg7yZR0kE0cJJiLvErKACNNjxDuDsW3bNpw4ccJmfd26dXH11Vfj6quvRseOHTn/LBHVCgywRFRj5efnY/v27di4cSP++ecfZGVlqeu0Wi06dOiA/xYehpzuDymf3YKJqHoTOhOemD8GmzZtwr///mvTOhsYGIiuXbuqgZZdjYmopmKAJaIaJSMjA5s2bcLff/+NHTt22JzghYWFIeeoHnK6P+QMHediJSKfJWQBJaIQ179wLTZv3mxz76wsy+jQoQOuvfZa9O7dG9HR0V6sKRGRZzHAEpHPS0tLw4YNG7Bu3Trs2bMH1m9r9erVw6UdlyGn+ZvnZGUrKxHVMAICItiI0Z8PxebNm3HkyBGb9e3atUPv3r3Ru3dv1K1b10u1JCLyDAZYIvJJGRkZ+Ouvv7B27Vr8999/NqG1ZcuWOLbynDm05nEAJiKqXYS/CQ/OuA3r16/H/v37bda1atUK1157Lfr06YOGDRt6qYZEROXHAEtEPiMzMxN//fUX1q1bh127dkFRFHVdmzZtcPj3M9CkBUAq5LysRESA+b7ZcXNGY8OGDdizZ4/N+2arVq0wYMAA9OvXj92MichnMMASUbWWn5+PjRs3YuXKldi5cydMJpO6rlWrVji6/Bw0qQytRERlEX4mPLFgDDZs2IBdu3ap76eSJKFz584YMGAAevfujZCQEC/XlIjIMQZYIqp2TCYTdu3ahRUrVuCvv/5Cfn6+uq5FixY4vuICNKn+kAq1XqwlEZHvEloFj84bjdWrV2Pfvn3qcp1Oh6uuugoDBgxAjx494O/v78VaEhGVxgBLRNXGiRMnsGLFCqxevRopKSnq8gYNGiBpcybklADIBQytRESeJPxNGPPtcKxatQqnTp1SlwcHB6Nv37644YYb0LZtW0gSxxMgIu9jgCUir8rMzMTKlSuxYsUKHD16VF0eGhqK3CNGaC4FQMrm6MFERJXNMprxyA+vK3UhMT4+HkOGDMGgQYMQFRXlxVoSUW3HAEtEVU5RFPz7779YunQpNm7cCKPRCADQarVQkjWQLwVATveHJBhaiYi8QUBAhBvQ77luWL9+PQoLCwEAGo0G3bt3x5AhQ9CjRw9otewVQ0RViwGWiKpMamoqli9fjmXLluHChQvq8pYtW+L4HxcgpwRAMsperCEREZUkNAqeWnwvli1bZjMtT2RkJAYOHIibbroJCQkJXqwhEdUmDLBEVKlMJhO2bduGpUuX4p9//lFHvQwODkb+MQWapEDIuX5eriUREblCCTRi5MeDsGLFCqSnp6vLO3XqhOHDh6NXr15slSWiSsUAS0SVIjMzE7///juWLFmCS5cuqcvbtWuHQ4vOQE4NgKSwizARkS8SksCbfz2N33//Hf/88486v2xUVBRuuukm3HTTTYiJifFyLYmoJmKAJSKPOnz4MBYtWoQ1a9ZAr9cDAMLCwpB70Ag5ORByHq/MExHVJMLfhNu+uB6///47MjIyAJjvle3ZsyeGDx+Ozp07cwRjIvIYBlgiqjCj0YgNGzZg0aJF2Lt3r7q8VatWOPZb0b2tHJCJiKhGE5LAxJXjsGTJEuzevVtdHh8fjxEjRmDw4MEIDAz0Yg2JqCZggCWicsvIyMBvv/2GX3/9FampqQDMV93FRT9oLgZy+hsiolpKCTJiyFvXYOXKlcjLywNg7o0zbNgwDB8+HNHR0V6uIRH5KgZYInLb2bNnMX/+fPz5559qN+E6derg8n+F5uBq0Hi5hkREVB0IjYJx8+7Ezz//rI4+r9Vq0b9/f4waNQrNmzf3cg2JyNcwwBKRyw4cOIC5c+fir7/+guWto3Xr1ji65Lx5UCZ2EyYiIjsEBF5bPx4LFizAnj171OWdO3fGbbfdhu7du0OWOY0aEZWNAZaInFIUBVu3bsVPP/1kc0+TnK6D5lwwpCx2EyYiItcpIQb0fq4z1q1bp06tlpCQgLvuugv9+/fnNDxE5BQDLBHZZTQasWrVKsybNw8nT54EYO72pZzXQnMuGHI+TzCIiKj8hL8Jt3wyAEuXLkVubi4AoG7durjzzjtx/fXXw9/f38s1JKLqiAGWiGwYDAasWLECs2fPxsWLFwEAQUFBKDwCaC4EQdLz/lYiIvIcoVEw9ofhWLBgATIzMwGYx1W47bbbMGzYMAQFBXm3gkRUrTDAEhEAQK/XY/ny5fjxxx+RnJwMAIiMjETWvwZokgIhmXhvEhERVR4hC4ybfwfmzp2LS5cuAQBCQ0MxatQojBw5EsHBwV6uIRFVBwywRLVcYWEhli1bhjlz5iAlJQVA0YjCO/TQJAVBUnh/KxERVR0hCTyz9D7MmTMHZ8+eBWCeguf222/HLbfcwhZZolqOAZaoljIajfjjjz8wc+ZMNbhGR0cjc2sh5ORABlciIvIqAYGJq8bhhx9+wJkzZwAA4eHhuPPOOzF8+HAEBAR4uYZE5A0MsES1jKIoWLt2Lb7//nucP38eABAbG4v0zfnm4MqpcIiIqBoREJjw50P44Ycf1M+tOnXq4M4778SwYcM42BNRLcMAS1RLCCGwefNmfPfddzh+/DgAICIiAtk7TeZ7XBlciYioGhMQeHbZ/ZgxY4Y6yGDdunVx//33Y+DAgZxHlqiWYIAlqgX27t2LKVOmYP/+/QCAkJAQ5O8T5lGFFX7gExGR7xCSwPjF99jcAtOsWTM88sgj6Nq1KySJF2SJajIGWKIa7Pz585g6dSo2bNgAAPD394fxmAaa88GQjAyuRETku4QscO/M4ZgzZw5ycnIAAJ07d8a4cePQsmVLL9eOiCoLAyxRDZSdnY2ZM2di0aJFMBqN5m5VF/yhPR0MycB5XImIqOYQWgU3f9oXixcvhsFgAAAMHDgQDz/8MGJjY71cOyLyNAZYohrEYDBgyZIlmDlzJrKysgAAUoYO2pOhkPO0Xq4dERFR5RH+JvR9pQtWrlwJIQQCAgIwevRo3H777RzoiagGYYAlqiG2b9+Ozz//XJ1qoHHjxji3NANyJj+0iYio9vjfwXfw5ZdfYs+ePQDMAz2NGzcOffr04f2xRDUAAyyRj0tOTsb//vc/9T7XiIgI5Gw3mafEAT+oiYio9rHMIfv111/j0qVLAIArrrgCTz75JJo3b+7l2hFRRTDAEvkovV6PefPmYfbs2SgsLIRGowHO+ENzJhiSiQM0ERERCVlg9LQh+Omnn1BYWAhZljFixAjcf//9CAoK8nb1iKgcGGCJfNC2bdswefJkdUJ36bIftMdDIef5eblmRERE1Y/QmdDzhfZYt24dACA6Ohrjx49H79692a2YyMcwwBL5kIyMDHz55ZdYvXo1ACAqKgqXNxsgpwSwuzAREVEZ3t3yvM0F4O7du+Opp55CgwYNvFwzInIVAyyRDxBC4M8//8RXX32FrKwsyLIM6WwAuwsTERG5SUgCd067AXPmzIHBYIBOp8OYMWNwxx13QKvliP1E1R0DLFE1d+7cOXzyySfYuXMnAEDK0UJ7LAxyDrsLExERlZcSYESHRxpjx44dAIDmzZvjxRdf5CBPRNUcAyxRNWUymbBgwQJ8//330Ov10Ol0MB3WQXMhCJJgd2EiIqKKEhCY8OdD+OKLL5CVlQWNRoO77roLd999N3Q6nberR0R2MMASVUPnzp3DpEmTsHfvXgCAlKmD37FQSAXs2kRERORpws+EHhPaqlPSNW7cGC+88ALatGnj5ZoRUUkMsETViKIoWLx4Mb755hsUFBQgMDAQhj1azulKRERUBV5e+xgmT56MjIwMyLKMO++8E/feey/8/HjbDlF1wQBLVE0kJSXh/fffx7///gsAkDL94Hc0HFKhxss1IyIiqj2EVsG1r3RQR/xv0aIFXnnlFSQmJnq3YkQEgAGWqFpYuXIlPv30U+Tl5cHf3x+mAzrIF9nqSkRE5C0vr30MH3/8MbKysqDT6TBu3DjccsstnDeWyMsYYIm8KC8vD5MnT8aKFSsAAFKWH7RHwiDzXlciIiKvEzoTOjzWGNu3bwdgnjf2hRdeQHR0tJdrRlR7McASecmhQ4fw5ptv4vz58+Z5XU8Fmud1ZasrERFRtSEgMO7nO/D1119Dr9cjPDwcL7/8Mq666ipvV42oVmKAJapiiqJg/vz5mDZtGoxGI2JjY5Gx2gA5i8P1ExERVVfTTnyEt99+G0ePHgUAjB49Gvfffz+0WvaaIqpKDLBEVSgrKwvvvPMOtmzZAgCQU/2hPRoGySR7uWZERERUFiEJ3PDR1ViyZAkA4IorrsBrr72G2NhY71aMqBZhgCWqIkeOHMErr7yCpKQk6HQ6KAf8ISdxoCYiIiJfM3H1OHz44YfIy8tDeHg4XnnlFXTv3t3b1SKqFRhgiarAsmXLMHnyZOj1eqBAA7+D4ZBzOaccERGRrxIBRiTcUUftUnzffffhnnvugSyzVxVRZWKAJapEhYWF+Pzzz/H7778DAOR0HbSHw9llmIiIqAYo2aX4mmuuwcsvv4ygoCDvVoyoBmOAJaokqampePnll3Hw4EFIkgT5ZBA05zjKMBERUU3z9O/34pNPPoHBYEBiYiLeffddNGrUyNvVIqqR2AxEVAkOHz6Mhx9+GAcPHkRYWBi0e8OhPRfC8EpERFQDTb7xB3z55ZeIjo7GqVOn8PDDD+Off/7xdrWIaiS2wBJ52Pr16/Huu++isLAQUp4GfgciIBVwiH0iIqKaTviZ0OL+uti3bx8kScJjjz2GW2+9FZLEC9hEnsIAS+QhQgjMnDkT06dPBwBI6Tr48X5XIiKiWkVIAte93x1Lly4FANxyyy14/PHHOV8skYcwwBJ5gMFgwIcffogVK1YAADTng6A5yS7DREREtZGAwP1zRuDrr78GAPTo0QOvv/46B3ci8gAGWKIKysvLw6uvvort27dDo9FAOhQETTI/oIiIiGq7l9c+hnfeeQd6vR7NmzfHBx98gOjoaG9Xi8inMcASVUB6ejomTJiAI0eOICAgAMadAdBk+Hu7WkRERFRNfLb3DUycOBGZmZmIjY3Fp59+ivj4eG9Xi8hnMcASldPZs2fx/PPP48KFC4Beht+BCMg5ft6uFhEREVUzwt+EuiOCcObMGYSHh+Pjjz9Gy5YtvV0tIp/E0WWIyuHYsWN47LHHzOE1XwPdnkiGVyIiIrJLKtQgaUE+WrZsicuXL+PJJ5/Ef//95+1qEfkkBlgiNx08eBDjx49HZmYmpBwtdHsiOU0OEREROSUZZZyckY5OnTohLy8Pzz33HDZt2uTtahH5HAZYIjfs3bsXTz/9NHJyciBl+cFvbyQkg8bb1SIiIiIfIJlk7P/fefTs2RN6vR6vvPIK1qxZ4+1qEfkUBlgiF/3777947rnnkJeXB+myH/z2R3COVyIiInKLJCRs/+AorrvuOphMJrz99tsMsURu4Nk3kQu2b9+OCRMmID8/H1KGDn77IxleiYiIqFwkSFj36i7ccMMNUBQF77zzDtauXevtahH5BI5CTFSG3bt347nnnkNhYSHkdB20ByMgCcnb1SIiIiIfJyDQ/90uWL58OTQaDV577TX07dvX29UiqtbYhETkxIEDB/DCCy8wvBIREZHHSZCw5uWdGDx4MEwmE9566y2sX7/e29UiqtbYAkvkwLFjxzB+/HjzgE2ZfvA7EAlJYXglIiIizxIQ6PdOZ/z555/QarX48MMPceWVV3q7WkTVEgMskR1nzpzB448/bp4qJ8sPfvsiICnssEBERESVQ0Cg56ttsW7dOgQGBmLy5Mlo06aNt6tFVO0wwBKVkJaWhnHjxiEpKQlSjtY8VQ4HbCIiIqJKJiSBK56Mx44dOxAeHo4vv/wSiYmJ3q4WUbXCAEtkJS8vD+PHj8eRI0cg5Wvgt7sOJCPDKxEREVUNIStoen80Dh48iJiYGEyZMgVxcXHerhZRtcEzc6IiRqMRr7/+Oo4cOQLoZfM8rwyvREREVIUkRcbxH1IRHx+PlJQUTJgwAbm5ud6uFlG1wbNzIgBCCHzyySfYunUrYJLgdyACUoHW29UiIiKiWkgyykhamIeoqCicPHkSb775Jkwmk7erRVQtMMASAZg7dy6WLVsGWZahPRwOOcfP21UiIiKiWkzSa/Dee+9Bp9Nhy5YtmDJlirerRFQtMMBSrbd161Z88803AAD5aDA06f5erhERERERML7ta3j55ZcBAD///DN+/fVXL9eIyPs4iBPVamfPnsXDDz+MnJwcyEmB0B4LhQTO9UpERETVx90zbsJ3330HjUaDyZMno2PHjt6uEpHXMMBSrZWbm4tHHnkEp0+fNs/1ujcSkmB4JSIioupFQKD3mx2watUq1KlTB9999x2io6O9XS0ir2AXYqqVhBB47733cPr0aaBQht/BcIZXIiIiqpYkSNjw5m40adIE6enpeOONN2A0Gr1dLSKvYIClWmnRokXYuHEj/Pz84HcwApJB4+0qERERETkkKRLefvttBAUFYc+ePfj222+9XSUir2CApVrnyJEj6kh+4lAARxwmIiIin3BfwjOYOHEiAGDevHn466+/vFwjoqrHe2CpVsnLy8MDDzyAc+fOQU7zh/ZgOAdtIiIiIp9y85d9MH/+fISGhmLGjBmIiYnxdpWIqgxbYKlWmTx5Ms6dOwcUytAeDWN4JSIiIp+zePw6tGzZEtnZ2Zg0aRIURfF2lYiqDAMs1Rrr1q3DihUrIMsy/A6HQzLy35+IiIh8jyQkvPLKK/D398eOHTuwaNEib1eJqMrwDJ5qhczMTEyePBkAIJ0KhJyl83KNiIiIiMrvgcbP4dFHHwUATJ06FadOnfJuhYiqCAMs1QqfffYZMjMzIeVqoTkb7O3qEBEREVXYVyPmoHv37tDr9Xj33Xc5tQ7VCgywVOOtX78ea9euBQSgPRLG+V6JiIioRpAgYdcXxxESEoLDhw+zKzHVCgywVKNlZ2erXYc1Z4Mh53LKHCIiIqo5JIMG48aNAwB8//33SE5O9nKNiCoXAyzVaN999x0yMjIg5WrYdZiIiIhqpM+HzcQVV1yB/Px8TJ48GZwlk2oyBliqsY4ePYpff/0VAKA9wa7DREREVDNJkPDcc89Bq9Vi8+bN2LBhg7erRFRpGGCpRhJCYPLkyVAUBXKKP+TLHHWYiIiIaq4HmzyP0aNHAwCmTJmCwsJCL9eIqHIwwFKNtGLFCuzbtw8wSdCeDPV2dYiIiIgq3dyHlyMmJgZJSUlYuHCht6tDVCkYYKnGKSgowLfffgsA0JwJhqTXeLlGRERERJVPUiQ8/PDDAIDZs2cjIyPDyzUi8jwGWKpxFi1ahNTUVKBAhuZCUPl3JEnmBxEREZGP+HDwt2jVqhXy8vIwffp0b1eHyOMYYKlGyc7Oxpw5cwAA2jMh5R+4icGViIiIfJAECY8++igAYOnSpTh9+rSXa0TkWQywVKPMmzcP2dnZkPK0kFMCy7eTkuGVYZaIiIh8yPNd3kPPnj2hKApmz57t7eoQeRQDLNUYGRkZ6oAFmtMhkOBm8GSXYSIiIqohxo4dCwBYvXo1zp49693KEHkQAyzVGL/88gvy8/MhZWshp/u7t3FZwZXBloiIiHzI421eRY8ePdgKSzUOAyzVCHl5eVi8eDEAQHPeqvXVleDJcEpEREQ1hdV5zZgxYwAAq1atwvnz571VIyKPYoClGmHZsmXme1/zNZDTXGx9ZZdhIiIiqsGebP8GunfvDpPJhPnz53u7OkQewQBLPs9oNGLBggUAAM354NL3vtoLqeUJrgy7REREVJ3ZOVe5/fbbAQArVqxAdnZ2VdeIyOMYYMnnbdiwAcnJyYBehnzJhZGHGUSJiIiolnih2/to3Lgx8vPzsWzZMm9Xh6jCGGDJ5/32228AAE1SoON5Xy3dhSsaXhl+iYiIqDpycI4iQcKtt94KAFi0aBFMJlNV1orI4xhgyaedOXMGu3btAgSgSQ6qmoMyxBIREZEnVNE5xWfDZyI0NBRJSUnYuXNnlRyTqLIwwJJPs7S+yhn+kPQau2UkjQaSTgdJY389ERERkdd4IMTKQUGQAx3fRiUpEgYOHAgA+OOPPyp8PCJvYoAln2U0GrFy5UoAgJxU+k3bElyh0UDy9BVOtsISERFRRVifS3jovEIODHQYZJe+tgEAsHHjRmRlZXnkeETewABLPuvff/9FZmYmYJAgZ9pOnSNpNGpwVcOrRsNWWCIiIqqeyjlWhxxU+hYqeyFWzvVD8+bNYTAYsGbNmnJVkag6YIAln7V69WoAgJxqO3iTdXi1xlZYIiIiqhacnUN4sDW2JEs34vXr13vkGETewABLPqmwsBAbN24EAGhSAtTljsKrytOtsAyxRERE5A5Xzh1cPL+w1/pqs75EiP3uvp8BALt370Z6erpLxyCqbhhgySft2rULubm5QKEMKdvP5ftdJUliV2IiIiKq/soIsWWFV7Wc1X2xUqEGrVu3hqIo+OuvvypcRSJvYIAln7R582YAgJzuD1mjLX2/qxPsSkxERERe4e45gwfPMSwhtk+fPgDAAEs+iwGWfI4QQg2wmstB5RtlmF2JiYiIqCqV91zBzuBOrra+liQHBuK7B83diPfs2YOCgoLy1YnIixhgyeecOHECly5dAkwS5JzAcrWosisxERER+ZSi853yhlcLDUIQGxsLvV6P3bt3e6JmRFWKAZZ8zq5duwAAcrY/ZJQ/gEqSBEgefAmwFZaIiIjs8dQ5ggf2I0FCt27dAABbt26t8P6IqhoDLPkcNcDmBJRRsmySRoak9avwfoiIiIgcEsL8qCBNbAzksNAK76dr164Ais+piHwJAyz5FEVRsGfPHgCAVhPnkX1KGpldiYmIiKjyVSDEamJjIMkyIEkVDrGTnlsBADh58qR5VgciH8IASz7lzJkzuHz5MiBkiIh6kGOiPbNjT3UlZjdiIiIicqacIVaSrc5VikJsuYJsi0RAG4R69epBURQcPHiwXPUh8hYGWPIpR44cAQBIIgySrIUpNtwjIdajXYkZYomIiMgZN0OsJjam9MKi0YndCrEtEiH8zL3O2rVrBwDYu3evW3Uh8jYGWPIplgArK0Vv1rIMaDzzb8wQS0RERFXGxRCrdh12xI0QawmvANC6dWsAwNGjR13alqi6YIAln6IGWFH8Rm2KCvVYV2IO6kRERERVpowQW2Z4tXAlxLZItPn264//BmCenpDIlzDAks8QQuD48eMAAMkqwEKWPdaVGPDgoE5shSUiIqKyOAixLodXC2ch1qrrsIUsQgAAFy5cQF5enuvHIfIyBljyGZcvX0Z2djYAQBIlJvH2cIjloE5ERERUZeyEWLfCq7qRnRBrJ7wCgAQdoqKiAACnTp1y/1hEXsIASz7j3Llz5ifCHxLstJB6+n5YT02twxBLREREZbGaK9buoE2uKhFi7YVXi0aNGgEwt8IS+QqttytA5CpLgJVLtr5aMUWFQmNSoKSkVvyAkgzAVPH9EBEREblIEx5WvtZXa0UhVqkb5bRY3bp1AQBJSUkVOx5RFWILLPmM5ORkAIAkAh2WEX4aGOtFQo6rwJVLAMKkQJhMnulKXIFJy4mIiKj20ESEA5IModdXbEeyjJP/i8G5150XswTYixcvVux4RFWIAZZ8RlpamvmJ8Le7XmgkCEmC0MowxkWUO8Sq4dWiIiGW4ZWIiIhcYAmvAABFlD/EyjJOfBaFxKh0NIrIxLmJisOiP07bBqC4kYDIFzDAks9IT08HAEhCZ7NcaCQoWhlCkoCi203LG2JLhVeL8oRYhlciIiJygU14tShPiC0Kr42j09RF8ZEZODdRsRtkJZjPqS5fvux2nYm8hQGWfIYaYFEcYC2trpCghld1nZsh1mF4LQ+GVyIiInKVowvl7oRYO+HVIj4yQw2yNocVfgAYYMm3MMCSz8jNzTU/KXqztQmvDrgaYl0Kr662wjK8EhERkYs0EeHOC7gSYp2EV2ulQywDLPkeBljyGfn5+QAACRqXwquF0MqAkylx3Gp5LSvEMrwSERGRizRhYa5dIHchxJYVXi3iIzNw9kVziJWEeUKS/Px8GI1Gl7Yn8jYGWPIZlgArZK3L4dXCGB1qtxW2XN2GHX3QMLwSERGRizRhYU4vsJfiKMTKMo5Pdj5dTkkJdSwhtvichgGWfAUDLPmMwsJC8xNJ41Z4Bex3Ja7QPa8lQyzDKxEREbnI7fBqUTLEFoXXJjGutb5aS6iTgXPPF39vMBjcrw+RFzDAks8QlpAouZleLdtbhViPDNhkCbEMr0REROSicodXC0uIlWUc+zS6XOHVIj46U33OuWDJVzDAks+Q1OBa/sAotDKEzg+QyxeCiYiIiMpN1lQsvFooAkeeSEDT2NQK7UayahRgF2LyFQyw5DOkcra8WtOm5QKpGZB0Okh+2ortTChsfSUiIiLXyBpIsgQlJ7fCuzo2oRWMkUYcPFWvQvsRVucxsbGxFa0WUZVggCWfoSm6YnlmsK6MkvZp03KBS2kQRVcYKxRiGV6JiIjIVUXhFQAglAqF2GMTWsFQp6i1VC9XKMS+2eBX9XlAQEC590NUlRhgyWcEBgYCAF67+mccvzXQrW1LhleLcoVYhlciIiJylXV4tShniLUJrxblDLHvJS5GpKF4TtigoCC390HkDQyw5DOCg4MBAPUMBfh26DQcH+lGiFWUUuHVwq0Qy/BKRERErrIXXi3cDLF2w6uF3r1T+rcTl6C+1oj8AnPdAgMDIcuMBeQb+J9KPsMSYPPyZbTXZeHbYdNcaom13PfqjEshluGViIiIXOUsvFq4GGKdhtcirrbCvp24BI205ilzCvLNUcDSy43IF1RwFBuiqhMaGgoAyM423wvbXpeFb4dOw0N4EE1/zre7jaOuw/ZIOvO9tcLAUfiIiIioAlwJrxZCcbr62PNlh1cAgF7GodP10CrhIiLS8zB42X60330OQXkG5AX5YU/Hhuj48BnU0xYfL/OyOQpERka6VleiaoABlnxGTEwMACA9vXj4eUuIPTCoIT5beb1NkHUnvFo4DLFsfSUiIiJXuBNeiyg5uZBDgkstP/Z8KxiiXD+P0WWbcM/r/+DWTTvhZ7QNxl12nIWYCeSPCkLWm2FAgISMDPM5VVRUlFv1JfImBljyGZYAm5Zu+2/bXpeF9roDaDP0nNoaW57walEqxDK8EhERkSvKEV4BqF2JrUPs8efcC6/+egNmfjEdPY6ccFhGMgBBc/KgPW5E+uw6yMgwn1NFR0e7X2ciL+E9sOQzLG+u6en2r7tYWmNPXx9U7vBqod4Ty/BKRERErihveLWwuh/2+HOtoI927zzmjfm/oceREyjrrEUA0G3RI+yNLOQX3geALbDkWxhgyWfUq2cenCA52c9hmfH/3Y76fxsghYV45qAMr0REROSCCoVXC6FACg5yO7zGXM7GyM07zfUoo6xlfeCCPJw9fhwA0LBhQzcrSuQ9DLDkMxISEgAAScl+MBjsl8nLDIR/eiFMdcIg14ko/8EMBgi9HpA88GFERERENZ4wmSq0vSYmGpqYaEAjo8UPhW5te9vf26Fz8/iSATh77BgAoFGjRm5tS+RNDLDkM6KiohAcHAwhJCQl6Uqt77f9IST8UhQ4tXKFQqywbnmVJAZZIiIick6IcodYTUw0oPMzPwBoLzqf/q+k7k7ue3UkX5aRUlAAAIiPj3d7eyJvYYAlnyFJkvoGe+68bTfiftsfQvR3QQhIKSheWN4Qa2l9LV0BN2tMREREtUo5QqwaXktoPsPOuYgDIYXutdgCwMmgIABAREQEwsLC3N6eyFsYYMmnNGvWDABw4mSAusxueLVwN8QaDFCcfQgwxBIREZEzboyf4Si8AoDfhXSXQ2yOv7/Lx7Q4EhoKAGjZsqXb2xJ5EwMs+ZTWrVsDAI4fL36jzs0ItB9eLVwNsWWFVwuGWCIiInLClVZYZ+HVwtUQmzgkxeW6WRwKMQ94yQBLvoYBlnxKq1atAADHT/hDUYD+Ox5EwiIXAmVZIdbV8GrBEEtERESOlNGV2JXwalFWiJ0/aAoa3h0B4druVIfYAks+yv6EmkTVVGJiIgICApCfX4DrVtyJqF+DEXDJSeurtaIQK4UHQ76cCyU9U10lyjNdjiRxmh0iIiKyryjEShqNzWJ3wquF34V0AHVtls0fNAUA0M3fD4gFMCoMmJMFAedT6QgAOVotTgYHAyju3UbkK9gCSz5Fq9WiXbt2AIDIBbmuh1d1BzKEv59ta6yjQZtcwZZYIiIicqTEhe7yhFeL5jOLz1XmD5qCbv5+5vBqOdTb0RA9AlyaB3ZXt2gImEcfjo6OLld9iLyFAZZ8TufOnQEAcu6l8u/E0qU4LNS9rsP2MMQSERGRA8JkKp7jtZzhFQD8zqej+Uy9Gl5LCZQh5tSHuCvMYXdi4QeIu8Lw38gJAIBOnTqVuz5E3sIuxORzunTpAgBQ5AwICEhlXmt0QCsDMq/hEBERUSWSZCgZmZDjYiq8K7nQaD+8WgTKEB/FAhPqQPyUBWlzPpCrAMEyxNWBwJ1hQIwW/764GwADLPkmSZTr5j8i7zGZTLjpppuQk5MDrdIVWkN4ufajScuGciEJit4ACKVileLLiIiIiEqSi+9/1TaqX6FdmeqEQfjJSLsiBDve+rrc++n8+liEHVwBWZaxZMkSREREVKheRFWNzU/kczQaDXr06AEAMGlSofi5/29sE14BQJLNj/JgeCUiIqKSZNvBm5Rk96e6AczB1RJeASBqTw6ufH1cufbV6b1HEX7kLACgXbt2DK/kkxhgySf16tULACBEMkx+svsh1mQqDq/W3A2xDK9ERERUUonwCgCK3uB2iLUEV1HiPCdqd47bVer03qOoc6AQXToFAQB69uzp9j6IqgMGWPJJ3bt3h5+fH4A8CCkXik4DU5DWpSCrSct2/gFS3pZYIiIiqt1kjd3wamH34rkD1q2u9rjaCtvpvUfV8CqEHv/99x8ABljyXTxTJ58UFBSErl27AgCEcgFClqBoZCg6jdMQW6rrsCOuhFi2vhIREZGFk+BqzZVW2LLCK2Buhe3yhvMQ23GSObjWOWCecUEoSTAajWjWrBni4+Ndqi9RdcMASz5r4MCBAAChnIdlLDIhS85DrMHo+tVPZyGW4ZWIiIgsXAyvQNldiV0JrxbR/znuStxx0qOI2m87VWD7tub9Ws6hiHwRAyz5rF69eiE4OBhAASAy1OWOQqwmLRtKSqp7B6nI4E5ERERU87kRXi3sXUwvOViTq7q8WboVtuP7pcOrEPnYs2cPJEnCgAED3KswUTXCM3PyWf7+/ujduzcAQCjnbNZZQqzNfbHutL6WZB1i2fpKREREQLnCq4V1K6yjwZpcEb2ruBW24/uPmsPrvsJS5YTJPPpwp06dEBNT8TlpibxF6+0KEFXEkCFD8Mcff5jvgxWtIEk6dZ2QJQhIkCQJ2ow891tfS5Lkis8XS0RERL6vAsHVQtEbIMO9LsOOdH5rHEz+EqLtBFcAEEJBncgMpKUBN910U4WOReRtbIEln9auXTs0a9YMgFKqFdZCyBJgdDBtDhEREZG7PHBBW5IlKClpFQ6vAFDv15OI3ms/vAIAxCWkpaUhMjIS1157bYWPR+RNDLDk0yRJws033wwAEKYz6mBO1vyTcyAuJEOSJUiyVP6DCYXdh4mIiKjC5wOSLAGSDGEwQnPU/gV4V2jPpkB7NgWioBABR5IcluvUwXz+M2TIkKJpCIl8FwMs+byBAwciJCQEQB4gLpUuoDdAFBZflaxQiCUiIiICyt0KawmvFkpObrn2oz2fBlFQCFFQNEVObp7dckK5jJ07d0Kj0WDo0KHlOhZRdcIASz4vMDAQw4YNAwAopmM2rbCW1teS3A6xbH0lIiIia+U4LygZXi3cbYXVnk+DyMsvtTzgaOlznt7XmMcH6d+/P+rWrevWcYiqIwZYqhFuvfVW6HQ6QFwGRFrxihKtr9Yq3KWYiIiIajcXW2HVcw4HU/O52gqrPZ/mMLwCgCixHyFysWHDBgDAHXfc4dIxiKo7BliqEerUqYMhQ4YAABTTcQCOW19LYoglIiKicnGhFVYNrhWcV94SXB2FVwvrVtghg8OgKAp69OiBpk2bVuj4RNUFAyzVGLfffjs0Gg0g0iCUTKetryU5DbHsPkxERESOOGmFddbqWpKzbsTOWl1LVaeoFVaIPPz5558AgDvvvNOlbYl8AQMs1Rj16tXDoEGDAACK6RAE3Aud7FJMREREbrNzkbusLsP22OtGXFaXYWcG9vOHwWBAly5d0KFDB7e3J6quGGCpRrnvvvuK7oVNhynnVLn2YRNi2fpKREREZbFqha1Il2HrVlhXuwzbozt1CitXrgQAPPTQQ25vT1SdMcBSjRIXF4dbbrkFAGCom+p2K6wFW2KJiIjIZUKUq9W1JEsrbHlbXS06jYyAEAJ9+vRB69aty70fouqIAZZqnLvuugshISEQwUYo0fbnRHMFQywRERG5zAMDNQmTqcLh1RSUh82bN0Oj0eDBBx+sUH2IqiMGWKpxwsLCcNdddwEADI2yIOTyTTQuFMHuw0REROQSYTRUbHuTCRAKTJdSy78PCDTorwUADBkyBI0aNapQnYiqIwZYqpFGjBiBBg0aAP4KjA0um8Oou1yc242IiIiovBe9hcmkhleg/EFYycmFITgZJ06cQFhYGB544IFy7YeoumOApRrJ398fTz31FADAVD8PSmBh+UIsERERkYvcDZ9qcK3gRXMlJxeKVAD/tubjP/TQQ4iIiKjQPomqKwZYqrG6d++OPn36ABJgbJoFIcxXOF0Jsuw+TERERG5z8dyhZKtrSfam1HFUTsnJhTAa0OeVTsjNzUWrVq0wZMgQl6tM5GsYYKlGe/zxxxEYGAgRZoASVzQgglDKDrHsPkxERESVwJVWV1daci3BVRgNUCIKsXLlSkiShGeeeQYajcaTVSaqVhhgqUaLjY3FfffdBwAwJmZD+JvMK4TicmssERERkSc4a3V1lXWrKwAIjYKIPuaBm2655Ra0atWqwvUkqs4YYKnGGzlyJNq1awdoBQzNLtvODWunNZbdh4mIiKi87LWeltVl2B573YitW10tjI2zkZKSggYNGuChhx4qX6WJfAgDLNV4Go0GEydOhL+/P0SEHkrdEnOrlWyNZfdhIiIiKq8SF8HLO1CTdUgt2epqYYosgBKXD0mSMHHiRAQGBpa/3kQ+ggGWaoVGjRrhkUceAVDUlTjAWLqQK/fGEhEREbmgPK2u9thrdQUAoVUQfo35Xtdbb70VV1xxRYWOQ+QrGGCp1hg+fDg6deoEaAQMLTIhJDthla2vREREVEEemR5HCLutrgAgINDlqaZIS0tDfHw8HnzwwQrUlsi3SELwZj+qPZKTk3H//fcjKysLmgtB0J4MK12ILwkiIiKqKEkq/7aWcxEH+zDWz4WpcTZ0Oh2mTp2KZs2alf9YRD6GLbBUq8TFxeGll14CAJjq58FUp8DLNSIiIiIqIsoeSFIJ0QPN8gAATzzxBMMr1ToMsFTrXH311bjjjjsAAMbmlyH87dwPS0RERFSVXOgBJjQKoq7TwWQyoW/fvhg6dGgVVIyoemGApVrpwQcfRNu2bc1T67TKhJDZbZiIiIi8wIVWV8B832unJxsjKSkJ9erVw/PPPw+pIt2UiXwU74GlWis5ORkPPPAALl++DDklANoj4bA3rhMRERGR28oKl66eghftx5iQDVPDXPj7++Orr75CixYtKlhBIt/EFliqteLi4vD2229Do9FAiSmAqUHpCcOJiIiIPM7N9iNTTD5MDc3nKS+++CLDK9VqDLBUq3Xs2BFPPfUUAMCUkMNBnYiIiKjyuNhd2JoSYoDcLh8AcNddd6F///6VUTMin8EAS7XesGHDcPPNNwMSYGyZBSWo9HxrRERERBVSjrv2hM6E8P4S9Ho9rr76ajzwwAOVUDEi38IASwRg/Pjx6NSpE6ARMLTNhPA3ebtKREREVBOUo9UVMI84XH9UCFJTU5GYmIhXXnkFssxTdyIO4kRUJDs7G48//jhOnjwJKU8Dvz11IBn5QUFERERVS0gChnYZEOEGxMTEYMqUKYiLi/N2tYiqBZ6dExUJDQ3Fhx9+iJiYGIggEwxtOL0OERERVS0BAWPLyxDhBgQHB+PDDz9keCWywgBLZCUuLg4ff/wxQkJCIMIM5g8QMMQSERFR5RMQMDbJhhJdCK1Wi3fffRdNmzb1drWIqhUGWKISGjdujEmTJkGn00GJKoSxRRZDLBEREVUqAQFTYg6U+uYRh1966SV07tzZy7Uiqn4YYIns6NChA15//XXzHLGxBTA2Y4glIiKiymNqlAtTwzwAwLPPPosBAwZ4uUZE1RMDLJED11xzDV577TXIsgylbgGMTbMZYomIiMjjjA1yYUrIBQA8/vjjGDZsmJdrRFR9McASOdG3b1+89NJLkCQJSr18mBrnMMQSERGRxxjr58HUOAcA8NBDD2HUqFFerhFR9cYAS1SGQYMGYcKECQAAU4M8mJqwJZaIiIgqztggF6Ym2QCAsWPH4q677vJyjYiqPwZYIhcMGTIEzz77LADAVD+f98QSERFRuQkIGONz1JbXe+65B/fee6+Xa0XkGyQhBM/CiVy0fPlyfPDBB1AUBXKKP7RHwiEJydvVIiIiIh9hGW3YMmDTQw89xJZXIjcwwBK5af369XjrrbdgNBohp+mgPRTBEEtERERlEhAwNs2GUs88Vc748eMxcuRIL9eKyLcwwBKVw5YtW/DKK69Ar9dDyvSD38EISCb2yCciIiL7hCRgbHEZSkwhJEnC888/jxtvvNHb1SLyOQywROW0a9cuTJw4EXl5eZBytfDbHwFJr/F2tYiIiKiaERoFhjaZEOEGaLVavPzyy+jfv7+3q0XkkxhgiSrg6NGjmDBhAtLS0oBCGX77IyDn+Xm7WkRERFRNCJ0JhrYZEMEmBAcH45133kGXLl28XS0in8U+j0QV0Lx5c0ydOhWJiYmAvwLDFRlQwgu9XS0iIiKqBpQgA8JuAESwCdHR0fjf//7H8EpUQWyBJfKA7OxsvPTSS9i9ezegANpjYdBcCvR2tYiIiMhLTHUK4delEPn5+UhMTMRHH32EuLg4b1eLyOcxwBJ5iF6vx3vvvYe1a9cCADTng6A5GQIJHKGYiIiothAQMDXIg9IkF0IIdOrUCe+88w5CQ0O9XTWiGoEBlsiDFEXBjBkzMGPGDACAlKGD36FwjlBMRERUCwhJwNg8C0psAQBg2LBhePLJJ6HVar1cM6KagwGWqBKsX78e7733HgoKCiDla6A9EAE5nx9eRERENZXwM8HQ+jJEmAEajQbjx4/H8OHDvV0tohqHAZaokhw9ehQvvfQSkpOTAaME7ZEwaNIDvF0tIiIi8jAlTI+wvjLS0tIQGhqKt956i4M1EVUSBliiSpSRkYFXX30Ve/bsAQBozgVBc4r3xRIREdUElvtd0SwfJpMJiYmJePfdd9GoUSNvV42oxmKAJapkRqMRU6dOxYIFCwAA0mU/832xBo2Xa0ZERETlJTSK+X7XaPP0eQMGDMBzzz2HoKAgL9eMqGZjgCWqIuvXr8f777+PvLw8QC/D73A45Ms6b1eLiIiI3KQEGWBsfRki0AStVosnnngCN998MySJPayIKhsDLFEVOnv2LF577TUcP34cEIDmTDA0Z4PZpZiIiMgHCAgo9fIhty6EXq9HbGws3nrrLbRp08bbVSOqNRhgiapYQUEBJk+ejOXLlwMo6lJ8JBxSIbsUExERVVdCq8DY/DKUKD0AoHv37nj55ZcRERHh3YoR1TIMsEResnLlSnz66afmLsVGCdpjodCkBnq7WkRERFSCEl6IsD4apKWlwc/PD+PGjcOIESPYZZjICxhgibzowoULePvtt7F//34AgHwpANrjoZBMspdrRkREREISMCXkQGmUDyEEEhIS8Prrr6NZs2berhpRrcUAS+RlRqMRs2bNwqxZs6AoClAgw+8oB3giIiLyJiXYAGOLLIhgIwBg2LBheOyxxxAQwDndibyJAZaomti7dy/efvttJCUlAQDkC4HQngqBpLA1loiIqKoIScDUKBdoXACTyYSIiAg8//zzuOaaa7xdNSICAyxRtZKXl4evv/4av/76q3lBgQZ+R8IgZ7E1loiIqLIpQUWtriHmVtc+ffrgmWee4UBNRNUIAyxRNbRjxw588MEHSE5OBgBoLgRCcyoUksLBIoiIiDxNSAKmhrmQmhbCaDQiLCwMTz/9NPr168eBmoiqGQZYomoqNzcXU6ZMwdKlS80LCmRoj4dBk+Hv3YoRERHVIEqoHsZmWRDBJgBAz5498dxzzyEqKsrLNSMiexhgiaq5bdu24eOPPy6+NzbFH9oToZAMnDeWiIiovIRGgTExB0q9fABAREQEHn/8cQwcOJCtrkTVGAMskQ/Iz8/H9OnTsXDhQphMJvO8sadCICcFQgI/ZImIiFwlIKBEFcLYJBvwVwAAN9xwA8aNG4fw8HAv146IysIAS+RDjhw5go8//hiHDh0CAEhZftAeD4Wc6+flmhEREVV/IsAIY5NsKHX0AICGDRviueeeQ+fOnb1cMyJyFQMskY8xmUxYvHgxpk2bhvz8fEAAclIgtKdDIBk55Q4REVFJQjYP0iQ31cNgMECr1eLOO+/E3XffDX9/ji1B5EsYYIl81KVLl/DVV19h3bp15gUGCdrT7FZMRERkoXYXbpwNBJi7C3ft2hXjx49HQkKCl2tHROXBAEvk43bt2oXPPvsMJ0+eBABIOVpoT4Ry7lgiIqrVlCBzd2ERYe4uXLduXTzxxBPo1asXB2ki8mEMsEQ1gNFoxK+//orvv/8eOTk5AIpGKz4VAqlQ6+XaERERVR3hZ4IxPhdoUAhFUaDT6TB69Gjceeed7C5MVAMwwBLVIJmZmZg2bRp+//13CCEABdBcDILmbDDvjyUiohpNyAKmBrnQtVLMY0QA6N27Nx599FHUq1fPy7UjIk9hgCWqgY4dO4avv/4a27dvNy8wStCcDYbmQhAkwW5TRERUcwgIKLEFMCbkqNPitGnTBo899hjat2/v5doRkacxwBLVYNu2bcOUKVNw4sQJ84IC2TzQU0oAB3oiIiKfJiCgROphSsyBCDYCMN/n+vDDD6Nfv368z5WohmKAJarhTCYTVqxYge+++w6pqakAAClXC82ZYMhp/gyyRETkc5RwPYwJORBhBgBASEgI7rnnHtxyyy3Q6TiIIVFNxgBLVEsUFBTg559/xty5c9WBnqRsrXn+2EwdgywREVV7SojBHFwjzSML+/v7Y8SIEbjzzjsRFhbm5doRUVVggCWqZbKzszFv3jwsXLhQHeRCuuxn7lrMqXeIiKgaUoINMMXnQokqBABotVoMHToUd911F6Kjo71cOyKqSgywRLVURkYG5syZgyVLlkCvN1/JljL9oD0bAumyH1tkiYjI65QQA0yNcqBEmT+nZFnGddddh7Fjx3JkYaJaigGWqJZLSUnBrFmzsGzZMhiN5kEwpMt+0J4NZtdiIiLyCiVMD2OjXLWrsCRJ6Nu3L8aOHYvExETvVo6IvIoBlogAAMnJyfjpp5+wbNmy4hbZbC00Z4Mhp3OwJyIiqlwCAiLcAGOjHIgI8+BMGo0GAwYMwN133434+Hgv15CIqgMGWCKykZqainnz5uG3335DQUEBgKJRi88FQU4N4DyyRETkUep0OI1y1VGFtVotrr/+eowePRr169f3cg2JqDphgCUiuzIzMzF//nwsWrRIHewJhTI0F4KgSQqEZJK9W0EiIvJpQhJQYvNhapAHEWQCAOh0Otx444244447EBcX5+UaElF1xABLRE5lZ2djyZIl+OWXX5Cenm5eaJSgSQqE5kIQJL3GuxUkIiKfIrQKTPXyYKqXD+gUAEBwcDBuuukmjBo1iqMKE5FTDLBE5BK9Xo9Vq1Zh3rx5OH36tHmhAsipAdCcD4Kc6+fdChIRUbWmBBhhapAHJbYA0JhPP+Pi4jBy5EjceOONCA4O9nINicgXMMASkVsURcHWrVsxb9487Nq1S10uZfpBczEIchoHfCIiIjPzwEx6mOrnQ0TrYTntbNGiBW6//Xb06dMHWq3Wy7UkIl/CAEtE5Xbo0CHMnz8f69evh8lkvn8JhbK5e3FSICQDuxcTEdVGQqPAFFsApV7x/a0AcPXVV+O2225Dx44dIUm82ElE7mOAJaIKS05Oxm+//YalS5ciMzPTvNDSvfhiIKRsP7bKEhHVAkqQAaZ6+TbdhAMDAzF48GAMHz6cc7gSUYUxwBKRx+j1eqxfvx6LFy/G/v371eVSttbcvTg1AJLCIEtEVJMISUCJKoSpXh5EuEFdnpiYiOHDh+O6665DUFCQF2tIRDUJAywRVYpDhw5h8eLFWLNmDfR6vXmhUYKcEgBNciCkHC1bZYmIfJgSaIQSlw9TbIE6mrBGo8E111yD4cOHs5swEVUKBlgiqlSZmZn4448/sHTpUpw/f15dLuVqoUkKhJwSAMnIOWWJiHyBkBUo0YUw1c2HCCtuba1Tpw6GDh2Km266CTExMV6sIRHVdAywRFQlFEXB7t278fvvv2PDhg3FrbKWe2WTAyFd5r2yRETVjYCACDXAFFcAJab43laNRoPu3btjyJAh6NGjB0cTJqIqwQBLRFUuOzsbK1euxLJly3Ds2LHiFQUaaC4FQL4UALmAJ0JERN4kdCaYYgqgxOZDBBePJNygQQMMGTIEgwcPRnR0tBdrSES1EQMsEXmNEAJHjhzB77//jtWrVyM3N1ddJ2VrobkUaB74ycAuxkREVUFoFPOATLEFEOF6WDrF+Pv7o0+fPhgyZAg6dOjAe1uJyGsYYImoWigoKMDff/+NlStXYvv27cXzygpAztCZW2XTOYoxEZGnCUlAiSyEElMAJaoQsLpmeMUVV2DgwIHo378/QkJCvFdJIqIiDLBEVO2kp6dj7dq1WLlyJQ4dOlS8wiRBTvWHnBoAOVMHSTDMEhGVh4CACDOYuwhHFwB+xaeDCQkJGDRoEAYMGIB69ep5sZZERKUxwBJRtXb69GmsWrUKK1euRFJSUvEKowQ5jWGWiMhVAgIi3ABTVAGU6EJ16hsAiIqKQv/+/TFo0CA0b96cXYSJqNpigCUinyCEwL59+7B69Wps2LAB6enpxSsZZomI7FJDa3RR92Cr0BoSEoJrrrkGAwcORKdOnaDRaLxYUyIi1zDAEpHPMZlM2Lt3L9avX48NGzYgLS2teKVRgpzub+5qnOnPe2aJqNYRkoAI18MUVQglqgDQFZ/qhYaG4pprrkGfPn3QpUsX+Pn5ebGmRETuY4AlIp9mMpmwb98+rFu3rnSYNQHyZZ25dTbdH5KBrQtEVDMJjQKlTqH5EakHtMWnd+Hh4Wpo7dy5M+drJSKfxgBLRDWGoihqy+ymTZts75kFIGX5mVtn0/0h5Wkgga2zROS7RIARpqLQKsINsH5Li4yMRK9evdC3b1907NiRoZWIagwGWCKqkYQQOHHiBP7++29s2rTJdjRjAMjXQJPuDzlDB+ky75sloupPQECEGtSWVhFsslnfuHFj9OzZEz179kTr1q0hy5xDm4hqHgZYIqoVUlNTsXnzZmzatAk7d+6EXq8vXlnU1VjK8DcPApXP1lkiqh6EvwlKhLlbsBJh2zVYo9GgQ4cOamitX7++F2tKRFQ1GGCJqNbJy8vDjh07sHnzZmzbtg2pqam2BQpkyBnm1ln5sg6Sia0YRFQ1hCwgwvTmwBpZCBFk28oaFhaGbt26oWfPnujWrRtCQ0O9VFMiIu9ggCWiWk0IgZMnT2Lr1q3Ytm0b9uzZA4PBUFxAAaRsP8iZRWE224/djYnIYwQERLARSoS5hVWE6wGra2ayLKNNmzbo1q0bunXrhpYtW3K6GyKq1RhgiYis5OXl4b///lMD7fnz520LmAApyxxm5UwdpBwtuxsTkcvUwBquhwg3QAm37RYMADExMejevTu6deuGLl26sJWViMgKAywRkRPnzp3Djh07sGvXLvz777+4fPmybQGjBDnLD5KlhTaXgZaIigkIiEATRIQeSrj5AT/bU6+goCB06NABXbp0Qbdu3ZCQkABJ4vsIEZE9DLBERC5SFAUnT55Uw+x///2HnJwc20JGydzlOMsPclZRl2OFJ6JEtYWQBESIAUqYASLMACVUD+hsT7UCAwPRvn17dOrUCZ06dUKLFi04zQ0RkYsYYImIyslkMuHYsWP4999/sWvXLuzZswd5eXm2hRRAytWaw2yWOdhKBt6/RlRTCK1iDquh+qKvBpt7WAHA398f7du3R8eOHdGpUye0bt2agZWIqJwYYImIPMRkMuHEiRPYs2cP9u7di7179yIlJaV0wXwN5Gw/c0ttjhZSDgeGIvIFQhIQQUZzC2uoESJMX2qUYAAIDw9H+/bt0b59e7Rr1w4tW7aETqfzQo2JiGoeBlgiokoihEBycrIaZvfu3YsTJ06g1NtuUSutlOOnBlvORUvkXQICIsAEEWqACDFCCTVABBsAOx0o4uPj1cDavn17NGzYkPewEhFVEgZYIqIqlJ2djQMHDuDgwYPqIzMzs3RBowQpRws5x08Ntwy1RJVDQAABJijBRnNYDSnqCqwtfYoUHByMVq1aoVWrVmjbti3atWuHiIiIqq80EVEtxQBLRORFllZa60B75MgR5Ofnly5sAqS8opbaXK052OZqISly6bJEZJeQi7oBBxvMgbXoYS+s6nQ6NG/eHK1atULr1q3RqlUrNGzYELLM1xwRkbcwwBIRVTMmkwmnT5/GgQMHcOTIERw7dgzHjx+3H2oFzC2zuVpzuLU82FpLtZyAAPwVKEHGosBqDq0iyAR7Lw2dTofGjRujWbNmalht0qQJB1siIqpmGGCJiHyAoig4f/48jh07hmPHjuHo0aM4evQo0tLSHGwASPlaSHma4lCbq4VUwGBLNYs5qJqgBJsgAovCatHD3v2qgHmQpebNm6NZs2Zo1qwZmjdvjkaNGjGsEhH5AAZYIiIflp6erobakydP4tSpUzh9+jQKCgrsb2AJtvmaoodW/QqjxHBL1ZbQKBCBRSE1wGR+HmSECHQcVLVaLRo1aoTExESbsBoVFcVBloiIfBQDLBFRDaMoCpKSknDq1Ck11FoehYWFjjc0SsWhtkBj85zhlqqC0CjF4dQ6qAYaAT/Hpys6nQ7x8fFITExEQkICEhMT0bhxY9SvX5+tqkRENQwDLBFRLWEJtqdPn8bZs2dx7tw5nDt3DmfPnsWlS5dKT+9jzSRBKpAhFWqAAg2kQo055BY9Z8AlV6gB1d8EEaAA/qbi7/1NTkMqAERFRaFhw4bqwxJa69Wrx6BKRFRLMMASEREKCwtx/vx5NdBavp4/f97xfbbWjJI5yBbKkPQyJL0GUqEM6DXm7xlyazQBAWgEhL8C6EwQ/gqEzgShs/o+wGR3pN+SIiMjbUKq5dGgQQMEBQVVwU9DRETVGQMsERE5VVhYiEuXLuHixYtISkpSv1qep6enu7YjBeZAawm5BhkwmJ/DYP7esgwmht3qQMgC8FMgih6W59AVLfMvDqmO7kMtKSIiAnXr1kW9evVQt25dm0dcXBxDKhEROcUAS0REFVJQUIDk5GQkJycjJSUFqampNl9TUlKQmZnp3k5NsA21RhmSUQKMts9LfVUYeu0RkgC0CoTW9iu0AsL6a4mw6mootQgLC0N0dDRiYmIQFRWFmJgYREdHIzY2FvXq1UNcXBwCAwMr54ckIqJagQGWiIgqnV6vR1pamk24zczMREZGBjIyMtTnmZmZ9ue7dZUJgEkCTEVh1igBigTJJBUttzwvauVVACjmMhAwb2P1PRTJvKzoOSyfmKIoKAuoy8pqMRbFBa2+CvNXCYBsfi5koT5H0XNh9RxyURmNADSKueuupmid5XnRQ8hFQdXNIGpNp9MhIiICkZGRiIiIUB/WAdUSWP39/ct/ICIiIhcwwBIRUbWSn59vE24zMjKQnZ2NnJwcZGdnIysrC9nZ2TaPnJwcKIri3YpbhVkIlAiqVl+9RJIkhISEICQkBKGhoTYPyzLrgBoZGYnIyEgEBgZyyhkiIqo2GGCJiMjnKYqCvLw8ZGdnIy8vD3l5ecjPz1cf1t9bnufl5aGwsBAGgwF6vV79ankYDAabZZUdkDUaDfz8/NSHTqdz+DUwMNDlhyWcBgcHQ5blSv0ZiIiIKhsDLBERkQtMJhOEEOpXRVHsPjeZTFAUBbIsQ5ZlSJLk9LkkSdBqtdBoKtDPl4iIqJZggCUiIiIiIiKfwL5ERERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BMYYImIiIiIiMgnMMASERERERGRT2CAJSIiIiIiIp/AAEtEREREREQ+gQGWiIiIiIiIfAIDLBEREREREfkEBlgiIiIiIiLyCQywRERERERE5BO03q4AEZG3CCFQUFDg7WoQEbklICAAkiR5uxpERF7BAEtEtVZBQQGuu+46b1eDiMgtK1asQGBgoLerQUTkFexCTERERERERD6BLbBERAB022IhiaJrepIMSZYASQZkCZAkSLJlXdFySQJkCZKljLpOUreBZLVcXVa8T3UditcLSSq+tCgV70ddbrWd9TJRtBt1nQwAluWSus6yjShaJqy3sexDLiqvbmO7Xt0nAIGiZbKddTblYVPH4mUl62FnG9huY7MeTraz2qe9bR3t04bTbYTN9iX3p6632pcoWo4S20ESVtub10vW69SyQt1GUstZlS/ajySJ4n/BouXFf2qhrpch1O/N6wC56HvzOvP3lu3UdZKAhOLt5KJl6gPWy2GzvHgbRV0mQ0CWFGgs64q+V9cXPQcAjbpMQAPzco2klNhOgaboOQD1uVoexfuTYd5ehvn45nWW7czLJCjQWLaHpR4KNIB5O5iPZ/nZLN+bjyWKnqO4LjC/zDSQ1Je7RpIgQypaJhV9Lxf960gw6DUY8WBdEBHVdgywREQAYJKKTyUlGRKKwmZRMiheJwFycVqTzGmwaCeWtCOjRDqxSjZy6XRVnDKslqPEMutjwM6yktuhOLhaBdhSy0oth51AXHI9rIJ08Y/lcJ2jH8NuPVzZxoVflQf2WXbo9XCAtbceJb8XdpYLm2PaW2cJVsXrrNcLq+2slkHY2WfxwzrAFofiogccL1eDowSrgFocdAFLEIUaAK3XmQOsUhwAJXP4M29XFAQlyRwui5ZbnqvlIVmFZUAjFX/VAFZh0866ol+j+XtRFICFGljN24kyA6y9/ckoXmb+3rqOVn9DIqJajF2IiYiIiIiIyCcwwBIREREREZFPYIAlIiIiIiIin8AAS0RERERERD6BAZaIiIiIiIh8AgMsERERERER+QQGWCIiIiIiIvIJnAeWiAgANAJCKObnEswTQapfpeLLfTbzqFo9h/UyUfzcZrmDdVaTggoHk5sWLy/+Kmyew2Y7AQBCnY1TXSMgAQLqtqLkNkXblVZymWXiU5sqlfh9OHiULFuRuV6drXO2TxeOJ9lbb7PM3nyudtaXqqODeWBhu16yXqeWLd6nZD3Hq6W8zbys1v9eDuaBRfnngRUo3k5IwvYB6+WwWa6o+1OKjwMBSIrVfLXCZr2QFAiregiIou+LvlrqUfS9XFRGtlpuvcxcD/PuZACKVPxVQfE8sErRMgmO5oGVIMM8v6wGxX8zy/dy0TYl55aV1XWS1f6K9yVDUr83/1kkGPT2XpdERLUPAywREQB9t0verkLlsOSDCigZnYkA238txZsVKTfr/2x2SCMi8hV8xyaiWqugoMDbVSAiIqL/t3fnUVHW+x/A3+OIMDLIoqYguFBqZhoKaKSDqIVImYbL1evNjNsp2/RW3p/FyS0tMw+pR+/V8koeS9LS61K5lIhLCgqmSCKECKigxDbA4CDO8Pz+4DzPHWCYgWEQZ3i//hp4vtt8oprPfDeiZuAMLBG1W46OjtLr/fv3w8nJqQ1HY/uqqqowefJkAIyntTCm1mUv8bTVcRMRWQMTWCJqt2Sy/y2KdXJygkKhaMPR2BfG0/oYU+tiPImIbBOXEBMREREREZFNYAJLRERERERENoEJLBEREREREdkEJrBERERERERkE2SCILTwhkAiIiIiIiKi1scZWCIiIiIiIrIJTGCJiIiIiIjIJjCBJSIiIiIiIpvABJaIiIiIiIhsAhNYIiIiIiIisglMYImIiIiIiMgmMIElIiIiIiIim8AEloiIiIiIiGxCx7YeABG1D3fu3MHOnTtx4sQJ3L59Gx06dICPjw/GjRuHqVOnwsHBweK2S0pKEBsbi4SEBBQUFMDR0RH9+vVDWFgYnn32WchkMpP18/LyEBsbi6SkJJSUlEChUGDAgAGYNGkSQkJCzPafkZGB7777DhcvXoRarYaLiwsGDx6MiIgI+Pv7m63/22+/Yc+ePbh8+TIqKirg5uYGPz8/zJgxAwMHDjRaxx7jmZWVhdOnTyMlJQXZ2dlQq9VwcHBAz549MXz4cERERMDHx6fR+vPnz8fFixdNjq179+7Ys2eP0Wf2GNOWxkR04sQJHDhwAJmZmbhz5w48PDwQGBiIWbNmwdvb22gde4vnoUOHsGrVqiaP8YMPPsDEiRPr/G7GjBm4ffu2yXpDhgzBv/71ryb3Q0TU3sgEQRDaehBEZN9u376N+fPnSx/cnJycUFNTg+rqagBA//79sW7dOri4uDS77YyMDCxcuBBlZWUAAIVCgerqauj1egDAiBEjsGrVqkY/LCckJGDp0qWoqqoCADg7O0Or1aKmpgYAEB4ejkWLFjX6gfjHH39EdHS01J9SqURlZSXE/7TOnTsXkZGRjY4/JiYG27ZtAwDIZDI4OztDo9EAAORyOd577z0899xzderYYzx//vlnrFy5ss7vlEoltFqt1LeDgwPmz5+PyZMnG+1bTNYUCgUUCoXRMl27dsXWrVsb/N4eYwq0LCYAIAgCVq9ejYMHDwIAOnToAIVCgcrKSgC1cVq+fDmCgoLq1LPHeMbFxWHDhg0mx1ZZWYm7d+8CALZv346+ffvWeS4msM7OznB0dDTaxqBBg5qVKBMRtTsCEVErunfvnvDSSy8JKpVKmDJlipCUlCQIgiDo9Xrh6NGjwoQJEwSVSiX885//bHbbFRUVwuTJkwWVSiXMnj1buHLliiAIglBdXS3s2bNHGDt2rKBSqYTo6Gij9fPy8oTQ0FBBpVIJb7zxhnD9+nVBEAShsrJS2Lp1q6BSqQSVSiXs2LHDaP3U1FQhJCREUKlUQlRUlFBQUCAIgiCo1WphzZo1Uv24uDij9ePi4qQya9asEdRqtSAIglBQUCBERUUJKpVKCAkJEVJTU+0+ngcPHhTGjx8vrFixQjhz5oyg0WikvpOTk4U5c+YIKpVKCA4Olt5zfW+//bagUqmErVu3Nut922tMBcHymIh27Ngh9bF161ahsrJSEARByM3NFV5//XVBpVIJoaGhQl5enlTHnuNpjvh3Om/ePKPPp0+fLqhUKuHgwYMWtU9ERILAPbBE1KoOHz6Ma9euAQBWrFiBgIAAALUzOePHj8fChQsBAImJiTh//nyz2t65cydKSkrg6OiIzz77DI8++iiA2pm6iIgIaebzhx9+wI0bNxrUj4mJgVarhYeHBz799FNpeWrnzp0RGRmJSZMmAQC+/vprVFRUNKi/efNm6PV6+Pr6Yvny5XjooYcAAK6urli4cCFGjBhRp5whvV6PzZs3AwBGjhyJhQsXwtXVFQDw0EMPYdmyZejXr1+dcvYcz8GDB2Pnzp348MMPERQUBGdnZ6lvf39/bNy4ER4eHhAEATt27GjW+zLHXmPaUhUVFdi+fTsA4Pnnn0dkZCQ6d+4MAOjduzdWr14NDw8PaLVaxMTESPXaazzT0tKQnZ0NAHj22WebVZeIiJqOCSwRtarDhw8DAIYNG4bHH3+8wfPx48fD09OzTtmmOnLkiNSGl5dXg+cRERFQKBTQ6/X45Zdf6jzTarU4ceIEAGDKlClGlzL+7W9/A1C7LPDUqVN1nuXn5+PSpUsAgJkzZ6Jjx4ZHCoj1b9++jZSUlDrPLl68KC2vnD17doO6Dg4OmDlzJgDg0qVLyM/PB2C/8ezduze6devW6NhcXFwQHBwMAEhPT2/GuzLPXmPaUidPnsSdO3fq9GPIxcVFWs594sQJaLVaAO03nj/99BOA2iXN48aNa1ZdIiJqOiawRNRqqqqq8PvvvwMAnnzySaNlZDIZRo4cCQBISkpqctvXr19HQUEBAEj16+vcuTOGDh1qtO3U1FRpr1pj9T09PdGnTx+j9Q1/bqz+kCFDpBmr+vWTk5OlMQ4ZMsRofcOYJSUl2XU8m6JTp04AIO1VtIb2HlNTxL/Rvn37omfPnkbLiOO6e/cuUlNT2208tVot4uLiANQm1+K/90REZH08hZiIWk1ubq6UbPTr16/RcuKzkpISlJeXo0uXLmbbFpcommvb19cXZ8+eRU5OTqP1fX19TdbPzc2VlgaKxJ/d3d3h7u5utK5cLkfv3r2Rnp7eaP0+ffpALpcbre/u7g43Nzeo1Wrk5OTYdTybQjxN11T7APDLL7/g8OHDKC4uhqOjI3r16oURI0bghRdeaDDL215i2pyY1O/f3NhF2dnZcHV1bRfxrC8+Pl6ara5/6JoxO3fuxJYtW6BWq6FQKNC3b18EBQVh8uTJFh1sRUTUnnAGlohaTVFRkfS6e/fujZYz/ABtWMeU4uLiZrVdWVkpfcA07MfFxaXR00AN6xv2Z1jf1LJXw7G1tH5RUZFdx9OcuLg4/PHHHwDMJwh5eXkoKiqCk5MTKisrkZGRga+//hovvvgiTp48Wadse4lpc2JSf/ymxu7k5ASlUimNt73Esz5x+XC/fv3w2GOPmS2fnZ2N8vJyODk5oaKiAqmpqfjyyy/x4osvIjU1tcn9EhG1R5yBJaJWY/jh0dQHRicnJ6N1WqNtcWmfuF/P8Lmp+vXHJf5srr44NmvUt+d4mnLjxg1ER0cDAIYOHdrgbk2Rn58fJk6ciMDAQHTt2hUymQwajQanTp3C5s2bUVpaimXLlmHDhg0YPHhwg3HYY0wtiUn98Zsau9i/RqNpt3+jubm5UtJp7vCmUaNGYejQoRg2bBjc3NwAAGq1Gj///DO2bt2KkpISLFq0CP/5z3+M7vElIiLOwBIR0QOsuLgY//d//weNRoNu3bphyZIl6NDB+P+6IiMjMXHiRHTr1k26w1OpVGLixIn497//DaVSCZ1Oh02bNt3Pt9CmGJPWJ86+durUCRMmTDBZdsGCBRg7dqyUvAKAm5sbZsyYgbVr10Iul0Oj0eCrr75qzSETEdk0JrBE1GoMDzIRD08xpqqqymid1mxboVA0eG6qfv1xiT+bqy+OzRr17TmexpSWluKdd95BXl4ePDw8sHbtWumqoubq1asXXnjhBQC1h/mUlZU1GEd7iKmhxmJSfyymxl6///YWT51OJ52MPHr0aOkqLEs89thj0unFp0+fhiAIFrdFRGTPmMASUasx3OdWWFjYaDnDPXDm9oSKunbt2qy2nZ2d63wgFfupqKgw+WFYrG/Yn2F9c/v3xLG1tH63bt3sOp71lZaW4h//+AdycnLg7u6OdevWSafDWkq80kUQBNy6davOuAH7j6kxxmIiEtszNfaqqipoNBppvO0tnqdPn0ZpaSmAph3eZI64jFuj0TT4QoGIiGoxgSWiVtOnTx9puaepEz3FZx4eHk06jRRoePppY8STR/v27dtofcPTSRurX//UU/Hn0tJSqNVqo3X1ej2uX79usn5ubi70er3R+oZt9+3b167jaai0tBQLFixAdna2lLzW789a2ktMLSH235Sxi/23t3iKy4c9PT3h7+9vtjwREbUcE1giajVOTk7SDM/Zs2eNlhEEAefOnQMABAYGNrltHx8f9OjRw2TbWq0Wly5dMtr2kCFDpINgxP7ru337NnJzc43WN/y5sf5TU1Olg2Dq1w8ICABQe1CMeG9mfYbtBgYG2nU8RSUlJViwYEGdmVdrJWaXL18GUHsPqXivaXuIqSnGYiIS/0Zzc3Ol+1frE8fl6OiIIUOGtKt4/vnnn9JdseHh4dIe45ZIS0sDUDt73JLlyERE9owJLBG1qrCwMADAhQsXpA9nhuLj45Gfn1+nbFPIZDLpwJRjx441WP4IAHv37oVWq4VcLsczzzxT55lCocCYMWMAAPv27ZOWQRqKjY0FULsXTqVS1Xnm5eWFoUOHAgB27doFnU7XoP6OHTsAAD179sQTTzxR55mfn5+UMIjlDOl0OuzatQtA7cm74omk9hpPoO6yYQ8PD6xfv77Jyau5/YL5+fnYu3cvgNpls4aH6NhrTFsSEwAIDg5G586dIQiC0b/RiooK7N+/HwAwZswYaY+pvcazvkOHDkGv10Mulzd6MrYhc/88rly5gmPHjgEAnnrqKaskxERE9ogJLBG1qrCwMPj6+kIQBCxevBjnz58HANTU1CA+Ph5r1qwBAIwcObLBEryYmBgEBwcjODjY6IfVmTNnwsPDA1VVVVi0aBEyMjIAAPfu3cO+ffuwdetWAMCkSZPg4+PToH5kZCQUCgWKi4vx/vvv48aNGwBqZ3G2bdsmfTifM2cOXFxcGtR/7bXXIJfLcfXqVSxbtkzal1deXo7PP/9cmiWaN28e5HJ5nbpyuRzz5s0DACQmJuLzzz9HeXk5gNr9fcuWLUNWVladcvYcT7VaXSd5be6y4R07duDjjz9GYmIiKioqpN9XVlbi8OHDeOONN1BRUYGOHTvWiac9x7QlMQFq70udM2cOAGD//v3Ytm2bdBXNjRs38MEHH6C4uBgKhQKRkZF2H09DgiDg4MGDAGpnaptyuNj69euxdu1aXLhwoc4VPWVlZdi9ezfeffdd6HQ6dO7cGS+//LLZ9oiI2iuZwGPuiKiV3bp1CwsWLMDt27cB1C7brKmpQXV1NQCgf//+WLduXYMPjDExMdi2bRuA2llOT0/PBm1nZGRg4cKFdU6Vra6ulmZEAwMDsWrVKnTq1Mno2BISErB06VLp5FGlUgmtVivtSw0PD8eiRYsanQ358ccfER0dLZVXKpWorKyUZlvmzp1b58N9fYbvUSaTwdnZWZoZksvleO+99xocDmOP8dy2bRtiYmIA1M6UibN5jfniiy+k5aT135s47o4dO0Kj0aCmpkYay6JFi6RZOEP2GNOWxgSoTdRWr14tJWtyuRwKhUL6G3VycsLy5csRFBRk9/E0dP78ebzzzjsAgJUrVyI4OLjRsqJPPvkEhw8fBvC/f9dlMlmdLxe6du2K5cuXS6s7iIioISawRHRf3LlzBzt37sSJEydw+/ZtyGQy+Pj4YPz48Zg6dSocHBwa1GnKh1mgdt9kbGwszpw5gz///BOdOnWCr68vwsLCEB4e3ui9oaK8vDzExsYiKSkJJSUlUCgU6N+/P55//nmEhISYfW8ZGRnYtWsXUlJSoFar4eLigsGDByMiIqJJB7ucP38e//3vf3H58mVUVFTAzc0NTzzxBP7yl79g4MCBRuvYWzzrJ1vm1B9/dnY24uPj8fvvvyMvLw/l5eWoqqqCUqlEnz59EBgYiEmTJsHDw6PRNu0tptaIiej48eM4cOAAMjMzodVq4eHhgcDAQMyaNQve3t5G69hbPA199NFHOHr0KDw8PLB792507NjRbJ3Lly/j1KlTSEtLw61bt1BeXo579+7BxcUFvr6+CAoKQnh4OJRKpdm2iIjaMyawREREREREZBO4B5aIiIiIiIhsAhNYIiIiIiIisglMYImIiIiIiMgmMIElIiIiIiIim8AEloiIiIiIiGwCE1giIiIiIiKyCUxgiYiIiIiIyCYwgSUiIiIiIiKbwASWiIiIiIiIbAITWCIiIiIiIrIJTGCJiIiIiIjIJjCBJSIiIiIiIpvABJaIiIiIiIhsAhNYIiKyCevXr0dwcDDefvvtth4KtTGNRoNnn30WwcHBOHnyZFsPh4iI7qOObT0AIiJqXZWVlcjMzER6ejoyMjKQkZGBvLw8CIIAANi1axc8PT1bpW9BEDBt2jQUFhZi9uzZeO211yxqJzMzE/v27QMAvPrqq1YcYdu6du0azp07h9TUVFy7dg3FxcXQ6/VwcXHBww8/jKCgIISFhUGpVLb1UB8oSqUSM2fOxJYtW7BhwwaMHDkSjo6ObT0sIiK6D5jAEhHZufnz5yMzM7NN+k5PT0dhYSEAQKVSWdzOpk2boNfrMXLkSAwZMsRaw2tT8+fPx8WLF40+KykpQUlJCZKSkvDNN98gKioKI0aMuL8DfMBNmzYN33//PQoKCrB7927Mnj27rYdERET3AZcQExHZOXGmFaiduRo2bBg8PDzuS9+nTp0CAHTv3h2DBg2yqI1Lly4hOTkZAOwqSRETexcXF4SHhyMqKgobN27Eli1b8NFHHyEoKAhAbTIbFRWFlJSUthzuA0ehUGDq1KkAgNjYWNy5c6eNR0RERPcDZ2CJiOxceHg43NzcMHDgQHh7e0Mmk2H+/PkoKSlp9b7FBHbUqFGQyWQWtfHtt98CADw9PfHEE09YbWxtzdvbG3PmzMH48ePRqVOnOs8GDhyIkJAQ7NixA1988QWqq6sRHR2N7du3t9FoH0yhoaGIiYlBRUUFfvrpJ0yfPr2th0RERK2MM7BERHZu2rRpePrpp+Hj42NxEmmJGzduIDc3F4Dly4cLCwuRkJAAAJgwYcJ9HX9rW7NmDSZOnNggeTU0e/Zs9O/fHwCQk5ODrKys+zU8m+Dp6YmhQ4cCAA4cONDGoyEiovuBM7BERNQqxNNhxWXLljh69ChqamoAAOPGjWtSHZ1Oh2PHjuHXX39Feno61Go19Ho93Nzc4Ovri4CAADz99NPo2rVrnXrBwcEAgLCwMERFReH69evYvXs3kpKSUFRUBGdnZwwYMAB//etf4efnJ9W7e/cuDh06hCNHjuDmzZuoqqqCl5cXnnnmGUyfPr3FhwsNHz5c2sN848YNPPzwwxa3lZOTg/379yMlJQW3bt1CVVUVlEolXFxc4OnpCX9/f4wePRq9e/e2qH2dToeff/4Z8fHxuHbtGsrKyiCTydClSxe4ublh0KBBCAgIwKhRo+Dg4FCnbv345+TkYO/evUhOTkZRURG0Wi0+/vjjBl+GjBs3DikpKcjNzUV6ejoeffRRy4JDREQ2gQksERG1CnH5cFBQEDp2tOx/N2fOnAFQu0+0T58+ZstfvXoVS5Yswc2bNxs8KywsRGFhIc6ePYusrCxERUU12s7x48fxySefoKqqSvrd3bt3kZiYiLNnz2LhwoWYNGkSioqKEBUVhfT09Dr1s7Oz8eWXXyIxMRHR0dEtSmJ1Op30ukMHyxdO7d+/H+vWrYNer6/z+7KyMpSVleHmzZtISkpCVlYWFi9e3Oz21Wo13nvvPaMHhomxz8zMxIEDBxAbGwtvb+9G2zp06BCio6NRXV1ttl/DQ73OnDnDBJaIyM4xgSUiIqsrKirClStXAFi+fLi6uhqXL18GAAwaNMjs8uHMzEy89dZb0Gq1AIBhw4YhNDQUffr0gYODA4qLi5GWlmb23tCsrCwcO3YM7u7uePXVV6W+z58/j6+//hpVVVVYu3Yt/Pz8sHLlSly9ehVTpkzB6NGj4ebmhry8PGzfvh1ZWVm4dOkSYmNj8fLLL1sUAwD47bffpNf9+vWzqI1r165JyWuXLl0wadIk+Pn5wc3NDXq9HsXFxcjIyEBiYqLFy7TXrVsnJa/+/v4IDQ2Fp6cnnJ2dUVlZidzcXKSkpEhLwhuTkZGBo0ePokuXLpg+fTqGDBkCBwcH5OTkoGfPng3K9+vXDwqFAlqtFr/99hsiIyMtGj8REdkGJrBERGR1v/76KwRBQKdOnTBy5EiL2sjKypJmHwcOHGiyrE6nw5IlS6TkdcGCBdIJtYaeeuopvPLKKygoKGi0rczMTPTv3x/r1q2Di4uL9PvHHnsM3t7eWLp0KXQ6Hd566y2Ul5djzZo1CAgIkMoNGDAAgYGBmDNnDoqKirBv3z7MmTMHcrm8We8fqF2GnZ2dDaA2iffx8Wl2GwAQHx8vzbyuXbtW2ldrSKVS4ZVXXkFZWVmz27979670xYBKpcLKlSsbJMJ+fn6YPHkytFqtyZnk7OxseHt7Y+PGjXVOy27sFGu5XI4BAwYgJSUFf/zxB2pqalo0U01ERA82/heeiIisTlw+HBAQAIVCYVEbhsuAzV37c/ToUeTl5QGoPXXZWPJqqEePHiafv//++3WSV1FISAi6d+8OACgtLUVERESd5FWkVCoxceJEqVxOTo7J/owpKirC559/DgCQyWR4/fXXm92GSDxxWqlUGk1eDbm6uja7/YqKCunLBj8/P5OzuAqFwuyS6nfffbdZVz2JZauqqlBUVNTkekREZHuYwBIRkVVpNBpcuHABgOXLhwGguLhYet2lSxeTZcWEGQBmzZplcZ9A7ZLUxpI8mUxW51loaGij7RiWy8/Pb9YYqqqqEBUVJSWe9Q+Oai4x6dZoNIiPj7e4nca4urpKpynHxcW16E7W7t27G/1SwBTDvw/DvxsiIrI/TGCJiMiqEhISoNPpIJfLMWrUKIvbuXv3rvTa2GyooT/++ANA7UxcUw57MsVcfcOxmDqt17BccxK6e/fu4cMPP5QOhho9ejReeeWVJtc3JjQ0VJr1XLp0Kd58803s2LEDly5dkpZdt4SDgwPCwsIAAGlpaZgxYwbWrFmDuLi4ZifvlpyybJjAGh68RURE9od7YImIyKrE2dDHH38cbm5uFrdjuGfU3Gm0arUawP9mGlvCycnJ5HPD5bGmlkcb7sMUrwIyR6fTYfHixTh37hwAYMSIEVi2bJlF+2cNeXl54dNPP8Unn3yCwsJCpKamIjU1FUBtnB999FEEBwfjueeeM/tlQWPefvttVFdX48iRIygvL8cPP/yAH374AUDtFwsjRoxAeHi42Zlkc7Ptxhh+2WHpiddERGQbOANLRERWU11djbNnzwJo2fJhoHa/pqi8vLxFbdkCnU6HpUuXSlcHBQQE4OOPP5aW5raUv78/vv32Wyxfvhzh4eHSNTZ6vR6XL1/Gpk2bMGvWLCl5bi5HR0dERUXhm2++wd///ncMHz5cSvBLSkpw+PBhzJ8/Hx9++GGdhLM+Sw5gMjx4yvDvhoiI7A+/piQiIqtJTk6WlqS2NIE1vDLFXALr5uaGgoICmz3AR0xexdnr4cOHY9WqVS26P9aYTp06YezYsRg7diyA2pnr8+fP48iRI0hMTER5eTkWL16M2NhYdO3a1aI+fHx88NJLL+Gll16CXq9HZmYmzpw5g/3796O0tBQnT57Eli1b8NZbb1ntfVVUVEivzR3QRUREto0zsEREZDViAta/f394enq2qC3DO0+vX79usqx4zU5xcbHZsg+a+snrsGHD8Omnn1o9eTXGzc0N48ePx2effYYpU6YAALRaLX799VertC8uT46MjMTmzZul5dlHjx61Svui3NxcAICnpyc6d+5s1baJiOjBwgSWiIisoqamBqdPnwZQe/BQS/Xo0QPdunUDAFy5csVk2eDgYOl1bGxsi/u+X3Q6HZYtWyYlr35+fli9erXZfbitYcSIEdJrcU+xNXl6ekr32Fpy12xj1Gq1dIXS4MGDrdYuERE9mJjAEhGRVaSmpkqJj2FC2RJiUpWbm4vKyspGy40bN05Kjg4ePIg9e/aYbLegoMAq42sJnU6Hjz76CCdPngTQusnriRMnzCal4t5lAOjVq1ez2s/Pz0dycrLJMrdu3ZJmSr28vJrVvilpaWnS6yeffNJq7RIR0YOJe2CJiOzczZs3pRNnReL9ogBw/PjxOqcFKxQKhISENLsfcRbRy8vLoqtQjBk7diwOHjyImpoaJCcnY8yYMUbLdezYEcuXL8ebb74JrVaL9evX4+TJk5gwYQL69OkDBwcHFBcXIz09HcePH8fAgQMRFRVllTFaasWKFTh+/DiA2oRx3rx5uHXrlsk67u7ucHd3b3Zfe/bswYoVK+Dv7w9/f3/07dsXrq6uuHfvHgoKCnD06FFp9rxnz57Nvv6ooKAA7777Lry8vDBq1CgMGjQIPXr0gKOjI8rKypCWloZ9+/ZJp0lPnTq12e+hMUlJSQBq9/cGBQVZrV0iInowMYElIrJzqampWLVqVaPPN23aVOfnnj17tiiBtcbyYVFAQAC6d++OwsJCHDlypNEEFgAeeeQRbNiwAUuWLEF+fj4uXLiACxcuGC0r7pltS/Hx8dLrvLw8zJs3z2yduXPnIjIy0qL+qqurkZCQgISEhEbL9OrVC6tWrTJ5PZAp+fn5+P777xt93qFDB8yaNQsvvPCCRe3Xp9PpEBcXB6B21t/SK4CIiMh2MIElIqIWu3r1qjR72NLThw3J5XJERETgiy++QGJiItRqtcm7ZQcMGIBvvvkGR44cwalTp5CZmSntt3R3d8fDDz+MwMBAPP3001Yboy1YunQpzp07h5SUFFy7dg0lJSXSkmJXV1c88sgjUKlUCA0NtejanqFDh2Ljxo1ITk5GWloaCgoKUFpaisrKSjg5OcHLywtDhw7Fc889Z7XZeQDS3wQATJs2zWrtEhHRg0smCILQ1oMgIiLb9tVXX+Grr76Cu7s79u7da9Fdno3RaDSYOXMmysvL8dprr2H27NlWa5ts26JFi5CQkAB/f3+sXbu2rYdDRET3AQ9xIiKiFhOXDz/11FNWTV4BQKlUSknrzp07cefOHau2T7YpLS0NCQkJkMlkePXVV9t6OEREdJ8wgSUioha5d+8eVCoV5s6di4iIiFbpY+rUqfD29kZZWRm+++67VumDbMuWLVsAABMmTMCgQYPaeDRERHS/cAkxERHZhCtXriAhIQFKpRIzZsxo6+FQG9JoNPj+++8hCAIiIiJM7osmIiL7wgSWiIiIiIiIbAKXEBMREREREZFNYAJLRERERERENoEJLBEREREREdkEJrBERERERERkE5jAEhERERERkU1gAktEREREREQ2gQksERERERER2QQmsERERERERGQTmMASERERERGRTWACS0RERERERDaBCSwRERERERHZBCawREREREREZBOYwBIREREREZFNYAJLRERERERENoEJLBEREREREdmE/we/ROUXCwBDSQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAColklEQVR4nOzdd3xTVeMG8OfeJG266KJsShlloyJLliCyEQFFQJHlBFworwhucYKKP7evvCAgyBZREGUrG2UIskdLWaXQ3aYjyT2/P9Jc0jZJ0zZtmvb5fj75NM099+akTW7uc8+550hCCAEiIiIiIiKiCk72dAWIiIiIiIiIXMEAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFRhgiYiIiIiIyCswwBIREREREZFXYIAlIiIiIiIir8AAS0RERERERF6BAZaIiIiIiIi8AgMsEREREREReQUGWCIiIiIiIvIKDLBERERERETkFdwSYGNjYyFJEiRJwvjx492xySqpZ8+e6t+RiMiR8ePHq/uK2NhYT1dHtWDBArVeCxYs8HR1yM0URUG7du0gSRKeeeYZT1eHvMT27dvV/cKbb77p6eoQVRhRUVGQJAlRUVGerorbPfbYY5AkCV26dIEQwu3bL7cW2AULFuDNN9+sUjuvn376SX3NKSkpnq4O5TGZTNi8eTOmT5+OXr16oXbt2vD19UVgYCAaN26MUaNG4aeffoLZbC7Wdv/9918888wzaN68OQIDAxEcHIw2bdpg+vTpuHDhQhm9GiKqShISErBo0SI88sgjaNu2LUJCQqDT6RAeHo4OHTpg6tSpOHHiRJk897fffouDBw9Cr9djxowZdsu4c/9qe0LEldv27dudbi8xMREbN27Ee++9h/vvvx8NGjTIt35ZiI2NxerVqzFjxgz07dsX4eHh6vP17Nmz2NtLTk7GnDlz0Lt3b9SqVQu+vr7w9/dHZGQkBg8ejHnz5iE7O9ulbaWmpuLDDz9Ez549UaNGDfj4+KB27dro0aMHPvvsMxgMhmLXr6IaPHiw+nefN29esdePi4uDRqOBJEkICwtz+W9sFR8fjxUrVuDFF19Er1690KxZM4SHh0On0yE0NBS33XYbJk2ahF27drm8TbPZjCVLlmDo0KGoV68efH19ERYWhttuuw2vvvoq4uLiXN6WEALr16/HQw89hOjoaAQGBkKn06F69ero0qULXn75ZZw7d65Yr9mZq1ev4pdffsGbb76Je+65B7Vr11b/PyUNcxcuXMD06dPRpk0bBAcHIzAwEM2bN8czzzyDY8eOFbm+NUwW91bUfqciW716tfo6unfvXqJt9O7dW93G8uXL1cdfeeUVaLVa7NmzB4sXL3ZXlW8SbhATEyMACABi3Lhxdsv06NFDLVNVjBs3Tn3NMTExRZavin+j8rZ161YRFham/p2d3Tp06CDOnj3r0nY//PBDodPpHG4rKChILF26tIxfHVUVxd23lJfvvvtOrdd3333n6epUOs8884zQaDRF7rtkWRZTp04VJpPJbc+dmZkpatWqJQCIZ5991m4Zd+9fbd9Prty2bdvmcFtHjhwpcn13++yzz5w+X48ePYq1vQ0bNoiIiIgiX0fDhg3FgQMHnG7rt99+E+Hh4U6306hRI/H333+X4i9gsW3bNnWbb7zxRqm3VxKrV69W69CtW7dirz9z5kx1/cmTJxd7/Zdeesnl9/F9990n0tPTnW7v7Nmz4tZbb3W6ncDAQLFo0aIi63b9+nXRs2fPIuvl4+MjZs2aVezXXtDPP//s9HkaNGhQ7G0uXrxYBAYGOq37nDlznG6jQYMGxdrfABCSJInY2NgS/iVuPmdJXrM75OTk5NsPuHrMa3XhwgUhSZIAIEJDQ0V2dna+5Y888oj6+nJyctxZdaGFG0RFRZVJ83BV481ncbzF5cuXkZSUBAAICwtD7969cccdd6B27dowGo3Yv38/Fi1ahLS0NPz111+46667sH//ftSqVcvhNr/55hu8+OKLAACdTocxY8agR48eMBqN+P3337Fq1Sqkp6djzJgxCAkJQf/+/cvltVLltWDBAnbRrYKOHz+utly2atUKvXr1Qps2bRASEoKEhASsX78eGzZsgKIo+Pjjj5Gamoq5c+e65bm/+uorxMfHQ6PRYNq0aXbLlMX+1eqZZ55Br169nJZp3bq1w2UFW3w1Gg2aN2+O8+fPIysrq8jnL4mCz+nn54fo6GgcOXKk2Nvav38/hgwZgtzcXABA48aNMWbMGDRs2BAmkwlnzpzB/PnzkZCQgJiYGPTu3RtHjx5F3bp1C21r27ZtGDx4MIxGIwDgjjvuwMiRI1GnTh0kJCRgzZo12Lp1K86fP4/+/ftj9+7diI6OLsFfoOIYPHgwqlevjhs3bmDnzp04d+4cGjdu7PL6CxcuVO9PmDChRHXQ6XRo164d2rdvj+joaNSoUQMajQbXrl3Djh078OOPP8JkMuHHH39EYmIitm7dClku3FHy6tWr6NmzJy5dugQAiIyMxCOPPILmzZvDYDBg27ZtWLp0KTIyMjB+/Hj4+/vj/vvvt1snk8mEAQMG4O+//wYA6PV6jB07FrfeeitCQ0Nx8eJF/PLLL9i5cydyc3Px0ksvITAwEJMnTy7R3wAo/LnQ6XRo3bo1Dh06VKLtrV+/HuPGjYPZbIYkSRg+fDj69esHnU6HP/74A99//z1yc3PxwgsvICgoCI899pjd7Xz77bcu9TpYs2YNFi1aBAC466670KBBgxLVuyLw8fHB6NGj8dlnnwGwHFu8/fbbLq+/cOFCNf899NBD8PX1zbd8xowZmD9/Pi5cuID58+dj4sSJ7qu8W+OwE1WxdbGitpJUZd9//71o06aN+OGHHwqdKbK6dOmSaNWqlfq/Gzt2rMPtXblyRfj7+wsAQqvVik2bNhUqY9uKUL9+fZGVleW210NUkbAFtmz17dtXjB492mmr2MqVK4VWq1X/D1u2bCn18xqNRlG/fn0BQPTt29dhOXfvX935fjp79qwYO3as+PTTT8WuXbtEZmamECJ/q4u7rVmzRjz11FNi/vz54p9//hEmkylfj7XitMD26tVLXW/ChAnCaDQWKpOZmSl69+6tlnvuuecKlcnOzhaRkZFqmenTp9t9vk8++UQt06tXL5fraU9FaIEVQojnnntOrcdrr73m8np//vmnul7r1q1L9NwxMTFFtqoePnxYVK9eXX2uZcuW2S03YsQItczdd98tMjIyCpXZuXOnemwSHh4ukpOT7W5r0aJF+Y5PHLUmfvvtt2q56tWr233/uWrXrl3i8ccfF998843466+/1JY56/aL0xqZmZkp6tSpo667YMGCQmU2btyo7hMDAwNFfHx8iesuhBCdOnVSn2/x4sWl2panW2CFEOLQoUP5/vaKori8buPGjdV1HX0vdenSRQAQzZo1K9a2i8IAW4YYYCue5ORklz5AR48eVf93fn5+6sFOQVOmTFHLvfjiiw6398ADD6jlvvjiixLXn6giY4AtW0lJSS6Vmzp1qksB0VVr1qxRt+esS6K796/l8X4qywBrT0kCbHZ2ttp1XKvVipSUFIdlbf+2t99+e6Hly5YtU5e3b9/e6f9r4MCBatnNmze7VFd7KkqAPXz4cIkO1K3dIAGIjz/+uEzrOGfOHPW5xowZU2j5lStX1C6bfn5+4tq1aw63NXv2bHVbr776qt0yo0ePVst8+eWXTuvWrl07teyRI0eK98JcUJIA+3//93/qeg888IDDci+++KJa7j//+U+J63js2DF1O8HBwcJgMJR4W0JUjAArhBC33XZbsU962p7YadOmjcNyX375pVrOXiNPSZX5KMTWkXX/+OMP9TF7F0E7GtxJURSsWLECI0eORMOGDeHv74+goCA0b94ckyZNwtGjR53W7c033yx0ofWWLVvw4IMPomHDhtDr9YVG8jSZTPj9998xdepUdOvWTR3cICgoCE2bNsX48ePx559/OnxO6wihtl1OGjZsWOg1O/pbuTKYxL59+/DEE0+gWbNmCAoKQkBAABo3boxx48Zh69atRa5fcBCJzMxMfPTRR2jfvj1CQ0MREBCAVq1aYcaMGUhOTi5ye94iJCTEpb9v69at0bx5cwBAVlYWzp49W6iMEAIrV64EgCJH5Xz22WfV+7YXuZeHPXv2YNKkSWjZsiVCQkKg1+sRGRmJkSNHYv369U7XtTd6ZFxcHKZOnYrmzZsjICAAISEh6NKlC7766iuYTCaX6pSRkYH/+7//Q58+fVCnTh118IkOHTrg9ddfx/Xr152uX/CzYjabsWDBAvTp0wd169aFVqu1OxDEtWvXMG3aNLRs2RIBAQEICwtDx44d8fHHH6tdhxyNCvjbb7+pz2n7/3Tm2WefVdfZsGGDS+u4oqhRiMvq/7Zu3ToMHjwYtWrVgl6vR1RUFEaPHo09e/YU+zXk5uZi3rx5uPfee1G/fn3o9XqEhITglltuwdSpUx2Ornzq1CkEBARAkiQEBwcjJibG4XMkJycjMjISkiRBo9E43W97g9DQUJfKPfDAA+r9or4jXfH9998DsHSBHTZsmMNy7ty/0k2JiYlqt8saNWogODjYYdmmTZuq9zMzMwsttz0+ePjhh53+v8aOHave/+GHH4pV55KwduuVJAmyLOOTTz6xW+63337D+PHjER0djaCgIPj7+6Nx48YYP348du7c6XD7t956K9q2bQvAMuDPtm3biqyTwWBQv+e1Wi0efvjhErwy17Vs2VK9Hx8fX2j59u3b1S6b/fr1Q40aNRxuy/b/t3TpUrtlEhIS1PtFdRMv6r3lCbbHU88995zDcs8884z6Xl+xYkWJn++7775T748aNQp+fn4l3parzGazOqKv9bg9NTW1ULm4uDi88sor6NixIyIiIuDj44NatWqhT58++Prrr9XLD+yx7Rbv6uVJtuWcdasfOXIktFrLFavW7xK3cEcKdjaIk23Lq7ObvbNyZ8+ezXdWwN5NlmWnXUHeeOMNtezWrVvFU089ZXc7ti2krlzMbn2t9i5Ktm15LWp9R38rR4xGo3j88ceL3PaIESOcnhmyluvRo4c4d+6caNmypcNtNWjQoEq2IHfo0EH9G+zdu7fQctsz3UV1KzKbzaJatWrqezYtLa2sqq3KyMgQI0eOLPK9MmjQIIf1KXjmfMOGDSIkJMThtvr06eOw66DVr7/+KmrUqOG0TkFBQWLt2rUOt2H7WUlMTBTdunWz+761tXXrVhEaGurwOdu0aSPi4uIcnhE1m82iYcOGArAMVlBUV/CsrCz1+SIjI4XZbHZavjiK6t3h7v+byWRyul+TZVnMmjXL5Razv/76S/1bOrr5+PiIb775xu76tt3ZOnfu7HCwouHDh6vlXnnlFad/08rEtpWgefPmpdpWdna22hXxzjvvdFMNi96/CsEWWKusrCy1C6ROp3PaAvvvv/+q2x86dGih5batqhs2bHD6vAcPHlTL1qpVy6W62uNKC+zBgwdFzZo1BWBpZf7+++8LlUlISMjXldrR7dFHHxW5ubl2n8d2YC1XeifYdrEdMmRIcV52idi2VtlrgbVtVX3ppZeK3J71uAOAOHnyZKHlDz/8sLq8qBbY9u3bCwBCo9GIxMRE11+Uixx9dzuSmpqqtkYHBwcX+R1re+nCsWPHil0/o9GovkcBiH379hV7GwUV1QKblZUl7r333nyfaXvHHu+9957w9fV1+rmIjo4Wp06dsvs8N27cED4+PgKACAgIKLK7e2ZmpggKClL3SQkJCU7Lt23bVgAQYWFhbjsWKvMAu2PHDrFmzZp8b5w1a9YUup04cSLfemfPns13LUC3bt3EBx98IJYuXSoWL14snn/++XwHo452irYBdsCAAeqOePr06WLx4sViwYIFYvLkyeLKlSvqOp06dRKBgYFiyJAhYubMmWLRokVixYoV4tNPPxVPPPGECAgIULdp7xqTAwcOiDVr1oi77rpLLfff//630GsuOEqgKwF21KhRahm9Xi+efPJJsXDhQrF48WIxZcoU9Q0FQPTr189hFxlrmbZt24rmzZsLSZLEkCFDxNdffy2WL18u3n///XzXyXTv3t1hnSqjnJycfAf8V69eLVRm6dKlDt/39tj+f92x43MmOztb3HHHHerzNW7cWLz88svi+++/F8uWLRPvvPOOaNq0qbq8V69edncqtgceQ4YMEf7+/sLPz088+eSTYsGCBWLp0qVi6tSp+T4Tzk4orVq1Su0Kp9PpxP333y8+//xzsWLFCvG///1PjB49Wh3NWZZlh11ZbP+W1s/1rbfeKj744AOxbNky8e2334qnn35aLX/s2DH1INz6vv/444/F8uXLxWeffSa6du2qhqG6des6/EJ577331G0Ude3L999/r5Z96623nJYtruIEWHf83yZPnpwvWD7++ONi4cKF4vvvvxfPPPOM+rcdOnRokYFj9+7danlJkkT//v3FnDlzxPLly8WCBQvEk08+me9/5Wg7999/v9O6/+9//1OX33HHHaW6ZsvbLF++PN/3QGls2bJF3VZput7ZcmX/KkT+ANuhQwfRrFkz4e/vL/z9/UWDBg3E8OHDxeLFi0v1v/WGACuEEIMGDVLXe+SRRxxeA9unTx/1s2VvVGbr/hIoXoAFIK5fv+5yfW0VFWC3bt2qBi1/f3/x66+/FiqTmJiY73q7W2+9Vbz11ltiyZIlYunSpeKVV15R993OvpOLe6BuG5h/+umnkrx8l509ezbfa1izZk2hMrNmzVKXFzfArly5stDylStXqstdvQZ2/PjxxX5trrBu39UAu2fPnmJ9lmy/N5cvX17s+q1du1Zdv1WrVsVe3x5nATY5OVl0795dfc5HH33U7sla20vZQkJCxMSJE8W8efPU3GKbRWrVquVwf2v7nTp//nyn9bY9sWPvRFlBkyZNUss7OmFZXBVyGh2z2Sxuv/12AUD4+vqKFStW2C0XHx+vttDKsiz+/fffQmVsAyxgCcKpqalOn3/z5s1OWy9v3LihtvjIsizOnz9vt5y7p9GxvXalZs2ads8gxcbG5mvZcHS9pe3fxMfHR/zyyy92X6fttkoTujIzM+2euCjJrajpAdzBNnzYu45ICCHeeustp1/KBY0dO1Ytb+/ssjsVvDbX3sFObm5uvjp9/fXXhcrYHngAlpbE06dPFyq3b98+tYXA3lDqQggRFxenfplGRkY6vIZm3759Ijg4WAAQ9erVs3smvWDPjilTpjg9q2fbQjt58mS7ZQvuK+x9ocTHx6sBu6gvzDvvvFMAlrPVFy9edFq2uIoTYEv7f7O9ziUkJMTuQA0nT55Up1hxFjzT0tLUwYBCQkLE9u3b7b6+M2fOqCfQAgIC7B44JyUliXr16ql/4x07dqjLTp06pYbzatWqiXPnztl9HledOHHCbfuvkoaA4rj77rvV/8Nnn31Wqm3ZnrSxdwBcEq7sX4VwfRqdZs2aiX/++adEdfGWAHv69Ol8PVcaN24s3nzzTbFo0SIxf/58MX36dLV1yNfX1+EB6IQJE9RtfPrpp06f0/aYA4DYuXNncV6qylmAXbVqldpyFBYWJnbv3m13G9aTY5Ikif/7v/+zWyY9PV307dtXfS5HAd22Z4azA/XY2Fi1ha9GjRpuOwkWExOj7g9WrVolvvnmGzF+/Hjh5+en1mvChAl21124cKFaZtiwYU6fJz4+Pt//75133ilURlEUMWzYMLWMXq8XTzzxhPjqq6/E0qVLxezZs/N9fw4bNqzI0F9Szr577bH9W7jSiPD666+r5d9+++1i12/IkCHq+u66FtpRgL1y5Ypo06aN+nyOBlv76aef1DK9e/cWN27csFvum2++UcuNHDnSbpl169apZYrqbWMbip31lrNasGCBy/sdV1XIAGs7X1dRX76nTp1SW3Qef/zxQsttD0oDAgLE5cuXXXpNRTl37lyRHwR3B1hrEzwAu2corfbt26fudBs0aGD3jI3tTm3mzJkOtzV37lyXyhXF9j1S2psrO6rSSEpKErVr1y7yoO35559Xy3z++edFbre45UvqypUr6hnm++67z2nZ3Nxc0ahRIwFYupcUVDAI/fnnnw63ZTsYhL1yzzzzjBo2Dh065LRe8+bNU7e1ZMmSQsttPyvt2rVzGl7/+usvtWzr1q2dzo1pu11HX6K2A3LZC4VCWPZL1jKDBg1y+lpLorgBtjT/N9svbXsjPFrZfvkB9gPsxx9/rC7/+eefnb5G25a/d999126Z7du3C1mW1f9XcnKyyM3NzTfYiDtOFhU8uVGam7O5St3BtmdIzZo17Y5QWhwPPfSQuj13DNzi6v5VCEuA1Wq1okePHuK1114TCxcuFCtXrhRfffWVePjhh4Ver1e3ExQUVKIQ6y0BVghLoOrdu7f6/W7vNmnSJHHmzBmH27DtmdChQwenAxnZtvoCEOvWrStWfa0cBdhvvvlG/fzWrVvXYbfOAwcOqOu/8MILTp8rKSlJPQHap08fu2XWr1+vbs/ZgbrtSeqinrc4vv76a4f/vyZNmjjtynv27Fm1rL+/v9Oumx9++GG+bTvqQWEymcTLL7+crwdfwdvtt98u1q1b59ZRZAsq6ru3oE8//VRdZ+rUqW4vb+vatWv5uvEX1WXWVfYC7OnTp0VUVJQALCdsPvnkE4fr33LLLQKwtJ4Xta8fM2aMegwWFxdXaLnJZFL3zZIkOTzxa3tip2bNmi6d2Nm3b5/6t3/00UeLLO8Ktwzi5G7Wi3yrVauGxx9/3GnZpk2bomPHjgCAjRs3Oi17//33o06dOm6pY6NGjdS56/bt2+eWbToTGxurzpHVpk0bDBgwwGHZjh07qvPlXbhwAQcOHHBYVqPR4Omnn3a43HbevePHjxe32l7HbDZj1KhRuHr1KgBg0KBBGD58uN2yGRkZ6n29Xl/ktm0v9k9PTy9lTR1bsWKFerH+f/7zH6dldTodRo4cCQA4c+aMw4FzAKBt27bo3r27w+XO3itCCCxZsgQAcPfdd+O2225zWi/bi/6L+lw/9dRTdufKs1q7dm2+shqNxmFZZ4NAWNnOY/a///3Pbhnbx5944okit1mWSvN/y8nJUQefqlmzptMBTAYNGoQWLVo4rYt13960aVMMHjzYadlevXqp+2tH74EePXpg+vTpACz7uokTJ+LVV19V93mjR48u80FXKpLjx4/ne799/vnnCAgIKNU2L1y4oN4PCwsr1baKs38FgG7duuHChQvYvn07Zs6cibFjx2L48OGYNGkSvv/+e5w+fRodOnQAYNmnjhw5stAck5VJgwYNMGfOHNx7770OyyxatAizZ892+B0zfPhwhISEAAD++usvvP7663bLffHFF4UG+UtLSytZxe2YOXMmJk6cCEVR0KxZM+zevTvfAEa2rPsNSZIwdepUp9sNDQ3FwIEDAQB//vkncnJyCpXp16+fum/ZsWOH3YHghBDqXJ9Ayed+LQ6dToc+ffqgU6dODss0btwYd911FwDLAFOjR4+2O3fp3r17Cw2O6uj/p9Fo8OKLL+L1118vNI+n1cGDB/HBBx+UaMC+slKex2Dff/+9OtjhPffcg4iIiGKt76oDBw6ga9euiI2NhVarxaJFizBlyhS7Zf/55x91TulJkyYVua+3fheazWZs2bKl0HKNRoMxY8YAKPz+t2U79+vDDz+sHqs5YzsAoe13SmkU/awesGPHDgBA7dq18dtvvxVZ3npAeuHCBWRlZTkcFczZQVxBaWlpWLJkCX799VccPXoUN27ccDjqmnUy6bK0f/9+9X7fvn2LLN+3b1/1Dbpv3z415BfUtGlTpyNb2k6CXprRiKOiotQ3fEX23HPPqQfLkZGRLo/GVpFYPz+A5b35008/OS1v+389ceKE3dF7Actk9844e68cO3YMSUlJAICgoKAi6wQAgYGBSElJwYkTJ5yWK+pzbZ2gHYD6xe+IdVRuZ+666y40bdoUp0+fxsKFC/HOO+9Ap9Opy41GozoCeZ06dTBo0KAit1mWSvN/++eff9STIT169HAa/gHLyQlH/6/U1FT1y7ZmzZouvwcAOH0PvPXWW9iyZQv27duXb0TKhg0b4quvviryOVzx5ptvOhwpv6KIj4/H4MGD1QOzyZMn5xuNuKSsn1ug9AG2uPvXJk2aOF1ev359bNiwAa1bt0Z8fDxOnjyJVatWqSflKhOTyYQpU6bgyy+/hFarxbRp0zB27Fg0adIERqMRhw8fxpw5c7BmzRrMnTsX+/fvx8aNGwuNUhscHIxPPvlEDWTvvPMOtm7dihEjRqBOnTq4fv061qxZg82bN8PPzw8hISHqCQdnJwpdpSgKnn76aXz55ZcAgA4dOuDXX39F9erVHa5j/U4LCQnJdyzkiDW05uTk4Pz584VOrGk0GowdOxYffPABhBBYuHBhoc/3jh07cO7cOQBA+/bt0bp1a5dfY1EmTpyongjNzc3F1atXsW3bNsyePRtff/01/vvf/+Kdd97BjBkz7K7/2Wef4Y477kBmZiY2bdqEVq1a4ZFHHkGzZs1gMBiwfft2/PDDDzAajWjUqBHOnz8PwPH/77fffsOoUaOQmpqKnj17YsaMGejUqRP8/PwQFxeHlStX4t1338XOnTtx9913Y9myZRgyZIjb/h7ewHb04UceeaRMnmPz5s0YNmwYMjIy4O/vj1WrVjltrLI91svJySnyO/Xy5cvqfUffqRMmTMDs2bMBWE6GvfHGG/lGKi/piZ3w8HD1vrtmNqlwATYjIwOJiYkALNMlOBuy357k5GSHAdb2QM2Zbdu24aGHHrI7hLk97jwr6Yj1CwTIP5S5I7ZlbNctyNmXBoB8Z+Oys7OLfF5v9sorr6hfqjVr1sSmTZuc/n2sB9eAa3+brKws9X5QUFApauqcbSvqiBEjirWusx1Lad4rtnVavXo1Vq9e7ZY6AUV/rq9cuaLeb9SokdOyoaGhCAkJQUpKisMykiThiSeewH/+8x9cu3YNv/zyC+677z51+c8//6xOTTBhwoQiQ19ZK83/zfZvV1SYKKrMxYsXoSgKAMsXr+2Xb1GcvQe0Wi1++OEH3HbbbWp4sz5WrVo1l5/DmyUlJaFv377qgerw4cPx2WefuWXb1jCg0WhKNWVEcfevrgoPD8dzzz2nHuyvX7++UgbYcePGqVPZrF69Ol8rrK+vL7p164Zu3brhhRdewCeffIJ//vkHTz31lDoFjK3x48cjIyMDL7zwAoxGI3bv3o3du3fnKxMUFIQlS5bgjTfeUI8hXJ3GyZnPPvtMnQKkd+/eWLNmTb7vUnus3x/JycklOia0Z/z48fjggw8A2D9Qtz25Yi+wbNy40W7Lp9XQoUNdqp+Pjw8aNGiA8ePHY9SoUbjnnnuwZcsWvPzyywgODsbkyZMLrdO6dWts2LABw4cPR0JCAmJjYwu1pEuShNdffx3p6enqdET2/n+//fYbBg0aBEVRMHz4cCxfvjxf0G3SpAlmzJiBu+++G3feeSeys7MxZswYnD59Wu2F6CnldQy2f/9+HDt2DIClYc1ZqCypa9euYdCgQcjNzUVoaCjWr1+Pzp07O13H9rjqrbfeKtbzOfpcNG/eHJ07d8aePXsQExODP/74I9+JfdsTOx07dkSrVq1cej7b72Lb/0NpVLguxPbmNioOZ/McufLle+bMGQwaNEgNr82aNVPPei5duhRr1qxRb9YuBOXRZcm2u4MrXcJsP9jOukq444xqZfDOO+/gvffeA2A54N+8eXORJwqs3bAA4MaNG0U+h/XETMF13a00nyFnn5/SvFfKqk5A0Z9ra88JrVabr6XUEVc+X+PHj1eD39y5c/Mts/4uSRIeffTRIrdV1krzf7PtouXv719keWd/u9K8B4xGo9Pl1atXz9c62KhRI7Rr167Ez+dNUlNT0bdvX3W+18GDB+OHH35w24kT6/vcbDY7PWB3piT71+KwPcA6efKk27ZbUezfv18Nr/3793fahfjdd99Vg8rq1avznYSy9fTTT+PkyZN4/vnn0aZNGwQFBUGv16NJkyZ49tlnceTIEQwePDjf95Y7AovtnNOZmZku9cwqi++PZs2aoUuXLgCAmJiYfHNEGwwGrFq1CoCla+qDDz5YaP0nnngCw4YNc3grCb1ej/nz56v77Lfffls96VdQ9+7dcfr0acyaNQvdunVDWFgYdDod6tSpg5EjR2LHjh146623ivz/TZ06FYqiQJZlfPrppw6/Lzp27Ijx48cDsBxTVoTeaeV1DGbb+jp27NgyOSkthFCzRG5ubpHHPUDZHVfZtqpae5NZuTr3a0G2dXXX3LkVrgXWNnjdeeed+OOPP8r1+d9//3317MArr7yCt99+2+FE30Vdn+tOtmeLXJlA2vbAsyxb+1xlMBiKvJbRVZGRkbj99tvdsi0AmD17Nl577TUAljOUmzZtcqm7kO0BmLNrR61s+/278+CtIOtnSJIkmEymCnGSwvZz/frrrxf7bGFpWEOVyWSC0WgsMsS68vkKDw/H8OHDsWTJEmzcuBFxcXGIjIzEhQsXsGnTJgCW1oWGDRuW/gV4kO3/zZXw4uxvZ7utsWPHFvpiLI3Jkyfn+3ydPn0ar776KmbNmuWW7Z88edJtwahbt25uaXkELAeS/fr1U6/57devH1auXOnSiRpX2Z4YSEpKculEhq2S7l+Lw7Z7mrPeE97K9lrU3r17Oy3r5+eHLl26YP369RBC4O+//3YYeBs1aoQ5c+Y43FZGRgYuXrwIwHICy9E1qsXx3HPP4cSJE1izZg327NmDfv364ffff3d6nGK9nMS6j3WXCRMmqC3PCxYsQI8ePQAAq1atUk/8Dx06tExPOBcUGRmJFi1a4NixY4iPj8epU6ccji0QHByMadOmYdq0aQ63ZzuugfV6cauYmBh1ecuWLYscI6Z3797473//CwAudeUua+VxDJadnY1ly5apv5dV9+FatWph1qxZGD16NDIzMzFo0CCsX79efU/aY/udunXr1iIvkXLVyJEj8dxzzyErKwurVq3CF198gYCAAGRmZqo9OvR6PUaNGuXyNt15KYpVhQuwwcHBCAwMREZGRrlcW1rQ5s2bAQA1atTAzJkzHYbX9PT0fP+Qsla7dm31/pkzZ4osb1vGXQNXlUZCQkKJz0oWNG7cOLed/fvkk0/w0ksvAbC8937//fciBxiysj0IczZQFmC57sc6CJcsy0UOdlMadevWxeHDhyGEwOXLl1G/fv0ye67i1MmqvD/XderUUa+9PH/+PJo1a+awbHJysssHwBMnTsSSJUugKArmz5+PN998E/Pnz1fPmHt68CZ3sN13nD17tsjyzsqU1XtgyZIl6gBh7dq1w40bN3DhwgV89NFH6NevX75Bqkpq2bJlbjvpsm3bNpeutS5KRkYGBgwYoA4i2KtXL/z0008OB2EpqaioKOzatQuA5SCkXr16Lq9bmv1rcZRX7xZPsW1FdaVbfHBwsHrflRNyjvz5559qC2nnzp1dGqylKDqdDsuXL8eoUaPw448/uhRi69ati5SUFCQkJLh0EtJVI0aMwHPPPae2uFoP1G1b3By1MrkSmErK9u9QmhMyycnJ6ndfQEAA2rZtm2+5p95X7tKyZUvIsgxFUXD48GG1JdkR2/EwXD2J9uOPP6r/g65du5Zp48PIkSMhSZLLIbasvlOrVauG+++/H4sXL0ZGRgZWrVqFcePGYdWqVWrj2LBhw4q1r7XNSw0aNHBLPcutacb2TVVUl5E777wTgOVg05WDJne6du0aAMsAIM4+CJs3b3bYtcOqOK+5KLaDMFlbeJyxbe10NIBTVffll1/ihRdeAGD5wtiwYUOhM5TOtGrVSj2YO3bsmNMdyO7du9Vrpbt27VqmreK2Ozt3tXqXVtu2bdUvyC1bthT52XGn9u3bq/e3bdvmtOz27dtd3m63bt3U6z/mz58Po9GI+fPnA7CcAKsMg1zceuut8PHxAQD88ccfRV4uYW9kQ6vq1aurLTh79+51y9gBMTEx6jViAQEBWLp0KRYvXgyNRgNFUTB27Nh84aayMBgMuOeee9Rgeeedd+KXX35xaSTO4rI90Dt16pTL65V2/1octj21yvIA01Nsw4W1RdQZ25Ym29bp4rINcu68HMIaYu+//34AUEOso32C9TstOzs7X1ff0rIeqAOWE0KrV69GbGys+n6qV69ekS3e7iaEUK8xBIoew8CZH374Qe0qOnr06EL7B0+9r9ylWrVq6iCFqamp2Lt3r8OyFy9eVFubIyMjXe5NYP1OB8qu9dXWiBEjsGTJEmi1WmRmZmLgwIEOe6KW5bGevW7EJe0+DOQfNOqWW24pXeXylFuAtW3qLurMzbhx49T7joZ4LyvW7lHnz593GDrNZrN6PY8zxXnNRYmKilK7zf7zzz9OQ+zff/+NrVu3ArCc6agI14JZRyF2x80dra9z587FM888A8By4Pvrr78WecF8QZIkqaN8CiHw+eefOyxrO6BKWQ8wMmrUKDV0zJo1q0KcKdVoNBg9ejQAy5ego+lnyoJtkPzyyy+dhrBPP/20WNt+8sknAVi+HKdMmaKexBg3bpxbu3F6iq+vrzolxbVr19Tr8OzZsGFDkSNGW/ftBoNBHUClpMxmM0aPHq0e9H722WeIjo5Gt27d8PLLLwOwjLr42GOPlep5AMsoxO7af5W29TU7OxtDhgxRD2q6du2K9evXF7trr6tsp/Rwdco4d+xfXZWUlJTvc2t9v1YmticRVq5c6XQfFhsbq/6fZFku8eU227ZtU68DbdSokRr03EWr1WLZsmXqNEp79uxB//797YbYsWPHqvffeustt447YnsgvmDBgnxThIwbN67cL8H56aefcP36dQCWwc4aN25cou0kJCSovUZ0Op3dqViaNGmihtqLFy8WGsirINuutLYnhj3J9njK2ff3559/rv5fXR3c8sKFC+qxdGBgYLEHxSypESNG4IcffoBWq4XBYMDAgQPtnlxv3769ehJ9+fLl6kBT7nDXXXepM1Js374d27dvV79z6tevj7vvvrtY27P97nA2TVSxuGMyWduJuceNG2e3zLPPPquW+eOPP5xuz2w2iw4dOqjln3vuOZGTk+OwvMFgEN99951YunRpoWW2E9C7MoF8nz591PJz5swptDw3N1dMmDAh3wTPjiZdnjNnjlpm4cKFRT53jx49nE6ovnz5cnV57dq1xYkTJwqVuXDhgmjcuLFa7osvvrC7LetyVyZSL05Zb7Bw4UJ1EmZ/f3+X3heOXL58Wfj7+wsAQqvVis2bNxcq891336l/w/r164usrKxS1N41U6dOVZ/zrrvuElevXnVY1mw2i02bNom333670DJHE9DbU1TZixcvipCQEAFA+Pr6FvmZuHbtmpg5c6b4559/Ci0r6rNSULdu3dTykydPFmazuVAZ232Fs8+1rZSUFPX/b3s7ffq0S/UqqXHjxqnPFRMTU2i5O/9vO3bsUJeHhoaKQ4cOFSpz+vRpdQJ06+27774rVC4jI0OduF2SJDF79my7/wurlJQU8emnn4pNmzYVWvbaa6+pzzV8+PB8y4xGo+jcubO6/L///a/Tv4G3yMnJEQMHDlRfV6dOnURqamqZPmd2drYICAgQAET37t2LLO+u/evu3bvF3LlzRXZ2tsMyFy9eFB07dlT/HtHR0cJoNBbreazvx+IcDtke8xT3MMp2XVe/U69fv67+DwCISZMmCZPJVKhcYmKi6NSpk1pu4MCBdrd3/vx5ceHCBYfPt3HjRhEcHKx+TkvzHSmE832M0WgUw4cPV5ffcccddt/T999/v1pm5MiRTt/3RqNRrF692uHxjy1FUURUVJT6WmvWrKk+z5kzZ4r9Wu05c+aMmDVrVpGf1U2bNqnfkc723QaDQezbt8/hds6ePStuueUWdTtvvvmmw7IjR45UyzVp0sTh++Ldd99Vy/n6+oqLFy/aLWf7ubD33eRMcb57rTIzM0WdOnXUdRcsWFCozKZNm4RWqxUARGBgoIiPj3dp22+++aa63QkTJrhcp+Kw7n/sveaVK1eq9Xa0L/3555/VOkZGRor9+/c7fb5jx46JiRMnulQ322Mi2+/3V1991aX1bbVt21YAEOHh4U6/84uj3K6Bvfvuu9VWqEcffRTPP/88GjRooI7m1aRJE3UKBlmWsXr1anTu3BmXL1/Gp59+ihUrVuCBBx7ArbfeiuDgYGRkZCAuLg5///03tmzZgszMTLz99tulruczzzyjtm6+8MIL2L59O/r164fw8HCcOXMGixYtwpkzZ3DXXXfhzJkzTruN2p6hmDZtGq5fv45mzZqp15HUrVsXbdq0cbluI0aMwJo1a7Bs2TJcvXoVt99+O8aPH4/OnTtDo9Hg77//xrx589QzmH379rU7BHtVtmHDBjzyyCPqmbhHHnkEKSkpRc6fdfvttyMyMrLQ43Xq1MHHH3+MSZMmwWQyYcCAARg7dix69OgBk8mEDRs2qGextVotvv32W6fd/GyvuY6JiXE4J2tR3n//fRw+fBhbtmzBtm3b1DPonTt3RkREBHJzcxEfH6+25sfHx+Puu+/Gq6++WqLnc0W9evWwbNky3HvvvcjJycG4ceMwZ84c3HvvvYiOjoafnx9SU1Nx+vRp7N27F7t27YLZbHbLwAT//e9/0aFDBxgMBnz11VfYs2cPHn74YdSrVw/Xrl3D8uXLsWvXLnTu3BlxcXG4fPmyS2feg4ODMXLkyHxd7Xr27Ino6OhS17mi6NatGyZPnoyvvvoKycnJuOOOOzBu3Dh069YNsixj//79mDdvHjIzMzF06FCnn6WAgAD89NNP6NGjB9LS0jBt2jT897//xf3334+WLVsiMDAQaWlpOH/+PPbv34/t27cjNzcX33//fb7t7Ny5U+0FU69ePXz77bf5lmu1WixZsgS33XYb0tLS8Pzzz6NHjx5Or3/2BuPHj8evv/4KwNItd9KkSWoLgTOuTulhj6+vL/r374/Vq1fj77//RkZGhsNpT9y5f7127Roef/xxTJ06Ff369UO7du1Qt25d6PV6JCYmYteuXVi1apU66GJQUBCWL1/u9DrNefPmISYmJt9jttcYFtz/hYaGYurUqU7rXpSC27QdjTMmJqbQ8ttvvz3ftFyApRvpu+++q7aiff311/jzzz/x0EMP5ZsHduHChWrrXXBwMD7++GO7dTpw4ABGjRqF7t27o2fPnmjSpAm0Wi0uXbqEDRs2qJcCSJKEL774wi3XbDui1WqxdOlSSJKElStXYu/eveo1sbZdXOfPn4/Tp0/j6NGjWL58OX7//XeMGDEC7du3R2hoKLKysnD58mUcOnQImzZtQnJyskvdniVJwvjx49VeFtbLyLp37+7S1GGuyMjIwEsvvYQ33ngDd999N9q3b4+oqCgEBQXBYDDg/Pnz2LhxY74W0K5du2L69Ol2t5eZmYlOnTqhVatW6N+/P1q1aoWgoCDcuHEDf/75J9asWaNOK/Pggw86/V5/7733sGnTJiQlJeHs2bNo3bo1Hn74Ydxxxx355oG1bUF74403inUtvD0ff/yxw6lcUlJSCtW5YcOGdv+f/v7++PbbbzFkyBCYzWZMmDAB69evx4ABA6DVavHHH39g0aJF6ujXn3zyCWrWrFlk/UTe/MBW5dF9uKDhw4dDkiSMGjUKBoMBgwYNwrp16/IdEw0ePBivv/46Zs6cibi4OHTq1Al9+/ZF7969Ua9ePUiShMTERBw7dgzbt2/H8ePHodFo8PXXXxf5/OPGjcPMmTMhhMg3Had1NGpXJSYm5hsl3229GtyRgl1pgTWZTPlaQQre7J1punLlirj77rsdrmN702g0Yu7cuYW2UdwWWCGEmDFjhtPn6tq1q0hISHB65sTqwQcfdLidgn8rV1qVjEajeOyxx4r8ewwfPlwYDAaH27GWq2otsAVb2Vy92WtNsvXhhx8KnU7ncP2goCC7PQQKsl2nuGcvC8rJyRFPP/200Gg0Lr3GsWPHFtqGO1vyrPbs2SMaNWrkUp0CAwPFkSNHCm2juC2wQgixdevWfGe3C95at24t4uLiRN26dQUAccstt7i03X379uXbzpIlS1yuU0mVZwusEJb995gxYxz+7WRZFrNnz87X28DZZ+bkyZPqGdmibr6+vmLDhg3qusnJyeq+V5Zlp/v1xYsXq9tp27at05483sC2tbA4t9L66aef1G0tWrTIYTl37l/XrFnj8vqtW7e221OjINv9his3R9/txWmBLe7fwtExlBBCfPTRR8LHx6fIbURFRYm9e/c63M7KlSuL3EbNmjXF8uXLi/ybusKVfYzRaBQjRoxQy9nrXZCampqvxbCo22uvveZS/WJiYtReA9bb/PnzS/uyVYcOHXK5zrIsiyeeeEJkZGQ43N7169eL3I6Pj4949dVXXWrtOnDggIiOji5ym1qtVrzzzjtOt2Vb3tkxTHH3ZUUdfy5evFgEBgY6/XvY61XpyJYtW9R1mzZt6vJ6xeVKjli9enW+ltitW7cWKjN37lxRrVq1Uu3X7LnrrrvyrXvnnXcW+zV+9dVX6vr2eimWVLkFWCGEyMrKEh988IHo3LmzCA0NzXdg7ewga/v27eLJJ58UrVq1EiEhIUKj0Yhq1aqJli1bipEjR4qvv/5aXLlyxe66JQmwQgixYcMGMWjQIFG9enWh0+lE7dq1Ra9evcTcuXPVLkquvPFMJpP4+uuvRc+ePUX16tXVN6G9v1VxDsr37NkjHn30UdGkSRMREBAg/Pz8RMOGDcXDDz8stmzZUuT6ru4Uilu2oiurACuEEEePHhVPPfWUaNq0qQgICBBBQUGidevW4qWXXhKxsbFFrp+ZmZlvZ5uYmOiGV2zpvjR9+nTRqVMnERERIbRarfD39xcNGzYUAwcOFO+9957dkChE2QRYISwHK4sXLxYjRowQDRs2FIGBgUKr1YqwsDDRvn178fjjj4vly5c7/BIvSYAVQoj4+Hjxn//8RzRr1kz4+fmJkJAQ0b59e/HRRx+JzMxMoSiK8PPzEwBEz549Xdqmoihqd7uwsDCnXR7dpbwDrNUvv/wiBg0aJCIiIoSvr6+IjIwUDz74oNi9e7cQQrgcYIWw/N3Wrl0rxo0bJ5o2bSqqVasmNBqNCAkJEbfeeqsYO3asWLBggUhKSsq3nu0B7PTp050+hxBCjB49Wi0/derUIstXZJ4KsCaTSURGRgoAok+fPg7LuXP/mp6eLtauXSumT58uevXqJZo2bSrCwsKEVqsVISEhokWLFmLcuHHi559/drlLmrcHWCGEiI2NFa+//rro1q2biIiIEDqdTuj1elGvXj0xePBgMXfuXKcnr4UQ4saNG+Kbb74RI0eOFC1atBBhYWHCx8dH1K1bV9x9993is88+EykpKU63URyu7mNMJlO+z7ejLvIHDx4UU6ZMEW3bthXh4eFCq9WKwMBAER0dLYYOHSrmzJkjzp07V6w69urVS33egIAAkZ6eXtyX6ZCiKOLAgQPigw8+EMOGDRMtWrQQQUFBQqPRCH9/f1G3bl3Rp08f8dZbb4mzZ88WuT2TySSWL18unnzySXHbbbeJmjVrCp1OJyIiIkT79u3Fa6+95tJ2bGVlZYmFCxeKYcOGiaioKOHv7y+0Wq0IDw8Xd9xxh5g+fbpLf1Pb93J5BlghLJ+NadOmiVatWomgoCAREBAgmjZtKp566inx77//FuOvIcTDDz+sPvf7779frHWLw5UcIYQlxFobSRyF2OTkZPHxxx+Lvn37ijp16ghfX1/h6+sratWqJe68807x4osvii1bthSrC++iRYuKfSxcUJcuXQQA0axZM6EoSrHXd0QSopTD4xKRW/z+++/o378/AODZZ58t9oBCVHpHjx5VR8hz9X+wefNm9OnTB4BljsP/+7//K8sqEnnEJ598ghdeeAEajQaxsbGl7kJIRESV27lz59Su+F9//TUmTpzotm2X7/BqROSQdQ7ioKCgMr0WlRz74osv1PuuXntrey1JZZj7lcieiRMnolatWjCbzZg9e7anq0NERBXc+++/D8AyI4q7ryNmgCWqIKwB9oUXXkBERISHa1P57Nixw+n8s19++aU6GFDdunVxzz33FLnNw4cPqwPU9O7d2+W55Yi8jZ+fH958800AwLfffosrV654tkJERFRhxcTEYNGiRQCAt99+W53e0V3YhZioArhx4wZq1KiB6tWr49y5cwgKCvJ0lSqdJk2aIDs7GwMGDEDbtm0REREBo9GIc+fOYc2aNTh06JBa9pdffnEYYH/77TcoioLTp09j9uzZ6uh8O3fuRNeuXcvltRB5gqIo6NChAw4ePIinn37a6dzXRERUdT322GOYN28eOnfujF27duWbZcMdGGCJqEpo0qQJzp0757SMn58f5s6di9GjRzssY28n7Or1shs3boTBYCi6snZUr14d3bp1K9G6RERERJUFAywRVQl79+7F6tWrsXfvXly+fBmJiYkwGAwIDQ1F06ZN0bt3b0yaNKnIOeKsATYwMBBNmzbFpEmT8Mgjj7g0t1lUVBQuXLhQovr36NED27dvL9G6RERERJWF4xm/iYgqkTvuuAN33HFHqbfDc35EREREnsMWWCIiIiIiIvIKHIWYiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyChzEiYiIKhUhBLKysmAwGOzesrKykJWVhZycHOTm5ua72XssNzcXZrMZZrMZiqIUul/wJ2AZrdqVm0ajgU6ng1arhU6nU2+Oftfr9dDr9fDz88t3v+Dver0egYGBCAgIgE6n8/B/hIiIyH0YYImIqMIRQsBgMCA1NRXp6elIS0tDWlqa3fvWnxkZGWpA5fiEN1nDrL1bUFCQ+jMkJATBwcEICQlBSEgIAgMD3T75PBERUWlxFGIiIioXQghkZGQgMTERycnJSEpKQnJycqH71t9zc3NL9XySJMHf39/uzc/PD5sX7YCkAFAkmxsgFfgdQrKUgwQI5N3y7sPmvgAk62M2i2GbASVAXSJZb8JyQY8kICQAssj3GGRAWH+XBaARGDjxbmRlZSE7OxvZ2dlqq3LB30tDq9XmC7S2t+rVq6u38PBwBAcHM+wSEVG5YIAlIqJSE0IgNTUVCQkJuH79unor+Ht2dnaxtqvX6xEUFISgoCBUq1YNQUFB2LXyL0gmGTDJkIyS5adJBkwSYJYgmSXALFvCKKpuqBIQgFYAGgVCa7kvtAqgyfupFRj6fH9kZGQgNTUVKSkp6s/ihl+dTofw8HCEh4fnC7bVq1dHrVq1ULNmTURERECrZccvIiIqHQZYIiIqkhACycnJuHr1ar7blStXEB8fjxs3brjcYhoYGIjQ0FCEhobi362ngFwZklGGlCsDRut9jeW+UnUDqCcJWQBaBUKnADrLT+v9fk/2RGJiIhITE3Hjxg2kpKS4tE1ZlhEeHq4GWns/9Xp92b4wIiLyegywREQEADCZTLh69SouXryIS5cu4cqVK2pQjY+PL7L1VJIkhIaGokaNGoiIiMCu5X9DytFAypXVn8jVMJRWMkISgI8C4WOG8FEAHwWj3hiCxMREJCQkID4+HgkJCTAajUVuq3r16qhXrx7q1q2LunXr5rvv7+9fDq+GiIgqOgZYIqIqRAiBxMREXLp0CRcvXkRcXBwuXryIixcv4sqVK+oouvZIkoSIiAjUrl0bRzeegpStsQTTvJ/IlSEJhlMqTEBYWnL1ZghfBcLXjMHP98a1a9fUW2ZmptNthIWFqYG2Xr16aNCgAaKiolCnTh12TSYiqkIYYImIKiEhBBISEhATE6PeYmNjERcXB4PB4HA9X19f1K9fH/Xr18efi/blC6nI0TCgUpkR2ryA62fC2FnDcenSJVy+fBmXLl1Camqqw/W0Wi3q16+vBtoGDRqgQYMGqF+/Pnx9fcvxFRARUXlggCUi8mJCCCQlJSE2Nhbnz5/P99NRi5Ysy6hduzbq1auHv388CilLk3fTWlpRq/DAR1QxCY013Jox7kNLuLWekHE04JT1fd6wYUM0adIEjRo1QpMmTVCnTh3IslzOr4CIiNyFAZaIyEsoioLLly/j9OnTOHPmjHpzNIiORqNBZGQkLuy/AsmgvXnLZksqVQ4CAvBVIPxMUPxNGPBsT1y4cAGxsbFIT0+3u46fnx8aNWqExo0bo0mTJmjcuDEaN27Ma2yJiLwEAywRUQVkNBoRExOTL6iePXvWbmuTJEmoW7curvxzHVKmTVDNYlClqkm95tbfDMXfhH7PdMe5c+cQExPjcLTsunXromnTpmjevDmaNWuGZs2aISAgoJxrTkRERWGAJSLyMCEELl26hBMnTuD48eM4fvw4zp07Z3fUVh8fHzRu3BintsZCztRCytBZwipH9iUqkoCA8DNDBJgw8u17cPbsWZw7dw43btywWz4yMlINtM2bN0d0dDSn+iEi8jAGWCKicpaSkqKG1RMnTuDEiRN2uzsGBgYiOjoaR9adgpShhZSpg2TQ8BpVIjcTWgUiwIgJn4/AqVOncPLkSVy7dq1QOVmWERUVhRYtWqB169Zo3bo1IiMjIUn8TBIRlRcGWCKiMqQoCmJjY3H06FH8888/OH78OK5cuVKonI+PD6Kjo3FyYwykdC3kDB2QzbBK5ClCp0AJNGLsx/fh5MmTOHnyJJKSkgqVq1atmhpmW7dujebNm7OVloioDDHAEhG5kdFoxKlTp3DkyBEcOXIE//77L9LS0gqVi4yMxKW/EiCn6yzdgDO1vF6VqAITEICPJdSOeGcQ/v33X5w8ebLQNbUajQbR0dFo1aoVWrdujdtuuw3h4eEeqjURUeXDAEtEVApZWVlq6+rRo0dx/PjxQge0er0eLVu2xD8/nYKcpoOUroNk5jQeRN5OSAIiwIQn//cQjh07hqNHj9q9njYyMhJt27bFbbfdxkBLRFRKDLBERMVgNBpx/PhxHDx4EAcOHMDx48dhMpnylQkODkb6+WxIaTrIqT5sXSWqIqzT+ihBRgx5pTeOHDmCs2fPouChFgMtEVHJMcASETlhNptx9uxZHDx4EAcPHsSRI0cKTWVTo0YN3Pg3DXKqDlKaj2X6Gl67SkSwDBClVMvFsDf64vDhww4DbYcOHdChQwfcdtttnJOWiMgJBlgiogISEhKwf/9+7Nu3DwcPHiw0QnBwcDDSz2ZDTvGBnOrDwZaIyGVFBVqtVos2bdqogTY6OhqyzEsOiIisGGCJqMozGo04evQo9u3bh7179yImJibfcn9/f2RfMkFK8YGc4mOZd5WBlYjcQGgVKMG5GDS9J/bv34+rV6/mWx4cHIz27durgTYiIsJDNSUiqhgYYImoSrp27Rr27t2Lffv24cCBA/m6BUuShJYtW+Lkr7GWwJquY2AlojInIAC9GU8tGYu//voLBw8ehMFgyFcmOjoaXbp0QefOndG8eXO2zhJRlcMAS0RVgqIoOHnyJHbt2oWdO3cWamUNCQlB2ulsyEk+kFN8IZl4UEhEniUkARFkxIMfDcZff/2FkydP5utuHBYWhjvuuANdu3ZF+/bt4efn58HaEhGVDwZYIqq0jEYjDh06hB07dmDXrl35preQZRktW7bEifUxkJN8LSMFs5WViCowoVUwde1j2LNnD/bv35+vddbHxwdt27ZFly5d0KVLF9SsWdODNSUiKjsMsERUqWRkZGDv3r3YuXMn9u7dm+8Az8/PDzkXFciJvpCT2cpKRN5LSAKiWi7uffNu7N69u9C1sy1atECPHj3Qo0cP1K1b10O1JCJyPwZYIvJ66enp2LlzJ7Zu3YoDBw7km5c1LCwMKceyICf5Wq5n5XysRFTJCAgIPzMenfsAdu/ejaNHj+brahwdHY0777wTPXr0QFRUlOcqSkTkBgywROSVMjIysHPnTmzbtg1//fVXvtDaoEEDXNp5HXKiHlIGuwYTUdUidGY8s2Ic/vjjDxw6dAhms1ldFhUVpbbMNm7cGJLE/SMReRcGWCLyGgaDQQ2t+/fvh9FoVJc1atQIF7Zdg3xDDzlL68FaEhFVHEKr4Pk1j2D79u2FeqhERkaiT58+6N27N7sZE5HXYIAlogrNaDRi7969+P3337F3717k5uaqyxo0aIBLf95gaCUicoHQKJi2/kls374d+/fvz7c/bdWqFXr37o277roLYWFhHqwlEZFzDLBEVOEIIXD8+HH8/vvv2Lp1K9LS0tRl9evXx5VdSZbQamBoJSIqCaFRMPXnx7Bp0yYcPHgQiqIAADQaDdq1a4fevXuje/fuCAgI8HBNiYjyY4AlogrjypUr2LhxIzZu3IhLly6pj4eHhyPlnyzI1/Wc7oaIyM2EzownFz+IzZs348SJE+rjPj4+6N69OwYOHIh27dpBljlyOxF5HgMsEXmUwWDAli1b8Pvvv+PIkSPq43q9HrlxgCZBDynFh6GViKgcCL0JD381BJs2bcLFixfVx2vWrIn+/ftjwIABqFOnjgdrSERVHQMsEZU7IQROnDiBX375BVu3bkVWVhYAWEbDTNJBk6CHnOgLSeHZfiIiTxAQEIEmDHrzTmzevBkZGRnqsrZt22LQoEG48847odfrPVhLIqqKGGCJqNykp6dj48aN+OWXX3D+/Hn18cjISFz+Iwma63pIuRoP1pCIiAoSksCMjZOwfv16HDhwQJ1jNiAgAL169cI999yDFi1aeLiWRFRVMMASUZkSQuCff/7BunXrsH37dnXUSx8fH5guydDE+0FK07GLMBGRFxC+Zjz89b3YsGEDrl69qj7evHlzDB06FL169WKrLBGVKQZYIioTBoMBv/32G3788UfExcWpjzdu3BgXNiZATtBDMrOLMBGRNxIQmP33y1i3bh3++OMPdV7uoKAgDBgwAEOGDEH9+vU9XEsiqowYYInIrS5evIgff/wRGzZsgMFgAAD4+fkhJwaW1tYMjiJMRFSZCK2CCd/dh7Vr1yI+Pl59vH379hg2bBg6d+4MrZbTnhGRezDAElGpKYqCffv24ccff8S+ffvUxyMjI3FlWzJbW4mIqgABgbd3TcVPP/2EvXv3qtfKRkREYNiwYbj33ntRrVo1D9eSiLwdAywRlVhmZiZ+/fVX/Pjjj7h8+TIAy0jCUqIOmiv+nP6GiKiKEr5mPPB//bBu3TqkpqYCsEyPNmDAADzwwAOoV6+eh2tIRN6KAZaIiu3GjRtYuXIlfv75Z2RmZgIAAgMDkXVKgeaqH6RsdhUjIiLLCMZT1z2KFStW4Ny5cwAsJzq7deuGBx54ALfeeqtlCjUiIhcxwBKRy2JjY7Fs2TJs3LgRJpMJANCgQQNc3pJk6SbMeVuJiMgOAYFZf83AihUrsGfPHvXx5s2bY8SIEejZsyevkyUilzDAEpFTQggcPXoUP/zwA3bv3q0+LqXqoLkUADmZ3YSJiMh1ip8JA97qit9++02dWq1GjRp48MEHcc8998DX19fDNSSiiowBlojsUhQFu3btwg8//IBjx44ByLu+9boPNJf9Iaf7eLiGRETkzYRWwZi592LNmjVISkoCAISGhuKBBx7A0KFDERgY6OEaElFFxABLRPkoioI///wTCxcuVK9X8vHxgemCxhJceX0rERG5kZAEnvlxDJYsWaJOwxMYGIj77rsPw4cPR0hIiGcrSEQVCgMsEQEAzGYztm/fjoULFyI2NhYAEBAQgOyTgOaKHySjxrMVJCKiSk1IAi/++jgWL16MCxcuALCMXHzvvfdi9OjRCA0N9XANiagiYIAlquJMJhO2bt2KRYsWIS4uDkDeiMLHBTSX/Tl/KxERlSsBgde3P4vvv/8ep06dAmAJssOGDcODDz7IFlmiKo4BlqiKUhQFf/zxB+bNm6cG16CgIBj+VSxzuDK4EhGRBwkIvLvnRcyfPx8nTpwAAPj5+WH48OEYOXIkqlWr5uEaEpEnMMASVTFCCOzbtw9z587FmTNnAADBwcHI+MdsmcOVwZWIiCoQAYG3d03FvHnzcPr0aQCWS1weeOABjBw5EgEBAR6uIRGVJwZYoirkyJEj+Pbbb3HkyBEAgL+/P3JOSGxxJSKiCk9A4I0/nsP8+fPVQQaDg4Mxbtw4DBkyBDqdzsM1JKLywABLVAWcP38e33zzDfbu3QvAMqqw+bwWmksBkEwMrkRE5D0EBF7Z8lS+S2Dq1KmDxx9/HHfddRdkmd9rRJUZAyxRJZaYmIj58+dj/fr1UBQFGo0G4pIPtBcDIOVyVGEiIvJeAgLP/jQW8+fPV+eRbdasGSZOnIh27dp5uHZEVFYYYIkqoezsbKxYsQJLlixBVlYWAEC+4QtNbCDncSUiokpFyAJj5g3G0qVLYTAYAACdOnXC008/jQYNGni4dkTkbgywRJWIoijYtGkTvv32W1y/fh0AIKVroY0Jgpzm4+HaERERlR2hVTD4wzuxdu1amEwmaDQa3HfffRg/fjyCgoI8XT0ichMGWKJK4uTJk/jkk0/UqQZq1qyJxD+yIN/QQ4Lk4doRERGVj+/iPsGXX36JXbt2AbAM9PTYY4/hnnvugUbDy2eIvB0DLJGXS01Nxbfffot169ZBCAE/Pz/kntBYRhZWGFyJiKhqem/fNHz++eeIjY0FADRu3BjPPvss2rZt69mKEVGpMMASeSmz2Yx169Zh7ty5SEtLAwDICXpoYwIhGXmGmYiISEBg0soHMX/+fKSnpwMA+vbti8mTJyMsLMzDtSOikmCAJfJCx48fx5w5c9QJ3aVMLbTneJ0rERGRPUKrYOAHXbF27VoIIRAYGIgnn3wSgwcP5rQ7RF6GAZbIixgMBsydOxc//vij+gWc/Y8E+aofr3MlIiIqwmfHZuLjjz9WTwC3aNECU6dORdOmTT1cMyJyFQMskZfYvXs35syZg4SEBADsLkxERFQS1m7Fc+fOhcFggCzLuP/++/HYY4/Bz8/P09UjoiIwwBJVcImJifjss8+wbds2ywPZGujOBkFO8fVsxYiIiLyY8DGj2/RbsHXrVgBAnTp1MG3aNNx+++0erhkROcMAS1RBCSHw+++/47PPPkNGRgZkWYYUp4cmLpCjCxMREbnJO3v+gw8//FDt4TRkyBBMnDgRAQEBHq4ZEdnDAEtUASUmJuKjjz5S57CTMrTQnqkGOVPn4ZoRERFVPkKjYOCsrvjpp58AADVq1MCLL76ITp06ebZiRFQIAyxRBbN161Z88sknSE1NhVarhTirh+aSPwdpIiIiKmOz/p6B2bNn48qVKwCAQYMG4ZlnnoG/v7+Ha0ZEVgywRBVEamoqPvnkE/VaHClDC+3papANbHUlIiIqL0IWGPJJD6xatQpCCNSpUwevvvoqWrdu7emqEREYYIkqhL/++gvvvvsukpKSoNFogBg9NBcDIAm2uhIREXnChwdfwbvvvotr165BlmWMGTMG48aNg1ar9XTViKo0BlgiDzIajfjf//6HpUuXAgAkgwba08GQM9jqSkRE5GlCo6DnG22xceNGAEDz5s3x2muvoX79+h6uGVHVxQBL5CGXLl3CzJkzcfLkSQCAfNUP2pggjjBMRERUwUzfNBEff/wxMjIyoNfr8fzzz2PAgAGerhZRlcQAS+QBv//+O+bMmYOsrCwEBQUha78MTaLe09UiIiIiB5bEf4n33nsPBw8eBAAMGDAAU6ZMgZ+fn4drRlS1MMASlaOcnBx88skn+PXXXwEAUqoOulPBkHI1Hq4ZERERFUVAYMx3g/Hdd99BURRERUVh5syZiIqK8nTViKoMBliicnLlyhW89tprOHPmDGRZhhTjZxmoidPjEBEReZVZf8/AzJkzkZSUBL1ejxdeeAH9+/f3dLWIqgQGWKJysGfPHrz99tvIyMgAjBJ0J4Mhp/p6ulpERERUQkJnxi1PReHvv/8GANx777147rnnoNNxIEaissQAS1SGzGYzFixYgIULFwIApDQddCfZZZiIiKgysHYpnj9/PoQQaNOmDWbOnInw8HBPV42o0mKAJSojmZmZmDlzJvbs2QMAkK/kjTLMuV2JiIgqlZm7XlB7WkVERODtt99Gy5YtPV0tokqJAZaoDFy5cgUzZsxATEwMfHx8oBzVQ3OdoxQSERFVVvMvzMHLL7+MCxcuQKfTYerUqRg4cKCnq0VU6TDAErnZ4cOH8dprryE1NRXIkaE7EQI5g9fDEBERVXZCo6DTtObYsWMHAGDkyJGYNGkSZFn2cM2IKg8GWCI3WrduHebMmQOTyQQpXQvdiRBe70pERFSFCAiMnjcI3333HQDgzjvvxKuvvgq9nvO9E7kDAyyRGwgh8O2332LJkiUAAPm6L7RngiEpvN6ViIioKnpp45N4//33YTQa0aJFC7z//vsICwvzdLWIvB4DLFEpmUwmzJo1C7///jsAQBMXAE0c53clIiKq6j469CpeeeUVpKWloVatWpg9ezaioqI8XS0ir8YAS1QKBoMBr7/+Ovbv3w+NRgPpZAA01zhYExEREVnMvzAH06ZNw+XLlxEYGIhZs2ahTZs2nq4WkddigCUqoeTkZLz00ks4efIkYJagPRkMTbKvp6tFREREFYzQKmj6WE38+++/8PX1xTvvvINOnTp5ulpEXolDohGVQHx8PCZPnmwJr0YJuqOhDK9ERERkl2SScfrbBHTq1Ak5OTmYMWMGtmzZ4ulqEXkltsASFdPly5cxZcoUXLt2DciWofs3FHK21tPVIiIiogpOSALdX2+DLVu2QJIkTJ06Fffee6+nq0XkVRhgiYrhwoULeP7553Hjxg1IBg10/4ZymhwiIiJymYDAgA87Y+3atQCASZMm4cEHH/RwrYi8B7sQE7no3LlzePbZZy3hNVMD3VGGVyIiIioeCRI2vLgHY8aMAQB8/fXXWLZsmYdrReQ92AJL5IKzZ89iypQpSEtLg5ShtbS8mnj+h4iIiEruwf8NwIIFCwAATz31FEaOHOnZChF5AQZYoiLExsbi2WefRUpKCqT0vPBqZnglIiKi0rMNsU8//TRGjBjh2QoRVXA8Cidy4vLly3jhhRcs4TWD4ZWIiIjc64fHfsW4ceMAAF988QVWrlzp4RoRVWw8Eidy4Nq1azcHbMrUMLwSERGR20mQsPTxDWqI/fzzz/Hbb795uFZEFRePxonsSEpKwvPPP4/4+HhIWRpe80pERERlxhpirdfAzpo1C7t27fJwrYgqJl4DS1SAwWDAc889h1OnTgHZMnyOhHG0YSIiIipzAgK93rkdv/32G3x8fPDRRx/htttu83S1iCoUBlgiGyaTCTNmzMC+ffsAowSff8IgZWs9XS0iIiKqIgQEOrwUjV27diEgIACfffYZoqOjPV0togqDfSKJ8gghMGfOHEt4NUvQHQtleCUiIqJyJUHCXx+ewa233orMzEy89NJLuH79uqerRVRhMMAS5Vm0aBHWrVsHCEB7qhrkDJ2nq0RERERVkKRIOPHNFTRs2BA3btzAjBkzkJWV5elqEVUIDLBEALZs2YJ58+YBALTngqBJ0nu4RkRERFSVSWYZ77//PoKDg3H69Gm88847UBTF09Ui8jgGWKryzpw5gw8++AAAoLnkD028v4drRERERASMq/cc3nvvPeh0OuzYsQNz5871dJWIPI4Blqq0lJQUvPLKK8jJyYGU7ANNbKCnq0RERESkeuHWmXjppZcAAEuWLMHGjRs9XCMiz2KApSrLZDLhjTfeuDnX68lgSJA8XS0iIiKifD7sPxdjxowBAHz00Uc4f/68h2tE5DkMsFRlff311zh06BBglqA9EQLJzI8DERERVUzLn/wd7du3R3Z2Nl577TVkZmZ6ukpEHsEjdqqSdu7ciZUrVwLIG3HYwOlyiIiIqOKSIOH1119HREQELl68iFmzZkEI4elqEZU7Bliqcq5du3Zz0KbL/hxxmIiIiLzCA2GPY+bMmdBqtdi+fbt6Mp6oKmGApSrFZDLh7bffRlpaGqR0LQdtIiIiIq8ypc2beOqppwAA33zzDc6ePevhGhGVLwZYqlIWLlyII0eOACYJulPBkAQHbSIiIiLv8vUDS9G1a1f1xHxOTo6nq0RUbhhgqco4duwYvv/+ewCA9mwQpGxe90pERETeR4KEadOmITQ0FDExMZwflqoUBliqEnJycvD+++9DURTICXpobvh5ukpEREREJTYi/AlMnz4dALBixQocOHDAwzUiKh8MsFQlfPfdd4iLiwNyZWjPB3m6OkRERESl9nrXORgyZAgA4P3334fBYPBwjYjKHgMsVXrHjx/HsmXLAOR1HTbxbU9ERESVw4aX9qBOnTpISEjA//73P09Xh6jM8UieKjWj0YgPPvjgZtdhTplDRERElYikSJg6dSoA4Mcff8TJkyc9XCOissUAS5XaqlWrEBsbC+RK7DpMREREldLLnWajT58+UBQFH374IUwmk6erRFRmGGCp0rpx4wYWLFgAANDGsuswERERVV5PP/00qlWrhjNnzmDVqlWerg5RmeERPVVaX331FbKysiCl6SAnsOswERERVV4jwp/ApEmTAAALFixAcnKyh2tEVDYYYKlSOnz4MDZv3gwIQHsuCBIkT1eJiIiIqEx9Mvg7NG/eHAaDAfPnz/d0dYjKBAMsVTqKouCLL74AAMjxfpAzdR6uEREREVHZkyDhqaeeAgD88ssviImJ8XCNiNyPAZYqne3bt+P06dOASYL2QqCnq0NERERUbv7T9h3ceeedUBQFX331laerQ+R2DLBUqZhMJsybNw8AoLnsz4GbiIiIqMqZOHEitFot9u3bh7///tvT1SFyKx7dU6Xy22+/4eLFi4BRguaKv6erQ0RERFTuJkQ+jyFDhgCwDOgkhPBwjYjchwGWKo3c3Fx89913AADNxQBIZr69iYiIqGoaPXo0fHx8cOTIERw6dMjT1SFyGx7hU6WxceNGXL9+HciRobnK1lciIiKquh6sMQmDBg0CYGmFJaosGGCpUlAUBcuWLQMAaK74QxKcNoeIiIiqttGjR0On0+Hw4cM4fPiwp6tD5BYMsFQp7Nq1C3FxcYBJgibez9PVISIiIvK40bWewsCBAwEAP/zwg4drQ+QeDLBUKSxduhQAoLnqx2tfiYiIiPKMGDECkiRh7969loEuibwcj/TJ6x0/fhz//vsvoIAjDxMRERHZeKTBC+jcuTMAYPXq1R6uDVHpMcCS11u7di0AQL6uh2TUeLg2RERERBXL8OHDAQAbNmxARkaGh2tDVDoMsOTV0tPTsXXrVgDgta9EREREdkzv+AEaNGiArKws9biJyFsxwJJX27hxI3JyciBlaiGl6xwXlDgqMREREVVSssZyc0CCpE6p8+uvv5ZXrYjKBAMsebUNGzYAsLS+SrATUiWJ4ZWIiIiqBidB9n/jVkCj0eD48eOIjY0t33oRuREDLHmtuLg4nD59GlAs178WUjC4MsgSERFRZWMvsNp5TDJq0KVLFwA3GwCIvBEDLHmtzZs3AwDkFB9IpgJvZYZVIiIiqsrshNg+ffoAALZt2wYhRHnXiMgtGGDJKwkhsGXLFgB2Wl+dhVcGWyIiIqosnFz3am/5O72/gF6vR3x8PE6dOlWGFSMqOwyw5JUuXLhgmYxbAeQkX8uDrl7vyhBLRERE3q6o8GpbLq+spEjqnLDbtm0rq5oRlSkGWPJKe/bsAQBIKT6QzDJDKREREZEzeSG2Z8+eAIAdO3Z4sDJEJccAS15p165dAABNkm/JwisDLxEREXkrV1tf7az3bt8voNFocOnSJVy5csW99SIqBwyw5HXS09Px77//AgDkFDujD7uKIZaIiIi8TUnDax5J6NCqVSsAwF9//eWOGhGVKwZY8jr//PMPFEWBZNBAyindTpyIiIioqunYsSMAYN++fR6uCVHxMcCS1zl8+DAAQErzKf3G2ApLREREXkLW6yH76Eq9nQ4dOgCwHFMpilLq7RGVJwZY8jrWAKvJCnTPBhliiYiIqIKT9XpAlgFZLnWIndLj/6DX65GRkYG4uDg31ZCofDDAklcxGAw4e/YsAECjhEH283PPhhliiYiIqCKT5Xz3ZR9diYKsJiwEkkaLFi1aAIA6rgiRt2CAJa9y9uxZy/WvRh1kxQdSQID7QiwRERFRBSTr7QxaWYLWWE1YCKCxjB/SunVrAMDRo0fdUUWicsMAS17l9OnTAAA5J29HLkvuaz1lKywRERFVMGrXYYcFihFiNTcHv7S2wJ45c6Y01SMqdwyw5FVuBtibra6Svz+7EhMREVGlU2R4VQsWHWI1YSH5fp/54EIAwIULF2AymUpaRaJyxwBLXuXcuXMAAMkmwEKW3NuVmCGWiIiIPMzl8Kqu4DjE2nYdtpJMOvj5+cFoNOLSpUulqClR+WKAJa8hhFB3sHJugSl0GGKJiIioMilOeLVZp2CItRdeAUCChEaNGgG42UBA5A0YYMlrJCYmIisrCxCAZLQzB6w7r4clIiIi8hC7gza5vHKBEGsnvFrVr18fAHD16tWSPx9ROdN6ugJErrK2vkomHSQH514kf3/IQkDJyir9E0oSIETpt0NERETkIkmrLVnrq628ECsFBjgtVqtWLQAMsORd2AJLXiMhIQGAg9ZXK2tXYn//0j8hwysRERGVI0mrBSQZwlj6QZVO/t8tOPFuI6dlateuDYABlrwLAyx5jcTERACWFlinZMnSEluaEMvwSkREROXIGl6tShNiT85pDX14FvRh2TjxVpTDcnOeWgbgZiMBkTdggCWvoQZYsws930sTYhleiYiIqBwVDK9WJQmx1vBqpQ/Pwom3ouwGWesxVWpqarGfh8hTGGDJayQlJQEAJJOLl26XJMQyvBIREVF5sxNerYoTYk9+nD+8WunDs9Qgm+9pzZYBntLS0mA2m11+HiJPYoAlr5GZmQkAkBTHo+kVUpwQy/BKRERE5UzSFn1i3pUQe/Lj1tBXdz6IZaEQmxdghRDIyMgo8jmIKgIGWPIaWdaRhZVivm1lqejR/BheiYiIqJw56jpsT1EhtqjwqpazCbESZPW4igGWvAUDLHmN7OxsAIBU3AALQNLrHbfCMrwSERFROStOeLVyFGJPfty6WNvJ1xIrJACA0Wgs1jaIPIUBlryGNcBClOBt66grMcMrERERlbOShFergiHWla7D9lhDrMQAS16GAZa8hiht2CwYYhleiYiIqJyVJrxaWUPsyY9KFl6t9OFZEFrLtg4dOlSqOhGVFwZY8hqSJJV+I65cD0tERERUVkoZXq2ujbsV+oiSh9eCTKaSzztLVJ54JE9ewy0BNisbIivL8uXhju0RERERFYMwlb6rbsKj7ZBbTQL+DSp9hSRLj7RWrVqVfltE5YABlryGRmMZ6v3agNol20BWNhSDAULJ6zrMEEtERETlTYhShdiER9shN9hy/KLJRqlC7Du3rkVgkAIACAgIKPF2iMoTAyx5Df+8a1eHdt2B2MeaFG/lguHViiGWiIiIylsJQ6xteLUqaYh959a1iNLdQE62ZXv+jmZrIKpgGGDJa1h3rDVMyZj68I/FCrFCiMLh1YohloiIiMpbMUPs9UcKh1crTXbxntoaXs1mwJhriQMMsOQtGGDJawQGBgIAsg0ybtPHWULs4y6EWOt1r84wxBIREVF5czHEXn+kHXJCijhOcbEV1hpeASA3++Y2GWDJW2g9XQEiV1kDrCHDci3sbfo4TB39Iz7GfYiae9b+So66DtsjyQAUTq9DRERE5aeI4w6XwissrbDmf4OA1ukIT8nAA1sOoMOxCwjIzkGm3hf7W0Wh4bPXUU+Xoq6TnmY5pgoICICPj0+pXgZReWGAJa8REREBAEhN1qiPWUPs0WH1sHFNx/xBtjjh1YohloiIiMqZMBkhaXWFHnc1vFr5p+di+nsbcN8/+6EzK/mWdTtyDsoq4MbwQMS9EQqhl5CWd0wVHh5euhdAVI4YYMlrWANsSpIm3+O36eNwmz4ObUZfwsfiPkT972zJwqsVQywRERGVp7yuxLYh9vqE4oVXX2Mu/rtiLjpePOewjGwEaizNgP68EacXRiA12RIFGGDJm/AaWPIaN1tg7Z93sV4XGze+ScnDqxWviSUiIqLyZHM97PUJ7ZATWrzjkBmbf0LHi+dQ1NGPAFBtXw4i30pBkHgFAFC9evUSVJjIMxhgyWvUrm2Z/zXpuhaKYr/MO3vuQf0NSZB8fcuxZkRERERuIAQkjVzs8Fo9Iw3Djv4FAChqTevy6qsycPH0aQBA3bp1i1lRIs9hgCWvUbNmTfj4+MBklJB03X4rrCZZCzkhGVJgAGQ/fcmfTLALMREREZUfyddXPQHfYPmlYq17/5F90CnmYq0jG4FLhw8DACIjI4u1LpEnMcCS19BoNKhfvz4AIOFq4YEOhm+fhOjv0wAAkiSVPsQSERERlQPJ19dy7JJ3+ZISn1Cs9dvHOb7u1Zm45GQAUI+viLwBAyx5FesZwmuX8wfY4dsnofmnWZDjE9XHShxi2fpKRERE5cQaXgsqTitsQG5OsZ83WadDCizHSwyw5E0YYMmrREdHAwAuxdycq8xeeLUqdohleCUiIqJy4ii8ApZWWFdDbKZP8cf+OBUYCMDS+urv71/s9Yk8hQGWvErz5s0BABdtAqwmSWc3vFq5HGIZXomIiKicOAuvVkp8AhqsuFzktqrfl1Ls57cGWOuxFZG3YIAlr9KsWTMAQGKCDpnpMh74YxKaLE4vcr0iQyzDKxEREZUTV8KrlXL1mtMQ+9Hj8xA9zh+i8PAgTp2oVg3AzWMrIm9hfyhXogoqKCgI9evXx8WLFzFxzVA0/Skbmqs3XFpXkiQgMAAaPz1EVjaUrOwyri0RERFRfsUJr1bK1WsA8k9189Hj8wAA/f1zAH8tMKIasCQNAs6n0hF5t38jIgCzGS1btixWXYg8jS2w5HVuu+02AEDtXxNcDq9WkiRB0mrzt8ay9ZWIiIjKQUnCq5VtK+xHj89Df/8cS3jNI96uDtFZ79I8sGc6hyDNbIafnx9bYMnrMMCS17n99tsBAEK5XuJtqF2K9b4Mr0RERFSmrHO8ljS8Aje7ElvDayF+MsSSOhAPV3PYnVjoAPFwNfzz9JcAgFtuuQVaLTtkknfhO5a8Ttu2bQEAim82hGyCpJTsbSxJEoRG486qERERERUicnMh+xZ/pOBC20lLtx9erfxkiA9rANPCIH5Ig7Q7C8hUgAAZoosf8FA1IEKLg/93BMDNYyoib8IAS14nLCwMjRo1wvnz52EOMkCbWq1E2xGGLCiZBjfXjoiIiKgAN/T2kgL8AVmDHk8+gT/++63zwhFa4LkwiOcKL+r63OMITNoEAOjQoUOp60VU3tiFmLxS165dAQCmwFSgBF1fhCEL5oxMQDG7u2pEREREhSg5TlpOnZAC/NXwCgABe2Nw56QnSrStLs9PROC/p5GTk4MaNWqgSZMmJdoOkScxwJJX6tatGwDA7JsKoZOLHWKFEAyvREREVH6EKHaIVYOrnP+Sp8DdMcV++i7PT0ToX/HoO94yaFPXrl1LdU0ukacwwJJXatasGSIiIgBZgVmfBui0gN7XpSDLrsNERETkEcXoSmzb6mqPq62wXZ6fqIZXAYGdO3cCuNmbjcjbMMCSV5JlGd27dwcAmPwSAUkCZNkSZJ2EWHYdJiIiIk9ypRW2qPAKWFphuz/1pNMyXV6wBNfQv+IBWHquJScnIzg4WJ3VgcjbMMCS1+rbty8AwOyXDCHlBVJJchpi2XWYiIiIPKqIrsSuhFeroJ3nHS7r8sJEhO6Pz/dYz4eiAAC9evXi9DnktRhgyWu1aNEC9erVAyQFJn3SzQUOQiy7DhMREVGFYKcrccHBmlzV/enCrbCdpxYOr0Iy488//wQA9OnTp1jPQVSRMMCS15IkCf369QMAmPxvFFxY6LpYtr4SERFRRWHbCutosCZXBO242QrbeepEdJ46EWH74guVM+mTkJWVhTp16qBVq1YlqzRRBcAAS16tf//+kGUZim8aFG1W/oU218UKk4mtr0RERFRx5LXClqTVtaBuzzyJO160BFd74RUAGnX2AQAMHjyYow+TV2OAJa9Ws2ZNdOnSBQBg9L9mv5AkWb4k2PpKREREFYiSayx1eAWAoPX/IHyP/eAKAGZdJk6ePAmtVotBgwaV+vmIPIkBlrze0KFDAVi6EauDOdkQ6ZlQUtPKuVZERERERVDMUJKTS7y6SE+33EwmKNeuOyx39/gGAICePXsiJCSkxM9HVBEwwJLXa9++vWUwJ9kMk7+dnbdihjCZyr9iREREREUo6TGKNbha1xcORjZW5Fxs3LgRADBs2LCSVZKoAmGAJa8nyzJGjhwJADAGXoWAoi5j6ysRERFVdMVthbWG10LbsdMKO/T55jAajbjlllvQpk2bEteRqKJggKVKoX///ggPD4fQ5MLkZzMiMVtfiYiIqIJz9VjFtsuw3eUFWmGFZMLatWsBAA899FDpKklUQTDAUqXg6+uLESNGAACMQVchINj6SkRERJVGwS7Djti2wj78RjsYDAY0bNgQd9xxR1lXkahcMMBSpTFkyBAEBQVBaLNh1iex9ZWIiIi8hpKS6nCZs1bXQmXzWmGFZMLy5csBWFpfZZmH/VQ58J1MlYa/vz+GDx8OAMitdgkCwsM1IiIiInKNMOYWfqyILsPOjJjRBqmpqahfvz7uvvtud1SRqEJggKVKZeTIkQgNDYXQZsOov+rp6hARERG5zLYV1tUuw/aYE6+qra+PP/44tFqt2+pI5GkMsFSp+Pv7Y9y4cQAAU910CFkpYg0iIiKiisHaClvSVlergW+0R1ZWFpo3b44ePXq4q3pEFQIDLFU6gwcPRt26dQEfBea6Bk9Xh4iIiMhlpQ2viq8JP//8MwDgySefhCRJ7qoaUYXAAEuVjk6nw+OPPw4AMNczQPiaPVwjIiIiItcoBabCKQ4BgbYTo2AymdCxY0e0a9fOjTUjqhgYYKlSuuuuu3DLLbcAGgFTw3RPV4eIiIjINaJkg1AKsxnmYAP27dsHrVaLZ5991s0VI6oYGGCpUpIkCS+88AI0Gg2U6jkwh5b8bCYRERFRRSbMZghJQfW79ACAUaNGITIy0sO1IiobDLBUaTVq1AgPPPAAAMDUKB1C5rQ6REREVPEJs2uXPwmz2VJWCIz6pj/i4+NRs2ZNjBkzpoxrSOQ5DLBUqY0fPx4RERGAnxnmepmerg4RERFR0VzoRmwNrhACir8RP/zwAwDgmWeegZ+fX1nXkMhjGGCpUvP391evATHXz4QSaPRwjYiIiIhKzrbVFQCEJBA1Mhwmkwldu3ZF9+7dPVxDorLFAEuVXo8ePXD33XcDEmBqmgohsSsxERERVWz2uhHbtrpametl4syZM6hWrRr+85//cNocqvQYYKlKmDJlCsLCwiD8zTA3yPB0dYiIiIicswmpBVtdrZQAI9AoG4DlWCc8PLxcq0jkCQywVCUEBwfjxRdfBACY6xqgVMv1cI2IiIiIimav1RWwdB2OHB4Ks9mMO++809LbjKgKYIClKqNr164YMGAAIAHGpqkQWsXTVSIiIiJyyF6rq9Wgj7ri3LlzCA4OxgsvvMCuw1RlSEKUcLZkIi+UmZmJxx57DJcvX4ac6AvtiWBI4A6fiIiIvIc5PBumFqkAgA8//BCdOnXycI2Iyg9bYKlKCQgIwJtvvgmdTgclPAfmOgZPV4mIiIjIZcLXBN/2JgDAQw89xPBKVQ4DLFU5zZo1w9NPPw0AMEdlcGodIiIi8gpCEmg0JgKZmZlo1aoVHnvsMU9XiajcMcBSlTR06FD07NkTkAFj8xReD0tEREQVmoBAvw864eTJkwgKCsIbb7wBrVbr6WoRlTteA0tVVkZGBh5//HFcvnwZUqoOun9DIQleD0tEREQVj7mWAaYm6ZAkCR988AE6d+7s6SoReQRbYKnKCgwMxPvvv4+AgACIYCNMjdMhwPM5REREVLEowbkQzSzjdjz55JMMr1SlMcBSlRYVFYXXX38dkiRBqZUFpXaWp6tEREREpBK+Zvh3U2A2m9G7d288+OCDnq4SkUcxwFKV17lzZ0ycOBEAYGqUDiUkx8M1IiIiIgKERkHdEUFITU1F06ZN8dJLL3G+V6ryGGCJAIwaNQr9+vUDJMDYPBVKAEcmJiIiIs8RkkCryfUQExODsLAwvPvuu/D19fV0tYg8joM4EeXJzc3Fiy++iEOHDgG5Mnz+CYOUo/F0tYiIiKiKERAwNUuFEpEDf39/fP7554iOjvZ0tYgqBLbAEuXx8fHBu+++i8aNGwM+Coytkzm9DhEREZU7c1QGlIgcaDQavPPOOwyvRDYYYIlsBAYG4sMPP0TNmjUh/MwwtkqGkNlJgYiIiMqHqW4mzPUsIw7PmDED7du393CNiCoWBliiAqpXr46PPvoI1apVgwgywdgyhSGWiIiIypy5lgHmhhkALNPl9O3b18M1Iqp4GGCJ7GjQoAFmzZoFPz8/iJBcGJunQEgMsURERFQ2zDWyYGqSDgAYPXo0HnroIQ/XiKhiYoAlcqBVq1aYPXs29Ho9RFguTAyxREREVAbM1bNgbmYJrw888ACeeOIJTpdD5AADLJETt956K95//334+PhACc+FqVkqBBhiiYiIyD3M4dkQrTIhhMCQIUPw9NNPM7wSOcEAS1SEdu3a4d1334VOp4NSPQem5qlsiSUiIqJSM0dkQbTOgNlsxoABA/D8888zvBIVgQGWyAWdOnXCzJkzb4bYFhzYiYiIiErOXNMAc/N0mM1m9O/fH9OmTYMs89CcqCiSEIJH4UQu2r9/P1555RXk5ORAStVBdzwEkplfNkREROQ6U20DzI0t17wOHToUU6ZMYXglchEDLFExHTlyBC+99BIyMzMhpemgO8YQS0RERK4x1cuEOcoyVc7IkSMxefJkdhsmKgYGWKISOHXqFKZOnYq0tDRImVpLiM3VeLpaREREVEEJCJgbZsBc1wAAGD9+PCZMmMDwSlRMDLBEJXT+/HlMnToViYmJQI4M3bFQyAatp6tFREREFYyQBExNU6FE5AAAJk2ahAcffNDDtSLyTgywRKUQHx+PF198ERcuXABMEnQnQiCn+ni6WkRERFRBCI0CY8sUiGAjtFotZsyYgT59+ni6WkReixfuEZVCrVq18OWXX+KWW24BtALGVskwR2R5ulpERERUAQhfM+o8GAARbERAQAA+/PBDhleiUmILLJEb5OTk4L333sO2bdsAAJoLAdBcDIAEXtdCRERUFSlBuQi6S0JSUhKqV6+ODz/8EI0bN/Z0tYi8HgMskZsoioKvvvoKK1asAADI132hPRMMSWGIJSIiqkrMEVmQ22QjNzcXDRs2xOzZs1GzZk1PV4uoUmCAJXKzn3/+GZ988gnMZjOkDK1lrliOUExERFTpCQiYG2TAXN8y0nC3bt3w6quvwt/f38M1I6o8GGCJysDhw4fx2muvITU1FciVoTsRDDmdgzsRERFVVkKjWEYaDs8FAIwZMwaPPvooZJlDzhC5EwMsURm5evUqXn75ZZw7dw5QAO25IMjX/HhdLBERUSWj+JtQe2gA4uLi4OPjg5deeomDNRGVEQZYojJkMBjw/vvv448//gAAyAl6aM9W43WxRERElYQ5IgvaW3ORnZ2NiIgIvP3222jZsqWnq0VUaTHAEpUxIQSWLl2KuXPnWq6LzdRAezIEcpbW01UjIiKiEhKSgKlhOpQ6lunz2rdvj9dffx0hISGerRhRJccAS1RODh8+jDfffBNJSUmAWYL2TDVobug9XS0iIiIqJuFrhrF5CkSQCQAwduxYTJgwARoNB20kKmsMsETlKDExETNnzsShQ4cAAPJVP2hjgtilmIiIyEuYw7Oh72BGRkYGgoKC8Oqrr6Jz586erhZRlcEAS1TOTCYTvvvuO3z//fcAAMmggfZUMORMnYdrRkRERI4IWcDUKA1KrWwAQIsWLfDmm2+idu3aHq4ZUdXCAEvkIfv378d7771n6VKsAJrYQGiu+HOUYiIiogpGCTCi1r0BuHjxIiRJwsMPP4wJEyZAq+V4FkTljQGWyINSUlLwwQcfYPfu3QAAKdkHutPVIBl5DQ0REZGnCQiY6xggNc2GyWRCREQEXnnlFdx+++2erhpRlcUAS+RhQgisXbsWX3zxBXJzcwGjBO3ZatAkcoAnIiIiTxF6E4zRaRDBRgBA9+7dMW3aNAQHB3u4ZkRVGwMsUQURGxuLmTNn4uzZswAA+bovtOeqQTLJHq4ZERFR1SEgoNTKgra1EdnZ2fDz88NTTz2FwYMHQ5J4mQ+RpzHAElUgRqMRixYtwuLFi2E2m4FcGdpzQWyNJSIiKgfC12xpdQ3JBQC0bdsWL730EurUqePhmhGRFQMsUQV06tQpvPfee4iJiQHA1lgiIqKyZG111bUxISsrC76+vpg4cSKGDRsGWeZ3L1FFwgBLVEHl5uZi4cKF+OGHHyytsUYJ2pggyAl6jlRMRETkJoq/CaYmaRDVLNe6tmnTBjNmzEC9evU8XDMisocBlqiCO3nyJD744AOcP38eACCl+EB7NghyNofuJyIiKikhCZjrZ0JqlAOTyQQ/Pz889thjuO+++6DRcDYAooqKAZbIC5hMJixfvhzfffedZaRiBdBcDIDmUgAkwdZYIiKi4lCCc2FqnAbhbwYAdOnSBc8//zxq1qzp4ZoRUVEYYIm8yJUrV/Dxxx/jr7/+AgBIBg2056pBTvXxcM2IiIgqPqEzwxSVAaVmNgAgLCwMU6ZMQY8ePTjCMJGXYIAl8jJCCGzevBlffPEFkpOTAeQN8hQTBCmXXZ6IiIgKEpKAubYBvq0VGAwGAMCQIUPwxBNPICgoyMO1I6LiYIAl8lJpaWn43//+h59//hmKogBmCZqL/tBcZrdiIiIiKyU4B6ZG6RABlu7CzZs3x5QpU9CyZUsP14yISoIBlsjLnTlzBp9++imOHDlieSBbA+35QMhJvhytmIiIqizha4YpKh1KRA4AIDg4GE8++SQGDhzIqXGIvBgDLFElIITAli1b8NVXX+HGjRsAACnZB9rYQMiZOg/XjoiIqPwIjQJzvUxoGpuQm5sLWZYxbNgwPPLII+wuTFQJMMASVSIGgwGLFy/G8uXLYTQaAQHICXpoLwTy+lgiIqrUhCSg1MpCwO0yUlNTAQBt27bFs88+i8aNG3u4dkTkLgywRJXQlStX8O2332Lr1q2WBxRAczkAmkv+kMzsNkVERJWHgIASlgNzVIY6LU5kZCQmT56Mzp07c3RhokqGAZaoEjt+/Di++uqrm9fH5krQXgyEHO/HgZ6IiMjrKdVyYWqQARFsBACEhITg0UcfxaBBg6DVaj1cOyIqCwywRJWcEAI7d+7EN998g4sXL1oezJahjQuEnKDnQE9EROR1lAAjzA0yoITlAgB8fHwwcuRIPPTQQwgICPBw7YioLDHAElURJpMJ69atw8KFC5GYmAgAkAwaaOICId/giMVERFTxKX4mS3CtbhlZWKPRYODAgRg3bhxq1Kjh4doRUXlggCWqYrKzs/HTTz9hyZIl6iAXUqYWmgsBnHqHiIgqJKE3wVQ/E6idC0VRIEkSevfujQkTJqBevXqerh4RlSMGWKIqymAwYOXKlVi2bBkyMzMBAFKGFpqLAZATGWSJiMjzFD8TzPUzIdU2wmy2DNDUrVs3PProoxxZmKiKYoAlquLS0tKwbNkyrF69GllZWQDyWmQvBrBrMREReYTib4S5fiZEjVxYD1U7duyIRx55BC1btvRw7YjIkxhgiQgAkJKSgpUrV+LHH3+82SJr0EBzKYCDPRERUblQAowwR2ZCCc9RH+vWrRvGjBmDFi1aeLBmRFRRMMASUT7p6elYvXo1Vq5cifT0dMuD2RpoL/tDvuYHSWGQJSIi9xEQENWMMNfLVEcVliQJPXv2xJgxY9CkSRMP15CIKhIGWCKyy2AwYM2aNVi+fDlSUlIsDxolaK76Q3PVD5JR49H6ERGRdxMQUKrnwFw3EyLIBACQZRm9e/fGww8/jKioKM9WkIgqJAZYInIqOzsbv/76K1asWIErV65YHlQAOcEPmsv+kLM4UTwREblOaBSYa2bDXCcT0CsALPO49uvXDw8++CBHFSYipxhgicglZrMZO3bswNKlS3HixAn1cTnRB5rLAZDSdLxOloiIHBI+ZphrG2CunQVoLYefwcHBGDZsGIYNG4bQ0FAP15CIvAEDLBEVixACR48exbJly7Br1y51dEgpQwvNFX/IN/S8TpaIiFRKoBHmOgbIdUwwmSxdhevVq4eRI0eif//+8PX19XANicibMMASUYnFxcVhxYoV+O2335Cbaxl4A0YJmmt+0Fz1h5TD62SJiKoiIQso1bNhrm1Qr28FgFtuuQWjRo1Cly5dIMuyB2tIRN6KAZaISi0lJQXr16/H2rVrER8fb3lQAHKSr2XApxQfdi8mIqoChG9eN+GaWYDOcoip0+nQq1cvDBs2jHO4ElGpMcASkduYzWbs2bMHP/74I/7++2/1ccmggRzvD801PSQzz7gTEVUmAgJKaC6U2gaIcKN6aUmtWrVw77334p577kFISIhnK0lElQYDLBGVibi4OKxZswYbNmyAwWCwPKgA8g09NNf8IKVy0CciIm8mfM0w18iytLbmjSYMAB06dMCwYcPQuXNnaDS8lISI3IsBlojKlMFgwMaNG7F27VqcO3fu5oIsjeVa2QQ9pFwe4BAReQMhCShhOTDXygLCbra2BgYGYsCAARg6dCjq16/v4VoSUWXGAEtE5UIIgVOnTmHdunXYvHnzzVZZAchJPpCv+UFO8mWrLBFRBaT4m6DUzIK5xs1rWwGgbdu2GDRoEHr06MHRhImoXDDAElG5y8rKwvbt27F+/XocOXLk5oJcGZrresgJekiZWoZZIiIPElrFMpJwjWyIakb18erVq2PAgAEYOHAg6tat68EaElFVxABLRB514cIF/Prrr9iwYQNSUlLUx6VMDeTrftBc13M6HiKiciJkSxdhJSIbSmgOkDfunkajQZcuXXDPPfegQ4cO0Gq1nq0oEVVZDLBEVCEYjUbs378fGzduxK5du27OKwtAStVBk6CHfIOjGBMRuZuAgAjOhblGNpTwHEB789AwOjoaffr0Qd++fREWFubBWhIRWTDAElGFk5GRgT/++AMbN27EoUOHbi5QLHPLytf1kJN9ISnsYkxEVBICAiLABCUiG+aIbMD35ijCtWrVQp8+fdCnTx9ERUV5rpJERHYwwBJRhXbt2jVs3rwZGzduRExMzM0FZglysg/kG3rL4E8Ms0RETgkIiECT5brW6jmA3qwuCwoKwl133YU+ffqgTZs2kGX2diGiiokBloi8ghACZ8+exebNm7Ft2zbEx8ffXGgG5GTfvDDrA0nhgRcREVAwtGbnm6/V19cXnTt3Rp8+fdCpUyf4+Ph4sKZERK5hgCUir2Odkmfbtm3Yvn07rl69enOhNcwm+lpaZnnNLBFVMQICIsgIpXoOzOH5Q6ufnx86d+6Mnj17olOnTvDz8/NgTYmIio8Bloi8mhACp0+fVsPslStXbi5UACnNB3KiLzRJvhzNmIgqLSELKCE5UMJzoITmAj75Q2vXrl3Rs2dPdOzYEXq93oM1JSIqHQZYIqo0rGF2+/bt2LVrF2JjY/MtlzK1N1tmMzjPLBF5N+Fjtkx5E5YDJSRXnfIGAAIDA9GlSxf06NEDHTt2hK+vr+cqSkTkRgywRFRpXbx4Ebt378auXbtw5MgRKMrNFgnkyJYRjZN9IKf6sKsxEVV46sjBeaFVBJnyLa9duza6deuGLl264NZbb+VcrURUKTHAElGVkJqain379mHnzp3Yt28fsrKybi5UAClNZ7l2NsUHUiZbZ4moYhA6xdI1ODTX0spq0zVYkiS0bNkSXbt2RdeuXREVFQVJ4r6LiCo3BlgiqnJyc3Nx+PBh7Nq1C/v378fly5cLFJAtLbPWQGti6ywRlQ8h5Q3AFGoJrSIwfyurn58f2rVrh65du6Jz584ICwvzUE2JiDyDAZaIqrxLly5h//792L9/Pw4ePIjs7OybCwUgZWghp+R1NU7z4ZyzROQ2AgLC3wwRbGlhVYJzAW3+Q7Po6Gh07NgRHTt2ROvWraHT6TxUWyIiz2OAJSKykZubi6NHj2Lfvn3Yv38/zp8/n7+AAkjpOsipPpbW2XQdJMFAS0SuERAQfnmBNTgXSrAxX7dgAAgODlYDa4cOHdjKSkRkgwGWiMiJhIQE/P333zh06BAOHjyI69ev5y9gzpuqJ9UHcqoOUgYDLRHdJCAAXzOUEGNeYM0FfPMHVh8fH7Rp0wa33347OnbsiOjoaMgyL10gIrKHAZaIyEVCCFy6dEkNs4cOHUJycnL+QmZAyrC00ErpOshpOo5wTFSFWEcKFtWMUKrlQqlmLBRYdTodWrVqhbZt26Jt27Zo2bIlfHx8PFRjIiLvwgBLRFRCQghcuHABBw4cwKFDh3D48GGkpaUVKARIBq1llOM0HeQ0HyBH5ijHRJWE0CiWQZeqGaEEGSGCjIWuYdVqtWjRooUaWFu3bs15WYmISogBlojITRRFQVxcHP79918cOXIER48eLTzCMWCZgzbN0t1YTtdBytBCUthKS1TRqdevBhmhBBohqhkhAkwoeD4qICAArVu3RuvWrdGmTRu0aNECfn5+nqk0EVElwwBLRFSGEhMTcfToUTXUnjlzBmazOX8hayttuhZyhs4yMJRBy2tpiTzIcu2qYgmq1sAaaCrUugoAtWrVQps2bdRbVFQUNBqNB2pNRFT5McASEZWjrKwsnDhxIt+t0MBQgOVa2kwd5AytZWCoTC1DLVEZERCAjwIl0AQRYA2spkKjAwOAXq9H06ZN0bx5c7Rq1Qpt2rRB9erVPVBrIqKqiQGWiMjDbty4gZMnT6qB9uTJk8jIyChcUMlrqc3U3gy3mVoOEkVUDEISEH4miEATRIAJSkBeN2Bd4cMhjUaDxo0bo3nz5mjevDlatGiBBg0aQKvVeqDmREQEMMASEVU4iqLg8uXLOHHiBE6dOoWzZ8/izJkz9kMtAGTLkDNtWmkNWkhZGrbWUpVmbVUV/iYo/pawKgJMEP4mwM45H41GgwYNGiA6OloNrE2aNOFgS0REFQwDLBGRFxBC4Nq1azhz5gzOnj2rhtr4+HgHK8ASYg3a/DcGW6pkCgVVfxOEv9kSVO1crwpYBllq0qQJmjRpgujoaDRp0gRRUVGcyoaIyAswwBIRebH09HQ1zMbExCA2NhaxsbHIzMy0v4ICSNkaSFl5YTYr7362Bsjl9D5UcQlZsYwA7GeG0Jtu3ncSVDUaDerWrYsGDRqgcePGalitVasWJInvdSIib8QAS0RUyQghcP36dTXMWoNtTEwMDAaD4xXNUqFQK2VpLOHWyHBLZU/I4mY41Zst16rmBVV7AypZaTQa1KtXDw0bNkRUVBQaNGiAqKgo1K9fn62qRESVDAMsEVEVYRtsL168iEuXLqm3q1evQlEcBwSYASlHA+RYAq2UrYGUc/MnjBIDLhVJyAqEXoHwNQN6M4RvXlD1tdzg4/yQJDg4GPXq1VNvkZGRaNiwIerWrQudTldOr4KIiDyJAZaIiGA0GnH16lU12NoG3Bs3bjgPt0D+gJsrQ8rVQMqRLd2S8x5jK27lJjQKhI8C+JghfC33hY8Z8LX8FHqz3ZF+CwoKCsoXUm1vQUFB5fBKiIioImOAJSIip4xGI65fv46rV68iPj5e/Wm9f+PGDbj0VaLAEmhz8wJtrgzJaLnB+jPvMZjZolsRCEkAOgVClxdO8+5DZxNQffKWObgOtaCgoCDUqlULtWrVQu3atVGrVi3UrFkTtWvXRs2aNRlSiYjIKQZYIiIqldzcXCQkJCA+Ph7Xr1/HjRs31J/W+0lJSa6FXCsF+UOtSQZMUhE/ZcsgVQy+hQhJAFoBoVUArQKhFYBWATTWx/J+6oQlrOaFVFdDqVVgYCCqV6+u3iIiItT7derUQc2aNREYGFhGr5KIiKoCBlgiIipzJpMJiYmJaqBNTExEcnIykpOTkZKSku++wxGUXaEAMEuWFlyzbHNfyn9fsbkv8n5XAEmx/o68xyRICm6WsX5jCgDI+z3vsaKCs7hZsMBPYbkvCUC2DGQEOe8xWQCSgJBv3ocMS/DUCEAjAI1iWSfvd6HJW996X6sAmpL/SbVaLUJDQxESEoKQkBD1flhYWKGQ6ufnV/InIiIicgEDLBERVSg5OTmFQm1aWhrS09Od3sxms2crbhturfclFA6sHhQYGIjAwEAEBQWpP23vBwcHIzQ0NF9gDQwM5JQzRERUYTDAEhGR1xNCICsrC+np6cjMzERWVhaysrJgMBiKvG80GtVbbm6ueiv4WFkHZFmWodPpoNPp4OPjAx8fn3y/29738/Nz+WYNpwEBAdBoStEUS0REVAEwwBIREblAURSXbmazGYqiQJZlSJIEWZbVm+3v1vuSJEGj0UCr1Xr6JRIREVV4DLBERERERETkFWRPV4CIiIiIiIjIFQywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyClpPV4CIyFOEEMjOzvZ0NYiIikWv10OSJE9Xg4jIIxhgiajKys7ORr9+/TxdDSKiYvn999/h5+fn6WoQEXkEuxATERERERGRV2ALLBERAJ/9NQCzBEmWAElWf0KWgLyuepIsW+5LeT9lCZKUdx7QWi7vcfU+UOCx/Nu0/Ly5XFgfl3FzG9bHraccCz4mSRDW3oRS3u+y5Rchwea5oK4jJCnv95vbFHlVsdQFNuvkX55vHWsZ2c4y2/L5ltk+VrAeDtbBzcdslwNQ6+DoufKVd1CPgttU2Xs+dR2Rf50C21OXo+BycbMMbpa9uW2hLpMKlbddZrl/8+fN7UiSuPkWtH1cXWZZLsNy33YdOW+5ZZnludTHbH/i5npywVveMsvvKPS4ZR1FfUyG5XcA0Eg3f5el/MtkSdgsF9DAUsaynmKzngKN7Tbz7lvL264nQ+Stq0CTt8zyXJbyGklAggJN3u+262gAy3qwPJ/1tVl/tzyXUJfJUl5d1PuS+rHWSBJkSHmPSdDk/fFlyJAgwZirwf2P1wIRUVXHAEtEBFjCq2I5UIR08+fNZADLoaYkAfLNtKYefuZLQjJQMKHcTIcolHokm3XzJShXHoeD5cgLusgXYPM9lm8TNr8XCsQFl9tZp9BLLlDeXnXt1sPBzdEyR3+qkm7PZpsOA3PBgGrv32y7HAWXOwiw/9/evUdFXed/HH+OiIKCAuYq5CUtNNc0FcXMJNNCMq0WtWPrHnNZT7UnL215fnY4eSkrNY+XTp7t4llzS0m7bFqtpXmvxAtmaBmEeL/AcldwEAfm9wfO1wGGAQZ0mPH1OIfDd+bz/Vy+8xlx3vP5fD+fyumV0ioHsNeet1ao01GaLUi9lmaf7iiP1UFdFX/sA9gqP9WlOQpssRqPjTSupftQMa08gC27FgBeTSsPAK/+NpnKg8ur733bse18H0z4GAEs+Jiu/fbBVlf5scM047H1ajBrH6ReC1qdBbC28q4FsFfLtSu/vC7b+XZ9KCJyE9MUYhEREREREfEICmBFRERERETEIyiAFREREREREY+gAFZEREREREQ8ggJYERERERER8QgKYEVERERERMQjKIAVERERERERj6B9YEVEAHysWCkr36jRRKXfxoaMlfZRNVXa99T2Y712XJs0u01IrdVsburo+WvP2XbXpOJjq7Ebp5FixQRWjLzWynmu5quqmuesdkkV9jY12Tffyf6rJidplap1Jc3ZXq/O0myHTvM52s/VQXqVNlazDyxV85mqnG+fZrfHq8nuXGz7r9q/varZBxbX94G1ci2ftfLP1TTr1b1wKz9fZrKCqexaPVx9bLsuKqZbr6ZZ7eq2Gml27bj6uMnV4yZX02zH9r/L7P5Zl5mu/S67eslNrh6XXX2LOt4H1kQTyveXtaWZrj7vg91esnZl2vZ5NfaxvZpWvo+t6VqZV/9GlO9KbeJKiaN/gyIiNx8FsCIiQEnk/9zdhOvDFh/Ug6nSbxG49rayci3o8yz272xNSBMR8RT6iy0iN63i4mJ3N0FERERE6kAjsCJy02revLlxvGHDBvz8/NzYGnGmuLiYxx57DFBfNXbqq+tPr6mI3MwUwIrITctkujYp1s/PD39/fze2RmpLfeU51FciItLQNIVYREREREREPIICWBEREREREfEICmBFRERERETEIyiAFREREREREY9gslqt9dwhUEREREREROT60wisiIiIiIiIeAQFsCIiIiIiIuIRFMCKiIiIiIiIR1AAKyIiIiIiIh5BAayIiIiIiIh4BAWwIiIiIiIi4hEUwIqIiIiIiIhHUAArIiIiIiIiHqGpuxsgIgJw6dIl1q5dy86dO8nIyKBJkyZ07NiRYcOGMWbMGHx9fV0uOzc3l4SEBBITE8nMzKR58+Z06dKFmJgYHnnkEUwmk9P8Z8+eJSEhgf3795Obm4u/vz/dunVj9OjRDB06tMb6U1NT+eSTT/j555/Jz88nMDCQnj17EhsbS0REhMvX5S7e2Ffp6en8+OOPJCcnc/z4cfLz8/H19aV9+/b069eP2NhYOnbs6PJ1uYs39pUjFouFyZMnc+zYMQBiYmKIj4939dJERKQRM1mtVqu7GyEiN7eMjAymTZtGRkYGAH5+fpSVlVFSUgJAeHg4y5YtIzAwsM5lp6amMmPGDAoKCgDw9/enpKSE0tJSACIjI5k/f361H+QTExOZM2cOxcXFALRs2RKz2UxZWRkAI0eOZObMmdV+WP/6669ZvHixUV9AQABFRUXY/vROmjSJuLi4Ol+Xu3hjX23evJnXXnutwnMBAQGYzWajbl9fX6ZNm8Zjjz1W5+tyF2/sq+qsXLmSVatWGY8VwIqIeC9NIRYRt7JYLLz00ktkZGTQpk0blixZwubNm9m8eTNz5syhRYsWpKWlMW/evDqXXVhYyMyZMykoKKBTp068//77bNq0ic2bN/P888/TtGlT9u3bx9tvv+0w/7lz55g7dy7FxcX06tWLNWvW8M0337Bx40YmTZoEwMaNG/n4448d5v/ll1+M4HXIkCF89tlnbNy4kS+//JJHH30UgFWrVrFt27Y6X5s7eGtflZaW0qxZM6Kjo1m4cKGRb/PmzSxdupQuXbpw5coVlixZQlJSUp2vzR28ta8cSU9PZ/Xq1YSFhRESElLn6xEREc+iAFZE3Orbb781pv3NmzeP/v37A9CkSROGDx/OjBkzANizZw8HDhyoU9lr164lNzeX5s2b8+abb3LnnXcC5aNpsbGxxsjnV199xenTp6vkX7lyJWazmZCQEBYsWGBMIW3RogVxcXGMHj0agI8++oiLFy9Wyf/uu+9SWlpK165deeWVV/jDH/4AQOvWrZkxYwaRkZEVzmvsvLWvevbsydq1a3n55ZcZNGgQLVu2NOqOiIhg+fLlhISEYLVaWbNmTZ2uy128ta8qKy0tZeHChVgsFl588UWaNWtWp2sRERHPowBWRNzq22+/BaBv377cddddVdKHDx9OaGhohXNra9OmTUYZYWFhVdJjY2Px9/entLSU7777rkKa2Wxm586dADz++OMOp1n+5S9/AaCoqIjvv/++Qtq5c+c4dOgQAOPHj6dp06pLDtjyZ2RkkJycXKdrcwdv7atOnTpxyy23VNu2wMBAoqKiAEhJSanDVbmPt/ZVZevWrSMlJYURI0YwYMCAOl2HiIh4JgWwIuI2xcXF/PLLLwDcc889Ds8xmUwMHDgQgP3799e67FOnTpGZmQlg5K+sRYsW9O7d22HZhw8f5vLly07zh4aG0rlzZ4f57R9Xl79Xr160aNHCYf7Gxpv7qjZsI3u2ezQbs5ulr06fPs3KlSsJCgpiypQptb4GERHxbApgRcRtTp48aQQEXbp0qfY8W1pubi4XLlyoVdm26ZM1ld21a1cATpw4UW1+2znO8h8/frzC87bHwcHBBAcHO8zr4+NDp06dHOZvbLy5r2rj559/rrH8xuJm6Cur1crChQspKSlhypQptG7dusa2i4iId1AAKyJuk52dbRy3bdu22vPsp3fa53EmJyenTmUXFRVx6dKlKvUEBgbSvHnzGvPb12ef39nUVPu2Vc7f2HhzX9Vk69at/P777wCMGjWqTnnd4Wboq//85z8cOnSIyMhIoqOja9V2ERHxDgpgRcRt7D/YOvsw6+fn5zDP9SzbbDZXSXeWv3K7bI9rym9rW22vy128ua+cOX36NIsXLwagd+/ePPzww7XO6y7e3lfnz5/n/fffx8/PjxdeeKFW7RYREe+hAFZERMSBnJwc/u///o/CwkJuueUWZs+eTZMm+m/T3RYtWoTZbCYuLs7hIlIiIuLd9D+xiLiNbQEjwFjYxZHi4mKHea5n2f7+/lXSneWv3C7b45ry29pW2+tyF2/uK0fy8vL4xz/+wdmzZwkJCWHp0qXGNkiNnTf31ddff01SUhLdunVj3LhxtWqziIh4FwWwIuI29vfgZWVlVXue/f15Nd1TatOmTZs6ld2yZcsKH5Zt9Vy8eNHpB3Vbfvv67PPXdG+hrW2V8zc23txXleXl5fH8889z4sQJgoODWbZsmbEqrifw1r4qLCzkn//8J02aNGHq1KlcvnyZS5cuVfixWq1A+f6wtuc8YeVoERGpPQWwIuI2nTt3NqZkOlsZ1pYWEhJCq1atalW2/Qqnzsq2rYp62223VZvffuXU6vJXXpHV9jgvL4/8/HyHeUtLSzl16pTD/I2NN/eVvby8PKZPn87x48eN4LVyfY2dt/bVxYsXKSwspKysjKlTpxITE1Plx7bFz3fffWc8l56eXqtrExERz6AAVkTcxs/Pj7vuuguAvXv3OjzHarWyb98+AAYMGFDrsjt27Ei7du2clm02mzl06JDDsnv16mUsUmOrv7KMjAxOnjzpML/94+rqP3z4sLFITV2uzR28ua9scnNzmT59eoWR18b+xYIjN0NfiYjIzUsBrIi4VUxMDAAHDx7kyJEjVdK3b9/OuXPnKpxbGyaTiREjRgCwbds2zp8/X+WcL774ArPZjI+PDw899FCFNH9/f+6//34A1q9fT2FhYZX8CQkJQPl9ekOGDKmQFhYWRu/evQFYt24dFoulSv41a9YA0L59e+6+++5aX5u7eGtfQcVpwyEhIbz11lseGbzaeGNfhYaGsmvXLqc/7du3N67J9lx4eHitr09ERBo/BbAi4lYxMTF07doVq9XKrFmzOHDgAABlZWVs376dRYsWATBw4EAiIiIq5F25ciVRUVFERUU5/CA9fvx4QkJCKC4uZubMmaSmpgJw5coV1q9fz7/+9S8ARo8eTceOHavkj4uLw9/fn5ycHF566SVOnz4NlI8wrVq1ig0bNgAwceJEAgMDq+R/5pln8PHx4ejRo8ydO9e4Z/DChQssWbLEGMF69tln8fHxqfuLd4N5a1/l5+dXCF49cdpwZd7aVyIiIiarbcUDERE3OX/+PNOnTycjIwMonwJZVlZGSUkJAOHh4SxbtqzKh9mVK1eyatUqoHyUMzQ0tErZqampzJgxg4KCAqB8VKekpMQYER0wYADz58+nWbNmDtuWmJjInDlzjFVRAwICMJvNlJaWAjBy5EhmzpyJyWRymP/rr79m8eLFxvkBAQEUFRUZi81MmjSJuLi42r1QjYA39tWqVatYuXIlUD5CaFsptzrvvfeeMY22MfPGvqrJE088QUZGBjExMcTHx9cpr4iIeIam7m6AiEhoaCirVq1i7dq17Ny5k4yMDJo2bUqXLl0YPnw4Y8aMwdfX16Wyu3fvzr///W8SEhLYvXs3//vf//Dz86Nr167ExMQwcuRIp3t7Dho0iA8++ICEhAT2799Pbm4uAQEBhIeH8+ijjzJ06FCn9Y8aNYrw8HDWrVtHcnIy+fn5BAcH07NnT2JjY6uMfjV23thX9qvUms1mzGaz03Z6yqq23thXIiIiGoEVERERERERj6B7YEVERERERMQjKIAVERERERERj6AAVkRERERERDyCAlgRERERERHxCApgRURERERExCMogBURERERERGPoABWREREREREPIICWBEREREREfEICmBFRERERETEIyiAFREREREREY+gAFZEREREREQ8ggJYERERERER8QgKYEVERERERMQjKIAVERGP8NZbbxEVFcXUqVPd3RRxs8LCQh555BGioqLYtWuXu5sjIiI3UFN3N0BERK6voqIi0tLSSElJITU1ldTUVM6ePYvVagVg3bp1hIaGXpe6rVYrY8eOJSsriwkTJvDMM8+4VE5aWhrr168H4Omnn27AFrrXsWPH2LdvH4cPH+bYsWPk5ORQWlpKYGAgt99+O4MGDSImJoaAgAB3N7VRCQgIYPz48axYsYK3336bgQMH0rx5c3c3S0REbgAFsCIiXm7atGmkpaW5pe6UlBSysrIAGDJkiMvlvPPOO5SWljJw4EB69erVUM1zq2nTpvHzzz87TMvNzSU3N5f9+/ezevVq4uPjiYyMvLENbOTGjh3Lp59+SmZmJp999hkTJkxwd5NEROQG0BRiEREvZxtphfKRq759+xISEnJD6v7+++8BaNu2LT169HCpjEOHDpGUlATgVUGKLbAPDAxk5MiRxMfHs3z5clasWMGrr77KoEGDgPJgNj4+nuTkZHc2t9Hx9/dnzJgxACQkJHDp0iU3t0hERG4EjcCKiHi5kSNHEhQURPfu3enQoQMmk4lp06aRm5t73eu2BbCDBw/GZDK5VMbHH38MQGhoKHfffXeDtc3dOnTowMSJExk+fDjNmjWrkNa9e3eGDh3KmjVreO+99ygpKWHx4sV8+OGHbmpt4xQdHc3KlSu5ePEi//3vfxk3bpy7myQiIteZRmBFRLzc2LFjefDBB+nYsaPLQaQrTp8+zcmTJwHXpw9nZWWRmJgIwIgRI25o+6+3RYsW8fDDD1cJXu1NmDCB8PBwAE6cOEF6evqNap5HCA0NpXfv3gB8+eWXbm6NiIjcCBqBFRGR68K2Oqxt2rIrtmzZQllZGQDDhg2rVR6LxcK2bdv44YcfSElJIT8/n9LSUoKCgujatSv9+/fnwQcfpE2bNhXyRUVFARATE0N8fDynTp3is88+Y//+/WRnZ9OyZUu6devGn//8Z/r06WPku3z5Mt988w2bNm3izJkzFBcXExYWxkMPPcS4cePqvbhQv379jHuYT58+ze233+5yWSdOnGDDhg0kJydz/vx5iouLCQgIIDAwkNDQUCIiIrjvvvvo1KmTS+VbLBY2b97M9u3bOXbsGAUFBZhMJlq1akVQUBA9evSgf//+DB48GF9f3wp5K7/+J06c4IsvviApKYns7GzMZjOvv/56lS9Dhg0bRnJyMidPniQlJYU777zTtRdHREQ8ggJYERG5LmzThwcNGkTTpq79d7N7926g/D7Rzp0713j+0aNHmT17NmfOnKmSlpWVRVZWFnv37iU9PZ34+Phqy9mxYwdvvPEGxcXFxnOXL19mz5497N27lxkzZjB69Giys7OJj48nJSWlQv7jx4/z/vvvs2fPHhYvXlyvINZisRjHTZq4PnFqw4YNLFu2jNLS0grPFxQUUFBQwJkzZ9i/fz/p6enMmjWrzuXn5+fz4osvOlwwzPbap6Wl8eWXX5KQkECHDh2qLeubb75h8eLFlJSU1Fiv/aJeu3fvVgArIuLlFMCKiEiDy87O5rfffgNcnz5cUlLCr7/+CkCPHj1qnD6clpbGlClTMJvNAPTt25fo6Gg6d+6Mr68vOTk5HDlypMZ9Q9PT09m2bRvBwcE8/fTTRt0HDhzgo48+ori4mKVLl9KnTx9ee+01jh49yuOPP859991HUFAQZ8+e5cMPPyQ9PZ1Dhw6RkJDAX//6V5deA4CffvrJOO7SpYtLZRw7dswIXlu1asXo0aPp06cPQUFBlJaWkpOTQ2pqKnv27HF5mvayZcuM4DUiIoLo6GhCQ0Np2bIlRUVFnDx5kuTkZGNKeHVSU1PZsmULrVq1Yty4cfTq1QtfX19OnDhB+/btq5zfpUsX/P39MZvN/PTTT8TFxbnUfhER8QwKYEVEpMH98MMPWK1WmjVrxsCBA10qIz093Rh97N69u9NzLRYLs2fPNoLX6dOnGyvU2rv33nuZPHkymZmZ1ZaVlpZGeHg4y5YtIzAw0Hj+j3/8Ix06dGDOnDlYLBamTJnChQsXWLRoEf379zfO69atGwMGDGDixIlkZ2ezfv16Jk6ciI+PT52uH8qnYR8/fhwoD+I7duxY5zIAtm/fboy8Ll261Liv1t6QIUOYPHkyBQUFdS7/8uXLxhcDQ4YM4bXXXqsSCPfp04fHHnsMs9nsdCT5+PHjdOjQgeXLl1dYLbu6Vax9fHzo1q0bycnJ/P7775SVldVrpFpERBo3/YUXEZEGZ5s+3L9/f/z9/V0qw34acE3b/mzZsoWzZ88C5asuOwpe7bVr185p+ksvvVQheLUZOnQobdu2BSAvL4/Y2NgKwatNQEAADz/8sHHeiRMnnNbnSHZ2NkuWLAHAZDLx97//vc5l2NhWnA4ICHAYvNpr3bp1ncu/ePGi8WVDnz59nI7i+vv71zil+oUXXqjTVk+2c4uLi8nOzq51PhER8TwKYEVEpEEVFhZy8OBBwPXpwwA5OTnGcatWrZyeawuYAZ588kmX64TyKanVBXkmk6lCWnR0dLXl2J937ty5OrWhuLiY+Ph4I/CsvHBUXdmC7sLCQrZv3+5yOdVp3bq1sZry1q1b67Una9u2bR1+KeCM/fvD/n0jIiLeRwGsiIg0qMTERCwWCz4+PgwePNjlci5fvmwcOxoNtff7778D5SNxtVnsyZma8tu3xdlqvfbn1SWgu3LlCi+//LKxMNR9993H5MmTa53fkejoaGPUc86cOTz33HOsWbOGQ4cOGdOu68PX15eYmBgAjhw5whNPPMGiRYvYunVrnYN3V1ZZtg9g7RfeEhER76N7YEVEpEHZRkPvuusugoKCXC7H/p7Rmlajzc/PB66NNNaHn5+f03T76bHOpkfb34dp2wqoJhaLhVmzZrFv3z4AIiMjmTt3rkv3z9oLCwtjwYIFvPHGG2RlZXH48GEOHz4MlL/Od955J1FRUYwaNarGLwuqM3XqVEpKSti0aRMXLlzgq6++4quvvgLKv1iIjIxk5MiRNY4k1zTa7oj9lx2urngtIiKeQSOwIiLSYEpKSti7dy9Qv+nDUH6/ps2FCxfqVZYnsFgszJkzx9g6qH///rz++uvG1Nz6ioiI4OOPP+aVV15h5MiRxjY2paWl/Prrr7zzzjs8+eSTRvBcV82bNyc+Pp7Vq1fzt7/9jX79+hkBfm5uLt9++y3Tpk3j5ZdfrhBwVubKAkz2C0/Zv29ERMT76GtKERFpMElJScaU1PoGsPZbptQUwAYFBZGZmemxC/jYglfb6HW/fv2YP39+vfaPdaRZs2Y88MADPPDAA0D5yPWBAwfYtGkTe/bs4cKFC8yaNYuEhATatGnjUh0dO3bkqaee4qmnnqK0tJS0tDR2797Nhg0byMvLY9euXaxYsYIpU6Y02HVdvHjROK5pgS4REfFsGoEVEZEGYwvAwsPDCQ0NrVdZ9nuenjp1yum5tm12cnJyajy3sakcvPbt25cFCxY0ePDqSFBQEMOHD+fNN9/k8ccfB8BsNvPDDz80SPm26clxcXG8++67xvTsLVu2NEj5NidPngQgNDSUFi1aNGjZIiLSuCiAFRGRBlFWVsaPP/4IlC88VF/t2rXjlltuAeC3335zem5UVJRxnJCQUO+6bxSLxcLcuXON4LVPnz4sXLiwxvtwr4fIyEjj2HZPcUMKDQ019rF1Za/Z6uTn5xtbKPXs2bPByhURkcZJAayIiDSIw4cPG4GPfUBZH7ag6uTJkxQVFVV73rBhw4zgaOPGjXz++edOy83MzGyQ9tWHxWLh1VdfZdeuXcD1DV537txZY1Bqu3cZ4NZbb61T+efOnSMpKcnpOefPnzdGSsPCwupUvjNHjhwxju+5554GK1dERBon3QMrIuLlzpw5Y6w4a2PbXxRgx44dFVYL9vf3Z+jQoXWuxzaKGBYW5tJWKI488MADbNy4kbKyMpKSkrj//vsdnte0aVNeeeUVnnvuOcxmM2+99Ra7du1ixIgRdO7cGV9fX3JyckhJSWHHjh10796d+Pj4Bmmjq+bNm8eOHTuA8oDx2Wef5fz5807zBAcHExwcXOe6Pv/8c+bNm0dERAQRERHcdttttG7dmitXrpCZmcmWLVuM0fP27dvXefujzMxMXnjhBcLCwhg8eDA9evSgXbt2NG/enIKCAo4cOcL69euN1aTHjBlT52uozv79+4Hy+3sHDRrUYOWKiEjjpABWRMTLHT58mPnz51eb/s4771R43L59+3oFsA0xfdimf//+tG3blqysLDZt2lRtAAtwxx138PbbbzN79mzOnTvHwYMHOXjwoMNzbffMutP27duN47Nnz/Lss8/WmGfSpEnExcW5VF9JSQmJiYkkJiZWe86tt97K/PnznW4P5My5c+f49NNPq01v0qQJTz75JH/6059cKr8yi8XC1q1bgfJRf1e3ABIREc+hAFZEROrt6NGjxuhhfVcftufj40NsbCzvvfcee/bsIT8/3+nest26dWP16tVs2rSJ77//nrS0NON+y+DgYG6//XYGDBjAgw8+2GBt9ARz5sxh3759JCcnc+zYMXJzc40pxa1bt+aOO+5gyJAhREdHu7RtT+/evVm+fDlJSUkcOXKEzMxM8vLyKCoqws/Pj7CwMHr37s2oUaMabHQeMN4TAGPHjm2wckVEpPEyWa1Wq7sbISIinu2DDz7ggw8+IDg4mC+++MKlvTyrU1hYyPjx47lw4QLPPPMMEyZMaLCyxbPNnDmTxMREIiIiWLp0qbubIyIiN4AWcRIRkXqzTR++9957GzR4BQgICDCC1rVr13Lp0qUGLV8805EjR0hMTMRkMvH000+7uzkiInKDKIAVEZF6uXLlCkOGDGHSpEnExsZelzrGjBlDhw4dKCgo4JNPPrkudYhnWbFiBQAjRoygR48ebm6NiIjcKJpCLCIiHuG3334jMTGRgIAAnnjiCXc3R9yosLCQTz/9FKvVSmxsrNP7okVExLsogBURERERERGPoCnEIiIiIiIi4hEUwIqIiIiIiIhHUAArIiIiIiIiHkEBrIiIiIiIiHgEBbAiIiIiIiLiERTAioiIiIiIiEdQACsiIiIiIiIeQQGsiIiIiIiIeAQFsCIiIiIiIuIRFMCKiIiIiIiIR1AAKyIiIiIiIh5BAayIiIiIiIh4BAWwIiIiIiIi4hEUwIqIiIiIiIhHUAArIiIiIiIiHuH/AZnAerEMSwLkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACpmklEQVR4nOzdd3gUxeMG8Hf3SnqhhAQIIfQuHWkKUhVEURH0KwJi9ydIUUQFFbEhKoIdG00pgqAoICCg9K7UUJMAgRRIr9fm98dxyx25lnq55P08zz253M3uzl1yt/vuzM5IQggBIiIiIiIiogpO9nQFiIiIiIiIiNzBAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BUYYImIiIiIiMgrMMASERERERGRV2CAJSIiIiIiIq/AAEtERERERERegQGWiIiIiIiIvAIDLBEREREREXkFBlgiIiIiIiLyCgywRERERERE5BVKJcDGxcVBkiRIkoQxY8aUxiqrpN69eyvvIxGRI2PGjFG+K+Li4jxdHcWCBQuUei1YsMDT1aFSZjKZ0LFjR0iShHHjxnm6OuQleIxIZF9F3ZeXhiVLlkCSJISGhiI5ObnU119uLbALFizAm2++iTfffLO8Nulxa9asUV5zenq6p6tD1xkMBmzevBlTp05Fnz59ULt2bfj4+CAwMBCNGjXCQw89hDVr1sBoNBZpvceOHcO4cePQvHlzBAYGIiQkBG3atMHUqVMRHx9fRq+GiKoKvV6PLVu2YNasWRg2bBjatm2LunXrwtfXFwEBAYiOjsbQoUPxww8/IC8vr9S3P3/+fBw6dAi+vr545ZVX7JY5efIkvvvuOzzzzDPo1q0bGjZsiODgYGi1WtSqVQu33XYbpk+fjvPnz7u93YyMDMyePRu9e/dGrVq1oNVqUbt2bfTq1Qvz5s1Dbm6u2+vKzc3FN998g8GDByMyMhK+vr7w9fVFnTp1MGDAAMydO7fU9tdCCJw+fRo//fQTJk+ejN69eyM4OLjEYW737t0YO3YsGjVqBH9/f1SvXh0dO3bE22+/jatXrzpd1jpMFvXmzcaNG6e8junTpxd5+dzcXISEhECSJKjValy+fLlE9cnPz8cPP/yAe+65Bw0aNIC/vz9CQ0PRvHlz3Hffffj000+RkJDgsC4bNmzAzJkzcc8996B169aIiIiAVqtFUFAQmjRpghEjRuDnn38u0nGMXq/HN998g759+yrHRZGRkRgyZAiWL18OIUSJXvPNjEYjfvzxRwwdOhSRkZHw8fFB9erV0a5dO0ybNg0XLlxwaz1F+R929pmzDpNFuXlzrklKSoJGo4EkSQgICEBWVlaR1/H2228r78Wzzz6rPP7www+jadOmyMjIcLi/KBFRCmJjYwUAAUCMHj3abplevXopZaqK0aNHK685NjbWZfmq+B6Vty1btojq1asr77OzW+fOncXZs2fdWu/s2bOFRqNxuK6goCCxdOnSMn51VFUU9bulvPzwww9KvX744QdPV6fSOXnypFvfXQBEdHS02LlzZ6ltOycnR0RERAgAYvz48Q7L3XrrrW7VT6PRiBkzZrjc7oYNG0SNGjWcrqthw4biwIEDLte1f/9+0aBBA5d1q1Wrlvjzzz+L9P7YM2nSJKfbcXS85IjJZBITJ04UkiQ5XGd4eLj466+/HK7D+nitKLcGDRoU+31w5xixrB08eFCpQ1RUlDCZTEVaftGiRcrygwYNKlFdNm/eLBo2bOjyPZ8zZ47d5devX+/23+2WW24RJ0+edFmn2NhY0b59e6fr6tevn0hLSyvRa7c4e/asaNu2rdPtBQYGikWLFrlcV1H+j539/1nvV4tyW7hwYbHfh4qwLx8yZIhSh2+//bbIyzdq1EhZft++fTbPWT43siyLEydOlFaVhRBCqFEKoqOjS/3MTFW0bds2T1eh0ktISEBqaioAoHr16ujXrx+6du2K2rVrQ6/XY9++fVi0aBEyMzOxf/9+3HHHHdi3bx8iIiIcrvOrr77CSy+9BADQaDR49NFH0atXL+j1evz5559YuXIlsrKy8OijjyI0NBR33nlnubxWqrwWLFjALrpVWMOGDXHrrbeiVatWiIqKgr+/P7KysnD06FEsX74cCQkJiIuLQ//+/bF37160bt26xNv84osvkJiYCJVKhSlTpjgtGxISgi5duqB9+/Zo1KgRqlWrBqPRiPj4eKxbtw7//PMP9Ho93njjDRgMBrz11lt217N161YMGTIEer0eANC1a1eMGDECderUQXJyMlavXo0tW7bg/PnzuPPOO7Fr1y40adLE7rri4+PRr18/ZGRkAAAiIiIwZswYNGnSBGq1GufPn8eiRYsQGxuL5ORkDBkyBHv37kW7du2K/Z7d3PoVFBSEevXq4cSJE8Va3yuvvII5c+YAAAICAvD444+jS5cuyM7OxqpVq7Bp0yYkJSXh3nvvxfbt2+3WvVatWli9erVb25s5cyYOHToEAHjssceKVeeKokOHDrjllltw5MgRXLhwAVu2bEHfvn3dXt76+7Yk78Uvv/yChx56CHq9HrIs46677kKfPn1Qp04dCCGQkJCAvXv3YsOGDS7X1bJlS3Tp0gXNmzdXehOkp6fj0KFDWLZsGVJTU3HkyBH06tUL//33n8PjmPT0dNx1112IiYkBALRo0QJjx45FZGQkzp49i/nz5+PixYvYvHkz7r//fmzcuBFqdfHjw5UrV9C7d29cunQJABAVFYWxY8eiefPmyM3NxdatW7F06VJkZ2djzJgx8Pf3xwMPPOByva1atcLbb7/ttExUVJTD58aPH4+hQ4e63M6ZM2eU78CgoCAMGzbM5TIV2WOPPYa1a9cCMP+fP/74424vu337dpw7dw6A+f3v3LmzzfP/+9//MH36dMTHx2PGjBlYtmxZ6VW8VOOwE1WxdbEinFkhW4sXLxZt2rQRP/30k8jPz7db5tKlS6JVq1bK327UqFEO13f58mXh7+8vAAi1Wi02bdpUqIx1q1S9evVEXl5eqb0eooqELbBlKzs7W5w/f95pmdzcXHHPPfcof4c777yzxNvV6/WiXr16AoAYMGCA07InTpwQer3eaZklS5YorYhqtVpcunSpUJn8/HwRFRWlvI6pU6faXdecOXOUMn369HG4zbFjxyrlBg4cKHJzc+2+zlGjRinl7r33Xqevw5Wvv/5aTJw4Ufz4448iJiZGmEwmsXXr1mK1Rh46dEh5z0JCQsR///1XqMwbb7yhrLtz585FbmW0lpaWJnx9fZXWkwsXLhR7XRWhBVYI2/+VRx991O3l4uPjlfe+Ro0aoqCgoFjbP3bsmPDx8RGAudeAvb+hRX5+vkhKSrL73NWrV8Xly5edbuvatWs2vSGeeeYZh2UnTJhg831x8zHKtWvXbFpnP/vsM6fbdmX48OHKuvr27Suys7MLldmxY4dybFWjRg2nLb+WdfXq1atE9XLXyy+/rGzziSeeKNG6KkJO0Ol0ombNmko93O15KITt9+qHH35ot8yrr74qAAiVSiXi4+NLq9qCAbYMVYR/TLKVlpbm1k796NGjyt/Oz89P5OTk2C1n/cX/0ksvOVzfgw8+WGpf/kQVFQNsxZCcnCxUKpUSEIt7wG2xevVq5e/qTpc+d1iH7O+++67Q88uWLVOe79Spk9Pv7UGDBillN2/ebLdM3bp1lTLHjx93uK60tDShVqsFAFG9evWivzAXihtghw4dqiz3+eef2y1jMplEly5dlHK///57sev5+eefK+vp379/sdcjRMUJsMnJycqlPgEBASIrK8ut5d566y2l/uPGjSv29rt27SoAiODg4FI9kHfk0KFDNifP7UlKShJarVZ5TxyF5qNHjyohPiIiQhgMhmLV6fLly8p6/Pz8HG5PCCE++OADpf7Tpk1zWK48A6zBYBC1a9dWtlnSyzQqSk6wPpadPn26W8vk5OSIoKAgZT+TmJhot9zx48eVdb/22mulVucyH4XYMrLu33//rTxWlIugTSYTVqxYgREjRigXugcFBaF58+Z49tlncfToUad1e/PNN5VtWLro/vXXX3j44YfRoEED+Pr6Fhr9y2Aw4M8//8TkyZPRs2dPZdCIoKAgNG3aFGPGjME///zjcJuWC8EXLlyoPNagQQOXF5MXZRTivXv34qmnnkKzZs0QFBSEgIAANGrUCKNHj8aWLVtcLm/ZTu/evQEAOTk5+PDDD9GpUydUq1YNAQEBaNWqFV555RWkpaW5XJ+3CA0Ndev9bd26NZo3bw4AyMvLw9mzZwuVEULg559/BgCXo3KOHz9eub98+fKiVrtEdu/ejWeffRYtW7ZEaGgofH19ERUVhREjRuCPP/5wuuy2bdsKfUYvXLiAyZMno3nz5ggICEBoaCi6d++OL774AgaDwa06ZWdn45NPPkH//v1Rp04dZfCGzp074/XXX0dKSorT5W/+rBiNRixYsAD9+/dH3bp1oVarER0dXWi5pKQkTJkyBS1btkRAQACqV6+OLl264KOPPlIGgomOjoYkSYWW37Bhg7JN67+nM+PHj1eWWb9+vVvLuMPVyIVl9Xf7/fffMWTIEERERMDX1xfR0dF45JFHsHv37iK/Bp1Oh++++w733HMP6tWrB19fX4SGhuKWW27B5MmTHY7IeOrUKQQEBECSJISEhCA2NtbhNtLS0hAVFQVJkqBSqZx+b1cmYWFhCAsLA2Den7ka2MeVxYsXAwD8/Pxw3333lbh+gLn7o0ViYmKh5633YyNHjnT6vT1q1Cjl/k8//WS3jPUomI66GQPmfYTlvcvJyXFYrjxlZWUp3x/BwcEOB6K5eT9Ukn3NDz/8oNwfO3ZssddTFCkpKejcubPy3TVp0iS7l6cVd58WFhaGu+++G4D5b7tixQq36mV9LFfc7sPbt2/Hnj17AACTJ0922pW1tLj6jAHmwUZ1Oh0A86A7tWrVsluudevW6NOnj7Iu62P6oti2bZvyNx04cKDD7QG2n+ulS5cWa3ulbcOGDbhy5QoAoHnz5ujevXu5bPfbb7+FWq2GJEmIjIzE8ePHC5UpyXGV9f/1okWL3LosdNWqVcqgT4MGDUJ4eLjdci1btlQuZ1iyZEnpXXJaGinY2dk165ZXZ7c33nij0HrPnj0r2rVr53Q5WZadni2w7lKzZcsW8X//939212N95qN3795u1Xn06NF2z2y7eyG4s/fKEb1eL5588kmX6x4+fLjdLlIWlnK9evUS586dEy1btnS4rvr161fJFuTOnTsr78GePXsKPW/dStu6dWun6zIajSI4OFj5n83MzCyraiuys7PFiBEjXP6vDB482GF9rFsL3njjDbF+/XoRGhrqcF39+/d32DXbYt26daJWrVpO6xQUFCR+/fVXh+uw/qxcu3ZN9OzZ0+7/rbUtW7aIatWqOdxmmzZtxIULF0T9+vXtLm80GpUBYKpVq+ayK3heXp6yvaioKGE0Gp2WLwpXZ21L++9mMBicfq/JsixmzZrldgusO4PpaLVa8dVXX9ldfv78+Uq5bt26OWwNGDZsmFKuNM/8VnTp6elKS5NGoynRZQv5+flKV77bb7+91Opo3SvFXgusdavq+vXrna7LuqUpIiLCbpnIyEiljLstsO3atSvai3JDcVpg165dqyxz9913Oy2bnJyslA0LCytWHa33bdWqVXP5ne6KOy2wsbGxomnTpkq59957r1CZ0tin/fbbb0o5d/6f//nnH6V827Zti/KybTz22GPKes6dO1fs9RSFdcuXoxbYBx54QCmzcuVKp+ubPXu2UtZZjzNnrFtVX375ZZflLcdNAERMTIzdMtbHs2Xt/vvvV7Y3a9asEq/PnRbYd955RynTrFkzu633pXFc1aFDB6Xsli1bXNa9T58+SvnVq1c7LTtx4kSl7OHDh12u2x2lMoiTM5Zh3adNm6acMbA3gICltcvi3Llz6Nq1q3LmuGfPnrj77rtRv359GI1GHDx4EAsWLEBaWhpmzpwJWZZdDmU9e/ZsrF+/Xhm8oXXr1jAYDNi3bx98fHyUcnl5eQgMDETfvn3RsWNHREdHw9fXF1euXMHx48fx448/IicnBwsXLkRoaCg++eQTm+1YLgSfN28etm7dCgD4+uuvC51pKs4ZuEcffVS5CNrX1xejR49G9+7doVKpcODAAXz33XfIysrCihUrkJGRgfXr1zs9c52ZmYnBgwfj1KlTuPfee3HnnXeievXqOH/+PL788ktcuHAB8fHxGDVqVJVpvQDMrUNnzpxRfq9fv36hMseOHVPud+zY0en6ZFlG+/bt8ffff8NkMuHkyZPo0qVL6VX4JgUFBejXr59yxrdRo0YYMWIEWrRoAY1Gg7Nnz2LRokU4ffo0/vjjDwwdOhSbNm2CLDvulPHvv/9i9uzZEELg6aefRrdu3eDj44MDBw7gq6++Qk5ODjZt2oR33nnH4aAsq1atwogRI2A0GqHRaHDPPfegd+/eCA8PR2ZmJrZu3YoVK1YgKysL9913HzZt2qSc9XVk5MiR2LFjB9q2bYuHH34Y0dHRyMzMxJEjR5QyJ06cwN133620srZv3x4jR45EZGQkkpKSsHz5cuzcuRMjRoxw2BopyzKefPJJvPrqq0hLS8OqVavwyCOPOKzXypUrld4Ljz/+uNP3tiyVxt9t/PjxSiuEVqvF6NGj0bNnT8iyjH379uG7777Dyy+/7NYAGLt370a/fv2Qm5sLSZIwcOBADBgwAHXr1kVeXh52796NxYsXIzc3F8888wx8fHwKtTg9+eST+PPPP7Fq1Srs3r0bM2bMKFT37777DitXrgRgHvzHm6c6KAqDwYDnn39eGfho0KBB8PX1Lfb6du7cqXxuSus7648//sAvv/wCwLwfGzRoUKEyophn6RMTE3H16lXUrFnT5vF7770Xn3/+OQBg0qRJWL16Nfz8/GzKGAwGTJgwQfkOmDBhQrHqUNqKsq8JCwtD/fr1ER8fj5SUFCQnJztt5bLn+++/V+7/73//szk+KgtHjx7FnXfeicuXL0OlUmH+/PmFWn1La5921113ITw8HElJSdi+fTvOnz+Phg0bOqxbaQ3eZDl+qlGjBho2bIjLly9j7ty5+O233xAfHw+tVovo6GgMGDAA48ePR2RkZLG3BZhbmK17Ct1///12yxXlf6tTp052lyuK4n6uAfP/SbNmzRw+f+rUKfTs2RMnT55EVlYWqlWrhmbNmqFv3754+umnnQ7G6Y6rV68qgx2p1WqbFuKyIITAhAkTMG/ePABA586dsW7dukLfbaV1XPXYY48pg7YtWLAAd9xxh8O6xcfHK/kmLCwMgwcPdvpaunbtqtz/888/SzQ4nqI0UnBpT6NjNBqVMwE+Pj5ixYoVdsslJiYqLbSyLItjx44VKmPdAgtA9OzZU2RkZDjd/ubNm522Xl69elVp8ZFl2eGgGqU9jY71NUHh4eF2zyLHxcXZtGw4ut7S+j3RarVi7dq1dl+n9br27t3r8jU4kpOTI1avXl0qt4MHDxa7Hu5avHix8ro7dOhgt8yMGTNsWrlcsR4cZPHixaVcY1s3X5trb1AVnU5nU6cvv/yyUBnr1gLA3JJ4+vTpQuX27t2rtFo4OmN/4cIF5WxqVFSUOHLkiN267927V4SEhAgAIjIyUuh0ukJlbu7ZMWHCBKctnNYttM8995zdsjd/V9zcAiuE+TvH0rLl6mzv7bffLgDzwAUXL150WraoitICW9K/m3ULRGhoqN3pSmJiYpQpViw3ey2wmZmZymBAoaGhYtu2bXZf35kzZ5QBfAICAkRKSkqhMqmpqUqrmkqlEtu3b1eeO3XqlAgICBCA+XqzkrZ4nDx5stS+v+y9luIwGo026128eLF49dVXbaY0iI6OFnFxcSXazrvvvqus7+effy7Ssvv371fqt3z5cvHxxx+Lu+66S1mfSqWy2/oqhG2L1dy5c51ux3rfCEDs2LGjUJmUlBTRuHFjpUxERIR45ZVXxPfffy8WLVok3njjDWV/J8uymDlzZpFeq7uK0wJr/V64c2255bsHgM3nwh06nU6EhYUpy5fG/tbZMeL27duV3iG+vr5izZo1dtdRWvs0IYR48cUXlTKvv/66w3pbX+On0WiK/dlNS0tTtteuXTvx559/Ou0N5Ovr6/bULFlZWcpn7JdffhELFiwQkyZNsrlOs127dnYHQTIajcr3v0qlcjn42vnz55V1NmrUqDhvhVi4cKGyjvvuu89p2cTERJv35e2337ZbztH7aH3z8fERn3zySbHqbGE9CNiQIUNKtC4LR/tynU4nHn74YeW5/v37271muzSPq65du6YMMubqGnHr49+JEye6fJ1xcXFu/93dVSED7KpVq5Sy8+bNc1r21KlTymAVTz75ZKHnrQ9KAwICREJCgluvyZVz584p63W0oyvtAGs9Cty6descrmfv3r3KRfL169e3273O+oP91ltvOVzXN99841Y5V4o795y9W1kPApGammrz5e/ooM26S8Snn37qcr1FLV9cly9fVgZluP/++52W1el0ynx0TZo0KfT8zUHon3/+cbiuRx55xGm5cePGKTtKV11IvvvuO2VdP/74Y6HnrT8rHTt2dBpe9+/fr5Rt3bq108EnrNdrL8AKYdv10V4oFML8vWQpM3jwYKevtTiKGmBL8ne79957lecXLFjgcD2///67zTbtHWh/9NFHyvO//fab09f4119/KWXfeecdu2W2bdsmZFlW/l5paWlCp9OJjh07KsuWxsmim09ulOS2devWEtdHCHMXdUfbCAwMFGPHji2VsPy///1PWa+jgyNHnHX37NGjh9P5Sr/99lulrKsRdQcPHmyzbkeDF127dk0MGzZMOWawdxs+fHipdXGzpzgB9r777lOWsXeyuaTlrf3yyy/KsiXpMmvN0THir7/+Kvz8/ARgHln577//trt8ae7ThLDtWhsdHe3wf8s6bLnarjPW8zfXrVtXObnWoUMH8dFHH4nly5eLTz75RHTr1s3mf3HVqlVFWvfNt+rVq4uJEyc6HIQyIyNDKVujRg2X2ypqeXvOnj2rrMPf318kJyc7LGvdZRmAePHFF+2WA8yB+tlnnxVffvmlWLFihVi4cKGYMmVKofl2nZ2wcOWWW25R1uOqy6y77O3Ls7OzxYABA5THR4wY4XAgvtI8rhLC9vjm+++/t1vGZDLZnCh1d79g+awX9+THzSpkgLWMthccHOzWtTuWD729A07rAw9n06EUh6XFwdE1KaUZYK3f4zZt2rhcV9++fZXy9lpOLc+pVCqRmprqcD3WQf2hhx5yuV1HvCXAGgwGmy8OZ+HD+lrkb775xuW6LUOJAxDvvvtuaVbbxieffKJsZ9euXS7Lv/LKKw7/T60Pttq3b+90PdZfjjdfu2gymUT16tUF4HoaDiHMX+CWM8P2/t7WnxVHX7IW06ZNU8o6OiNvYX3w5ijAWgerKVOm2C3z0ksvKWWcXXNSXEUJsCX5u+Xn5ysHjuHh4S5HnmzRooWyLnsB1tJjpmnTpi5foxBC1KlTRwDOW7utP1cjRowQU6ZMUX5/5JFH3NqOK94WYHv27CmWLFli9yx7UfXo0UNZr73pbpxxFGDDw8PFjBkznPZMSE9Pt7lu29EopJ9++mmh9f/0008O13vu3DnxxBNPOHzvtFqtGD58uMtpSoqrOAG2f//+yjL2pmq7mfVJB2fvhT133323sqyrlm932TtG/O6775QTCREREeLff/91uHxp7tMsrEdrdvSZvOOOO5QyRT0RYG337t2F/s8c9QSaOnWqUqZGjRp2p5ix5izA3n333WLNmjUOA3pCQoJStm7dui5fh06ns/mcFJf1+9q/f3+7AXv37t1K0LfcnnrqKbvrc3TiQwjzMZ31MQBQ9F4JQghx4MABZflatWq5bK1218378pSUFJv/zf/7v/9zeIK+tI+rhDBfS2vZtqP97t9//62U6dixo7svVdmfa7XaEk3xZVHm18AWx/bt2wEAtWvXdmsyZ5VKBcDcJzsvL6/QdS0Wt912m9t1yMzMxI8//oh169bh6NGjuHr1qsMRCS2TMZelffv2KfcHDBjgsvyAAQPw119/ATCPWOzo2qWmTZuiWrVqDtdTt25d5X5JRiOOjo4uvZHHytALL7yAjRs3AjBfo2x9/Yu3sHx+APP/5po1a5yWt/67njx50u7ovYDtNQz2OPtfOX78OFJTUwGYJ/52VScACAwMRHp6Ok6ePOm0nKvP9YEDB5T7zq7pAKCMyu3MHXfcgaZNm+L06dNYuHAh3n77bWg0GuV5vV6vXC9ap04dl9eGlLWS/N3+++8/ZYTKXr16Kd+1jvTt29fh3ysjI0O5Ljk8PNzt/wEATv8HZsyYgb/++gt79+61GXW1QYMG+OKLL1xuwx1vvvlmhbuG1tfXV/lOFUIgLS0N//77L7799lssXboUO3bswPz587Fy5UplVN3isHxuAaB69epFWnbZsmXKmA25ubmIjY3F2rVr8cEHH+CNN97AnDlzsGzZMgwcOLDQsiEhIZgzZ45y3eHbb7+NLVu2YPjw4ahTpw5SUlKwevVqbN68GX5+fggNDVVGB3V0vfl7772HadOmwWQy4YknnsAzzzyjjNR64sQJfPXVV/j222+xYsUK7NmzB5s2bULTpk2L9Jq9WWJionLMpdVqnV7jXxKzZs3C1KlTAZivZd24caPT61DLYp82duxY5bhqwYIFhb774+PjlZkrIiIicOeddzrdpjMmk8nm9xYtWmDu3Ll2/0/fffdd/PXXX9i/fz+uXbuGH3/8EU899ZTDdTdv3lz5HjAajbh27Rr27duHzz77DL///jt+//13DBs2DAsWLEBAQECxX0NpmjdvHrp27aqMv9CqVSuMHTsWzZo1Q25uLrZt24affvoJer0eDRs2xPnz5wE4/lzffvvtDrelUqkwc+ZMJCUl4ZtvvgEAvPPOO0WeFcB6VO5HH30UanXpx6cLFy7gqaeewqlTpwAAb7zxhtP9TlkcV1nGo0hISMA///yD2NhYNGjQwKZMca8Lr1GjBi5fvgydToecnBxl/15sJY7AonRbYLOyskp0dvvmLsLWZ86ddbu1tmXLlkLXczm7NWzY0O56SrMF1voM5Ndff+1yXdbz9r3yyiuFnrc8d9ttt7lcl6VseU0S7SnWLTnh4eHi1KlTTstX1C7E1t0ni3q7uVuJdWuBq7nBbh751pr1KJpFvdnrBmb9WXF2vboQtt1+3GmRsrT6OGqBFUKIDz/8UFnnzd28Vq5cqTxXViPfFqUFtiR/N+vvkVdffdVlvay/p25ugbUe2bSoN41G43S7586dU65VA8xz0u3evdtlfSsr60s/br311hKd7bZ0wVOpVKVWv7i4OGVeVo1G47T17dNPP1WuO7d3CwoKEr/99pvNJTZ//vlnofVYf787uzRp7ty5SrlOnTqVyuu1VpG7EM+aNUtZ7sEHH3R7OVesjxEt1+EB5i7KjuaOtFaa+zSL9PR0pUujvev9rK/xs9fTZvv27U6vdbduVTxy5IhNnT744AOnr/frr79Wyg4fPtzl++OIdcujvb+nJ7oQW/zzzz9OR82VJEm8/vrrNsdN9o5l3ZWQkKBcWufj4+PyuMFafn6+zTXLzkYxLyrrfbnlsyFJkvjiiy9cLlvax1UW1j0Ybj4msL4u3MfHx2kPzptZ9+Zx1nXcXZ4ZFtOJjIyMEi1vaS2wx1HLrLUzZ85g8ODBypxZzZo1w4QJE/D5559j6dKlWL16tXKznNU2Go0lqrM7LHMtAXDrLJr1mQ3rZW/mqZFRK5q3334b7777LgCgZs2a2Lx5s8sz76Ghocp9d+ZZvHbtmt1lS1tJPkPOPj8l+V8pqzoBrj/Xlp4TarXapqXUEXc+X2PGjFFG5rSc1bWw/C5JEh5//HGX6yprJfm7ZWdnK/f9/f1dlnf23pXkf8Ayoq4jNWvWtGkdbNiwocsRNSuzJ554An379gVg7oHjTk8mRyz/50ajURmNuKTq16+P999/H4D5b2v57rXn+eefR0xMDCZOnIg2bdogKCgIvr6+aNy4McaPH48jR45gyJAhNt+vN482mpCQgNmzZwMwt349//zzDrc3btw4tGjRAoC594Zl1FtPKq99TXnM/Wo9ynteXp5bx09lsf8ICQlR5jTOycnBqlWrlOeEEFi0aJHyu71WpmnTpuG+++5zeLOed/jmv4Gr7ybr58+dO+e0rDMzZsxQjmN+/vlnnDhxwub5wMBApSUxPT3d5XzgpXkMc9ttt+H06dOYNWsWevbsierVq0Oj0aBOnToYMWIEtm/fjhkzZjj9XBdFnTp1lPeioKDA6fzhN1uzZo3Sqn/rrbfazK9bmizvvxDCrTmoy+q4ynrU/5vnhF25cqWSKYYOHeq0B+fNrOvrTh5zpcJ1IbYOXrfffnuxJ0survfeew95eXkAgNdeew0zZ850OA3Nk08+WW71CgoKUu67849tfeBpvayn5ObmKl1zSyoqKgodOnQolXUBwAcffIDp06cDAKpVq4ZNmzahdevWLpezDrhxcXEuy8fHx9tdtrRZPkOSJMFgMFSIkxTWn+vXX38dM2bMKLdtW0KVwWCAXq93GWLd+XzVqFEDw4YNw48//oiNGzfiwoULiIqKQnx8PDZt2gQA6NevX6GuN97G+u/mTnhx9t5Zr2vUqFFKN+vS8Nxzz9l8vk6fPo1p06Zh1qxZpbL+mJgYxMTElMq6evbsWWgahLJw5513KpeRbNu2DXfddVex1mN9YiA1NdWtExnu1s/C0lXTkYYNG+Ljjz92+Hx2djYuXrwIwHyi5eYDzI0bNyonQfr27et0ajlJktCnTx+li92+fftcdsMva+Wxr9m9e7fyPx4ZGenWpUrFMWzYMAQHB+PTTz/F6dOncccdd2Dr1q2oU6eOw2XKap/22GOP4aeffgJg7hY5evRoAOYuy5bg2LVr10LTPBZVZGQkAgIClO/HkJAQp+Wtny9JSJFlGf3798fp06cBAH///bfNZ0OWZTRq1AinTp2C0WjEpUuXHF5CBJT+MUxISAimTJmCKVOmOCxjHbo7d+5cou3VqFFDuZ+enu72ctbTSpXViR0AWLFiBR577DEkJyfjpZdeAgC8+OKLDsuX1XFV06ZN0aNHD+zcuROxsbH4559/0KtXLwAlm1bK0t1Zq9WWSnf2ChdgQ0JCEBgYiOzs7HK5tvRmmzdvBgDUqlULb731lsMdXVZWls21QWWtdu3ayn3r+UkdsS7jbMdQXpKTk5WznSU1evToUrs2dc6cOXj55ZcBmP/3ijI/lXXIPXjwoNOyJpMJhw8fBmDeaVjO8JeFunXr4t9//4UQAgkJCahXr16ZbasodbIo7891nTp1lGsvz58/73QeubS0NLd3bM888wx+/PFHmEwmfP/993jzzTfx/fffK9c7ObtuyVtYf3ecPXvWZXlnZcrqf+DHH3/Ejz/+CMDccnH16lXEx8fjww8/xMCBA13OI+yOZcuWldrBwdatW9261rqkrE9cFuVg7WbR0dHYuXMnAPMBSEnnp7QorfoB5jk2La0E3bp1K3R92uXLl5X7wcHBLtdnHSDcOaFV1oqyr0lJSVGCRlhYmNtzwFq3vo4ePbpMT3zOmzcPkiRh3rx5boXYstqn9enTB1FRUbhw4QL+/vtvxMXFITo62ua9cHSQ7uqkizVJktC6dWvs3bsXgOtQav28q7DriqvPWevWrZVrLg8ePOg0wFqPJ+HOSf6SSktLU/bdAQEBaN++fYnWV5wW5EuXLim5wN/fHw899FCJ6uBMy5YtsXXrVvTp0wdJSUkuQ2xZHlc99thjyvf+ggUL0KtXL8TFxSn/95GRkejfv3+R1mnJTFFRUU5PIrqr3JpmrL8MhYvBfCwXZJ8/f96tg6bSlJSUBMA8AIizL/DNmzcXujD/ZkV5za5YD8JkaeFxxrq1s7Qmn69sPv/8c0yaNAmA+Ut+/fr1RTrD16pVK+Vg7vjx406/QHbt2oXMzEwAQI8ePcq0VdxypgxAqbV6l1T79u2VA8e//vrL5WenNFlPvm6ZeNuRohyU9OzZE61atQJgPkOr1+uVM7W1atXCvffeW/TKVjBt27aFVqsFYD5776q7n6XFz56aNWsqZ//37NmjfB5KIjY2Fs899xwA8wHO0qVLsWTJEqhUKphMJowaNcrmoKUqsd53lqTF1/pA1XKgWxpKq36Abfiy123fOrRaWmqdsW5psm618ZTevXsrXbn/+ecfpZeYPX/++ady392Bh3Jzc5UB0CRJKnLLSnHMnTsXL7zwAgBzj4nevXvbnGiwVlb7NFmWlVZXS7fhnJwcrFy5EoC5m+OIESNKZVvWPSBcnYSwfr6kLZ2uPmfWA6hZ/+/YY30pQkkGtXLXTz/9pHR1feSRR+Dr61vsdV25ckVpidZqtahfv75byy1YsEA5XnnggQfcOgFWEpYQGx4eDgB46aWXlMsfblaWx1XDhw9XetusXLkSOTk5WLhwoZJlRo0aVaSTXHFxccjPzwcA3HLLLaVSx3ILsNZN3a7OaFq+UABzs3h5svzBzp8/7zB0Go1Gp9fsWBTlNbsSHR2tdJv977//nIbYAwcOYMuWLQDM1xpVhGvBLKMQl8atNFpfv/nmG4wbNw6A+cB33bp16NatW5HWIUkSHnzwQQDmnd+nn37qsOy8efOU+6W1Q3TkoYceUkLHrFmzKkQLgkqlUka0jI+Px7fffltu27YOkp9//rnTEDZ37twirfvpp58GYD4onjBhgnISY/To0W5db1vR+fj4YNCgQQDMJ/cs3e3sWb9+vcsRoy3f7bm5uco1kMVlNBrxyCOPKEF43rx5aNKkCXr27IlXX30VgPnaxyeeeKJE2wHMoxCX1vdXebS+Zmdn2/ytunfvXux13Xrrrcp9SwtSaZg/f75yvyT127p1qxI4GjZsiAceeKBQGesQ/scffzgdFyIzM9NmhFLrE2CeEhgYqHwOMzMzHe4DhRD47LPPlN/d3desWrVK+RzdfvvtaNSoUckq7KZPPvkEEyZMAGDuNeYoxJblPm3MmDFKa9CiRYvw888/K5dg3X///SVuAbV46KGHlO388MMPDq83FULY7B9LEhQvXbqEdevWKb/b+5wNHTpUeW+XLl1qc+2utWPHjinHlRERETYnFcpCcnKy0utFo9Eo/yfFZfkOB8wnRNztwmr9WSvL7sPWWrRoga1btyrX/E6ZMsVuiC3L46qgoCAMGzYMgHl/snLlSpvrwq2vk3WH9b7Dep9SIiUeBkq4Nwrx+PHjlTLO5mwSQgij0Sg6d+6slH/hhRccTuIrhBC5ubnihx9+EEuXLi30nPUoxO7Mv2c939rHH39c6HmdTicee+wxm9G8HI1W+vHHHytlFi5c6HLbrkZqXr58ufJ87dq1xcmTJwuViY+Pt5lg+LPPPrO7Lsvz7owsXJSy3mDhwoXKaHT+/v4lmpcxISFB+Pv7C8A88unmzZsLlfnhhx+U97BevXpuzW1cUpMnT1a2eccdd4grV644LGs0GsWmTZvEzJkzCz3nbITaopa9ePGiMsKvj4+Py89EUlKSeOutt8R///1X6LmizCsthBA9e/ZUyjuaf+/muT6djUJskZ6ervz9rW+nT592q17FVZRRiEv6d9u+fbvyfLVq1exOln769GlRu3Ztm/fA3jyw2dnZon79+spIix988IHDOe6EML+/c+fOtTv35fTp05VtDRs2zOY5vV6vzA8OuDdyuzd46623xLFjx5yWSUxMtJkHvEmTJk73n67k5+cr8zG6GrX+119/FStWrHA6R6LRaBQffvih8h0MQGzZssVu2fPnz4v4+HiH69q4caPNyJ2Ovst1Op2IjIxUtnfvvffaHYU0NzdX3HPPPUq51q1b2x3B2foz4873hKNlizKn+aFDh5T3LCQkxO734ptvvqmsu3Pnzm6vu3fv3kU6VikqV8eIEyZMsPl/tTffcGnt0+yx3p9Yf4/Z25+XxKOPPmqzH7L3v2U9Amy9evXsfnanTJki4uLinG7r7Nmzom3btm4dv1m//3fddVehY5TU1FSbUb4dHVcKYfte2tsHCGH+nO3du9dp3a1nD3jzzTcdlp06darT7wiDwWCzrwAgtm3b5rC8tW3btinLNGrUqFTmLr2Zs335yZMnbWZEmTVrVqHlS/O46mbW31XWn4uePXsW6TUKYTsLh7NR54ui3K6B7du3r9IK9fjjj2PixImoX7++Mq9g48aN0bhxYwDmbh2rVq1Ct27dkJCQgLlz52LFihV48MEH0bZtW4SEhCA7OxsXLlzAgQMH8NdffyEnJwczZ84scT3HjRuntG5OmjQJ27Ztw8CBA1GjRg2cOXMGixYtwpkzZ3DHHXfgzJkzTruNWkaBBMxnUFJSUtCsWTPl+py6deuiTZs2btdt+PDhWL16NZYtW4YrV66gQ4cOGDNmDLp16waVSoUDBw7gu+++U86kDhgwQOleR2br16/H2LFjlTNxY8eORXp6usv5szp06ICoqKhCj9epUwcfffQRnn32WRgMBtx1110YNWoUevXqBYPBgPXr1yutA2q1GvPnz3faDcb6uoDY2Fin16M489577+Hff//FX3/9ha1btyotE926dUNYWBh0Oh0SExOV1vzExET07dsX06ZNK9b23BEZGYlly5bhnnvuQUFBAUaPHo2PP/4Y99xzD5o0aQI/Pz9kZGTg9OnT2LNnD3bu3Amj0ehy7lZ3fP311+jcuTNyc3PxxRdfYPfu3Rg5ciQiIyORlJSE5cuXY+fOnejWrRsuXLiAhIQEt7rHhISEYMSIETZdGHv37o0mTZqUuM4VRc+ePfHcc8/hiy++QFpaGrp27YrRo0ejZ8+ekGUZ+/btw3fffYecnBwMHTrU6WcpICAAa9asQa9evZCZmYkpU6bg66+/xgMPPICWLVsiMDAQmZmZOH/+PPbt24dt27ZBp9Nh8eLFNuvZsWOH0gsmMjLSpjUPMH/WfvzxR7Rr1w6ZmZmYOHEievXq5fT6Z2+watUqvP7662jbti1uv/12tGzZEtWrV4cQAklJSdi7dy9+/fVXpYUqMDAQCxcuVFpYisPHxwd33nknVq1ahQMHDiA7O9vh/H3nz5/HxIkTUbNmTQwYMADt2rVD7dq1lc/2iRMnsGbNGpuRVSdPnuzwM37w4EE89NBDuO2229C7d280btwYarUaly5dwvr165Uu65Ik4bPPPnPYuq3RaDBv3jw88MADEELg119/RYsWLTBq1ChlPIKTJ09i0aJFSvdhjUaDzz77rETXaqWnp+PDDz+0ecy6e/Lhw4cLfef26dPH7nXb7du3x5QpUzBr1ixkZGSge/fueOKJJ9ClSxdkZ2dj1apVSvfawMDAQp8JR2JjY5XBMoODg5VWl/I0Z84cSJKEOXPmKMdXW7dutbnGryz3aY899pjyHljmEq5fv36pXD9vbfbs2dixYwdiY2PxxRdfYM+ePcp+KDExEUuXLsXu3bsBmL/DFi9ebPez+/XXX2P27Nno2rUrunfvjmbNmiE0NBQGgwGXL1/Gjh07sG7dOqX7bUREhNPWuTfeeAMbNmxATEwM1q9fjw4dOuCJJ55A3bp1cfbsWXz99ddK1/vevXuXeHyHnJwc3HrrrWjVqhXuvPNOtGrVCkFBQbh69Sr++ecfrF69Wulu+vDDDzv9G3755ZeYNWsWunfvjh49eqBp06YICQlBXl4eTpw4gRUrVijzyALmwVndbT223q9bt9SXl+bNm2Pbtm244447cOXKFWW8FutBr8ryuKpXr15o0KABYmNjlc8FUPTBm4Abl29FR0ejbdu2RV7ertJIwe60wBoMBptWkJtv9s78X7582eZMsrObSqUS33zzTaF1FLUFVgjbM2D2bj169BDJyclKS4KzM7APP/yww/Xc/F6506qk1+vFE0884fL9GDZsmNN5rizlqloL7M2tbO7eHJ1JtJg9e7bLuQrt9RC4mfUy7swd7ExBQYF4/vnnhUqlcus1jho1qtA6SrMlz2L37t3K3JKuboGBgeLIkSOF1lHUFlghzPM7W85U2ru1bt1aXLhwQZmf8pZbbnFrvXv37rVZj6N5B0tTebbACmH+/rZuPbj5Jsuy+OCDD2x6Gzj7zMTExNic0Xd28/HxEevXr1eWTUtLU757ZVl2+r2+ZMkSZT3t27cvUUtkRWDdouLq1q5dO3Hw4MFS2e6aNWuU9S5atMhhuTlz5rhdv6CgIPHJJ5843e7PP//scj3h4eFi+fLlbr2OJUuWiODgYJfrrFmzpvjjjz8crsfdFljrYyN3b84+ryaTSUyYMMGm9frmW61atcRff/3l1vshhG1PhieffNLt5YrCnWNEIYSYNGmSUq5x48aFWmJLY59mT3Z2tggMDLRZ9vXXXy/JS3bozJkzLj/H1apVExs2bHC4Duu5dF3devfuLc6ePeuyXrGxsS6/k/v16yfS0tKcrsedFtiUlBSX9dZqtWLatGlOe+gU5b3w9/cXn376qcv3wSIzM1PpeSLLsrh48aLbyxaFq325EOb9pXUL6Pvvv1+oTGkcV9ljPR8yYH/OZFdOnDihLD9t2rQiLetMuQVYIYTIy8sT77//vujWrZuoVq2azZeQsy/tbdu2iaefflq0atVKhIaGCpVKJYKDg0XLli3FiBEjxJdffikuX75sd9niBFghhFi/fr0YPHiwqFmzptBoNKJ27dqiT58+4ptvvlG6R7kTYA0Gg/jyyy9F7969Rc2aNYVarXb4XhXloHz37t3i8ccfF40bNxYBAQHCz89PNGjQQIwcOdKtnZdlOwyw7t1cBVghhDh69Kj4v//7P9G0aVMREBAggoKCROvWrcXLL7/ssruPEOYJoq2/vK9du1YKr9i8w5w6daq49dZbRVhYmFCr1cLf3180aNBADBo0SLz77rsOv8zKIsAKYT4Rs2TJEjF8+HDRoEEDERgYKNRqtahevbro1KmTePLJJ8Xy5ctFdna23eWLE2CFMHevfPHFF0WzZs2En5+fCA0NFZ06dRIffvihyMnJESaTSZncvnfv3m6t02QyKTvR6tWri/z8/CLVqTjKO8BarF27VgwePFiEhYUJHx8fERUVJR5++GGxa9cuIYRwO8AKYX7ffv31VzF69GjRtGlTERwcLFQqlQgNDRVt27YVo0aNEgsWLCg0UfqIESOUbUydOtXpNoQQ4pFHHlHKT5482WX5iuzKlStiwYIF4sknnxRdunQRYWFhQqPRCK1WK2rWrCk6duwonnrqKfHnn3+6PPArCoPBIKKiogQA0b9/f4fl8vPzxaZNm8Srr74q+vfvL6Kjo4W/v7+yz27UqJG47777xBdffOHW99vVq1fFV199JUaMGCFatGghqlevLrRarahbt67o27evmDdvnkhPTy/Sa0lKShKzZs0Sffv2FREREcLHx0f4+PiI2rVriwEDBog5c+a4PEj3VIC12LVrlxgzZoxo2LCh8PX1FaGhoaJDhw7irbfeEikpKW6/F0ajUfm7AhC7d+92e9micPcYUQjbrsL2QqwQJdunOTJ27Fhlu5IkifPnzxdp+aLQ6XTi22+/Ff379xd16tQRGo1GVK9eXXTr1k288847Lv//YmNjxVdffSVGjRol2rdvL2rUqCHUarXw8fERtWrVEt26dRPjx48XO3bsKHK95s+fL/r06SPCw8OFVqsVderUEYMHDxbLli1zqwutOwHWYDCI5cuXi6efflq0a9dOhIeHC41GI8LCwkSnTp3E9OnT3QrdQgixZ88e8dFHH4lhw4aJW265RdSuXVtotVrh5+cnIiMjxaBBg8RHH31U5OOpb7/9VnkdAwcOLNKyReFOgBVCiFOnTok6deo4DbElPa6yJy4uTsiy7Pbn155XX31VAOaGRmfdvYtKEqKEw+MSUan4888/lQEbxo8fX+QBhajkjh49qoyQ5+7fYPPmzcpw8i+88AI++eSTsqwikUfMmTMHkyZNgkqlQlxcXKlNp0NERJWT0WhE48aNERcXhxEjRmDZsmWltu5yG4WYiJyzzDUWFBRUpteikmPWI3i6e+3tl19+qdyvDHO/EtnzzDPPICIiAkajER988IGnq0NERBXc0qVLERcXB1mW8cYbb5TquhlgiSoIS4CdNGkSwsLCPFybymf79u1O50n7/PPPlYFP6tati7vvvtvlOv/9919l0KJ+/fop85wSVTZ+fn548803AZinwHE0ZycREZHRaMTbb78NwDwIlmXAvNLCLsREFcDVq1dRq1Yt1KxZE+fOnUNQUJCnq1TpNG7cGPn5+bjrrrvQvn17hIWFQa/X49y5c1i9ejUOHz6slF27dq3DALthwwaYTCacPn0aH3zwgTI6344dO9CjR49yeS1EnmAymdC5c2ccOnQIzz//vNO5r4mIqOpasmQJHn30UYSEhOD06dOoVatWqa6fAZaIqoTGjRvbTN9hj5+fH7755htlcnB77A2l7+71shs3bkRubq7rytpRs2ZN9OzZs1jLEhEREVUWDLBEVCXs2bMHq1atwp49e5CQkIBr164hNzcX1apVQ9OmTdGvXz88++yzCA8Pd7oeS4ANDAxE06ZN8eyzz2Ls2LFuzRsbHR1tMw9kUfTq1Qvbtm0r1rJERERElYXa0xUgIioPXbt2RdeuXUu8Hp7zIyIiIvIctsASERERERGRV+AoxEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVfgIE5ERFSpCCGQn5+P3Nxc5ZaXl1fod51Oh4KCAuh0OuV28++Wm8FggMlkgtFoVG4mk0l5zPo5C1mWIUmS05ssy9BoNFCr1dBoNMpNrVZDq9Uqj1t+9/Hxga+vL/z8/Gx+2rsfEBCAwMBAaLVaD/41iIiIShcDLBERVUh5eXnIzMxERkYGsrKykJmZiczMTIf3s7OzlaBqMpk8Xf0KQ6vVIjAwEIGBgQgKClLuW9+CgoIQGhpqcwsMDHRreigiIqLyxFGIiYio3OTk5CA1NRWpqalIS0sr9NP6fn5+fom35+/vb3Pz8/NTfm5ZshMwAZJJApTb9d+FBBhh/mmSIInr9wWu38zzAdv8LgDJ8pjV05b7UO4Lq/sA5OsLysK8WqvfIQlABsT1n5AFoBIY9Exf5OfnIz8/H3l5eYXuW4J8SahUKgQHB9uE2pCQEFSrVg01a9ZEzZo1UaNGDdSsWROhoaEMu0REVC4YYImIqMSEEMjOzkZycjKSk5ORkpKi3Kx/L2qo0mg0CA4ORnBwMIKCghAcHIxdqw5A0suAQYZkkMw/9RJglAGjBMkoAddvkk16rFoEzGEXagGhNpl/qq7/VAtAZcL9Lw5CdnY2MjIykJGRgfT0dKSnpyMnJ6dI21KpVKhevbpNqK1RowbCwsIQHh6O8PBw1KpVi92ZiYioxBhgiYjIJSEEMjMzceXKFbu3lJQUt1tM/fz8UL16dVSrVg0ntp0B9DIkvQxJJ5vv68y/QyebWz+rcAj1FCEJQGOC0JgAtfmn0JgfG/R/fXDt2jVcvXoVV69eRVpaGtw9lKhRowYiIiJQq1YtREREIDw8XPlZu3Zt+Pv7l/ErIyIib8cAS0REAACj0Yjk5GRcvHgRFy9exOXLl21CqjutpyEhIahVqxbCwsKwZ9VhSAUyJJ0KUoEMXP8pmdjVtDIREIDWBKE1QWiNgNaER2bej6tXryIlJQWJiYlISkpCQUGBy3VVq1YNdevWRd26dREZGYnIyEjl96CgoHJ4NUREVNExwBIRVTHp6elKSLW+JSQkQKfTOV22Ro0aqF27Nk5sOQspXwWpQHX9pwwUqCAJtpZSYQLXuzL7GiF8zLehLw1EUlISkpKSkJiYiKysLKfrCAkJsQm39evXR3R0NCIjI9k1mYioCmGAJSKqhIQQSE1NRVxcHM6fP6/8vHjxIjIzMx0up9FolJavXUsPQspXmYOpJayaGFCpbAiVyRxw/Yx47KPhSEhIwKVLl5CQkIBr1645XE6lUqFOnTqoX7++Emrr16+PqKgodkkmIqqEGGCJiLxcZmamTUiNi4tDbGwsMjIyHC4THh6OevXq4dBvxyHlqSHnqSDlqYECmdecUoUjZBOEnxHC14jHP3kIFy9eRHx8POLj45Gdne1wufDwcERHR6Nx48Zo3LgxGjVqhMjISKjVnEWQiMhbMcASEXkJIQQSExNx5swZm1tKSord8rIso06dOrj8bwqkXPX1mwpSvpotqVQpKNff+hkg/I24e3JfxMfHIy4uDmlpaXaX0Wq1aNCgARo1aoRGjRop4ZbX2BIReQcGWCKiCshoNOLixYs4ffo0Tp8+jTNnzuDs2bMOrxOMiIhA8olUSDnqG2E1j0GVqi6hNkH4GyD8DRg8uQ/Onj2L8+fPIy8vz275WrVqoWnTpmjWrBlatGiBZs2aISQkpJxrTURErjDAEhF5mBACSUlJOHHiBE6ePImTJ0/i1KlTdkdtVavVaNCgAc7tuAg5W2MOrDlqSEaO7EvkioAAfI0wBRgwctZ9OHv2LM6ePYvExES75WvXro3mzZujWbNmaN68OZo2bYrAwMByrjUREVljgCUiKmfZ2dmIiYnBiRMncOLECcTExCA1NbVQOT8/PzRq1AgnNp6DnKOBlH29ZZUj/RKVKqEyQQQY8PT8RxATE4OYmBhcunTJbtmoqCg0b94crVu3RuvWrdGgQQOoVKpyrjERUdXFAEtEVIaEEEhISMCRI0dw5MgRHDt2DBcuXChUTqVSoVGjRjj790XIWRpIWRpIeSoOqETkIUJlggjUY+xnIxATE4NTp07Zban19/dHy5YtlUDbsmVLttISEZUhBlgiolJkNBpx9uxZHD16VAmt9lpXIyIikHw0DVKWxhxYczS8XpWoghNqE0xBeoycPRTHjh3DiRMnkJuba1NGkiQ0aNBACbTt2rVDRESEh2pMRFT5MMASEZWATqfDiRMn8N9//+HIkSM4fvx4oQNatVqN5s2b4+T685CytJCz1JD07HJI5O0EBIS/AeOWjMGxY8dw7NgxXL58uVC5iIgItG/fHu3atUP79u0ZaImISoABloioCIxGI86cOYODBw/i0KFDOHLkSKHBlgICApB7UQ85Uws5UwMpm62rRFWF0BhhCtZj2Iy7cOTIEZw6dQpGo9GmDAMtEVHxMcASETkhhEB8fLwSWA8fPozs7GybMtWqVUPG6VzImVpImddHBua1q0QEQMgmiGA9hr83GP/++y9iYmLsBtpOnTqhc+fO6NixI4KDgz1UWyKiio8BlojoJunp6di3bx/27duHAwcOFLqGNSAgAHkXDJAytJDTtZByOdgSEblHqEwQQY4DrSzLaN68OTp37ozOnTujZcuWUKvVHqwxEVHFwgBLRFWe0WhETEwM9u7diz179uDUqVOw/mrUarXQJwGyJbBms4WViEqHUJlgCtbjvjf7Y//+/YiLi7N5PiAgAB06dFACbd26dT1TUSKiCoIBloiqpNTUVOzbtw979+7F/v37kZmZafN848aNEbv1MuR0H3O3YM69SkTlQGiNmPTLE9i/fz8OHDiAjIwMm+fr1auH7t27o0ePHmjdujVbZ4moymGAJaIqQQiB2NhY7NixAzt27EBMTIzN84GBgciN00NO84GcpoWk4yjBRORZAgIi0IAxnz+A/fv34+jRozbdjQMDA9G1a1d069YNXbt2RVBQkAdrS0RUPhhgiajSMhqNOHbsGLZv346dO3ciISHB5vkmTZrg/JbL5sCaqWG3YCKq0ITKhNc2Po9du3Zhz549Nq2zKpUKbdq0Qbdu3dCzZ0/Uq1fPgzUlIio7DLBEVKnk5+dj//792LlzJ3bu3GlzgKfVamFIBORrPpBTfTgXKxF5LQFhHgzqg0HYtWsXYmNjbZ5v0KABevXqhV69eqFhw4aQJJ6gI6LKgQGWiLxeXl4e9uzZgy1btmDPnj0287IGBQUh55zeHFrTtJBMsgdrSkRUNoSPEc8ueQQ7d+7Ev//+C4PBoDwXGRmJ3r17o1evXmjatCnDLBF5NQZYIvJK+fn52LNnD7Zu3Yrdu3cjPz9feS4iIgIphzIgX/PlAExEVOUIlQkvrn0Sf//9N/bv3w+dTqc8FxERobTMtmzZErLMk3pE5F0YYInIaxQUFGDfvn3YunUrdu7ciby8POW5OnXqIGlvOuSrvpByOM0NERFgDrOvbHgOf//9N/bs2WNzsi88PBx9+/ZF//790ahRIw/WkojIfQywRFShGY1GHDp0CBs3bsT27duRm5urPBcREYGUA5mQUxhaiYhcEbLA9L/G4e+//8auXbtsvk8bNGiA/v37o1+/foiIiPBgLYmInGOAJaIK6dy5c9i4cSM2bdqEq1evKo/XqlUL1w5lm1tasxlaiYiKQ8gC0zY/j02bNmHPnj3Q6/XKc23atEH//v3Ru3dvhIaGeq6SRER2MMASUYVx7do1bN68GRs3bsSZM2eUx4OCgpBz2gBVsi+kLE53Q0RUmoTKhAmrH8OmTZvw77//wnJoqFKpcOutt2LQoEHo1q0bNBqNh2tKRMQAS0QeVlBQgO3bt+PPP//E/v37YTKZAABqtRqmRBXkFF/zlDcciImIqMwJrRFPLBiOzZs34/Tp08rjoaGhGDBgAAYNGoSGDRt6sIZEVNUxwBKRR8TGxmLt2rXYuHEjMjMzlcelTA1Uyb7mLsIGjo5JROQpJj8DHvxoIDZs2IDU1FTl8ebNm2PQoEHo27cvgoKCPFhDIqqKGGCJqNzk5eVh69atWLt2LY4fP648XqtWLVw7kAM52RdyvtqDNSQiopsJCLy1YxL++OMP7Nq1C0ajEQCg1Wpx++23Y/DgwejQoQPnlyWicsEAS0Rl7vTp0/j999+xadMm5OTkADBfWyWS1ZAT/SCnaXldKxGRFxAaE55aPAJ//PEHYmNjlcejoqIwdOhQDBw4kK2yRFSmGGCJqEzodDps2bIFv/zyC2JiYpTH69Spg6RdmVAl+ULSqzxYQyIiKi4BgU+Pz8Qff/yBTZs2KfNy+/r6ol+/fhg6dCiaNm3q4VoSUWXEAEtEpSolJQW//vorfvvtN6SnpwMANBoNjJdlqBL9IGWwtZWIqDIRKhOe//lRrF692qZVtlWrVhg6dCh69+4NHx8fD9aQiCoTBlgiKjEhBI4ePYpVq1bhn3/+Ua6PCgsLQ+r+PHNw5YBMRESVmoDAR4enY82aNfj7779hMBgAACEhIRgyZAjuv/9+1KxZ08O1JCJvxwBLRMVWUFCAzZs345dffrGZt1XK0EB12R/yNR+2thIRVUFCY8Tob+/Dr7/+iuTkZADm6dH69u2L4cOHo0mTJh6uIRF5KwZYIiqyrKwsrFmzBqtWrVKmVvDx8YE+Xobqih/kHE52T0RE5lbZ17eNx4oVK3DkyBHl8fbt22PEiBHo2rUrZJk9dIjIfQywROS2pKQkrFixAr///rsyYEd4eDiu7smBKondhImIyLF5x9/Czz//jK1btyqXmtSrVw/Dhw/HwIED4evr6+EaEpE3YIAlIpfOnTuHpUuX4q+//lIOOqRsNVQJ/pCv+kIS7CZMRETuEVojHpjTH2vXrkV2djYA83Wyw4YNw/33389peIjIKQZYIrJLCIHDhw/jp59+wr59+5THpXQt1Jf8IaVzNGEiIio+oTLhmaUP4+eff8aVK1cAAP7+/rjvvvvw4IMPonr16h6uIRFVRAywRGRDCIEDBw5g4cKFyvVKsiwDSRqoLgXw+lYiIipVAgJTNz6DxYsXK9PwaLVa3H333Xj44YcRHh7u4RoSUUXCAEtEAMzBdd++fViwYAGOHz8OwHwAYYhTQZ0QAKlA5eEaEhFRZSYgMGP7RCxevBgnTpwAAKhUKgwcOBCjRo1CnTp1PFxDIqoIGGCJqjghBHbv3o0FCxYgJiYGgDm4GmPN17hKOgZXIiIqPwICs/a/giVLluDgwYMAzEF20KBBGDVqFFtkiao4BliiKkoIgYMHD2L+/PlKcPXx8YHhnMocXPUMrkRE5FlzjryBH374Afv37wcAaDQa3H333Rg5ciTCwsI8XDsi8gQGWKIq6Pjx45g/fz4OHz4MAPDz84PujARVQgAkPafCISKiiuWjf6fj+++/x6FDhwCYewrdc889GDlyJAd7IqpiGGCJqpBz587h22+/xc6dOwGYz2Sb4jRQXWKLKxERVXwfHHwV3333nTLIoJ+fHx566CGMGDEC/v7+Hq4dEZUHBliiKiAxMRHffPMNNm/eDCGEeVThy1qoLwZycCYiIvIqAgLv75tqcwlMtWrVMGbMGAwZMgRqtdrDNSSissQAS1SJZWdnY8mSJVi5ciV0Oh0AQE7xgepCIOQ87uCJiMh7CQi89tf/Yf78+UhISAAAREZG4qmnnkKvXr0gSZyrnKgyYoAlqoQMBgPWrl2L77//HhkZGQAAKV0DdWwQ53ElIqJKRUgC/7fyESxYsABpaWkAgFatWmHcuHFo2bKlh2tHRKWNAZaoEhFCYM+ePfjiiy8QHx8PAJByVVDFBUFO1UICz0YTEVHlJFQm/O/rwVi+fDny8vIAAAMHDsTTTz+NmjVrerh2RFRaGGCJKomLFy9i3rx52Lt3LwAgJCQEOYdMkBP9IAkGVyIiqhqWJn+Jb7/9FuvWrQNgHuhp5MiRGD58OHx8fDxcOyIqKQZYIi+Xl5eHxYsXY/ny5dDr9VCr1RBxWqguBkAyckocIiKqmuYdfwvz5s3D8ePHAQARERF47rnneH0skZdjgCXyUkIIbNu2DZ999hlSUlIAAFKqFurzQZDzOUATERGRgMDLfz6Nr776StlX3nrrrZgwYQLq1q3r4doRUXEwwBJ5oQsXLmDOnDk4ePCg+YF82RxcU314nSsREdFNhCzw8Nd34aeffoJer4dWq8Wjjz6Khx9+GFqt1tPVI6IiYIAl8iJ6vR4//fQTFi1apOyAjWc1UF0KgGRicCUiInLm+/iPMWfOHBw4cAAAEBUVhUmTJqFDhw4erhkRuYsBlshLHDt2DLNnz0ZsbCwAc3dhzbkgSAXsLkxEROQuAYGpG5/BZ599htTUVADAgAED8PzzzyM0NNSzlSMilxhgiSq4nJwczJ8/H2vWrIEQAtBJ5u7CV33ZXZiIiKiYhMqEwR/0VPavoaGhmDhxIu644w5PV42InGCAJarA9uzZg9mzZysDT8hJvlDHBkEycHRhIiKi0jD32AzMmjVL6eHUq1cvTJgwATVq1PBwzYjIHgZYogooJycHn3/+OX7//XfzA3kqaM4GQc7g/HVERESlTUgC//tmEBYvXgyj0Yjg4GCMHz8e/fv355Q7RBUMAyxRBXPw4EG8//77SEpKAgCoEvyhig/kIE1ERERl7ItT7+L999/HmTNnAADdu3fHyy+/jGrVqnm4ZkRkwQBLVEHk5eXh66+/xi+//GJ+IF8FzelgyJkc3p+IiKi8CElg9IJ7sWDBAuj1eoSGhuLll19Gjx49PF01IgIDLFGFcOrUKbz11lu4ePEiAEC+4gd1XCAkI691JSIi8oSvzryPmTNn4vz58wCAIUOG4Pnnn4efn5+Ha0ZUtTHAEnmQyWTCihUrMH/+fBgMBqBAhuZMMOR0XutKRETkaUISGDq3N1asWAEAiIyMxLRp09CyZUvPVoyoCmOAJfKQ1NRUvPvuu9i3bx8AQL7qA/XZYI4wTEREVMG8v38q3n33XaSkpEClUuGJJ57Aww8/DFnmPpuovDHAEnnAvn378M477yAtLQ1arRamEz6QE/04rysREVEF9UvG9/joo4+wZcsWAMCtt96K1157DaGhoZ6tGFEVwwBLVI6MRiO+//57LF68GAAg5aihPhUCOVft4ZoRERGRKwICL/w6GnPnzoVOp0NYWBjefPNNtGnTxtNVI6oyGGCJykl6ejreeustHDhwAMD1gZpigzg9DhERkZf58vR7eOONN3Dx4kWoVCo8+eSTeOihh9ilmKgcMMASlYMTJ07g9ddfR3JyMmCUoD4bBFUKRzEkIiLyVkJlwu3T22Lz5s0AgB49emDatGkICAjwcM2IKjcGWKIyJITAmjVr8Omnn8JgMEDKVUEdE8ouw0RERJXAzV2K69evj3fffRf16tXzdNWIKi0GWKIyotfr8fHHH+OPP/4AcH2U4TPBnNuViIiokpl7bAamT5+OlJQUBAYGYvr06ejWrZunq0VUKTHAEpWB9PR0TJs2DUeOHIEsy5DO+UOV4M9RhomIiCqpZSlf4fXXX8fRo0chSRIef/xxPProo5Ak7vuJShMDLFEpO3/+PKZOnYrExETAIEF9KgSqNB9PV4uIiIjKmJAE7vqgG3799VcAQN++fTF16lT4+PA4gKi0MMASlaLdu3djxowZyM3NBfJU0JwIhZzH612JiIiqkvG/jsLHH38Mo9GIW265BW+//TbniyUqJQywRKVk9erV+OSTTyCEgJShgeZkKCQDr3clIiKqit7fPxXTp09HdnY26tatiw8++ICDOxGVAgZYohISQuDbb7/F4sWLAQByoi/U54IhCV7zQkREVJV9c342pkyZgsTERISEhOCdd97BLbfc4ulqEXk1BliiEjAYDJg9ezbWr18PAFDFB0B1MYCDNREREREAYPnVrzF16lTExMRAo9HgjTfewO233+7pahF5LQZYomLKy8vD66+/jr179wICUJ8NgirJ39PVIiIiogpGyAK3vtwM27dvhyzLmDJlCgYNGuTpahF5JQZYomLIysrCSy+9hBMnTgBGCeoYjjRMREREjgkI9Hu3E9atWwcAeP755zF8+HAP14rI+zDAEhVReno6Jk+ejDNnzgB6yTzScJbW09UiIiKiCk5A4P7P+mDZsmUAgEcffRRPPPEE54olKgIGWKIiuHbtGiZOnIi4uDhAJ0NzrBrkXE6TQ0RERO4REBizaCjmz58PALj//vvxwgsvMMQSuYlzfBC5KTk5GePHjzeH1wIZmqMMr0RERFQ0EiQsHPUrJk+eDEmS8Msvv2Du3LlgmxKRe9gCS+SGpKQkjB8/HleuXAHyZWiPVYOUz/BKRERExTdh7Rh88MEHEELggQcewPjx49kSS+QCW2CJXLB0G75y5QqQp4L2aHWGVyIiIiqxT4YswJQpUwAAq1atwrx589gSS+QCAyyRE+np6Zg0aRIuXbpkbnk9Wg1SgcrT1SIiIqJK4uYQ+9lnnzHEEjnBAEvkQFZWFiZPnozY2Fig4Hp41TG8EhERUemae89CJcT+/PPPWLRokYdrRFRxMcAS2ZGXl4cpU6aYp8q5PtqwVMBuw0RERFQ25t6zEC+88AIA4LvvvsOaNWs8WyGiCooBlugmBoMBb775Jo4fP26e5/VYKOQ8hlciIiIqW189uAxjxowBAMyZMwdbtmzxbIWIKiAGWCIrQgjMmTMHu3fvBowSNCdCIedqPF0tIiIiqiJ+emIdhg4dCiEE3n77bezbt8/TVSKqUBhgiawsXrwYa9euBQSgPhUMOUvr6SoRERFRFSJBwroXd6FPnz4wGAyYPn06zp075+lqEVUYDLBE123YsAHffvstAEB9PgiqVF8P14iIiIiqIgkSdsw8hvbt2yMvLw9Tp05Famqqp6tFVCEwwBIBOHLkCD744AMAgOqSP1RX/D1cIyIiIqrKJCFh5syZiIyMRFJSEl577TUUFBR4ulpEHscAS1VeUlISpk+fDoPBADnFB6q4QE9XiYiIiAgPhD6OWbNmISgoCMePH8f777/POWKpymOApSqtoKAA06ZNQ1paGqRsNdRnQiBB8nS1iIiIiAAAY+tPwsyZM6FSqfDXX39h8eLFnq4SkUcxwFKVJYTA7NmzcerUKfN0OSdDIZkYXomIiKhiebnTe5g0aRIA4Pvvv8eBAwc8XCMiz2GApSpr5cqV2LhxIyAATUwopAKVp6tEREREZNe8exdh8ODBMJlMmDFjBpKTkz1dJSKPYIClKikmJgZffvklAEAVGwQ5g9PlEBERUcU2YcIENGnSBBkZGXjjjTeg1+s9XSWicscAS1VOTk4OZsyYYR606aoPVJf9PF0lIiIiIpfu9huJmTNnIjAwEMePH1dOxhNVJQywVKUIIfDRRx8hISEByJehPhPMQZuIiIjIa4yOfAGvvfYaAPPlUHv27PFwjYjKFwMsVSnr1q3D5s2bzde9ngqBZORHgIiIiLzLm7d9ggceeAAA8P777yM9Pd2zFSIqRzx6pyrj8uXLmDdvHgBAFR8IOYvXvRIREZF3euaZZxAdHY3U1FTMnj2b88NSlcEAS1WCyWTCrFmzkJeXBylDA9Ulf09XiYiIiKjY7vYbiWnTpkGtVmP79u1Yv369p6tEVC4YYKlKWLt2LQ4fPgwYJWh43SsRERFVAv/X/DU8/vjjAIC5c+ciKSnJwzUiKnsMsFTpXblyBV988QUAc9dhKV/t4RoRERERlY4fHl2N1q1bIy8vD3PnzvV0dYjKHAMsVWpCCMyePftG12FOmUNERESViAQJL730EtRqNXbs2IF//vnH01UiKlMMsFSp/f333zhw4ABgAqfMISIiokrpqUZT8PDDDwMwdyXOycnxcI2Iyg4DLFVaeXl5+OyzzwAAqksBkNl1mIiIiCqpUaNGoW7dukhJScE333zj6eoQlRkGWKq0lixZguTkZCBfhupSgKerQ0RERFRm7vYbiRdffBEAsGbNGsTGxnq4RkRlgwGWKqWLFy9i2bJlAAD1+SBIJnYdJiIiosptauf30atXL5hMJmUAS6LKhgGWKqWvvvoKer0eUqoWcqqPp6tDREREVC6eeeYZqNVq7N27F3v37vV0dYhKHQMsVTonTpzA9u3bAQGoY4M4cBMRERFVGWPqTcD9998PAPjiiy9gMBg8XCOi0sUAS5XO/PnzAQBysi/kPA7cRERERFXL6NGjERwcjNjYWGzYsMHT1SEqVQywVKkcOHAAhw4dMk+bcyHQ09UhIiIiKnf3h4zFqFGjAACLFi1iKyxVKgywVGkIIZTWV1WiH6QClYdrREREROQZ99xzD6pVq4bExERs3LjR09UhKjUMsFRpHDp0CDExMYBRguoip80hIiKiqmuI/6N46KGHAACLFy9mKyxVGgywVGn89NNPAAA5yReSnq2vREREVLUNHToUISEhSEhIwKZNmzxdHaJSwQBLlcKZM2ewf/9+88jDCWx9JSIiIronYJTSCrts2TIIITxcI6KSY4ClSmHp0qUAADnFl9e+EhEREV137733ws/PD7GxsTh48KCnq0NUYgyw5PWSk5OxdetWAIAqwd/DtSEiIiKqOO4Lfgx33XUXAGDlypUerg1RyTHAktf7448/YDQaIWVoIOdoPF0dIiIiogrlgQceAADs3r0bly5d8nBtiEqGAZa8msFgwO+//w7APHUOEREREdkaW38Sbr31VgghsG7dOk9Xh6hEGGDJq+3duxcpKSmAXoJ81dfT1SEiIiKqkAYPHgwA2LBhA6fUIa/GAEtebf369QAAVbIfJCF5uDZEREREFdPbfT9DSEgIrl69ap65gchLMcCS18rOzsaePXsAAHIyW1+JiIiIHJGEhAEDBgAwt8ISeSsGWPJa27dvh06ng5SjgpSj9nR1iIiIiCo0S4DdvXs38vLyPFwbouJhgCWvtXnzZgCAfNUXEth9mIiIiMiZ/2vxGmrXro38/Hzs3bvX09UhKhYGWPJK2dnZOHToEABATmH3YSIiIiJXJEjo3bs3AGDr1q2erQxRMTHAklfav3+/ee7XXBXkfHYfJiIiInKHJcDu2bMHer3es5UhKgYGWPJKu3btAgDIqT4ergkRERGR9xjXajqqV6+OvLw8HD161NPVISoyBljyOiaT6cbowwywRERERG6TIKFz584AgH379nm4NkRFxwBLXic2NhYZGRmAQYKUpfF0dYiIiIi8CgMseTMGWPI6hw8fBgBIWRpIgqMPExERUdUgqdWQ1CUf+8MSYM+ePYvMzMwSr4+oPDHAktf5999/AQCqbD/PVoSIiIionEhqNSDJgCSXOMQ+FD0Z9erVAwAcP368NKpHVG4YYMmrCCGUAQfk/EBIGq2Ha0RERERUDiTZ5n5xW2PloCBIkoQ2bdoAAI4dO1ZaNSQqFwyw5FVSUlKQlpYGCECV7wvJ14chloiIiCo1u0G1GK2xlvAKAK1btwbAAEvehwGWvMrp06cBAFK+FpKQzV/CMq+DJSIiospJ6TrssID7IdYSXgGgRYsWAIAzZ85ACFGiOhKVJwZY8iqWACvn3Zg+R9Jq2QpLRERElY7L8KoUdB1i5aAgm9+f6/QOVCoVsrOzkZycXJJqEpUrBljyKufOnQNwU4CVJHYlJiIiokrF7fCqLOA4xFp3HVaKCwlRUVEAgPPnzxe7nkTljQGWvMqlS5cAAHKBbVhliCUiIqJKpSjh1WqZm0OsvfBq0ahRIwAMsORdGGDJa5hMJiQkJAAAJJ2m0PO8HpaIiIgqgxJNk3NTiHUUXgEgMjISAHD58uXib4+onJV8JmSicpKSkgKdTgcI+wEWMF8PC5OA0OvKuXZEREREpUCSitf6arOO69Ps+Pk5LVa7dm0AQGJiYsm2R1SO2AJLXiMpKQmAObxKsH82kV2JiYiIyGtdby0VRmOJV3X644449W5Lp2UiIiIAAFeuXCnx9ojKCwMseY1r164BACSDymk5hlgiIiLyOtZdfYWpRCH29EftIdfQQa6uQ8w7LRyWe3nAHABAcnIyp9Ihr8EAS14jNTUVACDpXfd8Z4glIiIir2HvOtVihlhLeLWwhFh7QdbSKKDT6ZCXl1fkbRF5AgMseQ0lwLpogbVgiCUiIiKvVsQQe/rDDjbh1UKufr019u2bQqyQAJM5PGdkZJSoqkTlhQGWvEZ2drb5jtG9AAswxBIREVEF52SUYABuh9jTH3aAXLPAaRm5hm2IlSBBMprjQGZmpuu6ElUADLDkNSxdWyRT0abK4fQ6REREVCG5Cq8WboRYV+FVKVdDh5iZVoM7XW8YUBoKiCo4BljyGvn5+eY7pqL/20paLVthiYiIqOJwN7xaOAmxZ2Z3KNKq5JoFSoi1NAzodJyCkLwDAyx5DUuALWoLLMCuxERERFSBFDW8WtgJsWdmd4AU5l7rqzUlxApzXQwGQ/HqRFTOGGDJa9wY3r14X/oMsURERORxxQ2vFlYhtrjh1UKuWQBTgLmBYMOGDSWrF1E5YYAlryEpX/jFn6eM18MSERGR1xMmpP6vY4nC683YhZi8BQMseQ1ZLvm/q9DpIPgFTURERJ4iin8i3iL90a7QB0nw+8+vxOsKDjfX54477ijxuojKAwMseQ1LgE3tXadYywudDqaCglLZcRAREREVWwmORdIf7QpdsLk3mToXJQqxMzr9huAAPQAgKCio2OshKk8MsOQ1/P39AQA92/+HC8+1LtKyDK9ERERUoRTjmMQ6vFoUN8TO6PQbojUpKMg3ry8gIKDI6yDyBAZY8hqWAFtNn4FnR63FhWfdD7FCCIZXIiIiqliKcGxiL7xaqHOLttnXO65FtCYFAKC7HmAtx1lEFR0DLHmNwMBAAEB+nox2vvF4dvRat1pied0rERERVViuQqwkOw2vFu62wr7ecS0aaZOV3wvyzXGAAZa8hdrTFSByl+XajNxs8xdtO994PDtqLb7EEER9cczuMuw6TERERF5LkpE+sovL8Arc6Eqc1zYPNTOyMXzrftx6Mg4BeQXI8fPB3hYNEPnCNdTVpivL6HVAfq75uKpatWpl9SqIShUDLHmNmjVrAgAy01TKY5YQe/yBuvhnVQebIMvwSkRERF5BiMLzwxYhvFoEZOrw5qy1uPfYfmivzxVrcdvRszCtBpKGBeHcGzUgfGRkZZiPqbRardLTjaiiY4AlrxEWFgYAyExV2Tzezjce7Xzj0eLRK/haDEbUl8cYXomIiMi7WIdYSUb6I0ULrz4GHT7/7Rt0TjjnsIysB2ovzYLfeT2OL4hAVpoWAFCjRg1INwdoogqK18CS11ACbJpsN5d28IvF06P+wMWnWjO8EhERkfcR4kZ4DSlaoJzyzxp0TjgHV0c/AkDo3nw0fOsaaqs+A3CjlxuRN2CAJa9Rq1YtqFQq6HUystLt/+t+vHMA6q1NhqTVlnPtiIiIiEpOkqUih9caOZm49+R+8/Ku1n/9Z/jKLFyKiQEA1K1bt4i1JPIcBljyGhqNBrVr1wYApFzW2C2jTlMDSSmQ/Xwh+fiUZ/WIiIiIik9WmW8A6qw6X6RF7zuxFxqT0XVB683pgYvbtwMAoqKiirQskScxwJJXqV+/PgAg5Urhy7dH/vU0miy8pvzOEEtEREReQVZBkiVIsrl91JhytUiLd3Jy3aszF65cAQDUq1evWMsTeQIDLHkVyxnC5ATbADtyy1NoMScDuJxk87js48MQS0RERBXX9fB6szqr49xehb++oMibNQKIN5kA3GggIPIGDLDkVZo0aQIAuBx34xrXkVueQouPMwuFVwCALDHEEhERUcXkILwCgDEp2e0Qm6sp+nHORT8/5EkS/Pz82AJLXoUBlrxK8+bNAQBXLmhgMJgfU1/T2A+vFgyxREREVNE4Ca8W7obYag+mF3nzp4KCAJgbB1QqlYvSRBUHAyx5lbp16yIoKAgGvYSkSxqM3PIUmixKdb0gQywRERFVFG6EVwtXIfbtCd+j6Wh/CPvjWzoUExwMAGjWrFnRFiTysMIj4RBVYJIkoXnz5ti/fz/e/v0OtPgzC0hIdG/h6yFWaLUQOh1EQdGvFyEiIiIqkSKEVwtjUjKAaJvHZrywACrJhMH++YC/GhgeDPyYCQHnU+lYnj8SHQ0UFKBly5ZFqguRp7EFlrxOu3btAABhO5LcD68WsgRJJbM1loiIiMpfMcKrRZ018cr9GS8swD0Buebwep2YWROim69b88CmdfPHWZ0OANC2bdti1YfIUxhgyet06NABAGCUUyEgircSdikmIiKi8nJ9jtfihlcAMCYmoc6aeCW8FuInQ/xYB2JksMPuxEIDiJHBODbzNwghEBUVhZo1axa7TkSewC7E5HWaNWsGf39/5ObmQvgWQMr3Ld6KZAmSJBU3AhMRERG5x2SEpC75YbcpI9N+eLXwkyFm1wKmVIf4KRPSrjwgxwQEyBDd/YD/BQNhahxafgzAjUYBIm/CAEteR61Wo127dti1axeMIfmQixlghU4PE6+DJSIiIi8g+fhAkiT0fvxJbPvuG+eFw9TAC9UhXij81G3/9xQi1bsAAJ07dy6DmhKVLXYhJq/Us2dPAIAxKAvQaF2ULkzo9DDl5QGC7a9ERERU9oRl/r8ikq5f8iRdn+rGf+cp9H7iyWKtq+e4pxF4+AyuXLkCrVaLTp06FWs9RJ7EAEteqXv37pAkCSbfPAgfY9FDrMnE8EpERETlqqgh1hJcpZvmafXfcarI2+457mmE7LmIkTNuAwB07NgRfn5+RV4PkacxwJJXql69Olq1agUAMAZmQVKrIPn5uRVk2XWYiIiIKjrrVld73G2F7TnuaSW8AsA///wDwNwYQOSNGGDJa91+++0AAENgGiDLgCxDUquchlh2HSYiIiJPcqcV1lV4BcytsL2fdB5ie443B1dLeDVp8nHq1CmoVCr06tXL/UoTVSAMsOS1+vXrB1mWYfLNgUl9vUXVVYhl12EiIiLyMGch1p3wauG/3XFX4p7jn0bI7os2jw1/rQsAoEuXLggNDXVrG0QVDQMsea2aNWsqw78bAlNvPOEgxLLrMBEREVVUNw/W5K5eTz9V6LEeLxQOrwICmzdvBgD079+/+BUl8jBOo0NebeDAgThw4AAMganQpEdAwvUJwmUZkhqAyhfCaAL0Ora+EhERUYUhDAZlbtjiBFeLgL9jlPs9XngaABC662KhcibfbCQkJMDPzw89evQo1raIKgK2wJJXu/322xEYGAih0cHol2X7pCwDKpW5NdYk2PpKREREFU5JwqvF7c8+hR4TnkHorot2wysAdPtfPQDAgAEDOPoweTUGWPJqfn5+uPPOOwEAhqAU+4Xk6//mbH0lIiKiCkQYDCUOrwDg/8chhO684PB5k0qvjD587733lnh7RJ7EAEteb+jQoQAAo3/mjcGcrIicHBizc8q5VkRERESuleQYxZSbC1NuLoTRCOPVaw7L/W/GrTAajWjVqhUaN25c7O0RVQQMsOT1oqKi0KlTJ0AC9MGFW2GF0QSYjB6oGREREZELxTxGsQRXYTQvL3Q6u+WEZMKqVasAAPfff3/x6khUgTDAUqXw0EMPAQAMQdcg5BtD04vcPJhycj1VLSIiIiKXitoKawmvhdZjpxX26bl9kJ6ejoiICNxxxx3FriNRRcEAS5VC586d0bRpU0A22bTCCoOBra9ERERUsbl5rGLdZdiem1thBQSWLVsGABgxYgTUak5AQt6PAZYqBUmSMHLkSADmbsRCMrL1lYiIiCqNm7sMO2LdCvviD/fgypUrCAkJweDBg8u6ikTlggGWKo3bbrsN9erVA1RG6IOvsvWViIiIvIazbsTOWl1vZmmFFRBYtGgRAGDYsGHw9fUteSWJKgAGWKo0VCrVjVbYkCQIFcMrEREReQk7J91ddRl2ZvzXdyIuLg7BwcF44IEHSqOGRBUCAyxVKgMGDECDBg3MrbDVHMwLS0RERFQBWbfCuttl2B7Dtav4/vvvAQCPPPIIAgMDS62ORJ7GAEuVikqlwjPPPAMAMNbOhtCyFZaIiIi8xPVW2OK2ulo8/v0QJCcnIywsjFPnUKXDAEuVTteuXdG2bVtABgz1sz1dHSIiIiK3lTS8CpUJS5YsAQCMHTsWPj4+pVU1ogqBAZYqHUmS8OyzzwIATLXyYQrUe7hGRERERO4RBoPrQk4Mer87MjMzER0djYEDB5ZSrYgqDgZYqpRatmyJ/v37AxJgaJQJAeHpKhERERGVHSFg8tfh119/BQBMmDCB875SpcQAS5XWc889h8DAQIggA0wReZ6uDhEREVHZEAICAk0eiYAQAv369UOHDh08XSuiMsEAS5VWjRo18MQTTwAADNHZEBqTh2tERERE5AbhZs8xIZSyE34bgxMnTsDf3x/PPfdcGVaOyLMYYKlSu/fee9G0aVNALWBokOXp6hARERGVDquQKzRGfPnllwDMAzfVrFnTU7UiKnMMsFSpqVQqTJ48GbIsw1QrH8bq+Z6uEhEREVHxWbW6AoCAQKeJTZGVlYWmTZty2hyq9BhgqdJr0aIFHn74YQCAoXEWhJpdiYmIiKiCs9eN2M5jplr52LVrF9RqNV599VUO3ESVHgMsVQmPPfYYGjRoAGhNMDTmqMRERETkRW5qdVUe1hrh28F8Yn7s2LFo2LBhedeMqNwxwFKVoNVq8eqrr0KlUsFUswCmmuxKTERERF7AwYBOAgLtxzVCdnY2mjdvjoceeqicK0bkGQywVGU0a9YMo0aNAnC9K7FPySYKJyIiIipTTkYjfvzHB7B3717lJD27DlNVwQBLVcqjjz6KVq1aAWoBffMMCIldiYmIiMi7mIJ0mD9/PgBg/PjxiI6O9myFiMoRAyxVKWq1Gm+++SaCg4MhggwwRmd7ukpEREREbhMqE6oP0MJoNKJPnz4YMmSIp6tEVK4YYKnKCQ8Px6uvvgoAMNbNhbEGr4clIiKiik9A4NYpzZGUlIS6devipZdegiRJnq4WUbligKUqqXv37spgB4YmmTD58npYIiIiqtjGLBqK7du3Kz3KAgICPF0lonInCeHk6nCiSsxgMOCFF17A0aNHIeWqoPmvOiQjz+kQERFRxWOsXgBjqwwIITB58mTce++9nq4SkUfwaJ2qLLVajbfeegthYWEQ/kbom2VwflgiIiKqcEx+Bmg76SCEwNChQxleqUpjgKUqrUaNGnj33Xfh4+MDUV3HQZ2IiIioQhEqE8Lv9UNubi7atm2LcePGebpKRB7FAEtVXrNmzfDKK68AAIyRuTDWyvNwjYiIiIgAIQm0eT4Kly5dQnh4OGbOnAmNRuPpahF5FAMsEYA+ffpg9OjRAK4P6hRa4OEaERERUVUmINDrzbY4ePAg/Pz88O677yI0NNTT1SLyOA7iRHSdyWTCO++8g02bNgFGCZqj1SBn8ywnERERlT9DdBaMkblQqVSYNWsWunTp4ukqEVUIbIEluk6WZUydOhWdOnUCVAL6lukQnF6HiIiIypmxdi6MkbkAgClTpjC8EllhgCWyotFo8Pbbb6Np06aA1gRdq3QIjdHT1SIiIqIqwlgzH8bG5kEln3zySdx1110erhFRxcIAS3QTf39/zJo1C7Vr1wb8jNC3TodQmzxdLSIiIqrkjNXzIVplQwiBe++9FyNHjvR0lYgqHAZYIjtq1KiBjz76CDVq1IAIMEDfOg1CxRBLREREZcMUWgCpbS6MRiP69euHCRMmQJIkT1eLqMJhgCVyIDIyEnPmzEG1atUgAhliiYiIqGyYQnSQOuRCr9ejV69eePXVV6FSqTxdLaIKiQGWyIno6Gh8/PHHCA4OhggyQN8qHUJmiCUiIqLSYQrSQd0lHzqdDt27d8frr78OtVrt6WoRVVicRofIDadOncLEiRORnZ0NKUMDzYlQSEae/yEiIqLiM4WYw2teXh46deqE9957Dz4+Pp6uFlGFxiNwIjc0a9YMH374IQIDAyFC9ObuxBzYiYiIiIrJWK0AUscc5OXloXPnznj33XcZXoncwBZYoiI4ffo0Jk+ejIyMDEg5KmiOVYOk5zUqRERE5D5jjXygTQ4MBgN69OiBGTNmQKvVerpaRF6BAZaoiOLi4jBp0iRcvXoVUt71EFvAEEtERESuGcPyIFrmwGg0ok+fPpg2bRqveSUqAgZYomK4fPkyJk6ciCtXrgAFMjTHq0HO5c6HiIiI7BMQMNbNhbFBNgDgrrvuwpQpUzjaMFERMcASFVNKSgomTpyICxcuAAYJmpOhkDPY/YeIiIhsCQgYG2TDWDcXAPDAAw9g3LhxkGUOR0NUVAywRCWQmZmJV155BUePHgVMgPp0CFRXfT1dLSIiIqoghCRgaJoBU1gBAODZZ5/FQw89BEmSPFwzIu/E0z5EJRAcHIyPP/4YvXr1AmTA0DwDhro5EOB5ISIioqpOqExo8VxtmMIKoFarMX36dDz88MMMr0QlwBZYolJgMpnw+eef4+effwYAyFf8oD4fBElwB0VERFQVmXwNiLjPHxcvXkRAQADefvttdOzY0dPVIvJ6DLBEpWjFihX4/PPPIYSAlK6BJiYUkoEdHYiIiKoSU2gBfLoakJ2djVq1amHWrFlo1KiRp6tFVCkwwBKVsh07dmDmzJnIy8sD8lXQnAjlCMVERERVgICAsXYeRJMcmEwmtGrVCu+88w6qV6/u6aoRVRoMsERlIDY2Fq+88gouX74MGCWoTwVDlcrBnYiIiCorIQkYGmXBFJEHALjzzjvx4osvQqvlDAVEpYkBlqiMZGRk4I033sChQ4cAAKr4AKguBkACr4slIiKqTITWiCaPheP48eOQJAnPPvssRowYwcGaiMoAAyxRGTIYDPjss8/wyy+/AACkNC00p0J4XSwREVElYQopgH9PgYyMDAQGBmL69Ono1q2bp6tFVGkxwBKVgw0bNuCjjz5CQUEBUCBDExMCOYtdioiIiLyVgICxXg5M0bkQQqBJkyaYOXMm6tSp4+mqEVVqDLBE5eTcuXN4/fXXcfHiRUAAqtggqC77sUsxERGRlxFqEwxNM2CqrgMADB48GBMmTICPj4+Ha0ZU+THAEpWjnJwcfPDBB9i6dSsAQL7qA/XZYHYpJiIi8hKmEB1C+6iRkpICrVaLSZMmYdCgQZ6uFlGVwQBLVM6EEPjll1/w+eefw2AwmLsUnw6BnMEuxURERBWVkASMUTkwRZm7DEdGRmLGjBlo0qSJp6tGVKUwwBJ5yKlTp/DWW2/d6FJ8yR+qC4GQBLsUExERVSTCx4DGo8Nx4sQJAOYuw+PGjYO/v7+Ha0ZU9TDAEnlQXl4ePv30U/z+++8AAClLDfWpEMj5ag/XjIiIiAQETGH50LY3IDc3F4GBgXjxxRfRp08fT1eNqMpigCWqALZt24bZs2cjKysLMEpQxwZCTuQAT0RERJ4iNCYYGmXCVLMAAHDLLbdg2rRpiIiI8HDNiKo2BliiCiI5ORnvvPMODh8+DACQ0jXQnAmBVKDycM2IiIiqFmONfAR0BTIyMqBSqTBmzBg88sgjUKvZQ4rI0xhgiSoQk8mE1atX4+uvv0Z+fj5bY4mIiMqRUF9vdQ0zt7o2atQIr732Gho3buzhmhGRBQMsUQWUkJCA9957D0eOHAEASOlaaM4EszWWiIioDAgImGoUIKi7jLS0NKhUKowcORKjRo2CRqPxdPWIyAoDLFEFZTKZ8Msvv+Drr79GQUEBYJSgig+A6rI/W2OJiIhKidAaza2uNXQAgOjoaLz66qto3ry5h2tGRPYwwBJVcBcvXsQHH3yA//77DwAgZauhPhsMOZtnhImIiIpLQMBYOw/a1gbk5eVBrVbjf//7Hx599FH4+Ph4unpE5AADLJEXMJlMWLduHb788kvzSMUCUF32h+pCACSj7OnqEREReRVTgB6GxpkQQQYAQOvWrfHSSy+hQYMGHq4ZEbnCAEvkRVJTU/HZZ59h8+bN5gcKZKjPB0G+5sNuxURERC4IlQnGqBwgqgBGoxEBAQF45plnMGTIEMgyTwgTeQMGWCIvtG/fPnz88ce4fPkyAEBK05qDbB6H9yciIrqZgICpVj6Cu6qRmpoKAOjVqxdeeOEF1KxZ08O1I6KiYIAl8lL5+flYsmQJli1bBp1Ox27FREREdpgC9DA0yoII1gMA6tWrhxdeeAFdunTxcM2IqDgYYIm83OXLl/HZZ59hx44d5gd0MtRxgZCTfdmtmIiIqiyhNsFQPxuiTj6EEPDz88Po0aPx4IMPcmocIi/GAEtUSezduxeffvopLly4AACQstRQxwVBztB6uGZERETlR0gCxjq58G0tkJOTAwDo168fnn32WYSFhXm4dkRUUgywRJWIXq/HypUrsXDhQuTm5gIA5GtaqOJ4fSwREVVuAgKmmvmo2dsfiYmJAIAmTZpg3LhxaNeunWcrR0SlhgGWqBJKTU3FggULsHbtWhiNRkAAcqIf1BcCIOlVnq4eERFRqTIF62BokKVMixMWFoannnoK/fv35+jCRJUMAyxRJRYfH4+vv/76xvWxRgmqS/5QXfbnQE9EROT1TP56GOvnwFSjAADg5+eHkSNH4sEHH4Svr6+Ha0dEZYEBlqgK+Pfff/HFF18gJibG/IBegupiAFSJ/pBMHOiJiIi8i/A1wBCVAxFeACEEVCoV7r77bjz22GOoXr26p6tHRGWIAZaoijCZTNi6dSu+++47XLp0yfxggQz1xQDISX6QBIMsERFVbEJrhCEqB1JdnfkSGQB33HEHxo4di/r163u4dkRUHhhgiaoYg8GADRs2YOHChUhKSjI/mK+C+kIAp94hIqIKSWiMMEbmQtXAYJ77HEDXrl3xxBNPoGnTph6uHRGVJwZYoipKp9Nh7dq1WLx4MVJTUwEAUp4KqosBkFN82SJLREQeJ7RGGCJzoI42KsG1bdu2eOqpp9CmTRsP146IPIEBlqiKy8/Px+rVq/HTTz8hIyPj+oMy1JfYtZiIiDxD+JiDq1xPD4PBPLJwq1at8Nhjj6Fz586QJO6biKoqBlgiAgDk5ubi119/xfLly5UWWRTIUF0KgCrJj4M9ERFRmTP5GmCslwOpjl65xrVdu3YYPXo0OnTowOBKRAywRGSroKAAa9euxdKlS5GSkmJ+UCdDddkfqkQ/SAZOv0NERKXLFKCHMTIHCNfDZDIBADp37oxRo0ahbdu2Hq4dEVUkDLBEZJdOp8P69evx448/IjEx0fygUYIqyReqhABIBSrPVpCIiLyagIAI1cFQNxeimk55vHv37hg1ahRatmzpwdoRUUXFAEtEThkMBmzZsgVLly7FuXPnzA8KQL7qA1VCAORsjWcrSEREXkVIAqawfBjr5kIEmK9vValU6NWrFx555BE0adLEwzUkooqMAZaI3CKEwIEDB7Bs2TLs379feVzK0EB1KQBympZT8BARkUNCbYIxIg/GOrmA1txN2M/PD3fffTeGDRuG2rVre7iGROQNGGCJqMjOnj2L5cuXY/PmzcogG1KuCvIVf6iSfSEZeZ0sERGZmfwMMNbOhbahQH5+PgAgLCwMDzzwAIYMGYKgoCAP15CIvAkDLBEVW3JyMlatWoXffvsNOTk55geNEuRkX6iu+EPOVXu2gkRE5BECAqYaBTDWzoUI1SuPN27cGCNGjECfPn2g0fASFCIqOgZYIiqx3NxcbNy4Eb/88gvi4uKUx6V0jTnIXvNh92IioipAaIzmbsIReYCPuZuwLMvo0aMH7r//fk6FQ0QlxgBLRKVGCIF///0Xv/zyC3bs2KF0L0aBDFWin3kaHj1HLyYiqkwEBESwHsbauZBrG2EwmAdmCg0NxZAhQ3DPPfcgPDzcw7UkosqCAZaIykRSUhJ+++03rF27Funp6eYHBSCn+kBO8oOcykGfiIi8mVCbYKyVB1N4HkSAUXm8VatWuO+++9C7d29otVoP1pCIKiMGWCIqUzqdDtu2bcOvv/6Ko0eP3niiQIYq2ReqJD9I+bxWlojIGwgImKrpYArPgxxxo7XVx8cH/fr1w3333YemTZt6uJZEVJkxwBJRuYmPj8cff/yBDRs23GiVxfVrZZP8IF/zhWRiqywRUUUjfIwwhufBGH7j2lYAaN68OQYPHoy+ffsiMDDQgzUkoqqCAZaIyp1er8fOnTvxxx9/YN++fVC+hgwS5BRfqFJ8IWVq2MWYiMiDhGwyjyQcng8RqlMeDw4ORv/+/XH33XejUaNGHqwhEVVFDLBE5FFJSUlYv3491q1bh8TExBtP5MtQJftBTvGFnMcuxkRE5UFIAqZQHUxh+TDVKABUNw4TO3XqhMGDB6Nnz57w8fHxYC2JqCpjgCWiCsFkMuHw4cPYtGkTtm3bhtzcXOU5KUt9o2WWoxgTEZUqAQERpIcxLB+msHxAc+PQMDIyEv3798edd96J2rVre7CWRERmDLBEVOHk5+dj586d2LRpE/bu3XtjOh4BSOlaqFJ8zXPLGmXPVpSIyIuZ/AwwheXDGJYP+N0YRbhatWro06cPBgwYgObNm3PeViKqUBhgiahCS09Px19//YVNmzbhxIkTN54wAXK6FvJVhlkiIneZ/Aww1cyHqWa+zdQ3vr6+uP3229G/f3907NgRajUv3SCiiokBloi8xsWLF7F582Zs27YNsbGxN56wDrOpPpAMDLNERMD17sH+BphqFphDq/+N0KpWq9GxY0f0798fPXv2hL+/vwdrSkTkHgZYIvJKcXFx2LZtG7Zu3VoozErpWqiu+ZjDLK+ZJaIqRkBABBhgqlE4tGo0GnTu3Bm9e/dGjx49EBQU5MGaEhEVHQMsEXm9+Ph4JcyeP3/+xhMCkLI0kFN9zN2M81ScmoeIKiUhCYgQHYzVC2CqXgD43pirVavVokuXLujduze6d+/O+VqJyKsxwBJRpWIJszt27MCpU6dsn8xTQWUJs5xnloi8nFCbYKpWYG5pDdUB6huHdD4+PujSpQvuuOMOdOvWDQEBAR6sKRFR6WGAJaJKKzk5Gbt378aOHTtw6NAh6PX6G0/qJchp5m7GcrqW180SUYUnICD8jDBdb2UVwXpYn4erUaMGunfvjh49eqBjx46cq5WIKiUGWCKqEnJzc7Fv3z7s3LkTu3fvRmZm5o0nLV2N07WQ07SQstg6S0QVg1CZYArVwVRNB1OobddgAGjcuDF69OiBHj16oGnTppBlnowjosqNAZaIqhyDwYDjx49j586d2Lt3r+0gUIC5dTZda26hTddC0nEgKCIqHwICItBg7hpcTQcRZNvKqtVq0bZtW/To0QPdu3dHRESE5ypLROQBDLBEVOUlJydj//792LdvH/bv34/s7Gyb56UctTnIZmghZ2g45ywRlRoBAfgaYQrRmVtaQ3WAxvbQLCoqCl26dEGXLl3Qrl07+Pr6eqi2RESexwBLRGTFYDDg5MmT2LdvH/bt24eYmBjYfE0KQMo2B1o5QwspUwvJxO7GROQ+4XM9sF6/3dwtOCAgAB07dlRCK1tZiYhuYIAlInIiPT0dBw8exKFDh3Do0CEkJCTYFjBdv34243qgzdIw0BKRDaG1Dqx6wM9o87xKpULLli3Rvn17dOnSBS1btoRarfZQbYmIKjYGWCKiIkhKSsLhw4dx+PBhHDp0CElJSbYFTICUrYGcqYGUqYGcyRGOiaoSy0jBIlgHU7AeIlgPYSewNmvWDO3bt0f79u3Rpk0b+Pn5eajGRETehQGWiKiYhBC4cuWK0jp7+PBhXLt2rVA5KVdlDrNZWkgZGkj5Ko5yTFRJCFlABOqvh1UdTEH6QtewyrKMJk2aKIH1lltu4bysRETFxABLRFRKLIH26NGjOHLkCI4dO1Z4hGMA0EnmMJulhpytMXc75sBQRBWeMuBSoAEiSA9TkB4iUA/c9PH18fFBy5Yt0bp1a7Rp0watWrVCUFCQZypNRFTJMMASEZWhzMxMHD9+HEeOHMHRo0cRExMDnU5XqJyUpzIH2SwN5Gw1pGwNJMFWWiJPEhojTEEGcwurJaxqCh821ahRA23atFECa5MmTXgNKxFRGWGAJSIqRzqdDqdOncLJkycRExODkydPFh4YCjBfS5tjDrJythpSjgZSrpoDRBGVEaExQgQYzK2r1wMrfEyFymk0GjRq1AgtWrRAy5Yt0aZNG9SuXRuSxM8mEVF5YIAlIvKwjIwMxMTEKIH2xIkTSE9PL1xQXG+pzdaY56a9HnA5SBSR+5RBlgIMEAF6c2ANMADawmFVkiRER0ejefPmaNGiBZo3b46GDRtCq9V6oOZERAQwwBIRVThCCCQlJSmttGfPnsWZM2fsh1oAKJDNYTZHbW6lzVVDymNrLZHQmCD8DRD+Bpj8zS2rwt8AqAqXlSQJ9erVQ+PGjdGsWTO0aNECTZs2hb+/f/lXnIiIHGKAJSLyAkIIXLt2DWfPnlUC7ZkzZ5CQkAC7X+MCQL4Kcq7aPAoygy1VUgIC0Jgg/I03gur1m73rVQHA19cXjRo1QuPGjdG4cWM0adIEDRo04FQ2RERegAGWiMiL5ebm4ty5czhz5gzi4uIQGxuLuLg4ZGRk2F/AEmzzVOYwm6cy3/LVQIHM6X2owhKygPA1QvgZrv+8ft9JUJUkCbVr10b9+vWVwNqkSRPUqVMHKpWdZlgiIqrwGGCJiCoZIQTS0tJsAq3lZ2ZmpuMFjTDPUZunvvEzTwUpXwXoGG6p7AnJKqT6GW8EVV+DeUAlB/+CkiShTp06iI6ORoMGDRAdHY369esjKiqKrapERJUMAywRURVhHWwvXryIixcv4tKlS7h06RIuX74Mg8HgeGETgAIVpAJzoJXy5Rv3CxhwyT1CFhA+RsDnejhVfpquP154ICVrgYGBiIyMVG716tVDgwYNUK9ePfj4+JTTqyAiIk9igCUiIhgMBiQlJeHSpUtKsL148SISEhKQlJQEo9HofAUmmINsgQxJp4J0/Sd014OuTmbIreSELCC05hAqtEYIrckcVLUm883XaHek35v5+/sjMjISdevWLRRWQ0JCOF0NEVEVxwBLREROGQwGXLt2DVeuXEFiYqLy03I/JSXFdcAFzNff6mRIOqtwqzffLPdh+d0gMexWAEK6PkCSxqT8VO5fD6bQmltQoXbvcMLPzw+1a9dGRESE8jM8PFy5HxwczJBKREQOMcASEVGJGAwGpKSkIDExESkpKbh69SpSUlJs7qemproXci1MuBFm9TIkgwQYZPOctwbJ4U8YGXztERCAWkCorwdNtQnC0U+NCdBe/+lmKLXw8/NDzZo1UbNmTYSFhaFGjRoICwtDWFiYEliDgoIYUImIqNgYYImIqMwZjUakpaUpgfbq1atIS0tDeno60tLSbG7Z2dnF35AJgPF6kDVKgFE23zdJNz1udV9IgEkyd4M2WX7H9cckSOLGfVj2mAIArv9+/TFXwVnAancr4caARJK4/rsAZHNXXMt9XL8vlPvXf6qEuZzq+n2VAFQmB4+LIgdRayqVCiEhIahWrRpCQ0NtflqCquWnv78/wykREZUpBlgiIqpQ9Hq9EmzT09ORmpqKzMxMZGdnIysrC1lZWcjMzFTuZ2dnIzMz0/kgVOVFwCbU3gipcDiCbnny8/NDUFCQzS0wMFC5HxwcXCioBgUFQZZlT1ediIgIAAMsERFVAkII5OfnIysrC7m5ucjNzUVeXp7y0/q+9WN5eXnQ6/XQ6/XQ6XTQ6XTK/ZsfK+uALEkSNBoNtFottFotNBqNcrP+XavVws/Pz62br6+vElADAwOhVqvL9DUQERGVNQZYIiIiN5hMpiLdJEmCJEmQZRmSJEGlUtn8LsuyzXOW54mIiMgxBlgiIiIiIiLyCryohYiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiIiIiKvwABLREREREREXoEBloiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiIiIiKvwABLREREREREXoEBloiIiIiIiLwCAywRERERERF5BQZYIiIiIiIi8goMsEREREREROQVGGCJiIiIiIjIKzDAEhERERERkVdggCUiIiIiIiKvwABLREREREREXoEBloiIiIiIiLyC2tMVICLyFCEE8vPzPV0NIqIi8fX1hSRJnq4GEZFHMMASUZWVn5+PgQMHeroaRERF8ueff8LPz8/T1SAi8gh2ISYiIiIiIiKvwBZYIiIA2n21AKMESZYASVZ+Qr7eTU+SIMkyIF1/XJKU5yRLOUm68bh0Yzmbx25ap7ncjeeFZTnZ6nkHjwtJuvE7AHF9VZAkCBkAJPNjyragLCOu/35jOenG8vKN58zL2D5vvU5hKSPD4fqU9VrV8cbPm+tx8/M3/kb2ngeg1MHRtmwed1AP29d1Y5v2nruxjLDZXqHtWJ7Hzc8Lm2UsZW/USyjPSdblJeXVXn9O3PTTsk4BSRI2/16WdZr/NDeel6+vz+ax6/dvPGf1mNVP8/pu/G59A8zrNv+OG89ZbU+WTMpj5rImAIBKuvG79TKW3288L6CC6fpzAirJZLWcCSqr5VTXH1fBVGg5GZZlTVDZPGcur5L+v717j6qyyv84/n48oaAgoJlCkml5yzQM1Mw0L6VGWg6aY9mYOU45q9K1zFk2/DJ1KnVymbpyVhcna5WRdpk0m9LGvJZ4zZBECW94QYmLXAXxwPn9gefpAOdwOYBw6PNaq3Uu+9nfZ/Nsjp0vez972zAoxmJvH8VmHQuU1MNeVnI9LNjPaTPbUfL66iNcfW5cvVZgMQyaYGDh6qNhL2uCgcGVQgtj/9IOEZHfOyWwIiJQkrwWl3xRxPjt0cw0DAMDe+J69f2r2YlRkhHyW7bjUK9cBtWkTKZUKstwqEeZ91y9j+tHh+TQfF720QxnOIQ1yjWxdHnZmFxNpF3FK385ysV1WlZRvSpcKnfjXX10ldzWWQJrlE9gHcvKJrC/vW8r035buTLDHtNZudM6NifnKvMfmAls2f9clplJpUNi65DommX8Vv5bIopDAltcOgE07Ang1UfDwII9XsnzkkejVL2SWGAxMB9/q1fy3LEMuJq02o+1J8COSWpJmytLYEudy/E8lD5fE/N4hz4UEfkd0xRiERERERER8QhKYEVERERERMQjKIEVERERERERj6AEVkRERERERDyCElgRERERERHxCEpgRURERERExCMogRURERERERGPoH1gRUQALDZsFJds/mhQ+hFK9ittQpl9VO1lDq8N4+o+mQ71Kitz2IjU5mJzU2fv//ZeyaPNodwGYDNKvVdyjAE2SsWzOda5Wq88F+/ZHIpK7W1qODa/gv1XDff3eq2orLJ4lZXZHyqsV3b/VRfl5droYh9Yyj83yp3HscxW5tEe077vquOvl4t9YM147u0Da6Pkua3Mf/Yy29W9cM2yqzGLDRsYxQ7nufqaqz8PZcvBZhSXxL4ax1aqrPT7TRzOZX9e9rGkHSUfa8fH4quXqcnV58VXf0Wd7wNr0ATjt31lKbnmFux7z/6216vj6ybm85J65v61V2M1wcBi2MsMDAyuFDr7DIqI/P4ogRURAQr7/lrfTagbtjKPbiibn4rY2VPI4soObLDsGb4mpImIeAr9iy0iIiIiIiIewbDZbDX4u7yIiOey2WxkZmby8MMPA7B+/Xq8vb3ruVVSmYKCAvWZh1Gf1S5vb28MQ3MiROT3SVOIReR3yzCMUl+kvb298fHxqccWSXWpzzyP+kxERGpCU4hFRERERETEIyiBFREREREREY+gBFZEREREREQ8ghJYERERERER8QhahVhEREREREQ8gkZgRURERERExCMogRURERERERGPoARWREREREREPIISWBEREREREfEISmBFRERERETEIyiBFREREREREY+gBFZEREREREQ8ghJYERERERER8QjX1XcDROT349KlS6xZs4bt27dz4cIFmjRpQkhICEOHDmXs2LF4eXm5HTsjI4Po6GhiYmJISUmhWbNmdOzYkZEjR/Lggw9iGEaF9c+dO0d0dDT79u0jIyMDHx8funTpwujRoxk8eHCl509ISOCTTz7hp59+IjMzEz8/P3r06EFkZCRhYWGV1v/xxx/5/PPPOXz4MDk5OQQEBBAaGsr48ePp2rVrVS9DrVOflTd+/HguXLhQYeyePXvyr3/9q9I21IXG2Gfnz58nLi6OhIQEfvnlFxITE7l06RIAa9euJSgoqErtb6ifMxERqTrDZrPZ6rsRItL4XbhwgenTp5tf/L29vSkuLqawsBCAzp07s2zZMvz8/KodOyEhgVmzZpGVlQWAj48PhYWFFBUVAdC3b18WLlzo8ot7TEwMc+fOpaCgAIAWLVqQn59PcXExABEREcyePdvll/OvvvqKJUuWmOfz9fUlLy8P+z+vkydPZsqUKS7bv2rVKt5//30ADMOgRYsW5ObmAmCxWHj++ecZNWpUdS5JrVCfOe8zewLbokULmjVr5vSY7t27s3DhwqpcilrVWPtswYIFbNy40WncqiawDfVzJiIi1aMEVkTqnNVqZerUqZw4cYLWrVvzf//3f4SHh1NcXMzWrVtZvHgxly5d4q677uK1116rVuzc3Fwef/xxMjIyuOmmm3jxxRfp1q0bV65cYcOGDaxYsQKr1cqYMWOYOXNmufrJyck8+eST5Ofn07NnT1544QVCQkLMUSz7F95p06bx2GOPlav/888/89xzz1FUVMTAgQOZMWMGN9xwA1lZWaxcuZIvv/wSgHnz5jF06NBy9bds2cK8efMAeOihh/jLX/6Cv78/v/76K8uXL2fnzp1YLBbeeOMNbr/99mpdm5pQn7nuM3sC+/e//50HHnigWj97XWrMfbZo0SJiY2Pp0qULXbp0wWaz8c477wBVS2Ab6udMRESqT/fAikid27hxIydOnADg5ZdfJjw8HIAmTZowbNgwZs2aBcDu3bs5cOBAtWKvWbOGjIwMmjVrxmuvvUa3bt0A8PLyIjIy0hxF27BhA2fOnClXf9WqVeTn59OqVSsWLVpESEgIAM2bN2fKlCmMHj0agA8//JCcnJxy9d966y2Kioro1KkT8+fP54YbbgDA39+fWbNm0bdv31LHOSoqKuKtt94CoF+/fsyaNQt/f38AbrjhBubNm0fHjh1LHXetqM+c91lD1pj77G9/+xsff/wx8+fPZ+LEifTo0aPKbW/InzMREak+JbAiUufsU/969+7tdHRj2LBh5giKq2mCrmzatMmMERwcXK48MjISHx8fioqK+N///leqLD8/n+3btwMwZswYp9MqH3/8cQDy8vLYuXNnqbLk5GQOHToEwIQJE7juuvLLCtjrX7hwgdjY2FJlP/30kznVc+LEieXqenl5MWHCBAAOHTpEcnJyuWPqivrMeZ81ZI21z6Bkiq+7GvLnTEREqk8JrIjUqYKCAn7++WcA7rrrLqfHGIZBv379ANi3b1+VY58+fZqUlBQAs35ZzZs3p1evXk5jx8XFcfny5QrrBwUF0aFDB6f1HV+7qt+zZ0+aN2/utP7+/fvNNvbs2dNpfcdrVp1rUxPqM9d91lA15j6rqYb6ORMREfcogRWROpWUlGQu0tKxY0eXx9nLMjIyyM7OrlJs+3TJymJ36tQJgFOnTrmsbz+movonT54s9b79dWBgIIGBgU7rWiwWbrrppgrrd+jQweUIU2BgIAEBAU7bX1fUZ677zNGaNWuIjIxk6NChPPjggzzzzDOsXr3a6RTYutaY+6ymGurnTERE3KMEVkTqVFpamvm8TZs2Lo+7/vrrndapSHp6erVi5+XlmVtvOJ7Hz8/P5WqyjvUdz+dY37HtztjbVtP6Vb0uNaU+c91njk6ePEl2djbe3t7k5OQQFxfHO++8w5/+9Cfi4uIqjF/bGnOf1VRD/ZyJiIh7tA+siNQpxy+yFX159fb2dlqnLmLbp4fm5+eXK6+oftl22V9XVt/ettquX1fUZxVf8wEDBtCrVy969+5tjtplZmby7bff8u6775KRkcHs2bP597//7fR+0brQmPusphrq50xERNyjEVgREZFqmDFjBkOGDDGTV4CAgADGjx/P0qVLsVgs5Obm8t5779VfI0VERBopJbAiUqfsozCAuZCLMwUFBU7r1GVsHx+fcuUV1S/bLvvryurb21bb9euK+sz9a37bbbeZe8f+8MMPXKut1htzn9VUQ/2ciYiIe5TAikidcrzvLDU11eVxjvedVXavml3r1q2rFbtFixalvpzaz5OTk1PhF3N7fcfzOdav7J45e9tqWr+q16Wm1Geu+6wq7HuU5ubmkpWVVe367mjMfVZTDfVzJiIi7lECKyJ1qkOHDjRpUvJPTUWri9rLWrVqRcuWLasU23FF04pi21dBvfnmm13Wd1wp1VX9siuw2l9fvHiRzMxMp3WLioo4ffp0hfWTkpIoKipyWt8xdtn21xX1mes+a6gac5/VVEP9nImIiHuUwIpInfL29ub2228HYM+ePU6Psdls7N27F4A+ffpUOXZISAht27atMHZ+fj6HDh1yGrtnz57mwi3285d14cIFkpKSnNZ3fO3q/HFxceaiMGXrh4eHAyWLxtj38CzLMW51rk1NqM9c91lVxMfHAyUjkf7+/tWu747G3Gc11VA/ZyIi4h4lsCJS50aOHAnAwYMHzS/3jrZu3UpycnKpY6vCMAxGjBgBwJYtWzh//ny5Y7744gvy8/OxWCzcf//9pcp8fHy49957AVi3bh25ubnl6kdHRwMl98UNHDiwVFlwcDC9evUCYO3atVit1nL1P/roIwDatWvHHXfcUaosNDSUdu3alTrOkdVqZe3atQD06tXrmq1oC+ozcN5nld3TeuTIEbZs2QLA3XffjWEYFR5fmxprn9VUQ/6ciYhI9SmBFZE6N3LkSDp16oTNZmPOnDkcOHAAgOLiYrZu3crixYsB6NevH2FhYaXqrlq1ikGDBjFo0CCnX5wnTJhAq1atKCgoYPbs2SQkJABw5coV1q1bx7vvvgvA6NGjCQkJKVd/ypQp+Pj4kJ6ezgsvvMCZM2eAkhGl999/n/Xr1wMwadIk/Pz8ytV/+umnsVgsHDt2jHnz5pn30WVnZ/P666+bIzvTpk3DYrGUqmuxWJg2bRoAu3fv5vXXXyc7OxsouR9v3rx5HD9+vNRx14r6zHmfLV++nKVLl3Lw4MFS261kZWXx2WefMXPmTKxWK82bN+fJJ5+s7DLXqsbcZ1arlczMTPM/xyQ4JyenVFnZP0o05M+ZiIhUn2G7Vkskisjv2vnz55kxYwYXLlwASqY8FhcXU1hYCEDnzp1ZtmxZuS+vq1at4v333wdKRsyCgoLKxU5ISGDWrFnmgjnNmzensLDQ/CLbp08fFi5cSNOmTZ22LSYmhrlz55qrlPr6+pKfn2/eLxcREcHs2bNdjqZ99dVXLFmyxDze19eXvLw8c7Ru8uTJTJkyxeW1cfwZDcOgRYsW5hd0i8XC888/z6hRo1zWryvqs/J9tmDBAjZu3Aj81leGYZCTk2Me07p1a+bPn2+O9F5LjbXPDh48yIwZM6p0DZYvX07v3r3Lvd9QP2ciIlI9SmBF5Jq5dOkSa9asYfv27Vy4cAHDMAgJCWHYsGGMHTsWLy+vcnWq8sUaICMjg+joaHbt2sWvv/5K06ZN6dSpEyNHjiQiIsJc4MaVc+fOER0dzb59+8jIyMDHx4fOnTvz0EMPMXjw4Ep/toSEBNauXUtsbCyZmZn4+fnRo0cPIiMjy412OXPgwAH+85//cPjwYXJycggICOCOO+7gj3/8I127dq20fl1Rn5V2+PBhdu7cSXx8POfPnyc7O5srV67g5+dHp06d6N+/PxEREfj6+lZ6/rrSGPusNhJYaLifMxERqTolsCIiIiIiIuIRdA+siIiIiIiIeAQlsCIiIiIiIuIRlMCKiIiIiIiIR1ACKyIiIiIiIh5BCayIiIiIiIh4BCWwIiIiIiIi4hGUwIqIiIiIiIhHUAIrIiIiIiIiHkEJrIiIiIiIiHgEJbAiIiIiIiLiEZTAioiIiIiIiEdQAisiIiIiIiIeQQmsiIiIiIiIeAQlsCIi4hGWL1/OoEGDeO655+q7KVLPcnNzefDBBxk0aBA7duyo7+aIiMg1dF19N0BEROpWXl4eiYmJHD16lISEBBISEjh37hw2mw2AtWvXEhQUVCfnttlsjBs3jtTUVCZOnMjTTz/tVpzExETWrVsHwFNPPVWLLaxfJ06cYO/evcTFxXHixAnS09MpKirCz8+PW265hf79+zNy5Eh8fX3ru6kNiq+vLxMmTGDlypW88cYb9OvXj2bNmtV3s0RE5BpQAisi0shNnz6dxMTEejn30aNHSU1NBWDgwIFux3nzzTcpKiqiX79+9OzZs7aaV6+mT5/OTz/95LQsIyODjIwM9u3bx+rVq4mKiqJv377XtoEN3Lhx4/j0009JSUnhs88+Y+LEifXdJBERuQY0hVhEpJGzj7RCychV7969adWq1TU5986dOwFo06YN3bt3dyvGoUOH2L9/P0CjSlLsib2fnx8RERFERUWxYsUKVq5cyT/+8Q/69+8PlCSzUVFRxMbG1mdzGxwfHx/Gjh0LQHR0NJcuXarnFomIyLWgEVgRkUYuIiKCgIAAunbtSvv27TEMg+nTp5ORkVHn57YnsAMGDMAwDLdifPzxxwAEBQVxxx131Frb6lv79u2ZNGkSw4YNo2nTpqXKunbtyuDBg/noo494++23KSwsZMmSJXzwwQf11NqGafjw4axatYqcnBz++9//8sgjj9R3k0REpI5pBFZEpJEbN24c9913HyEhIW4nke44c+YMSUlJgPvTh1NTU4mJiQFgxIgR17T9dW3x4sU88MAD5ZJXRxMnTqRz584AnDp1iuPHj1+r5nmEoKAgevXqBcCXX35Zz60REZFrQSOwIiJSJ+yrw9qnLbtj8+bNFBcXAzB06NAq1bFarWzZsoXvv/+eo0ePkpmZSVFREQEBAXTq1Inw8HDuu+8+WrduXareoEGDABg5ciRRUVGcPn2azz77jH379pGWlkaLFi3o0qULjz32GKGhoWa9y5cv880337Bp0ybOnj1LQUEBwcHB3H///TzyyCM1XlzozjvvNO9hPnPmDLfccovbsU6dOsX69euJjY3l/PnzFBQU4Ovri5+fH0FBQYSFhXHPPfdw0003uRXfarXy7bffsnXrVk6cOEFWVhaGYdCyZUsCAgLo3r074eHhDBgwAC8vr1J1y17/U6dO8cUXX7B//37S0tLIz8/n1VdfLffHkKFDhxIbG0tSUhJHjx6lW7du7l0cERHxCEpgRUSkTtinD/fv35/rrnPvfze7du0CSu4T7dChQ6XHHzt2jJdeeomzZ8+WK0tNTSU1NZU9e/Zw/PhxoqKiXMbZtm0bCxYsoKCgwHzv8uXL7N69mz179jBr1ixGjx5NWloaUVFRHD16tFT9kydP8s4777B7926WLFlSoyTWarWaz5s0cX/i1Pr161m2bBlFRUWl3s/KyiIrK4uzZ8+yb98+jh8/zpw5c6odPzMzk+eff97pgmH2a5+YmMiXX35JdHQ07du3dxnrm2++YcmSJRQWFlZ6XsdFvXbt2qUEVkSkkVMCKyIitS4tLY0jR44A7k8fLiws5PDhwwB079690unDiYmJPPvss+Tn5wPQu3dvhg8fTocOHfDy8iI9PZ34+PhK9w09fvw4W7ZsITAwkKeeeso894EDB/jwww8pKChg6dKlhIaG8sorr3Ds2DHGjBnDPffcQ0BAAOfOneODDz7g+PHjHDp0iOjoaJ588km3rgHAjz/+aD7v2LGjWzFOnDhhJq8tW7Zk9OjRhIaGEhAQQFFREenp6SQkJLB79263p2kvW7bMTF7DwsIYPnw4QUFBtGjRgry8PJKSkoiNjTWnhLuSkJDA5s2badmyJY888gg9e/bEy8uLU6dO0a5du3LHd+zYER8fH/Lz8/nxxx+ZMmWKW+0XERHPoARWRERq3ffff4/NZqNp06b069fPrRjHjx83Rx+7du1a4bFWq5WXXnrJTF5nzJhhrlDr6O6772bq1KmkpKS4jJWYmEjnzp1ZtmwZfn5+5vu33XYb7du3Z+7cuVitVp599lmys7NZvHgx4eHh5nFdunShT58+TJo0ibS0NNatW8ekSZOwWCzV+vmhZBr2yZMngZIkPiQkpNoxALZu3WqOvC5dutS8r9bRwIEDmTp1KllZWdWOf/nyZfMPAwMHDuSVV14plwiHhoby8MMPk5+fX+FI8smTJ2nfvj0rVqwotVq2q1WsLRYLXbp0ITY2ll9++YXi4uIajVSLiEjDpn/hRUSk1tmnD4eHh+Pj4+NWDMdpwJVt+7N582bOnTsHlKy67Cx5ddS2bdsKy1944YVSyavd4MGDadOmDQAXL14kMjKyVPJq5+vrywMPPGAed+rUqQrP50xaWhqvv/46AIZh8Ne//rXaMezsK077+vo6TV4d+fv7Vzt+Tk6O+ceG0NDQCkdxfXx8Kp1SPXPmzGpt9WQ/tqCggLS0tCrXExERz6MEVkREalVubi4HDx4E3J8+DJCenm4+b9myZYXH2hNmgEcffdTtc0LJlFRXSZ5hGKXKhg8f7jKO43HJycnVakNBQQFRUVFm4ll24ajqsifdubm5bN261e04rvj7+5urKX/33Xc12pO1TZs2Tv8oUBHH3w/H3xsREWl8lMCKiEitiomJwWq1YrFYGDBggNtxLl++bD53Nhrq6JdffgFKRuKqsthTRSqr79iWilbrdTyuOgndlStXePHFF82Foe655x6mTp1a5frODB8+3Bz1nDt3Ls888wwfffQRhw4dMqdd14SXlxcjR44EID4+nvHjx7N48WK+++67aifv7qyy7JjAOi68JSIijY/ugRURkVplHw29/fbbCQgIcDuO4z2jla1Gm5mZCfw20lgT3t7eFZY7To+taHq0432Y9q2AKmO1WpkzZw579+4FoG/fvsybN8+t+2cdBQcHs2jRIhYsWEBqaipxcXHExcUBJde5W7duDBo0iFGjRlX6xwJXnnvuOQoLC9m0aRPZ2dls2LCBDRs2ACV/WOjbty8RERGVjiRXNtrujOMfO9xd8VpERDyDRmBFRKTWFBYWsmfPHqBm04eh5H5Nu+zs7BrF8gRWq5W5c+eaWweFh4fz6quvmlNzayosLIyPP/6Y+fPnExERYW5jU1RUxOHDh3nzzTd59NFHzeS5upo1a0ZUVBSrV6/mz3/+M3feeaeZ4GdkZLBx40amT5/Oiy++WCrhLMudBZgcF55y/L0REZHGR3+mFBGRWrN//35zSmpNE1jHLVMqS2ADAgJISUnx2AV87MmrffT6zjvvZOHChTXaP9aZpk2bMmTIEIYMGQKUjFwfOHCATZs2sXv3brKzs5kzZw7R0dG0bt3arXOEhITwxBNP8MQTT1BUVERiYiK7du1i/fr1XLx4kR07drBy5UqeffbZWvu5cnJyzOeVLdAlIiKeTSOwIiJSa+wJWOfOnQkKCqpRLMc9T0+fPl3hsfZtdtLT0ys9tqEpm7z27t2bRYsW1Xry6kxAQADDhg3jtddeY8yYMQDk5+fz/fff10p8+/TkKVOm8NZbb5nTszdv3lwr8e2SkpIACAoKonnz5rUaW0REGhYlsCIiUiuKi4v54YcfgJKFh2qqbdu2XH/99QAcOXKkwmMHDRpkPo+Ojq7xua8Vq9XKvHnzzOQ1NDSUf/7zn5Xeh1sX+vbtaz6331Ncm4KCgsx9bN3Za9aVzMxMcwulHj161FpcERFpmJTAiohIrYiLizMTH8eEsibsSVVSUhJ5eXkujxs6dKiZHH399dd8/vnnFcZNSUmplfbVhNVq5R//+Ac7duwA6jZ53b59e6VJqf3eZYAbb7yxWvGTk5PZv39/hcecP3/eHCkNDg6uVvyKxMfHm8/vuuuuWosrIiINk+6BFRFp5M6ePWuuOGtn318UYNu2baVWC/bx8WHw4MHVPo99FDE4ONitrVCcGTJkCF9//TXFxcXs37+fe++91+lx1113HfPnz+eZZ54hPz+f5cuXs2PHDkaMGEGHDh3w8vIiPT2do0ePsm3bNrp27UpUVFSttNFdL7/8Mtu2bQNKEsZp06Zx/vz5CusEBgYSGBhY7XN9/vnnvPzyy4SFhREWFsbNN9+Mv78/V65cISUlhc2bN5uj5+3atav29kcpKSnMnDmT4OBgBgwYQPfu3Wnbti3NmjUjKyuL+Ph41q1bZ64mPXbs2Gr/DK7s27cPKLm/t3///rUWV0REGiYlsCIijVxcXBwLFy50Wf7mm2+Wet2uXbsaJbC1MX3YLjw8nDZt2pCamsqmTZtcJrAAt956K2+88QYvvfQSycnJHDx4kIMHDzo91n7PbH3aunWr+fzcuXNMmzat0jqTJ09mypQpbp2vsLCQmJgYYmJiXB5z4403snDhwgq3B6pIcnIyn376qcvyJk2a8Oijj/KHP/zBrfhlWa1WvvvuO6Bk1N/dLYBERMRzKIEVEZEaO3bsmDl6WNPVhx1ZLBYiIyN5++232b17N5mZmRXuLdulSxdWr17Npk2b2LlzJ4mJieb9loGBgdxyyy306dOH++67r9ba6Anmzp3L3r17iY2N5cSJE2RkZJhTiv39/bn11lsZOHAgw4cPd2vbnl69erFixQr2799PfHw8KSkpXLx4kby8PLy9vQkODqZXr16MGjWq1kbnAfN3AmDcuHG1FldERBouw2az2eq7ESIi4tnee+893nvvPQIDA/niiy/c2svTldzcXCZMmEB2djZPP/00EydOrLXY4tlmz55NTEwMYWFhLF26tL6bIyIi14AWcRIRkRqzTx++++67azV5BfD19TWT1jVr1nDp0qVajS+eKT4+npiYGAzD4Kmnnqrv5oiIyDWiBFZERGrkypUrDBw4kMmTJxMZGVkn5xg7dizt27cnKyuLTz75pE7OIZ5l5cqVAIwYMYLu3bvXc2tERORa0RRiERHxCEeOHCEmJgZfX1/Gjx9f382RepSbm8unn36KzWYjMjKywvuiRUSkcVECKyIiIiIiIh5BU4hFRERERETEIyiBFREREREREY+gBFZEREREREQ8ghJYERERERER8QhKYEVERERERMQjKIEVERERERERj6AEVkRERERERDyCElgRERERERHxCEpgRURERERExCMogRURERERERGPoARWREREREREPIISWBEREREREfEISmBFRERERETEIyiBFREREREREY+gBFZEREREREQ8wv8D3mi+HUkibUgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC1sklEQVR4nOzdd3xTVeMG8Odmdu/SQmnZG0SmyFSmilvcCO6f4xV9FV8ninsvVPR1IEsRgRcciAgCMkQ2iuxRNm0p3TPr/P4IuaRtdm6apH2+n08+Hbk5OU2Te85zz7nnSkIIASIiIiIiIqIAUAW7AkRERERERNRwMXQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwDB0EhERERERUcAwdBIREREREVHAMHQSERERERFRwCgSOg8fPgxJkiBJEm6//XYlimyULrroIvl1JCJy5vbbb5f3FYcPHw52dWTTp0+X6zV9+vRgV4cUZrFY0KtXL0iShIceeijY1aEwYtsvXHTRRcGuCpFfGnJf/eWXX4YkSWjdujWqqqoUL7/eRjqnT5+OyZMnY/LkyfX1lEG3aNEi+W8uKioKdnXoLJPJhOXLl+PJJ5/E0KFD0bRpU+j1esTExKBNmza46aabsGjRIpjNZq/K/eeff/DQQw+hY8eOiImJQXx8PLp164Ynn3wSR44cCdBfQ0QEGAwGdO3aVe4MSZKEVatWKfocn332GbZu3YqIiAg89dRTHj3m4MGDmDx5Mi644AKkp6dDr9ejadOm6NmzJ+6//37MmzfP6b728OHDmD17Nh5++GEMHjwY7dq1Q2JiIrRaLZKTk9G3b188+uij+Pvvv736O44cOYInn3wS3bp1Q3x8PGJiYtCxY0c89NBD2Llzp1dleSInJwfPP/88+vXrh+TkZOj1ejRv3hyjRo3CtGnTYDKZ3JZhf0DHk5ur/7035djfQukAl7feeecd+e+47bbbfCqjXbt2chkbNmzw+vEVFRVYv349PvzwQ9x+++3o2rUrNBqNX59Xo9GIzz//HMOGDZP7Ms2bN8cVV1yBuXPnQgjhcVlCCMydOxeXX345mjdvLn9Whw0bhi+++MKj96m9X375BTfeeCNatGiBiIgINGnSBAMGDMB7772H8vJyb/9Ut5R8LULZli1b5PdMixYtfPq77r77brmMN954Q/79hAkTkJiYiOzsbLz11ltKVttKKCA7O1sAEADE+PHjHW4zZMgQeZvGYvz48fLfnJ2d7Xb7xvga1bcVK1aIpKQk+XV2devTp484cOCAR+W+9dZbQqvVOi0rNjZWzJkzJ8B/HTUW3u5b6stXX30l1+urr74KdnUalcmTJ9fZ76xcuVKx8svLy0V6eroAICZMmOB2e5PJJJ599lmh0+nc7msLCwsdlnHjjTd6tK+WJEncf//9wmg0uq3X7NmzRUxMjNOydDqdePfdd719eZyaOXOmiIqKcln/Hj16iIMHD7osx/6z5cnN1f/em3Jst5iYGFFeXu7z62ArZ8iQIT6X4Y+cnByh0WgEABEVFSVKSkq8evzq1avlv6Fz584+1cFd38Pbz2t2drbo0aOHyzKHDx/u9PNlr6CgQAwdOtRlWT179hRHjhxxW1ZVVZW46aabXJbVpk0b8ddff3n197qi5GvhTij01bt16ybXYfny5V49try8XMTGxgoAQq1Wi5MnT9a4/8UXX5T7radPn1ay2kIDBbRs2bLBHEEIJqWPSlNdJ06cQEFBAQAgKSkJw4cPR79+/dC0aVMYjUZs3LgRM2fORElJCTZt2oSLL74YGzduRHp6utMyP/30Uzz++OMAAK1Wi9tuuw1DhgyB0WjE0qVLMX/+fJSWluK2225DQkICLrnkknr5W6nhmj59OqevkmzXrl149dVXAQDR0dEBGUWYOnUqcnJyoFar8Z///MfltiaTCWPHjsXcuXMBAKmpqbjuuuvQs2dPJCYmoqysDPv378fy5cuxadMml2VFRUWhd+/e6NWrF9q1a4ekpCRIkoQTJ05g+fLlWLJkCYQQ+OSTT1BWVoaZM2c6LWvx4sUYP348zGYzJEnCmDFjMGrUKGi1Wvz++++YNWsWDAYDHn30UcTGxuLuu+/2/oWyM2vWLIwbN07+eeTIkbjqqquQmpqKY8eOYc6cOdi8eTO2bduGkSNHYv369UhNTXVb7kMPPYShQ4e63KZr165O71u4cKFH9f/vf/+LX375BQBwww03ICoqyqPHhaK0tDRcdtll+OGHH1BRUYHvvvsOd911l8ePt9/f3nHHHT7VofaIflZWFgwGA3Jycrwuq6ioCJdeein27NkDAOjUqRPuvPNONG/eHAcOHMBnn32GY8eOYfny5bj22mvx66+/QqNx3OU3GAy46qqrsGbNGgBAZmYm7r33XrRt2xbHjx/HtGnTsHv3bmzduhWXXnop1q9fj7i4OKd1Gz9+vPzZT05Oxr333otu3bohPz8fs2fPxsaNG3Hw4EFccskl2LBhAzIzM73++wP1WoSLO+64A48++igA63tz2LBhHj92wYIFKC0tBQBccsklaNq0aY37H374YbzxxhsoLS3F22+/jddff125iisaYV0IhSMD9S1URyMas1mzZolu3bqJb775RlRVVTnc5vjx46JLly7y/27cuHFOyzt58qR8FFuj0Yhly5bV2cb+CHVmZqaorKxU7O8hCiUc6ax/ZrNZ9OvXTwAQV1xxRY22VqmRTqPRKDIzMwUAMXLkSLfbP/PMM3Id7rjjDlFaWup025MnTzodody3b5/T/bTNb7/9JvR6vfx8f/75p8PtysvLRbNmzeTtpk+fXmebX3/9VR4Ni4mJETk5OS6f25W8vLwaI6qffPJJnW0sFot45JFHarxWztT3Z8tkMtV4vdauXetXebZygjXSKYQQCxculOsxaNAgjx9nPzKk0Wh8fl+MGzdOvPLKK+KXX36RR5Ds+4nefF7t3zeXXHJJnX7FmTNnaoz8ffTRR07Lev/992uMZhYUFNS4v7KyUowaNUreZuLEiU7LWrRokbxdVlZWnZFRs9ks7rjjDnmbMWPGePw3O6Pka+GJUMgzeXl58uw6b0fu7Ue058+f73CbW265RQAQiYmJoqysTKlqC4bOAGLoDD2FhYXCYrG43W7Hjh3y/y4yMtLptCL7nd3jjz/utLzrr79esR0eUahi6Kx/H3zwgQAgoqOjxZEjRwISOu076zNnznS57Y4dO+TgdvXVVyvy/O5MmDBBrt+kSZMcbmPfsb7++uudlvX444971Ll25/XXX5fLue6665xuZzab5alyKpVK7Nu3z+F29f3ZWrx4sfx87du397u8UAidBoNBpKamCsA6JdvdlGabmTNnyvW/4oorFK2TL6EzNzdXnrYeHR0tcnNzHW63Y8cOIUmSACDS09OFyWSqs43RaKzxmvzzzz9OnzM6OloAEHq9XuTn5zvc7vzzz5f/nsWLFzvcpqKiQmRlZcnb7dixw6O/21m9lHotPBUqeebqq6+W6/Hll1969JgjR47Ir0NycrKorq52uJ395//zzz9XrM4BX73WtsrT77//Lv/O0QnqzhYYslgs+O6773DjjTeiVatWiIqKQmxsLDp27Ij7778fO3bscFm3yZMn1zlJ+7fffsPNN9+MVq1aISIios4J8iaTCUuXLsVjjz2GgQMHokmTJtDpdIiNjUX79u1x++23Y/Xq1U6f07ay5IwZM+TftWrVqs7f7Oy18mRFrA0bNuDee+9Fhw4dEBsbi+joaLRp0wbjx4/HihUr3D6+9kpy5eXlePvtt9G7d28kJiYiOjoaXbp0wVNPPYXCwkK35YWLhIQEj17frl27omPHjgCAyspKHDhwoM42QgjMmzcPANyu5jhhwgT5e9u0k/qyfv163H///ejcuTMSEhIQERGBrKws3HjjjVi8eLHLx65atarOZ/To0aN47LHH0LFjR0RHRyMhIQH9+/fH1KlTPV5ooKysDO+//z5GjBiBZs2aQa/XIykpCX369MFzzz2H06dPu3x87c+K2WzG9OnTMWLECGRkZECj0aBly5Z1Hpebm4v//Oc/6Ny5M6Kjo5GUlIS+ffvinXfeQUVFBQDr6QKSJNV5/C+//CI/p/3/05UJEybIj1myZIlHj/GEu9VrA/V/++mnn3DFFVcgPT0dERERaNmyJW699VasX7/e67/BYDDgyy+/xJVXXonMzExEREQgISEB5513Hh577DGni5bs3bsX0dHRkCQJ8fHxyM7OdvochYWFyMrKgiRJUKvVLvfb4ejIkSN45plnAAAvvfQSsrKyAvI8s2bNAgBERkbimmuucbnte++9B5PJBEmS8N577wWkPrV17txZ/t7ZVEX7/e7DDz/stKyHHnpI3q989913PtfJvh12tXCNSqXCrbfeCsDa3/n22299fk4lffXVV/L3vk4n9VZFRQVGjx4t77tuvPFGGAyGOtvt3LkTjz76KM4//3wkJSVBr9cjIyMDV155Jb7++mtYLBaH5Wu1WowdOxaAtf329BQFJabWKmnRokXy63LzzTejSZMmDrfr2rWrPA07JyenRj/cZsWKFXJ7O2zYMHTp0sVhWU2aNMFNN90EAKiursb3339fZ5v9+/dj+/btAKyLLl122WUOy4qMjMQ999wj/+zP50zJ10Jp9vmja9euOHHiRJ1t8vPz8corr2DQoEFIT0+HTqdDamoqBg0ahDfffBNlZWVOy7d/L3r6Xp4xY4Z8OuStt94KnU7ncLuRI0fKU/1t+39FKJFcXS0kZH9EwNXt+eefr1PugQMHahw1cXRTqVROj2wKIcTzzz8vb7tixQrx4IMPOizHfiTyoosu8qjO48ePd3iUwP7IlbvHO3utnDEajeKee+5xW/YNN9wgKioqnJZj227IkCHi4MGDonPnzk7LatGiRaMcqe3Tp4/8GjiasmU/Gtq1a1eXZZnNZhEXFye/Z71dxMAXZWVlHi3EMXr0aKf1WblyZY3P6JIlS0RCQoLTskaMGOF2OtzPP/8smjRp4rJOsbGx4vvvv3dahv1n5cyZM2LgwIEO37f2VqxYIRITE50+Z7du3cTRo0dFixYtHD7ebDaLVq1aCcA65cTdNOnKykr5+bKysoTZbHa5vTfczaJQ+v9mMplc7tdUKpV44403PB6N2bRpk/xaOrvpdDrx6aefOnz8Z599Jm934YUXOj1qPWbMGHm7Z555xuVrGo5sU9569uwpvwZKj3RWVVXJpxAMHjzY5bYVFRXytt5MX/SX/eiko/5AcXGxfHQ/Pj7e7WfR/vSKnTt3+lQn+zZ19+7dLrf93//+J2/br18/h9vU50hnfn6+PHrkaKERX9j3ORw5c+aMPE0cgHjwwQfr/J+MRqOYMGGCUKlULvcdF1xwgTh16pTD5/n777/l7Vq2bOl25pP9yFBKSoowGAw+/f3O+DLSed1118mPcTY90uatt96St3U0G+uxxx6T73/77bddljVv3jx5W0ezBT788EP5/n/9618uy9q0aZO8bZ8+fVxu64qSr4Wn3PXVzWazuO++++Rt+vfvX2fKshDWz7Rt2razW1pamvjjjz8cPo/RaBRpaWkC8Hzkvk2bNnLZ27Ztc7ntNddcI7fvzka2vRXwM2lffvll5Ofn49lnn5WXInd0ErttVMnm4MGD6NevH/Lz8wEAAwcOxOWXX44WLVrAbDZjy5YtmD59OgoLC/HSSy9BpVK5vRzLW2+9hSVLliA9PV1ertpkMmHjxo3Q6/XydpWVlYiJicGwYcPQq1cvtGzZEhERETh16hR27tyJr7/+GuXl5ZgxYwYSEhLw/vvv13ieCRMm4Oqrr8aUKVOwcuVKANYT8msfgfHlqPRtt90mHwmNiIjA+PHj0b9/f6jVamzevBlffvklSktL8d1336G4uBhLlixxObJXUlKC0aNHY+/evbjqqqtwySWXICkpCYcOHcInn3yCo0eP4siRIxg3blyDGyVwxWAwYP/+/fLPLVq0qLPNP//8I3/fq1cvl+WpVCr06NEDv//+OywWC3bv3o2+ffsqV+FaqqurMXz4cPz5558AgDZt2uDGG29Ep06doNVqceDAAcycORP79u3D4sWLcfXVV2PZsmVQqZxPfti+fTveeustCCHwf//3f7jwwguh1+uxefNmfPrppygvL8eyZcvwyiuv4MUXX3RYxoIFC3DjjTfCbDZDq9XiyiuvxEUXXYS0tDSUlJRg5cqV+O6771BaWoprrrkGy5Ytc7tgxtixY7F27Vp0794dN998M1q2bImSkpIal1HYtWsXLr/8cnk0s0ePHhg7diyaN2+O3NxczJ07F+vWrcONN97odNRPpVLhnnvuwdNPP43CwkIsWLBAHqFwZP78+fIsgbvuusvlaxtISvzfJkyYIM/c0Ol0GD9+PAYOHAiVSoWNGzfiyy+/xBNPPIGrr77abX3Wr1+P4cOHo6KiApIkYdSoURg5ciQyMjJQWVmJ9evXY9asWaioqMB9990HvV5fZ1bIPffcg6VLl2LBggVYv349XnjhhTp1//LLLzF//nwAQL9+/Rrc5bpmzZqFpUuXQq1W47PPPoNarQ7I86xbt07+3LjbZ23ZsqXOtitWrMDUqVOxfv165OfnIzExEd27d8f111+P8ePHQ6vV+lW/zZs345NPPgFgnXHiaCR2165d8tH9888/3+1nsXfv3nJ/5Z9//qkxkuop2/N5a+fOnRBCuGy3p06ditdffx3Hjh0DYF2oqU+fPrj66qtx4403+r1Iytdffy2PHjlaaERpx44dw6hRo7B7924AwPPPP1/n8yqEwA033CD3H5s2bYqbbroJ3bt3R1RUFI4cOYJvv/0WW7ZswYYNGzBs2DBs2rSpzuJH3bp1Q69evbBlyxYcPnwYq1atwsUXX+y0bvYjQ2PHjvX7/aoEb/oevXv3dvi4YJd1/vnnQ61Ww2w2y59PX657qWT9lVBdXY1bb70VCxYsAABcdtllmDdvXp334QcffIBHHnkEgHWxtDFjxqB///5ITk5Gfn4+fvnlF/zwww/Izc3F8OHDsWnTpjr7IY1Gg7Fjx+Kdd96BEAIzZszACy+84LRua9aswcGDBwFYX//zzz/f5d/Sr18/LFy4EBaLBcuXL8eNN97o5avhgBLJVelLppjNZtGzZ08BWOeOf/fddw63y8nJkUdCVSqVw7no9iOdAMTAgQNFcXGxy+dfvny5y1HC/Px8eWRFpVKJQ4cOOdxO6UumfPvttzWOfjg6Anv48OEaIwjOzh+0f010Op348ccfHf6d9mVt2LDB7d/gTHl5uVi4cKEity1btvhcD0/NmjVL/rt79uzpcJsXXnihxmiSO+PGjZO3nzVrlsI1rqn2uaaOFuowGAw16uRooQv7ETPAOmLn6JyjDRs2yOdxJSYmOhw1O3r0qDzam5WVJf7++2+Hdd+wYYOIj48XAETz5s0dHlmuPYPikUcecTl6YT8S+sADDzjctva+ovZIpxDWfY7t5H135yYNHjxYHik4duyYy2295c1Ip7//N/tLBSQkJIjNmzfX2WbPnj3y5TRsN0ejMSUlJfKCNAkJCWLVqlUO/779+/fL5/xER0c7XLa9oKBANG/eXH6N16xZI9+3d+9e+fyjuLg4j8/dcmb37t2K7b+UWII+Ly9PJCcnCwDi3//+d437lB7pfPXVV+Xy5s2b53Lb9957T972vffeE//6179cHsXv0qWL0/aztp07d8qv4bx588SHH34orr/+evn9C0BMnjzZ4WNnzJjhto9i77nnnpO3f+mllzyqX20XX3yxXIarWRtC1Dz/E4A4fvx4nW08vWRKhw4d/L4Uhf0MswULFvhVlo2tvNr7zV27dsn7BJVKJaZOnerw8fbn5I4dO9bhOgsWi0U8/fTT8nZPPPGEw7I++ugjeRtXCwVaLJYaI0NKXuLDxtuRTrPZLL/n1Wq128sEHTp0SC6/TZs2de637+O566cajUahVqsFYF1QqfYosf173pO/xf68Tl/aSKVfC08566sXFxfXeA1uu+02h3XatGmTXO/zzz/f6WVofvzxR7m/ccEFFzjc5p9//pGfz93Ivf0CTh988IHbv3PVqlXy9rXbGV+FZOhcsGCBvO2UKVNcbrt37175Q3DPPffUud++IxkdHS1OnDjh0d/kzsGDB902SkqHTvvVt37++Wen5WzYsEGeDtKiRQuHU8/sG6kXX3zRaVmff/65R9u5Y/8e8ffmSafBHwUFBaJp06ZuO1r//ve/5W0+/PBDt+V6u72vTp48KU+Nuvbaa11uazAYROvWrQUA0a5duzr31w4vq1evdlrWrbfe6nK7hx56SG4c3E3r+PLLL+Wyvv766zr3239WevXq5TJw2k/j6dq1q8sFBOzLdRQ6hai5KJSzRT/27t0rbzN69GiXf6svvA2d/vzfrrrqKvl+Ryt+2vz00081ntNR6HznnXfk+3/44QeXf+Nvv/0mb/vKK6843GbVqlXyVLsWLVqIwsJCYTAYRK9eveTHKnGAp/YBCX9uSgRB2zXwMjMz66wMq3TotK1iCMDpgSKbJ554Qt62ffv28ud97NixYtq0aeKbb74RTz31lEhJSanxOXM09cxV2bVv3bt3F3PnznX6WNtiSwDEY4895va5vN3ekWeffVYuw9UKnfYLCdlujg6gf/XVV0Kj0YghQ4aISZMmiRkzZoh58+aJqVOnirFjx4qIiAj58bGxsT4HpK1bt8rlpKamKjad1Famfehcv369fO1KnU7ndIChsrJSPiWjT58+bqdHDxo0SADWA06OToMoKCiQVzyOjo52urry77//Ltfb2cFnf3kbOouLi+Xtk5OT/d7e/pQTV6tMe7K9fR/Vk8WBvN2+NqVfC0856qvn5ubW+HseffRRpwHwiiuukD+njg4w2Zs0aZJc5rp16xxuY38q2IoVKxxuY78Cs06n82i6bG5urlzusGHD3G7vieDM93LDdtJqXFxcjZONHWnfvr08jefXX391ue11112HZs2aKVLH1q1by9du3LBhgyJlunL48GFs27YNgHV6yKWXXup02759+8pTEo8cOYItW7Y43VatVuNf//qX0/vtpzbu2rXL22qHHbPZjJtuugmnTp0CAIwePRpjxoxxuK39Cd4RERFuy46MjJS/t10jKRC+++47eWrUxIkTXW6r1WrlKRP79+93ungLYJ2SOmjQIKf3u3qvCCHw9ddfA7AuVuBuWof9FDF3n+sHH3zQ5XQ5+wUPHnzwQZfTEF0tMGJz3333yd9/8cUXDrex//29997rtsxA8uf/Vl1dLS+AlJaWJi/C4cjo0aPRqVMnl3Wx7dvbt2+PK664wuW2Q4cOlffXzt4DQ4YMwZNPPgnAuq+777778Oyzz8r7vFtvvdVlncPRTz/9JJ9i8fHHHyMmJiagz3fkyBH5+6SkJJfbFhUVyd/v27cPERERWL58OWbNmoU77rgDN998M1599VXs2rUL3bp1k8t/+umnfa5fbGwsRo4cie7duzvdJhj76jvuuEPeh82fP9/pvuKJJ56osyBiSUlJne0GDhyII0eOYNWqVXjxxRcxbtw4jBkzBvfffz9mzZqFffv2oU+fPnKdbacxeGvatGny94GcTvrLL79g2LBhKCgoQExMDBYvXozrr7/e4bZLly5FXl4eAODf//632+nRts98SUmJfIqJvcTERFx11VUArIso2qbh1xZqCwgByr+XlSyvvj9nodIHO3ToEAYMGCD30V977TW88847DqcLFxYWygs43nzzzcjIyHBZtn375awdtH9v2i9gas92vXgAuOKKK5CcnOzyeQHr58TGvh3wR0heHdV2gdqmTZvKFyZ2xdaJPHLkCCorK2u8sey56njVVlJSgq+//ho///wzduzYgfz8fKcX3D5+/LjH5fpq48aN8vcjR450u/3IkSPx22+/AbCGYmfn4rRv377GG6s2+w+EP6vYtmzZ0udzXOrTww8/LH+ws7KyPF4RLJTYPj+A9b25aNEil9vb/193797tcNVXwDq/3xVX75WdO3eioKAAgLWT6K5OABATE4OioiL5PB9n3H2uN2/eLH/v6twdAPJqzq5cfPHFaN++Pfbt24cZM2bg5ZdfrtExMxqN8o6/WbNmGD16tNsyA8mf/9tff/0lH8AYMmSI2/MGhw0b5vT/VVxcLJ9nm5aW5vF7AIDL98ALL7yA3377DRs2bKixQmmrVq0wdepUt8/hicmTJ4fEOaGlpaW4//77AVgPoroL7kqwfW4B96Gz9qqhzz77rMPPVGpqKr7++mt0794dQgh89dVXeOONN1xecP7111+XL1JeXV2No0ePYunSpXjjjTfw1ltvYcqUKfjvf/+L8ePHe/HXBU7r1q3xzDPPyOdY3XPPPViwYAGuvPJKpKSk4MSJE5gzZw42btyI1NRUVFVVyZ1CR6Gqbdu2Lp8vMzMTS5YsQdeuXZGTk4M9e/Zg/vz5Xp2HVV1djW+++Ub++c477/T4sd6YPXs27rzzThiNRqSmpuLnn3+ucb5dbfZtWmFhodt9h/0qobt373b4HrzzzjvlVVOnT59e57zxiooKOYzq9Xrccsstbv4qaoz++usvXHLJJcjJyZHPr3f1uVm3bp28n1Sr1W7fy0ajUf7eWTt4880349FHH0VVVRXmz5+Pjz76qM7BSF8OoGi1WsTGxqK0tFSxq1iEXOgsKyvDmTNnAFiXxne3PHtthYWFTkOnuyMKNitXrsQtt9zidOn12hwdlVSabeQNsAZFd+y3sX9sbSkpKS7LsV9gqaqqyu3zhrNnnnkGH3/8MQBrp3jZsmUuXx/7D7Unr01lZaX8fWxsrB81dc1+tPKGG27w6rGudiz+vFfs67RgwQL5JHt/6wS4/1yfPHlS/r5169Yut01MTERCQkKNEZvaJEnCvffei4kTJyI3Nxc//vgjrr32Wvn+H374QT4qf8cddwRsgRdP+fN/s3/t3HV63W1z7NgxubFds2ZNjY6kO67eAxqNBt988w3OP/98udNu+52rEBOOnnjiCRw/fhxxcXGYMmVKvTxndXU1AGsHyVnbalN7v+ZqplK3bt3Qr18/rF+/HtXV1Vi3bp3LGTz29Ho92rVrh3bt2uHWW2/FkCFDsGPHDtx+++1ITU2tc6mGYO2rn3/+eRgMBrz++usQQuCXX36pcyA9LS0N33//fY2/3dWBYFeSk5Px8MMP46mnngIALF682KvQ+f3338sHGfr06YOuXbv6VA9Xtm7dinHjxkEIgaysLCxbtsxtn8a+/XjwwQe9ej5n+44RI0agefPmOH78OFavXo3s7Gy0atVKvt9+ZOiqq66qc8Bl69atOHr0qNPnHThwoNt9ry+Ufi/HxMTIr1FVVZXbmROuyqvvz1ko9MGGDBmC4uJi6PV6zJ07Vx5Bd8b+vfzJJ5/Ii6B5wtl7OSEhAddccw3mzJkjj9zbH0SxzZAArIN5l1xyicfPGRcXh9LS0hqvnT9CbnptcXGxX493dE0nG3cNJmCdYjh69Gg5cHbo0AGPPPIIPv74Y8yZMwcLFy6Ub7Zr2PgyhcVb9lMBoqOj3W5v/2F0NY0gWCtqhpqXX34Zr776KgBrJ3358uVuG8KEhAT5e9sqy67YDqbUfqzS/PkMufr8+PNeCVSdAPefa9sMBY1G49FUMU8+X7fffrsc1j7//PMa99l+liQJd911l9uyAs2f/5v99KXaq+854uq18+c9YH+015GUlJQancLWrVu7Xckw3KxZswaffvopAOv0LaVOFXHH9j43m83yyrTO2O/XMjMznV4zz8b+f2RbVdFbiYmJNUa0Ha3eGKx9tSRJePXVV7Ft2zb83//9Hzp06IDo6GhERUWhc+fOePrpp/HPP/+gV69e8sFrSZKQlpbm83Paj+rt2bPHq8faX5szUKOcZrNZnvVUVVXl0TWCA9F+qFQqjBs3DoD19I+ZM2fWuN/dyNCUKVNwzTXXOL0FanXUmJgYedp2UVGR29fP3XvZm8+GyWSS36darbbO/r6+P2dKvxa+sD2nyWTyKPgGqi/kaoqt/QrM48aN8+pAuK2+nuQnT4TcSKd9WBo8eHC9XMDV3muvvSYn+meeeQYvvfSS02Wc3Z1vqiT7ozLOpvnas+8sBnJUzVMVFRVuz83zVFZWFnr27KlIWQDw5ptvYtKkSQCsHZhly5Z5dITXPpS6OhfSxn5OvCej1b6yfYYkSYLJZAqJAwv2n+vnnnvO5bLeSrM1jCaTCUaj0W3w9OTzlZycjDFjxuDrr7/Gr7/+iqNHjyIrKwtHjhzBsmXLAADDhw+vceQ8HNn/39wFDsD1a2df1rhx45yee+KLBx54oMbna9++fXj22WfxxhtvKFL+nj17vO7AO+PrCMi0adMghEBkZCTy8/Px8ssvO9zO/nWYNWsW1q5dC8A668GX/Y59mC8oKHB58KFDhw7y9/Hx8W7Ltt/Gn87YgAED5GlgmzZtQnl5eY0OcbD31d27d5cPGDiyc+dO+eB1u3btPHrtnLE/V8vVjI3aTpw4IbfRkZGRuPnmm32ugyt9+vTB5Zdfjscffxx5eXm4+OKLsXLlSpeXpbHfdxw6dEix/ertt98uH2yeOXMmnnvuOUiSJF9KBbDOpBkxYoQiz6cElUqFNm3aYO/evTCbzTh+/LjTU2IA9+/l9u3bIzs7G4D1s+GqrOPHj8vv07Zt29bpG7dv316+TKC7z5nJZJKnQUdHR3s8E9Ge0q+FLxYvXozRo0ejvLxcvoSaq9kF9u/ladOmKXau8LBhw5CZmYljx47h999/l/+X4uylVGxqTyN3xWg0ylnC3akVngq50BkfH4+YmBiUlZXVy7mStS1fvhwA0KRJE7z44otOA2dpaWmNc10Czf46WfbXj3TGfpv6OiLuSl5entdTpZ0ZP368Yudavvfee3jiiScAWN97S5cudbvIjY19MHW1WBNgPdfJdpK5SqVyu+CKPzIyMrB9+3YIIXDixAlkZmYG7Lm8qZNNfX+umzVrJp9LeOjQoRod49oKCws97qjdd999+Prrr2GxWDBt2jRMnjwZ06ZNk6eQBnsBISXY7zsOHDjgdntX2wTqPfD111/Li1T16tUL+fn5OHLkCN5++22MGjXK7XVePfHtt98qdqBk5cqVHp07XJvtSHVlZSWef/55jx5jvyhM165dfepotWzZEuvWrQNgDZ3Nmzd3uu15550nf+9JiLTfxp+gJUkSoqOjUVpaCiEESkpKaoTOzp07Q6VSwWKxYPv27bBYLC4PxtmfBx6IKaa12R9c92btCUd8Hc2ZMWOGvO+69tpr/fp/uDNx4kRIkoSJEyfKwXPFihXo0qWLw+1r7zuUCp3t2rXDwIEDsXbtWhw6dAirV6/GkCFDPBoZmj59etDWfOjatSv27t0LwNr3cBW03L2Xu3btiqVLl8pludo3eVKWzZYtW1wGnO3bt8sBtnPnzj5do9P2nEq9Fr4YMmQIfv75Z1x22WVy8BRC4KabbnK4faDaQZVKhfHjx+Pll1+Wg+bzzz+P1atX49ChQwCACy+8EB07dvS4TPuM4+ha9T7VU5FSPHkiux28uwVlBg8eDMDaQfSko6Ok3NxcANZFKFw1SsuXL6+zaEJt3vzN7tgvBGQbSXHFflTR3QW9G6uPP/4Yjz76KADraPCSJUvk1f880aVLF7kDtnPnTpc7kD/++EOelmI7Kh8oQ4YMkb9XanTZXz169JDPr/vtt9/cfnaUZL9Ahe0orDO2o9ueGDhwoNxJmjZtGoxGo9zJb9KkidtzO8JB9+7dodPpAFg7xu5OJbAtXuZISkqKPJrx559/KnIufHZ2Nh544AEA1qPlc+bMwezZs6FWq2GxWDBu3LganXDynn3nzNa5c6Zjx45yIDh27Jh8brMz9gfr/Bl5KC4uxunTpwFYA2jtlRnj4uLkBbWKi4sdrmhqc+zYMXkV56ysLJcjcEqxDy/+Tsm3D7DevKb2dQjU1Fp7jz32GN555x0A1oPSQ4cOxc6dOx1uG8g2rfa0xNpTbb0ZGaovo0aNkr+3BUZn7M8hdnQuX6iW5algPGdtgwcPxpIlSxATEwOz2YyxY8fKK4w72tYWsJV+L9u/V2fOnAkhhF8rMNsvXGR/QNEvSlx3xZPrdNquSwMPrgU0d+5cedubb77Zr7rZX1/Nk2sgJSQkyNencnaNHZPJJHr37l3jOmOO2K5LCA+vQeTuOp09e/aU7//111+dlrNp06Ya165zdZ1Odxe493bbcPHZZ5/J1zKNjo6ucWF5b9hfe/M///mP0+3sr+340Ucf+Vptjxw9elS+Tme7du1EWVmZz2XZX+/x+eef92vb+++/X77/v//9r891EsK76/4qfZ1Oe1OmTJG3f+CBB+TvH3/8cW/+HK95c51Of/9vV199tXz/zJkznZbz888/y9sBjq/T+cYbb8j3P/XUU27+StdMJpO48MIL5fK+/PJL+T77a5tdffXVfj1PuFH6Op0rVqyQy/PkmpVPPfWUvP3LL7/sdLu///5b3gfHxMSI8vJyn+v47rvvys/Zu3dvh9vYX3vzhhtucFrW448/Lm83ceJEn+vkqWnTpsnPN2DAAL/KOnPmTI1rTDu6xrEjq1evlh/TqlUrlxeY95WzfoT9/65JkyYOr1FaVlYmX9s1KSlJnDx5UrF6lZaWiujoaIGz102034/5+//whLfX6RRCiLy8PLmNj4mJEbm5uQ6327Fjh/wZS09Pd9j2GY1GkZqaKgAISZIcvv5CWK/ZaHudIiIinF7n0ZPryVdWVoqsrCyv+sfOKPlaeMpZ/2P16tUiJiZGANbrE3/zzTcOH3/ppZfKj1+6dKnP9XBk8ODBNV5/W30iIyNFcXGxV2W9/vrrclmuroPsjXoLnRMmTJC3+f33312WZzaba1zs9OGHHxbV1dVOt6+oqBBfffWVmDNnTp37vA2dI0aMkLd/991369xvMBjEHXfcUaNz5axzar8znTFjhtvndteRtg/jTZs2Fbt3766zzZEjR0SbNm3cBpzGHDpnzJgh73yioqL86pidOHFCREVFCQBCo9GI5cuX19nmq6++kl/DzMxMhxerVtpjjz0mP+fFF18sTp065XRbs9ksli1bJl566aU69ykZXo4dOyYf1NHr9W4/E7m5ueLFF190eJFzb0KnEEIMHDiwRjh0dHFx+32Fp6GzqKhI/v/b3/bt2+dRvXxVn6FzzZo18v2JiYli27ZtdbbZt29fjc6us9BZVlYmWrRoIXdw3nzzTZcXei8qKhIffPCBWLZsWZ377IPlmDFjatxnNBprBFJ/D3KEE6VDZ1VVldzZHDRokNvt8/Pz5c95RESEwzrk5eWJbt26yfV0dMBu3bp14rPPPnO7v/z666+FXq93+b4Twnpx9GbNmsnbTZ8+vc42y5YtExqNRu7A5uTkOCzLvs/jah+0c+dOkZeX5/T+2bNnyx3miIgIsWfPHofb/fHHH+Lzzz8XVVVVTss6duyY6Nu3r1yndu3aCaPR6HR7e7fffrv8uBdeeMGjx3jLVT/ivffek+9PTU11GHw+/PBDeZvzzjvP7T72zz//9Pjgn/3+1H4/9sUXX3j0eH/4EjqFEOKRRx6RH3fppZfW+ZwUFBTUCICuDna///778nY9e/YUBQUFNe6vrKwUl1xyibyNq4MxixYtqtGGHjlypMb9ZrNZ3HnnnU733fbs22Rn2ULp18ITrvofa9ascRs8t2zZIrRardymLlmyxOXzHT58WDz22GNOA7U9+/6m/Xt57Nixnv+BZ11zzTUCgFCpVOLMmTNeP96Regud33//vbxN27Ztxccffyx++uknsWTJErFkyRKxf//+GtsfPXpUZGRk1HjxJkyYIL788ksxf/58MX36dPHiiy+KK6+8Um4QHXWavQ2dP/zwQ43G5MorrxQff/yx+Pbbb8VLL70k2rVrJ3fkmzdv7rJz+tdff8nlpKWlibffflv8+OOP8t/8999/19jek470TTfdJG8TGRkp7r//fjFz5kzx9ddfi3//+98iLi5Ovn/kyJFOj1g21tD5888/C7VaLf9N//rXv8TChQvd3mrvOO198skncnlarVbcddddYubMmWLatGni+uuvlwOuRqNxu3Oxf+85ChOeMhgMYtiwYTXeK2PHjhUff/yx+O6778Ts2bPF22+/LW677TaRnp4uAIhhw4bVKUfJ8CKEEL/88ovcyQIgunfvLiZNmiRmzpwp5s2bJ7744gvxn//8RwwePFj+PzkahfY2dO7cubNGOOzRo4d45513xNy5c8WUKVPEgAEDBABx4YUXyvudVq1aeVR27YNQF110kUeP80d9hk4hRI1RXL1eL+69914xc+ZMMXv2bDFhwgR5H2w/Kuqs879t27Ya+6k2bdqI//znP2L69Oli/vz5Ytq0aeLZZ58VI0eOlN8rs2bNqlHGmjVr5PdH8+bN63SShBDi0KFD8vNERUU57dA3NEqHTiGEuO666+T9iLuZSkIIMWfOHHm/p1arxW233SYfGH766aflkRXbPqCioqJOGQsXLhSAdfTpuuuuE6+88oqYMWOG3P4//fTTonv37jU+e2PGjHE5SvfTTz/J7xtJksT1118vpk2bJmbOnCnuuusuuSMIQHz++edOy/E0dL711ltCp9OJyy67TLz66qvim2++Ed9884149dVXawREnU4nFi5c6LQc22sRFxcnrr/+evH666+LWbNmiXnz5olPP/1U3HbbbSIyMlIuLzY2VmzdutVpefbsR/pUKpXLts4f7voR9sEnNTXV4ejXuHHj5G00Go249tprxfvvvy/mzp0rvvnmG/HBBx+Iu+++W7Rq1Uret3hi1apVNf6ftn1GSUmJP39yHb/99pt45plnatzOO++8GsGg9v2FhYUOyyosLBQdO3aUH9upUyfxzjvviG+//Va8/PLLIjMzs0abZDAYnNarurpaDBo0SN4+MzNTvPzyy+Lbb78Vb7/9tujUqZN8X+fOnUVRUZHLv/PGG2+Ut09OThZPP/20mDNnjvjoo49qvO+bNm0qjh496rQcT0Onkq+FJ9z1P9auXes2eH7xxRfyPhKwjqq//PLL4uuvvxbfffed+PTTT8UjjzxSY1blsWPH3NatrKxMfm7722+//ebV32g/Aq5kn6beQqfJZKox2lD75qizc/LkyRodZ1c3tVrtsJHwNnQKUXN6kKPbgAEDRF5ennzE3tWIyM033+y0nNqvlScdaaPRKO6++263r8eYMWMcNuQ27hoAX7cNdbVHszy9OetA27z11ls1Oiy1b7GxsQ5H4muzf4w/oVMIa0Pyr3/9q0bIdnUbN25cnTKUDi9CCLF+/XrRunVrj+oUExNT5+CMEN6HTiGs0wRtIzCObl27dq1xsOu8887zqNwNGzbUKMfTKW3+qO/QaTKZxG233eb0tVOpVOLNN9+scZTV1Wdmz549NY48u7rp9foaB2sKCwvlfa9KpXK5X589e7ZcTo8ePVzOmGkoAhE67UcvXE2xtvfVV1/JYcbZbciQIeL06dMOH28LWp7cdDqdeOaZZzwa2Zs9e7bDTpl9WY5mOdnzJnS6q3vr1q3ddgi9eS26du3qcHaIM19++aX82BEjRnj8OG/Z/8+dsZ8C7Sh4WiwW8dJLL9UY2Xb3/vKExWKp0yY5ag/95Uv/w1U/IDs72+1+dPjw4U6Dq72CggIxdOhQl2X17NnTo4MSVVVVNQZIHN3atGnj9n3qaehU+rVwx5P+x9q1a0VsbKwArPnEUb/ghx9+EGlpaR69D5KTk53uK2urfSC8ZcuWXk+Zt59mruSIf72FTiGsQ/Svv/66uPDCC0ViYmKNzrCrjtGqVavE//3f/4kuXbqIhIQEoVarRVxcnOjcubO48cYbxSeffOJ0jr8voVMIIZYsWSJGjx4tUlJShFarFU2bNhVDhw4Vn3/+udyweRI6TSaT+OSTT8RFF10kUlJS5Kk7jl4rbzrS69evF3fddZdo27atiI6OFpGRkaJVq1Zi7NixHh3R8Gan7O0OPJQFKnQKYT1n4MEHHxTt27cX0dHRIjY2VnTt2lU88cQT4vDhw24fX15eXqPjo9R0hv3794snn3xSXHDBBSI1NVVoNBoRFRUlWrVqJR+BdxTshAhM6BTCevBk9uzZ4oYbbhCtWrUSMTExQqPRiKSkJNG7d29xzz33iLlz5zo9H9WX0CmEEDk5OWLixImiQ4cOIjIyUiQkJIjevXuLt99+W5SXlwuLxSKPGHh6dM9isYj4+HgBWM83cjUFTin1HTptfvzxRzF69GiRmpoq9Hq9yMrKEjfffLP4448/hBDC49AphPV1+/7778X48eNF+/btRVxcnFCr1SIhIUF0795djBs3TkyfPr3OKKb9UfQnn3zS5XMIIcStt94qb+/JOYnhLhCh02QyyedgeRNMDh8+LJ566ilx3nnniYSEBKHT6URGRoa49tprxf/+9z+XHSGTySTWrl0rXnjhBTF69GjRtm1bERMTI1QqlYiJiREtWrQQo0ePFm+99ZY4ceKEV3/P4cOHxX/+8x/RpUsXERsbK6Kjo0X79u3Fgw8+6PScNnuehs5jx46J999/X1x11VWiffv2Ij4+XkRERIisrCwxevRo8eWXX3p0ukVpaan4/vvvxZNPPimGDh0q2rdvL5KSkoRGoxEJCQmiU6dOYvz48eKHH35wOV3dEfvBAE8OjPrK036E/XnyzkY8T548KV588UUxZMgQkZ6eLnQ6nYiIiBDNmzcXw4cPF5MmTRLr16/3qn4vvvhijf+pUp8de0qHTiGss5o+++wzMXToUJGWliZ0Op1o1qyZGD16tPj222+9ChsWi0V8++23YvTo0aJZs2ZCp9OJtLQ0MXToUPHZZ595PF3bZsmSJeL6668XmZmZQq/Xi5SUFHHhhReKd99916O1JrwJnUIo+1q44mn/Y926dW6DZ0VFhfj000/FlVdeKTIzM0VkZKTQ6XQiNTVVXHjhheKhhx4SP/74o1cHTO3P0fakXXfklltuEYB1+q8/64LUJgnh57KqRKSIpUuXyiuqTZgwAR988EGQa9T47NixQ16lzdP/wfLly+XruD388MN4//33A1lFoqB477338Oijj0KtVuPw4cMuL51CREThqaSkBM2aNUN5eTmeeOIJvP7664qVHfyrxhMRgHPXiI2NjcWzzz4b5No0Th999JH8/cUXX+zRYz755BP5+4ZwbU4iR+677z6kp6fDbDbjzTffDHZ1iIgoAKZMmYLy8nLExsZi4sSJipbN0EkUImyh89FHH0VqamqQa9PwrFmzxuX1QT/++GN89tlnAKwXcL788svdlrl9+3YsWrQIADB8+PB6uaYfUTBERkZi8uTJAIDPPvsMJ0+eDG6FiIhIUSUlJXjvvfcAAI8//jhSUlIULZ/Ta4lCQH5+Ppo0aYKUlBQcPHgQsbGxwa5Sg9O2bVtUVVXh0ksvRY8ePZCamgqj0YiDBw9i4cKF2LZtm7ztjz/+6DR0/vLLL7BYLNi3bx/efPNNnDp1CgCwdu1aDBgwoF7+FqJgsFgs6NOnD7Zu3Yp//etf+PDDD4NdJSIiUsjLL7+MSZMmoVWrVti1axciIiIULZ+hk4gahbZt2+LgwYMut4mMjMTnn3+OW2+91ek2kiTV+Z2n53/++uuvqKiocF9ZB1JSUjBw4ECfHktEREQUTAydRNQo/Pnnn1iwYAH+/PNPnDhxAmfOnEFFRQUSExPRvn17DB8+HPfffz/S0tJclmMLnTExMWjfvj3uv/9+3HnnnVCp3J+t0LJlSxw5csSn+g8ZMgSrVq3y6bFEREREwaQJdgWIiOpDv3790K9fP7/L4XE6IiIiIu9wpJOIiIiIiIgChqvXEhERERERUcAwdBIREREREVHAMHQSERERERFRwHAhISIiChsmkwkVFRUub9XV1TAYDDAYDDW+d/Q7k8kEk8kEi8UCs9lc56v997YlECRJklcrtv9epVLJqxurVCpoNBpoNBpotdoaN9vvNBoNdDqd/DUyMhIRERGIiIhw+H1kZKR8i4mJQWRkpEerJhMREQUbQycREdUrk8mEkpISlJSUoLS01OX3tq/l5eWorKyEwWAIdvVDhkqlQnR0NGJiYmrcYmNja/wcHx+PhIQEJCQkyN/rdLpgV5+IiBoRrl5LRER+M5lMKCgoQGFhYZ2vtb8vLi72+9IztpHBqKgoREVFITo6Wv45IiICy775ExASYJEgCZX1eyFBsti+t36VhAQIWH+Hs99DgnT2K+SvUq0aCECq9fPZTW0/W4sUZ28WBz8Lu58FhMoCqCwYcUs/VFVVobKyElVVVaiqqkJFRUWN700mk1+vX1RUlBxE7QNpcnIyUlJSkJKSIn+v1+v9ei4iIiKGTiIicslgMCA/Px+nT5+Wb3l5ecjLy5N/Ligo8CpISpKEmJgYxMXFITY2FnFxcYiLi8OqeVsAsxqS3Q0WtTUsWlRnf1ZBQu0Q2HgInA2qKjOE2gKhMgNnvwq1GVBZINRmXHbHAJSWlqKoqAhFRUUoLi5GcXExzGazV88XExNTJ4impKQgNTUVaWlpSE9PR1xcnDy1mIiIqDaGTiKiRs5gMCA3NxenTp3CqVOncPLkSeTk5ODUqVPIzc1FYWGhR+Wo1WokJCQgKSkJiYmJ2LJsLySTBpJZA8mktvteYw2WjTg4BouAOBtKTRAaM4TaBKjNEBoThNqMwWPOR35+Ps6cOYP8/HxUV1d7VG5kZCTS0tLkEFr7a3JyMs8/JSJqxBg6iYgagdLSUhw7dgzHjx/H8ePH5YB56tQp5Ofnux2l1Ol0SE1NRZMmTZCamooVc7ZAMmohmbRQGTWQTFoGyQZGDqgaE4TGeParCVfePwj5+fnIy8tDbm4uCgoK3Jal0+nQrFkzZGRkoHnz5mjevDkyMjKQkZGBJk2aQK1W18NfREREwcLQSUTUQBgMBpw8eRLHjh3DsWPHcPToURw/fhzHjh1zO1oZGRmJ9PR0NG3aFBt/2mMNlEYdVEYtJKPGOsWVgZIcEJLFGkq11ptFa8SwW3shJycHubm5OH36tMspvRqNBs2aNZODaFZWFlq0aIGWLVsiISGh/v4QIiIKGIZOIqIwU11djaNHjyI7O1u+HT58GDk5ObBYLE4fl5KSgszMTGRkZGDptI1ng6UWKqOOo5QUMALibCA1wKIz4JoJg3H8+HGcOHECJ0+ehNFodPrY+Ph4tGjRQg6htq+pqak8h5SIKIwwdBIRhSiTyYRjx47VCJfZ2dk4ceKE03AZFRWFrKwsNG/eHL/P+QuSQQeVQQfJqINk4RRGCi0CwjpKqjPAojPi2ocH48iRIzhy5AhycnKcTvuOiopCixYt0Lp1a7Rt2xZt2rRBmzZtEBsbW89/AREReYKhk4goBFRUVODgwYPYt28f9u/fj/379yM7O9vppTHi4uLQqlUr7Fx1FFK1HiqDHqpqPUcsqcEQkgVCVw2L3gCLrhr9r+2MI0eO4Pjx406n66alpaFNmzZo27atHEYzMjK4iBERUZAxdBIR1bOioqIa4XL//v04fvy4w1GdyMhItG7dGnvWnYCqWn/2FsFwSY2WgLCOjOqrYdFXoe+V7XHo0CHk5OQ43D4iIgJt2rRBx44d0aFDB3Ts2BGZmZlcvIiIqB4xdBIRBVBlZSX27t2L3bt3Y/fu3di1axfy8vIcbpuSkoJ27dph04/7oaqKgKo6wnreJcMlNVRCAAqdmylUZlj0VbBEVGPknb1w8OBBHDp0CAaDoc62kZGRaN++PTp27CiH0YyMDJ4nSkQUIAydREQKMZvNOHLkCHbt2iWHzOzsbIdTAZs3b4527dph7dydUFVHQFUVAcmsCUKtiUKAo66IAgFQHhWNqMJVD/fH3r17sW/fPlRVVdXZNiYmBh07dkSXLl3QtWtXdO7cmeeIEhEphKGTiMhHFRUV+Oeff/D3339jx44d2LNnDyorK+tsl5KSgk6dOuHPBXugqoy0BkyLWrERHqIGw12XRIkgKiwQ+mpYIqpw2QMXYO/evThw4IDDVXRbtWqFrl27yrfmzZtzNJSIyAcMnUREHjpz5gx27NiBv//+G3///TcOHDhQZxXZyMhIdOjQAf8sP2adIlsZCZVJW7cwdlyJHPO2W+LLZ6nWcwgIiIgqmCOqMPT27vjnn39w4sSJOg+Lj4+XR0K7d++Ojh07Qqt18PkmIqIaGDqJiJw4efIktm3bhh07duCvv/5y2AlNT0/Heeedh5Uz/oa6MhJStd71OZgMm0Se8ad74unnzMVzCLUJ5shKXPefQdi5cyf27NlT5/xQvV6Pbt264fzzz0ePHj0YQomInGDoJCI668yZM9i6dSu2bt2KLVu21FkNU5IktG7dGkc2FVhHMCuiHI9iOsPASeQ9pbopzj5/HpYvIGCJqIIlqgL9b+iE7du3o7i4uMY2DKFERI4xdBJRo1VaWort27fLIfPw4cM17ler1ejUqRP2rDoFdUUUVJWR1nMxfcHASeS7QHRV7D+TPpRvW6TIHF2OATd1wrZt2xyG0PPOOw99+vRBnz590Lp1a54TSkSNEkMnETUaJpMJu3fvxp9//olNmzZh3759Nc7JlCQJbdu2RfafZ6Auj/YvZNpjJ5NIGSHcZfEkhCYnJ6N3797o27cvevfujcTExCDVloiofjF0ElGDlp+fj40bN2LDhg3YtGkTysrKatyfmZmJU3+XQlUeDXVFlPKXLWHgJFJWmHRbBASEvhrmqAr0vKoltm/fjurq6hrbtGvXTh4F7datG3Q6XZBqS0QUWAydRNSgmEwm/PPPP9iwYQM2bNiAAwcO1Lg/NjYWffv2xZpZu6Aqj/bunExvMXASBU6YdV+EZIElshLXPjkAmzdvxv79+2vcHxkZid69e2PAgAG48MILOQpKRA0KQycRhb2ysjJs2LABa9aswcaNG+uMZnbs2BEH1uSfmzLranVZJTBsEtWPMO7CCLUJ5uhyXHxnN2zatAkFBQXyfZIkoVOnTujfvz/69++PNm3a8FxQIgprDJ1EFJby8vKwbt06rF27Ftu2bYPJZJLvi4+PR58+fbB6xi6oy6OVnzLrCjuGRPUvzLsytpVxb37hIvzxxx/Yt29fjfvT0tJw4YUXon///ujZsyen4RJR2GHoJKKwIIRAdnY21qxZg3Xr1mHPnj017s/KysLJreVQl8XUz2imIwycRMHTgLozFo0Rlpgy9L6uNbZs2VLjXNDo6GhceOGFGDJkCC644AJEREQEsaZERJ5h6CSikCWEwIEDB7By5UqsXLkSJ06ckO+TJAldunTB3t/yrEHToA9iTcHASRQKGmCXRkgWWKLLMerBnvjjjz+Qn58v3xcREYF+/fphyJAhuPDCCxEVFRXEmhIROcfQSUQhRQiBQ4cOyUHz2LFj8n06nQ69e/fG5gWHoC6Nrd9ps64wcBKFjgbcrREQsERW4qr/XIDVq1cjJydHvk+n06FPnz4YMmQIBgwYgNjY2CDWlIioJoZOIgoJhw8fxooVK7BixQocPXpU/r1Op0O/fv3w5zcHoS6LgSRUQaylAwycRKGpgXdvBARERBWue3YAfv/9dxw/fly+T6vVol+/fhg+fDj69+8PvT7IM0GIqNFj6CSioMnNzcWyZcuwbNkyZGdny7/X6XS44IILsOHbs0HTog5iLV1QMnAKwQBLpLRG0sWxXRP0pheHYNWqVTh8+LB8X1RUFAYPHozhw4ejZ8+e0GhCZIYIETUqDJ1EVK/Ky8vx+++/Y+nSpdi+fTtsuyCNRoO+ffti87zDoR00bZQIiPa7XwZOosBohN0ci74K103qj+XLlyM3N1f+fVJSEi6++GKMGDECnTp14mVYiKjeMHQSUcCZTCZs3rwZS5cuxdq1a2usxNijRw/sXJxjPUcz1IOmja8dNWe7W3b8iAKrkXZ1bOeAXvpID6xcuRLFxcXyfRkZGbjkkktwySWXIC0tLYi1JKLGgKGTiALm4MGDWLJkCZYvX17jwudZWVk4tbkS6uJ4qEzaINbQB94GRFe7WIZNovrViLs8AgKWmDIMuqMj1q5di6qqKgDWlcB79+6Nyy67DAMHDuT5n0QUEAydRKSoiooKrFixAj/++CN2794t/z4+Ph7l2Spr0KyKCM51NP3laUj0ZLfKwEkUHOz2QEgWmONK0GV0OrZt2yb/PjY2FiNGjMBll12G9u3bB7GGRNTQMHQSkd+EENi7dy9+/PFHLF++HJWVlQAAtVqNAQMG4M+vD1nP0wzHoGnjLiR6sytl4CQKLnZ9ZBatATe8OABLlizB6dOn5d+3bdsWl112GUaNGsXLrxCR3xg6ichnZWVlWLZsGX766Sfs379f/n1GRgbythqhKY4PnWtp+sNZSPRl98nASRQa2P2pQUDAEl2OAbe3w5o1a2A0GgEAer0ew4cPx9VXX40OHToEuZZEFK4YOonIawcPHsSCBQuwbNkyeVEgnU6HwYMHY82X+6CqiArvUc3a7IOiP7tMBk6i0MIukENCZca9Uy/Fjz/+iEOHDsm/79SpE66++moMHTqU534SkVcYOonIIyaTCWvXrsWCBQvw119/yb9v1aoVjq+vgKYkrmGMatYmScp0TBk4iUITu0FO2Va/HXR3O6xatQomkwkAEBcXh0svvRRXXXUVmjdvHuRaElE4YOgkIpeKiorw448/YtGiRfL5Pmq1GoMHD8YfXx2CqjKyYY1qBgpDJ5GyhFD+ernklFCbcNvbF+OHH35ATk6O/PsLLrgA119/Pfr06cPrfhKRUwydROTQvn37sGDBAvz2228wGAwAgISEBJQdUENTmBh+lzoJJnbEiALDvgvjz+eMXSGP2S69cv6YDGzcuBG2bmSrVq1www03YPjw4Zx6S0R1MHQSkUwIgU2bNuGbb77B1q1b5d937NgRh1YUQ10SB0mogljDMMTASRRYjroxvnzu2B3ymkVrwOVP9sDixYvlVcsTExNxzTXX4Oqrr0ZCQkJwK0hEIYOhk4hgMpmwYsUKzJkzBwcPHgRgnUJ78cUXY83nB8L3uprBxsBJVD9cdWW8+RyyS+QToTLj9veHYf78+fJpGDqdDqNGjcL111+Pli1bBreCRBR0DJ1EjVhFRQV++uknzJs3D7m5uQCAyMhIGI9HQlOQxCm0/mDgJKpfnnRnPPlcslvkMwEBc1wJWg+Lw549e+Tf9+/fH+PGjUPnzp2DWDsiCiaGTqJGqKioCPPmzcOiRYtQWloKAEhKSkLpHuv5mpJFHeQahjkGTqLg8bRb4+pzyq6RX2yr3va9LQtr166Vz/vs2bMnbrvtNvTs2ZOLDhE1MgydRI1IQUEB5syZg++//x5VVVUAgMzMTORuNEJdHM/zNZXAjhRR8HnbtXH0uWX3SBEWXTWGPtQRS5cuhdlsBgB07twZY8eORf/+/aFSsd0hagwYOokagfz8fDls2lai7dixIw4tL4W6NJbnayqFgZModPjavbH/HLOLpBiLxojRT3bHjz/+KLdDrVu3xu23347BgwczfBI1cAydRA1YXl4evvnmG/z0009yI9+lSxccWFICVXk0w6aSGDiJQo8/XRzbZ5rdJEUJtQnXvtAXCxcuREVFBQCgTZs2uPPOOzFw4EBOuyVqoBg6iRqgwsJCzJo1C99//z2MRiMAoFu3bti3uIhhMxDYSSIKXezmhCShMuPG1/pj3rx5KC8vBwC0b98ed911F/r168fwSdTAMHQSNSClpaWYO3cu5s2bJ18zrXv37tjzQyFUFVEMm4HCzhFRaGNXJ2QJlRljXr4A8+fPl9utTp064a677kKfPn0YPokaCIZOogagqqoKCxYswDfffCOvRtuxY0dkL61g2Aw0doiIwgO7OyFNqE24+vneWLhwobzQXa9evXDfffehQ4cOQa4dEfmLoZMojJlMJixevBhfffUVCgoKAAAtW7bEybVGLhBUHxg4icILuzwhT6hNuPyZ87Fo0SL59JDhw4fj7rvvRrNmzYJcOyLyFUMnURgSQuDPP//EJ598gsOHDwMA0tPTUbBVsl76hGEz8Bg4icIPuzxhw6I1YPADbbBs2TIIIaDRaHDVVVdh/PjxSEhICHb1iMhLDJ1EYebgwYP4+OOPsXnzZgBAfHw8KvZGQFOYyLBZXxg4icIXuz1hxaKvwnk3pWLjxo0AgKioKIwbNw5jxoyBTqcLcu2IyFMMnURhIj8/H19++SWWLFkCi8UCrVYLkRMLbX4KJIs62NVrXBg6icIbuz5hxxxVjhYjIrBv3z4AQEZGBh544AFeZoUoTDB0EoU4o9GI+fPnY/r06fLKfhdffDHWf34UKiOP8tY7dm6IGgZ2f8KOgMCjs6/Dp59+ijNnzgAAevfujX/9619o3bp1kGtHRK4wdBKFsC1btuC9997D0aNHAViXkT+0pALqyqgg16yRYuAkaljYBQpLQrJgzCt9MXfuXBgMBqjValx55ZW46667EBcXF+zqEZEDDJ1EISg3NxdTp07FypUrAQAJCQmo2BXJRYKCiYGTqGFiNyhsWbQG9L0zA6tXrwZgbSsfeOABjBo1ilNuiUIMQydRCDEajZg7dy5mzpyJqqoqqFQqqPLjoT2dyvM2g40dGKKGi12hsGaOKkfTISp5Nffzzz8fjz76KFq2bBnUehHROQydRCFi586dePPNN5GdnQ0AOO+887BvUSlU1RFBrhkxcBI1cOwKhT0BgXHvD8H06dNRXV0NjUaDm266CePGjUNEBNtRomBj6CQKsoqKCnz22WdYuHAhhBCIj49H5a5oqEviOJU2FDBwEjV87Ao1GBatAT3HpeGPP/4AYL2G9cSJE9G3b98g14yocWPoJAqidevW4d1338Xp06cBAOqieOjymkAya4JcMwLAwEnUGLAb1CCZYkqR0MuAvLw8AMBll12GBx98ELGxsUGuGVHjxNBJFARFRUV477335IWCmjVrhjN/qqEujwlyzagGhk6iho/doAZLSBaMfrYbFixYACEEkpOT8dhjj2HgwIHBrhpRo8PQSVTP1qxZg7fffhuFhYVQq9WQchOgzU+BJFTBrhrZY+AkavjYBWoUzJEVaDLIgmPHjgEAhg8fjgkTJiAhISG4FSNqRBg6iepJaWkppkyZgqVLlwIAWrVqhVMrBFRVkUGuGdXBwEnU8LH706gIyYJrXuyFb7/9FhaLBQkJCXj88ccxaNCgYFeNqFFg6CSqBxs3bsQbb7yB06dPWy+DkpfI0c1QxtBJ1PCx+9MomSMq0WyoJK8Uf/nll+Nf//oXoqKiglwzooaNoZMogKqrqzF16lQsXLgQAJCRkYH8dRqoK9m4hSwGTqKGj12fRk1IFlw1uQfmzp0LIQQyMjLw7LPPokuXLsGuGlGDxdBJFCDZ2dmYPHmyfDRVU5AIbV4Tjm6GOoZOooaN3R46yxxVjvg+VcjLy4NarcZtt92GcePGQaPhCvJESmPoJFKYEAI//PADPvzwQxgMBiQmJqLirxiuTBsOGDiJGj52e8iOUJkx4MEsLF++HADQpUsXTJ48GWlpaUGuGVHDwtBJpKCSkhK88cYbWLNmDQCgb9++2DG7kNfdDAcMnEQNH7s85MTEOdfj3XffRVlZGeLi4vD000+jf//+wa4WUYPB0EmkkN27d+O5555Dbm4uNBoNpBNJ0BQkQQLDTFhg6CRq+NjlIRcsWgNaXq7Fnj17AAA33XQT7r33Xk63JVIAQyeRn2zTaadMmQKj0YiMjAycWavlpVDCCQMnUePALg+5ISQLLnumKxYsWACA022JlMLQSeSHqqoqvPvuu/jll18AAOrSGOhONoNkUQe5ZuQVhk6ixoPdHvKAKbYEuo7FKCsrQ3x8PCZPnoxevXoFu1pEYYuhk8hHJ06cwKRJk3DgwAGoVCqoT6VwOm24YugkalzY9SEPWLQGtBitwd69e6FWq3H//ffj+uuvh8Q2g8hrDJ1EPti8eTOee+45lJWVWVen3R4LdUV0sKtFvmIHgqhxYheI3BCSBYMfbomlS5cCAEaNGoWJEydCr9cHuWZE4YWhk8hLCxcuxJQpU2A2m9GlSxccXFQNlUkb7GqRPxg6iRovdoPIDQGBu6eOwNSpU2E2m9GhQwe8/PLLPM+TyAsMnUQeMplMmDJlChYtWgQAUBfFQ5eTDkmoglsx8h9DJ1Hjxq4QecAcVY6I84pRXFyMxMREvPbaa+jcuXOwq0UUFhg6iTxQWlqK5557Dlu2bIEkSdDkpkBzJpnnbzYUDJ1ExO4QecCiNaD5JRIOHDgAvV6PSZMmYfDgwcGuFlHIY+gkcuPUqVN4/PHHcfToUURGRsK8LxmasthgV4uUxNBJRDbsFpEbQmXGeeMSsWHDBkiShAceeAA33HADFxgicoGhk8iF/fv34/HHH0dBQQFSU1NRuiEGquqIYFeLAoGdBSKyYdeI3BAQGPVUR/mUm6uvvhoTJkyARqMJbsWIQhRPRiNyYsuWLXjooYdQUFCAVq1aofSPeAZOIqLGgAehyA0JEpa+tgcPPvggJEnCokWLMGnSJFRXVwe7akQhiSOdRA789ttveOWVV2AymaAqj4L+eHNIFnWwq0WBxE4mEdXGLhJ5wBRbArQ+DYPBgB49euDVV19FdDQvo0Zkj6GTqJb//e9/eP/99wEA6pJY6E42c7xCrUUAKgaVBoOhk4gcYTeJ7Dlp+81R5VB3ykdFRQU6dOiAt956CwkJCfVfP6IQxdBJZGfOnDn45JNPAACagkRoc9Mcr1Drb+BkYA09DJ1EVBu7SOSIkzbcElGJiB5FKCoqQlZWFt555x1ey5PoLIZOorNmzJiBL7/8EgCgyU+G9nRq3cBpsfu4+BoabWUwdIYWhk4iqo1dJHLERV/AoqtG3IVlyMvLQ1paGj744AM0a9asnitIFHoYOqnRE0Lgiy++wKxZswAA2rxUaM+k1NzI4uBj4m1oVCKwUuAwdBJRbewikSNu+gQWjRFNhhlw9OhRNGnSBFOmTGHwpEaPoZMaNSEEPvnkE3z77bcAAG1uE2gLks9t4KhhsfE0OCoRWKl+MHgSkT12kcgRD/oGQmNE6tngyRFPIl4yhRq5adOmnQucOWnKBk6LcF0GERGFLgZOcsZVH+Bsuy+ZtDj9mw5ZWVnIzc3Fww8/jJMnT9ZTBYlCD0MnNVqzZ8/GjBkzAJwNnIVJ1juUCIsMm0RERI3T2X6ELXhmZmYiNzcXjzzyCHJycoJdO6KgYOikRmn+/Pn47LPPAJw9h7MwSbmwycAZvjiyQURESrEISAYNTq/QIzMzEzk5OXjsscdQVFQU7JoR1TuGTmp0Fi9ejClTpgAANKdToD2dzLBJRETn8AAUKUhl0OD0ch3S0tJw7NgxPP7446ioqAh2tYjqFUMnNSp//PEH3nrrLQCA5kwStHnJbh7hAYZNIiIickFl0qJ4bTTi4+Oxd+9ePP3006iurg52tYjqDUMnNRq7d+/G5MmTYbFYoC6MhzbHwXU4vcHRTSKihoejnBQgKoMO1VsTERkZia1bt+Kll16C2WwOdrWI6gVDJzUKJ0+exJNPPomqqiqoSqOhO5nuf+D0B8Nq6GKHk6hx46WTKIBUVRGw7EqBVqvF6tWrMXXq1GBXiaheMHRSg1dUVISJEyeisLAQUqUe+uPN/Auc1HBJEjucREQNXZBnKqkroiEdSgUAzJs3D99//33Q6kJUXxg6qUEzmUyYNGkSjh8/jrS0NEQczYRkUQe7WhSKGDaJCOBsh8YkiMFTUxKHu+++GwDw/vvvY/PmzUGrC1F9YOikBm3KlCn466+/EBUVheJ1UZBMmmBXiUIRAycRUeMUxFHPr/+9BiNHjoTZbMZzzz2HI0eOBKUeRPWBoZMarJ9++gmLFi2CJEkw7U6Eqlof7CpRKGLgJCIbjnI2XkEInxIkrHn/MLp164aysjI8+eSTKC0trdc6ENUXhk5qkHbs2IF3330XAKDJSYamLDbINaKQw/M3iYiotvoOnkKFA/MqkZ6ejhMnTuC1116D4MEPaoAYOqnBOXPmDCZNmgSTyQR1cSw0+Qpci5MaFoZNIqqNHX2yqedRT8msQeE6PbRaLdauXYs5c+bU23MT1ReGTmpQLBYLXn75ZRQUFKBVq1bQnWwauivV8rIpwcHASUTUeHnT9tZjO62uisSECRMAAJ999hm2bdtWb89NVB8YOqlB+eabb7BlyxZERETg1K+AZOFbnOwwcBKRIxzlJGfqcdRz6p0/YdSoUbBYLHjhhReQn59fL89LVB/YI6cGY8eOHfjyyy8BAJaDCVAZuHAQ2WHgJCIiX9VD8JQgYfV72WjdujUKCgrwxhtv8PxOajAYOqlBKC0txYsvvgiz2Qx1URzURfHBrhKFCi4YRESusFNPnrKNegYwgEpChZO/Cuh0OmzYsAELFy4M2HMR1SeGTmoQ3n//feTm5iIjIwO6U2mOz+MUFuvNX0qUYcPzOomIiOqHUm2uUv0AJ+WoqvW47777AABTp07l9TupQWDopLC3Zs0aLFu2DCqVCvlrNJAs6robCYv/jY1SoZWIiEIDRznJV0r0CSzCaRmf/99S9OnTBwaDAS+//DKMRqN/z0UUZAydFNZKSkrwzjvvAABUeQlQV0bW3EBYALNZmcBJ4YmdSiJyhPsGUoJSwbNWORIk7JhdgLi4OOzduxezZ8/273mIgoyhk8Lahx9+iIKCAkjVOmjzUmre6Wh008VRRYecHclkCA0v7FwSEZESnPUJvO0X2G9vO0+0VhkqkxZVO2MAALNnz+Y0WwprDJ0UttavX4+lS5dCpVJBd6IpJHH27Rxuo5s8r5OIqH7xQFTjUx9trTf9Bkf1cTDqqS6JRb9+/WA0GvHOO+9wNVsKWwydFJaqq6vxwQcfAKg1rVaJczdt5VDDwoaaiIgCTYnptnajnhIkbJ+Zh4iICGzfvh0///yzApUkqn8MnRSWvv32W5w8eRKpqanQnk7xbnTT1RRbLhZERNSw8QAUBZq7voQn/Qy7UU+VUYc777wTgHU128LCQoUqSlR/GDop7Jw6dQqzZs0CABRv1UIyIzijm7x0SvhhZ5OoceM+oHEK1qVSnG3vaX3sRj2/evA3tGvXDqWlpZg2bZp39SAKAQydFHY++ugjGAwGqMoioS6M4qVQiIiIKDQpdGkVSQgcXVoJAPjxxx+RnZ2tQOWI6g9DJ4WV7du3Y82aNVCr1dCdSIUEybeCnCxR7jWOdoYfjnQQNU787DdOwRrldPZ4X8uxCKjLIjFkyBBYLBZMnTrVv/oQ1TOGTgobQgj897//BQBIuTFQVev9K5Ahj4iocWDgpFAgLBBm/8Lrhv8ehkajwYYNG7BhwwaFKkYUeAydFDb++OMP7Ny5E3q9Htq8pGBXh4iIiMhr/lz2RGXQ4dprrwUAfPLJJ7BYeHoQhQeGTgoLFosFn3/+OQDAfDQCMKoVKpiXV2mUOOpB1Hjw8964qSTrzR8KtfP2o5z+BM8fnt2A6OhoHDp0CKtXr1aiakQBx9BJYeG3337DoUOHEBMTA01uQrCrQ0RE4YCBk2z8DZ4BIITwKXxKZjXGjBkDAJgxYwZHOyksMHRSyBNCYPbs2QCAqn1aSGaFRjltQmm0k+eZ1h92RokaNn7GqTZfgmcARjnr3OfDe3XuY6sQFRWFgwcPYt26dX7UjKh+MHRSyNuwYQOys7MRGRkJTX6c9ZcWi19TU0Iag2f9aajvISIickyJ6bYB4GmfRpjNAKyjnddddx0AYPr06Q23T0QNBkMnhbw5c+YAAIxHdMqPciqJ53YSEYUGdsDJHU+CZz23695Ot533+GpERkZi//792Lx5cwBrRuQ/hk4Kabt27cK2bdugVquhyYuveaeSo52hNroYavVpyNg5JWpY+JkmT9XTiKe3l0lx1rexjXLaSGY1LrvsMgDA/PnzfascUT1h6KSQNm/ePOs3eZGQjJrgVsYTHO0MT+ykEhE1Ts6m2wa5Pff0oPpPL22EJElYv349jh07FuBaEfmOoZNCVmFhIX7//XcAgOZ0vOONONpJSmHwJAp//ByTrwI06untKGeNx9pNt609ymmjqtaiX79+AID//e9/Pj8XUaAxdFLIWrJkCUwmE6RyPVSV+vp50lBayZaIiDzHwEn+sgVPpVasNZqUKcfNe3vLrGwAwNKlS1FdXa3IcxIpjaGTQpLFYsGPP/4IANDkxzrfUAjAaHR6BDAoJH6swpIUeqsZEpGHGDhJCbYDz5JKubZcgWtoiqpqCIPR6f2q0kikpaWhrKwMa9eu9fv5iAKBvWMKSTt27MCJEycAswR1UUzdDYQAzOZzO3MlOxz+jHYqGThDcEn3BouBkyh8MXBSoPjRptcY5fQ3eAoLICwQBqPD8ClBwpnt1hHOxYsX+/dcRAHC0Ekhafny5QAAdVE0JEutt6kQdXfgFkvwRzuVCpwheg2xBouBk4iInB1wVnLE04fwKarspsvahc/a1AXWWWFbtmxBXl6ez9UkChSGTgo5JpMJq1atAgCoC2uNcjoKnPb3KcXb0U4lAyfVHwZOovDGUU6qD1628S7P5fQ2eDo6v9RB8FQZtDjvvPMghJAXYSQKJQydFHI2b96M4uJiwKiGqjTy3B2uAieg/Ginp8GTgTP8SBIDJ1G4Y+AkpXjS3nvY1nu0eJCHwbPGKGedO+sGz90/nwAA+cA9UShh6KSQs2bNGgBnp9ZCqnv+pitmc/1Ns1VyoQEGzvrDsEkU/hg4SSnezGyqxwWGRFW1+1V0a53nqS6KBmBdF+P06dOKVJNIKQydFFKEEFi/fj0AQF0c5X5003EhylUo0Od4AAyc9YmBkyj8MXBSsDnpA3h9iRRX/RtPL9tid56nZNSga9euAMBVbCnkMHRSSNm3bx/y8/MBswRVaYRvK74FepotFwwKTwycROGPgZOUpMS1uc/y+ZqcDhYYcjmt1mkFrMFzz6/WKbYbN270rT5EAcLQSSHlzz//BGC95pRk9qMxCNQ0W06nDU8MnEREZM/fwKn0NbnPBk+PptU6IyxQndEBALZu3Qqj0fm1PYnqG0MnhZStW7cCANRFEf4XpvQRcQZOIqLg4SgnKUmJtvhsv8DnUc7aLBbfA+dZUrkaCQkJqKysxD///KNMvYgUwNBJIcNgMGDnzp0AAFWZAqFT6Wm2fjYEMgWn85AHOMpJFP4YOElpCrXFwmwBVCrrzU+WyioIP+slQULv3r0BANu2bfO7TkRKYeikkLF7924YDAbAoAIq1coUqsQ020CMTDJ41g8GTqLwx8BJSgtUG+xH8LRUVsnf+xs8V32+CQA40kkhhaGTQsaOHTsAAKpSPSSzBSIUOhq1A6dSo50Ag2egMXAShb9QaAeoYVFy8SCTg2m1Cox4Atbg6Wv4VJXqAQC7du2Cub4uI0fkBkMnhYy9e/cCAFRlWusvzGZlgqevo53ORjgZPEMfAydR+GPgJKUFOnDaeBk87Uc56zyPD3WWKjSIiopCRUUFsrOzvX48USAwdFLI2LdvHwBAKted+6VSDYS3wdPdlFolgycREdXEwEkhzGXgtPEweLoKnPLzedkXkiChQ4cOAID9+/d79ViiQGHopJBQWlqKU6dOAQBU5dpzdwgFp9l6Gjzre3VZjnYqi6OcRERUWzDaWjfB05PAaeNt8Pz7Z+uB/IMHD3r1OKJAYeikkGDbKUpVakjmWm9LpabZ2spyFTy9CZycZht6GDiJwh9HOUlp9TWt1hEnwdObwCk/txd/h1RhPYB/6NAhr5+HKBAYOikkHD9+HAAgVWkcb6Bk8HTGlxFOBs/QwcBJFP4YOElpwQycNgotLgR4HjxVDJ0UYhg6KSQcO3YMgIvQCQT2/E5/ptQyeAYfAydR+GPgJKWFQuC0sbuWpy+jnDXq4sHfZetPFRQUoKrKv+cjUgJDJ4UEtyOdgLLndwphLUsl1f85nKQsBk6i8MfASaFMwYPLorpamXLcBE/JrEJMTAwAICcnR5HnJPIHQyeFhLy8PADWczpdUmKarUplDSoWC4Q5xFahZQAmosaGgZMCQalRTmEBLAKSAgc4RWWlz9ferO3gG31x4LU+LrdJT08HAHmhRqJgYuikkHDmzBkAgGR0EzoB/4KnLXDaKBE8JYU+RgycvmGHlSh88fNLgaDkqSp2ZfkTPJUMnIde7wtzohHmRCMOvuo8eB7aaJ1FZjuwTxRMDJ0UdBaLBYWFhQAAyeBB6AR8C561A+e5CvgePBk4QwM7rkThh59bCgQlA6eDabW+BE+lA6cpySj/bEqyBk9H4VMyWvsoRUVFijw3kT8YOinoSkpKYLYt7GPy4i3pTfB0Fjj9wcAZWtiBJQof/LxSICgdOJ2U523wVCxwvlYzcNqYkoxy+Kx5h7WfUlxcrMjzE/mDoZOCrqyszPqNSYIkvAxgZrP7UUpPAqe3o50MnKGJHVmi0MfPKQVCPQVOG0+Dp6isVKJG1sCZXDdw2qsdPKWzobOkpESROhD5g6GTgq7StkO2BCCAeTPC6WnwZOAMbezQEoUufj4pEOo5cNq4C55KTqt1Fzjl7ZKMOPjK2eB5NnTKB/eJgoihk4LOdv0oyexjCHN2KRVfptS6C54MnOGBHVui0MPPJQVCkAKnjbPgqeh5nK/19Wp7U7I1eNpmjxkMBkXqQeQPhk4KOvmixf6MdNY+v9OfczidBU8GzvDCDi5R6ODnkQIhyIHTpnbwVDpwejrKac+UbETujW2t35tMitSFyB8MnRR058Kin2HMFjyVWDSodvBk4AxP7OgSBR8/hxQIIRI4bWzBU9HA+apvgdNGW5YLANi+fbsi9SHyB0MnBd25I4QK7KTNZsDi53U3a1MqcBIREVFoUSBwysxmxQJn+bW9YUrxPXACUH7VfiI/sDdNQadSWd+GxtQoRcoTZos1fPpDpToXhh1cp8tnSh6ZJffY4BIFF0c5KVCUnDmkQFnCZAIsFkhajd9llV/TG4ZoFRK3aP0qp6pJIgCgWbNmfteJyF8MnRR0ttCZFFeCE494d7K8Q8LiX/C0BU77RojBM/wwcBIFFwMnBZq/YdG+bfejLFvgBKyzt/wJnuXX9IYhxtov0lTAr+B5Q8fNAIC0tDSfyyBSCkMnBV1UlHWEU6o24aG7FgU3eDoKnHZlKobBM7AYOImCi4GT6ouvYdFRm+5DWfaB08bX4GkfOG18DZ4vD1qIZGMxgHP9LKJgYuikoLPtDKsqVegVcTh4wdNV4LQrUzEMnoHBwEkUXAycVN+8DYuu2nIvynIUOG28DZ6OAqeNpsLjYgBYA2dH3SlUV1n/FoZOCgUMnRR0MTExAIDqKhUsFpwLnv+ux+DpSeC0K1MxDJ7KYuAkCi4GTgoWT8OiJ224B2W5Cpw2ngZPV4HTxtPRTlvgBKz9KoChk0KD/2c7E/nJFjoBoKJchZhYizV43rkIH+JqZLy30b8nEBYI89kLsqjVzrfz5kipsCi3qq1F8FIqSmDgJAouBk4KNpXk+mCuNweNXZTlSeC0kSTJ5dr8FVe7D5yAdbQzYasORT0NSCkuxU1rNuGCvdmIqapGWYQef3ZsjazHTqONLl9+TGmxtc+TmJjoUV2JAomhk4JOq9UiISEBRUVFKClQIybWuiO3Bc+/b8jE79/18i98ugqe9ivVelkmg2eIYOAkCi4GTgoVzsKiL7OUHJTlTeC0kbQaCKOpzu8rru6N6ljP+xExxQZMemcRrty7CbpaM7gG79oPy49A/pgYHH0+ESJCQkmRtb+TnJzsVX2JAoHTaykkpKamAgCKCmseB+kVcRh3pKzBg3d87/95no6m2nozrdZJmYrhVFvfMHASBRcDJ4Wa2m26Qm21L4ETcDzN1tvAqTcZMWXZ5xiz6886gdNGZQSazClD+/F5kKosKClk6KTQwdBJIcEWOosLHE9/7ROZjQfv/N7/8zztg6e/gdOuTAoSBk6i4GLgpFBla9v9baPPluNr4LSxD57eBk4AeGzjIvTKPehyqi4ACABxG6qR9UIRyoubAgBSUlJ8qDGRshg6KSQ0bWrdMebnOp/x/cbq0cj67pj/TybOXUuLU1rDHDu8RMHDzx+FMotQeDaS/2VJkgRYzF4HzuSKElxxYJO1DHfPcfZr5MJKFBQUAAAyMjK8rCmR8hg6KSRkZWUBAPJOOl+dTVughunYSQh/p6Gq1YBaDSGEddTT3/KUOq+TAdg37PgS1T9+7iiU2dp1JdpnW1la76+VWaOY6mpYqqsBACk/7fXqsVft3witxbvrjp/URAKwLiIUGxvr1WOJAoGhk0JCixYtAAB5pxzv1Mf8+iDa/fe4/LM/wdM6wnnurS+E8D14MnCGBnaAieoPP28Uymq35/6003ZlSZLkc/C0VFdbPzdnPzvmMwVePb5n7kGvn/NopDV0ZmZmev1YokBg6KSQYBvpPJOngdFQM4CN+fVBdH4tF6ZjJ2v83qfgeXaUszafgicDZ2hhR5go8Pg5o1DmrB33pb12UJYvwVMOnLWkLN7ncRlRxmqvnhMAss9em9N2UJ8o2Bg6KSQkJycjMTERQkg4efTcDl0OnEdPOHycV8FTrYak0dQY5axRlj8jnr5i4FQWO8REgcPPF4Uyd+23N8HTRVneXGLNWeAEAHP+GY+DZ4VW7/Fz2uw9O6W2ffv2Xj+WKBAYOikkSJKEjh07AgCOHjq3c9We0TgNnDYeBU83gVMuy9PgqdQoJymPHWMi5fFzRaFMqQPGFg/7AB6MdroKnDaeBs/oG0vd18mOALA3JgYA5L4VUbCx50whw7ZjPHZIBwAYs+xBtPv8pKuHyFwGTw8Dp1yWu+DJabWhjx1kIuXw80ShzJvA6ar99qIcd9NsPQmcNu6C5xPPfI0ut+shvJjVeyoiAiVaLbRaLVq1auX5A4kCyPn1KYjqWadOnQAAh/frrdNqX8+D6chxN486xxY8pVphrvbCQR6VJQQkC+oGQwbO8CEEr+NJ5C8GTgplvoxwSqq6l1LxoRxJkiC0WsBorFmUF4HTxpx/ps7vnnjmawDAdTElQIwGuCEO+LoEAq4vmyIA/B0XBwBo164ddDqdV3UhChSOdFLI6NatG9RqNc7kadHxrWNeBU57NUY9nSwc5FE5gTrHk4Gz/rDDTOQ7fn4oVHk6DdYZ+wPI/q6Gb8eXwGmT8vMB+fuJz3yD62JKrIHzLPFSCsSFER5dp3NruyQAwPnnn+9TXYgCgaGTQkZ0dDQ6dOgAADCWHvGrLGERXk+rdViO/bU8eR4nETUWDJwUqpQ6GCyplClLqz13DU4/Pjfm06eR8vMBTHzmG9wQU1x3g0gVxNfNIMbGOZ1qK7SAGBuH7U27AgB69uzpc32IlMbptRRSevXqhV27dsGSYID6dJR/hSnUMFmn53J0Mmxxmi2Rdxg4KVQpOfuo9hRbX1ksUOn1sFRV+V2U+fRpx4HTJlIF8VYT4D9JEN+UQPqjEii3ANEqiP6RwC1xOGnRI+ehXKjVanTt2tXvOhEphUM3FFJsR+UsCVWA2ve3p6RWQ1KrrJ0ni0INixINFMNr/WPgJPIcAyeFqkAETj/bZGE2Wz8zfsyoqm34LXe63yhVAzycBDE3A+KnTIi5GcDDSUCqBrc+ehEA6ylLUVF+HrwnUhBDJ4WU7t27IyYmBtBaIOKNkHw4H1MOnIA1cAoBmM0+hc86o5z+BE8GzvrHwEnkOQZOClVKBU5hqduO+9g2y4HTVkxEhD81k6lXbcXwWz0Ing5cfMfdkM4cAgAMGDBAkfoQKYWhk0KKRqNBv379AACWhEpIapVPwbMGi+Vc+PQieDqdVqvUlBwKLAZOIs8xcFKoUjJwKqR24AQAqFTKBc+VW71+zMV33A392r8hJVpX0+3fv78idSFSCkMnhZxBgwYBAMwJFRAQ1uCp1XgUPmuMctbmQ/B0ytHRUlc4yklEoYqBk0KRvyvU2nPXXnvYRguz2XHglMtRcJqth6OdF99xNy6+425E/P4PzPEVMJvNyMrKQmZmpmJ1IVICQyeFnAsuuAB6vR4iwgQRZQBgHXV0N+rpMnDaeBg8PV48yJPgycBZ/zjKSeQZBk4KRcFYMMhNWy2HTTefGSVHO4eNvcvlNhfddQ8ifv8HEb//AwAwJ5cDAIYOHapIHYiUxNBJIScqKgoDBw4EAJjO7kBtFJtu6yJ4er1aLafbhhYGTiLPMHBSKArBFWpdjm7WpuA0W82KLU7vu+iuexC5cof8s9CYISVZp9aOGDFCkecnUhJDJ4WkkSNHAgDMSeUQUs0dvaPg6dEopz0/Fxiqw1nDxlHO+sXASeQZBk4KRYFcMMgTDtpsrwKnXI5y3euh4+qOdl50d83ACVj7S2azGZ06deLUWgpJvE4nhaQ+ffogMTERhYWFsMRVQl1cc9lvSa2yNg4WYW0QfGELmyqV9XuVyr9rcgqL9WLTREShjIGTQlG4LBjkIVVEhCLX7tQuPzfaedHd9wAAIlfUDJwCAqaUMgDnDtoThRqGTgpJGo0Gl1xyCebMmQNTk9I6oRM4Ow1WbQ2Jkj8jXGcDJywWwN+pu7bGTlJxlLO+cZSTyD0GTgpFoRQ4VRKE0XS2PD/qpeRo5+13w6KV6oRNG0t0NUSUEXq9nqGTQhaHZShkXXnllZAkCZb4Klj0Rqfb+RU4beRRTwXK4mgnEYUqHpyhUKLkCrUKktRq/w/QWCyQ9HpF6qNdtgWRvzkOnABgTrWOcg4bNgyxsbGKPCeR0tg7ppCVkZGBvn37AgDMqaWBfTK12v8FimoLwYa0QeMIDpFnGDwpFASijVTioK8S9Tp7IFuSJP+CpyTJn1eLwfHBd6ExQ93Met+VV17p+3MRBRhDJ4W0a6+9FgBgSi2DUAd4ldhAjHIyeNYvBk8iotAXqm2jXb0kjY9noNVanNDn2Vi1H+dk6rCpSSkMBgM6duyITp06+fZcRPWAoZNC2gUXXICWLVsCagFToEY7AzHKaS9Epw81WAyeRO5xtJOCJdDtoa+jnQqOcNbm9Wink89n7dFOobIgsoP1OW+55RZlTjciChCGTgppKpUKt956KwDAlFYCIQVotLM+zuVk8Kw/DJ5E7rGDSvUpVA/AuqiXx6OdFovLy695HAbtptM6VGu005xahtLSUjRv3hyDBg3y7DmIgoShk0LesGHDkJ6eDmgtMKeUB7s6/gnFBrehYvAkco/Bk+pDfbd9no52BnB002sefhZto51CEkjoaQ3Ft9xyC9SBnLFFpACGTgp5Go0GN910EwDAlF4MISnYeCk1tdab6TyherS3IWLwJHKPwZMCKVjtnUKzj1yOdnoROF1OsfXmM3h2tNOcUobTp08jOTmZl0mhsMDQSWFh9OjRSE5OhtCblV/JNljX02TwrB9CMHwSEQVDKLZzShz4dTOd1hGHU2zdTad1QqgsiO1h/X7s2LHQ6XRel0FU3xg6KSzo9XrccccdAABj02JlVrINxihnbaHYIDdUDJ5EznG0k5QUqjN6fKxTjdFOP6bT1hjt9OMzZ0wuQkFBAZo2bcrLpFDYYOiksHHZZZchKysL0FpgSitWptBgjXLaC9XGuSFi8CQiCqxQas/sDwoHYXSzTnVsQdOPwCk0FkR0ttbjrrvuglar9atORPWFoZPChkajwb333gsAMKWXQmhNQa7RWU6unUVEFDZ4QIYaqlA6sKtW+z2rwNy8DOXl5Wjbti2GDx+uUMWIAo+hk8LKoEGD0KVLF0AlYGzux2inSqXctTn9mV5rEwojro0BpxAS1cXASUoJlXBnT6n21d8RxbN9DpW31+y0Y4k0AlnVAID/+7//g0rFbjyFD75bKaxIkoSHHnoIkiTBnFwGc1w14MtOV5IY9IiIiJQSioETUObAMLy41mZtarUcOOWffXl+vQ7mtmUwm80YOHAgLrjgAt/qQxQkDJ0Udjp37iyfOG/MPAMhwbfgqQSOcoYPjnIS1cVRTvJXKE1fdSZYo50KzahS6fUwp1TBElcNnU6Hhx56SJFyieoTQyeFpXvvvRcJCQkQkUaYmhSfHblUeRY+lZxaS0QUrhg4yV+hHjZt6nu0s/boZi2eTrFV6fVQ6fUQWglxvcwAgNtuuw1Nmzb1rB5EIYShk8JSbGws7r//fgCAKb0QFp3x3PWu3AVPTq1tfDjKSVQTAyf5K1wCZ33z5KC2B9uo9Ho5vBqbFeDMmTPIyMjAzTffrEAlieofQyeFrUsuuQTdu3cH1ALGrNMQONsAejPqGWwMv0RU3xg4yV/hGDjro71VYBaVbXTTVpY5phLm1BIAwMSJE6HT6fx+DqJgCINeOZFjkiThySefREREBCyxVTCnlNjf6XjUM9RWraXA4ygn0TkMnOSPcDh/0xml2mxH53W6mU7riKMptvajmwAgVBYYW5wGAFx99dXo1auX9/UlChHsNVNYy8jIkKfZGjMKYNEba25Qe9STU2sbFwZOonMYOMkf4Ro2FVbnvE5fD2TbPa726KaNMeMMhM6Epk2b4r777vPteYhCBEMnhb2rrroKvXv3tl67Myvv3DRbG0/P9SQiaqgYOMkfDJx1+TC66Ujt0U0bc1wFzCmlAICnnnoKUVFRfj8XUTCxF05hT6VS4YknnkB0dDQsMdUwpRc63pDBs/FhR5uIyHfhPJ3WEaVmOikQNiW12uHoJgAIjQmRPSsBANdddx3OP/98v5+PKNjYA6cGIS0tDY8++igAwJReBHNshcPtfL64c52CeH3OsMHgSY0dPwNEVv623SrrKTr+rg0hqdXWshwFTggYWuahuLgY7dq147RaajAYOqnBGDFiBK644gpAAgwtTkNoTMGuEoUKdrqpseJ7n0gZ9geKfTxoLKnV5wKnE6b0QlhiqxAZGYnJkydD7+E1PYlCHUMnNSgTJkxA69atAa0ZhpYOzu+kxoudb2ps+J4nf3FGjjy66S85bLooyxxTCXOzYgDWy6NkZmb6/bxEoYKhkxoUvV6PF198EZGRkbDEVsHU1Mn5ndQ4sRNOjQXf60SOeRMgFQqb7kY3AcCiNSKydwWEEBg9ejRGjBjh93MThRKGTmpwsrKyMHHiRADW8ztNCWXWO1Sq0DlqGyr1aIzYGaeGju9xIuc8Oa9TgdHNGmHTSVmS3fU4Da1zUVxcjPbt2+Phhx/267mJQhFDJzVII0aMwM033wwAMLY4DUtktXKLCFH4E4Idc2qY+L4mpTW2g6T1NJXW9lwCAsas0xBRBiQmJuKVV15BRESE33UgCjUMndRg3XvvvejXrx+gEqhuncOFhagudtCpIeH7mch3So9uesiUVgRzYjk0Gg1eeuklpKWl+VUHolDF0EkNllqtxnPPPYcWLVoAOjOqW5yCkCzBrhaFGnbUqSHg+5jIN/W4UFBtprhSmDOKAAD//ve/cd555/ldD6JQxdBJDVpMTAxee+01xMbGwhJdBUPmKa5oS3Wxw07hjO9fIt/U40JBtZmjKoC2ZyCEwLXXXmu95BtRA8bQSQ1e8+bN8corr0Cn08EcVw5jMz8vpeLvxaUpNPE8TwpHfM9SfWho53XW00JBzlj01ahucRIGgwGDBg3CQw895FddiMIBe8/UKJx//vmYNGkSJEmCKakYptSCYFeJiMg/DJxEwSGpfA6uFo0R1S1OAGoLunbtiueeew7qs6vYEjVkDJ3UaAwZMgSPPPIIAMCYdgamxJLgVoiIiIjCh6Tya7aTUJtR3fIkhM6ErKwsvPbaa9Dr9QpWkCh0MXRSo3LNNdfgtttuAwAYmuXAFF8W5BoRERFRyPPz1BqhMqO65QmIiGokJSXhrbfeQnx8vEKVIwp9DJ3U6Nx9993WE/YlwND8JExxZTxPk4jCC6fWEtUPP0c3AUCogeoWJ2GJrEJ8fDzeffddNG3aVKEKEoUH9rSp0ZEkCY899hguueQSa/DMPAlTTKkiDQuFOamBLZZBDRMDJ1HgKdEnkFQQKqA68zgs0ZWIiYnBO++8g9atWytTR6Iwwh42NUoqlQpPPPEEhg0bZg2eWSdhjjk71Zbhk4hCFQMnUeApEDYhqSAkC6ozT8ASU4GoqCi8/fbbaN++vTJ1JAoz7FlTo6VWq/HMM89g8ODBgCRQnXniXPAEnDc6wlI/FSQissfAScHU0C6b4oinB51d9QPOPl5IFlRnHYclthwRERF488030blzZ4UqShR+GDqpUdNoNHj++ecxcOBAQCVQnXUcpji7VW056tl4cGothTIGTqLAUWgqrRw4VWZUtzgGS0wFIiMj8cYbb+C8885ToKJE4UsSgi0ZkclkwiuvvILffvsNEIDuZDo0RQl1N7Qd3VQiiDaGo8bhhKGTQhWbaQoVlgbwXrQfpfS1LXdRhlCfDZyRVYiJicFbb72FLl26+PY8RA0IQyfRWWazGe+88w5++uknAID2VBq0BYmBe0KGztDC0EmhiE00hZKGFDr9OXgsLA4fL9QmVLU8BhFRjfj4eLz99tvo0KGD789D1IAwdBLZEULgo48+wrx58wAA2rwUaE4nQ0IAAglDZ2hh6KRQxCaaQklDCJ3+chI4LToDqlscg9AZkZSUhPfeew+tWrUKQgWJQhNDJ1EtQghMmzYNM2bMAACoC+OhO5nuOHiqJN8bYYbO0MPgSaGEzTOFEn8Cp62987eMEA295shKVGcdBzRmNG3aFG+//TYyMzODXS2ikMLQSeTEokWL8P7778NisUBVGg398QxIllpHN+2Do7eNIUNn6GL4pFDBJppChRIHWH0pw9/H25fjb2h1UIY5pgzVmScAlUCHDh3wxhtvICkpyb/nIWqAGDqJXFi7di1eeOEFVFdXQ6rUI+JoJiST5twGjoKjN40ag2foYvCkUMFmmkKBEgdW/S3D3+Cr8ONNiUUwNc+DxWLBBRdcgBdeeAFRUVG+PQdRA8fQSeTGrl278MQTT6C4uBiSQQv90eZQVevPbeAsOHrSuDF0hjYGTwoFbKYpFPh7QFWJA7L1HVqdPF5AwJiWB1NKIQDgsssuw8SJE6HRaGqXQERnMXQSeeD48eN4/PHHceLECcCigu54U2hKY613uguOrho5hs7Qx+BJoYBNNQWbvwdS6+PxrspRKPQKlRnVzU/CElsOALj99ttxxx13QGJbQeQSQyeRh4qLi/Hcc89h27ZtAABtbgo0+cmQVB4su87gGf7YoaBgYlNNweZvOxbIx3tSjgKPt+gMqM46DqE3QK/X46mnnsLQoUPdl0tEDJ1E3jCZTPjoo4/wv//9DwCgLo6F7kRTSJLaswIcNXoMneGDwZOCic01BZOz0OZpGxaox3tajp+PN0eeXTBIbUFqaipeffVVXoOTyAsMnUQ++OGHH/Dee+/BbDZDqtRDf6I5VEad5wXYN34MneGFwZOChc01BVPt0OZN2+XvAdcgjrIKCJgSz8CSUQCz2YxOnTrhlVdeQUpKivvnJSIZQyeRj/766y9MmjQJRUVFgFkF3clm0JTFeleIrSFk8Aw/DJ8UDGyyKRj8CZy1H+9LexeI0OrB44XKDEPTkzDHlQEARo0ahYkTJ0Kv17t5JBHVxtBJ5Ifc3FxMnjwZO3fuBABo8pOhPZ0KCQwkjQKDJ9U3NtkUDP4eIPXn8UoGXi8eb9FXobr5cQidEVqtFhMmTMCVV17JBYOIfMTQSeQno9GITz75BPPnzwcAqMqjoD/ZDJJJG+SaUb1gB4TqG5ttCicW4d9sniAEXlN8EQzpOYBKID09HS+++CI6duzo2/MTEQCGTiLFrFy5Em+88QYqKioAkxr6k82gLo8JdrWoPjB4Un1is02Nib+h1QtCZYYhPQfm+BIAwAUXXIBnn30W8fHx9fL8RA0ZQyeRgo4dO4ZJkybh0KFDAADNmSTrdFvhwWVVKLwxeFJ9YJNNFBDmiEoYMk5A6IxQq9W44447MHbsWKg8uSwaEbnF0EmksOrqakydOhULFy4EAEhVeuhPZEBl4MIDDR6DJwUSm2sixQkImJLPwNLUujpteno6Jk2ahG7dugW7akQNCkMnUYD88ccfeO2111BcXAxYJGhz06ApSuAiQw0ZQycFCptqIsVZNEYYmp2EJboCADB8+HA8+uijiInhqTFESmPoJAqgM2fO4LXXXsPGjRsBAKqyaOhONYWKiww1XAyepDQ200SKEhAwxxfDkJYLqC2IjIzEv//9b4waNYqr0xIFCEMnUYBZLBbMnz8f//3vf2E0Gq3X9MxNg7o4nqOeDRU7LaQUNtFEirJojDA0PQVLTDkAoEuXLnjmmWfQvHnzINeMqGFj6CSqJ4cPH8arr76KPXv2AABUpTHQ5aRz1LOhYvAkf7F5JlKMgIA5rsR6KRS1BTqdDnfddRduuOEGqNXqYFePqMFj6CSqRyaTCd9++y2++uqrc6OeOelQl8Rx1LOhYegkX7FZJlKURWOEMT0H5tgyAEDHjh3x9NNPo2XLlsGtGFEjwtBJFATZ2dl49dVXsXfvXgBnz/XMSYfKqAtyzUhRDJ7kLTbJRIoREDAlFsKYehpQW6DRaHDHHXfg5ptvhkajCXb1iBoVhk6iIDGZTJgzZw5mzJgBg8FgXeE2PwWaM8kc9WxIGDzJU2yOiRRj0VfBkJ4DS1QlAKBz5854/PHH0aZNmyDXjKhxYugkCrJjx47h7bffxrZt2wBYr+upO9UU6qrIINeMFMPgSa6wGSZSjJAsMKbkw5R8BpCAqKgo3Hvvvbjqqqt47iZREDF0EoUAIQR++eUXTJ061XpdTwFoihKgzWsCycJGskFg8CRH2AQTKcYcUwpDWi6EzggAGDRoEB5++GE0adIkyDUjIoZOohBSVFSEqVOn4pdffrH+wqSG9nQqNEUJnHIb7hg6qTY2v0SKsGgNMKTlwnJ2oaCUlBQ88sgjGDx4cJBrRkQ2DJ1EIWjr1q344IMPkJ2dDeDslNucdKgro4JcM/KLr8HTtptmcG1Y2PwS+eXcVNoCQBLQaDS4/vrrMX78eERFsb0kCiUMnUQhymQyYdGiRZg2bRrKyqxHb9XFcdDmNeG1PcOZt8Gx9i6awbPhYPNL5BMBAXNsKYxpuRBaEwCgT58+ePjhh5GVlRXk2hGRIwydRCGusLAQn3/+ORYvXgwhBGBRQXsmybrKrVAFu3rkC2+Co6NdNINnw8Dml8hr5sgKGJvkyavSpqen46GHHsLAgQMhcd9IFLIYOonCxO7du/HBBx9g165dAADJqIH2dCrUxfE83zMcedI5crV7Zucq/LH5JfKYRWuAsUkezHGlAICIiAjcfPPNuOWWW6DX64NcOyJyh6GTKIxYLBasXLkS//3vf5GTkwPg7PmeeU2gLo8Jcu3Ia66Coye7ZgbP8Mbml8gtoTJbz9tMKgQkAUmScNlll+Guu+5CSkpKsKtHRB5i6CQKQwaDAf/73/8wc+ZM+XxPVVk0dKdToeL1PcOLs+Do6a6ZwTN8sfklckpIFpgSC2FMyQfUFgDW8zYfeOABtGnTJsi1IyJvMXQShbGSkhLMnDkTCxcuhNFovS6ZuiQW2tOpUBk43SgsOAqN3u6WGTzDF5tgohoExLmwqTEDAFq1aoUHH3wQffv2DXLtiMhXDJ1EDcDJkyfx5ZdfYvny5dbFhgSgLo6HNj8FKqMu2NUjd+xDo6+7ZAbP8MQmmAjA2RVp44thTMmH0FkPoqanp+POO+/EiBEjoFarg1xDIvIHQydRA3Lo0CFMmzYNq1evtv5CAJqiBGjyU3iZlVAnSf4HEAbP8MMmmBo5+fInqach9AYAQHJyMsaNG4fLL78cWi3bLqKGgKGTqAHau3cvvvjiC2zYsMH6CyFBUxTP8NkYMHiGFzbB1EgJCJjjSqwjm2fDZlxcHG699VZcc801iIiICHINiUhJDJ1EDdjff/+NL774Atu3b7f+gtNuGwcGz/DBJpgaGUfTaGNiYjBmzBjccMMNiInhSuxEDRFDJ1EjsH37dsycORObN2+2/kIA6pI4a/jkgkMNF8Nn6GMTTI2EkCwwxRfDlJIPoTUBAOLj43HDDTfgmmuuYdgkauAYOokakZ07d2LmzJlYv3699RcCUJfGQnMmGWpeaqVhYvAMbWyCqYETKjNMCUUwJRXIYTMpKQk33XQTrrzySkRFRQW5hkRUHxg6iRqhvXv3YubMmVizZo38O1VFpDV8lsVAAoNKg8LgGbrYBFMDZdEYYUoshCmxUL7OZmpqKm655RZcfvnl0Os5y4aoMWHoJGrEsrOzMXfuXPz6668wmaxHoKVqHTQFSdAUx0MSqiDXkBTD4Bma2ARTA2PRV8GYVABzfDFsxy8zMzNx0003YdSoUdDpuJ4AUWPE0ElEyM/Px//+9z8sWrQIZWVl1l+a1NAWJkJTmAjJrAluBUkZDJ6hic0whTkBAUt0OYxJBbDElMu/7969O2688Ub0798fKhUPYhI1ZgydRCSrqKjA4sWLMW/ePOTk5Fh/aZGsiw4VJkLF8z4bBobP0MJmmMKUkCzWlWgTCyEiqgEAKpUKF110EW688UZ06tQpyDUkolDB0ElEdZhMJvz+++/49ttvsXfvXvn3qopIaAoToS6J43mf4Y7BM3SwGaYwY9EarOdrJhTJ52tGRkbi8ssvx5gxY9C0adPgVpCIQg5DJxE5JYTAP//8g4ULF2LVqlXyeZ8wqaEpTISmKAEqkza4lSTfMXiGBjbDFAYEBMwxZTAlFtaYQpuRkYGrrroKo0ePRmxsbBBrSEShjKGTiDxy5swZ/PTTT/j++++Rn59v/aXtkiuFiVBVRHH0M5wxgAYHm2AKcUJtsl7yJKEIQmcEAEiShH79+uGaa65B3759eb4mEbnF0ElEXjGZTFizZg0WLlyI7du3y7+XDFpoihKgLo7n6Ge4YvCsX2x+KUTZFgYyJRTBHFsGSNb3alxcHEaPHo2rrroKzZo1C3ItiSicMHQSkc8OHjyIhQsXYvny5aioqLD+UgDqshioixJ4zc9w5G/wtDUpDLDOsdmlEGXRGK1BM6EIQmuSf9+xY0dcc801GDp0KK+vSUQ+YegkIr9VVlZi1apVWLx4Mf7++2/595JRA3VxvPXcTyOvzRZWfAmNtZsTBs+a2NxSCBKSxXquZkIRLNHl8rU1Y2JiMHLkSIwePRrt2rULbiWJKOwxdBKRoo4cOYLFixfjl19+QVFRkfx7VXkUNCVx1pVvLergVZA8501odNWUNPbwyWaWQoyAgCWiCub4YpjiSgCNWb6vZ8+euPzyyzFo0CCOahKRYhg6iSggjEYj/vjjD/z000/YuHEj5F2NRbJOvy2Oh7o8GpLgAhQhz5PQ6K4paWzBk00rhSCL1iAHTaE3yL9PTU3FpZdeissuu4znahJRQDB0ElHA5eXlYfny5Vi6dCmys7PP3WFWWUc/i+Ohqozk+Z+hzFVo9KYZaejhk00qhRihNsEUVwJzXAksUZXy7/V6PQYNGoSRI0eiT58+UKs5A4WIAoehk4jq1YEDB/Drr79i+fLl5y69Auvqt+qSOGhK4iBV6xlAQ5Wj0OhLM9LQwiebUgohQrLAHFsKU1wJLDFl8nmaKpUKvXr1wsiRIzFo0CBERUUFt6JE1GgwdBJRUJjNZmzfvh1Lly7F77//jsrKc0fgGUDDgC00+tuEhHv4ZBNKIUKozDDHlMEcVwJzdDmgOvfe7NChA0aMGIFhw4YhOTk5iLUkosaKoZOIgq6qqgrr1q3DihUrsGHDBhgM5841YgBtJOxDrNJBNFBlEgWZq6CZkZGBYcOGYcSIEWjRokUQa0lExNBJRCGmoqICf/zxB1auXOk0gKpLY6GqimAAbeiUCor2zVwgyiSqR0Jltk6djS21XuLELmhmZWXhoosuwkUXXYQ2bdpACveZBETUYDB0ElHIqqiowPr167Fy5Ur8+eefNQIoTGqoS2OhKYuBiqvgNmz+dJydNXH+dsbZdFI9smgNMMeWwhxTBktUBeyPt7Vs2VIOmq1atWLQJKKQxNBJRGHBFkBXr16NDRs2oKKi4tydFgnq8mioS2OhLouBZNYEr6IUOL50pj1p4gJVLpGPBAQskZXWqbOxpTUubwIArVu3loNmy5Ytg1NJIiIvMHQSUdgxGAzYvn071q1bh3Xr1iEvL+/cnQJQVUZarwVaFsPzQBsib0JioC7nwqaTFCZUZpijy61BM6YM0Jjl+9RqNXr06IEBAwagf//+aNq0aRBrSkTkPYZOIgprQggcOHAAa9euxbp167Bv376aG5jU1gBaHg11eTRHQRsST0Kir02cu7LZdJKfBAQsEVWwnA2alsjKGtNmY2JicOGFF2LAgAHo27cvYmJigldZIiI/MXQSUYOSm5uLP/74Axs2bMDWrVtRVVV17k4BqKoioDobQlWVkRwFbQicBUQlmrdAlk2NjlCbrCOZ0eXW1WbtRjMBIDMzUw6a3bp1g0bDg2RE1DAwdBJRg2UwGLBjxw5s2LABGzZsQHZ2ds0NzCpr+CyPhroiCpJBxxAa7uxDotLNWyDLpgZJSBZYoipgjqqAOaYMIqK6xv1RUVHo1asX+vbtiz59+qBZs2ZBqikRUWAxdBJRo5GXl4dNmzZh48aN2LRpE8rKymrcLxk1UFVEWYNoRRQko5YhlIg8JiSLdQGg6HJYoirqTJkFgA4dOsghs2vXrhzNJKJGgaGTiBolk8mE3bt3Y+vWrdi6dSt27txZ85IssF4X1D6EqkzaINWWiEKRHDKjKs6FTFXNblVaWhp69OiB3r17o0+fPkhMTAxSbYmIgoehk4gIQHV1NXbu3ImtW7di27Zt2LVrF8zmmudb2UZCVZWR1um4XBmXqFERKrN1umxkpTVkRlTVCZmpqano0aOHfGvatCmvnUlEjR5DJxGRAxUVFfjnn3/kkdD9+/fXCaEwq+QAqqqMtC5MJFTBqTARKUpAQGiNNUJm7etlAkBSUlKNkNm8eXOGTCKiWhg6iYg8UFFRgd27d+Pvv//Gjh07sHPnTlRWVtbcyLY67tkAqqqK4OJERGFCqMzWS5hEVMlTZmuvLgtYV5jt1q2bfMvMzGTIJCJyg6GTiMgHJpMJhw4dwo4dO7Bjxw78/fffyM/Pr7vh2dFQOYxWRfDcUKIgE5IFFn01LJGVcsgUOkOdRX+0Wi06dOiAbt26oWvXrujWrRsSEhKCUmcionDG0ElEpAAhBHJycrBz507s3r0be/bswd69e+ssTgScPTfUFkCr9ZCqIiCZNBwRJQoAIVkg9NU1Q2ZEVZ2ACVgX/enYsSM6deqEbt26oX379tDr9fVfaSKiBoahk4goQEwmE7Kzs7F79275dvjwYVgsFgcbq+UQqqqK4NRcIh8ItckaLm3TZPXVEPpqhwEzPj5eDpidOnVChw4dkJSUVP+VJiJqBBg6iYjqUWVlJfbt24fdu3dj//79OHDgAI4ePVp3kSIAsEjySKiqWm/93qDjqCg1ekKyQOgM1oB59iYiqiC0Jofbx8XFoW3btmjfvj06duyIjh07clVZIqJ6xNBJRBRk1dXVyM7OxoEDB7B//37s378fBw8erLtQkY1ZdS6Env2qMugAhlFqYGqHS9v3js6/tMnIyEDbtm3Rtm1btGvXDm3atEGTJk0YMImIgoihk4goBFksFpw4cQIHDhzAgQMHcPjwYRw+fBgnTpxwPD0XkMOoZNBBZdDV+MpLuVCoEhAQGhOEzmANlbav+moIrdFpuIyJiUGLFi3QqlUrOWC2bt0a0dHR9fsHEBGRWwydRERhpLq6GseOHcPhw4eRnZ0tfz158qTzMArr4kU1Qqjte6OWgZQCTkAAGhMsWmPNYHn2K1TOuyKxsbFo1aoVWrRogZYtW6JVq1Zo2bIlkpOTOXpJRBQmGDqJiBoAWxg9cuQIjh8/Lt+OHTuGkpIS1w82qaEyaq0B9GwQlX9mKCUP1AiVdjf7n10FS7VajfT0dDRv3ly+tWzZEi1btkRSUhLDJRFRmGPoJCJq4IqLi2uEUNvXU6dOoayszH0BtlBq0lhDqP1X2/cMpg2WPP3VdtMa6/7sJlQCgEqlQlpaWo1gabs1bdoUGo2mnv4iIiKqbwydRESNWGlpKXJycpCTk4NTp07h1KlTNX6uqKjwrCCzqmYYNavrfIXtZwbUoBMQgMpiDY1qs/wVtp9rBUtP1qdSqVRo0qQJ0tPTHd6aNGnCYElE1EgxdBIRkUNCCJSWluLUqVPIy8tDfn4+Tp8+jdOnT8vf5+fnex5MbWwB1ay2htGzXyWzGrCo6v7eorJ+z5V565DDo8oCqM3WwOjs+7PhEravXrycKpUKSUlJSElJQWpqKlJSUuSbLVSmpqYyVBIRkUMMnURE5JeKigo5jJ4+fRqFhYUoKChAUVERCgsL5a+FhYWOr0fqKbPKGkDP3iT7r0KyBlX7r2d/DyFBEpL1cfY/n/2d/L2N7Xu737kLvAJ2TalU63tJQJz9CulsSLT7uc59KkvNr85+fzZQ+pPFo6OjkZCQgMTERCQmJiIhIQEJCQk1QmVqaioSExOhVqt9fyIiImrUGDqJiKheCCFQVlYmB9DCwkIUFxejtLQUpaWlKCkpkb+3v3k9khqQytu+2iU8W7gMgQFYjUaD2NhY+RYTE1Pja2xsbI1Qaftep9MFu+pERNQIMHQSEVFIM5lMKCsrQ2lpKSorK1FZWYmKigq33xsMBhgMBhiNxjrf2//OYDAE/G/QaDTQarXQ6XTQ6XTQarXyz7bvtVotIiIiEBkZ6fHNFigjIiK4wisREYUshk4iImrUhBCwWCxe3VQqVY2bJEnyV7VaXeNnjUYDlYqLJxERUePF0ElEREREREQBw0OvREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDAMnURERERERBQwDJ1EREREREQUMAydREREREREFDCaYFeAiCgQhBCoqqoKdjWIiLwSEREBSZKCXQ0iIkUxdBJRg1RVVYVRo0YFuxpERF5ZunQpIiMjg10NIiJFcXotERERERERBQxHOomowdNtbAJJqABJBUl1dtqapAJUEiBJkFQqQJKsv/v/9u4+Kqo6/wP4+zKiIKCQeRQCH0NyS8VAzXTIp5BI08WHtXWPuWy/dI9GnfQcO2yGZaWbR6Wtc9pyV11TytT1oRbDzKdaUaEUSYQQFRWE5UFAkHGcmfv7Y+Ze7jwzA+OIvV/ndLxzv9/v537nI9J85j58AeO2jwBB0Ue539hXaHkttSn7CwIAU5tpnygIxq/6BPOYlvtFqc1HajeFEgSI8leF0n4BEGA2RpT3KcbDFMNHMMVqaQcgH0MeI/UHjMe0jCe1mY2D2bHM52FnjOJ1yzjTn3AwzsbxrOZhI6YZh2NE6+OYHUu0eK8t46AYB0GUDycKLe2Csk2OLbWJ8rEEi/6CIJr9OErHEEx9BVNM44+UKO8z/qiKckxjm3GfIIjmbYIIAeb7fUzbPqaxxm2Yt8ljDC3jIPU3QCW0bMvj0NJfapfaVJD2GxT7DcZYUkxFPLm/6U8fGMca52E8vrHNAJXptTH9BqhM+6QxKtPfmQ9MfU3vTdpumaNomgNa9gOm1wJ8AKgEAT6mv1DjPsG0zwcCBKgEH2huC5jxf71BRHS/YtFJRPc/vWD8+CcYP+QBMBWYpqITpqLTR6rojFWEYKzgYF69mMbZrHp8zCsiQdlmVbU42FZWR5bt0qZUPCr+lLsLilCCRXjBvAg0G2djPGAqfu20CTb+szkPJ2NcSVUbY7auUG3HolN5XLN220WncoxVfxttghxHtIgpmo9R9jM7lmjepig6W4pYRQFrr01RjJoVnYp9PjAvVqWCraXolApSU4EmSEWbkUoQ4CMIUAFmfwKK/hBMsQCVdCzTtkqObadN3m6Zv0qeZ0uRqZy/raLTMp48f7N90hxbvpggIrpf8fJaIiIiIiIi8hgWnUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJREREREREHsOik4iIiIiIiDyG63QS0f1PJUIUDcZ1CaVFAqVtwbSIntl6loLFOpiCYr+oaHfSZrFQpGhn8UnL/S2vpXYb26K0bewrjxFbtkWr8VAsKNkS05pgHCxYdLNce9Nsv9XbQqvW6YSbbY5iOjme/LYcjrFcb9Mynmgd3+Y4RfYV4wQH63QKitiCRX/jmphSm8UxLNfphPvrdIqmsaJpv2jaFk1tomKdUuV+gyACgkHxvqVjGUzrepraFfMQBYPxONJxTTFhOo7lfh/Ta+WfxiO17DOY/lkbFGtxGgTAAOM/e4OiTYCtdToF0zjBuO6nKd/SNqBY71OxLR1LXmcU0jqjxnjGfYK8TzBta27b+ndIRHT/YNFJRPc97cj/eXsKnmH6DO8uy5qSSCL9aBm8PRG3SRU5L+giIroX8LcxEREREREReYwgimIbvicnIro3iaIIjUbj9niNRoNp06YBAPbu3Qs/P7/2mho5wdx7D3PvfX5+fhAEXntARPcXXl5LRPclQRDg7+/fLrH8/PzaLRa5hrn3HuaeiIjaCy+vJSIiIiIiIo9h0UlEREREREQew6KTiIiIiIiIPIZFJxEREREREXkMn15LREREREREHsMznUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJREREREREHsOik4iIiIiIiDyGRScRERERERF5DItOIiIiIiIi8phO3p4AEdGtW7fwxRdf4OjRo6ioqICPjw8iIiIwYcIEzJgxA76+vm7Hrq2tRUZGBrKzs1FZWYkuXbqgf//+SEhIwLPPPgtBEByOLysrQ0ZGBnJyclBbWwt/f38MGjQIU6dOxbhx45wev6ioCF9++SXOnDmDuro6BAUF4dFHH0VSUhJiYmKcjv/pp5+wa9cunDt3Djdv3kRwcDCio6Mxe/ZsREVFtTYNdjH31kpLS/Hzzz+jqKgIxcXFuHDhAm7fvg0AOHbsmEs5cIS5NyeKIs6dO4fs7Gzk5+ejtLQUDQ0N8PPzw0MPPYQRI0YgKSkJPXv2dCclRETkRYIoiqK3J0FEv14VFRVISUlBRUUFAMDPzw8GgwFarRYAEBkZifT0dAQFBbkcu6ioCEuXLkV9fT0AwN/fH1qtFnq9HgAwcuRIrFq1yu6H++zsbKSlpUGj0QAAAgIC0NzcDIPBAABITEzEsmXL7H6A//rrr7F27Vr5eIGBgWhqaoL0a3f+/PlITk62O/+NGzdi8+bNAABBEBAQEIDGxkYAgEqlwpIlSzBlyhRXUmKGubed+5SUFJw5c8ZmW3sVncy9de63bNmCf/zjH/Jr6WdeOTYgIAB/+ctfMHbsWJfzQkRE3sPLa4nIa3Q6HV5//XVUVFSgR48eWLduHQ4cOIADBw4gLS0NXbt2RXFxMVauXOly7MbGRixbtgz19fXo06cPPv30U2RlZeHAgQN49dVX0alTJ5w6dQoffvihzfHl5eVYsWIFNBoNhgwZgm3btmH//v3IzMzE/PnzAQCZmZn4/PPPbY7/+eef5Q/earUaO3fuRGZmJvbt24fnnnsOALB582YcOnTI5vhDhw7JBedzzz2Hffv2ITMzEzt37oRarYZer8fatWvx888/u5wbgLl3lHuVSoV+/fohPj4eixcvxuzZs13OgSPMve3c63Q6BAQEYNq0aUhPT8eBAweQmZmJAwcOYOXKlejVqxeampqQlpaGy5cvu5wbIiLyIpGIyEu++uorUa1Wi2q1WszPz7dq//bbb+X23Nxcl2Jv2LBBVKvV4qRJk8SysjKr9s8++0xUq9XiuHHjxCtXrli1r1y5UlSr1eK0adPEhoYGq/b3339fVKvVYkJCgs32RYsWiWq1WnzhhRfEO3fuWLUvWbJEVKvV4qxZs0SdTmfWptPpxFmzZolqtVpcunSp1VitVivOmzdPVKvV4qJFixzmwR7m3nbuRVG02peZmSnnoj0w97Zz/8svv9iMKSkrKxMnTZokqtVqcfXq1Xb7ERHRvYdnOonIa7755hsAwPDhw/HYY49ZtU+cOBGhoaFmfVsrKytLjhEWFmbVnpSUBH9/f+j1enz77bdmbc3NzTh69CgAYPr06TYvcfzDH/4AAGhqasL3339v1lZeXo6zZ88CAObMmYNOnaxvn5fGV1RUIC8vz6ztzJkz8mWXc+fOtRrr6+uLOXPmAADOnj2L8vJyqz7OMPe2cw8Yz3R6EnNvO/eRkZEOLycOCwvD8OHDAQCFhYV2+xER0b2HRScReYVGo5EvDX3iiSds9hEEAaNGjQIA5OTktDr2lStXUFlZCQDyeEtdu3bF0KFDbcbOz8+XHxxjb3xoaCj69u1rc7zytb3xQ4YMQdeuXW2Oz83Nlec4ZMgQm+OVOXMlNwBz7yj3nsbcty33nTt3BgD5/lIiIuoYWHQSkVeUlpbKHxz79+9vt5/UVltbi4aGhlbFvnjxotV4WwYMGAAAVveHKcdLfRyNv3Tpktl+6XVISAhCQkJsjlWpVOjTp4/D8X379rV71i0kJATBwcE25+8Mc28/957G3Lufe51OJxfsjuZHRET3HhadROQV1dXV8rajJRAefPBBm2McqampcSl2U1MTbt26ZXWcoKAgdOnSxel45fGU45Vzt0WaW1vHtzYvlvGVMWz5Nebe05h793O/fft21NbWAkCbntpMRER3H4tOIvIK5YddRx9w/fz8bI7xZOzm5mardkfjLeclvXY2Xppbe493hrl3P3dtxdy7l/uzZ89i48aNAIBJkya1ao1bIiK6d7DoJCIiontWaWkp3njjDdy5cwf9+/fH0qVLvT0lIiJyEYtOIvIK6WEiAOSHl9giLVBvOcaTsf39/a3aHY23nJf02tl4aW7tPd4Z5t793LUVc+9a7q9evYpXX30VdXV16NOnD9atW3fX/86IiKjtWHQSkVco7/uqqqqy2095P5uze8UkPXr0cCl2QECA2QdZ6Tg3b950+OFdGq88nnK8s3vxpLm1dXxr82IZXxnDll9j7j2NuW997q9evYpXXnkFNTU1iIiIQHp6+l3/+yIiovbBopOIvKJv377w8TH+CnL0FEup7YEHHkC3bt1aFVv5ZEtHsaWndfbr18/ueOUTPe2Nt3xSqPT6xo0bqKurszlWr9fjypUrDseXlpZCr9fbHK+MbTl/Z5h7+7n3NOa+dbmXCs7q6mqEh4fjgw8+cPnLFSIiunew6CQir/Dz88Njjz0GADh58qTNPqIo4tSpUwCAESNGtDp2REQEevXq5TB2c3OzvJC9ZewhQ4bIDzuRjm+poqICpaWlNscrX9s7fn5+vvwgFcvxsbGxAIwPWpGWiLCkjOtKbgDm3lHuPY25d577q1evIiUlBdXV1YiIiMDf/vY3FpxERB0ci04i8pqEhAQAwOnTp1FQUGDVfvjwYZSXl5v1bQ1BEDB58mQAwKFDh3D9+nWrPrt370ZzczNUKhWefvppszZ/f3889dRTAIA9e/agsbHRanxGRgYA431parXarC0sLAxDhw4FYFzmQafTWY3ftm0bAKB3794YNmyYWVt0dDR69+5t1k9Jp9Nh+/btAIChQ4ciLCzMqo8zzL3t3N8NzL393EsFp3RJLc9wEhHdH1h0EpHXJCQkYMCAARBFEcuXL8ePP/4IADAYDDh8+DDWrFkDABg1apTVEgkbN25EXFwc4uLibH64njNnDh544AFoNBosW7YMRUVFAIA7d+5gz549+Oc//wkAmDp1KiIiIqzGJycnw9/fHzU1NXj99ddx9epVAMYzRZs3b8bevXsBAPPmzUNQUJDV+AULFkClUuHChQtYsWKFfB9bQ0MD1q1bJ58JWrhwIVQqldlYlUqFhQsXAgBOnDiBdevWoaGhAYDxfrgVK1agpKTErJ+rmHvbuQcArVaLuro6+T/l0h7K/XV1dTAYDI7SbBNzbzv3165dk+/h7NOnDwtOIqL7iCCKoujtSRDRr9f169fxyiuvoKKiAoDx8kODwQCtVgsAiIyMRHp6utUH3I0bN2Lz5s0AjGdVQkNDrWIXFRVh6dKlqK+vB2A8O6PVauUzMCNGjMCqVavQuXNnm3PLzs5GWlqa/DTOwMBANDc3y/dZJiYmYtmyZRAEweb4r7/+GmvXrpX7BwYGoqmpCdKv3fnz5yM5OdlubpTvURAEBAQEyGefVCoVlixZgilTptgd7wxzbzv3+/fvx6pVq2y2WbL3/p1h7q1zv3r1amRmZgIwPuTI0VqjgPFsLBERdQydvD0BIvp1Cw0NxebNm/HFF1/g6NGjqKioQKdOndC/f39MnDgRM2bMgK+vr1uxo6Ki8K9//QsZGRk4fvw4/ve//8HPzw8DBgxAQkICEhMT5Ye62DJ69Ghs2rQJGRkZyMnJQW1tLQIDAxEZGYnnnnsO48aNc3j8KVOmIDIyEtu3b0deXh7q6uoQEhKCRx99FElJSU4XuE9OTsawYcPw73//G+fOncPNmzfRs2dPDBs2DL/73e8QFRXlTlpkzL33MPfWlGeNm5qa0NTU5Nb7JyKiew/PdBIREREREZHH8J5OIiIiIiIi8hgWnUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJREREREREHsOik4iIiIiIiDyGRScRERERERF5DItOIiIiIiIi8hgWnUREREREROQxLDqJiIiIiIjIY1h0EhERERERkcew6CQiIiIiIiKPYdFJRERe98EHHyAuLg4vv/yyt6dCXtbY2Ihnn30WcXFxOHbsmLenQ0RE7aCTtydARETua2pqQnFxMQoLC1FUVISioiKUlZVBFEUAwPbt2xEaGuqRY4uiiJkzZ6Kqqgpz587FggUL3IpTXFyMPXv2AABeeumldpyhd128eBGnTp1Cfn4+Ll68iJqaGuj1egQFBWHgwIEYPXo0EhISEBgY6O2p3lMCAwMxZ84cbNiwAR9++CFGjRqFLl26eHtaRETUBiw6iYg6sJSUFBQXF3vl2IWFhaiqqgIAqNVqt+N8/PHH0Ov1GDVqFIYMGdJe0/OqlJQUnDlzxmZbbW0tamtrkZOTg61btyI1NRUjR468uxO8x82cORM7duxAZWUldu7ciblz53p7SkRE1Aa8vJaIqAOTzmgCxjNEw4cPxwMPPHBXjv39998DAHr27InBgwe7FePs2bPIzc0FgPuqsJCK8aCgICQmJiI1NRUfffQRNmzYgLfffhujR48GYCxAU1NTkZeX583p3nP8/f0xY8YMAEBGRgZu3brl5RkREVFb8EwnEVEHlpiYiODgYERFRSE8PByCICAlJQW1tbUeP7ZUdI4ZMwaCILgV4/PPPwcAhIaGYtiwYe02N28LDw/HvHnzMHHiRHTu3NmsLSoqCuPGjcO2bdvwySefQKvVYu3atdiyZYuXZntvio+Px8aNG3Hz5k385z//waxZs7w9JSIichPPdBIRdWAzZ87EpEmTEBER4Xbh546rV6+itLQUgPuX1lZVVSE7OxsAMHny5Ls6f09bs2YNnnnmGauCU2nu3LmIjIwEAFy+fBklJSV3a3odQmhoKIYOHQoA2Ldvn5dnQ0REbcEznURE5DLpqaLSJb3uOHjwIAwGAwBgwoQJrRqj0+lw6NAh/PDDDygsLERdXR30ej2Cg4MxYMAAxMbGYtKkSejRo4fZuLi4OABAQkICUlNTceXKFezcuRM5OTmorq5GQEAABg0ahN///veIjo6Wx92+fRv79+9HVlYWrl27Bo1Gg7CwMDz99NOYNWtWmx9w8/jjj8v35F69ehUDBw50O9bly5exd+9e5OXl4fr169BoNAgMDERQUBBCQ0MRExODsWPHok+fPm7F1+l0OHDgAA4fPoyLFy+ivr4egiCgW7duCA4OxuDBgxEbG4sxY8bA19fXbKxl/i9fvozdu3cjNzcX1dXVaG5uxrvvvmv1BcaECROQl5eH0tJSFBYW4pFHHnEvOURE5FUsOomIyGXSpbWjR49Gp07u/a/k+PHjAIz3Pfbt29dp/wsXLuDNN9/EtWvXrNqqqqpQVVWFkydPoqSkBKmpqXbjHDlyBO+99x40Go287/bt2zhx4gROnjyJpUuXYurUqaiurkZqaioKCwvNxl+6dAmffvopTpw4gbVr17ap8NTpdPK2j4/7Fx/t3bsX6enp0Ov1Zvvr6+tRX1+Pa9euIScnByUlJVi+fLnL8evq6rBkyRKbD62Scl9cXIx9+/YhIyMD4eHhdmPt378fa9euhVardXpc5YOljh8/zqKTiKiDYtFJREQuqa6uxvnz5wG4f2mtVqvFuXPnAACDBw92emltcXExFi9ejObmZgDA8OHDER8fj759+8LX1xc1NTUoKChwuq5jSUkJDh06hJCQELz00kvysX/88Ud89tln0Gg0WL9+PaKjo/HOO+/gwoULmD59OsaOHYvg4GCUlZVhy5YtKCkpwdmzZ5GRkYE//vGPbuUAAH766Sd5u3///m7FuHjxolxwduvWDVOnTkV0dDSCg4Oh1+tRU1ODoqIinDhxwu1LmNPT0+WCMyYmBvHx8QgNDUVAQACamppQWlqKvLw8+XJpe4qKinDw4EF069YNs2bNwpAhQ+Dr64vLly+jd+/eVv379+8Pf39/NDc346effkJycrJb8yciIu9i0UlERC754YcfIIoiOnfujFGjRrkVo6SkRD7LFxUV5bCvTqfDm2++KRecr7zyivxkU6Unn3wSL774IiorK+3GKi4uRmRkJNLT0xEUFCTv/81vfoPw8HCkpaVBp9Nh8eLFaGhowJo1axAbGyv3GzRoEEaMGIF58+ahuroae/bswbx586BSqVx6/4DxEuVLly4BMBbeERERLscAgMOHD8tnONevXy/fJ6qkVqvx4osvor6+3uX4t2/flot5tVqNd955x6p4jY6OxrRp09Dc3OzwjO2lS5cQHh6Ojz76yOwpy/aefqxSqTBo0CDk5eXhl19+gcFgaNMZYSIi8g7+5iYiIpdIl9bGxsbC39/frRjKS2SdLfFy8OBBlJWVATA+rddWwanUq1cvh+2vv/66WcEpGTduHHr27AkAuHHjBpKSkswKTklgYCCeeeYZud/ly5cdHs+W6upqrFu3DgAgCAL+/Oc/uxxDIj2pODAw0GbBqdS9e3eX49+8eVP+giA6Otrh2VJ/f3+nlxu/9tprLi3rI/XVaDSorq5u9TgiIrp3sOgkIqJWa2xsxOnTpwG4f2ktANTU1Mjb3bp1c9hXKnIB4Pnnn3f7mIDxck17hZkgCGZt8fHxduMo+5WXl7s0B41Gg9TUVLlYtHx4kaukQrmxsRGHDx92O4493bt3l5/C+91337VpzcyePXvaLOQdUf58KH9uiIio42DRSURErZadnQ2dTgeVSoUxY8a4Hef27dvytq2zjkq//PILAOMZr9Y8cMgRZ+OVc3H0lFdlP1eKsDt37uCNN96QH040duxYvPjii60eb0t8fLx8djEtLQ2LFi3Ctm3bcPbsWfmS5Lbw9fVFQkICAKCgoACzZ8/GmjVr8N1337lccLvzdF5l0al8+BMREXUcvKeTiIhaTTrr+NhjjyE4ONjtOMp7IJ09xbSurg5Ayxm9tvDz83PYrrx01NGlw8r7CqVlX5zR6XRYvnw5Tp06BQAYOXIkVqxY4db9oEphYWFYvXo13nvvPVRVVSE/Px/5+fkAjHl+5JFHEBcXhylTpjgt8O15+eWXodVqkZWVhYaGBnz11Vf46quvABi/DBg5ciQSExOdnrF1dlbbFuUXFO4+KZmIiLyLZzqJiKhVtFotTp48CaBtl9YCxvsPJQ0NDW2K1RHodDqkpaXJy8TExsbi3XfflS9bbauYmBh8/vnneOutt5CYmCgvWaLX63Hu3Dl8/PHHeP755+WC11VdunRBamoqtm7dij/96U94/PHH5aK8trYW33zzDVJSUvDGG2+YFYmW3HkIkPLhR8qfGyIi6jj4lSEREbVKbm6ufLlmW4tO5fIYzorO4OBgVFZWdtiHyEgFp3SW+PHHH8eqVavatL6nLZ07d8b48eMxfvx4AMYzxD/++COysrJw4sQJNDQ0YPny5cjIyECPHj3cOkZERAReeOEFvPDCC9Dr9SguLsbx48exd+9e3LhxA8eOHcOGDRuwePHidntfN2/elLedPSSKiIjuTTzTSURErSIVTZGRkQgNDW1TLOWalFeuXHHYV1pSpaamxmnfe41lwTl8+HCsXr263QtOW4KDgzFx4kS8//77mD59OgCgubkZP/zwQ7vEly7dTU5Oxt///nf50uWDBw+2S3xJaWkpACA0NBRdu3Zt19hERHR3sOgkIiKnDAYD/vvf/wIwPvymrXr16oUHH3wQAHD+/HmHfePi4uTtjIyMNh/7btHpdFixYoVccEZHR+Ovf/2r0/tKPWHkyJHytnSPbHsKDQ2V1xl1Zy1Qe+rq6uTlch599NF2i0tERHcXi04iInIqPz9fLlaURWBbSIVQaWkpmpqa7PabMGGCXNBkZmZi165dDuNWVla2y/zaQqfT4e2338axY8cAeLbgPHr0qNNCUroXFwAeeughl+KXl5cjNzfXYZ/r16/LZyTDwsJciu9IQUGBvP3EE0+0W1wiIrq7eE8nEVEHdu3aNflJpRJp/UcAOHLkiNlTZv39/TFu3DiXjyOdrQsLC3Nr2Qtbxo8fj8zMTBgMBuTm5uKpp56y2a9Tp0546623sGjRIjQ3N+ODDz7AsWPHMHnyZPTt2xe+vr6oqalBYWEhjhw5gqioKKSmprbLHN21cuVKHDlyBICxyFu4cCGuX7/ucExISAhCQkJcPtauXbuwcuVKxMTEICYmBv369UP37t1x584dVFZW4uDBg/JZ6t69e7u81E1lZSVee+01hIWFYcyYMRg8eDB69eqFLl26oL6+HgUFBdizZ4/8FOIZM2a4/B7sycnJAWC8X3X06NHtFpeIiO4uFp1ERB1Yfn4+Vq1aZbf9448/Nnvdu3fvNhWd7XFprSQ2NhY9e/ZEVVUVsrKy7BadAPDwww/jww8/xJtvvony8nKcPn0ap0+fttlXugfUmw4fPixvl5WVYeHChU7HzJ8/H8nJyW4dT6vVIjs7G9nZ2Xb7PPTQQ1i1apXDpWAcKS8vx44dO+y2+/j44Pnnn8dvf/tbt+Jb0ul0+O677wAYz667u9wLERF5H4tOIiJy6MKFC/JZurY+tVZJpVIhKSkJn3zyCU6cOIG6ujqHa38OGjQIW7duRVZWFr7//nsUFxfL9w+GhIRg4MCBGDFiBCZNmtRuc+wI0tLScOrUKeTl5eHixYuora2VL7ft3r07Hn74YajVasTHx7u1RMvQoUPx0UcfITc3FwUFBaisrMSNGzfQ1NQEPz8/hIWFYejQoZgyZUq7nQUHIP9MAMDMmTPbLS4REd19giiKorcnQURE965NmzZh06ZNCAkJwe7du91aa9GexsZGzJkzBw0NDViwYAHmzp3bbrGpY1u2bBmys7MRExOD9evXe3s6RETUBnyQEBEROSRdWvvkk0+2a8EJAIGBgXKh+cUXX+DWrVvtGp86poKCAmRnZ0MQBLz00kveng4REbURi04iIrLrzp07UKvVmD9/PpKSkjxyjBkzZiA8PBz19fX48ssvPXIM6lg2bNgAAJg8eTIGDx7s5dkQEVFb8fJaIiLyuvPnzyM7OxuBgYGYPXu2t6dDXtTY2IgdO3ZAFEUkJSU5vM+XiIg6BhadRERERERE5DG8vJaIiIiIiIg8hkUnEREREREReQyLTiIiIiIiIvIYFp1ERERERETkMSw6iYiIiIiIyGNYdBIREREREZHHsOgkIiIiIiIij2HRSURERERERB7DopOIiIiIiIg8hkUnEREREREReQyLTiIiIiIiIvIYFp1ERERERETkMSw6iYiIiIiIyGNYdBIREREREZHHsOgkIiIiIiIij/l/ouIi+WzjC+0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC1t0lEQVR4nOzdd3gU1cIG8Hdmd9M7CQmE3qsIijQpAmJBRcVrp4j1ei9XxfLhtaJe7GL32gH1IjawINJBUHrvnYTekpCeLXO+PzY7bpLtO5udbN7f8+QhZGfOnJ1k55x3zpkZSQghQERERERERBQCcrgrQERERERERJGLoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhChqGTiIiIiIiIQoahk4iIiIiIiEKGoZOIiIiIiIhCRpPQeejQIUiSBEmSMHbsWC2KrJcGDRqk7kciInfGjh2rHisOHToU7uqopk6dqtZr6tSp4a4OaUxRFFxwwQWQJAnjx48Pd3UohJYuXap+lp999tlwV4dIFyI579hsNrRv3x6SJOHxxx8PyTZqbaRz6tSpePbZZ+vVwWv27Nnqey4oKAh3daiS1WrFwoULMXHiRAwePBiNGjVCdHQ0EhIS0Lp1a9x8882YPXs2bDabX+Vu27YN48ePR4cOHZCQkIDk5GR07doVEydORE5OTojeDRHVJy1atFA7Pd6+Bg0apOm2P/roI2zYsAExMTEeOyWHDh3C999/j8cffxzDhg1DgwYNgq6TlsfXnJwcTJw4EV27dkVycjISEhLQoUMHjB8/Htu3b/errNOnT+P555/HBRdcgLS0NMTFxaF169YYN24cVq1a5VdZvqovbc3VV1+t/t18+umnfq+fm5sLg8EASZKQlpaG8vJyv8s4e/Ys5s+fj8mTJ2PkyJFo3rx5lc+Yr5zDii9fvvSVhRCYM2cObr31VrRt2xYJCQkwmUxIT09H37598e9//xv79+/3+z075OfnIysrq0q9tDzJWVpaio8//hjDhw9HkyZNEBMTg5iYGDRu3BjDhg3DW2+95XPfuby8HB988AEuv/xyZGVlITo6GhkZGejVqxcmT56Ms2fPalbvcBs/frz6+3jqqaf8Xr+0tBTJycmQJAlGoxHHjh0DABgMBjz55JMAgDfeeAP79u3TtN4AAKGBgwcPCgACgBgzZozLZQYOHKguU1+MGTNGfc8HDx70unx93Ee1bfHixSItLU3dz56+evbsKfbt2+dTua+++qowmUxuy0pMTBQzZswI8buj+sLfY0tt+fzzz9V6ff755+GuTkRq3ry5T8cvAGLgwIGabbekpERkZWUJAOJf//qX2+Xefvttzeuk5fH1yy+/FAkJCW7LioqKEm+88YZPZS1YsEA0bNjQbVmSJIlHHnnE7/frSW21NUuWLFHLfOaZZ4KveAC+//57tQ4XX3yx3+s/99xz6vr333+/3+tv2bLF62fMV879ZF++vO3z06dPi0GDBnktJyoqSrz88st+v3chhBg7dmyN8rRqb9auXStatmzptf4NGzYU8+bN81jWunXrRIsWLbyW89tvvwVdb1/yTqitX79erUOzZs2Eoih+rT99+nR1/SuvvLLKa1arVbRr104AEDfffLOW1RZCCGGEBlq0aAEhhBZF1WtLly4NdxUi3tGjR5GXlwcASEtLw9ChQ9G7d280atQIFosFa9aswfTp01FYWIi1a9fikksuwZo1a5CVleW2zP/+97949NFHAQAmkwmjRo3CwIEDYbFYMG/ePHz33XcoKirCqFGjkJKSgssvv7xW3itFrqlTp3L6aj2XkZGBjz76yOMy6enpmm3v/fffx4kTJ2AwGPDYY4+5Xa76DJHY2Fi0bdsWW7ZsCWi7Wh5f58yZgzFjxsBms0GSJNxwww247LLLYDKZsGzZMnzxxRcwm82YMGECEhMTcdddd7kta/369RgxYgRKS0sBAJdeeilGjhyJhIQErFmzBp9++ilKSkrw2muvITo6Gi+88EJA7z9U+6IuuPrqq5Geno4zZ85gxYoV2L9/P1q3bu3z+tOmTVO/v+OOO/zefvW/ZYPBgA4dOuDAgQMoKyvzuzyHSy65BP/61788LtOhQwe3r1mtVlxxxRVYt24dACAmJgajR49Gt27dkJqaisOHD+Pnn3/GihUrYDab8X//939ISEjA/fff73MdFyxYgKlTp0KWZURFRQU0SuxOTk4Ohg4dinPnzgEAsrKyMHbsWLRt2xZGoxEHDhzA9OnTcfDgQZw6dQpXX301Vq9ejfPPP79GWdu3b8fgwYNRWFgIAOjcuTNGjRqFli1boqCgAHPnzsWPP/6IU6dO4brrrsPChQvRt29fzd5LOPTo0QPnnXcetmzZgtzcXCxevBhDhgzxeX3nvkP1z4Xj+H7XXXfhm2++wVNPPYVOnTppVfXaG1Krj6N4eh2NqM+++OIL0bVrV/G///1PlJeXu1zmyJEjonPnzurvbvTo0W7LO3bsmIiLixMAhNFoFAsWLKixjPPoT9OmTUVZWZlm74dITzjSGXqOkc7mzZvX2jYtFoto2rSpACCGDRvmcdlZs2aJf/zjH+Kzzz4TmzdvFlartcrogD8jnVoeX0tKSkTjxo3VZadOnVpjmfnz5wuj0SgAiISEBHHixAmXZSmKInr06KGW9eyzz9ZYZtOmTSIpKUkAELIsiy1btvj8vl2p7bZGDyOdQgjxwAMPqPV46qmnfF7v999/V9fr0qVLQNvet2+fGD16tHjrrbfEH3/8IUpKSoQQVWcb+ErLETLnkaqmTZuKQ4cOuVzuo48+UpdLT08XFovFp/JLSkrUUcjx48dXeb9a9GXHjRunlnfZZZeJ0tLSGstYLBYxevRodbkRI0a4LKtXr17qMrfffrvL9/jdd98JWZYFANG+fXuf94MrehjpFEKIKVOmqPUYNWqUz+vl5OQISZIEANGgQQNRUVFRY5lz586JmJgYAUDcfffdWlZbMHSGEEOn/uTn5/s0FWHr1q3q7y42NlZtbKp78MEH1eUeffRRt+X97W9/U5d79913A64/kZ4xdIZeOELnrFmz1N/r9OnT/V4/0NCp5fH1zTffVJf529/+5rasRx99VF3O3dTY2bNnq8v06tXLbZvy3nvvqcvdcMMNHt6pd7Xd1ugldG7atEmtR/PmzX2eSugcbF5//XVN6xTu0HnbbbepZb333nsel73gggvUZX098fHQQw8JACI7O1sUFhZqHjqzs7PV8rZv3+52ufz8fPUkUFpaWo3XV61apZaTnZ3t8STL/fffry77ySefBFx3vYTOU6dOqdPs4+PjRVFRkU/rOU85Hz9+vNvlHMeR2NhYUVhYqFW1tQmdnn4JzmHT05e7g5rNZhMzZ84UN954o2jRooWIjY0VCQkJon379uK+++7z+iF65pln1G0sWbJECCHEwoULxc033yxatGghoqOja3yQLBaL+O2338SECRNEv379REZGhjCZTCIhIUG0bdtWjBkzRixbtsztNp3DpqcvT/vKm1WrVom7775btGvXTiQkJIi4uDjRqlUrMXr0aLFo0SKv61fvABQXF4tXX31VXHDBBSIlJUXExcWJTp06iYkTJ4q8vDyv5UWiDh06qPtp8+bNNV5XFEU9eEqSJHJzc92WtXz5crWs/v37h7LaNfz555/ivvvuEx07dhTJyckiOjpaNG3aVNx4443il19+8biuq45HTk6OmDBhgmjfvr2Ii4sTycnJok+fPuK9997z+QxiUVGRmDJlihg6dKho1KiRiIqKEqmpqeLCCy8UTz31lDh16pTH9at/VqxWq/j888/F0KFDRePGjYXBYHDZKT9x4oR49NFHRceOHUVcXJxITU0VPXv2FK+99lqNs9jV1587d65PB2tn48ePV9f59ddffVrHF95OaIXq9/bzzz+Lq666SmRmZoro6GjRvHlzceutt4o///xTCOFf6KyoqBCffPKJuPrqq0WTJk1EdHS0SE5OFl27dhUTJkxw27nZtWuXOuKTlJQkDhw44HYbeXl56gidLMsej9t1RThC5/XXX692QHzt3DgLJHRqfXzt06ePusyKFSvclpWbm6uOBDRr1szlMrfccota1pdffum2rJKSEnW0MzY2VhQXF7td1pNwtDW+hs59+/aJVq1aqXVzdz3s3LlzxZgxY0SbNm1EQkKCiI2NFa1atRJjxowRy5cv91iX7t27q3XxpX9TUlIiEhMTBWAfFT558qTXdfwR7tB56aWXqmXNnz/f47LOf6srV670Wvbq1avVUcEffvhBCCE0D53O1ySbzWaPyzZq1EgAENHR0TVemzx5slrOgw8+6LEc54A6ePDggOvu6+/x1KlT4sILL1SXfeihh1yeMAmmf3bdddep5X/66ac+1b9169bqOhs2bHC7nPOJtc8++8ynsn2h69C5b98+cf7553tcT5Zlj1MunEPn4sWLxT/+8Q+X5Th/kHy5ONvxXl0NTYcydFosFnH33Xd7LfvGG290OWXBwbkDsH//ftGpUye3ZTVv3rxejtT27NlT3QerVq2q8brzaKi36Ts2m63KVCstzxy5U1xcLG666SavfyvDhw93W5/qHY+5c+eKlJQUt2VdeumlbqctO/z6668eb74B2G+G8eOPP7otw/mzcvbsWXHxxRe7/Lt1tnjxYpGamup2m127dhW5ubluO/U2m02dcpSamup16lpZWZm6vWbNmgmbzeZxeX/4GzqD/b1ZrVaPxzVZlsXLL7/sc+j05SYSUVFR4r///a/L9Z2njfXp00dYrVaXy91www3qck888YTHfVpX1HboLC8vV0P+gAEDAiojkNCp5fH13LlzapBMTk72+ll0vrzC1UhMgwYN1NdPnz7tsazhw4ery86ZM8fjsu6Eo63xJXRu2LBBZGZmCsAe7r744osay5w6dUoMHjzYazt05513ug0gzjen8nS5i4Pz9FN30zKDEe7Qefvtt6tleRvpdAQfg8Egzp4963FZs9ksunbtWmO/aR06mzRp4vHz5eA80nn++efXeN159PKDDz7wuM28vDx1WYPB4Hb2mje+/B4PHjyo3owHgHjxxRdrLKNF/+ynn35Sl/Pl2Ow85bxbt24ely0oKFCPmVp+hkIeOpcvXy5mzZpV5SA+a9asGl87d+6sst6+fftEenq6us7FF18sXnrpJTFjxgzx5ZdfioceeqhKB9LdQdE5dF5xxRUCgMjKyhITJ04UX375pZg6daq4//77xbFjx9R1evXqJRISEsSIESPEc889J6ZPny6++eYb8dZbb4l77rlHxMfHq2U+8MADNba5fv16MWvWLHHJJZeoy3344Yc13vP69eurrOdL6Lz55pvVZWJiYsS9994rpk2bJr788kvx4IMPqmf3APtceXdTURzLdO/eXXTo0EFIkiRGjBghPvjgAzFz5kzx4osvimbNmqnL1fboXLhVVFRU6aQfP368xjIzZszwqxFx/v2uXr06BLX+S3l5uejdu7e6vdatW4t///vf4osvvhBff/21eOGFF6ocFAcPHuyyI+bc8RgxYoSIi4sTsbGx4t577xVTp04VM2bMEA8//HCVz4Snk0DfffedMBgMAoAwmUxi5MiR4p133hHffPON+OSTT8Rtt92mngWVZdntWW3nfen4XHfr1k289NJL4uuvvxYfffSR+Oc//6kuv337drXj7Pi7f/3118XMmTPF22+/Lfr166cGGMeIgqtOvfOZVU8jHELYrx92LDtp0iSPy/rLn9Cpxe/NuXGPiooSd999t5g2bZr44osvxPjx49V9e+2116rLuQudf/75p7q8JEni8ssvF2+88YaYOXOmmDp1qrj33nur/K7clTNy5EiPdf/kk0/U13v37h3UdTx64ugAJiQkiCFDhqgzcdLT00XPnj3FY4895vNdt32xaNEidT8GeifWQEKnlsfXlStX+rV958/XzJkzq7x2/Phx9TVfgr9zHyTQu4iGo63xFjoXL16shtu4uDiXMznOnj1bZWSlW7duYtKkSeKrr74SM2bMEE888USVqZbu3tuZM2dEVFSUAHybSugccmfPnh3I2/co2NDZqlUrceGFF4rk5GQRFRUlGjVqJC699FLx6quvioKCAq9lffvtt2pZvl7TOXbsWK/lOqZeJiYmisOHD7t8v1qETufBH0/XdDp/Dl1dg/33v/9dfd2f0AlArF27NqC6ewudW7ZsUa8dNxgMLkcgteqfWSwW9aSPJEli//79HuvuPOX8zTff9PpeO3bsqLY17k7s+kuXj0yx2WzqRfrR0dHim2++cbnciRMn1JFQWZbFtm3baizjfMAH7OH13LlzHre/cOFCj6OEZ86cUUdWZFl2O71L60emfP311+rrmZmZLs8QHTp0qMoIgrtrOpz3SVRUlPj5559dvk/nsoIJSiUlJS5PNgTyVT2sh4JzYOjRo4fLZSZNmuSxUa7O+aJ4V2eEtVT9+h9XHW6z2VylTq4O2s4dD8A+Yrdnz54ay61evVo9I5mamupy1Cw3N1ftpDRr1szt1PjVq1eL5ORkAUA0adLE5dnv6jMoHnzwQY+jF84joffff7/LZasfK9xNz3WEYm+d1wEDBqgNj3MDrgV/Qmewvzfns6MpKSli3bp1NZbZtWuX+jgNT2GxsLBQne6akpIili5d6vL97d27Vz3pFR8f73I0KS8vTz1jbjAYqkzR2717txqok5KSvDbG3uzcuVOz45e3kTFvfHlkisFgEBMnTtSko+B8ouXbb78NqIxAQqeWx9dp06b5Fdqefvppdfnnn3++ymvLli3z67189tln6vJ33nmn1+VdCUdb4yl0fvfdd+qlSWlpaer0+uocJ6EkSXLbyS0qKhLDhg1TtzV37lyXyznPWvA03e/QoUPqCE3Dhg1DcrIp2NDp6Ss5ObnGiY7qFEWpMrUyJiZG3HPPPeL9998XM2bMEK+88kqVNu+6667zGtR37Nih/k7feustt+9Xi9B5+vRp0aZNG7XMrKws8fjjj4vPPvtMTJ8+XTzzzDNq31OW5RqfQQfnz8VDDz3kcZvO02sB7yeN3fE2yOYYrIiJiXF7wkOr/pkQQjzyyCPqMk8//bTbejtPOTeZTD61Q86PzHF1iVkgdBk6nZ/N9Pbbb3tcdvfu3erIiau7LDl3JOPj48XRo0d9ek/e7N+/322j5KB16HS+rsHT9WGrV69WD7rNmzd32fFw/vA999xzbsv6+OOPfVrOG3+fUeXpK9QXb+fl5anXEXjqaDkutgcg3nnnHa/l+rt8oI4dO6aeFb7++us9Lms2m9Xrcdq2bVvj9erh5ffff3dblvPNDVwt57i+0WAwiI0bN3qs16effqqW9dVXX9V43fmzcsEFF3gMnGvXrlWX7dKli8eOuHO57kYxnG/U4SrICWE/LjmWGT58uMf3Ggh/Q2cwv7cRI0aor7s62+zwyy+/VNmmq9D5+uuvq6//9NNPHt+j8wjbf/7zH5fLLF26VL3+qHnz5iI/P1+YzeYqN8/Q4gRP9RMSwXw57i0QqObNm4vGjRuLcePGibffflvMnDlTfPHFF+KZZ55Rp8Zpeay89dZb1fICvQNrIKFTy+PrW2+9pb728MMPey3L0/I//vij+trIkSO9luXv8q6Eo61xFzr/+9//qp+57Oxst9MjnZ8lOGHCBI/bysvLU080XnrppS6XmTNnjlqep6mEzkHE23YDFUzo7NKli3jwwQfFxx9/LL799lvx2WefiQceeEAdsXJ8ebuOzmq1in//+99VZrdV/+rRo4f45ZdfvN58yWazib59+woA4sILL6zRnmodOoWwj4LfcMMNav/d1deNN97osa+wcOFCddns7GyPl4hUv7Qu0Jtsucs7P/74o4iNjRWA/cSBu/sHaNk/E8I+i8tRnxYtWrj9XTufePO2XYeXX35Z03ZUCCFk6NAXX3wBAEhKSsLdd9/tcdl27drhoosuAgDMnz/f47IjR45E48aNNaljq1at1Gc3rl69WpMyPTl06BA2btwIAOjatSuuuOIKt8tedNFFGDx4MAD785DWr1/vdlmDwYB//vOfbl93lAMAO3bs8LfadY7NZsPNN9+M48ePAwCGDx+OG264weWyxcXF6vcxMTFey46NjVW/LyoqCrKm7n3zzTcwm80AgEceecTjsiaTCTfddBMAYO/evTh06JDbZbt3747+/fu7fd3T34oQAl999RUAYMiQIS6ft+XspptugtFof4ywt8/1P/7xD8iy+0PZjz/+WGVZg8HgdtkHHnjA47YA4L777lO//+STT1wu4/zze+65x2uZoRTM762iogJz584FAGRmZuL22293W87w4cPRsWNHj3VxHNvbtWuHq6++2uOygwcPVo/X7v4GBg4ciIkTJwKwH+vuu+8+PPnkk+ox77bbbvNY57royy+/xOHDh/Hpp59i/PjxuPHGG3H77bfj2WefxZYtW/D++++rn4dp06apn7tA5eTkqN+npaUFVZY/tDy+6rUsX+mlrXnuuedw3333QVEUtG/fHn/++afbZ/g5PuuSJOHhhx/2WG5qaiquvPJKAMDvv/+OioqKGstcdtll6vFg+fLlOHjwYI1lhBCYPn26+v9Ans0ZKg0aNMCGDRuwdetWTJkyBXfddRduuOEG3HHHHXjzzTdx8ODBKvW97777XL5HB4PBgEcffRRPP/00oqOjXS6zYcMGvPTSS1i5cqXHur3//vv4888/YTAY8NFHH3lsT7WSlpaGl19+2ePvaPbs2XjxxRfV/lh1gwYNQps2bQDYn8F+77331ni2KmDvA/z3v/+t8jPHcz218Nlnn+H6669HWVkZsrKysGzZMgwYMMDlslr3zzp16qRmoEOHDmHZsmUuy/L0bE53UlNT1e+d24FgGDUpRWPLly8HADRq1Ai//fab1+UdncicnByUlZVVOeA689Txqq6wsBBfffUVfv31V2zduhVnzpxBSUmJy2WPHDnic7mBWrNmjfr9sGHDvC4/bNgwLFq0CIA9FDv+KKtr165dlT+s6rKzs9Xv8/Pzfa1uDS1atIAQIuD1a8sDDzygdnCbNWtW5YNaVzg+P4D9b3P27Nkel3f+ve7cuRMtWrRwuVzv3r09luPpb2X79u3Iy8sDACQmJnqtEwAkJCSgoKAAO3fu9Lict8+14wHagP2h3J4MGjTIa70uueQStGvXDnv27MG0adPwwgsvwGQyqa9bLBb1oeSNGzfG8OHDvZYZSsH83jZv3qw2kAMHDvQY2AH7CQV3v69z585hy5YtAOwB1te/AQAe/wYmTZqERYsWYfXq1Zg5c6b685YtW+L999/3ug1fPPvss3j22Wc1KStYF198scfX//73vyM/Px9PPPEEAOCFF17AbbfdFvD2HJ9boHZDJ+mHoij45z//iffeew8A0LNnT/z6669IT093u46jHUpJSanSf3HHETQrKipw4MCBGiewDAYDRo8ejZdeeglCCEybNq3GZ3L58uXYv38/AODCCy9Ely5dfH6PoZaYmIju3bu7fT02Nhaffvopjh07hnnz5sFsNuOVV17BBx984HL53377DTfffDPOnTuHQYMG4fHHH0evXr0QGxuL3NxcfPvtt/jPf/6DFStWYMiQIfj6668xYsSIGuXk5ubi8ccfBwA8+OCDHuuopRdffBFPPvkkFEXBXXfdhfvuu089gbFjxw7897//xSeffIJvvvkGq1atwoIFC9CuXbsqZRgMBnzwwQe4/PLLYbPZMG3aNKxfvx6jRo1Cy5YtUVBQgN9++w2zZs2CJElo0aKFGty0CtYvv/yyeuKzdevWmD9/Plq1auV2+VD0z8aNG6d+xqZOnVqjH5OTk4OlS5cCALKysnD55Zd73KZDgwYNXNYjGLoLncXFxTh79iwAYPfu3bjuuuv8Wj8/P99t6HTuXHmyZMkS3HrrrThx4oRPy2t5xsQd5zM91T94rjgv4+4sEQCPjQaAKmfQysvLvW63LnviiSfURjUzMxMLFizwuH8cHWLAt31TVlamfp+YmBhETT1zPht24403+rWupwNLMH8rznX6/vvv8f3332tSJ8D75/rYsWPq954aA8B+Zi8lJQUFBQVul5EkCffccw8eeeQRnDx5Ej///DOuv/569fWffvoJp06dAmA/o+gtqIVaML83533nOKPsiadlDh8+DEVRANgbXufG1xtPfwNGoxH/+9//cP7556ujOo6fJSUl+byNSDJhwgS88sorOHfuHHbt2oUDBw54/dt3xxEGDAaD27Y1FLQ8vuq1LF+Fu615++23ce7cOQDA0KFDMWvWrCp1csVxzM/Pzw+oH+fK2LFj8dJLLwEApk+fjmeeeQaSJKmvO58kHjduXI3158+fj9LSUrfbvfbaa/2qp9YkScKzzz6LefPmAQDmzJnjcrnffvsNw4cPh6IouOGGGzBz5swqIapNmzZ4/PHHMWTIEAwYMADl5eUYNWoU9uzZo87Qc/j73/+O4uJiNG/eHJMmTQrdm3PyxBNPYPLkyQDsf1vjx4+v8voFF1yAjz/+GF27dsUDDzyA3Nxc3HbbbVi7dm2NsoYOHYqZM2di7NixKC4uxrZt2/B///d/VZaJiorCO++8g99++039u/Q02OKr2bNnqyeYu3Xrhnnz5iEzM9PjOqHon91888146KGHUFZWhu+++w7vvvtulc/ntGnT1EGf0aNHq7PIvHFuP52PKcHQ3fRax4EtUI6z8q740mDu3bsXw4cPVwNn+/bt8eCDD+K9997DjBkzMGvWLPUrIyMDAFwO52vNeYpMfHy81+Wd/+A8Ta+pjWkUdcELL7ygHgTT09OxcOFCr+E+JSVF/f7MmTNet+E4mVJ9Xa0F8xny9PkJ5m8lVHUCvH+uHTMUjEZjlRFJd3z5fI0dO1YNax9//HGV1xz/lyQJd955p9eyQi2Y35vztL64uDivy3vad8H8DVgsFo+vp6enVxmFa9WqFS644IKAt1fXxcTEVBnh3rVrV8BlOf7ObTabxw671rQ8vuq1LF+Fu62xWq3q9yUlJT7NWgrFMb99+/bo27cvAODgwYP4/fff1ddKS0vx3XffAbD//d9yyy011r/nnntw3XXXuf3Sg4suukht0w4fPuzyM/fwww9DURTIsoy33nrL7TH+oosuwtixYwHY+4HVZ245ZvMB9im2vrR9wTp69CheffVVAEDHjh09Xt41fvx4dcR73bp1WLVqlcvlRo4ciX379uGpp57ChRdeiJSUFERFRaF58+YYN24c1q1bh3vuuafK56J6+A6E8+eirKzMpywQis9FcnKy+vdbUlJS5aR+MFPOneuq1QlH3Y10OoelAQMGuJ2fHCovvviimuifeOIJPP/881XOpDnzdr2plpzPVrqb5uvMubMYylE1X5WWlnq9Ns9XzZo1Q48ePTQpCwBeeeUVPPXUUwDsZ78WLFjg07Qc51Dq6VpIB+c58b6MVgfK8RmSJAlWq1UXJxacP9dPP/10rZ1RBf4KQlarFRaLxWvw9OXz1aBBA9xwww346quvMH/+fOTm5qJZs2bIycnBggULANjPwLZs2TL4NxBGzr83XwKHp33nXNbo0aPVM8RauP/++6t8vvbs2YMnn3wSL7/8sibl79q1K6jg5uziiy/2OvqsBeepUZ5G7r1xDvN5eXk+nXzQgpbHV72W5atwtzUPPPAAdu7ciVmzZmHlypW47LLLMG/ePI99C8flEY7jolbuuOMO/PnnnwDsI5sDBw4EAHz33XfqCfZrr702pCd2Q0mWZaSmpqr90IKCgiqfuYMHD6rX3nfq1MnrfUqGDh2KDz/8EABqTHN23HsgKysLGzZswIYNG1yW4Rw+3n33XXXf3n333V5H9qqbP3++ehJxyJAhbvvXgL0PM3jwYPXyijVr1ri9XCQzMxPPPfccnnvuObflOd+zoGfPnn7V25UbbrgBSUlJeOedd7Bnzx5ccsklWLJkicffSaj6Z3fccQf+97//AbB/LsaMGQOg6pTz3r17o0OHDj6XGYpLK3QXOpOTk5GQkIDi4uJauVayuoULFwIAGjZsiOeee87tB6KoqKjKLyTUGjVqpH6/d+9er8s7L6PVzZOCcerUKc3OJI4ZM0azay2nTJmiTsVITk7GvHnzvN7kxsE5mHq6WRNgvybGcSMoWZa93nAlGNnZ2di0aROEEDh69CiaNm0asm35UyeH2v5cN27cWL2W8MCBA2jfvr3bZfPz833uoN9333346quvoCgKPvvsMzz77LP47LPP1Cmk4b6BkBacjx379u3zurynZUL1N/DVV1+pN8u54IILcObMGeTk5OC1117DZZddVuVGSYH6+uuvNTtRsmTJEp+uHQ6WVqNdLVq0wB9//AHA3glp0qRJsFXziZbH106dOkGWZSiKgk2bNqmjRO44Xwde/QRkVlYWGjRogLNnzyI3NxdnzpzxeBLBU1m+CndbYzKZMHPmTNx888344YcffAqe2dnZKCgowKlTp3w62eerG2+8EQ888IA6svnuu+8iPj4en3/+ubqMu9EcXwJ7uCmKUmUaZfXPrvMlD75cPpCcnKx+X/2koGPE+sSJE+qJd29ef/119furrrrK79CpZf39sWPHDnWWQOvWrav0qYPx9ttvQ5IkvP322z4Fz1D1zwYPHoxmzZohNzcXy5Ytw6FDh9CiRQufPhfuOGec5s2ba1LPWhsCcT7Ae5ua4bjr04EDB3zq6Gjp5MmTAOw3ofDUKC1cuFDtXLrjz3v2xvlGQI6RFE+cRxXd3USovnvvvfcwYcIEAPbR4Llz5/p19qtz585qB2z79u0eO9J//vmneu1vv379Qjr67DjzC3i/82tt6d69u9rALFq0yOtnR0sXXnih+v2SJUs8Luu42N4XF198MTp37gzAfvc6i8WCzz77DID9pJWrmzbUNd26dUNUVBQAYNmyZV6nDzluXuZKenq6eqOIVatWaXIt/MGDB3H//fcDsI9oz5gxA19++SUMBgMURcHo0aOrhK/6oqKiospUtGBGu5wDz+7du4Oqlz+0PL4mJSWpIyTnzp1zO00PsE9pdIyINGvWzOXdWS+77DIA9nbd0zG2tLRUvXY5Nja2yrHZH3poaxzBc+TIkQCgBk93n2PHey0vL68yDTZYSUlJah2Ki4vx/fffV7lrZ5MmTTB06FDNtlfb1q5dq45yZmdn15hZ4BzUDh8+7LU851Fm59kP4RKu+juHL60ve3nrrbfUO9/v2bMHgwYNqhKunYWqfybLsjq66ZhSW1JSok45j42NVe+E6yvnG/idd9552tRTk1J84Dy1ytvZCseOA+xT8WqT4wN+4MABt0HRZrOp1/954s979qZFixbqlNLNmzd7DJ7r1q3D4sWLAdjPTujh2ibH3Wu1+NJilPPjjz9WL16Pj4/Hr7/+ij59+vhVhiRJ+Nvf/gbA/iF/55133C779ttvq9/7+8H3180336wGhZdffjnovz0tGAwG9Q6aOTk5bh81EgrO4e+9997zGJzeeustv8q+9957AdgbzwcffFDtDI4ZM0azM/vhFB0drT7K4OTJk+r0HVfmzp3r9U7DjmN7aWmpekOQQNlsNtx2221qp/ftt99G27ZtcfHFF+Pf//43APv1Q3fddVdQ2wHsd6/V6vhVG6Ocb7zxhjolrm3btj7dBMqdXr16qd/XxuPBHLQ+vjr/3NPn/J133lHbfnc3+nAu6+2333bbV5g6dar69zl8+PCAr5nTS1tjNBrx9ddfq48RW7lyJS6//HKXwXP06NHq95MmTdL03hfOIzZTp06tcqOUMWPG6OKSkkAIIfDMM8+o/3cce521adNGfWzO4cOH1anG7nz99dfq984nYAH7SVZfjlnOo1wHDx5Uf+7rrDBnziex5syZ4/GeI4WFheoju1zV31e7du1SPzMpKSmatAnVvfnmm3jwwQcB2GcaugueoeyfjR07Vp2dOX36dHz77bfqpXbXX399lVFjXziO94mJiW4fjeS3oJ7yWcndw1Kd/etf/1KXcffQVAebzSZ69uypLv/AAw+IiooKt8uXlpaKzz//XMyYMaPGa84P9fblodyXXnqpuvwbb7xR43Wz2SzuuOOOKg+ZdfcQ+TfeeENdZtq0aV637fxgeldmzpypvt6oUSOxc+fOGsvk5OSI1q1be30AruN1Xx7U7c+ydcG0adOEJEkCgIiLiwvqYe1Hjx4VcXFxAoAwGo1i4cKFNZb5/PPP1X3YtGlTUVZWFkTtffPwww+r27zkkkvE8ePH3S5rs9nEggULxPPPP1/jNXcPCHfF27KHDx8WKSkpAoCIjo72+pk4efKkeO6558TmzZtrvObts1LdxRdfrC5///3313j4tRBVjxWePtfOCgoK1N+/89eePXt8qlegxowZ4/Fh3Vr+3pYvX66+npqa6vJh3Xv27BGNGjWqsg8+//zzGssVFxerDxqXJEm88sorLn8XDgUFBeKtt94SCxYsqPHaU089pW7rhhtuqPKaxWIRffr0UV//8MMPPe6DuuKFF14QO3bs8LjMBx98UOWB61OnTg1qm+Xl5SI+Pl4AEP379w+oDOc+gj/tiJbH15KSEtG4cWOP+2XBggXCaDQKACIhIUGcOHHCZVmKoogePXqoZU2aNKnGMps3bxbJyckCgJBlWWzZssXt+3T+3Lj6PGu9L3zh6bhgsVjEDTfcoL7eu3dvce7cuRpljBw5Ul3mpptucrmMc5nff/+92z6LM0VRRIsWLdTjSGZmprqdvXv3+v1e/eU4hvna/hQVFYknnnhCnD592u0yZWVlYty4cWq5JpPJ7Xu56aab1OXatGkjcnJyXC73n//8R10uOjpaHD582Kf6Vuf8ft39fbpa1lXfymw2iyZNmqjLjBgxQpSWltZYrrS0VFxzzTXqcl26dBGKotRY7uTJkx6PievXrxdNmzbV7HjoLe88+OCD6utt27YVR44cqbGMVv0zV5z7Rs5tsqvjhScFBQVqP/naa6/1a11Pau2aziFDhqhn4O6880489NBDaN68ufo4gTZt2qhnY2VZxvfff48+ffrg6NGjeOutt/DNN9/gb3/7G7p164bk5GQUFxcjNzcX69atw6JFi1BSUoLnn38+6HqOHz9eHUWcMGECli5dissuuwwNGjTA3r17MX36dOzduxeXXHIJ9u7d63Gay5AhQ9TvH3vsMZw+fRrt27dXb1ecnZ2Nrl27+ly3G2+8EbNmzcLXX3+N48ePo0ePHhg7diz69OkDg8GAdevW4dNPP1XPOg4bNkydekZ2c+fOxbhx49SzouPGjUNBQYHXZyX16NEDzZo1q/Hzxo0b4/XXX8ff//53WK1WXHHFFRg9ejQGDhwIq9WKuXPnqtMbjEYjPvroI48P93a+hvjgwYNun5npzYsvvohNmzZh0aJFWLJkCVq1aoWRI0eiT58+yMjIgNlsxokTJ9RR8xMnTmDIkCF48sknA9qeL5o0aYKvv/4a11xzDSoqKjBmzBi88cYbuOaaa9C2bVvExsbi3Llz2LNnD1atWoU//vgDNpvN67M1ffHhhx+iZ8+eKC0txfvvv4+VK1fi9ttvR5MmTXDy5EnMnDkTf/zxB/r06YPc3FwcPXrUp7PlycnJuOmmm6pM3Rk0aBDatm0bdJ314uKLL8b999+P999/H/n5+ejduzfGjBmDiy++GLIsY82aNfj0009RUlKCa6+91uNnKT4+HrNnz8bAgQNRWFiIxx57DB9++CFGjhyJTp06ISEhAYWFhThw4ADWrFmDpUuXwmw2qw+ad1ixYoU626RJkyb46KOPqrxuNBrx1Vdf4fzzz0dhYSEeeughDBw40OP1vHXBt99+iyeffBLdu3fHwIED0bFjR6SmpsJsNmPfvn344Ycf1OuXAeD222+vMnMoENHR0bj88svx/fffY926dSguLvb6uIzqxxHnG5EcPHiwxus9evSo8tghBy2Pr3Fxcfjoo48wYsQI2Gw23HHHHZgzZw6uuOIKGI1GLFu2DNOnT1fvSDllyhS316tJkoSPPvoIAwYMQGlpKZ555hn88ccfuOGGGxAfH481a9bgk08+UUcxHn/8cb/aele0bmuCYTQaMWPGDEiShG+//RarVq1Sr/F0nj752WefYc+ePdi6dStmzpyJefPm4cYbb8SFF16o3izn6NGj2LhxIxYsWID8/Hyfpj5KkoSxY8eqMxAcl0X1798/qFF9Vz799FMcPHiwys+cr/uv/recmpqKhx9+uMrPrFYr/vOf/+Dll1/GoEGD0Lt3b7Rq1QpJSUkoKirC5s2b8fXXX1d5TN/777/v9r1MnjwZCxYsQF5eHvbt24cuXbrg9ttvR+/evas8p9N5ZsIzzzxTa9dje2IymfD2229j5MiREELgxx9/RMeOHTF69Gj1+uOdO3di+vTp6tRak8mEd9991+U9VnJzc9GzZ09cdNFFGDJkCDp06IDY2FicOHECCxcuxJw5c9RR9sceeyzo46E3U6ZMgSRJmDJlipoVlixZUuWeBqHsn91xxx3qVHPH4xKbN2/u970NHKPggMaPEtIiufoy0mm1WquMNlT/cnWG/dixY2LIkCFu13H+MhgM4uOPP65Rhr8jnUII8fjjj3vcVr9+/cSpU6fUMzqeRkRuueUWt+VU31e+jN5YLBZx1113ed0fN9xwg8uzRw6O5erbSGf10Sxfv1yN2jh79dVXhclkcrt+YmKiy5H46pzX8XZG0ZuKigrxz3/+s8qoh6ev0aNH1yhDyxEzh5UrV4pWrVr5VKeEhASXIwT+jnQKIcTixYvVkVZXX126dBG5ubkiOztbABDnnXeeT+WuXr26SjlfffWVz3UKVG2OdAphP36PGjXK7b6TZVm88sorVUZaPH1mdu3aJbp37+7T30B0dLSYO3euum5+fr567JVl2eNx/csvv1TL6d69u8cZM3VBt27dfNpnRqNRPPnkk8JisWiy3dmzZ6tlT58+3evy/h5f3fUbHLQ6vgph/5tISEhwW1ZUVJTLWU6uLFiwQGRkZLgtS5Ik8fDDD7scoXG3v7wd97XcF574clywWCzixhtvVJfr1atXjdHMc+fOVRmZ8/b11FNP+VS/gwcPqiMxjq/PPvss2Lddg3Nb48uXq/5gfn6+z+s3aNBAfPvtt17rtX79etG2bVufjgUvvPBCUPtAy5FOhy+//FIkJSV5rX96erqYM2eO23LWrl3rtYzExETx9ttvB/juq/Il7wghxIQJE9Tl2rRpU2PEU4v+mSvFxcU1jm9PP/203+/T8bmOjY0VhYWFfq/vTq2FTiHs0wdeeukl0adPH5GamlplZ3vqGC1dulTce++9onPnziIlJUUYDAaRlJQkOnXqJG666SbxwQcfiGPHjrlcN5DQKYQQc+fOFcOHDxfp6enCZDKJRo0aicGDB4uPP/5Ybch9CZ1Wq1V88MEHYtCgQSI9PV2duuNqX/nTkV65cqW48847RZs2bUR8fLyIjY0VLVu2FLfffrtYtGiR1/Ud22Ho9O3LW+gUQoitW7eKf/zjH6Jdu3YiPj5eJCYmii5duoj/+7//E4cOHfK6fklJSZWOz9mzZzV4x0Ls3btXTJw4UfTq1UtkZGQIo9Eo4uLiRMuWLcWVV14pJk+e7HbqVyhCpxD2zsqXX34pbrzxRtGyZUuRkJAgjEajSEtLExdeeKG4++67xcyZM0VxcbHL9QMJnUIIceLECfHII4+I9u3bi9jYWJGSkiIuvPBC8dprr4mSkhKhKIqIjY0VAMSgQYN8KlNRFHUaXVpamigvL/erToGo7dDp8PPPP4vhw4eLjIwMER0dLZo1ayZuueUW8eeffwohhM+hUwj7fvvxxx/FmDFjRLt27URSUpIwGAwiJSVFdOvWTYwePVpMnTpV5OXlVVnPuQM7ceJEj9sQQojbbrtNXf7hhx/2uryebdmyRbz77rvitttuE+eff75o0qSJiI2NFdHR0aJRo0ZiyJAh4rnnnnM5pSsYVqtVNGvWTAAQl156qdfl/T2+egudQgR/fHV26NAh8dhjj4nOnTuLxMREER8fL9q1ayf+8Y9/iG3btvlV1qlTp8SkSZNEjx49REpKioiJiRGtWrUSY8eOVT8X3jjvC19ONmq5L9zx9bhgtVqrfCZdBU8hhNiwYYN48MEHRffu3UWDBg2E0WgUCQkJom3btuLaa68Vb7zxhti/f79fdRw8eLC63fj4eFFUVOTv2/RKi9Bps9nEkiVLxOTJk8U111wjOnfuLDIzM4XJZBIJCQmiRYsW4rrrrhP//e9/3bZ5rpSVlYlp06aJ6667TrRo0ULExcUJo9EoGjRoIHr37i0mTpzo9z51JRShUwj71NiXX35ZDBkyRGRlZYno6Gj1WDZs2DAxZcoUkZ+f77GM4uJiMXXqVDFmzBjRpUsXtc+elZUl+vXrJ1566SWP01f95WveEaLqNFpXwVOI4Ppn7jhP05YkSRw4cMCv9c+dO6f2g+6++26/1vVGEsLNFfBEVKvmzZuHyy+/HADwr3/9y++b2lDwtm7dqt6lzdffwcKFC3HppZcCsD/P7s033wxlFYnCYsqUKZgwYQIMBgMOHTqki6l6RESkrc8++wx33nknJEnCtm3btLuJEGrx7rVE5JnjGbGJiYkhvbaS3Hv33XfV7329lvSDDz5Qv4+EZ3MSuXLfffchKysLNpsNr7zySrirQ0REGnM+vt90002aBk6AoZNINxyhc8KECcjIyAhzbSLP8uXLPT4f9L333lNvSJOdnY2rrrrKa5mbNm1Sb5wzdOhQzQ/QRHoRGxuLZ599FgDw0UcfuX0OHRER1U0zZszA7t27ERUVpcnNWavj9FoiHThz5gwaNmyI9PR07N+/X7MHetNf2rRpg/LyclxxxRXo3r07MjIyYLFYsH//fsyaNQsbN25Ul/3555/dhs7ffvsNiqJgz549eOWVV9Q7xK1YsQL9+vWrlfdCFA6KoqBnz57YsGED/vnPf3p8XiQREdUdNpsNnTt3xu7duzFx4kS8+OKLmm+DoZOI6oU2bdpg//79HpeJjY3Fxx9/jNtuu83tMq5u2+7r9Z/z589HaWmp98q6kJ6ejosvvjigdYmIiIjCiaGTiOqFVatW4fvvv8eqVatw9OhRnD17FqWlpUhNTUW7du0wdOhQ/P3vf3f7bD4HR+hMSEhAu3bt8Pe//x3jxo3z6bmeLVq0UJ895q+BAwdi6dKlAa1LREREFE7GcFeAiKg29O7dG7179w66HJ6nIyIiIvIPRzqJiIiIiIgoZHj3WiIiIiIiIgoZhk4iIiIiIiIKGYZOIiIiIiIiChneSIiIiOoMs9mM0tJSt19lZWWoqKiA2WxW/3X+qv4zq9UKm80Gm80GRVFc/uv43nELBEmS1LsVy7IMSZJqfMmyDIPBgKioKBiNRphMJhiNxir/d3wZjUZER0cjJiYGsbGxiImJcfm94/9xcXFISEhATEyMy0f4EBER6Q1DJxER1Sqz2YzCwkL1q6ioyOX3jv8XFRWpodJqtYa7+rphMBiQkJCAhIQEJCYmqt87fyUmJiI5ORkpKSlISUlBcnIykpOTYTSy+SciotrDu9cSEVHQKioqkJeXh/z8/Br/Vv9ZcXFx0NuLjo5GXFycy6/o6GjMm70ZEmQAMiDs/0rO31f+a/+SAAEAEiRI9v87voTz/x1Eze8lVz9XICAASfnr/5L9X/uX/TUBpXIZG4Rkw9CruqK8vBzl5eUoKyur8W9ZWRlsNltQ+y8xMVENos5fDRo0QIMGDZCeno709HSkpaXBZDIFtS0iIiKGTiIi8qisrAxnzpzBqVOncOrUKZw+fbrK16lTp3Du3Dm/yjQYDEhMTERSUpL6b1JSEhb+vB2SMEKCCRBGSMIESRgBYQRggCQM9n/r8S0JBAQAGyBZISQrBKzq93D6/+XXd0NhYSEKCgpQUFCAc+fOobCw0O9nzaakpCA9Pb1KGE1PT0fDhg2RmZmJrKwsxMXFhebNEhFRRGDoJCKq58rKynD8+HGXX6dOnUJRUZFP5URFRSE1NRWpqalIS0vD6mUHIYkoSCIKECb790rl/2GsHFWk2mQPrBYIyQIhmQHpr++FZEG/oa1x9uxZnD17FmfOnPF5OnNiYiKysrKQmZmpBlHH940aNUJycjKvPyUiqscYOomIIpwQAvn5+Th8+DAOHz6Mo0ePVgmWBQUFXsuIjY1Fw4YNkZGRgYYNG2L+7O2QlBhIItr+pUSDQTKyqAFVNkNIFZXBtAJX3dRNHeE+ceKETycl4uLikJ2djSZNmiA7O7vK9w0aNGAgJSKKcAydREQRoqysTA2WR44cQW5urvq9t+soExMT0ahRIzRq1Ah/LDgASYmFJGLsX0o0JN53jtwQsELI5RBSuT2cyuUYcHkbnDx5EidOnMDZs2c9rh8TE6MG0ezsbLRo0QLNmzdH8+bNER8fX0vvgoiIQomhk4iojikpKcGhQ4dw8OBBHDhwAIcOHUJOTg5Onz7tdh1JkpCVlYWmTZsiOzsbP3+9BbIjWCqxDJUUMgI2eyCVyyDkMgy/qQuOHj2Ko0eP4sSJE1AUxe26GRkZagB1hNEWLVogJSWl9t4AEREFjaGTiEinysvLkZOTg4MHD1YJmCdPnnS7TkpKCpo2bYqmTZti/qxdkJU4SCLOPhUWhlqsPZF3AkqVQHrVzV2Qm5uLQ4cOeRwhTU5ORosWLdC6dWu0adMGrVu3RsuWLRETE1OLtSciIl8xdBIR6UBBQQH27t1b5evw4cNu7zSanp6Oli1bYuMfJyAp8fZwqcTZ7/pKFAEELFDkUgi5FEIuwYUDspGTk4MTJ064/FzIsowmTZpUCaKtW7dGw4YNec0oEVGYMXQSEdUiIQROnTqFPXv2VAmYp06dcrl8cnIyWrVqhS2rT0FW4isDZjzDJdVbAjYIuRSKXAIhF+P8vpnYv38/8vPzXS6fmJiItm3bon379ujYsSPat2+PrKwsBlEiolrE0ElEFEKFhYXYuXMnduzYgZ07d2Lnzp1un2mZnZ2Ndu3aYflvOZCVBMhKAiQRXcs1JqqbhFQBRS6GIhdj0PBW2L9/P3Jzc2Gz2Wosm5ycjA4dOqB9+/bo0KEDOnTogPT09DDUmoiofmDoJCLSiNlsxr59+9SQuWPHDhw9erTGcgaDAS1atEDbtm2x6Md9kGyJ9oDJm/kQaUpAgZBLoMhFuPxv7bB7927s37/fZRBNT09H+/bt0blzZ3Tt2hUdOnRAdDRP+hARaYGhk4goQPn5+di6dSu2bNmCrVu3Yt++fbBYLDWWy87ORqdOnbD0l0OQbUmQlHje1IcoTOzTc+1BdOh1rbFr1y7k5OTUuIuuwWBAu3bt0KVLF/UrIyMjTLUmIqrbGDqJiHwghMCxY8ewZcsWNWTm5ubWWM4xbW/97ychK0n2kMnrL4l0TcAGRS6CYihEv2FNsHXrVuTl5dVYLjMzUw2g3bp1Q6tWrSDLchhqTERUtzB0EhG5oCgKDh48iE2bNqlB09UjHFq2bImuXbti7jd7IduS7c+9BG9QQlSXCQgIqRyKoRBX3dIe27Ztw/79+2uMhiYmJuL888/H+eefj+7duzOEEhG5wdBJRAT7SObRo0exYcMGrF+/Hhs3bkRBQUGVZYxGI9q3b4/dGwsh21LsIZOjmET1goAViqEIinwOPfpnYOvWrSgrK6uyDEMoEZFrDJ1EVG+dOXMGGzZsUIPmyZMnq7weExODrl27YuOKM5BtyZCVJF6LSUQAHDcpKoLNUIALBmRgy5YtNUJoUlISunfvjp49e6Jnz55o1KhRmGpLRBReDJ1EVG9UVFRg48aNWL16NdauXVvjmkyj0YhOnTphx9pCyLbUypDJUQoi8s6XENqkSRNcdNFF6NmzJ7p37464uLgw1ZaIqHYxdBJRxBJC4MiRI1i1ahVWr16NTZs2wWw2q69LkoR27dph/9ZSe8i0pXAkk4g08VcIzUennonYvn17lUe1GAwGdOnSRR0Fbd++PafiElHEYugkoohSVlaGjRs3YtWqVVizZg2OHTtW5fWMjAz07t0b8745WBkyeU0mEYWe/ZrQfFx5SxusXbu2xjN8U1JS0KdPH/Tp0wcXXXQRR0GJKKIwdBJRnXfmzBn88ccfWLFiBTZu3FhlNNNoNOK8887DlpXnYLA1gKTE8e6yRBR2ilQGxZCH3pdmYsOGDSgpKVFfM5lMOP/889G3b1/07duX14ISUZ3H0ElEdY4QAjk5OVixYgVWrFiBHTt2VHk9MzMTvXr1wm8zD0C2pUKCMUw1JSLyTkCBYjiHa8e0wx9//FFjFLRly5ZqAO3cuTOn4RJRncPQSUR1gs1mw44dO7B8+XKsWLECR44cqfJ6p06dsGdjOQy2dI5mElGdZX9GaClsxrPofFECtm3bVuVa0LS0NAwYMAADBw5Et27dYDTypBoR6R9DJxHpls1mw5YtW7BkyRIsW7YM+fn56msmkwk9evTAhmX59qAposNYUyKi0BCwwGbMw8CrGmPVqlUoLi5WX0tOTkb//v0xcOBA9OjRAyYTr1EnIn1i6CQiXVEUBVu3bsWSJUuwdOlS5OXlqa8lJCSgT58+WPbTMci2NE6bJaJ6xT4NNx+X3tAUK1aswLlz59TXEhIS0K9fPwwcOBA9e/ZEdDRPxBGRfjB0ElHYKYqC7du3Y/HixVi2bBnOnDmjvpaYmIj+/ftj4fdHK+82y2uZiIjsAbQAV97SEr///nuVE3Tx8fEYOHAghg4diu7du8Ng4KOgiCi8GDqJKGz279+PefPmYdGiRTh9+rT684SEBPTv3x+LfjhaeSMgBk0iIncEBBT5HK4Z3RrLli2rcjxNS0vDkCFDMHToUHTo0AGSxOvdiaj2MXQSUa06c+YMFi5ciPnz52Pfvn3qz+Pi4tC/f38sme2YOsugSUTkL0cAvfzmpli6dCkKCwvV15o0aYKhQ4fi0ksvRdOmTcNYSyKqbxg6iSjkysrKsHz5csyfPx/r1q2DoigA7M/Q7Nu3L1bNy6sMmpwCRkSkFfsU3Dz0v6ohVqxYgYqKCvW1Dh064IorrsDQoUORmJgYxloSUX3A0ElEISGEwKZNmzB37lwsW7YMZWVl6mtdunTB7nVmGKwNIYF3WyQiCjUBK2zGM+gxMAnr1q1TH8MSFRWFAQMG4IorrsAFF1zAZ4ASUUgwdBKRpvLy8jB37lz88ssvVR5w3qhRI5zOiYbBkglZxIWxhkRE9ZuQzLAZT6JpRwUHDhxQf56ZmYkrrrgCl19+ORo3bhzGGhJRpGHoJKKgKYqCdevW4eeff8aKFSvUM+ixsbEYOnQo5s08AllJhgTewIKISC8EBIRchCtubYqFCxdWeQZo9+7dMXz4cAwcOJCPXyGioDF0ElHATp8+jV9//RVz5szBiRMn1J936tQJezfYKqfP8lmaRER6J2CDzXgG3S6Ow/r16+HoHiYnJ+PKK6/EiBEjOPpJRAFj6CQivwghsGHDBvzwww/4448/1JsCJSQk4LLLLsMvX+RCVhLCXEsiIgqUIpXj1n92wJw5c3Dq1CkAgCRJ6NWrF6677jpcdNFFfPYnEfmFoZOIfFJWVob58+fjhx9+wMGDB9Wfd+vWDTtWm2GwZvDus0REEcR+99uz6DYgFmvXrlV/npWVhWuuuQZXXXUVUlJSwldBIqozGDqJyKOjR49i1qxZ+PXXX9XrfWJjY3HZZZdh7lfHIIv4MNeQiIhCTZFKce24Fvj1119RVFQEADCZTLjkkktw4403ol27dmGuIRHpGUMnEdUghMDatWvx/fffY9WqVeq1PdnZ2Th1IBYGSyNeq0lEVA/Zr/08hdbnA7t27VJ/3r17d9x0003o3bs3H7tCRDUwdBKRymq1YtGiRZgxY0aV2+j36tULG5eWQbal8Q60REQEAFDkQvS/JhVLlixR71retGlT3HjjjbjssssQExMT5hoSkV4wdBIRSktL8csvv+Cbb75RbxoRGxuLK6+8Er9MP8LnahIRkVuKVI7r72qBn3/+Wb0MIykpCSNGjMB1112H9PT0MNeQiMKNoZOoHjt79iy+//57zJ49W+0opKWlofB4CoyWxpBgCnMNiYiorhCwwmY6gYyWJTh27BgAwGg04vLLL8ett96KJk2ahLmGRBQuDJ1E9dDhw4fx9ddf47fffoPFYgEANGvWDMf3xMJgzYIEXo9DRESBERBQDGfQ/iIJW7duBQDIsozBgwfjtttuQ+vWrcNcQyKqbQydRPVITk4OvvjiCyxcuFB9vmaXLl2wZy0g29J5vSYREWnKJhegx+BorFq1Sv1Zv379MGrUKHTq1CmMNSOi2sTQSVQPHDx4ENOnT8fixYvVO9H27dsX6xaWwaCkhLdyREQU8RS5CH2HJ2Lp0qVqO3TBBRfgjjvuwHnnnRfm2hFRqDF0EkWw/fv3Y/r06VUa+f79+2PNvDLISmKYa0dERPWNIpViyN8aYN68eeodb3v27Ilx48ahc+fOYa4dEYUKQydRBMrNzcWnn36KJUuWqD8bOHAgVs0tYdgkIqKwU6RyXHZLBubMmaOGz969e2PcuHHo0KFDmGtHRFpj6CSKICdPnsTUqVPx22+/wWazQZIkDBo0CH/OKYasJARWqOMQIQVxvacWZRARkfaECP7YHEQZilSGIX9LqzLy2a9fP9x5551o06ZNcPUiIt1g6CSKAPn5+fjiiy/w448/qnej7devH9bNr4AsAhjZrH5YCLRDolU5zmUxuBIRacf5OK3FMTrAchSpFIOuT8GCBQugKAokScKwYcNw5513IisrK/B6EZEuMHQS1WGlpaWYMWMGvvnmG5SVlQEAunfvju0rAIOS7H/D7+5woEU5WgRXBk4iIu1pcYJQo+O+ghL0uyYBixcvBgCYTCZcf/31uP3225GcnOx/vYhIFxg6ieogm82GuXPn4pNPPkFeXh4AoEOHDjiwIQqyLfWvR5/40+B7OhT4Wo4WZbgrh4GTiCg0tDjhqPFJS0UuROf+wIYNGwAACQkJuO2223DDDTcgOjravzKJKOwYOonqmDVr1uD999/HgQMHAADZ2dk4vS8FstXFczZ9aey9HQJqqwxv5TB0EhGFjl5OPDqVISCgGPLQtGsp9u/fDwDIyMjAfffdh6FDh0Jiu0BUZzB0EtURBw8exPvvv4/Vq1cDABITE1F+uiEMlmxIkF2v5KlB9vWjH+oyfCmHHQsiotDy5Xge7LE8wDIEBGzGk0hrkY+TJ08CALp06YLx48ejY8eO3rdJRGHH0Emkc0VFRfjss88we/Zs2Gw2GI1GXHfddfj5s2OQYHK/oruG3d+PvKtytCjDn3IYOomIQsuf47oW7UsAJzQFbBj9cEd88cUX6n0MrrjiCtx9991IT0/3fdtEVOsYOol0SlEUzJs3D//973+Rn58PAOjfvz/WzK2ALOK8F1C9QQ/kox6KMvwth4GTiKh26OWkpJcyhFSBgSOTMG/ePABAbGwsRo0ahRtvvBFRUVH+bZ+IagVDJ5EO7d69G2+++Sa2b98OAGjWrBlO7EqBwZbmeyGOhjyYj7iWZQRaDkMnEVHtCPRYH+xxPsAyFLkQrXuWY8eOHQDsbeWECRPQo0ePwOpARCHD0EmkI0VFRfj444/x448/QgiB2NhYWPIbwWhp4v66TT0LNrQycBIR1a5gTzIG2630swzH9Z6J2afUu7kPGzYM999/P9LS/DhRS0QhxdBJpANCCCxbtgxvvvmm2mgOHToUK2aXQBL1+NbwDJ1ERLWrjnYLBSy4YnRDzJ49G0IIJCQk4N5778XVV18NWa6DJ22JIgxDJ1GYnTp1ClOmTMEff/wBAGjatClO7k6DwZYa5prpAEMnEVHtq8NdQ0UuRPPuxdizZw8AoGPHjnjsscfQunXrMNeMqH5j6CQKE5vNhtmzZ+Pjjz9GaWkpjEYjUJINo7kZJBjCXT19YOgkIqp9dbxrKCBgMx2FKe2Y2r6OGjUKt99+O0wmD3d9J6KQYegkCoPc3Fy8+OKL6o2COnfujH1r4iAr8WGumY4wcBIRhUeEdA2FVIELLzdgxYoVAIDWrVtj4sSJaN++fZhrRlT/MHQS1SJFUfDdd9/ho48+gtlsRlxcHCx52TBYGkMCQ1YVDJ1EROETId1D+42GTiMu6yjOnTsHg8GAW265BWPGjEF0dD2+ZwJRLWPoJKolx44dw4svvojNmzcDAC688EJsXWqELGLCXDMdYuAkIgqvCOseCsmMvtfEYPHixQCA5s2b48knn+SoJ1EtYegkCjEhBH766Se8//77KCsrQ2xsLKz5TTi66QlDJxFReEVo99BmPI2E7OPIy8uDwWDAnXfeiVtuuQUGA++lQBRKDJ1EIZSfn4/Jkydj9erVAIDzzjsPu/+MhSxiw1wzHWPgJCLShwjtIgpYcNFwA37//XcA9rb53//+Nxo3bhzmmhFFLoZOohBZs2YNJk+ejLy8PERFRUEUNoXB0oSjm94wdBIR6UMEdxHt13qegDEtF2VlZYiLi8MDDzyAyy+/HBLbISLNMXQSacxiseCTTz7BjBkzAAAtW7bEsW0NICsJYa5ZHcCGnohIXyK8m6hIZWjXpxRbt24FAAwZMgSPPvoo4uLiwlwzosgih7sCRJHk8OHD+Mc//qEGzmuvvRbHtzRh4CQiItIhWcRi759puPvuu2EwGLBo0SLcdddd2LdvX7irRhRRONJJpJGlS5fixRdfRFlZGRITE1FxqhkM1oxwV6vu4CgnEZH+1KNuok0+h+QWR3D69GlERUVh/PjxuOaaazjdlkgDDJ1EQbJarfjwww8xc+ZMAI6bBcXxUSj+YqNORKRP9airKGBB92EKVq5cCQAYOnQoHnnkEU63JQoSQydREM6ePYtnn31Wffam0dwUxoqWkPyduS4EQ1d9f/9ERHpVz7qKAgJW02GI+BzYbDY0a9YMkydPRrNmzcJdNaI6i6GTKECbN2/GM888g7y8PMTFxcF6tqX/02kdHz8GLu4DIiK9qqddRefptvHx8Xj66afRp0+fcFeLqE5i6CQKwI8//og333wTNpvNfnfarRmQhR9Tb6p/7Op74Krv75+ISM/qcVdRSGa061uMLVu2QJIkjBs3DqNGjYIs816cRP5g6CTyg9VqxXvvvYfvv/8egP3W6n/MNkOCwbcCXH3cGLi4D4iI9K4edxcFFFw+Kg2zZ88GAAwYMAD//ve/eZ0nkR8YOol8VFRUhGeffRZr164FABjLW8BobgZJ8uFsp6ePGQMX9wERkd7V9+6iELCajgNJB2GxWNCqVSu8/PLLyMzMDHfNiOoEhk4iHxw+fBiPP/44cnNzERMTAyWvlf36TV/CkrePGAMX9wERkd6xuwgIAcVQiPimOcjLy0N6ejpeeukltGvXLtw1I9I9Tkgn8mLr1q34+9//jtzcXGRkZECc6eTbDYOEYOAkIiKKILItCSU5bdGyZUucOXMG48ePx59//hnuahHpHkc6iTxYvnw5Jk2aBLPZjI4dO+LgmhRIIuqvBVyFRn8+UgyddtwPRET6xu5ilX0gYEWXwRVYt24dZFnGv/71L1x//fVhrByRvjF0Ernx448/YsqUKVAUBX379sWG3+SqNwyqHpQC+SgxbNlxPxAR6Ru7i3ZVgqeCIbckYc6cOQCAW2+9Fffeey8ktmlENTB0ElUjhMDnn3+OqVOnAgAM5iyYyttBQrVGxNGoBPoRYqP0F+4LIiJ9Y3fRrtp+EBCwRh2GNeYgAODqq6/GhAkTYDD4eFd7onqCoZPIiaIomDJlCn788UcAgLGiOYwVzWsGTi0EG7SEiJywFinvg4gokrHL6HYfWE3HYYvfB0VRcMkll+CJJ55AVFSUy2WJ6iOGTqJKNpsNL7/8Mn777TdIkgRjaRsYLY1Du9FAw1YkBU4gst4LEVGkioQuo+M9BNPuuNkPNuNpiOS9sFgs6NmzJ1544QXExsYGvh2iCMLQSQTAarXihRdewOLFi2EwGCAXtYPR2jD0G/a30XP+uEZSUIuk90JEFKkiocuoRTvqYT/YDHkwpO9DWVkZOnfujNdeew3x8fGBbYcogjB0Ur1nNpsxadIkLF++HEajEXJhO98eiRKsYAJnIOvrWSS9FyKiSBUpXcZg21Mv+0ExFCIqax+KiooYPIkqMXRSvWY2m/Hkk09i1apV9msvCtrBYG1QOxv3tZFz9xGNpKAWSe+FiChSRUqXMdh21Yf9oMhFiGq0F0VFRejSpQtee+01xMXF+VFJosgih7sCROFitVoxadIkrFq1CtHR0UB+h9oLnL4QInIaeCIiqtvqQ3vka7vrQziVlUSYj7dFQkICtm3bhkceeQSlpaUaVJKobmLopHrJZrNh8uTJWL58OaKioiDy2sNgSw13tf5SHxp3IiIiPdKoDZaVRFhOtFOD56OPPoqysjJNyiaqaxg6qd5RFAWvvfYaFi5caH+OVkE7/QTO+jq6WR/fMxER6ZdG7bFz8Ny6dSueeuopWCwWDSpIVLcwdFK9IoTAO++8gzlz5kCWZRiK2utjSm19DZtERER6pkH7LCuJsJxsi5iYGKxZswaTJ0+GoigaVZCobmDopHrlf//7H77//nsAgKGkbe3cpdYbhk0iIiJ9CzZ42pKgnG0Lo9GIRYsW4a233gLv5Un1CUMn1Rvz58/Hhx9+CAAwlbeG0ZIV3gpxdJOIiKjuCLLdNtjSIBW2hSRJmDVrFqZOnapd3Yh0jqGT6oX169fjpZdeAgAYK5rAaG4S5hoRERFRnRRE8DRaG8JY2hoA8Pnnn2Pu3Lla1YpI1xg6KeLt378fTz75JKxWKwyWDBgrWgVWkOL0RUREVF/oaVaOXmYJBdEfMFqyYaxoBgB49dVXsWnTJs2qRaRXDJ0U0fLz8zFx4kSUlJTgvPPOg6msAyT4+PBnBwZNIiIifdFD8AQC7iMYK1rgkksugdVqxZNPPokjR45oXjUiPWHopIhltVrx9NNP4+TJk2jSpAn2LE+A5O+fPMMmERGRPull1BPwu78gQcLKHy3o0KEDCgsLMXHiRBQVFYWmbkQ6wNBJEeudd97B5s2bERcXhzPbsyAJk+8r14XRTb00tFqJtPdDRES1Qy/th599BwkG5KxKRkZGBnJzczFp0iTYbLaQVY8onBg6KSL98ssvmDVrFgDAeqolZCXO95X1HjaJiIhqi14CHeC5LnV01FMS0Sja3xTR0dFYs2YNpk2bFrp6EYURQydFnB07dmDKlCkAAFNZcxgtDQAAkhCeG4K6MLpJRERE7ukpeHrrU1S+LtsSIPJaAACmTZuG1atXh7JmRGHB0EkRpaioCM8++ywsFgv69+8PY3kz7ysxbOqHXjoLRERUd3ka9aztdsZDH0NyqovRnIkRI0ZACIHnn38eJ06cqJ36EdUShk6KGEIIvPbaazhx4gQaNWqEdT/ZvN+plmGTiIjItbp+IlBP9fehvzF/6ln1xkJPP/00zGZz6OtFVEsYOili/Pzzz1iyZAkMBgPydmdCgtH9wpEyuqmnBpWIiEhv9NROeul7SJBxaHUSkpKSsGvXLnz22We1VjWiUGPopIhw4MABvP322wAAuagZDLYk9wtrETYjIbDqlZ46CEREpA/BtA1a32Qo2D6Ah/VlJQblx5oAAGbMmIFNmzYFuTEifWDopDrParXihRdegNlsxkUXXQRjRRO3y0oMNPoneZkSTUREoae39lKLtkGj96RJX0KB2/oYLem48sorIYTA5MmTUVxcHPz2iMKMoZPqvC+//BL79u1DUlISts6X3V/HqUEjIQmhr+AaaQEt0t4PERFpJ9g2QsNZSpr1B9yUseSrAjRu3BgnTpzAW2+9Ffx2iMKMoZPqtH379qnPtCo/1hiSiKq5kEbTanQVNoHIC2iR9n6IiEh7WgRPjcNn0Fz0UyQYcXZXBmRZxrx587B8+fLgt0MURgydVGdZrVa8+OKLsNlsMJgbwGDJqLlQ9cYggDOTrs5men3mZyhJUuQFtEh7P0REdZneTrJWp0U7GGAbLtlq7ptARj0lxUUFqpVhsCVDLskGALz55psoLS31axtEesLQSXXWjBkzsHfvXiQlJSGqtG3VabUc3awbIjFAExFR7agHo56m8mbIzs7G6dOn8fHHHwdfPlGYMHRSnXTixAlMnz4dAFB+vFHVabV6ulGAViIxnEXa+yEiigR6avt84Wv76Clc6i14AurvQYIBZ3alAQB++OEH7Ny5U5vyiWoZQyfVSe+++y4qKipw/vnnw2BuaP+hr6ObXqbB8GZBtSAS3xMREYWPjkY9vfUjXE6tdaWyX2OwpmLYsGEQQuDVV1+F1WrVpqJEtYihk+qcNWvW4Pfff4fBYMCuZQb7tNowjG7WynWdkRjOIvE9ERFFAj2dcA2EFu2Lh3bd1fWcnmg56rn8m0IkJSVh3759mDNnjjblEtUihk6qUywWC95++20AgFSSBdkWF7mPQom0cBaJ74mIiPTFVVvj7wliHT5aRVJMKDtuv2Hip59+ipKSkqDLJKpNDJ1Up8yePRu5ublIS0uDqaxZ4AU5NQLBNAYhGe2MxGAWie+JiCiS6OnEqxY0nm7r7yhnjeo4+hy+Tq11wViRhWbNmqGgoABffvllUPUhqm0MnVRnlJaW4osvvgAAFB9OgySMgRdWeZ2ErkY3AYYzIiIirUhS8CeGtb7JkNUW+PqQcWJ7AgDg22+/xfHjx7WqGlHIMXRSnfHtt9+ioKAA2dnZMFRkBl6Q3oKmMz3XjYiIIlOktj1C2Hu6wfZ2tZ7RFETwNFjS0KNHD5jNZnzyyScaVoootBg6qU44d+4cvv76awDA6e1xkAI9Xjs3rFo+yzPUNxQiIiKiwAXR45Uc/YVg+wwWp7vOBhg8JUjYscACAFi0aBEOHz4cXJ2IaglDJ9UJ//vf/1BSUoK2bdvCUNHA/wI0CpgUIO57IiJ9qk/H50B7vdVPWGvFagsofMrWBPTt2xeKoqjPLCfSO4ZO0r2ioiLMnj0bAJC7pvIRKf7w1EDocbQzUjsAkfq+iIjqqkg+Lrt7b35Ot3V574dA+g4WD8/WDCB4rv+5CACwcOFCHDlyxO/1iWobQyfp3o8//oiysjK0bNkSsjnF/kNFAWw+pLy62qDW1XoTERGFmy9tqK89YG8nrrXia/CsDK8GawJ69+4Nm82m3mSRSM8YOknXKioq8N133wEAjm7yY5QzDNNpeW2nDximiYj0gcdjr71gn+5wH8bpthvnFAMA5s+fj9OnT2tXD6IQYOgkXZs/fz7y8vLQsGFDGMqrXcvpbrTT3wZAr9d76rFOWojU90VEVFdE8nHY3/fmabqtr2V560d4mlrrirvgWa0cgzUR5513Hmw2m3oZEpFeMXSSbgkhMHPmTABA/v44SL78uYa5IeVoJxERUR1UrYsR0HO8wzDddtfv5QCAn376CRUVFdptn0hjDJ2kW5s3b0Zubi5iY2NhLMtwvZBjtDPY0UqOdtauSH1fRER6F8nH32Dfm3OvONCyqq/n7yinM+fptm7KMVSkITMzE+fOncPChQsD3xZRiDF0km799NNPAADz2URIwuh+Qa0aUD3eyZaIiIhqjxzgKKczx/oV5uDrA3gc9ZQgIW9fNADgl19+0WZ7RCHA0Em6VFBQgGXLlgEATGWZbpeTbAoksyW4M4kAoAj7lwaEVHmzIwZP9yQ/H3tDRETB4yinV5Ktspxg2ylHfZTgOwNSUQmk4lK3rxvLM2AwGLB9+3YcOnQo6O0RhQJDJ+nSokWLYLFYIFniIVsTarwu2RRIFqv9YB5sQ+McNoMc7RShCFOR1klg4CQiqn2R1pY4C9V7C6a9Mlv++j7Y4FnZN5GKS12GT0mJAkqSAABz584NbltEIcLQSbrkuC7B1bWckk35K2xWNjSS1eb/aKer0c0gRjtdBk6tRjsjpbPAwElEVPsipQ0JMXWUs8oPNWq3FCWg8CkVlfz1H6fwWZ2hvCEAYN68ebDZfH/sClFtYegk3Tl27Bi2b98OWZZhrKj6mJQqgdOZvw2qp3AZwGhnSEY4Iw33ERERaa02ArW/7ZfzKGd1/gZPV+/PRfA0VKQgMTEReXl52Lp1q3/bIKoFDJ2kO4sXL7Z/U5ZonzJSyW3gdLzu62int9FMRfgVPL0Gzvo+2ilJDJxEROFSV9sOX2j43lyOclZZwMd2zFPgdPAxeFYZ5ayuWvCUIKP0VAwAYMmSJT6VT1SbGDpJd5YvXw4A6iinz9dvCuE9ePo6fdaH5YQk+T7CWV+DJ8MmEVH41LU2I0y8Bk51QQ1PonoJnlJRifffX7XrPI3l9n7TsmXLOMWWdIehk3QlLy8PO3fuBAAYKlJdXr/pkadl/L1e08M2OZ3WB9xHREThE+mBM5zvz1375ssopzNPwdPX9+d0nadsTkZCQgLy8vKwY8cO/+pCFGIMnaQrK1euBADIlnjIFmNAd6etMdoZ6ONQ3EyzDThw1qfRTgZOIiIKldqcVut2xWrtnL+B08HFDYY8Tqt1RwjIxeUoO2N/ZufatWsDqw9RiDB0kq44QqehLCXwx6E4T7MN9tmbikaBUy0vuNVVeg6eDJxEROGl5zZCRwIOnGoBGrZ3lcHTp2m17ggBQ2EsAGDNmjVa1YxIEwydpBuKomDTpk0AAEN5UnCNppYNbuVoJ6fUEhGR7kV64NTb+5OkwEc5q9Pg2eOGEvuzzXfu3Ilz585pUSsiTTB0km4cPHgQhYWFiI2NhVwRG3R5ktUGBHshvfzXTQMkLRq6SP/EMZgTEYWP3gKZ1rR8f4pG92ewWLW7wdCZPIjSsqCKkG1RaNGiBYQQ2Lx5c/B1ItJIpHeBqQ5xjHJWnARQag6+QMc020CDp6zxoz60+rTp9REkeqwTERFFBo0Dp1pssG2Xc72CKetMHoRNgRAi6OB5eO1ZAMD27duDKodISwydpBtbtmwBAMiF0RAlJRCl5cEXGmgj5SpwChH4aKeWgVOP9FovIqL6ItJHObXi4t4KAQdPV49oC7AsYfurYo7gGUj4VAqLIBfbn3G+bdu2gOpCFAoMnaQbe/bsAQDIJVGAomgWPP0e7fQ0whlI8GTgJCKiUIr0wKnV+/P0hBJ/2zKL1X29/C3rTF7N+gjh96inUlgEKArkYvsdbHfv3g2zWYOZY0QaYOgkXSgqKsLRo0cBAHKp/Qyd/YJ6DW736s80W1+m1PoTPCM5cOp1mi8RUX3CwKndpiTJt/DpKXA6+No+Vk6rdVsnf4Kn4w64FUYkJibCbDYjJyfHt3WJQoyhk3Rh3759AACpwgDJZlB/bp9eos00W6/BU8trOGVEfuAkIqLwYuD0nR/nsL0GT1/r5a0cL4Hzr815D55KYdFfm4WEkmP2Ec4DBw54rydRLWDoJF3Yv38/AEByjHI6aDjN1mPw9Ddwehrt1PJTpcdwp8c6ERHVNwycvgtg0pTb4OnqOk5P3JXjY+BU6+MheDqm1VbZbJm9P8XQSXrB0Em6cPjwYQCAXG6q+aLGwbOGQEc4XQVPBk4iIgq1SA+cWgriKp0awdOXabWuuGg7/Qmc6jougqerwAkAcqm9P8XQSXrB0Em6cOTIEQD26xBc0ur6TjjdWEiWAIMcXJByDp4MnERERMGrhRsH+UoNnoEGTgfn+yC4uHGQz/WpHjxdBE4AkCrsofPYsWMBb4tIS256+ES1Sw2drkY6K4nSMkCSIcXFBLcxISApAkIRgEGHQYrhjoiI3OEoZ+1TFO32e/65gEY5nQkhgNIyCKv7qb6Ok/gnT56EoiiQZY4zUXjxL5DCTlEUnDp1CgAguxvptC+ozTRbWYaQJXsjEuSBvwoNiyIioggihDahpb4ETi1v6hckyXEfCKPB84K+yCsAbDZIhuArdvChLjj06PluX5fMBhgMBpjNZuTlBT6ySqQVhk4Ku8LCQtgcB3Wrl4N6sMFTliGcp9QGGzwry/H72Z2e6LVTodd6ERHpmfOxM5jjaH07BusoeKqCCZ6VgdMhmOB5aEJXmJMVmJMVHHqsh8tlJEhQSu3fnzx5MuBtEWmFoZPC7uzZs/ZvLDIk4UMjE2jwrB44ncoLKHi6ahC1Gu2sb50LIqJI5OpYHsjxvb62CWEOnpKru90HEjyrBU61/ACCpyNwOphT7MHTZfisPJF/7tw5v7dDpDWGTgo7x7QPydsopzN/g6e7wBkoF+Woo52RHDz1WCciIj3ydLz051ha34+7YQqeLgOng7/B00NZ/gTPQw9VDZwO5hRFDZ9Vyrbay2boJD1g6KSwKykpAfDXwdFnvgZPXwKnP6OdHsph8CQiIp+Ok1otUx/UcvD0GDgdfA2e+d4Dny/B89BDXWFO8dy5qB48GTpJTxg6KezKyipv/a0E0Kh4e5SKPyOcvgRPH8ph8CQiqse0GsXkcbaqWgqePgVOB2/BM/8c4OEOs1W26yV4eguczsvlPFoZPG32+hUXF/u0LlEoMXRS2Kmh0xbYn6MoLXM92hnIlFpPwdOPchg8iYjIJ1pd91kfhDh4+hU4HdwFTz8Cp7p9N8Hz0ENd/SqnItUePKXKk/kWi8Wv9YlCgaGTwq6iogIA1IOj31xNsw3mGk5XwTOAchg8iYjqmUCPiVrd4bY+CFHwDChwOlQPngEETrUe1YKnL9NqXalIVXDuoiwADJ2kDwydFHZCiwbWOXhqcdMg5+AZRDkMnkRE9USwx0KtnuVZH2gcPIMKnA6O4BlE4HRwBM+cBwMLnA6xR/cDAL777rug6kOkBYZOCjtJq8ZDUQCL2f6vVmVqQNNneBIRkb4wLNZpWrbRksUadOB0KO/XARWpWp2xJgo/hk4KO0foLG2fFlw5UVFAdDRQYYZkDnIqiSQBsjbBVUiSdp80HYVplR7rRERUGxg2w0Oj/S7ZKsuRg2+kpXIzIASkxMSgyyrr3Q7WWBkZ64Mrp6RFcwDA4MGDg64TUbAYOins5MqDffOWx3H0fhcPN/aBFBUFxMb8NWoaTPCUJMB5em4QjRsDJxFRhGLgDA+tA6dDEMFTKq+cZQUAshRU8HQETgAwlYqggme31rkAgAYNGgReCJFGGDop7OLi4gAAsZYy3Dx2kd/Bs0bgdAgkeFYPnA4BNHIMnEREEYqBMzxCFTgdAgieVQKnWk5gwdM5cDoEGjzvG7YAiRb7c9Dj4+P9L4BIYwydFHaOg6G5TEKX2MO4cexi/4KnLLm/LtSf4OkucDr40dgxcBIRRSgGzvAIdeB08CN4ugycajn+Bc+yXm1rBE4HU6l/7/2+YQvQPvo4zOX2tjo2Ntav9YlCgaGTws4ROivK7AfH82Jz7cHzH96Dp3odpye+BE9vgdPBh0aPgZOIKEIxcIZHbQVOBx+Cp8fAqZbjW/As69UW1jg3z/us5OtopyNwAlBDp2NGGVE4GcNdAaLEygNyefFfYea82FxgzGJ8IwYj+/0NLtdzO63WlQozJAAiyuT6dUnyPUwJ4XZZBk4iogjFwBketR04HWTZbaj0KXCq5XhuN30JnIBjmq0E0a4IN61ajV77DiC+ogIl0dFY1aY1vul9Ea6/fo0aOAGgtNC+7dTUVN/qShRCDJ0UdhkZGQCAknMSFBsgVx57z4vNBcYuxo6RjbDt+45VwqdfgdPBXfAM5E61LoJnxAdOIqL6ioEzPMIVOB1cBE+/AqdjnYQEiOLiGj/3NXACQJTNgsdW/Igr/7cOJqXqc0X779mDCfN/Q+6OVGx9qjGUaHtnpLjA/i9vJER6wOm1FHapqakwGAwQioSSwqph67zYXNzccHWV6zwDCpwO1afa+jqt1pVQdUL0Gjj1Wi8iolBi4AyPcAdOV2UFEDgBAAYZUkJClR/5Gzhf/+MTjDi0ukbgVDdhFWj5dR763nEQcrkCoQAlBfZ2Oz093f86E2mMoZPCzmAwIC3N/ozO4jzXf5KO6zwPP9gj8MDp4AiewQROh8pGUdNRTj1i4CSi+oiBMzz0FDgrr+8MOHA6OAVPfwInADy4+Uf0OHMA3t6NAJC+pgRdXziG0iIJis1+o0VHH4sonCK5m0x1SKNGjQAABafc/0l+9vtANP/6CFBRoc1G/bmOk4iI6hcGztonhHb7PYh8WLMsEVzgdDDIEGaLX4EzrbwQV+asAwB467E4Xm/+XT5Kdtvrm5mZCZPJzf0siGoRQyfpQvPmzQEAecfd/0lG5cmwHTkGpaQMorw88I2ZTBAmo71hs9oAW3ANiXAEVy0bOD1hMCei+oaBs/Zpuc8r22OhRftVGTZFdFRwxeQVQMkrAAAkrTzk83pXHVoLk3A9pdYd2SogzbWfoG/atKlf6xKFCkMn6cJfodP12b8H541C60+P2P8jlOCCp1w5wuk4oypEwMFTVL+terDBU28BT2/1ISIKNQbO2heCwKkWHUw7pij2UU4AkKSAg6eSVwDYbPYvAEphkc/rdj+zP6BtFh60/9usWbOA1ifSGkMn6YLjoJh3rOaf5IPzR6Hja8dhO/rXbcADDp6OUU5nAQbPGoHTIdDgqbeAp7f6EBGFGgNn7Qth4FQ3EUh75hw4HQIInmrgrMbX0c44a2CXFB22xQBg6CT9YOgkXWjTpg0A+/Rai9Px9cH5o9Dx1eOwHTlWcyV/g6fJBBFtch2m/A2e3howf4MnAx4RUXgxcNa+Wgic6qb8aWddBU4HP8pxFzgB+2inL8Gz1Bjt8/YcBID9hjgAQPv27f1enygUGDpJF9LT05GRkQEhJJzM+WuKbdRZ2XXgdPA1eHoKnGpZvgdPnxovBb6FTz0GTj3WiYgoVBg4a18tBk7fy1E8B85Kvox2egqc6jI+BM+N6a29bqu6U1FROCeZYDAY0Lq1/+sThQJDJ+lGhw4dAAAnD9pD5wMLbkfrzz0ETgdvwdOXwKmW5T14up1W605du8EQAycR1ScMnLUvTIHT4wljR9j0EjgBeJ1m60vgVJf1EjzTPj4J4efNZ3emJAEAWrVqheho/0dKiULB6H0RotrRsWNHLF++HMf2GfEFbkKn10/AdviobytXBk+pvAJSTDSkmJi/XpP9fDSKozG0KfbneDq/5G/gdFDg+hSP3gKe3upDRBRKDJy1L8wjnEKSIFWvgw+jmzVUBk+pwly1KD8Cp7qOixsL3ffSdwCAkYlFwI1JwFeFEPD82BTH63/0yABK7P0qIr1g6CTd6NatGwBg15Z4dPjxOGyHfRjldCYUCKsCUaJABuzB09WNg3wqy0XwDDaQVQ+eegt4eqsPEVEoMXDWPp08g7NK8AwkcDpUazdF/jm/A6dD0spDKOzTAoA9cN6WePavcp9PBw6YIa30fCmRBED0icHeBolACdC9e/eA6kIUCpxeS7rRsWNHxMbGwmA2w3o2J/CCHNNtbYrv02pdliP+epanENo878uBAY+IKHwYOGufTgKng5Ck4AKno5zoKIj8c1DyCiCs1oDLUQqLkLQqp0bgBADEyhBfNYa4PcntVFthAsTtSTj3UTYOHrbP9jr//PMDrg+R1jjSSbphNBrRrVs3rFq1CkpSOeRSPy9icCYUQLFBUgSEIYiAJwQgy0DlWdGgg6e7abZERFQ7GDhrn5b7XIYmwVMSPl6/6Y2iQEpOgjibF3RR1hMnawZOh1gZ4tWGwGNpEP8rhPRnGVCiAPEyRN9Y4NYkIMOITatjIIRA8+bN0aBBg6DrRKQVdn9JVy644AIAgC3Fz+dvViMnxEOKi7M3Bn4+f9OlyrBZ4zoQvytW+a8eOz2OkV0iokjFY1zt0mm7orblhiC7wTb7yW0EchlPNUpZGSAEht46zvOCGUbggTSImdkQvzSFmJkNPJBm/zmAZ97oAgDo2bNn0HUi0hJDJ+lK3759AQAiyQxFCuy6CDkhHlJi4l+NiaJAstoCC5+yXKNRCjh4Vv+06bQx1mWdiIiCxWNb7Qrl/g6w9yoJUbUNl6TAg6cjcDqq1CAtoGKUsjI1cAKAYekGDL3NS/B0Y/Dt4yDMxwEA/fr1C6gMolBh6CRdadq0KVq0aAHIgJJaDhHI1BeDoWYjIoT/o56OwOliSm3QI57V66Y3eqwTEVGgeEyrXbWxv/3swbpttwO5bKZa4AQAmIx+B081bFarm2HJBr+rNGTUnTCsXwuYFCQkJKg3ZyTSC4ZO0p3+/fsDAJQ0+xRboQifw6c6rdYdf4Onh8aoxhlTjxXz8roeO0R6rBMRkb94LKtdOtzfXttqX0c7bTbXgdPBj2m2zqObrvg62jlk1J0YMupOGJdsgpJWBgDo1asXjEbetoX0haGTdGfAgAEA7KFTGP4KiN6CZ41pte74EjxdTKt1x2tj5uunTIcNtS7rRETkKx7Daldt728f2lefTg77Ms22Mmy6DZyOKvkw2uktcAL20c4ht9/pcZnBo+1h07hkEwQEbOn20Dl48GCvdSCqbQydpDvt2rVDs2bN7FNsG1S9oZDH4OlqWq07noKnh2m17mg23VaPHSQ91omIyBO9XjMfycK1vz00+361zZ7afE+jm9V5mWbrS+B0MC5e7/a1waPvhGnxJvX/IskMRCtITExEr169fKsrUS1i6CTdkSQJl112GQDAllFa43VXwdPrtFpXPN1gKIBrPFw2boF8wvTYWdJbfYiISD901kb4dfmLM1cnrv0JnA4uptlWv2GQrwaPrjnaOXjsXVUCJwDYMuyjnIMGDUJUVJRf2yCqDQydpEuXXnopAPuZOxFd82HLNa7z9GeUs0pB1W4w5Me0Wlci+gZDegzDRETV8ThVe/TSLjg120G1w9VPOAcSOB1VchrtdHfDIF+YFv412jl47F32wLlwY5VlhEGBUjm1dtiwYQHVlyjUeJUx6VJWVhYuvPBCrFu3DrbMUhhzk1wuJxQBQ0I8pNjY4DaoKJAACNm/abWuSEJASBJP6RAR1TY9BKD6Qm/7WgYkmwZ1MsiA2QIAAQdOAOpoZyCjm9UNHnsXhAREVQubDkpGGWAQaN68Oc4777ygtkUUKuwWk25dd911AABbZimE5OGALQfxnC0nQpbsZWnRkGr1ydJbo05EpFc8XtYePe7rAB7F7ZbBEFzgBABFgZyaosm+iv5jJ6IWuA6cAgK2zBIAwIgRIyAFeeKcKFQYOkm3+vTpg4YNGwKmv6aNVCfHx0GKjwcUAdiUgA/uwmiwn5V0HKyDaCSElgd8Nh5ERN7pMQRFKr3tawVq4Ay6/XW8t2BPZCuVFTIZYWyUFXAxcnw85Ph4SAYD5NgYl8uIRDNEvBXR0dHq/TCI9Iihk3TLaDTimmuuAQDYGhVDoGZDJxlk+3WYDkoQ15dUb6z01rDqAUMwEekNj9W1R2/7WsvRzWrvTfjxzM0qlGqVig7spj6OsCkZDACg/ludLbsYgP1azsTExIC2RVQbGDpJ10aMGIHY2FiIBCtESkWV19RRzur8DJ7qKKfLF/1rYDW9lpMBj4jIM72FoEillxsGOXMTOP0e7XT33gIZ7aweOCv5O9rpCJw1fl5ttFOJs0BJq4AkSbj55pv92gZRbWPoJF1LTk7G1VdfDQCwVp7Nc6gxyunM3+m2nhopPTa24cAQTER6wuNy7dDjftZqhNPLe/N5tFNR3AZOAD6PdjpPp3Wl+s9tje39ogEDBqBp06a+1ZUoTBg6SfduuukmGI1GiGQzlET7aKfbUc7qgpluW523ximSRzn1Vh8iqt/0GIQikd72s9P1m574NNrpy3vzZbTTU9j0Q/XptG6XqxztFFFWSI3MAIBbb71VkzoQhRJDJ+leRkYGLr/8cgCAtYn9rJ7HUc7qPARPj1NrXa5QCw2w3gKe3upDRPWb3oJQpNLbfvYz27kNnn7OXvI42ulH4DRmZbp9zdPoZnWO5axNimGz2dCjRw907NjR53oQhQtDJ9UJt956KwwGA0RqBZSkCu8rVOdpuq0G13/wuZxERLVAb0EoUultP9fSdFqXXI12eptO60pMdI0feZtO644SY4WUbe8LjRs3zr96EIUJu8lUJzRp0uSvaztbFgPxcYEV5DTq6fcoZ3V6a5RDgaOcRKQX9eGYG256vIdBOAOnY1XnvkIQ02mdRzt9nU7ritKyBDabDX369MF5550XcH2IahNDJ9UZY8aMsd/JNr4CtoTCwAtynm6r1TO9IvVaTiIiPdBbEIpEetvHPl6/6YmQJG2CtEEObHSzusrRzkBGNx1sseWwpZZAkiTcc889wdWHqBYxdFKd0aBBA9x0000AAHPKUZfP7fSZorPGlYiIatLjyFsk4j72TKv9I8tBBU4BAUvWGQD253K2bt1am3oR1QKGTqpTbr75ZqSkpECYKmBNPh14QUYDEOBBvwpJsp9J1WL6D0c5iYj+wiBUOyJ9P2s0o0lEmYIrR5YhZAlyelrARdiSi6EkliEqKorXclKdw9BJdUpcXJw6ncScdBRKlC2wBzhLUmDreaLBVCBdYQgmonDg6Gbt0Pt+1qiJ9unxKS5XrLZ/Au0zyLIaOAE/nv1ZXVoCLNlnAdhvrtioUaPAyiEKE4ZOqnOuvPJKdO7cGZAVmFNy7Qd0rQOkLxyjnNUFEjwZ8IiI9B2CIkl928+B3KXe1Y/9He2sDJuOwBkoKTUZ5pQTEEYLGjVqhNtuuy2o8ojCgaGT6hxZlvHwww9DlmXYYvNgjTlnD55Gg2/h02gI/Eyjr+r6iCdDMBHVtvoWhMKlLu3ncIx2eto/vp7grja6WZ2UmuxTMVJqMqTUZNhiLBDJpwAADzzwAKKjaz5+hUjvGDqpTmrTpg1GjhwJADAnHYIiKxAG2bdRz1BMrXUl0qbbEhGFSl0KQnUZ97N7Wk039mF005cT31JqMoTJCMVkgDn5AGw2G/r164e+ffsGX0eiMGDopDpr3LhxyMjIgDCWw5J4GADsB3l/Rj1rg7fgqbdRRb3Vh4giG4NQ6On9+s3a4Klt0/DutFpMpXUETgCwxp2AElWE2NhYPPDAA1rUkigsdNIrJ/JffHw8HnvsMQCANf4EbCb7szuFLLkf9dRqaq276znd4agnEVFN9T0I1Ya6vo9DOcU2gDDu8rpOL9NpXXE1xdYRNh39FMVQpp5U/+c//4msrCy/6kqkJwydVKf16tULV199NQDAnLwfQrKpr7kc9aytqbXuMHgSEdnV9TBUF3AfuxfovqnehwjwZkHOJ8Crj24C9mdympP3A5KCnj174qqrrgqsvkQ6wdBJdd4//vEPZGVlQRgrYEnMqfKax1HPcNHzqCen1hJRbWAYCj3uY9c0vHZTq+m0zqObDtb4Y1CiitVZXRLbZ6rjdNILJwpcXFwcJk6cCACwxp2CNTqvxjKOUU9hNNR29YiIiGpPJF6/qVVvVavgpsWjUAyGGqObDjZTEZSUYwCA8ePHIzMzM/DtEOkEQydFhB49euCWW24BYJ9mqxjKayyjNg4aNDoBP2y6Or2duYzEzgoRUX3B47dHQbfdkmS/p0O0n8/rrM5gAGTJZeAUkhXmlL2w2WwYOnQorrjiiuC2RaQTDJ0UMe6++2507twZkG0wJ++F8DSHNZiGR29BMRTYcSEiqlt43A4t57Y/0H6AwaAGTlcc13EKgxnZ2dl4+OGHOa2WIgZDJ0UMo9GIZ599FklJSVCiSmBJzPW8QuUZS3KDHRgiChUee7VVH47X4eqxatVXcIRND1NyrXEnYIvJh8lkwrPPPov4+Pjgt0ukEwydFFEyMzPx73//G4D9MSrWmLPeVwpH56eufPI43ZaIQoXBM3g8RvtP9qMB1ipsehjddLCZCqGkHgEA3H///Wjfvn3w2ybSkbrS9SXyWd++fate32kssb/geHyKK+EY9axLHS52aoiI9IXH5YD4dF2nFn0C57DpLnAa7H0SxVCOitQ9sNlsGDJkCK6//vrgtk2kQwydFJHuuece9OrVC5AUVKTuhpDN9he8NSKccusez6gTkdZ4vA0Mj8WhU0tTaQHYbyYk2VCRsgeQrWjXrh3+7//+j9dxUkRi6KSIZDAY8PTTT6NZs2YQBjMqUvZ4vrFQdTzgu8fODhFpicdb3/HkX+hoPbrpAwEBc9J+CFMpUlNT8Z///AcxMTHB1YFIpxg6KWIlJibixRdfREJCApSoYpgT90PAj8aao57usdNDRFS7eNwNTa+1Fm8UVJ0lNhe22DwYjUY8//zzfB4nRTSGTopoTZs2xbPPPgtZlmGLPQ1LTI7/hTB4usYz7kSkFR5nPeOxNjRq8UZB1VmjT8AadxgAMGHCBJx33nnB14VIxxg6KeJddNFFmDBhAgDAGpsLS9Qx/wvhqCcREdU2ntwLjdq6UZAbVtNZmOP3AQDGjh2Lq666Kri6ENUBDJ1UL1xzzTUYO3YsAMAStw9W05nACpIk+53v+Mn5CztERETa47FVvyQpoLAJADZjEcyJuwEJuPLKK3HHHXeEoIJE+sOuM9Ubd9xxB66++mpAAszxu2AznAuuQBn8BBERaYEBqyruD32qHCH16bErLihyKSoSdwCSgl69euGRRx7hnWqp3mCXmeoNSZLw0EMPoV+/fvZHqSRug81QFHzB/BQREQWOAasq7g99qgybgQfOMlQkbwNkCzp06IBJkybBaDRqXEki/WJ3meoVo9GIZ555Bt26dQMkGyoSt8JmLAm+YI56EhH5jwHrL7x+U5+CHN0EAMVoRkXSNgjZjJYtW+KVV15BXFychpUk0j92k6neiYmJwcsvv4zOnTsDkhUV8ZthM5QG1aCoGD6JiHzDgPUX7gv9cQqbAfcPZBmKwYKKhC0Qhgo0a9YMU6ZMQUpKiqZVJaoL2D2meikuLg6vvvoqOnToAMhWVCRshiKXBte4OOMni4jINY7oVcV9oT8ahE3IMhTZgorErRCGcjRu3BhTpkxBWlqatnUlqiPYNaZ6KyEhAa+99hratm0LyJbK4GmfauupoZGEABQfNlBfRj15EwQi8hUD1l8YvvXHx6m0kuKhEyDLEJIEm1yBioRNEIZSNGzYEG+++SYyMjI0rjBR3VEfusREbiUlJeH1119Hq1atANmMioRNUCpvLqTpqCc/aURU3zFg/YX7Ql/8nUrr6vdXObopJAmKXAZz4iYIQxmysrLw1ltvISsrS/t6E9Uh7ApTvZeSkoK3334bHTt2VKfaOj9OJWThk50OIqoveLz7C/dFWEnO+1+j6zYdYdMeOEvtI5xyBbKzs/HOO+8gOztbm8oT1WEMnUSwj3hOmTIF559/PiDZYE7YApsxv8oymoZPX6bnEhFFAoYsO06n1QfH70DjsAkAilyMioRNgGxGixYt8M477yAzM1ObehPVcZIQPAISOZSXl+Opp57C6tWrASEhqrQjDBYP12AEe9omEq6HjIT3QEShwS6GHfeDNjQ4YesY6Qw0bEqK4vK6T5sxH+b47YBkQ9u2bfH666/zLrVETjjSSeQkJiYGkydPxqBBgwBJwBy/A9boI+Gulr6xM0VEFDo8saeNyktcghvdhMvAaTWdgjl+KyDZcN555+HNN99k4CSqhiOdRC7YbDa88847+OGHHwAAhvJsmMpbQ4JTQ6PVKZtI6FBEwnsgotBgNyPwfeB8bOV+DHyk09FeB7t+tTIEBKzRR2CNPQAAGDRoEJ544glER0cHuCGiyMXQSeSGEAJff/01PvjgAwCAbE5HVGkHSDD8tZAWwTMSAlskvAciCg12M/zfB66OqdyP/ofG6m20husLCFhi98MWfRQAMHLkSPzzn/+EwWAAEdXE0EnkxaJFizB58mRYLBbI1iRElXSGJKLsLzJ02kXCeyCi0GA3w87X/eDueMr96HtodNc2a7S+gBXm+F1QTGcBAPfffz9uuukmSGwLidxi6CTywcaNG/HEE0+guLgYkhKNqJIukG0JnGLrUNfrT0Shxa6Gb/vA07GU+9B7aPTUJvsSOL216Qrsz+CM3wZhKEVUVBQef/xxDBkyxIfCieo3hk4iH+Xm5uLxxx/H4cOHASEjqrSD/c62HO2s+/UnotBiV8PzPvDlGFrf92EwgVOL9QHYpAL7HWplKxo0aID//Oc/6NSpk/cViYihk8gfRUVFmDRpEtasWQMAMJY3h9HcvOoNhgJR10NbXa8/EYUWuxru94Gvx8/6vg/dhUZfT/wGub7VeByW2L2AJNC+fXtMnjwZGRkeHqlGRFUwdBL5yWq14sMPP8TMmTMBALKlAaLKOkCCMbiC63pwq+v1J6LQqu/djerv399jZn3ff9VDoz+zjFwFTh/XF1BgidkLW9QJAMDgwYMxceJExMTE+FEBImLoJArQ3Llz8dprr8FisUCyxSCqrDNkJSHwAut6aKvr9Sei0Krv3Q3n9x/I8bI+7z/n0BjIJS0Brq9IZTDH7YAwFEOSJNx5550YNWoUbxhEFACGTqIg7Nq1C08//TROnDgBCBmm8jYwWLICn25blxuyulx3Igq9+t7dcLx/Bk7/KQj8/gmOwOnn+jbjGZhjdwOSFcnJyXj66afRs2fPACtBRAydREEqLCzEf/7zH6xcuRIAYDBnwlTeturzPH1R10NbXa8/EYUeuxyBqc/7LZjAGQABAWv0QVijDwMAOnXqhEmTJiEzM7P2KkEUgRg6iTSgKAr+97//4ZNPPoGiKJBs8Ygq6whZife9kEgIbZHwHogodNjlCEww+02Swrffg912Ldddkcphid0JxVgIABg5ciTuv/9+mEymWqsDUaRi6CTS0MaNGzFp0iTk5eVVTrdtBYOlse/Tbet6aKvr9Sei0GF3I3CB7DvH8TjQ/R7O9cOwbavxVOXdaa2Ii4vDo48+yudvEmmIoZNIY3l5eXjxxRexevVqAIBsSUNUeXtIIsr7ynU9tNX1+hNRaLCrETh/913143A41w8mcNbS+gI2WGL2qXen7dy5M5566ik0btzY/20TkVsMnUQhIITADz/8gA8++ABmsxlQTIgq6wCDLc3zipEQ2iLhPRCRdtjNCI4/+y+YwOjq2B3h6ytyEcyxOyEMZZAkCaNGjcLYsWNhNAb5CDQiqoGhkyiE9u/fj+eeew4HDx4EABjMjWEqb+X+JkORENgi4T0QkTbYxQiOr/vP3XGX67v+MRRYo3NgjToMSAIZGRl46qmncP755/u2PSLyG0MnUYhVVFTggw8+wA8//AAAkJQYmMraw2BLqblwpAS2SHkfRBQ4di+C520fejrW+rL/Q7m+L2WEYX1FLoY5dheEoQQAMHjwYEyYMAFJSUmeyyKioDB0EtWS9evX46WXXsLJkycBuBn1jJSwFinvg4gCw65F8DztQ1+OsZG8fgBlCCiwRh2GNToHkASSk5MxYcIEXHLJJd7LIaKgMXQS1aLS0lK8//77+OmnnwC4GPWMlLAWKe+DiPzHboU2XO1HX4+t7n4H/hybg9m+FnXQ8D3YRzd3QxiKAQD9+/fHww8/jLQ0L/dZICLNMHQShcHatWvx8ssv49SpUwAAg7kRTOUtIUk+3OG2rmDwJKp/2KXQRvX96O/xVOv19VCHANYXsFVeu3kEkAQSExPx4IMPYujQoZDYRhHVKoZOojApKSnB+++/j59//tn+A8UEU3kbGGwNfX+up56xQSeqX9id0I5jXwZyHHX+PQR6HA62DB3UwSafhSV2L4RcDgAYOHAgHnjgAaSnpwdWHyIKCkMnUZht3rwZr732GnJycgAAsjUVpvJ2kEVsmGsWJIZOovqDXQntCBHc8TPY9et4HYRkhiV6H2wm+0yijIwMPPTQQ7j44ouDqw8RBYWhk0gHzGYzZsyYgS+++ML+XE8hw2huDqO5KSTI4a5e4Bg8iSIfuxGkAwICNtMxWKIPApIVkiRh5MiRuOuuuxAXFxfu6hHVewydRDpy+PBhvPbaa9i4cSMAQFJiK6fcNghzzQLE0EkU+diNoDCzyedgidmr3iioTZs2eOSRR9CpU6cw14yIHBg6iXRGCIH58+fjgw8+QF5eHgBAtqbBVN4GsqiDZ2sZPIkiG7sRFCZCqoAl+gBsJvujyBISEnDnnXdixIgRMBqNYa4dETlj6CTSqZKSEkybNg3ffvstbDYbICQYzU1hNDeDhDrUmDJ0EkU2diOolgkosJqOwhp9CJBskCQJV155Je655x6kpqaGu3pE5AJDJ5HO5eTk4J133sGaNWvsP1CiYDK3hMGSVXfucsvgSRTZ2JWgWiAgoBjPwBJ9AEIuAwB06NABDz74IKfSEukcQydRHSCEwB9//IF3330Xx44dAwBItniYKlrDYKsDD7dm6CSKbOxKUIgpciEs0fugGAsBAGlpabjrrrtw5ZVXQpbr8A33iOoJhk6iOsRsNuOHH37A9OnTUVxsv2GCbE2FqaI1ZCUhzLXzgKGTKPKxO0EhoEhlsEYfgM10GgAQHR2NW265BTfffDPvSktUhzB0EtVBhYWFmD59OmbNmgWLxQIIwGDNhLGiJWQRE+7qucbgSRTZ2J0gDQnJDEtULmymo4AkIEkSrrjiCtx5553IyMgId/WIyE8MnUR12LFjx/DRRx9h8eLF9h8ICQZLY5jMzSCJ6PBWrjqGTqLIxy4FBUnAAmvUYVijjgKSDQBw4YUX4v7770ebNm3CXDsiChRDJ1EE2LFjBz766CNs2LDB/gMhw2jJhrGiGSSYwls5ZwyeRJGNXQoKkIAN1qgjsEYdBiQrAPtNgu666y707NkTEtsPojqNoZMogqxfvx6ffPIJtm/fbv+BMMBobgKjuak+HrPCTgNR5GO3gvwgYIPNdByWqBxAtgAAWrZsiTvvvBP9+/dn2CSKEAydRBFGCIFVq1bhk08+wd69eyt/aKwMn9nhH/lkB4IosrFbQT4QsMJqOmYf2awMm40bN8a4ceMwZMgQGAyGMNeQiLTE0EkUoRRFwe+//45PP/0UOTk59h8KA4zmbBgtTSCJqPBUjKGTKLKxW0EeCFhhjToKq+kwINun0WZmZuL222/HlVdeCZNJR5eEEJFmGDqJIpzNZsPvv/+O6dOnY//+/fYfChlGS2P7tNtw3HCIwZMoMrFLQW7YbxB0pPIGQfawmZ2djdtuuw2XXXYZwyZRhGPoJKonFEXBH3/8genTp2P37t32HwoZBksWjOYmkEUtPu+MoZMosrArQW4IqQJW09Eqd6Nt1qwZRo8ejcGDB8No1MH9Bogo5Bg6ieoZIQTWrFmDadOmYdu2bZU/BGRrOozmpjAoybVTEQZPosjAbgS5oMjFsEYdgc14EpDsfyOtW7fG6NGjMWDAAF6zSVTPMHQS1VNCCGzevBkzZszAypUr1Z/LtiQYzU0hW9MhIYTBkKGTqO5jF4KcCAgohnxYo45AMeapP+/SpQtuueUW9OvXD7Ish7GGRBQuDJ1EhEOHDmHmzJmYP38+LBb7XQQlJRZGcxMYLFmQEKIz0gyeRHUTuw7kRECBzXgK1qjDEIYSAIAsy+jfvz9uuukmdOnSJcw1JKJwY+gkItXZs2fxww8/YPbs2SgqKrL/UBhhNDeCwdIYsojVdoMMnUR1D7sNVElIZlhNx2E1HQVkMwAgJiYGw4cPx9/+9jc0btw4zDUkIr1g6CSiGkpLSzF37lx88803OH78uP2HApCtDWC0ZEO2pWo39ZbBk6juYJeh3hMQEHIhrFHHYDOeUq/XTEtLw8iRIzFixAgkJSWFuZZEpDcMnUTkls1mw8qVK/HDDz9g3bp16s/tU2+zK6feBnnnQYZOIv1jV6HeE7BVTqE9CmEoVn/eoUMHXHfddRgyZAiiosL0/Gci0j2GTiLySW5uLmbNmoW5c+eitLTU/kNhgMGSCaOlMWQlIfDCGTyJ9IvdhHpNkcpgizoKq+mE+nzNqKgoDB48GNdddx06duwY5hoSUV3A0ElEfiktLcX8+fPxww8/4NChQ+rPJVsijJZGMFgaBjb6yeBJpD/sItRL9lHNM7CZjkMxFqg/z8rKwrXXXosrr7wSKSkpYasfEdU9DJ1EFBAhBDZt2oRZs2ZhxYoVsFqtlS/IMFgbwmBpBNmW5Pu1nwydRPrEbkK9ochFsJpOwGY6qY5qSpKEiy66CNdddx169erF52sSUUAYOokoaAUFBZg3bx5++eUX5OTkqD+XbHEwWLJgtGZBEj5c68PgSaRP7CpELAELbKZTsJqOV7lWs2HDhrjyyitxxRVXoFGjRmGsIRFFAoZOItKMEALbtm3DnDlzsHjxYpSXl1e+IEG2psFozYJsTXP/3E+GTiJ9YlchoggoUAwFsJlOwmY8DUgKAMBoNKJ///4YPnw4LrjgAo5qEpFmGDqJKCRKSkqwePFi/PLLL9i5c+dfLwgDDJaGMFgzIduSa06/ZfAk0id2F+o0+6NOimA1nYLNeBKQLeprLVu2xPDhwzFs2DBeq0lEIcHQSUQhd/DgQcyfPx8LFizAqVOn1J9LSjQMlkx7AFXiK3/I0EmkS+wu1EmKVFY5onkSwlCm/jw5ORmXXHIJLr/8cnTs2BESj71EFEIMnURUaxRFwebNmzF//nwsXboUJSUl6muSLaFyBDQDMuLCWEsicotdhjpBSGbYjKdhM52EYihUfx4VFYWLL74Yw4YNQ8+ePWEymcJYSyKqTxg6iSgsKioq8Oeff2L+/PlYtWoVbDab+ppkS4TBmgGDtSFkERvGWhJRDew26JKQKuyPOTGehmIogOPKBVmW0aNHD1x66aUYMGAA4uPjw1pPIqqfGDqJKOwKCgqwdOlSLFmyBJs3b4aiKOprDKBEOsNug27Yg+bpyqB5Ds6XyHfo0AFDhgzBkCFDkJ6eHr5KEhGBoZOIdCYvLw+///67mwCaYH8GqDUdkojz/RmgRKQtdh3CRpHKoagjmlWDZqdOnTBw4EAMGjSIjzkhIl1h6CQi3crLy8Py5cuxZMkSbNq0qWoAVWJhsKZDtqZDVpIgQQ5jTYnqIXYfAuO4YY+P+89+19niyqmzZ6s8SxMAunTpgkGDBmHgwIHIzMzUurZERJpg6CSiOiE/Px+///47li9fjg0bNsBqtf71ojDBYG0Ag7UBZFsaJBjDV1Gi+oRdCN+4ujOsh30nYLM/R7MyaEI2q6/JsqwGzQEDBqBhw4ahqDERkaYYOomozikpKcGaNWvwxx9/YOXKlSgqKvrrRSFBtqXaR0FtabwOlCiU2IVwzdvjR1zsNyFVwGbIg814FooxD5D+mtkRGxuLnj17ol+/fujTpw+fpUlEdQ5DJxHVaVarFdu2bcOKFSvwxx9/4OjRo1Vel5RYyNY0GGxpkG2pkGAIU02JIhS7EXa+Pueycn8JKFAM56AY8mAz5kEYSqoslpGRgX79+qFfv344//zzER0drXWNiYhqDUMnEUUMIQRycnKwYsUKrF69Gtu2bavyKBb7KGgKZJs9hEpKPG9GRKSF+tiV8DVkOlFQAsWYB5sxH4ohv8poJgC0b98effv2Rb9+/dC2bVtIAWyDiEiPGDqJKGKVlJRgw4YNWL16NVavXo2TJ09WXUCJhsGWap+Oa0uBJGLCU1GiSBDp3YkAAqCAufLazHwohjwIubzK62lpaejZsycuuugi9OzZk9NmiShiMXQSUb0ghEBubi5Wr16NNWvWYNOmTTCbzVWWkZRYyLZUyLYUGGypkERUmGpLVEdFUpcioJBpsYdMQwEUQ36NKbNGoxFdu3ZFz5490atXL7Ru3RqyzDtvE1HkY+gkonqpoqICmzdvxvr167Fx40bs2bOnyiNZAECyxasBVLalQIIpTLUlqiO07FI4h75QdFWqlx9QyLRCMRRUBs18CLkY1Wfst2zZEt27d8eFF16IHj16IC4uLsiKExHVPQydREQAioqKsHnzZmzcuBEbN27Evn37aiwjKXGQbcmVX/bpuLwmlAjBh8IA7vaq+TZ8IKRy2AznoMjnoBjOQcglgFS1bs2aNUP37t3Vr9TU1KC3S0RU1zF0EhG5UFBQgE2bNmHDhg3YuHEjcnJyai6kREFWkmGoDKKSkgAJnCpH9UggXQh/w19tbMPVZiEg5BI1YNpDZnmN5bKzs6uEzPT09KC3TUQUaRg6iYh8UFBQgG3btmHr1q3YunUrdu3aBavVWnUhIUO2JUFWkiDbEiEpSZBENEdDKfL42nUIJvzVxjacNyeZociFUAxFlUGzEJBsVZaRZRmtW7fGeeedhy5duqBr165o2LChJtsnIopkDJ1ERAGoqKjA7t27sWXLFmzduhXbtm1DUVFRzQWVKDWEqmGU14ZSXeWpy6DV4z1qYRv2azGLoMhFUAyFEHKRy1HMuLg4dOrUCV27dkXXrl3RqVMnXpNJRBQAhk4iIg0oioKcnBxs374dO3fuxK5du3DgwIGqzwmtZL9LbhIkJQGykgjZlsAgSvrm3FUI5bMjQ7AdASsUuRjCUGwPmXIhhFxa44Y/kiShadOm6NixIzp27IiuXbuiVatWMBgMmtSDiKg+Y+gkIgqR8vJy7N27Vw2hO3fuxNGjR10uKynRVUOoksAbFRH5QUAAUgUUudj+ZSiGkIsh5DKXy2dmZqJDhw7o0KEDOnbsiPbt2yM+Pr6Wa01EVD8wdBIR1aJz585h9+7d2LlzJ/bu3Yt9+/bh2LFjrhcWRshKPCRbgv1fJd7+L0dFqZ4TsELIpVDkksqb/RRBMRQDktXl8hkZGWjdurUaMjt06IC0tLRarjURUf3F0ElEFGbFxcXYv38/9u3bh71792Lv3r04dOgQLBaL6xWUKKcQGscwShHLHi5LoMillf/aQ6aQK1wubzAY0KxZM7Rt2xZt2rRB27Zt0bp1a6SkpNRuxYmIqAqGTiIiHbJYLMjNzcWePXtw4MABHDp0CIcOHcLJkyfdr6RE2UOoiLNfN6rY/5VELB/lQroloEBIFRByKYRcBkWy/+spXAJAWloamjdvjpYtW6ohs0WLFoiOjq7F2hMRkS8YOomI6pDS0lI1gB48eFD999SpU+5XErBfH1oZQuXKUGoPpDEMpBRyAgJCKreHSamscuSyzB40pXJAct8VadCgAVq2bInmzZujRYsW6ldycnItvgMiIgoGQycRUQQoKSlBTk4OcnNzceTIERw+fBhHjhzBkSNHUFbm+kYqAAABQERDFjGQlJjKcOr4N7byOaMMpeSZfbTSDCGVQcjllQHT+d8Kj8EyKioK2dnZaNKkCZo0aYKmTZuqITMxMbEW3wkREYUCQycRUQQTQuDs2bNqAHWE0cOHD+P48eOoqHA/fdFeAOzBU0RDUqIBx/eV/7d/HwUJfKxEpPorUFYAUgWEXGGfDiuZ1UDpLVQCgMlkQqNGjaoES8f3GRkZkGWe3CAiilQMnURE9ZQQAgUFBTh+/DhOnDih/uv8vdls9rEwEyQl6q9AKkyQRBQgotTvJWGyL8eR07ATEAAsELKlMlBaAMmsfu8IkkKqAGQ3N7SqxmQyITMzE1lZWWjUqBGysrKQmZmpft+gQQMGSyKieoqhk4iIXFIUBfn5+Thx4gROnz6NU6dO4cyZMzhz5gxOnz6t/utzMAXs03lhgqRUhlKYIAljZSA1QhJGNz8z8pmlLtjDoxVCsgJS5b+wQDi+lyyVP7M6BUozIFngz+40mUxo0KAB0tPTkZGRgfT0dPXLETL/v707j46qPNw4/tzJQgIJBGLEsBQVSUBBQQIom0gsm1qsgFapiJSidcEeaqulP5AWFS2iWLeq9XiOC65UUGSpIJuSAAEUSggEwk6SJoRsJEOYzP39MZmbmWyQSSbD8v2ckzP33ne5b5KBk2fue+/bpk0bQiUAoEaETgCAz0zTVFFRkXJycqwgmpeXpxMnTig/P18nTpywtgsKCuR0On08kSQFyzCDJAVJZpC17XqtqcwmySbDtFVsG5Jpq7jSapMqjhuySaahyhTmvX02YdcV/kxrr/LVlAxTppySnJLhrKjt3nZ9mRXHpXKZRrlklFdu1/Aqo9wKkw3J4i1btlRUVJRat26t1q1bKyoqSlFRUV7BMiYmRi1btiRQAgB8RugEADSJ8vJyFRUV6cSJE1YwLSwsVFFRUbWvwsJCFRcXq6ioSHa7PdBDr8iRnmHUI1ieAxdgQ0NDFRkZaX1FRER47UdGRlYLlq1atVJwcHCghw4AuAgQOgEA57SysjIVFRWpuLhYdrtdJSUlKi0tVWlpaZ3bZWVlOn36tNdrTcdOnz67exYbIjQ0VCEhIdaX577ndlhYmJo3b67w8PBqX2FhYQoPD7fKmzdvbgVM1qYEAJzLCJ0AgIuaaZoqLy+XaZpyOp01bpeXl8vpdMo0TZmmKZvNJpvNJsMwrNegoCCvfXed4OBgGcY5cDkUAIAAIXQCAAAAAPyGpwIAAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPwmONADAAB/ME1Tdrs90MMAgHoJCwuTYRiBHgYANCpCJ4ALkt1u1/DhwwM9DAColxUrVig8PDzQwwCARsX0WgAAAACA33ClE8AFL3TTpTJMm2TYZNgMyaj4vM1mSIYhw2aTjIrj7mltNkOGYbPqyDBc21LlvvuYu03V+vJuYxqG66M+z/ZStePWvtXO1ZUMQ6ZNFTuqOG5IhrzamNaxKu2t71nVy1XlmHvfVkOZZ3uvMs9Xo1pZjW3kXe657x5Dbefy2q5lHFX7tNTZxqw2rqr9yTBrGJNZ2XdNfVW0k/X2ML37lLvM47WiP3d9wzA93zrWOVy/mspySbLJ9Dpmq9iuLKs85lVmmDJUedzmcdxmmLLJfVzeZVYbp7XvPpfNcCrIauusbOexH+TRtyQFyX3c6VHPWVFW0af16rTG4W5nk7ttRRurzFU/yDBlWGWuY+42QVJlO7nOY1S0D/Iao1mxXzGmil+La9+QTVKQYcgmQ0EVv2ibjIpjNhkyFGTYVHYqSL/87aUCgAsVoRPAha/ccP35Z7j+yLNCZ8Vf864yQ7LZ5JlSDNmqJA+PdjWmnir1Dc+ymrY992s6XlM7eYRcWaHTepXnsSrbFWVeAcqrXQ1tqn3LRvVhGjV9GbWX1drmLH9UDezzzEG1kUOnUT10epZVDZ2Vx6v2Z9ZYVhlOPcq99k3v9tXOZXqXeYRO95ekyv3ayqqEUSt0VjnmGVaDPPZdodNpfU4TJMMV3gyP8FbxvgqSZDMMj1ej4lyudq6+pCCj8i0cZLjbuV5rLLO2K8fvCqtmRaA1zyp0Vu3PVjFmeR1zj7HyXABwoWJ6LQAAAADAbwidAAAAAAC/IXQCAAAAAPyG0AkAAAAA8BtCJwAAAADAbwidAAAAAAC/IXQCAAAAAPyGdToBXPiCTJmms2LdSY91KW2Gaz1Jm7zXu1SVfevL9Cir8iVVrHXoecx7QUizlsUnqx6v3He3q7Jtutu521T0UVHRlHe51wqApmffle2rHTOrFHmuv3lW62MatZepjvZnW1ZXn2c4n6Eztalpvc2q/Zk19FHLOp2q3s7wWo+zokzuMo/Xirbu+q61MSt/vN7nqLJOp3xfp9OsaGtWfEmytk25j8u7TKachikZzoq+PM/lrPh+PMtdZabhdPXj0Xdlmfdx9/qYZsVamZ6vkqxtZ8U/a/erKradcv2zd1bsu39U1dfpNGSrKA2Saz1Qw6jcrlxL1HvtT/e5bFYf7nVGPdYSlWEdMyq2y07V9O8QAC4chE4AF7yyvv8L9BD8w/Pveh8YVV4BN/dbyxnogfjMneaZ0AUA5wL+NwYAAAAA+I1hmmYDPicHgHOTaZqy2+2BHsYZ2e12jR49WpK0ePFihYWFBXhECCTeDwgLC5NhMP8AwIWF6bUALkiGYSg8PDzQw6iXsLCw827M8B/eDwCACwXTawEAAAAAfkPoBAAAAAD4DaETAAAAAOA3hE4AAAAAgN/w9FoAAAAAgN9wpRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPgNoRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPhNcKAHAAAXq5KSEn3yySdau3atsrKyZLPZ1LFjRw0dOlRjxoxRSEhIoIeIJrBs2TLNmTPnjPVeeuklJSQkNMGIAABoXIROAAiArKwsTZ06VVlZWZKksLAwnT59WmlpaUpLS9O3336r+fPnKzIyMsAjRVOx2WyKioqqtZwPIQAA5ytCJwA0MYfDoaeeekpZWVmKjo7WX/7yFyUkJMjpdGr16tWaO3eu0tPTNXv2bP39738P9HDRRC699FJ99tlngR4GAACNjns6AaCJLV++XBkZGZKk2bNnW1MmbTabEhMT9cQTT0iSkpOTtWXLloCNEwAAoDEQOgGgiS1fvlyS1KtXL3Xv3r1aeWJiomJjY73qAgAAnK8InQDQhOx2u/773/9Kkm644YYa6xiGoX79+kmSNm/e3GRjAwAA8Afu6QSAJnTw4EE5nU5J0hVXXFFrPXdZXl6eCgsL1bJlyyYZHwInPz9fkydP1uHDh1VeXq7o6Gh1795dt912m3r16hXo4QEA4DOudAJAE8rNzbW2Y2Jiaq13ySWX1NgGFy673a49e/YoODhYpmkqMzNT3377rR5//HE9//zzcjgcgR4iAAA+4UonADShkpISa7tZs2a11gsLC6uxDS480dHRmjhxom666SZ17NhRoaGhKi8vV2pqqt577z2lpKRo6dKlCgsL0+9///tADxcAgHrjSicAAAHUt29fTZo0SZ07d1ZoaKgkKSgoSD169NCLL76ogQMHSpIWLVqkw4cPB3KoAAD4hNAJAE2oefPm1vapU6dqrWe322tsg4uLzWbTww8/LElyOp3asGFDgEcEAED9EToBoAl53quZk5NTaz3P+zg92+Di06FDB7Vq1UqSdOzYsQCPBgCA+iN0AkAT6tSpk2w213+9+/fvr7Weu6xNmzY8uRYAAJzXCJ0A0ITCwsLUvXt3SdLGjRtrrGOapjZt2iRJ6tOnT5ONDeemo0ePqqCgQJIUGxsb4NEAAFB/hE4AaGIjRoyQJG3btk2pqanVylevXm1No3TXxYXJNM0zlr/xxhuSXPd39u/fvymGBQBAoyJ0AkATGzFihK688kqZpqkZM2Zoy5YtklwPilm9erXmzp0rSerXr5969+4dyKHCz7KysjRlyhQtXrxYx44ds0Ko0+nUzp079cc//lHr16+XJP3iF7/Qz372s0AOFwAAnxjmmT5mBQA0uszMTD3++OPKysqS5Jp263Q6VVZWJknq0qWL5s+fr8jIyEAOE36WmZmpu+++29oPDQ1VeHi4SktLrfeCJI0aNUpPPPGEgoNZXhsAcP4hdAJAgJSUlOiTTz7R2rVrlZWVJcMw1LFjRyUmJmrMmDEKCQkJ9BDhZ6dOndKSJUu0c+dO7d27V/n5+SoqKlJoaKhiYmLUvXt33XrrrerRo0eghwoAgM8InQAAAAAAv+GeTgAAAACA3xA6AQAAAAB+Q+gEAAAAAPgNoRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPgNoRMAAAAA4DeETgAAAACA3xA6AQAAAAB+Q+gEAAAAAPhNcKAHAAAALm52u10//vijdu/erT179mjPnj3Kzs6WJE2cOFGTJk0K8AjPXmZmpu6+++4z1rvvvvv029/+tglGBACBR+gEAAABtWvXLv3pT38K9DAaXatWrRQUFFRjWfPmzZt4NAAQOIROAEDAvfLKK1q4cKGuu+46vfrqq4EeDgIgMjJScXFxuvzyy/XNN9/IbrcHekgN9vbbbys2NjbQwwCAgCN0AsB57OTJk0pPT1daWpp2796t3bt36+jRozJNU5L06aef+u2PXtM0NXbsWOXk5Gj8+PF68MEHfeonPT1dixYtkiRNmTKlEUcYWBkZGdq0aZN27NihjIwMHT9+XOXl5YqMjFTnzp114403asSIEYqIiAj0UAPu2muv1TfffGPtt2nTRu+8844kqby8PFDDAgA0EkInAJzHpk6dqvT09ICcOy0tTTk5OZKkQYMG+dzPm2++qfLycvXr1089evRorOEF1NSpU/Xjjz/WWJaXl6e8vDxt3rxZH374oaZPn66+ffs27QDPMVWnoI4dO1b/+te/ZJqmUlNTz6qPjIwMLVy4UFu3blVubq5sNptiY2M1YMAAjRs3TlFRUX4YOQDgbBA6AeA85r6iKUkRERHq0qWLDh48qLy8PL+fe/369ZKkmJgYdevWzac+tm/frpSUFEnS+PHjG21sgeYO45GRkRo0aJB69uypdu3aqVmzZsrMzNSyZcuUlJSkvLw8TZ8+XfPmzdN1110X4FGfO8LDw9WiRQsVFxdrx44dKikpqfMeyAULFujtt9+W0+mUJIWFhcnhcCgjI0MZGRlaunSpXnjhBcXFxTXVtwAA8EDoBIDz2KhRoxQVFaX4+Hh16NBBhmFo6tSpTRo6BwwYIMMwfOrj448/liTFxsZeUKGrQ4cOmjBhghITExUaGupVFh8fryFDhuijjz7SW2+9pbKyMs2bN0/vv/9+gEZ7bgoPD1dxcbHKysr0zTffaNy4cTXWW7Jkif75z38qPDxcv/71rzVq1ChFR0ervLxce/fu1ZtvvqmtW7fqz3/+sz744IMmfYDPrFmzdOTIEZWWlqply5aKi4tTYmKiEhMTFRzMn2AALh6s0wkA57GxY8fqlltuUceOHX0Ofr44fPiwDh48KMn3qbU5OTlKSkqSJA0fPrxJx+9vc+fO1ciRI6sFTk/jx49Xly5dJEkHDhzQvn37mmp45wXPKbdfffVVjXVKSkr0xhtvSJJmz56t++67T9HR0Vb7+Ph4vfjii4qPj1dOTo6WLFni/4F72LVrl8rLyxUcHKy8vDwlJyfr2Wef1SOPPKLc3NwmHQsABBIfswEA6m3dunWSXFN6e/Xq5VMfK1eutKZDDh069KzaOBwOfffdd/r++++Vlpam/Px8lZeXKyoqSldeeaUSEhJ0yy23WMHDbfDgwZKkESNGaPr06Tp06JC++OILbd68Wbm5uWrRooXi4uJ07733qmfPnla7U6dOadmyZVqxYoWOHDkiu92udu3a6ec//7nGjRunZs2a+fS9u11//fXWPbmHDx9W586dfe7rwIEDWrx4sX766SdlZmbKbrcrIiJCkZGRio2NVe/evTVw4ED97Gc/86l/h8Oh//znP1q9erUyMjJUUFAgwzDUsmVLRUVFqVu3bkpISNCAAQMUEhLi1bbqz//AgQP68ssvlZKSotzcXJWWlurZZ5+t9QOMgwcPKi0tTV27dvU6vnbtWhUXF6tLly613hcbHBysxMRE7d69W5s3b9Zdd93l0/d/tkJDQ3XHHXdo6NChiouLs66sHj58WJ9//rkWL16sXbt26cknn9Rbb73FFU8AFwX+pwMA1Jt7au2NN97o8x/NGzZskOS677FTp05nrL93717NnDlTR44cqVaWk5OjnJwcbdy4Ufv27dP06dNr7WfNmjV67rnnvJbkOHXqlJKTk7Vx40Y98cQTuv3225Wbm6vp06crLS3Nq/3+/fv19ttvKzk5WfPmzWtQ8HQ4HNa2zeb75KPFixdr/vz51Z70WlBQoIKCAh05ckSbN2/Wvn37NGPGjHr3n5+frz/84Q81PrTK/bNPT0/XV199pQULFqhDhw619rVs2TLNmzdPZWVl9RrDhg0bqoXOHTt2SHKF0jvuuKPWtqdOnZIkZWVleR3PzMzU3XffXa9xeLr33nv10EMPeR2Ljo7WtGnTqtXt2LGjpk2bpvbt2+v1119Xenq6VqxYoVtvvdXn8wPA+YLQCQCol9zcXO3atUuS71Nry8rKtHPnTklSt27dzji1Nj09XY8++qhKS0slSb169dKwYcPUqVMnhYSE6Pjx40pNTbWuwNZm3759+u6779S6dWtNmTLFOveWLVv0wQcfyG636+WXX1bPnj31zDPPaO/evbrjjjs0cOBARUVF6ejRo3r//fe1b98+bd++XQsWLNADDzzg089AkrZu3WptX3HFFT71kZGRYQXOli1b6vbbb1fPnj0VFRWl8vJyHT9+XLt371ZycrLPU5jnz59vBc7evXtr2LBhio2NVYsWLXTy5EkdPHhQP/30kzVduja7d+/WypUr1bJlS40bN049evRQSEiIDhw4oMsuu6zGNsHBwXI4HNq6dasmTZrkVeaeolpWVnZW9zG7w2cgjRs3Tl988YWys7O1fv16QieAiwKhEwBQL99//71M01RoaKj69evnUx/79u2zrvLFx8fXWdfhcGjmzJlW4Hz88cc1ZsyYavX69++vyZMnKzs7u9a+0tPT1aVLF82fP1+RkZHW8auvvlodOnTQ008/LYfDoUcffVSFhYWaO3euEhISrHpxcXHq06ePJkyYoNzcXC1atEgTJkyotuTH2Vi3bp32798vyRW8O3bsWO8+JGn16tXWFc6XX37Zuk/U06BBgzR58mQVFBTUu/9Tp05ZYX7QoEF65plnqoXXnj17avTo0SotLa3ziu3+/fvVoUMHvfbaa2rTpo11vK6nH0dHRys7O1t79uyR0+n06t9zevasWbPq/b21bdu21vtFz0ZYWFi929hsNnXr1k3Z2dnKzMz0+dwAcD4hdAIA6sU9tTYhIUHh4eE+9eE5RdYzfNRk5cqVOnr0qCTX03prCpye2rZtW2f5U0895RU43YYMGaKYmBjl5OToxIkTGjdunFfgdIuIiNDIkSP1wQcf6MSJEzpw4EC978XMzc3VSy+9JEkyDEO/+93v6tXek/sKn3vJnLq0atWq3v0XFRVZHxD07NmzzqulZ/N+mDZt2hl/5zX1abfblZubq0svvdQqc/dT1wcNdbHZbKzfCQBNgKfXAgDOWnFxsbZt2ybJ96m1knT8+HFru2XLlnXWdYdcSbrnnnt8PqfkmsJaWzAzDMOrbNiwYbX241nv2LFj9RqD3W7X9OnTrbBY9eFF9RUTEyPJ9btZvXq1z/3UplWrVtZTeFetWqWSkhKf+4qJiakxyNfF855Zz/eNJPXo0UOSa9ru+fI0WKfTaU1Pj42NDfBoAKBpEDoBAGctKSlJDodDQUFBGjBggM/9eN5bV9NVR0979uyR5LqqdTYPHKrLmdp7jqWup7x61qtPCDt9+rT+7//+z3o40cCBAzV58uSzbl+TYcOGWcHs6aef1iOPPKKPPvpI27dvt6YkN0RISIhGjBghSUpNTdVdd92luXPnatWqVfUO3L48ndczdHo+/ElyXZ2OiIiQw+HQ66+/LtM0a+3H6XSqqKio3uevr7rGIMm6n1Ny/f4B4GLA9FoAwFlzX3Xs3r17g6Ylet4DeaanmObn50uqvKLXEGe6B89z6mhdU0Vruq/wTBwOh2bMmKFNmzZJkvr27atZs2b5dD+op3bt2un555/Xc889p5ycHO3YscN6qmtQUJC6du2qwYMH67bbbjtjwK/NY489prKyMq1YsUKFhYX6+uuv9fXXX0tyfRjQt29fjRo16oxXbOu6ql1UVOT19F33z9XzAwq73a6SkhJrGZLIyEg99thjmjNnjlatWqXi4mI98MAD6tq1q2w2m5xOpw4dOqTk5GQtWbJEEyZMqPMKdmN47LHH1KdPH/Xv319XXHGF9XTno0eP6osvvtC///1vSa4A7g7zAHChI3QCAM5KWVmZNm7cKKlhU2sl1/2HboWFhQ3q63zgcDj09NNPW8vEJCQk6Nlnn7WmrTZU79699fHHH+uHH37Qxo0btX37dh05ckTl5eXauXOndu7cqY8++kgzZ86sdT3LujRr1kzTp0/Xfffdp++++07btm3Trl27VFpaqry8PC1fvlzLly/X4MGDNWPGjFqXkanrIUO/+c1vqi1pIrmmzro9+eST1lqfbiNHjlRZWZn+8Y9/aOPGjdq4caNCQ0MVHh6ukydPei1L0xT+97//6d1339W7776roKAgtWjRQqdPn/a66nz11VfrmWeeYY1OABcN/rcDAJyVlJQU6w/nhoZOz+UxzhQ6o6KilJ2dfd7cs1eVO3C6rxJff/31mjNnToPW96xJaGiobr75Zt18882SXFeIt2zZohUrVig5OVmFhYWaMWOGFixYoOjoaJ/O0bFjR91///26//77VV5ervT0dG3YsEGLFy/WiRMntG7dOr3zzjt69NFHG/NbO6PRo0erb9+++vLLL5WSkqLMzEwVFxerefPmat++va655hoNGDBA119/vd/H8vDDD2vLli1KS0vT8ePHrfd327ZtFRcXp6FDh2rIkCENvsINAOcTQicA4Ky4Q1OXLl0a/AAUzzUpDx06VGfd+Ph4ZWdn6/jx4zp06FCd91qea6oGzl69eun5559v9MBZk6ioKCUmJioxMVEvvfSSFi1apNLSUn3//fcaPXp0g/t3T93t2rWrRo4cqfvvv192u10rV670KXR+9tlnNR6/5557dPToUcXGxurTTz+ttX1sbKwefvjhep+3sQ0ZMkRDhgwJ9DAA4JzCg4QAAGfkdDr1ww8/SGqch5+0bdtWl1xyiSRZT/KszeDBg63tBQsWNPjcTcXhcGjWrFlW4OzZs6deeOEFn9Z2bCjPKbXue2QbU2xsrLXOqC9rgdYmPz/fWi7nmmuuabR+AQBNi9AJADijHTt2WGHFMwQ2hDsIHTx4UCdPnqy13tChQ61As3TpUi1cuLDOfn1ds7ExORwO/e1vf9O6desk+Tdwrl279oxB0n0vriS1b9++Xv0fO3ZMKSkpddbJzMzUwYMHJbkebNRYUlNTre0bbrih0foFADQtptcCwHnsyJEj1pNK3dzrP0rSmjVrvJ4yGx4e7tPUP/fVunbt2vm07EVNbr75Zi1dulROp1MpKSm66aabaqwXHBysv/71r3rkkUdUWlqqV155RevWrdPw4cPVqVMnhYSE6Pjx40pLS9OaNWsUHx/v9aCZQJg9e7bWrFkjyRXyHnroIWVmZtbZpnXr1mrdunW9z7Vw4ULNnj1bvXv3Vu/evXX55ZerVatWOn36tLKzs7Vy5UrrKvVll11W76VusrOzNW3aNLVr104DBgxQt27d1LZtWzVr1kwFBQVKTU3VokWLrKcQjxkzpt7fQ202b94syXW/6o033tho/QIAmhahEwDOYzt27NCcOXNqLX/zzTe99i+77LIGhc7GXFcwISFBMTExysnJ0YoVK2oNnZJ01VVX6dVXX9XMmTN17Ngxbdu2Tdu2bauxbnx8fKON0VerV6+2to8ePaqHHnrojG0mTpyoSZMm+XS+srIyJSUlKSkpqdY67du315w5c+pcCqYux44d0+eff15ruc1m0z333KNf/vKXPvVflcPh0KpVqyS5rq77utwLACDwCJ0AgDrt3bvXukrX0KfWegoKCtKdd96pt956S8nJycrPz69z7c+4uDh9+OGHWrFihdavX6/09HTr/sHWrVurc+fO6tOnj2655ZZGG+P54Omnn9amTZv0008/KSMjQ3l5edZ021atWumqq67SoEGDNGzYMJ+WaLn22mv12muvKSUlRampqcrOztaJEyd08uRJhYWFqV27drr22mt12223NdpVcEnWe0KSxo4d22j9AgCanmGaphnoQQAAzl3vvfee3nvvPbVu3VpffvllnWst1ldxcbF+9atfqbCwUA8++KDGjx/faH3j/Pbkk08qKSlJvXv31ssvvxzo4QAAGoAHCQEA6uSeWtu/f/9GDZySFBERYQXNTz75RCUlJY3aP85PqampSkpKkmEYmjJlSqCHAwBoIEInAKBWp0+f1qBBgzRx4kTdeeedfjnHmDFj1KFDBxUUFNS6ViMuLu+8844kafjw4erWrVuARwMAaCim1wIAAm7Xrl1KSkpSRESE7rrrrkAPBwFUXFyszz//XKZp6s4776zzPl8AwPmB0AkAAAAA8Bum1wIAAAAA/IbQCQAAAADwG0InAAAAAMBvCJ0AAAAAAL8hdAIAAAAA/IbQCQAAAADwG0InAAAAAMBvCJ0AAAAAAL8hdAIAAAAA/IbQCQAAAADwG0InAAAAAMBvCJ0AAAAAAL8hdAIAAAAA/IbQCQAAAADwG0InAAAAAMBv/h8nPgrLTOm90wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC4gUlEQVR4nOzdd3wT5eMH8M9d0nQPoIWyStkFiiwBEZSNAxURERUE3F8HuPfeWxw/xS2gCLjAgciQIYJMkb33kAKlpbtpcs/vjzRH0mZckmuTtJ/36xUtzd1zT9omz33uee55JCGEABEREREREVGIk4NdASIiIiIiIiItGGCJiIiIiIgoLDDAEhERERERUVhggCUiIiIiIqKwwABLREREREREYYEBloiIiIiIiMICAywRERERERGFBQZYIiIiIiIiCgsMsERERERERBQWGGCJiIiIiIgoLDDAEhERERERUVhggCUiIiIiIqKwwABLREREREREYYEBloiIiIiIiMKCLgH2wIEDkCQJkiRh/PjxehRZK/Xr10/9ORIRuTN+/Hj1s+LAgQPBro5qypQpar2mTJkS7OqQzhRFQbdu3SBJEiZMmBDs6lCY4OcCUWU1OTtZrVa0bdsWkiThscceq5JjVFsP7JQpU/Dss8/i2Wefra5DBt2cOXPU15ybmxvs6lA5i8WCRYsW4dFHH8WAAQPQsGFDREZGIi4uDi1btsS1116LOXPmwGq1+lTuli1bMGHCBGRkZCAuLg6JiYno2LEjHn30URw8eLCKXg0R1Wbz5s3DTTfdhIyMDCQmJiI2NhYtWrTAgAED8Pzzz+Pff//V7ViffPIJ/vnnH0RFRXk8KTlw4AB++OEHPPbYYxgyZAjq1aunnqj169dP8/Ecg4+Wx9KlS72WWVRUhE8//RRDhw5FkyZNEBUVhaioKDRq1AhDhgzBu+++G1B7/ddff0GWZbVO6enpfpflyrFjx/D888/jggsuQEpKCiIiItS2a+TIkZg1a5bmtuv48eN45plncN5556FevXqIjIxEkyZNcNFFF+GLL76AxWLRte7B1LFjR/V38scff/i8/19//aXu3759e5/3F0JgxYoVeO6553DxxRejadOmiIqKQkxMDJo1a4bhw4fjq6++Qmlpqdeyli5d6tP7wttFg7y8PCxduhRvvfUWrrvuOrRp08bpb9iXi6RFRUX4+++/8f7772P8+PHIzMyE0Wj06T3qDz3f1yUlJZg8eTIuvvhipKamIjIyEikpKejZsydefvllZGdnV8lrCIYJEyaov5unnnrK5/2LioqQmJgISZJgNBpx7NgxAIDBYMCTTz4JAHj77bexZ88eXesNABA62L9/vwAgAIhx48a53KZv377qNrXFuHHj1Ne8f/9+r9vXxp9RdVu8eLGoW7eu+nP29OjevbvYs2ePpnLfeOMNERER4bas+Ph4MWPGjCp+dVRb+PrZUl2+/PJLtV5ffvllsKtTo+3bt0/079/f6+fYsGHDdDleYWGhSE1NFQDExIkT3W733nvveaxP3759NR/T8e9Jy2PJkiUey1u7dq1o3ry513Lq168v5s+fr7mediUlJSIjI8OprGbNmvlcjjtTpkwRcXFxXuvfqVMnr58L06ZNEzExMR7L6dKli9i7d2/A9Q6Fz4W33npLrcOYMWN83v+mm25S93/99dd92nfbtm2iUaNGmv6G27RpI9atW+exvCVLlvj0vvD0M8/NzRWSJHnc35c2xtv5lbf3qD/0fF+vW7dOpKeney3n999/D7jeWrJTVVu/fr1ah7S0NKEoik/7T5s2Td3/0ksvdXrOYrGINm3aCADi2muv1bPaQgghjNBBeno6hBB6FFWrVdWVKTrr6NGjOH36NACgbt26GDRoEM477zw0bNgQZWVlWLNmDaZNm4a8vDysXbsW/fv3x5o1a5Camuq2zI8++ggPPfQQACAiIgI33HAD+vbti7KyMsyfPx/ff/898vPzccMNNyApKQkXX3xxtbxWqrmmTJnCoXi12M6dOzFgwAD1ave5556Lyy+/HM2bN0dUVBROnDiBjRs3Yu7cubod88MPP8Tx48dhMBjw8MMPu92uYu9fdHQ0WrdujU2bNgV0/AkTJmDAgAEet8nMzHT73MGDBzFo0CCcOXMGAJCamorx48ejdevWMBqN2LdvH6ZNm4b9+/fjxIkTuPzyy7F69Wp07txZcx1feOEF7NixA7GxsSgsLNS8nxazZ8/GjTfeqJ5rde7cGddccw3S0tJQWFiIrVu3YsqUKcjLy8PGjRsxYMAAbNq0CXFxcZXK+uqrrzB27Fj130OGDMGwYcOQkpKCw4cPY8aMGVi3bh02bNiAIUOG4O+//0ZKSoqur6e6jRkzBo888ggsFgt+/PFHfPjhh4iPj9e0b1FREb777jsAtp6lG264wadjZ2dnq+/V2NhYDBo0COeffz6aNGkCANi0aROmTJmCrKws7Nq1CwMHDsSKFSvQoUMHr2WPGjUK1157rcdtunbt6vY5IYTT+bskSWjVqhVOnTqFnJwcLS/PScX3f1paGsxmM44fP+5zWVro+b7eunUrBgwYgLy8PABAhw4dcMMNN6B58+bIzc3FvHnz8NNPP+HEiRMYPnw4Fi1ahPPPP79KXld16dq1K8455xxs2rQJhw4dwuLFizFw4EDN+zueh9x4441Oz9nbiltuuQXffvstnnrqKb9GL7ileyR2ozb2LoZqL0lt9tVXX4mOHTuKb775RpSUlLjc5siRI6JDhw7q727s2LFuyzt27Jh6FdtoNIqFCxdW2sbx6nPTpk1FcXGxbq+HKJSEQk9LTVdUVCRat24tAIiYmBjx7bffut1WURRx+PDhgI9ZVlYmmjZtKgCIIUOGeNx29uzZ4q677hJffPGF2Lhxo7BYLE49Df72wAb69+TYg3bRRReJoqKiStuUlZWJsWPHqtv50nu9ceNGdRSOY2+fXj2wLVq0UMt8+umnXfaUnDp1SpxzzjnqdpMmTaq0zYkTJ5x6cSdPnlxpG0VRxL333qtuc+ONNwZU91D5XBg2bJhaj88//1zzfo69TJdddpnPx12+fLlIT08XH330kcjLy3O5TU5OjtN58oUXXui2PMce2Geeecbn+jjKz88X1157rXjjjTfE4sWLRW5urhDC+Zzdl/PXsWPHipdeekn8/vvv4uTJk0II53NhvXtg9Xxf9+zZ06mXvqysrNI233//vZBlWQAQbdu2dbmNVqHQAyuEEJMmTVLrccMNN2je7+DBg2rvfb169URpaWmlbc6cOSOioqIEAHHrrbfqWW3BAFuFGGBDT05OjqYhEps3b1Z/d9HR0aKwsNDldo6N/EMPPeS2vJEjR6rb/d///Z/f9ScKZaFyolqTPfLII+rPePbs2dVyzNmzZ6vHnDZtms/7h0KAbdy4sVrW1q1b3W6Xk5MjjEajACDq1q2rqWyLxSLOPfdcAUBcfvnlTq9XjwC7e/dutbwGDRoIq9XqdttffvlF3faqq66q9Pyrr76qPj9ixAi35VitVtGxY0cBQMiyLHbt2uV3/UPlc2HOnDlqPS644ALN+w0YMEDd74cffvD5uPn5+cJsNnvdLisry2lY9759+1xup2eAdcffAOtKVQZYvd7Xq1atUstp3Lixx46GO++8U932s88+87vuoRJgT5w4oV58i42NFfn5+Zr2e/7559X6T5gwwe129vPf6Ohotxdw/FHlsxDbZ9ZdtmyZ+j1XN5m7m9xJURR8++23GDVqFJo3b46YmBjEx8cjIyMDd9xxBzZv3uyxbs8++2ylm8f/+OMPXHfddepwq4o3qVssFsyfPx8PPPAA+vTpg/r168NkMiE+Ph5t2rTB+PHj8eeff7o9pn2G0KlTp6rfa968eaXX7O5npWUW4tWrV+O2225D27ZtER8fj9jYWLRs2RLjxo3D4sWLve5fcUKNwsJCvPnmmzj33HNRp04dxMbGokOHDnjsscf8GkYSqpKSkjT9fDMzM5GRkQEAKC4udnkDuhBCHVbkbVbOiRMnql/PmjXL12oH5O+//8Ydd9yB9u3bIykpCVFRUUhLS8OoUaO8DjF0nCzC/h49dOgQHnjgAWRkZCA2NhZJSUk4//zz8eGHH2qe9KOgoADvvPMOBg8ejEaNGiEyMhJ169ZF9+7d8fTTT+PkyZMe96/4XrFarZgyZQoGDx6Mxo0bw2g0upw8JSsrCw8//DDat2+P2NhY1K1bFz169MBbb72FoqIiALZbIlxNvvL777+rx3T8fXoyceJEdZ958+Zp2kcLb7MQV9Xv7ddff8Xll1+O1NRUREVFIT09HaNHj8bff//t82swm834/PPPccUVV6gTmiQlJeGcc87BAw884HbikJ07dyI2NhaSJCExMRH79+93e4ycnBykpaVBkiQYDAaPn9vhoLCwEJMnTwYA9O/fH1deeWW1HPerr74CYBsOPHz48Go5pt5OnDihft26dWu32yUlJanDZbUOA37nnXewbt06xMXF4YMPPgisoi441r1ly5aQZfenbm3atFG/dlV/x/MDT0NhZVnG6NGjAdjOw2bOnOlTnf2xdu1apKSkQJIkREZG4ttvv620TSDnhEOHDkX9+vUB2CZl2rdvn9c6HTp0CEuWLAEAJCcn4/LLL/f5dcXFxSEiIsLrdvXr18eFF16o/tvb+S3p9752fF+MHDkSUVFRbstyHH7/zTff+FRff5w8eRLdu3dX2/T777/f5W2b/p7rpaSk4LLLLgNg+9m4et+54phxKg4fdmT/HCkuLsb333+vqWxN9EjBnq4iOF7F8fRwdRVpz549onPnzh73k2VZPPXUU27r9swzz6jbLl68WNx1110uy3G8wtSvXz9NdR43bpzLLnPHq03e9nf3s3KnrKxM3HrrrV7Lvuaaa1wOpbCzb9e3b1+xd+9e0b59e7dlNWvWrFb2IHfv3l39GaxatarS8469tJmZmR7LslqtIiEhQf2b1fMqlDsFBQVi1KhRXv9Whg4d6rY+Fa/0zps3TyQlJbkta/DgwW6HZtv99ttvon79+h7rFB8fL3766Se3ZTi+V7Kzs0WfPn1c/t06Wrx4sahTp47bY3bs2FEcOnRINGvWzOX+VqtVnSiiTp06XoeCFxcXq8dLS0vz2GviK2+jO/T+vVksFo+fa7Isi9dee01zT4uWSTdMJpP46KOPXO7/ySefqNv16tVLWCwWl9tdffXV6nZPPPGEx59pOJg6dar6enwZAhmIkpIStVfI07BGT0KhB7ZJkyZqWVp7ajp37uy13L1796o/H/uQXb17YPfs2aOWl5qa6vGz5Ndff1W3vffeeys979jWb9++3eNxf/zxR3Xb8847z+/6a/k9zp8/Xx3aHBcX5/J2HD3OCe+//35126efftpr3R17me655x6tL9lvjqO1Zs6c6XIb9sCepdf72rFX1dWwekenT59WtzUYDG5H6HmjpQd2//796kRIAMQrr7xSaRs9zvV+/vlndTstn/N//vmnun2nTp08bus4UZhekwoKodMQYk+/hOXLl4vZs2c73VM4e/bsSo+KH6R79uwRycnJ6j59+vQRr776qpgxY4b4+uuvxX333ed0MuruTewYYC+55BK1AXj00UfF119/LaZMmSLuvPNOcezYMXWfnj17iri4ODFs2DDx/PPPi2nTpolvv/1WvPvuu+K2224TsbGxHj/Q1q9fL2bPnu00Q+THH39c6TWvX7/eaT8tAfbaa69Vt4mKihK33367mDp1qvj666/FvffeK+Lj49XnL7roIrfDZe3bdOnSRWRkZAhJksSwYcPE5MmTxaxZs8Qrr7wi0tLS1O18GW5TE5SWljqd8P/333+VtpkxY4bXDx9Hjr/f1atXV0GtzyopKRHnnXeeeryWLVuKxx9/XHz11Vdi5syZ4sUXX3T6UBwwYIDLkyLHhnLYsGEiJiZGREdHi9tvv11MmTJFzJgxQzzwwANO7wlPJw/ff/+9MBgMAoCIiIgQI0aMEO+//7749ttvxWeffSZGjx6tDmWRZVn88ccfLstx/Fna39edOnUSr776qpg5c6b45JNPxN13361uv3XrVqehWV26dBFvvfWWmDVrlnjvvfdE79691TBkH5Lk6sTz5ZdfVsv4+uuvPf4OvvrqK3Xb5557zuO2vvIlwOrxe3Ns3E0mk7j11lvF1KlTxVdffSUmTJig/myvvPJKryeqK1euVLeXJElcfPHF4u233xazZs0SU6ZMEbfffrvT78pdOSNGjPBY988++8zp5DuQe5VCxc0336y+ps2bN4uSkhLxzjvviB49eojExEQRExMjWrZsKW688UbdPmP++OMP9ZgPPvigX2XoEWC7d+8u2rZtK2JiYkRMTIxo1qyZuPrqq8XXX3+t6XfrePHa071yju+tKVOmeC134MCBAoDo1q2beiFF7wArhBCZmZlO5zve7oGNjIwUO3bsqLRNu3bt1HJ8CbDx8fE+z1Bq5y3AfvPNN+rnfkpKili7dm2lbfQ6J3S88Jyenu71NbVs2VLd/t9///Xn5fvE8QLD33//7XIbx8/3zMxM0bFjRxEXFyeioqJEkyZNxGWXXSYmT57ssRPDm3AJsHq9r++44w71eV8CLACXf69aeAuwmzZtUmevNhgMLi9a6nWuV1ZWJho0aKC2y95mH3e89/idd97x+lrtnztxcXFuLzj7KiSX0bFaraJr167qh7C7SSqOHz+uXo2TZVls2bKl0jaOAdb+oXfmzBmPx1+0aJHHN/6pU6fUHh9Zlt3ep6D3MjozZ85Un2/QoIHLq00HDhxw6tlwd7+l48/EZDKJX375xeXrdCwrkBOiwsJClxcu/HlUDP5VwTF8dO3a1eU2zz33nNfG0pHjJAJfffWVzjV2VvHeXFcneGaz2alOrj60K07Xn5aW5vJeqNWrV6tXN+vUqeOyN+/QoUNqL3RaWprYtGmTy7qvXr1aJCYmCgCiSZMmLu8dqjiy49577/XYK+HYQ3vnnXe63LbiZ4WrE8/jx4+rJ1reTsQvvPBCteHRYyIdR74E2EB/b45XWpOSklwu8bBjxw51iRVPJ6p5eXnqZEBJSUli6dKlLl/f7t271QtosbGx6mQgjk6fPq1efTcYDGL58uXqczt37lTDeUJCQsBLgWzfvl23zy9Xr0WrTp06OZ1MO14YdvW4++67Az5ZcLxo89133/lVhh4B1tOjbdu2YuPGjR7LOnnypGjVqpW6T2pqqnjsscfEF198IaZNmyaeeeYZtb2TZVm88MILXuv3+eefq39/ju1SVQTYv/76y+mCU+fOncXLL78spk+fLj755BNxzz33qJ+viYmJYu7cuS7Lcbyw7mmUixDO98sCEEeOHPGr7p4C7Hvvvaf2zjRr1kzs3Lmz0v56nhMKIdT7lQHbyDx3li1bpm7XpUsX7S/YT8uXL1ePl5KS4va9q3UZnYYNG3p8fZ6ES4DV633teD533333eTym4/2ygPeL2e546/yzd6JERUWJOXPmuCxDr3M9IYR48MEH1W08jU4oLCxUO8siIiI0tWnjx49Xy/b2Wa1VSAbYH374Qd32vffe87jtzp071R4dVzNcOZ6UxsbGiqNHj2p6Td7s3btXLdfdG0LvANulSxf1+d9++81tOatXr3ZqEFx9CDq++Z5//nm3ZX366aeatvPG8W8k0EdV3+x++vRp0bBhQ68nbffdd5+6zfvvv++1XF+399exY8eEyWQSgOtJPByZzWZ1dsvWrVtXer5iQ/nnn3+6LWv06NEet5swYYJ6srdhwwaP9bKfGAIQ06dPr/S843ulW7duHsPr2rVr1W0zMzM9ntA7luvuxNNxiJe7iU127typbjN06FCPr9UfvgbYQH5vjjN3euqRchy66OpEVQjntRh//vlnj6/RsefvpZdecrnN0qVL1RkhmzVrJnJycoTZbBbdunVT99XjYlHFixuBPAI5gbNfIQegXlVv1KiReOqpp8SMGTPEZ599JkaOHOm0rqOnyTW0uP7669Wy3F108iaQAGs0GkXfvn3FU089JaZOnSq+++478eGHH4oxY8aos1sCth5CbydG2dnZ4uqrr1bPGVw9rrnmGq+fT0II8d9//6k9fhVPeKsiwAohxL///ut0a0vFh9FoFE888YTH85wnn3xS3f7qq692u53jJE72h7tA6I27APvEE0+o3+/QoYPbgKznOaEQQnzwwQdqeZ5WGbjxxhs1HzdQpaWlTjNIv/HGG263XbJkiZAkSfTo0UM88sgj4osvvhDfffed+PTTT8Vtt92mXgC2/00sWLDA5/qES4AVQp/39aJFi9RtGzdu7PGWmoq3Ivo7Mae77PTTTz+J6OhoAdguRi1btszl/nqe6wlhG6lmr4+n0QmOt7J4O67da6+9pmubLESIBlj7MLSEhARNS4706tXLbUPheOLh6YPKH/YeB3fTqusZYB1/xh07dvRaln1YE+C659T+nMFgEKdPn3ZbjmNQD2Qh4nAJsBaLRQwZMkQ9lqfw4Xgv8qeffuq17Mcff1zd/uWXX9az2k7eeecd9TgrV670uv1jjz3m9u/UMQh5uwLtGDor3ruoKIq6wLm3ZTiEsN3TYe8ZdPX7dnyvfPHFFx7Lcjxh8zY0yHHInLsTT8dg9fDDD7vc5qGHHlK38dbL4Q9fAmwgv7eSkhK1gWzQoIHX3jzH4YmuAqy9d6RNmzZeX6MQQh0+5Sn0OL6vRo0aJR5++GH136NHj9Z0HG9CJcBGRkY6ldWzZ0912QtHv/zyi/r+AdwPRdTCPrwe8L8Hzt8Au3v3bo9h7NChQ06BLiMjw+vf6N69e8Utt9zi9vdjMpnENddc43RbkSv2IexpaWmioKDA7evVM8AKYRuC7+qef/ujbt264uGHH3Y76+3evXud/jbctV2OvTG+tCeuVAywFovF6Xdw/vnnezwP0fOcUAjbRWr7xQ93s6469jKZTCZx6tQpza/XH463B3Tp0sXl/Cp2x44d8zgr9OnTp8Wll16qllevXj2vIw8rCqcAK0Tg72uLxeLUkztu3DiXnyVz5sypFJT9PZ9zlZ0+//xztfzU1FSPw9b1PNez69Gjh9ffleMoDlejN11xnLfixRdf1LSPN0aEoOXLlwMAGjZsiN9//93r9gaDAYBtQePi4mJER0e73O6CCy7QXIe8vDxMnz4dv/32GzZv3oxTp065nZHwyJEjmsv115o1a9SvhwwZ4nX7IUOG4I8//gBgm7G4R48eLrdr06YN6tSp47acxo0bq18HMhtxenq6y1nTQs0999yDBQsWALAtwO24SHO4sL9/ANvf5pw5czxu7/h73b59u8vZewHgvPPO81iOp7+VrVu34vTp0wCA+Ph4r3UCbDM35ubmYvv27R638/a+Xrdunfp1//79PW5rn5Xbk/79+6NNmzbYtWsXpk6dihdffNFphsmysjJ1dr5GjRph6NChXsusSoH83jZu3Aiz2QwA6Nu3r/pZ687AgQPd/r7OnDmDTZs2AQAaNGig+W8AgMe/geeeew5//PEHVq9e7TTDd/PmzfHhhx96PYYWzz77rNuZ8quToijq1xEREZg5cyYSExMrbXfZZZfhnnvuwVtvvQUAeO+997z+Hbhjf98CQN26df0qw1+tWrXy+HzTpk0xb948ZGZm4vjx49ixYwe+//57jBo1yuX2r7zyCp588kkoioJbbrkF//vf/9C+fXsAwLZt2/DRRx/hs88+w7fffotVq1Zh4cKFTrP62s2ePRs//PADAOCDDz5AbGxsgK/Uu8LCQowdOxY//vgjYmNj8corr+Dqq69GWloaioqKsHr1arzyyitYtmwZXn/9daxfvx4///wzYmJinMpp0aIFnnjiCTz33HMAgFtvvRU//PADrrjiCiQnJ+Po0aOYMWMG1qxZg5SUFJSUlCA/Px8APM5+rFVJSQlGjhyJ2bNnAwAuvfRSfPfdd5Xq6Ujvc8I6dergyiuvxMyZM1FYWIjvv/++0qoQ33//vfq6r7jiCtSrV0/za/TVG2+8gc8//xwAkJiYiFmzZsFkMrndvmHDhh7Lq1OnDn744Qf06NEDmzdvRnZ2NiZPnoxHHnlE13qHCj3e1waDAZMnT8bFF18Mq9WKqVOnYv369bjhhhvQvHlz5Obm4vfff8fs2bPVVQrsM+Xr8b4AgNdeew2PPvooANts4wsWLECLFi3cbl8V53o33XSTmjemTJlS6Zzo4MGD6oouqampuPjiiz0e087x/aPbyiZ6pGA9e2Dz8/MDurpd8Wqt45VzT8NuHS1evLjS/VyeHi1atHBZjp49sI5XWj7++GOvZTmu2/fYY49Vet7+nJbJmezb+nLlPBw59uQ0aNDA5b04jkJ1CLHj8ElfHxWH6zr25Hma5KfithXvCXZcm9DXh6vhLo7vFW8TVTgOy9KyFp/9vhNPPSdvvvmmWmbFdQG///579bmqmvnWlx7YQH5vjp8jjz/+uNd6OX5OVeyBdZw8xddHRESEx+Pu3bvXaQI7o9EYUK9jqLKPYgAgLr30Uo/bOg5jb9Cggd/HtA87MxgMfpfhbw+sVq+88opa/g033OByG8fPd0/DQd999111u3PPPbfS8zk5OeotJu6G4OrdA2uxWMQFF1wgANs9oGvWrHG5ndVqdZrczN2kW4qiiMcee8xpqHnFR4MGDcSqVaucJkby1ia649gD6zi8dcyYMV4n4NL7nNBu/vz5Hv8mHXuZXJ07errPff78+Zp/Nh9//LF6nNjYWLFixQrN+3rjONGkrxNxhksPrF7va7vvv/9enQ3b1cNkMomPP/5YDB8+XP2elnNyVxw/JxzfF506dRLHjx/3ur+e53p2ubm56vBlV6MTHO8VdjcCzZWFCxeq+915552a9/NEn8sGOjpz5kxA+9t7C1xx1zPraPfu3Rg6dCiOHz8OAGjbti3uvfdefPDBB5gxYwZmz56tPuxrSlmt1oDqrIX9SiAATVd77T0XFfetSK8rR+HuxRdfxMsvvwzAttbbokWLXF55d5SUlKR+ferUKa/HyM7Odrmv3gJ5D3l6/wTyt1JVdQK8v6/tIyeMRqOmtfi0vL/Gjx+PyMhIAMCnn37q9Jz935Ik4eabb/ZaVlUL5PdWUFCgfu2ph8TO088ukL+BsrIyj88nJyc79Q62aNEC3bp18/t4ocrxc8Pb62vTpo3aDmRlZTn9Ln1h/zu3Wq3qWsmhxrGXYMeOHZWeP3r0KN544w0AQLt27XD33Xe7LWvChAlo164dANvojVWrVjk9/9BDD+G///5DYmIi3nvvPR1q790PP/yg9rbceOON6N69u8vtZFnGe++9p77nP/74Y5fvHUmS8PLLL2PDhg24/fbb0bZtW8TGxiImJgbt27fH448/ji1btqBbt27Iy8tT92nQoEHAr8VxzenCwkKvI7Oq6pxw0KBBaNKkCQDgzz//dFp32rGXqVGjRi5HvQ0fPtzt47bbbtNUt2nTpuF///sfAFs79ssvv+D888/34dV55u19Ee70fF/bjRgxAnv27MFTTz2Fc889F0lJSTCZTGjWrBluuukmrFu3DrfddpvT+VxqamrAr8XxfVFcXKwpV1TFeVViYqK61ndhYaE60gQAhBCYNm2a+m9Pa79W5FhXLVlMi5AbQuwYvC688EIsW7asWo//yiuvoLi4GADwxBNP4IUXXoAkSS63vfXWW6utXvHx8erXWhZXdzxZcdw3WIqKitShuYFKS0tD165ddSkLAF5//XU89dRTAGxDbxYuXIjMzEyv+zkGXMfGz52DBw+63Fdv9veQJEmwWCwhcZHC8X399NNPq8PXqoM9VFksFpSVlXkNsVreX/Xq1cPVV1+N6dOnY8GCBTh06BDS0tJw8OBBLFy4EIDtBKl58+aBv4Agcvy9aQkvnn52jmWNHTvWaRH0QN15551O769du3bhySefxGuvvaZL+Tt27NDtBLBPnz5ITk72a9+2bdti3759AOBy6HBFiYmJaltw5swZp9+BVo4XBk6fPq3pQkZ1cxyelpubW+n5BQsWqEFu4MCBbtt0wPa5OWDAAHXY+po1a5yGX3/22WcAgPbt26vDPityrMOZM2fw4osvAgCioqLw4IMPantRDubOnat+PWjQII/bNmrUCO3atcPWrVuRn5+P7du345xzznG5badOnfDRRx+5LWvr1q3qiXTr1q01/c1588orr2DmzJlYuXIlZs+ejVGjRmHWrFluP5er6pxQlmWMGzcOL730EoQQmDp1Kp555hkAwNSpU9VgPXbsWK+3TvhjxowZuPHGGyGEQGRkJObMmeP1FhdfeXtfhDs939eOGjRogOeffx7PP/+82/K2bdumfu3ugpIvrr76aiQkJOD999/Hrl270L9/fyxZsgSNGjVyu09VnevdeOON+OabbwDYhhGPGzcOgG3I8t69ewHYbk3KyMjQXGZV3IoScgE2MTERcXFxKCgoqJZ7SytatGgRAKB+/fp4/vnn3b4h8vPznX4hVc3xnofdu3d73d5xG09vgOpy4sQJ9apOoMaNG6fbvamTJk1S7wtJTEzE/Pnz0blzZ037Oobc9evXe9xWURRs2LABgK3htF8JrAqNGzfGv//+CyEEjh49iqZNm1bZsXypk111v68bNWqk3nu5b98+tG3b1u22OTk5mhv6//3vf5g+fToURcEXX3yBZ599Fl988YV6n6LWq/ChzPGzY8+ePV6397RNVf0NTJ8+HdOnTwdg65U8deoUDh48iDfffBMXXXQRBgwYEPAxZs6cqdtFlyVLlmi619qVc845B/PmzQOg7eq7vfcM0BZ4XUlPT8eKFSsA2E5C7L1WocTb6JZjx46pXyckJHgtz/Fn5e6izN9//42///7ba1m5ubnqBdLExES/AmxV1F8Lx7DoyxwinsTHx+P333/HxRdfrCnEVuU54fjx4/HSSy8BsPWGPv300wDgdHGt4r2xdt56jj357rvvcMMNN0BRFJhMJnz//fea5jbxVXWN+gqWYL0vtm3bpo66a9mypdd7krV67733IEkS3nvvPU0htqrO9QYMGIC0tDQcOnQIy5Ytw4EDB5Ceno4vv/xS3caX3lfAOcA2a9ZMl3pWW9eM45UBb2/8Cy+8EIDtZFPLSZOesrKyANgmAPF0NWPRokVOE2q44str9sZxEiZ7D48njr2d7iZwqu0++OAD3H///QBsjeq8efN8upLWoUMH9WRu69atHhvXlStXqieTvXv3rtJe8b59+6pf69XrHaguXbqoDcwff/zh9b2jp3PPPVf9esmSJR63tQ8b06JPnz7o0KEDAOCLL75AWVkZvvjiCwC2C2DDhg3zvbIhplOnTupkIsuWLfM6rMk+cZwrycnJ6sQaq1atcgpX/tq/fz/uvPNOALae9hkzZuDrr7+GwWCAoigYO3as00lcuLvkkkvUr71dNNu1a5d6+0jDhg396n0FnC/U7dy5068yqppj0HI1usXx5Pbw4cNey3Psza/KyXu08rX+hw4dUr8OpP6OF4r1vB3CHmJ79+4NwDYp1jXXXOP2VoGqOids1aqVGsz37duH5cuX488//1RHOZx//vkeL3j6Y86cObj++uthtVphNBoxa9YsXHbZZboew87b+yLcBet97Rjk9L5N6N1338U999wDwPYZ3q9fP6eg7qiqzvXsoxOAs8OG7ZOdAbYhwO4mynPHcSJGdyNCfK6nLqVo4Nh4ervyYf/BAVCviFUX+/Coffv2uQ2dVqtVvV/SE19eszfp6enqsNmNGzd6DLHr1q3D4sWLAdiudITCvWD2WYj1eOjR+/rpp59iwoQJAGwnvr/99ht69erlUxmSJGHkyJEAbG/y999/3+22jvdK+frG99W1116rho7XXnst4L89PRgMBowePRqArRGxD8OrDo5B8oMPPvAYwt59912fyr799tsB2BrPe++9V72IMW7cOE3324a6yMhIXHrppQBsF/fsw4pcmTdvntcZo+2f7UVFRXj11VcDqpvVasXo0aPVIPzee++hdevW6NOnDx5//HEAtnukbrnlloCOA9hmIdbr88vf3lfA1gtmv2i2cOFCj7cufPLJJ+rXWmeKdKVnz57q16tXr/a7nKpy+vRpp/et/e/VkWMInzt3rsd5IfLy8tRebsD5AhgATb/j/fv3q9s3a9ZM/b6/wzgd6z9z5kyP2/7111/q51CdOnXQsmVLv4755ZdfYu3atQBsF119bR+9sYfYPn36ALAFO3chtirPCR17kqZMmeJ0fuFrL5M3v/32G0aNGgWLxQKDwYBvvvkGV155pa7HsCstLXU6T3X1vgh3er6vtdqxY4d6rpeUlKRL+1LRO++8g3vvvReAbTSluxBbled648ePV0egTps2Dd999516O8pVV13l84gee9sRHx+vXsgOmB4zQWmZhXjixInqNu4W5bWzWq1Oa7vdc889HtfEKioqEl9++aWYMWNGpeccZyHWMvvZ4MGD1e3ffvvtSs+bzWanxa3hYZbBt99+W91m6tSpXo/tbabmWbNmqc83bNhQbN++vdI2Bw8eFC1btlS3c7fAsv15LTNC+rJtOJg6dao6+2JMTExAs+IdPXpUxMTECMA28+miRYsqbeM4A2PTpk01rWMXqAceeEA9Zv/+/cV///3ndlur1SoWLlwoXnjhhUrPeZqh1tdtDx8+rM7wGxkZ6fU9kZWVJZ5//nmxcePGSs/5sq60EMJp3cQ777xTWK3WSttUXOtTy+yhubm56u/f8eFpjT49+DILcaC/t+XLl6vP16lTx+Vi8Lt27VJnZrU/XK0DW1BQIJo1ayYACEmSxOuvv+7yd2GXm5sr3n33XbFw4cJKzz311FPqsSrOBltWVqauBYkAZokMRY7r9p533nle14GVZVls3rzZ7+OVlJSI2NhYAT9mMrXzZxbilStXik8//VSUlJS43ebw4cNO6xa2bt3a5ay2ZrNZNGnSRN1u2LBhLmcvLyoqEldccYW6XWZmplAURfPrtPNlFuKKa6S7smXLFiHLsrqNu3UnDx486LSWpbvZPrdu3SpOnDjhtk5ff/21uv5zVFSU2LFjh8fX4E3FdWAd5efnO30+Dxs2rNJs8XqeE1aUn5+v/n3HxcWpM9DGxMT4vHaqJwsXLlTXnjUYDOKbb77xq5zdu3eLN954Q+Tl5bndpuI6sHXq1BE5OTk+HScUZiG2txXu9tP7fZ2VlSW2bdvmtj7r168XTZs2VcuZMmWK5tfiirfsdO+99zp9trlah1uvcz1XHP8GHNt3V+e5nuTm5qrn3FdeeaVP+3pSbffADhw4UO2Fuvnmm3HfffehWbNm6s3xrVq1Utd8k2UZP/zwA3r16oWjR4/i3XffxbfffouRI0eiU6dO6sQUhw4dwrp16/DHH3+gsLAQL7zwQsD1nDBhgtq7ef/992Pp0qW46KKLUK9ePezevRvTpk3D7t270b9/f+zevdvjsNGBAweqXz/88MM4efIk2rZtC6PR9mNv3LgxOnbsqLlu11xzDWbPno2ZM2fiv//+Q9euXTF+/Hj06tULBoMB69atw+eff672SAwZMkQdXkc28+bNw0033aT2rt90003Izc31un5W165dkZaWVun7jRo1wltvvYU77rgDFosFl1xyCcaOHYu+ffvCYrFg3rx56rALo9GITz75BFFRUW6P43jP9f79+92uyerNK6+8gn///Rd//PEHlixZghYtWmDEiBHo1asXUlJSYDabcfz4cbU3//jx4xg4cCCefPJJv46nRZMmTTBz5kxcccUVKC0txbhx4/D222/jiiuuQOvWrREdHY0zZ85g165dWLVqFVasWAGr1arLxBYff/wxunfvjqKiInz44Yf4+++/MWbMGDRp0gRZWVmYNWsWVqxYgV69euHQoUM4evSopgkREhMTMWrUKKchRf369UPr1q0DrnOo6NOnD+688058+OGHyMnJwXnnnYdx48ahT58+kGUZa9asweeff47CwkJceeWVHt9LsbGxmDNnDvr27Yu8vDw8/PDD+PjjjzFixAi0b98ecXFxyMvLw759+7BmzRosXboUZrMZX331lVM5f/31l9q70KRJE6feRsD2Xps+fTo6d+6MvLw83Hfffejbt6/uwwGDYfz48Zg9ezZ+/fVXrFq1Cu3bt8ctt9yC9u3bo7CwEPPnz8d3332nfsa98MILmialcycyMhIXX3wxfvjhB6xbtw4FBQVehyNX/BxxvF93//79lZ7v2rUrrrrqKqfvZWVl4dZbb8UDDzyAiy66CN26dUPjxo0RFRWF7OxsrFixAt9//7066WJ8fDxmzZqltq+OIiIi8N5772HEiBEQQuCnn35Cu3btMHbsWHU+gu3bt2PatGnqMMOIiAj83//9n8eJYapLhw4dMHHiRLzzzjsAgMcffxw///yzug5scXExVq1aha+//lrthWratKk6KVFFv/32G5544gkMGjQIffr0UduZAwcOYM6cOeo6kCaTCTNmzKjS901cXBzmzZuHSy+9FMuXL8dPP/2EkSNH4rvvvlNHsVTlOWFcXBxGjhyJKVOmOE1+OWLECE33VWrx77//YtiwYSgpKVHLjo6O9nrekZGRUWminIKCAjz00EN46qmnMHjwYHTv3h3NmjVDbGwscnNzsXbtWsycOVN9zxmNRnzzzTce74H98ccf8c8//zh9z3EUwVtvvVWpx80+MVlFixcvVkcA2tnn/wCAzz//XJ1rxu7BBx/06x5dvd/Xhw4dQvfu3dGjRw8MHDgQGRkZiI6OxvHjx7Fo0SLMnTtXHcH18MMPO40MqAqTJk2CJEmYNGmSmjuWLFniNJ9EVZ7r3Xjjjeow9P/++w+AbUSJr/NKLF26VG2PdB1xoEcK1tIDa7FYnK6yVXy4uvJ/7NgxMXDgQLf7OD4MBoP49NNPK5Xhaw+sEEI89thjHo/Vu3dvceLECfXqkKcrrNddd53bcir+rLT0KpWVlYlbbrnF68/j6quv9rg+pn272tYDW7GXTevDVW+SozfeeENERES43T8+Pl7T1WDHfQK96llaWiruvvtuYTAYNL3GsWPHVipDz548u7///ltdW9LbIy4uTmzatKlSGb72wAphW9/Z3gPs6pGZmSkOHTokGjduLACIc845R1O5q1evdirH3fpqeqrOHlghbJ/fN9xwg9ufnSzL4vXXX/fY0+Jox44dokuXLpr+BiIjI8W8efPUfXNyctTPXlmWPX6uf/3112o5Xbp08dhrE06KiorEyJEjvbaJ7nrqfDVnzhy13GnTpnnd3tfPV1fnDY5rEHt7ZGZmuhypUdHXX38tEhISvJaXnJws5s6d68+PSgihfw+sELbekwceeMCpJ9bdo1OnTh7XbH3jjTe8ltGiRQvxxx9/+PsjcKLlc6GgoEBceOGF6nZXXHFFpZ5YPc4JXVm2bFml/RcvXhzoy1Y5vn5fHq4+jzds2KB5/7S0NE3nvY7tidaHO/6cY7k71/HWA2un1/t67dq1XsuIj4/3uN6sL7RkJyGEuP/++9XtWrVqVaknVo9zPVcKCgoqrYn79NNP+/w6r7nmGgFAREdHexw54KtqC7BCCFFcXCxeffVV0atXL1GnTh2nH7ank6ylS5eK22+/XXTo0EEkJSUJg8EgEhISRPv27cWoUaPE5MmTxbFjx1zu60+AFUKIefPmiaFDh4rk5GQREREhGjZsKAYMGCA+/fRTdYiSlgBrsVjE5MmTRb9+/URycrI6rMvVz8qXk/K///5b3HzzzaJVq1YiNjZWREdHi+bNm4sxY8ZoanTsx2GA1fbwFmCFEGLz5s3irrvuEm3atBGxsbEiPj5eZGZmikceeUQcOHDA6/6FhYXq8Uwmk8jOztbhFduGHD366KOiZ8+eIiUlRRiNRhETEyOaN28uLr30UvHyyy+7DIlCVE2AFcJ2Iebrr78W11xzjWjevLmIi4sTRqNR1K1bV5x77rni1ltvFbNmzRIFBQUu9/cnwAohxPHjx8WDDz4o2rZtK6Kjo0VSUpI499xzxZtvvikKCwuFoijqIt79+vXTVKaiKOoi5HXr1vU45FEv1R1g7X755RcxdOhQkZKSIiIjI0VaWpq47rrrxMqVK4UQ2k5U7RRFET/99JMYN26caNOmjUhISBAGg0EkJSWJTp06ibFjx4opU6aI06dPO+03atQo9RiPPvqox2MIIcTo0aPV7R944AGv24eT33//XVx33XUiPT1dREVFifj4eNGhQwcxceJEXYexWywWkZaWJgCIwYMHe93e189XV+cN+fn54qeffhKPPvqoGDBggGjTpo2oW7euMBqNIikpSbRr106MGzdO/Pzzzx6HoVeUlZUlXnvtNTFw4ECRmpoqIiMjRWRkpGjYsKEYMmSImDRpks/DLSuqigBrt3XrVvHAAw+IHj16qD8P++f5yJEjxaxZs1wOo3Z0+PBh8c4774hhw4aJNm3aiMTERBEVFSXS0tLE0KFDxeeff67rrS5aPxdchVhXF50COSd0RVEUp1uv0tPT/Ro67o6eAbakpET8/vvv4plnnhEXXXSRyMjIUM8tExISRKtWrcS1114rpk+frvmCXbgHWCH0eV8XFBSIKVOmiHHjxonMzEz1/D81NVX07t1bvPrqqx6H6PpKa3YSwnmosKsQK0Rg53ru3HTTTepxJUkS+/bt82n/M2fOqOdUt956q0/7eiMJUd6vS0RBNX/+fHWylYkTJ/o8oRAFbvPmzeoMeVp/B4sWLcLgwYMBAPfcc486zI+oJpk0aRLuv/9+GAwGHDhwICSX0yEiotDxxRdf4Oabb4YkSdiyZYt+EzihGmchJiLP7PeFxMfHV+m9qOTe//3f/6lfa733dvLkyerXNWHtVyJX/ve//yE1NRVWqxWvv/56sKtDREQhzLGtGDVqlK7hFWCAJQoZ9gB7//33IyUlJci1qXmWL1/ucf3ZDz74QJ0MqHHjxprW5vv333/ViTgGDRqk+wc0UaiIjo7Gs88+C8C2RI+7tQmJiIhmzJiBnTt3wmQy6TLJbkUcQkwUAk6dOoX69esjOTkZe/fuRXx8fLCrVOO0atUKJSUluOSSS9ClSxekpKSgrKwMe/fuxezZs51mSvzll1/cBtjff/8diqJg165deP3119XZ+f766y/07t27Wl4LUTAoioLu3bvjn3/+wd133+1x7WsiIqqdrFYrOnTogJ07d+LRRx/FK6+8ovsxGGCJqFZo1aoV9u7d63Gb6OhofPrppxg9erTbbVxNv6/1ftkFCxagqKjIe2VdSE5ORp8+ffzal4iIiKimYIAlolph1apV+OGHH7Bq1SocPXoU2dnZKCoqQp06ddCmTRsMGjQId9xxBxo0aOCxHHuAjYuLQ5s2bXDHHXfgpptu0rRubHp6uroena/69u2LpUuX+rUvERERUU1RecVvIqIa6LzzzsN5550XcDm85kdEREQUPOyBJSIiIiIiorDAWYiJiIiIiIgoLDDAEhERERERUVhggCUiIiIiIqKwwEmciIioRlEUBcXFxSgqKnL7KCkpgdlshtlsRmlpqfq1q3+bzWZYrVYoiuL0f1ffUxQFgG22ancP+4zVkiTBYDAgIiJCfRiNRpdf2x9RUVGIjo5GVFSU26+jo6MRHR2N2NhYxMbGwmhkU09ERDUHWzUiIgo5QggUFBQgLy8PeXl5yM/Pd/m14/cKCgpQXFyM4uLiYFc/pERHRyMuLg5xcXGIj49Xv3Z8JCQkICkpyekRHR3tct1jIiKiYOIsxEREVC2EEDhz5gxOnz6NnJwcp//n5uZW+ndZWVlAxzMYDIiOjkZMTEylR3R0NBbO2wIJMgADABkQMgDZ+XvqvyXbQ0hnv670ACScDXwCjs2ru68V278lBYBSvo9y9vuwf7/8e5ICwIqLL++IkpISFBcXo6SkxO3XgTCZTEhMTERSUpL6/6SkJNStWxfJycmoV68ekpOTkZycjLi4OIZdIiKqFgywREQUMEVRkJOTgxMnTuDkyZM4efKk09cnT57EqVOnYDabfSo3OjoaCQkJSEhIQHx8PBISEvDn4t2QEAGICEgwAogo/7ex/N8G2AYYyU6BsraxhV4LAAsEygDJAlHh38Ou7qL2aOfm5qqP0tJSn45lMpnUMOsYbJOTk5Gamor69esjOTkZBoOhKl4qERHVIgywRETklaIoyM7Oxn///Ydjx47hv//+Ux9ZWVk4efIkrFarprISEhJQp04d1K1bFxvXH4MEEyAibf+HCZIwnf0aDDzBIGAFYIaAGUIyAyiDgBmQyjD40gycOnUK2dnZyM7ORl5enqYyDQYDUlJSkJqaigYNGlT6f4MGDWAymar0dRERUfhjgCUiIgCA2WzGsWPHcPjwYRw5csQpqGZlZXntPZVlGfXq1UNKSgpSUlLw15L95cE0ClL5/4HI8iG5VFOcDbulEFIpBEpxzZiuOHXqFE6ePInjx49rusAhSRIaNGiAxo0bq48mTZqgSZMmaNSoESIjI6vnBRERUUhjgCUiqkUURcHJkydx+PBhHD58GIcOHcKRI0dw+PBhHD9+XJ1F1xWDwYD69eujYcOG+HfdcUgiGhKiy/8fBVuPKcMpVWa7t7cUAsUQUgkESjB0eHtkZWXh+PHjyMrK8nrPbkpKCpo0aYLGjRujadOmSE9PR7NmzZCamqrO7ExERDUfAywRUQ2kKAr+++8/7N+/X30cOHAAhw8f9nh/Y0xMDNLS0tCkSRMsWbDXKaSy95Sqii3glkGgCEIqwvU3dsPRo0dx9OhRHDlyBAUFBW73NZlMaNasmdMjPT0dTZo04RJCREQ1EAMsEVEYE0LgxIkTlYLqgQMH3PZoGY1GNGrUCE2bNsWq5UcgiRhIIhYSYmDrRa29Ex9R6HEOt8UYc/O5OHToEA4ePIjDhw+7HdpuMBjQuHFjtGzZEi1atECrVq3QqlUr1K9fnzMmExGFMQZYIqIwYbFYcOjQIezevdvp4a53yt4ztXdnQXlAjYMsYgFEsSeVagRbuC2GIhVCoACDh7bCwYMHceDAAbfrAcfHx6Nly5bqo1WrVmjevDnvsSUiChMMsEREIai0tBR79+7F7t27sWvXLuzevRv79u1z2dtkMBjQtGlTHNpXDEnEQUJs+f+jGVSpVlLvuZUKoKAAAy9pjj179uDgwYMuJ5OSZRlNmzZF27ZtkZGRgbZt26J169aIioqq/soTEZFHDLBEREFmtVpx4MABbN++Hdu3b8e2bdtw4MABlyfa0dHRaN26Nbb+mwNJxEMSCbbAyqBK5JWAAoFCCCkfV13XAXv37sWePXtw5syZStsaDAakp6ejbdu2aNeuHdq2bYsWLVpwqR8ioiBjgCUiqmYnT57Etm3b1MC6Y8cOl8Mdk5KS0Lp1a/yz+mR5WI2HhBjeo0qkI3tvrSLlY+ytXbFjxw7s2LEDp0+frrRtREQEWrZsiYyMDHTs2BGZmZlITU3lPbVERNWIAZaIqApZLBbs3bsXGzduxObNm7Ft2zacPHmy0nbR0dHIyMjApvU5kEQCZJEI26y/PDEmqm5nQ20erht/Dnbs2IGdO3ciLy+v0rb16tVDZmam+mjdujV7aYmIqhADLBGRjkpKSrBt2zZs3rwZGzduxNatWyv1rsqyjObNm2P/7hLIIgGSSISEOIZVohB2dsKoPAy/NgNbtmzBrl27Kg31N5lMaNu2rRpoO3XqhISEhOBUmoioBmKAJSIKQH5+PjZu3IhNmzZh06ZN2LlzZ6UT2tjYWGRmZmLdymzIIhESEiCB61MShTsBKwTycNNd3bBlyxZs2bKl0v20kiShVatW6Ny5Mzp37sxAS0QUIAZYIiIflJSUYPPmzfjnn3+wfv167Nq1C4qiOG2TnJyM0ycMkEUdSCKJvatEtYSAKF+v9gwuubIFNm7ciEOHDjltUzHQdu7cGfHx8UGqMRFR+GGAJSLywGKxYPv27Wpg3bp1K8rKypy2adKkCY4dEpBFEmRRB7Z1VhlYiQgQKIUi5WDoVS2wYcMGt4H23HPPRY8ePZCZmck1aYmIPGCAJSKq4PDhw1izZg1Wr16NjRs3VrqHNSUlBdlZRsiiLmRRFxK4ViQRaeMt0EZGRqJz587o3r07evTogWbNmnGWYyIiBwywRFTrlZSUYMOGDVi9ejVWr16No0ePOj2fmJiI/JxIW1gVdbmUDRHpxhZoT2PQ0CZYu3YtsrOznZ5PSUlB9+7d0b17d3Tr1g1JSUnBqSgRUYhggCWiWkcIgcOHD2PVqlVqL6vZbFafNxqN6NixIzatK4As6vEeViKqFrZ7aAtw68SuWLt2baXPJkmS0L59e/Tu3Rvnn38+mjdvzt5ZIqp1GGCJqFawWCzYsmULli9fjhUrVuDYsWNOz9evXx+njkdAFsnlw4I5SzARBZeAFULKxYjRbbBmzRrs27fP6fnU1FScf/75OP/889G5c2euP0tEtQIDLBHVWMXFxVi7di2WL1+Ov//+G3l5eepzRqMRnTp1wr9r8iCLZEiIZS8rEYU0gRJMeKQHVqxYgX/++cepdzY6Ohrdu3dXAy2HGhNRTcUAS0Q1Sk5ODlasWIG//voL69atczrBS0hIQEFuLGSRUj40mL2sRBSeBKxQpGxccmUaVq5c6XTvrCzL6NSpEy688EL07dsXycnJQawpEZG+GGCJKOxlZ2dj2bJlWLJkCTZt2gTHj7WGDRvixNEIyEoKJCRBghzEmhIR6c9272w+Rt/SDitXrsSuXbucns/MzETfvn3Rt29fpKamBqmWRET6YIAlorCUk5ODP//8E4sXL8a///7rFFrbtm2LPdsskEUKJ2AiolpHoBi33tMJS5cuxdatW52ey8jIwIUXXoh+/fqhSZMmQaohEZH/GGCJKGzk5ubizz//xJIlS7BhwwYoiqI+1759e+zcbIFB1IeE6CDWkogodAiU4I4HumLZsmXYtGmT0+dmRkYGBg0ahAEDBnCYMRGFDQZYIgppxcXFWL58ORYsWID169fDarWqz2VkZGD3VisMogFDKxGRFwKlmPBIdyxbtgwbNmxQP08lSULXrl0xaNAg9O3bF3FxcUGuKRGRewywRBRyrFYrNmzYgPnz5+PPP/9EcXGx+lybNm2wd7tSHlpjglhLIqLwJWDGnQ92waJFi7Blyxb1+yaTCeeddx4GDRqEXr16ITIyMoi1JCKqjAGWiELGvn37MH/+fCxatAgnT55Uv9+4cWMcPxQJWaRCRmwQa0hEVPMIFGPcHe2wcOFCHDhwQP1+bGws+vfvj0svvRQdOnSAJHE+ASIKPgZYIgqq3NxcLFiwAPPnz8fu3bvV78fHx6PwTCIMSkNISORETEREVcw2m3EBrr6heaULiWlpaRg6dCiGDBmCevXqBbGWRFTbMcASUbVTFAX//PMPfvnlFyxfvhwWiwUAYDQaoZjrQBYNy2cQ5pI3RETBICAgpBwMuDQZS5cuRWlpKQDAYDCgZ8+eGDp0KHr16gWjketpE1H1YoAlompz6tQpzJs3D3PnzsWxY8fU77dt2xZ7t0mQRQNIMAWxhkREVJGABfc+3h1z5851WpanTp06GDx4MC6//HI0a9YsiDUkotqEAZaIqpTVasWaNWvwyy+/4O+//1ZnvYyNjUVxfh0YlMaQkRDkWhIRkRYKCnD1DemYP38+Tp8+rX6/S5cuGD58OPr06cNeWSKqUgywRFQlcnNz8euvv2LOnDk4ceKE+v3MzEzs2CjKe1sNQawhERH5S0DBc28Mwq+//oq///5bXV+2Xr16uPzyy3H55ZcjJSUlyLUkopqIAZaIdLVz5078+OOP+OOPP2A2mwEACQkJKMxNgqw0hgyuL0hEVJMIFGPUjc3x66+/IicnB4DtXtnevXtj+PDh6Nq1K2cwJiLdMMASUcAsFguWLVuGH3/8EZs3b1a/n5GRgT1bDextJSKqBQQUPPZCH8yZMwcbN25Uv5+WloYRI0bg4osvRnR0dBBrSEQ1AQMsEfktJycHP//8M3766SecOnUKgO2quyhLgUFpyuVviIhqKQUFGHp1AyxYsABFRUUAbKNxhg0bhuHDhyM5OTnINSSicMUAS0Q+O3z4MGbNmoXff/9dHSZct25dnDmVBIPSBBIig1xDIiIKBQIW3PHAOfjuu+/U2eeNRiMGDhyIa665Bq1btw5yDYko3DDAEpFm27Ztw4wZM/Dnn3/C/tHRrl077N5iHybMdVuJiKgyAYGnX+2Hb7/9Fps2bVK/37VrV4waNQo9e/aELLMNISLvGGCJyCNFUbB69Wp88803Tvc0yUoyDEo6JCRxmDAREWmm4Az6XpyAJUuWqEurNWvWDGPGjMHAgQO5DA8RecQAS0QuWSwWLFy4EDNnzsT+/fsB2IZ9Keb6MCjNOJswEREFRKAYV41pgl9++QWFhYUAgNTUVFx//fW45JJLEBnJ21GIqDIGWCJyUlZWhvnz5+Orr77Cf//9BwCIiYlBaUEKDEoaJEQFuYZERFSTCFgw/s7W+Pbbb5GbmwvANq/CqFGjMGzYMMTExAS3gkQUUhhgiQgAYDabMW/ePHz99dfIysoCANSpUwd5p5JhEI0hISLINSQioppMwIo7HuiIGTNm4MSJEwCA+Ph4XHPNNbj66qsRGxsb5BoSUShggCWq5UpLSzF37lxMnz4dJ0+eBFA+o/DJZBhEE67fSkRE1UpAwf1Pdsf06dNx+PBhALYleK699lpcddVV7JElquUYYIlqKYvFgt9++w1Tp05Vg2tycjJys+pBFo0ZXImIKKgEBB57oTe+/PJLHDp0CACQmJiI66+/HsOHD0dUFG9pIaqNGGCJahlFUbB48WJ8/vnnOHr0KACgfv36OP1fXciiEYMrERGFFAGBh589D19++aXabtWtWxfXX389hg0bxsmeiGoZBliiWkIIgZUrV+Kzzz7D3r17AQBJSUnIz25QPlSY6+8REVHoElDwwFM9MGXKFHWSwdTUVNx8880YPHgw15ElqiUYYIlqgc2bN+PDDz/E1q1bAQBxcXEoPtMABpEGCVxvj4iIwoeAgomPdnG6BaZVq1b43//+h+7du0OSuDY5UU3GAEtUgx09ehQfffQRli1bBgCIjIyEpbghDEo6ZxUmIqKwJmDFjXe1xvTp01FQUAAA6Nq1K+644w60bds2yLUjoqrCAEtUA+Xn52Pq1Kn48ccfYbFYbMOqLA1hVFpCAu8VIiKimkPAjCuvb4DZs2ejrKwMADB48GDcfvvtqF+/fpBrR0R6Y4AlqkHKysowZ84cTJ06FXl5eQAASakHo9IGMuKCXDsiIqKqI1CM/kNjsWDBAgghEBUVhdGjR+Paa6/lRE9ENQgDLFENsXbtWrz77rvqUgPNmzfHkT1JkEVykGtGRERUff7vy2vw/vvvY9OmTQBsEz3dcccd6NevH++PJaoBGGCJwlxWVhb+7//+T73PNSkpCQXZDcuXxOGMjEREVPvY15CdPHkyTpw4AQA455xzcM8996B169ZBrh0RBYIBlihMmc1mzJw5E1999RVKS0thMBiAssYwKC04QRMRERFsEz2NvrUZvvnmG5SWlkKWZYwYMQI333wzYmJigl09IvIDAyxRGFqzZg0mTZqkLuguiSQYrRmQER/kmhEREYUegRL0HmzEkiVLAADJycmYOHEi+vbty2HFRGGGAZYojOTk5OD999/HokWLAAD16tXDmRMNIYtUSGADTERE5MlL71zkdAG4Z8+euPfee9G4ceMg14yItGKAJQoDQgj8/vvv+OCDD5CXlwdZliFZmsCgtIQEo2+FKeVveTmAwKtHGUREVHspIvA2xM8yBKy4/pY0TJ8+HWVlZTCZTBg3bhyuu+46GI0+tqlEVO0YYIlC3JEjR/DWW29h/fr1AABJiYPR2g6ylORbQUqFt7o/Jw56lsHwS0RUezm2J/62BwGWoSgF6HR+GdatWwcAaN26NR599FFO8kQU4hhgiUKU1WrFt99+i88//xxmsxkmkwnWojQYlDTb7MK+NNYVgydQvfu7KoMBloiodgu0XdBhfwGBh5/vhffeew95eXkwGAwYM2YMbrjhBphMJt/KI6JqwQBLFIKOHDmCV155BZs3bwYASEpdRFgyIKF8xkStjbSr4GmnpYxA93dXDsMrERG5a2MCbeP8aJ8EStFrsKwuSde8eXM88sgjaN++vfayiKhaMMAShRBFUTB79mx8/PHHKCkpQXR0NMry0yErjZwnafLWOHsKnnqVEUgAZoAlIqKqvMjqZxlPvHohJk2ahJycHMiyjOuvvx433ngjIiK4PB1RqGCAJQoRx48fx6uvvop//vkHACApdRBhaQ8J0ZU39tQoBxpeQyX8EhFRzRdoe1EF+wuYceGlJnXG/zZt2uDJJ59Eenq657KIqFowwBKFgAULFuDtt99GUVERIiMjYS1Mh6w0cb80jqsGWUvwrMr9tZbB8EpERHZa255A2h0/93/i1Qvx5ptvIi8vDyaTCXfccQeuuuoqrhtLFGQMsERBVFRUhEmTJmH+/PkAAElJhNHSAbL9Xld3KjbEvoTPqtjflzIYYImIyC7YF1+97C9Qik69S7B27VoAtnVjH3nkESQnJ2s/LhHpSg52BYhqqx07duDmm2/G/PnzIcsyDNbmiLB08x5eHSnC9/Cp5/6+lsHwSkRE/gpCmychEhtXJOCee+6ByWTC6tWrceONN2LVqlX+14OIAsIeWKJqpigKZs2ahU8//RQWiwX169dHztGmkEUd7YXIUmCNeCD720OoP/szwBIRUUWBtCfV2JZ9OnMsXnjhBezevRsAMHr0aNx8880wGo3+1YGI/MIAS1SN8vLy8OKLL6pXbmWlPoyWdpAQRrMb6hF+iYiI7IJ1QdYPAlZcek0i5syZAwA455xz8PTTT6N+/frVVgei2o5DiImqya5du3DLLbdg1apVMJlMMFoyYLR0DK/wCjC8EhFR6KjG8AoAEgyY920Bnn32WcTExGDTpk24+eabsXr16mqtB1Ftxh5Yomowd+5cTJo0CWazGRDRiLB0hCwSfCpDEoAIIAMGun/AGGCJiMidag6iehAoQrMOJ9UhxTfddBPGjh0LWWb/EFFVYoAlqkKlpaV499138euvvwIAZCUZRksHn3pdpfJ3aFiHV4ABloiI3AvDAAtUHlJ8wQUX4IknnkBMjA8TMhKRTxhgiarIqVOn8MQTT2D79u2QJAlyWQsYlHT3a7tWIFV4Z/oTQB3LYIAlIqKQFaYB1u6+p8/FW2+9hbKyMqSnp+Oll15C06ZNg10tohqJYxyIqsDOnTtx++23Y/v27UhISIDR3BlGpbmm8CqJwMNrxTIYXomIKKSFeTsx6fl1eP/995GcnIwDBw7g9ttvx99//x3sahHVSOyBJdLZ0qVL8dJLL6G0tBSSEoOIss6QJO9DiSqGVkdaA6i7MhhgiYgo5IV5L6wkAIFStO6Wgy1btkCSJNx1110YOXIkJIntIJFeGGCJdCKEwNSpU/HFF18AAGSlHiLKOgKS9/XhPIVXwHsADXT/KscAS0RE3oR5gAXsIVbBkKtj8csvvwAArrrqKtx9991cL5ZIJwywRDooKyvD66+/jvnz5wMADJamMFpbQ4LsMTx6C55ADQivAAMsERF5V0MCLAAICNx0bxtMnjwZANCrVy8888wznNyJSAcMsEQBKioqwlNPPYW1a9fCYDBAKmkNo9JEfd5VgNQSXD3t70sZDLBERBQ2wjzEVmybH3/tQrz44oswm81o3bo1XnvtNSQnJwenckQ1BAMsUQBOnz6Nhx9+GLt27UJUVBSs+RkwKGcbporh0ZfgqlcZDLBERBQ2wjzAApXb6UlfjMBjjz2G3Nxc1K9fH2+//TbS0tKCUzmiGoABlshPhw8fxkMPPYRjx44BIgKmss6QRaLTNvbw6E9wddxfrzKChgGWiIi0qIEBFgAUFCO19WEcOnQIiYmJePPNN9G2bdvqrxxRDcBldIj8sGfPHtx11104duwYJBENk7l7pfAKuF4Sxxf2ffUoI2gYXomIqJoEvc0DABd9QzKikbU7HW3btsWZM2dwzz334N9//63+uhHVAAywRD7avn07Jk6ciNzcXEhKPEzmcyGjCiZlKG8AA22MQ6IHloiIqBoIKfB2M9CLz5AklyFWggkHNjVEly5dUFRUhAcffBArVqwI4EBEtRMDLJEPNm/ejPvuuw8FBQWQlESYyrpBQqTzRkK4bLh8wpH9REREfgs4hEKHW3dcnA9IMGLbqiT07t0bZrMZTz75JP7444/AKkpUyzDAEmn0zz//4MEHH0RRUREkJQmmsi6Q4LCmm17B1V4GFz0nIiIKSKCTJ+oRhCueH0gwYN3iSFx00UWwWq144YUXGGKJfMAAS6TB2rVr8fDDD6O4uBiyUtc5vOodXImIiEg3evXG6hlkJchY+rMFl156KRRFwYsvvojFixcHeACi2oGzEBN5sXHjRjz44IMoLS2FbE1GhKUjJBhsT7p7+2jtPfX09tOpBzYk7oHlRE5ERKSFDrMQewuaWtrFQMuQBDS18QICA640Yd68eTAYDHj66afRv39/7xUkqsXYA0vkwbZt2/DII4+Uh9d6iLCcYwuvvM+ViIgoLOkxU3HAIbn8PEKChMVzzLj44othtVrx/PPPY+nSpYFXkKgGYw8skRt79uzBxIkTUVBQAFmpg4iyzpCExms+nnpPtb7l2ANLRES1TTX0wDpy10bqUoYPr0VIQP9hEfj9999hNBrx+uuv49xzz9VeCaJahAGWyIVDhw7h7rvvLl8qJxEmc2fnCZu8cRU+fX2rMcASEVFtU80B1q5iW6lLGT6+FgGB8y8RWLJkCaKjozFp0iS0b9/e94oQ1XAMsEQVZGdn44477sDx48fL13nt6lt4BSqHT3/eZgywRERU2wQpwAKVZx8OuAw/XouAgo598rFu3TokJibi/fffR3p6un+VIaqheA8skYOioiI88sgj5eE12vee14o4uzAREVFYCIXZiiXI2PxXLNq1a4czZ87ggQceQFZWVmCVIqphGGCJylksFjzzzDPYtWsXICJs97zC5F9hDK5ERERhqTomefK4L4zYtyEZaWlpOHnyJB5++GEUFhYGXimiGoIBlgiAEAJvvfUWVq9eDQgZJnMnyCLGn4L0C641JQBz+DAREYWbIK/xLsGErF1NUa9ePezfvx/PPfccrFZrYPUhqiEYYIkAzJgxA3PnzoUsy4goy4QsEn0rgD2ulckSwysREWmnw/2vutOjbffzHEFCFF5++WWYTCasWrUKH374YeB1IaoBGGCp1lu9ejU+/vhjAIBc0goGJcW3AhhcK2NwJSKimkKvi9R+lHHPuG/xxBNPAAC+++47/PTTT4HXgyjMcRZiqtUOHz6M22+/HQUFBTCUNYTRkgFJ0nhdx9NbR6cZhPUop9pnIWZ4JSIifwRxBuJK9GjjFSXwMgDAKjDmnhb47LPPYDAYMGnSJHTu3Fn7/kQ1DAMs1VqFhYX43//+h4MHD0KyJsBU0hWSLGtrVLy9bUIowALVFGIZXImIKBDhEmABbe2zpwCrtQwAsAoICFx4pRELFy5E3bp18dlnnyE5OVnb/kQ1DIcQU60khMDLL7+MgwcPAooJptKOkCADCjw3WrzX1TWGVyIiqk2qa5Inq+15CRL+nGNGixYtcPr0aTz77LOwWCyBHZ8oTDHAUq30448/Yvny5YiIiICp9BxIItLzDgyurnGiJiIi0kMoTeDkS3tfjZM8STDghRdeQExMDDZt2oRPPvkk8GMThSEGWKp1du3apc7kJwrSISsJnncIZnAN5dDM4EpERFStkzzdfOXneOyxxwAAM2fOxJ9//hn4cYnCDO+BpVqlqKgIt9xyC44cOQLZkoyI0o6QUCGIybDdlxLIW0Ove2B1Kkv3e2AZXomISE/hdP+rx0o4tI/e7oHVUo7VdV2G3ZSCWbNmIT4+HlOmTEFKio8rKBCFMfbAUq0yadIkHDlyBFAiEVHarnJ4tQvi4uVVQbdGHWB4JSIifYXS8OFA2dv/QMKrvRwP5nyRhbZt2yI/Px+vvPIKlECPRxRGGGCp1liyZAnmz58PWZZhKu0ACRGVtpGEgOTmamc4q/aldIiIiMKRThefdTmXEAKSm2AqQcaTTz6JyMhIrFu3Dj/++GPgxyMKEwywVCvk5uZi0qRJAACppClkJanSNpJevaZK+SNEMLwSEVFNp+tII51IVh0uinsIsbde9SXuvPNOAMBHH32EAwcOBHYsojDBAEu1wjvvvIPc3FxISiyMZc2dnpPsjYNe4TWEMLwSEVFIq0nDh93QK8S6CrIfvvgvevbsCbPZjJdeeolL61CtwABLNd7SpUuxePFiAFL5fa9n/+xd9rr6M4zYVa+rtzVlq5CQqjC81oKTDSIiIn9JlspB05/eWKdyys9XKoZYCRL+XWJEXFwcdu7cyaHEVCswwFKNlp+frw4dNpjT1CVzwqrX1cc6steViIhqk5CYfVgjn0Ksq/q46I2VRCTuuOMOAMDnn3+OrKysQKtJFNIYYKlG++yzz5CTk+M0dFi3e12BkBoyXKW9rkRERHqrpSN69BhSXLE39r1n1+Gcc85BcXExJk2aBK6SSTUZAyzVWLt378ZPP/0EADCWtoEsJO29rt6GEdf2iZpq6UkHERGRHrwNKXY1DLkSh95YCRIefPBBGI1GrFy5EsuWLdOxtkShhQGWaiQhBCZNmgRFUSBb6sNoTQpOr6te98F6KIO9rkREFHZ0uhAaasOHNQVPx+3dhVit9XHojb1txBSMHj0aAPDhhx+itLTUp7oQhQsGWKqR5s+fjy1btgDCAFNJixq7PE5Qwyt7YYmIiAKm53I7s/5vH1JSUnD8+HF8//33+lSQKMQwwFKNU1JSgk8++QQAYDQ3gySi/CvIcRhxIMG1Cnph2etKRERhi72vrvcvP+fwuxwhIAkZt99+OwDgq6++Qk5OTkB1IgpFDLBU4/z44484deoUJCUSRnMT/wuyT/YUQr2uAMMrERFRTSVZBaQya0BlvPnwn8jIyEBRURG++OILnWpGFDoYYKlGyc/Px/Tp0wEAxtLmTmu++iQEgyskW3LV7YozERFRddPx9hNdbqXRc7ZevVY5ECKg3lwJEu68804AwC+//IKDBw8GXieiEMIASzXKzJkzkZ+fD8kSDWNJin+FOIZXa+VFw/0S6DBiKcS6XWXJ9iAiIgqyUBiZ5NRrGkB7L5ktahmBhNhHr5uF3r17Q1EUfPXVV36XQxSKGGCpxsjJyVEnLIgobAYJPrZoQgDW0O15DRkMrkRE5I8qnPwvFEKsE397Yx33KQ+x/gbZ8ePHAwAWLVqEw4cP+1UGUShigKUa44cffkBxcTHksjgYzHV929nTkOFg9cJKktvwGrRhxAyvREQUonwOsXpN3uTpnlUfjqH2vlbc38/e2HuunIJevXqxF5ZqHAZYqhGKioowe/ZsAICxqLGt99Vi1bwQeDj2ulZ7iGV4JSIif1XT0mua74vV895XvY7laTsfQqxUejYIjxs3DgCwcOFCHD16VFs9iEIcAyzVCHPnzi2/9zUKBnM9bTsFY8iwll7YUBwyzPBKRET+CsK64dU1pFjzjMF6TPDkx5Di+0d8hZ49e8JqtWLWrFmBHZ8oRDDAUtizWCz49ttvAQARxY2d73111wvra6+rXsOIPfEwZNjtLlV9TsDgSkREYcptiK3O3leNx3Y5fNjd/h56Yx17X+2uvfZaAMD8+fORn5+v7ThEIYwBlsLesmXLkJWVBSgRMJTU975DsIcMu+qFDbVeV4DhlYiIAheE3ldHVdkT6/d6ra5CrK+h2ochxY+P+Q7NmzdHcXEx5s6d69txiEIQAyyFvZ9//hkAYCxOdb3uq70XNtAhw1XVCxtgeK2SXliGVyIiqiGc7osNZu+rI4d6aO59dVGG45BiV72vgG1d2JEjRwIAfvzxR1itfgZvohDBAEth7dChQ9iwYQMgAGNJA/cb6tXrKgQkPRo/ey8se16JiKimCnLva0V69sb63fvqSAhIRaWBhWqNsxS//9CfiI+Px/Hjx7F+/Xr/j0cUAhhgKazZe19lcx3ISqTrjRQFUokZUpmfVzjt7O+WQAOsrGNZREREoSjEwiug34glyaL4NW+FS0IAlsDDsJSTBymvwP3zMGDw4MEAgN9++y3g4xEFEwMshS2LxYIFCxYAAIwlqZU3UBRI5jJIFqs+odMukF7YKnrH6TqMOARPOoiIiAIhCVTNReMAQqxUbD77j0BDrL0nNq/AbZD97fO9AIDly5cjLy8vsOMRBREDLIWtf/75B7m5uYBihMGc5PykotiCqwPJXOZ7L6xjb6kjfxpBd+WEYi8sQywREfkrFNsQndpal0N1/Q2xFetksfoVZKVch5mFHYJsRbIlDq1bt0ZZWRn++OMPn49DFCoYYClsLVq0CABgLE12nrzJRXj1i6d3h6+9sNXwTqvyJXWIiIi8CcHwWi3to6/L4Dn2vlbk6zmMm1mNXYVY+zDipUuX+nYMohDCAEthqbS0FMuXLwcAGEpSzj7hJbxq7oXV8s5QFG0h1ltZOvbCcigxEREFTQi2G3oOHfa6bI3GECsVm73XSWOIdep9rchFiP3ihdUAgI0bN+L06dOajkEUahhgKSxt2LABhYWFkKwmyJZ45/tdvfAaYn15V3hqgNwNP3ZXDocSExER6au6wqu6oYbJnbTWycs5jZSb772sCvfFykoU2rVrB0VR8Oeff2qrB1GIYYClsLRy5UoAgMFcF5IifB8y7O4D39d3hLuhxEF8Z3EoMRERVbsQvOAZ1PbQTYj1OHTYFU/nN1qDcIX7Yvv16wcADLAUthhgKewIIc4G2JIkv+53lcoszr2wvvSWVlRxKLG/5XAoMRERhaMQbCeqdeiw2x2dQ6ymocOuuJjcyePQYXfKQ+yXL60CAGzatAklJSW+l0MUZAywFHb27duHEydOAEKGoSjO73LUocR6vAvsDVKgZXEoMRERhZNQbR+CHV7VAhxCbKB1Kg+xmoYOuyME5Bwr6tevD7PZjI0bNwZWJ6IgYIClsLNhwwYAgKE03nn24WAKZG3YKsKhxEREVBuFXPsnSb4PHXZHh7XtJQH06NEDALB69Wo9akVUrULk7J9IO3uAlUvjAy7LNpRYhyV3JMnWoAR4oTZkyf4v1E5ERDVYiLUPuoZXISD8XePVgVRaZjtPkHU47c46BaWwKOBiunfvDuDsORVROGGApbCiKAo2bdoEAJDzTIEVVt4oSaVlgYVYHRq3SmUFeHVVSLaHLkLs5ISIiEJMiLQTTuFVy2zAnjhclA44xDoOsw4kxGadgrBaAUUJOMS+MvwzAMD+/ftRWFgYUFlE1Y0BlsLKoUOHcObMGcAqQTqpQBQV+1dQxcbI33t4Kk7QEEgvbMU6+RlidQuuQMiclBARUYgL1fbCn/Dpoi33N8RKpWWVv+lniBVWh4vt5SHWnyCr5OUDpRIaNmwIRVGwfft2v+pDFCwMsBRWdu3aBQCQikyAVYHIL/AtxLq5IuvXUGJXjZn9XlhfQ6y7htHHEMvwSkREQRPEdsPj0GFfwqeHNtzXECuVlrm/QO5riM06Vfl7iuJzb6ySl68G4czMTADA5s2bfasLUZAxwFJYsQdYuSgCQPnVSK29p14aHp+GEnsqy5cQG+gQJ8fDMrwSEVGwyVK1tyGa7nvV2tZ6abuFJGkKsh7Dq53WEGsfOuyODyHWsZx27doBAHbv3q2tHkQhggGWwooaYAvP3v8qCgu998JqbLg0hVgtZWnpOdXamGooi+GViIhCSjW1JT5N2uSt3fVh1JPXEKv14rq3EOstvKrH8x5ilTzntWMn3zkTgG15QqJwwgBLYUMIgb179wIoH0Js/77V6nkosR9DftyGWB/K8tgL62uvq4dGleGViIhqI79mHPZ0y46Pt/+4C7Eu73v1xF2I1Rpe7TyEWMehw+phi22j2Y4dO4aiosBnNiaqLgywFDbOnDmD/Hzb1UOp1Oj0nNsQ6+/wXFdXTv0InS5DrL91chFiGV6JiChkhWq74mrSRD8nYKwYYjUNHXbFRYj1KbzauQixrsIrAEgWA+rVqwcAOHDggO/HIgoSBlgKG0eOHLF9YTZAUtx80Ds2GgHcW+o0qVMg96lWDLGB3u/qEGIZXomIKORVUfsS8HqvjsvWBbiGuz3E+h1e7WT5bJB1NWmTVhVCrKcg3LRpUwC2XliicGH0vglRaLAHWLnE/Z+tKCwEZAlSbEzgB7RYAYMBMARYjhCQANj+qw+GVyIiChuyFFiwqyqSBFh1qpdF0e81ns71r/fVkT3EeiknNTUVAHD8+PHAjkdUjdgDS2EjKysLQOXhw46E1QpxJg8iwAW+hcF2FVSyWgNv3BxnLPRzbddKRep5HhCKJxVERBR8itCnjaiCdkaXC7lC6HImLJWHRBGhQ7/QqdNAmQWSIdCr58DuZzpg93OdPG5jD7D//fdfwMcjqi4MsBQ2srOzbV+Uef5QF0IEFGLt4dXeMxlQiHUMrwEOUbKXp37JEEtERNUhkDaiCtuXgEKs/YKyJAV+NuzQvgcUYsvDq10gIXb3s+fAWscCa90y7Hmxq9vtvn7mZwBnOwmIwgEDLIWN06dPAwAkLwEW8D/EVgyvdn6FWHdrxfnbC+uiLIZYIiKqEhXbhBBtI/wKsRXb4QBCrORiiK5fIbZCeFXL9yPE7n72HFjrnp0J2R5iXQVZ+znVmTNnfD4OUbAwwFLY8CXAAr6HWHfh1U7yJXi6C6/2q7S+hlgPkz8xxBIRka7ctQW+thHV1Kb4FGLdtb9+hFjJanU7usrnEOsivKrH8SHEVgyvdta6ZbDWLcPeF5xDrGSxvWgGWAonDLAUNgoLC21fWLT/2WoNsd7CKwBAUbT1wroLr2o5auW8l1VentdNGGKJiEgP3toArW1ENbclmkKst3bXhxDrKbyqh9MaYk+d9n48DSHWXXh1ZKlXIcQywFIYYoClsFFcbFvjVVJ8Gy8khOdJKDSF13JehxJ7C692WkOsD8vu6BpiiYio9tErnAbpQqjHEOvLRWMvZ8dawqvK6CV4uhk67PK4XkKst/Bq5xhiJavtxRYXF8Ni0VYPomBjgKWwYQ+wsPp+w4vIz3fZC+tLeLVzG2K1hlc7byHWjzVjdQux7IUlIqpd9BoeHOT2w2WI9ee2HTdnyD6FV5SvEesuxPoQXtXjuwmxe545x6dy1BDr0CnAAEvhggGWwkZpaantC8X3P1tXQ4n9Ca92lUKsr+HVzl2I9acs+64MsURE5At/P+9DdKInpxAbyMSJFU43fA2vZ+vjIsT6EV7VelQIsXueOQeWetp6Xx1Z6pVh3zNnhxOXlfleBlEwMMBS2BDljZC/0U4IAZFfAFFYFFB4tVNDrL/h1a5iiA2kLL2FyMkIERFVkUA/5+37h2J7Eeja6w4h1t/wqlbFMcQGEF7VqpWH2D1P+xde7SzJZ+vBtWApXDDAUtiQyoNdIM2RsFqB0lJIZZaAwqtap0AbRzt7oxhK4ZWIiGo2vUJnCIbXgNaIdaTjWu5CkiCZywIOr3Z5l2bCkhxgr6nEIcQUfhhgKWzYA6zfXbAA5MhIIMIElJRCKjEHViFZhjBIgBCBB1kZtkZEr0CsFx1CPhERhaAQDJ160u12Gmt5G28M/JRZLiy2nTMkJgRc1pmL2qEsVkbSelNgBTmcd9SvXz/AWhFVDwZYChuG8uEyWePa+7W/HBkJREYCsmQbjlxc4n+ItYdXwPbhH0iItYdXuwBDrG5XnRleiYhqptoSXgMd1WSt0LYHEGLt4RUAYJADCrH28AoAEUUioBD7bM856tdRUVF+l0NUnRhgKWxER0cDAK69dBGO3tPNp30dw6ud3yHWMbyeLcy/EFsxvDqW5weGVyIi8qi2hFf1G362ZxXDq50fIdYpvNr5GWIdw6udvyH2xT6z0dR6Qv13TEyMz2UQBQMDLIWN2NhYAEAzaxYm3DgHRyf6FmJdhTKfQ6yr8Hq2MN9CrLvw6lieD3QLr0REVDPVtvCqPuFjA+kuvNr5EGJdhlc7H0Osq/BqF1Hk2+/2xT6z0dp0HKUltvKio6Mhy4wFFB74l0phwx5gS4pldI46iAk3zdHUE6v2vrqhOcR6Cq9nC9MWYr2FV8fyNNA1vLL3lYio5qmt4VXdQGPb5i282mkIsR7Dq53GEOspvNpp7YW1h1cAKC2x/Vzso9yIwoEx2BUg0io+Ph4AUFhg+wDvHHUQE26cg/dxJRq/u97lPq6GDrsihIBUXAIJgIjSZ0IECXC9vI7W8OpYnoftGV6JiMij2h5e1Q29TJaoNbzaGWXA4np6Yk3h1c7gOZhqCa/A2aHEud3MSD6Tj2v/XIueu/YjrqQUBVGRWNW2BdIeOIl0U7a6T/4Z2/widerU0VZXohDAAEthIyUlBQCQd/rsAt72ELtpZFMs+66bU5DVGl7tPIZYLb2vzoUBcBFifQ2vjuW52I/hlYiIPGJ4rbCDmxDra3i1cxFifQqv9molJkCcyav0fa3h1S4uz4yn3pyDK3auhclqdXruwq27ofwCnLw6DgeeqQsRJSEv13ZOVa9ePZ/qSxRMDLAUNuwB9kyO859t56iD6Bx1EJnjj+ADMQyN31vvc3i1cxlifQ2vZwsD4KEn1p/yHMpheCUiIo8YXt3sWCHE+hteXZCLSvybiLF8KLFjiM0b4lt4jbSU4b2Fn6Lb8b3u61cGNJhRgOh9Zdg+tT7ycmwBNjk52fc6EwUJ74GlsGH/cD3j0APrqGv0Adx14084/EA3v8KrndM9sf6G17OFnb0n1t/e14rlgeGViIi8YHj1UkB526dHeC2/H1YuKgEU10OKNXG4HzZvSDuY43w7TX9g9Rx0O74X3l6NAJCwuhTpz+UgqmwcAPbAUnhhgKWw0bBhQwBA9gn3Awde+3Mo0r85ApSWBnQsIURgjZBzYfqUQ0RE5I0ianR4lYQO4dWpPH0Kk/Q6bzDIEBaLz+G1XlEeLt+z1lYXL9van0/5vgCH99p6a5s0aeJjRYmChwGWwkazZs0AANlZRljKXG8TcdoA65FjUIpLgOISv48lmUwQkSZAUSCVWSFZA2jgZPnsEOJAG8rycvRsvGvyiQ4RUa1Swz/PdW37ykdIBTTKyq78HlgRExVQMUp2DpTsHEBRkLLwoE/7Dtu9BhGK1fuGDuQy4PCePQCApk2b+rQvUTAxwFLYqFevHmJjYyGEhFNZEZWeH7XgTrT+5KjtH0IJLMTKki0s2q9kK4p/IdYeXh3faf6G2ArDjxliiYhIVcM/x6sivKr/DCTEWpSzvbiS5HeIVbJzgLIy2wOAkn3ap/27erjv1Z1iWcbJEtt5Ulpams/7EwULAyyFDUmS1A/YE0edhxGPWnAn2r+SBeuRY2e/6WeIVXtfHfkTYl2FV7VuPrbEbu6dZYglIqKa/vldleFV/bY/IdYxvNr5EWLV8FqBL72wMWW+3zq1PyYGAJCUlISEBO9r0RKFCgZYCiutWrUCABw5cDZgugyvdj6GWMlkgoiOdB0Y/QqxHp7TGmK9TPzEEEtEVIvV8M/t6giv6tO+hFhX4dXOhwkb3YVX23OnNYfYoohIzce02xUfDwBo27atz/sSBRMDLIWVdu3aAQCO7Dv7QR2RbXQdXu00hliP4dVOa4h1vO/VEy+NqVYMsUREtVAN/7yuzvCqmUXxHF7th9PQC+spvJ7dRluIjR2V73WbinbExQFggKXwwwBLYSUjIwMAcGS/CYoCjFp4J1p/6iG82nkJsZrCq523EOtp6LDb+gV+FZchloioFqnhn9PBCq8ee2HLg6ummYu9DCXWEl7Pbus5xD7y+HR0GB8JUXl6EI92sAeWwpT79UiIQlB6ejqioqJQUlyCsd/dgPYfn4D18FFtO9tDbGkp5MhIINqhYbFP2qSVIgAokFBhnVh/wqtaP+FcBz/WjJWEjmvEKoJrxBIRhSKGV+386HkVBqnyRWoNva6VlIdYqcj54rkv4fXsPqcBNHP63iOPTwcAjIjLA+KMwDUJwPQ8CHheSkcAKDAasT82FsDZ0W1E4YI9sBRWjEYjMjMzAQDpX+/XHl7thAJYrU69sS4nbdLCXU9sIO8qh5kM/aXrGnk1/CSJiCjs1PDPZd3aL3tw9XPYsNPFaX/Cq12F9tyf8GqXsuiQ+vWDj3+DEXF5tvBaTryQDNErStM6sP/0qAcB2+zDycnJftWHKFgYYCnsdO3aFQBgUU74X4i9NxbQPnTYFXuILbMCCrTd91pNGGKJiGqYGv55HCrhVS3GIAUWXu3lREeeXePVz/AKAMqpbKQsOoQHH/8G18SdqbxBtAwxvRHEmAS3w4lFBCDGJGDj1Y8AALp06eJ3fYiChUOIKex069YNAKAklEJAQPJ6rdENoQAWC6AogMHgf4UUARgNgB6LoetIt6HEREQUfAyv1U9BwOEVAGBVINerA+V4ABfey1mOHnMdXu2iZYg36gMP14X4Jg/SymKgUAFiZYjzo4HrE4AUI/55dCMABlgKT5IQerwziaqP1WrF5ZdfjoKCAkRsrgdDoX+LhssxMZAS4gGjAcJoCCzEGg0QEbb9/b4H1k7y8X5cN3QLsLwPlogouGpweNU9uNpPawM9vVVs/5OEsI2y8leZRa2LOKxh0klPVSotBYSAtV9XLPrmC7/LGXj9dbBalkKWZcyZMwdJSUkB1YuounEIMYUdg8GAXr16AQCUusUQfjTsang1yIAQkCxWSOYywOpHI2U0QBjPvpUkIdSGz2cMr0RE5IjhVTvH0Or3rUFwasOFJKkXqH3mEF4BQE6t71+VSkvV8AoAhqX/YNDom/wqa+CYmyHtXA8AyMzMZHilsMQAS2GpT58+AAClbimEsPoeYg0GW3i1E+X3slqsvoVYe3it0FD6FWJDLbwSEVFwMbxq56rH1dc21U277df8FhXCKwCICKPPIVYNrhXKMiz5x+cqDRxzM4xL/kHnUbZlc3r37u1zGUShgAGWwlLPnj0REREBEW2FiLYAQoFQhKYgK8fEQIqNcf1keW+sTyHWTcMmCWGbodjf3thgY+8rEVHwMLxqp8fdcF7aas29sGUWl+H1bDnap59x7HV1RWsv7MAxN6vhVRgV/PvvvwAYYCl8McBSWIqJiUH37t0BAEpK+fpqQlGDrDtOQ4fd0RpiKwwddkdTb2yo9b4yvBIRBYciGF610jLTsJa2VcOFZk1Die3B1UudtPTCeguvgK0XduCYmz1uM2CsLbgay3tslXolsFgsaNWqFdLS0rzWgygUMcBS2Bo8eDAAwJpSDAGHD3lPIbbi0GF3vIVYN0OH3fEYYkMtvBIRUXDU4OAKVEF41XxgDw2kD6OkPA4l9tDrWqkcL0OJtYRXO+Pi9W6fGzD2ZkT84TzUuP1V6QDOnkMRhSMGWApbffr0QWxsLBClQCRUWFfNRYj1OHTYFW+TO/kYOgOa3Kk6sfeViKj6Mbxqp9eQYT/aZJe9sD6E17PlVB5KXHGyJq0GjK3cCztg/C2VwquItGLTpk2QJAmDBg3y6RhEoYQBlsJWZGQk+vbtCwCw1i+uvEHF+2K19r46leFicieNQ4ddqRRiQ633leGViKj61eDwKokQCa+ObW0AF5Mr9cL6EV7tHHth3U3WpEXEorO9sAPG32ILrwsr98xa6xcBsK39mpKS4keNiUKD9jvJiULQ0KFD8dtvv0FJKYY4EA/JUiFYClsrJcfE+9b7WlF5b6wAAKMhoNApCQFYAWFgWCQiqvVqeHjVVaA9r5IEWAOvlIgwQCoqDbhO9l5Yf3pdKxow/hYICTC5CK4AICSBpC5RyM4uxOWXXx7QsYiCjT2wFNYyMzPRqlUrQHbTC2snS773vlYkBCBJtuAZYEMjdOp5JSKiMFaDw6vu9Bg2rBchIEwRAddJsiqQU5J1eW2RK7bDtMD9/bBKnVJkZ2ejTp06uPDCCwM+HlEwMcBSWJMkCVdeeSUAwJpa5DyZUzk5Lg5SbGzAMzsKUwREpKn8H/4N83FdcAg1ykREVD1qQXjVdXJBPS76ChHwma+klI8/DnAUlWQtLyfCCGPjRn6XI8fGQo6NhRRhhBwX53a7TmNaArCNXIuIiPD7eEShgAGWwt7gwYMRFxcHRFuh1C2t9LxkkAHZ4U/d35MGSXJ+x/gZYkXFcuxl+Yn3vxIRhZlaEF5Dik4XndXwai/WflHb13KsFW7C9bMce3CVyociS25GmimxZVi/fj0MBgOuuOIKv45FFEoYYCnsRUdHY9iwYQAAa5NCp15Ytfe1Ih9PHoQpwjZcqNITfjaKrq4k69mrS0REoamWhdeg98K6ald9PPuVFKVSeAXgVy9spfBaztdeWHt4rfR9F72wfe47BwAwcOBApKam+nQcolDEAEs1wsiRI2EymSDiyyASzer3K/W+OvJlSLGrXlM7e/DUED5d9r66Kk8j9r4SEYWJAG9jIT9UQa9rpUNo7D2VrIrb8ApAcy+s45Bhl8ep0AurRFmwbNkyAMB1112n6RhEoY4BlmqEunXrYujQoQAAS5NCAB56XyvS44TChxCr6Qoye2KJiGqOWh5cg9IL660d1XAG7C28AtDUC+sxuPqg4pBht9s59MJe/GwvKIqCXr16oWXLlrrUgyjYGGCpxrj22mthMBggksxQ4syee18r8nBy4Xb4sMuN3YdYTb2vGsuyledDWZ6w95WIqOrU8vBqp2uI9XggH27HcdMmux0y7O6QHnpPfQmvnoYRe+p1rXTM8l5YEWnB77//DgC4/vrrNdeDKNQxwFKN0bBhQwwZMgQAYEkvcDkjsUfuhnf5GzxdNaA63b9TbScCRETkP4bXquGuLa2GIcMuueiF9Tpk2BUXQdjbkGFP+j/RDWVlZejWrRs6derk8/5EoYoBlmqUm266yXYvbKIZSrLVv0IcTjh86n11VCHE+tz76qq8qsDeVyKiqsHwWkmVXnwNVni1H94hfAYyZNixF1brkGGXkiOwYMECAMBtt93md32IQhEDLNUoDRo0wFVXXQUAMNf9z/deWDv7iYcewVMISEIEvoYd74slIgoPDK9Vz7FNDaR9lH0fMuySQfKv17Wi8iDsb6+rXbcbm0IIgX79+qFdu3aB1YkoxDDAUo0zZswYxMXFQZiKYYk97X9Bik7L2ugZPBliiYhCG8Nr9Qml5ed0qocwGgIOr9aYIqxcuRIGgwG33nqrLvUiCiUMsFTjJCQkYMyYMQCAsjpHIST/hhKLyAi/Fyl3IssQBkmfxq38irOkV3vNEy0iIqomurVdgK1NDXRkk70orRM+eqoLABEdGVgxRgMgSZAbpPhfBgQaD7KduwwdOhRNmzYNqE5EoYgBlmqkESNGoHHjxhCGMpjrZQFGg++FBDp82BUdrxZLQqeTAa5NSESkD36WuqRbe2Wnd6+rv219hTZdaFhSx2UxRoMaXgFA+Nn7KtVJgrVJKfbt24eEhATccsstfpVDFOoYYKlGioyMxL333gsAsMT8B2tUiX8hNlD23teK/Gl83VxpZm8sEVGQ8UKgW7oH14rtZ7B6Yd0tmedjL6waXAN8HVKdJCiRCiIaZwOwTdyUlJQUUJlEoYoBlmqsnj17ol+/foAEmOP3QzHKEJERmoKsbsOHPR5Ev1adIZaIKEj4uelWSPe6VuTrcnnuntLYC1ux17UiqW4dTeVIdZIg1UmCiDDiguvrorCwEBkZGRg6dKim/YnCEQMs1Wh33303oqOjoZjyYY0+aesRNRq8h9iqGD7sCocUExGFL35WuhVW4VUrndpsLb2uWoYR24OriDDCasrFggULIEkS7r//fhgMQRh1RlRNGGCpRqtfvz5uuukmAIA57gAUuQSQJNuVT429sdXCW4Pow9Ai9sYSEVUDfka6pOv9rloDY3UMI9ZxlmE9hgvbwysACMmChNYnAQBXXXUVMjIyAq4nUShjgKUa7+qrr0ZmZiYgW2FO2GtbG1aS3PbG6j77sFah2htLRETO+NnoUtj3uro6K/ajbXZ1H6y3IcOuSHWSXH7P3utqZ447gJMnT6Jx48a47bbbfKorUThigKUaz2Aw4LHHHkNkZCQU0xlYoo+ffdJVb2x1DR92J9TujeWQYiKis/h56FLYh1dX/KxHxYvX/k7UJEwR6tcVe13trKbTsEafgCRJeOyxxxAdHe1XnYnCCQMs1QpNmzbF//73PwBAWdxBKIbis0966I0NGp17Y3XBkzYiqu34OVhJUIYMu6yIPsOIA66HYzF+9Lq64qrXFQCEVIa4lrahwyNHjsQ555wT0HGIwgUDLNUaw4cPR5cuXQBJgTlhFwQU5w3Ke2MRYdS3IQxUKNWFiKg24kiUqhciva4+L6fjrhwdlscREUaXva4AICDQ+QojsrOzkZaWhltvvTWQ6hKFFUmIEPnEIKoGWVlZuPnmm5GXlwdjUUOYCppX3ijCCBFhCOwKrK/3v7qjw9pwACD0ysAywzQR1TIMrh7p2vsaCmUAkMqsAewsqXWRSi1+FyMijIBBglRsdvl8WfRRlMUfhMlkwkcffYRWrVr5fSyicMMeWKpVGjRogMcffxwAYIn5DxZTtvuN7eExzHtAdQuvRES1DcNreAl2e+143uBnT646VNjDRXCrMR9K0hEAwIQJExheqdZhgKVa5/zzz8d1110HADAn7LEtreNODQmxRETkI4ZX0kqncwU1uHoIr0KyoE77k7Barejfvz+uuOKKgI5JFI4YYKlWuvXWW9GhQwdAtqI0cScEvAwXCkaQDbXgzOHDRFRbMLxqptsonxBq74TBhwkddTg/0NLrCtjuez3nMgnHjx9Hw4YN8dBDD0EKoZ8bUXXhPbBUa2VlZeGWW27BmTNnYChJhimvNSRj+f2vnhoE+1vG01tHj3tgef8rEVH1Y3j1Wa28D9bePntop93dv2qnTs7k6XzBKiCZywAA5tgDsMQeQ2RkJD744AO0adPGcx2Jaij2wFKt1aBBA7zwwgswGAywRp2CJeaottDIYcVERDUTwytpoVOvq7fhwgDU5y2RJ2GJPQYAePTRRxleqVZjgKVarXPnzrj33nsBAGWxh2CJ8DCpU0VhEGQ5gRMRkUYMr34LqbamKtvkahwu7MhqLABSDgIAxowZg4EDB/p9fKKagAGWar1hw4bhyiuvBCTAHLsDilygfecwCLFEROQB13glbxzb+urodXWgSCWIb3MMZrMZ559/Pm655Ra/j09UUzDAEgGYOHEiunTpAkhWlEZthCJ5mJnYlZoeZHn/KxHVRAyuoSUU29Ag9boCgEAZGmYex6lTp5Ceno4nn3wSsp/L8xDVJJzEiahcfn4+7r77buzfvx+SEoPIoq6QEOF7QUJAyHLgl4f0mJKfEzgREbnG8KqrmjaRk2RRyr8IoP2zl+HHpI4CVpijN0ExnkFKSgo+/PBDNGjQwP+6ENUgvIxDVC4+Ph6vv/46UlJSIOQimKM3eV9exxUNMxNWF91OKIiIahKGV92F1H2wegi011WSfB4urO4LAXPUDijGM4iNjcXrr7/O8ErkgAGWyEGDBg3w5ptvIi4uDoohD+aobRBQ/C+wJg8rJiIKVxxVUnPp0eYGGFyFJPl9hi0gUBa1F0rESRiNRrz00kto2bKl3/UhqokYYIkqaN68OV555RWYTCYoxlMwR+2AQIBX6xliiYiIqo4eF4z16HWVEVh4jdwPa8QRAMDjjz+Orl27+l0fopqKAZbIhU6dOuGZZ56BwWCAYsxCWdROKIFmUPbGEhGFDvbC1hxh3usKAEKWYYk8BKvpEADggQcewKBBg/wvkKgGY4AlcuOCCy7A008/DVmWYTX+B0vkLiiG8iusgWCQJSIiClyQe12dgqu/va6ybAuvpoOwmPYDAO6++24MGzbMvwKJagFjsCtAFMr69++PsrIyvPTSS7AajwKQYCxrDUACFEAKZKZDSdJntkUiIqLaJMg9rgB06XEFAMiAxXAYloi9AIDbbrsN11xzTUB1I6rp2ANL5MWQIUPw8MMPAwCsxiOwROy23RMru++NlYTQFk7ZG0tEFDwcRhx+wmS4sGR1fw6gLrUnAxbjQVhMuwEA48ePx5gxY/yuG1FtwR5YIg2GDh0Ki8WCt956C1bjEQBWGMsyIMkShLveWAWAQeMB7I0pe2SJiChMCakKl28LgeAKQHvXj4v23LHXVUDAYtwPa8QBAMDYsWNx4403+l0/otpEEoJnzERazZs3D6+99hoURYFsqY+IsvaQ7K2Zfc3z8reUugacP4TQbT1ZXdbmYy8FEdVUXBNWVwEHWFenpb62g0qF5e983d8qnNtywOcxi5LlbB0cgytgD697YI04DMA2bJg9r0TaMcAS+Wjp0qV4/vnnYbFYIFuTEWHuAMmxq9Wx3fQ3wAJnQywDLBFR1WKI1Y2uAdbf9s8xwPpRhj18BnKfq2RRKgVXoDy8Ruwqn1cDmDhxIq6++mr/DkJUSzHAEvlh1apVePLJJ2E2myFbkxBh7ggJEc4bKbA1WnrMkBgABlgiIi8YYHWjW4ANNLwG0nba71/1N7xahcvwK2BFWcR2KMYTkCQJDz30EC677DL/60lUSzHAEvlpw4YNeOyxx1BUVARJiYXJ3AmSiHLeKMjhFWCAJSLyiOFVN1V2/6svFCXwtjPQFQaswkV4LYPZtBnCkAuj0YgnnngCAwcODKyeRLUUAyxRAHbv3o2HH34Y2dnZgIiEqbQTZBF3dgPHIcD+vtXYA0tEVDUYXnUVSIDVbQIoPZa386cMx3krKtyDK6QSmE0bIeRCxMbG4sUXX0S3bt38rydRLcdldIgC0Lp1a3z00UdIT08HpFKYI9fDKp8+u4FjQxjQYumB15WIiBwwvIaMkGjj/L3YbG/b7Y8K+ytSAeKb7IKQC5GcnIz/+7//Y3glChB7YIl0kJ+fj8cffxwbN24EIMFobgujtZHtSXfBVetbT5KcGndfr1DrdmLAXlgiqgkYXKtMoO1TUHpgK7bPFWcw9rafh/2t8ikYk3ajuLgY6enpeOONN9CgQQPf6kdElTDAEunEbDbj5ZdfxuLFiwEABktTGMtaQpIMnntetbwFK4RYwLeGnsOIiYjA8FrFAmmXqj28uruw7K0Mb0vcKQoEBKzGQ7Ca9kEIgS5duuDFF19EfHy89voRkVsMsEQ6UhQFU6ZMwZQpUwAAsrWubZkdyRRYiHURYNWnNLyDGWCJqNZjeK1ygbRH1RZgPbXF3npfvd0KJASEsKAsYgcUYxYAYNiwYbjnnntgNBq9142INGGAJaoCS5cuxcsvv4ySkhJISjQiyjpBRpz3Hd29HT0EWMB7w88AS0S1GsNrtfDUFnlrh6olwHqbh8JdgPXW62o/vFIMc+RmCDkPBoMBEydOxPDhwz0fk4h8xgBLVEV2796Nxx9/HFlZWYAwIKKsAwyivradXb0tvYRYILCTB00YYoko3DC8VotA2x/d1o91WbiGCrgaPqwxuAKAgtOIb3QQ2dnZiI+Px/PPP8/JmoiqCAMsURXKycnBU089hU2bNgEADJZmMFpbQtI6Abjj21NDgFU3dfGuZoAlolqH4bXaBNLuVFnvqy8z/zv2vvoQXAUErPJBiKj9sFqtSE9Px0svvYSmTZtqPzYR+YQBlqiKWSwWfPTRR/j2228BAJKSBFNZR0iI1F6Iw1I8vgTRiicFAYdYBlgiCgcMrtUukPZG995XX5ess/e++hBcAUDAgjLjViiGkwCAQYMG4cEHH0RMTIxvxycinzDAElWTpUuX4tVXX0VRUREgTIgoy4RB1PW5HH9CqP3kgL2wRFTjMbwGRSDtjG4B1s+11v3ZX5HyUWbcBCEXw2g0YsKECbjyyish+VsHItKMAZaoGh0+fBhPP/009u7dCwAwWlrAYE3XPqS4nL8nCAywRFTjMcCGHV0CbDUFR9uQ4SOQY/fDbDajfv36eP7559G+fftqOT4RMcASVbuSkhJMmjQJ8+bNAwBISiIiyjIhI1pzGboEUX8xwBJRKGOADTu63ANbDQTMKDNug2I4BQDo2bMnnnjiCSQlJQW3YkS1DAMsUZAsWLAAb7/9dvmQYiMiLBkwKKma9g1qgAUYYokotDHEhg1/w6u9Hayu/a1SNhIaHkJ2djYiIiJwxx13YMSIERwyTBQEDLBEQXTs2DG88MIL2Lp1KwBAtqYiwpIBCZ4XPGeAJSLygAE2bPgTQB3bwKreX0CBxbAXSsQhCCHQrFkzPPPMM2jVqpXvByYiXTDAEgWZxWLBtGnTMG3aNCiKAklEwVjW3uMETwywREReMMSGBV8CqKu2ryr3V6Q8lBm3QsiFAIBhw4bhrrvuQlRUlPaDEpHuGGCJQsTmzZvxwgsv4Pjx4wAAg7UJjJZWLntjGWCJiDRgiA15WgOou3avKva39bruByIPwWq1IikpCQ899BAuuOACbQcjoirFAEsUQoqKijB58mT89NNPAABJRCOirD1kUcdpu6AHWIAhlohCHwNsSNMSPj21d4Hu76oM2/I4WyHkAgBAv379cP/993OiJqIQwgBLFILWrVuH1157DVlZWQAAg6UpjNZWkGAAwABLRKQZQ2zI8hRAtbRzXu9f9aEMAQVWwwEg6hAsFgsSEhJw3333YcCAAZyoiSjEMMAShajCwkJ8+OGH+OWXX2zfEFHlMxUnM8ASEWnFABuy3AVQrW2cXvsrUi7KjNvVe1179+6NBx98EPXq1dNWEBFVKwZYohC3Zs0avPnmm+q9sbK1ASIsbQApMsg1A0MsEYUHhtiQ4/LeUx+blIpl+HxxV1hgMe6B1XAEAJCUlIS7774bgwcPZq8rUQhjgCUKA8XFxfjiiy/w/fffw2q1AsIIo7UVZKUxJASxkWWAJaJwwAAbchzDp7+jivwtQ0BAkU7AYtwJSGYAwKWXXoo77rgDiYmJ/lWGiKoNAyxRGNm1axfefPNN7NixAwAgKYkwWjMgi/jgVIgBlojCAQNsyJFE4PM5+FOGQBEsxl1Q5FMAgCZNmuDBBx9E165dA6sMEVUbBliiMGO1WjF79mx8+umnKC4uBgDI1iYwWltAgqn6K8QQS0ThgkG21hKwwmrYDznqKMrKymA0GnH99dfjhhtuQGRkCNySQ0SaMcAShakTJ07ggw8+wJIlS2zfEBEwWltW/7BiBlgiChfBCrCyFPix9SijFjo7XHgXIJUCALp3746JEyeiWbNmQa4dEfmDAZYozG3YsAHvvPMO9u/fDwCQlDgYrW0rrR1bZRhgiSicVFcIdPxs9PeYepRRiylSASyGnRByDgAgNTUVEyZMQJ8+fThJE1EYY4AlqgEsFgt++uknfP755ygosC2+LlsbwGhtCQkxVV8BhlgiChdVHQQrfh76czw9yqjFBEphMewDIv6DoigwmUwYPXo0rr/+eg4XJqoBGGCJapDc3Fx8+umn+PXXX2F7a0swWJvCYG0OCRFVd2AGWCIKJ1URCF19Dvp6HHefpQywmghYYZUPwhT/nzpHRN++fXHnnXeiYcOGQa4dEemFAZaoBtqzZw8mT56MtWvX2r4hjDBYm8OgNIEEg/4HZIAlonCjRyj09tmn9RieymF49UpAQJH/g8WwV73PtX379rjrrrvQsWPHINeOiPTGAEtUg61ZswYffvgh9u3bZ/uGiCpfP7aB/hM9McQSUTgJJBhq+bzzVr4eZdRytgmaTsFq2Ash226fSU1Nxe23344BAwbwPleiGooBlqiGs1qtmD9/Pj777DOcOmVb905SYmGwtoQsUvQLsgywRBRufAmIvnzGeSpXr3JqOUU6DYthL4R8BgAQFxeHsWPH4qqrroLJFIQl5Yio2jDAEtUSJSUl+O677zBjxgx1oidJSbBN9CTqBh5kGWCJKBzp0VPqrTx/Ph8ZXl1SpDPlwfU0ACAyMhIjRozA9ddfj4SEhCDXjoiqAwMsUS2Tn5+PmTNn4vvvv1cnuZCUJNsasoEuvcMQS0ThqGJY9PezrKrKIShSPqyGfVDkkwAAo9GIK664AmPGjEFycnKQa0dE1YkBlqiWysnJwfTp0zFnzhyYzWYAgKTUgdHaHJKo41+PLAMsEYUje2AM9DNMEfqUQSpFOgOrYT8U2XYLjCzLuOiiizB+/HjOLExUSzHAEtVyJ0+exLRp0zB37lxYLBYAgKQklgfZetqDLMMrEVHg9JpcSq9ZloNUjiLlwmLYDyFnAwAkSUL//v0xfvx4pKenB14nIgpbDLBEBADIysrCN998g7lz5zr0yCbAYE3XPtkTQywRUWD8CYwVP3sDDZ328qq5HAEBIeWUB9ccAIDBYMCgQYNwww03IC0tLbD6EFGNwABLRE5OnTqFmTNn4ueff0ZJSQkAQFLiYFCalS+/I7vfmQGWiMh/esyKrOfyQP6W5WM5Z5fDOaDOKmw0GnHJJZdg9OjRaNSokX/1IKIaiQGWiFzKzc3FrFmz8OOPP6qTPUFEwmBNg0FpDAnGyjsxwBIR+UdrWPT2OatHD66e5XgoS8AKRT4Oq+EghFQEADCZTLjssstw3XXXoUGDBr7XgYhqPAZYIvIoPz8fc+bMwQ8//IDTp23LFkAYYFAaw2BNg4Qo5x0YYomIfKPXUj56rmurV1kuyhEwwyofgdVwBJBst6zExsbi8ssvxzXXXMNZhYnIIwZYItLEbDZj4cKFmDlzJg4ePFj+XQmytYFteLGIt32LAZaIyDfuwqIvn6d69eBqLcuPUK2gCFbDISjyMUBSAAANGjTA1VdfjcsuuwyxsbHayiSiWo0Bloh8oigKVq9ejZkzZ2LDhg3q9yWlDgzWJrYJn2RDEGtIRBRGqmPtWF/L1KssRZRPzHQaVsMRCMMp2E8727Rpg2uvvRb9+vWD0ejilhQiIjcYYInIbzt27MCsWbOwdOlSWK1W2zdFJAxKExhEY0iIDG4FiYhCmZ7rz7riT7k6lSVQBiuOQTEcUe9vBYDzzz8fo0aNQufOnSFJHLFDRL5jgCWigGVlZeHnn3/GL7/8gtzc3PLvSpCVBjAoTSEhUft6skREpJ1ePbiuyvOjLAX5sMqHoUjHAcl2YTM6OhoXX3wxhg8fzjVciShgDLBEpBuz2YylS5di9uzZ2Lp1q/p9ScTDoDSFLFIhgcOLiYh0owh95x7wozwBBYp0Alb5MISUq34/PT0dw4cPx0UXXYSYmBj96khEtRoDLBFViR07dmD27Nn4448/YDbbZpmEMEAWqeXL8CSwV5aIKIwpKIQiH4VV+k+dTdhgMOCCCy7A8OHDOUyYiKoEAywRVanc3Fz89ttv+OWXX3D06FH1+5KIg0FpDFk0hISIINaQiIi0ErBAkbJglY9CSGfU79etWxdXXHEFLr/8cqSkpASxhkRU0zHAElG1UBQFGzduxK+//oply5Y59MrKkEV926RPog57ZYmIQoxtLuEzsMrHnO5tNRgM6NmzJ4YOHYpevXpxNmEiqhYMsERU7fLz87FgwQLMnTsXe/bsOfuEiIZBpEJWGkIG1wMkIgomgRJYpeNQ5GMQUqH6/caNG2Po0KG4+OKLkZycHMQaElFtxABLREEjhMCuXbvw66+/YtGiRSgsPHuCJIkEGJSG5RM/mYJYSyKi2kOgzDYhk3QcQj6tfj8yMhL9+vXD0KFD0alTJ97bSkRBwwBLRCGhpKQEf/31FxYsWIC1a9eeXVcWEmSlHmSRClnU5yzGREQ6s80ifAqKdByKdBKQFPW5c845B4MHD8bAgQMRFxcXxFoSEdkwwBJRyDl9+jQWL16MBQsWYMeOHWefEAbIoj5k0QCyqAcJcvAqSUQUxmz3tebCKh+HImUBUpn6XLNmzTBkyBAMGjQIDRs2DGItiYgqY4AlopB28OBBLFy4EAsWLMDx48fPPiGMkEUKwywRkUYCAkLKgVU6UR5azepz9erVw8CBAzFkyBC0bt2aQ4SJKGQxwBJRWBBCYMuWLVi0aBGWLVuG06dPOzzJMEtE5IqAAiHlwiplQZFOOIXWuLg4XHDBBRg8eDC6dOkCg4G3aBBR6GOAJaKwY7VasXnzZixduhTLli1Ddnb22SfVMFu/PMzyhIyIahdbaM1xCK1nhwfHx8fjggsuQL9+/dCtWzdERHAdbiIKLwywRBTWrFYrtmzZgiVLlrgIszJkUbc80KZAQmTwKkpEVIVsswefgiKdhCJlA5JFfS4xMVENrV27duV6rUQU1hhgiajGUBRF7ZldsWKF8z2zACSRCFmxh9lYSOA9XkQUvgSKYJVOQpFOQsi5AM6e0tWpUwd9+vRB//790blzZ4ZWIqoxGGCJqEYSQmDfvn3466+/sGLFCufZjAFARMMgUiCLZEgiiUONiSjkCSgQyIMil4dWqdDp+ebNm6N3797o3bs32rVrB1nmfABEVPMwwBJRrXDq1CmsXLkSK1aswPr162E2n53IxDbUuA4kkVx+32wMe2eJKCQIFEORsssfp52GBhsMBnTq1EkNrY0aNQpiTYmIqgcDLBHVOkVFRVi3bh1WrlyJNWvW4NSpU84biCjI5WFWFnUhgUPviKh6CFghpBw1tFbsZU1ISECPHj3Qu3dv9OjRA/Hx8UGqKRFRcDDAElGtJoTA/v37sXr1aqxZswabNm1CWVmZwwYSJCRCVuqWh9lELtNDRLoREBDIhyKdLg+suYCkqM/Lsoz27dujR48e6NGjB9q2bcvlboioVmOAJSJyUFRUhH///VcNtEePHnXeQMiQRB3Iok55oI1noCUizWyBtQCKdLq8pzXHaVgwAKSkpKBnz57o0aMHunXrxl5WIiIHDLBERB4cOXIE69atw4YNG/DPP//gzJkzzhsII2SRBEnUtd1Hi3jeP0tEKltgLSwPq6fLA2uZ0zYxMTHo1KkTunXrhh49eqBZs2aQJH6OEBG5wgBLRKSRoijYv3+/Gmb//fdfFBQUOG8kjLblekQSZCRBEomc4ZioFlFnCpZyIaRcKFJupcAaHR2Njh07okuXLujSpQvatGnDZW6IiDRigCUi8pPVasWePXvwzz//YMOGDdi0aROKioqcNxISJMSX99Im2f6PyOBUmIh0J2CGIp1Rw6pAntM9rAAQGRmJjh07onPnzujSpQvatWvHwEpE5CcGWCIinVitVuzbtw+bNm3C5s2bsXnzZpw8ebLyhiIaskgs76lNKB92zF5aolBn610thJDOQJHyIKTcSrMEA0BiYiI6duyIjh07IjMzE23btoXJZApCjYmIah4GWCKiKiKEQFZWlhpmN2/ejH379qHSx66QICGuPNAmQhIJkBDLe2mJgsh272oRhJQHIeXZelmRX6l3FQDS0tLUwNqxY0c0adKE97ASEVURBlgiomqUn5+Pbdu2Yfv27eojNze38obCAEkkQEYCJBFveyCGMx4TVQEBAaAYipQPIeVDwRkIKa/S7MAAEBsbi4yMDGRkZKBDhw7IzMxEUlJStdeZiKi2YoAlIgoiey+tY6DdtWsXiouLXWwsl/fUxkNWQ20cJPBeOiKtBKwQKLAFVcn2f1vPqrXStiaTCa1bt0ZGRgbatWuHjIwMNGnSBLLMC0lERMHCAEtEFGKsVisOHjyIbdu2YdeuXdizZw/27t3rJtTC1jMr4iGJONvQYxEHCdHsraVazdarWmILqSi0BVUpHwKFcDU632QyoXnz5mjVqpUaVlu0aMHJloiIQgwDLBFRGFAUBUePHsWePXuwZ88e7N69G7t370Z2drbrHYRUHmbtgTbO9jWDLdUwZ4f/Fpb3rBZClIdWV/erArZJllq3bo1WrVqhVatWaN26NZo2bcqwSkQUBhhgiYjC2OnTp9VQu3//fhw4cAAHDx5ESUmJ6x2EXN5jG1P+/1j1ayCCE0dRyBL4//buPDiKMnHj+NOTGxJIBAzhEBAh4IHcqAgLxOXwKFw5FFnxWNYTsWS31l12AX8ioosIHsiqZbkliriIguLBFsihch8KyxkINyHmIIGQTK7p3x8z05mBHCSZMHT4fqqmpud9+337nWSg8ky/3W+R56ZKeaXPxtkKg2poaKhatmyp1q1b+4XVRo0acZMlALApAiwA1DEul0snT57UoUOHrFDrfRQUFJTf0Aw9J9x6t6NEuMXFYKq4jJDq3pZRVG678PBwXXXVVWrdurVatWql1q1bq02bNmrWrBlnVQGgjiHAAsBlwhtsDx8+rKNHj+rYsWM6duyYjh49ql9//fX85X18mSEyFCnDjJIUJcOMdE9HNqM8ATeUgItKuc+iOmUa+TLllIx8mcqXaThlKr/Mu/76atSokVq0aGE9vKE1ISGBoAoAlwkCLABABQUFOn78uBVovc/Hjx8v/zpbX2aIO8iaETIU4Qm7EZIiPGE3QpzFrbvc16EWy1SBZDhlqsD9MAokOT0B1VlpQJWkuLg4v5DqfTRv3lz16tWr9fcCALi0EWABABUqKCjQr7/+qtTUVJ08edJ69m5nZWVdWEemQ5In4JoRMhQumeHuZ4XL8NmWQgi7lwBTJZIKZapQplFobcvwlrnDqlRQ7nWo54qNjVXTpk2VkJCgpk2b+j3i4+MJqQCAChFgAQA14nQ6lZaWprS0NKWnpysjI8PvOT09XdnZ2VXr1HRIcgdawwyX++xtqKQwySzdNsxQvzpDIQF+d3WDO4gWy1SR+9lwP0tFMlUsGZ5nT1A15Q6rFxpKvRo0aKDGjRurSZMmatSokZo0aaLGjRvryiuvVEJCguLj4xUVFRXw9wcAuHwQYAEAta6wsFCZmZl+4TY7O1unTp3SqVOnrO3s7Oyy17u9UKZDUojc1+S6n93Tmz3b8myb3m2HJG8bw1NneF47SstkWK9LH/LbruyMsXuarXur9Nm77fI8TE/YNEvLDJdMq979cO9T4pmSW1L6WsUyDe92iSeUFlc5iPoKDw9XbGys4uLiFBsbaz18A6o3sEZERFT7OAAAXAgCLADgkpKfn+8Xbk+dOqUzZ84oNzdXZ86c0enTp3XmzBm/R25urlyu6oe0gDAl/2BrFbqfgzwj2jAMRUdHKzo6WjExMX4Pb5lvQI2Li1NcXJyioqJYcgYAcMkgwAIAbM/lcikvL09nzpxRXl6e8vLylJ+fbz18X3u38/LyVFBQoKKiIhUWFlrP3kdRUZFfWW0H5JCQEIWFhVmP8PDwcp+joqIu+OENp/Xr15fD4ajV9wAAQG0jwAIAcAFKSkpkmqb17HK5ytwuKSmRy+WSw+GQw+GQYRgVbhuGodDQUIWEcP0uAACVIcACAAAAAGyBuUQAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsgwAIAAAAAbIEACwAAAACwBQIsAAAAAMAWCLAAAAAAAFsIDfYAACBYTNOU0+kM9jAAoEoiIyNlGEawhwEAQUGABXDZcjqdGjRoULCHAQBVsmzZMkVFRQV7GAAQFEwhBgAAAADYAmdgAUBS+MYrZZie7/QMhwyHIRkOyWFIhiHD4a3zlBuG5DBkePex6gyrjQyfcqustE+rTqX1pmGUfrVolPZjlfu08y0zPd1YdQ5J8pYbVp23jekpM33bePtwePa32vjXW31KMuUpc5RR57e//MZYWnbuOMpoI/82fvWqoJ1Pn2W1La9PPxW2Mf3an9ufVe/Tl+kp1zntZJg+7d31hm+dta9ptTGs/Xz29/RjGGbpR9BTXvqrNq16h0zrtbtOcnheu+vcr73trDrDlKHSdg5PmfWQb7n8ykvbuKwyh0w5DJdCvHWe11a9Z1uSQqwyUyFyl4cYrnPauRTi2ZZkbVv7q7Q/h9ztHXIf313nbecuM+RSiLe9vONwKURyt5P7eN735n3tPpbp2VbpWOT+ZxYiw/rnHmIYcsjwlBme1w7PR8dQUWGIhv2xqQDgckeABQBJKjFK/5Q0HDLkCZueZFBaZ0iO0rRmuNOgpxNv2nHonHTik2wc56er0pThU65zynyPoTLKzm2n0uDqE2DPKzuvXGUE4nPr5ROkS99WuXXlvY0yx3EhbS7gRxWAPisPvQEOsGXV69zXZhnlpt8xy6rzBqvSOt9606edT5nMMvosffgG2NJQ7Hmo/HIrOBryCailQVfyBlFZAdC3zh1gXaUB0HCHP3c7TxA0DHe49JR7t639ZfiEZSnEKH0OkXzCZhl1nh+j+7XpCcCmFVjd7cxKA2xZ/TlUWuZ+7TtGn98hAFzGmEIMAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAW2AdWACQpBBTpulybxtyLwRpPRulX/f5raPqsy3fMrN026+8nDqfRUHNchY3LS0vfTb9tuXXzpQk01qN06oxZUimrLbmuW087c53bpl34VO/IZ3z8yjnce6+NVnrtaK6ivq8gOMZZdX7lZW1nmsZ9eeNsZx1YOVfb/jWWfuW9mn4rvHq3d9vXVbfj1c568Cq+uvAmiptZxqm/0O+5fIrd1n9uUqPI1MyXD7r1Zp+9abhkukzDlOm57Xn2TsOz2uHZx+HT7lvmXsc7u4cklxG6bNLpevAujxlhspbB9aQQ+71ZUNU+jvzvnZ42py7tqzDqjN8+ivtyyHDeu3+tRgqKizr3yUAXH4IsAAgqbDnr8EeQu3w5oMaODc6A5L/R8sVzIFUm+8nmwlpAGAX/I8NAAAAALAFwzTNGn43DwD2ZJqmnE5nsIdRY06nU0OHDpUkLVmyRJGRkUEeEYKBz8HlIzIyUobBnAgAlyemEAO4bBmGoaioqGAPI6AiIyPr3HtC1fE5AADUVUwhBgAAAADYAgEWAAAAAGALBFgAAAAAgC0QYAEAAAAAtsBdiAEAAAAAtsAZWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAuhwR4AAKD68vLytGDBAq1evVonT56Uw+FQy5YtNWDAAA0bNkxhYWHBHiJqUU5Ojn766Sdt2bJF+/btU1pamkpKShQbG6vExEQNHjxYffv2DfYwAQAIGMM0TTPYgwAAVN3Jkyc1fvx4nTx5UpIUGRkpl8ulwsJCSVK7du00e/ZsxcTEBHOYqEX9+/dXSUmJ9To8PFwhISHKz8+3ynr16qWpU6cqMjIyGEMEACCgCLAAYEPFxcUaO3asUlJS1KhRI/39739X9+7d5XK5tHLlSs2YMUN5eXm66aab9M9//jPYw0Ut6du3rzp27KghQ4aoZ8+eatasmSQpNTVVH374ob7++mtJ0sCBA/WPf/wjmEMFACAgCLAAYENLly61gunbb7+t66+/3q9++fLleuGFFyRJs2bNUrdu3S76GFH7tm7dqq5du5Zb/+qrr+rLL7+UJC1cuFDx8fEXa2gAANQKbuIEADb03XffSZK6dOlyXniVpKSkJCUkJPjti7qnovAqSXfccYe1vXfv3toeDgAAtY4ACwA243Q69b///U+SdNNNN5W5j2EY6tWrlyRp06ZNF21suLSEh4db2y6XK4gjAQAgMAiwAGAzhw8ftsJImzZtyt3PW5eVlaXTp09flLHh0vLzzz9b21dffXXwBgIAQIAQYAHAZjIyMqztJk2alLtf48aNy2yDy8OZM2f00UcfSZI6deqkq666KsgjAgCg5giwAGAzeXl51nZERES5+/kum+LbBnWfy+XStGnTlJmZqfDwcD377LPBHhIAAAFBgAUAoI554403tHbtWknSs88+q7Zt2wZ5RAAABAYBFgBspl69etZ2QUFBufs5nc4y26BumzNnjj7//HNJ0rhx4/zuRAwAgN0RYAHAZnyvbU1PTy93P9/rXn3boO6aO3euPv30U0nSk08+qZEjRwZ5RAAABBYBFgBsplWrVnI43P99Hzx4sNz9vHVXXHGFGjRocFHGhuB5++239cknn0iSnnjiCd13331BHhEAAIFHgAUAm4mMjNT1118vSdqwYUOZ+5imqY0bN0qSevTocdHGhuCYM2eOFixYIMkdXkeNGhXkEQEAUDsIsABgQ4MHD5Ykbdu2Tbt27TqvfuXKlTpx4oTfvqib5syZ4zdtmPAKAKjLCLAAYEODBw/W1VdfLdM0NWnSJG3ZskWSe/mUlStXasaMGZKkXr16qVu3bsEcKmqR7zWv48aNY9owAKDOM0zTNIM9CABA1aWmpuqZZ57RyZMnJbmnFrtcLhUWFkqS2rVrp9mzZysmJiaYw0QtSUtL04gRIyRJDodDsbGxFe5/7733cnYWAGB7ocEeAACgehISEvTvf/9bCxYs0OrVq3Xy5EmFhoaqTZs2SkpK0rBhwxQWFhbsYaKWuFwuv+2srKwK98/Pz6/tIQEAUOs4AwsAAAAAsAWugQUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAthAZ7AAAAABfC6XTq559/1t69e7Vv3z7t27dPaWlpkqSHHnpIjzzySJBHeOFSU1N17733VrrfAw88oD/+8Y8XYUQAYA8EWAAAYAu7d+/WX/7yl2API+AaNmyokJCQMuvq1at3kUcDAJc2AiwAwBZef/11LVq0SDfeeKPefPPNYA8HQRITE6O2bdtq586dKioqUnR0tHJzc4M9rBp59913lZCQEOxhAIAtEGABoI47e/askpOTtWfPHu3du1d79+7V8ePHZZqmJOnTTz+ttT+eTdPU8OHDlZ6ertGjR+uxxx6rVj/JyclavHixJOnRRx8N4AiDKyUlRRs3btSOHTuUkpKizMxMlZSUWCHt5ptv1uDBgxUdHR3soV4SOnXqpK+//lqSNG/ePL333nvKy8sL8qgAABcTARYA6rjx48crOTk5KMfes2eP0tPTJUl9+vSpdj9z585VSUmJevXqpRtuuCFQwwuq8ePH6+effy6zLisrS1lZWdq0aZM++ugjTZw4UT179ry4A7wE+U6zHT58uBYuXKjs7Owq9ZGSkqJFixZp69atysjIkMPhUEJCgnr37q0RI0YoNjY2sIMGAAQUARYA6jjvmVZJio6OVrt27XT48GFlZWXV+rF/+OEHSVKTJk3UsWPHavWxfft2bd68WZI0evTogI0t2LzBPiYmRn369FHnzp3VrFkzRUREKDU1Vd9++63WrVunrKwsTZw4UTNnztSNN94Y5FFfOqKiojRs2DC9//77kqSioqJK28yfP1/vvvuuXC6XJCkyMlLFxcVKSUlRSkqKvvnmG73yyitq3759rY4dAFB9BFgAqONuv/12xcbGKjExUS1atJBhGBo/fvxFDbC9e/eWYRjV6uOTTz6RJCUkJNSpANeiRQuNGTNGSUlJCg8P96tLTExUv3799PHHH+udd95RYWGhZs6cqQ8//DBIo700DRw40Aqwlc0yWLp0qf71r38pKipKv//973X77berUaNGKikp0f79+zV37lxt3bpVf/vb3zRv3ryLevOk559/XseOHVN+fr4aNGig9u3bKykpSUlJSQoN5U81APDFOrAAUMcNHz5ct912m1q2bFntEFkdR48e1eHDhyVVf/pwenq61q1bJ0kaNGjQRR1/bZsxY4aGDBlyXnj1NXr0aLVr106SdOjQIR04cOBiDc8WEhISFBYWJknau3dvufvl5eXp7bffliRNnTpVDzzwgBo1aiTJPS05MTFRr776qhITE5Wenq6lS5fW/uB97N69WyUlJQoNDVVWVpbWr1+vadOm6amnnlJGRsZFHQsAXOr4Wg8AUCvWrFkjyT1tuUuXLtXqY/ny5dZ0zwEDBlxQm+LiYn3//ff68ccftWfPHmVnZ6ukpESxsbG6+uqr1b17d912221WgPHq27evJGnw4MGaOHGijhw5os8++0ybNm1SRkaG6tevr/bt2+v+++9X586drXYFBQX69ttvtWzZMh07dkxOp1PNmjXTb3/7W40YMUIRERHVeu9eXbt2tc4uHj16VG3btq12X4cOHdKSJUv0yy+/KDU1VU6nU9HR0YqJiVFCQoK6deumW2+9VVdddVW1+i8uLtZ///tfrVy5UikpKcrJyZFhGGrQoIFiY2PVsWNHde/eXb1797aCp9e5P/9Dhw7piy++0ObNm5WRkaH8/HxNmzbtvC9DoqKiVFRUpJycHO3Zs0cdOnQ4b1yrV69Wbm6u2rVrV+61xKGhoUpKStLevXu1adMmjRw5slo/gwsVHh6uu+++WwMGDFD79u2tM75Hjx7VwoULtWTJEu3evVvPPfec3nnnHc7EAoAH/xsCAGqFd/rwzTffXO0/vteuXSvJfZ1oq1atKt1///79mjx5so4dO3ZeXXp6utLT07VhwwYdOHBAEydOLLefVatW6aWXXpLT6bTKCgoKtH79em3YsEF//vOfdddddykjI0MTJ07Unj17/NofPHhQ7777rtavX6+ZM2fWKMQWFxdb2w5H9SdOLVmyRLNnz1ZJSYlfeU5OjnJycnTs2DFt2rRJBw4c0KRJk6rcf3Z2tv70pz+VOZXX+7NPTk7Wl19+qfnz56tFixbl9vXtt99q5syZKiwsrPS4vkF47dq1ZQbYHTt2SJIOHz6su+++u9y+CgoKJEknT570K09NTdW9995b6VjKc//99+vxxx/3K2vUqJEmTJhw3r4tW7bUhAkT1Lx5c82ZM0fJyclatmyZ7rjjjmofHwDqEgIsACDgMjIytHv3bknVnz5cWFionTt3SpI6duxY6fTh5ORkjRs3Tvn5+ZKkLl26aODAgWrVqpXCwsKUmZmpXbt2WWeGy3PgwAF9//33iouL06OPPmode8uWLZo3b56cTqdmzZqlzp0768UXX9T+/ft1991369Zbb1VsbKyOHz+uDz/8UAcOHND27ds1f/58Pfzww9X6GUjS1q1bre02bdpUq4+UlBQrvDZo0EB33XWXOnfurNjYWJWUlCgzM1N79+7V+vXrqz1Ne/bs2VZ47datmwYOHKiEhATVr19fZ8+e1eHDh/XLL79YU8LLs3fvXi1fvlwNGjTQiBEjdMMNNygsLEyHDh1S06ZNz9vf98uRrVu36pFHHjlvH+803MLCwgu69tsbZINpxIgR+uyzz5SWlqYffviBAAsAHgRYAEDA/fjjjzJNU+Hh4erVq1e1+jhw4IB19jExMbHCfYuLizV58mQrvD7zzDMaNmzYefvdcsstGjt2rNLS0srtKzk5We3atdPs2bMVExNjlV977bVq0aKFpkyZouLiYo0bN06nT5/WjBkz1L17d2u/9u3bq0ePHhozZowyMjK0ePFijRkzxm8JmAu1Zs0aHTx4UJI7xLds2bLKfUjSypUrrTOvs2bNsq6r9dWnTx+NHTtWOTk5Ve6/oKDA+mKgT58+evHFF88Lwp07d9bQoUOVn59f4ZnkgwcPqkWLFnrrrbd0xRVXWOXl3cXa9zj79u2Ty+U6r3/faejPP/98ld6bJMXHx+vLL7+scjuvyMjIKrdxOBzq2LGj0tLSlJqaWu1jA0BdQ4AFAAScd/pw9+7dFRUVVa0+fKcB+waZsixfvlzHjx+X5L7rclnh1Vd8fHyF9X/961/9wqtXv3791KRJE6Wnp+vUqVMaMWKEX3j1io6O1pAhQzRv3jydOnVKhw4dqvK1qxkZGXrttdckuUPaE088UaX2vrxnHb3LKFWkYcOGVe7/zJkz1pcNnTt3rvAs7oV8HiZMmFDp77wsTqdTGRkZuvLKK/3KvX1V9MVFRRwOB+vDAsAlgrsQAwACKjc3V9u2bZNU/enDkpSZmWltN2jQoMJ9vYFZkkaNGlXtY0ruabrlhTzDMPzqBg4cWG4/vvudOHGiSmNwOp2aOHGiFTzPvXFUVTVp0kSS+3ezcuXKavdTnoYNG1p3U16xYoXy8vKq3VeTJk3K/FLgQvl+brxuuOEGSe7pyXa5q6/L5bKm4SckJAR5NABw6SDAAgACat26dSouLlZISIh69+5d7X58r0Ms62yor3379klyn2m7kJs9VaSy9r5jqehuvb77VSXQFRUV6R//+Id1Y6hbb71VY8eOveD2ZRk4cKB1I6kpU6boqaee0scff6zt27db065rIiwsTIMHD5Yk7dq1SyNHjtSMGTO0YsWKKof3mtxlWZLfjbe8+vXrp+joaBUXF2vOnDkyTbPc9i6XS2fOnKnRGC5ERWOQZF3/Krk/AwAAN6YQAwACyns29Prrr6/RtEvfa0Yruxttdna2pNIzjTVR2fWKvtNjK5oO63sdpvcazMoUFxdr0qRJ2rhxoySpZ8+eev7556t1/ayvZs2a6eWXX9ZLL72k9PR07dixw7ozb0hIiDp06KC+ffvqzjvvrPTLgvI8/fTTKiws1LJly3T69Gl99dVX+uqrryS5v1jo2bOnbr/99krPJFd2tv3MmTN+d1I+92frdDqVnZ2t8PBwa2mamJgYPf3005o+fbpWrFih3NxcPfzww+rQoYMcDodcLpeOHDmi9evXa+nSpRozZkyFZ9cD4emnn1aPHj10yy23qE2bNtbNqI4fP67PPvtMn3/+uSR3oPd+OQAAIMACAAKosLBQGzZskFSz6cOS+3pNr9OnT9eoLzsoLi7WlClTrKWDunfvrmnTpllTc2uqW7du+uSTT/TTTz9pw4YN2r59u44dO6aSkhLt3LlTO3fu1Mcff6zJkyeXu1ZqRSIiIjRx4kQ98MAD+v7777Vt2zbt3r1b+fn5ysrK0nfffafvvvtOffv21aRJk8pdWqiypYL+8Ic/nLfMja/nnntOUul6sl5DhgxRYWGh3njjDW3YsEEbNmxQeHi4oqKidPbsWb/lii6GX3/9Ve+//77ef/99hYSEqH79+ioqKvI7I37ttdfqxRdfZA1YAPDB/4gAgIDZvHmz9Qd4TQOs75IplQXY2NhYpaWl2eb6xnN5w6v37HXXrl01ffr0Gq0fW5bw8HD1799f/fv3l+Q+c71lyxYtW7ZM69ev1+nTpzVp0iTNnz9fjRo1qtYxWrZsqQcffFAPPvigSkpKlJycrLVr12rJkiU6deqU1qxZo/fee0/jxo0L5Fu7IEOHDlXPnj31xRdfaPPmzUpNTVVubq7q1aun5s2b67rrrlPv3r3VtWvXWh/Lk08+qS1btmjPnj3KzMy0PuPx8fFq3769BgwYoH79+tX47DsA1DUEWABAwHgDWLt27Wp84xnfNU+PHDlS4b6JiYlKS0tTZmamjhw5UuG1qZeac8Nrly5d9PLLLwc8vJYlNjZWSUlJSkpK0muvvabFixcrPz9fP/74o4YOHVrj/r3Tkzt06KAhQ4bowQcflNPp1PLly6sdYP/zn/+cVzZq1CgdP35cCQkJ+vTTTytsn5CQoCeffLJaxw6kfv36qV+/fsEeBgDYDjdxAgAEhMvl0k8//SQpMDediY+PV+PGjSXJuhtrefr27Wttz58/v8bHvliKi4v1/PPPW+G1c+fOeuWVV6q1bmhN+U4b9l5THEgJCQnWOrbVWWu2PNnZ2dYSStddd13A+gUAXJoIsACAgNixY4cVfHwDZU14Q9Xhw4d19uzZcvcbMGCAFY6++eYbLVq0qMJ+q7seaCAVFxfrhRde0Jo1ayTVbnhdvXp1paHUe+2yJDVv3rxK/Z84cUKbN2+ucJ/U1FQdPnxYkvumUoGya9cua/umm24KWL8AgEsTU4gBoI47duyYdcdZL+/6opK0atUqv7sFR0VFVWtqo/csYrNmzWq8FIpX//799c0338jlcmnz5s36zW9+U+Z+oaGh+r//+z899dRTys/P1+uvv641a9Zo0KBBatWqlcLCwpSZmak9e/Zo1apVSkxM9LvBTzBMnTpVq1atkuQOjI8//rhSU1MrbBMXF6e4uLgqH2vRokWaOnWqunXrpm7duql169Zq2LChioqKlJaWpuXLl1tnz5s2bVrl5Y/S0tI0YcIENWvWTL1791bHjh0VHx+viIgI5eTkaNeuXVq8eLF1N+lhw4ZV+T2UZ9OmTZLc1/fefPPNAesXAHBpIsACQB23Y8cOTZ8+vdz6uXPn+r1u2rRpjQJsINes7N69u5o0aaL09HQtW7as3AArSddcc43efPNNTZ48WSdOnNC2bdu0bdu2MvdNTEwM2Bira+XKldb28ePH9fjjj1fa5qGHHtIjjzxSreMVFhZq3bp1WrduXbn7NG/eXNOnT69weaCKnDhxQgsXLiy33uFwaNSoUfrd735Xrf7PVVxcrBUrVkhyn/Wv7hJAAAD7IMACAGps//791tnDmt592FdISIjuuecevfPOO1q/fr2ys7MrXFu2ffv2+uijj7Rs2TL98MMPSk5Otq63jIuLU9u2bdWjRw/ddtttARujHUyZMkUbN27UL7/8opSUFGVlZVlTihs2bKhrrrlGffr00cCBA6u1bE+nTp301ltvafPmzdq1a5fS0tJ06tQpnT17VpGRkWrWrJk6deqkO++8M2Bn5yVZnwlJGj58eMD6BQBcugzTNM1gDwIAYG8ffPCBPvjgA8XFxemLL76odC3PqsjNzdV9992n06dP67HHHtPo0aMD1jfs7bnnntO6devUrVs3zZo1K9jDAQBcBNzECQBQY97pw7fccktAw6skRUdHW6F1wYIFysvLC2j/sKddu3Zp3bp1MgxDjz76aLCHAwC4SAiwAIAaKSoqUp8+ffTQQw/pnnvuqZVjDBs2TC1atFBOTk6Z64Di8vPee+9JkgYNGqSOHTsGeTQAgIuFKcQAAFvYvXu31q1bp+joaI0cOTLYw0EQ5ebmauHChTJNU/fcc0+F10UDAOoWAiwAAAAAwBaYQgwAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABb+H9QOrYGDQ6bPgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC6ZklEQVR4nOzdd3gUxeMG8HfvLr0CCYQWqoAUAZWO9KKggoCCIs2Oigj6xd4Qf4BdLKggUkRAQcACSO9SVTrSCTWEkJBe7nZ+f1xuuUuu7JXkSt7P8+Qh5HZn55K7m3l3ZmclIYQAERERERERkY/TeLsCRERERERERGowwBIREREREZFfYIAlIiIiIiIiv8AAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QUGWCIiIiIiIvILDLBERERERETkFxhgiYiIiIiIyC8wwBIREREREZFfYIAlIiIiIiIiv8AAS0RERERERH6BAZaIiIiIiIj8AgMsERERERER+QWPBNgzZ85AkiRIkoSRI0d6oshyqUuXLsrvkYjIlpEjRyqfFWfOnPF2dRSzZ89W6jV79mxvV4dKQf/+/SFJEu655x5vV4X8BPuIRNYFcr9/0qRJkCQJdevWRV5ensfLL7MR2NmzZ+Ptt9/G22+/XVaH9Lply5Ypzzk9Pd3b1aEier0ea9euxcsvv4xu3bqhatWqCAkJQWRkJOrVq4chQ4Zg2bJlMBgMTpV78OBBjBkzBo0aNUJkZCRiYmLQrFkzvPzyyzh79mwpPRsiKi/MT1w48+WpdvfPP//E8uXLAcBmmUIIbNu2De+88w7uvPNO1KxZE6GhoQgPD0etWrVw3333Yd68ecjPz3d4vI0bNzr1PB2dNMnIyMDGjRvx0Ucf4cEHH0SDBg2g0WhcOhmUk5ODv/76C59//jlGjhyJpk2bQqfTKWVt3LhRdVnOyMnJwYwZM9C3b1/UqFEDoaGhCA0NRbVq1dCrVy989tlnqvsbeXl5mD59Ou68804kJCQgJCQE8fHxaNOmDf7v//4PqamppfIcvGHMmDHK3+aNN95wev+cnBzExMRAkiTodDpcvHjRqf3T0tKwfPlyvP7667jzzjvRuHFjVK5cGUFBQYiJiUGTJk0wcuRIrFq1yqlyf//9dwwZMgS1a9dGWFgYYmJi0LhxY4wbNw6HDx92qqzNmzfj0UcfRZMmTRAdHY2goCBUrFgRt99+O55//nns37/fYRkFBQXYu3cvvv32WzzxxBO47bbbEBwcXCYnNlNSUvDuu+/itttuQ8WKFREeHo569erhkUcewY4dOxzubx4mPfm548v27t2rPI9atWpBCOF0GY899phSxtSpU5WfP/fcc6hQoQJOnz6NDz74wJPVNhIecPr0aQFAABAjRoywuk3nzp2VbcqLESNGKM/59OnTDrcvj7+jsrZ+/XpRsWJF5fds76tVq1bixIkTqsr94IMPRFBQkM2yoqKixIIFC0r52VF54exnS1n5/vvvlXp9//333q5OwDH/uzvzNWfOHLePLcuyaN68uQAg7r33XqvbHD58WFSrVk1VnRo0aCD27Nlj95gbNmxw6nnae82lp6cLSZLs7u/Me8lRO7JhwwbVZam1e/duUadOHYe/h8qVK4s///zTbll79uwRtWvXdljOqlWr3K63mj5iadu7d69Sh8TERCHLslP7z507V9m/T58+Th9/+vTpql/HnTp1EpcuXbJbXnJysujWrZvdcoKCgsTUqVMd1i0nJ0c88MADDuul0WjE2LFjhcFgsFnWrbfe6vJ71B1r1qwRlStXtnlcSZLEiy++aLcM8z64M1+bNm1yud6+0O9v1qyZUoe1a9c6tW92draIiooSAIRWqxUXL160eHzixIkCMPaBU1JSPFltoYMH1K5d26XUTpZK64wt3XDhwgVcu3YNAFCxYkX06NEDbdu2RdWqVVFYWIhdu3Zh7ty5yMjIwO7du9G1a1fs2rULCQkJNsv8+uuv8b///Q8AEBQUhGHDhqFz584oLCzEn3/+icWLFyMzMxPDhg1DbGws7rzzzjJ5rhS4Zs+e7ddnfck1zz33HPr37+9wu+PHj2PChAkAgKioKAwaNMjtYy9ZsgT79u0DALz66qtWt0lNTVVGpiIiItCjRw+0b98eNWrUAADs378fs2fPRnJyMo4dO4bu3btj27ZtaNKkicPjDx48GEOGDLG7za233mrzMSGERT9FkiTUr18fV69eRVpamsPjF1d8hk5iYiIKCgpw+fJlp8tS4+zZs+jRoweuX78OAEhISMDIkSNx0003QafT4dSpU5g7dy5Onz6NK1eu4J577sHOnTvRokWLEmUdOnQI3bp1Q0ZGBgCgSZMmGDZsGOrUqYP09HSsXLkSy5cvx5UrV3Dfffdh7dq1aN++fak8r7Jy66234pZbbsH+/fuRlJSE9evXo3v37qr3N/+8HTVqlEt10Gg0aN68OVq1aoWGDRsiISEBwcHBuHr1Knbt2oVFixYhJycHmzdvRteuXbF3716Eh4eXKCcrKwu9evVS3o9xcXF49NFH0bx5c+j1evz111+YPXs2cnNz8dJLLyEoKAjjxo2zWa+HHnoIy5YtAwBotVoMHjwYbdq0QeXKlXHx4kWsW7cOK1asgCzL+OyzzxAcHIz333/falnF3xemkf3SnIW2d+9e9OvXDzk5OQCAnj17YuDAgYiMjMSuXbvw3XffITs7Gx9++CFCQkIwadIkq+VMmjQJV69edXi8bdu24cMPPwQA1KtXD3fccYfnnowXjBo1CuPHjwdgfJ07875YsmQJMjMzAQB33nknqlatavH42LFjMXXqVGRmZuLDDz/ElClTPFdxj8ZhO3zhLENZ89VRkvJs3rx5olmzZuLHH38UeXl5Vrc5f/68aNKkifK3Gz58uM3yLl68KMLDwwUAodPpxJo1a0psYz4qVbNmTZGbm+ux50PkSzgC6xteeukl5e/w2GOPeaTMtm3bCgCiYcOGNrfZsmWLqF27tvj6669FRkaG1W3S0tIs+gOdOnWyWZ75COxbb73lVv0zMzPFkCFDxAcffCDWr18v0tPThRCWfRNn2unhw4eL9957T6xatUoZWTBv8z09AvvII48oZffu3Vvk5OSU2KawsFAMHz5c2a5fv35Wy2rTpo2yzcMPPywKCwtLbLN48WKh0WiUv7m1bdTyhRFYIYT45JNPlHoMGzZM9X5nz55VRu8rVaok8vPznT72hQsXRGpqqsPj1K9fX6njlClTrG43YcIEZZtbbrlFXLlypcQ2R44cEVWqVBEARHBwsDh+/LjVsjZv3qyUFR0dLf755x+r261cuVJotVqlr2NrNG3cuHHizTffFMuXLxcXLlwQQgjx1ltvlVq7IMuyxajv22+/XWKbf//9V0RHRyujyPv373frmIMHD1aON2nSJLfK8oVsdOXKFWUGYXh4uM3PbmvMZwEsXrzY6jYPPfSQACAqVKggsrKyPFVtwQBbihhgfU9aWpqqqUMHDhxQ/nZhYWEiOzvb6nbPP/+8st3//vc/m+Xdf//9ynZffPGFy/Un8mUMsN6n1+tF1apVlb/Dtm3b3C7zn3/+UcqbOHGize0yMzNFQUGBw/KSk5OVE38AxKlTp6xu58kAa4urAdaa0gyw1atXV8o+dOiQze3S0tKETqcTAETFihVLPL5jxw6lnOrVq9s9ofr0008r286cOdPluvtKgDXvqEdERIjMzExV+5mmQQIQY8aMKdU6/vLLL8qx7rjjjhKPFxQUKFM2JUmyG8Z++uknixMV1rz22muq+jBCCDFw4EBl219//VX1cyrNALts2TKl7DZt2tjs33355ZfKdoMGDXL5eNeuXRMhISFKGD537pzLZQnhO9mof//+Sj2+++47VfuoPbHzxx9/KGXPmDHDY3Uu9VWITRdFb9q0SfmZM4tMyLKMn376CYMHD0adOnUQHh6OqKgoNGrUCKNHj8aBAwfs1u3tt98usajCunXr8OCDD6JOnToIDQ0tsXiDXq/Hn3/+iRdeeAEdO3ZE5cqVERwcjKioKDRo0AAjR47E5s2bbR7TtNDGnDlzlJ/VqVOnxHO29btSsxrZzp078cQTT6Bhw4aIiopCREQE6tWrhxEjRmD9+vUO9zcdp0uXLgCgTK+4/fbbUaFCBURERKBJkyZ45ZVXXJpe5atiY2NV/X6bNm2KRo0aAQByc3Nx4sSJEtsIIfDzzz8DMP4+x4wZY7O85557Tvl+0aJFzlbbLX/99RdGjx6Nxo0bIzY2FqGhoUhMTMTgwYPxxx9/2N3XfBEV03s0KSkJL7zwAho1aoSIiAjExsaiffv2+Oqrr6DX61XVKSsrC59++il69uyJatWqISQkBBUrVkSrVq3w5ptvIiUlxe7+xd8rBoMBs2fPRs+ePVG9enXodDrUrl27xH7JycmYMGECGjdujIiICFSsWBGtW7fGRx99pEw/ql27NiRJKrH/qlWrlGOa/z3tee6555R9Vq5cqWofNRytQlxaf7fff/8d99xzDxISEhAaGoratWtj6NCh+Ouvv5x+DgUFBfjuu+9w7733Kgv9xMbG4pZbbsELL7xgc0Gd//77DxEREZAkCTExMTh9+rTNY6SlpSExMRGSJEGr1dr93A4Uq1atwqVLlwAAjRo18sjUz3nz5infDx061OZ2kZGRCAoKclhe5cqV0alTJ+X/jtpxAq5cuaJ8f9NNN9ncLjY2FvHx8QCM7Xpx5v2D+++/H6GhoTbLGj58uPL9jz/+6FR9XZGSkoJWrVopn13jx4+3enmaq21afHw87r77bgDG381PP/2kql7mfTlXpw+r1bhxY+V7a9PR9+zZo0zZbN68OZo1a2azrAEDBiAyMhKAcVHR3NzcEtuofV0BQIMGDZTvrb22vMG8P2VaqMuakSNHIjo6GgDwxx9/uFz/H3/8UVmArmfPnsrlEaXNPMs0bdoUFy5cKLHN1atX8d577+GOO+5QpqfHx8fjjjvuwPvvv4+srCyb5Zu/rtVenjRnzhzl/Tl06FAEBwdb3a5Xr17KZ5J5W+I2T6Rge2fX1F4Ube3s6okTJ0SLFi3s7qfRaMQbb7xhs27mZ37Wr18vnnnmGavlmJ957dKli6o6jxgxwuoZB7ULbdj7XdlSWFgoHn/8cYdlP/DAA1anGJmYtuvcubM4efKkaNy4sc2yatWqVS5HkFu1aqX8Dnbs2FHicfNR2qZNm9oty2AwWExhcWaKhquysrIsprrY+urbt6/N+hQfAVm5cqWIjY21WVbPnj1tTs02WbFihd3FFgDjBf/Lly+3WYb5eyU1NVV07NjR6uvW3Pr160WFChVsHrNZs2YiKSlJ1KpVy+r+BoNBWUClQoUKDqeC5+bmKsdLTEy0u/CFsxzN7vD0302v19v9XNNoNGLq1KmqR2DVLEYTHBwsvv76a6v7f/vtt8p27dq1E3q93up2gwYNUrZ77bXX7P5OA8WAAQOU56xmARc16tWrp7yOPcV8VsrChQutbsMR2Btq1KihlK12BLZFixYlHjcfVZ0+fbrdY167dk3ZVqvV2pyJ5IiaEdjTp0+LBg0aKNtNnjy5xDaeaNN+/fVXZTt709dNzKfYNm/e3Jmn7RLz0SprI7Dmo6qDBw92WN4tt9yibG9tQa7XX39dedzRCKz55+m///6r+jmV5ghspUqVlLIdLRLUt29fZds//vjDpeOZT1detGiRS2WYc9TvNxgM4qmnnlK2ad++vbh27VqJ7b7//ntlZN7WV5UqVcT27dutHqewsFCZci5Jkjh58qTDupvaBQA2p56b3HfffUpf4erVqw7LVqPUA+yWLVvE0qVLLa4pXLp0aYmvI0eOWOx34sQJERcXp+zTsWNHMWXKFLFgwQLxww8/iHHjxll0Rm01buZvnLvuuksAEAkJCeLll18WP/zwg5g9e7Z4+umnLVbOatOmjYiMjBT9+vUTEydOFHPnzhU//fST+Oyzz8QTTzwhIiIilDLHjh1b4ph79+4VS5cuFV27dlW2++abb0o8571791rspybADhkyRNkmNDRUPPnkk2LOnDnihx9+EM8//7zFC7h37942p1OYtmnZsqVo1KiRkCRJ9OvXT0yfPl0sWrRITJ48WSQmJtr9IA1k+fn5Fh1+aysCLliwwGGjbM7877tz585SqPUNeXl5yjVrAES9evXEq6++KubNmycWLlwoJk2aZNFZ6Natm9WAZd6B7NevnwgPDxdhYWHiySefFLNnzxYLFiwQL7zwgsV7wt4JpcWLFyvX0QQFBYmBAweKzz//XPz0009i5syZYujQocoUL41GI9atW2e1HPPfpel93bx5czFlyhSxcOFC8e2334pnn31W2f7QoUMWUxZbtmwpPvroI7Fo0SIxbdo00aFDByUMmabqFQ+wQgjxf//3f0oZP/zwg92/wbx585Rt33nnHbvbOsuZAOuJv5t5pzc4OFg8/vjjYs6cOWLevHlizJgxyu/WfBqSrY7K9u3ble0lSRJ33nmn+Pjjj8WiRYvE7NmzxZNPPmnxt7JVjvl0Nmt1nzlzpvJ427Zt3bqGz1+kpKQo7x+dTudwJVM1Tp48qfwe3Zl6V5z5SdO//vrL6jbmr+OmTZuKZs2aicjISBEaGipq1Kgh7r77bjF9+nS7J2sd8ZcAa37y3d41sOZ1mD17doltRo8erTzuTIAFIHbv3u1S3R0F2P379yurV2u1WqtTGD3VpjnbUTe/9vjTTz916fmrdeXKFYsVYT/55JMS2yxatEh53NkA+8EHH5R4fPfu3crjaq+B7dKli1PPq7QC7KVLl5RyrbXX9urhysm9ffv2KftXrFjR4cl6Nez1+/Py8izauT59+lg9ifTpp58q24SHh4vhw4eLr7/+Wvz8889i+vTpol+/fspU3/DwcJsnwF544QWlnDfffNNuvc1P7Fg7UVbc1KlTle1tnbB0lk/eRsdgMChnOUJCQsRPP/1kdbvLly8rI7QajUYcPHiwxDbmL1jAGISvX79u9/hr16612yBevXpVGfHRaDQ2r9/x9G10Fi5cqDxepUoVqy/CM2fOWIxs2Lre0vx3EhwcLH777Terz9O8LHdCV3Z2ttUTF658FQ/+pcE8fNx6661Wt3nnnXeUbdSMDpgvrjFv3jwP19hS8WtzrXXeCwoKLOpkrTNT/DYWiYmJ4tixYyW227lzp3LWv0KFClY/2JOSkpRR6MTERJvX7uzcuVPExMQIAKJGjRpWr6krPrPj+eeftzvCaT5C+/TTT1vdtvhnhbUG8fLly0pA6Ny5s83jCSFEp06dlA6Zu9fJFOdMgHX372beUMXGxlq99cnRo0dFQkKCxTGtdVQyMjJEzZo1lbI2btxo9fkdP35cOYEWERFh9cz6tWvXlFEprVYrtmzZojz233//KeE8Ojpa1dlke44cOeKxzy9P30rAnPkiNffcc49Hyvzxxx/tdoBdsWXLFqXM+Ph4myPoam+jU7VqVbF+/XqX6uIvATYlJcVigZ+EhATxyiuviFmzZom5c+eKt956S2mvNRqNePfdd62WY95ujRs3zu4xza+XBRyftLPF0SCH6WRxaGioWLZsmdUyPNWmCSHEiy++qKqjbn6LkKCgII+9d5OTk5XPgyVLloiZM2eK0aNHW5w079Wrl9W2b9OmTco2LVu2tHscvV4vIiMjle1tLehm/rvVarXioYceEtOmTRMLFy4UH3/8scXIZceOHUVycrJTz7e0Aqz578JReyyEELNmzVK2f/TRR50+3tixY5X9PXUttK1+//Xr1y0GwYYNG2b1Nb97926LGRdnz561epzffvtN6bu0adPG6jYHDx5Ujle7dm2768WMGjVK2fazzz5z+Dw3btyo+nNHLZ8MsEuWLFG2nTZtmt1t//vvP+Ws0OOPP17icfM3TkREhLIqmrvMz0rbaig8HWBbtmypPL5ixQqb5ezcuVM521KrVi2rnQPzRsneohwzZsxQtZ0j5q8Rd79KexGIa9euWSyC8vPPP1vdbty4cco2n3/+ucNynd3eVRcvXhTBwcECgBgwYIDdbQsKCkTdunUFAHHTTTeVeLx4B3Lz5s02yxo6dKjd7caMGaM0kI6mm3z33XdKWfPnzy/xuPl75bbbbrMbXs3PMDdt2tRmZ7l4ubbO6JpPfbQWCoUwfi6Ztunbt6/d5+oKZwOsO3+3fv36KY9bG9Ex+f333y2Oaa2j8tFHHymPO1oEZN26dcq27733ntVtNm7cqKyUWqtWLZGWliYKCgrEbbfdpuzriZNFxU9uuPNVGvcHNTEfbVm6dKlHynz11VdV/83UyM/PdzgqZLJhwwYhSZJo3bq1eOmll8SsWbPEzz//LGbMmCGeeOIJ5UQXYBxxXr16tdP18ZcAK4QQqampYtCgQUqfx9rXAw88YPfzde3atcq21atXtzuKVPySK1cXILTVR1y+fLkICwsTAERMTIzN+2l6sk0Twjgjx1Qfex31OXPmKNs5Oq4zVq5cafPvV716dTFx4kSb7VR2drbyu5AkSRw4cMDmcX7++WeLsu3NoPj0009FfHy8zXrVrVtXLFiwQNUibcWVVoBdvny5Uu7AgQM9vr25goICi1mhjvowalnr9ycnJ1v098ePH2/zNXrPPfcIwHjZ1fnz5+0e64033lDKtLW4n/mlc7ZOCpqf2AkODlY1JTg5OVkpt3v37g63V8Mjizh5muki3+joaDz++ON2t23QoAFat24NAFi9erXdbQcOHIhq1ap5pI5169ZV7g26c+dOj5Rpz5kzZ/DPP/8AAJo1a4a77rrL5ratW7dGt27dABjvHbd3716b22q1Wjz77LM2HzeVAwCHDx92ttp+x2AwYMiQIcoiKH379rV5D0XzC+LtLYRhEhYWpnxvWoShNPz0008oKCgAALz44ot2tw0KCsLgwYMBGO8daWvhHABo2bKl3fud2XutCCEwf/58AED37t2t3pvQ3ODBg6HTGW9T7eh9/cwzz0Cjsf1Rtnz5cotttVqtzW3Hjh1r91gA8NRTTynfz5w50+o25j9/4oknHJZZmtz5u+Xn5yuLT1WpUgUPP/ywzXL69u2Lm2++2W5dTJ/tDRo0wD333GN3227duimf17ZeA507d8bLL78MwPhZ99RTT+H1119XPvOGDh1qt86BZO/evdi/fz8A4yJJpsVq3GV+/8aKFSu6Xd7TTz+t1LNly5Z2F0Rr2LAh/vvvP+zcuRNTpkzBqFGjMGjQIDz22GP45ptvcPr0afTp0weAcfHFBx98ULm3aSCqWLEipk6danchoWXLlmHy5MlKG1Zcly5dUL9+fQDG+6I/+eSTJe7dCRg/N7/++muLn3nydztr1iwMGDAAubm5SEhIwKZNmywW9jLn6TatcePGSr/xzJkzFouMmvPEvV+dYVpYs2PHjjbbqfDwcGUhNSEEhg0bZvXepceOHSvx3rL393v88ccxefJkxMbGWn381KlTmDJlClatWqXy2ZS+suyD/frrr8rvuWXLlg77MK46deoUOnTooPT3J0+ejI8++sjq4lRpaWnKomUPPvggqlevbrds87bQVptq/jo3X7zM3OLFi5Xf3z333INKlSrZPS4AVKhQQfneU/cE1nmkFA/bsmULAKBq1aqq3iymN/rZs2eRm5tr8SI158zNhjMyMjB//nysWLECBw4cwNWrV22uWnb+/HnV5bpq165dyve9evVyuH2vXr2wbt06AMaAbfqwLq5BgwYWL6zizN8Q7qxGXLt2baurCfqasWPHKm/sxMRE1aux+RLT+wcwvjZNNyi3xfzveuTIEaur9wJA27Zt7ZZj77Vy6NAhXLt2DQAQFRXlsE6AcUXT9PR0HDlyxO52jt7Xe/bsUb7v2rWr3W1Nq3Lb07VrVzRo0ADHjh3DnDlzMGnSJIuVVwsLC5UP/mrVqqFv374OyyxN7vzd9u3bp3QcO3fubDf8A8aTE7b+XtevX1eCS5UqVVS/BgDYfQ288847WLduHXbu3GmxImWdOnXw1VdfOTyGGm+//bbNlfJ9xffff698P2zYMOUEkLtM71vA/QD7wQcf4LvvvgMAxMTEYNGiRTZXrgSMfQB7KlSogCVLlqB169Y4cOAAUlNTMX36dLz00ktu1dNXTZ48Ga+//jpkWcZjjz2Gp556Slm19vDhw/j6668xc+ZM/PTTT9ixYwfWrFljsXIsYOwvTZ8+HXfeeScMBgPmzJmDvXv3YtiwYahTpw7S09OxatUqLF26VFmN3RQC7Z0odMbUqVOVE0/16tXD6tWrUbduXZvbl0ab9sgjjyj9qtmzZ5f47D979qxy54qEhATceeeddo/pjDvvvFPpD+n1ely5cgVbt27Fxx9/jPnz52P+/Pl49tln8cknn1h9H7/33nvKauP//vsvGjdujEcffRTNmzeHXq/Hjh078P333yMnJwd169bFqVOnANj+++3Zswf9+/fHhQsX0KJFC7z55pu44447EBMTg0uXLuH333/H22+/jX379qF///744osvMHr0aI/9PvyB+efrI488UirH2LdvH+68805cvnwZWq0W3377rd1jbdu2DbIsAzC+rx29LwoLC5XvbbWpDz74IMaPH4+8vDwsXrwYX3zxhdIOm7hyYicoKAhRUVHIzMz02J1NfC7AZmVlITU1FYDxdgn33XefU/unpaXZDLCOzk6YbNiwAQ899JDVJcytKYszvuZnU4s3SNaYb2PrTCwAxMXF2S0nJCRE+T4vL8/hcf3Za6+9hi+//BKAsYO9Zs0au78f8ze1mt+N+RL2UVFRbtTUPvMzzg888IBT+9r7YHHntWJepyVLlmDJkiUeqRPg+H198eJF5Xt7nSTA2CGOjY1Fenq6zW0kScITTzyBF198EcnJyfjtt98wYMAA5fFff/1VuTXBqFGjHIa+0ubO3838d2catbHH3jbnzp1TGtstW7ZYdEodsfca0Ol0+PHHH9GiRQvlrLDpZ6bbJgS6/Px8i9uceLKDZbplBODe59a3336LCRMmAAAiIiKwYsUKh7ftUCM0NBSvvvoqHnzwQQDGW2QEYoB97bXX8H//938AgGnTppW4bdttt92GGTNmoFmzZhg7diySkpIwdOhQ7N69u0RZPXr0wKJFizBy5EhkZWXh4MGDJX5nwcHB+Pzzz7Fq1Srl89veyW61li1bppzga968Of78809UqVLF7j6l0aYNGTIE48aNQ25urtWOuvktQoYPH14iSG7dutXqyKdJr169EB4e7rB+Op0O1apVwwMPPIBBgwZh1KhRmDt3Lr744guEhYXh/fffL7FP1apVsWbNGvTv3x8nTpxASkoKpkyZUmK7UaNG4ZZbbsG4ceMAWP/77d+/H506dUJubi7at2+PdevWWYxmJiYm4umnn8add96J1q1bIzU1FWPGjEH79u3RvHlzh8+vNJVVH+zSpUvKYFpISIjdW4m5o3Pnzrh+/TpCQkKwaNEi9OvXz+725u+L6dOnY/r06aqPZet9ERsbi/vuuw8LFixAdnY2Fi9ebHHLT/MTO1WrVnXqxE50dDQyMzOt3s7JFT43hfj69etu7W8aLbDGVrA1d/z4cfTt21cJrw0bNsTzzz+PL7/8EgsWLMDSpUuVL9N9jaxNv/E08+kOERERDrc3f2PbmyrhqTOq/m7SpElK5yAuLg5r1651eKLAfKqNvYbMxHRipvi+nubOe8je+8ed10pp1Qlw/L42zZzQ6XSq7lGp5v01cuRIJfjNmDHD4jHT/yVJwqOPPuqwrNLmzt/NfIqWms6Yvd+dO68B8zPH1sTFxVmMDtatWxe33Xaby8fzN8uWLVM6JG3atLG4l6S7zE9wuHqydu7cucrU+7CwMPz2228euT+tifno2dGjRz1Wrq+4cOECPvjgAwDAzTffbPeynzFjxihT+ffs2YMdO3ZY3W7gwIE4ceIE3njjDdx+++2IjY1FcHAwatWqhUceeQR79uzBE088YdFumS6bcof5Padzc3NV9Z9Ko/2IiYlRBkiys7MtTqoKITB37lzl/9ZGmV5//XXcd999Nr/M76+qlkajwZdffomYmBgAxhMVtoJGkyZNcODAAXz11Vfo3r074uPjERQUhCpVquDuu+/G77//jlmzZlnsb+3v9/LLLyuB4uOPP7Y5Fbdu3brK9G2DweBUWCotZdUHmzt3rvI67d+/v0dO5Fhjem/o9XpVgby0+lX2phEXP7HjzAl6U33VZDE1fG4E1jx4derUyea1CaVl8uTJypv5tddew7vvvmvzxsiOrs/1JPOzRWpuwGze8SzN0T61cnJyHF7LqFZiYiJuvfVWj5QFAO+//z7eeOMNAMYzlGvWrEHTpk0d7mcecO1dO2piPu9fzSi6q0zvIUmSoNfrfeIkhfn7+s0338Q777xTZsc2hSq9Xo/CwkKHIVbN+6tSpUoYNGgQ5s+fj9WrVyMpKQmJiYk4e/Ys1qxZA8A4ylGnTh33n4AXmf/dcnJyHG5v73dnXtbw4cNtXl/jiqefftri/XXs2DG8/vrrmDp1qkfKP3r0qMeCUceOHR2Oijtr1qxZyveent5mfmLAfDqxWgsWLMCoUaMghEBISAiWLVvmcCq/s8yvwbI3e8JfrV69WjmJ0717d5t9EsD4ud+tWzdliuCuXbtsXkZQpUoVTJw4ERMnTrRZnvl18a1atXKl+hYGDRqE6OhofP755zh27Bi6du2KDRs22F2fpLTatFGjRikzF2bPno0RI0YAMM4QOXnyJADjJRiNGjXyyPHUiIyMRMeOHfHHH38gPz8fO3bssLnmSWhoKEaPHm13Oq+9v19+fj7Wrl0LwNhPtHWpmUmPHj3wyiuvALC8rM1byqoPVhbThwHj7JG+ffsiOztbGeU1Xc9tjXmbOmvWLI9dp929e3fUrFkT586dw6ZNm3DmzBnlMkDzdtt8ZNaRwsJCJZd4Yi0FwAcDbExMDCIjI5GVlVUm15YWZ3ozV65cGRMnTrTZUGRmZrrUmLvK/Fqg48ePO9zefBtPLVzljitXrjg9HdyWESNGeOza1E8++USZOhUTE4M///xT9cX55iHX3kJZACDLsnJRvkajcbjYjTuqV6+Of//9F0IIXLhwATVr1iy1YzlTJ5Oyfl9Xq1ZNufby1KlTaNiwoc1t09LSVHeAn3rqKcyfPx+yLGPWrFl4++23MWvWLGWarLcXb/IE88+OEydOONze3jal9RowXTMGGKdRXr16FWfPnsWHH36I3r17WyxS5aqFCxd67KTLhg0bVF1rrdb58+eVdis8PBxDhgzxWNkALK4fdLbN+/nnnzFs2DDIsozg4GAsXrxY1RoOziqr2S3eYj6VX820eNMIHqDuhJwthw8fVka26tWr5/CaZLWmTZsGSZIwbdo0VSG2tNq0bt26ITExEUlJSRYddfPAYisUmKZRlgbzQQd3TsjIsoytW7cCMIb/Dh06WDx+9epV5cRIVFSU3RMjgOdeV56SkJCASpUqITU1FUlJSbh69ardk4Pm62GoGaQAgO3bt+O///4DYBw86dGjh3uVtqNz585YsWIF+vTpo4RYIYTNz/TSalM1Gg1GjBiBSZMmKaH1rbfewubNm5Xrqdu1a+fUiR3ztqNWrVqeqadHSlFzILMzZo4W8zGtRHfq1ClVnSZPSk5OBmBcAMTeWb61a9cqHVVbnHnOjpifGTON8NhjPtrp6KxaefXll19i/PjxAIwf3itXrnTqDHOTJk1Qo0YNAMZFiux9gGzfvl2ZftehQ4dSHRXv3Lmz8r2nRr3d1bJlS6XjtW7dOofvHU+6/fbble83bNhgd1tnOiUdO3ZEkyZNABjPfhYWFiojYZUrV3Z4/Yo/aN68ubLIzqZNmxxO9zMtHGdNXFycMrV1x44dHlk74PTp03j66acBGEfaFyxYgB9++AFarRayLGP48OEW4SYQzZ49W3k/DRw40OPX/Zp39EwdOTWWLVuGhx56CAaDATqdDosWLfLYysjFmc/UKs3ZLd5i/jc9d+6cw+3NR5rUrBBqi3mQ8/TlEJ999pmy6vuxY8fQpUsXi6BurrTaNFNHHbgxbdh03R9gnOpobwSstJj3e92ZrbFy5UrlcriePXsiMTHR4nHz19XVq1cdTlv11OvKk3r37g3A+Pez99rIyclR1l0ICwuzeE3ZYz67ZcSIEaU+o61Tp05YuXIlIiMjYTAY8PDDD2PhwoU2tzWddPB0X898dHXu3LkQQri1Krf5olG33HKLu9UDUIYB1nyo29GZG9MHCmCcbliWTNd5nTp1ymboNBgMyvWS9jjznB2pXbu2Mm123759dkPsnj17sH79egDGMx2+cC2YafqBJ748Mfo6Y8YMZREM04Ii7dq1c6oMSZJw//33AzB+eH7++ec2t502bZryfWk3iEOGDFFCx9SpU33iTKlWq1WmxJw9e9bm7WdKg3mQ/PLLL+2GsM8++8ypsp988kkAxk7l888/r5zEGDFihKrrbX1dSEiIcpuS5ORki4WCilu5cqXDFaNNn+05OTlWFx1xhsFgwNChQ5UgPG3aNNx0003o2LEjXn31VQDGawcfe+wxt44DGFch9tTnlydHXwHLFSFLY3pbmzZtlO/V3jJuxYoVGDx4MPR6PbRaLX788Uf079/f43UDjNMgzdtj0+s1kJifRPjjjz/srmuRkZGh3PoKsDyB54yjR48qbVpsbKxH3kfFffrpp3j++ecBGGeN2QqxpdmmjRw5UgkBc+fOxc8//6xMdRwwYIDFqGNZ+Pvvv5UZXUFBQS5P287JycH//vc/5f/m35tERUUpobagoAC//PKL3TLNg5SrrytPM+9PTZs2zWa/ffbs2Upb0bdvX1VrXeTk5OCnn34CYOzvlcWtlADjnRVWrFhhEWIXLFhQYrvKlSsriyht3brVoyG2Xr16FoOJq1atcuvEjnnbYd6muMUTN5O1dZNqc88995yyja2bVZsYDAaLm+mOHTtW5Ofn29w+JydHfP/992LBggUlHjO/gbKaG4v37NlT2f7jjz8u8XhBQYEYNWqUxQ2ea9WqZbWsjz/+WNlmzpw5Do9t7YbG5hYtWqQ8XrVqVXHkyJES25w9e1bUq1fP4Y3HTY937tzZYb2c2dYfzJkzR0iSJACI8PBwt244f+HCBREeHi4ACJ1OJ9auXVtim++//175HdasWVPk5ua6UXt1XnjhBeWYXbt2FZcuXbK5rcFgEGvWrBHvvvtuicc2bNiglPPWW2/ZPaajbc+dOydiY2MFABESEuLwPZGcnCwmTpwo9u3bV+IxR++V4jp27Khs//TTTwuDwVBiG/PPCnvva3Pp6enK39/869ixY6rq5aoRI0Yoxzp9+nSJxz35d9uyZYvyeIUKFazewP3YsWOiatWqFr8Dazesz8rKErVq1RIAhCRJ4v3337f6tzBJT08Xn332mVizZk2Jx8xvyj5o0CCLxwoLC0W7du2Ux7/55hu7vwN/tXHjRuU51qtXz+bN7t1lalNq1qzpcNs1a9aI0NBQAUBotVrx448/unTM48ePiw8++EBkZGTY3ObatWuiT58+Fq/PtLQ0p45j/lli7b3kDPP3pTPtiuk9YWu/goICUaNGDWWbfv36iZycnBLb5eTkiHvvvVfZrmnTplZfE8nJyeLw4cM267N3715Rs2ZNpZzZs2erfi7WOOojPv/888rjN910kzh//nyJbTzVpllj/how/xyz1p67IjMzU7zyyiviypUrdrfbu3evSExMdNifFkLY7UdfvnxZdOvWTSln5MiRNrd96aWXlO3i4uKstrdCCDFv3jyl3wRA7Nq1y+5zMWfetlprF2wx/7vY2k+WZXHrrbcq273zzjslttm3b5+IiYkRAIRGoxH79+9XdfzZs2dbvOZKg72+zJYtW0RkZKTdz9K9e/eKoKAg5fNv5cqVdo935swZ8cILL4jk5GSHdTPvu5q/Lx5++GH1T7DIfffdp/z+U1NTnd7fmjK7BrZ79+7KKNSjjz6KcePGoVatWsoKVvXr11duwaDRaLBkyRK0a9cOFy5cwGeffYaffvoJ999/P5o3b46YmBhkZWUhKSkJe/bswbp165CdnY13333X7XqOGTNGGd0cP348Nm7ciN69e6NSpUo4fvw45s6di+PHj6Nr1644fvy43Wmj3bt3V76fMGECUlJS0LBhQ2U59urVq6NZs2aq6/bAAw9g6dKlWLhwIS5duoRbb70VI0eORLt27aDVarFnzx589913ylmmXr16KdPryGjlypV45JFHlLN0jzzyCNLT0x3eP+vWW28tMf0GMF4j+NFHH2H06NHQ6/W46667MHz4cHTu3Bl6vR4rV65UzlrpdDp8++23dm+4bX4NyunTp23ek9WRyZMn499//8W6deuwYcMG1K1bFwMHDkS7du0QHx+PgoICXL58WRnNv3z5Mrp3747XX3/dpeOpUaNGDSxcuBD33nsv8vPzMWLECHz88ce49957cdNNNyEsLAzXr1/HsWPHsGPHDmzbtg0Gg8EjC7588803aNWqFXJycvDVV1/hr7/+wsMPP4waNWogOTkZixYtwrZt29CuXTskJSXhwoULqqYKxcTEYPDgwRZT7bp06eKR24P4io4dO+Lpp5/GV199hbS0NLRt2xYjRoxAx44dodFosGvXLnz33XfIzs5G//797b6XIiIisGzZMnTu3BkZGRmYMGECvvnmGwwcOBCNGzdGZGQkMjIycOrUKezatQsbN25EQUEB5s2bZ1HO1q1blVG3GjVq4Ntvv7V4XKfTYf78+WjRogUyMjIwbtw4dO7c2e71z/7I/HVnPpLkaf3798dHH32Ec+fO4dSpUzZvR/Xvv/+iX79+ylTEgQMHIiwszOHna6NGjUpcT5WVlYX//e9/eOONN9CzZ0+0atUKtWrVQkREBNLT07F7924sXLhQWdnSdOske9fA/vLLL/j7778tfnb69Gnl+48++qjEiNukSZOslrV+/XplppOJaZ0DAPjuu++Ua5NNXnzxRZeu0Q0KCsK0adMwcOBACCGwfPly3HzzzRg+fLiynsKRI0cwd+5cZZpnUFAQvvjiC6uviaSkJLRq1QqtW7dG9+7d0ahRI4SFheHy5ctYu3Yt/vjjD2WmyoQJEyxmxZWGTz75BJIk4ZNPPlH6Vxs2bLC4xq8027RRo0Yp09BNtx2sVauWR66fB4wLCE6ePBkffPABOnXqhDZt2qB+/fqIjo5Gfn4+kpKSsHHjRotL0xo1aoQPP/zQZpl9+vRBlSpV0KdPH9xyyy2oUKEC0tLSsHPnTvz8889KP7Br16744osvbJbz0ksv4aeffsLp06dx9epVtG7dGoMHD0bnzp0RHR2t3AfWfHTviSeesDky/M8//5S4Td7mzZuV73/55ZcSlwY++uijLi94KEkSvv32W3Tq1Ak5OTl46623sG3bNgwaNAgRERHYtWsXZs6cqYzav/LKK6r73WW1eJMtHTt2xKpVq3DnnXciKysLw4YNAwDllmGAsW86ffp0PP7440hLS8Ndd92FDh064K677kKdOnUQFBSEa9eu4ejRo9i6datyHbBp5oM9999/P8aMGYOsrCyL23E6OxKt1+uVa7E7derksUWcymwEVq/XW4yCFP+ydub/4sWLonv37jb3Mf/SarVixowZJcpwdgRWCCFeeeUVu8fq0KGDuHLlinLW1N5IzYMPPmiznOK/KzWjSoWFheKxxx5z+PsYNGiQ1TO0JqbtytsIbPFRNrVfjs4afvDBB8pZMGtfUVFRVmcIFGe+j7ujAfn5+eLZZ58VWq1W1XMcPnx4iTI8OZJn8tdff4m6deuqqlNkZKTVs6XOjsAKIcT69euVEWBrX02bNhVJSUmievXqAoC45ZZbVJW7c+dOi3Lmz5+vuk6uKssRWCGMn9/Dhg2z+bvTaDTi/ffftzhja+89c/ToUdGyZUtVr4GQkBCLs8ppaWnKZ69Go7H7uf7DDz8o5bRs2dLuTB5/k5GRISIiIpTfw7lz50rtWP/++6/ye5w4caLN7cz//s58WXvd/fPPP6r3T0xMVNW+m79v1H7Z4kpbYusz3dEIrMkPP/wgoqOjHR4nLi5O/PHHHzbL2b17t8MyoqKixLRp0xz+TtVQ00cUQojx48cr29WvX7/ESKwn2jRrsrKylJEu09ebb77pzlO2kJaW5tTrZODAgQ5HyEzvfXufyU899ZTdfqDJqVOnxO23366qbs8++6woLCy0WZYrnwG2XvNqRmBN1qxZI+Lj420eQ5Ik8cILL6iepXLixAllxDkmJkbV79EVavoyW7duFVFRUQIwZh1rfYxff/1VVKlSRdXvu1KlSiIlJUVV/YrPOK1du7bTM31WrFih7D9z5kyn9rWnzAKsEELk5uaKKVOmiHbt2okKFSpYfAjZ62Rt3LhRPPnkk6JJkyYiNjZWaLVaER0dLRo3biwGDx4spk+fLi5evGh1X1cCrBBCrFy5UvTt21fExcWJoKAgUbVqVdGtWzcxY8YM5c2rJsDq9Xoxffp00aVLFxEXFyd0Op3N35UznfK//vpLPProo6J+/foiIiJChIWFiTp16oiHH35YrFu3zuH+puMwwKr7UjPt5cCBA+KZZ54RDRo0EBERESIqKko0bdpUvPTSS+LMmTMO98/OzlaOFxwc7LFpFsePHxcvv/yyaNOmjYiPjxc6nU6Eh4eLOnXqiD59+oj/+7//szmlpjQCrBDGEzE//PCDeOCBB0SdOnVEZGSk0Ol0omLFiuL2228Xjz/+uFi0aJHIysqyur8rAVYI49SqF198UTRs2FCEhYWJ2NhYcfvtt4sPP/xQZGdnC1mWRVhYmAAgunTpoqpMWZaV6UkVK1YUeXl5TtXJFWUdYE1+++030bdvXxEfHy9CQkJEYmKiePDBB8X27duFEEJ1gBXC+Htbvny5GDFihGjQoIGIjo4WWq1WxMbGiubNm4vhw4eL2bNni2vXrlnsN3jwYOUYL7/8st1jCCHE0KFDle1feOEFh9v7i5kzZyrPq3fv3qV+vPbt2wsAokGDBja38WSAzcvLE6tWrRJvvfWW6N27t2jUqJHShkZHR4v69euLIUOGiPnz56s+MeHvAVYI4/TfqVOniu7du4uEhAQREhIiQkJCRNWqVUWvXr3EJ5984nAadVZWlpg9e7YYMWKEaNq0qdLPSUhIEB06dBBTpkyxO0XXWWr7iEJYThW2FmKFcK9Ns+WRRx6xCDunTp1yan9HDh8+LD799FMxZMgQ0axZM6UvGxoaKhISEkTnzp3FSy+9ZHMKb3G///67GDt2rGjVqpWoVq2aCA4OFhUrVhS33HKLeOGFF1SXY6LX68Uvv/wihgwZIurXry8iIyOVz+Nbb71VPPfcc6rK9FaAFUKIK1euiHfeeUfceuutIjY2VoSGhoq6deuKkSNHKm2UWq+//rpy7CeffNKpfZ2hti+zbds2hyE2JydHfP311+Lee+8VNWvWFGFhYSI4OFjEx8eLdu3aiTFjxojffvvNqRO5mzdvdvhZ7chDDz0kAOMUZ1t9OldIQri5PC4RecSff/6pXJD/3HPPOb2gELnvwIEDygp5av8Ga9euRc+ePQEAY8eOxaefflqaVSTyiqVLl2LAgAEAjKuqO7voHRERlS8ZGRmoVq0asrOz8dJLL7m9eKO5MluFmIjsM7+heGlei0q2mV8rpPba2+nTpyvfB8K9X4ms6d+/v3KP7MmTJ3u3MkRE5POmTZuG7OxsREVF4cUXX/Ro2QywRD7CFGDHjx+P+Ph4L9cm8GzZssXu/We//PJLZTGg6tWrq7pn5b///qssUNOjRw/lPqdEgUaSJOXs+W+//abc6oOIiKi4jIwMfPLJJwCMt3Fy557G1nAKMZEPuHr1KipXroy4uDicPHkSUVFR3q5SwKlfvz7y8vJw1113oWXLloiPj0dhYSFOnjyJpUuXWqwg+ttvv9kMsKtWrYIsyzh27Bjef/99ZXW+rVu3okOHDmXyXIi8pX///li+fDnuvvtu/Pbbb96uDhER+aBJkybhjTfeQJ06dXD48GG7d+BwBQMsEZUL9evXx8mTJ+1uExYWhhkzZmDo0KE2t7F2Wwq118uuXr0aOTk5jitrRVxcHDp27OjSvkRERESBggGWiMqFHTt2YMmSJdixYwcuXLiA1NRU5OTkoEKFCmjQoAF69OiB0aNHo0qVKnbLMQXYyMhINGjQAKNHj8Yjjzyi6r6xtWvXVu7T6KzOnTtj48aNLu1LREREFCh03q4AEVFZaNu2Ldq2bet2OTznR0REROQ9HIElIiIiIiIiv8BViImIiIiIiMgvMMASERERERGRX2CAJSIiIiIiIr/ARZyIiCigCCGQl5eH7Oxs5ObmIicnp8RXbm4uCgoKlK/8/Hy7/zcYDJBlGQaDQfky/b/4vyYajQaSJNn90mg0CAoKUr50Op3d/4eEhCAsLAxhYWEIDQ1FaGioze8jIyMRGRmJoKAgL/41iIiIPIsBloiIfI4QArm5ubh+/ToyMjKQmZlp8a+177OyspRwKsuyt5+CzwgJCVHCrOkrKiqqxP9jY2MtviIjI63e95iIiMibuAoxERGVCSEEsrKykJaWhmvXrln8a+1n+fn5bh1PkiSEhYUhIiICYWFhCA8PV77CwsKwbvVhGK+k0QLQQBIai/8DGkjQKN8DpjCnKfavBAlS0ePFA5+w+FdAWHlMLvoSyveixM8EAAOEJAMwoO+9tyA3Nxd5eXnIy8sr8b3pyx1arRYxMTFKoDV9X7FiRVSqVAlxcXHKvzExMaruhUxEROQuBlgiInKbEAIZGRlISUlBSkoKrly5gitXrij/N305G6qCg4MRHR2NqKgoREdHIzo6Gts2nwKggySCAARBgvFfQAcJOhgnF2kBaIuCZflkDMt6AIUQ0Bd9r4dAofFfqRAD7r8VmZmZyMzMRHp6uvKVk5Pj1LG0Wm2JUGv6qlKlChISEhAfH8/pzERE5DYGWCIickgIgevXr+PixYu4dOmSxdfly5dx5coVFBQUqCorIiICFSpUQMWKFXFg32VICIEkggEEQ0JI0b+m//NKF28QMMAYfAsAFBSF3gIIqQB33d0YqampSE1NxdWrV5Geng41XQlJkhAXF4fKlSsjISFBCbamfxMSEhAWFlbaT42IiPwcAywREQEADAYDLl++jHPnzuHcuXMWYfXy5cuqRk8rVKiA+Ph4xMfH46+tSZBECIBQSAgtCqehkKAt9edCZcc43bkAAvkA8iGQh4dGtEJqaiquXLmC5ORkJCcnqzrBUbFiRdSoUQPVq1dX/jV9HxERUerPhYiIfB8DLBFROSKEQHp6OpKSkpSgah5YCwsLbe5rGkGrWrUqDu5LARAGSYRBQhgkhMIYTnkdJJVknM5cAIE8ALkQyEO/QU1x+fJlJeBmZWXZLSM2NlYJszVq1ECtWrVQu3ZtVK9enVOTiYjKEQZYIqIAJIRAamoqTp06hdOnT+P06dM4c+YMkpKS7AaF4OBgJSBs3ZRkFlDDAIQxoFKpESiEQA4EcjDy8da4cOECLly4gPPnzyMtLc3mflqtFtWrV0ft2rVRq1YtJdgmJiYiNDS0DJ8BERGVBQZYIiI/l56ejtOnTyth9cyZMzh16pTNoCpJEhISElCzZk3s2XkZkgiHhAhICIdxFLX8LnxEvklAD4EcADl45Km2SEpKwtmzZ3HmzBmbU9tNr/M6deqgXr16qFevHurXr4/q1atDq+U0diIif8UAS0TkJ4QQuHjxIo4fP47jx4/j2LFjOH78OK5du2Z1e9PI1Lmz+ZAQAY2IBBBZNKLKDjz5P+PU5HwIZEEgG337N8SZM2dw9uxZXL9+3eo+oaGhqFOnDurXr4+6deuifv36qFevHiIjI8u28kRE5BIGWCIiH6TX63H27FklpB4/fhwnTpxAdna21e2rVauGSxcKISESkog0/osITvmlckugoCjYZqFPv5tw4sQJnDp1yub9hRMSEtCgQQM0atQIjRo1QsOGDREVFVXGtSYiIkcYYImIvEwIgUuXLuHw4cM4fPgwjhw5guPHj1tdtTUoKAh169bF8aNZkEQUJEQXhVXebobIEeOIbQ5kZOKhEc1x8uRJnDhxAleuXLG6ffXq1S0CbYMGDRAeHl62lSYiIgsMsEREZSwjIwNHjx61CKzWpjuGh4ejfv36OLgv3SysclSVyNOMC0hl4vFnWuHo0aP477//cPHixRLbSZKEWrVq4eabb0bTpk3RtGlT1KpVCxoN35NERGWFAZaIqBQJIZCUlIQDBw5g3759OHToEM6fP19iO51Oh/r16+PYkWxIIgYaxAAI54JKRF5inIKcgZFP3Ir//vsPR48eRUpKSontIiMj0aRJEyXQ3nzzzRylJSIqRQywREQepNfrcezYMRw4cAD79+/H/v37rY6uVq9eHZfOGyCJGEiIKRpd5SgOkS8TyIfAdTw4ohkOHjyII0eOIC8vz2IbjUaDevXqKaG2RYsWqFy5spdqTEQUeBhgiYjckJ+fj4MHD2Lfvn04cOAADh06VKJDGxwcjJtvvhkH/s2ARsQWBdZgL9WYiDxFQIZAFp4Z1waHDh3CwYMHcfny5RLbVa9eHS1btkSLFi3QsmVLxMfHe6G2RESBgQGWiMgJer0e//33H/bu3Yu///4bBw8eLLHYUmRkJLIzQ6ERFSChAkdXicoRgTwIpGPAkEbYv38/jh07BlmWLbZhoCUich0DLBGRHbIs4/Tp00pg/ffff5GTk2OxTaVKlZB2NQiSqAAJsUWrAvPaVSIyLRCVjkEPNcS///5rM9C2atUKrVq1QsuWLXlPWiIiOxhgiYiKSU1Nxa5du7Bz5078/fffSE9Pt3g8KioKWRlh0IiK0KASuNgSEanlKNBqtVo0btwYrVq1QuvWrdGwYUNotVov1piIyLcwwBJRuafX63Ho0CHs3LkTO3fuxPHjxy0eDw0NRX5uBDSiIiRUgoQoBlYi8ghjoE3DvYPqYvfu3Th37pzF45GRkbj99tuVEdqEhAQv1ZSIyDcwwBJRuZSSkqKMsu7ZswdZWVkWjzds2BDHjxZCIyoVLbrEa1iJqPQJ5GLshDbYvXs39u7dW+KzqU6dOmjfvj3at2+Pxo0bc3SWiModBlgiKheEEDh+/Di2bt2Kbdu2lRhljY6ORtb1cEgiDhpUgoQQL9WUiMjIuMpxBoY/1hS7d+/G4cOHYTAYlMdjYmLQtm1btG/fHq1bt0ZERIQXa0tEVDYYYIkoYOn1euzbtw9bt27F1q1bkZycrDwmSRIaNmyIY0cKoBFxRaOsnBZMRL5LoBAvv9URf/31F3bs2GExOqvT6dC8eXO0b98eHTp0QLVq1bxYUyKi0sMAS0QBJScnB7t27cLWrVuxfft2iw5eSEgICvKioRGVoUE878VKRH7LODqbjoEP1sP27dtLXDt70003oXPnzujcuTNq1arlpVoSEXkeAywR+b3s7Gxs27YNGzZswO7duy3uyxoTE4PM9AhoROWiBZh4vRgRBR6BbDwxpgW2b9+O/fv3W0w1rl27Nrp06YLOnTujbt26kCTONiEi/8UAS0R+KScnB3/99RfWr1+PnTt3WoTW6tWr49J5XVFojeXUYCIqVwQKMO7l1ti0aRP27t0LvV6vPFajRg1lZLZhw4YMs0Tkdxhgichv5ObmYseOHVi/fj3++usvi9Bas2ZNXEgKgkZUgYRIhlYiIhivm53wRnts2rQJu3btKnGyr0ePHujRowenGROR32CAJSKfptfrsXv3bqxevRrbtm1DXl6e8phxpDUYGpHA0EpE5ICAHq++cwc2b96Mv/76y+LztEGDBujRowe6d++O+Ph4L9aSiMg+Blgi8jlCCBw7dgx//vkn1q1bh7S0NOWxatWq4fKFkKKR1iiGViIiFwjo8fJbHbB27Vrs2rVLuWZWkiS0aNECPXv2ROfOnREVFeXlmhIRWWKAJSKfkZycjDVr1mD16tU4c+aM8vPY2FhkpEVDI6pCQjRDKxGRBwkUYMyLt2Lt2rXYv3+/8vOgoCC0a9cOffv2RatWraDT6bxYSyIiIwZYIvKqvLw8bNiwAX/++Sf++ecfmD6SgoODoc+vWBRaK0GCxss1JSIKfAK5GPXUzVizZg1Onz6t/LxSpUro3bs3+vTpg8TERC/WkIjKOwZYIvKKY8eO4ffff8eaNWuQnZ2t/FwSFaARVaFBFUgI8mINiYjKNxmZGDCkJv78809cv35d+XmzZs3Qp08fdO3aFeHh4V6sIRGVRwywRFRmsrOzsXbtWvz+++/477//lJ9XrVoVVy6EQ4NqkBDmxRoSEVFxAjLefK8zVqxYgZ07d0KWZQBAWFgYunTpgrvvvhtNmzblLXmIqEwwwBJRqRJC4MiRI/j111+xYcMG5ObmAgB0Oh3kwkrQiBqQUJHXtRIR+QGBPDwy+masWLEC586dU35er1499O/fHz179uSoLBGVKgZYIioVeXl5WLNmDX755RecPHlS+XliYiIunAktGm0N9mINiYjIVQICn07vjz/++APr1q1Dfn4+ACA8PBy9e/dG//79UadOHS/XkogCEQMsEXnUpUuXsGzZMvz+++/IzMwEYFqQyTTaGsvRViKiACJQiCefa4Jly5bh/Pnzys9btGiBfv36oVOnTggK4poGROQZDLBE5DYhBP7++28sWbIE27dvV66PMl7bGgUNqnNBJiKiACcgMPXTu7Bs2TJs27ZNubdsxYoV0a9fP/Tv3x8VKlTwci2JyN8xwBKRy3Jzc7F69WosWbLE4r6tkqgEragJCfEcbSUiKocE8jD0kbr49ddfce3aNQDG2Ti9evXCAw88gNq1a3u3gkTktxhgichpaWlp+OWXX7B06VJkZGQAMK5GmZ8TB61IhIQIL9eQiIh8gYCMV9/pgEWLFuHo0aPKz9u0aYMHHngAt99+O1cvJiKnMMASkWrnz5/HTz/9hBUrVqCgoAAAUL16dVw+F1m0KBOnCRMRUUmmRZ8WLVqELVu2wNT9rFu3LgYPHozu3bsjOJgL+xGRYwywROTQkSNHsGDBAmzevFm5vlUS0dCKOpBQmdOEiYhINYEc3Ht/FaxYsUK5tVrFihUxePBg9OvXj7fhISK7GGCJyCohBHbt2oUff/wR//zzj/JzScRBK2pDQgUGVyIicplAIR57phEWL16MlJQUAEBUVBQGDhyIQYMGITo62ss1JCJfxABLRBaEENi+fTvmzJmjXK+k1Woh9FWgEbWgQZSXa0hERIFEQMYLr96O+fPn49y5cwCM6yr069cPDzzwAOLi4rxcQyLyJQywRAQAkGUZ27Ztw+zZs3H8+HEAQGhoKApyq0ArakFCqJdrSEREgUxA4PV3O+KHH35Q2qHg4GD06dMHw4YNQ3x8vJdrSES+gAGWqJyTZRmbN2/GnDlzcPLkSQCmFYWrFE0V5qIaRERUdgQEJn3QA/PmzcPBgwcBGIPsPffcg4cffhiVKlXycg2JyJsYYInKKSEE/vrrL8yYMUMJruHh4cjLNo24MrgSEZH3CAh8+Pnd+O6777B//34AQEhICPr374+HHnoIFSpU8HINicgbGGCJyqF//vkH3377LQ4dOgQAiIiIQG6WKbjyVjhEROQ7BATe/6wPZs6cqbRboaGhGDBgAB566CEu9kRUzjDAEpUjR44cwYwZM7Bnzx4AxjPZhXlVi26Hw+BKRES+S0Dg/z7qhe+++05ZZDAyMhJDhw7FoEGDEBIS4uUaElFZYIAlKgfOnTuHb775Bps3bwYA6HQ6yIVVoRV1IYENPhER+Q8BgXff725xCUx8fDweffRR9O7dG1qt1ss1JKLSxABLFMCuX7+O2bNnY9myZTAYDJAkCZKcAK2oBwm8UTwREfkvAYEJb7TGzJkzkZycDACoU6cOnnzySbRr1w6SxHuVEwUiBliiAFRQUIBffvkFc+fORVZWFgBAEnHQigbQINLLtSMiIvIcAQMef7Yh5s2bh8zMTABAy5YtMWbMGNSvX9/LtSMiT2OAJQogQghs2rQJX3/9NS5evAgAkEQktKIhNOBtB4iIKHAJFOL+h6ti8eLFKCgogEajwd13343HHnsMsbGx3q4eEXkIAyxRgDh16hQ+/fRT/PvvvwCASpUqIT0lARpUgwROoyIiovJh/pLH8fXXX2PdunUAjAs9jRw5Evfddx+CgrhgIZG/Y4Al8nNZWVmYNWsWli5dCoPBULSycHVoRW1I0Hm7ekRERF7x0Zf3YNq0aTh+/DgAoGbNmhgzZgzatm3r5ZoRkTsYYIn8lCzLWL16Nb7++mtcu3YNACCJytCJhpAQ5uXaEREReZ+AwLiXW2LGjBlIS0sDAHTq1AnPPfccKleu7OXaEZErGGCJ/NDJkyfx0Ucf4eDBg8YfiHDoRCNoEOfdihEREfkgAT0GPBiPxYsXw2AwICwsDI888ggGDhwInY6zlYj8CQMskR/Jz8/H7NmzsXDhQqUBLsiuAQ1qQYLG29UjIiLyad/MeRAff/wxDhw4AACoX78+xo8fj6ZNm3q5ZkSkFgMskZ/Yu3cvPvzwQ1y4cAGAabpwI0gI9XLNiIiInCQAt9cXdLEM07Tir7/+GhkZGQCAe+65B6NHj0ZkJG81R+TrGGCJfNz169cxffp0rFixwvgDEQKdfDM0kgvX7pje7e50GjxRBhERlW/mvU9X2xM3yxCiAD3vCVfa1/j4eLz44oto166dixUiorLAAEvkwzZu3IiPP/4Y6enpkCQJkqEGtOIm4+rCzjbW7nYWPNHZICIiMineA3WnXXNj/w+/vBtTp05VZjj17t0bY8aMQXR0tJMFElFZYIAl8kEZGRn49NNPsXbtWgCAJCKglZtAg1jjBs400tbe4WW5PxERkTW2eqBq2xh39zcrQ8CAAQ/F4eeff4Ysy6hYsSLGjRuHzp07O1EYEZUFBlgiH7N9+3a8//77uHbtGjQaDaCvBa2oZ7lIk5rG2d47uyw7B0RERNa420456sG6UMZn396HKVOm4OzZswCA7t27Y/z48YiKilJRGBGVBQZYIh+RlZWFL774wuxa1wjo5KbQIKbkxo4a5dLsFDC8EhGRp7gbQkthfwEZQ0ZWxY8//giDwYD4+Hi8+uqruO222xwURkRlgQGWyAccOHAAEydORHJyctG1ronQivqQoLW+g60GWc272V5j7u7+REREzlDbC3Wn3XNx/2kzBmDSpEk4f/48AOCBBx7A448/jpCQEJUHJaLSwABL5EUGgwHz5s3D7NmzIcsyIMKKRl0r2N/RWkPs7U4AERGRs5zphbrT9rm4v4Aed90XiV9//RUAUKdOHbz55puoV6+eEwcmIk9igCXykuTkZEyaNAn79u0DAGjkqtCKm40rDDti3gg7+w4u3oC7uz8REZGrXOmFutMGurj/O+93xdSpU5Geno6goCA888wzuO+++yBJbBSJyhoDLJEXbNq0Ce+//z4yMzMRFhaGgux60Ipq6gswtZdl3fCznSYiIk9zpy1ztRfrwv4///4Mpk6diu3btwMAunTpggkTJiAyMtLFShCRKxhgicpQYWEhvvrqKyxZsgQAIIlo6ORbICG8bCrgqQafiIjIU9zpiUpu7u8kAYEnxzbE9OnTYTAYUK1aNbzzzjto2LBh2VWCqJxjgCUqIykpKXjrrbdw8OBBAIBGrl20UJPGwZ4+hiGWiIg8yQ97otNmDMDbb7+Ny5cvIygoCM8++yz69+/PKcVEZYABlqgM/P3333jnnXeQlpYGQAedoSk0qOztajmP7TIREZUGP+yNChSiTedCbN26FQDQo0cPTJgwAaGhoV6uGVFgY4AlKkVCCCxYsADffvstZFmGJCKhk1uU3ZRhT2OAJSKi0uCnvdHiU4pvuukmvPfee0hISPB21YgCFgMsUSnJy8vD5MmTsWHDBgCmVYYb2763qz9ggCUiotLg573RD77oizfffBPXr19HTEwMJk6ciJYtW3q7WkQBiQGWqBSkpKTgtddew9GjR6HT6SAKboJG1IDkzwnQj6tORER+wM97pPN/eRyvvvoqjh8/Dq1Wi2eeeQYDBw7kdbFEHsYAS+RhR48exSuvvILU1FRABEEnN4cGFb1dLfex/SUiotIUAD1SAQO63qXF6tWrAQD33HMPxo0bB51OxT3eiUgVP1v+lMi3rVu3Ds8++yxSU1MhiQgEyW0CI7wSERGRQxK02LBS4JlnnoFGo8Fvv/2Gl156CdnZ2d6uGlHA4AgskQcIITB//nx8++23AABJxBXd3zWAzrhyBJaIiEpTgPVI357aBRMnTkReXh7q1q2LqVOnokqVKt6uFpHfY4AlcpPBYMC0adOwdOlSAIBGrgWtaODf17sWF0BPhYiIfFiA9Uq/nHU/XnrpJVy7dg2VKlXClClT0LBhQ29Xi8ivMcASuSE/Px+TJk3Cpk2bIEkSNIYG0Ipa3q6W5zHAEhFRWQjAXun8Xx7HhAkTcPr0aYSFhWHSpElo1aqVt6tF5LcYYIlclJmZiVdffRX79u0DoIFWbgqtCND7vjHAEhFRWQjQXqlAIZq3ycSePXug0+nw5ptvokuXLt6uFpFfYoAlcsG1a9cwfvx4nDp1CoAOOkOLEos1SUVvLREIy+cHwFMgIiI/4GavVBLC6+2urToIyOjYw4ANGzZAo9HgxRdfxN133+2FGhL5NwZYIielpKRg3LhxSEpKAkQIdPKt0CDKYht3w6tk9rb0dkMMgAGWiIjKhgd6pe6GWE+cgLYdYgXu7B+K3377DQAwevRoPPjggy4fh6g84m10iJxw+fJljBkzpii8hiJIbmURXiUhLMKnK9zd39PlEBER+RtfaI+t1UGChFXL8vDQQw8BAKZPn46ZM2eC40lE6jHAEql0/vx5PPvss7h48SIgwhAkt4KEcACeayiLl+HK2V9P1IWIiCgQuNIemre9pdG+S5CweN5VPPXUUwCAuXPn4rvvvmOIJVKJAZZIhXPnzmHMmDG4cuUKIMKLwmtYqQVXd8oiIiKiG3ylrS5exqwvT+HZZ58FYAyxs2bNYoglUoEBlsiBS5cu4fnnn0dqaiokEVkUXkMdNmSORk89PVLK8EpERGRbWQZZe30A8/2//eyYEmLnzJmD77//3q36EZUHDLBEdpgWbEpJSQFEBHTybdCIYK9fV1O8LIZXIiIidTzRZnoyCH/72TE888wzAIDZs2czxBI5wABLZENaWhrGjRunXPMabLgVGhHsVpkcdSUiIvI+X5tWPGPacTz99NMAgO+//x6LFy92q1yiQMYAS2RFZmYmxo8fr6w2HGy4DRJCXS6vNIIrwysREZF7fCnIfjftOB599FEAwLRp07B69Wq3yiQKVAywRMUUFBTg1VdfxcmTJwERjCDDrZAQ5nJ5DK5ERES+zRemFQPAvG/OYuDAgQCAyZMnY8eOHW6XSRRoGGCJzMiyjP/7v//Dvn37AKFDkOFWaBDhUlmcLkxEROQ/fGE0VoKE3xZdR8+ePWEwGPDGG2/gwIEDbtWJKNAwwBKZ+frrr7F+/XoAEoLk5tAgyttV4qgrERFRGfL2aKwECZtWymjbti3y8/Pxyiuv4Pz5827XiShQMMASFVmyZAkWLlwIANAZmkAjKjpfiCwgGQQgu9n4Fe3vagMoJMnhbXxU81AxREREfkN2vy2XDEV9Alf2hQZ/bw3HzTffjIyMDLz88svIzMx0qz5EgYIBlgjAjh07MG3aNACA1lAfWlHVuQKKgqvkiYFSNxtMjwVXpUDPFkdERGSVL7Y37p6QhutBVoIW7733HuLj45GUlIS33noLer3e7foQ+TsGWCr3zp07h4kTJ0IIAY2hGrSitnMFyB4Mrm40lB4ddSUiIiIjD4zGAnApxD5473RMmTIFYWFh2LNnDz799FMIXlZE5RwDLJVr2dnZePXVV5GVlQVJjoHO0AiS2jmznhp19UDDyOBKRERUygseemla8TMPL8Abb7wBSZLw66+/YunSpW7VgcjfMcBSuSXLMt59912cPXsWECEILrwFktq3hCdHXd3AUVciIqIy5oXR2IkvrMdTTz0FAPjiiy9w+PBht+tA5K8YYKncmjNnDrZv3w5AUxReQ4yh1F7DxFFXIiIiKqPRWPPHZ316DJ07d4Zer8ebb76J9PR0t45P5K8YYKlc+vvvvzF79mwAQFBhI2hEjP0dvLFIk43tvDLqysttiIioNPlSO+NMMC3DRZ4kSHj55ZdRs2ZNXLlyBe+++y4MBoPbxyfyNwywVO6kp6dj0qRJEEJAa6gGrVzN/g4+skgTwFFXIiIin1OGizzd1+0jTJw4ESEhIdi9ezfmzJnj9nGJ/A0DLJUrsizj//7v/3D16lVIcjh0+oZ2NvadW+MADK9ERET2lOoCTmqU0Wjs6Ifm43//+x8AYO7cuThw4IDbxyXyJwywVK78/PPP2LFjBwANgvTNIEFrfUM3R12Va2k9NOrqE+HVl6Z3ERFR4Aik9qWo3XflljnmHO3/4Rs70Lt3b8iyjEmTJiE7O9ut4xH5EwZYKjdOnTqFb775BgCgK2wAjYgquZEQkDw0ZdhTI7deP6Ns4gMZmoiIqDS5GzwVsux2EZJBAHrb5YwdOxYJCQm4dOkSPv/8c7ePR+QvGGCpXNDr9ZgyZQr0ej00hjho5eolNxIC8ETDJYTxK5AwvBIRkQ/z5MleSXjqJLTskSBrK8QO6P4xXnvtNUiShBUrVmDTpk3uH4vIDzDAUrmwcOFCHD16FBA6BOlvhmSeyETRGU5PhddAIoHhlYiISo8PN5seCbGA50KslSD7vyeW46GHHgIAfPjhh7y1DpULDLAU8M6cOYPvv/8eABCkbwAJITcetDbqanBhBNXaqKvw0AJQ3sLgSkRE5Zwro7GSwUpgdWU01trIq5WfLZ51CXXr1sX169fx1VdfOXcMIj/EAEsBTZZlTJkyBYWFhdAY4qCRqxof8LNR1zK/DpbhlYiI/ISn2kh717/68misBA0mTJgASZKwatUq7N271/1jEPkwBlgKaCtWrMDhw4eLpg43Mk4d9tS1rkDZTBn2wLL8qnHKMBERlRU/m6Xk0WtjPcEsxD4/ajH69+8PAPjoo4+Qn5/vmWMQ+SAGWApYGRkZN1YdNtSFJELUj7o6mkbMhZqIiIjKpTJZ4MnO6sMltiva9oknnkBcXBzOnz+PefPmeaCSRL6JAZYC1syZM3H9+nVIcgS0+ureGXX14HWwpTqNmOGViIjKko+1jc7ePsdW2271+ld7PDgae1+3jzB27FgAxsUrL1265JmyiXwMAywFpGPHjuHXX38FAOjyG0AyeCCheXPUtbSmEXPKMBERkUt88XY7k8avx2233YaCggJ8++237pdJ5IMYYCngCCHw5ZdfQpZlaPSVoZUruFaQ+TRid4Krr47CMrgSEZE3+Fib6Ozoa8l6mMpxM4SaQqza6cPW6gIJzzzzDCRJwrp163Dw4EH36kTkgxhgKeDs3r0b//zzDyAkBBXUd7kcybTYk69c61qWizkRERGRap5cpVhToHeriKcH/4C77roLAPDll19C+Eo/hshDGGApoAghMGPGDACAVl8Dkgh1qRzJ1xZp0kjGL3hwFNaHnh4REZGzhCRBSG5OJ5IFhAQIT8xKkou+PMDdEPvYY48hLCwMhw4dwqZNmzxTKSIfwQBLAWXTpk3477//AKFFUF4Nl8owD6+S7Ll7xbp8dlbDub5ERBQgSuHkqdshVinHjZ3Np/26EWI1eTeCqzsh9uEun2Dw4MEAgNmzZ0P21GJRRD6AAZYChsFgwMyZMwEAurzqkESwU/tLQhgDq6+NvJYmH3qqRERErvKJEGvOQ6OxmgK9y0H2/vvvR3h4OE6dOoWtW7e6XxkiH8EASwFjy5YtSEpKAmQdgnKrO7WvvSnDXhmFNZsybLVOvhSyiYiI1CjlpsvpEGtjbQmnpxTbW3TJiRBrPvpa4jEXQuz97aZg4MCBAIA5c+bwWlgKGAywFBCEEPjxxx8BALr8qpCgg6SXIRkMDvf1yetdVeC1sERERJZUXxerYmFEj47GeoDaEKvJL1S+f+CBBxAWFobjx49zFJYCBgMsBYR9+/bh6NGjgNAgKK+aqn28MmXY0Sgsr3clIqJAVMYnS8tsSrHaW954aUrx4A7vY8CAAQCABQsWuF8BIh/AAEsB4cboaxWLa19tjcI6O+rqsWnEtjiYMmwLR2GJiMjneamNsRlinbwtncdWKQZshlh704etbm8jxJqPvpoMHDgQOp0OBw8eNJ7sJ/JzDLDk986cOYMdO3YAwrh4kyNenzJcfBSWo65ERESlwlMjscayiv1A7ehrcWU8pfjhLp+gW7duAIDFixd75uBEXsQAS37vt99+AwBoCytCI4eVeNw0CuvulOFSGYX1QHjlKCwREfksH2hbLK6LdXL0tWRZHqgQYBFinR19NWc+pdja6KvJoEGDAADr169Hamqqy8cj8gUMsOTX8vPzsWrVKgDGxZtskuGRUVdPrkjsKZ48u0xERBSoPHpdrKujr+ZkQJOV7345cDwa+/ygeWjSpAn0ej3+/PNPjxyTyFsYYMmvbdy4EZmZmZAMIdAUVrC+kd4ATU4eJDduCO5RkgRIknEasZtngomIiEgdSQjPzHwyyMYetCd60UIAhe73T6Rr1yGlZdjdpm/fvgCAFStW8JY65NcYYMmvrVy5EgCgy0+AhGKNkt4AKa8AUqHe2EB4KCy6NQrr4dFSj46+ciCXiIg8TYJPtC8Wl9t4cu0JN3rSmhyz0Vd3Q2zR+h5SWobNIPv5y1sQGhqKpKQkHDx40L3jEXkRAyz5ratXr+Kff/4BAGgLKls+qDfcCK5FpEK9d0dhPbQaIuDEfe7U8oHOBRERBTBfa2dcXf3fYGXqsKu96eKjoIV6l4KslJ5pWWZRkC2xHXTo2rUrACiXXxH5IwZY8lvr16+HEAKawmho5NAbD5jCa3HeHIW1ETbt3hPWBo9f8+prnQoiIgpMXmpv7C526KnRWCd71Bajr8U5G2Kt3C7QVojt1asXAGDz5s3Q633k0ioiJzHAkt9at24dAEBbEH/jh3oDJL2VD/IinhyFVR1i1QROlcGa4ZWIiPxaGbc7qlbqVxlirY6+WpSjqhhjeHVUL5Uh1mL0tTghIF3PsvjRqyOWICYmBtevX8e///6r6hhEvoYBlvxSSkoKjhw5Yrz3a0Hcjetd9Qb7jYIQkPILy2YqcdFiTQ43M1XXQYhleCUiooDgi+2PgxDrMLwq5cBx71rtAkoOQqyUnml99NWcwQDpepYSZCVI6NSpEwBgw4YN6upB5GMYYMkv7dixAwCgMURBKtTeCK5qGoWymErsZNh0NJXY49e7+mLngYiIyo8yaIecvk96GSzuZHfqsDX2Qqyj8Gq+XVGQBYAuXboAALZu3QpZ9sDtgIjKGAMs+aVt27YBALR5FRyPulpRqlOJ3QmbxYI1F2siIqKAVYptktPh1cTK4k6qR19LlFXsv2qmDltjZXEnu1OHbSkKsa+P+gVhYWFIS0vDiRMnnC+HyMsYYMnv5OfnY+/evQAAXU6Ma41BaU0ldiNsFp9KzCnDREQU8Hx1VlBRiHU5vCrlmH3v7r1Xi0KsqqnDthgM0FzPQcuWLQEAu3btcq9ORF7AAEt+58iRI8jPz4dkCIJUGOp4B1s8OZVY7fRlh+UY/2V4JSIico3Lo6/FeXCFYqenDttSqHc9vJoYDGjdujUABljyTwyw5HdMq+Zp8qMguZnMPDKV2Hyar5uNppAAaCTPNb5ERETkEskgAI37XWVNnt4YhrXulyUuXYGcmeV4QwdatWoFADh06BDy8z0UronKCAMs+R0lwGaGuFdQUeh0ayqxKbx64J0kimVxj4ZY5mEiIvJVHmyjPNV2SuZrW7gbYoW4cWcCN0KsuHTFOPoqhNsh9pEGL6NChQooLCzEsWPH3CqLqKwxwJJf0ev1OHToEABAugKIrBznC1F5exs15ZQIry5OJVbCa/GFIzgSS0REgczXw6uJiyFWk1fsBLk7IdZ86nBRiHUlyBrS0iEZZDRt2hQAcPDgQdfqQ+QlDLDkV5KSkoxTXfQSpGwJckaGcyHWRnB1ehTW3sirkyHWVnhVDuWpEMssTEREvsQH2yWr4dXEyRCrydNb7w+4EGLFpStWfiicHo01pKUrQZgBlvwVAyz5FdM0FyknyHj9q8EACJUrBDoYdVUdYtVMG1YRYoXkOLx6nA92FoiIqBzycHtUZjOWNBpVQdZmeDVxIsQqU4dtbuBEiDUr5+abbwYAHD9+XN2+RD6CAZb8iinAarKDlJ/JmVmOR2FVThl2GGI9dM2rRXBVEV55PSwREZF1pTp12BZHIVZNnVSEWIfh1ex4jkKsIS3d4v//azcZAHD58mVkZ2c7PgaRj2CAJb9y8uRJAJYBFgaD/anETl7vajPEOhtebYzCujrqyhBLREQBwV+ue3XERogtcd2r3QPbDrGqw6uyg+0Qaz51WDm0QYP4+HgAwKlTp9Qfh8jLGGDJr5w/fx4AIOUFWT5gK8R66n6qro68Fgux7k4Z5qJORETk1wIlvJoUC7EOpw5brYCNEOvK/V6thFhr4dWkbt26ABhgyb8wwJLfyMvLQ0pKCgBAytOW3KD49bBuhFdlFFaSIDQa96YNF4VYT13vykWdiIjIL/lgu+NWeDUpCrEuhVelIkUhtijIWl20Sa3iIdZOEK5ZsyYA4OLFi64fj6iM6bxdASK1Lly4YPxGL0HSWwmwMF4Pq5E0kKIi3D+gQQZkGQiyfiyXlNViTURERL7EXxdtUkkyuHYbPctCivoIV666NvpqrijECr396cwJCQkAjNfBEvkLjsCS30hOTgYASHl2zrvIwjiVONuF+8OaEVoNoNNC0suQ9CpXObZHkiAJY/18io9Vh4iIAlAptDXCE5cIyWazo9wgFRrDpvDECe9LKRAGGdC6X9bZcc2R9L/b7G5TtWpV42EvXXL7eERlhQGW/EZqaioAQCq08aEuFb2cZQE5/brLIVZoNUDQjZAsFRrcC7Eu3vy8zDDEEhFRaSnFNsatECtbWZ/CXZLkXoi9lGI5YupGiD07vgUKYgQKYgSSXmptc7t37vkUAHDlihtTlonKmI/3rIluuHbtGgBAKij2spU0N8KriYshtnh4VQ7haogtFl49NQrr8alTDLFEROSHXAqxVtphV0OsafT1xg9cDLHFw6uJCyHWFF5NCmKNIdZakDUNCly/fh3Cx6ZlE9nCAEt+wzQCC/MR2OLB1ZyTIdY0bdj2Bk5+sNsYeWWIJSKicqGM2hWnQqyd9tfZEFsivCoPOB9i7V6r6kSIPTvOMryaFMQKJcha0Bv7KgaDAVlZ9u8jS+QrGGDJb5husi3pi1oYe+HVRGWIVcKrnUbQqethHUwbZoglIqKAVsbtiaoQq6LdVRtibYZXZQMnQuylFMfbqAixZ8e1QEGs/edYPMRKQgIMxiedkZHhuB5EPoABlvxGbm6u8RvZypRhe2RhdzU/NeHVRNVUYpXXvPpsiCUiInKHl5oluyHWifbWUYh1GF6VDVWEWFtTh61xEGIdhVfz7c5NMBuJLRoY4Ags+QsGWPIbeXl5AABJdv5lK2dmWR2FdSa8mtgNsU4u2OSTIZZ5mIiIXOXlNsRqiHWhnbUVYlWHV2UHOyHWmfBqYiPEnh3Xwqli8ivcCLFS0ZMtKChwri5EXsIAS37DFGAhu7ZgQ/GpxK6EVxOrIdbF1YYZYomIKCD4SNthEWLdaF+Lh1inw6uyo5UQ60p4NSkWYtVMHbZGCbFF/Sq9q/UhKmMMsOQ3bqyO5+JSgWYh1p3wamIRYt28VQ5DLBER+TUfazOEJHmkXTWFWJfDq4l5iHUnvJqVBwBJz7sWXk3yKwiIcGNdtm7d6l6diMoIAyz5DUkJm240SLIA8vMh6Q1uhVeFD15/ymtiiYioTAV6s+OpdlWSIOUVuB9eAUCjQdp9tyC/gud++YWFhR4ri6g0McCS39C4OcoJAFJoCBAUDOTmQcpz71oPodEYR15lALIL94gtJW7d2N2cp27sTkREgctHw6skBKBxvyGTikZxhc4DfZCsXEAIaCrGul1W2r1NUBgpITLJ/eeoCTc+t1atWrldFlFZYIAlv2EKsNe713Fpfyk0BFJoKKCRjNORc3JdDrFCowGKGjNJCLdDrJDgkYaW4ZWIiMqML4dXEzfaVqnYFGR3QqyUlQvJcOOyI3dCrCm8AoC2QLgVYtt3PISQorKioqJcLoeoLDHAkt8IDw8HACS0Po8rj97m1L7m4dXE1RBrHl6V8t0IsQyvRETkd/whvJq40MYWD68mroRYi/Cq1Mm1EGseXk1cDbHtOx5CYlgaDHnG52rqZxH5OgZY8humD9ZKciYaDPvPqRArSZLVBkwI4dR0YmvhVTmGCyHW58IrERGRI/4UXk2caGtthVcTZ0Ks1fCq1Mm5EGstvJpoC5z7o5jCKwAY8hlgyb8wwJLfiIyMBADo82TUj0gxhtjHHIdYKTQECAmx+biQZVUh1l54VY7lRIj1yfDKHExERPb4Y3g1UdHmOgqvJmpCrN3wqtRJXYi1F15N1I7CmodXIQsYChhgyb/ovF0BIrVM12bos40ftPUjUoCHgWPiNlT+bq/VfaxNHbZGyDKk3DxIAERosPWNVJ7ukYSAkCUAss3b6zC8EhGR3/Hn8GqisX17HbXh1UToNCXvCW8qS014Vepkv4ORfo/j8ArcmEqclSgQl5mJB3buRJtTJxGRn4/skBDsrFcPp56NRWxYnrJPYZYAhHGmWnR0tLr6EnkZAyz5jbi4OABAfvqNBqF+RAowDDjbrybyl1e2CLJqw6uJvRCrrDiskr0Qy/BKRER+JxDCq4mVEOtseDWxFmKdCq+mKlWMhXwtvcTP0+9pgoIo9Y10eE4B3vx+Ge49uhvBBst7195x7Bj0ayT83a8Wfn/pFuhDtCi4bqxnhQoVoNMxFpB/4BRi8hvx8fEAgIJ0y0ahfkQKulc9hvoPH1Oui3U2vJpYm06sZuqwNdamEzO8EhGR3wmk8Gpi1ha7Gl6tcSW8GutTciqxs+E1RF+IL/6YgUGHdpQIryY6vUDrJWcw8unt0OUZlABbqVIl5+tM5CUMsOQ3TAE2P936h3KDyCuo//AxXB59u0vh1cQ8xLoaXk08cYudUsXwSkRE9gRieDXRSB4Jr6brYV0Or0p9boRYZ8MrAPxv2zLcfumkwz+ZAFB3z1Xc/f5+3BXxOIAbs9yI/AEDLPmNqlWrAgAKM4SyYl5x/2xtgOrLzwGFrt3f1UTIsjF0euAdYmpkPTX6SkREVCZ8NLx6jAdHXiGEe+HVRKOBKChwOrxWysnAvf/tBuD43LTp8VuXn8W5//4DAFSvXt3JihJ5DwMs+Y3o6GjExsYCAHKTrY/CBl+XYLiYDDk3D8jPd/lYUmgIRFgIJL0MqdDg1giq0EqARgNJwLONpSf4WHWIiMhHBHr7UNQeCw+cWJYKjX0SOSLMvSolp0BOTgFkgYRfTzu1b/8juxAkW+8b2aLTC5zfuRMAkJiY6NS+RN7EAEt+pVatWgCAnGR9iccWreqI2j8kGf8jC/dCrCQZvwDjWVW97FKINYVXpVgPhFiP3/M10DspRETkHD9oF9xqC4u1w+6EWFN4BQBoJZdDrJycAlGohyg09m8MV685tf9tl066dNykq1cBADVr1nRpfyJvYIAlv2I6Q5hzyfIs46I/O6LBl+dguHzlxg9dDLGm0dcSP3cyxBYPr0o5boRYj4dXpeDSKZaIiPxMoLcHNtpfV0KsRXg1cSHEmsJrcc6MwkYUOn/CPk+jwaWifo1pgIDIHzDAkl+56aabAABZ52580C/6syMafFEsvJo4GWKl0BCI8NAbo6/FH3dxJLZEOS6E2FILr8oBSrd4IiLycX7WDjjdLjpod50JsVbDq4lWfTm2witgHIVVG2Kzg0qeeHfkREQEDJKEihUrchEn8isMsORXGjVqBADIOquHKFocKThdsh5eTVSGWEfhVdlORYi1NfpqUY4AJINQFWRLPbwqByqbwxARkY/x089/1e2jh9agkAoN9sOr6XAqRmHthVcTw9VrSPj9rMOyYh647nCb4v6LigJwo29F5C8YYMmv1KtXD0FBQdDnCOSnylj0Z0fU/vGc4x0dhFi14VXZ3k6IVRNeLcrytcWdfKgqRERUBvz8c99hiHWijbU3CqsmuCocTCVWE15NDFeu2g2xb704B41GhEEEqa8eAByNjgYANGzY0LkdibxM5+0KEDkjKCgI9evXx5EjR7B6WV00+O08DBeT1e1cFGKlvHxIoSFAiNl0G/NFm1SS9DKEDhZh1dnwqpQlACELq7fZKbPRV4uDgveIJSIqD/w8vJoISbJ+b1gXThALK/eHdSq8mhSFWE12rmWVnAivJoYrVwFYXqf61otzAAD3RuQAETrggWhgfobDJtz0+P5q1YDCQjRu3NipuhB5G0dgye+0aNECAFB561n14dVEFhAG2WI0VgoNgQgJdqkunromFrA+EuuV8Koc3HuHJiKiMhDIn/Oyukt0bDEfiXUpvJoUux7WlfBqYj4K+8aL83BvRI4xvBYR78ZBtAtVdR/Yc20jcamwEFqtFs2aNXOpPkTewgBLfufWW28FABh0aa4XYhqNlSSI0BBA6/pbQblXrBAujb5alGUWYr0aXk0CuXNDRFReCQTk57vSbnroshyhkdwLr0XkiDDlHq+uhlfgxlTiN16ch/4RWSU3CNNAzK8G8XC0zenEIggQD0fj4CvzARivfw0PD3e5TkTewCnE5HduueUWaLVaGEINkEP00OS7+DKWBYRebwyebhJaCUKjMZblC8HTkzidmIgocARgcC1BI3kkxBafRuxyOYV6SJXjYLhw2e2y9BcvWQ+vJmEaiA8qAxMqQvyYAWl7LpAtAxEaiPZhwEPRQLwOf393AADQsmVLt+tEVNYYYMnvhIWFoUmTJti/fz/k2FxokqNcKkcTGQEpIhzQG4ztuU7rXsU0uBGGXQyxQoJyHawkhG+MwvpAFYiIyAMCPLxavQbW1bJMs6F0GuPlQq6WU2A8US6CnVxhyQpRWAAA6PHQI1j74yz7G8frgLEVIcaWfKjrsEcQHbodANCqVSu360VU1jiFmPxShw4dAAByhVwHW1qniQiDFB1pnPIrBCS9AVJeAaB3fqqQ0GggtGbhVwiXRnXNw6uJJIRHG2SnMbwSEQWG8hZenbinq0U5srAceZUkCJ1r3WWpQA8YboRfbfUEl8oRhQVKeAUA7ca/0WPoIy6V1W3kYwj6ey+uX7+OqKgoXv9KfokBlvxSx44dAQBydD6E1oUzo1qt5fWqRaFT0hucCrFCp4EI0pZ8J7kYYm3xaoglIiL/FuBNiM020skQa3PKsAuzoYqHVwAQwUFOh1jz4GpOu+Fvp+vUbeRjCN6wHwMndQcAtG3bFjodJ2OS/2GAJb9Us2ZN1K5dG5AAOda5UVhNZASkyAjrD7oQYm2+i4QwrlCsInxaG30trsxDLEdfiYj8XwCHV0/OUnJ0vavaUVipQG81vCrlODGV2FZ4NVE7Cttt5GNKeBUQ2Lx5MwCgffv2qutC5EsYYMlvderUCQBgqJTjYMsbNJERN6YO26IyxApdsanDdsqzF2LVhFeTMguxDK9ERP4vwMOrKiraV1WLNamYSqwEVxvh1UTNKKyj8AoYR2G7P/yo3W26jjIG1+AN+43lRhTgwoULCA0NRbt27Rweg8gXMcCS3+rVqxcAQI7Ng9CpHDHVatTd6sZBiFXCq9p3kAenFHM6MRERORTATYXT7aCdEOvUSsN2phLbG3UtztFUYjXh1US3fq/Nx7qOegwh6/db/Oyet+4AANxxxx28fQ75LQZY8luJiYlo1KgRIKkbhdVEhBlXHVbL0eJOzr57rIRYZ0ZfzZXq4k4cfSUi8m8MryrKKbr3upOsjcI6E16VcqxMJS6+WJNa3YaXHIXt+sjjJcKrgMD69esBAD179nT6OES+glduk1/r3bs3jh49CkN8NrTJkZDspS+dTt3oq7mihlIyu9VOiVWHXSjPU/eK9fitdhheiYj8G8OrdWb3hpUEXJ8VVazNdSW8mmirJyj3hnUluJoErb0xCtv1kccBACHr9pXYTq6Qi7S0NFSoUAG33367y8cj8jaOwJJf69GjB4KDgyEiCiEibX/4K/d8dZX5lGIN3HvnmBZ3Alxe5t8cpxQTEREEGF4d0UjuhdciQqdxuFiTqnKKRmHdCa8m3UY+hi6PPo6QdfushlcAaP5QHQBAnz59uPow+TUGWPJrMTEx6NatGwBAXznL9oYayf1RTyGMZWg0gOvtlZEkGacPO3PtDRERkTUB3pR47ESt7KH1KGRABOvcCq/GcmRoEyq7Xx8AIduOIHSt9eAKAHJIIfbs2QNJknDPPfd45JhE3sIAS36vf//+AAC5Uo7VxZw0EWGQwsJuXIPqYuMlgnQQocazpZIQ7odYEzdDrMemEHP6MBGR/2F4dUwWSlsr3J35ZDCV42YXumgmlggJgq5GdZeL0UREQBMRAUmrhRQaYnO7+yZ3BgC0bt0a1apVc/l4RL6AAZb8XuPGjY2LOWkAQxUro7BarXH1YcC9EKvVWIziuhxiJSujwRyJJSIiZwV40+Gx8OophmILMYYFu1aObNl5EKGulaME16J1OSQbJ7SFVsavv/4KABgwYIBLxyLyJQywFBAGDx4MANBXyYLQ3GgYlNHX4pwMsSJIZ5wuVIyrIVZYa2PMzhCrL4ejr0RE5RLDq2M22lSnR2ENokR4NZbjQjdatt5pcHYU1hRei7M2Cjv8mz7Izc1FnTp10LZtW6eOQ+SLGGApIHTp0gXVq1cHgmQYKmffeMB89LU4Z0Zji42+mpOEgGRQGWStjb4Wx9FYIiKyJ8CbCZ8aebUSXM2pHoWVZZvhFVA/Cms+Zdia4qOwQpKxePFiAMDQoUNtjtIS+RMGWAoIWq0WQ4cOBQDoq2ZCSML26Ks5N6+LNad2NNbq6GtxKhpejr4SEZVDARxePXKPc5WzmVSNwjoIr8ZyVHSl7QRXZxSfMmyL+SjsMwsHIy0tDQkJCcqil0T+jgGWAkavXr0QFxcHBBtgiM+2P/panJ0Qa2v6sDV2Q6ya0Vdzdhphj977lYiIfB9vk+OYs5fh2AqxNqYM2yzH3iisE+HV3jRie6OuxZlGWYUkMH/+fADGS6146xwKFAywFDCCg4Px4IMPAgD01TMgJCfPeNoajbUzfdgae1OKVY2+FleaU4qZg4mIfF8AB1fAv6YMW2N1FNbBlGGr5ViZRuxoyrA9j8/tj+TkZMTHx+Puu+92en8iX8UASwGlX79+SEhIAIIN0FfJdL6AYiHWmdHX4ixGY50dfS2O18USEZVPAf7x7+/h1cRiFNaNKcPmo7BqpwxbFa7DvHnzAACjRo1CSIjtW+wQ+RsGWAoowcHBeOyxxwAAhTHJEJpC1woyhVgnR1+LU0ZjhXBt9NWc6R52vPaViKh8CODwWpbXu9ojNJLTU4atl6NxadS1RDlFo7CujrqaPPDBHbh+/ToSExNx5513ulUnIl/DAEsBp0ePHrjpppsAjQEF0ZdcL0i43zD6tAB+akREfi+AP6M9MurqIZKHquKx56TVuh1eZZ0eP/30EwDg8ccf57WvFHAYYCngaDQaPPnkkwAAfWQKZF2uS+WI4CCIEPc/9IUkARqN7zWSQEB3kIiI/FaAfzZ7bCaRs/dzLUZpl7XullM0QyrczWm6Wi2gkaCpEu9WMR2fq4e8vDw0adIEnTp1cq9ORD6IAZYCUqtWrdCuXTtAEsiveA5C7WrE5jQa45e7zIqQhGfO9npk6pVJgK9sSUTkN/h5XCZKtMUuBuoSbbGrfQatVgmvACBCglyrT6UKkKtqsXbtWkiShOeff573faWAxABLAUmSJIwdOxbBwcGQQzKgj0gzNg5lzDT6WqJ+rnRQrJxp5mgsEVGAKGefwd4ahbXZ/jo5Cmur/XV6FNYUXN0dTa5UAXKQBgmt8gAYF7Vs2LChW2US+SoGWApY1apVw/DhwwEABZFnIAcJiOAgVUHWU9OH7b3DOKWYiIgA8LO3jNhtd528XZ5Nakdhi426ljhGXEV1dalUAVKlChBBOox6+1acOXMGMTExyoKWRIGIAZYC2pAhQ1CzZk1AW4jCiCRAkiB0Wsch1lPThx3glGIionKuHH/eemwU1gGfa2tVjLqqmUZsCq4iSAdZk4fvv/8eADB69GhER0e7X08iH8UASwEtODgY48ePBwDowy/DEHQdACB0WtWjsWXBYcOqcmoRR2OJiPwIP2c9w04b6VRwtTON2JOrDHtiurApvAKAgECjHjJyc3PRokUL3jaHAh4DLAW82267Df369QMAFESfgJD0xgdsjMZ6evVhtXzuDDHAzhURUWnh52upcqlNtTIi7EqbavU6WAdThq1Wx8o0YvNRVxN92GX8+++/CAsLw8svvwxNGcwgI/ImvsKpXBg9ejSqVq0Koc1HQeRZi8dKjMaWwurDzvC5a2M5pZiIyHP4mWqhNKYRe70dLd6HcHGhJvNpxMVHXU1kbS40cRcBGPs61apVc63ORH6EAZbKhfDwcLzyyiuQJAmGsGQYgtMsN1B7bWwZ8eRorMeww0VE5B5+jpaeonDoUzOZXBh1tVofK6OugHHqcP3OhcjPz8dtt92Ge++9163jEPkLBlgqN1q0aIFBgwYBAPKjT0BoCkpsI3RaQOcbIVbh9o3a2WMiIvI6fhSXOo+MvDp5Ox3b5bh/exwRpLU66moy6IX6OHjwIMLDw/HSSy9x6jCVG3ylU7nyxBNPoF69eoCmEPnRxyCs9CiEJLk9pcnZ61+JiCiAMbxa5dE1GzzFA+2/kCSIsGD3ygnSAhqNzfBqCErHDz/8AACYMGECEhIS3DoekT9hD5vKlZCQELzzzjsICwuDHJyBwohzNrd1K8j60DurrG5TQEREVvhYPvMVpRFchZebO+PJawAaQLg4kiuCtEp4tbmNpgDhdS9BCIF7770X3bp1c7HGRP7Jh7rZRGUjMTERL7zwAgBAH34ehqB0u9szABIRkdO4WJNNpTbq6uYlN65STni72atWgqu98AqBm3vJSEtLQ926dTFmzBj3DkrkhxhgqVzq1asX7r77bkAC8mOOQ9bk293eE9OKnSUkeK0xtsqHqkJE5NMYXK3yySnDVgid+u6x+airy8dTMepq0n9sbfz9998IDQ3FO++8g5AQK7fsIQpwkhB+8ElCVAry8/MxevRonDhxAlJhBELTmkLSBUME6xyGVUcNsNC6fw2spwKsx4I3AywRkWPsVVlVVsFVMnjmOFKhwe7jSttqp6nX5JRcLNKijCCz2/fZIsuQ8goBAPqQFBTEHAcAvPXWW+jevbvd8okCFUdgqdwKCQnBe++9h5iYGIigbBREn4CsUTfSymnFRERUAsNrCf4y6uoMT426qrrvfNHjBl0WEG+8j/3DDz/M8ErlGgMslWtVq1bFpEmToNVqYQhNhT4kSfW+3phW7Cxfrx8RUcAIrIzmEd4IrqW5kJMnrnV1Zrqwso+mANENL6GgoADt2rXDo48+6noFiAIAAyyVe82bN8f48eMBAPqwMzBorzi1P0MiEVE5x/BagtdGXUth7QiL4FoWo67m+8CAOp1ykJKSgsTERLzxxhvQan3sfvVEZYwBlgjAPffcg4EDBwIACkMOQ9akO7W/P4zGuiWAnxoRkcu40nAJgTZluKwXabLYDzJu7aXH4cOHERUVhcmTJyMyMtL1ihAFCC7iRFREr9fj9ddfx/bt2wGhQ3DubdCICNcK08AnFnHiAk5ERKWEvacSfCW4emQhJ71s/NeNplxZCMqF/oCAQGHIMRiCLiI4OBiffPIJmjVr5npliAIIR2CJiuh0Orz99tto0qQJIOlREPovhJTnWmGBPBpLREQU6NwcdYUkOT1d2Jw+6CwMQRchSRLefPNNhlciMwywRGZCQ0MxZcoUJCYmApp8FITug0ChS2UJqXQXkyAiIi/xjYFG8jBTu+1W2y1JN75cVBh8CfqQ0wCAsWPHolOnTm5UiCjwMMASFRMTE4MPP/wQlSpVgtBkoyBsHwT0LpfHEEtEFEAYXgOSR9pqD4RXfXAyDCH/AQCGDh2KAQMGeKBiRIGFAZbIioSEBHz44YeIjo6G0GQYQ6zGvRDLIEtE5OcYXgOOR9pnDwRXoZWgD0qBHPYfhBDo378/nnjiCTcrRhSYGGCJbKhXrx4++ugjREZGQmiuozD4AIRWdm8lQgZZIiL/w9WGA47Hg6uL4VVoJQitBIM2FXL4ERgMBvTp0wfPP/88JK6nQWQVAyyRHQ0bNsSHH36IsLAwyNo0FAbth5BkQOvmjczZJhER+QcG14DjC9OFTcEVkgSD9hoQcRgGgwE9evTA//73P2jcvJMBUSDju4PIgcaNG+ODDz5AaGgoZO01Y4iFoWiFQRs7CQFJtt/r4WgsEZGPY3h1iq/fD71MpwubbsNjrR7aG2UYNClAxCEUFhaiU6dOePXVV6HVat2sJFFgY4AlUuGWW27BlClTlBBbEPyvcWEnSbI+Gmu73SqBQZaIyAcxvAYMb0wXtnZPXPNRVwAwaJIhh90Ir2+99RZ0Op2bFSUKfJIQPnLXaSI/cODAAUyYMAHZ2dmQ5GgEF7SAhKAbGwhxI7xqJQiN8y2mVPSOVBpbF8pQquOps+EM2ERUnrBn5DJrwa3M62C4UQdXgqskC2N7DtwIq062p1Kh4UYdtCXLMGguwRB6FLIso2fPnnjllVcYXolUYoAlctJ///2HF198EdevX4ckRxaF2BDLjYQAJNcCLFAsxDLAEhGVHfaK3OJLAdbVUVfJUHQm2o1rXKVCg9XgCgB67Xnog4y3yrn77rvxwgsvcNowkRMYYIlccObMGYwbNw6pqamQ5DAEFbaARoRb3dbVEKtwc3+PhFgGWCIKdOwNeYS3A6y74RXAjTUsXG0/9UV3LCi2v4CAXncaBt1pAMCgQYMwZswYrjZM5CQGWCIXXbhwAePGjcPly5cBEYTgghbQiGjLjSTJ/etufCHAAgyxRBS42BPyCG+HV8AYYN1tdyU3noaQikZwS4RXGXrdURh0lwAAI0aMwCOPPMLwSuQCBlgiN6SmpuKll17CsWPHAKFBUGEzaOW4GxtIRQs2OFiR2C5fCbAAQywRBS72htzmCwHW3fbW/PpZZ5iH5uJ3IRDQozDoIGRtKjQaDcaNG4d+/fq5Xk+ico6rEBO5oVKlSpg2bRratGkDSDIKg/dBrz1vuZEsjCHUF65ldZcAO3lERBR4XGyji69wXHz0ViAftZtfhqxNRUhICN577z2GVyI3cQSWyAP0ej0+/PBDrFixAgCg1deCTl8PEqQbo7DmnDlDrJEsAqyzZ7hLLfz6SKYmIvII9obc5pcjsMWCq9oRWFvTlM1HX2UpExUSzyI5ORkxMTGYOnUqGjdu7Fz9iKgEBlgiDxFCYPbs2fj+++8BABpDJQQVNoUkBZUMsCZqG9piIRZwrqNQqiO4DLJEFAjYG3Kb1wOskyeHi1MTXh1dX2sKsAbNFehiTiA3NxfVq1fH+++/j5o1a6qvHxHZxABL5GFr167FlClTUFBQAEkOR1BhC0hSuP3pSY4aXSsB1kRNh6FMpiAzyBKRv2OPyC1+EWDttMWOAqzD8CoAIWQYtGegDzoFALj99tvx9ttvIzo62v7ORKQaAyxRKTh69Chee+01pKSkAEKHoMJm0Gji7O9kr+G1E2ABx52GMruGliGWiPwZe0Ru8fkA6+A6V1sBVvWqxrIehUFHIGuTAQADBw7EM888A51Op7IAIlKDAZaolFy9ehVvvPEGDh06BECCVl8fWtQyXhdrj60G2EGIBex3Hsp0ISgGWSLyR+wRucynw6uKBZqshVdnbscjRA4Sm1zBiRMnoNVq8fzzz3OxJqJSwgBLVIry8/Px0UcfYdWqVQAAjRwPndwEEoIc71y8MVYRYE2sdSTKfCVjhlgi8jfsEbnMJwOsEysLmwdYZ+8jK0tXEFLhFLKyshAbG4t33nkHLVu2dK4QIlKNAZaolAkhsHz5cnz++ecoLCwERBiCDM2hQZS6AswbZSdCLFCyQ+GV2/EwyBKRv2CPyGVeDbBWTvg6wxRenQ2uAjIM2pMwaM8CAJo2bYp33nkH8fHxzhVERE5hgCUqI0eOHMGbb76J5ORkABroDI2gFdXVF1B0P1lXQqipY+HV+8kyyBKRr2OPyGU+EWBdvd+6s7fegfH+roW6AxCadADA/fffj9GjR/N6V6IywABLVIauX7+O9957Dzt27AAAaOSq0MmNIMG5Bs/VEMsAS0TkAHtFLnE1wApJcj/8Fp3gdWt/Jxikq4iqfBZpaWkICwvDyy+/jK5du7p+fCJyCgMsURmTZRk//vgjZs6cCVmWi6YUN4MGMarL8HoQdfVTgyGWiHwde0VOcye8urO/RzgRXgUMMGhPwKA9BwCoW7cuJk6ciMTExNKqHRFZwQBL5CX79+/Hu+++WzSlWILWUBdaUcfxKsXwcoAFbgRRZz89GGCJyNexV+Q0ZwOoeRvmrfCr7G+QVW0vIxu1GqfgxIkTAIy3yHnqqacQEhLi0vGJyHUMsERelJmZiY8//hjr1q0DAEgiFkGGppAQZnc/nwmwJmo/RRhgicgfsGfkFLUh0lrb5UoAdTcAW+zvIMAKCMiaC9BGnEZ+fj5iY2PxyiuvoF27dk4fl4g8gwGWyMuEEPjzzz/xySefIDc3FxA66OSG0IiqNkdjfS7AAgyxRBQ42DNSzZ3w6sz+tspwe387AVYgD4W6IxCaVABAq1at8MorryAuLk71MYnI8xhgiXzEhQsXMGnSJBw6dAgAoJHjoJNvhoTQEtv6ZIAF1HX6GGCJyB+wd6SKowDpqL0qqwBsc38rAdY46noJobFJyMrKQnBwMJ544gkMGjQIGo1G1fGIqPQwwBL5EL1ej0WLFmHWrFlF94y1Phrr9QAL2A+ijj5VfKD6REQOsYdkl73wqKadUhM+7ZXj7v5AyQArkA+97ghkzVUAQOPGjfHKK6+gVq1aDo9FRGWDAZbIB50+fRqTJ0/G0aNHAZhGYxtDgnGxCJ8PsCa2Pl18oPpERA6xh2SXtQDpTPtU2gFYVRlFAdY46noZYRWSkJmZiaCgIIwaNQpDhgzhvV2JfAwDLJGP0uv1WLhwIWbNmgW9Xl80GlsfGlEDEiTvh1hnDl/8U4YBloj8BXtJNhUPkM62S7YCqNpyPLK/LCCQg0LdUQjNNQBAgwYN8Oqrr6Ju3bqqyiGissUAS+TjTp06hSlTpiijsZKIgc7QGJIU5eWagSGWiMoH9pRKMA+PrpxQdXf01loZTtfDoIdBkwRteBIKCgoQHByMkSNHctSVyMcxwBL5AYPBgGXLluHbb781rlQMCRq5NrSiLiRovVcxV0Ko6ROHAZaI/AV7SiVIQrg1E8jdAOxuGTLSYZAOQ2iyAAC33XYbXnjhBdSoUcOluhBR2WGAJfIjV65cwWeffYYtW7YYfyDCoJMbQYN471SIIZSIygv2ljzK3QDsahkCBTBIJyC0FyCEQExMDJ555hn07t0bkrcvzSEiVRhgifzQli1b8OmnnyIlJQUAIIl46OSGkBBe9pVhe09E5YE7vSXJzf09VUY5JiAgS+cREXsBGRkZAIDevXvjmWeeQWxsrHcrR0ROYYAl8lM5OTmYNWsWlixZAoPBgBvTiutAQhleu8MAS0TlgbO9peKfja70tjxRBhmnC2uOQEiZAIC6devi+eefR4sWLbxbMSJyCQMskZ87c+YMpk2bhj179hh/IEKgFQ2gEQkW944tNQywRBTonOkp2fpMdLcM9tacJpAPg3QMsuYSACAyMhKPPvoo+vXrx0WaiPwYAyxRABBCYOvWrfj8889x+fJlAIAkYqGVG0CD2NKvAEMsEQUqtb0ke5+D7pbBnppTBPSQpbMIjriI3NxcSJKEvn374oknnuB0YaIAwABLFEDy8/OxcOFC/PDDD8jPzwcAaOQq0IqbSvf6WAZYIgpEjnpIaj771PSyHJXDnpoqxutcLyI2/jJSU1MBAE2aNMGYMWPQuHFjL9eOiDyFAZYoAF25cgXfffcdVq1aBeNbXIJGTiy67U6Q5w/IAEtEgcZe70jtZ15pl0EKGVdh0ByDkIy3xalWrRqefPJJdOnShasLEwUYBliiAHbixAlMnz4du3fvNv5A6KAVdaERNT1//1j2D4goUFjrGblz32tXy2EPzSEZ12HQnICQjCOuUVFRGDFiBPr374/g4GAv146ISgMDLFE5sGvXLnz11Vc4deqU8QciBFpRBxpRAxI0njkIAywRBYLivSJXP9vMy/FEGWRBRlZRcL0CANDpdBgwYACGDx+O6OhoL9eOiEoTAyxROWEwGPDnn3/i+++/R3JysvGHIhRaUQ8aUdX9IMsAS0SBwHjVhftlwM1y2DuzSiAHBukkhPYyhBCQJAm9evXCqFGjUK1aNW9Xj4jKAAMsUTlTUFCA33//HXPnzsW1a9eMPxTh0Ir60Igq7t16hyGWiMh97JmVIJAHg3QKUtClonufA506dcKjjz6KOnXqeLl2RFSWGGCJyqm8vDwsXboUP/74I65fvw4AkEQkNKKO6/eQZYAlInIfe2YK44jraWiCk6HX6wEArVu3xmOPPYZGjRp5uXZE5A0MsETlXHZ2NhYvXoxFixYhK8u4eqNxRLaO81OLGWCJiNzjTq/M/DPYz3t3AtlFI65XlBHXli1bYtSoUWjRooV3K0dEXsUAS0QAgMzMTPzyyy/4+eefkZGRYfyhCCsKstXUB1mGWCIi17nSKyv+uevHPTsZmZCl0xDaZJi6qK1bt8bw4cNxyy23eLl2ROQLGGCJyEJOTg6WLVuGRYsWIS0tzfhDEQKtqFW0arHOfgEMsERErnGmR2brs9ZPe3XG2+GcVlYVBoAOHTpg2LBhaNy4sRdrRkS+hgGWiKzKy8vDb7/9hgULFuDq1avGHwodNKIGtCIREkKt78gAS0TkPLW9MUefsX7UqxMQEEiBQXMGQkoHAEiShM6dO2PYsGG46aabvFtBIvJJDLBEZFd+fj7WrFmDhQsXIikpqeinEjRyAjSiNjSIKrkTQywRkXqOemJqP1P9pEcnYIAsXYRBOgtIOQCM93Ht3r07hg4ditq1a3u3gkTk0xhgiUgVWZaxY8cOLFiwAPv27VN+LolK0Mq1IaHijZWLGWCJiNSz1RNz5rPUD3pzAvkwSOcgS+cAqRAAEBkZiX79+mHAgAGIj4/3cg2JyB8wwBKR0w4fPoxFixZh06ZNkGUZgOkWPDWLVi7WMcQSEalRvBfm6menD/fmZGRAls5BF5qCgoICAEBCQgIeeOAB9OnTB+Hh4V6uIRH5EwZYInLZxYsX8fPPP+OPP/5AXl6e8YdCB42oBi1qQkKEdytIROTLTD0wd0/4+WBPTkCGLCVDls4p17cCQKNGjfDggw/ijjvugE7nYFFAIiIrGGCJyG2ZmZlYuXIlli5digsXLig/l0SlogWf4m5MLyYiIs/xsV6cQF7RNOELgGQcbdVqtejcuTMGDBiAZs2aQZLYHhCR6xhgichjZFnGnj178Msvv+Cvv/5S7uEHEQqtqAkNqkNCsHcrSUQUSDzVi5NcL8u4mvA1GDTnoNGlwmAwAADi4uJw77334u6770ZcXJyHKkpE5R0DLBGViosXL2LZsmX4448/kJmZWfRTCZKoDK2oDgmVOCpLROQud3pxxT+CnSxLIL9oNeELymrCANCyZUvcd9996NixI6cJE5HHMcASUanKy8vDunXrsHz5chw9evTGAyIUGlQrCrNh3qsgEZG/crUHZ+3cocqyBGQIXIVBcwEa3TVltDUsLAy9e/fGfffdhzp16rhYMSIixxhgiajMnDx5Er///jtWr15tNiprula2OiRUhgSNF2tIROQnnO29OZrw4qA8gWwYpAuQpYvKta0A0LRpU/Tt2xddu3blasJEVCYYYImozOXn52PLli34/fff8ffff994QARBg4SiW/HEcIoxEZEtanpvaj9CbZQlUFi0kvBFi5WEK1SogN69e6NPnz6oXbu2yoMQEXkGAywRedXFixfxxx9/YOXKlbh69eqNB0Q4tKIqNKgKCTyrT0SksNdzc+W8nzD/1jRF+CKEdBWA8V7fGo0Gbdq0Qd++fdG+fXte20pEXsMAS0Q+Qa/XY+/evVi9ejW2bNly476yACQRA42oCg0SuIoxEZVv1npt7kxWEaZVhNMgS5chS5cBSa88XLt2bfTq1Qu9e/dGfHy8GwciIvIMBlgi8jk5OTnYsmULVq9ejb1790KW5aJHJEgiDhqRAA3iIYEjAERUjpj32Ny8wsIYWrMg4zJk6RIg3ThpGBcXhx49eqBnz56oX78+79tKRD6FAZaIfNrVq1exbt06rF69GsePHzd7RANJVGKYJaLyQcBDoTXTeF0rki1ufRMREYHOnTujZ8+eaNGiBbRarXsHIyIqJQywROQ3Tp8+jbVr12Ljxo04d+6c2SOmMFsFGlRmmCUiKmIvtAYHB6N169bo2bMn2rdvj5CQEC/WlIhIHQZYIvI7QgicOnUKGzZswMaNG5GUlGT2qGmaceWikVleM0tE5YsxtGaYhdZc5bHg4GC0adMGXbt2Rbt27RAREeHFmhIROY8Bloj8mv0wC0gi1izMsqNGRIFJwACBa5ClFMhIAaR85bGQkBC0a9cOXbp0Qdu2bXm/ViLyawywRBQwTGF248aN2Lp1K06ePFlsgwhoEA+NqMz7zBKR3xPIh4yrkKUrEEgFJFl5LCwsDG3btkXXrl3Rpk0bhIWFebGmRESewwBLRAHr0qVL2L59O7Zt24Z//vkHBoPhxoMiqCjMxkNCRUgI8l5FiYhUMK0cLJACWUqBkK5bPF65cmV06NABHTp0QIsWLRAczEsoiCjwMMASUbmQlZWFnTt3Ytu2bdixYweysrLMHpWK7jUbBwmVICGao7NE5BMECiAjFUJKhYxUi6nBANCoUSN06NAB7du35y1viKhcYIAlonJHr9dj37592LZtG3bt2lXiulnj6Gwl42JQqAQJXJmTiMqGgAyB65ClVAhchZAyLB4PCQlBy5YtldAaHx/vpZoSEXkHAywRlXuXLl3Crl27sGvXLuzduxc5OTkWj0siChIqQSMqQEIF3qaHiDxGQADIgYxrRaH1GiDpLbapU6cO2rRpg9atW6NZs2a83Q0RlWsMsEREZvR6PQ4ePIhdu3Zh586dOH78eLEtJEgiGhIqQiMqQkIsJGi9Ulci8j/GwJoLGdcgpGuQkVZiWnBUVBRuv/12tGnTBq1ateIoKxGRGQZYIiI7UlNTsXfvXvz999/4+++/cfnyZcsNhAQJsUVhtmLR6sYa71SWiHySUAJrGmRcA6Q8i8eDgoLQpEkTtGzZEm3atEHDhg2h1fLEGBGRNQywREROuHjxIv755x/8888/+Pvvv3H16lXLDYSmaBGo2KIpx7Fc4ZioHLmxUnA6hJReNMJqGVi1Wi0aN26Mli1bomXLlmjatCmnBRMRqcQAS0TkIiEEzp8/r4zO/n97dx4cRZm4cfzpmSQkIYEgIoRDQAghAooGQUVYBBfxKl05FFkVWdcTtWS3VpdaxN/iuV54oKuW5ZYH4uIB6qpYIIgH96GskBAIoECSzUESQjIkM9O/P2amM5NkEsg1afh+qrq6p9+333lzQOWZ9+1+t27dqkOHDtWqZ5jtfUHW7CSHkiTF8ZRj4ARhyi1TJTJVLK9RLFMlte5hdTqdSk1NtQLrkCFDWJcVABqJAAsAzSQQaLdt22ZttZ5wLElmjH+EtqN/tLYjD4YCbKD6gUulMo0S/yjrYUmhf0rFxcVp0KBBGjx4sIYMGaJBgwYpPj4+In0GgBMNARYAWlBxcXFIoM3MzJTb7a5d0Wwvhzr6HxDVUYYSuZcWiDBTLv+SNqX+UdbSWqOrktSlSxcNGTLE2s444wxFRfGhFAC0BAIsALSio0ePKiMjQ9u3b1dGRoZ27NhR+8FQkv/hUIm+MGsm+kdq2/PEY6AF+EZWj8rUYZk6LK8RCKtHa9WNiYlRSkqKBg4cqEGDBmnIkCHq2rVr63caAE5SBFgAiLBDhw5ZYXbHjh3KyMhQSUlJ7Yqm4Q+xif5QG9hiWr/TgE2Z8spUuS+sGqVWaJVRVauu0+lUnz59lJaWpoEDB2rgwIGMrgJAhBFgAaCNMU1TOTk5VpjdtWuXdu3aVXeolSQz1h9kE2SYCb694hmtxUnNN6pa6X8icJlMo8wfVsskw1urvsPh0Omnn67+/ftr4MCBSktLU0pKimJjY1u/8wCAsAiwAGADpmkqPz9fu3btUlZWlrU/ePBgmAskKd4fZtsTbHHCqp7+e8QfVI9YobWu+1Ul30OW+vfvr/79+yslJUX9+/dX3759WcoGAGyAAAsANlZWVqbdu3dr165dys7O1t69e7Vnzx6VlZXVfYEVbNv7wqwZ7w+17SW1Y3kftFmmPDJVLqncNwXYKPcH1SNhg6phGOrevbv69Omjfv36WYE1OTlZDgcPSQMAOyLAAsAJxjRNFRYWWmF27969DQdbSTIdMhQvK+Ba4TZOhFu0Bl9IrZAvpB7xh1TfVtcDlQKcTqd69Oih3r17q0+fPurTp4/69u2rXr16MaoKACcYAiwAnCSCg+3+/fv166+/WvucnBx5PJ56LjYkxckIbGZsyGsphoCLBpnySKqQqQrfEjVGRchrGZX1Xt+hQwf17NnT2nr16qU+ffqoV69eionhYWYAcDIgwAIA5Ha7lZOTExJsA1t+fn794VaSTIekWBmKlaF2vmOznQzFyjd6206M4p7YTLnluxfVJVNHfceG77Xk8o2s1vGk35oSEhJCQmrw1qFDh5b+MgAAbRwBFgBQL7fbrfz8fOXm5io3N1c5OTnKycmxjgsKCuT11n6qay2mId9IbSDUxvhemzH+gBtjnZOiCLttgCmvfE/yrQzdG5XyhdWj/rDqkowGPuTwa9++vZKTk9WtW7daW3JyshISEmQY/OwBAHUjwAIAmqSqqkr5+flWmM3Pz6+1LyoqOraQG2CFXX/IVbSkaElRMkzfseF/HXrsJPjWwRdE3ZKqZKpKktvaS1UyjeBz1UE13MORwomPj9epp56qLl266NRTT7W20047zQqpiYmJzfzVAQBOJgRYAECLc7vdOnTokBVqCwoKVFxcrKKiIh06dEjFxcXWvt4HTTXENFQdZH376tdBx2b1seSQ5JDh3wdvtc8Z/k21jhsKzr7lXnxH1fvgY6+1mUHHdZ/3SPLINNzWseTxT+MNHHvkC6juYx4drYvT6VRSUpI6deqkpKQk67hTp05WUA3s4+PjG/0+AAAcCwIsAKBNqaysDAm0RUVFOnz4cMhWWlqqsrKykNcN3qfbGszgcCuFBNQ2MDAcHx+vxMREa0tISAjZBwJqcEhlSi8AoC0hwAIAbM80TVVUVOjw4cMqLy9XRUWFtQ9s4c5XVVWpqqpKlZWV1hZ4HXy+pQOyw+FQdHS0oqOjFRMTYx3XfB0TE6P4+HjFxcWFbLGxsdZxoDw2NtYKp+3bt1dUVFSLfg0AALQ0AiwAAMfA6/Ue12YYhgzDkMPhsLbA6+DzhmHI6XQSLgEAOAYEWAAAAACALTgi3QEAAAAAAI4FARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANgCARYAAAAAYAsEWAAAAACALRBgAQAAAAC2QIAFAAAAANhCVKQ7AACRYpqmXC5XpLsBAMclNjZWhmFEuhsAEBEEWAAnLZfLpUsvvTTS3QCA47Js2TLFxcVFuhsAEBFMIQYAAAAA2AIjsAAgKWb9aZLHkOEwJMNh7eUwJP9UPcPh8B0b/r3DkGH4PwcM1POfD1xT61ygzeAyVZebgescQeWB84GPHGueMwyZgdmEhv+1w/ei+rwhGbKuMf2vJfnqBNowAl9LdXs1y4PbNAN1HHWUBdcPKQs+V7MfYa4JUy7J6kO49wqpH6Yfta5RHdfXusYM6UfN9qxy1Sw3q+uoum7112haZUat+qZ1jeE/X70PtGfKMMyQX69A+74fZXW5Q75jWeclh7/cV+Zr0joXtPe1V/06eJN8bfteq7pM1e/lMLzWOV9dryTJaVS/dhihZQ7DDCo35ZTXej+n4Q26ziun/70Cx76917ou0J5Dpv9ar5whZb76TsOUIa+c/teBr833Wr7rVP1+hr8Np9VHf//k+144Zcoh+Y8Nf3uS0zDkkCGn/HsjUOaQIUNVlU5N/GM3AcDJjgALAJIvvHp9fyjKqN4HJwNDgeBandaMQKoMSUL+cv9VocnGUTtdGUHX1pWe6j2vMOWyQmvIcc29dbkR1GzNQFyzvGab8gfpMGXhultnP47lmmP4VjW2zaBvX8Oht5kDbM3yGmU1A2z1+ZrtmbXKAiG17nIz6HzwObOONs2QawIBtuYWtswKlUHBNijoWmWqLg8Ev0CZL8B6rQAYKPMFQP/eMORU4BrfsW9vhARHX1uS05C1r77Od1xnmfU6EIDNoMDsO24owNbVnkPyh2Lfa19ZoH7QzxAATmJMIQYAAAAA2AIBFgAAAABgCwRYAAAAAIAtEGABAAAAALZAgAUAAAAA2AIBFgAAAABgCwRYAAAAAIAtsA4sAEiS05Qpr2/xR0M19taCjDXWUa25zmpgM6uvCTkfpixoIVIzzOKmdZ2vPhdYXVOhr83g8766pgzJVEh7ZvA1/utqC3PODCoKWYvUCO5+PeuvGmHO17gmXHlDZfW1Wd/5wK7ea+paz7WO8lp9DLMOrGpfZ9SqX13PCF7jNejXVNa6q8G/XmHWgVXT1oE1/debNbZAmelfC9cq8/ffa5iS4a1+H/lfy//1KLTc9JeZ/vcOtC1Vv1/weUfQewWOa+59/fD9sw7ee/1fssN/7PX/ita9Dqwhh3zrywbKDP95p6rXkpUU8tphHRtB7VW35ZAhpxEoM2TIUFVlXf8GAeDkQ4AFAEmVw/8X6S60DLPGvhFq5DrAEoif3oYqtlmBhM+ENACwC/7HBgAAAADYgmGaZhM+lwcA+zJNUy6XK9LdaFYul0tXX321JGnp0qWKjY2NcI/QEvg5nzzq+lnHxsbKMJgTAeDkxBRiACctwzAUFxcX6W60mNjY2BP664MPP+eTBz9rAGAKMQAAAADAJgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAWeQgwAAAAAsAVGYAEAAAAAtkCABQAAAADYAgEWAAAAAGALBFgAAAAAgC0QYAEAAAAAtkCABQAAAADYAgEWAAAAAGALBFgAAAAAgC1ERboDAIDmUV5erkWLFumbb75Rbm6uHA6HevXqpbFjx2rixImKjo6OdBfRBC6XS1u3blVmZqZ27typnTt3Ki8vT5I0ffp0zZgxI8I9RHMpKSnR999/r02bNlk/Z4/Ho6SkJKWmpmrChAkaPXp0pLsJABFhmKZpRroTAICmyc3N1b333qvc3FxJUmxsrLxeryorKyVJKSkpmj9/vhITEyPZTTTBli1bdN9999VZRoA9sVx88cXyeDzW65iYGDmdTlVUVFjnRowYoXnz5ik2NjYSXQSAiGEKMQDYnNvt1oMPPqjc3Fx17txZzz77rL766it99dVXmjt3ruLj45WVlaV58+ZFuqtoosTERKWnp2vq1KmaO3euTjnllEh3CS3A4/EoLS1Ns2bN0qJFi7R8+XItW7ZM77//vq644gpJ0rp16/T0009HuKcA0PoYgQUAm/vss8/0j3/8Q5L08ssva/DgwSHly5cv19///ndJ0nPPPaf09PRW7yOazuPxyOl0hpybMmWKcnNzGYE9wWzevFnnnntu2PKnn35an3zyiSRp8eLF6tq1a2t1DQAijhFYALC5L7/8UpJ0zjnn1AqvkjRu3DglJyeH1IX91AyvOHHVF14lWaOwkpSZmdnS3QGANoUACwA25nK59N///leSdP7559dZxzAMjRgxQpK0YcOGVusbgJYRExNjHXu93gj2BABaHwEWAGxs37591h+wffv2DVsvUFZUVKTS0tJW6RuAlrF161br+IwzzohcRwAgAgiwAGBjBQUF1nGXLl3C1jv11FPrvAaAvRw+fFjvvPOOJOmss87S6aefHuEeAUDrIsACgI2Vl5dbx+3atQtbL3ipjeBrANiH1+vVo48+qsLCQsXExOj++++PdJcAoNURYAEAAGzghRde0A8//CBJuv/++9WvX78I9wgAWh8BFgBsLD4+3jo+evRo2Houl6vOawDYw4IFC/TRRx9JkmbOnBnyJGIAOJkQYAHAxoLvbc3Pzw9bL/i+1+BrALR9r7zyit5//31J0l133aUpU6ZEuEcAEDkEWACwsd69e8vh8P1XvmfPnrD1AmWnnHKKOnTo0Cp9A9B0L7/8st577z1J0p133qnrr78+wj0CgMgiwAKAjcXGxmrw4MGSpHXr1tVZxzRNrV+/XpJ03nnntVrfADTNggULtGjRIkm+8Dp16tQI9wgAIo8ACwA2N2HCBEnSli1btH379lrlK1eu1MGDB0PqAmjbFixYEDJtmPAKAD4EWACwuQkTJuiMM86QaZqaM2eONm3aJMm35MbKlSv11FNPSZJGjBih9PT0SHYVTXT48GEVFxdbm9frleR7gFfweZZKsrfge15nzpzJtGEACGKYpmlGuhMAgKbJycnRfffdp9zcXEm+qcVer1eVlZWSpJSUFM2fP1+JiYmR7CaaaMqUKdbPuD4TJkzQ7NmzW6FHaG55eXmaPHmyJMnhcCgpKane+tdddx2jswBOKlGR7gAAoOmSk5P1r3/9S4sWLdI333yj3NxcRUVFqW/fvho3bpwmTpyo6OjoSHcTQAMCo+qB46KionrrV1RUtHSXAKBNYQQWAAAAAGAL3AMLAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAWyDAAgAAAABsgQALAAAAALAFAiwAAAAAwBYIsAAAAAAAW4iKdAcAAACOhcvl0tatW5WZmamdO3dq586dysvLkyRNnz5dM2bMiHAPj11OTo6uu+66BuvdeOON+uMf/9gKPQIAeyDAAgAAW9ixY4f+8pe/RLobza5jx45yOp11lsXHx7dybwCgbSPAAgBs4fnnn9eHH36os88+Wy+++GKku4MISUxMVL9+/fTzzz+rqqpKCQkJKisri3S3muS1115TcnJypLsBALZAgAWAE9yRI0eUlZWljIwMZWZmKjMzUwcOHJBpmpKk999/v8X+eDZNU5MmTVJ+fr6mTZum22+/vVHtZGVlacmSJZKk2267rRl7GFnZ2dlav369tm3bpuzsbBUWFsrj8Vgh7YILLtCECROUkJAQ6a62CWeddZb+85//SJLefvttvf766yovL49wrwAArYkACwAnuHvvvVdZWVkRee+MjAzl5+dLkkaNGtXodl555RV5PB6NGDFCQ4YMaa7uRdS9996rrVu31llWVFSkoqIibdiwQe+8845mz56t4cOHt24H26DgabaTJk3S4sWLVVxcfFxtZGdn68MPP9TmzZtVUFAgh8Oh5ORkjRw5UpMnT1ZSUlLzdhoA0KwIsABwgguMtEpSQkKCUlJStG/fPhUVFbX4e3/77beSpC5duigtLa1Rbfz000/auHGjJGnatGnN1rdICwT7xMREjRo1SkOHDlX37t3Vrl075eTk6IsvvtCaNWtUVFSk2bNn65lnntHZZ58d4V63HXFxcZo4caLeeOMNSVJVVVWD1yxcuFCvvfaavF6vJCk2NlZut1vZ2dnKzs7W559/rieffFIDBgxo0b4DABqPAAsAJ7jLL79cSUlJSk1NVc+ePWUYhu69995WDbAjR46UYRiNauO9996TJCUnJ59QAa5nz5666aabNG7cOMXExISUpaamasyYMXr33Xf16quvqrKyUs8884zeeuutCPW2bRo/frwVYBuaZfDZZ5/pn//8p+Li4vT73/9el19+uTp37iyPx6Ndu3bplVde0ebNm/XXv/5Vb7/9dqs+POnhhx/W/v37VVFRoQ4dOmjAgAEaN26cxo0bp6go/lQDgGCsAwsAJ7hJkybpkksuUa9evRodIhvj119/1b59+yQ1fvpwfn6+1qxZI0m69NJLW7X/Le2pp57SZZddViu8Bps2bZpSUlIkSXv37tXu3btbq3u2kJycrOjoaElSZmZm2Hrl5eV6+eWXJUnz5s3TjTfeqM6dO0vyTUtOTU3V008/rdTUVOXn5+uzzz5r+c4H2bFjhzwej6KiolRUVKS1a9fq0Ucf1d13362CgoJW7QsAtHV8rAcAaBGrV6+W5Ju2fM455zSqjeXLl1vTPceOHXtM17jdbn399df67rvvlJGRoeLiYnk8HiUlJemMM87QsGHDdMkll1gBJmD06NGSpAkTJmj27Nn65Zdf9MEHH2jDhg0qKChQ+/btNWDAAN1www0aOnSodd3Ro0f1xRdfaNmyZdq/f79cLpe6d++u3/72t5o8ebLatWvXqK894Nxzz7VGF3/99Vf169ev0W3t3btXS5cu1Y8//qicnBy5XC4lJCQoMTFRycnJSk9P10UXXaTTTz+9Ue273W599dVXWrlypbKzs1VSUiLDMNShQwclJSUpLS1Nw4YN08iRI63gGVDz+7937159/PHH2rhxowoKClRRUaFHH3201ochcXFxqqqqUklJiTIyMjRw4MBa/frmm29UVlamlJSUsPcSR0VFady4ccrMzNSGDRs0ZcqURn0PjlVMTIyuueYajR07VgMGDLBGfH/99VctXrxYS5cu1Y4dO/TAAw/o1VdfZSQWAPz43xAA0CIC04cvuOCCRv/x/cMPP0jy3Sfau3fvBuvv2rVLDz30kPbv31+rLD8/X/n5+Vq3bp12796t2bNnh21n1apVeuyxx+RyuaxzR48e1dq1a7Vu3Tr9+c9/1lVXXaWCggLNnj1bGRkZIdfv2bNHr732mtauXatnnnmmSSHW7XZbxw5H4ydOLV26VPPnz5fH4wk5X1JSopKSEu3fv18bNmzQ7t27NWfOnONuv7i4WH/605/qnMob+N5nZWXpk08+0cKFC9WzZ8+wbX3xxRd65plnVFlZ2eD7BgfhH374oc4Au23bNknSvn37dM0114Rt6+jRo5Kk3NzckPM5OTm67rrrGuxLODfccIPuuOOOkHOdO3fWrFmzatXt1auXZs2apR49emjBggXKysrSsmXLdMUVVzT6/QHgREKABQA0u4KCAu3YsUNS46cPV1ZW6ueff5YkpaWlNTh9OCsrSzNnzlRFRYUk6ZxzztH48ePVu3dvRUdHq7CwUNu3b7dGhsPZvXu3vv76a3Xq1Em33Xab9d6bNm3S22+/LZfLpeeee05Dhw7VI488ol27dumaa67RRRddpKSkJB04cEBvvfWWdu/erZ9++kkLFy7ULbfc0qjvgSRt3rzZOu7bt2+j2sjOzrbCa4cOHXTVVVdp6NChSkpKksfjUWFhoTIzM7V27dpGT9OeP3++FV7T09M1fvx4JScnq3379jpy5Ij27dunH3/80ZoSHk5mZqaWL1+uDh06aPLkyRoyZIiio6O1d+9edevWrVb94A9HNm/erBkzZtSqE5iGW1lZeUz3fgeCbCRNnjxZH3zwgfLy8vTtt98SYAHAjwALAGh23333nUzTVExMjEaMGNGoNnbv3m2NPqamptZb1+1266GHHrLC63333aeJEyfWqnfhhRfq1ltvVV5eXti2srKylJKSovnz5ysxMdE6f+aZZ6pnz56aO3eu3G63Zs6cqdLSUj311FMaNmyYVW/AgAE677zzdNNNN6mgoEBLlizRTTfdFLIEzLFavXq19uzZI8kX4nv16nXcbUjSypUrrZHX5557zrqvNtioUaN06623qqSk5LjbP3r0qPXBwKhRo/TII4/UCsJDhw7V1VdfrYqKinpHkvfs2aOePXvqpZde0imnnGKdD/cU6+D32blzp7xeb632g6ehP/zww8f1tUlS165d9cknnxz3dQGxsbHHfY3D4VBaWpry8vKUk5PT6PcGgBMNARYA0OwC04eHDRumuLi4RrURPA04OMjUZfny5Tpw4IAk31OX6wqvwbp27Vpv+YMPPhgSXgPGjBmjLl26KD8/X4cOHdLkyZNDwmtAQkKCLrvsMr399ts6dOiQ9u7de9z3rhYUFOjZZ5+V5Atpd95553FdHyww6hhYRqk+HTt2PO72Dx8+bH3YMHTo0HpHcY/l92HWrFkN/szr4nK5VFBQoNNOOy3kfKCt+j64qI/D4WB9WABoI3gKMQCgWZWVlWnLli2SGj99WJIKCwut4w4dOtRbNxCYJWnq1KmNfk/JN003XMgzDCOkbPz48WHbCa538ODB4+qDy+XS7NmzreBZ88FRx6tLly6SfD+blStXNrqdcDp27Gg9TXnFihUqLy9vdFtdunSp80OBYxX8exMwZMgQSb7pyXZ5qq/X67Wm4ScnJ0e4NwDQdhBgAQDNas2aNXK73XI6nRo5cmSj2wm+D7Gu0dBgO3fulOQbaTuWhz3Vp6Hrg/tS39N6g+sdT6CrqqrS3/72N+vBUBdddJFuvfXWY76+LuPHj7ceJDV37lzdfffdevfdd/XTTz9Z066bIjo6WhMmTJAkbd++XVOmTNFTTz2lFStWHHd4b8pTliWFPHgrYMyYMUpISJDb7daCBQtkmmbY671erw4fPtykPhyL+vogybr/VfL9DgAAfJhCDABoVoHR0MGDBzdp2mXwPaMNPY22uLhYUvVIY1M0dL9i8PTY+qbDBt+HGbgHsyFut1tz5szR+vXrJUnDhw/Xww8/3Kj7Z4N1795dTzzxhB577DHl5+dr27Zt1pN5nU6nBg4cqNGjR+vKK69s8MOCcO655x5VVlZq2bJlKi0t1aeffqpPP/1Uku+DheHDh+vyyy9vcCS5odH2w4cPhzxJueb31uVyqbi4WDExMdbSNImJibrnnnv0+OOPa8WKFSorK9Mtt9yigQMHyuFwyOv16pdfftHatWv12Wef6aabbqp3dL053HPPPTrvvPN04YUXqm/fvtbDqA4cOKAPPvhAH330kSRfoA98OAAAIMACAJpRZWWl1q1bJ6lp04cl3/2aAaWlpU1qyw7cbrfmzp1rLR00bNgwPfroo9bU3KZKT0/Xe++9p++//17r1q3TTz/9pP3798vj8ejnn3/Wzz//rHfffVcPPfRQ2LVS69OuXTvNnj1bN954o77++mtt2bJFO3bsUEVFhYqKivTll1/qyy+/1OjRozVnzpywSws1tFTQH/7wh1rL3AR74IEHJFWvJxtw2WWXqbKyUi+88ILWrVundevWKSYmRnFxcTpy5EjIckWt4X//+5/eeOMNvfHGG3I6nWrfvr2qqqpCRsTPPPNMPfLII6wBCwBB+B8RANBsNm7caP0B3tQAG7xkSkMBNikpSXl5eba5v7GmQHgNjF6fe+65evzxx5u0fmxdYmJidPHFF+viiy+W5Bu53rRpk5YtW6a1a9eqtLRUc+bM0cKFC9W5c+dGvUevXr1088036+abb5bH41FWVpZ++OEHLV26VIcOHdLq1av1+uuva+bMmc35pR2Tq6++WsOHD9fHH3+sjRs3KicnR2VlZYqPj1ePHj00aNAgjRw5Uueee26L9+Wuu+7Spk2blJGRocLCQut3vGvXrhowYIDGjh2rMWPGNHn0HQBONARYAECzCQSwlJSUJj94JnjN019++aXeuqmpqcrLy1NhYaF++eWXeu9NbWtqhtdzzjlHTzzxRLOH17okJSVp3LhxGjdunJ599lktWbJEFRUV+u6773T11Vc3uf3A9OSBAwfqsssu08033yyXy6Xly5c3OsD++9//rnVu6tSpOnDggJKTk/X+++/Xe31ycrLuuuuuRr13cxozZozGjBkT6W4AgO3wECcAQLPwer36/vvvJTXPQ2e6du2qU089VZKsp7GGM3r0aOt44cKFTX7v1uJ2u/Xwww9b4XXo0KF68sknG7VuaFMFTxsO3FPcnJKTk611bBuz1mw4xcXF1hJKgwYNarZ2AQBtEwEWANAstm3bZgWf4EDZFIFQtW/fPh05ciRsvbFjx1rh6PPPP9eHH35Yb7uNXQ+0Obndbv3973/X6tWrJbVseP3mm28aDKWBe5clqUePHsfV/sGDB7Vx48Z66+Tk5Gjfvn2SfA+Vai7bt2+3js8///xmaxcA0DYxhRgATnD79++3njgbEFhfVJJWrVoV8rTguLi4Rk1tDIwidu/evclLoQRcfPHF+vzzz+X1erVx40b95je/qbNeVFSU/u///k933323Kioq9Pzzz2v16tW69NJL1bt3b0VHR6uwsFAZGRlatWqVUlNTQx7wEwnz5s3TqlWrJPkC4x133KGcnJx6r+nUqZM6dep03O/14Ycfat68eUpPT1d6err69Omjjh07qqqqSnl5eVq+fLk1et6tW7fjXv4oLy9Ps2bNUvfu3TVy5EilpaWpa9euateunUpKSrR9+3YtWbLEepr0xIkTj/trCGfDhg2SfPf3XnDBBc3WLgCgbSLAAsAJbtu2bXr88cfDlr/yyishr7t169akANuca1YOGzZMXbp0UX5+vpYtWxY2wEpS//799eKLL+qhhx7SwYMHtWXLFm3ZsqXOuqmpqc3Wx8ZauXKldXzgwAHdcccdDV4zffp0zZgxo1HvV1lZqTVr1mjNmjVh6/To0UOPP/54vcsD1efgwYNavHhx2HKHw6GpU6fqd7/7XaPar8ntdmvFihWSfKP+jV0CCABgHwRYAECT7dq1yxo9bOrTh4M5nU5de+21evXVV7V27VoVFxfXu7bsgAED9M4772jZsmX69ttvlZWVZd1v2alTJ/Xr10/nnXeeLrnkkmbrox3MnTtX69ev148//qjs7GwVFRVZU4o7duyo/v37a9SoURo/fnyjlu0566yz9NJLL2njxo3avn278vLydOjQIR05ckSxsbHq3r27zjrrLF155ZXNNjovyfqdkKRJkyY1W7sAgLbLME3TjHQnAAD29uabb+rNN99Up06d9PHHHze4lufxKCsr0/XXX6/S0lLdfvvtmjZtWrO1DXt74IEHtGbNGqWnp+u5556LdHcAAK2AhzgBAJosMH34wgsvbNbwKkkJCQlWaF20aJHKy8ubtX3Y0/bt27VmzRoZhqHbbrst0t0BALQSAiwAoEmqqqo0atQoTZ8+Xddee22LvMfEiRPVs2dPlZSU1LkOKE4+r7/+uiTp0ksvVVpaWoR7AwBoLUwhBgDYwo4dO7RmzRolJCRoypQpke4OIqisrEyLFy+WaZq69tpr670vGgBwYiHAAgAAAABsgSnEAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsAUCLAAAAADAFgiwAAAAAABbIMACAAAAAGyBAAsAAAAAsIX/B/pP1gUy27J2AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADHAklEQVR4nOzdd5gT1cIG8HeSbLYXYJdelyqgggKCIkWaigoKgoqCyhUvKoJ4r/XaUVERFbsI0hRQED4LiAJK701AemeBpW2vKef7I2SY7KZMMrO7Sfb9Pc8+LJvJmZPsZs5555w5IwkhBIiIiIiIiIiCnKGiK0BERERERESkBgMsERERERERhQQGWCIiIiIiIgoJDLBEREREREQUEhhgiYiIiIiIKCQwwBIREREREVFIYIAlIiIiIiKikMAAS0RERERERCGBAZaIiIiIiIhCAgMsERERERERhQQGWCIiIiIiIgoJDLBEREREREQUEhhgiYiIiIiIKCQwwBIREREREVFI0CXAHj16FJIkQZIkPPjgg3oUWSl169ZNfh+JiDx58MEH5WPF0aNHK7o6smnTpsn1mjZtWkVXh3SWm5uLunXrQpIkvP/++xVdHQoRf/31l3xcePXVVyu6OkRBI5z7/ePGjYMkSUhNTUVhYaHu5ZfbCOy0adPw6quvVqqD18KFC+XXnJmZWdHVoUusViuWLl2K5557DjfddBNq1aqFyMhIxMXFoXHjxrjnnnuwcOFC2Gw2v8rdtWsXRo0ahRYtWiAuLg6JiYm48sor8dxzz+HYsWNl9GqIqDJauXIlhg8fjlatWiEhIQERERGoWrUq2rVrhzFjxuDvv//WfZ/jxo1DWloaatSogZEjR7rdZuvWrfjss8/w8MMPo3379mjYsCHi4uIQFRWFWrVqoUePHhg/fjzOnDmjer9nzpzBK6+8go4dO6JatWqIjIxE3bp10adPH0ydOhVWq1V1WRkZGZg4cSJ69uyJmjVrIjIyEjExMahfvz5uv/12TJkyRVVn6/Tp0/j555/x6quv4rbbbkOtWrXkjmjDhg1V1ycQv/32GwYPHowGDRogKioK1atXxw033IAPPvgAeXl5Xp+rDJP+fJX1ayprt99+u/xapkyZ4vfzjx8/DqPRCEmSULVqVc0d8qysLHz66afo3bs36tevj6ioKFSrVg0tW7bEvffei8mTJ+PixYtun5uRkYH/+7//w//+9z/cfPPNaNmyJapXr46IiAgkJiaiVatWePDBB/Hbb7/5Vae8vDxMnDgRN9xwA6pXr46oqCg0aNAAgwcPxpIlS/wqa9WqVXjwwQfRtGlTxMXFIS4uDs2aNcOIESOwYcMGv8ryRjmApubLWwZRhkl/vkL5ZO2WLVvk19GgQQMIIfwu41//+pdcxjvvvCP//Mknn0SVKlVw5MgRvPfee3pW20Ho4MiRIwKAACCGDRvmdpuuXbvK21QWw4YNk1/zkSNHfG5fGd+j8rZ8+XJRtWpV+X329tW+fXtx8OBBVeW+9957IiIiwmNZ8fHxYvbs2WX86qiy8PfYUl6++eYbuV7ffPNNRVcnLOXn54tBgwb5PH4ZDAYxevRoYbPZdNnvyZMnRVRUlAAgJk6c6HG7GjVqqDq+xsXFiS+//NLnfmfMmCFiYmK8ltW2bVtx6NAhn2UtXrxYpKSk+Kxbo0aNxJYtWzyW89NPP3l9foMGDXzWJRCFhYXinnvu8brvxo0bix07dngs488//1T1+yn51b1794DrrdznK6+8EnA5WsyfP1+uQ+fOnf1+/uuvvy4//7HHHtNUlzlz5qj6nCxYsMDt8z///HPVv7cuXbqI06dP+6zT1q1bRWpqqteyhgwZIoqKiryWk5ub6/NvVJIk3Y5Nyvyh5svb35+yD+7P14oVKwKufzD0+6+88kq5DkuXLvXruXl5eSI+Pl4AEEajUZw6dcrlcefnJj4+Xpw7d07PagsTdNCwYcOAUju5+uuvvyq6CmEvLS1NPqtZtWpV9OzZEx07dkStWrVgsViwceNGzJgxA9nZ2di0aRO6d++OjRs3ombNmh7L/OKLL/Df//4XABAREYEHHngAXbt2hcViwZIlSzBv3jzk5OTggQceQFJSEm6++eZyea0UvqZNmxbSZ30pcPfddx8WLlwIADAajRg8eDCuu+46VK9eHadOncKyZcuwaNEi2O12fPTRRzCbzXj33Xc17/ftt99GYWEhqlSpgn//+99et01OTkbHjh1x9dVXo1GjRkhMTERxcTEOHjyIhQsXYtu2bcjNzcWjjz4Kk8mEhx9+2G05M2fOxNChQ+X/9+7dG/369UNKSgpOnDiB2bNnY/Pmzdi2bRt69+6NdevWISUlxW1ZGzduRL9+/VBcXAwAaNy4MR544AE0atQIVqsVBw4cwNSpU3H27FkcOXIEPXv2xM6dO1GnTp1SZZWcnRMREYHWrVtj27ZtXt8XrYYNG4a5c+cCAKpVq4YRI0bgyiuvxPnz5zFr1ixs3LgRhw4dws0334wNGzagXr16pcpo3bo1FixYoGp/o0aNwsmTJwEADz30kH4vpALcfvvtSE5Oxvnz57F69WocOnQIjRs3Vv386dOny99reS8+/vhjPPnkkwAAs9mM/v37o3PnzqhRowasViuOHj2KNWvWYNmyZV7LMRgMuPrqq9G+fXs0b94cNWvWhNlsxvnz57Fx40bMnTsX+fn5WLlyJbp3744tW7YgJibGbVnHjh3DLbfcgvT0dABAhw4dcP/99yM5ORk7d+7EV199hQsXLuDbb7+FJEmYOXOm23JsNhsGDBggj9bGxsbioYcewnXXXQeDwYBt27ZhypQpyMjIwEcffQQhBD766KNA38pSunfvLr+3nrRo0cLjY+PGjcP58+d97mfNmjWYMGECAMdx5MYbb/SvokHmoYcewtixYwE4+hY9evRQ/dz58+cjJycHAHDzzTejVq1aLo+PHj0a77zzDnJycjBhwgSMHz9ev4rrGoe9CIazDOUtWEdJKrOZM2eKK6+8Unz33XeisLDQ7TYnT54UrVq1kn93Q4cO9VjeqVOn5NEBk8kk/vjjj1LbKEel6tWrJwoKCnR7PUTBhCOwZWvlypXy+5uQkCC2bdvmdrvFixcLo9EoH5e0nvm+cOGCfJwbMWKE12137dol7Ha7123eeust+XUkJSW5PRafPXtWxMXFydt9/vnnpbax2+1izJgx8jYPPfSQx33edNNNLttZLJZS2+Tl5YmePXvK240ePdptWWvWrBGPPPKI+OKLL8SmTZvkUSnn88piBHbhwoVy+fXr1xfHjh1zedxms4mHHnpI3mbgwIGa9rdnzx6Xv7W8vLyAywqGEVghhBg9erRcj5deekn185Sfu9atWwe8/z/++EMup127dl77hTk5OeLixYtuH0tLSxMXLlzwuq9jx46JJk2ayPsbP368x2379+8vb/fwww+XGhk9evSoqF+/vrzNL7/84raczz77TN6mbt264sCBA6W2OXXqlGjRooUuo5dCqJsBqrfBgwfL+xw3bpymsoIhG509e1aeQRgTEyOys7NVP1d5XJ03b57bbe677z4BQFSpUkXk5ubqVW3BAFuGGGCDT0ZGhs/OlRBC7Ny5U/7dRUdHe2y8lZ2n//73vx7Lu/vuu+XtPvnkk4DrTxTMGGDL1osvvqjqeCOEEAMGDJC3/emnnzTt94MPPpDLWrlypaaynK666iq5zGXLlpV6fPz48fLjAwYM8FiOzWaTp8AZDAaxf//+UtsUFha6BPrMzEyP5SmP/ddcc41fr6ksA2ybNm3k8n/99Ve32+Tn57sEjZ07dwa8v//+979yOY888kjA5QgRPAF2+/btLr8jNX0BIYR4+OGH5ee9//77Ae27sLBQNGjQQD4BkZWVFVA5/vjxxx/let94441ut1G+J/Xr1/d4gv3XX391Cd/uKIPpzz//7LFeGzZskLcLZDq3UnkH2IsXL4rIyEj5eHPixAlN5QVLNlKexJgyZYqq5xw7dkxIkiQAiGrVqnmcXq7825k8ebJudS7zVYidF0WvWLFC/pk/F1bb7XZ8//33GDx4MBo1aoSYmBjEx8ejRYsWGDlyJHbu3Om1bq+++qq8D+cU3WXLluHee+9Fo0aNEBUVVWolT6vViiVLluDpp59G586dUb16dZjNZsTHx6NZs2Z48MEHsXLlSo/7dK4Qqpxy0qhRo1Kv2dN7pWY1sg0bNmDEiBFo3rw54uPjERsbi8aNG2PYsGFYvny5z+c799OtWzcAjov3J0yYgHbt2qFKlSqIjY1Fq1at8PzzzyMjI8NneaEiKSlJ1fvbunVreapJQUEBDh48WGobIQR++OEHAI73c9SoUR7LU05rcU4BKy/r1q3DyJEj0bJlSyQlJSEqKgr169fH4MGD8euvv3p9rrvVI48fP46nn34aLVq0QGxsLJKSknD99dfjs88+U72YSm5uLj788EP06tULtWvXRmRkJKpWrYr27dvj5Zdfxrlz57w+v+RnxWazYdq0aejVqxfq1KkDk8nkdtGR9PR0PPPMM2jZsiViY2NRtWpVdOjQAe+//z7y8/MBOC6JcLdoyW+//Sbv09c0Jacnn3xSfs7ixYtVPUcNX6sQl9Xv7ZdffsHtt9+OmjVrIioqCg0bNsSQIUOwbt06v19DcXExpkyZgjvuuAP16tVDVFQUkpKScNVVV+Hpp5/2uLryvn37EBsbC0mSkJiYiCNHjnjcR0ZGBurXrw9JkmA0Gr0et0PB2bNn5e+bNm3qddtmzZrJ3/ta2McX55TB+vXro3PnzprKcmrZsqX8vbsFnZTt2AMPPOCxHIPBgCFDhgBw9BfmzJlTapsLFy7I036rV6+OxMREj+Xp+b7p5cCBA9i+fTsAx+/91ltvdbtddHQ0HnnkEfn/33//fUD7s9lsLtNEPU3x1ptzWq8kSTAYDPjggw/cbvfbb7/JCwTFx8cjJiYGjRs3xoMPPojVq1d7LP/qq69G27ZtATimzf75558+65Sfny+38yaTCffff38Ar8zxu3Au5vjGG28gISEhoHL84eszBrj2R0aMGIGoqCi3291yyy1o0qQJAGDz5s04fPiwy+OnT5/G3r17ATguz+rbt6/HenXo0EHuX61ZswbHjx9X8WqCw3fffYeioiIAQK9evVC3bt1y2a8yy7Ru3RppaWmltjl//jzefPNN3HjjjfKU8pSUFNx444149913kZub67F85bR4tZcnTZ8+Xb58dMiQITCbzW636927t3xph6fp5wHRIwV7OwOi9qJod2flDh486HLW0d2XwWDwOhXklVdekbddvny5ePzxx92Woxwh7datm6o6Dxs2zO0ZB+XIq6/ne3qvPLFYLOKRRx7xWfagQYNEfn6+x3Kc23Xt2lUcOnRItGzZ0mNZDRo0qJQjyO3bt5ffg/Xr15d6XHmm3te0IpvNJhISEuS/WX+maAQqNzfXZaqLp6++fft6rE/JM+eLFy8WSUlJHsvq1auXx6nZTosWLRLVq1f3Wqf4+Hjxf//3fx7LUH5WLly4IDp37uz271Zp+fLlokqVKh73eeWVV4rjx4/LZ8lLPt9ms4lGjRoJwDEVxtdU8IKCAnl/9evX120xHSF8z+7Q+/dmtVq9HtcMBoN45513VI/Abtq0SX4vPX2ZzWbxxRdfuH3+V199JW/XqVMnYbVa3W43cOBAebsXX3zR63saCv73v//Jr8fXCKzytW/fvj3gfR4/flwux9vlFP5SHl/djcAq26Q9e/Z4LUs50tSxY8dSjxcUFAiTySQAiIiICK8jsLt27ZLL6t+/v1+vydOxR6uPP/5YLvuJJ57wuu2mTZvkbdu3bx/Q/pSLVLVs2TKgMpTUjMBu3bpVXtjIZDKJmTNnltrm7NmzLlMWPX0NHz5cFBcXu93PpEmT/Pp7njFjhrx9v379/HnZLrp37y4AiMjISK99Mz0pR748jcBee+218jabN2/2Wp6y//zpp5+6PLZx40b5seuuu85n3e644w55e0/HeTXKewT2mmuukfc3d+5czeX56vfbbDbx73//W97m+uuvdzu1/JtvvpEXU/L0VaNGDbF27Vq3+7FYLPLnT5IkVYviNW7cWC7b0+UsTnfeeafcVzh//rzPstUo8wC7atUqsWDBApdrChcsWFDqq2QDdfDgQZGcnCw/p3PnzmL8+PFi9uzZYtasWeKpp55y6Yx6OigqA+wtt9wiAIiaNWuK5557TsyaNUtMmzZNPPbYYy4rZ1133XUiLi5O9OvXT7z++utixowZ4vvvvxcfffSRGDFihIiNjZXLdHeNzJYtW8SCBQvkAxYA8eWXX5Z6zSVXOVQTYJWru0VFRYlHH31UTJ8+XcyaNUuMGTPG5Q+4T58+HqfIOLdp27ataNGihZAkSfTr1098/vnnYu7cueLtt992mYrk6eAXroqKilw6/O5W8Zs9e7ZfB07l73fDhg1lUOvLCgsLRceOHeX9NW7cWLzwwgti5syZYs6cOWLcuHGiWbNm8uM33XST24Cl7Hj069dPxMTEiOjoaPHoo4+KadOmidmzZ4unn37a5TPh7YTSvHnz5Kl8ERERYsCAAeLjjz8W33//vfj666/FkCFD5GsxDAaD246tEK7vpfNzffXVV4vx48eLOXPmiK+++sqlo7d7926XlUzbtm0r3n//fTF37lwxadIkccMNN8hhqE6dOh47ocpr92bNmuX1dzBz5kx529dee83rtv7yJ8Dq8Xt77LHH5O3MZrN45JFHxPTp08XMmTPFqFGj5PdWOQ3JU4Bdu3atvL0kSeLmm28WEydOFHPnzhXTpk0Tjz76qMvvylM5yimy7ur+9ddfu4Qad9c8hhplOFF7DWy3bt007XPKlCnyPvW6/EG5imqNGjXcnjy54oor5G38CbDx8fFu272+ffvK2zz88MMer4Ht1auX/Lf5559/+vW6nOXrHWAfffRRn58HJ4vFIv/uY2NjVU+TVXJ2NgGI9957L8BaX+YrwC5fvlw+wRsTEyMWLVpUapsLFy64dJivvvpq8dprr4lvv/1WzJ49W7z44ovysdtbm3z+/HlhNpvl9ycnJ8dr3ZWBeeHChYG8fFFcXCyio6MFAHHttdcKIYTYt2+feOyxx0Tjxo1FZGSkqFq1qujQoYN49dVXfV7fqsbZs2ddVpf94IMPSm1js9nkeplMJp/HSOUJypEjR7o8ppwW7G+Affzxx/16bUrK/JGamiratWsnEhMThdlsFrVq1RK9evUS7733nteTVmrt2LFD3lfVqlV9nqxXw1u/v7Cw0KWdu/XWW91ezvbhhx/K28TExIihQ4eKL774Qvzwww/i888/F/369ZOn+sbExIjdu3e7rcvTTz8tl/Pyyy97rbfyuvA2bdr4fJ3vvPOOvP2cOXN8bq9GUN5Gx2azyWc5IiMjxffff+92uzNnzsgjtAaDQezatavUNsoACziCsK9rD5YuXer1DNn58+flER+DwSAOHz7sdju9b6MzZ84cl0bf3R/h0aNHXUY2PHU4lO+J2Wx2e73C+fPnXcrSErry8vLcnrgI5Mvb7Q30ogwfnq6Deu2117w2yiUNHTpU3t7d2WU9lbw2113DVFxc7FInd4uklLzlQv369d1eY7ZhwwZ5hKNKlSpuD+zHjx+XOyn169cXf//9t9u6b9iwQSQmJgrAsRCEuzPpJWd2jBkzxusIp3KE9rHHHnO7bcljhbtO6JkzZ+SA3bVrV4/7E0KILl26CMCxtLzW62RK8ifAav29KRuqpKQkt2fp9+7dK2rWrOmyT3cd7ezsbFGvXj25rL/++svt6ztw4IB8Ai02NtbtIkQXL14UdevWld/jVatWyY/t27dPDucJCQmqziZ7s2fPHt2OX1oXVFJ+to1Go7jvvvvEpEmTxJw5c8TEiRNdglrnzp1Fenq6pv2NGDFCLm/Tpk1+PXfFihXy654zZ44YP368y2cxOjrabVgRQricAPY2G0MI1+tlAYiTJ0+W2mb//v0uMz8aN24sXn31VTFjxgwxdepU8dxzz8kjEJGRkWLq1Kl+vVYhyi7AKt8LNaFaefLZ32OPckEXk8kkzpw5E2CtL/MWYOfNmydfU1i1alWPI0TOk2OSJIkPP/zQ7TY5OTmid+/e8r4WL17sdjvl7ARvv+ejR4/KHf/q1asHfBJs27Zt8v769+8vZsyYIQdHd19JSUliyZIlqspOT0+XP2Pz588XX3/9tRg5cqTLCfjevXu7bUePHTvm19/s8uXL5e179OjhsayqVav6PHGivF62Z8+eql6rO2pvo5OYmKh5xFS5CNioUaM0leXkqd+flZXl8rl/4IEH3P79bdq0SW7D27RpU2pxN6eff/5Z/lx7OsGgnH3SsGFDr79D5YJxH330kc/X+ddff8nbP/XUUz63VyMoA6zyfl2TJk3yuu2+ffvks43uFhpQdkpjY2NFWlqaqtfky6FDh+Ry33jjDbfb6B1g27ZtKz/uqdEXwtEpdR50GzRo4HZ6nfKD/frrr3ssa/Lkyaq288Xfe3V5+yrraSIXL14UtWrVkvf3ww8/uN3uqaeekrf5+OOPfZbr7/aBOnXqlHyG+a677vK6bXFxsXzvt6ZNm5Z6vGQQ8raAy5AhQ7xuN2rUKLnT7Wu6iXLU59tvvy31uPKzcu2113oNr8pRq9atW3ucblqyXE8NunJBLnehUAjHccm5Td++fb2+1kD4G2C1/N769esnPz5t2jSP5fzyyy8u+3QXYN9//335cV8LCy1btkze9s0333S7zV9//SUMBoP8+8rIyBDFxcUu0+L0OFlU8uSGli9/R/Xc+fDDD73ezzQ1NVXMnj3b4zRKf1x//fVyuf5e+nDddde5rZ/RaBR9+vQRW7du9fhc5XRpbyvqKhdxcn65O5kthCOQ9OzZU24f3X2NHDnS7eqpavg6dgRK2farWZjJ3+2VJk6cKD9Xy5RZJU8B9osvvpA/v3Xq1PE4MrRlyxb5+WPHjvW6r4sXL8onQHv16uV2G+XU2i5dungsS3mS2td+vVm8eLFcTuPGjV1mR3zyySdi7ty54p133nGZqRgREeH20iVvZZf8qlOnjnj99dc9tnnKEUXnyLA3vrZ3nlAEPK9ULIRrmwx4XhRKDWffsnXr1mLMmDFi8uTJ4ocffhBTp04Vo0ePLnW/3UBOTAnh6CspZ4X66sOo5a7fn56e7vIZHjt2rMcwefvttwvAMfPE3Yk7pZdeekkuc82aNW63UV7asXz5crfbKO/9ajabVU0JTk9Pl8stefIjUEEZYJ1n2hISElTdcqRTp04eGw1lx0PP63eEEPKIw2233eb2cT0DrPI9vvLKK32W1aNHD3l7dyOnyo6Ep6XahXAN6vfcc4/P/XoSKgHWarW6nMH1Fj6U1yKrWVnthRdekLd/66239Ky2C+V0Ek9ns5Wef/55j3+nyo5H27ZtvZajDJ0lr2mx2+2iatWqAnCcDfYlNzdXPqvo7vet/Kz4apCUHWF3o8xKyqmInjqhymD1zDPPuN1GuYKnr9GjQPgTYLX83goLC+WTITVq1PAa/oVwnfbpLsA6Z8w0a9bM52sUQojatWsLwPtot/JzNXjwYPHMM8/I/x8yZIiq/fgSbAE2Ly9PfP31116va7766qs1rz4shJCnZUZERPj9XE8BNjU1Vbz//vteOz6HDh2SjwHejrH/+c9/SpXv7bj3999/u5yUKfkVGxsrHnnkkYDWKfB17AhU06ZN5bLVhGvlSQc1bYCS8mSAXscudwFWGQ6bN2/uceRIiMuzDiRJUjUIce+99wrAMZLublaJ1WqVjy2SJLmdRWe3212mLGtZ0Vl5uZHzy91tbSwWi8sJxSuuuMLnSKanACtJkhgyZIjHECKE43ZQzu1vuOEGn69j//798vbujuHK32m9evXcznw5c+ZMqTVX1LYH7mRnZ3s9EZafn+8yWmg2mz3OmvRm3rx5qttUf5Ts9x86dMjl9kdvv/22x+devHhRPgHk6/ZmQrieWPc0a1B5KyRPfe3p06fL23hbIV6puLhYfk6TJk1UPccXE4LQqlWrAAC1atXCb7/95nN7o9EIwLGqXEFBAaKjo91u58/NhrOzs/Htt99i0aJF2LlzJ86fP+9xRULnjb7L0saNG+Xve/fu7XP73r17yzfC3rBhAzp06OB2u2bNmqFKlSoey1HexF3LasQNGzaUVysLZqNHj8bvv/8OwLHiptrV2IKJ8/MDOP42Fy5c6HV75e91z549blfvBYCOHTt6Lcfb38ru3btx8eJFAEB8fLzPOgFAXFwcMjMzsWfPHq/b+fpcb968Wf6+e/fuXrd1rsrtTffu3dGsWTPs378f06dPx7hx4xARESE/brFY5BXIa9eu7XU1xvKg5fe2Y8cOFBcXAwC6du0qH2s96dGjh8ffV1ZWFv7++28AQI0aNVT/DQDw+jfw2muvYdmyZdiwYYPLipqNGjXCZ5995nMfarz66qseV8ovb5s3b0b//v2RlpaGNm3a4OWXX8aNN96IxMREnD59Gr/88gteffVV7NixA/3798cnn3yCkSNHBrw/5+fWWzvhyfr16+Xv8/LysG/fPvzwww/46KOP8PTTT+ODDz7AwoULce2115Z6bmpqKl588UW89tprAIBHHnkE8+fPxx133IHk5GSkpaVh9uzZ2LhxI1JSUlBYWIicnBwAjpWJS7JarRgzZgw+/fRTmEwmPPPMMxg6dCiaNGkCi8WC7du3Y+LEiViwYAEmT56MjRs34vfff0f16tX9ft2havPmzfKdHWrWrOlxtWMt7HY7nnjiCXz66acAgPbt22PRokVITk72+Bxnm5aUlOTSF/LEuUpsUVERDh8+jCuuuMLlcaPRiKFDh2L8+PEQQmD69OmlPt+rVq3CoUOHAADt2rVD69atVb/Gkux2u8v/e/bsiWeffbbUdiaTCZMnT8aKFStw8uRJ7NmzB3/88YfXPt/NN98s962sVivOnj2L1atXY+LEifj222/x7bff4oknnsAHH3wAk6lsu/xjx47F999/j927d+PEiRNo06YNHnroIXTo0AEGgwHbt2/H119/jYsXLyI1NVVeydjd51Wt+Ph4eWVpd6KjozFlyhScOnUKS5YsQXFxMd599118/vnnfu3nm2++kb8vq1W5d+zYgZtvvhlnzpyB0WjEV1995XVfa9askf+2jEajzzbVYrHI33tqU++9916MHTsWhYWFmDdvHj755BO5HXZS9ouVqxd7ExERgfj4eOTk5Oh3ZxM9UrCeI7A5OTmazm6XPDunPHPubdqt0vLly0tdz+XtKzU11W05eo7AKkfVvvzyS59lLViwQN7++eefL/W48zE1izM5t/V1zV+oU47k1KhRQ+zbt8/r9sE6hVg5fdLfr5LTdZVnzn3d+N3bdU4///xzwHVyN7VZ+VnxtaKj8n6TaqZUOke1vI2iTJgwQS5z/vz5Lo8pz9SW1cq3/ozAavm9KY8jL7zwgs96KY9TJUdglat2+/vla/Tv0KFDLgvYmUwmsW7dOp/1DTU7duyQr527/vrrPc5QOnTokKhWrZoAHLNstKxC7DzD37hx44DLKGnr1q3y7yspKcnjqJrdbhfPP/+81ym/NWrUEOvXr3dZ1NHdsfu+++6TH/c2sqg8TnubuuyO83mhOoV45MiR8vN8rXLtD+Uxxjm9F3Bc++hrESUhhPy3HMiXp6mSe/fulbdp1KhRqZFO5ajdZ599Vur5S5Ys8Xqtu5JyVWcAHtd1cVLOivI0y8cXm83mssaFu9+n3lOIhRDixIkTol27dl5/JzfffLPLmi6dOnUK6DX6Y926dfL+6tWr59dzT506JU/7joyM9Dpr0V/KvozzsxEZGalqwTDl6uT+fnmaXi/E5RkM7tpx5XXhtWrV8jkrS8k5mycmJkb1c7zR5T6wesrKytL0fOdogTueRmaVDhw4gL59+8r3zGrevLl81nb27NlYsGCB/OW8r5Hz/nJlyXlmGQBiY2N9bq88Y6J8bklaznyFk3HjxuGtt94CACQnJ2Pp0qUu9wN0JykpSf7+/PnzPvdx4cIFt8/Vm5bPkLfPj5a/lbKqE+D7c+2cOWEymVxGSj1R8/l68MEHERkZCQCYPHmyy2PO/0uShOHDh/ssq6xp+b0p7xsXExPjc3tv752WvwHlmWN3kpOTUbVqVfn/qampbkf1Qt1zzz2HgoICAMDEiRM93rMxNTUV//nPfwA42id/RxuUnH/n2dnZAZdRUtu2bfHMM88AADIzM/HRRx+53U6SJLz11lvYtm0bHn30UTRv3hyxsbGIiYlBy5Yt8cILL2DXrl249tpr5fpJkoQaNWq4lLNx40Z89913ABwjVnfccYfHur355pvyaPP8+fNx6tQpza9Xq/JoawoLCzF79mz5/2U1yqS853ReXp6qmVll0X40b94c119/PQDgyJEjLveIzs/Px7x58wAAUVFRuPfee0s9f8SIEbjzzjs9fimV/B34OjYpH3eOAvvLYDDg008/le95PGnSpFIjX2Xxd1W3bl2sX78es2bNwm233Sbfj7RatWq46aabMGvWLCxatEi+7zrgGO0vax06dJD7CidOnHDZvy8zZsyQ+/n9+/cPaDaKGs7PhtVqRWFhoc/ty6pfpRxVdc4mU/7f+ZkdOnSoz1lZSs76qsliagTdFGJl8OrSpQtWrFhRrvt/++235Q7Ciy++iDfeeAOSJLndVnnD8LIWHx8vf6/m5urKjqfyuRUlPz9fnpqrVf369XHNNdfoUhYAvPvuu3jppZcAOKbJ/fHHH6qmCykD7tGjR31u77yJecnn6s35GZIkCVarNShOUig/1y+//LI8LbA8OEOV1WqFxWLxGWLVfL6qVauGgQMH4ttvv8Xvv/+O48ePo379+jh27Bj++OMPAI5pYo0aNdL+AiqQ8vempsH39t4pyxo6dGiphlGLxx57zOXztX//fvzvf//DO++8o0v5e/fuxd69e3Upq3Pnzl6nS3pSVFSEpUuXAnAc0z1dFuLUs2dPPP/88wCgatqlJ1WrVkVaWpp+074uufnmm+Xj7l9//eV126uvvhpffPGFx8d3794tdzCbNm0qd9qdfv31V/n7nj17et1XdHQ0rr/+evz6668QQmDz5s1eA295aNasGf78808Avtsaq9WKtLQ0AI5jn/ISAW8WLFiAzMxMAECnTp3QokWLgOvrzejRo7Fnzx4sWLAA69atQ58+fbBkyRKv/RTn5STOY6xeHnroIaxduxaAY1pk165dAQDz5s2TT/z3799f8wnn5s2bu/y/5N9nScrHtYSUuLg4dO7cGb/++iuKioqwfv163HLLLfLjdevWRXR0NAoKCpCWlgar1ep1mrHaPozRaMSQIUMwZMgQj9v8888/8vft27dX+5ICZjAYUKVKFbl/n5mZqeqkLFA+04cBx3Gqb9++yMvLk9+7wYMHe9xe2aZOnTpV9XReX3r06IF69erhxIkTWLFiBY4ePSpfBqhstx988EHVZVosFjmXKE82axF0ATYxMRFxcXHIzc0tl2tLS3J2EKpXr47XX3/dY3jNycmRrw0qD7Vq1ZK/P3DggM/tldvUrl27TOrkj7Nnz5Y6KxmoYcOG6XZt6gcffCBfi5KYmIglS5agTZs2qp6rDLlbtmzxuq3dbse2bdsAOA6kJa/J0VOdOnWwfft2CCGQlpaGevXqldm+/KmTU3l/rmvXri1fe3n48OFSnQmljIwMuRPny7///W98++23sNvtmDp1Kl599VVMnTpVviZlxIgRmute0ZTHjoMHD/rc3ts2ZfU34LzOC3CMXJw/fx7Hjh3DhAkT0KdPH9x0002a9zFnzhzdTrr8+eefqq61Lun8+fPySHR8fLzHtslJ2QlWc1LGk4YNG8qd2+zsbCQkJARclpIysKj9zHmiPNHt7pp45Siqmvrr9d7ppWRb463juH37djnMt2zZ0uffiVN5ddIjIiIwd+5c3HPPPfjxxx9Vhdg6deogMzMTZ8+eVXUSUq1BgwZh9OjR8ojrJ598gtjYWJf3wlMoUHPS2ql69eqoUaMG0tPTAThCabVq1TxurwytvsKuL94+ZwaDAS1btsSWLVtgtVqxY8cOr6PDyvUktFwTDPj+zOrNbre7nIRTe1Ji7dq12LdvHwDH4ImvE2BadO3aFYsWLcKtt94qh1ghBO655x6325dVm2owGDBs2DCMGzdODq2vvPIKVq5cKV+37O9JLmVeatCggT711KUUNTtSjAL5mjLSpUsXAI7OpppOk56cB5hGjRp5HblaunRpqQvzS/LnNfuiPNvuHOHxRjna6etMfWX16aefYuzYsQAcB/nFixf7dSawVatWqFu3LgDHCIC3A8jatWvlKW433HBDmY6KO88iA9Bt1Furtm3byh3HZcuW+fzs6Kldu3by985RDE98jQQpde7cGa1atQLgOPtpsVgwdepUAI4OS79+/fyvbJC5+uqrYTabATg6HL4ul3AuHOdOcnIyWrZsCcCxuI8eU1KPHDmCxx57DIBjtGn27NmYNWsWjEYj7HY7hg4d6jLtLZQpg9f58+d9TjFTjpZ46yz7ouyoOjtyelC27YGMSCspT2i6m7avfO9OnDjhszy93ju99OnTR/5+yZIlXrdVLnx58803qyr/+PHj8mc3NjbW66iPHpwhdsCAAQAgh1hPxwRnm1ZYWOgy1VerhIQEuQ65ubmYP38+jh49KoerunXr6hZYlCOfvk54Kx/XOlvL1+dM7d+WEMLlcbV/W+7s3r0bmzZtAuAYne7cuXPAZam1adMmefS1Tp06qkdfnW064Bg8KesZbV26dMHixYsRFxcHm82G+++/H3PmzPG4rfMEld59PeVJshkzZkAIEdDiTU7KRaOuuuoqrdUDUI4BVjnU7euM5rBhw+TvX3755TKrkzvOP+rDhw97DJ02m02+XtIbf16zLw0bNpSnze7YscNriN28eTOWL18OwHGmIxiuBXNOP9DjS4/R18mTJ2PUqFEAHA32okWL0KlTJ7/KkCQJd999NwDHwf3jjz/2uO2kSZPk78u6c3DPPffIoeOdd94JihEE55QiwNE5/Prrr8tt38og+emnn3oNYZ6uxfPk0UcfBeDoFI8ZM0Y+iTFs2DDdRgkqUmRkpLwSaXp6unwdoTuLFy/2uWK089ien5+P8ePHa6qbzWbDkCFD5E7vpEmT0LRpU3Tu3BkvvPACACAtLQ3/+te/NO0HcKxCrNfxK5DRV8Bxkq1+/foAHNcv/fjjj163V3Z6lCdx/HXdddfJ32/YsCHgckr66quv5O+d1yIG4ptvvpE7wzfccIPb47gyhP/www9ejwFHjx6VX6fBYND1cpVANW3aVF5p9cCBA1i8eLHb7QoLC12uyR80aJCq8qdPny6fVBw4cGC5XHZkMpkwZ84cDBw4EIAjxN58881uQ+zQoUPl71977TVd1x1RdsSnTZvmco2fnoFFeR2t8m+/pIKCAsycOVP+v5aguHXrVjkMR0REuD1Br/wb+fLLLz2eGFu8eLEchtu1a4fU1NSA6mSz2fDkk0/K/3deq1+WhBB45ZVX5P+rXV07Pz8f33//PQBHf0+vKbq+3HjjjVi0aJFLiFVen+5UvXp1+e9j9erVuobYxo0buwwm/vbbb/J14dHR0X73Y5Vth7JN0USPlaDUrEL85JNPytusWLHCa3k2m83lZrqjR48WRUVFHrfPz88X33zzjZg9e3apx5SrEKu5/16vXr3k7SdOnFjq8eLiYpfV6eBlxUHlDcGnT5/uc9++VmqeO3eu/HitWrXEnj17Sm1z7Ngxl3uXffLJJ27Lcj6uZmVhf7YNBdOnT5dXUYuJidF0X8a0tDQRExMjcGnl06VLl5ba5ptvvnFZ/U7NvY21evrpp+V9du/eXZw+fdrjtjabTfzxxx/ijTfeKPWYtxVq/d32xIkT8gq/kZGRPj8T6enp4vXXXxc7duwo9Zg/95UWQojOnTvL2z/22GPCZrOV2qbkvT7VrCSamZkp//6VX/v371dVr0D5swqx1t/bqlWr5MerVKni9gbu+/fvF7Vq1XJ5D9zdBzY3N1c0aNBAAI77FL777rtufxdOmZmZ4qOPPhJ//PFHqceUN2UvuVqsxWKR7w8OqFu5PRQ8++yz8mtKTk52+9kQQoiZM2e6rNy7cePGgPd54sQJuZwHHnjA67bffPONWLJkidd7VxYVFbkcn8xms9i7d6/bbXfv3i3Onj3rsaxZs2bJ9ymOioryWM65c+dEbGysvM+RI0e6XT3zwoULLveuvfXWW72+3pL8OXY4KT9/3p63cOFCl+1K3jfVZrOJhx9+2ONnwhO73S5SU1NV988C4e0YY7FYxMCBA+XHO3bsKLKyskqVMWDAAHmbwYMHu91GWeb8+fM99n+U7Ha7aNiwoXxMqlGjhrwfNffc9ceNN94ol+3uPrBWq1Xcf//98jYdOnQotU1OTo54/vnnvX4uhBBiy5Yton79+j775kII0b9/f3m74cOHlzomHzt2zKWsX375xWNZq1at8rgybVZWlrjnnntc+ibejhXKdt5de5KTkyNefPFFce7cOY9lFBQUuHwuIiIiVP9ep02b5lLXsuCtL7Nq1SoRFxcnAMdq8t99912pbbZs2SIiIiLk9nnx4sVe93f06FHx9NNPi/T0dJ91U/Zdle37/fffr/4FXnLnnXcKAMJgMIgLFy74/Xx3yu0a2B49esijUMOHD8dTTz2FBg0ayCtYNWnSBE2aNAHgOOs5f/58dOrUCWlpafjoo4/w/fff4+6778bVV1+NxMRE5Obm4vjx49i8eTOWLVuGvLw8vPHGG5rrOWrUKHl0c+zYsfjrr7/Qp08fVKtWDQcOHMCMGTNw4MABdO/eHQcOHPA6bbRHjx7y98888wzOnTuH5s2byxfJ16lTB1deeaXqug0aNAgLFizAnDlzcPr0aVxzzTV48MEH0alTJxiNRmzevBlTpkyRz2D27t1bnl5HDosXL8bDDz8sn2F9+OGHkZmZ6fP+Wddcc408+qFUu3ZtvP/++xg5ciSsVituueUWDB06FF27doXVasXixYvls1YmkwlfffWVx5VDAbhcr3TkyBGP92T15e2338b27duxbNky/Pnnn0hNTcWAAQPQqVMnpKSkoLi4GGfOnJFH88+cOYMePXrgf//7X0D7U6Nu3bqYM2cO7rjjDhQVFWHYsGGYOHEi7rjjDjRt2hTR0dHIysrC/v37sX79eqxZswY2m83nvVvV+PLLL9G+fXvk5+fjs88+w7p163D//fejbt26SE9Px9y5c7FmzRp06tQJx48fR1pamqoz74mJiRg8eLDLNVPdunVD06ZNNdc5WHTu3BmPPfYYPvvsM2RkZKBjx44YNmwYOnfuDIPBgI0bN2LKlCnIy8tD//79vX6WYmNjsXDhQnTt2hXZ2dl45pln8OWXX2LAgAFo2bIl4uLikJ2djcOHD2Pjxo3466+/UFxc7DIiATjONjtnwdStW7fUiIbJZMK3336LNm3aIDs7G0899RS6du3q9frnUPDss8/i+++/x5EjR3D+/Hl06NABgwcPRteuXZGQkCDfB1Z5Jn7EiBGaFkmpW7curr32WmzZsgUrVqyAEMLjdZXbt2/HQw89hLp166JXr1646qqrUL16dZjNZly8eBF///03FixY4HJN6oQJEzz+XhYtWoQXX3wRPXv2ROfOneXj4dGjR7Fw4UJ5cSqz2YzZs2d7LCc5ORlvvvkmxowZAwD4/PPPsXLlStx3330u94GdPn06zp07B8Dx2X7//fc9vi/vv/++x4WtMjMzSx1LGzVqpGlV8n79+mHw4MGYO3cujh07hmuuuQaPPvoorrzySly4cAEzZsyQ349atWph4sSJqspdsWKFfF1bkyZN5FGX8mIymTB79mxIkoQffvgB69evl6+JVU79njp1Kvbv34+dO3di7ty5WLJkCQYNGoR27drJi/OkpaVh27Zt+OOPP5CRkaHq/ZYkCQ8++KA8y8J5GdmNN94o90n18tVXX+GGG27AxYsX8dxzz+G3337D3XffjZSUFBw7dgzTp0/Hrl27ADhmXLhb6M5qteLtt9/Ge++9hy5duuC6665DkyZNkJCQgKKiIhw/fhx//fWXy2VuLVq0wIQJEzzW68MPP8S6deuQnp6OKVOmYNeuXXjggQdQrVo17Ny5E19++aV8KcaQIUO83tv83//+Ny5evIi+ffvimmuuQUpKCrKzs7F9+3bMnTsXZ8+eBeCYFTFnzhzV12i7Y7Va8eabb+Kdd95Bt27d0LFjR6SmpiIhIQE5OTnYsWMH5syZI99VBAA+++wz1b/X8rou3JPOnTvjt99+w80334zc3Fw88MADAFxH86+55hp8/vnneOSRR5CRkYFbbrkFN9xwA2655RY0atQIERERuHjxIvbu3YvVq1fL1zE7j4Xe3H333Rg1ahRyc3Nx+vRp+ef+jkRbrVasXr0agGPas16LOJXbCKzVanUZBSn55e7M/6lTp0SPHj08Pkf5ZTQaxeTJk0uV4e8IrBCu9+By93XDDTeIs2fPyiMJ3s6aKu+nVPKr5HulZlTJYrGIf/3rXz7fj4EDB3q9P6Zzu8o2AltylE3tl7uzf0rvvfeefBbM3Vd8fLzbGQIlKZ+j5t7B3hQVFYknnnhCvn+Zr6+hQ4eWKkPPkTyndevWuZzx9/YVFxcn/v7771Jl+DsCK4Tj/s7OEWB3X61btxbHjx+X71V21VVXqSp3w4YNLuWUvJduWSjPEVghHMfvBx54wON7ZzAYxLvvvutyxtbbZ2bv3r0u96r09hUZGelyVjkjI0M+9hoMBq/H9VmzZsnltG3b1utMnlBx+PBhn/dZdH498cQTwmKxaN6n8v6+K1eu9Ljd6NGjVR9Tq1ev7vOY+N577/ksJzU1VSxbtkzV65gwYYI8Yuvtq2HDhmL9+vVey3L+Dar98tR+qh2BFUKIwsJClxEsd1+NGzf2ODLvjvJz/eabb6p+nj/UHGMsFosYNGiQvN11111XapQ1KytLDB48WPV77use2E5Hjhwpda/hqVOnan3Zbm3cuFE0atTIa73r1asnNm/e7Pb5GRkZfv3dDRgwQNVo29atW322y/fdd5/PY2irVq1U1cnbqKmTrxFYf96LatWqiR9++MHnPp0OHjwo/00kJib6vN98oNT0ZVavXi3fN9toNLrtY/z0008uswd8vRdq3n8hRKkZpw0bNvQ6au7OokWL5Od//fXXfj3Xm3ILsEI4hvLHjx8vOnXqJKpUqeLSsfbWyfrrr7/Eo48+Klq1aiWSkpKE0WgUCQkJomXLlmLw4MHi888/F6dOnXL73EACrBBCLF68WPTt21ckJyeLiIgIUatWLXHTTTeJyZMnyx0CNQHWarWKzz//XHTr1k0kJycLk8nk8b3yp1O+bt06MXz4cNGkSRMRGxsroqOjRaNGjcT999+vqjH31agGum2wK6sAK4QQO3fuFI8//rho1qyZiI2NFfHx8aJ169bi2WefFUePHvX5/Ly8PHl/ZrNZt2kWBw4cEM8995y47rrrREpKijCZTCImJkY0atRI3HrrreKtt95yGxKFKJsAK4SjszJr1iwxaNAg0ahRIxEXFydMJpOoWrWqaNeunXjkkUfE3LlzRW5urtvnBxJghRDizJkz4j//+Y9o3ry5iI6OFklJSaJdu3ZiwoQJIi8vT9jtdhEdHS0AiG7duqkq0263yzcgr1q1qigsLPSrToEo7wDr9PPPP4u+ffuKlJQUERkZKerXry/uvfdesXbtWiGEUB1ghXC8b//3f/8nhg0bJpo1ayYSEhKE0WgUSUlJ4uqrrxZDhw4V06ZNK3XTeGUH9rnnnvO6DyGEGDJkiLz9008/7XP7UGC1WsWPP/4o7rnnHtGkSRMRFxcnv3fXXHONePLJJ/0KMb5kZGTIU3AfeeQRj9vl5uaKn376SYwdO1Z069ZN1K1bV0RFRQmj0SgSExNFixYtxD333COmT5/u8bOtdOLECfHhhx+Kfv36iWbNmonExEQRFRUl6tevL/r27SumTJni9yUZR48eFS+//LLo3LmzSElJERERESIqKkrUrVtX3H777WLy5MmqOqsVEWCdFi9eLO6++25Rr149ERkZKZKTk0WnTp3ExIkTVb2vTtnZ2fIlEAaDQZw8eVL1c/2h9hhjtVpdPt/uQqwQjrA1ZswY0bZtW1GtWjVhMplEXFycaNq0qejfv7+YOHGiOHTokF91vOmmm+T9xsbGipycHH9fpmq5ubniww8/FDfeeKOoUaOGiIiIEMnJyaJ79+7io48+8vn3988//4gPP/xQ3HPPPeLKK6+U+8VRUVGiZs2aomvXruLZZ5/1+xiQm5sr3n//fdGpUyeRnJwsIiMjRb169cTdd9/tc2qq04oVK8Szzz4rbrjhBvnvMzExUVxxxRVi5MiRYvXq1arr4yvA2mw28eeff4q33npL3HHHHaJVq1by+xkXFycaNmwo7rzzTvHFF1/49bkQQoj//e9/8r4fffRRv57rD7V9mTVr1vgMsfn5+eKLL74Qd9xxh6hXr56Ijo4WZrNZpKSkiE6dOolRo0aJn3/+2a8TuStXrnQ5jvnqI7hz3333CcAxxdnf34M3khAal8clIl0sWbJEviD/ySef9HtBIdJu586d8gp5an8HS5cuRa9evQA47nH44YcflmUViSrE6NGjMWnSJCQlJeHUqVO63YyeiIjCU3Z2NmrXro28vDw8++yzmhdvVCq3VYiJyDvnPYjj4+PL9FpU8uyTTz6Rv1d77e3nn38ufx8O934lcufZZ59FdHQ0MjMzXf7miYiI3Jk0aRLy8vIQHx+v+4rTDLBEQcIZYMeOHYuUlJQKrk34WbVqldf7z3766afyYkB16tTBbbfd5rPM7du3y4sW9ezZU77PKVG4qV27NkaPHg0AePfdd5Gfn1/BNSIiomCVnZ2NDz74AADw3//+V/P9vkviFGKiIHD+/HlUr14dycnJOHToULnch6+yadKkCQoLC3HLLbegbdu2SElJgcViwaFDh7BgwQJs27ZN3vbnn3/2GGB/++032O127N+/H++++668Ot/q1atxww03lMtrIaoIeXl5aN68OdLS0jBhwgQ8/fTTFV0lIiIKQuPGjcNLL72ERo0a4Z9//vF6B45AMMASUaXQpEkTHDp0yOs20dHRmDx5MoYMGeJxG3fL/qu9Xvb3338PeOQqOTkZnTt3Dui5REREROGCAZaIKoX169dj/vz5WL9+PdLS0nDhwgXk5+ejSpUqaNasGXr27ImRI0eiRo0aXstxBti4uDg0a9YMI0eOxMMPP6zqvrENGzbEsWPHAqp/165d8ddffwX0XCIiIqJwYaroChARlYeOHTuiY8eOmsvhOT8iIiKiisMRWCIiIiIiIgoJXIWYiIiIiIiIQgIDLBEREREREYUEBlgiIiIiIiIKCVzEiYiIwooQAoWFhcjLy0NBQQHy8/NLfRUUFKC4uFj+Kioq8vp/m80Gu90Om80mfzn/X/JfJ4PBAEmSvH4ZDAZERETIXyaTyev/IyMjER0djejoaERFRSEqKsrj93FxcYiLi0NEREQF/jaIiIj0xQBLRERBRwiBgoICZGVlITs7Gzk5OS7/uvs+NzdXDqd2u72iX0LQiIyMlMOs8ys+Pr7U/5OSkly+4uLi3N73mIiIqCJxFWIiIioXQgjk5uYiIyMDFy9edPnX3c+Kioo07U+SJERHRyM2NhbR0dGIiYmRv6Kjo7H8552QIAHCCECCJAwADIAwuH4PAyAkAIovAcdz5f87g17JwCdcv5dKPiYgJAHAfulxO8Slf13+7/xesgGSHbfcfQ0KCgpQWFiIwsLCUt87v7QwGo1ITEyUA63z+6pVq6JatWpITk6W/01MTFR1L2QiIiKtGGCJiEgzIQSys7Nx7tw5nDt3DmfPnsXZs2fl/zu//A1VZrMZCQkJiI+PR0JCAhISErB26X5IdhMkEQEI06XvTY7vhfHS90YAhkshs3JyBGHrpdBrhbj0Bcnm+N5gRf8HOiAnJwc5OTnIzMyUv/Lz8/3al9FoLBVqnV81atRAzZo1kZKSwunMRESkGQMsERH5JIRAVlYWTp06hdOnT7t8nTlzBmfPnkVxcbGqsmJjY1GlShVUrVoVuzenQbKbIdkjAOH4V3L+azdDgrGMXxm5I2CHkCyAwQIhWSAU//YZeBUuXLiACxcu4Pz588jMzISaroQkSUhOTkb16tVRs2ZNOdg6/61Zsyaio6PL4dUREVEoY4AlIiIAgM1mw5kzZ3DixAmcOHHCJayeOXNG1ehplSpVkJKSgpSUFGxYdhiSPfJSQI28/D1DaVhxhl1hKIYwFEEYinHPv6/HhQsXcPbsWaSnpyM9PV3VCY6qVauibt26qFOnjvyv8/vY2NhyeDVERBTsGGCJiCoRIQQyMzNx/PhxOagqA6vFYvH4XOcIWq1atbB70xlI9igYbFGXgmnUpXDK6yCpNMd0ZgvshiIIQyGEsQi3398WZ86ckQNubm6u1zKSkpLkMFu3bl00aNAADRs2RJ06dTg1mYioEmGAJSIKQ0IIXLhwAYcPH8aRI0dw5MgRHD16FMePH/caFMxmsxwQ1i457Aip9ihItkshlQGVyoiQLLAbCiGMBXhgdGekpaUhLS0NJ0+eREZGhsfnGY1G1KlTBw0bNkSDBg3kYFu/fn1ERUWV4ysgIqLywABLRBTiMjMzceTIETmsHj16FIcPH/YYVCVJQs2aNVGvXj1sXXkSki0aBls0JHu0YzS1Ei98RMFJwAphLITdUIAHn+6C48eP49ixYzh69KjHqe3Ov/NGjRqhcePGaNy4MZo0aYI6derAaOQ0diKiUMUAS0QUIoQQOHXqFA4cOIADBw5g//79OHDgAC5evOh2e+fIVNrBfEi2GBisMTDYYyDZojmSSmFBQEBIxRDGfNiN+bjl3tY4evQojh07hqysLLfPiYqKQqNGjdCkSROkpqaiSZMmaNy4MeLi4sq59kREFAgGWCKiIGS1WnHs2DE5pB44cAAHDx5EXl6e2+1r166N9KOFkGyxMNhiYLDFMqhSpSakYtiNBbAb83DzPS1x8OBBHD582OP9hWvWrIlmzZqhRYsWaNGiBZo3b474+PhyrjUREfnCAEtEVMGEEDh9+jT++ecf/PPPP9izZw8OHDjgdtXWiIgIpKam4uCOLBhssTDY4mCwxnJlXyIVBASEoQB2Ux4Gj2yPQ4cO4eDBgzh79qzb7evUqeMSaJs1a4aYmJhyrjURESkxwBIRlbPs7Gzs3bvXJbC6m+4YExODJk2a4J+N52GwxsFgi+OoKlEZEJIFdmMeHn62M/bu3Yt9+/bh1KlTpbaTJAkNGjTAFVdcgdatW6N169Zo0KABDAZ+JomIygsDLBFRGRJC4Pjx49i5cyd27NiB3bt34+TJk6W2M5lMaNKkCQ5uz4LBmgCDNc6xqBIXVCKqEI5Qm4sHxnbEvn37sHfvXpw7d67UdnFxcWjVqpUcaK+44gqO0hIRlSEGWCIiHVmtVuzfvx87d+7E33//jb///tvt6GqdOnVw5nAxDNZ4x5ctjiOrREFOSMWwmXIw+LFrsWvXLuzZsweFhYUu2xgMBjRu3FgOtW3atEH16tUrqMZEROGHAZaISIOioiLs2rULO3bswM6dO7F79+5SHVqz2YwrrrgCu9dfhNGaAIM1HpKIqKAaE5FeBASEMQ+PvtwFu3fvxq5du3DmzJlS29WpUwdt27ZFmzZt0LZtW6SkpFRAbYmIwgMDLBGRH6xWK/bt24ctW7Zg69at2LVrV6nFluLi4pB/0XwprCY6pgNzdJWoUrBLRbCbstF/+FX4+++/sX//ftjtdpdtGGiJiALHAEtE5IXdbseRI0fkwLp9+3bk5+e7bFOtWjVknjLAYE2A0ZoIyRbDa1eJCAAgJCvspmzc+ciV2L59u8dA2759e7Rv3x5t27blPWmJiLxggCUiKuHChQvYuHEjNmzYgK1btyIzM9Pl8fj4eORfMMNgSYLRksTFlohINV+B1mg0omXLlmjfvj06dOiA5s2bw2jkbbKIiJwYYImo0rNardi9ezc2bNiADRs24MCBAy6PR0VFoTg7GkbrpcBqi2VgJSJdCMkKmykLtw1rgU2bNuHEiRMuj8fFxaFdu3byCG3NmjUrqKZERMGBAZaIKqVz587Jo6ybN29Gbm6uy+PNmzfHoe35MFqqOBZd4jWsRFQO7IZCPDGuKzZt2oQtW7aUOjY1atQI119/Pa6//nq0bNmSo7NEVOkwwBJRpSCEwIEDB7B69WqsWbOm1ChrQkIC8s5FwmipAqOlCiRhrqCaEhE5CAjYjTkY8tS12LRpE/755x/YbDb58cTERHTs2BHXX389OnTogNjY2AqsLRFR+WCAJaKwZbVasWPHDqxevRqrV69Genq6/JgkSWjevDkObsuHsbgKDLZ4TgsmoqAmJAv+M7EX1q1bh/Xr17uMzppMJlx99dW4/vrrccMNN6B27doVWFMiorLDAEtEYSU/Px8bN27E6tWrsXbtWpcOXmRkJKw5cTAWV+MoKxGFNAG743Y9j7TE2rVrS10727RpU3Tt2hVdu3ZFgwYNKqiWRET6Y4AlopCXl5eHNWvW4M8//8SmTZtc7suamJiI3LNRl0JrEiTwejEiCj92Qz6Gv9gRa9euxd9//+0y1bhhw4bo1q0bunbtitTUVEgSZ5sQUehigCWikJSfn49169Zh+fLl2LBhg0torVOnDtIPAkZLNRisCZwaTESVipAsGPV2F6xYsQJbtmyB1WqVH6tbt648Mtu8eXOGWSIKOQywRBQyCgoKsH79eixfvhzr1q1zCa316tXD6f2AqTgFki2GoZWICI7b9IydcBNWrFiBjRs3ljrZ17NnT/Ts2ZPTjIkoZDDAElFQs1qt2LRpE37//XesWbMGhYWF8mOOkVYDQysRkQoCVjzzUW+sXLkS69atczmeNmvWDD179kSPHj2QkpJSgbUkIvKOAZaIgo4QAvv378eSJUuwbNkyZGRkyI/Vrl0bZw85Q2ssQysRUQAEbPjPBz2wdOlSbNy4Ub5mVpIktGnTBr169ULXrl0RHx9fwTUlInLFAEtEQSM9PR1//PEHfv/9dxw9elT+eVJSEnLPxMBYVB0GWxxDKxGRjoRkwcg3rsfSpUvx999/yz+PiIhAp06d0LdvX7Rv3x4mk6kCa0lE5MAAS0QVqrCwEH/++SeWLFmCbdu2wXlIMpvNsOUkwFRcAwZLEiQYKrimREThz24oxNBn2uKPP/7AkSNH5J9Xq1YNffr0wa233or69etXYA2JqLJjgCWiCrF//3788ssv+OOPP5CXlyf/3GBJgKmoBoyWZEiCZ/uJiCqK3ZiHOx5pgiVLliArK0v++ZVXXolbb70V3bt3R0xMTAXWkIgqIwZYIio3eXl5WLp0KX755Rfs27dP/nmtWrVw/pAZxuLqMNijKrCGRERUkoAdL3x6MxYtWoQNGzbAbrcDAKKjo9GtWzfcdtttaN26NW/JQ0TlggGWiMqUEAJ79uzBTz/9hD///BMFBQUAAJPJBJGXBFNRTRisSbyulYgoBNilIgx7ri0WLVqEEydOyD9v3Lgx+vfvj169enFUlojKFAMsEZWJwsJC/PHHH/jxxx9x6NAh+ef169fH6b1GmIqqQxLmCqwhEREFSkBgwux78euvv2LZsmUoKioCAMTExKBPnz7o378/GjVqVMG1JKJwxABLRLo6ffo0Fi5ciF9++QU5OTkAnAsyOUdbEzjaSkQURoRkwfCX2mHhwoU4efKk/PM2bdqgX79+6NKlCyIiIiqwhkQUThhgiUgzIQS2bt2K+fPnY+3atfL1UY5rW6NgKqoBSbDzQkQUzgQE3px2FxYuXIg1a9bI95atWrUq+vXrh/79+6NKlSoVXEsiCnUMsEQUsIKCAvz++++YP3++y31bDZYkmAprw2ipytFWIqJKyC4V4Z6nWuKnn37CxYsXAThm4/Tu3RuDBg1Cw4YNK7aCRBSyGGCJyG8ZGRn48ccfsWDBAmRnZwNwrEZpyXAEV4OdC3gQEZFjBeNnPuqJuXPnYu/evfLPr7vuOgwaNAjt2rXj6sVE5BcGWCJS7eTJk/j++++xaNEiFBcXAwDq1KmDs/sjYSquwfu2EhGRW85Fn+bOnYtVq1bB2f1MTU3F4MGD0aNHD5jNXNiPiHxjgCUin/bs2YPZs2dj5cqV8vWtBmscTAX1YLRU4zRhIiJSzW4oQN/hDbBo0SL51mpVq1bF4MGD0a9fP96Gh4i8YoAlIreEENi4cSO+++47bNu2Tf65obgqIgrrwGBNZHAlIqKACcmKB19og3nz5uHcuXMAgPj4eAwYMAADBw5EQkJCBdeQiIIRAywRuRBCYO3atZg+fbp8vZLRaATyqyGisC4MttgKriEREYUTATtGv3sjvv32W5w4cQKAY12Ffv36YdCgQUhOTq7gGhJRMGGAJSIAgN1ux5o1azBt2jQcOHAAABAVFQVrRjWYCuvAICIruIZERBTOBASe+7gXZs2aJbdDZrMZt956Kx544AGkpKRUcA2JKBgwwBJVcna7HStXrsT06dNx6NAhAJdWFL5YDRGFdSAJLqpBRETlR0Dg1cm3Y+bMmdi1axcAR5C9/fbbcf/996NatWoVXEMiqkgMsESVlBAC69atw+TJk+XgGhMTg+ILzuAaUcE1JCKiykxAYPzMuzFlyhT8/fffAIDIyEj0798f9913H6pUqVLBNSSiisAAS1QJbdu2DV999RV2794NAIiNjUXR+WqIKKwdWHB1HkZ4Lz8iovAjhPbju4YyBATemj4AX3/9tdxuRUVF4a677sJ9993HxZ6IKhkGWKJKZM+ePZg8eTI2b94MwHEm25aZgojCuv4H15KHDi2dGwZgIqLgpTze63GsD7AcAYHXp/TDlClT5EUG4+LiMGTIEAwcOBCRkVyrgagyYIAlqgROnDiBL7/8EitXrgQAmEwmIDcFEfn1IMHPBt/TISOQTo1enSIiIipbepy0dNd+BBJkhR2vTL7d5RKYlJQUDB8+HH369HGsnE9EYYsBliiMZWVlYdq0aVi4cCFsNhskSYKhIAURBfVhsEc5NvKn8+DtcKG1HAZYIqLgpcfJS71OgF4qR0Bg7MRu+Prrr5Geng4AaNSoER599FF06tQJEtsVorDEAEsUhoqLi/Hjjz9ixowZyM3NBQAYiqvAnN+w9H1c1TTwvg4TajsJeo7eEhFR+dLjJGYZlCFgx0MvtcHMmTORk5MDAGjbti1GjRqFJk2aqCuTiEIGAyxRGBFCYMWKFfjiiy9w6tQpAIBkjYE5PxVGS5L7J3nrMKg9PPjqdOgVgImIqOKoaRO0tgcayhCSFXc+kYp58+ahuLgYBoMBt912G/71r38hKSnJ936JKCQwwBKFicOHD+PDDz/E9u3bAQDVqlVDzrEqMBbVgAQPnQFPnQR/Dwtay2GAJSIKfv60DXq0LwGeYJ2+fDS++OILLFu2DIBjoacHH3wQd955JyIieIs4olDHAEsU4nJzczF16lQsWLAANpvNsbJwRnVEFNSFBB8LWZTsHARyOHDXwdCrg0JERMFFjxOc5VTGO98NxqRJk3DgwAEAQL169TBq1Ch07NjRv/0TUVBhgCUKUXa7Hb///ju++OILXLx4EQBgLKqGiPxGlxdo8sXZKdByGFB2LPQKwEREFJwCbS+0thUBliEgMOqdGzB58mRkZGQAALp06YInn3wS1atXD6weRFShGGCJQtChQ4fw/vvvY9euXQAAyRYNc14qjJYq5V8ZSdKnM0JERKFB60lPrV3PAMoQkhV3jGyAefPmwWazITo6Gg8//DAGDBjguLUcEYUMBliiEFJUVIRp06Zhzpw5cgNsPV8DpsLakGCo6Or5jwGWiCj0hHDX8dOfhmPixInYuXMnAKBJkyYYO3YsWrduXcE1IyK1GGCJQsSWLVswYcIEpKWlAXBOF06FwR5ZwTXTgAGWiCg0hXD30Tmt+IsvvkB2djYA4Pbbb8fIkSMRFxdXwbUjIl8YYImCXFZWFj7//HMsWrQIACDZzIjIawyTpVoF10wHDLBERKEpGLqPdgEYAm9HhGRB9/urye1rSkoK/vOf/6BTp0561ZCIygADLFEQ++uvvzBx4kRkZmZCkiQY82sgIq8BJClMbgPAAEtEFJqCoftoV9RBQ5Ad/+0gvPPOO/IMpz59+mDUqFFISEjQWkMiKgMMsERBKDs7Gx9++CGWLl0KAJCs0TDnNIHRmqCpkQ4qDK9ERKGtoruQ9hL71zIaCxvueKw+fvjhB9jtdlStWhVPPfUUunbtqrGSRKQ3BliiILN27Vq8++67uHjxIgwGAww5tRGRX+/yIk0MsEREFAwqugtZMsA6aWgn3/9+CMaPH49jx44BAHr06IGxY8ciPj4+4DKJSF8MsERBIjc3F5988snla12t0TDnNIXRWqLRZIAlIqJgEAxdSE8hFgi4vRSwY+CYxvjuu+9gs9mQkpKCF154Addee22AlSQiPTHAEgWBnTt34vXXX0d6errjWte8WojIqw8JxtIbh0OAZXglIgoPFd2N9BZgAU1t5sQf7se4ceNw8uRJAMCgQYPwyCOPIDIyhFf/JwoDDLBEFchms2HmzJmYNm0a7HY7JFukY9TVkuj5SQywREQULCq6G+krwDoFPBprQ6+HUvDTTz8BABo1aoSXX34ZjRs3Dqg8ItKOAZaogqSnp2PcuHHYsWMHAMBYmAJzbiokYfL+xFAPsAyvREThpSK7kmoDLKCp/Xzpq7545513kJmZiYiICDz++OO48847IbFNIyp3DLBEFWDFihV49913kZOTg+joaNjS68JUVF3dkxlgiYgomIRKgHUKsB2dvfq/eOedd7B27VoAQLdu3fDMM88gLi4uoPKIKDAMsETlyGKx4LPPPsP8+fMBAAZLHMzZzWCwR6svhAGWiIiCSUV3JcsxxAoIDH+lLT7//HPYbDbUrl0br732Gpo3bx5QeUTkPwZYonJy7tw5vPLKK9i1axcAwJRf59JCTQb1hWgJr84GviIDMMMrEVF40tKdtAt92rdABbDviT/cj1dffRVnzpxBREQEnnjiCfTv359TionKAQMsUTnYunUrXnvtNWRkZAB2I8w5TWEqrhZYYYE08srGnQGWiIj0prU7qeUkq82urX1x1t3oxwllAEKy4to7TFi9ejUAoGfPnnjmmWcQFRUVeF2IyCcGWKIyJITA7Nmz8dVXXzlWGbbGIDKrhX9ThpX8bdhLnpXWEn71CL4MsERE4UmvAAsEHmKBwNsZZf39CLLCbsfw166RpxQ3bdoUb775JmrWrBlYPYjIJwZYojJSWFiIt99+G3/++SeAS6sM5zR2f29XtdQ26p6mU2kJwAywRETkiZ4B1smfdscZYJ38bW/c1V9tkLULvP3dILz88svIyspCYmIiXn/9dbRt29a/OhCRKgywRGXg3LlzePHFF7F3716YTCZIGfVhKqwJCRoCnJqG3Nt1QP50BPQYuS2J4ZWIKLyVRYgF1LdBJUMs4F/b46n+aoKsXWD6X2Pwwgsv4MCBAzAajXj88ccxYMAAXhdLpDMGWCKd7d27F88//zwuXLgA2E2IzGoOozVJe8HeGnA1C1hoCcAMsERE5EtZBVhAXTvkLsA6qWmDfNXfW5C1C0AICNhw4/2J+P333wEAt99+O5566imYTD7u8U5Eqvl3tToRebVs2TI88cQTuHDhAiRrNKIuXqVPePVG6+qLepdDRESkN7vQ1k7pMV7jLSAbJECSIMGIVbNy8Pjjj8NgMODnn3/Gs88+i7y8PO37JyIAHIEl0oUQAt9++y2++uorAIChKAmR2c0gCZM+I4/uzjz705CXx+itLxyBJSIKb2U5AluSp3bJW8gEfLdFal+Du9HYS6OwTv/7+ja8/vrrKCwsRGpqKt555x3UqFFDXflE5BEDLJFGNpsNkyZNwoIFCwAApvxaiMhtePl6V70DrF43bFdbjl633WGAJSIKb3p0Kf1t40q2Ub4CrJOnNsnf16AMsiUCLAB89H8P4dlnn8XFixdRrVo1jB8/Hs2bN/dvH0TkggGWSIOioiKMGzcOK1asgCRJMGU3QERB7csb6BXaDJK2qVNaAjADLBERqVERARZwbafUBlinkm1ToK/BGWTdhNjpK57CM888gyNHjiA6Ohrjxo1D+/btA9sPETHAEgUqJycHL7zwAnbs2AEICebspjAVJbtupNfoq9brU52Nu16jt4FggCUiCm8VFWCdDJL/AdZJ2UZpeR2S5Pb5QrKi1S12bN68GSaTCS+//DK6desW+H6IKjEGWKIAXLx4EWPHjsXhw4cBuxGRWS1gtCS63zjUgxuvfyUiIrXK8zpYvffvbKu0vgYh3LZ7AnZ0HByNP//8EwaDAf/5z39w2223adsXUSXEAEvkp3PnzuGpp57C8ePHIdkiEJnZEgZbrPuNAw1uyo9lRYU/vUZeAQZYIqLKoqIDrB51cD5fS9vlMcQK9ByejJ9//hkAMHLkSNx7772B74eoEuJtdIj8cObMGYwaNepSeDUjMrN16fAqSl//4pdgOKekZ3glIiIKRXoE4RJlSJCwdMp53HfffQCAzz//HF9//TU4nkSkHgMskUonT57EE088gVOnTkGyRSIyozUMtujLG+gRXEs+v7xHLg0SwysREVVuJa+H1TnISpCw8MOj+Pe//w0AmDFjBqZMmcIQS6QSAyyRCidOnMCoUaNw9uxZSNZoR3i1RzkeLIvgWhEYXImIiNwrgyA74/W/8cQTTzi+nzEDU6dOZYglUoEBlsiH06dPY8yYMbhw4QIkawyiMlrBYI90POipoZEkdTdLD4aGqjxGXYPhdRIRUdmqDMd6tW23tz6A4vlTX94qh9jp06fjm2++0VpDorDHAEvkhXPBpnPnzkGyRiMqoyUkYQ6P61wBjroSEREFQsfR2Kkvb8Xjjz8OAJg2bRpDLJEPDLBEHmRkZOCpp566fM1rZktI9ojwmS7M8EpERBQ4HacVf/PKNjz22GMAgG+++Qbz5s3ToYJE4YkBlsiNnJwcjB079vJqwxdbwmAzB14ggysREVF40inITntlG4YPHw4AmDRpEn7//XcdKkcUfhhgiUooLi7GCy+8gEOHDgG2CERmtLy8YFMggiG4AgyuREREZUmH9v67t3ZjwIABAIC3334b69ev11wmUbhhgCVSsNvteOutt7Bjxw7AbkRU5hWut8rxB0ddiYiIKheNbb8ECYs+S0OvXr1gs9nw0ksvYefOnTpWkCj0McASKXzxxRdYvnw5ICREZjaHwRobWEHBEFyJiIioYmgMsatnZaNjx44oKirC888/j5MnT+pYOaLQxgBLdMn8+fMxZ84cAIA5uzGMlkT/CxECks0eHgs9ERERqRVM7ZYO7ahkszvacy1lWG2QrLbAngsDdvyfHVdccQWys7Px3HPPIScnR1N9iMIFAywRgPXr12PSpEkAgIic+jAVpvhXwKXgKtl1WI2QiIioMtLahpakQ5uqNcQCgQdZCUa8+eabSElJwfHjx/HKK6/AarVqrg9RqGOApUrvxIkTeP311yGEgDG/Okz5tf0rQAh9givDKxERkb6CZDQWQEAh9v4b3sP48eMRHR2NzZs348MPP4Rgf4EqOQZYqtTy8vLwwgsvIDc3F4aiOJizG0KCygWP9Bh1LY/gqvcZbSIiomDlqU3VaTS2IqYVP3nzl3jppZcgSRJ++uknLFiwQFMdiEIdAyxVWna7HW+88QaOHTsGyRaByItNIKn9SOg16lqZVLbXS0RUWQTT8d1bXXQ6aVwRo7FvDluIf//73wCATz75BP/884/mOhCFKgZYqrSmT5+OtWvXOlYcvtAUBrvZ9wJMoTLqSkRERO6F0Gis8vHp/9uMrl27wmq14uWXX0ZmZqam/ROFKgZYqpS2bt2KadOmAQDMmQ1htMR5f0JFLNLEoEtERJVFeV/u4qWN9Wd0tDwXeZIg4bnnnkO9evVw9uxZvPHGG7DZAlvlmCiUMcBSpZOZmYlx48ZBCAFTXjIi8n2sOMxFmvTD94CIKLyE+nE9SEZjAXXBeeBVr+D1119HZGQkNm3ahOnTp2veL1GoYYClSsVut+Ott97C+fPnIVmiYM5q4HnjcLo1DhdyIiKicBdoe6tTO11eo7FP9P4c//3vfwEAM2bMwM6dOzXvlyiUMMBSpfLDDz9g/fr1gJAQdbEJJGF0v6HGUVfJLgC7j+tpiYiISL+TrFraXB0XeJJs9oBumeNSjo/nfzDyd/Tp0wd2ux3jxo1DXl6epv0RhRIGWKo0Dh8+jC+//BIAYM6qD4M1pvRGQjjOfurQmOpRhm5Tjw0qbw1ERESkll4nafVqoyTt5WgNnjIdypGsNsBi9fj46NGjUbNmTZw+fRoff/yx5v0RhQoGWKoUrFYrxo8fD6vVCmNhIkx51UtvJASgw/SfoLzeNRimEEuSLp0LIiIKQ1pDrLPdDaZ2xmrTHmSF8Bhi7776Vbz44ouQJAmLFi3CihUrtO2LKEQwwFKlMGfOHOzduxewG2HOaAQJigZOCEcDo1d4pdKCqUNBRETBySDpMxobbG2OXiHWTZB97q6ZuO+++wAAEyZM4K11qFJggKWwd/ToUXzzzTcALk0dtpsvP+hu1NVmd1y/6g93o67BOBJbEYKtI0FERNqVZfumV4itqPbH3YhpIKOxynKcfQo3ZS94dx9SU1ORlZWFzz77zM/KEoUeBlgKa3a7HePHj4fFYnFMHc5PdjxQTqOuQXUdbHlPI+aUYSIiCpQ/IdZbG+lHO6THKsI++RNi3b0uN6OxEgx45plnIEkSfvvtN2zZskWHihIFLwZYCmuLFi3CP//84zp1WK9rXQGOsHrC4EpEFL7Kq+3Tc0pxMLVLekwpLjEa+/TtU9G/f38AwPvvv4+ioiJt+yAKYgywFLays7MvrzqcXQcGW4T6UVdf04g5PdizYOokEBFR6AuiVYp142tKsZfVh2UlRmNHjBiB5ORknDx5EjNnztSpokTBhwGWwtbXX3+NrKwsSJZomHKrV8yoq15BN1SmEQdT54CIiPRXUSdvPYVYf+vjoZ3SbfqwmuCp5CnEqn1ditHYgVe9gtGjRwNwLF55+vRp/+pCFCIYYCks7d+/Hz/99BMAIPJCPUi2iguRulwHG+yCbXoWERGFn3CeUqzTSsVvP/Ajrr32WhQXF+Orr77Sp35EQYYBlsKOEAKffvop7HY7jHlVYCyKD6wg5TRiLWecw30UNpg6AUREVHaC5dIZZ4jVWp9L7Zduo682jSHUGWL9HcV1EgKSAB5//HFIkoRly5Zh165d2upEFIQYYCnsbNq0Cdu2bQOEBHNG3cALci72FCwNNhERETkE43WxepwgttogCgs1FTGq+8e45ZZbAACffvopBPsxFGYYYCmsCCEwefJkAIApJwUGm9nHMzwWFFzBVa/pTnpNvyIiosonmGbc2IU+baPdDmGQIPRoG3WccSU0riL8r3/9C9HR0di9ezdWrFihvU5EQYQBlsLKihUrsG/fPsBugPl8cmCFKBsgu4/ViFWS7BoaNb06DAyuRESkVbBdPwroVh9NIVY57VdDiBUFBXIZWkLs/Ve8iMGDBwMApk2bBrsOfRmiYMEAS2HDZrPh66+/BgCYLlSFZDf5V4AQjrBasuHRY0pQOIfXYBqpJiKi8lGRIdZdu1zRIbZkWxjoaKzyOZdCbKBB9u6770ZMTAwOHz6M1atXB1QGUTBigKWwsWrVKhw/fhywGRBxsap/T/bW0FTEKKy3M9z+NogceSUiorIQ6iOxHtp2v6cUe1t0yY82Wx59Lfn8AEdj7079DwYMGAAAmD59Oq+FpbDBAEthQQiB7777DgBgyqgCyW6EsFgAi0XNk303MOU5CqumAVZTVnle78pGkYiocirvEOurPVY7xVnFiWnVIdZXG+jPPV29PKY2xCoXgRo0aBCio6Nx4MABjsJS2GCApbCwY8cO7N27F7BL6kdfPU0ZLkM+R2FDYcqwJwyxRESVU7CNxALlN6VY7S1v9FjgKYApxYObPIO77roLADB79mxt+ycKEgywFBbk0desREi2y9e+ehyF9bch0Wkascd9BrIohqeyOGWYiIjKW3ks7uTvbChP9fGzPfc6pdjfUOphe7fThz0938torLtb8AwYMAAmkwm7du1ynOwnCnEMsBTyjh49ivXr1wMCMF2o5vsJgZ4F1WMaMdyMwurZ4Fd0eOUoLBFR5RZso7E61qdUiFU7+lqqIDdtZQBBWO1I7P1XvIibbroJADBv3jz/9kMUhBhgKeT9/PPPAABjbhwMltL3fZVHYbVOGS6LUVitDauzLN7flYiIgkVZhFgtJ5GVo8Ma23GXEKvlpK3iuapHX92UoZxS7G701WngwIEAgOXLl+PChQuB7Y8oSDDAUkgrKirCb7/9BsCxeJMnQq+bi1ttFX9f2GAXrq+LiIjU0zPE6jQDStfrYgMdfXUpSEDk5mkPwipGY8fc+AFatWoFq9WKJUuWBL4/oiDAAEsh7a+//kJOTg4kiwmGvFj3G1msELl5Xs9MlitJcS2NXmFPr8ZdD8E2fYyIiMpfMJ7MtNt1aaMkZ3jVo70TdsBm01yMPTML9qxsr9v07dsXALBo0SLeUodCGgMshbTFixcDAEyZSZBQ+toUUVgEYbPp25BqGYWV/Ly3nIryZBUdYstjAQ8iIqpc9GrblO22Hm2V89IdDWWJvPzL/9EYYoVdQNgF7FnZHoPsx8MXIioqCsePH8euXbs07Y+oIjHAUsg6f/48tm3bBgAwZiW6PmixXg6ul8KrKPRv6XnduQuvgU5tDrawGEx1ISKiihUKs4sCbEelklOHtYRYUeJkuM0WUJBVBlZlkC1JshvRvXt3AJAvvyIKRQywFLKWL18OIQQM+dGuizcpw6uSXtfBAv6Pwuo58uqtoayIUViGVyIicgrGqane2mu9RmP9LMdl9LUkP0OscNP2ewqxvXv3BgCsXLkSVqsO1/ESVQAGWApZy5YtAwAYsxMu/9BTeL1E11FYtSHWV3j1J1iraSDLM8QyvBIRkZOe4bUspg57orItKzX6quRHiBV5+aVHX0tSGWK9XffqLsS+cPOXSExMRFZWFrZv365qH0TBhgGWQtK5c+ewZ88ex71fsxPUX+8qBERBYfks6CRJEEaDupFXNSE22MJisNWHiIjCQxDOJvIaXp2cIdZX++grvDr5CLH2rGy3o6+uu3K9LlaChC5dugAA/vzzT3X1IAoyDLAUktavXw8AMBREQypEqetdvSqPBZ3KcrEmNcq68Wd4JSIipVCbOuxOOSzu5HXqsDteQqyv8KrcTjka261bNwDA6tWrYdfj/vZE5YwBlkLSmjVrAADGrJiAVhkWhUX6jcKWDLGBhld3AVzLYk1lFWIZXomISClUpw6746bdVTX6WpKbEKtq6rA7bhZ38nXLHHecIfZ/t05GdHQ0MjIycPDgQf/rQ1TBGGAp5BQVFWHLli0AAENmVGANpxD6hlgnrSOvyhAbbEEx2FY+JiKiiheM4VUPl9q7gMKrU8kQG0h4VboUYtVMHfZE2AVEVg7atm0LANi4caO2OhFVAAZYCjl79uxBUVERYDFCKogIvKAymEpcLisN+yOYOgNERESe6Nle6TUtVscViv2eOuyJzRZweHUSdoEOHToAYICl0MQASyHHuWqeMScKEjQ0LpKkz6rEkgQYHB8lyaZToxmM1xIREREpBWNbJYRuJ4Elq01u3wNmFxAFBY4gazRqrpMotsBg1nDy/pL27dsDAHbv3u0YFCAKIQywFHKcAdaQExl4IYrGTRQVBx5ildNq7TrcZ9ZZlp73rNXrrHYwdlSIiKhiBOPUYWWdNF724nJCWmuIVdZLQ4gVxRa5PlpD7MPNnkOVKlVgsViwf/9+TWURlTcGWAopVqsVu3fvBgBI2ZGBrTBYskGz2wNriN2VJUTgo7Buygq60Bhs9SEiovIXjOHVkwBCrGRz0y8IJMQ6R19L0mEk1hliAwmyUoQJEiS0bt0aALBr1y7t9SEqRwywFFKOHz/umOpikyAVmiCEUB9ivTRiotji3yispzO7dkd9/A6xnuqmV4jVs4PAEEtERHoor7bJjxDrNrw6+RNineHVU1l+hlh59LVkffwcjZUiTPL3DLAUqhhgKaQ4p7lIeWb/rn/11XjZ7eqnEvualuRPiC3PlX0ZYomISKtgu7wFUFcntW2tr7IuhUavfIVXJ5Uh1m14LVGnQEZir7jiCgDAgQMH/H4uUUVigKWQ4gywhnyz/DOfo7BqGy01IVZt4FRzPaw/jWkwdhiIiKhyCcaTl/7UyUe769fsKV8hVm29fIRYn+FVUR9fIVY5+goA/+38LgDgzJkzyMvLU7cfoiDAAEsh5dChQwAAQ77rQdpjiPV3dNNbiPV3tNTb9bD+1isYQ2wwdmSIiKhsBON1r4GuX+Hux96mDnviLsR6uu7VGw8hVvh7D1ovIbZkeAUAyWZASkoKAODw4cP+7YuoAjHAUkg5efIkAEAqLH2ALhViA52a625Rp0Cm+nqaShxovbioExERVYRgDK9alGiHAwqvTsoQq3bqsDvuQmwg5bgJse7Cq1NqaioABlgKLQywFDIKCwtx7tw5AIBU6Plg7NhA23Wl8qJOznu8BhyGS4RYrde7clEnIiIqT8EaXnW6bZ2m8OpkMGgLr05GIyA5uuZ+j76WqI/aa2Lr1asHADh16lTg+yMqZwywFDLS0tIc31gNkGweptvoNs3WDlitgM2mQ1lBOHJKRETkS7C2XXrVS5J0vDxHhyAMAAYJ9jyNQRiQQ6y30VcAqFmzJgDHdbBEoYIBlkJGeno6AEAq8nwwlnRa0VcyGgGjEcJicQRZLYyOEVxJjyCr14rFhnJa+ZiIiMgp2Noeux3CqENXuNjimG0V4f9KwKWqlJ0LCDtEcbHmsvZ+1hr7Pr/S6za1atUCAJw+fVrz/ojKCwMshYwLFy4AACSL+z9byTndF9AUFCWjEXCesRRCW4g1KqYf6xletZSldweivG4DRERE5aesRl+1tkF6jpg6i9QaYu2XLxPSEmKd4VWul4YQu/fjlkiqloukarnY95nnEPta/48BAGfPng14X0TljQGWQsbFixcBAJLFdfqwJEmO0FlyNcAAGjmX8KooJ6AQayx97WzAo7DuQmJAizswvBIRkQ9lPXU40LaoDMKrXHSgIbbkbW4CDLElw6tcrwBC7N6PWyIpOVf+f1KyI8S6C7LOQYGsrCz9LsMiKmMMsBQynCOwUARYl1FXd/w4GLsNr8py/DmwuwmvznL8DrHeQqI/5TC8EhGRL+UVYvxtk8owvMq78DfEXpo6XEogIdZNeJUf8iPElgyvTknJuY4g+2mJEGt19KlsNhtyc0s/jygYMcBSyHDeZFuyOv5sfYZXJxWNntfw6izGalU3CuspvCrqozrEqgmJaspheCUiIl/KewRObdtUDuFV3pXaEOspvDr5EWLt2b6Do5oQ6ym8KiWluIZYSUiAzfF7yM7O9rkPomDAAEsho8B5Y3C7pD68Onlp/NSEV2cZPqcS+wqvirJ8hlh/QqK3chheiYjIl4qaPuqrjdKrXn6U4zPE+gqvTipCrKepw27r5SPE+gqv8nYlQixsjtfLEVgKFQywFDIKCwsBAJLd4F949UJ1eHXyFmLVhldFWR5DbCAh0V05DK9ERORLRV/7WNarEwdwD3WPIVZteHXyEmL9Ca9yvTyE2L2TWvpVjjLESnbH+1+sw8rHROWBAZZChhxghft7wPpUovHyO7wqyikVYv0Nr4qySoVYLSFRWQ7DKxER+VLR4dXJXZulR90CCK/yU0uGWH/Dq5ObEBtIeJXrVSJo7p3UEkkp/o+eyiH20ttj1XrbQKJywgBLIUOX1fEulRFweFWUI4fYQMOroiw5xOoREsuiM8LwSkQUfoIlvDopQ2wFh1e5CGeIDTS8OilCrJbwKtfrUojd+1GrgMKrU1JKLkS0I7iuXr1aU52IygsDLIUMSacQJaxWCJtNh4IEhN2uWyMr2YOsI+HE8EpEFH6CLbwqVcB1rz7L0RJenSQJorBIc3h1OvVIGyRVz9GlLACwWCy+NyIKAgywFDIMzutetQx22myAzQZRbIEoee82f5lMkEwmwGbX3rBJkuMsrx6Nrd6BM5g7OURE5L9gPa47T+Tq1Y7pUI5kvXTC2+z/vV1LsmfnOE5YmzTMALvkzGMdUJwI5O2uorms6DhHH6Z9+/aayyIqDwywFDKcAfb8rQ0Cer4zvDr+Y4coLAo8xDrDK+DoCGgJsc7wKldUQ8dC2VjrOaIbrJ0dIiLyT7Aez0u2WXqEWEnSVI4cXp1laQixzvAKADAYNIXYM491QFGS43tjoaQpxH7Q+nskxjumEMfHxwdcDlF5YoClkBETEwMAuKvjKhwf3cav57qEV/mHAYZYZXiVywowxJYMr8ry/OWukWaIJSIip2A9jntqqyowxLqEV2VZAYRYl/DqFGCIVYZXp0BD7Aetv0cDUzYKCxz9EGc/iyjYMcBSyHAeWJMtOXj9oVl+h1i3/A2x7sKrXJafIdZTeFWWp5a3xpkhloiIgvX4XR7rP/gZYt2GV2VZfoRYe26e5/fezxDrLrw6GQv9C+nO8AoAhYUMsBRaGGApZMTFxQEA8vMNuCbylCPEjmnj83luR19dNlAZYr2FV7kslSHWV3hVlueLmkaZIZaIqPIK1uO2mrZJz+thVZTlNbwqy1IRYu25ed77H4DqEOstvDrl/aNuFFYZXu12oKjI8b4wwFKo0H4VOVE5cV6bkZvruA/sNZGn8PqDs/CyuB/1P9ru9jk+w6u8oSPEAoCkdaEGZ4gFAIObkKo2vCrL89To+tOw24V+94bV65Y/RERUtkI5vDpJkr6LHHooS7L5cRmQM8R6OPmtKrw6uesrKJwZ6Tu8AoCxQELeP1UQ2zIDVTNycdcf29Fu1zHEFBQjP9qMTa0boO2o46htypefk5NjhBASJElCQkKCuvoSVTAGWAoZycnJAIDMjMt/ts6R2G2DG2DB3Btdgqzq8Co/wUuIVTP66lKWhxDrb3hVllcyMAYSIBliiYgqj3AIr05lHGIlWwC3xfMQYv0Kr86iTCYIq7XUz8+M7IAiPy5vjcm24PlxSzFg60ZEWF0DeaftRyDmAtl3R+PCqwkQUZLcp6pSpQpMOqyOTFQe+JdKISMlJQUAcPGi65/tNZGncE3kKbR96BhehmM01u/w6uQuxPobXuWyfIzEBlKes+HVEhwZYomIwl84hVenMgqxAYXXkmVdEkh4BSBPJVaGWH/Da6SlGJO/nYzrjh3yuI1kARK/K4D5sBWnZ1RFZoZjVlu1atX8rzNRBeE1sBQynAE246L7MClfFzu6TWCNh5PymthAw6tcluKa2EBHX0uWpwdeE0tEFL6C9bisR9uj8zWxmsKr06UT3gGHVyfF9bD+hlcAePG3hbju2CH4ejUCQPR6C6q9mg2jmAjg8iw3olDAAEsho1atWgCArEwTCj2stvfftXejwcJz2m8SLjTc17VUWY6mROg16klERORJOIdXvQmh34iuENrCq5PBAGG1+h1ek3Ozcdf2TY7q+NjW+XjCDwU4sW8fAKBOnTr+7ZCoAjHAUshISEhAUlISAODMabPbbaSLEcDps5CiIjWFWMlshhQVCdhsjpFYjWdUYTBAsuvUUOpBzzDNKcRERMEhWNqYkoJx1o9dx0t8iooBAFJsrKZi7AUFsBcUAABSpxz167kDt25AhN3P624twMkNGwAA9evX9+u5RBWJAZZCSoMGDQAAp0+VDrA9/noSzb++KP9fU4hVLrcv7I5rUgK8pgUmo1yW5hAb4A3Zy0ww1YWIqDJjeFVPMcNKGCRtIbao+PK1tEZDwCHWXlDgMiJsTTvl1/Pbe7nu1Zvj588DAOrVqxfQ84kqAgMshRTnGcJTaa4BtsdfT6LFu3nAqXSXn0tms98hVh59LcHvEFsivMrlBxpi9Qqveo2+MrwSEQUHhlf13FweFHCIVYRXp0BCrBxeS/BnFDa2uMivfQJAocGA05feD+cAAVEoYIClkNK0aVMAwNEjlwOmHF7TzpR+gkHyK8RKZjOk6CiP4cyvEGvwHDj9DrHBFl6JiCg4MLyq52VtC79DrJvw6iT5sWCjp/AKOEZh1YbYPHPpE+++HIyNhU2SULVqVS7iRCGFAZZCSosWLQAARw5Hycd76YLZfXh1UhlifYVXJ1Uh9tJ1r173ZxfqVj8MxvDK0VcioooXjOHVLkIuvMq7UtNOFhV7Da9OakZhvYVXJ2vaKaROPeazrJp3XvS5TUn74uMBXO5bEYUKBlgKKY0bN0ZERATyco04d86EHiueRPMpGb6f6CPEqg2vTl5DrIepw56Uy+JODK9EROElWMOrnsoxvMq8nXx2BlcV9fI1lVhNeHWynkzzGmI/GfYlUofGQUSoKk62NyEBANC8eXP/nkhUwTTea4SofEVERKBJkybYs2cPhv9fP7RY4GHqsDvOEGs2QxQXu9wsPJBRTmG1OpaiNxoV+/AvvMq7twsIA0o/j4s2ERFRSQyv6vl5SzxhkCDBUPp5KkZdS5KMBiA2FiIvz7VKfoRXJ+vJNACu16l+MuxLAECPaBsQbQIGJQDfZkPA+610nI//Xbs2YLGgZcuWftWFqKJxBJZCTps2bQAANZacVR9enQxSqdFYT4s2qVFqJNbLda++lBqJDbapwwyvREQVLxjDq970eI32wO/nXup62ADCq1PJ62EDCa9OylHYj4ZORo9omyO8XiLeSIboFKXqPrCnOiXgtMUCo9GIK6+8MqD6EFUUBlgKOddccw0AwC6dD7yQSyHWEBfr19Rhd4TV6rhXLKD5fnJyiA22kVciIqp4wRheg/Ga1wCDq0s1nCFWQ3h1kmJjL9/jVUNZzqnEHw2djN4xltIbRBsgvq0NcX+Cx+nEIgIQ9ydgx3MzATiuf42JiQm4TkQVgVOIKeRcddVVMBqNsJmtsEcUw2ApfU9YVZwjk3YBGLWFRcl4adEmZ/gMFlx1mIgoPARjeNWbXq9RkvQpS+X1rj5ZrTDExMBeYipxIGxn0t2HV6doA8R71YFnqkJ8lw1pbQGQZwdiDRDXRwP3JQApJmydshMA0LZtW811IipvDLAUcqKjo9GqVSv8/fffsCUWwHA+wABrFxBCQJIuNU5+LHtfiuSYmgwhHGd+AxyJFcopyMEWhomIqGIEc3g1SPqNwOoRPHV6r+S7BESaHaOwgVanqBgQdkgROnS5DY41N3o8MBzLZk7xvm2KCRhdFWJ06Ye6jngESWIVAKB9+/ba60VUzjiFmELSDTfcAACwxee6LqKk1qXwCsDxr80GFFsAm//TjiSTCVCubuwMsX6Sw6sytOp19lcrBmkioooRDG2AL8Gy0n3JdSQC2b3N7nqLO0lyhNhAqnMpvDoZVNxaxy2DETAYIV16nyNW7MBNQ4cHVFSXkSMQ9fduZGVlIT4+nte/UkhigKWQ1LlzZwCAPSYPwmgPLMQqCCEuB1k/QqxkMgEREaUb7wBDrMcGN5AODBdvIiIKbaEQXp0q+pIVd++Vv3cEcAbXkmUF0A6WDK8AIEWY/A+xl4KrVOL9Nf+1w+86dRk5AnFrj+CuZzsCADp27AiTh9sLEgUzBlgKSfXq1UPDhg0BCbDF5TkaF5NJXZBVjL6W5HeIdU4ddl+Yoyy1N0/31UD605Gp6I4EERFpE0rhVW/+BkYd3iuXUVd3VI7CiqJit+FV3o8/U4kVo67uqB2F7TJyhBxeBQRWrlwJALj++uvV14UoiDDAUsjq0qULAMCakAlIhktfkvcQ6yW8OqkNsaWmDnsu0GuIdTt12FtZ5Ymjr0RE5StYLh0JRHlPJVbzXqkox2d4dZbjI8TKwdVDeHVSNQrrI7wCjlHYmx78l9dtujzmCK5xa48AAOxRBUhLS0NUVBQ6derkux5EQYgBlkJW7969AQD22FwIo9XxQzUhVgVfIdbj1GHPBXofifUnKPpqZDl1mIgoNIVqcFUqrxlA/rxXXtozVeFVRTneRl1LFeNrKrGK8OpkXr7d42NdHhuBuDVHXH5221jHqsM33ngjb59DIYsBlkJW/fr10aJFC0ACrPFZlx/wFGJVjL4qeV3cydvUYc8FlgqxqqYOeyrL3Wvh1GEiotAUDuHVqaxPpOo0Zdiv8OrkZhTWn/Aq79/dVOISizWp1f3hR0r97MYnHi0VXgUEli9fDgDo1auXX/sgCia8cptCWp8+fbB3715YEzNgyqwKCZcO+pIBgN0xxdcZRAPgDLyS8/lGg/qpw+4LLH2bHa0rLpbFSClHX4mIyk84hVe9lby1TqDvlaKcgIKrshyFQMKrkyE29vK9YQMIrk6RS7fJ39/4xKMAgPhVh0ttZ4vLQUZGBqpUqYJ27doFtC+iYMARWAppPXv2hNlshogqhD2qwPVB5XWxksGv0deSXKYUBzL66lqYI8TqFT6dr4tTh4mIQk+4hteymBGk9b2SJG3h1SnS7HOxJlXVcY7CagivTt2GP4LOox5F/KrDbsMrAFzVrzoA4NZbb+XqwxTSGGAppCUmJuKmm24CAFiTLrrfSDI4GphAbmujIIQAjAbH6KkON20XxiD9+IVrZ4qIKNiE8/FWh3YSwOX3SI/3Sq8FsuwCUlSkpvAKAMJmhyEqSnN4BYDI3zYjYaX74AoA9ogibN68GZIk4fbbb9e8P6KKFKQ9aCL1+vfvDwCwJWRdXsxJyWqFsFz6uT3wICuZIyBFRl6ehqSlcXaOcurRmDrLsmusk1I4d6qIiKhslUVbpPVyG3m2ksaur3MEV+tikbZL/RGjEZJZ3S163Jdjg7DZACFgz8jwuF2/568BAHTo0AG1a9cOeH9EwYABlkJey5YtLy3mJNyPwgrFjcmdDVggIbbkrW4CDbGS5Dr6qvctExhiiYiCX7geY4OtDSpRjtAy2lli+rEUHR1YlWwlTqYHGM6dwdVZJ2F1cxIfgDDY8NNPPwEA7rrrroD2RRRMGGApLAwePBgAYKlyAUJSLNikHH11CiDEyqOvJQUSYt01VCUDtpaygODrQBAR0WXheGwtj1lA/gY9T+X4Owprs5cKrwACGoUtFV4v8XcUVg6vJbgbhb3/3c4oKChAo0aN0LFjR7/2QxSMGGApLHTr1g116tQBjDZYkxQHb+FhsQZliFUTZEuOvpYsy2ZX13CXHH0tWY6eo7F6diTCsbNFRFQRwvF4GoztjZdy/BqFtdm91kvtKKyw2T2GV0dB6uqknDLs9vESo7BCsmPevHkAgCFDhkDiQo0UBhhgKSwYjUYMGTIEAGCtch5CsrsffVXSOqXYXXm+GnE1DYfaBlxNWbwulogoOITrycDybmN8tX1q32c1o7BqVixWMQorB1eti0mWmDLsiXIUduQXNyMjIwM1a9aUF70kCnUMsBQ2evfujeTkZIgIK6wJmZ5HX0vyEWI9Th/2VJanxtzb6Ku7crw1Uv6eQWWIJSKqOOF67Ay2tsWPcoRB8hxiPU0Z9sDbKKzXUdeS5XiZRuxt1LXUtpdGYYVkx7fffgvAcakVb51D4YIBlsKG2WzGvffeCwCwVjvrGIVVy9uUYm/Thz2V5W5KcSDX7gTrlGIiIlInXI+ZFdmmeFpLwt9du5tK7GPKsFtuRmF9Thl2x83r8jVl2Jvhk25Ceno6UlJScNttt/n9fKJgxQBLYaVfv36oWbMmRIQVlioX/HuymynFfo2+uivP2cD7M/rqrV5aBeN1SkRE4Socj5N6XZpSTte7+sWPUdeSlKOwWqYMK0dh1U4ZdseWk4GZM2cCAB566CFEBtqXIQpCDLAUVsxmM/71r38BAKw1MiGMNh/PcEMZYv0dfXVXlk2n62udX1oXYOB1sUREZS8cj4/B1HY478mutSyDwe8pw24ZjYGNupZ0qY0PdNTVafCkHsjKykL9+vVx8803B14foiDEAEthp2fPnmjatClgFLDUzAysEGejEUxnh8OxM0REFI7C8XitV3gNRnoEYSF0WahJMps1h1dhtuH7778HADzyyCO89pXCDgMshR2DwYBHH30UAGCrngN7ZHFA5Uhms9/3ZXPLaACMRkhaG3/naLAeHSMtN3InIiLPGF590+NWLjrMSJLb5Qh9Ap4hPk7T8yWzGTBIMMbHayqnywttUFhYiFatWqFLly6ayiIKRgywFJbat2+PTp06AZKApUEGYPL/ZuMwSAHdpNwbzSHWKViuQeX95IiILguG47Ke9LzkRE8a32fJLlzbY61tmbM+AfYZ5BPmzpPLAQZqY0ICUMuEpUuXQpIkjBkzhvd9pbDEAEthSZIkjB49GmazGfa4fNiq5EOqiCk0l0ZfXepWsuFUw9O1uIE04hx9JSLSV7CcVNRTWQfXQIKVu/fZz3I8tr+BhEY39fF3FFYOrhrbZmNCAkSEEbV6RABwLGrZvHlzTWUSBSsGWApbtWvXxtChQwEAxbXSISIAKTJSVZCVIiP1mT7sbR/BtBhGIHhWl4go/IIrEJajroCPdjeQW925o3IUttSoa8liEhJUlWNMSHBsG2HCQx/fhKNHjyIxMVFe0JIoHDHAUli75557UK9ePcBkg6XGeXlasM8QWwbTh90JuynFRESVSTged8szvKoNjXpPGdZKa33UjLqqGBF2BldEmGCPKMY333wDABg5ciQSVAZgolDEAEthzWw2Y+zYsQAAa9UM2GLyLodYlaOxZc1nw+rPrXx8Nap6TR/m6CsRVXbhFl6D8XpXtSdnvbRJfgVXX6FRh5PF3kZd1VKOugKAgECLgfEoKChAmzZteNscCnsMsBT2rr32WvTr1w8AUFzrNITBdvnMp5vRWN2mD7u5/tWbkJ9STERUWYTbcTbYgitQMaOu3k7O+lEfd9fB+poy7I67acTKUVcna5UMbN++HdHR0XjuuedgMLB7T+GNf+FUKYwcORK1atWCMFtQXP3s5QfcjcaW0/Rhd3Sb5sQpxUREZSPcjq0VHV71WqBQWaTe04X9rU/JxRsDXahJEVJLjro62SOKYWiQCcDR16ldu7Z/+yAKQQywVCnExMTg+eefhyRJsFXJhC029/KDXkZjK0qZjMZy+jARkTYMr2VLy8nXS21TsF3rqteU4ZKjroBj6nCT/tEoKirCtddeizvuuEPTfohCBQMsVRpt2rTBwIEDAQBFtU9BmCyuGzhHXk2moAhpciOs1/3pgq2jQkQUKsJxVkuwtQllvcqwWiajvte6agivktnsdtTVaeBb7bFr1y7ExMTg2Wef5dRhqjT4l06VyogRI9C4cWPAZHOEWJRooAyS46bfBj8WTnLn0vWvItjuucrpyURE/guCk5q6C4b2KRjbE60h0GAADAZIMdGaipHMZsdJdQ/h1Rabi1mzZgEAnnnmGdSsWVPT/ohCCQMsVSqRkZF47bXXEB0dDXtsPizJ5z1vbJAcQTTAjoszvFZ4iC1Zf71Wmgy2TgcREYWOMmhDKry9VYbfAIOwPO3Yy1ocwmRBzNW5EELgjjvuwE033RTQvohCFQMsVTr169fH008/DQCwJp933FrHG62jsXA0qhXesJbEEEtEpF44jsJWlLJqOyrqd3Rp1FUrObh6C68QuGJwAjIyMpCamopRo0Zp3i9RqGGApUqpd+/euO222wAJKKqTBnvJ62FL0jga6+RPiBUGSZcG0StOKSYiqrzK+8Sqt/YimE4Q+LofrJJOwdXXqKtT/9fbYuvWrYiKisJrr72GyMhIzfsnCjWSEOx5UuVUVFSEkSNH4uDBg5AKohB1rAEko8oVA+0+QpvRAOGjAfS12IRuAVZtp0CPjkwwdUCIiMpCuHWbymsxJzXvmx4LOdnsmssAABQVe39cRfss8vO9Pi7fc95bcLXZIIoddbEmZKG4zikAwCuvvIIePXr4rANROOIILFVakZGRePPNN5GYmAgRXYji2qcACeqCnE7TioMKR2OJiEhv4dgulNN0YQDy47aoAqCRY92O+++/n+GVKjUGWKrUatWqhXHjxsFoNMKWkANLlbPqn6zDtOIyvzbW37pxgSciIu/CbaZJWbZBFdAWlGmbqsO1rv5MF3YSRisSOuShuLgYnTp1wvDhwzXVgSjUMcBSpXf11Vdj7NixAABLtXRYozP8KyAcF3liiCUiIi0qqg0oixMM5bhIU0lCsqNR/wicO3cO9evXx0svvQSjH88nCkcMsEQAbr/9dgwYMAAAUFTtMGzmHP8KqIBFnsqcHqOx4Th1jIgo3EZh9aTluB+M72s5L9KkJCDQ5t4Y/PPPP4iPj8fbb7+NuLg4zfUhCnVcxInoEqvViv/9739Yu3YtYDciOr0FDNYAbkRuF45FnEwaz5BK2kd2dekM6BWqg7FjQkQUiHDrOum1kJMe70uwLORksWovw3qpjABGTAUEiqudgDX+PMxmMz744ANceeWV2utEFAY4Akt0iclkwquvvopWrVoBBhsKUw7AbvSxCqE7Okwp1k24dbKIiCpauB1Xy2sV4srGaPB7urCSJfEMrPHnIUkSXn75ZYZXIgUGWCKFqKgojB8/HvXr14cwFaMw5QCEpMNZWCIiCg5aprgyvJIvRoPmS4osiRdhqXIaADB69Gh06dJFr9oRhQUGWKISEhMTMWHCBFSrVg0iouBSiLX5X5AeU4CJiEg/WgIowyv54gyuGtp+a0ImLFWPAQCGDBmCu+66S6/aEYUNBlgiN2rWrIkJEyYgISEB9sg8R4g1BHhNDUMsEVHFKxlA1QbScFyMjuFVXzqMuiLCBGt8NqwpxyCEQP/+/TFixAj96kgURhhgiTxo3Lgx3n//fcTFxcEemYvC5IMQRhFYA8XRWCKiisMpww563eubHJTBNdA2PsLkCK9RmbBWPwKbzYZbb70VY8aMgcR+A5FbDLBEXjRv3hwTJkxAdHQ07JHZKKp6EMIAx7L6DLJERMGN17texuCqL52CKyQJ1qgs2Gs6wmvPnj3x3//+FwYdbt9DFK746SDyoWXLlnjvvfcQFRUFW1QWiqrud0wn9hZihfC+jH9lC7GV7fUSUcVTE0A9bRNO4bU8R10rw7Fe7XRhq5e1My4FV0gSrJEZsNc8DIvFgi5duuCFF16AMcCVi4kqCwZYIhWuuuoqjB8/Xg6xhVX3OVYnNhjcB1k1Z/05GktEVDa4WJMDR1314+90YXd/R4pRVwCwRl2AtfohOby+8sorMJlMOlecKPxIQoTTkZqobO3cuRPPPPMM8vLyYCiORdSFFpDEpcbGGVqdHymDAcLkx1lUdx9FPUKu1ucbdAjZDOpEVF787dYoj0/h1iWqiACr9T3U4XfgdQaUGjbb5ffOeGmsx992zKK4BZ+zL6CYFmyJPgdrtaOw2+3o1asXnn/+eYZXIpUYYIn8tG/fPvznP/9BVlYWJEs0oi9cAckecXkDZ4iVJP8CrPL5TgywRETqsUvjUJEjr+EQYJ3hU8vKwhar2+AKAJaYdBQnHQUA3HbbbXj66ac5bZjIDwywRAE4evQonnrqKVy4cAGSNRJRF1rAYIty3cgZYo0BzNR3fiyDIcAC2kMsAywRlTV2ZxwqetpwBQdYzeEVAOyXygi07bLbHc8tEVwFBCzxabDEpwEABg4ciFGjRnG1YSI/McASBSgtLQ1PPfUUzpw5A8lmQuTF5jBa4ly2EYYgCKDBEGD1qgcRkTvsyjhoCa8GSXv41eP3oKUMSYLkbfEkX7u+1NZpCcHCaHDUoVR4taM46SisMecAAMOGDcPDDz/M8EoUAAZYIg0uXLiAZ599Fvv37weEAZEXm8BUVEV+XBgunYHV2CBDkgIvgwGWiMIduzIOgQRQ5fG9IgOss50LpAxF+xJogHWecJZs9oDqIBTXypYMwEKyoajKAdiismAwGPDUU0+hX79+AdWTiLgKMZEm1apVw6RJk3DdddcBkh1FVffDEpMuPy7ZL18PG3CAU04nJiKi0nh8DIweJyf1oOX3p/F3LwyS62wpP8OrMBoc4dXDyWZhsKBetxzYorIQGRmJN998k+GVSCOOwBLpwGq1YsKECVi0aBEAICKnFiJy6kGCdHkUVsnfj52W53MElogqA3Zn1I+gejqml/cIbCC3oPP0XOePVY7AOqcLlyxH9fM9rE6sHH21mfKQeOU5pKenIzExEe+88w5atmypqnwi8owBlkgnQghMmzYN33zzDQDAWJiEyIzGgBRROoBefpK6wj2N4Gps6P3ChZyIKJixO6MugHo7lpdngA00vHprS+x2x8wnLzwFVwCqpg97Cq4uZQCwRl2Eoc5JFBQUoE6dOnj33XdRr149r2UTkToMsEQ6W7p0KcaPH4/i4mJIlihEXWwOCTHeG101H0NPIVjN8xlgiagyqOxdGm/hTc0xvDwCrKe2wFeAVdGG+Bo99bWwos/n+7qtjhCA3Q5L3ClYEk4CANq1a4dXX30VCQkJXssmIvUYYInKwN69e/Hiiy/i3LlzgN2IyMxmMFqreH+Sr4+itwDr6/kMsERUGVT2Lo2nAKr2+F2WAdZXG+AtwKpsPzwFUG+jrqqe72PUVWazoijpMGwxFwAAAwYMwOOPPw6TyeT9eUTkFwZYojJy/vx5vPTSS9i9ezcggIjcBjAV1IYEFY24O2oXgtLYAfCI18ESUbCr7F2akgHU3+O2lgCr9SSquwDrT5vhZvqw2uAKuJ8+rDq4ArAbClC3Uy4OHjwIo9GIMWPGcLEmojLCAEtUhoqKivD+++/jt99+AwAYC6vCnNMEklBxNtbdR9PXKKy353MUlojCXWXv0igDXHmGV8D9e6/2mF8yvAbQVihHT/0Jrm6f70dwBQCr+QLM9U4hNzcXSUlJeO2119C2bVvV+yYi/zDAEpUxIQT+7//+Dx9//DEsFgskaxQis5vDYI1VW8Dl7wO5HY/GToELBlgiCmaVvUtjF4Efp/UOsP4c75UBNpB24tLoayDBFbg8+upvcBUQsMQdhzX2FACgdevWeO2115CSkuLX/onIPwywROVkz549ePnll5Geng4IA8w5jWAqrKG+AD3uJ8sAS0ThrDJ3abSEV+fztdASQDX+3iSrzecCTar278fzhaEYRYkHYDdnAwDuvvtujBw5kte7EpUDBliicpSVlYU333wT69evBwAYC1Jgzk2FJIz+FVRRQZDXwRJRsGJ3RhutAVYLrb87u71c2xabOQMxqenIyMhAdHQ0nnvuOXTv3r3c9k9U2THAEpUzu92O7777Dl9//TXsdjskWyTMWc1gtMarL4QBlojoMnZltKnI8Apo+/0F+lxnW+TH8wXssMQdgzX2DAAgNTUVr7/+OurXrx9YHYgoIAywRBXk77//xhtvvHFpSrGEiLx6MOXX8b1KMaDfVOBAOi2cRkxEwYZdGW1CefQ1kOcr2yGVz7cb81G3Yx4OHjwIwHGLnH//+9+IjIz0f/9EpAkDLFEFysnJwcSJE7Fs2TIAgKE4AebspjDYfTSIel7L6m/HhaOwRBRM2I3RJpRHX/19vru2x8fzBQSs0WdhSElDUVERkpKS8Pzzz6NTp05+VpSI9MIAS1TBhBBYsmQJPvjgAxQUFAB2I8y5jWAsTPE8GlsWizGp7cQwwBJRsGAXRrvKEmA9tTtenm83FKE44RDskVkAgPbt2+P5559HcnKyv7UkIh0xwBIFibS0NIwbNw67d+8GABiKqsCc0xgGu7n0xmW1mrCajoweARZgiCUibdh90a6iwytQ9gHWV1vj5vkCAraoczDXSUdubi7MZjNGjBiBgQMHwuDP/diJqEwwwBIFEavVirlz52Lq1KmwWCyeR2P1CH/egqivTg1HYYmoIrHroo+KDrAVHV7dlCEMxShKOAx7ZAYAoGXLlnj++efRoEGDQGtJRDpjgCUKQkeOHMHbb7+NvXv3AgCMl0ZjJedobFkHWCdPnRsGWCKqKOy26KOiwytQdgHWn/blUhmOUdfziKybjpycHEREROChhx7CPffcw3u7EgUZBliiIGW1WjFnzhxMnToVVqsVsBsRkdsApsIajtHYsppGXJK7Tg6nERNRRWCXRT/hGGD9bVMuPd9uLEBx/BH5WtdmzZrhhRdeQGpqqrb6EVGZYIAlCnKHDx/G+PHj5dFYgyUe5uxUGOxx2gr2N4SW7OxwFJaIyhO7K/oJh/BasowA2hMhbLDGnIZU7QyKi4thNpvx4IMPctSVKMgxwBKFAJvNhoULF+Krr75yrFQsJJgK6iAiry4kGAMrNNAA6uz4MMASUXlhV0Vf4RRgA2xHbKYcFMcfgojIBwBce+21ePrpp1G3bl3t9SKiMsUASxRCzp49i48++girVq0CAEi2KJhzU2EsrhJYgXpNBdaCIZaIfGFXRV/hEmAD2a1kgSX2OGyxZyGEQGJiIh5//HH06dMHEtsjopDAAEsUglatWoUPP/wQ586dA+BY5CkitxEM9mj/CmKAJaJQwK6KfrSEV2eboUcA1vI7lSS/ny8gYI1KR3Td88jOzgYA9OnTB48//jiSkpICrwsRlTsGWKIQlZ+fj6lTp2L+/Pmw2WyOacX5dRCR78e04mAIsE4MskTkDbsr+ggkfCrbiooMr8p2wo8ybKZsFMcfgYjIAwCkpqZizJgxaNOmTWD1IKIKxQBLFOKOHj2KSZMmYfPmzQAAyWZGRF5DGIuSXe8d604wBVgnBlkicofdFe38DZ/u2oiKCLDu2gUVZQhDMYpjj8EW7ZitFBcXh+HDh6Nfv35cpIkohDHAEoUBIQRWr16Njz/+GGfOnAHgWK04IrcRjNZ4z08MxgDrxCBLRCWxy6KN2vDpqW3Q69pZtb9Hb+2AlzIEbLDGnIIp5TwKCgogSRL69u2LESNGcLowURhggCUKI0VFRZgzZw5mzZqFoqIiAICxsBoi8hrCYI9y/6RgDrEAgywRXcYuS+DUhE9f7UF5jb6qOe67KUdAwBZ1FvGNMnHhwgUAQKtWrTBq1Ci0bNnS35oSUZBigCUKQ2fPnsWUKVPw22+/QQhx6bY7tRzXx4oI142DPcA6McgSEcAQGyhv4VNtO1DWAVbtcd5NGTZzJorjjkKYHLfFqV27Nh599FF069aNqwsThRkGWKIwdvDgQXz++efYtGmT4wd2IyLy68FUUPPyQk+hEmCd2BEhqtzYbfGfp+Dpz/G/LKcP+3tcV5RhM+XCEnsc9shMAEB8fDyGDRuG/v37w2w2a6goEQUrBliiSmDjxo347LPPcPjwYQCAZIuAKb8eTIU1IBlUrlgcbBhkiSovdl38owyfgZ60LKvR10CO5ULAbsx33M816iIAwGQy4a677sLQoUORkJCgsaJEFMwYYIkqCZvNhiVLluCbb75Beno6AECyRSIirx6Mlhq+VywOZgyzRJUPuy/qOIOnltk2ZTH6GuBx224ohCXmOOwx5yGEgCRJ6N27Nx566CHUrl1bn3oSUVBjgCWqZIqLi/HLL79gxowZuHjRceZaskUjIr8+jMUqbr0TzBhkiSoPdl98swt9LhPRK8BqqYKhCNaYkxBx5xz3PgfQpUsXDB8+HI0aNarg2hFReWKAJaqkCgsLsWDBAnz33XfIysoCAEjWGEQU1Kv4ICtJ2jqnDLJElQO7MGVPj/BqkAIuxzHiehJS/AVYrVYAQIcOHfCvf/0LLVq00F43Igo5DLBElVxeXh7mzZuHuXPnIjc3F8ClEdmCujAWpUCCofwrpQyggR6iGGKJKgd2Y8qWlgCrHP31sxy7MR+WmJNA7EV5xLVt27Z46KGH0KZNm8DrREQhjwGWiAAAOTk5+PHHH/HDDz8gOzsbwKVrZAvqwVhUvfyDbMkA6u+higGWqPKoqK6M8zgTzl2pQAKsu2nLKsuxG/NgiTkJe/QFOLuoHTp0wNChQ3HVVVf5XxciCjsMsETkIj8/HwsXLsTcuXORkZEBAJBsZpgKa8NUVBOSMJVPRTwFUH8OWQyxRJVDeXdl9JglEgr8Da+errdVUY7NlANrzEnYIi/KP7vhhhvwwAMPoGXLlv7Vg4jCGgMsEblVWFiIn3/+GbNnz8b58+cdP7QbYSqqCVNhbRjskWVfCV8BVM3hiyGWqHIo6+6Mu2NJuHeh1AZYXwtFeShHQMBmvghr9CnYzZdm/kgSunbtigceeABNmzb1p7ZEVEkwwBKRV0VFRfjjjz8wZ84cHD9+3PFDIcFYnIyIgjow2OLKbudqw6e3wxgDLFHloXeXxtvxI9y7T77Cqz+rG5coS8AGa9RZWKNPQZgKATju49qjRw8MGTIEDRs29LOyRFSZMMASkSp2ux3r16/H7NmzsWPHDvnnhuIkRBTWgcGSVDYrF/sbQN0d0hhiiSoPrd0aNceLytB18hRg/b0tj6IcIRXDEn0G1ujTgMGxonBcXBz69euHu+66CykpKYHWlogqEQZYIvLbP//8g7lz52LFihWw2+0AHLfgMRXWgqmoOiQY9dtZoOGz5KGNIZaocgikW+PP8aEydJvchddA7ydrF7Abc2GJPgNjYgaKi4sBADVr1sSgQYNw6623IiYmRkNliaiyYYAlooCdOnUKP/zwA3799VcUFjqmgTmuk60BU2EtGOzR+uxIa/gUggGWqDIpq+vjK0uXyRlgAw2tAATssEWchzX6NOwROfLPW7RogXvvvRc33ngjTKZyWhSQiMIKAywRaZaTk4PFixdjwYIFSEtLk3/umF5cGwZLFW3Tixk+ichfel9OUFm6S3ahKbjaDUWwRp6BNeoMYLAAAIxGI7p27Yq77roLV155JSQe04lIAwZYItKN3W7H5s2b8eOPP2LdunXyPfwkW+Sl6cU1IImIwHfATg8RqeXs3uhx3GBXySsBAbspC9ao00BMJmw2GwAgOTkZd9xxB2677TYkJydXcC2JKFwwwBJRmTh16hQWLlyIX3/9FTk5l6aPCQnG4qowFdXUvugTwywRlRd2ldwSUjGskemwRqVDGAvln7dt2xZ33nknOnfuzGnCRKQ7BlgiKlOFhYVYtmwZ/u///g979+6Vfy7ZImEsqg5TUQ0Y7FGB74BBlojKkp6rGodBl8txbWsGbFHpQHSWPNoaHR2NPn364M4770SjRo0quJZEFM4YYImo3Bw6dAi//PILfv/9d8WoLGCwJMFUVBPG4qqQYAh8BwyzRKSnQLtI7o5FId7dshsKYI1KhzUyXb62FQBat26Nvn37onv37lxNmIjKBQMsEZW7oqIirFq1Cr/88gu2bt16+QG7CaaiFBiLq8NgjeMUYyKqOP52j7wdc0K0qyUkK2zm87BGnoU9Ilv+eZUqVdCnTx/ceuutaNiwYcVVkIgqJQZYIqpQp06dwq+//orFixfj/Pnz8s8lWxRMRdVhLErRfjsehlki8ofarpGaY0uIdbPkKcKRZ2EzXwQkR/0NBgOuu+469O3bF9dffz2vbSWiCsMAS0RBwWq1YsuWLfj999+xatWqy/eVBWCwxDuuly1O1raKMcAwS//f3r2HR1UeeBz/nZncSSAIEQNE7iTIRZCbgFAgctHWRwtitaxiXbXefZb1KV22XnbR0pa10mrXVR4vLZXqqitUq2JBEOUSbhEokBAId5KYCwmEJCQzc/aPmTmZyT2TCcmQ7+d55jlnznvOO++Q4Tzzm/Oe9wUa1tjXouacQ0LkK5Z7FOFzckbmyxFRINkcVlnfvn01c+ZMzZo1SwkJCW3YSgBwI8ACaHfKysr09ddf64svvtCuXbvkcrncBaYhe1VX2S9299wv28IrAIRZAF4NfR0K5FzRzr9emTJl2svkiMiXMzJfpv2iVda9e3fdeOONmjFjhgYOHMi8rQDaFQIsgHatoKBA69ev1xdffKGsrKzqAt8wW3WFDJMwCyBANb8KtfR80E6/WrlD6wU5IgrljCyQaS+3yjp16qTvfe97mjFjhkaOHCm73d6GLQWA+hFgAYSMo0ePat26ddq4caNOnjxZXRCMMEuABTom79egYJ0D2tnXKiu0RhbIGVHgN19rRESExo0bpxkzZmjixImKjIxsw5YCQNMQYAGEHNM0lZ2drQ0bNmjjxo06ceKET6EnzFZ2c3czbs49s4RYAC3RTr5SmTLlspfKGVkgZ0RhrdA6fvx4TZs2TRMmTFCnTp3asKUA0HwEWAAhreEwK9kcnWWvvEL2ym5NG82YEAsgEMH8OuU9DzWjTlNOucJL5IwokjOiSKat0iqLjIzUhAkTNHXqVF1//fXM1wogpBFgAVw2vGF248aN+uabb3TkyBG/csMRLXuV+8qszRFX/zyzhFgAzRGMr1J1nXcaqdc0Kq3A6gwvlgyXVRYdHa3rr79e06ZN0/jx4xUd3cLpyACgnSDAArhs5eTkaMuWLdq8ebPS09PldDqrC13hsld2lb3qCtmr4v3vmyXAAmiqQL9GNXaeqaNe78jBznB3aHWFnZfv73BXXnmlJk2apEmTJmnkyJGKiIgIrG0A0I4RYAF0CKWlpUpLS9PmzZu1bds2lZaWVhd6uxpXxctW2VU2Z6wMw9Z2jQUQGpr7FaqpP4751GsaVXKGF8sZflauiGK/rsGSlJKSokmTJmnixIlMeQOgQyDAAuhwHA6H9uzZo82bN2v79u3+981KkivMPRCU52GYXMUA4KOpX50CCJOm6ZIr7Lw7sIaflSus1O8qa2RkpEaNGmWF1oSEhGa/BgCEMgIsgA4vJydH27dv1/bt27Vr1y6VlZX5lRuOTu4w6+giW1UXGWJ+RKDDauhrUyCBVaZMW7mc4SVyhZ1138tqc/rt069fP40fP17jxo3T8OHDme4GQIdGgAUAHw6HQ//4xz+0fft2paWlKSsry38H05DNESubI172qi6yOToTaIGOxPdrU8CBtcI9YnBYsVzhJbW6BcfFxWnMmDEaP368xo4dy1VWAPBBgAWABhQWFmrXrl3avXu3du/erdzcXP8dTMNz/2wX2RzxntGNuX8WQDWXrUKusBI5w4vlCiuRab/oVx4eHq6hQ4dq1KhRGj9+vJKTk2W388MYANSFAAsAzXDmzBmlp6crPT1du3fvVkFBgf8OpiGbI84dah2d3VdozfC2aSyAS84aKTisRK6wc3KFnasVWO12u6655hqNGjVKo0aN0rBhw+gWDABNRIAFgACZpqlTp05ZV2e//fZbnT17ttZ+hiPGP9C6ouqfgxZASDHllCvsvFxh5+T0BNaa97Da7XYlJydbgXX48OHMywoAASLAAkCQeAPtvn37rEetEY4l9xy0js6eK7VxsjliZSis9n4A2hXvgEuusFIrtLrs/qMES1J0dLSGDh2qYcOGafjw4Ro6dKhiYmLaptEAcJkhwAJAKyouLvYLtJmZmXI4HP47mZLhivYJtHGyOTtxLy3QxlzGRU9Q9QRW+/laV1clKSEhQcOHD7ce/fv3V1gYP0oBQGsgwALAJXTx4kVlZGTowIEDysjI0MGDB2sPDCW576V1xnpGPI51B1pCLdAqTJkyjUqZYRfkspdaobXm6MCSFBERoUGDBiklJUVDhw7V8OHD1aNHjzZoNQB0TARYAGhjZ8+etcLswYMHlZGRoZKSkto7mpLhjHEHW2en6mDLIFFAk3kHWXLZvWH1glz2C5Ktqta+drtdffv21ZAhQ5SSkqKUlBSurgJAGyPAAkA7Y5qmcnJyrDB7+PBhHT58uO5QK8lwRlpXaG3OGNmcMTKcMVytRYdmypSMKk9QdQdW0xtWjdpffWw2m66++moNHDhQKSkpGjJkiAYNGqSoqKg2aD0AoD4EWAAIAaZpKj8/X4cPH1ZWVpa1PHPmTD0HeO6r9YRZd7DtJMMZTbDFZcXq/msvk8teZi1d9jLJ5qjzmOjoaA0cOFADBw7UoEGDNHDgQPXr14+pbAAgBBBgASCElZaW6siRIzp8+LCys7N17NgxHT16VKWlpXUfYAXbaHeY9V03I5jeB+2WKadMe4VctnKZ9nK57OUybd6gWntgJUkyDEM9e/ZU3759NWDAACuwJiYmymbjhxwACEUEWAC4zJimqcLCQivMHjt2rPFgK0mmTYYzWjZXlHvpCbiGM4pwi0vCP6RWh1XTXl7ngEpedrtdvXr1Up8+fdS3b1/17dtX/fr1U1JSEldVAeAyQ4AFgA7CN9ieOnVKJ0+etJY5OTlyOuu+iuU+2JDhipLhipTNGWWtG64o2ZxRkhlOwEWjTDll2i56wmmFe91WIdN+US5bRZ0DKfnq3LmzevfubT2SkpLUt29fJSUlKSIi4hK9CwBAWyLAAgDkcDiUk5PjF2y9j/z8/IbDreS+euuK9DwifJY+61zFvaxZ4dRW6bP0rl+Uy3ax0YAqSbGxsX4h1ffRuXPnS/BOAADtGQEWANAgh8Oh/Px85ebmKjc3Vzk5OcrJybHWCwoK5HK5Gq/IlCfIVodbmeEyXOGe7Z51M1wywwi77YApl0yjSrJVucOoUSXTVuVZVvqFVRmN/Mjh0alTJyUmJuqqq66q9UhMTFRsbKwMg789AKBuBFgAQItUVVUpPz/fCrP5+fm1lkVFRU0LuV6m4Q6yVrgNk2GGuYOtGSbD5bPuDbyuMEk2gm8dTLkkwyHT85DNZ73W9uqwWt/gSPWJiYlR9+7dlZCQoO7du1uPK6+80gqpcXFxrfQuAQAdAQEWANDqHA6Hzp49a4XagoICFRcXq6ioSGfPnlVxcbG1bHCgqcaYhmTaZZh291J2/+c1l7JJpk3yLA0Z1nPDtLnrs8ps1a9hheTq9caCsynT75ms56ZnXlJTpuGS5JIM0xM6635uGi7JcMo0nO6lPEvPdr8yw+E5LjB2u13x8fHq2rWr4uPjrfWuXbtaQdW7jImJCfh1AABoCgIsAKBdqays9Au0RUVFOn/+vN/j3LlzKi0t9Xve6H26l4Ip+YZav6DaDi4Mx8TEKC4uznrExsb6Lb0B1Tek0qUXANCeEGABACHPNE2Vl5fr/PnzKisrU3l5ubX0PurbXlVVpaqqKlVWVloP73Pf7a0dkG02m8LDwxUeHq6IiAhrvebziIgIxcTEKDo62u8RFRVlrXvLo6KirHDaqVMnhYWFtep7AACgtRFgAQBoApfL1ayHYRgyDEM2m816eJ/7bjcMQ3a7nXAJAEATEGABAAAAACHB1tYNAAAAAACgKQiwAAAAAICQQIAFAAAAAIQEAiwAAAAAICQQYAEAAAAAIYEACwAAAAAICQRYAAAAAEBIIMACAAAAAEICARYAAAAAEBIIsAAAAACAkECABQAAAACEBAIsAAAAACAkEGABAAAAACGBAAsAAAAACAkEWAAAAABASCDAAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEggwAIAAAAAQgIBFgAAAAAQEsLaugEA0FZM01RFRUVbNwMAmiUqKkqGYbR1MwCgTRBgAXRYFRUVmjVrVls3AwCaZe3atYqOjm7rZgBAm6ALMQAAAAAgJHAFFgAkRWy/UnIaMmyGZNispWyG5OmqZ9hs7nXDs7QZMgzP74De/TzbvcfU2uat07dM1eWm9zibT7l3u/cnx5rbDEOmtzeh4Xlucz+p3m5IhqxjTM9zSe59vHUY3vdSXV/Nct86Te8+tjrKfPf3K/PdVrMd9RxTT7kkqw31vZbf/vW0o9YxquP4WseYfu2oWZ9VrprlZvU+qt63+j2aVplRa3/TOsbwbK9eeuszZRim38fLW7/7T1ldbpN7XdZ2yeYpd5e5q7S2+Szd9VU/931I7rrdz1VdpurXshkua5t7X5ckyW5UP7cZ/mU2w/QpN2WXy3o9u+HyOc4lu+e1vOvupcs6zlufTabnWJfsfmXu/e2GKUMu2T3Pve/N/Vzu41T9eoanDrvVRk/75P63sMuUTfKsG576JLthyCZDdnmWhrfMJkOGqirtmvvAVQKAjo4ACwCSO7y63F8UZVQvfZOBIW9wrU5rhjdV+iUhT7nnKP9kY6udrgyfY+tKTw1uVz3lskKr33rNpXW44VNtzUBcs7xmnfIE6XrK6mtune1oyjFN+KcKtE6ff77GQ2+QA2zN8hplNQNs9faa9Zm1yrwhte5y02e77zazjjpNv2O8Abbmo94yK1T6BFufoGuVqbrcG/y8Ze4A67ICoLfMHQA9S8OQXd5j3OvupeEXHN11SXZD1rL6OPd6nWXWc28ANn0Cs3u9sQBbV302yROK3c/dZd79ff6GANCB0YUYAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEhgHlgAkCS7KVMu9+SPhmosrQkZa8yjWnOeVe/DrD7Gb3s9ZT4TkZr1TG5a1/bqbd7ZNeX/3PTd7t7XlCGZ8qvP9D3Gc1xt9WwzfYr85iI1fJvfwPyrRj3baxxTX3ljZQ3V2dB276LBY+qaz7WO8lptrGceWNU+zqi1f/V+hu8crz4fU1nzrvp+vOqZB1YtmwfW9Bxv1nh4y0zPXLhWmaf9LsOUDFf168jzXJ73I/9y01Nmel7bW7dU/Xq+220+r+Vdr7l0t8P939p36fK8ZZtn3eX5iNY9D6whm9zzy3rLDM92u6rnkpXk99xmrRs+9VXXZZMhu+EtM2TIUFVlXf8HAaDjIcACgKTKcd+1dRNah1ljGYAauQ6weOOnq7Ed2y1vwqdDGgCECs7YAAAAAICQYJim2YLf5QEgdJmmqYqKirZuRi0VFRW69dZbJUlr1qxRVFRUG7cIlxJ/fzT2GYiKipJh0CcCQMdEF2IAHZZhGIqOjm7rZjQoKiqq3bcRrYe/P/gMAIA/uhADAAAAAEICARYAAAAAEBIIsAAAAACAkECABQAAAACEBEYhBgAAAACEBK7AAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEgIa+sGAMDlqqysTO+++66++uor5ebmymazKSkpSdOnT9fcuXMVHh4ecN1FRUVatWqVtm7dqry8PEVGRqpfv36aPXu2vv/978swjCC+EwSqNT4Db775pt5+++1G91u1apV69+4dQKsRDBUVFfr222+VmZmpQ4cO6dChQ8rLy5Mk3Xvvvbrvvvta/BqcBwB0RARYAGgFubm5euKJJ5SbmytJioqKUlVVlTIyMpSRkaG///3vWr58ueLi4ppdd2Zmpp566imVlJRIkqKjo1VWVqa9e/dq79692rhxo5YuXdqigIyWa83PgCSFhYWpc+fO9Zbb7faA6kVwHDx4UD/72c9arX7OAwA6KgIsAASZw+HQz3/+c+Xm5qpbt27693//d40ZM0Yul0sbNmzQsmXLlJWVpSVLlug3v/lNs+ouLS3VokWLVFJSoquvvlq/+MUvlJKSoqqqKn388cd65ZVXtH37dr388stauHBhK71DNKY1PwNew4YN0+9///sgtxzBFBcXp8GDB1uPl19+WUVFRS2ul/MAgI6Me2ABIMg+//xzZWdnS5KWLFmiMWPGSJJsNptSU1P11FNPSZK2bdumXbt2Navud999V0VFRYqMjNRvfvMbpaSkSJLCw8M1Z84cq1vixx9/rJMnTwbrLaGZWvMzgNAwYsQI/e1vf9NLL72khx9+WKmpqYqIiAhK3ZwHAHRkBFgACLLPP/9ckjRq1CgNGzasVnlqaqoSExP99m2qtWvXWnX07NmzVvmcOXMUHR0tp9Opv//9781tOoKkNT8DCA2t2YWb8wCAjowACwBBVFFRoX/84x+SpOuvv77OfQzD0Pjx4yVJO3bsaHLdJ06csAaB8R5fU0xMjEaMGNHsuhE8rfkZADgPAOjouAcWAILo+PHjcrlckqR+/frVu5+3rKioSOfOnWtwMB4vb5fUxuru37+/0tLSdOzYsSa2GsHUmp8BX0ePHtWCBQt05swZ2Ww2de/eXddee61uu+02DR48OPA3gHaN8wCAjo4rsAAQRAUFBdZ6QkJCvft17969zmMaUlhY2Ky6L1y4oLKysibVjeBpzc+Ar5KSEh0/flyRkZGqrKzUyZMn9cknn+iBBx7QihUrml0fQgPnAQAdHVdgASCIfL8oRkZG1rtfVFRUnce0Rt0xMTFNqh/B0ZqfAUnq3bu3Hn74Yd1www1KTExUWFiYqqqqlJ6erhUrVigzM1MrV65UXFyc7rzzzsDeBNotzgMAOjquwAIAEEJmzpypu+66S0lJSQoLc/8OHR4ernHjxumVV16xRqR96623VFpa2pZNBQAg6AiwABBEvlc5Ll68WO9+FRUVdR7TVnUjeNry7xQZGakHH3xQklReXs4UPZchzgMAOjoCLAAEke99jfn5+fXu53vPo+8xDenWrVuz6u7UqRNfXNtAa34GmmLo0KHW+pkzZ4JWL9oHzgMAOjoCLAAEUZ8+fWSzuU+tR48erXc/b9kVV1zR5NFn+/fvX+v4unhHKe3bt2+T6kVwteZnAOA8AKCjI8ACQBBFRUVp2LBhkqS0tLQ69zFNU9u3b5ckjR07tsl1JyUlqUePHg3WXV5err179za7bgRPa34GmuLAgQPWemJiYlDrRtvjPACgoyPAAkCQzZ49W5KUnp7uFya8NmzYYHXt9O7bFIZhaNasWZKkL7/8Ujk5ObX2+eijj1ReXi673a4ZM2YE0nwEQWt9BkzTbLC8srLSmkInOjpao0ePbnLdCA2cBwB0dARYAAiy2bNnq3///jJNU08//bQ1kI7L5dKGDRu0bNkySdL48eNrBYw333xTU6ZM0ZQpU+r8YnrnnXfqiiuuUEVFhRYtWqTMzExJUlVVlVavXq033nhDknTLLbcoKSmpNd8mGtBan4E9e/boX/7lX7R27Vp999131naHw6Fdu3bpscceswLzggULFBcX15pvE404f/68iouLrYfL5ZLkHnzJd3vNaZQ4DwBA/QyzsZ9zAQDNlpOToyeffFK5ubmS3N1KXS6XKisrJUmDBg3S8uXLawWMN998U2+//bYk6b333quzC2hmZqaeeuoplZSUSHKPMFpZWSmHwyHJ3WVw6dKlioiIaK23hyZojc9Aenq6nnzySet5ZGSkoqKidOHCBevvb7PZNH/+fD3wwAOt+fbQBHfccYf192/I7NmztXjxYus55wEAqF9YWzcAAC5HiYmJevvtt/Xuu+/qq6++Um5ursLCwtSvXz+lpqZq7ty5Cg8PD6ju5ORk/fGPf9SqVau0ZcsWfffdd4qKilL//v01e/Zs3XzzzdYgQmg7rfEZ6N+/vx555BHt379f2dnZKikpUWlpqaKiotS3b1+NGDFCt9xyiwYMGNBK7wrtBecBAB0VV2ABAAAAACGBn+YAAAAAACGBAAsAAAAACAkEWAAAAABASCDAAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEgIa+sGAAAANEVFRYW+/fZbZWZm6tChQzp06JDy8vIkSffee6/uu+++Nm5h0+Xk5OhHP/pRo/vdfffdeuCBBy5BiwAgNBBgAQBASDh48KB+9rOftXUzgq5Lly6y2+11lsXExFzi1gBA+0aABQCEhN/97nf68MMPde211+rll19u6+agjcTFxWnAgAHav3+/qqqqFBsbq9LS0rZuVou8/vrrSkxMbOtmAEBIIMACwGXuwoULysrKUkZGhjIzM5WZmanTp0/LNE1J0nvvvddqX55N09Ttt9+u/Px8zZ8/Xz/96U8DqicrK0urV6+WJD344INBbGHbys7O1vbt27Vv3z5lZ2ersLBQTqfTCmkTJkzQ7NmzFRsb29ZNbRdGjBihv/3tb5KklStXasWKFSorK2vjVgEALiUCLABc5p544gllZWW1yWtnZGQoPz9fkjR58uSA63n11VfldDo1fvx4DR8+PFjNa1NPPPGEvv322zrLioqKVFRUpB07dujPf/6zFi9erHHjxl3aBrZDvt1sb7/9dr3//vsqLi5uVh3Z2dn68MMPtXv3bhUUFMhmsykxMVGTJk3SvHnzFB8fH9xGAwCCigALAJc575VWSYqNjdWgQYN0/PhxFRUVtfprf/3115KkhIQEDRkyJKA69u7dq507d0qS5s+fH7S2tTVvsI+Li9PkyZM1cuRI9ezZU5GRkcrJydFnn32mrVu3qqioSIsXL9aLL76oa6+9to1b3X5ER0dr7ty5euONNyRJVVVVjR6zatUqvf7663K5XJKkqKgoORwOZWdnKzs7W59++ql+/etfa/Dgwa3adgBA4AiwAHCZu/nmmxUfH6/k5GT17t1bhmHoiSeeuKQBdtKkSTIMI6A6/vKXv0iSEhMTL6sA17t3b91zzz1KTU1VRESEX1lycrKmTp2qd955R6+99poqKyv14osv6k9/+lMbtbZ9mjlzphVgG+tl8Mknn+h//ud/FB0drX/6p3/SzTffrG7dusnpdOrw4cN69dVXtXv3bv3bv/2bVq5ceUkHT3ruued06tQplZeXq3Pnzho8eLBSU1OVmpqqsDC+qgGAL+aBBYDL3O23364bb7xRSUlJAYfIQJw8eVLHjx+XFHj34fz8fG3dulWSNGvWrEva/ta2bNky3XTTTbXCq6/58+dr0KBBkqRjx47pyJEjl6p5ISExMVHh4eGSpMzMzHr3Kysr03//939LkpYsWaK7775b3bp1k+TulpycnKz/+q//UnJysvLz8/XJJ5+0fuN9HDx4UE6nU2FhYSoqKtK2bdv0wgsv6NFHH1VBQcElbQsAtHf8rAcAaBWbNm2S5O62PGrUqIDqWLdundXdc/r06U06xuFw6Msvv9Q333yjjIwMFRcXy+l0Kj4+Xv3799eYMWN04403WgHGa8qUKZKk2bNna/HixTpx4oQ++OAD7dixQwUFBerUqZMGDx6sH//4xxo5cqR13MWLF/XZZ59p7dq1OnXqlCoqKtSzZ0/NmDFD8+bNU2RkZEDv3eu6666zri6ePHlSAwYMCLiuY8eOac2aNdqzZ49ycnJUUVGh2NhYxcXFKTExUaNHj9YNN9ygq6++OqD6HQ6HvvjiC23YsEHZ2dkqKSmRYRjq3Lmz4uPjNWTIEI0ZM0aTJk2ygqdXzX//Y8eO6aOPPtLOnTtVUFCg8vJyvfDCC7V+DImOjlZVVZVKSkqUkZGhlJSUWu366quvVFpaqkGDBtV7L3FYWJhSU1OVmZmpHTt26I477gjo36CpIiIidNttt2n69OkaPHiwdcX35MmTev/997VmzRodPHhQixYt0muvvcaVWADw4GwIAGgV3u7DEyZMCPjL95YtWyS57xPt06dPo/sfPnxYzzzzjE6dOlWrLD8/X/n5+UpLS9ORI0e0ePHieuvZuHGjfvnLX6qiosLadvHiRW3btk1paWl66qmndMstt6igoECLFy9WRkaG3/FHjx7V66+/rm3btunFF19sUYh1OBzWus0WeMepNWvWaPny5XI6nX7bS0pKVFJSolOnTmnHjh06cuSInn766WbXX1xcrH/913+tsyuv998+KytLf/3rX7Vq1Sr17t273ro+++wzvfjii6qsrGz0dX2D8JYtW+oMsPv27ZMkHT9+XLfddlu9dV28eFGSlJub67c9JydHP/rRjxptS31+/OMf66GHHvLb1q1bNy1cuLDWvklJSVq4cKF69eqlP/zhD8rKytLatWv1/e9/P+DXB4DLCQEWABB0BQUFOnjwoKTAuw9XVlZq//79kqQhQ4Y02n04KytLjz32mMrLyyVJo0aN0syZM9WnTx+Fh4ersLBQBw4csK4M1+fIkSP68ssv1bVrVz344IPWa+/atUsrV65URUWFXnrpJY0cOVLPP/+8Dh8+rNtuu0033HCD4uPjdfr0af3pT3/SkSNHtHfvXq1atUo/+clPAvo3kKTdu3db6/369QuojuzsbCu8du7cWbfccotGjhyp+Ph4OZ1OFRYWKjMzU9u2bQu4m/by5cut8Dp69GjNnDlTiYmJ6tSpky5cuKDjx49rz549Vpfw+mRmZmrdunXq3Lmz5s2bp+HDhys8PFzHjh3TVVddVWt/3x9Hdu/erfvuu6/WPt5uuJWVlU2699sbZNvSvHnz9MEHHygvL09ff/01ARYAPAiwAICg++abb2SapiIiIjR+/PiA6jhy5Ih19TE5ObnBfR0Oh5555hkrvD755JOaO3durf0mTpyo+++/X3l5efXWlZWVpUGDBmn58uWKi4uztl9zzTXq3bu3nn32WTkcDj322GM6d+6cli1bpjFjxlj7DR48WGPHjtU999yjgoICrV69Wvfcc4/fFDBNtWnTJh09elSSO8QnJSU1uw5J2rBhg3Xl9aWXXrLuq/U1efJk3X///SopKWl2/RcvXrR+GJg8ebKef/75WkF45MiRuvXWW1VeXt7gleSjR4+qd+/eeuWVV3TFFVdY2+sbxdr3dQ4dOiSXy1Wrft9u6M8991yz3psk9ejRQ3/961+bfZxXVFRUs4+x2WwaMmSI8vLylJOTE/BrA8DlhgALAAg6b/fhMWPGKDo6OqA6fLsB+waZuqxbt06nT5+W5B51ua7w6qtHjx4Nlv/85z/3C69eU6dOVUJCgvLz83X27FnNmzfPL7x6xcbG6qabbtLKlSt19uxZHTt2rNn3rhYUFOi3v/2tJHdIe/jhh5t1vC/vVUfvNEoN6dKlS7PrP3/+vPVjw8iRIxu8ituUz8PChQsb/ZvXpaKiQgUFBbryyiv9tnvrauiHi4bYbDbmhwWAdoJRiAEAQVVaWqr09HRJgXcflqTCwkJrvXPnzg3u6w3MknTXXXcF/JqSu5tufSHPMAy/spkzZ9Zbj+9+Z86caVYbKioqtHjxYit41hw4qrkSEhIkuf82GzZsCLie+nTp0sUaTXn9+vUqKysLuK6EhIQ6fxRoKt/Pjdfw4cMlubsnh8qovi6Xy+qGn5iY2MatAYD2gwALAAiqrVu3yuFwyG63a9KkSQHX43sfYl1XQ30dOnRIkvtKW1MGe2pIY8f7tqWh0Xp992tOoKuqqtIvfvELa2CoG264Qffff3+Tj6/LzJkzrYGknn32WT366KN65513tHfvXqvbdUuEh4dr9uzZkqQDBw7ojjvu0LJly7R+/fpmh/eWjLIsyW/gLa+pU6cqNjZWDodDf/jDH2SaZr3Hu1wunT9/vkVtaIqG2iDJuv9Vcn8GAABudCEGAASV92rosGHDWtTt0vee0cZGoy0uLpZUfaWxJRq7X9G3e2xD3WF978P03oPZGIfDoaefflrbt2+XJI0bN07PPfdcQPfP+urZs6d+9atf6Ze//KXy8/O1b98+a2Reu92ulJQUTZkyRT/4wQ8a/bGgPo8//rgqKyu1du1anTt3Th9//LE+/vhjSe4fFsaNG6ebb7650SvJjV1tP3/+vN9IyjX/bSsqKlRcXKyIiAhrapq4uDg9/vjjWrp0qdavX6/S0lL95Cc/UUpKimw2m1wul06cOKFt27bpk08+0T333NPg1fVgePzxxzV27FhNnDhR/fr1swajOn36tD744AP93//9nyR3oPf+OAAAIMACAIKosrJSaWlpklrWfVhy36/pde7cuRbVFQocDoeeffZZa+qgMWPG6IUXXrC65rbU6NGj9Ze//EWbN29WWlqa9u7dq1OnTsnpdGr//v3av3+/3nnnHT3zzDP1zpXakMjISC1evFh33323vvzyS6Wnp+vgwYMqLy9XUVGRPv/8c33++eeaMmWKnn766XqnFmpsqqB//ud/rjXNja9FixZJqp5P1uumm25SZWWlfv/73ystLU1paWmKiIhQdHS0Lly44Ddd0aXw3Xff6Y033tAbb7whu92uTp06qaqqyu+K+DXXXKPnn3+eOWABwAdnRABA0OzcudP6At7SAOs7ZUpjATY+Pl55eXkhc39jTd7w6r16fd1112np0qUtmj+2LhEREZo2bZqmTZsmyX3leteuXVq7dq22bdumc+fO6emnn9aqVavUrVu3gF4jKSlJCxYs0IIFC+R0OpWVlaUtW7ZozZo1Onv2rDZt2qQVK1boscceC+Zba5Jbb71V48aN00cffaSdO3cqJydHpaWliomJUa9evTR06FBNmjRJ1113Xau35ZFHHtGuXbuUkZGhwsJC6zPeo0cPDR48WNOnT9fUqVNbfPUdAC43BFgAQNB4A9igQYNaPPCM75ynJ06caHDf5ORk5eXlqbCwUCdOnGjw3tT2pmZ4HTVqlH71q18FPbzWJT4+XqmpqUpNTdVvf/tbrV69WuXl5frmm2906623trh+b/fklJQU3XTTTVqwYIEqKiq0bt26gAPs//7v/9badtddd+n06dNKTEzUe++91+DxiYmJeuSRRwJ67WCaOnWqpk6d2tbNAICQwyBOAICgcLlc2rx5s6TgDDrTo0cPde/eXZKs0VjrM2XKFGt91apVLX7tS8XhcOi5556zwuvIkSP161//OqB5Q1vKt9uw957iYEpMTLTmsQ1krtn6FBcXW1MoDR06NGj1AgDaJwIsACAo9u3bZwUf30DZEt5Qdfz4cV24cKHe/aZPn26Fo08//VQffvhhg/UGOh9oMDkcDv3nf/6nNm3aJKl1w+tXX33VaCj13rssSb169WpW/WfOnNHOnTsb3CcnJ0fHjx+X5B5UKlgOHDhgrV9//fVBqxcA0D7RhRgALnOnTp2yRpz18s4vKkkbN270Gy04Ojo6oK6N3quIPXv2bPFUKF7Tpk3Tp59+KpfLpZ07d+p73/tenfuFhYXpP/7jP/Too4+qvLxcv/vd77Rp0ybNmjVLffr0UXh4uAoLC5WRkaGNGzcqOTnZb4CftrBkyRJt3LhRkjswPvTQQ8rJyWnwmK5du6pr167Nfq0PP/xQS5Ys0ejRozV69Gj17dtXXbp0UVVVlfLy8rRu3Trr6vlVV13V7OmP8vLytHDhQvXs2VOTJk3SkCFD1KNHD0VGRqqkpEQHDhzQ6tWrrdGk586d2+z3UJ8dO3ZIct/fO2HChKDVCwBonwiwAHCZ27dvn5YuXVpv+auvvur3/KqrrmpRgA3mnJVjxoxRQkKC8vPztXbt2noDrCQNHDhQL7/8sp555hmdOXNG6enpSk9Pr3Pf5OTkoLUxUBs2bLDWT58+rYceeqjRY+69917dd999Ab1eZWWltm7dqq1bt9a7T69evbR06dIGpwdqyJkzZ/T+++/XW26z2XTXXXfphz/8YUD11+RwOLR+/XpJ7qv+gU4BBAAIHQRYAECLHT582Lp62NLRh33Z7XbNmTNHr732mrZt26bi4uIG55YdPHiw/vznP2vt2rX6+uuvlZWVZd1v2bVrVw0YMEBjx47VjTfeGLQ2hoJnn31W27dv1549e5Sdna2ioiKrS3GXLl00cOBATZ48WTNnzgxo2p4RI0bolVde0c6dO3XgwAHl5eXp7NmzunDhgqKiotSzZ0+NGDFCP/jBD4J2dV6S9ZmQpNtvvz1o9QIA2i/DNE2zrRsBAAhtb731lt566y117dpVH330UaNzeTZHaWmp7rzzTp07d04//elPNX/+/KDVjdC2aNEibd26VaNHj9ZLL73U1s0BAFwCDOIEAGgxb/fhiRMnBjW8SlJsbKwVWt99912VlZUFtX6EpgMHDmjr1q0yDEMPPvhgWzcHAHCJEGABAC1SVVWlyZMn695779WcOXNa5TXmzp2r3r17q6SkpM55QNHxrFixQpI0a9YsDRkypI1bAwC4VOhCDAAICQcPHtTWrVsVGxurO+64o62bgzZUWlqq999/X6Zpas6cOQ3eFw0AuLwQYAEAAAAAIYEuxAAAAACAkECABQAAAACEBAIsAAAAACAkEGABAAAAACGBAAsAAAAACAkEWAAAAABASCDAAgAAAABCAgEWAAAAABASCLAAAAAAgJBAgAUAAAAAhAQCLAAAAAAgJBBgAQAAAAAhgQALAAAAAAgJBFgAAAAAQEggwAIAAAAAQsL/A6mjhas+cilOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADX1UlEQVR4nOydd5wTRf/HP7tJrlfg6FWqgKIUhQcUBcSCBRtFKWL7iYodbKAi6qOiYi+oSFXALioqKCIqHX1AkA5HvwOu90syvz9yu2xym2TLJNnkvu/X614cl9nZyWYzM+/9ThEYYwwEQRAEQRAEQRAEYXHESBeAIAiCIAiCIAiCILRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBVwEdv/+/RAEAYIg4KabbuKRZZ3kggsukK8jQRCEP2666Sa5rti/f3+kiyMze/ZsuVyzZ8+OdHEIzrjdbvTo0QOCIGDChAmRLg4RRUj1wgUXXBDpohCEZbBqW86D+fPnQxAEZGRkIDc3l3v+YYvAzp49G0899RSeeuqpcJ0y4nz11Vfyey4oKIh0cYganE4nli9fjkceeQQDBgxAkyZNEB8fj5SUFLRt2xYjRozAV199BZfLpSvff/75BxMmTECnTp2QkpKC9PR0nHHGGXjkkUeQnZ0dondDEERdZNWqVbjpppvQvn17pKSkICUlBR06dMDtt9+OtWvXhuScM2fOxKZNm5CQkIBHH31U0zF79uzBU089hXPPPReNGzdGfHw8mjRpgu7du2P8+PH49NNP/da1+/fvx/z583Hvvffi/PPPR/v27ZGZmQmHw4H69evjnHPOwQMPPIDNmzfreh/Z2dl45JFHcMYZZyA9PR0pKSno1KkTJkyYgK1bt2rOx+VyYcGCBRg6dCiaN2+O+Ph41KtXD2eddRYmT56MAwcO6CpXIJQPh7T8/Prrr37z0pOP8ieaO9gvv/yy/D5Gjx5tKI/27dvLeRj5jpWVlWH16tV44403cNNNN6Fr166w2+2aPjN/VFdX4/3338fAgQPlvkzz5s1xxRVXYNGiRWCMac6LMYZFixbh8ssvl+/nJk2aYODAgfjggw/gdDp1le2HH37A8OHD0apVKyQkJKBhw4bo27cvZsyYgdLSUl15rV69GjfffDPatm2LpKQk1KtXDz169MAzzzyDEydO6MpLC7yvhVXJycmBw+GAIAhITk5GcXGx7jyeeeYZ+R4eP368/PeRI0eiQ4cOKCws1Nxe6IJxYN++fQwAA8DGjh2rmqZ///5ymrrC2LFj5fe8b9++oOnr4jUKN7/88gurV6+efJ0D/fTq1Yvt3r1bU77Tp09nDofDb16pqansk08+CfG7I+oKeuuWcPHRRx/J5froo48iXZyYpKSkhI0YMSJg3SUIArv33nuZy+Xidt7S0lLWuHFjBoDdc889QdM7nU42efJkFhcXF7Suzc/PV81j+PDhmupqQRDY+PHjWXV1ddByzZ8/n6WkpPjNKy4ujr3yyitB89m9ezfr1q1bwHKlpKSwuXPnBs1LC8rvlpafFStW+M1LTz7K91JaWmq4/FI+/fv3N5yHGY4dO8bsdjsDwJKSklhRUZGu43/77Tf5PXTu3NlQGYL1PQJ9Zmrs27ePnX322QHzHDRokN/vl5K8vDw2YMCAgHl1796dZWdnB82roqIiaB3Vtm1b9r///S9oXm63m91///1MEAS/eTVq1Ij9/PPPWi6ZJnhei2BYoS2/4oor5DJ88MEHuo9v27atfPy6deu8Xps7dy4DwERRZNu2beNVZMYYY3ZwoHXr1rqe8hDqGHn6Rujj8OHDyMvLAwDUq1cPgwYNQu/evdGkSRNUV1dj3bp1mDt3LoqKirB+/XpceOGFWLduHRo3buw3z3fffRcTJ04EADgcDowePRr9+/dHdXU1fvzxR3z22WcoLi7G6NGjkZGRgUsuuSQs75WIXWbPnk1DdOsgLpcL1157LX788UcAQHJyMsaNG4dzzz0Xoijir7/+wocffoj8/Hy89tprYIzhtdde43Lut99+G8eOHYPNZsOkSZMCpnU6nRg1ahQWLVoEAMjKysK1116L7t27IzMzEyUlJdi1axeWL1+O9evXB8wrKSkJPXv2RI8ePdC+fXvUq1cPgiDg8OHDWL58OZYuXQrGGN555x2UlJRg7ty5fvP67rvvMHbsWLhcLgiCgOuuuw4XX3wxHA4HVq5ciXnz5qGqqgoPPPAAUlNTceutt6rmc/ToUVxwwQU4dOgQAKBly5a4+eab0alTJ5SVlWHFihX45JNPUFJSgptuuglJSUm49tprA75PPUyYMAEDBgwImKZr165+X/vyyy81nee9997DDz/8AAAYNmwYkpKStBfSYjRq1AiXXXYZvvnmG5SVlWHx4sW45ZZbNB+vrG/HjRtnqAy+Iw1atmyJqqoqHDt2THdeBQUFuPTSS7F9+3YAwOmnn46bb74ZzZs3x+7duzFz5kwcPHgQy5cvxzXXXIOffvoJdrt6l7+qqgpXXXUVVq1aBQBo0aIFbr/9drRr1w6HDh3CrFmz8O+//2LTpk249NJLsXr1aqSlpfkt29ixY+Xvfv369XH77bfjjDPOwIkTJzB//nysW7cOe/bswSWXXIK1a9eiRYsWfvN69NFHMWPGDACe+u6WW27BOeecg5KSEnz++edYtmwZcnJy5PKfddZZuq9lKK9FNDBu3DgsWbIEgOc+1/O9WLVqFfbs2QMA6NKlC3r16uX1+g033IApU6YgOzsbU6dOxcKFC/kVnKsOB6AuRhet8GSF8GbevHnsjDPOYB9//DGrqKhQTXPo0CHWpUsX+bMbM2aM3/yOHDnCkpKSGABmt9vZsmXLaqVRPjlv0aIFKy8v5/Z+CMJKUAQ2tLz99tvy9W3evDnbtWtXrTRHjhxhnTp1ktOtXLnS9Hmrq6tZixYtGAA2ePDgoOkff/xx+fzjxo1jxcXFftMeOXLEb+R0586dfutpiZ9//pnFx8fL51uzZo1qutLSUta0aVM53ezZs2ul+emnn+QoXUpKCjt27JhqXsOGDZPzGThwICspKamV5vfff5fbhvr162uKggUi3N8tp9Ppdb1+//13U/lJ+UQqAssYY19++aVcjvPOO0/zcaWlpSw1NVVu5/3dF8EYM2YMe/bZZ9kPP/zAjh8/zhjz7ifqicDed9998nGXXHJJrX7FyZMnvaKzb775pt+8Xn31Va/IYl5entfr5eXl7OKLL5bTPPTQQ37z+uqrr+R0LVu2rBWldLlcbNy4cXKa6667zm9emzZtkiOv6enpqhHbJ598Us6rV69ezO12+81PCzyvhRas4AlVVVWsQYMGcjm0jjxkjLGbb75ZPu6ll15STfPYY48xAMxms3GJWkuQwIYQK9yYhDf5+fmaKrgtW7bIn11iYqLfoVPKRmTixIl+87v++us1NSQEEc2QwIYWpZguWbLEb7q1a9fK6fr162f6vMqOf7AhsVu2bJElcOjQoabPrYV77rlHLt+UKVNU0yg7ptdff73fvCZOnBiwc3rkyBG5U52YmMhycnL85vXiiy/KeU2ePFn/G1MQ7u/Wd999J5+vQ4cOpvOzgsBWVVWxrKwsBniGne/Zs0fTcdIwSADsiiuu4FomIwKbk5MjD81PTk72ew9u2bJFvlcbN27MnE5nrTTV1dVe1+Sff/7xe87k5GQGgMXHx7MTJ06opjvrrLPk9/Pdd9+ppikrK2MtW7aU023ZskU13dChQ+U0b731lmoat9vNzjnnHDndt99+q5pOC7yvhRas4gnKvqy/OtQXrQ92tm7dKuf9+OOPcytzyOfAKsU10M+TTz6pmrfL5WKLFi1iw4YNY61bt2aJiYksJSWFdezYkd1xxx1s8+bNAcumfDojVQ7Lly9nI0aMYK1bt5af3CpvnOrqavbDDz+wBx54gPXt25dlZWUxh8PBUlJSWPv27dnYsWMDPtVW3pCBfgJdq2CsWbOG3XbbbaxDhw4sJSWFJSUlsdNOO42NGTNG01wA38akpKSETZ8+nfXo0YNlZGSwpKQk1rlzZ/bII4/UegJVV1B2FtWe/LndbtasWTO5sjtw4IDfvFatWmXoyS8P/vzzT3bHHXew008/naWnp7P4+HjWokULNmzYsKCV/YoVK2p9R7Ozs9kDDzzAOnbsyJKSklh6ejrr06cPe+uttzTNQWOMseLiYjZjxgw2aNAg1qRJExYXF8cyMzNZz5492ZQpU1hubm7A432/K06nk3300Uds0KBBrGnTpsxms7FWrVrVOu7YsWNs4sSJ7PTTT2dJSUksMzOT9erVi7300kvyQ4pWrVoxALWOX7p0qXzOCRMmaHqfEyZMkI/5/vvvNR2jhWCNXqg+tyVLlrDLL7+cNWrUiMXHx7NWrVqxG264gf3555+MMX2d7MrKSvbBBx+wK664gjVv3pzFx8ez9PR0dsYZZ7AHHnjAb2O+fft2ObKVlpbG9u7d6/cceXl5cuRQFEUu0chIceTIEfna1qtXL+iDOKn+EgTB9FPva665Rha2QNFUxk49kRcEIWwdsnfffVe+Nrfddptqmj59+shpAkUTDxw4IHf6W7ZsWev1jz/+WM4nmKAfO3ZMTtu2bVt9b8qHcAvsddddJ5/vv//9r+n8tAhsaWkpu+yyy+S0w4YNY5WVlbXS/fPPP+z+++9n3bp1Y5mZmSwuLo41bdqUXXHFFWz+/PkB537ff//9ujvqyvmQX3zxhaZjtGJEYN977z35mFtvvTVg2oEDB8pp1fqGP/74o/z6oEGDAuZ1yy23yGk//PDDWq/v3LlTfr19+/YB85o2bVrAz6GoqEjun6elpQWcfz1v3jw5r9GjRwc8byB4XgutaBXY999/n9lsNgaANWvWTFWuzfSr/ve//8nlaNWqlaZAj/LBzpVXXhkwrfRgQ2veWrC0wO7evdvraY7ajyiKASshpcD+8ssv7K677lLNR3njXHDBBZoFVK1yDaXAVldXs9tuuy1o3sOGDWNlZWV+81E2Jnv27GGdO3f2m1erVq3qZAS5V69e8jVQG5amjNJ27do1YF4ul4ulpaXJ96zeBSSMUFJSomkRlCFDhvgtj68ILV26lGVkZPjN66KLLgo65O/7779nDRs2DFim1NRU9vXXX/vNQ/ldOXnyJOvXr5/qfavkl19+YZmZmX7PecYZZ7ADBw74FViXy8XatGnDALDMzMygQ8HLy8vl87Vs2ZLrgjp6Bdbs5+Z0OgPWa6IoshdeeEFzJ3v9+vXytfT3ExcXx959913V42fOnCmn69Onj2pkgTHvTjjPJ7+RYN26dfJ7Offcc4Omv/LKK+X0/q6jFioqKuQHBueff37AtGVlZXLacD6oU0ZN1foDhYWFXkMRg30XlVNItm7d6vWaMqr68MMPBy2bVO8DYNu3b9f3xhSEU2BPnDghR/hsNhs7cuSI6TyVfQ41Tp48yXr37i2nu+uuu2p9TtXV1eyee+5hoigGrDvOPfdcdvToUdXzbN68WU7XunXroJ3p7Oxs+d5p0KABq6qqMvT+/WFEYK+99lr5mM8++yxg2unTp8tp1UaJPfjgg/Lr/oaASnz66adyWrVRDG+88Yb8+t133x0wr/Xr18tpe/XqVev1JUuWyK9ffvnlAfPKzc2V02ZlZQVMGwie10IrWgT22WefldN07NhR9YEkj35V9+7d5bS//PJL0LIrH+x8+eWXAdMqHxz99ddfQfPWApdFnAIhLXE9efJkeXl6tQUEOnXq5PX/PXv2oHfv3vLy2P369cPll1+OVq1aweVyYePGjZg9ezby8/Mxbdo0iKIYdIue6dOnY+nSpWjcuLG8hLnT6cS6desQHx8vpysvL0dKSgoGDhyIHj16oHXr1khISMDRo0exdetWLFiwAKWlpZgzZw4yMjLw6quvep3nnnvuwdChQ/H6669jxYoVADyLITRs2NArXcuWLTVdQyWjR4+WJ0EnJCRg7Nix+M9//gObzYYNGzbgww8/RHFxMRYvXozCwkIsXbo04L6yRUVFGDJkCHbs2IGrrroKl1xyCerVq4e9e/finXfewYEDB5CdnY0xY8bgt99+013eaKWqqgq7du2S/9+qVataaf755x/59x49egTMTxRFnH322Vi5ciXcbjf+/fdfnHPOOfwK7ENlZSUGDRqENWvWAADatm2L4cOH4/TTT4fD4cDu3bsxd+5c7Ny5E9999x2GDh2KZcuWQRT976z1999/Y/r06WCM4f/+7//Qp08fxMfHY8OGDXj33XdRWlqKZcuW4dlnn8XTTz+tmsfnn3+O4cOHw+VyweFw4Morr8QFF1yARo0aoaioCCtWrMDixYtRXFyMq6++GsuWLQu6WMmoUaPw+++/o1u3bhg5ciRat26NoqIir601tm3bhssvvxxlZWUAgLPPPhujRo1C8+bNkZOTg0WLFuGPP/7A8OHD/S6PL4oibrvtNjz22GPIz8/H559/jhtvvNFvuT777DPk5+cDAG655ZaA1zaU8Pjc7rnnHsyZMwcAEBcXh7Fjx6Jfv34QRRHr1q3Dhx9+iIcffhhDhw4NWp7Vq1dj0KBBKCsrgyAIuPjiizF48GA0a9YM5eXlWL16NebNm4eysjLccccdiI+Pr7W/+G233YYff/wRn3/+OVavXo2pU6fWKvuHH36Izz77DADQu3fvqN/CjZlYKHHLli2Gj/3jjz/k702wOmvjxo210v7yyy94++23sXr1apw4cQKZmZno1q0brr/+eowdOxYOh8Nw2QBgw4YNeOeddwB4toe5+uqra6XZtm2bfP3OOuusoN/Fnj17yv2Vf/75B507d5ZfM/s5dOzY0fDxEm+//Taef/55HDx4EIBnkaxevXph6NChGD58uN/FerSyYMECVFVVAQAuueQSNGnSxHSZA3Hw4EFcfPHF+PfffwEATz75ZK3vK2MMw4YNk/uPTZo0wYgRI9CtWzckJSUhOzsbCxcuxMaNG7F27VoMHDgQ69evr7Xw1BlnnIEePXpg48aN2L9/P3799VdceOGFfss2Z84c+TMfNWqU6fuVB3r6Hj179lQ9LtJ5nXXWWbDZbHC5XPL3U9lX1ZNXVlYWWrVqhezsbBw/fhy5ubm1+tta4HkteMAYw3333YfXX38dANCrVy98//33aNCggVc6Xv2qcePGYdOmTQA8izkF+l5kZ2fLfpOVlYUhQ4YEfC+9e/eWf//xxx9NL7YFAJbcRsflcslPAuLj49nixYtV0x07dkyO0IqiqBpSV0ZgAc98oMLCwoDnX758ecDo5YkTJ+SIjyiKfoew8d5GZ+HChfLrjRo1qvVkmDHG9u/f7xXZ8DffUnlN4uLiVOdTnThxwiuvtWvXBn0P/igtLWVffvkll5+NGzcaLodWlENSunfvrppm6tSpchp/Q+CVjBkzRk4/b948ziX2xndurtoQ0aqqKq8yvfPOO7XSKCN5gCeSuHPnzlrp1q5dK897y8zMVI3mHThwQI5GtGzZ0u/w/7Vr17L09HQGeBaqUXvi7Tuy47777gsYVVFGaO+8807VtL51hb8hyNJ2ScHmcp1//vlyBOPgwYMB0+pFTwTW7Oem3D4iIyODbdiwoVaa7du3y1usSD9qUaKioiJ5SG9GRgb79ddfVd/frl275DlSycnJ8oInSvLy8ljz5s3la7xq1Sr5tR07dshzlNLS0jTPdfPHv//+y63+UnsvWsjOzpavrZ4hxEDw4XCBeO655+R8Pv3004BpZ8yYIaedMWMGu/vuuwNGBLp06RJwCLiSrVu3ytfw008/ZW+88Qa7/vrr5fsXAHvqqadUj50zZ07QPoqSJ554Qk4/bdo0v3ldffXVAfNRDiEGwJ555hlN71UNrdvodOzYUdP2JIFQjnz7/PPPTeUlIeXnW29u27bNa5j/22+/rXq8cg7zqFGjVIeUut1uecEYwH+E/M0335TTBFqk0e12e20RYva6qqE3AutyueR73mazBZ3+sXfvXjl/tWHsyj5esH5qdXW1PIzVbrfXqoMuvPBCXe9FOQ/Wt41ULvSkZcSB1N4C8GoL9MDzWmjFX1teVVXFRo4cKb920UUXqU7f4NmvOnnypDxsOzk5OeB0EWX/9/777w/6Pvfv36+53tSKJQX2888/l9O+/vrrAdPu2LFDvonU5r4oO6XJycns8OHDmt5TMPbs2eO3gZPgLbDKFeUCzadbu3atPOSlVatWqsPrlA3e008/7Tev999/X1O6YCjvEbM/WjogZsjLy2NNmjQJ2mlTDol44403guarN71Rjhw5Ig//uuaaawKmraqqYqeddhoD1Oes+IrQb7/95jevG2+8MWA6aT6ozWYLOoTkww8/lPNasGBBrdeV35UePXoElFflUKWuXbv6HW7qm6+awDLmvSCXmhQy5qmXpDRDhgwJ+F6NoFdgzXxuV111lfy62sqtEt9++63XOdU6HS+//LL8+jfffBPwPf78889y2meffVY1za+//ioPJ2zVqhXLz89nVVVVrEePHvKxPB4W+T7cMPOjd69HJZKwA4EXK1He8wBYz549DZ/zhhtukPMJtubEww8/LKft0KGD/H0fNWoUmzVrFvv444/Zo48+6rXiZatWrTSts6DM2/enW7dubNGiRX6Pfe211+S0Dz74YNBzBUq/e/du+bWkpKSA88qUwzcBcyuWfvTRR8xut7P+/fuzKVOmsDlz5rBPP/2Uvf3222zUqFEsISFBPk9qaqph2dq0aZOcT1ZWFrchs1KeSoFdvXq1vDdqXFyc32BFeXm5PDyyV69eQYeAn3feeQzwPLxSm+qRl5enqaO+cuVKudz+HmSbRa/AFhYWyunr169vOr1yWk2w+e3B0iv7qP4WZtKa/uqrr5ZfC7RgndH0avC8FlpRa8tLSkrY4MGD5b8PHz5cdboiY3z7VYx5929mzZqlmsb3wU6wdkEiMTGRAebXA5CIzJi2IMybNw8AkJaWhttuuy1g2g4dOshDlX766aeAaa+99lo0bdqUSxlPO+00eW/QtWvXcskzEPv378dff/0FwDME5tJLL/Wb9pxzzpGHB2RnZ2Pjxo1+09psNtx9991+X1cOM9i2bZveYkcdLpcLI0aMwNGjRwEAQ4YMwXXXXaeatqSkRP49ISEhaN6JiYny78XFxSZL6p/FixfLw78eeuihgGkdDgeGDx8OANi1axf279/vN+3ZZ5+N8847z+/rge4VxhgWLFgAABg4cGDQ4SPKYXDBvtd33XVXwCGBX3/9tVdam83mN+29994b8FwAcMcdd8i/f/DBB6pplH+//fbbg+YZSsx8bpWVlVi6dCkAzz6Ko0aN8pvPkCFDcPrppwcsi1S3d+jQAVdccUXAtAMGDJDra3/3QP/+/fHII48A8NR1d9xxByZPnizXeTfeeGPAMkcbyvZw/Pjx2Lt3b600OTk5GDt2rNffioqKDJ8zOztb/r1evXoB0xYUFMi/79y5EwkJCVi+fDnmzZuHcePGYeTIkXjuueewbds2nHHGGXL+jz32mOHypaamYvDgwejWrZvfNDzr6rZt28pD68rKynDjjTfKw6aVrFmzptYwWDOfQ79+/ZCdnY1ff/0VTz/9NMaMGYPrrrsO48ePx7x587Bz5055D8bi4mJ5SKFeZs2aJf8eyiGzP/zwAwYOHIi8vDykpKTgu+++w/XXX6+a9scff0Rubi4A4P777w86BFz6zhcVFcnTaJRkZmbiqquuAgCUlpbKUw184bH3K2949zt45mfVvLRihT7diRMnMGDAALnNu+uuu/Dxxx8jLi6uVtpQ9KuU97k0bcgX5d6vPXr0kOvyYGRmZgLwTBlgJqZiSIR8DqwRpA2EmzRpIm+iHQipQ5qdnY3y8nKvm0pJoE6cL0VFRViwYAG+//57bNmyBSdOnEBpaalqWmkz81Cybt06+ffBgwcHTT948GD8/PPPADyC7W/uUocOHeSbSo1mzZrJv0vz+YzQunVrLjdsqLn33nvlL3bLli29GrBoQfr+AJ5786uvvgqYXvm5/vvvv2jdurVqOuUcBjUC3Stbt25FXl4eAE+HM1iZACAlJQUFBQXyvCh/BPteb9iwQf490JwOALjggguCluvCCy9Ehw4dsHPnTsyZMwfPPPOMVyevurparvibNm0adG5IqDHzuf3vf/+TH4b0798/oPwDnkbU3+dVWFgoz0tu1KiR5nsAQMB7YOrUqfj555+xdu1aLFq0SP57mzZt8Pbbbwc9hxaeeuopS8yhfeCBB7B48WJs3boVBw8exFlnnYVx48bhnHPOgSiK+Pvvv/HBBx8gLy8Pp512miy4ZuZfS99bILjAut1ur/9PnjxZ9TuVlZWFBQsWoFu3bmCM4aOPPsILL7yAtLQ0v3k///zzeP755wF4HqwcOHAAP/74I1544QVMnz4dr7/+Ot57771a8h4KXn/9dfTu3VueP96lSxfcfPPN6NixI8rKyvDrr7/i448/RnV1NbfPoV27dgFfb9GiBZYuXYquXbvi2LFj2L59Oz777DP5AaUWKisr8fHHH8v/v/nmmw2XNxDz58/HzTffjOrqamRlZeH777/3mlPoi7JNy8/PD1p3HD58WP7933//Vb0Hb775ZixevBiAR1R959mXlZXJYhsfH48bbrghyLsiCHMcOHAAt99+O3bs2AFAfS64klD0q6T1KA4fPozffvsN+/btQ5s2bbzSGH2wU79+fRw5cgRVVVUoLS2V23ejWE5gS0pKcPLkSQDAjh07VBdkCER+fr5fgVV21AKxYsUK3HDDDTh27Jim9GaeqmpFiggCHukMhjKN8lhffCeD+6Jc3KqioiLoeaOZxx9/HG+99RYATwd72bJlAa+P8sun5dqUl5fLv6emppooaWCUUdRhw4bpOjbQQwoz94qyTJ9//jk+//xzLmUCgn+vjxw5Iv9+2mmnBUybmZmJjIwMr0iSL4Ig4Pbbb8dDDz2EnJwcLFmyBNdcc438+jfffCNHC8aNGxdU+kKNmc9Nee2CdaCDpTl48KAsOKtWrfLqlAYj0D1gt9vx8ccf46yzzpKfgkt/CyRE0UhKSgp++OEHXH311diwYQOKi4vlBT6UXHLJJbjpppswYsQIAAj4kDIYlZWVADwPiv21rRK+9VqgEVRnnHEGevfujdWrV6OyshJ//PFHwJFFSuLj49G+fXu0b98eN954I/r3748tW7bgpptuQlZWFi677DKv9Lzr6q5du2Lp0qW47rrrkJubi/379+OJJ57wSiMIAp544gkUFxdjxowZAMx9DlqoX78+7r33Xjz66KMAgO+++06XwH799ddyh7hXr17o2rUr9zJu2rQJY8aMAWMMLVu2xLJly4L2aZTtx1133aXrfP7qjosuugjNmzfHoUOHVDvqn332mVyfXHXVVbUe3mzatAkHDhzwe95+/foFrXuNwPteTklJka9RRUVFUKkIlB/PskWif8XzWhjhyiuvRGFhIQRBwFtvvYXx48cHTB+KfpXNZsOYMWPw3//+F4wxzJkzx0uizTzYUbbH0mK5ZrDcEOLCwkJTx0vRAjWCNb6AZxjlkCFDZHnt2LEj7rvvPrz11lv45JNP8OWXX8o/WVlZAGBomI5elMMTkpOTg6ZX3hiBhjZEamVUq/HMM8/gueeeA+Dp8C9fvjxoo5qRkSH/Lq2WHQjpwYzvsbwx8x0K9P0xc6+EqkxA8O+1NHLCbrdrGg6n5ft10003yeL3/vvve70m/V8QBNxyyy1B8wo1Zj435ZAq39U81Qh07czcA9XV1QFfb9CggVcH87TTTgu6imS00rx5c6xZswbz58/H5ZdfjsaNGyMuLg7169fHgAEDMH/+fHz//fdew1ql6S5GkO5zl8ulOlRWibJea9GiRdCVQJWfkTQkTS+ZmZlekfapU6cGLBevuvq8887Dzp078cILL6Bfv36oV68eHA4HmjZtiuHDh2PVqlWYOnWqV15mPgetKKON27dv13XsRx99JP8equiry+WSR2NVVFT4XfVdSSjaD1EUMWbMGACeoZhz5871ej1YlOn111/H1Vdf7fcnVCvTpqSkyMNACwoKgl6/YPeynu+G0+mUAzYOh6NWfc/zexaJ/hXPa2EE6bNkjPkd8akkVP0q5WiEuXPneo2eVD7YGTp0qK6HcsryavGxYFguAqsUr/PPPx8rV64M6/n/+9//yk9VHn/8cUybNs3vNjTB5ufyRPl0R8uNrex4hjLap5WysrKgcxm10rJlS3Tv3p1LXgDw4osvYsqUKQA8naFly5ZpevKsFNxAc0cllHPJtETRjSJ9hwRBgNPptMRDCuX3+oknnlDtZIYKqWFxOp2orq4OKrFavl/169fHddddhwULFuCnn37CgQMH0LJlS2RnZ2PZsmUAgEGDBtUaehNtKD+3YPICBL52yrzGjBnjd36NEe68806v79fOnTsxefJkvPDCC1zy3759u24Z8AePyIzNZsONN94YcBsn5XxmaW6kEZQPBvLy8gI+yFBuEZOenh40b2UaM52xvn37IjU1FcXFxVi/fj1KS0u9OpShqqvT09MxadIkTJo0yW8aXp+DVurXry//HmgkiS+HDx+W2+jExESMHDmSd9EAeK7B5ZdfjokTJyI3NxcXXnghVqxY4bVVkS/KumPv3r3c6tWbbrpJfnA9d+5cPPHEExAEQd5eB/CM8Lnooou4nI8Hoiiibdu22LFjB1wuFw4dOuR32g8Q/F7u0KED9u3bB8Dz3QiU16FDh+SATbt27Wr1jTt06CBvrRLse+Z0OuWh3snJybVGUkWif8XzWhhh8eLFGDduHHJzczFx4kQAgdcxCVW/qkOHDujbty/++OMP7Nu3D7/99hv69+8PwNy8cGl0R1xcHBfht5zApqenIyUlBSUlJWGZW+rL8uXLAQANGzbE008/7femLC4u9pobFGqU+7Ap9yf1hzINr4WrzJCbm6t7OLg/xo4dy21u6owZM/Dwww8D8Nx7evanUkpuoIWyAM/cMGkRLlEUgy52Y4ZmzZrh77//BmMMhw8fRosWLUJ2Lj1lkgj397pp06by3Mu9e/cG3IcxPz9fc6fvjjvuwIIFC+B2uzFr1iw89dRTmDVrljxMNtKLN/FAWXfs3r07aPpAaUJ1DyxYsEBeyKJHjx44ceIEsrOz8dJLL+Hiiy8Ouo+wFhYuXMitc7BixQpNc63Nonz4q2f9B19at26NP/74A4CnA9K8eXO/ac8880z5dy1CqkyjRXj9IQgCkpOTUVxcDMYYioqKvDpInTt3hiiKcLvd+Pvvv+F2uwM+2FPOmzczjDY/P1+ue5KTk3H22WcbzksrRiNRc+bMkeuua665xtTnEYyHHnoIgiDgoYcekiX2l19+QZcuXVTT+9YdvAS2ffv26NevH37//Xfs3btX7qgr934dM2aM6jSQ2bNnR2yNjK5du8rzJDdu3BhQtILdy127dsWPP/4o5xWobtKSl8TGjRtrzStW8vfff8sC2Llz51p9bT39q+PHj8sCm5WVZWgPWOmcvK6FETp37owVK1ZgwIAByMnJCSqxoexXjRs3Tq73Z8+ejf79+3s92GnevLnuBzuSM7Vs2ZKL8IctNKNsLIIt5nP++ecD8HQ2tXSaeJKTkwPAswBIoAZu+fLltRas8EXPew6GchEmKcITCGW0M9jm83WVt956Cw888AAAT5R66dKlup6Qd+nSRe7Mbd26NWAF8ueff8rDTaRoQaiQnpQBwVfwDRdnn322PP/h559/Dvrd4YlycRDp6bA/pMpZC/369ZM7XLNmzUJ1dbW8gmfDhg3lVS6jmW7dusmrH65cuTLodAlp4Tg1GjRoIEdZ1qxZw2XtgH379uHOO+8E4BGETz75BPPnz4fNZoPb7caYMWO8OvR1ha1bt2L9+vUAPFHRfv36Gc5L2TmTOs3+6NSpkywXBw8elOeC+0PZMTUzKqWwsBDHjx8H4JFZZRQS8My9khYzKywsVF2ZVuLgwYNy1LRly5YBI4PB+Pjjj+WhejfeeKOmlU3NonxwoeeaKmUsVMOHlTz44IN4+eWXAXgecA8YMABbt25VTRvKNs131VXf4cSBJCxSXHzxxfLvknD5Q7kQ6iWXXBI1eV1wwQXy9IXffvvNa76pL8pzqeWlFZ7lN4oksY0aNQIATJw4EdOnT1dNG8p+1bBhw+TRNp999hlKS0trPdjRM7pv//798lxm5YNOU/DYi0fLPrBXXHGF5v2SFi1aJKcdOXKkqbIp9+/TssdWRkaGvP+Zv42JnU4n69mzp9c+dmpI+zNB455YwfaB7d69u/z6Tz/95Def9evXe+2NGGgfWN9NxdXQkzZamDlzprxXbnJysuGNr5V7u06aNMlvOuXeWm+++abRYmviwIED8j6w7du3ZyUlJYbzUu4n+uSTT5pKO378ePn19957z3CZGNO3rzTvfWCVvP7663L6O++8U/594sSJet6ObvTsA2v2cxs6dKj8+ty5c/3m8/3338vpAPV9YF944QX59UcffTTIuwyM0+lkffr0kfP78MMP5demTJki/33o0KGmzhNtOJ1ONmDAAPn9v//++6by++WXX+S8tOyh+uijj8rpn3nmGb/pNm/eLNfBKSkprLS01HAZX3nlFfmc/va8Ve7tOmzYML95TZw4UU5nZt/WnJwclpWVxQAwh8PBtm3bZjgvrZw8edJrD3N/ez368ttvv8nHtGnTxm/fxwz++hHKz65hw4bsn3/+qXVsSUmJvHdwvXr12JEjR7iVq7i4mCUnJzPAs3+ush7r27cvt/P4Q+8+sIwxlpubK7fxKSkpLCcnRzXdli1b5O9Y48aNVdu+6upq+T4VBEH1+jPmuZ+l65SQkMBOnDihmk65t+v333+vmqa8vJy1bNkyaP9Yubfr22+/rZrG7Xazc889V04XaH/sYPC+Flrw15Zv27aNNW7cWH7txRdfVD2eZ7/KlzFjxsh5z549m5122mny/3fu3Kkrr4ULF8rHvvDCC1zKFzaBveeee+Q0K1euDJify+VivXr1ktPfe++9fjfxZYyxsrIy9tFHH7FPPvmk1mt6Bfaiiy6S07/yyiu1Xq+qqmLjxo3z6qj56+gqK+Y5c+YEPXewTrlS7Js0acL+/fffWmmys7O9Nhj2J0t1WWDnzJkjV+pJSUmaGw01Dh8+zJKSkhgAZrfb2fLly2ul+eijj+Rr2KJFC9WN1Xnz4IMPyue88MIL2dGjR/2mdblcbNmyZWzatGm1XuMpQgcPHpQfEMXHxwf9TuTk5LCnn36a/e9//6v1mh6BZYyxfv36eYmmy+WqlUZZV2gV2IKCAvnzV/7ordz1Ek6BXbVqlfx6Zmam6mbpO3fu9Oo4+xPYkpIS1qpVK7mD8OKLL6p+FhIFBQXstddeY8uWLav1mlJSr7vuOq/XqqurveSWd8MeSVatWuX3IUxhYSEbMWKE13ffrIxUVFTInbXzzjsvaPoTJ07I3/OEhATV+jU3N5edccYZcjnVHv798ccfbObMmUHrywULFrD4+PiA9x1jjJWWlrKmTZt6dch8WbZsGbPb7bIYHDt2TDWvsrIytnbtWr9l2r17NzvzzDPlcz311FMB34Pye6P2ff7zzz/Z+++/zyoqKvzmcfDgQXbOOefI+bRv355VV1cHPK/ETTfdJB83depUTcfoJVA/YsaMGfLrWVlZquLwxhtvyGnOPPPMoHXsmjVrND9IVNanynrsgw8+0HS8GYwILGOM3XffffJxl156aa3vSV5enpdMBnpw/uqrr8rpunfvzvLy8rxeLy8vZ5dccomcJtCDna+++sqrDc3OzvZ63eVysZtvvtlv3a1k06ZNcl8tPT1dtS/w1FNPyXn16tXLb17KfligvizPa6GFQG35v//+6yWxauLHs1/li7JvoPxe9OvXT9d7ZMw72PP333/rPl6NsAns119/Ladp164de+utt9i3337Lli5dypYuXcp27drllf7AgQOsWbNmXhfvnnvuYR9++CH77LPP2OzZs9nTTz/NrrzySrlxVeuA6xXYb775xqsxufLKK9lbb73FFi5cyKZNm8bat28vdwyaN28esKP7v//9T86nUaNG7KWXXmJLliyR3/PmzZu90mvplCs7J4mJiWz8+PFs7ty5bMGCBez+++9naWlp8uuDBw/223mpqwL7/fffM5vNJr+nu+++m3355ZdBf3wrYSXvvPOOnJ/D4WC33HILmzt3Lps1axa7/vrr5QrYbrezpUuXBixfsI6MVqqqqtjAgQO97pVRo0axt956iy1evJjNnz+fvfTSS2z06NFyBTlw4MBa+fAUIcYY++GHH+QnxwBYt27d2JQpU9jcuXPZp59+yj744AM2adIkdv7558ufk1p0XK/Abt261Us0zz77bPbyyy+zRYsWsddff5317duXAWB9+vSR6502bdpoytv3gdYFF1yg6TgzhFNgGWNe0eX4+Hh2++23s7lz57L58+eze+65R66DldFafyLx119/edVTbdu2ZZMmTWKzZ89mn332GZs1axabPHkyGzx4sHyvzJs3zyuPVatWyfdH8+bNa3UyGGNs79698nmSkpLY9u3bA16HaKFLly6sSZMm7NZbb2Vvv/02+/TTT9mHH37IJkyYwBo2bChf165du/qNzOjl2muvleuRYCOoGGPsk08+kes9m83GRo8eLT9kfuyxx+Qoh1QHlJWV1crjyy+/ZIAnKnbttdeyZ599ls2ZM0du/x977DHWrVs3r+/eddddF1DYv/32W/m+EQSBXX/99WzWrFls7ty57JZbbmEOh0POK1Dk+vjx4wwA69KlC3vwwQfZrFmz2KeffsreeecdNnLkSJaQkCDnM3LkyICjPhgLXu9L1yItLY1df/317Pnnn2fz5s1jn376KXv33XfZ6NGjWWJiopxHamoq27RpU8BzSigjkKIoBmzrzBCsH6EUh6ysLNWonDIiZLfb2TXXXMNeffVVtmjRIvbxxx+z1157jd16662sTZs2ct2ihV9//dXrM5DqjKKiIjNvuRY///wze/zxx71+lA86Ro0aVev1/Px81bzy8/NZp06d5GNPP/109vLLL7OFCxeyZ555hrVo0cKrTaqqqvJbrsrKSnbeeefJ6Vu0aMGeeeYZtnDhQvbSSy+x008/XX6tc+fOrKCgIOD7HD58uJy+fv367LHHHmOffPIJe/PNN70esjRp0oQdOHAgYF4PP/ywnD45OZnde++9bMGCBey9995jgwcPll9LSUlRfbgqoVVgeV+LYARry7dv3+4lj2oSy6tf5Yvb7Za/S8of5WgnrZx11lkMAGvdurXuY/0RNoF1Op1eURDfH7WO05EjR7w64YF+bDabaoOjV2AZ8x4CpfbTt29flpubK0cSAkVqRo4c6Tcf32ulpVNeXV3Nbr311qDX47rrrlPtFEho+SIbSWt1fKNsWn/8dcYlpk+f7tX58f1JTU1VHSHgS7COjB4qKyvZ3Xff7SXsgX7GjBlTKw/eIsQYY6tXr/YaihLoJyUlpdaDHsb0CyxjnqGQ0pNKtZ+uXbt6PTg788wzNeW7du1ar3y0DtszQ7gF1ul0stGjR/u9dqIoshdffNGrkxDoO7N9+3av6ECgn/j4eK8HP/n5+XLdK4piwHp9/vz5cj5nn312wJE80UKXLl2CXrNrr72WHT9+nNs5lVGVQMPIlXz00UeyGPn76d+/v99yStKm5ScuLo49/vjjmiKO8+fPZykpKQHzUht9pUQS2GBlmjx5csARBhLB6n0916Jr166aoisSH374oXzsRRddpPk4vSg/c38oh3mrSazb7WbTpk3zirgHu7+04Ha7a7VJau2hWYz0PwL1A/bt2xe0Hh00aJBfCVaSl5fnNfVA7ad79+6aHnBUVFR4BVvUftq2bavpPnW73ey+++6TH4ip/TRs2JD9/PPPAfPRKrC8r0UwgrXljNWW2Oeff75WGh79KjWmTp3qdWxycrKmh5hKtm3bJh8/efJkXccGImwCy5gn9P7888+zPn36sMzMTK+OdaBO1q+//sr+7//+j3Xp0oVlZGQwm83G0tLSWOfOndnw4cPZO++843dOhBGBZYyxpUuXsiFDhrAGDRowh8PBmjRpwgYMGMDef/99uZHUIrBOp5O988477IILLmANGjSQhyepXSs9nfLVq1ezW265hbVr144lJyezxMRE1qZNGzZq1KigX2TGSGD1/gQTWMY8803uuusu1qFDB5acnMxSU1NZ165d2cMPP8z2798f9PjS0lKvzs/Jkyc5vGPGdu3axR555BF27rnnsqysLGa321lSUhJr06YNu+yyy9hzzz3ntzILhcAy5nkQM3/+fDZs2DDWpk0blpKSwux2O6tXrx7r2bMnu+2229iiRYv8zt81IrCMMXbs2DH20EMPsY4dO7LExESWkZHBevbsyV566SVWWlrK3G63HMnQGkl1u90sPT2dAZ75WYGG+fEi3AIrsWTJEjZkyBCWlZXF4uPjWcuWLdnIkSPZn3/+yRhjmgWWMc91+/rrr9nYsWNZhw4dWFpaGrPZbCwjI4N169aNjRkzhs2ePbtWdFX5dP+RRx4JeA7GGLvxxhvl9FrmcFqdlStXsocffpj17duXtWjRgsXHx7P09HR2+umns/Hjx7Pff/+d+zmdTqc8Z02P5Ozfv589+uij7Mwzz2QZGRksLi6ONWvWjF1zzTXsiy++CBgtdTqd7Pfff2dTp05lQ4YMYe3atWMpKSlMFEWWkpLCWrVqxYYMGcKmT5/ODh8+rOv97N+/n02aNIl16dKFpaamsuTkZNahQwd21113+Z335lu2RYsWsf/7v/9jZ511FmvUqBFzOBwsKyuL9ezZk02ZMoXt3r1bc3mCCUtxcTH7+uuv2SOPPMIGDBjAOnTowOrVq8fsdjvLyMhgp59+Ohs7diz75ptvNAmzEmVgQctDVqNo7Uco1xXwF4k9cuQIe/rpp1n//v1Z48aNWVxcHEtISGDNmzdngwYNYlOmTGGrV6/WVb6nn37a63MwM7XIH7wFljHPaKuZM2eyAQMGsEaNGrG4uDjWtGlTNmTIELZw4UJdUwjcbjdbuHAhGzJkCGvatCmLi4tjjRo1YgMGDGAzZ87UPCRdYunSpez666+X66kGDRqwPn36sFdeeUX32hx//vknu+mmm9hpp53GEhISWEZGBuvevTt7+umnNT2s0yOwjPG/Fv7QIrCMMbZjxw6vKRBqEmu2X6XG/v375TV1gjmePx577DEGeAKNPEd4CIyZXB6XIAgu/Pjjj/Jqdvfccw9ee+21CJeo7rFlyxZ5hTytn8Hy5cvl5eTvvfdevPrqq6EsIkFEhBkzZuCBBx6AzWbD/v37A26nQxAEQRAulwvt2rXD/v37MXz4cCxcuJBb3mHbRocgiMBIexCnpqZi8uTJES5N3eTNN9+Uf7/wwgs1HfPOO+/Iv8fC3q8EocYdd9yBxo0bw+Vy4cUXX4x0cQiCIAiL88knn2D//v0QRRFPPvkk17xJYAnCIkgC+8ADDyArKyvCpYk9Vq1aFXCftLfeegszZ84E4Nkg/PLLLw+a599//42vvvoKADBo0CBTe0YShJVJTEzEU089BQCYOXMmjhw5EtkCEQRBEJbF5XLhmWeeAeDZT/n000/nmj8NISYIC3DixAk0bNgQDRo0wJ49e5CamhrpIsUc7dq1Q0VFBS699FKcffbZyMrKQnV1Nfbs2YMvv/wSf/31l5x2yZIlfgX2hx9+gNvtxs6dO/Hiiy/i6NGjAIDff/8dffv2Dct7IYhI4Ha70atXL2zatAl333033njjjUgXiSAIgrAg8+fPx+jRo5Geno6dO3eiYcOGXPMngSUIok7Qrl077NmzJ2CaxMREvP/++7jxxhv9phEEodbftM6X/emnn1BWVha8sCo0aNAA/fr1M3QsQRAEQRBErEACSxBEnWDNmjX4/PPPsWbNGhw+fBgnT55EWVkZMjMz0aFDBwwaNAjjx49Ho0aNAuYjCWxKSgo6dOiA8ePH4+abb4YoBp+R0bp1a2RnZxsqf//+/fHrr78aOpYgCIIgCCJWsEe6AARBEOGgd+/e6N27t+l86JkfQRAEQRBE5KAILEEQBEEQBEEQBBEV0CrEBEEQBEEQBEEQRFRAAksQBEEQBEEQBEFEBSSwBEEQBEEQBEEQRFRAizgRBEEQMQVjDBUVFSgrK5N/ysvLa/2/qqoKlZWVqKqqkn98/y/9OJ1OuN1uuFwu+cftdst/U74mIYoiBEEI+COKIhwOB+x2OxwOh/xjt9sRFxcn/136f3x8PBISEpCYmOj1r9rvycnJSElJQVxcXAQ/DYIgCILgCwksQRAEYUnKy8tRVFSEwsJCFBcXo6ioCEVFRX5/LykpkUXV7XZHuviWIS4uDikpKUhJSUFqaqr8u/InNTUVGRkZXj8pKSmatociCIIgiHBCqxATBEEQYaO0tBR5eXnIy8tDfn5+rX+Vv1dUVJg+X1JSktdPYmKi/O+KT9dDcAsAEwEmnPrdLUBgAuCu+TsTACYADAC8/xWk/zNB8VoNgvQLC/h/JjBA8VPr/6LyNRcgunHpuPNQUVGBiooKlJeX1/pdEnkz2Gw2pKWleUlteno6MjMz0aBBAzRo0AD169dHgwYNkJGRQbJLEARBhAUSWIIgCMI0jDGUlJQgNzcXubm5OH78uPyj/L9eqXI4HEhLS0NaWhpSU1ORlpaG1Uu2QHDZILhEwGWr+d0GuEQIbhFwK/49ZY2xDasdcWZggOgGs7kBmwvM5gYTT/0O0Y2hdw9ASUkJCgsLUVhYiIKCAhQUFKC0tFTX6W02G+rVq+cltfXr10dWVhYaNWqERo0aoWHDhjScmSAIgjANCSxBEAQRFMYYioqKcPToUdWf48ePa46YJiYmol69esjMzMS/f+6H4LQDThsEp73mp+Z3l90TDa0rEsobFanVfKjgBrO5ALsbzOYEs7vAbC4wuwuX3tIXJ0+exIkTJ3DixAnk5+dDa1eifv36aNy4MRo2bIjGjRujUaNG8r9NmjRBUlKS4TITBEEQdQMSWIIgCAIA4HK5kJubi4MHD+LgwYM4cuSIl6RqiZ6mp6ejYcOGyMrKwrpvt0GotkOodniEtNoOwenwREeJ8GNCaANmCwZmd4I5XJ5/7U7c8NilOHHiBI4fP45jx44hJycHlZWVQfPKzMxEs2bN0KxZMzRv3hzNmzeX/5+amhqS8hMEQRDRBQksQRBEHaOgoECWVOXP4cOHUVVVFfDY+vXro0mTJvj392wI1XEQqxwQqhynJJWRnEYNIRJa1VOBATYX3A4nWFw1mMOJK+8+Hzk5OcjJycGxY8dQXFwcMI/09HQvuW3VqhVat26N5s2b09BkgiCIOgQJLEEQRAzCGENeXh7279+PvXv3yv8ePHgQRUVFfo9zOBxy5Gv1F/9AqHYoJLVGUAWS1JgkjEKrenrRBRZXDXdcNcZOuxyHDx/GoUOHcPjwYZw8edLvcTabDU2bNkWrVq1kqW3VqhVatmxJQ5IJgiBiEBJYgiCIKKeoqMhLUvfv3499+/ahsLDQ7zGNGjVCixYt8PePuyBUxkGsioNQGeeRVH9zTklc6w4RlllfmOiukdsqjHv2Shw8eBDZ2dnIzs5GSUmJ3+MaNWqE1q1bo127dmjXrh3atm2L5s2bw26nXQQJgiCiFRJYgiCIKIExhmPHjmHXrl1eP8ePH1dNL4oimjZtiqNbCzySWhEPsTLOE03VM9SXxLVuYzGZVeKZf+sCi6+CO74SQ+7si+zsbOzfvx/5+fmqx8TFxaFNmzZo27Yt2rZtK8stzbElCIKIDkhgCYIgLIjL5cLBgwexc+dO7Ny5E7t27cLu3bv9zhNs3LgxcncWQ6yMg1gZD7GiJqJqZk4qiSvhi4Vl1hdmc8FdI7aX3dkHu3fvxt69e1FeXq6avmHDhujQoQM6duyI008/HR07dkR6enqYS00QBEEEgwSWIAgiwjDGkJOTg23btuHff//Fv//+ix07dqiu2mq329GmTRvsXZcDsTweYkWCR1bdNn4FInElghFFIquEgXmGIidU4oYnLsbu3buxe/duHDt2TDV9kyZN0KlTJ3Ts2BGdOnVChw4dkJKSEuZSEwRBEEpIYAmCIMJMSUkJtm/fjm3btmHbtm3Yvn078vLyaqVLTExE27ZtsX3lQY+olsebj6oGgsSVMEKUyqwSJrrgTqjEba8Mxfbt27F9+3YcOnRINW3Lli3RqVMndO3aFV27dkWbNm1gs3F8gEQQBEEEhASWIAgihDDGcPjwYWzevBmbN2/GP//8gwMHDtRKZ7PZ0LZtW+xdnQOxPAFieYJHVv0tqMQTEleCBzEgskqY6II7sRI3PT8E27dvx44dO1QjtUlJSejcubMstJ07d6YoLUEQRAghgSUIguCIy+XC7t27sWXLFlla1aKrjRs3xvHtpbKsiuXxkdlDleSV4E2MiawSZnPCnViJkU9dhH/++Qfbtm1DWVmZVxpBENCmTRtZaM866yw0btw4QiUmCIKIPUhgCYIgTFBVVYVt27bhf//7HzZv3oytW7fW6tDa7XZ06tQJ21cchliWCFtZAgRXhLfxIHElQk0Mi6wEAwOLr8Kd71yLf/75B//88w+OHDlSK13jxo1x9tln46yzzsLZZ59NQksQBGECEliCIAgduFwu7Nq1Cxs3bsSmTZuwefPmWostJScno/wYg60sEWJpomc4cCSiq2qQuBLhpg6IrBJmd8KVWI5rHu6PzZs3Y8eOHXC5XF5pSGgJgiCMQwJLEAQRAMYYsrOzZWH966+/UFJS4pUmMzMTRfurIZYmwlaWCKEiPjxzV/VC8kpEkjomshJMdMOdVI7rHr8Af//9N7Zv364qtD179kSvXr3Qo0cPpKWlRai0BEEQ1ocEliAIwoeCggKsW7cO69atw4YNG2rNYU1OTkbFUUAsTYKtJCl8iy0ZhcSVsBJ1VGQlggmtKIro1KkTevXqhV69eqFz586w2yM85YAgCMJCkMASBFHncblc2L59O9auXYs1a9Zgx44dUFaNcXFxcObZYStJOjUk2MrCqoTklbASsSCvbkW3STRfD0hCe+XE/2D9+vXYv3+/1+vJycno3r27LLTNmjUzfU6CIIhohgSWIIg6SV5eHtatW4e1a9di/fr1KCoq8nq9Xbt22P/nSdhKkyGWWWgOq1ZIXAmrEQvyKuH203XiILRuWxXumzMC69evx4YNG1BYWOj1eosWLfCf//wHffv2RdeuXSk6SxBEnYMEliCIOgFjDPv27cPvv/+O33//Hdu3b/d6PSUlBeWHAFtxEsTiZIhOO5fOaEQgeSWsRizJqxJ/IithtA6pyZeBwZ1YiTEvXoL169djy5YtXsONU1JS0Lt3b/Tp0we9e/dGamqqsfMRBEFEESSwBEHELC6XC//88w9WrVqFP/74A4cPH/Z6vX379tj3+wnYimuirMphwdEorySuhBWJVXmVCCaxSvTUKyr5MtGFRz4fiz///BNr1qzxis7abDacccYZ6NOnD/r164cWLVpoPxdBEEQUQQJLEERMUVFRgfXr1+OPP/7AH3/84dXBi4uLg/OEHfaiFNiKkiE4/Qy9I3klCH7EusAC+iRWQks9EyBfBgZ3UgWue7I//vzzT+zbt8/r9TZt2qB///7o378/TjvtNAhCFNZrBEEQKpDAEgQR9ZSXl2PNmjX45ZdfsGbNGq99WVNTU1F2ALAVJsNWkgzBrUH0ok1gSV4Jq1IX5FXCiMQqUat3dOTpdlTj/969Cn/88Qf+/vtvOJ1O+bXmzZvjggsuQP/+/dGhQweSWYIgohoSWIIgopKKigqsWbMGK1aswOrVq1FRUSG/1rhxY5z4pwK2wmSIpYn6VgwmeSUIPtQleZUwK7ESynrIQJ7M5sL9C0Zg5cqVWL9+PaqqquTXGjduLEdmO3fuDFGkOoQgiOiCBJYgiKihsrIS69atw4oVK/DHH3+gvLxcfq1p06bI/bsc9sIUCOXxxra5iSZ5JXElrExdlFcJXhIrIQqm8mSiG5M+HYWVK1dizZo1Xg/7GjVqhIEDB+Kiiy5C27ZteZSWIAgi5JDAEgRhaVwuFzZt2oSffvoJq1atQllZmfxa48aNcWJzpTlpVcJTYN0sdEJM8kpEAySxloMJbjz21U1YuXIl/vzzT6/6tE2bNrjoooswaNAgNG7cOIKlJAiCCAwJLEEQlmTPnj346aefsGzZMpw4cUL+e8OGDZG3tQq2glSIPKRViVnhVHZaSV4JwkNdFVmLSqwEE9x49MuxWLZsGdasWYPq6mr5tTPOOAMXXXQRLrjgAmRkZESukARBECqQwBIEYRlOnjyJ5cuX46effsKuXbvkv6empqJ8n+iRVt/tbnhhcr9GLnkFg+SViGbqoshaXGIlmM2FCXOuw7Jly/D3339D6hrabDace+65uOyyy9CnTx84HI4Il5QgCIIEliCICFNZWYlVq1bhxx9/xPr16+F2ezq5drsd7GQ8bPlpsBUnQWAhlDe9whmoUxoKeSVxJWIFkljL47Y7cfObl2L58uXYuXOn/PeMjAwMHjwYl112GU477bQIlpAgiLoOCSxBEBFh3759WLJkCX766ScUFRXJfxdLE2DLT4W9MBWCyxb6gmgVTi2dUJJXgtBGXRPZKJNYCXd8Fa6Z2hc//PAD8vLy5L936tQJl112GQYOHIjU1NQIlpAgiLoICSxBEGGjvLwcK1aswJIlS7B161b57w0bNkTeFifs+akQq+LCV6Bgwqmn00nyShD6IImNGhgYnvz+Vnz33Xf4888/4XK5AABxcXE4//zzMWTIEHTv3p32lyUIIiyQwBIEEXJ27tyJb7/9FsuWLUNpaSkAz9wq5CXAnpcOsTgpNPNag6EmnUY6mSSvBGGcuiSyUSyxEszmxC3vDMF3332Hffv2yX9v2bIlhg4diosvvpiisgRBhBQSWIIgQkJVVRV++eUXfPHFF9i+fbv896ZNm+L4xkrY89MgOO2RK6BSOs12KnkLLMkrUdeoKxIbAwIrwcDw6uqJ+O6777Bs2TJ5X+6EhAQMGjQIQ4cORYcOHSJcSoIgYhESWIIguHL8+HF8/fXX+Oabb1BQUAAAcDgccB+P90RbSxIjE21VIgr8OpIkrwTBB5LYqIWJboyfdRW+/PJLr6hsly5dMHToUFxwwQWIj4+PYAkJgoglSGAJgjANYwxbtmzB559/jt9++02eH5WVlYWCzW7Y89IguPRHW6Xqiee8KsYY33laPAWW5JWo61hZYt2Mz/eds8DyrtPM5MfA8OLKe/HVV19h5cqVcDqdAID09HRcccUVuOaaa9CgQQNuZSUIom5CAksQhGEqKyuxfPlyfPHFF177toolCbCfzICtMMVQtNW3WjLbOVPmR/JKEBbFyvIqoZRPM9//EEishFXqS2Z3YtSMQfj666+Rm5sLwLM92sCBAzFs2DC0b9/eVDkJgqi7kMASBKGb4uJifPXVV/j888/lrRXi4+PhPBIP+4l0iBXxujs+/qoiw5EAlfxIXgnCokSDvEqoyaeR+iCEEisR6fqTMQYGhslLxmHx4sXYvHmz/NrZZ5+N4cOHo3fv3hBFqgMJgtAOCSxBEJrJycnB4sWL8e2338oLdjRq1Agn/3LWDBP27Nuqp6MTrAriJcJG8vILyStB8CWaBBYILJ966geOEsuz7gtVXq+umYhPP/0UK1askKeatGjRAsOGDcPFF1+MhIQEXXkTBFE3IYElCCIoe/bswSeffIKff/5Z7nQI5XGw52bCVlB7mLCWDo6WqkdrR4lnXkEheSUIvkSbvEpokU8t9UWYJFaCV71qJh+3oxrXTPsPlixZgpKSEgCeebLXXXcdrrnmGtqGhyCIgJDAEgShCmMMf/31Fz7++GOsW7dO/rtYnAh7bqbf1YQDdWr0VjfBOkha87Pk0GGSV4LwEK0CC2iXz0D1RhiGEqvBq341kxcT3bj9/cvx6aef4ujRowCApKQkXH311bj++utRr149zWUgCKLuQAJLEIQXjDFs2LABc+bMkecriaII4WQS7MczIJYHHuKl1pExUs346xDxzEs3JK8EwZdollcJvQKqVo+EOQrrC6/61mg+DAyTPr8R8+bNk7fhiYuLw+WXX46RI0eiUaNGuspBEERsQwJLEAQATwdj3bp1mD17NrZu3QrA04FwHUn0iGuVQ1M+yg6MmerFtyNkNC+SV4KwMLEgsIBxAVXWKxGWWCB09a7WfBgYnvz+VsybNw/btm0DANhsNlx88cUYM2YMmjZtaqg8BEHEFiSwBFHHYYxh9erVmD17NrZv3w6gRlwPJ8KRmwnBqX3/VqnTYrZa4Z2PaUheCYI/sSKvEmYEVKpjLCCxQGgeROrJh4Hhv7/cjfnz52Pjxo0APCJ72WWXYcyYMRSRJYg6DgksQdRRGGPYuHEjZs6cKYtrfHw8XAc9EVc94mpVLCWwJK8E4U2sCSzAfT6rGXh07wRBiHg+L//xAD766COsX78eAOBwOHD55Zdj1KhRyMrKMl02giCiDxJYgqiDbN26FTNnzsRff/0FAEhMTER1drxxcXXXdETN7OXHIw9FXoLNZj4fgKKvBBEqSGBDDrcuntttvm42mcf0Vfdh1qxZ2LRpEwDPSKErr7wSo0aNosWeCKKOQQJLEHWIPXv24IMPPsAff/wBwPMk2304EY7j9fSLq9sNSNWHFOk00jnxzYeHBAOGBVaqEgVBIHkliFBDEhtSuAqsBKc62mg+z/86AR9++KG8yGBiYiJGjBiB4cOHIykpyXjZCIKIGkhgCaIOcOzYMbz//vtYvnw5GGOeVYVzk2A/Vg+iK05fZkrhVKJXGH3zMSOvbu9OsBF5VVaFJK8EEUZIYkNKSCQWMP7A0hcD+TCXE8/9eo/XFJjMzEzcdNNNuOKKK2C3R/8UGIIg/EMCSxAxTElJCebPn4/PPvsMVVVVAABbfjLsRzIgVsbpl0Z/8gpoF1h/eRgpiwp65VWtCuQmsCSvBKGdWBPZWJNYP3Uuj3pbt8S6XAA8iz09umQcZs6cicOHDwMAmjdvjttvvx39+/fnuwc4QRCWgQSWIGIQp9OJJUuWYNasWSgsLAQAiMUJcByqB7E8/lRCrdIYSFy15hMoDz3y6q8DJGWlQWADVXskrwQRQUhiQ0LIorBKeNThWvOoEVgJBobx867G7NmzkZ+fDwDo0qULJkyYgM6dO2vLkyCIqIEEliBiCMYY1qxZg7fffhvZ2dkAAKHCAcfhehALEyHAR8yCiWMwcZUIJI1a8tAqwEEIJq/BqjsaOkwQFiCWJNYiAguEOAqrhENdHjQPH4GVYKIbI169EIsWLUJ5eTkA4OKLL8b//d//oUGDBsHPSxBEVEACSxAxwsGDB/H6669j7dq1AID09HSUbbHDdiK1trgCgaVRq7hKqImjnjyClUUj/gRWazVH0VeCsAgksdwJm8BKcKjTA4qsH4kFgAX7X8YHH3yA77//HoBnoadRo0Zh2LBhiI+P93scQRDRAQksQUQ55eXlmDdvHhYtWoTq6mrP4hWHk2E/lg7BFSAiqSaNesVVLR+9efiTVz2dHKjLq57qjeSVICwGSSx3wi6xAJf6XTWPAAIr8er6R/D6669j69atAIDGjRvjzjvvpPmxBBHlkMASRJTCGMOvv/6KN998E8ePHwcAiIWJcByqD7HSETwDpTgaEVcJSRyN5qEmwAZQCqzeao3klSAsCkksVyIisBIc6nmvPDQILOCZHzvxy9F499135bby3HPPxX333YdmzZoZKwdBEBGFBJYgopADBw5gxowZ2LhxIwBAqLR7FmgqTFIfLqyG9PTZbBUgCMbz8JVoo0WokVej1RkJLEFYmFiRWAsILBBhiQU8db6Z46U8NAqsBBPdGD7jAnz88ceorq5GXFwcRo8ejZEjRyIuTud2cgRBRBQSWIKIIqqrq/Hxxx9j7ty5cgPszk7yDBdmUSpPPIZxGd0/FrRwE0FEBSSx3Ii4wPLC4Pv44N9nMGPGDGzYsAEA0LJlSzzwwAPo3r07z9IRBBFCSGAJIkr4559/MH36dOzbtw9AzXDhg/UhVmkYLqxE6niYkD5ueejcs9ULqeoyk4fbDYgiBJvB9yF1RkXBmLxKnXISX4IITKwILEASe6oQ5h9gulyG2iEGhklfjcGbb76JvLw8AMDgwYNx9913IyMjw1yZCIIIOSSwBGFxSktLMXPmTHz11VeeTke1CMfBerAVpGgfLgwAbrfcaRH07LsagjxkjMinb5VlJA+FgBuSV2UH1Ii8KjvjJK8EEZhYkleJCEusZQRWwqjIKocRGxFZwYlLn+4pt68ZGRm4//77ceGFFxorD0EQYYEEliAszJo1azB9+nR54Qnb8WTYD2ZAdNv1NdYK8QQMyKfZ42vyqIUe+VSrqvTKq7IMeuXVX4dT13vwuQYkrwQRHBLYkGC6+8djGLFvGfSKrO88WIPt0owNj+KFF16QRzj1798f9913H+rXr68vP4IgwgIJLEFYkNLSUrz11lv49ttvAQBChR32/fVgK07QJ48+4imhOQ+zxyvyqYVW8QtURWnNQ+38WgU2UEdTa/RVrQNO8koQwYlFeZWgKKz/+l2ryPpbyMlA+8QEhhFvDMC8efPgcrmQlpaGe+65BxdddBFtuUMQFoMEliAsxsaNG/H8888jJycHAGA7lgr74XQIbk+DrEke/YinhNk89AiwX4LJZ7CqSYu8+ju/FnkN1rnUIq+BOt8ksAQRnFgWWCD6JTZUAgtok9hgKxEbaKfe/N8TeP7557Fr1y4AwH/+8x88/PDDyMzMDJ4XQRBhgQSWICxCeXk53nvvPXzxxRcAAKHCBsf++hCLE7zSBZVHs/LKSX6D4k9AtVZJgQQ22PkDCayWDmUgedXS4SZ5JYjgxLq8AiSwnkIEfj2YyJqVWJX3wASG0e9ejNmzZ6O6uhoZGRl4+OGH0bdv38B5EQQRFkhgCcIC7NixA08//TQOHjwIALDlpsB+MEOOuirxK5BBxDPkx9fkoQk1+dRTFfmTVy3n9yevejqSagKrtbNN8koQ2qgLAguQxGo9vz+R1bofrIF26+0tT2HatGnYu3cvAOCKK67A3XffjcTERG3nJAgiJJDAEkQEcbvdWLx4MWbOnAmn0wlU2eDYVw+2Iv+No6pAapTPUB6vC18B1VsN+R6v5/y+Aqu38+grr3o62SSvBKEdEtiwEDUCC6hLrFaBBfw+vA0EExiufKE3Fi9eDABo3rw5Jk+ejM6dO2s/L0EQXCGBJYgIkZeXh+eeew7r1q0DAIj5iXDsqwfBFXhup5dA6hDPUB2vG6V8Gql+eMmr0U6jJLBGOtcksAShjboirxJ1WWKNnFspsnoEVkIpshrL/tyq+/Dcc8/h+PHjsNlsuPXWWzFy5EiIZvZDJwjCECSwBBEB1q1bh2effRb5+fmIi4uDe2cybMe17esqC6QB+TR7vPJYw9hsxjosyuMBY2WQBNaMvBqF5JUgtFPXBBaIqMRGVRRWQpJYIwILGHoQ+1nO23j55Zfxyy+/AADOPfdcPP7448jIyDBWBoIgDEECSxBhxOVyYdasWZg3bx4AQChzwLGnPsSKuLCcX9oKwOjXnstWAmaeVttsxjtKomi+/EYFluSVILRTF+UViO4obCQEVkIQjEusARgYJiwajtdeew1VVVXIysrCU089hTPOOCNsZSCIug4JLEGEiYKCAjz99NPYsGEDgJqFmg5kQGBhkhupc2RUwmqO17R3qj/MDrUyI6BmBZairwQRHuqqwAJ1NwrrcplqH5jLFfa9Wt/a/CSefPJJHDx4EDabDbfddhtGjBhBQ4oJIgyQwBJEGNi2bRueeOIJ5ObmAi4Bjv31YMtL1p6Bm3k6dYJoTKTMHO9zrN5OglTFaN47VrUMbs+xkRJYkleCCB8ksBEh4sOIpSiqgXaC1RxrtI5nLk/Z9T6gZaIb/SZ1xPLlywEAffv2xeTJk5GcrKN9JwhCNySwBBFCGGP46quv8MYbb8DpdEIot8OxpwHEco1DhiV5BMzJJ6fj9TTualWLEGjvVtXzKzpEZgQ2UtFXkleC0EddlleABFbChMQCxkRWklhAn8j6Dilu1aoVnnvuObRo0UJ3GQiC0AYJLEGEiOrqarzyyiv47rvvAABiXiIc++qr7u1aC6U4SugR0BAdr7VR91et6BJYXvJac3xYBZbElSCMQQIb0dNHdB6s2jxWHSLLVI7XU+8rBVY+XofIztjwKKZMmYLjx48jJSUFU6ZMQZ8+fTQfTxCEdkhgCSIEFBQUYPLkydi8eTNEUYS4PxW2nLTgqwyriSOgXT5DfHywzkCg6kSzvKp1gqJJYEleCcI4JLARPb2lorBKNIqsmsQC2kVWTWIB7SL78cFX8cQTT2DLli0QBAG33HILRo8eHfb5uQQR65DAEgRn9u7di0ceeQTHjh3zzHfdVR+2wsTAEuRPHCWCCajZ44PloSH6Gqwq0SSw/jo/0SKwJK8EYZy6Lq8ACWyg1YQ1SKw/gZUI+hDWj8DKxwdrB11uMIHhkmd74OuvvwYADBw4EI888gji4+MDHksQhHaot0UQHFm9ejXuvPNOHDt2DEKFDXFbG5mX12DwON7lMpwHY4xPp8dsxyeSCCLJK0EQRCjh0E6Ybau0CK7ABPz42CZMnDgRNpsNP//8Mx588EEUFBSYOjdBEKegCCxBcOLLL7/Eq6++CsYYhKJ4xO2qD8FZE3VUE1it4ukvehqu42vy8H3yrLfq8BuB1dIhsXIElsSVIPhAEViKwOrZz9VPRDZYFFbCX5sQTFLl4/1EY5XH//fPBzBlyhSUlJSgWbNmePHFF2lxJ4LgAAksQZiEMYYPPvgA8+bNAwDYcpNh358JgSkaR6UA6Y2Y+gpohI5XNvZGqo1aAqunoxNpgQXUJZbklSD4QPIacXkFLCCwgD6JBWqJrFaBlfBtG7QKrHy878Ndn+Nn7ngWkyZNwrFjx5Ceno5nn30WZ555pq5zEAThDQksQZjA6XRi+vTpWLp0KQDAfjANtiM+izVJ4mN0qK8koGaPN1oGRfTVTHUhC6yRDo4VBZbklSD4QQJLAiuhV2ABL4nVK7ASUhuhV2Dl423KMnjnsfDoG3jkkUewfft2OBwOPPnkkzj//PMNnYcgCBJYgjBMeXk5nnjiCaxduxZggH1fJuzHU9QTG+2cmZVXKQ+TZRBsoumOjWCzGe/cWElgSVwJgj8ksCSwEgYFFAAgioYFFjAvsYBHZNWOZ6Ib5zxwGlatWgVRFDFp0iRcdtllhs9DEHUZEliCMEBxcTEmTpyIbdu2Ae6alYYLEr0TMTeYm0HQu4coR1hNh8hUGfTsH+svC9PyaBGBJXklCL6QuJ4iFgQWCO88WBX4vAeTeTC3anvBwDBw6pn4/vvvAQB33303hg0bZu5cBFEHIYElCJ0UFBTgwQcfxK5duwCniLgdDSCW+CyPb1JemRRxFURzecCkvHoyiAmBNVUOir4SROggifVAAuvBpMACHN6HVAYzdX4Aib16Rj8sXLgQADB69GjceuuttFcsQeiAemMEoYOTJ0/innvu8chrtYi4bVne8srcYC6XLI9GYCa3xWFu5hlCZZFOYcQbZQ17B/o/VjAt7wRBBMAi9RRBqGKyLQZz18pDgIAv7/8dt99+OwBg3rx5eO211/g8PCCIOgIJLEFoJDc3F/fccw/2798PVNkQt60hxPI4z4ucxNVLPA1EX83Kb0whiubllSAIgqh7KFfNV5FQrTA3UxVZAQLm3rIUDz74IARBwBdffEESSxA6IIElCA3k5ORgwoQJOHjwIFBZI68VjtCIa4TyiCnMiCvgX17p+hIEP+j7dAoLDB8mghACkX1r2GJMmjRJltjXX3+dJJYgNEACSxBBOHnyJO6//34cPXoUQoUd8dsaQqy0y/Nc/REselpXxDXsjTENGSYIgogMPFYhtjoaRbbW3ufwEdkaXrvmY0yaNAkA8Pnnn5PEEoQGSGAJIgAFBQV44IEHcOjQIU/k9d8sCJVixOe58sojpqAhwwQRPVDdRUQ7HOfH+krsm2++SRJLEAEggSUIPxQXF+PBBx/Evn37aua8NgDKBRouHAncbiBQY65RXP12CPTIa1267gRBhB6LDB8mYTIAx2HFr1/7iSyxn376KebOncuzpAQRU5DAEoQK5eXlmDRpkrzasGNrPQjltYcDaYXENUTwiLpS5JUgwgvVYUSswUlkX79mAe69914AwIcffoivvvqKYyEJInYggSUIH5xOJ5566ils3boVcApwbK0PsdxhOD8aLhwiQrVQE0EQoYPqMSKWMfuQ2s3w3sjPcNNNNwEAZsyYgV9++YVT4QgidiCBJQgFjDHMmDEDq1evBtwCHNvqQywzJq8UdQ0hJK8EQRCEFTERjfUczvDJHT9h6NChYIzhmWeewbp16zgWkCCiHxJYglAwb948LFmyBGCAfUcGxJI445mZlU6TjWDMYlZeeUCfC0EQPKD5r7GLmXbCDXw/aS0GDBgAp9OJKVOmYM+ePfzKRhBRjgV6ggRhDX744Qd88MEHAAD7vnTY8hP1ZyJJp2l5ja3OhOnOESdpFQROkVeBqk6C0A09+IlteG2hY4WHlBZAgIDfn/0XZ599NsrLy/HII48gLy8v0sUiCEtAtQRBANi8eTNefPFFAIDtcApsx5L1ZcAzWmoVeRXEU6IWySgByStBRD8kr7WxSPTVUkjtn9kF+mIEgQmYNm0amjdvjpycHDz++OOorKyMdLEIIuJQ7UDUeXJycjBlyhQ4nU6IJxJgy07VlwFPcbWSvEYajh2YWvJqtONohetCEARRVyCJxbX1bscLL7yA1NRUbN26Fc8//zwN+SbqPFQzEHWayspKTJ48Gfn5+RBK7bDvzoAAjZE6XlHXUIorc+vbt1YZdY0k/jotjOkapiYIAkVeCSLSUPTV0lhehnQ+zLT8+zHAzW0mYtq0abDZbPj5558xb968SBeJICIK9ciIOgtjDNOnT8eOHTs8e71urwfBrfErEWvDhYGQC5rmToXVhgwDJK8EQfAl1oYP85r/Gog6Ho19+JwX8cADDwAAZs2ahQ0bNkS4RAQROep2bUDUaT777DP89NNPAAMcOzIhVNqDHxQNUVe9WCnqGk551dKBtMq1IYhohaKvBE/q+NzY169egCFDhsDtdmPq1KnIzc2NdJEIIiLU3VqAqNNs374d77zzDgDAtj8NYlF84AMisUhTOARXj5yFMmKgp0MSYBgxDRkmCAtB8qqOhaKvlhpuq6csoZZYlyu0+ZvgvvvuQ/v27VFYWIgnn3wS1dXVkS4SQYQd6qERdY7S0lJMnTrVs2jTyQTYjgZZcTiSizSFsnMRAUFT7SxFcsiwv44kyStBEIQ2wjF8WI06Gom9PHkspk2bhpSUFGzdulV+GE8QdYm6+e0n6iyMMbz88ss4fPgwUGkLvGhTrGyN47uQk1WGxYZ7yLDmzCxwbQgi2qHoqzoWir7GBD7tiKUiyiFkbMsH8PjjjwPwTIdas2ZNhEtEEOGFempEneL777/H8uXLPfNed2ZCcPlb7TYGt8YBzMsZr86XWXFVDCMmeSUIi0HyGhVYSvbMlsWC0VhdOwAY4Kn+b+Daa68FADz//PMoKCgI6fkIwkpY7xtPECHiyJEjeP311wEAtgOpEIvjaqURRI4yxAsOnQxBFPjImVWujyAAosh3vivJK0EQoSQWo6+RGj6sBi+Jtdj810D9kjvuuAOtW7dGXl4epk+fbq2HEgQRQqjHRtQJ3G43XnjhBZSXl0MojIPtcEqtNJaUVx4IoudJsNmoiMnrw22BpRp5BThEEGL1MyeISEIPgyxPLIoOs5h48sRf/+Ty5LGYPHky7HY7Vq1ahaVLl4a5ZAQRGaiVIeoES5YswV9//QW4BDj2eM97FUQhpuXVNKLARV65oJBX0yjfEw15JAi+kMR6E4vRV17EoEyHAn99lbs6P4FbbrkFAPDaa68hJycn3EUjiLBDLQwR8xw9ehRvv/02AM/QYaHi1H6vao0Bt+G2gEe4IgGvIbEcxF5VXo0MO/Mjr7ojCf6EnCSWIPhCEmtJYjH6ajV4zX/120fx4aOx36Br164oLy/Ha6+9xuXcBGFlqHUhYhrGGKZPn35q6HDNljlRF3XV0+Hw02nUPYzYSkOGbTY+kddo+swJIhYgiY3d6KuF5r9yGz4cJcOQffswAgRMnDgRdrsdv//+O3777bcIlo4gQg+1LERMs3LlSmzYsAFwA/aaocNRJa564Bl1DceQYS2dH41DhjVFFLS8J4rCEgR/SGItg+Wir1YrT5Sh7M/c3v5RjBw5EoBnKHFpaWmkikUQIYdaFSJmKS8vx5tvvgkAsB1Oga3KoVleuQ4jDge8yhqqIcPGMgrNfFeCIMJPNNWnPKHoK2EQPf0VKe2YMWPQrFkzHD9+HO+//34oi0cQEaWOtihEXWD+/PnIzc0FKmywH0mLXEF4CZ2/J9U6OoYBhxFHQl79dYIMyKvfyILe90VRWIIIDXVNYi0mr7EafbXa8OFQ7//qD0EUcHnyWDz00EMAgK+++gr79u2LSFkIItTUsdaEqCscPHgQCxcuBAA4stMhsBiMwFlsyLAl57tS5JUgrAXtuRz9UPTVsgiigEf7vIT+/fvD7XbLC1gSRKxBrQgRk7z77ruorq6GWBAPMT/BUB6WXI1YemJtolxeUVgrDBmWOkMchgzLEQaz74uisAQRWmJdYin6GhiKvgbE7Fodd9xxB+x2O9auXYu1a9dyKRNBWIkYb0GIusi2bduwatUqgAH27HSvPV91IYj8Fnzi1XkQOEq11aKTHKKugkBRV4IgIozF5JUrFH0NC0J8vKnjx7V5CNdccw0A4O2334bT6eRRLIKwDCSwRMwxc+ZMAIDteBLEcoexTAQRgo3TUDeeT76Zzq1wfPBaep9DJ4vLsGFR9Ig5dYwIou5gxVEObhaT8sk1+spjekeMRl8Bvlv0mZXYsWPHIi0tDfv27cMPP/zApUwEYRVIYImYYsOGDdi0aRPgFmDPrWcsE0leAUAUINhsxgtkoWFbPLcP4jLnVRQ98105Da+Wy8OrA2rFDjZBEKHHTB1iMQEOydBhUeS3QnyMYqa9FRNPTXsyI7HXt7ofY8aMAQDMnTuXorBETEE1EBEzMMbk6Ks9Lx1ilc7oq+ARKlleUSNFRqKwjFlfXpnbUGeLa9TVFwNRWG4LSBEEER6s+HDIty40IqIWk9eQY0RirRZ9DSG8orFCfLxhkb3yyiuRmZmJY8eO4aeffjJdFoKwCiSwRMywadMmbN++HXALcBzXGX2tibqqipDeKGyoxVXnMGLekVfT+JNXCR0S67c8FIUlCGtixe+Uv/oiyoU0LAs3RXskNgwirKcNVkZfa+VjQGKHNr0bI0aMAADMmzePorBEzBDlNQ9BnOLjjz8GANjz0yG47BDiHBDi4oIfqBwyrPaynihsuKKuGiRW09NfHVHYsMirDsIWdbVih5sgohErfpeC1X9aJTbKZdcUWiXWatHXMEZxwz0vVkxJln8fOnQo0tPTcfjwYSxbtoxLOQgi0pDAEjHBrl27sH79es/KwycytR2kMmTYMNEwZNhoXryG6OqR1yBRWE3lqcsdSoKwGlaUV63wktwwEvZtc6I9EhsGIjWk+OpmE+Qo7MKFC623pRJBGIBqHCIm+OSTTwAAtsJUiNWn5r76jcIGGjKsRqBhxJFqDPxEYXU3kAGisNzE1chiTX4kVleZaCgxQRD+0FM/WFBS/RExQQm0uFMdjr764q+NDjR8WDUfPxIrJiXV+ttVV12FxMRE7Nu3Dxs3btR1HoKwIiSwRNSTm5uLFStWAAAcWqKvQYYMqx7ibxixxZ5kRt18V51EdLEmkliCMIYVvzu8FmmKIrENGxSNDUpIhxSr5H1dy/tw6aWXAgA+++wzLucmiEhCtQwR9Xz33XdwuVwQSxMhVtR+gilHYc0OGfaNwlpBXmuisKaHJvlEYS0jrzVRWFPDmHl2MK3YEScIKxNr3xnlXrEWlFfLDA9VSixFX1VRttl6o69e+SiGFKtFXyWuvfZaAMDq1atx6NAhw+cjCCtAAktENU6nE99++y0Az9Y5fhEEfUOGVbMQINjtEOwOa8hriLCMvNbkw6U8FuxoEkTMY1V55VEfWLBOsYy8hgIDW6xFA4IoQEz2L5268oqPV42+StzWbSrOPfdcMMbw/fffczknQUQKElgiqlm7di2OHz8OOEXYilLUE8XHQ6yXCUGxKp9hrDY0qkbumNnOlJG9boNhpc4Ux6HVBEFowIryqoyeWgTGGBfx5CqvbrclhdFKDzOZm8k/XODQtxCaNwEaZQVMM2TIEADADz/8QFvqEFGNxXrjBKGPpUuXAgDsBekQmM/tHB8PIT0NQkI8wGOl4ZoGRnDYITg0bM8Tanwac8MNqVJe3SY7U4EW8TCSF5d8OMprKESfIIjQYzFxBbyl0zLRU6W48pJYQTA3IkdRDlMS69a3h3pAmFv+MSOxQmLiqf+YbfNsouenUZZfkf3vtfOQnp6OEydOeHZuIIgohXpjRNRSUlKCNWvWAADsBWneL8bHe8RV0XAKyUnGorA8pYwHap0Bo42ympAZlVi1a2S0U6bIy5xQk7wSRNixYvQ1CjBa13GTXzVhNSqxascZkU+VfAxLLKf7spawmpRYLwz2N4TmTU79RymyvumYgMGDBwPwRGEJIlqhHhkRtaxatQpVVVUQKuIgVCgiokp5VWKk0fPTkEQsChvkPehqRHkKWaAGV2/nSiUvY0JN8koQYceK8mrx6KuWv+vNhyt6JTZQek4ryeuW2FAv5mdAYr2ir77olVi1UWZ+JFYS2NWrV6O8vFzfeQjCIlCvjIhali9fDgCwF6ZCQE1j5k9ea9AVhQ3SgIRdYoM12DWNqqZGNJiQ6YnCamloteTFdfgxJ3kVRJJXgtAKyasmgtWtWufFcp/3Gux1LSKrJY1W+QySl2aJ5Th0OGD7qkNiA8qrhMb20Cv66ouKxN7T50U0adIEFRUVWLt2raZzEITVoJ4ZEZWUlJRg06ZNAABbYar3fNdAjZogaJNYKw0ZBrQ3+MEaaT1CpkViwzjfVbtQc5RXgiC0QfKqCT3SGbZ5sXoirDznxXI4j6Yt1njKa7C8aiQ2XIs7Cc2bBF/jw2derAABF1xwAQBgxYoVPEpJEGGHemhEVLJ+/Xq4XC4IFXEQhdRa810DIgiB5USHlIUlCmtgyJVq48lbyPTKq7/OmI58ggs1yStBhB2SV00YEVJeQ439YkRI/R2jNy9Ow4k9WfnJKxL7gAdZ3ElT9FVJoDZS6wKVPvNiJYFds2YNqqur9ZWHICwA9dKIqOTPP/8EANjKNERdVRCSEmpHYY0unhAqiTW6cqPaUGKjQuYvCms08uqbl4F8/HbcSF4JIvyQvIYc3zrPEisW+8qq0cisWhtnMK9aEhuuocP+D6p1nG55lVDpnwQcOuyPGom9r+9LqFevHsrLy7FlyxZjZSKICEI9NSLqcLvdp1YfdtY3Jnm+Q4mjdciwP5SNtlkhU0osj3mqyrx4QfJKEOHHivJqUcxKp3R8WOe9aj3ebD7Kh7Um8/KS2HAOHfZ/ML/hxMCp7fy0DB32h02E0KghevXqBQBYt24dr9IRRNig3hoRdezbtw+FhYWAW4RYlWI8I2koMY8NxB12CHa76XzqBIJg+pp7deJIXgmCkLBg9JWXdFpKXnnnwzEvQRAiM3Q4wPHMzYxHX30RRfN729tEElgiqqEeGxF1/PXXXwAAW1UKBDO3sCBASEmCkGxgb1glbjdYtbNGhm3m8rIiooZFMrTCQV492XDcIkeCokkEEd3EsLxyhad0WhDm4vf+eEVPBZsNrKoKrKrKXD6CgMo+HVHeMt10mSSB3b17N4qKikznRxDhhASWiDr+/vtvAIA7ubHxTGqGLDGbCCE12bjEut1cG0sZM50eQYRgs0GQIpNmxMxXXs10fKwsrxIksQShDat9V0heoxuXi0s2Xu2xyW3QTA0dVsPNPFNyDEqsIAio6N0BrjgRbrtgTmIFAQMf+QgtWrQAAGzdutV4XgQRAUhgiaiCMSYvOFDSqhHK29XepDsgkkQJAliN4DFRgGBkOI6KvAo2G78orJHOjyCeElez+Iu8GpHYUMor746r1TrmBGE1rPYdIXnVjhWjr5zk1S8GJJanvAp2h/cfTEisK+7Ue5EkVrfICgJy/1MPrngBZ5xxBgDgn3/+MVQegogUJLBEVHH8+HHk5+eDQYAzJRMF7eK0S6wUdRVPyatMUiKEVB3zaQNEXiMmsYHkVW9DHGzYsJ5OUDgirySxBBEerPbdsKC8WpYYl9eAo6F0SGxI5VVCp8RK0dda2dgFfdFYhbwCQNeuXQGQwBLRBwksEVXs3LkTAOBOSAVEG5hdgNuh4TZWyKsaTKxZlViLxGoYNsxVYrWgJfKqtUHWOuc1WGdIWlkyXMOGSWIJIrRY7TthUXm1ZPS1LsurhFaJDbW8SmiUWEEQUHFOe6/oa62sdEisJK8AcPrppwMAdu3aZc37liD8QAJLRBWSwLqSMuS/FbWyB47CBpFXCU0SG6o5r4EI1qjoGTYcrGHmtWCTJK7hnvNq0Q4tQUQ9VpNXi2JJCbCivHJEV5scRGK5bnmjhSASK8trQvAH4kEltib6quSaGV/BZrOhpKQEubm5motNEJGGBJaIKvbs2QMAcCWeqqSZXfA/lFijvMp5iQKEpET1RZ10ymtYhhIbmfPqryNqRF7VOkacoq6erAzItJW2TyCIWMCK3wMLPqwiedVBKBZt0oofiQ3L0GE1/EisHnmVs/InsYKA3D71vKKvAABRRMuWLQEAe/fu1V5mgogwJLBEVHHo0CEAgDs+1evvqhKrU17lvGxi7UWdDEZeQyqx4ViwSQvKDlKk5VWCJJYg+GDF+5/kVRsxLq+m8JHYiMmrhB+J1SOvcla+EivJa4J6m9q2bVsAJLBEdEECS0QNbrcbhw8f9vweXztC6jUf1qC8yiQmeKKwNXu8mhk2LIgCf4k1K6/KhprHsGG32zryGgqs2IkniFBjxfue5DW6Cfe810DUSGzE5VWiRmJZVZUcfTWclY/E+pNXAGjevDkA4MiRI4bPRxDhxh7pAhCEVo4fP46qqiowCHDHJammKWplh+hqiMTdJ4zLK2qisAnxQGUlWHmF4XwA1DSSfJ84WyLyanXcDOB1nQiiLmFFcQVIXvXAK/rKmOfhJK+8OMHtugsiwKr55MUD6R5vnGUo+uqVVY3EFjcP3NVv0qQJAODYsWOmzkcQ4YQisETUkJOTAwAeefUzh8UdJyC/fRzKOujcH9YHodoJOJ1AYgLExARTeYG5PT+8FkcysTH7qXxO5cGlIyBFXjl0mrgJNU955XHNCYIwDsmrdngPHebxPhnjVi7GGLf7gblcXOt35jQvw2Lr5oBNRNKBItN5nfPf9bhiwsqAaRo3bgwAOHr0qOnzEUS4oF4ZETWcPHkSAMAc6kLJRIAJgNsBFLR1oLxdA0PnEaqdQFU1wJhHpsxILHN7GkgeKOTV1EqJUmOtEDxTHTFR9JZzE50UkleCiDBWjL5aUF4tC095VbYLZtoIK8urhEUkVmzdHLB7Iq9CtcuUxJ7z9Hr0SdmNbkkHcOVt/iV23LvfAQByc3Ot+1CGIHygnhkRNeTl5QEAmD3e6+9MBNw2j7yixluMSqxSXuW/GZVYNXk1KmgqkVdDEqsir3J+RhouX3k1AckrQUQYklfNWLKjHyp5DfQ3LVhdXiUiLLFKeZUwKrHnPL0efVN3yf8/OykbV962UlVkpT5VVVUVysvLdZ+LICIB9c6IqEESWLciAitFXaGQVwm9Eqsmr/JrgqBPjAJFXvWKWoBhw7okNoC8yvnp6aAEkledHRaSV4KIMCSvmqmT8qrlNR7p/WYTYnmViKTE2tXnvArVLiQdLNacTc+pG7zkVeLspGxZZL0QbWA177uwsFB7eQkiglAPjYgaSkpKAADM5lnlz0te/aBVYgPJq0x8vLYorJZhw1qFTcOcV00Sq0Fe5fy0dDi0RF41dqhIXgkiwpC8aqZOy6ueNFI6DmULm7xKREBixdbNA74uVDk1SWzPqRtwXtrOgGlqSawggNnjAABFRebn3RJEOKBeGhE1SENbmGjXJK8SbgfgdvhPqEleoXEosZ45r8HETceCTQElVoe8akLPsOEgnReSV4KIMCSvmiF51ZGW47zXsMqrRBglVmzVzG/0VYkWiQ0mrxJnJ2VjyK2rTpWxJjAgBQoIwupQT42IGioqPNvZMLtds7xKFLW0q0ZhtcqrnD6QxBpZsMmfwBlYbVhVYg3Kq9+OmpE5r346MSSvBBFhSF41Q/Kq4xjeizbxyMfIYophkFixVTPAoX1Hy0AS23PqBl1l6pm8T5ZYJngEuqqqSlceBBEpqLdGRA2ywIo2XfIKqA8l1iuv8nFqEmtmtWFfkTOxVY6XxJqMvNbqOJhZsMmnM0PyShARhuRVMySvOo614IrDpnYCCKHE6pVXCTWJ1TJ0WA1ZYmvep9Pp1J0HQUQC6rERUYPciTDqUAqJNSqvEl4Sy2OrHEnoOOzz6iWxJgVPvuY8Vhuu6dSQvBJEhCF51QzJq448Yk1eJUIgsUblVUIpsWdP3WRIXiV6Ju+DvcyzSOYPP/xgOB+CCCfUayOiBh7i43YA1SkiWHyc6YZbKo+pPVm9M+QrUpGY80oQhLWxorxaFK7yym0+qMXkVZmXxeTVqghxDlPyKudT5cSBKxguSNvOoVQeaAgxES2QwBJRgyhKt6vxhi0px42ko5VwpyWCpSabKg+rqIC7vAKCyFk8TSKXh0MHQH5owKOjU/P5cesU8uzgUKeeqAtY9T7n+F1mjHGpY0Iir2YFz6ry6nbzn/PK4wEsr/ud4/dGTEz0tIXHTpjOa/vd9WBPrcaTW68wnVfTxp7I8IUXXmg6L4IIB9bpdRNEECSBZe1KDR2flONG6oEKCNUuMFGAOz3JsMSyigq4S8vlho2bxJpsKGuVw0THUJZXqWNipsMjel8bkliCCDNWvb85y6va72byMY2v2BkVPSvLKydqr7tgQmKVbbMZeMurzbNYEnM6TUns9rvrwZZZCQAoK4s3JbGDE/OQnuK59qmpqYbzIYhwQgJLRA1JSUkAgFsb/gF3/wJ9xyrkVcKoxPrKq0SkJdbv+Q10EGsN1zYjsaL6NSGJJYgwYdX7OkTyGuhvRvIxjD+50yt9dVFeJYwIqFrbbIQQyaucvUGJVcqrhFGJHZyYhyQxDmXlnmuUnGxuZBpBhAsSWCJqkAQ2rjIB33SfCdf5hZqPFZ3MS14l9EqsP3mViJTEBj0vj46iEYn1I68SJLEEEWKsej+HWF61vGYmbVBifc5rOOTVUGYB2mYO+RhBTV7l0+iUWDV5lSgri9dVrkGJJ5AkxnmOrfC01VI/iyCsDgksETWkpKQAAErLRLRxpGBJj/c0RWKTctxIPqJe4QPaJTaYvEqEW2I1n09jhzHgYll6JDaIvEqQxBJEiLDqfRwmeeWdRjNa5I5XGq1Es7xqlU8tbTOHfPQQSF7l02mU2EDyKjF12+WayjUo8QRSxFNbAUoRWBJYIlowvwwaQYQJaW5GYbFHjNo4UvBN95m4ErdDXJmheoza0GE1JIkVAQjFfubYupkuqWRu0XxDyNwB5VS3LLtZwM6AppWe3W6PnDLmf3VijfIqwRjjs71OkPeniyDXniAsDclrrbT+6piIRV6lutRsPsGIZnmVEIXA946uttl8PlrQIq/yaZ3OgDsEbr8ruLwCQElpAqZuuxxPdv4W8Seq0XrxSTRYWwp7qQvOZBtOnJuClmO8hwpXVnkCAwCQmZmpqbwEEWlIYImooUGDBgCAE/mnGnxJYveemY77Ng/3Elmt8ioRSGKlFYf1EGqJNRzp9SN5ugRSi8TqhCSWIDhB8ur3GN86JuLDhtUkluRVHX8Sa2DKjarERkheZY6dABo3qPXn7XfVg61ecHmVqM63wX2ngEt/2QbR6f0+G/1RDPYGgOFpYNMaAAki8go85YyLi5NHuhGE1aGeGRE1ZGVlAQCOn/RuFNo4UjAw0YVvus+UhxQn5eqTVwm14cRahw6rEarhxKbz9Wm8DYmjv+HEOqOvSmg4MUGYxKr3a4TlVe3YiMur2rEkr4HxfThpZtFDDvmoYUheoT6UWK+8xldVY9bzc3DdT3/VklcJoRoQ5hdBuOEIUO7GiTxPm12/fn0+D5EJIgyQwBJRgySwJ/Jsqu2yFI0t6lyN1Gz98iqhlFgz8ioREonlkV9Nh9JUg+UrsSbkVYIkliAMYtX71CLyqszDMvKqzIPkVRuSfPLYdo5DPkqMyquEUmL1yisAPDHnO/T+dz+CXWUGQFhdAeGJEzjhegPAqVFuBBENkMASUUPDhg1hs9lQWSXgZL76rfvwwauQssuBynpxps7FRAFgDKyi0lqdQp5lEQVOQ3YtdH1CiZXuA4JQw4rD3S0mr9yxYv0Xy/IKcLunmI51LTQhiKbkVYI5nWA2m255bVBQjGtWbvIUJUha+fVFRTi0fTsAoFmzZvoKShARxIKtHUGo43A40KRJEwBA9mH16dtHStJhLwNKmthQ0SjR8LlsBWXAiTxAFCHExZl7oio1toJovoMpiJ6nxlaSKVE8NQ+WQ2eH2xAmXvNgCSKasJLEkrxqh7FTP2bz4YVV5ZW5TbeBIZFXAKy83Fw2TRtBaNoIANBitr5laoat2Ig4l875wNXAwVWrAAAtW7bUdSxBRBILtXQEEZxWrVoBAA6oCOywvQORv7IxAMDtEExJrOB0gVU7PWImCBBsNmNzWtQ6cEY7mJK8nsrcWD4Av+irUl4lTHR6LD//xkoPDgjCH1aQWJJX7fi+P6Pvt67Iq0lCJa9S3kYlVmjaCMxhB3N4+jfxR0p0HX/Ov/sMnffA0aMAgBYtWhg6niAigQVaOYLQjvSEMPuQt8AO2zsQW7/riLiiU38zKrG2gjKwvHzvPxqQ2IBL9evtYPrK66mT6MuHJ2ryKmGg88NVXkMZfSWJJYjAkLxqx9/70/u+SV41EUp5VZ5Dr8RK8upL8znao7DJFVW6zgkALgDZNZ+3FCAgiGiABJaIKtq3bw8A2LHPIf9NTV4l9EqsraAMyD3hib76YiISq4pWifUnrxJ6G2Ne0ddg6OgERY28SpDEElYnUlFYklft8Hp/JK+aCIe8ep1LazZ+5BUAEg6XaJbY0gT9a38cTExEuSAgMTGRIrBEVEECS0QVnTp1AgDs3u+A5JhHStJV5VVCq8QGlFcJjRKrufHiMS/Wc0Jt6UI5dFgNDStrRp28SpDEElYn3BJL8qodLe+PVxqtcHp/XFd5tqK8amy3tURhA8mrhFaJrX+RviHHALAjNRWAJzhg4/VwniDCAAksEVU0a9YMqampqK4WsO+AHSP2DZDnvQYimMRqkleJIBKr58nrqTz9fBWDRV+9Txz49XDLq5JwrNQZiUWbOCwmQhAhJVwSS/KqDb0LNQVKa1F55YZV5VXHeQNJrBZ5lQgmsS/3WoyEG9xgDr9JVNmelgYA6Nixo74DCSLCkMASUYUgCHIU9oE/z8CWbzsFjL4qkSQ2r2tKLZGVF23SXhBViTUkr3KeYq3/a5bXUwVQ/3sk5VVCpYMUMysOk8QSVibUEkvyqg2eizORvGoiUvKqPL+axOqRV4mEw7UjrC/3WoyXey1Gl7hcuBraUHSdp2+jZR9YANjcujUAoHPnzrrKQhCRhgSWiDrOOussAMDJP0TN8irhdghwJnpHY1UXbdIC7zmxwKkG0oi8SoQqKmhGXiUUHaWYkVcJkljCyoRKYkletcFzexyS16AwNwNzuSIqr8qyeGXVpKFueZVoPvdUiHV6r8/QJS4XXeJy5b8dn5qGst4OTfvA5vZOwO4qz8JP3bp1M1QegogUJLBE1NG9e3cAgKPguOGGXIrGuhPt2ocOq1EjsWb3ivXO04S8KpEa7nAt2qQDq5WHGySxRF2C5FUbPBdr4ja3NPj6BFqxmrwCCNtiTVph5eUQmjT0yGucznG+ChIOFaP5XAem9/oMZ8Qdq32eBAFH5tZD4Q2JfocTMwdQeEMidjzzLRhjaNmyJRo0aGC4TAQRCYw9AiKICNKxY0ckJSWhrKwMYnkh3EkZhvJxOwS44m1wmG2cBAFw6RyCHA4E0TrRSSVuN5goxq7EEkRdwIryKgmZyOHZvNXklSdWXGkY4DtsWBA5iTBD0HCmFmw2z8Py5k1MZyU43aryKsESBOQ+n46TD6YgbVE5EldXQSxlcCcLKO8Th6LhiXBl2bDpi38AnAoKEEQ0QRFYIuqw2+3yMOK4Qv+VeDDSDjiRuOs4EOfwRFBNwLMR5xJ99cF0+aQOIY/3WZMX11UqrUKkti4hiGDwjEhZWV6tlBdveeURNbWivLrZqXvKZB1qah2KWpnV5OV2mcpGqBmd5S6vMFsiVDZOhjtOxLUvTwqa1pVlQ/7dKTiyoB4OfVUfRxbUQ/7dKXBl2XD5rIn4888/AQC9evUyXS6CCDfU2yKikn79+gEA7EVHITr1N1hpB5xI+ScHKK/wRALjHBCSkoyJLMfoKzd5VYm+Gu5s+EYzzHRafPKKSYklCKtR1+TVjKRZWV7Vfjeah0lCWncblNha8mpUhtWGahuUWMFm82qLhUNHDeVT2ThZllcAyNhdjWteCS6xagyZPQmpu4tw9OhRxMXFoWfPnobyIYhIQgJLRCX/+c9/IAgCbBUFEMvLdUusrdINKJ6GCoIAwSbqj8a6XHBXVes6d8gJMHSYW6fDSD5+hvXFjMRS9JWwInVNXoP93UheegmlvAb6m948DGLFOttv5FVvvcxzNJWPvAKeKKxeiZXEVZJXicxd+vseQ2ZPQmo2w72D2wIAevTogcRE9e0FCcLKUI+LiErq1auHLl26AADsJUchOAFbJdMksvLQYRXkaKxGibX60GE1dG0yH2guGcf3bsUOkS5IXolYJ5rkVevrRtMGIhzyGok8aghbXa2xTmVuxm/YcLD3pjEKK9hsqvIqZ6NjKLEy6qqG1ijskNmTZHkFgN9++w2AJxhAENEI9bqIqOX8888HANiLDkFggOAGBCcCSqxy6LA/NEtslAwd9kfQjoiWhVB4iLCiPFw6R+GWWJJXwqrwir5Go7xqTcdxNd6wy6uWcnNcaTjsDxqD1K2axVVLHa31vQWRWFlcg7TDWqKwweQV8ERhr5kRWGKHzJmI1Gwmy6tQVYwdO3bAZrOhf//+QctBEFaEel5E1DJo0CCIoghbRR6EqlIA8IhsAIn1HTrsj6ASG2VDh/3BpUPCQ4S9sosiiSV5JayKxeSVrwBxGj7Lc+En3nuz8hB0q26TwwHdUddAdTWn9xco6upLsKHEWuRVInOn/77IkDkTkbrf+2/j+zcHAJxzzjnIyMjQdA6CsBrU+yKilgYNGsjLv9uLD8p/9yexgYYOqxFocadoHDrsD9X3oncbCn/Xw+B2FlElsQRhNSwor9zgJZ1Wllcex8SKvKqIJ9chw0ben0oUVo+8ytmoPEz3XaxJK9e8WjsKqyavYAzLly8HAFx00UW6zkEQVoL2gSWimosvvhgbNmyAvegAqut19OzJCo/EwgnYXAzMBrjtguboqxJBEACbACY6IABgVVWAy+X5sRIm93xljJ3al9XoHopSR4DT/q5eZTKKm4VuL1yKvhJWhOTV/7FS3RZL8hrCfCyzNoFiT1dT8qrcGzbEizVpPvbQUXlvWCPiKpG541QUdsiciQBQW14BiOUncPjwYSQmJqJv376GzkUQVoB6YERUc/755yMlJQVidRlsZblerynnxabvq0bi7hOGz6McUswYv0UjuERfTcqrBPcVio2KMG+UewzyguSVsCIkr8HziFV5ld5brMmrAi7triDy+dyYO+hiTVqQorBm5FXi6tcm4bK5nqirmrwCwGXtPaPJBg8eTKsPE1EN9cKIqCYxMRGXXHIJAMBesE81jcAAW4X+6GutfASBa/Q10kOHfTEd7TyVEZ98wLETxfta89yahCB4wPOetNIDMYCvdPKC53xei70/y8krz3ubY17M5TL9XRHi4iDknDQtrwDQdFUx0tS7QZ5zOSvk1Yevuuoq0+cjiEhCAktEPUOHDgUA2EqPQagurfV68lEn4g/keSKCNpthwWIVFXCXV/Cbf8MDTtFXGZ5RUw6dMi5SHaoHBSSxhFUIxb1ockoCN3hHTM2WjUceEhYU15iVV+au+eERxRVO5Wkmm7g4TxtXWYnkzUcM55NwvAIJxysgVDmRuaPcb7oJFzaDy+VCly5d0K5dO8PnIwgrQAJLRD0tW7ZEz549IQBw5O+t9bqt0g2hvPLUH0TRmMS6meeJKwcsGX3lIa++19ViHTTukMQSkcZi96Cl5VXtd6N5mMVidWPEF2tSw+feNtxuSuLKU16lrA1upSfLq5RPUbGhfCRxFao85bCVVqkndLvw+eefAwCuueYaQ+ciCCtBAkvEBCNGjAAA2Av3A65TsipHX33RKbFS9NVS8I6+hgqDHTVLR1+VWEwgiDpEqO+9SGzLJWG1uapWfW8c4Bp1tWTklZO4qrVJBsrpK68SeqOwkrx6l4epRmEnX9EOBQUFaNy4MS688EJd5yEIK0ICS8QEvXr1QocOHSAwl1cUtlb0VYmeIcUUfdWSkf/XdM7zihp5lZCGpxFEuAjX/abxexR18qqnvDTfNTg8xTXAva2r/eQ9ZNjfaTRGYYW4OL/yCmiPwiqHDKtRKwrL3Fi4cCEAYPjw4bDbaQMSIvohgSViAkEQMGrUKACAo2Av4K72H331xeiQ4khiteir1utnsc4bd0hiiXAQ7vssSF0TdfKq9XWtabRgwbrPkvLKK58wyat8vmDZ1Iir2YezvkOG1cvDkLHzVBT2hZFn4ejRo0hPT8eQIUNMnZ8grAIJLBEznHfeeWjRogUEdzUcBfsCR199CSCxPIcPW2nbHIBj9FUPQTpyURd99YUklgglkbq//HynolZew5UHQPKqBR33dcB2lNd8V39Dhv2dNkAUNlDU1ZfkLUf9vhZ/wn/U1Rd7SU0UljHMnTsXAHDdddchISFB0/EEYXVIYImYwWaznYrC5u0CY9VBjvDB35BijsOHYxJDC2Kpd1a4beUTaUhiiVBgsfsqJuSVxxDjQFhMXmN/peEwRV3Vzu2bTZAhw6rZFBbV+lv8iQrEn6iAWKl/wahp156O/fv3Iy0tDddee63u4wnCqpDAEjHF4MGD0aZNGwjuaoj5/xjLRBGNtVz0lSMRib4qCVXHzirX2WKyQUQ5VrifFN+tmJBXf8fEsLxygddiTSbWDqjVnkZSXqUiKKKwZoYMK6OwkrjqllfGkL6zBLNmzQIA3HjjjUhJSdFdFoKwKiSwRExhs9lwxx13AACcycfgtvlZUj4YksRaLfpqtbmvZlEsahIz0VclVpAOIvqx0n0kCrElr77HkrwGxpJRVw7yqnPIsL+yGIm61sqmJgprNOoqcfudHZCbm4usrCzaOoeIOUhgiZijd+/e6NatGyAwVGf6n08SFNEji1aLnPIgJmXRqlhJPojoRLBQU+1m/OoPXpLHa49Pktfog9d8Vx4IIpeFmhhjpuWVoRrz588HANx8882Ij483VSaCsBoWahUJgg+CIGD8+PEAAGdKHlxxpYbysdzw4VBEX812tLgsuOSphiwXIeAJSSxhFitIrOK7ZVpiecqrleAorzzqRO7yyqMN4lAfMuleNHsfcpRXAKb7DNLnZdt3zFQ+l4zOQlFREVq3bo2LL77YVF4EYUUs0CISBH86d+6Miy66CBCAqnoHwFwGnmS6GVAzfFioicTGQjS2VsfTQnsTcltghNccLZ7QXrEEwa++4RV15QXnelSqB43Wh1wXa+KJyTqQudkpeQWMP9jhMWRYOr+iDEanHPl+XqzCmAiLuflgBYfx9ddfAwDuu+8+2veViElIYImY5c4770RKSgrciRWoTj4uy2i4sWz01Re9nS+O0VdfKBpLECpEMgqr8l3SHYWlqGtQeIhnyMXVSFvE4QEe81ef670POUddfdEbheX1eYm5+XBXVeK0ix1gjGHQoEHo3r07l7wJwmqQwBIxS/369XHrrbcCAKob5sLtLgerrNQksqyyEu6yMtXXojkSG7TDaZFILEASSxCqREJiA3yHNEssyWtQ/NV5eurCWIy6erII8L70fCdCLK+A9ihssIcVwpETmvIRc/M9kdeqKkz46Eps27YNSUlJuPPOOzUdTxDRCAksEdNcddVV6NChA2Bzo6pRDsAYWHV1cIl1uYOmiVaJDYqWoXAhjL4qIYklCBXCKbEavjthezBmNTmL9fmugdDa/vEeMmyUEA0ZNoqWz0rLMGJJXFlVFZi9Gu+88w4Az8JNDRo0MF1OgrAqJLBETGOz2fDggw9CFEW40ovgTCkGALDqas3R2ECEJRobqa1zLBKN5Tov1mqQxBJGCYfE8vjOkLwGRZPMBEkTi5FXXeIaSE7DEHXVA4/PShl1BQAGhrPHNkRxcTE6dOhA2+YQMQ8JLBHznH766Rg5ciQAoKrJUTBbzYJOfqKxgYYP+8OfyFopSmto1dBQSayG6KsvMb24E0EYIZQSq/N7olq/kLwGhcd814jJq7/2LZTzXf2h9l2IYNRVbR6skc9KOHay1t+UUVcJV3oh/vzzT9jtdjz22GO0cBMR85DAEnWCcePGoU2bNoDdharGx8CgWO3PNxqrYfhwncJ3SHEE95CN2SHFJLGElTD4/fCSWJLXoOitz3zTx2rUlduQYR4YfEjkOw/W8GrSZeXy775RVwm3vRpxHTyjy26++Wacdtpphs5FENEECSxRJ4iLi8Njjz0Gm80GV1oxXGlF3gm0zo0NQixtt1MLCw0p5oIVJZZEltAL7ygsDRtWh+M2OWaipma31wkp4Y66+iJJq8XmuvIaMuwbdQU8Q4e7jaqPkpISdOrUCSNGjDB9LoKIBkhgiTpDx44dMWbMGABAVeNjcDuqaqWRJZZDw8VNYjnkY2j4sIWJWYkliEhipe+DlQTNAuLqm4+liMSQYTUEkZ+8coDL5+RyqUZdJW56/UKsXbtWfkhPQ4eJugIJLFGnGD16NLp06eJZlbjZYTChdqPLGPNIYyT3XJTgWQYD8065Hk9og6KwhB4sdL9wEytuD6g4RE05ymvMwfGBhyVGLXGKukqjsPxJp2ZcLsDt9puPK6EcM2fOBADcc889aN26tbnzEUQUQT1Sok5ht9vx1FNPIS0tDe7EClQ3zPWfWJJYK4isCbyir6JoTkRjLJJrWSwkJYSF4XmfmJQRL0EzU8fwlFcr5IEYlFcrLoYnYbS95tTOe4m40SlJLpcsr/5gogsZvcvhcrkwYMAAXHHFFcbORRBRSnT3zAnCAI0aNcJjjz0GAHDWy4cztch/YlGwTjTWDL4dykhGU60UybXCU39/kMQSgbCqvEoY+Z5zWWlcJepqREQ5yGtEVwgOFWr3SrS3jxyjrqaRxDWQvIKh562NkJOTg2bNmmHixIkxN02IIIIR5bUOQRjjP//5j7zYQVWTo3DHVQY+IFLR2FAKlp4OppWkE7E3p9cvJLGEGlaXV2MZmc+D1+JRnOQ15ghx1DXsw4g5Dhk2jYaoq8ToGedj1apV8oiy5ORk8+cniChDYDFZyxJEcJxOJ+69915s2bIFQmUcEva3hlDJPCv9BfpaSI14qOVCEPkt4BRMQIM1miKnxTGkvEzCRWCtHH31JdojHARfeNU94ZBXLTIYLnnVUveQvNZGy33C6Z7kspiTlrKESVyFxMTACaRhxoHuO5sNQkI8AMCZUozqlofBGMODDz6Iq666SmtxCSKmoF4RUWex2+14+umnkZWVBRZfhcpmh+Fm7uCdj1gZVqwkXBFWi0VyowaKxBIS0SSvQPDvPEVerY3W+yRa2kOrRV21LDRWI7nuuErYO+aBMYahQ4eSvBJ1miipcQgiNNSvXx/PPfcc4uPj4U4phbPJSe0HR8EiT7oilWYXeAoTdWb4sC8ksUS0yWvwjMznoUc6/aXltMdrnZVXq+GvTbbKXFcdw4UlmOhCg/5VKCsrQ7du3TBhwgRzZSCIKMf6vVWCCDEdO3bEo48+CgBwNiyAs0GJ9oOjIRqrV0qjQGJNE03Dh5Vw2G+RiFKiWV7V6hSrRF5ppeHaWHmVYSNweNAczkWafGECQ+cbUnHo0CE0atQI06ZNg8PhMF8Wgohi6kBPlSCCM2DAAIwdOxYA4GydB1daub4MoiAaqwtlNLYuCG20QRJbt7CIvHIjkvKqPI5WGq5NhO8R7gs5WWm4sM6oK+BZcfi8Rzpi48aNSExMxHPPPYeMjAzz5SGIKIcWcSKIGtxuN5599lksW7YMcAmI294QYlm8gYw4LfLEYREnTQs4acvIfB6cRLjOLeAUiFh5YEL4x0Lyarq74HZbI/IqijRkWI1wLaAUNAtrXFce4irExXl+MXi/VTfLh7NJEWw2G1544QWcc845pstEELEA9X4IogZRFPHII4+gZ8+egI2hqsNxuOOrDWRU0+hZRS54LXBCWA+KxMY29PmGBovUiYIg1N05/SGEi3jyeMgpiKbmVzsbFsHZxLNP/aRJk0heCUKBRXrYBGENHA4HnnnmGXTo0AFwuFHd4TiY3WU8Q6sMK+a0SEnMYJEn/Kaxwr1FRAeRHnUg1T8WGs1hBrPRV3l0jAXei2Uw2V7ymKfKZa4rh3bfmVECZ6sCAMBtt92GSy+91FyZCCLGoJqTIHxISkrCCy+8gCZNmoAlOFHVMRfMZkJiAeuIRgxILLdhe7EisURsYsHoq+FoYQzUO0q4yStxCg6LLJkvAqeoq0mc6aVwdywAYwxXXXUVRo0aZb5cBBFjUA1KECrUr18fL7/8MurXrw+WVF0jsRzmtFpBZGMgGstVYqNVZK1wLxGhIVTyGokorFpdE8VRWDN1jzxkmOTVG4q6AvDcW87UMqBzIVwuFwYNGoT77ruPhpkThApUixKEH5o3b44ZM2YgMzMTLLkaVR1ywQSTkViARJYTXFf/jFaJJWKPUEdeeSwMp5Uorl98MVvfBBoyXGcFxURbGGviyhiDK7kcwhmFqK6uRv/+/fHYY4/BZrOZKx9BxCgW6EUThHVp3bo1XnnlFaSlpYGlVKGq43EwuPgIjxUkFoj6TiZJLBEzWHDYsGGC1StRFIUN+ZBhq0RkwxmhNxl1NX/6yA8Xlh+KuBncSRWw9yhBVVUV/vOf/+CJJ56A3W43X0aCiFEsUmsShHVp27YtXn75ZaSkpIClVqGq03HPcOJAwqO1caRoLBe4RWOjZUixFe4Zgi/hlNdQR2GjuC7xhea76iRY3VSXoq4BziOJK9wMrrQK2HoWo7y8HD179sTUqVPhcDjMlZEgYpw6VKsShHE6duyIl156SSGxuZ7ViXkJj5VENhRESaREJhokliAiiF+J1VOHWHzobDjnu9aJYcQRjLpGYriw2meqjLoCgCu9HEK3QpSXl6NXr1547rnnEB9vYP95gqhjWKDHTBDRQefOnfHqq68iPT0dLKUaVafngjlq5sSGQmRZkChvqIiBaCwXSGKJcBGJocOhGC4aiXojRA/HQjXf1S+xHKW1QNTVZAZchwvL8ppZBta1AFVVVejbty/++9//IiEhwVxZCaKOEMM1JkHwp0OHDnjjjTfQoEEDsCQnqjrngsU5TyXgKbKRJsolNmaHFFvh3iD4Ecl5rzyHEhutLywYeeQir4SHWIi6mkBNXAHAVb8U7tML4HQ6MWDAAEybNg1xcXHmykoQdQiBcQtXEETd4ciRI7j//vtx9OhRoNKGuB1ZEMtDNGclnKuGqp5fNN/JjGCHjtvQvEhsQaIGCWzsYIVFm0w+oPF0zk2+Dy4Pm8xfy0jPd2UuDqvcm4XHAzvmNldPWeF7YbaeldoLn+vJwOBqXAxnq0IAwKWXXopJkybRasMEoRMSWIIwyPHjx3H//ffjwIEDgFOAY2cD2Ip9hv+IgrkOAY/VFq0gsFI+EYIklrAcVuikc5CVWBFY01FXwFwdJwhgTmfwdKHGCiNOzHw3BNH88TxQafsZGJwtC+BqUgIAuPbaazFhwgSIFLEnCN2QwBKECYqKivDoo49iy5YtgBtw7KkPW17SqQRK4THaMRA9i4EY/arKUQGjHTwS2FNYRWAB4x0ts9ERwoPUSTbzOUQSXvIq5xdhiY1QBNb0kGGF/LKqKuP58MJEO2XqeCVGvhvK76HR71Yo5VVgqG57Eu765QCA8ePHY8SIEXVj8S6CCAHUiyEIE6SlpeGVV15B//79ARGobn8SziZFYKhpvJSNmCiYEiAukVR60hs7GOmkSccwd+QFKpoxe+1i4Npb7tl3BOo2LvIa7fWyyXaNC2bFk9cuANK18JVXmxudbqsPd/1y2O12TJkyBSNHjiR5JQgTUASWIDjgdrvx1ltv4dNPPwUA2HKSYc/OhMACNO5an1TXRGCV6Pnaqnay9EQrpGPr+jzYSHfSAqG186UmThSN1Y/vddRzDa0grzzmvarma+K9RdkwYm7yqsTtjvwwYh3tkqnjA6H1O+Lve2f2eL34XgvFNXAnVKPR5Q4cPHgQycnJeOaZZ9CjRw8+5yWIOgwJLEFwZPHixXjrrbfAGINYFA/HrvoQ3PbAB2lp8FUkFtDe4fLb2dLa4aOFnKwtsIC2zpi/jh1JrHbMXsNIC2yo5BWI+mHEWupTXvNd/R0f8WHEGtsjU8cHQsv3I9B3zezxeggi8a70CsT3LEdJSQkaNmyIF154AW3btuVzboKo45DAEgRnfv/9d0ybNg3l5eUQKmxw7GwAsTLIxuTBGn0/AisR7GscNFoQrONHAmt9gQXMdexIYoMT6BqaeYAQLkIpr0DkBZZDGQK9R57zXf2e38oCq6UODKXA8viO8Roq7A8386w03KgE7tOK4Ha70aVLFzz77LOoV6+e+XMTBAGABJYgQsK+ffvw6KOP4siRI4BLgGNvfdgKkoIf6K/xDyKwAKeOl7/OHwlsdAgsYG5YHUlsYMx0jmNdXuXzxOYw4pAMGVY7v1UFVmv9FyqBNTvCIdRRV+n0zA1n63y4GpYCAC655BI89NBDtMcrQXCGBJYgQkRhYSGefPJJbNq0CQBgP5wO25E0CDD4FFuDxAIcOmBqHcAonwdbpwQWUO+shXteWKxh5vrVFXkFIh+FDYHAhkteAYsKbLjkFeA/vzxM4goAzF6NdqPqYevWrRAEAePHj8fw4cNpsSaCCAEksAQRQpxOJ95880188cUXAACxMAGOvfUhODVuWu6zirGehtD3q627E+bbEYziKGydE1igdsdNj0SRxHqjV0DNXHvehFNe5XNGMArLUWBNz3c1cHxEBdb3XtFb5/GMvhqpg8wer4bGa+BKKUdS7yoUFhYiJSUFU6ZMQZ8+ffiUgSCIWpDAEkQY+OGHH/Dyyy+jsrISqLIhbncDiKVB5sUqkToGOiUWUOmQ6e2MSR1CEljzeUQCqSNnVsLqMmauXV2TVyAmBDacUVev85PAmpPXMIsrA4OrSRFcLYrAGEP79u0xbdo0NG3alE85CIJQhQSWIMLEnj178MQTT+DgwYMAA+wHM2DLSdU2pFiBURljjBnvlLndfIYRR/M82GgVWDOQxBoXUEGM6qHDproGUTyM2FQ9KWHieEsIrNG6jscQYqMwd+gXaPI9pc2F6tNOwp1RAQAYMmQI7rvvPsTH63g4TRCEIUhgCSKMlJaW4sUXX8SKFSsAAGJeIhz760FwaRxSXIMpGTMrkRSFrVtEWmJ5dUzNnD8aiVT0VT5/9EZhIyWvqK42fN0FQTD1mQmCAOZym6vjjN5zomDufjV7vJSHDlypFcg4j+H48eOIi4vDAw88gMsuu8xcGQiC0AwJLEGEGcYYvvjiC7z11ltwOp1Alc2zSnFxguY8zEcTOWwFEYlzm4SisCYwKpFmBZT30EAj545GSGD1w+PhntERLgCY02nglJ46yYz4mjlexoy8Gj3ezLHK43XABAZn00K4mxWDMYbmzZtj6tSpaN++vbEyEARhCBJYgogQO3bswNNPPy0PKbYdS4P9cDoEFrhR5RNJjGAU1uS5zXS4KAprkkgsrMLreLPnjkYiNYQYiL5hxJGQV6mMjAFut+5rrqzPzBxr5HhlPowx/feash41I68mjtfblrjjnWg3IgPbtm0D4BkyPGHCBCQladgijyAIrpDAEkQEKS8vxxtvvIFvv/0WACCUxsGxpz7ESoffY6JeYDmcn2fHzRAksdowsyWG2vFWOH80EckobF0TWJuOaSBKca35v55rbVY+echrrTpY672mVnfquU85Ha+nDWFgcNcvg6NrOcrKypCSkoKHHnoIAwYM0H5egiC4QgJLEBbg119/xfTp01FcXAy4BM8CT8dTVBd4IoE11wEjgeWAVhHkLaBWOX+0EM3DiD0FCM/5wxV99RXXGpjLpfE06vWO1s/J7PFqeZiWVyCsx6tdg0Dvn9ldqG6dB3dmOQDgzDPPxOTJk9G4cWNt5yQIIiSQwBKERcjNzcWzzz6Lv/76CwAgFsXDvq8+xCq7V7qYEFgOZdDbEQl2rG5IYoOnCYWAWuX80UBdF1gtZQiHvPoRV+m1YNc5UH2l5TMye3ygfDQJbLC6MkzH6xV4V2YZknpUo7CwEDabDTfddBNuvPFG2O121fQEQYQPEliCsBButxtffvkl3nvvPVRUVKhGY7nIFxB5iQ2BwEqY6RBqpq4LLBBYBIPJXzCJ1CqPRstgRoCjBQ7bmkT1MOJgZQilvCrPGyjCFyD6qqWeCvT5mD0+WD5B5VVLHRnK42vyCHYdfK8Bs7tQ3TIf7vplAIC2bdvi8ccfR7t27YKXhyCIsEACSxAW5PDhw/jvf/+LzZs3AwDEwng49teHUGUngfUqgr6OiZ5jNUES618EtcifGQG2WhmsCkVh1cvAYzV0tXmvgaKtKmnVrq/WusnfZ2P2eK35+BVYPfWiv/tTax5Bjtcj8QwM7sxypPRyIT8/HzabDaNGjcKYMWPgcPhfl4IgiPBDAksQFsXtduOLL77Ae++9h8rKSk809nA6bDmpELls2B6bw4jVMNNJDApJrLoEmhVQvfLom0e4BNjqkMDWLgMPefWNvuoR15r0vtdWb53E+3i9+agKrN76METH620bWJzTE3WtmevaunVrPPbYY+jUqZO+8hAEERZIYAnC4hw8eBAvvvgi/ve//wEAhFIH4rLrQyyLN5cxr05chMugp9NmtsOnCgmsB6UEGhE/MwLKoww8JNqKRLvAegphPg9lOXgOHdYrrjVIQ4eN1kHKz8VIHmYf6tWSVyP1oNnjVfLQey3czA1XwxI4OlWgvLwcdrsdN9xwA0aPHo34eJNtLEEQIYMEliCiALfbje+//x7vvPOOZ6ViBthyU+E4nAHBbbAzVgcFVsJs568WJLEeJAk0Kn5mj1fmE+kyWIVIz4MFrBWF5SWvBsXVqywGkT4PM3UXFwF2M3N1n9njffLQLa+JVahqdRIspQoA0LVrV0ycOBFt2rQxVyaCIEIOCSxBRBF5eXl48803sXz5cgCAUGWD40A9iAWJqlvuBMQKAsupHGaiGDSUmKiFGQG2GrEgsJ5CmM+DB1J9YbQ8PK4FB8zWfVbqOuoeOm1zo7pJAdCsDC6XC8nJybjjjjtwxRVXQOTRLhIEEXJIYAkiClm3bh1eeeUVHDlyBAAgFiXAcSATYkWc9kxIYPlDEktYDSsILGCNKGykMXsNlJHfCGPmnhAEwfQ9ZShqDAZX/VKk9mDIy8sDAPTv3x/33nsvGjRoYKo8BEGEFxJYgohSKioqMH/+fCxcuBBVVVWeYcU5qXAczYDg0iCFvJ40k8SeggSWsCKRngcLxFYU1ihGroFv3WjmOvIQ4Jo8jNwTyjra6D0l56HzvbiTKj2LNKVUAgBatGiBe++9F+ecc46hchAEEVlIYAkiyjly5AjefPNN/P77754/VItwHMqE7WRy4GHFJLChgSSWsBpWiMLWdYHV+/7V6kSj11BttWQTeQTau1YNtbpZ7/3kJa4SGt4Ls7tQ3bQA7kalYIwhMTERY8eOxfXXX09b4xBEFEMCSxAxwtq1a/HGG2/gwIEDAAChNM4jssUJ6gdYSWABkliCCBVWEFig7kqsnvftrx6MVPRWJQ+t90Kg+lh3HjqFngkMzkZFiO9YjdLSUgDAoEGDMH78eGRlZWk6N0EQ1oUEliBiiOrqanz22WeYM2cOysrKAABiQSIchzIhVvg8bea5WAVFYWtDEktYBRLYyKH1PQer/8ItwX7y0BJ9DVYPa7mXAoor4Pe9MDC46pWh/n/sOHbsGACgffv2mDBhAs4666yg5yUIIjoggSWIGCQvLw+zZ8/GkiVL4HK5PPNjj6fAcSQDgtN2KqGVorCcymIZiSWBJawCB4EFSGINEej9aq3zeEgwJ5EOJLBa695A91FQcZVQeT+ulApUt8gHS/Zsi5OVlYXbb78dF110Ea0uTBAxBgksQcQw2dnZeO+9907Nj3UJsB9Lgz0nzbN/rJUEFqAoLEGECorChh9/71VPPaflemnJL1g+GvNQuwd0b2MTKA8DUu9OrPLMc80sBwAkJiZi1KhRuP7665GQ4GcKDUEQUQ0JLEHUAf7++2+8/fbb2L59u+cP1SLsx9JhP5EGgVlIYmMtCguQxBLWwCoCC9QNifV9j0brtlBLsI58fKOvhray8Seveq+P2w13fDWcTQvgblAOxhhsNhsuv/xyjBs3DvXq1dNdNoIgogcSWIKoI7jdbqxYsQIffvghDh065PljlQ2OYxmwnUyFwEyKloWisABJLEF4EWvDiAHrSqzy/Zmpz9SukwHRM51HTT7SZ2+mblXeP7qjrlJRbFVwNi0EGpd7psgAuPDCC3HzzTejVatWhstGEET0QAJLEHUMp9OJH374AXPmzEFOTg4AQKi0w340A7a8lMBb7wSCBDYwJLFEJLGSwAKxG4V1u/nUYaGI4JooF3O5+NepOsvD7E5UNyqErUWFZ+/z/2/vzsOjKg89jv/OTDLZQxAQgiAihE1RMCxKhKIo4lYroFa9F5dyrbZon3r73N5L63JrXXqplS7qbX3u9T4uoLWiuKMIaMGwCQplCWGVJcQsZCOZTGbm3D8mczKTZLJMJplM8v08zzznzHnPec+bTBjmN+97zivp4osv1sKFCzVq1KjItg1At0aABXopl8uld999Vy+//LJKS0slSYYzTnEnwwyy3SzASt0sxBJgEW09bRix1L1CrGFErj2RDMIdrScSr5XNFnZbvPFuuQeWyz6kIbheeOGFuueeezR+/PiOtw1AzCHAAr2c0+nUW2+9pWXLlqm8vFxSfY9sYZ/2DS2OZFikFxaIrAj1wEqE2CCB7zE99eNUR14n/3t5GOHe66iTe2C5jMwaud1uSdJ5552nu+66S5MnT+5+7+8AugwBFoAkqbq6WitXrtTrr79u9cjKZVd8YR/Zi9Nav9lTNwywEiEWkNSzA6zU9eGx8ftKR8/vr6+71BMonNcpMLi2sz3ehDq5B5VJZzZc4zphwgTdcccduuiii7rfezqALkeABRCktrZW7777rpYvX66ioiLfxjq74r5NV1xxmgyPPfTBhNi2IcSiq3XHACvFVi9sqPeRjpw7Uj24ndUT3N7Xp3Fw9WtDm7xJtXIPLJfZv0be+vNOnjxZCxYs0IUXXti+dgDo0QiwAJrlcrn04Ycf6tVXX9XJkyd9Gz2G7CVpivs2XTZXfNODCLBtR4hFV+uOIba798K29t4RzjmbqzNS9YRbVyhtfX1CBVe/EG0yZcqbXiP3meXypjut7dOmTdOCBQs0bty49rQWQC9BgAXQIrfbrTVr1mj58uU6cOCAb6Mp2ctSFFfYR7bqhIado3yXypYQYtHrdccAK3W/ENvW94r2nCuSQbilurrydQl8f25nm0zDlKdvla/HNalOkmS32/Wd73xHt99+u7KyssJpMYBeggALoE1M09TWrVv12muvacuWLdZ2W2WiL8hWJPnuXNxNe2ElQix6uQgGWKmb9sJKke3N7Og52lJvW+qKVD3tEep1aa23tbGAdpl2j9z9K+U+s0KK913fmpSUpOuuu07z589XZmZmR1oMoJcgwAJot/379+v111/X6tWrrZtsGM54xRWlyV6aLsMbweDZ03thJUIsukZ3DbBSdHphw30/aK3+9tTblXW1R3OvR3uDq2S1yZvokrt/heLPrpPT6RsqPGDAAM2bN0/XX3+90tLSOtpiAL0IARZA2L799lu9+eabeuedd3T69GnfRo8he2ma4orTZXM6On6S3tALKxFi0TW6a4jtql7Yjv77j2S9XVFXuPyvR1uHCTfDlClvn9NyD6iQN63h+taRI0fqlltu0eWXX674+GbupQAArSDAAuiw6upqffzxx1qxYoUOHz5sbbdVJiquKF228hTf8OJwEWKByOiuAVbqvBAbqX/vjX/WjtTbmXV1lNcbXm+rvzlxbrn7Vcrdv0Jy+Ebo2Gw25eTkaO7cuUyFA6DDCLAAIsY0TX311VdasWKF1q9f3zC82GWXvThdcSVpMtxx7a+4twRYiRCLztWdA6wU+RAbSaYZ2TDcWcE6HI2n4QmntzWlVp4B5TIG1MrtdkuSMjIydP311+u73/2uBg4c2PF2AoAIsAA6SWFhod555x29++67Kisr8200JVt5suJK0mSrSG5frywhFghfhIOrX68KsN1VuK9BBN4DzTiP3H0r5elXad1NWJLOO+883XjjjZo5c6YcjghcSgIAAQiwADqVy+XSunXrtHLlSu3cubOhoM6uuJI02UvSmp9TtjmEWKB9YiW4BiLEtl1X3HG58Sn9c7eeUSlbQG9rQkKCrrjiCt14440aNWpUh84BAC0hwALoMkeOHNH777+vjz76qKFXVr5rZe0labKXpcgwWwipvSnASoRYhK+TgqvUyeHVjxDbukjOQ9sGXkedPGfU97bWX9sqSWPGjNG1116rWbNmKTU1tcPnAYDWEGABdLm6ujpt2LBB77//vjZv3tzwgdhtk70sRfbSNNlOJzQ/xJgQC7QsFntdGyPAti6SU/CEOoXNK0+f0/L0q5I3rcbanp6eriuvvFLXXXedRowY0eHzAEB7EGABRFVhYaE+/PBDffDBBzp58qS13aiNk/1UquylqbLVBlxDFeEAKxFi0UPEeq9rY4TY0DprmiA1DBH29K2Up0+1ZG8416RJk3Tttdfq0ksvVUJCQofPBQDhIMAC6Ba8Xq+2b9+uTz75ROvWrVN1dbVVZlQ7FFeaJvupFN9djHtjiJUIsmheTwuugQixTUVyCh5/lTJlJtfKfUaVPBlVUnzD733IkCG68sorNWfOHGVmZnb4XADQUQRYAN2O0+nUhg0b9Mknn2jTpk3WdDwyJVtlkuxlabJXpMjw2CN6XkIsYkpPDq6BCLENIjy3rTfBJU/fKnnOqJKZ4La29+3bV5dffrlmz56tMWPGxMZ7I4BegwALoFsrKyvTp59+qk8++US7d+9uKPBKtqpk2ctSIxZmY+ZDGiG2d+stwTUQITZivIkueTJOy5NRFTT1TWJiombMmKErr7xS2dnZiosLY85uAOgCBFgAMePo0aNavXq11q1bp0OHDjUURDjMEmTRbfWEGzSFozMCrM0WG8G4g+00ZcpMrJMno0qejNNBoTUuLk7Z2dm68sordemllyo5OTkSLQaATkWABRCTDh8+rHXr1mnt2rXBYdaUbJXJspen+MKsu2O9CDETZiUCbU/XG3teA3U0bAZeO9/dg2vj6/zb2V5Tpswkf0/raZmJDaE1Pj5ekydP1syZM5WTk6O0tLRItBgAugwBFkDMO3LkiBVmDx482FBgSkZ1guwVqbKXp8iojW9+ap42iqkwKxFoe5reGmDDDZuhbvYW6fDqP08kA3agNtZrGqa8qTXy9KmWt8/poLlaHQ6HpkyZopkzZ2ratGnM1wogphFgAfQo/jC7fv165eXlBZUZtfGyl6fIVpEi2+nEDoVZKcYCLWG2Z+htIba9obC1O5RHIrw2d45w6m3L3dRbqde0e+RJr/aF1vTgKW8SEhI0ZcoUXXbZZbrkkkuUkpLS/jYCQDdEgAXQY3377bfKzc3V+vXrtW3bNtXVNQyjk9sme0WKb7hxZXLvuW42EKE29vSWANuWQNje6bQi3ZMbTr0dbLMpU2ZCXX0va7W8KU4Ffg/Xr18/TZs2TTk5OcrOzmauVgA9EgEWQK9QXV2tzZs3a8OGDcrNzVVFRUVDoX+ocWWybJXJslX3st5ZPwJt99eJAVbqBiG2pTAY7vzPndU72pa6OzJndX3dpt3jGxqcXiNvenXQ0GBJGjlypHJycpSTk6NRo0bJ1gnzZANAd0KABdDruN1u7dq1Sxs2bNCmTZuCbwIl+Xpnq5Jlq6jvne3gjaAkAi0ipCcH2MZhMBJBrK3hNVK9uRFos++uwfWBNa1a3pTaoF5Wh8OhCy+8UDk5OZo2bZoGDRrU4XMCQCwhwALo9b799ltt2bJFmzdv1pYtW1RVVRVUbtQ4ZKtK8oXaqkQZ3l4052xjhNro62kh1uuNTFhtXGcoHT1XYN2RCqwOt7yp1b6e1rRqKS64/WeffbamTJmiKVOmaMKECUpMTOzweQEgVhFgASCA2+3Wnj17tHnzZm3evFl79+4N/kBvSkZNguxVSbJVJcl2OkmGt2MfYmMyzBJko6eTA6zUDYYSd1SEQ2akeePr5E2tsR6mwx1UnpKSouzsbCu00ssKAA0IsADQgrKyMn355Zfatm2btm3bpuPHjwfv4JVsNYmyVdYH2upEGWb7PzDHZIj1I8x2jS4Irn58NIgsM84tjxVYq2UmBAdWu92ucePGaeLEiZoyZYrGjRunuLiOX7oAAD0RARYA2qGwsFDbt2/X9u3btW3bNhUWFgbv4K3voT2dJNvpRF8PbTvucEyQRZAuDK2B+GgQPv+dgr0pNfKmOOVNccpMqAvax263a/To0Zo4caImTpyo8ePHKykpKUotBoDYQoAFgDCZpqmCggKrd3b79u0qKSlpsp/hjPeF2eok3zW0rvgW73Ic0yFWIsh2VJRCa2N8PGgb0/DKm1zbEFiTnU2uYbXZbMrKyrIC6wUXXMC8rAAQJgIsAESIP9Du3LlTO3bs0D/+8Y+mdziWpDq7bNWJslUn+JY1Cc320hJke5FuElob4yNCMOuGS8lOmUm18qTUyEyqlRpdNZCQkKBx48bp/PPP1/jx43XeeecpLS0tOo0GgB6GAAsAnaiiokK7du3Sjh07tHPnTu3du1cul6vJfkZtfEOgrU6UUeOQYdpiP8RKBNlQumlobaw3f0ww49y+3tVkp7xJtc32rkpSv379NH78eCuwZmVlcQ0rAHQSAiwAdCGXy6W8vDzt2bNHe/fu1Z49e5reGEqy7nZsq06Q3ZnoW3c6wrpBVLfR24NsjATW5vSGjwpmnNsXUpNc8iY5ZSbXNrk7sCTFx8drxIgRGjt2rMaNG6fx48crMzOzZ3zZBAAxgAALAFFWXl6uvXv3WoF29+7dKisra7qjKRm1DtlqHLI5E33LmgQZnhjs6ekNYTaGA2tzesrHBesmS0m1MpNq5U10yZtUK8V7muxrGIbOOeccjRkzRmPHjtWYMWN07rnnyuFwRKHlAACJAAsA3Y5pmiosLLR6affv36/8/PzmQ60ko85e30Pr66W11TpkxFpvbVcFWn+o7IrzEWCjzoxzy5vgkpno8vWsJtbKTHJJtqY/i2EYGjp0qEaOHKnRo0dr7NixGjVqlJKTk6PQcgBAKARYAIgBpmmqpKRE+/fvtwJtfn6+jh8/3nywMCXDFe8bdlzr8AXb+vVuH2w7I1y2FiYjfc4eEl5j4SOCKVOK88ib6JKZ4PItE33L5q5XlaTExESNGDFCI0eO1MiRI5WVlaXhw4czlQ0AxAACLADEsOrqah04cED5+fk6fPiwDh06pMOHD6u8vLz5A+qDrVEb7+upddUva+Nl1MW1OL1PVEQiWLY3TEbjnN1Id/1YYBpemQl1Mh118ibU+dYTWg6qhmEoMzNTw4YNswJrVlaWBg8eLLu97fMzAwC6DwIsAPQwpmnq1KlTQYHWv6yoqAh9oNeoD7Txvl7b2ngZLocMV1z3CLfhBMtIBcn2njvGAmx3+ShgGl6ZDrfvGtUEl0yHP6jWyYx3K9SfoGEYGjx4sM455xwNHz5c55xzjoYNG6azzz6bXlUA6GEIsADQSwQG26NHj+ro0aM6duyYjh07phMnTsjtbnrHVYtXMurifWHWFS9bwLrhipfhtnd9wG0pVHZ2gGwt0HbzABut//qtgOrwBVLTUeebV7V+2dyNlAKlpqZqyJAh1mPo0KEaPny4hg4dqoSEhC76KQAA0USABQDI7XarsLBQx44ds4Lt0aNHdfz4cRUWFsrjaTlYyGv4emlbenR2yPWHymiGx+7QhmZ0xX/1ps0rM87tC6bxnvplwKMNAVWSkpOTNWTIEJ111llNwmqfPn2YrgYAejkCLACgRW63WyUlJSooKNDJkyetpX+9qKio9YAr+a6/ddsDAm2c5Lb7tlkPX9CVxxb9Ics9QEf/izcNU7J7ZMYFPtxSnCcgpPqWsjd/HWpjSUlJyszM1KBBg6zlwIEDrfX09HRCKgAgJAIsAKBD3G63ioqKdPLkSRUVFam4uFhFRUVB66WlpW0LuX71YVf+UOuxNQRbj12GxybVLw1Pw3Z5DYJvvcD/3k2Zkt0r0+7xLeM8Mu3e4G3+9fj6oGr3hLw5UihJSUnq37+/+vfvrwEDBqhfv34aMGCABgwYYAXWtLQ0AioAIGwEWABAp/N4PDp16pQVaIuLi3Xq1CmVlZXp1KlTQY+qqqrwT2TKF2a9Nslr8wVdr9HouU2G16hf2iTTkLyGZBq+7Wb9esB2q0yG7xzWUr5yqdXgbCrgv1sjcL3+uWH6ejxtAeshnps2r2TzyrSZ9Utvw9LeUC6bWR9Qw/+v3m63q0+fPurbt68yMjKClv6g6l8mJycTTgEAnYoACwDoVurq6qxgW1ZWptLSUlVUVKiqqkqVlZWqrKxURUWFtV5VVaWKioqWb0LVVUxZgdbiD6vdINclJSUpLS0t6JGammqtp6enNwmqaWlpstm6+dzBAIBegwALAIh5pmnK6XSqsrJS1dXVqq6uVk1NjbUMXA/cVlNTo7q6OtXV1cnlcsnlclnrjbd1dkA2DEPx8fFyOBxyOByKj4+3HoHPHQ6HkpKS2vRITEy0Ampqaqri4uI69WcAAKCzEWABAGgDr9fbrodhGDIMQzabTYZhyG63Bz232WxBZf5yAAAQGgEWAAAAABATuKgFAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATCDAAgAAAABiAgEWAAAAABAT4qLdAACIFtM05XQ6o90MAGiXxMREGYYR7WYAQFQQYAH0Wk6nU1dddVW0mwEA7bJq1SolJSVFuxkAEBUMIQYAAAAAxAR6YAFAkmPzmZLHkGEzJMNmLWWrH6ZnGDJsNsmo324YVpnh388wGrYbDccFbWtUp2+/hnLTf5wtoDzEdtMwGp5LMuurkmHItEmS4dtmnUvWMWb984bjjIbjbQ1lvmOCywPrNP372BSyPqvegDY2LBu3o3F5w2vUXLkkqw2hzhW0PUQ7gn+uhnM2V9ZwjBl0vibn8ZercbkZdIx/34Z2mVaZEbi/Yf209WVmo6W/TlOGYQb9efnr9L00DeW2+vqCttWvN5QFbAtY+upreB74kHx1+56roSzgfDbDa23z7euVJNmNhueBx/ifN5SbsstbX2bKbngDjvPKHnCcvX67Xd4mx9nkP9Yre1CZb3+7YcqQV3Z/++S1jrFLvuPkL/P9Puzyn9O02uF7Xr+U6teN+t+VZDcM2WTIrvql4S+zyZChOpdd8/5lkACgtyPAAoDkC69e3wdFGQ1LK2kYhgz5g2v99vp0YvgSoRrSTsBxTRKUrVFSCkoZAcep0bZQ2xV6GRAOrfXGS6s6I6Bao0kTg8sb16n6IB2qvqa/jib1NlvW0nFt+FWFW1/9MlS47bQAazQNsIFljQNsw3azUfvNJmWGv87myps9xmzmXI0ekhVgGz9CllmhMiDYBgRdq0wN5Q1BVAEB1hscAA1/AKxfGobs8tfnW/ctjaDjfHVJdkPWsuE433pgmaT60Orf1x+AA0Oqr82tBdigcwWeR8Hns1n7B7yGANCLMYQYAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQExgHlgAkCS7KVNe3+SPhoKXkm++UpsazaPqLwt4bhj182QGHNdaWcBEpGaIyU2b296wzbc0A8pNSTKNoG2+fQzJVFB9ZuAx9cc1FWKbGVAUNLepEdj8FuZfNcKf67Wlstbqa63Mv2jxuMbzr4Yob9LGEPPAqum60eQ8gWVmo6W/Tv+8q4F/XiHmgbXqC28eWFO+dbPRw19m1s+Fa5XV1+k1TMnwBpyn/rnqfx41LpdMw+uru74eM6gseLst4Fz+9cZLXzt8/6wDl976X5Otft1b/yfa/DywhmwyGuaVle93bpd/7tmGuV4Dn9usdd9x1vy19XXZZMhu+MsMGTJU52ru3yAA9D4EWACQ5JrybbSb0DnMRsswNM6ngJ8/Qnpb27Hb8id8BqQBQKzgHRsAAAAAEBMM0zQ78L08AMQu0zTldDrDOtbpdOqGG26QJK1cuVKJiYmRbBrQbfG3H32JiYkyDMZEAOidGEIMoNcyDENJSUkdricxMTEi9QCxhr99AEBXYwgxAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATOAuxAAAAACAmEAPLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMSEuGg3AABiTXV1tV577TV99tlnOnnypGw2m4YOHarLL79c8+bNU3x8fLSbCERUeXm5NmzYoC+//FL79u1TYWGhPB6PMjIyNHr0aM2ZM0czZsyIdjMBAL2AYZqmGe1GAECsOHnypB544AGdPHlSkpSYmCiv1yuXyyVJysrK0tKlS5WWlhbNZgIRddlll8nj8VjPHQ6H7Ha7ampqrG1Tp07VY489psTExGg0EQDQSxBgAaCN3G63Fi5cqIMHD6pfv376xS9+oUmTJsnr9Wrt2rVasmSJqqurdfHFF+u//uu/ot1cIGJmzJihsWPH6uqrr9aUKVM0ePBgSVJBQYFeeuklvf/++5Kk2bNn65e//GU0mwoA6OEIsADQRu+9954VTJ977jmdf/75QeWrV6/Wr371K0nSM888o+zs7C5vI9AZtm3bposuuihk+W9/+1u98847kqQ33nhDAwcO7KqmAQB6GW7iBABt9NFHH0mSJk6c2CS8StKsWbOUmZkZtC/QE7QUXiXp2muvtdbz8vI6uzkAgF6MAAsAbeB0OvWPf/xDknTxxRc3u49hGJo6daokacuWLV3WNiDaHA6Hte71eqPYEgBAT0eABYA2OHLkiPXBfPjw4SH385eVlpaqoqKiS9oGRNtXX31lrZ977rnRawgAoMcjwAJAGxQXF1vrAwYMCLlf//79mz0G6KkqKyv1yiuvSJIuuOACnX322VFuEQCgJyPAAkAbVFdXW+sJCQkh9wucQiTwGKAn8nq9evzxx1VSUiKHw6Gf/vSn0W4SAKCHI8ACAICw/OEPf9AXX3whSfrpT3+qESNGRLlFAICejgALAG2QnJxsrdfW1obcz+l0NnsM0NM8++yzWrFihSRp0aJFQXciBgCgsxBgAaANAq9tLSoqCrlf4HWvgccAPcnzzz+v119/XZL0ox/9SDfffHOUWwQA6C0IsADQBsOGDZPN5nvLPHToUMj9/GVnnHGG0tPTu6RtQFd67rnntHz5cknSfffdp+9///tRbhEAoDchwAJAGyQmJur888+XJG3atKnZfUzT1ObNmyVJkydP7rK2AV3l2Wef1WuvvSbJF15vvfXWKLcIANDbEGABoI3mzJkjSdq+fbt2797dpHzt2rU6ceJE0L5AT/Hss88GDRsmvAIAooEACwBtNGfOHJ177rkyTVMPPfSQvvzyS0m+qUTWrl2rJUuWSJKmTp2q7OzsaDYViKjAa14XLVrEsGEAQNQYpmma0W4EAMSKgoIC/eQnP9HJkycl+YYWe71euVwuSVJWVpaWLl2qtLS0aDYTiJjCwkLddNNNkiSbzaaMjIwW97/lllvonQUAdJq4aDcAAGJJZmam/u///k+vvfaaPvvsM508eVJxcXEaPny4Zs2apXnz5ik+Pj7azQQixuv1Bq2Xlpa2uH9NTU1nNwkA0IvRAwsAAAAAiAlcAwsAAAAAiAkEWAAAAABATCDAAgAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYkJctBsAAADQFk6nU1999ZXy8vK0b98+7du3T4WFhZKkO++8U3fffXeUWxger9erjz/+WGvWrNH+/ftVXl6ulJQUDRw4UOPHj9d3v/tdnXPOOdFuJgB0CwRYAAAQE/bs2aN/+7d/i3YzIurbb7/VL37xC+Xl5UmSbDabUlJSVFFRobKyMuXl5WnQoEEEWACoR4AFAMSE3//+93rzzTd14YUX6o9//GO0m4MoSUtL04gRI7Rr1y7V1dUpNTVVVVVV0W5WWMrLy3X//feroKBAWVlZWrhwobKzs+VwOOR2u1VQUKDc3FwNHTo02k0FgG6DAAsAPdzp06eVn5+vvXv3Ki8vT3l5eTp+/LhM05Qkvf7668rMzOyUc5umqfnz56uoqEi33367fvjDH4ZVT35+vt5++21J0j333BPBFkbXwYMHtXnzZu3cuVMHDx5USUmJPB6PFdIuueQSzZkzR6mpqdFuardwwQUX6P3335ckvfzyy3rhhRdUXV0d5VaF75lnnlFBQYHGjRunpUuXKjEx0SqLi4vT0KFDCa8A0AgBFgB6uAceeED5+flROffevXtVVFQkSZo+fXrY9Tz//PPyeDyaOnWqxo8fH6nmRdUDDzygr776qtmy0tJSlZaWasuWLXrllVe0ePFiTZkypWsb2A3Z7XZrff78+XrjjTdUVlbWrjoOHjyoN998U9u2bVNxcbFsNpsyMzOVk5Ojm266SRkZGZFtdAhHjhzRmjVrJEk/+9nPgsIrACA0AiwA9HD+nlZJSk1NVVZWlo4cOaLS0tJOP/ff//53SdKAAQM0duzYsOrYsWOHtm7dKkm6/fbbI9a2aPMH+7S0NE2fPl0TJkzQ4MGDlZCQoIKCAn344YfKzc1VaWmpFi9erKeffloXXnhhlFvdfSQlJWnevHn6n//5H0lSXV1dq8csW7ZMf/nLX+T1eiVJiYmJcrvdOnjwoA4ePKgPPvhAv/nNbzRq1KhObbskffzxx5Kkc889VyNHjuz08wFAT0GABYAe7pprrlFGRoZGjx6tIUOGyDAMPfDAA10aYHNycmQYRlh1LF++XJKUmZnZowLckCFDtGDBAs2aNUsOhyOobPTo0Zo5c6ZeffVV/fnPf5bL5dLTTz+tl156KUqt7Z5mz55tBdjWRhm89957+u///m8lJSXpn/7pn3TNNdeoX79+8ng82r9/v55//nlt27ZN//Ef/6GXX35ZycnJndr2HTt2SPK91k6nU8uXL9eaNWtUUFAgh8Oh4cOHa9asWbr++usVHx/fqW0BgFhCgAWAHm7+/PlROe/Ro0d15MgRSeEPHy4qKlJubq4k6aqrrgo7BHdHS5YsaXWf22+/XWvWrFF+fr4OHz6sAwcOaMSIEV3QutiQmZmp+Ph41dXVWXfxbU51dbWee+45SdJjjz0WNBzbbrdr9OjR+u1vf6v77rtPeXl5eu+993TzzTd3atuPHj0qSTIMQ//yL/+iI0eOWHcgPn36tHbu3KmdO3dq1apVWrJkidLT0zu1PQAQKwiwAIBO8fnnn0vyDVueOHFiWHWsXr3aGu55+eWXt+kYt9utNWvWaP369dq7d6/Kysrk8XiUkZGhc889V5MmTdIVV1yhfv36BR03Y8YMSdKcOXO0ePFiffPNN/rb3/6mLVu2qLi4WCkpKRo1apRuu+02TZgwwTqutrZWH374oVatWqVjx47J6XRq8ODBuvLKK3XTTTcpISEhrJ/d76KLLrJ6F48ePdqhAHv48GGtXLlSX3/9tQoKCuR0OpWamqq0tDRlZmYqOztbl156qc4+++yw6ne73fr444+1du1aHTx4UOXl5TIMQ+np6crIyNDYsWM1adIk5eTkNOlVbPz7P3z4sN566y1t3bpVxcXFqqmp0eOPP97ky5CkpCTV1dWpvLxce/fu1ZgxY5q067PPPlNVVZWysrJCXkscFxenWbNmKS8vT1u2bOn0AOu/c/JHH30kSVq4cKHmzZtnBdi//e1vevHFF7Vnzx498cQTeuqppzq1PQAQKwiwAIBO4R8+fMkllyguLrz/br744gtJvutEhw0b1ur++/fv18MPP6xjx441KSsqKlJRUZE2bdqkAwcOaPHixSHrWbdunZ544gk5nU5rW21trTZu3KhNmzbpZz/7ma6//noVFxdr8eLF2rt3b9Dxhw4d0l/+8hdt3LhRTz/9dIdCrNvtttZtNlvY9axcuVJLly6Vx+MJ2l5eXq7y8nIdO3ZMW7Zs0YEDB/TQQw+1u/6ysjL967/+a7NDef2/+/z8fL3zzjtatmyZhgwZErKuDz/8UE8//bRcLler5w0Mwl988UWzAXbnzp2SfDdO+t73vheyrtraWknSyZMng7YXFBTolltuabUtodx222269957g7b5v5jxer2aP3++FixYYJWlpKTojjvu0KlTp7RixQp98cUX2rdvX5dcmwsA3R0BFgAQccXFxdqzZ4+k8IcPu1wu7dq1S5I0duzYVocP5+fna9GiRaqpqZEkTZw4UbNnz9awYcMUHx+vkpIS7d692+oZDuXAgQNas2aN+vbtq3vuucc695dffqmXX35ZTqdTzzzzjCZMmKBf//rX2r9/v773ve/p0ksvVUZGho4fP66XXnpJBw4c0I4dO7Rs2TLdddddYf0OJGnbtm3W+vDhw8Oq4+DBg1Z4TU9P1/XXX68JEyYoIyNDHo9HJSUlysvL08aNG8Mepr106VIrvGZnZ2v27NnKzMy0ehSPHDmir7/+2hoSHkpeXp5Wr16t9PR03XTTTRo/frzi4+N1+PBhDRo0qMn+gV+ObNu2TXfffXeTfYqLiyX5/qbacu23P8h2puTkZFVUVEiSbr311mb3ue2227RixQpJ0pYtWwiwACACLACgE6xfv16macrhcGjq1Klh1XHgwAGr93H06NEt7ut2u/Xwww9b4fUnP/mJ5s2b12S/adOmaeHChSosLAxZV35+vrKysrR06VKlpaVZ28eNG6chQ4bokUcekdvt1qJFi1RRUaElS5Zo0qRJ1n6jRo3S5MmTtWDBAhUXF+vtt9/WggULgqaAaavPP/9chw4dkuQL8eHOCbp27Vqr5/WZZ55RVlZWk32mT5+uhQsXqry8vN3119bWWl8MTJ8+Xb/+9a+bBOEJEybohhtuUE1NTYs9yYcOHdKQIUP0pz/9SWeccYa1PdRdrAPPs2/fPnm93ib1Bw5Df/TRR9v1s0nSwIED9c4777T7OL/mpsjp37+/KioqlJKSogEDBjR73Jlnnqnk5GRVV1e3+DcLAL0JARYAEHH+4cOTJk1SUlJSWHUEDgMODDLNWb16tY4fPy7Jd9fl5sJroIEDB7ZY/u///u9B4dVv5syZGjBggIqKinTq1CnddNNNQeHVLzU1VVdffbVefvllnTp1SocPH273tavFxcX63e9+J8kX0u677752HR/I3+von0apJX369Gl3/ZWVldaXDRMmTGixF7ctfw8PPvhgq695c5xOp4qLi3XmmWcGbffXFW4ItNlsEZ8fdsSIETp48GBE6wSA3iD8i2kAAGhGVVWVtm/fLin84cOSVFJSYq23dgdWf2CWQg/HbKvhw4eHDHmGYQSVzZ49O2Q9gfudOHGiXW1wOp1avHixFTwb3ziqvfw9fFVVVVq7dm3Y9YTSp08fayqgTz/9VNXV1WHXNWDAgGa/FGirwL8bv/Hjx0vyDU/2DyeOtsmTJ0uSTp8+bc0J3FhhYaH1u8zMzOyytgFAd0aABQBEVG5urtxut+x2u3JycsKuJ/A6xOZ6QwPt27dPkq+nrS03e2pJa8cHtqWlu/UG7teeQFdXV6df/vKX1o2hLr30Ui1cuLDNxzdn9uzZ1o2kHnnkEf34xz/Wq6++qh07dljDrjsiPj5ec+bMkSTt3r1bN998s5YsWaJPP/203eG9o9MEBd54y2/mzJlKTU2V2+3Ws88+K9M0Qx7v9XpVWVnZoTa0xfTp062/Ef9cx40tW7ZMku+Lk2nTpnV6mwAgFjCEGAAQUf7e0PPPP79Dwy4Drxlt7W60ZWVlkhTyWsL2aO56xUCBw2NbGg4beB2m/xrM1rjdbj300EPavHmzJGnKlCl69NFHw7p+NtDgwYP11FNP6YknnlBRUZE1x6jk+z2PGTNGM2bM0HXXXdfqlwWh3H///XK5XFq1apUqKir07rvv6t1335Xk+2JhypQpuuaaa1rtSW6tt72ysjLoTsqNf7dOp1NlZWVyOBxKTk6W5Psy4f7779eTTz6pTz/9VFVVVbrrrrs0ZswY2Ww2eb1effPNN9q4caPee+89LViwoMXe9UhISUnRD37wAy1dulQrVqxQ3759NXfu3KBpdFauXCnJN7VQR7+YAYCeggALAIgYl8ulTZs2SerY8GHJd72mn/9urT2Z2+3WI488Yk0dNGnSJD3++OPW0NyOys7O1vLly7VhwwZt2rRJO3bs0LFjx+TxeLRr1y7t2rVLr776qh5++OGQc6W2JCEhQYsXL9Y///M/a82aNdq+fbv27NmjmpoalZaW6qOPPtJHH32kGTNm6KGHHgo5tVBrUwX94Ac/aDLNTaCf//znkhrmk/W7+uqr5XK59Ic//EGbNm3Spk2b5HA4lJSUpNOnTwdNV9RV5s6dqxMnTuivf/2rXnjhBf3v//6vFWD9IX3q1Kl68MEHu7xtANBdEWABABGzdetWa0hqRwNs4JQprQXYjIwMFRYWdpvrG9vLH179vdcXXXSRnnzyyQ7NH9sch8Ohyy67TJdddpkkX8/1l19+qVWrVmnjxo2qqKjQQw89pGXLlqlfv35hnWPo0KG64447dMcdd8jj8Sg/P19ffPGFVq5cqVOnTunzzz/XCy+8oEWLFkXyR2uTG264QVOmTNFbb72lrVu3qqCgQFVVVUpOTtZZZ52l8847Tzk5Obrooou6rE2LFi3SJZdcohUrVmj37t0qLy+3brZ19dVXa9asWR2a/xcAehoCLAAgYvwBLCsrq8M3nQmc8/Sbb75pcd/Ro0ersLBQJSUl+uabb1q8NrW7aRxeJ06cqKeeeiri4bU5GRkZmjVrlmbNmqXf/e53evvtt1VTU6P169frhhtu6HD9/uHJY8aM0dVXX6077rhDTqdTq1evDjvA/vWvf22y7dZbb9Xx48eVmZmp119/vcXjMzMz9aMf/Sisc3eW7OxsZWdnR7sZABAT+EoPABARXq9XGzZskOS78VBHDRw4UP3795ck7dmzp8V9Z8yYYa37b3wTC9xutx599FErvE6YMEG/+c1vWr0OtzMEDhv2X1McSZmZmdY8tuHMNRtKWVmZNYXSeeedF7F6AQDdEwEWABARO3futIJPYKDsCH+oOnLkiE6fPh1yv8svv9wKRx988IHefPPNFusNdz7QSHK73frVr36lzz//XFLnhtfPPvus1VDqv3ZZks4666x21X/ixAlt3bq1xX0KCgp05MgRSb6bSkXK7t27rfWLL744YvUCALonhhADQA937Ngx646zfv75RSVp3bp1QXcLTkpK0syZM9t9Hn8v4uDBgzs8FYrfZZddpg8++EBer1dbt27Vd77znWb3i4uL03/+53/qxz/+sWpqavT73/9en3/+ua666ioNGzZM8fHxKikp0d69e7Vu3TqNHj066AY/0fDYY49p3bp1knyB8d5771VBQUGLx/Tt21d9+/Zt97nefPNNPfbYY9ZQ1XPOOUd9+vRRXV2dCgsLtXr1aqv3fNCgQe2e/qiwsFAPPvigBg8erJycHI0dO1YDBw5UQkKCysvLtXv3br399tvW3aTnzZvX7p8hlC1btkjyXd97ySWXRKxeAED3RIAFgB5u586devLJJ0OWP//880HPBw0a1KEAG4nhw36TJk3SgAEDVFRUpFWrVoUMsJI0cuRI/fGPf9TDDz+sEydOaPv27dq+fXuz+44ePTpibQzX2rVrrfXjx4/r3nvvbfWYO++8U3fffXdY53O5XMrNzVVubm7Ifc466yw9+eSTLU4P1JITJ07ojTfeCFlus9l066236sYbbwyr/sbcbrc+/fRTSb5e/3CnAAIAxA4CLACgw/bv32/1Hnb07sOB7Ha75s6dqz//+c/auHGjysrKWpxbdtSoUXrllVe0atUq/f3vf1d+fr51vWXfvn01YsQITZ48WVdccUXE2hgLHnnkEW3evFlff/21Dh48qNLSUmtIcZ8+fTRy5EhNnz5ds2fPDmvangsuuEB/+tOftHXrVu3evVuFhYU6deqUTp8+rcTERA0ePFgXXHCBrrvuuoj1zkuy/iYkaf78+RGrFwDQfRmmaZrRbgQAILa9+OKLevHFF9W3b1+99dZbEZ32o6qqSt///vdVUVGhH/7wh7r99tsjVjdi289//nPl5uYqOztbzzzzTLSbAwDoAtzECQDQYf7hw9OmTYv4nJWpqalWaH3ttddUXV0d0foRm3bv3q3c3FwZhqF77rkn2s0BAHQRAiwAoEPq6uo0ffp03XnnnZo7d26nnGPevHkaMmSIysvLm50HFL3PCy+8IEm66qqrNHbs2Ci3BgDQVRhCDACICXv27FFubq5SU1N18803R7s5iKKqqiq98cYbMk1Tc+fObfG6aABAz0KABQAAAADEBIYQAwAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICf8P1N7XzAOFVWQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_delta_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "e3fa00fd", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c4e36532", + "metadata": {}, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_delta_image(result, source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f11790eb", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "id": "6175189d", + "metadata": {}, + "source": [ + "## Integrated flux over the sky\n", + "\n", + "Define the Crab spectral model" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d9bca0f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG5CAYAAACTEQDKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADFG0lEQVR4nOzdd1hTZxsH4F/YsqciICCoCKiAotaBe9e6J1orzjqxy12travr01q3FrWOuuq2deCmONCKGxwMZQmyNyR5vz/eEogMY0hIgOe+rnOZnJzxJIac57xTwBhjIIQQQgghFdJQdQCEEEIIIdUBJU2EEEIIITKgpIkQQgghRAaUNBFCCCGEyICSJkIIIYQQGVDSRAghhBAiA0qaCCGEEEJkQEmTAuXl5SE8PBx5eXmqDoUQQgghCkZJkwJFR0dj8uTJiI6OVnUohBBCCFEwSpoIIYQQQmRASRMhhBBCiAwoaSKEEEIIkQElTYQQQgghMtBSdQCEEEJIVWCMQSgUQiQSqToUoiLa2trQ1NSUe39KmgghhNR4BQUFiI+PR05OjqpDISokEAhgZ2cHQ0NDufanpIkQQkiNJhaLERkZCU1NTdjY2EBHRwcCgUDVYZEqxhhDUlISYmJi0LhxY7lKnChpIoQQUqMVFBRALBajQYMG0NfXV3U4RIWsrKwQFRWFwsJCuZImaghOCCGkVtDQoEtebVfZEkb6BhFCCCGEyICSJgUIDAzE/Pnz8euvv6o6FEIIIdXEN998I9NcpWvXrkVCQoJMxxw/fjzWrl1bychIeShpUoAePXpg9erVmDVrlqpDIYQQUk0sW7ZM4UkTUS5qCE4IIaTW8fb2VmoiYm1tjdu3b5f7+qeffgoA8PHxgaamJs6dO4dPP/0Uz549A2MMs2bNwtSpU/Htt98iLi4OI0eORJ06dbBz504kJydj8eLFyMvLQ0FBAT7//HNMnDhRae+FFKOkiRBCSK2TkJCA2NhYlZ1/8+bN2LJlC65duwZTU1OMHDkSLi4uOHLkCBITE9GqVSt4eHhgyZIlCAgIwIEDB+Dp6QkASE1NRVBQEDQ1NZGSkgIvLy/07t0bdnZ2Kns/tQUlTYQQUs3cunULjx8/xuDBg2FiYqLqcKola2trtTp+YGAg7ty5AwCoW7cuhgwZgsDAQHzwwQeltk1OTsbEiRPx9OlTaGlpITk5GQ8fPqSkqQpQ0kQIIdXI+vXrMXv2bDDGMGfOHMyePRv+/v6wsLBQdWjVSkVVZ+qgoq7xn376Kfr164c///wTAoEALVu2lKltVHWXnJyMvLw82NraqiwGaghOCCHVgFgsxrx58zBr1iwwxgAA6enp+O677+Dg4IC5c+dSY+FqxsjICOnp6QB4h6Jt27YBAJKSknDkyBH07NkTAGBsbCzZDuDVcw4ODhAIBLh69Sru3btX9cFXscTERERGRiI+Ph7x8fEqi4OSJqJ0aWlpyM3NVXUYhFRbBQUFGDduHH744QfJuq5du0JLi1cWZGdn48cff0TDhg3h7++PmJgYVYVK3sMXX3yBnj17wtPTE+vWrcOTJ0/QvHlzdO3aFYsWLULbtm0BALNnz8bkyZPh6emJ0NBQrF69GvPnz4enpycCAgIk29VUCQkJePnypeR5QUGB5MahqgmYqs5cA4WHh2Py5MnYtm0bXFxcVB2OysTGxuLSpUu4fPkyLl26hIiICACAgYEBrKysYGlpCSsrK8lS8nnJxyYmJjQ/FKn1MjIyMGTIEFy4cAEAH9V6w4YN+PTTTxEdHY0ffvgBv/32G/Lz8yX7aGtrw8/PD/Pnz0fDhg1VFbrayMvLQ2RkJBo2bAg9PT1Vh0NkxBhDXFycVMmStbU1bG1t5b42VPa7QEmTAtXWpCkuLg6XL1+WJEnPnz9XyHG1tLRkSrDq16+PJk2a0BQJpMaJi4tDv379JNUvenp62L9/PwYOHFhqu59//hmbN29GTk6OZL2mpibGjh2LBQsW1KrfpLcpKmkSi8V48+YN8vLyoK+vD0NDQ+jq6tLNnRIwxvDq1SskJiZK1tna2qJ+/fqVOi4lTWqktiRNCQkJUknS06dPy91WR0cHrVu3hoaGBt68eYOkpCQkJycrvGjVwsICXbt2Rbdu3dCtWzc0adKEfshItfbkyRP06dNHUi1hYWGBkydPol27duXuk5SUhDVr1mD9+vXIzMyUrBcIBBg5ciQWLlyI5s2bKz12daOIpCk7OxtRUVGlmhpoaWnB0NAQRkZGMDQ0RJ06degGrpIYY4iOjsabN28k6+zt7VG3bt1KH5uSJjVSU5OmxMREqSQpLCys3G21tbXRtm1bdO3aFV26dEG7du1Qp04dqW1EIhFSUlIkSVRSUlK5j4uWgoKC94rZ1tZWkkB169YN9vb2cr13ZcnPz8fjx4/x6NEjAJCUmllaWsLS0hL6+vq1OulLSEjA0aNHkZqaCkdHRzg5OaFhw4aoW7durfhcgoKCMGDAAKSmpgIAHB0dcebMGZl/V1JTU/Hrr79i7dq1kmMUGTRoEBYvXoxWrVopPG51VZkLpVgsRlxcnMyN7DU0NGBgYCBJpAwMDKCpqSlP2LWSWCxGZGSk1PfW0dERlpaWCjk+JU1qpKYkTUlJSbhy5YokSXr8+HG522ppaaFNmzbo0qULunbtinbt2sHAwECh8TDGkJWVVW5yFR4ejitXriAtLa3cYzg7O6N79+7o1q0bunbtqpA7FlklJibi3r17CA0Nxb1793Dv3j2EhYVBKBSWu4+enp5UElXycVnPLSwsoK2tXWXvSRkyMzNx9OhR7N27F4GBgRCLxaW20dfXh6OjIxo2bFjmUhPGLDpy5Ah8fX0lbZS8vLzw119/yTWuUEZGBjZt2oSff/4ZSUlJUq/17dsXixcvRvv27RUStzqT90KZnZ2NyMhIqe78+vr6qF+/PvLy8pCVlYWsrCyIRKIKj1NUlVe06OjoyP1eajKxWIwXL15IegoKBAI0bNgQ5ubmCjsHJU1qpDomTYwxJCYm4p9//pEkSQ8fPix3e01NTbRu3VqSJLVv3x6GhoZVGHHZRCIR7t69i4sXL+LixYu4du2aVNuOtzVr1kySRHXq1AmmpqaVjkEoFCI8PFySGBUtVdUN3NTUtFRSVbduXbRp0wbdunVTyHtUtMLCQpw7dw579uzB8ePHK93L0szMTJJAFZVOFS0ODg5q3wi45BhMANCrVy8cPnwYRkZGlTpuTk4Otm7dih9//BFxcXFSr3Xr1g2LFy9Gly5damwp3vteKMsqXRIIBKhfvz6sra2lqt8YY8jNzZUkUFlZWe8sGdfV1ZVKovT09GrsZy8rkUiE58+fS6qVBQIBGjVqpPAbIUqa1Ii6Jk0ikQgxMTF48eKFZHn+/Lnkccm2D2/T0NCAt7e3JEnq0KFDpX/Aq0JBQQFu3bqFCxcu4OLFi7h+/ToKCwvL3FZDQwOtWrVCt27d0L17d3To0AH6+voVHj8tLa1UcvTw4UOpHkzl0dLSgqurKzw8PNCiRQvo6upKSs3evHkjWYqev+suVhYaGhpo06YNevXqhV69eqFNmzYqK5lijOHGjRvYs2cPDh48KNVuoYijoyPGjBkDDw8PREdHIzIyUrJERUXJPZCfjY2NVCLVo0cP+Pj4qPyCJRaLsWDBAqkhBcaNG4ft27cr9P8pLy8PO3fuxOrVqxEdHS31WocOHbB48WL07t1b5Z+Hor3PhTIrK6vUd6yohPNdvwtF8vPzpZKod90MFLWLKlr09fVrVbsooVCIZ8+eITs7GwD/vWrcuLFSrjWUNKkRVSZNeXl5iIiIkEqMipaoqCiZ2wRpaGigZcuWkiSpY8eOMDY2VnL0ypeTk4N//vlHkkTduXOnzOofgLfLateunaQ9lLW1Ne7fvy9VxVZyzJCKmJubw8PDQ2pxc3ODrq6uTPszxpCenl4qkaroeUXVlEWMjY3RrVs3SRLl7OwsUzyVER4ejr1792Lv3r2SYShKMjc3x8iRIzFmzBi0b9++3Au3WCxGQkKCVCJVcnn16lW5/7dladOmDebPn4+BAweq5EJVUFCACRMmYO/evZJ1ixYtwnfffae05KWwsBB79uzBypUrS/V29fb2xuLFi/HRRx/VmAu3LBdKsViM2NhYvH79WrJOIBDAxsYG9erVq9RnIRQKkZ2djczMTGRlZSE7O7vCzjA6OjpwdnZWeFMHdVRYWIinT59KEkstLS00btxYae+dkiY1ouykKTU1tcyk6Pnz53JNPKmpqQkHBwc4OzujefPm6NKlC3x8fNSyGkfR0tLScPXqVVy8eBEXLlyosEpSFgKBAI0bN4aHhwc8PT0lCVJlxhORV2FhoaShfWRkJC5cuIBz585V2DatYcOGkgRKkVV5CQkJ2L9/P/bs2SOZV6skPT09DBgwAGPHjkXv3r0V0tajsLAQr169kkqkIiIiJI9LdmEuycXFBXPnzsXYsWOrrM1JRWMwVQWhUIhDhw5hxYoVkk4JRczNzWFhYQFTU9NSi4mJSYXrDAwM1Kq06l0XyvJKlxo2bFiqI4siiMVi5OTkICsrS5JIvV2iLBAI4ODgoLAG0O9LIBAgNTVVqdcDS0tL7NmzR/IetbW10aRJE7k/8+XLl2PHjh0AgFGjRmHFihWltqGkSY0oI2m6ePEi5s2bhxcvXpTqBSMLfX19ODk5wdnZGc7OzmjUqJHksb29fbVvPKwor1+/xuXLlyVJ1IsXL8rd1sjICC1atJAqPWrWrJna3xXGxMTg/PnzOHfuHAIDA8usFgP4hbtt27bo2bMnevXqhbZt20pGnpbFuxp0CwQCdO/eHWPGjMGQIUOqvCSzqOv4nTt38L///a/UFBS2trb47LPPMGXKFKVWRcs6BlNVEIvFOHbsGJYvX467d+9W+niamprlJldFS+vWrdGtW7cqSVDLu1CKRCLExcWVWbpkbW1dZYkfY0zSsPzNmzeSaioAqFevHuzs7OSKRSgUvtffbknKTpry8vJQv3597Nq1CzY2NtDR0UGTJk3kbnd49epVTJs2Dbdu3YKWlhY6dOiAZcuW4cMPPyx13koNP8FIpZ0/f57NmzePzZgxg/n4+LCwsDCFHfvixYsMQIWLpaUla9u2LfP19WVff/0127lzJ7t27RqLi4tjYrFYYbHUJlFRUWzHjh1s3LhxbMiQIWzJkiXszz//ZM+fP2cikUjV4VWaSCRid+7cYatWrWJdu3Zl2tra5X6/jI2N2aBBg9jGjRvZ8+fPyzxeQUEBO3XqFBs1ahSrU6dOmcdp2bIl+/nnn1lsbGwVv9vyicVi9vfff7POnTuXitfU1JQtWrSIvX79WuHnffToEbO3t5ecy8LCggUHByv8PO9LLBaz06dPs549ezJHR0dmamrKBALBO3+D5F2MjY2Zr68vO3z4MMvKylLa+8rNzWWPHz9mubm5knVeXkJWt24Bq1s3X7LUq1fAbGzEzNaWVXpp1erdcd26dYt17dqVtWrVinl6erKDBw8ykUjErl27xgwNDdmkSZNY06ZNmb29PTtx4kSF+zHGWGRkJDMxMWFz585lXl5ebM2aNezJkyfsgw8+YG5ubmzw4MGsZ8+ebMeOHSw2NpbVrVuXZWdnS447evRotnHjRsYYYwDYokWLmKenJ2vcuDHbs2ePZDtfX1/WqlUr1rx5c9avXz8WHx8vdf4lS5awli1bMmdnZ3b69GnJfsePH2dNmzZl7u7u7JNPPmEmJibs+PHj7MGDByw/P1++/9z/TJ8+na1atUryfMOGDWzMmDGltivru/A+KGlSoLCwMIUnTdHR0UwgEDB7e3vWtWtXNmnSJLZq1Sp28OBBdufOHZaWlqawc5HaKysri50+fZr5+/szNze3Ci90DRs2ZFOnTmV//vknu3r1Kps+fTqztLQsc1tHR0e2aNEi9vjxY1W/xXe6fv06GzRoUKn3oKenx2bMmMEiIiIUcp6rV68yU1NTqc9Ikb8ZiiYSiVh6ejqLjo5m9+7dY1euXGHHjx9nu3btYuvWrWPffvst+/zzz9mECRPYkCFDWPfu3VmrVq2Ys7Mzs7CwYJqamjIlUHp6emzgwIFs165dLCUlRaHvoeSFUigUspcvX7K6dfMZwJS22NpWHFNqairz9PRkcXFxjDHGkpKSWIMGDVhMTAyLjIxkANj333/PQkJC2C+//MIcHBxYdna2TPvt2rVLch5vb28WEBDAGGPs8ePHTFdXl+3YsYMxxpOfLVu2MMYYS0hIYFZWViwzM5MxxpOmxYsXM8YYe/HiBTMzM2ORkZGMMcYSExMlx1+1ahWbOnUqY4xJzn/48GHGGGN///03a9KkCWOMsdevXzNzc3MWEhLC/v33X7ZgwQIGgJ09e5YVFBRIfTZhYWHMw8OjzGX8+PFlfp79+/dn+/btkzw/ffo08/HxKbUdJU1qRBlJk1gsZnl5eQo7HiGyePXqFQsICGCjRo1iFhYW71V6YG5uzqZNm8aCgoKqZUnn48ePmZ+fX6nSN01NTebr68vu3bsn97EPHz7MdHV1Jcf08vKS3KXXVGKxmGVmZrKYmBj28OFDFhQUxPbv388+/vhjZmJiUuZ3SEtLi/Xs2ZNt3LhRkhxURtGF8s2bN+z+/fssJCSEubpmKbx06X1Kmk6fPs2MjY2lEoIGDRqwCxcusMjISKanp8fS09PZ3bt32aVLl5impia7c+cOO3DgQIX7aWtrS0rD09PTmZaWFhMKhZLzdu/eXZI03bx5k7Vo0YIxxth3333HZs+eLdkOAIuKipI8L0poGWNs7dq1rFWrVszd3Z05Ozuztm3bMsaYJO6iv/u0tDSmqanJGOOlTD4+PuzOnTssJCSE3bhxg2lra7Nnz55V4n+2WFUlTfJVdpIqIxAIZO5pRYii2NnZwc/PD35+fhCLxbh7966kPVRQUFCp4RuU0aBbVVxdXREQEIBvv/0Wa9aswZYtW5CdnQ2RSIR9+/Zh37596Nu3L+bPn/9ewxX8+uuv8Pf3V/gYTOpOIBBIutLb2tpK1o8cORIFBQW4fPkyjhw5gmPHjknaFgmFQpw/fx7nz5/HjBkz0K5dOwwZMgSDBw+Gk5PTe8eQk5ODlJQUqbZCu3eHwdbWFvXq1VNJo3XGGNzd3REcHFzqtaioKOjq6sLY2Bhubm64d+8eRCKRZPyoxo0bIyQkpFTcUVFR7xyuoOQ+bdq0gb6+Pi5duoStW7ciMDCwwpgFAgGCgoKwbt06XL9+HXXr1sWJEyewZMkSyTYl5+LT1NSUNHDPyspCTk6OpI2jsbExBAJBmW2uwsPDMXLkyDJj8PLykjT2Lsne3l5qGI2oqCjlzAQhZ1JHyqCMkiZC1E1mZqakKs/X15ft2LGDpaenqzospUlOTmbfffddmVWQH3zwATt27FiF7dxEIhH76quvpPYbN25cqSqJ2k4oFLKgoCD2+eefM0dHx3JLMj08PNiyZcvYgwcPZCrJvHLlCvPx8WF///03CwkJYSEhIZUqaVCUlJQUZm1tzc6fPy9Zd/fuXZafny9pG1QkPT2dAWAhISHswoULzMLCgu3YsUNSglTefowx1qpVK7Zz507GGL9G6enpSUqaGGPsjz/+YHZ2dqxXr15S+wFgS5cuZYzxEiRzc3MWGRnJTpw4wTw8PJhQKGT5+fmsX79+zMPDQ7JdyfNnZmYyACw5OZmdP3+emZiYsEOHDrGnT5+yLVu2MACSKr/KunTpEnNzc2NZWVksLy+PtWrVip08ebLUdlQ9p0YoaSKk5srOzma//vorc3BwKHUhd3V1ZTt27CjVmDU/P5/5+vpKbbto0aJqWW1ZlcRiMbt79y77+uuvmbu7e7kJVKNGjdjcuXPZjRs3SiWumZmZbObMmQwAc3BwYH///Te7ffs2i4+PV5vP/86dO6xr166sRYsWzNXVlfXu3Zvl5uaWm3zEx8ezkJAQtnv3bubt7c2aNGnCmjZtWu5+jPFOB23btmXu7u5s4MCBzMfHhx09elTyemFhITM1NZVqaM5YcZumtxuCFxQUsBEjRjBnZ2fWpk0btnDhwncmTUXJ6k8//cScnZ1ZixYt2Ny5c5mFhYXCkibGGFu2bBlr2LAha9iwIZs/f36Z21Q2aaIhBxRIXUcEJ4QoTmFhIQ4ePIjvv/8eDx48kHrNzs4On3/+OSZPngyRSIShQ4eqbAymmuTp06c4evQojhw5glu3bpW5jY2NDQYPHowhQ4aAMYbJkycjMjISAODg4IAdO3agZcuW1X5+woyMDLx48UJS7aWpqQknJ6dy31dWVpZk3KzIyEi0a9cOISEhaNCgAQDg9u3b8PX1RVhYmMIHM339+jVevXoleW5paQkHBweVjuFF4zSpEUqaCKk9GGP4+++/sXr1aly7dk3qNTMzM1haWuLZs2cAVDsGU00TExODY8eO4ciRI7hy5co7R3+vU6cO1qxZAx8fHzg5Oan9/IOyyMvLw4sXL6SmZ7G1tS1zbKlz587hq6++AsDHpVq0aBFGjx4NAJg0aRLOnTuH7du3o1evXgqLjzGG+Ph4qXkOKzPelCJR0qRGKGkipHYKDg7G999/jxMnTpR6zcLCAidPnkS7du1UEFnN9ubNG5w4cQJHjx7FuXPnSk0X5ePjg4CAANjZ2VVuQEM1JBKJEBkZKTVtkrm5ORwcHKCpqamyuBhjiImJkRow1MbGBvXr11d5wgRUPmmqGRMLEUKICrVv3x7Hjx/Ho0eP8Mknn0h6BDk6OuKff/6hhElJLC0tMWHCBJw8eRJJSUnYv38/RowYgebNm2PdunW4fPkyGjVqpOowlUJTUxPOzs6wsbGRrEtJSUF4eLhME4crA2MML1++lEqY7OzsYGNjoxYJkyJQSZMCUUkTIQQAXr16hRs3bqBnz561Yi5HdVfpqTPUXFpaGiIiIiRVlVpaWnB2dq6S4SzEYrFkMuL09HSpYR0cHBxgZWWl9BjeR2W/CzROEyGEKFiDBg0kDW0JUTZTU1O4urri+fPnyM/Ph1AoRHh4OOzt7WFlZaXQUp6iyYYzMzMlkw2X1a6sYcOGsLCwUNh51QUlTYQQQkg1V6dOHbi6uiIiIgIZGRkAgJcvXyInJwf29vZy94xjjCEnJwcZGRkVJklFdHV1YW9vX+17KZaH2jQRQgghNYCWlhYaN24Ma2trybo3b94gPDy8VCP58jDGkJ2dDYFAgDt37uDu3bt48uQJYmNjkZGRUSph0tHRgYWFBRwdHdG8eXM0b95c5oTJ0tISUVFRMr+/ioSEhKB9+/bQ19fHoEGDFHLMslBJEyGEEFJDCAQC2NnZoU6dOnj+/Dk0NTWRnZ2NJ0+ewNnZGYaGhlLbM8aQm5srqW7LzMyUjAGVkZFRql2UtrY2jIyMYGRkBGNjY+jo6KhFI+/69etj7dq1uHv3Lv7++2+lnYeSJkIIIbWO91ZvJGQlKO341obWuD3ldoXbhISEYN68ecjIyIBIJMLChQsxfPhwREVFwdPTE/7+/jh16hTS09Oxbt069OvXT6b9pk6divPnz2PUqFFwcXHB119/jaysLDg6OoIxhtGjR6Nt27bo3r07Tp48CW1tbQDA4sWL4enpiWHDhgEA9uzZg3/++Qf5+fmYO3cu/Pz8oKuri7Fjx0pKrxo0aIDffvsN1tbW74z7xIkTmDdvHrS1tdGnTx+Fft52dnaws7PD48ePFXrct1HSRAghpNZJyEpAbGasys6flpaGKVOm4K+//kL9+vXx5s0btGzZEu3btwcApKeno0WLFli2bBnOnDkDf39/9OvXT6b93N3d8f333wMAvL29MWrUKPTq1QuRkZEYO3YsOnXqhMLCQnh7e+PkyZMYMmQIkpOTcevWLSxZsgRmZmYAACsrKzx58gSRkZHw9vZG37594ejoiLVr10p6xa1evRrffPMNNm/eXGHciYmJ8PPzw7Vr1+Dm5oatW7ciOTm5zM9Gngl7qwolTYQQQmoda0Prd2+kxOMHBwcjIiICffv2lVofHh4uGbl8yJAhAIB27drhxYsXMu2nra2NsWPHAuDVa/fu3cP169clo3N7eHhI9hk9ejRWrFiBCRMm4PDhwxg1ahTatWsnqW6bNm0aBAIBnJyc0KlTJ1y9ehWOjo7Yt28fdu/ejby8POTl5cHS0lJyzPLivnHjBlq0aAE3NzcAwMSJEzFr1qwyPxsXFxeEhoZW+PmpCiVNhBBCap13VZ0pG2MM7u7uCA4OLvVaVFQUdHV1JcmLpqampJ3Ru/bT19cv1VNOQ0MDDg4OMDAwgKamJvT19WFnZwc3Nzds3rwZr169wr59+xAYGFhh+ySBQICgoCCsW7cO169fR926dXHixAksWbJEsk15cZd1rPLUuJKmuLg4/Pvvv3jw4AGSkpKQnp4OXV1dmJqawsnJCZ6envDw8JDUkxJCCCGkWPv27REZGYnAwED06NEDABAaGiopiVHEfsbGxvDw8MCePXvwySefIDk5GaGhoZg6daqkh52/vz/GjRsHNzc3NGnSRGr/HTt24JtvvkFUVBSuXbuGtWvX4sGDBzAyMoKFhQUKCgqwZcsWmd5vu3bt4Ofnh7CwMDRt2hQBAQHl9uirESVNjDFcuHABx48fl8zsXdZg4v/88w/27NkDIyMj9OnTB4MHD5Ya5p0QQgip7czMzHD69Gl8+eWX+OKLL1BYWAh7e3scO3ZMofv9/vvvmDBhAn788Uc0atQIrVu3lhqlftiwYZg2bRpmzpxZal+RSAQvLy9kZ2dj3bp1cHR0hK2tLfbs2QMXFxdYWFigR48eiI19d9swKysrBAQEYPDgwdDR0UGfPn0UOvhleHg4unfvjpycHOTm5sLOzg4LFy7E9OnTFXYOQMZpVG7evIlNmzYhMjISJiYm8PHxgbu7O1xcXGBubg4jIyMUFBQgIyMDL1++xJMnTxASEoKHDx9CS0sLgwYNwieffFIlQ7qrEk2jQggh6qemT6NSkaysLBgYGEAgECAyMhLt2rVDSEiIZMT627dvw9fXF2FhYXIPgFmdVMk0KnPnzkXz5s2xatUqtGnTRjIZpdSBtLSgr68Pa2trtGnTBp988gkSEhJw8uRJHD16FIaGhhg/fvx7B1gdBAYGIjAwEFlZWaoOhRBCCJEIDg7GV199BYCXHK1Zs0aSME2aNAnnzp3D9u3ba0XCpAgylTTduXMHrVq1kvskmZmZiI+PL1VfWtNQSRMhhKif2lzSRKRVSUlTZRImAJLRQwkhhBBCqisqjyOEEEIIkYHSkqaMjAy8fv1aWYcnhBBCCKlSSkuaNmzYgFGjRinr8IQQQgghVUqp1XMytDEnhBBCCKkWqE0TIYQQQqQIBAKkpaUp9RyWlpaIiopSyLH2798PT09PNGvWDM2aNcPPP/+skOO+TeYRwcubB6Y86enp7x0MIYQQQhRDKBSWOa5iTdSgQQOcOXMG1tbWSE9PR6tWrdCqVSt06dJFoeeRuaQpISEBiYmJSE5OlmnJz89XaKCEEEKIwnh7A3Z2ylu8vd8ZQkhICLp16wZvb294eXnh0KFDAPjEu6ampli6dClatWqFRo0a4a+//pJ5v3nz5qFly5ZYv349wsLC0K5dO7i7u2PIkCHo1asXdu7cibi4ONSrVw85OTmS4/r6+mLTpk2S5z/99BO8vLzQpEkT7N27V7J+zJgx8Pb2RosWLfDhhx8iISFBprhPnDgBV1dXtGjRAnPnzpXzP65sHTp0kMynZ2JigqZNmyqsFEsKk9GQIUPY+PHjZd2crVixgnXu3Fnm7WuCsLAw5uPjw8LCwlQdCiGEkP/k5uayx48fs9zc3OKVtraMAcpbbG0rjCk1NZV5enqyuLg4xhhjSUlJrEGDBiwmJoZFRkYyAOzw4cOMMcb+/vtv1qRJE5n327Vrl+Q83t7eLCAggDHG2OPHj5muri7bsWMHY4wxX19ftmXLFsYYYwkJCczKyoplZmYyxhgDwBYvXswYY+zFixfMzMyMRUZGMsYYS0xMlBx/1apVbOrUqYwxVmHcr1+/Zubm5uzRo0eMMca2bNnCAEiOWVJYWBjz8PAoc5ElD3n06BEzNzdnr169KvVamd+F9yBzuV2TJk1w8+ZNFBQUQEdH553bCwQCefM4QgghRLn+K5VQ1fGDg4MRERGBvn37Sq0PDw+Hk5MT9PT0MGTIEABAu3bt8OLFC5n209bWxtixYwHwoX9CQ0Mxbtw4AICrqys6duwo2cff3x+TJ0/GlClTsG3bNowePRqGhoaS1ydNmgQAcHJyQqdOnXD16lU4Ojpi37592L17N/Ly8pCXlwdLS0vJPuXFfePGDbRo0QJubm4AgIkTJ2LWrFllfjYuLi4IDQ2t8PMrT0xMDAYOHIjNmzfDzs5OrmNUROakqXHjxggODsbz588lb7oijDHqPUcIIUQ93b6t0tMzxuDu7o7g4OBSr0VFRUFXV1dS+KCpqQmRSCTTfvr6+hXOI1eyQKNNmzbQ19fHpUuXsHXrVgQGBlYYs0AgQFBQENatW4fr16+jbt26OHHiBJYsWSLZpry4K4rjbeHh4eW2o/by8sKOHTvKfC0uLg49evTA4sWLMXz48Arfi7xkbtPUp08fzJ8/H2ZmZjJtP2PGDBw4cEDuwAghhJCaqn379oiMjJRKVEJDQ1FQUKCw/YyNjeHh4YE9e/YA4MlIUFCQ1Db+/v4YN24cXF1dS80PW5ScREVF4dq1a/Dx8UFqaiqMjIxgYWGBgoICbNmyRab3265dO9y/fx9hYWEAgICAgHLfa1FJU1lLeQlTfHw8unfvjnnz5uGTTz6RKSZ5yJw02djYoG/fvqhfv75M25uYmEgaZRFCCCGkmJmZGU6fPo2VK1fCw8MDbm5umD9/PsRisUL3+/3337Fp0yY0a9YM8+bNQ+vWrWFqaip5fdiwYcjKysLMmTNL7SsSieDl5YVevXph3bp1cHR0RJ8+feDi4gIXFxf4+PjA09NTpvdrZWWFgIAADB48GB4eHnj27BksLCxk2lcWS5YswcuXL/HLL7/A09MTnp6e5SZYlSFgVIemMOHh4Zg8eTK2bdsGFxcXVYdDCCEElZ/ZvjrLysqCgYEBBAIBIiMj0a5dO4SEhKBBgwYAgNu3b8PX1xdhYWEVVuvVFJX9LihkAIeiYrPx48cr4nCEEEIIUYDg4GB89dVXAHjJ0Zo1ayQJ06RJk3Du3Dls3769ViRMiqCQpOnu3bvYtWsXJU2EEEKIGunVqxd69epV5mvbt2+v4miqP0otCSGEEEJkQEkTIYQQQogMKGkihBBCCJGBQpKmRo0aoXfv3oo4FCGEEEKIWlJI0uTj44MFCxYo4lCEEEIIUTGBQIC0tDSlnsPS0lJhk+oePXoULVq0gKenJ9zc3LBo0SKlzEqikN5zReLj43H79m3o6OjAx8cH+vr6ijw8IYQQQmQkFAqhpaXQy7za6tGjBwYOHAgNDQ0UFBSgY8eO8Pb2xuDBgxV6Hrk+zd27d+PkyZP47bffYGRkBIAPOzB//nzk5+cDAHbt2oXNmzfD2NhYcdESQgghCuB9+zYS3jFlSWVY6+jgtrd3hduEhIRg3rx5yMjIgEgkwsKFCzF8+HBERUXB09MT/v7+OHXqFNLT07Fu3Tr069dPpv2mTp2K8+fPY9y4cejTpw/8/PyQkZEBFxcXZGVlwdfXF7169YKXlxciIyMlBRy+vr7w8fHBtGnTAAA//fQTTp8+jezsbCxduhRjxowBAIwZMwbh4eEoKChAgwYN8Ntvv8Ha2vqdcZ84cQLz5s2DtrY2+vTpo9DPuygXAfgAlvn5+RXObycvuZKma9euoX79+lJBbt68GWKxGH5+fkhJScGxY8dw6NAhTJw4UWHBEkIIIYqQUFCAWCUmTe+SlpaGKVOm4K+//kL9+vXx5s0btGzZEu3btwcApKeno0WLFli2bBnOnDkDf39/9OvXT6b93N3d8f333wMAWrdujenTp8PPzw9PnjyBl5cXfH19YWNjgx49emDPnj2YMmUKXr9+jcDAQGzdulUSo0AgwN27dxEREQFvb2906NABjo6OWLt2LaysrAAAq1evxjfffIPNmzdXGHdiYiL8/Pxw7do1uLm5YevWrUhOTi7zs5F3wt7g4GBMnToVz549w7Rp0zBw4EA5/mcqJlfSlJCQgC5dukiev3nzBmFhYRg5cqRkorxXr17h6tWrlDQRQghRO9Y6Oio9fnBwMCIiItC3b1+p9eHh4XBycoKenh6GDBkCgE92++LFC5n209bWxtixYwEAGRkZCA0Nxbhx4wAArq6u6Nixo2Qff39/TJ48GVOmTMG2bdswevRoGBoaSl6fNGkSAMDJyQmdOnXC1atX4ejoiH379mH37t3Iy8tDXl4eLC0tJfuUF/eNGzfQokULuLm5AQAmTpyIWbNmlfnZFE3Y+77at2+PBw8eICkpCUOHDsW1a9fQqVOn9z5OReRKmnJycqRKme7duweBQCDJdAGgcePGePLkSeUjJIQQQhTsXVVnysYYg7u7O4KDg0u9FhUVBV1dXUn1kqamJkQikUz76evrVzglSskqqzZt2kBfXx+XLl3C1q1bERgYWGHMAoEAQUFBWLduHa5fv466devixIkTWLJkiWSb8uKuKI63yVvSVMTKygr9+vXDoUOHFJ40ydV7zszMDAkJCZLnISEh0NbWlmSQAFBQUKCU+kRCCCGkumvfvj0iIyOlEpXQ0FAUvKPK8H32MzY2hoeHB/bs2QOAJyNBQUFS2/j7+2PcuHFwdXVFkyZNpF4rSk6ioqJw7do1+Pj4IDU1FUZGRrCwsEBBQQG2bNki0/tt164d7t+/j7CwMABAQEBAue+1qKSprKW8hCksLAxisRgAkJmZidOnT6NFixYyxfY+5Cppatq0KYKCghAcHAwdHR1cunQJXl5e0ClRHBkfHw8LCwuFBarOAgMDERgYiKysLFWHQgghpBowMzPD6dOn8eWXX+KLL75AYWEh7O3tcezYMYXu9/vvv2PChAn48ccf0ahRI7Ru3RqmpqaS14cNG4Zp06Zh5syZpfYViUTw8vJCdnY21q1bB0dHR9ja2mLPnj1wcXGBhYUFevTogdjY2He+XysrKwQEBGDw4MHQ0dFBnz59FJojHDhwAAcOHIC2tjZEIhGGDRsmqV5UJAGTYyCD8PBwzJgxA0KhkB9EIMC6devQvHlzALyUadCgQbVu/Kbw8HBMnjwZ27Ztg4uLi6rDIYQQAt6bKjIyEg0bNoSenp6qw6lSWVlZMDAwgEAgQGRkJNq1a4eQkBA0aNAAAHD79m34+voiLCyswmq9mqKy3wW5SppcXFywefNmnD17FgDQtWtXqaq5Z8+ewcvLCz169JDn8IQQQghRgODgYHz11VcAeMnRmjVrJAnTpEmTcO7cOWzfvr1WJEyKIFdJEykblTQRQoj6qc0lTURaZb8LlFoSQgghhMiAkiZCCCGEEBlQ0kQIIYQQIgNKmgghhBBCZEBJEyGEEEKIDChpIoQQQogUgUCAtLQ0pZ7D0tISUVFRCj1mbm4u3Nzc4OnpqdDjFqGkiRBCCKmBigagrk3mzZuHDh06KO34cg1uSQghhFRnt71voyCh4nneKkPHWgfetyueFDgkJATz5s1DRkYGRCIRFi5ciOHDhyMqKgqenp7w9/fHqVOnkJ6ejnXr1qFfv34y7Td16lScP38e48aNQ58+feDn54eMjAy4uLggKysLvr6+6NWrF7y8vBAZGQl9fX0AgK+vL3x8fDBt2jQAwE8//YTTp08jOzsbS5cuxZgxYwAAY8aMQXh4OAoKCtCgQQP89ttvsLa2fmfcJ06cwLx586CtrY0+ffoo/DMPDAxEbGwsZs2ahZCQEIUfH3jPpCktLQ07d+5EaGgoNDU10aZNG4wePRrGxsaltt2xYwd+//13XLp0SWHBEkIIIYpQkFCAgljlJU3vkpaWhilTpuCvv/5C/fr18ebNG7Rs2RLt27cHAKSnp6NFixZYtmwZzpw5A39/f/Tr10+m/dzd3fH9998DAFq3bo3p06fDz88PT548gZeXF3x9fWFjY4MePXpgz549mDJlCl6/fo3AwEBs3bpVEqNAIMDdu3cREREBb29vdOjQAY6Ojli7di2srKwAAKtXr8Y333yDzZs3Vxh3YmIi/Pz8cO3aNbi5uWHr1q1ITk4u87MJDw/HyJEjy3zNy8urzEl709LSMHfuXJw5cwaPHz+W83/l3WROmrKysjBt2jTEx8ejaBDx58+f48yZM1i6dGmZ9Yc02DghhBB1pGOt8+6NlHj84OBgREREoG/fvlLrw8PD4eTkBD09PQwZMgQA0K5dO7x48UKm/bS1tTF27FgAQEZGBkJDQzFu3DgAgKurKzp27CjZx9/fH5MnT8aUKVOwbds2jB49GoaGhpLXiya8dXJyQqdOnXD16lU4Ojpi37592L17N/Ly8pCXlwdLS0vJPuXFfePGDbRo0UIy5drEiRMxa9asMj8bFxcXhIaGVvj5vW3mzJlYuHAh6tatqx5J0549exAXF4eBAwfik08+gZaWFk6fPo1du3bhq6++wnfffYcPPvhAaYESQgghivKuqjNlY4zB3d0dwcHBpV6LioqCrq4uBAIBAEBTUxMikUim/fT19SucR67omADQpk0b6Ovr49KlS9i6dSsCAwMrjFkgECAoKAjr1q3D9evXUbduXZw4cQJLliyRbFNe3BXF8TZ5SpqCgoIQFBSEL7/8Enl5eUhJSYGLiwvCw8MrfE/vS+aG4EFBQWjSpAk+//xzWFhYwMTEBL6+vli/fj2MjIywePHiMv8TCSGEECKtffv2iIyMlEpUQkNDUVBQcZXh++xnbGwMDw8P7NmzBwBPRoKCgqS28ff3x7hx4+Dq6oomTZpIvVaUnERFReHatWvw8fFBamoqjIyMYGFhgYKCAmzZskWm99uuXTvcv38fYWFhAICAgIBy32tRSVNZS1kJU1GMRcv+/fvh5uam8IQJeI+kKSEhocwquMaNG2P9+vUwMzPDkiVLSv2HEEIIIUSamZkZTp8+jZUrV8LDwwNubm6YP38+xGKxQvf7/fffsWnTJjRr1gzz5s1D69atYWpqKnl92LBhyMrKwsyZM0vtKxKJ4OXlhV69emHdunVwdHREnz594OLiAhcXF/j4+Mjctd/KygoBAQEYPHgwPDw88OzZM1hYWMi0rzoRMBkbHn300Ufo3bt3mR8sAMTFxcHf3x+pqalYunQpnj9/jl27duHy5cuKjFethYeHY/Lkydi2bRtcXFxUHQ4hhBBUfmb76iwrKwsGBgYQCASIjIxEu3btEBISggYNGgAAbt++DV9fX4SFhVVYrVdTVPa7IPMnZG1tjWfPnpX7uo2NDX755ReYmZnhm2++UVp3P0IIIYTIJjg4GJ6envDw8MBHH32ENWvWSBKmSZMmYciQIVi/fn2tSJgUQeaG4B4eHjhy5AhSUlJgbm5e5jZFiZO/vz8ePXpUYUMvQgghhChXr1690KtXrzJf2759exVHU/3JnFp27twZxsbGOHv2bIXbFSVO9erVq3RwhBBCiKK8q70QqfkqOxSSzCVNzZs3x7Fjx2Ta1sbGBgcPHpQ3JkIIIURhdHR0oKGhgbi4OFhZWUFHR4dqQmohxhiSkpIgEAigra0t1zFoGhVCCCE1moaGBho2bIj4+HjExcWpOhyiQgKBAHZ2dtDU1JRrf4UkTdeuXcM///yD+fPnK+JwhBBCiELp6OjA3t4eQqGw3AEXSc2nra0td8IEKChpKppOhZImQggh6qqoWkbeqhlCqHqOEEKqicJC4PhxYNs2ICoKaN4caNuWL61aAQYGqo6QEOXKywNUOdQWJU2EEKLmYmJ4orRtGxAfX7z+6VPgzz/5Y01NoFmz4iSqbVugaVO+npDqLiwM+OUX4MAB4MkTQFUd9ClpIkqTmQmcOwcEBQGMAfr6QJ06fCl6LOu/NO4aqW0YAy5cADZt4qVLbzfD0dIChMLi5yIRcO8eX7Zu5euMjIDWrXkC1aYN/7d+/ap7DzUNY/zzjY3ln6OdHWBpSb9PysIYcP48sGYNcOZM8frNm4GlS1UTk0KSJi8vL0UchtQAL18CJ0/y5dIl4B1zT8pMR6f8hMrICLC1BeztgQYN+L/29nydjo5izq9IeXm8tKBoEYuLk8mKFq1acIuTng48fly8ZGcDJibFi7Gx9POS62vK55OaCuzaxZOlp0+lX9PUBAYOBKZNA7p04XffN28WLw8f8u9TkcxM4OJFvhRp0EC6NKpVK/63RMomFvPP9vBh4MgRXi1akrY2YGPDEyhbW76UfGxry1/X1VVJ+NVSTg6wZw8vWXr8WPo1Q0NAlaNFyDz3HHm32jj3nFgM3L5dnCjdu6fqiIoJBIC1tXQyVTKpatAAqFtXcX+A+fnFiVBcXPFS8nl8PJCSIt/xtbRkS65KLvr6/AfbwaF4MTZWzPutjJLJ0aNHfHn8mFdDyUtfv+xkqrwky9QUaNKEX+DUwe3bPFH64w8gN1f6tfr1gcmT+VJRvFlZwJ070olUbGzF59XUlG4bVVStV5tLT0Qi4No1XvV55Aj/260sK6vSCdXbj42NVZsQqFpsLLBhA7BlS+nfSUdHYPZsYMIE/jesKpQ0KVBtSZpycoDAQJ4knToFJCSUvV2DBsBHHwEffghYWPD9cnPf/9+KXqvst1dXl/9YlUykSj5u0ICXViUklJ0AlXycnFy5WKqKqSl/fyUTKQeH4nX16inuh1sZyZGi2dgUJwsffMBLXgwNq+bcubm8jcbGjUBZ03V27QpMn85Ll+Tt8BUby5OnW7f4vyEhvASvIsbGgLNz+Yl4RUm6LK+pY+e1wkJeOn74MHDsGJCUVHobTU2gWzde1ZmYyD/bmBj+ryL+/g0MeALl7Q2MHw907147ktdbt4C1a4FDh6SrnAHAxweYM4f/DahD+zy5k6a4uDgcPnwYL168wJs3byB8+52Cd+/cv39/pYOsLmpy0hQbyxOkkyd5O4u8vLK3a92aJ0oDBgAtWij3rokxXrqTng68esWrBov+Lfk4IaHyyZUi6OnxEgMbG77Ur88XLa3i5LBoycsrva68pbBQsXHq6hYnUGUlV3Z2pS96ikiOTE0Bd3e+uLnxf83NgYwMfvyi5e3nby8ZGbxaSl4aGqUbVLu6KvYH+9kz3i5jxw5eHVeSsTG/YH76KT+voolE/P+mZGnUo0fS1XrKpqUFNGwIeHhILw0aVG1JS14ebzPz55/AiROl/y8AftPUqxcwdCj/XStn6lXk5vIbqNhY6WSq5PP4+NJJQUUcHAA/P/59cHCQ6y2qLaGQl+KtXQtcvy79mrY2MGoU4O/Pb2LUiVxJ082bN7Fo0SIUFhZCS0sLpqam5Q4WVZumU6lJSRNjwN27xdVud+6UvV2dOkCPHvzH5MMP1bORaUEB/9EqL6l6+ZJfaOWlq1ucBJVMiN5+bGqqnAuCSFR+QpWVxd9ndDR/n9HRfHn1Sv5kSyAorvLT1+ftaiqbHLm786pURX0+IhFPnMpLqtLTecnA3bv8LvddSVbJBtVFi7X1+8UkFPIbj40b+YX6bV5evFRp9OiqHzogM1O6Wu/WLeD16/e7wCuCmRm/2SqZSLm7K7aLeXY2b1R8+DBw+nTZ//d16gB9+/JEqX9/xVVpi8W8hKpkQvV2cvXyJS9JL0kg4L+zEyfyEhdVdrmvrNRUYPt24Ndf+e9QSZaWvL3etGnqeS0B5Eya/Pz8EBsbiwULFqBz587QqA3lhzKo7klTXh5vMFpU7VbehdDGhv+QfPQRLz6uU6dq41SG8kqrXr7kyUVRAlRWQmRmVv3aIYhEvATu7WSq5JKVVblzVEVypAgiUekG1Q8evLvkxd6eV+cVJVEtW5b9txAfzy8SW7eW/pvS1QVGjuTJUps26vW5ADxpKi8hL1l9/r6vZWYC4eG8pPhdNDUBF5fSpVLv8z3KyOC/aX/+Cfz9d+k2YwBPjPv354lSnz6qG/OqoID/Bv/2G3D2bOnvobk5MGYMT6A8PFQTozzCw4F164CdO0snhc2b8yo4X1/1TwjlSpp69OiBXr16Ye7cucqIqdqqjkmTWAwcPMjbVZw7V/rLXMTLq7jazcurdtSz12aMAWlpZSdTRUlWYiLftrokR+8jO5uXvNy4IXuDai0tXkpS1DbK0pJfII4eLV1i4+TEq9/8/Ph2tZFQyHsHFg2TULSUHIeqIlZWpROppk2Le8ympPAqt8OHecleWT15zcz4b9rQoUDPnup3wY6J4T0pAwKAiIjSr7dqxRtG+/ryv0N1wxhv/7p2LfDXX9KvCQQ8SZ0zh7fdqy6/FXIlTSNGjED79u0xZ84cJYRUfVW3pIkxXgy6ZUvp13R1eYPHjz7iX+wGDao+PqLeiqr/LC2rzw9eZRQ1qC5KpG7fLv8moywaGvxvado03kaGbjzKlpTEk6f794sTqcePZatO1tbmibupKfDPP2VXL1pZAYMH80Spa1f1bJT+NrEYuHKFJ0+HD5duU6qnx9/PhAl8KApVf7dyc/mQAWvXlh4ywMCA3yzMng00bqyS8CpFrqRp27ZtuHjxInbu3AldGnxCorolTfPnA99/X/y8bt3iarcePaquBxEh1ZFQyBtQl0yknjwp3emgbl1g0iRgypSa15i3qhQU8CrUt0ulyurhVhYbG55UDB0KdOyoHr2w5JWWxoelCAjgifvbnJx4UvLJJ1V3s1tYyBvBv3rFqz+3bCndm9DBAZg1i1crqmOpmKzkSpqEQiEWLVqEnJwcTJkyBc7OztCn0dGqVdK0ejWwYAF/LBDw+vNPPlH9HQoh1Vl6Or+Q3bzJqzE7d+YXanUcZLW6Y4y3y3s7kQoP5+3UHB2LE6W2bWvmb9u9ezx52rOn9LhGGhq8RHPiRF4FKe93UCTiVaavXvHqwlevipei5/Hx5fdQ7tixeMiAmjAArdxDDty6dQvLli1DdgUDfggEAly6dEnu4Kqb6pI0bdrEG56WfP7pp6qLhxBCFCUvj5dy2NjUjmpjgL/n48d5AnX+fOkExtISGDuWJ1DNmhWvF4t5L8myEqKidXFxpafweRctLd7BYc4cPuZUTSJX3nfhwgUsX74cYrEYNjY2sLCwKHfIAaJe9u0DZswofr56NSVMhJCaQ0+PDxBZm+jp8SRl5EjeSWPnTj4GWHQ0f/3NG96+aO1a3ni8Tp3ioQ4qO86btTUfu61oMGAnJ2D4cJ601kRyJU27du2CgYEBfvzxR7gqY/Q1ohQnTwLjxhXfhcybxxdCCCE1g4MDn8z266/5EDK//cZ7cBYN71DemHtlsbIqToZKJkZFj9V1fk9lkitpio+PR9++fSlh+k9gYCACAwORVdmBbZTo8mWe/RcVs06dCqxapdKQCCGEKImGBu/Q06MHb++0bx9PoEJD+evm5sVJ0NtJUVFCpG5DMKgDuZKmunXrQlyVY+6ruR49eqBHjx6SNk3qJiSE94grutMYPZpPilhb6vsJIaQ2MzcHZs7kS1IS7/ZPfbfkI1d/gv79+yM4OBgZlZl7glSJR4/46LZFhWAffsgHS6MmaIQQUvtYWVHCVBlylTR16dIFDx8+xPTp0zFu3Dg0atQIBuWMOV+vXr1KBUjkFxHBR7kt6orauTOfRbo6DOZGCCGEqBu5kqZRo0ZBIBCAMYaVK1eWu11tG3JAncTF8YSpaEoCb28+pUBNmCeOEEIIUQW5kqbevXtDQA1i1FZyMh/UrGiuIldXPkqrombqJoQQQmojuZKmhQsXKjoOoiCZmUDfvrwtE8BHxT1/vvZOCkoIIYQoSg0cWL72ysvjQ9WHhPDn1tZ8hunaNtAbIYQQogxyJU1RUVE4fPgw0tLSynw9NTUVhw8fRlRUVCVCI++jsJCPBlvUhMzMjJcwOTurNi5CCCGkppAradq7dy/27dsH43IayRgbG+OPP/7AH3/8UangiGzEYj6r9YkT/LmBAW/DVHKOIUIIIYRUjlxJ071799CqVStolDNttKamJlq1aoV79+5VKjjybowBs2YBe/fy57q6PHlq21a1cRFCCCE1jVxJU0pKCurWrVvhNlZWVkhOTpYrKCK7r78GNm7kjzU1gQMHgG7dVBsTIYQQUhPJlTTVqVMHqampFW6TmpoKndo2k18V+/FHYMWK4uc7d/KG4IQQQghRPLmSpsaNG+PatWvIzMws8/XMzExcu3YNTZo0qVRwpHzbtgFz5xY/X78eGDtWdfEQQgghNZ1cSdPgwYORkZGBOXPmILRoyuT/hIaGwt/fH5mZmRgyZIgiYiRvOXAAmDq1+Pny5cCMGaqLhxBCCKkN5Brc0sfHB8OHD8ehQ4cwZ84caGtrw9zcHCkpKSgsLARjDKNGjYKPj4+i4631/vqLlygxxp9/+SVAY40SQgghyidX0gQAM2fORMuWLXH06FGEhYUhKSkJhoaGaNmyJQYPHowPPvhAkXESAFevAkOHAkIhfz5pEvDDDwDNaEMIIYQon9xJEwC0b98e7du3V1QspAJ37gD9+/NRvwFgxAhg82ZKmAghhJCqQtOoVANPngB9+vB55QA+t9zu3XyIAUIIIYRUDUqa1FxUFNCzJ/DmDX/esSNw+DBAozkQQgghVYuSJjW3eTMQG8sfe3kBp04B+vqqjYkQQgipasfCjiExO1GlMVDSpOZWrgSmTweaNgXOngVMTFQdESGEEFK1Xqa/xMjDI+G8zhnfB32vsjgq1RCcKJ+GBh+4Mi0NMDNTdTSEEHUQmRqJ6PRodHLoBA0B3fuSmm/p5aUoEBWgQFSAlNwUlcVBf23VgEBACRMhhItIjYDnFk903dUVQw8ORXZBtqpDIkSpHiU+wu/3fgcAmOqZYn7H+SqLhZImQgipJhhjmPX3LGTkZwDgbTw67eyEuMw4FUdGiPIsvLgQYiYGAMzvMB9mdVRXikBJEyGEVBPHwo7hr2d/Sa37N/5ftNnWBnfj76ooKkKU55+X/+BE+AkAgI2RDWa1naXSeORu03T79m0cOHAAYWFhyMrKAiua16MEgUCAS5cuVSpAQgghQFZBFvzP+Euer+i2Atv+3YaotCjEZsai446O+GPoHxjgMkCFURKiOIwxzL9QXBX3TedvoK+t2u7jciVNly9fxrJlyyAWi1GvXj04ODhAk0ZaJIQQpfn2yrd4lfEKANDbuTcWdFyASS0nYdD+Qbgecx05hTkYtH8Qfuz5Iz5v9zkENF0AqeZOPzuNoJdBAAAXCxf4efmpOCI5k6Zdu3ZBR0cHK1euRKtWrRQdEyGEkBIeJj7EmhtrAAC6mrpY3289BAIB6hrUxcVPLmLC8Qn44+EfYGD48vyXCE8Ox4Z+G6Ctqa3iyAmRj0gswoILCyTPV3RbAS0N1Xf4l6tN06tXr9C9e3dKmAghRMkYY5h+ejqEYj5T9/yO89HIvJHkdT0tPewdshdLOy+VrNv27zb03dsXqbmpVR4vIYqw98FePEx8CABoY9sGQ1yHqDgiTq6kydjYGLq6uoqOhRBCyFt239+Nay+vAQCczZzL7G4tEAjwTZdvsHfIXuho8jmWLkReQLvf2uFFyosqjbcme5PzBh0DOsLmZxvMOTMHYW/CVB1SjZQvzMeSS0skz1d3X6021c1yJU2dO3fGnTt3IBQKFR0PqWFEYhHiMuOQU5ij6lAIqXZSc1Px5bkvJc/X91sPPS29crf3be6LS59cgpW+FQAgPDkcbbe3xbXoa0qPtaYrEBVg2MFh+OfVP4jPiscvN3+B6wZXdNvVDYceHUKBqEDVIdYYm25vQnR6NADefq9rw64qjqiYgJXV7e0dcnNz8cUXX8Dc3ByzZs1CvXr1lBFbtRMeHo7Jkydj27ZtcHFxUXU4VSo5JxnhyeF4mvwUT5OfSh4/S36GfFE+AMBK3woOpg6wN7GHg4kDHEz+e2zKH5vXMVebuwlC1MH009Ox6fYmAMAwt2E4NPyQTPtFpkai/x/98TjpMQBAW0Mbvw34DR97fKy0WGsyxhg+PfUptv67tdxt6hnUw6SWkzCl1RTYm9hXYXQ1S0Z+BpzXOeNNDp+l/t8p/8KrvpeKoyomU9I0cuTIUuuEQiGSk5MBAIaGhjAwMCh9cIEA+/fvV0CY1UNNT5pyC3PxPOW5VFJU9FgRw9obaBtIkih74+JkqmidjZGNWjQEJKQq3Iq9hQ+2fwAGBgNtA4TNDIOdsZ3M+6fnpWPE4RE49+KcZN0in0X4tuu3NPXKe1p/az1m/c3HB9LV1MWxUcfwJOkJNt/ZjKfJT6W21RBooF/jfpjmPQ29nXtDU4N6lr+PJZeW4Lur3wEARjcbjX1D96k4ImkyJU0jRoyQ+wQHDx6Ue9/qpiYkTWImxsv0lzwZevNfYpTCH79MfwkG2QsmtTW00ci8EZzMnJCWl4bo9GjEZcZJRnZ9X5oCTdga2/JSqhKJlbOZM3wcfCRtOQip7kRiEdpsb4N/4/8FAPzU8yd80f6L9z6OUCzE7L9nS0qrAGCE+wjsHLgTdbTrKCzemiwwIhB99vSBiIkAALsH78bYFmMB8BKoi5EXsfnOZhwLOyZprF/E0dQRU1pOwcSWE1HXoG6Vx17dvM56Ded1zsguzIaWhhbCZoTB2dxZ1WFJkat6jpStOiZNuYW52BiyEddjriM8ORzPU54jT5j3XsdoYNwATSyaoIlFE7hYuPB/LV1gb2JfqmSoUFSI2MxYRKdFIzo9Gi/TX0o/To9+7/MDgKW+JcY2H4sJXhPQvF7z996fqJeI1AisuLoCsZmxaG3TGu0btMcHdh+odPqEqrTh1gbM/HsmAKB53ea4M+WO3MMHMMaw7uY6fH7uc8kNSxvbNjg+6jisDa0VFnNN9Cz5Gdpsb4O0vDQAwLwO87C6x+oyt43PjMf2f7dj679bEZMRI/WatoY2hroNxaetPkUnh07UDKEcM/+aiQ0hGwAAM1rPwPp+61UcUWmUNClQdUuaUnJT8NEfHyH4VfA7tzXRNYGLpYt0YmThgkbmjWCgU7pqVl6MMSTlJJWZTEWn8cfJuckVHqO1TWtM8JqA0c1Gw0TPRGGxKVJidiJOhJ/A2RdnoSHQgJOpE5zMnOBs7gwnMyc0MG5QK4v1xUyMDbc2YP6F+WV2HnCzckN7u/Zo34AvTSya1LgLUEJWApqub4r0/HQAwDW/a+ho37HSxz319BRGHR6F7EI+wa+9iT1OjT5FNxnlSMtLwwfbP0B4cjgAoH+T/jg28tg7/y6FYiH+evYXNt3ehLPPz5YqnXezcsOnrT7Fxx4fw1TPVFnhVzsvUl6g6YamEIqFMNA2wIvZL1DPUP3aS1c6aUpPT8fz58+RnZ0NAwMDNGrUCCYm6nmhUrbqlDRFp0Wjz94+Ul1mi6rT3i4xamLRBFb6VmpzccoqyMLL9JeSxOpy9GUcfXJU0uC8iJ6WHoa5DcMEzwno7NhZ5e04Xqa/xNEnR3E07CiuvbxWYTWlloYWHE0d4WzGkygnMyepx0a6RlUYedV4lvwME09MlHSvl4V5HXOeQP2XSLW2ba3yaRYq6+OjH2PP/T0AAD9PPwQMDFDYse8l3EP/P/pLSkIMdQxxYNgB9GvcT2HnqAmEYiH67+uPsy/OAgDcrdwRPDEYxrrG73WciNQIbL2zFb/d/U3SsLmIvrY+RjcbjWne09DKhsY89P3TF388/AMAsKTTEizrukzFEZVN7qQpPj4e69atw40bN6TmnRMIBGjXrh1mzZqF+vXrKyzQ6qC6JE33Eu6h796+iM+KB8B7ffw54k+0tWtbbRtap+SmYN+DfQi4G4C7CaUnLnUyc4Kfpx/Ge45/r8a0lRX2JgxHnxzFkbAjuB13W2HHtdK3kpRKOZkWl1A5mzmjvlF9lSeI70MkFuGXm79g0cVFUlWz072nY3bb2QhNCEXwq2AExwTjbvxdSduSsmgKNOFp7SkpiWrfoD0aGDdQm4T/XS5HXUbXXbx7tZmeGcJnhsPKwEqh54jPjMeA/QMk30cNgQbW9l6r8olQ1cnnZz+XjMBuUccCtybfgpOZk9zHyxfm488nf2LT7U2SaUFKam3TGp96f4pRzUZV+6RfHnfj76Ll1pYAeFOLF7NfvHeCWlXkSppiY2MxY8YMpKamws7ODs2bN4eZmRlSU1Px8OFDvHr1CmZmZti4cSNsbGyUEbdaqg5J08XIixh8YDAy8jMAAI3NG+Ps2LNoaNZQxZEpzt34uwi4G4C9D/YiNU96RGQNgQZ6OffCRK+J+KjJR9DVUuwgrYwx3E24iyNPjuDIkyN48uZJmds1sWiCIU2HYLDrYJjpmSEiNQIvUl9I/5vyQlKV8j70tPTQ0LQhnMyc0Mi8EYa6DoWPg09l35pShL0Jw4TjE3A95rpknZOZE34b8Bu6OHYptX12QTZux91G8KtgXI+5juBXwe+srrU1spVKojytPdWy00CBqACemz0l35kt/bdgSqspSjlXTmEOxh0dhz+f/ClZN6P1DKzts7ba3jgpSsDdAEw8MREAL/EN/DgQnR07K+z4DxMfYvPtzfj93u/ILMiUes1UzxSfeHyC2W1nVypJq2767OkjKdVb23st/D/wf8ceqiNX0vT111/j2rVr+Pzzz/HRRx9J3cUxxnDixAmsWbMGnTp1wrfffqvQgNWZuidN+x/ux7ij41AoLgQAtLVti1O+p2Cpb6niyJQjT5iHY2HHEHA3AIERgaXaFljUscDHLT6udONxkViE4FfBOPLkCI6GHZUMyvY2L2svDHEdgiGuQ+Bq6frO0o+i9l1FCVREagQi0oofx2bGyhxjR/uOWOSzCL2de6tFqYtQLMT/rv8PSy4tkVSrCiDArDazsLL7SpnbyTHG8CzlGS+J+m95lPSown30tPQkjct9m/uiRb0WlX4/irA6aLVkrq22tm0RPDFYqSWGYibG4ouLsSpolWRdn0Z9sH/ofrVtC6hsQS+D0G1XN8lvpDIT16yCLOx7sA+bbm9CaEKo1GvGusa4MfEGXK1clXJudXIp8hK6/d4NAO9tGDYjTOE3s4okV9LUr18/eHl5YcWKFeVus2DBAty7dw9//fVXpQKsTtQ5aVpzfQ0+P/e55Hn/Jv2xf+h+hTbiVmfRadHYGboTO0J3lJnUeNt4Y6LXRIxqNkqmxpkFogJcjLyII0+O4Hj4cSRmJ5baRgABOth3wJCmQzCo6SCFl+blFuYiKi2qzFKqiNSIMnshtqrfCot8FmFg04Eqq8J7lPgIfsf9EBIXIlnX2LwxAgYGKKTBc1peGm7G3JRU6d2IuYGsgqwyt9XS0MKOgTskXchVJTotGq4bXJErzIWGQAO3J9+usgH9dobuxJSTUySJgruVO075noKjqWOVnF9dRKdFo/W21kjKSQIAzGozC+v6rlP6eRljuBV7C5tub8KBRwckf7c+9j64PP5ytapqf1+MMbTd3lbyW/D7oN/VfgBWuZKmPn36YOjQoZg8eXK522zbtg1//vknzpw5U6kAqxN1TJrETIyvzn2F/934n2TdJK9J2NR/U60shhczMS5GXkTA3QAceXLkvRqPZxdk48zzMzgadhSnnp6S9G4qSUtDC90bdscQ1yEY4DJAZV26xUyMhKwEBEYEYnXQ6lLVhO5W7ljosxAj3EdU2fdAKBbih39+wLIryyRTTgggwOftPse3Xb9VWlsOkViEh4kPJUlU8KtgRKRGSG2zsttKzO84X2WlcIP2D8Lx8OMAgNltZuOXvr9U6fmvRF3BkINDJIPU1jWoi92Dd6OtbdtaUeqUVZCFDgEdcP/1fQBAD6ce+HvM31X+G5mck4y229viRSqfL/C3Ab9hgteEKo2hKh1+fBjDDw0HwIfWuDv1rtr3GpYraZo9ezaMjIwqLGlauHAhsrOz8csvVfvHr0rqljTlC/Phd9xP0iMBAJZ2XoqlnZeqRRWNqqXmpvLG46EBkkEESypqPN7AuAGOhR/Dmednyiy9qaNVB30b98XgpoPRv0l/tetGLGZiHH1yFCuurSjVSL5oAthxHuOU2s7n/uv78DvuJ/U5N7VsioABAWjXoJ3Szlue11mv8c3lb7D5zmbJumne0/Br31+r/Ef7ZPhJDNg/AABgbWiNsBlhKklUniU/Q/8/+pca4dpIxwj2JvZSSwPjBpLHtsa2atlGTFZiJsbQg0NxLOwYAF7qeXPSTZWNCXbuxTn03tMbAO8dGjYjTOGdAdSBUCyE+0Z3yfft1OhT+LDJhyqO6t3kSpoePHiAzz77DHPmzEH//v1LvX7ixAmsW7cOa9asQfPmtWcMEHVKmjLyMzD4wGBcjLwIgDeA3vzhZkxuVX7pYG0WmhCKgLsB2HN/T6nG42Ux0TXBAJcBGNx0MHo36l0terwwxvD387+x4tqKUmNzNTBugK/af4VJLScpdKToQlEhVgWtwvKryyXVPxoCDXzV/it80+WbCiefVTbGGL7/53tJOyIAGOAyAH8M/aPK/j9zCnPgvtEdUWlRAIB9Q/ZhdPPRVXLusqTkpmDYwWG4FHVJ5n0EEMDa0LrcpMrexB6W+pZqe6O2+OJirLjGCwBMdE1wY9INNLVsqtKYRv85Gvsf8inIPvH4BDsH7VRpPMqw9c5WTD01FQCvirwy/orafkdKkitp2rlzJx49eoSQkBBJ7zlzc3OkpKTgwYMHiImJQevWreHu7i59MoEAn3zyicKCVzfqkjTFZcah395+uPf6HgBeEnJg2AF85PKRymKqLvKEeTgedhwBoQE4/+K8VOPxegb1MKjpIAxxHYIujl2q7d01YwxXoq9g+dXluBB5Qeq1ugZ18UW7LzDNe1qlx4K6G38Xfsf9JN9DgFcL7hi4A61tW1fq2Iq0+95uTDgxQTIFRlvbtjg5+mSV3N0vurAIK4NWAgC6NeyGwI8DVX7hKBAVYPu/2xESFyIZD+1V+qtSVdnvQ09Lr1Qi1b9Jf3jbeCsw8vf3x4M/4HvEFwBP5k/7nkafRn1UGhNQeoDTS59cKrM3aXWVU5iDRusaSYa9CZ4QrJISZ3nIlTR17ixf90uBQIDLly/LtW91oA5JU9ibMPTZ00fS2NmijgVOjj5Zbb6Q6uRl+kvsf7gfWQVZ6O3cGx/YfaD29e3v62bMTay4tgInn56UWm+mZ4bZbWdjdtvZMK9j/l7HLBAVYPnV5VgVtEqSiGgKNLGg4wIs7rRYLXvGBEYEYsiBIZIu4I3MG+HMmDNKnfcq7E0YWmxqgUJxIbQ1tHF/2n2Vl3CUp+RI/UVJ1Mv0l3iZUfy86AL4Pka6j8Sq7qtUMuRJSGwIOu3sJKlyX9N7DeZ8MKfK4yjP5tubMe30NAB8iJL7n95Xy78deZTsKTrQZSCOjTqm2oDeg1xJU2hoqNwn9PT0lHtfdafqpCn4VTA++uMjSWNOR1NHnBlzBi6Wqm9fRdTbvYR7WBm0EoceHZIqXTPUMcR07+n4vN3nMk1pcDvuNvyO++Fh4kPJuhb1WmDHwB1oWb+lUmJXlHsJ99BvXz/EZcYB4AOInvY9rZRSMcYYeuzuIak+X+SzCMu7LVf4eapSvjAfsZmx0knVf4nVq/RXiE6PLrMXo46mDma3mY2FPgurrB1RXGYcWm9rLfm/nuA5AdsHbFd5KV9JYiZGh4AOuBFzAwCwrMsyLOm8RMVRVV5KbgqcfnFCen46NAQaeDDtAdys3FQdlsxo7jkFUmXSdCL8BEYeHim5a/K09sRfvn+hvlHtGpWdVE74m3Cs/mc1dt/bLTXytp6WHiZ5TcJXHb6CvYl9qf3yhHn49sq3+OGfHyT7aWloYbHPYizwWVBtqjJfpr9E37198TjpMQA+1cWBYQfQv0nptpuVUbJayNHUEY+mP6oW7eIqgzGG9Px0vEx/iStRV/Dd1e8k3fsB3uh5SaclmNZ6mlK/L7mFuei8s7Okm3tH+44I/DhQLUtx7r++j5ZbWkLERNDV1MX9affRxKKJqsOqlLnn5+LH4B8BKH6aoKpQcweAqEW23N6CwQcGSxKmHk49cGX8FUqYyHtzsXTBjoE78Hz2c0zzngZdTX4hyRPmYX3IejRa1wiTTkzC85Tnkn1uxtxEyy0tsSpolSRh8rL2wu3Jt7G0y9JqkzABfBLbIL8gdHbgTRByCnMwcP9AbL2zVWHnSM9Llxoz7de+v9b4hAngzTNM9UzRol4LzGo7C89nP8fCjgslnQFSclMw5+wcuG1ww5+P/4Qy7ucZY5h4YqIkYXIwccCfI/5Uy4QJ4KW0n7fj35V8UT6mnZ6mlM+lqsRkxODXW78CAHQ1dbGsi3rOL1cRmZKmR48qHmH3XXJzcxEZGVmpY5DSGGNYcmkJPj39qWTyV9/mvjjte1pt5+0h1YOjqSM2frgREf4R+PyDzyUX9UJxIX67+xtc1rvA909ffHbmM7QPaC8ZB0pbQxvLuy7HzUk34WHtocq3IDezOmY4O/YsRrqPBMCrSaaemoqvL36tkAvW15e+RkJWAgDenkPRpVjVhbGuMVZ0X4HwmeH4uEXxgIYvUl9g2KFh6Lijo6RqSlFWB62WDMFioG2AE6NPoK5BXYWeQ9GWdl4KBxMHAHwarL0P9qo4Ivl9c/kbyc39zDYz0cCkgYojen8yVc917twZbdu2ha+v73u1SUpJScFff/2FgwcPYsiQIRg/fnwlQlV/VVk9JxQL8empT/Hb3d8k675q/xVW91hdo0eQJarxJucNfrnxC3699WuZg3oCfFT1HQN3oFndZlUcnXKImRhzz8/Fz9d/lqz7xOMTbPtoG7Q1teU65r/x/6L1ttYQMzHqaNXBkxlP4GDqoKiQq7V/4//FF+e+wOWoy1LrR7iPwKruqyo9F9vxsOMYdGCQ5PnRkUcxqOmgcrdXJ6eensJHf/Dez1b6VgibGfbeHTRU7UnSEzTb1AxiJoaxrjEiZkfAQt9C1WG9N5mursuXL0dsbCzmzJmDESNGYMOGDbh06RLi4uKQm5sLABCJREhLS8P9+/exf/9+fPnllxg2bBgCAgLQpUsXDBo0SJnvo1bJLsjGoP2DJAmTAAKs7b0WP/T8gRImohSW+pb4rtt3iJ4TjRXdVkjNV6irqYvV3Vfj+sTrNSZhAngX9J96/YS1vddCAN5AeNe9Xej/R39k5me+Y+/SxEyMaaenSUqFl3ReQglTCS3rt8TFcRdxcvRJqV6EBx8dRNP1TfHF2S+QmvvuMdTKcv/1fYw5MkbyfHnX5dUmYQL4tFdDXYcCAJJykjDv/DwVR/T+Fl1cJPnuz+swr1omTMB7NAQXCoU4e/Ysjh8/jvDwcKleBhoaGhCLxZLnjDHo6+ujZ8+eGD58OBo0qH5FcPKoipKmpOwk9P+jP27F3gLAe57sHrwbI9xHKOV8hJQluyAbAXcDEJ4cjhmtZ9T4iUUPPz6MsUfGSsYqkqejRcnB/FwtXRH6aWi1au9VlYRiIbbd2Yall5dKNRY30zPDks5LML31dJk/u6TsJLTe1loyDMuoZqOwb8g+teopJ4vYjFi4bnCVDItxze+aQuZqrAo3Ym6g3W982BtrQ2s8n/W82s57KlfvucjISNy5cwcPHjxAUlISMjIyoKurCxMTEzg5OcHT0xOtWrVCnTqKG1m4OlB20hSRGoE+e/rgWcozALxNwPFRx2vUoGeEqKugl0EY8McAyYjxDiYO+HvM3zIljEnZSXBZ7yLZt6YNVqgsGfkZ+D7oe/zvxv+kpjByNnPG6h6rMdR1aIXJT4GoAD1+74FrL68B4FXIV8dfVeio91Xp15u/YvaZ2QD4QLH/Tv1X7RNvxhi67uqKK9FXAACbPtyET70/VXFU8qMhBxRImUnTv/H/ot/efnid/RoAYGNkgzNjzqB5vdozTQ0hqvYk6Qn67u0rKbUw0zPDidEn3nnHP+H4BOwI3QEAGNtiLHYP3q30WGuSV+mvsPjSYvx+73ep9e3s2uHnXj+XOXgvYwyTT06WNGOob1gfIZNDYGtsWyUxK4NILMIHv32A23G3AfCJphf4LHjHXqr197O/0W9fPwB8Xr9H0x/J3SZQHVADmGrg3Itz6LyzsyRhcrV0xfWJ1ylhIqSKuVrxvz0vay8AQGpeKnr83gOHHx8ud5+gl0GShMlE1wQ/9vyxSmKtSRqYNMCuQbtwZ8oddHXsKll/PeY62ge0x8jDIxGRGiG1z7qb6yQJk56WHo6NOlatEyYA0NTQxJb+WyRtV7+9+m2p961OxEwsNbfj8m7Lq3XCBFDSpPb23t+LD/d9KBlJt0ODDgiaEFTmAIOEEOWrb1QfV8ZfQW9nPhN9vigfIw6NwNoba0ttWygqlEyFAQAruq2AtaF1VYVa47Ss3xIXxl2osLF4Sm4Kzr04JzUWVsCAALSxbaOKkBWuZf2WmN2GV9HlCfMw/fR0tR276Y8Hf0jmnmxVvxWGuQ1TcUSVR0mTmjPUMZT0OBjcdDDOf3y+2nU1JaSmMdI1wsnRJzHeczwAgIHhs7Of4YuzX0j+XgFe2lE0pUyr+q2qdVsOdSEQCNC/SX88mPYAmz7cBCt9PrFyobgQ/7vxPzRa1wjDDw2X/D8s7LgQo5uPVmXICvdt129hZ2wHADj74iwOPjqo4ohKKxAV4OtLX0ue15ThcKr/O6jhBjYdiI39NmK693QcGn6o2jZgJKSm0dbURsCAACzpVDwf2P9u/A+j/xyNPGEeYjJisPTyUgB8WJBNH26qcRM+q5KWhhY+9f4Uz2c/xyKfRZKRxVPzUpGRnwGADx76XbfvVBmmUhjpGmFdn3WS53POzkFaXprqAirDlttbEJnGB7Xu6dQTPZx6qDgixaCG4Aqk6gl7CSGqse3ONkw7PU0yjUwnh04w1jXGqaenAADTvKdh44cbVRlijVfUWHz3vd1gYGhetzmCJwbDUMdQ1aEpBWMMgw4MwonwEwCA6d7TseHDDSqOisvMz4TzOmfJcBF3ptxR+wm7ZUVJUwkFBQX43//+h9u3byMrKwuOjo6YOXMmmjWTbcA+SpoIqb1OPz2NEYdHIKcwR2q9lb4VwmeGw6yOmYoiq13uv76PW7G3MMJ9RI2fTupl+ku4bXBDdmE2BBDg+sTraGvXVtVhYdnlZfjmyjcAgJHuI7F/2H7VBqRAVD1XgkgkgrW1NTZs2IC//voLw4cPx4IFC5CTk/PunQkhtdqHTT7E5U8uS9rYFPmp10+UMFWhFvVaYFLLSTU+YQL4BNNFk94yMEw9NRVCsVClMSVmJ+Kn6z8B4FWoy7stV2k8iiZX0hQXFyfTdtevX5fn8CpTp04djB8/HvXq1YOGhga6d+8OLS0tvHr1StWhEUKqgda2rXF94nU0Nm8MgLflKDkZLSGK5v+BPzzq8cmx772+h19u/KLSeFZcXSHp7T255WQ0Mm+k0ngUTa6kaeLEiTh37ly5rxcWFuKXX37BggXyDbqVk5ODgIAAfPnll/jwww/RqVMn/P3332VuW1BQgE2bNmHw4MHo0aMHpk6dipCQELnO+7ZXr14hMzMTtrbVe2wPQkjVcTZ3Ruinobg47iKOjzpe7abrINWLloYWtn60VTI/4pLLSxCdFq2SWCJTI7Hp9iYAgL62PpZ0XvKOPaofuZImfX19rFy5EsuXLy9VdRUVFYWpU6fiyJEjaNGihVxBpaenY+fOnYiOjkajRhVnqatWrcLBgwfRs2dPzJ49GxoaGpg7dy7u378v17mL5OfnY/ny5RgzZgwMDWtmQ0JCiHLoa+uja8Ou1NuVVIk2tm0wzZuPB5ZTmINZf8+q8rGbMvMzMefsHBSKCwEAn33wWY0ck0xLnp127NiB1atX4/z583j06BG+/vpruLm54fjx49i4cSMKCwsxceJEfPyxfMXSFhYWOHr0KCwsLBAWFoYpU6aUud3jx49x4cIFTJs2DaNH83E4evfujfHjx2PTpk3YtGmTZNsZM2bgwYMHZR7n448/xuTJkyXPhUIhlixZAltbW4wfP16u90AIIYRUlZXdV+JI2BEkZCXg5NOTOBZ2DINdByv9vPnCfGy+vRkrrq2Q9JazqGOBr9p/pfRzq4JcSZOxsTFWrlyJo0ePYtOmTZg5cyZcXFzw5MkTWFtbY8mSJXBzc5M7KB0dHVhYWLxzuytXrkBTUxMDBgyQrNPV1cWHH36IrVu34vXr16hXrx4AYMMG2bpiisViLF++HAKBAAsXLqSidUIIIWrPRM8Ev/T5BSMPjwQAzPp7Fno49YCRrpFSzicSi7D7/m4svbwUL9NfStZraWhhfb/1MNEzUcp5Va1SvecGDx6MqVOnQiQS4fHjxzA2NsbGjRsrlTC9j2fPnsHOzg4GBgZS611d+azjz58/f+9j/vTTT0hOTsayZcugpVVxTvnmzRuEh4dLluho1dQjE0IIIcPdhqNPoz4AgNjMWKkRuRWFMYZjYcfQYnML+B33k0qYRjcbjScznmBUs1EKP6+6kKukCeDd87dv3479+/ejTp06aNSoER48eIA5c+Zg6dKlcHZ2VmScZUpOTi6zRKpo3Zs3b97reAkJCTh16hR0dHSkSq9++OEHeHh4lNr+xIkT2Llz5/sFTQghhCiBQCDAxn4b4b7RHbnCXPx661d83OJjtLJppZDjX4q8hAUXFuBm7E2p9f0a98OKbivgae2pkPOoM7mSpri4OHz77bd48uQJmjZtiqVLl8LGxgb79+/H9u3bMXXqVEyZMgUjRoxQdLxS8vPzoa1desZkHR0dyevvw9raGlevXpV5+wEDBqBDhw6S59HR0Vi+vGaNSUEIIaT6aGjWEEs6L8GCCwsgZmJMPTUVNyfdrNQUPnfi7mDhxYU490K613z7Bu2xqvsqdHLoVNmwqw25qucmTJiA8PBwjBkzBhs2bICNjQ0AYNSoUdi4cSOsra2xceNGfPWVchuC6erqorCwsNT6goICyevKZGlpCRcXF8ni4OCg1PMRQggh7/JFuy/gbuUOALgTfwcbQuSbXiX8TThGHBoB723eUglTs7rNcGLUCQT5BdWqhAmQM2kyMDDA//73P0yZMqVUu58mTZpg+/bt6Nu3r8LGSyqPhYUFkpOTS60vWmdpaanU8xNCCCHqRltTG1v6b5E8X3xxMWIyYmTePyYjBlNOToH7RnccenxIst7R1BG7B+9G6NRQfOTyUa3sKCX3kAPGxuUPUa+np4d58+bhgw8+kDswWTRq1Ah3795Fdna2VGPwx48fS14nhBBCapsO9h0wueVkbPt3GzILMuF/xh9/jvizwn2Sc5KxOmg1fr31K/JFxc1b6hnUw9edvsbkVpOho6mj7NDVmlwlTRUlTCV17txZnsPLrEuXLhCJRDhx4oRkXUFBAf766y+4ublJhhsghBBCapvVPVZL5kI88uQITj09VeZ2WQVZWH51OZzWOeGn6z9JEiZjXWMs77ocz2c/x4w2M2p9wgRUovecsv3555/IysqSVLX9888/SExMBAAMHToUhoaGcHNzQ9euXbF161akpaXB1tYWZ86cQUJCAubNm6fK8AkhhBCVMq9jjjW912Ds0bEAgBl/zUBXx64w0OE1MwWiAmy9sxXfXf0OidmJkv30tPQwq80szOswDxb67x4zsTaRK2nq3LmzTHWZAoEAly5dkucUOHDgABISEiTPr169KunZ1qtXL8nUJgsXLkS9evVw9uxZZGVlwcnJCd9//z08PT3lOi8hhBBSU/g298XOezsRGBGIl+kv8c3lb7C6x2rse7APSy4vQVRalGRbTYEmJnhNwJLOS2BnbKe6oNWYgMkxQc3s2bPLTJqysrIQExODvLw8NGrUCIaGhvjlF9XOuFyVwsPDMXnyZGzbtg0uLi6qDocQQgjBs+RnaL6pOfJF+dAUaMLF0gWPkx5LbTPCfQS+6/odmlg0UVGU1YNcJU3r1q0r97W8vDxs2bIFN2/exM8//yx3YIQQQgipvMYWjbHIZxGWXF4CERNJJUy9nHthZbeVChsAs6ar1DQqZdHT04O/vz8MDQ2lJswlhBBCiGrM7TAXTS2bSp63tW2Li+Mu4uzYs5QwvQelNQRv0aIFzp079+4Na4DAwEAEBgYiKytL1aEQQmqDqCggOhrw8QE0FH7vS2ogXS1dXBh3AZtvb0Zrm9bo36R/9RtniTFAxTErLWlKS0tDbm6usg6vVnr06IEePXpI2jQRQojShIcDrVsDmZlA//7A7t2AqamqoyLVgI2RDb7t+q2qw5APY8CgQUCLFsDixYCSZ/woj8JvUcRiMc6ePYuLFy/S4JKEEKJIhYXAxx/zhAkATp0C2rQBHj1SbVyEKNvevcCJE8Dy5fxmQUXkKmkaOXJkmetFIhHS0tIgFAqhpaWFqVOnVio4UgNkZgIXLwJ6ekDjxoC9PaCltsODEaLeVq4E3p6e6tkzoG1bYOdOYNgwlYRFiFIlJgL+/sXPZ81SWShyXb3KG6VAS0sLDRs2RNOmTTFkyBA0bNiwUsGRakwoBLZtA5YuBZKSitdraQENGwKNGvEkqlGj4scODoC2tupiJkSd3b4NfPcdf6ypCfzxB0+iQkOB7Gxg+HBg/nx+J64p/4z2hKgdf38gJYU/HjECGDBAZaHINU4TKRuN0wRe73zqFDB3LhAW9n77amoCjo5lJ1SOjoAODeFPaqncXKBly+K/qSVLgGXLgJwcYOpUYM+e4m179QL27QMsaCRnUgOcOgV89BF/bG4OPH4MqHCKNKonIYpz5w7w5ZfA5cvS60eM4KVLz5/zqoTnz/mP/dtEIuDFC76cPSv9moYGL4kqK6Fq2FBljQIJqRLz5xcnTN7evCEsAOjrA7//zhuGf/45/xs6d45vc/QoQDMjkOosIwOYNq34+Zo1Kk2YAEqaiCK8fAksWiR9twsAHTsCP/3E21uUxBiQkFCcQBUtRc/LGrpBLAYiI/ly/rz0azo6wKhR/MLi6qrY90aIqgUGAkUDCuvp8d5yJauxBQJg9mzAw4NX0SUl8SEJ2rcHtm8HfH1VEnaNlZMD5OXxUg+iXPPnAzEx/HGvXrwThIrJVD23evVquU8wf/58ufetbmpd9Vx6OrBqFbB2LZCfX7y+USPghx9499D3HVODMd7or6yE6tmz4l5DZREI+DkXLOB33oRUd2lpQPPmxReOX37hCVJ5Xr0Chg6Vbiz+2Wf875E6YFTegwdA795AfDzQuTPg58c/7//mQiUKdO0a0KkTf2xgADx8yJtpqJhMSVPnzp3lO7hAgMtvV9XUYLUmaSosBLZs4W0q3rwpXm9hwRt+T52qnPZHjPHzlUyonj3jVXmpqdLbdu/Ok6du3VQ+GBohcvv44+IS3O7dedXbuwazzMsDZswAAgKK13XpAhw4ANStq7RQa7ynT/lgoomJ0usNDXkJn58fL12n35vKy8vjJadPn/Lna9dK955TIZmSpoSEBLlPYG1tLfe+1U2NT5oYA44f5428nz0rXq+rC8yZw4tSVTHIXmYmsHUr8PPP/A6wpNatefI0cKD6jZwcF8erGjU0ACcnvlhb048u4Q4f5hdjADAx4aUcDRrIti9j/MZm9mx+kwPwff/8k0ph5REVxROmohK/OnV44/y3NWoEjB8PjBsn+/8VKW3hQl6LAfDmHf/8ozY9QmVKmoKCguDg4IAG9CUoU8lpVO7fv18zk6Zbt4AvvgCCgqTX+/rybs8ODqqJq6T8fGDXLl4V8eKF9GuursC8eTxeVQ5rEBkJHDnCl+vX+cWtpDp1eMN2Z+fiRMrJiT93dOSv1wb//AOsWMHv6lu25AM4tm0LuLmpzY+nUsXHA82aFXez3r0bGDv2/Y8THMzHbiq6mdDVBTZt4qUiRDaxsbyaKCKCP/fw4GPPhYcDO3YA+/eXbjYgEAA9evDPedCg2vN3qwihobwjg0jEf6vv3gXc3VUdVTEmg86dO7MdO3ZIno8YMYIdOnRIll1rlbCwMObj48PCwsJUHYriREQwNmoUY/zyXrx06sRYSIiqoytbYSFjf/zBWIsWpeO2t2fs118Zy86uungeP2Zs+XLGvLxKx/O+i40NYx07MjZuHGPLljG2ezdj//zDWHw8Y2Jx1b0nZYmNZWzs2PLfv6EhY126MDZ3LmN//snYq1eqjljxxGLG+vYtfs/DhlXu/zYujrH27aU/x+nTGcvPV1zMNVViImNNmxZ/bk2bMvb6tfQ22dn877Bbt7K/syYmjH36KWM3btSMv1FlKixkrGXL4s/um29UHVEpMiVN3bt3Z9u2bZM879Spk1QSRbgalTSlpDD25ZeM6ehI/wC4uDB2/Hj1+OMXixk7fZonGW//kFlZMbZiBWOpqco577//MrZoEWOuruUnAO7ujH39NWNr1jA2axZjH37If5R1deVLqPT1GWvWjLEBAxibM4exdesY++svxrKyFP8eFS0/n7Hvv+dJkTyJ5ODBjK1axdjFi4xlZKj63VTOli3F761ePcaSkip/zPx8niiV/Nw6dOAJFSlbSgpjnp7Fn1fDhozFxFS8T1QUv5lp2LDs76qbG2M//MBvckhpP/wg/fuohom9TEnT6NGj2ezZs5lQKGSM8aRp586dSg2sOqoRSVN+Pr+Im5tL/7FbWjK2YQNjBQWqjlA+164x1q9f6R8xY2PG5s1jLCGhcscXiXiJzxdflP+DCTDm7c3YypWMVfQdEYn4j/PVq4zt2METqzFjGGvXjrG6dd8/qbCwYOzbb/lFQB399RdjTZpIx2xuztjGjYylp/PP4ccfeYmLvf27369AwH9wJ0zgCcjdu/wOtjp4/pwxA4Pi93LqlGKPHxAgnZTXr89YcLBiz1ETZGQw1rZt8edka8tL3WUlEjF2+TJjn3zCb2be/o5qajLWvz9jhw+rZWKgEs+eMaanV/w3fP26qiMqk0xtmgICArBr1y7o6+vD2NgYCQkJMDQ0hOE7ulkKBALs379fYVWJ6q5aNwRnjDcSnT9fuj2Qnh7vsjxvHm+MWt3duwesXg0cPMjHfiqiqwtMmAB89RVvUyQLoRC4epW3Tzp6lDfsfptAAHTowLslDx6smLZfWVm8bdSLF7ydRdHy4gVvsFpQUPZ+RkbA9On8/1PFA8QB4L0fP/uMj/hbREOD97787rvyR7SOj+dt7G7dAm7e5N3rMzIqPpe+PtCqVXHbqLZteUNddWp0LxLxtjPBwfz5lCm8MbeihYQAQ4YUN2rW1gZ+/ZWfT50+D1XJyQH69QOuXOHP69blf+fy/qZnZgKHDvH2T2+3CQX493zMGN6A3MtL7rCrNcZ4T+ei3vb+/rzHnBqSKWkSCoXYv38/bty4gTdv3iAhIQH6+vrvTJoA4ODBgwoJtDpQ+6RJLOY9PoqWnBz+b3w8v0hdvy69/bhxfB6rmtgB4Plz3mB81y7pJENTExg9miePZTU+zM8HLlzgCebx40BycultNDX5D8CQIbwRaFX2IBWJePJWlERduMC7motExdvo6QGTJvHR21XRgD87m3ce+Okn6c++Y0c+iOP7XjjEYt4o9+ZNvty6Bdy/z5PaitSrxxtXr1ihHiPKr1rFew0BvOF/aKjyxv9JTARGjpQevX/iRGD9ev79qK3y8/nf7Jkz/LmZGf+MWrRQzPGfP+cTK+/aVZy0luThwRuPf/xx7Ro8c9s2nrQD/Dfp4UO1HftKrrnnOnfuDD8/P4wfP14JIVVfSkma4uP5iMBvJzpvL+WtL/laeSUQb+valV/QWrZUzHtQZ3FxwP/+B2zezC/mJQ0YwIcraN6c/4j++ScvFSlrgE1dXT5i7ZAhfD91+sGLiOAJ4o4d0t8BLS2eNMyfL/9d9PtgjCdwX37JeyQVsbEBfvyRJ6uKKunIzQX+/be4NOrmTV4KV5Y2bfj/rZ2dYs4tj9BQHkdhIS9tu3qVl1Aqk1DIhw9Zs6Z4XevW/LOoiTdK7yIU8kTyyBH+3MiI33QoY4gGkYgfe+dOfr6SgwMDPKEPCuJDGNR0cXG8V2x6On9+9iz/LVVX8tTpBQQEsLt37yqsjrCmUEqbpgsX5GsULM/i6srbUFSHRt6KlpzMG3C+3ZYLKN0YvmgxMGBs+HDG9u+vHo2PY2MZ+/zz0m0sBAL+PpT5N33vHu9xWfK82tq8PVlVfXavXzN28iRjixcz1quXdNueunUZu3KlauJ4W24ub8BfFMv8+VV7/r17GatTp/j8Vla8PU5tIhLxdoNFn0GdOrwtXVVITWVs0ybG2rSR/vto1YqxvLyqiUFVxGLGBg0qfs+ffKLqiN5JrqSJlE0pSVNw8PsnPxoa/IJuZcUbzrq48F4g7drxbrEffsgvkuPGMTZ1Ku9ptXt39Wksq0xZWbwhvK1t2Z+tqSn/3I4dYywnR9XRyicpiTcuNzUt/f769WMsKEhx50pOZmzGDP6dfPs8T58q7jzy+PdfxhwcimPS0mLsl1+q/qbhyy+LY/DwUE3D4Lt3GXN0lG6oPH8+/104d44nvQkJjP3XGahGEYsZmzJF+ibp7FnVxPLoEWONGxfHMmeOauKoKocOSd+4JCerOqJ3kqt6jpRNKdVziYm8EWGdOrwxa506pZe312trU4POyioo4NNXrF/Pp2jp1Ys35u7SRTlTxKhCRgavlvz559JTQ3TqxCdh7tlTvu+SSMQni120SLrdl7Mzb+DZv3+lQleY5GQ+2XNgYPG6sWN5A2x9feWf/8oVXh3OGP9e3bnDB7VUheRkXkX69oTYJWloAJaWvPrI2pr/W95iZaX+890xxgftLaqi1NTk1ZMDB6ouptBQ4IMPiqvsjh/nVf41TUoKr5Z7/Zo/P3AAGDFCtTHJQtVZW01SI4YcILVPTg5j69eX3Z3f25uxI0d49YWsgoJKD+Spr8+HWlDH6gahkFcTlozX05OxyEjlnjc9Xbqk68cflXs+WQiFvIRJEdX9AgEv7W7WjLHu3Rnz9WXss88YW72asZ07GYuOVvW75SWuJeP94w9VR8Rt2FAcl5mZenxWiubnV/weBwyoNs1CKGlSIEqaSLVWUMDHhXp7zKSi9m6//17xOF3ljeY9enT1GLn74EHpMZLMzXnVlLJMmFB8Lh8f9ar6evKEJxBr1zK2YAGP9cMPeRJtZ8fbo1U2qdLU5InUvXuqeY+rV0vH89tvqomjLGIxY0OHFsfWvn31HSOvLOfOFb83Y+N3DxqqRihpUiBKmkiNIBTyBKLkaMhFi6Mjb7Sam1u8fXmjeXt4VF1jWkV58ICxRo2k2wd+/73i74KPHSs+h6Hh+w2cqA7EYj5Y6pMnvNH4gQN8BPpFixibNIkP3Ni6NS+9lGWE+759+XGqqrTh11+lz79uXdWc932kpkq3M6vqDgLKkpUl/b42b1Z1RO+FkiYFoqSJ1ChiMR+tu0OH0he5+vUZ++knfvF/u2TKzIxXL1TXjgWpqbxUpeR7Gj6cscxMxRz/9WtebaWOJRzKIBYzlpbGWHg4T6IPHeI9GC0sSn+v2rZ9/+rg9xUQIH3OVauUd67KunmTd1AoivXMGVVHVHmffVb8fjp3Vu7/tRJQ0qQA58+fZ/PmzWMzZsygpInUPGIx747fu/e727B8+iljb96oOuLKE4kYW7JE+v25u1e+x59YzNjAgdWyLYfCZWXxEp6S7bqKFhcXxrZvV3wbuP37pXtyLlqk2OMrw88/F8drZcWrwaurmzeLP389PdX3oJUDJU0KRCVNpMYLCWFsyJDSF7kOHXgX/prm+HHe5qLofZqYVG4+uB07pC+AlZ3zsCYoKGBszx7Gmjcv/b2yseEN5NPTK3+eEyekS23mzKkeCatYLF3y2bWrerV/k1V+vvR4ZKtXqzoiucg05EDnzp0hkKPbsUAgwKVLl+Tq1Vcdqf00KoQoyuPHfBTvsDBg5kzA17fmDnMRHs7nDXzyhD8XCIBvvgEWL+Zd8GUVFcWn4ygaUf7oUT5lB+EY4yPvf/998bxvRUxM+LyJ/v7yzZsYGAh8+GHxiPiTJgFbt1af7+ybN4CnZ/FI+suWAUuWqDSk9/bdd8Uxe3nx0frVfUiKMsiUNM2ePbtU0pSZmYkXL15AQ0MDdevWhbm5OVJSUpCYmAixWAxnZ2cYGRnhl19+UVrw6oaSJkJqqMxMPqFq0RQbAB875/ffZZvIWizm8xEWJQPjx/NpbUjZbt7kydOxYzyZKqKryz+7L7+UfYqRoCCgd28+nRTAE/zff+djMlUn167xceLEYp6sX7jAn1cHjx/zpK+wkH/uISHVd3JieYqnXr9+zYYNG8a+/fZblvBW8XJCQgJbtmwZGz58OHv9+nWli8KqE6qeI6QGE4v5WFMCQXEVQ5MmfBTnd/npp+J9HBwUU91UGzx5woc7eHuIAw0NxkaMYOzOnYr3DwlhzMioeL/Bg6tvBwXGGFu+XLozRmKiqiN6N6GQz0ZRFPe8eaqOqFLeo2y52MaNG2FhYYGvv/4a9d4qKq1Xrx6WLFkCc3NzbNq0SSGJHSGEqJxAwCdw/vtvwMyMr3v6FGjblo8iXZ6HD4GFC4uPsWsXYGys/HhrgqZNgd9+AyIjeelS0cz3YjFw8CDQqhUftT4wULpECgAePOAlTEXVob17A3/8US2rhCTmzwd69OCP4+OBceP4Z6HONm4Erl/njxs3BpYuVW08lSRX0nTnzh20atWqwm1atmyJ27dvyxUUIYSord69gdu3efskAMjKAoYN44mRSCS9bUEB8PHHxW1pPvsM6Ny5auOtCWxteRu6V6+AlSuBunWLXwsM5IlT69Y8kRKJeDLbsyefqgPg0wIdOcKr96ozTU1g9+7idl1nzgA//aTamCoSHc1vNIps386n+qrG5EqaCgoKkFxyPqkyvHnzBgVFPxSEEFKTODkBwcF8rrYiq1bxxsZFF2qAN9gNDeWP3d2BFSuqNMwax9SUX4SjooBNm/hchkXu3AFGjgRcXHj7saI5zdq2BU6dqpq5BKuCtTWfF7OonfGiRcUlOeqEMeDTT4HsbP586lSevFZzciVNTZo0wYULF/Dw4cMyX3/w4AEuXryIpk2bVio4QghRWwYGwN69wP/+V9yo+OxZwNsbuHePJ1WrV/P12tq8hEBPT3Xx1iR16vALcng4n+i1Zcvi1168KO5l5uHBq1ONjFQTp7L06FFc5SsU8kmnU1NVG9Pb9u7lJWEAYGPDG/bXADL1nnvb/fv38dlnn0EsFqN9+/Zo3rw5zMzMkJqaivv37+P69evQ1NTEmjVr0Lx5c2XErZao9xwhtdSlS7yUIymJP69TBzA3L754r1hRfJEjiscY7022ejX/F+Dtoa5cka7Kq0mEQqBrV947EODDVxw5oh7DKCQmAq6uxaWux4/z3qY1gFxJE8DbNf3444+Ij4/nBxIIUHSo+vXr46uvvnpnu6eahpImQmqxV6+AIUN4e6eSPviAdxevzg2Qq5N//+XL0KHFDfZrqpgY3pW/qLnMunXArFkqDQkAr7bev58/HjGClwbWEHInTQDAGMP9+/fx/PlzZGdnw8DAAI0aNUKLFi3kGgyzuqOkiZBaLi+PD8JYNAaTvj6vqpN1TCFC3tfp00D//vyxjg6vFlZlgcWpU8BHH/HH5uZ8jCZ5BiRVU5W69REIBPDw8ICHh4ei4iGEkOpLT493ke/YkXdvnzOHEiaiXB9+CHzxBfDzz7yX5siRvKRNFcNaZGQA06YVP1+zpkYlTICcDcFLioqKwpUrV3D27FlFxEMIIdWbQABMmACcP88vaIQo28qVQJs2/PGLF7ynmvyVSPJ5/RqYPJlXGQJAr158uI0aRu6k6cmTJ5gwYQLGjx+PpUuXYtWqVZLXQkND0bNnTwQVNVAjhBBCiHLo6PA2REVT+uzfz0s8q8KDB/wmwd6ej5MF8J6lW7aoR6N0BZOrei4yMhJz5syBhoYGhg8fjpcvX+LmzZuS1z08PGBiYoLLly+jY8eOCgtWXQUGBiIwMBBZWVmqDoUQQkht1LAhT5SGDePPZ83inRCaNVP8ucRiPrzGmjW8RLUkLS1g82bA0VHx51UDcpU0BQQEAAC2bduGGTNmlBqPSSAQwN3dHWFhYZWPsBro0aMHVq9ejVnq0GuBEEJI7TR0KO+IAPBOCSNGFA8uqQi5ucC2bTwR69dPOmEyMQHmzgUiIoCxYxV3TjUjV9IUGhqKzp07w87Ortxt6tWr985RwwkhhBCiQD//zAf1BIAnTxQzBMHr13zOOHt7YMoUftwizs58qIOYGD6AZYMGlT+fGpMracrNzYXZO8a/yM/Ph1jdJxIkhBBCahI9Pd62yMCAP9+xg49GL4+S7ZW+/RZ486b4NR8f4OhRPir7rFnFkynXcHIlTVZWVoiIiKhwm6dPn8LGxkauoAghhBAipyZNeEPsItOm8eRGFmIxn3qmVy8+KfWOHcUTTmtqAr6+QEgIcPUqH4W8aAqhWkKupKl9+/YICQnB7bdHvv3PxYsX8fjxY/j4+FQqOEIIIYTIYcwYXkoE8HZNI0fydk7lkaW9UmQkn1PO21u5sasxuXrPffzxx7h8+TLmzp2LPn36IOW/+WWOHj2KR48e4cKFC7C2tsaIESMUGiwhhBBCZLRuHXDjBh+V+949Pgjmhg3S27x+DWzcyJeS1W8Ab6/k7w/4+dWa6rd3kXsalbi4OCxfvhyPHj0q9ZqbmxuWLFmC+vXrVzrA6oSmUSGEEKJWHj4EWrcuLmU6dIgPS/DwIR8yYM+e4uq3Ij4+wOef8+lQaln127vIPY2KjY0NNm7ciGfPnuHx48fIyMiAvr4+3Nzc4OrqqsgYCSGEECKPZs2AX3/lo3UDwMSJvL1TYKD0dpqavArvs89qdfXbu1R62u3GjRujcePGioiFEEIIIYo2cSJw8SKfDzEjQzphMjHh067MnFnjhwtQBLkago8cORKHDx+ucJsjR45g5MiRcgVFCCGEEAURCPgo3SUnj65l4yspilwlTQkJCe+cMiQrKwuvX7+WKyhCCCGEKJCxMXD5MrB9Ox/8ktoryaXS1XPlyc7Ohra2trIOTwghhJD3YWvLR/YmcpM5aQoNDZV6npCQUGodAIjFYiQmJuL8+fNoQMV9hBBCCKkhZE6a/P39IRAIAPAJec+cOYMzZ86UuS1jDAKBAFOnTlVMlIQQQgghKiZz0vTJJ59AIBCAMYZdu3bB09MTnp6epbbT0NCAsbExvLy84OjoqMBQCSGEEEJUR+akaULRcOwA7t27h759+6JPnz5KCYoQQgghRN3I1RD8l19+UXQchBBCCCFqTa5xmgghhBBCahu5hxx4/fo1fv/9d9y5cwdv3ryBUCgstY1AIMClS5cqFWB1EBgYiMDAwHeOXUUIIYSQ6kuupCkuLg5Tp05FVlYWHB0dUVhYiHr16kFHRwfx8fEQCoVo1KgRDGvJrMg9evRAjx49JBP2EkIIIaTmkat6bseOHcjOzsaaNWuwY8cOAEC/fv2wZ88eHDhwAB06dEBubi6+/fZbhQZLCCGEEKIqciVNd+7cwQcffCA15ABjDABgaWmJb775BgCwdevWSgdICCGEEKIO5Eqa0tPTYW9vL3muqamJvLw8yXMdHR14e3vj+vXrlY+Q4EBiIr6NipIkpoQQQgipenK1aTIxMZFKkkxMTJCQkCC1jaamJjWMVoCraWkY9+QJChhDdF4eNjdpAm0N6vRICCGEVDW5rr52dnaIjY2VPHd1dUVISAji4uIAAGlpabhy5QpsbGwUE2Ut9iA7GwX/lTAFJCTgowcPkFlGT0VCCCGEKJdcSVPbtm1x9+5dZGZmAgCGDx+OnJwc+Pn5YcqUKfD19UVKSgqGDh2q0GBroxm2tjjg5gad/+b9O5uaik6hoYjLz1dxZIQQQkjtIlfSNGjQIKxbtw6ampoAAC8vLyxduhT16tVDREQEzM3NMXv2bHz00UcKDba2GlG3LgI9PGCmxWtTQ7Oy8MG//+JRdraKIyOEEEJqDwGj1sUKUzRO07Zt2+Di4qLw44dlZ6PvgweI+q89mYmmJo42a4auZmYKPxchhBBCpMlV0uTv74/t27crOhbyDk0NDHDdywut/hs0NF0kQu/797Hv9WsVR0YIqUoPs7JwJCkJOSKRqkMhpFaRq/fckydP4O7uruhYiAysdXVx2dMTox4/xumUFBQyhjFPniA6Lw/z7e0h+K/tk7p4mpODPxITIWIMZlpaMC2xlHxurKUFDTWLnRB1IxSLsTw6Gt9FR0MMwFxLC5Pr18cMW1s00NNTdXiE1HhyJU329valhhggVcdQSwvHmjXDzGfPsCU+HgCwMDIS0Xl5WN+4MbTUYEiCLKEQy6Oj8b+YGBTKUAMsAGBSQVJVUcJlrq0N/f/a1xFSU0Xn5WHM48f4JyNDsi5FKMT3r17hp1evMNTKCv52dmhnbKx2N0+E1BRyJU1Dhw7F2rVrERUVBUdHRwWHRGShpaGBTU2awFFPDwsiIwEAW+LjEZOfj/1ubjDUknsu5kphjGF/YiK+fPECcQUFsu8HIE0oRJqcwynY6+rC3cCAL/r6cDcwgJuBAQzUOJnKEgoRnZ8PTQCW2tow09aGJl3sSBkOJiZiSng40v+rjtME0MvcHBdSU1HAGEQADiYl4WBSElobGcHfzg7DraygowY3UITUJHI1BA8NDcUff/yBe/fuYcCAAWjatCnMzc3L3LbkVCs1nbIbgpdn7+vX8AsLk5TotDI0xKnmzWGtq1tlMQDA/awszHr2DFfT0yXrdAQCfNmgATqZmiK1sFCSGKUJhUgt8bjk81ShEEIF9U9oqKcnlUi5GxjAVV8fdaogmRIxhrj8fETk5SEiN7fUv4mFhVLbC8CrWyy1tWGhrQ3LdywW2towpWrNGi1LKIT/8+cIKFGy76inh32urmhnYoLXBQXYHBeHjbGxpb5P9XV0MN3GBlNtbGClo1PVoRNSI8mVNHXu3BkCgUAyrUdFRcGXL1+WO7jqRlVJEwBcSk3F4IcPJXeijnp6+Lt5czQ1MFD6uVMLC7E0KgobYmMhLrG+v4UF1jg7o5G+/nsdjzGGXLG47MTqrcQrTShEXEEBHmdnS977uwgAOOnpoVlRydR/i0udOtB7z2QqQyhEZDlJUVRenmRgUmXRACpMsKy0tdHayAgu+vrVpspGzBhCs7JwITUVWSIR7PX0YK+rC4f//n3f/6Pq6t/MTIx+/BhPc3Ml60bXrYtNTZrA5K2S5HyxGAcSE7E2JgZ335qJQVcgwJh69eBvZ4cW/3UiIfLLFonwuqAADnp6VDKsAgVisUpLUOVKmgICAmT+Afbz83vvoKorVSZNAO9R0+/BA7z6b+BLMy0tnGjWDB1NTZVyPjFj2JGQgPkREXhT4i7XWU8PvzRujA8tLJRy3rIwxhCbn49HOTl4lJ1dvOTkIEvGZEoDQKM6daSTKX19GGpq8sSojOTozVt397Ky1dGBU506cNTTgwDAm8JCqSVDwb2ibHV00N3MDD3MzNDdzAw2VVwK+S4xeXk4n5qKc6mpCExNrfBzrautDQc9PUkS9fZjMy2tapMglkXMGNbExGBBRISk9NhAQwMbmjTBuHr1KnxvjDFcS0/HLzExOPbmjdRNDAB0NTWFv50d+ltY0AX/PeWIRPjx1Sv88PIlcsRiGGlqwtvICG2MjNDW2BhtjI1hq2Z/VzVJrkiElS9f4lBiIv719lZZO1Yap0mBVJ00AUBcfj4+fPAAof/dbeoKBPjd1RUj6tZV6HluZWRg5rNnCPlvVHgA0NfQwCIHB3xuZ6c2pQGMMbzMzy+VSD3OzkaO+O1LiuLoa2jAuU4dOOnpwemtfx309N5ZPVggFiP5rUTqTWFhmeuKluz3eD+u+vqSJKqLqWmpkgtlyxaJcCUtDedSUnAuNRVPcnIUdmxDTU2pkqm3kyobXV21TRgS8vPxSVgYzqWmStZ5Gxlhn6srGr9niW1Ubi7Wx8Zie3x8qVJYJz09zLK1xYT69WGsovaP1YWYMex9/RoLIiIQ+452mjY6OmhjbIy2RkZoY2wMbyMj+nwV4FxKCqY/fYoX/41RuMDeHiudnFQSCyVNCqQOSRMAZAqFGPbokdQP70/Ozvjczq7Sd+CJBQVYGBGB397qPTnCygo/OTtXm27P4v8mQH5YIpF6lJ2NJzk5yJMh+RAAsNPVLTMpcqpTB1ba2lVe2pErEkmSqmShEG8KCxGVl4dLqam4mp6O3HLelwaA1kZGklKo9iYm0FVw8beYMdzNypIkSf+kp5fbq9JYUxPdzMzQy8wMDXR18So/H9F5eYjOz8fLvDxE5+UhrqAA8v5waYL/3zno6cHHxAQT69dHwzp15H5vinI6ORl+YWFIKlHKNrdBA3zXsGGlqiOyhELsev0a62JipKr6AMBIUxN+1taYZWv73tXotUFQWho+e/ECt0vcHGoJBOhiaoon2dnvTKIEAJrq60uVRjU3MKAG+jKKz8/HZ8+f40BSkmSdlkCAhfb2WNawoUpioqRJgdQlaQKAQrEYU58+xY4Syc0sW1usadRIrrtsoViMTXFx+DoyUuqu1V1fH782blxjRiUXMYbI3Fw8ysmRJFR5YjEa6ulJlRw56OkpPLFQpnyxGDcyMhCYmooLqam4lZGB8ioA62howMfERFIS5WloKFdj81dFVW4pKQhMTUVyOT0jNQC0NTZGLzMz9DI3Rxsjo3cOm1EoFiPmv2TqZVFSVeLxy/x8mZLfIj3NzDClfn0MsLSs8gtankiEeRERWFdiEvT6Ojr4vWlT9Cing408xIzhTEoKfomJkbqhAvjFvb+FBfzt7NDN1LRaV28qQmRuLuZFROBQiYs1wD+jn5yd4fJfghmbn4+QjAzcyszEzYwMhGRmIvMdVeu6AgG8jIwkpVFtjIzgXKdOrf/MSxIxhs1xcVgYESHVVMHHxASbmjSBexW01S1PpRqCV3hggQD6+vqwt7eHj48Phg4dCt0aXt+rTkkTwKumvouOxtKoKMm6QZaW2Ovq+l71wVfT0jDz2TM8KDHXnbGmJr5t2BDTbWygXY2SB8KlC4W4kpaGC/+1IXpcQfWYhZYWuha1hzI1LfcHPksoxJX0dElpUlgFx3TS00Mvc3P0MjNDV1NTmGprK+R9FWGMIamwUDqR+q+0quhxWUmclbY2/KytMal+/feuDpPHk+xsjHr8GPdL/G19ZGGB31xclNrj7VF2NtbFxGD369elSiCbGRjA39YWw6ysYKSlpbZVmcqQIRRiZXQ01sTESHXiaG5ggP85O78ziRUzhvCcHEkSdSsjA/eys9/ZG9hcSwutS5RG+ZiY1NpqvX8zM/Hp06dSTT8stLTwo7Mzxltbqzy5lCtpmj17NrKzs/H8+XNoaGigXr16MDMzQ2pqKl6/fg2xWIxGjRpBJBIhLi4OBQUFaNiwIdavXw8DFWaIyqZuSVORnfHxmPz0qeQPt62REU42b/7OH+XY/Hx89eIF/khMlFrvZ22NVU5OqEfdmGuMuPx8XPwvgbqQloaY/zoTlMVBV1dSleegp4fL/7VNCs7IKLfKzaRElVtPc3M4q0F1WHx+PnYlJGBbfDwi/msrUVI3U1NMrl8fg62sFF6qyBjDtvh4zHn+XJK06AoE+LlRI0y3samyC0NyYSG2xcVhQ1xcuf/nehoaMNTUhIGGBgw0NWGgqcmfl1gnef7fOqnnRa+X2N9IU7NKhv2QlVAsxm8JCfg6MlKqerSutja+a9gQE+vXlzt5zBOJEJqVhZuZmbj1X6nU87eqSd9moqmJH52dMbF+/VozpEimUIglUVFYFxMj1YHBz9oaPzg5wVJNrjdyJU2JiYmYOXMmPD09MWnSJNQt0cg4KSkJ27dvx927d7FhwwYYGBhg48aNOHnyJEaPHo1PP/1UoW9AHQQGBiIwMBBZWVm4f/++2iVNAG9IN+zRI0nRsbOeHv5u0aLMu+l8sRhrY2LwXVSUVOPiVoaGWN+4MT4wMamyuEnVY4zhaW6upBTqYmqqzMM5FNHEf1Vu/5UmtZahyk1VxIzhUloatsbF4eibN6USPwstLYy3tsZkm/+3d+dxUZX7H8A/Z1ZgVpZxAEEQQcUVS7FUcE3Rm3a7pVlpmqVlZXrTbLNS0+yW3bIsf2qLV9v0Vta11K67Vw3FhSRBXFlc2Blg9mHm/P4YGBkZYBgGZga+79eLFzNnmfmeOQzzmec85znhtsMyLVFmMmF2djZ+LCmxTesdEIBve/VCXw8NCWCyWLC9pAQfXruG3+uMON6aegYEYFJwMCaFhOAuqdRjLVp7ysrwwuXL+LNOa5+QYfD3yEi80qVLq7T4lJpMtsN6JyorcbyqyuEZoyPkcmzo3r1NWj09hWVZ/FhSgvkXL9r1EYsPCMD/de+O5FY6+9tVLoWmpUuXorCwEOvWrWtwmWeeeQZKpRJvvvkmLBYLHn/8cVRXV+Prr79uUcHezFtbmmr9oVZjwtmztpG6Q/h8/KdPH9xdJwTtLi3F/EuX7DqMBvN4WBUTg1kt+LZFfJeZZXG6qgp7a0LU0YoKGBz824j198c9Na1JIwMD2/yMPHcoMhqxuaAAG27exEUHrQHJMhnmhIfjgZAQl84QPVhejmlZWXYfDs+Eh2N1t25e0/JyorISG2/exFWdDhqLBRqzGRqzGeqa3805S9NZIXw+7g0Oxn3BwbgnKKhNRvI/r9Fg0eXL+LWszG76FIUC78TEtOnJAWzNiSnHq6rwU0kJvqvTuu/H4WBpdDQWRkR47RcPV+XodHju4kW7feDH4eCNqCgsjIz0yg7zLoWmiRMnYtKkSZg9e3aDy2zYsAE7duzAjh07AADvv/8+du3ahb1797perZfz9tAEWDvnTsjIsH2r8uNw8E18PPqLxXjh0iX8XFpqW5YDYG54OJZ37YogN/c5Ib5LZzbjaEUF9qlUKDAacZdUinsCAxHjBYfc3IVlWRxSqbDh5k38UFxcb5DSQB4PjymVmB0e7lSnVJPFgmU5OXg7L8921l8Qj4cvevbEfSEhrbAFrad28FlbiKoJUnbBqolphUYjTlZV1RtHCrC28owJDMSkkBBMDA5GmJv7wpaaTFiWk4N1N27Y9TUaJJHgg9hYDPWClvT/lpXhqQsXkFPnsPEAsRif9+iBARKJBytzD5PFgn9eu4ZlOTl2ferGBwVhbVycV/8vcemroNFoRGmdD1dHSktLYazzbSogIABcL/km1ZFF+vnhfwkJeODcOexXqaC3WPDAuXMQMIxd68EwmQxr4+LQn0YQJrfx53IxJijIrWd2eRuGYTAiMBAjAgNRYjRiS2EhNty8aevcXl5djTXXr2PN9esYKpVidng4JisUDk+wuKLT4dGsLKTWOew1Si7H5vh4nxwMkWEYBHC5LR5csMRoxM6yMvxcUoLfyspsLVgGlsWvZWX4tawMTwFIlEgwKSQEk4KD0Uckcrm/l9FiwSfXr2N5bq7dNS4jhEKs6toVjyiVXtN/aGxQEDIGDsTrOTlYc+0aWABn1GoMOnUKCyMjsTQ62mtaJpvriEqFpy9cwLk6J4qECwRYExuLBxQKj3f0bopLbV9xcXHYt28f/vzzT4fzMzMzsX//fnTv3t027caNGw1en460LTmfj139+mG6UgnAerHc2sAUJhDgq/h4HE5IoMBECIAQgQB/j4xE5qBBOJyQgOlKJYR1/rEfrazEzPPnEX7sGOZdvIizdS5j8k1hIRJOnrQFJh7DYFXXrvhv//4+GZjcKUQgwGOhofihTx+UDB2KnX374qmwMITd1uH3RFUVlly9in4nT6Lb8eNYcPEi9peXw+TkYUKWZfFzSQn6pKXhhcuXbYEpgMPBsuhoZCcmYlpoqNcEplpiHg8fxMbi9zvuQJ+a1kwzgHfz89Hv5EkcvG3YCG9XajLhyfPnkZSebgtMHADPd+6MrMREPNipk9cHJqAFF+x94YUXwLIshgwZgr59+9rOnsvIyMCxY8fA4XDw/vvvIyEhAVqtFvfffz9GjhyJl19+uTW2wyv4wuG5uliWxetXr2JlXh54DIO/R0Tg9agoSHywLwohbanMZMJXhYXYcOOG3TfmWoMlEnQWCu06e3fz88M3vXohUSpty1J9jqWmD91/Skvxc0mJ3XAMdcm4XEwIDsZ9ISFICQpy2IcuvaoKCy9fxn6Vym76DKUSK2NifCa4Gi0W/CMvDytyc+0OFT8ZFob3YmLcPmSHO7Esi82FhVh0+bJdZ/eBEgn+r3t33OljhxtdHtzyxIkTWL16NQoLC60PVOcCvkqlEgsXLsTgwYMBAHq9HteuXUNISAjkXtYT3p18LTTVuqTVQszlItRH/oEQ4i1YlkVqZSU23LyJrUVFDY66/phSibVxcfSFxAU5Oh12lJbiP6WlOKhSORzzqHaU7vuCgzExJARChsGSq1fxRUGB3cjxyTIZ/hkb63Mf1LWyNBrMzs7G0TqHesMEAnwSF4f7FQoPVuZYlkaDuRcu4FBFhW2ahMvF2127Ym7nzj55YlGLRgS3WCw4e/YsLl++DI1GA5FIhG7duqFfv37geGGv99bmq6GJENJyKpMJXxcVYcONG7bWEQmXi//r3h2P1BwKJy2jMpmwu6wM/yktxc7S0gaHwhAwjF2LTIyfH97r1g33h4T4xCGgxlhYFutu3MDLV67YXYz8gZAQrI2L84ovvzqzGStzc/Fufr7dEB5TFAp8EBvrdRcMbw66jIobUWgihLAsi7SqKqRWVuK+kBBE+cj1GH2NyWLB4YoK/KekBD+XlCDXweCcUi4Xr0dFYV5EhE9d9sgZeXo95l64gJ11TteX83hY3a0bZnlw5Ozfai6uW3fA2Bg/P3wSF4eU4GCP1OROLQ5NOTk5yM3NhV6vx7hx49xVl0+i0EQIIW2PZVn8qdHg55IS/FxaikKjEfcGB2NZdHSrXo7G01iWxXdFRXj+0iW7/kKj5HJs6NGj1Ufet7AsLul0tpHOU2uuv1eLzzBYHBmJ16KifPZsv9u5fIA9KysL7733Hq5cuWKbVhua0tPT8eKLL+LNN9/EsGHDWl4lIYQQ0gCGYdBXLEZfsRhLoqM9XU6bYRgGDyuVuCcwEH+/fBlf1fQx3q9SoW9aGpZFR+PvbhwUs9BotAWk2gsUqxq4EPfwmovrxrezS6e5FJquXr2KBQsWgMPhYPLkycjLy8Px48dt8/v37w+ZTIaDBw9SaCKEEEJaUYhAgC3x8Xi0Uyc8deEC8gwG6CwWLL5yBVuLivBZjx5IaGbnd3V1NU6p1baQdKKyEnmNXJOyVnxAABZHRmKGF1xctzW4FJq++OILAMDGjRsRERGBL7/80i40MQyD3r174/z58+6pkhBCCCGNSgkOxrlBg/Da1av4+Pp1sABOqdUYeOoUFnfpgjeiohxe/sdkseCcRmNrQTpRVYVMjcbhiO11Kfl8DJZKkSiVIlEiwUCJBIFePPyBO7gUmtLT0zF8+HBEREQ0uIxSqcSJEydcLowQQgghzSPm8bAmLg4Pd+qEJ7OzcU6rhRnAqrw8/FBcjA09eiBSKLRrQTqtVjc4XEYtEYeDgRIJEqVSa1CSSBAhFLbL1qTGuBSadDodAgMDG13GYDDA0goXdiSEEEJI4+6SyXB64ECsysvDytxcmFgWF3Q6jEhPb3JdLoB+YjESa0JSokSCeJHIJ8dVcjeXQpNCobDrAO7IhQsXEB4e7lJRhBBCCGkZAYeDN6OjMVmhwJPZ2fi9zqCYdcX4+dnCUaJUigFicYuvLdheuRSahgwZgh9++AEnT57EwIED683fv38/MjMzMWPGjBYXSAghhBDX9RKJ8L8BA7Du+nV8V1QEGY9nC0mDJBKEtONhGdzNpdA0ffp0HDx4EIsXL0ZKSgrKagbX2r59O86dO4d9+/YhNDQUU6ZMcWuxhBBCCGk+LsPguYgIPNdIX2TSNJdCk1wux8cff4wVK1bg119/tU3/8MMPAQC9evXCG2+8AbFY7JYiCSGEEEI8zeXBLcPDw/Hpp5/i4sWLyMzMRGVlJQICAtCrVy/Ex8e7s0ZCCCGEEI9r8SW34+LiEBcX545aSAOqK6pRsKUAnZ/t3OFO7ySEEEK8hUtjqz/00EP4/vvvG13mxx9/xEMPPeRSUeSWwm8KkRqTikvzLqH4h2JPl0MIIYR0WC6FpoKCAqjV6kaXUavVKKy5Dg5xHS+Qh+oy67V9rr52FZZqGvuKEEII8QT3XMXPAY1GA347H069LQSlBEGWLAMA6C7oULCpwMMVEUIIIR2T032a0m8bRbSgoKDeNACwWCwoKirCnj17EBkZ2dL6OjyGYRCzKgZnhp4BAOQuy4XyUSW4/jTwGCGEENKWnA5N8+fPt3VCZhgGu3fvxu7dux0uy7IsGIbBU0895Z4qOzjZEBmCJwajdEcpDNcMuPHpDUQupEBKCCGEtCWnQ9OMGTPAMAxYlsW//vUvJCQkICEhod5yHA4HUqkUAwYMQHR0tBtL7di6ruyK0l9KARbIfTsXYU+GgSdr8cmPhBBCCHGS05+6s2bNst3+448/MH78eKSkpLRKUaQ+cV8xlNOUKNxSiOqyauSvzkfXt7p6uixCCCGkw3CpI/iaNWsoMHlA9LJoMHzrIdL8D/JhLDR6uCJCCCGk42jx8R2dTge1Wg2LxfGp8EqlsqVP4fX27t2LvXv3NjkMQ0v5d/VH+FPhuL72OiwaC3JX5iLuIxpYlBBCCGkLDMuyrCsr/vLLL9i6dSvy8/MbfnCGwYEDB1wuztdkZ2dj9uzZ2LhxI3r06NEqz2EsNCK1WyosGgsYPoPE7ET4d/VvlecihBBCyC0utTT99NNP+OCDD8DlctG/f38oFApwuXQKfFsQKAWI/HskclfkgjWxyHkzB/Gb6Vp/hBBCSGtzKTT9+9//hkwmwyeffEJjMXlA5KJIXP/0OqrLqlH4VSEiX4yEuK/Y02URQggh7ZpLHcELCwsxcuRICkwewpPxEPVqlPUOa728CiGEEEJal0uhKSgoqMGO36RthD8TDkFnAQCgdEcpKo5VeLgiQgghpH1zKTSlpKTg+PHj0Ol07q6HOInrz0X00mjb/SsvX4GLffoJIYQQ4gSXQtNjjz2Gnj174oUXXkB6ejq0Wq276yJOCJ0ZCv/u1jPnKv5XgbLdZR6uiBBCCGm/XOoIPmbMGADWa8wtWLCgweU62pADbY3D46Dryq7InJwJALjyyhUEjQsCw2E8XBkhhBDS/rgUmvr162e7eC/xLMUDCojvFEN9Sg3NHxoUbS2C8uH2P6AoIYQQ0tZcCk0fffSRu+sgLmIYBjGrYnB27FkAwNXXr0LxoAIcvktHXgkhhBDSAPpkbQcCxwRCPkoOANBf1uPm5zc9WxAhhBDSDlFoagdqW5tq5S7LhVlr9mBFhBBCSPvj1OG5d955BwAwZ84cBAUF2e474+WXX3atMtIs0kQpQv4WgpIfS2AsMOLaR9cQ9XKUp8sihBBC2g2nQtOuXbvAMAweffRRBAUFYdeuXU49OMMwFJraUNcVXVHyUwlgAfL/kY/wp8LBD+R7uixCCCGkXXAqNG3duhUAEBISYnefeBdRvAihM0JR8GUBqlXVyH833+6wHSGEEEJc51RoCg0NbfQ+8R7RS6NR+HUhWCOLa2uuofO8zhCGCz1dFiGEEOLzqCN4O+PXxQ+dn+0MALDoLMh9K9fDFRFCCCHtA4WmdqjLK13AlXABADc23oD2Il3mhhBCCGkpCk3tkEAhQOSiSOsdM5DzRo5H6yGEEELaAwpN7VTE3yPAV1jPnCv6rghV6VUerogQQgjxbRSa2imehIeo126N03T11aserIYQQgjxfRSa2rHwp8Mh7GI9c65sVxlUh1SeLYgQQgjxYRSa2jGOkIOuy7va7l955QpYlvVgRYQQQojvotDUzimnKRHQKwAAUPl7JUp3lHq4IkIIIcQ3UWhq5xgug64rb7U2XX3tKlgztTYRQgghzUWhqQMIuS8EksESAIDmTw0Kvyn0cEWEEEKI76HQ1AEwDIOYd25dgy7njRxYDBYPVkQIIYT4HgpNHUTgiEAEjgsEAOhz9Lix4YaHKyKEuMJisqBsTxkKNhdAnaEGa6HD7YS0Facu2Evah5i3Y3Dqt1MAgNy3chH6eCh4YvoTIMTbWYwWlO8rR/G/i1HyUwmqy6tt87gyLqR3SSEbKoNsiAySwRJ6XxPSSuid1YFI7pBAMUWB4m3FMBWbcO3Da4heEu3psgghDlgM1hal4u+LUfpzKapV1Q6XM1eYUf5bOcp/K7dO4ADi/mLIhsogHSqFbIgMfl382rByQtovCk0dTNe3uqL4h2LADOS/l4/wp8MhCBG0ynOxLAv9FT3UGWowDAOOPwccfw64AVzbbbv7/PZ7tNisNcOQb4A+Xw9DngH6PD0M+QYY8g1gzeyt1yDg1uthN82fC06A/evFDXA8jREwYBjG05vsFJZlYSwwQndZB/1lPXSXdNBdvvXDGljw5DzwAnnW33Vv15nGD+TXm8aVcH3mdahl1ptR/t+aFqX/lMBcaa63DFfMRfDEYIj6iVCVVoWKoxUwFZpuLWAB1GfUUJ9R4/ra6wAAYYTQFqBkQ2UQ9ReBw2u/7zdCWguFpg4moHsAwp4Iw80NN2GuNCPvnTzEro51y2MbbhpQlVaFyhOVqEqrQtXJKlSXOf527BAX9uHg9tt1A0TdwBXAufWBKueBJ+PZ3ef4c1r1w5M1szDctAaguoFIn2cNSIZ8A0wlpqYfyF0Y3HqdRBzwQ/gQhAogUApu/a65zVfyIVAKwJPzWu01slRbYMgz3ApDl2oCUs19i7bxkxLMajMM1wzNf2IOGg5XNdP9ov0QEB+AgB4B4AZwXdzCljHrzCjbXdOitKMU5ioHQUnCRfCkYHSa3AmB4wLB9btVK8uy0F/Vo+JoBSqPVaLiaAU0f2qAOl2dDNcMKN5ajOKtxQCsfx/SwVJIh1gP60nvloIv57f6tvoqi9GCytRKlO8vh2q/CqZiEwSdBRBGCCGMEMIv0s96O9J6nxfYeu8n4lkMS0NEu012djZmz56NjRs3okePHp4up0GG6wYcjz0Oi94CRshg8MXB8ItsXvO9SWVC1ckqVJ2osgaltEoYrxtbqeKWYfiMfai6/UfWyDw5DxaTxb516LZgZLxuBFvt228jRsDYhSq+suGgxZXWb8Ex68zQX9HbBaPa1iN9jt6l10cYIQRXzEV1RTWqy6th0bfiGZ8M4NfVGqBEvUR2v3lS93+3NGvNKNtVhqJ/F6H0l1JYNPW3jSvlIuS+ECgmKxA0NggcofMtQ9UV1ahMtQaoimMVqEytdPgcNgwQ0CvA1i9KOlQK/27+HfaDnzWzqDpTBdV+Fcr3laPiSEWT4b4uTgDHFqjqhqm6AYsXRMHKF1FociNfCU0AcPmly8h/Nx8AEPpEKHp+1rPBZc06M9Rn1LdakNKqoLuoa/I5+J34kAySQHKnBBw/Diw6Cyw6C8xas+PbOjMs2jq3dRZYtBbfDiRcQNhZCL8ufhB2qfkdKbS7zfAZ27bavQZas+NpdV+3JtYxq80wlZoAN+YNRngrYHGEHOiu6FwKzAyfgV9XP/h384d/N3/4dfODf2zN7a5+dq0pgPXQVbWq+tZP+W2/69w2lZvqTXP1NRB0FlgDVK8AiOKtvwPiA5p9WNusMaN0ZymK/12M0l9LHX4I8+Q8hPw1BIoHFQgcE9isoNQYS7UFmgyNtTXqaCUqjlXAkOdE6x3HOkAuw2Xsb3NrbnPq3G7OcjwGwi5CiPqIIOotgqiPCMIIocdCBMuy0GZprS1J+1RQHVQ12IcMgPX/WQtDPMef4zBUCSOFEPUSwa+rH4UqL0ShyY18KTSZykxIjUmFucIMcIBB5wZB1FMEi8kCzTmNNRydsLYgaf7UAPWPGNjhSriQDJRAMkgCaaIUkkESayBww5veUm1xGLJq75s1ZpgrbvtAdfRTUfPh6ca/eF4wzxZ+HAUjYZjQ+uHhQayZhanEBGOh0fpTcOu3qdBkN81UbHLr68MRcWxByPYTaw1IfpF+bfbasCwLc5XZLkiZSk3QXdRBk6WBNlMLbZYWZnUTf+h18BV8uyBV2zIlCBPY/u6r1dUo/aUUxd8Xo2xnGSw6B0EpqCYoTVYgcFQgOIK26Wukv6a3BaiKoxVQp6ubfJ+3Jq6Uaw1QNSEqoHcARH1EECgFrRIe9Ll6lO8rR/k+6yE3Y0HDwV/QWYDA0YEIHBUI+Sg5hBFCVFdUw3DNYP3Jv+13ze3m/D05ek55shzy4XLIkmUI6BlAIcoLUGhyI18KTQCQ+3Yurr52FQAg6icCV8yF+rS6yW9QjJCBOEEM6SBrOJIkShDQPcD6bdLLsRYWZrUTAavOhyu4cByMIoTgijzTD6a1WKotMJWYrGGqNlzVDVV1pptKrAGLr+DfaimqCUW1AYnfie8z/+hZloXhmgHaTC00mRpos2p+Z2rtTvFvClfGhSheBJ6cB9VBlcP3Ey+YB8X9CigmKyAfKfeKkyDMGjMqT1gP6VX+XmndvxZr6K79qXsf5prbljq3G1nO1TDOC+JZW6TqtEqJeovAD25eHyxjkdHWJ6l8Xzn0V/SNPqd8pNwalEYHwj+u+YcqWZaFudJsPfmjoXDVjGDFV/AhS5ZBnmwNUeK+Yo9/IWsNtV9wTCUmmIpN1i98xdb/N7XTQmeEQp4s90h9FJrcyNdCk1ljRmq3VPszb27HAUS9RdZwNEgC6SApRH1FbfZtmHgvS7UFrIFtd8HxdizLwlRkqhektFnaRlsnbsdX8BHyN+uhN/kIeYc7e41lb4Upi8FibeX7UwPNOY3ttyHX+Q7/glCBrTWqbpiq7YNWXVEN1SGV7ZCb5k9Ng4/FEXEgT7aGJPkoOcT9xW32JbBui5U+Xw9DrgGVx63htbF+VDw5D7JhMmuQGi6HeIDYK8L37SxGy63AUycI2YWhOtNMJSawxsZjSeyaWEQ8H9FGW2CPzp7rwLgiLmLejkH2E9m2aX4xfrbDa5JBEkjukLT7D0XiGg6P0yH+gzAMY+sIHzgy0G6eqdxUL0hpMjW2/kJ8JR+KvymgeFABWbKswwWluhjmVr8mjoADyR3W/y91VVdVW1v6/tTYBSrjzfrh1FhgbQFV7VPZTRdGCsEP5kN9Vt1gPzZGwEB6t9R2yE2SKPFY4ODJrCejiHqL7KZbTBaoT6uhOqyC6pAKFUcqrN0palSrrId+S38pBWANfrIhMtvhPGmi1G194upiWWtrfe3rX++n0L5VyNGwGS1lKm7Ds5FvQy1NbuRrLU21VEdUsGgtkNwpaXaTNyGkvmp1NUyFJvhFt12/rfbMVGayBqiaEKU9Zw1WTg/lwQEkd0psLUmyoTKPDTHhKtbMQp2hRsWhCqgOq1BxuKLR7WeEDKR3SW39oqR3SRv9AmwxWG4dim8gDNXebs6ZhM5iBAz4Cj74IdYfgUJgu113Ol/BhzBCCH6gZz6rKDS5wd69e7F3716o1WqcPXvW50ITIYT4ImORsd4hPs2fGpgrzAjoHYDAUdY+SbLhsnY3DlXtGX+1AUp1SAXjjYYPFzM8BpKBEkiHSgEz6gWh5vTbcwYviFcv8NiC0G0hiB/CB1fsG4PRUmhyI19taSKEkPaCZa19pm4fsqK9q70Cg+1w3uEK6K823NndFbxg3q2x2xr6UQrAC+K120PRHaBHAiGEkI6CYZgOF5gA63bXnrUa9ngYAECfr7e2QtW0RmnPa+utxxVzb10doLEw1ElAJwCBQhMhhBDSLvlF+sHvUT8oH1UCAIyFRqjT1XZBiSemGNAc9GoRQgghHYBAKUDQuCBPl+HTqK2NEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnEChiRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnEChiRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJPE8X0J4YDAYAQG5urocrIYQQQkhzRUVFwc/Pr8H5FJrcqKCgAACwYsUKD1dCCCGEkObauHEjevTo0eB8hmVZtg3raddUKhVOnDiBsLAwCAQCT5fTanJzc7FixQosWbIEUVFRni6nVdG2tl8daXtpW9uvjrS9bbGt1NLUhuRyOcaOHevpMtpMVFRUo4m8PaFtbb860vbStrZfHWl7Pbmt1BGcEEIIIcQJFJoIIYQQQpxAoYk0W3BwMGbOnIng4GBPl9LqaFvbr460vbSt7VdH2l5v2FbqCE4IIYQQ4gRqaSKEEEIIcQKFJkIIIYQQJ1BoIoQQQghxAoUmQgghhBAn0OCWBACQlZWF3bt348yZMygoKIBUKkXv3r3x5JNPIjIystF1d+3ahVWrVjmct337dq87q+PMmTOYP3++w3nr1q1D7969G12/uLgYa9euRVpaGiwWCwYMGIB58+YhPDy8Ncptsbfffhu7d+9ucP4PP/wAhULhcN4XX3yBTZs21ZsuEAiwd+9ed5XoEq1Wi++++w6ZmZnIyspCVVUVXnnlFYwfP77esjk5OVi7di0yMjLA4/Fw991347nnnoNcLnfquY4cOYIvv/wSubm5kMvlmDBhAh577DHweG3zL9SZbbVYLPjtt99w6NAhXLx4EVVVVQgLC8OoUaMwdepUCIXCJp/n+eefR3p6er3piYmJWL16tTs3qVHO7tuG/ra7dOmCr776yqnn8oV9CwDJyckNPsbAgQPxz3/+s9HnmTJliu1SX3VNmjQJixYtcq34ZmrO54y3vmcpNBEAwDfffIOMjAyMHDkS3bp1Q2lpKbZv344nn3wS69atQ0xMTJOP8cQTTyAsLMxumlgsbq2SW+yBBx5AfHy83bTOnTs3uo5Wq8X8+fOh0Wgwbdo08Hg8bNu2DfPmzcMXX3wBmUzWmiW7ZNKkSRg4cKDdNJZl8f777yM0NLTBwFTXwoUL4e/vb7vP4Xi+kbqiogKbNm2CUqlEbGwszpw543C5oqIizJs3D2KxGLNnz4ZOp8N3332HK1euYP369eDz+Y0+T2pqKl577TUkJCRg/vz5uHLlCjZv3ozy8nIsXLiwNTatHme2Va/XY9WqVejduzfuu+8+BAYG4ty5c/jyyy9x+vRpfPjhh2AYpsnnUigUeOqpp+ymtfUXH2f3LWAN8IsXL7abJhKJnHoeX9m3ALBkyZJ6086fP4/vv/8egwYNcuq54uLi8NBDD9lNi4iIaH7RLnL2c8ar37MsISzLnj17ljUajXbT8vLy2NGjR7PLly9vdN2dO3eySUlJbFZWVmuW6DanT59mk5KS2AMHDjR73a+//ppNSkpiMzMzbdNycnLYESNGsOvXr3djla3rjz/+YJOSktjNmzc3utznn3/OJiUlseXl5W1TWDMYDAa2pKSEZVmWzcrKYpOSktidO3fWW+79999nx4wZwxYUFNimpaWlsUlJSezPP//c5PNMnz6dffzxx1mTyWSbtmHDBjY5OZnNyclxw5Y0zZltNRqN7NmzZ+ut++WXX7JJSUlsWlpak88zb9489rHHHnNP0S3g7L5duXIlO3bsWJefx1f2bUPeeecdNjk5mS0sLGxy2cmTJ7OLFy9uUa0t5eznjDe/Zz3/dZF4hb59+9ZL75GRkYiOjkZubq7Tj6PVamE2m91dXqvRarWorq52evmDBw+iZ8+edi1UUVFRuOOOO3DgwIHWKLFV7N27FwzDYMyYMU6vo9FowHrRsG4CgcCpFpBDhw5hyJAhUCqVtmkDBw5EZGRkk/ssJycHOTk5mDhxol2z/v333w+WZXHw4EGX628OZ7aVz+ejb9++9aYnJSUBQLPex9XV1dBqtc0r0o2c3be1zGYzNBpNs57Dl/atI0ajEYcOHUJCQgI6derk9Homkwk6na7Zz+cOzn7OePN7lg7PkQaxLIvy8nJER0c7tfz8+fOh0+nA5/MxaNAgPPvss032h/KkVatWQafTgcvlol+/fpg7dy569uzZ4PIWiwVXrlzBhAkT6s2Lj49HWloatFotAgICWrPsFquursaBAwfQp0+feodTG/LQQw9Bp9PB398fw4YNw7PPPougoKBWrrTliouLUV5e7vDinvHx8UhNTW10/QsXLgBAvfVDQkKgUChw8eJF9xXbSsrKygDA6UPH+fn5GDduHEwmE4KCgnDvvfdi5syZbdbHp7n0ej3Gjx8PvV4PiUSC0aNH4+mnn27yfejr+zY1NRVqtRr33HOP0+ucPn0aY8eOhdlsRmhoKCZPnozJkye3YpVNu/1zxtvfs975LiBeYc+ePSguLsasWbMaXU4oFGL8+PEYMGAARCIRsrOzsW3bNjzzzDP47LPP7L4teAMej4fhw4fjrrvugkwmQ05ODrZu3YrnnnsOn376Kbp37+5wvcrKShiNRoffCmunlZSUoEuXLq1af0udOHECFRUVTv2zlUgk+Nvf/obevXuDz+fj7Nmz2L59O7KysrBx40an+454SmlpKQDHfXKCg4Nt+1QgELi0fu18b/btt99CJBJh8ODBTS4bHh6OAQMGICYmBnq9HgcPHsTmzZuRn5+PZcuWtUG1zRMcHIyHH34Y3bt3B8uyOH78OH766SdcvnwZa9asaTTo+fq+3bNnDwQCAYYPH+7U8jExMejXrx8iIyNRWVmJXbt24eOPP0ZJSQnmzp3bytU27PbPGW9/z1JoIg7l5ubigw8+QO/evZGSktLosqNGjcKoUaNs95OSkpCYmIh58+Zhy5YtbXZmhrP69u1rdxhj2LBhGDFiBB5//HFs2LChwbOEDAYDADjshFj7Bq5dxpvt3bsXPB4PI0eObHLZ27+FjhgxAvHx8Xjrrbewfft2TJs2rbXKdAtn91lD/4CNRqPdsrev78lDWM7YsmULTp48iRdeeAESiaTJ5V9++WW7++PGjcN7772HHTt2YMqUKU2eWdrWbu+wPnr0aERGRmLjxo04dOgQRo8e3eC6vrxvNRoNfv/9dwwePNip/QoA77zzjt39CRMm4MUXX8S2bdvwwAMPNOsQn7s4+pzx9vcs9Wki9ZSWluKll16CSCTCW2+9BS6X2+zH6NevH3r16oVTp061QoXuFxERgWHDhuHMmTMN9smqPWXbZDLVm1f7RnXmtG5P0mq1OHLkCBITE10+0++ee+5BUFCQT+zblu6z2n+8tcvevr437+99+/bhs88+w1/+8hf89a9/dflxas+2OnnypJsqa11TpkwBh8Npsl5f3reHDh2C0Whs1qG52zEMgylTpsBsNjscZqK1NfQ54+3vWQpNxI5arcbixYuhVquxevVqhISEuPxYnTp1QmVlpRura12dOnWCyWSCXq93OF8qlUIgEDhs3q2d1pLXqy0cOXIEer2+Rf9sAd/Zt7VN9A3ts9p96ur63jYGWa20tDS8/fbbuPvuu1t8inVtC0RVVZU7Smt1QqEQUqm0yb9PX923gPWQllgsxpAhQ1r0OLX7tq3fy419znj7e5ZCE7ExGAx4+eWXkZ+fj3feecfpDuANuXHjhtMDkXmDGzduQCAQ2I1HVBeHw0FMTAzOnz9fb15mZibCw8O9vhP4nj174O/vj6FDh7r8GCzLoqCgwCf2rUKhgFwuR3Z2dr15WVlZiI2NbXT9uLg4AKi3fklJCYqLi23zvUlmZiaWLFmCHj16YNmyZS3uwH3jxg0A8In9DVhbUysqKpqs1xf3LWCt78yZM0hOTm40PDjDE/u2qc8Zb3/PUmgiAKyn7C5duhTnzp3DsmXL0KdPH4fLlZSUIDc31+40fZVKVW+533//HdnZ2UhMTGytkl3mqN5Lly7h6NGjGDRokG3gxsLCwnqnaQ8fPhznz5+3C055eXk4c+YMRowY0Zplt5hKpcLJkyeRnJwMPz+/evMdba+j1+qnn36CSqVyqmOxNxg+fDiOHTuGwsJC27RTp04hPz/frl9XdXU1cnNzUVJSYpvWtWtXdOnSBTt27LA7bPvTTz+BYRinO+G2lZycHLz00ksIDQ3FP/7xj0YPReTm5tq9JhqNpt4hDZZlsXnzZgBwegDFtmIwGBz2T/nXv/4FlmXt/j7bw76ttX//flgslgZbix1ta2VlZb1uB9XV1fj666/B5/MxYMCAVq25lrOfM978nqWO4AQA8Mknn+Do0aMYMmQIqqqq8N///tdu/tixYwEAGzZswO7du7F161bb6epz585F9+7d0aNHD4hEIly4cAE7d+5Ep06dMH369Dbflqa8+eabEAqF6NOnDwIDA5GTk4MdO3bAz8/PrmPpypUrkZ6ejsOHD9um3X///fjll1/w0ksvYerUqeByudi2bRsCAwMxdepUT2yO0/bt2wez2dzgP1tH2zt58mSMGjUKMTExEAgEyMjIwL59+xAXF4dJkya1VekN+uGHH6BWq21N8UePHkVRUREA64jvYrEY06ZNw8GDB7FgwQI8+OCD0Ol0+PbbbxETE2N3qYri4mJMnz4dKSkpePXVV23Tn3nmGbzyyitYuHAhRo8ejStXrmD79u249957W9wa685t5XA4WLRoEaqqqjB16lT8/vvvduuHh4fbfUhNnz4dCQkJ+OijjwBYT9VetmwZxowZg86dO8NgMOB///sfMjIyMHHiRIengLempra3qqoKTzzxBMaMGWM7Y/XEiRNITU3F4MGDMWzYMNtj+fq+rXtlhT179iAkJKTBoONoW48ePYrNmzdj+PDhCAsLQ1VVFfbs2YOrV69izpw5bXYo0tnPGW9+z1JoIgCsLS0AcOzYMRw7dqze/No/ZkdGjRqF1NRUpKWlQa/XIzg4GBMnTsTMmTO9ciyfpKQk7NmzB9u2bYNGo4FcLkdycjJmzpzZ5CUFAgICsGbNGqxduxabN2+2XXuuOddE8pS9e/ciMDAQd955p9Pr3HPPPfjzzz9tHU+VSiUefvhhPPbYYw5bq9ra1q1b7a6ndfjwYVvoGzt2LMRiMZRKJT766COsXbsW69evt13H6tlnn3Xq8MaQIUOwYsUKbNq0CWvWrIFMJsO0adMwc+bM1tosh5raVgC2D9r169fXWz8lJaXBb/YAoFQq0b9/fxw+fBhlZWXgcDiIiorCwoULPRKQndm3Q4YMQVpaGnbv3g2LxYLOnTtjzpw5mDp1qlOX+vGVfVsbmvLy8pCdnW3r7O6smJgYREVFYc+ePVCpVODxeIiLi8OyZcucOovWXZz9nPHm9yzDetMQv4QQQgghXor6NBFCCCGEOIFCEyGEEEKIEyg0EUIIIYQ4gUITIYQQQogTKDQRQgghhDiBQhMhhBBCiBMoNBFCCCGEOIFCEyGEEEKIEyg0EUIIIYQ4gUITIcRr3Lx5E8nJyXj77bc9XYpb7Nq1C8nJydi1a5enSyGEuAGFJkKIV3v++eeRnJzs6TIcam8hjxDSOLpgLyHEaygUCmzZsgUikcjTpbhFUlISevXq1WZXkSeEtC4KTYQQr8Hj8RAVFeXpMtxGLBbbrlBPCPF9DMuyrKeLIIQQwHq466GHHkJKSgpeffXVBg/L1c6vdfnyZWzZsgXp6emorKxEcHAwhg4discffxwymczh4z/yyCPYuHEj/vjjD1RWVmLr1q0ICwvD4cOHceDAAZw/fx4lJSXg8Xjo1q0bHnzwQYwYMcL2WLt27cKqVasc1rdmzRoMGDDAtswrr7yC8ePH2y2TkZGBLVu24Ny5czAYDAgNDcWoUaPwyCOPwM/Pz27Z5ORkJCQkYOnSpVi3bh1SU1Oh0+kQGxuLp556CgMGDGjuS00IcQG1NBFCvNbMmTOxe/duFBQUYObMmbbpcXFxtttHjhzB0qVLwTAMhg0bhk6dOiEnJwc//vgjTpw4gfXr10Mikdg97vXr1zF37lzExMQgJSUFlZWV4PP5AIANGzaAx+Ohb9++CA4OhkqlwtGjR/HGG29g/vz5eOCBBwAAsbGxePDBB/H9998jNjYWw4YNsz1+aGhoo9t14MABLF++HHw+H6NGjYJcLkdaWho2bdqEEydOYM2aNRAKhXbrqNVqPPvssxCLxRg7dizKy8tx4MABLFq0CBs3bkRMTIxLrzEhxHkUmgghXmvWrFlIT09HQUEBZs2aVW9+RUUFVq5cCZlMhk8++cQurOzbtw/Lli3D559/jgULFtitl5GRgZkzZzp8zHfffRfh4eF207RaLZ555hl8/vnn+Mtf/gI/Pz/ExcVBLBbbQpOjx3JEo9HgvffeA5fLxbp169CtWzcAwJw5c7B8+XLs378f3333HWbMmGG33qVLl/DXv/4VCxYsAIdjPYfnjjvuwLvvvosff/wRixYtcur5CSGuo7PnCCE+67fffoNGo8GcOXPqte6MHj0a3bt3x759++qtFxQUhOnTpzt8zNsDEwAEBARg/PjxUKvVOH/+fItqPnLkCNRqNSZMmGALTADA4XAwd+5ccLlch0MU+Pv74+mnn7YFJsB6mJLL5ba4JkKIc6iliRDis86dOwcAyMzMxPXr1+vNNxqNqKiogEqlglwut02PjY21HY67XXl5Ob7++mukpqaisLAQBoPBbn5JSUmLar548SIAICEhod48pVKJ8PBw5OfnQ6vVIiAgwDYvIiLC7j5g7TgfFBQEtVrdopoIIc6h0EQI8VlVVVUAgO3btze6nF6vt7sfGBjocLnKykrMmTMHhYWF6Nu3LwYOHAixWAwOh4NLly7hyJEjMJlMLapZo9EAsLZ2ORIcHIz8/HxoNBq7kNTQMAxcLhcWi6VFNRFCnEOhiRDis2pDxaZNm5rVEZphGIfTf/31VxQWFuKJJ56o16foq6++wpEjR1wvtkZt+CkrK3M4v3Z6exmripD2hPo0EUK8Wm0fHrPZXG9er169ANw6TNdStYf46p4JV+vs2bMN1taclp7aM//S09PrzSssLMT169cRHh5e71AcIcTzKDQRQryaVCoFABQVFdWbN2HCBAQEBGDjxo24evVqvfl6vb5Zgaq2M3lGRobd9D179iA1NbXe8hKJBAzDOKytIcOGDYNYLMbOnTvtamZZFuvXr4fZbK43phMhxDvQ4TlCiFe74447cPDgQbz++usYPHgwBAIBYmNjMXToUMjlcrz55pt44403MGvWLCQmJqJLly4wmUwoKChAeno6+vTpg9WrVzv1XGPHjsU333yDNWvW4MyZM1Aqlbh06RJOnz6N5ORkHD582G75gIAA9OzZE3/88QdWrFiBiIgIMAyDcePGNThWk0gkwosvvojly5fj6aefxsiRIyGXy3Hq1ClkZ2cjPj4eU6dObfHrRghxPwpNhBCvdu+99+LmzZvYv38/vvnmG5jNZqSkpGDo0KEAgLvvvhuff/45vv32W5w6dQonT56En58fFAoFxo8fj7Fjxzr9XJ06dcJHH32EdevW4eTJkzCbzejevTvef/99FBUV1QtNALBkyRJ8/PHHOHbsGDQaDViWRb9+/Rod4HLkyJEICgrCV199hcOHD9tGBJ8xYwYeeeSRegNbEkK8A11GhRBCCCHECdSniRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnEChiRBCCCHECRSaCCGEEEKcQKGJEEIIIcQJFJoIIYQQQpxAoYkQQgghxAkUmgghhBBCnPD/cQZY/p3w2WEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = []\n", + "integrated_flux = []\n", + "integrated_flux_each_band = [[],[],[],[],[]]\n", + "\n", + "for _ in all_results:\n", + " iteration.append(_['iteration'])\n", + " image = _['model_map']\n", + " pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr\n", + "\n", + " integrated_flux.append(np.sum(image) * pixelarea)\n", + "\n", + " for energy_band in range(5):\n", + " integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)\n", + " \n", + "plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"integrated flux (ph cm-2 s-1)\")\n", + "plt.yscale(\"log\")\n", + "\n", + "colors = ['b', 'g', 'r', 'c', 'm']\n", + "for energy_band in range(5):\n", + " plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = \"energyband = {}\".format(energy_band))\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "718b60f4", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at 11th interation. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all of the pixels at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "338e0993", + "metadata": {}, + "outputs": [], + "source": [ + "energy_truth = []\n", + "flux_truth = []\n", + "\n", + "with open(\"crab_spec.dat\", \"r\") as f:\n", + " for line in f:\n", + " data = line.split('\\t')\n", + " if data[0] == 'DP':\n", + " energy_truth.append(float(data[1]))# * u.keV)\n", + " flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "b05459a3", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "81f5ab8c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACIZklEQVR4nOzdeVxU1fsH8M+dYV8EQQUVZVUEU9HUNBU3XJByydTMNdfU3Nd2LfupmbtlaSZppZiaWuKGC26ZS5oLiwuIuLDLMmwDM/f3BzFfCRAYLgwDn3cvXznnnnvOMwxXHs4591xBFEURRERERFRmMl0HQERERKSvmEgRERERaYmJFBEREZGWmEgRERERaYmJFBEREZGWmEgRERERaYmJFBEREZGWmEgRERERaYmJFBEREZGWmEgREdUAgiCgW7duug6DqNphIkVUAVQqFbZs2YKuXbvCxsYGhoaGqFevHlq2bIkJEybg4MGDug7xhU6fPg1BELB48WJdh1KpunXrBkEQcPr06QLlTk5OcHJy0klMpaUPMVam48ePY+7cuejZsydsbW0hCAI6d+78wnO2bt2KyZMn45VXXoGZmRkEQcBHH31USRGTvjLQdQBE1Y1KpcJrr72GI0eOwNraGn5+fnBwcIBSqcTt27fxyy+/ICwsDP3799d1qFSDhIaGwszMTNdhVJqvv/4aBw4cgImJCdzc3JCUlFTiOXPnzkVKSgpq166NBg0a4P79+5UQKek7JlJEEtu5cyeOHDmCVq1aITg4GFZWVgWOZ2Rk4K+//tJRdFRTNWvWTNchVKqFCxfiiy++QLNmzRAdHQ1nZ+cSz9m1axc8PDzg6OgIf39/vPPOO5UQKek7Tu0RSezChQsAgLFjxxZKogDAzMwM3bt3L1Dm7+8PQRDg7++PQ4cO4dVXX4W5uTlq166NN998E3fv3i2yr4yMDCxbtgxeXl4wNzeHhYUFOnbsiJ07dxYb37Fjx/D666+jXr16MDY2RqNGjTBgwAAEBQVp4s6Pb8mSJRAEQfMnf8rr+XiPHDmCbt26wcrKCoIgAAAePHgAQRAwduzYImPIn0J73vPTiVeuXEHfvn1hZWWF2rVrY/DgwYiOjgYARERE4K233kLdunVhamqK7t27459//in2/ZZHfkxRUVGIiooq8LX473sLCwvD2LFj0ahRIxgZGcHOzg5vv/02wsPDC7U7duxYCIKAiIgIbNiwAS1btoSpqalmDZNSqcTGjRvRr18/ODo6wtjYGDY2NvDx8cHhw4e1irG4NVIpKSl4//334e7uDhMTE9SuXRt9+vTRfD8U1dfixYtx/fp1+Pn5wdraGmZmZujatavme78q6NixI5o3bw65XF7qc/r27QtHR8cKjIqqI45IEUnM1tYWAHDnzp0yn7tv3z4cPnwYgwYNQrdu3XD9+nXs3bsXp06dwoULF+Du7q6pm5ycjB49euDatWto06YNxo0bB7VajaNHj+Ltt9/G7du3sXTp0gLtf/rpp/jss89gYWGBgQMHolGjRnjy5AkuXLiAn376CT4+Phg4cCAA4Mcff0TXrl0L/PD97xqcPXv24MiRI/D19cW7776LqKioMr/n/7p8+TJWrFiBrl27YuLEibh58yb27duHW7du4cCBA+jcuTOaNWuG0aNHIyoqCvv27UOvXr0QEREBCwuLcvf/PCcnJ3z66adYu3YtAGDWrFmaY15eXpq/HzlyBG+88QZycnLw+uuvw83NDY8ePcK+fftw6NAhnDp1Cm3atCnU/syZM3H27Fn4+fmhX79+mh/6SUlJmDlzJl599VX06tULdevWxdOnT/H777+jX79+2LJlCyZMmFCmGIuSnJyMTp06ISQkBO3atcOsWbOQkJCA3bt3o3fv3ti0aRMmT55c6LwrV67gyy+/RMeOHTFhwgQ8fPgQe/fuRc+ePXH9+vUC36dE1Z5IRJL6+++/RUNDQ1EQBHHkyJHi3r17xQcPHrzwnG3btokARADi77//XuDY2rVrRQBijx49CpSPGTNGBCCuWLGiQHlmZqbYp08fURAE8dq1a5ryo0ePigBEZ2dn8dGjR4ViiI6O1vz91KlTIgDx008/fWG8giCIhw8fLnQ8MjJSBCCOGTOmyPO7du0q/vefn/w+AYg//fRTgWPjxo0TAYi1a9cWly5dWuDYZ599JgIQ165dW2RfZZEf16lTpwqUOzo6io6OjkWek5SUJFpbW4u2trbi7du3Cxy7efOmaG5uLrZu3bpAef5n16BBAzEiIqJQm1lZWQU+j3zJycli8+bNxdq1a4sZGRmljlEURRGA2LVr1wJlkyZNEgGIkyZNEtVqtab8zp07Yq1atUQjIyMxMjJSU/78Z7Rt27YCbX377bciAHHKlCnFxvBfa9asET/99NNS//ntt99K3fbz8r8fO3XqVOpz8r/HP/zwQ636pJqDiRRRBQgICBDt7e01P3QAiDY2NuLAgQPFgwcPFqqf/4/2f5MlURTF3Nxc0dXVVQSgScgSEhJEuVwutm3btsj+r1+/LgIQ58+fryl77bXXRADivn37Soy/tInUwIEDizxenkSqc+fOheoHBweLAEQnJycxNze3wLEHDx6IAMSxY8eW+L5Kok0ilZ/obty4scjjs2bNEgEUSLLyEyltkr9Vq1aJAMTg4OBSxyiKhROp7Oxs0czMTLSwsBATExML1f/oo49EAOKSJUs0ZfmfUVEJiVKpFA0MDMSXX3651O/F0dGxwDVS0p/ivp9KwkSKKhKn9ogqwNChQzFo0CCcOnUK586dw7Vr13Du3Dns378f+/fvx+jRozXrjJ7XtWvXQm3J5XJ07twZ9+/fx7Vr1+Do6IjLly9DpVIVu0VBTk4OgLw7tfJdvHgRgiCgb9++kr3P9u3bS9ZWvrZt2xYqa9CgAYC8qar/rnlp2LAhAODRo0eSx1Iaf/75JwDgn3/+KfKzyJ/iDQ0NhaenZ4FjL/r63b59GytXrsSZM2fw9OlTZGVlFTj++PHjcsUdHh6OjIwMdOrUCTY2NoWO9+jRA0uXLsW1a9cKHSvqMzI0NISdnR2ePXtW6hgePHhQppiJqiImUkQVxNDQEL1790bv3r0B5G2LsHfvXowbNw7bt2/HoEGDNOuR8tnZ2RXZlr29PYC8hcEAkJiYCCBvPdHly5eLjUGhUGj+npycjNq1a8PU1FTr91RcXFIqaoG+gYFBicfyk8fKlv9ZbNmy5YX1nv8s8hX39bt48SJ69OiB3Nxc9OzZE/3790etWrUgk8lw/fp1HDhwANnZ2eWKO/97qX79+kUezy9PTk4udMza2rrIcwwMDKBSqcoVF5G+YSJFVEnkcjmGDh2KmzdvYunSpTh58mShRCo2NrbIc2NiYgD8L5HI///s2bOxevXqUvVvbW2NxMREZGZmSpZM/XdELZ9MlndDcG5ubpHHi/rhrK/yP4t//vkHLVu2LNO5xX39li5diszMTJw6darQnXbLli3DgQMHtIr1eflx539v/dfTp08L1KsIa9euLdP3gpeXV6FrhkjXmEgRVTJLS0sAgCiKhY4FBwcXKlOpVDh37hwAoHXr1gDypoRkMhnOnj1b6n47dOiAP/74A0eOHMGgQYNeWDd/+kzb0YXatWsDgGbLguelpqZqdUejLsnlciiVyiKPdejQAXv37sXZs2fLnEgV5969e7CxsSlyu4KivkdKirEo7u7uMDMzwz///IPk5ORCo0ynTp0CgCLvNpTK2rVry3Sn55gxY5hIUZXDfaSIJLZz504cP34carW60LGYmBjNFJC3t3eh4ydPnsQff/xRoGzjxo24f/8+unfvrtnjpl69ehgxYgSuXLmCzz//vMiE5/79+4iMjNS8nj59OoC83ZuLWl/zfFn+Fg4PHz4s8f0WxdLSEs2aNcP58+cREhKiKVepVJgzZw4yMzO1arcs8veykuKxKba2toiPjy8y7nfeeQfW1tZYsmQJLl26VOi4Wq0u9MiZkjg5OSEpKQk3btwoUL5161YcPXq0zDEWxcjICCNGjEBaWho+/vjjAsfu37+P9evXw9DQEKNGjSpT7GXx4MEDiHk3PZXqj7+/f4XFQqQtjkgRSeyvv/7CunXrYG9vj86dO2t2VI6MjMShQ4eQmZmJAQMG4M033yx07uuvv45BgwZh0KBBcHNzw/Xr13H48GHY2Njgm2++KVB348aNuHv3Lj755BPs2LEDnTt3hp2dHZ48eYLQ0FBcvnwZO3fu1PTfu3dvfPTRR1i6dCk8PDw0+0jFxsbi3Llz6NChg+YHlbu7Oxo2bIhdu3bB0NAQjo6OEAQBo0aNKvWGhfPnz8f48ePRqVMnDBkyBCYmJjh16hRycnLQqlWrCttEM19+Ipu/hqo8evbsicuXL6Nv377w9vaGsbExWrVqhddffx22trbYs2cPBg0ahA4dOqBnz55o3rw5BEFAdHQ0/vzzTyQmJhZaLP4is2bNwtGjR9G5c2cMHToUVlZWuHLlCs6dO4c333wTe/bsKVOMxVm+fDnOnj2LjRs34vLly+jevbtmH6m0tDRs3LixVDuCV0Xnzp3D999/D+B/69Pu3r1bYJPS/yZm33//vWb09969ewCA33//XXMjQ7NmzbBo0aIKjpz0jm5uFiSqvh4+fChu3LhRHDhwoNi0aVPR0tJSNDQ0FO3t7UVfX19xx44dokqlKnBO/q3W27ZtE3///XexQ4cOopmZmWhlZSW+8cYbYnh4eJF9ZWdnixs2bBA7duyo2fenUaNGYo8ePcQ1a9aICQkJhc45dOiQ2KdPH7F27dqikZGR6ODgIA4cOFA8ceJEgXqXLl0Se/ToIdaqVUsUBKHAtgDPx/si33//vejp6SkaGRmJdnZ24qRJk8SEhIQXbn9Q1JYLJW2ngCL2SNq/f3+Zb18vbvsDhUIhvvvuu2LDhg1FuVxeZCyRkZHitGnTRDc3N9HY2Fi0tLQU3d3dxZEjRxba/yh/+4Pn92j6r99//1185ZVXRAsLC9HKykrs1auXGBwcXOzXvqQYi/oaiaIoPnv2TFywYIHo5uYmGhkZiVZWVqKPj4949OjRQnVL2hajpC0YKtPze7MV9+e/8j+X4v4U9fUjEkSxiIUaRFSp8p/rtW3btmIfq0JlM2fOHHz33XeIiopCnTp1dB0OEVVTnNorhZUrV+L8+fPIysqCnZ0dJk2ahE6dOuk6LCJ6geDgYEycOJFJFBFVKCZSpTB06FDMnDkTRkZGCA0NxZw5c7Br164KvS2YiMrn6tWrug6BiGoA3rVXCo6OjjAyMgKQt+9LTk4OEhISdBwVERER6ZrerJHKyMjArl27EBISgtDQUKSlpeH999+Hr69vobpKpRJbt27FsWPHkJaWBldXV0yYMAHt2rXTuv/Vq1cjMDAQSqUSHTp0wIoVK4rdTI+IiIhqBr0ZkUpJSYG/vz+ioqLg5ub2wrrLli3D7t270atXL8yYMQMymQwLFiwotCdLWcyZMwdHjx7FmjVr0K5dOyZRREREpD9rpGxtbfHbb7/B1tYWYWFhmDRpUpH1QkJCcOLECUyZMgXDhw8HAPTp0wdjx47Fpk2bsGnTJk3dadOm4ebNm0W2M2rUKEycOLFAmVwux8svv4xff/0VDg4O6Nixo0TvjoiIiPSR3iRSRkZGmt2WXyQ4OBhyuRz9+/fXlBkbG8PPzw+bN29GbGys5sGwX3/9tVaxqFSqUj95PSsrC1FRUXB0dISJiYlW/REREVHVpDdTe6V19+5dODg4wNzcvEC5h4cHgP/tVltaCoUCx48fR0ZGBnJzc3Hq1Clcu3YNrVq1KtX5UVFRmDhxYpmeJ1Va9+/fl7xNIiobXodEuqXra1BvRqRKKzExsciRq/yyst5tJwgC/vjjD6xZswaiKKJhw4b4+OOP0aRJkyLrJyQkIDExUfO6IhKofNnZ2RXWNhGVDq9DIt3S9TVY7RKp7OxsGBoaFirP376grF9wc3NzrFu3rtT1Dx48WOSDNSMjI4t8sGx5KBSKAg+EJaLKx+uQSLcq8hr09PQssU61S6SMjY2Rk5NTqFypVGqOV6T+/fsX2PU8KioKS5cuhbOzM9zd3SXtKyQkpFQfMhFVHF6HRLql62uw2iVStra2iI+PL1SeP91W0Y+LqFOnDh9JQUREVENUu0TKzc0N165dQ3p6eoEF5/nDfiXtQSWVoKAgBAUFQaFQVEp/RERUeVQqVZGzH1T51Go1srKytD7f0NAQcrlc6/OrXSLVrVs37Nq1CwcPHtTsI6VUKhEYGAhPT0/N1gcVzcfHBz4+PggPDy+0HxUREekvhUKBR48eQU8eDFLtqdVqREZGan2+IAhwcHCAhYWFVufrVSK1d+9eKBQKzTTd+fPnERcXBwAYPHgwLCws4Onpie7du2Pz5s1ITk5Gw4YNceTIEcTExGDhwoW6DJ+IiPScSqXCo0ePYGZmhrp16/IpF1VAVlaW1vs0iqKI+Ph4PHr0CE2aNNFqZEqvEqmAgADExMRoXp85cwZnzpwBAPTu3VuTTX7wwQews7PD0aNHoVAo4OLighUrVsDLy0sXYRMRUTWRk5MDURRRt25dmJqa6jocQl4yVJ4Nr+vWrYsHDx4gJyen+idSu3fvLlU9Y2NjTJ06FVOnTq3giIrHNVJERNUXR6Kqj/J+ltVuZ/OqwsfHB8uXL8f06dN1HQoREVVzixcv1nrB9dq1awvM9ixevBizZs2SKLLqj4kUERGRnluyZEmRiVRubm6J5/43kaKy0aupPSIiIiro3XffBQB06dIFcrkcDRo0gL29Pe7du4e4uDiEhYVBEAQ8e/YM1tbWAPL2PLxy5Qq2b9+OJ0+eYNiwYTA1NdU8mePp06d4/fXXcf/+fdjb22PPnj2wsbHR0Tus2phIVRCukSIiqv6Gh65GQk5ahbVfx9ASOz3mvLDOt99+i++++w5nz56FtbU1xo4di6tXr+LcuXOwtLR84bmffPIJfvjhBwQEBGhuyNq/fz/++usvXL16Fba2tnjrrbfw3Xff4f3335fqbVUrTKQqSGXsI6US1RXSLhERlU5CThriclJ0HUYhQ4YMKTGJepG+ffvC1tYWANCxY0fcvHlTqtCqHSZSeupcSij+L3sfVmVYw8PMQdfhEBHVSHUMtU9WKrL9/24uKZfLoVKpNK9LWpj+/HYCcrm8VGutaiomUnooKUeBTx7sQqKYhpFh6zCtQV+MsesOucB7B4iIKlNJ026VxdLSEikpKZo1UP/l5uaGv/76C/369cO+ffuQnp6uOVarVi2kpFS9UTV9wZ+8eihDnY16RlYAgFxRhXWPD2HSnU14qnym48iIiEgX5s6di169esHLy0vzxI/nrVmzBjNnzkSbNm1w7do1zbQdAMyYMQMTJ06El5cXrl+/XolRVw+CyIcFVYjnF5vfuHEDW7Zsgbu7u2Tt56hz8dnNn/F77g2IyPsILeUm+LDxEPjatJasHyJ6sZCQEHh6euo6DKokWVlZiIyMhLOzc7l20ybpZGZmlmuX+fJ+phyRqiAVvSGnocwAww3b4fumU1DfqDYAIE2VhUWRO/B+5E9IU2VWSL9ERET0P0yk9FxbSzfs9piHfjZtNGWBSX9jSMhXuJp2X4eRERERVX9MpKqBWgamWOY8EsucR8BSnjcs+VT5DOPvfIP1jw8hR827LYiIiCoCE6lqpJ/Ny9jtMQ8vW7gAAESI2BpzAqPD1+NBVuHFh0RERFQ+TKSqmQbGNtjSdCpmNvSDgSAHAIRkPMKw0NXYG/8neG8BERGRdLiPVAXR5SNi5IIM4+x7omMtd7wf+RMis+KQpVbis4e/4mxqKD51HIraBhYlN0REREQvxBGpClLRd+2VhoeZA3Z6zMGQOq9qyk4l38KQkK9wMfWOzuIiIqpp1GoRT0IScf/CEzwJSYRazdmB6oKJVDVnKjPCR45vYq3rOFjLzQEA8TmpmHz3W6x6dBBKLkQnIqpQkZdiEDDjNAKXXsKpjf8gcOklBMw4jchLMboOrcIsXry4xMfQaMPf3x9hYWFanbtx40aMHTtW2oDARKrG6G79EvY0n4+Otf63Kej22NMYGbYOEZmxOoyMiKj6irwUgxNrryE9qWBSkZ6UhRNrr0meTFWVZ+ItWbKk2ESqPDGWJ5GqKEykapC6hrXwjdtEzHcYAMN/F6KHZz7GW6GrsDv+PBeiExFJSK0WcXF76AvrXNwRWu5pPkEQ8Omnn6Jdu3Z4//33kZaWhokTJ6J9+/Zo2bIlJk2aBKVSCQB4/Pgx3nzzTbRo0QItW7bExx9/DACIi4vDG2+8gRYtWuCll17Cd999p2nfyckJn3zyCTp27AhnZ2csXbpUc2zp0qXw8PCAl5cXvLy8EBUVhXfffRcA0KVLF80ja8aOHYtx48bB29sbL730kibu5ORkTVt16tTBgwcPAAChoaHo06cPWrZsiZYtW+Lbb7/F999/jytXrmD27Nnw8vJCYGAgAGDt2rVo37492rRpg759+yIqKgoAkJaWhmHDhsHd3R2dO3fGzZs3y/V1Lg4Xm9cwMkGGkXZd0c7SDYsif0JEViyyxVx88XAvzqeE4dPGQ5F1T4nM5GyYWhvDvpkNZDJB12ETEemdP/1vFxqJ+q/0xCz8POUEvPq7ooWfs9Z9yeVyXL58GQAwadIkdOnSBVu2bIEoipg4cSLWrVuH+fPnY+TIkejduzf27NkDAIiPjwcATJ8+He7u7ti3bx/i4uLw8ssvo1WrVujQoQMAIDk5GX/++ScSEhLg6uqKd955B2ZmZvjqq6/w9OlTmJqaIiMjAzKZDN9++y2+++47nD17tsBDlK9evYpz587B0tLyhe8lNzcXAwYMwJIlSzB8+HAAQEJCAurUqYOffvoJs2bNwsCBAwEAv/zyC+7cuYM///wTcrkcO3bswNSpU3Ho0CF89tlnMDY2RlhYGFJTU9GhQwe88sorWn+Ni8NEqoZyN2uInR6zsebRH9gVfw4AEH0lHj+tPAGzNGNNPXMbE3QY7QHn9va6CpWISC9lpChLVS87LQfKzPJNyY0bN07z9/379+PPP//E6tWrAeQ9i04ul0OhUODcuXM4evSopm7dunUB5N1pfvXqVQBAvXr18MYbbyAoKEiTSL399tsA8kaNXFxcEBkZiY4dO6JJkyaa5MzPzw8ODg7FxjhkyJASkygACA8PR1ZWliaJyu+3KPv378elS5fw8ssvAwBUKpXm2IkTJ7BmzRoIggArKyu8/fbbuH9f+id+MJGqILrc/qC0TGRGeL/xG3i1lju+P3YM3gcLP1Q5fx6/56zWTKaIiMrAzMqoVPWMLQ1hZFq+H8cWFv/b0kYURezduxdNmzYtUKcsP48EoeBMxPMP85XL5cjNzYVcLsfFixdx4cIFnD59Gh06dMDOnTvRpUuXEmPMb+f5xEebxemiKGLevHl47733Sqz73/ckFa6RqiBVYfuD0upSyxN9glsCAAQU/Y0mxTw+EVFN0nFsc5jbmLywjrmtCUZs6lmuab3/GjhwIFasWKFZ1P3s2TPcu3cPFhYW8Pb2xqpVqzR186f2fHx8sGXLFk3Zvn370KtXrxf2k5aWhtjYWHTp0gUff/wxOnfujGvXrgEALC0tkZKS8sLz3dzc8NdffwEA9u3bh/T0dACAu7s7zMzMsHPnTk3dhIQEAECtWrUKtDtw4EB8//33SEpKAgDk5ORoYvDx8cG2bdsgiiJSU1MLtCcljkjpsScXU3H9m5PlbkeVo0Z2Wk6xSRTwv3l8uWH5c+8Wvs6S/qNBRFQVyWQCOoz2wIm114qt02GUh+TrUNesWYNFixbBy8sLMpkMBgYG+PLLL+Hm5oYdO3Zg+vTpaN68OQwNDTVrkdavX48pU6agRYsWEEURH374YYnriVJSUvDmm28iPT0dgiCgSZMmGDNmDABg7ty56NWrF8zMzHDs2LFi45wxYwY++ugj+Pn5wdbWFgBgYGCAAwcOYPr06fi///s/yGQyTJ06FZMnT8akSZMwd+5crFmzBv/3f/+HESNGICYmBt27dweQt75q3LhxaN26NT7++GNMmDABzZo1Q926ddG5c2dkZ2dL+JXOI4i8VatChYeHY+LEidiyZQvc3QtPnZXHkU0X8OjsizN+KSkNcmGUW/7cu/Ubbnj5zSYSRESkeyEhIfD09NR1GFRJsrKyEBkZCWdn5wLTXS8SeSkGF7eHFlh4bm5rgg6juP5UCpmZmTA1NdX6fG0+0+dxREqPGRjLYGZjXHLFEuSPSJXkpG8I2t1zQaNY23L1V961AERE+sS5vT0c29ohJiyJd0RXQ/yJpscadKgFn3Edyt2OWi0iYMbpYm/TFSFCYZmFe26xuN80DpPr98aE+j6ahyITEdGLyWQCGniW75dQqpq42Jw08/jFESDgiW8KRBmghohNT49i4p1NiFE+q8QoiYiIqh4mUgQgb+i556zWhe4wMbc1Qc9ZrbF8wBhMa+AL+b/fMn8rIjAk5CsEPbuhi3CJiHSKy4urj/J+lpzaI42S5vEn1e+FdpZueD/yJzxVPkOqKhNzI/zxZp2OmNdoAExlpdszhYhIXxkaGkIQBMTHx6Nu3boVtjcRlV52drbWn4MoioiPj4cgCDA0NNSqDSZSFUQfNuQsSknz+K0tnLHbYx4+f7gbx579AwDYk/AnrikiscJlFJqY1q+sUImIKp1cLoeDgwMePXqkeS4c6VZOTo7WSRCQt1Gng4MD5HLt1v1y+4MKVpHbH+jytmtRFPFb4l9Y8fA3ZIl5d/wZCwaY6zAAQ+u+yt/SqMbg9gc1k0qlQk5OyXc7U8W7d+8e3NzctD7f0NBQ6yQK4IgUaUkQBLxRpwO8zJ2xMHI77mQ+RbaYi/+L3os/08KxxHEYrAzMdR0mEVGFkMvl5frhS9KRyWRa7f8kFUkSqb///htXr17FrVu3EBcXh5SUFJiYmMDa2houLi7w8vJCx44dNbuWUvXhYmqHn5rNwppHv2Pnvw8/PpV8C6Hpj7DcZRRaW3AHcyIiqr60TqQyMzOxd+9e/P7774iNjdWsejcyMkKtWrWQnZ2NyMhI3L9/H8ePH4eBgQFeffVVDB06FC1atJDsDZDuGcsMsajxG+hQyx2fPNiJFFUGYnKSMT78a0xp0Afj7HtCLvAGUSIiqn60SqQOHDiAbdu24dmzZ3B1dcX48ePRvHlzNGvWDGZmZpp6oiji0aNHCAkJweXLl3Hu3DmcPXsWnTp1wrRp09CgQQPJ3gjpXjfr5vjVcx7ej/wJVxURUEGNjU8O41LaPfyf8wjUNayl6xCJiIgkpVUitXbtWvj4+GD48OFwcXEptp4gCGjUqBEaNWqEPn36IDs7G8ePH8dPP/2EY8eOYezYsdrGTVWUnZE1tjSdis1Pj2Hz0+NQQ8SltLsYEvIVljoNR2er4jf+JCIi0jdaJVLbt29Ho0aNynyesbExXnvtNfj6+iI2NlabrkkPyAUZpjToi7b/7jkVn5OKZ7kKTLu3BWPsumF6g34wlPE+ByIi0n9aLVzRJol6nlwu57ReDdDO0g2/es5DF6v/3Rr+Y+xpjAnfgEfZiTqMjIiISBpcAUwVqraBBTa4jsd8hwGahxzfzojGsJBVOP7vhp5ERET6iokUVThBEDDSrit2uM9AI+O8LTAU6izMi/gRXzzcg2w1N7UjIiL9JGkilZaWhiNHjkjZJFUjnuaNsMtjLnxrt9aU7Y6/gFFh6/AgK06HkREREWlH0kQqNjYWy5cvl7JJqmYs5CZY5jwSnzoOhbGQt+A8PPMJ3gpdjUOJV3UcHRERUdmU6dapku60S0hIKFcw1Ym+PrS4MuQ/XqaFeWPMj9iOyKw4ZKqV+ODBz7icdg8LGw+CqcxI12ESERGVqEyJ1NChQ1/4MFpRFPmw2n/5+PjAx8dH89BiKqyJaQP80mw2lkXvw8HEywCA3xL/wo30KKx0GQ1XU3sdR0hERPRiZUqkLC0tMX78eHh5eRV5PCoqCosXL5YgLKopzOTG+NxpONpbumHpw73IUitxPysGb4euwfuNB2OAbTsm50REVGWVKZFq2rQp0tLS4Oxc9INoVSqV5pl7RGXxum07vPTvVN/dzKfIEnPwadQuXE67hw8bD4aZ3FjXIRIRERVSpsXmAwcOhL198dMtdnZ2WLRoUbmDoprJ2cQOPzWbicF1OmjK/ki6grfD1uBu5lMdRkZERFS0MiVS3t7e6N27d7HHLS0t4evrW+6gqOYykRnhE8ehWO48EmayvFGoyKw4jAxdi30JFzniSUREVQo35KQqydemDXZ6zIa7ad6jhLLEHCyJ2o0PH/yCDFW2jqMjIiLKU+5Eqlu3boiOjpYiFqICnEzqYUezmRha91VN2aGkqxgeugZ3M5/oMDIiIqI85U6kONVCFclYZogPG7+JL51Hw/zfqb4H2XEYwak+IiKqAji1R3qhj40XdnnMQTPThgCAbDEXS6J244MHPyNdlaXj6IiIqKZiIkV6o7FJXWxvNgPD6nbSlAUm/Y3hoWsQnvFYh5EREVFNxUSK9IqxzBAfNB6MlS6jYSEzAQBEZcdjZNg67In/k1N9RERUqZhIkV7qXdsLOz1mw8PMAYIaqPvQEruOnsWSEwFIzcnUdXhERFRDlGln85rs1q1bmDZtGsaNG4cxY8boOhxC3lTf56nDcNL/OuQp//ud4Mdfj6H1SDd07tJch9EREVFNwBGpUlCr1di4cSOaNWum61DoOZGXYhC87kaBJAoATNIMEbopCj8HneZUHxERVahyJ1Jvv/02atWqJUUsVdbvv/8ODw8PODo66joU+pdaLeLi9tAijwnIe8hx3K9JWHB/BxS8q4+IiCpIuaf2Jk+eLEUcL5SRkYFdu3YhJCQEoaGhSEtLw/vvv1/k42iUSiW2bt2KY8eOIS0tDa6urpgwYQLatWunVd8pKSn49ddfsWnTJmzYsKG8b4UA3DwUiZuHI8vVhipHjey0nGKPCxBgmWaK27duwy96KQacfhn2iVZa99fC1xkt/Ip+WDcREdVcWidSSqUSRkZGUsZSrJSUFPj7+8POzg5ubm64du1asXWXLVuG06dPY8iQIXBwcMDhw4exYMECrFu3Di1btixz31u2bMGQIUNgaWlZnrdAz1Fm5iIjqXIe82KmMMbjRs+wo985dAl2R4vrDpoRq7JQZuZWQHRERKTvtE6kBg0aBB8fH/Tr1w/u7u5SxlSIra0tfvvtN9ja2iIsLAyTJk0qsl5ISAhOnDiBKVOmYPjw4QCAPn36YOzYsdi0aRM2bdqkqTtt2jTcvHmzyHZGjRqFiRMn4s6dOwgLC8Ps2bOlf1M1mJGpAcxsjMvVRkkjUvlMc/O+xdUGIoJ7hiHGJQW+51vCOMewTP0ZmfK+DCIiKqxcI1L79+/HgQMH4OrqCj8/P/Tq1atCRm6MjIxga2tbYr3g4GDI5XL0799fU2ZsbAw/Pz9s3rwZsbGxsLOzAwB8/fXXJbZ3/fp1REdHY/DgwQAAhUIBuVyOJ0+e4P3339fy3VALv/JPk6nVIgJmnEZ6UvHrn8xtTfD9yOlY//QQfoo7AwAId36KdHclVrqMhqd5o3LFQEREpHUideDAARw/fhyBgYEICwvD+vXrsWnTJnTp0gV+fn54+eWXpYyzVO7evQsHBweYm5sXKPfw8AAA3Lt3T5NIlUb//v3Rs2dPzev169ejfv36GDFihDQBk9ZkMgEdRnvgxNrip3k7jPKAsYEh5jcaiJctXfHJg11IU2XikTIRo8PXY65Df7xVtzMEoexTfUREREA5EikzMzMMGDAAAwYMwIMHD3Do0CEcP34cJ06cwMmTJ1GvXj34+fmhb9++ZUpeyiMxMbHIkav8soSEhDK1Z2JiAhMTE81rY2NjmJqavnDULSEhAYmJiZrXUVFRZeqTSs+5vT16zmqNi9tDC4xMmduaoMMoDzi3t9eU9bBuAXePhlgQsR23Mh4iR1RhefRvuJx2D4sd30ItA1NdvAUiItJzkiz8cHJywrRp0/Duu+/iwoULOHToEC5duoQffvgB/v7+aNu2Lfz8/NC5c2cYGFTcWpPs7GwYGhZe+5K/KD47u3wLnD/44IMS6xw8eBD+/v6FyiMjI6FSqcrV/38pFAqEhIRI2qbesQBavlsPqQ+zoVSoYGQhR63GxsiUJSEkJKlQ9YViT+w0uIzA3FsAgBPJN3Ez5QFmGPWAq6xuZUdP1QCvQyLdqshr0NPTs8Q6kmY1crkcXbp0QZcuXZCUlISjR48iMDAQly5dwuXLl1GrVi0cPHhQyi4LMDY2Rk5O4QXISqVSc7yi9e/fH506/e+hulFRUVi6dCmcnZ0lX5QfEhJSqg+5Rnip9FVbogX6JN/Cxw92IlWViTgxDYuVf2COw+t4u24XTvVRmfA6JNItXV+DFbazuY2NDYYPH47FixejRYsWEEURqampFdUdgLwpvOen1fLll9WpU6dC+8/vw93dXfOHm3hWTd2sX0KAx1y0NM/7fHJFFb6M3o85Ef5IzeWz+oiIqHQqZJ4tIyMDx48fx6FDh3Dnzh2IoggTExN07969IrrTyN9jKj09vcCC8/whPzc3twrt/3lBQUEICgqCQqGotD6pbBoY2+AH9/ew4fEh/Bh7GgBwMvkmwjIe40uXUWhhziSYiIheTNJE6u+//0ZgYCDOnj2L7OxsiKIIT09P+Pn5oUePHjAzM5Oyu0K6deuGXbt24eDBg5p9pJRKJQIDA+Hp6Vlpi94BwMfHBz4+PggPD8fEiRMrrV8qG0NBjjkO/fGyhSs+frATKaoMPFEmYWz4Rsxu+BpG1PPmVB8RERWr3IlUXFwcDh8+jMOHDyMmJgaiKMLa2hr9+/eHn58fnJycJAgT2Lt3LxQKhWaa7vz584iLiwMADB48GBYWFvD09ET37t2xefNmJCcno2HDhjhy5AhiYmKwcOFCSeKg6qmrdXMEeM7Fwogd+Cf9AXJFFVY+OoAraffxmdNbqGVQsb8EEBGRftI6kTpx4gQCAwPx999/Q61WQyaToV27dhV2d15AQABiYmI0r8+cOYMzZ/I2WezduzcsLCwA5N1ZZ2dnh6NHj0KhUMDFxQUrVqyAl5eXpPFQ9VPfqDa2uk/DxseB8I89BQA4lXILw0JXYYXLaM16KiIionyCKIqiNid27doVAFC/fn34+vrC19cX9erVkzQ4ffb8GqkbN25gy5YtvGtPj5xJCcFHkb8gRZUBADCADDMdXsOoel051UcF8Dok0i1dX4NaDxv17NlTZzuY6wOukdJv3lae2P3vVN/19AfIhRqrHh3E1X+n+qwMzEtuhIiIqj2ttz/45JNPmERRtWZvVBvfu0/DO3Y9NGWnU25jWOhq3FA80F1gRERUZUi2j1Rubi52796NSZMmoW/fvgW2Orh79y5Wr16N6OhoqbojqhSGghyzHF7DRrcJsJbnjUI9VT7DO+Eb8WPsaWg5M05ERNWEJCvCs7OzMXfuXNy6dQtWVlYwNzdHVtb/nn1Wv359BAYGwtLSssZMc3Efqeqly79TfQsiduB6eiRyocbqRwdxJe0ePncaDmtO9RER1UiSjEjt2LEDN2/exKRJk7B//374+fkVOG5hYQEvLy9cvnxZiu70go+PD5YvX47p06frOhSSiJ2RNba6T8V4+56asjMpIRgWsgrXFZE6jIyIiHRFkkTq5MmTaN26Nd5++20IglDkXU0NGjRAbGysFN0R6YyBIMeMhn74xm0iav87ChWTk4xx4V/DP+Yk1KJaxxESEVFlkiSRiouLK/HWflNTU6Snp0vRHZHOdbLyQIDHXLSxcAEAqKDGmsd/YMa9rXiWy+lcIqKaQpJEytTUFMnJyS+s8+TJE1hZWUnRHVGVYGdkjS1Np2CCvY+m7GxqKIaFrMY1TvUREdUIkiw2b968OS5cuIC0tDRYWloWOh4bG4uLFy+iS5cuUnSnF7jYvGYwEOSY3rAf2li44MMHv+BZrgKxOckYH/413mvoi7F23SETJLs5loiIqhhJ/oV/6623kJaWhtmzZ+PmzZtQqVQAgKysLFy9ehXz5s2DSqXCsGHDpOhOL3Cxec3SyaoZdnvMRVsLVwB5U33rHh/C9Hvfc6qPiKgak2REysvLC7NmzcL69esLJA59+/YFAMhkMsyZM0fyR6QQVSX1jKzwXdN38e2TY/g+JggiRJxLDcPQkFVY4TwKbSxddB0iERFJTLInCw8cOBBeXl44cOAAQkNDkZqaCnNzc3h4eGDQoEFwdnaWqiuiKstAkOO9hr542dIF70f+jGe5CsTlpGDCnW8wrUFfvGPfg1N9RETViGSJFAA4OTlh5syZxR5XqVSQy+VSdklUJXWs5Y5fPedhUcQOXFHchwpqrH8SiCuK+/jCaQRsDC10HSIREUlAkl+N9+3bV2IdlUqFJUuWSNGdXggKCsKiRYuwYcMGXYdCOlLXsBY2N52Cd+v3hoC8vdUupIZjaOhXuJp2X8fRERGRFCRJpNavX4/Tp08Xe1ytVmPJkiU4c+aMFN3pBS42JwCQCzJMadAX3zWZDFuDvDta43NSMTHsG2w5exR3zz/Gk5BEqNV8Zh8RkT6SZGqvRYsWWLp0KWrVqoU2bdoUOJafRAUHB+ONN96QojsivfNKrabY7TkX70f+jMS/U9DlpDsEhRrBuAEAMLcxQYfRHnBub6/jSImIqCwkGZFavnw5GjVqhI8++gh3797VlKvVanz++ec4ffo0Bg4c+ML1U0TVXR3DWliUPBC+B1vBQmFc4Fh6UhZOrL2GyEsxOoqOiIi0IUkiZW5ujq+++goWFhaYP38+njx5AlEU8dlnn+HkyZMYMGAAZs+eLUVXRHpLrRZxaXsYBECzZup5IoCL20M5zUdEpEcku2vP1tYWq1atwrRp0zB37lw0adIEwcHBeO211zBnzhypuiHSiZuHInHzcPke+6LKUSM7LafY4wLyRqa2zjwCc9G42Hql1cLXGS38uO0IEVFFknT7g0aNGuHLL7/ErFmzcObMGbz22muYP3++lF0Q6YQyMxcZSdmV0tdprxC43bFHo2ibcrWjzMyVKCIiIiqOVomUv7//C497eHjg3r17sLW1LVBXEASMGTNGmy6JdMrI1ABmNuUbJSppRCrfM9sM7B9yFZ2uN8Wr/zSBTCw8DVgaRqaS/p5ERERF0Opf2m3btpWq3o8//ljgdU1KpPjQ4uqlhV/5p8nUahEBM04jPSmr2DrZtXLxpOEzQADOt76DHG8Ry5xHoI5hrXL1TUREFUOrRGrdunVSx1Ht+Pj4wMfHB+Hh4Zg4caKuw6EqQCYT0GG0B06svVZsHd9xbWHkYIJvnhyBGiIupd3F0JBVWOY8Aq/UalqJ0RIRUWlolUh5eXlJHAZRzeDc3h49Z7XGxe2hBUamzG1N0GFU3j5SLqiP1hbOWBT5E+JzUpGYm4bJd7/DpPq9MLl+b8j5rD4ioiqDiyiIKplze3s4trVDTFgSMpOzYWptDPtmNpDJ/rcWqq2lG3Z7zMOHD37GhdRwiBDx3dNj+FsRgWXOI1GXU31ERFUCf7Ul0gGZTEADT1u4vtoADTxtCyRR+WwMLfC120TMaNAPsn/3nbqcdg9DQ77CxdQ7lR0yEREVgYkUURUmE2QYX98HW5tOQz1DKwBAUq4C7979DhsfH0auqNJxhERENRsTKSI90MbSBbs956JzrWYAABEitsQcx+Q73yJOmaLj6IiIai4mUkR6oraBBTa4TcDMhn6Q/3vpXlHcx9DQVbiQGq7j6IiIaiYmUkR6RCbIMM6+J7a6T4OdoTUA4FmuAlPvbsbGx4Gc6iMiqmS8a6+CcENOqkitLZyx23MuPor8BWdTQ/+d6gvCVUUEljuPhJ2Rta5DJCKqEco8IqVWqxEREYGEhIRCx3Jzc3H9+nUp4tJ7Pj4+WL58OaZPn67rUKiasjYwx3q38Zjd8DXNVN/figgMC12F8ylhOo6OiKhmKFMiFRMTg7Fjx+Kdd97Bm2++iUWLFiEl5X8LXVNTUzFr1iypYySiYsgEGcba98AP7tNgr5nqS8fUe5uxgVN9REQVrkyJ1KZNm1CnTh3s2rULW7ZsQXZ2NqZNm1ZgdEoURcmDJKIX87JwRoDnXHSx8tSUfR8ThIl3NiFWmay7wIiIqrkyJVL//PMPpk6divr166NJkyZYtWoVWrZsiffeew+xsbEA8h5MTESVz9rAHOtdx2FOw9dhUGiqL1TH0RERVU9lSqSysrJgaGj4v5NlMixYsADt2rXD9OnT8fjxY8kDJKLSkwkyjLHvjh/c3/vPVN8WrHv8B6f6iIgkVqZEqnHjxggPL7xfzdy5c9GhQwcsWrRIssCISHutLJyw23Muulo115T9EHMS48O/QYzymQ4jIyKqXsqUSHl7e+P48eNFHpszZw569uzJNVJEVYSVgTnWuY7DXIf+mqm+6+mRGBayGmdTQnQcHRFR9VCmRGrkyJFYuXJlscfnzJmD4ODgcgdFRNIQBAGj7bphm/t7aGBUGwCQrErHe/e+x5pHvyOHU31EROXCnc2JaoCWFk4I8JiL7lYvacr8Y09hfPjXeMqpPiIirTGRIqohahmYYY3rO5jvMAAGghwA8E/6AwwLWYXg5Ns6jo6ISD+VO5Hq1q0boqOjpYiFiCqYIAgYadcV/u7voYGRDQAgRZWBGfe3YtWjg5zqIyIqo3I/a4+Ly4vGZ+1RVdbC3BEBHnPwSdQunEq+BQDYHnsa1xWRWOE8Cg2MbXQcIRGRfuDUXgXhs/aoqqtlYIY1Lu9ggcNAzVTfjfQoDAtdhdP/JldERPRiTKSIajBBEDDCzhs/uk/XTPWlqjIx8/4P+Cr6AHLUuZq6arWIJyGJuH/hCZ6EJEKt5mg0EVG5p/aISP+9ZN4YAR5zsThqF04k3wQA7IgLxjVFJL50GQ3lP0pc3B6K9KQszTnmNiboMNoDzu3tdRU2EZHOcUSKiAAAtQxMscplLBY1GgTDf6f6bmU8xPwD/jix9lqBJAoA0pOycGLtNUReitFFuEREVQITKSLSEAQBw+t1wXb3GXAwsoWgBtoFOUNE8dN4F3eEcpqPiGosTu0RVVM3D0Xi5uFIrc9/07AtLja9D0uFyQvrpSdm4ecpJyA3LP/vZS18ndHCz7nc7RARVZZyJ1Jvv/02atWqJUUsRCQhZWYuMpKyy9VG21inUtXLTsspVz/5lJm5JVciIqpCyp1ITZ48WYo4iEhiRqYGMLMxLlcbqhx1qZIkY0tDSUakjEw5SE5E+oX/ahFVUy38yj9NplaLCJhxutBC83wiRJjaGOPt9T0gkwnl6ouISB9JmkipVCrEx8cjISEBublFD9F7eXlJ2SURVSCZTECH0R44sfZaoWP5C9ADu1yHfUod+NRuVdnhERHpnCSJlFqtxo4dO7Bnzx6kpaW9sO7p06el6JKIKolze3v0nNW60D5SmbVycLpbKO67xWFuxI94q25nzHXoDyMZB7qJqOaQ5F+87777Drt27ULt2rXh6+sLW1tbyOVyKZomoirAub09HNvaISYsCZnJ2TC1NoZFEzM8jk7F/WdxAIBd8efwT/oDrHQZjUbGdXQcMRFR5ZAkkTp69CgaNWqEzZs3w8zMTIomiaiKkckENPC0LVC23Hkk2lm6YUX0b1CKuQjNeIS3QlbjU6eh6F3bSzeBEhFVIkkSqczMTPTq1avaJlEzZsxASEiIZpStZcuWWLlypY6jItI9QRDwZt2OaGHeGPMjtiMqOx4KdRbmR2zHlbr3MdehP4xlhroOk4iowkiSSLm4uCAxMVGKpqqsBQsWoHfv3roOg6hKcjdriJ0es/F51K84/CxvYXpA/Hn8o8ib6mtsUlfHERIRVQxJHhEzevRonD17FuHh4VI0R0R6yFxugmXOI/FJ4yEwFvJ+RwvLfIy3QlfjSFLhu/6IiKoDSUakOnbsiPfffx8LFixAp06d4OrqCnNz8yLr9u3bV6s+MjIysGvXLoSEhCA0NBRpaWl4//334evrW6iuUqnE1q1bcezYMaSlpcHV1RUTJkxAu3bttOobADZs2IANGzagSZMmmDZtGlxdXbVui6i6EgQBg+t2RAtzR8yL+BFR2fFIV2djYeQOXFXcxzyHAZzqI6JqRZJESqlU4sKFC0hJScGhQ4cA5P2D+jxRFCEIgtaJVEpKCvz9/WFnZwc3Nzdcu1b8b7jLli3D6dOnMWTIEDg4OODw4cNYsGAB1q1bh5YtW5a573fffRdOTk6Qy+XYu3cv5s+fj59++qnargkjKq+mZg2w02M2lj7cg8CkvwEAu+Mv4B9FFFa6jIYjp/qIqJqQJJHauHEjjh8/DldXV3Tt2rVCtj+wtbXFb7/9BltbW4SFhWHSpElF1gsJCcGJEycwZcoUDB8+HADQp08fjB07Fps2bcKmTZs0dadNm4abN28W2c6oUaMwceJEAICnp6em/O2330ZgYCBu375drhEuourOXG6C/3MagXaWblj+cB+yxVyE/zvV94njUPjatNZ1iERE5SZJInX69Gm4u7vjm2++gYFBxWzGZ2RkBFtb2xLrBQcHQy6Xo3///poyY2Nj+Pn5YfPmzYiNjYWdnR0A4Ouvv9YqFkEQIIqiVucS1SSCIOCNOh00d/VFZsUhQ52NRZE7cCXtHuY3GgATmZGuwyQi0poki82VSiVat25dYUlUWdy9excODg6F1mh5eHgAAO7du1em9tLS0nD58mUolUrk5ORg9+7dSEtLKzBK9byEhASEh4dr/kRFRWn3RoiqkSamDfBLs9l4zaatpmxPwp8YHbYeD7LidBgZEVH5SJL5uLu749GjR1I0VW6JiYlFjlzllyUkJJSpPZVKhc2bN+Phw4cwMDCAm5sbVqxYAQsLiyLrHzx4EP7+/oXKIyMjoVKpytR3SRQKBUJCQiRtk6givS22QkNDM2zLOQ8lVAjPfIJht1dhgmFndDLQzxs4eB0S6VZFXoPFDZo8T5JEauLEiZg9ezYuXLiAV199VYomtZadnQ1Dw8J3BRkZGWmOl4W1tTW2bNlS6vr9+/dHp06dNK+joqKwdOlSODs7w93dvUx9lyQkJKRUHzJRVdIczdE7swPmR/yIiKxYZCEHG3NO4alVJhY0Gqh3U328Dol0S9fXoCSJ1JUrV+Dl5YUPPvgAbdq0KXb7A0EQMGbMGCm6LJaxsTFycnIKlSuVSs3xilSnTh3UqcPnjBG9iJupPX5uNgvLovfhYOJlAMDehIu4mR6FlS5j4GRST8cREhGVjiSJ1LZt2zR/v3r1Kq5evVpkvcpIpGxtbREfH1+oPH/ndSY5RFWDmdwYnzsNR1sLV/zfw73IEnNwJ/Mp3gpdjY8bD4Gf7cu6DpGIqESSJFLr1q2TohlJ5O8xlZ6eXmBULH/+1M3NrVLiCAoKQlBQEBQKRaX0R6SvBtRpj+bmjTVTfZlqJT548DMup93DwsaDYKpnU31EVLNIkkh5eXlJ0YwkunXrhl27duHgwYOafaSUSiUCAwPh6emp2fqgovn4+MDHxwfh4eGa/aiIqGj5U33Lo3/DgcRLAIDfEv/CzfQofOU6Bs4mlXPdEhGVle73KyiDvXv3QqFQaKbpzp8/j7i4vFunBw8eDAsLC3h6eqJ79+7YvHkzkpOT0bBhQxw5cgQxMTFYuHChLsMnohcwkxvjM6e30M7SFUsf7kWWWol7WTEYHroGHzZ+E6/bti25ESKiSiZJInXz5k0EBwdj+PDhRW49kJCQgF27dqF79+5o3ry51v0EBAQgJiZG8/rMmTM4c+YMAKB3796aLQk++OAD2NnZ4ejRo1AoFHBxccGKFSsqdeSMU3tE2nndth2am+VN9d3LikGmWomPHvyCy2n38H7jNzjVR0RViiBKsEX3Rx99hPv372Pnzp3F1nn77bfRpEkTLFmypLzd6ZX8qb0tW7Zw+wOiMshUK7Hi4W/4LfEvTZmriT1WuoyGq6m9DiMriNchkW7p+hqUZGfzsLCwEh8G3KpVK25aR0SlZiozwmKnYfjC6W3NKNT9rBi8HbZWs2UCEZGuSZJIJScnl7itgI2NDZ49eyZFd0RUg7xm2xY7PWbDzSRvFCpLrcTHD3bi4wc7kaEq2wa7RERSkySRsrCw0Cz6Lk5sbCxMTU2l6I6IahhnEzv85DELb9R5RVN2MPEyRoStxd3MpzqMjIhqOkkSKU9PT5w5cwaxsbFFHo+NjcXZs2fx0ksvSdGdXggKCsKiRYuwYcMGXYdCVC2YyozwqeMw/J/TCM1UX0RWLEaGrsX+hEuQYLknEVGZSZJIDR06FNnZ2Zg2bRqOHDmieTBwQkICDh8+jKlTp0KpVGLYsGFSdKcXfHx8sHz5ckyfPl3XoRBVK362L2OXxxw0Ma0PAMgSc/Bp1C58xKk+ItIByTbknDZtGr755hssX74cQN7jYPJ/QxQEAdOnT69SG3cSkf5yMqmHn5rNxMroA9iT8CcA4I+kK7id8RArXcZokiy1WkRMWBIyk7Nham0M+2Y2kMkEXYZORNWMZBtyDhkyBG3atMGBAwcQFhYGhUIBCwsLeHh4YMCAAXBxcZGqKyIimMiM8LHjELS1dMVnUb8iQ52NyKw4jAxdi4WNB6F1hCMubg9DelKW5hxzGxN0GO0B5/ZVZ/sEItJvku5s7urqijlz5kjZpN7ihpxElcPXpg08zBywIGI7wjOfIEvMwU9Bp5F4sCUEFBx9Sk/Kwom119BzVmsmU0QkCUnWSFFhXCNFVHmcTOphR7OZGFLnVQhqoMvJF29+e3FHKNRqLk4novLTq2ftEVH1dvNQJG4ejtT6fBfY4E3b9rBUmLywXnpiFn6ecgJyw/L/LlmvjRm4sTlRzcVEioiqDGVmLjKSynfnnX2SVanqZafllKuffLnZL07aiKh6YyJFRFWGkakBzGyMy9WGKkddqiTJ2NJQkhEpA2OukCCqyZhIEVGV0cLPGS38nMvVhlotImDG6QJ36z1PhAiZtQxvb+gBubz8SRCfIUpUszGRqiC8a49IN2QyAR1Ge+DE2muFjonIW2B+yPs67kTF42PHIbCQc2qOiLTHMekKwrv2iHTHub09es5qDXObgkmS2krE4f43cL9JHI48u4bhoWsQlvFYR1ESUXUg6YhUWloazp8/j759+0rZLBFRmTm3t4djW7tCO5u7pDhg8YMAKNRZeJgdj1Fh6zC/0YC8rRME7npORGUj6YhUbGys5hExRES6JpMJaOBpC9dXG6CBpy1kMgG9arfCLs858DRzAAAoxVx88XAvFkTugEJV9LoqIqLilGlEKjY29oXH8x9WTERUlTUyroMf3Wdg9aOD2Bl/DgBw7Nl1hGZEY6XLGHj8m2QREZWkTInU0KFDXzj0LYoih8aJSC8YyQywqPEbaGvphsVRu5CmykJ0dmLeVJ/DQAyty6k+IipZmRIpS0tLjB8/Hl5eXkUej4qKwuLFiyUIi4iocvjUbolmZg2xIGI7bmdEI0dU4f+i9+Jy2j186jQUlnJTXYdIRFVYmRKppk2bIi0tDc7ORe/zolKpIIp8fhXA7Q+I9ImDsS1+dJ+OtY//wE9xZwAAx5P/QWjII6x0GQ1P80Y6jpCIqqoyLTYfOHAg7O2Lf2K6nZ0dFi1aVO6gqgNuf0CkXwxlBpjfaCDWuL6jGYV6pEzE6PD12Bl3lr8kElGRypRIeXt7o3fv3sUet7S0hK+vb7mDIiLSlR7WLRDgMRcvmTUGAOSIKiyP/g3zIn5EmipTx9ERUVXDDTmJiP6jobEN/N3fw8h6XTVlQck3MCxkFW6nR+swMiKqaphIEREVIW+qbwDWuY5DrX+n+h4rkzA6fD1+jjvDqT4iAiBBItWtWzdER/M3NCKqnrpZv4QAj7loae4IAMgVVfgyej/mRPgjNZdTfUQ1XbkTKf5WRkTVXQNjG/zQdBpG23XTlJ1MvolhoatwTx2nu8CISOc4tUdEVAqGMgPMdeiPda7jYSU3AwA8USZhcfYf+DmWU31ENRUTKSKiMuhm3RwBnnPRytwJAKCCGl8+2o/ZEduQmpuh2+CIqNKVaUNOKj1uyElUfdU3qo2t7tOw8XEg/GNPAQBOJd/CsIxV+NJlNFr8u56KiKo/jkhVEG7ISVS9GQpyzHZ4HfONej831fcMY8M2YEdsMKf6iGoIJlJEROXQRt4Yuz3nwuvfqb5cqPHVowOYdf8HpOSm6zY4IqpwTKSIiMrJ3qg2vnefhnfsemjKTqfcxrDQ1biheKC7wIiowpU7kXr77bdRq1YtKWIhItJbhoIcsxxew0a3CbCWmwMAniqf4Z3wjfgx9jSn+oiqqXInUpMnT4aVlZUUsRAR6b0uVp7/TvU5A8ib6lv96CBm3N+KZE71EVU7FTq1J4oioqOjERsbW5HdEBFVKXZG1tjqPhXj7Xtqys6khGBYyCpcV0TqMDIikpokiVRwcDC++OILpKWlacqePn2KsWPHYtSoURg2bBgWL14MlUolRXdERFWegSDHjIZ++MZtImob5E31xeQkY1z41/CPOQm1qNZxhEQkBUkSqQMHDuDu3buwtLTUlG3cuBEPHjxA69at4erqitOnTyMwMFCK7oiI9EYnKw8EeMxFGwsXAHkbeK55/Adm3NuKZ7ncZ45I30mSSD148AAeHh6a1xkZGfjzzz/Ro0cPrFmzBt999x0cHR2ZSBFRjWRnZI0tTadgor0PBAgAgLOpoRgWshrXONVHpNckSaRSU1NhY2OjeX3jxg2oVCr07Jm3PsDAwABt27bF48ePpeiOiEjvGAhyvNewH75pMgm1DSwAALE5yRgf/jW2xpzgVB+RnpIkkTI3N0dqaqrm9bVr1yCTydCqVStNmYGBAbKysqTojohIb71ayx27PeairYUrgLypvvWPD+G9e98jKYdTfUT6RpJEqnHjxrhw4QJSUlKQlpaGoKAgNG3atMCaqZiYGNSuXVuK7oiI9Fo9Iyt81/RdTLTvpZnqO58ahmGhq3A15T6ehCTi/oUneBKSCLWa+08RVWWSPLR48ODB+PTTTzF48GDNyNOECRMK1AkJCUHTpk2l6E4v8KHFRPQieVN9vmhr6Yr3I39CUq4CliHGOLvxBiwUJpp65jYm6DDaA87t7XUYLREVR5IRqW7dumH27NlwdnZGo0aNMHnyZPj6+mqOX79+Henp6Wjfvr0U3ekFPrSYiEqjQ62m2O05D72jW8D3YEuYK4wLHE9PysKJtdcQeSlGRxES0YtIMiIFAAMHDsTAgQOLPObl5cU79oiIimErt0TrIEekI/vfib7CLu4IhWNbO8hkxdUgIl2QLJEiIqqJnlxMxfVvTparDVWOGtlpOcUmUQCQnpiFn6ecgNyw/BMJLXyd0cLPudztEBETKSKicsnNViMjKbtS+krNyoRxWvn/2VZm5koQDREBWiZS8+bNw/jx4wtswllamZmZ2Lt3L8zMzPDGG29o0z0RUZVhYCyDmY1xyRVfIH9EqiQnfW+j3T0XNI6pU67+jEz5OzSRVLS6mpKTkzFlyhS0atUKffr0gbe3NywsLF54zu3bt3Hs2DGcPHkS2dnZ+OCDD7QKmIioKmnQoRZ8xnUoVxtqtYiAGaeRnlT0XnsiRCgss3DfNQ4RTeLxboM+mGDvA7lQoc+dJ6JS0CqR+v7773H48GH4+/tjxYoVWLlyJRo1agR3d3fUrl0bFhYWUCqVSE1NRXR0NMLDw5GRkQGZTIaePXtiwoQJsLOzk/q9EBHpJZlMQIfRHjix9lqRxwUIiPVNgyjLS6q+eXIEf6dF4P+cR8DW0LLIc4iocmg9vuvr64u+ffvi4sWLCAwMxPXr13Hs2LFC9WQyGVxcXODt7Q0/Pz/UqVO+IWkiourIub09es5qjYvbQwuMTJnbmqDDKA+8064enGPq49snR6GGiItpdzA05CsscxmJ9pZNdBg5Uc1WrolyQRDQsWNHdOzYEUDew4vj4+ORmpoKIyMjWFtbw9nZucRpPyIiykumHNvaISYsCZnJ2TC1NoZ9MxvNlgeT6/dGGwsXLIrYgYTcNCTkpmHynW8xuX5vTKzfi1N9RDog6YpDJycnODk5SdkkEVGNIpMJaOBpW+zxdpZu2O05Dx9E/oyLaXeghohNT4/iqiICy5xHoI5hrUqMloj46wsRkZ6xNbTEpiaTMK2BL2T/7j51Ke0uhoaswl+pd3UcHVHNwkSKiEgPyQQZJtXvhS1Np6Duv6NQiblpmHz3W3zz5AhUolrHERLVDEykSumXX37B4MGD0adPH4wfPx4ZGRm6DomICG0t3RDgMRcda7kDyLur77unxzD57reIz0nVcXRE1R8TqVLYt28f/vrrL3zzzTc4cuQIPvjgAxgYcEM7IqoabA0t8Y3bRExv0E8z1Xc57R6GhnyFi6l3dBwdUfXGRKoEKpUKO3bswIIFC2BnZwdBEODq6gojIyNdh0ZEpCETZJhQ3wdbm05DPUMrAEBSrgLv3v0OXz85zKk+ogqiN4lURkYGfvjhB8ybNw9+fn7w9vbG4cOHi6yrVCqxadMmDBo0CD4+Ppg8eTIuX76sVb/x8fHIzs7G6dOnMWDAAIwYMQK///57ed4KEVGFaWPpggCPuehUqxmAvKm+zU+PY9KdTYhTpug4OqLqR5JE6tSpUyXWUalU2LRpk9Z9pKSkwN/fH1FRUXBzc3th3WXLlmH37t3o1asXZsyYAZlMhgULFuDGjRtl7jc+Ph4KhQLR0dHYvXs3PvvsM2zevBn//POPtm+FiKhC2RhaYKPbBMxs6Af5v//MX1Hcx9DQVbiQGq7j6IiqF0kSqcWLF2PFihXIyir6OVGPHj3ClClTEBAQoHUftra2+O233/Drr79iypQpxdYLCQnBiRMnMGnSJEydOhX9+/fH2rVrYW9vXyiRmzZtGry9vYv8s2XLFgCAsXHew0jHjh0LY2NjuLq6omfPnrh48aLW74WIqKLJBBnG2ffEVvdpsDO0BgA8y1Vg6t3N2Pg4ELmiSrcBElUTkqyYbt++PQIDA3Hz5k18+umnaNLkf48rOHz4MNatW4fs7GyMHDlS6z6MjIxga1v8JnX5goODIZfL0b9/f02ZsbEx/Pz8sHnzZsTGxmqe8/f111+X2F6jRo1gaGgIQRA0Zc//nYioKmtt4YwAzzn4OHInzqaGQoSILTFB+FsRgeXOo1DPyErXIRLpNUlGpFauXIlp06YhJiYGU6ZMwa5du5CWloYlS5ZgxYoVsLS0xNq1azFhwgQpunuhu3fvwsHBAebm5gXKPTw8AAD37t0rU3umpqbo2rUrtm/fDqVSiQcPHuDkyZPo0KF8T3snIqostQ0ssN5tPGY3fE0z1XdVEYGhoatwPiVMx9ER6TfJ7uEfOnQoWrdujc8++wzffvstfvjhByiVSnh7e2P+/PmwtKycJ5QnJiYWOXKVX5aQkFDmNmfPno0VK1bg9ddfh5WVFcaPH49WrVoVWTchIQGJiYma11FRUWXuj4hIajJBhrH2PeBl4YyFETsQk5OcN9V3bzMm2PtgSoM+MBDkug6TSO9IuhmSm5sbXn31VezatQvZ2dmwsrLCuHHjKi2JAoDs7GwYGhoWKs/friA7O7vMbVpaWmLp0qWlqnvw4EH4+/sXKo+MjIRKJe2aBIVCgZCQEEnbJKKy0bfr0AjAZ/LXsEkVjGvqaADA9zFBOBd3C+8ZdYetYP7iBoiqmIq8Bj09PUusI1kiFRsbi88//xy3bt2Cm5sbOnTogJ07d2LSpEmYNm0aBgwYIFVXL2RsbIycnJxC5UqlUnO8IvXv3x+dOnXSvI6KisLSpUvh7OwMd3d3SfsKCQkp1YdMRBVHX6/DdqIXdsQGY/3jQ8iFGmHqGHyUcxBfOL+NzlYeug6PqNR0fQ1KkkidOnUKX331FdLT0/Hmm29i8uTJMDQ0RKdOnfDZZ59hzZo1uHTpEhYuXIhatSr2yeS2traIj48vVJ4/3VanTp0K7b9OnToV3gcRUXnJBBnG2HeHl4UzFkRsR0xOMpJV6Zh2bwvG2ffAtAa+nOojKgXJtj8wNDTEl19+iffee08ztebp6YkffvgBPj4+OHfuHN555x0punshNzc3PHr0COnp6QXK84f9StqDSipBQUFYtGgRNmzYUCn9ERFpo5WFE3Z7zkVXq+aash9iTmJ8+DeIUT7TYWRE+kGSROqVV17Btm3b0L59+0LHzMzM8NFHH+HDDz9EZmamFN29ULdu3aBSqXDw4EFNmVKpRGBgIDw9PTVbH1Q0Hx8fLF++HNOnT6+U/oiItGVlYI51ruMwz2EADP79sXA9PRJDQ1bhTIr+rP8i0gVJpva+/PLLEuv07t0bLVq0KFc/e/fuhUKh0EzTnT9/HnFxcQCAwYMHw8LCAp6enujevTs2b96M5ORkNGzYEEeOHEFMTAwWLlxYrv6JiKorQRAwyq4rWlk4YWHEdjxRPkOKKgPT732PsXbd8V7DfjDkVB9RIZLetVeS+vXrl+v8gIAAxMTEaF6fOXMGZ86cAZCXqFlYWAAAPvjgA9jZ2eHo0aNQKBRwcXHBihUr4OXlVa7+iYiqu5bmjgjwmItPHuzCqZRbAAD/2FO4pojECpdRqG9UW8cRElUtgiiKoq6DqI6CgoIQFBQEhUKBGzduYMuWLbxrj6gaqq7XoSiK+CXuLFY//l3zOBkruRk+cxqObtbNSzibqPLo+hqUZESqqH2TiiIIAsaMGSNFl1Wej48PfHx8EB4ejokTJ+o6HCKiMhEEASPsvNHKwgnzI7bjiTIJKaoMzLy/FaPtumFGQz9O9RFBokRq27ZtLzwuCAJEUaxRiRQRUXXwknljBHjMxadRu3Ay+SYAYHvsaVxXRGKF8yg0MLbRcYREuiVJIrVu3boiyxUKBe7cuYO9e/eibdu2GDRokBTdERFRJaplYIrVLmOxM/4cVj06iFxRhRvpURgWugqfOw1HN+uXdB0ikc5Ikki9aBF3586d0atXL0yYMAHe3t5SdKcXnl8jRUSk7wRBwNv1uqCluSMWRGzHY2USUlWZmHn/B4yq1xUzG/rBUFap9y8RVQmS7CNVkkaNGsHb2xu//PJLZXRXJXAfKSKqjl4yb4xdHnPR0/p/29nsiAvGO3c24kl2kg4jI9KNSkmkAMDa2hoPHz6srO6IiKiC1DIwxSqXsVjUaJBmwfmttIeYcfR7HDz+F56EJEKt5g3hVDNUyjisUqnEpUuXNPs8ERGRfhMEAcPrdUErcyesOXwQnscawFJhgjgkIRCXYGZjjI6jPeHc3l7XoRJVKEkSqSNHjhRZrlKpkJCQgBMnTuDhw4cYPHiwFN0REVEVYXrbEK/sc4GIgiNQ6UlZOLH2GnrOas1kiqo1SRKpZcuWQRCEQuX5e30KgoCePXti8uTJUnSnF7jYnIiqO7VaxMXtoQAAAQV/BggQIELE6R9vwLGtHWSywj8jiKoDSRKpRYsWFVkuk8lgaWmJpk2bok6dOlJ0pTe4IScRVVU3D0Xi5uHIcrejylEjOy2n2OMCBKieqTBn3Va8HOkEuVr7ZbktfJ3Rws9Z6/OJKookiZSvr68UzRARUSVQZuYiIym70vp7VDcJt5s+Qt8/WsAqxUyrNpSZuRJHRSQNbvpBRFTDGJkawMzGuNztlDQilS/DIhtx9qnYNfov9DvXCu5RZX+AvZEpf1xR1aTVd+by5cu17rC4aUAiIqocLfykmSZTq0UEzDiN9KSsYusY1TaE3EUO5ABKo1zs73EVb9XtjLkO/WHEDTypGtDqu/jw4cNadSYIAhMpIqJqQiYT0GG0B06svVZsnS5jXsIbzTvjs6jdOPrsOgBgV/w5/JP+ACtdRqORcc1aP0vVj1aJVEBAgNRxVDu8a4+IagLn9vboOas1Lm4PLTAyZW5rgg6jPDRbH6xwHoV2lm74Mno/lGIuQjMe4a2Q1fjUaSh61/bSUfRE5adVImVvzz1BSsK79oiopnBubw/HtnaICUtCZnI2TK2NYd/MpsCWB4IgYEjdV9HC3BHzI7bjYXY8FOoszI/Yjit172OuQ38Yywx1+C6ItKP1vajp6enIySl5kSEREVV/MpmABp62cH21ARp42ha7b1Qzs4bY5TEbvrVba8oC4s9jdNh6PMyKr6xwiSSjdSLl5+dX6CHEISEh2LNnT7mDIiKi6stcboJlziPxSeMhMBbyJkbCMh/jrdDVOJJU/HoroqpI60RKFEXNzuX5/vrrL2zcuLHcQRERUfUmCAIG1+2In5rNgqNxXQBAujobCyN34IuHe5Ct5owH6Qftt5klIiIqp6ZmDbDTYzb62bTRlO2Ov4BRYesRxak+0gNMpIiISKfM5Sb4P6cR+NRxqGaqL/zfqb7DnOqjKo67oVUQbn9ARFR6giDgjTod0MK8MeZHbEdkVhwy1NlYFLkDV9LuYX6jATCRGek6TKJCOCJVQXx8fLB8+XJMnz5d16EQEemNJqYN8Euz2XjNpq2mbE/CnxgVtg4PsuJ0GBlR0co1InXs2DHcvn1b8/rx48cAgPnz5xdZXxAEfPnll+XpkoiIqjkzuTGWOg1HO0s3LHu4F1liDu5kPsXw0DX42PFN9LN5WdchEmmUK5F6/PixJnl63qVLl4qsLwhF7ytCRET0PEEQMLBOe7xk3hjzI35ERFYsMtTZeD/yZ1xOu4eFjQZxqo+qBK0TKT4mhoiIKpqbqT1+bjYLy6L34WDiZQDAvoS/cDP9IVa6jIaziZ2OI6SaTutEio+JISKiymAmN8bnTsPR1sIV/xe9D1lqJe7+O9X3UeM38Zpt25IbIaogXGxORER6YUCd9vil2Sy4/DsKlalW4sMHv+DTB7uQqVbqODqqqZhIERGR3nD9d6pvgG17Tdn+xEsYGboWEZmxOoyMaiomUkREpFfM5Mb4zOktLHUarllwfi8rBsPD1uD3f9dREVUWbshZQbghJxFRxXrdth2amzXGvIgfcT8rBllqJT56sBOX0+7j/cZvwJR39VEl4IhUBeGGnEREFc/F1A4/e8zCINtXNGUHEi9hROha3M+M0WFkVFMwkSIiIr1mKjPCYqdh+MLpbc0o1P2sGLwdtlazZQJRRWEiRURE1cJrtm2x02M2mpjWBwBkqZX4+MFOfPxgJzJU2TqOjqorJlJERFRtOJvY4admMzG4TgdN2cHEyxgRthb3ONVHFUCyxeY5OTk4e/YswsLCoFAooFari6y3aNEiqbokIiIqxERmhE8ch6KtpSs+j9qDDHU2IrJiMSJ0DT5oPBgD6rQvuRGiUpIkkYqJicGcOXPw5MkTiKJYbD1BEJhIERFRpehn8zI8zRphfsSPuJP5FFliDj6J2oXLaffwQePBMJMb6zpEqgYkSaQ2bNiAx48fo3fv3vDz80PdunUhl8ulaJqIiEhrTib1sKPZTKyMPoA9CX8CAH5PuoLbGdH40mW0Zj0VkbYkSaSuXbuGl19+GR9++KEUzREREUnGRGaEjx2HoK2lKz6L+lUz1TcydC0WNh6EQbavQBAEXYdJekqSxeZqtRpNmjSRoikiIqIK4WvTBjs9ZsPdtAEAIEvMwZKo3fjwwS+8q4+0Jkki5enpiaioKCmaIiIiqjD5U31D6rwKQQ00jK6NO+cf470jm3En/bGuwyM9JMnU3uTJkzF9+nScPn0a3bp1k6JJIiKiCmEsM8SI2M5o6G8JVfL/7jAPPHAJfw+zxbAeXTjVR6UmSSL1559/onXr1li8eDFatWqFpk2bwtzcvFA9QRAwZswYKbokIiLSSuSlGJxYe61QubnCGGlbFfgi81fM9u0Pc7mJDqIjfSNJIrVt2zbN369fv47r168XWa8mJVJ8aDERUdWjVou4uD20yGMCBIgQYf67AYY3XoOVbqPhbtawkiMkfSNJIrVu3TopmqlWfHx84OPjg/DwcEycOFHX4RAR6bWbhyJx83BkudtR5aiRnZZT7HEBAizTTJEbkYvhmWvg81dztLrTGALKPtXXwtcZLfycyxMu6QFJEikvLy8pmiEiIiqSMjMXGUmVd2edmcIYKgM1jna6iQjbOPQ47gkjZdl+ZCozcysoOqpKJHtEDBERUUUxMjWAmU35dyIvaUQqX8OE2riLvGfz3W0Wi4QGaRhw6mXYJVmVui8jU/6IrQkk/ZRv3ryJw4cP4969e0hPT4e5uTmaNGmCPn36oGXLllJ2RURENUgLP2mmydRqEQEzTiM9KavYOua2JlgzYwJOpNzA4gcBUKiz8KxWBn4Z+CfmNxqQt3UC7+qjf0mWSG3YsAF79+7VPGtPEASIoojw8HAcOnQIb775Jt577z2puiMiIiozmUxAh9EeRd61l6/DKA/IZAJ61W6FZmYNsSBiO0IyHkEp5uKLh3txOe0+PnUcCgve1UeQaEPOw4cPY8+ePXBwcMDHH3+Mffv24dSpU/jtt9/wySefwMHBAXv27MGRI0ek6I6IiEhrzu3t0XNWa5jbFEyEzG1N0HNWazi3t9eUNTKugx/dZ2B43c6asmPPruOt0FUIzXhUaTFT1SXJiNSBAwdQt25dfPvtt7CwsNCU29jYoGfPnnjllVcwduxY7N+/H3379pWiSyIiIq05t7eHY1s7xIQlITM5G6bWxrBvZgOZrPCUnZHMAIsav4G2lm5YHLULaaosRGcnYlTYOsx3GIihdTnVV5NJMiIVGRmJrl27FkiinmdhYYGuXbsiMrL8t64SERFJQSYT0MDTFq6vNkADT9sik6jn+dRuiV0ec9HcrBEAIEdU4f+i92J+xHakqTIrI2SqgiRJpEqD2ToREek7B2Nb/Og+HSPreWvKjif/g7dCViMkPVqHkZGuSJJIOTs7Izg4GBkZGUUez8jIQHBwMJyduTEZERHpN0OZAeY3Gog1ru/AUm4KAHikTMTo8PXYGXdWc9MV1QySJFL9+/dHfHw8pkyZgtOnTyM5ORkAkJycjNOnT2PKlCmIj4/HgAEDpOiOiIhI53pYt0CAx1y8ZNYYQN5U3/Lo3zA3wh+puZzqqykkWWzer18/3L17F/v27cPixYsB/G/7AwAQRRFvvPEGfH19peiOiIioSmhobAN/9/ew7vEh7IgLBgCcSL6JsIzHWOkyBs3NG+k4Qqpoku0jNXPmTHTr1q3IDTn79u2LVq1aSdVVpevTp0+B11lZWZgyZQreeustHUVERERVhaHMAPMaDUBbS1d8/GAnUlWZeKxMwujw9Zjj8DrertuF64SrMUkSqdjYWFhYWKBVq1bFJkwZGRlIS0uDnZ2dFF1WqqNHj2r+npCQgCFDhsDb2/sFZxARUU3TzfolBHjMxcLIHbiRHoVcUYUvo/fjStp9LHEchloGZroOkSqAJGukhg0bhl9//fWFdfbs2YNhw4ZJ0Z1OHT9+HM2bN0eDBg10HQoREVUxDYxt8IP7exhj101TdjL5JoaFrsbN9CjdBUYVRpJEqjR3KJT3LoaMjAz88MMPmDdvHvz8/ODt7Y3Dhw8XWVepVGLTpk0YNGgQfHx8MHnyZFy+fLlc/ec7duxYoak+IiKifIaCHHMc+mO963hYyfNGoZ4okzA2fCN+ig3mXX3VTKXtIxUfHw8zM+2HNVNSUuDv74+oqCi4ubm9sO6yZcuwe/du9OrVCzNmzIBMJsOCBQtw48YNrfsHgPv37yM6OhrdunUrVztERFT9dbVujgDPuWhl7gQAyBVVWPnoAGbf34bU3KK3CyL9o/UaKX9//wKvr10r+gGQarUacXFxOHHiBDw9PbXtDra2tvjtt99ga2uLsLAwTJo0qch6ISEhOHHiBKZMmYLhw4cDyFssPnbsWGzatAmbNm3S1J02bRpu3rxZZDujRo3CxIkTC5QdPXoUnTp1gqWlpdbvg4iIao76RrWx1X0aNj4OhH/sKQDAqZRbGBa6CiucR6GlhZNuA6Ry0zqR2rZtm+bvgiDg+vXruH79erH169Spg3fffVfb7mBkZARbW9sS6wUHB0Mul6N///6aMmNjY/j5+WHz5s2IjY3VLHj/+uuvS92/Wq1GUFAQ5s6dW/bgiYioxjIU5Jjt8DpetnTFR5G/IEWVgSfKZ3gnfCNmOryGUfW68q4+PaZ1IrVu3ToAeWufZs2aBV9f3yIfSCyTyVCrVi00btwYMlnFzyTevXsXDg4OMDc3L1Du4eEBALh3755Wdw5evXoVubm5eOWVVySJk4iIahZvK0/s9pyLhRE/4Xp6JHKhxqpHB3El7T4+d3oLVgbmJTdCVY7WiZSXl5fm72PHjkXr1q0LlOlKYmJikSNX+WUJCQlatXvs2DH07NkTBgYv/pIlJCQgMTFR8zoqindpEBFRHnuj2vjefSq+fnwY22JPAgCCU25jWOhqrHAehVac6tM7kuwj9c4770jRjCSys7NhaGhYqNzIyEhzXBsffvhhqeodPHiw0PoxAIiMjIRKpdKq7+IoFAqEhIRI2iYRlQ2vQ9JGb7igrpEhvlGehgLZeKp8hnfCN+Atg3boZ9ACMk71lVpFXoOlWdst2c7mAHDz5s0idzbv06cPWrZsKWVXxTI2NkZOTk6hcqVSqTlekfr3749OnTppXkdFRWHp0qVwdnaGu7u7pH2FhISUawE/EZUfr0PSlic84aN8BQsjd+CaIhIqiPg59xKizRX43Gk4rDnVVyq6vgYlS6Q2bNiAvXv3avbHyH/WXnh4OA4dOoQ333wT7733nlTdFcvW1hbx8fGFyvOn2+rUqVOh/depU6fC+yAiourBzsga3zedim+eHMHWmBMAgDMpIRgWsgpfuozmVJ8ekCSROnz4MPbs2YNGjRpp1kvZ2Njg2bNnuHbtGrZt24Y9e/bAzc2tyAXpUnJzc8O1a9c0I2L58of9StqDSipBQUEICgqCQqGolP6IiEg/GQhyzGjoh5ctXPDhg1/wLDcdMTnJeCd8I2Y07IfRdt0gEypt20cqI0k+mQMHDqBu3br49ttv4ePjA1tbWwiCABsbG/Ts2RPffvst6tSpg/3790vR3Qt169YNKpUKBw8e1JQplUoEBgbC09Oz0p715+Pjg+XLl2P69OmV0h8REem3TlYeCPCYizYWLgAAFdRY8/gPzLj/A57l8pfyqkqSEanIyEi89tprsLCwKPK4hYUFunbtij/++KNc/ezduxcKhUIzTXf+/HnExcUBAAYPHgwLCwt4enqie/fu2Lx5M5KTk9GwYUMcOXIEMTExWLhwYbn6JyIiqkh2RtbY0nQKvn1yFN/HnIAIEWdTQjAsZDVWuIxCawtnXYdI/yHpYvMXkWKzsYCAAMTExGhenzlzBmfOnAEA9O7dW5PIffDBB7Czs8PRo0ehUCjg4uKCFStWVIntGYiIiF7EQJDjvYb90MbSFR9E/oxnuQrE5iRjfPjXeK+hL8badedUXxUiSSLl7OyM4OBgjB8/vsjn6WVkZCA4OBjOzuXLpHfv3l2qesbGxpg6dSqmTp1arv7Kg2ukiIioPF6t5Y7dHnPxfuRPuKK4DxXUWPf4EK6m3cdS57dR26DoWSCqXJKktP3790d8fDymTJmC06dPIzk5GQCQnJyM06dPY8qUKYiPj8eAAQOk6E4vcI0UERGVVz0jK3zX9F1MtO8FAQIENRB5Oxbz9mxD8NVbUKtFXYdY40kyItWvXz/cvXsX+/btw+LFiwH8b/sDIO8xMm+88QZ8fX2l6I6IiKjGyJvq80WTe3YI++UhzNPy9kO8i2jctYpGj3e84NK+vo6jrLkkWyM1c+ZMdOvWrcgNOfv27YtWrVpJ1RUREVGNEnkpBtHfxcIcBTeVFlNEnFh7DenTs9Gio5NugqvhJF1s3qpVKyZM/+IaKSIikoJaLeLi9tAijwkQIELESf/ryPbMRVurytkrkf6n0u7aq2l8fHzg4+OD8PBwTJw4UdfhEBFRJbt5KBI3D0eWux1VjhrZaYUffZZPgADzNGN8emInnBPqoeMNNwjQ7k75Fr7OaOHHLRbKgokUERFRBVBm5iIjKbvS+jPNMMbZl8MRZZuAXoEvwSzTqMxtKDNzKyCy6k2yRConJwdnz55FWFgYFAoF1Gp1kfUWLVokVZdERERVlpGpAcxsjEuuWIKSRqTyZZjnJW0PnRIRMPYiXg9ujcYxZXv2q5Epx1fKSpKvWExMDObMmYMnT55o7tQriiAITKSIiKhGaOEnzTSZWi0iYMZppCdlFVvH3NYEn3Qfhg+ifkZibhoUZtkI8P0L7zbogwn2PpBzA88KI0kitWHDBjx+/Bi9e/eGn58f6tatC7lcLkXTeouLzYmISAoymYAOoz1wYu21Yut0GOUBZ2t77Dafiw8if8ZfaXehhohvnhzB32kR+D/nEbA1tKzEqGsOQXzREFIp9evXD82aNcPq1auliKlayV9svmXLFri7u0vadkhICDw9PSVtk4jKhtchVZbISzG4uD20wMiUua1JXhLV3l5TphLV+D4mCN8+OQo18n7E1zGwxDKXkWhv2aTS465our4GJRmRUqvVaNKk+n04REREVYVze3s4trVDTFgSMpOzYWptDPtmNpDJCt6hJxdkmFy/N9pYuGBRxA4k5KYhITcNk+98i8n1e2Ni/V6c6pOQJF9JT09PREVFSdEUERERFUMmE9DA0xaurzZAA0/bQknU89pZumG35zx0sGwKAFBDxKanR/Hu3e+QkJNaWSFXe5IkUpMnT8bff/+N06dPS9EcERERScDW0BKbmkzCew18Ift3b6lLaXcxNGQV/kq9o+Poqgetpvb8/f0LlbVu3RqLFy9Gq1at0LRpU5ibmxeqIwgCxowZo02XREREpAWZIMPE+r3Q2sIZiyJ/QnxOKhJz0zD57neYVL8XJtfvzam+ctAqkdq2bVuxx65fv47r168XeawmJVK8a4+IiKqStpZuCPCYiw8f/II/U8MhQsR3T4/hb0UEljmPRF3DWroOUS9plUitW7dO6jiqHT4ihoiIqhpbQ0t84zYR22JOYuOTw1BDxOW0exga8hWWOY9Eh1pNdR2i3tEqkfLy8pI4DCIiIqoMMkGG8fV90NrCBQsjdyAuJwVJuQq8e/c7TKzvg3fr9+FUXxmU6yt169YtzJw5E3369EHfvn0xZ84chISESBUbERERVZA2li4I8JiLTrWaAQBEiNj89Dgm3dmEOGWKjqPTH1onUvfv38esWbNw/fp1ZGVlITMzE1evXsWsWbMQGVn+p10TERFRxbIxtMBGtwmY2dAP8n9TgiuK+xgaugoXUsN1HJ1+0DqR+vnnn5GTk4NRo0Zh//792L9/P8aMGYPs7Gz88ssvUsZIREREFUQmyDDOvie2uk+DnaE1AOBZrgJT727GxseByBVVug2witM6kbpx4wZatGiBCRMmoHbt2qhduzbGjRuHli1bFnvXHhEREVVNrS2cEeA5B11qeQDIm+rbEhOEiXc2IVaZrNvgqjCtE6lnz56hefPmhco9PT3x7NmzcgVVHQQFBWHRokXYsGGDrkMhIiIqldoGFljvNh6zG76mmer7WxGBYaGrcD4lTMfRVU1aJ1K5ubkwNTUtVG5iYoLc3NxyBVUd+Pj4YPny5Zg+fbquQyEiIio1mSDDWPse+MF9Guw1U33pmHpvM9Y/PsSpvv/g/Y1ERERUiJeFMwI856KLlaembGvMCUy48w2n+p6j1T5S+Y4dO4bbt28XKHv8+DEAYP78+YXqC4KAL7/8sjxdEhERUSWxNjDHetdx2BEbnDcaBTWuKSIxNGQVvnB+G52tPHQdos6VK5F6/PixJnH6r0uXLhUqE4Tin1JNREREVY9MkGGMfXd4WThjQcR2xOQkI1mVjmn3tmCcfQ9Ma+ALA0Gu6zB1RutEKiAgQMo4iIiIqAprZeGE3Z5z8fGDXQhOyZuN+iHmJP5Oi8QKl5GwN6qt4wh1Q+tEyt7eXso4iIiIqIqzMjDHOtdx2BEXjHWP/kAu1LieHolhIaux1Hl4gfVUNQUXmxMREVGpCYKA0XbdsM39PTT4dxQqWZWO9+59jzWPfkdODburj4kUERERlVlLCycEeMxFd6uXNGX+sacwPvxrPFXWnP0ky7XYnIoXFBSEoKAgKBQKXYdCRERUIWoZmGGN6zv4Oe4M1jz+A7miCv+kP8CwkFX43Gk4uloX3ri7uuGIVAXhhpxERFQTCIKAkXZd4e/+HhoY2QAAUlQZmHF/K1Y/Oljtp/qYSBEREVG5tTB3RIDHHPSwbqEp+zH2NMaFb8ST7CQdRlaxmEgRERGRJGoZmGG1y1gsaDRQs7fUjfQoDAtdhdPJt0s4Wz8xkSIiIiLJCIKAEfW88aP7dDT8d6ovVZWJmfe34qvoA8hRV6/n8TKRIiIiIsm9ZN4YuzzmoudzU3074oLxzp3qNdXHRIqIiIgqRC0DU6x0GoP5Wa/DI6wBGkbXxq20hxgaugqnkm/pOjxJcPsDIiIiqhCRl2JwcXsospKy4IO8rRDSLLJwtkc4Zql+wMh63pjV8DUYyvQ3HeGIFBEREUku8lIMTqy9hvSkrALlFgpj+B5sCde79fBT3BmMCd+AR9mJOoqy/JhIERERkaTUahEXt4cWeUz4978up9whqIHbGdF4K3QVTjy7UclRSkN/x9KIiIhIUjcPReLm4chyt6PKUSM7LeeFdSzTTND0jj3Cm8UgTZWFORH+eDnECd0ue8BALS91X/XamMFTh89KZiJFREREAABlZi4ykrIrrb8eRzyhEkTcc48FAFz1fIBom0T0/aMlrFLMStVGbrZJRYZYIiZSREREBAAwMjWAmY1xudspzYgUAJibmeCNC21xPfEhTrS/DZWBGnH2adg1+i/0O9cK7lH1S2zDwFi3q5SYSFUQPrSYiIj0TQs/Z7Twcy53O2q1iIAZpwstNH+eua0Jhq3rBplMwAgAoRmPsCBiOx5mJ0BplIv9Pa7irbqdMdehP4xecFdfSEhIueMtDy42ryB8aDEREdVUMpmADqM9XlinwygPyGSC5rWHmQN2esxBn9pemrJd8ecwOnw9orMTKirUcmMiRURERJJzbm+PnrNaw9ym4Bomc1sT9JzVGs7t7QudYyE3wQrnUfio8ZswEvJGoUIzHuGtkNU49ux6ZYRdZpzaIyIiogrh3N4ejm3tEBOWhMzkbJhaG8O+mU2Bkaj/EgQBQ+q+ipbmjpgXsR0Ps+OhUGdhfsR2XKl7H3Md+sNYZliJ7+LFOCJFREREFUYmE9DA0xaurzZAA0/bFyZRz3M3a4hdHrPhW7u1piwg/jxGh63Hw6z4igq3zJhIERERUZVkLjfBMueR+KTxEBj/O9UXlvkYb4WuxpGkazqOLg8TKSIiIqqyBEHA4Lod8VOzWXA0rgsASFdnY2HkDnzxcA+UYq5O42MiRURERFVeU7MG2OkxG/1s2mjKdsdfwCfZvyNKh1N9TKSIiIhIL5jLTfB/TiPwqeNQzVRflJiIt0JX43F2kk5iYiJFREREekMQBLxRpwN+9pgFZ5N6AACf2i3R0NhGJ/EwkSIiIiK908S0AX5pNhsDDFrh/UZv6CwOJlJERESkl8zkxnjLsB3M5OV/PqC2mEgRERERaYk7m5fC3bt3sWbNGkRERMDKygqjRo3Ca6+9puuwiIiISMc4IlUKS5cuRfv27REYGIjPPvsMGzZswIMHD3QdFhEREekYE6lSiImJQc+ePSGTyeDu7g5HR0c8fPhQ12ERERGRjulNIpWRkYEffvgB8+bNg5+fH7y9vXH48OEi6yqVSmzatAmDBg2Cj48PJk+ejMuXL2vd9+DBg3H8+HHk5uYiJCQEcXFx8PT01Lo9IiIiqh70JpFKSUmBv78/oqKi4Obm9sK6y5Ytw+7du9GrVy/MmDEDMpkMCxYswI0bN7Tq+5VXXsGRI0fQq1cvTJs2DZMnT0adOnW0aouIiIiqD71ZbG5ra4vffvsNtra2CAsLw6RJk4qsFxISghMnTmDKlCkYPnw4AKBPnz4YO3YsNm3ahE2bNmnqTps2DTdv3iyynVGjRmHixIlITU3FwoULsWjRInTp0gUPHjzAvHnz4OLiAnd3d+nfKBEREekNvUmkjIyMYGtrW2K94OBgyOVy9O/fX1NmbGwMPz8/bN68GbGxsbCzswMAfP311yW29/jxY5iYmKBbt24AAFdXV7z00kv4559/mEgRERHVcHoztVdad+/ehYODA8zNzQuUe3h4AADu3btXpvYaNWqE7OxsnD17FqIo4sGDB7hx4wZcXFyKrJ+QkIDw8HDNn6ioKO3eCBEREVV5ejMiVVqJiYlFjlzllyUkJJSpPQsLCyxZsgTffvstli5dilq1amHo0KFo27ZtkfUPHjwIf3//QuWRkZFQqVRl6rskCoUCISEhkrZJRGXD65BItyryGizNjWXVLpHKzs6GoaFhoXIjIyPN8bJq37492rdvX6q6/fv3R6dOnTSvo6KisHTpUjg7O0s+FRgSEsK7B4l0jNchkW7p+hqsdomUsbExcnJyCpUrlUrN8YpUp04d3tFHRERUQ1S7NVK2trZITEwsVJ5fxiSHiIiIpFLtRqTc3Nxw7do1pKenF1hwnj9/WtIeVFIJCgpCUFAQUlNTAaBCFp0/fPgQcrlc8naJqPR4HRLpVkVfg46OjjAxMSn2eLVLpLp164Zdu3bh4MGDmn2klEolAgMD4enpqdn6oKL5+PjAx8cHx44dw61bt7B06dJK6ZeIiIiks2XLlheucdarRGrv3r1QKBSaabrz588jLi4OQN5jXCwsLODp6Ynu3btj8+bNSE5ORsOGDXHkyBHExMRg4cKFlR5z+/bt8dFHH2H//v2YOXNmqc7ZsGEDpk+f/sI6+YvYP/roIzg6OkoRqt4rzddNlyo7vorqT6p2y9OONueW9Rxeh9rhdVg5/UnRbmVfg2U9r6pcgyW1q1eJVEBAAGJiYjSvz5w5gzNnzgAAevfuDQsLCwDABx98ADs7Oxw9ehQKhQIuLi5YsWIFvLy8Kj1ma2tr9O7dGydPniz1XXsWFhalruvo6MiNQf9Vlq+bLlR2fBXVn1Ttlqcdbc4t6zm8DrXD67By+pOi3cq+Bst6nr5cg3qVSO3evbtU9YyNjTF16lRMnTq1giMqPR8fnwqpS/9T1b9ulR1fRfUnVbvlaUebc8t6TlX/fqqqqvrXjdehNG1oe251/FkoiKIo6joIKrvw8HBMnDixxLlbIqo4vA6JdKsqXIPVbvuDmsLW1hZjx44t1fMHiahi8Dok0q2qcA1yRIqIiIhISxyRIiIiItISEykiIiIiLTGRqsaUSiWWL1+ON998E3379sW7776LW7du6Tosohpl5cqVGDhwIPr27YsxY8bg/Pnzug6JqEa6desWunbtih9//FHSdrlGqhrLzMxEQEAAfH19UbduXZw6dQpr165FQEAAzMzMdB0eUY0QFRWF+vXrw8jICKGhoZgzZw527doFKysrXYdGVGOo1WpMnToVoiji1VdfxZgxYyRrmyNS1ZipqSnGjh0LOzs7yGQy9OzZEwYGBoiOjtZ1aEQ1hqOjI4yMjAAAgiAgJycHCQkJOo6KqGb5/fff4eHhUSG7n+vVhpzVXUZGBnbt2oWQkBCEhoYiLS0N77//Pnx9fQvVVSqV2Lp1K44dO4a0tDS4urpiwoQJaNeuXbHtR0dHIy0tDQ0bNqzIt0GktyrqGly9ejUCAwOhVCrRoUMHuLi4VMbbIdI7FXENpqSk4Ndff8WmTZuwYcMGyWPmiFQVkpKSAn9/f0RFRcHNze2FdZctW4bdu3ejV69emDFjBmQyGRYsWIAbN24UWT87OxtLly7FiBEjNI/SIaKCKuoanDNnDo4ePYo1a9agXbt2EAShot4CkV6riGtwy5YtGDJkCCwtLSsmaJGqjOzsbDEhIUEURVEMDQ0Vu3TpIgYGBhaqd/v2bbFLly7iL7/8oinLysoS33rrLfHdd98tVD8nJ0dcsGCBuGTJElGtVlfcGyDScxV1DT5v4cKF4oULF6QNnKiakPoaDA8PF8ePHy/m5uaKoiiKX3zxhejv7y9pzByRqkKMjIxKtTtrcHAw5HI5+vfvrykzNjaGn58fbt++jdjYWE25Wq3G0qVLIQgCPvjgA/4mTPQCFXEN/pdKpcLjx48liZeoupH6Grx+/Tqio6MxePBgDBw4ECdPnsQvv/yCZcuWSRYz10jpobt378LBwQHm5uYFyj08PAAA9+7dg52dHQDgq6++QmJiIr766isYGPDjJpJCaa9BhUKBP//8E506dYKRkRHOnj2La9euYdKkSboIm6jaKO012L9/f/Ts2VNzfP369ahfvz5GjBghWSz8yaqHEhMTi8zY88vy7wiKiYnBH3/8ASMjowJZ+5dffolWrVpVTrBE1VBpr0FBEPDHH39gzZo1EEURDRs2xMcff4wmTZpUarxE1U1pr0ETExOYmJhojhsbG8PU1FTS9VJMpPRQdnY2DA0NC5Xn32KdnZ0NALC3t8eZM2cqNTaimqC016C5uTnWrVtXqbER1QSlvQb/64MPPpA8Fq6R0kPGxsbIyckpVK5UKjXHiaji8Bok0q2qdA0ykdJDtra2SExMLFSeX1anTp3KDomoRuE1SKRbVekaZCKlh9zc3PDo0SOkp6cXKA8JCdEcJ6KKw2uQSLeq0jXIREoPdevWDSqVCgcPHtSUKZVKBAYGwtPTU3PHHhFVDF6DRLpVla5BLjavYvbu3QuFQqEZnjx//jzi4uIAAIMHD4aFhQU8PT3RvXt3bN68GcnJyWjYsCGOHDmCmJgYLFy4UJfhE+k9XoNEuqVv16AgiqJYqT3SCw0dOhQxMTFFHgsICED9+vUB5N2RkP+MIYVCARcXF0yYMAHt27evzHCJqh1eg0S6pW/XIBMpIiIiIi1xjRQRERGRlphIEREREWmJiRQRERGRlphIEREREWmJiRQRERGRlphIEREREWmJiRQRERGRlphIEREREWmJiRQRERGRlphIERHpyO7du9GjRw88ffpUU3b48GF4e3vj8OHDOozsf/744w9069YN9+/f13UoRFUSEykiksTTp0/h7e39wj9Dhw7VdZhVRlpaGrZv345+/fppnh1WUS5dugRvb2/MnTu3xLqfffYZvL29cfz4cQBA3759YWdnh02bNlVojET6ykDXARBR9dKwYUP06tWryGMWFhaVHE3VtXv3bqSmpmL48OEV3lfbtm1hZ2eHq1evIjY2FnZ2dkXWUygUOHv2LCwsLODt7Q0AMDAwwNChQ7Fu3TrcvHkTLVq0qPB4ifQJEykiklTDhg0xbtw4XYdRpeXm5uKPP/5AixYt0LBhwwrvTyaTwdfXF/7+/jhy5AjGjBlTZL2goCBkZ2ejX79+MDY21pT37NkTGzduxIEDB5hIEf0Hp/aISGe8vb0xY8YMJCUl4YsvvsDrr78OHx8fvPvuu7h27VqR52RkZOCHH37A6NGj4ePjg379+mHu3Lm4ceNGobozZsyAt7c3srOzsWXLFrz11lvo3r07fvjhB02d4OBgTJw4ET4+PhgwYAC+/PJLpKWlYejQoQWmIj///HN4e3sjJCSkyLi2bt0Kb29vBAUFlfi+L126hMTERHTr1q3Euvni4uIwZswY+Pj44PTp05ryZ8+eYcOGDRg+fDh69uyJ119/HR999BEiIiIKnN+vXz8IgoDDhw9DFMUi+wgMDAQA+Pn5FSi3trZG69atcfr0aWRkZJQ6ZqKagIkUEemUQqHAtGnT8ODBA/Tu3Rve3t4IDw/HvHnzCiUDqampmDJlCvz9/WFpaYkBAwbA29sbd+7cwcyZM3H27Nki+/j4449x5MgRtG7dGm+++aZmTdKhQ4fw8ccf49GjR+jTpw/69u2L27dvY86cOcjNzS3QRv/+/TXn/JdKpUJgYCCsrKw0U2IvcvXqVQBA8+bNS/4CAXjw4AGmTp2KuLg4rFy5UpOAPX78GBMmTMCvv/6KBg0a4I033kCHDh1w6dIlTJkypUDSZ29vj5dffhlPnjwpMkmNiIhAWFgYmjRpgqZNmxY63rx5cyiVSty6datUMRPVFJzaIyJJPX78uMCIz/OaN2+OV155pUDZvXv3MHDgQMyaNQsyWd7vdm3atMGXX36Jffv2Yd68eZq6a9euRWRkJBYsWIDXXntNU/7s2TNMnDgRK1euRPv27QtMSwFAYmIitm3bhlq1amnK0tLSsH79epiammLz5s1o1KgRAGDixImYN28ewsPDYW9vr6nfqlUrODk54cSJE3jvvfdgamqqOXbp0iXEx8djyJAhMDIyKvFrdPPmTchkMri5uZVY9/bt21i4cCEMDAywYcOGAud88cUXSEpKwldffYX27dtrykePHo2JEyfiyy+/hL+/v6bcz88PV65cQWBgINq0aVOgn+JGo/K5u7sDAG7dulWgL6KajiNSRCSpx48fw9/fv8g/f/31V6H6pqamePfddzVJFJB3p5hcLkdYWJimLDk5GadOnUKbNm0KJFEAULt2bQwfPhzJycma0Z7nvfPOOwWSKAA4d+4cMjMz0a9fP00SBeQtrp4wYUKR761///7IyMjAiRMnCpT/8ccfAIDXX3+9uC9LAfHx8bCwsCgx6frzzz8xe/ZsWFpa4ptvvimQRN25cwe3bt1Cnz59CiU2jRo1wmuvvYaIiIgCo3pdunSBlZUVgoODkZ6erinPzc3FsWPHYGRkVOyNAjY2NgDyphiJ6H84IkVEkmrfvj2++uqrUtd3cHCAmZlZgTIDAwPY2NhAoVBoysLCwqBSqZCTk1PkiNejR48AAFFRUXj11VcLHPPw8ChUP39fpJYtWxY65unpCblcXqi8T58++O677/DHH39okrmkpCRcuHABL730EpycnEp4t3lSU1NRt27dF9Y5deoULl++DFdXV6xcuRK1a9cucDx/2u7Zs2dFfj0ePnyo+b+LiwsAaBKlPXv2ICgoCAMGDAAAnD9/HsnJyfDx8YGlpWWR8eSXp6SklOo9EtUUTKSISKfMzc2LLJfL5VCr1ZrXqampAPKmxW7evFlse1lZWYXK8kdTnpc/IvPfBAXIu8vNysqqULmlpSW6d++OI0eOICIiAi4uLjh8+DBUKlWpR6MAwNjYGEql8oV1bt++DZVKhZYtWxYZY/7X488//8Sff/5ZbDuZmZkFXvv5+WHPnj0IDAzUJFIlTesB0MRrYmLywriJahomUkSkF/ITrmHDhmHatGllOlcQhGLbe/bsWaFjarUaKSkpRY4aDRgwAEeOHMHvv/+OmTNn4tChQzA3N0f37t1LHY+VlRXi4+NfWGfSpEk4d+4c9uzZA7lcXug958c/c+ZMDB48uNR9u7q6olmzZggNDUVkZCQsLS1x6dIl1K9fv9C6qeflJ27W1tal7ouoJuAaKSLSC82aNYMgCLh9+7Yk7bm6ugJAkaNboaGhUKlURZ7XvHlzuLq64vjx47h06RIePXqEXr16lWmkxsXFBUqlErGxscXWMTIywhdffIGOHTsiICAAGzduLHA8f7pSm69H/sjToUOHcPToUahUKs32CMXJnyrMnyYkojxMpIhIL9ja2qJ79+64desWdu7cWeReSCEhIUVO7RWlc+fOMDU1xaFDh/D48WNNeW5uLrZu3frCc/v374/U1FQsX74cAAotfi+Jl5eXJt4XMTIywtKlS/Hqq69i9+7d2LBhg+aYp6cnPD09ceLEiUKL34G8UbXr168X2a6Pjw9MTExw7NgxBAYGQiaToW/fvi+MJTQ0tEDsRJSHU3tEJKkXbX8AACNGjCi0PUFpzZkzB9HR0di0aROOHj2K5s2bw8LCAvHx8QgLC8OjR4/w22+/lWp0yNLSEu+99x5WrlyJiRMnokePHjA3N8fFixdhZGSEOnXqFDtC07t3b3z77bdISEiAu7t7kfsuvUjnzp3x9ddf48qVKyVOCRoaGuLzzz/HJ598gl9//RWiKGLGjBkAgE8++QSzZs3CkiVLsGfPHjRp0gTGxsaIi4vDrVu3kJKSUuQGoebm5ujatSuOHj2K5ORkvPLKK8U+NgYARFHE1atX4ejoWOAORyJiIkVEEsvf/qA4Q4YM0TqRqlWrFr755hvs27cPJ0+eRFBQENRqNWxsbODm5oYxY8YUuUi8OK+//josLS2xY8cOHDlyBObm5uj0/+3dsUvjYBzG8eccXDoWhLb0bygooYNkMIhLpw6WolA7ZmmDuyDi5B+RpYsURDoUSlsoBZd2UCq4d0iHmCxKJ6fecNyBaHsYOZTL9zO/IW+2h7y/PNnelm3b2t/fX/r7lkQiIdM01ev1Pvw2SpJSqZQMw9BwOJTjOH+tQfgdpk5PT3V1daXFYiHHcZROp+W6rprNpm5ubtTpdLS2tqZkMqlcLreyOb1QKKjb7Ur61Xq+yv39vR4fH1Wr1T78rMD/7sdi2b8CACCmZrOZDg4OtLOzo7Ozs3fXHB0dyfd9XV9fL/3ycJXb21sdHx/r5OREe3t7n93yP3V+fq7xeKzLy8ul9QhAXDEjBSC25vP5mxqCl5eXP4Pdpmm+e91oNNJ0OtXu7m6kECVJW1tbyufzajQar2oevhvP8zQYDFSpVAhRwDs42gMQW5PJRBcXFzIMQxsbG3p+ftbd3Z1839fm5qYsy3q1vtVqKQgCtdttra+v6/Dw8FP3r9fr6vf7CsNw5YzSVwqCQNVqVcVi8au3AnxLHO0BiC3P8+S6rh4eHvT09CRJymQysixL5XL5zSxXqVRSGIbKZrOybftNgzqA+CFIAQAARMSMFAAAQEQEKQAAgIgIUgAAABERpAAAACIiSAEAAEREkAIAAIiIIAUAABARQQoAACAighQAAEBEPwGsjjUM7t4xZAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 10\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "f7666a8c", + "metadata": {}, + "source": [ + "## Plot All" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "d9c82cbb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAATBCAYAAADddYOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVfrw8e8zfSbJpPdKekIVkN5BUcSCK2tX7A2xd117111dfd1VWRF7F0SqSJHepBN6Cum9T2YmM+f948kMDAmQZFH3t3s+15Xr2nnqmWfGnZv7nHMfRQghkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ+o1o/ugGSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0300OUpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6TclBylJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSbkoOUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TclBSpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/abkICVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkn5TcpCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEm/KTlISZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk35QcpCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0m9KDlKSJOm/2lNPPYWiKKxYseKPbookSZIkSZLUDR9++CGKovDhhx/+0U2RJEmSJEn6r5eXl4eiKEybNu2PbookSZIkSdJ/PUVRGDNmzB/dDEn6XclBStJ/jW+++YY777yTkSNHYrVaURSFq6666pTnrV27lkmTJhESEoLZbKZPnz688cYbuFyuE57z448/MmbMGAIDA/H392fw4MHMnj27y212Op28+eabXHfddfTr1w+DwYCiKMycOfOE53g6aU70989//rPD83bu3MmVV15JamoqZrOZ2NhYxo4dy5dffonb7e5y2z3279+Pn5/fSZ+3y+Xi008/ZeTIkURFRWGxWEhPT+e6665j9+7dHZ5TVlbGnXfeSY8ePTAajYSHhzNlyhR+/fXXbrf1dBo+fDiKorBgwYJTHpuRkYGiKGzduvV3aJkkSZIkHdXV+MjTIXGiv8suu6zD88rLy3nwwQfp1asXAQEBhIaGMmDAAF599VUaGhq63X673U6vXr1QFIW4uLgTHrd69WouvPBCkpKSMJlMJCQkMGnSJBYtWtTh8Q6Hg1deeYW+fftisViwWq2MGDGCr776qsttPHDgAC+//DLjxo0jPj4eg8FAZGQkF154IcuXL+/wnO7Ecxs3buSRRx7h3HPPJSoq6pTP5GS6e6358+dz9tlnExcXh9lsJjk5malTp7Ju3boOj29oaOCxxx4jMzMTk8lEcHAwEydO5Oeff+5Wu0+3K6+8EkVReOedd0557Nlnn42iKHz//fe/Q8skSZKk/4uqqqqYOXMmU6ZM8eZeAgMDGTFiBP/61786zL10J/YqLCzk+eefZ+rUqaSmpqLRaFAUhYMHD3a5zd29VldzTEII3n//fQYPHoy/vz9+fn4MHDiQf/7zn13OSdXX13P33XczcuRIYmJiMJlMREREMGjQIN544w2ampo6PK87eabTlUvrbuxVWFjI9ddfT0xMDEajkaSkJO6++25qamraHeuZpHeyv5SUlE63+bfw/vvvoygKf/7zn0957AsvvICiKNx1112/Q8skSZKk/4seeughxo8fT3x8PGazmZCQEM444wyefvppqqqqOjynO3mK3Nxcbr31VjIzM7FYLERGRjJ06FDee+89HA5Hp9ubk5PDk08+yYUXXkhCQoL397m1tfWk51VXV3P33XeTlJSE0WgkJiaG66+/nsLCwnbHnirfpCgKWq22020+1s8//8yUKVOIiorytmPixInt+siOHDnC7bffzuDBg32OHTlyJLNmzcLpdJ7wHrNnz2bQoEH4+/sTGBjImDFj+PHHH7vc1q7GfdOmTTvpM9u7d6/P8b/lcz5dfvrpJxRFYdCgQac89rPPPkNRFC688MLfoWWSpNL90Q2QpNPlueeeY/v27fj7+xMXF9fuR6Mjc+fO5U9/+hMmk4lLL72UkJAQ5s2bxz333MOaNWv4+uuv253z9ttvc+eddxIaGspVV12FwWDgm2++Ydq0aezcuZPXXnut021uamri7rvvBiAyMpKoqCiOHDnSqXMvvPBC+vXr1277wIED222bN28eF198MRqNhgsuuIBLLrmEyspKvv/+ey677DKWLl3K+++/3+l2e7S2tnL11Vej0Zx8vOMVV1zBV199RVxcHBdffDEBAQHs3LmT2bNn89lnn7Fw4ULGjRvnPT4vL49hw4ZRUlLCoEGDuPjii6moqOC7775j/vz5zJs3j4kTJ3a5vafTTTfdxNq1a5k5cyaTJk064XErV65k//79DBw4kDPOOON3bKEkSZIkdS8+Aujbty8XXXRRu+29evVqty0vL4/BgwdTXl7OmDFjOPfcc2lpaWHJkiU8+OCDfPLJJ6xfvx6z2dzl9j/66KPk5+ef9Jh//OMf3H777fj5+TFlyhTi4uIoLCzku+++Y+HChTz33HM89thj3uMdDgcTJ05kxYoVJCUlcd111+F2u1mwYAGXXnopu3bt4plnnul0G5944gm+/PJLsrOzvQPf9+3bxw8//MAPP/zAm2++yYwZMzo8tyvx3Geffcabb76JXq8nOzubsrKyTrfxdFzroYce4pVXXiE0NJSLLrqIsLAwDh48yNy5c/n222/56KOPfAbA1dTUMGLECPbs2UPPnj259dZbaWxsZO7cuUyYMIGZM2dyww03dPs9nA433XQTn332GTNnzuT2228/4XF5eXksXbqU6Ohozj///N+xhZIkSdL/JV9//TW33XYb0dHRjB07loSEBMrKyvjuu++48cYbWbhwIV9//TWKorQ7tyux1+bNm3n88cdRFIUePXoQGBhIbW1tt9rcnWt1J8d01VVX8dlnnxEREcHll1+OxWLhp59+4rbbbmPt2rV89NFHnW5zdXU17733HoMGDeK8884jPDycuro6li1bxj333MP777/PunXrsFqt3nO6k2c6nbm07sRehw4dYtiwYZSXl3PhhReSmZnJxo0befPNN1m0aBFr1qwhNDTUe/zJZt/PmzePX3/9lXPPPbdT7f2tXH755dx7773MnTuXyspKwsLCOjxOCMG//vUvAG6++ebfs4mSJEnS/yF/+9vf6N+/P2eddRYRERE0NTWxfv16nnrqKd577z3Wr19PfHy89/ju5Ck2bdrE2LFjsdlsnHPOOVx44YXU19czb948brnlFr799lsWLVrUYXx3vMWLF/PMM8+g1WpJS0vDZDLR0tJy0nOqqqoYNmwY+/fvZ9y4cVx22WXs3buXWbNmMX/+fNatW0dycrL3+H79+vHkk092eK1Vq1axbNmybsUDDz74IK+++ipxcXFccMEFhIWFUVFRwZYtW1ixYoVPH9mhQ4f49NNPGTx4MBdddBEhISFUVVWxcOFCrr/+ej7++GOWLFmCTuc7ROH+++/n9ddfJy4ujptuugmHw8EXX3zB+eefz1tvvcX06dM71dZ/p3/xrrvuIigoqN3242OW3+o5n04TJkygR48ebNq0iZ07d9K7d+8THuuJaWXcJf2uhCT9l1i2bJnYv3+/cLvdYvny5QIQV1555QmPr6urE+Hh4cJgMIhNmzZ5t9tsNjF06FABiM8//9znnNzcXGE0GkVISIjIzc31bq+urhYpKSkCEGvXru10m+12u1iwYIEoLi4WQgjx5JNPCkC8//77Jzxn1qxZAhCzZs3q9H2ys7MFIFasWOGzvaSkRERERAhA5Ofnd/p6Hk8//bQwGAzizTffPOHz3rhxowBEz549RVNTk8++Dz74QABi7NixPtsvuOACAYgZM2YIt9vt3b5v3z4REBAgoqOjRWNjY6fa6Hmmy5cv7/L7O5nm5mYRGBgo9Hq9KC0tPeFxV111lQDEe++9d1rvL0mSJEmd0dX4KDc3VwDi2muv7fQ9br/9dgGIp556ymd7a2urGDdunADE7Nmzu9z25cuXC0VRxD/+8Q8BiNjY2HbHOBwOERgYKEwmk9i7d6/Pvj179gij0SjMZrNoaWnxbv/rX/8qADF06FCfeKKhoUEMGDBAKIriExueyqxZs8Svv/7abvuKFSuEXq8XBoPBG+sde05X47mtW7eKX3/9VdjtdiGEOOEz+S2uVVJSIjQajYiMjBRlZWU++5YtWyYA0aNHD5/tM2bMEIC4+OKLhdPp9G4vKysT8fHxwmw2iyNHjnSqvd15Xp2Vnp4uALFly5YTHvP4448LQDz66KOn/f6SJEnSf4+ff/5Z/PDDD8LlcvlsLykpEfHx8QIQ33zzjc++7sReR44cEb/88ouoq6sTQggxevRoAYgDBw50uc3duVZXc0zfffedN1aoqKjwbrfb7WLy5MkCEN9++22n29za2iocDkeH+6688koBiJdfftlne3fyTKczl9adOO7ss88WgPj73//us/2ee+4RgLjllls6de/W1lYRFxcnALF9+/ZOndOd72Vn3XTTTQIQr7/++gmPWbp0qQDEsGHDTvv9JUmSpP8eNputw+2PPvqoAMRtt93ms707eYpJkyYJQHz44Yc+2xsbG72xwsqVKzvV3r1794r169eL5uZmIYQQiYmJAvBpy/FuvvlmAYh7773XZ7unT27ixImdurcQQgwZMkQAYu7cuZ0+Rwgh3nvvPW9c4IlljnV8XGa329vFw57jxowZIwDx5Zdf+uxbs2aNAERKSoqorq72bs/NzRUhISHCaDT69MmeTHfivmuvvVYAnb7HyXTnOQNi9OjR//a9j/f8888LQNx5550nPObAgQNCURQRHx/f4ecmSb8Vudyb9F9j7NixpKWldWrEMqjLn1RUVHDZZZf5zFY3mUw899xzgDoz/1gffPABdrud6dOnk5SU5N0eHBzMo48+CnDC5dY6YjAYOPfcc4mOju70Od1x+PBhrFYro0eP9tkeFRXF4MGDAaioqOjSNTdv3syzzz7LE088QZ8+fU56b4Dx48djsVh89nlKBx5775aWFhYuXIhGo+G5557z+TzT09O5/vrrKSkp4dtvv+1Se49XUFBAz549MRgMfPzxx97tzc3NvPjii/Tr1w8/Pz/8/f0ZOnQon3/+uc/5ZrOZq666CqfTyYcfftjhPWpra/nmm2/w9/fn8ssv/7faK0mSJEnd0dX4qDs8v/UXXHCBz3atVst5550HdD3OqK+vZ9q0aYwfP55bb731hMdVV1dTV1dHeno6GRkZPvuysrJIT0/HZrPR2Njo3e5Zruuxxx7Dz8/Pu93f35/HH38cIUSnlv/ymDZtWofVEkePHs2YMWNwOBysXbu209c7kX79+nHGGWdgMBh+92vl5+fjdrsZPHgwERERPvvGjh1LQEBAu8/Y85yfeeYZn9lxERER3HvvvdhsNj744IN/633U1NQwatQoNBoNL774ond7a2sr77zzDkOGDMFqtWKxWDjjjDN4++232y3NctNNNwGcsBKCy+Vi1qxZKIrCjTfe+G+1V5IkSfrvNm7cOM4///x21aajoqK88cyKFSv+7fvExcV5l/L9I67V1RyTJya47777fGahGwwGnn32WUCtWt5ZWq0WvV7f4b6pU6cC6nK8Ht3NM53OXFpXY69Dhw6xZMkSkpKSuOOOO3z2Pf300/j5+fHxxx+fcGm7Yy1YsIDCwkKGDBly0vxdZ7jdbu666y4UReHiiy/GZrN59y1evJhJkyYRFhaG0WgkJSWFBx54oF1lLs8M/ZkzZ57wPnI2vyRJktQZJpOpw+2eZUWPjQege3mKE+W8/Pz8GD9+PND5eCAjI4PBgwd3utJ4Y2MjH3/8MX5+fjz11FM++6ZPn05iYiKLFy/2tvFkdu7cyfr164mNjfXm6jrDbrfz2GOPkZCQwHvvvddhLHN8XGYwGDpcfUWv13srhx7/2Xj6VR977DGCg4O92z2xkN1uZ9asWads7+/Vv3gi3X3OJ/Lqq6+i0WgYPnw41dXV3u0bNmzgkksuISoqCoPBQHx8PLfccgvFxcU+519//fXodDo++eSTE1btmjlzJkIIbrjhhlOumiNJp5P8tkn/s5YtWwbAOeec027fqFGjsFgsrF27Frvd3qlzPKX7PMf81rZt28Ybb7zBSy+9xMcff9zh+rMePXv2pL6+ntWrV/tsLy8vZ+PGjURHR5Odnd3pe9tsNq6++mr69evHww8/fNJje/bsCajP5djkBeBdS3bChAnebdXV1TidTsLCwggICGh3PU/pypOtEXwq27dvZ+jQoRw5coQFCxZw9dVXA+qgohEjRvDoo4+i1Wq5/vrrufbaa6moqOCKK67g8ccf97mOp1PLU4L6eJ4f/ssvvxx/f/9ut1eSJEmSfm/FxcW8++67vPDCC7z77rvs2LHjhMd6fuvnz5/vs93tdnsTA8cu69oZM2bMoKam5oS/sR4RERGEh4ezf//+dgkOz7Z+/fr5LIVRWloK4FMO2+N0xBnH8iRqji9h7dGVeO6PlJaWhsFgYOPGjVRWVvrs++WXX2hoaPCJ5+C3f84FBQUMHz6c9evX89FHH/HII48A4HQ6mTx5MnfccQe1tbVcccUV3Hzzzbjdbu68806uvfZan+tce+21GAwGPv/8c5qbm9vdZ+HChRQVFXnLZEuSJElSd5wqJuhK7PVH62qOqTMxwapVq3A4HP922+bNmwfgMxinu3mm051L64rly5cDcPbZZ7frLAoICGD48OE0Nzezfv36U17rvffeA/79AT8tLS1MnTqVv//979xxxx1888033k7Wp59+mnPOOYcNGzZw3nnnMWPGDFJTU3nttdcYPnw49fX13usMHDiQfv36kZOTw5o1a9rdp6qqijlz5hAYGOjtZJYkSZKkrugoHoDu5SlOlPNqbm5m2bJlWCwWhg4denoafpz169djs9kYPnx4uxhGo9F4lyzzxA0n44kHbrjhBrRabafb8NNPP1FRUeFdAnf+/Pm8/PLLvPnmm6xbt64L70adBLZgwQKg/Wdzuvpe/93+xYULF/Lyyy/z2muvMWfOHJ8YpjO6+5yP53a7mTFjBg8++CBTpkzh559/JiQkBFCLaQwfPpyFCxcyduxY7r77bgYOHMjMmTMZOHAgBQUF3utERUUxefJkampqOhyY1drayuzZs739oZL0u/qjSzlJ0m+hM8uZDBw4UABi8+bNHe7v2bOnAMSePXu828LCwgQgKisrOzzHz89PAO2WNeusriz3dvyfVqsVt9xyS4clLn/55RdhtVqF0WgUf/7zn8XDDz8sbrzxRhEWFiZSU1PFxo0bu9TOGTNmCKPRKHbv3i2EOPXz9pSiTkhIELfffrt46KGHxOTJk4VOpxOXXXaZT2nF5uZmodVqhUajEQ0NDe2udddddwlADB48uFNtPX65t59++klYrVYRHR0ttm3b5nOsp6Tj8WXBbTabmDhxolAURWzdutVn36BBg064nFzfvn0F0KUlYyRJkiTpt9KV5d46+hszZkyHS1qUlZWJjIwMAYhx48aJ+++/X8yYMUNkZmaKoKAg8cEHH3SpnZ4lQWbOnOndxkmWxPjqq6+EwWAQAQEB4pprrhEPP/ywuPrqq4W/v78YMGBAu+VKPMv6zp8/v921vv/+e+/79ZTf7q68vDxhNBqFxWLxKVUtRPfiueOd7Jl0VWeu9be//U0oiiLCw8PFTTfdJB5++GExdepUYTQaxVlnndVuGbjo6GgBeOPF468FiMjIyE617/jl3rZt2yaio6OF1WoVP/30k8+xnthv+vTporW11bu9tbVVXH/99QIQc+bM8Tnnz3/+8wmXk/OUCf/666871VZJkiRJOp7T6RS9evUSgFi0aJHPvu7EXsf7d5Z76861uppjuvzyywUg/t//+3/trrV161bv+83JyelSW51Op3jyySfFk08+Ke68807Rr18/AYixY8f6xFLdzTOd7lzasU4Ve91///0CEK+99lqH+++44w4BiHfeeeek9zly5IjQarUiMDCwS7nK45d7q6qqEsOHDxeKooiXXnrJ51jP0r9Dhw4VNTU1Pvs8Mdzdd9/ts/2dd9454XJynqWZ77jjjk63V5IkSfrf9uqrr4onn3xS3H333WLEiBECEH369BHl5eU+x3UnT5GTkyOio6OFVqsV559/vnjooYfEbbfdJuLj40V0dLRYsGBBt9t9quXe3n77bW9+oyOvvvqqAMSDDz540vs0NzeLoKAgodVqRUFBQZfa+Je//EUA4uGHH/bGs8f+jRo1qt1z9qioqBBPPvmk+Mtf/iJuu+02kZqaKgBxxRVX+BzX2NgoAOHv73/C6wAiIiLilO3tbtzn6Rs8/i8gIEC8/fbbp7yv597dfc4cs9ybzWYTF198sfezP3YJtn379gm9Xi9SUlJEYWGhzzWWLl0qNBqNuOiii3y2L1iw4ITLyXlysOedd16X2itJp4McpCT9V+pMJ1xaWtpJEy/Dhg0TgFi7dq13m16vP2nQEBMTIwBRXFzcrXZ3ZpDSihUrxFtvvSX27dsnmpqaRHFxsfjqq69ESkqKAMTll1/e4Xm7d+/2Drw69gf2+eef71RHmMfSpUuFoig+A3k687z/+c9/CrPZ7HP/AQMGiIULF7Y7dsKECQIQ99xzj8/2AwcOiICAAAGI9PT0TrX32EFKH3/8sdDr9SIrK6tdoq+yslJotVoxcODADq+zbds2AYgHHnjAZ/vMmTM7fO8bN24UgDjjjDM61U5JkiRJ+q115ve6rKxMPPHEE2LLli2ipqZG1NTUiJUrV4qxY8cKQKSmprZbt10IIWpqasSUKVN8fucVRRE333xzl/5hXlpaKsLCwsS5557rs/1UHTmrV68W8fHxPvePjIwUb7/9drv11J977jkBiGHDhvkMRGpsbBRnnnmm9/zuxnNCCNHS0iKGDx8uAPHKK6+029/deO5Yv/cgJSHUQVzBwcE+zzk1NVV8+umn7Y698cYbBSAuueQSn8FC5eXlIiEhQQDCYDB0qn3HDlJasmSJCAgIEDExMe0GnLtcLhESEiKioqI6jNdramqEoihi6tSpPtuXLl0qADF8+HCf7cXFxUKn04mIiAjhcDg61VZJkiRJOt59990nADFp0qR2+7obex3r9x6kJETXckyffPKJAERKSoqoqqrybnc4HN7BwMfn3zrDZrO160i6+uqrO+yQ6m6e6XTl0o53qtjrpptuOml+8NFHHxWAeOGFF056n6eeeqpbA36OHaSUl5cnMjMzhV6vF5988km7Yy+66CIBiF27dnV4rX79+onw8HCfbXV1dcLPz09YLBZRV1fnsy87O1sAYvv27V1qsyRJkvS/KzIy0ue3+pxzzhGlpaXtjutunqKwsFCMHDnS5x56vV488MAD7SaldcWpBik9//zzAhCPPfZYh/vfe+89AYibb775pPf58MMPuz0Q5dZbbxWgTqrr3bu3WLVqlWhoaBA7duwQZ5999gkHvwihDvA6Pk94//33t8uvFBUVnTQ2cjgcXcohdSfu+9e//iW+/PJLkZ+fL2w2mzh06JB47bXXvMe/++67p7zvv/OcPc/x2IHhxxdTEEKIu+++WwDixx9/7PA6F110kdBqtaK+vt67zeVyeb9r+/fv9zl+0qRJAhBz587tcpsl6d/VcY1hSZJOixUrVrBixQqfbUlJSUybNq3b1xw9ejSjR4/2vrZYLEydOpUhQ4bQt29fPv/8cx566CH69u3rPeann37isssuY+DAgXz00UdkZmZSWlrK22+/zWOPPcb8+fNZuXLlCcuOe9TW1jJt2jQGDx7Mfffd16n2CiG46667eOedd3juuee46qqrCAoKYtu2bdxzzz2ce+65vP3229xxxx3ec9544w2GDx/O3/72N9atW8fw4cOpqKjg22+/JS0tjW3btnV5bdQ333yTuXPnMnz4cH744QefdW0BNm3ahMvlQlGUduv7grp0CEBOTo7P9ssuu4x77rmHb7/9lrfeest73ffffx84uiScJEmSJP1fEBERwTPPPOOzbdSoUSxZsoQRI0awYcMGZs6cyV133eXdn5eXxwUXXIDNZmPBggXe5Sfmzp3Lfffdx9y5c1m3bl2nlsq66aabaG1tZebMmZ1u8yeffMJNN93ExRdfzBNPPEFiYiL5+fk8++yzTJ8+nZUrV/LVV195j7/rrrv4+uuvWbt2LT179mTSpEkIIZg/fz6KohAYGEhdXZ031uhqPOdyubj66qtZs2YNl156Kffff3+7Y7oTz/3RXnnlFR599FFmzJjB9OnTiYqKYu/evTzyyCNceeWVbNu2jVdeecV7/DPPPMPixYv55ptv6NevH+PHj6epqYm5c+cSGxtLQUFBl+O5b775hiVLlpCWlsbChQtJSEjw2b9//36qq6tJS0vjueee6/AaZrO5XTw3btw4UlJSWLNmDTk5OWRlZQEwa9YsWltbmTZtmneZHkmSJEnqir///e+8/vrrZGZm8vHHH7fb353Y64/W1RzTZZddxscff8zixYvJzs7mwgsvxGQysXTpUkpKSkhISPCJC7Zt28acOXN87hkUFMTdd9/ts81kMiHUCbgUFxezdOlSHnnkEQYOHMiiRYtISkryHtudPNPpyqX9Udxut3fp5FtuuaVb19i3bx9Dhw6lqamJhQsXMn78+HbHrFu3Dr1ez9dff83XX3/dbr/D4aCiooKqqirvEsxWq5VLL72UDz74gE8//ZTbbrsNgLVr17Jnzx4GDRrUbhkYSZIkSToRzzJuZWVlrF27locffpgzzjiDH3/8kf79+3uP606eYuvWrVx00UVERESwatUq+vXrR21tLZ988gmPP/44c+bMYdOmTQQGBv6u77krPEuQdRQP5OXl8eGHH7bb7ukjc7vdgLpk8Q8//OCNr3r37s33339PRkYGK1euZN26de2WvcvMzEQIgcvloqioiO+//56//OUvrF69mvnz53uXLzvduhP3Hb/UWXJyMvfddx8ZGRmcf/75PPbYY6dcwu1kz7kzysrKGD58OIcPH+aTTz7hiiuuaHeMZ4m9lStXsmnTpnb7y8vLcblc7N+/nwEDBgDq0oA33HADf/nLX5g5cyYvv/wyAIWFhSxatIiYmBjOO++8brVZkv4tf+gQKUn6jfynLPfmqeJz7N+JRhUfe/zJKimdzJVXXikA8fe//927raqqSgQHB4vY2NgOSzt7Zjx1tLzF8a677jphNpvF3r17fbaf7Hl7Zr4fP2pZCCFKSkqE2WwW/v7+7Wa6HTx4UFxzzTUiOjpa6PV6kZiYKB5//HGxatUqQVsZyc7wPNOQkBABiCeffLLD4zwz+071N2bMmHbn3nLLLT7PvbGxUQQEBAg/P792M8IkSZIk6Y/SmfjoZN5//30BiIsvvthnu2fGfUeznd944w3vLOxTmT17tgDE7Nmz2+3jBDOqPGWOBwwY0K5iksvlEgMGDPBWVDxWQ0ODeOSRR0RaWpowGAwiNDRUXH311aKwsFD4+/sLnU7nndnVlXiutbVVXHbZZQIQf/7zn084G+5kOornOnKiZ9Idp7qW57szZcqUdvuamppEbGys0Gg04tChQz77SktLxR133CESExOFXq8X0dHRYvr06eLAgQMC1KWAO8MTT3riueuuu0643e52x61evbpT8VxSUlK7c1988UUBiHvvvVcIIYTb7RbJyclCUZTTUplCkiRJ+t/z1ltvCUBkZ2eLkpKSLp9/otjreL9nJaXu5pgcDod46aWXRK9evYTRaBSBgYHiwgsvFDk5Od782+HDh4UQHS+Lm5iY2Kn2r1u37oQz2LuSZzqdubSOnCr2Oh3Lvf34448CEEOGDOly+zyVlDyxV79+/U5YKUKn03Uq/srLy/M5z/NZ9e/f37vtuuuuE+C77LMkSZIkdVVeXp4wGAyiZ8+e7fZ1JU/hdDpFamqqMJvNHcZynqo2J+pzOpXfY7m3Xbt2CUDExcX5VI/y8OR7jv/zePDBB08aT9xwww0CEG+88cbJ3qrX559/LsC3yuPpXO7N43T1LwohRGxsrADEjh07TnjMqZ7zqQAiKChIaDQakZCQcMIlnz1L5p3qb8WKFT7nFRYWCq1WKyIjI735zqeffloA4vHHH+9yeyXpdOja1FVJ+i+SkZEBqDOuj9fa2kpubi46nY7k5OROnVNSUkJTUxNxcXFYLBZAHW0s2mZ1ef6On4l/OoWHhwPQ1NTk3bZ27VpqamoYPHiwt13HGjt2LABbtmw55fV//fVXbDYbmZmZKIri/fNc49NPP0VRFPr16+c958cff/S5z7GioqLIzMyksbGRffv2+exLSUlh9uzZFBcX43A4yMvL49lnn/U++zPPPPOU7T3Wv/71LwYPHszTTz/NX/7yl3b7PSPd77nnnnaf2bF/y5cvb3fuzTffDOCt+vDFF1/Q0NDApZdeitVq7VI7JUmSJOk/VUdxRkNDAytXriQkJKTD2c5djTMArr32Wp84Q1EUAIqKiryva2trAViyZAlOp5PRo0e3mwWl0WgYNWpUh/f39/fnhRdeYP/+/djtdiorK/noo4+w2+00NjbSt29fb+WczsZzTqeTyy+/nC+++IIrrriCzz77rFsz6zt6zn+0k8VzFouFQYMG4Xa72bp1q8++yMhI3n77bfLy8nA4HBQXF/PWW29RUFAAdD2ee+GFF7jggguYNWsW119/vXdGn4cnnpsyZcpJ47nc3Nx2177uuuvQ6/V89NFHOBwOli1bxuHDhxk7diypqaldaqckSZIkvfHGG9x555306tWL5cuXExUV1eVr/CfGBN3NMen1eh566CF27txJS0sLtbW1zJkzh6SkJA4cOEBYWJi36ua0adPa/Xbn5eV1qn1DhgwhKCiow1itK3mm05lL646T5R8BDhw4AEB6evoJr/HvzuYHOP/883nhhRfYtm0b48ePp6qqqt0xgYGBBAcHnzT2EkKQmJjoc96QIUPo06cPv/76K7/++isNDQ189dVXWK1WLrvssm63WZIkSZISExPJzs5m9+7dVFZW+uzrSp5i7969HDx4kKysrA5juf9L8cCJqgCNGTOmw9/t49sQFBTU4fU9K4vYbLZTvBvVueeeC+ATq/n5+REbG0tjYyMlJSXtzunM+zze6exf7ExMfqrn3Bl9+/Zl9uzZFBUVMWrUKA4fPtzuGE/eq66u7qRx17HV2wFiY2OZNGkSZWVlzJs3D7fbzQcffIBGo+HGG2/sVnsl6d/1n1mPVpJ+B+PGjePTTz9l0aJFXH755T77fvnlF5qbmxk1ahRGo9HnnDVr1rBo0aJ2pQsXLlzoPeaPsmHDBgCfgVV2ux2AioqKDs/xbDcYDKe8/sUXX8zAgQPbbS8pKWHBggWkpKQwZswYn6U3Tuf9AW959I5KHZ5MUFAQP/30E+eddx7PPvssLS0tPkuSDBo0CI1Gw6pVq7p0XYD+/fszYMAAtmzZwsaNG72DlTyDlyRJkiTpv8H69esB3zjD4XAAUF9fj8PhaPd73pXf+aFDh9LY2Njhvn/9619YLBZvzOaJz053nPHRRx8BXY8zHA4Hf/7zn5k7dy7XXHMNs2bN6vJSZh4dxXN/tP+U52w0Gvnmm2+48sor+fDDD7Hb7Xz00UfewWCZmZkEBQWxfv16nE5nl5Zoi4yM5IILLuDbb79lzpw5fP/994CM5yRJkqSue/nll3n44Yfp168fP/30E2FhYd26Tkex1x/tdMcEX3zxBQ6Ho11errsaGhqor68nICCg0+d0lGc63e+zqzydnkuWLMHtdvvElQ0NDaxZswaLxcKQIUM6PL+4uJj58+cTGBjIpZde+m+15ZFHHsFsNnPPPfcwZswYli5dSmRkpHf/kCFDmD9/Prt376Znz55duvZNN93EnXfeycyZM+nbty9NTU3ceuut+Pn5/VttliRJkqTi4mKATg8Y6ShP4YkHjh/o5PFbxwNDhgzBbDazZs0aGhoafOIbt9vNkiVLgI4nlAG0tLTw8ccfo9VqueGGG7rVhvHjx6MoCnv27GkXkwDs2rULwDvY/FSKiooA2k3qGzduHB9//DGLFi3iuuuu89l3Ovteu9q/WFdXx969e1EU5YTv8XQ8Z4+rrroKk8nEFVdcwahRo1i2bJnP4KwhQ4awZcsWVq1a1eUl2m6++WbmzZvHzJkz8fPzIz8/n3POOafdQHJJ+t38FuWZJOmP1pnlTOrq6kRYWJgwGAxi06ZN3u02m00MHTpUAOLzzz/3Oefw4cPCaDSKkJAQkZub691eXV0tUlJSBCDWrl3b7XZ3Zrm3Y9vq4XK5xAsvvCAAERYW5rPEWFFRkdDpdEKj0YjFixf7nFdQUCDCw8MFIObPn++z7+DBgyInJ8db+u9kTva8X375ZQGInj17itraWp99//jHPwQgoqKifEogtrS0iJaWFp9j3W63eO655wQgLr300lO2ycPzTD3LvDQ1NYnx48cLQMyYMcPn2KuvvloA4plnnumwJOPBgwe95ceP989//lMAYuTIkQIQffr06XQbJUmSJOn30Jn4aMuWLe2WTRNCiKVLlwqj0SgAsWbNGp99WVlZHZYHttlsYsyYMQIQDzzwgM++4uJikZOT0y42OBFOsCTGhg0bBCDMZnO75ea2bt0qTCaTUBRF7Nq1y2dfR8uxLlmyRJhMJpGSkiIaGxs71S4h1Lhl0qRJAhA33HBDh8/veF2N5zpyomdyrM7Gc6e61pdffikAERkZKQoLC332LViwQCiKIkwmk8+SyC6Xq91yvkII8dFHHwlFUcSwYcM69ayEOLrsi2dJldbWVnHVVVd5l8A59v098cQTAhC33nqraG5ubnet4uJisXv37g7vs2jRIgGIQYMGCaPRKMLCwoTdbu9UGyVJkiRJCCGeeeYZAYgBAwaIqqqqUx7fndjreJ1Z7q2zsdeprtXdHFNHcc3WrVtFWFiYCA4OFkVFRSdt17F27NghbDZbu+12u11cc801AhBXXHGFz76u5pl+61xaZ+K4s88+u8MlgO+55x4BiFtuueWE53q+hydaHuZUPMu9Hbtk8z/+8Q+hKIrIyMjw+byWLl0qADF06NAOP8fGxkaxbt26Du9TU1MjzGazCAwMFH369BGA2LJlS7faLEmSJP1v2bdvX4dxjcvlEo8++qgAxLBhw9rt60qeoqWlRQQFBXXYZ1dTUyMyMzMFIP7f//t/Pvvy8/NFTk5Oh0vGHutUy70JIcTNN9/sszS9x5tvvikAMXHixBOe+9FHHwlATJ48+aTtOJULLrhAAOKvf/2rz/bFixcLRVFEUFCQz2exZcuWDvvXGhoaxIQJEwQgHn30UZ99a9asEYBISUnxWWI2NzdXhISECKPR6NMnK4S6DFxOTo6oqKjw2d7VuK+kpEQcOXKkw/Z6lvg966yzOngyqtPxnAExevRo7+u5c+cKo9EooqKifHKaOTk5Qq/Xi7S0NLFv375217Hb7eKXX37p8B6tra0iLi5OaDQaMWzYMAGIb7/9ttttlqR/lyLEMXXbJOn/sDlz5jBnzhwASktLWbx4McnJyYwcORKAsLAwXnvttXbnXHLJJZhMJi677DJCQkL44Ycf2LdvH5dccglfffWVd4kRj7feeosZM2YQGhrKpZdeisFg4JtvvqGwsJD77ruv3T1O5aWXXmLv3r0AbNu2je3btzNs2DDS0tIAGDFihE+5PUVR6NWrF3379iU2Npa6ujrWrFnDrl27sFgsfP/995x99tk+93jmmWd48skn0Wg0TJ48mczMTEpLS/nuu+9obGxkypQpfPfddz7nJCUlkZ+fT25uLklJSSd9DytWrGDs2LFceeWVfPLJJz77GhsbGT58ODt27CAiIoILLriAoKAgfv31V5YtW4ZWq+Wrr77i4osv9p6za9cuRo4cyVlnnUVSUhJOp5Off/6ZnTt3MmLECObPn9/pZdSeeuopnn76aZYvX86YMWMAdWTzn/70JxYsWMDNN9/MP//5TxRFob6+nokTJ7J+/XrS0tIYMWIEkZGRFBcXk5OTw6ZNm/j88887LDvd0NBATEyMtwLEW2+9xfTp0zvVRkmSJEn6rXQ1PhozZgwHDhxg2LBhxMXFAbBjxw6WLVsGwLPPPsvjjz/uc4+lS5dy3nnn4XA4GDx4MMOGDcNms7Fw4ULy8/NJTU1l/fr1hIaGes+ZNm0as2fPZtasWUybNu2U70NRFGJjYyksLGy37/rrr2fWrFkYDAamTJlCYmIieXl5zJkzB4fDwd13383f/vY3n3NiYmLo06cPmZmZmEwmfv31V5YuXUpUVBQ//fRTl2aBX3fddXz44YeEhYVx++23t4sdQX2unjjE8366Gs/t3buXl156yft69uzZWCwWpk6d6t322muv+VRrOFE819Vrud1uJk6cyNKlSwkICGDKlClERUWRk5PDjz/+iBCCN954g7vuust7fmNjI5GRkZx11lmkpKSg0WhYs2YN69atIysri6VLlxITE9OpZ/zhhx9y3XXX+Xxf3G43t9xyCzNnzmTy5Ml88803GI1GnE4nl1xyCT/88AOxsbGMGzeO2NhYysvLOXDgAGvWrOH555/n4YcfbncfIQTJycneJWW6E9tLkiRJ/7tmz57NtGnT0Gq13Hnnnd7lGI6VlJTkE/t0J/YCfK6xaNEiysrKuPjii70z7G+88UZGjBjhc/yJYq+uXqs7OabBgwdjNpvp1asXAQEB5OTkMH/+fMxmM/PmzWu3JMXJ3H333cyaNYvhw4eTmJhIUFAQxcXFLFmyhNLSUjIyMli+fDnR0dHec7qTZzqdubTuxHGHDh1i2LBhlJeXc+GFF5KVlcWGDRtYvnw56enprF271ie+9nC73SQnJ5Ofn8+OHTvo3bt3p5+tR15eHj169ODaa6/lww8/9G7/8MMPueGGG+jRowfLli3zVlJ/+eWXvRWXJk2aRI8ePWhsbCQ/P5+VK1cyYsQIFi1a1OG9rr32Wm/1igEDBrB58+Yut1eSJEn63/PGG2/wyCOPMGLECHr06EFoaChlZWWsXLmSw4cPExUVxc8//0x2drb3nO7kKWbPns11112HEILx48dzxhlnUFNTww8//EBFRQVDhgxhxYoVPiuyjBkzhpUrV/r0SYFaken+++/3vv7mm29oamrimmuu8eaSHn74YTIzM73HVFVVMWzYMPbv38+4ceMYNGgQOTk5zJ07l4iICNauXUtKSkqHz2jkyJGsXr2aH374gfPPP7/bz7qwsJBhw4Zx5MgR7zPIzc1lzpw5KIrCF198wZ/+9Cfv8RdddBFr1qxh2LBhJCQkYLFYOHLkCAsXLqS2tpZhw4axePFi/P39fe5z33338de//pW4uDguueQSHA4HX375JVVVVR32t3n6/p588kmeeuop7/auxn0rVqxgwoQJDB06lPT0dCIiIigqKuKnn36itLSU5ORkli9f7rOCzOl+zoqiMHr0aJ9l8BYvXsyUKVPw8/Nj6dKl9O3bF4BPPvmE66+/HiEE55xzDunp6TidTgoKCli1ahXh4eHePufjPfnkkzzzzDMAREVFceTIkXZVrSTpd/NHjpCSpNPJUzHnRH+JiYkdnrd69Wpx7rnniqCgIGEymUSvXr3EX//61w5H+nr88MMPYtSoUcLf319YLBYxcOBA8eGHH3ar3Z5Zaif6O3bWkhBC3H///WLUqFEiOjpaGI1GYTabRUZGhrjjjjvEoUOHTnifOXPmiHPOOUeEhYUJrVYrAgICxNChQ8U777zT4Xv1jOI+fnRyR05VmaGhoUE8/fTTom/fvsJisQidTieio6PF1KlTxYYNG9odX15eLq644grRo0cPYTKZREBAgBg8eLB4++23TzqqvCPHV1LysNvtYsqUKd5n7Bkhb7fbxVtvvSWGDh0qrFarMBgMIj4+XowbN0787W9/86kQcLwbb7zRW82hpqamS+2UJEmSpN9CV+OjmTNnivPOO08kJiYKPz8/7+/gn//85xPOxBFCiO3bt4urrrpKxMfHC71eL0wmk8jOzhaPPPJIh7+J1157rU9lnFPhJLPN3W63mDVrlhg9erQICgoSWq1WBAcHi3HjxrWriulx//33i169eomAgABhMplERkaGeOihhzpV8eB4p4rlAPHkk0+2u39X4zlPvHWyv+PjthPFc925lsPhEH/729/E4MGDRUBAgNBqtSI8PFycd9557SoMeI6//vrrRXp6urBYLMJisYi+ffuK559//pSzCY93fCUlD7fbLaZPny4AcfbZZ3srJ7ndbvHRRx+JcePGieDgYKHX60VMTIwYPny4eP7550VBQcEJ7+WZWQeIvXv3dqmdkiRJ0v+2U8VdHDdDWojux16nus/xv5kni726ei0hup5jeuWVV0T//v1FYGCgMBgMokePHuL222/vcNb6qaxevVrccMMNIjs72yf2Gz58uHj11Vc7jDO6m2c6Xbm07sReQqhVm6ZNmyaioqKEXq8XCQkJ4q677vKpMHC8BQsWCEAMGTLkxA/xFDqqpOTx2WefCZ1OJxITE33i1lWrVompU6eK6OhoodfrRVhYmOjbt6+45557Oqwi6rF69WrvM3j33Xe73WZJkiTpf8vOnTvFHXfcIfr27StCQ0OFVqsVVqtVDBw4UDz55JMd5ne6m6dYuXKlmDJlioiKihI6nU74+fmJ/v37ixdffLHD6o6ePNHxfVKe39eT/R1/jhBCVFVViRkzZoiEhASh1+tFVFSUuO66604aR+3Zs0cAIi4u7qR9nZ1VXl4upk+f7m1DaGiouOiiizrs3/vxxx/FlVdeKdLS0oTVahU6nU6Eh4eL8ePHi3ffffeksdesWbPEwIEDhcViEf7+/mLUqFFi3rx5HR7rib2Pz7l1Ne4rKCgQN998szjjjDNEWFiY0Ol0wmq1ijPPPFM899xzor6+/oTtPV3PuaN/JwihxpD+/v4iODhYbNy40bt9x44d4tprrxUJCQnCYDCI4OBg0bNnT3HzzTeLn3/++YT3KSgoEBqNRgDikUce6XZ7Jel0kJWUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TWn+6AZIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvTfTQ5SkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpNyUHKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9JuSg5QkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfpNyUFKkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9puQgJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSflO6P7oBkiT952hububJJ59k48aNREVFkZ6ezrPPPvtHN0uSJEmSJOm/0pNPPsnBgwcpLS2lf//+PPPMM5jN5j+6WZIkSZIkSf91WlpaePbZZ9m6dSsREREkJiby9NNP/9HNkiRJkiRJ+q/07rvvsn37dkpKSsjOzuYvf/kLRqPxj26WJEn/IRQhhPijGyFJkq/m5mb++c9/8uOPP3Lw4EFqa2sxGAwEBASQn5+PEILU1FQcDgcFBQUYDAbi4+OprKykrq6OsLAwjEYjRUVFAISHh+Nyuaiurkar1WI2m3G5XNhsNvR6PW63G5fLdcL2aDQatFotTqcTAH9/fxRFoaGhAX9/f8xmM83NzTQ1NREZGYler6ewsBCA1NRUXC4Xubm5BAUFkZqaSkFBAeXl5WRkZBAUFMSOHTvw9/cnNTWVpKQk7r//fvr37//bP2hJkiRJkiRg06ZNzJo1iy1btlBUVER9fT0hISE0NjZSXV2N1WolJiaG3NxcWlpaiIuLQ6vVkp+fD0BsbCwOh4OKigr8/f0xmUw0NTVhs9kICAjA7XbT1NQEgF6vx+Vy4Xa7T9genU6Hoig4nU4sFgtarZaGhgYAQkND0Wg0VFRUoCiK997l5eVEREQQHBzMwYMHcblc9OzZE71ez7Zt29BoNAwePJiKigqqq6uJiIggJSWF8ePHc+utt8rBUZIkSZIk/S5aWlr47rvvmDdvHjk5OZSVlSGEwN/fn/z8fFwuF8nJybhcLvLy8tBoNCQnJ1NVVUVNTQ2hoaGYTCaKi4sRQhAWFobb7aa6uhqAgIAAWltbvTkvIQStra0nbM/xOS8/Pz80Gg0NDQ34+flhNptxOBzU19e3y3mlpKQghODw4cMEBASQkZFBcXExpaWlpKamEhwczIEDBwgMDCQhIYH09HRuv/12+vXr95s/Z0mSJEmSJIBDhw7xxRdfsGHDBvLy8qiursZgMGCz2aiqqsJsNhMbG0tBQQFNTU3Exsai0+l8cl5Op5Py8nIsFgsWiwWbzUZTUxMBAQEIIWhsbAQ6l/PSarVoNBqcTidmsxmdTkdzczMul4uQkBC0Wi0VFRXee7e2tlJWVkZYWBihoaEUFBRgs9nIysrCZDKxY8cOdDod/fr1o66uDrvd7h2QPnHiRK688ko5OEqS/gPJQUqS9DtYuHAhr7/+Ojt37qS1tZW6ujpcLhd+fn4YDAZqamoAsFgsOByOkyZPPCwWC3q9nrq6OvR6PXFxcQghyMvLIyMjA5PJxK6du3C5XZx55ploNBo2bNgAwKhRo3C5XKxZs4Zhw4YREBDAzp07KS4uZtKk8ygrKyUwMJB9e/dRVFzExIkTEUKwZMkSNIqGUaNH4XA4WLt2Lf369cNoNFJcVMyRwiP07dsXIQQ7duwA1EFKLS0tFBYWegc3eQKOk1EUBT8/P1qdrbTYWwgLCyMwMJBDhw4B0KdPHwBaW1sZP34806ZNkwObJEmSJEnCZrPx4osvMm/ePIqKinA4HNTV1QHqAJ+mpiZaWlrQ6/To9DpsNtspr6nT6TCbzd4Or7i4OEwmEwcPHgSOxiU7duwguUcy4RHhNDU1sWvXLoYNG4Zer2flypUAnHXWWSiKwpIlS8jIyCAmJobGxkbCw8NZsGABPbN7Ep8QT11dHevWrWPkyJFoNBrv+UOGDMHlcrFp0yZCgkNISEzAZrOxb98+kpOTATh8+DAAgYGBOJ1OmpubT/kejUYjRqOR+vp6AHr06IHNZqO0tJTQ0FDS0tIoKSmhf//+XHbZZUyYMIGQkJCufDSSJEmSJP0X2rhxI2+99RYbN26krq6O2tpaHA4HZrMZk8nkHTxkMVtwtjq9g4FO5ticF6hxCUBubi5paWlYLBby8/Opra3tMOcl3IJVq1cxZMgQAgMDKSosYtfuXZx77iQqKsqxWq0UFxezd+9en5wXwJgxY3A6naxZs4bevXtjsVioqqri4MGDHea87HY7R44c8Q5ustlsp8zreXNera20tLQQEhJCcHAwhw4dQlEUevXq5Y0/x40bx5VXXklmZmb3PiBJkiRJkv5r2O12PvjgA+bNm8e+fftoaGigurraO8DHZrNhs9nQ6XTo9fpO5by0Wi0Wi8U7wS42Nhaz2eyT81IUhe3btxMXF0dsbCw2m40dO3YwdOhQDAYDq35ZhVu4mTBhAhqNhp+W/ERUVBRZ2Vnegd4L5i+gR3IP0tPTaWxoZPWa1YwYMQKtVuuT83K73WzcuBGdVkev3r1oaWlh79699OjRA0VRKCwsxOFwEBQUhMPh6FTOy2AwYDKZvDmvxMREnE4npaWlBAcHk5qaSnNzM0OGDOH8889n9OjRWK3Wf+OTkiTpVORyb5LUTc3Nzbz88svMnj2bkpISHA4HoP7Y6fV672x5rVZ7wgE5Go2GgIAA7yClnj17YjKZWLVqFaGhoUycOBGn08mCrxdz9a1XEBgYyJ6Fh7DthKH3ZaEoCmuf3QMGGHZ1Nm63m/XP7+XMKWnoDXpGDxrHnplHGHqOemzAxngAho5WX5vXRmM5oKHfbZn06tGb7e/m4VgI5z1xHo4GJ5rlIYwZHEjKoFhstS24f7KSNS2e4PgAGiubsKyLYcjkTDQaDVv/sYcMZTDDLswGIGJnOoTBsCuOtmvQjHT0ej2VJZVsfS+X0Y/0xeFw8P7rH2KnmUuvmUptbS0//PADffr0wWq1cvjwYYqKivDz8/MJNjwJIYA9e/bwzjvvoCgKra2tBAcHExgYSF5eHgAZGRkoikJiYiJvvPGGTOxIkiRJ0v9BBw8e5N5772XNmjXU19d7O3/8/f2x2+04nU40Gg1CCE40D0Ov1xMaGkpRURFRUVEkJiVSUVbBvgP7uOCCCwgMDOSbj7/DTADX3XclOp2O1S/vYvDtGQQEB+BwONj00gGGTFPjn7XP7gFg2EXZCCGI2JmO2c/MGRN74Gp1EbU7k74DeuAXbCYjtDeHvy+lX1YKpgADwSUxVO1q5Mzz0tH761j77B4mKJfQd3QSfmEW1r6uvh42Vr22/pdw9V5nq68DNyfS9yr12nabnS2vHWLIFce16y712HXP5RAzNYDoHhFUV1fzxfvfMPnyc1AUhS8+/wK3cDNkyBBsNhsbN25EURTcbrc39qqqqqKqqgqA/Px8vv/+ewwGgzf+TUhIoKWlhfLycgIDA+nRowctLS3ceuut3HXXXb/dl0KSJEmSpN/M+++/zz//+U8OHjxIU1MTbrcbnU6H0Wj0zpY/Vc7L39+fmpoahBD07HU056VVtFx6+aW4XC4Wf7mMqTddREhICIX7Symb0+Sb88I359V/cgqmACN15U3sfjefoROzUDTH5bxQMK6JhO0w6L5sGuKaiNqTiXMRTHpiEvY6J1uWH6B31mAy+sfTUu/A/ZOVHudFEN0/jMZKG+a10QyenIFWr+XXLw+TpPRj6AVquyJ2pqvtOibndeaMNAwGA/VV9Wx6+wAjHu6F0+nko9e/pJl6/nTNRdTX1zNnzhwyMzMJCwujoKCA/Px8AgICvJ2IQgh27tzpfY5r167lhRde8FZ7CgoKIjg4mNzcXBRFISUlBYvFQnZ2Ni+++CJJSUm/1VdCkiRJkqTfSGFhIS+88AJLly6lpKQEm83mLXTgdDpxOBwoigJwwpyXQW/AYrFQWFhIWFgYqampVFdXk7Mnh/MmTyY4OIi5H8/Hgj9X3jcVvV7Pmpd2k31pAlFpYTidTja+uJ8h17Xlll7ZA3Y15wUQviMNYwMMmJiNy+kiYmc6mamxhPQIJDOkN4fmlJIdl4A1ykJgYQw1OY30Pb8HflFm1j63h/HKn8gYHEdwcgBb385hgnIJQ8dkg3JczsstsG5KIO3P0YSnBWO3OYjbd5AhVx6T81Jg2IyjOS+/LMg8P4Xa2lq+efcHJlw6Cq1Wy9KfllJRUcGQIUOw2+3eQe2g9vG63W6fnNfOnTt5//33fXJe8fHx3urpVquVpKQkzGYzN9xwA1dddZWs0iRJ3SQHKUnSCRQUFDB9+nRWrVpFfX09iqJ4Ey86nQ6Xy9VhMKDX6wkJCfEOUhoyZAgWi4WlP/1MWFAYV067Ar1ez9bXchk8IwOdTsfBlQWUrWzwDiYyro6EanVGltvtpkYRBPoFYTIZSR4Sz+6dR3xv2qwGJp4gJffnYtLPTcTsb1J3V7XgF2YmclAgZRvraCprwRCoIzDNQt2BZrb9Yy/9bstk0P0ZbHxtn/eygWkWUibG4mhwsvVtdUa+waLF5XCz4x9qqUcF9Z62SsCinucp5ZhxdiwALXV29VhFQQjBvvfLsCjqrDi9Xs8gZSzmOEhKSsLlctE8z8Cg89LR6XSkBWdTUFzF0GuOJqiaRTPDH+hJWVkZn370KQMGDiAoJIhdu3ZRXFxMQEAAdrvd+z727VPf0969e8nKysLf3x+n04ndbicyMpLQ0FAOHz5McnIy1157LQ8++GA3vjGSJEmSJP07Pv74Y15//XUOHDjg00mj0WjQaDQnnJHu5+dHgH8AJaUlREdHk53dk9KSEnJ27eXq664iNDSUda/lYFbMDLv5aAIjY0IsoQmBOB1ONr18gD591GTHcOVc73UBzIqZHTMLGHZ/NhpFA4CjqRVTgIH48aEc+bkK4RIo2raYaLcNpoDiVl9vfzuXQQ9mYAlWkxZb3zrEmfekkzElga2Vh33ey6D7M9CZtax9bQ/YICTLgqPJSXO5mhiJGxUGQF1h29JxRvWfc3u+UZf49cRax/K8Do9Ul0YJMAQyWBlPamoqiqIwjovV5M5o9dlYNyWQ8udIojKPJqj6P5BMS0sL7/79fZzYOfucs2lsbGT16tVoNBoURfF+ZnV1dWzbtg2Au+++m/vvvx8/Pz9vJYSsrCwaGxtxOp0MHz6cl156idTU1M5+TSRJkiRJOg1qa2t58MEHWbJkCaWlpbhcLm+sdbKcl06nIzg4mKamJoQQDBo0iIAAKz8v+RkDJm6+6waMRiO/vnqYQXemozfoKd5dQe635b45L9SclxCCKsWFn9aKyWQiIjKMMpoQ7qOxFfjmvPZ8W0T/ackYzXoAqnMbCE2xEjM0hOJ11dQcaMQv2khQmpnaAzbWvb6HYQ9kc+Y96Wz6237vNU0RJrKmJmKvc7LtHTUms4SacDa3suMfuepBLkALLftbADXWcrvU5xI3Vq0o2VKrxmkaoQ6W3/mvI5gUEwaDAYPBQF9lCKDmvNxuN41zdZw5OQ29WU/FoVoOFBT75LxaRAtDH8iisrKST2d9Rna/LCIjI9mbs5f8AnVAU0tLi/e5eKoc7Nixgy+++AI/Pz/cbjc2m42wsDAiIyMpLCwkOzubq6++mttuu+3f+epIkiRJktQNixcv5s0332Tr1q1UV1fT2tqK2+1GURS0Wu1Jc15arZaSkhLCw8Pp27cvVVVV7Pl1L3++5hIiIyNZ/+pejIqRYbcczXlFZQaRPCoGp72VmJxs+vbJQKvTMjJiHPaKozkvo2Lk0OdlRD4RiuJSY62GkmYCY/1JHBtJ/qIyXHY3WqMGjGCvB3erUGMkYO8nRQyYYcHgp8Zle2YX0PfGHmT9KYEdHx7yeS9n3J6COcTIlr/vxV4P/nFGWmpaaK5UY6nQnlYQUJvbAIAl0AzA4XnqMruK6CDn1baqXHy/GEwmE366AM5QhpOWloZGo6H8c4ea8xqjPpuAjfGEDPQja1ISrc5WNry4jzPu74HT6eTLD76msr6S8eeMpampiVWrVgHqoHybzYbb7aa2ttab81q3bh233nqrT84rIyMDu92O0Whk5MiRPPzww6SkpHT9CyNJ/wPkICXpf9ratWu55ZZb2Ldv3ynLTXvWUgV1zXmr1cqmTZuwaC3cNP0mzGYzm18+yKC71GpBuauOULy8nqHj1ESDWBoIdWC1Wr2DeFoaHPgH6wjPCKZsZUOH9/UkYfYtL6bP5CTvwCNbrR1LsAlrtoX6Pc24nG60erXjrHJzEylnuTBY1P/Et/8jl6GPZZE8IYayjXXseD+XYU9kk/3nRNY9n0NzpZuaw41U7q7xuXfdgWYaS2wcXFACQNrFsfiH+XmDhJQLo1E0CmU71FHGaeeog5KKN5YD4B9lQQjBtg9yve/l+CDC3ao+i8QxcQA0V6uJFo1GfS8F86ranRvWNwyLxUJ8XDxjlSkMPjsDnV5HSH00lSVNDL3Wd0DTiAd7UVBQwJdffElWZhbWICu7d+/GbrfT0NBAeXk5Qgj27NnDQw89xOOPP47T6cSgN6gVFioq0Gg0TJ06leeee46wsLCTflckSZIkSWrPZrPx+OOP8+mnn1JRUeGzPv3xMYKiKOj1ehwOBxazhazsLCrKKyjIP8LlV15GTEwMW19T44tjkzCJg8KI6xOJw+YgcncGsTGxaLQazBYz2I5eG2DfV0UMuz8QrUartq/ejl+QmYSJ4RQsrsDtEmg8nWM2386xnC8K6XdjD0IzrRz5uYrS7VVEnxFGwoQICpaWU7anmsieIcSNDadweQXN5Xas8X7e/bu+OkLy+AhspS0+zyh/RRnWRD9vWzMvTgIFNn9yAID4EeG4HW72fFgAqIOUXHYXtryj13G2qImtyKFBgJpcAjWWFUJwYG7BCT8j0dbp5h9p8TnXaDRiMpkYqZwHwKBB6jM3rYkidWokkZlhOGwONr16gAEPpmCz2fjH39/FiZ3BgwdTW1tLXV0diqJw6NAh72y0b7/9lu+//977XYiMjMTf35/i4mL69OnD448/zuTJk0/YXkmSJEmSTmzbtm3cd999bN68mYaGhhPOugd18JFHcnIyQUFBbNq4CQNmbplxIxaLhc0vH2Tg9DSMFgMlOys4/H05Qyeo+Rf3TwGAutSscKv3aShuJiQpEGu4Gle4WwVavdL+5sDBuUfof1MmerMBgLojTQQnBRA+wErFlnocTa3eHFfLkRZaW1wYTOrrfZ8VMviBDBJGR1C8rpq9Xx5h2GPZZF2SxLoXc6AFyrbXUJvX6HPPlvIWag42kLu8AoC40WEEJQVQc0jNecWMCEVr0lKyXc1LxY8NAwHFm9XjQzMCEUKw99M8ABSNor73Y8I7l1ONceLGqXmk5mo1yFN0as7rwHfF6mvl6HMxmU2YzWZio2MZpZzPwLPUZx6tT6LwSBVDp/lWmTrj/h6Ulpby2cdfkJqWTEhYCHtz9mKz2WhubmbPnj1qrLxuHevWrWPGjBm0trai0+lISkqipqYGPz8/LrnkEh544AGioqJO+D2RJEmSJOnE3n77bd555x3y8vJ8llnrqF/MU6nHZDLRq1cvqqqqOHK4kIsvnUJCQsLRgUe3Hs15BUWb6DksBYfNQcjWZGKj4jCY9Vh7WLHn2X3yVqUra0keFeN9XVfQSEhyINGDI8j7sRxnSyt609H4z+0SoFGP3f1pAUMfyCIo0UI+kLeyhOTxMSQMD6dgWQVFG8qJHxZJ3OgwCldWUpfbSOQZISSMU/fvnVNM0thwGgvtPu/58JISQjOs2OvV+Kjn5UloDVq2tg0WTzknGpfdRc5n6qAkY4AeZ5OLmn1HgytHo9qP699DnQhYX9TYdqxRzXktVfsyEQocF/p6BpqHpwUB0FimfkYGvRGz2UzPhqGgHM15GVdHEj7Qj/RJSThanGx6RZ3EZ7fbmf32R9S76jnzzDNpaGjwDlLKy8vzFlDYt28fH3zwgbfie0R4BAFWdWWdwYMHc9999zF+/PiTfKMk6b+bHKQk/dcrKCjgqquuYtOmTd6ZRtA+MNBoNJjNZm8FpNGjR+NwOPh13Tam3XQNkdGR5G0oo3hJFUP/rCYEAjcngltNwngHHtXY0YXrCE4JoXh5vU9gcOy9AQ6tLqPP5CRMfuoPqr3OgSnISGCmibq9LWpHkZq3oHFrM0zGO5OsaHUFaefHE9kzmPo9zTQV2whM8sc/2ULj4WZam1wY/DXee9rrHBwbB+WvKKO58miglPNpxx1WO2bmev/3ge+KQAsHvlZn69fnNxKeHcShn8oAMAboQEDBmmoAtBqNWmmpbZU2jaLB5VCfU8QQdaR2Y4n6mVhC1Gdw6Af1Wp4KTcfydJwl9AlFCEFjVduFFbXjsHJD09Fj295sQt8QTCYTyUnJjFf+xKCL1QpN4VVx2BrVZfNcLhf/74X3aaSaiZMmkpeXx549ezAajZSUlHjLmL/77rvMmjXL27GWmppKa2srDoeDp556iptuuqnDZyhJkiRJ/0v+9a9/8dxzz1FYWOgzE+z42MtkMuF2u3E4HKSlppHUI4llS5YTSBi3PHIdWq1Wnf01IIjkMTE4ba1sem0/SYlJaHVaCAGqfctc58+pJLZ3hHewc3NtC/6hFpLGRZI3v6zdwCO1YW3nLi4l+9IeBCX5UUAFzWUt+MeYMaeYsR2y4XYePddW2oIiFHQa9Z9TucvKiT4jDHOw2rFWvKKcsLQgGtuSJbs+zCPlomgKlqoDuW1FNnZ/lN/u2ZVtrqVsc6339b65BWgMR+O5lloHLrvb55yWWjVBE5JlQVEUag6q9wyK9wcg72e1I03RqgkaW5Hb+3l44rKo4cEANFaocZneoEMIQd4Phe3a6OGJyyyhfgghvIkhvV6P0WhktHI+AMPGq8md6D1ZpFweTWRqMAX5BXw5+2uGjh0MCixbtgwAp9NJXl4eLpeLDRs2cMEFF3gHqwUFBREXF0d+fj4jRozgk08+ISQk5ITtkyRJkqT/BbW1tdx2220sWbKE2tpan0Hgx1IUBT8/P2/Oa9SoUbjdbrau3sHUqy4mITmB0r2VHP66nKGXqjkv66YEAIKCgrzXrc1rICIrBL8wdWa72yXQ6o7L37S9zP2hkOA7rehM6sz6htJmguL9CR8URMXGWlptLnQmdbB4S6kb3KBpy5flL68g+LoAghL8qdhST83BBqL6hnirI9kq7fhFmry3bCqzozUdjZn2zTuC23H0WRz6oaTD55Lz+dFK5YUrK9H7a8mdr+almkqaaG1xUfKLGkuZAg0IAQW/VAKgVbTgVmipbbuPwBun+aeaQEBjsRpwBiepObD8Jeq1NUpbx1kHA5oSRqsDmpraBjR5ljMunF/lPdYb/waB2WwmPjaBscqFDLwwHYNFR7KSTdm6Oobel4Xb7eb95z+ilgomTBpHQUEBu3btwmQyUVpaSmNjI1VVVfz1r3/l7bff9ua8UlJSvBMHHn/8ca644ooOn6EkSZIk/S+ZP38+zz33HLt27fIuFwYd57yEENjtdpKTk0lJSeGXJasJIoLrHrkcnU7HuudyMIbCgHOzcTS3svn1/STFqdUiw1MCqT/c4nPN2h0tiAuFt8p3XVEjYSlBxPYK4nBeGa12l8/AI+E+2heZu6SSkFsCCYhQY7jag02E9wwktKeJqt0tOBta0bcNCMcOwnn0PmXb6ugxNgajVY3pyjdXEdkvlIYitX/u4LwSHC2tFCxTYyZ7pZ19X7fPJ9UdbKbuYLP3dc5XeRiDjo3nbPh0pQq1vxXAHG0EFOoOqbFsSKpadamwLU5TDBqEC2z7jw6McjarOUlrknqPxrK2iXgBBrUa5crj4rJjuNqKKwSlqIPSGwrVcw06AyaTiYHu8WqFprPUnFfU7kzCR1hJGxtHcUEx33w4h76je6LT6fj5558BaHW1enNeCxcuZNGiRd6cl9VqJS4ujtraWs466yxeffVVwsPD2z1DSfpvIgcpSf81mpubufLKK1m9ejWNjY0+A5I8FEVBp9PhdDoJDgqmT98+FB8ppvpQIzc/PA2dTsfuL/KoO9DsXfLCb0cspla10yciK5DiJVXegUfBWRZqcpqPDkSywMEFR+h3bSaWtk4qe70Dc5CJmAlWipfW424VKFowhx0deKQ1qkmZ8l11JIyIIHF0FDv25uFodGIMNBA+0I+KzU24nQK9Wf3PtmJbAynnCsLSrRygiN0fFzDwvjSy/xTPxlf3se/HYqIHWOk/PYVf3z5EyeZq3G43fW7swYE5uej9ddjzIW1qLOEZgVTur2H/V0eTNhr90eTOoIcy0Gg0rH8xh6INNSSdG4lfmJHC9ZXk/lxM9BnB4FLPKd5SRWCshYA4C1qjhtJdVWCBrCkJoEB1Xj0AicPUqktlOWoQYQxQn1dzbVsJbY3i7fwK7K3OumtpUBMlllD1WG8A0kH1BU/Vq/C+oQA0VarBiSewsh08eqxWq+VMZTQREwJIOzOBPr36EpOTzeAZagnMH17/iT1NWxlz9ihqqmvYtHmTev/CQu/37Oabb+bee++lpaWF1tZWUlNTiYqK4umnn2bcuHGn/P5KkiRJ0v81CxYs4K677qKqqora2lpvPHTsb7Jer6e1tRUhBL179SYkNITtG3YyIGEgwy8bgtPRysaX9nHmxekYTHqiW+MpWl7nnc1vjjVTuqqW5DEx3oqRTRV2rNEWMs6LZd/HRQiXQKPT4Jdopinfpt5fDa3IW1RGryt7EJziTx5l2Krs+EWYCB1ooWpzs3quVgNmqN2vdgRZQtSEzaGlpfS9pgfZk2PZ8uZBjqwvJWlUDClTojn0fQl5q4pJHBFNeH8rFb/WU/BLOWG9Awjt5U9zcSMlW6rR+StkTI2jYlc1tio1jhnycBatjlZyl5RQtevojH5zCNiqIW5CGAlDIijaWEn+knKih4YQOcSfsPRQts46RMLwCMwhGjIv7cHBxYUYrWqyJfW8eJqrW6g7rF4zNM2Ky+HCbRdgBr1Z5+38CusTgKIoOO1tA5ySrQDUHFBnfnkGedmqj37ennPDzwwCoLlGjYGM/m1VDL5X48gOl5zzVGgKM6EoCqbmAIYr5zJ0hNoJqlmuDjYaNj0bp9PJzBdnE5qpJmh2bN9BeUU5TqeTPXv24Ha7WbhwIREREfj5+VFfX49er+fMM88kKiqKTz75BLPZ3IlvsCRJkiT939HS0sK9997L3Llzqa2tpbm5ud0xngElTqeTQGsg/c7oR0VZBdV7G7nu4SvR6/Xs/uwwdYdavEtemLZEYajzUyfixfgD5bgcbnRGrXdAkCfGMwXBwR9LicgKwRik5mWaipuxJviTeE4Y+YsqabW1ojVpMQVp1ME7AnV5EKB0YzVB8f5E9VYHKdmq7Vjj/IgeaqVkXT0OmxODvx5M0FzYgrO5lbDsIA58X8zheaUExltIuyCeTa/v58DCUiL7BdD3ph5sfz+Xsh1qZfCsy+PJXViEOdhI9aFG4seGETc0goq9NRz87tic19EesAH3pqHTa9nw8l5KNtURNzoMc6iBip01HJxfRGBqIOZGBwarnvyVZQTGmtD56TEE6ijZWgkm6DEmEo1eQ+U+tR0p42NAgcp9amxlCVXjNXvV0erhntn8pij1+bTUq7GiNV4d0FS8Rh3crmhpn/PyVCUf2jagqW0SoqZtwFjZujrvsVqtlj7KYExJJgacmUKfnn2J2p3JwNvUCk0rPl7L5sMbGHbWYOrq6ti4caN6/+JibxWIK6+8kptvvhmHw4HT6SQlJYW4uDieeOIJWQFAkiRJ+q+0bds27rjjDg4cOEB1dTUul6tdvkOnUyftu4Wbntk9CQsPY8/6fSSQyqQHx9Jqd7HxlX2ccW4yllAzMdoeFC6qQqfRoSgK5mgjtqK2fqu22KT+cCPhvYOJHRFG/eFCWm1u9BYt/nFGGgvt6pK4OgWMkL+kirDbgrAmqLFDfV4zoZlWwoZYqVxfT6utFZ1Zpy7TVqHexxKu5ksKfi4hvFcgCWNiqdp9iNzlRWRelETyBVEc/qGUA/PzSD0vifC+gVRsr+PwT+rxoT2tVB2sp3hdJW7FRer50ZTvqMZRpw4IGnhPOu5WN4cWFqsDkhRAAaNVg73eTegZVtLOiaV4QyUFyyoItRoJ6eNHeEYwuz8pIGZoCMYwI2nnRrJ/SQmWtpxT1sXxNFXYqDrYVvGyfyjOllbsjW0T6IKMtNrVNvjHGdFoFex2tY8wrGcQAHW56gAnrVEDAuyH1GciAJdDPdY/US2mYGuL2fyC1Rgu95ej1S/brRbjVF+HJKu5Nl2zhYHKGIYMz0Sj06AsUycGDpueTWtrK5+88DWa+FbSMlPZtWsXJSUltLa2snfvXtxuN7Nnz+aTTz7x5rx0Oh1nnnkmqampvP/++xiNxi59lyXpP5UcpCT9n/TSSy/xwgsv0NDQ8RJpno6VsLAwMjMzqamu4cieEu589DZ0Oh17v88jJDOI8MxAANY+uwdNW8mijAvj2fjaPu91YgeEkru2in7xAVjaOoEcjU5MViPpFyawIUf94dDpdPQYG0nu/DKEEN4Ry6W/1tBjXDSJg2LVQUpuN3q9jvjxsez/sgghhLfTrXB5JQkjIvBrCxTK9laROCSGhJExVGw+0Pbjpw6GollNPnh+EIOzLBj9DN6R25nnx2JoG9nsn2yhx1nRagCjUeh5dRrGAAPBPfxpqXOCAuGZIey3lHirHnlms4G6lIjnuunnRuEXaVYHcEWZ0Ro0KBoFd6tAo1PwjzYTnhWIrdqBolGI7hNGY4ENW7WdoB5+hGcEcYBiDi8vImNyIj1GxlGxYR/CrXYSxg0Ow9mkdph5qkaljI4GwOSvJsGM/gYURSEsI5i6vSUoiuIdER7aWw3IPIOR/KLUAWatLWqQoWg6Li0OEJWpdpC5W4XPsWHNsYxSYhkyRE3iBW5JpMdF4cT0iaCoqIgPZ37EwCH9cbvcbNykJnMOHjzIwYMHvcma2NhYnE4n1dXV9OrVi88//5zMzMwTtkWSJEmS/lNUV1czefJktmzZ4p1ZfTxP7NW7V2+CQ4JZt3IDV1x1GQnJCbhdgvUv5DD0oiw0Gg19Ewew+6N8hBDo9Gq8UV/cTGgPKwnDYihaXte2HIiG9HOj2T5TLfus1WvBDMVrS7H+KZnQpECgiKbKFqzRfqSfH8PWt9X17nU6HeZYM/WH1Y4Vc6D6D/jSLdWknBtD2lkJVG3ei6NZjelih4RStLxKjUfaOnea8j2dPep7C4j0V5MNFrXNCcOiULQKIanqIKWE0REApJwTS2VOPdEDQnA5Q9HoFAKT/NCZtBSvUge7G/z0pJ4XR9WuvSgGNY6JHRPDwe+Kie4bAgro2xIxPSZEeTsHE4aHED8snMAeFsxhRlLOiUWj0VC4vAKdUYvOrCVtchyVO3JwtrRi8NOTcm4Uu77Iw+V0qc8QCE6zqh2TbdU8/aPVwUNhmcEUraxBZ9KqsZUZ/CLMagdXW8IsNEN9Dp5YV9GpSRprtPq8j60gGjkkyOd7YvZX79dQrCaGjq82CqDVaumrDOPMC9MwmAxkxmSz9+Niht6bhRCCt5/7J/VUM2LECI4cOUJ9fT2tra2sXbsWAIvFgp+fH2FhYRQUFBASEsK9997Lo48+2uF3V5IkSZL+03z22Wc88MADlJaWdlgZyRN3hYSEkJWVRX1dPUW7yrnt0RvR6XQcXFCM1k8haZS6bNfaZ/cgnIAe0i9IYNPf9oNQrxM/NIzi1WVEnRGKuS3n1VJtxz/aQvqUBDa+sg+3y41OryN6+NGcl6GtOlLRhiqsCf5E9w9XBynZXegtepLOj2Hvx4UIBDqDGn9U72mEP4F/dFvn2LpSek1NIWZQBCXr6tt1+OjNOkTbtHZTkAZLmNl7TPrkaAJiLAghCEozk3puDCgKihYsV6dgCjYQmmmlobgZRQORvUIo3lhDc2Fb1UjL0ZS40U/vvW7S2HBCM9Q4KSjRH41eg1avwdncit5fR2CiH/Y6J/VHmtDoNcSeGY6jthVbrVNdxqNnMAe/L+HwsmJ6X5ZMwrAIyjbU4nYLdIpC5JkR1B6uBw1o2nJOyRPi1PfYNnnPEqLGZUHJQVTtsqHRarwxkynK8x1QXwenqJ1hngFP2mMmHHp43lt820Bz1PQY2rZqnfrcQIYqZzN0aDYA1k0JmNJNDLgshYryCj74x2z6DOqJoihs2qRO2jt06BCHDh1i5cqVAMTExOByuaivr2fIkCF88MEHJCUltWuLJEmSJP2nsdvtXHPNNSxevJiGhoaTxl49e/YkLCyMTSt+5cJLzic1OwWXw82Gl/cy5KJMtDotfeP6s7tt1RK9SR0gVJ1bjznERPyACAoXVeG0t2L0M5B6TjQ7Z+Wpxxp0GMONHFhWQnjvYIIT1Mlk9UcaCc0IJPX8WLb947AaU+i1BMZbvFWJPIOhSzZXEpppJWVMDJXr62mpt2P115M4LoL8heW0Olzo2gomeJZc8xQr8AvzQ9EoGPzUGClpQjxag4agZH8qtteRek4MaMAcYkTvp6XHWdE4bU50Rh3WRD9MQQZKN9aAAFOQgfQL49n0+j40BjWOSRgXxYE5xcSfGYZGp6Azq+1ImxyLolHzQ+H9rfQ4K5rAtHqsCf5kxljQGDQUr6tG76fFFGwg44I41ufspaXWgV+kmdSJkez+ugB7oxOT1YDRCiFZVoT7aGGE4GR1WeLgHgEULq/CHGhE0Sj4xxlx1tvRaBU0WrU94b2C1M/DrMa6hkB1QJklwIKdRm+fJYC1bUCTZzWcgDC12IK9rfrTscd6aDVa0pW+nHFBCpYwE9kJvdn9QQFD71NzXjOfm00V5QwfMZTCokLq6+txuVzeZXs//vhjLBYLERERFBYWEh8fz/3338/tt99+0u+5JP0nkoOUpP94Dz/8MH//+9991nA9ltFoxGAw0NDQQFhIGFP+NIVAv0C2vZnH4Bsz0Ro07JuTT7TShFarxe12U3WoiapDTYRlWGltGyFrq7HjF26mfJ9aPlm41aXWirZUeQfueGaBl+2oJWF4BE016o6WWieWEA2lG44uVeZJApSsUQcpeXIth1cUknZWAoqhbWT0kUZMEQbvwCOX0427bUZU4eoaEgZHY2irnnR4cRGpk+MYelcW617MoXhzFW7RSs+rE9j9bQHlObWUbFFnbeUuKyYkLYjaw/U0Hm6mcG0FbrdAtAqKtlSRdl4s5dtqqDvQTGCahYh+wd73CXifC0B5Ti2Vu9TrHvyplOgBwdgq7RQuryR2ZChas5aCJeUEZ1kIywqm+kAtVTubsCRYiB0cjN3ZSnCgnrzlpRitBpInRxF1RghNlS0Ur6sgeXIUGp2Gljo7VTsrCe8bjhCC8rYZaE2VNrQmLQW/lHnb5LA5KVlTRni/tkoALeoo6Yje6kCjirbZarjB7XZzZHnl0ffWtvRMRH810LM3qx2uep2amCpYcfQ+xyfJPBWazMFquU6Tw48xygUMnZCFolGwblbLofe6K479+/ezYMECzGaz+r2rrMLldrFt2zb69OmD06kOxkpLSyM8PJy5c+cSFhaGJEmSJP1RioqKmDx5Mjt37vT+5h1LURQCAgJobGjELdxMnHgO2dlZHPyiAltpC8OmZON2CfS/hBNAEAD1peqAFLfTjWJQyFtZ7r2eJ/lTtrGKsORA7E3qb3JLgx1LsImStvjD5XSpg4VsUL2nBTFFeGdI1exrJCDKgq2tso+jwYnRaqBtJTZamhwY2zrSyjbXkjA6goZytdpQwZpKUs+OPiYebFFnt40MpXhVFU3lNvwizMSNCqPgl0o1oWPWYo41k7u0FFOIgfwl6vsp2aLOrCtYXIE5RIOih+JfygjuGYyzyekdhL7h5b0kTYzEVtU2Y8shEAZB0Vq1bFHuTyUExPmRu6BU/Uw2VNLS4oBmKNtdi97fSPGmWizBagIlqIeabFn7/B7ixobjanGRfVUiuz7fT8ygaEq31jL0niyEgLKd6vMMy1BjoLy22Mptd+NUWsn9qQRziIbmKhtuN2CD+CFhCLegaIdawTIw1h8hBIcWqMv/6jQ63C439SU2MKuxU0ud+t5CM9VOvsLNnthKjZHLttYf/Q60xdexY9uqX5a3xfwuBbfbTf78o7PVAAYqYzCHaDhjdCbOFiebXj1A79sSaXDUMefbOVTWVBIUGOSt7lVVVcVjjz3Gs88+S0tLC2azmZ49ezJ+/Hheeumldt9xSZIkSfo9vfPOOzz99NNUVFS0yz8AGAwGTEYT9Q31WP2s/PnyP+NvDGDXO0cYMC0Vo7+BfT/mE6k0oVHUZcHKdtVACySOjPTGOPWFzYSlB3qrW7fa1aXWKrZW0lKLWgXApcZlR9aWkXlxkje2qj/STFCSPyU71DyLcEHbvDBq9ja1bVPbvn9RLr2nZiDawsjKPXVY4y2YgqClVs3l0Nb3V5fbgnALbyfQoR+LyJyaxJC7M1n/0l7yfi5FGCDz0nj2fnmE4i2VVO5S25D7UwlhvQKpPdRI7QEbucvL0CjgtLmo2FtHj/GRVO+to+5QC6Vba4nsG+gdoAR4c0gAJZuqqDmkPpe8lRXYGx3Y6p2UrqomvH8gxgA9hSsrCUozE9TDSl1BIzV7mziypproMwNpqGgmqncIB38sxhSsJ2ZoCEkToqgvbqJkUzVRQ0LQW3Q0V7dQtqmSgOQA3K2C8j1qXGarbsEUauDIyqPVwu2NDorW12CJUwcsOdom80X3iwSgIqdWbbzQ4Ha5yV2knosbXG2jkAIS26o3tVUlNwWor/PXtN1HKGru8xieKgIxGerSJjqbgRHKuQwal4HOoCVgYzwo0PvueA4dOsQPP/yAwaB2AFZVVdHa2sry5ctJT0/35rySk5OJj4/niy++ICoqCkmSJEn6o9TX13PFFVewYsUK7xK4x7NarTQ3NeNyuRg/YQK9evXk0FcV2ErsDLs4G5fThW5lGKZ6Na/SWK52qjmbXGisGvLblhBTcx1usEPpxgZiB0Rgb6ua2Fxux5Ckp7KtmrWj0YnerPNWO3I53bS2xSrlO+sIzQj05pCayluwxlgQWjWgaqpsxhyo/sbX57bQUuPwtil/WRnZl1qwVav3rT/STEhqALEjQilaXUXN4XqCe1iJHRFK+a9VKHrQmTT4xxk5vLgES6iRotVqf2n+yjK1v/SXKoxWOBKoo2xrPYGJZhwNTgJi1AE6m9/YT8zwEOz1avvdDrfa57ZGvU7uslICE/y8S8Pl/VyKy+0GJ1TsrcccWk7FrnqK/aoQThdB6epz3vDKPqIGBuEWkHp+NDmf5xE5OJTqnHrOnJ6BRqtwZF059nqI7KP2EeYtVatoOpqcaAwK+T+XgBHqixvVZXkr7CSMCsfldFOyXW2Pp9L4oQVtuSih4G51U9NWtdzd6sZWoz7PsN5BCCHUypoAQs15lW9U36uCgqtt+eGgTLW4QkPp0U5Yt9vNwXmF3nM1ikIvZTAYYdjobJy2Vja9tp+0K6JptbSw8MdFFJYcIShIzXm1traSm5vLHXfcwX333UdLSwsmk4m+ffsyefJkHn/88Q6/45L0n0IOUpL+ozz55JO88sorHS7V5hEUFERWVhZb120ni0FMfnAkAOueywE7REdHe//x7mhyYDGa1ZKGqAkXjVbjMxjHM4G7al8DfuFmzAHmtnNbMQboMVvA1gytjlaUtixM0fIqEkdEQqt6cnOFHf8wM3FjYznwdRF1RxoJTPD3DjyqP9KMy6X+KFduaCL9LAW9tm3Ztp11pJ4Xx4AbUtny1kE2/H0vg6dnkjA+nIKfK8j5Jo+aHLXBFdsaiB/h9C63kbewjEEPZKAzabEEmTjwtdpZNOSRLBpLbexqG4UNagKmZE2N9/WBr4sITLMQOzKUolVV1B3wLRXutrt9jrWEaehxnjpr7sBh32ML2jrnanKacdqh9+WJ5PmVUrK+hgMFzQx5JAuNTmHfD4XQDOH9AojoHcz22YehWX1fdfkNVO1UA8PoAaEUbaxSr2uB0LQgXA43ZRvrsISpI69tlQ6aK90EJKsdaft/VIM/a5wfwiU4+I0aRBgseoRb0Fzcon4eAuzV6mcRnBmgdrK1BSuexFjlVrVCl0aj8VZVChugdgA2lqrfTXOwOkp677dFbd8j31HRVquVvtn9cCy00PuqJAKiLRRvqWDe/B/JGpNCQ30DW37doj7fAwc4cOAA4eHhaDVaEpMSqa2tJSoqipUrV8qBS5IkSdJvorq6mvHjx7Njx44OZ4p5ZGVlYTFZKNtaw+SLzyOiZzCVB+rY/0UR/fumozfpsJUe8R7v+UUsXFtMcLIVfVt1xqbqFgIiLbhRB6EIl/DORqvdry4lotWpx5ZuqaTHuFgsoepvs73WiTnEeMw9FPRtA48Kf6kkfkQ4ARHqP/gPLSwifnQkpgAtTYCr3g0mwAzY1MpIIUlBQDEVm2qxBBtIGBJB2Zpatr2TS0iWheq22Gv/17n0uSmTxtImbKUtFP9Sxhl3ZBIY6+etvBkzMpTEkRFs+yAXW1ucYKt201hiw1btxrZKTU5UUE/SxEjKNpWRt/jogGgPz7mVOxqo3NFA3KgwavKbvIOgQH0PjYU2bEU2bGoIQszgcAbdn8HG1/ZRuLwCa7KZHhOi6Dk1jc1vHgCgucoOAg7NUWOedS/kEJRupna/jaSJkSgahY0vq+9n4J1pGIL07Po0FwCdRYuCQsE8NelSX9gILoXa/TbMUSbQQOXeerBB1mXxaDQaqnLU5I1Go0ERCoU/eWJQgbPZBTZ1KT+Allo10RYY5w9A8Tr1eWl0CgjfJefcbTFwaN9QFEXxLudrtBgICIuhX+0YUGDoDeoMtAXPreWQbisDR/dn9+7dlJaW0tLSwubNm9m8eTMvv/wyISEhBAUFUVFRwbPPPstdd93V7rORJEmSpNPh/fff5+GHH6ampqbDAUmg5hJ69uzJ3k37SWk9g3MeGIKiKKx7Pgea1Yo19sa2Dq4qO6YAI0Y/E9BEq8OF3qgDT0rNDUpbiFexvZaw9ED0BjV+stU5CDCZwWQCWnA0tXqXGanZY4OLFFwOtY2NRTZCkq0kDgpl35EiKnJqiewV7F3SrWpPnTfD3HjADUJB2xbjlW6pJrxnENmXp/LrPw6y+bUDDJiRRsK4cAqWVbD7c3X5OYDaAzaaSmzeYLJ4XTX970jFFGIgINFE7nw1fjrznnSaq+zs/ijf+9xcLS5Kt9V5X+fOL8MSZyJmaAjF66rJLfTNM7rtR59/7qIyTEF425Q73/fYwpWV3va11An6XZ9E3opyStdXkzu/hTPvSUfvr+PI8lIqtrkJTDHR2uLi4Lf56gAwoKXKRu0BNQbuNSqCovUV3sl00QPCaLW5qNhWByY1T9lS6aSlvIXgTD/qCpsobBtYHpJuxe10e5euMwcZwQ0tbXGkcAtsbR2cwen+CLegcI16rinQgBCCio1qoxSNxptfNMerA83ri9UY2L+to/HICjW3plHUuMwjICCArJSeNCsG0s6PJrxnMKXbqln8wxISR0Vhs9m8VZcOHz7M4cOHiY6ORlEUkpKSaGxsJDU1lQULFhAUFIQkSZIknW6eAUnLli07YQEEgIz0DPwD/Knc0siQwUPJmJhA5b469n9VRL/0FCxWI7YSdSCJcAkUoQYqBb9UEDck3Fuxuv5II+HZwWj8DICd1haXNx9mr7SDGzRtOa+CtWVY4/0wBahxWVOJHWuCFoyAHXALDBZ1X01OI63NLvwj1d/mQwtK6DEhAm3bzDxbuROz1YTRCvZ6dXWQsPQg9huLqT/cQt7PpcQPDqd8Qy17Pz+CtYeJ+lw1bsj5ppCBd6TTWGrDXu+m4JcKhj2QTUhKIJvf2E8NjYT2tJJ6XjQ7Ps7DVqLGGPZ6sJU7sFfaKW/Ly9TubyJmeAhVO2spXnNMIkeof54BWHUHm6k72EzEgCCay2xq9aVjNJXasZXY8XxikQMMDLw7nc1v7Kd0cy3GMCOp58ZgTfDj1/93EICGomZ0Bg0FP6kDjTa9vg9ropH6fDtRA4Mw+OnZ9PZ+sEPvaxMJiPVj9+d5YG9btQWFgoVqLqo2vwFNoVatUmVUP7OKnBqwQ8JZ6uddc6it/9CkRbigYJEa0ykasDc4sdeDUR3rhK2tqlJIWzWnss216rl6DcIN9oqj+VjPajChqVYURaG5Qn0KfgFmLBHBZNYMJlMZzNBpWaDA4uc3cEjZTr9xvdi7dy9FRUU47A42bNjAhg0beOKJJwgOCiYkNITm5maeffZZbrjhho7+M5CkP0T7GrCS9DspKCggJSXFu1SXoig888wz3gFKnpk4iqJw1VVXcf9dDzJBuYRpU2/grLPO4uIRlxGqhHkHkQBHlyozti21tq0SIQShGeqybrZqu+867ijo9OqxhW3JAc+I3+LNlbhaXfinqj8euBSfssnCLbBGq51hB74uor60CU1b+b7aw00IlyAwVr2W0aojOMnqXYpsx2d5mEPU91f+az11eY1s+Zf6g2qxaNAaNYRlqb9iNTnNDHogg0EPZADw69sH2f7uYW87Nv6/fRSurVAH4QBYQKNVMAb4jkHsMS6aIY9k+WxLmxRL4phILGGn/r+CvjdnEN0/1GdbwvhwEsdE0vv6JO82vVENhAIS/bzb1r+ZQ8Hqcu/nU7GtgfUvqgm26OHBDHsi2xvMWRIsaI0aQtt+tGmGkl+rOLxY7YnrcW4cNYcbvAOwks+KwRJqprlAvXirrdU7OhmL2vF1aIV6bq+piSgahfLtauDjF6IuX1K3Qz3X5XRha5v5b4lRR583t609G5mtrhtbtVtNemkURZ0p6BmvpRytPhU7Uu0484xQ17eVyMxbUEFvZTAjR45k0nmTmKBcwgS/S5g+fTqDzxystsnfj8rKSqqrq9mzZw9RUVFERESoJSUtFu65555TflaSJEmS1JGXXnqJgIAAb9wVGhrKtm3bvMvWattKGw88YyB33nmn+julXMIll1zCpEmTyFT6U7SirUMkUI1jHDWtKIpCSJYa87Q6XN7lUhty3Qi38P7G1x5sVpc1GxADQFNli9oJpY5VoaXeTqtT/S0t3VavViiMUuOJyn0NKFqF1IvVcw8tL6S52u59b612F44mdRBy7X4bAVEW0s5Tl87YPvMwtYcbyZisvs77uZSC1RXec0NSA9BbdJjViVbo/QwMezybsD4B2KrVyke1+9XEgK3aTcHKcu8AJQBrjEV9z8eUce57czIpZ8cQ3la10SNmUCh9bjr1cq9+iWYSx0SSdm60z/ah92SRcm6Mzzajv867XAdA/WEbBasrvAOUALa/e5jt76nx46AHMhh4V5r3PQWn+qtLy7V9DptnHqB6f8PRpfKCDGz9UB2wFDkwiOBkK4ZANVlmCdMhXIKafWr1AbdbUJ1XT8HScu+z8VRKAtBoNbjb4rTgVCMup4sjv6jH+keaQEDVLnWAk1avPdoZ1lahqb5txllQDz+1QtNa9XPUGdrPvXG1uAlRQpgy/lKGDx/OxaMvZYJyCfdMv5err776aJs0GvLz82loaODuu+8mMDCQoKAgtFot/fr14+DBgx19RJIkSZJ0UrW1tQwfPhy9Xu+NvW6++Waqq6vV5dLacl6gcNlll3HP7fcyQbmEKyZcy1lnncX5o/5EkBJEq+24ypYCbx6rZIOa8wpMUuOw+qJmNedlajvULdC25cdq9jYh3OoSrwCFv5TjsrsISlYHgbtaji4LC+oscc8A4iPLK6k8UIe7repOzf4G3K1uTOHquYZAPaHpgYT3U3NvW2cd9k7sashvoXJ3Hb/Oavs9NYHRqic4Tc351B1qof8dqZx5bzoAO2flsfODPG87fv1/B8lbXkZD/tGBQ1qjBmNbp55H2uRYhjzsG2OlnhNNj7OiscSZTvg5efS5MYO44eE+28L7BZJ2Xiy9r0vybtMY1HjGGmP2btv0t/3kLS2lpdbtfU8bX91HSy2EZPsz9LFs9H7q520K0mDw1xOSdjRGzFteRu5StYJm2jkx1BxoYNdH6jNIvyCewDg/70AuR4PT24EF0FRh4+BSdbJA8vlRaPQaKvepHWfWaHWJ3vK22MrV6sJW3fYcTWpHWlOF+jq6X5SaH8tVYy2tVp2015DfthSMVkOrXb1vUJqaS3PUqBNETSHq8y1eVUqa0odRI0ZxzsRzvP+WmDFjBsOGDgPAz8+P6upqKioqWLduHWFhYd6cV0hICI888sgpPytJkiRJ6sinn35KbGwsWq26fH1gYCDz58/HZrOh1WrRtRUN6Nu7L9OnT2eCyZPzmso5Z59LmtKbqu1qhR1PnNFc3qLmz3qrv9uOJufRJbzsag5Mo1NfV+9rAgUi0tX4SV1yVsFoVfM19SVN3t/SxkN2NIrirbhdvrsWrUFD6tlqDmjfgkIaStRBMgBOWyuOtipMthI7QQkBpE+OBWD/t0WU76olfrR67qFFxeQtL1UHOwGhaQEYrXqMbXGbRq9lyCNZ6nuyw+a/7vcuG4cdDi4sZvM/9nufq3+cCY1Og97g3UTG1DjSLoglamCQz2eQNCaKPjemnvKzMlo1pE6KIXmib35r4L3pZFwY57PNFKRXl6hrexb2SjuHFxXz68yjuZq9XxxhV9vg9f53pNL/jlTq89UHEJZlVd9/2/k7v8hXV5hpe89+4Ua1mAJg7WEisk8IpmD18/cPN+JyuKhrK9qg0Wqo2FvjHQwVlhqIaD06yEhr0OJuUV/7J/nhtLVyZH1bVfIEtbhCxXa1f1Fv0sIx+TLhFtQXqUUcglL9EG5B2Ta1H1Pnp1MrkbZ9pkIBh60Vq2JlXJ9zGT58OBcO/5Mad91wN9dccw06RX0PWp2W/Px8SkpKuPHGG7FarYSEhGA0Ghk5ciTbt28/5eclSb8VOUhJ+t08++yzmEwmb3ImMTGRw4fV//NXFIWw0DBMBhN+WHnkwUd4+OGHmaBcwnj+RHJyMiY/9VekaLNaAju0h5r8aG1WO8dQczK4W4V3sFDJ6nqES3jXN7XVOFEUhR7nqeWRGyuPztACaLW5aK5RO2Tq9tah1WlJGKQee2hxIcItiBurVrWpL2ii/sjRkpABERZCU9VgpWhVFS3VDlLbOpFyPjtM1YF6b6WgpJHh6P103mvt/raAwdMzCe3tR3Olm7Wv7+HXtw+d8FmG9vZj2BPZJE+OgmYo+PloRxvNsPa5PWz5u2+HSsXuOoo3Vvps2/P1EaoO1NNceeLqCR4Fq8rVgUbHbvu5AluFnZ1f5Hm31eQ0s/bZPez/stCnTZ5BYEMfy6L/9KOBiilIjW4aK9WOxeaCZta+voet/1Tf/6D7M1AUhYptbUmWBD/vGrIAe77Kp6Jt4FBobz/0/nr2zVUTNL2mJmIKMmIyqd+d8p01OJtaKVmv/rgbAvQ0lR8d3KU369C1jWb3jzXgsrup2FELgF+kWQ0MNrYFERa9z3dHuAVNxZ7OPrVCU8lO9Xl5Rr17jxXCm1SKPiOYkJAQhvQexgTlEm67/nbuvvtuUpVsFDRkpGd4z7PZbLzxxhuYzWpCyGq1MmzYMAoKCpAkSZKkY1VXV9OvXz+1kk1b7PXII4/Q2Kh2UhiNRiIiItCipbdlII8++ih333wfE5RLGDlwNMHBwUcHHtldCEX9h7Onqo1nXfeKvWrnWHgvdYRPY2mLd6kQUAeEm/zVYwuXVyBcAmvbgPDKnHqcza2EtC1FodVqMVnbsh42tYS1KfTouc7GVqrblrawBFmwhBpJ+5OalDkw7wimYIO3Ok/Zzhq2f3J0dn1wagDBqUdnLRn9dQy8Kw2Are8cYu1re7zvzV6v/qvfFHS0clP/6anewd6Fv/jGU3u/PMLa5/ZgKzo6M2//N4dpLLZR8Wu9z7EFqyvI+7m0g0/MV1O+jcqcOvZ9leezvWhjFcVtZaM9Nr95gHUv5PhsK1yuxoYp50cz7PFsrMlHO9JQ8A4kA9j6/9T3jw3C+1sZdEcGe39QY6nEsyPQ++uIG6J+vmWba6naV8/2j9QYvsfYaBpKbFTuUOO00HQrwfFH47S6gibvDLPEsyMQbsGB+erg8dj+EWj1WqoOqd/J5poWHHVqZ5dnwFRdW4Im9dwYdRZZ26w9jV7B5XRTv0995hqt4k32mWPbOs4a1djSGm1BCMGRX9Tn5me10COph7fj7Pbbb+e+GffjTxCREZFERUXR1NSE2+1m+/btZGdne/8bysjI4KmnnjrBpyZJkiT9L/vwww8JDQ31/mYEBwezdu1aWlvVnFVoSCh+Zj8CCeWBGQ96c14TlD+RnpqOxarGR4Vr1CpL1mj1taPeiaJRMEWp8ZKzpVVdAheo3WfD5XChNaqvbaV2FI1C8lnqklo1BY1q2qJtjI692uEd5F2T14TWqCV2QAQABxcUIVxu4tvyVNUH6qk93OB9fyFJAYRlB6n79jRSX9hM8gQ1Dtv5WR4Vu2rVSkBA7KBgjEF677X2LyjizNvSCe0TAC2w9rU9PpPvFI3ik18JSDQx9LFsepyj5uOKV/vGPutf2uudOe9RtKGSwnW+Mdr+b/Ip31Hjs8zbieQuLSVvuW+ly4ptddTnN3Pg+zzvtubCFtY+v4f93xX5HFu8Tg0kBz+USb9bU7zbTZ6B/Q3qc2+pdavvv23weP87UjFYdN5nF5JhJSQz0Hv+9o/yKPlVff+WOBPmMCMH5qlxWsoF0fhHmrEEqYFT9d467LVO7/MyRxhoKGr2VtYyBRm9VUuD4kw4GpxU7lFjVWusH26n8J5rCjT6VAx3udzUF6oddOE9g9WKTHvajm3ryPVUjUIBZ7MahwWlmQkKCuLMrCFMUC7hpstv5a677qKfeQh69GSkZ6Bpq1pfU1PDSy+95JPzGj16NHl5R5+/JEmSJAHY7XYmT57s09941VVXUVxcjNvtxmg0EhkRiQETWcoAHnv0MWZcfzcTlEsYlj6KkJAQQtuWEXPUOVE8Y0XstA1SaiswsLsS4RaEtOWT6g43+ea8hPqbCVC1ux5Xiwv/aPV3uXJnPfY6J6a2gc16gw5LiNE72Kb6UAOm0LZzd9bTXN5CZdsEMJNJjzXOj7S2/sUDPxRiDDVi7dE22HxdhVoJqE1E72BC24oe1O5vQlEUzmiLR3Z/WsDa1/Z4KxnZG9TfaKP16GSvXtckMvhBtR+qfEutdzAMQP7icta9kOMd9AOw74dCag40UtpWFcjj4KJi8n5uXzn8ePZ6N8Wbqtg3t9hne+Ev5d7JaB47P8hj/cs5Pm0q3ay2MXZEKEMeyfI+F8AnpgTY9XHb+69XByENuDmNg0vUCZgRA4Kw/H/23ju8sfJO+/8c9WZ1ufduT/X0mdBDJwRCJyEEAgQIkAAhtCS7v2STLAkpmwALG9IgDdIJJaGHNo0ZT3fv3ZaLLNsqtiX9/nikI8mSBrLvvu9usrqvi2uwjs45Tzt6vuf73M995+oo3irEGby9AUb2TdHxW7HeVnFmAfPDfplYlL/ejr0yHqdNtc0y1eaVrxUJhemOii0Ubc5FrVfh6xPx08KUn0BU1AAAhYSnX+TDCj9gR6FKED0wKFkOhJg8JI6r1Iq4VbEWFApJzp/Zyo2EQxHGDkbjP4uOstJyTuECkfO66dPccfOdOCnAYXNQWFDI/Pw8i4uLvP3222zevFl+hurr63nwwQczdVsWWfyXI2v3lsX/Ndx1111873vfY3l5Oe3xgoIC8l35LByO0LRmHXUXljE94KXtiSGWfWHUOjA4FfgmwywGllFGF1NmDvqQzpcwOsXEM9YyRdn2AspPzqPvz+P4p4NoElSEJKWEKVcEAh1PD2G5q1Y+1z+xiNGuw1Cok5WIzIXCps03Gabr1SHMuYL5PNW9IBSCogtrE0dmqDm/hNrLi+l4eoj2Z/qZ6o6TlrQ2DdH3bHyTYUKBMFs+X8feB9s5+kQ/pkoD81EGrqPKiFKroGhbLlNHesEHuRvM5G9wcPiHvex9ML5bHyC4EIEIsmIAgN4JTTc1MnHUQ9cfkyd3gM4VCRQA30iA9qeGUj5Ph+G3ptJ+HiMTpcAA229vYGEiwOEf9sY/DyPLSYOQ4I5JdltqDFScls/BWLLKACq9EketmR7Egt6ur7ViKBV9UHNpEbYyk6xmkLfOITPXAY4+0U/uBjMT0QXC6vOKCc7GAwGFUkIVVR5w1eYwvHccd4xIdkoBSq1CJjQtB5aRlHGyUXg5wmSbSEI1fKwUhVLB4oJYHAstLxNejjC1T/SvpBBsdxBjWqFQsBQUf+cU6QiHw/S+Kto3Rmgqp5FyqZEdlzQSWgzz+jeamSzrxlXslNnNc3Nz7Nq1i7KyMnFOeTkul4sXXnghaxGXRRZZZPG/DNPT02zfvp2Ojo60xzVqDfV19cwMz1I6s5pT7mhCoZQEuSXKrdGaxRw0uGeC+g+XYa4QtmeRQASFTiHbpS35llFqxALHyNteSj4QJhyOzoF+sQu/8rwCep4fZaJtCnuVVS5HOBQhFN1VNLJvivJT8qg6p5Tptg6OPj2Ic5VBtiFTaRQoVQkqlssR6i8qZ+fXWuh9YYy5oQWZHKPUKFFqFBRttdH1ez/dL46y+dO1uI/O0vfiOId+1stCf5xEZK8R6kmxOuGHdTdW0vHcKJ4OPzu/2pLUfuFloQqViHU3VqK3atj9jbaU9vZPw+Ef9aZ8HiMPvR+0/yY1RospFKVD9UWF5DZY2fmdFrlPl/whiMCSL172vd+Mx5Vrrqtg8K0xWVWpcJMTlV6JMVfPQr+f/pcmmGyfk9tuy+frGD80I19fnaNCoY/30c5vt2AtEXF348dKsZQaOfpL0Q7GXD2SQsI7Kk6e7ppjdmReWL/ZwVxoZNEjkizmAkEOnx8W8bnWpGZxfkm2vjO5EkhXiB1kMWuTwg1WiMDwAdHWRrtIWsbs9MKhMMs+MV5j5K1Fb4ht0uk0nFuCrTSHA4/30D56jPyTcpiYmKCtTfRxR0cHX/7yl/nyl7+MTqejsbGRM844gwceeCBjv2SRRRZZZPGPie9///t84QtfkAngK5GXm0dRQRH+Qwqq8uvZcEMlU91e2n85RNCzjN4qyDhz/QEC3iDKqB1IILpj3+gUc9TIwUlq80spWG+h9y8B5of9GPPjCzEKlZKcqPLkwGtuHKssaE3R3f+jAWylJnLydLISkbXMhM4qCCVtzw5giZ47Nx5AUiowRvNnY83TrLmqkrqLi2j/3TCtv+3DMxiPpYx5urjaeAACnkU231HLu9/toPtPo4w2x8lBBqcOtUlF4UYHU4fnIACWKh3FH8jj2JP97H8orv4IsOQHwhERx8Sgg+13NDJ+dJqeZ1MJ3/0vp8ZIAU+YzjT5sXRwJ1jFJSKmaJQOWz9fh28yyJGfxL8TCUUILcbLPbJrWiYw6fJ11JyTH/++TmzcczaY6XtJ5MX2fKNNJqSVnuYid62VfY+J9slvsqLSKVFEFa+6/zTKTNcc0y1iDDZcWkFwJp7zUqoUqKLjylKlo/+tMabaRJ6q6pwSNDlqxg6KsoX8IcKmBLuRpWUm2zwAlJ+Zh0qjJBTdbBeKhFgOhBh7NxqHaxUszi/JdVIoFYQC4m9LhYlwKMzQbtE/eqsWIuAMFHOyVMy2CxsILYd468HDjOS3UlhdwJHDRwgEAszNzfHmm29SUVEBQFlZGUVFRfzud78jPz8/Y79kkUUWWWTxjwev18sFF1zA22+/nXa9UaVSUV9bj98dpNBdz44bV6M2qtj9gNjQFQ5H0EY3xQ28NY2jxoKxSMvUEVheWEZv16I1Kwh6w/hmAnIs5WkLsji/TDgk5sDFhWVUWhWV5+bT88IYI/umyFtrl8uxHAyzHF0Hmjrmpe4jxVR9sIDmti5afjuEo86ApcTAbJcPtVYhr00BhJbD1F9cyu5/bWVsn4eAdwlPR3y9UWNQ4Vplw9s7ysBrbppurmKqy8vAy24O/KhHJiEBuBot6GKEqKD4r/HKUgbeGmd+KChcThKwvBhOdqwB6i4rxlJqZO9D7UkEIRDXa30qdeP8xH5Pmt5Lj76/pJKZVpKeElFyiouibU4O/Hsrweh+wCV/CMKwFIiXvfnhOJG97tJixg5My6pJBZudaC1qzIXC8m5iv4e5Eb9sY7fxthomjngIekVMZHBoCSWoHe3+bivmqANL2Vm5OBsttPxabJA05euQVAq80XXmme55BvZMiGtpwVlnxT8l7qN1agkvhfFNiL+NLh2+mSD9L4p4yVpqSlJrD8wvEZgSMV7hBjuRcISxoyKGM+caUSgkvJ3iWuFwhIAnmkszK0CCxdll1ksfoPKkPPLXOjj6s246+3qwnaRmamqKY8eOAdDe3s7dd9/N3XffjUajYdWqVVx44YX80z/9U8Z+ySKL/xNkSUpZ/Jfhhhtu4Kc//WlGUpLD5uD0M09n6rkF8OnYdm0DkUiEPUfahMLQheIHFWDk8CTlJ+ZjqjHim5xDgSQvhoFQPIolcIZ3zlC6NV8mBIUCITR5eopPdTL0+iQDOyewJFiPqfUqpFzxA9/5+2Gc95up+3ARBx7rZmT/lGBFR9UNK04oRKlV0PXSiFAo+pcWqi8U7GX3wTmqz40QDooJa6p7gR13NhLwBGl+uDtloreUGFDplDLxar7HR9NNVbT/tpepIwvs7G6JW4cBFWcWioSPgfjnBjA4Bblp5eKZqThHTDi+5PZfd2MlxlwdBx5twZ+wqaxgm43y0/LpemFIVil6L2y6XSgO7Pu35ATSps/WoMlRJ5fJB0jIO/pi2JXQLo41RlldCqDughJUeiWGUoOwb/OJxa5Y/dfeUEHPq+MyuctaYpRVsgBafh4PjPROaLq5kdm+eUFSMghyVIyNnLfFIohl0ftXnl2EUq2g/y1Rh+Hdk7gao6xog9hxNtkpop+iEwUZSpKivr/TQTzqiEwEs5UlW7uElyIsz4tANn9bLkRg4F0RhFlLzSgUCtmuLrQckhfODKUG0acLSxgkA6d/4Cyc1VZcY1XML/iouM5Gd083r732GiAsFPv6+nC5XKhUKmpqalhaWuLVV1+ltLSULLLIIoss/nHQ1dXF6aefTn9/f8bvbN26lbUNa+l9YgZnYw61Hy5hpHmSvhcmWJxfQm/XorcLQk3Auxi3re3yo1AosFda6WOSoYNuKk8qpHCTg5G3plhaCMVtuAClWoGr3kYno7T/egjl1Qo5HlGpNKi0Spxrc5g8PMds34K8Aw0/LIwHGDsUlTDy+ynZWsHSmmXe/XYH+x/qwrk2B8dqE1NH5/HPLqJIiCvyNzio/XAJO7/dwtTReXYeTY6N1AYVtmoTfS+Os9Dvx1qrp2hbLsee7Ofd73TECUqAtVaPMVdHw0eKkhIa9gZB1Dr4WA8roVBKIEkpn+/4YiP+qSAHHk0mcm++o5blYIgD/55ZLTMReZusVJxeQMcz/Uy3xoNEY5medR+vwNO3QEuCWlSM/GUu0MtWbQOvTMSt1yr1giAUrbPeDjmFemo/XCoTvg/9oEduF2OZnorT8mSLXWOZHpVOiaUkHlcnKjhtuLUanUXDzq+Jflj0C9J2rCzB2UV2flWUV5+vI2+9DXt1DpP75/D7YX7ELwhQQNVZhURCEbnsxlydkPeOYnZ0gekOEb9WnJuP1qjG0ysW6MKhCJFwhMm94rhCo2Bxbkk+V6lRxtuqXEdoOcTIPnGfnFxBhPePBSiVqti6vY5IGPa2t6PKA9upat568y2GhocIhUI0NzfT3NzMN77xDfLz87HZbJxzzjl8+9vffu8OziKLLLLI4u8KX/nKV/jGN76Bz+dLe9xqsXLGmWcw90aEZTdsvqoWSSmx93A7gShR1pwv5pmRA25yCvTkFGuY6w8goUCti6doAzOLMrlkcv881WeEZfvUxYVl7Dkays7Ipf/lCXpeG8VeZZLP1eVoUEVJ3oOvT1K4yUHlmQUceryXwV1u8tbaCESVdSpOLEBrVTPaPEtgIsCur7XI6kVz/QFCS2GWooQbT6ef7fc14J9Z5OBj3bz77WRivKXEhNqowlCswzcUwDcUYNXVZXS/NC7Uhx5skRV9AGo/XIrapJIJU6LwyISqXStyajl5OpDi8U4M9ZeXYKvO4cCPeuR2BqHgU/eRMnpeGs1IQFqJdZ+qRKVVppCm1t1QgSFXz66vJceaSBIKdXLOK9ES2Fqjx9MZJ3bVX1iEwaXFUqUT9m2BaM4rWuyGK0sY2euWrd1sNTloTPHNcj3PjsUJWjrY8blGPH3zMklp2b+M3yMWqOyNJjr+NCQfqzlfkJKmDoo6DLwzQf46m3xvU5GBqbZZ+Vy1XiXbCi76lpnqnKXzD4LwlddohwRVzmV/3HY5f72dSAhGDogEpK3SjEKpYLZX3Ci0GGLJH7WJswp1TP/MMjpJx6lNZ1K40UXhTDXTLfNUXGOjd7CXV155BYDBwUH6+/spKChAqVRSW1uLUqnk2Wefpby8nCyyyCKLLP5x4Ha7Oe+882hubiYUCqX9zsaNG1nX0MTALzyYCrSs+Uglo/sn6XvRTWAmiNYqLM6C7iALE3451gq6gyjUChzlZgZwM/Cum4YCA861NobfnmJxZhmlMp5/UOmUuBptdP9pjIHX3GisagJRUrCEhMakwrXOgvvQLFMdXvLX22VykKd7HneLmF+Dc0HKT60iOLfE/u91cuSJfswVOmwNJmZa5/G7g2jMavlcV6OFhktKaX64lfmhYMp6oM6mwV6RwwBugu4g+gItpSe6aP/1EAd/0BMnKAFalxZrlQmtRZ0kOmCuEGSdtqcGU9pXpVGINdcVBKVt9zTgmwykbMxbf30lESIc+mHqhr10sFQbqLughO6/jDJ1LK5CrjVD0y0NeHrnk8q15FsGCXS5BoJeEY9P7PfIxCitSyuU0WPl1YKjzoypSM/+6Hpm+6+H5HbRmhVUnVdMy68GovdVoMlRYyk1ELvrngTxiNVXl2EqNLD7u1HiWzBCaDEsE6CWFkLsjuXItFBygovg7BL7j3ZCEKY6vMxElcSrzhDx9sBrYnNdTpEBTYKV8XTvHJ5esW6Zv8mK0aFjIaberhAbKd2HRJspjUr80/FO0prUBGbEe4O5QsdyIMTIYZF3tUaVz739QfKkIjZurEFCoqClAbRB8i+x8Pbbb9PX10ckEuHAgQMcOHCAf/7nfyY3N5fc3FwuvfTSLGkpi/8yZElKWfyn8dRTT3HttdcSCAQyfueyyy6jqqiad/+tg9KNLopqnHStHcK9e47wUjiJYOKfCRCOKuzMdQdRnqKkeGMeE7vm6HtriIpTSrA1GJiJLdLE8hI+IAL5a+30Pj9O9/P91F9SxdQR8ULsrDZjzNNT8AEbo+/MsPNfWlj18QTChgREizH0+iRFW51suLWa5oe76PrzIMZcg0yS2fiZarQWDbN9c7gPzrHr663onfFyhEMRFufjQVPDx0rJKdCz91vt7H8oWYo6d4MZvUtLw0crhTVbAhEJH+z5fhuOKmMScWn77Q1ISomd/7IiMYIgTbkPpn6+7BMLRP5k1WtyyoxISgm/N32Qlw4qffqfjODcEsqEvoxh19da03xbYONt1WitGjqVgzJJau+32sndYJYJO4Bcf4NTgSlfT+PFJbKy1Lvf6ZBt/opPdVK0xcmeh9rABxqbgUg4wnRUnlxvgD0PxJUOKs8oRFJI7Dwi2uzwD9soPqkIfOJeZSfnMbJfqBu5asXkvegViRSNWUXns/FyF250JMlIjh2cFj6xQPk5eSi1CqaiBKfY5+6o8kMkHGFuLF5flU4lTGUBY77EUnCZoXfEwpmtRJCfYiQtp9WFa2MuitftGAp1VF3m4s/P/5m2jjY0ag0dHR2EQiHKysqw2Wy4XC6cTifvvPNOxn7JIossssjifyb8fj9nn302b731FpFIJO13Kioqufiiizj4aB/4YctJdYQWQ/Qyw+ThOWovAFedlb4XJhja5abs1DzUeXr8035UamU8LvPD3KhPTuDMHvPAyYWyFdvswAIFG+3kbbLK9l/+hF3b1jITlmIjQ6+7aXt6ENcGMzqHDpiTrR/MlYJI4x3yUXV6IeOHPfinhU1b94uj8rVqLyghvBRh6mgrx6L+8jFilXfIhylfj96uxz/sR2+HtTfU0/fqGOP7PLKFmXytC0sF0SVBPSkGT4efjmcGZWUmgLytVqrOLGRhNMChH6aSlNKSjfTJpOhEKLVKJFUqqSkTQoshFGoJS4U5iaS00O8nvBwhFEyO4XpfGKP3hQxWcnpY/bEKQoth9kSVn/zT0P6HAaaOzsvfSWyXhguL0ZjVsrLVQr8/qU0331nLdM8c3X8U/bW4sJwU2w//dYSu30cXs7ZayVtvw1So59B/9OAfCzC0a1K2kdlwXTUqnZLx2K45iSQC2Pyon5ZfiMRR2Zm5WItMRIIw+tY0Y7snMBcb6PqzuFf+epu8kBtDbEega4OZ5UCIzteESlXeKgdKlZLpTtG+Ae8iEW9Ebg+lViknH521VioqC6BDj3vEy/qbKhicGODpp58GxM7OsbExWltb+e53v0tlZSWLi4s89thjnHvuuen7JYssssgii/+xePXVV7nsssuYnp7O+J2LLrqE8vxyDj/ah6M8h5rqInqHRhl3z7LkD2FwaYXVWgC8wwvEEgeeLj9KrZLcNS5G3vHS+cogdeeU4libw9ThOSIr57FQhIKNdvpfnqD7pVEMDi3j70ZJIKUm7JVmik92MvTGJLu+3kL9ZcXxk6U4qdp9cJbyU/NYf00VBx/rpuNPg1jKTQQmRF5vzSfLySkyMD8RwN08y55vtqGzxi+1vBiKK+YAFefl4ag2s+97nUJxKFpXEMo9ljIjjRcXC2u2WOow+p13v9uBrd4YJygBW26tQ6VTpizCgSBN7fp66uehYIjwUjiJoARgKc9BqVEkqRq9FzQmlWyll4jA9CJaiyapfgB7vpmqphnDmk+Uk1NqoPP5YdzNYnHy4GPd2BtNMglJXDz6r07YE5uK9Lz7LUEAO/QfPfI9XestVJyez+EfthPwgM6qE9a3UQs2nVW0aQw1HypGqVWws0W02b7HOqn4YJ5obx1Un1XIyD6R88op00WVN6MK4C4d7c8MCtUroPQEV1K7DO50o7WIhTTXegsas1pegNWZ1SDBbJTwJEkwO7gg11Nr0bAUteRVu3QE5xYZ2iUW6Jy1ViQFMrHKarCzea0LXrWCDtbfXM4Lf3mBlpYWNJp4zquiogKr1UpeXh5lZWU888wz6HQJti9ZZJFFFln8XeCaa67hV7/6FYuLqfkUgLLCMi669CI6fjlBcDJI07YqIpEIA3iYHxKWt45aK30vuhnaPYnWosHglAi6QaVWorNq5GtNdc6ij9q0zXaLuVRlFPmM6e45KqtM5G+xMbZ3htEDUywvxOMJZ50FaiyM7Jpm4DU3swMLGPPEvBOz4IqpJXn65qk6uxBv7xxBb5ihnW7G98UVtld/tJLQYog9re10PStyK1ozBIPg6V0QKuDmKPlGCxtvrGHwHTcT+z3s+nayBVrDxSXorBpZESrxWNAdpOXX/UnKTJZqA6uuKGducIEjT6RugDz281SlJBDWwwFPah+pcv42usHiQgiVTompWJdEUgp6RXy3vJAsxjC2d4axvTMZr7fhhkpCwTB7vx0lFgXh6C96ZGWjRFUpgNpLSskpNGCtNeLpWCDoDSfFmk03VTE7uEDP8yLPFpxbRhcMyedPNLsZ/KvoS0u1gZITXVgrjRz5cR8EoecvI/imojH2J8rQ2DSCJAVIyuQ9j96BBbn/XessuOqtKBVKJt71MNPhYabGzMBrIudVtM1FJBSvB2HktXJzmZbg/BL9bwoxhbx1LlQ6Jb5hMS79M0EC8/G+05rU+CfFhSxVNsqKSsClo7rfw/prKhlZGOJXv3yKCGEWFhY4evQoR48e5Z//+Z+prKxEkiQeeeQRzjrrrIz9kkUWx0OWpJTF+8bAwABbt25lbCzD4gdw5qlnsu3EbTKJpqaqVt657D7kpniHi9Itebh3zzGyfwrXWgt6J/gnQZujla26fCMBprs8qDTipTc4FUGpVpDf5GCm1cfg2xOUfzAfS42B2U4fi/NL8mKEfxJ0Dg3rP9XArq+3cvBnPZSfnMfoO2ICW/PJcszFRsrPEfZwu77WSt6WuI+oQiGhjMosTh1ZwHG5jaZbqjjwSDctv+yi5IPFMjmlYJuNijMKmO2b59jPBlLUk3IK9EmLNYBc5olmL5JqmPG98R1d1RcWkrvGytCeSQZemkhSGQIY3jOJudSY9BkG2H5HA6PN0/T9OVUi8djP0gcTHU8Pkd4QJjNW1i+GIz/uy3ySAbbeVs/8iC+pLK3PjNBwYWGKilPMmm37FxogHFde8k2Gk4hBsgpTdM0ud5UFpUaBwaDA5wsz2+lLIkk13dzIsj8k72o78qt+8tZY5GtVnVXM3n8Xx+xr7CCBPxpEKDSKpCRZwQYHbHDIpLCDj7WJcxCkpPwmu5zsWZoXJLGBaNLFWmLEPxOUy602qpCiyhWONUZ8kwE6XhIBR8VJxai0ShaGxDjwji2g0avldlUbVLJ9nSlfg8loYnPuiRR3rmbLrXX4l3x8/9++TwgRRHd0dNDR0YEkSZSXl7O0tMR1113Hl7/85cz9l0UWWWSRxX8bvvKVr/C1r30tY4JGhYY7PvdZpEUlzQ93UVqdi16nx1oiSCXhpbBYUIliYTSAf068fPqmltAY1FSdVsiB1m7anh2g4pQCjGXC5ktv16KKWkn4p8E/FcRebaIHGNs9Qe4aK+GweAte8oUo3u4kOLfI+B4PA29MMHU0zo6uObcYIsLqrPvZUbqfHcW5VhCAl+bFTqi8VYLwNPLmOJtvqqXl94Ms9PsZPzjDyLvxJMSWu+KLV4kqQQDo9Sg1CnLX2QTZJUqmiakh7X2oHXu5IYmctP3+BiJh2P1AaxJBCWB8j4fCTQ46ft+X9Pnqa8oxOLVJO+Vl+JFJQCsRkxl/v5g8PMfk4dTFuPe6VsW5+eSttSV/xy9IXe4WT9J3YwSlinPzKdhoZ2jXpNym+77XiWuDWVjB6ZEt4ADQizjEmqCqdDTB6mT1teWYiw20/baP6VYf43s8WEtNtD8nEjJNN1cxO+CTVZaUaoUcDwEMvj0h90fV+QXYqnKou6yY9l8PyZZvsX/X3yTUjmL9GvAsytZ8zrU5SJJE/1/F+4ur0YZKp2TRHX1v8CwxO7Qgn2vK1bMctTLR5+nwTfkZjSbBije4kJQS7misKoUVVJVWc7p0CeiFmsGbr77FX3e+jtFgZGRkBL/fz3nnnUdOTg6FhYWEQiH27NmD3R6Xg88iiyyyyOJ/BjweDyeddBJHjx7NQAiXOGnrKZxyxomy+k1dea2sIDN1eI66CxQUbXQxvnuW4d2TFGy1obMqCIyF0du0wmoWIABjB6bQmESctjglcgOuBitTh+foe32M2g+XYKs3MtO2QGA6iKSMW6sZXDrW31TL7gfaaHt6kJJTBUEJoPaiIhz1FirOXqL3L+Ps+WYb9sa40pKkiue85voDOOosrLuhgkOP93Lkl33UnF0ok2qsNXoar6jA0ztPy88HUtSTbKVRpZ8YeSeAUFKaDDDbHUgiugAUn+yk9KRcht5xM/Cam5m25JxX72tjcUXrBGy9u57RfVPybvNECDu3VEu3/pcn0lrAHQ/vfid9lqz9d8PHPW/zHbUsTARkQjVA5zMD1F1eLrdlDDECzta765EUsDu2mS4ALU/1ypZ6sgpTdF0td62wekMnGjswFkgiSW24pZEl37JMVDr00z4KNoi2NBTraLiohGNPCoK9q94CCilOFjKq2PWv8ZizZIcLFBK7DifkvBpE7JK3yUbpSbmM7JmSv78cCMmkOXtNDr4Jv0w+01k1qAxKuRxzwz563xRxWeVphWhzNPinRd54dnge/axWvq7eoSUQJf5binTotDq25J5EYWsj66+pAl2Yh777MEH8SJJER0cH7e3t6PV6ysrKALj55pu55557jtd9WWSRRRZZ/Dfhpz/9Kbfffjuzs+kVD3UYuPHWT6EJaTnwWDcOpxmDzoDeriI4GWQ5ECKn0CCTT6a75liO2o0GJgLobBrKTy5iprWblmeGqDw1T1YOMrr0ceWaIMwNLWCvyqGfCcYOzVB8gotQ1EFlybtM+QfziYQijOyapuelUWY746SahkvFnDPyzrRs82prELFX0LsMSrDUmJnY72HgHTdN11bR/eIw3t4Ag++4mWyPX6vp5ip0Ni27vt6C+9As7kPxttFqFWhz1OQ2imvFSCqxOjU/3IWl2iBblYHYXKZQSez5ZnsSQQlgtsvH3IiPjueT13trLizEXGpk/390ptq8Afu/15n6IbDvu3/baqN/NCgrca9EppgMoHC7nZITXOz5frIN3VS7F29/ch29USXH/C02Ks8sYPDtOLHoyI/7sDWY5HYxFWuZH0pQJLJpsCQQiTr/EI8Hay4sxLXaSvsfhpg65mW2y8fw3knGdonYc9VVpcy7A7J9nVKrRKmME75H9k8z0zov1yevyY5Co6Djd8O4D82iNigZaRYbJdbdUIekQLa480/4kaLkcVOxFpVOQddrYl3YudqG1qQmOCPGQNC7xMiBKYJRIpKtMkdWvte6wDuywER0jJVuy0WpUTLTIcq8FFimJLeMD0oXAbDt9gZ2v7GX195+Bb1Rx9jYGD6fj7PPPhuTyURhYSEGg4GXXnoJl8uVsf+yyCIRqdtDssgiAXfddRcKhQJJkigrK0shKOkxcf999/P5W+7hdOkSqlwNREIRDFFfzvBiGL1dvGD6J4XNg/vYbPRvP3qzlvrLqwDoeXGYgXcmZGUcW4VFJuTMdvpo/W0fy1GlpcWFRSSFhGuVFYD250ZQG1SYKsXJwdkl2d8TH+SusrLtvgZATD6jzVMyoaf0zFyqzipi9SdEMLHr661Jk6C9MiepDh1PD8n1G909QygYZrI9HiyUnpnLhltFnfZ+qz1Z9cgAq64oZ+vd9QBJBCWAscMewssRJpuTZY8qzssDAwy86k5aAALIW21BSiBWJaLppirKz8lL+TxWlv800pxrcCrY+JlqYVGWCJ9YeIq1ofzxgE8oSAFVFxSkXG/Ru4RvOjkKSiSH1V1YRtNNVfKx5oe72fntFnyTYRxrjGy+vTblejE1I0OhjvkeH93PCHZy6Yn5qPRKTFHp9aHXJ9n5Ly1y/1SdVSSPH4CDP+qh/6/jctnX31yPfzJqZTKzSHg5Qt8b4nh+k02oOUVJSUqtQk5MmioNTHV6ZWWospPzMTh1KCKiL3tfGWG0eQrfpBj3trIcdAmLzUHPIuNHPOLck/KRFJJMxlsOLGPQGjlV+ginS5dw2223ceEZHwEkTEYTU1NTDA8P85WvfAWj0Uh1dTWlpaUZpeuzyCKLLLL4v4/p6WnKy8uRJAlJkvjnf/7nJIKShIJLz7ucf/riP3G6dAmnSB9GrdKw7BekCnfzBJJSovw0YU07cWwWnzsgFHIQJG5nrVisWOj3M7J3ioHofKVWKzHm6qg8PR+Avd9sZ6rTi94u5iR1jkpWVPRPh/H0zlO8Vbx0ju4aJbQYJhQtR3B+kaZPN1J8kpCb7HtjnAOPxhdRtt/fQO2HSwAYenOSnV9tkRV09Hk61CYVFaeK+KX72VH8YwH0+SL2mu6ZS5IxBmE7a64Uako7v9XCkQTJ6aZPV1F/STmO1Sbwk6RIJOoSlHcNydBD+Vni/gce6cY/nWwrordpkqzHYrA3GGj6dBX6dPwTfZrP3i8ynFt+Vh5rrqtI+VylV6JQS9gbkmOyoz/pY3yPB/RQenpu0rGxQ7OEFsO4j3qTPo8RcrZ+pp51V1fEy+KHnV9tkZVCmz5dRcH2eMXdLR6WFpbl9tbn62j/zVDcas6hxdkYt8d997sdMrlrzXUV1F5QQt4mKyDGwMi+KXnH2bZ7G3DVxRcwfVNBeUzYG4S9cvsfxWKlrcaMQi3hmxFjc9G3xKEne/FH1Ras5UYc0WdCb4f+N8foek4Ie9efV4TBocc7Kq49cWw2aazoHVqW/FFlsAI94eUIVTkNnC5dws2fuIU7PnsHBkQdtVotnZ2ddHV14XA4KCkpoaSkhAceeIAsssgiiyz++/D9738fnU6HJEnYbDaOHDmSRFDKwcp9d9/P5z71eU6XLqbaVE9oKSysxxA2WLGd8wALY34mjnoAmBsLYso1UHdBOQCdfxqk59VRWZnI2WCVLXADEwGOPNnDoi+6y9kTQqlRYK8V80jHs2Oo9UqsNWIi9rkDLEzE1Xhc9VY5z9Tx+2GGdrnp/YuI8VzrLdRfXMqqq0XOa++D7ez/fnxxybXagjE3OsEHBOlHlyvq5On0s+hdklVyQJBU1t0g4o/mR7vE4lKCGtD6ayrZcmsdQBJBCWCydZ7lQIiJluTPi092gg7czbO0rNi1b60RJHS1KXWf7aqryyg9LcMiyP+JkE6ac3VWYQdnqUo9qNIpU3JeAU9YKCGBKOOK03zjyX0IyKQkW72Rxisq5HYGOPZkPzu/1UJgLEBOmY4Nt1QnnbvgDjDVJeI2Xa6OwERAHgPlJ+eitajRuUQZ3Qdn2fW1FkZ2icWv+o+Usu3eevlaBx5tp/dVkf8t3G6n6ZZGggtibC75llj2hxjbK65duNnOTNccAY+Il9VGlbzoq7MqmGyblcltFaflkVNkQK0ScfTAG+MMvj2Bb0i0Q26jDX20jOhgfsTHWNQKuPy0AhRqBZOHRL405A+hVqo5UTqP06VLuPWW27j47MtQoMKgNzAzM0N/fz/33nsvBoOBmpoa6urq8Hg8Kf2XRRZZZJHF/xsEg0G2b9+OUqlEkiSuvfbaJIKSChUfPvEjfPH+L3G6dAknSOeiU+hZis5BU0e8KNVKyk4S+YzxQx7mBuOkFKNLR+5qkZcIesP0vT5Gzyti/UetAFuFidITxLnND3cxdmAafYGYd7RWDZqoAwZBcB/zkL/RBsBI8zSL88uCcAQEpgM03VIn4heg+4URDjweV9/edGctDRcJJ5epY152f71VtiTT27XonVpKdohyDP7VjX80iNYZnaNbZlkYT9hZh7BRM1foCHrD7PxWC0cThABWfayU1R+rxLFKxIwx67EY5kb8+MZTnXBiZT/y4z6ZwBKDwRkl1q9IlWldWtZ8shytOQ2tQJv60ftGhnMLt9tpuKI05XOlVolSo8RWaUr6vON3w4IUpIXCDyQn5mbaZln0LScRwgCZKLTxthrWXlOVVJbd/9rKgUcFwXv1x0vJ32KTj022ewnOLskKUFqnlv4XJ2QiUU6JEVejVf7+wR/0yApPNRcW0nBJ/Hoju6bpe22MjigpftOdteSts8ntPzfsZyHah/oCLRqLhq6/iHFtqzaj1ChZmhdfXl4McfRn3TLZytloIbc+Wg4tdL04TNdz4j7VZ5ViLjISmBbXdh/2MDfik+tgKTPJeV6tU0s4GKbUUMlp0ke4/iM38plPfxY7eYCETquju7ubgwcPkpubS1FRERUVFXznO99Z2X1ZZJGErJJSFknw+XysWrWKvr4+dDqdbOWmUqkoKChgZHCEay+/loLaApZ9Id79TgdKpRKVQ0XNRUUMvz6Kq97C+usq2fkvLcwO+7BXm9hyVx17v9WOUqukeIcLY56O1l8OsnzOMnqbVia9lH4gl+LtTnZ/rY2W3/Sz6vJyVn28lGM/G6D+4jIkSWK4cIqpIwssnbGMo95MFyNojRIqnZLGS4rZ+80OPH3z5K+3k7fDyvhODwqtlCSfl7fOhmuNhT3/Gt8BP9ktXnw33laNxqImML3IgX/vRpKQFz4KPmCj4jRBqJk44iGnSI9CJclklm33NUSl+iRyN5ipPreYob1CFWndjZUYnFr87iDDe91svbeekD/Evu91Un9lIfYqK2MHp9n9r62s+WQ5pgI9u74m7OQKNjjIb7Kz66utGAp1rP9kJe72WTp/MyzkJSPIhJstn6+DiCBI6V1a8Z9dS+svBmj4aAm2yhx2fqeFHZ9rJBwOE16MyCSZHV9sxBsN7JRaJTu+2MjBJ/vwDfgE61qtQKlREJxdRJOjZmE8wOEf9lJxXh4FTcLyrPrMPNQGJWqjWlZeioQjMvO89IMuire76H5JqEhtvKMGrUmNtczI/u93sf2+BoJzi+x/qIuCbTZ2fLERvyfAgYd7aPp0FTqrhl1fb6VwiwOtTcPGz1Sz//tdONYYqbugjJH9UzhqclDnqNj+hQZZTUmpV2KvyKGbUdZfVyn3YdcfR1jyhdDZIsz3+DA4Fay7qY7wUoQ932iT7fyCUeWJjZ+tRmvWyOSz2C6/mOpVxRkFeHrnwQe1lxejtWhQRhcyt9wlrhtr7zUfFWPa1mDAUWdFZ9XS//Y48z0+Nt1egyZHTWgxTO/z42z/QgPLgWWGd09Rfk4ehZsc0ftOsvEz1agMSnmRevv9whbQNxGg6EQHZSfnEYlEyDeVcPdtd6O1aoiE4KGvP0Z+nZ35uXn6+/tZXl7GYrFQXCyk4e+//35uuOGGv+UnJIssssgii78RP/rRj/j0pz9NOBwmEokQConfcpvNhl6rZ3Esws1fuB5JKdH+hwHsegsRKcLWe+rZ8402Fr1LmAr1rPtUJYd+0MNyMITBqSVvqxV36xzF251s/1wDu77ayvCuSUpOcNF0cxUHHu0mf4ONwi0OBuwTDL05ie/kAMboopRrgxlHnRlbtYndX2+j448DNF5aQfm5efS9MI69JgdJIYIr/zREQhEqzi5g8vAc89OLIIFztZmhNyexlhopPzmPgXfcDL3uFgpM4WhgFlWgiRBh17dbca22QxiOPt0HiJ3pKqMSKSKx82st5DZY8fRFPdwvLCBvlQ0UUHF6AWq9EoVaISscbb+/gbkJP0wFySkyUndBKS2/6cXT4WfrvfUQiasebbuvAd9EgMM/6mXzrbWodSrC4TADL7tpurkKjVktf1epVcqSzXlbrVSdXkjva2PkrrGid2hZf5NQ8wTYek89i3NLKNUKNGY1hBGKma9MsOa6Ckx5Onn+3nJ3HSF/iP0PdWEs07PuqgpCyyGUGiWevgUsJQb5ulvuqkOpExsJ9HYFTTfXM9Hqoev3IyhVCgjHCVmb76yFSNwCZMddjQAMvDNBzblFuOotHHi0hT3faGPzHbVIaomx5hkGXplg+/0NzA746Ht1jJKTXOy4s5FDP+9lod/PpttqUOgU7H24Hb1DS/kH83DUmzn6kz60ORrUehX2BgOORhuuRgvh5YgcG4aXIwSjMuib7qxBY1TT/ecRxvd5UGokIpGITFzb/sUG2XLNtUGQjmJvses+XYnBqpXbpe6iMjEulYKk5aq3MLxnEv+wn9XXlGMuMeCoMbPnG21s+Xwdi94lWv84hL5IT9MnxULg0V/00nhVGTqLhtn+BfzDfjZ/rha1QcWidwm9XSh0hpbCeHoXqLusGEedGcLQ/9YEm++oRWlQEFmGHdKZ7PhCIxEpQs+hQd4++DpKlZKZ6RlmPDPcd999fOMb3yA3NxeNRsPevXvR6/9PGG1ZZJFFFlkcD4FAgNNOO43du3ej1WrlnJdSqaSwsJCxwXEuPftKqjaXsji7zP6HOpGQMObpqbmwkM6/jFC8w8Waj1ey81steHrm0Ts1bLq9hn3/1olSo6T0pFyMTi3tvxsm4FnEYNeiy9URWoxQ+cECIqfks+vrrRz9VT9rryqn4coSWn81yKqPlqNQKcQCQX8A32QQR63IYSg0oDGrqb2ghL3f6mCqc46yk/IoOtHB8FtTqC1KWZkcIH+DnfyNNvY80C62p0ZgqscDCHVxU6Ee33iAQ4/3IiklFtyiHWz1RpF7U8D4oRmhgqNXympAm++qRaUVC4s5NTpWX1LByL4p+l+eoOHKEixlRmYHFpg47GHzHbWEFsM0P9JF6RlOija7GDs0zd4H26m7uAh7rVkoZ+ug9KRcSk50seur4u/tdzQw2TZL5x9GcDRYiYQidL8kcl4bb6tBUsK+f+vEUmrEUmbE4NLR9vQgFWcLZesDP+llww2VhENhQoGwvBFx2731eAdFfKTQSmy/r4HW3/bh6fSz7sZKtDlqVHolgelF1EYVvvEAR57oI3+bnYpT85BUEqUn5SOdKqGzaeTcTng5zFKUYOZab6H6nEJ6Xx9nbPc0a2+swJSrx9lgofmRLrbcVUdwbolD/9GDtUbP9vsaWJgOcvg/emi8qhRzsYHdD7SxMB5AY1az4eZqmh/twlCsY93HKxjdP01OkR6dXcO2+xrk2EpjVGErzwHGaLq+Ekkp+rD7T6Ms+0NEliOCBKWD7Xc1sBwM8e6D8Q2agahK9+rryjHnG2h+RMS9RSc4kRQw1SGIZbUXluDpmSfggfIz8zDm62Xl1qZPVxEOxdu76ZY6JIXEdPccepsWc5GB/rfGmGlbYN2nKjFG4+DB1yfZenc9wflFRndPk7fJRtXZBSBBx/NjrL2uHL1TR3B2iYBH5D1VOiXzIz4ca3OoPa+YSCSCQ5PLZz5xOznFesJLYX70zZ9hqdUzvzBPX18fy8vLuFwuioqKUCqVfOlLX+Kaa675P/5dySKLLLLIIjOef/55Pv7xj+P1CuZDLOdltVoxGAyERzR88u6PodQo6fjTEAaVFkmBvJ7ocwex1ZhY84kyjjzRT2BuCYNLR/4WGzNtM1SfWyhyXl9vZeDNCSrPzmftdRUc/lEvhZudaHJU9L8+zvDbU8wOzGEqEAuR5jIthZsd5K23seeBNo49NUjTdRWUneOi/89u8tfbUGqim9OCEF4KU3FWHlPHvHhHAihUEo66HIbemCSnSE/1eYUM7Jpg+PUpIMLSYtyqbNu9DaCAAw+342owE14K0/WiIPuu/1Ql+lwtkZAgxRRtdeDpFetMhR+wU3pCLgq1grJT8uFU0Jo17Ps3Mc9uuauOuTE/cyM+1HoF2+6pp/1PQ8y0zrPpjhqQJPZF5+TNd9bidwc4+rMB1n+6CoNDi1KnoP/FCVZ9rBRjvl4m0ahz1DJRylJtoOHiUgbenCCn2EBOkYH1N9XKao4bP1vD8sIy4XCEnEID4aUww3umGPyrm5qLirBXm2RVxI231RBeCnPgsW60ZgVNN9eyvBRCY1AzfnAG1yoLu6N5tw23VKO1qpGiVsnb7qnHfWyW7udGUeoUhJfD+IZFbrDppioUagX7HxIk/O2fb0CSJKaOTJO7wUXRVgeHnuxl33c6WH99JUqTkrF90wy/PcXWz9fh6V+g+8URyk/PY9vt9bT8ug9vb0AQsiwa9n23g5wSEzllRuxVObT8agC1QYXaoMSxyozBpaXkRBehxbCcN1wOhgjMiPXEtTdUYMrT0/XnESb2e1CbVIRDEdm6btv9DfgmAwy/PYW5QofGqCIYEmupDR8vwVxoiG/qu7oclUaJWicRdmkp2upgaJcbb3+Qmo8U4VptoWC9nT0PtrPh1moCM4t0PjuE1gwbbmtEUkDL0/1UnpdPTpGBqQ4v3t6A2HCZoGC57Z56loMhpnvnKDsrl8JNTiLhCON7plj/qUq0dg2RpQgbpBPZencdkkrBYPMofz30CkqtAs+sh5GRET73uc/x5S9/mcLCQmw2G6+//jpa7f8Joy2LfzRklZSyYOfOnej1eiRJwmg00tfXB4BarcZisVAklXPfffdx7bXXcqr0Ecxmm9jhH12YmndHmb1KYcmVuOtsaNc0kiSJxQRgbiz63ShjSFJKROcZJpq9YoEu0S5eAmOBWCybH/dBguK2Uq9AqY7bshGBwIxICiiNCpCg7ESxCz7kT72uUqXEUmNAoZQgAmFf/BgQl+GWBOlI7wSFQgERCC2FGXl7DEmKlt8gFHUkSSj2HExQC1AoJZpuqULvFC/tBx7rFlZvkiTbWtirrSAhe7xLSqGgAEK9KRKKk3wSr7vxtmrU1mSuoVwmYOejLRABhUI+KP41CBWeSAj5PvELS0ntIF9XIfo8OLuIuy25/LFr9L89xuEf9spjI7G9UcKm22vQ2kVwp4gVKhQhEonIqkqx9gZxDhIY7HpWf0IkymLl2v/9LiSEFdv2+xtQW6JtpxDHfDMiyWZwKig/J09cM3pL35RfrpPeKc6J3dO5wZnaJhEIROWnZRnQ2KEQct9YaqJBbon4VxkdW0eeEgGeQiuh1Cpk4pOERHB+kZlWn2gzCQrW2+WyRcIRRg9My+2i0qmYbp0S7YAIdvyTyHWTlSUkiEQiBOeWkFTR8RCGrpdG5LpJCtgsncxll1zGJ6/7JJecdik2s43iomKmp6fp6+vjU5/6FCaTicbGRs444wyyyCKLLLL4r8FFF10kqyVdf/31LC4uEgqFcDldqFDz8bM/ya233sqV51/FeukD8rwqKSSGXhc7XmILUYtzy0QiEfk7ywFhn6ZQKPAP+wUhKBo/TXUvICklNBYRO3gGxAs90flcZ9XI13U3ewmHIiwvRHfN2FSgANcqQc6dG/PLnucASp0CtVYlFI8CQBjmo2o1RGOToi2CYBtZFmqbiZAkScyBiVOwHjGnhWGmO2HHvUKi/Kw8OQ5pf36EQz/oEW2gAH2RXhB2JQlCCNJ59LsKpcSa6ypS7MUkCfnv0WaRKJBVOaNxgmO1iaZbqpJilVg8I6kkDv2gJ0UFMhYzu1tnCc4tRvsxVg0p7XcBlNFcmH9mEZ87iCIhNoyVadkXSlLslMsU7cPik5ysv6lSbhcZYUSyxC9sjldCpVVSvM2ZUCYY3+dhpkeMl8ZLSlh9bTmSKlpePxx4vAcpIqFQSFSeVyDH/pJSwdDuaRHjRy3Y9PZo7BUtk5z4S6hHJJrPi9m1acyqeHuHYWy/6CODXSv6LcrrEeSnRfzDflCLdsprskXLIol46HmhyKTUCuJYOBhBoQIisORbFhZ00fEQex+QFBLhcBhPbJemQrTz2O4xuQ3Dy2GhFBUdL7N98R2dkiRhN9o4d8uFXHXVVdx0/c24KKS8rBy9Xk93dzdHjx7FYDBQVlZGXV0dR44cSembLLLIIoss/na0tbXhcDhEXkevZ9euXUQiEVRKFXarnXxKue+e+7j2mms5WfowNpM1mu8Q53v65kV8IgEB5PkMYPzdCSRJQqkXX47FVjELBqVGId7JEdZq4VCYUFQhPLwICrWCnGKRP5ju9hIJI+YkQOdQCxVLHfiGAoSXwvinRCyhUIvyFUXn68DMEuHFeLkUKgmlWom90YRCoSAShkggljMR5dGYRG4jlkPSWaPHIsLeYXjvTDxW0QlCioRE0LNE8w96YBGIxrONV5ViKTMiSRLHnuzHfXBWzIfR2Kp4Sy6SUkKhjMVNinh+KgChxRBLvvhiHpKIKdZeV44xVxv/LrEYQvy986stItcXO6xE/u78qJ/QYjgpP5WUx4Kk6yqiOZmF8QDuFo+IU6JjQCGJ7w68PcaRn/Ql5exiX5CUCrE5sUCUV77tcoRIKELzj7piVYvnZZQKUEiYcnU0XlUaz5OBiG0lCUkryFU6u0a0twKO/KQPz9A8EhI6a1SpKTZGgenu2WguUAJdtJrRe+attsnvITFEIhCIji1Trj4pbgwHI6JvAkKhSaGUsJYb5b6IhKD1mX4AtFY1aoNKVuKKhCIEPEGmDs+JflNJFKx3RM+ViIQijO4XtnEKtYTWpGG614ekkohEx2FgLCDykUoIepbkfoyEIyzOLUfbUfw9/OYokgo5v7pa2sLFF17CJz/5SS4/5SrsJgfFRcV4PB56enq49tprMRgMNDQ0cPHFF5NFFllkkcV/DW6//XY0Gg2SJPGhD32ImZkZwuEwTqcTLTou3X4lt912G5edcSWrpU1iXkXMW4O73GIOi677Bb2LIucVzTEEvYtIKgmFUiLoFbmlWGzm7Z1FqVGKORNwt3qIhOPxiCHXIG8m9/YHWfIvsxidW1QGsc6U2yjyB9Pd84SX4rGV1qJGY1RjKhYEi/BShPmRWM5L3KOwScxx4WCEcCBhIVMSdbPVW0Q9orGX1hzNNSyFme6I2spHY5XC7XZURhEvdb4wzJGf9KFUKEABWrOCLXfVidgKoYaEQpLn+poLhZ1qovNKbG0PYPAtN5Ew+CfjOSpJIazD1l1fkfTdaKFAAe2/GcIzOE/iIm3su+6jsyxM+uVYBYjmsRKCCgXJuSlJwjcZZG5wQeSxkuI9iaB3iZ3fapG/GzusiNbVXG9mzSfKxDUTihtZBt9kkKAXJDVJ10UBGpOKspPzEvpGgadjAffhWZAkqs4tYtVVpSgU8Xs2P9xGOBhGoRIqVApt/LoTzVOEl8JEQqJdtGaR74u1odqoEvdJWHaNRN8HTMVaFEopSZEzvBSRc17mQiNKjUJWrwoHI/jdQdnGTqFRyIpfSOLcjqhSktqoQu+MXzcSihD0LuHpWEChkFBoFLJ6WCwui20KlVQKFBoF4we9cswYWQ4T9IbFuFNJco5QkiQUkoQpx8RpdefwsY9+jBs+cSMVUi3lZeWYTCY6OzvZtWsXOp2OkpISVq1axcGDB8kiCymS3mg9i39wPP7443z6059meXk55ZiEgrM2XsTaHdU0Pyxeond8qZHg7KJMJFl/YyXTXXMMvOpmw63V6Gwadn67BXxCbaigyU7zw0IKb8cXG/EO+Tj60z4A1t1YyUzvPAMvTbD2+goMLp288ydvi4XibS75Plvvrsfd4qHnuTH5vv7ZRdqfGqL0zFzsFSYORuWTXetzqDyriD0PtYEPGj5WSv+LQ7JVVmxXVGx3va3BwEx0h7nBqWD9TfXM9s9zLEEuMYaGj5Zgq8qh/6/jDL81lXJ86731KNUKDjzagn8y5TBb761HoZRkVZ+VKDrRweywn/meZDnG2suL6Xh6KO05GITywLI/JNdp5XH+k85dO77UyOLcEvv+Lb2/7Hsizb1tDQYaLinHPx3kwCPdaU8r/aCL2YEFZjuTT665qIjO3w+nPSfWN53PDsp2cInYek89So2Cg4+2yWMhEdu/IGzc0vaNAXbc2Yinbz5JctyxxsjUkQUKPmCj7KR8Dv+iH9+AKHPdFcUM7pzGN+Cj6ZYqlnwh2aKv+FQnuass8rOx5a46ul8cEiQ7A2y5pY6pDi/dz4xSc2kRuhy1CDKB1Z8oI6fQIHYaAhs/U83Am+O4D86hd0LTTY14h30c/UkflR/Kx5irk8/d+JlqtJa4+tPGz1QztNvN+N5ZTJUG1n6snLlhH0d+3EfVBQUYXTp+8PgPmGcWm82Gx+ORyYfV1dW4XC527tyZtj+yyCKLLLJIj02bNrF///60x2y4uOb6a5jtX2DglQl5Z/GBR9rwT4fJ22qloMnBwcfisdWCOyBbSKy+thxP3wJDr7tZe10FxjydrCzj2mCmeKtLlijedl8DM91zsnXW6mvLWRgP0PvCGNUXFWIrM/HuYx3gB8dqE5VnFMoKPE03VzHSPCUsw6LnKhQSh3/Ui7VWj6POSvezYpe7uVJP42XldD43yNTReRyrTUwdnZfr3HhVGdYyY0b/+R1faCQcjivvJMJYpmfd1RUsLSyn9anP22Sl6pxCxg/OyOVZiarzC1KO2RsMaK06RqPWFyvRdEsVeruWAz/uFSSYROiRrcz+Vmy+oxa1SZVsEfy3IMO9t9xVh0qvFEmdDGWrurCA7j+mtoPaqJGVjFZi+/3R3fffTm37mCJRpr4pPV2opmbqm9XXlpNToGfXd1vlMtsbDEmqUL7JIMeeFIth+nwdpSc6af/NEHo7rLmujo5nBvB0iJPX3VjJxGEPo7umqb+8BJVeKb+TVJ1fgL02R67Hxtuq6Xt9TIxTvbC48/Yv0PrUIOVn5WEq0Mvnrr6mHHORQR6/TTdXMbTHjbvZK5SWPt3I3KifIz/qpezMXHKKDHI8uOm2GjQWNTu/Gj3301UceL2d11qeRa1RoVKrWFgQBCeTyURVVRV33HEHn/jEJ9L2RxZZZJFFFqn485//zKWXXir/niZCiZpT685j3Sm1HPqBiKW2f6GR4PQizY+KXFTjVaV4B30MvTHJ6qvLySkxcOCRFgIecKzNoXirk0OPC3vZ7fc1MDuwQMsvRM6g8WOlzI34GHx9kvrLijGXGdn7ULts41V+ar4cl22+o5bJ1lnZlqvxY6Us+0N0/H6YvE02ctda5Pd6S5WO2gtKOfLjDgIesQA1uHOaQNQyrOHKEoy5OvZ9T+RxrDV6oZwDoINttwsVoVg5E1Fxdh4Fmx0MvDnB0BupSa1Nn61BY1bT/HgPgRgJPQGb76hFqVWw+4G2lGMg1IWWFhbj5Ynd97w8ep8fT3sOOqH+uLSwLMeiK4+TWpT3BZHjXEqyvfubkObeunwdG26oZGEiHqOvRN4mG8HZQGo7nJ0nj4GVqDg7j4JNDjqfGxbkrxWI9c3Bn/TItmmJ2HZvPZIkybmkldh+XwMzPfO0PT0ofxYbO/ZGEzUfKqbl6T7m+gNyeSZbZ5nrD7D66nLC4bCcL3NtsFC40S4/Gxs/U0PPSyPMtC2ADjZ+qoaZ3jl6nh2j7IxcjHk6+dyajxRirzHLygzrbqhgaM+ksAyMjt+5ET/Hnuyn8AQH1nKjfK5QozewKxqXrb2+gtHmadzNs+isCjbcWs/coI8jT/RRfLITS5mRXzzxSyYZxWazMTs7KzZ2AJWVlRQXF/Piiy+i0/2feAZmkUUWWfzvwkc+8hH+9Kc/yb+niXBSwOWXXc7CRIChNyapvbgIZ72FAz/uxj8axNZgoniLgyNPiPf8bfc1sDDm50j0Hbr24iLmx/yMvDNNzUVFOGpyOPBoG0GvUPopPSlXjpc2f64OT/ccnVEL+NqLiwh4Fxl42U3JKS5cqyw0/7ALgmCu0FF1ThEH/j1u6TXR4pWt2WouKkJjUHLs5wNoXVoKNlrpi87XWpeWNR8vo/flMaaOeDFX6GTiCEDVhwpwrbay+7utKbZpAFs/XwcS7Plm6rqe1qxg42fqRazyUGqsYqk2sOrycsYOTNPzwlja/ig9zcXAa+6kz0zFWkz5emGJlgarrirFUm7i6M+68fav9HojbT3eD9ZdX4ExXy/nQP5mZLh306dFjm7ngy0Zy1Z2Vi79L04kfWYq1qJ36HAfSo2rQPTN8lKY/WnWRrVm2PiZRoLe9HGka52FmvOLGGtO3zfV5xfgbLRw4NEOgl7xrJjLtHJ7N91Uhd+zSNtTg9H7KSg6MZee58dACxtvrKHrhWHZ1q/hilJmeuYY2ztD+dl56K1aWp8S8VHRCcKdJzaG1l5XweBOt2xxt+mOWuaGfLT/Zoj8LTaslSb5vjUfKcJRZ2b3AyJ+XP3xUkYPepg64gUtbLuzgfmhBY7+bID8TVZs1Wb5vms+WY4pXy/npVdfXUbb3n5ea32OsHIZnV7H/Lwog8FgoLa2lnvvvZfLL788bX9k8Y+NrN3b/yLce++9fPOb3yQdL02Lnot3XE7EL+E+OMf6k4TVlN4plHx2/ksLpWfmyt835OrQ5KgZeNVN88NdGJwKDE4DvgEfxVtdUZZm9NyvtmAojL/YGXN1aHPUDLw0weEf9kYvCPigaIsTrUWDpcbAbKdPfjlNvK8uyiodeGmCAeITjKnIgFKjoPK0fHqeG6N1ReJFZ9HIu7oBmaAEcQWoGEN7JfpfGsZ8XS0z3akJLoAjP+yg4AN5KQSlvC0WxvfOsidNosbgVLDmulr2PNSWlvhU8AEbzlozxluq0pN6fAjijS818HOsMVJ3YRme3mRyTQwNHy1BoZTSErLeCyuJZCux40uNhILhlL6bafVx+Bd9KUQsGQYo3uGicIszZUEyRlBa88lyJIUUHzdA6y/jiRS9EzQ2QxLJ6fCP2ig+qSgtQQlgYSKQpNCVCFO+2NG4OJ9M5otZuznrLILl7YsHoO1PxUllepsWnSVBWez1SYZeF4Ok/Jw8VHol9nqruJ4PWSocwFFtTpJrP/qbfpn45VhjRGvRULwtF/fBOSSNLinIc62yJjHlB9+eYKJZsPFNlQa0Fg1FW5yM751Fb1Zy7Kk+uc2cDRaUagXbJKGcVHtWMS8+/SLdtKJSqejr66OrqwtJkrBYLNTX1/PrX/+a0tJUf+Asssgii//N8Pv9NDQ00N/fn/b4amkDJ1x0Al2/F4mTnEI9OouagVcmOPSDHqy1erROLf5pP0WbnehsGvR2Bf7pMDu/2oJzbY58LXOxAb1Nw9Drbg7/SMyRse8Wb3Ohd2jRF+nxD/vFHJvgJmUuNmBwaul9YUwuSwy5q22oTSrytloZ3+ORF9RiyCmIX8jT4ZeJIQBLQbEjOne1jamj80kEJYAlv5hb9fk6/GkWuxbGAywFQimfAyz0+xk/MkP3i8kkF2utHs+gn/F9nrQEm3XXV7I4v0TrU4NpCTK1F5ShUEsZSUoHHunGWKZPJSghCC1KtSJj0qXplioG3hhPaYf3g8aPlxGcW0whE8WOWcuNaYlTR37cjt9PRoJSjHTl6ZpLKpcgBPlk0s+RH7XjT2iSWKIBBAnOHY0xAPzDfsYPzjDyTnpymLt1jvwmG92vpD8uKzsllHk6IWZX61UYHPFj/rEA7b8RsVfhSQWodEr0Dj2e6AUSFwmtFaak2Kr72VG6EeVwrDahtWoo2OyU2yImpw2Qu8aKSh9XfOr+y5g8bvVFevROLcVbXbibvShy9Bz49xa5zfLW2pLOHTvqYeh1d/xch5b1J9dBqwrXGjPL4SWePfA7AviIRCIcOnSIa665hmuuuYb6+no+9KEP8eCDD6ZtvyyyyCKL/814/PHHufXWW1lcXEw5ZiCHc9dcgFKhZurwHGtPEqRuXb6OwFiAXV9rofCE+ARjrTBhdOkYemOSo0/2obOCwqQDT4Diba7kc/+1VVaOAbBWmjDm6hh8fZK2KCmc6OHCLU70Ti22eiMzbQsp5BtLuYlwdGf1+L4ZxvfNyMd0Nj1qo4qCDwhiT2zxTa6jU4faGFd+TiLCREOtmJLRSvT+dRxno4XJ9vRxytEnOinYlpdCUHKszWHq8FxaEpHOCms+WcuRH3ekJdfYG00UbHBgLjamJ/UEYOe3WkjHE4kRgqY75+TFlERUnJeHNkeT9th7wVZvpPTkvIxEo+1faCQUTN0sGBgLZCQKxVB1TkHafFmMoFR3cREak5ojT/QlHZMJTDqwFOmY7Y7fY99/dFLxwbyM9/X0LqDWKdMei43bWFwunxMdO64GC0qNgqWEhb9EMpWpMLlz3M2zsjVg3iYbWosaV6NVkJQCJC3m5a6xxhXsgc4/j8AfxJjW5esw5usp3uZi6vAcOl0yAa5wo13YKEcxvHuS6RYxdnVWBaYCPYWbHbibZ9E6NBz7VY/cZvlNNjQ5atZLHwCg8sR8dj+7myPsR6FQMDAwQE9PD3q9npycHNasWcPvfvc78vPz07ZhFllkkcX/VgSDQU477bS0G5kllNRL69lx1laZIOKoNWMq1DP0xiQdvxtmpHgSjVGJHyjaZCenxIi+QIt/NMjuf23FWmuUr+dssJBTZGDknWk6fz9MJ6B1CuZK8VYnOYUGmejx7rfbBaklCkedmaVAiIGX3Qz+VfwXg7U6B71dS+F2OyO7pjm6Yq3MlpBDCLqDMkFJfLCERq/CUZvD1BFvEkEJoutJEdDbRZ1WwtOffp0RIOgNM7TTzfi+VJLRkjfIbJcv7Ya/ukuLiYQjdPxuOIWgBFB/aRkao4qxI560pJ5jPx+Q+2AlNn6qBnWOit1fb009EbFuN7RrUibA/C2oPr+A5aVwcvtGUfWhAvLW29ISpw78qBvtcchTq64qxVJhYn4kIMg1UcwPBZkfCsqkn6M/7ZYJQwB7EtbobA2mpDoFvTDw1gTuA+nzht7hAEHvEsNvT6Q9rtAohANKwv0S66W1qGUVVnG/sCAoAUWbHWjNaowunUxSihGDQDwn6oTc0/DbUwy/LdadTcVaTAV6ijbZRX20sC8hfi/c7EBn08h/D7w1SecfxJqs1gzmMhMqrYqpI160Zi0HHmmX61CwyZGk2OQ+OiuTBrVmMJcaaVRXsNz2ISyVBhS6CC8f+TMeJpEkiYMHD3LFFVdwxRVXUFtby+WXX85XvvKVtO2XxT8eskpK/+B45JFHuO2229ISk0xY2WY8XRAfoqo8sZdlvRP8Yn0CiO/EjqnRxEhEMSQSU2JWVjHCTtNNVehdWpmgknLuFxsJh6I75Q1gMChkQknpB10U73AxtGeSgZcmMBTq8I3EJ/yNt1WjtcYVYlYq+Gy/v4HlQCjtTm5bg4GGi8vFItczqQslpWfmUrzVmVGhp+FjpdgqTRmPx+rd+9ooo+/MZDx/4O0JmbiyEnVXFCeRXmJwrc/B7w1lJPxYagzUXVhC+x8HU1SJQKgHSQop44794ykprb2hAlO+nvY/9stknURs/Ew1vslgEnloJcrPyaPvz6lBR/WFhQy/PZJWjSpWbsigesR712vbfQ1Iisznb7uvgfBSOL0yVfT6/smgrN6VCEuNgVVXlDPaPJW8EzA6JmO+rolqW4njeccXG1kOhpKISoZSQfyLPQfjh+Nj1VCow+cJgE+Mc0mZXO/YcxYjrPndQQ5EFTgMToUgt/lEnRWq5HNNlQbme3yy+pWsomYAn2WavWNvshxeRqVSJamxbdy4kX379qVtuyyyyCKL/w3w+/1s2LCBtrZUcrKEgjVsJddQBP74rucDj/fgHwtgLNOz0B9fTNrxpUaWA2Je0Nuj14++A8fmlENP9rLQ78dcqRcWVbFzv9hIaCnqha4HvV4QlgBqLi7C1Wih8/kh3M3elPtuuasOlVYpJzxiZCcQhKKm6yuZHVgQSjYrFHwqzysgv8nGgR/2pCUerb+pEr1dm0RyScSWu8ROssS5MBE7vhCdKzPM0zu+1Eh4Ob36Uuz8TOpMsfrlb7DSm2a3U+npuQy8kj7JANBwRQlaq0ZWu0pE3lYrVWcWMtM5R2uaxbL3UlLa8cVovR5ILbdzbQ4VHyzg6K8H05KnQJC3FEopiewDgB6qzylMIafFUHZmLkVbM6sexVSRZvsXZGWjRMQUrSaOedLeI2+TlaqzC+l9dSwtMaz6okJyG6wc+nlv0hiNYfOdtSjUiiQyUeKY3PHFRqFm8IN43BYjxVWdLxJd3X8ekQltiYS57fdHY86EsRp7zhyrTdR9pBRP3wItP4sqOtkV+P3C7i2m4pnYn7FzYypgicqiejsymSzlXD105jTTP96DQlIQjoSFxUkkgtVq5e677+a+++5LaZssssgii/8teOaZZ7j88ssJBlNXJ6y42KQ/WSbo7PhSghK1DnQ6CHjEsXU3VmLM1ckkk5wynawcA9H39UDiuQoCHhEfNVxZgq06h9bf9DPTtpBy7rZ76wFkkoUuVyerH7nWW6j5UBEje6foe2k86RjAmmvLMRXGFWJWKvhsuauO8FJYVk9KhKFYx7qPVzJ+dJqeZ1Njm7xNNirPKqDr+fQKPZXn55O/zp5RwSdW777Xxxl5O3XjXcV5eRRscDD49gSDGXJelefn0/PyWIoqkbVGTyQcSSLjJEKXr2PVZSX0vjIqk1MSsfXuKHk8k2LncZSU6i4uwtFoofP5YZlwk4h1N1QQmF6k/Xfp1b5B2ICkU6QqOyOX8UPepD5OKvc99SgUmVWPtt5zfFL85jtqUemUGc/ffGctREivTIUYqwsTAXlhKRG6XB1NN1Qy+q4Yq/EDQECogFnKTRx4vEeun84af0623xfNzybc21CswzcUEM/B+UWMHYyPVZ1VQSAQhkDq+wkgP2eGYh3rr61kYTwe8+ms4jsBD2z+XC1qQ3KcHbuvLlfHhhsrCUwv0vxIF+ggaPWyd/wNguFgSs5r8+bN/OlPf8oSlrLIIov/1TjrrLN46aWXUj5XoWI123Hq8iAoSCs5RQaOPinIJSvJLzu+2Miib5l93+kALWi1Cpn00HhlKdZqE0d/3oO3N4CpWCtIJVFsu6+B8GKYvVFCkjZHS3BSHC8+2Unpibn0/GWEsX2elPtuuKUaTY5azq9onfFztWZouqWBuYEFjv1iIEXBp/ADdkpPzuPokz1J5Ymh4YpSzKX6tOpIIBSYlTplEjkkEVs/X0doOZLx+Lb7GoiEwhmvv/XuOiC9OlOsfrkbXElErRjyt9gY25u6hhlD5bn5GPN1aWMEc4WO1VdVMtXmlTeRJeK9lJS23ddAZDmcRA6Sr12mpfpDJXQ8M5i2zQH0BVo0RqVM3ElE+dl5aclPALkbrVSfUygUqZ5PjZUda8zUXVCMp3uell+lij3IilYH059vqTbQcGkZfa+OpW3b4pOdFG930fKrnlTlKmD9pypRm1TJa9sJY3LbfQ0sjPhkBTKIj+fC7XbKP5gvPwcgVJmCwTAERUyoVCvYnZBPiz1n+gItTddVMdM1L5OgtGbxnaAXNt5WgzZBHTzx3JgKmH8yvhYpnu8V58bUr7QwaGmhfbxFznXFYLPZ+Kd/+iduv/32lLbJ4h8HWSWlf0D84Q9/4LLLLktr5eakkPXSDgA23FqFzqaVbdomjngYflssIPgnRaCw5BNWDd0vDuFcZZPJQ446M6suL2fnd8S586N+3Ec98rlrb6hAqVRw4LFu+t4YpfqsYkJeMUnMdvpYf2MlHc+O4BsJEPAsxpVqfODzhWUSy8AuN0VbnYT8Yid9jNBhcAoiU8CziNqkjpOTVsxD4XCE8HJ6BZ2ZfvHlxJ3NiZgbnIctTlTG9I/J5LEZrGVGFobSs57bfttN45XVaQlKAK2/GJDrsRKlZ+Yy8NJEWoISQPV5xccl48x2+jIu8IEg6RhW7Hh6vzj8i6iKUQZBpEwKSzHEFmVn++aS1KwAuqI7AR1rjCwHIikEq4P/0ZqRwAQw2jyN1qLOeDwwHUSVYQcZCF/WTOMlRr5bzqDqYMjVQgQ8PSsIa9EqLC0so7Vo4gQlpyKJcLccCOGfFhGGY42R8HJEbh//VIDQYpjul8UC4epryxnd58YXXe+b6p5DF91FZqo0sOqSUtr+MBA9toB/Kkj7C+LczXfWIikkeYG3/Y/95Ef9kg2lBtZ/opypTi/tPT5mWn2MNk8xfkAk5mIqEYZ/sYMEU9pJpgt66R8UgdD+/fvR6/UEAgE2bNiQ0dYoiyyyyOIfDTt27GDXrl0pnytQsoWTMUmCZbTjS9HY6tsdtP5xCFulSSZFlG53Yrs6hwOPCAWWqXYvo/vEgo9/WiTYQ8EwzQ930fvKCKUn5rMwIdgYCpVI3h/5cSf+6TALYwHmRqNMDT8Ya4xUnGun5ef9DL0+iq3SxNL8EiBUiRyrTSz5Qnh7/ARmFtEk7Gr2T4dlopJ/LEB4ORKfC1fwRuZGF8hfb8OYq05LUloOholEyGhPFglFknzkV2LJt4xvKrO+9HTHHN6RzF63O7/WkqQiFYO9wcByMIK3x5+WoOTaYKZ4uxN7tYmDj6XfVZ+OfBTD+B4P3k6PIKL8J5CJ9AUweXiOycOpZPlENF5eQWgxzJ7WFeQ5PzJ5qPhUl6zuE0P/SxNM7JuUSWorMfDKBI7aHI79Jr1amHc0SHgpwuTR9LGw2qCCCHhH0jeMWiNitnQEJYDIUoSIYsVGjOhX9XYIL4WZjz4jiWMYIDi7RHgxLBOUVpLQ5kb9KKNqE+ZKPaUn5clWb77JZRa9S/S+LBJd62+qZHEhJBOWBt6cwFadI9+36eZ6Bna68fb4Wej3M9XuZWiPeLY33xldTIySoQ4/3kH+NqFeq88Xi4FrRio4ElVIm1s7RPOx/SyFlvB4PHzpS1/i/vvvR6PR8Ktf/YqLLroobVtlkUUWWfwj4e233+bss89Oa+WWRwlrpK0ArL66HHOZgeb/EKSJ4d2TjL8bfSEPwPrb61n2h9j3vU56/jJC/ga7rEZjKTex+qMVHHi0nYAnzHTXHDNd8/K55RcWoTEqOfyjPnpfd4td8tMiPprrD9D4sVL63pjANxRgYTRAKBSfSwMTAZnE4j44S+UZ+SzOLcnHIE7uWJgMYHBq0VmjhKoV4UAkFCG8mH7vqahLRJ5PV2JuzA8RknZcJ2KqxYOrwcrcSPrYq/UPg6y7ujItQQmg9/lxRt9xyySVRBSe4GDk7am05CmA2gtLUemUGXNegbHAca3a9nyzLUnd6m9B+/PD6F4dlglsKxGzMsuEtdcJYpl/JiisyhLQ/7KINXLKdCg1Uort257vtR3Xwq7/jQnMhWmC2SgWJgLo7dqMxyOhCJH0YR3oIBKB0GL6LxicKgiDd2UONFreJd8y4aVwWoISQNCzxOKCyP3mlOlQ6ZVCYQlYnAuytLDMyFuifeovL2HiyAyBKAFt4rBHVnDVWRWsubaajj+JnJdvMoC338fgO2Isrb+pCpVOIW+6bPvtAPkb7NFzYcOtjUy1ztI+NExgIkDf6+N4+kQ5Nt1Ug8akRvtVM0iwsOxhvKyHnn4R/7/77ruUl5ezuLjIiSeeyBtvvJGxrbPIIoss/pFw5ZVX8utf/zrFyk2NliZOxiwJBsO2+xtYWlhm//c66fjTKI46o0y+KGiykf9JO/v/o5vgZJCx5mkmj0VzBUFo/GQFkVCEgz/oofuVcaoV4E0SK6jh6FMDBN1BZrrnCMwuyudqCyVKTyqi8/fDDO2eJG+dDb9HHPePBjGXaUEh4e0NMD/mxxiKx07BSUGsCHrDBL2wHAzJ89VKhZ75oQUIg9amTUuYWQ4I9SStWRAyViK8FEahSq9qCRCYWWRxPv3aE8DYgWkWZ5cyHt/zzXaZTJIIU7EWhVrUPx1ByVympfLMAlyrLWlJSEBGWzkAb2+And/8T1q5AQce75GJYinX7g8KIvFx0PTJqowbGmMEpXQkrIn9HmY7vUmqRomYOuJlbsMCLb9P70YTmBAK8FPtaTobUOlFzss3nj5PqdIrIRLBO5a+7qHlMMrQijg/9lWtWE/0TYlxLo/haDsu+UIs+UNCNQtktbAYPL0LaE3iHUDr1FJ5ep5MSAovBPGNBRh8O2pHfWUpoVCY9qhCbN9r4zgbzXI5tt1ez+A7buaHggS9YUb2TTHdLtYT13+qEp1NI5Ohjj7RiavJKZ7bqHWet7+Ukp81AuCvn2B/z7sEFv3MzMzwuc99jjvuuAOz2czTTz/N2Wefnbatsvj7RVZJ6R8EAwMD1NfX40+z+mHBxWbpZECwK5fml9j/UBdFJzoo3Ozg6JMd+CehYJuN0pPyZNnhrXfXE5hdlCWOHWuMWMpy6HluTFZ26X15lNHd4sc9URXmeIo3uRvMVJ9XnLSDOBGb76xFbVRltAbb/oUGJElKy7zVO6HppkZx7X9Pvbah1MC6q8roe2MsPXnIAFtuqePoL/qTCCSJ2PiZalp/2ZPRPqzplirGDk5nJCetvaECvU2bIu8cQ0zBaX7Mz+EMyQ9bg4Hcdfa0JCZTpYHGi0po+f1gZmu198DxlJTeD1ZfU45ClWzLFoOh1ED5Sc60NnSJ948sRzLu/qq+sBDXKktGRSQQ4+jYk12Z++nTVQztnEirggWin6c659IqPoF4lryDC2nrYXAqWH9zPbN982kt9WIqWkM73Qy8mhoYplNGil88WfVsJRqvKsVaYZKVrmJqTDFsvbseFAgLQgM0XlQq18G1Pofqc4vp/sswE81e1t1YSSQckcdhw0dL0Nu1ND/cJT9rMSWyScMYihofh48cZjkkAnmr1YrH4+H666/n8ccfT9uOWWSRRRZ/r7jxxhv5wQ9+kPK5hIImTsEu2WUlmJ3faQG/iBG8wz7Ztmvd9ZUsL4Y49mQ/BdvtlJ2cR9vv+2TbtIYrSmTyy9Z76gkvhZN20MQs3N5LsSadskv8IrDjrkZBYvlG6rxSflYehVscjDXP0PN8qprOqqvLsJQaBek9DZek8aoyTAW6jOTpyvMKMJfoM5J/8jZZyV1nk0kaKcUv0rPqomL2PZQhZtHD9jsaGNk3Rf9L6ZWQjjvvJtSj94X+JNuzGNZeV8Hi/DJtT//tliLw3kpK7wVzpZ66C0o4+kRXWkJR3aXFjO6fSlLbSkRMPSJRVWgltt5Tz9ywn5afpyckFZ/kxF6TI9sNroS+SE/9hwtTLANjMJbpaby4JK36aez6xTtcHPpBe9o6Nt1Shd6qlZ+1lTieGlVMGSnTu0nMFq/l6d4kS0P52l9oJLScqFwWVz0rPNFB+cl5dL4glMsqzytgutMjX2fdpyrRxHbG6cV7SM9LI0wenkOfr2P1laX0vjrK5OE5Ntxajdqokp9T7/phRtyDDA2J9wG1Wo3JZCISidDd3Y3dbk/blllkkUUWf4/weDzU19czPp76fu4gnybpBECQthfnlzn4WDf2RhMVHyzg2NODBCYC2BtNVJ1VyLuPdkBAbKAKepc48pM+ACxVOmxVFvpeGsexNofa80vofXWMsd3iR11nhUAACIid7gqVIm3OwlKlY9VHK4WaXxoV5ti82/JUbwpJBcQ7u0KlYNfX08QFOhHX+KaDaa+tsypY96laBt+aSFqISMSmz9bQ8rvBjPZg626ooP3Z0RRrtxhWX13OdKc34/XrLy/BXGLIqHwZU82ZG/ZlXAjLKdOR32RPsbQDUcdVV1fR8cxgkmLV34LjKSm9H9ReVITapEqrJKmzQvlZJceNC0VcEk6yMEtEyalOirY62f1vmUlLG26upuUPQxn7adXVZYwdnE4hSsWw9voKZvsXZOLUSmy+s5a5YX/6euhg++ca8fTM0fqrNHZ7Z+dRsNnB0DvutHYzMbX+nQ+2pK1fkurZClSen0/+ejvtzwwKK7io7WIMmz5bg0KjkN896i4uklWvLFU66i8up++1ccb3zdBwZQkqjVK216s4Ly9uP6iD7Xc2Mn5EqDt5dB5CdVMcO3aMxSWxIGi1WpmdneXWW2/l+9//ftp2zCKLLLL4e8U3v/lN7r//fkKhZNKMCjUbOBGzZJeVYA78eytBL6y+ugzfZFAmtNRdJjbatz01iLXWSO2Hi4XzR1TxpupDBWJTdhA23l4DIdifkNvRurQE3UGh1POxSqHy/FxqXipFnWUFEsUYViJ/k5XKswsZa55OS8SpPr8A1xorzQ+3piUeVX2oAFt1Dvv+LX0uo3C7HUe9WY43V8JSbaBoszOtUg8I8knDFeUc/EH6nBmIuHTk3em0BCSIrrcaVBmVjGL1GNo9nZYsVHdpMeHliGz/9bfivZSU3gv6Ai31FxTT9sxQWiu68rPzmG71pFUjAjEOHXVmel4czagWtfG2GubH/TIRZyUca8zkr7NyLMOaptappfbDBRljW61Ty6rLS2j+YVfaMepYY6bqzAIOPdlH0J36hVVXlZJTbGT3d1vTnr/tnnoikUhaFa2YMpJvIpB2HK26Sqhhtvy6H09H6iaQrZ+PKnRFY6sYIQrAscpMzYeL6Ht5lLF9HopOcDA3vCDbH9ZfUYLRpZOf64231dD32jhTx7xozdBwRSXDe6ZwH5plzSfK0Dq0Ql0NmFs1wph3mP4BEW+rVCrMZjM6nY6DBw/icrlSGyKLvztklZT+ztHQ0JDWUsSIme3SmRhKDTRcWCir20gS8g714bemGH5rCluDAf+kD1OJAaVWQfGpToZen0whQNRdUAYS9Dw3xsCryeQK1/ocas4vkYk1u77bmqS003hVKdZyEzu/2sJEsxelJk5uAqj8UD7GXCEX2PrHIUq2OZIINqZKA+Fl8A34mB/1i532aeCfhHAowpIvA+N4OYyklHBUm9OSiAqabKh0SirPzJd3Sycib4sFrUVD3eUVaRcxMAif2dIP5GUkKeksGhTqzDIBAy9NYC01piX4xDDT6ktRIYqh/EQXKr0SrVEinQNs0YkOyk7Jo/+v4wy/lX7H23th6731REKRjAuOOUV6JCl9HX0DvuMSlABmuucYeTdz2TQmFZJCSrEOjKHgAzbURhXVHylLS/TSO0Hv0FJxRiHug2nqYACtRUPeGltakpLeCQqVhM6aXrVJYdYRCUfk3VgrMdY8SU6hXn6GCj5gSxovR57qp2iLWFgyFOpovLSEfY93ymphh3/RRzhK6N/4mWrURrVsXdPy84Ek28P1nyhPSu4kPtfrPl6JKU8vP/Pug3O4D8aTrAZn8g68iSPTssWftdoGEgSmRXLmxI9sYWlhGfuhSoboQdkQZHRcvDT88Ic/5LnnnkOr1fLjH/+Y0047LW27ZJFFFln8T8err77K2WefnaJWKSGxhm3kSkVUXViApJDo+v0IS1GlSEeViamj8xx4pBt7g0E+z5inIxyNaUZ3TSdZXlWcm4+91kzjx0pp+cVACoFITu7/Swvj+zyMH/MkkTO23dtAwBPk4GM9HH2qn3AwIXbSw6brazj2i06h2tTmZWBn8rybt9XK+B4PfS+O41plYTyqmLkScyN+zMUG9HZ9WrsxnVWNSqPMqJ7kWm1Bqc68k6zstDxU2szn151fgMaqxrk2J62ikKPKhKSQUJsyv/a0/6Efe4M143EgIzkHwJSvl/sxHbbcJV7oMy3WvRdKT8+leJuTjj8Npq2jMU+P2qSi+NQCOtNYj6ST207EoSd7aLykLCNBCUCpUmSMewCKtjtRajL3Y/2FhejtWqy1+rREn8rT81EbVRn70VppQqGSgPTk8yVfCLUxlHaMAMwOLBCOKgMYy/SEl5HH69TReaZXzdH/smi71deW4x30ycpKBx7pJm+TVZRbDzvubGSiNU4ITFToWv+JSgwunWzFOPLWFCMJ8XZ+k4389TbZriTRiq7sxFxUeiWGXD0wh96mSLJEUSiTY+uTd5xE2++HqZcCdLjeRWfV0tXVRTgcJj8/n9LSUpxOJ7t3707fKFlkkUUWfwc444wzeOWVV1I+z8HOVuk0dLk66i4sjP+eSvHfy+mWeaZbOrHW6AlMiLhLbVJRst3J4OuTKRZpjZdVICkk+l4aZ+rwHLsOJ1tLrbm6UibW7HmoPYlcUXl+Pnlr7Oz6Tguz3QE6n022SCs+2Ym5xEDLzwdof7qP0tMKkghKunwdCpVQP/J0z6HINKcGYHkpJMeYqQijVCuwVprSkojsjSY0ZjUVp+WlJdhYqnQY8/XUXVCYlgQFYC41YMjVZiQp6WwalOrMCtbug7M46s20/TEziWeuP8Bcf3o72qKT8tBa1Ogc2rQkJXujIB8Pvj2R1nLt/WDzHbVAZls0W00OCmX6Pgp4eE/i+vjhGaZaPRmPq00qFEoFtnKjrDaUCHujCZ1TQ825+ekXw3RgKTViyNVmJCkZ8/TorJr0JCUdqHQqtBliP51VRyQUZi6DGub40VkcdWaZoOTaYEmyzjv8835KttkhIEhdjVdW0/yTLvmZav6PHhQa8f9rrytH79DJuayeZ8eSLAI3XF/J0sKy3FeJz3X9ZcU46i34ZxYZeM3NbHcgKSdmLjEm9eNMh5fe50UO0FZuBJCftY1nNhAOhXEcqmKSMRYbp5mYmCASifDQQw/x61//GqPRyA9+8AM++MEPpm2XLLLIIov/6Th48CCnnHIKs7PJdqcKlKxhGy6pgJJTXKiNSnqeHyPoWQIJTCVmgse8HH2yH3NFXMnQWm6EaKrE07GQlBPJ32Qlf4MdtUlF21OD7F+xWb7p02Kz0M6vtgilnhUEpE131BKcXeTIj/s4+tQAChVJKjNrr6qg/ZkRgpNBRvZNMX7Ik3R9xxozU0e8jO3zULjVGVd1WoHZAR+OejMKoxa8qewQvU0t1uIyqCcVbHKgyVGnWMfFUHV2ITqrJuP5FecWYcjVyeVdCVOxFkmtQHOcnFfrr/vJXWvLeBxIS/6KwVZp4nhaJxtuqUZSSyl9+H6Ru9FK5ZkFdL8wgvtQqtWuxqhE79RStMlO17Op5cxk5xZD+6+HqLu0+Lh2diq9AsNx1CjLT8lDa87cj9Vn55FTaMDWYGKmNXVVtvREJzqbBkdt+n60V5lQapXy87ISiwshlhdDae8NQo1fir4DaV1aFCpkQpd/VCiXjR4Q9a+9uIiF8QDDUTXUYz8fwLHKLBOUtt3TwMTRGdnCbs+DwlYRooSvWjPHnupjtsvH1DEvU8fi9Sk5MRciyBsE2xJU53M3WtFa1BgLtUwdE4pkSaQppZS0prxjyw46nhulRtpMr/0wKqdEV1cX09PTFBYWUlZWRklJCa+//nr6Rsni7wJZJaW/Q9x22208/PDDKZ+r0LCF0zFIBlnVKKaqMrRnkoE0u8d3fFHIqMks1gRyg63BQMPF5bhbZun8/TBFJzqY6ffLqiyWGgPV58QJUJvvrKX/r2NMNMd/lGIqLtUXFpK72sqxp/vSkkq2f6HhuPZlO74U3f2cZpdazKLK0zufkfyy+fZaOp4fSntvEMSdGGEnUREqHRxrjDJRIx1MlYb/tILRStWbdNde+7Fy3G2zdP4mM3NZ7ySjLVrpmbkUb3HS+ru+jESn91JS2vL5OiKhSMbd7se7fwzbv9BAKBg+7oKdwanA5wtntJY7HjIRmGJ4r35MtOIr/aArreJRDBs/U83g2xNJYz9+IaF8lGmXYEyVLJNy1vobKzHk6uh6fijt9TfdXoNKr5KfjZVjaMOtVUx3z9P353FqLipCpVfS+ov4c1J1QQHdz4jgbscXG5P9YqPlxycW7MzFhozktpW/JbHnqC1yAJ91BhQwPS2SmFarlYqKCt5++20MBkPKtbLIIoss/ifB7/dTXl7OxERqHFVBI1VSo6xoBOL3MBKOyPZNiSg7M5eirc64T/sK4s36m6rQ2zXyuRXn5ifZjzV+rBT/zCK9L4xRcW4+5mJDEskhsRzb7m0g6F1MqyxZsN1Oxen5ePoWZIuqRMR2+Hc+L9RfVmLtdRWY8vUy0WIl8jZZKdzsyKiaA0JhZuStqRTlmXTIRGyJwVypz6gSdFzE3DKOc+qWu+pQahRp+zPpUvbMdXivha73UlJybTBTfXYRfa+PJxHZ3u/9Ib5z7MAjbRnt2yB5DP2teK9z7Q0GpjPEniDszfxjAdBD3lpBkksHx2oTpSfnpd8wgFD0NBcZOPBo+rpuu7cBhfo47x3vpbp0Qal4t3plIqXOeZuslGx3ycpeTbdU0fHciGxZZ67Uo7drGd/nof7yEuzVORz4aW/8Ggm/Ccf7Lak8r4D8DTaxk/TZUbkc/oifvbxCbpGT8fFxmVDZ0NDA6aefnt3ln0UWWfxd4Pvf/z533HFHiqWIBj1b+CA6SSerp1Scl0fBBgcje6boeyl1gWLbvfVISgW7YjGLDpncoMvX0XRtJZNtHjr/MIJrvYXATFAmvhiKddScFyfrbLi5msFd7iTyUawcxSc7KflALq2/yayOpFQrMsZOO74YVbVMo5assypo+nQ9nt70qjUgYsj+v46lJbRAlCTSMitIIbk62ZIrHaw1+rR1kMuzQrnmb8F7navL1bHhU5W4j4k+yfg9Kxnt2PI22ag4PY/OF4YzEnTeS0lp42dqADIeP979Y9h2bz3LgdDxFcpj67j/iebMKdMdV0nKUqVjtvs4bW2NK4Plb7PLimHpsO6GCkbenU4a+4nYfn8jc0M+jj7Zl3LMsTaHugtKMubE6q8owV6TQ/efRxnfl7p4uO5TleisGvnZWDmG1lxbjnfIR//LE5SdkYvOrJaVkwDKzsiViVjb7q3HNxlM3hQa/U2oubAQ1xorg29PMPh6akJz5W9JrBx9kXYmzYMo1UqmpkSuzGKxUFNTw1tvvYVO95+zHcwiiyyy+H+FYDDI5s2bOXLkyIojElWsokKqR+vUygo72+5pAIm078uudUItMbaeuJLQ0XhlKeZSg2z9FLO/jaHyvHyW/SEGXnNTuN2OvdrE0QSXipiyEsCmO2tZ8i5xKM1Gf2utkcbLypjpmpctrBIRy490vTDCxH5PyvHai4uw15rZ/Z30qjXWWiMlJ7gyquaAIGGNRTeCJSrPpIO5Qicrz6SDqTi9vdx7QgtabXryUwxNN1ehyVGlVeBJulQGEhUISy+FWpHRlu29lJTMZVoar6ig7/XxjESi490foPQMF8VbXBz4cXdatSX5Oglj6G+FvkB73Gu/Vz/Kz5EWXPWWtIQsEP1dfXYRB3+YfsNA9fkFOFdbOfDDnrR12XRnLZrjKGdtu6+ByHJYVkZaee/VV1UyvHuSwb+6U9rLWmuk/JQ8mVy05tpyel8elcen1qXFXKjDfWiW0jNcFG50cvTnPfHxm/CbsO2+BghH5N+DRORvsVF5VgHjB4R6WqwcwUiQZt7EWmhiwj3B0pKwP6ytreXDH/4wDz74YNo6Z/E/F1klpb8TTE5OUlZWhs+Xmthfzwk4pXz570SyQMvPB5LIGLYGA/UfKWN4zyQDr7qZ6vKm+NfXXl5Mx9NDMoFFpRO7SlYSEyrPLEBr0cjXX0lYSbTO6PrjCF0rZJq3fL4O32SQoz/p49DP+vFNJtet+FQnQ3smwQfeQR/jB9Mr6/gGfETCETLR7WwNBtQ5KqrPLmR/Z+pEaSjUUXZKHkXbnOx9sD0tQWn7FxogDLv+tTUtsaX8nDwKNzo4+GR6izoQSalQMJSyWy8GS42BVVeUE5gJ0vxw+kUXg1VFJBxh8mhm1i8cnyA08NJEWsLa34JMCkrv5/4xhBbDx9n9J4hO62+uzyjxDEKBqOLUgrTkt9jfGz9TjUqvSlGgiPVjzUVFuFZZGHh7gqGERESMoORan0PxDheuVRaZkJcIQ6EOrUVD2Sn5aUlEBqtQVfJHFYdWYuBVN456M4d/IQLq8nPyktSbDv5HT5xwZYDttzcwuMstlzUx4bX2+gpMBXq6XxxmfK8IchLHkrPeLDOqY4gRlDBAJBxhKShUyAo+YCO8FJav0/fGBHXnFcq/A9vua2Bh3C8H4zu/2oItqg7S8NESbFU5DO10w6tNEI233uEv+JknEAhw4MABjEaxM+3qq6/miSeeSNs+WWSRRRb/Xbjnnnv45je/mfJ5Dja2SvHdsSvt0Fp+nWwJtfa6CnQODXu/2U7/SxPYq3MYeCs63/iFYlF4KYy72UtoKUwkIW/Ru0Jq2lppImcxTO8LYynHCk90UH5KHjOdc7Q+NZiSMCo9PZfCTQ52P9DK6K5pFsb9KcSe4lNdDL3upuM3PdReVJmWoAQQ9C5hyNVlJMaUnpSL2qjKeDxGypkf9uHt8bPSrbj09FyKtzsZ3jNJ/0sTaQlKW++pJzi7yMHHetISlGJkks4/pydaAWy+WVgM7/xWeoswgMX5JdT6935lOh5BKBM56f3C3ezNWIf3c3+A6S4vtqoc9Hk6/NPpY9WYrdmBx3sEWSgNNn22BkkppSWq+4f9mCv1rL6ygt7XxlIIVTGC0vb7GwiHIimxWeyeW26rQ6VVMn7Yk7Zfyk/NR2vVZCRFhZfChMORjGSs7peGcdZaANDbFZhrzEmEqJ3fbkFvEQtKa66rQGdWy304dXSenUfjiZ6maysILcWtEsf3eWRFqrytVvR2LRWn5XE0Ku3u7Yk/dwqVRCQSketQc3FRkhLWRIuHSFi84FScm0/eWhuHftaHf9hPz/OjzPbPMXV0Xi5HjNB0MufDCLgioxxiJ1qdlra2NlpbW3nooYcoKipiz549FBUVpW2fLLLIIov/DgQCASorKxkdTd4dLSGxjg8k5by23VuPpBB2aL3Pj+PpnpfJOYZiHWs+Ws7YgWn6X55g/MgMkiLhHTgAVR8uoPtPws4sEgnLio4rCRjlp+RizNXhWm/BfXCW5keT8wFbPl+HSqNk59daGHpjMkW1Z+NtNQRmFzn2ZD+HftpHwJs8t7o2WJjrmSPgCTPVOou7Nf1CRcATJhwKZ1QU1+XrMLi0lJ+az0xbmlySDmrOK6L81Dze/XZHWoLSls/XoVBK7H6gLS1BKW+TjcozCzj6i56MxJhNn60hvBzJuECly9Wx4YbMNngAOotEaCnMdHd6clEMxyMIje+bSUt2+VvwXjZw70VQAqHyuLSwlPkLOmG5vDi3lDFP6FibQ+2HSmj7fX8KAS3WD2uvK0dn06bkzWIEpZJTnZSckMvAm8nKUrE65JTpqDwjn6LNjiSLHbmYVjDm6yk7OTctSUlnhXAojN+TftFu6vAcc00+Op/pA6DwBAcjb8fzu21PDSYRrrbeXc/wnvjzlLgho+7iIhyNFnpejtswJtrn5K23CQVW4vFUolJUJCxykSDaVqFSyApPgzunMeTqZILS5s/V4ncvysSr3Q+0YakS8WH5mXkUbhV2drwG5XNCNXU/bzCDm8XFRfbt24deL1Tmb775Zh555JG07ZNFFllk8d+FRx99lNtuuy3Fzs1KLpukk+S/V9qhtTzVk2SrVXdpMTnFBvZ9twP3oVny11sZ2hWdb4JgazChUCmYOuJlKRgSKtRRosLK2ClvnY1QMMzAa25Gdk0nqTbaGkw0XFzKVLvY9LdvRU4id6OV8lPy2PtwO56OBQ7/tDuF2FO43c7Irmnanxli1SWlaQlKAP6pRSLLYbQ5WoLBNPZip+RhyNUlkbcSseaT5eQUGvB7Fpnt8qUQlHI3Wqk+p5ChncIWNR2xZeNnalicX+LIj/vSEpTMZVoar6yk8/nhtMo8AE3XVqF3atn//ZaMBJ+gZyk5Vs6A4xGEjmdF937g7Q+mJaq83/sDeDq8FKy3o81RZSQSrf54KeYyU9qxEcPa6ypQG1RpYyL/aBCtS0vTJysYeDPVWjnWj5vvrEWhlFJIQLGxsuGGanRWDd7hQNrxU/HBfAz5Osxl2rQWduFwhMhyOCPZqvNPQ+SuiSpnaSF3tTVprO/+Titas5BGqrmoiJwCvRy/zw8Fk/LJTddXEl6KC014OhY42CH621yhI6fIQNkpebINXtAdxB0tl0qthEhEbuuys3LpfzEel43smZTVY/M3WSk9JY+23/Th7Q8ytncGn9svt2nTJytE2b/RxnbOgFEoikzTzJsotUo6Ozv51re+xbe+9S0qKip48803KS4uTts+WfzPQpak9D8c1157LT/96U9TPi+gjFXSZiBKPLqwjJ5XRxjfO4t3yEd4OT7xTR1ZkJWCZvp9SEoJc7EgE7Q/lWz/sPlTtahzVIxE1YBWsi23fL4OhUrB7n9t5cAj3SlqNaVn5hKYDDDR7MXTv4BSlXmCU2mVGBzix3ClepCp0kDpCbkUbnSw91vtKdZrhlID6z5exvihGXqeG2PX11KZ2+Xn5DH+7jgzrT4O/yIzecg3EsA76KPnpVTP2RgWvUvHtfHQWtTCRm85MyNaUkoojmNnMjvsY2lumd5XM0srTjR706v1RFF3RTGOGjO9Lyfb6SXC1mBgpt/3n1InSoRrfQ7ug5kTR9vvF6z6dH0D74/oFJxdZGR/Ztu35YVlkISMdSbVJKVGedxAa+LIDM56M9NH0q/uuQ/OUbDJT+cf09vv+UYCSeOr+sLCJEKebySQ1Abbv9Agdpg9EVeuiCkBmCoNFG5ykLvKmpRgitWtaKMDSSmhNqSXTh/eM0HlGUUysajxqtIkdbFdX2+ViUSlZ+ZSvNUZV2jykbRTv/zkfCSlJF9rvsfH/oeiyUaDkNBXG8QUYqkxsBREJjZOHJnGlB+3s9t6dz0L7gD85GzRJgEfna59uN0iKPn5z3/Ob3/7W5RKJWNjY1l1pSyyyOK/DdPT01RVVeHxeJI+V6JkG2ejl4T0zupry9HbNLz7nQ76XhzHWW9mMmrZ4OkQRI1QCBb6/aj0SvFiFsVKZaOqMwsJLQqS0pEfJc81eVutVJ1RSPfLI4zv8dDydG8KYaf+8hLanh5k5K0pijY5GN6bnimsNilRqCVcG8y4m70pxJ7NnxMe9VOHpvBPhzm0YsfOqqvLyCk0sPuB1oz2YZXnFdDz/CjvfqdDEEgyEGeOPtFFxXklGdWP3K1zFG5yMHEsc5whKaQU4m0icoqMIImESyaM7pvGtcpyXCWlg48dP9my4wuNhJbDKYQbGXqwlx9fQej9QG8HrTOzolTxSU5KT85lZO8UfS+mKkm8H6LT0C43xdtdGQlKgIhlM4ezhEKAJOyPMyHgWUzZJJGIY08PULrdmbFf9j/UhbFMEJT0+ToctSaG3oyP+5YExcjqiwpx1Vs4+Fi7TFpKbIs1n6xBpVfi7Q/E6+0Hv1/8v86qRq3L/Mo8O7BAcF6MsbytVpQapWzvNr7HQ3AmKPfZtnvqCS2GZcJTYjkdq024Gi2YcnWyAlnMTg7AmKtDoZJkQlPBdnsSCczTO094WbRp8UlOirY7OfqUHmd/AQTBt3acnYfeAmB4eJi6ujoWFha48847+fa3v52xfllkkUUW/7fxla98hf/v//v/UiwkiqmiXmoCBPFo9ZVlDL0tFqymO+aiFqACM20L5G2yMb5vBt9QAIVagTFXkAli1k0xrPtUJcY8HdMdXmbaFtj9QPL8vfG2GlQ6BXsebKfl5wMpajT52+yEAiHcB2eZbJtFa8pshSps6sX/ryQG6XJ11JxXxNK8sKlqX2HXqrMqWH9TLeNHZuh9fjxtnFG43c50t4/AWICDP+nBN5Rh/g7AVMssg3sy51b8E0EU2swTvN6uASk6z2eApJY43hpXYCLAwkSAwbcyb5rzdPozx1QIVZyibU76XhnLaDdnqdIRnAq8LyLR8WCt0eMZ9GdUOdpyVx1KtZJd/5p+l/p7DmvPdAABAABJREFUEZ0IwMK4n/Ej6clpAMsLURudAn1GlSxJpThuTOxunadws5PJ9lTrERBkp+nOOfr+kl6tPeCB5sd7ZPWi8jPzklTLAh6S+mzr3fV4BxeSVL+OPNEHiHFdfmoehZvsSRvuYgQlx9oclBoFalP6nNfIvimM+XqZoFR7UREdv4+Xe++D7TKRyLXBQvU5RXT9eVgmIiUqlVWdVYhKp5SPBSYCSYQolUaJKpp7MxSLa8Z+C6baZ7HX5Mh2dps+W4NvKgg/P1lcyx+gO7eZ0YkRIpEIjz32GE888QR6vZ7Ozk6sVmva+mWRRRZZ/N9GMBiksbGRnp7kPIcGLVs5E60UJy6Yiwzsf6iTsX0e8jfY5ZyXt18QNdRaQWhQ65WCIBolHh1JWPMAaLiolOVAiKkjXqGulABbg4m6C0voe3WMsb0zHPtFTwopo+pDBXQ/N8pM6zy+iQCj+9LnvFQ6BSqdUlaoWUlCabpJEHZm+hbwjwY59otkhaWaCwux1+Sw58F2Bv/qZvCvqa4aJae4GPyrm4M/6EFfkJ6gBNDx2z7Kzypmtit9Hmi208vSKXlMd2TO0ShUEipNZvtcQ54BJFj2ZxYBGHjHTeFm+3EJPi2/Su9ME8PWu+sIh+Ddb2dey7NUGzLW9X1DC+b89KQcAMcqM3UfKWZk31RaezdvfzCtMlAiBt4cp/IMFfPHUVJSqhVI6uMEtBFAIaGxZH4H8I0Hkt5VVuLYU4OUnujMOH6OPNEvqzZpzeBYZU+Ke3ueH5Ot2IpOcFC8w8nBn/TJpKXZLp/cHzGi2tyIP07eCiJ/15SrE3aEGTDVOktoSeTSrLVGdFaNrHbl7Q0kEb423VFLeDEsE556XhijJ7rBVl+gpWizE1uJSVaIisVRADnFBpQaBd4xcS3XumSlKfexWXlt3bHKTOVZ+bT/rh9z/4WwCMF6N2+1vgFAb28vdXV1BAIBvvCFL/CVr3wlY/2y+O9H1u7tfyB8Ph8ulytFNUmJkq2chUGKkgyiFlQGp4L1N9cz2zfPsZ+lTiqb7xS7xA8+0ZfWSmzjZ6oB2P/9LgyFOvI3WOl5Lk7YMRTqiCwG8E+Ka0lKKSPB5D1t2a6O28elQ8EHbIy+I37kVn28lJ4/D6RX5YlaaHkHFpLIHvLhaJuEgunlskEkFIDj2o01fLSE1l8e30v+/xUaPlaKWq9MliVegeJTnRRtcR43qbPjS40QIaPcX+w7x7N7a/hoCfZqM4O73RlVmZpuqgIlGa04APK2WCg9IS+jbdz/a+RuMKM2qtPamUFcuSmTVZ5rfQ4155cQnF1Mr7rkVLD+pnq8Q74U4l0MDR8rpf/1CXwjgaTnIR22f6GBuWF/2msVn+qk9IRc/O4V9m1RxCwYd36nBXxR8lpCnQxOBfnbcul5bkxWYOt4diCtkti2+xpQqI5v1xgbT5YaAwpVnNA0Xd3PHB46O8VY0+v1FBQUcOmll/LAAw9krHsWWWSRxX8lMqkmlVBNnbQeECQC30wI/7BfKAEZVOktO/RiV/RyIJQ2XnJtMFN1VhGHnhSKKBXn5jO2eyyJ0BOzN9PboenmRobfFYpCK9H06Sr0Di0dzwwymcbOYvU15eQU6o9rVZa3VdhqGcv0FG6yJym5JGLNdRXk5OvFvJGGPLLpszVozGqO/qL3uMpGHc+mLysIcsX82MJxrd3+X2LzHbX0vDwiq9WkQ9PNVSwFQrJSzkpUnV9AfpOd0f3T9Dyfnoj+XnZvIMhQQEabGPRCgaj/jfGMNmkg+tE/E0wiwPx3ou7S4oykNxDxeigYihOlV2DrPfUoNYqMalgx67dM41ZvV1B2RhFtT4t4P2+TVVZCSinrZcXYq3OSCE+JeC8buS131bHkX+bAI93o7QognPTcV55XQM9ro+AXz9NyMJSWJGet1dN4eQX+6WDaOHvV1WVYyoxymxSf5JRJXP6IH/+6Ubp6u/B6RaayqKgIlUpFa2srer0+5XpZZJFFFv/VCAQCVFRUMDaWvFFMjYatnIlOEoSA2G73mOLMTHd6u7OYTe2xX/aktbdae105Kp1KJMx1UH5SMslCZwVQEPCEWXdjJRqDKqMK4nvZsq2/qZapdm9Gq7KYKhMIgsXAa6MEPGk2u+lg+52NzPbPJ5FaE4/v+HzjcZWnm26uQqVTHlfRsebCQjr/+D8jJqg8Px+9TcuxJ1NzfDG4NliEItQjHRnJQ9vvawBJYtfXj5/zOp7dW/mZQm19ePdkWhtBEJvC1Holhx7PnKOz1RupPKMw7W78/w5Ya/QYnPqMBC97o4m6C0vTKjeBUF1ac3UlgenFtIpZOis03dzA7OBC0oa5RFR9uIDRZkEodG2wyCShdNh2bz3eQd//z957xsd1nGff/y3AFiy2dywWwDYUdoAFoEhJFItYVW1Ltpqr5CYXSS6y7OfJ73GK7bgkdmzFjp3ELZFjJ65ykSyrs4udBEkQlei9bkHZfT/M7gJL7NmFEsXJm+D6RAI35sy5zpyZOTPXXHfWd8Bco6PqTi9TvZGsz6B0mxVPvY2TTzYSHV2c/k5tBMcGkQpO7VSz5oFyrvwme4rA1GGOg395IWu7a3i8hunJGV77WhNqpxqNUZHmb7Ksh1HVEBcvJdPVqdW43W7uueee5U2zZSxjGX80fOc73+Ghhx5a5JpUThUB2UpAOPPE54TwaM27K9DY1Fn3+EDMh6bDs4vcjEC4q1TdUcbFnwhHlJItFgbPjGS4CaUdYlRQ/5Equo4MZRUF1bzVizGgo+kXXVlTYwVvL8Ec1OVMVWZZpWfo7Dgqq4qSTaa0uCNbWZZKPSe/cSlraraUO9L5p9qyCnLSzka/7GLofHZVkG2NgZnILKOXswuP/9hY+6CP9pf7GWmUXvNaca+XxJy0mMm50YR/t5ue40NpQcq1yJfuDcShLuQyyTYHUPfhIFdfGZB0wAKxxjQzNStZlz82fHudOeuy7n1+SJB1/w7EAQqVoYDXvnoxa7sM3ubGUm2QTE2o0kPpDS6u/FKsR6beh2zw3mTDvcHCyb9v/Xelkav9QIB4LM6pb7eg0gNkpjks2WJh8OIkscEYq99VQSKRyJoyUWVTUfeQn3B/NKtLV+CAC/tqE699TXCyMLViLBFjcm0Xra0tjI6Jn7ndboqKijh79iwqlfSBymX81yDHOdhl/LHxd3/3d+h0OoqKitICJZ1WR6hoJTtkb+K20D1U7SgDxMkUz2YbtvpiwoNxDn7pAhN9UbRW8Ug3PBZi/WMih3rLs12EhyPorPOngMv229G6xcJPoa4grZYMd0eZ6o/g2ChSIKCFte/yseqdQtBz/ied9J6eF004NhvY+LFKdD4hnJroiXDuF2JBQetW491lT8fqrEqQgUovruXdbsMQFH+ntcqpelsJFTe5qPtQANvaYoZbJtICJe92G6ZqLRsfq6TkJhPeLXYOfukC577bjmVVESVbLenreLZZ0bg0DDWNc+afLuLdZUdjFb8zVWvxbBP/kcmFs5FlVVH6Xr277GkOax/2Y/IX491uA4RAxba2OCO24fFqGj5VLZyfFtyrq96EvVYvntUnq6h7JJDmW+vNjHVsNNDwRDUbHgmJe91lR+vVLoo1eIvQuTS46k3pv/Xusqe517rVyAvkaYGSbW0xrusWxCb5Hrg4xmDzmCg3aVhzLYdA+iSWxsqi2NhkjInuMIPnxinZalnEocYqBta2P/Sk+c7GYelWkQ7GVK3FENSmuU7F2mv1eLZZ2fyZGmre7k1zeC3f/tucNDxRneY8G4fVbytl82dq8N3mmm/f13AY2Ouh7EZH+nf2Wn0G39ZqI8iEkl1rlWfwYltbjLJIyUjLJK99+8qi9u3dZSccjnPwTy/Q89oAJVstbHysEsdGA55t1rTDUdvvOrCu1GMIyqm4ycXGT1RmcJjiW+tWI5PJKChWpNv3Qg47nx9kvGeKzsNiU7v2gwHBYbJ9D5wfpfOoSKdoWVVE9ZvKqftoYP5ea630nhgVz2KTcHCKTSVP6G83ZnA42j7OeI+YXFvXFdPwRHWaN8dGA63P9qQFb9VvKqP6TeWgFW12rW8DZVfWsJm9mPQmbDYbra2tfP7zn0en03HDDTewjGUsYxn/WQgGg6hUqrRASSFXYDPZuY597JC9ie037UTv06AxQ+XtXlbd6wWNSN916ecdODYZAZFqreFT1RhXaSAi3FWGW0Yhud9vrtbi3SnG2fh0HLlSRtmNZgBan+/FssaGRvyXug8HqLmrQjjFDEPrH3qZuJpcMNBA9QNe1rzXB0Dz892Mdk2mRT+OTUYsK3Xp2AK9OHWlMUNRmQbPtvlx1rHeyKZPVuHf5QYNmHw6Ol8VIt1UrGOTkfUfDmKr1dN7ckgIZCIiLZymRNycpkTEHv9WE0MXxynUKXGsN6av49lmo6hMIyx8ZWBbOz+uWlbq0hwCeG+wizECIR7xbLOlObSs1BF8i5vNn6nBf8CFe6sFY0iTvr9UrGOTkYZPVVOxf8GcosGMOTnOooGat3vZ/OkabLV6jCEN7gVzIFeDWbja1Oop0CnxbrMnBSWg92nwXD8/Jjs2Gel4uS8tUPJss6FxqjM47D0zytjVKaKTEayrizN4SXF47ReZrVaPLTmnScUOt43Te2oEjVOd8Rytq4sF3xE4+oVLFGgLKCpL8bKYw2K3BnNA1MNzvRW9b3HshkdCNHyqGleDOX2da/mu+2ggLfjPxqG5WkvDp6rZ+PFKca/JooyheQ4r9jqxVhtY81BF+tmI2Hm+5QVy5Erxf8d64yIOm37ZRt/ZEYrsi9u3rVbPuX9s4+CfXcBTb6Nir526hwPpNgsQGY4z1DSGY71o6/49bvy3O+Y5XMB3gVaJTCZD78t8NikOz//oEqNXJ0Ej7nP9R4MZ7bv76BCtz4qN4FXvDrLuAzUZfURkOJYWUhUUKVHpC5O/BM+ueQ5FvaNc/pUoa/0jQeo+EkhzOHY1zMmvX4QI2OqK8d5gZ8NHxXdGeb2LYHw1Gyd2USGrpKKigvHxcdrb29FqtQSDQb74xS+yjGUsYxn/Gfj5z3+OXq9Hq9WmBUpFmiIqNWvYIXsT+8vfgm+rSEVZ93CQ8h1OXPXFEBWHrMauhlEnHZLWfcCf7vuanu5mojeMsmj+FLB7mwV1uYhVm1QUJtehiMJEbxjb2vnv2dqHa1j9LrF+dumn3XQdmz+0ZK7Rsf4jwbQ7y3DrOI2/bBPlGuW4t1hA/AqNU4NMIU87Djvrzem/UxuhYr+d4IESaj8QwBjUMNYRTguUnPVmjEEN697nx7nVjHu9hZPfuMCFHwo3J2f9/CDgWG/CWKqh58QQZ37UjnuLBbVRjJXFZWrcyfFbXiBHXijHVJVcr1GLVFspDle83Yt9tQnvTWKcs601YK7RzXO4xcKGR0PUf7IKtVMt7jUJy+piLMkxecNHQ9R+yI86OQdS2zNjzTU66j9ZTd2HgulyU8406Vg1WCr1GLxF2Grnn427wUxxWYpDwW1KoGQManCsn59XpvjueW2Y/sbhjGdjDGoyOASQpcwJUrwYxX8NfjUzMzOMtEzQf2EMW61hMYdGORd+0EHLMz1pvrNxWLbNjspYgGV1MVpPJi+2tQYsq4uxrTWw+Ykaqu71zHN4Dd+eGy3UP16d5iYbhxW7HWz+dA3l++0Z7du9xZLmsOrOcsp3ONO8mKoy+batNiCTgbxQjtrIIg61Ng0DZ0c58Z0ri9p3qr6H/qKRrkP9OOvN1H4ggK3WINpsUEx6mp/pwVhehNopJ7ivhI2PVWZymOQ79TwKDcrM9p28zvCFSYabxrl6VGxqr3pnOZX3eNLte6hpkvaX+4mOCiekFW/zUfshf/o65pUW+pKbdJ7NJhSFcuaSbhTu6/QZHA42jTLSPgFRUJeqqX+8Ot32zDU6rvyuKy1EW3Wfl+o3l6E2ijYbKl2Jp2MlW9iPpdiG3W6ntbWVz372s2g0Gm688UaWsYxlLOM/CzfccAMqlYp3v/vdzM3NJde8HGzlADtkb2LLhi3oy1SggpX3+am+uwxUcPrbrVx4qhXbGtEXWlbo2fSJqvQeUP/5EQYvjSWFCEKg494q+sWZaAKlRoFzk/ju7zo2hKnKgEov+vJV7y5n5f1+9BVqiEHTr7sZ70yKdlQQuN3JyneIPdDWF/oYbh5PC5QsK/QYQ0Xp+1MZlcjkclRWFSqbCufG+XmBqVrH+kdCVN7qQaWXY/Jp6Uo6wKRiTdU61r3XjzFUxPDlCQ5/rlGIHjaa0LiEmEFlFbFnf9hG70kh8rWsml8TcK43ovOoQC4DOVhXFAtXKYTDUIpDgMB+N1V3ekW5eiHwScXqK9SU3Wxn8xM1+PY6sa0xCI6SvDg3mlDphZvNpk9U4d05v/5hW2PAENBmcNjwqWrsdaJuzgVrdJZVgkN9mQqtXU3ZjXZUVlEJjSuTQ8sKPV1Hh9ICJedGEyqbKoPDkZYwg41jhAcjmKrn50ALOUSJyEKThDFUhGWFPiO2/8Io3ccHUenlGbwYAto036/9dRNyGYJvWBSrr1BjDhVjrhLx9jqjaN/X8L32QR+bPlGFvW6el2v5XvNQBXUfEXNXfdliDg0BsVe9/pFQ8tmI9q3zzHPoXG/EWWdm9bvLM+51Id/KIkWGQ9C1HF78VQfdx4dAVbCofVtW6Gn6WTeH/6IR5xoTrutMrH3Ql26zINLkDV4ax7JCL+ZKt3oo2+3IyqHKUAhyGTrnvJDHuX6ew7Pfv8zQ5TFQibqv/YAP2/r59t15eJCWZ8XB1xX3Baj7UBWqZDPVl6mYicyl3aPU5sJ5B3YVuLbOc1iggvGuKVqS62drHqqg9oOBdOxkXzQtUNKUqfDtcVP3cPI7Y6UNf2QV68d3UMk6KsormJqaoqmpCbVajd/vX17z+m+GZZHSfwOsW7cOmUzGgw8+yNTUFAa9AQUK7tn6Dh792KPsvGUHADV3leHZLN7qtheE8jFwk8ir6FhpoLTehm+/GOSUagWFGrEIM3R2Cq1Zg3+PWOyxNxjx1NpY9YAY7KcnZ5Ar5puCf1cJ/ptL0v+XyWTMzQiVdeUBF6X1trQown9TCUq1gsBOJwDFLg1VO8TfBvaJ2M2fqaFkqyV9/ZTri2ezjcpbSzEEtVTs8WAJGIlOTHPhn64Q2OOh4iZXug6ezTaC+0tRahR4Njoorbfh3SJEKsH93rSwpOFT1Xi32AnsK+XSU5241joprbfhuV5cO3TAm/67I1+4iFwpI5jkrKTOQmm9jbKbBadKlVhYSqWsqrjJRWCv+J0tVExpvY04caYnZ6i+xYNn0/ymVcVOV/p+FUo5ap2KylvE/6tvdVNaPz+J8O8qQSaXMRsVHJfW26i+1S343is41LqFcj0RT1CxcwEvm6xUJcsN3CJiXVvEIBzYu5jDyltLafpxFwq5gtJ6GyV1lkUcpqDUiBUbz/UllNbbqNjmSD7XUpxrrJz5divh7ihlNzoI7CsFoPwG8Ww820SdKm+b5zvN4R7BoWu1CVVRIWNXJxlpDFN5a2m6fadi/XtKGDo7SCKewOQtJrBX3E/VgZIMvh2rzMjkMoxBPVqrnNJ6G5X7k7G3CL77Lw+TmEvgXGnCv2u+fYtYwXdkPIZMJkuLlvx7SjL4LnZpmJmaZejsFP7bvJTW27BXZfLd+MMOCAu+V9xdjneXnbJdgkNvgy2Db6VGQclG0ZZDB0Q7dF8nnqO1xsF4xxRymQzvFnta8FR2o4Pgfi/h7iidhwbQmtR4d3hoeKKa6rd4MzjUu4pEm9WC2lSIyVuc7iNCB+bbbModqVAr+oyat5dSWm8jeEDwotGrkMlkIqWdFryb3fN9hBYsASOFyVQo5Tucoj8pFIut/l0lVOyY51CulIl0lGGhei6tt1F5twutTMsHP/RB3v72t+NMiDrG43Feeukl5HI5BQUFnDhxgmUsYxnL+I/i7NmzFBQUIJPJuHLlCjKZDKVCSSkBPvX4p3jfB9+LRqah/GYH3i02Qrd4iAzDTHiGApUSW7Xo94P7S/HvdKfLlSlkhPaK/mt6chbHCnF6F6DyzjI89Q7QkHbl0bvFh2f59Q7KttoJ3S0WzRUqMf5OtQu1QsUOJ8FbkmPEegvmsmKKbOLDuXJ3KcaS+Q9Y/043odtKqf9kNdZgMVqjmrGrYSLDUH2bB+8WUR+9T4N/txu5XMbQpXE0Zg1lW+0E94n+OrTPTdlWOyUbrBTqCwju8RBMjt9ooGyrncoDbspvdrDunRWUbbWj0ci59ONOgvs9+HfP8+LdYqPqthKRYq4zjLm8OC0YCh7I5BBgdlrMh8p2llC21Y5jtRGAwD4Ptkoj8ZkEvWdGKb/RQfCAmH+4r3dRttWO9zo7xjIdMoUM17oFc4odTgLJ2LKtdkzeYhKJBAON4wQPlFK+YA5UscNJYJ+HgRPjtL7UjdakoWxncl5zayneGxaIpHe5Cd0qyjVXaynbase3S5RVdUsJ3i02ptojnPuHNsq3ugnuFxxqnGrxzJN8K9RyZDJZWrCSwXeyzhqDipanewjuE/eaEjgt5FtTosG7xUb17eJvK/aVUrbVjsWvS8aWQkKImUCIwiqT9fduF8/cvd7CbGQO5IKLFMpvdBBKtkNXgwt1sQpFMi1M6FbvIg6Dt3iZmZhlNjYr2tKN7nQdUhy2/rqXRCKBxpRMy1Gtp2yrnYrkvYcOeJArZWkHCP/ueQ71PtFm3ZucNP+sh9B+N94tNjZ9okrE3uxOc6gxCw4d68yojIVUHkhyaJ7n23+zm/Pfb2a8M4xjpYXQfrd4T/Y4KdtqR+/TcO4f20gkEvh3uynbZWfzp2tEH3FAXKd0sweTtxhbtZ6K7W4KdQUZ7dt7g108AyAyEkUmk4k+QgOVt5dl8C1TyNKpjza+u5Kyejvubcn38xYvGrM63UcUFhVQmEw35F5vEe/CdnHd8uvF3zT/VrhV+XeJPgJg0+rN3H///dx74B0oUFBUVERzczOf/OQnkclkbNu2jWUsYxnLeCNw6623IpPJuO2225iYmEBfrEdJAbcG7+Wxjz/GzltvAmDFveWUJ9cdmn/bCQkou1GMwVqPmoqbnPh3i9+rTYWo9WJhO9wZRWfTEton+mO1U07FVidr31oOQGQ4hqJAnhY6hPZ5CO4vSYsvgLSzgG+nnYqbnGnxRegWD4XFBZQl+2CzT09wR3JOsd1FxU1ONj9ag+cGK6EDHmSy+XSevp1OggdKhbBiqxN3rY3ISIwLP2whdKsX/+7572TfTifBW0rRWFSUbrJScZMTV70jWQcvvuSa28aPVeLf4yJ0m5fWp/swODRU3OSkdJv4fejWUiFCQaQbUyjl6bmKqbyIipucVCQPNqk0hSQSiXSqhcC+EkK3JDm0C75lchnTY7NUHhD3mkJoXymh5DqQQiVHY1RTeUDcT3CPk4qbnGmxSOgWD/ICWTodSfk2B1XJsbNiu42Km5yYyos49sXLzM3ECe6ZX68p3+FM19+7U5Rbep1YxwrdtpjD0C1e2p7pIx5JiNgGseYRvKU0zWEKBUViDcOT5Nu9Vfw+uL+Usi1OLvygg3BnlODekvRYb6syUHGTk7LtyfWmt3jTfF/LocGvpsimZbRtkqEzE4T2l6Tbdzp2n4eBi2PE5xJYfAaCe5PPcZ+411QbLW2wI1fKMJaJjdmKm5wE94mx3r/bQcVNTsb6YsxNx3GutBDYt4DDbY70/GmidwqZTIYlVJx8NqUZfFuCBqYnZxg6M0Fpsn2714kJU6rNNv2sG6KC7xVv8+G9yYZjg3hvHBvsyXJFm1WbCynZaMW/20Xo1uT3zDqzeDb1TgbOjRKPxynf4UwLqYJ7SgjdUkp0FC7/opMiq4bym0vY9PEqVtxTnsGhya8nlJzvFbu1WP2GdB8R3OdOt9lwZxQSoNIJAXjFAcFZKLluqDGKNa/oQEy4rd3kIXhgnhfXGisqrfjbqv0uFAVyNPaC5L16CCzgsECtZG5mjugolO0UHFbd5kEtU/Pe9z3I2x94OxWJagDkcjkvvvgiCoUCtVrNqVOnWMYylrGM/yg6OzsxGo3IZDJeeuklZDIZqkIV5VTx8Uc+yXvf/xAqmQp3gxnfHrdYK4nB1FCUQm0BzjVC3BC61SvmS4g1ekWhHP9u8f/IwDQldVbstWJOseIeH+U3ukCFSCmVAH2JGLPsK434d7upulvsRSqTewjjrcKaLnSgJL0uYSjV4lhlQe8pAhVU7ivBvOCQUPCWEqrf7GXTxypR2VQYSnWMtU0RG4wR2u9Kr43oPCoqby1FWahg4NwosVgc/243oeQ4G9jlwL/bTUm9BY1VReVtpQRvme/LfbtchPa5cW40Ufc+P/7dbvRuNS1P94rYBWOEb7eb4C0exlujDJwZxVplxBJKrhve4skYk2UyGTPJ+ZBjkw3/bjfu9WKcDd5aSskGK7PROQYbRwnuLyGY5MVda8a/241jkw1DRRGKQjmeTfNrXoF9JQST8w9LSI9jlYUEMNY0SnC/B9+CNbrggRIqb/Uw3h6j8V9bKLJpKE8ezArtc+O7eX5uFbrNQ9Wdog4qvRz/bjeB5JpXcI8T/243sYkYl37cSfk2V/o5gli/CSTnaSp9oWiHSYFT5W2eRXzrXVo6nh3Au0M8x9Scp/LWUkJJvlVWIUgJJtc0SrbY8e8W2UJEfb3IkKUdvgJ73On1VHut4Ltkg4WZqVnkBTICexbwsr+E0G0i1rnGhM6hTR88COwvzeAwdKCE0K2lRIZjzEzN4N/txpuccwT2luDbJe679/goiThoTOK+dR4V/t1uypMHBAJ7XBRqC9JC59AtJVQmn6NKLzis2OKg7bd9BG4WbTZ1WLDylsy5iu9mF2VbHGjtaipuFrykhEiVtwq+L/+kjeErE5SstxDYW4LOo8J7k3iOloCepp92MTcdJ3TAg73OSP2nqvHtdhNIrmM5a+1Yq4w415iouNGB1qwmuEBHENjjJpic7411hZHJZdhXiHutvrsig29loYL4nFjzWvcuP75tbry7knPxWzzoS4rSfUSRXYPKKOZdhlKt4Du531iZXK9t+b3QS1Te7qH6LaIOAXsN9z9wP2+9+X7UaNFqtbS2tqbXvG699VaW8V8PZf6QZfxnIBwOY7fbmZrKtPbbsHIDVcVr6Tk8wvjFCcarJ7matOcnAXOzYuO/7+gYWpua6Oi0+J0KEokEcpWQpF75VSfG4PwA3n18CJM/qXQ+PYrvRif9F4RyuO35Hiw18yrMid4IereWlW8v59w/tjFwaYyBM0Il3PJMD56tVta8p5rDf91I56EBCo1yrvyrsD8evDzOULLcluf68Gw2Yy4XJ9E7XuqnQDff5AbOjxEnwYq7ywmPRBm4NMblX3ZCGNpe6kVtFB+A5XscDLWMMdI4wWTHJBQW4tlqZeCEcIhpf74XrUN8zM5G50AJnS+JRZbew/0oi5R0vSQ6qbm5ORTIsdfq6T8xTu/JYSIjQr053DhEkVtDkU1F9dtKaftDD4by+dPaPSeGmB4Xk4jJwQkGLo3RfWyYyZYwllVFmKuMGXynREcH//QCobs89J1Icvj7bmyr508JdR4SdU2JoTL4fq4HR+187NWDA2llLcDAxTGGL46SbiBAPC7aQMfL/RTqM/meic6w8bFKrh7pZ242Ttdr4oRg+0u96cEyhVT9uw4PISuQ0XckWc8X+tA61Kx5yMfcdJy+MyOE+8SA0Xesj0J9AV1JJ4aF4jcgg++eMyMUlxXReWgYjRVaf9+N0ZfZZmcmZ4kMwqGvNBI64KH7mOCl9Q/dGW2288gg8Zk4nc8PpjlM8d36nOB76PgUh4434t1uQ6aZl24PXBqbb7O/EXzHx6Ns+ngVV48NoFTM5/4duDjGaJM4aaVzaEgkEvRfHM/K91jnJHp3EYPnxhkE5uYSDJwWHLY/34vGqqL3cD/hwTj+W11onaK997zah0KtoOfVPsKDcRwbDeg8WlbcXc5sdE5wmFQcD5weQG1V0fnyIKaKYmYis4x3zOcy6TkxJPqIMJz8hwuUbvHQeXCYuocDzEzPMnp1vv9Z2GaNpcXE43Ha/iBOt17bR8xOzzHZm9w83+ZgtHOC7kOC+6afdeGoNdPzUtKCVUY6by1k9hGTPZPo7BqmBmYAGGoaZ3pilhWyDaxgA85teo5efoXLVy4zOzvLli1bMJvNPPTQQ3zmM59hGctYxjJeD/7f//t//N//+38zfqYuVPPmm95Gz4vjEIH2l/spdovxMCUQGEz2++ee6qRkk4mBRvH/BAmQifGk++Uh1PpCxpOOR52vDlFYrECRHG9GWiYoLtGmXVJ6Xhtmsle4ZvYdG8C1wUyRRVy39fc9FLvmT4Z1Hx3CVKljzYM+Lv+khSKnis7UePhcD4ayeZFS19FBrCsNKBRyBpsmMJ4boee1kXSsMVDMxo9XolQp6DwyyGxkju5kitO+cyP0nxKx0YkYE70RrvxbNxqzHMsaCyQ/HomI2MFzI8RnwVVnZuTqeDr9VfvL/WnnmxQKk84Grc/34aozMdwm7r39hT5UZiUbH6vk6Ncv0XdqhNFW4QrV/sogszNz9J0ZBaDjcC8qtYq234k5Z++JESaSLn7dh0eQyWUMnOgnMixcdLT2+Z3HnteGCfeLuUr/8UEKdEq6Dg5DBNqe713Ed2QiBhroOTpKkUVL15HkPOHZbowV83PDhRhuC9O3kO/fd2OqNLDyHeUk5hJ0vDogRLpApDeawfdcLI5cI0+3j46XM1P79Z0bITo+zYaPhmh7tY/wSIxIVyTNtzIpbLOEdMhkMiKj4l7bX+pnemqGoWbRLttf7KOwWMxVNE41fadGGGufTF5zkLm5OCPnh+h+eQjHJiMa4/zccCHfPYf6kKtkdL0g5gmtz/Wgc2ozORyK0Xd8FI0ZSm5005ec27b+vgd96YI2e2SQ6Ng0Nfd4kavk9J0bSfOdarMg3JmQQWxKzBnGeyIZfLf/oYfAgVJmpsRcvePgQLrNRobn22xsMIbKqsK1yYJphYXIy0OCb4WMyHCcc//QRuAON3qPlpX3VND6fC/RsWnGezL5VhTKIQF950cYbRJttvWFAaYjsww0jjNwYpzy3RYScQUas5zV7wkx1DTK0AURe+WXfZRsnmHo9ACr31aBTCFjrHN+Xrawj+g9M4RzjYXu50Xbj03GGGyct97uPjpEZFT831ZtIJFIMNoxlubQUKZjOJlmd24mjlwu+qXBpgmcVyfoPjjCNtntWHw6hp3dvPTSi8zNzfHCCy/gcrmYnp6ms7NzORXcMpaxjNeFaDSK3++nuzszldjaUB0rDLX0HR9hqjPKSOs4bS8m03vMydJiodGmCB0v9zMbE2NnQXHmmlfjj9owV82f3G1/qQ9b8kR2tDfOdGSGgfOjALQ914tttTHtWjTcPI6l0sDKt5Rz7ntt9J4aZvii6DfbXuxndnaOytvLOPPtJlp/34fWUUDr02Js7jk2xGhbclx9dYiZmTkcK4QLS8tzvagN825O3UeGmJ2dZdX9Pib7IvScHKL75V6io9D6+160yY0aZ72ZgfMjjLaEmWgT44R7q52ew4KXlud6KE6Os9MTs8Tn4rS/IOrTd26EIpeK7mPiXudm54ACHOtN9B0f4erBfqYnBKcjbVP0nBxCa1NR9RYPLb/vwhSaX4Npf7GP+GxyvjcdpefkEANnRploj2Lwq7HUGOdjX5hPW3H4cxfxHXAydCHJ9wtJvpNzr7YX+lGq5HS+KNYMek4MMXJZzKfbXx4gNjlDZGou+az6KCyeX4PpOTbEWIcYH1Nu38ka0vpcL5rkumGK75lwjLqHg1w91E3PSRkDSceDtuf60nynMBsR1xw8PUihXkl3Ml1uy7M96D1FVL+1FJlCxtVX+4mOifnHwMUxiks1ab4VSsV8hYCrr/Qzk7yXsS7BYe/JUVBD28vdmH0L2uyLfWKuEoXDn2vEd8DJQHLe2/5Cr+A7muK7DxQyul8R8/aek0PpNtvxYh+RkRjDjaMcOTmKs96Msnh+Lt5zYojR5Fyw+bf9uDdMM9QxwYaPhmg/2EdBQXa+zQExpxhuTM3hetGY5/keOD+CpdLISPMEM2PTKNRy+o6JZ9zyXA86h4a+Y4NER+N4b7Kh84h5xHDjMGprId1HRon2RzHX6DCUFbHqPh8z0dmMNjvcMinem2OjrHqbhtmpufT7l+I71Ucc/JsL+G900n9ylFXvKCcRj9Nzct4Vre2FvvTc0LXGIt6j53uS7SOzj4hNTDM5IMj33GBlpHWCniPi3i7/sgfnOiNtfxDvoFwpTx+ySHGYquNE7xSWSgNTQ6Ks3nMjxKNxfLIafNTg2FTE8e7DXLp0iVgsRn19PTabjQ9+8IN84hOfYBnLWMYyXg9++MMf8sADD2SkdFMpNNxRfxcDRyZBJvb2jBViTjE7HYcEwhkFuPjjLpx1BkYuprKoJNLuNyONk3S81M9UcmwfPDOC1qECheg3e04OYq00pq/b/mJfeuwcaxplbsZJkU2MA63P9KD3aDNiLZV6Vj1Qxtmn2uk8OsBQ0xjEoPWFXgwV8+s1HS/0YVttpECrJDYQo/PIAEPnRf3b/9CDqcpA7QcDqI2FtPyhG6ZJp4HqPDLASHLsnI7M0HlkgPbf9aPSyzEE9cgV8/tFnUcGGL0yQWwywVwszkjrBOPd4t5bn+2lQDc/dgLpLDWdR4aZnZljKDnPaX22F7WlgLqHg5z7bhNXXxlgsk+sLfSdHEcmlzF0VtSv/eU+1LrC9Hyp45V+IoNi73fo/DAFeiV9J8eJDcYY7wijc8x/n3e8NM/30OVxOo8M0HtijNi4EG8YvAs4fL6PmfAcKj2MtETpPDJA/5n59YPUGgwA8QSpRhAbj2fw3fFiL6Y+A6H9JcgL5LQ91yvcpBZwmOZ7YgalSpFOIdb6XB/KQnlG7PTkDOve66fjyADTUzOMtov5SOvv5/nWOYSoODYmeOk6OsLcXJyxptF0bGourrKqMvjuPzGEXCVj8MwIXa8MYarWUbRg3bD9xT6iI4LDkYsjdJoK6H1N1L/l2R6K3ZltNjY+K9KmqaDsRjuDyfeo9Q+Zbbb9D73MTsfx7RXi7YV8tz/fm56LG0NFyJQyYsPTSb4zObz6ch9qi4q5SGrOnMl319FBRi6PExuaRl5UwMzUDPryIiY7Y7Q800uBVkFsHC4+dRXvThuGUi2r3+6n5blupo/MMnRFtNmWZ3pQ6ZXi+cwl6DoxyFhLcm0qycfIxRF6j47gus6EXCYHFax/X4i+cyMMXxLfMp1/6GU2Mkv/iSGCt5egVCkYaZ1PM7ewj+g8PkD5VicdL4p5W3R8mqGL87Ftf+hlZlLct32tiUQiwURyvSzVR6RSFsYmp9NCyNhAjMFLY/QeGmaLbC96u4qwf5SXDj5POBLmF7/4BQ6Hg8LCQq5cubKcCu6/CLJEagdmGX8UnDhxgg0bNhCPZ+aPXE0DdllJxs/8t7pwrDYx0jxB4z9dXVSW1qulcq8rna9y42OVtP2hh/4Ti3NKrnx7OQZvEb2nh2n+ec+i39vWFlOxw53OZV++x0Hbb7LnXS/f48C93kLvyWFafrU4n6ZnmxXvFjuXftaedmjJhfUfCXLh37oIdyzO5YoWNj9aQ3w2IZmP1La2GPcmG6e/uTg/ZbbyVt5Vnk7LkQ2bP11DIp7g0J9nv57GCuveV8PM1CzHsuTdTWHDIyHCA1HOfz97vlYQz9hcUcyxb12GLLefrtNnapiNzKWfjxRM1VpGGqULCt3lwRrS0/5CH10vD0nGbf5MDdMTM+kUXVljPl1DIpHg0J9J54k1BLWMNeW4MUSqscrbypjqj+Z8hv5bXZj9xTk5NwS1VL+pjDM/bM/enhAp3AL7PEz2RDjz7cV56wECt7mxrzLSf3aUKz/rzhpjr9Wj9+okf78Qpmot5Te4JHPLpt6ZyEBMMmbd+/30nh6m59WRrL9fiPrHq5mLzHHsr7JztfnTNcTnpN8pU7UWuVLG0Nkpau71olQrJLna/JkaSCCdi/aDAUbbJmn5VS++/U4UhQqa/q1LsqzEXPZ3r8lzHJkC2traADAajWzcuJHf/e53WctaxjKWsYwUdu/evaiv0FLMZtnNi2IbPlWNTC6T7NMCd7iJjszQ+fwA/ttc6OwaTmfJjw2iryWBSJGWBavfVUF4JMaVf+vGurqYyNhs2hklW70AybnJho+GkClkeecJINJTmXw6zn4ne7++7v1+NBYVTU93MpBlTgmw5iEfV37bI1nfhQjc4Wa4cTQtkrgWwTtLsNUY6Dw0SMfv+7PGrHnQR5FDzbkftjLekv2axpBGbCj+oD0t4MmGDR8N0Xd2VPJaAGvf60drU3Hy71tzlgUirVsuHvI9u1SdCnRKDn42e1sBKL/ZgXujhe6jQ2mhVjbofRpJjlLY+FglSo0i5/XQwPoHg/SeGaXz+QHJsJr7ytAYC3jta1ckYzY8EqJAq+Tgly6khVjXouFT1chkMsn3BUgfoFgK1jzoo/2FHkYvZ79g/ePVyJUySQ70Pg2BvSWc+Bvp+0rBVqsnuNdD82+76UsugC6E/zYXjlUmmp/ppu/I4t8DeHfY021yw0dDND19NWvdg3eWYF9hpP/8KE3/ung+5VhvxLvVnnafEuLGtrSIcCFq7ivDWF5Ex4v9dKYOxSTRn+hipmqUjqsd6UM1K1eu5Ktf/eqyw9IylrGMnGhra6OmpoZIJLMPW81m7LJM90R3g5nyHU6GL09w8UeL17zURjnB272cTa7f1D0cpOPlfgZOjS2K9d/iwrnWTO+pYZp/sXjNy+BXE9hXymtfFWscnhus6U2ga+FYb8K/x0XPiSFan1485trWGgjsK+HyL68ylEy5mwtr3+un+TddTLRHs/5+86drmJuOc+QLF7P+3uBX493i5Ox32/JeC6DmHm/azSkbGh6vJpFIcPhz2a+HGjY/llwT+mvpNaF17/MTGZnm4lOLn10K7i0WnGtMnPjOlbTgJhs2fzq5xvYV6fUeEOm+pHgE8N5kw3Odjc5XB9IOUVmv95kaYmMz6faQDfWfFO6MkjwhHL7CnTluDJG6rfY9Pia7w5z5TptknOcGK47VpvRpeqmyVt9bxqWftjPWnP26Br9IbTbRGU6/O9mu5b3eTt/pkazvC4j0buYqAy2/XLzuey20HjX+XU7O/n3261lWF1N5aylTfVHJb6cV95cx0jKZFmLlwoaPhojPJSSfX75np/WoUeuVDF+YxHfAidak5tz3ste94VM1IINDEnPUVe8oZ7I/QuvTfSIVoKlAkrOGJ2pIzMWz1uuS9TjKIhmtbeIbTa/Xs3XrVn71q19lLWsZy1jGMlJ4//vfz5NPPpnxs2JMbJJtXxS76WOVyAsUHPrz7H2a9yYbc9Nxul4ZwnODFWNZEee+1541tv6T1SBDcn+h8s0eZsKztDzdK9JoxROMt8eyxq5/JISyQM7hz2fvt9e+24dSp+S4xF7HQtjWGLCvNHBeYi5U81YvxoCOK7/upv+1UcmYzoN9kvVdCO9NNsY7w4xezr4PWnqjjdItNq6+MsDVF7LPTSrf7MFSqefCv7RLlqNxqVhxdxkXf9zOZKd0vdY+6GPw0rjkPBeg6u5SzIFizv2wJe1WIwWdR5Xzeps+VolMLufw56XXvNa8u4Iip0ZyrRVEarbAHjddxwZp/530ep2+TJX3uax7n1jXzHU9VLD2Ph+DTbm5ChxwoXNpOCUxfwHBudam5rWvXSCWfRmVjY9WIi+Qc/hz0jyF7izh8q+6IH+zo+ruUnqODzF2Jfta6/pHQhRqlRz8ywtZy1PZVFTd6ua0xJ7fQugr1NTcXUHLMz1Z35mSLRbKbnTQ8kwPvUez7126G8x0HxLC93Xv9dPy+56sdffcYKXsBgf9Z0dp+uniNS9jqIiK7U5OPin2UGve6qX5931pAdxC+PY6cdaZ6Xipf9EzHk8MM1HVQ2dXJxMT4nuupqaGJ598kuuvvz43Ict4Q7HspPRHwpe//GUeffTRjJ/JkNPAbrSyeRXmQiFG8897MJRqaXsm+wd/9W1uVIZCLKuKGDo7tWhjyrffiSWk59iXL3PuH9sI3ObOKlACcG2wotQo0g5D1wqUyvc4cK0zc+jPG2n7TR9tL/ZJimqmkirGIruWIRYPqilRyljbJOe/3yEthNECYeg7M0LPq9KbMb5dJcJe2goRifFk48cq6T0xTMdzAzkFSgAHv5xj8EJcYzYyR9+50ZxxBUVKihS5Txyb/cXCYjq3jofoSIyR1sncQZBToARw+Ued5J/KLQ05B/kk8gmUQKQam9k5S//p3OKbNFfJdpENqmIlcqWMsi0WGv8pe1D/iXEqdsTpPSG98HHlZ910v9JLeHDxhs7CclKCwE0fr6L1991ZBYIAwX0iVaHWrSbcvXji1/n8IEUONZeeEqk4st3jyW80p3+3+dEaYqPTOTcEc+Hgn14Q10BMCgp0yoz+Y2E7MniL0icWs+HMD9swJFPOLOxzUli4uedYbUKmkEmKlAbOjxGfS6aJu9WFqULH8W81QRiCnesBCDNLP51MTU3x7LPPIpPJcLlci07oLmMZy1hGaWkpnZ2dGT/z4KNKVjv/g2uEGP1nR9N2s9lgX2FkbjpO5/MDNP/smjmVBja8N0TPa8N0vjRI24t9jDRJi7V1Lg0aq4ordDOYZYNrw0dDhIdinP9eO4e+0igp7lgK6h4OoDIUcvBPL9D5/EB20YkGiIjxJnCHW1KgVFSmociupvo2j+TGlWOTEe8WO8e+dJkr/5a7f2761y46n+/JKqJIoff0MN7r7DnFN+6NdhSFcgpU0lRpzHIKdEosweKcIqW+0yO415vzCpSAvEKtXOKk14O23/XlFCelkE+gBDDYOE5xSX5XnEJ9AbYafU6Rks6lRlmgkPw9wODFcSz+4pxt+NBX8vOUEiiV7bJjX2GU3MjUONUUOdQE95Vy7HL2mNP/0Ip9ddI9Itn2F2K8JZKew6x8ezl6j5bT32/N+ry1VnH6brwn+0pS8896aP5dT/oa9Z+spvPgQIYwKNUeXQ1mCnRKXLVWRi8v/gZs+tcu5qJxWp4W/c+1oru+46NpoZRjvZEih5rQHeWc/vbiBbXWp69S+ZbydD0WlmWXlcClEswJH4f4LYWqAs6dO8euXbuYnZ3le9/7Hvfdd1/W+13GMpbxvxM/+clPuOuuuzIO5ClQ0sBu1LL5U8oLhRjdh4ax1uhp+13278Pg7V6KPVpsaw0MnBpbJN7w3GDFscbEa19tovkXPcxF47Q9k32sdK61oDLMOwxdu1DtbjBTutXOkS9cpO/4CH3nRiRFNRO9or/XWlQMsXgOp/WoWfuAj5GWCRr/+SqnJA4ioQai0HlwgP5z0mKnwL5SVIYC1HZ12p3oWtQ9HKT/3AhXnx/MKVCCJYy5UYgOTadPVEtBbVKh1OSeA9hWGFAvcN+RwkRXmIklzLtyCZQAOv6QW5z0epBLnJRCPoESQLQ3SmQwRt/pxeK6hbBU6lEZC1Ab5WlHn2tRoAKlRoGrzspYc2fWmLHmKNPjM/SelF5j63xxkMHTw5LXAeFmNtoknsn6jwRpf6mfgRPZ76HqVg9qc6GkaGvozAS9ZcPz4p1k21+I8ws2wRueqCEyFJN+d/Lg8OcuplPlVb+1VGwcLhA0hTuj6SU3a6Uh7UqaDSe/3YLRJxbQ3A1mXOstvPZ3Ten6LxSCeRqsKFUKSZFS99HBtFPHtQK+ysH1MAhxVLRzkWgkytNPP41MJsPv93Plyr9v/W8Zy1jG/1w0NDRw+PDhjJ+VESIoWz3/AxWsua+CoaYJOl8cpOvoUIZj0LXwNNiYjc3R9coQnS8O0knmfGntgz4GLozR9coQzb/pZlJiXgJgChQzNx2n5enerEKYde/1Ex2dofGpDo5//fKShBlSWPVAGUUlWg5/qZGB02MMZBtzVUAMLvxzB+W7HZICJZVVhdGvQ2UqmN+PuQbGUBH+m9289rWmvPOOqy8M0H9iiNi49Jjbd3oEnVMjKVACcK0zUVikRKHOMfdSgdamxhonp/Bm4OwYan1BXoESkFOgBHDkL/MfllwK+l8blXwmC7EU4VjfmRHMPl3uoBhoHWqs8txc6b1FFOoLJH8P0HtqBFetWVKgBHD0b/LzdDl5EM253oh7k5UTX88+9qv0YA4UU2RTS4rbz377CrZ1ZvFeJdv+QsQGYmmBUuCAC/tqE+f+KbtoTWsRk6pwX/a5etcrQ3QdG0pfY8OjlXQdHEiLkoD0v42hIjRWFc5ac1aRUueLg8hksrSgb2GfAzB6eYqTl8V7qa9QY/TrCKnlWYX5Xa/0orXMu5MtFPDpZWb0l8xYEwGO8iyoEly4cIHt27eTSCT47ne/yz333JP1fpfxxmLZSek/GY899hhf+tKXMn6mQsNW2b6s8Rs+EqKgOHnSOIvGovaDfpTqeUGBbW0xA6eyL2bkK6v6baUUl2g5mhxIpAQUqViTv5imX17Nej3HRgO+nW5O/0OrZBkL0fCpanpODku6NTU8UQ2JPBs7C4QcKaFW1jC3mrXv8jE9Ln0KTOvVsvb+cjoPDaTTrmVDLiHUvxs5RDdLLsKrZe0D5QxcHKPpx9kX+F4PluKktFQ0PFHNbGQupwPSkrBUnl4Pn0uIrX+8mtjYtOSkNCW6C/dHOZXDCSr9rua5ZsrFqfv4UPb3Qwv1H65msHFsSS5OGx+rZDY6J+kEsOnjVcgLZDkdsVJ9g/9WF9ZKA0f+5mLWe9jwSIiCIuk+B0gLIUu2WvButXP2qXYmWxYH53N5mHIN0Dh1mtGxUVGu3Y5KpaKjI/eC7DKWsYz/2YhEIpSUlDAykrkov5JNOGWli/9AI06KR0ems/aTxpCG6jeV0/SrTgbPTGBdXZxVULSwrMhwjJNfXzxmaMyw6t2VdB8bpvP5ATRONZFe6TnT5idqmAlLnyhf9wE/crlsSYLVyjd7MJQXped816JirxNXnTmnm5G4CSBCbh6YdyI6/b3sog4Qjk0FOiVHv5DjQz2lo1mqQCuL2OTfFbMEbPhoCIVKkfMU1OspK5+T0lJR+RYPlpA+p2vRkvEGcZVRpFmkX5NC2S47JRusnHzyoqRwLc3XF6Xv0bJSx9C5pMA/z300fKqaRBzJZ1mx14l9lZEjEqc6F6KoTMPqe8q5/Iur89dfAMd6I/49bnpPjKSFRtdiYd+w8bFKhq6MLxZFJuPWvcdHZDCWPkV2LRa+qxseDREbneFMFhe1pZTVv6KJM+dOA6BUKiktLeXBBx/kk5/8ZNb4ZSxjGf878I1vfIMPfvCDLFxa1KDjOtnurPEpd8QT32zJKrhZeX85anNBei3CXKNj+EL2A1trHvRRZFdz4lvZy6rY58AaMqTnUrlEPhW7HbjWW2j6VVdWpyZTVRGVt5Vy5gdtSxKmbPxYJX2nRmh/Nvu8atPHq5DJ8whhFgg5TFVFjFyU2LhKOh/FxmYkNyrURjnr3ldF5+F+rj4vvailNkJ0VLpK/y5kEaS87iKMUPuBGgYujNL00//4AaWlOCktFZs+XsVsdO4NKWtJXL0ePlP6wBzxGx4NMT0xK+lwpPWoWft2H5O90m7ksOBdzVO/0m1WSrfY6To8KPl+bHgkxPCVCUmXp4VY9z4/8XhC0pm97kNBCosKOPQX0vPsVN/g3mKhZJOFs9+5nPU9WPOQ6HMO/uUFyXtM8WCu0RG6xUPjj9uyul6lvpekyppU93NJfTb9XWuz2dDpdFy4cAG1Wr34D5axjGX8r0EoFKKpKXPMWUUDjmuytKSw+YkawgPRrE4wGpeKVW8rp/X3vQycHsMYKpIWyqjEfEOqLFRQ92CQvjNCDK6yqogN5nDg+Xgls5G45Nxl5f1lFGiVklknFqL0RhuOtSaOP5ld7ORuMFO+3ZnTzSh1D8TAENBKOtQAVN/txRTQ5XQiWnGPF41DzfF8e2JZBCT/4djXU6YE1j7oQ2UoeENESEtxUloqvDttlGywcuLvWrK657wuvAE8LSpST06xknO9kfIdLk5+R7r+q99Vgc6p4bVvNku+Q/oK9Xzby3MfGx+tRKaAIxLrr+4GMyUN1iXt36qsKta+o5zLv+pKp1hbCENAy4q7ykUWpl9nF20v7BtqPxhgtGUya6xKD3UP1xDui3Iqy8G71PVS7+q69/uZHp/h/A+y7A+m+q8cZQ3VtHLy/GsAKBQKSktLefjhh3nkkUeyxi/jjcGyk9J/Eu677z5+8IMfZPzMgot1susWxTY8UU18JsGRL1zMm/ZLqVGiWJCv81rB0IZHQsjkIt3Hsb+6nFMQUWRTo1Qr0jHXiosq9jmwrzJx5HMXs6aby6iXSolMLsO6Uk+HhEhp0yeqGDg/SsuvevOeKo+OTjM3La0u9u134lxnTgs5cqWVC3dHc4omAIqdBSCDeFxas5cSo0z2Rjjzd9If5ivu8xIZmc6aCm8hKvY5hHV4LpFMUpDS/lJvzjRfOquSRDzBZHduxc2mT1Qhk8skbThfD1LCtVPfackpTIvPJJiNzUn+PoX1Hw4SHZ+RdrpK3pq9Vk9sYlbapSksxGQr7g3mFlklHYnypdGTyUGulD5hMHR2ioPNudsXzL+rmx/JnWpt4Pwo1mqDcCvLhnCmjWr949V0Hh6gU2KhUVEoRyaXrv9CS/mae73onJpFfKSer7GsCIVKjhSOfXm+z3FsNODfVULTrzKFjSm3KZO/GJlCxtx4duKOfvFS2u3JsdGA/+YS+s6MpN3ginpsrGcHYcIMhq7Q29tLf38/MpmMQCDAc889h9frlazrMpaxjP9ZiEQiWK1WwuH5PkWGjM3sRSPLdIwJ3OHGvsLIhR+1Mno5klPoEBtPIFPIsFQZGDwzsUiY41hvxH+zm4v/1sZwY5iTX78gKcCIRECpUmAJFdP5/EBWgdKGR0IMt0zQ/LOenGmvAAp1uU/yeHfYcdWZOfL5i1z6cfaT1in0Hu7HvsrIQKO08Kj+k9XI5EJAnkugBIhTz3mEIYoCOXKZ9PgEsPEDlSjVirwLGXUPB3jt21dyXs9cLQYVqbRzKax8RzkFGoWkODmF2egc5K4+5motVXeWi1Qav8y/yZIP9Z+sZm46t/B7aiCGyZ/AWKqRTHUG4N5qwdNgzS0SS/552S477c/kEK8B/gMulBoFl/5Fuq2lNnZype1LxAEZaN1aIsPZN6WPfeVy3vaVEgj59rlw1pqypjRLITwYy+mg1vrrXlqTCyb+21xYAnrJuaN9hQGZQiY591rodARibt51aDCjbqm+QWOWo1QrKHZmd72K9EYz+q9swvSF76pSpQB99nu8tqxNn6hCJpNlCLfs54PskAU5mXgVg1dDa2srjz/+OH/yJ3/CXXfdxXe/+93shS9jGcv4H4n/83/+D5/97GczfmbDwxpZ/aLYTR+vIhFPcPSLl4QQIoeIQWUoEOtUSVwrUFr7Xj8FGgXHvnI5b1nFLi0FWmXameZagZK7wYznOhtHv3iJ1t/20fpbacdCeaEcuVKOrVpPu4RIacNHQwxeHqP16T5JYXgKk72RnE4GqVR43UeGaHumT1qgBBBF9OE5hCEapwbkyXFWAsVlalbd72OiKyyZtgsgeLub2chcTr5AiFGuPj+YV1Cz4bEQV18ZpPewtIpZZVEzNxtnKs9m1PoPB1GoFJKp814PKnY7cNVZuPAvrWlHoWyYm55jNjKbt7w1D/qYCc9yIdvGSQpRkWYNkL5mFFDDunf4JYXFKWx+NPehBwC5Qo6iQHqdJ9wZzdu+YP5drf9IFYk4ks9goHESV52FvmPSYrmFc92Nj1XSfWxI0uWgQKeEHMevF4rHKvY5sAT0iw6wpvoGS6iYAo2SqMS9nv5mC2oj6edU/aZyrvymO0PYmOLBUqlHrpQTk/hsOvW3zen+K5Wir/fUvNuULmqnLrqdKFH6Q5fp7++ntbUVjUaD3+/nlVdewel0St/4MpaxjP9RiMVi+P1+urrmD6fLUVDPdrSyzI88zw1WvFvtNP5rByONk6IPlxg+41MxFCoFRp+OgdNjiwRKhoCW6ju9XPpFZ96yAAqLlZh8OjpfHMwqrlj3Xj9jV6doebpXUjCRgspQmLEPei2c6414tto5/pXLXH0ht/io+8Qw7norIzlcItd/NISyUKScyyVQAmh8qiOvMESukqPIMdcDwYfGosrL65p3V3DxX1pzil90HhVKrVI8wxxlBe8oQWMqzHp4aSFmwrMocjgNghCb1D7op++UtCDl9WD9IyESs9LpXAGmemPEZ+JoTMqcIiXLKj0V252SwjUg/XP3dWa6X81xmg6R0kxjKuRKjrW91KHBXOK1eAKx5mUtkKz/me+05m1fqfJTArz2F/rSbkPXYuzqFMoc71L3oeG001HJFgvOWrPkM7AEi1AUKpArs5c3diWcsZ5d9+EgPceHMvhN9w0qKCwuQOfKvuYVGyfj3Vj3fj+J2USGSHLhu1pYpJTeB40h6qVK1utDQZRqeUY/ZLlQwQ5ZBZcTpykoj9Pa2sqjjz7K448/zgMPPMC3vvWt7GUv4z+EZZHSG4xbbrmFX/7ylxk/c1HBClldxs8826x0HhmEsEgdNhtOijiuHf+uEVLkW+iQK+WwsH+4pry6hwMoVAqOfvFSztzyAAZPEYoCOTqfNqvTidYqZ+U7ghz9+iW6Xh6i62Xp9FkaqxBLmHLY7LmuM+Gus/DaV69kdSBYiN4To9hXmejPYZe87gN+NGYVp568mDNtF0Df0TH6jua2Xh5qnmI2Okf7C7kXYgzlOgxl5BQp2dYW46q1YPYX89pXpR0QvFvsyJUy1Mbc9tgLU4/lwlx0DnmOxYfXg8jINMa5BAVFuctb6uJQob4g78QHLQT2eZiLxXOWW76rlMLiAnz7ndLPIQwzE7MMXMr93HM5DC0sC8SCWKG+IKcoLjY+TWxCegFrrCmcFiEtfCeywbKqCLlShrFMt8h+NV3/BYLAde/1MzkUlXTb0jk1Oe3aF9bDdZ2J8hudXPiX9kzBWPKf+jIdyGCqfyZrWamULQCGoJYVd5cz3jHFue8uyHO9oNjEXIKeY0Ko591lpyO5WaqVafE2rcaaCHCQ3yCXy7hy5QrV1dVMT08zNjaGVjufUnMZy1jG/ywMDw/jcrmYnp5O/0yOnAb2LBInea630vnSID2vjWANGVAUJvu7a9b/V75DpHY6+XctYuM+h7vN5EAMZGCo0DPcGF4kULKs1BG6pTTtqpLPKadAq8RUJj1Xqnyzh4IiJef+sS2vq4uhrAhFoZyiMo2km9H6h4O0vdjL4JmJvOWFB6LIC6QXWDRmWPf+GsKDUU79bUteB55881CAgQtjOeeOIERnKmMhvptcks40AMFbvCgK5XmfQZFdjULiY3sh8m0KAcgUcuKzCcI5Tg++HohNsNzCb8l0ftdAa1OhVClwbDLSd2RUMi41txm8NJEztZ1jjSnnBhFA56v9+Ha5Ge+RLqfj9/253bxSiICmRMO6d1Yw3hmWFLn3nRvFttLA0DnpjbCFzgEL34lsMJXqxOa5hEhqoaBJY4aVbw9x7MnLWWPN1VoUhXL03iLIMo+LDMczBHobH6skNjGT6RSwoFyZQpZzk3HhnHDDoyEKNMpMAeCCsmJjM2mRvsYM+uB8O1knuw5aIZqI000bs7Oz/PCHP+T73/8+991337JYaRnL+B+OD33oQ3zta1/L+JkHP1WydRk/c6w3MXZlhOgoxMZniM8uWJO5Zs2+4YkaZqaEk7PUafoUFIVyZAsPEV1T1qp3lqM2FHLsK5dzur4A6MuKUKoVGIOarIIQtRFWPhDk3HebGDozwcEzOeYQalBqlRi9OiD7mpG5Rkf5DU5OPHklI7VVNgw3juLZYqP/gvR6Rc29XozlOk58u4VoDndOgJGLUxzKI4Cf6BNpwjoP5p5HWKsMIJPlFClpPWpKt9ix1RglU1UA2GoNFGiUaCy5xfdjzdElORrOhPOLhZaK8OA0czNxZIrc88KlOpBrLSrm8qQLAai5uyLvYbry6x1orCp8B5ySqcUAwkMxRppzHy5Y0ppdsnmtfncFOoeGE1+/IOm4FR6IEs++DCSK6o2m782yupiy6xyceDJ7G9F6xOFaQ1mR5JrXwnXymnu8zEzN0iThOm4qL6Ygx0GPheK8lBPSxX9tz+gfUvdtKC9GJpcxJTHPb/ppd9r1S21XU/uQj9GWycx0jEle5QUK5mJxek+Kwt0N5vRmoVqmxtu0GnsiyiF+R1w2S3NzM36/n0QiQXd3N0ajUfKelrGMZfz/G7FYDI/Hw+DgfB+opIAGdqOSqTJineuN9B4fZeD8BO71lgWFZJYZvM2NbaWRk99pJtIT49CfS88PoqNzoJBR7NEI15RrytKXqah+SzlXftvD0NnxvMYEKlMhhhzDqnenDZ1Vw4V/7sg7Jyz2FlGoVWY6ylyDVe8sp/vYMENnxzmeQ7ALMN4xhcqQY5xWQf0j1Uz1RcR4kWeZJ5fgO4W+0yPYVxhzllWyxUKRU0PJFmdOIVDl7V5UhgLh0JejPH2JVgh88yCrG801KFDDXGyO6Mh03tilYC48x+x07jWvobPjDJ3Nvw+q0isp1ClxrjHRe1Ta/GHVO8op9miZ6ovmFKeVXmcDmSynSKnr4ABFdjXjOQwdlprWjhio9HJqP1jJeMeU5PMYaprC3TDL4MXsh/yAjMOEq99VQdfRIUkOzcFiCnVKSUeohYImVFD77gDnv9+SNZ2hxqVCpStAX1pEN1lEYLFMM4Z17/czOzXL2YX7gwvasrxQDjm2jxe6fq17rx+VqZDDX27MfB+S/44MxCgsVqbvw77SmH4uIdkaaAESGpo5x9zcHN/5znf4zne+w0MPPcQ3vvEN6Uos43VjOd3bG4RszknlVBOQrVgUa1tbTPBAKbGx6Zzig5Q70MbHKpnoidAokVd+86drmJ5cWmqujR+rRFEgl5wwlGy14N5gmT+1ksOJKZWWKleKsYp9DsID0bwCIJhP75RLVBS4zc1Y24RkirtrY63VhpyuQavfI6zzTn23jXBHDoX060zJZghqpZ1+kqh+WyntLwwsKT1ePvj2O+k9MfqGlAVvbLo3AO92G2MdU3k5WQqWyluuFID/Hqz/SJBCXUFON4fQXR5MZbolC7NWvbM854Q19U6cfPLCktIM5itv82dqSMwllpRGsXyPA0tQWkRXc68XY4Uur5MWgM6nZfU95QxeHufyjxY7LOh8WlbeVcaln7Uz0hjOmcZSY4V176uRFKqFE2HCa7s5ffo0iUQCjUZDZWUlr7766rJYaRnL+B+ESCSCxWIhEplfMFagpJ6bF4mTQLiCKArlOV2TzNVahhvDWFcX49vt5uz32rO6HVXdVYo5WMzJb7fkTNcGIvXTmvsq6L8wypV/y75Yvv7hIN2nhul+eWhJaalkMllOl6Wa+8q48P3cG18wL/CYHp3heI7Fn6WWB4Ln/rOjaZHG4osK8X1kSDqlVCru9aQZSz27XNCUaPDUm2n61/94WlxjSIPWoRXP7A3AG5nuDUTqLvtqfV73o6WgqEyDq84k2X5T0Ps0ku5IWZHnGet9Gla+rYLR1ms2c67Bpk9U0fPa8JKETbZaPUU2DW2/y76pmnonYqPTS0qj6GowoyiQSzo0Vb7Fg6VSnzuN4gIeNnw0RNuLvQxIHDxo+FQyhXKexdVUWUqNQnLOV3OPF61VlRYLGkPSzlspoZpU+sZwsJ8roxfp7xf3WFFRwdatW5fFSstYxv8wZHNO8lGDT1azKFbrUbP2HT6iw9OSAhWDX51OgVT7gQDhgSgXJdz46j9ZxUx4aem06h4OUlCkkEyjZltrwLvVPr/xlcOJyXODFe/1dgbOSacYczeYmZtJ0HdcevMjhXXv86Oxqjjxd9KiIu9NNqYGowzlca0E4VTkWm/JeZix6i0ezEE9Z3/QwkR7jnnr60zJVlymzl0e4DvgpPfk6JLS4+VD6TYrA+cnJdP1vV68keneAJz1ZiID4axpvV4v/Le46Do6kld4JiWuk0SeZ7zmPRVo7RoOfUnaNalspx3HGlNOAdVCVN1dysWnpJ35a98XQG0tzPlOvJ7yGh6vIZGILymNorPejHudWVIg5b/FhWOViVPfbcnbhtV2NbXv8THYOMblf1v8raG2q1l1v5fmX3czfGEy97NTw+aPSbu+RxNRImt7OHnmJPF4HJVKRVVVFYcPH15OA7eMZfwPQiwWo6Kigp6eeUFEISo2sWuROAnE/EdlKOC1r16QdNtJpUXSl6kI3VHG+afaifQsVrOU3WzHXWfl1D80Z/39QggnHR/9Z0Zp/lV28caqd5Yz1DguhA1LSEslL5Tn3M8L3VnC5SWs66RSRUWGc68/LbU8EDwPXh6j/XfS6w/1n6wmMhjldB6x/OtBLiFWCiqripKNpjfE0UjnUaFzauhd4AL9H8Ebme4NxL1aq3SSzkGvt6yl8KbzqJjsfB0HEPO0dZVNxbr3+Bi5MpHTkXz9R0L0nhyWdJRcCENAi95TJOkqptLLqftQVf412SRM1To05kJJlynvThueTbbcaRQX8LD2QR9dR4YYkDAe2fhoJbOxTHdwKax5dwUai4rDEocYfPucGEqL0uki84kZi91aSQes6bIBrsSa6O4R34NlZWXs3r2bv/3bv81bz2XkxxtjqfK/GA8//DAymSxDoBRgNTtkb8oQKGndatZ/JAiItE/jV8MiLUUW2Gv1VN5Wxrr3+wGR9khKoAQwNxNnJsep6vUfDlL3oYAo6y8v5RQouOssFBQp0bqTHzZZ9nsq7/YAcOVn3Zx68qKkQAnAVWvBt9Mt+Xsgfa2jX7wkxEI5XI/sq4wE9nlylmdbW5yuX760ZpHRaXHCPYdAyV6rZ/OjNVS/rTRnWVqvFsdGA8CSxDiN/3Q1t7hDO89NPjjXmVn5trK8cZ5t1nQKrTcCtrXFGIK5C9S61Xg22wjsyd0OUshXXl7ekkgJlLy77HljN3+mho0fq8wZExmKMTeT25Hr8o8608IZe61EPo0k/Le6KC7RsvIB6eeWeicig8K5LF95ek8RK+6TTnF28EsXOPRXjen4rGWm0uqtNKIyFEq2lws/6ODgZy8Q7o5iqtbS8EQ1llVFWWNVRTIS8QQjEq5Vky3CPWqkMQxaCB4oZdPHq7LGRgZh4OIYLc+IfqfmXi/BO+ZzbmtlWqynA2znTuTI0Wq0nDp1iqKiInS63G4cy1jGMv77IxKJoNfr0Wq1aYGSkgJ2yN7ENtltGQKl4J0lBO8U/UPbc730vDYsKYrY9Ikqqt5UDoj0SEe/cElSgDTSPEEinqBAm91VyLq6mIZPVaMpEQ5GB//0gqTAQ2OWU2gswF1rTt5glpgSDWXJsezU3zbmFCitfEc5xvIiPNdbJWPQCGeUSFeEk3/fmlOgtOpdFfnLQ9wzwJHPX5QWKCUxNxNnoi/3hsrGD1ay+YnFm57XwrtD8JJPoATifvMJlPS+7BbD1yKwx0P5jQ4hMMkBY0iTTjP3hkAjhDH5sOreMko25X5m6SJLct/EVHskr0AJSAuUHJuMaMy55yw193jZ/FgNxpD0tcdbIsRnE0TynMg78vmLaQFQPq6Dezy4N1gkf596J1ICJY0z9zy8fJsD7/XS88xL/9LJya/P1y9wR5a5cPJV0Ps0FOiUeDbZJMs79OeNaYHS+g8HWfc+v2Ts9NRsznTLF37YkRYorfuAn5q7KiSfx/nvNzHaMpkWKNU9HMh4xtomO6sHrifAKux2O52dnXzve99DJpPxiU98QrIOy1jGMv7/ga9+9avIZLIMgVKINeyQvSlDoKQ2ytP9UrgzyvClcS78UFqgtOJtPtY85APgxNevSAqUQKRYnZ6QtmZZ854Kaj8g1rxe+1pTToGCe4MZlbGA4rJkH59luuc7IFIodb44yImvXZQUKAGU3+SkYodD8vcgBAogXBjziTE8DTaCe0skfw/z6cCuPj+Y1209MiLcgHIJigx+NZs/VkPVW3KvtamNcmy1Ys0rn0AJoOWXvfnFHXnG2hRKt9hZdU/+dO6O9SYhQnmDYAxqMPjzFKgG304n/t25+Ush3fYk0PyLniUJdlIiF88N+ed8DZ+qYcP7QzljJnojzOWYOwC0P9ufFs6Ya3Kvr7gbzJiDxay4X3rN68STV9LvhNpIzmeXKq/mXul2cOgvLnDqb8X7X7rNmr19Jal115lRWwrFdbOg+Rci/Xa4M4raqab+k1WS91yggfhcnJGW7C4G0f4ox754OZ0KruauCjY8JvE8otB1eJDmZ0S/47/Fhf8WV/rXapka0+kKbkrcQSEainXFnD59Go1Gg8lkorf3P745vYxlLOO/Fj6fD7VanRYoqVCzQ/YmrpcdyBAoeW+y4d8v+ocrv+mi8+CApECp7uEgK+4uBxWMt8c4/pXLkgKk0eZJ4rNzFKizr3npK9Rs+lglOo+K2GCMQ3/eKClQQiXS7zpTa15ZLqnSy9Nj2dG/uSScTyQQvM2NbYUx79in0suJjcNr32rOKcYI3l6CtcaQtzxjSOx5vPa1ppwCJRCujlN9ucfx2g8EqH+8OmcMgHOjCSCvQAlECq2lCG2WgopdLnx73Kj0udd2dB4VhsAbuOalAnudMW/YirtKKbsx9/w7XaRVlU7xlQ1L4Q1IC5RM1TpUttw8+vY62fyxmnS7yXrdgRiz0TkiI7mFT8f/6nJaoJSP66rbS4Xjk9Q1x+O89s35d0JlzX0fof0llN8onVq249kBXvvqxbRAqXx3lmeSyuxmVaG1q3FvkF7TPPqlS2mB0qp3lrPqneXS9zI5m1MT0fJ0b1qgtOIeLyvv8Uk+j7M/bGPg/Fj6PVvz7ooMbgrbbdT0bmYVDVitVnp6evjmN7+JTCbjT/7kTyTrsIylYTnd278TX/7yl3n00UczfualkpBsVdZ4304HhcUF6TRFC1MdpRC6y8PlH3XSf2Kc0i3TXJIY3LVeLWsfKGeqP8rpb7bktTwu0CpzZl/QerUEdjk48+1Wjv3VZbRWuaRQyLvdhiWoZ81DPk5/syVvGrWOV/oZPiudz/NaN6acbkZA6x96GGvNsbGVFDj4dsc5kuvkTBJNP+6iidwbVuHRWeKzCdrzKHNX3e1FoZLTd24sp+vSho8kT8vnUQ6vuruc4hItV57uzJvKrfv4EOE8G35ar5ayrQ5s1QZOfiO/UnYpCB4oZTY6l3NhLNwdZfDyOJ0v51f7NjxRjUwuy+sksPYhH1q7Om/cpo9XoVDJ6XilP+czmZmaZSrPibzz389vcZlCyVYLZTc6cG2IZqbkWIDmn/cQn43T+nTu9IGpd2Lt+6pyuiA1/7yHxFwiZ5rBNAdacKw2YasxSgr5jv7lJSFiCoNjowFz0CAplrSuNEnne0UIxg6dFddJOSFFhmLZ22EYJrrCDDeJk6PeXXaGr0xmpJxcKIw0lotFoqYsp9Vukt1BeDjMKdWLhGNTTE1N4XA4kMvlGSdRlrGMZfz/Aw6HI+3UASBHQQO7szonAdiqDSTiCZrooi/L6Z+FbjhdR4fQu6UFE+veL1LIHvzSBfqOj2YtLwWZUoZMIcOxUk9bV/axueYeL70nBhluDHPy6xeJDEvPp9Y+UI5MIaP9mf5F6eSuxbl/aKP8ZoekswtAw0fn3ZgiEvVL4ex3WinbZc9Z3tr3+tHaVMBVyRRZaURYUqqOyZ4oamPudBgapxpPgxXHKmNeZ5nNn65hrGMqb2qVlW+rID6b4PDncovcz/+kE/cGY163p9BtXpQqxRvmkLTunaId9pySFtyBmC+rDPkXn1wNZip2OBm6NJ7z5BYa2PxI/hOIGqca/y43M5vtOZ9J97EBij1aYuO5DX3zPYeFSLul5eD65D+2onPkblepd2IpLkinvtuGPs8iX+rdTr0nEx3hrP3HeEskoy9Y9a4Krvy0XbJvUGqUyFXS/cbCFHZr3+tHa1Vx8hvZ+5rLv+omuMeddlIK3OHOEKZFhkm7WVXsdaIyFlJyo3OReK1cVgkDlfTYmjnffxIQ38w/+tGP+OxnP8t9990nWd9lLGMZ//3w85//nNtvv52F5uvlVBGQrcwa795qR2NVUbbTTvuz/VlFR6nUVGPNUSZ7Ilz5bfZvMrVRTu0Hqpjsi3Dm2615HZ4LDQXI5dKbKGqjHP8tpZz/Xjun/64VtVFOdDR7H2pba8C51ozOoeHMt1sl41Jo+k0XE93SmwvXujHlE59c+uVVyZTpKdTcVcFsLPc6TArtz/bT/mzuzbTYBMxG5uh5LfeazYr7/agMBUx0xnI6Gq150IfWqubQl6UdeQBCd5RgXWGg+Tc9eZ2o2p7vIzaeJ5WIGvx7XDjrTJLrMK8XNXdXMBOe5diXcsw1o9B7apjuY6N5y9v08SrkBfK8qfeq31qKyVec83ACLEjL25jbZSoyHMubiqXll705U8cthLlGR9WdXiY3RyTTKnYfGkahlnP1+dztKvVOrHt/DYm4tAtS96FhlBoFHX/InY4wlY6t9Do7JZuskuWd+PqVZF8gxGjOdRZJsaRjlR658ppUkwsw0R6dv44aNj9WI9bsv5W9HQ5fHme8W8y7srlwLXxnbTUGZAo5zb9Y3F9eL9sHw3BU/Szj0TFGR0dZtWoVxcXFtLS8Me/AMpaxjD8e1q1bx6lTp9L/L6CQem7O6pwE4N5ohQQ0/6qHsSvhRamqNC4VhlItvUdH6HipH1NAJ+nssuJeL4YyHQe/eIGxK2GOfCH3HENRqMBcrWeyM3uf7NvnZKRlkpHGSV772sWsqaBSWP3uAAVaJZ2HB/OmUGv6WTfhwVhOB50Nj1aiSLoxxQZyF9j00y6m+iOSTjEgXPzMgWKaftkl6QCzEEtxaRxrn6I4xxokACrw7XJRssmaN/Vd/aeqGWuZovGp3PtXK+/zkZiNZ6TFyobLv+jBWWfI+dwAQreVojYWvmEOSSve7MXoK2asPUJMIp0qQMuzPWgt+de8jKEiat5SJpwO8xxarP9EFdGhaU59O8f4qYLqO73CjTPHM+k6NoK5Uk9sInca4uNfzr2WuRB1Hwmi0uVO53fqH9rQuXLzknonluKCdOqbTRiCuY0YUm2k+m4vpqCO6GAsqwNXbDDGa1+d7wsq3+yh7fkByeesMhSC9HZjhrNm9d1ejD4dJ/6uOes7f+WZPkJ7ZYxeFqYWZTfbM8WGMdEXgBAGFjk1lDaYF6X2c8hKcAyVMGLu4bWhVwH40z/9U/7xH/+RP/uzP+Oee+6RrvAyJLEsUnqdOHHiBHV1dRk/c1HBClndotjqe7zoPVqOfP4i577bjqlaK5xCsmDlA2UYynTM3TpH8897JFMsgRAtzM3EmeyV3p2o+1CA2Vic099s4VAeN6GVbylFqVGg9WoJd4SzCo80VuFg0vHcABqbiktPSW9kbPp4cpPgTy/Qmedj9Moz3ZiDxTQ9ncON6ToT5Tc4OfWtRnpezWOhnRQ49J/LHVf/eDUyORz6s/ybHymXl3w4+4M2yrbZ86aFm47MIlflNzHrPTFEoU6ZV6AE0Pab3EIXgPBgmJGWCfpOvzGpSQBGWiYZzZPfHsia4isbRlsnc4pdUgiPTqM2q3IK6gBanunCUF6c95kcex0TgpVvL0dfqqXxJ22S73PXy0M415q4/K+5FwVSAqW1D/koLC7IaZk91R8lPJx7Yp0SKK16pxC4SdYxDJ1HBhlrFae4Uu/3orAktxXb3ciVMsm0hwvFflqrnDXvqeTCT9olHcXmZuIMXZJu1wtT1nk2WfFstEpOdg/+6YW0+1boLg+mch1HvnYxXU+tTMvm6T2ECTNe00FreytTU1PIZDKuu+46XnnlFcl6LGMZy/jvgfr6eo4cOZL+vww5m9mzSJykMcPq98ynGzv3T60500/VvKUCEtD98hCdz+de7B5pnqRAKz1tNldrCd3i5fBXLzJwYpyBE9If6BozGH06dC4NRxsvSYoQNGYhDrj003ZURuljxdbVxYRuLWWkaYLGp65KprJKYfjKBApVjiTewIZHQkwNxLjw/fa8KcMu/UsrlW+pyClQStVx6OI4l36cf05w4Qf508tFeqP0nx+l/1TuOZ+mREN8NpH3JBuIech0JPciAgghS3MegRdA+4t96D3SJ6deLzpe7MNaY8wrjpJKF3Yteg4N46ozM5DjQAEAEZibjRObzM1NpDfKSNMEbc9Ip+EAGL0cWZJYLYXNT9SIzdgc86SOl/ox+XKf6I90RYh0RdCY5ax5qJIrT3dKttuO33ej92hzppFLlZdKYzgzNSspzjr1t80E7yxJC5RS73dGecm+wBjSUOzWUHOPTzLt3EIBV8qJRGpDdqI3TKFOKdnXTLVHOJU8YRa8swT7CiMymSyr81jrr3sZuTKWFjRt+kQVQ03jGYIl14Afl8xPh7WR2eIILS0t3H///XzgAx/g97//PRs3bsxaj2UsYxn/PdDW1kYgEGBubv5kqgc/VbJ1i2J9B5xYKw0c/eIlWn7Zy9CFUcl0V/5bXDjXmpHJZDT/okdS2AAQHY0zE55lokf6Qz51svbs37dx7Iu5v+dr3upDbS1Mp5jLJjxSG4W4YeDUGHqvNqsgIIW6h4Uw5NCXLjBwIvdmVeeLgzjXmrj6vLT4w1yjI3jAw+lvXl5Smrfhy+OMtORObS/Sfio59Of5N42i/dElpe86/70mvDeV5E25Nj0xg0pfkDd9XP/ZYbR29ZJS5XUvJZ1HFAbOjTLYmH8DcanoOz3CeGd+x86linsGGkcp1ORfip/qi6IvLULtVOcUtl362VVsq415n0lqnF8Kgre5sa0ycvFfO9LOP9di+MIkk5sjXP5J7jl7SqBU/dZSiuzqtItjNoy0TOR1ckoJlCrvLMFSbeDiv0nXseX3vUSHxHwl9X5fi1RfENxfSoFOKRmXIfZTw6aHK7n0sw7JlG0zU7OMXJF+lxeKoSpucoIMSeHa4c9dTLtvpdLtnfn2pYx6boztJEqU0ZVttLe3Mzg4iEwm4/rrr+fFF1+UrMcylrGM/x5461vfylNPPZX+vxIlDexZLE5SQd1DQQYviXRj537QkjP91JoHfCCD3qMjDJweyymwGbo4jtqqQqWCWJYidR4V1W8p48y3rzDeGs0tolWJrB/moJ7jjZclhS4qPcTGofFf2tG5tZLCC32ZipX3+hm8KIQm+VJ89Z0ZRmvJ7Vq47r1+IqPTXHzqak6BEkDrr69ScHtZTv5SdRw4P0rTz/I7UUs6Ty1EDK6+MsB4Z+45n0ovZzY6R3gk/5rXwNlREvHch8VACEryOUYBtD/fj6H8jXNSuvpqP9HRGWITuffARi9PMUpuXlJxE91h+k7nn2vOROaITuY+KEAMek8O03Ukd3mxAeFWtlRs+nglczOJnH/T8rsebDWGnEK+2GCM2GAMlR7WvKeS5t/2MHQ++/pgx0sDWEMGrh6SXg+Pjcfpf20UEGkMpydnJFOxNT7VQfluR1qglHq/ry0PRKo7S6VeHKaTOAi5kIuqu0sp0Cg4+w9tWWMnesJoHSpJUWJsIMbZ74o5q+cGK55NNgo1yqzvau/REcJ9YcbbRVl1Hwoy0jxBy9Pzc33TsIsdsjfRr2ol7BmjubmZe++9l/e973386le/4vrrr89aj2Vkx7JIaYkIh8MYDAZmZ+cX5804qJVtlfwbrbkQRaE8LQBYJBbQwoo7vZz/fgfnvttO9T1emn+efYCy1+oJ7PMw0jxB4z9dzesSpNIXUjCXe8Ap2Wqh6+Uhjn7jEq7VJkkXI0NQy4q7y4mOxDjxN805BUoAU30RtLbcE4E1D/kYujxO5xLsqU0VxcgUMtQ2LZFB6cWByrs9XHqqM0PgIIXwYJQCTe4NupTjy0jLZM50e+kyu6NLilvqia6BUxMMnMq/QLX+w0ESiUROYZuooEjR9UZiKfcLwg2nZL2FU99qzCqGSZf3T7k3tVJYquhpqRwCoE26BAzG0laA2dB3agidS0NsLLeSPLWp5Ko3MTc9l1NspjIUIi/ILc5a2G42PBLi3PcuS3I50jpJkUMjKaIC6EhuOqec2WKj09IbYX/RiOs6E4RFfIFKOqWh6zoHMqUMg7coa0xkkIz+a/NnapiemJE8Hdv0y6uoTOKjrGSrBZlStkj8mLpOsUONolCeVUillWnRNlahT3g5yK9RKBQcOnQIg8HA/fffz9e+9rWs11/GMpbxX4cPfOADfOMb38j42XXsk3ROikRAUSDH4BUfyNkESp5tNmJjMQZOjNPx6gCTXdkXtUFs7hQUCefDtt/15RT/6L3FyAvleOptkoInc7WWSF+UyHCc5me66TsyKlle3cMBVMZCTn79YjKVmXR/PnhmAv+eOMM5FsI1Zjkr7vFz/GtNuR1zkijQKCnKkznCscnI7NQsQ+cm8258RMZmmZuO0/Na7sWkde/3ozYW5kxNvBBLSUMW6Yos2ZHnwhLmNUVlGla9tZz2F/voOZR7MavvyGjO5/x6MXRukqFz0m12IdZ/OMjcdDxvnvml5HqHpTlgATQ+tbS5HAhHMWOFjoNfupBTeDU9OUN4OPfp/55Dw+nnEbyzJGdqvyJPEXKlDGOgWFKkFBmOp0XsZbvs6JwaaSeuiLB0H+3IvUiWqlPtBwOoTYWc/LuWrGklRy9HMvoIxyZjznakMamQ5Tj/0PyzHpoR35g195VhLC/iwo9a00Kja+soV8wLlGru8S56L1J/p3GqURTI0Zqyn9TzDlbDIIwSZpheJiYm2L59OzMzM4yMjKDRLC294jKWsYw/DqLRKA6Hg/Hx+e9WK27WyjZL/o3WpEapUqC2q4n2R7MKlKre4uHiv3TS/Ise5AqZpPjH4Fez4q0+hpsmuPijq3ldEovsahJ51rxstQYGToxx4skr2GoNkgIqtV1N7YM+woMxTv1tc06BEsD41SkMZUU5RTjVby1lsjfC1ecHcwozAEyBYtGfurVER6XHef8tLpp/0ZMzNV4KEz2R/CfM1dDwaA0jTeNLKjM6CpezOBhfi8Z/XtpcYLQpwqmm/OKZNQ/6UCjknHgy/5wlV2q+fw/ytYUUHOtNlN/k4PT32nKKipYqZur4w0BexyAQDj4T7UtP71X/ySoiw9OSDj8gNt9MwWKi47nF6SmhoamqCKVWmVOwp7Wpcx74gMwT8bXvC3Dhn1skncyGmycx+HSSAiWA3sNiXqg2yqn9YJVw85aYFx/7ymVstQaioyJebVNJCpDc6y0o1Ar0pbrsMVEy+q+GJ2qYHpd2XLjwoxaKXOJQg2V1MSp94SJRXiq9osGrRalSEM3SxNQyNc7zVRgT5bzK08gVcl5++WWMRiPvfOc7+fKXv5z1+stYxjL+6/A3f/M3PPzww+n/y5Cxhf2SzknEoKBIib5ErHllEyjZ64wkZhMMnB6j5dkeYmPS39Fr3l2Bxq7m8J830nt8NKv7SQo6p4YCrRLbOnM69dSiGI+KmZgQBFz6eSdDZ6X3QlY9UEZxaRGvfbOZyc5YTrHVeHuM6fAso23S39sqPVTf7ePUt1roeDb/+FmoVyIvyG0iYAwVoShQMHR+PC1wkEJsCqbDs/Sdzr1GVPNWL3qvlsN/dTGvaxQg6XCTce3x+JIdeZYijkoJXDpe7qf3aG4xztD5cUkRzL8H461RxluXNvda9c5yZDIZZ74jffABWNJeMSzNAQvIEKvkg2+fE/tqEye/3iiZihEgPBhjOs+hwJFG4UwGIq1a22+l16hVFjVKtQJjRZH084kJV0kQ/YY5WJwxF1sUPjqd0zQFSNdp5f1l6L1FnPnH5qzvdmwgxqWfdjJ0RdTNtsaQUwSoc2pQ5jD96HxxMN0v+fY5ca41c+HH7WnnpGtjC3XK9HMMHHBx5ZmejPcxJVBS6UWfK/VNZY9VQDPEEnCVK0xMTLB3714UCgX9/f2oVEtLr/i/HcsipSXg2vQiKjRsle3LGrvxsUpkShlHPndRcsM/hbp3B1AZCrGtLWbg1EROwUf/iXF8N+c+BV55t4dEQgg4Dn75Qk73mLoPiWtPT0wzcGqCnsPSA85YU5jZ6Bw9J6UHWY0Vat4W4LWvXuFcnkEbxIKSxqzK7bSUdG1ZirCm+m2lmAN6uJu8IiqAM3+Xe/ACUNu0kICJ7tynpmxriwkeKGWoaTzvtde930//2VG6Xs69SefdZce52sS5f2zKm1JPmedDP4XgHSUYy4tel2tQPlTe7UHv1HLsr3KXWaBRIFPIMFaaiAzmntysfKAMtbEw70IeWqh9Z4DW57pzinFApHnJa4cehkQ8wdxsbr6F8Gnp6UcqdrogAf05XDWOfGHBxp+EW1EK3l12CoqU+PeXZ00bCdD5/GD63fLf6qKwSCkpAAt3iPe7+1juNplyMVtzbxkyhXRKvuaf99D8bI+4By1seDDEsW9dzn5PWpiLxRnrkr5hITJLpn673o5MvliklMJCoZ53uw3PZtuidIlamZYdvImwc5R+dRtXmq/wN3/zN/z0pz/lL/7iL5ZTkSxjGf8N8Otf/5p9+zLnWWu5DqvMtSjWscmIf6eb5t9203d8NK/FsHeLjfh0nIET43ndkya6I7ntlzWw/t1Bjn+tSYiYXurLKbSoelM5c9Nxjnz+Yl7hSt/pUVx15pxp4KrvLmWiL0rn8wN5BSSB28soNBbkFTugASLkTS0B4N/hBhkcPJc/dqp9ac458ekE8TwbjgAbP16JskCRt57W1cWUNNg4/b2WvO5D6z8cZKInklfEZfLpkBfIJNM9XFvmSMskzb9c2iLLUrDhoyEGL43T+uvcCyP50oGloCnRsPKuUjoPDeYVXXmut2IOFuddBKq+uxRTsJjT32tlql2a+KmBKIayIorsmpxxeeeEC1Bzbxkmn47ZyJwkR4NnJhg8s6DtJNu9FFy1FuEomQML59e1Hwxw4jtXJMvsPT1CyXpLVoFSCgsFSv5dbpxrzJIbioc/1yjuAZGmbjYyJ9nmJntEv5ZNoJRC6h1wbDJi9OnSab6vRaQ3mtHnbvpEFXPRuUXPq1a2BYDx9R2cPXeWWCxGcXExGzdu5ODBg5L1WMYylvHHw+rVqzl79mz6/xp0XCfbnTW29gMBlBoFR794iXPfa8td7rvK0bm1abFQLgHJWHOU2ehczsXvit0OlBoFTT/tFps7OURCq95RTrFHbOINnBjLKaCI9keJjc/Qm8udUQ1r3+7n1N82L+mEvMlXjL60KHeqKzUQFUKYfGKYsp12nGvNFGiUXPxRfhFQrk2GFLRWNYm5OFMDuU/eaz1q1r7Dx9CFMS7lSZWx8v5yhpvG6c4zp3CsN1F6nZVzP7qaNwVeYbESuSK/G3nZTjvWKkPelCivBxW7HZj8xelNHCkoCmQoCuWYA0V057mf4O1uit3avGWihlVvK6fr8GBOMQ5Aw+PVzM7M5XUVi88miMdyzw8n2qNLSiWYQtWdZZAg5zuWsfGXbPdSsNUaUFsL0ykas2Hg1BgDp8T1PDdYKbKqJNtmdDRObHyGnpO51yJT9V/9nqBI1yzxXdn9yhDdx4fS91D7vgAn/uGK5D1NT8zkdMEYa54XeAZ2l6BQySWdw858py39b9taA4F9JVz5TVcG92qZmu3cyUzhIL2lPVy6fImvfOUr/PM//zNf+MIXlte8lrGM/wY4deoUdXV1xOPz/fFatmKVORbFGkNFVN3ppe3ZHnqPj+bN9hHY7WZueo6B02NpBxQpjLRPotQoQUV2wYwK1t7n49S3W4SI6exoTmHN6gf8aQfkXAIlgO7jI5TpCnKmY/PtdTI9NUvni4N5XWm820vQ2tU4N5pyC2uS95ovnR1A1e2lyBQyDi1BhBMbXJpzztxcnLnZRF6BUt3DQQqKlHkP3OnLVHhvcHLuR+15y1z9rgoiQ7G881hdmR6FSiEOgufB2nf7GO2cyimYeb1Y+6CP4SsTecXaKmPhkspT6eXU3FtBz/HhvKIr2xoD9pUGzuc5wFi+24F7vYXzT7UtSrO4EJO9UewrE6hMKmLj0g9oqUKq1LVLNopTpVK8L3I7k3rHk/Beb6cwzx7zQlOHVe8s5/JP2iSFVz0nRygsLsgpPkyJpwwBLcEDJTjrTJI8HP+ry+IeEKnaZDKZ5L2H+6JMR2azCpRSSAmUDAEt9jUmNDZV1mvHxsnoc+s+HCQ+E+fkNzJF75WytVSylol1Vzl36Rzj4+NotVrq6+t59dVXJeuxDIH8Pc3/Ytx3333IZDL6+/uRyWTIkHOL7S3cv/+dQkiAEKh4ti04ar7AnEdjhYp9DjTW+djyAzZq7vUCMHBxjJHWcbEJrxWxWqt4JJZVRdS83cvmz9RQvseBZ5uVlt910fHcwHysW7gVmaq1lO9xYAnqsQSKKdlqwbHSkK5HxT4H2qSrgCGopWKfg8Z/amGqP4qySImr3pQRq/OJ2PUfDVL74QCA+ECdE6nXFsam0ixV3uVDZSikZKsFAMdGQ/rfAOV7HJiqRazWrWbg8giH/1q84PZafQaH3l12TNVaNj9Sw6ZPVlGxz5HBt3e7LSPWsqqIxn+6ynDLONMTM2m+LauK8O6yz8dut9HwRDX1j1cv4jvFYQqebVYKNMI9ofPIYAbfKQ5TMPiLSMwluHpweBHfOt+CWC1oLCo8m+frv5BvrXc+1hIsRqlRYKjJfI4pvrVudZqXw3/RSOtz3dJ8W+VU7HNgLCuioEiZlW/LKnFqJ9VmU1jE93YbtrXF6VhjuY6CYmVWvj3brNhrRc7S5md76DkxxNilsax8l2y14Ngo7rXIqaFQXyDJt+s6E656EzqnFrWpEP9+T3a+ES5GrutMzIRnCQ/GJPkG0WY7Xu5PnwaT4htEm139UAWbP1ODY6MhK9+p2KHmMfrPzy8wZOM71War7ilh86M1+G91LeI71WYHTwzS+JM2el4bkOR7YR9hX2nE5C+W5Btg4MIoY90xNFaRCjF417wQIMV3CmOdk4z3TOXkOyVIqn2Xn4JiJf6drqx8l9RZOPKFizT9uIvyPQ42f7qGjY9VZuXbs83KqW820nlQ3HfpLhvBN5cs4jvVZguLCyABaqc6K9/abiN1Rdexec31qApVdHd38+CDD2I0GgmH89u5L2MZy3jjEYlEUKlUGQKlcqq4p/7drNhQnf5Z2S47mhKxIz8bEafC1GbxcepYb8SxyZgRW3N/KUVlGjQlGka7Jjn8VSGWsdXqcTWYM2I3fCxEw6eq0TjVREZiHPtbschgXV2Me8E4691hp/rNpRQaC/Df4aJsQX9sWanDc/38OOvZZsNcrWW0ZZLmZztE/ZOXNVdr8WwT46wxpKH+8WostTo6Xxrk2N9eTsbK07/37pi/jilYTGlD8jqaJC9OMXbqfZqMOg1eGKPz6EBa+LCQw6IyERu4w83mx2oI3uXGsT6Tw6IyEaspmS/34r+1MdA0tohvvW8+tuYBMZct22VfxLd3hx1jKBnrVFO2y87pH7Zw5PMXF/Gd4hCEK9Tc9BzR8ensfF9vxbJSpP3y3mCnyK5G75Iv4hvAvdWCdbUYZwuLCzD6dJJ8uxrM2Gr1dD4/wMEvXqBAo5Dk27HJiGO9kUJ9AaZyXVa+07HrjRmCJym+U7EFOiXG8qLFfCc5TIlVmp/p4urL84s6GXyb5fOxkQgFRUpc6+fH+ky+SbdZ90YLOrdGku9UOxxsGmJuOo6hXJrvVD1P/b0QMknxvZCX+k9Ws+kTVZJ8g0gVODUYoTd5Cisb3wvbbP2nqtn8SE1WvlNt9vBfN3LyH1pz8p1qs94ddtSmQmrf5c/ONxAbidHzmvhuWHF/GXWPBrLyDTAzPk1sYprT32+R5FtjlkNEtFlLSI9jtSkr32W77AycG+fI5y+i92nSc9nUfV7L93hnjO6jQ1z5bY/oS+/xojFn8p2KLSrTkEgkiCcSknzrj3t5U/3bKFLpUKvVHDp0CLVazfvf/36WsYxl/Nfg//yf/4NMJuPs2bPIZDIUKNmh2c/dN92L2ihijEEN7gXjt1wlg9SwpYbSbVbURnk6tmS7haq3eADoPz/O4MWkQCgVa09+5/vVBN/kZvOnayjf5cCx3kTzM93pU7Cl26yok+NscZma0m1WnLUWrFVGbLUGbFXz37Ol26xoPSJW6xGxZ/+5jYmOMMSF6GFhbCp10ur3+qj9oB8QIoqZ8AyOhePhDVYMfhFb/eZStDZVei3FXKPDWT/Pi3uLBWNQdPRqo5zuM4Mc+ZaYc5qqijI4dDeYMQY1NHy0mo2PVSY5XMD3lvk5kLPejKmqiPZn++k/N8JUfyTNt8GvxnODNSN20yeq2PTxqkV8pzhMwbHehMZcwOHPXeTq84MZfKc4TMFapWNuOk7vqaFFfKudmbH6Mi2erfNj/0K+1fZkrBosVcUU6gswBuYPBCzkW22Up2OPfekyTb/qzMG3uI7Rr0NlLMjKt6kqmX43yUsK2fg21+jSsZYV+vR3xrV8O9absCTH2e6Tw1x9tZ/h5IbItXzbag3Y1op2aPAWoTYVSvJtW2sQQh21nOISLb7dLkm+LauLcaw3ER2dZqo3Ksk3iDbb8coAZ7/blpNvEG226l4Pmz9dg7PenJXvVJvtPT1E35n5Na9sfKfabPleO5s/VoPvgDMr36XbrEx0xjj/Ty10vtonyTfM9xEl9VYsVQZJvgH6zybT9qlh48cqCdzuXMR3CsNXxhhpn8jJd0qQtOIdXiGo2uXKyrez3sxrX22i6afduLdYqH+8mvUfDmbl291g5shXL9L2fB/uBjOOTUaCt7kX8Z1qs2qTWPMqNCiy8l0QtbIyvoEdq3dRoCygv7+f97znPZjNZqLZrJiWsYxl/FFgt9tZt25dWqDkYyV3rXwnlauD6Rj3dWY0LrEjHwnPIgMKdAUAmKp12NYYMmIDt7nQV6hRWVUMNo1y6h+FAMcYKsJeZ5yPbTCz7mE/9Z+oEinCwnO89q0miInNeueCbzznRhP+PS60TjUV+x24rzOTMgXRVwgxUDp2vRFDQEvvqWGanukSsXrR7+vLVOkxWeNSsfFjlRhXCneXE9++ImKtomCdR4X7uvnx27HWREn9fB/svs6MyqZKl7UwdvjKBO0v9aVFKAs5VNlErOcGK5s/VoP/FieWVfqMcnWezFiAcz9spe/McCbfDWb0ZclYq4rAHS42P1FD6Y22RXw7N5rQV4iOXqWX477OzKWfd3LsS5cW853kUMTC7PQs0ZFYVr7tdUaMIdHvl97gQF9WhMGrXsQ3CNGNqVqMs1q7GmNAJ8m3ZZUeywo9Q2fHOfTnF0gkEpJ8W1aIWK1Djcmny8r3wljFgow2GXxbk7HJtmWq1qG1qzH7ihfzneQwFXvlV110vDhvLJLJd7K96CEWi6Mxq3DWLW6zIph0m/VcZ8VQocPZkJ3vVOxw8yTT4VnUlgJJvgGUajkn/76V8faYJN8LeVn/SIiNj1Vm5zvZZtt+28fY1Un6To9m5fvaPmLDYyHqH6nOyneqzR7/ymVO/n1zTr5Tbda2xkCxW0vVWyuy8g0wMzmdNkQIHHBR+0F/Vr4BEjNzTA1GufyTDkm+VVYVxESbda0z41xnzsq3+zozI+0Rjn/5MhqXiqq3lrD5iRpsawxZ+Z6emqPt+V4uP9OD+zoz/v0uVHp5Bt+pWJ1HBXFIJP+fje/ik6XcueYejEUmNBoNBw8eRKPR8Mgjj7AMaSyLlLLg4MGDyGQyfvCDHwBQV1fHRx9+hO2yOyi72YO7zopnkxgg/Xs8eLfY2fhYJQDKQgUkRdAlW9y466y46sXHj+/mEtxrbRgrdGitcjybbBhKRYfr3WIX5W53i3J3ezCW6kjEE8xG5/BusePfXQKAa7UJd50V304HllVFBA+UppWbh/6skbIbHfh2inIMQS3uOiuBmx0E31zCirvLcdVaCA/GOf3NFiq2uajYIQQJGiu466wE94j/F+oK0BhUaQFFxQ4XFdvmxQvuOiuBPeI68ekEMpksferNt9NN2Y3zggT3eguVt4mNKv9eJ/ZKc1pI5d9dgnfLArHFJivB/aXMTM4Sn5nDXWdN/96/x5Mh8vFsshK6RYi+YqMzuOuslGwRdQrsKU0/J0D8nQymJ6bxbLLirrNStktwGtwnOEzBu8WOf6/4nb1KL/i+WTzH0AEPrtr5WHuNGWTCkUbrFXyH9ojYyv2iDQBCuJEQqWgA0AoOQ3vdyVgX7jorWquck19vJhFPUHHDArFIrYXgPlGnwF4Ra/EXSfId3FcKQPlu0WY7jw5w8LMX8N28mG//brGI6NlWMl9fwLe7JJPvzTZ8yXbo3ORAWahg4OJYVr69W+z4bk622XWizZYnr3Mt32U3OvDtEDxc+fVVZDIZ/t3OZGxJBt8VN7ko3+5ksiVM87OdqDQFVO4XPFXuS/KdHPNSbfbYly9z7h/acNdZqdwvrhPa4xR8JwVOKQ61Xi31j1fjqrUQ2ifq67tZxNpC4n317y5BZ9eQmEswG5nN4PvaPsJUpse+0oLOp2XFfV48m6wE9ojYa/sIg0eUP3hhLM23f48nzWeqjxhpDOPf7cGzyUrDE9Xp32frIw59pZGZZB1TvEj1Ec5NDuRKGbbQAjHiNX2EqVxPgUoI01a9rQx3nVWyj9CY1ExPzdD88x4CNztw11nTwq9sbTZBgvBQDN9OEXttHxEZhI7nBvBssuLZaMVWZaB0pztrH3HlZ90c/NMLeOqsBPeJvqfyLf5FfcSOW29k68wB6tbUodFoGBsbw+l0smXLFpaxjGX88bBq1Sq0Wi3T09NoNBruvfdedsjeREC2Ev9ON/6bxXurMYuUauveWYHep6F0swuZXEb7y+LD1H+zWzj8JOGpt2EsK6bmzlICu52YPMUU2cUCe2B3CRXb5xeoSzZZUSjlzEbmqNjhwFNvwxoU/XJgr4fyG0SfFbjDjafBis6q4cKPWlEqFHjqbXg2iM4wsM+D9wbRJzV8qhrvFhuBfaVc+GEHxU49nnobzmS/H9hXineLGGetK03IlTKCN4sxwrPBKspN9qvB/aV4GqxpoQMJSCTnnLZqUW7FDlHH0AEPJZusbH6ihrXv9VOx3UlJcnwvKtPgqbcRSI6zof1uPPU2Ri6PMzcdxxYwpvlGIzhMzQ1D+1146m2Yq9QMN4axBQz4d87zXbLJSiA5f/LvdGAqKyYxl6D/+OAivj0N1vTYWXmHKNe90Sh42VNC+YIxwrtlfjwsudGJWq9isHF8Ed8ghEmpOdzQpQlkMhm2FY5FfAOU3+jAv0fEtj7Xi7JQgTfZfoL7knwnUbHdiT85b7T4dXjqbfh2JfneJ/hOwb/TjW+Xi4OfvcD5H1/FU28jlOJwr+A7HXuzG6V6fsHGU29Lzw1DewQvKTGUb5dwZ0yd2inZZJ2fq+wSbdbi1yXLlebbu0PUwbXWTGQY5qbjqI3zNsSpNgvgvk7Uwb7eztkftDMbm1vEdyBZB+91djz1NgxlRo58/iIl6y2L+A4k+XasMOKpt1F+o43qu0upenPZIr4DyXmNMSTabII4sbEZAntLFvG9sI8osmoI7XdRc28ZwX1JvjXzfC/sIxRKOXOJOQACu5146m1pkVi6zUZE2sCSTVZW3lNB4A63ZB/R8ft+Lv20A7VJRXB/KWjAu90t2UfoXBpU2sI0385656I+QlVcCBEhDvLeYCd4QLqPQAanf9Ca5ju4XzybbH2Ezq4hPptgoHE8g++FfUTb7/rSfYTRp2PlAyH8O9xZ+4ijX7jEXCyOp97Gxo9XUv94teB7QR9RsbWEDzz4QVZNbcJX4WNubo4nn3yS6upqXn75ZZaxjGX8cXDx4kXkcjmf/exnAVizZg0f+cAjbJPdRvn1ZXi3OrDXiv47eKCU8h1ONnw0BEChVmyMg/iG8251UHJ9cpzd66FsswNzpR61U41vuxNThegnLaFivFsdlN+YXEvb7cFWbWRuJs5sbA7fzS6CyfG7uEyNd6sD3w47xWVqQrd7KN1i5/T3Wjj0lQsEdpek16LURvBudRC42UnZTjtr3+HDu9WBWg1nv9tGYI873b8BlG6x49st/lZnVaMxq9OijuDeEnw3z3/Peq+3p+cfiZhY84oMiQ2j4H4Pvh3z42z5NgehO7w0PFFD2W4XJetsuFda0rHlC8bk8h1OggdKCQ/FmJ2ew7vVgXOjIxlbSvm2+TmQb4eTyttFvz/RHcW71UHpjQvmkdfPj8m+7U7kShnRsWnMPp3g+6bkc9wrOEzBv8dF6IC4N7VT8B3YlVyD2evGu3XBIaeNduRymXB7USf53p0ce/Y4Bd9JMVR8Jo6iYH5eU7rFnp4bVmy34d3qwFiq4cIPOpibjmeseXmvtxPYm5yr3OTCu9WBLXlwL7CvZBHfqfmH6zoH3q0Ohi+Nc/CzFwjsL6F8Rybfgf2iDp5N1ox7C+zzLOI7kFx3s9UYUBUVMng+uea19xq+b3al5zXGUo1oszvtydiSDL4De0rwJzk7991mZHIZweS6YWC3uNeUYCXVZqOjcc5+rwWVrpBgcm4Y2JXk25nZZk8+2cyFH3RQusWeHvvLbxJ8m31ibhjc78G33YnaKGfjY5WC7+T8o/RGUa5zrTkday7XMzcdZ3p8mvJtDjHPAJwbHRl9hDVkwLnOgtqupuquUsq3O9N1uLaPsIbE8xxOriP6FsQu7CPGmqP4d3vwXm+n4fHqNN/Z+ogjf32R8EhM8J3iUKKPcK41o1QrcKyypEU/1/YR9pVm0c8Ba99ZgXerQ7KPMHh0RCemaf5FD+U3irZlSa4bZusjkCeIjsxQcr3gMLUumu4josKpqXyHE99OF7ZVRlxb7Fn7iKvPD3Lozy9Qdp2T4AEhKFv51rJFfcTm2+q5Ye5W1q/egE6nY2RkBKvVyg033MAylrGMPx5uvfVWZDIZAwMDqFQq3vrWt7JD/SZ8siqC+93pPR+Aiu0u1r1bbOpXbLEjL5AzeEmsf4T2l+DfO/99Vb7NiX2VieCBUrxbrdiqTGitot8PHfDgX9BnlW93UqhRMhOew7XZRsV2F85VRgCCBzz4kt943p02fLtcGEt1nPt+MzMTc1Rsd2FbJ+Zwwf2lYm0C2PBICN8eN8EDHlqe7kVVqKRiu4uS5BgY2F+angNZQsUo1Qoqk2OPsayIiu0uvFuT38l7Syjf5kyLIhIAcTHp1LhUVGx3UbE9We4eFxXbXWz6WCWr31VBcF8JpQ3JtQeV4NC/M9kX3uygYruLqV4hLLFWGQjun+e7/CZn+t7LbxS8WNfpmeyMYas2ZvK93ZmeG5Y2mHGsNDM3E6f//DjB/SXz38mI9ZvUXKVif4m41y3Je91fkr4mgG+3Oz3/sKwyo3NoGW6aWMQ3CLes1Lym//QYMpkMS0g8R//ezDlnYN9822r8cTuF2gLKbkjNxd2C7ySC+0sI7BPXUVkF3/7k+kFgl5OK7a6M2OD+Eg7+2QVOfqOZiu2u9DzSv0PwnRI4Bfa5UBvmXY/Kt82vPXivt1Kx3YWhVOwXBfeWkIgnOPXtlnm+9ybXArfaRTtMHlQI7C8hsDuT79RcxbE++RxXWyAGsYkZtBb1fOzN7vT8w7nGJN6FBisXftBKdHQa34J79d/sTrcXS0BPxXYX9io9x798Gfc6awbf/r1uQslYfZngsHybDd9eJ6vu81F+UybfweQ+pUov2qxcISMyHEtzmHoXru0jDKU6AntcBA648O8VsSmR2LV9RIFGCQnxHnm3Cr5NvsV9RKQnRvl2Jyvv9+Pf75LsIwZOj3H+qTaKbBrBtwps66ySfYTBrxPrY8nvDucq46I+osiqJjYexxgqIrDXTeUd0n2EXCnnXPIQX2CfO/09k62PsASNwlnu4hjBffN8L+wjul8dJnCj4NCx1sTKB/wE9rmy9hGvfa2JyECMiu0uah8OsOnjlYv75O1O3nP/g9RO3UTAH2Bubo6vfOUrVFZW8txzz7GMxVhO93YNtFotkci8vbSXStaXbqbnZXHatf35fmYjc3QeGUz+v5eybQ5mkjkje08OM5lMD9b9Si8yuYzRK/0E7yih7fkedB4N4b4Y4cE4PSeGCCdtlQdO9KPSFTA1NMnmT9fQe3YEGSJ1EoBSrSA2Ik6M95wZQefW0nV8hLUPlAPQf3aUsSZx3c4jg8xMzQAw1hWm/9woPadGKFCBNaRnuG3eh63z0ADx5GAfGYT+c6NMR8V1zv+sDXvQRCTpTt3xaj9y+fxJ76HWMczletY+5OPKs7241prSaZs6XurPUMj2nx2l0CDH4Cmm+aV+Slaa6DsnPkrb/tCLyjQ/UI1dnaD/1CgDpybQutWU1FsYOCE2H1uf60Zrmx9Q4rNx5Eo5Wrea3sP9KAoVdL8i7Npaf9+Nzq1Nx/acGCI6NE3P4RE0VtCYVHQdHkrH6stE55wSXMxExDPtvziOoXyUruNCid3ybBfmoBEQafOmwzP0HBXtI9wxz7eI7cZanRR8aAWHaYQF3/1nU7E92FeZCIfj8xwusFUcOD/GcNOoiP1DH661JspucFJ5m4r2Qz0o5AUZfI+1TST57WcmPJe2Nm5/PpPvvjMjTFwVp726nu+BObCtMCT/tieD796Tw0z1i/ej90gfSpWSrpd60hwWlxalY7uPD8232ZMjlN/oxFihS8cayudPQC1ss0PNU4LDS6K+rc91p/kG6Dw4wNy04Kjv8Dh69yj9l5Mc/j7Jd9IIZyHfrnoT8XictoPC0jLVZsMd17TZcBS5UsZMeJaW54RddMtz/ZSsNzFwOcnpi72o9IW0/UbYCvb5Rhhvn0zyu7iPUFsKWfEWL4oCOb2nh5nszOwjeg+LerY930ORXcNYUxidT0vvhSGmrmb2Eek2+2w35TtdKJSKxXwv6CMIQ8vvurCsNLD50RoiQzHJPmKyJcxo9wTWClOas2x9RKrNTk/NoiiUS/YR/edGGWwUsanmaQoWM9YUztpHjDSPMXR2Cq1Xy5r7tLjXW+k7Oraoj+g7I/jW2DUMnhsnIU+gMirT7eXaNotShmOFkc6DvZh8xqx9hPF0ObfsWMvPDv+Y2fhsWqz6rW99i/e85z0sYxnL+M/Bk08+meGiIUfOPu+bKBo3AmJ86Xipn3jygyoyHGe4eQxjWTFyJbQ8041thTGdVqntpT7kMhn+21x0v9RD78lh5AUJmv6tl6IyDc7VxnRaqbbn+1CoFax7n3B96z0xwmjLGMONYTQlGmJj0wwmFwVan+9BVVyI/4ALx0oTkZEo7c/3MXo5Qmx8kNnoHP8fe+8d39hVp/+/JRcVy5KsYsu23OTucff0SW+ETEIKIYUQQnpISCB0CNnf67XswlICCywLS18gkNBDCCG9T5/xFHePe7clWZZtFRfp98eVZDuxdY+yyX434OevOPPR1dHnnvu5pzzneVwtUjHsfWYUrUWqQ4uzS5AK/c9IdWf8wCTKpJW63/v0KNY6IwCn/zDKYmAJX8QiwtXiRGVIYfTwdCy26OIcdn+iiub/bGP4gJPgrFT3p9q96HPdjB7zRGJHMDokmeJF3xKDr3lZDkhEjPkBP+PNbsZPSrGjR52k56fhapnD1dKB/SxLLN/4pTo61SrFDh8cp/yyQor35uPu6IrlO4qJ49O4Oj2RnE1gqzXS8+wY+KH3uTFStCtjlfFj08xETimHwhAOhxk9Ffnsc+NrpJvHjrqZHZ5HY1NjKdUz3e+NjQ1X5xtg9JCL+Sk/aGDyyCTJqiRGX5uI5VCXvTI2HDnoJOBeAA2MHXejtahW8v3MKIaClbHK4GtTLPoW2f1gFUv+ZcabV+X72REySlZOKg2+PMnyojRW8Y8H1uS777lRzOXGWGz/yxPYd1lIVknvxPFmdyyHp58Zw1ZrjNmC9b8wsUJ2j+R7+rQ0nu59bpKcxgVcPXOR60ySsy2L6psLaflp/5p8D77sZMm/zNhxafza/9x4TCVgdb6BWO4mj0zid0Pfs2OkZa2oHowcdOJzroxVUjRJsRwuLy8TXuXaM7zfSdAj9dmJVg+6bA2jxzxsucqOUqFcY7MTzTeAZ2ilz0ZVl1bn8PU1YrzZzexUgJILs1mYX5TGAq+rEVGszre714tvMvCGGhHLd8s0WVUZLM4tMXJwet0aAeBqmWMs301GqY7dn6ii4w+9G9aIg1/poPDdWcyN+LA26tetEdE+658KEg6FGTk0GfmeN9YIfb5ujXWeIjIu26hG9D4h1dnpgTkyCnQYyyQruDV99hmpz/o9C4wecWHfZiGjTIfGBH732hrR98wY1i1G0nO1pGiSGDziWrdG6BQmssK5OJpKOdnbTGdnJ+eccw56vZ7p6fgS7JvYxCb+Z8jOzmZ8fMUOs4AKmiy7GXlBmmeOH5pCoYTJY9Lfvc+O4bgom+CsVJOHXpvEFyHquFtcqHTJTHXOULQ3i56nRtEXpRGcXiIwHmDw1UmCM5F5ftcso4eczDkD7PpcJeOn3IS7of9p6T0TWg6zHJDenbMTAUYPOZlomaHuRgcKJYwdduEblt43Ay+MR/esCHhg9JATZ/sMy8uQ3WTG1e0h4JH+ve+FCVZNURk77GJxQVrrOf7rXrJKDcxOSNfte3aCJPXKe3b8pAtbtZna24ro+ssYQe8irsiaQO/TY6gMK+OakQNOUtOTsZQbGDnoYsGzhLtFymHP06NozStkYGeHB1fnLK6Ts6iNSrJ3Whk/JKkf9jw1is628p5dCCySqklBa1czftyNxpjCWMTaqffpUfSr1mAGX50kOLsYU64aPeRkLGKJ1fvsCBnFkRPBaiAEiz4pD4HxlXwD9D83iqlUGtfU3V5EcC7IaNQeI7CSb5DW8yyVBgKTEoGp79kJklJWEj522MV0j7QGOfDKFIHpBTxD0nuq95kxUlZZS4wedDEzOBf5LS4WfUtk1hgp3ZvL4KvjEFq5NyMHnMxG1h/HXpuCZZhqdsbuTdqqseHwa1PMR8YqzhNOUjRJZG8zx2LTc1fGhoOvrPTZqbYZdJnqlXw/M4ohf+W09sBLE7Eceob8LC0sr1nziuUbGHh+nOVFqdMGPCEphz3SdfueGcNSaYip8/S9sGJfMTsg3Rv3QKQNz4+TVW2IWeSt7rOmKh2h5TDDB6Xnu//FKYKeBdy9Uk57nx1DlZ5CIBCS1pi9C/Q+LY0Dhva5WQosMx4ZG/Y9O446IyVmVzhsm4odSl2vRqRZ1NTckE+KLpnhI5PMj6ytEdEc9vxN6rOebj/qTDWjx5zMj0mx0RoR67NPj+C4ODdG5h94aWLdGkEA+p4awVwlrXnNT/o3rBGzAwHmXT4sxQYCHklFab0a4e6W2uBzBVClp2xYI0YPuvD0RdbYI+VAn6/FdXJ23RrhHZpnumMedaYaS5UBa5We0Vddb6gR0T6r0qfibpmWlO50UiNfXyOGXptEkaQgZ6uZ4cOTzI8F1q0R+hN5XHZ2A39u/i2LoQVefvnlzTWvTWzifwFPPfUUF198cezvZJK5wHAZmkkjBKV3f++z42vrULMTa2Q/aeClSXyTAfyRWtn79DhJKiV551iZPOZi6NUpktRK+v82gcqqIjizwHSk7vc8PYZKl0zV9flobWoGX5lkdsTHzGkfKouK0EKI6S6PFPu3UTSmVHJ2mcjblcn8pJ/+5yfwDgQJTi+iTFIw1Sy9I3qeGiUtQk4OeBZYXlpm4Dnpt0x3eRjSpzBx0huLja55Db/kJESIoDvy7hyYZ+jVSSYi1nC9z4xSstfOrk9UcewHPfQ/O85yxKLUPxZk6NVJpiKH1QaeG8NYrCezLoPF+WX6T4zF6j5BGHp1EneXFDt6ZBL/TJDpzgBHOruw1hnWjFWGX5vCExmrDB6awlyhp+DsLJzNXk7/bYyUVfsXQ69OxSw8hw64WZhfYvC1KQhC71PjqPQr45rBVyaZG4vMzcNhwqEw7k4ph71PjaFZtQYz8OIEPlcQlV46jDbVMcPEEVcsh7rslbrf/+I4Qc8SqCSnHo05NZbv3mfG0NtXxoZ9z46z6F8GFcwM+dbku++5MYxFK2te/c+MsbwYZtfnK1n0La/J4cCL4xhXjWt6n11rUzz06mQsh30vTjA34Y9Z+fU+NU7e2VbUeun3Du+bwtMXWZt6RVojmhmSxnQ9T2+c75GD0yz5l2OCCf0vjVN2iZ3qG/Np+cUgAy9OMD8pva+juXNGlB57nx6T3rMR27P+F8fxu6W1qemOaYZ0yUyc9BL0huh9egxd7kq+B14YJ+iV+qzrtHdNDpcWlgjOrvSl/uci+Qa84yt9tuQiGyhg5PCK2nn/Myt9Nuhd6bNzw5LqkmnEH7Noe32NGHp1kvkpH+WXFxDwLjD06uQbakQs9pWp2Fqgd2hu3RoRxeCBSXKbLCzMLTHZ4l23RgDMnPYx8OIEpjIduz9ZRetvehl6df0acfTfu8k5x0RwaomMSt26NSI6FvdPL7G8EGI4Mi9ar0YYCtLX2MgpI8r0G9WIqG3gxCk3WbUmDCVaZk77Xte/J5gd9eN3LeDtm0FfZMBSrUelVxL0htbWiFen8LuC6HI0EEpl4OXJdfusSqGifHYHJXXlHBs8THd3NxdddBGZmZmMjcW3+f5HgyIcju5C/GPjxhtvjCknAahJ4wzFu9eN1VqU1H+4guDMAke/LeMhjmSfpExWsO+hthh5YiPoHFpqbyhkqnWG7j9s7PWutSjxOUPYz7UQnA5KlnEbYPsny2n5zVCMjPFWtTUaP3rIKdnQbQBzTRquUxt7QK5G6ftysVYYmO6Zpf1XQ0KfsZ9rYTgycY7XztBSKCFfdRHseqCScAhZP+D8863Yd1uZPOXhtIzva8M9xWhMKo7/uBffaHwJ3vyLMsmqNnL4G/Ket7seqGR5QSwHux+sYmF2kSP/3h03Lvq7hg86GXx6Mm5s5Q35qI0pNH+3J24crOqHX1zfA35NW79QRWg5LHsPcs80U3BOFuPNbnr/Mh43NhEUvls6/dT5p4G4/VxrUZLuSGfi0MyGMaux+8EqwqEw+/81/u+KwlqfHrcOgNjzGsX2T5aTrEni5MP9zPXKF4Om+0qYOOWJ+yxWvj8v9lxHa9hG2PVAJQuzi0I1dvunyklWJ3H8v/tl65w2R039rQ7mxvwxa783INfLi2PPs7S8RHJyMjU1NRw7dky2HZvYxCbE4ff7MRqNLCwsxP5fI+dhUpjWja+7zUFatprm77bhd8e/trFMQ9W1RSx4FznyrfjvMYCtHy0lWRPf611jUuJ3SzWr/Bo7nb8Z3jA2/4JMTCXpHP++/PvOVKml4upCAtMLHPsP+XpX+K4sMmuNsu9yc7UOV8uc7PUAdj9QBQrY9y/y71yQ1FwmTnpipI91Y7YaKb44h/6XJhh9xbVxYIIovkw62dL5x0HZ37fr89Kp6/1fkn+PRolHh74uP0aqv6uYuUk/p/8Qfzzn2JuNrSGDnr+NMnHEEzd22/1lpOiShcY92z9djlKh4MBXOmRjt91fxsgRl+w9iD4z3iEfLT/rjxtb+t5crFUGup8YZurYBgb0Eez8rHQP4j1bbwbbP1kOSjj01fj3y36WheGX488Roqj6QAHGojRGDjoZkBnTRmGq1OJu33jcUXBRJll1GUJjb40JGu4R74d6h4byy/M4/M2N5wBZW42QBBMHPWtq2HoofW8u1koDzf/ZETfuzbR160dLSU1PkeaXG9SNruzDDI4OAJCTk8N5553HL37xC9lrb2ITmxDHP//zP/P//X//X+xvDTr2KC5eP1gNuz5RRdC9wLHvyY9Pou+xY99pi5GDNoI6U03D7Q4mT03T8+eNF2jVRiUBT0iyYQrB1PGN59FN95bS9echZgfkLYwSaStICgHjze4YWWM9GEs1eLrjDIxWIf88K/Y9Vtxds3Q8KrbmlbPLxOj++APgbZ8sg2XivhfeDHZ8ugKAg1+NP+4w16ZTfnkeEyfi31eAqhvyMTp0tP6qV1JnigPbThO528wc/Y78mH7HpysILYc4/JB8DnY/WEVwZpGj345/XWu9gdK9uYwccjLwTPzxgeMyG7oszcbrDKuw7f4yUtKShcbfOz8r3YMD/xb/HpiqdFS8N5+xwy76/jYRNzYR2HaacJxvo/PxIVwn46w5qSX1qaljYmteux6oglCY/TJreVFkVKQx3RF/bXnbx8uYOD4d25CKh/q7itFaVbQ90if0/NbeVoS7ezZmSbkeSq/MofuP0hwhWsM2wo5PV7A4uyRUYxvvKUFtSuXUz3tl65zaCI0fqWJ2yBez9ns9FtUeDiy/QnAhSFJSErW1tfz1r3/FZrOtG7+JTWzizcFiseByrczFt3I2RoV13djy99kxl+k5+l89BJ3BdWOiUFlVNN1ZLK0jfVe+htTcXIjWquJgnPlzdDMewLHXRu8TG++dZDYZyaozcuon/bLfrclW0XBrMX5nkGaBNTLb9gzsu60c+ff47/Io0UAEOz5VjjJFKbQ2BJJ9k2/EF8vHetAXqdlyfREDL0zIjtESQe4Z0v5V52PDuE7FX2/Z9vEyklKThNZbdn2+kgXfEkdl9voAtnwgH797gd6/xt8/s23PoOiCbPqeHmVcZs2r7rYi0mwaoXFP40dKSNEkcVBgHaX+Dgfjx6djNn8bQWVR0XRXMTN9c7Q+PBg3Nu8cK3lnWDn95CiTRz1xY7feX0ZSskKorYmg8Z4SlColR2T2fDObjLJtjMJxiQ1bo4nhg1MMPiM/TgKpn3v7Nh532LYasZ+RKfu8AqCC3Z+qYmF+iSMC8xWVVUXV++wxJfn1YCjRojKkMnnUs6aGrYf886zk7LRw4qe9MULXW9XWmpsLScvW0Pwf7QQ3eGwHslvpHpWeVZvNxiWXXMKPf/xj2Wv/I+Af3u7N6XSusXYD2M0lGxKUAHzOEMvBEHOT8ScGuWdKJ3PafzfAwIsTG5N+tNLkROfQMtfrY98X2+ISlHZ+rpL6D0uT1OEXnHGJCdk7M0jWJFFyUdaGMavR+9QI3sH5uAQlQ6kWx6XSxOXAl9vjEx60UH5FATsik2o5dP92hKBnQZagVPjuLIovlyTj5AhKICkuLQeXZeMqb8inaK9YrgD2/2u7LDkGwO8KsBwMcfrp+BtaAK7uWRbnl2QJSgCDT08KEZQAloMhlvzyOUgE85M+wsthlgWu2/7woBBBCWBmcB6/W+ZlEUHAE1xhpcfByCsu9n2xTZigpLFIxBs5ODtnJR94fWrcOJ8zJBGUtNBwV7HsdT19cwy+LLZJlnummdLL8qi70xE3Lva8aqH8Onvc2JbfDDE/GRAiKKEFlSF1jYXfeog+1/V3Oqj/cAWZjfoNY/f/a3uMoLTtY2Vxn8tDX+tk8pRHIihpIXtPxoaxAKGlMBMn40wgRvScE7oCPSZMGSaam5tRKBRrTr5sYhObePO4+OKLY9ZuAGayuUBx9YYEJYCpzpmIit7GQ9fsiA+4p8vPxPHpuASl4suyabhHqsVHvtUdd1KfvctEwz0VVN1YABCXoARga8xAa1XFjYnC3e5jfixA+69648aVXyPV7P6nJmQJD/V3FVN+ZT6W2vS4cVEM7ptiql1+M6HuDgdoJMJDPIISIJ2KD8N0tzxJveHu4hULOxn0PD7Gvi+2CRGwZkf9+CbFxhK+qSDu3vhE3yiOf79HlqAEsOBbIrQUZm5KrA2iWJxfYikgNp47/M0uIZKYp8vP4twS7h75HAy/5mLJv8zi3KJs7IF/a0+IoFR0iY2Sq3Jk40KLIcKL8udsogSl4iuyyTkz/hil7fcD+J1BYYLSjs9UUHF1YdyYgacnY8+rY282mtyNO7rfDZ7+ebr+HH/BLIqiC7JJ0SVjrtZtGDNxxCM9r0DD3RVs/1T5hrHdvx9h37+04XeHMFVqY1bmG7V18NUpTv1SIhVFa+9GmBsPSEoTcepG2dg29rCXHFsOLpeLhx9+GKVSidv91i34bmIT/6jweDykpKSsISidwaUbE5QAArA4t8jcRPwXftZWad516teD9L8wsTHpRy2RMoylGgKTAfb/a1tcIsu2j5fReI+0hjR1bCYuQSmjIg2VMWWNfUI8dP15EHf3bFyCktqmpjCyhnb4G11xCUoAVdcWxa2xqzH4/BTz4346Hou/5mXbaYrNgUU2v0IL4ZjidDw4LpNs8URx8KsdsgQlgKX5RUlp8IC8Gp67Z46gZ1GWoAQwfsAtRFACaYy0EFG5f6sw7wyyvBiKnYqPh97Hx4UISiCdxI8qE8m2YSyAd0h+XcbdNse+L7aJE5TUkfG9DDy9PsKhMKq0lPiBAWIqXjU3F8pe19nqiVl2y8FUpaPyfQXU3lYUN+7wN7piBKXSK+OPKTse6WN20CdMMNTZNGRvjT/miRKUKq7Lo/HeColkuQEOfrUjRlCqu9NB0cUbr3kd++5pxg67YgSlaO1dH0qWAstMtm5cN1MCRs5cvAwb+VgsFpqbm8nOzubyyy+Pc91NbGITorj33ntRKBQxglIWdi5QXL0hQQki7ia++O8wc40eVBCcCjL06lRcglLuGWbqb5Nq/Kmf9sclKBnL0mi6r4KK6ySLpXgEJZCs5NOztTErqnjwjwVxn56l7ffx19EKL84CFYwfmpYlPFRel8+W6wqx1m1cY1ej7/kJJiMqwfFQdX0+qGC6fS4u2QEgRZdKeDnMdL/8mlfNzYWoNt4CWYORV13s+5c2WYISgKdvnrkRMWEI7+A8091ia16tvxyUJShBZK8xuIzPJT+eSwQL3kXh8dzxH/TKEpQAgs4gvskALoEcTB6bIjizSHBmQTb2yDe7EiIo5ewx4bhEfs6y6F8iJDCujxKU7GdbyJFZl+n96zizQ/PCBKWmj5ZSfYMj7nM+fsQTe15zzzCjs8cJDsJUi4fTT2zMe1iNwnOtaEwqzFs2fnhmTvtiOWi4p5ytHy/bMHbw+SkOfKkd/1gQTbaKpntLN/5tQeh+fISO30prXnK1ZnbMz+Ls0oYEJYCCsS2cyWVkZ2Xj8Xj46U9/SkpKClNTYvfj7xn/0EpKFRUVdHauFJE8SilX1K0bq83XUn9TIbMjPiGWcCKKRFnbDRS/KxfvsI+Wn8pfu/w6O1qTKj6LsFQrWa/5pLbHUxcxlGqpel8BJ37QGVfZJIpdn69EkSSmcgNQe3sREyfccRVkNBawNmbKqvHE2vBAJQqleBtEsfsLVYCYmkDpVblxyWT/G2j8SDEjh5zC6jyiEFVSShS1txXhGZwXvs9vBwylWtLtWllyW/VNBejz0xg94orZur0VaPxIMeoMFX3PjDEmsICHForOzaLvifhtaLqvhLZfnY5Zr8XDto9Lp/baf9fPdBwFgNXXDi2E45540OaoY8Q6OfU0a306RRfkCJ2+Rwu7P1HFUmBZSIkgIQWoyLXnJwOc+K/1CQK+sI9DyqdZCi2hUCgoLy/n4YcfprGxUb7tm9jEJtZgZGQEu32FIKlAyfmKqzaMr7vTQZpVHVd9I4pEFYm2f6qcZFWSsHrQto+X0f2XITxdGzdktaqKnGpJw4eLCYfDHP9+fHISgLVRT+leO35XMO7YLwqNTU3Flbk0fy9+bOG7suh/Suz9Zj/LQv7ZmcJjVVFElZEmWz2yxB/7WRZcPfP4R8Q2Et4OFFyUSVqWhrZfDLyl101ESSkRZG01Yms0ceIH8v3s7UTxFdn0/Eleznj3FyIqkoInHEWx+8EqQothYcJUwUWZ0qZZnK6WvctERkm6WF/QwO5PVrG8EOKggAKWJldD3Y2FnPhFf9z+rsnVSP+ugbRMzRqbt9ej4cPFeAbm6RNYbKy9tQhdjoaO3/XHVYqCVapKguO0utscpNnUcRWbejUn6fVJC10Gg4G6ujpeeukl2WtvYhObeCMuvPBCnn322djfBVRQqqheN1ZtVNJwTwVzwxurb6xGdE6572ttMZuqjWAs1VB1XREzA/O0/ly+bhZcmImxMI0TP9yY8KG1qyW70YBEKoraX60HtU1N3QcLOfHz/rhxUUTnlCK/DSRCwvTpOSaOxJnfqyFvl0WW8BTFjs9UkJSiFB6rimLX5ypBqWD/v8pft2iv/DrE242amwsZb56OS1R7MxBVUkoUFdflMT/hF77Pbwe0djXGPK0suc1xmQ1bvYnRg66Y7eJbgS0fLMBQkEb/s+PC6hL551ll1Y/qbi+i87ExyVpQBnV3OkjLVNP5mIz6UwS1txaiUCri1pzVykhy6mmGYjWll+YJqfqCpCq15FsSUkJLSAEqooo3NxZ/L+MVxeMEQ0EUCgWlpaU8+uij1NfXC7V9E5vYxAq8Xi9ms5mlJYlgkUQyu3k3KsX6O+EV1+WR4dCx/6H2mK3TRkhUkajxnhJUhlT2P9Qme22QDo/1Pj0WV51otaqKyqKKq/hUdX0+SRql0D6qvkBF9Y3F+CYDHBdYu1DpoezqQtlr5+wxMXrELfT7zVv0lF9pxzswR8svxA4OiSBnl4nCC2xMHp/m9OPx10Qym4z4JvxrrKz+t2HbnoGhII3O38YnlSWKRJSUEkFGpY7craa39J69GYiMY+DtUxvf9XnJRSgeGXE1bNszGD8xHffZMG/RY9milz2oG8XuByLrQg/Jt0GlV1J3eyltj/bH7e8qq0qyDVSBzqqKG7vlA/nMO4P0C5D1S6+SFOLbfz/IdLvMIdgEVZXK3puLqVxP8w97Y5aHr8ewqoeOQDMA6enpbN++fc2c/R8N/5BKSseOHUOhUMQISkkkc4Hi6g0JSgC+QR/hpTDB+fgsTm2O5LXY99wozi5vXIJS+XV20MLEoRmav9cWd9On+PJsdn5OKmKdjwzH36TSwpbrCtn50cpY2+PBUmVAkaTAVBOfbRnFiZ/1MXxQfsJdc0shACd/2CdLoqm9pQL7Dgtai1iX3P/Ndk4/IV8gt32sjG0f25hB+Xrs+0YbnY/JL5pV31RAZrUxpuYUD0V7s9j6sVLQyoaS2ain6b4SoTzoHFrUGSpyGi3yF0ayxRNpQ6Kw1qeTUSl2YV22BltdfJWbKMqvs1N7e/xTUlGUvi+XrR8tFYrdcl0h+XvkTw62/PcAp58YFiYo5Z9vZdcDlWhkbsex/+gRJygBO+6rILvRLHvvjn5bIihl78yQ7ZeHv9HF5CmPEEEJIDU9BVWGjFJUhKCUf76V8isKqI5zcm7q+GyMoFT5/ryYhPz6F4Z9D7XFNr4q358XNxctP+tmdsQXIyhFa/J60GqVhJfDzAzGselTaDknfAUOqsnPy6ejo4Ompibq6jZ+X2xiE5t4IxoaGtYQlCpoiktQApgb9bO8GEITR2VHY5OecXe7D++Qj/ZfbUxQ0piIqbQc+lqnRH6Kg+2fLqf4MqmeHv5GV1yCUt1tDiquLiRrhxFA1i5JZUxFbYhfV6OYOuZl4vi0LEGp+LJszNU6/OMBWYKSxqYmZ7uZbZ8QGyMNv+yk5+lRWYKSxqZm1+crZZVVouh5fIyux4aElInyz8qk4UNi44Kt95ZSJHA6CSRCRvEV8uM5gKz6DIyFaUKxpkotJsHxUSLQmJBVBYoiZ7uZtCw1GoHbocnV0HBPMcYyeVkrjUmy8LKfJT8GLX1vLrZaE6XvzZWN7fh9f0IEpW33l8UU0eKh+4lh4UWgtAINuTssbLsr/rMxtt8dIyhVf6gw/kX9MHLQyckfiqmfZm5JR5miwFoZXw0tSmDa+dFK6m6M/2w0f68nRlDa8ZkK7OdufIr35I/7aP5uG+52HxqTMu7z4XeDq9PL6b9IiiDRmrwRAt4FlhdDcWukw1/LBYqryc/NJxQK8fLLL6NQKDh9Wp6AuolNbELC+Pg4SqUyttiZQioXKK7ekKAEEPBI6tMBb/xTw+pM6TnvfnyIqRZPXBJP0d4s1EYlnm4/x77TFpegZD/bElMjGnhmMi5ZAKD+Jgc77pPmkXLEI0u5jiSVEmvlxupzq3HyR92SqrEMF6LqhnwAOh4Zik9QAppuLyXvjEy09vh1MoqDX+mg88/ydnB1dzqkk8CC2P/ldtp/I6/2U/yebHKaLBS/R36MlLPLJNlRGeW/31Cspu5OB2qZ9wVItlXpdi0528TGlbadJqE2JApjqQZjqZjsp6k0HVuTWHuL9mZR/cFCodiCCzNp/LC80jdA3QcdFAgoi/U+Pk7H7weFCUpZWzPY+dmKWA3YCK0/H6D78RFhgtLWj5Vi32OVve6JH/YRmAyQUZEWV3UI4MR/9TJ22CVEUALQmFSoTfElQaIEJWujgarriuLeu5meQIygVHRxluyca/9DbTGCkuMyW9x+3PFID57euRhBKV7e1GpYXlhmbjQ+menM8GVUs5OC/AK6urpoaGhgx44dcT+ziU1sYi2uvvpqDAZDjKBUxVbOVVyxIUEJwDs0z1IwhEq18T6QyiJ93j8WxNk+Q9uv4rzDVRFFIiQFNjmCUtO9pTFVl+b/7IlLUCp7by7VNziwbTUCyFrSabPVaM1iCuPeAUkZSo6gZD/bgnmLnqAXefKTCgrPtdH0YbExkqvVS+cfh2XJLio97Ph0eSwPchjd76bt0QFZghKA48Jsqm+UVzgEaR0r/7yN5/SrUX6NPdYv5JCz3Yy5XEz2SV+gwlDyNmw2qiTClgiy603oC3VosuX7mkqvpOaWQoxlAmt6KolYlbNHfkxnP9tC3hmZlF4hrwre9mgfB74pvuZVf5sjpogWD+2/G+Tgt8QISiq9EsdF2TTeHn9c6Wr1xghKZQLreb3PjHFC4KALQEaZnmRNEsbi+GteUZLP1rvLqL2pOK6qU+svB2MEpa33l5F7xsbrpt1/GOHot9skgtKqurl+I2DksJOev0nr1tGavGH43CLLgeUNCUoA9mAxFyiuJi8zH6VSyXPPPUdSUhI9PWIuRH9v+IcjKRUWFtLU1BT7u5ZdnKu4Yt1YnUPL7i9UUXqV9BDu/3I7XY9uTIzZ8ekK6m91xIhH8WINpVrMpXq23y0twsipn6TbNCiTFWjzBQq/D+YnAwy8HP+kbPRaPY9J1hlxlWW0kjqUtT4d32hAVgmn4a5i0nO1Mcs7OZz8SQfTPbOySk5Fe7PI3pkBPpg8Ji97mKRJIkmTJNQGc00a+IirABNFy38P4O6Zpecx+QGGpdRAanqKrKIWQO52KypDKqTKb1zO9fo4/r0OOn4nX7ys9ekUnJlFzXWF8o1IEKWX5VF2eb5QbOsj/UKnrAFMjnR0NrGFoIwCHal6GenpCMaOuWj/fb9QbLSPWevFLHMUSgWmSvk+HyUoRYl88dD6m0GmWmeE+g9I9h9ZtfJEsNN/kl6s2z9ZTonMIGq1raFcDRp8boqF2UVaHu0Xaq/OpiFJpYxPwor8dp1DS0ZxeqxurhvqDMUmKls/Vkr9rY4N2+xzhtj/pfYYEW33F6o2lA93KCooHdqGOknqkydPnqSyspJXX301/g/cxCb+wXHq1CkUCgXHjx8HIAUVFyiuxq5Y/1mru83Brs9LJOuex8c4+JUO/BusbxvLNDTc7qA+YqHZ8rP+DWMBam4pJ3OLEY0pMvyNt1argeTUJPQi4y6g6w/9+N3BmLXSRkgrkGrIgS+3c0BGUaX0vSsE3B6BBY2s+gzK3pMn1F7/eIDJVg8tMl7sIJ2GBmR/G4C1Wo8iSUFoUV6ZM2pH5xTcPOj4fT+D+wRkcDWQakzBXCr27tZla7CUi8mEH/pqJy0Pi9l4lL4nX9YO7M2g7GoHRefaZMkgIG1iNH+3Le5zEYUqTdqgydkhT+T2+yFVn4K1Wj5v3b8fwdkxQ/fv5dVHo6o98SzMViMpVUmKJlk2bioynss50xyXnAMwP+DH1enl8PfFCEX5F2Siz9PGnpONMPD0JH53iKytRnZ8Jr4N9sDTk+z7YhuDz0rzLbl7PbxvKi7hejX0Dg1JqUr09vi1Ldpnqj9UQlZNRtw2dP5mOEJogobbHWy7f+ONuM7fDMfUpMqvsbP7gaoNr102up2i5RVCRWNjI2eccUbcdm9iE5uAPXv2kJ2dTVQ0vZbdnK14z7qx6kw1uz5fFbNFOvT1zphd0Xpouq+UxjscqI3g6fbHjVVnqsluNFN9kzROi2evBpCeoyFZlUR6gRiJZ7p3liEZq6jo5v3wS072fbFNVt1m+yfLMdemE/CEGH4pfmzl9XkYHTrsZ4sdGjv6w26mWjz4huMzn3LOMGPbKW2IiBAsUrXJJKvFlnYzKqRNGRF7q54/jzF5ajquLV8U1hojalMqAQHVqZztVtIy1agE9ocCHjj2nTY6fys/9lJnqim+KJvSKwvlL5wgqq4touwKsTWvUz/v5fDXxcYQ1koj+jyxuYa5TI/akgoCj8fAyxNCRDSQLOJAslOTQ2gphDJZiUlgcy+qfFV5vfzcpOVXQ4wfdwspJAGUX5FH9lb5dbeo7V3jPSWyZLuDX+uMjU/kCHRTx2bwTQU5LWjRqy9II1mdHP/eRX662qjEVm+i5uaNx1IBD7RF5nC1txXReKcDQ/H6Fw94pMM50Vzs+lwlNTcVrhtrU9gpGdxKepI0vj906BDl5eW8+OKLcRq+iU1sYmpqiuTkZH7/+98DoEbLBYqryVEUrhtf/j47Oz8jrXmNvubm8EOdG1qLqawqmu4qpi6yVt31+5G4NmQNtxSTs9WMyhrZRI/HI1JBii5Zdl4YRddfRpgf9zN+xBM3LkoWOfINeRusvHOsNNwtjROHXpRf67HvsVJ6qTwRBICgNE9ue1S+VkcJGK5W+b1GfZEBZXISIQFvoiiBx9MlNldv+3Uvgy+LEYd1Ng3mCjEyUUZxOplbjEKxx/7jNCd/JkaUKL1Cst17q1H+Hjule3PRF8kPenqeGOTotzrwjwmoT6WmkJ6jlcQA5BCENJuGzEqjbOjwS07Gjrro/pP84UtvXwCCCP02gOT0ZJJ18mtenq55CEqWkHLEqqA3xPgxN60/FzsEZq0zYKkySHaIcTB+aJqgM4ihRMvW+8tkbeL2/UtbbL4Vq1kboO/ZcVzdXiFVNJVVRYomCb09/ng1as3WcLNUN+NZ1Q08NRkjNDXdWRz3gMjAU5Mc/oY0F8i/0MrOz1ZuSKIrn9pOeVDiqoRCIerq6jjnnHPitvvvEf8wdm8dHR1UVlbG/k4mlXM2WKiJQQu7P17FdO8s7b+SP8FU+O4szCXpHP1OnAdcS2zDveSKnBhRYCOUvi+X7t+KWYpVvj8PnU0TewjksPvBKpYXQxz8N3nbgagl3Uz/HK2C8nki0tD2cy0szCwIEY4gYsem4C23w2i6twSVMZXOPw0IkZQSxqr7LhtqUQrZ7iX6/ZVX5jN6yMlMt3xDErF7K7/OjndonrHXxJSBRJFQHhLIb6JI1N5QFLW3F6GzaRg+6BS2v6u8IZ92mQ1lc00aoaWwmEpSxO5scX5JqG7kn2/FvtuKd3Celv+WVxzL3pNB/plZQjUGIPdMMz6nP27bHZfa6H1+HHySTWQ8gmf2zgzsO60clvGyBula9XdW4umbk633o+F+5vImGRyKLAzV1nLixAnZ79jEJv7R0NDQECMnAdSzB4si/gJx1QcKMORr2f/NdlmLN5DUXPpfGI9LdNGYpA13jSliLfvsxjXXXK1DmaqMkRrksOMzFfQ8OSJEtKm+uRC9XUvP06NChJ9tHy8jRZssLIdsrtax6FvG2xs/cRXX5tHxqPy4FsCxN5vsJhPuLi/tj4h9RhS7HxS3v3pT0CDUh0Denu/NIHuXCW2WSsjmLBG7N1OlFmuNic7Hh4V/nygSykMC+U0EWVuNFL87h7lRPyd/LLbBJordX6iCMOwTsLgBYspocs9rwUWZDAiO5aIWKJ1/HMTVIiMrDez8TAXKBOx+tt1fhvv0rBCxEQSs+DRQdK5txSZO5r433FPM+LFpxgTUEyqvkzb4RdSzTmW8in/Jh9cr1ebh4WFyc+VP821iE/9IGB8fJycnJ0ZOUqHhTMVe2c/t/GwF092zdAqQSbO2ZmBrytjQKhuQNuIjG+4FF0bsM2XUlkQtxYouzsJUphe26Nr1QBWhhWXZTTKQCDyVVxcw3TNL+6/Fxjx558rbt1kbDRBC2K5s1+cqUSgVwu8qUVR/sBB9gZbux0fecus0YM19lw1dZZv1Vn5/6btzmDzpZqZHviGJ2L0V7c3CN7Egq5aVKBLKQwL5TRSJ2mCLovy9uVi2GBneP8XAM2LjpLKrcun6Q/xalF6gJlmTxHSH2NrtrgeqWJxbFLJeszYaKN2bi6dvjrZfyq99m2vTKb4oJ6YULhIfWgjFbbv9bAvOE04CHklNLB7B01Slo/BcG8e+K7DRqIadH6vA0zcvOxf0hJ1M5fcxODRIOBxm+/btHDx4UP47NrGJfzBcffXVMXISQD1nYlHEV6xx7LVh3WLg+Pc7Y5vk8VB/m4Oh/c64BBqVPrLhroLcbWZGXnVtGKsvUKEyqpk6ITYWaPpYKf3PTeA6Jd/Y0itysFYb6f3bqCyZCSSRA7UpVcjuDqS2o1TELOc2gmOvjd4n5G3OQbK9crwrG1enV9jWShS7Pl/F8sKy8DsiYagQyhtI6jnxCG5vBuYaPem5GiF7rUTs3nR2FZl1GfQ+Oy78+0SRUB4SyG8i0Bepqb7BwezQPKcE9tcSwc7PVUJY3E7OWJZGanoKk0c9ceNy9pgYfU1MIbPksmwy6zLErNSQakyqNoX9XxIbh9bf4cA77KP3r2LPeP6FVgafiU+CzDvHukKUlLnvNTcV4OqaFVIMdVxiI7PGyIF/75DtSy1p+wkkz+PxeAA4ffo0xcXyyvF/D/iHIClt376dw4cPx/6u5xwsig1OO2kle6WRg874ykIRVH9I2nASmsxFCAHLwRAHvyq/IbPlxnyMRelMtnjolpmkQWRiqU4SJlM03FOMq3tWmCAhQgQpvSoXVXqyEIEBEicdaXPUGPI1slZZRXuzMBboZK1RYtfN11J+WTbN35WP3/HpCpTJCjE7ireRPLP9k+UokhXCBJBEkAhJKRGUX2fHXKqXLHbejrwI5nvLjfkYCnVC7Si+PBtlqlKYLJi9J4OcJjNHvy2/SFD47ixhO7n6Ox1oM9UM75ti8Dn50wXafC1brrLLE3QS7KPbP1lOy8+6hQhkDXcVo7GqaH2kX5gcRxihepq9J4Oi87KFiZP1dzrQWFQS8UHg9+74bAWTp6bjLpi/pvwr/mXpYlVVVTz55JPk54udsNzEJv6e4ff7SUtLi22SpaLmLMWlG8Y79mZjqdSLTdw1sOv+SmaGfDGrpXiIEgK6HhsSIhLt/kIVIFaHTJVaKq4uZGZgPq59SazpuRqqr8mLSfkLQYAIsvWjpbT+okeIXFJ0iY2crWame+do+6XYWE2UgNF0bwmDr00KE7zK32fHP70QlzQGkopMw+0OptrE1HjeLvKMJldDw81FjDdP0/uEGAFEFImQlBLFjs9UsBxYFtqYeVMQzPeuz1ey5F8W6v/1dzno/NMofhn7npX4YiZbPYy+svFiLEikI2+3V5iItfvBKsLLYWELuuoPFTI35qf/KZmxXQJ9tPBdWaTbtZwSIWxpVpHPBfJcfo0dS4WB8ZNuITLdjs9UkCRKmNJIh31c3WKLvQUXZZJVm8Gh73ZumBunZozjvtcA0Ol0nHHGGTz55JPybdnEJv4BcP311/PII4/E/q7nDCyKDeye1LDtw2WMH3fLEmwASq/MwVJhZP8324RIErseqGIpuCSkJuO4zEZ2g5nJU9NxVZmiaLq3lFR9imRfItCWLR8sYHbYx+DzAkqMIEQEyT/Pii5bE1MykcPOz1agTBYnm6qNStId6Uwdi795mLPLhGWLgZM/EiP0qjPVlF1m4+SP+2Vjm+4rJUWbxAGRtaa3kTzTeE8JyZqkt2VzLxGSUiIovCiL7G1mmn/cK2tD+KYgmO/i90gK28d+0CurUGQ/24ImI1VIAQAkok3+nkxZe2kQI/JFUXFtHuZyvTCpSZ2ppup9dnmCToJ9tOneUlofHRJSdqq8Po+M4nTaHu0TUijb9YA019wvQEI0VemoeG8+06fFiJMV1+VhLEyTNsIEfu+2+8uYap2Ja/d3OOk5Zpak9feKigqefPJJCgsL5S++iU38nSMYDKLX61lYkCxyNejYo7h4w/icPSayt5o5KjInV8GO+8rxDvlpf0R+rBElBHQ+NixEJNr52UpQwgGBOa7OrqL2pmI8vXO0/Vq+LSq9kqobioTeDysfQnbzvv42B+2PjcS1T4rCttWI4905THfPCeUPpDGVCOGg5pZCRg+7hfIMEjkitBCWVedEBbs+UcnkSQ89fxFYa3qbyDOoYOfHKxlvdgsRjxJBIiSlRNH00VJCC6HE+l0iEMz3tk+Usxxc5th/yO8JbvlAPqefmhDq0wBbbshnun9Olihk3qJnbiIoa8cYRaKkptIrcgh6F+XnVgn0Udv2DMyl6bSKzq0+V8nC7KJQnvPPs5J3RiYTzW4hy8Wme0tJTU8WJk7u/EwFrq5Zuv8ov1ad2WQk70wrR7/XveG1vSovhwJPA6DVajn33HP5y1/+It+Qdzj+ru3efD4fSqUyRlBKIoULFFdvTFACtFolSSlKrJVitg/LETsLrUUglT5YmF3E1SX2Imv9xSDunllZglLUyujQ1zol0kW8WIuS2tslicjm7/bIEpS2frRU2rATJDJYKvTo8wV0myM4+at+Bl+Vn3xm78nAUKrFNxqQJSgBZG7JQGNWxbeQWgXfoE+IoASwFFhieUFsc2PHvRUS8UIA2Tsz2P1gFY5L5b3jYxAk/hZfns32T25skfU/QeUN+TE7GjksB0IQBkOu2I3Z9UAlOz4d3xIjiqb7Stj9iSqhez4z7CO8HCajQD6457ExYYISgH2HZNknUhOiBCU5uzWA4//Vy1TrjBBBCaD8kmxS0pPJ2i5TyyLPdd2dDnY/WIVGRq3+0Nc78TlDZDbqqXx/fOnu5u/3sO+hNma6fUL5GHhxgp6nxXI91jzN8kKIPrmBfgSKJIX0HwJ1TOfQkpSixCAjC7kndAkVNJKbk0tbWxuFhYXcfPPNQu3ZxCb+XnHTTTeh1WpXWYzsiktQAjDka0lWJ63YsMVDZO1XmawQas/Qq5Ms+ZdxdotZivU9N073X2U21DWSKpO73ce+r7fJEpQqr8vDVKnFP+KXJQ5obGp2f6GKqg9ErKNk1rpzzjSTqk+haK+YzVvfX8cZP+kWIig59kqqVyIEpbQCDSpjKvad8a20VqPzt8OyBCUArSWZ8HIYT5/8PdSYYPcnq6i7Q96zHSTSxc7PVsoHAmnmZAjDUnBZKH7rvaWUCvi2JwyNtKmQf4G8LRtAOBwmLKJFjqSqs/vBKoxlYna7ux+sYttdG9tRrMZScJlF/5JQ7PHv9woTlNCA1qoiV8D2Y+KgB787JKlRNcpLow++OsXx/+4Xawegt2vJqpe33MWPROL5QlXMrnIj9D81ESMo1d5aJBGc4lx330NtsTqjyY1/Hzt/M4yr0ytEUAJwdXvxu8VWmjQm6buX/GLPi6kknWR1fItuiz+bCxRXY9AYCYfDPP300yQnJ+P3vw2sxE1s4h2CQCCASqWKEZRSI7a6GxKUALUaUtKSMZWKWUQsLUjPsdooZkvgcwZwdYqtefU+Ps5Ui0eWoBS1Xzr6nW55gpJaUg0CaP35gOwieu1tRRJxQJDIYGsyYSwUsyUFOP6zfvpflN/oMdemYyhWE/CEZAlKANnbzOiyNUL2XwCByYAQQQlgcX6RpYDgeOfO0hjJXw6GYmmcW7Q3vspEFOFQmDBiYxj72RbJekEwH4mg+D3ZNH64RCh2KbgMoTBak7w1B0iHIEXX6mpuLmT3p6pQG+VjPf1zhJZCaEzx360g2ZSIEpQA7DutaCwqtHb5ZEcJSoUXyd/zjkeHGD3qFFZdKjrfitqUGrNH3BCR57ri2jx2P1AVs4HcCEe/001gMoCxVEO5zFi+/ddD7Pt6G55uv3RfZFLS9fgQvU+JjbvcvXMszi0xLGJ3zar5sUAdUxuVpGiTMcisiW5bPp96ziA3N5eOjg6Ki4u54447hNqziU38veJLX/oSarU6RlCqYVdcghKAMV+HSpeyoeXPGkSmW0r58g3A0AE3Qa/4fmP34yN0Py6/9q7SK5kbDrLv622yBCXHJTaMZWkEvfJEEZUedn6+korrImtYMtPLjEodWpua4gvExg7jRzwMvzYlRFDKO0davxIhKKn0StJztOTtELP5BRh8ZkqeoATobSqWF0LMjgnMa1Ww+1NV1NxcKNSGpntL2fEpsXGGzqqCUFjavxNA7a1FOPYmsI+ZABruKha2VCYE4WWx8WLuGWZ2P1CFeYvYPGjX5ytpukNs33PJv8TivNiaV+svB4UJSqjAUKjD1iAz3kGyLAw6g+jsKqHf2Pv0GCf+O45C7utgrjRga5RvB0Ek0ttnK6V1rDgYPzQdIyiVX2NHJdPsA99ojxGU5GziBp+fYuyoS4igBDB5yoNvMiBmK6eX9jCWF8TmTNZKPaq0FFSqjfc+9EE9FyiuJiPJhFKp5Mknn0SlUhEMvh2sxP87+LtVUvrsZz/LV77yldjfJdRSqNh4EV1iwk4JWX1pc9RsuS5f2Fat9rYiUjRJ8W3gItBYoOGuKmYGxNRBSq7IIbPGyFTHjBCRYutHpZNnorZm1R8qJC1LnZAVh86hZa43PhOg+PJsxppn8A2KSbi8GZs3bb5W6Pq7v1CF3xmk+ftvPdu27Fo7OqtaiNmZvSeDwrNttP12QEh1JhE03VeCypAqnL9ElJR2fLqCJJXybTn9v+3jZSwvLHPsP+TvTf75VjJrjLT+sjuuBdibgaFUy5brCnF2eel6VGbzWiuRHUWt6qJqQ4OvTgqptwFUfSBfSHraUKoV7kuOS21k1WSw/1tiSkOJ2uAlokYQrYOiVpsZlVrKryjgxA/bhe592bV2klOUQjkEaLi7mI7f9MS99iHt03jnpQnhpv3bJv5RodFoCASkVVElSZynuHLjWJuasktzOPEjsclQ1Y0F+F3BFcuheO0wKam9vYyWRwaYH5Cf5FdeJ52A3feNNmFFGIVC0IZDI5FmRG3NNCaou6OS4YNOhl8QW5DWOzSyFm8gTfZE5asL35VF7g4L031zQopVIN1TEWJJNN/NP06AiCIIjUnJlhuLGXptigkRefG7i1EmKYTG6Ili94NVLM6JKdokqqS0+8Eq5icD8e123gQstekUvztX2MKw4Z5ivIM+YWuxRFB/VzEaU6rYuCFXg39EnKiSqEKS3qEhoyRdlrCXVqARqjlR7PhMBZ6+OaHnMmqD55sKclxgzlJ+jT2iRuAUIgNWf6iQ9ByNsNVm40dKCEwvCCuJSIpv3fgFFMIttelk1mTEvfaMfYzDQ5KqksFg4MMf/jBf/vKXhdqyiU38veBnP/vZmgMSZdSRr9h4Eb3iGjuTLR7cbfKy+2ojVN1QImYhFLm22qQSqk9RyyHvkE+ohtjPtpB/VqYQmQmk9TddtkbY1qz0yhwyitMTUuvR2tX4huOPYfLOteDpnWN2QGysk6jiEkjkLRG1np2frcDnDAqrLiWCoouz0BekCY1JTFU6SvbmcvqJEaF+mAhqbikkPVeb0FhKVEmp6b5SVPqUt+X0f8OHiwkthznxA/n8WRsN5O2y0vZw71tul6fOVNNwmwN354yQ9aM6Uy2kNASSwo+5TM/gKxPCqkqlV+YIPe/pBWrhZyznDDN5u62c+EFHXAu1KLZ/spxkTRL7viaoIvf5KsKhkLAC2a77K3F3eYXyrbWrqb6+gJM/7Ba69wUXZqIxq+gQtOuuuamQ7ifH497TY7rncc9KA7nNNa9N/KMiJyeHsTFp7ptMCucoLt8wVqVXUnKZXVgdpPjSbJYWlxl4Sn7uptJDza1ldP1hAO+A/Oa14xIbmbUZNP9nu5DF3PZPlKNMVXLgy2Lz5d0PVLEUWObQQwJjKRVs+0g5owedcW3pVkNnVzE3LP87iy/NFlMiQlI1KbkkMcUllV5JMBiSJTAUvCuT7EYzLb/oFWp3IlDpoeKaIiaOTwtZ6lXfmE+yJpnjAuOMRLHr85UszC5x9DvyY6lElZR2f6GK2VEfp37S/z9s5Vro7Coqry2k929jcS0Uo6i5qQDvuF/ouUwUVdfno8/XckBgrVhlVYmTmkhcIUllVWGtSpcl1WmyVfjHxNvR9NFSvAPzQmT4qA3e3JifkwJK4vkXWrHvsDL06tSKVVsclF6Rg7lcT/P3OoTqYM1NBSz4lun8rdg6ev0dDtr/MCKkYqUvUmNrNNMVZww4b5lh/9QzgKQkfu+99/KlL31JqC3vNIgd7XiHwWKx4HKtvOQuUFwdN15rUZKeq6XYbMd1Sv5lWrI3m5S0ZLL3ZDD2mryqT1qmGsQO/OP3SSeeFUqxD5x+ehRTaTrdT4ipjxz5Vje5Z5plCUpRgk/Lz/qFrrv1Y6VM983R89iYLEEJIKs2g8xqI/v/VaxQdj42gKEgXSi29Kpcuv8wIkRQ0lik01miJ7sbP1LM0KuTTB0XU2SQJbSswthr00L9CQCtpEYkSkARsR57sxCxLlwDLehs8kQ2QJgICDD4nJgN2mrU3elgskU+7zPdPghDUpLAc+kDny+EzqHFWKCVJR41f7+HLTfmCxOUii/PJsORTvWHCmWfz5lun2Rh+ZEKWn83GDfnvX8Zp/cv0ua/CMHv+A/a0dnFnkmA+ckAPsHT94pU6fjZ0qLYwlvOVgvKZAXGkgz8TvlnyFySLlxjMxv1aMwqqq4vibuJvd13Ea0cZsE0x8mTJ0lOTubQoUM0NjYKfc8mNvFOxuHDh9m+fXvs7zxKKFfUx/3MlvflkWpMESbYGAvS0OdqhUhKGVsySEpVkrPVRPeA/PgoFFGZ0WhARJDD3T1LkoziRwx+6H5imKl2+RlQlGghMok0lmkoe08+h77bKZS/2luL0OVosJ9lYfhl+fdN/1MTaDJSaRdY2LafZcHVMy9MElEkKQiHw0IEpZwzzWQU6YTs9AD87lBCtmaitsAQIYON+YVtut4O8vabvbaxTIOnS77hzpOzOE+Kj+tEVUijsDbqydlqEdqIWwouEw4hZI0W7XvFV2QLqQKNH5vG2e6Rb3AE1dcXgVJeVSxKUCq+Iht9rlY2P6uJi3JEq4kjHpQpSsYETnkCDD47it6uFSIorYFg/1YbUklJE1tKsJ9rlRTf3p0vREhwXJxDsiop7r03DEuqSgc0f8Pn8/HNb36TX//61/T394v9gE1s4h2O2tpaTp06BYACBecr3hv/A2owletJz9PibpOfYxdeZEdtSiXnDDOjAhtI+vw0klIEx0YJ8pOHX3Jiq89g6AUxpZeTP+rDttMkS1CKEnxEiBAgrR14h+fpe2JClqAEkLcnE/tOK/sFN/haf92PuVxM0b1obxZ9T0yI2YmpIRxCWBmp5uZCRo+6cAmQlQH6ErADcbfNcahNnAxmKFYz0yPWYd7qTazVSNgSTg3pWWLkmUSsSaaOzQipbK1G5fV5TPfNM34g/vghMBkgHAqtKFDLIDAZQG1TYyrSyipQdDwyRMU1dmGCUs4uE9ZqI6r0VFp+3h83dnYgELOw7PrzYNz+MvqqK1bPRAh+h/6jE3NZunDNmu6dZVnwOVNHFJdCgsoP2Y0ZJKuTMFYYZe8lgK3BRFKKmHlGeoGa9HwtVe+1c+x7G695Nc6dRy9teM2TnDx5EpVKxSuvvLJmHWATm/h7xfDwMHl5K+rVBZRTqqiJ+5myK/NIz0vDWJaGp0teKMBaYyS8FBIiQ+jy9KSmJZNZa8I7ID//XVpchjCQKubBNH7SjdYsLk3Y9tsB/OPyvzFKtDgsQGbSZKuoujqfoz/oFiL6lF6ZS2aNkeDsopB60eRRD/ocjZDCSmaTkdlRvzA5IylJCaGwULvNNXqsWwzCpNKgF04kQDpvERDBiEKTrZKUkwU5KKKHvt4MEiWGixLZ5obF+l8Up/5bbC0yCkOJFvtOC60CB+MX/UuElsKo9MiSZqIEpfzzrEI21kOvTDI7Iv9MRlH/oUKSUpNkn53oM2A/24K5NF22L662uJQjWnn7AtIhkxNiY93Bl6ewlBkY2i++HxwOhxEVJdJmqVEviY3TrHUGtJlqCs+zCh1CLNlrR21MZUA/RtC7/v5nmtPABYqr2Z/yNxYXF3nooYf44x//SHv72/fc/b/C35WSks/nIy1txZ7HSCZbFWdtGK9zaAl5A/icIbJ3ZsjaiGU26pk8JlUMEYUSkWtGoc3XklGgYeQVMQZx2bV2fJMBYWLDjs9UMDviE1MO0cLuT0QY0F8TKNqJxgNZ2w2EFkKyZB9tjprwQkBYGafmlkL09jRGjzrpe+Kt9U7VWpTUf7iCBe+i0AZY9YcKUaYoOPlDsYFD5Q35DLziFCJXOS61kd1oZrLdk5AVmSgSUVJ6M9cOh8LCBLXiy7OZG/MxcUhA8nxPBnm7MsVOQUb67eLsEof/XZwMJYqozV8iG4kZlVqm2+Xvf5SIJ4Ks7QaK35WLd0iMdJi9M4OiC7OZG/cL9V2tRUndneX0PDkSq49yaPxIsZA6VhSOS20xAtXGDUFSgNKCuTgtPhFTC1qLRMQy18jEsraWZ203xO2LvrCPNsM+PDMeFAoFF110EX/729/it30Tm3gH45JLLuHJJ5+M/b2HvWgUG1sMWRv1TEVqxer/XhcaMOZJ5AoRhRJztQ5Xz1zMSklus73oEpsQ6SmK+rscHP++2OmjrB1Gis7L5sC/i6mS1N/lQGtV0/nHQVwt8ifLq28uRG/X0vG7ftwC7w2A4suyhRRvRAktUez+QhWEEVOWShCJKgxtu7+M/pfG4/erCLK2GtGYVfQ/JTZe3P1ARNXzbThFn+jvTAQV1+ZhLtfT+8yYEMElrUCDfbtZ+LRQ3W0OgrOLdDwqv6gW+51fF1MtSwQlV+WQVZ2Bs2NGWDEsajHpd8cnRVsb9Sz7l4Sfte2fLic5NUm4r2z/dDnJqiThvFTdWEBaporDD4mNX/MvyCRZlUTvE2KnSu1nWXC1uGXzEkXWVqOsctlqQqqlNl1WqSv6foha1sUjcHnrRzjUvF+6tsXC8ePHyc19G6wWN7GJ/wMIBAKkpaURCknPp4lMGuOseUVt0gLjAcy16bLEE1OVLqZwI6JQYq03CKkVgWQvJLrBDpI91FJwWWijCaSDc3PjAbFNHrWkdLnoWxI+GLXrgSqWAkvCtTejIg1lqlI252qj9C4SVcYpvTKHzJqMt2XNC7VkIRL0LAqdii+7KhdVegqnBK1RS6/IYeSIW4jkZdtpoviibKZaPHQJrn0kgkSUlBLFrgeqCC8LKuogbTj53QtCz5K5Np3Cc2zC7X5bf+fnpbHx/gTmAKLEs6KLs4QJcMZSDVXXFeHpmxNa886oSKPyfQXMjogpNKiNUHdnBb3PjAmTxGpvLRS2VwRJ+UjW5i5qSamGjMI0pjtkDh9HFN8MxWpmRgJxyVar3w9y74pAOECH+QBOl1SbL7nkEp544on4bd/EJt7B+PjHP843v/nN2N9nchkqxcYWQxmVOqbbpbGUeYteVq1FX6TG2xcQUkrRF6nxjgZiVkpyZJLcM8zCakUgqe6IklqMZWmUX27n+H91b7jJvhoV1+VhKkmn84/DQgo2pVfmYt1ioP33g7F8ykGUwKEvUAkpUEWx83OVAMLKUomg/g4H2ky1pNon0KSGDxcz+OoUrlPyOcyo1JGWqRYeS+/4VDnKFOXbQj5KVEkpEeRfaCVvVyb9z48L9XeVVUXu9gx6nxBbDy6/xk5oMUz3H+XHo7W3SoquR7/dIfRcJIKcPSaKzs9mssUjvC+o0gOpKll1H0OJFmWKUvhZa7ynBJUhhf0PtQv128Z7SlAbU6U1L4H44kuzMTp0wuPXzCYjGkuqsOKVtc6AdzQgrE4lUstXE+VEyKnRa6r0SpRpKXFJkLNbRjnYsg8Ak8nEiRMnsNvtQm1/J0CMVv8OwBe/+MU1BKUGzolLUAKovaGQujskT045MlHhu7Mo2Wun+kOFoFAwczr+CvLWj5ZSdGE2GZXx/Z2jqLuxgIJzxLxVASxlevJ2W8WCtZCUqkRrEfC9BfBBcGaB0SOCgxgf7HuoTYigZD/XAlqYODQjpEZUe1MRDR8W87cH6fSUu2dWaLHGfq6F+jsdwtf2OUMc/3EvrQ+LFcf0HA26rI03aldDm68lw6Gj8oocofjJNi/zE35GXhDbbNjx2YrYgOqtRvl1dnY/WIWhVKyve/rmmGzxCF8/qzaDgrPF/G3NpQaSNUlkNgr4yvqg808DCRGUcs8003B3sVDs6BEX7b/rF752030lVF5dKJTH6ECkaK98zZg4NEPz99qEVdHGDkyz5F+m9zmxBSFNtgaFUoG5QuzUZ/l1dtQZKsquFXuRNt1Xgq3BJH9PI/uGuz5WSfkVBbKxUTJg+RUFss9G9P1QtDeL4nflSu+BDaBVaNnqvYAkUkhNTeWFF15Ap9PFb88mNvEOhVarjRGUUlFzgeLquASl2luLKN1rJ+dMM4AskWTX/ZVUXSN5V8taKGmg/Mp8dtxXIf0tE561w0h2k4k6wXFA5XV5aK1qii4RfB+V6FEmK9Bni40D+p8fY8G7KERQAmj5aT/N320TIk3kX5AJIERQMlfrqLq2iLo7xMdHnX8aZPAVsYlg/V0OsrYaha99+JtddAi+S3PONJOiS8ZYJKbyV3BuFjnbzcJtGT8+jatTjIxrqU1n94NVOPZmC18/Eez8bCXbP1kuFDt0wIl3xIenT4xgU3mFHXOFXiL6CSDNpsZQmCYfCLT8epDm73YkRFCqu1Osz5z+wyiuTq8wQQmg4Z4Kam7b2BopiqljXtztPjQmyN5lko0/9J1O9j0kvvg2fmya+cmAcF7SLCpS1OKCyPYdFmwNGcLx+WdnxubIcrA26il+dw71d8UfH0cJSjW3FlF2eZ5sHqPvh/qbCmm4uShurP54Lo2cR2pKKk6nk7q6Or73ve8JtX8Tm3gn4Ve/+hUajSZGUNrKOXEJSgCNtzqoj8xd5MgyWVszqHhvPls+KM2l5AhKtbcVUXpZLuZasfdu3R1lOC4UG0cBZG8zk7cnUzg+RZNCmlXw1H8AZkd9jB0VI0wB7H+ojcPflV87yNqagdoI0x3zQmpENbeW0PiRCuF2dP9xlKkWj9Cal7XeQM0thcLXJgDHvtNB6y/EDhQZi3Xo7GLrQKgllYiKy8XWATy9Pjz9cwzuE1uX3HZ/GTs+LZ7HRFB4URa7v1CFqUpsXu9s9TB+TFAlHbDvsVJ4nth6sLFQh8qQgm2n/HgEoO2RvoQIStZ6A7W3FgrFDrw8QcfvxRUGam4uZMv7HWRUyI8bowQl+9kW2VhPt59j32kTO5SL9GwG3AsMviS2OZliUJOUosRcIjjHuDATXY6W8veKEaZrbikkd6cFa6PMmlqkJG//SDmV7yuQSEtxECUDbrnOwc6PxX82orXKttNE+eV5sffAelAr1NS7z0GDDrVazTPPPIPJJNYfN7GJdxpyc3NjBCUNaVyguDouQan0ylwq35tPzh7pmZDb1N768TKq3y+tvYhslle/38G2j0TmaTLhxrI0Cs7JEh4HFLwrE32hjsKLxd5HppJ0klKTUJlTheIHXprE7wwKEZQAuv84wtFvtwmRJqL5FiEo6ewqqm8sTmh81ParXgZfFNsn2XJDPtY6sT0SgOM/6KXl4V4h4oaxLA2NWYWpWGw8UnSejfwzxcfSI4dcTJwQG7/o7Cp2fb5KuL8kiq0fL6Ppo/JrNQATB124u2Zx94itp5Zdlo2t0YRKcK88w5FOhkMs552/HeDo93sSIihVXpdPZpNRNm70NTdjR13CBCWAxo9UURPnnR7FzGmf9KypEGrLse+eFiYoAQwfcDI7PC8cr7OpSdEmS2RMARSdn0VOk/j6bumlubE5shz0BSrKr7RTe2v8dakoQan0ylyqrikgR2bNK1oL624vpeGW+Otp6a05bOciUpJTcLvdf3drXn8XJKWKigr+6Z/+CYAUZQoXKK7GrLCgc6xMljUW1vytzdcyMzJP//PSpETn0EpKHOvF5qiZPDxFcGaBlt8OSP+miQhQad8Yq7UoafvtEP6pIItBYtddNzZHmlWcfmIYZ7dn41iLMhYL0PfyOCce6ds4Nn/lb51NS/P32iRVHJnYgovNaCySPdjwC8435HB1rDZfy47PVpB7phl8MjnM16K1KMk/I5NdH6tcE7tRDgFGDznxuQNCOYz+W/sfB+VjgZwmM9pMtXRtmXxH2+sbDeD3yeTboUVjkSQP932/TTaHGotEmBh4cYKhw864sdG8zPX6OP3MOD5fKG6+o1gOLrO8sCyb79hvjf1j/BzqHFr8swuEl8OgFsth2y8H6XlmTDZWE1mLGD3qou2vQ2tj18k3QMvP+jn5cH9M0WejfEcRnF8RkpPLoc6hxb7LisasWrdGvD62/6UJSRVJIBYt9D4zStCzwPIqdej18h19FhzvsZHTZKH65sINcxiNjfbZ7Z8qp2hvVtwcooW2Pwwx1+tD59BirkmTzeG+L7bR/qsh2XzrHFo6/zxM3/NjDD03LJtvtHD0R6eZGZrD51mxZNwohwC9r4wyO+FbG7tBXtDC7ISP4QNTQrFT7bMEphdo+Vl/3HyjhcuKr6exeAcpKSnMz8+TnJzM4KC4xOomNvF/GW63G4VCgd/vR6FQUEw1ZykuRWNSorGtPBdpBZoVooMGel4dxzcVYPQVlxSbq1kTqzGtxKYVaBg55MLV5X1DrCZ3VWz0e/zg6Z+n7/lh+VgNTBz04BmY4/Tfxl4Xq3xDLED7Y0OMHJmMKS9pbOoNY9HAwKtT7PtiG95evxS7QV7SyjVYGtLxdPk58q3uuLFooOy6XLbdXxb5H/HznVagofbWIuy7LORdaJbNN4CrZY7AdJChgyuLO+vmMPZv4JtejlnIxcuhJhe0VnVskSRe7Oo2udt9svlOK9Aw+oqLfV9vY/g1l2xeAE79uJORI1NCsQBj+ycYfMW5Jna9HAIkacOEFsOSVPbrY1+fQxNrZmRx822S/l4OLrM4vxQ/35HY+QE/pyJ+7iL57np8mMHXxtBo5GMBmn/Zy8lVCgrxYllYgNRUoViNSYlpi5a0TDW5Oy1x8x2tEVE1J01x/BxGn4W5UT8TJ13r1ojVOYyi/q5Kii6wrRu7pk1+0BjU5F9siZHJ4v3WqRYvXY9JdkNZW43x82JT0/LrwZhymVwONTY1J37Zx4lf9MnHRvIyfmya3hfH4+R7JYdTx7z43AE6n1zZ0N4oFqD/1XH808GYqle8fGtyNQwfnsTV5ZX9rbnZObxLfwV1tXW4XC7uvvvuTcvdTfxd4V3vehc33HADAKnKVC5QXI1RYUFrV8c2qtVGSTkjCnWmGmf3DH3PSpsqq2NRvzF25vQM8xMBev48IBurzlTT9bs+Zkd8+N2LG8calagzpb/bHu1nsnU6fuyqd3LnX0dp+X2vUKzapqb5e20x9Z+1sayJzT1bIhGd+kk/wy854+fQpmbbx8ukReYAaC0yeTEqKb44m/q7KoRyCDD40hTeCZ9QbPTfuv46IptvAPsZFtJztZJak0wOtXY1aqOk6BQIhOLmUG2TYg99rZP9D7UJxCohAN2PjzB40Bk33zFlqckAfc9PEPAE4uY7ioXA8oqlXbwcsvbf5HKotavxzy+wvBAinByWjVUboftPo/S/PCGUb4D+FyboeGJwVez6+Qbo+fMYx3/VG1Mki5dDgAV/OG6NWB2rtavJP0si2CAQO3rEJan5rBf7+nyrofvJceYnAwTnVha91sthtL223Sbyz8qk+oOFsjkMBKS/m+4tpejirHVrRDQWoOOxYWZ6Aqgz1aSXq+PGLi/Dvq+30fGbYdl8a+1qBl6ZpPuJETqfGJHNIerIYdtuL/OTwbWxG+Sl+5lhZobmYqSleLGowd3vZXi/UzbfqME77GNu1Efrbwbi5hs1XJh3BdtztqNRa5ieniYpKYmOjg42sYm/BwSDQZKSkhgdHY2tee1RvBuVXonKurJrrslWSUolACoYPubEOzjP6GvuN8SqrKtiI58dfGmSqVYPKj2ysahgqtVD73Mj0t9rYpVviPV0zTPZOs3p51bWvFSW9WMBBl6cpP+lcfojJFGVRbWGxLE6FhWMNU+z71/bJBWoOLEquwpjjR7/WJDm7/dIeYlz3cJ3ZdJ4T0nkf8TPtyZbRelVuRSdn439PLN8DpGIBLMj84yuIqpvlEPp32BxgZi1abxYVGAo0pF/VqZsvqPtB2RzGI31dM2z71/aGHx+XDYW4NiPTjP4yhtjX5/DKKaa3Ywcml4/lrWxCo203xhwL6zKy/qxKj2QvGInGzffeunvpbklFmYXhXIY9IZof2SQ0CJC+T795Bj9rxN+2CgWoPnHnZxYteYVL1ZKztrrbpRvlV6Jyq4io0RH7jazbA5VVlVM/UllX79GrM4hgPu0l/FjbqG8AOy4r5ySi3OEYlXpKnLOyKDpvlLZ2JkBP12Rtpu36ONfV6+k40+jHPg3iQQlF6uyqjj+k35aH+6VyfdKnR14aYKeZ8dk8w3gHQgyMzxP/6paulG+AQYPO5kb98VqRtz2W1T0vzzG5Mlp2Vir1cpFGddQX1+P2+3m7rvv5owzzuDvAeJHMP+PIiUlhaUlafP6hhtuoDC/iIP/1kHhu7PI3WaJ2WHV3FxOsjqJxdkllGolSSlKQkthWn8yQPaeDBzn5+Dpm6X1F4PUfKicZE0S+77Yxo7PVpCUopTsqb7UQUallqqrC5kd9XHyR31svb2UVH2KZM+ghfpbHTErq87f9dFwdyU+Z4Dm/+yh8ZYSNCYVr329FXxQf4sDFHD8v/uZOj5L2XvySb9Ny9Fvn6b+RgdpWRpO/LKPuV4fdXeWo1AqCIfCnPr1AEVn2Vicl6Spq68pxJCfRvdfhpg85qXujnIUSQrGjrnIbpQYhEv+ZQ59vZPKK/IwlegZeGWC4Rec1N5ejjJZwb4vtlFyRQ6ZNUZymjLZ/6/tlFyRQ1ZtBuMn3PQ8NkbtLRUkqZQxK4r6mwoByChJJylVSd6eTJxdM3Q+MhzL9+rY8HKY0SMuUnTJ1H2giJmBOVr+e4Btd5WRkrZicbE6hzOD8+TtyaTuRgcn/quXpttKUBtVvPbPrVLsLRLbfN+/tLH7E1XSpqk7wLH/6KHh5mK0ZjXH/rMVv3NtLECyJong3CL4oPb2ItKztbT8uo+Z7pV8R9tUe4P0W8eb3WgyUjEWpdP79ChjB6apu70cRfLa2Kj1Xdn5dqzlBoYOTDH49CR1t1fG8h3Ny/JCiINf6UBlSKGw0YY+S8vpP42um+/QUpgDX26n8f4SNOkq3D2ztD+8ts+uzvf+L7VjrU9HlZ7KzJAkMbftjjJS0tfPtzZfS90Hioi6QMbLN0DdB4oITAfZ/6V2Gu4qRpuppvlHPfhGA+vmcGF2kcGXJ3BcnENSchIdf+zHdWo+1mfX5DDSZ7UmFXVbLfSbxhl5xbWmz0Zjl4MhDn61g9KrcsmsNsakz2tvk57fNfleDK2pEaFQiPAyhJZCb+iz0XzHasTwHK2PDLD97tfle1UOMyq1VL2viNlRH0OvTVB5tdR31s23RUndB4piNSJ8vpTTNTXi9fn2BDn67dPosyVGTP9LknrFevl+fY0Ih8OYS/TY6kwb5nt1jcg/I5NwOIxC8bo+G8n362tE/V2Vb4iN5jD/fOuaGrH9U5GaHGnj6j6btd1AycX2WI3QmtTU3lBIcGaBRd8yumxNLIeGUi3V1xcxN+HnxH/1Ym+wojZKL/DodxCO5FAr5fD1NeL0H/pj9Xv1vYp+59Fvn6b2hpUaAVB3VzkKhYLWR/qZ6fatyeGW9+ZHaoQKxbyOwdyTDI8Ms2vXLu6++24eeOABNrGJdyq+9a1v8bGPfQyQJEbvuecejv+0H/+In/q7InUoWrM+WMTC3CKp2hR8MwHSTBo6/iCdtq27I1LLV8Uuzi0xdtRN3plWlElK+l4Yp/M3w+z4TAVJqSu1vOGWotjzVn9PCWlmFSMHnbT9YiD23K+Ojb5n7edaKTgzk0X/Eoe+1kmaRU3dB4vWxIYWQhz4SgdZW42UXJLL8uIyQc8iyeokUnTJDDwpLfA23Bap5V9qR+/QUPMBBzND8+iyNCiSWVMLG6K15V/b0Jig/iZHrGbVXVOEQqHA2dEK/rWxIMX6XAGav9tDzfuL0OdqCYfCoGH9fEcsaauuyiejOJ2uvwxhXcggtymTvB2vy3ek/pZekkvmFiMDL04w/LKTlLQUKt6Tx74Tq/IdGdcUXWIjZ6uZsaNu0rM1pGVLC9fr5TvnTDNF59pwts/Q+dthqq+RyFUt/31air25SHpH/Fs7ltp0yq/IZ7p3jrZfDrD1Dml8HX0vrM53WoGG+psczI74OPnjPqmWW9TSWMUPDR9flUONlMP5yQDHv99D3Y0OdDYNx/6jHb87RE6Dhdwm65q8BKYXOPYfp6m+Vnp3tj7SS2gJtry/EAVv7LOHv9lFxXskS7XTT40wcdBD4dl2lCmKGBGj7oNFkqXMQ10UX5GNrdbE0L4pBp+dpOY2yeorioZbilgKLnPoq50UXJSJfaeV8WY3PY+PUXPL2vHH7gerYvnO2mGk5F25uDq9dDw6RPVNKxZyWz5YgKEgLfZONlVqqXxfEZ7+OVp/PkDTbSWojKkxYl31+4vI22lj/5fa0djUUp8d9XPiR700fKgYrVXNa1+L5PuGdfpsZFxT+/4i0nO1HPtx70qNSJJWbLoeG6Ls8jwWPIsc+U43VVcXkFGko+MPA7ha5mI1ouXhPry9fnY/WBXLd/lldiwVBvpeGGf0FRe1t5fFakTUUi5aIxx7s8luMjFy0En/UxPU3LpSI07+uI/dD1Zhq7OsqRETLdOc/sMo1R9aO0dRJCkILUtj5GiNmO6Zpe3hQWk+s8qyr+E2B2GkMVTWbhMlF2QzMzRPy0/7abilGI1J9YYaMTM0j6EgDYVCEasR9Tc5SMvUrOR7VY2Itjc4t8CRb3THasSpX/bi7X1jTY5aEXf8rh9boyVWI6Yi88doTe59YkzK9xlWkpKUuPtmsVas1Ija29fWZK1JTc015Qy8MEHRhdkkpSgZO+qm94k39tmaa6QaAVB/dxFpFu1KjbjpdTlcp0YsBZc4+JXOWI1Yk+9QGP+XQuQYXHiXPbS0tFBdXU1LSwub2MQ7GQaDAa9XIutdc801lBaWcvBrnVjrDZS9x46z1UPn70fYcmMpKmMK8xMBVIYUklKTCC+H6PrNCIZiNdU3FMdqVv2HitFaVSt1My2Z0JJkT6U2Kmm4pRjv0DynftpP7QeKSM/R8tpXWyEAjXc6CIcki6dTP+lnzz9tidWsLdcUYCzU0fyTHnzDAervKkOZouTUz3uZHQhQ88EM9NlpHPvuaSoul96d7b8bwN02R90dZbG1t7bf9FFxaY5kU9XZTenFOWTWZtD3zBij+93U3lZKsjqJ3mfHcVxgAwWxd0TBhZnYd1kZ3j/FwDOT1Ny8UltyzjBTcFYWebttHPhyOzm7TBRdmM34cTc9fx6j+qa1taXxVgcowVymJzi/SMUV+bH3bOOtJahNqSt16HYH4eUQ/c+Nk2pIouGW4th7tu4mB7osTWxdpeE2B4TD7P9yOxMt05RckkPtDZI9VM37C9Hb0zj67VYCHmi4tQgUCvZ/SVrzQgm+qSDHv99D1dX5ZDjSaXm4h5keKd+KJGXMfkuToSLoXSTgCVH+3lwsW4x0/XmYqeMz1N1eSpJqxZq0/mbp/TJ2zIVCqSC7wUzf8+OMvuqi9rbIuzMS23i7Izauyd9tJe+MTEYPOen728SafAM03uaQxjVf60SZrKTkkhwy8rR0/3GULR8sRWVYm+/lRWmtoea2QvQ5abi6vHQ8MkTjzSWoLW/M94F/60BtU6OzqvEOSGtedTcWocvWruQ78u7c/+XoeLU4tuZVc20h+oI0jn6/h8DkG3NYf7MDvzPIwa92UHl9HqZSPa2/7sXT7afuzjKSkpUrY6CbHQRnFul5cpjyqwpIViVx+q+jTByZpvb2UsnadVW+o31WpUum6LxiBl+ZYOgFJzW3lpGiXZvDxcASh7/ehf1sCwVnZ8XWvKo/VEpqesqa2OXg8poaEVoOEVoMs+RfRmVMWTeH0Rrh6Z+l9efd1F+3UiPekO9VNaL7yXEab3egUChiNWJ1n43mO1ojlvzLNNxSvKZGvD7fAfcCx757GmOeNCYaPSLNv6I14vX5PvrtlRoRDoUxleqxVhvf2GfXqRE52y2gWLvm1XibQ5r7fL3zDTWi4SNr17xW91lzbfraGnGPVCOibVydQ61dvaZGqAypNNxSzOzIPOEQ6LK1sRqBmti/nfxxP/YmK3p7GmojUt3XpxAOE8t3/c2ON9SIsQMSObDhI+Vr5jP1Nzti9o7le1dqBAGo+6g0vm57pA9Pt5/6mx2xuabjQlukRqQR6tUzkHeCoaEhzj33XO6//34+/elPy73aNrGJ/7N44oknuPTSSwEw6A185N6P0PGbIWZO+yLvzhU7rIZbiwnMLJCalsLsuA9jvo7uJyQicc2tJaRqk2M1q+nOYoIzi/S/OEHp3hySUpPof36c7j+N0nSf9CxHn82mO4pZmF/iyL93UfF+O+YSA8MHp+j+06hUWzJSV9W3YpaCyxx+qJOMSh1V7ytgYX6Rww91obNqaLixOBbbcLuD8FKIg1/rRGdXUXdLCYuBJYLuBUKhMOm5WkZfltYwomOVA1/pQKWHxttL8PTOorGqSdEkoUxWcuTfWwl6V+r+gX+L5OW24pilZsMHHSQlKzkxfZq54SD1d5aiSFbGrNMabi3GNxng+A96KX13pJYvh0FF5N35unxPS++IwnOzyN1uoedvoygUYKszk78ra22+vVL9zT3DTOF5NgZfnmToxSlSdamUX2aPrXk13VHMgm+JI9/sIrPJSOneXMaOuEhSJ2HdYljZV0B6nywHQxx6qBNjWRpbriuM2W/V3ySNN1p+PbiS7+UQB7/aicqqovH2Etxds7Q/MiiN9/LSWAoscfCrnWvyjUrK90z/HC0/H2DL1fkYi9M58u/tBL0h6u8qRZG0Koe3FTM/5ufEj/oof48dS6WBU7/owdsXIGebFfueLA6syqHfKRHGii+UFIU6/jjE3FiQxjsd0jviX9tW8u2R1seilmrRsXjZ3nyS1UmMR0hNTXcWE5xb5Oi/d8dsyYb2TzL4zBRbPij1WSJaAY23F7MYWOLIN7ow1+ipuDKP8WNuev4yRtX7i9FYVLF87/x8JaGFEIe+3om+SE3NjcVMtXro+v0IdTeuWMiVXpmLtcrA8uKylG+LlG9PzyytDw9SfW0BhkIdr32lFf9YkLoPFpF/xkqfbby9JDb3qbwyH1NZOke+d5rgVJD6m1+X71uL8Y0HOP6jXkr3SnuRLb/qW6kRaiUKhYLTT45S8u4c/O4gzf/Zg+N8G9lbzXQ/McLkUU+sRpz8WQ9zw0F2fyFi0fudbvLOsZJ/1oqFXfWHVmpE3W1FpGVrWJiVaoRtewbFF+cwfHCKgacm2XLjSo3o/M0wuz5fRXaTeU2NmDw5TfefRqm/KWI3GMm3MkXJ8rK0XhOtEc6OGTp/M0zNDYWk52rXrMEokhQoFGCq1lJ5VRGe3llafzlI9TX5GIrS31Ajplo8ZEVUvqM1ovxyaX3vxE/eWCOsdQZK35NLcHaBo/9+OlYj2n47wHT73JoaEXTC7i9UESZM+28GMTp0sRoxfmiamlvLYjV55FWXlO+5RZRKBZMtbuw7s2I1ovqmyBwlkhdDbhqaK/M5/cQIZZfbSdEkM3bERe9fx6n6QGR9L1ojPijVCJBsLs1l+jU1YnW+16sR0ZoQrRGvnz8GvxIkRzHNXPo0Bw4c+LtY83rHkpScTidW64rdWQWNWFNsTJ6SCuNk6yyG/DTGjkp/j5+YRp+rRZORikKhYKZ/Dv+0xPSc6ZxhrjojNvEZPerCVJwOaYoImSmEs0NaFJoe8DE36WcsEjtyxElmtfRgZVZI1LtFv0Sa8jlDzE34GW+W5IlHDk1hazDHbIn8niCaDBWZW9LpH/QxN+FnMiKpN3rYSfY2C3PjUrCz3Ys+X4MqPRWtMZm5cT+uSJvGjk6RpFIyO+iN/HYPqvQUfFMBwqEw81N+PD3zkeu6SE1Pwd0pyd9NnHSjNUVYpH8axVyZvpKzkx7SstSMNUue2xOnptfYl3kH55mfDtD35wm0OWoyStIZj7CQx4+5MRSsSPh6x+fxTy7Q/+SEpLZiUjF2zBlrk7lihbY43TNLWqaK3Q9W0fnkAHMTfkYjJ/pHj7pi+QZwnfZKmwVaWJxfIqyEkUPR6zqxNZjxRw69T3XOoIxsjGgtSuYnA0y2SL917LATxQ4rMyNSvqdaZ0hJW3k8/DMB1DoVYwfGUVu1JGuT8ZyO9LU2Kd9RzI740GVr2P2FKlof7UdjTMXZ4o3lO82ychLFOyTd9+2fKmd5KdJfTnqkNh13o89dUZpZ3WfVaamEQiHGj6302YyiFdlBT98cwdlFAOaGZ/F7A0y2r+Tw9fleCkiF0+eU2pMWOVkzeshFZt1Kvp3dayU5o302a7uByQ4nlrAZX+Skm7PdS7J6haUbzbc+X4cySUlgPogr0i+n2tbme27Mj7tHkhte8C0QCoVYXJJOFU2emkaTsXIK3zvswxu5b2PHp8koSyO70cz4wQkmTqzTZ51S+6I1IlmTxJJ/mem+uQ3zHasR+6fABxPtLgzZK1LP071zLM5Lz/30gJTDsSNOptt9hJbCLAYXY7Gubm9sg2u9GlF0YTa77q9k/7+2b5hvWFsjMiq1b8j3ejWi66+9+Ieg+PLsN/TZmYE31gh9rhZFCrAiYrQm36+vEcuLIRSr1CBW59vZPvuGGpG7y0JSZGN2dZ/19s4wN2F+Q43QZWlISQuv6bMzI771a4QWktVJhBZDuCJ9CR9r8r26RkTt5IKzC7H2x6sRgZkFNEYVi/NSO1b32dEjzliN0Cq07N12Jafyj3Lg4AG+8IUv8Ic//IGjR4+yiU2807B9+3YOHz4MgBIlF+VdztxYAL/bD8DkKY9EDIzAO+xjbmKOnMZM/FMBlv1hfKPR8cf0mjo0MzDPdN8chlwtCqWCuSkf063S8zdxfG3d9/TP4x2WnsUUjZJwOMzEaanejTdPo7Ot1H1P7xzzU1IdcrXPkrfHQlKKVKjGjrjX2FS5u2ZX1SEP3pEM0jLVpKQlM3zQKY0NI3B1eVmcl04Be8f8eEd8jB12UnR+NiRBcGalcE51zBCKTPL8bvCO+GJ1aLJ9mozC9JjN00TrNMqklULqHfHF6tDowSnYYeXUH/vADxMnPKRo1+Y7WvfHjzlJ0Scx1+9l6piXoktsb8j3TL9U9yea3aiNqeSfmUl2k4nxZvcauxRP3zxz41IDx0/MoMvWMNHiYXlxGZU5hbnRQCx2unsWX0Q9aLp7HnOZj7Gj0m8da3VjsKXhd0u5cHev5Ht+eFbKy1Gplo8ccpF/lpXgjPTvrk5v7HT8/ORKvkEaq2RtzWD3g1VMd88y2e6JtQd/JIfRd+cRqe7rHXrq78rGOzrHwuyKDPPsqH+l7h9xokhS4BnyU/yubBQKBb4p/0q+h3yxuj/e7CRFl4w38t52dnvQmldOvKzus+PNHrRmNVPt0mcnjk+T3WRCmax8Q74nW2fR56XFxoajR93o7Vo0NjV6u5rp7tnYWMXb7cVbncF4c3SO4or1WUOeRFSejFzH3S+9y8ePSfdm+JBzzfh6eXEZFNKY2T8TWJvvw5GxYSQVk+0eMrcY2f6pcg59rXNtvg87ycaypkakGJPRZ0tkuzV99sgUSanKN9SIqE2Yd2Qed3fk345LY5X1asT0wByWcn3sZOREi4c0m5qJlvVrxNyED12WFsfebMaOTpPh0DF5PNoHNq4Rfn8wksM35htWakTv89Jpq8xKw0oOj6ydz0RrRM9TY9Tf5GB5MbxqbCj12fVqxHTvHHl7LLhOR8YfkRrhHZOCX18j/O4AGpOa9Dwd48ecJKmlGrE631HMDMyjSFGgz9ESCi7hHfHh6pqL5HD9GmGtNqJMlur3RMTaOdpno1hdI1JUKYTD4ZUacfR1+X5djQiFQiwFlyN5WTufWV0jqhZ3knWZiudffp7W1lYUCgUul2vTimQT7zgEAgE0mpV6VUEj1lB2zKJstn8WT/8c48cj9eKwC1OxjhRdMgrA2eaJjVVmRgJ4+udiz9vIISeZ1UYAkjXJLC0sM9Xqkb7XE4pc1x2LtdVLSkKGYunZXz1n8vTPxd4vY0ek6/sic8DZcR+GPB3mcgOzAwE8fXO4OiLvzmNOklQrdX+82Y2xOI00s4bUdBXTp2djY5XxZjep+hTcPZF5/1EXaVY1QU+Q0FKImdF5ZnojazntXmmscioyFz7mjtX90Vdd2HdaGIvUWHePj4zSuZX31iHXmjrkbJ8h6F9k4MlJ1Ebpt8bq/kEX5oqVuu/u9bIwvSidmlVDWqaW0UOr3p2RfANMtkyTZlOx+wtVdP55aE2+R4+4CC2FCUgpZfykO1b3A+4FlCpFbM1r7IhEKJoZCURyOk1KmlT31UYlnt65mPXF+HEXyWnJzPZH8n98bd2fHZ1Ha1EzdniGFI1EcHJ3za/Jd+y3ds1iKNSy6/NVNP+kl3S7lokWaU1g5LBrTd13tc/gn16g6d5SwuFwpL9E+5ZrjWWJs30mVvfTLGrCoTDjR52x667Ot7PVE6v7AU+AuSkfzs7oPN9NZu3K+G6iZa2tn6d/LrZeOXLYSSgcJuCVcjhxfHrNfMbTN8dU2wymKh3T/V6UKUo8Q5H3bPNKvoFYvrVZWpJSlQRmgsyclvIyftS9Zj7j7p6NjQ0X/IsSkSi0HLmv7jVjFXeXNzafcbbPkd1kIrvRzMSJGUaPuNfNN6zUiJS0JJYDIabavWvzvU6NGD3kIuCB8RYnZocxFjt5ajo2n1ldIwLjARb9S9K9CETzvdYq5vU1Ij1HQ92NRRJJb518r1cjDMVqxpvda/rsejWi54UJAkMB8s61vKHPRtexVteI1LRklCoFilWypqvz/foasTC7SPIqy93VfXZ+cPYNNaLoIlvs963usz5nNN9ra0R6joZwSKoR0XwTYP0aEYBUfQpLS8u42lfWDmcG5plsWcl3tEYYctUoFAoCM6vqd5waMTfhx2BPk9S4XpfvqZOeWI1QK9RcULqXnvw2XjvwGp/5zGd47LHHeO2119jEJt5p+MAHPsDDDz8MQDLJnG+5jJleH4FJqX6MHnGtqUPO9hnmnH7yd2cRnF7AFfAyE1kTGDvsWlP3p9pmmB32kZ6rQZmkZGZ4Dmdkf27ssIu0VXV/qtUTq0NqfSrhUBhXl/Q+GT3oRL9qz23y5HSsDvlG5lhaXCYpRao7IwddmMrS18RG6/7cVBBXlxe9XUOKLoW+58ax+laU7saPu2N1KOiV5rcTJ6ax77KwvJCE37VAMFJ6Ro+51qxjubtnmWqNjAsOTGGtyWAuYmc3eti95t3p6vLi7oysjZxwk6ROou+5IQhKNez1+Y4Skp0tHtJsKqZ7fYwfms2XY6sAAQAASURBVCZnj2lN3Z9qnWE+sq7i7Jwj3e4lZ7sZ6xYDIwedpK96d06enF7ZAxrw4+ryMnlSWjcwFqXFap8U61lZExifl/ISGVeOn3RhyE8n6IzsYZ2YjtX9oFfK9/ixSC0/5EZlTCXokb43OjaVgqW8TJ1aGVstE6bpvgqc7TOMNbs3zPd4s1s6GJYKOz5djqd/LnbPQZo3T/dK/W7qlJsUXTJzA3OYa4zSWuzEyppXtM+CpP6sNatxnZ6P5MFNeu5KP1ydb1fXPPo8L1ORNZjRQy7yz8qMvQ+nTq3ke25gLvJb3bHfmuHQodIr0eXpmDyx0me9o4FYPwQYPuiSSGSAqURHGBhrlq4TnF2b77Gj0ywthGJ2Y0sLyyhXqTutzvfYMRdhwgS9UvDYETe5u6xsvb+MI9/sWttnm13SmG91jTClkFGQzqJvaU2fnTw5Tao+5Q01ImoT5uqeYaYvwgXo9JJmU69bI9yn51AZUxmNjDeme324ury4WtevEe7eGUzFBhyX2Bh5dTySw0i+X1cjJlblmxTW9tnD7nVrxODLU1KfrV65NyNH3Cwtht9QI/r/NoEmI4WlxfBKnz3mjuwDvLFGeEcChJfDsXXDaI3wjUTy8roaMTM0h96uIz1Hi7PFg9qYynRkjjh6yPmGGqFMBXOpAZQKXF1enJ3eSF7WrxHWKgPJqUnMDM/F1I/GDrleV5NXaoQqPZlwKMxEq2sl3+WravLrasTS4jKL/uVIe92x/4a1NaKKbdguSOPFQ8/F1rwmJyfX8GXeSVCEo8dH3kF45JFHuP7662N/7+YStIqNfdA1Fii+tJCWn/ULXV9jAb3DwMRh78ZBq9OmBY0WiQyjJUZC2hCrY0Ti3wwSvG7++VYGn5P3bY1ix6cr6Hp8ULKzEsDuB6tiyiciKLkiB2uVIcaUfqux+8GqmKLO24Ha24pI0SZx9NunheJ3fa6S5aUQh77W+ba0Z/eDVTEVBNH4hdlFySJQBhoLNN69Jab08FYja7uB4nflMnrERf+TE7LxuWeayd1poeXRIXyDb/3DZT/XQv4ZmUz3zNL+qyH5DySIhruLSdEmc+jrYveq7Fo7ljI9Eyen6XlsTP4DQNN9JcwM+jj9p1GxRmkht8nMyCsu+djoRyxKfE5x/13RdiRUO1fFaPO1CfUH+7kWhl9wygcC5po0LFsy6HxkOG7cvvBT+JglKSmJhoaGGNljE5t4J2D1KX4DJrYpzosbX36NnbEjrhjBQA45Z5oZTaDGaHI1+Eci19YQ28Df+AMCMf8DaEzKGPlGBDlnmhk94hJuU/n77KhNqZz4r16h+NL3SqeIxo66YxZ1ctj2iTL8rgXh8XIiqLqxAGNhGt1PDDN1LM74+k1C79BQcVU+vU+P4jw5Kxvv2JuNrSGDll/1CffRRND4kcjJpcgJIzlE1X9E41+vGPZWY/snJcWjg18RGyc3fqSEwMwibb8YeFvas+MzEWXMf3l7fu/Oz1UydtTFwNOTQvG7H5AUiaInDOVgrtbheFcOhx/qEm6T/Vwrwy+Iz800JokE+ZYj0doZideYlPj9IeHPZm01MtHqEY7f8sECWn87EDfeH/bzGk8AYLPZ+Od//mduv/12sS/YxCb+H+PVV1/lzDPPjP19BpeiVqg3/oAaKq/Mo/3XgvNTNVgrDEwdnxGOV6uVBDwhyRooIPuJNZ9NKF70skZiRB4R5JxhZvRV8bHm1o+V0vO3UcnOSgC7Pl+1onwigLxzLeRstwi/axPFrgeqWF4QXwNKFBXX5aE2pnL8+2JrQNs/WU54Oczhb4q/CxPBasVF0fiowo1o/PxkQHgsngjSC9TUfMDB6GEX/U/Lr3mZqnQUvyuHjj8MMjvw1j9c5tp0yi/Pw901G7PSfStR9YF8tBaV0HojQMGFmeTutDBxYpqeP4utedXcUkjAvUC36JqXGmz1ppiNntBHjJGa+HZBpHauilHb1ATGxfuDbaf4700vUGNrNNH9x/j5PBZ+BTcTKJVKGhsbN9e8NvGOQkVFBZ2d0jvTSCZbFWfFjS+8OAt35wzePrHnLrPJyORRj3B7VFYVwcimPSpi5IqNPyAQ8z+ASq8k6BWvedY6A1MdM8Jtyj/PiqEgjVM/7ReKt59tIf/MTEYOOxl4Smwe33B3McHpRdp+PSgfnCAcl9iwNZo4/eRoQvdZFCqrii3X5jHw0iSuU/Jrajm7TOSfm0XnH4eYbp97y9tTfeNapRw51N22onokgtcrhr3VaLynhCSVksPfEBs31txcyMLcEp2/jb/382bR9NFSUtNSYqqIbzW2f6KcsaNuhl4UW2Pa8anyNYpnctAXqCh9T37MelsEtq1Gxo94hOPfthq3+roJ1FqVHoJB8TZlVOrwjcwJPS8ApVfmMvjcSNz4YDjIKzwOQGZmJl/+8pe55ZZbxL7g/xDecUpK119/PY888kjkLwUXKN4r+5moFZbOoWWuV2aTWqGg/o4KFEmKjUlKr+N17f54ZKH6X9qEiEG77q+EMBIBRyB+5+cqUSgRJvjs+PRamzA5bP2oJGk9P+nDdUp+AcZ+roUklZLsJgvT7WIv9emeWUIhcT7c6T+NChMoyq+zY8zXcfA/OoSJWf6pIHMusUFk9s4MsreaOfaT08LXP/mjPrHACEQXst4spnvn8PTLb9q9GfidMDM4z9hR8Y2URDBxaIaJQ4KLp8DIK66EyDQgkeLSstRCC07DLzjJaTLjbPMIX7/qA/mk52g5+FX5Bcjm/0yM6NX16DCGj5Ux+prYYg2AypCKuSyZ04g9Y7vur0ShVAjnteleyTbm5MP98jUXqLwhnwyHjp6nRuLf68ilSt+Xi7XCwPC+qfjkykj8lhvzMRTqGD7oZFBgAzJaE/1Ov1BNLL00X2LfyxCndiveRVf4FH6Tm6NHj6JUKgmF3sZFrU1s4i1CUlJSrK+WUEOhojz+BzRgLtdjKEzj0FflN0aythopPCeLzC0Gjn9fvg4XXWIju8nEVNsM3b8fkd3ULrgok9wdFkYPueh/Sn7hP3uXiaILbEycmqbnT/K11VSppeLqQubHApz4kdjGReE5WeTttgpvTBmK0khOTZIPjGD4hTEMOVphghKQEIFi+6fKme6dk/IvgKnWadIsKmGCUt0dDmYG5oXuF4C31y9M7gXofWKM3ifE35uJYvDlCTJrMuQD3ySGDzhjqpdvBxLJJcCx/xAj5UehMSmpuK6IwZcncLXIL5h5eudI0YlPWzUmqLm1nKnWGaFnQHThJQr36VkWg0vygRHYGs2kaJOxNuqFnoGsrUbyz7BiKU8XqolooOGeBDdnH6hiaXFZvkZH6uuuz1cSDhGTQ5eLb7i7ImbRKAsNFL87h8LzbUI10Vytw1CQRuOtJXH7nkah4QKuZri0he6ebu6++25aWlr41re+Jd+mTWzi/yH+6Z/+iS9+8YsAKFBwvsCaV9S+LaMiTYhUs/1eiew61TEjRCDa+bGKFUsmgfgdn65AoYQD/9YhFL/tk2UkpyQJr4vEbFG+Ltae2lsL0eVoWZxbEiJmmWvTSU1PIaveJExSGj/hIkUl/q4aesHJkOChmMKLsrBWGzj1ky5hYtbMwByLc2LvqoyKNPLPyqLzN/3CpIuORxIjryQ6tkgUEyemmZ98+3Zn3Z3emDrNW43ZgYAw8RnA3TaHuy0xslf+eVYMeWmc+u9+2VjXyVmCZy8ytVqdVAbF78nGVJIutNnX9svENocHnpnEXKJn5GWxeQFIdmlqU6p8YATRmihK2qm5qZD0fC2tv+plpke+CBXtzSK70UzPk2NMHJmWjY8Ss4ZenYxfJyJfXfyebLLqMhg54GTgGfk1r2hNXA4sC9XEiqvzSdEm0/3kaNya26g4k+FwL9PWEY4ePUpycjJLS+Jj5k1s4v8VdDod8/PS+76MevIVJfE/oIKcrWYsVQaOCNQ9fZGaknfnYKvP4OSP5feMbNszcFyUzeSJaU4/Pia7CW7basQRsXsafEZ+fyajUkflVfmMH3fT+4T8fFmTraLh1mJmh+Y59d9iB5NKL82l6EKb8PvfusVIarr4OGqq2YmlVC9MUILE9lya7i3F0zdHz1/E1o1cXV4M+WnCBKWK6/KYHw8Ik0aCU8GE1l1G97sldc+3CYOvTpI1tyxMuEgUAy9PYsjfWJTkf4pj301sDUuUPBeDCqqvLWDs6DSuVvkkTbV50Fk0snGrr990RynOrhmhZ+DQQ4mNwydOeVAqFfKBEVhrTKgMKcJkTH2RGsfFOWTWidVEgF2fqGRhdkmYCLXjU+UsL4fla3Skvm7/RDkKJRyUO+ARiW/4cAWAZNEogMqr8iUREYF7oclWYd1iQJelpjnOgRCVQsUFXM1QySl6+nq46667aGlp4Rvf+IZQm/6v4B1FUiouLqa3V1qoTUHF2YrLhD536Oud5J9vFSIoAfQ+O4ZxlQSuHDz9czEbMREEPAuEl8QJOwF3kCSVUj4wAmfnDMZVEmNyOPLDbqqvLRTajAeJpOE+5U5IJSURxZmdn6tk9KhLiEwAoMtUS/lJQDQn3sP9euRsN6MypEpqWQLfEbXSEp14ayzELOlEkHummYJzsoQJFwDtD7/1DPHVSFR1YdfnKwkthYVIO1Foc9T4RgVPJzTqyd1uFb7PlkrDGolHOSS6wKYxpUp9VFThTAvb7y5nZnheVp0H4PC/J7ZAdfx7HQk9v4MvT5KqF39dDB+couAsmxBBCWDypAtjfhqzvWJEurGj05hL9DhPiJGm+p4cpvpDpcLPS+vD3ZReWSRcEw98q53shgyhe1umqMHpczIVfhEAvV5PS0sL+fn5Qt+1iU38b8LtdmM2m2N/7+Q8dAoBuxw/9L84ISkFCWDiiIfMugxO/UpsYtL3wjiWcj3DL4gRZCZPerE1mJg4IUZ49fT5CC2EGG/2CMW7230szi8x9Jo4IWj82DSzY2I1BuDQVzvRmMTHgn53iCOCE7fK6/LQZWuEyQ0ak5JkVdIaOzM5TB3zJqSglJalRqVPESYp1d3hYHjfpBDhBUBjU+NP4KTx9k+Xo1CIKws5T84KKTq9WSSiOgYRYl+jic4/DQrnCA1oNOLqPFU35DM3EWDwWYF3rUaFxqzCvjNTqD2JnlbzuyXL10QWtQouyiSrPkOIWJmoqkDrzwcSUlubOOLBUmWQlIJE4IcFzyKT7eKk/qB3gcDMonxg9CvcQZaC4mNH77CPgHdBPhDAL9mwTJ4U69euljkGTZMMvyw2gbJ3VzOpncQ97+bb3/42hw8fZt++fWJt28Qm/pdx/vnn8/zzzwOgQsuZikuEPnf8+z3k7BIn1HT9aZDMGpOwwtFkqwe1XnzDf3bUR3ICa1jzYwFU+hT5wAgmTkyTWWUUbv/Jh/upvDJPWDnKdXKWY4MdCamk9D0hTqDY9skyxo+6hUlK+jwNKdrkhJSjEiGC2HdZSctSgzoVkaRGrbQ6fiP2flYbIRAQujQgkaYq31vAyCExwgUgrLDzZiH6W6PY/slywuFwQocA1JlqApNiScqoSMO+yyq8aZZVl0FKmviaTiIn4QG0FhUpmuSE1IWa7i1lbtRHp8Chh2PfS2wzsfm7iT2/PU+Nkm4THzcO7ZugxGgXIigBTJyYIXNLBjODYpKREye8ZNVnMNUqNm4feXkMY6GOgVfEnpeTD/ez5ZoC4Zp4+LtdMdtPOdgVDjImTEwqnmN5eRmdTkdLSwuFhYVC37WJTfxvIhgMotVqY4fytnMReoVe5lNAELofH5HI3gLw9kk2Vf1/E3uXjB+aJnuriaGXxMYW011eFs7KZOK42JqLb8THon8JZ4s8aRLAPxbE7w4yfEh8HaL/xXEW55blAyM4+p1uVHrxsWPQC8dFDwlenEWGQ0fzj3vEVE9UkKJLRpspvuY1c9pH82nx/cYMRzq6bI0wSanq+nxGj7rwdImN9VUWVcx2TgRN95aiTFVyWJDM4u0L4O0TW5N9M3Cd8gopRkVh255B0QU2Tj8xypTg2i9E1HAEv6b40myCs4sMvyQ/flepQJ+fhkKBEElJhFy4BkFITU9Gnys+drFtz8C+x8oRgbXf/r+Jz2sAev4yxvDLE8Jqa96+gHTw+AnxPjQ37me6R1wVzOcMsuQXHwvOjvhRJsCWcXV6CSXA8Rg96mJmQOz59Y8F6f3bqLDSVN7pGqbTvEzOjfHNb36Tw4cP88orrwi37f813jF2b3q9ntlZabHfRBaNijPjxmfvzKDowmwxCySFAm2OitoPFnHyR534nHFSsipdtbcXcfKH4oo5idgHARhKtcx0izNvhJSiViFma5eASk3TfSW0/25YmCyy4zMVKJMVwipQmY16Svba3zYrLbSw86OVDLw8zthrYgMxSMwqatfnKlEkK8QtOz4pKX2JxueeaSb/zExO/3WYqePyG2A6h5aqq/Loe3ZUKB4Ss3sDaLinmMX5ZWGy0vZPlrO8sCxsh5eorUnTfSWoDKnCZJxECFBRbPtYGcH5xYRqQCLY/WAVi/NLwrKT1TcXordrEyIg1dxSiLt7NiHlqbe7jiUab61PZ354Xvg3F+3NYsG7JPybGz9SwsLcknDf3v2FKhZ98vfNF/bRrH4Bf8CPzWbjhRdeoKKiQug7NrGJ/w0cPnyY7du3x/7ew140ivinOrZ9vIxkdZKwVWvNrUUoFQph9SH7uVZYDgtvTGtyNajSwNMl7lWUVqBhfkA8Xu/QJGQXlqitXf4FmaRZVLQLnlZPK9BQ98GihOwZtt1fRkpa8tsmo1x3hwNliiJhS1hRUofeoaH6hqKElKx2P1jFgneRI98SG+c03VuCQqkQjq/+UCHKJIXwiaBE7d6ythrJPzOTll8PCpGtsnYYKTovm9NPDAuTp3Y/WEXQs8DR74iN1XY/WMXyQkiYyLXGslEAOWeaE1IfSxRRS8K2R/uEa8buB6pY9IuP1TS5Girek0Pz98SfhawdRiZOehKyXPu/Vseqby6kRXATVWNTU3tTISd/2CFEkCu5KofMLUY6/yhPwGsOv4ZfO8PS0hJZWVkMDr69hzg2sYlEUVJSQk+PVB8sZFOv2BM3PqMijcqrCxg/4ab3cXmitNoItbeVc/LnA8JEiKoP5CdEdknEPggkC6FE7Kq0djW+4QTm7WqwVhmYOia+5lV3exGdj48J2yZt/WgpKdoU9n9Z7B1uKFaz5XoH7u63x0oLpPWTwVemErOuSsAqKtE1rMYPl6C2iNvgmqp0lF5mp/eZMaF7p85Us+W6PAZfnhQmXSRq91ZzUyFLC8vClopN95YSWgoJv/Mb7ylBbRLPUc3NhaTbtZz6ea/QM/RmrMnq7nQQWgglrh4giF0PSOuOoveg7KpcLFsMHP9pr3AdqLjGztxEQGhDMYr/a3XMUKwmOI/w85mzywRJCmF7y5qbCgmFw7T+XIwcv/OzFSz6loXu26spfyG4GMRqtfLUU09RX18v9B2b2MT/BoaHh8nLy4v9fSaXoVLEJ6XU3+FAnZEqrJxRemUuqvRkWgSfL2udgRRdEqOvidUglUWF2pjEzOkE9g/tKuaGxckricYnamuX2WTEWJhGl6BKt8qiounOYong8Eexz9Tf4UBjUQmvVSaK8mvsaPSpwqSpKESJRCq9kqb7Kpgd8Qm/k3d/oYrA9IKwYlDNLYUkq5OE1aZKr8wlNS2JVsF5QqJ2b4YSLY4Lsul4bBj/mHyODCVayq/Io++ZcWGS0u4vVOF3BYXHaomu/6yxbBSAuUZP0YU2jny3622xNYtaErb9ZkCY7Lbj0+UsBULCYzWVRUXZZdkJjR0TtUEDSWlIpF9E8XbXsfJr7HQKHmhQ6ZXU3FrCqV8MCD3/9rMt5O3JpOuxYVnCW3f4JM60ERYWFsjLy4utLfxfxztCSSklJSUmD+qgGodCfiN35vQM4fNtzI2JqSflbDehTFaQtT2Tvr/KMwUrb8hHZ9NQ+r5cun8r/0J0XGrD1mDCWKAT2uzOqNRSeXUhwZkFYSJH7Q2FhJcFZfWB2lskWzhv74yQkk/2zgxUhlTKLsvhuKAPe8CzQGoCp3Umj3mZPCa+SVZyRQ6nnx4VVlEqPDsLZbKCFHViXV+UoASSdZu5RlzJarLVQ0aRuHJXonZm1sp0kjVJ6At0wiSlRKExqVDpxfmOiSoRTbV5MNjFc9r+q15ITRUmriRKUAKJUa9MFWf4AxS+O4vJEzNC3ye6OBXFVOs0OpsGtGqEHggtpOdq0VrUwv0paiUpqqRWckUOmTVGpjpmhOqkNl/LlusKEyJnlV6Wl1Ddy240Qxjh36w2pqJKFz/Vu7wQwj8trxygVWjZE9zLWGU7re2tVFZW8utf/5rrrrtO+Ls2sYm3C48++uiavniB4mqhzwVmFknEgEqXlZhdVf5uKygQJinV31SIQqkQngRv+7hE1mn+bpvQ5njFtXmYytIZ3u8UUo/R5GooPCeL3K1mYdWi7CYTSQm8a5KSILQQElYkAYTbAhL5IaMgTfgeAKgzUhNSHI1CVHXG2+un+Sd94BcnWcyPSScZRSFK1IlCl61JSBo5URiLdKToktEXiClCTRz0MHHQk9B3+KYCONvEc9Txu37c7eLj5UQISgCq9BSSUpVk7zIxJipbroGic21Clm9tvxBULVqFRd8SPpf4QkfFe3LQWFSYKrVCudLkaii+KIf8PZnC46Jdn69MqO5FLW6bf9IndE9qbi0iPUeDUqEQqgMV1+aht2spviybnsflVS5ytmWQlKrE2pgpVFfnxwKEK8L4RuVP1DUo9uDPc9I8dIihoSG0Wi0+XwJSvJvYxNsIk8nE9LR0iErIWhfwj88TWgoxL7hAa6mzkKxJIrvRQN/fBOyJLs7CWKSj7Kpcuv4gP5fL2WWi8AIb5rJ0oc1utU1NzQcdBNziGyh1NzkIL4ckGzkBbL1TqnGzo0GhDX5jqYY0m4byy7I5IXgYaX4ygNYiFArATE8gIWJ4wYWZkjqK4JJF1tYMktVJqBKwTAFxAgRI6znGUnFLivHjbixVAsoUEbjb5jjYJk5KNuRrUBlSMBamCZOUEoUuR5uQVXuiSkTjx9yYy8Rz1P3HflCLE8sSJSgBaDJSEzohDlId8Az5hEg4+xOwuAOYPOUmo1hHkrgDNqYyPfr8NGGSUtN9pagMKXj6fUK5tZ9tIf+sTJytM0J1Um2E+psdCR2W2HKdg1ACda/gPBuEESYppWUnNidf8i8T8IipZZ6xeCmTW7o42XKShoYGHn74Yd7//vcn9H2b2MTbgdWH8hQoOV9xldDn5p1BklTiRchYlEZSivh6TvHF2RLJUJCkVHeTRCwRtQytv8OBNlPN0f/qESJPFLwrk9xtFoZenRJS/FHplZS8O4e83Vbh92DebisqQwpdqhExYoYCFvxLOAVVrACO/0CcPKSyqDCXpiVklabLkhQvE4Wo0lHQG+Lo93tgQVwJefr0HDND4qozp37SLxwLYChKIzmBZyFR6O1paCwqMgrThMgoM6d9Ce83zvTN4eoW3ytt+VUv3j7x8XIiBCWAFJWSVG0yOY0m8f6ngrxdVqHns/ev4/QKrI2tRtCzSMAr3u8cF2SRnqvFvEUvpCCl0kPle/OlgwOCNWP7J8pRqpQcED0gfUsh6TlaWn7Rg3dA/p6UXpmLtdpAiiaJEYGxVP6FVszlehx7bUL2meYaI6lpyVi3pDP8knx7/M4FQovLzAk8z6WKWnIMBZya2U9vby9GoxGPxyP7uf/X+D+vpKRUKok2sZ4zsChsa/5dkZxMeJW/cf75VvyugCwZQ5GcTHh5ea39kogV06p05V+UKWwfBNBwV3FCNmNN95Vw+slRYVWR6psKCM4u0S0wMQKJEFB0toXWX4ifjDPXpAlbICUKx6U2ZofnhYk0Ggs0fLhK8nKU84p8k9j2sTJS0sVPtv9vwFqfjt+7nJBqVqJIVEkpYWjBviMxRZ63G2/3vTaUSgScRPNa/aHChO30RJHo82yuSSOzxpSQytn2T5Zz6medwpaGTfeV0P/CmHC7Kt+fh7PNI1w3Mhv1zDmXxImHib4jVrfthvy1VosKxZp3SBTPhf9AmBAZGRlce+21fO973xP/kk1s4i3GP/3TP/HFL34RACVJnKe4UvYziZwYAEDD/8/ee4e3dZxp3z8UEpUACBDsBECQIAmwiVSnLXc7jlts2ZZlyyWJndiON8kmsePEZb/vet9vmzebzSbrTVunO+sk65JNWccpTrOa1UWJkihS7L2ADYUF+P44AEjKojjDRF4n4X1diSVxhuec58w8M2fmnvuWUgVJwuQ2oDOqhIkQOetsmAsNtLwiZv/gTFiFHhKcqxnsairvKRFeYAbFWq1j15CUyokooWElCNzt5vh3xMkZScWfg19tlbJLk0HD04nTTIInuN4O5G2203toZEXtVgSySkorgcVrQKsT7z8XHAZoeDRAeEj85JosNnyyHK1Ow87PHBd+d856C8YsPe0S33gykO3PgbvdnPlFv3B/K7+9EFQI52RHlRnXlhzxd2CAmruKhVXCQFHB63pdQr58hWNEzjobaFiWkDcQ7+YIuwCoqqri6NGj8hdbxSr+iNDpdExPKxu+NTSQrco/b3lnvRVirIyMoUeY7AKQf7FDeKMboOpeD43fahMuX/tBL+2v9xJsFuv0vlvyIQ7Nr/QIlddn6/Fc7pRSLLL5DML3I4uiy7MIDUcZFrWE1UPDYwmlXgnbMBnUfqAYU45BGSsvzNROGpkVJmbDc1LqNLKQVVKShh5yqjLp3yeu4H6hUftBL6Zs/QVTT9Vn66l/0Es0KL7RBAqh+UKpisn2Z2OhnsINDiHCURL1j5Ry/PlWYSJYzQPFdO0cZOS42Oax98ZcJjrDwjnf5jMwHY7Lqc4lITlG+G7Jp/nl5fPxb+L/zQzTWK1WduzYwbPPPit/b6tYxR8Jzz//PHfffTcAWtK5THXTsnVKbsij5ccStqI65gk3C/+8XDWnDkOmVljlxFpqxFFmESYeWIr1uC/LFVY50VnAv90rRfLxXpfL0LFRITLAwvuSIX/IwHdLgbDiEswr/hz5RouU8ooMNj8RIDwQkVZeupDIXmtjoDF4QRR8QF5JaSUw5OlIN8kpi11oXOh3Xf9IKfrMdPZ//riwEpG11Ig51yBEwFkJZPtz6Y15dO4eESZ1ua52ojOlCX8Pmgt1FF+TJ0XEC9zp4vh/SqgJb8ikb6/EnH+FY4S11IjBlr6sDdx4fJy9vAZAIBDg2LFj4vf2vwA5GZC3GSqVKkVQauC6RQQllVb7FoISQGGDE98NRZwLyTopghLQ8DE/mz6VUGZaIn+pNJrU/+oeKqH+r0oAlicoqVQ4qs2U31kIIExQKrxcOYa1//OnhQhKVp/iPdn4zXYxgpJx3r5MlKBUdkchGBEmDhRensXmJ/wYXRK+mHV2fDee+92dC+Eh6NozRIugn68xX4/ZK34/AJMDYWbD4v65tQ96aXgqoJAZhG5KIcdk14ufmCq9vpCaHR7h8u9E1Owoxr0lR0pxas2DXqUdCmLtR0rZ/KRfuPxYb0h513JNhJwNVrHf3xxiuHmcfV+RICi9z4PVZcLz7hzhOnUPlbDh0eVP3sJ8fy69OR9j1vLDwfDRqRRBKdMvFqi9n1EISsk8tRz2f/40w0enMObrca7JWLZ803c7GTw0gTFfT9V97mXLDxwYJ9QRwrkmg02f9i//vhMpuOQ9eTR8IiD8Lvx3FWEvyaB8+4I2G48rRCXVYnWNK1VbWVe/jqmpKb7yla/w8MMPC11jFav4Y+ORRx5JEZTS0QsRlAI7XGRVWPFenyd0De/1eTQ8GlCs2wRgsCvWsbYyxb5IZHM/cI8bgx369wWFCErOegsGOwweGBcmKFm8BsIjMWGCkq1MOW3e9EKnEEHJ5DbgviYbQJjQsOHRcqre5xEqC1ByYx6ZXjPl28TH1je/dIqBY0FhwoRTYn4DgAFmpmYJtokTaBueDLDmIa9w+fLbC6l6r0e4fN5mO96r8/C/R3yO+k5E1V3FlN28/DiZRM46G+s+7BMub7CraXgqQOBuwWuElXc90S+3EWzxGjDYxT5hW1/toe3X/VKEF991hRSsF5fEsHgNbPqUX7itjzSFwAAlN4vlzOPfaSfcF8HiFVOsOPmDrhRBSaTOcONkiqCUv8Wx/AXCpAhKFXcUYXIvf40kQanukRIq7xVoH4n3telTfjY/IT6XL3lXPiVXn5/cAZCtKmATV+B2u2lsbEStfkcviazizxxarTZFUFrHVcsSlABK311A6XUFwtfY9KkKNn4yseYlMHz77yyi9kFlXBUhKBkL9ZRtVe5HlKCUu8kOwOGvtAoRCDLcitJH88s9wgvSGW49kYGIMPmh+Poc0CNMaHCusbLxkxWpexNB4aZsyiTWvIhA68/7aPkfQVKWTS11PwATfWGmJ2aEiQkVdxSx+ckAept47qx/uBTnGrF1E4Cy9xRRfbf43O6diPLrCyi9Lp+cdZnCdQI7XPhuXj4HJFFzv4fNnxYfJ4NnJpV3LddEcNQsvy4DEBmI0HdohP1fFV/z8t2Sj6PcQvG14mtegbtdrP9YmVDZZH8uujwLY+HyDx7qiqQIStYSsUAdePY0kWBMuO8d+Y8zjByfRG8Ti23rj/oYPDSG3gYV25fPH8HmMKGuCNYSPRseK0dvE7ot8i920PBYAM81Yu/Cc00O2dWZVAh8S16quon19euJRqJ8+ctf5iMf+YjYTa1iFX9kfPGLX0wRlIyYhQhKnmtzyK23470ud9myAPkX2Wl4LEDhpYlvyuU2n3Ww7uNlWEuNRAejQgQl38356Cxqxk6HhAhK1lIjuiwd42ciwgQlc6GO6Li4CpHFrVjltf60T4igpLOoKbpMWRcUJTTUP1JK4E6XUFlQ1P2yq234torPmw9/+ww9+4aFCUqZfnF3FAB0EBmNMiqhcrTxk+VUv98jXN79rmz828XjZC014ru+gPKbxNcG34mofa+Xiq3i82xbmYk1D3gVkogIdMoahchYnERkNMp4jxxpypCnQ5cldlOnf9pF62u9UlZp/tvdFG3JFi6vc+pY/4lystfahMqPn4mATmmHIjj9o16ig1EMeTqhd9Hx88HU96C5cPkKk13RFEFJ9BmSBCXPtTmp3HY+JAlKVfe4xHJUIr2s+1gZm/56edewJPy3uii+Zvm1RIvKwhZuxFvs5fjx42hkZEj/F/COXZFTLdjEbeA6jCplJzlJMloK7b/up+nFNuHrRMenCQ2KM/v09nR01vTlCybu33dDEY5SizDxofr9HlwXZ+O6RqwTG7PUVG73CJMSADY8Us6a+zwYBNffjfl6ssosbPiQ+DUyi82oNCpCQ+JJ+NA322j/9fJWewvR8dqAMHGqcpuLmh3izw0KAUJGKnAuGiMeiwurrRSsdZCWocVRIb5g0/3mMANHg8Llax4opuHpgHD5lWDDo+VShKD2X/cz2jrBcIv4JqQxW4/dK7Y4Asl3IVycU9/rUt61xLxh06f9lLxLfKJ78oUuqd/f+PU2eg8M0/Y/4v0iLUOLRiee2s1eI9nVNirvLRWus+Gxcvy3ifcl55oMKrd7UgRPEax5v1eKtFi1w43FZcKYL7YwZK+wotaqyKsTWzTsfXOU2GycAUFf46bvdjLQFFTe+blwFlnJdtCDelpLLBbjS1/6ErfdJmavtYpV/LFw//338+///u8AmLFxieoGoXrHn++g78gIrT8RO1XW3xhkbjrG8GExVQ1HrRNNuhq7zyZU3uI1YPOYqLxHnFzhu66QNQ+Jj2H1f1VK1Y5iYdKAIVdP4I5i1n1U/J4CtxZRsDFLmIwBoNVp0FvE7SlbftRLz75hORWsMJx+SWyjDMB3faHUHJUwvPnZU0L2XEnEZmNMT4kTyjNLMrAUijOSgyeDjJwap+134uqPDU8GWPth8XFVFoZcPQ1PBfBLLI70N47S8XtxdSCH30q6LQ1HldiiW3hEmQPHZsQnX29+9pRUezIUGKjaUUzF9mKh8kNHJuiRsEgGaPtNPwe/KG4xMxOMok5TkVUmPpff8Eg5OdWZGOxi5Q25eqp2yOWQDY+WU7WjWFElEoD3+jw8l+UIkxYNdjX2sgwqbxdf/DTYdJjzxO2BwkNRQoIS+ACnftRJ80/F8plZZaewvQqAeDxOZqb4JvIqVvHHgkajYS5xeO5ibsCmsgnVO/WjTk68JK6CODUQIdQvvuaVUWDEaBddrYfK211kVVqFSStlWwvwXp0rvBGOHqrv9QqTEkDZxKq+14s+W+zbUG9TbMHXPyx+DXuJGU26mpkxMdsjgINfPMGZX8rZLPTtHhFWXCnf5lGeO1echdL6oz4pVdDYTIz4XExYNSazwoQ+Kx1HhThxvfO3A/QeEh+/y28tkCZOyaLu4RIpQlD7G8MMHQsydlpc8czqMWOXsHybCc0RmxWfd7X/fEB51xJiFes/Vka5BFG/9Ud9Ur+/+eUeunYNcuZV8TUvvTUdrV58s0VvU1N0cTaBW8WfY+2HfVTeJZ5DMtyKfeWah8TXvOoe9kuRFgM7SrH7MoTJUJklVrR6DfYqARI6MNI4ymxkjoHjYm227bV+evYPcULwW9J60I0hmsHc3Bxf+MIX2LZtm1C9Vazij4VnnnmGD33oQwBkkEmD6lqhem2v9tO5a0BYrWj45BTToVkGj4mpJjorrKQbtWSWiu156LJ0OKtsVN4jTub13+6m7gHx8lX3uKh5bwnWUrF1E50Fqu4pof4R8TUQ/3YPRRc7FWKCINJMGvR2gX3ZBHp2jdD2qz5h1xkAoso7F4X/VhfrJOaoROHgF1to/5n42szcTJyZkPialzNgw+YVJ0+NdYboOzBC9y5x9eONj5VTJzHmrQSbnvBTdqv4vlv3riHafy0eV7svA2OuHqfovmxUmQfPRcXnXge/2CJlsaazQN39JfhvFnvu8TMROQUfoOWnPRz8qriyU3Q8ilanweYRF5uou7+EgvVZwmSr5HPXPyCeQ+o+VELNe0vQWcTm/7kbMim9Ll+8Tekgf50D3y3ia16mXAOmfPE1r4muEFMD4hPn4y+c4dSPxPKZTqWj4EwlALFYDJvNxvi4BJvtbcQ70u7tXASlcxGTkipKeRdl4rk0l0NfaXqLpdBShCbPu7I489OlBxzVEuyy+Ozs8pY/C1UyjFC40UHXrwQ3NoxQd6+cLVzdIyX07R+hd7dYQsqut1Cw2cnBZ8Wv4Xl3DgOHxwj1vDP0n8u3F+LwWWj6rzZGBRUGnGsyyFufxZGvitkTuK7JxlJgpFGQYb5iSFpIycJ/VxE2j5ldgj6dIG/3VvdICemmNPY8I76pIwtDFsKWYStF3kWZZFdlcvjLYgO15905GDLT5ezPHitHk65m19+Kv48LDd/WAqkJe95FmeRUZXJIME4gb19ZenM+kbFpcUtAo0L665bZjFxh38v0G1FrVcIEyTUPeknPSJsnPJ6lpASkbOB2xn/GnG6a9PR0rr76al588UX5G1zFKiSxfft2vve97wFgIZMNqiuXrbP+42VMDUY5/m2xTbKsmgzCY7NSNmcpSFr/FF6SRddvxQcM11XZqNQI2zvZ/Ubcl+dJ2ZHVPuile9cgQ6L2HgYouSqPlh9JSIpfYGx+ws/M1KzURlbFHUWM94SEiSI19xfTf3iU/mWka/9QGOwQFrR4Xwk2fLKc8PA0RwUtsaTt3gyw+WN+Bo4GL1wbWaHlliwq73Uz0jxB7y6xF1JzfzFdO/uFFcac9RZ81xXSe2BEivx2IWHxGrAUmqTy1JqHSuj4Ta/wc+dvcZBVZpGyZat9wMthCRly2Vz7h7Qp9zXZwjnaYFdT+2A5p3/StWzODcfDHDb9hsmpSYqLi2ltfedI7q/izxtqtTqlGn4xN6BXnX/T2R4w47uxkMNfPiVMDim6PIvOldqry9rCbbbTI5jHAarv83D0m23C5avu9TB0apy+3WLXsPkMuC7N5ch/iOfA/M12JnpCF9RiTAbuq7Mp2JDFiZc7hElKNp+Bgs3ZHPuW2Pw8Z10mdp+Zpv+8MFZbiyDZpmRQfH0OOdWZ7P7cCeFryNq9Vd3rweBMv2C2e6CQ5SLBC/brAUUBLKcmU0r1zJJvkLI/W/thH2kmDbv/4cKtD8qi+Noczvy6X7h92ANmCjZlSVmDyNpXFl2eRTwGXb8Rz9O5m+zCeRBYcb8zFurRW7TCucd/ZxGmbL3Qd+KB+O+Y0gVJS0vjmmuuWV3zWsXbgv/zf/4P/8//8/8AYMPJOtWly9ape6iESHCGphfEXEgsxXqIxaVszlKQsPsBcNZaGTwxJlwnd52NNHManb8WI6GsxB7Jv93FwLEgw0fFN8FdVzjp+JWELfgFxsbHypkJzXHg2dPCdbzX5RIZnRaeB1dsL2Lw2JhUnFYCnQUpdR1ZrP2wj8holGPfEesfK7F72/BoOUPHx6RIPtKQ7HsrgW9rARNdIWEyUfm2QvoOjAjb1lncOip3eOk9MCJFsLuQ0GXpcPhMUt+HlXe76N47LGx36ai0kFtnE26DIG/jlr3WxsD+oHD5P6Q95V9kp+cNsXjpLFD7gXJaXu1l+NjyHX2n4aeEQiHcbjcnT55EpxMnh74deMcpKS0kKF2lum1JgtJC2L0ZqDQqjHmL2XxL1au8u5D8tQ5Kl5DZP5ugZMzTsvnTZZTdnii/VH5YoIxR/X4PrqudEIKu18U2Zgq2OCAkbguXVDE5+GyLMEEJo2J3JEpQStqjtf1PvzBBqfZBr7CaCSjWcA1PByh5j5jtAUBsLk48FhcmKAEMHpoQJigB5K2xS520x4iULVcKkiSJDY+V47pSzCYHFEUXGYLSSnDw2RZpgtL6vy5bbIW1DFZCULL6jORdJH4yumhzNibBk1Kg9AsZghLAbHiOuWkJiSeg4amAYk0mgcDdLmEbwSRBSdSSrfeN0XmCkmAXSdpXiqovnX6lRyEoGRF7hyEUglLCQlHovkKAUYnvmgclTqDc5qH8PeKWOTpr+vLqVomxo0H1LmoCNYRCIV566SXuuece4eusYhUrwX333ZciKNnIEiIoAaQZtJgET0QAlN1URO3dYuonkDit/IRffFPbQMqaSnTTPG+zImPS8YsBic1vxa5JmKCUOEBx+MutwgQli9cAYYTJJzkbbZTfLifLvOnTcjZKAHPTMWYkFIsATnyvU1zJxgDmfANFm8XnOHmb7UJ2U2dDhqBUcUcRdY/InRDb+8xJYYLSihCGXX/XJEVQcl+TzfqPS5zw+wPIJKLqPQBWt4nCTeIyp0eeOyNM1AHFxjEekzuTU7o1n4anA2QJ2ptAQuVJ0EZwvDWcylOi7ffQl1pSVnEi6PndcIqgJKrYlCQoCdm+MZ9rPe/KIbBD4HRZok35txfR8FRA+L7Kby+kcJOT0q1iFjimQhNqrYpM3/LzYIPKQO3UpRQVFnHmzJlFaxGrWMWFgixBCSCzNANNmhpjvtjHl/fGXFxbcoSto/Q22PxkIGXbJrKpXXFHEa4rlDFbdAE6afMmSlBK2hQ1fqtNfGM+YdkmSlBKWkD17BoRJigFdrik1IocNRk0PB3Ae6OYVUwSsbmYMEkAlOcWJSgBFDZkCSs3AKBXiBUrggRRYt1HfVLXOfOTfoUQcwH5ZY3fapMmKNU+6J3vUwJYCUHJWKiXspQr2uzE4jYKW7717R6RIigBTI/PSKkMwFm2lILw3ZyPs15M/eDMqwpBSVSFaOT45PzmvGCskvaVovZqna8PpQhKou8wmQfrHy4Vu68IoFfiW/OA+Ld47b1eyiWUA4xOPWnG8+/dJFGv2sIa3xoikQgvvfQS733ve4Wvs4pVrATPPPNMiqBkJ0eIoASQbtFidIqveQXuKCZwl8Ta8nYXmx6vEN/U1sGaDyrWVIOHxQhKzlor6KBvX1CYoKSzLLZHErkvgKYXOoSJN0mLJlGCkq3MRMkN4vuGoFjobXpcblyZCc0ptqgSaP1pnxQRw16ageti8TUvR7VFyNLqbMgQlDzX5ii2ZxLY/4VmKXLISrD3MyelCEq562xSal7Aiggl+Zvt4hZxgDNgpWCj+Lz25Pe7hAlKAOPtUWIzMWIS+42Fl2bR8FRAyRGC0GXphK3uokPRVL8QVUs79p0OhaAkGNvhY+OpNqgTFCJNEpREnztJUMrdkCmmwJRoT55rc9j0ab+wklTRZU6Kr8yj9EaxPKdz6NHqNWR6xdStGsLX4XF7aG9vR6+X9H1+GyA2g3ybcDZBaTlyUlIF49i3FyfE5eo1frOd6vd7OP3KWxf2z6WgpDWlQ1yRnF/ixt/yTxn5Bsw5ejp+LjbYbni0HK1Bw1h3mMnW5ZOQMUvNmocrpNRuah/0YsrWc+yFNmE1k5odHuJzcWGSi9VnxJStx39bIfs/L8Y6nh6bJjYbp+Xn4hstzT/ophnxD+XaB73oLGns/Sdx67Y9z5zAUS0uY+e/xYW9JAOVWlkkEcGmT/uJz8WFCT5WnxGtXoPVbQIE2e9eIxoNwu98RTBCdoWFgQPiM6C0DC1WrXh8vTfkkltn5/RPuoSvU7ndA3GFVCOCxu+2E5+WW9kqu6MQuzeD3X8v1kcO/Js4Gz+J6Pi0lKynMUuNrdiMOc8gHCvf7QU4K6z0Hxml5YdifXHDY+Vo9Rph5YdMvxH/bR7Cw1HhDf5NH/Wj1qqE32HJ1XmkZWjx3+Ki6XmByXII4rE4cxL2NL0HhokMi8v6L+rfRpbe+E2MJdZDbgzxZiYJ8uKLL6LRaPjGN74hfL1VrEIUn/jEJ/jWt74FQCbZrFVdsnylBGlo59+Kn34BOPPLPjRp4tz4uekYsbm4MFEicJubdFsahZc76XpdYHw0QPFVuRRtcbL3GbG5Qd0jJRjsOg5+7QzhbrEba/hEgJmpWd78F7FNDd+tBTgDVrr3DAkTp9yX5CiWBxIqJeHBKCrJrwAZ+1uATY9XMNA4JmwFSBgOPitHeC6+Mhfi4u0xf4sDz6U5dPx2QJjMZikySllKgKIcNtQ8cUGViCxeAzNRhNuizWMmzaSVUpHa8EnFqk+0j5RuzSenKhNNmkb4vZ/4rzYp0hEo302T/RFhJTdZsn73zhEcPguxGfG5V9W2ItLMWgy5esJ9YnPJzU/4UalUwu3XUWWm/BYXwTNTHP+O2LOnVLo+c1yoPdr9RjyX5ZBTYxM+1JK31o5KLU7uCY9OY4vFwSCWtE7+oAvtvRpha8ChIxMMHVkQ02UuY1AZKO/eSCfKwQO/309T0ztH8XQVf17QarVyBKWECkbLf/fS8t/i6yWtP+pDZ06j+RVBS029nvhcjPCo+Ep9ZmkGtmKT8AbTmodKMDp1RIbDYkojeqj/q4TazRfE1rwq7ijCXpZB0w/aGT0hdgq39l4v8VhMWPVFn63H5jUTsKULn7SfC88yG56jZ09QqDwo1lztPxe3rKjYXkRGnkF4zgmw//PN2HzizGLPJTkUbMoizaxVbL0EsP5RhSD95mfE7ktvg3RLGjaXmU7E5mr6XD1pOi6sCpYe7F6zFGnMlKUnXZC4Acqml+eKXFp/2SdMyqu9V9lU7N8ntl5y/D8Th80kQuW5JoecWht7BNdTZVTSkggNRojJ7AvrwVltw1ZsZvCAmD1Z0eVZFF2cTf/hUeF8uvbDPnSWNOG5mj5XT/0HvEwNRIQV2td/oow0o5b+xlGh95J/sQN9VjoVNxdx4gWBQ5MR5aBvbFqctN/+237mIuJrZIsUyQTUmzKOFeGI99BPJ9/73vfQaDQ899xzwtdbxSpE8dxzz/H4448D4CCPOtVFy1dKkIb2CH4DJ9H8o250NvGcPzczx9xsXJgk4b0qF2O2nsJNWcIKbL4bC3BfmcO+z4qNwZU7XFiLzTR+u0VYEWrTx/1MT8wI73cUXpqFa0s2XTsHheeQ3qvz0Gem0/XbXmHyzURniHSz3KKXjIISKESowWNBKeu2/Z8/DuniDBffdfmgVgnvO9nKTPhvc9Hx2wG6fy92YDCz2IxBwuo5eZ1g+9QFVSEyF+qYm4Nwr9hFLG4T+sx0zIU6JrvE6qz9sA9Vmkq4j+RfZKf4SqU9ihKoGp9vZfyM3By1/pFSpgYjnBS0VBWdoyXRtXuI3Do7M+FZ4TplN+WRkW+Uiu/Gx8pRadXC7ddcqKPmvhJGWibE5jjMq3Tt//wJouPLz10MeTp8NxZQuDlLWCzGtSU7IUAgxkeIDEUhFidNL9ZFOn89iMGRzmnBg6jjZyKL56YCZNfSjnW00QZAWVkZp05dOHVYWbxjSEoLCUoXcZMQQanhowHmorHUBvBydbzXOdEatJz8ftciNvBS1m5JjJ8OsesflnhpS5y2PPilJlSIL9Y2fqOZkptcQgQlgNBQjNnwHL37xZm6Yx1T6K3pUmSV4JlJ5iQ8zseaQwqJ5IQ4WWXgwLgUucW3tQA0ClFJFLqMNLQ6uQ0mQNjOCaDtZx2ornUJE5RA8TGNSZAjxppD4lYgCVTd4UatVUnXk8HaB0rR23QMHDgmXEf2fqYGwsRjcTTp4u+x7+DI0uTCc2Aldob6jDTUWhXGfL1wfavPiPeaPOHNH1HCXxKhoRhnftUrTOwBpT/ZPm6i903xOpO9YYwSSiqjTSFmw3P0HRDPW+2v92EuElc0a/lhL0PHx6TynOzmZbKPG7IgcGcp+78g9n5cVzopbHAyfHqcky+cJ3+pVGxSXU138TFau1r4/ve/T01NDR//+Mel7nMVqzgfPvOZz/DZz34WgAwyhQhK/u1FZPoyaHmth37BTZa6D5Vw8OstwlZOSchYFAEc/3Y7Fq+B8VZRlg4MnxhnqCkofI2+A6MUbsoSJoUATE/MEOwUn0t07R7BWmgUJigB7P2nk+RstEkRYmQsnQDWPOSl+X96he36bGUG1OlqdBlynxrhEblT1y0/70GXkS5VJx6LM9kn/k5kyVmGXD3lN7so6Atz+CsXzjqqakcxs9E5YQLRSu4lJnkK/vT/9KDRqOndJb6RLktQAtDqNBjtcu/dd2sBs+E5Icu3cF+EPf8oR5hr/OZpDDniBCWA0ZZJKZWn4cZJZq+bY7xDvP32Hw3i9FuE88NIU4jxzhAt/90mfI1DXztDeEz8udt+1k/bz+RkyJPKIBV3FDHZGxYmGW58vAKNVi20uXgR19PtOcaJEyfQ6XREoxdY930Vf3HQ6XTMzSnkR1EFpc0fDzA3PSc8FuVvtmPOU6yZZCy8In0RaWumXf98HL1F/CTmiRda8F7vErZCIgLh4SiDx8UICADjHVNkFBqECUoAQ8eDUkTLyECE4y+cITIoPvEKNoel5hPuq7PRGjRSxDSjQ4fWIL/EK/w+gL69/aQZNbT+XPxU+1xYbi4RCcqvFVXvcJFmlLDNXQGq7/RgKTKx/0stRAbExjzZQx1TAyFic3Lx6nxjgKiE6oOoXeRC6DK0aHQarCV6xlrEnt1YqKf0Xbkcea5NqLxouRQi0PyTbmGCEijKRc6AjW5BuxWAYPsk1iLxw5WRvgjR4Ax9+8Wvcfon3WRVWIWJYz2/H2aic0qKlCdzYDd5DQD0ChFO9DvCWW/Fd30Bw8fHOPni+dfsq1UbcRRaOTPUwne/+138fj+PPvqo1H2uYhXnw8svv8wDDzwAKKrhIgQlz7U55K9z0PpqD32CFvTV97k59XK7kOXOQpxapo+cjdaf9DFweFSYHADQtWeQqR7x8n2HgqRb06Qs68KDESYlvoEHj02QVW6Rsnk78OxpHNUWKXWgkz8QI3ckUXm3i/Zf9wvHV5elI02vQW+RW5dQnkE8vs0/7kGfmSZcXpOmITYTIzQsfo2DXxRUil+Ayu0exjunOPr1Num6oqi5r4Tp8KwwgejUi92ckhC1AJgNz6KeFT9Q2/PGCIZMHd2/F58LyxKUANLNWuIxOeKY62onzAkqlEVh3+fkSCpHn2/D5jZJ5aD+o0E0WvH4TnZFiY7PMN4u/i3X8+YIBRsdQgQlUEhvQ01jtEsIphz+ajMgPofu2xcUHkOSSI4J7ndlMzM5K2z9tvbDPtLMWnZ/tmnZ1HKV6jbOFB+kubkZo9FIKHQBRU0koIonj3H9L0Kj0RCLKS/5Im7CmCa2Ib32r4qZ6Atz8oWu5UlNwKbHfajUKnb+f/Mb0ucjKPnvLMDmMdHyag8DB5XTMvHZBezCcxCU1n64hI7f9TN46KzTNUuF2QiZbqOUbdk7FcYsNaEhuQ/emgeK0erVHPg38cFw85N+5T1ewAWIug+VYHDoLug13i64rsnGlKWTsiVreDogpdKVs8GKM5BJ4zfaVniX7xys/UgpOku6lEeuLOoeKsHg1NH8o04GD4nZ/xRenkXB+ixpWz0Z8tQ7Hdn1cmpd6z7qo+W1buH8uvFTiY0swXeffI/ChDAjbPxIBSde7BSW7TzmeIPeQeUE9HPPPcf73/9+oXqrWMX58PLLL7N161YADJi5SHWtUD2730jpjUXs/cJJoQ3vwsuduC52MtY+JWw90fBkgJnIrLCdQlZNBkVbsoVJn8k6otZr73TIqLYkseGxctp/2y9MNMvbbKf4qlyCbVPCyjUrQcNTAUJDUQ4JnmR5x8KgKHv1HxxmuFHstH1K7UZi3ilL1ninwmCHug8FGO8KXdB5ZMPTAWIzcXb/gzgxue5DJUTHZ4VVi5Iw2NXShLt3Iux+oxSJLGedjfz1DuFFzpyNNkquyWfgWFBYJUn2Pfq3F6G3pwsreIbjYfZofsbs3Czp6emrRKVV/NGQkZHB5KQyJogSlABqP+glMhxddrM3iY2frECTLv49470xl9w1dqnN/toPFNPz5giDh8TJATafQYoM806F3qaWJnlU3FGEzpomRRaWfY8rQWCHC6vHzMFnj6/IZuydhPzNdky5eppfFlQOQxlPomMzixVgzoPMChM5a+yceKXzgtrKvR2oeaAYU46BXZIkKhlUbC/C7sug5X96hVWenPVWPJfl8KbgZmQS+my9MHHsnQ57QE6tq/ZBLx2/6RcmZq77ax9pxjR2/Z3Yu/ffWURmaQZtr/fPE5fOBz2s/6symn/YKZzzT2bto3OwDYCvfe1rvO997xOqt4pVnA+HDh2irq4OADM2NqmuEqpnLtRRfpuL/V9sFuKROKotlL+nkGDLZMpGaDlseryCmegc+wX3XCxuHZ6r8qUO8tnKTIpt0p8BdFk6ohIH0EHZtO/cOZiyaloO1lIjlds9jJ6epOmFC2dhtulTfqYGwuJWeu9g+G4pYOjEGKNNYmNWUu1GZm7rvS6X0FCUPgly8TsVmz7tZ6JjimMirh9/wDXiszEpVaWqe1zMRGLSpD6dRS1MCnonw+LWMd4XFeYN2spMFF3sFO7DtjITgdvdiornj8VIUZueSLxHwQOpnmtzsBYaOSxodR6NR9ml+R9m52YxGAzvCKKSOI3tAiEjIyNFULq58k7seQpBSZ8Fzpr50wrmYiOWUuVneZutOGtMHP9OC6f+qw9DrnbJsqD8HmMW7P5CMyf+pwvnGjOgEJSMLgOZFfNlHZVGjHkK4SnYOUl8Ls7ASSXZGl0GMgMmhZykUuGoMmHMTzAajZB/iQWdNR3PFXkY83U4qubvKdNvxOhacE9rMsAIGx4px3+bh9yLM5YtCwoRqOHpAGs/ovhrWn1GzN7FZQ0Ji0tDlvJ355oMGp4OUPye7GXLJlH7UDENTwUwZqlTZZN/xri4rNlrJNNvpOYD5TQ8HThvWaNLKZuEKVuP3qZbXDb5rPn6RXZrjmoTRpeRXX/bxMmftJ+37MIYWn1GnOsXx3DhPWX63xrDmfAssdn4W8qeL96bPu2n6v55z26z14jVt3S8cy/OIG9T5pJlzxXD+r8qoeHpwKIYOqpNGPP1S8Z7onMyRVA6Z9klYqjSqObb4TJlpydmaP3VvOrD2W32XDFc99c+xft0QVyWi3fhFZnkXWJNxfDsdviWGLrUbPxUBeV3FS5fNhHvmcicYjG0IIbLxts43z5Fyh78VgstP+9adEpuuX5vrzCj0anJrrcsW3a+vZSy5n4vWXWmRWWX6vdWn5G1Hy1l85P+ZcsujOHGT1aw4ZPly+aIJIpvyqXh6YCiirZMjkjGcOMnKyi9vhDnpuVzBEDmGiPpljS8V+efs+y5YhgejRIdnxbKERjh4JdaaPtNN7NT8+TV8+ZkI7S+2s3Y6RBmr5HszVasC8eqNeaz4m2mcvgiNKShUql4+umnOXDgAKtYxR+C06dPpwhKVp2VGwNbUz+zlRkwFMxbPjiqzGBQ/t0eUHLZ3mcUgtJSZUHZoHdUmel6fZBTP+yk8/cDmNyLyxrsi8smMR2eIRSMLlGWRWVNbgOeK3Mx2HUYCgyJsok8ZHhrWYvXgCFXT9l7ilj/aNmSZQ0FBmxl8/db9X4XDU8FlH8znPWsBQbsC3KW3W/EkKtn/SfKWP+xssVlc/WLyp4dw4YnA9R+0HvOuJwr3ha/gboPeKn5QPGishavYcl4519hR6vXYM4zLIrL+eLdu2uEE//VRvtvB85R9twxzL3ItiiG5yubjPfcTIzpiZlUDBeVPUcMK+4oYsMny+fjcp6yyRgWXpGZ+t3narPnimHDUwHW/nXpkm32LfEuMXPmJ+0MN06es80uGUMkyhpg8NhoiqB0dps9ZwztyrPUPFS8fNkFMSy+ISf17Oft94l4l28rZMMny4VyBCjWc/FYnNiCU0nnyxGpeBuUPy+XI5IxPPlyB80/7lw2Ryy+Bx3mfP2yOWJhDBueDlDzgG/ZHJG8h/xLbDQ8GaD89sJlc0QyhoWXZNHwVICCS+3Llk3GcP0nymh4MrA4hueMd+LvBQYqbvOw7uO+ZXNEEq7LszFk6VI/X67fR6eizE3HGGubFMoRoNgDnvphu1COAOg9MMSJHyqb1jkX2ZbNEfZCOxvn3oVWo2V2dpYNGzawilX8ofB4PCmC0o3e27BlJta8bArxIQljoZ4Mt9K2nfVWMitMnPx+m0JQ0i8uq8/VYy2ZJzrZfAb02Xr2PHOC46+cUcrqz18WYKx7irnpGIOtCuFIn61fZP9lLdGjz52v66gzYco14L40G71Nveiezi6bvIf6R0oJbC8md7M19bMMtx5j4eKyehupuGx+MkD9I6VCZTMrTBgL9Wx+MoDnWmcqhvNlE7nlrBiWby9g8xOB1D2fr2wyhtXvK1XmhAtimCqb/OtZMbS4jBidYmWTMdzzzAma/qt9cdmz4r0wLhluPZk1YmWTzzo7PZtS9V6qHZ4dl/WfKKPyXpdQWfRKe3HWWxfFMIlzxhCovNdNw5MBrP5lyi6IYWgonCIoLWqHy8RbpeGcbfZcMZwNz9Hx+8EUQWlxOzx3vGs/6GXzk4FzttmlYpi7MYPcTRahssl4r/9YGWW3FwjlCFDW72Kzc0I5YmEMk/9+vhyRLHvihU5O/biN6cnpZcsmY5jlzyDNpCVnXaZQvweoutdD/YNe7HW2ZcsmY1jzwWI2f9q/KIaLnvUcMVz7ER/rP1EmVBYg9+JMGp4M4Ls5f9l2aPMZ0OfqWfsRHxW3usjdmLFsjkhe05Stp/jKvFQMl+v3kwMRomPTQmX1Nmj6z06af9pBeGieBHa+fq/Xw+kfdxNsDqPP1uPcYFs2J5cPrcOAGbVazRNPPMGhQ4dYxSr+EIyPj6cISpZ0K9d4b0j9zOLWoXPOq5NYS42gU+x/rD49Gr1GIQ9FFcKSIW9xWZ2SntFZlL8PHx3n+Pfb6fhd/7JlkwgHo0RGImeVTfQL3eKyhjwdxdfmY84zYHHrzltW59RhcetAB4FtbtZ+zIcu6X6gm39WUIg/luL5vunbmk/DkwFsZaZlyyZjWPdQCWs/7Ftc1qJedE8W9+IYbny8gqr3us9Z9lzxNrt1rH2ohKr3ud8SF3PhuePtqDGhs6ZhyTecp+ziGI6dDnHkGy20/r5fieHCsmfHMIGsOsuispZi/bLxnonMMj0xu7gdnifenmtzWPexMnSFb22zS8UwtyEz9bsXt8Ol473pU37qHilZss2eK4Ydv+xltGlSqGwq3qol2uwSMRw+NU7f4VGhssm4bHrCT9X73Odss+eMYZaOwsscqXs8b9lEDN3vymbdx8qEckQSsZkYswlF3eXKpmKoU97TcjkiGZemH7Rz4uXO5XPEghiaC0xkFBmX7/cL4r35CT+1HyxdNkckkVVrZNPjFfhuKVg2RyTvwVFtYdOn/eQ12FI/Wy7eax4uYVNifne+HJGMt86ipuqeEuofLF02RyThuSqXjPz5vHC+HKFz6ohFZ5kOzxJsnxLKEQDHn2+l6eU2oRwBMNIUTK15Oaoty+YIW76FzXPvRqPREIlEWL9+Pf/b+F8lKZWUlKQWazalXUntbWX4b/MAUHGrG98NhegTG7bVdxRSeVsh/u0FeC7LofT6Avx3lQBQ9h4XvhsKU8Skqm0FVN5emLpO6fUFVN1XCiHIr7JTdqOLvAZl9bTmjkIqbpkvW3ZTIZXb3WCEjBwjaq0a12ZH6h78t7pTZctvdlF9t3K/3ityKb60kOEzY7z52Waqd3gov3n+491/m4eaHUrdwsuzKLvJhf8WF80/7iQWi+G9vGhR2dq7lbLONRmU3eSi6g7lOpX3KAs14RHlQ69yu4fqO5WyRpeRsptclN+qbHAF7iql7CYX5oIEuas6i5q7lN+DEcpuchG4U/l9FbeVUHaTK0WoMGbpQUVKGcl3YxGBu5V4V2/3UHaTK7XhX73djf82D8MnxwkPRvHdWETVe33KPWx1UXaTi7yLFDJOzQ536h2DQoSZm05c49oCym5yUXx5jvJ77/VQfvPCeLupvkuJaUaOmbKbXPiuL1De+Q73orIL4x3Y5qbs3S4CW5W6Ve/14btxcbyTMcz0KzFUaxSvzMCOkkVlF8U7S03ZTS4qtpVgyAK1VoW1YJ5AUXOXh8o75p+17CYXgbuUeJff6qXkChfea/LJ2WCl+k43ldvny/puLKLyXqVs1TYl3tn1FqJjM8Tj8UUxLL/ZTdVdyj35by6i7CYXhZdnLYp35T2u+Rgm2mzpNfmU3eSi5Grlg7b6nsXxTjNqUzF0bXYqbeumwiXjXXuvm0y/kZwNVqXN3q78vPLe0nPGMDo+w9xsjLKbXJQl2qz/Li9lN833m8o7PIvarPvifIovVd55xR1Km02SOs6Ot+/GIvw3e9GkqbG5TZTd5EqRas4V72SbjUVjaNLUKQJZ7VlttvxmN1WJuJTdWEjZTS7WPeyj/Gb3W9p3+c1uqu9R/u69Ipeym1yUXpMPIfBckr9km12YI0Bps+YsIzv/73EGDoyfP0fcPR/v7r2KvKPvOuX3LJUjFsZbZ0mHOJB1/hyxKIYqxXpluRyRRF6tnXg8zmx0dtkckWyzHb/tZyY0S9k1YjnCmpeBSqVivFc5vXW+HJF3USZlN7mYnZpj/+dPC+WImruKAcivy8Z3YxEbHisn029cMkcA+Lcn4m2EmrvclF6ZT+Ud8/dUdqOLwJ1K2fJbiym70YXZa+Ry9c1cecWV9Pb2snbt2ncEw3kVf5oIh8P4fEquU6PmkY/8FRUL+lvgjmJqErklf4uDiq1uym8oJHB7MRW3eheX3VZMbSK/ZdVkULHVTSAxR6p8Xwnlifw1dGSCqruKqdmhlDW5DVRsdeO7RelDFXcWU7HVndo0TjekYc1NLJgaUO4h0YfKbvNSsdWd2siu2eEh3ZTG4W+dIdwdpvwWF/67lPxWdYeHiq3u1MZ2zQ4PVXcVE+6LMN4VIs2gVeaGgP89RVRsdSuWaUDN3W4CdxSnntVSYCZOnOCpMCXvyqNiqxvXRdmAYi+xMC4Vt3movteNSqVCrVNTsdVNyVWJcfZu95LxzrvMjkqjIi1hj1Z1X2kqhql436vUtfuNVGx1U7Qpm+ngDGkm7aKyC+NtyNVTsdVN2VYlLjnlmahUKlpeUU5w1N5dTNWd889asdVNxXYl3r5blHdjKDAw0hRKxTCJ8ltcVO5QygZuc1Ox1Y2jyoyz3kLJlQWLYlh+iysV7/IbC6nY6iZvs31RvPf84wmOP9+hxDARF+8VSrw9lyTy/j3zMTRkpaPVaVIxLNzkpGKrm9J35yfi4HpLvF0X5bHm/cXkrLNRsdWN/z1F54z3whjOzcTQW3SUvEf5e8WdxYvL3llM7d3KsxrsSgxrH67A5DZQvs27qH2fM95n/T1JCDlnvO9JxHuri4qtbuoeUd5r7T0eAtsW/J7bPFQlxkPfdQVUbHVTWJXF3EwMk12/6N0sjHfx5blUbHXjvUJpszXv9ZBfn4XrysJUDM+VI5Q4KPE22NPRpmvOnyPuKVkUQ5VahTVf6fdL5oiz4t3waIDANs+yOSIZw+HGSaEcsTDeM1Oz7H3m5LI5ouI2D1U7lOeZicyi1WuXzREA7i3ZFF9WQJw4ao3q/Dlis11pLzcVERoMgQrcl+TOlz1HjqhMzMUDO7ykGbXMRpVFsfPliIo7SqjY6ibcHWaqP0K6IU0oRwBo0zQQV4hnyRieK0dAos3erPT7wQPjQjkCFDu6its81LzXQ/1flZ43RyyMYcUdRZRckb9sjqi9241BZeCK9TeQm5vL/v37V4lKq/iDcPXVV9Perqix1bOFursDlCe+27w3uAhs86Q2tmvu9lB1txfPNTn4ri/Af7s7lffLry8gsM2Dc41C+Ki9x03lnd7UdQLbi6m+T8lD9mIrgW0e8tc5Er/3HGXvdoEeTDY9Wp2G4k2JPrTDRWD7fJ+vvNNLzT1KLslZl0nFjR6GT4+x71+bqby3BP/t8/m5crs3lYcyK0xKjr65iBM/7CI2E8N7VUGqbNXdXmoS6xL6XD2BbR58iXG2fJsXtUZFeEQhrVfd5aX2ngX3v81D+e3KPfre4yGwzYOjQsktuWuyqLp7vqz/djf+RA7z31JEYJsnteFv91pQaRR7pmTZynsT48l1Srxz1iW+URPx7j88ymRvSIlhIu8XX5ZDYJuHos3KwkT1PYtjqNVpmI0qh1oKN2YR2Oah+MqcxLMVvSXetYl4a41a5VkTa16V9yyO98IYBrZ7CNzsIXCrck8V24uXLKu3qQls86Azp7PnmROU3VZMYJsnRYqovaeYqh1nxTvRZtOMWmyejBSZIdlmF8Y7kKhb8Z4iKm70UHZDIfkXO6i910Pl9sXtsHK7Mg/zXZtPYJuH3E12IsFp4qo4lbee1WYT8XZvySawzYN7y/w4G9heTMUdRakYpuYqdXYC2zyUXKPMa6ruXBzvdHNaqs06ajKUNptY8wrs8L4lhrXvLU6R4gLbPJTcpPy8/A6lHabK7vBSe08x0eC0suaxzUPZrcrPfVuVskkSzdnx9l5ThPdq5R6WyhEL4115Twlaoxabx7xsjqi6U4nRdGgWrU67fI4AXA1OAts81H+gVIntve7z5ojANg++xDjr3lIglCMAAnd6yfRa2PlPx+nfN7psjkjGu/MNxW6lPHFNOHeOSJKuau72YM42EIvFQX/+HFF7n4dAos2qVEr7Xy5HpN7j5XnEVXFmQnPL5ojAHUq8W1/rITwapeRdLqEckZGvQ6VSMdWnrHmdL0dYS5QYqlUqDjx7WihH+G5R/p5Xp7SBtR/xYQ+Yz5sjSm5yE9jmwViop+4DXnzvyj9vjghs82APKMrOV111Ff39/dTX1xOJ/HkoY63ifwdWq5IHtWh58AMPLWqvlTvm85CtzETVXcX4ri+g9t5iKrd7F+0VVN3jpSbxPatz6qi6qxhvYn294s7i1Ldj8NSUMkbcm+irOuV7y5dYgy690UXVXcXonAkynzWdjIL5AxmVd3qo2JYYT24qpOqu4tQGdM3dHgwOPQefa2G8PUrldg+BxHVLrs6j6q5iHNXKznv1PW7l2ysKg8fH0JnSUuOs6xInVXcVk1+vfF9V3e2i6q75uDgDNuKqOMFTU+Svs1N1VzGuS5xK2TtdZ8WwhOp73KAGdbqKqruKU3tLgbuKF8UwsMNLdeK701KuzDl1VsUerWKbe+l4Zynxdl+Sw2RvGE26Wol3YuO99t7iRbml6q7i1DibHXCgUqvo3K18lNbc46FqwTyycrsHf2IM8V1fQNVdxVhLjUx2Ram9w0PljsVlA9sSY/JVuVTdVUz2WhsWt46yGwqpSowJoIz9VXcq7aNosxLvgvWOxP0pMdz/uWZO/qCLqrtLqE7sSeTWZirPepkyr6m8oygVb7NTR7pZS00ixzoqLUrbSox5/u2et8TQe2Uede8vxlyoxNBzrXL/Zbe5qLxzQdkFbXYmNIvRoac0sUfke0+izVqWjnfdw2WKyte1SptNkjxq7j5HvBfe413FZPqV9l9z7+J4V+3wUpmYz3kuz6HqrmJq36fcY/XdbqruPiveiTWvgvUOqu4qpmizk9nwHMZs/aI2W3V3SWrNK3utTenLV+YmfubCfUkursS67VI5YmG8jZl6ZU35PDmi7NbF60tqrZpMd+JA/FI5IkGMSbbZTR/3U3mnZ9kckRxXx06HxHLEghhOT86w77Onls0RVTu8VCXmhpGxadKMacvnCJJqc8WgUYFqmRxRrFf68g0FhIaiqLUqiq+cn9+dK0eU3piI9y1uTE49M1OzoDt/jvBe50rkkzRGT0+SptcK5QiAdIOWeCyeUndbKkfAfJvd99lTDB8dF8oRAOPtUaq2lVB7n4c1H/SeN0ck411zrwfX1U7Kby5cNkfU3O1Bp9Jxufs6ioqKOHDgABdffDH/m5A3LP8j4ZZbbqG1VZE7LqGGDJyMd4cYOKKwI3v2DpNdk0kk4WAw0BhErVXT/Eofax4qZi4aY+CoMth07x4ib52D8R5l43bgaDDlxW7Mmr+mymCg68AEKo2KYItyUqz30Cg627yv51jHFOY8A5s/WsbRl7tIN2sZOj6GSqul7/Aohsx5n9Fg2ySTiQ3wzBIzE/0hOn8XVO5p3xCWgnmW2mjLBFOJxjtydASbx0zv8SGCTSE6fztIpnd+cjJ0apyZScVTfPDUBDmdU3TvVlRqunYN4qiwcvw7ijTc4Ikx5sLKgnNoKMRY5xT9BxUJ1q7dgzgrMznzk37O/KSf0pvnOzUhGOucYuDwSKLsADl1jpQt1MDRIOr0eQ7beFeI4aaxxD0MULApm+EWRTay7/AIaeY0ml9SJMir7nMzfFqxZOreM4Q6TU3wpPJe+w6NpGKYs8HKWNskY12hRMxG0VnT6D+YeDdvDmPKnT8xMto6SabXzIbHyml8vh1zroHehM93z75hrIXz8R5uHic6psRwoGkUh9dC9x6lMXXuGsBRajlnvEfbQ0z0h5idmUndv8M/f+Jv8NhYSv0mNBRLxTs8BKd/0kV2rR0S/IGBxiAq9bwl4FjnFIPHlPvt3NlPQUM2sdk4/XvHMGUb0BjmrQfHO0MMnxhL3MMAqLIZODHOwIFxiq/PIT1jvs2Od0wx2qqQ/Tp3D6PRaRhJ9I2e/cMUbszCkvBQD56ZZLxbucGeA0H0men0JuO9bzilrAAQm43Rs1/5PUOHh7G4THTvne9zNs/8qZtwMIrBpsNRbqP79z2MdWamCDJdewZx+BbEMNFmW3/cB0Zlk6h3X6Jsos2myh4fIx5LqBqFIDIxTWhE6XPduwbJrrUTTuSI/qOjqDWL2+zgsVH6947hqDaRt87JWOLZ+w+PojXNp7/xzhDDzWOJdzOINkONPkdpp72HRtBZF+SItkmCbUrb73lzhHSjluFTI+RUZTHaPYnROs9kDZ6ZzxF9B4IYnXp6DgSVa/aHyHSZ8d6QS+uP+86ZI3r2DiXawFAqR5i9RkbaxomOLJEjdis5AqB/7xgWt3nZHJHEQKNyb6dfUdi3580RjfM5Ys8/nqDqfZ5lc0Qq3h1TDJ8ep/eNUaw+45I5Ihnvsa4QvbtHGeuJ4r0ym/G2pXNEcoFm4PBYKkfUPVRCsGuSNO18H1uYI4InRxkrs6ZyRBylzSUtLM/OEWOdU0qbVano3jtEzlobxkwDnkvzlswRAF07B8iutaOKahg+NYHOoiE8PDP/rF0hBhsTOeKNAfLWO5nsU9qs1+Rnv3U/o8FR7Hb76qLNKlYEo3F+nLxCtZWuPUNY8heMnSfGU3lo9NgoNo+Zrr3DTA1FsRUbiUXnVeYGm8aYnlDa71TXBKNnJunZq+ShZN42uQ1MtYfpbxxlLqz0i6mBMKNnJulL5v1dg+TU2Wl4NMDUQIT+I6PEk4IqYRg9Mzmfh3YqeSg8EiNvs53p0AzBlimm2pV+H2ybSuWhnj0DxOacBDuVn/XsG0ZnV/J+49fbCOxwzc9V9g6hSlMz3hwEoHf/4rw/2jyRGj/6DgbRZaQz2KjU7dk9jGnBieDhk+NM9UXo+u2QokJzdU4q758r3uFRhXQePBJktCiDrjeUGHbsXDxXGTgeZGZS2eAaaQsp8d4zQPBUmJx1tkVzlf7GUWLTyjsI90UYPTNJ/8FhDAUGBptGsEzO/96+Q4tlk0fPTKbmKt17Bim+WlngOPXDTnr3j6AxzI+zwTNTqblKzx7lvodbJjEY1EQmokwusF0Itk6m5iq9+5S5SvBkMBH/YbIClpS11MipidScvvdQEL09nf7DyevMx/vgsy2UbytkalBps8NNE1gKjam5YdeuIWzu+bnK4PExdLY0xttDjLcGGT1jpTsxznbsHFg0Vxk4HmR2Shk793z+BIHb3Iva7MKxs//IaEqBMTwC0clp0k1pmHN1dO1U5ipJe8S+Q6OoFhwRScbbc2lu6u9Jcu05452Yq/S8OYi12ITBpsSiZ9/wW9psMOHh3rNvhDSjluHGEbp+O0Th5U5MydM7wMipifm5yuExDA4dvYeUd9O5a5D8tXY6dirj2FI5AqBrtzJXOZ6Qr/bdWrBkjuh8Y36uAkqbNeUYMNjV58wRZ8c7HgO9LY3J/gjmPMM5c0Qy3mrN/Fw8HoujtylzjHPliDTz/Nww2DqZyhGTw2FUZ8RyxPHvd+K+JHvZHAEwcGQcU46BM78aINwdJn+LY+kccTLIaGkGPW8OMd4apuW1HqEcocRQ+Z5J2jUulSOUd6PMVQAOf6UV7/V5LHSlOjtHKPFe3GZtZQY8V+QvmSMAeg/MxzupvJQ8PnWuHHF2m7V4jMp3zP90L5kjUvEejNL1+iC1D3uZmZw7b45Izg11zVo2rG/glZ7/4s0332Tbtm18//vfZxWrkMETTzzBL37xCwBKqMKuymGkeYLB40EAevYMEpuNM9at5ISevcNoTRraXusno9DAzOQsw6cVe9qefcOo0tRMJL6DuvcuyPvJJp+YpvUdDJJuSmMkYfPRtXsI04LTrIONQazFJhoeDXDk+VaM2Xp6E9ZtnbuGUifPk2WTeT+n3kawc4KenclvmyEyvfN9qO/ISCoPjbZNMXxqnMGmIUJdEVpe7cVRvnD+MZyaG0aCEYZPjdN/KPndOYgzYOPEC4oadO/+xRZDw6fGU+uGXXsGyYnO0fn7ITp/MYT76mzU6fN5f6R5guETiXy8d5B4nFTe79o1uCjvj5wcT8W7d/8w6nQ1Y6fHUu/GkJlOx68G6WCQsq0FjPckct+hMXS2dAaPKfmte+dQKg85ajIYPBZM5f2hpknMeYZUzuraPYx1gQpe/5FRsqszWf+xMo5+/RTDpyz07FOev+ONARylGQvKzse7e/8QOVWZ9CTWYLp3D+GoWBDv/cOpuUokGGO0dTz1966dg2TXZKYUgnr3jyyaqwyfGk+12eMvnCF3bRahofk2u3CuMnJqguGTSrx79w2i1quITcfo2TeMJk21aB1r+PgYwfbkWuAIGr2G4IkgfbtjhEemF+X9oWNjqXj3Hx3H4NDRf3Q89ayeK3OxFSttcWGbHWkKYnGb6D2Q/MYewuaeH2fnZubo3qPEd6pjguFT4/TuT64bDuLwzcdwrHMCmzuDrAorza/2KKf7E2W7diltNhXvA8PEY9D2Wj+gWJ8l22z37iFmauZSFns9+4YXzVVCQxHCo8r9L5UjUvFOtNnBA2NkuPUUbHaeO0ecFe++g0GMTh06m9L+z5UjUnOVxgmM2Xr6jgYpWudgpGMcU+a5c8TY6TGGT5npO6D05dG2CXJr7ZTclEfLf/eeM0f0vjk4H+9yC0QUUtLgyVGmR5SyS+UIgLGWCD17ls8RkXHleXr3j6BOV3HmJ8q7OV+O6Nk7lMoR+/61mYpthcvmiCSSbbZv9wj6XP2SOQJI5YjRE1OER7rxXOFkrG088axvzRHJucpE61gqRwR2uAh2TZDWr11Qdj7eY92RRW1WpVX6vz5XT6Qv8pYcsSjeOwfJ22jHWmimsMF53hzRvWuAuekYoaEIvW8OY8zVER6eV0k+O0egglCPEpeCWS+OTAdDI0NYrdZVy91VrAhpacm8p+Iy1c10vTGUGh8Aeg+MpL5Rg+1TDDQG6d8/RLBlErs/Y9GaV8++odRcJToeVcomvpniMYjH41iK9Yy3RenZOzy/fxFV1swHE2vsXXuGmJ2dY+0HK5joDdG9Z3HeHzw2xsjJRG7ZN0RsLs54T4RMv5npqRlGWiYJ9yr9YbAxyEjie6r/0AjqdDWT7YkctmsIfbaSh5pf6iY+E5sfOw+No8tIZ7hZmRt2/34QY858Huo7OEKoX8mTwyenMOUE6T+k/N7OnYOL5ob9h0aIjE7Ts2sEnQVcVxWk8kXHG4PYS+b3OHv3D6fy0HhbJBVvgK5dw9jL5+c1PfuGUt+o0SEl3gNHRhk7HcJWZsJZZUtZMnWflfcHGoMMNY2hy9Ix0jLO7PQc0XGlcNfOoUVzlcFjY4ycUuLdv38IY7aOyu0emn/UTdfuwUVzlcHGIMEzSswGDo+i0WkYax4HYkwNhhflt/5Do0wk1lUGjo2jt6czdCKZ9wfJqrGmVJv6Do0QSqxjjZ4YY6DQyMCRxFz894NYE84Pjd/uwHNtDtOJvD/ZOc5AY5DexNywc9cQ9gVzw94Dwxgc6Ux0hJkcXNxmu3YNkbVg3bBn71Aq7+//fDO+rQUL2uww0ak5ouPz8V6Y96cGwxiz9JjzTfS+OURsNs5k4nm6dp0j3qcnKNzoSL2rUPd8XNIXzFUGDo8y1pHcuwuSW2/HkKm00643BjEumKv0HxpN7QENnZjEmB1k4Ng4nb8eJHutjYwFe5x9B0cIJecqzeMMNJroPajMEzpeH6DoEiddu4YSMTx3jgBlHmkvy6D5ZWUP3HW1c8kc0bV7iKyx+T2fnr1DZBQa0Dl1RBPvZmGOmA7PpezTkjkizaglEpzGmK0/Z44ApX8u/J6Zjc6hS8xHzpkjFsxVBg6PpnJEdHyagcagUI44/r0uXJdkLZsjACbbE2127xCTXVEc1Zalc0TPfI4I90Y5+VKXUI4ApS84J2ZT/ISlckTy9yRzRNMLHRRc7ECbsXSOABjrDCXeq5IjDHk6Sq/NO0+OSLTZBcpJxIHENP5cOWLhHmffoREyyzIwOvWEesYYaDx3jgCl30+PzdCza4SMPAPTk3PnzRHJtW56dGy4ZDOdnd/njTfe4J577uHb3/42/xtQxePx+PLF/rh4+eWXU1YjWRRQl7Zl2TqWUiOOCgvtvxpP/VtMUE3CmAXhqfmXHA+f3xfZd3MuNo+JNz/Xgkq7mMcVO8ck2VFlovxmF9HgNPv/rWXpX7wg1Gs/UorOms6h51pTm/7LYcOj5cxNK0ofolj7kVL6jwbpen1IuM66j/ro+F0/AwfGly+cwOYn/AweH0uRG5aDIQvqHg4wMzHLm587JXydDY+WExqO0vj1NuE6sljzoBdTjoHmH3dKxeDtQN5FmUz0RplsvbBKKg1PB5iemGGfoD/yimBUThKOHB1JKXa9U9DwVABUsPP/ivvkSsMImz7qp2v3oHD/NGapWfNwhdy7McLGj1Qw2R3i2Lc7hG+v7pEShk+M0/HLQeHrrP9gGa2/7Gb4qJjvdd5FmXguy+Xwl08Kt4ENj5Wj1WuE300yZrPhOfZ+5qRQHdeVTnLr7exdzsNXNf9RaXSohJ9h0bhiBN+7czn1/W6hum+aX2NsfIzq6mqOHDkiVGcVqwDQ6/Wphb6rVLcJ1Sm/vZCTP+5KESxkYLCrU0SB5Qsr9rftv+6nf19QqMqGR8vRGjTs/MxxsfszQMOjAWYmZ3nzX8TmHSa3gZodHk6/2s2g4HwgZ52N/I0ODn6tRThu7muysRaZOPKcmH80KFYYphz98nlqAdZ/rIw0s1Y8ZoDrqmzy1trZ848nhK+zEjQ8HSA+F2fX3zVd0OvIwpCrx1ZspHfXyAW9TurdXMh5B4rNl8Gpo39P8IJeRxaFl2ThviyH0dZJjn+n/YJdp/r+YnRGLfu+ID6/XUm/Kd2aT1aZld3/IN6eU7nj2fN8S56FwsudOCssHPyieJ21Hy5FpVax71/FYmDxGqjaUcxUf4TDX2kVqrPuwz7SbYrKXZJEuhzWf6yMgWNB2l8bWL5wAgb7vGqTDLzX59F7KEi4e/l7OxR/g/H0YTIyMvjKV76SWsNYxSqWw6FDh1JWI04KqVVtWraOPldPTrWF9p+L94NUXRsp0oMIXFc4cVbZ2P95sVxgLNSz5n1ewkNR4ZxT/X4PGQVGjn6rlYl2sTWv+kdKicfiUnmt9oNeBo+P0fP74eULJ+s86KVnzzCDCXKWCDZ+soLBpiCtP+oTq6CHhscCRMdmhOMMUP9wKdGpGY5968KNhxXbi3CUWWh5rZe+3Rd2jiMLZ72VyHBUuM2sFA1Py7+blSBnXSZjHWEiAxf2eWSx6VMVqLVqdv5/F3buueHRcnreHKbrN4Jr0sl+E5xhv8x87eNlTPaGafrPTuE6Vfd6GOucpFN0vVwPtffJ5Q5HTQa+6wo48p02Ql1ibWDth33orGnK3FOkSiJmMt+5zjVWPJfn8OYXT4ldA0VhKRJcwdqtXlFLaxbcL9hrfo3xiXGqqqo4evSo/PVW8ReL/Px8ensVxWjRNS/PtTm0vd6fIr/IQGdRE51YsK26zBZr/SOl9OwZok9wzavuQyUY7Dr2f/5EirywHDY/ESA6Ps2BfxPbO9Rl6Vjzfg+n/6eX4aNia16WYj3eK/M59O1W4bjlrrPhqLBw7Dvi+xKlN+ZhLTGz/4vNwtepfaAYU66B/Z8/niLYLIfstTZcl2az79lTK2oHotj0aT/E4uy+wGtrstBZ1Fh9FuXg+gV8/uS7udDzDkOeDmOWTrg9v12wlZmo3O5h5NQETS+I9wNZlN1agMmp5+CXxL+l1jzgxZirl+o3RZc5yVtnF95rAyUGri3ZUmvf2Wtt5NTaOPq1NuE61e/zoNVrhL8ndVmKreRET0j4OtX3uckoMtH4fCvjZ8QmUnUPlTB8apyOXwnutZIYZwTz/0LkX2RnvH2Kya7lO/XpeCN9+jb0ej3PPffc/8qa19tu9xYKhVIPmo5BiKAE4L+lgNxqS8pKSwQbH/PhXOtYRFACRVHpnEj87uZX+s5JUFoKw41TnHyl4/wEpbPQfzTIzNSsMEEJQJOmRqsXF78yZIHOmk5enX35wglk+o2kW9Io2OQUruOoNqHSKLYmoggPwUR3iI6d/cJ1APZ+5qQUQanuQyWs/XCp1DUOfbuVgaagHEnrSb9CbJHA2o+UUvVej1Sd4ivyqF5gD/WnDNdmJ+4tObjfVbh84QQy/UY2PFaOc03G8oUTqHqvh4anA5i94smj440Bmn8kvrgB4LomO+V7KoQQ7P77JikCYWgoRmggQvuvBRdGE9fRpKkXMaWXhREMdh25ErnDnGskLUOL+9Lc5QsnEJuJoVKryKrPWr5wAiPNEyk2tghCQzFOvtIuNWnq+OXg/Mb/Us1mAUEJIDQcB5WK9X9dRvl28Ta9/sESssosGF1i7bN64mocDgdHjx6lsrJS+Dqr+MtGdXV1iqB0EdcL1bGVGXBUWFj3QZ/wdQI7XNQ9okjHyhCUCCvjuyhBCZTyJ/6rTZxAFYbwSJT+o+LXyK60Kra04VnhOvkbHRjsOgwG8TlRTk0m5vwl5qZLwGBVLLVk0PabPsa7QlKks45fDMgRlAyw8fGKlE2TKE79sJPWX/YKl3fWW2h4OkD57eL5NmedjfUfL8PkFo+195ocvFfnkVUjPu94J6Nyu4eSq/OXL7gAVe/1sOahkuULLkDDUwE2PV4hXL7rt0P0HRnh+ItyG7L1f1VK1fs8wuWPPndGiqAEygm44JkpqX6TbtCi1qqk2loqdxSI18mry8SQpUvZCYpAa9Si0YvnjvHWMDOTsylVBBHs+0Izx78nTlACePNfTkkRlEAhKDnrLWz4ZLlwHYMdcuszqb7TtXxhYI3qIupq6xgZGeHWW28lvMxhp1WsAiASiaQISjqMQgQlgOq7XBRsykrZQIlg/aNlOGoypAhKAB2/GpQiZ4S6Ihz7bqsUeajvwCjR4IwU2URr0JBmEl/zQg+mbD35a8XnHfpcvVJng0O4jrFQjzpNTbpB4t4iimpI107x732AA188LUVQqrzXLT1On3ilk579Q1IEpY2frGDzE3JrXrUfKCawQyzfJlH67oJFdiR/yrAHzJRel4/nCvH1VWOhnnUf9aVs20TguzmfhqcD2APm5Qsn0PJaLydektsky1mXyYZHy+fV2wSw9zMnxQlKABEYa5+i7TcSa16AVqfFYNMtX3ABLG4juWskcodereSOjeK5Yy48i1qrxum3LF84gf4jo0wNRoTJQ0QUlTNRghLA4KExpXwE4feZJCjVPuil/NaCZUrPo/7+UpzVtpRt4XKombiE7OxsGhsbWbNmjfB1VvGXjdtuuy1FUNrCjUJ1dE4d+esc1N0vPoZ6rs1hzQNeUKkWE5TgLevE8xdS/nPg2dPCBCWAg//eQuPzrVIb1BNdUww2ihOwHT4Taq2G2Kz4NVwXZ2PM1aOziOfcvHUOrB5zKhYiMGTpSDNopYgzbb/uZ/T0pDDRAmBgf5B9n5UjKK37WBm5GzKXL7gATT9op+VV8TUvQ56OhqcC+G4Rz7fWUiP1j5RicYsHumBLNr7rC8ittgnXeSej6i4PZTeKrxMC+G4poPr9Hqk6mx6vYONj4usQwVNTdO4aoOllublX9X1uKiXm0qde7JYiKAG0vzHAUNOYVL/R6NVo0tUp2zkRFKx3YM4zSLXP/LV2MvKNKetBEaSb09AaxNe8okNRQgMR+g8Hhesc/Wa7FEEJ4OCXWuYJSoIhiI7HsJYaWffXZcLXQQeey3OpuF2MQ1CqqqImsIaxsTFuvfXW/xUly7fd7s1kmpdYvMx0O/Hp8282qxPWJIef7yav3pKy0loORVdko9aqyCzRM3RcrNKGD/nQaFXs/ozYKVFQrM1aftLOcKOYckgSXa8PSZETAHb9vdzp8vAQHPziccISojujTSEpdSeA4aNT7Dwqz4KVYUCCouzSt3+E3t2jyxdOQGdNXyRHKIQQNP9ATNUkicneMJo0uQvprOlojXJdsP/IaEoCTxQNTwUIDUY49GXxdr0SNDwdYKJbnHHasWsQc56B9t+J94P0jDS0eg2Z5VYGD00I1Rk8PooxS0dMImyyfRPAlKVDrVWRs8FK/17BDwIj1N7jZaBxlN43xNr1St6jtDJDCI483yal2DXZKp87+veOiccqAVG1toVIKjv57yqi581hxprFnqvmgWLMeQapWKRlaLGmmZYvmMCbX27Be5mTcHcUlUZDfG7uvOWNRiOZIy6GGaapqYmHHnqIL33pS8LXW8VfHv7mb/6GxsZGACpYi0EltpsdPBWmd/8IZ14XXyA2FxikiDN2v5GK2zyMNk/Q9IIYMdRRZcZWmkHLK72MNMmpCsoolACc+WkfZ34qt0B+8NkWDLl6cZIWyuK9DJkBkCZaAAweGBdWhALI3+LAXpohRQ7PX+dAky5JjAWGjoiN6UlEgzPMTM4y2Ci+uWYvzSDNpEUjwe1q+80ARdEYQ83i91dzfzHmXAM7//bCnhBb85AXo0MvdZ3OXUNo0pZYPF0Cphw9Gq3cHHdqMCI9X215RXzBLgm9NR2tUY6sl7fZTnaljcP/ITaf6t01Iq2klbS8k8HBr7VgMEgo0IFy+h2kCFQrUUWT2fRKIngqjMGupvjdhVLxaHgqwEx4ljf/WeyaWWVWtDoNOetsQkTX8AjSY1vGviLi8T0AFBUVMTQk/52wir8sLFzz2qK6Trjem/9+CveWbGHCkXONlTSDliyfhWHBcXTdX/tIM6WxS2LsqNhWSNtrPYy1yCnBDB4ak1IqAqQOlgAQQVEbkanSF+HAF04QiYjn21BXRCpmSZz4ntzBp+r7PAwcG6N/n/ial9GpkyauEyFldyWKsbbJRXYSIjBmGZibPf/37dno3jXI7LTcieHNn/YzNRDmyHNtUvVksfmJABNdIRq/JXadkdZJBhuDKWtcEWg0kG5Jw15iFu4/g8dGsRSZmJkSn3sNHpDrmwAGezpag4bcNXYpglvgbhcjpyeF66xERWzX38v3z0NfbxVWNwKFpHPgy61SqljB5rC0akTXb4bkiF2J6wAUX59DsGWS0RNiexTltxbgCFg59t1W4RxvzNKTLkEmPfDcadxbsoV/v16lJ3eglAEGOHLkCA8++CBf/vKXha+3ir88PP/887z44osABFiHTiW2+xsdjNL+63663xTP0fbSjEV2YMvBkKej7v4ShprGOPWi2F6TuVBHdk0mrT/tk9oAB2iUzJ89u0bokfzWbfx2B7osHdEh8Y3sg19qwZCnkyICHV2Bi8rY6RBjp8W/PR3VFpyVVk683Cl8b5l+M+km7byNk8S9ySA2C+GhKEMnxMfrzNIM9JnpaIxpiD5Q995RVCoVfRIHOstuLcBeZmG35F61LPzbXVg9JimF6s7f9KOVOfCAQlpOkzmIAIy1h5ibkZvjdvxcXEEnCWOOnrlZOSMsR6WF3DqbsHLZaNMko02TUtdoe7WftlflviWOPS+fOw59M7FuJ5E7ZJQ4U9cRVA1fiPEzEcXy8sqClAWgCDY9XsFMZI79gurmthIz6WYt2WttDOwPLl8hCu2/7mfoiPjYZjlYiDq+jzlmycvLY2Tk7VXafVvt3sxmM1NTykT5GtO9AOclKamNRkqvz2S8O8rAobcm8vPZvakMBkUBY4ki57J8q7qvCJ0ljQNfXLoDL7R7y/Qb8d/qViRVRayX4nGKr88hr95By8+6hTfnC7Y4yApYOSxBTrD6jMzNIUUyMLqMxEMhwhLfQmavEXuxSdwSKnFvgW1u2n7ZJ0w4StrDTY/PCNsTrASGLFjzoJ++QyPSizbvVGx+ws9ET5jGb7QJ11mJ3dvmJ/2MtU9xXEK6852MjY9XMD02I80+loIRGj4hb3u4/uNlxGZjUtaPhizI3Zgj3a6dazKECWFJFF6eJUX0ytlgJb8+SyrWGz9ZgUqjEp4QG/P1rLnfy2xkTtgeKbvegvddBRz56jns6JY6IZMcd84ztC6l0rfmg24OfaX9vEQldUIJcOfUj4mmTWC322ltbcVolJAZXMVfDEZGRnA4lJOemWSzVnWJUL2a+4ul5FcXIaGMJFS0wEDN3W6aftDOeKtYJWmbNxRZ5bnInNRGe+2DXrreGGC4UfxDLX+Lg57fiX8EgEK6krkGgOddObT9tl+KmJBUldz/BfFx4+2yIFvzUAlpJo0wKeGdjsA9biyFRqkFm5XEuup9Hsw5BqkFm3cyvNfnkVNru+CWfyuxb8vf4sC9JZtDXzopRSIqvNzJcNME4T7xxWWDXQ3p6VJ1bGUGZqJIKRfVftBL9+5BYYJg3mY7xVflcuYXfcKkrWSsD361Vfh51n3Ux1R/RJi4CkiNOwuRt9mOwa6j9SdiBLmj2b9jYGCAysrKVfuRVSwJj8dDe7uyQSRsNXJNDuGRaSliSgp6xNU2UDakTbkGDjwrNh/Q5+qp/4BXyhYrZ10mJdfm0fJqr/Az2QNmCtZncfSbbULlQVGcSdMhRZ7SZ+thelrKskifrcdeZpKyk9Nn61nzfg9tvx4QJ3Os0OZqJdj0qQr6DozS9tqfx5rXxk9WMNEdkiPFrsDubePjFYy1TUmTz96pWPfXPqYnZznyHyv87hPESmJd97CibCKj3qa3QXa9U8pGAyCzwiRM6kkid5McUSuzwkRhg1PqsO7aj/jQ6jXseUaQYL4C2zdriZ7yW9wc+U47EdG5p+S4sxBV93qESX5H43sI6gbIyMjg6NGj5OaKq7av4i8H0WgUvV5R8nCQR53qIqF6/u2ulVkuqVSKAsZSG+ZnrQXrLGqq319K84+7hEkq9Y+Uos9MZ/+XWoQ389d9vIz4TFxq/lC5w0XPgREpcoLwJvkCWEuN0gSd/IvsDB8dkVJ2qX6/B41WLUU2SNpc7fyn4xfU6ixwpwuDU3fBLWbfLpTckEeW38Iewf0VWJndm++WAjJLzPKHGN6hyL/ITtFFTvb868kL2t5q7lcO3cvYtzkqLZRel8ex/2wTsghLInedjbHuMOFe8To6C6DTER0Ur2MuVEiBMvdWsb2IwWNjwtZ/mX4zFbcU0f56vzB5M5lDjnyjRfjeau4vJjw6TfNLEiIp5xt3zoNMv5mMQoMwQa4x+/f09fdRXV3NkSNH5C+4Qrxtdm/33HNPiqB0seo9qX9Xpb/1pLXaaEwpKDlKTRRfIiG/mmdgw6M+jAUIqy6Bsml87Pne8xKUANS6eZbsaFOIjjcGePMr4gOMSqUiHovTLyG9WLApC1O2HoO4IxL+29zU7PCIVwCq73RR97CcfLP/5kIKG5wY88Wl3bICVlRqFZEx8Z6VVIU69rzEYL6CPXtbaSYqtQq1xIlxR7WJmg8US72flcCYpWbDY+UUbBGXFgbY9XdNUgSllWLX3zZJE5TWfdRH5T1y8t8rgfeGXPySMuNqrUr6dD4g1+5CcOyFNimCEoBWr5GyfgRY80E/efVybWf9x8vw3Vgk9UwbHi1XpF8lcoL70lwMTp3UdWYjs8RmJE6/9kTo2jMkTFACGDgwzu6/b3orQem8F1L+s+YhLzUPFAtXK7s9D4NDh29rLiqNBtU5pD7UC6xKG0w34PP56O/vX3RaexWrWIgkQUmNRpig5N9ehDnfQPF14ouAtQ945+1LJTaKw91h9vzjCWGCEign7Dt+MyB1nbnoHDNh8RMuBrsi5e+VsMWyeA14LsuRspg15Oopv2XeIk8U+RscbPyIuJUWKBZPsuqNb/7LKRqfl9y0kBOEAiDNoEEjqQDg316E+5ps+YtJInCPm7oPyb2f499uv+AnygAav94mTVAqvCSL9Z+QkAleIQx2NdX3F2PxijcIjV6NSq3C7l/BBF6i3TV+87QUQQlgLjyHSqPCKWFPaysz4LrYSYWEHQYGqHukgqq7JOasBgjcUUzl7eJ1DLl6TDl6PJeL5/ngyRHic3Epq7jGb56i5bUeKcLVvn9tliMoAYSVHLzhk+VSbaH4ilxy68Rl+ov7KzEYDDQ2NvLRj35U7h5X8ReBf/zHf0wRlNZxlXC9vPUOvNfkiV9ID+s/UUaGWy+9UXzyxW5hghIoqkPNP+nm2LfE12E0ejWx2Rhjp8VJV57Lc8lwGRUSkSAqb3dReZdXynqq6s4i6j9cIVWn/JZ8PJfnCFsVAWT5zai1auYiEiesI7Dzn45z7NsSh6QkniMJm8+ASqNGrRNXVsxw66m8143edoGXkPUKcSZf0jZ4zzMnVqRiKIs9/3hCmqBU+0EvFXcUXaA7mkfR5VlSFlygrCulSX4fANLt7ui3WqU3ZtNMWjnrR6DmgXIKLxK31gPlYIr/drdU7ql7uATv1blKDhaE9+p8MgqMUn1oJjTLXFQuh7T9ok/qYM5YS4S9nzkpTlBKXAcUq/fq+zzC1dxXZ2NxGynbKtZOq1UbKS8rZ2hoiLw8iTFyFX9RSK6HakkTJii5rnaS6TPjuTZH+DrltxfiT9pFS2wUR8dj7PvcKSmSzoFnT9P6Wq+U2shcaI7pqRnxG9OBtdhM8RXi34O6LB2l786nTsZiVqdYzq/5oFe8Dsq8sOYD4lZaoFg8pUmoXAEc+o9WjnyjRW7zX05ACYD0DC1avdwcynt9LgUXy+3jrASlN+ZRc7/4/gVAy497pQhKK0Xzy93SBCVnrZX6vyqVsgdbCXQWKN9WKGV3ptaqUWnVZHrF7XnnLyhe9OQPzkgRlABmQtNo0jXYSjLEb8mpw3ttPuU3ys0/134kQNV2uX3amveWCNuXgfJ+7KUZuC8RXzcebZ0kNhtDpRH/Rjr07VZO/0+PFHnqyHNn5AhKAFEl3ms/6pNq2+U3FVKwXnwd09e/HrPZzNGjR/n4xz8ud49/AN4Wu7eOjg6+853vAJCrKsZoXNpbW32WGsTRH3ShzxBbbVQZDLi22NGkqbC7Mgh1L30yVGUwpNSU1v91CZp0NXs+K74RU7DFTvfvRuh6Xe7EfOuP+2j9sZx1yN5/Oomj2iSlcHTylXby1sqxZrp2DuKokMvgb37pFOU3FUpZPLX8sJeWH8pbOsg8P8DGD1egSVdLnUrv3T0qZScH4NqSizFLj8ZihCGxSWfZHYVklVk4/ZMuBgStVzK8GWj1GiwuE92Itzurz8hYd0iKtLcSGPOVU4kyhI50SxoandzG5KZP+1GpkDppn1OrkM9ksOtv5TcY136kFJ01XarNiVqPLcRKVAbafiOXdwC69gziDNik2k7Lz7rIrnFI5YSjXz+JKl0vdR0ZFakkOl4bABR1um4JtZOq+9xYXCbFPnOIpVWUFsCYpSceiytlBQQLT/2gl6LLo3S+Ps/UXs7+rbB9HcdR2lpVVVXK0msVq4B5ghLAFapbhOs1vdBJ4SVZdP1WfNA1Zst9pRty9dQ94GX45Dgnf9AlXC9no43+PUGpewN487NyRNDwSIyDXztDeEScxTDeGma0eYLuveL3Fh6LMNUboXuv3Gnftl/3MyOzAMXKLJ4AKQIZBmh4NMBUf4TDEqfXVmIllenLwDptoj2R10Ww+Qk/c7Mx9j4jvshhztNLW6isRAlnRTCAJc8g9Y6sHhNpRi0Wr3i9/C0OPJfl0LN3mLafiSkumApNWAqMFF2czbFWMcn55he7aUbyQx3ldP7M1KxwP5dRQkqif19QyEpsIYKnwgyfGOfkj8VzHGGY7AnT3yjxLRKGYOskXbvE80i4L8KJ/2qTsswMj8jPP8MjEN4TBObztyg2P+FnemJGWP0tszQDrU5D8eW5wjadp37UydSAeC41q+xkhByECPGVr3yFD3/4w5SWihNTV/HnjWAwyKc+9SkAcijCprIJ1z341VaMWeJLc+4t2aQZtdi8Zibaxcaa+odLSbdq2f0P4vMBZ72VwQNj0rZQPb8fllIdAmVDzuYzSNkonXipg4KNWVJErfbfDZBTlSlV5/A3W/Fdmy+l2LQSuyYAIkjZ0K170Ed6RprUqfRgc1jauq7o4mxsHjPGfCORoJjigusKJ4UNTlp/0SesOJORoyc9Iw2L2yRlP5Ph1jPRH1mxuosoVqLEZXTqSbfILb2v/0QZmjS1VH/NX+dIrK2Jz6Vkfn8S1e/zkFFoVFQnBOMtmqcWYiWqCS2v9ZBmlNug7vzdAAXrs4iMi9/j6Z92k7/OIfVc+7/ajN6ml2o7K1G4SvabZP4Whe/mfJyVNg58VdzOzlIkd7Cg/ecDzEzOSvXt7MYyQDnJHwgEOH78wir8ruJPC7W1tcwl1kwvWyCIsBw6fj7I9OgMfaLfdyoVVpcJtVZgXyGxBqyzQP1f+Rk6PkbzKz3C9+astTJ4eIy+vXJ7U9IuEFHY/6UWmBbfWI8ORek7OMLQ8aDUdYZPjTPUJMGWAE7+UOIbOoGVqhTJkAtAUayb6A5J2dGtxEoqpzaT2EyMbok59YZPlBOLxdknscZm9ZhJy5Cbp+gsakhPkyLSrQg6MDt1Uu8oo9CA3paOscBMdFxszmorMxG43U33viHafya2xqg26ciqsKJNU3PsjBhRfqXfB5uf8DM9OSvcxmXISUmMn4mwU/L7IDoYpWffMG2vyymzjpyeYFgyJ/QfGmXwqPj8IToOjc+3yllmRmGPxHpxsk5SXS6Zv0Wx8bFypidnhVVDrS4Duow0cjdnC7fT499vIzopbqSmU+nInvQwSSPPPvssDzzwAIGAnKjNSvC2kJTcboXlpkZDjXHLOcucTU7y3WSn51CQqY4YoWWOuqoWqEs0/2iEZuOI8Ga3SqtlNhoT2nROwQjuS3Mouihb6qNu4+MV9B4cSW2UiyC73sLAgXGGj8pJz442hRhtkjtJ1P27YamNewBCcPIF8YmDMUuNIc8g/TwNTwcID0c5+O/ik65g+ySmLLkjPsYstZxqCnDw31twVJukrPUio9PEZuNMdohLavbvHRO2CEzCUW2i4hYPEz2hCy7hvOZ+L3PTMamN0JVYyMhuzAIc/c92JvtWwNJKpiXBqoMnxsn2W89rNXk2klaGoYEIhyQsHTFCTpVVuE30viFvH9D7xqh0veGjU9L9WyEgRhSim1ZNqEMweEbY8KFyhpvHhYmPeRdl4r4sh+xqm3A+CXZMkVFoJD3TSFiQiLjzX5rm20ByfFmGrJQkKFXdV0TjN5UTmklFpaXISvWq6zhj28WZM2f42Mc+xr/8y78I3d8q/rzx+OOPp/yDL+J6sUoGCNzq5vh32qVJQLv+rklKvcKQqSYeixM8Iz4G1j1SgsGuY3ZqVtgerXRrPplusxQJxuQ2EJuIEu6W9w5aifrH4f+QX6yQtZRz1lsYFCREJ7HmoRKMWTp2/rO44ozBoGY6OMOAhJd9qt1IhnvnZ45jsMvJNs1MzDIzLecZL0NoSqLmA2XSJPmVoPZeL+YcAwf+rUmYeHPsW2KEoYUY6wgxNx0jOi4+/xo6MkFs5owUCSYJg10tRSQKj0QZF503JFD3cAkGh05qUxcS9owtk8LtVYaEmcRKrDZXoh6RfDdZNRnClm+g2E1mV9ukNg83PV6BOl0tRVKam4kp3+iCaH9tgPbfyansJZ/bVmbAEbDR8sryc8lq1Ub0hWraO9u55ppraG2Vz+Gr+POE3a4ov2jQUq3aKFSn+PocRk6MMdYSISK+RET7zxPtXWLNdSYyi8Ygd4Lbd30B3itzpU5Kr/9YGf2HR6XsluwBMyPHJwk2y00GJtojnGiXy7MrIV0RQWqDET1keuTtozY/GSA0EObwV8XHgeGT41hccqq6eptaiigByjhj8xmk3lF0fJbZ6BzjXeJj9ER7RHr+pLepqbmvhPHOKakNw5Wg/oNeZqPi9vGANCEMlPXCNJ3ccv3R/2wnNLQCllZyyVSw6sDRMdL0WvR6tTihTg+bPxFgqj8svS7pqMlgWHCeIlpuIUaOTzJyXM56e6I9wsl2SWJ9RFGm09vUqM3phLrErdXWfsDHaNsErT8SI2FnVpjwXV9A/noHhwXXGINtUzgqLOitKuHxaPfnTkgTA5MEpYo7ijjxw06h+hdzA02OXbS2tq6uea0ihe9///spK5oNXCNcz7e1gOaXusUISgv2Cvd+9pSUkkmaRUdsJsZYp/gYWLnDhdVrJhaLC9sTFV6ahbPSysHnxNWAdE4dxFkRwaT1J/IHoE9+X/6bWPT5k8j0mxltnZRSRPJvd2Hzmjjwb03ipA4dTPaGGTwmMZdMthvJcO/65yYMdrkDoeHRKMyJExKAFVkMV723BJ1FjiS/EpTfVEiW38rRb55mvF0sgK0/6ZNup+G+MNPhWaKj4mte4d4oR7/dIkeCSUBnURMdF5+LT3SFmJQ4yAFKPrG4TdIHzSzFeqLD08L31/aqvHX0Cdm1cxT1Llkk342tzETwlPh3We6GTAo2ZUkRH9f9dRnpZi2DJ8aE+/pMeI6ZqVnhawzsDzLQGJTKJckYGPJ05NTahN6XV1XBTN4EXb0dXH/99Zw5c2E5BfA22L0tlOS8yrTjrTfgsL+FoIQR7MVGKm86v5ynJjdnnqBkhHUPFgiTA1Tpaai0ykffoa92su8LbctXAuLxOKrZdAZPjNH+a/GE56gyoUlXYykQP2mQXW+h9PpCORlFo0LoqbpPXP4MFHWa6vd7pOpseKycjY/L2Y1UbC+m/GY3Vp94HAxZKISeQblkfPKFLg78m5zaypqHK9j4KblnAqRJGR2vDcjbSK0Aod4pJvvDdO+RWPVcIcY7Q/QfkSfCyGL/509Lq+hMtsorSeVtyqThEwEqbxWXH+x4bYB9/9osda3wkNK+oxNy5KvNH/NT8i45OcWyOwppeDogZU1o9RnZ/KQfl4ytjhEangrI5S4Uolv1neLxJgRag4ZMj7hMZu8bo0z2hTn4DXHCY9frQ+z62yY51atEUf9dRfjvSsi7q1SodOf/wHBd6SAj30DtBxbHQaXRoDK8lXSZZcyisqSScDjM5z73OfH7W8WfLcLhMM888wygnOQ3qM5B5DgHMbvuvSXYik3krLOd/wIL6gZ2uCjdmrBEE9mzSNQdaQqx6++apJRJTvxnC+OdIWGCEkCm2yxtE1C13U3dI3LzgLqHS2h4Uu5kgff6PDZ9yo+hQJxoYygw0PBUQMqKD8B3fSGbJOdr0eA0s9NzcvZ9IzH2faGZXonTsVXbPTQ8GsBWJukTF0aaSLbvC83CC/V/CPoPjTLaLL9JIovuXYOMdU4RDl/YueRUu2LLKPNegRURlDY9XkHdh+Ta6sFnW2j5kdyCRWg4qrRviWbnrLdQsdVN1XaP1LU2Pl7B+o/JWezV3F+sWJdJoOq9HhqekstDdR8qoew9RVL9z1pkQmvQSOWujp2D9O6Xaz97/+mklCIbAGGF5CYbb/9tHnKqxW3ffF3ryXZmc+bMGcrL5d7TKv48sXHjRuKJwwiXq24WrpdX58B/u0fqWms/7ENvQ3pj+OjX26SVJXv2DNP+O3GykT5XT5pJi6VQnDRjLdFTcauL2g/I2UxsfjJAQNLOff2jZVTd65Gqs/bDPjY8KtfPK7e5CWzz4KgRt0tAr9iZhwbldrDOvNovnSvrH6lgw2PyuUuWRNa/b5S9/3RSnIyxQkQiMUZbJ+jeswLlKkkMN43Ru0/yYOcKcPRrbRz4otyaV6hLXknKWqKn4bEAgdvE+1L/vlEOfPG0HNEtArPRWaKj01L3t/GxcspvkrPKc1+dzeYnA+hzxQ+s6nP1bPxkBZ5rxK2fADZ/2i+du+r/qoKq7RLr9RHQWdKwucTXvEZPTBFsneTk98Rzw+ChMXb/wwm5fp5ob94bc6nYVihczbnGir0sg5q7xWKnV+nx51cxPT3N5z73OSKRCyyZtoo/Cdxxxx0A5OLCojqHK8g51rz82104K63kiqx5Jep7r8vFm1x/kRiiJ7ui7PmnkymFDREc+68Ohk+OSxF07KUZ6G06qXurutPFWsn1+sCdLjY97pciauVuyGTjY+WYC8Ur6SzKHqX7XRJ7EEDFLUVs/Ijc3CY6Ps1MeE5OdSaqHCqSUbryvTufhscCOCol/ceiChFGBke/1sbRb8ofTJNF75vDckStFaLv4AjDp8aJjl5YxaboeIx9nz0lrWC2EoLS2r/2sfbDcmtejd9qlyYDTQyEmQnNSVmDWdw6qu724nuP+JgOsPYjPuofkVOYLru1gHWS6za+m/PZ9Gm5PBS400Vgmxtbmfj3aUahEZ0lTcrK78zP++jaMyiViw/822kaZQ+SRgEdyp6rRByq7nSTv85x7jrnGC/Le9eTm5tLW1sbVVVVcve4AlxQJaWXX36Zvj6FyFOvuu4tP1c7lNNmKquF+NiCESEEp18bITK1dEdXWRZ/8Jdf7UBrUOPZbKXtl+dPkqp0Rf7Vd3M2mcUm9n75jDSBofm/JE5SAcONU+xsOS51nYED4xRsjnLyv8VPaFgLjMRjcULDEj3CCGqNSt6LPI5iZySBlp/14r4sR2qzPzwEu/9ejvXputKJo9yiEBEkYj41EJFeGNr8hJ/o+DQH/k2c9FCwxcHM1Iyw1Rsoycfg1EmdLAsP8bZsyAE0fqNNus6GR8vR6jVSzGtDFuRflEfLz3uF322m34j/Vg/9R0eFFXd6d49SsDGLwWNB4XsD5USsrcgsJbUq274B+g+PotbK8UxDAxHwWchwWQgPibW9se4QKrUKS57ETl5IyQ2zkooVk71h+g7ILfrt/Ge5vApwROJ06kJU3uPCXGBkzz+Kn5zM9Jrfmic1GlhCGanjl8OL/puE2qrMKlUGPfHw4rHR2OQlHv89AEVFRXR2yjPSV/HnA4tl/gvknCf5k5PPs6wID36xhcLLnecnDp01cbUlCIKnEZgTJepufLxCWTSVVBgJj8iPM2/+yykpEgJA2y/7cPiXtiU+F+amY8zNyhFFDI501FqVFNHGUqiceJvokiNG9x8aZSYsl4+lVaGA2ge9DJ+aoOt18Q3NwaNB0owagqfE4+C7tQBnhZWDz7WKW6oZwHNJDm2/7ZciXjU8GSAyNi1Fehe1RPtDMXRkQkoBB8Bgh7oPBRjrmJJSVXLWW1CnySnh1D1SQro5TUphc6h5HJ1ZzqYDg6IqNXAkKEykWslpzsED4+TWhWh5Te79xufixCTzg0avRpsmZzMYDkYx5xkw5OqF+0XLqz0UX5En1f/eDvW3JAx2NTUfKKP/0Khwv8q/JIc0s5aSG/OEyWtN/9UmfW+FgxUMMEBLSwsvvfQSW7dulf4dq/jzwKFDh9i7dy8A9ZxbNXwpHPtPuf5UfG0OOlsaeRflcOYnYn3CdYWT3LV2jny1WVo9p00y30X6ItInqsdaIkx0hGiTOACoz9YTm40RDsqt22jTNNJqUvHZOHGt5JrXa/2UXCOp6hKBN/9ZjkSWsy6T7BorR7/bJkVOGW2dIDopd0Bqw2PlRMdmpAhRznorsdmYVBz8dxaR6c3gwLPHiQQFK0Xg+HfkFQVXgpMvytvS1j1cgj5Tx66/E+8behtk1zvp2Dko/G712Xrq7i9m4FiQlv8WG//GWiJMDUQYbJTbaMy/2IGjLIOjX2sTrvPmZ+Ttnbv3DpNmkJsPTfaHIQYZ+ToigvOhSF8EdZoagyNd6lpzszHmonL5YeT0BMMn5BRCdv6zuLVeEitR2QRlAzCzNENKMTOnKhMQd6cYPDRGmlkrZQuqb3SiiquIE6e0tJSuLvm5/Cr+fJBUr1Shokq14a0Flljzanqhg9wNmedXUTprzctZaUGlUdMqaCcNsPajPsZaJzkteZCGqPx36pHnzkhtVIPyDZhTK35AA2B2ek5Z85KYemXkG1CnqZmU2Gcz5JogFic8JEdq7do5JP3N3frTPqn3CgrhIdgxSc8b4gdwBo+PYXDoGD4mnvsLL82icFMWx184I6wghA4KN2UxeHBIini16fEKomMzUvtYMradfwjGTocYOy1/+G3zE36CrVM0vSA+FtrKTKQZtFJ2XVX3uDBkG3jzn8XHzMEjQYzZcs4/6KDyNhfDJ8eFbSo7fj5Ix8/F12YBxtujDJ8cp3unXL34XJy4pIJXukmLNl2j5C/BJh4aimKfjUlZALb8vJ9SDVJKSs0vddP8k26pfDd8bJzhY+LlU9DBuofLGGwKClu45a+zY8jS4b0yVziHNf5nO+kmzVufaYnxEqC4t5peemlqauKb3/wm9913n9C1VoILSlJKLtYZsZBlnJfuSJKTzoWiLRn0H51geInTt2eTk9RWC7GxcU7+cBiTO8hU+9KbMElyUhJmp07xkxXIdcmTcRs+5kWjVbHzb8VJBa4rsggPRxg8JH+q+uCzcp6yY80hdkncGwAhViTPtxKP8LHmEEea5QgCgbtd9B8ellIryqnNVNQTJMexFRF6VKn/E4b7UuWEzsAB8bhHxqfRZcp9NDuqTXguz+Pkj3uk7OhWgqr3eYjPxjj2bfEJQHRiRjZ0eN/twlacQWRkWtiecLQ9BCrQ6OUWOPb9q7zkZXZlJhqdvEid/64iBo6OCLfz1h/LS6x2vT5E1+uSJwxDK7Plk5WTBFZmSbhAsajpu+Kb6jUPFGPOM3DoiyeEFc30tnQ0aWopO79D32pP2dep0hf034SN27nISkmCUskN2bT8+K0TlKSi0kKy0sWq2zjl/C2Dg4Ns27aN73//+2I3uIo/K+zYsYPZWUUq9CrVbYt/eB5bW8+7cmj7Wf/S5JKz6yYmrzv/9vjyahoL6hrsKjRpanQWcRKCyW2g9t5igq2TUout5dsKlQUeSRux/n1BKYUnWJk900pst/r3BKVIIknIqsxk1WSQ6bPQLLkRY8rWk27USpGUVhJvjVYNKsQJSigEpYKNWWgMaiFLpyRmp+eIjMlt5AXudhOfja2I6CUDW5mB4qvzOfXjHqbaxRp6eERRb4yMyy36+a4rJB6LS7c/lYydNnD6JblDIEmYsvXk1mVKqT05qsxkBWxSC8FHV9DXV/K9JPv9B9DySq9U2wYYbw1zeIV2Zc56C1qdVirmDU8FmAnNCqu5hMMxNGlqrEXip95aXuml72BQuE8AKZKWwa7GUWUXsjy1q7JxOd10DXXyiU98YpWk9BeMuro6AAyYsavEVDjyN9sZaQoy1iK363zm1X76G8eklGmsbhPadI24LROw7qM+0kxpUqSKnHWZzE7Prshu6eg326TKRwYiUgTYJHat4GCQrJoNKIQH2Xme75Z8hprGpCzicuszMeVIbnIATf8pPz9RqVTS6zYl1+Sh0qjZdURuzWtuJiZOUAKMhXp81+fT9ose6T4li4pthaBSceJ74jGMBKfRShJt8rfkklfnIB6P0ym4fhMZiIBapcyTJbCSNdD8tXbSJb7nkii5KY/R0xPC9mpdv5FXxxo+MiHV5pJYiS2fjO1fEiuxOEkSlHy35NP8svhcuWJbIfZyC4e+3io8buit6Wh0GilbyINfPyNMCEsiSVByXeEUtge9QrWVY7lvMDAwwK233sqLL74odc1V/HngmWeeYXRUUTu5mBsW//A8356Fl2bR9ZuhpZVSlqi7559OKfZootBBmlGLwS6+f6OzqFn7kQqGT45LHebzXp+r2FpJiswET01JbdgDnFoBSbf5lR45u1yUe9u9gjle56/lSBWWYj1Zfps0SclWYsaQpZMiKSnxlltH0Bo0oFYx3if+cp0VVtyX5qC3pEkR5KanZgkH5daHSm/MQ5Wmpvkl+XYhA0OejtJ359H+ep+UatFMZI6o5JpXxVZFVVKGpIRKhVpyC1DGEjuFKFiLFacAUZISKO3cWZkpZZW2kgN9B56V/16SVhACun8/TLcEwRkUW8tjKznMEAVrqRGDLV0q5pser2AmNCduoxhV+rslV/yEdc8bI4y2TkkprYV7o4RR1OoyKzLPPRYmx8EED8aosuAxl9AZauNv/uZv/jRJStnZ87J8F5tuTv35fAQlgPx6K3lrLOz9wluT3NkEpST8W7NoemlIiqAEcOi7w8Snlt9pji9gkYVHougyJD7G4nEKNztBBYOHxD961n3Uh9aolVJYKdjiwFFukd7oL705n9OSkwbf7QUMHBqVUkQq316IzWNmz+dPSJGHbMVmzLkGho+KfwC++dlTGPPlFmx8WwswZ+ulmMOAPCkMOPN6L2kmuY96GQJGElmVmehtOuzFpgtOUrIUGqWVtVayIHLmlwMUbJqje7/EoLRCoo3rmmyc5Rb2f0F8sD36tVPSNn7GLDWZJRmYnHqGj4oTo6rf78GYpWfPM3ITeP8OF20/6yAsseaT6Teit+ro3S0ufZl3USbZVZlS77nyHhdWt1mKOFn3SAkGu468TZnC9zfYGMTo1INRj2hC2v+F0+f96D0XkgQlz7XZhAanGTx61rWWUFXyXOskpyYTQ5aOxm+cu+8vVFUyGo2UF/h5Y+h3/OAHP5C6x1X8+eC73/0uAB7Oko49T7utfcCLKU9PdHzm3JvN56jrrLOgM6fR9duh8ysBnVU3PBJXSN5xubFibjpG3wHxhFV4uZOsCitp79WKqy8ZoOETAQabxqTIObUPeOk5MMSghDJizkYb4cEo463im+iGAgOFm+zSxKENnyxnsjssRfAqvjKPNLOW5p92S5G8dv7f4xjOP81/C+oeKaH/SFBKaUVmYyiJ/jf70RjU9PxWThViJZsPNrc4oeIPgd1nw+jQ46ywSBEydv+D/Ly1a/cQUcmFq5UQbUBR5BprmxJXpArDwa9KqGolUHJtgfSmYVLZZ7BxjNafiC/02MoMOMpt0oRB7/V5UtcBxSqu9+CwVE7a9Ck/keA0hyS+gXzXFxKfi0uRlGamZpmSUawNr+wgzVR7GAxQfmOh1CLbmofKUWlUQiQlgLLB9czlz9LW1obX66V1hYSvVfzpYu3atak/X6S6Vrie58pcXJdms/sfxL/hfLfk0/w/PdLWWUe/3iZVHmCyL4JJzmWD4qtyUGvV7JQgB9Q8UIzBrpP6lnXUZJC3xkHjt9qk7s9zTY60MlTxtTmMNI9JEV881+SQXWPjyH/IKVc5q2zYPGbePCGuNnP4K63os/VSCiuuK5xYPSYpBRxAer0BoOXVXnRWuTWvMz/pF1YJS8Lpt2DOMZBZYr3gJKXMkgzp9YCVkMJ6fjdAPBZn8KAcSWclRJvcTXZyam1SazaN32yWIpIBoFcOk9rcZkaOi695VWwrJKPIKK00VnJTHt17R6XIMxluPXqHjsED4huUjpoM8uscUmRL3835ZFXa2CWhkBTY4SKzJIOpwaiwAlHfwWEsLrnvElnSKJCKcf5mO9GpGWGyas66TAovcmItMglft9zsZ2DgN7z00ktEIhH0enmi5ir+tPH4448DypqXTrWAPHSe3Fx2awHOShux2di5ySXnqGstNWBy6unZNUpU5vslijK/k1nz0qUxPTnL0HHx7zdHpYW8tQ4MmelSG/CbPuVn6FhQisRSsb2IwWNjUjZ0jkoLM5NRcRUglM3zgi0J4pUE1n7Yx0RPSIpI5bkiD3O+ge7fDxAdF5+v7fz/jqOzyLFSqu9zM9g0LmUl1vZqv7S91+CJMQyOdPqPyKn1yaiGJ+HwW1Cp1TRzYUlK1iIjlkIT9nKrFElpn6TFNUDbr/qkFehXQrQBRZFrojcsRa7b/6UWokNyjMSSawswOHRSJCV0sPZhH8MnxqXaoLlQh91vkVZvKrrMKU0yLL+9kJFTE1KEsnUfLyManJb6BgpscxOfi0uRlCLD04TH5NZOV+KwkyQoldyQJ/V+az+guBqdNx8tUFUqnawjVjRDR0cHFRUVnDgh/00oggtCUjpw4ACDg0rjulj1ntS/L0dQAujeP8ZsaHFCWIqcBJBTqcbqMrDmvlwOffOtg9i5yEkAa+5xcujFQTgPcTh+jgnF0W92J35vOvHp8zS4BXUPfauNrApx/+ilrr0cCjZmKYvtEiofJe/JI6cmk3SzVkoi2VlhxVFqkepERodOUSGR5MqcfKWd2Yh8PEI9cgsUdl8GmnS5iYYhC8IhpJ+p9w05j1OA7HoLczNzUopSJ1/o4iRvjwzuSkhAhixwVGdJqfuEeiIrZmobXcYUaUQE2QEr6TKkRJAmKCXrdO0cpOOXcoOy3pYu3WYLtjiwl2SQfqtXaiHKf5uHeCwuRVJyXZQjrSo1HVHyv9lrFCbWHfx6CyVX50ndW+/uUanyC+G7JR80ErafRshf5yA2G2fw6Dlifg5VpbZXBzFl6Tj2nfP334VEJcMpN7HYbwDIzc1N2a2u4i8DyQU6FSpKVQv8gpdZSD/8H60EdrjeutF8nnol1+SjTjvPRu456vpuzWdmck7aCmuqPSx9Wr7r9UF0Zq0UIcDuMUIcpickVHMMYMrT47k0V4oQUHJVPqjkNt/Lb8zH6NQxcnKM4Uax08cA2nQNOpvcOPbmv5wif4tDWoUKFKUeURjsYLDryK60SZGUDAUGKZu85H3JqsxgUHJ3z75hObLWCjaIVoLWn/RKE1hAURACpNpRxy/EZIfPhsEO4TBS8TNl60k3aaVyhSxBCeDUf8ufpgqPxNCkqzHlym2IVNzqQa1VSeWkqvd5sBaZmJ6YESbNGOxqzPkGXMZsqZwE0nuudO0aYlCCPAoJC84VwGCHiu0lHPx3cRJV/f2l6DPTsfuNjCyh0Hw22n83QHxW7pszp7ucbrppb2/n6NGjVFdXS9VfxZ8ugsEgBw4cAGAdV0nVbXlVLnfbfAacVTaM2Xqp77faD3o5+f1WaTLBSsjAh750iqxaOaaybN4BcF2UjSFLJ6Xykb/ZTsGmLIxOnRRpO2+dg+zaTKl5qClXj1avkbbWO/bdlZEcIwNy4192tU1aAUdvS1wrKFWNwUNyFmIAmRUKoUJGUar95wO0/3xl8xRZrESNCz3krrHTd2hEmJASCcakyVqpy+XqpYg52VVWTNl69DbxdyxNUAKIQNsv+qQtYnSZ6Wj1clsX9oCZ3DV2TNl6qUO81Xd7FXKYBEnJc1muQsbTI/5+x6YhBrYiA8FmsUny8ec7KL42R8oiLdgcXpGiJyiExjSzVtg6EMBzVS5zkTmGj4hds3/fKJleEyckCOXa0/bUfonb7aa//+2x2V7FOwOFhYWA/JrXqRe7ic/F30pQOk893/WFpJu19BwYFVYqcl3lhDnokFCWBogORtn3ObnvpOFj47Rn9dO1W/x7zJCng3ic6cis1LXspclD1eLfl6XX5aFJ10itjRRfV4SjzMJEV1iKfJBm0mJ0yHneHXnuDLnrbFIEpSRk62QUmVBp1VIkJZ1TJ0eOA4iuTKUne62NseaglEXcnmdWNrbIom/vqFTckrAU61Fp1FJWcSu5DgA60OmQip/NqyhyyZBzZAlKAM0/6kKdJvnBFYV0oxZTllyfqtjmJt2olSIpld6YR06dMq4Lq2fqwFFuwZilk1O9kqcWcOYXfYxKin4c+o8VHlzTQfVdHqkDRlX3uLB4zATPTAnbSba82kuaiP35AqKSu6OWDjo4deoUv/3tb7nkkkuE71EUqvhK2DDL/dLEIJ+OgctMtwuRkwy6cUJnfVeej5y0EJ5Nalp/FlxcdwlyEoDvOit2j4HBUyFafvjWTdxzhcRYlE7N7YW0/LxvkRLGOYlKf/yQCsNRbZIisYBipybr4e6oNqHWqFdkYXeh4VyTge/GIvoOjkhbYhmykFKXWfuRUnTWdMUjXDBnGbKg5oEKuvfIWW81PBUAVnaiWBYNTweYnphh3+fk7c5kUPVeD1aXieYfdzIgsZmy/uNlhEenaZRI3Js+7UetVcmRqSQIfwux+Qk/c9OxFS8IXGgUX58jvehVenM+g8eCUuppRpeReCgk1afebqz9SCmxubi44oNKRcNTfuKxOLv+TnzB2ntDLmd+PyLWns5SVjK6DETGll9MjocjhEIhjmf+img0yv/7//6/PProo8L3uIo/XTz33HM88MADAFzE9RhUBqGdH0O+/q1kD5F6dshe66T9tbMnbkvXbXjCD8DOvxNXUqr7UAnxWJxDX3rnqlMY7EC6XookYfcbsbgypAlb7muy3xrzdwg2PKookKzEfgUDUiSWhqcDzIbnpMbYqvd50Jm1UsqIhZdk4b4sh4FjQWkFK1ms/1gZaWbtigjfsmh4KpAYwySsq6/KJrc+k70Si1GGXD11H/AyNRCR2lQ32OXIbgAlN+eRU53Jwa+dkSawvR3IqslgenJWSj0NA5TfUCgl+Q9IkXL+N+Cst1BydT6Hv3pC+D2X316Io8JC7/4RzohK8hsUm0fZPJuqniue1xttb9A32ktFRQVNTSvYwF7FnyQ0Gg2xWIx09FyiumH5CoA+Wy9NKknCdYWTjp2Dwpvg7quzKdiUxeDRoLDVht6mnK48/bOeFdm2vV2w+cQ39pPw3ZxP86s9UqpDGW49aSatsDXV2wl9rp76B7z0HhyW/q6XIaMA1NzvwZxv5MAXTkiRr9Y/WkbvmyNSll2bPlWhWMS9DYTvhqcDRMdm2P/5C7vm5bs5n+yaTM78vFeKoFP3cAnRiRmptdoVzSclyDULseGxcuKz8RUTkC80ii7PErbKS8J1hZOx9gkpRS59th6mIysjbr1NqLnfg0qj5vBXxOfjm58IQBx2/b14Wyq6PIvBg0MrioUsue6g/XVCoRBPPfUUTzzxhPwFV/Enh9///vds2bIFgC3cqKgoCaxd6bLS30r2EGFJ66BgvUPKWmjjY8qaiIySUtU9LlRa9YqUL98u6CyATo40Yy7UkVlqkVZIKbhYLuZvJ+o+VEKaQcvef17BXo8OKVu+hicDTIdm2Scxxvq2FmDK0nFIItdn+s0EbnczcDRI88sXds2r9oFiTLmGt2Vfc9On/BCPS1kHZq+1UbTFSePXmsUJRzpoeCzARE9ISqFHZ5EjNYHSN1yXZHP8++1S5Ku3C9ZSI/G5mJTiFSywrZSApVgvfZ23E9ZSI2U3FXLk2+3CebPoMidFW5z0vDkspWCVtDJdCXRZOqLDAqpP8ThNtr30BDvx+XycPPnH3++WdE1cHrfcckvqz6IEJYCqOwrY+JFCqWsZExLUbbvlGKzNPx2j9ddBWn8hng0K6m2otAKTmAWTEOeaDBqeDlB2h9xz1XygGLPXKFUnCVmCEiBNUEpeR4qgZFTIObLY9Gk/6z7qk6qj1WuJx+JM9sgnbFkyRf/RIOHhqBSRJcNlQZOmJiNP3GsSoGf/sHL6SgKBu10KuWllzUkK6z9exqZP+6XqtP12gJGWCQZOyI3MaSYtRklG7+DxIBPdkm1ihWP+3EyMuaicRGTeRZk0PBUg76JM6esZXXIveCWn8k6/0iNFUALF6mylBKXKe1zkbLBK1Wl4KsDGT1YsX3AB0jPS0FnEvcIBTr7SIUVQAjjzmkJQMhbJXavqviJqdxSRu2b5d6wy6DEajfh9fkKhEI899pjUtVbxp4skQSmTbGGCUuElDureX0z5Nrk5iqHAQHgE2iUlXHf+XRMnXpKTwtVZ0tFb5frMxscr2PyE3FiUs9FG+e1ycUgiPCKv4jLSFFrRxrksQcnklptngGKV1/BkgKwasYMCScxG5ohNy59CA6QVm8a7QvQdkjvlZHTopHP9cOMIwyfH6dotN/fa9Ck/dY+USNVZCQwFBhqeDFC6NV+qXt/BUTp/L9d/zbkGtDqNVJsK90UIDUak566yBCWAUH+U2GwcY6acfdu6j/rY8Fi59PUMdhRynSCGjkzIEZQAwkgTlIAVE5QsXgNV7/VI1am4o4iGpwNS7UKdpkadriZnfY5wnZM/6OLUDzvFCUoAYVJ51lAglwsbngpQ+75i4fJVwYvIzcnlxIkTPPjgg1LXWsWfJv7mb/6GWEwZ80QJSgC17/Ow+cmA1LX0CeW2jl+JE5RAUZc58WKHMEEJILveiUavQa0VXyY0FuqVNa+tBeI3h2JdlOFemU2PLEEJUOIguZY90R6RIyjp51WHZLD+42XUP1IqVcdo1zI3EyPUL2cnAPIqOL0HR5nsCUkRlIyFetIMWsy5cvm34zcD9OyVW0Dw3pjL5icCqb5yIVH7oFd6vaFz9wiDjUFGmoJS9fSZOkxOuWfqOzRC8IwkqW6Fezxz0RjTIUk1joCZzZ/2k3+xQ/p6su9XlqAESp6VtQyMDKycoOS7OR9nvdya16ZPVbDhUbm5q8GhR2+T+w5q+sEZKYISKDGPBOXfle+WfOo/4CV/s7gan9/lJxKJ8OSTT0pdaxV/urj00ksBsJMjTFByVGaw9sESfJJzFJ1TB1GkyTJ7/ukkx19ok6qjd+ql9zfWftinkDAkkOk3U3pjnlSdJKLjSKv6THZFpQlKIB9znVMudgCOagubHvfjqLZI1ZudmmU2IrfXk4KkCM7QiTH6DsgtjGTkGdBLKkqFuifp3T8spcgFinXWmg96peqsCDplfa3kBrm22/n7Adpel1tzNefo0ZnTMORK2KRGYezMJP2Hg1LXkiUoAUwNRIjNxNDq5NQla+4vZt3HyqSvp5ATxcuPnQ6tiDgkS1ACVkxQMuTppPdA3O/KpuGpAJZiublNmlFLzhrxHNP560GOf69d2uYxSVCSzYWbPuX//9l7z8C4jiNd9Jsz4YTJOWAADMIMMpEBgso5Z0uirGTlSEmkKVrxvvvWd9cb7E2212t717te23cd19ley9Y6KZASxSDmDIIgcg4TAMzM+9FnBjMgwqkjCZb9+P0hQHSfUKe6urr66yo03K8w5qXRoGqsDX6/H4cPH8bjjz9OupcSvO8kpR/84AfgOA43Xr8enNMBazHQfKcZHnkdV3G5iKY75kufNdxmQs21Eka7ZzE9kkDL4wUInG+DxmJG+SUimu6c3ySpv9WE2huYoZDsQO01VrTeyz52+VV2tD4RhMagh8agR8Pdbqy5Q2bFSEDLQ14Un2+CI6xH6EIzis9hCwGNUUL9A0E0PFSIdDqNdDqNto2lKL/WDQAoutiOto2lOPXaAN7862MItDrQ9GhR9pnaNkcQua0ASKcRvNCJ9i2VWcJA8Dw3S1cmn5Zp21yBqo8WAgD8a+1o31IJa5i1rb0vhNZNEUgBASafiNo7ilBzN7uPu8GM9i2VcDcwWdTcXZS3KGndFEHHS1XoeKEK1rCE9i2V8K9lRIeqjxbmBd9bng5jzUNMASs+WoB1L1cjfIsPABC5PZjXtvmpcjQ8wiYc0QW0b6lE0eUedLxYhbYtFXmL86Yny/M2ZNq3VKL0Wnbdkmu86NhUhcbHqiEVSWh8vAzNG8rz2mYcxqJL3EyGLqaaGi2gM81vOLQ9W4GK9cyYFJzH5J0hdK15sAQtz4TRu3UUb/75AYQu9qPqTiZDb5sV7Vsq4axj+lP7MSbv+e9YgXUvV6P8xgCcdUa0b6mEp4npVvVdC+T9TAR194cAAGMnozCY9FliScX6M2VYL8tQCgho31IJwc7jjU/ux9xsKk+GzU+Vo/FRWYYSk0vJNSyAX3YDOyGeyQzV9GQZmp7Ml3fZDWzCDl3lZdeVZM6cBmh+cIG8b2XyDl7kYvIOMEO75qESND8137bt2RydPSdfZ+vuD6H1mXkZakUOGtmieJoseTpbe2/xGTpb+7EQpo5H0bdjCO1PVmYJKVV35su75Zkw1jzIdNZUyvT75G/68dbfHFpUZ7PydnFZnQUATstBcs1PKM0bytH4+OLyLr3Wl/02HS9WYe2LlWh6Ml+G5TeyTcGiyz1o31KZJeE1PFKKZCKZzdbQ9mxFlqiYlbdsI9Y8VJIl4U32JgAN4G9mAZulbET222yuQM3dReh4vgoN94ZWtBG194UAANawhLXPVWLdy9Uou8G/rI2Qipi8gxexl2t/rhIdL80vhJayEQDLvNS+pRJVdxZh3cvVaH5meRuR0VkAaHyiDNaQCcXn+7Jtl7IR9Y+UZnV2NjoHjR4r2ohcGY51TmPrpw4oshG19xbnPH8FQtewd62+qxBtH59v2/pMOGsjmM5WwL/WgtBlTtTfUYj2TfNOQNNjRVhzH3teyadB28ZSFF7sBLRahG/2QXLxmI2l0Hc4yua19WfOawBQcpEZLQ95oREFmI7VwGazAQAuueQSnMWfNi69lJUYCfgDONd1AaDRoP7BEjQ+Nr9gbPt4JDtHBM5zoG1zBNGBKcxOzUFv1jH7ptEAGg1aN4ZR8RE23rwtVrRtjsBSwjYYWjeG0XhfCIHzHPLvEVStLwQ0GrjqLWjbHIGzlo2h6o8WolUeb45KCS1Pl8PXynwrW4WEts0V8LbYAAAVtwXRmrNoat5QjtqPhbD1Lw9g99dPom1zBfxy0LL85gBac8Zb4xNlWPMAG1OiA+C0GszNssBB6TX+PFvY8GhZdo6AyMZ16Aovis/zwllpYbZQ3kupf6QUjY/N26y2zRUok4M6wYvcaP+EbEev82PNAyV59q3145EsccTf4UDb5orsJnlmTsm23RjJLpLcTRa0ba6ALcLaVt9VjJanwwjfUoB1L1ajdVME1bJf46w1oW1zRZZMVLW+ME+GLRvCqL+nBG1bKmApFZm822V53xrMs29NT5Zn5wjRawA4gPewQHbZjfkybHy8DPUP5suw6FIPdnzuKIYOTSyQdykaHs3Rw80VKLma2fXiyz3oeKkqG1yrf3AZeZ/vYjKUA94aTgNnxfz6oHVTBOFbZJ1tt6Ftc0WWNFFzTzFaNoTx1qcP4Y0/34/WjRFU3l6YJ29HFZsjqu8sypNhzd1l4PQcYqdjcFQxnXXLvmHl7YVn6GzNPfIcoWHlWDPyDt9SkCfvxifKUJfVWY5loTKwIGvZdQvk/VgZ6h/Ol3exPM/626wAB6RT7IBE/SOlaHg0X4al1zAZFl3qYTJ0sDJxzohl3gfKyPvGjI1w5sm79r4QBJseb3xyP6ZPxtC6KZIl9XlbmLwtpbLO3l2cd7hAL+rgKGHfyrXGjLbNFdlycwvl3fJ0GNV3FzN9f6kabc+ubCMARkApPMeNk7/px/DeqRVtRNvmCgQvYrZIK2rzytIuZSMAIHSFlz1/kwmNT1Sj/amKZW0Ekze79poHStD+QkVW35ezEbUfC2XXSa417MBLw2Ps+ZeyERm0bmQ2ouOFKqx9vmpFG5HRWUupiJqPhmAplFgGp+VshE9A2+YKBM5zYuDdYaSSadTcPr82XspGAEDJ1T4Un+fFG5/cj85f9K9oI9o2z9vkgjY3Gh8ry47X5WxEXY5NXvt8FRrvL1nRRuTKcC4+h8G9YyvaiJanw6i+i8kwoAuB4zh85StfwVn86eOTn/wkNBoNrr30ZgBsQ7Z1YwTeFhYTKL3Ol7fmqH+kFLX3hDCwexQTp6fRujGS3aQvudKbp1f1D5WgTh5vEICmh0qz5Ouii92srbykrbs/lF0nA0x/Q5d7YQuLCJzrRNkVgSxppvae0Lx9A1tjl17Hxpu3xY7WjREM7J/EG5/cD3eVNW8+aX4qzMpdA3A3WNG6MQJrGXuI0ss9SKfTGNjDYl7NG8KokMebvdKI1o0ROKqZ3a+4pQDNG8KAwMoc1NwVQuV6Niebi5kM3Q0sJhC+MZBn3xoeLWM+1HOVWXn71jLfsOQab768H2byBoDgJU4W57lZjpVcni/vNQ+WZNdtGRkWXczWmy2bwvnyvi+E+ofy5V1yJZsjAh0OrN1YhaYN1bCFRdTcU5wv76fDKLvenydvKcgurBW0MFjnNxxy5e1cY0brxghsYWazKm8vRNMT5RjZP4Vtf3UQwQ4XKmU/0hYW8+QdubkAzU/Ny6XpyXLmu17vhxSU5S0TJMqu9+fJu/6R0uwcMdmdAG8xZAkEJdcs0NmHS1F3ryxDgcnFGTbhjU/uR2wkkS/vB0JY80C+vIsvY3NE8AIXCta6cPL3jJRfd29o3gfKyFuO1/jWOtC6MQLBIyCdSkPDAZU3zW9CtzwdRliO17ibmM5mSHFVdxSi6bH52E7zU/M666g2oXVjJFt2rvK2INNZGaLTAE4+vGotYzJ0yvNs+KZAnrwbHytD9Z1FiPfF0fXGMOruK1/RRgCAYOPQujGCk7/rx9t/d3hFG5HRWYBVNTC6hRVtBAAEznUyGdpYvGXt85Ur2ogM+aT6ziIkZ1LZTJnL2YjK9YVZEl60ZwoanQaeehuAZWyEjKYnylG5vhBtmyvQ9GDpijai+i7mjwg+Aa0fj6DjRabvy9kIwcbkEryAxVlaNoXzYl5L2QiAZQ5q3RhBybVerHu5GvWPlS5rI5i8mW9Yc28x3HU2FJ/P9H85G1F9Z1HW54yPzYLTa1a0ERk0bwhjvHMK2/764Mo24rFyVN3BbPJMLM3G55XsXZezEYKHjYVAhwO+tQ40PVSK9ufn17uL2YhCOcZYfJkHthITEmOzGDkwsqKNyNhkYZcPTjubRy+++GKcxZ82Nm3ahFQqBY/Hgw7vZYBGg4rbgliTMzabHi9D6VVsvDlrzGjeUI5EdAbRwTg4PRihQo55NT5amiXs2CJGNG8oh7WcjaE1D4XQ/EgpAuvYnNfwUEk2Hm0p5tG8oRzOGmb3S6/2ZcemJSRgzf0h+FuYXvIeAc0bwnDXM5tVfIUnb1+h7v4QqtYXYfvfHsauLx5C84YwfG1sjii80J1nC2vvKUaNbN/AAzpJizm5ZFvBuU7WVt6frrmzCHU5sevmDWEUXexG6AIvPA12ND8VBm9hdqhqfVGefWt6shzFV7Dx5q63ouWZMNa9VI3Sa3youDWI+pz5pPHxMpRew+YIe5UJzRvCsBSzh2h/rhJrn5u3AY2PlmXnZGu5hOYNYdgibJ4tv86PxsfKELzAxTbNHy9FRJ6TTUEezRvCWTJR6dW+PPu25oESND9ShtZNEfAu1tbTbAMAFF2WL8O6+0KovkOeI1x6cAYNjHLMK3iBK1/edxeh9u759W3zhjCCF7iw56sn0bdrJE/e1XcUzc/JGXlfxuymr8WGjheq0C7vuVSuL8yX9xPlCMlzhLPOguYNYVaST4YrPE9waHysLEvUYTobzpImwjcG0PhoGXZ8/ii2fuoAGh4uRVj2iSwlTA/tVczul17jy4thVN5WAr2kQ6w3AdHP5+ls6Epvnrzr7p/329PpNAQXD58crym6eIG87y1GzZ3zOtu8IQydke3vZnVWRs1dRai9J19nCy9kMgw0OVi5Mi2LeVWtz5d305PlWXl7mm1o3hAG7+Zx+rVhWEPGbBwoI+9SOdbgrGHyNgWZvMM3F8ASlPDG/9mPscPTaHy0bIGNCMNazmIC5df55/dvwRIpWIuZPjMbEYazxjIv75y425oHSlBxaxBFF7vR8UIVmp9Z2UYAjDBUdkUAJ387gOF9EyvaiOYNYRTIa02DSQe9UbuijQAAX5ud6VapgOanqtHyZGRZG5GRN8BiSO1bKrP6vpyNCN9UkCW5WYp5dkhM/n0pG5FBw4PMRrQ/y7gJK9mITLydd/FouK8UzgoLeBe/rI3IyDDQ4UDfjnHMzSYRuaFwXt5L2AgACJzjQPlVBXjjb/aj65eDK9qI5g1h8DJR1dfkQN39oezYXs5GRG4pQIMcd2vZFEHzoyvbiKwMHy7FzPQs+naPwBIS0LyhHPZKU1aGuftJ9Q+E2B6RRoPCRAW0Wi2+/OUv4/3G+0pSCgTYhFNTVYPqaqYQRocWWr0GRg8ToOTQQpcTDDZIHASrFkf/J47BIwlo9RqYXIZsX51hvi1v1EKwMIOmlUmNcwk2KZv8IrQ5NRYNRi7b1qAFtHoNzD4e4cuc8FRJrK28IS7Y9OAt80EBrV4Dk7z4sgTYdc0hUW5rgME031YnaGH2srbmgAQtz8HokO9rNEADDaJd7ESrTtTC5GHXMcltMyeLJBcPvVGHaE8cB77bCY7jYPSyvxn98nX97IGNXhE6cZ64ozfqkE6nER+bgcknsusGWFuTR4ROmG9rMOshyqxa3qyX34HJ2+wVzmgrOFhbjcSewVIgAWlAo0NeUJ+36uezHUjsb+YCKSsXjUaDxMQMol1RCFYDDJb50kVanoNZJslYguw+ejv7PZ0EOM38fXSCFiYP+5upgL2r0cWuJTp4GEx6FF3ihhQQmLyz38YILc9BdMnydjN5Z68rapFOpxEbTsDoN+bL0LdA3iZdluxScWOAPX/QKMswX968xQDBbpBlxLHryhmUzF4xT4YGsx683FayCaytrAMWWQcyZBfeYsjLCKDlOVhk/TD72XUlm4AD3+hCai4Ngzlf3hZZ7ywF7Lq8lT2HuCDTgE7QZk9vmYNMLpk6v5JLgN48L0OO45BMsNN1Gf0WPRl5C2forOTmIbqAyA1Fsg4wGZq8+W0NJj1EWQ+NLj2TS0FGhsIZ8s601dsFWS5y2wL2e4Z8ZrDos6eJxIzOyt/cLMsFEpCaTUOj0bA68zkyNAdkGcrvqpFYX8HBw2DO0cNlbITo5LPfZkqucarluDwZLrQR2W8jamH0ihg6OoHE5MyKNiJzMsPkE8Hpuew1lrMRRoc2Ty4a7Xw5z0zbRW0EAHOA6WHPW0NIzqRgMC5vI7Q8BzFjky0GpFPpbCmf5WyE6JjX2bf/9jA4jlvRRuTKMGMjCjrcK9oISR4LRr8ErYFDoNGJqo8WwrSYvGUZmj0GaA0sc1rnL4eRSqXyTifzpnk95C1i3vxj8orQGjjs+LcBICrPa1Z2H0mS5ypPxn7zeXPgHXfcAUEQcOTIB5u+/iz+8Hj11VfBcRxuX387IMq+isOQd1pSJ2rnbaFPkse8Fm///RFITj4vW5HeqJvXwQLWVpR9OMhq3vP7kfm28nWN8vxn9Mp2yMNKZNTcU4zKjxTDYNLD6JZtrlPI2jCAzYf6HN+Ktxhgkm2s0aljzx+U7YVPhF6abytYDRBl+8aZRWi0Gkz3smNK5mD+2BQdBoj2+UW/TtTCFBDx1qcPITYSz7OFop3Pzt+5bQHZNzSwOa/n9X6ILh6ibf66ekmXzZZoCUrsXZ3yM2vYfJkr70xbs9/IbE1WhmyO0Mo2Qy/pYJTtm+hm72aU5wiTX8yzWQarHulkGkP7JiC6efb88n1MPiGvrWA1QJIXlsO7WYYis5M9g8Uv5clQsBkgOOXvaGXf0VIsIXCeE5bAgrZ2HkJGLiKTYfZdZd8wKRPKBKfhDHmbc+YTnagFb9HA226DyS/kyztHZ80F7Bkkp16WoZDnc+bpt09u687X2awMzXpYijNzAmtr8mV8w/y2vMWQ/TbHfnEaGk4Di+wbLmwr2vjsnMy72LfhOI38/OICGRogynIRRY7JJeOfOkT5fr3s73YeomOhDOf1QydqAVFExW1BSD5+ERsx70fqRC1EOye/+zI2Qh5joqw/GZ3NtjXpYC1lcjD6Mjq7tLyNbh6J8VmkU2nZnixtIzI6m7ER1nIjgue7VrQROlGb9VXiozN5fs1SNgIATLIeDh+YQmwkAQ3HLWsjdKIWnJldS3Tx0Gq12Yy7y9kIyT3v1wwdYVlrDfLvS9mI3G9j9AiIj85gZnpmRRsxb094aDQaDB8bB2LL2wjRzvTQEmBl5RKjM9Dxy9uIjO3JtRGWUhGiY3kboRO1EEWmh4KTXbfyllBW3ovZCID5zBkbMXacZZSg2IjUbBrHftyryEZkYhxryhvQ2NiIZDKJc889F2fxp4tzzjkHABAuD6NuDduAkRw66E06mALza77cNYfk4CF5eJz47350/bofepMOlhzbkmvfRCefXXMIMtFgNsZiXuaglNdWcuWfvtebdDAXiKi6rQTFF3igN+nAmdhFJA+fnU8AtsY2y3bfEmTPYC/PrCWF7JoaAHiLHubc+c+kg2CXfU4zD6Q12exGBosepoL5NanepINRXm+ZAhIbb3Fgz38chwZcdmwKTp7JMDO/+MU8+ybaeaRTQHQoAdGmZe/qz8Ts8uUtOgyQvLLNkt9DJzK5mQvEBTLk5w8yCbIMg+y0l1bHsXcV5tuKzjPlDTA7xOk0iI0kMHYkBqNHgJQjQ4NZP++HBZgMRQd75mQsCU1OaJY36+fnelmGgnPeh+NtjDAk+Jj9MmbjBaIsw3m7z+fIkLcaWMxrZAZGF7/g+aU8eWd0FgAi1/vYdbP+ar4eig5Ddq0gCFzeM5zR1ilAzDk4xsbCvC3Xm3SouIFtrImefL9Gb5xva5HbClYNTvy0H7PxOYg5fo3BrM+Z/zI6Ox8P4XOuy5v1ebE/vUmXfUajT8ybIzQaDrPTbDyKbvZumbFhDkh58hbsPJtnBaD2jiJFNgIA9FYDyUaw68ryLmTPlCHyLGUjABYLzNiIZCIJDadZ0UaINjaHZ2yEby3Tw+VshMnLdBZgWbzSKUCr5eTrLGEjMt/GZoDJJ2Dg3TFMD8VWtBGZ64g2LfSSDhoNoNVxy9oICEKefusM2jzfcEkbIX9HvUmHof3jmI3OQbAYlrURepMOetmnNroFpJPA9r9n8ZrlbITRI2T1d9c/HwPHcSvaiOx3zLERwfM8y9sIuyH7t4yNKGh1o+qOwmVtBG9GVoZ9W0eQSqay69eMvJe1EUYd3vnsEcTHlNkIwcL+/tH1d0KSpA+k7MhZfLjwd3/3d9BoNFh/+3oI8v6FySfkHUTmrYZsnN7oYXaJN/HY9aUTMLrzM8zwdkN2bEouHrxFn9370BqYnet5g8W8BCef9Td4G7tuZg1lCYgQbAaUXetD7Z0lkDxCdhwLVg68VT9vcwNS3ppacvHZWANn5OW2ss0tEPP2IIxeIbsuBgCtnsOUnM3bFGBtefn1JJ8IyZMrFz3MARE7//kYxrqmwVv00Mt21ugX8jL2CVZDdp1s9AswmPSYic5hYPcoTD4xb2wKtvm2Ji97BkGOp3NaTX7c227IykV0sHfNyNBcIEGwG7JrRMHKZ+0bb5Xb+uT52y/mxTAkF4/kXAr9e0bBm9m+TWYtaQ1I4HPmE8nNQ5K/49CeKSCN7DrUEpDy5C15RUieeXnzVj3MRRJ8LTbmQ1j14OX9PMkvZNfJmbaZuIrRx+KTc7Mp+fcF8s6VYUAAb9VDcvCwRYxwRCwQcuZvwb5Av616SM7M3Clm9xMBWWcDmdiwkCdviyzvDES3AEfYDN4i749b9TD6M75KvryNbiFruw99pwscp5lf5y/QWckjQJLnZJ5ncsmMLXNQlrf8ekavmJ2/szIsyOyJi0Aa6H6DxSmNgXx5C1YDrIF5/4PtT2tRfIUHjnLz0jbCy3SLl+dWc2CBjXAYsuNRcst6mN0flfLkLbp5OCKMuMjbZHnLPobFL83HO8D2R01+EbHhGaTm0uBNy9uIzLfI2AhrCdPDlWwEb9VnfZXJ3hg00KxoIzJy4K16pGbSmDwdBZchv+fIO9dG8FY9RLtOlj/bb8wUmVrORuTKe+IkS9qQObCxlI3IPoOb2Yip3hjiY4kVbUTGR+bNGmg4DYYPjyMxlFjWRvBm9gymgIjEYAJTXbF8v30xG+GfX0tkbITo52EqFJe1EbxVD17muRh9AswFEmo/WnqmDHNsBJOhlLURQ/vHgTRINgIp4OQrgxCc8hyY0dmCfBmKrvl5rcgbQktLC+bm5rLlV98vaNJphUVSV0A0GoXRyCTa4boLVklZba/KK0RY/Hrs3sohOqaBtldFjn8DU5L0+Mq50iqus2FmKokTv5ZLlSXZ5kgqtnSasI4tZawW898cO+Nv6dk5IHVmqr+qjxZCdPDY8bmjSt7gLBaBNSxhZpReLmrdy9VIzqaw7S8PfjAPtvBeiRS2/bXyezVvKAdvM9DqxMv3mosls8QNRchUiCJWflj3cjVmJmezC2alEF20knmSi0PDY5WY6ovh3S+fUNyvbXMFdKKWJENrWELtHSWY7Ini3X9Rfi818DRZEL62UNW9PE0WDOxQkffxLACwzFa+NXbSOKm5uwi2EjP6do/g2A97F2+0SCrh5g1lOPC9bkR7EsteX2OgpdbOhdbN5tL6W00wSBze+ud+xX273L/HgQMH4PF40N+vvN9Z/PHA6/ViYICdNr6Uu1Vxv47nKxEbmcGuL3Wy/0irLNOlAGKBiMrr/dj5hUXqoi/hglbcGoSryoq+d0dw7AdLjMlF0Loxgu6tQ+h9U4UveRYAWOaWoXcJ5XzBTtKavCJ2ffU4pk/SS7BQ72X0CNj5+f2ksmDrXqpGYnwmm+WQci+qvyY6OMRGaGOqdWMEepOOfK9syTGC2Ns2V0AnaPHG/yHcSwTWba7GVE8M7/6rcr+m/ROV0Bo4+nupwNpPVIJTcS/RwYEz8x+47v4po/HxMkz0REn2et1L1UAaeOPPlX+vshv94LQcjnzvtJrHVA6NBpYSEbUfDaF/76ji9xoRR3AQWzE7O4uZGXoJprP440Bm87oFF8KmURbzKrnGC1+DE3u/fgKTXfEl/Z/3C2XX+5FKpkglvjteqAY0wJuEMVlyjReWAiN2f2kRH+8sFEEKCkhNzZBKqQHMhiYTSWz7mw9+c37dS9WYi9PiULX3hGApkvDGp/eTyomte7EaM9PEOFRm74RY+WHdy9VIjM/inX+kxbwEG0f/Xi9XY/J0FHu+0qm4T+NjZRAdPGmeFGxA04ZqTHZHsefflN9LDaSggMb7yzBxapp8L0e1iVZK8Szy4G2xI7jORdLd0ut88Dc6MfDuKKkMaP3DpTj0ox7EieXN1WDNgyWQXDy2EmL5fdUHsXffXni9XvT19X2AT3cWfyh0dHRg69at0ECDS7iPKO7XvjmC6HACe/79FPuPDzDmxbt4RK7zYc+/nTzzj0v4fMELXCi+wIv+nSM4+mPla6jGR8vQu2MEfW+Nqn3c/9/DFjFi7PA0qU8mRrnvm53kvlRk7rX7K0cx1b38fkMu1j5fhcToDHb+85n710ve67YgnBEL3vnH/aQSZLyFXrKs/sESGH0iLQ4FzJccUy4KND5aBtFJ86EA5odOnJrG3v9YZCwvgeYNYfBWPf29VKDlmQgMJh35XrwF0Ft4kj6dRT5q7ylGdCiB4z9T7musfa4K0ABbP3VAcZ/gBS4YTDpVZfBI0GjAu3k03l+Cof3jiuehRCqBnab/QSKRwOTkJHieX7mTAtCKGC4DlysToOEUE5QySKfSiI4pbx++VIStQI99P51AlEhgOfRjwo1kHP5xLyTPmZvM6dml629b5KwzFBRd7kGw3YXuNwbR9aryuq2Nj5dhvGs6WwpMCUylEsx+Hr2v05yaokvcGNw9SCKiWMMSKm4oxJGfnsLoAeVsmaqPFIPTacibDX07RxAbpRldd4MZ0yPJbNYrpXjjk/vniUAKMTUYz57kI9+LiLYn5I2oVdgcUkMcig6lVD1bdChBrtk8fiSK1z+9j0zYggQUNDtx+vfK6yIP7JiAq3oSnb+jGajWZyLQm3UYOLif9JxrHipBOpkmBb0AdeNZdAHuJg+6XhlQ3EcKCKj6SBBHf96D8SPKX6zjhSqk07TJ3BWxsFPvAQHRHmWBlH1f60LF+uDSBKUl8M5nlTv+uWh8qBAGsx7b/lZ5QD81myavqR3aSwEcyJJYzuJPD5lvey5uUN5JZFkKqbXU136iEtGhON79105Sv9jp2OIEpWVw6DvdwK0gbXhbStnJSle1lURSWvt8FdKpNLb9lfJgqLPWhKILvDj4nydIZJSiSz3oen2ARCgRfQLsYSN6CHMQwModJWdS2P815Ytr0cEhckMhCs9JYOcXlNu3o//di2C7k0zy8Hc4yISy3V88zog5RD7JbGwO0wM03zBTwoKKxicqMTMxi+3/8MFnslu3uRqzU3N4++8OK+5DIrtnEAPmEklMD9A2KLb940HytwIAY7EIXtJghLBu6HpjMC+jj1I0PlFJPgTgrDWh9LIA9n71KMkGiA4O9ho7eTz7OxwY64ohdlq5MEuv8cPkE0ikstAVXgTanDj28x70bx9T3E908tAJWhyDcpvdvXUIY8dphEjKnJALS6mImvUh9O0axQmFQaWJEzGW0UuvXKccMQdi6TjSSMHpdGJ4mPadz+LDj1AoBADQQKOYoAQAOr0W6WSKEZQUovgyD/zNDrz79U5Eu2m299iP6GNl/7eOwxw0kfo4yy15mTWUwN1gRfi6AnS/Poiu/1Ee86q9J4Spvhg6X1FOvBJ8AqxBEf3baTEv31oHxg6OkYgogkdAzfpCHH+lB6MHlW9e1dxapIqk3PX7AcwlaItDe6URiakkWZ/e+D/754lACjE9EIPoMZCJQ9TNJABofigMXi5L+0Gj6YlyCA76gUM1zzbdHyfHlONjwBt/QyOGZeBtsZPGSrQ7joE9ozj9Ns2Xr3+IbVLu6DlIGmOV6wuhNXDYR9g4BOTxfDyKOMWHFcBi879VHigTbBwqbg+h67f9JBvQtrkCGq2GtBZ1VVvYqf1iAZMnlb3X8R/3QavlSAQlAKpJqLX3hGD0CaQDvXPxJNLJNLM3Cj+XbV8JgL3o7+9HPB6HIBCN1Vl86LF161YAQAeuJPVLzqWRmqGRwlueCSM+lMDer3eR+iWGEosTlJZB92+HoBO16Pxv5X4N7+Ihuni4Ki0kklLLpgg4jQZvfUb5etcU5FFyuR+Hf9SLxJDyOIqvzY7Rg6Nkwos9YkMfYf0JsHJHGq0Gh77dTbgZUH1bMab7YthNOFTe+ZtBzMWSZIKSu96KwYPjJILNoe904xDfTeoDAInxGUz10xwAkuxy0PxUNWIjCez8J3X7IhSse7Ya8bEZUiIQClErF4mJWUwRY17vfOkI+VsBAO/mIVi1GD+qPOZ14tU+CFba2gsAmjdUYyY6h+2EuKGlmEfZVUEc/GE3Yr3KX1DteHbWWRAdSpDuVXCuE7ZiI/Z9Q7nN9rXYUHplAMdf6SXZUZYBzABAOf+i81e9iA7T9Inie+aClbMLoX/PmOJ5JTGYQDpFW0/yHI+ZqVnMYhZFRUXvW1KE94WkFI1GEYuxoOk5tc8CE8qVad/ufAcy6XesmE1JL3DQcBpEJ/RADndIY7UsmU0p2GFEQYMZR/9nFMOHEtkMShlworBkNqXhA1EM5wTJzyAncdozsilt++uDZPJKajaF9FwaXW8qD9YAcskok55EUqq6Pgi9WYfxQ+OIDilXxuA6NwJtLhJpwNfsgE7UQrDyoDAvet4ayqYpo4AihwzC1xYCGnXBAyrp5dA31TkAajC4fyxbbuSDxsC+MdiKVudee/+9U11HKkEJwJqPlsAckDAzOYPBXco3U/YTFzUA0PVGP9zVdnI/k1cENSle8CIXCs/xwFJkxF7CybeGh6qg0WlIJCXRqQVvNaDoPA/2HFF+r5mpWTIxZ8dXjqr6zsuOy0WyKGXQuikMTssteYp1sSxKGq0GGgXxxkwWJQDY8wP6SQ1JckGn02Nubhbt7e3Ytm0b+Rpn8eGFw+EAAGjAQdSLSCcVko5iwNa/WbAw0XDLnywTWRONdumxsBjano1gLprEjs8vsUDUaJY8WXboO7S5cuJ4TNUcnpiYQZrG10JwrYeVDxF5UBgYwQ4X/M0OUhA6cm2ApZgdTWB4r/ITx2YffV6IxVIY65xG/07axvr0yRgOnaR9r8B5TpRc5IO1yIiD3zpF6quG9PL2Z5Qvxt8rpvvjGDwwvjr36o1j+BiN6KEWb/21OnKTGtTfXYJ0Ko03Dyhfb1CJPxmMnZjGKFGGRh8r7+Fb61FMegGAhkfZRhTlWS2lIkou9SE2RCMPumut0Bpom5v9bw/C10D3Q9/49H7yt+76lToCtbfFhrIrAjj2C+VEqonjsTPK2CyJHJ/vzU/Rs/Keg+vwlv7nAICRkZHsXH0Wfxo4eZJtQJ2Da0n9jvywF0dyD0Ms4/9kINoN0Gg5EqHE3WBF+dUFOPyTUxgmZkUcPxbH+DFaEHX7Pxwhk1cAIBlPYmAHzWZbiiRIHp5EUqq4PgCjV0B0MKZ4Ix8ASi/1IXWhh5TNw1vPSAOiS8AolK/bun4/CHsZjRwGqAtgV9xYCE7LqSICUUkvJ/67HycIG6/vBb07R+AsM6/Kvfp2jMBZaVmVex3+L5VZA1UQlCpuKYCrxgaNToO+rcpJR0e+TyO8AIxg521wIB6nBXpsIWNeGTYlsFcaUXa5H+Od09j7H52K+7U9yQ5gksaZwEo/B9vdJJJSfGyGvMamErUyoBKUMmh4tAx6o5a0ntLooCjmlQs1MVSBE8BDQCIVx3nnnYe3336bfI2z+PCisbERAMBBC0lrIWVD2v4PC9ZNK8W8AGh1Gmj0tPHY/GQ5kjNJ7PrSEoSXZXw+CkEJYGSoN/7P/vnMMgoRH0pAo6O9V6DdxcqYGoEEwRSWXu7H7LluvP23yu1F0aUF8NTakJxNY3C38jiKvdQEDUd7LwAY3DeOoYO0eE1iMIFjP6EdArBFjIjcEIQjYibHN9WQXlaDMJTB2LEpjHWuTkbEkaOTmDj1wWavyuCdz6o4aKgyOVHjg6VAKo2thPjw8B51lVcG3h3FVC8tYKM3MVKkt96Gzl7ltqruwQgMoo5EUuItHCpuCCLaF8euf1FOjvY1OvJKtilB354xFJ7vQSpJi5e/+ZkD5G9NJWplYC2XUHVLETpf7VN8jcRQAhotB4NRAd0nx5/etnB/SAHacRW2GX6GRCKBwcFBuN1u8jXOeKT3o9ybJEmIxWLQgMOlbf8PAEDbtzwTLemzo/miNHo6gd4T+RPKiiXfDEsr31IkpfDVVjhCIrb9ex8wufRuVC5RSXIB9feXYfjoFA7/FxuMy2VPyhCVKBk83i9ILo5ENpKKJBSf68SB/0vbGApd5cXs1Bwpqwy7IVQRB6iovqsIJr+It4hpr0NXeaHjtThKWLSFby6Au8aKQz84ieE9yifLokvciI8mSCW9nHVGVNxYjMGD4zjynQ+4xAHUl3tTg44Xq5BMpEgn2EUXEDjHj57Xe0lZgNqelU8pEQKO1rCE4FoXjv+8i3SvqjuLYA7QdVEVVI6v2nuLcfynp0i2o+A8J7SilkRSAlbfLqq537qXqjEztUDvVwiEtX08Ao1Og21/pZykpBS5JCUAgATUX23C4LE4Tr+x/MZDqrQAABCNTmFP1xeRTqcxMXG2jOCfCmKxGCSJMaHPxQ0Q9YzQuxJRqfhyD+wlpvkyb7n4ANJft2+pQDKexPZ/XOHES44r2roxAp2oxZt/oZycAKgrsfVeIPoExIhp74su9SAxNkPLUOITELrQjQPfJBJ5AFUZh9SgbXMFRo5P4uh/KfehRAeHkquCOPGbQVJ2mPZPVCI1kyJlDhIdHLytbnT+rp8kj9ZNEegEui6qgepybypQeXshHBEzdn75OEmH3U0W6I16EsHG22JD2ZUBdG8dIpFSym70IzEyi25iRsq2zRUYPTH1wZcDU4ng+S5Aq0H3r2kHUipuC6Lrd0Ok77XaNhGg28WMLlJITqKDQ+PjlejfPYpjhNIIirHA7wuc54C3zoad/3R8RVKJRscCQgNVB7D73d0IBAI4ffrDqYtnQUdRURFOnToFDhwu5m5h/7lSKE2jQf3DJeh/dwx9WxfExz6Akm8lV3rha3Zi5+cJGUoElpVvaP84iRQheARaZpL3AdQyW4JHQOE5DjKRInCuE0im0fMhLR9cdr0fjjIzyRcCgECHA7xDTyoDGLzAhcJzPTj8YxrxzbfWgdnoLKmP4BHQ9HApBveNqSK/UKG23JsarH2OZW0kZdkUgKJ1bgzsGCbpffOGMLQ8R4qvCT4BofNd6Hylh3Sv0ut8cJZbyLqoCoTsOrmouKUAJ38/TLJX7gYreKueTAZcbbuopvTg2ucqMTudJG3ENj1RDp2kXZ3YJoA1D4QwenwKp369gvxlny2eimOf/TXMzMxgaGjobDalPyFkiInn4QbwWvm7rhC38rXa4a62Ys+3us7cUP4AYl7NT5cjNZNe+TBJjt9X/2AJRCdPIicALFMGJavRe4Wa+/na7EgmUiSyEW/hUHSxTx2RkodqkggFTU+WY+zEFKkEE28BCi/wo2/nCKnMVvPTYaTn0tjxeeWZg3gL4G50YXDnECmLVeOjZTBYdNim5kAaEarLvalA0WVuFLS6sO8bxzFxUrnsbREjBIueRC6xlAioXl+C028O4dRvlMd5Ci90YzY6Ry7d2PREOcZPTpNJc6qgYnx5mm3QGTjyOqr0ah9Ovz2KxCAlaxOHxMTqxryodjF0pRf+Jid2fI5QUpEH1m6qQt/OETKZVREWxLycdRYE2xzYraRyhsxAH6o9jF27dyIYDOLUKRX7FQvwvmRSymRRWlf7rKL2SZ8dJmcaBh7wFQK9yrProfIaCYPHZjFMzDh65GfjQJI2OIx+CelUGpM97P2WJSjloOGBUqSTadKmhqfJAn+rC7u/dlwV2YBCMgCAaFcUB/4v/UadP1c5MIi38rZZUXyBD/u/dwpTx5V3NroE6AR6qQc175VOpYE0EO2lsXmD69xIp9IkklJqLo10Mo3EyAzpXuGbCyDY9OQyYGpQcJ4T3no7Kf0iwMpYzU4pG1vZe50bgHcNO+lNKdGVJrJkAVYmbvwI/USP0cWr0sU1D5VAq+doDHiVBMC9X6WfwCITFGWoJSgVXe6BJSCRsmeV3eCHd40dfTtHSJnVknMpzMVoKVXeeg/ZOeruLcCxX/Qg2qdcL3mzFt4KET0755COrbyjJ0kmTExMAkjD5/Ohr+8Drml7FquCkpISAPNZlBRBw8FTbYXeRHP9LCUiguvc2E9In5qBmoXuTHSOfJo0fEsB3NVWdP12gERqqLmnGKMnplRlYKESlAB1mUNifXF1BCWATFBqeLQMM9NzpBJxEAGdqIXJQwsGx0ZSqnQqnUwjOUvzeYsuCcBVZcVcLEnSj9koMcWWjIZHy9C7fZhERlOL2vtCmO6Pk7L5xMdmkJpNA9RxdlUQAC1jUWwkAaTpJ6nVlvXSiVqYvDRdtEVEhK8txLGfd5PKy6kBlXSVgZo07KoJSiLLItr1+z6MHVZuRDpeqIJGoyFl6IgOJ2CbNcHiFzFxXNm9YiMp1YFN1xozXFU2UvY23xo7BLsBokOD2AgUEUvM74YA7EZPzwe/yX4Wq4dM8G0drlHWQaOBYNPA6BHgXWM7k6S0DCI3F2Do4DhG9tNOKKvJXmP2CkjOpBAdpkWgGx8sRTqVImUbspYJKDzHh73f7lRFNqBuxscH4qrILj2vrU6pRltYRPnVQRz5ySlSFiuTT4ReySnZBVBDutJwAFJpxEZmSf1KLvYB6TTefJdA9OaA5EwKiXHavYov88DoFVRlYaHC3WCFv8WBdwklYgBgLpbEzBTtvQItThSe6wFv0ZM2blNzKXDEjBnxvjgOqvA1TF5ZF4kEosr1hTCYdDQ5quT+HFJBXB/cpS4jqlqCkm+tA/YSIw78p3L/JNDhQOhSHyNtE0p8JhMpzEzTdJGyUb4QlbcXouv1QVJWQFNAgt6oX5mkJEPgBEyMTiKJOZSUlKC3dxU2bs/iA8c555wDgGVRyhKUVoKGg6/BDslDSzXEu3gUX+DCYRX24p1/oI+PmakkdEZarCF4gQtF53nQ9fsBEoEyfFMBJk9HyUQIAKoIUaruM5FSnemNSqCoubMIc7Mp8vqat+hhJMYZEhPAURWHatJzaaSIMS93owvFF3ih0WhIRJnE+Cw4PTFYA6D2nmL07x4jkdHUInJLAeKjM6Qy0TOjs0gSyyIDQMUNQWh0HImklBiOAyn6fiPlO+WCt+ph9tEqD4l+HlU3F+LE//Rh9ABhfamCADjwzhi9E4DjhJhmBqoJSjxQeVMh+naMkEo4tn68AloDR6owNXk6Bm9dErxTQGJCoS+UAOkeubCWS3BXWUm2x19vg9EnQvTzisvtmXcXA9iJ7u73p2LUeyYpBQIB+SdN9lQ/wIhIC7MpJX3z6eOnhjXY+bs04ovEghct+SZnT7J49DA5dBheIpC5WMm30IVmxEdm0Ldz5cBzbtm3wT1RDO45rpiclCn7Nnk6irk4zdkoPNcD3mqAJHGIRpUPsHUvV2N2eo6URjF0lRf+Bgf2f/ckxo8oD8a3PhNBKpXCOytlRFjkGacH4tj9ReXMMleFFTpBCy2R4/H239MJA1KRhNrbC3Hyt33of0v55Hr0Bz2kzEsZdL02gPQcbfIaPRAllbzIwFVhIaf0VAtfox2CjZhzFCDVKM/g9Gs90HAa9LxOc/Yo4yQXzRvKkZiaI5VFI52Sy4GRuNGbATsJOEMan8GLXCjscGP3lw6RiI7NG8qh5bWk03mZbGDjnVPY9zXlAcRAs5McZDv2y144wxaMHqNlDjojw5bSdOISUHtr8Rmkr+WyKHmbTTB5BUSuCWLXv54ZjDojixIARIG9Px5HVF6PakQ5e84CslImi1IG59Q+idf3fjZLKD6LP35kav6eg+vy/l+j1Z6ZTSmHHfD2PxyD6FsiG+US6a/LrvRDdPKwRUTShnX13cXY/92TyogyOSmwKb5CBiOHxmENSmQCgLXYCKNPIJEuau8LwRKUsPMrJ0gZgFo3RTAzPUd6P0upiOrbQjjx6170bxtT3K9lQxgGq568kS85eXp985i6Urm194WgNXDk702ZdzLoerUHc/Ekut+m6ccuFXXsxQIRRo8AX4NjVUhKlqAEyc2TSEqdv+hH5y/o5PzO3/WT/deJ4zFVZWW87TYUnevB3n87zIghCqFGF3kLD71RB0eVjURSqn+kFEaPQL5n84ZypFJp7FyqDOYicFRJiNxQTLYFrRsj0Bt1JFtg9IgwBUQUX+TH2GHl43Ps+BQ0OlqAs+tXA6rLvvk7HNAbdbQMXVcVLF8CbxG/b8dX5O8UW9BmAVkpk0UJACMPy/t/HR0dePPNNxU/41l8OHH++efLP2kgcDlrtcVKeOToUXwsjTc+vcQafpnyH64aK2xlJry1X/mcF7zAhdnpJPq30zaHJk/GVa3HR49NIj1HJA1f4IO5QILkEkgb1h0vsizPlIw33hY7Qhd7cej7JzF2RLm/Vv9IKThOQyqvCbCMvJM9UdLhMEelFQaLHgYzDwoDY/eX6L6yYANqPxbGyd8NYHCH8pjXqV8PKSYK5OL4K73kOFS8T50ueupt0Ivvy/nbFeGrt8MckMgZc9TEhnq2D4M36dC7lbaJRdXdDOruDyE5kyKRvahkrQysRUZwRLI8wGxBYmQGO76gPOblbrKi9FI/9vzfTpLdqbs/BN6sJ307wSeg6cFSjHVOkeRYeI4Leommwz1vjsDX5MDIYVrMS3XWKwGovLEQBwmHZ6xlAhwRM3irnmS3dnzx+Mrja4HP1oGr8Bp+jOnp1SkJdBYfPN544w0AwFpcnv+HxeJWOTGvXf/SCd6lX3xzfYmYV/kVXlhLjBiIjJE2rMM3F+DIT08r28jP8fsOfJNOqp3onESsyorurbQ52V1thbXESCIPhW8MwF1rw95vHMfECeV2s/HRMszF5rCHcCCat3CofyiMzt/0k8gNdfeFYPKL5KzXpgIRUJHMVE127fDNBRDMOpI8AHXE0MGdQ+C0GgzsoPkM+/9THcHbGjJBo9WsCknJVWnFTGyORFLq2z6mqtTW8Vf6yP5rYgLkrGgAYK8yoeRiH/Z9+xQpe5AaXdQbAMFugKPMTCIpVa4vhKPcTI4t190fgpbjSKXbTEEeVbcV49RrgyR71fBwKUQXT5ILz3NwlJuhl7Qkmz98cJyckGJ4z4TqMn3OOgsEqx6nCQdoyq8tAG/SL01SWiTmtfc7XeB5rJzpKWeu5bU8dEkD5jCDtrY2vPXWW4qfcTG855VchqG+tvYJxX0kic0G0Sh9UbL3V9EViSsLiUreKiOgMSoiKWVgCokoucCBPd85DVDsLadVlbXmnX88CmedkZwRaS6WxDTxtIbJI0Cj02D8NO20sE7UIg3aQJRcHJIzKUz10TbHKSSG9wpvnRk6QQujRwTlY0tFEtLRKKkEGAB0qwjyiC7AUmolkagA4M1PHYC4CNfhg8A7/6LudI2pVAJv1JBK5sWGgCOEdPS5sFdJGCWelOetBuhNxI1blXjzz9UxZZOJFKLDtExbekkLjVYDe5UdUcImvU7UkYlDw3umkbo2jegIjYa991snMdVHzGwQVbeRDTDiltkvkkphNtxdAqNHhP8cO3pfZ47USmXe+t+Zgo7X4vQbtDGdIShZQ8B4p7I+kuRCVVUVDh48iMsuuwy//OUvSfc8iw8XLrroouzPirMogZ3WHjsSQ6yPdnJy5xeOw99hJxGUii5xwx4yovrmIlK2nMrbCzHaOUnahAeA4b1TGN5LD/6/8en98tyvHNP9cUhunkRQAsAWMsRgiL3cDE6vAcfRNv6jIwloDHQfWw2ZRC1MXlHV5oSlVHnGlQxiIylVZaGctSZER5Okbx07HcPrf7NvVcrsAcDOz+8nkXgycDdZMNU5QeqrJuMYAIgOAKJIkqO5QIJe0sFW4UDsAy630799TBWhbHowDt6sJ5dV1Bv1oFZbj42mwOk1sBWZSPZxejABI+lOwPTJGA5+t5OcVUp1xjcRqF0fwrGf95Ey1JVc6kM6mSaRlA59/yQSE0RDLH9b0ccjNp5Q/K2bcTkOSK+dLff2J4Lf//73AIAWXKC8kwAIFh7xAfoR1B1fPA7eTOsT7HCB03EkkpLgEVB6uQf7v9tFzlJCyUiWwZ6vdMIWFklEAQCYmZglx7wsQRFaA4c4IegPALxZDw1H9E8EYHZ6DlP9tMn/+I/7cPzHq5Pl1lpuh8Gsh7lAJJGUBJ8AxOOIj9HuRyXLAYxIZSwyk0rEAcDbnz4MwUa+nSrs+WqnqrJjUlAAb9Ji9CCBQBEHOTNaBuZiAZMniXFir4iUiszjaqCGjAYAs9OzmB6gjTOO46A1cHCGTSTbYzDpoRNp8e94XxyzsTlM99Nkv+9bXYgO0bMwqc1w5G6ywh4ykUp8Vt5QCGfEguAFLsVZXMaPxXHs571ke5AhKFnLBMVZ5gROQE1VDfbt24dLL70Uv/rVr0j3PIsPFzZt2pT9WdJaFPezFPGY6EogMUSLee37Rhfc9VbSZrWzzgJPjRU6A0daB5Ve7cNUf5ycbWTiZAI7VRyieuPT+yE6aAfKpwfjsE7NkQhKAKA36shZeaxhC3SCFjqB1m96IA6Din2a1ShrloG12AgdT6+wYSnmSSXKAEYuoJB4svcqETAbTyvOnpLB63+1j3wvtXjns4QyWTmwV5kQPT1F6quWdMVbAPA8iWwkOXkIdgOcESN6iOsVKiZOJlRlo57qjcHoEcBbFBBYcsBbDYrP/WfvNZiAXtSRM6NP9sRUEMtSZBImAFK5xzzwQMX1QXS9Nkgaa+FrC4AUSCSlQ9/twixVnRJAIgHwFiZHpTGzDlyNXeZX35eYlyZNjZLm4NZbb8V3v/tdAMBlbf/vom20faN5GZQAoOXiNPQGYOfvgPgyRCVt70g2gxIVWZJSMgnJBdhKjOh5W5mzkYrF0fhwEQSbHge+dwqjBwnZhp4uw3hPFIe/9f6kujoLGta9XI3YoDrHjYqOF6ug4TTkE9Ttn6jE0MFxUpmyNQ+VwOyXsP87J8gEGzVY9zI7rbj979VlA6JArRzbnq3A+KlpHPqm8rHW8EgpjF4Ru79+glRGUC3UZDc6i/cHUpGE2tsKceq1AfQSyivk6SMhk1Kw3YnuX887DSuRlJbDolmUctB8lwVavQZv/Vu+85yOxc7IopTBRPQtbNv7U9ZO/bR/Fh8CaGS9XINz4dUHF22TTibPqK+07sUKlnnx71eYHxc5WaYGwQtd6N42pHzzPp3GuperkZpNY+tfKidrBs5zoqDFib1fPaq+vNFZqIaaTC1q4W2xofzqAowen8L+rys/jVZ5eyHMAZF8cnjdS9VIzdH0US1aN0agN+lUZQKiwttuQ/kVBRg+NEHaZC670Q9nuYVMAlYzrtWi8bEyiC5+VeR4Fmei4rYgjB6BVPo5M64nTkex51+VZ2QInOfE6L5hVSS9RbGMzyf6eDQ+WIrYcAI7v7DgNGA6nZdFKRdvS/+NsfExPPXUU/iHf/iH9+lBz2K18elPfxrPPvssAOBS7tbFG6XTZ+hQ/UMlMHoF7PjS8eWJSu+TXy7YAFulA31blQ+KmnuKYQuZcPAHXSRiSMOjZZjuj6kqpXYW7x3rXq7GdF8Mu7+sLosNBe1bKqHVc2Qie+vGCIYOj+PET5WTbCpuKYCrxobDP+kmEanUgsVqaBm61EKtHJufCmOyO0ojk9xeCGeFhTyu1WLdi9WIj828p5JgZ6EOgo1Dzd1lOP32MMn2t2+phNbA0dZvAitBuFrlMFueDsNg0S/u0y/hs40Jg3gn9luk0+mzMa8/cmRiXjVYC7+2ePFG6dSZMa8XKpCYmMU7n1she8f7FPPyNFsxsHdceUmkdBodL1QhNZvCtr8hVCaosaDoAjf2f6ebRII4i/cHdfeHYPZLq3KozxTkUX9/OYYPT5Ay14Wu9MJRbiatwwFg7fNVSCdTq0Leqn+wBEafuCqxQ0uJgLq7yzB0YByHvqN83zB4gQveejvZN1z7fBXSc7RxrRbVdxTBVmZaFTmexZkovsIDe6GJlCXKUsyj9p4yTHROYS8hMYu73oqJE5Pqy9otxDIxL94CNG+oQrQ/jl2LZUrVLE4k3WH5JUZGR/DYY4/hn/7pn1Q/Gr3oZA4yBKWQf/ETZcO1pjMISgDQfQyITS9PUAKAmTJP9mdPBGi7U0KoXdkjawQBkEueRIegmKCUwc4vdeHEr/pIBCUA0Jt0sBXSzqzW3hfCuperIQVoTMGau4sQvIieJkdyqfjs0spNFkPoKi/855ypAyth3cvVaNtcQeojuoC5eBJjpwi1Nd8DBveNY/Q48V4SoDVw5Nqhp17rx3jXNEZP0vSxbXMF2rdUkvqoRfjmAqx7qRpSEU1Z+nePYmDPGPl+OkELE7E02ultg5jqjyE58cETlACW6WySeIrK3WDGuperUfXRQlI/KSCg6s4iUp/5ziq7EW2J6GKEO6qta9tcgY4Xq0h9EI1DJ2rhrrWRuh38r5N44zNERy+KfIKSTjm5du3mUrRtLM3+rg34VuwzdCyOqYEzy5BqRBGTJYvPPxapLfvzq6++qvj5zuLDhddeey3781IEJY0oLuo8TnRH0btjZcKeJiddZfuWCqx9Tt0c0v0bAkFJxs7P78fB/+ok9XFXWaE36RCL0Zz2dS9Wo+XpMKmPpVRE7cdCLHMKAaJDpbtNvE+mT8VtQfI9q+8qxrqXq2Espt104nQUs9MKyyK/R0wcn8DE6Sh63qKVhzL5BOiN9OSx/XtH0bOdFoh3VElY92I1ii/3rNz4fUDblgo0bygn9Zk4MobR41PoIZa/s/gl8olyABg9Mom+nR9sNqQMJrrV6WPrpgjWvVhN7hc4z4ng+SpTlqoY32psSfB8FypuW3y+WAq2iIh1L1WT+1mLjBBsNJJ2//YxHP3ZaRJBCWCZvdQQlMpu9GPdy9WwRXI+ALe8Xsf6EogOJhYvr6DRgDMt7nvZxwMAgH/8x3+kP+hZfGjwiU98AgBQjMiif9dotYsG/Lq3DmGqN7ZyJqWcvtYyAeterkbJNV7yc8bHQNqkBoB9/3ESh3/UTSYySE4e1mJazCt8UwDrXqyGtYy2DgzfFECgw0HqA7DNe3onehcACHQ44FtLf8aOF+i+KMAyS40T40Jq0bt9GMMH6YQhvVEHs58WZOjZPozhQxMY3E+7X9Nj5Wj9+OLj8/1G4UUudDxfRdbj09uG0LuLTu7gzXqY/DSHoXf7IMY6pzDdtTplrxITs5jsoemjFBSw7qVqVN5Oi3kJNg7hmwLqxqrK8U21JYINqL6zCOZi2g2bnihHx/O0mFc8ngJv08NdpTzTDAAc/F4ndnyOGPOKQzVBqf0TlWh7lhbf73lrGGNLxNuXirfZ4u4sOen73/8+7SHP4kOD7u55QsFSBCWNXrdozGvwwISimFdu3+any9FO1M8MBt4hEJRk7PjcARz4diepj6vawrIhJWgZotq3VKDxsTJSH97Fo+K2IMsMQ+lnURnzoiV5yqL0Gh94F61z6dU+5ouW0/yTidNRxEZXhxw2O5HA8OEJ9BLjUOaACMFKPyx9+s0hdL9Biwvxbh5rP1GJoovd5PupQfOGMBofpenxRE8cA3vG0PsWLbuU2S+Bt+jJejnw7ih63l6dmNf4qWnER2fIY7Tx0TKsJfoZACPKqFmLAVA1vtXYEk+zDeXX+Wn3cfFY+0IVwjcvfth/KThKzJCI2Z4mTiZw4LtdJIISwDJ7qSEoBS9wYd1L1bBXmeb/c4WYV2ICGD85jVNvLm4POGHxj1kwynTqi1/8Ivk5c6G63NvQ0PwDhwsvPuPvw7Wm7L/OvfmOZd9JDfpWOACdXKQeczqZxsAxBR8mwUoeaYxGtH7Mirl4Gjv+lV7moXcbfTGu5uTubGwO6WQa0R4amcEaMsEcNJLKh/nX2lFymR9jJ2g1slseDsNgXuIUwzIINDsBIFsCSSnm4klEh2kOQGwIeEsFY7VtcwV0gpbMQD36AxUnB6PqdGT0QBSjBzrp9wPeIxWRANnWcUSrcvwn6lLlqZHj4K5JDO6inyZreKQUkkcg31NNybHBw5Mom0sjNkor3VZ6hQ/WQmNeyTElaN9SCS3Pkd9t3ctyholPKc+MYKuww+yXUHqFD3v/rVNxv9noHKChKVZ0KKV6rKmB/xw7Si7y4fTbI+h6dQRIpQEFpQLm4in2frnQ64DZpTdZT745A+BM/Rhbx4J8kyVGmE+cGZT0egrRP3AKzz77LHbs2LHis53Fhw+ZUm8mLE7+1YgsiM0ZJaSm83V571dXPoWzsLxFfGyGXNqx7Fo/vPU2HPphF4b30oLjsREgNkJjNu3+kvLTC7mYSyQRn6AFeUIX+WAukOAISaRSSPUPV4DTach+xrrN1ZidmiNlACo+zwNXpRVIg3RiKDaSgLlAxPRJmvwPfVtF5lCRvdtY5zT2f015RqTYSIpMZACA7f+g7oT8sR/Q1w4aLXO6NNTcxiqh0WjIZWliIyBlospg5xfUZSlVWwZs3YvVmJmaJX2/Yz/uxTHQv1tsdIZcjhEAQhd4kU6l0f075Wsx0QE0PlGN6GACuwiZX2vuKYa12Ij93zpBKr8ZPMdNtuNjh2NIJdOYiyVJ/dSW2lVTbg9gmTq0gpbkiw7vH4OrwgqtYUGQRsMte6p61xcXn2u0VhYd5ExGpKby57xy/RpMWgeQSCRw+vRpFBTQAmBn8YdHPB5HKsX0IszVn/H3DLFbo9WyLJY5GN4zieE9tHUnp9diLpbECJEU0v6JSszFkqoywgzuUhHzUnGSfC6WRHIupbh0TwbuGhsckRR6CKU/rWUCaj5aitGjkzjwn8rnoDV3lcDkF7Hjs/tJ5c2KLvBAo+XIJLGZyVlVm15q/JqmJ8rBWw148y9o305N6RAAqk53T56M4+BJFT4Dt7p+FzQacHoaaVtpeayFUDPWxo/FMX6M7udVri+Eo9yMNz69n1TO7p3P0vUx2h3HXCKJ2AhN/wsv9MFTZ0dsZIYk0+anwuCt9Hh2x4vVLOMJoTyd4BZhLzOD03LY+x+divvFx2egNRCDt3F1cVGqHc7AXmlE5S3F6HtnmFSKMD42g9QsbZOt582RRe2+Rs824TU6PdJzZ67lC6zFOD1+Ev/7f/9v3HTTTaR7nsWHA42NjQCWiXnpddl/0wvipke+T18HRvsT4E20eHOgw47iC704/KPTGN5H8/USE0Bigmb7KHGdXMxOJ5EYo8W8is53wVVpxdCBCST2KK/vVPdAOfSijuxnrNtczbJfEeYSZ50F/mYntAYtjnxfeabB+PgMZmJzGD9Ki/uf/MUAToJ2UA5g8YyRY5OkjEiJCZDaZ7DnK53kPgBw6jd0P4/TgR2yoJ9fUwcO9L3NBEi6kcGBb9JIJBmoLQO29hOVSEzOYuc/KY8LnX5tmFT+K4OpgTg0Wrq/XHZVAEiDtBYDWGb6qd4Y3iXEcMuu9cPbaMeh/+rG8D7l9qfoAg8Mog5Hf6x8DkgMJZBMLLIntwLUVm8aPaAuqUrDw6XgbXpStrPBfZPwNS9CLFsh5rVvCa4Il9lrEnik4vnzl1cbRL/Dg6npKRw7dgxlZTRCYQaqSUolJSUAAC13JkszQ1BaDM0XpZFOATt+u/igWEhOmim0w3BqFAOHgQElAdlE/sZtOslIQEqQijFHvfbuApj9Anb/x3FMnyJM5ilaIDcDSrmqXOz6wkHo7cQ6jQMJJMZn0EVkyQ4fmYCznEjRBHDge52QXPSjwmrIRv5z7DC6RTJ5aGZyFlAR02h+qhzDRybR+XN1deIpKL8xAFuxkRyQUrtZoAZHvnMaR0B3AMK3FsDiF1etJFrzU+UYPDiBrleUO5jTIwkIDp5lHCL4ss46Izx1Dhz4vwQHMwrSZksGx3/cBVeTi0wIHDkxCbOXPkanB+KIEtPM9r4+itRsCv1v0YLhFGft/UDb5gpoeQ5v/rn8HRQEPXt3jiJ0gRd6IcdLV0BU2v65zuzPeVmU5IX3UmSlYLMe/loRb39nYlGdXIyotCb0ILbFP4ODB5UH2c7iw4W5OaYPHforzvhbhqC0EKJPj/p7S3Di1/1Ljr2FJIfMZtvuL6koI6EF0qm0coKSfNpx3YvVSEzM4J3Prs5coGZ+fPdfT8DdZCERlABg6PA4BAv9VFNsOIGxThrR6+QrA0ingMEdtCDKiZ/14cTP6AvrituC6N81TCJNiCKH5EwK0QFagDx0hRf2UpNqsgwVTU+WY+zENI7/VPlCd3jvFN7Yu3ppl7f9lTp73vJ0GIMHxnGS4AuphdrvNpdIIj5OC6oCLFPOVHeMRHyhEKdz0fnbfkydptmD2AgwMzaLoUPKgy4A0Pv2IAwmneL68Bkc/F4nEkPEtHZQ54uqhS0iovq2EgwfmiAF4Wdjc+RA29jhWP64yT1RljlVvUTgpvnJMqTm0tj5z4sTlhYjKhX4CrB77260traip+dsaaw/NtTXM2KSFmdmbcjNPHlGvwdLwOk0S+rKmRfTAOk0Rg9O462DdP8kNZPC7DTNXoZvDMBVY8P+bx5XvWFNwYn/7idtamew43P7wTtpMa/EJDDdH0fvdlrMa+jgBHR6LYmgBAD7/rMTRmLWIEAducPdYIWpQCCVUQMYSYBMgAArWzh6bEo1WYmCwotccFfbyGXDVrPMWNf/DKqSRehyL2ylJhI5+b2g/qESjBydxCnCgdbYcAJzQQmCwCEeV04osZYJ8KxxkMs/qon5nvpND2KjNIISAAwfnIA1RMv+BgDjnVOIT9AOD44diakqtUc5RPx+oPGxMgg2A94k+HujB6eRTqbIG9O7lyB6rwR3kxWll/qx+0uHER87UycXIypVTbZh2jaOw4dpZb7P4sODTFKEtdrLz/hbhqB0Bnig7YlydP1uEH3bFcab5c1aNQdqOAOH1FwKw0cVjnM55tW+pQIzE3OqN7mpUDM/Hvmv0xg6ME7eUB/YPQqJWO0CACZOTWOil7aeHt4zgWNiD0aJpP6e10fQ8zo9203p1T4MHRjDxAmCv8wDM9E5RIdpPravzQ53rVU16YiKuvtDGD81ja5fKvdtYr0JbP3L1YsVvKPy0OGaB5gPq4aIRUWgwwFnlYX83Wam5hAfoce8Ci90IzqcwDCBSHiEUDo4F8d+3oPEGH2tONUbwxBxjPbvGoHk4RElktgPfvskZonkTwB4+zOrt2/Ou3g0PlSK4YMTJAJdYmIOWonmeCWGEtj+tzl+ECHmVfexYmg4Dd5dQpcXIyoV+Auw892duPDCC3HqlLpDqqpJSlNTbLJaW70x7/+XIygBgF6fnZsVw1kKBGp47Hk1sTxBIHHm4mH718aRnl55gydDUALYKa90Mo1oH+FBU0mse7kac/EkabElBQQEz3Ph8I+7SeQHgGUKwRCt09TxqCoyyImf9uME6EGl0QNRjBJfzF4lwVZqJgdeis71QmvgyCSlpU7GrgTeaoArYiGRlMI3F8BdY8WJ/+klkUnspSZVpUr+GGAPmaAT6PTrjheqkE7TN1F4qwGeKiuJpKSWgFV2RVBVaRRnnRGWIhNpDESHUqR3yuDId9Q5KWoDDVSCUgb+tXYITgNJJpnMcaPHJklEsdnoHDRczmZEOr0yUSkKbP3rRRaaCohKpVc6IbkFHHiVQHTVMmJJsEqP7ncWd2gXIypNTDAHdsOGDfjsZz+r/H5n8QfHI488suTfliIoAYB3jQ2cToPUDO30Yu29xZjojqLrVdqC7tgPe3HshwpJHTkO4dxsEokp2gmG6ruLYQsZcfC7nSTiUOgKL6ZWL4wZAAEAAElEQVQHYxjcQSMJAFDV5+h/qduYVkvQ7PoVfS4IXeHF2IkJEtkIAJwVFhg9AnYcVu5bxkZSqsg17mpW2o+Ktc9XIZ1Kk+8p2A1waDVQN9t9uGGw6OEIm0kkpeBFbhSd60bXa4Po/rVyu6D2u6kl2nvr7HCUmsnZeUJXeDF4cIKUTazn9+rKXmxXsTE9ciCKkQN0m0Ad01mIQPjqAnT/+jSprFrblgroDLQMtWOHY0in0pibpR342aWUALIAogOouK0Ux1/pxUSn8s1HvVGfLSOyFBYSlcx7QwB2o7eXfrL7LP7wyGxyduDKvP9fjqAEALxVT85yZy4WUHKpD4e/10kmyVAyLmYwN5tEOknPbNTxYjXm4nN4+zPK7ynYgILz/Tj2Si8pQwvAytjFiYHx+EBcVabNnteGVZUzmjwZx+RJ2jNKQQGuiJlMeCm+wAODRU+Ole3/hjoChNEnQifoSM8ZONeJ0IVedP6mnyRPR8QCwUEn9f8xwBE2q3q3ts0V0Gg1ZB82890oJKWTvxzAyV/S1xAllxVAcvNkkpK1TIC1mDYG4mPqslJ1vqLuYKnacUMlKGXgXGOG0SWQZGILi6heX4KRI8RsHZOz0Bnpscqtf6nugETwAhcsQYkm0xSgNXDwNDmXlMliRKWxsXEAaTzwwAP413/9V1XPexZ/GPz7v/+7/NOZPtSSBCUAvjordLxWUTb7XIRvLkB0IE7OStL922F0/1Zhn9yYVyzFDsoTUHqND75GBw59n5ZZJHCOA4mxOVKfDNRk/FBLZt77H/TMfwDQ9xbtgDbAZDLVE6WRjQD4mhywFhlp5LIEsF2Ff+6ps5HLvAJAy6YINBoNmXRh9kvQizoSSemPBSa/CE6rIZGUnHUWVFwfxKnXB0n9XNVWVd9NLdG+8Fw3EhOzJJISII+B7mlMnFRO6BncrW4fj5JBKYOp7oQqgt5Ut8pyjDxQfKEHfe+MIzGk/BpNT5aDt+jx5l8o35NODCWQmkkhmaDFvNRm9wIP1NxahO6tQxg/rvzdeJthxTjGQqKS6d1iADvzyrVSoYr1kFsmRpLmTwwtRVDK/L9z7xS2vqIsg1IuCupNEKQUJAmILrYHtQg5CQDKLhYxcDiGyW7jskSlXIISABz87vxJ8sXSR+Z3nlesxPgMosPqSjRNdk+TSCstz4ShE3VkgkbjE2WYPB0jE3manixH9xsDGCBszvnPsSN0gQ9Hf9ZNKrFVelkAvNWAE7/uJxG39vxnFxxl9BNsRZd7MLR3glxuT01a3dhoAqm5NCZ7acbz7b9Vdwpk3cvVSKfS8xlhPkBEbg/CXWHF6beHSMQtNSeoAGBmalZVaQ413w0ACs5zYvx0DFPHlSvloR+eguSkF2ANX1sETqchBx9bn4kgnU6TM27V3R/CVH+MdD8pIKDqI0Gceo1mF2ruLoK12EROAV9yqR/QgPSMvVtHUXS+FxOnaETJRYkBKxCVNDpGaop8xIvu1wcR7c0hhKRkRV1ikvfUWOVMAIvMU0tkVOp+axbdMuErU+ZtMSwkKvmdDegd3oWf/OQnZ0lKf2T48pe/DAAoRmXe/y9FUOKMbD7sfGUQna8sEdRbxvG0FEowegUSSclYLMLXYFNGUlqw0fsWIXVpBhMnp2H08OTMRoFWJ9KpNI1wJALrPl6NwQPjOPI95eROb7sNgRYnDv7nMdJGf8nVPogOnlyWq+XpMJJzKez8PI3MEGhzwlNvI3+HY6/0YKqP5tNYSkUYvSJ6iemC1WzCAkBiYgZpFclO1fgLZTf64VvjQPfWwVXJUrTuxWoA9HIgat4t2jeN5IwTiXGiD6vyu4kFIpxlRlIpNQDo/E0/Ro/QMpCJBSIK2l2wFhtJG9veFhtKLvXjyE9OYXiv8mCuu8mCQKuLTPguu9EPk0vE7n+h9Vv7XBUSEzMk4mPxeR54amzgOA0pu9HU6Rh4y5lZZ1YCJcCTC0eVBHu5FccIqb1FrwTJLaDoQh/2/vsiQZ8lTpdtzdkkzpR5Wwy5RCVRL4LneCSTSezZswd1dXWKn/Ms/rAYGxvL/ixw8yfDlyIoZf4/nUziLQKBJ4PC870wBSTwToFEyim50ovRYxMYO0IjJJ74aT95rQkA0YEYEsQsd4UXBeCps2NmcpZEmqh/uBSCzUAqtQQAdfeGMDVEW9sCwJoHQjj99jCJYGCvNCJyfSGOv9JLKp1XdrkPlqARA3snESdkltz7n6dgK6XHvAIdDoyciCLe98HHvGan5jAXTyLaT/PP1R6C6nie+UJvfuqDz2RZeJELRed50fPWECkzmNpNqPjYjKrSHGpjXt4WO6KDMRLp7vBPTsPooce8IjcVsY1R4sZ2/SOl0Oo4skwrby9EbCRBImIJNqDi9lL0vD2MwR3Kx3cmU92bn6GVzgtfXQCNliPJZOxIDDOTs5g4SfN930vmppJrvOjfPY5ot/KXC7Q6yYdTB3eNZ+1qpszbYlhIVKpAAw5hJ371q1+R7ncWf3g89thjAIBClOf9/1IEpcz/920fV55BKQeuCjOSISOJpMS7ePhbrOj8bwW2ZEHMS00GxcnuGOyls2SyUdH5XiAFcr+1z1VhaN8YqWySvcqEYIcLh3/US9roD5zjgMkn4jAhvgawDDmcRoNdxDVx6EIfZmJz+RlGFODQ97vJMRDRz8PkEcgEDzXEDgBIDCcANf6CirKygQ4HSi7zo3vbIE7+4oOPebVvqYBGy5H3wNWUHo4OJTATnUN8lLa/r/a78S4e9lKJTLo7+vMejHcRD6PxQOhiHyZPR0lEIGu5hMgNbK1DIUXZIkYE17rIRMTCC92wBMUlS48thZZNEcxOzGL3vyj/Fu5KK4LtbhiMelKmqbETUzB66Znj3lKZuckU5OGospDIhLyFhzVkAjQajB9fJJ63RMxr+9/Pz1PcMgfic4lKvJYHr+Uxl5zD7373O5x//vmKnzMDVSSlc889FwBg0DHy0UrZkzJw+tIY7gNyGdHLkZMy2L5dD5t9FtHF4hlLEJQAwBniYQ8asP0/Fp8QFpKTAEAqNKCg0YojP5r/6EsSlRaUd1OToWjvtzpRdpmfXKJJDTkDAEQHD4NRj6NQTlJyN5ghOnj4mpwkMoLJK0Gj1SCVpGVvOPCDHhS02OmZpbqiiHYROwEItrvgW2NfldJo3b8eQjchMPdeMdEdJdf+VovBd0dg9goYOqTu1BAVq1UeDgAgAaGLfIiPJUj3HT8SxfgRuk6e/HUftCoyMKnpAwDmAgmSh5Y2nhM48FYD2S7MzaaQTqchBQQSMfDkb/sx1UfPBkANamfgabLA6BfzZZJZYC5BVvK2mOAKWyDaDNj9L4ucYlsiq9K+X0YXn99ysQRZyRoCxhAFq0W4OCZLWGpz84lp1JbdhKS2B9MKMgyexYcLmewNEX0DgOWzJ2UhAhaPiIkT+WNHyen+Nz91GGIB7SRI5Co/RBePwXfHzrhnFotkoSi52ofxExNkslH374bIBAYA2P/tE+DttGC6xS8CaSBJKH8AAL4GB0QHjxjRfHnqbKrKcugELbg0vV/XbweQmKItxAGgf9sYuU/kuiAMFj2ZpKQWVMLWe8HooXFYCqRV84XGTk7TU9SqxMiBKLYdWL1yoXV3FEEnasljXE12o9jpGPp2jqDnbeJ6TAtweg1MAYlEUgq0umD0CBB9AmKEDWNXhVWVXUA6TV47nnxlABqNBp2/WJ1sHRCB8qsCOP2bPsRGlNvZyA3F4PQaEklp5EAUe/9v19LzVAZLBG5sERGTK4iFMzHfKzU1jbqaOmzfsR133HEH9u7dq/g5z+IPi4aGBgCAASwAuVL2pAysZYKq8mn7v94Fc5FAzsjjb3HCs8ZOWvMINg6B8zw4/ss+cmaj3V+mB+GPfL8HiXEaQSmDlbKXLQZzoQTBTcvAK/gEmAISAs20LCgmv8jsMtE0H/lJH/xNVhJBCWBZovqIfQAgdKkPgcnZvMDzB4VcYsFqYPTYhKLy7O8Hho9MwRGxYOTI6rzfu4SNlvcDZVf5ER+ZIRGAot1xElklg+Ov9II30knNBrMOnIrv7QibMZeQyNmijB4BvgY7iaQ0G00CqTTMXppNP/ZKL2aIG+EAVI9rW1iENWQmycRaJsDf5IQlIJHmg3e/fpJMkszAXCxgaiS17HyVOTSYnptFIVeOCU9ftgLIWfzxIB5nH7lC2wRg+exJubAU8Zjooo+dN//yMHg3LS5UeqkHjrAZ451RjB5cQscW8V0KznVieiCOscO0WOzg7nFVmUz2fu04RGK5XN7FI51KYY64j+Sps8FcIC2WAGtZ+Fuc4M16HCZWrjCY9WS/CwCO/ncPOZ4H0IleAFB+lR+WoBGDB8cBlUleKNjzVXUZqdRgtHMazu5pcrk9tRg+MAGNXsUHV4FYb0JVBiy1qP5IEKKLJ5OUBt4Zo98sAXS/Poh+YvaldDIFHa+F0c2DEmnz1tthDZlgKRFI2cs8dTbwVrp/iDQ9NDq4exy8TY/urbQ16vGf9q3caAkUXexG/54JJAaVG4bKW4thMNIyniUGE3j3q52YOr3CfZaIeVlCAqZWinkJbP5MxROor6nHWzvfwhNPPIE9e/Yofs7sY6RVrPo18oLgnNpPINbmUdzv2uAkK8/0CxpJKQPDqQUDdhmCEgA4wwDHAYMy92RhNqXFSEoNDxRCcvE48rMeDO7J3yzLIyotIChVfbQQyWQah7+lPq3VqkECmQAkuThEoylyv9VE+5ZKRIfi5LRw4VsLMH5skkS0KLrcg2C7Cyd+2YverconEmtYgrXISC6f07a5AloDp/qUMRXrXq7GzCoFsWrvLYalyIg3PrOfpF/2KgnmAF2W7c9VIp1MkzM4VX20EH07hzFK2ESXiiSsubMY/e+OqDqpulowlUqkDFFZqLAlqw17lYSSSwLY8TkaqW3dS9WAZolTiAuCYpmACACUXePGsZ+uoJMLCCLagE/5g+XMQ6FzeHgiAvonOOzuVUYWNp+Yxu/f/RTi8Tj+7M/+DC+//LLye5/FHwz/63/9L3zyk58EAFymX6+MoASg4gYn7CUSOn87gJ7X5ucqSgmSdJKWgiZ0hXf5Te1F3M51L1cjnUzT5jgRaLhXLtdzXGU5o9WCCEDFIxqLRVLpqdVG6TV+uGutePfLB0lZopy1JjgqrKSMVADQ9mwFkKaXAQte5MbEySmSnog+AY0PlmL40AQpi4xatG6MQG/SqT75TkXHC1WYnZwjlx0LXuTG6PEpkl4Gz3eh6HwPjv2yh0RqczdZYCkwksgnAFD3QAkEm55Uimi1ITrYv5RxwzpClS1ZbVTcGkQymSKVugyc50TJRT6MnpjC/q8pD7K6myxIxubIJFdwBGJ/TsCm4/lKaDgNtn1Ouf2aHh3Ca/ghu9QqkQrP4r0jE/M6F9dB1BsV91v7iQjSyXRe5i0SiDpiC4vQijoSsaZyfSGcEQuO/qwH/duVxzJKr/NBq+VwhJiV+w8CAWQClmBj/1LL7a0mWp4JIzYyg33EU8klV3ox0RMl6Ym7yYryqwpw8n/60EMglpuLBZgLjeTSeU2PlcNg1akuJ0XFuperkRifxTv/+MHHvDKZdXZ++TiJmKZWlq0bI4CGnpG97Ho/Rg5PYPSg8k10wQaseagCA7vHVJdVWw1IQUEVmUqNLVltZMqFvvuNTtKzrn2uEpyOI2ebKLrYrbq0ExW+tQ6UXubD8OEpHP4vZZuC6blZvGH4GaLxaWzcuBF/+7d/+wE/5Vm8H/jpT3+Ka6+9FgBwqfZ2xQSl4oucCLTacPI3gzj9uspDUGkacSV4gXP5cm+L+HJrX6hCei6FbcTM1bX3FKPrt32k8kx/EPBQRcYR/TxixGojq4nAOQ4E2l3Y87WTJFKBpZiHq8aO4z+jkRmaniyHRqvBO8QKGb4WG6KDMZqe8MDaTVUYPjC+Kr59/YMlMPpEVRmO1KDt4xWYnZ6jlekDk+VUX4xUQsxZZ0H42gJ0vtpHIhzZIkZYiiVyub3ILQUwByRV2dlWDTzA8xwSE0RioEpbstoovsIDrZYjjXFruYTaj5Zg9Mgk9v+n8sN9togR6VQa40dXJ+bV9vEItAYO2/5e+XozNj2B1zQ/RDqdVhXzUkVD1Gg0cDgcWYLSJb5JnO9hi10JUVxZMIlKM1vUNNmncGUB+9tAFJhLAQ3nppGUdEga0+g4ZxalZSwtZ3lkFh3nzAJgv7e0zGLtulmce/4sPJ5ZNK83oWQdE25RowbNd1uhl5NH1N1sRv1t5uwzNt9tha1QxOAhINCkR/PdVkhu9rfa211ovM+bbdv6VAkqP8I2ifv2jyE1l0JC/ua1dxeg5clQtm3bpnLU3FkAgGXaaN9SCXeDGfZSM1wRC9o2V8xfd1MEtfexvvYqCe1bKuFfawcAVN1ZhLbNFeh4sQpVHy1EyzNhrHmwhMmwiLUtOM8JgJXRant2/rrNT5WjcUMpAEB0MXJO0eXsW5TfGED7lvlSME1PlqPxiTLIHwftWypRejF719JrfaytLMPGJ8rQ9OR8Ss32LZUovzEAAHA1udD+ZCUkF1OZhkdK0fzUfNu2ZysQuT0IgJXFat9SCamIXXjNgyVoeSY833ZzBaruLAIA+Nfa0b6lEvYq1rb2YyGsfbESdfeHsm1r7y0GwDI6tW+phKeJpdevubsoT95anoPRx1ji1vACeX+0ME+GLU+HseYhJu/Trw+j5NIAghe5ADDSUq4Mm58qR+OjZXnythRJSKfSsFeaFsi7DE1PluXJsOwGPwCWErf69mIE1zFFbHy8DM0b8uUdvpnpVtElbiZDWd4aA/JGa9uzFahYz+TtP4fJ0CSn/a67P4TWZyJZGbU/V4nqu5i8vW1WtG+phLPOmJV3rgzbNleg9mNM9hqtBu1bKuFtswIAqu/Kl3frM5HsdzKVSmj/RCWaNpbDXiWhYv2ZOlv/CNNZycUxnb2EycFg0+cZr+YN5Wh8PF9nS65h47XsBn9W3pHrihBc515SZ0NXedG+pRIi+6xofLQMzU+VI51kp8nbt1QifCuTd/AiF5N3gOnPmodK0PJ0js7K7zJ6IJrVWWtY1tn7QmjdFMmTYc3dTN62kA6cTgNzESMU1N5brMhGWMMSOl6sQvtz87pFtRENjyi3EeGr/HnyLr1WoY14cl7eRZd78nR2WRtxqRPtz9FtRMfzVWh9NnyGvJezERU3FUF08Ahe5ELrM/PyXslGzCbmEJNLLUgBAe1bKudtxEcCaM9p2/RYMRoeYiXXTm8bRNumMhRfxr5N+fVutG2atwmNjxSh8aH58mxtm0oR6tCiZb2E1jslNK+XsvKuu05A/Y3zJ1+ab5dQepEA6HUINuvhKJcQneFwapxDR/EUzi+dP8VzUfkUGgLs92JbFBeHp+CQopgsMaKttQMA8Gd/9mc4iz8OfOpTnwIAnN9+MTSiCG+jhJbHCmAuYmnPqz/iRtMD/mz75ocCqLjeiZ6dk0hMziK41gVnjQQNp0H1R4NokX0IAGh+sgTVdzBbaAuLaN1YhrVbwmh5uhQVHwmgdWM4p21ZdrwZi0W0bY7A38HGUPlNfrRuCmcJSo2Pl6LugRAAQHRo0PbxCIIXsjFUdp0/zxYmJmaQiMrEc5GN62LZZoWu8Oa1rX+kFA2PlqHkIh+MHhHVtxej9Br27sGL3GjbXJElAKx5oGTeBwLQ+vEIWjaG0f6JSgTOc7K2crao2vtCefatdWMEFbcym+VtsaFtSwUsVaxt9d3FeXNE68YIqtazce2sNaFtcwWccpbRqvWFaH103ma1PB1G9d1MhpZSEW2bK+BtsQFgG/u59q3iuoKszRILWNuAbPfLbw6g9ePzbRufKMOaB0pkeTMZBi9i82zpNfnybni0LDsnA4y8u/b5KogFIoov97C2Mg+u/uFSND42L8O2zRUou47J21oqyVldmN2vWyjvTRGEb2G65e9woG1zBYzFIob3ToE36/N8oNaNEVTcxuTtbmL+tEP2DavvYvJOz6WRTqbRujGCanmOcFRJaNtcAdcatgaovL2Qbcxk5L0hjKJz3ai4oVDW2Qp425m8w7cU5Mm78Yky1GVk6NYjjTR0FrbuKLsxX4aNj5eh/kFZhjk666w1oXlTOG8+aXi0FA2Pzsu7bXMFSq5m82zRpZ58/X6wdN4Hysj7RibvrM7Kvm7tfSG0PBvOyq11U47OttvQtrkCllL2IWvuKUbLhnmdBccyIgKAa405T2er7yzKl+HTYVTfxXS26Fw31twdglueZytuC+a1bd5QnvUjM/IWfQakU2l46qxLy9vB5els2XV+lFzszxKUGh8rQ/3DZ8obONNGGH089DmHYNo2VyiyEXUPlGDti5UovzmQL2+lNiJH3ivZiLr7KyAFcmzEQnkvZSOuzbcRTU+WK7YRzU+XZ9c+Sm1E1fpCrH2uCm2bKxC6gvniSmyEs9LCUmef75LlvbKNSM+lkZxN4uRb7DR/7cdCimzE4I4J+JrdZ8h7JRvhbbNi3YsVaN1cjpq72bcxFolo+3h5du0TvtmP1o1l7HSZhkPj46WYm0li6Mg0RCfQ/HAAgTa2piq9zIrmhwPZZ1hztwe1tzP5GgMuOOwOcNzqnAA9i/cHGo0Gdps9S1Bac18xau+RfXgBaHmqFMEL2HgrvsSFlqeYjRp4dwxziTmskX0gAGjdGEZItlnB851o3RjOEmLq7g2heVMZ1r1YBXeTFa0bI9m1r2+tA60bIxA8zO5X31WEhkfnx1DL02G4a+wYfncS7gbW11zM2lauL0TTE/NjqHlDGBXyeBs4MIq5xBxm5AyKlbcF0ZwzRzQ9UY5K2WZZywS0bozA3WCFp8YGd60NzU/Nt218rCw73gQfa+ttYb5h6XU+tDwTRvuWSlTcUoD6R0pRew+Ti2BjYzVwLpNh6HJvni1c82AJ6h8rzcq7dWMERRezMVV0sZu1lZdJdfeHUC/bNybvCEouZDIMnOtkMrSx8Vd7TyjPB2p5JozS69icbC23o+6+CAR5nq2+syjPvjU/FUb4JjbOnWvMaN0YgbVMlvftZ8q7UrZZ9kojWjdG4Khmdr/ilgKsfbESNfcwW9/0WDmq7mDyNhfL8m6S7dCNgTz7ZjDrYQ4wAyx4WFvfWjaplVyTL8P6h0tRdy+T94nf9KP0Ej+CFzBfvPgyT768Hwgt0NkInJVmpJMpmIvFfHnfu4i8r5Tl3eFA7V0lCF3Efq+5pzhf3k+HUXY9m5Mz+i4F2YV1Ji00uvmDFM1PhRGR42MZedvC7N1zdTZ8UwCtz0ZQeTuTIVvPROCU7X7k5oIzdDYjbw2HPHmXXe/Pk3f9I6XZ7yTYOLRuiqDx8VLYwiJKrlwg74dKUCfPyRmdLZTjB7xTD2jS2Zhe3f2hbGwnI8PQ5UxmwQtcss4CkRsKEbrIO+8DZeS9go1IzaWRmkuj5ekwwnK8RomN0Ok5jB6chqPahNaNEdgrjWfIG8i3EbxTgE7QwloiZb+HEhsh+ASsfb4Krc/myJBoIzLxSCU2IhvzwgKdXclGPDpvI7wtdtZWiY1oMaP143Qb0fZsBZo3RvLlvYKNqLq9GOYCI4rP86Dh0bJs/HclG5GIzWF6KJ4nQyU2out/BtG6MYLiy9i8VniRS5GNaHk6jLUvVOXp7Eo2onCdG9NDCfS8PYbK2/1ofLg4Ry7FCN/IvqOzVkLLhhLYygVodHqc23YBAOBzn/sczuKPAx/72McAAG31HdDodbCVC2h6tBjWUpapofwaDxruL8q2r7+vEOHrPBjYP4WpgTh8TfaszSq92ovGR+d1sP7+YlR8hI1N3s2j+clStD8bRvOTZSi+zI2mnPVJ3X3F2XUbb9GgeUM5fG3Mrym6yI3mJ8uzBKW6e4pRI4838EDzk+UoOIeNt4JznWwcy4mapgdiSEzOlyVs3hBG4YXMZvna7GjeEAYvV5OuWl+EuvtD8LXYYA2ZUHl7CMVXsPHmrreytnIGqIpbg6jPmU8aHy9DwxNlaN0UgbPGguYNYViKWdvwzQVoyJlPGh8tQ3kmtlMuofmZMGy1TIbl1/mze2EA0PBwaXbPyhTk0bwhDGeNRZa3D00Pztu3NQ+UZNdtvJu19TTbmAwvy9/HKb/Sj6r1RbK8mVwCHUyGhRe682xhba68ZRkWyHNE4BxHnrxr7ixC3b3z9qJ1UwRtWypgCvLwtdhkeTO7X7m+cH4+AZvjQvIcYS8zw2DUQS9/m8gtBfnyfqwMpdewOcJeZWLyLhEwcTIBLa89Q96ZOdlSIqB5Qxi2CJN32bV+ND5WxmJec2k0PFiKiOy3i35Z3nXsIUJXevPmk7r7Qyi9KoDw9UXgXaytr2Ve3rkyrLsvhOo75nVWowUMVhY7CV7gypf33UWovTtf3sELXLAU86h/tJTN9bK8q+8omveB5LZFlzH99jQzeWfqOVXcFszGLjPyLpXjY846prOmIJ+Vd/Mz5Vk9bXxsXmdtESOaN4RhLZf9jxsDeTqr5TnoJBbPsxQzudirmC9eeo0vL+5W/2BJNrZTemUAdfeUwl3P5tniKzx5Olt3fyhHZzk0bwjDXCQinUzBHjHly/veBTYiR2cLznWi7IoAun7HCEo1dxWh9p55nV3ORtjKTHnZhpqeLFdkIyK3FGDtC5VZnSXbiBydXdFGPByGqVCW99W+PJ1d1kacn28j6u4LKbYRdQ+FUHMPzUaUXu1D+7MVTGdlP1KJjQi0uOBZY8/KW/TP6+xSNoLTc5iNzaJ7B4t5hW86U96L2Yixw9NwVVrzfM4VbcST5bCWCeh4rgItT5Wi8nbWlnfp0fxkKXwtTL+LLnGh+YnSbMyr7mPFmE0k0b9nEuCBxoeCCLSx6xass6LxoWD2Gapv86H6NvZuotECl9MFjUaDwUE6kZ0cKWtra0M6nUZNTU32/0QdkMnSauYBnQawGxj7ysqnkVlnvjViho4DeHkDVhIBrRYwywPMYmK/Z8DLf0+ngYEB9rPJqQMSMzC59NDqNdDLySMEMweDNP86Wr0G9iL2UGaPAVq9BoKPDSLBboDBOB+81glctoa22SNCo9XA6GZ/lxw89LJB0+h10IlaGL1sYWz0i4wY45fwxv/Zj7l4Erqcckt6ow6Si13X6JNkEg3ra/IK0IlaaDgNtHoOBpMeopO1Nbl00PIcLIVMUGavkFe7mbcaINlFhK7yQmth17UE5LYF7Jnm2+ohWNkmZuN9ZdDyHEx++Rn8+W0FqyHPwGl5DmY54F3Q6oSW58BZ2EJCcPDgLfM1oXWCFma5FqOlkD1Tw70hdLxQBdHJw2Cav65O1MIktzX6ZBn62PNLbh4cx0F08Nm2kltu65dlKD+/0SvmyRsA0nKSEcnDs3eVZWj05MvQYGbydjeYUXd3iMmwgLW1+PLlYjDrwdvZu2ok9gxIAm/++QHwkiFf3hbDvFwkWYbyNzf7JWg0GgwfH8/K22BZIG854GQOsGfg5XfXpDlocvJm6gQtTJ6MvI1MLi52LcklQG9i+msNmaDVczDKbU0ZGXrm5Z0rQyZvJnuNTiPrS44Mc/XbpIPkkr+NSw+tgYNo5uFvdsG0QN68xZD9prxbyHtXJOWTqjIx0GCZ11lJ4lhb+RnMmW8jAZ2/6UU6nT5TZ+XrmuS2Gon15e0GGMx6vPU3h/DWpw+xby5/G0sBk4voZM8sOnmWPjRH3tYSI+ofKYVJ1m9JthlGtwB9rj3JsRG8mf070RmT5S0oshGcDlnbkIESG1F+YwDrXq4GbzVAkOWtyEbYDVj3cnVWZyk2wlNnYzIMSIptRHGHF1o9B5NLNy9vBTZCo9VAa9CeIe/lbASn5bDz30+g+9dD0Jt1MMptV7IRel4Hg9EgP592SRuh0elhMOvAyzobPNcJrUEDS2FGDwVoDfNjl7fowVv0rPSbBGh1GpicOszEWBk8rU4DSRaFYDpzXjM52bubPHroOOBQP4eRqASJB4ScbJh6LSB/CtilFHQckNmzPfeCC2CxWFBQUICz+OPA3NwcBEFAR8daAIDJx0PHcxDtTGcltwEG0/y40EtamDw8JrtmMHIsCh3PQfLI48LD540hg0mftWeSm4dO0CKVSmNmcg6mBZv9vMWQnSMkh57NRbLNtRZJ0Es6BM5jiwXRxkOSbZbeymyfJTPHFeTP3wajHgZBHm8iG9dmebyZgxJrK08Zop2H6DDgxM/6sOurx8HpmK8CMFvO2rLfRRefnU+YXHTQihy0Og5mP3sGKSvDBW1Nuuz8bfKL0PFa1N5SkpVh7hyhN+qydtPoY8+Q8WvsYXN2TgaYT5HxOTN+TKav2SdCb9RB9AlY91I1BFuOvO1aJpfctjnfRrAaYPQKWPdyNXzneJi8g/N2P1feosMAMVPuTgS0eg6cTgPEEjDLMhSz8jZAsOfYclGblXdihAXZ9Db5GV08RNt8unS9UQeTHMQ3BWR5O/Wof7gU5gIxb47QG3Xz7+Y3QidqIbjmddZg1uPtvzuMt//uMPRGXdavkXxGWYbyuwbEfP226JGaS+HEq70wyT5PVrf8+W1FGw/RyZ4plZiDRqNBcioly1vKk6FgM0CQ24qyfpt8IvwtLggmQ958Ith4CDnlBdlYmH9enajNpkYXnAYItnx5W+R3swTYM/AW1lhy8zAIejgjlqwMM3XRs99R9gWMHgGGnPlbAw3Sc4wgbvLLbd1itm2eDHN0dqo/Co1GA7PfuKgMeYsh69dITj17t6QGb/7FAeh43RnyzrTV2/hFbUTrxyOwlIoQ7PN+5Eo2AkkNI6TnyFCJjRDtBnBcrt+uzEZ0vFCFsisD+WtEBTYicn0hWjaEYVogw2VthNw2Q0wSrMpsRNmNfghWPusDQRQV2QitqAWn07DrZtuubCOiowm8+RcHYClkbZXaCE7HQTLqs22V2ghLsZi3plJiI/r3jCM1l4bewFKXA4DJzeY1cyDHRkj5OstxWhz7xRgMZgN0vAYmjyH7zXX8vL8nmHUQ7eyZRImVDkulUrjqqqtwFh9+PP7440in06ionCfviU5D1q8RhIxOZtbYst0UgOM/H4BWP7/GA+S2ss0yBSS5Lesrug3Q83okZ1IY3D8OvVE3P0f42bpesDLdMnqF+fkbbI5zVrM5wFQgt82sF30C+Jz5xGDRwyRf1+gQoDXk2Cxf/hjibYbsWkywi9Cb2Jja+pcHER+fYWsZGYKdz849kkMHvUkHS3A+/mEw6cHpOWhFLUS7Ietzcib2vJasLRfz/CWjR4DJLWaJBHqTLutzmgL5bSWXkF0n19xTnNfWIrflTHJ8wcNDcuTI0KSHOSCh6bFylFzmYzEOhy4r79z5mzfr5+2DT4LepEP1+lKsfa5yUXlnYn+iHJ/JyMkUkMBxXFafeIcBJrmt4OTZ82d1S8ybT9JzaSTnmG8iWDVMhtl3lfLnWYcBooeHuVhAy+Nh+bo5bXNkKLqE+bIwApO3TseyGmm1WqZbMrlZ9PBZeWe+TXaOCIjQcBoMy+XQjB4hX95m/fycVsC+jejIlGlKA6mcdXNOW5NXlONPZ+qsu9oGvTA/n0gu1tbknffjeXO+zmbkrdHKMpSff6G8JQefnU94p0GO3zB/L/P8WRk65/0aQeCYXGR9wawGGo0G8cwhKJeQbyNMuqyvYvLL1xUEnPhVL1JzaYiO/PlwJRvxzmeP4J1/PJInbyU2wh4xo+6+EIzejM4qsxEAMH6CBfTMPkmZjYjPgNNpoBdyZKjARgTOdWLdy9VMt1zzB7pWshGSW0DHi9UQPALNRpj18DWw9a1FfgYlNqLiikLoJR1Et7SkvBezEVodB73I5clwJRuhM2ix8yvHcPKXAxDthuzh3ZVsBC/qsmNDsAiKbYRvnQN6ky5LTDPLbVeyEYmxWaRTaehNOvDyGfMVbYRRi9NbhzF1Kg6TW8iLR/Jm/bwf6WFtRXlcNTY1wOFwwOudP6B+Fh9uDA0NQa/XY137OQAAySmAN+uya0CTTwBvz4l/2Nn3j/Un0L9zArxZl7VLloAIwTavK6KLz+qKaNeCt+iRSqaQGJ+BpUDMW+MZ3UJ2DHFGA3iLPuvvWYpF8DY9AvJBPcnDQ8rMETyLr2dsizko5emraOXB58S9easeloKMrrO2nFFeA/rZHNG3fQzbv3AUOr02L6bP9vrY2s3kFyHm2ELBxoM36mU/jwdv1YO3yTECv5idAwC2T5KZv41uAbxZj6rri+afKWfuEZx8dr+Ft7PrGr3sWr4mB4SctpJLyI5jwaplcskkFQhITN48sPb5Khh9AozygXHw8nUzdkh+1+y38bLSvOteqkbhJW7wVn2O/8FkyMuxeskrZL8NwGKBOn5eZrxVD71sZ00+cX6dDBbrybzr9EAcSAN6gz57nzx52w3ZecroYTZKcgqoXF8IR4X5DHln9ENysrYZH8McYDGPnf98DDs+fxSCi8/OJ5KDl3Urp60tX2fn4kkc/1UveKOshxkZ+vP1UHLzkGR95sH2GmenWPZ888K2HhGSdz6LP2/VwxKQ4K5zwOQR2f6GWV7n+4VsXAJgex/WnDU1b9VnM/qbAmKeDyTYDDmxEllnrfz8dzUb4Fljz8o7s6aS3Kxt1kb4xez+LcD4BMmE7DO72DNkfENLgZQnQ9ElZOfZoUPj0HAaGDPjvkA600b4MzZCz3RJr8W2vz4EDpoFMhSyMlzKRjQ9VA5ruQSjV8z6S1l5L2EjUrNpJGfmqx4IVoMiG2H0CuC0XDbGqNRGtH28AtW3FjP9lr+zEhtRdg0jMpkDYnbfDFBgI+yGLLlLcvOKbESgwwGL35hd70KW90o2QmvgoNFxefJWYiOmB2PY+pcHYPSzsZyZc1ayETpeB8mcM5YV2gh3rTXr4wBY2UZYDRg/FkcykYROnF+H8hLzMTN+pCUgLrARAnR6LTpfHWE6a9Zlbb3Jx4M35/jXbgMk9/x3bWxqQjqdxl133QUqyOXeMmmvA+03wFdzvuJ+F3onkUoD/zPJgiiufTHKbQEA+qH5lFaaseXTFLfcY0UqlcaOr8+X8EqNsYVyem5uqW5Yu7kUQwcncfQnZzK+0jMz9OKGHwCsYQklF/uw62vHSaWW1jxYAsktYOunDpDu17opAs7AYRsx7XLjo2WYm0mSy6+tJsI3F8BdY0XXawPo/rXy+pOiC9CAQ3SIXstWDaQiCZhLIdpDyzMsFUlANE5+TrXl3kylEqb6orQSYBJgL5ZIZdTeEyRAckmIdtHut+6laqRTxHJEqwx7lYTwNYU49otuDO9RnqI7cnsQrrAFu/6jkySXuvtDMHpFsk2J3B5EMp7EsR/2kvqtNtY+X4XoUBzvfvnEon/X6OSJWTNPJAqeb0PhOhe6XhvE6deWrs+s9eWUStUR0i/K6LmKEYyq5qZQ7knhjcMcYpkUTApw6rW/w8DAAGZmli+behZ/eMRiMUgy2fJyy32K+4kuoObWApz8/QiG9rG5IxWl29l0Kp37y5Ltii5xI7jWhcM/7sZQbimJFfym+gdLwdv15BKcq42y6/yAFjj2A5rdWvtcFcY7p3Dgm6cU93FUSai8OYSe7cPLl85bANcaM0ou8WPvt08hdpruZ68WOl6oAgDyfCoWiKv3XiJgKxQxdph4PxEweuhl+tSWexMdHGAwINZH8w8z2YFWS56ig0MsliKVKgtd4UWgzYnuN4fQ9auBD+7h3iMyhKG9/9ZJ6tf+iUrMTM1i5+dp6cfXPleFiVPT2P8N5emhRQeH8puKcfS/+z7UtiF8SwFcFRaybWjbUgGkFJSCzC3XqyGf1YKuiPleNVcbkJ5LY9+3la8do4FO/H7fq3A4HBgeppXtOYvVh8FgwOzsLEpQg3J9neJ+NXcFoeE02PsfbM6nlsxlnZTHm9SWdFr7XCUG9o3h+I9pJShWE4JPQNnlXhz70SnEx5THMipvC8IaMmHbX9NiV/WPlII368klZTMZS/Z/XblNXm0EL2BlV7tfH6SVaBIY2YYi//cCwScAKZDKoQEsWwxmZsjPqbbcmxQUEB2Kk0uAWcsEjJ+m91MLwScgTvQP18qZvFer5J4aCD4BNbcW4sSrvRjZP7VyBxlFF7tR0O7Cge92YuyIcl+o4pYC2MrMZJtSco0XSAIn/lv5Wu4PgdZNEcSHZ7Dnq52K+ziqTai4qQinXhtA92+V+0JUaG3slL+9RIOSi7zY+82TiA8qH+cHPL9Db28vpqamIAjCyh3O4g+KzH7jZcKdyjvxQNN9xTj5+yEM72Mx8PTs0nt+irBMzMtdb0XZVX4c+3kvBnfnxHtX8N0qbgvCHJCw/e8/vOXIAeYvaAUOJ39BW3u3bIpg4uQ0Dn9PeTls3s2j8f4S9O4aId3PUiKg7IoCHPt594e6BF7rxyug1WnI5Z95N4/ERGLVyl1ZinlM9BHvxwOig16mT225N97CAbyeVG4PAHgXD2hA7qcWLOtOComJFZtm4Wm2ofyqAE69NohTv1mdMqpqELmlAFq9Fge+SVvvND8dRjKWxK4vHSf1a9kUweSpKA59p1t5Jx6ouqkIp17rJ5XqW20UXuhGoNWBbcQ9kOYNYUALvLPSXv17jHlpnYyYH7nCCE6rwYHvKPdjE44h/K7757DZbBgZoZVfVU1SKv7aX8D5a36F1vO4Ri759sMRCklpFtU1QOcJYLZrNu8vK5GUFiJDUAKWJik5qyRErvNj+MgUDn8//wOkczdyF4is9t5iWAqN2PnP+xGj+OcSaGSOs1gSZTf44V1jZxt6P//gF4FtmyugE7XkzaS6+0MwmHR45x+Pkvqte6kaAFatbqtakpIaVN9VBHupGZ2/7sPp3ysP2pdc44Wnxk4OFrRvqYSW58jfTi3+GMhNf1RQYTdbnglDL+nI32DdS9VITMwsOV6zJCWAPPHnkZQAQKdFsFGDuZk0+vat3D9DUmo2TqJQSOP4EIejw8pISr3XzuDkvS8BqRSuu+46/OhHPyI9+1msLq688kr84he/gEajw4UX/hn07yizy8UXWuBvsOLUtjH0bGUBXCUkpcA6GwCg542xfIISsGzAZlEocDFbng5Db6SPz44XqhAfm8HOf6Jt8EMEiShxFktDLdlILda9XI3ZqTm8/XeE4J4ItD1RgZ53RtD9a+WL/tAVXhS0u9D7zgiO//SDJ9SqJSmphVrfpHlDOWIjMySCDMC+XWwkQSbkqEHZdX54G+zo/E0/egh+5VksA6LdFAtENH6sBMOHJ0iBpar1hbCXm7Hz3058MGSq3IANANHJoejiAA59t0dR9wxJqfVOI5AG3vonZf0AYKahDL/+9QsAAGL45Sz+AMjEvK4s2YRkt/Lv3LYpDA0HbPs089WUkpTCN/hx6rd9iI9+8GQQwSeg8YFSjBwcxyHCZlL4xgBc1Tbs/MpxGvFBwKqRMv7UEehwIHSpD71vD68K8aHh0TJIbp7sm1TeFoTo5LHzC7Q5v+P5KoDT4M0/X72YlxqSkhqUXOlFoM2FU68NkIhigXOdKGh14u0vHCaNo5anwzBY9KvmV/4xkJv+qKDCbtY/XArRYSB/g7XPVWJmcg47Pk+LUauFb60D6bk0+rePrtg2Q1LyNUkoPseO01tH0PUbZZte2gIfftX5ecylE7j00kvxy1/+8j0991l8sPiLv/gLvPjii+Cgx2WRjUh1KfNPvI1mlF7qwak3RtD9OtMpJSQlZ50Zep5D3/ZFDpZ+ADGvuvtDMLoFMmGl7eMVSIzPYPe/LH5wdknwWDWSy5862j5eAU4F2Ugt1r0k+yafpfkmzRvC6N0xjJ7XlRMDPM02hK8pQO87wzj+0w/+4IJakpJarP1EJaDRYOtf0mJedfeHkBifJZHuAPbtYkMJ7PznDz7mFehwIHSJD12//2DJwv+/AtFu8hag8fEqDB8cx5EfKI8XhK70wtfowP5vnsDEiQ9gkbwg5sVbORSc48Hxnysjg2ZISi33uQCk8fbnlMd+NQU+/OLwXwOgx7x0Kzd575gTNTI5aX5zbKhGXJGoVFAAOF2AAbPYt0AeaZt5SaKSXgJmMX+7XIISML+xvJCsNHwgijcPnGlI0gszTWg0eU5IOpVGOp2mEZQArH26CpxOQ144Nj5RhpmJWez7Gm2DwL/WjrGjo+TnNJVKmDpOZAVIQN36ELp+P4DxI8r7FpznRPGFXgzsGcNRwgCfPDUNZ8SC0aM08ppa9LwznC2vQYHkYel7qRg8tHRGluWw9vkqJMZVbOKqgKlUQt0dxejbNYITP1UeNDu9bQg6UYvRAysvUnNhDbIyd6ILJJ3u3zOaLRexGoiPJTCXoAec171UjeRcipzBLHJ7EPHRGXS9Qsw6ILHyetSsW+4GM6YHZklZvjIZn4789BQpg1bTk2UQ7Dze+Mx+ElGJ2Wjl7TNYynHOIyfN3ySPqCQV8oieWty7OYOgBABzSQRqLEgn0+jbt/zLZQhKAPDOtBbvTAPQSJCg/NvxjZVIvLMfO3bsUNznLP4wePXVVwEAgUAbqV/XbyfR9dv8OZGTpBWJSoXnuMHpNDj92iI2WcMtGbQ5I8uNwkG3/R/UbQykkmmkkrSBLRaIaLy/BBPdUVLWE9caM0IX+XDgB92kDDligQjJrsXwXuWnfAF1WWcAoPhyD3SSlpztqf0TleC0GjJhJTqwupGvie4oxo7RZGnx55e1Uor+vRMwBUT07hoj9Su7zg9PnQ27/vkQYiMf/GZz42Nl0Bt15MwPA/vHkJ6lT4y81QDOQPdjp3vjGNg3Ru6nBmMnJuEImxEfog2giluDcFZacOj7XaQxa4uIKFjrwb7/OEl9VBiL6Vm3RAdgClkwuINwRA9A9V3F0Ata7P4X2im2dS9XYy6RxFt/rVzHMnNBaiHRdQVQMs6dAZFV8YstFZddEKwBgMhNxTD5RQxWjmLk4PLfIUNQAoC3v8FOamtsVqTHlK/ReJ5HKrU6GUnO4g+Dt/4236fRaLUrEpVs5SI8a+wQrAZSJgvBBsTjIG9kx/viqkggqVQaSKfJmVlan4xAL+jIGxJ194YwG0/i4LdodsG5xozprknEx0jdWHacbnqguOqOQvS8NYjxY4S1cKURVbcWY3DPGCmoHR2KYWZiFmOdNF9ILXq3j8BdbSX3MxdI0En0UHPfzhFo9Gfa6pXQujGCmalZ7F4i+/H7CcHGoeHRCPp3jZKIYr27xiG6eAzsp8UrLUFJLnNH08+et4ZhKzOR7vVeMN0bVxVvWftcJVLJNDmjbsk1XsxFkzhFyIYPQHV2MHulEbGxJMn+SUEBlTcE0fnrPlLGp5p7imEtNmLHF4+Tsoql5lLktTHw3ohlauxm6aU+JGdSK5KUMgQlAOjbEUXfDvoJ73JrBw6O/QYHDpw9MPphx2c+8xkAgN9cSerXv3MS/Tvz7apGr1uRqFRyiRcGSbs4SWmZmBfv5vOzsig0fGorjKiJeYEH1j1bjYmTU9hL2De0FPMouypIzlDEu3gINi3Gj9LGKG/hkEikyGQqX5sdvF1PzvbU/EwYel6HrX9Fswfjp6ah5+nxD7UYOjCOqR5afIC3sLJW1kITeqCcpDR+ZAJDB00Y2E3bjys414lghwvvfr2TnE1JDWruKoLoEsiZyHp2qDuwZvTkl/5VipGjkxg5sjr70hOnphEfncFUL01XCi90o/BcN478+HR+NrgVYAryCLS7cPgnp8ljVvTTs27xFsBUaMHwPlrMq/w6P3irHvuIGW47XqjCbDyJ7YTsxIkJIJ1KIU200Z3/3Y9OtYdNeFY2cMlsXYvEvIov9cNdbcV4dwzDe5bXzwxBCQC2/xvzsTVGI9LTyqv1GAwGVTEv0srx7rvvZj/INSSHL2IKtlxGpTkxVzj5GwQrEZVOnwYEzGKIuH9Vc70FBonDW98cQ6qHQO5YkKHjDHJSLnKISlSyUAajJybzaloqhejgwVvo/Uou82PuPA9pASi6gPq7ShAbSWDH55SfrChodsISNCK41oXxI8rlMzM5g2QihfFOmlEf2DGBAWKwHgCanyoHbzWQiWLdvx4ilYfLgEo4yeDId2js3Qw0HKDVr44zpdUCGk5DDkiNH4ni3SP0gNKuL9I2WTJQm2lLra7s+Jw6gtjM5CxmovQ0ta6IBam5NJmktO7j1ZiLJUkbnZKLQ+T6IsRG4qT3NPok6EQtXLV2Ekmpf/cYfI12iBIQI6x/qJnL8kDJ3CQTldo3l4HTafDmX9Lu27MnivHB5Z2bXILS/AMyRF0cpGVIZr3Xzs9pvmfuwtCjf3427fUfAeZkQnUkci0AYLY5DADLZlTSLOKYZrASUWn/d7th8ivPlJlB430hZkM+c5hWGldlZqNtak4yxRKIjSTQv5uWdtRdbYPBoodg1kK5aw5U3VQAwW7AG3upWRfDqrI1+pud4LQaMkkpPjwDzkDfFKKSHTJY91I1pgfj2E2cx6nltABg4nhM1Sny2OmYqvvpRC00HF2WaqETtOBUkN+P/pfyTdFcqD319l50JToUx65/Vt5/eO8UhvfSU+mPdU3BWmzEbJRWnil4jhfWQiMcVRJGSMTrcmYfqFlZH6yAjtdicAetn7VIWnZuWArT/XFMDdCN9BvvJRMGNXOTg0PjE5WIDiawi3By8fBPeuCsNJMISguxElFppqEs+3NFRQXeffddPPbYY/jCF76g+DnPYnXx5S9/Wf6JjRdtMAAApIxKuViJqDR2NIYT/9OHkcMUDwOIfKQEJr+IHZ89SNtwV5nZ6NiPenHsR/TMgkMHxmHy0A8ImQokpJL0AGfFDYWYnZ4jl8BruK+UbENsYRGOsAUaToPxY8pjXnOxJGan5jDWRfvmY0diqsj9ax4IweSTyHa5f/uoomwnC0HKeJkDtdmhOD0HrYFePl0tNFoOOpF2v3hfXFVJwIMqybs9b46g503aegdg2QPMfrquUAiWuYiNzCCl4kCfv8GJ5FyKTFJa96yKrKwCUHVrMaYHaGsX3qSF4DDAVWklkZT6do0w/VpuP2IRqCVBAFA1L6jNAnv8V32Y7l3eX84lKC0EZxSRml7ab9MW+LI/h+xN6EntgF5P32w+i9VFpixM2HExAICTfW+lGZUWYiWi0sHvnILJT4+FNj9UipnpOTYXU2JeKjMbqSkPx/PA5Oko+t+lHXa3V1ohunjwNgEgkJTCV3lhLTFj+98fQGJCuT2vvqsEooMnxxeC57phEHVkktJUTwy8CuLJoW8Tyk3lYO3zVZjuj5FtMzV7D8AIC2riNImJlKr304ocNDoO2lVyvXSCFloVJPauX6orn0bNvJSBWp9Nja5MdSdUZUCc7IkiMT6LmenZlRvnwNfogLvGhuHDkxjeo3z/vfaeYlhDJmz/+32kMng1d8uxsn00vbaFzdDxdMUcOz6N2BjdSG8jHOQ7A9R5QSagTvXG8O6/Kt9HP/nLHkz1RDF8WDlBaSFWIippcnyv6upq7Nq1C/feey+++tWvKn5OEpvg29/+NgDAUBmidMPltglIWuAHwzosJCotB/3QLLqWWXMslU2p/1AUrlJxRYKSRqfLy6bU8QQLIr75N8eWJyhlL8CISu4GMwZ30ZmSh76pbqJTm7J39PgUxojkn1gUmO6PoXcnjX16+vfDmJ2exWQXjTg0uGsSg7voG4/eNissxSYymScxMafqlFfVRwuhE7TvbSFIQP0jpZiZmsMBYnmNN/989U6MjB+JqtJNa1hC+OoCHHvlNImwohb+c+wINDvJxBW1uuJts8JaYsbhb9HGu9rsIkd/2o2pLvrpyumBODkTWXQohfFT0+jdTnP81JL8Tv9+mFQSMBemUgnJiSgp61btvcWwFBlx5MensjZ+0SxKuUinMHRgAqJ7cSLpolmUZHS/I89HOppDdbV9AgYO+MEwLbvb3Nwcjh374LOsncUfBu1PBzEzmcTOr9A2lCaORTFxbBlbvMTJsonTMUx0TZOCNYHznAhd6MXg/nEcISzGRQcHiDy5HFBsJKWq3JTa7B4nf9MHb4OT3K9v1yg58w8A7P7iIUgBFf1UEkjCtxRg9MgEht6lzR3J2RTio7TAu+gAKu8oQ/ebg+QMMmrgWmNG0fleHPhuN2KEU9Nqg1hqoXYjsGp9ITgDpyr7jxrU3hdCfHyGTI5KzqYQG6HpCqBON/u3jaF/2xj5Xsd+2AUpQCMoAcDpt4fgrbWT79f95hCMHnpQXW1Zxt1fUmcfAJCJW4C6UoSxkRSig3H0bl9iQ3YJclasL4HuPjkyRCjbqxeBxo+YMD2SxL6fKp+HxsZYMPAb3/jGWZLShxgvv/wyAMCi95L61d5TCHOBiJ1fOEzL4pNOo+c1+vqmd/sI/M12ckaQtc9UQqPlyNmUbGERY0fohEVKhuVcvPkX6mJe/btHMU3N9CgAEyej6N9LI+SMHYlh/7c7EeujyWXyZFzV/O2oNsFebiaTxeKjsxDsNAIuAJRe54NgNagi16hB9Z1FSMaTpDKEALDtr1evxFh8LKUqE5ngE1B5YwG6ftdPIqyohXONGcEONw596zjJHsVHZyA66IdV1OqmWh/jwPdOkscdAIwdn8JENzHmGAdGDk+SD7mMHpxWFR8dfncSw8S1VQaCTwDiM6R5oex6P7z1dhz/ZR/6tip/x75dIzAX0NedlHvkov5uLwSrDts+R7MPMzMz6OzsVHXPs1h98DzN/rR/vBSJsTns+lfaPDV1OoGp08v4CkvEvIYOTSA6FCfFvKzlEmruCJGzJ/IWgDPSM5AkJoA9Kg5bnfzFAJn4AwBdrw3AO50kEZQAoPetYdjKzeT77fmXoxB9dPK72jhN8RUeTHRFMXqANnfPRucQH6URQcADdXeG0PP2CIkIohaWEgGhi/04/oseTHUr17OuXw6qJgCpAbncoYzSa3wwmPWqyUNURG4pwFwsieM/o5XOU6UrAIouc2OyO0bSzbHD03jnMH2/8dRvezF0aAJjxEM1p98eRnImjQRxaXbydwOwFtF9DEompFwc+Ob/x957R0d2VWnfv1s5V6mUc87qnNs5YANtmzZO7WwyDGCSwdjg+d5v5iXOMDMwhBnSwBgM4wFsjA0OgEnudrc7uXOr1WpJrZZauVSSKqjS98dVKZak2rexsL+lZy0vt6Rz6t7a99xz9tn7Oc/WvtdxV9nESnKbH6wnkYjLSE5hGD4zSu+Refgu88S8wv4EXbsm9riCmBfApvdlM9IT4diTvvRvc8QOwFNPPSW6lijjPj5B3HF/5M4Zvx+4IjxHTWm6gpIvqmBUEqQiKPU3qgvLdEUlY7/6YNduU4jHEhx8dv57SkVUOvfiAOdeXPz7wEyikv9cEEWvpEdQmvwAherri6m4Ji7eHK/9UCXn9vTTs0dbKS8ppAQXAALaFWu0KBtlr3biKnVw+peyzW3ppXkYrHpOIduwHPlBm6h9Ep5yh6aT8lsericeT4gVlew5FmyZGvST3wDw1jgxuYxiVZ2K6/LIW+Ol/Q89IuJK3govFo8ZW4mNQEf619M6Vsouz0dv1iFdJrW+C1reO0CsaJGEFqWJC8HKd5fjPxcQKWK5q2003V7OWE9QNJ/1vDqI2W1kbFAN6i5KUJrA6acn7m3W4r8QQQmgYI2ewhU2jr4wQqCbGWSluQpKUxiOgmvi1gJZ6jVnKypNV1FKIiz1Epex5AgG5w++RtZVz1FTmq6SEQnEGOlJTa7Q2VR/bLqiUiKeILPRRvW2Is787jw9+xaYS1IEbY58X75xHD0XIDQ0Ts8BWbCy7rZybNkW9n/96PylfVKg7NpcbDkWjj26NMQMVdFFnojo+K08OARqoj44KL9exbZ8fK3DYjJBdoMbT4ldTFLSooJlL3Jiy7SQ3ZghIimVXJ1D0ZYs2v7QQ5fAV8hu8GDJMOEqtYhISm8UeCq0+bGbHlQl+KXP0FVkw5FjoQUZSUmTYhrq2HQX2MRjU8u7oPW900qKkozjvwZy13vIW+sVJxI3PViH3qQTJ+j8nQGiQXkyfV61rUXUo9Z9qJJEAvYnCazTfLf5FJQiQYiGE4z2qzEEZeLE/2xFpekqSgAFBdvo6DjOyMjSyMAvQxv6+tSge0PWNTN+ry8qWFBNabQ7hMVtTEkIUCaOGs9QVJpIcK1+fyWKAge+JSNR9x0cpu+gPI402DwiVoEBaNhRLlbdBVjxjjLOHxjSdK9aoEXtiRAc+e82TdcbOiEL1oNK+PKUu2h7XkbgKrssD0uWSfwdm3+hTYkiu86NXsNp5I0P1IKCuISXu8xBQoN61hsBzgIztmwz2fUyVZ28zV4qrs6j48+9dP4x/dNW2Q0eHLlWbAUOQr70r3fqCW2KceVX5WP2GMVjU+u7oOW9AzimJSYO4rKTF4q6HcUEekN0/D79JLDFA+veW8lod0BU+rD31SGcBbZF1Y1mQ1xqbwLZq91UXJNP81Nn5zzHhRSURs6HUfSqT6ezq3mk2YpK01WUkgiF1H2cz+fD4/Fouudl/O2gKylcUE0pPBRlZB7ComJUg6SzFZWseWZW3FFM2x/66N2/gG+SIubV/DM50SU0HGPkXIDeIz5Rv8ptJWRUO9n/nRYRUalgixdHgVWTIo8W+M+E8J+RX+v8Xh/n9/rE/cL+OGG/fA0ouiyLkXMBMZmgcEMWmdXjDB2XHXTfp+HgudllxlVkJxqIi0hK2avcVG1TidDnBAcfPFVOHAVWXMV2EUnpjYKsOjc6DaX61n2kGr1Bx56vyPxYb42LRDQuJilpGSsARZuyCVaFxQQ6Le9C2I+m927o+Kj4/gAGDvuXhKiXREa9g8L1XlGJTIB1H67G7DaKlcwGTvkhLs/zH53Pj10k5rXiHaXoDToOJv3DaTGvhRSUQv4Yoz1qPlGxq+Sj2YpKyizfKze6nuO8hN8ve35yWRDAZptLNppOVJpZ4g32jMqZsQAGo0JCrwALb1SnE5XivmHWvLuQwdZR2n+fXiAkSVQ6+liXjKA0Af/ZAL522QvnrrZh9VrIX5MpIimVXJVN0dZsOnf20fG79Dcs+ZszKL44hyOPnxURM/IvyqBgbSb7vteSfskjoP7OEjyldvGp3fKrCzBY9WJixpHHz+KtlDMsM1fY0el1YiUsrQpF0VCMeEQeeNGqnrX1kQaioZg4QKQF7mobjTvKVNk5Acv5zDM9mk5YBvvDxKMJIkKJwgMCCffpsGXp8K7wihWAmn/VgcUtP41WcU0herNO/C6s+btKTA6jmDRZc1sRFqdR9OxAJQ3p9IqYzLjloXrisYT4Ph35Vqxes4ikNHwqwGhPkO5XZM9OVXZLU0FpOmyw9r5y+o4Pc/YPPmBxghKAzqCg6BS8BQYC3emX+ntpZK6C0vTSb6kISgAlJSV0dHRw55138uMf/zjt6y1j6fD+978fAEVJnSCYTlSaXcZn/3fkSRpnoR1dujK604I2JVdlk1ntFCfY/K1BUSnZJLpeGSC7ySMiKAHkrs5Ab5JvUrUSM1a9r4LIWIxjP5KRola8q5xAb4jTv5I9w42fqiXQFxaTR/PWZpBZ42TwuIxOe/r5LoJ98mBGwSWZDB0dED2//kMj9B86Kr5WeGSc2Hic8JDsPrWqZ616bwX2XAsHvnFMPD61YOOn1NJfUj9Rq6pOZExehha0+7FZK51EQ1F8zbLT8h1/7GWgWR4MyVubgafczqAkCGmFzR+pp++ET1Rq0erVUXdbOZ27ZepgrgortW8rpvWFLhEJsuzaXAo2ZHLq152i6xVsyMSWbcHqRTSmz+3qx1kgP+Wq+VDAtbl4yh0zSzWlUd5Oi0oqwP7H5wbpppd+m01QArBavdjtdlwumfLlMpYW8bjq23gsWXP+thBRqe2FPto0nCo2OQzJynIirHx3Ob7WUVESG7QTVgaODTPSJZuLLR5wFdtR9IqIpJS50knt9cV07uoTfT9vg4Pyq9Tk90h7+gTjzJVOijZlcfJ/20UKJOXbcslpzGD3106ISiWVXVWALdssJmYc+3mnppiXu9KC3mwQK/js1hhDGh/V5itoUSgCVYEvEozyyle0nZ6WwOKBtR9uYKQzIFKq6Ns/TN9CyfB5EPaFiYZjhEdkMS+tqgEWD3jqvGK1m+anzmLJlMe8Kt9ShNltFL8LDXeVYM+z8Mo/y555+ZvVAytSJdG624ox2uVK+hsfqAUQkzu9VU5cRTbR/BfywdDpEfqOysbZSHtIVOZyOla9p5yB5hERgQ5Ab9LhLLCJyGatL/jm/G566bdUBCWA0tIy2tvbuOeee8Sn+pexNPjBD34AgG6eFOVCRKWD35cTD91FFvQmPTpDGs7XtJhX3jo32Ss8HH6sTVSiJ9wX1lSFo2vfAPFEQqyklL8+E7PbSLPwEP+6D1ejMyricrn1O0qIx+Kc/F8Zgav2liJC/nGxetO6D1cTGgzPn6yfByWX5BAejrDv32WEkJNPdBIZlce8ctZ5GD7lFylMhfvCvPQP8phXJBglEpKr8WhVRKq9pYjMWheHfnB6SchNaz9UhcVtEpeilZKMkhj3jWsi6b/8BW0xNneVjUQsjv+M7HBky2+6GO6Qq0qWXJJDsD/MgRbZ2r/xE7X0nxim9RkBCcsMK3aU0rV/SEQ6MmebabipiI4/9zFwNP1+ees9lF+Tz5nnu0UkyLxVXtzlThxFZtGYPruzD3eJPe32SZzSuB8v2OIls841cw+SRszL5DKi08lzIa/+ZO5+YHrpt9kEJVAVEZ1OZ0r+0ELQFpVbALMJSgBbnX7aRwycW6DUW3+jlayjwUkVJYA9T6Y/kSc8ThJt6oJodhnIrHamTVICsGVBzfYiWp8/L2bVHvlhu6wWLWrS/MA3jxMIyAgrsfE4iViC4IBs4sqsdWGw6rG6FQnXiPw1XiwZ8s2myWGYPOUgwclfnsVbIye1BToCIvJVEjU3lKDoFPoOaguISCF19i4U4eHxeZU0/toYHwoQGYsycHJpmK7dLw/R/bJMkv1CUHtzObYcC4OnZWNNVYeSj83W589hzZSX8zBY9OmTDKYhs9Kp6Z2151rmkCPSQSwSJzYuPyl/6MdtjLbK7alVKarhrhIigRgtTwkCZwEwu41k17s5++Ig+vzUAZPZ6HwlSucr096faAwM+gVVlJIX3OiI0R3QczY+tc5OJyqlQlZ+Ph0dHezZsyet+1vG0uOJJ54AwOksWLDd7Hcwq8mKq9BM63O+BfvpbDbigQCJCQZ/2/N9tD0v2KQqOojHyGl0Y3LJ67tXvb0AvV4nDmj07PXRo+HU1e4vncBeKk+axwLyuQrAnmUhniE/HeEssGLLMotJSgajHqNNvpnu+EsfgfPyUzFaVGCyVjopvyIPT5ljSRSttKrVaMXACT9Gq35JCEoAw2fGsGpICmmFFlLhhaDmbcXEx+O8LCQIdv5J2+nurj0D9J0Q+rFBlWRsdqYu8zofjB4ztmwLuau8ItKQNduM0WHAW+sWkZSCPpXcn4jK5qQT/6MGr6RjWusz8NbbKLksj4M/bAVBzC27wY3RMS20kaZvOkdiOxEHRTevitLkfZZBRrGJ03+eSQSfTlRKBbfbzejoa1/qZxlLj4ptuQyd8jO0AKlS0etVNaVpsSNp8joJR74Vo80gIylZYOWdZXT8qUdcuk1aggvUpPm+r8mTLYloQlO5z4wqJ2aPEUumWURSylvtxZFvQ+cwgS/9fmanCb1RJyIoATQ/fY4sDTGvUG+Irl55bKfu7aXozXp2HluamJdWwoNWjJ4PEuxfGgWAkA9Cg+MMSH0FjRg6McaeE6/9gcMkyt5cTGaNi7AvLCKQjLSHRO9cEqd/04ktV068M9oNGIzyPU92kweDRd7PXWpHZ5And6LB2OQ+W4KDP2gl0Cm3p1alqOrtBcRicVp/JVN/sOdZ0Zv0IpLSfCqAC6koJVF2uQt/9ziDJ6dsM52olAoFmcW0t7dx/Li25PEyXnt8+ctfBsBpzhb1c1eY8ZQ6aH9xYeUYxWiYoaZ0fu8w5/cKyHwTMa/slR6cBTYRQQmg5MpsjDYDp5+WxXZ8zWPi0koA+/79FNZ8eXxgfCyCwaRlfrRpmue81U6i4biYpGSw6jDa5ens1me7CPrkwhQSgkQS5mwz1dsKGWx2XVAZqXThax7TXOZKCwabR7BmmBjVcGBRCwZO+XEVyH0FrTj8w6VR3k+i/pZSEtG4+HBA7z6fpuu1vXgef7t8btGZdJic8ri/q9RBIp6QkZQcCtYsM95qh+gdDPrGiYXjxCKyOen4Ex2YzTpx2crefT5Nz8FRZKb08lxanuoUXTOn0YMtb1quOM2Y176vzorjTsS8FlJRAnAV6siosNL+51nqSdOISqngdrvx+Xxp3dvkZyYS6bNrkkmw0kc/n/Lvmd5Ror+efeIswPbMKKE4PDs0/6lBz2l1obB2apQ/71IXtUklJBsiXkDRxQ6KN2XRf2qYkz9NPwCTs9ZF6SW5HP1FpyaSzBsCQlv+LbD2Q5XoTXoxCajkqmxMTiMtgrrAoKoqJGIJcVAxZ62L8EiU4VMyg255uJ7x0Qj7vrY0yaGtjzQwPhJh779pkxyUIKnA1Hd0WMYktUH+mgx8J4cICvIgJVdlU7Qlm9PPnxOpmGXU28hbm8XxJzpE70PFdXnkrMjg1e8cF93nkuMN8J5fCJreUYZOr4iVorY+0kAiluDlLwvfhQl76tzquqcIGcRJ9F1ZDEDEvpDjMf86+5H7f8Y/7LkuZa+RnQcZ/NbjKIoyeWp8Ga8v6PV64vE4q1Z9AK+3OGWbuEHBsmfm+Fz7nnyMNj27v7ow+SceVAN8M8qPSBCf1s+KKKEM6tqm6BSxNOqKd5UTHYtqVrt5Q0CDPZcS1kIrK+8q5dyeATpfFCRIrVB7fRHdewfwt6b/BQsuyaTs0lxOP9clIqhZveCq9oiJSsnTYQe+eYLg4Gs/P274WA1Gh0Gz4pAU6z9cjcGmF5N/PDVWDBaDuIzahk/UAIhVDiqvzyfoGxeXONvwsRrGR6K8+l1tBOUlw+v8Pb8QuCqs1GwrovW350Tl8xruKiWjwkHz02dF5K2UttRAogfQ56hJEsU6/2GBNbfYMFp07Hl0LuHI+eNR+j9TlrLfiy8+DIAgBLOMJUYy5vXm8o/P2yaVmtKWh2oI+yPs/8b8e41Jf+uv9fwtiAgy2avd1NxQxMBJv6h8kafaSsXVhZz6dacmIsIbAkJb/i2w4t4yTC6jWAUgb7MXq8fImWdlajXrP1oNII4JeRscxMJRhk/LDLrpk7VERmPs/9bSxbzCwxH2fe21j3lZPDrWfLCO/qM+Tgljj9lr3Yy0DqcsJblQn6o3F3Lm9+dFqkjOUgt5a72c+k2X6H0ouDiToi1ZHHq0ndDruUzyG+A9vxDU3lSIwW4QK0Vt+UwDiVicl78oLLP8V7KnzqL6W4plYWLFpg8XEh6JcfAHM8lUPY/mkvfh1DcSCvn4Q/f30el0xLTGPJbxmsLpdDI6OsqK3OsocDfM2262mtKq+4qx5ZjY9eVFiLETz10LkWai48T/E2BGTFLa+Ila9GadWMm49pYi4tEEp55YmrJtfxNosOdSwuyCFe+uoXvPgKiMGmaouDqP/iND+NvT/4IZ9Q5q31ZM229lKjBmFzhKXQw0+0X2LLkym4JNWRx5tHVJFJFWvbsce55VHP/VihXvLMPqNYtzt44iMwabQUwSXPOBSnQGndhPL748m8hoRFz+cPV7K4gGo+ISZUuO1/l7fiEwZ5upf1shbX/qEY2Xirfmkb8+k9PPdnF+j0CAI5UtNca8dA6H2t0yf8xrxS0Z2DIN7P6PuTH//h94yPpoar/queZ/AhKimFfaRwF+//vfL/j3TK8aoDO8dW4W/siIgf1D6bFcg0XqiaKCOtj0dj1VG9Po1JWCdStItseDITpe6OfA909z8inZ4p/T5MHoNGD3ytjGDXeVsOUz9SwgLpUSthIb2au1lc/TjCUkLqz5u0rWf6Ra3M9oN2KwalAP+F2fmKAEgEbftmpbEQ03l8ovl9DmUDfcVULhJZniflrRdF+ZeHzGYkAC4jFZErBkSzYVVxVQcnWRqF98wo5Smbuh4wGO/1hGUAKwZpjUMl5Ckkr5tlw2PySfIzRjiQlKtiwduRsXPy01G+vur1LtIoSzwIojT66gcvDRs+z6YrP8/Ztlz0QgPQNvvM/F+rvVdyhJUFocNk4F9Pxp1jr7kft/BsDfb3w6ZS/n1tXAXBWeZbx+kCSPLURQAghtnLluHv95N2cFpAxFr66fmx+sYetDtWne3CxnVEOifdfnj3NAA4nAmW/FXe4Q99v0YB2r318h7pe91oXVKz89e0FYIuKCNc/CpgfrKLp0blmbhWDL0KM36bBkCE/SBOHk450ighKAbmKekhIqy99aStW1hWStlPom8QlfT3a9rJVOGu6S+3laUXBJJrW3yPwggFg8rsmVrb+5jJob0l2bpiGBJt/59K+6xQQlAINVj8klP2G5/iPVNL2jTNxPM5aYoJTZ5MBaKPOFrHkWtn6mgaq3L6zoNxuOQhsmjxFvvUfU79jP29n/9eMyghKktmUaQZG624rY+tl6vHWqw50kKC2G07sCtO5KTVACyPpc24L9l1UsX58IhdLLtuqL5r4Pzb86x+nfpHlKfmJNy6izs/WRBmrevphq6jwQJof7Dg6z72vHOfFLGck7s96DJcuELVs2f1Rcn8eWh+qx5MjUgS15FjLq5NL5F4QlJC403lPK2g9WifuZM4wY7fKY1/mXB8UEJUDz2l17Ywn1t5TJL5dQ/RMpqrcXkLd54ZPAf03U3VaMt0G6D4lDPKH6lwJkrnRSc10RZdcIY17ROCQS6ITb/JH2EKeekBGUAKxeEwazHqtHNj4LtnjZ+ECteI7QjCUmKFk8OjKFexCAle8qY+Mn09yTT0NGtRNXsXzuPPCdVjlBCTTbc8vDDWz6lFpOXbdAcmw22l8a4sSTcwlKAOf/PfXnWCweYJkc/npGMKg68QsRlEAt+zYdJ35xltYX0lfhUSYmxPUfrWTzgzXpdUrMmrM1JNr3fOUk+78jj3llVDjwVstjXus/VsOKd5bJr1fvwOxa4pjXUhEXzLD+ozUUXCTzFXR2MyarAWuGTDGZMLQ+c15EUIKJPFUigTT9kL81l7obi8lb4RH1i8cSE76J7HruKhvVN2rcu2hA9io3ldfli/sloonJHKAE9beVUX9zibif1lzx2T/0iQlKoFbwMGuofrTyXeU03K7h+2nFEhOU3FU2zNlCu5hh06dqqdiWXiWUJCxuPbY8C9kNsvxm6+/Os/ebLTKCEqS2ZRr+TcnV2Wz9TD3Zq9T7TBKUFsPpPw5x6oW5cbn+H3jU//9bar9fQf39L37xi7SuA4Jyb//n//wf9R/GuV2SBKXJD31r/zRFJRstC6jpJRWUpiNY5CQwPEJ0PM7gYpyhWQSlmu05eCusHP55F2Pti9fiTKoIAAS6Iqi8rfQ3jkc0SsDpDDrVQRISA5puLcZg1YvLk234eA0Gq55dn5Mxt9d/tBqD1SCuq6lVHcHsNqFo8Il2C0+CJ7H2Q5WMj8Y48oM22fW+rO16fUeHCQ/L5SW11jX1lDtw5Fs5pyHBI4WtwIK7xI7RpqfvYPon7EdbA5pY1P2vDuDIt3J2p6z+ROeL/XS+KJc0ylxhp/LaIk4/18nA4fTZsUc1MprtWRZ0BgVHnk1U3mzV+yqw51g4+K0TBBYo9TUbTfeW4iq2i5/F6vdVYMuxiNUfVryzBr1ZJ1KzAnVjqYVSI537ANDpZyjkJeKJyY3tYtjw8Sp0eoVXvj0VEE4EAouS1UIjMcbH4nMISsYx1emYT1HpaHBmMCpJUEri7zc+nVJRyePx4PF4FrynZbw+kSQoJRHaWD2pqBQchODL85eTme77JKHo9fjPBTFa01iEZxGUNj9YR2w8ziv/KpcYDmo4bav15I2iU9J+h6ejelsRkdGo+Ptt/WwDvvYxWVkzK2z9eAMDzX5RGTxPjZWG28rxtY6KpP7tOUb0Jh1W4SZu4MgoO4/In0P2Whdll+Vx7BdnGWtPn6HR+ad+TeWjOnf2Eo/E6T8lU/5p+UUXLchJ7MWX5GDTUKpVK4q2ZGEwyxOWB76hrRTLuT0D6E1yR11rueOm+8rQG3RiRSTpSdUkTA4jOqP8+239bAOxSFy8H9n86XrCw+Mc+JbseWz9TANBX1j8HGtvLCHsG2ffv6evUhEcDoECemGZk64/D2gimBGEYFCepM5sclC7vYTu/YOc+fW0BFYiseDpsoFmP858K+FgYg5BKTGxVqZSVPKnmJ6TBKUksj7XNkdRafXq1Rw8eJAvfOELkyVdl/H6wec/ryqG69IIk+mLCmYoKg0cmX9/mFKxUlEIj8YI+yIMtMhIeaVvyqFgYxYnft4uKskEEPLJ36/TT3Vz+ilZmRKYmDd0CiG/zNdruLEIS5ZJvL9c9b4KbF4Lu74g7PfeCiwekzjGs/GBWvRmPbs+J7ueLdOsqeSUVpXrFfeWEYvGxaWg9n5V2/W69vQTG5ePM62lD7NXePBUREWKQReCzFoXZreRwWPpl+4M+WCXhpjeQPMIfUd8dO+TracDh0bYdUh+PVuRhfq3F9P2h/MMCFQztc4R9lwLBoseq1dPSFDxp+7WIry1Lo4+1ipS7KreXkBWg4dd/3JMRLCp21GMt9LJTuG73nhPJWa3kZ2HZP0UvU7TnlUT0Qi1lKQWrPtwNXqLjj3CEjWj3QEiwdgcglIipGbf5lNUOr9/Zlw0SVCa/Pu/W1IqKmVmZmK3LzHxdRlpQ6JwpSspnFRUCvuh58AC81SKz1V0CsOtY5jdaRy0mkVQWv+xGuLjcfZ/Q672F9ZQFkuqeJyEooBOw/xRf1OJqi4oVIHZ/HA9vtZRTghVzjd/up6BE8MidUGzS8e6++vUWNnj6cfKrF4zJrsBe7YsThPsDovnfQBXuYXKNxdy+tlz+M+kP78OHPVrKi/Xvc+H3qBjqNkn6tf5x35Ruc4kijZl4al00vG7bnF5LC0ovjgbS4ZJXDLxiFBVMImzf+zB5JKXNTugsdxx9Y2FmB16sSKStDxcEtZME1Gn/Llt/nQ9sUicV74iu+76j9cwPhzh0PdklU02faqWsC/CwW/LYoGNO8oIDoRlMbaw6nvphbHA4RZtOW3CEA7L1wVHkZmmuyvo3j8ws1TmIjEvX8sImdVOwr7QHIJSYuKQVipFpUAvBHpn3meSoDT587/p5ygqrVmzmv0H9vK9732Pt7/97el8tfRJSscm6pfrPDNPAcwmKE1+8ARRaYVtlHJLnJ2DBvoFkiDdeie+pxfZFKVQUIrHEiTiCRJjMoLSineU4MizsOsLgiD6BTDxpaSYJM7+pZeMKvlJjMhYVFPQXasc5khXUNMpL61kHK2weMyYnRq+o8bSWKJyZtNgzYJgQH7Nlmc6Ge2PLt7wr4BAV4iWZzvxt8pIJzDx/YR+UaA/zrEfaZQ01PD83KVODFY97lKniKSkFVoJkEMtI5idRgIBmcOh9V0fH4tijcn7du7qw1Usl4laihKE07HmA2VYXCZ2fUldG9IlKiViEFfm2mUxotKhn48JFJSmcI3Hj16B3wy55hCUkkhFVIpGo/T1CUo1LeN1gdkEpSSSRKW178pnPBjjyGOy+u7Hf9K1eOm32QpKqAp10XG5fPrmh+oZ6w1xWLhZ0QqtPsZg8whDbcJyxFaIRxOMp+GPzug2QRKTnvgJ94eJjEbFic7+QyP0CwPnFwJ3mQOjw4CrwCoiKQGaSmP5W4P4W7WVBbR6VcKfBCd+cgZHmfzEo1Yc/nEHtgy5v40VrFb59+v4rWxOmX1N6fNzFliXVO1PSxASIDgQJjgoP4RAIqFpOxmLxomMyedcX+sofcd9sk5B7cRQrdgyEeyWlPSMBGIk4glVPWI2Fgja9B3w03fAn7aCUhKuIqi5xE7nkQDnDyfmEJSSmE1UGh1VX4JkbGUZry8899xzABh16e1RkkSlvA1uSi7O5uQvOxluTT8ZETgXFieDQFVJScTihEdl80DtTYVkVDs1J7KlOPVEl6rKIkT7Sz1k18kVdyOjUWJO+dyYiCc0xfZ8raNYM4Wn60ETqf9C4CiwalMR0VjKqV2gbDHjch4IheTXPP6/7QR9S1fG6cSTHYx1yONBFg+ikm0AhKBZYwxRy/NzFdkwu424S+0ikpJWnHqyS1z+DmCgZQR7rpXwgMz3ik+86xaLjlAo/XjZ+FiEWESe0Ov4Sy8ZGvYFrwoTcheKxntKceRbxWT76HgM3TxxiYVw+L/aRApKSTTcmoXJauDgD8/PISglkYqoFIlE6O+XJ+KX8fpEkqi06r5iYuMxjjwmm0Nanu5ZPP49W0EJiEfixDUQcDd8vIZAb4ijWvMXQmg9HHR+/yAj5+Qyv7FwnMiohrxTIkE8Kox5heME+8MMt6ZPEgbtZCOtcBbasWaacRTYRCQlQFNprHBfWEzgmbycSyX8SdDyqw5shY4lISgBHH38LBa3hpiXGcxm+ffTomo0/ZrS5+cpt6M3afh+GrH7y9rITSOdY4xriEGR0KZmGA3FCfvlc0vPwSF8Z+R++lJzEjZ9qpah06M0/zx9Pz/ij5CIxUlEUthzgZiXvy3EgW+1pq2glITZC43XZ9J1cJTzr4bnEJSSmE1UCk48t5aW9Em9SiLNUWKz2QgGg5hWVJL/qXcB8xOUpmPTn01km+AvAzNJSqkUlKYjLztEvj3Cib/M0yBVibdZSIzPf43ZKgKr3luKPcvCzs9Pe1FTOCVTf1PNtvZDVVg8piUP3i5jJrZ+toF4LLFkE8rWRxqIR+XXW3d/FYH+MMcfkyXMtj7SQCwc16zgJMXWRxoYH4ksCSHEVmJjzX3ljPUEOfif6W/GbQUWmu4o5eyuXrpfSl8er/CSTMquyGPw9Ihavu01RsV1eeSt8dK5u5+O5y8gubeMC8KaD1ZizTCnN1frppzDdR+swOQyzCGwLkRU0rldi15iPqJS/iodxhoX+wYWJqPOVlS6zutHB5Tf9fyi155OVGq/+2FgWf769Ypkcv6KKz4/+bv5CErTcenGANFIgv3/OTNgk0pBaTpq3p6Lr31sfoWzFASlC8GWh+sJ9IfFgditn21gpDu4ZOSmZcxFxbZ88tZm0PaHHm1qKUI03lOKp8zB8f89w+Dx9FnGRZdmkb/Oyyv/0SwiyKx+fyX2HAsv/dPRJSnJteFjNRgdBrFqhFZserAOvUknvl79jmLMHhMHhafENj9Uj04vV1jVis2frkfRaVdUWsZfB1s/08BYT0ishLX1Mw34OoQqdOlgnqBN3W1FDHREGTy98Bo3XVHJUwI1lznoaw3T/3eL70OSRKV9+/4Tv7+djIwMBgeXRvVjGemjtLSUjo4O3KYCthTuSLtfSVOEvNUZHP9ZB76WKV9rMeJ3Rp2N7HqPdhKCEHU7ismocLLr80IF3HvLcBTaxP2W8dfF5k/XkYhrV/WWYutnGohF5SqBq95TTmhwnJOCoDuo/n00FNOsqCTF1kcaVNWIry3BISgLXPSpRka6Ahz6rmD/YoF176nm3CsDIqUoT7WVxtsrGDzl5/hPtJH1Jcjb7KXiTXl07R6g7XkNpQWX8VdB4z2qOrpU3W3FO8qw51qWjMCavdaNp8zF6V8vfFhutqLSmnfmYTDpePqixWMS04lKz575F2A55vV6RTLmdW3Np0T91r3NRCwaZ/+3Zu0XFvG9Sq/KYqw3TN+r8zAXFsoFTrZJfyxt+mQtgd4Qh4UHkTc/WM/IubElIzctYy7yNmZQcU0+7X/o4dxfXvuYV+V1+eSt9dL8y076Xk1fACBzhYuSi7I59tgZEXGofkcJ3hone7/VokntS4pV7y7HnmddspjQug9Xq2qGwutVvDUPe56Fw99vE/Vb//EaTFbDkhHi1n+8Br1B0Uw6WsZfB5sfrGO0OyhW7tr8YB2+9jGxCt2imCfmVXldHkMdEXytC7/r0xWVzF5YfXM2vc0BXrlvcXWxJFHpZO8fafPtJjs7m97e9HLhaUvrRCLqSXBzdRmQHkEJYPcl4zw54BIRlAAqCsGdYyRYlCJRuwBByZal/gegmFKfakqVpHv12+0zCUpAyrpjiZmnrGKRuFrDU4jND9Wz9ZGF6+2mQuPdJaz5YKW4n7vahrtarloiEL+agYrr8ijflvpkw0LY8pl6Nj9UL+4X9o8TGly6Ipej3UEGTsolGM1uE64iuczsWG+I3qPCOpWo46zp3lJxP63Y8nA9NbcVifoE+gMEBkJ0H5A5fNZMPQarnsyqxQkh0zF0eozgYJjeQ6+9gwkq0zgWjhPslWU5q7YXsPWRBvIvyhD1c1TYaLy7BGvW4m1nQ0sfbJCzVvYMAEquyWHjA7Xifus+XMVFf98o7hcLx9NTi9LNZK/v+0ZrSoW9+T5rkqBkA/sCr0IiMDfJ3ndlMQWrXeSlMUUky78l8fSgKy2CEqiKSkk4nU4sGk6xLeNvg3QISgB/2mMTE5QAMmuclF6cg6JPcYpjAYKSq8Ka1n3Nxq7PH9d0UjQRTxALyQhTVq+Oi/6+kVXvrpBdzKoSSPK3yOrXA2StdKrqMVJo6GP16qjfUYy1UNa55Ooctj7SQNEVMhWRsZ4g0WCM0XMaZCU1oOfgIGO9IYI9sutlVDsxOgxY3bJ5rvvAAKM9QTFBqfbWIjY/WCfrdAFovKeUjZ+Sr6W9h334z8qfnavUji1LXvd+oNmPr/21V6FMIjgYJqhhX7D50/Vs0vD8yt+aR+k1OeJ+gKb33VVhxV4q77j6/ZXU3irz00FN5G78pHycxWMJImE5uXXn545pIihZvTqs3gXCGykSCvrSbDJrXBSm4csmpq2jvg7Y8+hoWgQlUBWVADIy8gCWfa/XKUZGVOUQu0G25nccMbLri80ighJAycW5ZDd5wCpTorB4dFg8cpXsEz89q4loFAnHUquULYINn6hh62flMa/qGwtY+e5ycT9bkQVnqYZ3S+PrWHxFFiVXyvwnUBOWmz4lX2sCfSECfdrKMmnB4OkR+o75xP1sOVbc5XL1GN+ZUXpelce8NjxQQ/3tciVirdj0yVqqbyyQdQqBv3OM7v0ycqrFZcHsMeKtktkz1BdkpCugyZ5aMNYdIDIaZeS8zLcsuixL3YdcJgtEWfIs1N5UqGke1PS+W8DbIB/TueszWPfhavE1V9xbxkV/3yj+frFQjERMPlcf/q82zQQl6Zyrs1gouzyP7MbFK0Qky78lceD759MiKIGqqJSEy+XCNE9+aBlvXOz75biYoARQsN5L6eXZqQ+eLkBQchSaVZUUWLCszmzs/qeTYoISqKqZ0bD8fb7o7xtZoSEPtOb9leRtlOUfADw19im7CGCWpxEwu6Dq+nys+bILZq5wsfWzDRRfLvPZgoNhwsMRRs8vwak1oO/oEMNto/jPyXw9b6UDa5YZs1Dd8/yrg/haRwj7ZXGT0mtz2PgJeWxAK6q3F7D+YzXift37BxhskatCZlQ6ceTJE+K9h4cYaJbnirVirCtEQAO5bP3HazTl4wou8lJ4caa4H6BpjnAUmXEUyTs23lVC1fX54n5bHm5g/cfl4ywaiRPVoLL38pdOaCIomV06zC5ZzEvncJC7OoPizZ5FPz9Z/g0gPAi7v92XFkEJVEUlgAyLui8zGtMvm5h2ubdkjVjLuqa0CUoXgoPNkJlqwVpEQanhpjz0RoXdX1dl7hSTaYaiUjpJuhlQdAs6Ka8KlF+mY7B1BJtH7iQ7i+ya5FQbbi1F0SniE9NbP64GlaSs07zVamDvzDOyUzTjIxFNZaf2fU1eExhUUlQsHBef1hKdfpoGrSfktY4znUHB5Ez7Nb9gKHoFs114vQAc+Ia8buvA4TF2HpbbM9AVYv/X5eMl/6IMyq/Mp3v/gGhc9x0coe+gfMM/1hckFnGJyXclW7PwlDvx1mdyTqBu0XRfGe4SOy3Pds6vopICK+8sx5lvIzxyhuFT6QelMqvU8nnSUn99x4bJbpTL/6f1zupk8pqzS79NV1Bad3sOBrOO3d88P3//FKXf9vXqWQqVz2Tpt5ycnOVyb28QpEtQuhCceqaL4HCKNXgRBaWmO8sZ90XYq6FkiRZoUUcJBuMEBkL0HvWJ+rnyrRgdBrzVTrp3pZ9YyF3voeqthWQ3+0Uli4quyKb0khx6j/o4JTiBnrshG2+Ni/GxKKcFMt2B3iDRcIxgnyzw0rPXR48GGeTK7fnkNmVw4udtIkUktSydPMCgVW2rZ7ePnt0+cT+Ly6SpvLJWmJwGDEb5onHm1/OvTQtBqqaQhGQsT8fGB2rR6RVeFl5Xa5mMsH88rcOzs5G/1ksinqBdqJi59bMNJOIJ8ZzWdEe5quj6RVk/W7YZk0u+LxjrCTHaLQ/OSu/vQrHmg3VERqMLl1KaLYMdhLZdIwx3vvaJ/6zPtRH8eDXt7bvJzNQY4FvGa4pgUB3nHrP8sJUWnPxZG+4qt7gkU+PdlZg9xiVT39N6wrP/6DCOfDmh0lPhwGiRz1Ur7ihDb9SJTzBv/mgdil4nVh8p3JSFotfR8XvZXio4NJ5W+fDZOPS9NnEfUEk18WhCXGZO63OX2jGJYxpVrg0mAyZX+kHwC4XOpMfiksdypSfyAUK9IU3vecinLWbpqbbScGs53fsGOPNs+jGvkfaQpjKGgb4QkWBUTL7LX+0mq9FDYDDM2RfTDyZV3pBP3movZ17opkuwr6u7oYjMOjcnnuwQlcHLrHVi9hhx5loYaU//O/YeHUYnLEkHcOLxTlH7C8XaD1RhyTKJx+ixJ3uwaiAoSJEs/ZaXl0dn59LaZhmvXxz73w6i4VSlchZ+31beV0FwMMyBb03sMxVFU6nYdLHnK9rUUfydY/QdTT+mDyr5x5plJrPayfk96ZNbHUVmGneU0X9imJOC+Sej3kHDLaX0HhoSlfx0lbvJXeMlHk/Q+kz68YyIP0x4NCImdAy3BDSVZS64yEvpZbk0//IcA0fTJ634z4Q4ckZOaNNaOnXo+ChDx+U5frPDiN68dDEvs9OAwSKPeXW9NEgXcuViLc8coOMFbbmVNX9XidFmEOemj/9Um98c6guhaIhZllycA4oiVhXb/Ol6SCTEMb2muytIROPs/ieZXZzFdqw5MUBWAtHXOkpgSB4T2quxxKZWrLu/jpBvfOHcdorSb6ee62NUSIDUgv5/0+P+QCGKouDxeNLul3a5N6vVSigU4iNfeFh0Y46wgh49w+Youn7tzHVdJAJp1IA22BX0Rgj7Zn2tRHxBaU97jhlFURjtWeBhpeqvU8v+JIR1VJcaJqcBRa8Q9kVE/SwZ6mY/NCTrp7eoL0IstDR2MTr0JOIJogHZJs6WYyaRSBDsk9Uyt3iNxKMJxjXUxtQCS6aR2HicyMhft9TOfHDkWYnH4poYuWLowOo1MT4WJRZ87evZKnqwZJgYH42IxqfeomBxmwmPRYiOCp6DDswuo0rAW4rHpwODRUc0GAfB66e3KJgcRkJDERICdTi9RcFoMxDyRWBpyhFrg04l0aWs2wrznoSxZZnQ6XULrg2KwhyCk8GmoDelWIvm+YCoU/v6mJXjI+Z3ADr0Lhlr/1/+8Yf4/X6i0aWZy5Yhg16vx+l0ct87Pybq53ZCPA4jY6Ab0a5ekkiQVuDFlm0iEowSGZVNAu5iO9HxKGM9srVGMU34Xa/zOcfmNREciZBIFQSbB4pJweYxERgeF/VDAaNNRyQYXxK7KHoFs8tAaFg295tcesxOE6N9IRLj6X8/g1XB7DQx1h9eku9ntOsw2Y2M9S6NSqcj34JOr8PfuTTKVGa3Ab1RR6Bf5v9qhSXDiKJXCAqvZ881o+gURrtlm2mjQweKsmR+s96qQEK+77FmmiABwUGZXawZJmKxGOP+pfl+WqEYFPXwifCddRXZiMfjjHbJnrst20QkFEvvuSsKilH7QQ5DWQJryESMGOPO9J+Dv3eI//zSf+J2u/H5fJqvv4zXBi6Xi5GREe646Z1ke/PS7ufIVNCb9Ax3R0mEL2DdSDPZZXIZMNoMjJ2XvSOuEjs6vYLvjDAhsdg+6nUCs9uA3qAnMCB7BrYsMyiIYx96qwIoSxLDAPW5k0gwLlzbXEU2EvEEI10ysqktx0wiliA4sDS+gj3XQmw8Jo49aoWn3EE8El8y38uRbyU8Mk5EEkvSCh04cq2EhsOiGKliVnDl2Qj5woSHBfEBneqbhIYjSxMb14HRpicyFhPFvBSLgj3DwthgSLY/syjY3GbG+kKv+/2nYlRke0jAWWDFYDEw1Co7EGJy6jHZjYymuRYpwkOB0zHeZMQ7pkOPjj67LHb1v1/6NoODg5OH75fx+oJer8dut3PvrR8W9fMWGohF4gz3xiGgXekmXZ6RI99KJBCZOzcu8gGZtS6ioRjDQlVhnUUhPv76j3nZcy2Eh8dla41RwZFrJTgYkuXxFDA5DIwHorAEr7NiAGuGmcBgWHQ9s8eILcvCSNeY6PsZbDqsXguj5wMkliBEb3TosXjMjHQFlmScuUvtGCx6TZVptMCSYcRoNarfbymul2nCYNKLD3e5iuzojPL9mclpQKdX1HzcEsBgU4lN0ty7PVdVNhxbiHORArZsM/FYgpAwVrbU0JkUtcqWcE7KrHURi8bxnZY9d0eBlWggmt5zVxQUnfaYV2S9kVy/gYguxqBD5lv+58c/L4p5pU1SysvLo6enh//n//w/ohuagcSFqAC8vgMiy1jGMpaxjGVow4Up5CiK9vXxscd+wtmzZwmkKD+3jL89LBYLZWVl7Nhx+wV8yrL/tIxlLGMZy1jGXxUaXbfx8XG+8PkvUFZWxpkz2pTelvHaobCwkK6uLj7xiU/gcMhL+yxjGctYxjKWsYzXABcQMvvfx/+XlpYWwhdCIl7GawabzUZBQQF33XXX3/pWlrGMZSxjGctYRhIX4Hv9w//7DxQXF9Penp46XNpUqmQ5mBuveJEHz1wsuqnY/pnlbBzdi9NBayvBbIJDx8F4dkqaLTG+sFOZv9KB1WOm9U9T0mOJ4DRmmYZSYgvJn+Sv92B0Gul4USbpliy/dvSnbaJ+tTcWozfoOPa/Mvm/0qty0Bt0tD4nK+9QdHEmOoOOjj/Ivl/1DUUAnHpKJqnauKOMRDzBscdl3y+r0Ul0PI7vlIyZbsu3Eo/GCAmVlBQHKqtZqJJWf1Mp4dGw+DlgkV8LVHtGAlGaNTwHcT8zNN5YRsgX5vSzMkk9Ld/P4jVQcXUhvjY/XQI5UgCjWyGSqqTRInCV2/F3jYFgb6s4ILfWQ89JHwkBObZgoxdvpZvB0z7R98tucpJd76VjZx+j59InnrjK7WTXuWj9c7foPrManXgr3TQ/3yl6hiVXZOPMtXPs6TbR9SrfWoDVbebor86I+nkbHHiKHSnevWkrriKXu1TM0xSQpv0zp96OM9vC6T8tLIMZL56qkxvI0bMqM4bZAHt6Fj9lVveWmWUSy80yGdPLbD6++90AiqCe+jKWFuFwmJaWFq6/+ln+8V/fLOprODNzHk6MLe57Nd1WSNAX5vRz/RCbzspfeL6s3FbISMcIvYeX5kRM+bV5DLaMMHw6/TXfXmCl4sp8RvsCnBGswdY8K5VX5jHU5ufczvRlbc0ZBkovzaPnyJDoPs0ZBoo2Z3P+VR9jghPvrnI7RRuz6T7Qz1Bz+pNj0cVZZJS56Hm1X/T8jC4Fb5WbnqM+0ZqIGZx5dkaEJwmT14z4ZWt3wZZMMkqdHH2iTXafoNZNF/apuq4Qi9vEkR/LyAe1by/GaDUsWb/JmvDC71f5lnyMdiMnfiaUljarJxETwsduyVFPXYV6ZU5iRo0DdDB0QnYqqen2clDgyGMye9ZsLyIeTdDytKysXcmVOUSDMbp2ySSzK9+Sz/hYlLN/ku3PGneUEQlFaX5Sti9ourOcWCTOceH+rPSqXEIDIXoOykoOaEXlW/IZ7QnSs9+3cEP9lMOmuMw0vjWL4HCU1pcW6Qecuzdnxs81BbI9z+azR9TrLvter0sMDal7rsy8X7Dv5zeK+sb7fDN/EVv8dGPFm/OwZ1k5/KMzSEjlOas9OPKstEr33BqRvdKNNdNCx4vpl38CqL+tFINJz+FHZSU4q7cXYbIaOfoT2VxcdHE2JodBbJf8TZkYrHrO/kFWsrNyWyE6o8Ip6Zx6VwUk4MiPZXbx1DggDr4W2dpmzlbX0rCwpJZim4h5CQ8w191cwvhoRD4+k1Oz8Hor7q5gfCzCyV/IytOtuKeC8VFt/cYGwrQ+Iyxla0L83TBB401lDLaO0L1b5isYnQqREXnMy1FsY7QnILtXE+Q0eBg6PSy6ZlaDi4IN2fQ3+0S+kKfKQcH6LM7u6hPtKewFVnJXeujc1ce4QCnKVW4nd2UG7X84L+pXsDmTzCo3p17oIiRQECh7Uy6uAgctz58jIFATdZXb8VY5aXtBW1lnKbIaXLjKnWm8C1M+j2IyU/GmTGwZZo48vnh5op47Kmb8bK6UzX+fLf8NP/zBcszr9YxgMEhbWxuXXvskX//EtbLOfTNj5Yno4hNX0x0lBIfCnP5NDwjUtcrfnIe/M8DAkekxk9fuQGDpVbkMtY3hF6hsKFZYeXsV/q4xzgjWYKNDoe7t5Qy2+Dm3M/0SmooVKt9USP8xP76W9JXYFCuUXZJH79Fhxs6lH/Oy5pgpvzKfrn0D+E6lf72cNR7y12TRfaCf3gM+0X1mVnkYaPGRkIjjGMGeYxV9t8muDoXIqGxc5azxkF3voflXnURGhBJMRkAoxFN+TR7OAjuHfnxa1Lfq+kJsWRYO/dfpxRtP73dDITavhUM/kPUDNH2/0qtzsWZYOCHMvWOciHkJH7vRY0JnVAgLFV2dpTb0Rr3o3QNovKMcnUHh8H/L9iGV1xcCcPpXMv+3cGsW8Wic7j2ynFXp1bnEwnE6/yzkXOwoIxqO0fyE3L+PR+Ic/UmbqF/hRVmMj0TpO+QT9dOKsjflEegPLT6X6adoP4rJQtMtuYwNhTnz20X6Ad13lM742VYrG2Mfzvw1ADpd+nnWtElKScGlUV8Lv762iw37b02rX24PFNti7A44J383PrK407Dr4NS/bTP2/GYSC8g41lxjxWDSMdKmSo/FR+YaMZGCqFR0uRdPmYMjP5gVdI8v7LAMn9KmPvHqf6kBl4BQxj4WioFZfl37LVYUvSLu13hbGSgwfEo2MRtMaoJder2uvQNERqPiflqfQ+OOMhLRBLu+cFxTfyle/uLSXCeJaDCGr2NMk30SsYS4X/QtMYZaRzU/DwmGgZ7dS5MQByi6IouSzTkMtvg5/phsofMdkNsjMhQiekWCcy92E+hPX0oxZ0UGil4h4h8XPYeSS3KweiwYE3r6BM5+6eW5GG0GYmMw2pr+9UKroziyE/hOBkBgnv3facFdaNM4R6QIPM8OVswiKpVcmYmr2MaRH8595jrrXHadYlEzvzVX2jBYdIy0zb+5iDSVwrQ99bDbwm8FZaTrSqZsoDuSQTCWSfbW9Gr13ueasoXEaVjG0iMWi1Fb0cWP/v37XHffB9LqU1UWZtxnoffQlL8U9y++U9r1pamaxonorJ3cAsKbVo8JPS5afilLXjXeU8rgqRG6d8k2K69+S64+4W8NMtYVxN8dBMGmMRJIkLg8QWgwir81/Y5ZK52YHEacOTbOvpB+oKfgkkxsmVZcBeN0/yV9uzgKbegMCsQV0X2eCfQR3hyl6889BIXl2gcOyte2hrtLySh3cKKvnYEjwnIzGuBvlSUOLxS+02Nk1uhEzwCYlAaW9vO3B3DmWeXX04gD35AFMi4UjTvKUHQKO//vMVE/rfZo+1MPOoP8+RlMBuKGuLif6w478ViCEz+WjVNrhgWTQ369WCRONBAT9zvwHfW5B4WlpQ63tonaJ9F0XxkDJ/3itcHqtWAwGTj1s/mD8orRxPRFQOc1s/vb6c/RXQ412U8wxOUT3KtgfnqB5O+XPsu/H1JjIkajMe1rLmPpkExijo308oXHH+P+y+5Iq589F3JWOGn99VQQdY4flQKvfrtt6od0640ANTc4MXuMjLTL3snc9Rlk1jo59mMZ0VR6nSQO/UCNIUmJptHRKHq9Tnxd56029Ca9uF/j7U4UvY5j7TK7GG16dDr5fbb/sYd4NCHup/U5NN1VQSIW5+UvntDUX4pXvtK8JNdJIjQwzkh3QJN9EjG5XcPDEXynRjQ/DymW6rmBerCr4sp8Bpr9nPipLOY1ckpOjIkMh0Cn0P3KsGie8FQ40Bt1xAJx0XPIW+vFkWvDYDIy0J7+PqRwUxYWt4lEVDZeQjUR4rE4I20h0fc7/KN2nLkWTXPEuT/IyGygrg3eagfHfyJ75tVvLcKSaVr4PmfF23TmBIe+n36Csw/L5L8rCJHhh+OlC3SYhsdXfh+ARMK8HPN6nSMWi5Fb2Mc//vRHfOJN6Skq5dfDeFxP/5GpmERifPF84+5/OjXVXkBScubZMJj0tD834eul6bdV31jIyNkxzu/1pX0tgKM/FB4KmsCr329htC8sPkgWj8QJDo0z2pl+R2u+GZvXgj1nnM4/pL+fclfZcBU5CA9H6dntS7ufwWZAb9KjUxTRfUb8fURDcXp2DxD2y0pVjZySxTgBKt6aR/76TE49c47efT5xfylGO3to/ZX8PrVi4OQIRquR0TMyUk0ikoAEomcHMHhqBKVS9swvBEdncwNeY2y4tRSDxcCuz8tiXlrt0fpcN0abXtzfaDGAIr9uRqWLRCzOqV/IDi848+3EI3FGO2WxsmgoRiQQFd/n/m+rMa9wv6zfyf8RHlqYQPXbCxluHxPPEa5COya7ccF3XjEYmF5/TrHq2P3v6ft4A3rz5L/XxgIMxGEoI72+P2z8IZ2dYRKJBAZD+qXm0i73ZjQaiUajfPx9Dv7p/+QBpEVUumKnCYcBfjFkAKYUlTKaF3ccbEfmz9YuRFRKIhVBabL/LKLSxk9UYbDo2fm5aQneRQhKAFXbC3AWWDnwTQ1szjcCko/sdV4JaP1HqomF4xz4D9lzqL+jmODQOG2/kS3mmx+qJzIaYd+/tyzeeBrc1TYiY3ExOW3Lw/WEfONLNs62PtLA+EiEvf92avHGFwhblo7V76+j/5Sf5v+RLTyZK+wMnB4Tjc+Meht1by/l/MFBzjyT/nO3ZemouL6Etj/2isg4OWtdlF9TwJnnu+jdv3SkKi2wZelEhKg3Esq35ZJR7mT/1yfe2YVOUk0jKqVcG0gSlObpPkFUwsa8YzPSNH9kZbhs/s9O4pL7d8/42flULQoKpbf/dtG+0wlK+nzVHmm6AstYYiSTZSPnSiZ/lw5R6bItQWLjCfZ+d+YcF/cvHoxdMKk23zixIiL+JLH1kQbG/RH2flW21qz5YCV9h4fp/FP6gZA3EqxexIShpUbuJg+ll+XS/GQHvub0H76nxkrBphzOPNMu+o4V2/LJXeXh4PfPyIgSVvCW2Rg8LnNka28tIrPaxc5/OaZpbEux4WM1GB0Gdv6jLDChFWs+UInJZWT3l2SJL2uhFZ0BxtplRln7oSoMVj17/ik9Im0SZdfmYrDrafmFgMELrH5/BYpOef3vz6wT/18ajtmSY/X7K/CdGaPtOdk+S+vasBhUglJq6LyeRfsf/8LUWpw7FuKt/dBngL4rFx+f3y99FoAPfLyPH/1PEKvVulxq93WIzMxMBgcHueFGE//8VS9AWkSlusv1uEts7P+vDkLnpwKb6RCVJOSkC8XaD1Zh8ZrEa03Jldl4yu0c+l7ba3Njf2skt15LwznRjFXvVclG0udQcX0e0bEYHb+XnUTe8PEaIoEYB4UxNmephUgYQkJi68ZP1hL2jfPqd5amFObWRxoID0fY97XXPuaFBbZ8rJ7+E8OcekLm03iqrfjOBkXj05JjYfU7yzi/f4i259Nfgy0eKHtzMd2v9DF8Ov0Luist1Gwvoe3FHvr2L416olZYPBDy/a3v4rVBwRYv2Ss9vPqfskMF6z5cjdlj1LYPWUgVf4GYm85snvdvSbQ9uHbGz2/Hjwl4av3i+aQkQQmgpkQl0C3HvF6fSMa8jrQXTP4uHaLSplstREMx9n5rZuI1HaKShJw0iekqy4KxtPWzDYSGxtn/DVn+qOmeUgZPj9D10us8MKQRZpdOTBhaanhq7FS+pYCWZ84x3JL+vs2ab6ZoSxYdv+0WfceCi7wUX5TN8f9pw98uIEqYwVVgwX9G5neVXptD/movB77VvCTPYtW7y7HnWcUH0LSi8c4S7HlW9nxFFoMyZ5kxWuRknBX3lmLOMLP332Rk/YItXiwZJlp/LSN7N9xegsGm59D3Xucl5DWquL9R0HhnCf5zQc4Kq1BpXRsWg7IAMUixWuf9WxJnPtk0+W9TLMzNjNODwisbF59fftj4QwCefXqMBz44jNPpxO9PLxeeNpXcZFKDei/vm1rsX1n7+IJ9Is9lsX/EwMmxuWVrhmpMDNXMHyhc1xhi4zs9GG2p/67YFjbqQgQlAEU301k+8sMWDiXVUeKxtAhKAN5qJ9bMxZ3r2Vj5nnK2PFQv7mfNUokuS4YAS0pQWvP+StZ+qFLcz+gwYM6YfzzNh+OPnRUTlEDdayl6uVxs444yVt5bLu6HoqkSFdW3FJK70S3vqBH1dxSTUS8cnxNzi1R9N39zBnU3ltF0S5rHaCZgMOtRdIpY7jfQH+fIf7WJCEoA9nwreqMOS9bixJPpKLwkk42frMVWIOt3IVhKgpI1CxwV8rlM69yZ3eDBkpwjFnv2ibj6H3D4hy0c/Z+Zm96FCEoAidCE56WBoLT14gjbSuZfvy65f/ccghLASNNZRit6ODxWtOC9TScoLeONiad/8K0F/245cIaO3cOcSqHeo3M50Lkc8/bd8mAVGz9ZM/+Hz/fuaEywH/ufM+z9tjwxYPWayVuTJo1/GjY/VE/DXbI1A8BVYcXqFXfTjKUkKLkqrGz4RA3Za12ifvYsKwazHmvm4puc6fA1Bzn2qIygBKAzKyg6BZ1ZtnavuKOc+lvKcVXI7lOn01YSwFtvo/aWhefhvyZy13uovD5/8YazodNWbmrV3WWsulvux+qNujl7r3TQ9lyPmKAEYHGbsHjk+4I1f1dJ0zvKxP00I8iSEpS0zmWbP61t7rRlW8iqk80tAEd+fIajjy4NQclTZWXLp6uoeYsz5d9BJSdNJygB9OjgVTvs8sLukxXz9FSRJCgBHDmqklZstiXczy8jbWRkqL5F6+mpWNDX/vjYgn1i585z+nf9tP2xbwZBCUAxGFEM86tm1d1SyNZHGnBXLs1+79iPW8TS/gBZ9W4cBfIxW3dbMZs+VSfuZ/GoRJclQ4glJSg13FXCqvcuPG+kgtVrwuqVxx5bf3VeTFACNd6lN8qDUCvuqmDVPWXy6ykKaPAVyt+cS/bqpYt5VW8vwFMt8ysBUBSxf+kstdB4ewUNN5cs3ngadCZQ9DoUoWhfyAcnfnpWRFACsGRYMdoM2IUxr8yVTtZ/tHpJ3/elJChpncu0zp15a73Yc+TX2/edUxx9TKNaqgaC0oaPV7PpE/PPgW0Prp1DUAJ4CRMHMBLYm7XgLU0nKC3jjYmvvPCjBf+eOHeelhd6af713PimYjKhmObfB256oJr1H6uW35QGghLAoR+c5uij8iS0q8RO7ip5zGvDx2s0xSOs+WbM8m2bZiwlQcmcbWbth6rIXiXzFSweE2anEXu2bF4Ndoc59Ytz4u+oKMrE2j03j74Qqt9SwIq7K8monz/WO9/1UBQwyZwFV6mZirfmifpcCDLqHZS8KVvcT9Fpy6WuuLuUlffKc9M6ow6dhlxx165BMUEJwJZrwZopj3k13V1Cw+0yv/KCEGZJCUqOIm1zmda5013uIKtBfsED3zvNUWFJ9MUwH0HJ7IItn66helvmvH3PfLJpBkEJ1MrPr2BkH0b8+xb2vZIEJYDdf1H5Q3a7Pc07F5R7c7lcBAIB2jpn1rZ8Ze3jKRWVIs+pN96PjX5p3W1gpG0Ua/XCi4Bis85RVKp+qwdvhZVXvzNCYJED9opOmVRUCvQD/XI2jvREcBIGs04TyWXlO+vQm3XiEw7r7q/C5DSy63OycmPr7q/CaDfysrAc2uaH6tHp5eUZLF7T9HLVaUP6vZJY+e5y4tEER37QJrve57Vdb6h1lOCgfGbW+v2y69xklDno2fPan2ayZenwVrmweEwMHU//tF2gK6SJRe1rGcLf4ObcHlnAre/gCH0H5dfLXu2k7PJ8jj/VKSIqnXmmR6TYlIS71I7BoseaqScgyM81vaMMV5GNQz+WEaoa7y7BVWIXj7XV76vAlm0RP8MV99VisOrFc5nBrNc0d07O1cKkbLAfgtPWhsUISkmse2cOOr3CK9+Z+ewXIigBjI2BpgogFQHiE6yow2NFrLBPUyULBLjzolcxHs5nuqIhQE5Ojkh+cRmvDzz9g2+lVFSyHFBPUHTv05b1Dg6FCQ8vUsNcUeYEZjY9WEcsEGPvv8uSyhIFnunQqjaj0ykYzPJdatOd5QQHwxz4huwk+dbPNjDcMcbR/06/ZK7VC6vfX0//ST+nfp6+bGzWSic1bytm4KSfk4+nr0pozTZjtBlwldjpE6j9tT7TTeszMrleUEk8FVcX0vxMp6jkVMsvujSRVbp29xFfm6mW+RPguLDERRKlV+Zjy7RwkqUpM1d6ZS4Gs57Tv5I9C+lYTqJ7/wAWtzwQ8sq/aiv90nhPKYkEHHtUVnb6ZaFCVBLWDDMmpzxguvUzDUQjMfZ8WbYv3PxgHUHfuPjE+9bPNBAYCHHwP2T9mu4sJzIW5ZV/kT0PnUHb3Kl1rtZSrs9VYaXp9nK6DwxyZlaQbyEFpXAwTmQsxvDpYQTnt8BqYf+0HPXukxVsqp14HsEg333bT3n3L3fw/bo/zuhmcawF9lBRIScoLOO1R1FREadPn6avZ+Y88LU/pi79FjunjrXQ+TBd5+V7/KHWMRz5VsJjsn6lb8qhYEMWR37cKis95IOQT87G0XrC02DWo9NAcmm6txqTS67qsfJdZdhzrOwSxq5WvLMMW6aZ3cLY3oZP1GAwy8szOPKt6A1yu2gt+1W3oxhFQVzKSWuss++oj9CwPAi8+8vavl/+hkwiY1H6Di6Ngk/OygxsuRZ8pwRrcAjxOAEY6QkxeMpP916ZemygM8Suz8mv5yy1UP3WIlp/ew7fqfTX4p69Q/TsHVq84Sy4im2YnEYsmWbRXFZ9YwHZTR5O/LyDwWPpl22rvCGf7AY3B//jhIisVH97MZ4Kp9imdTsqsWWbNcW8dBrmCM2n8UOIiWmgqvMZrHr2/POsuWKRmNtIZxCzRx706sFCMroW2JuFbf209yIU4rl3/wfDe0zAzJhdfn4+8fjrW7FlGXPxlRdSl35LTPhe08u8STDWHWQ8sEjMKwXW3V9FfDzOgW/J9tFaSzJpVZvRG3UYrTKSC8Cad1US7A+LK5Rs/nQ9w21jHP+prETWpk/VMnDcT4sgjmHNN7PmXZX0HRvm1C/Sj5WZHQoWjwlXsY2+V9P3Fc7vGeL8HvnaZs03U7utkNbfdYnUjc79ZYBzf5GX7Ow5MICiVwicS389BGh7toe2Z+X5quJLcvFUODn3l94lIZuVX5mHJcNExwuy/N+RR7WVbet6uV/NTwvx6ne1KRpV31iIzqBw8n9lMUSpYlMS9nwrCQ1icpsfrCMaibNXGEta/7EawoNhDv9QFtPb9KlaAv1hDn+/TdRv5X2VqlKqMD+hN+oxWjTEvDTO1cFu+dpgdulY83e1dB8YoP25mSTdhRSUAEJD4wyfWVjUZw70ZqZb0b8vC9e6ab5XOMwT7/su/r8YmZLMgv7zTcArlJSkT4ZLOzO5efNmnnzySfoH5k4+s4lKSYISQBYBtrqjnA7qOTo+lz2VVFOaXv7NdqSLTqBz9+Ib29lEpXgkAgkr2NKrPZIkKpVdm03+2gyOPd7O8KnXXjpo/9c1JgcODuLKl5/aiY8nksIgIiiKIla4AQj0hzBa5E6RVvKPVjjyrEsq+Xr8x0tb17TjL72MdC6NFFagP87Zl3rpPy6c8DQi2I94oboQeOvcGJ0GvOV2sZqSFhz7kbax4j8XwJ5tYfS87B4Vg06TqkJ0PD6nfGY6OLe7H2/1/KfW58NkuTYtkH6/RJyNn1BVZfb8S0vaBCW1a4LELDLVYgQlgFcPqMEaN6EZZd9SqSdNh+OZauK2cQJXqE7fdKLS3ZsOYhyHeEMXtFXN6Ofz+XA65c9hGX97zCYqJQlKAI03eTE7Dez/QWrlrKSa0vTyb4lohAPfTDPYnoKoFNewlm74WA2JaEJMbtKKnRqC9QD+zgB9h33ifol4glhY5nwFB1XfVJq8GuscIxqM4T8rm/t7dvvo2e0T9bkQeCrcmDxGvNUuTUQEKQaOjDJwRBasuRCceLKLzMr0T4tcKJqf7BCrWV0I2p9fWjU+d7F9Sf10rXNE0Bcm7JcHuxW9XFUBIB5LEA3JN3a+tjF8bfL3Yakk2UElXFZfV0T7n3vp+nP6QVrDhMpaIjZzvCxEUAIInguz99+n1s/pZd9mqydNx8beENVB+E0ODE74h0mi0g+2PYYtFOMn1z9K8NTMzzhzRr3WqlWrFv9Sy1hy3Hnnnfzxj3/E55s778wmKiUJSgCWbB0r7iil+4CPzj/NTWYk1ZRmlH9LJDQn9hOxBCQS6E2y+SNvs5eyy3NofqpTlNjXiiP/3aapX+fuATxl8rU0GooTj8nXDJ1e0XQIZuRcELNbnmjXSv7Rioxy2cn6C8WpJ+Wk8gvB6d90ExpaOlnCMy90M3hmieTmQ3Jy2YUgo9KJJcuEu8wpIilphdYDfSPdITxlUQJdsuegN+hQ9DqxmlIsHCcRk/td517uJ7tJrvKlde7UirUfqEIxKuLShynn2zRibiemHaiZXvYtlXrSdFyHnwAKv0eNX00nKv3hnm/gDoTxbghw5vBMhY+hoaFlBcs3KGYTlRLTfK/q67OxZ5k4+F+pySpJNaXp5d8SsRiHBQfIZiAxd5+RDta8X1VkkZJ/tELrYZ3+48MMtch9w3g0TnRcznhQdDoUIZE9OBgmPBwR57n8Z7QdjtcKd6EVW56FjBqXuASbFvjbw/jb0ydtXShanu0ho8y/ZGpYzb88iy136WJeXbuWtsSit9qBotMg+aQRu4UH65IYOx9kPCh/13U6BUUD8ToWSRALysdY3xEfI11yH/blLy0dJ8FRZKbxjjLO/rlPNt7MRkgk5uRhFyMohf1w4D/bptpPK/s2Wz1pOqpjIRqJ8AdM+PSqvzadqPTsfd8iazjI+FaFU/umFP5bz6jXKi9PX4VfSaQZ+e3o6KC0VE2wxrqrUrbZsP/WGQQlUElKl3ii9EbgpbH5pa+SJCXbkakNbdXVNgZaAwylkTNLEpUWK/M2H8rfkk3e6gxOP3dOpDpTcV0eeWu8nHyynYHDwiNwy/irYdOn69DpFc2KQ1JsfaSBRDwhvt6a91cS8o9z/DFZoGHrIw3EInF2azw9J8XWRxoYH4mw999e+8Rx9monNTeU4O8cE5GObCU2Gt5eSPsfztN3MP33vvqWQrLr3HTtHdBU6k+KpvvKcBXbOPi9VgJdS6gjv4wZ2PSpOhKJBHv+Wcb43vRgHSQSvPJ1bcFBxaIu4ukQlAAaGiP090FvrxrwThKVFiMpuZ6qI26IMfrWme/sCnsn76jdiQIkgMS09TsQCOCsVNfcpUwCLyN9JImDI+fmT5Red98HZhCUANa+MwejScfu/1hYMjZJUkomzbJWOvFUOmh5Is3TTBc4bjY9WEcilph7+nIRbPxkLYlYQqwGsoy/Hrz1NupuLmPghF984kcLKrfnk7sig85d/XT8Nn2iTPZaFyUX5XDsx60EB9Pf4K56dwWOAiv7v32a4PnXfu3e8LEajA6DZuUZKTY9WIfeJFdmrd9RjN6q58h/tYn6bf1MA6CdBCTF1s80EAlFeeUry3PE3wq56z1UXltAx5976fxT+goQBZdkUnZZLm1/7BGRlFJhMYISQNYKG55yBy1PTc0rSaLSQiSla7tC5Efgf3IgOIvE3vaOT0/6XWOz1m9XUQeJhOqDWa1LF2xdRnoIhUJYrVYUBU62py5jcP9ld8wgKAFggS0fqWLozBgnHp/fh5okKU3znyquz8N3enRJSEN5m72UX5XHmd+d5/zL6QdECy7OpPTSXFp+fW7J1GqWMRfrP1qN0WoQK0VpRbLEuvR6jfeUEh2LclKgCAqqAmk0HFsyEtfWRxrUk9ZCYoYWWHIsrHt/Jf72MQ7/sC39fh4d9beX0/FSLwOH0o95FV2WRcmlOXS/MsAZDSoJUlTfWEB2o4dj/3NmSchNy0iN9R+pRtEr4j3yho/VoOgV8Z58DtI8FFh5Qx5DLVPrXpKotBhJ6Vb8hICnmJlbsq3vZ/91n5/0vVo6Zq7fNSXnURRlWU3pdQqj0Ug0GmVfcybmaaS16fjEm+6aQVACWHVvIWaPgT1fXZh0lCQpJWJqct1dZSWz2kWrNB+gMfa17v5qUGDfV2VrzdoPVaEoilgNZBl/PZizzax774Ry0xOvPQmoYIuXsqvz6Hy5T6Qa5K6yUXZ5Lid+2UW4L311lpqbCslu9HDksTMMt7z25OtV7y7HnmddMsLYuo9WY3YYxder2JaHxWXi2E/k6mCKXieuRqQVmz5VSzQcF88ty/jrwVVuoWFHOWf/3CtSQcuod1C7vVjcLxUWIygBuCsseModtP9uKi6XJCotRFLaGAtQQYxfY8Kvn7k+u9b188pbvzDpex1rL5j829rqLsbH4ejRozQ0NKT1PdJWUkpHnqn/rIfZZwT6sfGEb/HPH6oxUTD9dK4NvCUm7F49Q62Lb8YUm5VYT+9kX4sNQgJF3NZfddMqLJUAqooICVUSTIKa24rIqnHRubOPjt+lv/DkrHVRcmkuxx4/KyY8ZNTbGDq+NCd+MlfYyWzIoPl/ZImrDR+vwWgziBeQcX8Eg0mu3KQVo91BYmE5e9SabcacIZcMDA6EGdWQJNv4yVoCfWFxOTstsGbBqvfU03NoUHQaaqxzjJAvTO8R2SnSrGo7JqcRb51bRFIaPOHDXWij/+TSKD4F+kM48q0EhNL6az5YidUrl4bO35yBNctM69PyerZaYCuxQSBEoF+24V/xzjISsQRHhHKPWz/bQCIhJAgqiia1J4DdXzqh1jQXlkSzFeoInIuTCIWJrq9Js1cEbyY4XdA7sZz5KxS2Xffyoj39N0wRGG39Af7xmqdTN8yfUqJ65J21AMtKSq9j6PV6YrEYTz07yg1vTn0KWh+Z++7t/356JA6dy0FscGruLb86D6PNkD5JaZqikrXQSvCcLCi9W+MpL5VxJ++mlSjReE8piViCY0I1RKtXBybTkpBcACq25TPSPSYq2wZqksbfGRART4JDcWLjccb6l6a4+MAxH+4iO7409gTTkd2Qgdljwl5kJziYft/zhwcpMGcSHJY9u4pt+WQ3ubWPbSGa7ivDmmESl1MbOOXHmpE6CLwQ3OUOdBrUJnwdS3uQIxKIEvTJS81s/WwDwSF5acfqmwrpOzyouYSlFK4Kq1iJzF5qpe6GQs78totBwX6wYls+eWszOLe7X6akNbEti4RlClNdfx7QRE6yeiEYZFJIOR2CEkDppTmYnIYZJCWcdo4/nLlgv+cKpohJ1kE/Rz/x+ZQVy22FE+uGAoFD2Xi9mQwPDy8TlF6nsFjU57pgHipVEjYEu760uNqrYjCSiMycm/JWe/GUOBg8JlSLtYDFgkgR5PzLgyJyUhKRQFQ1ivAQbPEVWRRfnMO5l/tpfyH9+cNTbaX86gJO/uocgU7ZOuwstYjKRl0I3JUWshozOP2ULI646n0V2LIs4tJRgf4wFvfSHSwZOqONOOcqthOPyskAwx1jBIfkfuW6+6sJDoTFfrpWbHyglt5DPtqeTz/mFfKHGO0Jcv6wLOZlK7BhzTKTXe8RkZSG20YJ1LsZPLU0pMKxvjAZoRihYdn4bLynFHeJXRz/zVzpxJlnEz2DC4ElxwLj44R8snFdd2sRil4Rq2FpJQgm4qBoEGPQWpbZkmchlNznClTLc1dmkFE+te4pJhNnPjZ/kiyJx6eRkyxBH/u+/I/oEglmO2CVpROxUAV+8E2VsLQc83r9wuFw4PP5+NF/hXjX++fZn6ZQGXn1h+mRRhSTiXhwat9UcXU+1kyzjKQ04Rias80iEgigmQibiCdIaAh6bfrkBFHii7L5o/rGQhQdNAsJxmaXDsxGsV20ovDiTEJDEQaOymJeWx6ux98xxlFB1YqwP8z4WJRA39L4lUNtY2R3B/G1yGJeGVVO7PlWMkqtnBc8h75jw5jdRkK9su9XcJGXgo1ZHP5eM2HZY9CE6hsLcRZaxZU1+g75cGqoRuStdWmqDjTYPKKpzLVWhAcjjI/J1bw3f7qe0GCYg98WlC0GSq/NYajZvyTqYACuUjP+dtm8Ys4yU7e9gPY/9eJrTj8GmbfeQ8WbC+jcLSMI6ox6iCeIjcv8w6Hjo7x8XE5mM7sgHAYmzJJurrLk4mwchVba/9I/1ddkpPUjtQv226O3sWf69YN+9n3xH9EnEijKzPWpvnxCeEgH7owsBgYG0yYogYCklC6GG6K4j6X62AAwv7xmkqCUcNhQRgMQgK6jAXoOpxdgjvX2q954Is6Wj9QQCUTZ+1XZy6YFHc/30qGh9EHfoUHc+TaGhUH7jBqXSsyodYhISivfU44z38aJJ9pEik9rP1SJ1WvhpX8+qj7CNFFxVSFGpwHpVifkG9dUe/vAN7XJZm58oBadUc5yPaSxzqjWE/Jav5/BosfqkZOitECx2dAZFOxZ6ZfEArVM3L6vyUt4dfxORvBLYuDwGAOH5ZuEhrtK8JQ7OPitEyJCTuvT5zURhkK+CGaX/NmVXJ6L3qgTX3PLw/UoekU8RlfdXYqik/dzFtg0qfeM9gSJRwT9JoIlezSqKSQlgqVYeVsx4ZEorz41junsEOPFGWn1O30aghNz7dkrVWf6mac3L0xUmrW8Nv32LApMspmnY/rvdx5Rgzy1tQs7Jcv42yErK4uenh7+4QvD85KUQFXqMh6Ry1ZPJygBnHq6E6NdULZi4h1e/5FqTC7jkqnAaD3l6T8X0FQGRGvJqTV/V0c8mhAHiLY+0kBsPC4muuStzSAz4BSTlGLjcULDMkJH8HxIExHHVWGl6Y5yeo4McfrJ9JN6vuYg+5vlvsKxH2mTc9daBs+WbUZv0kF6VacvGNYME0abfDvX8gttpVi0ngo79qi257D50/VEx6LikpBaky3RcIywL7J4w+mwQk6jB0eOhQPN6fvr9lIrq++tYPjsmIggmLvJQ9W1hQw2+zn+0/STXjmNbsweE64Sp4ikNNw+grfKISb3L3Upyab7ajDaJ9TIFIVENDJZYmshHPtJG95Gz+TPutJCAOo/P7AwUSkYggkFpWsPnUDHIn5XAnhuHIvFgV6/dAdrlvHaQF+UT6xTfsBtNkEJoO235xk87hN/1tZPNjDuj7BXy+lZCyCIL/ftH6Zvv5zsMHBqlOwGD/6zspiXu8w5Qcxw0S4gKdXeVEhWo4fmpztF99t4TymeMgcHvn9aRIoqu6oAR56V0893i+wZHhrHZJev3VrLwa/9QBVGp4HdX5b5bScEa8x0SMlXSRzVWILH5JCX3NMMixpjs2ULid4hePU/5fHpwWOj7Dwmt+dIe4iDGkoLlW/LJW91Jkd+1Coi+3X9ZYAuDSfBg0Nh7Lmy+CFAxVX5GB0GMUlp4wO1GCx6MSlq1TvK0Bt04oMungptJVyGzoxqOhSw1Iora99TQWhwnP3faFEdnTSJSid/2Uk0oPrb+gnyUPm/HlmEqBRCXbxUXNbcoibJmEssVhJTvtePflQMnKeysjLt77WMpUVjYyMvvfQSv/xZiHe9f/7yiEpxAYmz8j3sdIISwKlfncMsyZNMDLAV7yzDWWhbspiX1jzQYMsoOqN8/siscaK+OTKS0poP1pKIxcUlpLY8XE80HOeVr8j6lV6eS3hUTlKKBGIEh4SHmMKw99/kcQWzS8eaD9bSd9jH6afT3y8Eu8O8qiHf2PZsD20aVBOHjo8ydFxOSLdnWzDZDGA2M8l4eA1hzzRjcsp9vY7fy3OGAHs1KvZrLXe8/uM1xAIxcUnIg9/VxnuIjEUJDMifW+GGLDKKHbLrmuGiBxsZPjPCkUfT38e4yi2suLuS/uPDIuX+jDIr9nwrngqHiKQU6AsSOB/C1yybV3zNY5pLbGpB/Y4KbDkW1Y9VFBKxGEoasaXmJ8+SUeuZfF11bjUfWPHVkwsTlWJhmKagtLX1DMZ4PLXvFZ/wveJgsVjJyEgvD5rEX42kVP7L907+ezZR6Qa3H71CWopK09G5W0BQSkLREegPMSAIpCaiKutw6yMNxMJx8eYdG9g8FhFpaOh4gFeOyye9kz/VVlLj3Mu9FG7OIdAtCxD1Hh0md4XcuWl+phN3iV3cT1LuazocFTayap3i8l2x8RiKTv79Kt+Wj96iFytFaUX9nSVExqK0CBe8pXKeAQIdAU3XsxVYqLm+gJYXzjPa+torfWWusFO4KYdDj50REe9i0TiJeIJAQMaOzVxhx5plpfNFgbQbcFzjScDmX3Zgz5PXWx84PYJNA6Gt7+gwRps82aJV3vPQdwQO+7QgibvKJpYvdda4WXFrAaM9IQ7/8Fz6ako29aRr/9kptbX0iEpGujUoyNp2l2IYseJf3QElAfbsqGX7y8ew/EkN/CStMFnyDUhcaeaVF18B4MYbb5RfdBlLgo9+9KM89NBDnG5Lrdz3tjvfN/nv6USlrAYrlZe7GTwT5NRv0k/SqCogaTIrpnmkXfsHyaqZv6TvfFj13grsuRZ2/vMxMaFDi5KIVlVBrSWqBk+NENKg5jLWE2K0W85w6fhjL/5OuWKNVtWfokuzGD0/JlKPiQTU+tkJKQ/Eq6PyhhI6d/YsiVqNp8ZKySV5nHriDEGB6MRSKFdOh1YyTuX1+Rgs+iUp1QdQe0sRYX+Etudkfno8HieaQi1uMZRek0Pv0RGxupumEjNBaP9DD0PtsncvPhIkMBCi77BP1M/fHsJ/LsC5PTK/8syvz3Pm13LS/MCRUQaOyJNe1jyLqkQmfF21liLsOeTDXWqf4fulQ1QKDsK5P/tkNwnc2wsRQjxWauHJyzfypkPH2XZAJfGl8rvC28xwu5tzD3Rg0kiAX8bfHvdffufkv2cTldbfX47BouflL8sItV275MpGAMPtYwy1yhMLWz87UQ5TWAIbC1hcFtFp60BnSE1eC9H+Qq9IeSmJrr0DGOwGRjplgffeQz4MVj3xUdnJ4FO/7sJTbBMRlABOPK5t7bXkWciud3BWGFeIRWPo43KiRMmV2ZhdRs1JFymqtxcQDcXE5cl2fX7pYl6EtMUxLB6ouqGMsy+dZ/j0a38C3V1poXBzDq3PdIjU1hIRSMTiRIRrt7vSgj3HJp7PWn91ntZfyX2TE7/owFkgj3n1HfHh0KCq0P3KABYNsbKXv6htj6WVIKhJSc6ikl5HOgMcFpZz9rcH6J+e0EuTqDRwWK5qv4UopfjZhYl2LDy3aj0J5ZfwC9X/TuV7Dd9sYtfTaszrkksuEV9zGUuDL37xi1xyySV0tqeOeX3i2nsm/z2dqOQsMtN4az4DJ0c59Uz66+LouTCj59L0E6bHvF4ZJCcQByEvo/aWIjLrXBz47mmC3TL/xFFkZlTo02gtS6Y10d776hCRgLzSiK91jMCQfD1s+U0XoX55PEgL2QggZ52H0GBIpB4TDsdJxOJEI0K7mKH2hiK69/YviVqNo8hM8cW5tP62h7BAIf3Uk11L5huCdjJO8eXZGO16Wp9ZmkojpdfmEAvF6fyjzE9PRBJEx+XvUMEWL0NtY+J5RSuhufXZLkbPy989/9kxeo/JyD/hgRD9J4bp3iuz5fm9Ps7v9Yn6APjbw5rGmTnLTHgkLObqrftwNWaXUZxr6No3SGa1a2bMKw2iUtgP51/xyW4SuIVxorFxntCrhPIXG1eRuNsJj6p+XCrfq+8eK2f/+yxGo4xYqImkdOJEgLq6qQ3BdIJSEsMNKvHHfcyAPwbzkXgLUqgQJRzqZzddqcPq0bP3v+dPsM0gKE3g1e+mv+lPEpQAQkNhRoQl1AC2fqKBWCTObuEGpP7OEkK+sKg0llao6jFyNm7ni/1icgXA8KkAw6fkhBNrFmSvyhYr5DS8vRiDVS8mKWlR8AHIafKg6BSxUtSmT9WBIk8IZlQ4SMQSYpLSGwG5a9zYc63kr8vglICkVPm2fHJXZnDyyXaROljx1lzsuVYceTYRKUorQbDqLcXozTrxe5Sz1kUinhCVsgOVAKmlrKNWwt2SjkkbrL67gjO/P7/4/DJtwc5Z66J6WxH+c4G0iZCKyUQ8FGJ8NErvEXUNSkSjaRGVdM5sjjw318FcjKjUtDKCywX/YzCAbmbQ7ZmnNwOkVFQazxhDP2aGrAAP5fwZgJHHshh5JUD2jXPXz8RzBbDSRmKi9NvDDz+86Hdaxt8Gn/70p3nooYeIplBwnU5QSiLSVApA/+l2Sre4GO1NTZCZraA0CSts+nAtg6dHOPXzBd7tWZR5reV5eg/7yDNmYLVOlOlJE6veXYGjwMr+77WKSAjeehvFF+XxqsZNrhQn/kdbgPlVoexuEp1/kvtrAJlNqkrXwBFZsrPkshwio1FeaU7fGwqeD7Hr83I1HkeZA3eJnXg0B19z+iftc9d7qHxzAR0v9dH5Yvq+Zf7aLJyFNlzVHoJLqAazVMhZ4dFE0t/0YB3x8biYHJVZ5yIeSYhJSnuEJzKTKNyURVati33/LvDzrVCwPpOuvQNiYo2Wdy84iLisHKjv0OHvaVN01YLyt+ZhsOo5JZT+X3VvGToNZKOBU36xKiswsXec+44vRlTa+PEKRrtDnNg5932o/7y6rqVSVBrRw+hEzv/Mm78Lb4bEgUKUt86109hvs6Heys7d6sCKRIQszWUsKQwGA9FolN8+F+Tqa6eS2dMJSknoi/IBiHV2M9oVwuxKvU9IpaCURN1txbiKbWKVSK2qMyPnAoz1a4h5PdBANBwTkzkrb8gnGoxpIh1JMdIe0mSXvoPD9B2UK0UFOkPicnSgElY8dV7OHxwUEZwabizCkmUSk5RelRzymYb89ZnoTTpxImr9R6rRGXXiMZ3V6CERi4tJSm8EOCvcuMvsjI9mMnw6/fW04OJMSi/LpeWZc6Ixmr8+m4xKJ/YSJyFf+vGktud7NJVQq9pWjNltFJOUMurUg61DJ2RE75H2kKayjlrHllY1Bq1YcW8ZZ3f24DuVvkNqybOw8t5K/O1jHP5hW/r9LDDWG6L3sHwOPPLfKa6zCFGp+m35ZFQ72ffDuQp05f96BCClotIgenKI0wUcf983J36bT+IDIZQ3zY1ltvzOA9UWQj9Tk9Nf+tKX0vhGy/hb4OKLLwZgPIWrNJ2glIRSXADAyNkuwv4oI92p54LZCkrTsf6j1fhOj9LyqwVUbmbFvAYO+xk4LK9t1XvEh9llJC50/2tuKiS70cORx86IDty6Ss0Ubsnl+BMdSyFyQ6uGQzAAx3+q7WB27z6fpn7uKhuKThGpqwBUvaWA8HBERuwII1aWArB6zWTVu1H0Cv4z6ccSXeUWGnaU07mzT0SQ8da78NY4GW4fpUtAUnqjIH+9F71JJyYprbu/GhJyMk/+2kwSUTlJSStpqOyqPHIHwhz4liymlLfew1CzT1yqTwv5hzBiAjSopJqTGg91aEHBRV4sHpN4rDTdVYLZYRQfYOg76sNVKCfN9+4fpjeFWvBiRKW1H6xgtDtIy+/mzn8VX1XnqlSKSoMohCeoSCfe/a2J3+aSeJcH5fK5c9SxP2TizwT+O0g8LjtsKiIpORwORkdH2f6uHk68VJ52vz+Myk/XAxhsCjrD/M5tKoISQPEVGeQ0uNn3jTZVY2oeJGZl/fZ/XZuUor8zwFivnEmYUeEgEbWLSUpbPlNPZDQqlvZed38VvvYxTv9SIE1ug1V3V9D76hDdL6dfPz1zhZ3q60po/9N5ul9Kv1/19nKcBTbGegMi4knb77txlcxfCmde2BCTVQAO/6SduLzsJ4m4vFwMwMEftkFAQzDxkQaiwZjm0jgSZNTbqL+5jOG2UY4KJPzOPNND3/ERRs/LnkEipqoxhMdkNj34aCuZlXbxM7dlqZkISak3gNbnz+Euk9c/r3xLIYpOoe+gbKHb+EAt4ZGIWE581fsq6D82zDkh0WDDx2voPjAoImHZSmysvreM/ma/iBxVtCkLe66Vwk1ZDJ9Kf4yNdoww1hukc1d6wfFkibfA+QT7vjkz0L0YUUmXm031pQYsLj2Hn57r5C9EVLKYQWdgDkFpMURX9zOyeq79vfcOM3sFVYDELd1wspKsrKzlRNn/XxGEfd/TEIQNgt6oW7hM6Dxlz1a9r4LRriCnFwr0zEL3rkG6NSgIdL7cS8GmbBmzCSjYlIOjwEpmk0NEyKm7rRhvtZOdX5EpPhVdkU1uk1tGlEBVKPJUOMSqPKveW4HRqhf7h7XbS4hHEwwckZGHeg4OMdQiD2hbvep6GhxMfz3t2+8nFjzDYJts7Y6GoqrvJSzzd/yXZ7HnWBlrl42xpvvKcBXbOPCNE6LvpxUbH6jFYNaLT+Ac/I+TYBWWKmHC94rKfdkD39eWINWimAZwfv8QvlbZ2Mxf7aX8ijxcBTYRwbDoimwKN2Zy5KftovFScEkm3iqnqNQbQOX2fJx5Vg7+h8zPW/+RagxWg7j8ZN7qDBSdwimh9P/5g0PYsuRjTFMpQkVh/YerOLd3gO5dc/edCxGV9EYdRo8ZkKne/aIoBZHq7u6Ufpfltn5Ch4r5+y8VA33LJUde56ioqKC5uZkv/qN/BklpMZz4mbz8G4DJoUdvlqvS5q7PoHBDJvu/JfMxtASKAQab/QQ0JDByV2QQj8XFJKVNn6ojMhYVKzGtfFcZI+eCYjJCw10lDJwYoWdv+rErW5GFph2ldL7UJyJnlFxZSHaTh9h4TFSWrvW35/CUa4utalFYeTUVASENxMcTqua/EAe+1wohuQLplocbiAajmtUlJbB4dKz9cB2+1lGOCZSv+/YPM9YbJiAlCMYSqhpDSBZ8PPHLs3iKrSKSC6jfDyDkkz2/07/pJKNSPjZr3lasqYza2g9WEQlExfNZw50l+FpHxWSqNR+opOewT1bSzgJbPtHAwPFhmn+Rvg/lbXDgKrWTP56F75TgwEsohK9tlC6h0mbIp60UYfmbc3EUWFMfAlyAqGTxmDGY9GIFupNYOUmKNfne1L5X6d3DtL9sITc3l0AggMUiJ8Av4/WPAwKRgukwWPRYPAuoPMwT82q4vYSxwRDtz6Xv02gtqXV+bz96o16kYAmQvcKLt8ZJTpNHROgpvTaH/LWZHPhOq0hVJ2edh4J1Xg4KD9rlrPPgrXaKlePqdhRjzTCJiRn1t5RqKkt39i99mtTKzS51PQ37019Pg91hDj96Gr9QQCMeUX2FeFS2dnf8qY++I36xEk/V9fnkrMrg0A9Oi5W+tGDNByoxe0y8/AVZHOPVb58Cs7xMXDwaBw2hvAPfbVVzOkJY880EB+VqPGf/0sdIlyw+6iq3UPnWQvpK7TQLDqFlrnBRfnUezU92iFS+Mle4yG50c+KJs6LvV3RZFhkVDrGft/Jd5Vi9JnYLD9UUbsrCaDWISUrdrwxgz5WTjTSR3xWFle8so/dQarWohYhKRqses8cMyOay3+nn4Vq8M7XvVfHOId5WvRoYEMe8RK/OF7/4RT70oQ/R0qoqRKRSUJoNtfTbOBfZo/SEDLTEppKvqVSUpuPg0zEgNudLL4bsWhcmpwFsQEC3IFFpOnLWuijami0mK0mDy0mcfLKdgdPyhS4RV0tPSWF2m8is1nMaQQAtAPYcCwUbM0UkJZ1eh86g4CiwAen3a/9jDwUbMsV26d3vp3e/nNG+4b01GJ0G8SlfrWXJtJKFAh3arhcNxgj0vfYSkQDh4TixcJyRLnkySYs9W58+T+vTGhj7AUQEuCRWvLsGvVF+Irzv4IhYDQng3Mv9GKzygLXBokc8aaK+5ya7QURSshVYMNoNZNe6RSQls10l7I37ZQSZzhf7GekMMHxugfGSIhgS6E9w8D8XT5Aqs8pv1NyYi96ocPzx9MaZLjcbAHeBEZ1e/hCecC4e2Hvm6c1z1JRsL5YSKO3joc3Pzfi9fmJKTADja/WY9qvrqeJPMBYI4PP5KC4uFt/nMv42CAaDWK3WlApKsxFpKiUv0kNOnZXjv5y5Bs+rojSBnZ+Tq9yAOoeYnUYRSQmgfkcx4ZEorc+k308tPyQP9Jx+qg2dU048GR9ViS5Wr1Wk3JRd78LsMYEVEbkpf70Xo12+uzW7jOhN8nIe5w8MEfLLk0LSZ53Emg/WEQlEeeUrsmTSoAaVwIEjo+wSkq8ACCIeJwAjXQFsWWaCwdeeoATqyWerW15+QiVQyb+fVj9WWnYNACusuKuCQF9IHISUzCdJ+E4O0l9ko2OnjKztyLGgN+nEhxcK12didMjf88wqlyb/MDYeR2eUj8td/3ocb5m8pIpUNSuJ1e+vpOOP3em/74qCtdCKyW0ku8GdkqS0EHb/dPGxWf/5gRlqSk2DIXLC8HsPnLnxR1O3MqDaNwEkLjKhvDSOAugH1ERHZ2cPiqLwwAMPiO5xGUuLRx99lE2bNnH2rPrcUikozUay9Fv123Lxdwbo2Te191tIRQng0PfaNN1nTqMbS5YJS56F0Pn09/ueaisll+Vx6Lsy8qjWEmXHHj+D76x8DYhH48Q0lD5wFNgwu0xikpKn3IHFbRKRlOJRde8tLR/VsXOARDzBiJBM6zsVFJNOQCWxO/KsvPQPR0X9JONqOqTEuQu9Xnh4XE3uLAFCoTiR0ag4KQRoUt3q2jWorSRkCE1jpem+SkxOozjmpXVstv+xF4tLnkA0OQ2a9jyeCge2LLPMphawZpnJbnCLSEoWj4VELM74qMxBHDw2yoHvnxaXnwz5tCnslV2Ti9lp4KRQMTOr3q1pv3rsF4vbsPxfj8xRU7qMEVox8vz7vj/j90qXuk4kgMSbLCgvhFAAY5e6hvt8PnJzc8X3uYylhU6nIx6P09cXJjvbnFJBaTaU4gKcugFyV7o49auZCd+FVJRAeylGd7kDW65FRFICqNiWR3Q8RscL6Sem/e1h/O1ytaHTL3TTc3BQTB6J+KMkonHMdggLuI7ZdS5sORa17JGA3FSwzostR04etGWaMWnYQ5/9cy+xkNyvPPsHbUp66+6vIzwaYd+/yQ4QainzNtoZ1qTcRBgxQQlgtDuIu8xBZGnSjYx2B9VJXgiVICb/fge+qU3EJNynzRdd865KAudD4nJjWsamvytE994Beg/JYiaOAgsmmwFFL/O9CjZ4cRbaxI8hu8GNNVN+4C0WjhGLyAfLK99oxlUgn4+6XtJWtr3p7hI6dw+kr+ymKGAGR76VRDQhVrV65TuL74srvnpyhppSaSxMLjH2oOfEbN+rVfVtE0Biuw3lyYB6OK81zsmYeq0771w8hjLjMxOJeejB83WYSADHuqvSIikBEAhwnx/Go/CMX03CLkZQmg6TDSK9MzeB86koARPkpFm/m0ZUmq2glMTK95TjyLOKy0flb86g+OKcJVGr+VvAXW3TVLptKZGz1kX51QW0/Oas6NkVXpJJVoNbfHKk6R1lOPOt8pIlNrB5LASErOiND9SSiCd45V9e+9NhoCowjY9E2Ct0prSg5KpsCjdn0fxUh4w8ZAObTSdWNlr1vgqsXrOYgV2+LRd7tlWsbLHu/ioiwRiHNMqsLxWsWaAgt+frBgtISq94ZxnAgqXeZhOUADY/UIGiU9j15dQO6nRFpSRBaRKp1qFpmK2mdPZKK7Z4gECaKkqTRKV+8Oysw2od5b47fzKjjbehG90I9J90g80GgQBZtcPgVFhXoufgkSgWi4WgUI1mGUsLm81GMBjkqstNPPnjvLRISgAbNkUwm2H3f3VNchEWIyglYfWqpYjmYCGXUUjESWLrZxuIRxNidY8V7yonFoqJTjG/UaAqDcVTP4PXEVa9uwLFoHDwP2Sb+MZ7Shk+GxCVXwPY/GAd/q4gxx6VBeCteRaCwyHR+Mxd76Himnxaf9dNzxKUe9vwsRqMDjlp/kKul4gnxKpbWmwJsPmhenyto+ISiCveVU7vq0P0CDbh2WtdlF+ZT/NTHfiaX9/rm1alqNc7rF5oureGM7/rpv9Q+kT93E0eqq4tZLDZz/F0TtXO9v0WWYdmqylZ6goZF5g/SVS6vT2ElTgP3PMY1unchKZW8MXhVCGTdUyrz4FHR+BQEc5Cdb0Shl+W8TdAMubV3JGXFkkpiY132YmMxtj7dXXftxhBaTosHjXJnH4HxEoUAHW3FpFZ56b56U6Rio+3wUH5VfkcffSU7D7fINCiNLTUcFdaqLmhhNbfdTMgmFuzV7vJWekRExhq3l5IRrWT3V8SJnMtYHFZxOoPaz9YhaJX2Pe11z4GBWrMKzwcWZLrZa91U3lNPqef7ZaVFtRoy/rbi3EV2cQnyQsuzsRdbOP4T2T+2sp3l5OIJERlxv4WsHgAdGKlqDcC6m4tQm/Ri9/zTZ+qUw9jCtWsgMXXoVl+mt7pxOSC8TTPFyeJSkZC3EIIj3OED9/xq5mN1p2B/hicLFJr14VCUNtJNEvhzotN/OzxMDabjbEx+UHVZSwdysvLaWtrY9NWI9/7SXZaJCWAxqv0ODL1HPhO22TposUISkmYXaQud7SQn25GUwm1zQ/Va1LxqbmpkEQCTgnU2N4oUJWG4uKSU0uN2luLMNkNYkWX6hsLGTsfFBON13+shtHuoFhhyuzSEQ7HRePTXWWj7sZi2l/s0VbKS4hV7y7HnmcVl8bSitXvVXM6B4TxSnOWmfCIXNlowydq8bWOcuoJ2ftat6OYgeN++l5N3z90lVuovq6Ylt+cE5WD/FvAUWReEsWtJYcZ1ryjko4/9zFwNP2JzFVuoemuCgZO+tMraTc75rXIOjRbTcmS72JcMESSRKVtsREyiPPJ+x7DPJsvdnEbdEfhWDGYzRAOQ8NZwnk6bK0TB/eEMS8NImQq0iYoAdhsvBIJcNQIbuHis+lWE/FYgld+bkMZTdOiqZopiysqHfrxGU2kh4wqJwarnvzNGSK1oepbCsmudbPzX44tmMxOhfyLMkRl1C4ES01Q2vhALYMtI7Q8mb7cvyXLgt6sw13qFBFdzv15QFzeClSZNEWDUsrmj9SjMyjiJJRiUFDi8uuVXJND2BemZ4+8HIsYNqi6poCuPYMiEpbBqkfRKeiNslPh695dhcVjFp8INJh1mlRupGUZkzC7TBjt8mTExk/WMtDsl5VnvAAE+0GTnqUGZK6wExyIicl6Gz5eg86gY/eXZYFSR55lMtmQCqkISgAv/3MrjrLFT8bOISiBaE4/e6WVmniAdUQ5H/fzoi59qfSHGv5Ms6kdi2nuBQeP5c/8hc1G/1mVBNXWFAR8PPzww+nf6DL+JvjABz7Av/zLv/DHv8TTJigBHDkMej1EKksxHkk/WNl4TynuEhtHftyG/4wge6sxz37ksTOakvTOfCtxDWWnNn6qlshYlAPfkG1UrYVWzHaWhPSwFGXCpqPy+ny8VU5xmQxrlhlFfohZ0ylfAJ1Bh8ku8xWsXh1r31vJaE9QREjXGXUoOgWjWbZVshZayV/tofX33ZrfCQly13sw2gx0/klW2kFn0pEQlsADWPOeCqKhGHuESS+dXsFgk6v/HP6enODtLnNgsOoxu8xIHkLV2wvwFNvFxK0LwVISlHI3ecSEO2uehTXvqqD7wCBnfp2+emnmqmyMDgPuUoeIpNSz24e/PaQS4RZDKr9OYE5daSGrrreg0ylpqSlNxyP3/IgDJ6pnEpQAjlTM/Nlqhc4qQOWuJ0+JL+ONAwlBCeD0zjEG5FVz2PKZBuKRuGyPo5FPc+KpTix/6BeTHtzldsweI96mTJGaSOmbcihYn8mB752RlyxZ6xYRqS4ES01QWvfhaobaRmj9Vfpzq8lpxugw4Cq2iUhKfQeHZcSYCRhsenQGuaO34e9qMNrlxGu9SacpxlawxUskGNP0HcWwQNmluZw/NCxSfjKa9Sh6ndieK+4ow1VkZ9/XjorIgUabHp0wvgbQ9ZcBupDHR21Z5nQLGMzAuvurGWz2i5XPtEK14dKsw+5KC+ExuULYqvdVYHIYxIqz7jIHOqP8fd395RM4SzWWQhN8Nb3Tib3QSNPNufjagpz8Zfrj7ND7vs/ps5no9SlUUPaVz/zZYoH2KgzAn1b5gV7uvffe9G90GX8TfP3rX+e6667jwF4lbYISQMsrMfSGGOPuAvCnn0OqvC6P3NUZHP/ZWYZOCBS6NebZjzzaqilJ761ykdAwua77cDWxcExcgs2cZcbsVDSp+UghKYP210DRZVnkNHnEZYSdhTYMGpT7pESVJAwmHUYNcZP1H63H3zm24OHs2VB0CopBh94iu545y0xOk4uzu/o0vxMSZNQ7MDuNnN8jy4PrzXqQm5J176tkPBBlrzA+qjfpMGl4dlJCGoCz0I7ZbcTqNTMsSEAVX55NVr1LrFR+IVhKglLmChcDh4XkEzNs/mgdXfsHRGp3mVUurFlmPOV2EUnJfybEvm+dVolwiyFVzEtgTp3bReMtORgtOvb8p6wa0efv+xHHW0vnEpQA/lI282ezGU5XYQb0RWeIxeSqdeJZVqdTu5h/8svJ35WOBcgPTLwQgQA1IwFsEz9nTPx81G0Dmw1PqZ/aQ1MqStkVqlISgM2h/pyEMw9CYzF859WSQFkrbVj0PmK9/ViyIGeNfbKtq9JGRu2UAsXmT1ay+ZMTte9sE20VHYlYDEeFjYz6qbbZq53YCiwQgEAgTs5alxpJBGwlNjJX2Ge2LbFNfe5aF8d+0cHOfzzGcFeY7NXOybaZK+xz2k5+boEFs0OduDJK1Ws4KqbuaXbbnLVTSet1H62i4qoCbFm6ybbWrIm2WboZbTPqbbir1Q9a8/5Ktj7SMNnWmsWMtu7qmXbJWevClqVj3f1VbH6ofkbb2TbMWetSbTjtu279bAObH6rHUZHChrPaTre3warHPWG3VPae3jZp747nezn5ZDvnD/nntff0Z5NRb8NRodpm3f1VlF6bPdV2ARsmv+uJx0+z8x+PzWnrrp7bNvmcrFkw0jWK/2xgQXunejZHH++g+VcdM9vOtuG0Z5O0d9GmLCquLljQ3tOfzYwxqyxsw9ljtvq6QnJXZlB2Zc6cMZu09/T7T47D8y/30vJM52S5vlT2TjW+u/YNEBwKLWjvVON739da2Pl/j81om8qGs+eIVR+ooHZH0aI2nD1mW37dyctfPT7ZNq05wqZKx3sqZj6bxeaIoiuy2PpIAw33Fs1r71Tje8W7S9nymfpJm6U7R6z/RDVbP9uQsu1Cc0TN9SWsflfFjLbpzBGKTkHRK3Pbltrn2nDS3g52ff4EO//1OJlNc+2teFSCki1PIXvF1P1m1NhwlFkZbVMTVzmr7dPmCPVnxWpBl5uNuxicBerfyrbo2HinjfzVE21dkF01+bE4C9T/TGeHSOgimC5P4IwH8KHm1nwAcXWOyI8HKIpPOZuV8QDOiZ9ffGolb+7qIxCAmqoOIlETx05MBWgOHKyjo0N9kP39Ng4crCO5TJ9uLcDtduPxeHjkkUdYxusbX/nKVwCVhW61TpRIVCJk50QA9WerLYI3c6p8YlZWBBIwOmIEIniuLCAWVDd01kIrmU1T75C3zoa1cCLTaoXRvgAh3ziRcbDmmdW2iQQkEnjrbdhLp7KyWSudqnIFUPqWbLY+0kDRpeq489RY57S1eicu49WpfVGT9J4aK66KxduCqjziqrCy8yvHePmLxyfaTsz7Xma0tZda8dTM/FydoqA36MA6t6132pyV2eTAmmeZtMuad5ZTe2PppA3ntJ1mw+l22fqZBtbeP1WL2Vtvm7etNc8y+VlbHq6n4Z7iee1tzbPMuH9PjZWGe4rZ+kgDWSudadkwiYxqx2TZqdk2dFXMtWHS3q9++zinnp46+ZHK3tNtmPzc2luLWPm+sgXtPeO7Tth75+eOcfA/Whe0d9KGSVhzLYz2Bzm/bzAtGybt3b1rkOanzjJwpD+lDecbs5XX5JK/zkvJpVPk1dn2XmjMLmTvVOO74pp8Si7NWdDe022YRMsznRz+Ufu89p5uw+ljdrhjjOFzo/Pae745Yuf/Pcbp35yf197Tbah+Vx2lb81hzQcrsRZaRXNE78Ehjvz4zKT6UrpzhKfYjsllnNeG880Rmz9dz5aH61OO2RltZ43ZTQ/Wsfr9lQvaO9X43vrZBpruK1vQ3sm2yfv31tuouraQle8vn9F2sTnCUWACBUxuvWjMDrw6wM5/PEbXS92Lzsmz7R08ryp1LTgn25QZ33XzQ3Vs/GTttLb2lDZMRCNYc3RkXVoIwFBXhMBIdNIOAJllTNnQO/HzBDb/YIBn636J1Qpr6k6x50g5XQNq43Pnnew5MmXfw80FHD+dB6iCSje+p4B4PE5T08zyJct4fcJuV/2k0/EXJn/nzAd7zlSbjFIwTgxJi1P9OUlQcq3Nx1EwFWrzNjiweNSfLR7158nPLbUw1hNgsNk/py2WmW1tRRbclVPJ5I0P1LLpwbqZbZP3lGfBUz1tra+zY8mzQAhC/tCcthl1U76hp9qqtp32uWd+18POfzzGYPPYnLa2oql7mvG5ORZMHgPoFOx5RtyVljltVWUTsHh0M77ryveWUXNd0eR3mNl2rg2Tdmm4s4Stn2mY196zbehtcGDJsbDy3eVs/GTtnLZzbJgz0y6bP13Hpk/VzW/vaW2n29vsMeIpccxr7+k2TNq77+AwRx9rpWfaSesZbWfZ0F1pwVlqwZJnYdX7Kih+U9a89naWWmYQFbwNDlqf7mTX544taO9JG06zt+/sKEMtIwvae8Z3ncDR/+2g+ZdTMa9U9k41vsuuzKPyzflp2TBp74XG7GwbTm9btDWTws1ZVFyVM6+9Z9pF/ffgcR8nn+iYLCeYyt6pxuz5/UOM9gQwZ6ZuO98cceh7bez6/LG0bZi0d8N9JVTfWJCy7UJzRPNTnez+2gmxvc1uI56a+e2dao7wNjjY+kgDdXcUzWvvVGO29rZCNn9afVcXmpNnj9k1H65ky8MN89p7vjmi9u2lrH1PxeJz8vTPtYDeoEOnUxadk2eP791fPsGurxxLacPF5ogkSXOhOXn6mC3Y4mXrZxsouipzXnu7Ky2TijRZ67KxeCAWiRAcjDA6rTyjNU+Hq2QqA5ZRY8Ey4ZeVf+sIj132NKEQVBYPEIvpOdJSMNn21eYiOs+rN+zzWThwogSfT/2sti4PDocDp9PJN7/5TZbx+sa2bdsAiEajmJNhZT2485kkGZhd4Mqb6uOa8MkCg2obz8YC4nE1fmvOMuOumnrfXGUWrPlT4yzQH2bsfJDQcARzlhlPzVTMy1VqntHWU2OfvKecDS62PFxP0WVqzMtVasZRlLqt2aVTPxc1Se8oStVWN/ndkm0BrPlmXKVmXv634+z+8km1bdZEX3OKtuVT77y7yqYedDcoU22TXbPntjVnT33uuvdVUndT6WRbd9XUXsxVbpnRdvrnbn6wjlUfqJjRdrYNJ+9hwi5mF2z6VC21txbOa+/pNgRVkaXy+jy2fraBnHWeBW3oKFJtmERmnRNLhgnM89t7xj1M2HvvN5s58cTZmW1n23D2szFD2Ztzqb+reEF7z7BLlmrvl790gsPfb1vYhskxm7R3qRlfxyhdrwwuasPpY9bXPMaJn3fQf2hgXnunGrPFW7yUXJpDycR7kMre6YzvBW04AXO2mepthVS8KX9xG84as6eePsuRpPL+PPaetMs0e/cdG2bozOiC9k41Zl/+wnFaftU5r72nt03aO39zBiveWTZp63TniMHToxx59PQkcSvdOcJTYceaaU45ZpM2TDVm13+shs2frl/Q3qnmiPUfq2HFO8sWtHfy/qfPEVseqqfh9pIF7Z1sm/yu5iwzdTcWs+I9ZWnZMDlmXXlmUBTMLlPaY9ZTY2e0J6zGOV/oXnROnm3vpFLXgnOyRZlhlw0fq2HDx6unbFiW2oaJWAyT10DGKjUmPdASYLQ/jGWavoK7zDzJxzG71J+TWPV4C7+59n8xm6G+op0jLYX0DU+8G/12jrQUEp5w486czeLMWXUeCIfh/v83j1gsRmNjI1KISUrvfa+qoJQZnmJEXTECb5rghlTE4aIxuHKCiPwmP2wdg5qRAPedD3DFCNRfohrf5oDKDWbqLlM9jupL9VRuME86IA2XmrDY9Zx6Sf25coOZ2huLUIwGarcXU/XmAmzFqpEabsqn7sYpZ1XRKyQU1SFuuqWQqjcXkL1SdVBW7Cil/uayybbV1xfTdIe6CG/+aB3V1xVTtEk18Mo7S6ndXjqj7Yod6ktSdU0B1dcVU3Gl6iWtuL2E6uuLJ9vWbi9l5Z1q35KLc6i+rpjaG4rUe7qzFFeRg53/9xhDxwPUbi9lxQ61be5GN9XXFdN0i/pz444SqrYVTX6u2WkiHo8TCMRxV9uovq6Y6hvVoGj9HRUz2tbfVEbjbep3HQ9FUBSF+h1qsqx+RyXV1xVPEhIabyuj/qYpu1RtK6L+jooJYgBUX1c8SQhZcftMG1ZtK6Jxwi5Nt5RSfV0x48EIgb4QK3bMtWHThF1qbyii+rpiSi7OmbQ3wL6vtUzZe2JSqrgyj+rriqm6pmDiOc5v76JNWVRfV0z9dvXvTXeUzmhbf3MZK3aU4i53YHabKNqUQ9OEnRrvqpppw5vLaLhV/VxbiWrv2psqJu1dfd3U5zbeNmVvbKrN6naobeturcRT6qL1eZW52HDrXBs23KU+m6obyqi+rniSjDF7zFZtK5ocsw1vL6H6umLyL1LLRzXdNmXvzt39KHpl0t7V2wqpvq6Y8ivUmtwr7iiZ8Wxqt5ey4g7V3jqTTh1b29RAftOdpXPs3XSb2jf/ogxy6jyEhsO0/b6XpjtK59gwOb4zV9jVz92ujtmGuyrnt3eWeg91t6p2qdsxYW8bdL80hMVtnrI3qr3r71DtXXuT2jZJSkll78Z7qiZspto7SbJJNUfYsyx4K5zUby9+7eeIAERDMcwO04y2i80R4aEwsXAcT4mLFberf0tnjnDm2yeVhqqvK057jjDZjCQmCgNX31ie9hwRHh1HURRyN7pBUdKeI5IlNefaW7VpxZV5VG8rouoa1XldcVvx1PsZgNrtJaycGN9FmzKp3lZE3VvVd6Hx1jKq3jKlPFS3PZ8VtxaQUWMjZ7WdqmvzabpJfRcadpRReY36TBP+EWovtVF3mbq+6IwJFEUhs1B9dtVXmqnYPOWs1F9ho/4KG+FSNfKyiSiXE6VXZyMC1ANJN/8yolzCVHnSjUS5auLnrfooL++9lB8+9i5+8OPbeeHFt/DHv1w92fblvZfwwh/eAsCfd17Oy3sv5dDRVQA89fxb6O7uRq/XcKRgGX8z6HQ66ptUIlJ9A9TVQ4E6JFm9Bhqm+YB1DbBqDazfGOGiS9S25ZdPzEN3FFO7vWSq7c2lrLwz+V5kUbQ+G/+5AMFzQZruKJnVdmouz13voXZ7CfVvU9+xnLqZJQwbbi1n5Z1lgEpGqN1eQuXb1J/r76igZqJf9loXDbeV03SHOkdZveq7WnPLxFx+a5l6DxMxpqbby2m6vXxSMaN2ewl1t6t9q24sp3Z7yWTSfuWdZTTcOpU0rnlbMdFQjL1fPUXDTaXUbi8hOznv315G3bT5rfbGEpom5ovqtxaiKAr+TlWpceVdpdTdPLNt0lcpvyKP2u0llF8xMUcoCSzuKYe/7uYyVt414atsyKJ2ewm11034hneUUHtjCcFzQRSdgqfUyYrb1etkrXRSu72EhomgUeNtxZM2TNrbXeQgGoyhdxqo3V5C1cS8X3d7+YznOGlDACuYHSYCE/XTa26poHZ7ySQhoXHHXBsm19nKG9RnkyQdpLJ304Rd6t+mjrvc9R68VU4cObY5NmyaGIdVbymgdnsJJRepvuGKO0vm2nuibeklOerYunpi3r+rlNobZ45Zi9NEz14f+Vu8qr2vn7D37SVzbLjiDvU6mU0OareXUHHdhK91Z8Wcto071LbWPIs6Zt9ewennewgHxyneNJXJnmFvJsbsberPNW9X7Z3ckaWyd+Od6ppcvk0ds0lCy4rby1B0Ch1/6p1j79rri6jdXkL+FnWtSTlmJ8Zh5dX51G4voezS3El7z7ZhcswOdwTIqvJQ9RbVF0+O2elt55sjUtl7oTmicF0WVq8ZR66RhlunbJj2HDHd3mnMEUkFpcbb1HtMd44I9IWIRePUbi+haEPW/PaeNUfoDAqKTvUN57N3qjkCBSJjqi9Qd1NZWnNEsCdAIpHA7lX34PZSa1pzRN9+Pzu/coysag+1E3Z6reeIDQ/UqPbeMdeGk3PEm/OpfVsxJVvVSIuiU5VSJ9tuL2HFHep3L704h9q3FVN5VT6KXk/T7aVUb1Xvp+UvMWwuA01XqXbJq4PqrTaq16ukzfrLzFRtmUpw1F1m5/HnruL/fvt2nt+5iude2sqzf7oIgJ/99kqee2nLZNsnX7yMX/z+cgB6B730TMyxV1895ast4/WLr3/96wC4M6f2YnVX2Km/St3nWJxQc6mDqsvUsVNxsYWaSx04C2HDHXYa32Sn6c6pZE39zaXU3loGqPv8+ptLJ5PIjbeXYc+1cWpCRbruphIaJvrWva2Y+ptLJ5O/K+4oo3HH1OcarHqUCcG/6jcXUH9zKXmrp+b9htum3rf6W0on56ENH6qh/uZSSi+ZWGfvKKH+lqn9VcNt5ZPzUMEaL/U3l1I5sb9qur14Ztvpa+dKJ/U3l1I3EfNquKWI7DoPuz53jIFDIzTsqGDlXWpbZ6lF/dwbJvZ8t6l2ScKebSMRTxDqC4JFtWHNxBxc/Xa1bTKZ3nRHOQ23qXaJjEVBB7UTa3TFdSXU31w6mVxfeVcZDdNsWHdTCY23FavKziYd9TeXkr3aPWnv2TZsun1i3/mmPOpvLiUSijJ2PpTa3hN+ZMnWbOpvLp1aZyeeQ/I0f8Nt5ay8W/3ueatVe1dPrLONO2bau3FHxaS9M+rsqr0nYl4Nt1dQd9PUXN6wo+L/Y++/w9u6rnR//INGVIIgQYAdADsJkuqV7j2WXGRbtmTLceKJ067Te7F/33nunZLcO5nMnclMkplJMimTSeIkTrOT2HFix7Z6rxQpUewNlSCJwgL8/jhoFNvZSKxxcvU+j55HJPcGznnPOmvvvfa716LlYRf5pVqMdh2OrSXU3SP1bXxoPt+te2poTfruFN+Nye+tvy/Jtz1js5dz2JwcZ6vvrMLeXMjwYUnk3bZncb4BGrZVSHyvk/hufXgRDpN+v/qWEpp3OqnaWpz8XAfu3VLbnldGUWqUtD2aWc8073RSfYvEd+sjVQvsuzUZK1FqFJJtbZMWVS27qhZwmLJZS70e57WlhANRul8ao2l39aJ8gyTwaN7ppP4+6eeGnU6J7+Q+ROsj1bJ8hOf4OPpC7QIO5fqI5gedtCRjJXJ8hKXKhLXRjOv6kiviI6L+afRZ6yQ5PmIuNsvM5CyF1eb0+lGOj7DWF6BQKYmORGl6wEFjMo64ko/QW7SglGJeTfdUyvYRYU8UhUJB+Qbrknwv5iOO/vMF4rOJhXzL8RFRMR/RsruGtsdqsK7KR1cq8S3LR6ilA4TWBomHJX1EMsbYcGcxDXeXEB2DWGiWqvWFWJKbcq33l9F8b2bnrOHOYprukdbRdbfZ+cUr1/GFbz/EP//XXfzoxZv4yUs3ptv+7HfX8/1f3wTA74+t4hevXMfBs9I88qvfvYPh4WHU6pwLiFzFfwMUCgW1yel0RTM0X6+lXHqkNF+vofm6zLys+YY83DdocN+sYsO9Gpqv1+K6IRnf3VU5b6+g5eFqWlN7Ei351NxWxtRojMhwDPcDFbgfzPLlj2T8kKlSS8tuF663SD6rZFURCpWC+LSUBcj9cA2te6T3WmuW1kV19yRjSPdWSvECrbTJvurxWtoey/iWlt0uGnYmx7htVbTsdqUFCqsedeF+pCadMcP9kJPm+6Vxqv7Oclp2uyhslvx+6yMuWrLWvi27XcSn4xz7l4u4biqhZbeL0jYLIMVK0u9xsm1rMk5fuaUYhUpBaEiKebXudqTjHdL31KTjB/ZWCy27XdTcIr2rCrUCY3Fmo73l4YzftzQYadntoj45zjbvlvZ8YiFQKJUU1Rek+daXSXzXbJOuqWHnZdfwaA22lkJi4zPEItPS5yb9W93dUtuUyKDlkSSHSRjteiaHIxAD1x3Ss0mJDtJ8k+HbvVN65nW3l9Gy24W1zZy8NyctD8/nMDXOOq630bLbRfm6IuwtFgqr8xfynfT75RuKaNntwnGN5P9aH17Id0tyrmJbXUDLbhe1SaGOe2dlet8MpFiVsViH71QIc7WOlt0unLdJfDc95Jzf9pEaWpLPRlss8V27Pcn3fVXzr2FPDa2PXmazDzjo3+dnyhehaktJWlBxOd/uh5w0J+c1jlsraNntQplcr7c94qJlz/zPdT8o8V1zayktu13YVifH2bc6UWtVdL84nOEwabNVWyW+KzZal+SwLbm3VLq6UOLlRmle07Jr/r22PFyTnhv6OycoXVWY3ltawPcyPqJhpwP3rqy2K/iImtvLya8wYCo30LqneiHfK/mIbL5l+IhUpq3UXFyuj5gYCDMTmaFlt4uqrUmbleEjVFpJeO1+qPIyvpf3EQq1gunJmQV8L+cjYhMx4nMJjNZk/EaLLB8R6o2x/3PnsLkL0mufN9pHbHhSEhu17nEs7SPWF9Kyy5mOeal1SjSGzJym9ZHq9D6rbXUBLbuc1N5WCgol7gcqaLpT2qPpe30SU7GW1nuk8dFcqaF5exHO65JzuDusNG3L7Oc03WPju7+8mb/994c4eLqWZ1+6kV/9XhqYf/77dp7Nmod9/4Wb+f4LN6d/PnlGmvddc801iEJ4tvblL3+Zr3zlKxw/fhw79wPQq4FoMi44ooQRFZxNqrFOGqA6BgMqIA7RMAT9MFegZ4IEIU+M0W5pwj/UMYfNFYek/mns0jQKJazepsI/OEdoMIznrHQiZ+DgOGWr44R90og9dmocVVb6vVB/GN8FSSk1uD8Am2CsQ1JSDR/zk2fWpNuO90zi75Y+dzYaR6FX4D8lqU+HjvjQF2UmQYHuSSaGpHQUQ0eD6Cx5jBwNsunjjSg1CgLdmTSRgYsTTI1KJxK8R72Yyw0MHvQnr8lLQTL7R0G9AW9niOmQ9PKFuscZ7yukf6+UYmxgrwdrYyZDiadjnNnwLIRhfDDMeN8Uw0eSbfd7sLkzhjV2OpiuAXjmP/pofbuL0eOSQrb/tTFK1liTZZ5g9FRgXkmkUH8Yz9kAowfHsbYZKVtvY3xQuveR437UWS9GqG8K33mJ3/69HlAouPiLHiJecN1ZMo/v4KVJxnulSc/gQT8anRrvUekihg56MZZkJjbZfI8cDWIo1jF0NCj1PeQlvzyjwgTSKfT9p/xYnCb69yfvdd8YRTWZk7wpvvteGKPvtTFaH3IxeGAszeE8vs+MMzctGWXYK/GtzEvQ/rSbsTNBYqGMiCCbb8LSifOxk/7kcxyj8nobzTsrOfKPFxg9EUCVlxEJpPgGGNg3RsVmO76LydJ1l2V3y7bZwQNelGolwfNS32yb7XthDJNdl+H7QACtUcPoMen03fAh33y+kzZb2W4jPhNnfHSKwQPS52bbLICvK0TEPw1A8HyA8foC+l8fIzwUXcB32mYB38Upxvum0nynRC6GYqnU4ny+44z3TaVtdmDvGPZVRRCWyiVOR2cJXsi8c9l89+8dpWy9jbBXsp8U3+1PuUkkEvNsdnD/GCTsK/qI4WMBTKUGVHkqWT4i2DuBvc2C3i79ffDgfJuV6yMAWT7Cc3wCz/EO6h+sSPMt10ekyspl8y3XR6Q4lOsjLv5ymKpr7IQuLc73Yj4i2O3FUKyc7yMUks+dGE75iAAGq5ahZFmAwcNeytcX0f5UM8e/3o3vQoiIT7LZwLkQha58Bg5J1zBw0EdhdYbv2MQ02vw8Ap1hKetSa5jBg0HpmR8PU1idCaZ5e2LpslPdBxNoddOMdErPauh0jOKaTBpbz6UYc1n1QYIBOF+o5t54CD8wDaSK9lxEiYZMOR4vcMEIsYIZTk9CPKSgGDUmZZy62vNEo5nPLbENU14unfZocZ9mbk5NbfUFNv7iw/D9f2V6eppoNMpV/GnAZDIxOTnJD3/4I6rcj9PfN4NSCQHJXTA4wLyyMz4fjAehrBziM3OEhiOMngygUGsYPODHlOX3fR0hppLlN3wnfZgrDJCIs/a9NQzs81JQlXkvxs4EmU6OeaHuIIHuAgYPShbb9+oY1kZzuuzU6OkAs2HJlwf7IwS6JxlJ+qH+vWNpP+Q5F6J+G0x6pGuI+CU/erkfSomSho/5USgUUuagh6qJTUwzsE/63MG9o8yttzE1JjUeOuxDrc2Ms8HuSXznQ+hLdQwckcagyZ5Qum2eOeOz/J0TjPdNJf/mR6NX0/NLKWXz4L75cxXf+RATw9J3jhwNoi/SMpI85d77yhj5ZZmH4zk7nh47faf9mB1GBg4mx7h9XixJv7/3r85Sd395mm9v1wT27kkG9krX3f/6/LnK6IkAc9Nxen49CnqwVpszfL+aHDuTGDkeyMxVIhLf6bnK60m/nyw5N3zEP29+Hbw0lfb7Sq2U4SvozeI7K71xoGsC/6XkXOWgF4VaSag7yL4vBqncYps3dmbzPXwkQJ5Bg+d08tnsl+Yq7Z+Vxm9fR4iJEek7x06GMNr16blh/+seChwZm/WcHSe/UkfN9jKG9w0TqM1n4IDEd9/eMYqqM3OVbJudU8yRSCRQ6aUxr+/1sXljZ4pvgMhING2zkcEIPb8emcd3ymbTvGTx3f/6CKXrbRiTwZ3F+PZ1SLY0dGAMEuC7OJnmW2NSpd+5bL4HDvhQ5akIng8m+Z8/VwEpmAjSekZbkJfOzDCwzzvPZn0dofRcxd5qZtITZvhIIN02m+/FfMTs9AztT7sJ9U8ylUmmK8tHnE1mezJXBIgny9Ot5CPm5uJStrQsvtNzFZk+Aki/ayv5iOF9foxOPc7r7PhOJ+dwMnzEpd+NERmMUH6dVdhHnH9GymA2djYoy0dE/DB6PGOzU2OX8b2EjzDX6Al1R4R9hMVlZMMH67nwywHis3aC/fJ8hKXGxGxUsomBy2x2UR+RTKvd/6oHo33+uDYxmvQRp8Yx2nUMn0y9G17MlUYc69QUlGrw9k4TnZS+098LlvJpBs9JnA6ciWEpVzNTZgFgdGQGk0mN0QQbmjoJTlpZ1yxljtjcdprzPVkBydpu8tTS57zt/9vG8eN/i0Kh4Itf/CJX8ebH29/+dh5//HFOnT7FjfV3oAhHGe2Mpf1QdAL8fdN4Lkrv6vDZKDOuPCYGkTJZeiOEesLpDVrf+RBjp1J+c5TZWDFhr+RXhw76UOUpWfUOF8FLU/jPh/B1SvY6fFh6R/3JGNPgAe88P+Q7O47/UvJvh/2otCqCHUHpe/Z7571DntNBJoal75wJz6HSqBg9kYrfeMkv081rm/L7/nNBzA4jw0cDrH9/PRqTBu+ZTCafkZP+tB+a6pvAdz7E4AFpXOp/3YO1QRpn8506Ro770n5/YjSK73yIkWQcaGCfB1uzJf25w4d8JBKJdIkr3/kQoydScRUPJavn0n8bOuxLj7NdPxlCpVXhOSf9ceiAh/hMgonk/Qwe8M7zQym+PcfHyXfqqNhiY6JnfFG+vWfGGe9LrjuPBckzaOj59SDRYJzyrUXz/H4232OnJzDYdIyclD63f998vkdPBjJxlY4gPqeRweRp+L7XxiiqzmQoQUG69EugR1pfp+ykf1+Gb4CRIz7mpuNSubeOcZrurUrz3f/aGPa2zLxm+LAvMzeMSnyjlGJeo6cCzITn0uX6Ujab5rBzIsP3QQ9qkwrnzWUEu7oZOjif72ybHT7iQ6lRMtEt8XJ5CeFsvoePjKM15eE5k7T3vZlxdug1H8ZibSaucm4SU6me4SNJvl/zpjO1Z/PtuqmE+ExC4vBIcm74+ny+s2022B9J8x0diUpzlSybTfENEA3G59lsQpEgkUhQUKFj/GJ0ns3C0j7CdXsJM+FZ/J2Z8n5yfMSWTzWhUChz8hEjx/3oLDp0hXnyfMSlIK5EKfpiKZ7T//p8vuX6iMv5XspHjF+McuiLnbhuL1lgsyv5iJ4XpLJy82xWpo9I/Q2FQpaP6P7NKI5r4vhPJ5/r656VfUTnODq7TthHVF1jo/2zbs58r3se3yv5iMmxMCa7IX1/2Xwv5yOGXvVjLjdm2ayHkgU+IovDzgl8l2K07bEz6Yngv5AgmLz3oWPjaPRZPqJrinFPHIU5n5HzEZRqBfmlapTmOBtbzzE+nnk/G129VNqle1vV2MlkWIe7pp9tt+2ib/p5IpHIVZHSnxDq6+vp6urihz/6IU1lj+Lti6IzTeNLVs0aPDuDsTDjN0cuThMZB6tDRWI6jud8iLEzEyhUKgb2+cgvz7xDQ0e8zExI78Vk/wRjp4JMh2doe9xJ32seiuoydjV02Jv2Q5OeGGOngll7El6KmwoY2peJ26fei1gIxk4F0+9F/z4vsck5iEGoN0ZiNpGOYYDU1pte53uYi8WZTB5q6N/rQW1QoS3Wsu5dNUTHp+l/XXo3hw/7QKEgPJgaDz1osvzQ6PEAof4wWrMSb1cQjV5NIJmtc+DVMQxZa6aRY34mkyUpPWcm0Bdp6XvNm74GU2k2hz6iST803hVi7JSR4WPSvXb+bJBCl3Fe25mkHwr2TkkcpnzL616K6iW+93/uHI6bbZm4in8+3/2vebC1ZDLGp/geeMWb5tBzJijd2wEv0+G5dBm5gb3eeXMVz+nxNN/DBz3EZxOERubznX42JwIEeqR1p8qgJJFIEAtJbQde86DLGjtTfEv/D6E15eHrmmLoqJ/SNst8vo/6Cadir+enMNqDjCZLU/X9fgxzlYHNn2hEoVDM4zt0aZyxUyZGjyf9/uue+Xwf8lJUm4/jNht9v/fM47vvdQ/FTQWZtge8ab6ZnpFiXkaJp/59XmxZe5wD+z3z5iopvmPeGN3PD1GyxprhZQHfQfxdko2OHvFCAgzFecm28202m+/ho9LeXSgV10ryncoYlG2zY2dC6Arz8CZLNva/Pt9mAVR50vUHOsYZqzAwlpqLv+bBXJWZqwwd8aZttnxLEeMDk4wcS/L9qidts7C4j4gEorQ/5SbYM4HndGadJMdHpEoDqvWqBXwv5SNmZ+fIyxpns/mW6yMARk/I8xFjR4Joi7U4ritmLBWDkeEjBvZ7iQzHsLaZhX3EhZ8PJ+/dK89HxKS5VnpuGJPnI0yVWiYHYsI+wtpSwLon6+j8aT8KtZLJ3iSHK/iIsnVWZpJ7toOveVb2Ecm4+IXnhzFXZeKGQ0d9RP3JfeJL44ydMjKaLH3dt9dHoctAySodRbUGRk5PMBOW7jvkmcHTOcXYaemdGzgyibVWi6JAih2OdMQwFYPJqqXJMcCo7xLuuksAbFp1lo7uqfQ1bHSfYy4pWrj3wUc5fPrzKBQKvvrVryIKRSL95AQ6JV+Y4s+8D4PDsULrDBq+EVnwO9X4wt9djs0P5TETjXPkn/sW/C0xM7tIDwkV1xagUCoY+H2QxOzMwgbit74k1r6nFo1Jnc70IRdbP9uMQqkQrte+9n/UEp9LcOKr3UL9CuoNqHUKfKemVm6cjZTfll/mEoPDQPUNxZz59sLnthw2fbwRVZ6SfX99Trhf2Bvj9Dd6hPrlAvs6M84bSzn3kwEmu+WTsv4DdWgL8oSfd8tbHeQZNRz7iljN0PUfqCM+nRDu1/60m+mJGQ7/Q5fsPvZ1ZqpvLaf7hUE8xydW7pCE4xYbJasLOfT3nULXuOXTzSjV4u/OqieqQQEn/+2SUL9cYKox0LrLydARH30vjK3cIYlVT1RjKtNz7Mtn0wIhOajeXsLcTELou0AqFxceEhesOG63C3+Xtc1I7VsqufirQXynL/NDy/jkNe+uwWDXce6HPQQ6Vh43UqjfWU5xnZl9n+tI/06h1ixsqFykzusSUOabFvxOYU6WMbpFw/l9M0v6ylQGpWxEr49zG7NMAL9Qmhd2yu5funAsO7TtH1a8ZkASKAHKz/0LfX19vPjii9x8880r9LqKNwOef/75dArs67Z/HgDN1NLzn2yo9p5Z8LtF50RZWPs/atAXaTn2L+eI+OTPlfRF4Li1kvM/GFi58R8BWz7VzOjJAJeeH5Hdp2SDhbptFQQuTnD2P+XPT2zrzLhuKuX09/qJDMr3QQCV1xenhSQi0JfqpNJHAnDcKp0M6vuNfN9srtHTuqcaf+cEHd+XXw/ddUcJJWsKOflvnWnBwhuJVe+oZjYWTwtX5KL9aTez0TkO/h+BOboeNryrnv79HkYPBGV3K9lgwXlTCZ0/7SPYKd9ONn64AY1JLTynWfOeGkDBccF53pr31BDxTafFLnKgL9Wx7l21TA5FOPHv8tcflgY9dXdW0v3CIP5zAguJHNH6uAu9JY9DXxSbV7Z/1s1MeFasn17KANTzskfsXU3FFsRcCdZWE9GJOaZ6xTqufqKGRCLBya+JzX3bn3YTn0mw/3OCa7KPNRL2XYE1mUJB5fVWZmJzy76nikUyR274cB0anZID/7UylymRUjZe/P43ZF3ijU+8Eya72PvaN8jPzycQCMjqdxX//VAqpU2JdZUPY7PUoAjLe8dnexaZW8iIO7U/7WY6NJPO6iYXtnUFaLSq9IbZGwn3ow6MNp2wf938iSZUGiV7/1psjGt9zIVCAae+2SPUL9+pQ61XEegQjHmlYsQC7lxn1+G8zsr55waF+q1/fz15Jg37/laMk/UfqCfij3H2O2IxtlxgqddTc3sFF381wPhF+TfX9rgLc5WRI1+5mBYtyEH9jnL01jxOfq1H6DpXPVFNIp5Inw6Xi/an3cTGZzjyj/LfuYJaHQ33Ouj57Sie4+Mrd0jCtq6Aqq02jn7tgpCdbPxoAxqD+PywaVcVaq2K09/qEeqXC3QWJaueqGfkqJ++33pk92t8oAJrcwGnvt2dLjcmB6kyS6lNatnXadcJ2WMK5VuLhP2rrlRH6+4qLv12BN9J+bHRpl1VWBvNdP5sQMi+XLdLa7ID/7tj5cZ/BNTfV07/74bSIrAFUCyMrekr8ln7eCVh7zSn/nP5dWoqtpaN5w4+J+vatt22C4CL0e9z8eJFfvCDH7Bz505Zfa/ivxcXL16krk6qdnDbxr8EQDkh752NX+xZ8LvE3NzChlloedRBgdPIkX/tJibiG7RQe1sZF38xLL/PH4CNH2lg9FSAvhfl+1ezU0vrY7X4uybo+J78+I65Wkfdtkou/KKfUG9s5Q5ZKN1gYSRZbl0E2mItMa/gd20qRKlRMPS6fN+sNStZ974m/F0hoRhI6aZCKtttnPl+L5FhsevMBY0PVUICoWsEKZYxHZnlsODe2pp31TBy1C/07ArqDNTdWcHFXw8R7JQ/1179RDXGUj17/0psTuN+2IFKrxSe57XscRALzaTFLnLR/rSbiYEwpwRiGfoyLY13V9Dz8qgQJ7mi4YEKTKX6dFZWudj8iUZmpuaE+9XdXUb/fj8xj8A7kDrbL/jamKt1xGcSTA6IdWzaXYVKpeCMQJwfpP3lxGycAyLxYiRtRiwww9n/eoPXZAoF9vUFJGbBc2KZueHlpz2Ate+tRV+o5sCXV94zSYmUsvHcaz+RdYlvuedRYrEQ+zu+hMFgyCnmlZOkvKqqiv7+frz/5ys4/ulvBHomqHbDaA+Ew9Kkda5AitIuJ1Y69fw0U+eGFv2bQqNeUqjkuNZGYi7BwO+Di39wauJ8WdCooN6AwapleL98QkVFICl4O0Oo8xYGTleCrjAPctBYtex2EZ9N4DslP9hc2GygeaeLqbGokCiq5mY7BQ4jZVsKhbicDs2Ql7+IiGAFCG0+ZWHrZ5uZnphJl5iTg7GjIcaOhoS/S+Q7siEq9EohL19D4o3fNwTAVG5ApVWit+oA+Qvxvpc89L0kf7Kdwv6/PZcRzwng5L+Li5MM5TrWvKMGT8c4Xc8Myu432R2WrlMQ0YkZDDadkEAJoGytlOJSVDi05h01zMXiQkGNkk0FVG2xYXEYhTgtbi1ErVOhVC8iClIolgziDx3yUtluExIoAXT9cIguMuPHogIlgHhinlDJeWsRvb+Zv+BZTJyUDedGBZayPBq3wvmXFopAFhMoAeh+r+RH1y8/HC8mTmr3RTiuX6TxZUiJk1LweDyUlZVdFSj9CWHbtm0LfjdjlGxmJbGSvghsa4voeyljz6n3YCmx0rFvdEub54Ji7tp7XBQ4jIS2hhkWDOY6b7fTK+i7RDfOAans1wZr+pSoXGhNeWgMasrWWOgWECmtfncNphI9gd4pIWHB5k82ocpTCm9KVG4pJhFPCImUQt0R4jMJYhPLi9cuR8+vR6XMTYJo2lVFUX0+e79wVkikISqwSGHv34l9DwARhDeKAYwletQ6FYYSg5BIKVfoLNrF1qIr4vhXxA45gJQx6vX/uVD0uBKCnREOd4pzuf79dWiMGuH3PFdhzEx0lkhgWqiP4xo7RQ1mZmfidP1I/vxwzdtqMdi0HPvnDiGBX/1dVSg14gJ9g12b09mcQNcEsQl5gthsiB7aASjZbCE0EBMWgVZdY0OhVCwpUlpMoARw+IsXMLZWLfq3FC4XJ+mNM9hs0Nez8jr1xifemf5/76UXmZubo6WlZZkeV/Fmwy233MJvfvMbjg8+w22WT5IwSAoWOWKl8mus+C9OEU2JF5eIO2Xj6D91EA2KL9zr76wgPhcX3kQ3VOow2rV4jsrfCM9VGDN6PIA2Xzz0aCzTLbbXvSLa3lrDXGyOAx3yfZHOomTd+5uYHAoLiWSq2osobrEwMRpl6DWf7H4RfwxFDpW3RQQ12dj8iSamJ2Y49mX5cctgV4SjXeLxK5FNnWykSh6KwlCsvWIxL73NgMaoxmjX4UH+u+M5Oi70rqVw6AudGfGcAEQOHaShg60fdeM7N07nj+XPaaLBeE7jfmxilrnpuJBACaByazEKlVJYpLTuXTXSoQWBazVU6qi+rQxrs1loc7R0VQF5+Ro0BrG49shRL3n5aiGBEkDPC6PpLFEiqLqpmP7fifFYsqEQe1shGoN68QM/SzjtyOAEB/7vwLL2vJg4qWJtHr7ulefnKXFSCmNjY5SUlFwVKP0Joba2Nv3/WCyGVqslni8ZzEpiJa1ZijUP7s3sPaXWAEuJlc48k7TfqNgiqe72MkrWFhEJxIREMpCb6FH0QDdImZtCPZOMHBX7LqVGha4wj6JmC6Fe+T6l8aFKipsKiIZmhAQa699fj7ZAIyxacd1cComEEP+xUJyZ6CzRkNh6f+RgIJ3FRwTOO+yUrbNy7N+6hURYuR743Pt3Z4XFIADH/1U8LqQv0qIt0GC0666IIMdQpkO12B7SChAVq6QgGmsBiAzHcuKy7XEXhmKtsECmUyD2lI3pydl09h25sLaYKVlbhEKtTGd9koOm+6S47+lvXRQSPTbc6yDPpBb2C+ZKQ06x0bGTAWanlxe1LoZj/yKuBbG2mImNx4QFWK4bS1BrVUuLlJa48WNfvojBWbDo39JdLxMnaY1Q5FQwfHblsfEt9zya/n9v8KdMT0+zYcOGFfsthpxESh0dHRiNRlgmi1E2UhmUbGVQ7oBCKxx9dX6b5cRKSwmUUlBopNu4XKw0eMiP9+wSWZTmfcD8jfGW3S4S8YSQsAag7JpCNEaNkEBARPCQDdEsQyn4ukKEesQGkMC5MLHxaUaOyQ+6AHT/oo/CZjGBEsBxwexQKZhqDBQ35tPzS7HFWSJOOnW7CFrf5pRS5wreXy4ou6aQopp8YbFSrnaSC7p/MUL3L+Rns0ih8qZi8ssNnMtl8pDDgfzWx12MnfALicw0RiWJeCJdd1ourG1G9MV6BgQX/p3fz21Seub7PRis2pUbXobJkUi6RJ1cjJ4ex9pQQN9egXtTKDj/vUFgGb+3hFBp7GiIsWPyxW8AGKB5RxXnftKPYlpGgCgpVKq/x4atuQBtvobOZyV/spJAKRGaoPdQPhCm98z8619KnJTBNPbf5zFw48KIzWLiJADCERpiUBODjc9/CFg8o9LlAqXB//UF5qamiMXe+BMgV/HHhVqtZnZ2lhP7/5XVW96V/v2MUb2oUCmVQWnVR2pR5inmiZRSWFKslINACeDiz/qwrSsWFii59zgorM1nbibBwO8ERKt6aLqnSjgQL5p1BmDg996csiH1/m6YkjXWdHkpufCcHkdvzVu54WW4+OIQkyPi73cugi+QskRNjkwJCXJmZ+ZIxBPoC3REIvI3Jko2WLA2moUyYAHiAqUkmndX4b80IZRJqfu5YbqfuzKnKiH35+Z+1InnbABPDoJ7UZRtLaLAYRR+T+NzCXJI+IvzdjtjZyaExS6HviAeAO77zRizsTkCZ8TWSMOHfZRtsApnILv0u2HyK8QV+vv+Jjc7OSdw8jYF5+12ov5pRgVP0tbeWg4KxIJRiQTHv9WLtXYhJ0uJk7IxdbofpWuhUGmxzEkALa2g04PfP8Ntux4HFs+olC1QAujrk7K/vfjiiyte01W8efDiiy+iUCiIJ+bPsRIG3aJCpVQGJUOlDtdNduytsYVxjWXESrkIlAB6fjuC/5L4onj122ognhAWTtjWFKAr1AhtbOeyeQ5w4PO5ZQUZOeFnQnAMiAbjTA5H0uVM5aL/5SEmRqKM7Beb+wrPZZLQleqwNZuEhQWJeCKnmFfD/RWM94UZPfzGx7ysq/KxNVuE5wv7P3dlsscAjOz3Cz9rkDIpFVWbOJ/LplIOFdqbHqpMlzGUC51ZR2IuzuyM2EZNQa0Oo90gvPGeq7Dm5Hd6MNrFY16BixOEBbN1hL1Rxk4F0iVv5SLXewt2RQh2iR/KaLi/gs7nxbK5lV9rxXFdCYYirZBdjh4OoDGq8J64zAfJUJTOTUygYqEQaTFxUgoVa/SUunVs3yRllV4so9LlAqXjfT8jFAoRjebw8lzFfyuKi4vxer2c7P4uG5sfT/8+nq9bVKiUyqDU8r4atCb1PJFSCkuKlWLkFPO68MIwYb+4QMl5h53KzTbUepVQ1jm0UHNrKd2/GRESoZzO4bB7sHNKWBgAUjms2fAcwV6x/cbho76c1rZdPx8kNi4e8xLNMpSCfb2FqD9K6JJ8nzIXjZOYi6PRiWmHLA1GbK0WugTEwkBOAiWA2rvKmBiOMHYkKLtPrsKtXJHrc6u7u0wqe3rqjY95WVvMFNWbhAX38Zk4cznMz8u3FhHomRLO7pWLsMZ3JkSneiBdgk8uRk8E0OhVwlnZLr04Qn5WWTO5yEUwD9D9nPhedummQmYic8K2Vbe9DKVaKRafSyQ48c1eCmsW8ZUyVFnh3nFUhQuFSotlTgKo3qKloEzNVGCK7dfuABbPqJQtUALo7ZNs67e//e2K17QYchIpGQwZUsJdlzDUV8vq5xlWUFyW4NxR8e/c8lEXM+E5jnx56QXr5VmV+l7yryxQSnfObIx7zowz3iO4GQ5U31wGCfEsJuveV8f0xAynvylWviIXnP9ebuKHXDIAhb1xwq+KBe1TcNxux9sxSbhPfsDN/UAVap1KWKSUS6YbALPDiF4w41bZNYVU31RG3+tjQsKVqq121Pocjtr9CaBiYzEqrbjUdcunm5mLzQmfKjBXGtDmq4VESuNd4ZwEX7VvqUStUwmLlBy32/FfmBQqJQjSdY53iQepcyp9F879NK0wDLDpyUZ6Xxll9JD8QFvzvZUU1eZTd1s5F5+Tvwjs+o2HPJOGzl/LEyilkBEqZbCSQMlgmGb9OpicnGZA5JikQc+JWITIMq/O5QIlAEMozATwgx/8QP53XcWbAl//+td57LHHCPkWLiqWEioBXHplLKfTBKvfXYPRrhPKQhPxx4Uy+KRw6Zd9xG+rYmC/WFa9xrsqsTaaqdleJiQMKdlswXGtPSdRgiiCnRGCneJzr1yFLiKCmmyYa/SYnSYxkRjguMEulacRyJRz4cdDXED8tLzjOjsak/jSZeOHG1CoFMKL1sL6fExl+pw5fTPDUm1EX6gREik5b7dTsbGYzp/34xUoXVG5tRiNUfy55RJAAajYXIytuUAoE5bRqaewRtz+AYZyWOuMHg4Ki3hAer9HEe+XC1oec6LWqTgheCKwYlMxJBC+v65fDpBfZhTqAxAZCDNwmRhhJYHShvfXoDGq2fc5sTHg8GFobIDJ0NLC98sFSrHA6fT/9XrxYNtV/PdCoVCQSCQYDnZQZmlK/34poRJAeCDK6MkAF18QD3hu/aw7meFZvv/Ktczb8CEfEyPi68a6bRUAwiKZtsddzEbnOPdfOWR4EUT3z8W5h9wyLkeD5CRaAUkkEOyZIjwgf9Or5cEqtBYxkRjkHrgvbinAXGUQEikVuU007nAwsG9M6Dod19jRF4uLT/4U4LjWjrZAA4IipY0faSA+mxDOoFXUaMZg0wmJlKJj0ZwEX3XbJJsU9UXl11qZ6J8SzqQUHogKvTMp5OR7otD1bG4ZvnLBhg/V0/v7MSHxqOv2EmytFhLxhNDm6NBhHya7jr7figvnFmSxWkmgpIP2jzUzMRjh7A8FDz/vnVg2U9rlAiWAmFJ61l/60peEvusq/vvx4osvsnbtWoKTC/fHlhIqAVz6zQganfh6s/GhSqwNZo7841licpfFMYQFSgC9L4+Rp1fT97rYerNqq42y9VZIQPfz8uc3hc0mqm8p5ei/XchZwCIXkeFYTuXvJB7FufSdyU10oi/TUlBlEBbY1N1ZTjQwLVQia+AVr3DGP4Cqa23kVxiERUpr3lWD2qDm8D+IrW9L1hRiqTYJiZT+VGBfXUh+hUFISGJfb6HmtjK6nhsU6ld1TTEGu05YpHQmx3011y2llArapNampbBa3P5hhTJjSyBwbpLAuUnhfr4zoZzfcVHU7yhHa9Zw+ltimgzXTSWgVAiLlM7/ZABzpbgwM+aJMnK50H6FjZ4173Cit+nY9zmxNWDHazEcrXOElnHplwuUQlFPOm6i1ea2lsth20pCY2MjAN4vfkWo37mjCmDpCexcgT6dVQkg0S+93LPROBPDK++SpbIqpbD5k41s/HC9vItTKEChoOvHgzmV8up7bYzjOdT81hXmYSoXN9D2p92s/0CdUB9rm5HNn2zCtmbpkwqLwXG7nQ0fksljFjZ+pEG4X2GzgaotNurvLBXq1/vKCCPHcgsQFdSL83/x14Oc/pbY4B+fkVZXSqVYmsLT3+3l/E/ERWxbPt3M1s80C/fLBY27K2l/2o21TWyD4dTXO+n6uXjAIJFIQA4H9jlhqQABAABJREFUTs//pJdzPxTbMDYUK9EXi3/XxV8N4DkjPpBXbi6m5UGHUJ+yawrZ+plm7OsWV8Iuhcbdlax9T+3KDS/Dxg810PYXLnmNk74VoP2pZta+p2bl9ln/d91Qglqnwlgitrlz7r8GGD0ZFBIoEU9AGM58dwilyiRboJTvgs3vLaFyfeZ3K2dQkjA3B14vVL6cWXDHSmeWzqKUxLFCPR0Fi3OymEAp3O8jHo9TVVXFfffdJ+varuLNg7e+9a3p/0ciC+dDM0uIAMaOTDB6aHlBgUKtmV8KMZEgcHGSmfAser3YVLF6WyntT7nRF8nvF/EnyxIIZrw5/4sBBvZ7hAU95kojGoOaks0WoX5r31tL+9NuoT4Abe+oZu2T4n52zXtqqN1RJtSnZLOFrZ9pxtoqz3el0PygE8e1NqE+AKOnAlz4pbgIS1+kFLIRgNM/6Kfjhz3C35UrOn/az+lvion0SzZbaH/aTfU2sTlsrtj6mWY2faJRuN/5Z/s4+4zYc1Mkx+bZqFj5r9P/0UnnT8Xneeaa3AQdw0f8XHpJzCfU31mO8zq7sE1u/HAD694nthYD2PDBesq2ypsjpFCy2cKmjzUK87Lhg/W0PyXut/LL9Bht4jVmTnz7Epd+Ky4Q8BwNCfvyjR9uYNPH5tu/nAxKEyNRZpLC3nhPxjZnyixLZlECYE7D+XPyBUoAkYnjAFx//fUrXtdVvPnwwAMPAHBy4McL/pYq/7YYLv5sZPmMFllro2xMh2aYGBAXDm38cAPrPyAWc+l5YRSfgOA0he4XhjnxLfHM16YyQ05B2fan3Kx7UszP5jt1bPxwA7Z1y6e3vxylW4qEvwtgzXtqWf9+Mf51FiXVN5dSd4fYfKH7xSEG94tveoHEiyg6ftTH6W+KCWTmYrOQyMwb5OLcjwY594x4zGvjRxvY8qmmlRv+EeC6vYT2p9zCtnXmWxfp+FEOG1GJ5D9BnP3eJc7+SGyep7Mo0VnEtwguPN/P8CFxwbbrxhKaH3QK9SlsMrLlU03C/FdvL2HVO1xCfUA6tNPymNg1ghSrX/1OeYe5UyjZUEhevkbYT/a8MErfq6N0/UpQTBWFzh8PEg3K76KzKNn6WTeOm7PWjDLec51OwfTEDIGLE8xNZMYdhTl/2SxKAN7zcXxdiwd+FxMoRaNREokE5eXlvPOdC+dlV/Hmxpo1a9L/jy2iGkqVf7scgY4wY8eX38dTqFTz1wmJBP7zE8TGZ0BwU7V0UyFbPt2MqVKgXyxZ1lRQMNT/sofeV0aFBEoARrsOnSWP8nVia073w46c1o4ND1Sw5okVYv1LfJ/rLSVCfSwNRjZ9rBFrm9j+h/tBBzW3i8XXAAb2erjwvHjMS2sGrVlsXO382TCnv5NDhZk4JHKYMJz5Xg+nvyl2OMxcraP9s27h55YrNn20kQ0fbhDud/o/uzkruP+nVACJBPFZsQ3Hc9/r5lwO8zwhH5KF3pdH6X5RLHZSfYud2reUY3aKfefqJ6pZ8y7xd3v1E9WUbrAI9SmoM7D+A/WYq8XWLG1/4aL9s+J+q6DahCmHbG7Hvn6J7hfEhZnBzimxTHpIAsT1l2srZJxEDw6EiQal8pZzgczetKLAvGQWJQBi0Hdk6Zjv5QIlgGn1XhKJxB8U88opkxJIJd8UCoW0obsMUqXeMkiw9XaIReDoq8uLlbJLvx3+Z/kveiqjUmJ2RrrGHOrYb/pYI/GZuNApXNFsKSnkUusSYDY6x8So2AkSpUqJKk9JYWMBnuPyg1LFDWby8jXoiyEicJsqrUq4VEPgXBj/hRC9r4ktdEcPjoNAXfgUNn+iCZVWKfwcpO8Tw+jB8Zz6hYeihHM4wDMzOZOT/eeCiH+a+GyCyLjY8w5744S94gHSAzmm9fadEq+X2/r2etR6lbCN+E5N5fR9w0d9RH1idZJNJQYUKgUzEbHNw8LqfJQ51PbVmNQo88Qm24ZiBbPROYJ9Ypz0/GqMnl+JZ2dRqDViAiXA2mKgfnsZPa94GOuQb8sFpdKkZmogAuhlC5TC4Tz27pv/u5XESYZwhIeC0JsHvyvObFZufP5DHNr2D4sKlAC8//vvYWYGl8sl69qu4s2HwsJCAoEAx37/edrv+MsFf09lVEqVekuhcWcpRbUm9n1+ecGFQq1JZ6Ds+81YTlmRwj5pXmKuNxMRyEBTfp0V53V2jn+zR36Zpgj0CmavBOj60SBdOZRbGO8LS1kN9QgJqgzFWpQqcT9rsOnIM2m4iMDiZw4USgWmcgO+0/JPrfS8PII2P4fycj/JLePT2iebpNNoX5IvAooMRojkUCXj0Bdzy5glki0ohVggxtx0nGhAbAzPFTNTs8xExeuni9hGCj2/HqXn1+KlKyJ+iPjFuWzdU83M5Kzw87skGMAF6PrlEOUbioTLrynzlCgE51BGp548s4Zid4FQacxCVz5qvYoZwcD2xHAEs+DhCID9OZZZmuqNMNUrpjjd8MF6iMPhfxLbCE8jkQCFQpZACeD8MwsXVcuKk4ANm2fQ5MG+VwEyQqXbdj3Oi9//xqICJYAzZ85gMBh45ZVXZF3bVby58MwzzySFFouvCVIZlVKl3rKx+WONREPTnPjXZbLzXFbm+kiu70COWPfeOlAidAo317Jf+/4mt5hXLDQjXJZ8JiatVQtdJqGMJMUNZnRFeRgqdUKZWjQGFQrBeV40GGfkuJ/ho2J8BjqmCHSIxxc2fLCePLNGOJ7hPys+Xxi/GGXf34o/7+hYlKj4tJ5oYBqNNufQthAi/mlmo3NMC5aZiQbjRIPiXOY6hw12idc6bn64Gn2xVthGxi9GGb8ontmo79UxYhMyKx8kYSrTo1QphQ8rFjcU5JTVU1+YRzxfcNNXJwlOx3vF/Nbo4UDO/lU0s5qhUseqR130vDwmlAkuv0YSFEX8yXWOTCFiNJjg8P+dP86sJE5CBxt3FeC/NM3F32fsefum7Tx38LlFBUoA+3v+ndjsOGVl4kKEq3hzYM2aNRw/fpx9Z77Cjes+seDvqYxKqVJvKThutlK2vogD/9i1rBBIoVKlS795ToznlCEk7JFs0lSqZ3JA/nhgbTFTt62Mcz/sFSodlktGnlwz+QT7JtEV5aE1Iz+7FJBfYUBjEPezBdVGDCU6en4lP84Qj82iylNhtGkR2TnseWkUrUX8GkVFBSms/4CbiDfGsa/IFwHFvDFiOWwvH//3HIRNwPgF8cMRsckE0+FZov4rE/OKBGKQQ0k0kXcshZHDQUZyyHgdC0EsJD7PW/X2WmLjM8JrwEHBPXOASy+NMR2aES6/pjaqUQjGk7RmMJbqKXbHhfi01JrQmjUoVGL7jaHBMBq9+Lt9OMd5dswTY8wjxuPqJ6pRqpVC/iAFBYp0zEtuqYyeX3voYb7vWlacBDTdqsVoUXLkh/PXEduv3cFzr/1kUYESwPHjx9Hr9X9QzEuREFWQZEGpVJJIJMirr6P0o+9atE3DN6MLhExbb0sQiy4vUgJQnuuRUkwk0fygHZVGyenvrhx8ji+SZUA2Egm2fLqZxFyCA/9bLEC7+VNNzEXnOPwPVzbA9IbDAIiPW1cWBtj8vib8FyaE0iI6brdjrjBw+hs9Ql+34UP1KNVK8dTZKYGmAJ+195Zhb7Fw4l/PE/bmkD5IEO1PS6nmr4Qdr/9AHao8lTCPooI5ANedJZStLeLsM71CZdEqbyqmqC5fuCza5k80EeidpPP7uZVZvGJY7v2+LHguBMHTk/P7Jgfd5XI7L4OCxnxadlYyeNhP30vyAy9199iwuQs4+5NRJnLYe1ckMy/FXNYV2xoM07S1wqnTklgJYNagovee5fs1hCK0T8IJvZRNKQXrITW+9UtvVve9R1rgT01NzSvbehV/OohEIulnd932zy/ZTvfiiXk/u26zUra2kHM/HiR4Yfn5UWIms9A0OvU076jkzLe7iOSWqFA2bOvM1G+vZGCfV0gc5bqjhPINVo59uUNYYPCmh6AY6r8DjQ9VYq40CJdebXtHNWOnA0Kl1KytJurvrqLvtTHhElv6IoRteONHGpgJz3E8h0WkKDZ+uAGNSZ3zwQURGJ162h52MXDAK1beLEd73PiRBmajc8Ll21rf7sJ/cULoWdc/UEFhtSnnsjZX8Ych19KKmz/ZRCKR4OD/zvG5JeebckRKLW+tJDYxy4WfZMUTVCrmNi1/8m79phnytLDv1fmZlDSdg4TXL55l4di+rzLp70alUjE7K3aI4CrePNDr9USjUSz6KjbXPrZom7mzC8fATR9tIDYxs7xICRass2rvKUObr+Hsf77xZbU3fqwBBeLv7MYPJ0tQXWFR1RsOHctnwHqTYOOHG/BfnODiz+QvVsu3FmGpMQnb1ep31aDRq4QOb6YhyGflDcVUbC7m1Hd7cirnJYr2p93SxpBgKbVcsOqJavKMamEedRaEMt2AlBHMeYOdzp/2CwnabOsKsLdaOCNY8mLDh+oZ7526omXRcsKfyPstAp1dx9onahjc7xHaRK+8oRjHdXbO/6w/p4x6acjJomQB955aOn46OO+9VleUL9svvxyabi1g+EyUgSOZjcC414eidunsVr8+/dcABAIBLBbLitd3FW8+xGIxdDopi8ZtG/9y6YbH5+/X2deYqb61hPM/HVhRqJnImpdrbVqa763g3E8HiQluOovCVKml7bFaBvZ66H9Z/jtbuqkQ182lnP5Ot5Ao6k8CWt7wcnR/KJx32CluKBCe9zY+VEng4qRQKTVTpRb3bhcDr3uEy6iKCssA1r6nltnpOU59vUesYw5Y/UQ1xlI9e//qjY95ac1KVr+rnqFDPjGxXirJkKBNrn1PLfHZOCcES0fX31/BxEBYqASb42YbthYLR/51eUHmmwJ/Au+3KFY/UY3aqOaI4Jx+/fvrUWgUHBaMnaeRmnPJECnV31dGfCbOxV9kxJ8KpQKVo3LZfk23ajFYlBy9TKQU9/hINC4+9zrf92v6Rveh0WiYns5duJhzuTeAr371qwBMdy1+8qrhm8kJqFKRzJcmYd+LCnkCJQCVSvoHmCv1mErFUxQbHAZq7xVLo7z/b88JC5RASmmsVIvT2v60m00fFyzXYJDSmYmWbssJf6hASXA/vPVtTnE+wqDSKjGVidlI3wtjwgIlkLJEKTU5POuPutn4LrE0hXlGNQqVAqVZ7N6sbUbKthQK9ckVBocBxy3ipWLUOjWqHHhc+163dPJaANoCDQqVIlv7KAsDv/MKC5QgaY82sTSKzY9UsfkTOaQr/0M0J4u939llCETFRkuUMFj1DhdlWywy+mfswVRjoP2pZlofk1f+LpXCt6BKBwqIeORHohR5Gi7+Ksj+v+8l1C2/n6EUqm/KTwuU5KK2BvLyID9fEifNGqSxzvmz5ft1mvX8R7k+LVCyHlJjPSQpxq1HFt+gK/6vX6BQKCgqKroqUPoThl6fEaV1nvzRom0uFygB9LzoY9//viAkUAIocBjIM2uouHH5IOJiqL27TKh0kudoiL3/66xw9qZIMAYKKXOTCFofd9H+tBu9WPZryrYW4X6reNr/nPCHCJREK2XppSyitXeLnTo12nU5nZg79bVLQgKlFJQqBTqzWManjR9uYO2T4ql/1ToVGoO8zCzZqLy+GH0O65VcULLZgqVB7GHrC9Qo1Qq0JrHntvE9DTmVO1TlqVDrxHk8/R89wmI0U6lOynYmiE0fa6TxoeUX7AuQWzW6K4qSDRbJXwle66ZPNOaU5p/lq7oviQOf7xAWKNVsL5PeM8E5qrnCgLU+uXbOijOoDi4fLD1yUDNPoKTpHETTKR2KMRxZfEPXmj+HWq3mmWeeEbrGq3hzIXUiMBhZvGzlYgIlgINf6BQWKAEUNxdQ4BJbU4C0We26XazswqG/68xN1Jnju771s242flSwXIMOmnZXYV11BWJef6iAQXDor7+vnI05lK/QGNWYysQc+9A+f07CN41ehUorPq62P+1m/bvEYjUavQqVRonWJPZ9BbU64fJfuUJn11EuWK4VpHieKoe50Lr3u8VLCZo1qHKISXuOjgsLlADyjBqMJWL2WL29RLJ90enyHzK9vkICpabdVZRsEIvB6ixK2p92435UXswrhfxKrRTzCoptCg284mXvX50VEijpLEqqcyjtU35tCbrCPPIvWxvNDi4vapsYgkPfGk8LlOJeH3GvtC5IXFzcTkOaQyiVSoqKiq4KlP6EodVq0WikOfeZ7p8v3uj4wv26seMhDvxdl5BACUBfqMZQqqNqi7hvr7yhGK1AzH9yIMa+vzkrJFACiPilmJepVMzX1u8op/0pN/oysX0Ja4uZxgcF18a54g8RMORQKWv9++up2Sa2R5xfokdrXrrk91I4/4MBIYESSLk6VHlK8grEvm/1E9Ws/2AOMS+Dijyj+L2VbrAI2f4fAmuLWbj8l9KokXgUzKK45q01tH88h5iXXoU6h7ho148HhQRKAPnlSXsUfHfWPVlH/Q7B2P4f+oivgECpoM5AwwMVwte67sk6tn6mWfj7lGqlcGYpkDImiwqU0mOMYMzLWpdPcZO0R6JQKtLXO9e3fBKNjt/E5gmU4h4fcY8091KcX3zupTKMoFQq+cY3viF0jZfjD8qJ+853vpN3vUvKoBT83WtYbrpWdt9Ce4JyJ5w5JJ/kU88MEB5YWV1weRal1Y86UCgVXPypYPp/A1RuLhYq47b/b8+JfUcS0xMzTAkqtg0WHfkVBvJMaqHSbW1/4SK/wsDxb/YQ7pOvPtr8ySaUKgX7/kb+PVrbjDTucDI5HOGkgJpUb9XmtKGRywl0Q7GS5kdqGDroY3i//IHhQI5lECL+GL4OMWnzue8uHhRdCQ13O1CoFEL3lSua7ilDX6TDc8IjlOEoFzEgSDx6zoqlZT3/vdwyGq17Xx2hgTAXfiJ2Oiw3e9Si0uYmfpuLxYX4bH6kisLafM7/pHd+WboVBr+tn2lGoVQIq99NZXp0ljyG9weXbnSZIlilUjIbnWP0pNgJgv7f+en/nV92GkQAQ4USU7GOsRNiqszG223kGZX4hqaYSJqItse3YjalU6fzMBimpSxKMnVDTeMRKqbhJSNgkL9A7T5xEpVKxdve9jbZfa7izYm//du/5dOf/jSj/QdpWPWAUN/GnaV4z47jOytP/TL0qo9Ad1h++bUkilflU7KmUJprCGahKdlgIdQdkp0VafRAMCexi+dsEH1hHujF0sNUXWPLSQTR/pSbuZm40NyhZIOF2jvLGTkaoPs5+aflN32iEbVWsERpBNR6FfkVYoEvkXJt2ajdUYapRM+Jr8pPS+07Pcne0+Lj6vDxQEaUIACR+W4KlgY9zhtLsNSachLAi6L29nLmpsXsyntyAu9JcR5HTwUpzGHjfP/nxHksv85KySoLx75+UUisd+yfc8t6pdapMBSLRTVWP1aD0a7j2L91ExmRv/O19TPNzEbnhLKPFTUbaNrpwt85Qcf35a8Jqq6xkZdDQHVyMILWIt5PNKMaSKK+gUNeYVFm6bpCbK0FHMgSNyXm5lbMprTvc53oBf1cy+oZBvpgPCCfk96ulxno76e6upr77rtP6Puu4s2FTZs2oVAoSCQSXBzbS629XXbffIeOii3FdPxA/hr0xDd7iAr4lBRWvc2JWqei5wXBspw6KF9bJHRaO5d3HSDsjRL1ikeri+rzMRRqhTbUG+6voLilgLPfuyRU+mrDB6Uy7/sFSsvr7DrWvbuGicGw0El0Q45C75xOoOtg9dtqGD0RFCrvlFMGJWCiL0ygR6zsxaVfjXJJoNxLCo33SbYvUtovV9TcbqewJp+JoTATvfLf05x5HAjj6xLLdNPzwqi4H0CKE0+ORrj0nFjfvX8tbo/5pXqp/Jqgq2v/mJuZ6CyH/k6+D3LdXkL5JitdvxjEc1y+jWz6eCOqPBX7BO+vqD6f/DK9WOk2XR7ToRnh+Kbn6Liw3essSvJd+UJcADTsdGIq0zPeN5UpA5kqPbIMun8xytDhcaFxzeIAq0s/r8ybHJzvPYxCoeDhhx8W6ncVbz48++yz3HXXXQz5jtBSc7dQX+dtNkL9UwQ65MV1g51THPnqReEsSqZKLY7r7VLVha+JHWq2NBiJBGZlf+f4hXBO+42es+PkV4gfUnXcYENfJK5O2PLJZuKzcQ5+Qb4A3lyto+XhGkaP++kWKNu+/v31aAs0wnOivHwNRsEDZadzEPACVN1oo8BhEOofGY7lFIcaPhbAFhU8kU9uc3qtGWq3VRDsnuDMd974zK8N91YwFxOzq1x5HDnux9okdgAWcisbZm0zU76xiM4f9hELya8KkCvneWYNxpiY7TfeU4m10czp/+wWKp+3+eONzMbiQtlKtTYt699di/fcOJ0/EqiQdJ2d/EoDvS8OE4vJ5zHYM0m+4KEPIKdybfb1FsZOB4VFW45r7ZRvtHLwC1n2lYivuNe5//90CosIq9s1eC7MMClwbtw73k1/fz8Oh4M9e/YIfd/l+IMLd2/bto3nn3+e0Pd/Nk+klM6ilI2UyiyeoKENVGqABJcfw0pnUcqGSkU4uT9jqFQtKVZarMxbz29HmI3KTLGedZpt6webUagVQiIlkDLKFDeZ6HtB/lPNpaxWeCjKhecGGDsqJngZOx3IabIxMzWLKk9MPOE7NcXMbbN4TgeF+uUa+MoJeXloC/Kwry68ImKeXDdQckH/Po+wajhXXHppmNK1VuESbLniSvKoK8zLaVM6Fxz5x9w2fCP+GBOCQoLpqVkScwl5AqWssm8TwxE0i52oXCFAcfzr3aBehsdFBtnxC2EOfuHCimXfsjelDGVqbK0Wel/0yhq8FXnSplPz3eVoDComR3oJj0IiEkWhX3kCd/zZCDXXqtMCpRSWEypJ4iQIoV9UoOT8GYuWfVs/BRqkLvpDi7/b1iOqeWXfxn+/j/FgEIC///u/X/F+ruLNjU996lN8+tOfBsA7fI7isozyf7EsSinoi6CozkR+qQ7f2Z4Ff788i1IKKYGSvlQneyPee3KCgpoAF38iVjPR0qCn9s5yIj6rcGko1x0ljB4alV3SK1dx05ln+ohPiG+whb1RYsEZoT6jZ4JU31rGbEws2OC/MIGxSPyo8ZUoNZaCtcGMOoeT+blg4HcesbJmfwCC/RG858YZPiJeIz4XDB/xEw3knlJXBH2/GaMPsUxnucLeYpHWKleo3GEuG75jJ4OUbygSEigBzEbmmJ4SK/01G0swMznLyDGxSfbh/9tF8ap8YR5zybbhuNWO53RImA/HDXYqthYLH/7oem7xwNVyQiV9hZ7IYITIyHQ6g1I2VAfPLij7ptfPUFgIJiMc2Es6e9LlMBzpnVf2ra/zlwDccMMNsu7nKt7ceOqpp/hf/+t/cWHsd/NESktlUUqh4d5KtAWaxUs2LVFOO7WRqyvVCW3qXvx1bqWWNr2vEbVeJVxSQmfXUdxsEiqhICJMTiMKHT/qy2yKy8TYKT/5lQbmpsXKlsdCM8KVzqNjUSLeGGMnxTb9c+LjD4DRrsPeWiAkUsoVp77Z84Z/Rwq9L4+hKxQX1uaC/lfHmJmcZWL0yqTlOXUFBO8p5Jcb0FnyhEVKueDk13py6jfRH2bSKzapmY3NMTcdx9Mh9n6Od0/mJNg++k8dKE1iWV+jI9GcSgHa19mEyrwBND7kwliiY3oixvhF+XZ88t8vUb29ZKEvXkaopLNriY7FlhzLZgeHFi375tycj9akZPBEhPDFxddUiYu988q+BScH8Psl3/alL31Jzi1dxZsY27dvT/9/2HuKsuK2zB8XyaKUhhbK1xdirTMR6FgoHLo8i1IKKbGQtlhLTKaYenIgxsDrYqUWU9/hfshJeCTK8X8XmweUby3C1zUl+xqDnVMc7RTfYzj7zIC0XSuIiYEppiNisavQpShzMfH18dipIOZKcYHBvr+5cjEvW0sBukKx8SBXjB0JCmdtyhWxEAwf9uE988bvoQL0/X6MGUG7yhUjh4OMHA5eke+yt1hyEhHmilyEjt6OEPrCPCGBEkBsfIbZHERzEa94QopT3+jB0mAUEnoBdD8nmMwGqfRm4FJYWNRad2c5zhvswnqHMz/oQa1dZO9vmb1OrU1LzBNj2je9aManub6BhWXftGCr1mC2qTnx00g6e9LlUJzvnVf27Xjnd0gQ/6PEvBSJhOgSfJEPSU5Iiz/6Xgz11cASIqUsmArjqBQw7l1I1qIipSTa9pRgtOVx9tlRQt0LFyeLiZSEkEWH4xYbKp1SeJG29bPJLCOCmz2tj7uYDs/S+f3csr1cBWz8UAOafPUV2WhrfbsLc5WBM9/rYbxLfuaVxt2VaLQqTn9TvpK67JpCqm8uI3BxIuesSiJof9rN9MRMTuK5XL5LNAuAfZ2ZynYbHd+7RNgrfxDa+tlmFArxDEC5YONHGtAYr4wt/tGwUvrA5YYL0ZJwC/ovMrgaYMMTtVx8YZjAuaUD05dvRq19jwt9kZauXwzgOTm1rEgpJVACKZOS69pizn4/swm7nEhJTnm3pURK114zjUIBvzu69KJqMZES4Qirp2Gga/msINkiJf7mS/T19XHLLbfwm9/8ZsVrvoo3P2666SZefvllFAoF1277XPr3y4mUAMq2mBnev7iweSmREuSWBShXuB91cun5ftmZlEAqwVZzWxnj/VNC2WusrSZcN5Vy5J9yE4dehYT2p91E/LErIh5uf8pNfDYhlJ1HX6qjcUc5Pb8dJtgpf52w+ZNNqDTKKzNn+HADGtOVmTO4H3ViqTbS8cMe/Ofkz1/db3USm5gWEh+msoH5OkKcf+aNX9+0P+0m4osJixyvIoPGBytR5SmFhUrtTyffTcHgV/W2UqKBaYblCiRkzDcXEykVtxmpv6uC8b4wZ7+3tA1fLlICKLLOEAnD7InlRXppkVLoLPv2/Sdzc3PE42LBsqt48yIV81pT+RAlFqn80koiJZ1di86sXLzc7jLrqqZdVRQ15OckzhFFyYZCdIUael8UE6HmOkY2PVTJ3HScLsEMxVeRwep3SZn8rsT8pH5HObY2C10/F8tCU729BG1+Hh3fkx+7stTrce+uFs4amCvan3YTG58ROuWdK7Z+1s1cbE6ovKKlXo/j+hI6fz5CdEzg9PonmlBqlMIZgHLB6nfXYLRdGVv8c8ba99bS87sRAh1TKzdOwv2og8KafC48PySUtUln1+G6yfbHfceWmJtt+lgD6jwVe5fJZrGYSAnA1qxi9NXlx6VskVLn1He5dOkSN998My+99JKMi76KNzs+8pGP8MUvfhGlUskt6/9/mT8sJ1ICbKvz8ZxYPAPdUiIlgC2fbiY+LZatJVfU7yin7zWfbLERSCWNWh+pZvzSBKe/LX+dZq7WUX1LGScEqptcxUJs/YybiDfK8X994wXmWz7ZRCKe4MD/kW+LWrOS+nsrGTjgI9gpfyxZ/8F6NEY1+3PIOiSK1U9UYyzVX5E5Q822UkrXFXH+pwP4TslP7lG/o5yZ6Bw9Apk9zU4trW+txXNmnK5n5WcAyhXtn3UTHhUXOV5FBs477OQZNXT9WOx5bf2MlC0uO5u3HJRfU0Q8FpcvgJOzx7rIXqfZoaX1URf+i5Ocf2bptfYCkRJgKJbKTUY6lz9wmxIphWPjHOr4Z2ZmZv4oMS/xmkKLoLGxEQDvF74MrCxQApgMKBn3K5GkufJ1Ur17A0xPzTE7JXZquH5nOe1PNWOqWUaheFmgqO8lT06nSPr3erj4a3GnZK40YK0VK0dhqjHQ/rSblreK1a4u21LI+g/UCfUBSbhVeVOxUB/7OjMbP9Qg/F3tT7vZ9PFGoT6hkTCzV0hd6+sYZ2ZqlhnBhApFtfmYHUahPuOXIsxG5gh2iwUpm/c42PAhsRr2uaL+/go2fUzseQHExqeZHBIrr1W63oq+SIemUCxTxMRQhCnPlTn1NjkaFbZFg0N6n1vf7hLq1/o2J61vc67c8DK4H3WgT73OsgZABY27Kxden4y+7U81s+7JmkU+U7mkiKj21hLy8tUUNeQv2kahUi26EXXsWz14u0KSQAmWzMKULVACCA/G5wmUQMqmtGjfpEBpw8MGNuwWU77PGlR4gjAhf90AgCEcwXomf0WBEkjZlAAm9h5mdHQUp9N5VaD0Z4Tf/e53ACQSCfxj0gbZSgIlIC1Q0hWJfd/kcATPafESCps/2SQ8jp/9Tq+QQAlgeJ8f77lxTn+vR6hfcbMFrSWPyuvF5jVrn6yl/bPidcpb3+6i9u4yoT76IiVNu6qEv8v9VieNDy1ceCyHtndU0/60GwQPpM1MzTIxfGVS3kyNRBkXLB9irtRhtOspWyf2nCcGI4S94nOGjR9pwHVHiXC/XLDhg/XUP1Ah1CfYO8nM5Cz+HrG5l8VpxNZkEeoT8ceYDs3gPRcU6pcT9JIthvrF7mvTxxtpf0rwfdbDhvfXU9QsNv5XXl9M+XXLl4JdDOveVydlRBJA69tdtD/lRl8kttwvqs/HkkNZv4u/HKL3ZfF186XnR4QESkVNBtqfahZ+x6a8MaYnZrn0W4ETc6oZYIaJfWMrCpRAyqYE0N//CnNzc9x4441C13gVb27cc490euD4wA+AlQVKANGxWEagJLBs7fmdh6h/mrBX7FS542Yb7U+5sdTLH8hHDweEBUoAPS+N0vUL8ZhXYZ1ZuIyCzqJk62fduPeIxbyK3CbWvKdWqA9A6ZYiyreKTZYt9XrWvbdO6DmDJF7Z+BGxWFmob4rpiRnh78oF3o5xov5pogGxoJe9pZAiwdhmsD9CbHyGYK/YIrn2njLWPSke28wFjpttbPigeHxtaiQsPD8pXWslv8KIsVQsm894zySTA2LflSsmhsKSLYpAJ8V6Wx4Ti1813F9B027xNVHD/RXoLGJzoeq3lAj7G5A2sVe/e5GY1zIo31qEvlhLcVOBUL+zP+xj7GRArKwcUuY3UYHSxo80CK/pQco6GhK0RY0O4l7figIlkLIpAQQjI4yMjFBZWXlVoPRnhFQW+Hg8zqg/KUxaQaAEpAVKWsGKTYGLE4yeFs8Ms/5D9Wz4sNg43vWTISGBEkhVBoYP+zj9A7GDJGaHCWOpnsobxGIhrW91sOXTzSs3vAz191fgeovYOk1rhtq7xOJkIAlK6ncsLnRcss/9FbQ/5RYuhRQNxAgNXpmxNdg7hf+iWMxLY9ZQUJ1PyZpCoX7j3ZNM5RDLW/veWhw324T75YLVT1RTs71UqM94b5iIP8bksNh7Zm0uoKTNItQnFobwWBSvYMbGXBEJxAgOiM2V1z1Zx9bPiL/Pa56owdIgtodtX2+hdINF+Lva/sKFtUXMcdfdXcaWTzejLxN7n0taC7E2ipf163i2n0svice8hl73CwmU9GVatn66GcetYu/YdGiaqZEoA3sFMvtrpX+T53wrCpRAyqYEMBh6lunp6T9a5vA/Sh2ojo6O9Mmy8NlOQN5k3mCIs+YaiEXhyCvS75bLogQQujTN0X9bXAm2XBYlf8c4xQ1mDBY1Im6+5q5SStcWcfxr3YSH5G1UiJaHS+H4N3sI94kNeJPdYRLxBLMzYht6pWuK0BbkUVBvEMoCVNluIxFPCN1jsduCJl9N2TWFDL8uf8I3MzHL5JhgDerv5XZKe+NHGlDrVez7a/nK4eH9gZzKwx3/6jnhkmjhoajQqasU8sv1qHVXppxKQZUhp5JouZQ3O/lvlzAUK4WyKAFCGTZSaH3chbnSwLEvnxV6budyKJUBUhkQn+DExlwlNmEAqL23jMKafBK3V3Huv+S/N0U1+ShUWaIkOeImA8RnE8RCYoH2iz8bZfj4hLBfJAydzyyf6eFygdKGJ6sgAYf/ZeWATXYGpbmZ5UW2S5V8O3Np5c2D7JJvheEI9wZhyjbBbz3yA76Bb0kbKQ6HeJDtKt7cuOaaa3j99dc5c+hrXLf987L7rXuPE61Fw77/eyFdAmi5LEoAJ7+W26mr+HSc2Wlx4fCmjzWSmEtwSKCudy5ZWs4/MyBUxi6F6YlZ8kzi6f/NVQaMJTou/lx+Jpqau6qwuExUXl/MwO/lD0IWp5FEXCxZqq8zhM6sQa9XEonIH19zKdGrr9Cz9vFqfJ0hzv9A/rM7kcNpodHDQULdQdmlAFM4+x35GS+zoTGqsVSLj8u5IM+soaBSTCgz9KqPoVfFy9Ht/auz6AUFjqHuiHD5CpBOKMVCMxz9ksAcMZKbLU70h9FZxdKwO66xk2fRUFhXIJSNynGdHRQI8W9bZ0ZXmId9dRHek4ufCl4Ms5E54rMJYdHnvr85h75CPHX+qGBadHONntZHqul7XWY5xuR8U1OQR2Iugadj6RORi5V8i4wlOPLlld/p7JJvGzeBVgsH+pFdMs87fI6enh60Wi2//e1v5XW6ij8J/PSnP03HvIaDHdjlnvfTQftHm6WMLSmftkIy8+hYlKP/LL5G9nZOUL7JiiY/D5E6j+XXWnHeUMLp73Qz0StvTiS6MZ7Csa93C5WxA4gG48Rn4sIHgOyrCjHYtBS5TUIZqapvKYV4QqgEXmGDGV1xHpWbi4VK4IW9UaKCG5WXfjXKJYET3imseU8tOouG/Z+Tnxk10DFFoEPcFk/8a8fCEocrIUpOWY0KqoxXrJyKpcZEnll8DZBLebOOHwygswwI89ghMK9Oof6+cordFo59Tez97P75CN2IlcvQmXXExmfwdcqf0wAUNeSjUImJjcq3FmFrtaDMUwpl9bK1WnKKo85NzzEdEhNtDe3z478UFvaLRBHOSLf+A/UoVQqhNTbA9NQs6rxl+Fii5FvPCysLjeaVfNPB2ocLiPj0nPi6fDs+cPHrQAKXyyW7z1X8aeC9730vX/7ylzl58fvcVvT/ye7XsqcSc5WBo//SSSy5ZFguixIgFJPIxtzkXE4pINY9WQcKhNa73c+LlycaeMWL5+yEcHmiaHAGXfGctIEt0NXaaCY+HRfKRFNxnZT1JjYxIzSHsjYWAAm6kO8L/ecnMJWKq7yPfVk8U7PWDGufbMZ3PiSUsUVkvEphciDG4X84J1zy6oJAbDIbeqsWS7WJPsTKHeYCg12PSis2JvvOhPCdkZ9BKYX9f3tOWOAY88RyyrC1+eONxMZnhPvmkjU8eGkSc7lY3NC2ugBDqQ5rg1koO1f1zSUoNSqhsnmmSi355QbsbXGh5zY7I60RI4JitINfOC8sVASWrfKyGLTFWta+s4b+V8cYfE1GDDA5l9IVaIjPzhG8sMxceZGSb7EQnPyPlfejs0u+uW/UYrKqOPYNX3q8XAmhqIeenh40Gk36EP0fij9KuTeAlpYWzp6V0rXduvV/yu638YY4o4PQ1yk9hJVESul+T1YyMzXH8f8YlnJR8QeWeluCBvs6M3XbK+l9eZRBgYByy1sdFLhMb95STwbQGxAWyzhuseE94RMWh2AArozgmLod5UyHZ+mTsSBKYd37atEYNcKlbNyPOpgcjtD30hs/KDfuriTUPyUk9MoVV7LcW+vbnAwe9BAQ2OTJFavfXcPA3lF8p+QPrs17HFhcRiEBG0jipu6XxsQFNjkiF9FW9fZSLr08KvxuGqr00n39ISXelinBtiSSGZEWy56UwoYP1qDOU7H//yxiuwrlAnFSChvf5yARTywpUkqVfZNT4u1ypERKswYVBkOEzU3QNwIXh1beBEyJlKoOTXNtyRwXJlR0h+VNLDV9+zj46x8CUsadq/jzQ2qzrI1rKM2Tdxq14joLJa0FHP2PXtkiJQDXHSWUb7Cy9+/Piux75YRcREogpeiOhaavSNmxXKCv0BMZFCNPXwTW1TZ5m/jz+imFxQm5wujU47zeztlvi4l6tn6mGU/HOBd+LD+oVLwqn9L11pxEx6KwtpqwtxZyLocgkSiuZLm3sq1FGEq0QmXbcoXjVjv6wjxhEeHmTzYR8caEBJKOW+0oVQp6fi2+cZsT9Aj7Qn2pjsJ6o7BITF8EkYj4910R6KH9o25858VK+lXeZMNxjY2zP7i0chnGHOab6bmiSsW6dztQapQc/lKPrL4pkVK1xU9xrZ7j/yVfqHAg+l2CwSDXX389r7zyiuhlX8WbHA8++CA//KE0t75V+aDsfmvfU4Pn7DgDv0+++zLn5Rs+WM9sLM7xr7yx85qCWh3u3TX0vjLKkJwAahL1O8opbrGw7wtn4cokKxaDDnQ6hEUepVuKCHaHhUpspb7vSvHguNlGfC4htJnX9jYXeptW+PBb/Y5yIoFpoe/KFdXbSwiPTucsghPBlSz31vhABWNngkLlvHKF+1EHw4d9Qt9Vc3cp9haLkIANoGl3FX2veQgPXBnD11mURINi65vya634T/uE/YCuVCcuHLpCWPOeWrQF4vHrXEVKspA9V9PB1g81MXjQR99vV17DpkRK8Ukfq/dUMnoyxMgheTtlUauXVwd/TSKRuBrz+jNFKublZjMVmmpZfYrcJqrarZz4dm9aYLOSSAmgdFMhrptKOPblTmGxhyjWPVmHQqngyD+JjUEbP9LAzOTsFSk7lgu0Nq2wIAotlG8oYuh1sVNlWrPyDX9O6e+yaXFcVyxcHmrzxxvxnB2n+zn5AjNztY7yzbacxEqiMDu1lKy1XpEyzFey3Ju1zUx+hV5ILJcrSjdYMJbqufgLsfja+g/UEwvEhMo3lm4qRGNQ0//yG78PDQiLFEF6LwsbzEIiJakfxGLi33elsOXTzXhPB4WEfbbVBdRuK6fjR30rC71y2WNN7q0qlApaH60iz6zm6L/Ii6GmRErF5RFK2/I5+R3578ph1U/xB/zceOONfzSR0h+l3BvAmTNn0v+fiBzAYE4NEnHs5XHQST8bDHFsZZkBpLsD/H5AqQBlAnubQRK0AAY70s9JWOp0GJ1SwFGpAo1eidYCqFQYSlTY12WkjoXNBgrqMn3t68zoiyVBRMvbq+a1LagzUFA/v62hWKJmoi/EhecG0gIlU42BwubL2pYnFbgG0p8bDc2QiCeovDWTTtG2Jn9h29S9OgxY24xs/lQT7U+7pbYOw5JtbWsymTSsbUaaH6uk7JrChW3LdQvammoMEJYESpe3vZzD7PJ49nVmPCc8hL1xDMXK+RzWL82hvhjsTfPbLuAwu23yc/XFsObJGspvts5vuwjfqWdjbTNib7NQscEqi+8U+l8b49R/9S3edhEOU8/GUm2ifFOxEIfuxxy0P+VewGFh80IOU6W4DMVKrPVmqtrt8vheJ853ikM59r0YhyvxvRiHhnIdBU4TNXeUr2yzWde08SMNbPl0syy+Uxzat5owleip2GyXxXfqc8/9Zx9nf9Arm29TjYGGB8soqDLiur5Yls2msPp/VFN9l21JDhfw7TSm25ocphX5nve5JhWXnh/FYNFiW5MR3lhbF/KdeTZa7OvMhAdioFAsy7ehWJG+19bHXZRstUg+OVnezb4uH0OyrcRh5noL6gysfdJF+2cbMVUb0m0VKhX6EhX2tZnrNVUbKGzKXEOCrLi/gflt6w0UZbUtbjFgSGahPfT1Pvpe92XutUI5v+1qE8bq5GfpwVYP6x7UYyiR6rZas7J6F1aTvjcAW+U0GCQRSEUyC0UkqQkpzo9gMaQ25yKUFUUwKKSfDYYIa09PYz2kJoyBkz4VE+k4WRiHPowhqTAzJH9OKc5syjCB7hOoVCpuvvlmruLPE3fccQcAZ5T7KM6aL+W79FjqMiK44jZDOgPK4OEgfa950pvdRoceS0OmrbXVhD51skgviULQw3R4FhRQfUvJ/LapjBtZbUES5FhbTZhr9Gz8cANFzYal25bqsLZm3tULz/Vz9seZBfnlbbPLHlka9Bid0h8T8QRKjSJ9r/oi5YK25hr9vM+1bzTR/rQb92OOeW3NNfN5KV6Vny6bpC+CypuKcD8qCcOMzkXaXs4hEBmMYHTq55WIWorvFIf6EkNaoCSH7xT0JTrZfGdzWHmTjVXvdGbayuCw+pYSCqtNlF9XsIDDy9tmc9j1i4G0QGklvlOfW9luo6DKSPF6w/y2i/ANpPne/Mkm1j5ZuyLf2c/GdUspRQ1mWRwWNRvSHKauSY7Nptsin++l7HslvlNtq66zUdJWuCTfi3FYvN5A+2fd1O4oE+KwfKM1U9ZnBZvN9hEH/rGDoUNeIb4rNlkp32iVxXeKw5ItJtb8j+r09yzP93xezGXybDbFoaVBT2QkytCrPlk2m4K11QR5Oslnr8B3ykeUX2el5p4y2XynPrf9KTcbP9qwrI9I3Wvqc22tRkjA1GhUBocZmx34nYfT371EPGu/YAGHq83pYI25Wk/bE06ak6VepLaKZfg2QVKopNIpUWmy7Ls1w5mxSk9R9hjo1mP2DqLpHGTgVIT+I6EMhzYodGWCR4UuBfpUBm49TFd2Ew6HqaiouCpQ+jPFM888k/6/x96DoTJzErvIbUqX39LZpew9KXS/OIS/e2peW50l2dainNe2oFZHvlP6IGWeEo1JtWTbfGembeZzlTQ+UEHzI1Xz2hoqdRTUXtbWLv08Phjl/LN9aYGSoVI3r2RcYZMx3RZd5l6nvDGIJyjbXDi/benCtiBt+hc2GdnwoXraPyuVpVuyrV1qm4KlXk/d/WWUbilayPciHBoqdRCVBErL8b0Yh8GOINGxKDoLC9ou4DBZRkpngaIaeXyn7zX5/9a/cFJ+YyZV4VJ8pzi01Oup3Gqjcmvx8nxfxmH/3lFOfy8jKL+87aIcImWVqdhSLMtmU59bu6OErZ9xY3HJs9kUh2XrrDhusMnjexn7XpRD5nM4r+0KNpuCqM2mOCxuseC6rVQW36l7XfPeGjZ9vFEW36lnY6nTUViTT2V7hsPl+E59bvfPRzj5nR55NovEd9WtxVgbzDivs8my2RRaHnfgfIstJ74N5QZZfKeuHx1Jv7aEj1iEwxTfKYGSXA6bdlVRvMEiZLPutzlof9pNYZNxRb7nlfFUkcmYuwLf2fZ95F+7uPjrISEO17+/nnynTpbNpjgsW1+AQqmQ4gfJtvmOpfhWYCmeIu71QRQuvuBlciRzgKqoSZduq7VIP6dgqtIxapQ242655Rau4s8Tn/jEJwA4y4F5tq0v1WJ2ZTJhFNTo0FqlgjH+i5P0vpI5uK61aTFXZ2ynoM6QyaKhRSpnpIXYxAwKlYLSazIBXXO1btG2IGXJKKgzoC/TsvY9tZgbdfPKDl3eNrts0oVf9HP2h33z2qYyuGjNynltTZVaTJXSB8XnEiTUUhupLQvamp3zr6GgXkf7U26aHq6c11ZftrCttjhzryUbC6i/vyLT9nIOixfh0BOTzTdIz6agypAWKM3jexEOs/d6tYWaBXwvxaHZmeHQvt6C+60OWXynPrfq2iLsrRZKr7GsyHf2szn/04G0QGklvlOfW7ZRGl/tmzNlQJfiO81hnYENH2pgzRM1smw2BeetpdhXFaY/ezmbNTu1OfGd/lylfL6Xsu9FOTSnPjjT1nmDnfINVlk2m+LQXK1jy6eaqdleurLNZnFYeb09U2ZvBb7N1RkfceQfuxg44BPiu+o6O1XX2IQ4tDRpaX3cmX5WK9nsPL6L5NksZHxELBRn5HBQFt8pFNQZpBTWsZX5Ttm3tc2M4zbb8nwvwuGWTzez/oP1smw2xVlho45EPEE0mS1Trs16Toxz+tvdxGOzS7dtNKVjXvoyLU27KtJlLFfiu6BGh0KZzDhuVqNOZRzTSnO6eRzWZPg2u7Ro8BH3+BjrCNO3N5hpa2He2Gp2aNHZM8kiYs5RwpEwpaWlfzSBEvwRRUoAO3bsAMATOseqDdLvHPVQ3woNyfLFrZukn1NoXAVt66D9tjhVhR5qby2m+U5pMuC+r4KaWzIClaa7bLTeK9UoPf+8F7VORcM2abOs6Z5S6rZVpNs2P+CkZZe0eaQvhvrtlTQ9VIO5yoC5wkj99sr0ZnTLLictu1zpvvV3VdH8iLTj3PBADfV3VdG0p4Lq7SW0PeykeWembd32Slp2S2V0Wh9yUX9XFSWbCrj402FIgGOrPfO5d1fRuke6psZ7Kqm/qwrHVmlxtmqPk8YdTqZGosSC09TfXUVb8nNrbyuj/q4qam+T7r1tt4P6uzO1uBt3OCl0mnFcW4Jjq026/h3S31v3OBe0bdstXcOa90v31vawdD8tux3Uba/McLjTRdvDUltTjYH6u6poeKCGLZ9upu1d9dTflfncll2uDIcGicOm3RKHTbtqqb+rivanpVOp7ocWcujeUytxtKOa+ruqKGw2YCgzYrTqcV1TMq9t6yPSNbU84KD+rirKtkgDQdsuicNLvx3m+L+em8d3w90S364bpM9qe8RB445M1on6u6tY9YgTQ7mO6ptKqL+rivq3SPbU9qhrAYerkp/rOR9EpVHSfF/SBh5xLuQwybdtTT71d1VhTC483Y/VLmjrfkhqayjXSRzulHhpfrgGhULB6WTt8Hl8k7TZh5N875T4NjgMrHpnNS27XQtt9tE6AGrvlmw2JWhp273w2aT4br5P4rviOumdTNlsNoer/0I61VD/lgrq76qi5ubSNN+LcRgeiuLvCaEza2m4W+JiUZtNvstlWwqpv6sKlU65NN9Jmy1slmy2/j7pmhybykgkEnT95FK6bYpDfXHSZndJfDftluwQA5RdU7g435f5iJRYp+1hJ8VNhXS/NMSlX/Ut6SNSfGdzaLTqKV0j+b+lfEQ23227q9j4kQbaP+pe0UekbDblI9o/3EjtvaW0PuKc9y437nDQtku6Xvs6M/XbK2l9UOq7+vHqjJ9VKGl+wJn2U6YaA/XbK2l4QOK7+eEa6rdXYltjwlyhp/aWsrRPxgD12ypoekhq2/Sgi/ptFWlhj/vBSvQWLXOxOJOXwtTdWY77kdr0fdfdWZEWJrU+VEHTfRkbyDOoic9KQlj3fRXU3VlB6eYCFGo1rfeW0bAtU8+17g4b7p1VrH57GfW3F1N7qx3nFunZtNxfmW6r0KipbTfivlX6TmebkpotJtRaJUWVCppvMVDbnpko1F9jpOU2qW1ZGzRXJ2iRXjlKkvHnIa+0uG6rhzXJ8bGkEJqroTlZznyta47VlhneUjLBW0om2GibY7NdyhxoBtYUzrGpWPp5i32ONYWZEgjFE+e4cOECJSUlvPTSS1zFnyd+9atfARCPxzGtU2B0SHbV8mA5zQ9k5kT128txJ8d6945yGu6qYNOHa1j/pIvWB8txP5Q5kdZ4n4PWh6X3uvGuShp3OCjfYGXoVR9zM3HK1lrntW1Ltq25uYzGHQ6qb8r4/cb7HBQ3W9CY1DTtdLEqKeqp3FhM4w4H9Ul/0ppsm0LTAy7aHnax+okabOvMNO5w4L5f+nvLrioa7s34LPdD1azaI93buWd60Zm11CX9ftPD1TTuyHyu+8FqWh9O3qte8nfl6+3MRubQW/No3OFIb6a3PlyN+8EMLw33VtGU7Ft7rwvndWVYqo0YnXpW7XHN47Dh3qo0h+77HTTucFCSrMm9+rFqmrLG2cb7HLQ+IrWtu7Ocxh0OKrck/f6jTpp2uqjdUUb7Z90S38m2rutLaNzhoObmpN9/+DIOd7pY+xfVrH2ylvINVhp3OGhMjbOXtXU/VJ2eC1ZuKSa/zIR7Z3Kutad2Ad8tu6W2+go9jTscKFUKLjw/SElb8Ty+Wx9eyHfTLunnhp010r3eLM3hWnYv5NC9Rxpna+5y0rjDQVGzgfM/6CE+G6fhTte8tim+m+6pkvjeLPHdutu5gO+2pB3W3iHZrPM6aa7etscxr63WnJcuV+i4xk7jDge1d0h8t+5ZyHdrcr7X/pRbutd7qtJ8L2WzRc0GGnc4UOmleU3zIzVL812kpHGHg4adEi+ND0n27X6rcyHfJPnenZyX3Se1NTr1nPrPPhJziQV8t7xVGmfdD0h8p0QfbQ+7MnzPLe0jIGOzKSjVCmZjEodL+YhsDlc96kRfoad+W7ksHwGkfcT4wBQXfzW0rI8w10g2m/IRrpsrMBYb0Bck5+aL+IjGh5LzvQdr0j6i/Wk3rXuW9xGNOxxpsc6qPS7cu6rZ9InGdNulfETbw640h0annsb7HKx+XPp5KR+RfuZJH1HVbqN0deGKPiLlk1M+Ym5mjomByLI+wtpqkuwu6SOcW8pBSboc5WI+IjUXb9ot2WH1tlKct9tX9hH3VqEvlQIkLbud5JcaKEyKABruqcT9SJaPuLcqLS5ve9hJ8/3l6etXa1XMxaS5YeO2Ehq2l1OyQbLv1gfKaNyRadtwVznuuwvZ/M5iWrflU39TIVVrkmPrdisNt2fGwIbbrbRsl36ubNPTF+hidnaW6667jqv488XTTz8NgE81nLXON9P8gIPG7ZLPanmoiqb7s/zQrmpWPepi66ebsa3Lp3mnk5q7kn50l4umB7Let101tD4ivQcn/+08eQYN9fe7AGh4wEHzTmd6g7n1kWpa92ROSjTvdNK4y0VRgxlLtYnmnc705vqqR124d2faNj3gwP2gNC9ouqeS5p1OGh4qx3mbnbZH5o/JzQ86aX1Yup/a28to3umkfG0RQ69Jc8Pq68rmtU3NDZ3X2Wne6cR1fTIG87CD5gedhPrCTHmjSV4kDkvXFNG800n9W6T3sWV3Fc0PZta+7oeqsbcU4rjORpFburempK9376mZz+HuGlY9KnHW9Kh0b3UPutJ8N+/MfG7rngzf6CQOG3Y62fixBta8t4nmnc60yKDl4YUcpsbZmu3Ss2l/yr0k3y27pOtt3F5B804ntnUF6Cw6zBVGXNeVzuf7Ealt9S0lNO90UrlZWii3PerAvauarucGOf6VTonvPdK9V20tpnmnk+obk3zvcczncFc1bXtc6Ep1lGwolO41Oc627K5awGFbcuzseW0EtVZF9Z3SNTU/XL2gbUtyjNDZdTTvdGJx5UMCnNuq5/P9SM1Cm31I6lt/rwuFQkHXr4aX5NudjHm53lJF804nhU1GmnZVsebxGlqy2jY/6KQlKWqtv7Oc5p1OSjZIc85Vb3Xi3jXfvlM2W32jxLcjKfJpe+QyDndXs+6d0veUb7BK7/Jt0rNrfbhqId/J2NTQUS+GQl3GR+xayHfKZgtqJQ61+VIG6OV8hM4icZjyEY4bpGvper4vyffiPgKg9h5n2kfY1hXI8hHW1NzwERdVm+10/myAS78cXNJHgDRXyea7oNJE+QbJnpfyEdkcrnrUyep319D+UfeKPqLtEeneUj6i/WNuqreXLOsjDJUS33X3SD+vfbJRlo8AqL9P8ieFbj1FDfnUv6VsRR+REjGtetSFpdLEzOQsgY6pJX2ExMt8Dg1FWuIz0rxmKR+RfuZJH9H2NhdVN67sI1qTNpvyEVqLBmtjwbI+wlKvp/kBR9pHlLZZQQkj+wPpz834CC3NDziov1f6uXGnk8Z7Klj7Tgfr3+uk5cFyWh7MzMsa76mg/l7pvam7s5zGeyrQlUrvRv7mGbq6urDb7fzmN7/hKv488fnPfx6lUhqHTZtJC5Vad1Xhfih7veKgeafks6pvsuF+0MH6d1Wz9t0uWndX0PpI5t1s2e2idXdq7LTRsttF5ZZiAucmmZ6YpWJ9RqTU+khNOn5Q2mahZbcL103SO9Syq4qW3S4Kqgzoi7W07KyhNemHCptNtOx2UX+nZM/N91ek93wA3I9IfqhljwNTpZaW3S6qt0nvUMNOR3o9BdD6aA2te6T3+shXujAV66m/V7rXunuktqnN9NY91emxEsC9y4njulJi4zNo8zW07HalRQerHnWl11MSh07cSQ7rbi+j7s5KbC0FFNQZaH3YScvD8zlM+SznjXZadrsoXS2Ns+veXUPro5fxnRxnKzZaadntwnGNNM627pauv/KGYrZ8qlniOxnfsK0uoGW3i5pbpbHN/WDlPF5a9tSw9ola1ryrhoI6g/S5t0r+ovkh1wK+W5LPxnGdncLqfGq3S9fU8MBifM+/fr0lj45n+ylymCW+k8KBlkcWctiU/F7nbRXSvSWTL7TtcaVjXGm+k+Ns7W1ltOx2YVtdQM+vBpiZmqHu1kxMN5tDxzWSzZZvkMbZ1keyrl+ZmmtJbcvXFUm8XG9Lfk7VvHs1lRqZicwS88awtkn3Vne7NK9376xc1GZBynzdstuF6w7p+hsfdOLetTjfWrOSlt0udIUSZ/U7kteQ1EG07qleYC8NO5Nx5m3Svbkfk2xtMZttTt5P/TaJb0uDkTPf72cuFqclKz4mxRyl6625pZSW3S7srRbp2TzqlHxEIgGJpX0EZGw2hTy9mpmIJEJZykekr+Hhalofkeyn8iarLB8BpH3ExHCY8z8bWNZHoJWuP+Uj6rc7KagypYXFi/mIFN+ut1SmfcTWzzSz5vGaZX1Ey24X1pZkgoKHnbQ+WsOGjzSk+V7KR7TtcaZ9staspOVhF2uSe8pL+Yj0vSZ9hOumEio321b0Eam5YcpHzE3HCfWFl/URWpvEd8pHVLaXotaq0lllF/MRDfcl58HbpeututVK1Y22lX3ELidml/Rs2h5xUlRvxtpoTt6PA/eDkh+ova2Ull1ObKuT+5a7HZl9VkBn1jAbTcavt1pxP+igfH0y3v5QxbzxsmWXE/e9ZWx6XxWNb7HSfG8JjqQosvm+Utz3ZvQs7h12Wu+T+LU26xid7iYWi3HTTTfxx4T6j/lhzz77LAqFgu7ubn78w2epStyB12DAXABDyQPxg71QkDlohXcMNGooKIKEQkFoMMLgUSmt58DhAEU1mY1f34UpZpJ16INDUUKDEbQWNRigf58Hm9uSbus5M048Lk3aI14Y75ti9ISPqbEZjHYNJautUsKJRILRU4F0+kiQ2nrOSpPpgb2jlK23UVRTQGIuwchxP2pthrZQ3xS+89L19r8+BtgJdY8DMHzMj81dQMmmAkYPjhO8NMl4r3SCbvCgH41OjfeEdFpt6KAXY4mOc9+ViGre42BiSMqIMXwogL5Qy/Ax6XMHD3nJz6oj6esKodarOPONXgzFSsxVRvr3S587uN+LxZXh0NsZStfIHj0TwLVVi7drInmvnvRLkOJwLrk5MzkSZrxviuEjHhrudjAbizM1lDkNOHY6mEmtGpY4HDspqaAHXh/DdUspqjzpWY2eCKDKqmcd6g+n+e5/fZSKzXYCvWEIQ2DNODPRTMrW8Z5J/N3J693vRaFSErwg9R084kNflJcuh5bN99AhP3l6NWMnks/mkA9jSUZBGOidoMhlpun+Sjp+PIDRpmcwmWJ6YJ+HAmeWHXaFiPilkx0Dvx1Ca8ijf5/kpPr3jVFUkznJ6+kYZzZ5esTTOUFJ3xSDB8YInAtTsqkAmzvzMmTzHR6KSjZ73JfkZQz7qqJ06bDFbDbFd9/rI5SttxH2holNzGC06/Cey6TKDfWH8XUkbWn/GCTseJL14IeP+dGY1NiaChbw3b/Pi0qjJHBO4mUoyXcKc9NzaeXn4OEAWrOGkaNB6ecD8202cHEifeK69/lBVHepGDrkT16Tdx7f2TYbvBBgvKmA/tfHGO8KU7alcL7NZvEd6M3YbOrZ2NyF6RKHnjPjxOcu8xEpvl8bo2SN5COqby4jPhufx+FiPmJyRHo2KR+RssOVfESeOVN+LNg3SSQgpTdZykcAoFAQ6J5kYjhMUU0+yjwlUyPRZX1Eyma9p/wUufMxWHTMTM4xeMCLxZU5EZXN91hHCHvbFP2vSxxOh2fRZNUB9pwZZy4ZHMn4iOS78LoHe1shnuOTqHXDmKoMxKezfET/FGOngkkOPZSsKSKcfDajJ4Oo8pR0PSudNpgYCOM5J93bwD4fFRsTBJLvwsiJIBqDdE2r3+lgYjSM71zSRxwIoFQrCfZIfmD4RACdJaMGHu8Lo9AqMJfomZ2ZIzQYwXMm+WyOBzHadSg0kr8P9EaYGpsG1Hi64xgs03guTOPthrnpMOaSzLsQ6J8mMinZofciWMqm6fVr2dAYITgJ6qxqdaMBmJ1JPqcABCdg+Owc+pFJBtVQXJlAn3QTg2EFSf0VIcAfhZ6w9GEXJlQ49HPYX5kAJvhR748A+Mu//Euu4s8b//AP/8CHPvQhvvOd73CN6h6Yg5HjwUzWCCB4aQrfBal28tAhyTcZSyXF/dBhH3nmzLwm0DWB/1LyHTroQ6VVETiTHGcP+rA2mHA/6uTsd3rxnQ8xMSz5rOHjQXSFeWm/P7DfS36Znu7nhhk+EsBxXXHa7/tO+zE7jAwdTs4T9nkpcGT8/tjZIOYqPcYyHVqrhkD3JAP7kr789flzldHTAWbD0tgZGo4QGp5EladMfq5n3jg7cjyQmatEINA9yehxH77Tk1hbTZSssRJJZpgePuafN84GL2X8/tD+MRIJG6On/Uz1Rhg67ENtyLzYwe7JtN8f2OcBhYJQt8TLTGwWZjLPz985wXhf0kcdCZBn0OBL+v3BfZLfT/nO0OAU/i7pOY6eGMdg0zF8PMn3AYnvFDxnxymqzyc2PkvgTACL0ySd0gH69o5RVJ2Zq4ydDTIdknzW2Z/0ULXJztAB6eRh/77L+D4RYG46OXb6IwS6Jxk54sF/Lszc9Bz2VZlMAIvxnZ4b7h2j4Z4qHNeUMfDbAMNH/Onndjnfg/vHSMTB3xOGCAv4zrbZoUNelBoloS6Jl8GD0lyl60dSWu6mXVVpvocOBdGa8hg7GUo+1/lzQ19HKG2zntMhTKV6hg4l+d4732Y9Z8fT4+xsbA4SCSkT0CJ8Z9usvydMoHsSY6kWpV5J/96xeTY7n+942mYBho6PUXtrJdHk915us/P5HqV0vY2psQhEWMh3ls0OHZSefWp9kPIRqaxXeUb1sj4ie24ox0dczrf7/gq0ljwClyaX9REpm53sCUk+Yq+HULf0Xcv5iJTNAnT/apiyjUVEkqfll/IRIK1nStZYASVz03EiwRiTWeVNLvcR8RkboeS9Dx32UbK2MP18lvMR2T5Za1CQmEvgSc7bl/IRl/M99KoPx+1WTHbTsj4iZbMpH9H76hhTvRFKNluW9BG+i5MEuicZOjhG2dYiZmZmCHdncnIv5SNAml/bVxVRuqYQhVLByLHlfUTJGiuR4SgoFAwfDaDSKNM2IfEt3dvg/jESczb8vcm18xE/aoMKfRE03ldF4NIUgUvJ9/5ICJVGyXhyfTN41I/OkkdiRro//4VJEsoE1up8PBcmmY0p8J5PPsdTYQyFGd/j644SDswx5/Hx4usH6fNdQqVS8V//9V9cxZ8v/uf//J/81V/9FQODA/zw+z+kKtHKRE8I3/kQQ4eS4+xrY1jrM+/QyHE/Kp0SW5MFjUGN73yIkaPSGDGwz4Ot2ZJuO3zYl34vokHpvdbb89BZlPS/7qFk9Vy6pNjQYd88v+87H8JzLsjUyAy6AgWl64qZSI5jgwe888ZO//kQvmQMYPCAFxQKiustxOfiDOzzzpsbes+MM55cew0fDaDRq/GfC0rX/7qH0g1FlGwoZPRwAM/pIBPD0neOngihL9IyclLyYf37vOSX6eh6VhpPau8pS/uhYEcQn9PIYPId73ttjKLqzBp15KQfjUHF+e8Pgk661+HDWXPDhiy+j/jSfmj0ZABLVT6+zuQ1vDqGvS0zzmbzTVT63LFTAeq2VTAbmSPYPZUuLzV00Ddv7PR3TuBJ8jC4fwxdoQa1To3OolzAt+/sOP5Lk5nnplYy0T1ONAhjpwMkMmdN5vN9ZBytKQ/vOanv4OuS3/ccl+7HcyqYmaucmcRo1zOc/Fvfqx4KHJmYwOipACWrCmnaUUHH9y7iO29i+EjGZufxfdyXHjuH9vsxlxjTfPe9PjbPZrP5jo5F8Z0PMXrCT6BjiiK3aR7fQ4e9C2x27FQyFrh3lNJoMcGLE4vznWWzw4c8kIBAzxQFDhPx2QSec5kScdl8Dx7yo8pTMX4hFU/woi/KoyS5UZJts8PHx9EW5DF2OhkD2yvZbAqxiZn0NflPBzBXGBg5FpTavu6dx/fICX967Bx+bRStMY+hw0m+Xx2bb7NZfI8PRtM+ItgVwboqf0UfMXrCn7wGyUdER5I2u4SPABjcN8ZcLM7EaJS2x2qYjc3hOeVblO+Uj5jqy/ycZ1an7XAlH5E9V/F2BJmeSMakl/ARKYyeDBDxT2OuMJBnUjMxEFnWR6T49ndPEuyfxFxuZC4SX9ZHhL3ReT55yhNFX5iJGS3lI0Dy3yXhOQJnI3TQR0GNAWYzfF/uI+KzCcYH5/vkS89J5TWW8hEpXlLz65bHnAR6JvAnfcJSPiIFz6kgyjwF1sYC4oqE5DuX8hFJvgHGLwTwnTfhORfAd3KSKW90SR8R7I9In3vES9PuKiZGwunPkfj2p+OG0bFYxmYTiXTc0FiqB6U011Wosji8MInnbDLOedDPbKyA8MgEROH7z/yCRCLBZz7zGa7izxvPP/88b3nLW/jud7/LdUop5jWwz0tefmauMnZ6PB37HTkeQp2nJL/KgEKpYOB1D7qsNerIMT+TyfXf2JkQusI8PGdSft+DrcVMwwMVdP5okJFjfsLJ8q+BzhBjVUZGTwSltq95MFcZGDkYINAdpnR9ATNJPxQenGTsVJDhw6l9HS9F9Zl3aOiwF7PDSEGNiYJkfDy97tznpbgpEzQa3O/N+KEY+C+Mo9ZJc4yB/V6mp+aIJbcsBvbPH2c9p8fxdowTODeJuVpHyRoroZFY+l6z5yqe08F0vGnkmB+lVkng0gTjF8IM7vOiyZobjh4PEOqX/P7YyXHyDBoCyTVrLDQjlTlYhG9vxyQGW5DRU6H0NZhKdcxOJfdyuicIXJSuIXRpQuLwqORz+17zUJi1xzl0xIe9zUIkMM14f1ji8Ghqf+4yvg94037/zLO9VG0sZuRI6tl4sLUswTcwdiqI50yQYOcUs5FZZqJzxLwShwN7vfPmKp4zEt8AI4e9WGpMONpLGPitj4F98/keOxEgkLTZ0eN+KY51aZxYSPLP2TabzffoqRDagjx855N7zK97MNh1dD8v7aHUbCtN26yvawpjaZDR40m+X5VsNoXhI750PGmyN8TYqSAjx1L7i5fxfdib9vszU7PMxuYYPuhJP8fipkzmp2y+Y6E4Y6eCmMp16Au1DOz3EpuYTZf1utxmU3wDDB4Yo6DaSNiT3IfddxnfWTabevbB3imISbGHbJvN5nv4WACVVsV4VzImk/QR6fJwCpb1EabSzDgrx0ekeTniYyY0S/22UgpcJjznlvcRKb4nPbG0jwhdihKfjS/rI8ZOBdNzlc6fDlCxtZjA2eiifKd8BMDwIS/xmQShQIyZ8ByRQJSJoUhW2/k+QqFWMtkvcTi4z0v5ViuKZAmy5XzEwGtjGJJJPDRmDXPT8XQsbSkfkc1h1D/NyMEAZddYMNmNy/qIlE/O9hGh3hjWFvOSPiIWyvBd2Gxibjae3sNcwDeX2ewhLzPROcrWFKPWquh9ZXRZH5GIQ2goAigY2CfNDVPv69jJYMZHHJP2OEOXkhy+7kVXpAEttO2qYvTUOBMDSR9xZhKtWY3vfHLevt+HwZaXzsI5cjwAKrC3FjLeN8lcLMFoat/14DjmLL6HT4aIBWeJT05yuGM/XeMdqNVqvvvd7/LHhCLxRy7a+81vfpO3v/3tAFxX+T4MBgNzVtPynQDlGXn18rJReW0+lRsshPrDnP5m78odsuC4pZi+l7xZdYGWR9mWQob3i9VFNxQrWfPeJmYjc0J130s2FeC6sYwDX+pIVe65CgGUbCqg5rZyel4eSQtF5KD17a60gEguWt7qwOwwsu+vz4ldZGp8Eni+6z8g1Ss+/A9i9YpzQfvTbqYnZt7w73LcYqNiUzFnf9jLeJd8MgzlOsJD0ZUbZmHd+2rJy89j/9+KPavG3ZWE+qeEbGnzp5qYmZzl6JcuCH2XLCxWo1SuG1eqFv4uEZf5vYsk3vtD+i6Dte+VlM0nv9aXTlu4EkzVBtp2VzI9McuRL3VLX6teRIerWshB2UYTw4cmF162ZmF/RaGF8tUw1Em6XJZcbHo0n3gCXjmmX7adfmDhtXg2Wlb8fPsryQBX/m85fOQwVqsVr9crdpFX8ScJpVJJIpFATR43qu4DpPKIKyExM71im8ux5dPNKFUK8TrieihbU8TwPr/sLiUbLIwK1rHe+OEGNCY1x/65g4hfpo8CVr2jmgRw6mvi89GrgLVP1qLRq4Xmu2VbizCW6dLiF7nY/MkmIt4YJwWflb5UlxajyEHxqnzq7qzg0ksjwnYoipTd7v1fgu9VDtjwwXrmpuMc+/JF+Z1Sw5bguLf1M834uyY4/8yA7D7WVhMlq4s4+599KzdOwnGrnYpNVs4/24tfYB5/FRL0RdD2jkYu/nIQ3+mFc5ClsOljjaj1Kvb+3Vkx29CDrdmM52ho5bYACgXl1xUx9Kr88QOg7R0u8sv0XHxxlLFjy99XSqSUDZXNukjL+Zjz+IjMRbhQcoBgMMhzzz13teTI/wM4ePAgmzdvBuBa7kKn0C2+RrscOYTebGsKqL+7gvHeKc58SyzmVbqliJH98t8b66p8SZQgsszWQfvH3cxMznLoi52yuxU2GanbVsGpr3cSDQp831UAUiaJpgecDOzzpk/1ykHTQ5WMngwQ6JhauXES9TvKsTaZ2f+5DrGLTMW3Bexp9TurUeWpOPrPb0Ac5TK0P+0mNj7DkX98Y2NetnUF1NxSStdzg/jPyh9jdXYd0TGxmFfrYy4MJVoO/h/583GAmrtLmRqOMXpYfsxr44cbmA7PcuKr3ULfdRUSWh5zokDB6W/1yO6jsyhZ9/4mYsEZjvyTmN3a1hSkRWVyULKhkNHTAbHxAGj/rJu52TgH/vcKNrjIeKjU6RZpOB/xqHRBobV9HDx6kOLiYjwej9hFXsWfJIxGI+FwmDy0XK+8B5AZ85pdOMdfCRs+0kCeXs3evxZcm2vB3mph7EhQdhdrmxnfKZlroiRWvaMaU5meI1+9SMwTW7lDEo0PVqLOU3JGYJ19FRm0PuZEW5jHkf8r3/9a28zkV+gz4heZ2PChBiLeKGe+I/astMXatIBKDsxOLY0POOn//Rgjb3DMa/UT1RhL9eKx5By/Kx5PcOrrPfI7pfTJ8ukDYPPHG/F1hLjw82HZfVKCwa5nB2X3sa0uoOaOUjp/PkjgnPz55FUkoYX176qn+zfDQvytfU8t+mItR/7xbFoMKheFzSb536VQULrBIvwe1u8ox9ZaQPcLo4weWX6ely4VnAWl0bBIy/mIT0r3cLb0dbxeL9/73ve47777hK5zJfxRy70BvO1tb0Od3Bh+deCfAVD5JlH5Vn4gjuvNbHhPxYrtUhh4bYILL/jEBUq32ahqt9P2Fy7ZfVICJUP5ypPmFMLeOBd/PSi0YQNgsOlQaZXp0mRysfmTTWz9bLPYd5XrWP+BOgzFYqZgqjFQdk3hyg2zYG0z0vxI1coNs1D/YAXtT7uFrm/KO4NCqcBoW14IcDlO/0ePkEAJQKlRSiKKld/neWj/qJv1T9QJ9dEYNaj1gsnPDKTL4b3RsLYZKagXI0JXrEWhVqAUvK0176hhYzJ9oFwo1UpRrQwA5783ICRQAlAqFfNUsnKw+RNNbP5k0/KNLgt+l22xUH9fubygeJZAqWZ7Jm2fLFIUSla9w0F1Vqk0OX0bd1fQ/lQz9nX5y7a7HDpLHkabTrZACWDyUpiOZwc4871lBEoAc5ljqoaki71coKTQqBcVKKVQ2WZk4w7Blx44cAyOLDMc6Acm5wmU6jfAuttX/lz7K6NpgdJo6AJHjx2loKCA1157Tfgar+JPE/39UhbGWabxz0mnMBJzcySy7H0pbPhgPa475M83Tn23h71fEF9Ubv1wM9W3lq7cMAspYYi+VP7c6/Q3L3DiW5eEBEoAxhJduhyrXJRsttD+tFuIP4DqbaXpEl2i/URRu6MsXbZLLjZ/somNHxYbY9V5qnmnXuVgeJ9fWKAEoFQpUGnFxtiNH2lg7TtrVm6YBVWeCmWeMn3CRy4sDXosDWJz0Jygl4R8CH6VWq9GYxSbeG18TwPtH3ML9dEns7UpBe3Cd3pSSKAEoC3QoFAqiIzKn8eba/S0PyX+/jY+VCn8fMu2FqGvEOtjdOpZ855a9EVitr71M83Cc+SyrWWodSry8vNWbpyFg393nq7nBoQESvpSHUSQL1ACVr+rGtcNJZRsKFi5cRZOfa2Hzl8MLStQSszMzhMobfxwLeXXrrx2mvP4mPNI4+3r/IzR0VGampquCpT+H8GmTZsoKpIyB77GL6RfJhKyREilW4rY8MF62d/lOT7OuWd6hQVKtjUF1NxWSluyXKQc+E5KAiWdyLgXhfM/7RcSKAHkmfLQGNWUbhLzwRs+WM+WT62wZr4MOouSVU9Up8scyO6XLIsmgoJanbQ+F4DjZhtbP+sWur6oJ4JCpURboFm5cRY6fjAgJFACad6lUCnF7AJJvLbuHWIxr7x8jfAcBZ1k74hdXk4oqNWly3XJhcGqRaVVzcsmLwfr3l0j5CsAVDql8LwLoPvnI0ICJQCFWoFaK3ZP6z9Qz6aPNQr1KXKbqN4u5icAnLfZV250GZp2Vwn3c9xso/0pd7o0m1yYyvSYBPYXAKLBOMe/0c2Zb8s/aJB6b0UESgC1byljy4fEfC3A3r8/x6nvLjNeXTZWOm62se7Jlf1EPBpNC5SCiSCHjx8mPz+fV199Vfgar+JPE36/JLqeJoY/LgnT5Ma8Vr2jGsdtthXbpXDq270c+SfxmNfG9zVSd6fYHCAlUEqVD5OD889c4vS3xQRKAAVOIybBNamlwUj7Z9047xDzjeXXFNGYLGUmgoprVz4kcjkcN9sobF45QUY21n+gnvXvFxtj1TrVvIz1cuA7FRIWKAGoNIp0tiy5WPOuGta/p1b4u9Q6NVqrWBzAVKnFXH0FJl4glROT/3oAUnYebYHYPbXtcdH+CbGYF1pQqJUoBfcAQ5eiQgIlAF1hHgq1krB3ZuXGqcszK9ny6WYh/wdSNi7R52ttM6MvE3tQWrOStsddQv4PJGHY+g+Ivb/l64rQFmjmZX6Xg2Nfuci5H/UJCZRS9yMihmrcWUHNW8oo3SS29uz6yRBnv9+3rEApEU/MEyitfU81pZssK352fHIyLVB6Of4sQ0NDNDY2/tEFSvBHLveWwszMTDJtWIILY/uos28FJLHSclmVrHVG1DolBjuEx+R9l/esFIyu3lbCpeflOf2+Fz1YHEZOfa9H3pck4X7UgaXaRO/Lowy+6lu5AzB6UDIQQ7GSsFfehtml50a59LtR4SxKM1OzwsKIgmo92oI8qu+s5My35W8IrNrjIhFPCIk36u6sEt5UivmnScQTmBwmwl553mCyO5zTSfTae8uwNpiFTh0JKXKzEA3EGDsjtkgUzQAE0PKAA0uyXINoJjBRNN4rbbiKKKI7vz+AWDhTQsQTw3NejL9cskK1vt2FrkDDYQGVPMC+vxF/Vol4ApaKJy0hQnJcV4JKq5RS5isUiwfGL8ue1LirnOJ6Myqdiq4fJVXeCuXiWZGyREimUj2GYh2Xnpd5SkmhZGZyjsRcgrGjE/L6JLH/811iwj8DUnnIjjAKtRrFSiPb3ByoVKx6xEkikeDAP0i+bzlhUjZGOyPMxOQLIGz1EJ2CkYR+Ub++WOYkgAIbqDXSWLoUUuKkFI6P/BiAsrIymprEg0pX8aeJiooKmpqa6Ojo4Ci/4VZ2pf+WmJtb+oSZHvLMGoqbzPT8Wt4caqpX2o0uapZeUrlZS1JlUUXR/lk3iURCtl+N+OPgjwhnftn3xXPCWWJGTwapvqmM2WkxQVTJqkKUarENhObdVRQ1mEnMJWQ/K/RQ0lZIUXU+3pPy/XBiLkFiVizbg+jmZAobPljP5EiUju/3y+6Tyxg7ejKIJauUrKw+h4M5ZVByP1RNIi7fZnOF8zo7lVtsmCr1XPyJ/FNb+z8nfl3DR/xYm8wrN8xCZCSa0ym5TR9rZPRkgN4XZC4Gga4fDdKFWJBHb9NCAqY8IgobqZScucLAoU75Nl99cykoxObI1TeVYLBp0ZfoiPjlLwpnI3NMT4idGO5+bpju3w6LiY2KlET8cSGxkfN2OxWbixk9FRCy2RPfvkTrQ05GD8uf+ztvs9P74hi+s4vf1GKZk8zVejQGNcWN+Qy9tvS6KSVOArgwdzL9/+PHj8u+vqv404fPlymjdCFxmjpFq/SHRGLZAyS2RjN5Zg35Th0TvfJSVKREJVU3FdP/O3nzKc/xcWwtBZz9kZjos3p7CWXrrPS/Nib7u3zJOYbOokyXRlsJo4cDOWXpiAVnhBNS6Uv1mMr0uG6wC4lg176jBhIIiTfqtlehLdDQ9csh2fc25Y1CPIHRriU8IK9TNAj7RDM8INlQ6ZoioXnb+R8NguAYC1LJdl+H2JHjQ38vPp+sua2UsrVWtAUaoaxSuaD5QRcKlVKI+94Xx+h9Uf6cJoWJvjCBHrGT8if+VTyrUcP9FZjK9MLZq0SzNQEkZhIkVGIvcPUtZWgtGi69NCr7nXLcbKNyqw2dWZO0X3korM2nwGEUel6z0/FkmRKx+OSBz3eICeuSbeX6iBTW/IULhVLJvr8R8xc9L4ttqlvqpcV38EJ08WtcwnEXNxegK8xblouUOCmFI4qXSMQTVFVVXY15/T8ErVbLjh07+MlPfsJRXuZWHkz/bdmYF9KBNLVORd+L8uLZKfGPqVKLSqdi/IK8tVjvy6OodeKnozd/ohGFQsn+z8tbp8dCUjkiQBJvyNQqHfyn88JZYoKdU8xG55idWlkMlo3yzcXkCR60d95hp3KzDbVRRe+v5fvhynablBnxnPy9m8RcgsSc2Hh0PIcxFiSRXMQ/LSRKOZDDGDty1E9RvVjMJtQbEx4fAFoflebIcm02V1jbzDTdV8XoMb9QpqLDOcwnR08EiQvGdonltl+7/v31jJ4MCM1b+1/20P+yWOZAfamexFyc6YB8YRNA6boiCmvzhbI21t1ZhlKtFIqDVt1QQn6lAVOZWAaw2PgMs1ExnzS0z8/QUb+QD9SalcRCcSGxkX29hbo7yxk55qf7uRHZ/c7/fJBGYOSg/HVneXsRQ3v9jHcvPjdcLHOStlgSatmazIwcDC752SlxEsBIvI9ZpPjZoUOHZF+fCP7o5d5S2L59O88//zwAdzR8Yt7fFhMqpcu9JTebRbD28RK0BXlceH6QMYFAKYmE0Pfpi6Ht7Y2c/o8u2YIjyEqF/4WzQvdmKNeht6rwnRI76SSKgnqDUKktkAQ9od5JPMflb3pZ26TNoTf6flIQva+1/6OW/z977x3d1nWme/8AEMBBJQACBMBOkGCBKIlNlKi4t8RW7NiOa9zi3mIn7rEdf3fdOzeZzEwyk957PImTOHF3iuM4cVPvhZIoURR77yQIFuD74wAgKVHi3pyRxjfhs5bXsqS9cc55zz7v2efdz34eU5qR7d/eR1i2trGIcXs6YA2YyTvTw+HXjkpd02Ls3gIf9aHRaTj8kvik4bRiEfdo9eMl6IxaKdKbOcfMWM/Yf+94OFGh2ww5H/LMfGgdm87ns3czw7Irs9j77DHWK8eSlI5VSTKD2W1mrGmeC1uorwSyznbS+s6AVJ9VDxWQoujY8M0G8bjrdJRe5UGbomXvc51iBKX4GNI4HXLn9wnVB/2tbVqOlbw4EUHp2GPOZ/d2LEFpKO0dNm7ciNlsZnhYjhi2hL8PJBbLrDhZo5srwzVf0SY2OaEOSUlyDqjviehkbFGEB5ljln0yj8jwJPUSBWaTS0vF/SVMDE1Kk0z9tXKWdIuBJdeUJHsJwwQll2VLkXkAss710PLWaZLAN4HJZSLcKn5taz8XYnJUziImcazFjNvTgcA6P9OT01Ikm8XYvZl8Cvnnp3Pkr91SMT9tWMQ9suSaWHlzvrStkT1gYqjh9MQgrczK5Ni01PHcK2xY/WZxgmEcp+O60sqsjLWNEJZIe4kcO94/IWVtbPIplF2fw+bvHBQfG4lxJKIaGoe/1kn++T5GO8bZ9bPj3x3zEZSOOx7z273NJigB1GduoKW1hVtuuYUf/vCHwue4hL8PPPXUU/zzP/8zABdorpr7jyez6FaQJucsvzUPW5aZw79vl1Y8kTqeokrh732uWcpqqvyeAsweI9u+vk/Kvk1xaDH5TNLqPrKQIYUlkHOeh5GOsJRFly1XIcWkO+XXM/t4MtcVuiEHR8DKjh83SJMdFjNuTwcUn0LeWW4a/9ojNWYXY/eWfa4bnV5H45/kVRFOCxZxj6oeDGK06aVsjRSfwvjA+GkbDxlnpNH2rthG4QSKrszk4Out0udozlLknw1JeKud0nm88v5CFJeBbV/fL0wGBSi4zI/RphcnaC7yOV/9eAk6g5b3Pz9PbWChZaf4MeezezuWoDRW3c7GbRswmUxLNa9/UOh0OqLRKDZcrNbOVTCdt+Y1NSVF5JmNtU+HmJ6cXti+cD5IHDN4RSbRySiHX5VYTzHC2kdDhPsjbP+WhI07qm1U9045YqUsjB6jSqSSjHvhpX4O/aldqp+vxknHzv5F3WNpGMFoN0qpWK15spTJkSlpm87FjtvTgayz3cSmY7RKvJsXY/dmtEPOeRm0bOwl3P4BDMYi7pHRDlUPhhg8MiJlvWjNMjLScnpiYM9XIBpj6Kj48VILzdgyzdIbBk7HddnzFSLDMSkiFEZVFTbcE2H7d8RzrNGuJfSJfPb94rC4+lJiHEnUvBxFFkJX5zDcOsaen7cc9+/zEZSOOx7z273NJigBNORtpbGxkVtuuYUf/ehHwucog1NGUoKZxTINWi4qevS4f59NVkqSlAB3yExGpY1dzy784RcdGcHkhsDFOVJKQAAVdwcweYzs+GEDY22n7iMk53wPnmWpbP2a3M6Utc+E1J3Y803yTwBnqZngumxpizngA0u0wQyB83w0vCrOPqx6sBBjqkGaGLYYrH0mxNT4tNROouCVmZhcBnb94MjCjeNIXtMiVKJksRiS0mJQ81gxKYpO6poyz0zDu9LBth8dFr635gyF8tsDhLvlXiyLwZonS9GmaKSuyVuTysTw5PF2gxIvpyQSKX0+gtKCfePFjnkISgvG+pi+ZZ/MYXoiSt0vjn9RngiFl3nxrnDS3zBC3XPihIS8D3twFVjZ/j2Jxfv4x6uoehJA9T0Z6PQaNj0rV3ROzYa03BQa3p1iNKRK5J6MnOTNg/Rc2P23mb+bTVI6lpwE0DPWxM6O51EUha997WvceuutUue4hL8PvPDCC1x55ZUAVHIhLp3ruDazCzexyYnk/6+8K0DzOx3CykiFV2bQvrVfmmyzaFKKJCruL6B79yAtb4t/IC27ORdHnqqYKdMvdEMOsekYdc/JEYg+yESbtDIrGq1GSoFp7TMhpiLTbFpMEU8CFfeqnuDvf2mfcPxMLii+poD2Lb1S6khrnwkxOXLqx+tiSEqLxdpnQox2jkvttl9xez7D7WGOvC4+F1/MHG8xMGWaqLgtn9H2cXb+QPya8j7slSYNnTYsMjeseqiIAy81SxGb1j4dklZ5wgQVtxXQtlHueZLFHNKa5Hd+6IYc9v2uCcKgMaiS3icjJ628M5ejf+1ioH4mdrNJSseSkwDenP4NMaKEQiH27t0rdX5L+PuB0WhkYmICLVrO01x5fIPZ33OzSm+pBQo5Z/vElZkVKLksi/2/Fv+2Aii9PhtnoW1xpBQJeMpTyVidxs6fNkgtcNc+HYJojPUSu5BtuQpFl2XLL/bAB5ZoAyopqukv4sTy5bfkYcsxs+37DYx3nNqLWvu5EJNjU1JKR7kXpmP1m6RIx8tvy8OWaT5t8yFZktJiUPVAEGOqXuo96ylPxV/t4uDzR8RJf4q6mDLaEWbn98XrjIvBqkeL0Jvk5q2ukJXo5PSc9+wHCovIDcUfzwSQUmvKqHWRf6Gfvvoh6n4p/u2YUevCs8LBzu8uTslDFNWfDqK36qWV2sxZCr4KBw2vdMy8906y3OQImsg+w8vuHzcm/242SelYchLAaGyAzSl/xWAw8OUvf5l77rlH6hyX8PeBffv2sWzZMgBqOA+79vhNBXNqXlMz8/+S67Lp3NkvrIqRc56HgcNDUgv18F8gpUhi+a159O4fok1ik11gnQ9/VRpH/9YpRSYIrPOhM+ikLao+yEQbe76CTkmRUklZ+3SIifDUopR6ZBC6PgdHoZWtX91PZEiQmGqEsmty6Nw1KEVCq32qlMjQpNTmo8VgMSSlxWLt50IMt47NeccshOJrsgj3RKTm4pX3F6I4Daf8mox2qPp0iOEWuWvKPCON1s29H8xncJG5oeKeAg7/vkUqL69+rBitXietGrb81jy6dw/QcQprXka3kap7Chg4PMI+yTWF2aTOxHvvZOSk0PVZtG7qYfDwzBxrNknpWHISwNvRl5kgQnFxMfv375c6PxksXu5CAKOj6kJujCj7Ot487t91veqFzyYoAeSf68LsNmB0iB0n3EOycGkNiHsEdezoYzoShYmJhRvPQtUDhdQ+XSrcvunNbmmCEkB/wwgNb7RJ9Ulf6SLFpCPnIjmv2LXPhKi5X84bvOrBQlZ/Vk5adcWd+az9nJy/Z9UdhfgqXJgl/LpbNnQzKrGL6r+CcF+Enjo5BnpasR2rX84HeLBpjKmwnJSdOcfMqoeL8NbI+aMvBpWfKqT0hhypPiPtYSaGJSUHK5woTqMc+WxigsjABB07Tq06BkDX7n6GWuSYcYELMii9Km/uXy5AUKp6oIDap07w/J2AoBS8wkftk0VY80+SJ48hKFnzzax9qJiyW7JPej7H9rVnmHDkiudjjVbD4Ve7GO0OSxGUAI6+2S9FUApd72fNQ7mYvVKHYaQzwoSMxK0Z9GYYbIaGd2c+jBdST8ouBUuqBuOs8Hk2DwDzE5QAtrY8x9TUFE6nc4mg9A+MK664gqws1fd9G2/M2yY2rY7h2QQlU6YJi1chcFGm8LEO/a6N0aNhTD7lWIGwk2JieFI6R1pyTax9OkTw4+Lnt/2bh6WIRgB7f3OUodYx6X6OPCuOwIntjOfD8tvzWftoCJNLfCruKjWz9ukQORfIzfFqnypl5d0BqT7FV+RQcLF4vAEGj47Sse3UWssCdOzoJyyzAwYALZZ0BV/l8cS9k2FiSH68hm7IYeVdcvFeDLyrHVR/Oig1hjDB5MgUA5L2IdYME55lcnPJnn1DjLafhrl4OMxo+zgtG8SVqxxFJjJXu6Wfi7WfCxG6KVeqz+onSii/p0CqT82niqW/lwLr/OitKdIS74f/3EbXvgGpPoTVHCtDUKp9qlT6uYhGYkxFpmnfLF4otOSqL6R9/9k0h+h1MoKSyafHkq4QvCRjzt8niEnzEZT2T28hhlow3rJli/D5LeHvD4ODah0gSpS62LbjGyQWaY9ZrC28JBtbphklXbDGMU6SoGTOEq+LtG/pYXJsiqhcyYvlt+axRqLW071jUF08l0z7Xbv7OfR7uZqXs8CG0aEn7yK5j7nap0OsurdIqs+KO/KpeUyuTlZyXbZKvpI5zu15ZJ+RTmqBRM1rYzfDTWMwz2L+fzeGm8fo3iNX80pf7iBV0mp34MgIkcFJKRssxaGl8v5CPJWnvua1/LY8Sq7Jkuoz1DzKeL/cA+ircGLLMCNbsh/tCNOxfUCqz2LQvrmP/kNyKjaFl2QSui5fqs/y2+TyEKjqDrVPlibtx0SgOLSsfSzEspvl5njOoA1Xsdy4a1vfx0DjCHUvyC1Eta3vkyIoFVzmp/apkNT7AtTvuciAxHhV1PiNtYyrBKUEFtgPH7goE1uWGcV3PDFpPoISwHr+zNTUFG63e4mg9A+MUCjEWWedBcAm/jJvm2TNaxZByWgHV6FNteEWRNNfuhk6GsFoR11QF0S4e5xBye9to9vImidKCF6esXDjOHb/uFGKoATQ8FoHfQeHpdVO0sscpBXZpPoEr8hk7WMhTH7x4Jn8RlY/XkzOeR6pY61+rJjlt+ZJ9Sn7RIDgJXI1r+66Qdo3ySn7LQaduwYYbhoFJOzHImDPs+KrdEoda6xrnMFGuc3YgXU+yiTfmYuBs9RK+V0BjB6JBxB1rXbgiNw1pQXtpK+Ui13nzn7pZ30xiESgr36Ylg3iz63RbST3XC/Lb8iTOtaaz5ZSLDnXrfpMkOW3yR2n8o5Cap8S51eAStg2uY24Sh1S/Q6+2krnItaEd/+4UYqgtPqxYpbfIvlcTEwSGZykc5f4cRI59dArc1XnTkZQMtrBkW+h8CNz3zHRUbXePR9BqTl6mIn4ATZt2iR8fouBnDmoJMxmM1dddRXPP/88zUNbybPXYjbPXbTW9Y4Qm5wEvT75d5t/3ILFoyMycPLfj46OqYvicQWPmkeKSDHp2PGjBsbaFl68aN/QT/sG+cWU6YkoLEJ/SmVST7L162KEpToJybcEDjzXotpNzWfJdBJMDE8y3CG3o0Wr1aKVVHqZHp8mFothciNsP9bwRhvuUqeU2lXnpkE6N8lLV9Y+XQoxpPwzt39TXplnw1frpBWeDr0oV7wDSM0worek4AqmLioeMlCcBvRWuZSy71n5Mb71a4cwueX6jPVEhZ+7BAIf9eGrcNHyfjdNb4ovjsgofiVw6PUWHIFZi0oCz1V0OnacyxpwUgUlo1WPRqth5Mj8g0+j0837Qpsan6Z9y4kn4Rqthlh0bgHt/S8cwJyzMElJo517rTu/Lz4mzB4tK28vpGPnAI1viE82tDoNsViMcJ/ceN3/Qi9EY2jSxCatVZeaVeWl343CGMSGRzBvHCGWeXKCwZbfgzsrRmTWbdI0dZA+Nv97bcChSi4pikJTk/wztYS/LzQ3NyeVLN+efomzdB87rk2iaJNAuDXMgRea6N0j93FlcmmpuDMgpTQja78GJNWadClyhfrAOj++cifv/7ug4k4Ydv9Qfufx9p8ckbbb6tjei5LqA4MB0RW9vsYx0IDJaZA6ViwK0Sm5iWvn7n76D8jNG2R2yieQf4kPf5WLxr920vaOWLGnfX2ftCVfuC/Ktm/slbK0gsWNV3uWGa3+lO4DAcBdnIrBrkfvMBLuExx/YRalCvX+P+2TIiMCNLwmb/9b+1QpsShSNpLhPqQUlAAGDobp3NNP+1bx70BTpolYNMbEqBy5XqPVoJEUtxxqGsPklnvOG15rp33HgHQu6tw4QCcDwu0rP1VIikknpSCLSc1Dk5KbLcId4zPKbAJzY0uuiZU35ak2dInvs1iMWCRy0vlxuGOSfb9uOl7dITo9L0EpPB1m2j9GSncKd911FyaT5MOxhL8rKIrC//7f/5v/9b/+F600kB8LoWiOWRSeZ7F269frSS1QpOypYMZWTVQZaaA+zOYvy+f9yfC0+q0pqS6y6uEiJsem2SGoXnz4Zfl3RdNfuunaNyytHjTWM05Ywp4DQKPTHPe9uhAmRieJTUdVSyzBczz0xw58FY45O1sXQv/+0UXZyq1+vASNFjZ8UXw37O6fNkofZ/O3DkqT1prf6qH5LbmFU32qAcVlIK3ITve2U1vzsvrNTE/IvcvqF1HH2/3jRhQHUtaJjCOtoORb4yJwoY/WDT0cfUOc7C27uA1w8KUmnEVyROro1AlqXieByWkArYaBZon5kMHAxNCk9KbGDV/cP4dkIwqpbyYFah8O0b6lV8pmUJeihVhMWkFPdrxW3aUqhc2xoRMw7Nj2zUM4SyzH5cgTEZRGV7Wi2axBURSOHpX/5lzC3xf+9re/JW3f3o2+zhnaS45rc2zNKzIEe59rZPCQ5GKMUbVmigxOCisj7ZRwzUieX0+EWCwGknOOjA+5yDnTy/ZvHRBW3Kl7Tr5uvP1HR6QszgA6d/Riy5T7Tgq3R9DotBjt+oUbz8L0dIzopNwLo2V9N4NNcvOo+t9JKkmh2tEFLvJz9K+dwvZovXuH6N0r6hU1g61f3SduMRXHYsarM2jDYD6ltAL1OAEr5nQFa7qcxZ6sBSKg2t7KcaFofbdXyvIOYNUjxWi1sFGmnhKB/ZIqO5GeCC3vdTNwWHxAGO0Qm44yNSY319VqNei0cjXQvsPDpGaJixuAStjuPTQqnYv660akFNOW35KL0WVki2TtNBqFqYhc7T0yFJ15twjUvIxuIxW3BQj3Rtj+nXgdNBZTSbknqXlFhmDXTxsZOXbDb3R6XoJSJBphLKsbXbuOe++9F7tdbg4vi1Nq95aAXq9nKs5e/nDR48f9e6y5bXbj5P+a0yFwfjp7fjn/x1KC6ZWAt9pG1mo3W78hmIjil15xXwGK0yBlq7YY1D5VyuTolNSCR8HH/HhXOKl7vvF4K6iTwQxWn5mRhg+if9vpQdG1Wdj9JinLsqoHC4lOxKQswdIr7WSfkb4otSwZmNyQd1E2zRt6T/l9PV12b8ErMxnpHKP9vVOrvFB6Qw5aLVJWEf41TnLO8bL7Z43CBLnCyzNwBqxs/s7BxdsMLsbiDY63aJPqOnPMk3qWCvZNW2amd+/JA3BssXfNY0Gi0zE2/bvAcxS/Vn+tnbyz0znyZied2+QLtBpFbPYZusqNzWdk9y9aGOtBmKTkXw7ufIVd/zm3iHcikpKvAFLdcGDjrHNsmkV6cx9/3H0db9I2ugO73c7LL7/MGWecIXRuS/j7xu7du1mxYgUA+ZRRoFt2fKPo/B8dpddl07mzV9j2reLeAlo2dtO9TfzDx5RpouKT+fQeHOLAb+RsS2SQdZabnLPSOfhys5Rt2eonSojFYtK2Za5Ss3Dc/i5hguq7gnTtHaTpz2ILHfaAiZKrcmj4Q5vUPQrdmMvE2CSHfie/8CMDf60Lk8u4KMKNDE6X3Zs9YMJflcaBV1tOrdVg3A6s6W+dUuTH8ntUpZ0d3xEnHVV/Okh/wwiHXzm19+iDDHvAxFB7WOqeeirtBNdl0bK+R/h5BTXeOkXHxn85dVLPoErpD3eEZ4ijgvPjivsCHP1LB311x8wLT1CwWX5bDodebJpLYJz9fpyn319ivyEajbJixQp27twpdF5L+PuHw+FIqipdoLlKuJ/i0FJwWbbworUjaCL3PL+05c+ym3OxZ5qlbNUWg5rHipkam2bbN8VrI1lnu8k5M539v2uib58EYV4Bm1dh+OgH1L/tNCD/I16cBTapeK+4PQ+AXT9sFO7jLLGQc7ZX2s5PGgoEP5JBx/a+U35fT5fdW95FXsJ9E3RuObU1r8ClPgxmPft/Jb6I5QpZKbg4g/3PNwnHO/tcN56Qg20/PPSBtU48HXAETdLWdTWPqqpsm74k/o3pClkpviKHI2920LHh1CnDBy/PwB1ysP1HcvaRaSvUdRhRgpwjaMK7wiVlkdccO8Qh3W4sFgu/+MUvWLdunXDfJfz9oru7m/R0tbYaIERAO0/N6wRLnoFLfPQfEV+0Lrsph/YdA/Tullns11JxbxG9B4flLdIkkLbMTvCyTOpfbZU6v6oHgmj0GmnbMnu+wtCRf+Dkb4TyWwL0HBgSJuwa3UbKbsyh8Y1OKeJR4aV+otMxGl6X3wwvg7Tldiweo5TN2WJwuuzeTH4j/gonre92SBO2ZLH8tjya3+1m4KD4mlTo+hx0ilbKtm3lHfkMNI9y9I/idZu/N5j8RsJ9ESmLOHuukWU3FND8XpcUwX7F7fkoDgObviy3JiCL1Y8XM9IaZm9CqEaw5rX85lxaNvXSX3dMDf0ENa/iqzNofKubSM+sDZeza17zHPfN6PPEiFFWVsbu3buFzuu/glO/zReYnJwJwFuHv7VQ4+T/hq7MxOo1YhZU3uvcMpwkKC2otDJropJURpIj71FxXwEV94vL96//Qp30juyefYPEojGUVDkq59pHQiy/Tk5eLHh1ZvKjSRhmKL5OTgIOMyy7Sc4WrOjaLCmLPQBHtgWDTY55vfVrh6QISqBa7BlTDXjKxWUv/R9ysvaZEDnni8tXOgqduArt5J0lZ/PyQYZnWSq5Z4lLrQLUPlnKqs/IybQ78iyk5slZ8bRv6GfjF/dLKXg58izoLSlSBKWqBwpnJOQFX0b5l3jxrpKTlc46x0V65fFj9Fiy0Ow/B6/wUfNw4Qlz43y7SvMv8VB8eTal18lJpk5PRtVcvBBmkbHa1w+x/ouHhAlK5iw9NQ/lYy+QS/YaLcRiMcbi85lY7wIFRpP6X/tujiMonQw5JeD0zsR0DkFpHoyNjdE8tJXp6WnOOOOMJYLSEpJYvnw5F198MQBH2EN4WqyAanKpO2IK1wnYO8ax/duHVYKSxAaphNKHziA3DXUUmVj9RImwvVXL2z28/3/3SZFfQFV9jIbldmGFbsyl5Ko8Ms5ME+9kUskpeR+WsyvxVjvw18rZlnlXO8g6V04yu+axYjl7pjAY7HrSguLzoaGGMJv+9YD0PXLkWXAXyb0HVz1UxOon5Cwjcs/2Sstlf5CRd64Pd2kqdgnL4fxLfKx9OkRamfg8KqM6DZPLiFtShnnHdxqkCEqgjjmn5Byv9qlSAuv8Un1CN+RIq0kVXy35jYSqQiJ7bsuuy2PtI3LWQnqLnth0jO49cpW7LV+tlyIoVdxXQJmk9L7Jpc67JkdmWbQtsK/KFE+J27/VcDxB6QRwBE3Y/CZC18/Kcycg8Cbw9vRLRKPq+2GJoLSE2RgYGEj+/zux14T7lV6fT2quRdjma6A+nCQoKQ7x85sanSIWi0n1AQjdKGdhuunfDkgRZgB66kaITkUx2OUU5GofCbHs+jypPnkXean+dFCqDyBlvwKAgrQtWN5FXmlrK2e+DUVSYXPXDxulCEoA7tJU1Ta3XHz+6SyxUPtUiNwLxetXNq9C+gonuWfL1Yg+yMioSSPvPLm5fs2jxVQ9IDdOPSEHzkI5K56+fSNs/vJBKUKYq9CG4jJIEZSW35rHqoflangZZ6RJW/h5q514yuX65JznoerBoJTFoG+Ni9B1+ZRcK/7NDDA1Os2UpKpk374R1n9+nzBBSXFoqXm0WMo6EtTv8lg0KqdQp0DvrmEpBa/gR7NJC6UKv4vGY+McYAfT09OceeaZSwSlJSTh8Xh4/HFVCKGBfUSigivXRvBVuij4iPh7fc/Pm1QCkBFhpZXIUJRYLCa9n9iaZaT6oSJhe6vevUNs+Oc6KYISwOTYFNOSaimBS3yU3Rgg40MStSgjVNxTIG3f5iiykF7lkOrjLLXKnRuqSrCUbVkEzOmKVM0r0hNh61fqpZWR3GUOPGVy77TyOwJUS75v8y/wkVUrd38+yMiqdeOvTsOcKV4j8lU7WPNkKWnLxNViHEUWbJlmPGUOqfPb98smKYISgMVrwhWQm+OtfqyY3A/LrSEXXuqXVpPK+4hXuk/FvQXkXCg35pZ/Io/aR+S4AXqrkejUNL0H5erNu354RIqgtOzGHJbdIMd1wAixaZiavRa6QM3LGB+eu3929HiC0on6eIykBW2EPj5rnXaBmtfG6JvE4jZip4OgBKfY7m023nzzTc4//3wmpkc41LWewvRa4BgVpQTiRKUt32nFV2VmTIZwrNFS9akAxlS9sO3brkXI2gEoDrliAABmqLmvmPrXmoWUkQbrxxal8DTUMsZQq9xu/tRMMykmnUpIEOxaeVshilMl6HTvEHs4VtyQj81vJutcNy2CUs66FC0arYbUoJnBerGTk9mdMhuln8hmoGFE2Apwz68a1f+RCPd4XwRioJVYoG3f0I/ekkL3Tjlm89pnQgy3jrH7R41S/WSx9pkQ4e6IFMnr8B9bmQpPLdxwFmKQXBwQxfrP12HOkPtIL7s1j/Yt3fTuFmdDL0Z5SmfUodNrpRSU/BUu0EDn5kFhBaXsWjcarYaubTPPxULS9Y5ci5oTjhnbJ+qn0Wro2NSNK2Cj7uX5E/eJ+m7+isC4mXWtVffn0b1/iKY3xXeTZa92oU3RYIgvMsbGIwurKUVj7H1O7pmruky1edv4bXE5boBNr4GvIHZiclJP/xw1pW7rnwEwGo28/PLLUsdawt8/Xn/9dRRFIRKJ8B4vcwHXzvzjCSak4T44/Kc2OjcOyB3MBGsfDUnZvr3/efndM0anEZ1BS8aHvFKqKbkXpeMK2oTtWRdj8bXvt0epuK2AtpNYYx6HMOitKTgLrTT+UTxfFFycQXQyJmV5VnBhBrFojJa3xPOZTq9Fb5LzqVqMElBamRVveRr7nhWX7t/+gwbCkjYvsWiM2LScWmD9q83SNi/l9xRgTjMuaozLYOUdASw+RWonWv0LR0hb6WGoQXznd8I+cqxNfKLb9k4v/Xt7CUtsMPfXurBmmKiX2FkN8mMurcyqWrBJFIzzPqwqVZR+LJs6QZltf60Ld2kqhtv1wjaSJpcWvSUFe7ak7PWWXswuucpQ2zu9whaLoCov5Z7pZcv36qUUmxSHAYNN7rkL98lZbyds3kY7x9n5PXGS20B9mMNvdKiW2Ccq1ESnkzvSwsXdpDRq0UYV3n77beHjLOEfB3V1dZSWlhIhzKHYHgo1ZQv22f7tw3gqU6VsvkBd9LdlmYVt32RUK2bD6jeh1Ukq/SpQeXshjW91CCkjjXeNS1mPJdBfP8Rot1zcUnPNGGx6FId2xppoASy7ORdHnpWBplFhO7GSy7JIK0kl57yI8M50jRY0Oi3OEouwjdu2by9OzbvgMj8jbePC6j71v2+j/vdtUsSUcEcYYjPzCBEMHx3nyF866NsjZ51R+3SI4eYx9vysUaqfLGqfDDHaHZaqIe//XZO0WnVsOkZM0qp547/sR0mXq3mVXJtN584+KdtAWUs5AL05RXpzSu6Z6Wi0GikLv7zzvej0Wrp3iPdxBm2qrZDE2O7Y0Yd3pYP9L8lZr8g+ryvvDtB3cEjKAtH/IQ8pJh0GmxGZi9r/azl146oHgxjtet7/0j6p2G3+j4N4KlOFrQz7Qg2wD6xWK6+++qrUOS7h7x//8i//wrPPPktbWxvvaV/lPD4+848nWuyNwIEXWhZlpVX7SCkTw1PCtm8bJZW5AXSKDoMlhcxVTikFHV+Nk/TlDnYJfneKtpuNhjc7sPgUendLqLpFwJRmxFVok1LqKb0ql+jUNF1bB4T7FF+eDTFoe0/8/FIUnXSNaDFKQPZ8BW9FmpRd3PbvNxA51pppAUxHo6RI2qQefLEJnSJHEQhdn4M9z8KGU6zQWvTxTFxFdqnjNP25leGmUSl7L61RC9EYkUHxeA8cHOX9f5WsRS2zk5prllbHkq0tWrOMaFK0qvWrINKrHHgrXOhMOg4IzglSC81k1rixpivsEbWyNYLiNOLMtdKEeE5oeqcLm6Q9nKxtoj3XSMHFWWz/8WEpxSaLT3I3I0AEKSKU0W2k6u6AusYvQXKLdEc48GIrvftGTlzzisWS69ITuf3EuicwThr585//LHyc/ypOi91bAmvWrGHjRtXH5sys2zCb3fOTlGZDrwczlF/jZ8dP5i5IHWv3loB/dSrZH/Kw6csnWSib57KX35aH2aOI7w6VIPMkkBo0s+y6PGkyR+knsrF4lEUtnJ1KmN1afGvSaXhVIrmaIe9sL42/l1vAP11Y+0yIqfD0oklOHzTUPl3KQOModQnpOAEsxu6t9qlShlvH2PPT//f9wc1uLeX3lhAZnDjlNn6AtMWbOcOIq9hKy1/FJcPNGXq85Q6OvK5OAE626DqniDZPnhPuewzm65d5poOM6jR2//ww4yervcxaTVTcUHFHIZNj02z52hE0OomC1zHXczKSUv4FdjxFVvY815pUUUr2O4nlW16tDofPwPafzT/ZOtbuLVgNE+NwdM/C6kkJktKfDn6ZGNMEAgEOH5b3Wl7CPw4SCwM69Jyru1L9ywVY86CqpwAcEfx4qv60nM0XgMmnsPKT+bRs7BEnz5iQtqla9XARekuKWkQV7GtyaSm7tZAjb7RLq/xIYRHXk/dhL52buwn3iVcfss5y07unT6rP6UL1p4MYEkXuU2lBdppQ9sk8LF6J7wkWZ/cWujEXe5aZDV88tYWh04WaR4tJMelOueXdYpH3Ya8UmRAgsM5Pw1/aP3DjuvrTQfqPjnD4RXGyZ8W9BZjcRrZ/X54gKJPnVj9RwnDLGPvm+245yXx51cNBDr/ecmLLzWOkr8vvymPH9xrVPyz0TtTqGJnuY6Pmz+h0Oi688EJef/31k/dZwj8sbr/9dn70ox8BUM0FODQOsY4KrLwpX5gA4CyxUPDhDOn6UMk1WdhzLOK1DgVpSyclXaHy7gCjHWEpQkP+Oi/OPDnrstMCBfLO8tL4J7l3QM55nlNunbFYrH1GbnPBBx2rHy9h8OiolNXZYuzeah4rZrhljLpfypFTPpBQYO1jIcZ7JhZNdjuVUBxaXKUO2iQ2ZSgOLemVafLP3SLynAzSVtjIP8/Hnp8cFiZHoqibgCaGJ+XXASSuJ+OMNLLXetj5k0bGu8SDkHW2m/Qyh3C+TiiqHX1DvFbwduxVJhgnNzeXxsZG4X5L+MdDoualx8DZ2o+pfymw3JlR6yLFqqPpDbGcseL2fPoODUvZBhntWlbcUUj71j7xfkakFshBVSsypRnZ+vV9whZXRjuEbiyg5b0euneKkzulsYjryfiQi94Do1IknfQqB4NHw9LEntOBxOaCrV/dT2Tog1eTk0Xw8gycBTYpksVi7N4KPurHXWpn47/9fazRVt6vin2casu7xSKj1kXbtj6p5zXzjDR6dvV/4Mb1itvzGWkPSxHCQtfn4Ciwsv2Hhwm3S+YRiTxX9ekgwy1jHJxvE9FJal4V9xbQ9LeuExOvjql5ld2UzZ5fN6vntVDNS6MhEo3wruYVtFotH/nIR04rOfy02L0lsGHDBhRF3dnxTsuPxDpNTlJ2qQfFkULuOWKSa+0bB9n074dAo8XsFl/8N1hTVEUTUVJevAYaujGHomvFpJwH68fY8e390pZitkwzBrucdVnexV7WPhMiNSjHMvSvcWJ2iw2NsZ6oHEEJYIxFE5QyZWxUgDVPlrL2c3L2B0f+0i5NUFr9eIm0hQhmpO9NzWPFVNwjbjEIqoqQDEFpsVj/hTopgpI1YKb2yVIpyzvMYM6Ri1ngoz7WPhPCWyMukTnWE+XAi0epe158N9Hy2/Kkn7f0qlRMHsmdqcBYW0SKoKT2meTI691x9YCTH1Oj1ZBzXvxZG5v79yfrW/NoULWHm+f3TtQvfZmDFOUkSh0a7XFqUeM9sP5rh9gisYOx6v5ccWJpNAbRGDavgkanYUyQjGpOhdjwCEf+NHhCgtJ8SMvQ4A9oFiYoxVE39AIx1MnFW2+9JXycJfxjor5eLWpOM8nWafHx4q904SsXt7na8tX6JEHJJKqwPDGONkWDI9cifBzCKoFIxqpj87cPyhNgDAb05hQyVi3kHzwXqx4pkrPOjZ9T1lnix2n8Y6c02ajl7Z5FEZRMLqRsvjyVdtY+E5KyP6h7sYV9vzoidX8yzkxj7edCcvZ6qIorMpZduRels+azpeJjGtjzk0YpgtJise/Zo9IEpfJ7Aqx6SE7+2x6Q3xW0+okSaVuPTd88wOE/LbB55Ris/VxI2qpa1ioxAVmCEkDDa+IEJVOmCfcKOQlv9wqb/HNgUi3yXPlyx9r+7cNs/+Z+YYJS8TVZFF4Zt1EQJofGFdys4js5TS4NxGJs/vLBExOUjkHBR72YPUaKr/ILkXYBtqS8RSwWw2w2LxGUlnBS/PCHP8TnU4neWxDffRi8OAOLz0TeRWK2UP37R5ML14pDvKynt6agM+rEbd/ij3zgUh/BK8SsUca7xtn29f3SiiuugF1VK5e0Xap9OoQrJGf76QpZUXyCBxpHmqAELJqg5K2Ws5ld9VARtU/L1bzqX2tl87flCErVnw5Kv3MBbLly6j5VDwRZcXueVJ+N/7pfiqC0WGz6twNSBCXFoWX14yVknyvxPaGAOUsuZonnwLdGYo4zDnt/0cD+V8RrXkVXZrL2mRBpEvMVZ4lF2mYSYHwgKkVQSvSRee4yEnNCCYLSqoeKpC0j/eVpGGx6MEi4MYzD+1/ax5bvihOUKu8vVN8HEtfjyLWo6yATYp0S97Llbz1ShFJ/lYuMGvHnoNlTx0T8Qv7whz8I91vCPyYGB1WCzSQTbIu+I9wv52wvGVXi43LXD48kiUZGu9jcKxKJojPqsGdIrGVEVAJRuYTd7vYfH+b9L4kTlBIwuYx4Vzqk+lTcU0DVZyTyYHzh3lctfpy29/qkyUZdWwcWRVAy2lXrLlFYs4ys/VyIotn2SQvg4Kvt7Hm2QYrI4Sy1subJUmkLO6PHKGW/5at2sOrhIkx+8U71L7ZJEZQWi8OvtksTlELX51B5//FrUyeDNUsuZqAqCspa82775iEOvCSnXLjms6VUf0autuZZKWcTmEDbejmCEkDru73C49po10pZ6oF6b9Y8WTozZxOEOV3BEZD7Ptz3yya2fm2/MEEp98PpFHzUr/5BNG5G0JtSMKaK8zyMdrXmtf1bh4SVoTLWOLHnmAle7BOueW1I+T2xWAyHw3Ha1StPm91bAuFwOMlw/uPBf+Ui040L9tnzbBu+VTY6dshtbVh2YxapuRaa3uueayt2Ajb1YhVTHPlWKfnesR71wV1xZz67BAs3m755QFq1qf/QMBlVadiyxC3SUoNm8i/0M7HGLayiY3JDxb0hwr0Rtn9LjHzlKbcRvDSb7r2DwlKHK+5UbeKik1FhK7bRzjAGi9wwb39PjvwBJ1ePORHWPhwCjZxNRYpRznYFZkg9Y02SA0gSacstUtZotnQjmhSN+rEuiOXX5WHPslD/ajNd2yRm3jEYbpBTwpC5FoDh9jBmtyL8rAEUXpwJmkze/7/ii4xrny4lMjTJ1m8I2lmYYe1DxYx0jrPrB2IkMrNb9fD1VTjZ9GU1LwrZ3cTkn4Xt32k8MXloHi+Woo976a8fpnuXeJyDH/OgN+soPN/DoVcWKFrNOv9dPz9xMTrW2z9HTSk2PELZDV5iMTObviu+Owxg+8/aMXvE8lTX1EYGxjpRFIWnnnqKnBxJz9sl/MOhsLCQZ555hn/6p3+iny5aphvI0izsub7/t430Ncq/N9Y+HSIWiwlZ9YT7FieVnHNBBga7ntyL0jn6J4HnLb5A7qm0Y8+0CFnFhTvGF6fsE4WYRi4P1jxWTIqio2Vzj/DxVt4VwJIuZ/VV/UAQvS1Fykap4r4QsWiM9XvE+nRvGyL//GmGJKzBRo/Ky8yMdY4Ri8bQSsgXZ53lJvccLz37B4Xliw02PVq9BpPXTLhP8JpM4MozCxMmFgtTpgmmY1KqNgarXtpuo+wT+eoYkBg30akosUnJuXEYaavJ8YEJxvsnhNtnnesh98x0HLkWYdu24muySCuys+cXR4Rt8iruK8DkMvL+l8VzSNk12eitKYy27BcmFJrTTRCD/nqJOWs4/u0hwT0ruzWPPT9ulCI6ugptaDQaDiFOPFvwnTBLhhog90IPmavddO0d4NDvxI9z+NVORtrG6NwyINS+rXg3U/umsNlsyUWQJSzhZGhvb0en0xGNRvlz7Hku0Fy1YJ/6F9oYODIqZVMEKnnIV+6i+d0uIUugxVrAe1e4iE1HqRd8phNqIaEbc9j3rNiGqa3fr5dWMxloGIPzwOxR6EPM1kFxaCn5eA6RgUlhyxYUqH0kxFi3uK2kLVeh7MYAPfsGqH9BLG4l16g2cTpFS9u7YpZnw61jGJ0S5AeQstBKIDoRA+QI72s+W4JGp2W9hE2F3qJDmyK3kStBOBuXVfqThCNoYqA5LDxOFY9qVS1T8yq6JBNPmYMjb7QLk3S0KRpi01HC3XJzT1mbyaG2MKl5FnolVGaLL89Gq9NKWZWs+WwJkcFJtn9bfHPv2qdDDLdJWGAokHeBj8xaN5v/XZywF4vGRARa5mDPzxql1I3y13kZah6TinP2uW4Ul4Hsc33C+QaYX7nyJCi/pwSNVsv6L8h9w2/4yn4c2WKTz65YG12TbRiNRh5//HFKSiQ3BC/hHw52u51f/epXXHvttfTRQWu0gUxN/oL99v2ygUi/PKll9eMqYVfIzi3CoiyxvNUezOkKORd6xJSe4peRWmjGUWDl6B8XrpNFhuD9f9snTUqIRWOy04Gkgkz/wQFhIlXxNVm4Cu1S+Wb5rXlY0hU2SGwaq7i/FKIx4T4jLREig5OMtInXsSLdESKS3PWx1jGIxqRscx1FFpZdl0f33oH5VVrmgd6qJ0VJwewySqnH2PMVho6c2nmX0aMyhyLd4ueluAwYJDY9AZTdFJAaAwDRySgswp+qd7cck3C0fYzIyJRw+7Rldoo+loWr2CZc98w5z0PGajd1vznK4CGxueSyG3Kw5VjY/s064We65JpcLD4T2/vElYrMXrXmNdQst0674Z/rpIhnxddkceDXLVJEQt8KJ5oULYdfFVcoJ8LJN5seU/NKr0yl8OIMOnf0Sx2nbUM/kcEJYVJTZ+l+JvdOYrfb6ekRVwv878JpJykBjI6OYrGoDNU3w7/ifNO1C/bp2KxOzqs/lUfzxn46dyz8wBz5QwtltxTSsqlPXeyOiQ2y4JWZpBWL+13ufa5RipiQOIbNb6b0hhwxlZv4z+ec70GnaDny2sI7uQbrx6QX/wbrxxhqHuPwq43CfcI9EJ2KERmaFO7TvWOYwnVymfzQa+0UfMRH+y5xEtFiinD+DznJP9fPkbfahQlLi7GG6z4wKEb8mIXFLOaW35JHdCp2Sn1is851k3uml74Vw8KqTe0b+oXJZgm0be4mRdFJEZQaXu2QVvta82QpU2NTUrLKjb/vFFcIi79sWjZ0yxUUNVqi0zEmRsUnJ2a3mehUjOG2sPB4G+uBnoPD9B+UG6Obvjw3Xgv1XXFHDrt+0HQ8QWkeclICaUEbrgIr3btmClax6ehJLd/qX+qms2CUocMnydOzyEklH0/D6lXY8i2xCX1sWC2ID7ZH0EkUVKsvjNG0cYjuJpgYWvie9oz1sL3vb2i1WtauXcszzzwjfKwl/GPj//yf/8PLL7/Mzp072c9mHDEbVs3JdyEkCBbe1Q6y13iE8+FIR1hqPgCACWoeKKb/8Aj1Ah/SB37dgj1gEiYMJBC8OAs0CJGUgCS5YPnt+ez+oRipfDG2GUfebMfmt0gRoka6wihOAyaXVpg4MBmeRmuSI6j0HhhiqEVujrtpEVLM1Z8OotVrhedTAwfDUqQZgJbNPaQV2encIbboB1D/21ahMTkby67OxZFnZf/vjtK7R2zBdDEovyUPjVYjNTdczHy198AQk2NiO28S2Hwyy+15kHWuh5y1Hg6+0ixlr7jtG3IbTFo2dOPIs1D3krgKQnQ6Riwak8o3kaEpVQ1I4pne89ND5F+cJUUEavpzl5TFZv4lPsb7J2hf3yd8bstuVm0Fcy5IlzrW+i/Uqcplgljz2VI6d/ULW4wSi9G1pYf05Q4O/V5sMc5f6yCz0sWWr9cLE5T+GnuJqX2T+P1+Nm/eLHZuS1gCas3LZFKfgb/FXuZszWUL9kkQlCrvLaR1cy+dWxb+Vm54owNXgY3u7XLFxNwL0/GVO4V3J+/8aQNjLXILEVlnu3HkWym5Lpv9IsTQ+M97q50oTr2QLdB417j0Yvn4QJS+A0M0yqj3jcPU+BSRQfE57vDRcWLTUaLT4nWv/S+3EDJoadsiPlfZL7gAMRuukJXij2Vz9J0uYTLUYizBOrb1ozfLbbTb8EV5NcrK2wNMT0VPqZKls8RC6Jo8+uqHhNWUBurD0jW8zp29GG162raLqwi1vdsrfB8TWPVQEdMTUSk1nI4NfXRskFM3OvLnTqwZcspQ01NRpiTmnopDy1RkmpEuiYnXOLRt7GW4Q+47R9Z6bdnNuez92VEpAqavPA3fChfrd4l/6zS/1cNAwwjDR8UOVHCZH1fQxuZvHpQ6t979Qxjt4jXMyvsLaV7fTfe2QQbqF74/47FxdvE+mgENZ5xxBv/n//wf8ZNbwj80rrnmGn7961/z29/+ljq2YoulYdecXLFj6Ki6SO4stZJ3tlfY9aT/8AjRCXmV6qoHggw2jnBIoB7V9Jdu+g4OMdIixyAquSIbrV4nRFICkgQl4bkasEOQrD0bh//YhqPAKqX0NNw6hi3LjNFjFCapRIYmMTrkiNvt23qJ9IpvfALESe6zsOL2fAw2PVu+IlYriQxFpUgzAAMHRxk4PEzHNvE5QfNfu2n+qxyDquCjfnyVLg6+1HJKrQKX35SLwZQiRXRejG10+7Ze+U33EkRqgLTldoKXZFL/eqsUUWm3hGsNQO+hIbr3DnBUwpYS1LU1UYISwPjgJKbxaalnev+vj5BzfqYUGa5r6wBdWweE22d8yEU0EqVjy4AwATOwzoe7JJXweREpRc6N/3ZAVeESRPXDRXTt6Bc/RixG154BsmrdtLwttubsLLGQd5aH7d85LExQWh97g9G9g6Snp7Nnzx6xc/tvxmm1e0tgtkz6NJO8F34VzLDqM/nkf1iVq8//cBqrPpOftF5beXsWFfdkk2LSklFpZ9X9WQSvUGW0cy50s/qxIsxxhcbyu3Op+lSAsR7Y9OVDrL4vSNltmaDRknlWGqufKMEaUH94xR35rJolmVbzWDHOAgvaFA25H1HbOkvVtmW35s2RN655tJiyW3IZrB/DU25jzZOlhG5R7S2W3ZQzp+2qh4tYflseoKoVuYI2+o+qhI7ST2RT89hM2+pPB1l5tyrpaM5QWP1ESdISK2utB3/ljKR/1YOFVNwXt/8yq/YKeRerEuGFl2ew+okS8td5qf50kMpPFVL5qRmrsNVPlFDwMVWSLH+dV7UrM6s2FSXXFFD14Iw03urHSwhercoY5pzvYfUTJZjjH5rldweYGptK7pCreayY0k+ocfB/yHl8vOP2D+s/X4czYCV0o6oE4q1JZfUTJaQtVwlsZZ+cG++yT+SqPLMxVbVn9RMlSQuv0I3HxPszRay4Q2XNF12XQe3TpUmruOLrso6Ld3ki3m4tOWd6QQMmp5Hg1Zmsfnxm10bVg4VU3D833vnr1HiHbsli9Wdn2lZ+qoDKT82K4RMlFF6uSqTnXezFFbDR/KZaUKq45/h4JywEs851q/GOKyKtvDtA9SxZzZrHiim9IWdOvBOWY8tvyyM6FaVjh1pIqHm0mGU3qW3TK+2sfqIET7kq1Vx2S+6cGKZYdJTdmgeAs9TM6idK8K9RlWNKb8iZE0NfhZPJyCRtm3ow56hts+KS1kXXZh0fw7hlnck9d8wGr8ycY5tX9cDceBdeks1gk8qcDXzUlxyzABX3F1D1wDFj9spMss51k/PhdDWGcRvD8rsDx8W7+Do13plnpqHRATqVbDJfjkjGe40a78BlXiruK6DsjvlzBKjqYaufKCG9Sh2zy27KwVfuov55tTi66qHgTI4oNLP68WL8H4rH+/osah5Vz2HDvxzEaNOz8i71d80ZelY/VpS0Zyu6OoPVj86Mj9LLfESGJmj8QzeYoeaRILkXqvem8DIvNY/MtK24J4+Ke9RzqP9tO4GLMin4qOodn/cRj9o2Hu/yu3OpvE99xnIvdLPms0GCV8Zz8vlpak72qzzYlXfmUPWpGZnaVQ8VUPVgHtZ0E8tvy6LmkSDWfDNotCy/NYfqB2d2vKz6TIDS69U85a22Ep2M0Rov2JXdlMmqT8+0rf5UHstuUNu6Ss2s+kw+FfepuSizyk71A3nJtlX351J2cwZEY1iyNFTfl0nGajX32HxGdPoZslHFHX6W36jGweyG6vsyyT7TRmx4hIJaLavuVP9t/0sD6E06Vlwfz9FmqL4jndyzVHnJ/HNtVN+RjqapA7u2ixSTltwzZ6TSq+/2EbhI/YjOOctK9d0+DPFv6tJrHDTb3wPAaDTyzjviEsZLWALAjh07MJvVB3gDfyEcCxO6IWeO9VP1p4Msu1nNLfaAiZrHisk5Ix2DXU/Jjdlz7JuqHihk+e3q82fKVNtmnJnGrh8eYXo6Ss2jxbji86eK+wtYeYeaA0wuNY/mXKA+N4F1fmo+VUyKQYfVp1B+TwHl98zki5rHism/RM0tuRelq+8eEww1hFl5d4DVT87NuQWXqzkg61wPNY8VY3KpeX/F7flERifY/mOVbLTqkSKCcXlmf62LmseKkwvqZZ/Mozou21t6XTb2TDOV8feLp9JOzWMz1xa6MXdODFc9VEToplyqHwgS+JiPmseK8VSqD3LJtdnHxbvsk3l0bxuip26AmseK8a52AFB8dRarHplpW/mpWfH2KaQF7bSuVy3cCi73z3n3VNxXwMqENLhJjWHuRens/EED3XsG57y/y+8JUD7LRrbmsWIC69QY5lyQTmqehfb4HGLlXYGZd3I83gk7p6yz3Gq8fQomF6x+opjqh2beL6seLqL4avU9613toOax4qSN2LKbc0mx6pJfJaseKqL0OjV3u1fYqHmsOGk5N2fMxq8tdJM6Zh1F6jj0xmXES66dO2ar7wgyPRVl4GAYS67aNmH9Ffx45twY3l/AikS8XVpqHism61x1Ll5w6THxvrcgOW/HBFafifGhCGNtI+R92Jscs6DO4SrunT/eiT8nrOVW3nHieGecmUYsFqP/qEroKbs1b84caNXDRRRfE493tRpvR5F6EqGbcufYVKx6qIhQfF6TVmal5rHipO1Y6IYc7Flm1baM+XNEIt7F12Sx6uEi7AETrlLzCXMEQOGVGXNi6F/lBC2MtgzPnyPmjFk1Ryy/PZ+cC9JPmCOS8b5vVgzvLybcH4Hw/DlidrwTOaL+t600vtV5whyRiGHC4tBTacfqVzj0ilrknTdH3KjG0FVqTuaIcF+U6FRs3hwxJ97xHLH6syXUPDETl2NzRM1jxUkbyUSO8Fe4yD/fd8IcASqRaXa89WYdE6OTSYLSsTliTrzvCrDq8aLks7Ls6px5cwSo5M/Ed5KjyIRWryGtWB138+WI5JiNxVj1mSBld+QS7oty5I12aj51ghzBTE4mOk3mGhcGh56Ms9UYHpcjHpiJtyXXhOWyaaZQCQm//vWvycwUl/RfwhIURWH79u2Aaj+yIfYGoI7J/I+o374ZZ6Sx6uGipF1b2c15lN8bQEkzkLk6jerPBCm4LPEd5GTVw0VJG6jQDTlU3lsI47DlK/WU3RKk9OZ4HipPZdXDRaQWqG1LrsueY0dQ9UCQtFAqOqOOjLNcrHq4KGmXVvzxTKoenGlbeX8hpddnM9Yyji1XoebxYkI3qccJXp4x531Sfk9B8h2hpCv4q1z0Hh5k/3PN5K/zznk2V94dYHm81oCivrcSllgFH/GTuWbGfmXFHflz7L9WPVxE7oVqzso+182qh4vIOC+NynsLWX5r3kx+S8Q7Xq/JqFWvVUlX2P/rFgouy54zB6r+TJBgvF7jqVRjmLAqK70+m+nxaNJSrOrBIEVXqjkhbYWNVQ8X4QiqOavk2pl4b/jifhy51uQ7whE0serhoqRdVtGVx8T71kJ1V/a4avm16uGipP1bwWX+OXWglXcHKLtZjUvOhW7VCuGMeD312HjfFUjWGlCg4CMZaLQajKkp5F6YPicXrrg9j5V3zvoef7goaUNY+DEfqx4pSlo+Lb8lb2YOFI934FL1nexb48JTlkpznNSy7ObcOXOg6k8HkxaCiTE7O96zrTqqHgxSEp/XOEssrHq4CGeJ+u1eck0WU1PTtG9WF+Qq7y+kJD6PTC1QY+gpV2swwSvmjlm9VZesRyo+tW3CMi1wqW9ODHPO9TIZnqJtUzeKQ41L1tnqOM27yDsnhivvnDVm4+M75zz13ZhznkdtG+ftLL9tbryLLsthpFNVa5ovR8yOdyJHeKudeGtPkCNmxTsxZj3lqaRYdGgMas1jvhxxbLyzL3Sz4vY8iq+dP0eAqh626uEiPJXxeF+eQfaH3Bx+WZ1HHpsjVj1clLTvmD1mN3/pIFpFe8IccWy8i67KZbw/ktzMO1+OSMZ7Vo5o/FMngfP98+YIUMdsIkd4q52sebqE4JUnzhHHjtny+wpw5FlZflvOCXNEMt6zcsTU+BSt29TFxeNyxL2FyXl7Ikck6vzpK50nzBGKQ6vGO54jnEErenNKkqB0bI6YHe/cC9OT8/b6F9vQ6jlhjsg62x0fs+o9VlwGCj48861zbI5Y9XBRUgmt6PpMGjK2AWC1Wnn77bdZwhJk8Pzzz5OXlwfAJv5EJBYhcIlvzrO58o785DvC6DFS9WCQvPO8mNxGCq/wz3k2l9+WR+h69Xkz2tXnOqPWxcHfthIZnqLqwSD2fHX8lt2cS9lNM0r3VQ8Gk++IjA+5qHowiN6SgtVvYtkNOTP5DTUH5FyoviN8NU6qHgxitGsZaYlQel0Oqx+bvdZUSF58HulZmUrVg8GkTVfx1VlMjE2x48cqeaLivoKkFZGz1DrnfINXZCbXZnIu9JBWZKf8XjU32vMVqh4M4ixV54YFH/XP+aYuvytA8dVZrLg9n9yL0ql6MEjacrXmFbjEN2ctbMXt+ZRel8PgoTE61vdQ9WAwafuWc6FnbrxvzWNZPL9hBH9VGm0be4h0R8g62z0nF5bdlEPZzTMK8VUPBsk+x8PB37bStqEnHkP135bdkDOT3+Lxzv2w+o5Ir3LgLk6lv1ElUZZcl83KO2byW+X9hQTitYa05XaqHgwmrcGqHypK1glBrQsVXqrG21FkoerBIKmFat0weHkG5nRjsuZVfleAYPydbM9Vx2HCBiuwbtaYNULlg4XJ2o7Jr7ZN2HnlfcR73JiNTsPQkXGMdq0a7xp1Hplz3jHxviWXZTfOxLvqwSCZ8XdE5hlparzj/ItlN+aw/JaZeDsKrYx2hxlqHZ81ZtV/C11/fLwTYxaNepyEQlLxNVnHx3tdPN7L7Gi00FuvkqCCV2bOsUCsuKcgOW9PLTRT9WAwadtXeKl/zpyz/K5A0p7PmmU8bsymFdqTimXz5Yj0Kgeg2ntVPaA+c6mF5hPmCIDsczxzxmzuOR60eg0jHSpzZr4ckYx3PEcUX52l3osT5AiA0utykrVLgMo7C5kYnSLSE5k3R8yJYTxHNP2lm4OvtJ4wRyTjfUV8zOarVmqH/6CuaZ4oR8DMmE1bbicyBNOR6XlzhBpD7ZwcUf1QkFWPzsz3js0RVQ8Gk3aIiRyRc0Y6+Rf5T5gjQJ3vzR6zJoeBcP94kjx0bI6oejCI0a3GsOS6bKo+U5g8btHHsufPEUDRx2fGrNFjxGBJwV2mPrvz5YhkvGMxyu/MJ3RjNkTg0CvNlH2yYP4cAZTfEVBzRHSanDPTMHmMZJ6tnt98OWJ2vJ0f1zCmUclMv/3tb/F4PPxP4H+EpARw8cUX88QTTwAwygD7xzai02uwxienVp+CTq/BGC96KnY9BksKu37ewPbvNs9pa/eZ0Bk0aG3qTVUcRgy2GZEonVGL3W+l6lMB7JlmdAYtZof67yaXUd3pGkeKoiM2qcrg6xVVmtfiU3/X7DaSYprZBZRi0mH2qOdgSjehTdHgyFGLDRavaU5bvTkFs1tta05XfzexK9mWbSZFmWlrsOlR4uoqpjQdOoMWq18NxMTY3J1bBpseY6ra1uxQ1LY+ta3NZ0Jn0OIpdWCw6zHa9TM7HsygM2ixxdtavWpbs1kdEorLoP6ueSaGNm/8dzPUtsZUta3RacBg05NzUTpVDxaSougwxx9cW5ZFjaFbPxNv86x4m3TYstSDWNLV37WknyTeXiO1T5firUyLxyXRV5kbb2sKJpd6DmmBVDRaDZaM+LWmK8fHO95W71TQ6bUMNo7Q8GoHNq+Czqid2zYeQ7NZq8bQb8bkBkeOXfXyjsfMaDdgtM/IOs+Jd/zelN1ShLPUnIxhsq1Riy3+YWzLUMesKVXDqs8UYUlXMFhn2qYoOizxl7s13tacrv7ZlGZEm6JNKvykmHRY4vfR4o/HOx5Ds2duDLVabfI+mt3xtonz9xwTQ7MeDVoG68ewulPicYmPl3liaHQaqHm0mIp7Q+p99CbiosyxITHY9SipMwx4nUGLO6QmZGv8/E3xeCt2Awb73Bha/Qo5Z6STUeVCZ9CitasxVVzG4+Jtjcfbnm1Go9HQ9Fd1J/d8OcIaf+4t8fuYVpyKKc2I2XnyHDE7hvYc8/E5Ii0eb69xznNvSTeRouiovC8fkxsM1hQUR/weO/XoDJpkW1v6TLzzL/FgsKckn3tzago6gwZbxux4z5BxjHY9Roee2s8WxXOEBqtfmdPWPDve8TzrCdnRaDRYvYkxq+bkRG4yphrnSG2mKDpiUxqa13cTGZxGZ9BgSdPFr8eIfnYMFS0Wj0LmGanYchW0eg3ERYdMafF4x1XyUkza5HNv9hjUd4hFT+GlHsweIynKzNjSm3SYnGpbi0t931jiz83k+NwdMQazDiXuFauz6dW2HvXPFo8ebYqGqlvVl7jBokWxqedvNoNOr8GWrra1etS+mGG4MapaFc1SjdLpNVjdhvh9VIlSKXFb7D+9/RpdXV2kp6czNnZqLYSW8PeL0dFRtFp1zL3Ha1jSFfSzLFENNj3m+PvE5DGSoujoOzjM9u83YHEa57Q12g2Y0uK5xakjRdHNyvvqHKjkqjwwgZJqQIm3xaTms2TOylT//P7/3cf2bx5GcRqS+Q0Tc9tmqPMlU1wNyOw2okvRURAvBKSYdMn3rM2rvqf0iVzpNmK0GAi3hjFlmtCbU2bmnBnqOZjT9MnfTbxP6p5rJhaLoY0rw1l96jmYPYn5x9y46C0pWDxGDA49rqAt/o6eyblz4m3VJ9+zJpca79xz1I93c/rc+ZKSOhNvo12jxjvLRMX9BTgD1jnvE8VhmJlHmrRqDH1z4z3T1ogya6fZ7Pto9attV34yQM2jxeq9mfVOTjHpknPDRFuTUwsmEzqDbs5cRW9JwRJ/RyTbxvO1JV1Bi5ZNcbn0RPEO1PdsiqLD5DEl2yZiWHN/8Zw5kNmr3hvLrDnF7Bga7HqsGSZW3J6PKTVFjcus9+GcGKYaMMXvTcX9JaQoOuyJthlz5/iK04DJkYi3OqeIDE4R7gNb1tw5vslpTN6bZLwzTXP+rLWpf1bS5on3rDm+NkVL13ZVZcPsNs7Z1aw3pxx/b9JMrH0mhD3HNGcOpLekYElPzGviMfQl5oqKOqeOn+N8OSJxr6xe9d4UfyybkqvyhHJE8tpSdExPRAn3ccIcMTveisOILcOEr8J50hxhchiS4zvngvQ53x3z5QhTIvfEY+gqtJL3Ye9Jc0Qihol8kn+BXyhHAJg96vkG12VR9sk8oRxhyzRjcmnR6bWkGI4Zs8fmiIzEeFHnnNu/vY/611tOniP8M/HO+7AXxWEkxTB3DndsjjClKsl7ozemkPMhdU50whwBmGaN74GDalE4GrcInC9HzMkn1hTsfotKJDpJjjg23m2b1IVyxXriHJGI96HJXbz55hvY7Xa+8pWvcMYZZ7CEJciivLycH//4xwCMMMie2Cb01pTku8eeYUJvSUGfqOekG1FSDWz7XgPbvnkIg1U/k2Mz1LGt2NUxa0lX5ijyGqx6nLk2Ku8tTD4HpngesnqVOTnLYNejicVVmqOaeA5LHMc85x1hTDUk/01xGkkx6nDkxmtevrnvE5PTkHxHKKnq78biC+CuItucZ9PknHnPKnZlzjmM9s6V9TC5jJjSZpRY9JYUbPEahtWnxtBb6kBxGzC7jZhchvnb+tW2xvgeEVumWT1fZSaG5sT3bKbaVol/L1p9JoypBnxrXJTfU4DRNnNvLG71/M3eeN4/Jt5Gu57UfPWjTklTf9c6KzcaZ8fbacDiU1j9eAmZa1xq24yZ+dPsXGh2GZN1H9+KNLQpGmyJ8/eZ5tQwTC5DstagKGpcBhpHOPJaZzIuiTiY0pRkfSwZw/g8IH2FS82bSrzG4TFich4T7+T7RI3LsuuycIWsmD1z55wGm35m3MXff0qakZV35uMstM1RQjDY9DN1LK8pPq+c+bMuRZdcWDA6DMm6hOI0zXlH23zmOTHU6rTJOZDJoYuff7yt3zx3zKYaIBa3SFPmjtnEeEm2TVPHbOW9hax9NKT+bnz+YY0/9/EQYk4zYkqbFW9rCu5l6gLGfDnCdMxzb/WbKLjYT/453gVzxEx9SUGj0dC6XiV2zZcjEnNBU3x8p4ccWDPMWL0nzxHqPF69OPey1Dm/O1+OSM7h4vFeeWc+ikN70hxh88/EO6PWhcWrLJgjlHgt0ORWn5vap0PHtz0mR8yOt6/KqdZIF8gRybjY9Gg1Go680c5gY/ikOcJg12P1KXgqU7HnWdCbU9BENclzOi5HJMasS588h6IrM0+aI/SpBvVa4+c/MTB3bWG+HGHLmBmzKSZdkkR2shyRiDeKwnjXOFPj03PscObLESaHOu98Z9dfaGtrw+/3MzQkZ4ezhCUkcOTIEaxWlVzzDq+oz9CsZ9OUZkzWJYxWDUa7nsHGUbZ+5zCmY9ZxzG4jZl9ikmDEaNdj8c/kIWOqnrIbAhjdRszpimrFDWBU3/3JOZzPhNGuZ/u3DrDjew2YvErymwPAmKrHnlyfU9TavFM9D1uOCZ2iTRI3lFRD8hvP7FPPSXHoZ45jMxBuj2B0q3WHZNs0ta05LTGnmHlHNL3RTXQqmrQVM6cp8bbxtb0M05z3t+IyYvWZsPpNpJXY1WvNSNQTlDk1DDWG6u8YnXqMqXpy4jUvezwus9uaEvfGqFV/12ei7OZc3CH1OAkShzndlFxvATXeyW/ULPXeYI1/Rx8bb/usePvUaw1e5qXq08H4+2T2vTHMqk0Z4/fGiNEYX5uZVYMxOg3YMhNrbGrbxPes+hsatsTtRZU0Y/J8jY54vOPvR7vfrJ4/UHFbAUqqITlvNNpS1GvNnDUOj4mhPU8lwmkt6lpwsiaQYUr+rhpDBXP8fbL20RDGVP1MfSzjmN/1mpJtAYxWPZNDKhHGFm+rtcRrHL7j45241sSfTU71HW71mua8v42peuz+mRjqlRT6Dowkr1WZfW+cM/MPk8uYjOHaz4Vwl6XOmUcqacbkfTQ6489yfFza88woLkOSWDJfjpjNQTDa9QQvyWDZ9XkL54hZMUwxpjAVnlZVwU6QI4zx9bzEmE0rsuNflXbSHGGZFW/PylQUp4HU/HgM58kRs9/fisOAs8hK9jmek+aIZLzj87vCdZlCOUI9hjoOiz+WRej6nIVzRCIuRnXuqjelzGk7X45Q423GaNez4dv7OfhS60lzhCVxbwxGMs9Iw+RV5hxnvhxhtKn50eJVMNoM5Jyt5rET5Qg1hjPxjnRHVJX2CXVSNF+OmB1vc7qCI9+GPV85aY4AUNzGZI44+lYXxMBoia8vzpMjLPH7eFTbwB//9EcsFgtf/vKX/0drXppYTNZN+b8XF1xwAW+++SYABaygwLRCqF/5HVnoLSkz/q8nsQcCqPpUgLqXOxhrGoOomGxswvZrx88a1X4LwFNuo/vg8PHWRSfBsptycOTb6KoboP434nYSnnIbE6PTYjZzcVKBzHnlr/PiXeFi10+PMNYmpv1a82gxKSYd7395n/Cx1n5O/TAUlUA2u7WU31tC/+Fh6n4hJkNpzjEL3b9jkXO+h6Y3xSXeym7JpXVTN/11Ysfyr3GSf6Ff6lqCV2fizLVK2XWEbsxBb0lh53fF5TjXPhNiYniSLV8Rk6/MPDMNf6WLLd+vF773pZ/IxuozSfm/r30mJG1dV3xdFgMNw3RuEpOf9NakMtQwSFjSftMaMDPScJKLP8ZDeO3TpWqMv7aADGU8ty27MYvUXAtN73XT8teFJbY1Wg2rPlNAiknH+n8Wj/HyW7NRHAY2/4ecbKXZrdrEiSD3QjdH3zhB4xPk8trPqrtK1//LrHjNsvDUpMzvXupfbaN941zrmNj0TD+taWbCUnV3BtNTUXb88MRWI9FIZKavTf3wXXF9Gq3bhuk9cGJ52Oigeg55H07Dt9LBnt90MCaQXqLDw7wx+RwAGRkZtLbK2Q4tYQnzYban+QWaq4T6mDJNVHwyn8a3O2l7Z2HpYG+1A+9KJ7sEbdISSOxuFpXS96520LlxQOoYsnOPBGTsjmRs2BKoebSYkY5x9j0rKOdrUosJEwOTbBGUm86/xIe/ykXX3gEO/U7M5mTVQ0Xqu0TCXs2Sa2L0aFi4Pagxs2RZhO2+vKsd2DLNwtcBqqWUNkXOIm3VQ0X0HRnm8IvtQu1NPoXSq7Jofr+LbkF72lUPFaG3pvD+P4mf18o7Aoz1R6Ts6FY9VETPgSFhS63Qjbk48i3s+c8jwnZnaWVW0suc1AnKxYOqDCWSV+bABKZUhXCH2HdK6IYcHPlW9TtFcGiu/VwIYgjLi5tcWiruLyHcF2H7N8XmUaZMEytuzKXp7S7Vhk0UiTqfwLW4Ss1Ep2NJMpAISq/LxlVkp2NXn/DYB1Utz+Q1Jy1DTwZHkYnQ1fnSNn/2gInARRnsELRkWP1ECWM9EWHbziOx/RxmD1qtlksvvZQXX3xR+NyWsIT5cN999/Htb38bgALKyNeULNBDxbKbc7GkK8Lf/ivuyOfIG+3Cdj8wY/u179dHVPLFAnAETYx3hxkfED4E+eu8ZFS56d4zwMHfib+zUgsUNFqNkEVQgmAjZam0xkXOmR52/fwo44LvkpV3B7CkK2z7+n7GB8TmebVPloJWw3pRqwoF1j4Soq9+SNjKTUlXGB8al7p+UGMgY99V/PFMuvYO0L9/VKi9LVdh+c0B+g4OJ1WoFkLuhem4S1PZ+jVxK5WCy/yYnUZ2/7RRuM/aZ0JEBieFj5O2wkb22nT2P3dE+N7nr/PiCtilbGFqnw4RnYyy8V/FLV4Cl/oYbg3TvU2s5uUKWRlrGxO+jgTMWYqU7eOaz5YwOTotfP2BS334yl20vNctbIVReW8hitvA+/+2T3j8l1ybjS3DJG3TrTi0wjHLOttNi6TVSoI4JZwr4vBUpgrf+8TOe1k7nLKb82jf0UuvwHzNt8ZF/rletv/4iHBu/XPst0AMr9dLR4fYd8oSlnAypKSkMD09DWi4QPNxoT5Gt5Hy2/JofqebNoHvstRCM1lr3OyNO4uIYvlteaQoOrZ/S+xbJm25XcoeCmDNE6VodEjVcEAlfopcO6gqHJEhufdI5f2FjHaNc+A34la1az8XItwbEbbX8lU7CFycQdeOfiFrPVDVc0xpRil7NZPfKGVbBarajjnTSn/diFB7Z6mV1FwLjX/oFD5G9UNF6CXrd+V3BRhqGaNB1HrdCCtuzKd9S5+w3dvKO/Kx+ExStbiS67KZHJni8Kvi9YiKewroPTyUVEZaCIFLfPgqXRx4oUXYHsuea8RbkUb9i+K1SF+1Q7Ugk4TRbSTSIzbOApf48Ja72PaN/cLP5ponSkEDG74oOF6MsPaxEOGeiLBFptFtZPlNubRt6qHtPYmaV4JPJXD51iwjOkUnZVmXc6GH7Np0Orf3CeeKxHmlZpuFjmX0GKm4LZ/619uk8rjRY6Too352/7hRqH3Vg0Ei/RH2/FzsfdQRa2YPG9FoNFxxxRX89re/FT63U4H/cZISQG5uLk1NagBLWUW2qXiBHqpVT4qiZf0XZr08FiAqAThLzBisWiHCgv9DTvLP89P0bhctb4l/XPjXOHEFbewVHBRlt+SyR9JfcjFkjfRKO9YMMw2vnqIJ/yLIUGnLLfTuFitwnE6U3ZJLaq6V5ve6pIhKH0TUPlWKRqeRWviSJSmV3x3AnK6w49v7GeuR92X+IGGxi9cnxTEEJfF+c3OaZ6WF7p0LPy8a7czxzP4UxtqnFnd8AZTdlMWen4t/XGSf6yJrjZvR7nF2/WCeHHmCPO5bbSfFqKXl7QH1L2Jzx9lskpLZB8F1Wez84fHnNZugBHNJSjWfyiQahS3fmr94PpugBGox9MhbCxdpEgQlgNLr/ThyLez+VfuCJKXo8DAdJXvZvXs3oKrgJOy6lrCE/wrC4XByLGnQcL5A0caSa2LlTfl07RMntySQf4lPmBSx+okSYrFYUlVHFOX3BDjw6wZViWUBZJ3rYbx3XGpRvPyeAsweI/WvtQgTT0C11tr3c7k5ngxMPnGSRgJpZVZ694gVRU4nZAkhH1S4Ss2UXJXHQOOo8L1fDElp7edCTE9G2ShRSPsgIrDOj7/KReeefunccsphAke2SYrcI0MeWgwC6/wMNAwKkYASWPNknJwnMb5AJXbt+0+x79nQTbl07eyTyqs5F6STtcbNwZfFSEre1Q5GOiLSBMjap0oZH5wQIo4NZ/eyr38Lw8PDlJWVJedgS1jCfxXnnHMOf/vb3wAooZIsTWCBHiohxuQ0sOGLcnnenKVgSTcKLVq7QlZKrshRa14SC+qukJX0FU72CxJSS67JEibcJLCY95wjaMKRb6fxT+KLOVJYBBkqtUBhsFWeQHSqUXCZXyWErO/m6BtiJPwPKmoeU62jZeaQsiSlkuuycQVt7HvuiBhx7gMMaeLcaYSzxCJMgktASVdVe04VSq7LFs51oNrpBS/NZKQ9zK4fiG/YcYWsKC4jbe8uTNxXHFD08Tx2/bBR+PdBtTNGo1rqiSD3wnTp/BC41Id3hYudP20QIrV1r6hn586dgFqnUBRlgR5LWMLCiEQiybGkQcv5misX7GN0G6m4M0D37gEpUgTIEROrHgii0c+o6ohi2Q05HPpjpxBhIb3KwfR4VJh0ATPvuYbft0mRKYJXZFL/wqnbUCtD0kggtVCMQHC6seazpYAEIeQDCqPbSNW9BfTXj1D3nFi9YDEkpTVPlhKdiLLpy3L14Q8afNUOCi7JpGtXvxSx6XTBnq8wdERiHiVBHloMMs9IY7RrnIGD4vPB6oeLMJhTpNdzg5dnCN+T4OUZ9NWPSOXV9CoHBR/2c/CVViGSkrPUyvTYJENH5YK7+rFiIoOT7PjewiIlEc8wuyIbGBwcpLq6ms2bN0sd61TgA0FSAnC73fT2qhPxCs7Crc84oTJGAokFY5ObuaonJyErrX1aJUDJFmllsBhSCEDORek0/Uls8l/6iWyaN/SeXLnlGKz9XAg0ctde+alCNBrY+nXxXRapQTOTo1FhBSaY5x4ugLTlFnR6HV2iO9QfLkJvEV/8Mbu1BD6aw+FXG4XPK+tcN1lrPGz4ap0UUUsKZii9IoeObT3Cik2LgSxJaTGQVThaDFSP0xjbviGuCpRzUTp6k47DL4l9kFQ9UIjRYZhfQewE5KTCy/0cWmhX+qw8JvN8JAhK/tpU2teLx9aab6bsqkzqX2+ld6/Y2Fpxew5Wr4mWjT00vSmugFB2SzZ7fnqCIs8x+TvzjFRatw3OxDY2Pwlu9vui4u5sjHY9h37fQc+emWs5lqAEc0lK8+FYYlICy2/JxOYz0bFvhMa/zr/YP5ucpLhhPH4PtVbLyY85rPZ7Y/JXaDSQlZXFtm3bcLvdJ+23hCXIoK+vj7Q01W9ctGgzGyYXQoSgwisz8JY56T0wJLyDWhbeagcFF2cw2jnOToEJeQImF9iDgkpMJgh9PFdc5YgZ8kXfwSFhVRn3ChuFl2Sx8ydHpMhHi1GUEr2HCciQzUw+hYo7A4y0hYXVtAou9RMemJBS1Km4r4DoVEzqvstiMYpNslgMSUkWrlIznjKX1K5FWZgyTSy/IYejf+mkU7CwaXJpCXw0m72/OSqlcBTuF1cr8lY7iAxFpMhGss+HJTduUyRBoKm4v4DopNz4XQyZz1Fkwl3mFB7DWed6aHlLbpPG2mdCTE+cWtKcvLKV3D3sirVSb9rB5OQkK1asYOvWrYs80yUsYX6sWLEiSXxbwVrSNRnCfRUHwupFtU+F0GhOLem35rFiUow66UJwxhlpQgvwoC509+4bEFJ4SqD2yVI0Wo3UtS+/NQ+tQSulPG3OUr8hZVRlZO4hqOQmg81I9w7BHep3B7C4FfFrV6D0imyO/L5VWB3GU55K3gVedj/bJKyQIg0Fgh/JoHtv/yklA8mSlBYDWYWjxWD5rXlo9VqpuYRvjQuTQ88RQWWGspvzsOeY2fYNcQUxWXKL7PMBcgpCoJKZVn4yj4MvNwsToUquySKtJJXWDT1S5MeSa7PZ/1KzEDnRU5nKcMOg1PUvvzUPW5aZ+ldahXOELIquzMRT5qB9ey8Nryz8DbiYe/hW7CWimikyMjLYsmULPp9vUee6hCXMh9lEJR0pnKu5XKq/0Q4RgWWnzDPSyDvPR0/d4Cn71k4tNLPsujyGW8eElTUAMIKnJFVM7cYIwXWZ1EuoXvpqnBR8JIOe/YMcECSj2/MViq/IYc8vj0opES1GUUr0HiaQfY6H5r8KfgcbofaRUoZbxtjzM7E6YfY5HibHpujY1C98TmU35YBGI3yMxSBtmR1btklKsUkWiyEpycKea8Rd5qThzx2njECDEarvLaLpnS66tg6IdbFDzvmZNL3ZLq5w9GQp470RIdIJgKPIQnRyWopsJPt8GN1G9AqMtIgHd/ktucRiSI3fNU+WQkyOzGfyG/FXOIXVwHw1TqnnENRv7OmJaSmHI1mseTJOZBQUppG9h0OxIfaY3iUyEaGiouIDQVACODkL6DSip6cHm83GyMgI23mbisnzceMBTmzjA6osV9ZqN72HhjjwXPwlmljEnoes1PReN9NhMbu3BBIWYyMdYXZ9f+GFlp0SC1gJ5K/z4q9Mw55pZo/AZCNhD2YNmJkeGhMiMBx5q53BZlkZQv0c/+iFYHLDsuvymBqfZtO/iT2wZbfmYc8yU/d8ozDxpvjyXGLTMWGS0lj3OBadaeGGifY9Ufb8pFG4PYDJaUSboiGzKo1WwQW2mkeL0Rm1rP+8WOKx+sy4CmwYrSn01526BbnTgbSgHUeOVZiktOLOfKw+k5Sd4GzPTVGIEgUTGOuNkGJKESYo5VzowbvciTnNOP+up3nyVvmdRWg0Gt7/womfqdnqSc4SM3nnePFXuNj2LbHF4YzqVDQpcopPu37YROASjzBBybPCQveu0RMTlOZBzhkesmvdbPhX8eLh9u8241tlSxKU5iMnJWBOh+XXZzHYEmb/b+dex4kISgB7fzdIycc08xKUZpOTEqi4o5DpyRibvnziBdUEOQngz5O/BmJoNFpefPHFJYLSEv7b4XK5qK+vJxgMEiPKX2IvcJ7mCqG+q58oQafXCn1cHvpdG3qDTpqgtOzmXFJzLGz/1r4FF5kTZAhRUkQC5feopHIhck+YJEFJVImo4bV2olNRGv8o/qGvSdGg1WvwVzlpeE2MLFv96SAGu56hlgjhVrHFHFl1gpV3BbD6TIx1jQvFOdwxzlRkmtFe8Q/kwzLyunEoDgPRafGJqsmnUHFHgIEjI8IKMXnn+NAZtB88lR9J5J7jx+xROGBqEScDPR1ifHCCbd8Q26yQvsxGilGH3iY+/wr3RdkrU3AzwWR4ihGJxdHARX6pDSQJ4mPvgSHhYuuya3PUBfsvidvJKaly4xdgzy+OYHSIxdfk0oLBwMDBsDBBa+UdASx+hehUVIowuOc/jzA5IPadmVxI/3fxWAEcebOD6KRYUS90Qw6OgJXDf2oTyvF9sS52sR7Cqr3uEkFpCacCu3btIi8vj6NHj7KL96mMnYlL412wn6cyleC6TPoOiNl/HfpDK1rtwirjc6BA7cMhRjrG2P2jxgWb7/p+PfpUg9QhfGtc5J3rxRWwsednCx8jsSiupCswMSFEjjj4Wgvhvkmp8zKlqXUcYShQfmuAydEpYev64BUZeMocHHipWcguCWDZ9QGiU1FhAsJIexi9SaeqPYm8Iseh7pdy83O9NQW9KQV3sZUWwfdw+T0FmJxG1v+z+KJU+gonZo+RgXo52+gPGnzlLtzF08JEmpJrs3EW2tj+/QZhZSCT24hWJ1fHkbH4AxjtDWPyGKTIbFm1HuxZZuHF9BV3FqMz6ITVnRSfQnBdJtm1HmHrMl95KjqjFq1BPD/u/3ULOedFhO3nEkpQMt++wUsyiU75pVTzdv+4EU95qlB+UBxQcX+IgYZhqWf+4O9a0WgQIiiBeozpCfG1gL/FXmaaSTRoePbZZ5cISkv4b4fRaKSrq4v09HSmmeKvsZc4R/Mxob5Vnw6iN6cILRS3vtuLyWmQswsCCi/14y5zsP37DQsqBQ0eGpOyo0qg5lPFpCg6MZJShCRBSVSJqGNTPzqDllZBAnoCenMK3pUOGtvFamXLb8vDlmFmz9BhYYWRNU+UEJ2OCRMKiq/Owl2aKk4iisDE8BRjEipPwgSoWTCni69nAmCENY+U0n9oWLiWkXeeF2Oq/pSSlE4HstZ6cQZttG/rFybArX68mMiAmAINqKQ/gzUFo0TNKzKEtNrYxNAkI+3ixZLgpVnoTeIbSOz5CmU3BOjeNyhMTFx2bTaK08DWr+0TJsYoaUY0kg4z23/QgNVnXLghKkkHo2q92NAuNl8JXpmJZ1kqWr1Gyn5u2/fFRTBKrsvGkW9l+zcPSNli1r/cik4Rm6cmrAob/tQulLOGYkNs4k8Qhry8vA8MQQk+QCQlgOHhYRRFIRKJsJ03qZhUFZViU1MnJCo1vdeNv8JF8/vz3IhY9LgF/5a/qgPP5Iaym4uEigpjPVFi0zEmx8TITWNN6kvcGjBTenmW0DGOvNapvmxl2NBmWHFDnrrIJPAx0/6eGiNzjhm9EQbrF55syHrXhntguHWMpnfEiR6Nf+sidGU2kUHxB7Z77yDtO8TZjqLWe7ORd7FK8hCNQf3vWqXY5gATw5MYteLFvZGGMZrf66J7p/ikZuXdASwe5ZQylaseLMRg0wuTrQAOvdbCZFjchmxybJrYVExKpUp2/FY9UIhGq2HLV8UJMQnC4Byc5OXb9EY3Fo9C3Yvz9Zv/JTTUPIbeohM+p/79Y4x0hDn8prg82cHftAPiH1SZZzpofWeAhtfFxmLmmQ5yzkjHv2qcXT8Ufx47dw4QHpgQalt4qQclVc+eZ9vo2Dx8UnJSElGIRWOMds09xokISqXX+JiejHHoz6Psf2ng+J+bh6AEEBmcZPgkhdzZBKWukjo0e0GnTeFvf/sblZWVC1/HEpawCBQWFvLOO+9w5plnEmVamKg0cGQEk0v83ZVQESq5NpvJyBSHF1KSA8Z6ItizxO0NE8SZ5bfnM9Q8ylEBwmnzu90gWdQvvyeA2aNwUCtmT5QgKPlrXbSvX/jjp3vbEN3b5N7Xh37fQkZNujBBCWC0a5xxwdwKcPD5RrLO9UsRwWQt+0AlXE2OTwurGUjPUzvGiU7FiIyKL2DWv9yERie32Lv26RCjPeNSqgyyWPu5EANHxS3l9v/qMGllbilSyNTkNBMj4nO1o3/qEnr2kjDBmk+X0vJ+Ny1vC85ZwrD5y3LS+Hufa8Rd6hBuP9IdYXJ0iqY/ixPTDr7YRMbqdKn4yoxfV6mZcH+UoYYwogdZeWcRWoNWSqFr5w8aKPtknjBBqfrTQfY+3xI/LzFMjk4z7YgKx6r600G2fK9eKIcm0LK+G6vfJERQ6oq10ultQNOlwWq10tp66uwKlrCExsZGvF4vXV1dbOMdVsQWVlTq3jZI3tleWjeK5ckkIUKBytsLxRbwx2F6cprJUbGa1/hAlPGBcRSfQujjWULH6NjQh6vAKkwSTqDyrgBTEbGF7wQBSElXUFI1Qko80rthx6Gvfpj2zeI1mea3OkjNsUgRqNo29dJ7QFwh5fDL8mTvjFoX2Wems/Fr+4WITW3v9gorYSUwMTwpVctgHI680U5fnXjOL7kuG2eB7ZTaly2/LQ+r18R6wZ3NAHW/OSpWk4gjMjJBdDIqZV0mSghJYPlteehNKcLEHlDr1UdeE1+47N4xiD3HTOvb4n36Dw2jOMS/L8c7xuk7OEz7FvHnsPFPnVJqSN5qJ51b+oUJSq6QlZKP5zDSNiZlw9b4104QJK1nn+vGnm1h78+OSikoxaajwgvp+eu86I0pHPxdKwd+Kz4nGu0YI9wn9n3Ztfwg0b3TpGhSeOuttzjjjDOEj7OEJcjA4/Fw6NAhCgsLmWKSv8Ze5BwBRaXufQOkZp9cBX82EgSl3A+no9NphdQ8xnoi6jtiQmxukCAoBa/MJDIwIZSbDv+pHSVVbgN38TVZpBXZVaU2AXJTgqDkWSmm2DR0ZFx6jergK+3kneORskAaPDrGpETd58DLLdIqR1u/Lq/GuOL2fGJTUXb/VKyOI211FoHp8WkmJeo49S83oTXK0QRWP1bMWE9ETtlLEms+W8pA44iw5erh15pwFjmkFLqmwlEiQ+Kx6t45KEb6m4VVjxTT+n43bRL1DJl5GsCeXzTiKbULt48Mxwj3RWhZL7F2+FIzGavdUso9ohs6QFXCioxBpDtCpFvsHpbdFsRo1fP+v+0TVs+q/10r2hRxglL5XQEOvNIqNa4mhieJTkSFCUrldwWoe65BiojaurkfZ6GNjp1iBKWWjD1o2jU4nU6OHPlgbQSR3F516jE+Pp6UYtzO27RPqgk7NjVFbGpuwtAajTAGG//1AGNNY6SVWQh89BjmfSw6898sFKzLRW9JIe/ihXeugVpErosXU8xusbAFP+JHb0khvVIsQSRUmvIu9oLIutyYusjU+Be5YkT5LXmErsmV6lP2yTzh69j9o0YhAlQCIw1jbPrSASl7uPrftUpZ3QF4ym1UPVAo3F5vSkGj0+CtSZU6jgx2fLeBjf8qZ4vQ9Ga3lDXe9ESUU+3qGJ2KnciF64To2jYkZVlX959NUgWhxUBv1aO3iE/KgldnUnpDzty/FGAH1/2ieR7lpRPnlb3PtrDju/NPXjVazRwVpQR2/7iZsSax1Z/yu3Ix+8Wvu/AyLzlnpFN6faZwn9Z3BogMTnLwJbGidOBiVTmo4fUu2t8fEOqTFrRi9avvD5FioNkNYz2w6eutNL8zTDQSSf53IjhyLaQVWuf8XXRwOPnf3ANA6fV+ALZ9+yj1L3QeZ/UWHR6eQ1B6Y/JX7Ny9k/T0dH7+85+zdu3aBa9jCUv4r+CMM87gnXfeASDKNG/GfrdgnwO/bmHHd1TyRel12cLHcgVtpIccQm2PvN7B+i/UEe6Lq4EIwpZhwlfhEmrb8nZP0tIo78Ni88EDL7YR7okIEZQSWHZzLvkX+Mi5IF24jyXXxIrb84XaDhwMS9nQAez8XoPwripQ1W7qJYrUCYRuyCGwzi/cXm+R25G0GGz4Yp0QUS6BvroxIeWs2YhOx4hOndq5VywaIzohPvkK9yFOBIpj078ekFYWlUFGdRpavUZqR3vFfQU4iuR2Ew41hIWVyUC1bNv87wcJ94nHd+BgWJgw5l3toORa8dwJUHJlHhV3BKT6HPlrB4NHxexMTC4tWWepcy/Re+6vdWGw6ym4UCx/JnL5vmePCqu4Bdb5Mdj1BC8Rm3MG1vmxB0wMNYSFiAcdsWZ2sZ7u7m6qqqoYGpLbnbyEJSwGnZ2deL3qc7OL92mLLfx9tPk/DjJ8dBxbrkLeRWLPXPAjGSgug3D7Tf92IKn+oTgEd3Cen47iMuCtdgq1TxCUMmpdwsfoPzzMkTfFdsYmUHFngNKr8qT6FF2ZiadSrPaz/7lmKRu68YEoW75aL2UP1/inToaPylmqpRYorLxL/F2hNWjRGbT4ysXmzovBvv9skiYXt63vk7KNik5EpchAi0F0Kiatfti/f1TKsu7Ia53S9UFZKKkGDDbx2k/eRV5KrsmSPs7hl9uFlZcA6l9ok17o3P8r8eew7Oa8pE2jCLLOdlNwsZ/S68Xna337RhjtCHNQUHko5zzVPaLt3V7hhUt/VRqpOeLECcWhZXwANnxxv7D9nne5k7RS8Tp48cfVOdquHzZS/8LCBP+3Yi+xa9cuXC4XP/vZz5YISks45SgoKODQIXXBf4op3oq9uGCfpje6k8qSBR/1g5ioB/6KNNKXO4Tatq3vY+O/qiobRrv493BaiR2vYM2rd/dQkkSUeUaaUJ/GP7Qw3DYmRcQo+Kif4GWZZJ/jEe5jdBsJXZ+zcENU0oKslV7dc01y6lYRaHhNbr4JEFjnI+dC8etWHAaMLsEBtUhs/veDwrZXAENHIwwcFKsbJDA9LVePWgxi01GmJY4RGYIOSYX9rV+vp+45eXELUThLregVHSkmccL+8ltySS0U37QLEG4XV30EiPRE2P6tw1LEm5GWCAcF68KOIgvBK8TXDQFKr8mj8s4CqT4Nf2yn9+CQGEHJqH6DAsL1cEeRBXO6QuA8se/pRC5veK1DmGCYUevCnK6Qc56YFXzmGWnY8xUi3RHVtnqBax+IdbOJP9He3k5lZSW9vXIbTk4HNLFTzV5YJMxmM+Gw+jFXyiqy9HMHaEJZafZicu1TJar//P89AZFhNgkgOk1q0CxFpgFY/dm4xYngjlRrwCxFpjHnmCm/JY+psKS/oRnMZi1jPQsn7tJPZNO7f1DYKi1hdydj4VZ0bRbuIruUhVvNo8VMjkyx/Tti0mlVDxRisIur91TcU4DJY+TAi0fp3S334hVF9WeCGGx6qR3L/g85Ge+LCMep+jNBNGjY/BW5Qo8M1j4TYmJ4ki1fkWeEiyDrXDfZtR4OvtIkfC/y13np3NgtNMYBah5TJU1l7oUsap8uVXNO4hgLEJRW3JmPNV1h+3fr5hLNTkBQMrmh/I4imt7rpvWd41mx85GT1jweJBaDjf8mdu88KywUrsskMjgpbA0HKrFpx/fEFuPshWaGBGRiAdBosReYWXZ1BpNjU2z5qpgKReKdYM7SMyqws6LinhwUh4H6P/TSd0B915yMnJSEGcx2DeOjM4WhE6knVd6bizFVz+E/ttO1XR3nCZLSbGJSAi2FO6mrU/PZ1q1blxSUlnBasXnzZmpqagDQoOF8zccX7OOvdZF/gY/R9nF2/mDhZ9WUaSLcF5ZSGvFU2gmuy2K4LczuHy6coyy5JkaPShwAWPVwEXpLCtt/dERKjSixEL4gTLDyhoBQjBJIWLjt/NkR4etZ89lSYrGY8OJ/1rmqZfKGr9YJ3ROTT6Hi9gADjeJWaWufCRGdiLJB8JwWg7XPhJgYmhRWQTS5tHgq3TT9WaxQ76m0U3BRJkf+3C5tKSiKVQ8VobemnNI5y6qHipiKTLP9W2LzbFepGb3FIHXNa58JEe6JsP3b4jLIMvCudlBwUQYDjeIKUmufDjHaPc5OQfnu8nsKSDFqhcdTIke1b+3jiGAhsObxYmlrOG+1A1uOWch20ORTCA+OS+XamkeLSTHp2P7NhS02Z0M455pg7aMh+W9cJHIt8ZwzGWPDFxf+Ppwo7GZT80bGx8dxuVwfyGLNEv6+kZ2dTUuLWiAtoZIszcLkktWPl6AziFnuAthyFWmiy6qH1HnR+1/aJ6SuY85SpMg3igMqHwgxOTLF5v+QqGkooNgVIZWZwKU+hpvD4kojCqx9LMTk2JQwoSb3wnQyV7s58LK4hVvl/YVMRabZ9QOx7+7lt+Zh9Ymr95Rcl40raFPVDyRUVmSw8s58LD6T1JzFU57K5OiEMGFn5V0BUoy6RSkUiGLtMyEig5Nqcf8UwFOeSuAiP4f+0Co8PrLOdtOzs0+Y3FN5fyGKy3BK54+rHytGZxS3Dym5JgtngZ3tPxS0rFNg9YMlNL/fLazSVfNoMRqtRpjQZc5SKL81wHjPBNu+La5MsPyWPHb/tFGorWyuVXwKlXcGFjUGRXPusptzSc21SNlMqicHikNhXMDScfmtediyzBz+fTudWxbeyd8eqmPv3r0AbNy4MVl/WMISTgdaWlrIzlaJhxp0nC+gIu4oshC6Jpfh1jEhIqXRbSQyHBFW9IAZ26WhplH2CNigGz1GYZWRBMrvCmBOV9j1k8OMtIj3tWYZhduHrs9h3y/FyR7Lb83Dlmlm73ONQtZyANUPFaHRatgsuPjvWZlK/oU+dn7vgJD6i9EOFfeW0H9kRJjEsObJUmJTUTZKKhvKYO3TIcL9EeFajtGuJW25Q1gpxp6vUHxlLkf/2knX1oH/wpmeGCvviM8fT6HTS/kdAWLE2Ck4z7bnGtHbjfTuFt+otPZzIUY7wsLHkEUiH/QfGhEmT61+vJixznFhda7Q9TkYHXrhup0910jZjQW0bOqm6Q0xIlTlpwpRHAa2fm2/sJqQo8iCq9AmRLAz2rVEIlGpXFt5f6FqV/fdw1I51OQ3CpO5ap8qZWJsiq2Sa+oyubb2qRDRyWmhnBPxjLB15G3Gxsbw+/20tYmrxZ9OfOCUlBIYGxvDZrMBUMdm6ia3zvn3hLKS1jjDPN39XBNH/3YS6dbZqkpaXZKgtObJUmoeLRY6r566Qcb7xe0xRhrGwKwew79m4d1lY01j9DeMsOlbci+2tY+EWHmX2DXU/aJZJSiZxVShxnqiHP5jq5SMcNvmPmLTMVKM4ixRnVGLXmJHz+T4NMQQU50Ctv/sMDt+2ihNUEoNijNX+4+MMDk8JXxOAPnn+QmuE9+dk2JKQSfBvgWVLHcqYc4xS12zxaug0WmIjApyJM3gr0wjdIM4m3agaZSJIXFZz8XEaP3n66h7vlH9g4CCUmw6RiwamyEoabQnVVDyVnnQ6DTH7dg7kXoSwMTIFJOjEjKVu0Y5/Ic2YYKSPc7kFiUoBS7xsOzqLEquFWMDAwwdGqG/YYQ9/ym2oFjzSJCCdWnEpqNCBCWAlvd7mApP07NrYEH1JN8qG7WPF+BbZYMxGB+1nFg9aRa2ffso3fsG5xCUjlVOSmCj8jp1dXV4PB7q6uqWCEpLOO1YtWoVu3btAiBGjD/Hnl+wT/v6Pjq29QuTb8KtKkEp48w01n4uhHuFbcE+3duGmBydovkdscX/xGJ54ZUZrHqkSKjPnp8comvvgBRBKXRjLmU35CeVR06KMMkY2QNiCjBbvlrPgReapAhXk6OTUu89rU6DVq/BL7h7PtwxLq3MuO9XRxZFULLkiivlTAxN0t8grnRUdkshWbUC9y2O2FQMrV6DxSuh3mNSiSKnDCaV9CcDnVGH3iw+zy64JIuCi8Xf3ZjUe9FbL74IIvo8JNC5cYCdPzvCvufF5iAml6pqJTMvMthSSJGIE6jqCh3bBoTbb/rXA9S/1iJMDsSkWlqKEJQAym/LZ+0jIeHzAdj9o3q69w0KEZQyzkxj9RMlYEI8R4Uh3BehQ9Cue9UjRcnvcxkruaa/dbHzJwvPaffHdrC9YxtTU1P4/f4lgtIS/kfQ3NxMfr6qmrifbRyI7Viwz86fNNIooSqUWDRf9VAR1Z8JCvVp39bHaPe4EEEJUBfLFZU44Fuz8JxifAC6dw+w+8dyNga1j4Qovy1PqG3DKx0qSUdRrd8WPik48FKzlOJP584hpifldpAbbCkY7eKKkZOjU0SnYygOsfb7X2xmx48bpAlKtlzxOUvvwWHG+yZAYpoTvDSTwkvE1XgMlhSpHeegkj5kzkkWSrrc71vSFXQGLTEJZc2cs9JZdpN4zav/8DDjPeL1aRkloQQ2/tsB9v5Szr44FhO3rPOWOdEZtGglLLgjgxNMDIt/84y1jFP3m6PCBKXE8yBKUMqodbH85oCU4tR4xzidO/vZ+zOxBcLqzwQJXKo6R4iSQlve61Tn5gIEJVfISu3TITWHjyNEUALY/eNG2jb2ChGU3je+zr59+3C73Wzfvn2JoLSE046srCy6utSNSjGm+XPstwv2GTg4SvO73cJKb5EelaCUtszOmidLSVu2sCvJ0JFxwr0Rmt8XW/xPLK5nn+Oh6kGxuV3dcw10bOuTIigFLvGx4pMFwgpMCYKSNUtMJWj3jxvZ9+ujwgQlgMjABOP94tcQjaprk84SMcXPyJBaP4hJKCfu+0XDoghKJr+4mtJIR5i+w+J1luKrc8k7zyesADY5rsbJ7JFQeDKqhLlTCZkYAaTYU9BbxefZBRdnUfwxCbVII4x1jEvVvESfhwSGjoyz9buHqXtBkPBnhOg0TITFLLsBlDQ5VU2NXsfU+DTde8TJXNu+cYi63zYJEZSMdi0Y1XwrqgC28s4gtY+UCp8PwLYfHKJje58QQSltmZ3qh4vAiJTa1HDLGJ3bxWpeFfcUUP2Qum4hk5sPvdbKrmcbF2zXHDvMzvH3iUQi5Ofnf2AJSvABVlJKwO/309GhDk4nXqr15x7XJjY1NZcgYIbaz5TQ1zDMgedOIkEWv/TVT5QQjUSllWlKP5Gt2jYtgNSgmWXX5ams67hUpAj8H3Kit+hp+tPCO71X3JnPUMsYjb8X99de+0yI6FSMDRIWWgUf83P4jfbjrar+TlF2Sy72HAuH/9hK56ZTsxOt9BPZtG3ulVb1kvl9V6Gdo+900vKWmM2HrJLS2s+pCyGnkg1deHkGg43DdO+Q2AEkgf/yNQiQlI7vszie6IkISidDLBo7rl/BR9M5/Jeukz7Ps/vlXugmo9rFQOModb88cW6dcywzrLqrgM3fO7xg3ohFYyy/JZs9PxeXcDW7YeWdRUQGJtn2nYUXLQsv89C2uZfRZvXlrzEYFuzjW2Uj/9x0Dv2+na6tA2hSTjLhNcOaTxXQWz9C/Qsz+Tg2NYlGd3yhdWxyjPd4GQCbzcamTZsoKSlZ8JyWsIRThdbWVrKyZj7SPsQ6TJqFiQTF12ThKrSx/j8WVuXxVjso+HAGB15qkrLRsuSa8JTYafzjwnOd6geCGFL1vP9lcaUSgNBNuWIKLSaovisorLYCM7tZj/y5g3ZRL3IT5J3lFbrmvxes/VyIWDTG+i+cGotX9wobtiyLsOrNYrD2cyGIwfufF5tTyCop5V/iI6M6jbYtvafsOhxFJtxlTmFijCyyzvWQc4aH7n2Di7IS/H8RJhekV6dzVODbLoHap+KqnRLz0/xLfJjSjEK5LPeidEY7wlIWlivvCGDxK8Lqc8VXZ0nL8696qAg0qlT9Qii9LhtHwCqcM7bG3qYf9R5UV1ezefNmqXNbwhL+u1FVVcW2bdsASMNHhUbM+mbNZ0voOzjMwd8tnEOrP62q7coqdgQvz6D+xYXfA4pPofKOAMPNY8IL+6AujFu8Cs0CdYqS67IJ90aELYsAap8OEZuOsuGL4oTp7HPddG/vkbIb+38ZBZf58a500vjnDmHLKVkELvXRu29AyiJPBnkXeclc46Zlfbfw+JBVUqp9shQ0GtZ/4dTVvHIvTGe4dYy+fXI2w6JY89kSNDot6wXnp38PyDnPQ9P73cKkS2+1k4KL/fQfGqbulwvX+xOovL+QbT88JHSckuuy2f+c+G+jqCTN8T4xtdKc8zz0HByWUrhzllgouTKXQ68LqLApsOYzJfQeGBKydwOSG6CsVivvvPMO5eXlwue2hCX8d2NoaIjU1BlLwzO5FKNmYSJBzoUe/BUuNn71wILqHamFZkqvyqX+lVZ694ov7BvdRtLL7DT/dWHC0vJbcrFmmtn2jQPCSiUAwSsyqX9B4PvbCBW3FrD9x4eF1UoKPurHW+6k8U2JOYURsta4afmbnDX9/8tY89lSiMVOmeJ4aqEZe5ZFaBwtFmueKAGNRkjBGOSVlHzVDgouyaR9S6+UdZ0MrFlG3GUOGv9wauqtacvsFF+ZRffuAaHvqb8LLOJ5rn64CL2ik6oBZ9S6sGWbhRTPfDVOJsPTUopZxVdnkVZkZ9dPxdTnApf4pMdp+R0BdGad0LdI3ke8eFc4hN4/AAdiO2hGJefX1NSwceNGqXM73fjAKikl0N7enpy89tPJu5Ovzd9wFtfKbNag0WjQG8R23mz8l/1JglLmmWLs4Kxz3TgLbFTcs/Aul8H6Md7/p31SBCVQFXayVovt9N71/SNJgpKnfGFlAoCxrnHatorvGvWU2/CucFJ1R6Fwn2U35bD6s3IL7ivvXljmPAkzVNxfIKx25F/jZO0zIYqvE2PJNrzVzXj/BMMyTPOP+ii7NU+4fd0vmk8ZQQlQCRmdYfoOn7pj9B4aoqdePNEvBodebBMmKHlrUim/OyCl7tRTP8RAo3gxaO0zIWEFNoDyu/PxrhL3dS+9LhPPSnGv+aKr/dQ8Gpz3mmPR47moihvSlzuouWf+5zkWjR3X7+h7qvpQ3UsnJyglkF5hhTHY/BUxglLZJ3OwZZnJ+4i4l/NoV4z3P39AiKCEGTyhVJbfkC/022mlZsxu6Ng8zPp/PSwkeWo2qyQyvXnm/RObmn+X39jkCG35u5N/7ujoWCIoLeF/HJmZmYyNzTyw7/Ea4djCi9B6cwoaQbJm55YB3v/8Pnr3jGDKNAmrqSy/Po+MGrF52pav16sfvxIEpYLL/TjzrRSL7IINkyQoiShCATS8epSJoUlxghKq/UFGTRoICs6YXCr5Pv8Sn/AxPJV2Cq8UV8zxrnZIzXNqHi1OEoFFMHBkhK7dA8LtTS7VFiStzCrUvmfX8CklKAH0Hhiic6/Y7pnFoGvvICNtYTp2nhoCPcDAwbAUQansk3nkXJAu3L734Ajh3ggtb4kRlEI35rL2mRCuUrHJnXuFjRW3i73vATAhNa5BfdaCH88Ubl92SxGZq91SSmHtW/sYahGbwyeegSOvdwjb4WXWuCm6VFzRFVRluPf/aZ8QQanivgLSSux4KhfeRQyqjSjA5v84KERQAtApOjQaDSYBUbiBikbCyhBarZZzzjlniaC0hA8Etm7dypVXXglALx28H/vjgn0UB2g0WmG1mS1frU8WQL3VYrvJ01bY8Cx3sPLOhXPpeMc47//ffVIEJYDij+WQtVbs3bH/ueYkAcVZIvadPNg4Qtsm8ZqXOUsh+4x0lt0kpkwAKslHpi4AELoxR0qVp+zmPOFrdgRNrH0mRMm1Yrm99e12RjvH6TsiXi/KOttN6IYc4fYNr3ScMoISQMeuQYaOjtJdd+pqUp17+unZN3DKfh/g6BtdwgQlZ4mF5bfmCatsAXTu6Kdfom5X+3RIJQ0LInRjDp5K8ZpX4FIfaYLfUaCSuGoeLRa/ZgWyPuSh5lPiz2fnln7G+yY48nsxEpErpM69tn1TjKAUvCKDtCI7+eu8wufEOKz//D5hW5astR6WfyJPqG1qgYLiU+jfP8r6L+wTVmHTaLVCCq3jsXEaAzuSf+7u7l4iKC3hfxx2u51YLIZWqy6LvsMrRGILr/sYLXo0Oi1G48LLqYOHxtjwxTp69w5htGux54u99JffnEv2GR4hBZzdPz3K+i/USRGUMj7kIn25g+CVAt+wEdj+HZWg5CgSm4McfqNdXW/cJl7zqrorSM6Z6RjFPhfBCFWfDpL3EfE8mlpoJiBRI3OWWim9TnyeU3FfAbVPiau6dO8ZoH2HBDHcCKXX5eAsFat5DR4aO6UEJYD2HX10yFyDJPqPhuk7OEzXrlNXVxtpiUgRlIJXZgoriwGMdEYYOjpK03ti3yKBS3ys/VxISIENVBu2ZTfmCCtmgUqUlkHVZ4IUfNQv3H75DXnknJlOaqH4omzLu90MNIg5HyV+t219n7AlY975PoIfFa/bARz4TQvvf36fEEEpdH0OvioX6VUOod/2rFTnyjt+0CC8WUKv6NBoxd4/wyta6DW3odVqufjiiz/wBCUAOS37/yFs376dq6++mueff54ww7w5+RvO1199fMM4UWmsO8b7n59h3gU+6qPh1YUXI4JXZuJZloo9x0Ldf55cUq3lrR5MbiP1v5Hb+VvzWDE6vVaIGXj4j62M9ohL2EJ8t61OQ/eOhVmpO747I9lrzlAYazv5F1X3jmHcy0YWjM1sGFMN6PRalTghUPMo+Jgfq9dE6MYc9j278HFSM82YXEYKPuxnW/3CH2ztG/rJOdvLaKdYgWSsaYxt35CTIU9f7kSbIq50k3O+h4waNxu+WicUo8Q4bXm/m6Y3F55wDNaPsaNeTp5ZFgeek9sdLauSUPWgSqTZ+jWxe5G12oPRYcBkhrBgre3gr+SuYXJ4ipEuwdVvM5g9Crlne+ncPOujPxY9oZqSs8CKI99C906xBRqrR0Gn18wZQ/ORkxIY74HOnf30HDx+EjBfP2u+mZEjYyrhaB4c26fyvnyMqXqmJ1ro3XvimzC7356fNFHw0XQa/3DycR2Lxgh+3I+nxM6BF5tP+vtz+g1N0rall65d6j1YSEWp6FJ/fJwuvLPBXmDG5NTSuWWE9V88dEJiUgItk4epYzMcgWXLlrFnzx6ha1jCEk4HTCZTsmgTi8V4j9coi63Gpznxx8yenzQm/9+72sFQS0RsAfuT+aARU7Hb/ctGnLni5E1QCTjBS7Jo29y7oBrR4RfbmQ5HpVSLvNUOCi7OIHPNODu/d/J3bbhvhthkyTUJ2STVv9yE2WcRJluF+0Cn12LPFv8gDF6cBRqECSm5Z3lJUcQtOEbawxgd4pLL+yTmmQCYTFi8CpmrPcLKXJWfKmR6MsrO74rNjxIFJ9F5i6xqjCxGj4aFbRYBAuv8+CqdtKzvoenPCysMmDJNrLgxl8a/dtC5cUDoGPZsM+Z0o9Dvg2r/uP1bYostAEOtY1h9Cn11Yu/8nLO8KE4DJp9CWMCyouzaPOxZZrLOctPy9sK7vkw+BZ1ei+JYWJExgc3fOUjxR7OEnn1Tpolwa1g8H5mg+IocptdF2SixI3P/bxvR6MT2LdU+VcpUeJrN/yGuPrz9W4cpuNxP97aFF0VDN+XiyLNgsKUIqU3lfVhVmZv9/jkZ/hJ7gei2aex2O5dffjm//OUvhfotYQmnA7/97W956qmn+Od//mfGGOat2Eucq/nYCduPD8D6f56ZO+Wc56HpLwvXBrLPdZN9RjrOQuuCSh69u4Zpz+7lyGtyu4urHgiit+iE1Iv2v3CU2LScZVrNo8WkKDre/9K+BUkBs+cUik9Z0MJorGVc3e38B3GSrslhRGfUoaQrQhZXGbUuHPlWQh/PEZrzKOkK9lwzKWYf/fsXfm8O1IeZHJliqFXsfTk+wIJz2GPhr3ahN4mXkz2VqeSf52PXs0eFbKSyznaTc1Y6rRt6hJSRxjvGpQlysmh4RY7gXvtkKbFYTFjFa8XteWj1OnZ8R2xulFnjwZZlBkVBVCboiKRSQLg3wnif+IZNR74Vi0ehe5sY0cW3woW3zMn6XWLza3u2mRSjTlzlbBwa3+pkrFPsWTBnKYy1jKuEIwEsvzUPW5aZeoOA+lAc9S+0ERmcFMrXOed5yKr1cOCVZiHLtgQa3+xgoFnsmkPXBSAaY72Aw4LiU7BlGOneNiikKNYT62AH78JhKC0tZd++fxwFryX8v4Hp6WlMJhPj4+O8wysL1rzqX2xLqqE4S61MDk8KLWCX3x1Eq9cJPTe7f3aUtKBFWLkIwJ6vsOz6fFo399D0xslzS9t7fWg0GlrfFSdw2/MVQtfkMtwm4BATgR3xOYXJbxSySTrwQhOpeVYiohzaiLpJ0uYX3/hTckU2OoNOWOkk/zwfitOgkj8E7sXg0VFiE+JmRYdfbRduC2A0grPQSopRQ3+dWM1r+a15EI2x+6dim5dqHilGq9cKKyMd/aO4suliEOmOUPeceG3QV+0g8JEMdb1U4B1rtMPyO4poebuLji0DQsdwl6QymWcRfn4iPRH2/Ews/gAjneNEhiaF1ddyzvZhz7Fg9RiFclHhpX7SiuxknS2odGQEvSkFk0u85rX7R40E1vmEbByNbiORnggdm/rp2CRGRlt2bR5T49Ns+rK4xeKenzegt4nVpGseKWZqfFp4Lgiq1WXOhR4hcYPAOh++ShemNIPQOM08I43Wd3vV9w8Lf5++G3ud8Z1jWK1Wrr/+ep599lmRS/gfx/8TJCWA3/zmN/zTP/0T/9//9/8RZZo3Jp/jQv11AGhSUlTLt9mIxUCjofzufMwehanwFE1vnvzhq/9dK1afIkzCSRCUSj+RjS3DzKYvLfxwTEn4QybsxawBMyWXZQpZb7Vv78PkFE8cIGdzlYiNf42T9g0LJw9Zgs/hl9qZHJkSIt+ASsA58OJReneLsS0BqcI9qApSBRdnUff8USHFoz2/OspIg/guNGOqAW2KBn+Fk/b3Fo5p1+5+nAEro13ix6h6oJDufYPCcZVF1YOFdO8fErImBAj3RJiaEH8WDBY9SDicbf36IZylZsKCyoKrHi4i3D/BHkGPaUDOHnIMdnxnPwhYiyWw4+fNmE6wqWw+67Zt3zpyXJsTwV+bSvv6QRpeP348zNev9PpMHHkW2rb0cfQNsaDuf6GZ4o9lCRGUAuvSsaQr7P5x07znNB8i/RPEojF6j4zNa6M2G9nnOsmocrHhi/tp/IP4JLr30AhDjWLFoGVXZYAGOrfMT1CafY6DoaM07N8FETAYDEsEpSV8YBGNRlEUhUgkwh420hvrYJlm1YL9Ci7KIDYtRkRteqcLY6rYx8Lo0XBycX/1EyVCBIqRxhFi0RjhAbEqT4IQsPz2fPrrhxckK3RuGcBfncbB5xuFfh9mCCOdu/s5/OLJixN9dWNJUoa32kGnwMezrG3pwVeaGe0SJ8Xv/kUThMUlqqRJR6iKNgZLitA8MtwaZt+vjjBwUPycjHY90WnxItJwu4QkF6qFljNgZcd3Tg1JXP19m/BC1lDzCGlFNmEP+bQiKzqDFr1ZnFz2/pf2YXKJFQrdK2wEPpLB/uebGGoQi23LW920vCU+j932jUO4Ss1CBCVQiZaiBCWAcFw1RBSJ51eUwFZxa76c7WEYBhpG6G8QK1pWPxBk72+ahUlfANMTUSJDYrmi5tFieg8McfiV9gXzXAL7fn6UlXcFhAlKmavdmD0K+55duPDXUrSH6AH12+OLX/wi9957r9A5LWEJpxNf+MIXqKys5Oqrr2aaSf4ce54LNFct2K/kumzSitQdtwsVO5vf6sGRtzBBKYEEQSn/I17cpalCJMXI4KTwpq3+/WodR/EphK7IYtu3F37vH/1rF86ARdi+CeRsrhILkJ7yVCHiwZ6fNYqfCCTtT0RtUMa7xtn33BEG6sXnIjJkUlDVVIouz+Hw79uElHx2/2cT4wPiN0BvTiFF0eEqtNAm8F7uOTCCd6WTYUGiFcCKO/LpPzwsZB24GMj+/mCzeI0SQHEapTY77vlZI6kFCxPvEii/p4CJkUmhzaAJiM4zE9j29X1x0pRg++83YHaLL0vIuBMknt82wYXE/HVe/JVptG3spfFPYmSu+heaKLoqVyhPZJyRhjNgZe/PjgotSgGEByaITkcZbVp4LCWIgJu+dEDKtrFjay/hAbG5Xfkn89DqtEIktOHidg4c3QZhMJvNSwSlJXxgEQ6HycjIoL29nT1sZCDWTYmmcsF+xZdnQwwhQsehP7RjzRDLjZGeCG09au2q+jNFtLy7MIFiqG2c6FSUiX6xZzlBsCj6eCajneMLEi6GjowzdHSE+t+LE10zal3kne+jc0f/goSckZZIkmCRttwuZMm0QYBYORv7X2hmfFB8HWrvr5phYlKYLNbwmrxSd9HHMzGnGZOkrpMhMgR7fn6YoaPi7DWTy0gsJl7zGmgcIUXQlQhUCy1PqV2YBCUL2d8f6x0n3BOh76BYzcuaa8dgSkFvFa95rf/yPkwuMdkia5aRkqtyqX+1RYiwA9C1dUCI6JLAnp8dxZ6vCBGUAA690s5Ie1iYlEVE7llLW2and++Q8PNQEVc+l7E97NjRx3jfhFDblXfkc/C1tnh8xGI0NT7NxLBYLq24r4DBxlEaXu9YkCCaQMNrHZgcYgQlX7WD3HO92LMsQoS91pK9jMfre1/5yle4/fbbhc7pg4APvN3bbDzzzDNs3bo1+ec3Jp9jbFINvCZlng+bWIwd32lgqHlsfoLSPLYkiR29wSszhSWbbRlmVWZbYNP6tm8cYtO/qWQm/xoxme2iSzIw2PSkLV9YPaDx953U/UItOBV8TEyKbahljN5D4pK/6ZV28i/0U/WAuO1bwcf8whYKCSKNU9DOIUFQErV8g/+fvfeObuQ4s8UvYgfkDIIgCAIEQGCYM6k4srIsK0sjK+ccRhqFUdj3zvPa3l2n3bW1sned5LCWbUkOspI1CrakyTmQM8NhHA5zTgBIAv37o4AmMUOii/5Z761s3nN8jqkpNApfV39V/dWte0kSWXMTnWxjMpGEXCmDs4rCQwBYEUEJIOS4zV9qoiIoAYSYtf3rR1ZEzGKMathLjCvq10rAGNSwh+llnfd8t3VFBYYtX21ekS8pAIyuYNNFxSuhsVEWU3iiiHaKreJyCz8e4K0yzAwJmOmRnhA5K8BbiYoXjUIQn6NE1UOZ1nbZCEqsFfCe7UDtY5nP71L2bml0ftiP+WhiSYLSyZ+zlWlgK9Ngpncee77bseT1Tv6MvdgInUt6Y1NICrCVawEe6Hp/GFu+elTaRm5+Dha/FnKlDFrfQpCWU1HKO8uI2kcKIMzO4sjLx9G7dSzj32XKpRevx7cMoeuTAUmC0p/mfoe9zbugUCjg8/kQj6/geMwqVvH/ALFYDAUF5MWhF51UFiTdW4Zw7G06pcnuPw+h9XVStKh9MgRHnVHyM8YgB4VaDmtIet6JjiSx5SvNhMzEgc4qigN0Lg6uejoZ373fbUV0JAlbpZ7Kuq7tDULI7vkz/empuqeK4L/IRW37Bo6QEGjsj4b2TyLaFwOXy1FdP3oiiugIUZKh7Y+tUo+ax+jtIjR2FqyBnti7EoISQBSRVkJaP/ijjhURme1rjOBp1xV/Acj16TWdh/ZPYse3jlITdro/GMTmLzWtiBSEKKjU0wDAFjFCySgwRzkFRm7KR8kKrNvSzyEtAccYJO1pCUrFt3qRfz69tV31QwH4L3JRW1sCwOixSYwcoyNKp+0dm37eRWUn6ag2Qm1UIXAJ3buio9oIANj+9SPY/4P27I0BgAOUrAJGL53yXc1jQTGetGoeHe/0Y7RtSpKgFBWi+LPy9zh85DDcbjdaWlpWCUqr+B+Nq6++Gr29C+uDTcIriAnZc/fhl49j+MgE9cb3gdR85jnHhupH6GzNTAU6KHkllUXZwZ90iCQZWzldjaDwfCdYq5qqff/OURxOyfvnn0eXi4ePTGC4md4iVZfPInBpLirvo6955a2lt0BLkwgMfrq1QpqgpMunX1usuTmf2tIhPk1qIjbKmk6sL7YikljPx8PY/I9N1ISRWF8Mu/69hdr6DAC0ORzsxXQ11r8EK71+08+6VkQI2v71I9SqS2msxEKPM6mhddKvQ6ofCdBbsbFE8Ss2BjrSFJtSNhuIUd1j1gjyLNIOfxYIXEpf0weA3k8GER+foyIo6fJZWEp1iI0lsf/7FOsiALn1Fhg8GqrfYCoi7QZ3j2PrPx1GbExabc4a0kPJKqhyiq3SgJrHyXtZ+9v96NtKR2pqfbsXXR9LE8m3Ce9jb/tOCIKAcDiM6emVEfZWsYr/2+jp6cE555wDAOhGG7YKmyQ/0/bHXrS+Rae6OHxgQlSdqXooAGfq3SobuBwGao0S5gCF7VMc2PYvRwjxgKG3ZrOE9Mippat5HfxpF+JDcRgKeSobp54tI4gOxdFNmV8AEpvQZe4V2b6V3VkAxipdFxk/NoP4YByMXk51/fhQHPGJJBi9nNpKy1DIo/LBQur2OhcPlpLwAmBFBCUA2P6NI9T26QBw9NUTaPoF/brFXmKELm9lSvcrgaN0ZdefaI9hz3dbqQk7wwcmsPnLTSuzxYuDSh0MAKzFRqi1SghzdOS4wOUurFmBlbLWTcbORDvdWlCfT9rTEpQCV+bCfZaVuj8lt+QjdIV7RTZvfftGMXyEjpOQ7kvbG31UZGx9AQuNk4P/PDqbx7TF3u4XjtGpXzFkP9xA6fZQcZ8fnnNsAIBDlAd5+3aOYfDguCRBKS7E8SfF79Dc3AyXy4VDh+a951wAAQAASURBVA59pghKACATVkKp/B+CmZkZaDQLA8CPUvhUkVPVlBZDJkPF/T6wBjW2fHXRi98yP792QwhKToHN32iisuBKg8Y2DVg4pTHRPUO16WEK8ysiXVQ84AdnZtD+fi81+WUl31N+jw9HXm2jVqppeDYMmVyGzV+iOz2Rjv+eF5uovqPuySIoGDn19RufjyA5L6yYeU2LuieLIFfKVkysoUXh5S4IgoDW31FucFLa7aXR+HwEs5NzVOpdKwXvYuG/0InWt/uonpWVInidG9agHi2vH8fgXnpJZFoUXu6CvcSI7m1DpypHLUF8rFkfgEqjxN7vHsbM0DLpdpHlW92GABnL3zqS9Z6llZRK7/RAY2PR9m4v+ndOZiUopT+z5kY3BvaPYnA/KRZk+4ypiF9283epzzU+EwJkIAQiys8AxE4um/1J+nONz4YgzAvY8s8L119OSYmzy5clhi1HUqq4Kw+sSY29P+nETNepN2AxSSl8fQ6MHg22fPsYhCzKAun+7dFtwtAISWiXXXYZfvvb3y77mVWs4n8a1q1bh1/+8pcAABlk+JzsKsnPcGag4r4IBprHJK3EjEEOkesKMNkTxQGaTfDF30Np55S2xKVZK+h9HLXCSxqNz0eoFaTSMAY5KoKNo9oIY4GWWoXFdYYF3rMdGGufplIZ4cxyVDxQhLmpearT91wuh4rbCxAdjlNZdvkvzYGj3ISuj1emhkMLR50R/vNdOLFtiEqFZaXgcjn4z3Og9fcdiNLX2ahRsz4IlVZJvY4lnQK1DaD/0hwkEwLaKeXNV4qGZ8KYjyVWVARbCeo3hiGXy7CZQgEDHNC4IUI/lp0sKu7yYXZsDju/TbfubXwu9R5BKYXOOVkUXpJDldvMYX5F6kaec+1wN1gxcXyG2vYMoM89ZXf6oMlh0b6pj4oARZuPFz4AND4eQXx8Fru+LaGgwgEN68OY7IlS/dZocAifHPkQAKDX69He3g6zme7QySpW8T8BCoUCySTZnPajGAWyIsnPRG7wQJ/HY+u/HpYkkVTcR2pGm78hbZu2GLS2Zo5qE/wX5WCic4ZKbcjgZ1dEuojc4IHRp0XXnwfoLAtSMAY4KlWiNTfno/XtfqrfCqRqUio53VwFQrpgrWrs/l4b1XdUPRwAY1Bh89fo7lfDxjCSSWHFSuK0qH4kACVHZ+v3lyD/PDvkChm9RRm96xkAsm6Pj89h17//9WterBHwXeJB23sD1EpHK4HnHBvcjTa0vHmC2lptJXCdboF3rYNaVajsHh80dha7/6uN6vemx/Lub9MRcIquy4M5qEPbu33UhJrAFS6MtU9TqRytNPfUP10EuVK+YvVaXT6LyU7p7yHrzCTVs0Wbjxdjzc35MHg0OPSLNsnf7bvUCUeJGXv+o4nKZm+/5c8YGCLvYpdffjl+85vfrKhvq1jF/0v8wz/8A770pS8BAORQ4BzZFdIfYoD6R4sweGhcUjGIsTGoutuPia4pHPzpytSm07ZIUqh5LAgVp6Rai9DasS1GwzNhCAlhRcon+nyGimBjKORhLzaKipZSMIW1CF/lwcixSTqFUAZofCI191O89zN6OaoeLsLMQIxK7SitHtX10crWpbQwFPKIXJuPnl3Dn4rVGmNlkH+WFZ1/GqIaaytF2Z0F0Di5lc2dlHZ7AJB3NiGArIh0tALUPh5CYjZJNXb+ElQ/FoSSUVDvVTc+t5KxDFQ9HCH12xfpVDLrN4YhzCex7Wt0tmqMHvBd7KFS/KHNCWlYSvQIXe7GePsUDq3gAADt9wSuzIUtYkDHe3QEKNp8vPABoP7xMOIjs9hDoVJa+3gIUz1RKtLgpHMU2/vehyAI0Ol0aG1thc1mo+/b/xB8ppSU0uB5HoIgQJ3aZG7Ffnwy9yZqnwih9E5yytZWrkP9xrCoVlR8s4d4iaZQ+3gQZfeQtoYAj/qNYbjXEkZe+AYP2cRKEZRqNgRR8YCffLeLRf3GMLwXOQAQQkT9xjD5Nw+P8jt8qH82VTziyQOdVjQqvNwltm1/ox+JRAKMbkEBqn5jGIFrcgEQElP9xjC4FGGx4HM5qH40gIZnwgjf4EHd00UIf5GcivJ8zob6jWHwHsJUrLjXDyWjwETXNHo/GUXdk0WialDOaSbUbwyLKkWldxWIp0vqnipC+Goviu/0AgActQbUbwzDXkmYhMW3eVH7BGm793ttKLk1hPIHSQwtJRoS79NIvNfc5EHdkwtFtEQ8iZmhmBin+o1heD5HHpjwF/NQ9/RC25pHg0gkE5geiEEGOeo3hlFwCYl34JpcMYYAsRmreqgQA4dGMdUfRf3GMAovdwEg6k31G8OiwkzVQ4WoepichNv8jSbx/gGA9yISb95KHomKB/yoeXThxH/dU0WI3OwBZwXca62o3xgWVVnK7/FlnNCpe7IIUAhIzCaRU0/inVbBKr2zIKNt7RMhFN/mRd1TRWh8PoL6jWE4asnpteJbF+INEOJW6V0k3vYSIxylJuSeQRjvkRsz413zWBAV9/oX4v1IGJ7UCeXQOndGvKsfDaDyQdKWsyIjvoErl4j3wwunCes3hhG4koxZ3+edGfGufLAw42Rm3dNFCK1zI+9MK/RuDcpuLQCfkjutuN+fobBQ92QRwin2cPXjATQ+H4Gxgly47KR41z4RQvEt+QDImLX4dRCSAgb3TqLk9pNiuESOKPg8iUvxLfkZMazdEELZPT4AmTni2G97MNoxhZyKhU2OmkeDqLg/nSMY1D9dBO+F5Lrx6VkIgiASlKofLkRlKp+AJwUO/xfI+C68zAm5UobocByYAaoe9KHqQd9CvJ8KInAVySfeC22oeyKAo7/twqFfd8NVbcloW/dkEOF15N54zrGg/qkgcs8mY0vFK5C/1iEqGtVtCGDNjeRZyGk0ov6pIExFPGofK0T4qjzUrPcv/Nb1fqy5OQ9CUoCjWo/6p4KwV5ITdsW3ejA/l0Tf3tFUXPwouY3kKXOYQ90TAeQ0GgEAa252o+GZoPjbI1e4UHYXuee8h7TNW2uGkBRQdK0LdU+S8THWMY35+SQq7vOStlagboMf3gvIsxC4woG6DX6Yi9Qov92Huo1BVD2YGe/Cy0kM/RdZUfcYUaFyVvKovDsPMjmw+ZvNmOmaQf3TRQhem5uKtx31TxeBT+Xk8rs9ovoTp55H3ZMhMSe711pQ/3SRmCMCN1rRnr8TQyNDUKvV+PGPf7xKUFrFZw4vv/wyfvKTnwAABAjYJLwC1zlG1D1VJKr1lN/ry1BZLL0zBMiBZFyAe62NtM0lz03Znb6MOSL4BQ9GWidx4AftyGkwo35jWFQ3Kb7Ni5r1C3NEzeNBRG4keb/6sQAq7vLBdaYRAFFcWTyf1KwPovhWLwBgoHkUQkIQVUHC6/Iy5pOa9UGUptRaEgky95fcVYCGZ8IIXefOmE+qHwqIcwRnlqPuqSJM9s2g+ZUOFF7pQt1TC/NJxQN+VNyXykMcuW7BxU7ofYSY1fBcWFQkqrjPL645gZSC0uU56N85htj4LOqeKoKjXktieI8P1Q8txLD2yRBC15BcLpfJkJhNovMjUrwovaMgI4a1G0IIp07XO+qMKL0riOhYHO3v9aL41pPi/VgQkZtIvK2lOtQ9VQStQ4XocByJROLUeKeUM41BDnVPFSGnwYzW13sx2jYJ1yJVyupHAii7MxXDXNLWfSZJsqFr3Kh9MiQqz1Q9VIjye9PxJnFJK6/4L82B92wnhIQAIZmK9/2ZMfSlFGMKLnai7qkiaEIcGp+PoO7pEDnttqht4ZVkHek5107GrJOFq8YIg0eDkjsz1xSha0m8XWdYUPdUkdjfkiXinVZXcFST58ZSTO5j8a1eKPiFV7Kax4JYczOJt6VYi7qnimBLrcUjN3gWxmyUxDutMKT3LcQbAELXusW2jlITcqrMKLs7FUMnS+K9lqzFA1flovbJhd/W+Hxk4X0mNWa9FzjEeGeM7/v9EGQCZqfnxRj6L02tVS5wnJojHikU/659MoTAVWSezZYjtn61GfOzCRRdR8ZsToMZdU8VLZ0jokQFdX6W9MdWqc+I98k5ovh6DxKzCbR/0AtzmCfPmESO2PyNJhx7pztzzF67dI4wBjlgdha8lYHnXDJml8sRnFmOoqu9aHguLKoj+S5JxXuZHJFTZUZ8chYHf9yB/PNTY9ZMxtPJOaLhmTAaniXreq1TQ56FfHLh5XLEvp+3ITYZh+dMu6hEt1yOqFkfRMVdvswxe+MSOfk2LzgzkHOWGXUPF6H94z7s+vaxU+J9So54uAiQATKFTMwRaZycIxTnz2B/zy4olUpotVqMj4+vEpRW8ZlDIpEQx20rDmKr8C6qHgqg+GYvAIB3s6jdEIKznrQJXOGC3pM6zBcjJJiS20lb1k7apk+h+i51QqVRigSliof8Yq0BLMkBaZUi7/kO8dlkjXJU3uND/TOZ783pek3eWitqN4TAGoniUSKegEq7cKCk5vEgAql6javBTNo6SU3Ac7oTlQ8Uou7JIhRdl4ea9UGEUnOErdKA2g0hUSUkcqMHnIXByJEJdP9pCNWPBETVIHNEi9oNIZgjJO8XrcsT55PqRwKIrCvAmlvInGwMcKjdEIKtkrwnh67KFfPboZ90InKNGyV3p2LoJDF0pebZwOUuUY0EAGan5zDZN5OKE4lLXqrGWHCJIyO/ld3jg6AQMHliBrGJGGo3hOA9n8Qw/zw7aZsSRCm7qwBl9/jQu2MYE50zqH0wBN+lZI5wn5WON8n7Jbd7RfWnLd9qRnIuicAVJN7OehJv3k0uXHyzF1WL5oia9UEUrXODNcphKyfxNgbIHBG5wYOqhxfaVj8SgFwtx3w0AVORBrUbQqLqTtF1eah+dKFt1UMBRG70oPqRABqfi6B2QwiOalI3DF6ZmzGfVD5QiJJbSLxdNVbk1FjgOp285/u/kIOaDQttK+7zo/QO70K8HwyJJ5QLLjw13uk1EICMf/OcY8uId+mdBSi/d1H9Y0MQ/i+QdY3rdAuJt500LrnNi8oHFtaRNeuDCF6ZC0eNHSa/DmW3ekX1qzU352fEu/rRgLiuKbunAI3PR5DTSOISvj4v4z2p6uGAuI40Bjjk1FiQTAgYbBpH0bXujBgulSO8F6bWe1e4Mubk5XJEz8fD6Ns3AnupMSOG6VrayTkiNhGHkBREglLZ3T7xPSkd78U5QsHKMdkzg9hYEqV3eBfek7B0juj40yAO/KQNtpD+lHifnCNcZ5HnU6VRwnPmgtLacjmi/F4/1nzRh+rHTor3jcvniMRcEj3biSpY5QOFYrxPyRFXusiaLvXbCy/OXYi3cfkc0b9/FHOxeZSdlJNPzhG8nyX5eGPRKfFeKkfYyg0oud0LRqPC5q83Ybw1hprHgllzhKUoJTnCsiRHpN59Ts4RgetycDx4AANDA1Cr1fjRj360SlBaxWcO/+f//B989NFHAIAkEtgkvAJdBYPq9UEwKRXjyPUelC+aT6ruCUCmlCMxn4StzIDq9UFRsSR0rTsjv625Lg+DR8Zx8KddMIVJHkqrHgWuzM3IbxX3+8XaTundBai6zw/3WjIfFl6akzGfVNzrR3gdyVnd2waRSCREtSbfxc6M+bv8Th/WpPJbcnoO1euDZF/uyRDyL7SjetFeWMntXpSk9lvAANXrgxg/PoXmV7uQd7YN1euDompQyS35Yn4DiFWd5zwbGCuD4pv8aHg2TFSJAKy50YPyOxfF8JEAfBc7MX5sBpPdM6heH4S9hvQ/vM4j7m8BZI4rTNUa5Eo5Zmfm0bONkFJC17gz6kCVDxSKe1bGoAbV9wcx1R9F26ZeBK7IzagDVdznF2s7+nxyz/UFOkwen0Z8Zj4j3uV3+xC5nsSQsZG2zloTeraMoG/vCBwVC6qLZXcWoDi1J8voSQxdp5E5wnMOiWFaEafkdi9KFrnQVK8PisSb3NMtCFzqRnIuiUQsieKb88XaZTre+ReQOc/VYEb1+iA0HgaNz0VQsyGUOWYfDsB3CZkj7FVGsQ+WgAa2NUaUpu95Kt7pOdmyRo/q9UFRKSd4VeaYrXygEMHUnGwo5FG9Piiq0wQud4G3Lyj9VdzrF+dkrZvE0F5lBAD4Llk0ZuMk3mmFIca6EG8AyL/AjqrUmjO3zoK8020ovjlzzOam1pHimE2h8bkI6p9Z2POsXh8U15G5p1vIc5+aAotv8kCukmF2ihxQr3o0AO+FZE521ppOzRH3+sTxXvVQAP7PkzGbLUfs/OZRzE7OIXAFiaEprEX1+uCyOSIxm8B8nNS89AVsRrxPzhGRL/oxOz2Pro8HweWkYiiRI7Z+sxnNr3ZmjNn8C5bOEfoCFvE4oMlhxXfNZXMEA5ITngvDcx6Jt+s0cyreS+cI7zkOzAzHcehnXXBWkzHL5ZALn5wjap8KkfvKACp9+lkmY2+5HNHyxglMD0bhqrfCFCbvj8vliPI7fai614/qx4KwlZG1of/zOUvnCAawVxlQfX8QHX/uw57vtpJ4L3pPWipHyFQyyJULOSIj3otyBHtxHIend0Iul8NkMmFiYuIzSVACPqMkpTTi8TjKy8sBADOYwPt/fg+skRCRmJSfN5eS/GNNashkKWUbQYCSU5C2MhkYnRJypUxMlrxFDYVaLqqYqDilSHBSaeSkrYVcV2NZ8A2f6ZohXp9J8jfPk7Zpr0relmqbInHIBDnUWhW8FzlQca8fcqUMmlRbjZWFXCmDjCeNVVoVVBolZHIZGK0SCpUcnJn0SeMgbTkD+V61XgUlp8DBlGengpGDtaTa2jjIlTKwhlRcjGooWVI06t5MJnVOT9pyFnJd1kriwpkW2gJExp83cah5LAi1Xk36b0tt2psZKBh5RltGp0bOaSYUnGMh/U0lb87MQKFa1FajgFKtxL7vtQE86YMm1QeNOdOnXa1VQaVVof2Nfuz/WTu5N6l7zqfuDZeKt0qrgjrtMzoDYv+UKohprKStXE/+VutUUGoWfqtCLYcxX4vIFwvB20mfeKNyId6L4qJg5EhEk9j+9SPgU/eGNbKnxFuMoYXB5IkZzMXmSX8tqXibT22bHt/9BwirM20lwpnVmfHmFFDryW9lNOS3uqrN4m9dHG+VRgm1jlxXpmYz4iuO2UXxVmsWlGTkShl0+Rwan4vA4ONJXFIbbWodGbNiXFRy8BYGR17uxuTANGQKGRiDXLyuksuMIZ8as/MxIovIqFK/56R4K1kFOFP6GWMhU8hwPD2WzUxmW0ZxSo7IqbCi5rEgWJP61DGbjmEqR+jzOWLfZkrliHRbjQJqHWmr4hUZ41ChVEC2SGGJxJu05XnZKTlCppBhT+qkqUqjhFq7EEPyLKSe5dSYlbEcxo9Op3LEohiqZAs5IjVmPQ0OVD/sI/E+acym46KxpcasQYXWd3qQTCahZEhbISmk4k36z6WeMdbCoPQODziTCkq1HO1vDYoxZA1qCEkBakM6R6THLAOZTAZF6trpHAEAvEGWkb95OwOFisSw6efdUKrlC2NWS8adxqKGMD8H3qyCXCnD8MFpzEcTkMvkGf7Ci/M3lxrfhedZUHBuDtSGVI6YWRTvdE5OxUVu4VF5rwdqnRJyhQybv9yMmSEBCrUcfCrevG0hRxxN7sePf/lDHDt2DMFgEC0tLbjllluwilV8FnHTTTdhZmZB4eOXH/8UY5OjgJo814xBLeY3AFAwCswMxtD2Ri80NgYKtRxMau+MMWbOESS3kGcot46sExxV5GWSM6mh4hfaqjilOEdMniD9kYP8u8bKZLblleJ1Z/pmIVOQ9V7N+iB4R+YcoeKVYIyp/GZQQqGWQ60lay/eflJbnRKMgbSV68hvm59MYOxoFBoHmzFHMDq1OCdzHFlT8FYGE21RJOYSGXOEWq8ScyFA2mqtZG2lsZHr+s/zgHOyYAwqqBaR3ZWMAtyi/KZQy8HqFCi5owDsSTFUsoqFHGsh1+3ZPoyh/ZOnxptXivmNTbXlzCz2/Ecr1Kxq2Xgzekb8rcDCGihNilBpFsVbL4NCLYfGkZojLGooGQWKbyCFF7VOBSZt/8YRu7/0fKKxkz5t+UozujYNkHinx2E63vZUXCykT8nBOOam5yGTyTPHrFourjn5VFsVL0PrO72YjyWgUC6a+xmF+Nu41LtDes7mrGqotEqR7KJkFeKcnO4Dk1q7cCY15PJF6zJOKc5TjCkdw1SfUuua2g0h1DwehIpXgk2NQ8aoIm0dqftqXRize148DCEhiGOWScfbtqgtszC+BUGATJClwi1PxTB1b6ykT2nSDKNTAQkZWbcDGW351Jg9OUdUPBAhlmCMQuzDcjnCmtr0VDIKcKk1EJ/qA6NfiOHicSiXy6FQkt/DmRfGLLB0jkjOChg+OAXGyJ7yWzOee40SrFlNFKwS5Ley6T5ZTs0RvI1B5LoC8G42NbZSv9W8dI6IjiTJIQ3ZoveZVFzSSOcITT6HyI35JPdMJVMxTF2XS42fk3KETCETVTUX5wgAp+YITgFtLgdEgdGj0+RZSL8jLpMjurcOYTY6lxFv3nJqW86kRvm9YRSc4STx1qVyhEV9SrwZowreCxzwnm2GQi3HyFFCZk3nCDEui3LEO+Ov491338b8/DzOPvtsTE7+9ZVVV7GK/1sYHh7GlVdeCQCYwjg2ffRHsGaSy1m9ktQTbAu5US6XieobjEklWoOquIXaA0DqTUpWISrPcEZGnINZNjVvWRbexZSsAmCB2FiSKNwmF9YuSlYBjWVhrULakmslkwIYvQrOejNK7/BCxSnF9YfGQdqyOnIt1qwW37HUWgWUvBKsNbO/asNCrUetVYm2b2qdSpzr2dRcmbbQ4C2M+D7Y9m4vIECsh6l0qbVJap5lrQyxtUuB0augc/CofiQAzqggcUnXsawMVNyitjoVWJMallId8s7NIddNr1UsXEZ+Yw1qqDglDvywQ4whb8ucv1MhBGNQgzWo0bNlBAd/0pHRX02qrVybWqeZ1FAbUn2KkTWFNkX+5W3kt7J6ZSpOqoxag5IntjKRG3xiLYoxpNdlzEItDaS2loglsfPfWsCZmIyxxZsZqBbVjNRaFXgLg9H2KcQnZ0nb1NzJ2TLnZLUuNc8C6PiI3KvFaxUVuyjeBhXY1FoKahZKTgFXHdkY4e1sZrz1KnG9lI53Gum2LEvmWtaoFtdLAKBildB7ODQ8E4G1SJeqW0Bsq9adNMfZGHS+O4Dho+NQKOVQp67FmdQZ8VZpVOBTYzQ+Qza90msv3spm1DDUWpVYM2ItHBQqOXq2DQExcm8Wj1m1VnlKjnDV2FD1cIDEcNGYVRsW1bpTOUKbx4I1AhoLe8qYTdeMTs4RCkWq5iWOWVWGbfMpOUKtQMsbRN2TMZ0U75NzBEdyxGRnTMwR4nWXyBHeM8lmG7/EmE2P0cU5ovWtE0gmklBxS8d7cY4oWpcHzsFAySpFhSlGrwKXei89OUfwNhYymQwqRrkQl9T4Bstm5ggXJ9ZEW3/fC6VaCcaYGcOTc0RyOIbYyCySCeHUeJ+UI5ynWRG4NBcaB0dyRGwh3gtrzoUcUXZXAVizCkqlAlu+0oRYXwxKXrnwrrkoRxwXjuEnr/8QR44cgc/nw5EjR3DrrbdiFav4LOL0009HLBaDIqWI/4cDv8L49CiY1N4SZ2XEGgZAcu5U7ww63u4HZyF5XqVdqCMz+oVnU61TiTXm3AYrlJwCzhRpV2tnxZoRADB6tfhsjram3mXS+412Fipt5nyYzg8z/XEoFAowFjXK7/ZB6+YyciFjUol5U65RQc0rodYrIVPIoXVxUC+q0XEmBkzqmQcANa/E/EwS48dmoEnZ0YnXtTDi3gwAqDVKaK0c4kNxzE7PQwYZwKTmJisDxrQohhqVONezVgZqrRKFF7jA5TDgbUzmHKFVLryrm9VQc0owegaha92k7eJ461Xi+zdrVEPNKzF0cByjzVPQ2JiMOhBjUIv5WKVloOaV4CxqHHipM7UHsei3GlXiPMVoZVDzi/KoSQ01rxKJR6xJDTa1zwc1ue5CHYuDWqtE6a1+gAFYEwMmLbDBkHin17a8nYWaV2Lv91rQ/achsBYmQ4xDrVFCa1u0ZuOVkCVBDsFDOGXMalIxZM1kDKh0KvTsHkFsYjaj5qXSLvw21kTapt+5tW4OrFktkl3UOpX42xgDiTebus+8lex3LcR7YU5W6ch102sXjZ2FWqtE5QOFRHnRqAKbbsum4pIaL1obCya15tzz4mEkZhNiW4aRp2KYqkvYSVzSpJlkUgAWiTmqeSU09vSamcQb6vTai4WQEETLbDWvgnbRnKzmlRk5grMwqHq4CIyejJ2FeiSJy8k5Ik1EIjFMtU2N2fTa6+QcIZPLIVeQe8XoU2M2XZtaIkcI8wKGD0xArVGQ/opcgcz1EmtVg3eyQByYiwokhum9MTN7So7QunkU3+AD52QynwVbKt7pPqRzRBwYOTYJGWRirZs3p+9NZo5grAyCV+VCrVEhkToUyabirU7tgZ6cI5QqBeTpmpeZxDBdNzw5R7AmNfQeDogD/XvGSAyNi+KyRI7o/GQAsfFZqDmluP7j7cySOaL2oRAKL8wlcUn3wUJyxOI+sBYWzloTctc6oOaVGDk8gYM/7SI5YlEMF+eIj/AHvPX2m4jPxnHeeedhZORTkPz/v4jPpN3byXjhhRfw4IMPin/X4WzoZNk9ExufjwACsPnLzeQ/ZAlD+It5mOyNovsDeqk+3ipH8W0BbKeQRKvfGIZcSW+FJn6Hh1/SjmgxDAEea9Z5MR9NYPvX6eTZACD3DAtOfCTtF1/xgB8tb/Viqo3OlqDxuQggA/VvTav40EjdcVag/J4wpnqjYrEnG6oeKgRjVOPQyx0Yb5Huf+WDhTixfRD92+nklHPqTeAdLL0l26eIuieLICQF6jGwErs3z/l2uGutaPnDp2OvthLwLhb5a+1o/k0Xnb0dD5Td5MPAwVEqW0RJq6DFdm880Lg+jNH2KTT/t4TsqEwO7wU2uKrN6PzzAE58JN2X0js80Do5dG8fRte7dLmp4j4v2t4bxPjR7J7wljU8oqNzmOmZEzezslnCGQp5rLkuj+SZbx6T/AzvUmGm51R7tOU+V/WgD4xBheZXj2P0cOaNTVupCfPkemnVuENZpHPTVm/C7Kz43yof8GP3C8tLLqZt3iLX58CQr0H/gVG0/i67bc5wyTEcaTmCmZkZ8DyP6enscV/FKj5L0Ol0mJqaAgAw4HCG7JKs7QNXEfnUgUPS1m/ggPJb/NhLIYO6GGtuzsfs9DxaXj2RtZ21VIfgZXmY7o1h3/elZZvFbuVyiJ6ISrareSwIlUaJPf/VRm17pMnnoFBA0mLOHObhbnRgP6Ulnu+SHORUmTF8ZAKHfyktgZ22jqK1dorc4IHRq6W2Nml8PoLEbJLKesR9phVGn5bewooDir6Qh853j38qlmwrgaPOCP+5LrRu6kH/tjHJ9iu1e6t5LAgIoLIz+7ThuyQHk73TGNxN5yXvqDbCWWUWSU3ZkH5Wp3qiVGO+7E4fOCuDrf/WTGWFV78xjORckn59/Fz6/ZHuPhmDHPLPzKHKM64zLOihePdKI01So8kztLlr4QPEMo/q/ZEDau4LYseLR6ntBwGSa1RaBVp/K/2eRBv3EWEEE/4uHGsltnEvv/wyrrvuOvpOrWIV/4Px1ltv4eKLLxb/rsa5MMqMWT/TsDECyIEtFDmr4BIH5qYSK7OnYIHqewLY+b0WSZutmvVkbbT56yu0lnOykvZRrJ2oicxOzGHnv9FbMDjrzVTWUSW3eNH1cR+1HVTDxjBktBalIHO6XCWns2VjgbqHizDTH8OBlzokmxff7IU+n8fhV7sw0jQl2b7kdi/6do9SWWQBgKVUB52Tp7IE+7RR9XAAMhmox8BK7N5slQYUXuDCsXd6PhV7tZWANQKec3Jx9M0T1M9S5AYPxtqmqCwsap8IQckoqO1YGjaGMdo6KRIGs8FRbYL/whxqK5zQVbmwrjHixNYh6jFWfLMX3Vv6JS0ddfksEglgppsuiCvNMzS5azFKbvFC56F7Vv1fyIFao0TzLyjsjRah9M4C7P9Zu+S48V3qhLPcjP59o2j9ffZ12nBJO1rajmBqagoGgwFjY2Mr6tMqVvE/GQUFBejo6AAA8NChUXZB1vbus6zwnGHHwL5RHHtd+h2n+OZ8HPxJ54r6FLjcheS8IGktp88nCkaTx6dx4CX676C1Maq41w/OymD/j1sx1U1ne8RYGTA6GSbasychrZtB/tkOalsnZ60JvgtyMHx4Akd+LT0X2auMKLzQhY736aydfJc4YS82Yeu/NlNZjzU8E0EinsD2b0jXGCwletjWGHD4N8fpbM0YwHeuEye2jX4qlmwrgTGoQdEVeej4oB9926X3sVZq91Zxrx8ypQy7vyNhCf9/Ae6zrIgOzWL4EF3NyxTWIrfGQvV8a90MSm/1Y6Jrmqp96Bo3jF4N9n7vCOIU3alO1Q53UtYO6zeGAQHY+k/Se/EAsY30fY7uebWVGTC4j34dvZI8w9gYxAdXbl85F01QxabygUIc+mkb4hPSNsVp2KuM0DpYtL2Zff8QAOqfCgNyaQ5EXIijP3AER1tIn3/5y1/i2muvpe7T/1QopZv8z8cDDzyA6667TpSz2oYPYRYcqJSdsexn9v6gDXJWDggCLCUaDB9YfvNYJBjwQMP6MAYPjeOYhD9qwUVuKFkFPOfb0fXH7D6hW7/aLFq1gQcVuaL6kQDUehX2/7wjK0FovGUGnR/2UxGO0ii9swDaHA5qvRLtb2R/EdyT2tTX+ngkY0nM9GRfaBx7sxtTXdLFkTTmphdIElKIpt5xF6sEZe3L2z3wnuOkIigBWPGkWHBuDiADNUkpfIMH87MJtPw6++YqQCz+cuutOPxaJ0abpfu/7V/ovYJXiq4/DkiO8cWofSIEYU7Ajn+VngA4KxBe58fRN+mIcIFLXdA6ODiKDXRkshlQbZKlcXzLIIxpCf2lIAgiUcmUT57p+MSpZJylkJwjp1JP7JJe2AHA/h90wXOOBV3vSz/bjmo9+ndOYM+LHVTXDl1OJDc3f/lIVnJSGuPHZtD+QT96N48ByE5oqnsiAIVajs3fOpKZ65IJCFBkNk7lw13faYO2gMdU+0ljQEhCmM9cHBiy3Z/0x2ZnST5/vAgj7ZM48vKJrAQlADAXqTF8cBqHftqFnHojereOLdt2JjmDzXgD2AcYjUbU19fjvffek+zXKlbxWcLk5CTOPfdcvPfee4gjik3CKzgNl4CTcUu2b3n1BCY6p9G/cwwAIduMLDd/RSESlCI3eKDP01CRDgx5GgiCgBZkn0eH9k8iOt6O6c7UBTlIXpszAxW3F2Bual6SGLLjm0fhqDZSE5QAoOymArpN+OYZjDQTsoatUi9JDGl7oxezk3Po/jPdpuPg7gHk1lroOg1gNkpOs2jyuYV4ZsFYxzSGj9K9lHb/eYi63wDgrrfBEtJDrspH08+kX+6NQQ7ec1zUZLi0lQYNMah/2xgVOekvxY5v0pOTHNVG+M7PQdt7vVR9ClyVC0EQpMmEKTgrTXAkjNQkpf6dY2IekMJQyyRy+2NoeYNuLS1TApCBmiyTiCUwlxrDNNjzo3bwJoVkOy6XAxICxo5GMXZUep3pvzwHjhIT9C6eikwIADu+cRSOOuk8Yw7zKLrai5nBGPZ+l2LNm8qHe37YTkVsKlhLLKMKL3JJjpnAVbmwhvSi6pkUjEEOY0ejaPpVO+JD2fuyR/gEw+iFrE2GUCiEPXv2gOOWno9WsYrPIi666CJEo1HwPA9BELATm2AVclAuO23Zz+x5sQlM6vS2wc9mJdksrvvUP12EwaZxyc1p33lOqPUq5J9hR+e72Z/pHd86SmzdYiBqKxRLpHRdqunl9qyEg9hADC1vnFgReSR4ZS6sawzgjCq0v5295pUmA7F2FpBDknhw+DddiI4lqPsSn5jLULfJihiI7SVl82Nv9yFwiRMjbXQ1OJrDfosRuDgXcoWcmkDiu9QJmUwmObYAQgzyn5+D1rd7qUhTNGSjvxSDu8dXNL7Slg+7vk3Xp9I7C9D5QS8VEc57QR4sIT2mBmLo+Ziuztv0c7qNXgBof68PloCeqi2xBZOJ7wM0SM4nMbSPbn1/5NUTmOyJUm0iW0p1GN4/iYMpVXIpFH+xYEVkwthADC2vn6Aai9WPBKDWqbD7O02IjUk0TuXDAy91gHezVKQpW8QAmZyi7p0iNY61TuLIqyew//vZCf/GAIexlijaXu/D5PFo1t8aE2L4GH8A9gN6vR7nnXce/vjHP0r3aRWr+Ayhvb0dDz30EL7zne9gBpPYJLyCM3ApGBmzZPvuPw1lEBn0BWxWQk6akOC90AF7sRHbv31EkqhiCZH8LEVSmuiMY88PWhHtTV2QgTQJhgGq7vEjPjEnOX/t+W4rLCV6aoISAFTcReybpDbhp7rjIuHBFNZitDn7GqZv+yiQFNBHWWMYODiGgnMcSM7RkQ3i43OADNA7GUx0Sv/eoaYxjB+n22scPjCB4QN0dRQAsBTqkVNlgVqnwuGXpesGXA4D/7kOtPyui4rQUn6nD3JGjt0vSO+Bjh2dxlYagv1fiD0rOLSqL2ARviYfne/3U40Dz3k2KNUKtL0hTR4BAHejDUgK1CSl0eYpyXGbxlR3HCPHJtH9Md3eqkIpB2Sgup8AMDcxR1SjKLHnhSPgnNJ1FMbKADIg2hunIii5TjPDe44TpkItjkocLBb7QplnuBwGFXf4MdkzQ/cuk8qHu/+rjYrY5Kw1gTWp4T7TIZl78862wVVrxrZ/O4KBXWOQuqv6fJJX9v2kDUmJLeSjwj50oQVoAYLBIHbs2AG9nm7N/j8dfxMkJQCwWq0QBAEmkwljY2MYQT/eE17F52RXLdleJNPwQOjyfCQuSWLbP2VPrIZcHjK5DApW+mXg0E+7MpSOtD4+K8lipmsGvItF+R0+xEZnJQkxXR/1I/9sJxVxI01QCq1zw5CnkVR32v/9dpTf45MkKC1G6Q1eCPMCtkgsNAZSGximMA+jTyf5Hbv+fWXEoC1fpmN5AoTAta+FnqACQPSFpzk5076pF+M99Is1k08LISm9uQoAidkkZHIZNE6eiqQEEJUhKRLZX4QUv45KuQjEMzgJuoWg+8xccGYW9oieaqzv+14bCi5xUBGULCUaBC/14Nib3dQKUN0fDKEbdAWV0eaZBaU2CnS9P0xFOAKA8BfdaP7vbqr2aYUmW8SAgz+h2/jq3jJEpKaFJCBbPt95L7DBWW7C1n8+KhKUpD7Tu3cUtqD+FIIS5Jmbfml1pqn+GPZ/v/NUgtJJMBTyGD82gz3fa0Z0uaaLSGQAUW7iFsliL/cZ91orPKfbMVUXxf4fdGQlKE0V9KBtsgXpVcgbb7yBxsbG7N+xilV8RrFp0yZ8/PHHOOMMQgr/BG+gUCiBVxZasn2amFB2tw8aB4uWN7oliQ1p2w8a0sGeF5sQTbXT+7isqkRpQk3ZPT5o7Kzkhnx0BIiOxNG3m45I2r9zDOBIYbjrzwOSqkT9+0YxNUAvQ1JyRwF0Lg5KRlrxKE30KbouT5IAER0BsUamxLHXenAMdGQWAGj66cpOCjqqjSg4LwcH/rtDkgTV/cEgFCoZOimJ07YSMzR2Fp5z7VSECZlCRggwtEi/169AXYb60k6WmgTHmtWQyWVIROk2TG1FxFed9r7u+0k7eItKuiHIOjoxm8SeFykLTlFg33/Sr9WpSDiLQKtEVXCxEwOHxjHdGUWUop5SfouXbHxRnhJs/W0vNBaWiqBUuyGE4SMTaH2djnQ20jyDual5dLwvvSFc+WAhWKMae/6jSZKglM6x7W/2oW/fOBWhScUqyNqLQtmp7qkiQmr/UhPGjmZvO1R2DGMHBoAE4HK5cPjwp1csXcUq/l+CZVkkk0mEQiEcPXoUQ+jF+8JrOEd25ZLtY2NAbIzMFWuu92E+npCsBbFOFjKFHEqKg19tr/ehZ8eYSNrR5bOY7Fx+bor1xcAagcoHIpgZjkuShDs/6EXhxXmSiigARAJJwYUOWMMGyfx+9LUTUGulCUqLUXmXD8lEUrTTWw6jh8kBSN7NwhbWSxK4pIgDJ4NKcSmF2EBMtKagRdldBVCoFVQbVC1vnkB0hO5QFgA4SsyAIFCRlBKxBGQKuWgVQgPWziI28CnUvFJOLbTKRXKVDKDcD3KfZYXOxcO6xoTxVum4HP7lceSttVIRlHg3i5IbvGh7h47oBayMkDXTHcOWr9I7AvTvHEX/Trp3qeCVuTj62gkqgpKj2gT/RTkYL5/GIUpVkmPv9EBrZyXbOapNyD/bju3fOUIdw+OfDMFZZZIkKLFOFpV3+sRNNSmCUjrHbv3Xw6IdZFbEALlCnmHzsxwspTqELsvDZPcMDvyoI+tvHXcNojt5FEgN1zfeeAOnn346RYdWsYrPHr797W/j0UcfRWFhIQDgI7yOgFCKfFlwyfZpEkPoGjcsIT2OvdWDgV1jWb+DMzKQK+kO3G/918NgUhwprZvJunmfJiiFrnXDEtBj/0sSaiRxYLJ7GoPNdOyHNLmm+tEgujcPSqrpHP9oAIkYPYk7cEUubGsM6HhPWvEoTUzxXeKUJp7EgW0UzjdpnPh4GCcoScEA0CIhbHEyjEENgpe6cfi1TkmVqeFDE2g39qLnEzrpcEtQB0OBDo5qG7reH5RsL2fkkKvpxiIA0TqNSgVqhaBV9QIA1kzeXxJzdIuvnHIzZEo5NUlpz/fboLUvTU48GaV3FAAAtfo9ACrCWRpNv6AnngPAPsr3DNdpZkx1T2OiM474hLQTSOnN+VBxSmqyd88nIzDk0RGUKh8sxMixSXS83U9F4ov2xjEzEMPxj6XHePHN+dC5Ndj9n62SBCUuh0G0N46+7aMYbZ+hIjQpWDmxz7Rlz88AUPVoAIxGhc1fb1oglC6DkdI29BxqB+YhWuv+LWEFWeezgdHRUdH6TYCATcIrGBKyJJwZYKo3iu5PpAfxeMsMNn+pCUdeJtKBFff7s7ZPE5TqnixC6Q3eBTLHcu17YkjMJTHSKk2YGNg9IZ6iXnOTB7ZyneRn9C6eeIpL9AMA9qbUZcI3eGAISH9gonsGHR/QJXYACF/lRU4l/Un9uieLUPVQIVVbrY9H7RMhqt8JEGm3ygfprq3klRl+79nQu3VU0o5vMQ693EFNsjrx0TA2f6mJ2oKw7skilN/ho+7LSlB7fwiNj0eo22/9ajOVDSIAtLx2Avt+1o62P9CPLVpynXWNCTKFDNEJ6QUyZyVy4IErc6UvLAiouNeH0Dq6tnweh8ZnQnCfbaboNbFsMxVokNNopLh+Eh1v9yM+PouDr0gveErv8AA80PXeIIl5FrIRAJh8GsiVMvAuFSEnZSEoVdznJdd+dwi7XkhtIiYT5H9LYPzYDJLzAoaPnLQYSX9m0edqHw9izbp88C6GKKqd/NgJgmjpWXh5DtxrLcAMsfvc+70si7XUZ7o/GMLsxBxaftexfFsAHyR/g+3tWzA2NoZgMAhBEFYJSqv4m8fpp58OQRCgTtkoHsMB/En4fdbPHP19D6IjcSrllb3fbRNfevLPtyP/fPuybaMjAKJk87z4hgKquX346CTm4wmqDfY9L7QSQhBHbKWkoLFzUKjlsBRJn2wQCQccELkpX7L9gf9uR3QoTmXJBhBrJUtIj+JbvdTtG5+NgKObmhC61o3i2+iuHbrGTeybKERO5mPzkCtlcBQbqa5NS1ACyMba7h+0URGUAGD7149Qr18AYpdVfWeAuv1KUHGXT1R2kkLnHwew+R+bMLSfjpC9+ctNOPgL+oLKdGeUWkVJySmh0tGtoysfLETdU0VUbTkzscvhnDQ7NsTyueYxuvgBQE6VmbzLUaLjg36MtUufnDOHeRRe6QJAV8TizICSVUDvkX7JsVXqEbrGDYCQsaSIPgAw1j6N+VhC0i6RM8tRfEOBOAal8mc6Xzb9vAub/1GaAAUAvbtGMCah/DEgnMAm4RXs3bsXdrsdTz/9NLq7pSX+V7GKzzqOHDmCF154AQCQRBKbhFcwIGTfEBk5OoGe7dIbLLG+GLZ8uQlHUgXkklu8ku0BYrVVcrMPrDH7+2NsDJibmZd8vgFgvDUmnuQPXO6CpZSi5pWvgZJXgjVKNhUVV3yXOmEMSC9KRlom0L5pBQf5bvQit85K3b76kQAq7steY0yDtbOofiRA9TsBomZdfi/dtdUGFVQaurl6eP8ktV0WABz8eZvkwcY0RpqmsOXLTThOWfOqeiiAyns+nZpX5R2FaHyCvua145tHqYnQ3X8awp4ftqL1j3SqkQCoY2KPGKBQyTE3PSvdmAUano0gcLmL6tqRGz0IXEHXljXK0bAxDPdZdM9D5EYPbMVG6vb9O0cx3RfFoV9JE5TC1+cBLCFj0ZAULUU6KFkFeKv0GrPkFi/Akv7QKLbH+mKYi81j+Kj0Gr38Xj9KbvZBl08U6bIRoPLWWsXYbflqE/b/oEPy+sP7JzE9EEOLxIbtR8Kb2NX7EQYHB8Wa1ypBaRV/6/D7/RAEQXRwacF+fCS8kfUzHe/0YKo3KklQAoDml7uItVIccFYbkXe2bfnGcaKgwliJRVQFxdw+cmQSszPzVKpHB17qJGQjBlhzg0eyPWNloOKVsASl12gnPh4mZCIG4ntqNrS8eQKTJ2aoyKoAsU5zVpqx5kbpfgPEiqn+qSIwNjryifdCByLX013bc44N9RvDYChETuKT81CyCpiCdIootAQlgKwxdv/XMSqCEgDsfuEYtS0YADQ+EUHFHXTry5Wi6l4/9X7twK4xbP1qM7WV2LavHcHBn9IfcIsPxqlVlNR6FdQGOoJ98c35qH186UO+p4AhlmNcDt14LbnNKyp70iD/LAci6wqo27e904fBZul4a90MfJc4AZBcJwkGUOtU2Z1sUjAU8ii8NAcAsPc/2zB2VJpcNdIyidnpOWkCHANU3O4XYyhFUErny463+7H1q81U+fb4R4MYPjqRleQ3IUxgk/AKdu/bDYvFgv/1v/4XWlvpVcY+K/ibIykBhOU8OLiQfPfiY3wsvLls+/3fbydqQzwhIlQ8IJ1cA9fkgrMwCH8xT7Jt1yf9iI7EqZRmtv3TYXS8RV6Uqh6mSMQ8YPBq4b9IenLf8c2j2PylJtIPCgIPZyXqPkVXSk/AB3/Ugd6to+CsxIpMCu2benHkt/Sn6eVKGRSMtL0CAFhD5CUycAkFSQSgPuEEEIKNlCzlYtQ8GkTDM2GqtrS2c4vBW+ke4YFDo5jq+xSO8gPo2z+KGdrTajyoyWNp0CgoAaSQ0fhcZME6UQJHXu7G5i81UV1f7zMAAjDVT9cXzsrA7JVeoAOAtUgLyIDZMTp2+J4XOzDYNL6gXLQUUoQh74VkM3/Xd9ol809OnR5aJ4fKW1MLkmwEJX6hL5v/sRkzJ7L33X22GZyZQdmNqY33k8lJi1SUgte4UHgZWbxs/eejOPHR6NKfWYT293oQH5/FzMnKZYvISWnYi43Ia5DIUYIAUxGHxucjCKcWGTv//ZhoKXky5vghHPPsQALzSCaTqK+v/5tjNK9iFVKIx+P43Oc+BwCYwyw2Ca9gRFj65TnaFxPtYiM35aPxuQixR5JAbo0VubXSxeqJtiiiI3G0/VH6hEb3B4PY/i/keS280oWCi52Snym/xQ9NDgtbZfYiwnRnFJu/1ISD6RPsFKScqjsLYfRqYA5LzGVRiGo02YhbaXRtGkDfnhEc/HGHdCcAzE3PE0nrgJGqvblQB72Lbv6Njs4CAmD2SrcfPjiFzV9qQhul3ZcxyKHxuQj8l+dQdESaXHEKVuAeNd0fQ89e+gLSSjDVE0XvLrprc+aVv+5lUyFbjIZnwlTvTWls/adm8XmTgiDQL9Dzz8uDSqOEPp+OpCRXyyGntIcGgKO/O46WP0iTX9xrbQAH9G4ZobJWCXzBA/saI9244ggRc/M/Non5Mxv85+dSESQBiPew7Y1ebP+69P2JjiQRHYqj/T3p5zJyYz40OSxVnqq434/GZ8kmcNemgawxnKrsxmH1LgCAQqHAjh078NWvflXyO1axir8V3H///YhGo5CnLH/2YzM+Ed5etv3hX3Wj+0/kZabh2QjK7pYmc3jOsUHn4VF0nXTNq31TL6b7ooiNSSsm7/jWUdEerIySVGIrNqLwQun6zr7vtWHLl1MWSzRTAgs4y80IXi5d8zr8q26iAsMCrtOlD9wd/X03Dr9Gf9pZrpJDwdDNTQYPB7Vehby1dCQRCPTz6o6vH8W2f6FXayq7x4f6p+lIxdmUtpaDFPEtjd49I5joXHlNjQY9u0Yw2b2Ca9MtR0TMdMeoVJoKLnGg4dkIDH66L+j4Yz82/2MTlRqZMY8DksA0pWqBIU8r2g5Jti00QCaXYW6aTkGj6Wdd6Nk+JOasbMhbS94N9/1Xu2QMjQEOpkIdKm6jWLuyC33Z/I9NkmQ8S6kOOg+P0hulN/jyz7PDdyl559zx9aNUqljt757A9ECM6hlyN9qR1yhdl2edLBqejaBoHcnx+77XtqwS2TQ7hnbfHsQxg2QyibPOOmu15rWKvzsMDAyIwghxRLFJeAUTy9S84hNJ8RCK7xInGp4JQ58vTS7IP8cBd6N0zSs+FMfkiRm0bZJ+HxvcNy4ST/LOtsFznnR+KLoiD4YCLexVRsl+bPlK04LdEwV/ovi6fFhCepjC2uwN4xDVIF0N0qfnhg9MoPuTQSrrKQCYnZyDTCGDKZ+uyGNbY4TeK02cAIDpwTggAHyuxG8EUYHZ/OUmdL5Dd3iOsTGofzosEj9orr8iMKC6jwAwemwKvRSHIP4SDB+dQB9lzYuGDHYyaK0Kax8PoZzikGoaO791FDu/SUf0ksno1+eeM21gTWoY8ujqrkpGsSJVrEO/aEfLH6RVwJzVRjB6ourV8pp0zT10pQfOCjPdPUrZsG39ajP2UiiqBy51w15mohqvJbd7AQA9W0awi8IhCXFgomsKHe9LE9p9Fzth8GmpcuuaGz2o3xgGGEKuO/Lr5euMkxUnsI/5EwBAqVRi586d+N//+39L9/0zCJmwkgrwZxBerxednQtkmEZcDF62zMPMA/WPhDF8hO4hc6+1iko2tnIdlWVU9aMBJOcFSTu3yI0eGAu06N8/itbfZV9wOGoN6D84Tm23ZQrzCF/txcxATFRMWg6LfyMNGp4JQ6aQETIUBXirHK7TnTi2QilEyet+WtZmKfg+76RS96l6qBAqrYqO2MQDjY9FMNUfxf7/kj5N3fBsGDIZvZXEStD4fASzk3PY+a8USXsFKL7NC72bx7E3ukXrP6l+TPVGqSTQIzd6YMjXUKlROWoNiI3O/UXEMFrwNjlmhrKk16VSr3x5Ih5nBdxnONHyG4lxJ5DCcM1jAah4JQ693InxVolnIfUZz3k2dL2bInguQ1LiXSqU3+ZDfHwOu769RB5b5nO5Z5gI4WgpotGi3934bAgQgM1fWVTwWOIz9ko9/BflYt9/Hlk+zukY88Suc7xlBo5aIybax5clHC2+Lw3PhDFwaAytv18+5puTb2NOFcP8/DycTie2bt0Kj4fuZMUqVvG3iGPHjiEQWDitoYcJtbLPLdvef3kObEVGcnJMApxZDt7FY/jgFIxBDmPHo5JWWpp8DqU3eHHkN50YkbBHTW+O08jV5jSYqVWMAHI6Xq1XYc8LTZIqJe4zraJFmxQsxVqErvAgOhKnIi4AhIx17K2ev6oNGWeWIzpCZ+X6l8Ac5iFTyDF8UFp5ofHZCAaax3DsNem1ZdmdxHqQ5p67zrDAe7YDw4cnsr5I/iWoWR+ESqukXj+vBI3PRZCcF6iesbJ7fNBY6eIBEEuu2OgslSWb9wIHOt6hV6BYKVZigUcL/+U56Plzr+QzSzpA1LMSs0l6Kx6OSI1L5ZLye/3gbYykLWXGpc0A79JKPjOBq3JhixjQf2AUrb/N/s5Z+WAhhIRAZddnKV74btcZFvR8JF28DF3rhrFAi23/fnjZ/BQVovgEb0Amk0Gv1yMvLw8HDhyQvPYqVvG3jDPPPBMfffSR+Pfp+DxY2TIkBhaofTCE0dZJtPyGohBdb0bfVpKjTEUa0cosG8ruKoBMIZe0cyu4xIGcSgv6941K2n+ZI1rM9ExJ2ielwbtZlN/qw1SfdC3BUW1C/8FRaiuv2g0hKDkFNn+tieozrBHIOc1BrfhMi0/N2iwFzzl01iAlt3nBWRlqtcmGjRFM9RN7KynUPVUEuVKOLZTrkpWg8fkIqWn8+1+35hW43AVbiRFt7/aJz042NDwTwWT3jKjslQ3+L+TAvsZIpUZlKtJASCSpCEp/KVijnIqYSH9BwHeeE22v0ympp227m3/dSZWbALLRLaXKwRqBygcjiI3OUtkepuGoNlHZ2TU8Q945t3wl+7g2BjgUXZWPvT/uEFXrlgULGHJZjLfGYCrSIEpJGq17sggDh0az5qfdwkeYUA4jkUjA6XTi/fffR1ERHTFxFav4W8Tg4CCcTieSSfKMGWFHtezMZdu7z7LCVWOhOgzC6AHOqcHY0Wli5zYYl7TSYqwMym/z4sjvuiWVROqfKgLkMqp9KluZgVqZBiAkAF0Oj13fa5VUKXHWmiTt4dLQuolq1MxAjIq4AJA1TP/OQcTpxG+owOjliE98ejUvrZuBSqfCaLN0zavuyRCGmibQ+gdpklroGjdMhTqqe24MahC5Lh+DB8fR8hsKn/sVoOzOAmic3Keyj1n/dBhCMoltFAfiitblwejVYuu3mqls6qofDSI+GseBl6TFNnJPt6zIGnClWIkFHi3yzrZhYPcw9dhufC6CuWgCO75BT1S2VxklVeXC6zww+bU4+LNWTHRS/kaGCKxIPTPus6zwnGFH354RSYu/4pvzIVfJqZTODYU8xo+RfQaa3wiQvVd7iQk7Xzi67PiLC3F8hD9ALpdBo9EgHA5j27Ztktf+LONvUklpMTo6OvDmmwsqSpvxJrYLHyzdeIYw9dIEpYZnwgitW16hKE3eKbndi8CleVQKQipeCbVOWvKt6WddOPZGt0hQyqaY07+dEJTca61ofD4i2Y/R5hkkZpPo3ye9GEj/Ru9FDmKhJoFjb3ajbw/9pl3pXSHYS4zU6jo1jwZF5mM2zPTEAB6iCooUtD4e1Y/QSeBVPxKAs8IMk5TKAYBd3z5Gr7w0AwhJAclZuklhvHMaE8fpXsQNAR5VDxdSWfetFKV3FiB4nbSSFwAMHhrF7MQcFUGJswJCQsDczDzVtZt+1kVtl+c7z4U167xUbcM3eBC4hk6VK+c0E9ypk1wzg1nuoyAAPNCwMQz7YiWOZZSCAKDk5kLYIoallaLSVmvCwnfu+G4Lxjqmlicopdr7LrGj9nFi1yESlLJg5kQc87EEBpvGTv3HkwhKDU8HUft4IZBM4MSfhrL+Pj51UGT/fx/Hnv9MLXSyqCfxDg4yuQzWspNOsabVkxaRjRofi4j3u3/HMgQlQQBvkaHhmTC8FzkAAFu+0rwsSXQmOYM27y7MYBJzc3MoLCxET0/PKkFpFX/3KCwshCAIcLvJvDCBUbyHVxEVli6Qt/62VyRP+C/NQf1TRctajEVHkuKmd+TaAjSsl1YqtIZ0kClkYIzSJ473vHgYe35MXkSk1GfSpILaJ0NUllRDhycwNzVPRXZIE5RqHg/CfWb2U3TDB6cw2jKJPT+kIygZgxzsa4zUNmSOaiP5fRKHy9IEJfdaG6wUdiwAKZYErqKbX4uu9qLwErq1xuYvN1ERlABgLjqPZEKgUrLp2TmM6EgcQ81jVNcOXeNGJK0g+FeEOcyj4j4/lfoYAIx1TmO4ha46Nx9NkHhQYts/H6YiKNkq9XDVWlB+L90JtMoHC6l/X1rhg4agVHpHAbXyE2cGHCUmlNxBKb8dBfr3jqL519LFq9oNIbjOsABRUJEdBw6NYT4qbUvpvcCBxucjcFQbER1BVoJSOse1vHoCR393XJKgBABqrQpqvfR7bMHFToSu8Ij3JhtBqei6PDGHHvlVNyF4LfMzx8q7sJPZBICcJPvhD3+4SlBaxSoA/PnPf8aePXvEvz/GH7BL+NPSjWPEvjRNUKp9IoRgFkvzNMkieGUuwtfkI/88aVU0xqAGQ5Er2t/ox+FXu0SCUjbFnJEmQlCylRvQ+FwEnnOy17xmumOYm57HwEHpzbX+nYSg5Kw3U1mpNv+6E707hqlJTSW3B5FTaaG2Ziu7x4fim72S7WIDMYBF1vu3GKyTpbZ8K73DC/dpNiqLvQM/6liRHW4ykcR8lE5RZ6h5HKOtdHa1rJNF2V0FVNZ9K0XRujxqG7Shw+OYHoihj0ZNkwWS80nMx+hqXq2/76W2ywtc6qa27fB/IYf695kjWlFJTJIEw5IcYys3UF278rZCOMvN1EpR+15qw3DTuCRBydVgRvWj5N2HxjYoNgbEJ+aWrnmdhNonQqhJ1dOkCErpHLfnh23Y8x/ShHbGwEKulMMmpTYCoP7RIkTWkXX26OHpZe8NawTqngjBez6peW37l8PLEpRiQgydhfswgn7Mz88jFAqhp6dnlaC0ir972Gw2JBIJNDY2AgDGMIAP5L9BXFh6x7n7T0MiQcl1mhm1j4fA6Jde88QnIBKNim/yof5R6efN5OWgUCvAW6TlRPa8eBj7fkze35frQxppglLlg4Wo3SD9Tjy4fwyx8VkqEkWaoFRxvx+u07KrJE11x9G/dxR7X6IjKDE2Bu5GGyI30q15jEENsYKXCF+axGGvMsKyhk66J/8CO7XiUektfgQ/T7em2/YvR6gISgBRSU/OJqmUbMaOTmOqJ4qhw3TktPwL7AhS1vRWAq2bISR4Smuz4cPjGGqiq3klYgkk55NUBCUA2PmvR6kISvp8BvlnO1B6B93aq/SOAurf57vECTCgeraCV+XSKz8xQN7pNpTcSWerBwCdH/bj6O+OS7arfKBQVECjIe8MHBhDfHJOkqDkrDai4ZkIUXmLIytBKZ3juv80hKZfdUoSlACAtTBgjWrJds5qI9as84rjP9tv9F7oQE3K1q/r3UGitLXMz5xc04Od3CYAAmQyGV566aW/eYISANAZjX/GcdFFF0EQBPA8j2g0igkMY5PwSlZVJd7DQ6aQQcVJh+jAyx2ourMQXe9Jb/Bv+crCC2XkRg96dw1hdJmT/WkiR81jQag0Sux98TBmhpZ/CYwORSEkBYx3SRNX0id8OSvgOdeNIy9nPxFuDepTPtzyrH0Y3DspKkpV3OvHHonTcwd/2QlzgYZaBUqlVVJL1dXcHYRKp4QhwEsq5njPsEGtV8HzOZvkfWz6zQm4G8zL3reTwbtY5J1plYwxkDk+pNBEKV8JAIYCLVgjA0el+a+uHqTN4aCx0xUR+rePE1IdBaJD9PHIqTdBpVeh64900phNv+qEvcRE1dZUQAoCLZBmkHvPckKmkGVXH0uRZ7xnOSBTysA7OADSC6nt3z2GwAVOzHSddP+EzOcxcIULM0MxnPhoBE0/O760stGiz1gCOig5BTgrFsg7S3yG9/DIrdSj5Tc92P51OtnKxBxFAVKuQO1jhVByCuz53hFMtad+3zLkpPJ7fNj7vTZ0vD2Ajrfp7vdQywSScQnSGICZmSRkChn0udnJfJuTbyPBzCLeFofZbMYLL7yAdevWUfVlFav4e8Hx48fxy1/+EuvWrYMgCPgEb8AgmFEjO2fZz2hzOMhVckQpDvwONI0hEZMm9Xb+cQCd6bmBA4rXeRfs104CIdpEwTlZVNzlQ3xsdmnFuEWYm56HQim9Lul4p19UkSm80oUTH/ZlVR7inCxUvBK2EoOkqlLzy+QF0b3WBqVanlWtZuxoFP17R9H6Ol1BQ+PgoFDL4aqmUELhAM/pNiRmkxjaL114t4T0EJIC1fw6cGgMvbvoTtoBxAJvui+Kof3ZN7ZoLLlEREGtVgUA5oAOMrmM/vqUcFZawdtYaB0qKlWdpp/S2ysf+gl929A1bnS910OloDW4ewLmwgl0bZImj3kvcIA1qZFbZ8Kx17L/PmupDuagDhX3+7HnP6TvDWdlIFfQ3ZPoCNC9ZQiDB6XXaGV3+rDv+21Uz5Umn4OSU8C+xiD5TIWudePI693o+WiYSolo8sQ0hISZnLiV6EPZzQWiAlu258RSrIU5ZEDLqyeo1LgAoP3NPhgLNDj8e+niFaNTQaGSgzNjWRJnWj1Jvk8OlmVhMpkwMvLpWCmuYhWfVZSXl0MQBOTm5qKnpwejGMQm4ZWsqkqsEVCoFWAoDtEdffMEOBuDznel378WKwUELndh6PDyJIKRJlJYTiui7P1RW1ZbpdhoHMn5JCZ7pGsaO1LWJmCBwEUuSeUo+xo9VBoleDebtQ+TnQuWSyW3eUUrkuVw4GddsIa11CpQnEmNpI6OMFx2M1GEHDo8LsZyOeTWmsDbGCqFpKOvdiFvrRPDEuuoNFijHHlnO9FCoZC+Eis5KYWtxdDYVdDm8HCUmjHW8tc9/W/y6yAkkmiB9O8bPTyN0cN0G6mI0cfDHNFC42BxnFLp/uAvOuGsMFK1tUUMkCnkVPev8JJcKFkFenZKE/Wc5WYoWQU0dhaDkK4D7n7xGAoudEgqgXvOsWF+Nomej4dx5FXpe20rNUKtVUmqj7FGOVxn2NH2eh+1wtb8TAKJeem1cMV9fnBWBru/1yapihS50YOmV7rQv3OUSpkJAHp3jUDBSr+TxmKAXK2ATuIwwB7hY0ypRxFvicNiseC73/0urr76aqq+rGIVfy/45JNP8PHHH+OMM85AIpHAR3gdJsGOqiyqSrpcHnJGjni2GnUKJ7YMQSa9REPfzjH07RwT/w6v86D55aXrHPEJABNxMHqg6qEiRIfjknt3s+OzEJLSHVncD895NvTvnUA8y3spowdYIwP7GiN6Psn+bpcm5NirjGANqqzrmPhgHN2bB9H1ifQ+LQDwFgYqXglXpbTSHgAUXujCfCyB4UPSdYKcCgsgCFTkiO4tgxg5Si/95Kw1YW5auh9tb/ah7U06hUIAVAoyadiLTVAycoCiprcSWNYYoM/TwJDLUdnV0axf/pK23gsd6N05RkUOmuiM48SOIfTtll7vOKuN0OZwcNdZJPujz2fgrDBDn8Nj7/el15c6Fw+VhpLyEQfa3u7BOEVdMXK9B02/6KJSimL0crBGNawRg+Qz5b3Qgd7N/Rg+NEH1TM0MRpGcTyA2kn0txejlqHqoCDODRIEtm8qcPp+BrcSM1j/0itaYUujbOQZbqRFH/yA99tUaJRRqORgbs2xOjAtxfIw/QN4sh1qthsPhQF8f/XP7WcffvN3byXjhhRdE/1gA0MKAetl5kp+r3RBCz65hSeuz8A0emHxatLx+PLv9Gw80Pp6yX5A4CeNea0VOhRk7KP0sAaIM5Gm0ShJZap8IQckqsPeljlPJD0v0mZZMlLarGzgwRmflxgPF1y2/cfgXgSdEkI636GS1TWGemni0EqRjvPkbTVTx817kwMChScn7wVvlKFrnw4ntg3TEnxXcvxXbvVFeu+J+P8Y6p6ikzv2X5aD3k/6spLg06jeGIVfS2wyuFDREN4CQ/myV9kyylOykzTCalLvI/sxzDjml1vX+okWAsHxMGp8LE7u0Lzdnko2yfOaU+7fE5+qfLiIx/mbz0vc69Rnew8N3lgUHX+pY/vsWQ66A5xwLHCVG7Pi31qxqS57z7XDXWYkF4A8WXX+JmNY9WQS5SpaprrXUveCB2gdC6PxT3/LPUepzk/wQ+i3t6Ogk311UVITmZnpi4SpW8fcKs9mM0dGFAutpuAScLHthNKfBDHe9dWGDKQsan41gbmZesm16A6z1rR70LyriLIWa9UF0bR5A/7bs7RYjclM+2t84Lkk+qrjLh/loQlrum8OKLNkan4uk8j/dXJh/vh2x8dkV/UYpeM61o+uTAap+630cJto+BQuKlO0WVYxB7omjzEBlRVZwsRO6HI6ucLOC+7diuzfKazvqjMipMJNThxLt9T4O+nwtuj+QLualx/HsxBx20vi5rxDGIIexo3TB817gQMef+/+q9oVrbs6nJmyFrnHDUqSnsksTQXH/jEEOkesKMDclndsiN+ajfVP/iuzuatYH0fXRgGQupLXydlQb4b/IRRUHz7l2su6jyO+TVd3YvW8X5ubmwLIs/uEf/gEbN26U/NwqVvH3jN/97ne4/PLLxb/1MKM2C0k8jaqHAujfP4ruP2WveRVc4kBOhQUtfziBwb3Z6xCNz0WQmJO2wbSVG+A5w45d36afU1g7C+9aGw7/MjshsuqhABijCof+u03aBp0FtUJS2q5u8MAY9YZH+Po8NP9CmsBJDRbwNNLZsgGAwc9Kx+AvQOUDhWDNakLAoLCgc51uweTxaZHstSxYoPQGL3r3jGKQYtNnJfdvxXZvlNcuvtmLyd4ZKkKf5xwbBg5OUsVMXCtS2gyuFLp8Vvp+AAALuOusknliJbBVGsAaVNQErIZnIoAMK7MBpLh/6RhLjWPWKIf3wlwcfpn+WbZVGuA5TTrH2coNCFyai8kT0paIVQ8HoNaosOWr0nGoejiA7s1DkqSnmBBDr78Zra2EtBAKhXD4MD2xcBWr+HtFOBzOeFYacT54WXbpGlNYi4JznFS2knVPhjAfTUrmkNC1blhCerS90ytpp1Z+pw99e0cyCE5SCFzuQtcnw1nJR2CAxicimJ2el97wZ0CtaAMA9U+FATmoXUuc1UYAWNFvlLxmrQmjh0eprOS0bgZT3X9de640Gp+LYHZqHjv/VfqdmtHLYaswU83drtPMMHm1OERzoG8F92/Fdm+U1zaFtcitsaDlt8clLcsYGwNLoYaKjJYexyu1fqWFPp+htjVzNZjRs3tkRc+KFAJX5opuUlLwnGOD+zQb+veMUit40dw/xsag6h4/VYwLL83BiZ0jVKS1NMrv9uHEtmFJ28rqx4JQ86k1dpbLGwp5RK71on+ftG2cvcqI3DoL1WHKmYpe7Dq4E/HZONRqNb70pS/hySeflPzc3xL+5u3eTsYDDzwAQRCg1RJ1lCmMY5PwCoaF5ZM07+Gh5BRwlBglrx8diUNICNkJSgAwAxx7oxv7/4tsnmRYPp2E7g+GRIJSxb1+VD0sLcG25mpCEuKyu4Rg+wtH0Lt7WJqglOoz7+HR+HwE5fdkl41r+lkXuj4eoCMoAai83Q+9m0dOPZ26Tfk9PmnbtxmIBKVs8U1jtHkG4IlllxQ4K1kMlEnEAQBa/nAc7e/2UpF4TGEeuTVWFH2BQmpZrQZrUsNVKXGT0/jr869WfG3OwsAWMVK1dZSaUHK7tNw6AGz9t2b07qbzfG18PkJlGQge4niUJCjx5N5Fh7C8mlPKgoyzAnVPF4F3ZVGfWkTUya2zwN1gXdLSbSns/+9OHPpl5wLRaInP8B4ejc+FUXZPSoJyKYLSSZ/b9/3D6N4yKHmvS67Nhd7DZ7WoBABHrQENG8MAD3RtGiAbVcsQlGzlRGa+648D6Pp4YIGgdJKt22LEx2eRWO5kyqLP8UYWSlaB3NrslgF/Sv4e++a3oLOrEzqdDr/4xS9WCUqrWAUlRkZG8PLLL4t/f4I38InwVtbPOCtNUGmVy1q/LcZcdB7TFCdb9n2vDR0f9oub8pbi5aXzd3zrKCHvcMTfPFtbAOByORi9GhTfkn2NFu2LoXvLELa/QGGLkSIxlN/rQ+NzEUkLusOvdmDPDyhPbgPIrbOi4JwcqraafA61T4YkbdG6NhGCklS8AIgEpZwGipsMIofc+FxEumEUOLGNMsYASm/xwlVrkW4IwLbGAK2L0kbkU+BfrfTarkoLeBud2mXgklx4TreBc0q3j/bF0L6pD82/lVYJLb/Xh8ZnI1SWeumxQENQStsKdrwjTVAqvaMAxbd6pTsAwH2mFYZ8DYpvo2t/5Nfd6PiwX5KYU36vf+E5prh/Y0ej6Nk+LEnk4XI5GAs0KL5e2m62+qEA1txMLAh3fOtoVoJS+hne+1IHDr/SIXnt/kNjSM4JiA7PSra1hw2S+X1EGMEm4RXs2L0dKpUKFosF0Wh0laC0ilVQ4LLLLoMgCMjLI5aLEyDP01iWmhdrBBiDCnaKd/Xo8BwSs0kMUlhBNP2yHftSh1dMRZpl2w3uHRc33sLX56HyPoqa17o8mIM6sBLz1q5vt6D7k0E6ck6MEBAano2g9M7sdg3tb/Sj7d0+aoJS5EYPTIU60fpAsv0NHmnbtxhEgpI5Ir32SsfAUU1Rd2OBho0RlN4h0QcAh3/Xjda3eqnINoRc5oD/Ijp7EK2Lh6uKLmafBnlnpdfWe3jYKWrHAOA+zYbSm+msgXe8eBTHPx6g6kfDsxFxvpdCeizQEJRMRRogBulNTpbYVvNuujWo77wc5J0mbSWZxp7vt6H5V9kPDLBGORqfXVT7o4jbjhePouvPA5LjeM3NfpgD0rnHVKRB3ZNFAAsM7h7PSi5I58fBveNoe7dPkqAEANMDMczNzEm2Y40Ao1fBWZX9ud8mbMJOdhNaW1uh1+vx61//epWgtIpVUKK5uRkfffSR+Pdm/BFbhU1ZP5NbYwFrUoOxSls+zU7MY0ZCLRcg9tnH3uwRCUqGwuWdAvZ+v42Qdxji4mKSsJZk9HLYio0oXifx3hkH2v7YiwM/oBBbSP2konV5aHgmAsaWPRYHf94m2tXRoOD8HOSf46Bqy1gZVD0SkLRF69tOCEr6fEbSIi5NULKU6CXbAsSqq35jmKq/HR/0YeeLdIIWxbf44TmDbp51lpthKJBeUwL4q5Jm/tJr55Sboc/XAGppta/ARU4UnJcDrZviZsSBI7/pxrE/SBOSi9blof7pMJWlXnos0BCUjEGyNujZIk1QCl6Vi7DUs5nuwxo9bBEDim+ia9/1/iCOvdkjSVCKXO9BwzNh8hxT3L/4YBwdH/RJEpQYPWAvMyFytXR/S273IpKqje39z7asBKV0fA98/xiaftUp2efxYzOYjycQG5GueTlKjeDMTNacNiNMYJPwCrbt2wq5Qo7c3FzE4/G/O4IS8Hdi97YUJicn8dJLL+HWW28FAOzBh1AIKqyVXXZK25muGex5sUm0Qqp+JICB5vElyQgdb/WLxJj0CbNDv+xYkuSQtnPjXSwKL3HDe470iW/GpF7SvelkbPuXw3CvtZI+Z1O5mYGoalO/MYz56HxW9ZyZrhkk5wWMd0tbyqVVp6ofDWCiN4qjv1x+I2P3d1pRcIkDvVvppGx5GwshSScCVvd0ERQqOQYOSysZNTxKTgv3fpK9H9EhQEgKy5MgFoGoM9GxeEabZzB0dBxdm6Q3fWZ6YpIWgIvR8EwYs1Nz2PXvfz32L+/hUX6LF4OHxqnYt5u/1CRJnEuje/MgYqOUK5JF4zgbeA8PISFgZlj6utV3BaDWqxAbj0sqbNXeH4KSU2DvD9ow05O9oOFemwuFSg5rsR5dEm0BYN9L7TB4s9uPgQfqHgrh8KvHMX5sJpNotATSz/Fo20mS8Cd9zlFjgP8CF9o39aJ36xi63lumGCWTA2wCmAG2fecwcqsskuPS6NNBppQhp1if9bm3lGgQuDQPnjNnsevfj5G8IpMtSU6qergQKo0KW7/ajL3fW+alJa2edH8ITa8dx1RbZn4/GZOefnTEjmKuP465GFBcXIwDBw5k/W2rWMUqTsV1112H6667Dna7HYODg4hiGpuEVxBBDVyyU4voe15oFe1/zGEe/gvdy27WL1aarHuqCPHxOexdRrI6bZlU/QjJ8fsm2zHduTxjwFVtgVwlg96jxfDB5W00oiei6Piwf8GSKYtSStcmsn50nWGB9ywHjvy2K+u1x7tmwBjUkrZaI6m5yhzmUXhpHrb/S/Y1ZceH/Rg9REfwta8xQMko4D3TIak4pPdxCF3hwezaOeyUOi1cqUfBuU7YS43Yt1zeTiE6NgvexoIzyyVj0Ulp/woAHe/1QcEppBsCOPCDI8taUp2M0DXkFOPmbzT9VQlLVQ8VQskrJVUpAGDPi63UpJimn7ch92wntRpPL83pMwDzsSSxwaDoQ8G5TnjOtEv+Ns4MBC/Lg+98OrUsjYNukwwAuv88BCWnkBznRdflgTOrsefFViortonjM2AMKsmxW7M+CJlKhu3/coRK3euU3JMFar0Kckb6RbJ2A1nXbm5tQvREFNFllvjmMI+iK73o+DP5/mx2cPnn22Eu1GHPf7SSvJAlR45UtGHfvn1AAuA4Dt/4xjdwzz33SPZ7FatYRSa6urrw3nvv4dxzzwUA7MSHUAlqnCX7wiltY2PA5q8vKLSU3e3DSMvEksomfVtH0LeVzAHOejMKznGi+dftGGs59aEW/xsLhK/Jp1KH0zo5KFnpeXnXv7fAWW+WtE4CFog8NY8HkZwVspIFYmNJJOIJTFAc5EvHoexuH6JDcRzNUhNp+lkXPOfY6E5vA9DnSdQAFkFUgOlpkrSVSyt9S9pIxYDEfALzFPbKM92xrBZ5GZcdiKFv7wh6PqJYq8WA3d8+jNgYXc2r9okQ5qbmsedFenteSbBAw+MRDB2iU8za/I9NYI10l257tw+J2PJK0hmIgUppiDXKkZxLIjYmvYFSeocXWheP+dl5SWu/yvsKwVrVOPCTNklCk6fRRmyrw3p0UoyLfd87DGORNBGt5vEgWn5/HGMtUcQkhk9sLIn5eAITx7M/x6YiDYquykf7e33o2zqSnYCVUmOizT0GjxYKRg5nuVnMFUuBd7MIX5OP2AhREsjWtvTOArAmNbZ/7YikklPVwwG0vtWNsZYodn9n+dwQc4yhXd6MyZ4xIAasWbMGBw8ezHrtVaxiFafi9NNPhyAIKCsrw/79+zGFMWwSXsEa1CBniZrXwZ90gtETCzYuh0HRFW7s+UHrkhvliy3Zqh8NIj4xuyyZcWDXGABiSavL5XHw522YaF8+X1kK9VDxShjyNRhtXr4uFZ9IouX1Ewsk9SxKKWmSlGWNHoEv5OLIb49nvfZY2xS0Li67QhMWSD9aN4PQ1R7serElK7Hg6OsnMEWpvGLy8WB0KjjqbOh6N7tCJWNlUHyTn9inSyil6PMZhC5zY7JHWiEvOjyL5Fwyqy1UGlIWeYvR+k4PWD2FdyCAQz89RqUSBRCFHVedFXu+3ybZ35Wg5DYvODOD7d+QrvU0/aILjF4uqaIEAC2/7UROo4Na3YrGfgwAEvEkEnNJqriFvuDGfJyijsUAkWvzEZ+awy4KpxujVwu5UibZDiC/q8PYJzmG8i+ww5inwb7vt4t5JRvGuqbAO1nJsVB2ZwFUOhV2fuuo9DhmSI489lYPVR94K4PEnDRnoOJ+Pzgzg13/fhjxiSTiE0tzHbRuBsU3+ND15370bBnBjixj0llrgr3EiP0/aMeBH3WI+X0pTFR0Yff+3cA8oFar8fWvfx3333+/ZL//VvF3S1ICgFtuuQW33HILPB4Pjh8/jgTmsEl4BR6EEJSVZLQVN7B5UuB1lpqWV0xJgTWoARkwO5r9pWimJ4aZgRiOb+4Xv2M5TsvWrzaTfweRZRvvmBTJTicjTRJqWE/sn7Z8hUL1g4L3s1hSMXBNLlp+nZ2cotapYFJLF5nSJJPqRwJoefNEVvWazd+ks04DgK6P+mH26ajan9g5DIWKLqFTxTMF/2U5cJSasP/nHZhqy96RIy9LE5TSoCUoAQAESRGeFYPRkOsmZikLK8CyZJCT0fUenWR5/cYwhISAbf8ivVk30zVDfd+aft6KwsvzqSwAm147Dv95zqUJSieRaVp+fQIt/AnJ8Vj1YAG6PurH4N4pzJzIPrm76yxQqORwVpsw3jINYOkbrfXxsAa16Hh7AFv/6aR4CcIpnxMSqb4rsjwTgoDA1U7Yigzo+ngA3R8M4USWjbLSuwqw/7/ayTjPRqBM/dvwgWnEzprF4dcWPRfLqCfJ5RIbb6nP2YI6KDkF/Oc5se97bUuOyRlhBpvxJlQ9KgiCAJ7n8dFHH6GysjL7d6xiFavIioGBAezYsQO1tbUAgCbsQLOwC5+TXXlK2zQZxHOWEyqtksoeTCaTneLsuBSaf9uNwgtzFghKy2yY93w0jJ6dw+K/Fd+2vDVtmiSQf74duXVW9GwfzkoykKc6KjWHtr/Zh/aUh7z3Agf6941nJZI4K61QMgo4qo1ZlVLS/bVV6pFba8Xe7y5PEmp/sw/tH/RREU0m2qKY6omi5W1p/+zB3RNwlM3g4Msdkm1bXj2BlhV43dc+GQIEYPvXsr/8S9ldLQYtQQkA5ucSgABwZg5RCo93WiQpSfppSJFiFrc79pr05pulWIvQ5R50bx0SCXfZcPDHHVTfDwB9u0cRm5DeVIuOAGMd0+jfQ0ey2/KVZkklJ3OYR/7aHOz5j1YqcpDBq4FCKU34KbzShWOv9aDtjV60vUEpjU1xixueCUNIAlv/qTkrQclRbQRvZ9H+Zh95f8o2FFN5sP39XjhKzZLPe7Q/BsgAzqiW7K+j1ATlYjLgEtc+IuxFt6wVwm4BBoMBOTk5q6qVq1jF/0987nOfgyAIqKurw/bt2zGHWWwSXkE+ihCQFWc2XrS00NhZqDVKSVIEZ1EBMiAmtTERIxtQ/QdSxJgs1ks7vnWU/DuA/PPsmBmML2srl97Mr3uyCDI5Tn3HPRmUU+jijQPfpU60vZ59TcPbWDAUmz9pslTZ3T50ftC7JLErja3/ephavefYWyfgKDdLEpQAoOujQeqNKqk11GK4z7LCc7odza92YvRw9kONUvFcDFqCEgBAWPk6SQqskQWSAlnXUYLmPgDISkZZjJrHgoAc2PF1acWE2FiSqjYGAEdf7YDv8x5JghIANP2mG4XnO6kUl7reH0TX5kHJ8Vt6hxcndgxjeP+kZCxs5QaoeCWcFRaMtSxfM2XtLOzFOnS9P0hFZE+m7qtc4v0xbXVy/OMBHP9gKGt/Izd60PSzLnT8sZ9YEi8Xh1QenOmOYfLEDFr/KP1cyOQyyChednX5LBiDCnlnODDW0rHsmHxf+C0UwzIkEglotVq899574nv6Klaxir8M+/btQ3d3N7xeLxKJBA5hBw4Le9CIi8DIMlU10hvY+WfZwZkZGPJ4cvg4G+SAQqr+DeDo670IXOxcICgtQyoaPjSBzccWbI5C17px5FdL59m0Kom9yojCi1zo3jaYndCTPgudyD43920fFYlNrgYzRjums9o6WYuNYLQq2IuNWYkLwwdIgA2FPDxn2HFgmVqe2Id9o3QKMENxjBybROefpOshE51xDB+ZQMc70rWW4x8O4viHdPthALE0lillkrZ6Y0elxSbSoCUoAUBiNgkkBTD8X1dUSUgISC6z97MUaAhKpB3Q8bZ0rUfrZlBysw/HPxmksshr+Q19nbLjwz4kKUg0iAMD+0Yx2kZ377Z/44ikWpfWzcB3gQv7f9BORXKzBokCthQ85xFiX88nI1TXpb21NY+HIJcD2752JOtzbgxqoHfz6Hp/ENv+7Uj2wZjKg61vnUBunV1y7MxNxAE5wJqka1451WZwJkb8jqWepRNCO5qxC9gN6PV6FBYWYteuXZLX/luHTBBW8MT/DaOrqwv5+Zms5kZcDF526uklzrpAtKh4wI/JE1FJWzNHrQG+c1048HJnVpIKb5Wj/L4iwsR9ITsTt/H5CISkgC1fzl68rXjADyQyWddSSL9UZUPNY0GoNEo0v9KRnciRjYhwEkxhHuGrvYiPz1Ip/oS/mAeNjcXOf6Pzkec9PJ21HUDV75zTTHBVWST7ainRIPgFDzo+7JNUabKV61B4iRtdfx7ISvYACOFD6+Sw+Usr8GKnQOPzEcxOzmVV1Vopah4NQqlRSI5XgChhzE7OUfl21m4IQZgXsEPCg7fwche0DnZ5hZ3FWMGY5V2spHoSQHKA9+wcbPvOYclr8y4W5Xf4MB9NYPs36KQ7wQnkulkKFg0biyBTyLD5Hxfdg/QUsOhzgStcOLFtGDM9EkvMtGWah0fpDfnY/1J71lgEr3PDGtRjtHUSzf+9/KkvrY9H6Q1ezAzEJO9X5YN+KFmlZAGKt8pRfFsAB350BNEh8vdyJL+Z6h4cOnII4xPk5etzn/scNm3KLtO7ilWsYuVYu3YtPvzwQ/FvAyyoka1dsm1aPYdzsii+3oODLx2VJIzUPBZEfHwO+3+Q3Q6g/F4/eBuDPS8czkroiNyYD2OBRpJ8pMnnULIuH/v+6yg1QUSTz8G+xiCSkZYEBzRuiCAxm5RW0cmiUnIy0uu5PS80ScaUMwMld4Zw9LddVJZcXO4KCDqUfS6724exjilJtaSa9UEISYFqjVhxnx8qjfRcAgCNz0YQHZU+MbcSpBUQ/urrueciGOuYRtPPOrO285xrh6vGgsOvdkjeV9cZFnjPdGDPj9sl723VQ4Xo+mQAg8scqBCxgvG6kjFV/UgAo51TklZsALFCUxtV2PND6d+10Blk7betUo/AJW5EhyXGCweELl2+GLwUKu7zY342iQMS+a3x2QggI8oOWa/3gB+ciZFU/jIGOYSv9uLIbzpF9bblUHilC7yJITk4TRJb4tpRIYrx4k7x1L7ZbMa2bdtQWCht97SKVayCHmNjY7BarUgkFsgWp+PzYGVLqM2l/1MMKL7Zi5nRmCSxxBjgUHRVPpp/3ZHdWo0l65npwZikimLDs5HUgbvsOWzNzflQqOXY//3sOXExAle40PJWT1YiRdndPmgcLI787nh2IkcW0tUpTZ0sKu/yITY0i90vSte8Ci5xwOTVSVohLL4+jboUaQzJfltKdfCcZpdUJ2KdLCpuK0D7B/2ShBODn0XR1V6c2DokuflTdF0eTIU6bPnyX7/mFR+fw65//+vVvMru8YE3M9jyVemaV836IGan5rDvv6THbOUDhZDJZVkVwAAgb60VRq826yasiBWOWZoxZQxwCHwhDwd+cFSSqMUagcqHIpidmKOu59L0Oa0UtvlrTVnb5p9nx2DzBLUCGGuUo+yuAPb9tDNrLPLPsyO33oqRo5M4/Mvla16snUXl3T5M9UUl81bxzV6wJpVknFgjsObmAA69fByxgRhYo3xZkt90RS8OtzdhdJTUpy+44AK8/fbbWa+/ilWsYuW4//778eKLL4p/m+FEpez0Jdum1WAYPbDmpkIc+mmb5AZ6xb1+zE3P4eBPs+/hhdd5YPJrseeHrVnJP76LnXBWmXFi+xA631m+3sJYGZTcnI8DP+2kVtBhrAwcpXqRsL0cGp+NYD6WkFbRyaLkdDIq7vWDszLY9d1WxIckPsQAVXcH0PpODxW5h7Ey0tdcdG2aPofXeTDVF5UkLJXf6YNMJaNSkFxzgweshaFa99Q9EUJ8dA57v09vrSeFsjsLoHFyknWJlaJ+YxijrZOStRRbmQG+8504/JvjkkRAS4kehRfloPnXnVlVyACg9I4CnNg+LBLilsUKxiuNktbi75/qjaItWy05BVFd7aetVHZzpDPI2m99PlEVm+mLSY4X3yVOtL1Bf1Ahcr0HMgVwSIKjUPdkCHKlXFKYYs2NHhjytdj17cNZcyuXw6DkBi9a3jiRVQEOAPLOtkHv5sQ+LqeeFBfiGC/txIEDByAIAkwmE3bs2AG/35/1+n8voDAO+/uAx+OBIAi4+uqrxf+2GW/iA+F3qH40gMCVxC/dXqlHya0haH2EvMSZGdiKDeJnqh4uRPA6NwBCTKndEIIpzMMSNECmkCH0BddC24cKEf5iHgDAEOBRuyEETYEGibkkkvMJVD8SENtWPujHmpRPJO9iUbshhL59wzj8Wif8l+Wg5vGg2LbiXj+Kb/WS/lkBFafEwKExAMT6rO7pIrFt2T2+BY9uEMJH0Q1uGAu0qHkiiNoNIfHfSu8sQNk9PvFvmVyG6Cixwso9w4LaDSHRyqv4Vi8q7k09ZDOEoFL1aCEan4/Af7kTtRtC4F2k8rXmJg8qHyRtR5tnMDs9j4nuqBjv2g0hGAIk3uEbPKh6aKFgbfRpoU6dAjOFSQwtJcRPMnidG1UPL7RteC6M8lu8AE9IELUbQrBXErPQwJW5qH50Id6Nz0eIAhUImaF2Qwg5pxH/bv9lOeQkEwBXlQWMQY3SuwrIB3kSQ/daEgjvRQ7Ubghh+MA0tny5GbaIEaV3FmTE23M+8YT1fM6G2g0hTE/OQSaXwVVnQfmieNc8FoTv804AhBxVuyGE+dkEhISA4ju8qLh/IalVPxpA4eVkrDlqDSTeHh68i0XkxoV4A2TMBq4h49tWrsu45+Ev5mXEsOrhU8esrV63ZLwrH/QjcmNqzHp4KDRyUcmp8HJXRrwr7vej+JZ8Md5ylQwqDWHq+j7vFOMNAOWLx2yKQ5g+kek5337KmE3fG0tID97OwnsR8SJ2r7WStqlrFN/mRfk9PjhqDWh8PIK6p4tOiTdvJSmz+JZ8VDzgR/WjAZTf4UP1Y5k5onbDQo4I3+BB5YOFcFVaoWDkqLonsGSOAIDQOhLDmd44Dr3ciUQ8gfD1pK2hkEft40HYyokvcOBqFxqeLULDM0WAIKDy9sU5gkHt40Hk1BsBAP7LnKh5NIADv+xCz85hVNzrI/EWBHBWMg5zzyDy2gWXO2BbY0DJjSTGZfcUZOaIx4PwnGMFZxHQ8EwYtU+EMNM1g61fbUbhxTkZOaJ2QwgFlzhgK9ch9wwLjHka9OwdQvN/H8/MESA5wn9ZDgBAZ2cgCAImB8nLwOIcAZBNx3S81Vo1FKx82RxR9XAhQuvcMJeYoWQVKLu7CJYSDWaGkqeMWfs1amzh38KWnVswNz8HpVKJ6enpVYLSKlbxKeGDDz7AzMwM1GpyImEcw9gkvAJVbeYaqOSOAvg+T+Ye3wUOqLRK5J1LcoB7rQ016xfmiOJbvSi+zQsAULIK8E4GnnPJPOs6w0LapjbLIzflo+xOH8a7pjEfTWDNTX4UXEzyvqPaiJr1QXBOslYJr8uDSqNA18eD6HinH5UPFiJyE+mTtVSHmvVBaPLJhd11FsQn5hAdScJaqkPDc2EUXknmZHOYR836IMypvB+4KhcVD/hRvC4fOVVmVNznR+hakvc1+Rxq1gdhLSXzrP/cHMzF5rH/pQ4AZA0XXkf6wDlZ1KwPwlFtBAAUrHWi+pEAGp+NoOaxIMru9CFyY4qMz5GNEdcZFgDAwMExzE3PiwSl4tu84joSIG3da23kt53lhJJRILeBxHTNzfkouWNhXVP9SAD5qXWN71I7Km4vQHlqfRK5MR9ldy/MEdUPBeC7hOT9svsK0LghAkcD6X/RdXkov3ehbcUDfvgvJ201DhY5NWbofSTeoWvcqLhvYY6ouN+PwFW52PGtozj2VndGvAuvdBHyfgrl9/pRdF0elKwCCrUcNeuDsKXWhr5LcjLmk7K7fYjc4EFinkg516wPwlFH+uu9wJExZkvvKEDkpnwy1syZ8faca88cs7d5oeAWXslq1gezjtnSuzPj7b2ArGscdakxaybXWnNLPgQIiI8TZaKqhwrFeNsq9aRtLrmwvcQAuVKGseNRMd4nj1ljkLTV2FlER+MikafiPj9C15Axq/eRMWsp1sIY5MAY1fBdkLMo3j4UXZcas7mcGO+6h4vQ+FwE1Q8txLDs7oUxy6VjuNaMitsLUPtU6JQcsebmzPHtPtMKtU4FS0i/bI5YHO+d325B/94hFF+bd0qOEOP9eBCNz0dQeKWL5Ih7M3PE4jVQ5YOF0OdqMHBoDMc/HsjIEaFrM8ds/WNFsIT0MIf5ZXNE+v/XP1uE0LVu7HmxFW2b+jJzxKU5qHywULxvZff4MNk/jX0/bT81R1zszIihXC0jVtpRnJIj8s/PHLMyhQy+i3IzYijmiDOt4pi1Bg3QujiSI6IAopk5IqfBjNGKdmyRv4WDBw/CZrPh/vvvx/Dw8CpBaRWr+BRgNBoxPz+PjRs3iv/tY/wBfxZeR9k9PvguJWsgY4BD1V0BGHJJftN7eDhKTeJnyu4qQOAKMkfo8llUPRSAOaKFJWyEXCWH7yK32Lb0Di9CV5F8wdpJW1uRAXPT85iPJ1B538KzXnKLV5wjWCM5HX5iez8Ov9aJvLVWVC2qH6y5OR+RGzzi36xBjaHDpCJcvSFA1BRTCF+ftzBHgFy38AonbMVGVN8XQNVDAdGeq+i6PJTc4hXbKhRyTPVHMbx/ErZyA2lrJ3EJXZWL0jtSbWNkTVF6rw+Nz0WQf5ENVQ8FoMsnbQOXu1CWqkvE+mKYGY5j/AR51zX4SVyMATJH+C51ZswnjjKTeHqXdy/EGwAKLnRkzifPFKHyLh9YIyFVVD0UgK2S1Cs959hQ+cBCvBufi6D+sXAqgCQuznpSE3CfZUVVak52VVvAWRmU3JkZQ9fpZI5wNZhR9VAAsbEYtny1GaYCDYpvXohh5QOF8JxD5ghbJYlhfHoWCqUc9jIjShbNyRX3+eE9n6xrLKU6VD0UQCIxj+R8EqHrF8UbZB1ccAlpayrSiPFm7SyJ96I1Z9ndPgQuzxyzaRRc4siId+kdXgRTtQbWSdpaqsk86z0/M94lt3lRlFq3s0Y5OLNaVHI6Od7FN3sRvj5PjLdSo4DaSGqZrtMtGX2K3OARa2kAqb327yc1L2c9iXeaSFi0Lk+Mt6PUBJ2bR/559ox4s0ayNiy61o2S270wBjg0PhFB7ZMhFFxIYmiOaFH1UAC8OzVmr3CRetqdBai8y4fy+/2ZOeKhAAx+0tb/hRyU3e1DTrUVKl6Joi/6l8wR6XiX3+tHbAzY+6M2zE7NnZojysmYzT/Pjvpni9CwkYzTkutOzRGOapKb8taSMbv/pU50fzKINddm5oiMMXumBbn1VhRfT8b0Ujkib60VYIkya9X6AIAktn3tCLxn2TJyROV9hcg/zw5TkQa2cgOsRQZ0bx/A4V8ez8wRIDkiPWZ5qxICBERHyObn4hwBkDHr/wJZQ7NWFVQ65bI5ovROkpM1Hh0Ygwplt3thjmgRG0uekiOcV/DYrv0jtu7ZjFgsBp7nEY1GVwlKq1jFp4T/+I//EDekAWAEfdgkvAIhMpNREw9d40bBxaka15k5YM1q5F9Acq6tzEDaplRSAlfkInI9yW8qrRI6jwbus8g+lGWNHhX3+sFYSePCS3Ow5kYPxjunEJ+aQ+BilzgnG4MaQt7JIW19lzihsTFoe6cXne8MoOR2L4LXkj7p8xlU3OuHvoDkfWeVAfGxWcQH49DnM2h4JgzfF0h/uRzS1hgk+3Oec2wovaMAxTd44G60Yc3NHhReSvIbYyVtLWtIDcZ9lhXxqVkc+O8OAISkkK7/gyF7nvYqIwDAVWlGxb1+1D0ZQtUjAYSudYt1CYC0ddaSuPfuHEZ0NI74JGFbBK/KRVGqlgYA5Xf74DqNrIFy681gjCrk1FjEeK9ZNJ+U3+lD3tkkhs5aA6ru86MsVbvyfz4HxTcttC253QvPeaRt6Do3Gp+MwNlA+uS72ImSWxbmnpLbvPCm5mSTXwv3aVYx3vkX2DP2Zopvzof/8znY+/02NL3SjYp7/TCFyTybd7YNZYv2Htfc4EHgchdUnBJKVk7iXULinXu6BeWL1kvhdSTe87NJzM3OZ8a7wZw5Zq91k9ols3BvXA0khvYqY+aYvTIXjHlBiab8bh9yU3OypSQ1ZvVkrRK43IU1i+JSdmeBOGZNYS1payMX9l+WA5kMmJuaF+OdfwFZA+kLWDJm85nUvTJBwSoQGyDzbskt+fCl6r9aNxmHhkJSg9E4GcwMxUWCUvFNi8asbWHMMlYGWheHwksW9vvX3OBB4AoyZhk9iYutzICquwNoeCacEe+idXkIXpU5vp31RlTd7UfNhuApOWLxmK241w/XaWbwdhaWiH7ZHJGOt/ssKw78qAMdH/bDf5H7lBwhtr2fvMv4P59DcsRtmTkiY8ze7oU5bMSJHUNoe/dERo44eczWPRmCs9IMU1i7bI5I///6p4pQeGkOmn7RhWNv95+SI9Ix1BewiFzvwWTPNA79vO3UHHHSmFXwCiSSScTjSTGG6RzhrF4Ys8l5sp9QcP6iWuaiHJHOyYwecFSYYMjXijkiPpGZI0xhLaaqu/GJ/A3s378fFosF69evx8jIyCpBaRFWSUon4de//jUEQYDRaAQAJDCHl17+MXrmCRvTFNRDySlgSBX1E3NJUWq14l4/GIMaRg95wIw+0tbo06HpZ11IxJNgdGpofTwangmDMaqhzyNtDR4NaevVY9s/HQajY6DWq9D4fASldxWANTHQuUlbnZuBklOA1TMYbZ6BuUAHFa9EferFjbMx0LlI/9QmHkpOAXNAB/CAQiWHQrVw2zU2Ftoc0pazAkpOAU7HYODAGOanE+TvFPFI42ChsS2cslNyCtGqJO9MG5ScAmoTSeY6FwfOuqAxp9IpIVfJISQEsEY1lJwCOjeT+j0asKaFtmqNEiYfmXR8F7hIvFMx1bt5MIssBWQyGRKpxGL06VLxJknL6NGAMWS2FQSiNmPMJ3ExBUlbk08Lte4kyeuUsIzGTe6NpTDV1qsVCTS7vn8MECDGhbem4l1Iihhmvy7D2kDr5KBJbWaAJzG0BFJtC1Ntx2ex+UtNUDIK8IvirUrFBQAsQQOUnAK924ew5SvN0Dk4cJZFMdSpxLbmAGlbdmM+yu/wQZ+XGW/GoIYpX5uKoT6jv3p3ZgwZgxr61Dg0pfobOC9vyXizJmZhfOcxkMvlGO+cWjLenIWBzkXGDmNjIZPJMJNioZt8C/EGiJR6esxW3ObPiLc1ZeOVJh5pHCw0qSJiWnXC7M+MN29NjdkcDryNRWx0Dsl5AQqVXGxrKSRx0aR+u9bFgzMzOL55ALOTc1BrFuJ9co7Q5/FgTWrs+W4rNn+jCYxWtWSOAABTgQ6MQQ3eKsP4sZnMHJEas8b0OMzXQiaTYT6aEOMt5ohclozvQh0cNQY4SkxQaZWYaptBx1v94KxL5QhyXXMe+R3bvkNOLGisLLROlhCaLEJqzOqh8+ghU8igZLPnCGvEgMClechtsEDJKTB6mIyBpXKEo9SE8BfzYA7oIJPJMJU61XZKjtCrYAmTmI20T0Imky2ZI3LqTamcrEX3B0PoPzwCuUJ+So6YEWbQX3wEr/7uVczMzEChUOCf/umfMDc3B54/VU1vFatYxV8PHMchHo/jtddeE//bOzt+hz9t+xBRgZAgdE4Oejd5FtteJydSOT0DcEDeaVYiP5siFehcHPSp+WTLV5ohl8thLtSh8sFC5DWSthp7Kj/n8tA4iA3S9q8fgVqvgr3UiMZnIzBH9Km2ZK7S52ugsbHo/oCcZGJNahi9OjiqjTAW6qDSKmHwkO81eDXinOystEAmk8HkJ7lV7yFt9R6Sw4xeDTgzg/3/dRjdW4bAWRgYvOm1IQ+VVglj4cK8pWKViPbFYCnWQmNnYSgg19XYVVBplYvWH4TEPTczj5mhODQOVoyhxs6Rtv6FtYpKowTnZNHwTBh6Fy/OEeBI4Su9VuEtmfdB7+ahcy74aKn1KrEPnIn898HmcbFtek4GALVRBXMh6f9cjMxljEYuxpC3LrTlzAzMBeS6Q8fGIZfLoU+tXQz5moz5hLMwMKXiYish8sRGH9nsMHm14MwLbXkrifeObx1Fxwf9qbik5sNCbcaaU2MnMdz2z4fR/XF/Ki6p6xYukOYBst4z5PE47Yk1KF/nJ22DC9ddLJmsy+EgW+QxQe5jer1HxiFnILEw5PHQOjiRkK3Wq2BKtw2Q38o5SFudk4MMMrS+TlSEGKNavK7ZT66rT63FFWoFscBJux+aGZi86bWhQRyz7jOtsIT0GWtOzsrAkJ+ag/O14pgdOxrF3PQ8FMqFdSVvZcXxrc9hUr9Vj8kTUSSFpLhZtzjeAKAykjFrytMhOhxHci6ZEe/FOYLj5GK8N3+jCfGxuWVzRDreOakNLs7CL5kj0lDzSgiCgNGjE+R5XCJHAIS0w5rUMBfqcOy1nqw5AiB2tYm5BEaaZ5bNEQBgKtBCLpdnzRGsSY36p8MoutoLjY0Fb+Ew3RldNkc0Phsh44NXi4cJTs4R1nBqHDpZorSVBFRsagyflCNyGy2kLSfHvv9shpAQlswRE8Vd+PD4W9i1excEQYDf78fAwABeeOEFrGIVq/h08ZWvfAWCIIhkwFnE8dPXfox+gaiDG7w6MEYV9J7UHD09L9a8Ijd6oHFyMKbmWZ2LB2NUwejXovX3vYiPz4EzqcHaWdQ9WQStk19YqzhVYIzkvXnHt46C4VRgrWo0PBNByW1eaN28OJ+oDCwYowoaK4/Rw9MwF+rA6FSoe5IcuNPn8tDnkZzKGgHGqBLzkJpTQckoROKRIV8Dfe5C3ifX5XBi6xCm+2JgjCqo0vNsvgZa90Jb1qqGUkHmMd8FOeSzTpL3DQVaaJwLbXkbAzWnQGIuCRWvAGNUiTUOo08LjWMhF/JmBma/DpEbPAhe6QFjVMHgTeVnny7jnVouk2MuRjZfdE6OxDCdywP6jDWQXCaHkBQQGwO4VFtLum1QD3bRBhEglrzAGkm8xXVCgIwBADjwww4k55LQWFP9Z1PxDi70gTGqwOpJn40FWujyFsXQrIYpdW8sQdKW0aix+ctNUDEKaBfNyZyVIbVLkPUpY1RhrG0G2/75MAy5mfHW2FhxzWb0asEYVQhfl4/Ke3wwFmgz1pwaO7swZvM04m8j36PPiLfGycPoS49vBoxRhaKLPQBL4rI43lrXwphlLGrIlXKMdxLymSmgy4i3LnehLcvKIZPJEO2fTcUlFe9UN/R5PAypOtCam/PJvRHrhuS3ssaFMatLjdm00o5JrGOR63KpeVifr4E2h0dsUsBcdB5KZqEOZEq1Tc/ZRr8WWgeH4x8PIDYyS8Zsqm51co4w+3XQ2Fk0/+I4Nn+tCbyZWTJHpMcAb2PA2lnMdMegWSZHkP7rIZfLMTtNxv9SOcIc0MJUpEHe6XYwRhViAzF0vT+YNUdYUvE58PIRMYYn5whzoQ6GXBZKRgFGmz1H2NYYEL4mH/mfc4AxqjCdUilZKkfkVFpQdF0ejH5Sz0u3PTlHaBws7CVGAED/nlFS81oiR5gjWmhzOBj9Wgzvn0TXR31QqOSn5IiYEMNAyVG88uavMDlFVOG+9rWvYXp6Giy7hJreKlaxir8qRkZGsH37dshTNm0fNL+NP+36APMpiRJjgQbGVH5r/UMvIAAMT+Yq38U54GzMwjuhTwt9qu32rx+BTCaDJaBDyS35KLjACc7KgDOTdzVjQAddngY9W0aw699aoM3h4Kg0oX5jGJaILmN/wFSogzaXF23XdC4e1pABzmojdHla0jaXfK8loIcuh+Q3R4UFMoVMnJPT9X5DQaptUA9tDodd321B54f90OVqYEzlY86sBGdlYPKlr6sDo1Mj2huH1s3AWKhdqC+ZmVTbhbUKZ2UQH5vDTH8cpgItjKnvBEPWFIvXKpyJgd4mR+3jIZgKdWK8ARCiR6peo7FygACc+Jiopxt9Wug8i9o6WfG6vI3EbrSNEOVNAR20eQttdS4eltQ8OztD5ny1jtwbk18Hbe7Sbbu3DpC8n7+wL5WONwDo3LyY5y0hHpxtoQZmCeqgWfT+rfNoYPRpsff7bWj+dSdZa4lrQx34Reslg1cDs1+LXf/WgmNv9meuywq1GWsgo1cDo1eDxicjKLupIHXdzHvD6El7s18LpXpRXcjOwhxcqGFwVgaMRS3G2+DRoPpRckhK4+TEe2MqIH3QuxbWnABEFSFdDi/u3xryyXW1qb0yNasCkgvWcNpcjbhe0joXxqytzABnuUlcwwOA1q0Ray5aOxmHxgIN4kNxzPTHoFAu7LWn4w0AKn1qzBZqMdY+BSEhZMTbmK8RxzOTGrPmAj3GO6cwPzNP4p0K+eIcAaTGd6EOW7/ajInOmdRzf2qOAADewSK3lmze8Sb1kjlCbGtmIUDASOskDAWaJXMEQMhjulwe5kIdOt8ZyJojAECulGM+Po/R5qllc0T6/8vV8qw5grezqF4fRPEXfWRt69BgojO+dI6wMSJngjcxQEIgylAn5QhrqQGcjYHBwyI+GEcinoCazRyz6XGYf44DnI0BY2Jw4AdHMRdLLJkjpgK92D79Abbu2ApBEBAKhTA4OIhvfvObWEUmVu3esqCrqwterxeLQxREOTyypU92NjwTBmSQtLMKXJMLW5EBx97oxkAW+wPeKkfZPSEMHZ1Ay6+ze1sW35KPie4ZdL03mN2qatG/RW70oOm1rqzWU4Erc2FbY0D7u73o3bq8TVn9xjCEhEDtfZ5zmgmxkXhWm7i6p4ogV8qo7ME859uRW2PBlm81U9l0ZbN6+kvAe3ioGGC8JbvtXePjKcnKr0nbiVhKNJjpnRatBZeD1sdDY1Whf/t41nb+y3LAWxgc+GGH5HfT2r2511phCxukLU94wF1nRfcH0j6uOfWmrGMtjbQ1YGw0jt3fyf79uWdYJK3zVgxKS7iKB/xQcXQWMpGbPDB6tTjy2y4MH1xCUjSViwLX5J6aE5axefN8zgp3g235Zzj1ufqniyCTAVu+etIzfNIUEf5iHjr/eII8P5S5purhQjT99zHJsdzwbBgjrZM48nJ2ic6GZ8IQBGCrhIx6Otd2fti/7P1/X3gNSZBc4HK5UF5ejjfeeCN7R1exilV8arj44ovx1ltviX8rocbZsi8s2da91gbP6Tac2DYkaf1V/3QYgiBI2qSF1+XB6NNKysRyZjmK1hUszH/ZbJ9S/8blcsitM+HYa9ktghueCSMxm8w6b7jPtMJzph2t7/agf9tY1uul4b88J6vtlbVUh+BleRg4NCbZRwCoeTyI6PAsDv64Q7ItZ4akldxKkdNgRu+W7BetfLCQEIUpLbxslXppazKQ+Hf/WXpNU36vD717RiTv0Urs3opv82Li+Ay6NmUf87ZKPab65yR/N2eWg7EyVPZ9tU+GoGQUkv00h3lER5OI0trNUCBt+SjdEGhYH0bHB/2S4wMgcvJz0Xns+Oby9rqWYi3kajnV2ADIO4yQELI+w64zLPCe7ZDMX5wZ8HzOjSO/Tq2NKHJN/vl2sEa1pOR50XV5MBZosfXfmrNavDnqjPCf70LvrpHslpQg8UzML29J2Sm0oAX7AAAsy8JqtWLfvn0wm81Zr7uKVazi08HY2Bjsdjvm5ubE/xZCOfKWqXnVbghBoZJL2lnln2dHbp0VLW+ewODuLHUKFqh7uAijxyZx9LXsNa/AFS7ExmZx/IOh7LZPi/4tcIULxz/oyWo9lbfWirzT7Gjb1JfVpqxmfRAyhYzqvR4gSkDJ2SRGDy9vFVL9SAAqXkllD+aoNqHgXAe2/uthKpuubFZPfwlYOwvWIMNYS/b1QuPzqXn169K29QY/i/jwrGQ/Wef/x955xzd2len/q2b1asmWmyzLXWPPjO0Zz3iSkEIKSQikkEIqKaSQngwkJGT3s4UlsAssJcACWUooCYTAkgykQQhJpmR6sz3u9rj3qmLZ0u+PK8nWSPfKQJZl96fnrxn7+Jb33nvOe97znOfRoM9RSVvuITxLY4GO5jS2ELHrXIvdm6PeTF6dlSNP96Q9Zn6TjcE15B7Z641p7wVWrAF9Y0EOfUu65pW7ycrIvvR1tD8FGgtpbdtAqC3r7Oq09UMQVICcG2y0vtDHZLO4hUbJxbl07xC3114NR72Z8gsL6Ppd+m9YoZaz+0np+aDnEieDe6cFW7c19jUbbvdw4mc9ad/lrY9WMdU+x4lfSPd3jdsrkcllaWvsrnMcFJ7moOeNEQbfTl3zeiuyg2A00XM6nWzbto1f/OIXksfNIIMM/vvwwAMP8JWvfCX+fzUazpB9MGVbxwYz5ZcU0L9njL7XpK2/Nj1UgVwmS2uT5v5ALrnrLez5gnQ7tQkqPuJeWUeSsn2K/k5tklNwek5a66nGhysJL0fY9+8Sc/BaExWXFND96hDD+6YljxeD6zyHZJxMJRpqrvUwcnhKIIOlQd2dpSzOhTj+4/R5hZjN018CxwYzY4el1/tqbizG5NKv2cIre52JiePpLzSnwcLosem0FmXrrnMx1jrL6P5pyXZ/it1bxRUFLIwEGBAZ12KwVhsITIckLQxBeDbqbE1a6zaI1hAtWYJtrMRhDYVqQkHWbMu2FsQsH9M3hC33VdL75micVCiFLZ+sZCkYlsx5TcVqVCZ1etu6KBruLUemlLHvyxLf8DoTlZcW0r9rTNrmUQ2l5+WtfJNr6GucmywYC3W0/0q6dl18QQ7O9VYO/Ue7ZGwtFXq8VxbT/276vnbLpyoJL0VEa4hjkSEO845wuWo1ubm57Nu3D4fDIXnc/5+RISmtAf/0T//E3/3d3yX8bAtnYZTZkxtHF+Zrb3Gjz9UKRV8JIoPWDhvvqGZg7wR9aRbYmh6vZmEkkNavetsTXpb8y5LFE3O5jnXXuNO2yzvNivss55rJPyCQYTr/S3qg3/aEFyK8Zz6kldcUkl1uov3Fk4wdkp7sb3qgnCyjikPfbJUkKulcOjbe6Gaqa46Wn4h7iYNwP5HlSNpFzdxGc1oyEQiWYeUfLGJ+xM/h/5D283yvYxk75lpISmtF5TWF2CvMDB+eXNO7sRwKsydN4QAEotJUr0/y3XRfmEv+pmxm+30c+16P9Lk/4xXapVlwjfvcf7E57Xex5VNVyFVpyHYxQk8qolEKkpCtzMTYiRnanosuPqX4u5KLcuh+Y0T6+lb9XcM9pcjkMvZ9tSPpnDEYPDrWX5e+3yg4I5vis3KZ6pT+dszlOtZd7WZw/wQ9v5UuQG35VBWBmcW030PNTcUYC3Qr36IIkeqQ8U2UOgXDw8LEyWQyMTOT/tvMIIMM/jqw2WxMTa1MtgxY2Co7N7nhqgX7pseqmexI70W+4Q4PWQYle78ovXjiuTiP3A0WDv2gR5Lo4b2+GEuJnrb/Osm4xIJD4/ZKlFoFB59qlSRbbH6wgsWFJQ5/e23+71obZG9wxFWeUl7jdS6spUaG9k/StSN9MWYt2Pa4l5Bvib0Sk1Lh+uTU3V3F4mwovsNbDDU3uzHmadPmUxtu86DP09D5qjRJS2uTo7Kome1KT8DZ8kgViix5WgJO+RUF5KyzMLBnnJ5X1rZ4kg5/CklprYgp5Oz8rPQxN95Zis6h5vAPu1nofW+IXE2PVSNTyNLej/eGYsxFOg5964TkN6Ev1rLhxhL840EOfjPdIp2F0gvXRqhZK7Y97gVZ+lzbfUHumt8JrU3OxjsraX+pX7Lf2PxwBSqdkoPf6ZIkfTVuj+amaa5x/a0l6Bwadj+ZhmBwfg75m6IbQCReC60NNtxezVRXtO8VIVFNRiaZKe3l5MmTLC4Ku0iffPJJHnnkEcnryCCDDP46+MlPfsJ1112X8LNNnItFZkluHF2Yr7i8AGuZkcPfbpUmMmhg6wNVDOwZFwhGEtjyqSoWhgMc+2GPZLumx70spclBNDka6u/wpM0/bF4DFR8q5NC32tZM6nGd45AutkevkQjs+pf3ZmyPE79eGmDskPS8dcPHhYWgQ9/rwtcvPnZoLHI23lnBdPcCrc+lqXl9xkt4KZyW4LFWAo6uUMPGmz3MD/nT1jibHhNymvcqlrB2ktJaUXxeDoVNDoYPTdL56zQ1r894WQqubfOisVhDaEaayOWoN1N+cQGzvb60387WR6uY7felJXLV3y0Q/Q98vTktUanhvnKy9Gsj260F7vNzKdhqZ6J1hlaJeV3+6dlMHptYE5EKBCudLIOK/V8Tf+Yai5z6e6sIzUv3L9nrjVR+uIjJtjnJb0fj1LDxY26GD0zR86p0jrjpgXKCs6G0G0vLL8snu9K08i2KEKmOKN9B6ZAxOCgs4NntdsbGpPutDDLI4K+HqqoqTpxYGQcs2NkkOyu54aoF+8aHK5nqnEu7MF91TRF6h0ayvwOBXOt6Xw7HftzNfL842cJzkRNnvY32FwckSTN1d5WizVZz8OlOSeLI+ltLiCyFOfqDXsnri0MN+ZtsDL4jTkR1fyCXgkY7Q/sm0pKkVh9Xioiy5ZOVLAXCaeOIGrZt9xKYXuTAUx2STcsvKyC7wsjuNBsoY8IRXa8MSRNR1GByqtdEUGq4vxy1UZW2ZlB4pp3iM3MZeHecnpffm5rXn0JSWiu2PlIFclnaTezV17iwVRg5/mwP023imwdisFYbmGoRJ1IDbH64EpVGkbbe5rnYSU6NhYP/2S1JaFLb1TTcWcrCsJ/DafJic5kO71VuBveP0/uKNJ9grdj6SBUyhSxtLbbwTDv9b6bfsAnEyVQdLw9Jkp/q7ixFa1dz5Pudkv1Q3SdKUVuy2J3mGiuvLMTi1rMnTZ7tbLRSfFYOe75yQpqMp4ZNd1cw07NA+wsDov2GLzLLiKeTgcEBAgEhMfvyl7/MAw88IHkdGYAyfZMMnnjiCZ544gnOPfdcfve73wGwhz9ARMY2LkQnW2UHFF0Mz9IrkStkaQkMtupsweJhWZorprPL4xLb6RBaWGL6pHSHO9PuY+jAhEBiABwbjSnJPUPvTDH0jjAQ5p1mpagpR5KckF2rJ3e9FWuJQZLg0r9zDP/E2nZXl1ycS159tnC9Ijtp0imvrMbA3nEKtzjSKin5+oSHp1ArJNsBzPTMM3o0PXN1LQQlgNEDs+Rt9tP5WvqkavToNP6J9ImIwaOj8oP5dL02KKlg9adg/cdL8E8vplX6Ovn6ICq1gs7X0i+MTrTPsjCytndjLffR89sRrMUGjj3XI9lOF7XgCC6EJNsBjB6bxl5hWhNxby3qYtseiu06X/VtiRCFWn5yEu/1LkmCki5PkJF2eC2Sha+Si3LJLjOy76sd7P96p+g5rdU6plp8zHf5GD44SddL0u/lwFsTFJ7mYLx5WrLdzIAPZKBbZXkiBkWWnCx9+iFLrpIjk8tW1NJOeUbjpZ0c6jgIs6ANaampqWHPnj0ZW7cMMvgbw+TkJJOTk+Tm5rK0tMQ807weeZ48ilkn27zSMGZPVSBYZq0lV8rSKVGuYWzX2LIEK4Y0SjQTrTMY8jWSRAMQpLiLz88RyBhawVIpFSlkdUF80/3lDB+cklTtqb1NULeZODwmqlbU/OM+qq4uWjNBacsjVcjTTFDTTcZj8E+GWZwNMXgg/c7yJZ9g+5ZONafthS7KLitJq1Dknwzjn0xPvAEY2j+JypD+veh/YwClSs7I3vTFmvIrCsjSKzn+wzUW39Igu8aA6325tL4wkFalqO+t0QQLXzF0vTqI68zcNRGUgDWpCXW8PIAtKrMtBblS+F7TKSQt9PoJzS9x8p30BZiRfdOMpNlpWXpJHrkbrfS9ObomRazOVwaRq6Rd0mNEs7HWWclYbn6ogq5XB5k4Ni/5fWXXGJg4Ns/eb7RRuNWR9nnP9C2gc6TPp2QKGTI50opMCHLcMrkMR7U0Kc0/CXKFDE3MGvGUY/ojfo6b3mF6dho6weVyUV9fzy9/+cu015pBBhn89XDttddy7bXXcvvtt/Od73wHgH28jjwiZxsXoZGtsgOKdkdqswq5Up6WIJBdYUSuWEM9SwMyOcjSD134xgP4RqX7xcBoQFAX2SfswrZW6VOqGk02z7O7OWoN7zXgOS9PktSkK9RQeJoDxzqL5KJV1ytDhJfWRnrKb7LhPtfJ0N4JukUWg3pfG6X3tbUtRJx8Z4ySc/MkCUpAnPgiV6XPn8eOTzPZmZ58tBaCEoCvP8B09zwn30p/TwO7x+I291LQ5GiovDSfvj+OSCpY/Smo/mgRiwtLaYlHI3tH0ZhUDPwxfa49dHCC0Hz6+wGY601fGxs7MENOjYXjP5PONzUWIZeJ5dtSGNw/SX6DbU0EoLUQvbY+WkV4ObImYlbPqyNkGZSS6moaC7jPzqVgS7bkxpP8JhvOehsHnurgqMSmRWOxhrmRAIHpMCffHk1LqJw4MkfovCUmTkjnxYHpADK5PMlqMRWUGkXcelcKcrkMmUKOxqkR1J5OeUWmPYPs69wJIVBPqFm3bh1vv/02Fosl/cEzyCCDvxpaW1sJBoPk5OQwOzvLNOO8HnmeIsqolG1caRhd8lGb5MhV8rTzUgCNSYVSm76dNlsNchnzadRgJtpmsVYY06r6HPxmJwWnZ8cJSqbi1OSZI0+vkDA23FbCWMuMJAGp/uOCus3EiQWC46mvteflERRK+ZoJSg33l6PSKCTJQulIDnEEYX7Yz3hz+nW/RZ+w7qR2qCVJK+07BlCpFemVcoKsiaAEMPDOGBp7+ppB/+5xtNYshnamJ7a6znOgtarTbhZdK0zFaorPyaPj5aG0CkmdLw+hsaYfX3veHCFCZE0EJSAtQQmg7b9OYq8yp20XW1dOp7gUHA/iGw3Qvye9E8xMhy8tcT//NBvus530vDEs+W3F0PKLPrQW6VjGiGazffOSqlR1d5bS99YYE8dnJb8hc5mOmQ4fB7/XSX69TZKgBMKasa3EKH0jUcjksvTqZuEIcqUCR1UaxbIgKFVyNFGrxlMJSsFIkGbLLiamx6ELCgsLOe2003j22WfXdK0ZZJSU/iy4XC5OnlzZKSFHzjmyy0Xbr9UyDaJKLicXOJaGSbz109WEFkLs/6o0O3fbZ6K73CUsDHLqTZRdXJjWNqvhvjLU5iwOPd2Fb1C8I6q+zkXLL6Vt5GLQ5WvYcHMJXa8NihJ4dHY5G26v5PCPeuPEITHElF6muuZpWYMUo86lS3vM9xpbPlWFQp1+p/57jYIzsnGf7WSycy5tbNaqpLTtCS/hpUhaxvJ7jbo7S9E61Bz5cQ/zXX+957dmm8Cotd/8sJ8j35FmP4OwYyowu8Sx/xRvu+VTVSyMBRLVoFYXelMoLvW8elLcYk0mo3F7RVpFKK0d6u5Kb1MYU0/q3zMuqQqXt9VKyXl56e0u8zVsvMWzJiWzrZ+uRiaXtto8HtmPzzzJ/Pw8kUiEcDjMO++8w7Zt2ySPnUEGGfzP4+233+aMM85I+JmbKspkNaJ/sxbLNBBUkMwuHYe+1SJpR5bXZKPkHCdtL0qrJXkuzsNZb6V9R7/kwn7cNuvfmkWJAlob1N3tTasAoLXJKTjLuSaLNoDaW0vQmFSSu4PX31qCQi1Pb+eKoEylt2vY+SXxe1m5WNBq33vrNylk1xiovMzFdM8Czc+8N2ShtWLrp6uRK2Rpd4utVUnJe0Mx1hIDLT/vZvI9IpyvFds+4yW0kF45672GtkC7Jqs+7w3FWIr1HPyutOIQgKVCS9Xlbg5/W/y7z91ioeScPA7/h3TfEL/OU23ZUsDk0VJzXQm+sQCHviWulFZ3dylam5rm57olbfg2P1iBUqtIu9tt073lyLVy3k0j6V/zMTfG/PRKZjGruv5d46K2g/6In128jNFsiCtVVlVV0dLy150zZJBBBn8eNm/ezL59++L/V6CiiQsSyUqrUHimHdcZ6S3TQCArzPQu0PJT6Tle4/ZKlhaWOfBN6ZrX1kerCPmWJYkS5lIN6671sDAakFTmXX+rG0O+jqM/7JIkh5Rfms/JP0jbyMWgscCGO6roem1I1PpOY4ENt1fR+oseZjqlxzBNjoa6j3uY6pyj9VnpGAIrRIa/IjbdX06WQbVmQvt7BUu5lnUf9TDRNps2NmtVUmp6XFCQSmcZ/V6j6poibOVGmp/tTmux915CY4FAgPSWghpoesjL/LAvrfIPCHZoy4GwpNJTw33lBKYX10zu91ziZPCtUUmVqYZ7y1GbVdKKUBrY9slo7VyC8JS93kjlh4oEq14JwqDNa6DyUhddrw5JWvBpLLDxzqo1KZmtxaquO9LKuPkkCwsLhMNhIpEIf/zjHzn99NMlj51BBhn8z6O5uZkNGzawtLQU/5kHLx6ZV/RvtnyykqVQmP1p1m48FznJqbVw8OluUYIPCOoxlZcW0f7rAUk7sPwmG8VnO2l7sV9SHSVmm7X/q83iRAE1ND3sJTgjrUCkNkHB6c41E5DKLy/AVKCTJJOXX16AzpaVVrUGoPKqQqylRnZ/qSWt/ZlwvWu07XqPoM1TU3drKVMd87Q8m3499L3EpocqUGmUaUkza1VS8lzsJK8hm9Zfnlyz9dh7ha2friY0v5ReOes9RjrCWgylH8zDUWvh8Pe70hK4tHlqaq51c+Q74jZn1moDFR8s4ND3eiT7hpULBc+5Trp2iH+HaoeahjtKmRuUzg9rbnBhKjbQ/LNeSfLYxts9aKxZaZXHam9xo7ZksU+CAwHCHC670pT2eDGrupPvjHHyD+JkvbciO9BZNXEniE2bNrF3717JY2eQjPSU2gyS0NfXx8LCAlqtFoAwYV6PPM8bkV+lbB+cDxFZjsQJSjn1qXcWx5RcQsHorhYJYY+1aSrB8mKY4Ky0MszogVmCM4u0xnapiJx3/1c7BIu0wQDWah3uC3NTtmv5sUBQKjzbzrYnvBSckS16bnOJoHxgyBO/Wd94mF3/0oKvz4e1Wkfh2Sls9qKYH/YRCUfWtMuq5mNuNt7klrw+EIgpTZ+uxvV+ad/I2P26zs+RbDc/5CM4s5j2+nR2OVs/XU355QVpGgoEloqrCyWbDbw1wTv/dnxN5K21Yuc/NQuWhmmw5dGq9PeBkAxUX1uUtt30yXmWAstpCUrbPuOlcXvlms6bLn4AG+6oZNtnxCcIqxEJR/BPSz/niqsLQSZj37+3SxKUQFASSlAcihGUIpE4QWnrp6vZ8qkqQFBcSklQ0hG/13f/9QQHvylCUIp+kv5x8E8E6XxZmhE/sH+CSDiSVhVuZlBIevR52tQNoueNESEVWam30upcOnT5QpF8cW6R0PxSyna+6jGanTsZopuZmRlcLhf33XcfkUgkQ1DKIIP/JTj99NOJRCJ87nOfi/+sh1ZejzxPTyT1ontoYYnAlNAH64u1aG2pU97YzvE4CUGsa7KrQQYL/dI7b5aCy0SWI4y1SE+mu18fYm7Qv0LqSXFe/yQcfKo1TlAqvyL1OOqfDMcJSlseqaLxk9LjnsasSquwc+Tp7jhBSey8MQSmFgmn6ftj2Pawlw23V6dtV3lVIY2fSj9+N26vpOkx6eNNHJtnyb/MbG/6XVNVVxet6bzlVxSkjTPA7n9veU/lrJuf6eWdfz2elqBUdXXRmvKfyiujcRZ571djcSbEdJ90DD0X57HtCS+5myyS7UoucrLlkSq0Nulzus7Noe6WEiqvSp+jhXxLQu4lsRDrOjcHfbGW6TY/u5+UJh8ZC3TIlTL0heI7tQrPdrDtM8L9+icRJSi5L8hFW6BltsvPwadaxQlK0efQ9tIgvrGgJEEJYHFuiaXAGpQY5EgrmETPGw4JxSux/tK+XojF4L4JwqEIoYXUudfUxm72KF8hzDKBQIC6ujoikUiGoJRBBv+LsHfvXiKRCLm5Qs1nmRBv8xJvRn6dsn1oYZnlxTDDh4SO1eY1pGwXU3KJxPKG1JynPwlL/mUWZ6RrXjOdAeaH/LTvGJQ875GnezjwtVbmegNonBpc56SuAbX/SiAoOTaa2fa4l/zTxWtKunwDCpUcY4H4YBuYFhSYZzoDglLTmeI1r8BogMhymJAvdR+8GuWX5VP/cY/k8UAgSzRurxS93xgcG81s+4wX9/mpa4ExTHXPE5hMX/NCI9iall+an7bp5gcrqEhTU5pu9/POF46viby1Vuz6bDN7vpKeoLT5oQpKP5SXvt329PcBMNvvIzS/lJagtPXRKjY/WLGm85Zflj7OG26vounhtdW8wkvh+HxLDLGYHP52V1orOpVOgTaNIsLmhyriOW7Xi8OiBKXYefd/rV2coBTrBwIw07tAVxrl94m2OcJLYZYX06jyD0YVw+0i9xI9b+yaxJTMNBZBLQnAP7HI4lzqb34mf4zWgt10coyZmRkKCwt5+OGHCYfDGYJSBhn8L4HX6yUUCvHcc88hlwu5UhfNvB55nr5IavKOf3KRYNRZQ21XoxZR1Y0rucRICCJCOrE1h/lRabJCOBQmHFpmok265tX58iAz3fMrBKVU5w3Cga83xwlKxRfkpGwXnCVOUGq4t5xNacY9Q44GlU665tX+wkCcoFR8gfRann8qSGSN6phbH6lm453ladsVX5CT9j5AsLja+oh0zcs/FCQwvcjMyfQKQJ6LnGs6r+s8Bw0PpL+PfU+1vad2vF07hnnn88fTEpSKL8ih4d5y0fc5Btc5DjY9UIHalJ4GsTDiZ7pbOob5TTa2Pe4lp8Ei2c7ZaGXzQ+nP69hgpuGOUsovS58bhnxLRJbC+CfFv1HnJgumYjX+oSB7v3hCkiynz9GgyFJgyBMPomODmabHqoX7DSJKUMpvsmEoFMhW+7/aKk5Qip6q/bcjzA340qpb+acWCa1BARTS8CWi5w1F62di/aWlQg/AxPFZQoFl0fnWVF0Pf1T+miB+FhYWqK+vJxAIZAhKfyYydm9/JnQ6HT6fD5/Ph9VqZXFxkWWWeD3yPEqyOEv2oXjbvldH48oiuY1mSi8ooKAxyMFvJe5O9/X5EhYytj3kZTmUesfOaq/vLY9UgQz2pNhRsdpqSkpVIKbIZK3WUf0Rt+gOs5iKTOWlxciVMnreHBFVYFn2L0MEZiR2P6+2kwNwvd9B3+/E2YnVV7hBBv1i0ru+RDUVKaWkrpf6qLm5nIH90jJ6Pl8YmVKGxWOQvLb+PeMUNTkIpbELO/7M2khCvvEwcqUMQ06ayp0PFGo5xnTtom3fc6Q5ps4uR6GSp7Wg0NnlyJUysoyqtKfs3jEiav23GkuBZQJpiEK6fA1ypQyNKf15p7vnUWqkk9zYOyel6gPRHQXWLOa2LIgrrOmgoCGbgbcmkhc5U4jgCRMF6aS58ROVKLUKBksmme/ypSQyxdSTQnNL7P33NlElDdf7HRRuc8RVkcTuufzKAhxVZg79oEfo50SUImLWjjE1JtGFXR1svMkt9I9PtqZUgOuKtNLFMRQnhOelUqm44447+NrXvpb6mBlkkMHfPB599FEeffRR7r//fr761a8C0MFROiJHqaKBQllJvO1q5aGaa4pRZKVWMFytTldykZO8BltKC6jOF4fofFEoXFsqtHivKmFw7wQ9rySORX2vj8aVRfKabJS830nna4NJtmRjB2bjSkubH6xApVcKqnanWiVFbbBs1TocXjPmfB37JHb1hBfDRJakCUOr1TXzz8gWbFBEUrXC99lxeM1oLFkcfTo1mXa1rHM61Zv5IT8La7D71dqyUGYp0NqkVZeC0yFU+vS+MOkUtWLQWIXzprPC0js0Qj6Qpl1aZak/B2s4pj5HnTZfAYF8p8xSrOmYUu9dDItzIcKhSFq7NVORDoVKjj/NefveGSV3vYUTL4oTpWPvXPsvBmhH2n64sMlOQWO2pFJQ4dkO+t8Yo+OFwbTqZPMD8xBxsLwoXjTR2iC/MZucDRbe/cIJUWu7DXd40OdoOPif3Sz0+jn0rdS51+aHKpCr5Oz5fCuHvyuuBrLlkSrCoTB7v9QmqcS22tqxWWIjQ91dpWjtasKhHiZbfOx+MjmGb0ZeJEQQDoLBYCAcDjM+Ph7f2JNBBhn878Pw8DCBQID8/HympqYIscjrkefJQsv7ZBfH243sm4orhljKtVRd4WLhND+HT1EVDkyHE5RAtj5QRXgpknKcXv2zTfeXI8+Sp1T2Xd3HNW6vJBwKp+z3jkQXojRODfUf9zA3kHqHb4z0UHudC5VOyeiBMVEFluXFZSLhCAtD4gX2yeZ5djav5KD5p2cz+LZ4DWr99W7kSjn9b4rbTa2OoZRS0sk3BjG79PTvkbauCgRAqVZgdusB8ZrX2KEZPOfnsTgnXfNKZ422cmJQapRrsitV6ZToc9dQ8/rvEI1ag6qQSqdEn64mpwGlWonGmr72NPj2hOR7EsPi3JLohq34aS3CebVrsBwbPT6FPlt63I69c6vrzalQc6MbU7EO/1iQwV0iCb0GnBttDO+elFQJimHZL9RnpVB/VxkaexYTLdNMt/tFCUrbHvYSnBPUtMTUmxz1ZsouLKDjtwOMHZgRvUbXOQ4Kmxwcf7aLmc4Au0RUxGLWjgO7BTUmqXuuv6eKpaCgaJ6K4DUY6aOZd1EMK4hEImRlZXH//ffzhS98QfSYGWSQwd82rrrqKq666iq+/vWvc++99wLQxiHaIofwsol8mTvedrVlWs11LtRGFTv/tTlJ6af9lwPEsiJnoxXP+XkpLaAG3p5gIDruqB1q6j/uYWDvOH2vJeYFw/umGY7O9y0Veqo/4qL71aH4z2KY6fAx0yHMLzfe5kGXq2H/15JVlWL/1+apKdhsx+YxcvCb4oreId8Siixp4sfqNVfHBjNjrTOiCkjZ60wUNNox5mo5JjIW9L02Fo9DOtWbyY7ZNYknaK1qlFoFartaUsXGNxaENewJPPB1aeXRGNSmLOG8adSe9Nla1HpVelWotTnN/WlYwzFNTq2whpimrSFXi0qnWJOy1VqUIYPzwkax0WPTku0sHgNKjYJgUPq8Y60zFJ5mp+934rlz7J3r+/0Yfb+XtuArOT+f8NIyeyRUtJ2bLAzvm6b/zXHJ+QbA/GiAyHKE5YDEfajB/X4ni74l9n2pTTTWVdcUYSszcuyZTmZ7g6I2vHV3lqLUKdj7pTZJpfKGB8ohLNgOSz27hvvKUemU7H6yhZ6XR+gRsdb2ftSFpdRAyy/6mGqZZ+8Xk2O4O/I680zDAaHmpTfoGRoaQq1OP5fJQBwZktJfCJ1ORzAYZHx8nLy8PJaWlliKFm4UKDhbdllC+5F3ZyhotHPieSGRqLnZzUTLTEqSQnB2kcXoZNPg0RGeDaS0mgqHwsjk6bWVwksRySI6wFSvj+VgmP6d0gSQw99pIW+rE3wCoUFGsg3W0O6p+H1Zq3WUXVgoaTu3+SFhkW6mb4GZ9tTMlxP/1YvWvrZCd9Nj1cgUMlFChG88HC9yOTYaGTskYt/iY23WbD7S2iPEYPDoqLm6mK5XBiQtr9ZqCbfWdls/XU04lN7+Zi3IO81KyTl59L09Kk4aQ4jzWq5vre0at1cyN+RfkyLUWu7TNxhIe97Y+5HOdqzuE6Vos9VprcxASB4rrymUtIBsur8amVImEOlEyGDuC3Oxlhg4+I1Oyfs1l+uYaffx7jdOUHpenqQKlX9c2JE63i7tpTzevkBhkwOVXqTIpgN8MNM5h6PSjMGuxJfiseXUmxg9MEv3GyPkrrcRGE9RBdRBw61l7H+6A3yC1/NwCoLhichh1GUReru7IdrdfehDH+KFF16QvJcMMsjgfw++8pWv8JWvfIWbbrqJH/7whwC0sp/WyH5KqaFEVpXQvud3w9i9gle41ian8qqSlAQA32iA5cVwnKBkX29Mae2mNqkhApPtsWoKKUkeCo0CIjDbLj0eTLTNYSszSBJFJlt8DB+Youv3wsTV5BFUWU7FaiuujXeWMt48k0S4ikML7rNyKWyyi9pA9f9xHK1DTfsvpMkfINhjlZ6fz+xJH8e+35OyzepCWnaNgYljqXcpSVlhrYYUSeNUeK9zoc/RSNqViRFD/tx2xefnCHn/r/pE7/VPQWzneLr8Zv/X1lagkir+xZDXZKPodAdHn+lNa6PW/8dx8fdtFaSsdmKIvR9ScweAultKWF5cmw1L39tjzPaKP4fsGgOu0x04vCYOPiUem80PVnDsZyeZbvOLWtlonRr8MwH8kzC0f5LuN6Sl6Yf3T1J8Vi7+SWnmVmQ5Qpj0BbZwSHynv9apAYUM/4Af/3gQuSp1kTf/jGwsLj3NP+6j7TeDlF2Ql6Ti5Y/4GSttZ2p2ilC0WJuXl8fevXspKEi/GzCDDDL424dGo2FycpJAIIDdbmdhYYFF/LweeR4VKracYgM33e5nrt9H52tCv1d1VSFTXQspbY/8E0GWosV7jVMDYUEp6FQsBcNrKl6GQ2HCacjagekAofklgaQtgb1PtVF8Ro5AcNCAxqRJurbJ5nl2NQs1IF2hhurLiiQtImKEVP94gKnW1MSm4z/twVikl7y2GBq3Vwr27SKbewLTKyQua5Ve9JwEWLM1WzpiSgyaHA2117vo++OYpOWVGJnjVKz1+mKqQu+FPa21Sk/VFcX07xzlpETNiwBrU84MrO1+G+4tZ2HET+vPpNWsAUl7nPhpp9OfN/Z+pNsM6L3OhcVjoH3HgKh9YQzHfthD6YfyxAlKwOZ7KlBplYIKm0iamd9kw+41CUpnEvaPxmINc70BDnyvA/f7cqVVqAIQmF5ksl3cxhtgrmsOwgIJLSU0RJWY5ijYYifLqCbVjdi8Biab5xncNUnhaQ5h0TkF1t9WQtvz3QSmYapzjvEU6rx9kXYi5T66u7thCcLhMFdddRXPPvus5L1kkEEG/3twzz33cM899/CP//iP/P3f/z0AzeyjObKPctZTLEtUwun87SC5G6wCYUMNtdcUc/TZ3iQCR2B6kcWFJQb3Cf2ypUKfUslEa1USWY4w2xud+6lJSQZRaZVElmGqV3oOO9oyTa7SKm77hqAG1PfWKP27hfHWUKhmvj/5pKtrSuuuczHVNS8+zqih/JIC3O/PFa0rTByfZbBoQpS4sBqWCj3eq4qZ6Z7nuMi6VNuq2pm5TMdMR+r1l7WqPkqRNE6F52In5mK96GZzYM12cGttl9NgwXN+Hu0vDbwn9mx1d5WiUCvY9+/SedzRH6zNGrb5p+nvw1Khp+yiAo4/15vWRm3i6Oya7nMtzzf2fkg9L4C62zwsB5fT1sYAOl8ZJDApXrczFKrxfCAfZ72NQ98Wr8ttvN1D1ysDzPYGRa3RBJWoMMFZ6P3DCONHpOdWg3vG0Ds0zA5Lx3hpcVm0RrUa4UBYcHURuTa5XoV/KMjcgA+1OfXaZfY6E7ZKI+0vDNC5o5/yDxcy1ZJcM+xxH2bON8v8yDQABQUF7N69m8LC9KrvGaRHxu7tPYLdbicUCtHb2xuXZVxmmdcjz/O7yAv4IisD0oGvd8YJPaZCHcVnO1Mec/9XO+IswNpritl4V1XKdnu/1BZfrGjcXsm2J7wpLdv2fKE1rpi05ZGq1PYYPqHdxNEFdHY5257wsv62kqRm/nHoekkoOm28vVr02mLwnJuPSq/EWi1u63bsh23MnvSJEpQAJo4uCIQYnUBCKrlYXGZ6rHmGhRQFrlORU2+i/JIi6u8pk24YtVWTOidA6YfzaHpcWoYxHBBUknI2pPG5QFAYyq5dW5EqHSLLkbQKC2uFIktYfF1cg3XdWpB3mnVN7ZRaBQaH9A61hvvK1mzzls7GT2uH8kuK1mTr0vXaEEv+ZUmCUtMqC78Tz0onmm0v9THeNiupVuXcaEObLc3Wrb+nlHXXuHFsNIIPOv8rmZ0d+9433uEBhAXQVAWq6utcbHvCG1eM2vnPzQy8lZyENNxXxraHhb5o9MAsO/+5OWVcGu4ro+ziQqFv8MHuz7WkbOc6PQe1JYuaq9wAHPlOd0K7hXUD/I5fcJJ2urq6KCoq4tJLL2VpaSlDUMogg/+j+MEPfkAkEuEjH/lI/GedHOP1yPO0Rg7Ffzaybzq+O7bssmJ0DnVKO6qRfdNxooOj3kTFh4vYEO0TT22387PNzHb50drkbNvuTdmu/40xdn62Gf9kGEuFlm1PeCm9NNkGomvHUHwBqe6uUsFWNAUfu2vHEPghd5OFmutKqL01OT+LQws6h5r8RglLWz9MtM7S+rz0pD1GUKq8slBQ7xTByJ5pQvNLdL6WvrjT+KlKKi9zpbUZKz4/Z03jb+P2SjbcnvwMVkOfo0GlX9v+jNwtljW1S4fFOcGCTKl5b/aFRJYjopPwPxW2al1auzUAu9eMUqPAPyORU2uFvNx1rrRMeukleWx+KL20eMO9ZVRe5sLkSb8xYWE0wPBB8cUvz8V5bH1UyMv73xhLSe6LYeLYPNM9Cxz8T/EikX29EZVBScWF0pYudR/3sOU+4Xvp/s1wShLihts88e99ZN+0MJ9L0a7psep43PZ9pT1lcUprg21PeKm7uxQQ5odiuynrPu5h/fXFgFDkFSPdFZ+Rg6VEsGxa6PVzeFURyx/xc8zxNu+wg7bONkKhEC6Xi4mJCQYHBzMEpQwy+D8IjUbD/Pw8U1NT6HRCXScUtYH7feRXBCIr48TR7/Xg6xf+bys3UXJu6hrK4e90x3O09dcXU58inwKBHBzLlTbeKeRKGktyu31faY+TNjbdX87WR1PkLQGBwDJxZE5QU3ncS+1N7pTtel8T1DEb76mkPk2eUfp+J2qLStTqDuDwD7qYbJ8TJwsBc72BuILOlk9VSVqrDe2fYG4gvVy2sVhD9ZXFbLyzNG3bTfeXU/IB6ZpX4Zl2IbZSZZnFACq9ErvXlPacGougwPVeIBKOrNmGOB2UGiWR5TCLc2uzmUgHR715Te2yTCr0Tul41N7sXpvN20MVFJ0tbfeHBqqvLF5Tjtb1u1GCMyFJglLj9sq43Vo6Va3Wn/cxdnRaUq2qoMmOIU8n+b6tu7GY2hs9ODaaIQA9r6aYj2ig6XEvGz4uzKEOPNWRsl3Jxbls+4wXY7GGwHSYXZ9rTqlqVXuLm23bvWgsckE96XMtjB1KjkvtLW6qrnCRHbXNffffTqRs59hoxpCnpfRDQo7W8tOTCe18laP8jl/QxmE6OjooKCjgmmuuIRwOZwhKGWTwfxR/93d/RyQS4VOf+lT8Z+0c4fXI87RHjsZ/Nt22ECezlF9UgNGlx1lrSTredNsC+77cBkEwlWjwXlVM7S3ulO12f75VIDCpYdt2L7U3J7cbOzzD7s+3EBwLonaoaXrMi+fi5HXOwXcm4+pG3o+62Prp6pQ2WP1vjkNQIG+s/1gpNTe4JONjKtaTv1VijAvCwN5xTvxSuuYVIyi5znFIjoXTbQv4x4P0vpm+5lV/dxnrrnGjTpMGOTdZ2PTA2mzfUj2D1TAV6FBb0qsmAmTXps/P1oLFuRCEI2nVrdaKyHJkxRb6L4SpRLMmmzdHjYUsg5KwtFAoWz5ZmdZCOf8025ps6GpuLGbdNe64vZgUprvnGT4gTvjPP81G48OVoIbR/dPMdosnVfP9QcaOz9DyrDhByVSsRpejofis1JyFGOrvqWT9x4V67cDbEylJiJVXFtL0mPC9z3YHhM0cKThKjQ9X0nCfYC949D97Um/6UAu1sbrofObgtzpFiVYN91ZRe60bEIiDYkpLngucOKqF/Dw4G+bYKgekYCTIibx3eT3yPB3d7fj9fkpKShgdHaW/vz9DUHoPkVFSeo/hcrlYXl5mfHyc/Px8QqEQEcLs5DcQgW1chE62QtQ59M1W5CZhplV3dykaU1aClVsMPW8Ok10ufDC6fA1VlxektDiaPrmApUgfJzXkNpoZeTd58rPkXxJIJlLIyiKyHGGyU3pnycC+CazRAnZMOeVU7P9aBwaPjvkuH1o7ZNfak9R3/OPEd95vfqgChVrB7hSxADA4dcgUMvQO8Yl7x69WLBrW31YSl/c+FaMHZik6bZFWic45BoVajq3USDfiyYhMJkMml8XVYVJhLeo9MWy8q4rIcoRdR8VVmjwfdOKsszF8cDJOHkuFte56Wwv63xiXVFCKYdsTXsJLEdFnCeA6P4eirQ5sHmNaO7y1xE2hVqBIw7i1VuuQK2WYi6Ulzf3jgrrGwB4JG8JrixjcOyEoFUmoG+jscmRpLPzi1mhPdzFxdIGJo6kLmK7zc+h7dZTdX2lBpxO51+j32PabIao+VCCuFoagZBVeihBMI90+0TKNxa1HrU/xqevAUSGoTo21zuLckJp45nq/A1OhjmM/6OXES4OUn5/HVEtyx1HzMTfGAi27PttC36ujBMYDSd/Uu5E3CKrnWWpZQiaTEYlEuOWWW/jOd74jeR8ZZJDB/x38/Oc/B+Duu+/mG9/4BgD9dNAf6SCbPOpkp8XbHn26O0EhadvjXibaZxMsy0CwY8vfHKDtv4RcwntDMRNtM0m2bRBmyb8s7P5FXH1JkaUgshxhovnUv09EYGoRlVEpqao0sm+aotMcdOyIFv1TKTn54eB3uuLKN65zc+I2dKsRK2Tpi7VsuKGEoQOTAqEiBXR2tTC2SlicxXat26p12KotonZZvb8fwVFjSWszZnEJEsnpbOQUWXKy0hCQ1rqjvuZmN+YiPSwjaVu29dPVyOUyyZ39Q7smGZLYPf6nYi33UH5FAQ6vmZ4/jDCYgkQcQ+VlxcjksrQ7/8Vs/lYjd70FmUKWdlHQ6jYIO9HT2OQ1vzBA5SX54oQiLay7spjjP+xNq8qky1EjV8oEZSMRJaitj1YTnFvk4FOdND+Tekde4fvs9O8dZ/zIHP4ZwZIt1XXF7mthJMBYi7TCwHTfPJrsLLRaOX6/uDrSUmCZxYXUVi6OehNjB2bxT0JoYYmZntSL1XV3ldL6XCf+SZjpXWD0WIoilxa23l/N/IifY9/r4fizPYSmE+/TH/Gzk9+gN+iZHxV2mGm1WgYHBzO2bhlk8P8JLBYLCwsLBAIBnE4nMzMzhFnibV5CFpGxlfejl1ni7Q881YzKLMx/vde7MObr2PPV1iRSQuerg+SsE/5OY4HKK0uS7OIAprvmUWTJ4xZO2euNAuHoFKSb1wJoNHKWFpeZ7pNWO+x7ewxH5arFnKh6ymoc/UEPukKNQM7SQH6dLXlnf2BlZ/WGOzxozFmiNRpNjga5So4uR3yV4+Qb45xEqMlUf7SIll+eTEn2mOsNMD/kp+2lNDZsGsgyqLCWSNe8wssR5Eo5Dq9ZlKwSmF674nf93V7Cy2FJ6yvnVhue85wMH5qk60XxmpeUxemfirFDMynJJKei6THh+qVUHR0bzVR8sBBHtVnSXhXWpraUZVChUEvXvDRODSqdEovLEH9PUiIgfFdjx8Xv1XOJk8nWGabb/ez/qkSMNUI9Tsr6rvi8HPIb7Rz+QRdzvQHmelPPFwrPtNP/5jh7v9SGJkeTmsgU/RY7Xx7Be2Wh9PMKwFJgicCk9EbLydYZcmutKLWpa+YxVaTRIzNozFmQQuHSUW8mu8JE67MnaX9pmPIPOlP2UxWXF5BdaYoTnJYXl5lsTuyPjkb2MJU1QrgjHK953XPPPXH78wwyyOD/Pj7/+c/z+c9/ni996Us8/PDDAPRygt7ICZwUUSPbEm/b/ssBxo5PxxWStnyqksn2edp/maiOPdsdYLpznu4/CON9+aX5zPX7kmzbQFBgio0RYupAah2EQ8tpFeoCM4voAhpJ+62ZDh8Lw346X4/mIiJKTge+fiJup5XflCLvAnpfEepgaruauo97GNyXbGEXgyFXi0ItbYUWI1sZCtXkrLfSJVI/63xlkPxNdkn1KBCIVll6JaZiNbO94gozKq0yrZOOlDLOapRdkkdunY1O7SDD74qTXzY9VIFSYn0WVght7xXWcg8Fp2dTfFYuvX8YiVsUpkLl5cWoNIq0apztLwzQ/oK0erylQo9cJUcmk34G2ZUmwYYuDdp/dZKKy4pSKpnFUHllISd+3p9WlUmfo0WhlqO1qUWVoDY9WMHSwhKHvt2V1BfEkNNgYaZ9mtneIAef7hRXlYp+j1Nd80x3Sc+hprrmMbn0kKVCypsvtLDEUjD1pgBrtUFQNwpCYHKRye7UfUzNDS7afztCcDzIWPMMkx2p221+qALfSIDjP+7j2E97CS8kzhmDkSC7eBmtUcPcoHAMq9VKT08PJtN7Q+7LIBGySCTy3lATM0gJn8+H3W7H708s8NbQiFOWyAZuuK+MLIMqbhkmRjCqu7sUrS29pVTdnaVoHWq6XxuStJSK2azt/GKzpGLLtie8BKcXJS0ktnyqCoVaLlmM2PJoFQqVnIPfbMYvMk/e9EA5Co2CPWvwJAdBhWfondT3WHCGMHD5x4IJnrSp4NhoRJutoe93IoQUERLWnwutHQrfVyA5EHqvdzHVPSd6f7Hrary7kp7fDaW1GbNW61ISQlZj2xNeFudC7Pt38eKDzqXDN+5LG4+6T5SyOBeSJB9p7VB5hYdDz3SJHs9arcNYZKDv1eRF1j8baZ5n9XWu9LZyOsHLXoqIpbWDoVDCUnAV3Bfmkt+QzfHnekRVxWLf2aGnu/ANpl5wi1nPHflxj6i1W3atnspLi5nqlLaya7ivDLU5K20f0fR4tbDgmaYYKdlOB9mleiaOLrDuBhfmYgOH/jP5Pkdr2xgdHWV4WJgMuFwuLrzwQr71rW9JnjuDDDL4v4+/+7u/45/+6Z8SfqZGyxmyixN+ZvJoqfloCSPHp+j81ZBgL9U5n5I8se0JL+FQhN1PStu6roWYq7XJqbu7ioXRgCTBwntDMZZiPYefESFEAJYKLd6rSyQt1vTFWjbcWEJofkmU5GKr1lF1uZvu3w+viVRjX29kvH1OlGiy9dFq5Kr04wFA5VWFSSSxBKQhtPypcF+Qy8ixWVHSk9apofRCJ8ee7ZE8r/eGYhRZ8vQkHi1ozeIEGRCsSVQGZdp4WSq0TLdJByN3kwXX+3LSSkHnn5GN0amVlA8vvTSPzleG3tP4Sz1P17k5zPbNpb3HWI7T9l8nU5ICQVDDSiYVpsaWR6pYnAuJymxrnRrqPu4h5Fti7xdF4qoV8sHQgvh3BlB/TxkaS5YkOUxrg7pPePFPBSVt5wrPduA63cF0z4IouQoEy76Sc52i/USM6ATCzjTfRDCpbxqM9IJ3gba2NpaWllCpVNTW1vLrX/86o5qUQQb/nyMQCOB2uxkZSSS1eGkk/5SaV+0tbvQ5mjgZRYxg5L3ehaUkvaVU1TVF2MqN9LwxklLpJIYNd3jQ2zUceKo5Tm5KhabHvfgngpK2rg33lZNlVLHri82i6i+bHhDaHPiPrpT2dQAbbvegNqt491/TW9SDQHoQi4XNa6DqChcLI4EE1btUMJdqMBYaBLWCVEhBwPqLoIGS9+dK2oiVX5rP3HCA4d3SOeim+8vpfXM0LXHIXKphplP6JrY94SU4E5Ik3GhyNARmA2njse7GYpYXw9KLSBrwfsRF16ujou+Exqkhx2uk7/fiG+T+ZKR5nuWX5dP+y9QkodXY9hmvYK8rtvFRAzaPIYlgkwrOrTZKznHS8vNuUUu2hvvKUZtVHPpeV1yV7VTErOeO/6RL9HnrCjVsvMnDZMccrc+JP5/aW9wY83Uc+Lp0H7HlEaGenY7kv+VTVSiyRNppwFKkZbrdj+cSJ7m1No79WCBsrcbYuk7GJkcYHBSeT2FhIR/+8If5+te/LnnuDDLI4P8+vv/973PrrbcSDq8QafSYaJKdn9BObVdTd2sJY8dn6HxpCFOJhtnBQEquQNNj1YRDYfakyUu2PlZNZCnMni9ItIuqL80N+jj6vR7RZp6LneRusHH8p12i6i/aPDV1t5Yy3Tkvat2ltqtpuLNUGNdFbHcNhWpqrvfQ9+aIpA1pDOYyHYFRnyjJaNODFWTplez812Yp7gUg3GfXDgn7dxES1p8LZ6MV34hPnPSkhurLXHT9pk+SRFV+aT5ZeqWotd3q46lNaoIiVqYAG24rQe/Uph0/05G1QCAMec7L48B3OyTjll1rwlKsp1OCpO86x8HIvrG0ZLI/CRLP07nJgn96UdQGMAbvR11Yygy0/3qAscOp897sWtOaLfYaHihnaX6JwyIiHmoTNNznJTgfYr/EevDWT1cTml+StLeuvakYfb5Osi6OGrY+XE1gPChJTMteZ6LyskLJ7x/SWzHGiU4Iip/+iWBS3zQZGWNx3QQn2k4QCoVQKpWsX7+el19+GYdD2okng78MGSWl/2bodDp8PqHTycnJYWxMmGwe412ORd4ljxLWyRoA4lZsIJAjrB4DhjxdkjXTwac6V1R6dND0YDXjLbNJRJcTz3dTeXVJnKC08Y7UJJD5YT/GfF3859m1+mT1Fh2ElyLMDksvGsz2L6BPY8V19LttFJ9fIBCUdKDTyeP2dzGsJsfU3FTMVNd8SkspiBb7rVmwTEoy1sBbEyi0ijWRW8o/WAQyxElK0RhtfqAC/8wixyQSrcKz7eQ3ZEsq66y/TZjgtr88IEr+aP7RGjxgfaypuFV/Txlam5oD3zguShBbKzZcX4xMkX4BMp2vKghqRYfS7ISvuMSFQi1n7MCo6LWXXZqP2aVL+JZOhdYOGz9eTdtLfaIqRSB8L7ocDa73O8TfBwCf4Ls6sF+8KLrxDoGUM3ZIPFYN95Wx/6sd9Px2hJ7fpi7gxSzWjj7bR2GTTZSgBDC4bxz3WXnMD0vbJ0YuiRCcTb3LNEZom+ycI2ddalWkiqsLWRj0M/DWBOMts4SXU+w00EV35g8LO/Obf9bLjIgs/baHvRCBnUebk4htvoiPY/q3mV2YhSNgMBgwGAx8/etf56abbhK9zwwyyOD/L/zjP/4j//iP/8gzzzzDjTfeCEAQP69HnkeOnCYuRCvTMtvlT9hRU3mpS+h/UuyyOfhUM3KjoBKy/tYStHZ1yt3SI4emWF4U+sHC99nJMqoEm7ZTsBRYZqxZmGjaqnVMpiAPB6cXWc7XihKUAILjfpYCywzuEc9xFnr9TLTO0vc7ocCdSpVossW3ct9aqLu5VHL8rvhwEWUSpK3D3z6ByZN+h0nJRU7sVWYU1yto/pEIycIvkKJKLywQlBckUtGGe8sYa5lNqRoFwr3nN2bj8JpFiST+4YBkfheDFClkNbZtjy7q/IW7y0weLeuu8TA34OOIBDFqZN+0pAJUDFIqSyAQZXJrrdhKjeLEHASCVd9bo5LnrL21BKVGLhBuJJ5f4VY7bLGn3el28BudFJ7tECUoFb7PjuvMHHJqrKIkssKzHegdak78rF/02cTUl/zDASZOzNL3ugSZzi9InU/1Si/O+caCws78FGSt7BoDE8fmBVUk3xKzKXIlrQ3KLivh6NPd9L8xhr3SSPeO5Hex/IoC7JUmdv1LC0O7JgkthFLGK6a8ZcybomvHUHyzTAwTJb0c7NoLgKxFRk5ODlqtlu7u9ApbGWSQwf8f0Gg08Y0j69ato7lZ6MObeZfmyLsU4KFaVg+QILXvPj+X/C3ZjLinkiyhmn/UF1crAdj6aBVjzTNJ7XpePkmW3h0nKK27sZjOX/cmkQxm+xdQaRTxn1ur9MmWaxpBcdwnQiCJYbJzFqvbKEn8OPb9dorOzo+TUTQ5miRiymoyUcXlBcwP+UUXzdbdWIy5WI9KrUjZZrJ5nh6bNFErBu9VJcjkMnGSUvQyN9zhYcm/HLfjSwXHRjOu9+VIEn023yUQsYfeGRElf7T/Kj1JBtamklRzoxuzW8+RH3QmkT7+VKy/sRilRpF2QU0qRnEE0tf21l1ZhNqiYrR5joAIub3wTDsOr5mD35Sos2mg8d5KOnYMSJKGqq4uIrvSxOL8UtzaUAztLw0w1yO+6W7LfVFSTrN4rDbc7uHwD7sY3j0pSkjTODUEhgMc/2EnRWc5RQlKAIPvjqHP1RCcEG/j6w+wvLhMcCa1epKlXCALjTXPohGxyHGfn8viXIjBXZMM7Z0QtbRp3F7JwmiA4z/s5ehPegjPp76upoe8AOz6l2a6XhxOUAYLRAIcN+9kamYSjoFer8dsNvONb3yDa6+9VvQ+M8ggg/+/8LGPfYyPfexjvPHGG1xwwQWEQiEWmOX1yPMoUdHEB1DL1ATHgwkqN96r3CCXpSQP7PpiCwaHoN5YfnkBZreefU+1JZEt+t8Zi6vJODaY0eZkpVQmCs6GmGgTCBRixJPgTIjl4LKkPZV/MkhwJsTQIXFiUXA8yMDecYajZG61I5kwM98fTKhf1d7iFrWAAvBeVUxYgoy17xttZFeY0pKLnJssOOttZBlV4mTmqP1e5WUujny3TZIwU3uLm+muBU7+IfValdoEnvPzJAlbBKHl2fTrjWvNz5oe9rIcXObdL66NeC8GtQlqbypjpmeeYxK51XTbAgfaxNf+Ypg4OitN4lFD4TYHjvUWSWJO3Z2lDOydYHT/tGib8ssL0NvUHPpul+Q74T4vDyKk3QDb/NM+nI1WcYLSOhOVHy5kduN8gkXZajg2mLGU6Gn/1aDo/alNcoLBMMFZGD4wycDb0vmgfyzA3KA0P2Bm0Ifaqk5J1jKVaITvPQjBqUVm+1OsD0ZJdC3P9jFxfJaZunk6dyTX4lznOMjbZGPPF04w3bZA8896UypTFZ3loOgMB8P7J+n6zXDSWv188Qi7e94S/nNc4HBkZ2fH57QZ/PcjQ1L6K2J0VPjITzvtNHbu3AnAEN0MRbqTdvj3vNKH9pqyOEGpcXslU73ztP9cICLF1HJyqkzI5LI4MWC1So5vPBzffVtwRja6HA0bb/AkkUFWK6jE1Zf0p6gv+UhIYMR20aw+1uYHKlAZkxWafOPheLst90SVlyQUWkwuPcYCnShJ6cB/drDxBo+kWlSMoFTzMTfGfG1SAT6GzlcHCC+Ky03GoDIokafxWs2ttaDUKuLEklTo2HESjUWTXo3ozlLU1ixJBqpjo5HiM52ShZuBd8fI3WDD/x6oQY0cmUJrlfa5XXeDi3AYSTWi6utcWIr1HPp2iyRxas/XWyk7P1+yja3ciFIjbWOYuzkXmVKGyWWQJCkd+o8uyq8sECUoea93YS7Ws+uzLaLvZgwDu8clpR5LP5yH2pzFuhtcoopTse/p0A968PX5aEvxTsVU1nZ+sZmRd2dSKrG5L8wlf1M2g/sm6PntiOi3sFrtqHvHSOqdjzqwV5iweYwMvDWRRJSMEx59IFfIUBuEIWe1QpQuX0Pt9W66Xx9k9MAsU13zLIwlTk76Ih20cQiDwcD8vFBkUyqVvPnmm9TX16e8/gwyyCCDG264gRtuuIGOjg68Xi+hUIgwYd5hB0TAy2byZcXx9gPvjqOK9lN5TTYKm+wc+34H/skw/klgUpiIqXQK5IoVid/VJKPOF1cWzwq3OZCrZEkkJf9kOIFYXPURd0qVps4Xh+LH81ych7PeSvfriUpH/skVkrLWBnV3e5nt9yWRbGJqOSaPlprrSvBPBEVJSDVXu9FmqwV7qz+mHnTHmmeY7RUfQ4WYTYNWINOPtc6ktH7r/s0w8iwZnb+Sth8xFxtQZMnJ22gTV3rSgtqSRW6tRZSk5B/wM3Jois7Xpc+nLdCy8SY3o0enE57pqai+pohwOCKpBDXdvcDC6F8uRRSa9jM74GNgp7gSAVqov7WMrlcHJNWItj5SxfxIQFR9C4R3q+/NUWb7xZ+zpUKLyqDE2WCTJCnp7OqEb0YMnS8PshRIbWsWe5cmO+Y48bN++t8QJ5D3/3Gc7AoTR38iTqQparJLyqVrbQjqSVEFspTPOKqe5J8IcvCbnaI5+JZHqlAo5ez8bLPoLv4YsWq6TlBFElPCqrq6FK1dHSc0HfpW4rxutdqWTC6L/381QanyykKM+Vr2faWd9l8MoHdo6Pp94nv+VmQHapOK+Z6Vxc1zzz2XV199NeV1ZZBBBhkAHD9+HBBysB/96EcADNDFQKQLLQZOk30g3rbnjyOYXLo48aj+7jLmBnzxBZEYucJcqkGmWKm9rFbJCUzDkad7AEFNyFysT2kT171jJG5fFldfen04kfATIKHvbfp0NcuhcFIhe/WxNtzuQefQJKkqBaaJq9PEFGEOfE1coSW72oytwihKUjr+s15qr3ZL7vyPEZTKL8snu9LE7n9PttQDaP1lX9paFoDWmkXYKC2876y3ojarMBZrRAlBrS/0YczXSarTgKCKY8zXSio4mEs1lJxXwKHvd4qSxPp3jRAhh9DMXy4HNbR/An2OtJVp+WX5yOUyTvxCXB295OJccmutHPp+jyj5CGD/d9opOStXsk3ueiHmUgpJuTVWlBoFZpdekqTU+txJSi7OFSUoeS5xkrPOwu5/b02rXtX1+hDGAvFY5TfZ0Odq8F7hErW723C7B32uhqM/FFSFUi2OrruxGLNLz4GvNzPd7k+ZL8WsAQf3TNDz6ojoO7Va7UiKOJXfmM3yYpjBXZNJKlcxkhOAXCmL20+vJldpLHJqbirl5DvjjOybYuToJKH5xHx3NDLIEXZiNBqZmxFyNrVazdtvv83GjRtTXlcGGWSQwdlnn83i4iJjY2NUVFQwPT3NEiHe4kWIyKJOLkXx9j1vjKCLEpEsFXpKL8jn2E/7CI4HISgQeQA0ZhVKlTxOMIgTCyCB5Fx8Ti5ZeiV9fxxLJCMESSDIeK/1COpLp/THA29PxO268ptsuN/vpOd3p+Rnq4+lhqaHq5ntW+D4KcTfuK2bQ03DHaX4hgMCYSQFyi7Jw5ivi9uKpkL/znFp6+CgQIJBDVvuq2SseSalWtLwvmmyrCpRi7kYDPk6VDol2etS29bF2zmFdmIkpeAsnHx7jJO7pM+nNsnZ8PFyxltTX3cMnoudyOUyOiTqYmNHp/BPSVuprgXBIIy3zjBySMJNBmHjaO+bI5JqRJserMA3HJBU3yEI7S8OEJwVZxWpHWq0djW5GyySJCVTgQ6VPj3VouXnvchV4nl448OVTHUJ9oxSVnwTx2eZqp2n5Zfi91dyrhOFWiFONlNDw71VBGcFQltK60I1bH2omsBYkEPf7RJVYmq4txyVXsnuJ1voe20s5fseU0Wa6pin5dk+UcJ99WUurOUGHBvMjB2eSfrWY6TH8HIEmUKOpULPdNtCAkHJdZ6D7FITB7/Vyck/jGF26Rh4O/H+9kbeIGIMsXByIW6ne8UVV/D888+njlcG/21IPzPN4D3HO++8QyQS4ZFHHon/LLbDv6vkAMVXWPCPC96ljdsrydliQqlVYCs1svmBCnR24bHV31NKTq2Vnf/UzNDeKRq3V1L9ETdNj1dTdmk+mx+qiB8/p9aCfzbIof/oQmuHps9U0/BQOSBMmBu3VwJw4jdDLC8v46i1AIKKUeP2Slzn5wDgOj+Hxu2VLC6EWBgLsP62EjZ+whM/T+P2SjwfdAKwtLREOBxGqxN+V3Ozm7q7S+NtNz9UQWA6QGBqkbz1Vhq3V6JzCY3X3eCi/p4yAA79oIdQYImKqwspOCMbx0YjjdsrMZcLbasvc8W92OvuLKXpM9VUXyskYNZqHY3bK3FsNAKgy1EjU8gEmy+EHffe6wUJcoNHR/H7nMiz5Ojscpoeq2bzgysxrL+nlJqPuYVr+lYrkXCEvNMEdZnSD+fFYxi7jsX5JQ5+sxnfuE+I4fsFWTj3hSvxnji6gN1rZsMdnvg1NW6vxH1hrhDv9zto3F6JPEuGTA7rbyuh7s6VGDZur6T0w3kA5G+zk2VSUXyRXYj3x9zU35MYb1OhgSPf6Sa3xpwU74Z7y1gNRZTsE4u3tToa72uLaLivjK6Xhjn+TB8N95VRfZ0QQ3N5YrzNbgNWj2FVDMtYd4PQVucS2mpzspApZBScnvjO1t1dSs3NQry1JdD4CUGKD8DzQWdCvDfe4WH9bSW8+68nOPSDVtF4A5gKdfhGA3HSTeP2SkouFuJdeLadrY9X4b1RuEaNUUXdJxJjGIu3OluFTC7DVCkoh9XcVJwQ7y2PVtH0mWrQQWAqiK3MiMEjxNB7vYuG+8ri12gp1jM3vMDxZ/rIrtXTuL2S7Fo9AJUfLaThvjJ6/zjM4myI6kvz4+9sLN459YJaRYQIkUgk/s3V31NKzU3CAry9TniOweAi4aUIhjx1Yrw/UUr9/aXkbbWitUN4OcLCmFBsWd1H5NSbaPpMNXX3eMAH3b8fIhwKJ/URlR8tpPLSYhoeLmfjHR52/nMz+7/WEe8jdC4dBWdkU3NtMQq1HGdDNjU3u9FYVHFSoeoDPnpLD9PGIQDkcjmbNm0iEokQCoUyBKUMMshgTSgrK2NxcRGfz4fNZov/vJm9vKV6EcV5frQ26H11lCy9ig23e8hZb0GlV7LuxlI8F+ehLdCSu8nC5gcraP55P7v+pQXvdS4aP1lJ1UfclFzkpOHeMkovFcYI+3ojy8FlBvYKE7Pa24pp+kw1tuhYWnd3KZVXFgIw3TdHOBLGVq0j/4xs1t/ujudAIPTPhkI1y4thZgf9bH6wgqKzo/nHJXlsurc82lJOJBJBqRWIF1qnhs0PVpC7xQIIqkUVlxSyOB2i+/VBNtzuYV10jEArKOLkn5HNse/3MNkxQ16DEKv8M7KpvbUkPiYDWFx61JYstDaBuN74SKWgDIOQf2y4TcgNtVo5MoUMY4Fw33lNNjY/WIHWJuRt3uuLMeQKf+i9oZitn66i9BIhho56k9C2QEvni0NMtc/h3Lii6tdwbxlll+cDggLN5jsrOPFiD3u/3EblVYUJOWfd3aVUXiXEe+LENJvvrMCxWchPyi7PT4z3XaW4zxAILNpcNZsfrMARHWdLL8lj0/3l8bbWciO2CiHn0drkbH6wgrwmIW7uC3KF9+VHvfS+OsqG2zzxPDIW78L3CTmbLCuRLFNzs5vaW0vi/9/8YAU5m3I4+nQ3OodOyE+j8V53YzEbbhfi7X5fLhprFq6zhRjmbrEkxXvjnR7kSjkKtZxN95YnxVtfrAWtsLvesc7MbJeQC9TfU0b5FYKtl61aF8+RDz7VSmByMTHen1iJt8mjJbwYpv0lgeRTemleQs658a5Smh6rRmuD2f4AnvPyyd1kAQRy3up4yxQyzMW6aLxX3lkQ8r2mz1Sz7kbhnY5EItRcfUq83+8gd4uFwrMdLPmXOfi91ni818firV2Jt38yyMzQQjSGwq+9N6zEG7+Qe8lUwvOL9RFapwa04L3RxcY7S/GNB/FPB5P6iM0PVlBzm3C9eqeG5eVluncIJKbVfUT9PaVsfbwKW7WOg9/sZG54geKznAnxrrq6iG2Pe/FeWcLmByuY7p5j5z83k11pEfoIrRCzjXd6sJYZyDKq4n3E0MEJ8IPjLD0LWwbYo3+FIH5mZ2cpKyvjgQceIBKJZAhKGWSQwZrxzDPPEIlEeOqpp+K77f3M83rkedoL95L3QUGJqO3XQzTcW46j3ozGkoW1wkj93WVoLIAGam92k9/oYNdnmxn4o9DWe42Hpk9XU3S2nYZ7V8aI/E12Fsb8cYLS1serqH9AGJvyT88W2mqg5+UBloPL2MqFsb3qqkIa7i3HdY4wN8/dZKXh3nL8U0EWRgNUXVNE7W1ugRSCQKZyny/UD8JLyyCLCBvPgMorClh/28r4XXdXKYFZ4Thap56Ge8sxlgttyy/LF+pARMfS2UXKL80nd5MVc7WGhnvLsVYJNQHPeU4UWqE+U/3RIpoer6bySmFM1jiFttnrhXzEVKRLWPxYf6ubqquF+pjGIsdzXj5ypRyNRSDRro5h7U1uqj8qtN39760sB8PkR/OawjMT473uxmLCSxEOfK2Vud4ADfeWU3imkNfkN9ni8Z7rDWB266m9aSWGDfeWU3yeUD9w1JtpuLcchVaBXCmn6poi1t/qjp+n/q4ySj4gxDtvix2dQ43nAmc83hs+vhLvjXeWYqsyc/yHvfF4m0uj8b50Jd4xKHVCTI3Fp8T7Eid1d5Vy8o1xWp87yfrbSqi8IjHejo1mAOzVZrK95pUY3uKm6ppYvIV7NRfpkCnk5HiNCTGsudGNN1pL0zih4ePlBKPklfg7G4X3ehc1N7rZ/7V2Dny9lYaPl1N0thBv51Yh3hqL0NZaZmCu30f3y0LNq/7usoR4b3m0Ml7zUutVyfGO1sd0djVylRxbqZB0VlxesJIDAZseLmfbZ7yggdDcIla3EUu50Lb0Q3lsuMODc6vw/jhqLcycnKf5x33oCoUY2rxCLl5ycS71d5XR87tBAuOLlJzrpCqaR2pyNPE+AiAcCRMhQmw5o/bmlXfWWKaJx2wpsIzGpkqK98ZPrFxTOBJmbsSfGG+NQDxqeryaDXcK71b7SwMs+ZeT+gj3RTl4rymh4b4yam9xs/vJVg5+szPeR2icGhwbzay7oZQsk4qcWjOVVxRgyNVy8g1hUVzzgUV6yw5zBGEjcyQSoaGhAb/fTyAQyBCUMsgggzXB4XAwNTVFJBKhuro6+tMIx9jDm4r/grNmUTvUDL87hUIlp+bGYnI3CqTXqsvzcZ3nQO1QY6nQU3dnKd2vDbH78614LnZSf38pNdd7KL4gh9pb3HguEsZgU7GaZf8yfTtHIAjll+fR9JlqLBXCWFp7UzGlHxTmvmPHp1heDmOtNpC9zkT19UVsvG1lPKm5QSAlLPqWmOiYpu7OUvJOswBC/rExOvao1RCJgCI6fqMW1uCc0fpBfpMN7xWFzA/56fnjCFXXFFF5dWH8PHV3lpLfZKPjxSEGD0zgqDaDWlA7qryyEO9HV2yK7VUmVFqFQEJ6tIrND1egNgljT/llBayLrs2o1aBQKzBF19is1QZBbCBKBiu7JA9zvvC70g8K64fFFwhjsrlMR92dpZiK1Qy+M8nwwUmyq1cUyWtvceO5WIi3oVBN3Z2ltO/o4cDXOyi+IIcNq3LO2puKKYvWdkaPz1J3cynZG4Vx1nWOIx5DgHXXu3Cdm4c8S47amkXdnaU4NgjjbMHp2Qlrj86NNhzrraLxrruzlI4Xhxh4e4LKqwrjOVA83qcJY65CqwCZcAyAiisKWHfdSrw33u6hcKudEz/rR6FWCDG0R5W9Ls2nJrqemNNgwZCvpfjs3IR4a/PU8RjX3uxGoZKh0MqpvcWNO5pHmko08XijBs9FTpwN1jgBr/bm5HhrrUr2f7WZmZMLCfGuubGY8kuFeqTariYcCtP+okBYLzorOd5bHqlCbZITGPXhPjOXnIZoDE+zrcRbLazHmkv0ifFuFOLvbLQK697RuIWXw1RfthLDujtLKTg9G8cGMzkNFkK+JY7+VCAClV+eHO+iJgezJxeY7J5NeGfLL82nJlpXIyg8tohS2LgQ6yMMhdF4XybEe3bAh388kNRH1N1ZGl+nNxZpWV4M0/W6kJ+u7iPWfayYpsersVYbaHm2j/ETsxRszl6J9w0uyi8rYMunKvFe56HuzlL8k4vs/lwLhjztSh9hkrPuOhfOjTY0NjWYhLiMN88QnAVzgxpf0yB7ja8xwwSzc7OUlJTw6KOPEolEMgSl/yFklJT+B/Hkk0/y5JNPcuDAAbZs2cLS0hJdXV309vayHFlms6KJdVo3FreJnf/UTOP2SlRGJbW3VsTlZbOMgpKNwZmFUqtgcSHE7IAfS7EelV4pWEh9twOtTU0kLHQmCpMOmUwmDLSAtcQo2A4Avj4fcpkcfdTmylxsIBKJkO0x0scothIDSq2Cg988gX98RW1l2xNedv5TM0qtIk5KCS2E0VrlZFl1VH0kD61DDas2Yqn0SiLhCPv+vZ3q61wotQo23uRm5xebMRbqkStl8WvK0quwFMmxV5iILEeERQqXnpl2H6YCXZykJM+SIZPJMBUKnbnZLdybqdjA2KE5iIkk+SBvqxW1JQtllOVqzFOj1CqweIyYS4zIFLK4ogKAxqomK7qTTJunRalVUHS6A9cZuSz5luIxBNDahXj7xyH/LGv0uAb6fjeG1WNIaKuzq5HJZWy5p4o9X2iNx7CHEaxlwvUf+0kvvsEATY9VJ+z6VmoVWIqFe132RSAb5k8Kk2xDnjYew1i8LW49dXeXIlfJUGoVmIvU+Pp8GAp0KE5h8cqilxiLodltZKrFh6lQj0ItZ/NDFfTvHENtzkKpEeJkjr4fFo+JsUNzLPmXE+5VY82KKwoZnSqUWgVzXX4OfLlDUApaxTjWWtVoTBFy6k2UXSwklNYyQbEnKYYOTbRQITxbpVaBrcwoxDt6TZ4PO8mtSbYsU2oVWEuMdDOCrdSIXC7HXCTE1ODUJsRbpVeSXWGikyEWJ0NoTWo0+ixmCWDI1yXEOxZPnUWDpdwUfVY65rt8GAt0KLLkFG5zkF1lQm3OQqEW7sdcHH1nXQbcZwsKSyCop40emGXbE16U2ug7W6hDqVVQdnEhoweaydKqkMlkcbUp4Z3NYsMdHvQ5QnHOVmBk9+da2HR/eWK8bWqQgftsJ0dHgyhUcsKLQkwT+ojpJWQyGRqLkIwMHZyi5Jw8sj1GlB+U41hvRqFQ0PdaPwZHGVlGFTLtioqUUqsgZ4MFZ52NuSEfSq2C47/sYeaYj6ZPVxOWhWl37aW3txd+K+wey83NpaGhgR07diQ9vwwyyCCDtUKr1TIxIezSuuiii/jtb3/LYmiRV17dgUwmQxaRszn3EVRqpWA3pRWsuqxlepz1VpaCyyjVCgz5WfiHAxgLhbHTPxmk+zfD5D3hxWFSEppfRmVQoDIohbEZ0OcIuZd/SkhEtDZ1XPlvYSiIxWXE5DKS12ATyNSrr9umZmlxmT2fbyWvyYbKoKTo9DyMBSZ02VlkmYQ+1j8ZRoYMtVHon+tu84AMsstMjOyZxlKiJ8ukitu0eq/UgFyw82h7aQiVQYmt1MjgWxNozGpUBmVcoS+yvCqB0wqKklaPgYn2OZCBMkuBVivH7w8L+Ud07PRPRhOvaA6aW29GZVCitqvxT/oxFmhRKIXx0uLSgxysbiGPtJWaUBmUmPLU+Af8mIr1KFQCifzk22OoLVlYo39rLjaiMijRWvWAD1uZMWH81trUqKJjp8kltC3/gIvgRDfWYkNCvqfNVgtKoP/cTO4mC6UX5mMrNTF2YBarxxCPNwARCIeEe1PbhZhZS40M7ZrEWiYcN6/JRkFjNlkGFeFoHLRmjdC23Ej/H8dX8oeoBZgxL3EnusqgJHeDFYvLwPJyWLhXm2DbZ8zXxVWKel4ZIb8xG0X0eNllQgx1+Tr8k/NCvFXyuG3Jtie88bzd7Bau15SvpeaaYmGuseqxa6xZ8fmHuUQ4rqPWTPsvhjG5hN18CfHWKdnySBWLC4uoDErMHgPjR+awlRgT4q2LFp6cW53MD/viMRzZN43VI7yzjnoh/oRBrhC+G5VFUHGylhgYfGsCq9uATCaL5ysGp5ZIJBrv6Dtb1GRHJpOxMBQQrsEvvJ/GPC0ymQytTU7d3VXR98/Iwac6WXdjsaCgatTCpB9ToZDveW8opvmZ3mjfIdyLtVS4N0N+FnW3eQQCE7KEeNuUcjoZwuwR4q0yKHHUmzC79Cjkivg3s7qPUBlUyOVyTC4jky0+NEa1kMNpoeG2MtTmLFQGJRPts6gMCkwFesxuQ8I7u227l9DCEiqdkuVQmJ2faya7RriGYO4Mf1T+mqU3hQ0mDoeD4GKQ48ePU1aWuIkhgwwyyOBPwSc+8Qk+8YlPMDw8TFlZGQsLC/Se7OUngz9kObLMemUD9RYPthIDOz/bzMY7S9E51NTcVE6WSUVkGcJLQr8oN2hQW1QEZxaZPenDWmpEbVFRd1cpB7/XiSFfs3JijbDBJUsnjNm2MqGtRiMnMB1GJpdhLNCSvd6IrVJYDLKWGen7/RjWMgNqi4qjPzzJXG+ALZ+sRKFR0PSwl12fbUZjy8JWaqSHEQJTIYwFMvQ5KkrOdmAtMxJZJcytzVYjn5Wz/6vtlHwgF7VFRe01Hg58rRWL2xAfOwPTYXQ2DSq1EkethfBSGLlSjqlIsKWzlhhRR/MPpVYhbJaK1oGM+WrUFhUWt4GJI3NElqMnD0D2eiN6pw7NovBDjUNom11uQpetRpElT7CuMuRrCUdzPo1JiHfBNjuFpznwTwZRW1ZyIGO+Nn7txmKhrbXUQP+b41hKhRhqTBoCgQCmomgN6Z4K9v5bm3C9HgO9jJJdbkJtUdH5cj/T7X4aP1mJImtVDcmehVUu1GtC88J9zEVrXqYSPUp1Yk6hyJJTe5MGuVaO2qLCWGhgpjOApcSQtMM9lj8Zi/TxGE61LmB1G1GbVdTfXcbAngn0udq4FZg+RyW0LdEzdmiG4FQIjX1FYdzg1BEOCdepMgtxmWwPcOhbzWy43ZMYwwIhVzGXalh3rbC4YvMYGXx7guzo+x1TTDIV6ZFFH1VgOhyNt5GTb4xji8bbudWBc2M2kQjIV6mPaWxZWEuN9L4m1HQVKgXmQiH/M7n08VpULN52nZnuHSP4xoOYCvVkGYUE1ezWx/NpIP596ewaTEXCNZiKDEy3+7GWCIRoz3lOcjdY0Ns1hPwCActUqBNiWGqgYKs9vplhpjPAgW920PS4F411OXpsJWqLivKLChg7MINan4VMJiMwLXxohjwd4aUwVVcXxTcO2EoNvPuvJ1h/W0lCvA35GuQqOe6zchg+NIlKoySwtBiPe7yPmIkgk8vQZwvv+NihGcovKcBaZiS8HKFgSzYKtYKJ47OYiwxozCqyDCvvgMaWhbPBSv6WbMbbZlBbVJzYcZKJA3M0bq9EpoKu4gN09XTBbyErK4vc3FzOOOMMfv7zn5NBBhlk8JcgZlH0wAMP8JWvfIWl5SVef+NV5HI58oiS9fn3oTNrBbcOtVDzkivkFG5xsLgQIkuvwuDUMt8fxOoxkqVXMjfgo/eVUZoe86LL1RCcDQmbpO1qaBHGUovHiEwmIzgn9PX6Ah1Z0bFzttdP7nob5mI9Dq9ZGI9X1RoMhXqWgsvs+1Ib5jIdWruaknPyMRcZUekU6KJrGsFZIAya6Hro1oeqkStlmD0GhvdNYyszoLWr4/PvyksLUagVgrXbj3vQ2tVYSw0M7ppEY8pCa1ez7qPFmAv1LC+Gka0qxWntamwVRsZPzCNXyFGo5KitKoKzQcwlepTRsTNuzRbNv/IabGjtagw5guWcudQQHzvt1SYUGkGIopdRTIV6oW2+ntneaLyNKrZ8spL+XeMYnFqy9CpgGEO+EJdYzcu5wZqQL+nzdYLFFkMYctRoHWoqL3FxfL4Hm8cYjyGAsVDP8uIyuz/XgqlYTc0NpVg8BsYOz2CrMArPNYrwUjieG6rVcrR2NZYyI8P7prF6hHhnbzRR1GhPGHPjMfQYGHxnMl7bUJuEuFjchgRSvS5Hg1OnwFykY3F+Ca1djcaiIDgeXW+M/v3o/mnKLsxHHn1YJpcuGm8N/qEgllIh39sddQ7Z9rgXlVZJDyMYC6LxLtRT/iGXcL2r8nZDnpYsQzTeTi1ahxr7OhMdbQtkl5rQZq/ExVCgQ5O9TMMD5SzOhYS4lOiZOD6LrcyQGG+XHrlChrPJzuiRGaGtW8/o/mmyy4R4Z68zMXF8lshSGEU0P1WrozEsNTL87hS2UuEbU2miNVS3PrHuaVfjel8OMrmM8bYZ4XqjYmCWEoOwVhlVI5MpZETCEQ5/t5vSD+ahtavR2VXCO1tiIMugpPoawXJNJpchj5LDTcXReDu11NzgEdaPw3A0qubf9Jg3Pr8xFOrROtTCs91kwVZqRKGSC8ptJPYRGnMWMrkMc7GeqZZ5dJYsIYZqqL3OjcGpRRNYZvjwFGqTCnulGVupgYmjs1hLhXhve9xLcDaESqckvBRm1780x5WwAgXTvH3kJRYPLBIOh7Hb7RiNRg4ePEhp6QopL4P/GcgiseptBn8TcLvdwuL8KsiQ08QH0MmEiVvJxblY3AbByk0HW++vpvt3g0nWTpsfEkgfcSs1HSltxRo/WSn4rP9Tss+i54NOul4SpNAat1cyN+RPsu4qv7IArSWLI9/pRpevwV5tTLLIKr+8AFuFkT1PCjuWtXaSbLsqri7EUqRPktNejeprixg9OsnE0QV0djm+cXFrtoqrCwlMLcZVWRKgE+wZwksRUQu1dMcH2HR/OVlGlaRHfeP2SpRaBYee7sI3mFqPueG+MmaH/HE7PzFUX+eStE5bC7Y9EbXqW+VJnKrN4lyIfSJ+pXlbrZScl8d09zzNP/rzr6f0w3mMHJ1hvktcnjFmB3b02T5R27wtj0RlmiVsA2tvcWMs0HHwm82SlnExRatUx3Gdn0PhFjsLowEOn2KbGEP9PWUc+Lq4L+7q92r9x0s48uNu0Wt2XyjIgu/5emtSm9g3VB2VRX/3VAlrHZScnUv3jhF0Lh01VxXx7jdOJBzH4NFRc3UxJ37Vy1SLD9f5OfS9PZp0rk33C0Vi0fhG+5Z4X5KiXcN9ZSzOL3H0P3vIO81KfkM2+7/bEW93KLKTcQbRaIRCJoBMJuNHP/oR1157rWg8M8gggwz+EvzmN7/hkksuIRxOHO/zKGadbLPwHy3U3VLKybdGGT8yx/pbS5CrZEk2SzG7tcXZkGD7FCWcnAqtU0Pdxz34xoIc+lZn0jGyawSbNft6I54P5HP0h734V9s+aGHznRUc+4FgRee+IJeeP44knksLjXdXMnFils4Xh9DaBPuuxJNB4z2VnHx7TNJCreZqd9wWTGuTrxCPUmDjnaVJ97T6dzqHms7fDqa2BhOJV0ITp4a62zxMdczR8mxq26wY0SS0sCRqmWXyaKm8rIhj3+uQvB9LhRaz20hvqlxyjai52Y2pUMexH3fHVYlOxeYHK1AZlClz8Ri2PFKVQDD6c1F5VaGkPR0IdmA6u1pUfjlmGxicXmT/10RyHi1se8iLbyKQ9K0kNZV4r5oeEwooYrFxX5CLTCGjO5U09SnHd9SbMLn0kvaCjdsrGW+ZTbJpXP0NbXmkipFDU/S8kmi95zo3h7EDo/gnYcNtHmYHfUnX5b3Ohc6mZl9Ust51bk6yPWGUIBmzmku+IcC/0uf4J4Nxi+8YcrdYKD4zl3e/IOSHG+8sZfzEbNwmzx/xs4uXQS6ocMpkMsLhMF6vN27XlEEGGWTw34HTTjuNnTt3JvxMgYomLkAjEwr6+adnY68ycSRqKdC4vZLu3w8zdiCx5hXbjBO3UhOxwGq4V7Bc2/lvzUm/LzrbHlc1qb+rDN9EgNZTxsni83Iw5es4+oMeNBawb0i2B3Gd48BZb4vXszQWkizO3OfnYveaROssIKj4zPQuMHFkDo1FHidjpIL7/FzCS+EkC6oYtn3Gy3JIvPaT7vggqHnrc7Ts+lJy7GKov6sMjT0rbtOVChtu9+AbTW3htRrll+XHrfL+XGx73MtScFmytrjtCS/BmRD7v5r6WcSIQ9Nd86L2ZGuB6xwHU51zonGBqB3Yx0o58cuTou1iNZkDX2sVfWaVVxSQXWXmwHe6CIymsbsT+VYcG82UX1LA/JA//v2divW3lYj+LnY/sWv0Xuei+Rd9ou+Oc6uNom129n6jLalN7BsquTgXe4WZvd88pY0GXNsc9P1+DI1FzrobStn/nfaENpocDbU3uOj87SCTzfPkN9mYbJlM+jbX31aCIU/Lgf8QiV00XvV3l6GxZbHzX5O/h/W3ulkORTj+w15sXgNFZ+Rw+Add8XYnIoc4SUdCzUupVPLjH/+Yq666SjSeGWSQQQZ/Cfbu3cuZZ56J359YiyiijErZRuE/aqi91s3gvkkmjs5ScUUBarOKo//Zk3iwKKkpML3Igac6BFWcFE5ZahM03OdlbtCX8hjODVaG353CVKym4rJijj/Xi38omNCm7uZSmn/RT3AsSP5pNgb3TSadq/7uMqZ75unaMYzatIowtOo4DbeXM7RvQtxCTQ2VH16pkahNcoKz4rlRzY3FHPthb8rfVV8jKEJ1vTKU2qorxnERdxdDbYK6u6uZbJulTcxKVg3bPhnNY76WOo9RO9TUXONasfMTgTZPTXaFUdT2bi0ouySPnA1WWn7Rx1RLapvZDbeVoHdqJetZDfeVozaqhE2jfwFKP5hH50viNR8Q7MDMRfrk9zMKtV1Nw52l+CeConUxgK2PVOEbD3LkafG8CKTfq00PVZClUwq5RYpH5Wy0kmVWSloGxo5vKtFgr7aktm6Lov7uMiY6ZuMWiSvHWPmGGh4oZ+zIdNIcw7nJwlSPn+B4kMqrCvFPBZOuy3OxE3ORnoPR2nDB6dlxW8fVaHrMS3B2MfU6aqxvib7rvtEAh76dWFe0VhsovSCffd9sg6CgWDXVPc/gO8K3HowEeZfXCMkWQSaoVUYiEbZs2cLu3btF45PBXx8ZktLfKB599FE+//nPJ/08h0LWy7bG/+/5oBNnnY2+t0fpf2Oc3EZzAlkpRogwl+tYd42buYHk5KD0w3lYivXs/2oH6GDTx8tp/nFnEkFn2xNelvzSE/0YSUGKkFN9nQurx0DvH0YYeCu5gwJBhk3rUHPom60piUJaO9Td5ZVcgNr2hBciiA5+ldcUMtk6IygsSWDrpwWZTDEy01pgrdYx1SJOxFkLyq8sIKfawmTnnChRqeZjbkxFOkmyzlqQjqS0Fmx5pAq5Usauz4rHbdsTXiLhiGSbtSK7Vs/E0YX0DVOg9MN55K630v3aEEO7pX1vN9zhESUorbvBhdltYOTIFJ3/lZwMxVShpEhODfcJO+KlFipjilpSid3WTwu7CaTehVi/MNu3wLEfJCbYldcI6lUnnu2n4Ixs8hps7Pt2e9KxEvqFU4iQeadZGXpHiOe2z3hZXgrHiYoAvoiPvfLXsOfaGRoS4qXRaKiurubtt99Gp9ORQQYZZPDXgN/vx+12MzqaOEmTo6CJD6CVrSjbbHmkCrlCxq7ozpzcTZYV0k2smT9KUtYokvtqLWy6vZzet0YYOzBL1dVFhHxLdJ7i8R4b0w9+pyuRpHTKsbZtT5+fbXs82geLEZS1AnnbNy5OKNl4pwedQyNKtim/ogCH18zo8Wk6XkixuKSFmmvcHIvusBFD/hnZuM/KpX/XeDJ5Y43IrjEwcSx1ceRPwbbHvSATzyVBGJOXAsui+ehasBaSUjrEyG8TJ2ZFSUjrbizG4jZwcufYnx3bGGzVOib/gtx266PVhMPhOIlGDI56E6YCfdL3EcO2z0TzfZFCVnzTxr81pyYNFmipu7mEmb4FjosUG13n5lDYZGfk0JTodcSIW3GSogjE+gWtU0P1RwrjBZr6e8qYaJtNIshtuM2DPk8T7xcSCF5asJcbGT8yR8lFTvIabPS9OUr/H1cKjkcje1AWhJmamsLnE56f2+3myiuv5Atf+ILodWeQQQYZvNf4xje+wb333puCKO5mnWxT/P/5TTbc5zrpf2eMvt+PYfMamOyajy/8xwgRmhwN9Xd4mOvzcfQHPQnHLDrbTnalOU6k3nhnKa0vDCSREZoe97LkEyGIRhEjKUgRcko+kEve5mz6/jgquuhT/dEirB4jB57uIpAqz9MIOd7inPi40vRpL8hhl8gYWPKBXGYHfUwcka55bX64ArlCzp4viG9kSwdLuZbp9jRs8zQoPNNO8Zm5TLTN0ipCRi+/LB/HOgsHvr0GIo4E0pGU1oJN95ej1CrY/aR43Joe90IYdn3uL1twA7BWCcpafw4Kz7TjOiOHrteHGd4tslAbhfd6F83PpyYWeS5x4txoY/jQJF0vJi+AGYs11N7oYX7Qx5Gne1Ief/1tJehztez6ojjxrfGTlShUCnb9i3jc4vlzCsJQDLF+IRXZrOQDuah0StpeGCB7vZHiM3I58HRH0rG2Pe4lFOsXYsII0TaOjWbGDgk1+K2PVhFejiRsIAxEAuziFXLzHQwOCvMjtVpNbW0tL774Ik6nkwwyyCCDvxY2bNjAkSNHEn6mJItGzkInW7EZa3igHJVGye4nhZpXdq2JiaOrGEBRAkHdJ0rRWNTJfbUaNtxQwuDeScYOz8TttnpeTtzkU35pPo4aC0e+38l8vwiRJkpSWFxYYp9Efrb1kWgfLFEX2/rpahZG/KLElKprirCVGWn+WS/TbcnjbeGZdlzvy2H00BQdInWBqmuKRHOYGLJrTVR+qFBYz/0zyUGmEk3cpuwvwZZPVSJXSo+3Wz5ZyVIw/BflTGshKaVFlCQ31jxD+y9TE7g8FzvJa8jm5K5RSVLPWmAqVjPbK8EoS4NND1aADPalqRWay3RYy4xJ30cMWx+pBrn42nTdnaVos9Xs/1pzMlEPgcBUd3clsz0LNP809ZqyY4NAUh8+MClKcIoRtwJTUZKiCOruKkVtyUq6XrVJTuWVxRz5UTcEBUGJqc75pG+g8spCsitNHHy6E/9QMIngZa02MNUyj3OTBc8H8gWOwSoSVEfkGKH8OaZnpllYEL5jl8vFDTfcwD//8z+LXncG/3PI2L39jSJmBefz+SgoKGB6ehqAUfp5PfI8IKOOM+El4kpHAKUXFOA5Lz9O+ogRfEILYZYCy/TvEgrd628rYSmwTPOP+hLIFJUfKiTLpCJ3i4PuHYkd4+qFk8ZPVqJUJxfY333qBNWXFgkEJZ2w0//4DzsSiEbjx6cwFejiBCXHRmMSUSgwu4jamiWqZOQfh9DcEiNHxQklh57uQqUXpOhy6k2MHkjspU88Kyzg6PI1bLzFQ/+74ylVl5Z8S6Tj8rkvzCV/Uzb9O8eSVKQAplp86Oxyqj/qEd1xnl2rp/LDxQzun6Dnt8mDUvvPB+ByaH9BXG1p9uQChjwt5gIdM+1/GSnqL0VoIZQgO5kKJ37VS5YpS/T3TY9XE5ha5OA3UjOWyy7NR6aS0f7zAVGCUtPj1YRDEcmC22zvPDk1FmYGUyceTZ+uZmEswJHvdqckF8XIgcef6SNvq1WU6DR6YBb3+5cZ3COeJPkmFlHqlEmEH51dDllZ+AYDLIgU46qvc0EkQstPTtL1ygAauyaJVBQjAO78YjMz7T5RElN2uSluETnw1kT8e82u1VN6QWE86V+cCzETU7hadZzyywvIqbFgLNTT9lx/Ql8xvb6PqbkJOrs6IQzz8/OUl5dzyy238Oijj4rGJoMMMsjgvwtarZaREWHsffLJJ3nssceIRCKEWeYddkAErOTQIHtfAtHHe50Li8eA2pIlkD5Wrc1Mdc9jcEYr2VH1oxP/dZLZLn/CYpOtTLAmOJX8cOz7PasUUwR1oJneU4gUfhjYM85Mj5BHVV9TxFIoTPspO64WRgJxiwV9sZbwnD9JWWk5FGZuQHxxaeDdcdxnOkXVgNp/McBs70KcsBW36Fp1rTGC0obbPWisWSlJU/MDPiLLEWb7pBfUtjxShUwmixfOViNGUKq8qpDA9KKoElLdXaWozVkpjwHQ/fthFkakF9yW/MsEZ0OSbf4a0FrlLC+Gme4SJ2cd/2EvpZfkiRKUPBfn4dxo5dhPxVWf6j5RSuuznaIEJfcFueQ3ZtPzhxEGRTYjACz5l1gKps7z3RcIefXBbzYzdmA28T0C0EJ2qUBEa/1FD/4R8Zx37PgM1jKDqEqXf8DPcihMYHYx6Xcxslvf66M4N1qZODGdeBlODeuuLmLfV9qZ7fILBLEXkwli2z4T3Vjx5TbefepEymvJ32pFY82i5CIn3b8ZTthN5r2+GIDmH/UyeED4DlkUrne1AtW2hwRS3fiRZrp/MxxXcZqMTEL9NK2trfh8PmSDMlwuFzKZjObmZrTaRHvBDDLIIIO/BmJWcIFAgJqaGjo7hTn/ED0MRXqQI6eec2AXCbvfKy9zQTjCrmjhO64qs7hIcCbEwF6h0F11TRFEoPW5k5x8YzyuluQ+PxedQ03eZjPdOxLn1avJPg33Cso1pxKADjzdQfkH8uMEpfq7y2j+eX8CYWayfQZ7tTledE9FLgnMLrK0uJyaoAQQgIWxAJNtKVYbojj4zWY0Du3KOXoWEggW3dHFDo0F6u6qZmDPeErVpeBMKG5bIgbnVhuec51CzSvFMabb/WgsUHmVh8PfTk14NxZrqLnWw9D+CXpeTa559b85jkqriF93Kkx3L2AtM6Ixywj8ZXzrvxiBqRDqNNt+j/2oC51DfJzd8qkqAlNBDn8n9Q78orPtaCxZtP9yUJSgtOWRKiJpFmbn+ucJL9lZGEqdMzVur8Q/EeTo93pSqqVnrzcycWSOrheHmTvpjxNzks7TG4h+h+I54NyQL25bHLwcAAEAAElEQVSftxoai2Dr6OsPMNvnQ6VJfidLP5SHUiXnxC8GaH/pJMZCfRKpKDY/O/C1VgKjAVESk7M+O2o3NMDEkbk4mc9YrKHiw0Xs/7agyrQwHmB+KJq8rTpObLE6u8JI68/6E8hq094+ZhanaG8X5nwzMzOUlZVx7733ct9994nGJoMMMsjgvxOHDx8G4Gc/+xnXX389oVCIJRbZyasQgRwKWC9rYv+qTevFF+RQuMXBScfoyvgfXT6ZaJ2N28eDUF/pfHmA2e4Ah1cp7uWutyBTyJNIGO2/GqT9t4MriinbvQKpdDWRIghdrw4RmBbmv56LnCCDrh2JRIqpVXUQtUMNwVCico0aQr4lFkbEiT1D+ybQZatTEpRAyFP844tMHBdysxhZYjViBKXKKwsxFelSbmabHw6yvLjM3ID02l3DveUotXL2pNjYFSMoFV+QQzgY4eQfUq81rbvOhSFfy55THTii6PjtEKFZaSJOcCZEyLck2eavAYNDzaJvibmT4oTtrh3DLPmXRVVG85tsuM7Mpfm5blGSV+1NxbT98qQoQcm5yYLngnx6fj8srtAFBGcWka32EFx9jEYr7rNzOfh0NzMdPmY6kt8FS4We6bYFjv24i5AEH21o3wTOjbaUBCWA4KzACwjMJNe8zGU6Zjp8jB2ewfW+HCZOmXeoTXKqr3Fz6AddBMeDAonpd8kkpq2PVrM4F+LAUx2iylPZtRYM+VrcZ+fS8/JIAlmw9IN5KLUKTvy8n6F3x9DnaAiHVq4/hi2frESukrOrpYXhfdMMR+vPvsgswYYJTpw4wfz8PAwKxCSXy8XBgwdRq9Vk8LeLDEnpbxw6nY6pKYHw8Pd///f84z/+Y/Q3EQ7yB4hAFhreJ/sgAMMHVzrGiqsLsZebOPKTHua7fAm7OQxObQLxxuDRMd/l48Sz/QmqP2KKOr7xIFprdFKpg3VXuDj+TB/4oOUn0cH4Q4Wo9EpyNjsSSDdjh+YYOyRM3lzvd1C4zUFunS9hZ33sGCDs4rGUGOjY0Z9ANNr77yuDvLALalFQg4pd4yolp7KLCym9YKWQtRr6HBXIQKFKPWisXkisvKYwTm5ajdHjc+TV25gbFB8kK68qQW3JEiWxTHQugAyyTKoUfy1AiqAE0Pe71CSp1YirLf0Fu/Ubt1eiyJLHVSRS4cDXxaUQYxCIRSIxi4roxHxvU8GxzoxMLqMd8bgs+ZdZ8i2n/J3ng06GD0xH30kJNSc5qLSpi3YlF+eSV5+Nw2vl2Pd7kp6tY6OR8kuKmOqco+UnJ5Nt2YAtj1ahUAoWLmIqWRvvqorbE4pJa1s9hjixSPhWZuPXYCzU0/XSMBPts+RZstFZNPh8gTixKKbyNHp0mo5fDXL82Z4Eopu5XCC+WUvNKLWKuBXk6r5h0wPlKLVKdn+uhfYXBjA4NbRFF+vG8wbonmtmZm4GDguy1llZWdhsNjo7OzOqSRlkkMHfDB599FEeffRR/H4/5eXlDAwIY8wUo1GiOFRQh0tWSvdv+6i43BMnfWx9tJrgrECuXU0UKrswH5VBialQz2yXH5NHGyeB7PxsMyaPsHhReZWwY6T5uW6m2/wrZAatmuXFMKPHhDGm5CInUx0zTLf5Ewg41lKB8HTquHj4uyuLRbXXugWlvdV5gJ8EwlAqm4zVZBHv9cVYSvRJqkoxglLtrSUY87Uo1cMpreSUajlyReq8a7bLH88v9MVassuNKUk1wZmQ4H8ugexKE+FQRJSklI6ELmqDtwpSagsxND1WTWhhSVJhRwpaG9R9wstEm7hK0mSLjz0t6RUQxJSAAFR6IaBiBKXC99nRZqvxfLBYVHVofshHeMnG1PHUhO2yy/PpeGFQMhaKLDnIQG3X4p9MvpamB6OKkseaU5KlNt1fTpZBkAnveWUkyZYtd4uF0vPz48pIqchyMcWiTo1gT5hq4S9/s5UskypOLFr9bLzXueI79kMLSyuLW6tuZ/ODFah0SnZ+tpnOXw0x0TwtfPeQ0EdYivXxd3X1d2ir1lF1uZvBfRP0vDLCyJEpQn4h5/VH/ExV9dDcGrVuOwBGoxGZTMaXv/xl7r///uTAZ5BBBhn8D0Cj0dDRIdRxvv/973PrrbcSDocJE2Yfr0MEtBho4Cw0Mg0n3x6Nz81d5zgo2Oqg5efdTLf7E3Z4W9z6hIUBY7GGud4APa+OMNU5w0ynUC9q+rSXxflku4z5QR8G2cocteqqQsEGLkDcsqz4vBw0tizy6s10v7xSf5rpDMTzg5h91qkKT907RuIbA2M1hfYdAwmWdqs3SDU9JtS8Vu9cDkxDYFoYK6qvKCa8HE6p6qPO1oBchlwpT/kMVtcXPJc4UyrkTLdOs3xmDvPD4uRtz8Uu9Lka8ptsKRdt5noDIFvJN1JBiqAEMHZoRpQgE0P5Zfk4vBZhQ9afKTJQf3cZWUalpErSsR/2pD3OXG9A0uoNiNdwUiF/sx1FllzSAi8wvUhEpG5WeKadyc55ZjoDkvciV8pQpiAFAeRuslJ6YR4zG4XNEqfG31isofYGD5Nts7T+rD+l0sLmBytQapXs+pfmhHd/NervWbEnbH0utQpFzjpL9F8DTLf74+pd5lINFo+J3tdGGTs+gyFPC5osIBB/B8ylGtZ91MPYsWnafzXIsR8nqqHF+ghjkR61WYXnPOFbWP0dbrjdg8aSxZ4vtNL/5jhWt4GeV4X8bz5njFb/YaZnp+E4KBQKNBoNeXl5NDc3o9FoyCCDDDL4W8BVV10Vt5ncvHkz+/btA2CUAV6PPI8MGdU0kC9z0/uHUQx2TZz0semhChZnQhx5upu+368QlwtOz0abrcbkMjDbHcBQqI6rI+35wgkMhQJJwHWOg8ImB80/j6oVRXkgaqOa4HyI8ShJouD0bOaH/cx0+BKs0xw1ZmQKeRJJ6cTPV+bitTcUk6VVJqotB2H/qhrE1keqCAWXEwhZMx0+DkRzUs9FgnvN8ed6EggkMYJS+WUFONaZ6XljOG4vtRpZOgVyZeqaV3AsGCcNqe1q7FWGlHZY/vEgWUbp5fv8hmzCobAoSWk5lh+IWPMlKGSJ4FSbrVRofLiSkG9J0hotHZoeq2a8ZVZUJWm+PyipphWDGEEJQGVSggxmRRyAsteZMBbpKbukkOMia3S+MT/Li8tMdKRe03R/IJmEcyrkKhnIZWgsCoIpxLQ2P1SBKvoOp1IZq73FjT5Xy+7PJZJ1YrBU6PFeVczwwUm6dgynjFvFFQXYq810vTzI8L7plNaB2ess6HI0cWLRapWlskvy4opiwelF5lOIKmy4rQStQ8Puz7Uw+M4k8/0LcfKXNk8dt3m0V5uQKYR5ymxvMD7f0eap2XBjCUOHJul9ZZSBdycSct6xyk4Otx4U/rMfDAYDSqWSb33rW9x6663Jgc3gbxIZktL/IvzDP/wD//AP/4DP56O6upq+PqGjXCQQXzTLfbGIWtkWAJQq4cOe7xIG0vp7Shk5PM3AWxPs/OdmQZkFWP/xEgxOLZ2vDDDy7kyCLdlyMExgWqAtut7vwFSo49gPehMIReuvK8GYp8N1fk6CEtGJZ/vj5CcQdhH7xgIcWjXB6/vdGA6vmWPPCceruamYnrfG4n8DMD/kx1SkjxOUdPmaRCs5XXT3vwQTeqprnoVYMeUUhRqBoLKStNTdWRr3zFyNwrPtZJebUv7e1+eLq1cZPDrCS8LPVuPgNzpTKjqtHIQ1EYeaHqsmEhGX+NO5dJRf6BS1EwvOhogsR+JWgH8OloPLkDrPAgSFo+XQcsrCA4Dr/BwKt9hFlacA8JHWBm7XZ1vIrtWn/F3MakzUfkUHzjobObXWlLF0vd9BllFFx68GU19H9D3q3jGCzWPk2M96Up5m7NAcZRdFUrKVY8/APxFMSYJaf1sJ7b/qxj8OcwM+xpsTi0HWah3VH3EzdnyG9hcGOPLjnoRvJ4byS4oAQXVtNZEtp95E/mY7h/6ji9EDs5R+IMJySFjcWk1Qano8uhj4T810/GqQwbeHhXdHB/W3lNK/c4zRA7NJxbV3njrKLl4mQhj5sDwu5S+Xy/m3f/u3zAJZBhlk8DcNrVZLf79Q6HjmmWe4+eabWV4W+sg2DtIWOYh8QsHkdxLt4CLRoTV3iwXnBhuHn+mi44VBBv4wHFc9qbm2RCCeRhV8YmSE0MIy4VAkTlTYcLuHk28NCwSUVUSKvHobeXW2JIurnZ9tRl+8ivBUbuLg97vxr1JI6v3DSJzMpHVqKDkvl+ZnEgkni7MhfFPCuJVgJxWFfzKIsUArSmbp+GU3lVeVrpB8oopQMaxWlSy7PJ+5AR8je6aTjlP7UTdylSwlSenQqlwsd4sl5d+f+GWfpO2bmLXdasSUgTp/O7hi63cKSi5yElmOJJFhYlgOhePkkT8HcqOW8FIkvnswFWpvLaFjx5CoNWDTY9WElyPiln8gSoCKof+P4wSmg4ynsI0xebSEfBHGj8wxfkREhvquUrR2NTM988nqSAjv++Fvd9H54lBqMlX0PRrcN4FSJ77AuTASQK5KXojVOjX4hwOM7JnGfZaT+dHE99dSocVZZ6f1uZO0vdBD5VUlSc98450etDY1u/6lhc4Xhxg+Ms1Cb+JxPBfnYS01UnV1Ea3PnUwgsq27sZjJ9jmGdk0SmA0l5NOx777wfXZcZ+Yw2TZH63MnOfjN1vg3WPg+O9lVJg5/u4vJHiFXUxmEKX3ni0Mci7zLMH2o1WqCrUFkMhmRSIR169Zx7Ngx0ZhlkEEGGfwt4GMf+xgf+9jHgMRFMz/zvM1LEIH8P5TglTUAK/3f9Emh/6y92c1E6yyDuybZ/WQrGoswFlReUUC210zXa4LVVYygBBDyhfBPCQXy3E1WbOUGWn56khOryOaVVxSQXWXGfX4oQQGo97VRxlpm8fULx9v6aBW+sUCCzdXYoRnyNtlo/y+hfldxeQEjhycSrmF+KMBSYDlOUNLkaJKszJb8Sys1rRQYOjSxsjlLQwI5Z6YzkKAIVXuzm6Mp7Hez1xtxbrRhdGqTlH0C0yu2wZocDSotSeSb5h/3CXZ8zeK5l5SdSAyNn6xEJpeJ5iyaHA2lH8gVJUwHZ0Ish8Lo7Jr4s/lTEfIvCaRpEbjOcSBTyOh9LTURPkZOi9kUiiGdxd6eL7RirUpd83LUmxk7MCNa+wNwnZFDwRZ7yvM46s0YC7R0vTicmsAUfY9G9k2Ru9FC569Tx3uuN8BycBn/VHKeGrNjnBv0o7Ml72KvuqaInt+PERgNMNk+x1Rn4rujcWqou8XDeMs07b8c5PAz3SmfqfeqEmRy4XmsJrJZyrUUnZ7L0e/1MNMZYHkxTCj6nax+f7d8qgqFSs7OzzYz+PYEk8emBJU2jTAfGT48xdiBmaSa197vt7KHVwgRQjGuiM8VVSoVX/rSl7jnnntSxiyDDDLI4G8Fe/fuBeCNN97gkksuYWFhgQgRmtlHc2QfqkAWvh+tsoOLrGz2slToKdySzbGf9THw9gTjR6biqic1N3iILIXjZJwY0WIpuMxScDmuVlR9jYuhAxNMty0kkIiKzsgBkte/9nzhBNq8FcJT/hY7x57pSiBydL8yTHaVUPNSm8B9QWECiQkEtcrF+aVom0Q7KYDAzCJLgeWUCjcA7b8ZQGNSrhCUTiEBHf3ByphZdJaD0HwoiUgCUUKVXikoEJ7CRVmtKJVkuRfF8Z+KKwIBaa3nQFD18ZyfFyerpEL+aTYUKoUoGWopuMzSX6C2pDbJWQ6GCaZYP4uh6poiun83SnAstcLR5ocqkMlkvPtFcWXJ3ldG6X1FXIpz4vgszaHUdn9qhxq5UiDRiClTeT/qwlJmYGEowNjhZFK996Mumn/ax+A7kynJbbH36OQfR9HliJObZwd8ZBlVSe+d2q4mOB5kum2BxYUlfKesl2vz1BRuyab9V4O0vTSA2qBMeubej7owuXTs/nwrg7smmepZiJOJYnA2Wsmts6HQCOpHq9fKyy/NZ67fx/C+aXyTiyi1KxSUGEHJWm2g+gqXoEb+834O/Ud7/Bt0bDCTu97MsWf6oueVoVQJ9b/+N8fpiByjh1aysrJYbF2M17y2bNnCm2++mVFN+l+IDEnpfyF0Oh29vcJAd+DAAZqamliMSv6PcJKRiDD4dDxTTZlsXfSPQGNVk785m4G3JtC5dOATOqmB3aO4z85j5N2oj/anq5kf9nPsez0JE9m8hmwU6uRJ+pHvdFP64bw4Qanp8Wp840EO/0dXnDChtQu7g5YCwoQtu1aPb2gB//iqhSodmFx61l2lZc+qCfJqUkXMVm28bZa256LJhY+E9ts+42UpkLj7f7U6zbaHvSz5l1PuiF5/WwlahzqJcAXQ/8Y4+lxNSiWlhGNc54YIKT1WYwSlxu2VHPt+e0qSkLVaR9VlxRz+UW8S0QlgcT4kqS5Uem4OhlxtnKRzKtpfGJBUHloLxCzrYsipsYAMUZJSaEEgSvXtSp3YNG6vxDcRTCDDrUb9PWWMt8zQ97uxlDZvMfUtvUNLx69Edpz5YOTIFEPvpL7GwiYHyEj59wVnZFN8Vm5cHenUeBSebcd1eg79ewQLwVSKU9ue8BJZEtS9jqSQ9s5tNGPI01J1dSkHn+pMYF/Hnu1Uiw8ioNQkEhLN5TrWXe1m9JigitT7hxGmepMLmu5zBClFrV2wUIxdp8Gjo/aaYoYOTtLz2xGmu+dh1S5UfaEe3/gcOosGjVVN0Wk5jB6YZf9XO/BFfOzhNcxWIz6/j0hAeMdzc3NpaGjgxRdfTBnvDDLIIIO/Zdxwww3ccMMNAFx++eX88pe/BEiwg8tCg/9z/jhhqajRQZZlRR1RX6jHPymQO6Y65lgMCBN4z8V55NRaOPz9brp2DNG1QyBnaJ0a9LkaSs7NZ7IlcZw5/Ew3Bocw8YqTkZ7uwj8ciBMm5HJhohYjKMWIPEO7JuPkoaorCtDa1FgqtHGCBMC+VTtoNt5ZiUwmSyBErbaS8lych7PemkDi8U+ukIhilgvtO/pTElNyvBYcVeaUJKPDz/SQs86Y6pHEUXllIdlVJowFOjpeSByzYwSl4vNzsLgNovYjtbeWoNYpE+47hpG9YzjrbCwvipOM8uptRMLiJKVUKop/ChZ6/aKWdCDcn6lAh+t9dlGiUWB6MU6gOxWWCi1VlxXT/PPelMQzfbEW7+VF7P1yW0qCEgjEOyIkEedW4+A3Oym/oiDle+C5OA99riZO7DkVjdsrUWoEq+lUylibH65AqVaw619aaElRiKu+pghruZHu1wV1r1QLn5WXFccXJP2T4fg7rLXJUdvVTLf5WQqGhThGCVOx723DHQJ5affnWujaMUQkEol/I3FowVysR2dXM7RrkqNPr+R/NTe70TnUvPuFE/T/cZyc9RYGo5ZFZGWhdYJ/OEDeJhsqfXQK7xfiHSvS2O12xseFvwmFQjQ0NPCv//qvnH322Un3mkEGGWTwt47YollPTw/19fVxhfFBuhmMCP1n93/VUPLrqvjfGAt1qE0qBndNookX9gMM7ptA69AwvFvIfzZvr2BhOEDzj/oSlP2KTrMLytankHxO/GKAwGwoTkjZ+mgVC6MBjv5nzwphQiMQ1WNWpuZSDcGJRQLT4QSlov/H3n/HR1Le6frw1TnnbuWcpYnS5GHIyeRgg8HgCBhj1mGd1gGfPZ/FGBMdsb0GbDBgwJhgk2wMJk6ekSYq5yx1q3OO7x/VXVKPNODdd8/5nfX2/ZfU6q6ueqrU9e3vcz33bV9lwlyvz6sNnJ0+EVDKudYsdPvyQKmlwOvWb7aQjKbyXI2X9l62fbWNZDi5ottj05XlGCq01JxXvCxybeFIgLkaD0N/OrnrIkD7jXUgYVkUHiACShu+0EjP8xMrAiWGajVtV1fT+9xYHqyVU8wbz+s/nKiqHTbMNXoqTreLkXpLtdTZ4T+r91v9DlC22YZEJj0ppJSKp0jF0sx3rhx71nFLA7FQ4qSg1ZpP1+AdDTLxpmvFmLe6S0ooWW/FXKUTnb1W0sTOeZw9K0NjDeeXgVSyonOWba2B5ssqcfcJ7kgnunk71ptovLicqb0uxv46v+Jk3bZvt5FJC+5eK9V25kYN1kYDKpOCw/8+nPecHIAVnY2SSaeRSoXrIXc9qYvUtN9Qi6vHx8AL0wy+Ok3ItXzSsvacMjR2lQj+5Xrc6iI16z5Vw9whD6OvzTF/3INSvThFoi3TEvUK42ao0KJQy3F2+jjy0AjRTJQDvInGrCQWj5EICwt7HQ4H27dv59lnn11xvAsqqKCC/l/WmWeeKcQkAf/yL//CvffeSzqdJrEkDk6Lntj9MVQSoRdVuc0uuM8ZVMRiMTQlGmJ+4Z41f8Qjzl+VbbNSsd3B0d+N5sEZKiNYGvSozQq6+vMNAboeGsZYJtRyVWc5KNtk49gTIwQnYyIwIVfLIJ0RAaUcyLNw3L/oeHRZFcZq/bJotqX3+bU3NiBTyfKAqKX7WbLZQt25pQz+eZr5g17hCbFFEKnuwhJKOqwMvDi1IphSvs0OGVYEgI4+PIij3bqiy1FOlWc4qDzVwVy1h6GX8mu0HKBUstGMvc3EsZPUFY1XlqMvUq9ozDB72EPVqUUkYic3M6g6rRjSnBRSWhpX/59RzJ9+X7jItsaIrclIOpGm/9mV5zXD81GkJwHMVQ4Vaz9RQ98fRleMcVPZVbRdVUHXL4ZOGvfX/plakEpOahwBAlhW86HiFa+Dks0WzA16mq9aDs1B1sXTqBDdkZa9/+fqUZkU7Lmrd0XYqvr8Iso32Rl9Q4ihW8k9qe3qKlQGhRizmLuGVUbBedU/EiURSZJOZVAZIeZH/H9ruaYSU5WWvXf3MbvPg1wjW7EOd6w2Y6zUMXvAm5cK1HhlOaZqHQd+2I+nJ0hgOszMgcXXqxwqYs4YFdvsaOwqEcDac1cP05lReujE7rAJPa8MxONxNmzYwP33389pp5228gkp6L+FCpDSf3N1dHQQiwkfFPlxcDBKD6MZ4UOzJdTBrvtAk3WrXnNNFTKVlF23d7NwNMTC0UVQSCqToMiuTi4/1YaxUkvP7ybYe3cvjvXCRFHOwcUzHKTniXGG/jgjvh4gnciCCZtNZJIZ5jv9eaBG06VVojOLqDD0vTBGxCcUMO231iNTSPMaL/OHfRStNosRUjUXFOdFyYFA7oorzU9wTQIhcsF3kszXIw+NUH6qAHKBEJPlPLQ4GZMDlJo+WoG9ybiic43zuI9YMLHi9kEATOQaGfWXVq3Y+FBo5EhkEiq2WelfAVJaGmm3ko4+NUpRy/s4NiFALCqD/H2fc1JpoWqb431j5Xbd301Ri/Gkf5/Z6VkRoMpJrpahtZ+EetWC2qKkdIPtpPvQ/fg4Hf9UvyJgtOnLTci1wiSWeN0ukW2NjoWjIXqeHSXmW7k4m3p3gcodRbi6vcv2jTBM7nVRud1B6gTXhPJTbbh7Foi4ILIQI+jMb8jVXFBM6Xoru+/sYW6fD4VOweSb+Tf79lvr0VhVpCIp5jv9eTBc45XlDDw3JbogKbMrS3PXMwhwVDKaYt89fRx7ZACUSiIu4bhLNzo49ptRgrNhJDIJ+hJhon1p/OLmrwuThM7+bsLTUY48Mcr8kIv9vEFFTRlT01Ok4gncHjd1dXXI5XK6uroKcW4FFVTQP4yee+45gGVxcHGiIrCkQUfkJxHsNVaICHFdTZdVUnNmggM/HsiDKHQlaqRyieiAs+oT1UztmcfbH+Hwb0dIBwQIYvM3mpErZOy6o5vQWESEI2RKoWbLvb7+8lKGXpjJe4/SbVZqzynB0Wrm2COj4uNdDwxRdqpNAJQ0sPVLrYzvnGd6yX3D1edHbRYifjUlaowV6jx3mXg4STqZYe549rETXJMW+vzoyzUrgikgAFc52Vbr85yPIlMRxrKQ1bZvtxL1ClF6S9X3zCTrP1e3DFBaqpJ2K7IVnHVy0tiUyE4SgRJxp98XEAIYeGUSZ8/711QVZzqYfPM/N2Hm6DASXkgsc+zJaey1ecKu6Pvuw4njtlQl7XakSinSk3wzbDi3FIVejn2t4aSQ0vT+lSfhzE0a2q6uZabTzcgrs3kxiLB4zodfniHijp00Yi8wGUZtUy7/Q/Z6iweSsELZlhv30dcm0Jc24e3z5v190z83EfUnOPrwCD3PrNzQa7+1hXRCcD5bCtAXbzSTiqeEMTmBYcsBSm0fr8Zco6Pr14Kj2VJ3r9ZrKnH1+3B2+lFoZeLqMFjS5NNA+011JILCZPOxRwaJRNKMZ4YIlM6SyWSYnRXeKxaL0dLSwg033MDXvva1FY+loIIKKui/m2pqanC7hXvDgw8+yOc//3mSSQH0HuIYQ5ljkI0l2XUPqLMLeFZdU4nKpGDXPd0ExqJ5DoxyhVwEPm1rDdgbjfQ9O8WBHw8IrjVRwcGl46Y63AMBep+ayINRMhnEz31rmx6ZUobzkC9vkV/Lh2uQKaXLFq8d/e0iML3qE9WoTcq8eAXfoI+Yz87YG8L9smyHjekTIkASoRRxf7bndAJQBRB2RYmcZJV5/3NT+MbDzB0Q+jGWFl0eBJMDlKrPLaJss53up4aXgURTe96/nrG26VGZFdSfXZIXcZeTVA4ytYyitVZ8Q8vrtxNdnJYdwytTLAz6WThJTQKgrVCjsSre9znvp5XGfan2/KgXW9PJQXp3d5C93Sd3SVKa5Mi0J69NDWVaNDYVE2+ukAECDL84i75IvSKgtO6zdWisSvb8oHfF1+fO+dIa/EQtHAmQOC/JQv8J45e93py9PurOL13mFOpYbyIwHSM6H8U/GVrmAlqy1Ur1aUXs/Ukv3oGI6G62VLlFh1KplLkDnjyXp9qLihl5eU50GpOphNppaQTdtm+3kYwm2X9/Pz1PDoFaAJRM9WrKNjvoeXKC6LzguqkrESbAl0J+G77QiMqsoHO6m6gXDv1mGPeEl0O8i6PWyvT0NLFYjKg3RG1tLTqdjv379xfi3AoqqKB/GN11113cddddxGIxduzYITpbhgnyLi9CBvSYiT1yKuYyIzFXDFTQdnU1UY8QTbs0jk1XqkGmkhJxC7VJ45XlzHUt4B+JcvCXQxAXapqlkEbMGcOZrWUUWjlIJCKMVHWWg/G/ORl+ZVaMnzI36Wi+vALfuiDHH180Kzj22DhFG8wioLTpK01M7XblxdLOHfWgtwtzICojGGtNeZBJKpYmFU8xf8wrPHCCe81Cvx9rk3FFMAWg68FhVFlTRGOtOs/5KOZPi6DH5q82E/clOPRQ/uK6ibecmCo1ywClpSrf7kC1grNOToYyDUq9YvkfEJ7/foAQQN8LE3iGT+6UCQIoNXvU+77A1clkbtKRDCdXjDYDIZbueGwU79jKABGQd96X7VuHCYVGhlQlZ6UdrD7djsamOqljFcDom3PiXNtSaUpVrPtUHdMHXIz/1cnoCdHFpgatGFuYiqVPep0sDPqxVOuX/yF7TsMLMSSy5RB/LmZ57K15bA1GFgbyx2jdjbUkoymOPz7Osd+No9IuH4KOf2olnUyz9+6+vNrS3KRDIpPg6QkK8/2Zxf3JXbf1F5dSvN7CsceG8I/FOP7UYkRi3YUlBKYiOA/7UGplyFUy8fVL58U3fLGFmE+I3+7+3RCxGDijM8wVDyGVSZmeFvYpEonQ1NTEl770JW655ZYVx7Gg/34qQEr/QMrFwQFcccUVvPDCC+LfeumkN9QJIWihg9J3LDhWm4U/agV3oeBshCMPjuQ1USq2OfLck0LzQtGQTgrRFdP7hA+jjn9qIJPJ0PXAUF40Vt05ZUhkEuY78xszo2/NYs5+6NrW6Gi8uIqeP4zlueIoDQqkSz94tRCejoorzvR1Wso22ihaZc5zRVq6Im3bl1sB8gCppfFfK7ku5YCODV9sQGVSkk6NLXPrySQykIHg7HKISCREtbD5883s+3lfHig1s9ODbyK2oksSCG5LJ47XiTI1amn9SDU9fxjLi+UCIMwHwkerrqkhk8r8pyClurNKKO2wobarFt2sTtT77MPmrzUTmotw/LGTFw4ruVAt3fahh4fzI/+yWndzHcHZCEN/nKHzZytPxqWSaWSZlSNCtn27FYlMwq6j3Xmxh7DcHelEarr1uiosdXoGXpzAeSiwLCJOW6Wl+oxiyrfY2XdvX/5kYRZuUhoVSOQSijebmNvnEwGl9s/VI1VKOPiTQfqen6LxkrJl47vpK00odHJmDnkIDofFMSw/1UbljiL2/LgHwgKkF8o2dMLhNJpsR7P+QxXCCoTsvogAYfbzIeaNc/Cng0ztcWGp0xMOhZmvH0QqhX6E/6mJyQlKS0vxer0MDw9jt9tXHOeCCiqooH8ELY2Dm5qaYvXq1Xi9XgAihARgaRS0GGhfOA3vaAjncWFCaOMXGlGaFOz6Xneem4rGKjitaCwVHOgfIB2IEcn2ToLTUdRZZyaNFdbe1MLwX6fpfnwRrLCt1lO8xoKxTJt3n5nZ7c6L193whQZigSTHHhkVgaTS9VakCsli/GgW/lgKlay5vhq5RoZ/2Cvu1+SbThG+Kd5ipv68MuYOecS4rrkDXhFqqr2whNIN1jzXJRG80UDzFVWkLkqv6HKTSWVInWRlVy62reHKMpQ6xbL4ur0/6UWjWemVgvbd/cFOR20fr0ZrVq7otnQyAEt87XVVWOoNpKKpk0I476fGCypA8v710cn2wb7WQP0F5Rx7auykkNNKq9uX6vBDw2jKNXmxgSA4DK3+ZAP7f9h/UhepmCsGGUgnl5+74o1m6i8oI7Q9yuFfDS8bmw9yR1oaYbeSS9amrzah0MpZOLxAxJ1edJRYAtIptHKx0ZNzkbK2amm8tEocM3d/gIWB5Y2k+gvKSMXTuI70cnhJI7H9lnrSiQyHHxpm/rAbffHipFXYlcyOHVgaDehLBYCv64HF/9d1N9ehK1ILtVgE/JNhZg8uMJ4ZQl2WYnxiHG/YCzNgs9koKiri8ssv59///d9XOAMFFVRQQf84uummm7jpppsA+MpXvsKPf/zjbKR4hh4O0BM5gCQioYUNWF/XU9JhFQGe7be1EZgKc/Q3o+y+c/F+WnNGCSqTAl6egihE3AJ0IZVDIphk/ohQu635dA1SuYTDD47k1SkNF5Yj18jyIAmAwT9PYWsQFm5pK9Ssvqaa/j+O4x1YvJdqbSrhO3hOaiFW7eBPhFpDbZZSc2YxZRuseY5PS6GmzV9oRiqT5IEcS+O/VnJdygFKaz5dg6FCK6z8P2H/08k0pDPEFpbHbix1KdrwxUaO/3ZIiMbKyt0dpNM9TPQkEbS+oWj+gsUVlBuzgZcmlzsJRflA+GjdJ+vIpNIsHHn/OLWVVLLVSu1ZJRiK1XluVn/vPnTc0kDYE3vfiJUV49WWqPOBbqIrDF/rtZXEggmGX5zNixVcqlQ0TeYk7uuiM+W93ctcrk50R9p/b/4K/NqLiintsDHw8hTOTt+yel1thsZLykWwOs8lKgs3KbUyZEopxastzB3wiIBS2/XCyv6uXwzR/YdxVl9dI16nOa37bB26YjXeoSCe3hC7sz0521oD9eeVceShPqJeiHpiRNzCdRv1gtos/NxwYSUqswK1WXh8qRPYtu+0EXXH6PrFEOPvzmNrMeL1RJmvGkCigX5JP5lMhuhEiNLSUiKRCPv376empmbFcS6ooIIK+keQSqUSnS39fj/t7e0MDws1RhCvACxNgwEL66M7cB7z4h0R7tlrPlmNvlzL7vt68lM9VOBoM2Eo1dD5wCDEY2T9F/CNhTCUacTnbfx8E2N/m2PopRkR0NGUqqjY7sBaZ8iDebz9IdwDAUZeEd5nzWdqSEXSdD85LrofWVr1KDRy5HqZ+B7EYPyvi3VN28eEiHr/dFSMFXMe9olgialBy6prapjtcosglm8wzIEfCffMlVyXYq4YsSwzvPpjdSSiKfavAAWlUxmSJ3HwPpadR6s8w4GuRL2sxjj4kwFURulJAaG/x+mo4ZJSDOXaFd2WPCdxZcyp+vwiKrY4kKllTL0P5H0yNV9WgVQhXTGNJKeTORzpK1S0XFVN7zNjJ4WcPijmrf/ZKcYcruVRcipov6GeroeHmN23suFCOhSDdGbZwjUQoLRV19QQmA5z9NejywClZe5I5O/j5q81Q0aAyFZyX2r/nHC95iLZOh8YFPc7dy2oLUqSWUORmDNGjMUx639hHP9IlLlDHnwTy+eq266uFhKJevryHKxWXS8YkBz77Rhzh9yY6/Wks8cf9abEfSjpsGKpT+A87MuDyHKJALvu7YaYsLjV1e3HmZkhXeFnamYKd9QNc2C1WikpKeHaa6/l/vvvX/EcFPTfWwVI6R9UuRgSgFNOOYVdu3aJv/fSSe/uTtgNlTTSbt9GKpEWSdT1N9ehMinZe3cve+/upXSrBQBtmZr1N9QRWYjR9fOhvIg1lXEJiasVQJbhl2Y5/MgIpZuE1+fcl2a73Ay/NCs66ZR22JHKJSSyH5yWVi2ennDe9ld/ugZjhVYEQECItvIMBxl7V7jLr/lMDdFAgoFnFj8wo+44kuxVrrFDJEweMJSMpYieJOu054VpWi4tWzFObOC5KRFGKj/VhrlGtwy6qT9XiNJqvrRiWURcDlDa9JUmkrFU3sSEOIx2KWtuaOLok+MrAk1SuYTyLXZ8A8thHxGo2eVc0W3IedxH2Llyw+iDNLtnHo1FycQbKwNK277TSiqWXjFOD0CukaErXnmmcOOXGvFNhPOsAHPS12lZc61gCX4iQJSTrkiN1qpa5pCkrdLSfHEpXT8fet+ibKbLjda2soPTwtGV3ZH0dVqCw2EmdrswVemI+Bf/rq3SsvrqSvbd20d4PIx/PMTQy/kTp1u/1YpUJmHX97rpf3qS/iWvDbvCEAaVRYkkywqGp6Ni03Hbt1tJxYWxPv6HSUrWGgkOh9FWabHWa5l804XSKEcql4juVyKkp82PPux+NlvchqH1Y5WYa/RCYRgWVgyE3XHCmTDH/COM/mmUBRZgCBQKBTqdjlQqxc6dO+no6Djp+BZUUEEF/aOqvLxcjCHZv38/Z5xxBuGwcK8KE2AnL7Pzty+jQMVmziHsjiFRLoLYW7/VirPHy9ALMxx7YoREWJhYWP3pBhRaObtu786DkYo3FSNTSpGrhCKn4kwHCz0BFo4Fmav1MJ2NMt38tWYkMgl77+rlyBIYSmVUIsvCSBoroFTnxcBB9h4RS+XB30d/PUD1ueUCoKSBTZ9r4tijg0Tc2S+8nhipeFp8f121Jg+MSQSTZFJLXJeWKgLe0RCewZUnfPYsmQhZ/7k6+n4/Kr5vTo4WExLpCvEgEYhEBIir6dJKDv16RHSeWqrGD5ejL1av6DqkL1YLq35Ook1fbUKmlK1o/TzyxjzpZAZv338cUAIYfWcOtXEFFyEWwa+TxumtsyJTSknHlk9WGes0tFxZxb4H+vLcr3Jqv7UeEBy3TgSUAGrOK0ehl6/oEtX28Wqcxz04O/0njYCbO+ClbLON/j+Mrvj3ldyRNFbhXBKBqC9OIpxflzV+uByFWkb3E+MMvDiBfbUl7zrJgXQLfX76fj+Zt29LYw9lSikVm230jU2KEFf95aUUr7bQ9RvBFWm208PMbuFar7uoVIxqVFuUorW960gA1xHhf6j98/VobCq6Hugm4oah16bFmMPN32gmNBvl+G/H8E+EURkVaKxSZk3jvL6vl2PHjgk7eRSMRmHS+5JLLuFPf/rTimNXUEEFFfSPrvvvv19sVH/84x/niSeeIJPJkMkBS8cPwHGooYXVlrUkwkn8k0Jt1nptJfoyDfvv6+fgTwZwdJgE9yQzdNxcR2hOgGeXxqVp7Kq8RXS5uLQjDw1QstkBZN2Xbqhj5tACIy/PiRBL+UYrco2MTFq4N5jq1fiGonnbb7yiDMdqswiAgAAszR5ys5B1cG75aCWJSDIvji04ExEcBgDUoFYLAEZOiVCK+EmcvgeeH6f56pplgBLAxJsu0YXHttaAo828bEKsbIcNlUlB9dmly2CeHKC07uY6yLBy5K4aNt3SRO9z4wTG8uuydFLoHRWvt64Yd2Zba6D50koRqDlRM/sXiPpP7nD+fvL2unGWaRg/ySTbSuDXUqksSmTqlV2S1n02u7BuhUg9dZGa9Z+pEdwKVjhmAHOdgUwqvSyiTW2W0vThKo48PMqx346e9NjG3prH0qBf5r4FgjtS/YdKSQSTeY9rK9SEJ6PM7HTiaDMT9y1O4KnNUlZ9vJ6DDw4Q9YLruI/xv+Uf26avNCHXyNl9R3deFJ+6SA3xKFEv6IrVyLPusEQRj2Hz15vJJDPs/2E/fb8fpXSrA09vCHWRGmuTjun3FpAr5cg1Moo6BGeNrl8s1vHbb2sjHkxw4EcDHH96AoVG+P+ovaiYotUWEbRKhBJEFmJEM1EGGOX118dw4oRxkMvl6HQ6pFIpb7/9NuvXrz/p+BZUUEEF/aPKaDQyNCR8vk5OTrJlyxbR3SSAh3d5kXefBw16NnImIVcMpVEpghKbv9qMq8fH8CuzdD08RDp7q8lBQbvu6c5zCipZY0apk6PIAkUlG814xiJEZmKMvzuPs1uosdo/X49CI2fffX15dYrWpiKVA3ZVoDKq8PQE877/b/1Kq3A/X1KPdf9uiMrTS0VYpf1z9XQ/Oyn+noqmiIeSTGWBFU2pSozDgkXXJd+Ad8VxnDvsIbKwMkiTA50AVl1XxeBf5oRFX0tU0mERXQRPVMyfxlitovXqGo48Ppq3XzlVneXAXKvP6w/mZKjUojKt3HcCYTGW0iBn7wqL/GZ3z6NQynAdOXlyyvtp+LVZNCs5ZyOc+9rzyhj6y5K4vSUqXm9FqVsZc1A5VKy+popjjw4R8y9fOLfq+ioUWjmHfjW8HFACas4sRmNVUb7Jtgy+arikFN94GOdhX16/cqn8I1H84yEGXl0erQsIveET3ZFUoFIJUWvhuYj4v5JT1bkO1EYl/c9O0f3sJOWbLXnnOgfSObt9DDw3lRfJa6xW4R+LkUqBUieneJ0V/8i06EhWvsNG1WnFHH9CcEUaf3ce5/GA+Lep/QsQI29uNzgZ42B2McWq66ow1eo5+MshYq4Yfc9PitGLG77QSNgZo+epcQITYfRlGlRGFfOyMd7t7ufo8aNkyMBx4fNGKpVy7bXX8vjjj684dgX946gAKf0P0M6dO8Wft27dyt69e8XfJxhgYmyAP90JdspYL9mOQidHqlj8cKw8tQiZRsbCURcxX1y0dha+aMrYfUdPHuW69rpaDKVa4qEkk2+6RGBEbVWRSWdY6BM+mFZ/uobQfIRjjy6BNrTQ+pEaEZzIyTMYQGtXiYBSxz/VM/SXGXqeWAR0DOVa9OnMIpkNeeTv2s+0iBF3OeW5Li1ZjQ0CSJQDWto/V4/GoVox3q1yRxFS+fIJsaE/zjDT5VsEjFaInpNrZEhPEj9iajAhU0qpPd2+DIDyDYTfd+VZDqhhBQtAYEUI6O9V2JV+XxekVDy9rKmxVO+330qjAmvDypbZjlYDEqkEXYl2OaSUHduTOSy1XVmO0qDA1Khd5jy1+WvNyDUydt3evSw6sOHyMorWmE/qjrTpy00oDHIOPTxMcDi8bGKyrMOMXCOj4fIyBl+YFq/1tTfW4uzxMrPTIzQVdfnFpalRKCainjidPxsUt6u1S2n9WB0HHxoU4KGEUPiCcL0OZ6+19Z+oAQlMvuli5OU50bp67Y216Es1wjkIQ8wbx5n9f2y5pBzfdJiB4TBytQyJTIK2TI3PO8mf//IqBw8dFHbukLCSAkCtVvPMM89w8cUXr3TKCiqooIL+R2rTpk2EQsLEwnvvvcf5558vAksJYgKw9PjLyJCxidOpaC5HKpOIjfnSDTa0DhVdPx9i/qgXS13W7lcjgEPekSDdT4znOddUneKgcptdiDJ9cbGxk4ymxJgzjRVarq2n98mhvMZM23UNqMxKuh4czgN3wq6YaMddcZodY5WO7sfHRGCj8UIBUHF02Bl/XZgc8vZHxDrKWKdh9XW1ItwOMPmOi8l3hAmvHCwyudslvl50QMoea9yXWOZcZF9rQOtQ03x1bV50C8DuH/ag0UjFbZwI3uhKtEhkEmxNeiZXgJSsDYaTxsKdDL7OKRFKrRg3BkIU3we5Fb2flsbvnahMKkMmlTmpk9KJrlJLVbmjCLlGhq0+P2YvJ6VewYqVZHZse56aWNFhCQ2Ya3ToS9XL9svaqqXlIzV4R0N0Pza2DAjb8i8tACu7I2mg/dY2EiEhwmMlyN/RYhJ/9vZH8PZHsLZqqTy1hMO/GmZur5fqU4vxnmBVvrQedPcs1tm1F5agsSjpfmIc72CAojYz+mIFkamICCXVnF9M6QYrKoOcnqcm8r4Xbf9OGxFvjK4Hhpg+uEBZh41IRAALS9dbREhJrpCJiz56Zg/xp30DzC3MQfbUq1QqYrEYZ599Nq+//vpKZ6Wgggoq6H+sHnvsMR577DEArrrqKp599lkyGWFiapReRj29vHQfFFPJGskWVCYlcuViO7RqRxEKrZzpAwuEZiNMHxSg4nU316G1qth9Z09e76jl6gpsLSbSyTTjf3My+loWzi5SkE6l8Q4FxedFPHEGXpjOi05Y9bHFGM+cvCMhzDV6EVBa8+kaJt6by4NRcjXhUsCle8mq5I03N6I0ChF3OQglz3Xpa83AYk0T9abFe23rtZVY6g10Pz2S5/YEUHduqQBCnRAtN/3eAu7B0KJj0grRc2qTUoSzTpSlRifAztsd9Izl10nR2fd3W1o4EiB94ckdg3Ln5D+jqFeIxTuZEuEUifDJe167v3/y/dY61KiMCoZYDilZ67VI5VJ0xZrlkFJ2bLse6CUaXV5wNl9Vja5Eg7VNj7s7v8bpuKUBlVXJ7vu6mTvgyXMoqjjdTtWpRQy8JLhpnejwlHMvOvrbYQJj0bz/AwD7OqsQ7XdeKUN/mhHHreWjlfjHQ0zvduMdCaI5YTGgukhNx811hJ0xDv1yiP33Cf8LajM0f7SOvqeHiXpzk73C8Ua9aUayESrrP1MjxH+8t5B3TC1XV2BtNLLrPuF/IDgTFuNpmi8vIzwfJTA2jVwpQyqXYqhWMzs3y+vv/JWDnQeFybEuUCqFiVKj0ciTTz7JhRdeuGzMCyqooIL+p6qiooKpKeHzvru7m3PPPXcxjikbCffuS6BExXpOx+FwIFVKkWXdIx2rjZirBFBmptONo9Uowkxbv9WKZzBA3zOTzGbdtwFqzi2lJgN7ftAjxkwBJCOpxYVqKlhzXQ39fxjPAzNWf7QaY5WOI48M5TntBCZCxEPCvIptjRFbk4H+Z6cYzPbUKs9woLGrKFplZOItYT40OBkToSaVXUX7DfWEZ6Oiq9My16WP1jD+3ry4z0tBrK3faiXmjefBtSCAJKZaPS2Xyzj8UD5MtP/+flR2lXi8Jzonqe0aZEoZljrdipCSY5UZhWFlJGClxXpLFfMmVowbAwGoGXxxeW3z9+pkEWgASCWkE0vi9k7QUqetE1W51YrKpEBfqSd2fHnPTG1VIVet0APMju3on+eYOehdEWAqWmvB3GhYtu+aUhXtn6nHMxSk56lxjv02vye34UuNSOVS9t/XR9/vl5tAbP9aGzG/EH12bIU52NL1ViRyKTBFzBlj+OVZ9BUqas4s5thj4/gGw0S9cfH7SE7ttwiL5nbd001kJiY6tZedYkVXrGHguSl8o0HS2+0ojMIA5K7bog1mas4qQV+moe/3k3nxgFu+3kzMl+DQr4aZ2r+AVCWFeIyiDWYqttpFSEmukaIyCtfekK+P158eYHo++/1oRuh5JRIJLrvsMp577rnl56Sgf1gVIKX/YdqzZ4/481VXXcUf/vAH8XcX07ye+QOv3wdylGzmHKrbi5GrZZir9Uy+6cIzHMTWYmK+008ylkIqX/wQ3/qtVqYPLnDkwRHarq8So6q2f7eNVCzN3rt7RfckAGOFFkOpRgAotKAvERxpQvNRXN3Ch/vaG2tRW5Tsu6dPjGGztGpRW1Q0fKiMgwOLrji7bu9GW6UVX6cv0dD1y24i2bpl5uACthZh5TFaaL2iKg9ySkZTi1EUJwBF3okgSrNiGaAEsOfOHhzrBbDG1Kgl7gmL75kDlMSJj/u687abB72c8J4zezx4Bz3itlaSxg4Nl9bkZXgCRFwsA2qWyrHeQN155Qy/NiWCX3+vNn6pkXgoyZGHlhPXwLKmRU5VZzuQqaV5We8natd9J2/mLIVtlioXy7cSoJSLTTvwowGKOozLo/GAwEwEQ+kJzk7ZczF7xItjVb4rg6VVi6XeyPBLs0zucVK2yZb3vu231qM2K9l9Rw+DL0wze8Sbf91oQV+qQW1WMrPTw7FHRgFo+mgF1joDe+7swTcQJuaNM/HenPienp4wRZscqExK0Z0rN9ZVZzuo2O5g7ognC8ctEJzKXntfbybsjHHskVEi7rjgNlWmRmOTkYqnGX9NmBhWGhVYFELT88C+vfTO9uJ0OpFIJGQOZZDJZKRSKSorK3nhhRcKjkkFFVRQQX+HduzYIQJLU1NTrF27FrdbmPhKkWIPf4M+4HaopIFmyXpM1Tox+mPstXnMN+oxN2lIJwX751DWCXH1p2vQmJXs/2E/A69MojIJjYrmqyqwtRgZenU6zz2w9oIqNFYVxkYzkb1erK1a3D1hxnfOU77ZIQJKW7/ZyvxRbx4AVLbZhlwjywN/Bp6dYvqAW3RK2v6dNgKzETG+zj8cIeKOMfam0Cyou6gUV49XjNQCsnBNttBZChVFIBFO4plYDs64jgSQyBddgxwdxkUQJgKRSBpdtYZ1n6gl7IyKUXAA46/Pi0DUShDT3p/0rugotFR1F5USckVEuCSnE4GpE7XmhlrkKukHNn5OVPFGM9VnFNP73Hje2OU0+pe5k0atrf5UjRDxd5JjOv7bMcGZ6ESDp+zYrBS7p7FKab+1RYyBXQooaUrUSFUSQmMR+v84gWuFGBR3T5hUPC26WZyoZDhJ+oTJzNZrKoW4twhEXDFmDy1+n9CUqGm/oQ73YIDepyfoemRkGTRVd045SrMCTYmayGxUnJzd/LVmgjMRup8YZ/aQB2OF8D3CWKcRx7pkvUWsAxeOBdl9TKivt/xLCzK5lF13dDP6lzk0FiU9T01Qc34xxesXV+ankmlS2clES40BZ68fImCt06PQy9FVa3CNunn15VfZ3yVY6XMQJBLhPSUSCR/96Ed58sknVxyvggoqqKCC8vXMM8+IP3/jG9/g/vvvJ5USJqDmmGAuM8HrvwAVWjZxFtZKMyqTAmudgen3FnD2+LFkYaFUJE0ysejYt/nrzcwedNP7+0maP5wRHWG2fbuNVFxYaLc0XszSaMScSotOP4ZqNYGxKN7hoOhk3nJ1BYZyLft/2C86GqmL1BgqtNSeU0bXwGLdsPvOHtQlQoRo05Xl2JqNdD08QjQb5z6x00VJu1kEhZo/XJ7ncBQPJpGsPLeEbyKMoVy7DFAC2H9fP9Y2wX1HW6EmHUd8zxyglJv46PxZb1702967l9QSJ0BMnt4QnT/tznN+WiY1tF5RSc+Ty2Hv94tMM1SrabmyitE351Z0ino/rbu5jmQklR9XtkS5OL4T5egwobOr3xeQ2n1HtzAOJ0oN07vdTK8QC7z2hhr0pVoOPTK8LKLNttbAwpEAhx8cwbbWsAxQAvCMB7ApjfkAWfZcuHqCVGyzw5L5OUO1GluzidHX5hh/Z46q04vznK5WfaIaY7mW3XcKE8XuoWD+fqnB2mTAUKZherebgeeFCaia84opXmdm7z19ROejBGciTO0TvgeYGzV4ByIY6kzoitTUnFdB7+8nxbF2rDfReEk5zqNeBl6YZvw9JzG/4Iq/4QuNRNwxup8YJ+SMYqrVYyhWI5VDJonoCKZzqEWnhcPdhxje2c/s3KzQ8zq42POqra3lueeeKzgmFVRQQQX9HWpraxOBJafTyamnnkpfn/B9O06MfbwGTnjl+xKqaaZBshpbgxGNVehfze7zYKkzYKxVEwtkSMfTotNQ4xXlGMqEWLieZ8bQZWPUK89wULnDwfCfpzn6m1FxX2rOLMZQrsW2ysz0brfoGjOxy0mVBBFQ2viVJpzHvXnxU1WnOtBYVfSrpkTwZ+ItJ64+vwj7bPlGM8HpiPi6mCtGYCLEdBaULd9hIzARxD8mPF8ilZCKp1joz/ZFToCKYp44vonlzon+sRjdvx8T480srfq8uLWYK4bKrmLDzfUEZsJ584LzB70rug3ldPBXK9cwS1W+w0Yiklq2ne4nT25aAEIvUmVUrOjS9H4yNWhpuKCcwVen8A0u7xPN7vOcNGqt6cPljP11itjKa/YYfHGGibdnlv89ey5WrOlUsO2r2RjYXw7lAUoqoxSFUUFwMsbxp0dX3N/ITIxYMIHvxH5m9j3j/sSyxZF1F5Uw/PosxMA/HsTVs7jDKiO039KCezBA/7NTHHpkdBk0VXt2CYZKHfoKFcHJmNgL7ri1gdB8lL5nJpnat4C10QCxrAOYOwYxqNjqQKaSMsAUwcmY6JS14QuNKPRy9tzZw/xBL8YyDYMvzlCy2ULFDgcHsmktyWhahPetDQbc/QFifjBV61BblJgatMwPeHjtr6+xvzPb8zq+2PNSKBRcf/31/PrXv15+Lgr6HyFJJre8qKD/0frmN7/J3XffzdLLQS6Xo5AriEQjfPL6T1JdV00mmUEil0AGMukM/okQrn4v9edVAEKMmLFCg8qkJDgT4chDI2z/bhuZTIbd3+uh8eoyHM1mwp4oh349TPuN9WhMKsKuKFq7mkw6g0QiEUnO7d9tAwQAKecCc+SJUWQyaLuqGolUQjqVQQJI5BLi/gQHfjzA5m80IVfJGXx5kvlOP9u+04pEKhFXYuW2O/bWHLoyDfYmo0A1v+kSJh2UUsjAru91s/27bSSjQtxJ3cUllLRbAej5wyiNF1cKee63L9/fXOSaq99PMpSkaJ0ZqVSa99x0MsOeO3tYd3MNuiItIU+Ewz8bYeOXsivgljw3k86w+44e9HVa1l5XQ3AmgkqvEOln8bm3Zcf7jh5WfaoKU6VedDFYf3Md2iI1Y+9NU72jjEwmg4T88Y754qhMStKpNFKZlJ4/jOLpCbPt260CLZ0RJlxkCimJQJL9P+qn9boqLHV6YqE4fS9Ms/qj1Ujl+eOdyQjn1nnch2OVicm9LsZfm2fLNwSHq5G/zTCz05MHtdVcUEzZRpt4/Wz+evOy8U4nM6STaSZ2zVN7VimeoQA9v5tg67dbkMqkYuTd0vHe/I1m5CoZ/okwxx4ZFUGnXbd3s+7mOnRFanG8czGHoXkhZm3pOQYh3g5g8OVJnIcCi9f7/T2s+7iwLe9EEHOlXry+B16aEJ8bjyQ5cG+/eM2OvjPD9NseIQZOLhFek50cS4SSDP91iqI1Viz1BvF4tnyzBZlCyshfZ0AGtWeVitdsbn+nDywgU0pxtJmRyiXieQaIheP85c9/pm+wD4VSgd+fX7lt3ryZZ555hqqqqv/oR0tBBRVUUEErKBKJ0NbWxujoaN7jer2eYDCIXmLky9/5IqloGoVWTiKSRKGR4+r3EfMkKF5vEaLH0rDrDqFWSafTDL06TdF6C6ZynRB/8do8225rFWqr27sFF5sP15CMpZCrZaRTGaQyCXNHPQy9MMOmrzWh0Mhx9wvAx/bb2kgl0+z9QS81FxdR1m7HNxXEVK4nEUuiUAlRdDlwJXfvLD/TRvWOYnxjIY7/dkyYuLKryKQy7P5+D9u/k71Xfr9HcE36mnCv8o6EUKhl6ErVYiRWrv6IewVXpe3fbRPrmo4vNqA2KfFNBTn+63G2fjMboXpHtwiI52Calo9WYm0yiLFoJ97Pt3+3TXQ1WHNTDYYSLeNvzzP5jkvYllom1oWA6PpZfV4R5VvszBx04xn00XJVdX69d1sbyXgKiUSCVC5BIpUItsvPTrHpn5tQ6OUkgkkUerlQYyXS7L2rF9tqPc1XVBEPJlDqFUR9cdTZWgUEKCxDBvdAgPGdC7R/phb/ZJhjvxll/efq0DqEBl7YGUNjFe73S8c7nU6z545e1txQi6FMIzpp5cY7d01s/24bEbfgBNR2fTXmWh2JSJKZgx4qNtuQKqR5dWSuZhNhudemSUVSNF1WedLxzo1pzlVrqatR9XlFVGx1kE6m2f39HirOdFC1w0FwPsKRfx8RxzDnzLT9tjZSiTRSmYR0OoNMIcU95Gdi5wKtl1csr6+z+2tu0tD20VrCnihai5pkPIVcKePYEyP4hyPCeEsyTOx0sXB4gfZbW0glUuz9QR9bvtmMTCFj173dtFwqXGeZVIZDj45SvcOOtclA2BlD61CJdd1bz79Nz0w36XQaf8BPIpEQJskyGUpKSrj++uu55557/os/eQoqqKCC/ufq5z//OV/5yleIxRab+jKZDKVSSTQS5ZorrqFxTaNYc2WSGTKZDO7+ADNHFlhzbR0AzmNe1GYlhgqt2E/Ydlur2Fcp22Gj5sxiwgsxDv18iFU3VGMq0+GbCGKq1JNOCPeBnNvO0nqk6cpy7KtM9D47TtSfZPW11ciUMpLhJDKVFKlCSswrrKzO1UDDf51ldo9b6HEoZKJb5vbvtiGRSBh/dw6JRELFKQ4mdwpRW7l+UyYtQDPbv9NGIppk/339FG+0UH9BKWSg97lxas8uRWVWrNjzsrbpaflwFQvdPgJzUapOcyCVLdZA277dRjop9HYaP1KGo9VM2BXh0C9G8l2es9tNpzLs+X4PqGH719sITIaRyiXoSoRFZZ0/FQCord9sQSKRsPvOHjEmLxfR13JNJdZGA4OvT9NwTpngtCSRCHBQ9n2irjhqu5JUQuhrDbwouAht/lozMpWMTCpNOpVBrpIJK9l/MkDth4op3WQj6osx9PIUTZdWodDJF2ug24S6TCKRMP7OPFWnFTG9d4HR1+bY8MVGVCYFo6/PMr3bzbbvtJGMJdl/bz+ODhONF5WL/ceOWxtQW5VL+k3CGKbjaQZemqDtmlqxTt/8NSFGLXdet32rjUwmzZ4f9NLxTw2oLUqxFl/zmRoM5Vp23d4t1sTpRIY9P+gRxyU4HebIw6Ni/7TzwWGis1G2/IvQW+t7YRx3d1Csn7p+1kfNeWVYm424B/1Y642k4imkChm9z47h6Q0JPa9QggP3D9D+Tw1oLEom9zkZ/4uTTV8TemDpRFrowQLxQILBVyYx1Rgo32oX6uIf9Ir13vBfZ0mEEzRfVinWkdu+04ZECjOdCyTDKUo6rCi0cgJTAniXSUM8HOeNv73O0e6jqDVqfL58cG3Lli288MILlJSU/Nd84BRUUEEF/Q9XLBbjrLPOYs+ePaTTi/CyTqcjFAphlti49Zu3kAgmUZuVxAJxVAYl891eogtxitaYhRj17NzHtm8L8y/9L05hrNJQ2mFjap+Lsb/M5837GWvVtF1TSzIq9Lwy2Z7A3CEPQy/NiPM+rm4f/c9OsfVbrWSSGfbe00vRJjMN55fhHg1grTYQDwm9mF3f6wYVbP/GYq1iatOy6soafCNBjj8xTtu1VZgb9OK9dcvXm5FIJWIM2Pbb2kAC7oEA6UQae6tJdHba9NVmFFoZEVeMrl8Msf22NtGdadUnqzFV6fBPhjj2mzE2/nMTcrWMPXf2CDWDRSn0x34xRNW5Diq2CPDW7AFvXi8QhB5SzqGn8coyHKvMjL8juDx13NqA2qwU+ovfaQMpxAIJDv5oANsaI82XVTB9YAHXMS+rrqtFtqQPtPVbrSRjKTLpDAqNHKlMgvOYABWv+UwNhjItodkIuhIN6USGdCrNvnv7UDkE0CriiaGxqAjOR9AXacTtbvlGM0glLBz3MfjiDNtva8M3GuT44+NCvZdNYwnNRlBblEikUvbc1SOOdzop1ESNV5TjWGXi2BPD+Eei4vzibKeb4ZdnhfGej3LoV8PUXVhCSYeVWCDB7EE3pRttyLUyoT4lWwdna7YcLDf6xizB6RCrP1Ev/g2EOjgeEMZ727dakcglYs3Wfks9GquKXXd041hnovHScvHasq0y0nxFhXDOHxlj/Wfr0BarWejz0/f7SbZ+q5VULAUSCWQyKLRynD0+Zva6qD23FEOFdsWel8ooZcMXW/BPhTCW68TvPEeeGCI4HWPLl1qQKiVMvudi4i1ndo42xd67+9jw5UZUBgVdDw3haDVScYqDdDJD14PDVG6zUrTOQnAmgr5EQzot9Jl3vdzFsckDJJJxAsEA8Xg8r+d100038W//9m//Rz+HCvrvoYKTUkEA/OAHP+AHP/gBAL29vWzevBmpVCrCCo8+/ihqtZpoNIrDVMTVH/koaqUKc60BlUlBMpLCOxkkOBcmFU9RvN6CPutOE56PorTI0VZpUemESRJ3TwDCoNDISSfTjL01S+3ZZSRjgkXj9tvaiHrjJCMpnD1eANJZyKX2zCKOPjxKYCaCQiNDKpMglUlBCr6ZIBu/3Mh0p5Oy9UUEZ+PUXlSMVCYlmVi0Y44HEqRTaabeXaCow4it0YDWIUQs+CfDGCs1pKMCsBXzxYlHhCx731gAx2ozUpkET08Y37oQ+qLFZVCJaFK0m/bOhSmLpPAO+Jnv9CPTyDCVa1l3cx3xQIKoJ0Y8IOzT/DE3NWdqRNtCz2gQa71wo9XapdnjFwq6lD9MMpLCPRRgcq+L1ddUobUuOgGFnFHRTttUqSeTybAwKBDb7sEASoOCqb1ept70svbGWqRLbBqTkRSe4SAl7VahaIiniDoFIjgwLcSS5aI1Nn2lCc+oQAR7hwIYyjWodErqzi4mMBnKy7CN+xP4ZyOEpiPEA3EsdXp8I8JrQ+4wxlI9RastzOz0EPPFCWfzdn2jAUo6LCKN6x0PYSzRoLVLWf3pRmLeOBFPnO7Hx9FWaYVxGRWu2YW+ALYWA+NvCKsbI+6YEMWSPf9ShYSFAaEx4RkOYmsV4kHmD3uoOaeEkFNYQRiOR4ViOgs4+yaC6OxLxns+ir5EQ8OFFTgP9ZCMpJg/7qXpkgpkKgnJSApXvxdTmY6IL4okJc1zr1Jk3TImdjqp3FZEMp4QGzkpf5rgfBSpTIKxXItMLUWmkOEe9GOq1YnwUjKWIp1KM7PHw/qbheZp0BlGYwffZACdTYtvNEDrR2rIpDPEfHH27NxN73gv4XCYaCwqTo7JFXJqamrYsmULTz31FAUVVFBBBf3XS6PRMDKyuLro5ptv5rHHHhObN8GMnzvvvBO5TA4ZCetr2jnrkjOx1BiQNUlx9wfQWJX4Z8KggVgwjkqvxNFmYWa3E90lajTZugYQHQRUZjXpTBr/TJhMPENGksZUpkdnU7L9tjYWhn3obRoxmixDRlzhM3fAj6PRTGQhjqEog388iKFYx6pPVBP1xAnNRUlEhPep2lYECA0YAPdQgCKdjNG/CZEliVhSnIwgAolgEplaxuxBJ9oSHUqznEh2IX9gOoKhXEPEJ6yWTgSTuLN1zcx+N9VnFTH8grCiyz8dFu+r++7tY+OXGvFOhtj01SYm9s1jKNMQnBa2k4qnWLpSI+aN482uYsvFsMai2fpvPIQ2a6k9+tYcxWvNhOcXa5WiVWZ8I35qzipFKpWKK7sBIgsxIu44vU9PoKvW0HZlJd6RxbrMUqMXFgAg1HC5yNzwdJhEMMnELidze73UXliCrXExEjc0F0VbrMLWbKTvxcm8cXEPBlFo5EwdWGD63QXW3FC7GLUSgXQ6jVQqBQ14BgKojQoiPmEFvH8mjLFcy/R+rzjensEgbddVoTLJSASTHHt0kIg7jbFcK4xV1nkplUgTdkWy59yPsUKLfzJGxB2hMZMhEVlSi4cSootEIpJEKpfiHxf2Px5NIlML18fYa/MUrTfjHxHqUf9YkPQ2G/oiDaXbrHjGghjLtIz8dY6NX2gkvBAj5omjL9UQjyVRquQs9PoFxy+ZsFqrdJuVmd1uQvNREqGU4IJpUpIIJpk76KWk3ULQGcZab6L+gjK6HhgSGmYlGnQOFR6HSvgesUtweZUpZMJCj4hwDapsctIxaL2iHLVF2O5k7zSjnQMcOnxIuLZiMTKZDHK5HKPRSH19PQ8//DBr1qyhoIIKKqig/3p9/vOf5/Of/zwAs7OzbNmyBZ/Ph9/vJ0OGJ59/EvWrQs+ryFLC5RdciUalxr7KhLZYTcybwDsZJDQTI+SMoS/XiA58vtEQ+hI12go1OodQLyz0ZV2RDAqS8RQTe+eRK2TEAkkUGhlbv9lCxBMn6o6z0C/0MFJpAWou22rn2K9H8Y+FUBrkZNJCBGs6mcA3FaTjlgZm9s1RtqkE/2SY4o0CvJ6LggehT4Ekw8SbLsyNGjIZOyqrUBt6RoLYmgykYpnscyMkk8JrA7MREpGk0HcYDmKq8mOu1YvbjXpj5OyYwoEkMW8C90gQZ6cPhUaGrclI67WVZFIZglNhEjFhuxMH3NhbTMxlXdM9QwEUmmxLOttSE2uVqBApsjAQYPq9BZqvLkdfrBVjzvwTYaEHiBBbkslk8GRrIM9gEJ1Djb/Hy67dXlo+WinWdQBRdxz3UIAyu410Ik0ylCIwm63pRoKoLErRNXz95+rxTwm1inc0iLXViNqkovqMErwjQbRLeoEhZ5TwXJTAbJSIM0zMa8E3LvS8/LMhHCYz9jYj07vdhOYiRN1CrRiYjpFKLMbHeYYCWNIG1GZY/alGgrNhEsEUvU9PoDYLkNrCiHC9zHZ6KNtqEx29gtNhktlrIOKNoTIr8GRrcc9QEJVJkX2dC3O9nsBsWBz/dDpNJttfcvX4MFbriHqzteF4CEuDgaZLK9jT3Stes6VbHagsCmLeBM6jC5gq9YRcUSRI8uLqFGrhPI+/M0fN6SUE5xNs+04bMX+cuC+CbyyMQidDV6JGaVSgMqnxjQYo3WwVV9nHo0nSpJnd46blGgF8D3uioBb+1wylWnwjIVo+XEUqmSbiirF/fxcjr/TiD/jzel4KpYKamhpOO+00Hn30UQoqqKCCCvqvl0qlYufOneLv3//+9/nBD34g9ry8mQXuvOv7KBVKMskMq8s7OOui0zBX61G2CRG8hjINvtEQKiOEXFH0xRqKVpkZfXsOa6NRjEvPpDLifJxUIYNMhsBUiJg/iUQB5nI9co2Urd9qxdnjRZKB/qzTpEQK0mzvwdfnJbLBRnguirFYy8JQAHO5jsYryomHE7gHAuL7NF9QCRJYWNLzUlkVjO8W7snxUBKlQSG650QWYij0MpxHfUjlEvTlGhJ+of7wZuuyqEfoP4Xno+Jc3uwBD/pSDQN/EXpp3uEA6uycW+cDg6y7sRbPWJCOf2pg4r0ZIq4YwVmhJxMPJpEtScEJzIQJZR0wVVnTg3i257Uw6MdYLtS1Ay9NUbLeTHhBqFXCrhgRVwzfWIiKHUXIlFLCnuWxeQPPT6EySmn7WC3ubNSYZyiYtw/+8ZBYq8T8wnan9i8wf9BL2TYrsnWLz/WNhzHV6ihaZ2HwReHYPNntegcDaMxKxvc5WTjup+nicuTKxXovlUojk0tRGaV4h4Poi9XEssfjGQlibzTiOia4M4Vno7iHA9RdWIKuVE3EFaP72UlizhgaixK1RbnoghRMEMrOW/onQ0RcRoLTIfxjMdLJDIlwQtyHsDtCYFI4FxFfDKVOjm9cqI9i4STq7GJC52Eflac58I8KfwvOx0jGU5iq9JSdYhWduEb/PM26G2sJzISJ+5LobCpSqRTJcArvYJDgZAyJQiJ8lzjFyvRON56BIOlUmtWfqEZfqiHiiuE66oMU+OfDFK+y0HB2OYceGsY7GsTWZERtUaJyqEjFUkzsFK5npU5OJpMh4ha+B/nGQ2TiGRovLMFUoyfkjjLX42b3sR46uzqRSiVEo1EyGcGp0mg00t7ezq9//Wva2tooqKClKjgpFfSBOuOMM3j77bdX/JtWo8Ukt7IquFV0fsmRmo1XlTLw8gyl7Rbqzi4jMB3myEMjlJ9qA2Dq3QXBpSi7Er2ow0hJh40jvxth65daCbuiHHlwhIbLy7A1GTny614qz66g/2khq3Pbd1ohLVhe57T60zUYK7Sig5K2TE14OsrqT9dwLGv/uPnrzSQjKdH2zrZGR/Pl1fjHQxx7dGxZ7Fpuldnxp0aXxYXlnH5yLkxLte07rZDJrlpfou23ZV2RTng8p6qzHaTiaTHeThjo/H1aSRVn2pftg2O94T8c5wYCZRsPJDjwow+2gFwqS6sWz1g4b181djA3WJjZs7ItI7Di8S09Zyeq8UqBgJ4/6mXwhWnx8eZrKrA1Ghl7ay5//IBt32olgxDPd6JyrgG5a/fEfco5TB38iXDNlG61UHN2Cd2/H8M3EKb5mgrmD7uJOaOEXUKxve07rXmuYEv3r++FMRaOhqi7uITZTi9155WgtavE+JHtt7Xh7PMRccUwV+k49ugY2iot6z9ZQ2AqzNCfxqk8p4y+pybF/cutLCg/00bQGcF3LLzoPHVfN2Gzl1ixh4OdB5cdv1wuZ/369fzrv/4rF1988YpjXlBBBRVU0P8d7d+/n3POOWeZq11ORbZiyhYaqCytpf2mOtFF0rpei0KlZG6vV3AUUize15qvqmD8jUmarqzLcylq+3g1nsEAxgot1kaDWJts+koTgakIY++5KFplYOy1eYq3mKk/r4yZg25GXpkV90dYobS4EltjBU2xFkuziaEXZrCt1tN0aSUDL02K8V8bv9SI0qBYvEeeEL22/bttpOLpFePGtn6rlUw6s+xvOYed2U4Pwy8v5tE3frgcR5tJdJZaSas+Ub080mOFOLilKt1mZeaQO/85GjCWalaMZXs/5VaH59Uhf6dsq/UsHMu3ka44zc7kO++TFwzLjq/iTAeJcGJZjF1O276drWvu6F72eCaNeP5zyjlMjbw+y8wJ0SX2tQaaLqtcFseX2yfR3enXi9Ft7bfWI1fK2P/DftBA24er6X58TIxwKzvVRs0ZxeLqsrz9S2WEFYwaqD+nlOn9HtZcX83sIQ/jr8+z7rN1qC1K9v6klzUfq2Xi3Vm8/ZE8B62K0+wkwknmDnjF1Ze9fxglMhem9NRihv8oRLss/W4T2zzH4OggM3MzSKXSvBWk5eXlrF+/npdeeun9z1NBBRVUUEH/x/WpT30qDxZfKq1ai1XmoCW8adn9uubCImZ3zaN2aGi7ppbAlBC54egwIVPKmN2Tdc0JC44vpno1FacUc/z3Y2z+p2YiCzGO/maUitPtlHZYOfrEOKUdJkbemoMowip8mSQv1izntjT06gxzBzyoi9RE56O0fLSS3j9OQBQ2fLGRZCzF4X8X7rHaCjXrP1WHb1xw1Tkxdm3tDTXoy7T0Pju+LC6seKOF+g+VMrFzXozNymnLN1qQSJfHrm37ViuZTOakcWyODhMKrZzp95b0bE7Yp5VUts26LA7N0qLLA2L+Xgk9nsRJo9tOJkO1msBcdFl0WvFqC3MH3qfntcLxtV67cowdQOWZdip3FDF32MPQnxbr2prziinbYmP0zbn88UOIsZXIJCvWz0tdKlfap23faSPmjdP5gNDzsrbpabq0gr4XJvD0hqi9qBhPv5+oMyLG8235lxakcqnoUrV0/3LuVJVn2nH2BKnabsNYqeXAj4Xx3vrNFhZ6/fgnI1ga9PQ+NYHaDB1faCMwHmbgj6NUnlHGQLbft/227HeDu3txdJhIxON4j0VE56nOn/bii84SXRVh/4H9y45fJpPR3t7ObbfdxmWXXbbimBdUUEEFFfR/R0NDQ5xzzjnLnMVzKrYVU7rQhF1dzPavZ52dfz6EvlaFxqbGecDHxn9uQrnE0bDmQ8XM7HJSfW4p9lYTB385RMwVo/GKcnzjIdRWBWUdNtHZqP2WeoKzUcbfdWFv0TP13gLGWjWrr6tj+sACo39ejG7d+s1WMum0GIOlMkpRWRRYWkyM/WUefYWKVR+rYfDlGRaOC328NZ+pQV+iWZz/OyHqTXCxTLH/vr5lx7/xK01IgP3ZOK2cHOuE6NMT9y/n6DO5yymCyyeq8cpyBp6byn/whH06UbZVRoIT/vyoNBUYS1RipN3fq3U31qIr0eTNk/29MjVol8WqFW0wv2+sHbDs+BzrTMgUEmYPrPy6zV9rRiqXLuttbf5qMxIp7L0n/1yVbDRTd34Zo3+bXVaf6itUrP1UvZA0tDT+LrtPjVcIfcpjvxPcnQBWf6IapVEhzlnnzpnKriLmimFu0tF2dbXgzL7kXG76ShNSmUTcv6pzHcztdbL6k43MHfEw+baL5qsrMFRoOfBAP82XVjB32IO3P0T75+tRm1Xs/r7g6AQCNNV8dQX2FhO9z06wMOin6nQ7468J3wO239ZGPJjkwI/6iXTMMzIzyPT09Io9r1NOOYWnn376/c9TQf/jVXBSKugD9dZbb4k/d3Z2cuaZZ4oTZ+FImDBhZvgDf7tTisVsQZ7RstmxBUeLBUu1UbDvsyiRZEHYqlOLkMgkTL27wK7bu2m8qhy0UHVqMUqjAq1Wyp47e2j6aAWmRi3GCg0ylZSIC/qfnqT9c/XMHnIT8yUguwbesd5Aw0UVDL06xejb8wSHhRvX+hvqxOiwnHJRbgDaKi1KozLvi/r2r+RDRN3PTNB0SZkIKG34YgM9vxsm7EoT88fJpDJM7hU+pHNQFEDEFRNX/SzVrvsX36v2omJm984RWdLrqdjuAMiHbLL34Q1fbECulucdDyDGfU3udeXBPjlASWMn7z1y21KZlP+hCbET49ZEZYEeT89ykmrNp4XX+AZ9IsADAoxVsc3Bkd+Niucrp5z1d80FxYy+ulh05W7OA89NMbVnQRzrnCbecWGpNeAZiyzuF8K+xUMJllomtF5XRcwXZ/ilWWa63Iur+ICmj1ZgbzIy8tcZZvZ4hOPVQtV5RYy/Nk/UF0MilWBvM+EbCNP31CSlWy20fqRGtHw//NgY4fEwm77cBMD+H/Uztc+NpdaAVC1l/c11TO93EZ6OorWrkGsE2rv5mgoO/XqY8HRUBP8ALNUaBv48gXN/gI1fFiZ3tVVapHIITIc4+vAYGjtU7ygmEUry6tFdvPnuFAMDA7hCLiRhCZmpxQGoqalh/fr1PP/88yc/4QUVVFBBBf1f16ZNm/IiCD75yU/yxBNPiG5I8wtzzDPHoZmdvHGPFqVERV2mnU1nNaHQyZk74mXPD3pY/ekqNOUaNEYJ9lYTGpuKQ78cwrHZiLHRTGSvF3ONDn2pmn1396Gr1tBwZRmDz02j0MrRF6mJTEWIlqpY/eka5o67ScXTzO4RQJ9N/9xEMp5i1/e60ZQLDoNrb6hFX6ah++kRhl4QJlQsTUYkMgmhBWGFeNU5RRz41YAIyFScZqfq9KI8+MnZ7RMcAID6S0qRKCQMPidMUsQDCdJJoZ7QWCGS7QX4x4KkNtuY2b04kQMw8OwUkzsXiGRXjNVdVJoHMdVfUoq5Ri9M7j29ZKIoghABdlUtQ69P58E7umoNteeUUL7ZJk625F7jH46cFHDa/t02ESr7e7X9u21i5OxS5Y79REBJY5VSdXoRpZus7L8vv6m1+RvNxP0JAQw6Yf+qTnFAhrzj1Fil2NbZmHzTyaFf9ohjvVQRd5xkdNG5IQcNzR9wUdphIxkTzrumXEPLpWV0/WII15EA5Zuj9D83Kr4uZ9+++/s9HM02cSpOs7MQiRFxp0XbcOFNofvxMTGiedft3Uy/u4BvPIy+RMW2b7dy5IlRQmMRot446WSG0m1W7G0mYdsakGtkmKt1+Js0BGciHP7VMMY6DYYyDTVnlXJoYpiFfr84MVh1ehGpeJq5A14CsyEWhvy4e8Js+moTCq2c4T/OEWic4I9/HODIkSOCs9LexXGSyWRs2LCB++67j1NPPXXlk11QQQUVVND/J3rkkUd45JFHABgdHeX0009nYmKCTCZDOBomzBiTjPHGDyXYrDZUGSOtkg7KNtixN5k48KMBRt+eRaEVvtPXnlWCXCNASrvv6Kb2wmJQQ/UZJejLtGjtavbd20ftRcWY6tWYq/UodHKi/igjf46y6hPVuLr9hF0xpFlHS0O1mlXX1jD02gyT+xYITwp1Tcdn64So93sXJ07kKql4z1SbpRgrtHmTQlu/3AIswkX9z47TeFmVCCitu6mWvhdniM5GScaTpOJpnF1CQykHRQEEpsJiH2Opdt/Zg9os/Fxxuh3XYTdR72IvqOH8MiRSST5kk23trL2hBpVFyf5782uYHCDm7vHmbSsHKKnNiPBMTksjzv5ebfiCEM22bBIta5oUGFtOUm24qRGVWUFgNiKeFxBgrIbzy+j+/Qi+ofzXNV1ZjrXRSO2HihlZMtFYc14xo6/NMfGmC+fxoDjWOc3um6NorZnAxCKYlTv2qDeOdIlbQd0lJWQSGUb+PMf4e050RSrxb9XnFlG+1S5G0O2+oxvUwvmafNtF2C24XFoaDXh6Q4y8PIepXk3HF9rECLnDj44SnY2y7uY65EoZB386wOw+J0XrzKSladqur8J5zEd0VnC/UOgV4n4deXyU8GRUrKMADHUm+l6eYKEzwNobazGUaXEe9xANZPCMBuh5fALU0HhROXF/gteP7uft/W8yOjrKnEeINcwcyIhRIlVVVWzfvp0nn3zyg098QQUVVFBB/9dUX1+f5yz+b//2b9x1112Ew8L80NzCHHMIwPZ792jQK4zUZdax/tz1aIvU+Pt9HPhhP40fKUdTqiKdhLJNNkwVWg4/NMJcmwdjuRqnK4ajzYSpVseB+/uZ6/JT86FiRv88h8osuNjEXDFC83Jar6li+oiLeCjJ3GEvAOtvFNIq9vygB1XWKTMXHdbz7DhjfxF6Y+Z6A1K5jERQIGLKtlk5+sSoCMjk4rum9rvE10zuc5IMCn2U8h02VCYFwy8L/bDYQgxyvY/crTsG/uko8VCSmRMgm4m3nMwf8xPLOvxUneXIg5XKtllxrDIhlUnoe2ZxQRcx0JSqWPeJWkbfmM2Dd1RGKc1XVBD1LALM4n7kAKUVIKdt324l5kvkv+YDtP22NgLTAui/VCojxPwsA5RQQcMFZVSe6uDgCQYLG77QSDyUELZ1wr7VX1gGcMJxgm2N4Dq076fLgTGA4HSEpTYvOWho9qiXqtOLiWXd0FVGKU0fqeLor0cJTsbwDAYZfn2xxtv81WYkMth7dx8Dz08x8PwUjnUmVI4MMWcMhV6OYkldPfDclFCXGhXsuqMbb3+IroeHUBnkbPl6M73PT+AbDBNxRkEiwbbKSNEaMz1PjWf3R4G5Sou3QkXUF6fv95OojFJszUaUBjnesRALA37G/ypcK40Xl5OMpnAe9hGYDxOYCbFw3E/75+rR2FWMv+3CWzrNSy8Oc+jwISH1Z4kXglQqZdOmTdx9992cdtppK45lQQWtpAKkVNB/SB0dHXkTZ7fffjv/9m//RjKZJJ1Js+BZABZ40TnBaz9QIZVI0WSMbG65EblGxsjrcxx+ZITmK8txrDcQD6VwtJgwlmo48OMBai8rwdJqIfzuAvYmI9Y6A3vu7EFbphaAlbfn0DhUVO4oYt+9fTjWG2i8slyIb5BKCLqShMfDrL2xlpAzSsQZI5C1OFz9yWoMFVoO/XuPCOysvroSuUaGbySSBxels3eeog4jlTuKOPiQcGOtuaAYlUlJ7QUVHH9snJmdHmZ2CqulHOsNNF5SKRCyD41waMlk0tZvtSKRwu47ehYhIi2UdtgoXmvNc/fp+cMoctXyRg+ATClDIlsOPo28No2p3rCi29KKK6YA71gIW6Ps73Jpyik4E0FnVy97fNNnm1AY5Oy6r3vZto49MUbducV5gBKA2q4CCaSTLNORh0aou7gkD1AqP9WGY5UJfZGarl8Oieer7foqzLV60elKHEstbP9qm9Cwu6dPdEHKyVKnJ53MMPzSLKOvzlF/WSnrb67j0L8PM/nGNJYaPVHfYjWz9UsCMDT+2jyenjC7bu+m45/q2fbtVnZ/v4eZPR4qtjvwTfrZ+OVGjj8uFEmybHFhadVStE4411q7FO2HKqncUUTQlWT2iIfx1+Yp3mzC3mRCa1bR94cRfBN+erJkdPUZxaRiaZzHe4kE4nhGfYTHwyLINJ+ZIunw0fO7QwwNDZEhA7uFAgGEaKH29nZ+97vfUVVV9UGnuqCCCiqooP9H9Oijj4pRBJFIhI0bN9LdLdzTc7B4J3+j6/430ev0RMIx1rIVY0Uba67VsO/ePuaOu1BohSZM3ZllyJRS5vZ66Xqgm8rzytFYoenCMjR2FfOHPOz6XjdV5xShKVFTeYoDpVHBsadGce7z03xVBTMHF5AppYs1SSpD+631OHvcKLQyvP1C7bXt262E5qKLNYgGKrbZKemwsC+7Ci3sDJOMpRh5U2jIrPtsHZ7hINNZWLtojRmJdBFSyq0qAlhzYzNypeB04x+OiCvHbav1NF9RxfxxL4PPTYuAUvvn69HYVPgngqKr09CLM6TiaUb/slhz5EkCWlt+7RMai+AdDTHy8tiyp2usUtpvbSHiitH1i6G8vyWCSXyTf2fRhQAiJYJJ0dJ68Q/Qfquw4v3gT/Prm4g7zUKvn7nD+avrAaQyqRjfd6IGXpkkvJDIe2zdZ5uRKiRMvunMA5S2f6eNZEyYED30y6Elz69DV6zm8G9HCI1F8lag1Z9XjMauoniLmbm9XvqfG6b1Yw0MvjKFfzhC2BUjFV+sFY11GqpOL6JorZnOnw2y794+NOUatn27FVefn4Fnp3D1+dBYVNRfUorKrKT7sTFUWgkSmQRHi5GSdjMjr0/j7Y/kTYLVnFZM1wO9RNxp0XVs6MUZ9OVaJvc7Gf+zU3RSnX5vDl2FjpArSv/To2hK1JSstRHzxnnjnb/g+usgIyMj+DI+yJ9PpaGhgQ9/+MNipHZBBRVUUEH/76umpoaxscX7+yOPPMIXvvAFgsEgmUwG14ILcDGVGeadO5XIZQr0GSvtqz6Gxq5irjPAkYcGaLqqCmubnvB0mNINNiy1BjofGKTyXDvGCi3hySilHTaK2szsvacPtVlK1XZhUslUrUNjUXLgxwOY6tXUXlRMOp5BKpeSCMQJT0ZpuaZSiKodDRLJRm7UX1qKo83EoUcEeASg5ZpatA4VoZmwCNj4J8Ji7K6hWk39BeX0PiXczx0dJnQlGurOLqL7iXEWjgRYONIrPnfNJ+oITIY5+ptRup8YF8dp0z83IVfLRKfzHDBUdargrLh0od3hx0bQWBdjiZdKppSJUW5L1f+ncYrWWPMApZzabxEmT3bd053nVuQZCqLUK1YEmE4m71gQc7V+2ePrPiHUOJ0/7V22D8cfG6Dm/Mo8QAkQemdSyYo9r/7npoh643mTiNY2PWVbbJhqdBz+1bAIKNVdUkLJeis9z4zh6Q3lAWmCE0OS/ff1izF1OZWstZJOpRn58xyze9xUnmlnzadrOPqbUcbenadorVmM6QXYdKtQK03udRGdjbLre92s+WQNW7/Zwp4f9OIbihJ1xfGM+Fh3cx19zwu1uVIngOSGajUl7Vb23dMHami+qBK1SUlgOsZ8t5fJt12Y6tWUrLdiKNHQ98wI7mE/U9nvAI0XlZOMpFjo7CMajBPsCuMdiIiAmjfjIlw9z1NPHmFgcEDoee1d7HmpVCo2b97M008/TUlJyQee64IKKqiggv7f0P/6X/+L//W//hcgxKJfeumlvPHGG6RSKaLRCNFoBBevsf9Xf0Wv05MIpljNJhwtbZgqdRz4YT/j782htasEgOXsclQmBc7DPnbd2039eSWojFLqzy3G0mjANxZiz509lGy2oHKoqDzFgaFcy/Arkxz4YT81HyrGrfQi18shNw0Xi7HuxlpmD7uFCPgeoUez+avNhOcj7P7+ElfBs0so22bnQNYJKRGMEfMnmN0tTEi2XlNFYCYsuu+Ubrah1MhFSOnoo4t1aMdNDahNSnbd203MGePAD4Vt6itUrP1kveC4+NKMCCi1XVuFuUFPyBlj4ahgMjG92y0YRry3vEeUTgJSCSqbMu/xmD+N85iX8RVegwq2f62N8FyUQw/lL6aLzC/Oxf5dUpEX47ZUG77QRmQhRtcv8/tqxGByrxP/2PLemlQhyYt9W6qeZ8bIJFJ5j625QXDkmj7gzoOatny9mVQiw4Ef9dP95GK923xVBbZmI8eeEByQ9i1xwqo8vRhDmVZ0/ux5fpw119Uw8Z4Tb38I/1QY6RJDC5VdReMl5ULv8JdDdP18CJVRypZvNOPuDzDwwjTzR70YSjVUnG5HV6Sm75lJ0kmhXjbV6jBV6ZjY7cI3GBZhIlRQ1mHl4L8LbmIbv9yEUi9n7C/zGGsNjL03y9RbbhHmd/f4kall+KZCDD43ASqo2VFCxBXj3X1vs7BniJGREbxRL2RLzZwxR0NDA9dffz3/+q//uuKYF1TQ36MCpFTQ/1/67ne/y3e/+13x96uuuornnnuOdDpNLC58skeI8P177kCpVBKPx9GGDKw1fYm688vZe1cv7hEfOrsWbZmaohYzMqWUqXcXGHhxgtKtNiytWmrPLkNjVRGYDHLoF72UnGpHW6am9pwyAcC5r5uBZ6YEkMkVRl+qQetQi0BI2/VVSBVSJBKJCCht+nIT830etKZF96Pt320jvGS1euUpRahMSrRmNeFwlPn9TkIzYdGhaNu3W4kHExz8ySDByQDJSIrB14RJrrqLS5jZM0vEBTFPHLk6e4Nc4u4z2+XGMyQUDLY1OhaOhkQ3Io0d2m8R9icHPC1tRix1bZrv9DPfKWyndGt+tNrCgB9ztW7ZuRv64wxDzCx7/P3U/fj4io8vDPqxNRiXxbxpS4VjOrakuNLapYRdafqfnsyby9HXaVl73aIT0fBLQmGWG5epdxew1OnFbeXcoZzHPJiqdCSyhYRoXxmGmC+OeyggjkvtuaWM/G2GmZ0eIXJtKCRCWo42s+haFHalOfpwP+tvaRHdCybem0emk7Lhiw04j/sYf2OxmVS61YK2WM3++/upONOO0qCg5rxKAjMRjjw6sswVqfSUYvpeHmOhMyTEwkkF+MlcZ8A97KXn8SnRtYrwFE0frSAeTtD96BCOJgPmcj29rkkOGN9g4tmjjIyMECcO3aBQKMileK5evZpf/OIX7Nix4z90ngsqqKCCCvp/UxqNhuPHj4u/Hz16lAsuuICpqSkymQyBoHDP6+QdDn3vPWQyGalMmhLptdTV1KEp13Dk0VFWXVNJ/SWlDL0+g73RhKlUx/4f9tP6sXKK1lvwD0eo2GanbKONPT/owd6hpfrUIsZem8fWYsRUrWPPXb1oyjUUbzFjazShsaqIupIc/Okg9ZeU4psRmgy5BUfV5xVhbTAwuddFzC1kwa//XB1au1qAnLN9DF2xGpVRwfjr86ARnHWsrULxVHGmg6pTHPS9MM7CsSDOYz5MVdkaRwO1Z5Yw8sosiXCKdCLD/CGhHsq5DnX9fIjWaypFQMnaqsXdExYBpTU31GIo1dD10DCR2Sje/kjeSnqNVUrELUxMdT8m1CP2tQZcAwFx/yPuNIlgkoWB5XG7+3/Yv+yx91PEffLXxLxxnD35kYDFG83MHfDmr45j0d3oxMjbpePv7FzcVm5cBl+ZRJ0DtJa4QyXCSSIe4RxqrFIcHXbGX59n7K0ZGi+qJDQvPHHDFxqQa+XsvauXY78ZxdqqJTInFIsKswa1RUntWaUcHh7m8K+GWf+5Orbf1iZCZ56BAGF/jPZb6+l6YIjIVASJRIJCK6ftuiq6nxuHSDaKTioBDWhLdOy6vRtNiZr2m+owV+roDk3h7PUwt9tJ8RYz5VvsGCq0TO2aI+QMMfGuEzRQc4bgRuk8KkxEzx9zE3GnWXtTORI5/G3hL5Q2ODjw4BvMzAg19MRhUKuFMTKZTFxwwQWFFfsFFVRQQf9A+tSnPsWnPvUp8fdvfOMb/OxnPyMSiRBPxIkn4oQJcc/P7xJ7XkasrHd8noaLytl3Tx8znS7MtQbUJWqK2ywojQpmD7k5/rthKk4twtyooXxbEeYaPRFvnM6fdlO8yYG6RE3deeVo7Co6/32Ysb/OU7bDhncigqXeQCaVFtyQ1NBydQVIJUgkUhFQWv+5ehaGfEScKhFQ2vadNkKzYY48PApAzRklaB0qFCY1UW+UwHCA7qdG8A4I9/LNX28mEUzS9YshAnNRYt4E4+8IvZrKM+04uwSXpNB8FI110aknFyU2/u48Yafw3uZGDd4BwW0oPBkFNWz7av7+LAW8l7o2+Yai+IYEKMax3oTz0OLiSWe3D0ebadm5m3zbxeTbHxB/e4KWRqst1UKfH7lKlg8oqcFap8fdHcxz41SbpUS9aUZfm2P0tUUIXl0k1Cb+CcGJKAco5cbF3R1kodVH37NT2e0IcJXziBdHq5lkRJhYqz63iLF35yEKwbkIvjHBVcnSoqPlw9WMvS1EwXX/Pnses+eiZL0VhS47DRCF/Q/0543/6BtzqCwK1n2iDveAn4k3XeICTus6PaZSHZ2/GMS21oCuSE3NmQ4WBvwc/d040dmoCBMNvDBN5TY7fX8cYeFIhC3fEJwvJ992YWsz4+r10f9M1h3ArGDo1VlqP1RM1Bun++lJ1CVq7I0mhrqH2a9/nYmXjzI6OkqMGPSCXC4nkxEck9auXcuPfvQjzjjjjP/QeS6ooIIKKuj/TalUKv7yl7+Iv09OTnLJJZdw9OhRUqmU2PM6wNt03vFu9p4g4TL1FVS3NjN7wM2xR4do/VgN1ecXMfaXeYrXWTFV6el8YJC6S0owVevw9ASpPaeU6mSKvXf3YWxW42i3Mvm2i7KNNuytJg78sB+VXYVjnQlDuQZdqYZMl4RDvxqm4nQ7EVd8EWJCiP9yrDUz/LdpUiHh/tlyTSXmWj1dD/QR8ws1hLlOh65ULdQoKjjwQD/GMqGnYFtjpPHicgb+NMXCcT+zXW5szUYRoMm5JCVikIimcPUK9VDOdaj7yXEaLikVASVjrRr/SFQElBqvKMfWauTwb4aJzMSIOWN5fSKVUSruZy5y1VirJrYQXYx9i0HYGcXZu1iL5XQitPSBirEcQsoqMBNeBi/ZVhlZOL7o/iPud9bd6MSIvNZrqjDV6uh6oCfPkSk3Lv0vjGMo1wnju8S1KuZJEA/lHJLAvtbG1HsLjL/nRGtXEVsQ6tM1n65BbVWx/74+Bl+cwdnjIzovvI/KoMJQpqVymx1vf4jepyZovaZKNDyIuWLMHfIQ9kVZf2Mdhx4aJuZPI5FIkCqk1F9cyuQ7c0z402z6irAYABXYGnTsuqMblRE2fLENW7ORbt8kzl4Pzk4vxjI1teeWYm0MMv72LMHZMDMHBCCu8ZJyYr4ErmMhkEqY7XITnIyx4UuNKHQy9vjexVynpefXu5maykbKdS32vGw2G5dddhkPP/zwf+w8F1TQ+6gAKRX0X6pnnnkm7/ebbrqJRx55hGQySTwuTGaECfC9730PqURKOpNmfFcTF15yIQqdlKOPjbL6+mraP1dP1y+HaLykksaLKtn38z7WXFdN+ZYijvxuhJLVdorbbOy+o4eay4ppvrSCvj9NUrbRRvEaC7tu78a+wUDpKRaKVlvQF2sYfm2aIw+NUHqKBd+ED4VBjq3GyMGfDlK61YKuQk06mSE4J9xkVn28ColUwqFHRwUYSAvrb2kh5ouLkBIZyGR7FNpSHdMHFwiPCzeiknYrRWss7LmzJ+9mu/nzzSJYlQNx0ELz5dWkLkyLLgCRMGRSmRXp49qLiintsOEZCtDzu8VmSM41yTe+6Aw19MeTg0hV5xVhKFZz/LGV4aOlcqw3ULrRzpHfjSxzSxp+aZZhZvMeW3ujEEG3ayjfXWn9LS2kk5llE2XB4TCZVEZcBQiCe1L1GcWEtgugUA5QysWd7bqvG+ehAM5DPeLzi1abRbelgw8N0vihcgC8gx44pxSdQwN4iCyk2P7VRReCI4+OUNJhZvPXm9l3Tx9hV5p0MkMqkaT1uip6nhgHLVRscuBYJTTAOn8mnNftt7WBBGZ2Cg2oI0+MolBB21W1FK0yMbXPhW/cz2ynh7qLSyhZZ0WpV2Ao1hP1x5jeu4C2TI2t0Ujcn6D0FAtSuZTJzmzTqlZLd08Pf3I+T5mijD/d6yMUEhpRkWgYlUpFPB6nurqa5557jo6Ojg88nwUVVFBBBf3315o1a5icXARSpqam2LFjB6Ojo6TTaTEP/PHfPy7WXQDK8Y/Q1NzE0IszzBxyUdRmxb7WgL5Yh0IvZ/DVaYZem6Zso5WK0+yYanSYa/QkIin6nh/HvsqIfa2BqtOKUVuUdD04jFQlwVKtQ2MNULzOQtEasxCdq4GyU204Wk0ojQrGfy7cO1s+WkkimiKVSIvwy+avNTO514XzgDChtPHGRpRmBbvuFUAhtUUBGVjINiqkSgmHHhW21/5pwSUpMBnCdSQguvic6GzU85RQN63/XB1ah5r+P06I0FLEE0NnV4nOS0u19ZsCbHwitNR0WSW14WRetNrJwCKNFeovq2Fy55zoNvV+aru+Gu/YoquUqAjLHJSMdRrqLyijcpuDAz8dyNuGuVbH6Ftzy7YTnI+iMuWvmFsaoSaMSwCNNd+5aenxrbu5WXCafH0eb3+EmXIPxlIN/uF8S2yAuvPKURoV7LpdgJC6fj3CqisraPxwOQPPThFyxlAaFdRdVop/JEjPUxNs/IJwDWjKwVhhZtcdgstX5XYHbVdW4R0P0ffCGO7usLjvk3ucVJ1mZ3Kvi/HX5tn+HaFOG/2bk/o2M97xAMefHmfzrULd7O0fZ/3n6ohHEhz/3QT6MiUxSZS/HHyZBcMCxx55j7m5OTJkGBz0YTIJdaBSqeSGG27g5z//+Qeey4IKKqiggv4xdPfdd3P33XeLvy+NKMn1vPy4+d4diz2v2qO1XFJ3CboiBceenGD1xypZe10NRx4eZdXH9GgvVrP/F/20frgSR5sJZ7eP8s0Oyjba2X1nDxVn2qk8xcrAq9PUnFlMxVY7u+/oxtysoXijBUu9HluzkbG35+h9agJHh4nAtA+tQ4VUYqbzF4NY2/QYa3UkY0lCzkXnJYVWTueDwyLY1PGFFqLuOJ0D2TojA+m0cEM3FKuZ6XKL0WWVpxRRttnO3rt681yV2m8RarLOn3XnQUJtH61dFk2XiqcIzi+vu0q2Wqk7twR3n5/e3y/Wuh23NKC2K4l6YiJ49X4wUslWK+ZqXX6k70lkqldTvq2I4ZfGlzkvrfQem24RoJzO6Xx3pfZbW0gn0nnuUQDR+SjpeCqv52Vt09Py4SqC0wIolAOUcu6UnT/tJTAWFbdlbdNTvtWOuVbP4V8Nc+TxEWrPLgbAMxqCTLZeBrwTEbZ/t42oK07nLwY5+ptB7O1WNv1zk1DLRSEVSxGPJmm6spz+rIt31Y4iZAopiUia478fgyhs/WYLUpmUmT1zqHQKDv1mmHQcOm6uI+yMMf7OHJ5RPws9AUq2Wqk6tRj3gB+VLkTEH2NmnxvUAigV8yawrTUgU0mZ2u+EKNjajAyND/LS3DOUlZXx1v0vEAwK9X5kJIxarSYej9Pa2soTTzzB+vXrP/B8FlRQQQUV9N9fFRUVdHV1ib87nU4uv/xy9u7dSyqVEmuvP7zyFM+9KtRdEiQoZq6gZVUzY3+ZZ/jNaSq3FmFbY0RfpEFfpmFml5Pe58cp32qjZLMFXZGakg4rmVSGY48NYVttxtKqp3yTDVONnqOPDjLT5cFQpkFlhIrtDkhn2JOdx8sBSoYyrRj1VndRCalEimQ0JYI/Hbc2MP7OPK5e4R635mOCm83Bnwjb0dpUkIHghEAEyVUyYXsILkmWRgORhTjOwz7251x8VILrUGguwuGHRhh8UZgLbLmmEmuDgYEXp3AeFoCiiDtGOpYmMnNCFhqw8Z+bkGtk7Pn+kjk7Fay+ro5YMJEXrXboVyeBkVTQfGkFs13u5TFtK6jhklKCc1Fm93mW/W1Z/JtdRfMVFUROj9H188W51roLSyjpsDL65izTO915rwnMhNGXa4gtOdwNX8xGqN3TjX8kin8kCioBnI+6BVejpbDVmhubUGrlTL23QGQmxtS+BVQ2NTF/lEwqw9LGV9VpRRjKtOy6p5uYK8bBfx+i+dIy6i8uZeilGYKzEXSlaqrOsxOaijP00gxrPl2DtkSNyiFFX6Jnz1292NYYabmiEoVejvO4j76XZ/D3BcRY4ulON6Xbixl7d5apt91s+XozMqWMyd1uajbacfX76Ht+kvYb6tFYVfQ+NUnbtVVEfXGOPzmBQg0ZXYK3uv/KtHaK40/tZHZulgwZFoYRe15Go5HPfvaz3HPPPR94Lgsq6D+rAqRU0P9RPfjggzz44IPi77fffjvf//73iUaj4kRZ/1A//T9anOwYenEVlVXVBDJhRt6cpPaMCurOKkGpUYgTKSN/m6Fim4PVn6qBTAZTtZ7IjjgznQsYStXUXVyCpU6PyqTkyBOjOFoNKIwKtHYptWeVkkmXCNEjdig9xULVjmJxQgag6mwH+lItMpVUhI7WXFdDPJhg7qgXgPU315FKpsXYkYYLK4WJkb0uCMPYW3MkQkJsxupP16C1qdh3bx+uXl+e61DVeUWMvzZPcCbCQp9QgFhatXh6wsLkXlZbvtFC/4vjeHrCjLw5h6PNzNhrU3nj3ffHCapPLxYBJVFaIa4sOB3OczUq32hbMT5uJVWdJkTdabVSwuHFBsy277Qyf8y7DIYafHmC0o2OZUBTxB3DvyTqZMMXG/CNhxl8YVo83tzxT727QEm7hYFnR9HYwdxsYWanh/mjXorXWSAMDZeXYW81sefOHqbeXcBYqRXBrS3/1IJMJWXgz1OC61KfD0ericEXpglPR0kEkiQTKcpPtTH17gKmK3TI1TLKTjfhn0iw584e0dFIUwkGh5GuX3RTcVo5lacUobariPsTjLw3g68/wrqbm5FIJXjHRqk+rQTvSICRVydZf0sLZGD+iBdHmxn/dJCe58fFCLm5fT62fquVRDTJgR8PoDw/wez+Ud59512kGilv3/tHEgnhWvJ6vVitVsLhMGvWrOHFF18sxLcVVFBBBRUEQHl5OSMji1EPbreb8847j66uLhFYAnj22T+IP+ve0LEttI1AJIzrhwE2fb2JzV9oZt/dfdSfV0bZVgX7ftrH6murKd9ko++FCWyNZmwNZroeHqb6dAcNF5Uy+OdZqk4vonybna7fjGCpVVBxpgNjmQZLvYGxd+dZOOzE0WEkOOfH2mQgEUyy965ejHUa9BVa5BoZxjIt4+40FafZiUUSwgruLM9jbzIx0+WGiAAIFa+xYK01sP+H/XT9fIjGD5eLwNGWf2lh7pCH0XfmSASTTO8XAJ3SbVZmDrnpe3GGlsvKxOebmzQMPjfNIMJqscYPl6NzqDj0S6E54eoXosWWKuJO458IM/7O8qi4+stLKWoz59VyCrMGU6UO2WmlePs/eIWZuVaHoVyTBxet/nQNWrtKiNJYIv9whMB0hME/50PjI6/PsfpjVeI2bKv11J1fxv77+vOO11gngEUzB93oi4VVUlXnFDH++jwRtxA7l3Nu2vSVJgJTEXqfnmDkbzOQdczWWKVU7XCQaLew//5+On82yOavNdP28Wq6Hxtj/rgPe6uBtk9U0/3bMSJTEZRmBWa5jorT7Aw8OwUawTrcVm9AoVNw4KEBiCCCRv6xKOl4msk9ToLTYVqurCY4HcFUEyY4HyYwEaX+nFLsLSbmj3tZ/aka4pEEE+840Vg1QsSOM0r9+aXIVTK6XxjBrXEzNJuit7uXnpkeDEEDgYOLTlharRaLxUIikeAb3/gGt9122weeu4IKKqiggv5naGlECQg9sG9961u43W6x5zUyNsJPfvIT8TlDr7RSXVuHNxPj+B+Gabuijtqzi1GoZejLtKjNagZenqLqNAdt11URCyQoWmMhGUkx/s48xiot1ecWYazQYqzU0f37UULzEdLxNOoiNQ0XlEO6TOhvqaF4o4XKU+wCKJyNRCvbZsVco0dlVCxGw32skpAzykL2ft9yTSWZVEZ0Gm++vBKlUYH7mIeoN83AS4v9qKYryzFWajnw4wGc3T6KVptF0KfidDuTb7tw9/vFRYGGajWBsWhePbPxy40M/XkaT2+I2T1uKrbYGH0rHwzqfn6S+vOKRUBpqTZ9pYnQfDTPAbxqhwO5ZuXYjxNVdVoJxkqd6CqV09ZvtjB31MPIy/n1Xu9z41TuKFoW/xaYCBP2LL5+7Q01hJwxhv40w97s8Zrq1fiGori7g4ROjdL/8qxwrlZbmDvgYfrAAlU7iohG01Sd5aCkw8q+e/twdweZa/CIjk8bPitMVs3sdBL1ppne76Kk3crwi7MQhbAzRiKaEKNHjGVaFHo5JdsthKYi7Lu3T3Q0Gt81ha7IQOdPu7Gvs1N/Ximmcg2BuSijb03jHY2z9iahP9b54DD1HyrGddzH+HsLtN9QC1IJc51e6s+34R0N0PP8hBgh5+z0semrTcRDCQ7+dADpjigHDk+xc+dO0uo07/x0caLZ4/Fgs9mIRqNs3ryZJ554gpqamr/rHBZUUEEFFfSPLYfDwc6dO8XfY7EYV199Na+99hrRqHDvzZDhhReeE5+j3q9mu3I78USKhYf9dPxTPWtuaODAD/tpvbIKtUXFgQf6kWkklLRbCUyFKF5jpXitla4H+qg8vZjybcWMvj1Hw4fKSJ1VTNeDw+grVZRts6IwyqnY4mDivXn6/zCKuVpHxBOipN1K1BvnwA/70ZSqMJQqUFuUmKt1TL23gGOdiWQ8RXg2KkJMJR0Wpg+6BNcilQBDOVaZOfjTAbqfHKfuwhIRONr45SbmDnmYeMtJ2BllLuskbltjJDjmZ+SVKRQfqRKfb6xW5UHXlWc4MNfpRBhorsuDsUKTP+AxwbFy7uByGLzidDvlm21ibQOCe5CtxYhSL+fo4OgHns+itRYs0VQepNR4eRmmGj0HftGfF8EWc8VY6PMztTvfRWnqvXnMdXohsi17nI2XVnHwpwN5x2usVuEfizH+9jzWJgPEoGSzRXjvGETmF92h2m+pJzgXZeC5KYZenV6MkFNBwwVlxHxCPXPst2N03NpAyzWV9D41wdxhL1KZhKbLyun//RQxZwxtkRq5RkbJRjMTbzmZeMvJ9tvaiPkTIIWjz46CH7Z8oxmpXErnWBCFRsbIGzN4hkO031hPYDKM26EkMBdhpnOBsg4r5ZvtzB/x0HhFOfFwkvE/z6BSga3ZSGA6TPkmGyqjkv4Xxwln/ExERuh/o5/jzuMYDAYCP1rseen0OqxWK0qlkttuu43Pf/7zH3juCirov0oFSKmg/6s6MR7O5XJx+umn09PTI0ZUHe8+zvFuIcpk33tvUzJYQjAQJPpinFu/eAvbv9rGrtu7qT2rFHmZjN3f76HtU5WUb7Ix/s48+nYd+hIdh349TM1ZRbRdWcnEe/PUnltK+UYbk3tdyA0SVn28ijRgrTUwc2iBZDRNUYeRgNNPxXYHyUiKXbd3oy1TY2lSYSzVEZqLMPmmC8d6A0qjArlqsdmRCCfxTkYgLESRVZ9RjGc4yHynH61NJca9Db80i2+NcBNYf3Md2iI16UQ6Lz++9SM1ZFIZcWKr/FQbMpWU0g12PD3jEEZs5pRutVCywUrXA0P4BsIcGRC203hVOQPPZJtGYZDKJKhMirzz0f3MGL6pD6aaAQ7+ZJCiDiNh12IDpqjDiEQqEXNIQYCuXL1BFo6GWDgaEp9Xsb2Izp8N0vXAEgtHLahMSmxNcnGSrOHyMorWmFkY8NP31CQHfyJAYItuRR7GdzvxjQvb1tpVSOUS9HVagsNhLHUGNnyxgYM/GWTw1QkqTy+m9sxiRl6eQ21QIJFLqL+imKHn59j/o362f7cNzQ418UCcrgeGxJi9REiY0Bx4aQK5Skb7p9ogA+M750mn0vgnQ8TDCco32fGNBSldbSPiieEeDFJzqgNdsYaxd+dY/elGkrEU3X+YwLHaiEwlJRZIseGGBpBmeOj2R9E1qJj9Uy/Dw8OEM2H48+IQKRQK6urq8Pl83Hbbbdx6661/1/kqqKCCCiqoIKvVyoEDB/Ie+/GPf8x3v/tdAgGhFgmFQrz+xuvi33c/oMNisTCVmWbgnsN88uvXsu7jdcR8CRTlcnRlGo79boSWD1ex+toqnN0+bM1GyrdYmNztwlKvo+miUtKpDMZyLcNvTiGRSVBq5ZibrdSeXQIZ6P/jBBFfktJtViq22VHo5IJjUkQAaSq2O5AqJCJA3nBFKVKFBKVe+PpSuq2YkCvKyF+ESZqNX2pEoZMzwBTWVi0ypRS1WQkRAeL2DwukU+05JdScWczu7/eIq6/arqvCXKdn/D0nk28KDQ9LvT4vy37wuWnx5/bP1zPy+jTe/gjHHhkFBMhHX64VYSC5QoZEKsHcpBFdk/zDEfpeGBfBqA9S1wPdKMz5TSK1XpG3XyAAUUMvzHD04cVasv2WesbfnWPhWDDP8rqkw4ZCK8fRYRQj3nJxabu+1y3E7AE15xdTvsWOvkRD9+NjDP15Enc2klihlaMvydo9N5ow1+iYO+4l4k7jGfajMiy6M8lVMrQ2JdZWLeOvz2NrNGCu1lG8xYB/IMSu27vZ9NUmqk4vYmHIhdYinAe1RUHduaVoS1WoNApmjrqJeRKs/0wtEqmEkTdmqTu3DHe/n9G3nLTfWAcZ8I1GKFpjZr7Hw8Cz02z9ditSiYS5A162f7cNl8vFYw8+Qf2qWtwH3UxMCGB75/OLq9+0Wi1lZWWYzWZeeeUVrFbr33W+CiqooIIKKuimm27ipptuEn+PRqNcdNFFvPPOOySTQmxET18PPX1Cr+dgj4Sd7mIhPs6X4obPfZqOG+vY9b1uGi4oQ66R031XL8gyFK+3MP6eE1OFDlOVnq4Hh6k+1UbduWVM7nZRf34pVaenGXljFpVFTsvVFcTCCco67Mx0LRD1JLDU6Ih4Q9ScU0I8kGDX97pRm6UY6rRY6w2EZiNMvu3C3KhB61Ah1yy2jePBBP7psADlqKHxonLcA36ch3zoSzUo9EK/afJtF8FpoV/T8tFKbM1GpDJJniPS6uvrFuPqANtaA0qDgpJ2K55e4bUHfiys2Le06Kg6tYjDD44QnY1y/LfCwrvai4rzwCG5SobakO8Q2fPMGAnfcqBpJR39zSjWNn0eAGWqVyOVSZErFmuvkq1WQjNhAmNRusfGxefVnF3G4V8Nc+y3o3nb1ZVoUVmUDCHUrBWn26k6rUh0icpBYFu/2YJULmXugAdnp4/oQgyioLEokatlYiyco82EqVJH5wOD9P9xgtpzSyjZ7GD0tTmUejkypZS6i4sZfmmOQ78cYvttbegdGiKemOB4pYbtX28j5kswuctFz/MTqI1y2j/TBsDwazPIVTLcA348U0Eaz6vAOxrE0Soh6onhHghSvtmCuUbPxHvzrPpoJYlYkr5nJ9BWqFEaFfgnwqy5tgaFVs7j9/weaU2S2T/3MjIyQigTgncXx0cul1NXV0csFuM73/lO3v9PQQUVVFBBBb2fVCoVf/zjH/Mee/755/nyl7/M5OQk6XSaaCzK3/72N/Hvux7WYrVYmc3MMXTHUa779lWsuaYa/2wEe7MCQ5WWw48O0/qRSlZ9vI7JPS4aL7KSjCYZ/usMlmYDjReWEPMnKFprYehv0ziPe0mnMpgazdSdUwJSCcefGiWTSOFYZ6J8iw1tkZqDP+km5gdTg5bqM4tR6uWiW3flWXbkapnYTynbaMU3GWLibaHWWfOZGnQONcOvzKIpVaHQytE6hIV0g69MEcw6ZTZeXA7pcvbc1SMCSDUfKqZso42J9wRIBqBojRmlQS7EnMUQHwdY/YlqJnY58Q2GGcg6LaocKizVGmYPeAHEWDJzkw5vv1C7xVwxup8eE3//IO26txu9I38xoNoq1D1LAaWqcx2M/9VJ3zOLteSq66uY7fKycNwvmkgAONZYUZkUONaZREBr81ebkamk7P5+D87DPpyHfRRtMFN3fimWOgM9T40z/Ma04KqEMF+Zi/Kz1OkpXmfBP+Ij5ofZQwtobWrx/ZR6ORmJcE7nD3qxNRpxtJjxbvDjG4uz584e2j9XT92HyvCMedFYdAy/NoNMLaXlikpmOheQSiRMH3SRCKRZd1MjcrWMvhcmabm8grkuD5N73ELPC/D0Bag7v4S5ox4GX5hm89eakSqkLBz1s/VbrXicXh55+DHq11Xz9u+8jI2PgQQyS3pearWa8vJyqqqqeOaZZzAajX/X+SqooP8TKkBKBf1/KrvdzvHjx/Meu//++/nf//t/EwgEyGQyzMwsOvT86Cc/QqlUEs/Eef3f4JJLLqXiE1YizjjmSgmlm60c+m0va69rZt2naxl9YxZzrZ6iDhOTu5zYVxspXW8l5IxiqtQxdWCOgFqG2qgko89QsdkOgKvfj6fPR/M1FZgqdMg1Mob/Ns1Mp4eiDiP1HypHIls6cVaM2qwk7hfcbkq2l5BJZ/COCpNQYWcUpMKdLQfhOFt8HHpsmDXX1DD5pkD0bv5aM7NdbjzDQRLZ3NPizSai3iiHftErAkIbvtBA95ODRFxQeWqR4PRjh0gWam68spyiVjOK62XiKrKl8SQ5+Qb+PkApp/lO/7Lf5zvzt1uxxU75JiGKL6eas0qRa2Ro7VLCrjRt11fhnwoz+aZLPK6Gy8sYfGGawRemMdfoGH9vkk1facLZ42P01TlmD7lFW+ztX20jk86w+44e5o64UZtLCA4Lx5JKpkEujPXC0RDNl6tRG1TMdfk4+utRNn65keLVNoLTEfxDfsbemqNiu4PGSyqR64RrzTcaRKaVUXNmCXPdbkxlOpy9PmLuOFWnFAHgHQ1SstqKdyTAWKeLtVfWkIqlMVfp0Jdq6H91HHuTBZlKSiqWJjgbxrA9wxOPvcrM7Awmswmn00kyk4QBoaiOZb0nm5qaKCkp4dVXX0Wr1f6HzlFBBRVUUEEFvZ++9KUv8aUvfUn8PRKJ8KEPfYjdu3eTSCQIhUJipOhYZIA77rgDCRKSqSRNTU1s3bqVuffctFCFXCtDrpMx8rcJas6swDMQ4P/H3n3HV1ne/x9/3WefnJO9d0iAMBRBFARFQS0qDtziqrjqttVaraO1trb+bKvVap1UXHXVURfuDepXURGQPcLO3snZ5/79cZIDIQECEkB9Px8PTM59rnuck9w5b6/7c1+XK8WJ1W5h/ksrydsrg6KxOdQvayFnRCpm1GT1rBocXhuF47Joq20nszyNhopmousgd3ga0VCUsqPyCLWFWfVRLe40C8mDk8naK5X2mgCLn1uLO8dF1t4pWGxGvPjItJhEgrGcVL+wPTbyz3exu7H2Or0fAJ/+eQEVH1bFi8xLj84lpZ+HhS+tYHBqabxAqezYXL7462LcaRYAiidm4Ui0s/SFdXiK3bjTnfQ/ooDZSzYOd73X6f3AIF6ktGnnyaZ6W6AE4KsHX33XaeE2ncoNYK+pJSQXeQi1RuIFRu4cF+4MJ6U/y6Nu/hLcaRbKTy1hzgMr+O7xVbjTLHgKPKTv5aVufmv8brGiw7PI3juFL/+xhIq3qvDmxgqUBp1WSNrAxHgRV/O6dsLtseGTWit9JBclUDgmgzXv12Jz2UnIdFFwWAZr36vl0z8vYOzvhjDguCKW29ex6NmVJA30UDaxEP+oIC3rfVR8UElSvocR58byXeOKVqKmSdOaNsxIlNSyRCILm8gck4yv0U/VN01k75uC3Wuj6ts6RpxfSjgQYd6Lqxl6fAGGxaCtMkDRuUl8M+cbXn/9NXJycpj9z3dpbGwE4Nu53+J0OjFNE4/Hw+DBgzn11FP5zW9+0+ufj4iIyLa4XC7ee++9LsueeuoprrvuOtatW4dpmlRWbhwF8d4H7tnY5/UXmDTpaArPzKZteZDsIRby9kvjm6dXsvfJRYy4oJSF/11J+pBksvdNZvlbG8jeN4XCgzJoXNZK+qBk1s2uoWFFC1a7hcRsF0UHZWJYLWz4so7m9e2UHZdLUkEC7nQnS2aspnV5O2lDvPSflI/NbY33eeWPS8ebl0AkFMuIeaPSiUai8ZGRWjf48DfFRsLJOyidkgmxUXYWPbuGIWcWsfr9WMYaecUAquY2UDV343QcqYM8mGGTr+/ZOG3asPNLWPLCavyNUUp/loczxY4ry4W/Y2q4gkMyyBuZgTvFGZ9q7rPbNpmepENPIy5tTf2C1i6Pm5b7+fTPXfu8Sg+L9fdtur+yiQW4MhwkFLhoX+un7LjcWBHQR7V886/Y6+p3ZDYr36xi7Ue1ZAxOpuLj9Qy/uIzGFa1UvF3F2s9qCQdir3/MDUPAjO2j+rtGvHkJNC6NZcJIIApWM/76vNkJuNNcVM5pYulL63GnO8kZkU5LdYCWJc0sf3MDhQdmMPiUYpa+ug6LzULtd01YXAb9J+VRNbcOT3YCG76pI9gSpvRnsYur1fMaKBmXQ838RjZ8V8feJ8fylicjRPqQZJa/sRpPrhdHko2wL0LNqkbKDknnmWeeYVXFKtLT06mprYmNCr4yNk1u52hJ/fv3p7S0lGeffZaUlJTt+hmJiIhszQknnMAJJ5wQfxwIBDj//PN59dVXaW5upr29nfb22HWkleZi/nLbX7BYLITDYcqWljFmzBiaPm8GExzJdrw5LuY/v5KhJ5ZgsVtISHHiTLLzzZPLMSMmBftn0rC0JTYFnAkV727AkWqn+JBsGipaKDowm7plTbRu8OEtTsILlE8uINAcYumr63AmQUKBh8KxWbRV+lj64jqcGU7yRmfgcNv4rqNwxuIwCAVi/TC+DQH89QGq5zcCMPT0Egybhc9vW8jS19bh6hioIG9MGll7p7DwpRUkFyTEC5EKx2fy1T1LcSZZIABZI1NIzHWz/LUNOJMsJBV5KPXY+GbZxsEGhp9bgtVujRcpdY4KtLneFijFfjjQurbr1HObT/PW/9hcskekQYR4nnQmQXKJF2eKg7rvmnEmwYDji5n/+CqWv7aBtR9X4Ux3kDrYS8PCVjZ8VY/dExvNKHdUOt/ct5zqrxpJKfGw5LV1FP0sk4IDMlnzSew11S1pho7pjptWt5M5NJmMEWms+6geq91GUpGHggkZrP2gls9vX8TYG4cw8LgClr62joUvrSZ9cBLlxxTiqwvQsLKVFe9uIKXMy4jzBwNQPbcBw2JQu6gJf1OAfhPyqJ7fSNaQBHyNAWq+bSR73xTc6U5Wf1zDiPP7xfq8nlzGoJOLsdgstFf7KT47mXmL5vPaq6+QlZXFV/e/R0NDrB90zrcNuN1uTNPE6/UyZMgQzj//fH7xi1/0/ucjsguoSEn2OFdffTVXX311l2WPPfYYV111FQ0NDfH/qQV49dVX4t+73nVRVFhEW7iN9i8aGTZsLwrHZRFqD+NJT8A+3IHFamB1WrB7rKybXUveyCwikQhWS+xiVTgUIeQLk16aiCfTTkJaAm2Nsc6W3H3TKDowC6vDSjQUJRqJMujsAny1frL2SicajbLuixoSihLIGZaKYRhsmBX7UEgsTIiPNtS4tomMoUk0Lm2GdvDmuDngxkEsfG41NreV3FFptKzxsezt9SQUJVA6MQ/DiBVE9T8+j7SBidicVgYc3w+rw0J7TYA1s2IXpUZdU071gjqWvriOpCI3nqyNVb2d09O5U50sfmsN5UcUUvlNPTn7pmF1xAppvvj7xuEZbZ6Nd4odcH3sjq6Fz1fgyUkgb2Q6kVCEyq8bSO2fiN1p5ZsHYqElHIzQWhkLIwOn5JNS4GX+U6uweyyUHh2bS9Wd5iSp0EPOPqk0rW4nqcCNM9lB2oBEFsxYw+y7ljL4rCLsHhsZ5UkEGoJkD0+lZUMbG2Y10N7sx5XgIHVwAukDk7G5rez/m4F8+bclhFrDuFIdDLushLn/qmD1Z1UUjclm75+XsHZWDb5GPza3lbKJBfhbgtjdVoKtQYLrw7GpAE2TaMjEVx8g0BokY2AyFquFSEVTbIStUJiGFS2klSVhsRk0VbYz7MQSwsEIhsXAneVg/vwFrAquZNliC6veXkV1dTUWi4XoExtHoUpKTiI5OZmmpiYOPvhgpk+frmnbRERkl3O73Xz00Uddlvl8Pk466STee++9LrlryZIlLFkSG5Vn1l9fJycnB5fLRUpKCqGlPkr7ldJe48eT7WKvE/vxzSOLGDFwEGnlXqq+qyepIIGigzJpXNuKO82JaYFIKILVbsWT7iB1gBfDMGhc2UbDqhaKJ2SRf1A6DpcdX0MAe4KV3DFpFI6LjbLUVhe7WFNyTBauRCe+pljnxtALi7F7baQMSKRufivBYAiLESs4ivgiFB+ShSfbjjfLg91rY69T+zP/sWXghn3O6Ycn04031823D61g5BX9cSTZY9O5rmyh5JAclr+/gapZDQw6rRBPrpOv7lrG8rfWU3BwJv1PzGPZi+tJG5xA2ZEFNK5qxpvjobXKjzfHxZpPqhl4XCGhYJjminYWP7cWOiJXZ9FQ2fG5ZO2VQqglNg3s8ItLiYQjOD0Ovnt2DXudXsTqT6qpmt1Ie00AT46L1e9W4yl2039SLqGWCAueXUmg1sf+Vw0kakZxJjoYdHoBiTkJfPmPJYy4rBDTNGnZz8f8ZysAOODqQVgsFtw5LoaeWRgfBXTRK2sYfVU5qWVe1n5QQ1J+AiYmxROzWPV2NQVjMigYm0nTmlbmPbWS0b8sp2hsFtFomIZvmwkHI1itFgZOLqS1qh1XspPWKh8Wu0HW0BSSSxOwWqxUL2gktdRL6oBEzIhJKBAmqSCBqu9q8WZ6sDmtGDYHBWMzsCfY8NUHKD+hmObWZmZ9MgtLuoUVb3zN0qVLiUQiRD6OxH93m5qayMjIoKmpiZycHG655RbdqS8iIrvFGWecwRlnnNFl2RtvvMFll13GqlWrumSvGTNej3/v+MpBUVERvoAP/1eD2XufvRlwTCH+2iDe7ATsB9oxzSh2tw13jouVn1RScmA20UgUTDCsFoK+IGFflMy9U/DkO0jOT6Ktvp3mVe3kjcjAOcGB3W0jHIgQag8z4JQ8Wje0Uzw+tp31c2pxZbkoPigLw2rEp9BIH5KE0XHLeXNlG9FolLqK2E1u3gI3B9wwiDnTKnCm2Mk/IJ2minYWvbwGVwoMOrko3udVdGgmWfuk4PDaGXBiEWYY2mv9LJuxBn+zn5FXDqB2SSOr3qwhrTwRd9rGu++HnFmEYTVwJtpZ+d4GSn+WR/X8BrL2SsWeaCPUEuarh5dCR92SfZM+r/1/MxC708aiF1djdVkpOjCLSDhC9bwmkvLc2L22+EWzYFuIttrYRkqOyiK9fzILX1qD3Qn5+6eRcJQTT7abSDBK+qAkWjf4SEh3kliQQPrgJJa+uYY5Dyyn7LhcEjJjxf1Nq1spHJdJy7rYVHfN1a140t2kDfGSXOTBmWJnv2sGMPvvS2mvC5BS4mXYJcXMvX8Vy95aQ/+jChk2tZhV71fTXufHle5gwBF5+EalY3fb8LcEaV3iZ8Ax+ZiYhP0R2qr9+Or9pA1Mwua00bCqmZIJ2YQD4diFskGp2FxW2lv97H1qKSF/GExIGeBl6aKlLA4vxrbBxur/W01lZSUWi4WZj23s84pEI6SkpNDW1sbhhx/Ogw8+SE5Ozvc8e0RERLaP0+nkySef7LIsEAhw1VVX8cwzz9DQ0EA0Gvv8Wr58OcuXx65xfXzPq2RlZeFJ8JDoTcS+OEhpWRkta9qwe62MOLuMT/+5gLH7pJKxdxKVX9fizU2g9Kg8apY24M1zY9pMQr4wZhSSijxk7J2CxWpQPaeB1io/pUfkEPJn4Ep20ry+DbvbRub+yRSOzsThsdGyPlZMlTU6GU+mG39jrM+r7ORs3JlO0soTaVjYStAfwtox6mOoNcjAyfl48ty4k+wkZLkYclIZi15eC04YdGIBaf2T4lO97X1eCQmZLqw2CzXfNVB2RD5L3lxL7exmSo7MJqXUy5z7lrP4f2vp97McSo/OYcXrlXgLnAw4poD6lc0k5XtoWtNGSpGXinfXM+SMUkLtIZpWtLHs1Q2xKgQD0ocmUfddMwWHZFA4LpNAQ4iv/7WMoWcWESWKK9HJgqeWM+SMMtZ+VkvNt0201wcI+UKsfr8GZ4aTsqOzibRHmfvoclprAoy4uIxINIo3y82AE/PwZrn5ZvpyRp5RStQ0adynlUUvrYEAjL6uHKvdirfASf9j83GnOXG+s47V79SQOzKNpKLYSObpA5Iw7OBrCLL2o1oGHptP0bhsWtYHWPrSOpJLPBQdlEXYF6FhWTvB9hAWu4UhpxZTt6wZb66bptUtgEH+qAzShyZiMS2s/6qWjCFJZI9IwwxH8TUFSC/PZd1XtXhSnTiS7NgTrFj3TyMh3UXL2jbKJuXS5m9j1iefYfQzeevjBSxdupRQKER05sbc1dTcRGZmJi0tLZSVlXHjjTdy9tln9+WpJbJTqEhJfhDOOecczjnnnC7L3njjDS655BJWr16NaZr4/X6WLI1dOFu3bh3vvvs2dpud1LRUnE4nJcUlYMC+++5Lcmoy1gEWTNPEarUSagsT9IXxZMSKegybgc1rwzRN7A4b9iQbJiaGYdC8oY3G5W0UHZRFSpGX9H7JhPxhbE4rJYfl4kx0dJn+rP8psSIjs6P6tnBMNlarlaJDsqmZ0wIWsBgWmpa2s/j1VZQfXUxSoYcxvxqMYY1tx98c66RKHeDF5rSy9vNKVr9Tz9jfDcGVZpKQ7sRiA5vbSt7ILCpm1EIU7Ik29ppagt1lxZ0Ru1vcsBiUjouNbJTWP5GIP4LFYWBzWyEB6BhcyWKxxF+DxRZ7rxoWtlN4UDY2txWb20r+6AysDguGxWD0dYP4v9sXYXNYSUhxM+LiMtwdwzV6suwUH5KD3WPDsBose30tWfukkVSQQGqply/uW8zIX/THmehg2IklLIxWkFzoAWD2XUvxlsaKvLxZsVGFEpJiP6fUsiQWPLmasb8bgt1lIyHPxZIZ6xl2ZgnetASGXdCPhnUtHa/BiHWsRaNYLBbaa2PFSlabFVeyBXeyi+aaVpIyvVgdBq5kB1aXBcMwWPd1Nfn7xkZQstqsZAxMIRgMsmbtGmptdXz2zAdUVVfhcrmoqakhEoldFLPb7fHv8/PzSU1NZd999+Vf//qXRkgSEZE9ltvtZsaMGV2W+Xw+fvWrX/H000/Hp4rb9M7/OXPmYLFYcDgcZGVlkZCQQHZpNgsXmgwYMIDMISkE22IjTqYUeFn18XqKD84DwJUcuyCGAWbUJKXEgyPFgsVqwWqatGzw4UqxY3fb6Hd4DmbExDRNElJcDD23mOQCT6zIOBjFU+wmKTv2Gbv+i0YAHK6N090mFXswDIOEdDdf/mMJ+/96AHavnewxmeTtmx7Pa98+EZt6w5niIBqOsuTlNaSVJ2P32igcnUHVrAaS+3mw2i0M/Xkx3z2+irKj8kgt8TLq2nLqlzdj99pIG5iC1W7BnmDD5rZSO7eFAceY2J02kotjWacz76X0jxVVpfVLxDAMQr5YhkjIcMVzaMbQWGFV8aHZpPTzkpjjxmqPZbZ9fh4bMSqabNK4KoGyI/Oxe200rWqj8tsGig7MimfUqjkNZA9LJakwgdFXDmLuk4uwWCy01fnxVfqxuayxLOiGIScVY7PZSMyJdXq1VccK0TL2SmLV29UE20I4PHYGnVhM/dKWeIbsNy6f/H2zsDmshHxh2mr9pBR6AfA63bTV+olGovGfj2GP4EiwEwlFiPij2D2x/1VN7ZeM3W2jsrKShoYGqiqrmPPtHBITE2lpaaG5eeNIn263m2AwiNVqZe+99wbgvvvu46CDDurtr7+IiMgud9RRR7FixYouy7744gsuu+wy5s2bRyAQIBgMsmxZbDqLdevX8e7772K32UlJTcHldFFcXIwFC8NHDiclMwWrxcDExGKzEGgK0VbXSnpZMkFbCJvDijvdhWnGnk8scIIlljXqljfTstpHyYRsMgYkkzU4FX9LAKfXQeGYbJxJtnh2ASg8LKNLn1fBARlYrVaKx+VQ93VsFCfDMPBX+5nz1AqGn1FKcrGHUVeUY3VYMQziozClDUrC4bVT8cEG1s9sYMz1g8EK9UtbCdQFcSbbyd8/k1Vv1mCGTJzZdgacnIc7xUlChhPDMDBsBkXjsnCm2EktSyTYGsKeaMOZYichIzbSEcT6uTrZXbH+v/oFrQw6tQBnih2wk7+/DcNmYHVY2f/XA/nyX0twJNoxIzD49EJS+ycCkFSQQPawFJwpdmx2KwufX0XW0BTShyRjd1mZ/eDSWCF8lpuhJ5ey+OU1pJXH1v3qnqW4UmLvkScnlmGTc7xgQEqZlxWvVpK7fzoOtx1Xjovlb1ax70UevBkeBp9VSOOyRgCsdgtlR+bG+rysFppWt2HzWrG5rHgcLjzpBrVL68kYmBbrP0t1Yk+0YRgGFe+vpfiQgo7tWMkZlkYoFGJtxRpqrbV8/txHbNiwAbfbTW1tbXzqQpst9r4B5OTkkJWVxbhx4/jrX/+Ky7XxpkkREZE9idPp5L777uO+++6LLwsEAtx+++08/PDDbNiwgUgkQnV1dfz5ufPnxvu8srOycblc5O6Ty3fzv6N8cDk5IzNorYldWMvsn8rK99fTb0IeGJDQUYBiGBANRckYmoIrvR2r0woGNKxsxZFow53qZMDEfCKRKGbExJPppvyUAtLLY9NxRYJRnBlOMvqnAlA7PzYqtivZGe/rSS6O9Sd5Mp1886/lDL+klIRMF+mDEykaW0YkHMWMwrz/VACQmJ9AJBBhwX9XkVTkxZ3hpPjALGpnN5M5JBm7x8aQ04tY8PRqXCc7sJRZGHllItXfNeDOcJLlScXutsVmeklz0rwqgBmO4vA6SOlvATZgscYyV0o/D3XfNZM+oKPPqzXWR5hY6IldI7UYJA9Mjh3DhGxS+nlwpTqwOWN9QyMuLMViM4j4I9QuaKbsqDzcGU4al7ey/Nt19Ds0D4vVwOmE1TOryR+dQdqAREZdXs4X9y7G6rDSWu2jdW0s1xoWA4vHScnYFGwOG0kd1yMbVjWTPiCZrBEprP2olrZaP95sN4NOyKd6bhOGBTChbGIe/tEBHF47gZYQjRUtZAxMASOWLdsq2wmHIjjdDjDB4rDgSnISCUYJNARxp8eunWb0T8KRZKe6upr6+noqN1Qyb9483Alu2traaGpqiv8eut1uAoEAFouFYcOG4fV6ueuuu9h///131ukhskupSEl+sI466igqKiq6Lb/zzjv5y1/+Qn19PaFwKB4m1qxZA8Ann3yCxWLB4/HQ0tJCfn4+paWlOOwOSktKySvMI+QLYXfGLphYHRaiEROLzaClso2kXA+ejFhVbag9jOk0aavxkZzvxZ3qxIyatNX6Wfryekb9phyby0o0GmXuE6vJHJ6IKylWLPTV3bHOpc67zQBKDsoFYO5jKyn9WTauDAffPbYUR2oCY24YjL8lgN1lo3ZxrFNl+TtrKftZAfmjM5h991JWz6wmMTd2bAufWkF7ezRW7GQx4tO9JeS5aF+/7SGvgy2h+PedQ3wDzH14ZWw7HVO3AQw5q4iUfl5yD0xl7n8qYlOvJcCIc8v45l/LSciLzUsfaAny1UPLoB1Kj8gHEyLBCCMv6M9Xdy2j/LRckguTCLTBJnVelB6ajWEYrP8q9rMMBcLYnTZs3tifsLZqH54sN3tPLaZtQ4Cqb2tJHZBMYl5CrDgrbOJvDWIYsdAWaA+RkOGircaP3W0jGolisVnwpsY6hNpqfLHqdL+fhQsX4Q8E+OKlWaxftx6X20V9fT0+X9fpVyBWiJSTk0NNTQ1jxozh8ccf1+hIIiLyo+B2u3nwwQd58MEHuyyvr6/njDPO4OOPP8bn8+H3+1m9OjbtxqJFi7qsD7EipPLycjIzM1n9/grGHHwAdo8t/lkejUQxLBacHgfRsEmgMURirptAa+zilb8pSNgfISHdhWlGSSn00t7oo2Z+AynFyex9ZnFsNKZVbfjW+Sg/M3bBpXP9SDiEYRi0VcXuQLMn2AkHItQvbCazPJnapY2sfLWakVf0Jxo2wYRoyKRufivt61tJLkzAkWjHnQb/9/8WMfziUr777yoAvn18JanFHooOyQKzY1pgN7jdsanbOn32l67TkZhBExyw/H+xaWe//MeSLs93Zjh3jgtfpZ8179Ux9sYhpJR6mfvwxve4fkkLDctbqJrdyP5XDcTutfHd/1bSNM9HykB37HXXtHPAbwfz7aMrWT+riiFTy2hb58fpif186Bh8yGJYMCMm+GDBC6sYe01sKrakUjerPtzA4FNKcHoc7H/1QL68fwnDpvbDk+Yia0gKmFC3rImUIi/RSOzClcVqIaXQS0tlG4nZHqKhKO7UWKeQGTGJhCJklWewcsVKGhobaKhvYMWKFZimSSgcor6+Pn53Y6dwOExubi6tra3k5eVx9dVXc9VVV23xd1hEROSHZNSoUXz55Zfdlj///PNcf/31VFRUEAqHqKmJTX2xZm2sz+vjWR9jsVjwer00NzeTl5tHaVmsz6swWkjJgBICbSHsDlvs5jZnrEDY6rDSvLaV9NIkkvM9YIK/NYjdaaN5bRsZAxx4MmKFTc3r25n/nwr2++UAHEl2zKjJgmdWklzmIrnQi2mafH13bIpaMwIdA1pSdkhsJJ0Fz1aQOzIdb4GLBY+vBIeD0dcOor0u1lfVtiHW3/Ld/1ay18mlFIzJoGp2A0tfXUdqaazgeelLFfj9MOryWLHTZ3+J5aVNp4XbmkBTz31ei56LTdnrSgG/H/BD6bE55AxPI29EGnOmr4gVOrlg2JklzP13Ba4UKP1ZDv7GIHMfWoy/EfoflY8ZjfUbDp9axpwHllN8ZCaZg1IINoUwzI2dXkWH5mIYBlXfxKYN9jcFYlMou2Jt6pe3kFaWyPCpJTSvbafiw/Vk7Z1GWmkSiXkJRIJR2qp92BKsJKS68DcHSS7y0LKhnUgwihmJYrFbSC6KXeRs3tBOUm4C4VCYefO+I5Dg49vXvmLNmjW43W4aGhriU+FsyuPxkJOTQ1NTE+PHj+ef//wnJSUl23yvRURE9nROp5Pf//73/P73v++yPBAIcMUVV/C///2Puro6/H4/q1bH+oAWL+mYleSl2BS/ndPGlZeXk52VzYb3K9h3zEjc6U4aVraQWppIOBDBYrXgSnUSCURpXt9Oar9E2ur9YEJzZTtEorjTXGBAxuBkWivbqVvSjDvNxT7nlmC1W6hf1kzTsnaKj4rdjNZZ8B0OdPR5VcayUEKai1BbmJp5LWQOSqZhZSsVb1Sx97klYEA0GCUSMmlc0kbjqjbS+nvx5ibgzHDy5Z1LGHpWEQtejPXxzZm+goQMJ+WTC3C47fG+KmeShUDzxv6a//vbxtlaAKKB2Kiey1+L9Xl9O21ll+c//3+xPjJnhpNAbYDq2U0ccN0gUssS+eLexTidsSBZ/W1sBKrqrxoZdn4/PNluFr6wioaFbTgznVh+ZtC8ro19LixnwbMV1HxTy5Czymhd78OZGCsIMkOxPirDZsRmU9kQoGJDFXn7pRMNmyT1c7H6o1pSShJxJTrY97L+fPfsGkqPzCIpz0PuyHTMiEn1wgZSiryEAmGcUQcGBhkDU6hb2hz7OfsjuNNjvxPRsEmgNUj+yAzWLl9PZUMlzc2NrFixgkgkQjgc7rHPyx/wk5eXRzAYpLS0lF/+8pcaEVx+dAyz85YHkR+5hx9+mFtvvZV169bFR7fpidVqJSkpidbWVtLT0ikuLo6NnpORQVlZGR6PB6Kxu64i4Qg2u41IOBYuwv4IFpsFi82IjVpkGPia/NgcsWIam8uKYRi0VLaz/K1qBh+fhzPZQSQU4f/+32IGTsknc2AKDSta4iMERcMm9StayBiYRPX8Opa9VcXeU0pobwyQPTSVUHuYL++IXcwafe0gAP7vr4sYc0NsJKZP/7QAdwb4aiH3wFQ2fNMA7bDfLwdQv7yFFa9VklCUQPmxuXzzr9hwlmN/N4RgS4jZdy1lwIn5mFGTZf9bH9/HopdW07S0naKJWax+O1Y4lJBhYeBJJSRkuVj66hqSSxLJ2juFOf9eQft6PxkjExk4qZBASwjDhNn/WUoCFva5qBwzCqs+qKR0Yh5tVT7mPLiCsb8bgmmafHbrQhLyXAw/v5RoNMrCV1bjzXRSNDYnXiHevKYdd7oDe0LsLi6LxUJ7vQ93qotgWwh7gi1WDNYxQoNhMYiEIpiGydq1a6mqqqK9tZ3aulrqG+qx2Ww9FiJZrVaysrJoamqivb2dfv36MXToUJ599lmNjCQiIrKJ+vp6LrroIt59912amprY2v9yJCQkYLfbaWlpYdCgQaSlpWG1WCnpV0J+fj5mOHYXUjQcKyo2IyZYYgVL7mQn7fV+PBkdBU6GEZuGo8pPamli7LPfNFn21hqiERhwVAEWi4VP/74AfDDmxsGxKUZuXcCIS8pwZzhZ9HwFAycXgwHfPrgY3DDo+H5Y7RYciXbmPbeSlsU+kkrd7HVGP9Z9UYu/PkjZUXk0VrSx8vU1+OpjnQsFB2ew9uPa2PRvkwrima3/iXmE2yJUvFUVLyjqvEA2/OJSFv9vPb5KP2XH55KYk8CcB5bjToOk0hSqZjfiTrPgq48y9qYhREJR/u/2RYy6thwzbPLlnUvADftfMhC7x0bVvAacHjsLXlzNwGPzyShPZsNX9eQMT41nxb2mlpBc5GH1F9WsebOG0b8dhNVuoa3az5LXNjDg2By8mbH57IOtIQxLrEPHlRK7IwwTolGTsC+MIzF2sdPmsBHyhbG5rISDESxWg+aWZtasWRO7+NXWzqrVq3A6nbS1tdHY2NgtoyclJeHxeNiwYQMOh4ORI0dy+umnc8UVV/TNL66IiMgP1Msvv8wf/vAHFi9ejN/v32L2slqtJCYm4mv3kZScRL+SfthsNtLS0ykrLSUxKZFIKIrdGfscdyTYCQXC2OxW/E1B7Am22B3xRqz4qL3Oj9VuIRo1cSXHRhZvWtvG8jeqGDAph8T8BMLBCF/cvpj8w9IpOTCH+qXNLHx6TazPKxRlw1f15B+QQdW8epa/WcmgyYUEWoPk7ptOsDnE7Adj07Tt98sBGHaDL/++hFHXlGNzWvn0zwtwpVjwN0bJHJ5MS0UT/kbY58J+NK9vZ+XrVbiyXAw8Noe5/64AYn1egaYQX/1zKcU/y8LqsrDi1dgIofv9agDLXl9L41IfeWPSWP9ZrNLclWKh31H5pPZPZOmr63Cl2ikYm8X8J1fQsspPYn8Xe59eir8hSCQUZfHLFeCHfS4eCFFY/NIqhkzpR1ulj28fXsnYmzr6vP68EFcK7HvFEKLRKItfXYPVCgMmFcWKuaNQv6gJT74bZ6IDOka/aq5sJzHTTXuTH3eKEzMCFqtBJBzFarcQ8oUx7LB+3XqqqqtoaWmhvr6e2tpa7HZ7j4VIFouF7OxsWltbaWtro6SkhBEjRjBt2jRSUlL65hdXRETkBygQCHD99dfz0ksvsX79+i7T9W7O7XbjdDppampiUPkg0tLTsFgsFBcXU1RYRDRk4nDbCYciWG3WWN+X3aC91k9CmouW9W0kFyXG+lUMA19TkLYNftIHJWGxGkSjJsveWoe/PsBep/fDYrXw1f3LCdQGGH1drG/n01sXMOT0IlIHJLLohTX0m5iDxW7w7QNLCRBl2Cn9MC0midkJzP/vGpoXt+DMcDLiwlLWfVZL89o2hk4poWFZKytmrI0XJeWMSqXyiwa8BU7KTyjiq3tiReqF4zMxLLD6/Rr2uaAfnhx3vKhp6FlFLHurikBNgPyD0kkbmBibVtcJ6QOTqJvXjDMJAs1wwPWDiQajfHHHYkZeMQAgvo/hF5eSkOFi9efVJCQ7WfLaOgoPzKBwbBbrvqwlc2gKjgQbn966gLJjcsnZN411X1ZT8UYN+/1qAI5EOy3r2ljyaiXFh2aQMTAZM2ribwximhAOhEnKi91kh2EQCUQIByK4UpyEA7GMHGwNYffYCPliU+61treyevUaGhsaaGtrY9WqVTicDtrb22loaOjW55WYmIjX66WqqgqPx8O+++7Lz3/+c84777yd/SsrskfSSEryk3HhhRdusdL0t7/9LY888gi1tbVEIhGam5uJRCJUVlVSWVXZpa3NZsNms2G328nOzsbtduPxeEhLyyA7O5OUlBQSExOJRqNYrVYcXjtWq5VIOPYBFAqEScxOYPg5JUDswllrVXt81CXTNKl4v5r0vT0dQ28bLHl2LZ7LysjeO4NIxCAxPwFvnptAW5CaBQ2MuLQMw2pgcRhE/LGAULu8kdSS2PDRBhbKT88jvX8SJYfk8NldC3Ek2ckYnMyK1yopn5SLO81J1r5JVH/d3OX1ZgxOwrAYLPvfenIPSMXqtFA4NpPkfj4KRmeQXu6lZY2fZf9bT/P6VlxpDmrmtGBYDLL2TmH4eaXULGjC4jAINAfBBo4EBwMPK4gP7fjZnxew39UDME0Tny82skFnMdEBNwwi0BQiHAhjc9oYenwJkUgEwzAIByNY7RaSChPiHXCmGZsCxp5oo7a2lpqaGlpaWmlubqKxoZG6+joikQg+n4+2trZuvwtut5vk5GT8/li1+dChQ8nIyOCBBx5g0KBBO/KrJyIi8pOTlpbGf//73x6fW7ZsGeeffz6zZ8+mvb09PgJTNBplwYKNd7J/9PFHQOyOtEgkQnp6OqmpqdjtdrIys0hLTyMzkklycnLs879jSjS7x0ZqWWJsFB5fGIfLTtnhBfFpPQItQYafU4qrYySfaDiWnYLBEAmGi8IJOXz+/xYy9ndDGH5JOY3LW3GnOWlv9hOuiZK3TzrBsjC5+6aBAU0VLTSu8VFyeA5Nq5vw1UcpOzaXpBIP7hQHoUCYzCEp2BNspO/lpW5+K1lDU4iGTCrequry3uSNSych00XpxGy+e3wV6QOTsDli06wNvzhWgJ5S6mXxq2vBDZFQhA3fxi6emRETu8fGsEv6YTENNsxtIHNIEllDUzAMgwHH5ZFZnkLT6jZWzqgkd2QapmmSMtDNmq+qSCrsR+H+mWQPSqF5QysphYl4slyMOK8fmBBoD+Jw27ElWLFarfH3LRKNYLVaaWlpprm5meol1fj9fhoaGmhubqahoSE26kJzc3x6kE1lZGQQjUaJRCKkpqZSXl7O+PHjue22277Pr6CIiMhPyuTJk5k8eXKPz/3zn//knnvuYfXq1QSDQVpaWohEItTU1MRHYurU2edls9rIycnB5Xbh8XhIT88kOzuTJCOJ5ORkIuEIVosVR1JsirNwKNbn5W8NkpTnYd8LS4FY307jqlb2vbI/rmQHpmmy6osakss6ppuzW1j1TjWeLBc5w9IxTTM2jZpp0l7np3phE8POLCEKOJLs8VG/131TS/6+GeACvz/KgBPyyByaQjScy+f/bxEJWW4ciXZWvl5Fv8My8eYlkHNAGpWf13d5vTkj0rA6YkVKqYM8OBLt5I3OxJ7YRMnhOWQOT6V5ZSsr36yiaXUTiUUJ1CxqIjnfhXFgFnufVcq6L2pxeG20VvownCaerASKxuaS3tGf9umfFjDson6xkQ78naN7xoqJRv92EL4aP77mAO4kJ4MnFxMNRTEwCLQEcXjtpA9O7si5EO2Y9tidZqeuoS7W57Us1udVX19PQ0MD4XB4i31eLpeLlJQUfD4fhmEwZMgQ8vPzefDBBzUqkoiISC85nU7uvPNO7rzzzm7PrV27lt/+9re899571NbW4vf7CQQCmKbJwkUbR9b+5JNPgI19XmlpaaSlpWG3xfq8UtNTySCDlKyU2LS6BhhWA3eaA3eqE4zY7CFOt53SQ3OxuWJ9R77mAP2PzMaT68LqsBAJxfpuYkXsXgrGpTP7H0sYc+NgRlxezoav6vDmuWmv99Oyvp20fgmk5LvIG52BYTFoWd9O07J2gu0hmja0EWiOUjg+k8QSNymFsREuE/PcOJPtpA9Nou67ZvLHZmCGo6x+v2vOTBnoIbnES9nhsODp1WTvk4oz2QFO2P/ycuxuK+sL69gwswaIEvZFqJofG2kyGo7iSnew17nFmEGTym/ryd47lYL9MsBiUFDvo+igbBpXtLDqrWryR2VgmrHRkdZ+Xk/2iFTy9ssktSyJxjWtZAxMJjHPw8iLy4gGTfxNAZxJDuweGzanlXAg9n5GzCh2uw2fL0BDewNVK6sIBILU19XR3LKxz6ulpYVQKMTm0tPTY9vp+BkPGTKESZMmcf3113+fX0GRHwWNpCSyDYsWLeLXv/41n376Kc3NzdhsNiKRCJFIBIvFEi+K2ZTFYsHtduP1euNTyyUnJ+PxeHA6XSQmJpGWlkJCQgJJSUkYhoFhbBx9KR46OpaFWsLYEqxYbBZC/jBf/msJY38du+uqeW0bKUWJscId06Ct2o9hNUjIjM1Fu+z1tRSPz8HusVG3opHGpW1UfdFE6eRsmla0UjevjdTBCdicVmrmtABdR1ICyDskmYbvmvDVwpCfF7Hg8dgQj3udW0Jinjve6TLmxtjUcu31PhwJDtqr/SQWJsRGPDIhHIxgd9loqmph/oOr46Mlhfxh/P4ASane+HsYjZjxIcE73x+/z09rWytVVVVEo1Gam5tpb2+nvj7WydTW1ha/4yscDncZItEwDCwWC5FIhNzcXOx2O2vWrCEhIYGRI0cybtw4br311j77PRIREZHeuf/++7nvvvtYsWIFwWAQm80WLx62Wq09johpt9vxer04nU7sdnvHxbRYR0BWVlassCkrC7fbTUJCQpf8Fo2YWDsKmACaqlpwe12xkRiNWMbZ+5ISkjI9+FsCOD0OTGLr1i5qJqXIQ9AXio3mFDb5/K6FjL0mNhpm85p2FjwZGwp88FmFLHxyDe40C4kDPVR/Hstdm4+klDEskbA/TOMSHxnDEknIc7L6zVpyx6SRWOwmY0AyvroAld80UPqzXKLRKO3VAULtEZKLEjANE6vVSu3SRtL7JwPw6d8XMOrKcmwOK5FQhGBLGFdKx3RrpgnRWGdXPIt2vDdNTU20trbS1NSE3++nra0tnr8ikUj8+VAo1K0zxmqNFd87HA7y8vKoro4VL5WXl1NWVsZ9991Hfn7+zvmlERERkR1SWVnJjTfeyLvvvktVVRWmaXbp8wK6TT9hGEaPfV5ejxeHw0FySjLJyckkJiaSmJi4sc8rGssZkUgUi7VjWcSkvS6AM8WGzWEj6Asx+96ljL1mCBhQvbCB7CFpsfwXMWhc2YrdZcVb4MZitbBsxnpyRqbiyXJRvbCBlgo/VbMbKDgsnfYNAeoXtJJc5sLqtFG/oBXoOpISQOZILy3L2/E3Rik/LZ/Fz64DYNCUQpKLPVgdFj792wJG/3IQVoeFlsp2nAl2mta0kTEkGQMD0wR/a4CEZBeNG1r57uFV8T6vQEsIf4uflPyk+HsYDkSwOizx99MwjHjxfufPobGxEZ/P16XPq6WlZZt9XtnZ2bhcLtavX4/X62Xfffdl4sSJXHvttX30WyQiIiK99dJLL/HAAw8wZ84cmpqaOoqYt97nZbPZSExM7NLnlZaWhmEYZGZmxvu8ElwJJHgTMKNmvN8qHIhgd9qgY6bZxjVNOD2u2I17HX1e5Wfkk9E/BV+jH4fbgWEzwDSpXdBEYn4C/tYgKUVeIoEI//fXxbFRvYNR6pe1sPTFWG4qOz6X5f/bgDMJEvslUPttbMTGzUdSSu6fgBmK0LwqQFI/F0nFCaz9sJ7UwV5S+nvIHZ5Oe5Wfig+rGHJaMWbEpGFFK2bEJLnEg8VmYLVbqZpXT+bQFAwMPv3bAva9sAxXqpOQP0SgPow7y4nVFrt+Gw2bsZFAiQ2M0HntcWPWaiQY9NPa2hrPWp2DWbS2thIMBrfY52W328nLy6O+vp5wOEz//v0ZOnQot99+OwUFBX3xKyTyo6EiJZHvqb29nT/+8Y+88MILrFu3jnA4HP/A8ng88ZEBDMPo1rEDsY4Eh8MRn7c2wZ2Ay+0iISEBq9WK0+kkOTkZm82Gy+UiFAqTmpqC0+nE5XIRDAZJSYk97jydO6dBC/iCON0OwuEwNpsNM2qy4et68vaLXbTDhA1z6sgdkU5DRSsLX1jN4BOKSC31EmoPU7e4mRWvVcY6VsImLZU+kgtjIzz5mvyE/SZJOR2jGJmxO+ZciY6N702rnwSvi2g0Gr+ABdDa2hq/uBWJRAmFgjQ1NmFi0t7eTiAQoKUlduHO5/Ph8/kIBoM93n3f2ZnTeWGyc0qZ8vJyqqurMU2TvffemxtuuIHDDjts5/3gRUREZLeYN28eN954I7Nnz6ahoYFgMEg0GsXpdGKxWPD5fFssJIdYR4LL5cLhcGC323E4HCQlJYEJSclJWC1WUlJTsFqt2Gw2rFYrCQkJeL1eIpEITqeTxMTE2PSyTe0kJG+c8jXQEsSRYMfouPDWsLIFV6odV3KseLx2YRNpAxJjBd63LqD06FzSyxOxe2zUL2lh0bNrGHpOMclFHio+rKLkkOx4R9K6/6slb790DKsRy3ZWG8FACIfLDtClyD0UClFf24DDZScQCMRHNnI4HAQCAYLBIM1NzUTNKH6/v0uhUWf22vziVyeLxYLVaiUlJYVAIEBzczP5+fmkpKSwevVqSktLmThxIrfccgtut7tvfglERERkl/D7/Tz00EM888wzLFmyhLa2tvhoAB6Ph0AgEB/tekt9Xna7HbfbHb+hz+WKjc7U+TgxMQm7fQt9Xv4gKWmb9Hl1FFZDrM/L4XQQicb6vKIhk3X/V0PhQVkAmFFY+V4lpT/LoWF5CwufWsPAE/PJGJpMsCVE7YJmKt6uYsyNQzAjUeoWN5O1dyqmadLe4MdXG4xN/dFxcSvQGsSd4oy/tvaGdhJSE4hGo7S1thEIBrBYLLS0tMT7vKLRKKFQKNbnZZq0+zr6vJpbMDHx+/34fD4CgcBW+7w8Hg8ul4umpiYikQiDBw+OZ7vhw4dz3XXXMXr06D76LRAREZFdZe3atfzlL39h5syZrF27lra2NoLBIA6HA6vV2qs+L6fTGe/zcjldeBO9GBixPi+rleTkZCwWCw6HE6vVEu/zikajOByOeJ9Xa10b3nRPfNtt1T7cqS4sNgPDYlC7uBG710pSnhfDMKie30hKiQeby8pnf1lI/kHpZA5LJiHNReU39ax4t5LSI3LIGZZGxceVFB2YjcUWG+Cg4r1KCg/KxOqyEg6HsWAl0BrAneICNg5qYBgGwUCIhsZ6nE4nfr+/o8+rEafTgd/vJxgM0tTUFLtmGfB3KTTqzF6hUGiLfV4Wi4XU1NT4djr7vBoaGhg0aBATJkzgN7/5DU6ns9v6ItJ7KlIS2YW+/vpr/va3v/H555/T2NhIJBKhpaUFlytWlNTe3o5pmrGCItOMX3Tr6cNyc1arFbvdjs1mi1886gwVnY8jkQgOhwObzRa/S95qteJwOOLT01mtVlatWkV6ejoJCQmEQqH46FGhUIhwOBzfVjgcjt9dFw6HCYfD8XC06fOhUKjHwLSpzo4rlytW1BQOh0lLS8Nms9HU1EQoFKKsrIzm5mba2toYOHAgEyZM4IYbbiAhIWGr2xYREZGfHp/Px6OPPspzzz3HokWLYoU5zc2YponXGxu9sa2tLT6tSTAYjI8csC2duWXTQqbOi0idjztzVmebSCQS31dnTrPZbLS2ttLY2EhRUVE8SxmGES9878xskUiEQCAQX7fz+c675jfNXj1d5Npc54XBzlxntVpJS0uL36WflZVFSkoK69evJysri7333pvLLruMcePGfe+fjYiIiPz4LFq0iIceeohPPvmEdevW4ff7aWpqwuFwkJCQgM/ni+efHenz2jRHba3Py2q1xi/edfZ5deYrm83G6tWrSUlJwev1EgqF4tvqqc8rHA7Hs9b36fMC4jcodk5zm5KSgsPhoLGxkUAgwMCBA2ltbSUajTJgwAAOP/xwrrzySlwu18748YiIiMiPSCAQYMaMGbzwwgt8++231NfX09TURDAYJCEhNrtJa2trtz6vaDTa62t1PfV5dS7bWp+XzWYjHA5jt9tpa2ujoaGBoqKiLqN1bqvPKxKJEAwGsVgs8ced2ay3fV4ulyt+bBaLhfT0dHw+H83NzaSnp5Oenk5DQwMlJSUMHjyYiy66iBEjRuysH5GIbIOKlER+ABYtWsT//vc//u///o/ly5fHP0ij0Wh8xKW2tjasVisejyf+4d75fOfjzqAAEAwG4yMudT6G2DDeNTU1eDwePB5Pl0BimiahUCi+vDNIJCYmEo1GCQQCAPG76VpaWkhMTMTj8dDY2EhzczMFBQVYLBaam5vJzs6mX79+TJgwgSlTpqjYSERERHY7n8/HBx98wHvvvcd3330Xv8jW0NAQH1bb5/NhmmZsFMyOi26dHTedU6MEg0Hsdnt8u36/H7vdHrsbv6PIyDRN2traaGtrIzMzE6s1Nue9wxEbmbLzQpjb7Y5NFxIIxIf37hz1yOv1xocHb29vJzs7m3A4TGNjI1arldzcXBobG0lJSSE/P5/+/ftzwQUX0L9//13/5oqIiIhspqKignfeeYdvvvmGxYsXU1tbG59q1ul0YrPZaG5uxm63k5CQEL8w1ZmRwuFwvI+qM3t1juTdmdcCgUC8X6ympiY+YkBn4VLnxbZQKERCQkKXi2eb9nl1FrsHg0FaWlri22lqasLn85GdnY3T6SQUCpGfn09OTg6HHXYYkydPVrGRiIiI7HaBQIC5c+fyySefMH/+fJYvX05TUxMNDQ3xUco7R3jsnNa3s8+rc/AD6NrnZRgGPp9vm31enf1lnSMQdfZ5JSTERqbs3GZnlmpvb8fj8cRHkGprayM7O5tIJEJbWxsWi4WsrCxCoRA5OTlkZWVRXl7OGWecoanWRH4AVKQkIiIiIiIiIiIiIiIiIiIiIiJ9yrK7D0BERERERERERERERERERERERH7cVKQkIiIiIiIiIiIiIiIiIiIiIiJ9SkVKIiIiIiIiIiIiIiIiIiIiIiLSp1SkJCIiIiIiIiIiIiIiIiIiIiIifUpFSiIiIiIiIiIiIiIiIiIiIiIi0qdUpCQiIiIiIiIiIiIiIiIiIiIiIn1KRUoiIiIiIiIiIiIiIiIiIiIiItKnVKQkIiIiIiIiIiIiIiIiIiIiIiJ9SkVKIiIiIiIiIiIiIiIiIiIiIiLSp1SkJCIiIiIiIiIiIiIiIiIiIiIifUpFSiIiIiIiIiIiIiIiIiIiIiIi0qdUpCQiIiIiIiIiIiIiIiIiIiIiIn1KRUoiIiIiIiIiIiIiIiIiIiIiItKnVKQkIiIiIiIiIiIiIiIiIiIiIiJ9SkVKIiIiIiIiIiIiIiIiIiIiIiLSp2y7+wBkz1ZVVUVjY+PuPgwR2UVSUlLIzs7e3YchIvKTpewl8tOi7CUisvsod4n8tCh3iYjsXspeIj8tyl6yNSpSki2qqqrilBNPAevuPhIR2VVcLhdPPPGEgoOIyG6g7CXy06PsJSKyeyh3ifz0KHeJiOw+yl4iPz3KXrI1KlKSLWpsbAQr2JakYPHbAAuGxQBj4z/DYgEDMCyxZZs9v+V/HetYDKDzsbHJYyM2GaFB/LHZuayj/aaPTWPjNszOSQw7t9nZtsvXzvU62m2yjtm5HSO2yDTAtGyynrFx22aXdeiyTpf9s3G9eNvN1o3/Y+vtu6yzhWXb/D6+zOyyzOyyTbPL49j+zW7r022bHe0sG583DDO22Oh83Plj3OT5jq+xpza2sxhmx/rmJo9jbWK/AiYYZny5xTBjz7HZMsPEQuyfYZgdv6ody4xN2nd8jf/DxCCKpWNfFiPa8RxYiGIYJtaO/VmNaMdXE8OIxpbHn9/0cTS+bYsRjR+DjUgPz0WxAJbO7XXsp/O1WDC77CfWtuNYO763YmAAVgMMjI7HG79aMLAYFtass/Pne1JobGxUaBAR2Q12W/YyLHtU7oo/3oOzl2nZZN09IXdt1mZPzF5Wy56Vu6x0rK/sJSLyk6Q+r9iiHrOXhT0qd22+bE/NXntS7toT+7w2z142I6LcJSLyE7LHZC/Dsmflrk1y1R6bvSybHQe7P3fBphmr80e552Svzty0p+Qu9XnJnkhFSrJNRrsNi88BRmdosMTDQSw0GGDZGBqMTZ7v8lz8cef3lu4ho+OxaXR8Um3ynGl0fCoZnR8rG9uYm3yCmh1tOj/wNwaSTR9v9r3F6BYIunwYdhQpdQaZLYWJ7l+NbsFgS223FRB6arfN59lW2x6Cw+bPselzmwcFs9tzRuf3mxcpdfkaa2N0BoDNQ8Mmz5nx780u61no3HdnR9DGfwYb19k8BFi2uCza7bF10w/vzg/lzu8NM/aBvkkQ6PwwtxpRLIYRbx/7Ske72Id4bP3YB7mlI2zYjShWovFtWzsed24zFgqiG7/v2PfG781N9rVx+1aMju9jAcHaERRijy0d38e+iojI7rers5dpsexZuatLW/bI7BUvUtpTclf8GPbc7GWzRPeo3LWxvbKXiMhPmfq8Nm/bmXP2nNy1xefZg7KXZfMiJfV5bSt72Y2IcpeIyE/Qbs9eFsselbs2Zo09OHttXqS0u3PXHtjntfkymyWyR+Uu9XnJnsiy7SYiIiIiIiIiIiIiIiIiIiIiIiI7TkVKIiIiIiIiIiIiIiIiIiIiIiLSp1SkJCIiIiIiIiIiIiIiIiIiIiIifUpFSiIiIiIiIiIiIiIiIiIiIiIi0qdUpCQiIiIiIiIiIiIiIiIiIiIiIn1KRUoiIiIiIiIiIiIiIiIiIiIiItKnbLv7AGTPZyaEiVoALBgWA4yN/wyLBQzAsMSWbfb8lv91rGMxgM7HxiaPjVgJnUH8sdm5rKO92bkdDMzYNx3fQ+w/dG4g9nx04zpm53odu4u373wc33bHY4uxyXOxp2P/ocvyLusYYHTub5NlnfvsXGb2sP7W2ndZZwvLtvl9fJnZZZnZZZtml8ex/Zvd1u/59ZsdPyuz432IvcGG0fm44/3Z9PmOrwabLgeLYXasb27yuOOnHt+GucmxmZiYHa/NJBp/LbHlJiZRw+z4VTWxYMa2udnX+D9MDKJYDDraRjueAwtRDMPESmw9qxHt+GpiGNHY8vjzXR9bOn6dY18NLAbYsGCFjv0aWAwj9hWwdG6vYz8WzPi/LtuNb3Pj91YMDMBqgIHR8Xjj19i+LKxZp48EEZE9wS7PXoZlz8pd8ePd+G9Py16mZZN194TctVmbPTF7mZY9K3dZO1KQspeIyE+b+rw2edx5eBb2qNy1+bI9NXvtSblrT+zz2jx72QyrcpeIyE/Qbs9ehmWPyl0bs8MenL06hjvZk3IXbJqx2OOyV7QjN+0puUt9XrIn0m+IbFE0GsVmsxEe2Li7D2XHmGwSIHrP2Oyr/PB0/uiju/tAtqozWe1ZA9rZbDai0T37nRMR+bH6QWcv5a6ftD0/e+2ZuQuUvUREdpcfdO4CZa+fsD0/d8Gemr2Uu0REdp8fdPZS7vpJ2/Oz156Zu0DZS7ZORUqyRRaLhXA4zE033URxcfHuPhwR6WOrVq3i1ltvxWLZ88KMiMhPgbKXyE+LspeIyO6j3CXy06LcJSKyeyl7ify0KHvJtqhISbapuLiY8vLy3X0YIiIiIj8Jyl4iIiIiu4Zyl4iIiMiuo+wlIiKwJ479JfIj9PHHH3PNNdcwYcIEkpOTMQyDqVOn7u7D6tGTTz7JRRddxH777YfT6cQwDB599NHdfVjfWygU4oUXXuCcc85h8ODBeL1eEhMTGT16NPfffz+RSGR3H6KIiIjsBMpdu59yl4iIyE+Hstfup+wlIiLy06Dctfspd4nsHBpJSWQXeOSRR3jsscdISEigqKiI5ubm3X1IW3TTTTexatUqMjIyyM3NZdWqVbv7kHaK5cuXc/LJJ+P1ejnssMM47rjjaGpq4tVXX+XSSy9lxowZvPLKKxiGZggWERH5IVPu2v2Uu0RERH46lL12P2UvERGRnwblrt1PuUtk59BISrJF6enpTJ06lfT09N19KD94l19+OfPnz6e5uZnp06fv7sPZqmnTplFRUUFNTQ0XX3zx7j6cnSYxMZF//etfVFZW8r///Y/bb7+dBx54gCVLlrDffvvx2muv8fzzz+/uw9ytdM6LiOxe+ju8cyh37X7KXb2jc15EZPfR3+CdR9lr91P22jad8yIiu5f+Du8cyl27n3JX7+icl21RkZJsUUZGBueddx4ZGRm7+1B2qxdeeIFDDjmErKwsXC4XeXl5HH744bzwwgu93sZ+++3H0KFDsVqt3+tYotEo06ZNY9SoUaSlpeF2uykoKODYY4/lww8/jLf78MMPMQyDP/zhD3z66adMnDiRlJSUXlXuHn744RQXF3+v4+wUDAb5xz/+wf77709iYiJer5chQ4Zw9dVX09DQEG9XUlJCSUkJTU1NXHLJJeTm5uLxeDj44IP5+uuvAVi/fj1nnXUWWVlZuN1uJk6cyNKlS3t9LPn5+Vx66aV4PJ4uyz0eD1dffTUAH3300U541T9cOudFRHYv/R1W7vo+lLt+eHTOi4jsPvobHKPsteOUvX5YdM6LiOxe+jus3PV9KHf98Oicl23RdG8iW3H//fdz6aWXkpubywknnEB6ejqVlZV88cUXvPTSS5x00km79Hiuv/56/vrXv1JWVsYZZ5xBYmIi69atY+bMmbz77ruMHz++S/tPP/2Uv/zlL0yYMIFf/OIXrF69epcdq8/n42c/+xmzZs1iwIABnHvuuTidTpYuXcqDDz7Iz3/+c1JTU+Ptg8EgP/vZz/D7/Zx22mlUVVXx3HPPcfjhh/Ppp59yxBFHkJuby1lnncWyZct49dVXOfroo1m4cOH3DmR2ux0Am01/EkVERHYX5a4dp9wlIiIi20vZa8cpe4mIiMj2UO7accpdIj9OOktEtmLatGk4HA7mzJlDVlZWl+fq6up2y/Hk5eUxd+5cEhISujxXX1/frf0777zDI488wrnnnrurDjHud7/7HbNmzeLss89m+vTpXT7cm5qaun3Yb9iwgYMOOoinnnoq/gE+YsQIrrvuOsaMGcO5557LHXfcEa/QvvTSS7n//vt5+eWXOfHEE7/XsT7yyCMATJw48XttR0RERHaccteOU+4SERGR7aXsteOUvURERGR7KHftOOUukR8nTfcmsg12uz1e/bqp3TWPpsPh6LGaNy0trduyfffdd7eEhnA4zEMPPURycjJ33313t+NNTk7G6/V2W+/vf/97lwrj008/Pb69W2+9tcsQkp3Pffvtt9/rWB966CHeeOMNDj30UCZNmvS9tiUiIiLfj3LX9lPuEhERkR2l7LX9lL1ERERkRyh3bT/lLpEfL42kJLIVU6ZM4dprr2WvvfbijDPOYMKECRx00EEkJSV1aXfXXXfR2NjYZdnUqVMpKSnZ6cdz3333sddeezFlyhQmTJjAmDFjcLvdPbbff//9uzxubGzkrrvu6tbuD3/4w049zkWLFtHS0sLhhx/eZZjFrUlNTaWoqKjLstzcXAAGDBjQrZq787n169fHlz366KNUVFR0aXf88cczfPjwHvf52muvcfnll1NcXMyTTz7Zq+MUERGRvqHctWOUu0RERGRHKHvtGGUvERER2V7KXTtGuUvkx0tFSiJbcc0115Cens7999/PHXfcEa++Pfroo/nHP/5Bv379gFhwWLVqVZd1x48fv9ODw913302/fv2YPn06t956K7feeisul4tTTz2VO+64g4yMjC7ts7OzuzxubGzklltu6bbdnR0cmpqaAMjPz+/1OpuHMdg4b+vWnguFQvFljz76KB999FGXdiUlJT0GhxkzZnDyySeTnZ3N+++/Hw8iIiIisnsod+0Y5S4RERHZEcpeO0bZS0RERLaXcteOUe4S+fFSkdKPRHt7O8888wwLFixg4cKFtLS0cP3113PUUUft9H3V1NRw77338uWXXxKNRhkxYgRXXHEFeXl5XdodfPDBPa7/i1/8grPOOmunH1dfMAyD8847j/POO4+6ujo++eQTnn76aZ577jmWLl3K3LlzsVqt3Spq+4rNZuOaa67hmmuuYf369Xz00UdMnz6dxx9/nMrKSt56661ux7+pkpISTNPs8+NMSUkBYN26dX2+r019+OGHvWr3+uuvc9JJJ5GRkcEHH3xAaWlpnx5XMBjk3//+N2+//TYtLS2UlZVxwQUXdKs+70lvz7f6+noefPBBPvvsM9rb2ykuLuass85iwoQJ3bY5e/ZsnnjiCVasWEEkEqGgoICTTjqJI444It4mEAjwj3/8g4ULF1JdXU00GiUvL49JkyZxwgkndBkq84033uC2227r8fhfeumlLsOVnnrqqVRWVnZrd9xxx3HNNdfEH9fW1vL888+zcOFCFi1ahM/n4+6772bEiBHbfM9ERHYFZa+dT7lrxyh39c6O5rHVq1fz8ssvs2DBApYuXUowGOTZZ5/tsdMpEAjw3//+l7feeovKykoSExPZa6+9OPfcc+Mdjp2+/PJLHn30UZYsWYLdbmfkyJFceuml3bZ7zz33MGfOHCorKwkGg2RnZ3PooYcyZcqULnf/LVy4kDfffJNvvvmGyspKkpKSGDp0KBdccAGFhYXxdtFolLfeeouPPvqIpUuX0tLSQm5ubnybTqdzR95eEZE+pdzVN5S9doyyV+/siuzV25zUafHixUyfPp158+YRDAbJy8vj2GOP5eSTT463ufLKK5kzZ063dUeNGsXf//73btt7+OGHmT9/PqZpMnToUC655BIGDBjQpd32bFNEZE+g7LXzKXftGOWu7nbF9cbtOd96c72xqqqKGTNm8Nlnn7F27VqsViv9+vXj5z//Ofvtt1+X7W3P9UaI/b167LHH+OCDD6irqyM5OZmhQ4dy44034nK54u162w8nu46KlH4kmpqaePTRR8nOzqZ///588803fbKf9vZ2fvnLX9LW1sZZZ52FzWbjueee44orruCRRx4hOTm5S/v99tuPI488ssuyzf9H7YciPT2d448/nuOPP57a2lref/99li1bRnl5+W45nry8PE4//XROO+00ysvLeffdd/H5fFscjnFXKi8vJykpiS+//JKGhoZeD8O4K3SGhrS0ND744AP69+/f5/u87bbb+PDDDznllFMoKCjgjTfe4Nprr+Xuu+9m2LBhW1yvt+dbW1sbl112GQ0NDZx88snx13bzzTcTDof52c9+Ft/mzJkzufHGGxk6dChTp07FMAw++OAD/vznP9PU1MSpp54KxC6yVVRUcMABB5CTk4PFYmH+/Pnce++9LFy4kN///vfdjvf888/v9oHe03zAAwYM4LTTTuuyrKCgoMvjNWvW8NRTT1FQUEBpaSnffffdNt5lEZFdS9mrbyl39Z5yV+/saB777rvveOGFFyguLqa4uJilS5duse2f/vQnZs2axbHHHsvAgQOpra3lpZde4pJLLuHRRx8lJycHgE8//ZQbbriBgQMHctFFF9HW1sbzzz/P5Zdfzr///e94JxzEhjYfNmwYkyZNwuFwsHTpUp566im++uor7rnnHiwWCwBPPfUU8+bNY8KECZSVlVFXV8dLL73EBRdcwP333x/vKPP7/dx2220MHTqUyZMnk5qaynfffcf06dP5+uuvueuuu7p1PoqI7G7KXX1P2av3lL16Z1dkr97mJIAvvviC66+/ngEDBnDOOefgdrtZt24dNTU13babmZnJRRdd1GXZ5hfEFi9ezGWXXUZWVhZTp07FNE1eeuklrrzySh588MFu08z0ZpsiInsKZa++pdzVe8pd3fX19cZOvTnfenu9cebMmTz11FOMGzeOI488kkgkwltvvcXVV1/Nb3/7WyZNmtTteHtzvbG1tZUrr7ySmpoajj32WPLz82lsbGTu3LmEQqF4kdL29MPJLmTKj0IgEDBra2tN0zTNhQsXmuPGjTNnzJix0/fzn//8xxw3bpy5YMGC+LKKigpz/Pjx5oMPPtil7bhx48w777xzpx/DrvTBBx+Y0Wi0y7JgMGgOHz7cBMyKiort3uZnn31mAuY555yzXev5/X5z1qxZ3ZY3NzebOTk5ptPpNP1+f/y4AfPmm2/e7uPb1G233WYC5vTp07d73d/85jcmYJ599tlmOBzu8lxjY6PZ0tISf1xcXGwWFxf3uB3APOSQQ7otX7ly5Xa/jzNmzDCdTqeZk5NjLlq0qNfrfR/fffedOW7cOPOpp56KL/P7/eaUKVPMiy++eKvr9vZ8e+qpp8xx48aZs2fPji+LRCLmhRdeaE6ePNkMBoPx5VdddZV5wgknmIFAIL4sFAqZU6ZMMadOnbrN1/OPf/zDHDduXPzvjWnG3tdx48aZCxcu3Ob6p5xyinnttddus11bW5vZ1NRkmmbs93ncuHHm119/vc31RER2FWWvnU+5S7mrr3yfPNbU1GS2tbWZprkxc61fv75bu+rqanPcuHHmv/71ry7Lv/rqK3PcuHHms88+G1929tlnm1OmTOmS0ZYuXWoecsgh5j333LPN1/P000+b48aNM+fPnx9fNnfu3C7bM03TXL16tXnYYYeZf/zjH+PLgsGgOXfu3G7bnD59ujlu3Djzyy+/3Ob+RUR2NeWuvqHspezVV3ZF9tqSnnJSa2urOXnyZPOGG24wI5HIVte/4oorzJ///Ofb3M9vfvMbc9KkSWZjY2N8WU1NjTlx4kTzxhtv3KFtiojsKZS9dj7lLuWunWFXXG80zd6fb7293rhixQqzoaGhy7qBQMA888wzzRNPPLHL8u253njHHXeYRx11lLlu3bqttvu+/XDSNzSS0o+Ew+Ho9d0Xn3/+OU8++SRLlizBMAz22WcfLrnkkm5TEPTkww8/ZNCgQQwePDi+rLi4mH333ZcPPviAX/ziF93WCQQCAD/IqQOOP/54kpKSOOCAAyguLiYUCvHOO++wYMECTj75ZIqLi3u1nZkzZzJt2jSA+B06M2fOZOrUqQBkZGRsc3hfn8/HgQceyMCBAxk5ciRFRUW0trby2muvUVlZyTXXXLNT3uNp06Yxc+ZMAObNmxdf1jm84UEHHcQFF1ywze388Y9/5PPPP+eJJ57g888/56ijjsLpdLJixQrefPNNZs6c2eP8rX1l0aJFnHDCCQQCAcaPH8/TTz/drU1JSUn8Z7KzfPTRR1itVo477rj4MqfTydFHH81DDz1EVVVVt/l8O/X2fPv2229JSUlh5MiR8XYWi4UJEyZw//33M2fOnPhQj+3t7SQmJuJwOOJtbTZbtyrpLekcAaC1tbXHvznt7e04nU6sVutWtxMKhQiHw1usxu9pWG4RkT2JstfOp9yl3NVXvk8eS0pK6tU+2tvbAbrd1df5d6Lz96W5uZmKigpOP/107HZ7vF3//v0pLi7m/fff5/LLL9/qvjbNY5323nvvbu0KCwspKSlh1apV8WV2u73HtuPGjeORRx5h1apV3YbaFhHZ3ZS7+oayl7JXX9kV2WtLespJ7777LvX19Vx44YVYLBZ8Ph9Op7PLSEubC4fDBIPBLfZPzZ07l9GjR3fpT8vIyGD48OF89tlntLe3d1t3W9sUEdlTKHvtfMpdyl07w6643ripbZ1vvb3e2NPfA4fDwQEHHMBzzz3XY27q3P6Wrje2tLQwY8YMTjrpJPLy8giFQpim2eVYYOf0w0nfUJHST8xbb73FX/7yF0aNGsVFF11EIBDgf//7H5dddhn//ve/tzr3YjQaZcWKFT0OuzZ48GC+/PLLbn9I3nzzTf73v/9hmibFxcX8/Oc/7zL11J7utttu48033+SLL77g1VdfxePxUFZWxv3338/555/f6+0sW7aMxx57rMuy5cuXs3z5ciD2QbCt4ODxeLj99tt57733+OSTT6iuriY1NZXy8nJuu+02pkyZsv0vsAczZ87sdqyzZs1i1qxZ8ce9CQ4ul4t33nmHe++9lyeffJKHH34Yq9VKUVERF198MSUlJTvleHursrIy/oH6zDPP9NjmkEMO2enBYenSpRQUFODxeLos7wwCy5Yt6zE0bM/5FgqFegwJnUMZLl68OF6kNHz4cJ566immTZvGkUceiWEYvPvuuyxevJg//OEP3bYRCoVoa2sjEAiwePFinnnmGXJycsjPz+/W9pe//CU+nw+73c7+++/PZZddRmFhYbd2X3/9NRMnTiQSiZCTk8Mpp5zCKaec0sO7JyLyw6fs1XvKXTHKXTvfjuax7ZGfn09mZibPPvssRUVFDBgwgNraWh544AFyc3M59NBDAQgGg0DPHTxOp5OVK1dSV1fXpUM4HA7T2tpKOBxmxYoVTJs2jYSEhC4dSz0xTZOGhoZe/fzr6+sBel24LiKyJ1Lu2j7KXjHKXjvfrshenXqTk2bPno3H46G2tpYbb7yRNWvW4Ha7mThxIpdffnm3XLZmzRqOOOIIQqEQaWlpHHPMMUydOhWbbeOllFAo1O0iGMR+N0KhECtXrmTo0KHbtU0RkR8aZa/eU+6KUe76fnbF9cZOvTnftvd64+bq6+txuVw99pFt63rjvHnzCAaDFBQU8Lvf/Y6ZM2cSjUYZOnQoV111VXxquh3ph5NdQyn4J6S9vZ27776bY445ht/85jfx5UceeSRnnXUWTz75ZJflm2tubiYYDPZ4onYuq62tjc+5vddeezFhwgRyc3Opq6vjxRdf5E9/+hNtbW0cf/zxO/fF9ZFLLrmESy655HtvZ+rUqd/7A8lut3Pttddy7bXXbrPt+PHjMU1zh/bz6KOP8uijj+7QuptzOp38+te/5te//vVW21VUVGzxuS29jpKSku16jd/nPfk+tvThtuk505PtOd+Kior46quvqKysjN8xBrG7ujbfxznnnMOGDRt44oknePzxx4FYyPvjH//IuHHjuu3r448/5pZbbok/HjRoENddd12XThSn08lRRx3FiBEj8Hg8LF68mOeee45LL72UadOmdQlFpaWlDBs2jMLCQpqbm3njjTe45557qK2t3SnnmojInkTZa/sod30/yl1btqN5bHvYbDb+9Kc/8ac//Ynrr78+vry8vJz77ruPxMREANLS0vB6vfG7CDs1NTXFRzyqra3tcryLFy/ucm4UFRVx2223bXOkgXfeeYeamhrOO++8bR7/008/jcfjYfTo0dt+sSIieyDlru2n7PX9KHtt2a7IXp16k5PWrl1LJBLhhhtu4Oijj+YXv/gFc+bM4YUXXqC1tZWbb7453jYvL48RI0ZQWlqK3+/nww8/5PHHH2fNmjVd+scKCwtZsGABkUgkfnd/KBRiwYIFwMbRLbZnmyIiPyTKXttHuev7Ue6K2RXXG6H359v2Xm/c1Nq1a/n444+ZMGFCl5GSenu9ce3atQA89NBD5OXlccMNN9DW1sajjz7Kr371Kx577DEyMjJ2qB9Odg0VKf2EzJ49m9bWVg477DAaGxvjyy0WC4MHD+brr7/e6vqdlaGbDofWqfPOkc42APfdd1+XNpMmTeKCCy7goYceig/HJ/JjFwgEen3ObL4e9O58O+aYY3j55Ze5+eabufzyy0lLS+ODDz7gk08+6bYPu91OYWEh48eP5+CDDyYSifDqq69y6623cuedd3a5ywtgxIgR3HnnnbS2tvLVV1+xbNky/H5/lzaHHnpofHQAiE0XMmrUKK644gqeeOIJrrnmmvhz/+///b8u606aNInf/OY3PPfcc5x00klkZWX1+H6IiPwQKXuJ7Bl2NI9tr8TERPr378/48eMZMmQI69at4z//+Q8333wzd9xxR3xakeOOO46nnnqKBx98kEmTJtHe3s79999PKBTq8XhKSkq488478fl8zJ8/n6+++gqfz7fVY1m1ahX/+Mc/GDp0KEceeeRW2z7xxBPMnj2bq6++Ol5MJSLyQ6PcJbLn2FXZC3qXk3w+H36/n8mTJ/PLX/4SiI1wEAqFeOWVVzjvvPPid+b/9re/7bLuEUccwd/+9jdeffVVTj311Hi/2QknnMAdd9zB7bffzhlnnEE0GuXxxx+nrq4O2HjX/vZsU0Tkh0TZS2TX2xXXG6H359v2Xm/s5Pf7ufnmm3E6nVx00UVdnuvt9cZN894//vGP+ChQAwYM4JJLLuGll16KT/W7vf1wsmuoSOknpLOq8Fe/+lWPz3cODxcIBLrM2w2xSsrOPzqdJ+2mtjZcWie73c6JJ57IHXfcweLFixk2bNh2vwaRHxqn07lD58z2nG9lZWX8/ve/54477uCyyy4DYnfpX3HFFdxxxx243e74unfddRcLFixg2rRpWCwWIPah//Of/5x//vOfPPjgg132lZaWRlpaGhCrEH/iiSe4+uqreeqpp7ZaWTxs2DCGDBnCV199tcU2AIZhcOqpp/LFF18wZ84cJk6cuNX2IiI/JMpeInuGHc1j26O1tZUrrriCKVOmdBkafdCgQVx55ZW88cYb8bvNzj//fJqamnj66af5z3/+A8D+++/P0Ucfzcsvv9wlu0Hsb8V+++0HxDpn3nnnHW644QamTZtG//79ux1LXV0d1113HR6Phz/96U9d7kjb3Hvvvce0adM4+uijfxB3n4qIbIlyl8ieY1dkr069yUmd+zvssMO6rHv44Yfzyiuv8N1333WZPmRzp512Gq+++iqzZ8+OX2ybPHky1dXVPP3007z55ptALPedfvrpPPHEE93yXG+2KSLyQ6LsJbLr7YrrjT3Z0vm2vdcbASKRCH/4wx+oqKjgr3/9KxkZGVt7yUDP1xs7i6sOPPDALtPUDR06lNzcXObPnx9ftr39cLJrqEjpJyQajQJw0003xYsONtXZef3+++9z2223dXnu448/JikpCYfDEb8jZFOdy7b1x6RzlJTm5ubtfwEiP0Dp6eldhnjutK1zZnvPt/Hjx3PggQeybNkyotEoAwcO5JtvvgGId7SEQiFef/11zjjjjHhggNj0JKNHj+all14iFAr1WE296X4efvhhZs6cyeTJk7f62rOysli9evVW23S2A/1dEJEfH2UvkT3Djuax7fHRRx9RX1/PgQce2GX58OHD8Xg8zJs3L14EZLfbue6667jwwgtZs2YNaWlpFBYW8sc//hGLxUJ+fv5W93XwwQfz5z//mffee69bkVJrayvXXnstra2t3HvvvVt9bV9++SV/+ctfGDNmzDaHTBcR2dMpd4nsOXZF9tqSnnJSeno6K1eu7Pa3ITU1FYCWlpatbrPz3N683YUXXsiUKVNYuXIlHo+HsrIyHnroIYCtFj1tbZsiIj8Uyl4iu96uut7Yk83Ptx293vi3v/2Nzz77jN/97neMHDlyq/vcfP+bXm/sPN7OPLep1NTULsWR37cfTvqGipR+QjpPspSUlPgdJj3Zf//9ufPOO7stt1gslJaWsmjRom7PLViwgLy8vC7Vij1Zv359/BhEfgr69+/PN998Q1tbW/zuASA+R31Pd7/Djp1vdrudwYMHxx93VhV3nu9NTU1EIhEikUi3bUYiEaLRaPx/Lrakc9jDtra2rbaD2Pnem3NdfxdE5MdK2Utkz7CjeWx7NDQ0AHTLUqZpEo1Ge8xfm45YGYlE+Oabbxg8ePA2z+tQKEQ0Gu2WxwKBAL/97W9Zs2YNd955JyUlJVvcxoIFC7jpppsoLy/nlltuwWZT14CI/LApd4nsOXZF9tqSnnJSeXk5s2fPpqamhqKiovjy2tpaYNvn7NbO7cTExC6jd8yePZvMzMwu+9nebYqI/BAoe4nservyeuPmNj/fduR643333ceMGTO44oorOPzww7e6v572v+m5Xl5eDmzMc5uqra3tMYvtaD+c9A3LtpvIj8WoUaPweDw8+eSThMPhbs93zhubkZHBfvvt1+Vfp0MOOYRFixZ1+UO2evVqvvnmG8aPH99tW5tqb2/n+eefJzk5Of7HQ+THbvz48UQiEV555ZX4smAwyIwZMxgyZAjZ2dkAVFVVsWrVqi7r9vZ868maNWt4+eWXGTt2bPzurdTUVLxeL5988kmXYR3b29uZNWsWRUVF8SEdGxsbMU2z23Zfe+01gC7ncE/n+2effcbixYsZNWpUfFlzc3O3wBIOh/nPf/6D3W5nxIgRW31NIiI/NMpeInuG75PHequgoACITZ+2qZkzZ+Lz+RgwYMBW13/mmWeoq6vjtNNOiy9raWnp8W9HT3msc7js7777jltuuYW99tpri/uqqKjguuuuIycnh9tvv32nTrkiIrK7KHeJ7Dl2Rfbanpw0YcIEAF5//fUubV9//XWsVmu8P6qtrS0+5Ukn0zR5/PHHgdiF9q157733WLRoEaecckp8RIHvu00RkT2VspfIrrcrrjf29nzbnuuNAE8//TTPPPMMZ599NqeccsoWX2NvrzcWFRXRv39/Zs6c2WWdL774gurq6m1mrJ764WTX0u2SPyIvvPACra2t8aHZZs2aRXV1NQAnnXQSXq+Xq6++mj//+c+cf/75HHbYYaSkpFBVVcXnn3/OXnvtxVVXXbXVfZxwwgm89tprXHfddUyZMgWr1cpzzz1HamoqU6ZMibd78cUXmTlzJmPHjiU7O5u6ujpmzJhBVVUVN95441ankxL5MRkyZAgTJkzgoYceorGxkfz8fN58800qKyu57rrr4u3+/Oc/M2fOHD7++OP4st6ebwBnn302EyZMICsriw0bNvDyyy+TlJTUZeoOq9XKlClTmDZtGhdffDFHHHEE0WiU119/nZqaGm666aZ427fffptXXnmFgw46iLy8PNrb2/niiy+YPXs2Y8eO7TIM4yWXXMLAgQMpLy/H4/GwZMkSZsyYQVZWFmeffXa83axZs3j88cc55JBDyM3NpaWlhXfeeYeVK1fyi1/8gvT09C6v6bHHHgNiF9IA3nrrLebOnQvAOeecs6M/EhGRnUbZS+SH4fvksdbWVl544QWA+Hz2L774Il6vF6/Xy0knnQTAgQceSL9+/XjssceoqqpiyJAhrFu3jhdffJH09HSOPvro+DbffvttPvroI/bZZx/cbjezZ8/mgw8+4JhjjunSMTRnzhzuvvtuxo8fT0FBAaFQiLlz5/Lxxx8zaNAgJk6cGG/7r3/9i1mzZjF27FhaWlp4++23u7wHnW3b29u55ppraGlpYcqUKXz22Wdd2uXl5W21wElEZHdR7hL54dgV2Wt7ctLAgQOZNGkSM2bMIBKJMHz4cObMmcMHH3zAWWedFZ8uZMmSJdxyyy0cfvjh5OfnEwgE+OSTT5g3bx7HHntsl4vgc+bM4bHHHmP//fcnKSmJBQsW8MYbbzB69GhOPvnkeLvt2aaIyJ5E2Utkz7Mrrjf29nzbnuuNH3/8Mffffz8FBQUUFxd367Pab7/94iMc9fZ6I8Dll1/Or3/9ay6//HKOO+44Wltbee655ygsLGTy5Mnxdr3th5NdyzB7GipDfpBOPfVUKisre3zu2WefJTc3F4BvvvmG//znPyxYsIBgMEhmZibDhg3jxBNP7NX/GFVXV3Pvvffy5ZdfEo1GGTFiBJdffnn87mGAL7/8kqeffpoVK1bQ3NyMy+Vi8ODBnHHGGds1x6TIj0EgEODf//43b7/9Nq2trZSWlnLBBRd0qfq98soru4UG6N35BnDLLbcwb948GhoaSE5O5sADD+S8887rcT7Wd955h+eff541a9YQCoUoKytjypQpXT6MFy1axNNPP82CBQtoaGjAarVSWFjIxIkTOfHEE7tMCfLwww/z+eefs2HDBvx+P+np6YwZM4apU6d2mY968eLFTJ8+naVLl9LY2IjNZmPAgAGcdNJJ8bvaNnXwwQdv8T3d/H0SEdkdlL1Efjh2NI9t2LBhi3dV5eTk8Nxzz8Uft7S08Nhjj/HZZ59RVVWF2+1mv/3248ILLyQvLy/ebsGCBdx///2sWLGCQCBAUVERkydP5rjjjsMwjHi7devW8eijjzJv3jzq6uowTZP8/HwOOeQQTj/9dNxud7dj35LO17S11wNw5JFHcsMNN2zxeRGR3UW5S+SHpa+z1/bkJIiN5P3EE0/wxhtvUFtbS3Z2NieccAKnnnpqvM369et58MEHWbhwIfX19VgsFoqLiznmmGN6zGl33nknS5YswefzkZOTw5FHHslpp53W5WL59mxTRGRPouwlsmfq6+uN23u+9eZ64yOPPMKjjz66xdd09913x0e27O31xk6zZ8/m3//+N0uXLsXlcjFmzBguvvjiLoMi9LYfTnYtFSmJiIiIiIiIiIiIiIiIiIiIiEifsuzuAxARERERERERERERERERERERkR83FSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIQkAfJQABAABJREFUiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJiIiIiIiIiIiIiIiIiIiIiEifUpGSiIiIiIiIiIiIiIiIiIiIiIj0KRUpiYiIiIiIiIiIiIiIiIiIiIhIn1KRkoiIiIiIiIiIiIiIiIiIiIiI9CkVKYmIiIiIiIiIiIiIiIiIiIiISJ9SkZKIiIiIiIiIiIiIiIiIiIiIiPQpFSmJyE/So48+imEYPProo7v7UERERER+9KZOnYphGFRUVOzuQxERERGRrVCfmYiIiMiuUVFRgWEYTJ06dXcfisgupSIl+UF67733OOGEE8jJycHpdJKXl8cRRxzBjBkzurRbs2YNl156KaNHj+7Sdty4cUyfPp1QKLTFfTz22GOMGjUKr9dLcnIy48eP57XXXtvuY62qquKKK66gX79+OJ1OMjMzOeGEE/j66697bN95AWdL/xYtWtSlfWfHwdb+Wa3W7Trm559/niuuuIJx48aRlJSEYRicddZZ21zv008/ZdKkSaSlpeF2uxk2bBh33XUXkUhki+u89tprjB8/nuTkZLxeL6NHj+axxx7b6n521s+mL5x55pkYhsF99923zbYTJ07EMAxeeumlXXBkIiIi2++nkgkaGxv529/+xplnnsmQIUOw2WwYhsG77767xXX+8Ic/bDV/vfnmmz2uN3PmTCZPnkxJSQkul4uioiImTZq0xfabu/XWW+P72Nrx9SQQCPCvf/2LUaNGkZGRgdfrZfDgwVx55ZWsWrWqx3WWLVvGueeeS0FBAQ6Hg9zcXM4++2yWL1++XfvuC9FolKKiIgzDYMGCBVtt297eTkpKCg6Hg+rq6l10hCIi8lOzvdmp86LElv5NmTKlx/Wqq6u59tpr2WuvvUhMTCQ9PZ2RI0fyt7/9jZaWlm0e55IlS/B4PL3Odpvb3jwTDAb561//yj777ENCQgJJSUkcdNBBPPfcc9u976VLl3L77bdz6KGHUlhYiMPhIDs7m8mTJ/PBBx/0uM62+s4eeOCBbut88cUXXH/99Rx11FHk5ORgGAYFBQVbPbYdzc5b8vrrrzNx4kQKCgpwu92UlpZyyimn8Nlnn/XYvqWlhRtvvJFBgwbhcrlITU3liCOO4L333tvhY9iZ1GcmIiI7S11dHdOmTeOEE06gf//+uN1ukpOTOeigg/j3v/9NNBrtts6O5K61a9fy5z//mVNOOYX+/ftjsVgwDINly5Zt8dh2JENszbx58zjzzDPjrzM/P58JEybw7LPP9vg6TdPk4YcfZvTo0Xi9XjweD/vttx8PPPBAj+23prm5mV/96leMGzeOvLw8XC4XWVlZjBo1irvuuou2trYe19ve66I78jp3du5au3Yt5513Hnl5eTidTkpKSvjVr35FQ0NDt7bb6hM0DIOysrIdPpad4eGHH8YwDE499dRttv3LX/6CYRj88pe/3AVHJhJj290HILK9rr32Wv72t79RUFDAcccdR0ZGBjU1NXz11Vd8+OGHTJo0Kd52+fLl/Oc//2H06NEcf/zxpKWlUVdXxxtvvMF5553HE088wdtvv43N1vVUuOaaa7jjjjsoKCjgwgsvJBgM8swzz3Dsscdyzz33cPnll/fqWCsqKhg7diwbNmxg1KhRnHjiidTU1PDiiy/y+uuv8+qrr3LEEUf0uO4vf/lLUlJSui3PyMjo8nj48OHcfPPNPW7jk08+4f333+eoo47q1fF2uvXWW/n222/xer0UFBR0K4zqycsvv8xJJ52Ey+XitNNOIy0tjVdffZWrrrqKWbNm8d///rfbOvfeey9XXHEF6enpnHXWWTgcDp5//nmmTp3KvHnz+Pvf/95tnZ31s+krF154IU899RTTpk3j0ksv3WK7iooK3n33XXJzczn22GN34RGKiIj03k8lE1RUVHDttdcCUFBQQEZGBlVVVb1a95xzzqGkpKTb8v79+3dbdv/993PppZfi8Xg44YQTKCgoYO3atbz44ou88cYb3Hrrrdx4441b3NfXX3/NH//4R7xeL62trb17cR3C4TCHHXYYs2bNYtCgQZx++uk4nU6+/PJL7rnnHh5//HE+/fRThgwZEl9n9uzZHHroobS0tHDYYYdx+umns2rVKp555hleeeUVPvzwQ0aMGLFdx7EzWSwWzjvvPG655RamTZvGnXfeucW2//3vf2lqauLkk08mKytrFx6liIj8lOxIdgLYZ599OP7447st32uvvbotq6ioYPTo0VRXVzN+/HiOOuoo/H4/b7/9Ntdeey1PPvkkn3/+OW63u8d9hcNhzj77bCyWHbt3dXvzTDAY5IgjjuDDDz+kpKSEc889l2g0yowZMzjttNOYP38+f/zjH3u9/9/97nc8++yzDBkyJF4Uv3jxYl555RVeeeUV7r77bq688soe1508eTLDhw/vtny//fbrtuypp57i7rvvxm63M2TIkF5lwx39+ffkuuuu469//Svp6ekcf/zxZGRksGzZMl5++WVeeOEFHn/88S4X4hoaGjjooINYsGABQ4cO5eKLL6a1tZWXX36Zww8/nGnTpnH++efv8PHsDOozExGRneW///0vl1xyCbm5uUyYMIGioiKqqqp48cUXueCCC3jjjTf473//i2EY3dbdntw1e/ZsbrrpJgzDoF+/fiQnJ9PY2LjVY9uRDLElr776KieeeCIWi4XjjjuOk08+mdraWl566SWmTJnCu+++y8MPP9xlnbPOOounnnqKrKwsTj/9dBISEnjnnXe45JJL+PTTT3n88cd7vf/6+noeeughRo0axdFHH01mZiZNTU28//77XHXVVTz88MN89tlnJCUlxdfZkeuiO/I6d2buWr58OWPHjqW6uprJkyczaNAgvvjiC+6++27efPNNZs2aRXp6erz9+PHjt7itV199la+//nq7r8vubKeffjpXX301L7/8MrW1td2uLXcyTZN///vfAPziF7/YlYcoP3WmyA/IQw89ZALmOeecYwYCgW7PB4PBLo8DgYAZiUR6bDd+/HgTMJ999tkuz82aNcsEzLKyMrO+vj6+fOXKlWZaWprpdDrNlStX9up4jzvuOBMwr7zySjMajcaXL1682ExMTDRzc3PN1tbWLuucc845JtDrfWzNAQccYALmyy+/vF3rvf/+++aSJUvMaDRqfvDBByZgnnnmmVts39TUZGZmZpoOh8P88ssv48t9Pp85ZswYEzCffvrpLuusXLnSdDqdZlpaWpfXWl9fb5aVlZmA+emnn3ZZZ2f+bKZPn24C5vTp03vVfnsMHDjQBMyvvvpqi21uuukmEzBvuOGGnb5/ERGRneWnkAk69/Xuu++adXV1pmluzGPvvPPOFte5+eabTcD84IMPerWPYDBoJicnmy6Xy1y0aFGX5xYsWGA6nU7T7Xabfr+/x/V9Pp85ZMgQc+zYsebZZ5+9zePb3HPPPWcC5mGHHdYtH//+9783AfPcc8/tsnzYsGEmYN55551dln/yySem1Wo199lnny4Zd2t2Zsbd1OrVq02r1WpmZGT0+P8HnQ466CATMN9+++2dun8REZFNbW92WrlyZbyfq7cuvfRSEzD/8Ic/dFkeDofNQw891ATMxx57bIvr33LLLabD4TDvvvvubR7f5nYkz9x5550mYI4ZM6ZLH1hLS4s5cuRI0zCMLrlxW6ZPn25+/fXX3ZZ/+OGHpt1uNx0Oh7l+/fpu62xvH9A333xjfv311/F8AZj5+flbXWd7f/5bsmHDBtNisZjZ2dlmVVVVt30AZr9+/bosv/LKK03APPHEE81QKBRfXlVVZRYWFpput9tcs2ZNr/avPjMREdnTvffee+Yrr7zSrX9jw4YNZmFhoQmYzz//fJfndiR3rVmzxvz444/NpqYm0zRN85BDDjEBc+nSpVtcZ0cyxJYMGTLEBMwPP/ywy/INGzaYWVlZJmCuWrUqvvzFF1+M54Sampr48kAgYB5zzDEmYL7wwgu93n84HO523bXTmWeeaQLm7bff3mX5jlwX3d7XaZo7L3eZpmlOnDjRBMx//vOfXZZfddVVJmBedNFFvdpOOBw2CwoKTMD89ttve7XOjvxe9taFF15oAuYdd9yxxTbvvvuuCZhjx47d6fsX2RpN9yY/GIFAgBtvvJGioiIeeughHA5HtzZ2u73LY4fD0eOdYXa7PV4pvXTp0i7PdQ7xfOONN5KamhpfXlJSwmWXXUYgEGD69OnbPF6/388bb7yBxWKJT8vRaeDAgZx33nls2LCBF154YZvb2hHz5s3j888/Jz8/n6OPPnq71p0wYQIDBgzoscq8J88//zw1NTVMmTKly91nLpeLW2+9FYjdabepRx55hEAgwOWXX95l9IHU1FRuuOEGgG7Dbe+sn83WNDQ0cPDBB2OxWLjtttviy8PhMPfddx8HHHAASUlJJCQkMGLECO69995uQ01eeOGFAN0quztFIhGmT5+OYRhccMEF3+t4RURE+tJPJROkpqZy2GGHkZaW1ut1tld9fT1NTU0MHDiQ8vLyLs8NHjyYgQMH4vP5tjhC0vXXX8/KlSt59NFHd2jkgxUrVgBw9NFHd1t/8uTJANTU1HRpP3fuXLKysroN93zQQQdxzDHH8O233/LJJ59s97Fs6ttvvyU/P5+kpCTeeeed+PL6+nquv/56Bg8eHB+2/bDDDuPtt9/usn5hYSFHHnlk/A67nixatIiZM2dSWlrK4Ycf/r2OV0REZGu2NzvtiM7P9OOOO67LcqvVGu//2fQzfVOzZ8/mT3/6E7/73e8YNmzYdu97R/JM5+fzjTfeiMfjiS/3er3cdNNNmKbZq+m/Ok2dOrXHkRwPOeQQxo8fTzAY5NNPP93el9bN8OHDGfH/2Tvv8Diqc/9/ZnvflbTq1bZsyb13sMEGQqiBS0kgEFoSciEkBO4l3BRSCSQkoSf8AoEAgRBIcADbYEx1N+5NLrLV+2q1q+31/P6Y1cpCAmwDNyT3fJ5nn2hn5sycObNkXr/ne77v9Okj5h8/iE/q+Tc1NZFOp5k7d+4wB8hTTz0Vu90+7BkPjPNPfvKTIY7xBQUFfOc73yESifDHP/7xY/VL5swkEolE8llhyZIlnHvuucPyG0VFRVx//fUAvP322x/7OmVlZdlyYsfKicQQH8SRI0dwOBwsXrx4yPaioiLmzp0LDI37BuKBW265ZYhzjsFg4Kc//SmgupkfK1qtdti86wAXX3wxMHSO9UTnRY/3PuGTi7sOHz7MqlWrsjnFo/nxj3+M1Wrlqaee+sDSdkezYsUKWltbmTdv3gnF2keTTqf51re+haIoXHjhhUQikey+1157jbPOOgu3243RaGTMmDH813/91zCXrwFnpEcfffQDrzMQk0kXJcn/NlKkJPmX4fXXX6enpydr+bd8+XLuvvtu7rvvvg+sxf5BpFIpVqxYATDsRfHmm28CcOaZZw5rN2DPN3DMh+H1ekkkErjdbux2+7D9o0ePBvjAuvArV67k7rvv5p577mHZsmX09/d/5DWP5v/9v/8HwLXXXotWqz2utsfLh43ZokWLsFgsrF+/nlgsdkxtPmicP6ln80E0NzezcOFCNm7cyJNPPsntt98OQCKR4JxzzuGGG27A5/Nx2WWX8bWvfY10Os03v/lNvvKVrww5z1e+8hUMBgPPPvss4XB42HVWrlxJW1sbp512GqNGjTrh/kokEolE8lnj3yUmOB7Wrl3LPffcw913381zzz2Hx+MZ8biCggLy8/M5ePDgMJH8wLZp06YNsY8e4M033+S+++7jF7/4BWPHjj2hfk6cOBFQ45D3Txa98sorAEMEPJ2dnYAq/BpJFPVRseyx8MYbb7Bo0SKEELz77rucfvrpgDoxN3PmTO666y7y8/O5/vrrufTSS6mrq+PMM88cNqk1MNn1QUmXge3XXnvtpzppLJFIJBLJidLe3s4jjzzCnXfeySOPPMKuXbs+8NiBd/ry5cuHbE+n09lJoSVLlgxrF4lEuOKKK5g2bRrf/e53T6ifJxLPDMQUA7HD0XwS8cTRDEyiHS3SOZodO3Zw7733ctddd/HUU0/R2tr6iVz3k2bs2LEYDAY2b948LLZ89913CQQCw4TXn/Y4y5yZRCKRSP5V+Kh44Hjirn82EydOpL+/n7Vr1w7Z3t3dzebNmykuLmbChAnZ7ccSD6xZs4Z4PP6x+/byyy8DQ+dYT3Re9Hjv85PkrbfeAuCMM84Ylv+y2+0sXLiQcDjMxo0bP/JcA/OyH1fwE41Gufjii7n//vu54YYbeOGFF7KlnH/84x9z5plnsmnTJs4++2xuuukmqqurueeee1i4cOGQueRZs2Yxbdo06urqWLdu3bDr9Pb2smzZMpxOJ5dccsnH6rNEctz8s62cJJJjZaAMxXe/+10xadIkAQz5LFq0SHR3d4/YtqenR9xxxx3ihz/8ofjGN74hqqurBSAuu+yyIccFg0EBCJvN9oHnAURBQcFH9jccDgutVis0Go0IBALD9n/rW98SgJg7d+6Q7QOlMN7/sdvt4sEHH/zI6w5c2+VyCa1WK5qbm4+pzQdxLDaJs2bNEoDYsmXLiPsnTpwoALFv377sNrfbLQDh8XhGbGO1WgUgQqGQEOKTfTZCDLeu3rFjhyguLhYOh2NY6ZSBci433nijSCaT2e3JZFJcc801AhDLli0b0uaSSy75QGvsAbvL559//pj6KpFIJBLJZ4F/15hgJI6n3Nv7P0ajUXz/+98fsQzaX//6V2EwGITdbhdXXnml+O53vyuuuOIKYbPZxMyZM0e0C/f5fKK8vFwsWrQoe85j6d/7SafT4sILLxSAmDBhgrjpppvErbfeKk499VSh1+vFN7/5zSGlQQ4cOCAAUVhYOOK9nH/++QIQl1566TFd//3l3p566imh1+vF+PHjRWNj45BjFy9eLBRFGVYasK+vT0ydOlWYTCbR2dmZ3Z5MJkVJSYlQFEUcOXJkSJtYLCby8/OFTqcTHR0dx9RXiUQikUg+CY6n3NtIn1NOOWVYWQsh1PJdNTU1AhBLliwRt956q7jppptEbW2tcLlc4o9//OOI17rpppuE0WgUe/fuPeb+jcTxxjMDJX+XL18+7Fwvvvhi9n7D4fBx9eP9NDY2CqPRKCwWy5BywEIM5oDe/9FqteLrX/+6iEQiH3l+jrNUy8ctO/Lb3/5WKIoi8vPzxVe/+lXx3e9+V1x88cXCaDSK008/fVgZuOLiYgFkn+/7zzUQ1x0LMmcmkUgkkn9VEolEdv7w1VdfHbLvROKu93Ms5d7ez/HGEEfz7rvvCofDIYxGo7jkkkvEd7/7XXHdddcJt9stqqurxebNm4cc/6UvfUkA4qGHHhp2ru3bt2fvt66u7rj6kUgkxB133CHuuOMO8c1vflNMmzZNAOLUU08dEked6Lzo8d7n+/k4cdett94qAHHPPfeMuP+GG24QgHj44Yc/9DwtLS1Cq9UKp9OZzWEeC+8v99bb2ysWLlwoFEURd91115BjB8r+zp8/X/T19Q3ZNxC/ffvb3x6y/eGHH/7AcnIDZZlvuOGGY+6vRPJJIUVKkn8Zrr/++mwCYfLkyWLNmjUiEAiIXbt2ZeuFLl68eMS2dXV1QwIORVHErbfeOqyWaltb24cGDPF4XADCYDAcU59PO+00AYibb755yPZDhw4Ju90uADFu3Lgh+x577DHx3HPPiaamJhGJRMThw4fFPffckz3+kUce+cjrPvHEEwIQZ5999jH188M4lpf72LFjPzQwW7BggQDE+vXrs9v0er0AhkyGHU1JSYkARHt7uxDik382RydcVq1aJex2uygpKRE7duwYclwqlRK5ubmiqKhoxL729fUJRVHExRdfPGT7QB3XhQsXDtne3t4udDqdKCgo+MBavhKJRCKRfBb5d40JRuJYREB///vfxR//+Edx5MgREYlERFNTk/jDH/4gCgsLBSBuv/32EdutXbtWlJeXD4lNCwsLxYMPPihSqdSw46+44gphtVrF4cOHj6t/I5FOp8Udd9whtFrtkOsvXbpUbNiwYdjxA8/z3nvvHbJ93bp12XOcccYZx3Tto0VKv/jFL4SiKOKkk04aNom4Y8cOAYiLLrpoxPMsW7ZsxITb97//fQGI733ve0O2//WvfxWAuOCCC46pnxKJRCKRfFIcS+zU1dUlfvCDH4itW7eKvr4+0dfXJ9555x1x6qmnCkBUV1eLYDA4rF1fX5+44IILhuW6vva1r424WG316tVCURRx9913H1f/PojjiWd+9rOfCUAsWLBgiBApGAyK2bNnZ9sPxHonQjQaFQsXLhSA+OUvfzls/9tvvy0eeOABceDAAREKhUR7e7v461//KsaMGSMA8aUvfekjr/G/LVISQhVx5eTkDBnn6upq8ec//3nYsdddd102hjpaLNTd3S0qKipkzkwikUgk/ye45ZZbBCDOOuusYftONO46mv9tkZIQQuzduze76G/gY7fbxc9//vNhQuunn35aAGLMmDGit7c3uz0ej2eFwO/Pyx0LkUhkmLDriiuuGFGIdCLzosd7n+/n48RdX/3qVwUg/vCHP4y4/3/+538EIO68884PPc+PfvSjExL8HC1SamxsFLW1tUKv14unn3562LFf+MIXBCD27Nkz4rmmTZsm8vPzh2zz+/3CarUKi8Ui/H7/kH0TJkwQgNi5c+dx9Vki+SQY2etOIvkMMlCWQqfT8dJLL1FVVQXA5MmTefHFF6mpqeGdd95hw4YNzJ8/f0jb2tpahBCkUina2tp48cUX+eEPf8jatWtZvnw5ubm5n0qf7733XhYuXMhvf/tbNmzYwMKFC+np6eFvf/sbY8eOZceOHcPsA6+55poh30ePHs0tt9xCTU0N5557Lt/73vc+soTbgKXg17/+9WH7GhsbeeKJJ4Zt/9GPfnT8N/hvwAsvvMCqVasYO3YsK1eupKKiYsj+gwcP4vV6GTt2LD/72c9GPIfZbKaurm7ItiVLljBmzBjWrVtHXV0d48ePB+Dxxx8nmUxy1VVXfWAtX4lEIpFIJJ8sy5YtY8eOHUO2TZs2jS984QsnfM4LLrhgyPeKigquu+46ZsyYwbx587jnnnv4zne+g9vtzh7z9NNP89WvfpULL7yQH/zgB1RWVtLU1MRPf/pTbrzxRt555x3++te/Zo//29/+xlNPPcVDDz00olX38RCNRrnyyitZuXIlDz30EOeffz4Wi4V169Zx0003sWjRIp5//nnOP//8bJvf//73fP7zn+fb3/42r7zyCtOmTaOlpYW///3vTJ48ecRY9qO4+eabWbZsGf/xH//B008/jclkGrJ/oIyz3+8fMT7t6ekBGBZ7XXfdddx55508/vjj/PjHP87GygOl4QZKwkkkEolE8lmioKCAn/zkJ0O2LVq0iFWrVnHSSSexadMmHn30Ub71rW9l9zc2NnLeeecRiURYsWJFtgTFP/7xD2655Rb+8Y9/sGHDhmypLJ/Px1VXXcXcuXO55ZZbPnafjzee+da3vsXzzz/P+vXrmThxImeddRZCCJYvX46iKDidTvx+fzamePvtt3n77beHXLOqqoqrrrpqxP6kUimuuOIK1q1bx6WXXsqtt9467JjFixezePHi7HeLxcLFF1/MvHnzmDp1Ks8++yy33XYbU6dO/djj80nxy1/+kv/5n//hpptu4sYbb6SoqIj9+/dz++23c/nll7Njxw5++ctfZo//yU9+wmuvvcYLL7zAtGnTWLp0KaFQiH/84x+UlpbS3Nx83HGbzJlJJBKJ5F+J+++/n1//+tfU1tby1FNPDdt/InHXP5vXX3+dL37xi8yaNYsnn3yS2tpaOjs7efDBB/ne977H8uXLeeedd7Kl7b74xS/y1FNP8dprrzFhwgTOP/98TCYTq1evpqOjg4qKiiExwY4dO1i2bNmQa7pcLr797W8P2WYymRCq8Qnt7e2sXr2a22+/nVmzZvHqq69m52vhxOZFj/c+P2uk02kee+wxYOR52WPhwIEDzJ8/n1AoxMqVK1m6dOmwYzZs2IBer+f555/n+eefH7Y/Ho/T09NDb29vtvyyw+Hg0ksv5Y9//CN//vOf+cY3vgHA+vXr2bdvH3PmzBlSsk8i+V/jn6uRkkiOnf/+7/8WgJg3b96I+6+99toRV3p/EM8+++wwVeunUT6kvr5eXHnllaK4uFjo9XpRWVkpvv/974s1a9YIUMvUHSulpaUCELt27frAY/bs2SMAUVZWNmTl1AADiuL3fz6If9fSLgOrwnJzcwUgrr766hFLmaxdu3bE8Xr/p6qqaljbX/ziFwIQ3/nOd4QQqnvB6NGjhaIox6W0l0gkEonks8C/ckwwUjndkWyO33/88ToVDTCwkv+ll17Kbjtw4IDQ6/Vi5syZwxwGUqmUmDlzpgDEW2+9JYRQ7Z3dbrdYunTpsBjlRPo3UIrjvvvuG7ZvwL2osrJy2L5t27aJCy+8ULjdbqHX60VNTY34zW9+I5577jkBiCuvvPKYrj/Q54HYa6TyHkIMui181Oeqq64a1vZzn/vckHFvaGgQiqKIysrKEV2qJBKJRCL5NPm4Tjp/+MMfBCAuvPDCIdsHVvCPtOL53nvvHRbnXH311cJsNov9+/d/7P4dbzwzQCAQELfffrsYO3asMBgMIi8vT1xxxRWitbVV2Gw2odPpss45I5XU/SDn9GQyKb74xS8KQFxyySUf6Mz5YVx++eUCEPfff/+HHsf/opPSQNuRnCBDoZAoLS0VGo1miNOmEEJ0dnaKG264QVRWVgq9Xi+Ki4vFjTfeKA4dOiQAUVFRcUzXlzkziUQikfyr8cADDwhQy9ufSKn3D4q73s//ppNSb2+vyMnJEaWlpSOWDxtw1Xl/fiUej4u77rpLTJo0SRiNRuF0OsX5558v6urqsnm5I0eOCCFGLok7Um5oJDZs2CBg5IouxzMveqL3eTT/7HJvr7zyyofOX38YA05KA3HXtGnThrmOD6DT6Y4p9mpsbBzSbuBZzZgxI7vt6quvFoB49NFHj7vPEsknwfEtn5BI/onU1NQAqop3JHJycgCIRCLHdL7Pf/7zAENWZ1mtVkpLSwkGg3R0dAxrc+jQIQDGjRt3rN1mzJgx/OlPf6K9vZ14PE5jYyM//elPOXjwIACzZ88+5nPl5+cDEAqFPvCYARelD3JbOuWUU7KK56M/H4eBZzNwT0eTTCZpaGhAp9MNcQD4sDYdHR2EQiHKysqwWCzAp/NsAO68807OO+88Hn/8ca655pqsY9cATqcTUN0SRhq3gU9DQ8Owc1999dXo9XqefPJJ4vE4b775JkeOHOHUU0+lurr6uPopkUgkEsm/Ap/VmOCJJ54Y9u4eyVnyk2KkmG3VqlUkEgkWL148bMWYRqNh0aJFAGzduhWA5uZmPB4Pb7zxBhqNBkVRsp8//elPAJx++ukoisK99977kX165ZVXADj11FOH7Zs6dSo5OTk0NTXR29s7ZN/06dP529/+Rk9PD/F4nP3793PzzTezZ88e4PhiWVBdraqrq7n22muzLkdHMxB73XfffR8aez3++OPD2n7ta18DBt2THnvsMYQQXHvttcftHCCRSCQSyT+bkeKJQCDAO++8Q25u7ogrngfe8wPxBMC2bduIRCLU1tYOiScGjv3zn/+MoihMmzbtI/t0vPHMADabjTvvvJODBw8Si8XweDw8+eSTxGIxgsEgU6dOzTrn/OhHPxr23n+/sxJAIpHgS1/6En/5y1+47LLLeOaZZ05odf2x5Nr+t/mwuM1isTBnzhzS6TTbt28fsq+wsJAHH3yQxsZG4vE47e3tPPDAAzQ3NwPHH7fJnJlEIpFI/hW49957+eY3v8mkSZN46623KCoqOu5zfBbjgfXr19PX18fcuXOzObGjGSnuA9Dr9dx2223s3r2baDSKz+dj2bJlVFVVcejQIdxud9Zx86qrrhr23m5sbDym/s2bNw+XyzVinHY886Inep+fFB+Wl4Rjm3v8sOo2x8q5557LnXfeyY4dO1i6dOmw/ByosVdOTs6Hxl1CCCorK4e0mzdvHlOmTGHbtm1s27aNQCDAX//6VxwOB1/84hdPuM8SycdBZmol/zIsXboURVHYt2/fsH8UA9mJkoGX60fR1tYGMCyBsWTJEgBeffXVYW1Wrlw55JiPw4Dd5GWXXXZMx/v9fvbv34+iKB94j9FolKeeegqtVsu11177sft4rHzYmL377ruEw2EWLFiA0Wg8pjYfNM6fxrMxGo288MILXHzxxTzxxBN8+ctfJplMZvfX1tbicrnYuHEjiUTiuM5dWFjIeeedh8fjYdmyZTz66KPA4ASaRCKRSCT/bvwrxwSfFIlEgm3btgEMEWPFYjFgsFzZ+xnYbjAYAMjLy+Paa68d8TN27FhAFd1fe+21TJo06SP79WHXj8ViBAKBIdf/qHt89tln0ev1XHTRRR95/NGUl5fz7rvvUlNTw9e//nUeeuihIfvnzZsHwJo1a47rvADnnXceRUVFrFixgpaWFh5//HG0Wu2wcsoSiUQikfwrsHHjRmBoPBGPxwHo7+/P/n00748nAC688MIR44mzzjoLUCeRrr32Wi688MKP7NPxxjMfxZNPPgkce25sgHg8zsUXX8zzzz/PlVdemc2FnQibNm0C+NildT9JPivjLHNmEolEIvmsc/fdd3PzzTczbdo03nrrLQoKCk7oPCPFXf9sPul44C9/+QvxeJwvfelLn0j/AoEA/f39xyUSH2le9JO+z+NlQAS1atWqYXPPgUCAdevWYbFYsvmq99Pe3s7y5ctxOp1ceumlH6svt99+O7/97W/Zvn07p5xyCl1dXUP2z5s3j76+Pvbu3Xvc5/7qV78KwKOPPsozzzxDKBTisssuw2q1fqw+SyQnzKfgziSRfGqcd955AhC/+c1vhmx/7bXXhKIowuVyCZ/Pl92+devWEUueBQIBcdpppwlA/M///M+QfevWrROAGDNmzBBLvYaGBpGbmyuMRqNoaGgY0qanp0fU1dWJnp6eIduj0aiIRqNDtqXT6WwZi0svvXTIvo6ODtHS0jJifwcsDU8//fQRRkblySefFIA455xzPvCY4+VYbBL9fr9wu93CYDCI9957L7s9EomI+fPnC0A8++yzQ9ocOXJEGI1GkZubO2Q8vV6vGDNmjADE+vXrh7Q5kWfzQQzYWA5YRCaTSfHlL385a+k5YDMuhBA/+MEPBCCuv/56EQ6Hh52rvb1d7N27d8TrvPrqqwIQc+bMEUajUbjdbhGLxY6pjxKJRCKRfJb4d40JRuKjyqn19/cPK5kihBCxWEz853/+pwBEbW3tkDIomzZtEoAwm83DyrNs375dmEwmoSiK2LNnz8fqn8/nE3V1daK9vX3I9m984xsCEEuXLh0Wn373u98VgJg9e/aQ7cFgcFgsnUgkxPXXXy8Acdttt31kX9/f54Hn0t3dLaZMmTKipfbJJ58sNBqNeOyxx0Y8165du0RXV9eI+wbu5eSTTxaAOPfcc4+5jxKJRCKRfJIcS+y0devWEUuSrl69WhiNRgGIdevWDdk3fvx4AYjvf//7Q7ZHIhFxyimnCED813/918fuX11dnairqxuy7UTjGb/fP+z8q1atEiaTSYwZM0YEg8GP7O8A0WhUnHXWWQIQ11577TGVdD06Lh0glUqJO++8UwDC7XaP2Mej4VMo9xaPx0VdXZ2or68fsn2grG5hYaFobW0dsm/FihVCURRhMpmGlEtOpVIiEAgMu8aTTz4pFEURCxYsOObytzJnJpFIJJJ/BX7yk58IQMycOVP09vZ+5PEnEne9n0+r3Ft9fb2oq6sb8o5ta2sTOp1OaDQa8dprrw05vrm5WeTn5wtALF++fMi+kWKa7du3C7fbLXJyckRbW9sx933Xrl0iEokM2x6LxcSVV14pAHHZZZcN2Xe886Inep9H83HiLiGEOOOMM0Ys/3vzzTcLQHz961//wPMO/A5vvPHGDzzmwxgo93Z0uebf/e53QlEUUVNTM+R5rV69WgBi/vz5Iz7HYDAoNmzYMOJ1+vr6hNlsFk6nM5uP27p16wn1WSL5JDh+D1yJ5J/IQw89xPbt2/nOd77D8uXLmT59Og0NDSxbtgytVsujjz6atRoG+MlPfsK6detYsGABFRUVWCwWWlpaWLlyJT6fjwULFnD77bcPucaCBQv4zne+w29+8xumTJnCRRddRDwe57nnnsPr9fLAAw9QVVU1pM2DDz7Ij3/8Y+644w5+9KMfZbcfOnSIk08+mdNPP52qqioSiQRvvPEGu3fv5qSTTspaAA6wf/9+TjvtNObPn8+4ceMoKCigra2N119/nc7OTkaPHp1dWTQSA+f7uKuOli1bxrJlywDo7OwEYMOGDVx11VUAuN1u7rnnnuzxDoeDP/zhD1x00UWccsopfPGLXyQ3N5eXXnqJAwcOcNFFFw1TEI8aNYpf/epX3HTTTcyaNYtLL70Ug8HACy+8QGtrK7fccgvz588f0uZEns2xotVq+dOf/oTJZOLRRx/lwgsv5IUXXsBoNPKDH/yAnTt38vvf/56XX36ZJUuWUFpaSnd3N4cOHWLdunX8/Oc/Z8KECcPOe8YZZ1BVVcXmzZsBuPHGGz81xbdEIpFIJJ80/5digltvvRWPxwPA2rVrAfjVr37F008/DcAXvvAFvvCFLwDQ29vL+PHjmTVrFuPHj6e4uJienh7eeustGhoacLvdPPvss0PKoMyZM4err76axx9/nNmzZ3PBBRdQWVlJY2Mjy5YtIx6P8+1vf5uJEyceV7/fz4svvsjVV1/NV77ylSEl7b73ve/x8ssv88Ybb1BbW8uZZ56J2Wxm3bp1bN68GbPZzH333TfkXG+99RbXXXcdp512GmVlZQSDQV599VUOHz7MRRddxE9/+tMT7md+fj5vvfUWn/vc57j11luJRqN873vfA+CZZ55hyZIlXHvttdx///3MnTsXl8tFa2sru3btYs+ePWzYsGHEFZJf/epXufvuu7NOTHI1vkQikUj+Nzne2Ok73/kOhw4dYsGCBZSVlQGwa9cu3nzzTQB++tOfsmDBgiHXuP/++zn77LP52c9+xuuvv86CBQuIRCKsXLmSpqYmqqurue222z72vYwfPx4AIUR224nGM7W1tUyZMoXa2lpMJhPbtm1j9erVFBUV8Y9//OO4VnBff/31rFixArfbTWlpKT/5yU+GHXPKKadwyimnZL/Pnj2bSZMmMXXqVEpLS/H7/axbt449e/ZgsVj485//jMPhGHKO/fv3c9dddw3Z1tfXl32WAPfccw9utzv7/Xiff1tbG+PHj8+O4QAXXXQRp512GqtXr2b8+PFccMEFFBUVUVdXxyuvvIIQgrvuuou8vLxsm3A4TGFhIaeffjpjxoxBo9Gwbt06NmzYwPjx43n++edPuPytzJlJJBKJ5LPGn/70J374wx+i1Wo5+eSTuf/++4cdU1VVNeS9fSJxFzDkHPv37wfgtttuw263A3Dddddx0kknDTnmeGOIpUuX0tTURENDQzafVVJSwg9+8APuuOMOPv/5z3POOedQW1tLZ2cnf//73wkGg1xwwQVZd8wBTj/9dMxmM5MmTcJut1NXV8fy5csxm828/PLLlJSUfNCwDuOxxx7j8ccfZ+HChVRWVuJyuWhvb2fVqlV0dnZSU1MzJLaB458XPdH7/KTiLoCHH36YBQsWcNNNN/HGG28wfvx4Nm3axFtvvcW4ceP4+c9/PuL4pNNpHnvsMeCTzT9df/31mEwmrr32WhYtWsSbb75JRUUFS5cu5a677uL2229n7NixnHXWWYwaNYpgMEhTUxPvvPMOJ5100ojO8y6Xi4svvpgnn3ySXbt2MXPmTGbMmPGJ9VkiOW7+2SopieR46e7uFjfeeKOoqKgQer1e5OXliS984Qti06ZNw4595ZVXxOWXXy7Gjh0rHA6H0Ol0Ij8/XyxdulQ88sgjIpFIfOB1Hn/8cTFr1ixhsViEzWYTixYtEi+//PKIx95xxx0CEHfcccewvl522WVi1KhRwmQyCbvdLubOnSsefPDBEa/d3Nwsvva1r4np06cLt9stdDqdcDgcYvbs2eJnP/uZ6O/v/8D+7tu3TwCirKxsRPeo42Hgfj7oU1lZOWK7tWvXis9//vPC5XIJk8kkJk2aJH7zm998aH9eeuklsWjRImGz2YTFYhGzZs0STzzxxIf273iezYedg6NWhQ2QTqfFjTfeKABxxhlnZFeBpdNp8eSTT4olS5aInJwcodfrRUlJiVi4cKH4+c9/Lpqbmz/wWgMKcWBE1wWJRCKRSD6r/F+ICQaorKz80Hs9Os7z+/3im9/8ppg7d64oLCwUer1eWK1WMWXKFHHbbbd9oMtPOp0Wjz/+uFi8eLFwuVxCq9WKnJwcsWTJkmEOUx/GhzkpDcQ4R6/AGqC7u1vccsstora2VhiNRqHX60VFRYW46qqrhjklCCHEgQMHxIUXXijKysqEwWAQLpdLnHLKKeLpp58W6XT6mPt7dJ/f73Dl9/vFggULhjlC9Pf3i5///OdixowZwmq1CpPJJKqqqsRZZ50lHnnkkQ91XBhwTP0k4mKJRCKRSI6H442dHn30UXH22WeLyspKYbVahcFgEOXl5eKSSy4R77777gdeZ+fOneLLX/6yKC8vF3q9XphMJjFhwgRx++23i76+vmPq60etOB/o8/s5kXjm1ltvFZMmTRJ2u12YTCZRU1MjbrvttmNyPXg/Aw4Gxxq3DVx/0aJFori4WBiNRmE2m0VNTY244YYbxOHDh0e8zsD4fNjn/XHN8T7/gZXzI8XU8Xhc/Pa3vxVz584VdrtdaLVakZ+fL84+++xhLgMDx19zzTVi3LhxwmKxCIvFIqZOnSp+/vOfi1AodDxDLHNmEolEIvnM81HvXEAsXrx4SJsTjbs+6jrvf1+eSAwxkJMayRV82bJl4swzzxRut1totVpht9vF/PnzxcMPPzxizuOXv/ylmDFjhnA6ncJgMIhRo0aJ//zP/xyxistHsXbtWnHttdeKCRMmDIn7Fi5cKH71q1+NGGMc77zoid7nJxl3CaHOz1511VWiqKgomy/71re+NcTB/f2sWLFCAGLevHkfeMxHMZKT0gDPPPOM0Ol0orKyckjMumbNGnHxxReL4uJiodfrhdvtFlOnThU333zziA6iA6xduzY7Po888sgJ91ki+SRQhDhqOYxEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRfMKcmMerRCKRSCQSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikRwjUqQkkUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpFIPlWkSEkikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIpF8qkiRkkQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolEIvlUkSIliUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEolE8qkiRUoSiUQikUgkEolEIpFIJBKJRCKRSCQSiUQikUgkEonkU0X3z+6ARCL5ZOjs7GTNmjW0trbS2tpKb28vWq2WUCiE3+9HCEEgEKC/v5+amho6Ojpob2+nsrKS3Nxc3n77bYQQzJ8/n5aWFnJzc+ns7MTj8TBv3jz0ej3bt29Hr9czbdo0wuEwvb296HQ6SktL6evro7i4mEgkgs1mo6amhry8PMaNG8f8+fMxGAz/7CGSSCQSiUQi+URIJBIcOHCAvXv34vV6OXz4MLFYDI1GQ2dnJ4lEgkAggEajQVEUzGYzTU1NxONxqquriUQi1NXVkZOTg9PpxOfzUV5ezs6dOzEYDEyfPp3e3l76+vpwu9243W7a29txOBzo9XoURaGoqAghBIlEArfbTU1NDfn5+UydOpWKiop/9hBJJBKJRCKRfGL4fD7q6uro6Oigo6ODzs5OtFot6XSaQ4cOkUwmsVqt+Hw+dDodfr+fVCpFOp0mNzeXAwcOoCgKFRUVtLW14XQ6CYVCJBIJSktLMZlMeL1eDAYDTqeTWCyWPcZoNGK1WqmqqsLj8WAwGJg5cyYul4vy8nJqamrQ6WSKXSKRSCQSyb8HqVSKzs5OWlpaCAQCtLW1EQqFMBgMtLe309TUhMlkwm6309DQQDqdxmazEY/HCYVCJJNJkskkPp8vG2NVVlYSiURIpVLk5eURDodxu9309fVhtVqx2WwUFRXR2tqKVqtl9uzZmM1mjhw5wqhRoxg1ahR2u51Ro0aRm5v7zx4iiUTyCaAIIcQ/uxMSyf9lOjs7efnll9m4cSP79++np6cHr9dLPB4nNzeXnp4ewuEwOTk5WCwW2traAHC5XCQSCUKh0D/5Dj4aRVEQQqDX67Hb7USjUcLhMEVFRVitVg4fPoyiKEyYMIFkMklHRwcul4vKykpsNhuzZs1iwYIFLFmyRIqdJBKJRCKRnDCJRIKtW7eyfv16duzYQUNDA93d3fj9frRaLQBdXV2k02lKSkoIhULZpIrJZCIQCJBKpbKxzWcdu92OwWCgt7cXgNGjRxMOh+nu7sbtdlNaWkpLSwsWi4Xi4mJcLhdTp05lxowZzJ8/X4qdJBKJRCKRfCx8Ph8bN25k9+7d7Nu3j5aWFjweDz6fD61WS19fH6FQCKvVitVqpa2tDSHEv2TOS6fT4XA4iMVihEIhCgoKsNvtNDU1odPpGD16NADJZJKcnBzy8vKorKxkzpw5TJw4kenTp0uxk0QikUgkkhMmlUrR3NzM3r17OXjwIPX19XR3d9PT00NfXx/RaJS+vj7i8Th2u51IJILf70ev12MymQgGgySTyX+5nFdfXx8ajYby8vKsUMput1NQUEA6naawsBCLxUJeXh4LFiygtraWcePGSbGTRPJPRv7LRyL5FKivr+fJJ59k3bp1NDY20tfXRyAQAMDhcNDf308ymUSr1ZJKpT7wPAMBAYDJZMJisWT3jRs3Dp1Ox4b1G3DYnSw+dRHJZJLVK97k8+d/DpvNxro31+Pp6OM/vnI+Go2Glx5fiQYtF33jPGKxGG/9cQMzvjCRytEVtNd3Uv9SJ0Wzc5l2Ri393iCbf7eHKFFOvXk2yWSSFQ+8icVtYPEXFxIIBFj+p9dZeunJ2O12dmzbRd22/Zx/2TkA/O2ZFxGkOfuCswiFQry+6nUmTpyI2WymrbWN5nAzdrs9e/9CCJqbm4lEIiSTSfr7+2lubgZg5cqVAOh0OpLJJABlZWUAtLe3Y7VaGT9+PPF4nKlTp7JkyRLOOeccGWRIJBKJRPJ/gEQiwerVq3n11VfZvn07HR0ddHd3E41GMZlMWTdJAI1GQzqdHvE8Op0Ok8mUjU2MRiMmkwmfz0dRURHFxcX4/X4O7DvA0tOXYrFYeG3Z62jQcN6XzkEIwcq/vM6MRVMYPXY0fX19bPj7Ns74ymKsViurH12HElc4/caT0Ol0rLt3J3r0zPn6JKw5Zrb94wC9dX5q/qOEgio39fvq2beygSVfm49Or+PFh1aQJsU5151BMplk2RPLGT21nAmTJ+D3+3nj5bdYcs4paDQalr+0AoFgypQpxONxent7MegNaLVaFEUhnU4TiUTYv38/kUgEIBt3vfbaa9kx0ev1JBIJbDYbhYWFtLe3Z10IXC4XZWVlLFy4kKVLlzJ58uRP8zFLJBKJRCL5jODxeFixYgUbN26krq6OtrY2vF4vkUgEs9lMf38/iUTiI3NeZrMZjUZDPB4nJycHs9mMTqvmfcZWj8VgNLB53XsoaDjzvDNIp9OseWU9i85diMPhYO/2Otr3dXPmlUvQ6XSs/uMaNGj5/DdOJZFIsP7RHVSfWkL19Gra67poXNmLa7SN6ReOI9QbYdvjdSRJMu/bk0ilUrz1wCaESXDKtXMIh8O8+fh65lw0BafLSf3Bw+x99wCnX3YKACueeY00aZZecArhcJi3XnubcbVjsdvtdHd1c+TIEZxOJ6lUKusm0NLSks15Hc3vfvc7gCHjVVpamhVxDbgGOJ1O5s2bx+zZsznppJOw2WyfyvOVSCQSiUTy2SGVSlFXV8emTZvYtWsXhw4dor29Ha/XSzQaJZFI0N/fTzqd/tCcl1arxWw2EwwGAcjLy8NsNuPz+nEXuSmvKCcUDFG/u4GFp83DarWybtkmNGhZ8qWTAVjz7GZKJhcwec4E+v0Bdr5wgDmXTcWZY2fzUztJ9sP8b0xFr9Oz+YH96NFSc2ElOWUOdr10mEBjmOJ5dioXlHJkbxNHXutg1jXjMZmNrH5oHWnSLLp2NqlUijeeWIelwMjsM6YRCoVY9+JmZp89Da1Wy8a3NxPsDzJlyhR1MeLmbaTTqmA8Fovh8/lIJpN4PJ5szmuAP/zhD9m/9Xo9yWQSi8VCYWFhVtzkdrvJz89n9uzZTJ8+nSlTpshFfBLJp4AUKUkkx8myZct4/PHH2b59Ox6Ph3g8jsFgIBqNIoT40EBAo9FgtVoxGAx0dnYyZcoUiouLeWPlm2iFnkuvvgiLxcKah7aRa89n0c3TSKVSbLrzAHO+Mg69Uc+hN1roXtfP/M+NR1EULBtKIAjTpk0glUwTX2mh1FZKfrWLHOFm/7NtFOeXYLDomW48CeKQl5MHAsYoE/H/A5JfhuL8EpTpZnq2+NF8ToMmpMVmdLHgy6NIeVN0bg4wShnP2EWl5OY46dsaY5qygDGV1ehMWhof8zFfqaC6uhohBCcrZ2OtNDB5cjWJaJL06w7mfG4cepOefS/VM641xvwvqvew/qf7AFhw8wTS6TSrf7aRSddUoTfq2bFtJ9s3bWfJWacSj8VZ/cZqQJ049Pv9pNNpgsEgmzdvBmDHjh386U9/GpLcKSoqQlEUPB4PLpeL2tpaZs2axfe//30pZJJIJBKJ5DOMx+Ph8ccfZ+XKlRw8eBCv14sQgnQ6TTweB/jQFV42mw2n00kgEEBBYcmpS9DqtKx7bQNzT5nDuPFjCfhDHHmmkyXfnYNGoxmMS748ASEEG35WR2l1LlULiwn7opTUTWDG1HEYzDpir+tIhKF6TLXaXyUJa6D0lFLyrPn0Kxo4bMR9qpuTTlpA81s9dL8VIn+Sk3mXTqPuxRbSIVDyNCT2w+ip5bjMTiKNSUKv6qlUxuF2uRECJigz0Tv1lJSUEPbEmKUsZvzUcnJHOWjZ3M0C5UymTalFo9MQfll1nlywVL0H55ZKqs4ooHRWPtFQnK2/PsS8b9Wi0Wh45yc78dPLwhumEolEeOGPyzDYdcw5eRYdHR1s376dnJwcEolENt7dv39/doxfeOEFYFBMbjabKSgooKenB6PRyKhRoxgzZgzf+MY3OPXUUz+134pEIpFIJJKPz3vvvccLL7zAxo0baWxszMZe0Wj0I90kFUUhLy8Po8FIZ0cnEydOpKysjK3vbicVhHOvPhOz2czmh/dhw8Wi/5pCKplm0y/2M/2S0VhyzRx5t42Ot33MO3M8Go2CeX0xoOa8krEU0eUmcgO5VE0vxh7Lpb6ug1xdPvYSKxPsM0kGkzgMLhQjlChVhN+GgClGjjmPVI2evoNBFEVDwp/GpLdRfWYxkcNJPHv7KVIqKJmeS64rj77NUcYqkynPHYU130jjYz6mKgsYPWo0CJilnIrOBJMnTyDaHyO1ys6Uk0ZhL7Rw8LUWRjVMZ/6l41E0w3Neb/9sC1WXFGDPs3Kw7iDb3t7JvM+riwPffP1N0qQxmUz09/cTCAQIBAK0t7cDsGLFCmCo8L6goAC9Xk8kEqGwsJAxY8awePFirrvuOlwu16f7g5FIJBKJRHLCRCIR3njjDd5++212795NQ0NDVnwUiURIp9MfGnvl5OSQk5NDwBfEiIGTTl2ITqdj52v7qJ42isnzJxLqDdP4Vw8n3ToVnVE3JOeVTgs23lmHVatj2uk1+NuDFOxpYnxpBa5yG/G3jcT9KSpLqtDqNPQoCdgDhWcVY0+66FPShNYLyi9yMm7ceLq29tHy9z7cExxMOG00TW93k+wVKGUKySZBflkuTrsdz5YQgTWQrxTj1OSgJDWUK9VoDVCUX4y/OUSNMpXSmjwqqwppfLeLKcp8JoyqxpxjUHNeCsxfMh6REjjeq8Ax1sTkL40h1B1mx+8bmPn1aoxWA2vu3E0kGWTmDeOIRqK8+se3iCtR5pw1na6uLnZu2UVOTg7JZJJeTy9dXV3U19cD8PLLL2fH+v05r0QiQWFhYbb075VXXsmkSZM+/R+NRPJvhBQpSSRHEY/Huf/++3n++ec5fPjwkNVfGo2GRCIxrI2iKOTk5BCPxfH0ehg/fjyVlZW88+oa9Gkjl99wKU6nk82/OAh6WHD1BFLJFJt+cYCZp1ZjshvJC5TQsdZHWVkZiqJQoJRCMHOBtOqk1Hc4QP74HByFVrrpJxlNozdrwQDEQaQFSiZWaXypA/e3nGj1atmSxlVdjPpcMaXz82h7p5e651uoXFLA6LOLObK8g/plrcy8qYb8iWl6dviz92YwaLAWmfEdDtC3P4ipwICzwkLrhm66NvYBkIykiPky42IAkYZQZxSAotl5KIpCzy6fuj+lOib17Yhlx06k1U7batQVYIlgApviIj+3AL1FR05nGScpJcyaNUE9x5suABZcPoF0Ks3GO/cz9VtVKDpYv2YjOzft4uQzF5BIJHjjjTcAsFgseL1eEokEPT099PT0sGbNGn77299iNBpxOBz09PSg0WgYN24cRqORKVOm8N3vfpcJEyac8O9JIpFIJBLJh3PgwAHuvfdeNm3aRHNzc9ZtcsDBZ6REjN1uJycnh+bmZhQUTj31VDQaDe+t3s6cRTOZNncqUW+Cuj+2Mu8btWi0RwmPFqqindQqOzl9VgoKCrBqInQqYRKBJEanASxAGERKQMbRsu0NL5XzixCZhe/eff0UzcijYF4ebW/2EmgPYy0wZ/sYaA2j0WnUtuu8oFEomOSiY5sP774ABROdOEdbh91bwQQn9lIrm36rioBGf76YQHuY5nc86v7JDmL9CepfVieqSEM6kab5jR4ARArSQp2w0mcMOGM+VcxlsOkRQtD5nid7LBrQK3rcFJGXl0c6JZijLKHi5HzKZxcQ6AqRt2MM875ci0afGUcFZn93LH6/n+cfXoaSk2b2gpk0Nzeze/ducnNzSafThMNhwuEwfX19bNu2jeeffx5Qk2gDIvPc3FwqKirIycnhS1/6EldccQV6vf64f0cSiUQikUg+mmQyyUsvvcRLL73Erl27aG1tJRAIZF28R8p5AZSUlGC1WvF0exg3bhyjRo9m5/rdKH4d533jTHJcOWy+6yCg5rwSkSTv3XOQidMrcVXZyAuX0fGOl5LCErR6LS7FrZ5YQDqmxi3tm3sZ87lSzDYjAKGuKLZCMzoTJKOQCKey+aO2dV5KZ+ejpNVYq+G1LsaeV0perZWuLX7qnmuhdGEuZYvzaX2nh4bVXcy6cRwiBX0Hg0PuLWesnd4D/fgbwuhsOvJqHRxe1U73FjU3loqk6Ds82CYVTRNoV3NeedNciDR0Z/JoIqHGjz2b+tXvKUE6qfZZlzE9CnvimBQb+fYCHPlWut4IMFPJYeZ0VWguVjvVcbx8Asl4is13H6D28jLMxXq2b9jNzrW7mPG5yarz0+q3SZPCZrPh8/nwer14vV7q6up45ZVX+K//+q9szsvr9WI2m6mqqiIvL49FixZxzTXXUFVVdQK/JIlEIpFIJMdCT08Py5YtY8OGDVn3yb6+PpLJJPF4fESzA5vNRl5eHm3N7RgxMn/xXPR6A3WvH2b0+CrmnD2dUFucQ39pZ+aV1RidhmzOa/7c8aTTas5L26jBfW4+ulAQgxLC3xgmb6wDQ76BeE+cWH8crUGNpUItSZLxFKmoGrd0bfVhL7SQW2Onc7MPz94AOWNsoAVS0LPDh86itg00Rahf3kHBRCeeff1EuuOkxwjc0xy0rvEMuTfnKCs5Y+zsfrwBgPwpTgKtYTq3qnON9iorgdYILW+rOS6NTkOsP0HXJnV/Op4mOjAXqYV0XBDsUJ2SLDlm0qk0HVt9ACRDAoNJoE1psSlOcl25pMwpxiszsI+1MGXmKHqP+HFtrWLqeWOwuo2svzOT87ptLIFAgBUPvUlEE2TmWVNobWll7866bE6rs7OT9vZ2tm/fDsCvfvUrAFwuFxqNOjb5+fmUlJQwZcoUzj77bJYsWYJWq/0YvyiJ5N8LKVKS/J/kqaee4uGHH2b//v0faoU4UGrNZrVRXlHO/n37Ia1w4SUX4Ha72fNwKwYMLLhuAql4ik13H2DaKaOx5JnIjRTT+baf3JxcFI16HuKZE2cu03vAT8nMfGzFVsBHIpTEYBucmBFpMTA3xqFXO8gfn4M13wSA96Cfwim55E920rPVT6g7irXAjMEG8WCaaH8cR6k6+eXZ3c+Yz5dQNjeftnd68deHMJ1vQFOuvizjwTQb7qkbNk7xYJqt9+8jnsnH2ApN6K06kmE1WBlzTjHmHCOHX1MnyiZcoloeHl7VBoCjwEIqmabxtW4ANHoNyZjqbmTIJGiifeqgFI13ANC926fuyIxZvHnwmaRT6nWdGUHTQFu9xoDBosOyr4j5ShGzZ6sOTcqbOYCqCk8mUmy+6wCjrs5FaNKsfnU1za3N1NTUEIlE6OnpIZ1OZ50Bdu7cyVNPPYXNZiORSBCPxykpKaGkpIQZM2bwox/9iKKiomFjJpFIJBKJZCgej4df/epXrFixgubmZoLBIEKIbNmxkSgtLUWv13PkYAOjRo/mlKWLSAWg+bk+5vxnDTqjdlB4dNIEddLqDRfmBgPmU8ykVCMhYr4E5jwjeqe6Yj6dENm4rG9XCHGeQJP53rPfT9mcfEpm5NK+1kvYG8OSZ8r2KRlNqQJx4MiKTgom55BTaqONXhrf7mbyF6uoPreY+pc78NT1M2ppEaUn5dG2tpd0QmCw67Hk6vH7E+x/vlUVEb1vLnDf31qGbLOXmdEZNQRb1aRLyVw3IiWy351lVkI9UUiA3qlH0Sr0NWSsu6fkINLQudMHgMlpgDS0vasmdxQgmZkYJBN+RryqkNxkNaiCpq29AKTToDlKL6bX68lx5DJVWUDlwnxKZ+QzOmcchXtqmHNFDTqD+nwSIsGEb5Tg8Xh46flXMNr0VFZW0tzcTCqVwuv10tOjJp9Wr17N17/+daxWK/39/ej1eiZOnEhBQQHf/OY3Ofvssz/wNyaRSCQSiWSQd999lyeeeIJNmzbR2tpKKBQCGFZ6bWBlvs1mo6qyisb6JkRM4fP/cQYFBQXs+107OkXHgusmEA8l2PKbQ4ydVEr+RCf54VLa3+3DZc1Bpx1ML4t0RugNdG334KywYs7kuUJdUeylVjUbnYREKIGiqHmprs1+Ri8tweRSY6/uHX1YTzPhqnHg2dlPX30/uWOd6Gw6ksEkgfYIrio15xVqj6IApXPz6driJ9wVxZJrRG/K9CsJW+49ODwLnoTtvztIUtUcYXLqMLoMiITa/8KZLuylFg6/qua8KpcWoNFoaF6j5rhc5TZSsRStGTG53qol1h8/6gIKwQ517PNqXZAGzy5V0KRoFNJpQf+hzMXTaqwJYHKpYxLuVvfp9Gp5FlN9DlOVBcyaMR6NToE3XICa84oHk2z57UHKLnCiz9Ow9o31HDnSQE1NNbFYjJ6eHoLBIHv37kUIwTvvvMNPf/pTrFYrqVQKIQQlJSVUVlZy1lln8dWvflW6MEkkEolEcgxEIhFefPFFXnvtNXbu3Elra2t2zvGDyt5WVlZiNplpO9BJYX4xp5y/kHhXmvZX+pn8pVHYi8ys/5ma85o7t5a0EIjVDjgCZpOFmKKuoPM1hiiYZMCcbyDSEyfii2fzVil/mlQsjUaoOa/uXT5cVTZcFRa6e+L4GkLkjnNkhUfh7mi2be+efipOLsgsxvPRvrGH3Go7pfPdtK310Lu/n3EXlJE/xUnPLj/pWBpTnhGTS08okqJtQy+dW3tJxYfed9sGD20bPJAZFnuZBZNLT8SjHlg2Nx9FA6EONQbKHWunvy1MKp5GawCtQYO3vj/T1kw6KejZ4wPAkm8kGU3TtXMw55UVNAHppKC/Xc2l2XKMpFNpeveo5yIpSCdEtl9aRYtVa2e0MgHXOAsTpldRqhuFe1c1U84ehS3zfFKkqP1GMV5PL68//zZxTZSqqipaW1vxeDz4/X4OHDjAW2+9xX333YdWq8VmsxGPx3G73VRVVTF58mSuueYaZs6ceRy/Oonk3wMpUpL82+L1evnOd77Dq6++Sm9vb3Zl2AdZI5aWluJ2u9m7XbWdvvqWL2PSmtj0qwNMuqQSZ6mN5qJOWt7oZVz1ODQ6DQalO9t+4Kye/QEqTzLjLLTSiV8VHtnfJzzKKGkbV/dQMjMfa666UqzvcIDCKbm4J1vx7A4R6Y1hdGVm2YIQ9cfRZJS2h1/txFFhxeJW2za91U3logKwGiAYp229B0ueMXvdgy+1kggNvpQ3//qA+ocBrLkGQp3vixgyDAiU7FVmPLv78ezuz+47/EoHsWCCzs3qi79pdScViwsJtajn6q33Y80xZ68TDSTobwwDkDcph1QsTcsadWLKnGcknRS0vKlOhmk0Cql4OtsWBp0A8mvt6ljv82eOJTtGAAoK6YTa1j3LhqIoRHrUSbdcVy5Gm4HqnllUK7NYcL7qlLT+Z/vAAHNuGcfhQ4d5+fkVVE0ox2K2sGvXLoQQdHR00NbWxnvvvccjjzyC3W5Ho9HQ399PTk4OEydO5LrrruPKK68ccSwlEolEIvl3ZuXKlfz6179m+/bt+P3+Dy0JotfpGT9hPP3+AH1N/Zx96eeoGlOlOk8C8y9XHY823lmHPqCnpLiEoDZCM32EPTGcpVaMZXpirQlS8RSKNjOZ0xoHAdpMcOA91E9pbj4FU3JoW9NLxBcbEh8loyk0evXY5rd6KJnuxl5iAby0bfQwakkRueMteOvCdO/2YS+zZNt66/sJdapxTbAhQu+BfpreVSepOjZ6h/3vwN/WUhOhtiiJ8AiDmAnVLIV6wt4EO/9wZMju/S+0DPnesdVLf4t6Ir0ZAi0hWt7qBMBo1xHqitC+Ro2tFEUh2BXJthVp6G9T2xZMdkEaeveqcZ7RpYc0dG8JAKp2fCAu01sAMShoMtoMKChZobmSJhsY6xU9+e58XNYcTlbOZtQpRZTMzKNrj5f6v3cw++axRFNR/vzb5wngZdqsqXT3dOP3+0kkEtkVaa+99hparZacnBx6e3sxmUyMHTuW2bNn8+tf/xqn0znCYEokEolE8u9LMBjkwQcf5MUXX6S+vp7+/v6s2GQkSktLKSwopH77ERzkcfHN56FL69l+/xFGLS6geGY+LWs6aXm7lzFl1RjsenSZnFc6KbLv9p49fvInOLNiolBXFGflUcKjcDIrCPfsDlF9tsDkUmMvz75+rJlV+d69AfzNYRyVg86S/uZQtm3XFh95NQ4MVjV13bq2B41WozorBaFtvQdbyaCL5cGX2obc785H1RX66FTxUbQ3Ccnh4zIgUDIXGAm2RVUxU4aurT518munmntq2+RFo1UIt6mNfIf7iQcHTxrpjdHfkhGSjzYTC8Zpf0+N/2xFZhKRFO3vqXGZ1qAhHjhKma4ohLozbcc6EGnw7leTXBqNgkhBtCtzfFqQDGcETUU6EGRdBJyOHJzFFir7JlOqjGfe2bWgwMZfqAvy5tw+joYDjaz+29u4xzmxOqzs3bOXaCxKU1MTDQ0NvP322/z3f/83drsdrVZLLBajsLCQSZMm8Y1vfIOzzjpr+EBKJBKJRPJvTl1dHY8//jjvvPMOTU1NWUekkRbf6bR6JkyYQKw/RqgpyfzPz2bs1NG8d88hSMHsi2tACN47eBD6oLiwGG8oCPTT3xTClm/CVm4g2BIn0hfHODC/GIdULJU1V/DuD+Ae78ReaibSEyfYFiFnrD0rPIr0RNEYMgv19geJnZLAkqtOtnVu6cOSZ8RRYaG/QXUzclRZsm27d/QR9avzcXF/iq5tXnoyeZ/+5jCHV7TTd0iNVfwNIXb+v8MAGHMMxPriwwRKQFYEZLBpiUdSHFnRMWT3wZda0Ro12e9t6zzEBuIlg5be/f10bVf7YHTo6DvcT/eugTlCDb4jgUGjCAS+RrV/1mIj6YTAe0DNcZlyjSRjaXoyIiVFw5C4TKQHYytLrhGRFHgPDM6LDiz40ypach05WISdGcrJ5E6wU3NOOW2bPTS/3s3kq6pQnIKXfrMKP72MmV2Bx9NLff0hWlpaaGlpYc2aNTz88MPZnFc0GqWgoIDq6moWL17MTTfdhM1mG2EwJZJ/faRISfIvTzwe54c//CF/+ctfaG9vx2AwEI/HR7SprqyoxGK10HCgkclTp7BoyUkQ07DjwSPMvbwWrUHDjLz5NL3RjdVqRQiBtciAp64PR4mVwmm5tLzRSyyYwOwyMurMQhpe7SKdFOgMWmzlRlrX9lCxMB9XlQNox98cIn+ii/GXlVP3TAuxQByjw4Cz2oq/PkQqkcKYCQxa1nopmJxL6YICPLsbCHSEseSbKFqQS+d6Lzq9Bp0z859tHEwOA6Wz3TS91k2kM4K1yMSMa8aw8Rd16Kxa3FOc5E/NYcfvDlI8M5d0PI39Ygvt23spGO+iY4sXV4WV3FoHUX+cbQ+otVbRgKVwcAJv/vfGIwRsvLOOwpkuSubmoTVo6NjmxeY2MeHLFYiEwFaiJl3KTnFjzTWRN95BtD+OIddA9ZlFWHKMg+KhcU60Rg22MhOe3f3ozVoULdhKDQTb4oAg4+SNe7wdIQSxoPpMrSVmhBD4m9SJNa1RO5iIMwAKpDON3ePUSatQt3qszqjNjh9kjs2s8itZkItOp6PUXc4C5XPMOacGnUmLa1sVKDD39ho6Ozt55rFnSelSVFdX09zcjBACr9fLmjVrWLNmDV/5ylfIz88nJyeH7u5u5syZwze/+U3OOeecE/yVSyQSiUTy2WHHjh387Gc/Y+3atfh8PnQ6HeFweNikmNVqpbKykl6Pl3B3lEuu+Q+Ki4s5uKwNb2OABV8YdKLMMxei0+kYd2kpB59rIxlPoTdpcU9x4NnVjxACc44aL/nqAzhLrdSeXc7OR44QDyQx5xkpnJFD17Y+Usk0JpcB9ND0dg8lc9wUTldFSj27+qhcUkTFmfk0v9pDpC+OtcCE3qkn4U8AAkdGiORviKC36Cg/qQhv3RES4QT2EjM1F5Vy4IU2UBQqTy1GZ9bTtLobvUXL9K+NxrOnn+7dPvInOjHnGXCUWfDWB7EVmdj352YmXVYFGoWOLb00v9GNxqBBo1NwjrLgbwgz+twiiqbm0rbRQ9PqbsZ/sRydSYveqmPvX5qo+UIZndu9VC4upL8jjKPcQt+BIJO+PBqA4pluDq/ooHhGHmgUcifY8R4KYM4zIlJqHGYtNaHRadBnkj+mfDXhFcsI2g1WnZpo0wMJUHQKqbA6CeeqdYAC8ZD63eo2IhD016tOAYpek43D9BZAgWRcPdZWZEIIgadeTSJpDVrsWjtTlHkALDhjAslYis2/PMDYS0qwVRhZs3ot27fvYNyEauLxOB6Ph0gkwq5du9i1axePPfYYWq2WqqoqIpEIBQUFXHDBBXzrW9+S4iWJRCKR/MuTTCZ5+umnefrpp9m1axfRaJRYLEY8PjjzMyAKr6iowG6z036okzFV1Zxy/smk/YJdjzYx7fwxWPKMNOg76HivD6vJCooqzune46V4hhv3xBxa3u4l1BXB6DBQuiiPtnd7SURS6C06rCUmfAeDiLQgd7SNI4DvcABnpZXq80qo/3s7oa4Iriob9gozgeYI8WASa6EqaPLs6qNiUQGF03JUkVJTkLxxDgpmOene4kdr0GArtmQFT9YCI45yK+3rvUT9SZyjrEyuGsN7vzmAzqIlf7KDwqk57H6qkYKJTlDAfmYxXTv6yK1x0LPbh8Ghp2JRPoH2CAf+2kQyClq9gv0ogdOcW2sA2HzPARxVFkrnu9GZNPTs9qOz6qg+p5hYIEXuWCtRX4LCmS60Ri3lJ+UT6oliytNRODUXZ6UNUGgDcsc5MDkMWN1G+giit+rR6hXMuUYi3TEUDdnyddZStSTvwMJCR4UFhKC/TY2tjC5D9lgAjV4hmSnH4h6v3nfUlxGPO3SqK5MvI57SkC05Z6syodPpyLcVMVVZwJRTRmMrMuHaW6XmvG6rodvTzd/+8BJhpZ/q6mpaW1vx+Xw0NjbS2NjIK6+8ol7X7SY3NxeAJUuWcMUVV7BgwYJP5kcvkUgkEsk/kba2Np588klef/119u/fTygUIhAIDMt5WSwWqqurCfSGSHbB6ZcuprSylP3PtRJojjDv3PHEAgm2P1iPPepCp9Ux6oxCGlZ2Ee2LYS0w4xxlxd8QIhVPYys0ozWA70iI4pl5lC4o4MBzrYS7o1jyDOTU2ujbHyQeTGAtMqM1a+k7GCSdSFMw3UX3Dj+e3T5yx9konZtD2/o+gh0Rcsc5VFFQMAVC4ChXBeLR3igWt4ni2Xn0N4SJBRLkj3eSCKdoXt1NOi2oPrsUg6Wbji1edBYt479UiWePn559PnJr7BgcOlyjbHgO9uMostCwqpOaL5SiNWtp2+Che7sPjV5Bb9FiLTYR6oiSP9XJ6DOLaX5DPW/ZyW4MNj1Gh46DL7ZRfnI+vXt9lC4sINAexjHKSqAlwoSLytEYNCSCSdo3eSmdm4/OosVRaqG/OYyjwqrmvLRgMGvRmXTojOpcqilXdQtPRtT4yOjSI5JptFoNqVQanVlLIiM8Nxcb0GgVEtFMzqvIDAr0t2YcLq1a0pncGlpQdBqSkcy8ZbEJEIQyTpo6sw6jUU+Vosaa806tJRZMsP3BwxTOclCyOI/Nb2xlz/a9lNQWkEwnqaurIxgMcuTIEVatWsX3vve9bM7LYDAwffp0zjnnHL7whS9gNg/GsxLJvyJSpCT5l2LXrl3ceOONbN26lXB4pOXnas1Wu91OV2cXJ518EjNmzCDWlqL+b50suHICKLDrj/VYdGbV1tigvlDiAbUciPoiUYUrGq2CwWGgc0s/o5eStYr2N4QwTzfiHG0DukgnU2h0Osw5RoItMYQQaDOr8pve9pA/0YW1SD1vxBvH5DRiLTfirw+hUTQoukxpM28cRUPGRhE8e1VnpdLZeXSu9xLqjuIos+Ke7MCzu59UQpCKqS9AvU0HikK0T31Z2gvN6Iw6kpEk8Xgaa4EJkU5nJqS0mFwGrAUm2rb0YikxqWpsA1nxjsZwdG1UhWifmvCwFpoxuQykkwKb24ylyITWoMHfECadUicQHUVmmtd0Ya+0YLTrMVgV9j3TzOxbxmGyqxOM/e1hrCUmrHlmTAUGDA49CAW93UDlUhc6o45UQpVWu8c6URQFnV7tk6JVUBQFS56RQGMEoQiUjG2le4JaNi4ZV9uaXepkWLRf/a4ZoebrgBW5MxOgxTJl5AZq8g6g1WopKSlhoXIWFaflUT63iJAnwo6HjzD5WxX4/H08+fjTpEhgNptpa2sjFAqxatUqXn/9dfR6PfF4HJfLxZgxYzjnnHP40Y9+NOLvWCKRSCSSfzaJRIKHHnqI//f//h9HjhwhFosNO0av16tCEKGQiqS49MpLKCosYuuvDjPu3FLya1wEeyLs/N0RCvKK0Gg1WPKMePcFVMejzLvduy9AToUdR2bCKNobQ19qwVpgwkM/6ZQaw6CHrp39VCwuxORUhTXe+gCleUZcoy10besjnhGT6y0Z4ZEga1ntOxikaqlCbpWDZnpIxVJo9RoKpjlpe8dDPJzA5DSit2hI+BOkoikyVUhIxQQiKejcqjpIGqxa0mlB53b1u6XAjKLVkIynMOXqsbiNJJMpdGYdtkIT1kL13to2eiiZl5edHNPoMkKhHCP+hjBGs550Ok3PbvW8A+0UDVjc6nn1Vh0iJTDYdFhyMqWAD/STM86GtUT9Xr+qg+rPlWArNKHRKPQdCZBTpa6+qjq1ABiMVwvG54AGrG4TPfgxWPVZJwNzsR4FhYEaxLYiVcSVzCRw9Bb1OWjMWgin0WiV7GSYKxOXpTITaQNuCIleNf5WtINOW3qL2peBuMzkNKhJP8tEbEop888bj6JVsmXkpt5UyYEDB1n92uu4nC5CoRBdXV20t7dnhXSJRAKNRsPYsWOprq7mvvvuY8yYMR/8o5dIJBKJ5J9Ia2srP//5z3nttddoa2sbIkQawOVykZeXR2+Hl9lzZjFz3kyCB5I0r+pm7uW1aHQadj9+BBFOYbFYSWbKgUQ8MSxuI9YyM7zXRzKWwmDVY7Bq8TfEEGk1rgDw1gfJHeskZ7RdFSmFEhjtOowuPaH2KKlEGr1FPbb9PVUAbssIkYKdUXJG2bGVmwg0R0ADerN6bDIKGr0G54AgvD4EZ0DRtFy6t/jpbw9jyjHgrLTiPxwiHk6RDqj91+nUEmmhjCukJd+E0WEg7k9AMom1xIyiUxexaQ1abEUmQh0mund7yRlrU500dRn1k0ZBZx6aGwp1qbk0c54BW5GJVDyNyanHlG/E5NAT3u1HpMFWbCYRTtK63kNejR2zy4DOrKPpzW4co63Z+DTiiRPL5Bl1Jg32YhPptMDk1GN2GzA5jSQiap7KNcqJVq9Bo1P7pMk4hBptBoJEM/GSGjtZCk0oikJqIOeViQNjmXImA7HdAIqiQSTVMczJuFbF/YnM+TPTAhk3KY1OS2FBETOUk3FUm5l83mj6W4Ps/mMTE75WSigZ5Pkn/kYoFcBisdDe3k4wGOTgwYP8/ve/x2AwkEwmycvLo6amhi9/+ctce+216HRy+kEikUgkn01ef/11Hn/8cTZs2EBnZyfRaHTIfp1OR0F+AUpKiyak4+zLz6Qov4gd9zVQPDWHUacV42sMsu/pZnItBegMekw5BgLNEdLJtJoD0ULvoRClCxTspWoM1N8cwVZswZJnxN8QIh5KYnIYQKvF3xgCBBZ3JtdzMED+RCfOCit9+4OEemLkVhvQGhRSEUjFBQarGn8E2qJoDTocFXba1veRCKcwOvTkTHDQtbmPiDeOa5QNvU1LIpgi3BeFTE5GpASJSBJvneo2ZLDpSMXT9B5SF5nZSyxo9BpScYHOpMNeaiGdFKqQPceIvUzNXbVu8FB2cj62YrMqUtIpKDoNRrueUEdUPW80jfew6nJkLzWj0amL94w56nn7m8Okk2l0Fh2OzJh17/aTP9mZddI8+FIrtRdXYMozkEqk6drlJX+CC4Ci2XkIoeanAAqn5qAzaTFm5iYtuQY0Bq3qMqUFhKJaiAP2AhNpIUhknJWMLiNCqOV3U6TQGXRZkZKl0IgCJKOZ7zlGQCHSk4lfTRpEeqigKR1Xx9ucb8JssVCmH4VeyWXWGdXoLXo23FlHSqSY/M1yDtcf4e2V72KwqYtDGxoaqKur45lnnkGnUxcXOhwOqqurmTdvHt/73vcoKio6of8WJJJ/BvJfCZLPLBs2bODb3/52dqXYB1FTU4PT7qR9Sx/Tx8xm+uXV9DUEqXu6mck1o7A7zaz/o1q/NRlLodEqBNviBNviVH+uNJvg6GsKYM410r1btWKO9sUwOQ30HVRflumEIJ5Z1dS100vRtFwinepkXfceH4VTcvBn1LTB5giazERL3BtHJAWJgJpAaFjVRc5X7bgKrbTjZeeThxl3bjmOUaqtYtObXQS96nn89SEi3nhWNLP3qWbm/ncto88swbO7n82/2k/ZKW5m3jSWrfcfYsPP1fs0FRjY/3zrkHF677cHh3xvfHWwVN22++uHDmoagi2DIrCB8wIcWdExzIbx/ZgKDES742zJXLPq9ELGnW/nvV+r30efVUzxzFyOrO6gY4OXnHE20gnBvr8cIdgSo681iN6qo/6ldgAMTj2tG7tpft0DBjA7jQTbInRt9eEYZUFBQ9e2TAmVfBPxYII9j6r3JIBYf4L2d1RLbQSEPOr45k9xgIDOLWpbjU5DOik48Jx63XRCZIMIg01tG+7JJK6cJhBw5A21pIpJZ6asxMqpyvkALPjKBBLhBMt//TbxMT6KygvZuXMn8XicYDDI1q1b2bp1Kz/+8Y9xu92YzWZSqRSXXnop3//+97Mr0iQSiUQi+d8gkUjwy1/+kieeeILm5uYRJ8UAbFYbkyZPouugh1xvGafdOB+9WcfGX9QBUF5aQSxjB+2p68dd7cRXr8ZSMV8cncFE6xq1JFo8nGTANrFrh49RS4uyJTL8TWFshWa8GevosCeGJdcICUj4E0S8ceIh9Trtm/rIG+fA36quVPIdDmGcakCvV6unBdrCWWFN2JOg6e0unJkkx76nm6k6o5C29WqfDr3UQc0FZRhzjSTCEVrWeahaUkjJ/DzaN/TSub2PadeMpmunjz1/asqOizFPz3u/OTBkrDy7+hmJ1jWe7BgAJMNJ0klB1zZVlFT316El3bbcNzSG23i3Wq6jLVPGDUDv1FP/8mB8Nv0/x9C+0cvGu9TnMvs7NYi0yLZNxwXBjgi7H2/M3HcrRpeB7m0+XNVWAm1hjixvgQRUnVxEOiXY8Xs1trIVmkhGUtS/pF4v4o0T88WJ9SawFBtIRlK0rFfjzJwKOyIlqPurGpemk4JEKEUoUyYlHU8TaFefee5EByIlaN2glgImBelUms71vkzbNMmgGpc58o24nC6qnbWkFBvjP19Bzmgb7z2wk/2+A1SeUoTP52PHjh2k02kOHjzIgQMHWL58OXq9npKSEiKRCLNmzeJHP/oRs2fPHvFZSSQSiUTyaVFfX8/PfvYz3nrrLTo6OkZ0AweFsdXV5Obk0vdelNH2Ucy+YTI9dX7qX2xndEERDpuTI5vVGCTaF8dg0RHMvmdT9LequR3v4QCuUTb6DqkTT/1NEZyVCv4GdX+sP0ki417tPRAitSRNqFN9R3ds9VK+MJ9wt3renj1+TLmZsiNJiPcniXrVth3reymenoclUw5u35OHqTy9JOusdPAfrcT71WOjviR9h4MkM+6MTa91kzvKzpgzi9n2UD07HzlC3gQHk6+uYvfjjWz+lXqfBpeO1nd6aH2nJztSe/7UOGTk2jcOxkl7j4rZAFKxNH2ZiTFQHZQG6Nrqo2urb4RnAe0berPXj/uS2Tgqf6qTqiWF7H6iAZJQOMNF1dIijrzWQfcOH5ZCE8loioN/bSPUHgUdNL3TTdtaNR605Bo4/Go7XVvU6zrKrHgPBejd14/JpTojtW1W81aWQgPBzgj7/qLGixq9QrA9QsdGNY5EgK8pU9qkxEQ6nqYt02+dVU8ynKJ+uRrDJSOpbDlfgHQiTX+LGk/biyyk4mma16hjrE0ZKHIXMSd9Gigw50u1xPsTvPu7rfgLOiiZUMCePXvo8fTQ19fH2rVrWbt2Lddffz15eXnY7Xby8/O5/PLLufbaa2XZEolEIpH8r5JKpVi+fDlPPvkkmzdvpqura1jeS0HBbnYwcfIE+g9HcfTmM/uSyVgLTWo5WAVKckqJ9KjtfEdCJEIpvBlX6VBnFFOOAW+dP/td0SiQgnBblFhfDP8R9dhAW5h4wEGgXY3DAs0hlAp18R+ogvFUxsnHfzhAX32Q/mb1WN/BIPZCS1bU3FvnJ6/GAVpIxdMceLEJe6n6nm1d4yEeTNK91wdAw6pOxp5bmnEOStH0Zjfjzisjf7KTnt1+tt5fz9jzSvE6AzS90U3TG2puR2/TsuepxiHjteORw0O+N2fiMu/+AN79gez2ZCRNvD+B96C6rW1dL23rBuO0ur8MzYENnLcnU8Zt4PpdW/voyiwaHHdhGT27fWx/SM1TTbqiEkWrZNumEmn8DWHqX1bn+RpWd2K06/EdDmHKNeBrDNO6rptEMEXp/DxESrDvGTVetBRaiPbGacnMJ4a7I/QfCRLri6M1a4l4Y3RsVvc5y6zEQ0kaXlNjq3RCEOqMEO5S543j/UkCbWo8bSs2kggmaN+QyQemFRLBBF3vqfeZCKWIZOJprVGLzWijOFnBfOUMSqfmUTrPzY4/1tPsacJ9kpn+cD87tu3A5/OxdetWtmzZwoMPPohOp6OsrAyn08nnPvc5vva1r8nFepLPLFKkJPlM0NnZyVe+8hXWrl07okOS0WhEQSEeizNj6gyWfG4Je37XSDyYZu4FtSgKbNy6n8iROCItsqu0+g4HsBWZya9x0rPVTzKSxOgYLGOWjKeyK8XaN/gompSLvdSCZ2eQqCeOJdeUFdxEfKpoCSDUEifkiSK06sSad3+Qoql55Iyy0OWNk4wmyalwYK8yE2iMcPjNdkpmuAGIdsfxHQ7QslF9GSUjYM41UjDFRX9DmN5DAaZfOwbv+AAH/t7K9ofqMdjAWmQg1Bnn8Mp2gl2Doi2T04DOpMVg0xAPpsEA068dQ6Qvzo7fDwYKEy6rwNcQyiZVAIrn51Iw2UXdM0eID+ZnRmT0WcXYikzs+mNDdpsh18D4/yij7m+txL1qcOae7GDseWV07+zj8Cvqy9mSb0Rn1mWdmo6s6CAWjNOxQU2ypBJpNv9qf+akMP+b4/EdDmS/W/LVxAp4IA69+/rpPaC+vN0TnPibghxZqYqFCia70Bo02fvR6hSSmeDOkGsgFozTvkUdA3etOhnWsUkNtkx2Q1Y5DpBOp7Or6exj1JJzA7VnjXbVIrI/k9BDEdnrYACBIOyJU6CUMm7mHNw1Tgo6y/D6osz45hi6ejt59slniRPHYDDQ2dlJIpHgt7/9LQ8//DCgThiPHTuWa665hv/+7//+8AckkUgkEslx8Nxzz/GTn/yE+vr64YkZRcFqtRIOhTFh4dIrLiHXlseu3zfiHutk7GkltNp6aHnDQ6Qnir5icJIhGU6iyThEBupDapk2lxo/9R0JqCv4q0yEGqOEOiNY8jNxWUKt+W7OUb937emjZFYuebV2Ak1hOrd7KZnlRm+BRBhS0RQ6fcaVx59Ab9FRPD2Pzo0+GlZ2YrTryJvgJPyuh/b3vDjKBmMnZ4VVtWvOYLDrmPvtWjbdu59AU5gt9x7EllkB1r6hVxXKbO7LHq+36LC6B+PJMWcVkz/Fxd5nmwhkStFa3HqqPlfMoRdbSYQHJ38mfrkCf1N4iEhpJPROPbUXltK2qVd1ncpQPC8XW76RQ0cJkqZ+dTRGpz47waZ36tGZVLeDAfb++Qj6zMo6S6GeuhdVARLAuAtLcY22sf3hQwC4xzuwFZmz/W7d1Esyksx+VzQKh19rA8BVbcVeZCaQmQC1F6sr9P0DIv90mv6WcKaUnjp2wW41QWMtNaHRagh3q8kbs9tAMpbCs6Mvc6w2W1IOQNFqSITV36qz2kk6KejNxGV6s1YVQPn1jFEmMXdeLal4GvfOaizFesZ+sZR3Vr/Ljl3bcblcBAIBvF4vK1asYOXKldhsNoLBIDk5OZx88sn87ne/o7i4+EOfkUQikUgkx0owGOSOO+7gb3/7G21tbSSTySH7jUYjZpOZdBQmVE9kyTmncODPrUQ9SWacMQaNWcOWLYdIBtXJp6xDZH0I9wQXtjIbUV8/iUAyu0Ic1AVbBqt6bN8+P4mF+ZhzjUCAUE+UnDE2zAVq+bFgZwh7ifoeTwaT9DUGSGdSHIEjIZSTCrAWmIl6EiTCKQqn5GSFR/WvtlEyS815JaNpund46anrz353lKmTPYHmCP1HQkz92hi8+/tpWNXF/udaQAemPB3R3iSHXmnLluIAMDr06C06dDZd1sVx8pWjiPTG2ffnQfFR1dICgt1RPLsHReI5Y20UzsihfnlHtu0HUTQrB0eFhYN/b8tu05k0jPp8MS1vdRHNlE+zlpiYeFkVnVu8NL+t5pIseUb0tsG4q2ubj1QiPaQv2wfyczqYdcM4eg8O7nNUWEFDVqTUvrmXYEckcw92eg/2ZwVZxTNzMdj02fvR6rQkwqlMfyHijdGViaVcY2ykk2k8B9X8mTnHqLpdZoYilRaEOzKxa6kJkRLZyVNzpsRcqEWNoTUahZh/UEinCKG6vSsuaseNpmJBIe7uSvp6g0z8cjn9aR9/e3IZIQIYjUba2tpobGzkvffe47bbbkOj0aDVapkyZQpf/epXueqqqz70+UgkEolEcjxs3bqVe++9l3feeSc77zKAoihYLVaUuBYHLk6/YCm5Rjf7n2vFbNcxefFompVuOr0+Ah2ZvJUWVWzUG8u6FkZ646RT6awzoa8hSM5oG0a3kXB7DH9TCGfGxRBUkbQxkx/zHw6RXJzGUW4h2B6la7cfnUmH1qwlFUmRCCaz8V4qrroaFU5z4d0foGe3H0OOHnuZmag3Ts8ePzFfEjJxmzXfgrPSku2zzqBh6lWj2fnYEeL+JHufbsKUm6l20hCmfnkbvozQCi0YHDpMOYNxTf5UJ+UnFbD/heas+EZr1lJ+cj4ta3qywiqAyqUFhLtj9OweFBiNhNYAFUuK6D3QPzi/BjhHWbGVmIaImEafVYy9zMzOx45ASq1+YrDp1MoyGQ6+2IrervbZYNPSudlDKpPqLJ6VS8EMF3ueUuNGR6UFZ4WVprfU/Z6MoCoRzFRi0Ss0rFZzbsYcAzlj7HRsUvtjcRtQILsgAI2grz5A3K+2NeWoYnJQhVU6k5ZIbyyzz0g8kMyK2ow2PZG+wXysRqcl4VG/2wrNJGMCfybHaLDpSUVSxHtTFCllTJ0wmnRKkLt9FFqDhglfLWfzW++xa+9uTE4dgUCAxsZGdu7cyS9/+UvsdnVuc9y4cSxatIgf/OAH0iRB8plAipQk/xQeeOAB7r77bjo6Okin08P2O51OiouL6dzvoZZZnP5fcwh7oux85AgVhfmYTWbyJrvo2OAl6othzjVl2yZjaXSZMl2+wwEqTy7EPcZOz1Y/fQ0hCifrMeQaiHvjRL1xtMZBxyNFq8E1ygF0c2RNN/ZyC+4JDlq7PfgPh0iXD/bVYNGpFoyoL/NIb4zC6Tl0bfVxeEU7pb5EdmW4zW3BnGPAVq6Wgwt0RZn4xUq2/b8jxL1xNtyzL1tmLdodJ9IXx9cyqBqa9o1aADb/an82yZE3wU7vvgD1/2innvbBwYtDX30gO2kzgKPCisGhHyJScpZZsLiNHylQAnCUW9SSbEdhcuqwFJgom5ubFQl5dvdTMjtCy/rB6+x7pnnwmtVW/M0h2t5V948+u5iiaTnqqrHMarVIXzyb0CJO1gUAYNr1Y9DoFA6+qK7Id1ZaspNuAPtfbsFRrLojOEZZ0Bp1HFmlHlu1uACTw0A0o3YPeaIYnIbs/Wt0aimUgX4azHr6Q2ogYC00k4oLuraoyR6tUUMilMg+N51Rlw048ie5ECmBN7NC0eTUk04JvAfU4EVv0FNaWM4i5TywwfxrJtBz0Murf30d63g9BqOenbt2kk6nOXDgALfddhu33XYbABMnTqS0tJRnn31WBhISiUQiOSY8Hg833XQTr776Kj6fL1teawBFURhVNYpkJI2p08npl5xKzhh71h2pKL9YtSYEPDv9VJ9ZjDVPjb18R8LYS604x5jxH46QiKSyQqNEOE0skEBrVmOt7p1+Cifn4CgyE2qMkgqrZUYsbj1hTwLv4X5smdJmsa4Eoa4oUZ/6oo37kphzDRTPK6D5zW5a1/Uw+sySbNvmd7vxtw0GNPYyKzqzlpZ3PXj3BahcXID1ChN7n2pi31+bswIdAO+hgFr2NkPhjBxGf66I5jXdtK3tpXNzH3oLGHJMhNqiw9wpWzd5MDp0WYESQMHMXBzlVvQW7RCRkqXAjBge+g4jEU5gLTDjKLcMESkVTHZhsOuBQZFS++berN01qKKto12dXNXWTMJJvemJl48mHU+x9UF1xZm/MYzBrsv2s/7lDupf7YCEKrYaf3E5TW+qk3D2SgsWtwmTwwgE8TWFaN3goXmNur9gipNge4SwR71WbrWDxFFCo2BnBN9hNSGTO8ZGLJigbVOX2s9KO1qdhkRmGFMJQSLjfmkpNpBOprPxrbPMiqIBf5Maayt6hXhwqANFKOP2kDPagdViYZxpCi6lgslfqMKSZ+Stu97jILsZM6eC9vb2rHDpH//4By+99BJCCPLy8hg7dizXX389X/nKVz76wUkkEolEArz66qvceeed7Nixg2AwOCz2cjgclBaX4T8QZjS1nHzjTIKdYeqeaSHXYsdsMuMosxH1+OjvjJIzanCCK+pPoMtMjvW3RVAUcFRY8Ozpp/dAP+Z8Y1bwE2yLZEXLyShodRpco2y0vuuha7uXvFo7rkoLke4YvvowpJXsdYxWPfZiC02vqwKd/uYQ+ZOc9O7rp3VdD+nYoBuiyW7AVmzGWmIi1B4l0BGl9j/K2f1UA3FfkvceOJgVxiSjaYIdEfpbI9lrTb1qFFqjlm0P1RPMOJQPCKDaN/YOcUUCNaYccHkaILfWgaXIPEQYZCkyYS+1kIx+uEAJwF5mxlZsHrJNZ9WQM8ZO2BOjLSMwD7VH6TvYT+cOb/a4pje7s7GSpdBE3D8oliqc6aJqSRH1y9vp3aduC3ZEsk6jAFsfPJTN0I/7jzKMdl3WZclRZcVaMJjzPLSyDXuhmvMy5ekwOnQceVWNCwum5WEtNGdLv8UCcQJtEeK9GUGTQcGTWfBncukwuwwEGtW4zOo2EA8m8OxX+6g1a4n1xbLlSwx2PeHMIj5bhYlU8ihBU56RVDxFX516TwaLAbemkDnKUgDmfLkGz34/61/aTLo6jMluYPfu3UQiEdavX8/69eu5+uqr0el01NbWMm3aNB544AFcLtdHPjeJRCKRSCKRCA8//DDPPfcc+/fvJxAIDNmvQcPoytFoIwYs3TlMmTeJkjlutv7+EMTBbS0YFB71JIkHUxidal6rvymEu9aBrdRMsDlCPJDENSA8Sqk5jgExUX9DWC316jIQbo+RCqcx5xoxuw1EPHF69vlxVqhtU/E0/UdCRDPukolAClupGfcEB11b++jc5mX0GcWYcg1EvXGa3+0m4hvMeeRUWgnb4/Ts8hPuilE6142lsJgjKzpoebeHlncH3Sb9zWFMeYML7ezlZsZ9oYzmd7rp2eVX80VaMOeo/dz79FAHSu/BIBa3MStQAsittpE71k7nFu8QkdJASbiPEiml4uCstBL1xoeIlPLGO7AVDxUpde/oU+fdUgNt0+x5sjG731Ko9i2eERmNu6AMIcjeR7A7grnVmO1n93Yf3bt8quDJrKXmglJaM3GXwanDUWYh0BIGIsT64zSt7qIvE7fl1ToItESIDhg21DoHjQuA/tZQVsBkL7EQ7o3RvVcdC9coG1q9NtuPZCJFrC3jnGTWkk4MOn06SsxotEo2r6U1KEMETYqiEMq4cFlLTRh1RsoYg1kpYNScQnLG2Nj4YB2tHCZ/jo3Ozk6ampvYtm0b27Zt47777kOj0VBaWsqkSZO45ZZbWLJkyYc+M4nk00CKlCSfOvF4nKuvvpply5aN6JIEYDVbWXzqYnTtFsI7YfJFlVgLzGy8S3XXEak0hky9+86tPZTMcmPN1LvvbwhjdBjABgSBlMhM3kCwJUbEH0PJrOj3HQqSP8GFvchIrzdOOpbGVmjOipa6dvRmV53FO1XRksGinsvfFKJkTh6jzy7myPIO6p5rxFxkzroDKVol+6KMB9PkjXfgnuTkvd8c5MjyDo4s71CPBfpbwhRNz8Ho0BL3qiv6J1xcQft7vTSt7h7igATQ/p6HZHjwZZc/zcnYs0vpHuuj/h+DAqUB56b3l3qDjNDHMHTbSMd9EO+3bwR17Lfet191cDqKAbcla5GBkDeeFfJggAmXVBALJNj2gDoxduT1DkxO/aCddpwh9z/vtlpCHVF2ZwKPZCiJJhM0Amx/+HD2vspOcVO+oICDy1oy1zehKBDqVjvgbw7Ssb2XQKOazCqdmz/4cjeoL/dkZoLOlKPH1xyiISNwyq91oNUp2XsVaYgF1ESPqUBd+d+zty97rEarob9BDSoUlGypQABFM1hyrmRyHhqNQqQrQbUymYnzKrEVmcnbOYY4ccovs3PgwAG2bN2Coijs27ePvXv3kpeXh8lkory8HIBHH32URYsWjfzwJBKJRPJ/io0bN/Kf//mf7Nmz5wNKh8DECROZWDuJrr9H0aNnzsU1+BpCHHyhlXBnlLyxDnJrbXj3Bwl7okMmR2KBBGTqugfaI2j1Gtw1LvyHI3jq/BTNyEVv0ZAIp0kEk2ptdyDWm0Bn0pE/yUXHxj4a3upBa9ZichsJexKkIwKNZnByTNEpVJxcQOemPnz1IXY904AxE5dFPTEUjYKlyEzYkyARTDLlsjHUr2zDs6uf9x4YWnotEU4OimUSMOHyCqyFZt77zQE8u/qHlGbr2taHc5SFtk2DSZFJXxmDwaZn04DzI6C3AHo9sd5EtuTGAI2vddG2pmeIQAkYVhLuA0nAxrvrhm3e9+cjWRHPAD07/fTsVJMe1lJTtpQawNhzi3FPcrHvL03Zci4t73aTTg9OlnZt68uWmqs8rYCiGbns/tNhwl0JtFa9OgmZEYAF2sNs/E1dVuQ164ZxJEJJmjMTc2jUOEcdHw2HVrQRyzgljTmrGEe5lcbX1Yk0rUmLRlFIZHJXYU8UTyZ5Y3HrseQZ8XSq92LKMSKSgr4B1wGNIOSJZh2azE4D0YG/i/QkY6nBiTO3gVQ8Tfd7PgCMFj3puMCiOJjGQuYsrsHfEORAaxvWeRo0RQneWP0m/QE//f39bNy4kY0bN3LVVVdRVFSE3W7n7LPP5pe//CV6/VABv0QikUj+75FMJrn77rv54x//SHNz8zCXJACrwcbJpy5C12wlul8w6uQi8sba2XJQdTFMRlMYM0483t0BkqelMLkHFsWFsBeZMLl1RD1J0vF0xg1JdTwKdIQRmXevvzFIyRw3RpeRaG+SZCRFbq0Dk0tH1JekeV03lryBtmk0ioLGmJlYaw1RdVoR5YsLaHmnm0PLWjG4DehMGpLRtFquZCAVk1RdegqmutjxyGG6tvno2uXL3m+oK0wqmkJvUcuimZw6Jl0xmvZNvbRv6OXA+3JRret7s/EDgK3UxIRLK+nc5s2WGQGyrk8t73TzfrY9VI/ONHRb2xpPVlz0URxa1j5sW7Q3ybYHD2aFOtljX1KP1dl0kEySHAy9mPBFtfTx7icaAeja6cOSb8wKlEjC/qNK+864oZpAWzh7/UQowWA0DAdeHByr3Bo7Y84uof5l1e3JnGtC0SjEMnmtUE+UXU83EGlXY6/KRYVEPIMTihqtQjqqxoDGPCOeA/7sAsP8iS70Fj3xjGOUSEPUr/6tM6mL9HoyAqfc0Q50Bm124kxRINp71MSZViGUieGcoyxoNBrCHTGKlApG1ai//dwdo0mSpOQSK0caD7N582aSySR79+5lz549PP300xiNRsrLyykvL+eee+5hxowZw56RRCKRSP7v0dDQwJ133slrr71GR0fHsNhLh55xY2qYUDOR3hVxtIqWKaePwnckRPNb3UQ8cRRFwVlqxd8QIvg+QXioO4qSeRlHe2JoDRqc5RaCzRG8B/ox5ejR29RyabG+RHauKhVPozNryatx0LsvQPcuL3q7Fp1FjbWSkRQarZJ1OFJ0CuUnF+CtCxDri7PnqSYMNvXYeEA91uDUEfXGiQeSTLi4gobXO/DVh9jzTFN2LhIgHk5mKpGoVCzOxzXaxq7HGwh1RDnSMbjQLdASoXObl569g0KiseeWYi00sePRw4Pn1YLBrCUeTA2JxwB6dvvxHggMKRsLDCsJ92GMNN945LWOIfcFEGyPEmxX4wpjjiEb9wAUTHdRflI+B/7Wkj2m+Z0eNIbBaCrQHCHQrM4H5k1wUHZSPgf/3kLEE0dn0pIIJ4l4M+XZgskh/Rp/cTnphMCTieMURVHngQG00PBGZ7aMcf4UJ+4aJ907fOpuowaNRiGVEU9FPDF8jWpuTWvW4qq0Zd0vjQ4dqVgq66Sp6BX6W8PEM7GYNd9MrH9wHjMZTWbL/5lyDSSjKXwNgcy59CTDaQyKgdGMZ8qUUfgcIZpbujFUgXFKinVvb6DH301HRwfNzc2sWLECgOLiYkpLS7nmmmv42te+hlar/ZAnKJF8fKRISfKJEwwGufzyy1m1ahXRaHTIPkVREEKgQ8/Fl15EeVEl2+6vhzRMn1JLj97HkZ2dxPpS2Es02EoNBNvihLojmFxqIiXuhWQkmU1gBLujlJh0jF6kKoXbt3rIn+jKXlOjKBgyZdr6DgZRFChbmE/vvgCNb3eSP3XwWGuBGVuJJSs86tjSq9ZzzbQNtIXpydRv1Rh0jP18KfljHez7Sws7fn8YxyhLtjxcf3MEzVH/Hz7xy5U4yi1s+HUd/voQ7/1mcBW+vz5ELJDIlhYDqL2oDHu5hfd+e5DWt4cmVXp2+MmrtlO/cjCJklNrY/x/VODZ1591GQK1xJnJqVMVyUOruZwYmbEZYEC0kz/FQc9RE3wYYMo1mbJzv8u82OPQucWL5yhba+KDTktVpxdSMMXFjkcOZUvXRfri9B4aVL8P2DICTL6qCmuRiY2/UScMQ+1Ror4YvRnHgXQ8zaZfDpaRG31mCRFvLNuf3v0B+tvUCazKRQXE+hMcXqUGbMUz8zDnDrostW32YLSpvyNTgQFzrpGO99RkTs4YGzq9hv4WNYiIh5ME2kKEOtWBsuSbsuVKDLkaUrF01m3BWmQiGUvRllkZaMkxQia2MygGKsuqyFUKcG2ronRhHnmzrbz4l2U0djRgsVhobm4mFouxePFiXC4XNpsNnU7HAw88wDnnnPORj1MikUgk//q8/vrr3HzzzRw8eHCYKEmjaEAojC6p5vxLz6VllVo+rGZyGbYiM15FnRxDgCVPfc917vRSOCsXW4kF7/4gwdYIRoce9EBCjeccpeoK7kBTGF9jkERM/Ud3qCOKzqjFXmXFuy9Af0uY4pl5WdFS24Yeov3qP/4T/gTOChuKRsG7P8jh1zuYfHkVRXNy6NzcR/cOX9aCGqD69BLMuUY27qsj7FHdgtyT1DjNc6Cfknl5RDP12/V6DTNuGEffkQAH/9bGnj8NXQnmywhYBtA79Uy9ehRtGz10bPRy8G9tQ/YfebVjiFsRwIQvj8bkMgzGGhlyJ9jx7gsMEygNjN/HYUCg5BxlIdwVHXKNcV8oIW+8k11PNmSFSode7SCdIitQAujcMli6buaN1fQeCtD4mupmFOqMEvHGCHepHQ00hdnygPob0Vs0zLhxHN4D/RzKiOT9DcFsjGMp1HN4ZTvhDjX+qT6nFNcYGzv/oArTu3b50Fu12XPby8y0rldjXL1TT+5YBwg1RkwkoO293qx4qnRuHkKQbWtyDq4CRK9arnduVx0Niqe7MVr1WXcHRckI645iIPHjHGVBq9cQyfxuCnMLyB3tIBDUggLTrx9Dc0cjy154iRgR4vE4hw4d4t577+X++++npKSEWCzG+eefz8MPPyxFSxKJRPJ/gGQyyR133MHTTz9NW1sbqdTgTIqiKGjQYMbG5889k/KiSnY/2gAJmDx2DJ64n5b9HmJ9CbRGLbZSE8G2KP0tYezFgwqbqFedPAN1oszoMOCemEPrOz10vNdLwVSXmtFNqouiLJn3YrQ3CUJQPCsX/+EQbe/1EgsnGZi7s+SZyJ/oomVNL8lgktb1HtyTnGpbT4LeOj+9+wfzNeMvqKC3zk/9Kx0c/HsbJrc+69LkawhitA6mlUedWkjeRCc7fn+QaG+SHX84Mng/vUlC3dEhgpnSk924a+zsfLRhUMCTIdgWpeM9L81rhwqUplw5iu5dfTSs6spu19l0mJw6gm3RIWKhEyYzrgMMCJScY6z4Dw+NH6ddN5pIT4y9R5Wda1nTTbDzqI4koeFVtb/5U52Uznez5+mmbLm2QHsEf+NgnDZwLMCozxeRN87BjkfqSSbTRH0Jgp0R+hoGXZi2PVSf/Xvc+WWEu6LZ/nRu6yOWcSV1T3YQ609mx7RgigvXKBuH/9GROXZw0abOpMFZaaVtoxqnWUvN6Mw6IhnheTKeoveQn1BmMtBZaRtcDGBSFwcMlAK2FpozDk0ZQb3byICxmE7RUZJbii2Sg00pI2esjfIz83j1xVUcajmI1WKlpaWF+vp6Zs6cicPhwOVyUVlZyZ133slJJ5000hOUSCQSyb8ZdXV13HXXXaxevZrOzs4hlVl0Gh0WbJTnVvK5i06j/U0fvsMhSkvyyMm341MaARApgSVffc/5GkJE/XFMuQZVpNSmlnTTmjWkImkUFJxVqmgpHkzh2esnEc0ITXoT6C06zPlGEsEwwbYI5YsLsqKlljU9WWedVBxyxznQmXUEmiP07PFjLTSTO9aOd38AT51/iDtR6YI8XJVWtj1STyqSYvefGrGXq3mocFeM/pbQkNKrU64Zha9BFV41rR6MH0B1T9KatVlBlNagoeaiMrp2+Ojd1z/EqQhUYY+92DREIDT6zGIcZZahwiXAVmIi2B4dJlAauNbHItPelGsgEUkNcWkqnpVLybw89v21iUjGlKB7lw+tXpMVKAFZ8Q5A7SVl+BvDdGxW80XRvjihzgiRTFm1WF+cuoFFh1qYes1oevf305oRufuOhEin1MBFb9PSscWbdVEqnZdH0czczHxliv6WCD27fUQyVVzs5ZbsddFC4bQcPHX9gBr3Nr3TRX9mjrBgag6KRsm2NToNQ0Trwc5INpbKr3FiyjFmnecVjYZIb4xUxmRU0Sj4W9SY1eDUorfqsiJ0Z46LojwXgZCa8xp3QRneWA+v/2M1/fQRi8XYsmULW7Zs4YYbbqC0tJS8vDyuvPJKbrzxRgyG97lgSCQfE81HHyKRfDjxeJwLLrgAk8mEoijY7XZeeumlrEBJp9VhxsIlp1/OD3/wQy4YdQWnKOeTbywZfGnF1RU9A5bFbVu6SUZTOMfYAYj2JUklBl96ikYht1qdlOrZ4cdzwE/Yq/4fukgoWHJNFM50AdCyvge9aVAtFPHEsv9YDrbEKJqSx4SLVTeaAy80suH+fRgyYhR7oQmTS5916unc0Uf12SWA6iLUudXLvr9nXmIGmHhZFbX/oZ7r4Iut7H+hNdvWU+cn1DP4srQWGZhzSw1Fc3IA2PZg/RBb6lTm5Xe0+1HhTBejzigEUM99lFiob38QX0OQxteHrkirvbCUSZdVYbANfW5lp7hZ8L0JuCc7OFZmf2ccs28cN2z7jBurqT6n7P+z958Bcl11mj/+qXQr5+rqrq7OuVtqZcmSbMk54xxwTtgGYxNNmj+zv92Z3Z2dsDDAMASTDRg8BmyDscE2No6SrZylVuccKnbl/H9xq25XdVfJMLM7ywz1vJG6Tt17zz3n3Drf+z3PeZ7SD5PgObEoyU4XMPLiHKHRGIJNoO+2ppIyeV7xKlkIcJJw6LFhyaJu8ye7aH+fS/q+73SI6HxCagf/aFhUVkK0a2u/vJ7e9zdK5xp5aUaqT8fV9aj0CmbfFRe/TPU6cSE0f67Tz0xw4NviuQyNatourJfs/ZQqiAcTeE4GALC2GQjPxCSFJlu7USLVIUBgNMT478VAsemcOlR6JYExMVDIprJkEpmSvlycjEjXVQoKyQ9XaVCilmto923gQtkNfOi+h/jERx/FgRs5cgwGUbpxdHSUq666Crvdjl6vp7m5meeee25Fv1VRRRVVVPEfE2+88QZ9fX0olUpkMhmXXHIJx44dI5VKoVQoUaLCTRuf++Rf8KmHP8MFsuvoDK5FmVGisYkkikwsg6BXojKLfwfGw+IOeSAVzJJNZMmlxfk4PBNDYxZo2OoAYPy1efxDSwRinV2No0eMJwKDEUJTUeztYuARGA4TWYghz8tfa20CHZc3SNc98O1BRn+bjxVSoHWoMTWK8eDsXj9am0DjTvG6oy/PMvjrJfJQz00NdF7lRlerghQc/vYI4TlxLk5Fs+IiTpGVRtvlLtZ/uB2A6V1ejv94yY42FU1BToxHi9F1gxuVTk5wJLoiiTP60qy060mCCrqubqD/3pYV/bbpw13S9f8Q1Kw1s+0venGsKY3V1HYVfbc003G1u+TzkVcX8BwPligpkYKh58X2bb7IiaVjaXcgeT5NNr2kquQ5usjhb4uKmHVbrGz6SKfUV6lUluh8fGm3nQpOPzvN2MviYlfnNY2suWvp/k48PcHkWwuS9Vv75S5JZUFlVqG1qdHVLC3I7vvyCQZ+KfZv700NuNbbSHjFYxcnokTypCNUYoJt4nXxunVrrehrNKQjeaLcXIS5gz6JEG5tN5WoM2RSWSILYiLQ4NaSiqSZOSz2o8GlRaFY+nIuA5ZMLTtkV3JTzz088uFHuPqsmzBgoqamhlg0xsLCAt/+9rfR6/U4nU7MZjP33XcfweCZ5c2rqKKKKqr4j4F0Os3/9//9f7jdbhQKBSqVir/5m79hfHycTCaDoFBjxcFV62/i85/9S65pvp1tskuwJB1ki/JYCqUCQ96afv5EkEQwib5OnAdjnkTJQo9MDo78hrnIdJzpPV5iHnEeTMcymBr0Uuw1+bYHhUYubUMNTUZZnBDnwGQgTf1mO51Xi3mskZdm2f/VJXK11q5B79SIikDAwrEgLReJOad4IM347+dEC9g8+u9qo/0KMf6YftvLyEtz0nU9pxYJT8ckQpTSoGTdA21SzunEE+P4Ty/FZblC/FG0fdbYpKV+ux2A8d/Pl5CFYvMJ5g/7JeWfAloucLLqthYES+k+XGuXgbM+3YOt28gfiv57W1j3gZWxWs/7G+m+tnHFVt+ZvT7Gfl+6KDi3P0BkOo5SI6f18rqSMrlCBjlK7OdOPz0l7bjvv7eFxnOdUllwOMLiZFQiSkW9cU48MQ5p0eqt69oG2q9cypEN/mpKqk/9Vhtam4DnqJhnNDboxPGWv/TEq3Mc+q6Y81IalHRe1YjGKua85Bo5oekoi/m8lbVFT3AsIqkQOHpN6B1LMZzn5KJkK1O32orOoZE2YeYyWdLxDOn8BkeZXIZ/OCxdV20SyORJ94JJgSyhoMnTy7myq7jn+g/w0Qc+Tiu9qNFhMpmYmZnhjTfeYMeOHdhsNmw2G2effTZvvPHGin6roooqqqjiPyZGRka4/fbbqaurQ6FQ0NfXx+OPP8709DRKmRIDFrpYy0fv+iQPvf8jbJddRuNiL7mwHIVWfJ9PRTKoTSoEszh5+wZDUKB9ZCAVSpPN57xingR6pwZ7Praa3u0R8x75JUWtXS3FZQl/Ev/pMMb8JrbQTJzFyQiy/HfVehWdV7kRzOIHx348ymQ+d0EGjG4thiKHGKVOTs1akTA+vcvL4HPT0pqpe5udrusa0ObVNYeemyGWJ8iQEZ1fFseXCNQ1a8303CyuhQVHIoz8ZnbJIi2TLZvzcp9tz1u8JiW1oAKmd3mZ2etbQTzqvKaBjnxsWYzemxrpvaVxxeeVoHdp2PhIZ2meClAIsOq2ZhrPcZR8Pn/Yx+wBn0RQEm8MiQhU02/G4C7aXKgAckgkIxA3Vg7mFTFNTTr6bmuS1KsAgqMRgnkrXBTiuef2ifmixnOd9L6/SRoXU7u9jL86Lyk7NZxjx1fIQSrAUKdBm98MqhAU7P/2IFNviWOh+TwnjdudklJSZCbG4uQSuUrQKZjOCyQYG7VYWgzkJBefFFPveiRiVk2vSVpXBZFgH/eLuTRdjYa4L4FvUMxPGWo0KASF1Ke5VBZN0Mh62Q4utd/Ig3d9iGv734+LZmoddcRjcQ4dOsSjjz6KXq+nrq6O/v5+vvjFLxKLlVovV1HFvwZVJaUq/lX427/9W/7u7/6OQCCwokyt1qBIKOlhE1d+fgeJxRT7vzpI9ESOaHcctUVJCJEhp7YIkjKP5/Qieps4QUcmkiCToRTEX3z/YAhHr1naWT+z3ydNBgCWFgPmZgOzu4NM7/ISW4xLNm1ypRylRoG1y4B/IMzMfh8t59cy/LvZPJEmiOeE+COdDMPWz/WSjIh2ZMutO4wuLRqzgKFRTXgiwfALs6L920szkITpdzzM7F9qk7UPtKGxijvs5/YFlizNgFQ4CXKZqExQhOYLnYz9bp7TT5fu4AdoPKcGpVZRsmsMkOzqCopExTj5iyncm6ySIlABkek44bkYnlOLK46pBP9QGHIrPx95eXbFfQBL91AgWhXFDx2X1GJuNUgWdQDDL8wy/MIsAPY+I6lYRvKkFQxyUYmriKA99ZZXWjDsuakBa4eRA98ZIj6fJDgYYXafj8k3xPO1XFzL9D4/yXwgZ3BrEfRLdT5S5GPr6DfRdXUD0+96GX1pjvBcAv/pRUZ+nw8izneRDKYJT4gLXGqzCrlyaUFr4UiAqbfFPmq7yIWtwywFKLOHPag0coKDYrDj6DNLrOcCUvlFNnOrgfhikvE3xXuwthlQqhVSO8aCSWKeBOtk27B2Geh7fzMTe+f59fO/RmgUO8rn8zE+Ps7VV1+NxWIhFAqxZcsWfvKTn9DUVEoSq6KKKqqo4k8THo+H22+/nddff32FSqVcJkej0uJI1nPxFRfj3uDg4LdPE51L4T0dQpOfn1PRLCqdCmurkek3fYzt8qCv12Jp0bFwKEg2lqV4m046nqF2vY2J1z34TobxHg9KL7Uqg5KaPguR2QTTu7wc+vZpXGfVSMdqLAKKvNx1cDhKekuG5h01DDwzzeSuBbLpnEgKAurWW6nfbOfoE2OExqK8+79L7dAMLi0KlZwJPARHougcKtxn25l6y8vQi3PUzsYldR2dS2DNXW3MHvAz+uIcx35Yqp6UI28nV6RoZG7Vkc3mFYO+PFDyfXObDnuXiXQ0y/ALRaTrfPgQHImWKBSJDQ0jL84S9SZYDu/A4sqdZmdA4HSI4HhEUocqIOFNiYpP75Qu0qWCKUnhSGVWSVZohTrXbbBhaTUQGByW6rrvq0u77wvtWoBgUIFcJvUVKSTrElSw5WPdhKdjUvx58ucT0oKpSifHdZad8VfFBStzqw6tTZAWv1LBVElfr769CaVGKdnhTbyxgLlZL53L3m0SZb8R4yGVTintws+kshx7coTFYfHZaDrPRS6bA8T4aWqPR1r8qt9mR21SSeQ1haCAHKTyRKpcLsd83r5XZVahtQgSOUqplRGejZE6KmOr7BLW3yBaAL74929xkgPUtdQwMz1DOBLme9/7Hj/96U+Ry+VYLBY+//nP89BDDy3v4iqqqKKKKv5E8eyzz/KXf/mXnDx5coWFiE6tQ5Mw0kU/5318i2TtlTopI7gqjEovBlSynAxDjRalQUk6nGb2oFciKaUDaciBQiUmtoJjEdxb7TjXWZg/GGBmj09aZAOwdRlx9JrwHhskOBLl6E9HUOvyiZZsDsGgwtSgY3E0ytzhAK0X1TG/3086nmVmr0/aqEca1nywg1QkzZHvjzLx2nyJdZrGIqB3qiWFp5k9fuq32pg/GCAdzzL++zmJYALQeW09pkY9+75+mtB4jJPjSzm0dDwNcllJ3gWgdoOFuf0Bpnd5pQ1pBTTtcKKtUTO9jIhUaMPluTCA0Rdnic7HpR3iBSSCaXyDIYlo84fAezKEXFi5n3fijQU0lmAJaQpg6s286nkhu15UXr/VgXO1hYUjAcKTYowytz/AXD5nqK/XIJOJqlGFc8gVMnJFSTffqRC+U+LGAPcOB/WbbBz54QhxT4q4N83Yq3N4TorltRssBIfDxPPtYHTr0NUuEYlGXphlJJ9v09drWH17CxNvLTD9tpd0PM3sPh9zh8RFPvcWO+loRqqbxq5GMC4tIXiOBZk/KH7Xuc6Ca72NaJ6UFBgNoT0oSDFy7QYbicWimFSGpIpgcmsJz8WY2i+ey9xiRDColkhZvgTJYIp22SpWOdax7o4OJnbP8/bv3yZRHwQljI+P8/bbb0vq4rlcjiuuuIIvfOEL1NWVksSqqKKKKqr400QsFuNv/uZv+MlPfsLo6GiJSqVSpsKisuNMNbJmzVraLnBx7IlRYgsiqUZXUN/OgGAUMDcZ8B4N4T25iLlZj65GTTKYJh0rzcWkohlq11pZOBQk5kkyu8dHYFScU2VKGfWb7KQW0ywcCXL6mQmsHUubxzRWgUxSrGPCnyQRSOFcY2XyDQ/zx4LIFKICE4CpSU/LhbWc/NkEkZk4R743UlIPc7OemD/JwqEgcV+SVCyDvc+E9/gis/u8JMNpSfVHZVDQd1sL84f8zLzjW2HBRlaMJRSCXMo9aWwCcpWM6FyC4z8pXTtUWwVq19kgC1PFMVl+3TXuS0qqQcUY+vU0qXh6xefeU6EVn50Jkfk43lOLJepQICpQjb0yh38ksuLzQs5KoVWUqCwBuLbYSARSnPp5XsQhAyeLLIZtPaKCVQFKvQKZXCb1JRkYfWkp1uy/q5XwVIyRF8X4aeyVecwtOpHgo4CaVWYWDot5UrVVwFgvxuLhqRhk4PB3l/q67dI6tHaBw98RP5vZ55Vsc1GAvcfIZD7+1dYIeSWlfJJWBid/PkYkr1reeE4NyGTM7BLjp6l3PRLpyNSqw1CnZTqfL1QICkBGMih+QaaQMXtwSd3J6NYTy1v2KvUyAiNhYqOwSraZzu1u9C4Nu75xlFFOoG9RMjM3w9GjR3n00Uf5/Oc/j06no7+/n8985jNcccUVVFHFH4sqSamKPwi7du3itttuY2xsjFyulKUil8kxKs10ptZzzl3rMTXp2fvlkyTDWRaOBaQX/PhCEo1FTf0GB56DIYZfmaHjMjfWFpE8pNGrEAxLQzK2EMfWbWTs5Xk8pxZpOjdJKi+HnI5maLvYRWoxzdyeAMMvzkiWDgBdVzaSy8HcngAzu3zM7PNhblpi5Co1ChzdJjxHFhl7aYqem1uJTEZJhrN4TgQJTS8tOK19oA3BoGTPPw6UkGhA3JlVt96KoFNw8qlJaSd5Ab7BEOYGXclnnde5mT8SIDgY4d1/KLUHab2klvqzHKSimRXJGoC9Xz6NwV0qqWdq1bHqthYWjgQkFnAxkr5k2USOfyCMfyC84vMzYfDZlecHUcWpIgTY9mgvUW+CQ48tyX0f/+lECUFpOTqucpPLIrVRMpzl3S8sLWb13dHE4DOTkt2c99QiaqtotVeA1FcCuDbbsXYZOPDP4k4xyYIOkRjm2mzn6I+HCU8kWBwJszgeYfQ1sd16r23ANxKWCE5qi6pkIXf4xVmJdNR2hQvXRhuxQJLZd/0MPz9DMppibk8AgFU3t5GKLQVx0dk4kbzkef02OzK5jNm9YqLL4NAi6JUkfeI9ZiIZpk+Li32CTcBYqyUTzUcgKlicjjD7TpB+2RY2Xt+BoFfx2t8c4hQHsfcamJqaIp1O8/bbb9PZ2YlKpSKXy3HnnXfyjW98o3IfVlFFFVVU8e+Oz372szz22GNlCeF6tQF7wkUrfez47Bqi3jiHvz3C7Lt+dDY1cp0SSKExqLA0GyRSztS7C2jtotJfypNCbVShqxH/nj0QwNJmlKzKFiejJYsRepeWvptb2fvlAWZ2iy+0hX8da2w0bK8hHc8yvcvL/n8exNy6FP9orALpvB1cdC7F4nSM9otdDD0/w/TbHjQWgfiCGHsZm3X03dzEyO9mmd8fYM8/lhKHum5oRGMRmHrLSyqYkiSYAaIzSSLzcfyDS0kHlVlF64VOBn4xJS7OLGvLrusaIZdbcR0QCVbF1mkFrLm7FY1FWEGoKqBgUbYcI0Ux5B+CVDRbovZUjAL5pxw63ufCsdrC4e8NSgQuUnDkh8OSFdtyuM+x03xuLdlMTurX8VfmGX9FjG2t3QZMjbqlWDcF4ekYniJLmIQ3JSWMWq9wYe804TkZJDqTJDgSZfffLcW9mz7aSdSTkAhOU7u9aPPJRbVdhWu9leM/Fxc6zW0GVHolufzut2wyyztFMXTLhXXksjn2fknsw2M/HkadV7Ss22Kl8WwnA0+L54r7E0S9iSWVpQ4Di0Vxv9okSAtphjo1wbEwo78X49/atTZ0Do1ksReajpGKhDDL7JzvuJy1N3fgORZk7zPH8DeNgQqGhoeIRCJ8+MMf5nOf+xzRaJT+/n6++c1vsnnz5op9WEUVVVRRxb8vRkdH+eAHP8ibb75JNFpKQFbKlNiEGtoS/fRf0olzvZUDjw2SDKSZ2eNFld99nY5nMdTqyPbl8J2IMrFrDqVOgc4hsBhOo9Kr0FqX8jnBySjWTgPTu71EpuNE5uIkguI8nYqkabusiUw8i+eIqFCdDC3N4V1XNiBTyPCdChEcEYnWBrdISMllcggmFcZGHf7TYaZ2e+i8op54IEkykGb2gL9ko1TntfXonRoOPjbM/MGApOoDoHGoaNzhRG0TGHl+ViLYFOAdyMdcxeSc7XZCk1FC4zEOfnOo5Ps1a820XuwCGSWb+Ao49uMxNI5SUpPGrmTNPe3MHfAz9sr8imPS8SzT+dilGNG5eNnNf2dCuTwciJv8ItPxsmUAGx8S45oTRYt/47+fZ+F4ULJIW46uaxpABge+lieMp+HQt5ci1dbLapl40yvZwi2ORTDWa4l7lhbyii18m851Eltt5ujjIklfWqAD7H0mWi+u48RT40Sm4yR8cRaOBZjPx6xN5zgJzcZEu0BEUpJSvUTWmnxrQSIsOddZaDq3llQsw8KhIPMHA+RyORYOiYt0PTc0i2rheQQnIiRDeYuRdj0KQcFCXt1JW6NGYxFE0h6QiqWZyCsMoAR7hwnvgPhduVqBd2CRhUNBmmXd9J7fhKFOy54vnmIsdwqhN8v0zDSBQIAnnniCp556Co1Gg9ls5kMf+hCf//znK3VfFVVUUUUV/w/w5JNP8oUvfIEjR46UbMaTIccqOKhNNuGimQ0PdhKdT3D6mSmCg1HmnX7JH0ilVWLvNjPxppdMLMPE6/PonWI8lIll0doEtBY1ASL4Bxexdxsxt+oJjogK4OnoUgCjq9XQ1dnI0cdHCY3HGHp+WlKA1NfpaLm4DplCxsKRIAO/mJTUjUBUWiLPgcrEMoRmYtRvsjH9jg/vqUV0DjXxPBFEMCvpubGRyTc8+AZCHPtR6ea6loucmBr0eE8tkknCwpElheZUOENoIkpoYilWVQhy6rbYmHrTw8KRYMn3AdqvcCFXypY2nBUh4U9y7IkxSQmogNaL6zA16jj03eGy9m3FdmrFmD8QKPt5RSwjBRVjuapTMZzrLTRsr+H4T8ZKSFQnfzYukXGWw9Kup+1SF3K5TDq370QI3wkxltU6BEzNekk1CSAwFCZSZOGbiWWk79dvsuE6y054JkZsIUnCnyyJe3vf30jcn5IITrP7fVI+ViHIcfZbmHxDjHn0Tg3qoncEcnDoe0tt37TTiVwh48gPRgE49fSkJBhhbNLSdpGL03lV8nQ0Q2g6KhGgLO16QlNL668aq4pM3rpQaxPwDgSZzyuL27vMmBr1EvkrPBclOBFBK9OyWtjEuivamT8UYOC1cTzOMbKmBEPDQ7z22mu89tprmEwm1Go1F198MX/9139Ne/sfriRfxZ8vqiSlKiri4x//OI899lhZ2TadSk9juoNGOtn2+T6iC3EOPTbM2Bvz1K23gEEJ4SSGOh1ahxqEKUjC4PMTaOxioJAOptHXaalZY8E/EObUz8bpvL4RQ5ua8HD+JV6WZ4IkRTJHwzk1eI+HmD3op3adlWhA/F42mWX9B9oZfnmGuT0BBp+bIlS0g33zI10oBDm7//YkCweDLBwPSmo0+noDBpcW9/YaRl6cY/AFcSFCMMhJhrMkgslSYpYAPdc0cPKpSfyjYYZemmbunYBU1n97C1qbmne/cIqJtxaYKJ7jDXlZ5FoNB8eHpHsrHDvy4hypZJ6gJCyVrX2gjdkjPuZ2BwhPJUvKFqeiROZjjBd2cBWpFm3+RBcRT5zjPyxa4Mof2319A/OnAmKwlSwtW/7d4vN2XF6P/3QI72Co5LvmXj09VzUy/OKM2L6Fe0uKSYmFo8EV5w2NxsAA6+9qZ/D5afHv/HUGnp0kHc+UrZO1xYCl2UDr5fWcela0vVs4vMhCfqGs9ZJanOutHPrRMPGpJCTh2M9HieflE5svdLI4G8V/TAw0U9EM6fiSMhJ6JUefHJOua24zonGoJaLR/scGpbKemxuwdZo4+sQoiyNRhl+eIeZPSDZyWz7dQ9ybYPL3HtH6bSRMMs8Or91mQbAoOf2bvOqBSQFymdTHco2Mkd8tEa0Mbm0+CPegtiuYfGee2d0+EKB5Zy1am1okUgmwcCJILg2CTGCz+xw23NCB/3SI/U+eYK5hCJkGBgcHyeVyfPOb3+THP/4xkUiEvr4+fvSjH7Fu3TqqqKKKKqr498PQ0BC33nor+/fvL9k1BiBHTo3aRWdiLetu7sLaYWTv106QCsLEW/NkyYEKEospLE0G5AoZx0bGGXxhFuc6IzqniuhUCnODXtxRnSctjb4yh6lJlEIOz8WQyZGksOcP+ui+oQlLr57AiQjegRByYYmha+80Ur/Jxr6vDjKz20c6mZGSIdZuAz03NDKzz8fob+c48PUhSX0IwLXZhqBXMfT8DKlollPPTqLSiZUKjUVJRZdkt1GBpUOP1qxmZrePgV9OUMwU1jUKrH5/KxNvLjCzz8eRH41KKkmooPVCJ7ZuE3p3fpdSURnAwNMTZFK5FepKTec7OfLdUZGgVKh7vnxmvw9LEfm9cGztBitN59Zw7GejRAsBYP5YW7sBU5Oe0VfnlupQVF7y/6I6Wpr12DpNopKTqrSs90aRsCW1b75seo8HwaIiWlBgyp+3QFCq22rF1mZcUuBUwdSbXnIZmNnnW3EdUmJSRGMVGHt7HvL5qONPLcWXmz7exeJkhIGfiYmRgZ9NYVuzKF2z42oXgy/MSOeNLyYltSmVTs78kYBU5tpsw9xqQOcQiM4k8ZxaFJU/8+U9NzWRDKXE+wYOPj6MLp+gqdtmpfmcWo79REz0RbwJwpNRfHlCvXubYylBo0IcSvkw39iuY3EiwsgL4j04VpkwNRpIRcXv+kfCTO7Ox9s6qOkzE8yrM2TU4riY3+vDLFg55+L16Gu07P67E8zIRqAnzuz8LOl0mgMHDrBt2za0Wi1qtZqHH36Yv/qrv6KKKqqooop/X3zrW9/if/7P/8n4+HhJzkeGDKPKQlO6izoa2fzJbkKzUU4+McHMHi+pZAby7u66Wg22DiOjr89DHE7+YhydUyxMx8HSbiQVT7M4GmXilVk4vw59o4bIRFycf4pEexanYrjOsktKjcGxMLE8mSgdy7L6jjZGX5nFc2SR089NEQ8vLaz139uC2iSw98sDhKfi7P3qEvlaa1Nj6zIR9SeZesPD9LsiEUepkZOOZ4n6k6XqQUpoPldU+I57Upx8doLgQEQqa724DnOznoPfGMI3EMJ3vGjXvAbqt9iJtug5/i/5OCG9dN6FQ0FkMplIhFIulXVeX49vMIz38KJIwikqiwfT+EdCkspPsWpR/z0txPzJ0g11+WMbz3USmAiJFmXp0rLl3y0+r3urg/BUlOBEtOS7mjoVvdc3M/77eYk4Uyj3DS4SHCtasMuft0BQ6rm1kcnX80Sf/HVO/WISubJ8nbQ2NTWrrSAX84SkEZWqpkXSdc1aM007nRx7apT4rBggHfnJCOQt9GrWmomHkoSGxZgnm86SDKWWiFYaJcMvzkrXdaw2Ywxqpb488dS4VObe6aBhq4MT/zLO4miU+aMB0rGMpPC07oE2Yj5RAQIlLJwMkkuK9TC2aTE4NZx+RyRMqYyiYkHUK7aDUidn5OVZ6b5tHUZCWiWz7/jR2JSM/n4G79EQKKFhmx1rq5HTv5oCJXhOBfDlleHbjd1sfF8PnuNBjj83wkLtCFlziqHBIUKhEH/5l3/J3/7t35LJZNi5cydf/epX6ejooIoqqqiiin8/+Hw+Pv/5z/P0008zN1dKTFGjpV7VRGOqm9btLuo22zj43WEy4QwTv18Q4y6FSBJxdFtQapUMPzfD7Ls+Yp4YSr2oqmN0abF0Gph4awEyovuHqVHcQJcMZkSVIZ0Y8wSGw1gvqcPYrCU0FiMwFEapW7JuMTXpqD/LzrEfjbE4HmXgl5MSOUdjE+i7rZnpd7zMvOPj9DNTJa4vzrUW9LUapt8RrdIm3lrIK9pAMpgmEUyRKVgCK0SCjNaqxncyxOir86iK7LhUZgU91zcx844Xz6lFhl+cWSIOKcC5xkLdOiu+U4uiFVxRGcDgr2eQq5b+JiOq/jScY2fo+RmRoFRUBqLzTDKSLj1XRlybar2olsEXppcs1/LH6hxqDPVa5g8HSolNijL/Lzqv1iZgaTaItnKK0jL32Q6MdRpO/stkSZn3ZAidU008WFqHAkHJ1KoT4/MCAUoBgaGISDwbDq+4DhlwbbFjatQxd8QvrftNvLW0ObDvtibCc3HG8+pV0+/4CM2KBCUA11YbM3uWrPFigaSkEKUQ5ISmYpJtrq3biKPPzPzhALEFcbPloe8skZI6r3GTCqc58aQY9518ZhK1Xgwgja1a2i52cfpZMW+VjGbwDYRYnBLHpnO9VSRW5dWeZDIZZMW4TLApWZyIMvNOXsGy1YC9y8zkax5QiBvxvKeC0rGuTQ4Cw2HmCYAgY/LtBfyDYbRKLTs3noe1zcj+r50mKPMQbfeyEJxjfmGeJ554gieffBK9Xk9bWxuf+MQnuOuuu6iiinJYqWFbxZ8tZmdnWbduHQqFAplMxpe//GWJoFRfX88tt9zCTq7mE/d+ik/9xaNc/4krAfAPBjHUaum4up6EJ0HNaiubHhBf9gafmyCbyrLlI90ANJ5dS9N2Jz03NZAMZwkMLVLTaxYJGTol5mY9q29pA0Q7CZ1Vzap7mgEwtugx1GnROAVIgmBSsfrmFgC8gyFRhnGz6F1vbjew+YOdtF5ZC4gydsWjfftn+tj+l32AOLnK5KJ9A8CGBzvY/tk+Vt8r1sPaYZSsvFzbbJz92VXYuk00X+hk3X3ttF245P++7dFetDVqktE0NWtMnP3ZVTRfKPrJr32wjW0f6+PID4c5+I0htn6yh00PdQKw/sPtnP3ZVbRd4WLy9x7672lh+6fF+gkG0NdpaLtAvI7GKXD2Z1fReZ0bgL6bmjDW6SSVny0f65HaO5POYm0x0vt+0Qu256YGzv7sKgSbHHuvie5rGjjr4z0l7bLqDrG9NQ7xOgXlps0Pd3HWx3twrrZQv8XO9k/3sea+VkAkBa2+UewLlVbJxg91sPWTvdJ5zU0G6reIfdNwnoOzP7uK2o0Wsb3v60BrV1O71iq24ad6WX9/O/6TYXQ1as7+7CrO+kw3+jqBdR9sZ9un+vAPhDny4xFsHUY2fLADwSZg7zOK7X2Rk2QkjVwhY/09S0mHvmubWHOLeG+uzTb6bmim/X1im9o6DJIEec06M5se7OCsT4htKNhEy5rCQtrmR7s4+3OrpPOamg1ksznJlu7sz63CuUa8t+7rG1BpFcTyZLotH+vG1mmUlK3aL6xHbRKIB5K0XemiYUsNp34pLqpteqgTa7txqV0+3Uc0kODIE6M0X+Rkza1tNGx1Alk2fLADrUVg8FeT+Tbso2FrDdZWA+6z7Wy8r5PQVJSJt+fZ/uG13Hbvrdxy0y1cyA185OGPsnPnTnRaMWA/duwYW7ZswWw2Yzab+fu//3uqqKKKKqr4v4Pvfve71NbWIpPJ6OjoYM+ePRJB6bxzz+Oua+/lItmNfP7zn+dDn70fV4+TyV1e0okMGx4U529bh5HW8+vov6MFUjB/2I+50SB52jfvrGPtPWK8cfSnY8gUMtbmYxz3Vju1a2zUb7NDCmK+BK3ni7YIqVAKrV1N52UNAPgHw9RvtNN+jeg7L1hVom1vHm0X1bH1U+Lcn/AmkMllUqKg60Y3Z39uFR1XifOuSqskV0RC2v7ZPjZ/pBNzm46Oq1xoLALBQXHRYdOHOum7oZmG7aKd3Np7O2g4W/x/y6W1rLurg0wiSzqWYcODHWzOx0Aqs4ptn+pFKcg58vgI9i4j2z/Th7lVh84lsO3TvWz5WDfBkSjhyRhbP9nL6jvFOKHpfHHnWu0WCyAqJ531iaV4qf1iF5q86k/NWjPbP9NH7QYrckGGSqdkzW1Lu4XO+ngPa+9po36zHdcmG9s/04f7HDEmWnVHk9RmAFs+2s36+8Vj9W4N2z/TR9tl9dSus9B7cyPbir67+ZEuTE06MqksKrNK/O7lYvs2nO0UFbTypJ5ND3dJMScqaL+4HlOLHlSi6tL2z/ShMquY3uVl4wc72PpoD723iLHjtk/10nNTA4e+NYzvVJDtn+jD3Cre+/oH2tn80W5QiYoP9m4TfbeJVrINOxz0XNWIuU1H0wVOnGutnPXJpTY01OowukSC3LoPdnD2X6zCsUaUTze5deSyOZHgpILtn+tj08NiTOdYbUKhkksJmPUPt7Ppg53iQiIiaVumlBGejGFu09F/awtRvxiH9d3WhLFBh9YsxnybP9aNSq9g4OdT6FwC/be2Yu8xA3K6b2zA0WNm9xdPQEps7+Zza2ncXoNKJ2f7J/rwj4YY+u0MndfUs+m+LtHqJJhi00OdaKwC03vFReAbPn8lN9x4A+8/7w7uu/Qhbr31Vrq7u4nFYni9Xv76r/8ai8WCIAhccsklzMwUWQtWUUUVVVTxfwzhcJjbb78do9GITCbjwQcflNTC65wubrn5Fs7jWu6//MN8/HMf4bIHzgVgeq8HS6OB5gudxMNpGrfXsOn+LlDC2KtzJCIp1t8rzt/usxx0XOqm9fI6SMPMAR916+0IFiUgx7XRxup8XmLkhVkMdVq6bhJzO9YOA7ZOE/p6cWOf2qySvhudi6MyKHFttAEiOWrLw100XSDGRDKFDLlqicR91qM9bH20RyS8OARkChmxfE6j54ZGtn+uj95bxTnbtd6GMm87Z2rRsfVTvbi22KnfaqfrejfdVzVK592Yz1MkQ2l0bg1bH+2lfqsY13RcV89ZH+nh6I9GOP7EOBs+2MGau8WcUdcNbrZ9upeGc2uYPxig9fI6tj6aj2uU4Oi10H5pvfT31kd7ab1YzOc173Ri7zSTjoix49p7Wlmfzzmmk1kcq8y0XSHGr+5zHGx9tBeNXUn9Fhs91zay4YNLeaGzPt5D57XidbR2ga2P9mJoENt79W3NbPxwJ+6zHNRusLH5o9103yTGwY5+E+vu7kAmB7lKRu/NTWx6pEs6r6PHLOVurF0Gtj7ai2O1GNf03daErcOIvVv8e9PDXay6tZnoXByZQsbWR3vZ8EgHGoeKzuvcbPl4D7H5BEceH8HaZqL/zhaUBiUah0ps7+12MvEscpWMtXcuxZy91zfTfa3YV407nfTf3kbTeWI+0tKiR1cj3qehQcOWR7rY9JGl+gt6JTGfSGDqv6+F7Z/rQ5lXund0GcllcyyOirHWts/2UrdJvNf6bXZ0Tg2pmBh0rr2vDfdmu6RItermZgwuLelImtqNFjoudzP68hSkYdWtzbi3OHD2WwDY/NFuYr4EA89O4lhtYsMDXbRe5AKlnJ4bGzE3Gjj5iwlIw6ZHuui4rAFLmwFzu55ND/fiHw4xs9fPmhs7uPED13PDVTdxfu46Hr7/Ec479zz0ej2xWIzf/va39PX1YbFY6Ozs5Ec/+hFVVFFFFVX838Fbb73Feeedh06nw263841vfIO5uTkUKNmxbSe3XnAPF8lu5OMf+Ti3f+pmHG0WFo4HiftTYo4LMDZq6b6qkY6rxPl74s05bB1GbF1GIEvn1Y1SjmvsdZFA0n29OH8711loPq+Wmn4xPxaajtF2sZg3ScUy2DpNtF0i/h0cCdO4o4am88XYSmMVMLq10r20XFjLpofFuTMeTKIQ5MjyxGPXWTYxztnpAEBtVJFNLNnLbfpYFxsf7sDg1uJcb8Ho1hFbEOfdnhsaWHNnKw3bxWPX3dNG7XoLAI4+E2vvaSedyJBOZOi62s2ae8TYSqFVsP7BDjQ2gaM/HkNjEdj0SBcGtxbBoGDjhztZd38bCX+S2HySdfe303aZeK91Gy3UrrHi6DEC0HapS4qtANoucaHLq/7oatVseqQLW68RhSBHMKnovalZ+u6au1rpvraBmj4zjTucbHqki5o1Yns3nVvDxg93St9dfXsLvTc2SvXf9EgXTRfUUr/NjnuHvSS2WnVrMzWrzWTiIsFm0yNduLeJMadzlRlHj1kifvXe1Mjq21ukY3tvbMKxyoxCEHN2mx7pQjAr8Z8O031dA+s/1EnzRWKcueFDnTRf6GT4+Rlm9nnZ9FAXxkbx3juvcktjKx5M4ey3SHk3S7ue7msbMTZpsfUYaT7XycYPL7WhudkgbVzovrGBbZ/tw9IhbnY0uLXkMjmJ4LT1Uz2szo93rVO0eovk16q7rnOzKa/YCdB+iQuVTkHUk0AwK1h7TyvJWAoyYh6ubp1VytWuvrMFrUNg/LUFFIKcdfe1U3+WHRQy3NvsNJ7jYP+3TpNJZul7fxNd1zRQt8EutbdvMMjk2/PUbbSx+cOdNJ5TQyaWpeeGRoxunaR+ecEj27jmuqt536obuHnVPdx+8+30dvcSi8Y5ePAgd999N2azmfr6ej72sY/h861UQK3izxdVJaU/c+zatYvrr7+e2dmV9hPuugZa6ULjt7Ht3j5S8RQe2Wlm9/tQGZXijmdEr9dcLsfC8aBIPBoJk8sTgpIxkSlakJIeeHaCpvNrmTskHquv04k71pIQn08yvc8rLajo6wRy5FBpxMlm4JlJ6jdYl2Sps1lkMoWktOM7uYg3v4tm4UiAurVWaTKdeseD2iggGCAZFv1ONVYBjVPAPxDEUKMmk82BALP7/NRtsorsXcBzYpHQVJT297mYeteLrzGIfzzC7G4/iVAKo1uHa5sNZ7+FhWNBogsJpnd5EWwCvlNBvCcDbP6EqOTkO7EoqfXMHwmSyMt1q3RKUvE0C8fFdpnd7yMVEbctJcP5v/O2XvFAEt+pIPNHAmz5dA8xXxzfqSWVovmDfmkX4P5/GqT35gZmD4vnnTsUQCaDpC/L3i8fx3WOE3l2KZHlH1hk4YTo15uKpIlMxQjnJ8uZAz4EnYr5Q17CU0l6bmwQ1ZQAz8AiGouKoeenSYazyORiIFeA98Qi8VCCsz7Tw/xRP75TQfx5Us/MHh/6Wo20823hWFCSIwyORQlNR9A7tZhbjczs92JqECfz0GiM+SMBdE41Gx/qYPjFabG9TwUJTyRIxzNYmg3UbbFSu87K/JEgyWh+h9mPh2k6v46FY0Fc22wszkRF1SYgOBgiFU4zf1RsM22tSmzvvOR5MpRCoVpivM0f9ZErHrPZnNRX80cDyJVw+jnx3nKZLDJ10Zg9lR+zSfANB6nbYKXlXBeHTg0ze8iPoFMx+bq4UJVJZNDbNQgCeE8F0dkEgtNhkmGYO+in+dxaXJvsLBxexHMiiFIrZ2qXl0wsTWqbA4NLS3guwewBP/ZeE+nFvJz2lLgQvqZ2Ayd/M0ls1QzegJfTp0+TyWT47Gc/y9/93d8RCoW45557eOyxx6iiiiqqqOJfj0984hM89thjK6xEVAqB/o61GE/Vs+qGFuy9Zk4/K5JP/UNh5Go54dkEpFIoNQopHhp/bZ7GnU7mDooKfro6DTlgcTJKKpgSlXHy4gAqnUoiXgOcenoC9yY7gWExfhKMSlHFUgWpKEy+7SEZEie5TEScm3X5+X305TlsbQbpXLFAEp1dg8qsIhpMsXDIj/+0GCcsHAlibTVI+kez+3zkcjmMzTpCY1EWjvvR2jREZ6MsIIrb6Op0qHRKZvb7ECwqJl8VX349RwJ4BkL039uCbzDEwmE/p38jKvQotQpUWgW2PiNd1zQQmY8zezgg2bWpDUqic3EcayzkcmK7FjB/OMDilKgSMPTrKdzbHPhOiX/P7Q+gdQi4z7FTv8XBwskAoQnxnIuTURYO+wmNh4l6UqRjGQz1S4ms2QM+4r4Uc/v9mNu1OPss+IfEdpk7GCDuS6G2qvLf9ZMMi+2d9MdZOOzHMxAkPBHF2GQosYudO+iX7PVQwcJhP96TQelecqksXTe4MdXrpPYGRCLbQR8Lg6Iy0cKxIDIZpPIx0uwBP3WbbegcYgy9cDQgWbnM7AtAFrquayUVSTG7349Kp4QUHPrWMB3vc+EbDtN/bwvewUUWDvuJelMEh+dRqGVkU2IdWi6pLWnv2YN+7D0mQlMxVDrwnRbtBgF0NhWZZBZfXmY94o2xcNjPzLuiolEmlYVcTnp/mN3nIxHIt+Gi2Edah0a6TnIxxeBzhdgqi9qkQmVWkQomWTjkwzMQJBXNMn88gL3HRP8dLRz53iiz+3wotArmD/pIpbIkQkmsrUaGYpPMHwkgV8uJLSQgJSoqNZ3rRJcnsi0c86MyqJg76Cebge5rW2i9so13T5xCvi6FRzbBxOQEwWCQl156iZaWFgwGA06nk6eeeorVq1dTRRVVVFHFvw6jo6Pceeed7N69m3S6WK5GRoOjgRZZLxqPic13dpEKp/HIhlk4GkRXo8GTn1c1RgFkosU8aZjZ5xUXRdKQjafRmFSE58Q5Z/TlGVLRNJ5j4rHmRp2Yg4mnIQ4jL00jk4mxmNKgRC6XocznvAZ/NU1tv5lEfgNaLpVFppCj1IiqTFNveQjlSbqLo2EyqZyUd5l624vGJkjf9Q6EMDfq0JiVhKdjzO71koqkUGpg/mAAhVrO3AExdpzZ6yPuS1K/3c784SCze7yE52J4joawdhqI+1JYOw3UbhDzZMlwCs+RRZQaObN7vfiHw6y+qxmNTc3sfp9kRza7z0c6Li7Qaa0CyXBKig09x4LkkvnFuzSMvDQj2bqShtm9olrAugfaiPoSzO71Suea3e9HrhCjyhNPjNNyoRNfPqYLDIdRqeXEg2n2/dNJ7P1mFIql1Pfsfh+BsQjWDhOpcJrZES9xT1I6r2AS8z9xb5rGc52EZ8T2Dk9Hmd3rZfIdH+lwmkwqK1l2AEzv9ZGKptnwcAdzh/zM7vUSzscyM3t9LM7EmMxb9U7v8ZLMW8vGfCkWTgSxdRgwunV4jgZJ+PNl8wlm9/rQ1WrY8KEOTv96gtm9XgJDEaJzcTLJjETScW2yMbvHSzbfhoe/N0Tz+bX4Ti9i7TQQ8YptCBD3xAnPxFg4Kva/vl7D7F4v3nzfxH0J1EYV6bj4vMwe9CPPq9wrDUpyaXFhV2zvCNM6D5P5RapMMotcKZNUuqZ3+0Q7nTgEpyLIANeWGvynx5k74Mc/FJYs55KhJKYGHUqNkvBklOndHiKeBOlwmvnDASwtBurWWQkORZjZ60MwKFg4EiQeTBPzxbG0GBj+9RTzRwJkc1nSIbGOoRMptp99Dp26VYy8PEd89QKe2DyDg6cJBoPceeedfPSjH0Umk/Hxj3+c//Jf/gtVVFFFFVX86/GjH/2I//k//ycDAwNks0tEHZ3cwKrGfgxjdTScVUPDthpOPSMqxcwd8qPSK4ktJEjFMqgtKuJ5UsbcgQByQSapIxtcWuQKGeGFKJmkGEMoFGIspVCAYFBJFmATr8wRm0uwOCkSPtRmFXKlDIUAmSQMPT9NJk8mSiYz5LKiMALAxBsLJbZq4Zk4tg4lgkFBMpxh8o0FgpP5+GMkTKTfQi5/u7P7/cjlMrQOgZgnyfRuD/oaLbGFBJlEhundHhQ6BaYaNXMHAgRGopILyfS7XkJTMVovqyM0EWF6t4e5AwEy+bhJpVeiq1XTc0MTi1MRPCeDJPxJclnxvDFfEkOdhlwWPCeXLNOm3/VKecTp3V5S0TSLeRVIz9Egkbk4lnY9jTtqWDgaIJpXg0wsppne7SE8HSMZTDPwzCSG2qWc18xeH+l4Bv/pMPNHvFjbzYTy7e07HSIVz6BUi/0zu9dHNq/6mEmK9V2cCBPzJFFb1ZISY6ENc7mcZK82vdtDYFTMIQXGwsgUULvOjLXdyMxeH3L50hrn+OvzhKbF8RGaiDG920Mmn0+bPxSgbrMCfZ5ANPOOl9CMWF//6TAKhZzm8+tIxzPM7vOjypO2h389Q2RjnOhCnNbL6giOi30T9yUJjccY1i6tr9esNTOzZ6m9Zw/4yaayRBfioIDF8bBEUFIZxPyuP7/OmommmXprAe+AOLbSiazY93mVpam3veI6ZgaSMXHM6mzivfgHw2STWVHBC0hG0pgb9eKYjYljdnEqKtrWDYWo3+ag49J6Bn81zewBP55TiwQG87m3uSiOHgsTr3sJjoWZfEdOIpAik8wyfzBA2+UuKW84vdeL2qQS+zuWpW1tLZfuuJK6gR4ULWl8pikm5iaYmZnhK1/5Cl//+texWq1s376dL3/5yzQ1NVHFny9kuRIfqyr+HPDUU0/x4IMPEggEVpSZsLGOc1h1fSvWDiPv/sNJANbc34r3xCJTb4k2ZFs+0o3vdIjBX07j2mbD2qzn+E/FoKLzOjfWNgPvfuEUIPpvTr3rFZVm8scGhiMMPD2Jvc+I2ixIu2za3+fC0Wfmnb8Xr+vaZmNm1xKzcvMnu0gEUhz+7giCQUzsJMPiBO3eaafpHCdHnxhdsg0rsgnb8EgHKp1SOncxBJvAxoc6iMzFOFzkAV9A2xUuXBttDP12WrLxKsaqO5oxNmjZ/9WTJMMrimm5uBaFWs7Qc8t2Ri+3MluGDR/pYOSlWfwny5xUgA0f7MB/KiQp8xSj67oGRl+aLFuf98L2z/exOB7h6A/H3vvLy+DaZiObzDK3L7CibPMnu5h+xyuOozJYc38rvsGQaI32B0KwCfTeIO7wL4fVdzZjcFfum7M+00MuhzTWi2FoVLPmrnYCY2GO/2h8RXnH1fXUrLZw9IkRccwtw+ZPdJFJZdn/1cGSc4YnEmicAus/0M74W/NMvS62h7XHQMyXJD6fpP+eFjRWgT3/KMq0a5wC9RttDL8wK9V7/qBf6vvO69wi6el4iN73N2Ko10rH1m2xYusySvdw1md6WDgaZPj5GQSDnN5bW5h+x8PC4UX6bmlE7xKPHc2dQtGVxOP14PWKdTSZTOh0OtavX88zzzyDIBT55VZRRRVVVLECqVSKO++8k6effppksnTSF1DTwRrqZc1sfKSD4GiEwedmqFlrpma1mdNPj5OKiopBjl4ze78k/q733NSA58QinqOLoIKNH+zANxRm5IVZbH1GTA06RvPzQ/NFTpz9FmlOaLrAycw+P6m87PDGRzoIzcRENZlaFQqNilA+UeE+x457q4MDXztNKppF5xIk+y6A9Q+1k8vmOPjNlXOwuU1H783NTL61wOQbK+f1vlsaMbUa2Pe1Qakuxdj8yW5y2Zx0z8VQmVVseLAd/+lFBp6ZXlEO4vx/6pfTZc9dCY07HRgbdEs2aMvgPttO7Tor+/95cEVZzVozuVwOz+HFMkeeGX23N2Fq0rP7f534o49V6eQ0nOtk5IWVGw5aLqnF3Kzn0PeHSy3m8rB2G2ja6awYQ4kXYMWxbZe7iHrjZWPiQt/4BhY5/ezKvqnfZqflglpGX5mT4v9i9N/bgt6plRSMlmPLo93E/AmOfHd0RR3NbTp6b2pi6DczouVIvj6kUqSi4phQGZUc+NqQdGjNWrP4XRVs/kg3s3u9TLwujte6LVYicwlCY1E6r6nH1KhjXz6mM7fqqFltZvBXYmy/6eNdLBwNMPbyPKig62o3nhOL+I6H6HifC3OLXjq2fpsdS6teGmebP9HF3OEAQy9PMWQ8iLZOYHh4mEwmg1wup66uDrlczuOPP875559ftpuqqKKKKqpYwp49e7j//vs5duxYiYWuAgUOXPSyiabttdSus3Lg6+Jvc+e19QRHo9LmpLX3txIYjjD2yjzmdj22LiMjL4n2WPXb7dSutUi2o80XOvGcWJSstNbe38riWJSRl+bQ12vQ2gU8R8T4wLXZimuLnf3fHIS0aPdQsM0CWHNfK4lgilM/n0SpAZRK0nlbN1u3kfYrXJx4apzwZHyFTVjPLY3oHRr2ffX0ykZRiko1oakoJ/PWEcWo3WCh9WIXQ7+ZlubQYrReXIu9z8zB7wxL9SlGzVozGouaidfmV1yXlV+X0He7GCsWVHqWH9v3/maCYxGm3lwZSzacW8PsO0vkpT8GWz7Vg38oxOmnp/7oY61dBmQyWUm/FbDmA63M7vNL42g5Oq+tJzwVY2bPyhiqEpQGJe2X1nHq55Nly1svqcXWY+LQd0fK9s26D7UjV8jKxq+CRcm6+zvwDyxy+pcr4zbXZiuNO50c/+mYaFW3DKvvakYml3Hk+6PSZxqHirgnhdKgZO19rUy+tSDlB/X1GjKJNHFvmtbL6zC5tRzK52CVBiXO1Wamd4vx4fqHRMLX9Nvi3+5z8jZ8I1Eaz3Vi69Rz6PsjkAZrpwFbl5GhX89I97xwLMjUGx6UGmi93I33+CK+UyGaL3BiadNz6NsjzOemSXb48Aa9LCyIJDKj0YjZbOaqq67iK1/5CkpldX93FVVUUcWZkMlk+NKXvsRXv/pVSaESQIYcM1Za6cMuq6Xn5kZCE1Gmdnkx1GtwrLYw8ft5MsksNf1matdZOfrDUQDcOxyExqKSvVrPzY0sjkWYfseHrlaNsUHH3D5xLq3pN1O73srRx0elvwMjYVJhMQbsuamB6HyC8dcWEAwKFDqFZFVm6dDTfF4tx386RiqcQTArSQaX5tLOq90o1DJOPrVyDlZbBfpuaWJqt4f5A4EV5e4dDurWWjnyw2HJhqwYq+5oRq6QceQHoyvKFAKsuqMV/2CYidcXVpQDtFxSx8QbC2RiK89dCbYuI6Zm3ZIN2jJYOvS4Ntokm7FiGBu1yJQyyU3kj0Hjzhqcay3s+6cyMep7QCFATb+N2X0r1XccfSasXXkr2DLNoHUKNGyvEe34Kl6AFcc611vIJLJ4j6/M7xX6xnc6VDbXaWrS0XVdA2OvzLFwZGVM3XJxLbZOI4e+N1K271bf1UIikOL0L4vqnK+jxibQc1Mjo7+bJTAYyddHXCPPJLM0X+hEV6PmxE+X+s/UpJOeo/67W5g94GfhcH4zRaueVDRNdC5B3UYbtm4Dx58cl65l7zYylc/b9d3ejPfkovTcubfZCU3FWByP4lxvwdFrko61tOsxtxoYe1kcZ6vuaMZzYpHpvR4m1KdRNKUYGhkinU4jk8lwuVx0dnbypS99iXXr1pXppCr+M6Nq9/Zngm9961sYDOKL9M033ywRlGTIqKOJi9Q38qkPfZabLr4FQSaQjqTJpbMI+Q3yc4f8OPpEmT6SkMsucdtmdvnIJHOiVQiQiWfIZXPSsSOvzuHebJOOzaazZDNiEsF7PEQimKR2swWAmDdJNpVFyO88ntnlo+E8h3StVCSztDs6nCUZzlKzTqzXwtEQyeIX8qRIYCnYlfkHQhITtABzXmIv6UviPb7I0HOlE5a1R7yJ4ednGPzN1IrFGPfZ4j0f+9EYu/+2lAQjGOT039UCwOhLcysISq5tNrZ9qhd7n5FysHYZUBtVGFzasuUkRaWkcgSlmnXi4mbDTleZA8XE1/qH/3X+680XOjnrMz0iwaoMWs6rlWxYlmPPFwcqEpQAtDY11hZDxfJNH+tk40dL6530JaXFtfptdtouryspP/rDpb4xteowtepKyg99f5iTPxMXiUytupL7Ck8k8J1aZPB5ceGvMF4K8J5cJLoQlwhKhfFSQGQ+TiyvCiXYBMwdeklJS9ArScczBPNqCq5tNiKTUeL5IDkdTZOKLwUqDVsdEkFJXyeQTWeJ59Ut3DvtROfjeI+L58plctIzBlDTZ2byLY9Uj2w6SyKczLdZDalYmoX8omo2kyOTt+BpkXVzzWXXcUX3DWxgJ3aTHbPZzNzcHC+88AIGg4GOjg527NixYuG9iiqqqOLPGalUissvvxylUokgCDz55JPS76QWA5u5kDvOeoCPPPgx6mWiTHI2kyOT3/28cChINpmlZq0YZ6SjGbKpLCqdGLrP7PVRU4jLUpDN5qTYzHc8RDKUxrnBAkAynCaTFC3BAMZfmcd9lk2qazqRJRMTf/ejcynigZRku7U4ESMdy6Ayi8n56EwSc5tOqkdkLk5kupSka24T59ngcJTwTJTASKSk3Ngslo++OsvcQX8JiUilA51LnIgHnp7g0PdKiePmNtGqLRVM8c4/nFxBUGq+yClZaxz94dgKgtKGhztY+0AblWBq1qOv1VQsn3rLW3aBB6DxnBpJJnw5VDo5mz/RJVlj/LFY+2AbvTc3li1rONeJa4NNatdijL44J8ZIFXhaxnotGquA3l3+nh2rTWz9ZA+2ZbHq8AszUkzce0sjqqJLF/qmQFCq21J6z9O7vAz8alIiKBXGSwFDv5lm9qBPqrOhoTQO9g+G8OZ30ulcgjgW89/NZkQJ7sBpMeFi6zOSCooEJYDEYopkKP+uoBLrVliI1dlUZBIZIvndms4NFmILCYmwl03lSCeXYivnGgtjeTKTyqwim8qSiohxm2ujjVQ0gy8fl2UzSMoGALYuA7N55TOVWVSKSkXSqGQqLtl8BVduu5rzs9fhpo2mpibC4TCTk5NccMEF1NbW0tnZyTPPPEMVVVRRRRVLeP311+ns7EQul7NlyxYOHz5MJpNBiYoWerhIdiMfuvEjXLrtCpQyJelYhkwyI1lazR8JYu1cep/PpnNk86/jwaEIqWgGR68YY6SjGTLJrHTs1Ds+nKvM0rGZZJZMXj0wMh0n7ktKc2nUlyQdz6DJH+s7FcLRb5J07uPBlKSyk45DOpzG3C7mIRbHQsR8SWmXPmlQauRoHGKM5zsZwneqdDFFV4hr0qKCz+jvSknNBauzuf0BTj09sYKg5OgX73nkpTn2fnmghASj1Igbt0CMXZcTlMztejZ/pKukXYuhdarR1agx1FWIvdJw/MdjZQlKBreGhq0O6s6ylz20430uVt3ZXLbsveDoN7H+wx0oNeVT5m2XuWg4x1G27PB3RioSlAAM9TqMTfqK5atub2bNB1pLPkuH0xJBydppoH576T2PvDjHvq+cJh1Oo3GoMCyL647+aIyBZ8TjNQ6VSH7LIxlIM73Hy0TeHqdgNVhAcDxGcDwiEZQK46WA8FSMcN6ORKmRY3BrJCUtpUZGKpImPCMea+0ykFgUCUoAmViWVGwptqpdZ5EISkqDkkwyIynM2/qMJEMpgvmF0Ww2K8ZW+eFo7zZKqrJKjZxsKist/Nl6LGSTWYlUlsnkJBUHp6yeS7ZeyYWuq9jKZTi1LqxWK1NTU3z9619Hq9XS3t7OLbfcskyJrYoqqqjizxuZTIa/+qu/wuVyoVQq+dSnPsXo6CiynBwHdZzNZVzXdge3XncHdploq5VJZsnm81bh6TipWBpLhxgjpGJpMskMCq2ouOM9toi1vTQuK0htROcSJAJJyTorEU6RSWQQDOKxC0eCWDuXchipWEZy0EiGMyQDaWl9KLqQILGYkmzDksE0Wocg1SMyFyM0U0rS1TrFnFXCn8Q/FCY0WUra0TrE8tm9fqbf9ZYSlBQi+QNg6PkZTv68lAyksQlobAKZJBz+7sgKglJNvxlzq3jfoy/OriC5dF3npvuGBirB2KgtsbBbjsBgpCxBCcC12U7rxXVly1CI5BpbT/l1zvdCx1X1NF/oLFtm6zbTcI4DQ/3KeNFzfFEkIFXgaWktavS1GrQ15RcydbVq1t3fvmK9cP5AQCIoNZ1bIxGBAKlvCgQlS3tpXLc4HhVj6jxBqTBeCpje5WH6HZ/Ud4XxUoD3+CK+vKqSYFaIYzF/f7mcOGZDhbjMrRXfO/K5qmQwTaKIZGftNEgEJYVWQSqalnJixiatRFACMbbKJJYUm2ydBslJSSFANpkhm7+OuVVPNpWTzg3imn/hWEu7Ed/AonRsJpEhE8ugkCnY0L6Zczsv4TyupZeNtDS2EolEeO2111i/fj1Op5MtW7awe/duqvjzQHU7wH9iPPPMM9xzzz0Eg6VJBhlymulkde1GGrY6GPzlNCRBY1GhzycHRl6cY+GYH02NjmQ4irXFgK5GjWCQkwxn2fOPA2iKfmBt3Ua0NWqmd3kZfmFWIlMANJ/jxNppwtSqY3Ekyt4vlzJmO69yk03nmNsTYHqXt2RXde1mC807ahH0KoZ/PcPBbw6VHLvuoXa0NrVoNedLsu8rpefe8GA7mUSGPf84sILMY2rVser9zQSGQhz/6QQDT5cyopsvdOLe5mDs9TmmXvcytydQUt5zYwO2HhNxf1Iih5Qcf7ELQ6MOa4+hrBJSeCZGKpImNL7yWAD/QJhdf1N+R33b5XWoTaqKQcPCwaAoszhcXkYpl80tSWn/kUjHM2TTWTQWQSLUFOPk0xPllZ/ycPSbcG9zcOixlbv2y6lcFSO6kCCbqrxLzr3VjlwlLxl/xei5oQmZAt75u6XrxOeTxPNyVn03N5FJZdnzxSXVhpM/E8eFYIC+m5uJeRPSOPQPhPHnpRdd22y0XljH9DteiY1+/MdLSgx9NzWidajZ9+XjJMOwOBKVVC1AJHe5t9il5+PEvyyNx+YLndSutRLzJph6y0tkNllSx/pNduRKuUQAK9QZRGKV0a3D0WuWmO7Fx1raDKjzC9cAgbGItDvA4BZQG1RojCpsMie9PV0olAoGJsY4yOtYHWYmJiYYGhpCrVbT1tZGV1cXzz77bFVhqYoqqvizQyqV4u677+ZnP/sZqVQpK8SIhX6203aWm2Q4je94CI1VQG0uWE2lOPD1IWrWLi1wmZr1yFVypnd5mXzDw+QbnjzRKIu9x4y53YCuVkV0LlWiDAPQcLaDVCTN/P4AM7t9zOxe2nHUsMNB/WY7MU+Suf3+FSo6a+5sRqFR4Dm8SGgsWkLKUZlV0o7240+MM/CLUnJ380VO6rfYOfWLCXwnwxz9Qaki45r7W9HZ1ez+4kmic6kV6j9rH+xCJoM9/zggLUIUo+eGJtKxtKRIsxy166wkw2lRYaoMwrMx6aW6HI6dQUGy/94Wxl+bJzhcftfY/scGMTesJAoBCFaBXDonJcb+WOSyOTLZ8vUeeXkWz/FFiUxTDl03uInMxlcQxcdfXWD81fK78gCCEzESiyni3pU750FcMLK0GnBtdTL+yvyKcscaE20Xu1CbVKLCUB4FtamGHQ4ad9Qw/JtZ5vJWH9GZJKMzYhzVe3Mj5nYDh787SHROfKaK1Zn6bmxGJsjZk1dvDY1FOfgN8VlQ6eR0XdNAaGNU6tfiY9svdlG73krclyQwGCE6lyoZ6007ndJYBDGBWIC124BjlZlEOM347+ZJBUuPrVltRmMRpPE99a6H4RfE+uscKgx1OkwNcfF3wKLi5JNjRPMLevpaDdq8ZHavbAOtfXVMvu3lFEeY046Qy+YYHBzkuuuuQ6fT0dXVxd///d9z8cUXl+2jKqqooor/zDh8+DC33347x44do1gkXkBNC320Gbup22hl8jVxrtPVakSbUETLs8XRMGqTqFRkcGkxNerRWJTEA2mOfH8UwbKUMq1dayHqSeA5ssj8wUAJEcXZb8a53or3dIjF0ShHHy+NJzqvaYBcDt/xEMGhCIeHlkjYxiYtHVe40dk1jP9+noFlajldNzRgaTWw/6sDpONZji7bbb/m/nYy8bSoCrOMHKOxK+m/swXvySCDz80wtWy3t73PRMf76hl7ZY7ZvX4pt1FA/XY7TTucZBLZFWUAznV27N0mFtqDBIciK8oTgQRxf3LF4l4BsflEWcVMEJWddLWaskqRAOGpOEd+OEJkvvy5M9lcCUH4j0EmkSWXyqIyqUjHEyvKT/18QrL3KwdDg4aGs2vKKlYd+Fr5GLaA8GwMuVB5P3HD2Q4Eg0pSF1qO7msbUOlV7P3yUrumw2nCeXJZ783NkM1x4BtL7w6F50NUrmoiPBfnRF7tMToX51Q+P2Ru1dFzUxMTby5I1x/93VJ813q5C1u7kX3fGCQdThP3pDj8naWx3naZi3Q0LSknjf9+6Vh7n4nGs2vIxDPM7vWTDqdLjnVvsSOYVBKJbuoNjzSeNXYlth4ziVBGJFMp5SXHmlv1mBqXYvTobFy6Z6VBidYuoDYLGGQGdrgvQaVTMDk+z3H2oHbImZqaYnh4mCeffJKWlhbOOeccvve971UVlqqoooo/S3zpS1/iC1/4ApOTS/GKAhU1uOhiHTVtVrKZLKHxGIJWKa4nmhUkgxlOPzOFqWnp99jWYSSsj+E9vkhgMEJgMCKRg4wNWhyrzMwfCRDzJBn4RWl81LijhnQsQ2AwwuJItETdx9Khp2mnk3Qsg+9kaIVwQMdV9Wjsag49NkQymObkvyzN1wpBnCsDI2GGX5iRbLMKsPeZaLmoltO/mmJxJMroi6VxStvloory4e8MkollmHm39Pi+m5tQaBQc+d6IZElXjK5r3KSTWY7/uHxuqm6DlVQsQ3BkZdwFEJ6OIVPKypYBjP1uZd6mgNbL6pg/FCBSIW4beHYSrb38eo9KqyCTzEjWeX8sspncEgl/GRaOBwnPxiR7tHJwb7OTDKdXKBf5BkL4BsqvvQIk/AlingSJQHkistYpUNNvIRFOSwpCxdDVqmm/sp7p3d6Svg6NiwRuS4ee9ivqGXlxFt9JsR7JcEZShXJvs1O30caxJ8ak8TCzd+k8bZe4EEwqKa5J+IueBYU4XgJjEYbzSpLFx9asMdN8fi2nfjFBaCJGJpYpUQRrPKcGpVrB4fzm0PkDAUkRTGMTcG2xk8uI58wkKTnW3mPC2KiVruc/HZKOVWgVWFr1JAKiDZ7KIDD84oxE1tM61CIHIQNuWStOx3r8/hDTTDKmPIlMJmPPnj1s27YNvV7P+vXr+ad/+qeqwtJ/YlTt3v6TYdeuXVxzzTWSTG0BcuS0sYoWdTeCQSDpS9J3exOWFgP7vzVYlmyy7f/XSzKcYt9XVr5Et13pom6dlaNPjLI4EkWwiecsYONHO5DJZBLhomBxVfh/380tjPxuloWDQex9RkLjIUmFqGadmfrNdmnRrPlCZ8kEau8zonEITL3uxdSqw1ivLVl0MXfoiflSJH1JWi6uxT8SJji4NHEX17X7+gZGXpyWLOOWo+emhrJyjgU0X+QsWXRZDoNbIDy1rG0FEAR5xWuCKE08+OtJqc2WY/3D7Qh61XuSev61+LfYvb0XOq6pp2aVhSM/GFzZNnn03dbE4nT0jLZvGmcZkpSANL7LwdCoRmvXsHBwpdQiLO32L2dfAuK4nz/sIzyRWDHmoXS81Kwzl1xHsAm4N1lFspwA3e9r4FRRgG3tEncH+AfCNF/kRF+rKSE51W60SBLZmz7WyeJ4rIRYV3jGajdbaLvYxelfTUmS8gVyIYiWezKFvNTeLm87WLPGRNc1jcwd9jNYxqJl08c7UWmV7Mrb0RjcAguTPg7wBhl1mlwuJymFWK1WLrjgAn72s5+Vbcsqqqiiiv8seOSRR/j2t79NIlE6Z5uwsZ4dmOt0EsFi62d7iPmTZYm6nVe5cPRbOPrjMZFwssxma/Mnu0nH0pK1iEqHpBDjWG2i48p6Tv58gsBgBL1bQ6TIkqHjKhd6l1a6rmO1qYTI03NTA4GxCLPv+rF06EnHs4QnlxSSOt7nYjCf2Gk6v4aZd7ykoktxjK3PKKrGqKDj0qXvFlAgYplbdZgadZKd1nLUbrCSiqclBZrlcKwxEZ2OSYSO5VCZVaSiqRXKQWq7ioS3su1bww4HGotKsu5aDmOzjlW3NDO1a6Fi3f8t+LfYvf0h2PJoNzFvosSKoxiGBi2tF9VWLIelPlyOAlGuEhp2OMpKYBfQcZWrYrurzCoatzsYfmGmbB3MbToMLvE9QG1XodQoSsZ9/TY7gdOLRD0p3GfbCU/HSshv9dvs0uaI/ntamNzlwX9KfCFR6eToajUER6I4N1ho3O7g6E/GpHFU/IxteLiDdCJTYhldqKulQ0/vTU2MvzHP1JsrFxQ3PNyBSl/ejlrv1rDm7lYWDgcYfG5GHMeLKSaSgwxyFINJT3BxKdZcv349X/rSl9i5c2fF9q6iiiqq+I+OwcFBbrvtNvbv319i5Sagpou11KmaEAxKkoE0zRc4qdtk4/D3R4jNr8ytbPp4F8nFFIe/O7KirG6Tlebzazn+5Bih8RhKg7JERajvtiaUWoW0aKB1qqVrCBYlvTc2MvG2B9/xEIYGDXFPUrIlM7XoqN9ilxbFajdYmNsfkM5tcGvQ1WiYPxhAY1diajSUEJC0TjWZpKgEULvBQmQ+Ltq/5VFc18Zznczs85W1AYOV+bblKM5DlIPGrpSUcYqxvL2Wo+fmRsZfWyBagezTc3MjOqeG/eWs6/4P4N9i9/ZecG220rBDtEgrWAAuR/OFThLBFLN7K9u+CRZxHJdACUpN5bbVWJRonZqypDIQ1a2UakVZ+5JC3UPTMcJT8bJ92HyBk7HX5yEtnquYnKbUyHGuszCd3xzRfIGTsSISu65Wg0ItIzQeo2atGVODTrJnA3G3v/+0WO9VdzYTno6VjM3CM2Zs0tJzQyODz01L31dqROUxEDcWqHTKUvXTvO2gvl7D6jtamN3nKzvuV93ZjM6hlkjqGruSsCfOMd4lqPQgU8ikd76amhpuvPFGvva1r5VtyyqqqKKK/yz4/ve/z3//7/+dkZERiRSuQImTBjpZg8GilQgIa+9vI+5PlrUoda630LTTyYl/GReJMMtstlbd0Uw2nZWsqhSCXFKI0bs0dF7tZuj5aUITsRW2bHUbbZhbdNJ1jY1aQhNLOS33OQ5i3gS+EyFJVaeY9OLaZGPmgA8yooWYfyRSolJkcGsJT4nnc51lY2YZeUmhVZCJZVBbBUyNWslOazkKJK1iBZpiGNxakuFUyb2tuE4ys0I5SGVQSPZ25WDtNKBzqis6nAhmBatubWXqnfLWdf9W/Fvs3v4QrL6rhZg/wVCF3JJgVtJwdg3Dz5cvh/x4y2RXtG2BZFcJtl4jvhOViVDlxkvxNZ1rLBLZpzCOCtA6BHRODd7jiyi0CgS9gphnadxa2sV18IRfVBZLhpaUkQBsPUaJHNV6SR0Lx4LSOFYIoLaqic4lMLi1NJ1bw+Cvp6WxV/yMdd/QQDaTK7HNK9RVYxNYdXsz46/Nlx33Xde50Tk1K8RHQBy3a+5tY3a/j6m3vNL49qcXGOAQcnNOEmBRq9Vs376dL37xi1XC0n8yVO3e/hMgHA7T19eHTCZj+/btEkFJhoxmurhIdiMXyK6nRdbNtkd7WXVrEwCDz05y+PEhiejRfKGTbX/RK1mtTby9wLGfFinB3NYk2ZdN7vKyOB4hviC+BSZ9Sbqua5DUlWKeZEmyITyRwNgiSgmG5xLIFDJ0+V3C3uOhEps0e4cRXY1aOtfyF8f2K900bBXtxBZHoiWTq2AQPev73i9aYoy+NFdCUDJ36Nn4UAed17kBOPWLyRKykLXLwLa/6JVs3JYTlPR1Amd9pkcqX0FQEsRkR98t4vXLkXA2PNjBhke6VnxeQM0aE1q7Gkt7ZXnEA/88xDtfKk9Qqt1oYevnelZYjxXX0dCornjuPwiC2BaVsP7hDjY8Ut5ObvDZaXb97+MVCUoApkYdjh5zxfK+WxpZ/0CHZOUnISmORWOLlq2fXeqnAsITCZE4JIgLdl3Xlcpfzr7rlwhKWz7dQ/89LSXlw7+eEQlKBtj4wfYVMtyF8WJq1dF5pVsaByDWq6Dm1XFZPfY+EzV5Ox0oVWWydhgxukvVGKTEoAAyhQy5uLEAjVNAMCAR2jLxLMlwCk9e5r3jmnoE65JS0uwBP55jQamemz7WiaFWHA8LhxeZ2u1h8AWRoLThIx0l9np7v3RakiE1d+hZc28Hq97XyXbZ5exIXsUG2QWoEZ/zxcVFfv7znyOTydBqtXzhC1+giiqqqOI/C3784x9jNpuRyWT88z//s5SsNmBmO1dwkexGtsguoPuKJtbe14GuVvwdPvEv4yUEpQ0Pd0hzyejv5hh/bV5SxDHW61j/4XZ0eQuPhaMBZvYsvdiqbVpaLhFls4PDi8SDKcnyLTIVR6WTSxZvcpUchWop7F+uNGRq1mPvEuOOwGCkhKBUs9ZMzRoLjTtFW4vxVxdKCEq9NzfSfU2DeI8pVhCU+u9tYcOD7aCC4Eh0Bcln1Z3NbPpoJwBz+/0rCEqdV7nYmI8pPIcXVxCU3Gfb2fxoNzpHnsCyjC9jaNCy/oEO2q8ob8UGoiKotaNy3BUai7L7iycqEpTWfbCN/ntbKh6vq1WJpLN/AypZsoFIEtvyqW7MyySqC3j3K6fOSECydRrQ12orHo9KVCftv69lRVGBoNRzU4PUT8UoEJTcZ9vZ/IkuaUwWUCAouc+2c9ane0ruMxVMSQSlzqtcbPzQ0rMEoqVg4T2g5/pG+u9oKWnn6V1eaby4tzrouLK+5NoFgpLOJaCv1Zbssk9FsxKhSWNWIVfJyxKUQLQ9LLz36FwCLZfWSmSqyEKSwFCY+f3itfpua6LzqqWxePJnY4y9Micdu/WzPZItYGQqzpHHRxn8rdgGvTc1seVj3TTKOjhfdi2bQxfTa1yLHAVyuZwDBw5w/vnnI5fLOeecc/B4/s8T6qqooooq/l8gnU5z4403IggCnZ2d7Nmzh0wmgwqBLtZxkexGdsquok7WxMaHOum6Wsz3jL0+z5EfjErkIcdqE5s/0SXZo42+PMvAs0u751sudNJ5rThXeI768Z4IEvPlrdfCadw7HNKxkbk44ZmleCk2n0DrFN+rk4E0ckGBxiR+NzwZlwhKAIZ6LcYGnXSuYoISQPvlLhrPEXNecW+6VCFJCavvaKHzSrd0bDFBSWNXsv7BdlrylhkTr82XEE10tRo2fayL2rwt8PJ8m9KgZP1DHVJ5OYLS2vtbab/SJdVvOXpuaWTdB9oqavcb3BqMDTrMTZXtRk7+ywT7v1F+Icvg1rDxo52SDV45FNr2Xw2l2JaV0PP+RlbfVd5ObmaPnz1fOVWRoATiDnRbV+XYs+k8J+s+0LFk11dAWhyLGruSDY904lxnKSmOB9JSXmnt/a3SOCggOBSRCErrHmyj63r3irqLakSw7gNt9CyzGx57RSQoaexKeq5vlMYBQDqelQhKrs1W6jbZsHUv3WN0Li4pC1jbDVjaSnOWBcIRgEIlR64SlSCUBiVKjVx6jnPZHDFfEv+I+H33OQ4E81I7zezxMXcoAIikrf57W9A7xfLIdJzRl2eZekuMkXpva2LNfUt5vWM/HOPEv4h5cI1dydr7Omg9r561su3szFzN5uzFOOS1yJDh8/n4+te/jkwmw+Vy8YMf/IAqqqiiiv8sePfdd9mwYQMKhYJ7772X4eFhZDk5tTSwk6s5X3Ytq2SbcK+tof/uNsmyauDZyRKCUtd1bjqvFeea+cMBRl6alZR6BIOS7hsaUFsFqbw4JlJo5TjXWwCIzMeJzsclu85kMI1CEEkOADIF4ryRXy8pJigB2DoMWFrFeSe2kCwhKBnqNdRvt+NcI17Lc3yxhCji3man+/oGyaZtOeGk+aJaVt/ZgkIQlW6WEzWazneyOm9BuzgeXUFQqttoo++2JlCINqrLCUqWdj1r7m1FbRXEepUh0fTf1Yp7W3kLXABrpxF7l6lieTKY4cC3BisSlDqurqfjqvqyZYBotaeoWPwHQTArK55D6xRYc18rxsbysePRH49WJCgBGGq1WFr0ZS3jClh1R7MUXxejQFByb7PTd3vzijoWCEqWDj2r72qRbAcLKIwXS7uetQ+0lVjPZZJZiaBUu9HK2ntbpXEG4hp7IW5rvsBJz01NJdcPDEVI+MWx3LC9ZoUdX4GgpDIoMLfqMbqW2i+TRCI0CSYlCpWcZP6dQW0VSsZheDYm5bxUBgV1G23SM5IKp5k/FMCXj+Oazq0pWZMdeWlWynkptArWfbBdsgVMhTMceXyE2T3iemzrRbWs/UAbVlkNZ8kuYvPixWzU7kCPkVQyxauvvsrGjRsxGo3cc889hMOV3Xyq+I+Dqjbpf2Dcc889/PCHPyRbZP8gQ4aLZvpkmwBxh3DjjhoOfG2AZDjLwvEgwTGRtJMMZ3FuMlK71sbQczN4B4I4VplRmxQkfTD5ew/GFi3xvMqKxiYgy69vJX3JEpUdQ6MaR58JhUq0qTr+xBK5CcSEvKXVwOHvi+o5y3cLr32gDYVGzv5/GhStqvLXLKD7+gYWZ6LM7PJx4qkxEp7SQMPaY8A/HCYZhtk9XqYq7EYKDkaIzMaYebe8tYV/NEwqlibqLa9glAqnyWVykn/uCiQhnUgTL7PTvICpXR4szRUIRIhEkeDw8RLiVjHqtlhFIk1ljo8ox13B6s291U7LuXUMvzzDzK7yLN73wlkf7yGbLrVFK0Y69B5e7UmR5KTQKkvkOAvY/88nK94/wPgbc7So5BWJTglPgkwqSzJUuR9y2RzpeOV6JkMpQlOx8mVhCI5HWMj7si7H4kiU2YN+hl8SgyNHv0lSNQIY/OU0/sGQZBO45gOtDPxqSiIMHvzGkPgMIFoetpxfx4mnxsW2Spbata2+tRmlVsnuvxXVFzxHFpeuJUDNKgv6Wo20KD5RZOtibTOg0ilJRsTxbO7QS1Z1AHFvUqKyCjaB7vfVc+oX4rMdm40RGAwxmV/gW/tAGwCGb4ljO2lJMKo9xPjkOPF4nM985jP81V/9FUajkddee42OjvIktiqqqKKKP1UMDQ1x6aWXMjRUuvtDi561bMcgE8m1/fe1kIlnOf7EOLN7PCiUkMrPR1Ffit5bGhn85QSpKMQWEqRj4lyUimaZesuLsVlHaCxKJp5CMKgwtRiIevyMLrOtbbusDp1dzeiLc6SiSDZXBWx4pIu4P8mhbw2vsGUzt+rour6Rweem8J8K8+6XT5WQe3S1KloudHH8iXEWDgVJRdIEBkvlpC0degKDEQafm8J1lr2ims7sfj+WFv0K8lABxQt85ZBKZs9o15EIpcgmMkQrxF7hyRjB0TDjb1UmbBz+9giqCvwcY7OOZDh1RiWmZChNOlF5Z1XfLa0go6KlyXvBfbad5vNqGXh2sqyVXWgqTiaeQaGusP8kX/WatWbJJqMY468uMPPOgqTMVe5438kgnjPIZMcXUwjmyguCmVSWXDonKl2VQdSTIBlOVbRtmd7vR2WsrNp08hcTOHpN4r2qRJJfsQXega+fRmUWX31dW22ozSpGfys+U9GZJLu/eEJqp/UPtZPwJzme38FZbItnaNDSf2cLC0cCEiHvVJHNbuPZTmydRmb2+kh4U6SCKU4UycdrrILUT4UxV1BRUAhKEospvPnkTsultcS9SYk0OPn2grTIprarWHNXK47fmXAf7oQcxPrneOfYbtK5FG+99RbNzc2k02k++clP8r/+1/8q225VVFFFFX/K+NKXvsR/+2//TdpBC+LO/Sa6aJf1AeJGs5aL6jj2xCjJQJqZfT5innw+Jw26GgFrl4GpNzwsTkaJ+5MoBAWQwnN0EY1dKamwaBxqVDox85+OlxKvBYuShq0O1EYlw8/PriD3NF/gpG6jjSOPjxKdi6+w9eq8uh6NTeDI90eZftvL9LteKEpHuHc4SC6mWDgU5NQzk6SX7YY3uDWixVgaxl+bwz9UPmES96YJDIeYO1J+B3/UGycRTBKroD6djqfJpbOSLV45pKIZ4ouV46Lp3V5s7YaS+ytGeCrOga+dkpRvlsPaZRCJNhWOVwhyUpE0kbnyeTtrp4Hu6xsZ/u3MCgu8PxTrH2gnl8lxsIz6KUBiMUWmUtwFkBbHjEqnLEtWOvydwYr3DzC914dgUlZUmooH02TiaVLRyjmtbDpH6gw2x1FvkvBshUqkwXs8SGCsvJ1M3Jtm4o15qX2NTVqJgAR5slMRKanz2nom3piXSG0Dv5iSViRMLTo63udm4OkJkSAFJepmXde40dWopTg6PBkvsT2s32zD1KjjxE/EXFVxrGxo0KE2C2QS4nX19ZqSBfDYXJxU3lpIqZHTckkdo3n1p3Qkzdx+HwuHfNI9KDQKND/VgAzSuigT5tMMTZ5mdnaWe++9l49+9KN0dHTw7LPP0tBQuimyiiqqqOJPHcFgkA984AP8+te/Jh4Xf49lyHFQRzfr0cpEcnDrZXWQRbSwOh1G0CtJLoq/s8lgmqZza5h610cmliHiSUBhHS0D3uOLaB0CMU+STDKHxi6gr1WXJfe4tzmwtBqYPxyADAwsUz9cdWcriUCKUz+fZOZdX4ndlsYm0Hl1PaOvzBEaj3Hkh6Ml5B6VQUH9VgdjL88Rno5z4snxEgUaENWbIjNxpt71koyky9qzgThfpuMZMhXW6iJzcZTaygyeTDJD9gxxVzqWIRVLk46Uv0AymMFzLMjC8UDFcww/P4Oigt6AxiaQTWZInkGJKXmGtU6A9ivrUWoVZ9wcdyaYWnV0Xd3A4HNTBMpYCMe8SYlAUxb5qpuadGVVqnwDIYKjoYp9BLBwOEh4rnJ+MhlOk4qkV5DECshmcmTTWTLJ8vnLRChF3F85BvcPLqKxChXH2dgr81ha9eL1FaC1C8SKXGZO/HQUpV7sZFOrDr1dIxGgUuEMB789JNW981o3qWhGsiv0nQhJZCvBrGD17c3MHvBJmwKLRUKc/RbqNtnwDS6SDKbJJLNMvL603qixCUs5XAXIVYoi5UsF0YWElAeuWWsmHc1I5bP7/ejymz4UgpzeW5qYeEOPdUTcoJtoC3BwYg+hcJAf/OAHPPXUU1itVv7rf/2vPPDAA2XbrYo/fVTt3v6D4bnnnuP9738/0Wjpj60RC+vZiSATcG2zIeiVjL08j7XLQOc1DZx+dlLaTVNi/fSJLmTKZdZPeRga1ay5q53AUEhK0hej5eJaatdbJcKRuUNfolrk6DdhdGkZeXEOfZ1A4w7nSuu0PBlp1R3NKHWKsvYnANv+opdYIMnBr6+UhdM4BTY80EF4JlZWpltfJ7D67jZRzreCNVv/PS1M7vbgP1k+0WPtMpBJZcsSagowtmgJjVaeyPR1ApHZM8yEQM+NDQy/Ml/Rrqx2s4WOy9zM7PdJXqN/LDROgcazaxh7aaoiEei97N6aL3SSCKUq2qL9Idj2F72komnJErAc2q504T21WDKulqPYSrAsBNDbztz2Dec5zmgtt+b+VoZ/O13+OoJI2goMhkvs2woojM/QVLRsoFazxkTHVQ3M7vFKSkvFqN9mp2G7g3f/6RQkRbWw4n5z9JswNekZ/vUMgk2g7cLS50zjFMimRWJh/z0tqIxK9v/TSgtHBNj26T6i83HJarEYHVfX4+y3cPjxobJ2dwWS0qFvDSMY5LRf6Wbo1xMkwxConSZi9XPy5ElyuRxKpZL6+nr6+vp44YUXVtaliiqqqOJPCDfeeCNPP/10CSlcgZIe1uOSNaPSyWm9pI6BX09DSlQOyiSyJYRtye6sTUff+5uZfKu8bdia+1vR2TXs/rvytl/rP9xOZC7OwM+nJEWaYvurzmvqGX1pmlQUWi6pxX86VGJvVbCIU+lg7f2djL02X5a00nJJreSLXkz0KGD1nc0Y3Dr2feVUiapScT3MrYaKpBxDg5amnTUrSO3FcG21MbO7Mpn6vWzGQFSmic5Unv8tHXoMLu0Z7cg2PtKBQqPg3f996ozXOhNqN1iRC7KK9/Nedm8qswr3VhtTu31lLdf+ELRd7qJug5XjT46tIJwVoLaraDjLwdAZJLBRgdp0Zvu85UpDy2Fu1ZFJ5UoUu4ph6zHgWG1m4GflLViaLnRSu9bKwe8Ml22P1Xc3Y3BVHp9rH2xDbVTx7hfK92n/fS0kfEkGnpleYbsI+efs9wukgimaLnASHA0THF56TgpEQ1Sw+ZEupnZ7JdWmYvTc1IC1w8jerw2WvY/Nn+wmFU2LBMQC/yv/NWu3gY4r6jn201GiM0kadzqIBZJ4Di+SyqUIrZ5kfHZMUlOy2+0YjUZ+8pOfsHXr1rL3XUUVVVTxp4DDhw9z/fXXl5DCZchw4GIVW1DKlFi7DGjMKmb2+NE4VPTe1MzQC9Msjoq/xUoNpNNAWsz1qPTLrJ/yUBqUbHyoA8/xYIntVAHOdRbc2x0ceGxQsooqJpwYGjSYGvRM7/aiNChp3GZn5KVl7/R5m6nWS2pR2wROlsmtAWx8pJN4MMmxMjkYpUbOhoe7CI6Gy9qnKA1K1tzdwuw+P9O7y9t4tF5Rh+/EYklcWAxdrQa5EokkUg7FlnblIFiU4gLSGdaQms5zMnvQt9LGLA9jk5ZVt7YwtdvLxGuVbejOBKVBSe16C3MHAhVt0d7L7q1mrZlsKlfRFu0PwcaPdpKOpjn07ZV5ygJcm60lZJ5y0DhUxCtYHUvfqWC7V0AlonoBndfWM7XLV5EUtf6hdgKD4ZXjm/cen/p6Datua2Fqt4epN1fG3LZuI03n1nD08WHS8VLrNhAJeuZWA1NvelBqoHFHbUk9lAaR7ZQOp2m9vA5DnYYj3xstex+bP9lNeCYmEZqK4dpspem8Wo49MVrW7q7z2noUagUnn5wAJbReUMvE6wuk41lCeh+hxllOnjpJNptFoVDgdru59NJL+drXvoZSWd0jXkUVVfzp4u///u/5h3/4hxIlXj0meliPVVaDQoC6jXZm9/nJJLO0XiKqtYzkCQ5Qane2+vZmJt5aKKvK03pZHdY2A/u/OViW7NF5rZuEP8n4awso8sSeYlUj11k25g8HycQy1Kwx51WNl2IThSAqxKCAvpubmNrtJTiyMv/h6DPRdH6tSJAtQyZuPt+JY5WZw98fLmuj5tpkw95n4uiPR8veh2BW4tpsZ+zllfNmAcU2p+UgGBQkyygnLb9OJWs4EO3CDC4tCxXI6yBaeWnsag49tnLd9Q+FqUmHUqPAV2Fj23vZvSkEcPRb8Z1aPKNt3ZlQs8ZM8/m1nPrFxAolLek6WgXOfnMJoa0cBIPijKQttVWQFIzKQWMTkClKLQWLoXUK1PSaGX+tvJCGrdeIe6uDU0+Nl61H84VO7D1mjvyg/Phsu9KFoU4j2VIvR+tldaQiaTEXusx2EcTnzHssSDKcwdFnIuZPSgpogEQ0RAGrb2thZp+vbMzs3manbpONI48Pl7XMW31nM+lEVrLAlp5fQFsj0H6Zi6HfzBBbSGLrNZKOZ1gciZLJZQh3zjIeGGZuQXzGbDYbra2tfP/732f16tVl77uKP01Uo+T/AEgmk5x//vm8/fbbJZ8rUbGOHVhkthLlocbtNcgUMsZensc/EC4hIJladay6rYX5Q36Gnpvh0A9GS4gGrm02XBtt7P/qIOGJBN4Ti4z8vigxIIC5SSQjxYNJcpmcRL5ZTiRpvagOhSBn5MU5IrPJFQSlrZ/rIe5PcfCbQxz70bJEjABr7mpl6m0P3uMh9n1zaAVxx+AWCE8lic8nmT8SYPyVWcohMpskm8ySipSfWASbgKFeS8NWR0WSUte1DeRylCVzgbjIYOsycezJsYqEmtV3tZFNZSVv8+UwNKqxdZuQC/KKi3ZzewLoa7QV/VMFm4Brg0X0iK8wT8bnkxUTMX8oynm3L4e1y4DWri67KAMw/tY8gTPsyBcMULvOirFey6HB8uS1hvMcNJ3tZOyNOaZeL3+dzQ93oRDk7P678n3XdqUL1wYb6WimLOnK2KJF79TScFYNJydWJlwAMokMYU/54Cc+n2T2oF9SHCqM2wIWDi8SnByUxvfaB9qY2u2R1JCmdy0tbBWe37n9PoZfEMd7sXJS24VObF0mTK06iVAXL2JUZ9JZlEUqYNYew9KYT4oqZIFxcfx2XF2PzqGWiH+Dv5xm/E2PVM+NH2onupCQCE3FxKbG82qxdhrR1xtIDoSx+OuxzNXjZhUHeBNTg5bJqUnGx8eRy+WsXr2az3zmM9xxxx1l27CKKqqo4t8br776KjfeeCM+X/GLqwwXLaySbRT/zJMXjC167H1m3J4EU296VyTF++9rQWfX8M4/nCQ4HF1BSFh1RxOhqRjjry4w+eYCWnupJau5TScRILLpHLm8vPVyUoOlQ4+jz0wqlmH0xbkVykstl9ZSt97G4e8NEp1LsfcrpckBW5+RunVWjj8xzuiLc0y9s5IQUyAGDb8wjaPfUpYAAhD1JkR7ijIED4D6LTZMjXrU9vJkl/ptdlouqEWukJXs2ClG/13txIPJigT3hh0OGs+pYfD56YqLMo07a9DXaJnc7amo9HTi5+OY3JXtROo2WYksJMqSuQqY2/+vJ3WD2NcF1Z+KUEHjNgezez1lFZGGX54hFUlVJCgBtF1ch7nVwPhbnopkqE0PdSJTyCrGs9ZuAz3XNzKzz7diDBbQdV0juWyuIonNtdmOoU5bcfykImnSsXTFOp56ZhrXJqs0PnUOVYlN4KHHhiWSn2O1CecaS0nsfeS7o9L/19zditoksOeLS4Sm089OL9V1ow17t5EDRRspCmNB79SQy0LMJyZNjc06QtNR6Z7GX50jGc5I97H2wXwMeFiM6/Z88ZRUz45LXThWWzj87UGinhT+U2H2nFpqv7rNdjLxDJ7Di6hkKmwDrdhSrQTxM+k8QVaWYXR0lG3btmGz2di+fTu/+tWvyrZfFVVUUcX/C3z4wx/mO9/5Dsnk0vurDiNr2IZBZpLIPgCNO2pQahTM7PET96Q48PUlApLGomTNBzqYO+Bj7JV5TvxssoRoYO0yUH+WnWM/HCMdTjP9ro+5Q0XxnlL8/Y5Mx4kHxJyX1iaSc5Yr4rReVIfaLDC920s6nF5B4NjwcAdxf5LjT4yX3ZDUeW0980eCBIciHPr+yApCTYF4ko5nmXx7gfkKC0zp/M7uVKzCIpUS7J0mVBpFRZJS93VuZApZWTIXiJZaDdscosLzaPlzrLq1hVwmW1F9SLAoqdtkQzAoVtgDFxAajzH2yiwzB8rHTkoN1PRbxfIKt5sOp5k6AwH9D9+OkREAAQAASURBVMGZCD0F6Os1aG1CWZVLgLFX5gjPnkExVAkNO5yEpqOcHC9PXrN1G+m82s3oK7NlrfdAtE7W2tTs/XL5uKp2g4XWi13IZLKyylIaixJLm7jwM/KbMiQlpageEPWVJ6il41km35rHd1Jsh+WEqch0nP3fGJTGd/G4B/CdCuE7FZKOXXNPO1PveCVCU3gqLpHnajc7cK6z4jm1KBG7Sp6bdE6yAgKRSFhshzj+2hwxr/gbU7/VhqFeKynOzuzxs3AiJJ1v3QfaCM/FJGLh6WeW4r+6dVac66z4hsIEhyIYEzaMJ23U08cgR5E1JpianuJb3/oW3/rWt1i7di1//dd/zdVXX122Dauooooq/r0xNDTEXXfdxe7du6UNeSrUNNNFi6xb/FKevCCYBeo220hG0ywcCpaQkwBaL6nD1KLn0GNDJPxJDn5nuIRY1Hyhk5gvyfyBALP7fYTGoyWkCK1zSREmm8mSya9dFJ8DROJH/RbRRmrmHd8K5aWafjONO5wc/+kYcV+S48sIqXqXhpp+C6MvzuI5voh/JLLiGoJZQTKYYXK3l6g3UZEwEwskRFWdCrB3m7B1Gpnd5y9LZjG16mi/op6xV+YqEoh6bmoiGU6tFH3Iw9Khp/3yeoZ/M1OR7FS3wYal3YDvVLCiitDIb2fQ1VW2QTO36kmGUxUJN0BZ9aI/BpkkzO17j7yZAmxdRoKj0RX9BqISErmVVn/FqNtgoW69De+pxYrkrp6bG1DplBVVobQOgb5bmpne411h/VdAx5UuZHIZR4qUH4tRs8qCtdMoKY4tRyaeJRVOVSRKTb7hIeZLSuOzMG4LGP71jETy09Wqca6xMPrKnPTcjfxm6RluuzRPaCoS/yi+r/qz7CQjaYlIBKINHYCgVZDNZEnlYyetQyDmT0rXmT0YIJvKSXXruLqe+SMBad3y6A/HpHo611to2F7D8Z+Iz29sodTJqX6TnWwmy/GRcRQyBeYRN/0ZN53EmLAcJ6mOs2/fPvr7+6mpqeHqq6/mm9/8JgrFv9GHsIr/66gqKf0J46mnnuLuu+8mFlv6YZUho5kuOmT90mfWLgM9NzUx866X0ZfmVpAgataYcG2ySz80/fe0MP7mQgmZpqDO0v4+F85+Cwe+M1RCbihgy6PdyBSyFXZtBaz7YDuL4xGGX5gVyUu+ZAlZprhufbc3ERyNlF18EmwCGz/UTnA0UpawY3AL9N/TQXAkXJHQs/aBNmb3+yq+yAsGQBDVYJarwiyHtcdANp2rSEASbAIdl9dx/MeVFQGaL3SSjmcqLrYBJeSSfw26rmugZrWZoz8ZrVjXrusaSCcyFYlO8N5KSqZWHS3n13LymamK7fZeY+UPwXJ1rnJYfWczR58cq0jKqttiRW1SVVTRArFvzkS8Kh4f76XctP7D7Qy/OFu23uK47iAyW171S+MUWH9/O4HBECf+ZWUAKtgE+m5q5PhTEyR9ybJ1KR5Dmz6WV8k4uDLY7bquAccqEyd+Nl6WnLf2gTbUFkEi5i1XcOq9uQHfSJi5PQEaz6/BUKMuqXOxstjWz/US8yZKiEyxXJg9/B6VXkEkstRWO3fu5LXXXltRnyqqqKKK/9tIpVJce+21vPDCCxSHx3qMrGcHGtmSH1j/fS1orGr25JVYlivHdF3vJjgaZW6/n7pNVgx1mpLFmIKiEYiqlpG5eNl4xrHaROfVbqZ2exl/ZeU85VhjomF7jWT1ZmjQrlCnKdRN51DRdnk9p34+UZZc1H1jA5Y2A/u/OlC2fPXdzRjqtOz+4smyxBFLh57GHTUVdy5DqbJRQV2qEtzn2Jl6s3LM1HSBk/BsDN/xCoRnFfRc21AxoVNAuTb7Y7DlU92kY5mKi3oF67zR381UVH56LyUlENWtkFGRrGTrMdBzQxOTuzxlx8ofBBXoHGdWn6rfJiYGzqSm2XWjm5Hnpyrax1k69KTj2TO2e2F8qO0qEoupiiSy2g1W7D3Giu8Dvbc0Ym42sO8b5dWKem9uxNSiZ/9XT5atb/02O4ZataSqpDOXEp5UOpBrRbJdyyW16Gs1ZVUw4MxjRe/WsPr2FibfWmDqLW/JbwSIZMX6TXbJOq7v9iam3/Eukc6K6tZySZ6Q+PhQSV8O504ywjHUGrUk32+1WvnmN7/JTTfdVLbOVVRRRRX/N7Fnzx5uuukmxsaWfjcVKGmnnyZZu/SZxqGi/y6RyDn9theNRUm8SLHH2KSlbqNN2ozV8T4Xswf9JeSEgjpL7UYLjTucHHtirKwq0JoPtKLSK9n3lfI7vbtuaCAyF2fqTQ+CRUk2ni5RfSmuW+sltUTmE2WJIUoNrPtQF4HBUFnCjtKgZP2D7fgHQwz+cnpFOYhkD99AuLLajxIEg5JkIL1CFWY5dLUaFGpZRUUfpQYaL6hj5PnymwNBVHmWK+RntFjTOFTEA6kzqi2dCfVb7TSd6+TEv4xVJFy5dzggR1nVngLeS0lJ41DReE4NE7+fJ15B9em9xsofguXqXOXQfqWLod/OVGwzc7sefY2moooWiOO+Um4UKBkf76Xc1PP+RqZ2ecqOFaUG1j/UxeJklFNlYnClRs66D3XgHVgsO5aUGjntV9Yz9rtZ4oF02broajWS4tPqu1uY2uWRnAOKUb/VTuPOGgaeniy7eNt5bT2Gep1kzbhcwan5Aifh2Tje44s4VpswNmgZ+c1SHF6sLLbhkU6iC3FRZSmPdC7NQd4gqYsRi8XI5XKoVCquv/56fvSjH1XVlaqooor/J/gf/+N/8IUvfIFAIAAU1Crr6GUzgmzJD6z1kjqMjVpJiWW5ckz9WTbi/hS+gRCmJh0Gl4bpImJDsSLKqjuaicwnJGupYuhq1fS+v4nJtzxlSSoGtxb3Vruk1KexrbTDKqgJKbQKms9zMvb7+bLEj/qzbDjXWTn249Gy5KPm/Obvw98fKXu81iFQv9XOUAWidXFdYEldqhJsPUZ8Jytv4Lf1GklHMpUJQApoPLumxGqrHCTVm38l+u9pIZPMVsy5KLQKGrbbmTsQqGhV9l5KSiCSzBSCgtl95Yk/WofAqttbmHzTU/E7fwjeSwXJ0q5HrpKfsW/c5zhEZbEK/at1CCCnxI5tOQrjQ6FVQKayXaCxUYu911z2+QFwn22ndp2Noz8qr1bkPttOzWoLRx4fLVtfS7sevUsrxc3LCU8oRDJSMpyhpt+MsUHH8Avln4EzjRWVQUHfrc1Mv+Nl4XCw5DcCxDZz9lsYe1XMZzZf6MR7YrFE6axQN3ufiebznJx4aryEPLeQm+EUB5Fps8RiMWQyGf39/fzjP/4jF1xwQdk6V/H/HtWI+E8Ql156KS+++GLJZxp0bOEiKVhwbbNR02vm8HdH8A+EiS7ECea9wiWCUl5dydFrRl+nlYgWy1mgmz/ZBcCeLw4w9NzMiom245p6AsNhPEcWmXzbU3l3FqA2q9DXiszb5fZa+jqRWLQ4FuHYj8bKEnrW3NfK8G+nCE8l2fW/T1QknoSnkgRHwgy/XP7HWTDI0TnUOHrNFV/E1z3UA4jqSOWINoZGNd3XNXLku4NntIFLJzOERmMVCUoap0B8PnlGEoy9z4h3MHRGgtKaD7QiGJXs/VLlyXzg6UmC4+EzEnssHQZy6ewZSUrvBX2dBoNLi7Vdx1yF4OP0r6aIvEcA1HaFC2e/uaLKUeE+ataYWDhcPvFWIFIV2nk5ihfR3DvtZRWXCn3Tc2NDWSWrwvhou8JF3XorQy9OM7cnsOI8xhYtGotATZ+5bB8kfUkCg4tMvls+eRSfLx33q+5oZna/D29+ATbpS3Lwm+JCtGAT6L+rnfAyG7nCGLJ2GVDplBU9j0dfmgQapLHdd3sTY7+blZ7bYkKRe6edph21DP5qUuqHYkKSvduExqJaOrlAifXh4niE4KTYHu6z7VjbDBz94Rg7eR9Ewd88xr6xPQC8/vrrmEwmAF555RU2bdpUtv5VVFFFFf+nsGfPHi6//HK83qXfZjly2uijRSbGCqig94ZGFo4H8RxexDcQQmdfmnMiU/ES1RdrhxGVXsncfj+ze0sTLc4NFtoudTH46yk8hxdXKNLoalU0bKth4JlpPEcXMTfpGX+jfAwh6FWojSqJiLSc9LH6zmYM9Tr2/dMJop7UCvKxrceAY5WZgZ9PcepnkxWVawAmXl/A0WuuWO7oMaGr0VRUR6rbZKX14jrGX59n6i1vWcJIz00NxIMpUcmpAkGpbouV2Xf9ZyTiFOpwJoKSrceA72S4MlFGBVs+1p23pqi86HPoe8MIBlXFclOzAXOzHrVF/Z72dGeCo9tELperSFLynQwz8KtJSYWnEjY+0kFkLl6+bVKIpBYVmBt1JRZmBRQrZFbq64JNm7FZRzadXWH9ViDWqHRyVt3VysDPxkuIP7CkFLbm7jayyQz7vlqeBGbvMWKor6y6NPbqLO6tNRUJcSf+ZUI6Vu/W0LSjhhNFVjzF99t3k0gm2/f1JcJTKgpExf/rnWq0VoFKGHlp6b3FsdqErlbDeD4GjUzFS4j9ax/sIpPISApNweGo1B+6WhWmBj0xX1Jsy3z9C20YHIugr9VIBKW+25uYPxKAwz200UM8HuWUcR8LoTn8fj+33nord999NzfeeCOPP/54xfpXUUUVVfyfwqc//Wm+8pWvlKgmmbGxhu2oZWI+ydolxiinn54i7kkRHIsQnhbnbIk0kldXMrcasLQaJAWX5aSf/ntaUKgVHPzmEHP7AityRPXb7MQ8Cfynw0yegdgCoLMLkCezL7csUxqUrPlAu0h+eWa6vHrS1fVM7vYSm0+w96sDZ1QD8hwNMLOvQgyiBFOjqPRYiaS09p5WFGoF+/95sCxBSWNR0nFNAyefHK9o86V1qpErZUSm4xUJSoJFJEIVFJ7LwdCgITwbPyP5peN9LvR1mjPao03v9hLzJSoSlAAc3UbgzCSl94LaqMLWacI/FCYeKH9fQy/MkIqemW1Vu1HcFb7v66fL9nWBoPT/Z++9oyO5rnPfX6fqqurqnBPQjQzMYDCZMxzmYRwOcxaDGESRoiTbCte6vvZb9rvv3WddW9dB0bJkBUuycqJyJBUZhsNJnAgMMJhBzqGROuH9Ud0FYNDVDVmU5HuNby17idMHp07tOrXPrn2+sz9nUta9p6IUYdHOF2Py7IxWlcjX6ij5HIpzPnqZD9FpWSVvWJwfwa0uEntDnP1eX8kKUYLLjBKW8NTZS5KUsvMweGiCsfbSNsvO51fM++RNIcZOLckQZufz2ka0WYTWR2qY7J7hzDIZueJclQJWRJeARS69tdH3yihm0aQRlJLXB+k/OKpVeVpeGcndoFB/a4yOb/VqVZ26l31reBodOGLyEknJzAqS4/jpKa3SlKfRjqfRTsd3+9ievRrmYDo0zMH+X5PJZPjiF7/Id77zHbxeL9/5znfYsGFDyfGvYx3rWMfrhd7eXh544AF+9atfaVWTrEjU00bIENPaxa/wM907y8TZGcY7p0nPLK3ZC+PpFbJQvg1OUgPzjJ2ZZur87AoijRIRabgjTucP+pjomFmloCIoJvyb3fT+coTZwQX6fj3KyLHSh6CMggHRKyD5BeaG06tIMNVXB/A2OzjySZVYdDF5Qg5a8TTY6fnFCH0vjdH3ypiufNrAqxNkUlld4ok9LmOPyrokF3uVRMOtMc7/bIjhY5Ml+4nu8ZJfWKT/lTFdEoyrzsZExwxjJ/VJMhbFRCaVK0tQUiIiqb75sgSlTY8l6X9lrKwc3IkvXkBQ9KvRyH4BX7OT8c6ULklpLfA22TGWISnNjaQ5/fULZSVyQT2AOT+uvxdbnMuyz7pCKrCIibNLe3pFO1+MYoxpdQsYzatl3Yo2NwlQuz/GuZ8MrKrcVJwfTXep7+AqpaECnAkbjriESTCSS68+UDp0ZAKgJEEJoPdXo/S+OFqoimYivN27wjYTZ2e0e45d7iOwyc1rn+5cquKUQ/vfks+K7CuX8xrEJBgBtXKZLSRqso+ZVG7FfmPDnXFYhJMFgvfcSFojKJkkE556B5lUViUpFXxP8R5nR+YZ70hpdq/eG2C8MwVdYfyEyc3lOKcc51yqg6NHj3L99dfjdDp5xzvewV/8xV/ojn8dfxgY/9ADWIeKjo4OfD4foihqBCWLWeCe2+7lnsZHucywj/rrYrS9uQYAT62akK+7IwLAya/0UH1NEF+rurm/68+a2f3uZvW3L15gsjtF8qoAoFZE2fnuRqJX+wBYmMpgMBq0sTTfF6fpnkKAokBgk4vqa4IA5LI5ort8KgEK2PDGKnb/eQvh3R6tr7F2dQH1b3ay+elagjvUMUV3B8jOZTn3YzVYaHtzDfGr/YBK0tnytlpsYYnYpQHqbo3Qen9CG9OmNyVJ7g+y6z1NtDxcxeanazn/swHmh9LU7AvT+qja1p6Q2PRUktjlAV74Xyc5/8shNj9diyOpVj9IXBdk0xNJAPoOjJBdyFK7PwyoJKrNT9fiblIASF4XxuoUsEXU/97wUDX1d0RVG3rUto13xGi5t5roFV42P7V00q/lDVU03a3acMsTtez+b80Et7kAlWC2+emlts33xmi8M872t9QDsPnpWs2ewR0uta0AmVQWk2Ci5Q1V2t9ufrqW6BVqmUv/Jgebn65lvPBxX39HlA0PVWtt256soXpvgJf/9hQd3+tj89O12ELqg6zdH6b1kSV7YwSrR/3NkZTZ/HQtSlyVn6nZF8bf7OTX/+MEgwcmaH00Qc0+1YZK3Mrmp2tx1tkYP5Miss3NpjcltW5bH0lQd6s6Z8WAgKdRIZdbRAwIxK/2a/MboOWhKhruiBHc4aL+1hg7392If7NTnUt7vCts2PbmJFufqqPmphAIFOadau/QTjebn66l/o4o1VcE2fSmBM33xVfYMLJbtaEjIeNM2tQqW0DjnTFaHlyytyMuMz+ZZvDABL5W1d5CwU51t0WovjzAC+87ScezfbQ9WUNz4W/dDYpqw6jAyS/14N/govWxBLv+azP1d0TZ9HiS5PXqO2aPSGx+uhZPi4SjSiZ5Q5hNjy+z4aMJam4Okx5LM9k9jUUx4W5QcDcpVF8boO1J1YbjZ1JM98xiC6hJ3p3/pYlL/rRJ8xGB7T7kgFV7xq4ahab71PkiKKpdivYW7BYW83mNoLTtj+tpfkPBhgVf0P1LNVlTe1uIS9/Tos3LpntikF/UyGHxy/3Yq9Rkqn+zk83P1BIcS3Kt4W4ev+0prrryKrLZLNPT0+zatYumpiaefvpp1rGOdazj9cZf/MVfYLPZ2LVrl0ZQakg28aY73sI1hjtJGJrY+Fg14V0eyIAzoVBzfRiL00LvL0fJzOW0eCm6x8ul72mh5pYQAKe/eR6j2YAcVMkrtftDbH1bHQBDxybIZxdxFHyhLSrS+lgCJSYBUH97HN9GF7JP/VvBYab6SjWGk30Wdr67ke3vUGMGgxFSA3MaCaTx7hiJG4M4kzIWpwWzzcz4uRSZWQjv8mjxEqjVnmpuDOOutWNxQutjCXyN6hoR3Oqm9bEEdbeE2fmuRurviBDY6ORsgeDc+liCwFYXADU3h2h9LEHHD/p56e9PEd/to+H2iHad1scSKrHolXGmB+fwNNqxyOonSPKmEA13R7W27jo73iZ17XHV2Wh9LIHVq9ohcX2QTU8mqbkuTNXVfjY8VEXscjWWtVfLtD6WQA4LJG4IsvXpOlofX7rXljdUUXVNwYZhge3vaKDxzjiuOhuxy31seGhprW++N071tQFkj4XcQh5/qwtXnfqsIru9bHx4KbZqvDtGZKeX6e5ZLLKR1scSeApxZGinasOBl8d54a9P4t/gpK4Qc2Ip2HuTo/CMLRjNS7F4/S1h6m9bacMLvxrh4Ac78G100PpYAkuhsFftvjANd6o2HDk6Reujqr1BlV5rfSyhSYYlbghiEk1kC8mQjQ9XE92jrtfOZMGGPgvbnqqj5b5qmu9fipdaHqwifoVqbyUmseu/NrP5cTXmqLravyI+bbk/TtXeAM33xGm+p4rWxxLYq9UBRy/zsqFgQyUuI3mtJG9S7WJxWmh9LKHZO7zLQzad48Kv1QRQw91RaoptC/YeODzOy/94mlCbm7anarT3puH2CHW3hJkdzND+3T5aH0uw8dEEO97ZSGC7k9bHEiq5B6i7MUzD7RGiu7w4qxU2vSlJaLtqQ0+LXbP3uecGmJ9cIHmdOpdcdTY2vrHgI4C+A2MsTGewOC1EdnvZ9V+baF42twKbXAh2dSMtdpmf2G6f5iOq9gZoWWbvxXyeTOE5BbY42PrH9ZqP8DY6meqboasg/XvJu5q55D0qoVL2WYhd6qPnl2qyMn61D1dSwV2t2rTpvhhNNyZpS13OTa4HuP/uN1BXW8fc3Byf+cxn8Pv9bNmyhf7+f/9hhnWsYx3rKIWJiQl27NiBJEm8733vI51OIxit3HHt3dyZfIQdhmuIbQ5qa4+r2oa30UH1dep3cud3eohc4sVdr66z295ezyXvUOVIen42zMjxCYKbPdr1Nj1VQ/gS1ZfPjS+oOa8Cl6F6b0D7/gaovipA1dWqb89l8wQ2uzCLhVjlxiCX/GkTgc2uQl9pJjrVRL69SqLpvjieFpUUE9zsYmE6w4UCubzhzqi2ntgiIi0PVuFusBPa6iKyy0v9vqW1vv72CJFLPWx9ax21+8M03Rdn8Mgk86NZQtvdWi5KdJlpvC9OZKeXgx9p58LzQzTdF0eJqd/9wa0uGgubHRd+PUI6lSF2pZp3Mytmmu6L4yzkx8J7vNgjkibxkbwxSHUhXsKsVsxpvjdO013qPTYty6Mk9gZI7FXbtj6UZOe7GzU7uOsVtW3R3tcE2PBgkrZH1bxG031xLS/hTMo03RfHrJjJzOYwWo3U7Atp12m8K0awEHMqMZGm++LMDalxb+RSr5ZfAjUHFtru5sjHu2j/Vj9N98URC3FBZJeH+mXxqUkwIPnUfIjos9B0XxxbpGDDbS6CW9y89LenGDk2Rd3+MNHL1BhIcKk2tFdJzPTN40ooNN6ztMGb3BciXojbzaIR/yYX+Wwe0WnGt9GxwobJ64NU7w2o8+ieKrY8U4e7QZ3fnsaV9q67PcK2t9SrVaIKNvS2OFbYO3qZl7p9URrujpK8acmGTffG8bep8bW30Y5/oxOzoj6c6OU+am8Oa22dSYXU0Dwjr02hRFV7i161bWS3l6orArzywTN0/3SI+tsj1Ba+faSAlab74kgBK+efH8Iekai/M8K2t9VTvVfN8RbzbqJTtaFSJeJtdJC4NkjDXUs2rL05TPRyH9l5GDoyhqCYcSRklKiIf4uTpntVu8wNLTB6ZgrRpSalNj9Vw7Y/qtN8hLfBgRwsPGOXmdA2Dw13LNm06b44ngKhTXCYWMzlGetW89kbHqmm9pYluxjNBrp/psZdoZ1udr+nRfMv8SsDYDFoRLDE9UG136zqI5rfEMc7H+Yqw208eOnjXHPlNSwuLtLd3U1bWxtNTU381V/9FetYxzrW8Xrj61//OrFYjKqqKn7xi1+wmF+kMdzCQ1e8icsNNxMyxEjeFMLTrPpCb4uD6r1BBKeJiY4Z0tNZqgvxkavWxs53NhErrIft31EPJomFfRH/Fpe2h5Lqmyczn0X2qz5YUEzU7AsjBdS2VVcHiF3qw1o44GOSjHg3uAr/20TrYwlaC3shRpOB6QtzGhkhusdLeLsHKSBgEsDqNDPWPk1uLoczadP2qACiu70krwvha3FiEozU7AvjqFJjIHuVRM2+MMEdbjY9niSy24Ovxa5Vg6rZF9byEoFtTmr2hRk9PsXhj5/FVWPTclGgVp3yNKjk3bGz09irZCwFUo+/zUlVIQ4DCG724N2ort+ST6BmXxjBqa6z/lYndbdFqN0XIbjNTfXeAP7Wwt6M06za0Cfgb3Wy+cnaFXFN1ZV+AltUG1oUExseqqbpvirsVRKeBjvJ65figujlPoLb3FgUEwszWXwtDpRCDOSqW23DQKtTtb9JtYu9Ss1LOJIyNfvCTJ+f4+AH21ECItHCWl+0oTNp08Zvlk2YCvtI4e0eLbYCqLkpzODhCU58rhtbWKRmX3ilDFjB3tPn50hcH8LTpM5ZyV+w4TJ7W10WsrNqLqX62iC+QrwketS2VrdA4+0xmu+rproQy4JKePNvKtrbxJa31LLxoQSgVrVKLLNh/ArV3g23Rai9KUzNvjC2cOGgRb1C8sZQoR8BZ7VM7DJ1DpgE1S5KVLWhq9ZGPpun76VRzd7hSwrfMwV7T3XPcvRTXdhCIg23RxA86nwJX+IhuttLJqUq99TsC5O4Icimx5I4a9XnWCQMhTZ7iF7uw9vkxNvooO7WsBYvyUGrZu+hQ+Ok+mcJblXHYAuLqr0LPmL42ASzo2kEpwln0sbWt9Vp9woq0UwoxJjhHR4Se0OIfvWh+1ocVF+79P21mId0oRiKEhbY8FC15iOc1TITXSntfdz8RC1b3qLuBZsklWg1dGxCtWGDjeAWN46Y+m7HrvAS2+GndmYT11vv5N4bH6SxvpGxsTH+r//r/8Lr9XL11VczNvbvr8a1jtcX6ySlPzDe9773YbFYqK+vZ3R0FKvVSktzC3u4kTsbH6RpY6O2oEd3+bQqRce/1E12Po8SUh2a1WFC9lmxRdXfs/M5MCxtdtiCovbBbQ0rmCUT4TbV2aQnMprDAlBiMu5GO0pUgDQs5pZ0Re1hGckjaCQO0SmAYRED6rUkj4A9IhXaSkheK7U3xKi5Oaxdv1ipRfZasUckmu+LY4uKiA6B9me7OfXlHpSIhBRc0kKVfVYUn0R6Jks+m0fyCIge9Xd7VEIuEDE23FeNEpDUE9VpEF0CkkfQbOiokVHC6vh6nh/BbDVjj6oOTHAU2haIG/n0IvnMolY22BYUUQqLjSCp9zraPkXn9/twFOyi2TskIhfajnZMgcGgXdceuqhtWCIzn1N1QYs2DKljUoJSwd4CJ794gcxcVpsDAJJbwBFW23o3OJH9VjwNhb+NiCvayj6rtljKAavar0Mo2FBeYW8Ak7WgW+pX20peUeu3mMxR+xKxFxZW0WVdYe/gNrc2RwGkoKg+G0CwmbFIZgYOjjE/lFaTY96lfpWghC0iMnhggtEzk5gEI0rhOTui0gobCjYLi7lFel4aQxAKNizYxR5V7d3+nV56XxxBsFk0OxTt7SiMf+TENCwCgtq37SIbSh6B+RGVYR3a5kb2WbE6TAW7FOZhgTgt+0U8tXaiV3g1G1rsRXtLyH6R9EyGibPTSD4r9sJCKnsLbSUrB99/mvRkBslnpf6OKErcqtq7YMPBVyewOlR7N90RJ7LDi+RdsoscLLwLAuQzOUyCUSUtCeCILM3Dqa5ZMrM5FnPqidANj9Qi+6zYI+qYrJIZQ8GfCB4Bq8OCK6GssIviV9taCgHk8GtqcOWssWGLLM0Bg9HAeIdKdvI0OpC9VqoKiWdv3M3u7ZeyZ/5mwlRTX19PZ2cnH/3oRzEYDGzevHk9gFjHOtbxWyGTybBt2zYMBgP/43/8D+bm5kgkEjQqbVxruJtbrrsVb0z9KE1cH8QRs+EqfFRf+PUQRpMBa4Fk4EzIOJKqLxw6pJ76sjpVv2q1WbEFRISC3/c2OxHdglbxZDG3iOiwFP7GghKRqduvJhgy01ky8zmtKooSltR11gIWhwWTYGSxcKBFCUsr1il7RCK8xUPjXXEssgHRaSHVW4jhQiJyQESJSSSuD2KPSGRmcrz6wVOABVtARC70pYREbAGRyfOzLExlUMISSmGdwgK2gLo+xi73EdrixRaSsFiMajWaiIQSXZLGUyISvg1qUmCyI4XNL2Kxq2uFPSppcQxAPrvIdJ+68Sf5CjYsVCmyRyUEm4Xunw1y/rlhbCFpWfyhjl90CvS/MkZuIafGqAXYQhL2QhwqOgXMgpHJczNMdMxgj0rYgkvrlC0i4YjLzA5mOPNsL6LDosU9SlTEtiyu8TQ4CLS6VLPYTapdCrGKPSgi+5eejRKWtPXQYjGuaGuyGDXbghqLK8vWTltARClsIMrBwt9ZLIW2khYXuBsV7HEZd10h2eBXbWiR1TXcEZPJp/NahQk5KGrxqVRs67DQ/fwQc+MLK+7VFpK0WEX0WMAAk90p7RmvaBtWx9T5/X7O/2pInVuFGM8RkbU5O346RWYmi9Gs3r/VbtbmFqjzWZDMDL06odq73qElxIySam8lKEIGlLBqlw0PJwvParUNYZGFqTSyd8n2WtuozJmv9nLwnzqQvVaUuETdLWGUgr2NkoXZ/jSLWbCHJGr3hWm+p6owt9TryIU5a7WbWVxcxGAwYCvEz1jUbwlHIbbqf3mMfGYRwS6gxCSiO70r4iWj2US+cEouvNOH6LAghwvvQkzGFlhqC4vkFtS2clT91pEKsbjsFcnO52j/lvrM3bUOItvVxKFFNlBXV8Ou4FVcyj5qk3WYzWYOHz5MJBLB6XTyt3/7t6xjHetYx2+Db3/723i9XtxuN6+88gpms5kNja1cxn5u8N9N06YG7bu05oYwrhp1Dev60SBzI/NaDgCzGWfChr2Q81qYzsCyw3ZKZGmdMitq7iCwpUBSGs1gFo0U1ZUcCRvBrW4t7snO55g4q65pciGnZVbUtUnyWDEYDZoUsD0ia/kEyWPFEZOp3x+l6qoA9qiEwWjQKrXYC2tR9d4AtoCALSDS8e0eur4/iBJdFlsV2tqCEnPjabILOewRSatWbI9IOAqxVfMbEnhq7WoiPgtmm1ltW9joU+LqZhTA2IlpzFaTFi+ZrWpfUjHvkobMXI6pc7NL4y22FdV+R09O0vn9fmz+pfUOCtUE4oU17eAYGAzY/EsxhT0iYRZVgytRifR0mvM/Uwm0SljCXogbpEJe0GxVK9fMj2W0TYbi3xZJVM6kDU+dHUchznHEZO3eiuMvjlF0WbBHJC02t4UlLfcHal6imLsQlELbor2j8oq2yrLrmK2qXSSPasPYHh+eOrvW1hGRtDlqFo1ILoGBV8aYH1VzeatsGJWYPj9H78sjmEWjltuUQ4W2hTkrOgWyCzmGCxsy9oikxYZFGw4enqTrx/2YrWYtxwXqu6EU5vrgoXFy6TwWeSkWt6+Yh5KW8/JvdOJKKpgls3ZNe1TWqiC5kgrBTR5C292ITtWGYoEYr0Ql7GGZ+fE00z1zK56NWSrMWYfA4X86Q6p/HntUInqZDzkoYl9m76FjU2o+0iPQeFecxFXBFfGdI7r0PZCZy2GWzOr8NqvfM8Vrzk9kmRmZJ59R3+OGe2K4koo2t8yiOm5z4f854jbt4ETx3uVCTGeWTJBfZKoQB3s32HEWyOAARqOR4eNqRQpHlYy71k7kEjX2clc52dqyg92zN9HAZhoaGujq6uL//r//b4xGI1dddZUmwbSOdaxjHf8e5HI5nnnmGURR5M4776S3t5fqeDWbld3sNdzFlVv34q1W/Zu/1Uloi1vLeXX9eACDwaCt345qCU+TmsuZODfDYjavEWpMZhOO+BIZJ7zFjbPaphFLFtN5bQ02ySY8DQ4ShSII8xMZ5ifSWjUiR2E9xKSSiK0OC/lsHkxg84vY48v8fkwmvNtDw+1xMJmQgxIzhQp7steKIy4jOM3qnlREIjuX49gnu8jl8jjiMnJhP1F0CzjiMnND88yNpVfFCfaYjOy14qqzkbg6jKdewSQZIKfujTniS229zQ6NODzRkcIRkzGLxXV2KV4CyM5mme5W4y6LbFbHa1NtaguJSC6Brh8NMHhwXI0NC+uUYFPbWmQzYx0p5sfTWiwCakxRzO2YRRMWm5mRE5NMn59DClo1chaAM6auyZlUjq4f9GF1CRrht2jDIoLbPIS2q3vIJpMRR1zWYk7JU2hrWrKZsiz+cMRlLQ9kEU1q3se0tI/miC2PiSTkQt7N6rLgiMuYBEPBhpI2JskvENriwlWjzlmrs9C2ENcoYYn8wiK9hYrYjpikxe0WpTBnZRM9vx5h+vzMinu1x2VtH9MsmjGYjGp1HkAJiBeNV7V31w8HOP+LYRxxGWshBpIDS/aeG06T6p/DaFLvxSioYyh++0heK1anoFV9DG7zrIgpHHEZ0StADkSvgKfRSdPtKuHaHpGwx1ba22g2MDeaRijMLWPBhkpUxBGV6H9pjCOf7MIWlLCFrUR3e7V3wVKQdMvO53FUyfjbnDTdE8dVI2vfY4JdtXfRRxgwLOXWTIVnXog5Bw6Ok5nJYpFMCE4TVdcENF8DYLYayafVuCywxYOj2rYUB/utK+5tkUWV7wAIigFPg12L221ekYWpDD2Fw43BzV7iVxWIgSYTVYkYbdbdXMGtNEZbkESJ559/Hq/XSyKR4POf/zzr+MPCsFj80l7H7xV33303X/3qV1f8m48wmw17tP8WPAJNd0Q59cUu0im1Islkzyz9L6zepHckZTa+IcHYmamS8g3eFpUx+8qH2yEN7iZFV8JMlWWr5cIvVDmOixHd46XqyiCnvnZetw9HUtZkpxrvjHH62z0lpducdTY23FetO25QKwCNdUxz4bny+qqgVh6aG0nryqbV3xHF1+zk+OfP6bbZ8c4Gsgs5Dn3orO51qq8N0P/iCOnU6hJ7Ggpye68H6m6LMHR0oqwcXHi3h6rLAxz6eGdJ+TpQK9fU3him4zt9ZUtxX/rnLUydn1klC7McW99eRz67yOGP6NupWNVneSm/VRCg/uYo/S8PL0kV/jZYg91rbgrR+ZMB3XahnW6Se0N0fK+P4cOly11ufXsdFsm8Qppj1XX2hdcmqyfA1qfqOPu9/tJSfQLsfncLc2MLHP6n0vaOXuFlfiTN6IlplLiV1IXV5SqL2PHOBnKZPK9+oLR0yo53NrAwkeHoJ0qXWbcnJBZG5kin1CoM+UyeE8ukUdY6bsEj0HR7lFNf6iadytN0d4zp/rkVfmdscYjD/BKMkM/nEUURURQ5cOAAdXV1uve4jnWsYx3LcfbsWS699FKGhpZK2poR2MLlOA1u7d8iu71YXRa6vjeA1Wuh9roQ7c/2kpldvd63PVmD5BF0JUsb746xmF/kzNd6sTgtWER05b42PlyNRTFr0k4XY8tbasEAhz6ss+ZaQPYJzPan8bTYMYsmjdhRatyiW+Clvz9VUh7LWSOTuDbEkX8us3YvQ9U1gbLSazvf1cj8RJqj/1J6TfG3Oam5IUz7sz2M6cSVFhlC231c+HkF2Y4ycnW/CZSYhK/FwbkSMi3L0fpYgtxCab31ItqerGFxcZGjZaRLWh5UZcRe/OuTum38bU6S14U4/dULunIgctBCywNJzv14oKRERxHOpIyrVqH7x/rP7TdCBbtbnBYCGx0lvyuK2PxUDQajQfcdcNbINN9TTd+BUd355kzKmCQTYyf0y6IXEb/Chz0m6z67hruieBscHPnUWU02beVNQc21Ya2cvBKTdKUDPS12Gm6J0fG93pJyfNE9XqK7fRz6WKeuLJ2zRpXfszgttD5Uzdnv9pWcBw13R/HWOzjyiY6S/ia0043sFen8Xj8Wp4X6m8O0f6d/xXWPLr7IED0YjeoG/eLiIs888wwf/OAHS45tHetYxzpK4f/5f/4f/t//9//VJN0MGIiQpNmwVWtjVswkrw3Q9eMhsqksVVcFmB2dL5mrEL1m2h6vY+j4REnZMSUqUnNDmBNfukA2lVXlxXpKS5iZFTNtjyfp+eUwgyXiJXeDQt3+KGe+2aPJaF0MOShqslPxKwNc+NVQSTkv0Weh7dFaddzfKy2XVn97hFTvHP0HSkudLIez1kZuPkeqt/S9RXZ5iV7q4+SXunXvv/XRBIv5RV77V/18T3Cri9EzqZIycRoKcnuvB6KX+ZjsSuneF6gn0xPXBjn5pW6NCHYxlKhI411xOr/frx04LIWd725SZfm+3qvbpuUNVWAwcOJz+naqvyOKSTBy6osl8iHLEL3Mx3h7SldW7zfCGuwe3uFm+Ng4WZ3LOWtt1N8SpfN7/Zq82cVofqAK2Wvl4Afbda8T2eWl70X9+G45NjxcTfdzg6XnpRm2v62B2eEFXXt7WuzkFvJMnp1B9FmYn8jo2qH1sQQswrFPnSv9+6MJ0tNZTVruYoheM9kFVQYveWMQg9FAp47c4Y53NDA7tMDxEuM2i0aS14fo/vkQ6YkssSv9pCczDB2e0NqkFlMc4RcsGOe0nFcsFuO5554jFout6nMd61jHOkphcnKSO++8k+eee047MKMsutjIJdgMSweNXbU2JK+V/pfHMAlGYpf76Pn1aElpspqbwzirbBz6546SEmnR3V6MFiMXfj6MSQCzrbQMGqhVLGWfVZN2uhj1t0cxi8YV0usXQ3CaSU9mkYNWBLtZk5FfNe59hXF/rPS4JZ9A7DI/7d/q1ZV+Ww5/q7OsHNrGRxIsTGVo/0bpmEKJStTeHKHr+/0rZPFWwAT+lvLXKbZby5grQXCacNc5GDw8Xra/YgWmrh+WXgNBnScmi1H3/qFQeajNxcEP6McUSkSk5sYwnT8YINVbOrdikkw03x3n/C+Hyu6Tih4BR7WsSY391qhgd5NkwpmQy0r01d0SwWIz6c5x0SPQfG8VfQdGGTxY+ptA9AhYFFNFyTsAT4MdR8LGOZ1nF77EQ2SHlxNf6C4tCWiC8BYP/a+MadfWk/OTAgJNd1bR9aP+FXJ5RbhqbVRdFeDUF88vyciV6GNuKI1JgLpbY1z4xXBJOb7wJR4iO70c/1x3yfE4kjK2gEj/S2OYBIhdEaTnVyMrfNz5xXY6OUHeqP6bzWbjv//3/86f/MmflBzbOn63KC3cvI7fCdLpNFu3buX48ePavxkw0Mx2IobqVe3tIStKSCJ8SYDunwytIvFUXxsg2Obm5f91mqmuWU5+VZ80ZDAZsEhmdbE7PLmqXc2+MIFNLl794ElmBtK8+N7VmySCYiSdyjN8ZJzgVjeZ6dJOKXqFl+rLg5z/1RA9z49w+murP/rCuz30vzDGZMcMr/2bPmEIQWU2u5OKLkmp4Y4YzqTMgb87w+CBCd1+SEP713vp/lF/WXLR7NACmRn9VUdQIHKJD3edXZcwAnDJnzSxMJnh8Ef127TcH8debVM3CvWINQL4N7qQ/dayG1z9L4yVJLAtx2Jukexcjvmx3z4xkp3JkU2Xj4rKkpMKEF0C/hYnFquxNNGlgJaHqrBHZV7S2QwGlYRVty9K93OD9L1QOlHiSMqEtnoQ3YLuxtRYxwyx3Vmm+/QX/Fc/0KFVFNMjRhUJSjU3h/E1OTj80dOkS7yi7hoFa4GJXJKklIZjn+4gVShtGt7tUU8rLrtmUU4NYOODSXILeQ78/ZmSY5/pmyO7oPJTBYVVYzrwd0t/1/bmGgSbeUVf0+eW7GJ1W1jUe53ScOjjHeQLiaOWB6uwugQOfUglR6XH0iuIUK5a9STb8k1MjyHANdxJOp9mbls/Bw8dZH5+npaWFmpra/nrv/5rbr/9dp0BrGMd6/jPju985zvcc889zM0t+S0nXjZzGRaDZVX74GYXZtFE1/cGWBjNrFqX2t5cw0z/HB3f6qf96xfIlCFmyH4ruYzqIDOTGTIX5Rq2v72e2dEFTvzbeX1ScIH8keqZpdyxgu1vqcdgMnDg78+UJmhYwNfsYOToFCc+14lFtuiSShwxGdEl6JIuLLKRtjfX0f/KKL2/1CeMFMd+6CPtJUleRcwMzJKezjCtl6wB6m6N40oqjJ6e1CV6Rfd4iV8W4OSXu5ns1O9r57sbGW+fpv2bfbpt4pf6cNUq9P5yuOzYj33ynO5vRaQnM7weZ0LmRtNkZsrvSM0OZnjlH0qv/ctRdVUAW0AqS1KyOC1sebKGkeNTGhGnFDa9KYmgWMpet+XeOJLHSu/Lo7rzbmZgfnkR2FWY7Jzl4AdOLz2PEsQojbRjUd+J4ROTuvfoTNoQ3daSvwGc+WovSmxMJShZCgnDI8te4gyaXaqu9hPd5aP9O6VJSAuTGebGFxg5qf5mkY0r5lXvr0a12MfitLD1zbX0vDBM7y+X4qHinHYlZCw2M3mdaXnmK704a8bV98QC259poPelEfpfVL8RBl5eSnaFt6mnXa128wqS0ibDLgCyyRRnZo/S19/Hhz70Ib761a/S0NDAj3/8YyyW1f5zHetYxzqy2SwPPvggX/nKV8gXHJUZCxu5BJ8htKq9YDPjqXcwM7BA34ujnH9+pc/2tzmJ7vJx+F/OMj+a5fjnz+kSbxYXVflUR1Ri7PT0qnbBbS7ilwU4/C+dZFNZDr5/9SaJWTSSnc8z3plidnie9HTpddfdoNBwW4zzzw/Sf2CcCz9bvdZ4Gu2MnZ1mfiTDsc+cK0tOUcISRpNRl6QUudRLYKOTw5/o1CVNFYkrfS+OMnR4nOy8fvyS6pvTqijr9VV1VRBvs7MsQWfLm2qZn8pwsgxZu+oqVarkyCe7yhKeIju92KNSWbLPeHtKO2leDumpDAuTvz17amEyUzY2AcqSnIowi0Ziu32ITgtnv6MfUyWvC+JpcpTfwIuJNN9bTfdPB1cQXZZD9JqpuiqILSzR8WzpeHemd46FiTSzI/o5r5OfP6/JHuoRo4oEpeA2F+EdXl77VFfJuScHRbXiU1gq/Q5n4bVPdZKdVy/iblDU6gXLrrn8G6flPvWw3GGdQxVT3bNLz67E2JeTl+pvj2Dzixxelr9cToKTPFaMFn0hikMf68S4TEpSiUgcL3zbZefztC97Bv4NTrKz2RXPTjEo7OEmsvksc20DvPLaK3R0dJBMJqmvr+eDH/wg11xzje7117GOdfznxmuvvcY999zDqVPqfokBA2ESNC1uwWQwrWrvb3UhugX6Xx4jl87T/ZOVMUzdLRHmxtP0/nKE7p8OYSxDzpD9IsVL5NKQS6/cHGm6N8bCVJau7w+suk4RJkH92+kLc1rlnFJoujeOoJg5+okuZgcXVpMXTOCIykydn6XzB/2q/JfOuCWPFVtQRPKqpIhSY2q8u4rhY5Pa/5UePJCDk184R67MgfmFyTTzowvMDOsfKI/u8hLa6mG6d06XCOJM2qi5MUz7s726JB6A1seSjHVM0/sL/UN+/hYXoe0exk5PkdEhjUB5clIRC1MZzMJvL9iUnsmwMJlhMa8fo+bmcrz2mXMV+wpt9+CpUxg6OqFPLjJB6yNJxk5NaZWXSqHmpjCy38pr/6p/3eqrA7gSNibPTuvOhVTfPGZZ307zY2mOfqKTXKGidili1PxYmvnC9m/z/XHG22cYOFh6P9gel7CHRV2CVf9LY4y3p7T5trzoCKh/UyQoeRrsJG8IcfZ7fSXJgbmFHKmBOaYvqPPSJBiX7gOYODvDxNku7bcND1fT//LYiner+C5KfgnRI6hS3SXQ/9IYE11L4255QxUDh8Y1gthU16x2H85aO74mhypTt4ykVGWop4p6cp5ZOq0n6O49xzve8Q7e+973cvXVV/PZz34Wk2m1/1zH7wbrJKXfA8bGxmhoaGB0dMnZmTCzg2tRljGZoUDEiMi89DenGD0xzSsDHauq4hTJQtm5HBgNKFGBVG96FfFoOalj5NhU6co5BXLF5LkUngYFoyxAarUnbbgjhrfZwdFPdDAzkC5ZgUXwCKTH0vT+fBRnzKaVWLsY9oRE8poQnlo7xz/bXZKg5G5QMFmNjByb4qV/KEPgAXKZXEGii5LtBMXI1rc1MnV+hhP/dl6XoFSsPnP8s/pJGFAJHe3P9jDVpX9CHdTEz0yFU1IzIwsILqF85Z80HPxI6Yo3y+Hf5GC4xMbIcujOg38H9KrsXAzBIyDYDLqVfeaH0uWJagVM984h2CxlKyUNn5gktsdPakA/UJvqmuXsD/v0CW2o5JlX/lFNDIkBgfmJdMlrplPqvGl9qIbh45O6CSDyiywuLpYkKAGMn0rxwvtOatdIXh+k66LqDcUqU4JiJHFNiOAmty4B7sKvh7Uy1sX3cjmWb7pvfKx8RaiF8fTK4PAi+x98/9LcbHlDFfa4vIJ0N78s2DeZjBiWxWJFX1bEi//zFEKhrH7L/XHsVTbt/RcMAsKr1VxDNYf5FdaAkdOnT3PHHXdgMpl46qmn+NCHPlTyHtaxjnX858N73/te/uIv/oJcbukjJErNitP7oJIFtjxTz+iJKc5+t5/XPt21ipSynFBgNBkwFj6+i3JsWrsCqaPYV8mKMMuIFQvTGebH9VlOO9/VyNz4Asc+cU6TalrVXWFsPS+OkM/qf8hvemMS2SsycnKKzCxkZldfN36FWqnows9HuPDCiC6ZJJPJQ25Rjb10ULc/jLfZyeFPnGVhtHRHFtkIFhOzgxnd6jlFnPzCBXwbHboEJVDjrtnR+bIEJYsMc2MLTF0of+ro5JcuoMSksgQlW1QkncrpVr5Z3tfrgVTPXEU7FeFpUnSrUgGcebaXfImTksuRmVRLsM+N6yfSACa6ZjRpDz2c+NIFZK8+MQ5YQRqTw0LJ6kXF59F8fxx7VObl95/W7XMxvySBVgqvfbpbk9fztNhJT2VXkfKK/91yTxXOahtTPbMl5/P5Xw4jugWNoGRxWlbMi5neea0ymS0q0vpwkv5XRksSqCwiZGazTJ5bIlwtv8fhI5NLZCkL7Pzj1aS74jtgC4gYjJApbApfTI46/9Mh+g+Oa2O9mMBn7lRo4VISTNEZOMbs7Aw///nPEQSBhoYGnn/+ecLhsK6N17GOdfznwfz8PJdffjmvvPKK9m8SNrZwOfJFOa/lRIzZwXkOfqRjFXmlSBbKzuYwmAxIHitzQwuryA1aXx9pZ6ZvvjRhtkBQmO6ZJz2dwWyFbIklMnKpl9huH8c+c465oQWNZLCiK8VMNpVl/EyKoWPj9B8qTSoSXGbqb40y1j5F+zf6ShKU5KCIRTExeXaGQx87W7YyzmImX3bDBjNse7qeyXMpOr7dr0tQEn0W5kcyq3INq5BFrVY0UZ7oM3EuVZEMNDe+wOzoQvmKTMChD7eDufwGlzMp61aTLCLVO69bPec3RTlC0XKYFTMW2cTcUOmYKTuf59i/lieqAUz1zmH1CphFdCsgpXrmSQ3MMTus39f8aJYz3+wpW0kqO5/X7GRWzJDNl5w32fk8gsvMpjfWMHxsgm69wwmLQG6RbLb03JsdnOeVD57R5nl4h3sVKU+bb2ao2x9lZmBO92DhuecGNemUor9YjuXjbLo7js0n6laEmh/PYrQsizsvIjUtH0Mp0t3yuW0UjNq4So3t0Ic7NOKX1tfHzpKdz2M2mLEfjXE1Mc5ygkxoilOnTrF3715EUeS//tf/yl/+5V+WvId1rGMd//nwgx/8gDe+8Y0MDqprugkzNbRQbWhY2dAErQ8nGDs9Te8Lo3R+t38FeQBWEgoMJgOmgh/LzeVWcBtMArQ8uETqaH+2BFF3GSFifjzDwpR+EmB5BSI9ooVJMpGby9F3YHSFf70YNderksFHPnaWXDpPenJ1vsPX4mDkxBRjZ6YZOzutS17JpSlP5gYCW1yEd3g4+cXuktdSBw8mwUQmldOt3FdE769Gmbowq0tQApU8Pd0zW5aghEk9ADZXogLNiuu9MMro6emyBCXBaSaXXixZZWtFX2XIUL8J0pOV7VSEEhFJ9enHQhd+McyFXwyXrzqVg5nBeeYmykuyTHXPkE6Vz/t1/7ifQa9Ylqy2fI4Xq4KtGlLhPYxe5sPbaOf4Z7pXva8AmNQ5msvq32D3T4a099EWFsln88wNrxxgcb7FLvcR3Ozmtc92l6yGNnZ2GulVQSMoFd/LItKTOa2SlqCY2PBwkv6Xx0q+10bBwMJkhpmhee1elj+nVO/cisr+pUh3RUKT4DRhNBnIFWKti8lRYyenmTw3q4219dEEY2dTWl+mUZl6tlPNJs55jjC1MMkXvvAFvvjFL3LllVfy1a9+FY/Ho2vjdbw+WJd7+x3i/PnzbNy4kenppdMeEjZ2sBfBIGj/pkQFLHaB8VMp4lf78TY6OPyJsyVJEdv+qB6zaCorMSUGBOaH0sSu8uFrdHL4k6X72vR4EjkglqyapKFASFCiArX7Yhz5dGfJvmJX+YjvCdD1o/4VJ3RXdLWsYkv1tYGyp7cv+dMmFhfh5b/Vv8/EdUHO/ahCcqWAzU/X0n9glMGDEyV/D25zUXtjhIFXx+jUKcENULs/zNkf9r9uMm6vF9xNCi33VDNwaIyz39ZPpDiSMvl0tqKs2lrk3hDA31SZGLX7vzWzMJXh1Q9WJlr9vhG7ysfE2emy0mi7/6yZhVRGVxoNYMtb6zj3kwHdSmbL4d/sZG50XveaNfvChLd56Pxxv25lrOgeL8Mnp0mPpUtWQlqOS/60iXxGv6pS/Go/it/KyS9VDgJbHqrCGbdx8AOnS5L9qvcGcNcvVRizhQRmBkrPtbpbI/hbXRzXIahVXxtYUa0suse7Siama/EkZzmuyZFYLBaeeOKJdbLSOtbxnxjvec97+Nu//Vutco0BA41sIWaoWdEutN3NwCtqvLLpTUmGX5vUKo0sh6vORtM9VfT+alhXakz2WTTC0qY3JRk6OlEyFrJ6LWx5Uy0jJybp0CEdLSckNNwZZfLcLIOvlo6rtr+9HgzwSolKAFp3MmRm1TEqVTZdCbjIbi+Ja4Kc+6l+JUJ7tYxZNDJ+uvJa52lSiO3x60q8AWx5phaLZObl/3Vat429WtWw17PBHxJbnqnFIpt5+X364wdwNxZOgpfJaaxF7g1UOTeD2cRMGSmU2n1hglvcHP5ER2mZsj8kLFB1RYDzOqcoARI3BAlv9XDyy+d1y7cHt7rxb3CUj1OXIXa5j54yibMd72xkMb+oXw3KAtGdS3FI8b0qhdBON4m9ITp/0F/yfbPI0HhPNae/0aeSg8pJ5Vngknc0MdmVKimLbZGh+YEk/a+MMXxkcoUvKoWd72pkfjJdsjJrsa/BQxMMvjqOq85GeiK9or/MYoaDPEcKNfaXZRmXy8WRI0fw+Xy6113HOtbxfy4mJibYs2cPJ06c0P7NjY82LsNsWDoTKbrMWBwWps/P4W1xEGhz0f718yWJGC1vqELylJeYEl1m5ieyeBrtBLe6dfuqvTmMu96+ghyxCgVCglkxU3tTiLPf6inZl6fFTt2+KJ0/6NM9+LWcXBLc6mLw6ITudbe8pRaD0cCrH9LPMyyPVyuh8a4YwycndSVP7VUSLfdV0/PiSNnNpMhuL30HRl83GbfXC6LPwuYn6uh7aXXFreWQAlYWczldObgi1iL3hlmtMDp1rjwxatsf1ZOeyrxu5KjXE94WB/MTaWbKbORte3s96VSmbIXQ5geq6H1hpKItABwJmVw6r3vNwGYXNTeE1VhJpxqUp8XObN8c8xPZsqQtgM1vroFFVlRCWg7fRgf2mETX9wv54zJyeYm9AfybXBz5ZCfpEiQ9X6sDf6tLqx5W9EWlEN7hJn6lKk9YSpbF3+bEt8Gp9eXb6Fgl1zy02MtxDoBpkXw+jyzL/Nmf/Rl//ud/XvoG1rGOdfwfjy9/+cs89dRTjI+r8YEVkWa2r6pY6aq1abJLNfvCTHSlSkpRiR6Blvur6XlhWFcaS1BMmkRTzb4wE50pxk6t7sskGNn4aIKRk1NrIq5ELvEwN5bWrZLYdE8Ms2guWzmnWInJJJmwR8SSUlOg7ok13Bqj+6eDupWRrG4Bi2wqTwIqQAoIRC/x0fEt/Qrd9bdHkX1WjnxcX2lEcJqxBcQ1VYr8faP+9ii2oFhWJQYKhKHB+bKEoLXIvUGRdGIqS9bytzmpvirI8c+fK1kJ6w8KE/g3XlSF+yL4W51UXRngzDd7tMpDF8Mel/C3ujSVlkrwtjgYPaG/R7vx4WoMJkPZWNXTbNd8RPG9KgVHlUzdLVG6fthfet6aILE3RN9LwyqBr5xUngk2PZpk8txM6WprJpWAON4xzXh7CotiKkus2/hIgvR0hjOl4nsT1NwQZqIjxdiZaaSAQG4ht4JkmFvMcYpDDNDNIovIsszmzZv51re+tU5W+h3it6/Dto5VOHr0KLIsU11drRGUXPi41nA3eww3rSAoAWx8uJa6fREALjw3rG7KL3MC/k0OHEkZgNGTU4ye0nc4O9/VyKY3qhtxPc+PqIvIRQ5F8KjXHzk5xUwZOavm++LsflczgmIk1ZtWpbt0nFPPr0eYHZpn7IQOQckjsO3tzWx8WJW1K0dQAjjzjR5O/Jv+Al69N0B0l4/YVWUS4oIqiwVw+J/O6hKUAAYPTjB1fobOn+gTlNwNCsE2N823l9cE3/yWWtqerCnbBlTilH+To2wbJW5l939rIX61v2y7mZ4U/a+McuHX5bXgG++IseHBymNbC+puitBwWxwlri+VAdD30uiaSkPu/C9NbH66tnwjQSXXRfd4yzYL7XRzyZ82aXNdr6/4pQHqbyn/PIePT9L9k/JkuEMf6mD8VApBUa9dDrU3hmm5N6H7e+d3++n68UBZ6b7eX42SHkujRAW2/VELjXfq38Pwa5MMv6YfGF14blgjKLU9WcMl72nSbTt6coqZoXmNoHSxfbt/MqSRimr2hWl7ok53jg8dm2Cmf04jKFVfG1jZ14+X+opd5SNxTYjqvSvbJA3NXGu4m2vi11BdXc3CwgIf/vCHiUQi3Hbbbbr3sY51rOP/PDz55JMYjUb+5m/+hsXFRYyY2MZV7DXctYqgVHVNgJobwvjbnAAc/XjXKoJS9DJ1nZnomGH6wgyj7aVjL3+bk7Yn64js9mp9XUxQshSqzCyMZpjum2OsXUejvFAVpeX+OABnvtZblpwzdGKSAZ0T/AANt0fY9vYmrF6VuKBHUALoe2GUzh/06xKUQI0h6m6O6v4OKnkEC4ydSpUlKAF0Pz/EwOHyG281N4RIXhcs20YOWtjxzkY8Lfay7aJ7vDTfGy/bBlSi2fa311ds1/n9fi78srQUcRGuOhvNd1cR2/X6EDg2PlxDw23ln0HPSyNc+MUQs6U05ZchfoWPXe9p1uanHnybHLQ+mqg4ttbHE1qcr4fG22JEd3qRw/rxWe8vBhlrn9YlKAEMvjquEZSKc04P8St8VF0RILDVpdvmxBe7OfWVMhWvMmgEpZYHq9jyTKPuNUdfm2S6Z1b3fcvMqlWcMpMZrF4Lu97ZRO0+nWpEGdS+jqtx3MXPKjMLR/+lS0uAbXikhq1vrdO9jZETU1pM6KyRcdbIq/oq+py6/VE2PLLSd1oMFnYZrudaw93s2rqbfD5PX18foVCItrY2XnvtNd1rr2Md6/g/Cz09PdTU1OB2uzWCUog41xruZpvhqhUEJYCWBxPUFnJeoyemOPn5laQiJSaiREVA9VVDerIawKYnkrQ8mABg7PT0qr6gUBkGGDszzeS5lC4hoeqqADve3oDgUisknf5yaYISqFJTE10pJvQ2kczQ9uZ66u9Q1+nBVyfKEn1Of62Xk1/WX3s8LXYSe0OEd5TJL5jVTQmA01/t0SUoAUyfn2P4+ASDB/Q3DUWfhfhlfmquXy3NtxyN98Rour9yTNV0bxx3g1K2jVkxs+OdjeXvE5ifyND90wEGDuvnSQDqbg6z4YFkxbGtBeEtblruq8ZeJZVtd/5nQ3T9uHLOa/OTNbS8oapiu7r9YYJl4hYAZ62NrW+tQ/SWF0iouSFEYm/5WLr/lbGyxC9Qpd+mzs2umHN6qLs5QsOt+vHq0OEJ2r/Vq0tQAvV9m5/IIrjMbHlLA8nr9e9h4NXxsj5j5LUpjaBUf2uEbc/U6+pKjHemmDw/qxGUir5E6+vYlEYqCm510fZkHZ7G0t8g410pJjqnNYJScJtrxe/DRya1vjyNdupujhLZtTLXGTBEudpwO5e5b6K2po6ZmRn+4i/+glAoxOOPP657z+tYxzr+z8PHPvYxHA4H9957L+Pj40go7OI6LjfsX0VQ8jTZqdsfxV2vrsGd3+1fRVDyNKu+a34szejpSaa6S5NQlYhI66M1+FudS31dRFAySaosUi6dZ6Jzhqlz+t/yrY8lSRbijL6C3JQeho9PMVgmZxTe6WHT43UITrWqix5BCVRljY5v9+pLtwG1N4aouaF8DOSokjEJaiWXcgQlgN4XRujXqRBVRPxyP4lrQyqRQwcmyUTrowkcVbJ+I1RiWvXeQNm+QN2z2fBQ+dwNQM+vhjlfQtJ4OQSnmaZ7qghsclXsby1ouC1eds0HGDuTovung6QrVEDyNNjZ8hZ1fpSDEhGp0cvJLEPy+hA1N5dvF93ppeqKAJJfP+c1fGKSoaMTugQlUOUPiwQlR1Iu+0zd9QrJ60J4GvRzomee7aHjO+Xna9FHxK/ws/HRGu29vhgzA7OMtU+rhzFLIQfnfjhAejKHSTDS9kQt0d06e7k5mOhIMdG5VKHp4t87v7dEhmq4PUbLA/qx9NCxCUZPq/chegSUiLiyr+/2M3ZG/T1xTZCmu1f2ZTKY2GDYzl7DXexpvhLDooFf//rXBAIBduzYwZkzOgcb1/FbYV3u7XXE0aNH2blzJwsLSxVSfITZbNizop2gQPMbauj60QBTXbOc++kAE3qLtwB1+2MsTKsSa6UqB9kTEvn5HDMDaYaOTpDN6LMJd7yjAaPFyEt/c4q+F0bLbkYNHBlHcFpIlyoph0rGSO4NcerrFxg/lVJJTDpIj6WZGZwvuxnVfF8cR7Uq71SuLDGoZIhcLk/P8/oJlrZHa5D9IqPHJnQl3hDA3+Jk+PBkxdPY42dStH+nl+HD+sEMwGJ2sWJJSHtCQvII2GO2spWIDCYjC1Npxk6Wv2Y6RdkKUEWc+/EAZtvr89r3vzRCZiZLqkL5SD3N4YsxNzzP7Ej5vkiDLSiymF9cVVVnOWaG5llcBJtvtdTZ8r46vt1TsRKUJuG2bK7oYcMjtYguqzrPdS7b/mwvC5Pl77P4XjbfG8ORUDj04VMlqyWletPMjszTe0B/k3Q543rHOxrIzOU08s/FGG2fwl2ln0QcPDihkf3qbovg3+ji1FfPl6wg1fPiKDafVbNvcJtrBVFwqmuWo13qBra3xU5stx/JJXDqK6srBfQ8P4LZYtLm0qbHkwy9tqxSyXkXtWzDTTXttoNMTEzw7LPPYjAYuOOOO/ja176me0/rWMc6/vfGo48+yqc//Wntv02Y2cbVOAzOFe1C2924axROfukC5386RC6d0z3Z0nBnFG+Tg8lzs6R65jj+2dUyA8WTrsNHJvE1Oxg+Ujq+8bTYabwtRk+hElMp6RANGVWybLRMDNT2ZA0Gk4HD/3S2bDUagP5DE1jsFn25NaeFzU/UMHJykq7vDVQ8qX/yy+fL6sxbnBaS14fwtzpUKS0d+DY6GDk9xdiJ6bKbaQBHPtmJu6b85pbVZWUxv8j8UJkj1oAracMWLL/JBEV52cqx0mTnbFlpOYCZvhm6fzbI0OsktXv++SEWpsuXmV4YzehW/VqO8c4Z3A12VV6sTJjpiNqwBUWsXv25BLCYWSRfIf49/ZUePE1K2QpPmVm1HZQ+Ub4cVq+FmhtCeJvsunIgF34+QjadL0vSK1amsshGNj9dz9gpVbKxFIaOTKhxvp4c4mxee889LXbqb47S/q2ekvJ7C1NqievBo/pjW35fW95Uw8J0ZkXp6+Xoe3mExcJnoBwWIL+4QiKx83tL91RzQxjBbtGtznvi813IhffFVWcjusvL8S+e1+5bORTlMqIc5UUWPQscPXqU1tZWXC4Xv/jFL9i4caPuPa1jHev43xcDAwPs3LmTCxeWyDWl5HQxQ8OtUfpeHiXVM0/XjwaYG9Vfp5vvqWJ+PM2xT50rSVwQvWYwGJgfyTBwcBxDmUT9xkeqsToEDn6wnfH2VNnNr5GTU8hBK2kdKTJnUqb+1hjtz/Yw2TXLmXISFFmYPDfD6En9davqqgC+DQ6O/ktnRemvsRPTnLX0lT2JXb8/gqfOwXTfbMmqL0W46xXG21N0frd8zmh+JMOpr5yvKKmWz+Qx5sufeRVcZuxRidTgfNn8ntkKqYE5JktUmlmBLKvkwUqh+7khBOX1yXkNn5wmn19kbqj82Mo9o+WY7ptjoYLsHYAzqWAUjCrRTQcLowss5hYR7ELZqlGnv97DVE/556nlhc3gTipl35nGO2I4qxQmO1O6soJnvtFDLlM+Jiye9o9d6Sew0cnRT58rKQmYnsgyeX6WoTIH75Z/w2x8Y4J8dpETnyv9LTLWkVKPa+uYbLJrVpv/4R1uqq4McurrF5gssfE9emIKe0xmrLAZVnzPipgfyXDma+pJfjkoktgbQvZblyo6LR/X6Wm6fty/lG+7NcJEZ0qLgy2jIonRNgLU8pr1Baanp/nkJz/Jpz/9aZ5++un1auLrWMf/wfjoRz/KO9/5TmZnC5LeONjMpUgXyek6qmTc9QrdPxli7NQ0BqNB15+Hd3qI7vYxP5ZmdnCh5N6NPS4xfWGOVN88w8cmVP9ZAlJAoPmeanp+rVZi6v5x+YPek+dmmC6zLtXsCyMoJk59qadsZRiAsfYUokfQlVszCdB8f4Kx01P0vTRWlsQE0PHdXsximRjCBLU3R5i6MFNWyUSJSqo06+ACsxX2zc5+u18lUpSpQiTYTeSziyxMl48hHFU2nAlbeYkzYLp3lmwFCTeAueH0Knmwi5FOZen8YT+pC5UrLa4F538xRH5BZx+3gNxcrizZrIhU3yzTvbMYjOVK+YDkteKIy7oSbEXkc3mMFWq+9L4wyuT52fJ2y8GFn6t7ecW5ojc8k2Ckbl+U8bPTdH2/dBw/3p7i7Hf7ysZv6juiVjXa+GCC8XZV/rFkfx3TGC0GXZm/XFolIYH6/jfcFqPrBwNMnV89B3K5PFPnZ1R5RR2c/9nSvmbzPXGyc9mSlcRBLYZhtKjPQFBMGCymFfJ0y6vBxa/wo4QkDn2so6R9O77dh+RRi2+IHoHwTg/nfzqgVZCSTvnZzU2cp50JTz+vvPIKjY2NbNy4kWeffZZk8vU5FLGOdbm31wUdHR20tbVpwQJAkCpaDTtLthc8AtuermPs1BSnv1b6hWt5qIqO7w6QHksT3OFi8MiELulh939rJp3KcPD9+mWiBcVIOpWnem8Ak2DUJbQ03xfHmbDx4t+fqihpJngE2t6Y4PQ3ekrKNYG6mTY7slC+hHIBsat8BDa6ysqCbX6qlpmh+TX1JygQ3OHnwnP6BI62J2uQAyIHP9KhT2YBktcH6frh2qTl/hDY/FQt4x3TayYEVcKa5N7WCEEx0vJQkoFXx3SlAH+zDnnd5fb8mxykZ3NMljm1v/VtdVgdAi+874Tu9QWPgK/RXpb8V4QYEGh9KMGpr11g+lzppFf8aj/+Dc41SeUJHoG2R8v3t+nxJOmpTEki0MVoeagKe0TmpX8o7QuUqEDyuohWJlLw6BPC/Jud1O+PMnRsgo5vlmZtR3Z7Nbs13RNj8MhEyWSmoMC2tzczdWGW458tPT9TwgQvL/yUPGpQG4lEuPnmm/nnf/7nSre9jnWs438T/PEf/zEf+MAHNFk3CwI7uBbZUPpkUcsbqlAiEi//4+mS5AJXnQ1vg0MlJlgg0OrSJTXU3RLG3+rixOe7dTdxLE6LKuVUuPbZH/SXJHhYZCOb31LP+JkpfQm4ZWi4PYLRYtT9YHMmZWr3RTj2yQ5dOarl2PxUDQMHx3UJSs6kTN3NEY5+plu7n3II7XQz+tokmdnSSQWLDNv+qJmZwbmykhLOGhmD0VC2ms6/C+WktX4DhLa78W90cuxz516X/tYq97ZWxK/w4ai2lSfF/YFRSYJNDlpoe7yOia4UJ7+gX2kiusdL78uja3oOdbeEERwWTnyuNKEJC2x+vIa+A2NlSU1F1N8SxmIzc0JnfM6kTM1NYV77VJfuO6FdWoYtzzQycnxqBZloORLXB5mfSDPw8jgW2Vi2z61vrcMim3lJRzrbIoOzRiWByUELsT0BbSPtYjTcHsHT6ODgB07p+pV282G6M2q8KssygUCAX//614TDlU8krmMd6/iPj4mJCXbs2EFHR/G71EA1jdQbShMSzSJseUsDI8cndfMoyRuD9B8YZX40i7teYfpCSreK0fY/biCdypSt0mgWjWTn8/haHVidAr2/LL3GxK8MENjk5MjH2stKSBX7bH6giq4fDpDSkVqtvzVCZibLuTXkYjwtdiLbPbz2b926JIn6O6KkpzJry+2YIbjJVZbMUndrBG+jgyOf6ChLZvlNpOX+EGi4K8ZU98zrNsY1yb2tFWZoujPOyInJsuTq36S/11tuz14lsZhfJNWjP+mb7ovjiMm8+qHTuu+GWTTiqld0JQ9XtFXMbLg/ztnv9eu+P76NDoJb3GuKWc0itDyYpPP7+v3V3hwmn8mvKX9bvTeAt0klDZYiXAkuM9VXBWj/Rp92P6WIVABKVGTDgwkGDo7pvrueFrt6ej+rEhbHl1VZWnmjsO2ZeqbOz2jXvhjz5nkOZp5jDvVbKRwO89RTT/GXf/mXFe97HetYx/8e+OxnP8tb3vIWUik1N27HRRt7EA2lD17Fr/DjabLz2qc6S8o0SX4BV41C/0tqZR9n0sZkV+l8S2CLi/jlfk5/5QIpHelOk2TSSAzVVwfof3W0NFmoSIroTOnGZssR3ulBsJt1fanoEUheF+TM13vJ6RRWWI76W6OMnprSqqdcDKtboOb6IGee7dMlZSyHM2kjNTCv39YEW56sI9U3R/uz+jGG5BMwCUZd+/67UZ6Ps2Y4qmR8G510/3hwTXauhLXKva0VniY7rqSimzv5jwBfi4ORMkQ7k2Si7fEaxs5MlSxMUoSnwa6SfNbwXIPb3NgCYlm71N8aZfjExJryrcFtbiSvVSMlXQzRI5DYG6D92/2V3x8TbHokyciJSfpeKl1hzN/qJJfJM3ZqGpNgLDv3Gu6IIgfKyBGawB6VmD4/h0kyEdru1pWhDG/3ENru4einu3Tvo890jtPZw+TIIkkSzc3N/OhHP1qXgXsdsC739ltgYGAAp9NJfX29RlAKUsW1hrtXEZSie7ya/FR6LM0L7zuhS1CyJyRc1Qo116jSRoMHJlaRBMK7PQiK+vh6Xhjh+Bd0ku2oEnBtb1ZL/3f/ZKhsxZ2J8zOkZ/S/hgWPwLY/qkOJqvdx4O/P6BKUAAS7GclbRnILaLpblarqeX6kIhnDYjMhuSv3525SSKcoS1ACOPn5TvpfHi1LUApucxG5xEft/vJJ9vBujyqHUX542BMSSrRCI1Spt5b74wjlCwgAILoFbEGxYrvNT9Xi3+ys2G6taH00UVGKLp3KI3kEHFFbxf4iu70V7Vx8Fy4ulVwK4d0eNj1emdVatz9K/c2Rsm3OfPMC3c8NliVIpcfSGtGm9ZGE9o6WguQRMAkmZL++XN6F54a1dyJ6hRd3k/5kcERFzFYTsle/v6Of6NIISpvelFwlsbYcs4MLLExldO831ZvWCErxq/1se0ud7jMZPqxKEhUJStErvKveE43YJYC73k7VlaXHlk7BC399UiMobX66dpVMoJJ2cY3hTnZxLRtaNjA0NMTHPvYxBEHgiSee0L3ndaxjHf/x8Vd/9VcYjUbe//73s7i4iBmBS9nHlYZbVxGU2p6sYcNDaunWE18+z8vvK01QAqi6MoBvY2F9zLCaoGBZkvPs+H4/vS+O6hKUglvdbHumTpOXOvFv53Ur0GRm8yxMppkZ1j9dVXW1f0kC7ht9ugQlANFtxSKbkYP6ZaA9TYo2tsMf7Sy72SN5rZhEE1a7/mkyi9NC0z1qLDfw8nhZ4kRmFrqfH+RMmWQNQN2+CI13VJYR2fBQFb4K0rnAUpsKRJbEDUFNBrAc7FEJOSBW7C92uU+zzesBf5uzoqQagBKRsAUqx4UW2UjDnVGs3vKSbwC2qIgcrNDOohKuKknv1e0PE7/cj6tOPzacHczQ86thTn61jAwbBRm2DLgbFZI3lS/NLnmtiK4yMXhGfSeK77+uDFsBos+KWCbumuya5dCHz5KZzaPEJNreXIOlTIX2hakME936p9/O/XBQI/y3vbmurLTbqa90c/4XamLX4rTg27jyPcnMom2kxvYE8DQ6kH2ln++Zb/Tx4t+pBCXZp8orXvye1Gc3qzJP9TtxuVycO3eOSCRCQ0MD/f3/cROH61jHOsojlUrR2tqK2+3WCErVNHKt4a5VBCVPo52tb61TpdPm4cAHzugSBUSXGf9GN+Edaun/8fbVBCV3g6JJLXU/P8iZb+ivB5ueSLLxjep3/8ixqbKbYFM9M8yXkYcwi7Dh4WrkoEh2Ps+xT57TJUQASH4rok9/LQCVkABqdaTX/lWfoAQguQWkMmsLqNVnHAkZspQlKAF0fLeP888PliUo2askqq8JUn2Nfn4AVImx+juiFWvyi14zUqD8PYBKAkneGMQsVk5N28MSSqhybNN4V0xXfuvfg9qbw4S2l5eiI6vGXvZw5YqdnkY70csryAAXHlUlqbxim4Y7y0sBAzTeEaf2xvJxTecP+un8YX9Z8l52Pq8RlGpvDq+SQ1sOwWbGLJsRy+RwR16b0ghK3haHOq91IHpFBMWCUEaq+Ox3+jW/U397hMgu/Y2j2ZEF5sbTuhWh0hNZjSTkabGz9ek6Xam7VO88F34+THdBFsfX6lj1noydmNaebWCzi9genVxqFg6+v532b6vXbrgzSsuDK+N/MSuyx3ATl7Gf1g2tjIyM8Fd/9VeIosif/dmf6d7zOtaxjv/4+PrXv47L5eLhhx8mlUqh4OQKbuYSw7WrCEo1+8LU3KT69gs/H+bIP5cmKAGEtngIbnZrslGrCEomtO/zoUMTnH9+SJdAY49LtD1eo8lLdT83pFvNiJzqb+fL7L15mu0krlMlvvpf1id7gro3KDgsiGX2G6WAoN1L+7O9ugQlUKsUWRQzgl2/TKdJMFJ1peqzJ7tmypMxcup62v2z8mTZqisD1N1Sef2u3htQ5b4qwB6XtOuXg7/NiTNZeY9O9os44nJFgpKnyU7V1eXjx98ESlTS5nQ5SD7rSikvHZgEiO72IjgrV9kUnCasFfadMamkvErPxN/mJHFdaOm5lEBuLkf3c4NcqDBXxs6oBCUpoFb7KQfRLWCtcK/tz/ZqBKVK/UkeAcmjH3fNj6U59eUecnM5BKeJhjuiujJxALOjC6TKVMEfPjapyUk23BktK5Pc9aMBzj+n+gqTYFz9THJoZPBAq5NQm1v3+fa/Msahj3WQm8tp8oqu2pXvSSSX4GrD7eyKXInX6+XVV1/F6/Wye/duxsbKyzquozzW5d7+HUin01RXVzMwsET2KSXrBmrVj3QKUoPzLOZB8lhUQsxF67IjKVO3P8KrH+1g+twcRz/VQaq39OIteASS14Twtzg5+i9d+kScQsWZsfbpsiX8ktcH8W1wcuDvz9D/whj9L+i/VKLTjKBY8Da7SPWWDhgEj4A7KTN4cIIDf1depzF2lQ9Pk4PqvYGyAUiR3FWpvyLBQfRbS0pQFeFuUMjnF5nsmCnLVAVV4sokmCpWx/E1OlDCUsUqP/W3RLHaBV74/06UbRfZ7sdVa8coC5Aq3+mL76188t4WUpNdzipbRcm6tUIJSxiMhopksBf+v7VVBohc4sEkmMqWzAS1IpASlhg/PaUv5Qf46h0qeatC9aXOH/Qzfnqi7DVTFxZIXVA3keNXl6/Q5W2xY4/LVO0N6VYOGj+VWvHcitXO9BC/1E8unefAqdLvwMixqaXTbAJEd3np/bnOnBVQyxmWiTPP/WgQCu9G3a0RnAmZg//UUdKOw8cn8dTZl+TcSti78zvqMxUDAtWXB/HWOTj6iRInYdNw8J/Oki7M+ZY3VJGdy3Pm66U35fPp/Eq67bJrKwYXykkX0mKQgzwHwKc+9Sn+9V//lQ9/+MM8+eST+gZYxzrW8R8Kn/70p3n88cfJ51XHZcLMDq5GuUjWbXmlnHwmTz5dKBhagkxSf0uYRaDjW/2c/Hw35ZzixjdUo0RkrUrQ+Z+WiFkK1x48No5/g4NxvVLSFtjyZC0jr01y4ecjHP24flUAAGe1DWs5YgUQ3uWh/8UxBl8dZ/DV8ifMa26IYDAZylaKKVZpGXhFv8pSEdVX+HDV2VFiEqkefTmMYsW8/hcrf7wd/UQn9kT5xInFaUGJyGRSWUbKSLfKPgv1N0fxNjg0GTE9BFpdLFRnKsp2tH+zDyiv5w7gqrEh+yonTtYKZ1xGichYZMpWyipXeWg5BLeAt8nB/GSmvHygBVofTjIzNMexT5wr26c9KpOdz5WV8uv4dj9TfXMVT24VZeucNTLZhbwmy1YKVVcEsDotdJU5jFEkV8PKamcl+7smQGCzi6neWd35sLwamL/NyUT7tC5Jz9NgR3QJWOwWMrOrr5uZZYWM27a31TFwaFxX3nhouURciQphs4MZZgfVd63pjii2sMRkZ6rk+M58rRc5OMTsSAaLbKTloQTt3+pZKctX6N/isLCYX2RmQJ2AF89Fd0cVbqrI8iLDhl7a29upra0lkUhw5MgRLJbKhLh1rGMdf3hks1n27t3Lz3/+c+3fYtTSZNiyqq1ZhOw8zI7Mkc8tIihmVXrsIk6M6LNQe1OE01++wPxElqOf1K/sYxaN1N8aY+r8DKe+dEF/XS5UnBk5Xr6qS3Cri9BWN0c+3sXk2ZmS0k1alzYzkteKK2nTlWQzi0Yc1TbGTk+Xre4EKiklvNNDdj5H34v6OaVilZaS38gX30+bC2dM5vg5/eozclDEaIFUz3xFmbTp83N0fLuvoqyKp8GOs7ryxlbiujCOqKxWMC1DyPI1OwlscjPw6gTZ+fJyKAc/WPnkvVkER7WN+fG0JsH128JVo2CWTRXj4Vf+oUKusoDwTg+iS9A9yV1Ezb4Q/g0uDn2so6yUnythw1FlK1vlB6D9273M9JaXrUtPZBmZUOdAYLOrpPRiEXJQxNvsJDuf083lzg7Oc/D9S8+tWO1MD9VXB8hn8hzWkbVN9c7zyj8u2dnf5iwbsyshSc3l6nx7DB+Z1P4+vMONb6OTY585V3LOTp2fY7IrxeiZwjtSotpV8f02i0ZqbojgbXJwWudwyeF/OkMxkZXYq27urqrGVug/n86TNy+z27JriwYR8UQjzsUoL/M8+XyO//k//yfvf//7+cxnPsOdd95Z8vrrWMc6/uPh5Zdf5pZbbmFoSPUFMna2cBmS4aJ1d1mlnHwmz2JeXyQntM2DSTTQ+6tRzj8/AL8w6ZJYqq8K4Gt2cvRTnWRSOYaPlvCvhWtPX5hjvH2a6T6dpIRJlf2dODfD0KEJOnWk1IuwRyR1T61MFSBXnY2JjhmmL8xx5GOl14kiElcHsdjMTHTox1TFKi3T5+cqxnLeDQ78rS5GTk2VlW/zNKgV8/QqVC1Hx7d6NHl1/UGCK6mQzyyWLRJhEow03BZj5ORkxUqcoS1u0qlsxTEOHBxj4GDl3J09KuFKKhpZ5LeFHLDiTNgQFBPplP5+du8vR9ZUmcsomAht95BLL1a8nw0PJCtWwCIHrjqFRSj7TIaPTJKeyjJ9oXzsVYy9JZ8ABsrKxIV3eLFHJfoPjum+J8vlFpdXOysFT5OdyC4vc2MLurm55fvm9rjE7Ehat08lIiMHRCx6181Bx7NLedSme+OMvDapW21q6OgkJmth06+Eb8ikchoBMXaFH1+Tg8P/0lny2v0vjzF6elIlU5rU/fkLPx9eSZ4s/JlgM5HLLLJQyBeaBFaQP5V+P034kemgg2O8+OKLxGIxrrvuOr72ta9hMpXRJV9HSazLvf2G2LlzJwcOHND+24WP7YarSrbd9HgSW1Dkhf91siJxJbjNRc0NETq+26tLIIlesUQ6iF7hpffFUd1+d767iexCllc/UFkmquamEL6NLg7/S6duRaHEdUH6Xhgkrc/70bDjHQ2YRRMvrFGywtfqKFsquO62CP4NLk58qbusHFcRYkBgfqi8wXe+qxGjxcCL7y0tgVCEt8XOaJlNllVYgxSZLSTgaXZWJPbA2u7ld4HXU+7tN0E5ybDlUOJWnElFn4Tz74QSt5KeWSw7huZ7Y7gbHJz+2oWyc0OJCrpEw4ux7Y/qMYsmXvob/floT0gsTOXWZJ+ND1fjqLJx9F/PasSqckheH6Tref0qUS33x7FFpMokQVRpt7p9UbqfG9Ql9oV3exg9NkY6Vdi0Pqjvy3a8o4FcNr8mX9b6aAIlLHHwAydL+qpZzzSd5iMMDKobmA0NDfzjP/4jN954Y8W+17GOdfxhcODAAa644grm59VNIiMmtnEVTsPqE80Wp4VtT9cy1j6tK1u0HFvfWkc+m+fwR0snOCwyuJtU2TeL04KzWtIlw0R2e6m6IsCpr55fU8nc7X9Uz3hHSpWXK3ltI4Gtbnp/WXmdcyZlWh6oZuT4ZIE8Ux5WrwWTWSUx6GHnuxpZmMpUTP4UIQctZfvzbXTQcFuMvldGOfcDfXK4xWnBYoHZkTVqqK1Rvi2y28tE+9Sa+q1EXvld4PWWe/tNYPVadCt9LUf0Mi8jJ6cqt/0NJfWKycZyuORPm8jOZjlYruKqBSzy2p6du1Gh8Y44fS+NcL5MPO5uVBg/vYaPHwvsemcTc+PpFUQj3eZOC4GNDl0CktVrYdMjSXpfHF2ThPCWt9RiNBn07WOBUFtBxscCwVa3LpkxsNVFzXXhNfkyiwzb3t7E+NmULgFwYtN5Xj32Cvl8HkmSuPLKK/ne975X8Z7WsY51/OHw5je/mY9//OOapG6IKjZeVCm8iJp9IbyNDg595ExF6TR7lUTT3VWc/X6fLpHV2+JQSQBZNXYYOTWlS3Jpe1OSfHZxBQFVD4HNLqK7fRz//Dldwkdwq4vRM6myRI8iNj5SjeS1cuADZ9Yky+VIyEyd09/IiOzyEtvj59RXz5dtV4RZMZOdX00EW462NyWx2CwrSB2lYK+SSktO6V6civcsuMy4a5WlQ0wV2pYj4fyu8LrKvf0GqEQmKkJ0mXEklLJEoaVOWbM8nOgyk81SdgzRy33EL/Vz+msXGG/Xj4NEr7lsha7laHmwGtEt8GoZspnoNZPPsab5kLw+SGCzm+OfK1/prIjgNhejx6d0SVJVVwXwNCi6BKnlKPqy7p8O6j4fd4PCdN882VQWT4udqc5pXR+58ZFqjGbjmgiKyZtC+JocHPpYZ8lnmFVSdNhfo6dPjcvq6+v553/+Z6666qqKfa9jHev4w6C3t5e9e/dy+vRpAERkNnMZimF15TaTABsfrWG8PbUmUkjDHVGMFgOnvqRzWMsEzipV9s0kgC0q6xIvnEkbNTeGaX+2l1QF0itA8/1xprpn6dX5njUJ4K4rL4dVhOA00/pIkqEjE1z4eeX9NJNkwiyaWBjX30PZ+EiCdCrLGR2lm9VjMOlXiwLkoJXm+6rof2lUV8qqODaTYCA9+frGPq46G7PDC2vqtxJ55XeB11vu7TeBRTGRKUN4KsLTYCfVN1uWHAX8xpJ6ctBaltwGKo8gO5/jxL/pqyXB2u9F8gk03VNF74sjDB2a0G1nC4vM9K9NcrDtzTUsjKfLVvcvwiSAq86hewDCJJlouivG4Kvja/IB9bdHsdjMnPiczl61CVzJpdxiuTyjEpWovyVKx3d6K5LIMEHbEzVMnE3pEgBn6gZ5petFMtkMoihy77338ulPf7riPa1jCeskpTXi0UcfXTG5JGzsMdy0uqGgsn+nz80R3OHC3+TUJXqEd3uI7vTyyj9Wds7OOhsb7q9momOaE2s4Hd1yf5y5sbRueW0lKlBzQ3RNH0G2kEDbE3Wk+ufW1F6JCkhekeEyp9p3vLOBmaF5Tny2vOMtXr92f7RspQFBMdL6eA2nvnSemYHKJA4xIGAPlR+ju0Gh+Z4qxtunOKkXzBVQfW2A7h+/Pozh3xQ73tkAi3Dg79d2cmsteL1JSonrgkR2etdMmnm94W5QwEjZ6loIsPvdLcyNL3D4IzpapgUsJwxWQstDVaSns7oVlUCtzCS6hDUlyOwJiQ33V3Pup0uSH6UQu8pHz/OVGeViQGDrk2t/v6NXeJG9ou5YxYBA8z1xDn3sbEXCHgLs/i8tzI8vcOjD5W0O0HBHDNFr0fUFwR0uAhtcWqLa3aAwfmb1Mz+/2MGo5wJj42MYDAYURaGrq2tdQ3Yd6/gPhJGREZqbmxkZKfoxAxvZSciwWgLMmZQ16bWWN1Qx8OoYYzr+fuMbq5nunVvTmt325hokt8CLf3eqIunCIhtpfkM1J7/co0uSqNsfZvKCflWW5Wh9NIEtJHHw/afLyqcVUaxSpIfQdjfxKwMc/3Tnmog6dbeEme6dL1uVqW5/GIMB2r+1Nimn0E532XULltn8f5YnkbsbFTIzubKVm35XcNbItNxXTddPBirez1rxuyApbf+jenKZPIcqxDS/K0Qv81Yk2TXcHcVb7+DIJzoqktwmL8ytiYAkhwUabo1x/DOdZatNbXy4mtPP9q2pz5b744heK69+SJ8k5dvkYLp3bk2Er41vrEYJyxz8SMfarv9gFWe/36/bd/W1ASyiiY4KlUgBmu+N46pVKtq8iC3P1HLh58OaNNwKWKDlrjj9h8YZP53SraaWWcxwkOcxOhaZmprCYDDwnve8h7/+67+ueP11rGMdvz/8wz/8A+9+97vJ5dTEtxsfbVyG2bC6ALscFJkdnMeRkAluctH+3b6SJAl3vULsMt+KynN6EL1m2h6vY+TEJGe/U9mfVe8NkJnL0ffr0muN4DJTfXVwTd/YZsXM1qfrmOxKcfqrlRPvgsuMLSCW/NYsYtPjSeZGFmh/tjKB3KyYqb0hVPbaZhGa7q2m47t9zK8hljMrZuxhsTzJxGeh7bFaho5P0PVd/UqEoJI81kI6+l2g9dEEJsG4JgLJWvF6k5R8rQ5qb4hw/AvnSPWsbbPn9YQcFDFLxooktx3vaGB2ZEGTWNNDpcOky5HYG2BxEbpLVZotwNviQAmLFSs8gOoLWh5Icv75wdLxRwGVqj0VYVbMbH2qjsnzKd3KRsvhabRjj0q692NWzNTfGqH9az1lK0OpjWHH29dmc4DIpWqVBL1xOpMygTaXJkOnRMWSJK3RxUG63ceZmJwAoKqqikOHDuFyuSqOYR3rWMfvB3Nzc9x000387Gc/A8CMhTYuxW1YLQUp+QWtwkrV1QHGz07rEowT1wWZH8usqQpO7f4wjriNQ//cUZF0YRIgcUOY888N6ZIkgtvcLEykmShTsbKI6r0rKzdVgrteKRvTOKpkEtcGOf313rLkpCJC2zykpzNlpeACW1xYbOY1VeyBtR3Aqrk5jLOqss2lgACL5Svr/K4gOM20Ppzk3E8HK1bZXCt+FySl5vvU/PDJL66tkvjrDU+znbGT5YtbRC7xEN7p5cTnu5kb0X+WSlRiYTK9pndBUEwkrgtx9jv9ZeX4EteH6Pv1cGXSFSpB3RGVylZlVyIi6ZlMWbJeEcX3+9inOtd0/eq9AfpfGdXt29/qRFDMuqTH5Yju9hLa4eHEv5W3eRGNd8Xof3VMl6AZv8LPxLkU0+fnsLoFFqbSJd/dE4uvMOMcZ3JyEqvVyj/+4z/y1FNPVbz+OlaK5KyjBL785S9jNBo1gpIJM1dwa2mCErDz7Y203KtqRQ8emChL8hBkM2bJjBLX12oP7VQrBUx2zHDhV8NlCUpb315H25M1AJz4wgVdghJA7NIAtpCEPVGmrGBBWWRmIM3ZH/aVJTBEdnu55E+bEANq9Zhy5B+AXDpPZqa8gwrucCEGBGYG0hWlULytLgTFghwqXybR1+rQqhNVGuP4mRTDJyY5+93yH7GhnW5iu/3U7Kusl7rjnQ003ROr2K7utgi7/6wZwVNBBxUYP5ticg2n7Vruj3PJe5oqtvtNsPHhai7508p9jrZPkRqYYzFTmRPZ9uYadv6Xyn0qUYGd/6WJyG5vxbZNd8WpuylSvlEaBg+Pc+qrlQMbraLZnsrXVoIS9lh5ndoLzw1rybHqveV1fDOzOfKZRRamyicmiwSlTU8k2fq2Ot1280Npzn5/2ftdYcoF29ya5rRef4c+pBKUnHU2dr2nCf+m1ac/AEhD5/f7OPkV1eb+zc6y15d8AlaHvkzI4IEJjaBUf0eU5nuq8LasHmuVoY4t41fTEm4ln88zNTVFIpHg0ksv1b/4Otaxjt8bdu/ejd/v1whKSZq41nBXSYKSb5ODlgeqqbpaTeSc+LfzugQlANFlxebTj7ssMniaFADav9XDmW/26BKUfJsc7HxXI3JYIDOb5+jHu8oSDjxNDsLbK5AhCy7u2OfOceYbF8oSlDY/XUvzvapNKlVbSacyLKbzZCrsaRXXtY5v9VeUjVNiMvaqypIfoe1qLLsWQk/7Ny/Q+0LlBFDNdSFa7tfXJi8iusfL9j9pwOqtLDG14x0NZfXOi8jMZZnqmWX8bOUKOzve2UjD7RXij98QO9/dSO0aYs6JzhRj7ZWrgcphgUv+tIn4Fb6KbRvujLL1rfoxRRE1N4WpvjKIu1Ep267rR0P0HxyrSJYZeW2KzGQG2WfBWVM+plLCMqJLwJ7Qj1UAXvtMt9pn0IKnRKywHOmZLJm58icSR46qVabksMCOdzbi26gT+wCvfbqbjm/3romg5KyRccRthLfp+47uHw9pBKXWxxO0Pp7QbXvySxc499ygZnN/m1O3rb1aRrBZMAk65aoz6jdnsdpUy/1VJeeHxWBhl+E6tkxdjd3mZHFxkfe+973U1dXxzW9+U/f661jHOn4/ePXVV1EUhXe84x3kcjkkbFzOfrYZripJUNr0RFKLP6bOzaokHB0XabIasToEbBF96VNPo+qD50ezdP6wvyxBqfmBKpoKGxLdPxnSJSgB+De6cNfYUWKVZVezqSzt3+wpSxJy1ytsfWsdos9CeiJblqAEkJ7Nkp4pv3Y4a22IXrWyTiVylC1qQ/JakQPl78deJanVclLZspt5APMjGXpeGNHkVfXgSMgkrw0Tv7J8rgJUclbyxmDFduEdbrb/SQOir3KMNnpmmvGOynFX1VUBtr29vmK73wTJ64Nrin1SF2YZ70qRna+8EVN/e4Qtz1TuU3CZ2fx0LcGtroptm++Lk7y2st17fjnM2e9WJmYVCUrl4pkiHAkb9nj5+Gz0xJRGUKp0P9kFyC/kyFR4f4oEpbr9YTa+MaHfXyrL6W9c4PTXC+/Yare2AsGtqvRbuf5O/tt5svN5RJ+FbW+rVw9GlmwMZ77Rw9nvqaQiZ1LGXOYVtgWsSB79b9XJrlmNoBTZ5WXDg4mS1/YagmyduIY23yXk84ucO3eOWCzGtddeq3/xdaxjHb83vPOd78Rms/Gzn/0MI0aa2cZVhttKEpTkoJWW+6sJblPzKuefGypbAVHyCojeMsl1k0qIADj//BAd3+7VJcsoEZFNjyWRfAK5NJz9Vn9ZEkVgkwt/q0v/2oXrgxrHnflmT9n+6m6NUF1Y2yrFNNmFHNn5HPlM+XXY06TGnQMHx8oSlAAcMRlnhfUNwFWr5sXWUlW952dD9PxyuCIprPrKAA13VN5DdCZtbHy4GsFZWWJqw0PVJG8MVWxHbpGRU1Ok1lBhZ+MjCeJXrJ63vw1aH0sSXcN+33jHDKMVniGoVXvanqwhsMVVsW34Eg/N96/OPV8M/yYnNdeHcVSVnx+Dh8bo+fVIRbJMqneOTCqHRTFhC5eP9QWngBwQsYXKtzv3wwHShT7tVeX3zLOzOTKz5Sdlqm+e9GQOQTHR+sYEzqR+Prj7J0OcebZniaBUZnpa3QLeRgfeRv3Ya/jYpEZQSl4fov7WqG7b3hdG6fr+gGbzcs9IcJqxuiyYrfoDvPDzYc3nNtwWoeW+0nnjFsN2tk5eQ0iOsrCwwNNPP019fb1GRF2HPtZJSjoYGxtDURTuvfdeAJwOJzu5hjubH+KStzZjC6mLfd2tETY9ldTIPrlcnukBlTDiSMpseaZW+61mX5gd76hn69vVj1FntY3h1yZIXVhAiQpseaZW+7hIXBdk6x/VUXN9mLpbI7Q+mkB0qdcUA2pbX6v6sRi/2s/mp2vJLeTJzefY8FA1jXeqi5igGNnyTC3BbS4Amh+Ks+WZWk59uYeD/9RB/FI/zfcWFjxBPS1bJEbtelcTu/9bMwjq5n/zvbEVmzdbnqnVNrMkvwWT1YhFNgDQdHeMDQ9Va203P11L/Go/3hY7vlYHi/lFun+mlmesvyNK66MJrW3bkzUkrgtSc22Y1keSbHmmFiWq3nvt/jCbHk9qbTe9KUnNvjD9L4zx2pfPEbvUhyOpOp6am0JsetOyto8nqb81yqZHapbsXdiIrL42QNuba7S2rY8mqL8jqhJHBLVtkWgRu8rH5qdrtbaeBjupoXk6v9uPoKh2Ce5Q7R3d42XLM7WafU2CEVt4aVHY8kwt4d3qpkNop1ttK8Ds0AKL+UXqbloKHDa/pZboFaq9/ZudbHmmFsEj0PHNPgwGlTCktX2qViO7eFvsbHmmloW5DOnpDHW3RVbZO3m9GvA562zqGNTHSM3NF9n7iSQ1N6sbY0rcihwUycyriYPk9UGNJFe0Yd1t6sZcfj6HyWpELHxsV+8NsPmpJRtufLhaC7zmxhcwmgqEFdTKPZvfstS25cEqmu6JqVJqi4tE93i1ORvZvczeqImalvvjdP64nyMf62DLM7UaqSm4w6XasPA933RPDNFjUeX1BHXOxq5SN+z8mxyavUGt6LP9T+pJXBMiusdL25trqL5Wtbe7SWHLM7WajxjrmF5RQrPtyRpqCs/1Yh/R+liC2B6/9vumx5PU7i/YuzBnJZfAy//rNM64jbY31+Css2n2rr9DXaCX+4jFzCJmq3HFnL3YR0Qu8RLc5sK/2cmlf9rCjnctJfZa3lC1wkcs5hbpe1l9d5O3hFR/Vvj2udhH1O2PgAGmB+YJbivaW112ij5i8OAE80NpNj9dS/3NUba/pR5f60p7F33EkY91cuDvztD2ZA2b3pRg69vqcG9QSvqI7h/1MnZmiuilPmr2hQntdGNPSGx5plbzEXs2X8E7n/wvxP0JLBYLL7zwArIs8+d//uesYx3r+P3jv//3/47BYODFF19EEiW8hLnWcDc33X0D9bcUSBmWwlq0X/WTRrOR7EKe878sxBS3RWi4c+ljZdMTSbb/ST2hnW58Gx2kUxnan1WJkXX7wzTcvdS29bEEW55ppP6WGO5Ghbp9Uab71ep/yZtC2oYcqJVQ7DGJfHYRR7XMpieSyEF1k6X62oDmC21RkdbHE1Rd7efQxzrp/MEAm55IosRUv191TYAND6lto5d5ufQ9LdTfHYUMzI8vsOmJJM6Cz4pd7mPjG5fWesFuwVpIPlmcFjY9kdRIIZHdXlofS6h/awHfRicTXSkykxkssmqX4qZDaLubTU8kSd4UourKABvfmKD+tiVizaYnkgQKmwn+NiebnkiCBQ7/01mme2ZouGulvYtrsqfFzrY/qafmBtUH1+4L03j3UpKl9bGEFke6GxU2PZEkl4ULPx8hcUNwRWJg48PVxC5X12RnUiYzn6PnJfWZV+0NrFh7Wh6souoadU22eiwINjOCoj6b+BU+NiyLl1ruj5MoxEBzEwvIAatGgole5l0RLzXdE6PmpjCz/WnOPNtH4+0xjdAW3uVZQQxpuDtK3S1hFqbSzE6lVXsX4sjgVtXeWtvbI9iWbThueiJJcKtqQ98mh2ZvUCtcYYD5SfVju/XxBOFdahzpaVJtaHGqjfM5kNxLycnWRxNEL1Pt7awpzFmfhdn+NPlsHk/j0ibUhoerNdKSvTC/bVGRfDqPyWqi5cFl9n5DFVWFmFMOC2x6IsnoqUnOfq8fJSiuiE+b74+TuEG1t9VrofnuGBOdarIxeoU6Z5fbu0jGsshGNj2RZONjNTTcFiO0073S3ndFNR8xdGyC2ZEFTBY13ghsda2w98U+YvOb6rUEh2+jam9LIYdR9BEd3+rn2CfO0fpYgtrCdYpztmhvzUfkF1nMq/GpNmdrVvuIwCaXev2natj9Z80a0VKJSSt8hDOhMD0wy7nC4ZO2p5diTjloWeUjJI+VXOFUf/O9cZKFmHK5j+h/cYzIbi873tlI3c0RXHU2dc7uL9pbnYdWu5mX/vYUBqP631veosbRDXdGS/qI7p8OMdGdYtMTSey1MrLPQv0tYc1HWAwWnnzgzdyy+W6SiSTnzp3jrrvuIhwOMztb+cDFOtaxjtcX8/PzNDY2sm3bNmZnZ3E53OziWq4L3cHmNzQgBdRv98guL033xjSiUS6TZ+qCugkjes00P1CFElV/C2130/pEQls/XTUKA4fHmembx6yobR0J1WcFNrvY+Gg19bdFqd4boGZfCNmrXtMsGml+oAp3vbrO+jY6aH6giuxcltxCjuSNQRLFwz1mlbxUJJwmbgjQ/IAqb/DqRzvwNTpWkGaaH6jSYqCtb6tj57sbMYtGxttTVF+jjqOIpvviBDa7AJUwIihmzLKaxI5d6afu1iVf2HhXjNB2N46EjBIVMRgMDB5WqxhELvVSv4y0XH9HlMguL3X7IjTfm6D5gSrkoFiwt4eGu5bipfrbI0Qv8zF5doZjn+kk2ObWiFfBbS4alx2Cq9sfpuneKprfkNDsXVwj/G1OjeAFkLw5RPU1AbU6QDar2rthpb2L8DbYmTyf4sLPhjQbFu3tabSrbQvED4tiQll2SKvp/riWu3TW2mh+oAqzYmZhKks+lyd6yRJJuuneuEZgsVdJND9Qhegy0/frUbKZPPXL7N1wV4zwDjVeskVEmh+oIp/LMzeWJrLbq+VGNHsX8kCiz0LzA1UYCjmv8A73SnvfGiFaWL9FlxlHjY1sIZ8T3Oqiadn3QO3NS8StbFbN91mdauzla3XQtCyWTd4U0nJ0M8MLmK0GjaDnabGvsHfyuiDJ64Oq7FlukdAlHm3OuhsU1YaF0LH6mgDJfSE6v9fP8S9coOm+uEZAdiZlzd4A8SsD2IKiKtFmhsZ7YlquWImJmr0Bopf52PjGBHU3Rwluc9FwV4xIIeaUg2rboo8YOTm14hBd/e0RIpcW7H2Rj0jeGKTmprBm47pbI8SuVGOg4pyVfQKHP9aJ1SnQdF9c+9uafeqchZU+IpfNY7IaV9rwIh8R2enF06CSFne+s4m2p2u0OZvYG1hFrOv5tfqdEdrhYsMj1ZhFo2bv5T6i9qYIBrOBuVG1stxyexd9xGTXLPMjGRrvitF0d5yWB5Mo0YK9vWrboo9o/0Yfhz96lvo7otTfEWXjI9XY4taSPqLvlVEGD47ha3EQvcyHp9GO6CrYu+AjWqo28NZ7/5g6ewuSJPGTn/wEWZb5h3/4B9axjnX8/vHtb38bm83G3//932O1WqminmsMd7Lz0u0rDkLX7g8TLewXmQQj6VSG8dPqoa/wTo/mQ0Hdu9nwcDWeZju2sEg6leXCL1QfFtzmpurKJQJJ8sYQrY8kqNsfQfILVF0VUKuCoMYJyw9OJ64LokQksuk8osdC7f4wYiFP7291krhO9ZuC00Tt/jD+NicnvnCe7ucGqN0fVisBoVbSKxJjXHU2dvxJo5avmR1JU7s/rJEyPA32FUUAJJ8V2W8t2EG1iz2ufie7am3qdXwCmMBdpzDZNaORnmr3h7X8v6NKVse4yUnNDWFq9oWIXrbShq7C/ooSlajdH8YkGOn4Vh/jZ1MrSDg1+8Ia0UkOWml+IE79LVF8LQ4CW1xUXb1kw+T1IXwt6vot+QU1l2AyMHxsEv+mlfauvjaIv1Vdv61ugcxCjt4X1Ofoa3GQuH5p7am+OqARbgSHGdFjxVQgWXia7dTctGTD+BV+QoUDTzPD88hBEaUQ07vrFW2fD9S1P3yJh3QqR/dzg8T2eDVyizNp0/aoQK1WE93tZXZkgfkJ9TkWSSv2KtWGRWJK+BIPjuql/dCam8NajK9ERNXekto4tM2DwWxgoXCgq+amMJ5m1d5SQKB2fxhBUdvm83kk11LOK7Hc3j61rdUtkJvLkUvncNUskXqr9wbwb1LtLTjN6lzyC+TSecySieQNS/auWmZvi6LO99nhBTq+04tZNq2Ys7HLfdrhVJNgJHF9mJkBlezlarjIhpf5iFxSOIxmUudsy/3V1Nyozt1V9i74iFTvHNO9sxgtajBrjxfnbMHeF/mITY/VaDkvW3ilvYs+YvDgOB3P9pG8MaTFcJK/YO8CAa7oIxaBXHaRQJtTm7OiR1jlI7yFHGPtLWG2va1ei0+LPqPoI5SwyOT5GfpfVr+b6m+PaqRMk2Ra5SPscYlsWn3Po5f7CO8s2nvJR4ydmcZVa1Pz27dHscclonu8K8hvxfEe/ZcusrM5aveHqb8jirfFQeQST0kfce6ng4ydTVG7P4wcEBCcZsLbPZqPMBlM3Hr1ndxa/wC1iTrOnTvHNddcw86dO5mb+/0rAfzvgnWSUgls3boVr9fLzIyaeHnjI2/kjbc9gcPgQfZaEV0CgkN9iWxBESUg0XSH+vFpFkyYjKpZJZ+A6BI0cpESEjHLZiySGUExInqtGuPR6lT7Fb0CSlRACYkIkpmBg2N0PNuH5LViK3yQCDYzoktA8llpvDNGcLMb0SVw5J87ee0z3cgBK3JYXcCNstrWFlAdkCfpQHSpv6XH0sgBK1JwaWNEdAkohWpE2fkc2pc7IAVF5IB1RVvfRpdKXMio5IXM7GLJtpJbILzNQ+MdcRzVEqJLwOowaTaUvMvaetT7P/PNHkaOjattnervSlhCXNZWDogEN7sQFBBtqq0lz9KzWX4CRfRamZ9M0/mDPix2tW0xCWYLidrfIYA9LuMtJAwEm0FtW9hAsgelpU0fAWx+EVNhUUBQ+7X5VRvaApL2/EmjJTeKf7vc3raAqM4twUjfC6OkZ7MrNq0kl4A9WGjrV9u669UFSw5bkfzL7tUtaHNLCqhza+T4NIc+fBYlJCH5lj1zz9IYJM/SfAV1zkrLKk5IXitKsV+3FZNgpO9FlcWqRCTEZZthkk/U5qxZsSC6rVpSwxYSV7b1W7EV5mzvL4YxGA3Y/MvsvWxMtoCIXBjD4X9qxyyYNDvZQqpdiqQZOSgiB0UGD0yQTuVX2ttfeDaCoLW1+UXsCYnd725B8lo1e8vFZ2NTn7McsmI0Gel9cYTeX40ieZbsvcpHBEREr5Xa/WG2vr1OfTYFu1zsIwwGA7lMns7vqaXW9XxE8dnYgiIt91Rpz6aUjzj2r+dI9c4hugSV5Cag6yMmz8+Ry+QxC0tHy0r5CKtd/dvQJveK+XLxey/IZiY6UswPpbHHJSSvFbF47yV8xMzIPGee7UXyWSv6CKvLilkyIzmsJX1EOgWnvtyD5LHiqrNRe0OE2GX+kj6icWQ7G8cuo62tjXQ6zXvf+15qa2t55ZVXWMc61vG7x4EDB7BarfzlX/4lAFWxBH/y9newxbAHACUkIRcIvhZLYe1v8+BpsSP7rZjMS7GKLbS09gDIPtVXKAEROSAi+6xqJ4AtLGEvrAmyz4LsE0kNztH+rR5knxXZZ9XI10pIPaVi9Vpoe3MNsl9EkC288o9nIGtQ29rUfpWwpMUMLfdXY4/IKGGJzGQG0WVB9lkRXRatXzmgjmHk5BSLi6oPB7DYCm3dhVglKCL7Ra0yUX4hR65wWltQTNqYAZSgFdkn0nxvFW2P1mAPSdraiUXttzhGW8EuXd8b4NxPB7HIpqUTORbVhsXEkC0oooQl4leqH2tyUNLWVSjECQX723xWLFYTfQdGGHh5HFtE1GKIYtvis4pd6kOJSNrv9rCELbis34CIvTAHrF41fpsbShfarnzmtsDSdSbaU+SzeaxO1aZKREL2L5sfIQml8LF74flhzFaTFvfYLoqBlJCELWylam8AT6OtYBf1bxW/am+tbVDCFpI4+vEuBl8cW9HWFhS15wTqPDRZlz7JZN+SXWS/2tZSINzYQhLZ2Ry9vxottBVRCs9Ga1sYhhIRcSYVjewi+ZZiCqkwV0yFOTs3uoDFtmzt94sokYK9nWZknxWr3UzHt/uZGZhbEZ/agiL2gg2tDkFt6xYYfHVcjTlXtJW052iR1H4ln5UND1dTdVlwxVpvC4rahrhRUuf3+NlpTnzpPEpQXGnvi32Ez4oSE9n61jq8LfbCe4/2XJfPl3wuz9Q59ZuvnI8o2iXY5qbh9oiuj5gdzPDKP5zBahewhdX3VfJYdX3EWHuKRRZRCuMv6SM8S5v/SkDC26Qmd0r5CFArygE4a2x4G9TEUCkfYTQZ6PnlMBMdM9hDErbCXNHzEWbJjFkyqc+mhI8YfHWcfHoR2WelcX+UjY/WIIdX+4hoVZja7m3sabkKn8/HwMAA8Xic66+/nnWsYx2/Hzz++ONIksSZM2cAAw/c9SAPXP0wisGF1WFW81F2dV2whay46x3U71cJIoLNjMGkrksWmwUlJGrEDFtQRHJbsdjMmBW1n+KabJFNKIXvddFrxhawIjqtnH9ukO6fDGGPSJpvMYpGNRfhFdQE/i4vtqBI+zf6aP9GH0pYwhZZ8i1KSP2uC213E97mw17wZ9lUFltE0nxscYzFdSw9lQWjAaNYXGdF7JGVbb3NdjCrOa9cOk9uflG75vK4RglLBLd7aL6nCmdCRgmJS34/JK4YgxKWsIWsnP7aBfoODBdsWLB3YGW/9iob0V1ezKIRs9Ws2RDUHMZyH6uEJWaH5un8QT9m0aC2LXz7KoGVbUNtHo2Ahdms2RBA8i4bg1mNn7SqeubC2lSIa0Svmr8zm1Ubzo9nMCwrBKqEJM3ekrvYFsZOTzM3ktbisKL9i0QMsdDWFpOIXuZDCYsrDvwpy9Zzq12dh9M9s5z4XDe2kvYu5EoUtW0xG24LrrS3LbwUq5hkM4Jkpr8gmSMHV55aV8JLG33mgp2KRHPbRfa2hyUttho6OA4YtNyO7C+MoRCK2SJLbQ9/rBNBNCN5Czb0FHJyZvOK8Y63p8imsighCaVgb7GQWzWLhkJbq5ovcZnZ8fYGXAnbkr1dhbaFeFAJilgkE+d+MsDgwQnV3oFivHeRjwio/YZ3uGl9NIESXnrnLvYRRpOR7Fye3l+MaM+xlI8o9uuuUWi+VyXB6fmIru8PMtGRwhYUVTKXGV0fMT8yT2YmiyAtxb2lfIRYyOfF9gRwVtl0fYToFhg9Mcn8aBZbUMCVtC1tupXwEVMXZun8fj9Wp1DZRwSsWBQLZsFc2kdk4dxPhlBCEq4ahfrbokT2+Er6iESqhY0jl7GlbQuZdIZ3vetd1NbWcvToUdaxjnX87jEwMEBtbS233HILs7OzVPsTPPPw22kwtwGqb1m+ZrhqFGKXBXAmbYguAZNgIpdbypE7IivXF9FhQXIJWJ0W7FEZs7jUtlg1SXCasEckUn1znP1uH4Kiti2SW2xBCXtEwiSZtE19q9PCic91k5nJY4/KWGxqWzlg1Xxhw21xvM1OlKBEbi6HyWrCHpWx2lX/JnkFre107zyLuUWtH5NgUNs6l7WNShphKDuTXaqqZ1L7Lfo3yW3FHpVpuDNG4+0xNd4o+lwTK9qKXgF7VGbs1CRnv9uHSTBpOQwAe1TSchGi04Kv2akd1JODVm2tB3Xtlwrrt9VhweoQ6PnVMCMnptQ1ePnaE5W0XFqgzUmg1Y0ttPTtbo8skbrtEUnbJ7EoRuxhWZO+koMi9uVjiEpaDJTqnSM7n9OUJyTfyvHao5K259b34ggW0YS1aEOPau+lMYgoQQl/qxNnlbzS3h7V3kXYCnFN53f7GT46iT0qa3Gk6FLtXYwdlaCkHRzU7F2IT4XCnC0SbOSQlWwqy0hBZk4JL+XlrI5CW2lpfrsb7Uh+QRt/Ma4xy+p8sRQOF0z3zGm5VrWtvLRvKRbaKmaGDk0w2Tmz8jkuixNMwtL8nuiYQfIKK2JZe1Ra2nMrzG/RaaH66gB1N0VRlj/zZbGtqTBnxzqm6PhWr2bDItHrYh9hj8pIfiuNd8UKMrWy2gmrfUQ2ndeqhpXzEaDuicf3+Ki60q/rIzKpHCc+143oFJAD6r6bWTLp+oiJszOQW0Qp5HhL+YhijGmPS/hanBrZrJSPMBgNdH1f3TsNbHAuVb8s4SPMokmtPndhTn0/izkvHR9hdViwSOZCfL3aR0yfnyM7ncUelUlcG6L53irk8Gof4Q46SHZv5rLIdYSCIQ4cOEAkEuGxxx5jHathWFxcrKy/9J8EH/nIR3jmmWe0/7bj5hLD3pJt/ZudTPfNMT+UJrrHy8TZaWYGSpdtS1wXxJm0cWQN+un+zU7qb44ycGiczu/ql7kuYvufqBVPXvmHtel5Jq8PlpWB87U68DU5OLUGnW5bSKDtiTqme2c1iaVyEBSouiZCx7N9Zdu1Pprg2L+dgzVIrjbeGcNVp/DS35wq285ZZ2Py/Mya+gRofSTB8KnJitIkO9/VSDad49UPdFTss+62CB3f66s4BkdSxtfspPPH/RXbbny4GkeVjV//7YmKbd1NCpnptFqBqAIu/fMWps7PlJUrBEAAf5ODyc4p0hWqb299Wx1Wu4UX/vpkxev7Wh3Yw1LZuVqEf7MTk2Cs+KyiV3ipujzIqS+fr1iave3NNZz/+RDjZSSDLh5vsRy2HpruieGoVnj5/afWNA9r9oWZG1+g/wV9DWlHUsaZsHHhueGK/Qkege1vqSPVP1dWurEIe0Ki6rIAxz+rPwecdTYE2VRROhFUhnrkEi+nvnKhov0Bdv9ZM/NTGQ59qPK7FdzhIrLTx6GPdejatmZfWPOp0Su8mmTfxRha7GWuboT2DtWnJhIJuroq22sd61jHvw8tLS2cPKmuCwYMbOVK3IbSslOhnW7N11dd7ee8ju+zyEZaHkyofvx0ZX+z+elaBMXMy+87XbGtu1Gh8fYY534yyMArleXLfBsdzI2nmenVL5PcfH+c7h8PMDtSWfqp9dEEtpDEwfefLisFV0Tsch9jHVPM9usvPOFdHoxmA72/rKztbZGNtL25jpGTk5z7Qfk12t2orMn+xbaRnV6OV4g7PC12Gm6NcfZ7fQwfmSzbNrjVTXoms6YxVF0TYPJcisnOytVcdr2nmZmhOY598lzZdhbZiBKXGe9M6UoGFtHyYBWOKhsvriFGkoMWLLKFSR299OXX3/4njYwcn6T9m+VjbyxqOfHh4xNl54raL0QvD1Z8/oAmj/JqhbU8tNONo0rmzFcqy48Ux2D1SKR6ypxEssCOtzcy/NqEVoWoUp/1t8bLSmuDWgmh68cDFZ8pqHG6EpM5+OGONUm7NdweYfDIRNlnG7/CV1GWp4htb6sjm86v6Ru05qYwwc0uTnyhu+LcArWK1+jJaV2pSTksoIRlhl6dQA5aEOyCbvn74eYOuno6mZqawmAw8K//+q889NBDFcewjnWs4zfHT3/6U2666SbS6cKpeSK0GUpLXjsSMunpNPOjWbwtDmaG5pjXiVUCm114Gu2c+mJl6XQlJrLh/gS9B0bp+Vnl79gND1djtho58vG1fZOFd7jpP6AfoylREf8G55pyDWbFzNan65jsSlWUY1P/AGJ7/BXvq/7WCF0/7CNbWUWD6GU+AptcHPrnDl1ZPVA3sNKT82vqEyC5L8T0hdmKeYxNTyRhkTXlEKKX+xg8MFJxDKLPgqfBQd/Lo2XvCdQcZmCzm4PvP0N2vnzsq0RFsvNZtVJQBex8dxPjZ6fV6unlYFblXmYH5itev+m+OPaozIG/q/xNocREHDGbduivHBwJGYtsZvRE+WflabRTtz/C6a9dqLiWN9wVY+DgGFPn1lbJ0JGQK7aNXu4jsNHJsU92VbQVqJXA8tnFsjG96LPgSihr+u4yi0a2vrWBqQsznPpSZV8kuszELvNrkrmlIAWsiE5LRZkhUL/7kteFOP31njXZddvb61mYyvDap89VbPv/s/fe4Y1d95n/BwRw0S56ryRIsA/JmeFUaYqkUdeoV8uyLcsllmvs2PHupjzJ7i/JbrzrdeKSuFu2XOQmW26Si2xLdlSm9+EMh23YewEbQJC/Py4AktIQ90CRNrbC93n8PBrz4OLge8/93nO+5z3vayszE73cS8v3Lq4Z29AOd348FapRJpfGGa3s4nzreZaWlti2bRu//e1vMRrVrTHXsY51FI8HH3yQRx55BAAJA5vZg6y5tK2RI2HJr5m8DXaGTqyRH7WQuDHEwLGxgtZvOSRuDmEJGDn2efV1ockrUX1HlK7fDjJ6Vt1KSw4ZyaQWC9pZRXZ7GDo5yfyY+oZI6dV+PDU2jn6xbZUzxVpw1ViZGZxnbnTta9vjFiRZt3Y8V0KrHDYca52i74W192RAUaWZFrBEA0UFKLDZlSdXrNnOK1F7d4y2n/ep2sfZYmYWM0ske9THgKcuW5sU6G/TOyuY7p9V3cPVSopIQXJgTtW+LrrHi6/JwaFPqu9hS3YtWoM2fzBx7Q5A87srGTw2zsVnVNYUWvDW2ZnqmS04VnJtfY0OBo+Mq/a16vYwOqOW09/sKtjOFjPjiFvoElj75PpgckqFbeK0sOH+MkbOTNJ3sPBYzbUv3eOj89eDBZv5NjkYOTVORmD/snSfD0+tnRNfaVu2diuA0HYXE10zBcehp86WJ6mpIafW3/Jd9XWat8FObK+Plu9fJNmr/hzErw8w2TWz5vxbkrWY/UbGL0yjl7UY7NKaz+J4eTetI2cZHx/HYrHw/e9/f/2Q3gqsKykByWQSq9WaJyiVoGUPt6xJUJJkSNwUpuZORT2p5/cjaxKUIMtoXqHuUghDRyeY7Jqm+5m1CybWMlPehurgZ84XJCjZ4mZ2/JfavE2YWiEmssuLM2EV6ut0f4rOZwcUQlEBVN8RwZ6wkEqi+nIL73FjDZuJXHbpDcqXouX73aoEJYDau6JsfW+V0DUBTny1Q5X0AjDZNc1kl/riM3qlF3+jk1Czup9qbJeXwCZnTuCnIE5+rZMTX28XI3TdGqH2njL1hkUgsNFJ1a1RvE3qv+v0t7s49En1zTeA2BW+vBSlGsqvCxLb7VNtN3R4jLmxedKz6ptExz7XJkxQKt3no+rWSP4ZWwtnv9PNi/9bjKAEyoszvL3wNSfbZ/IEpfoHSvPWdZdCalR5Xo8/KlbcLd3twxazYPStPRAnWqcVgpIE2/+8hroHLu3JCooX7XP/+4xCUJJYJSd6KQyeGKf792ITN1dcxmDVFWyTIyjZ4mZK9/hXWdWshE8TpvRCE36Uv3d0dBAOh/m7v/s7ob6sYx3rEMPHPvYxNBpNnqBUShX7NHeuSVCquy9KfF8As0c5PbEWQSkHo0PCWW4V6kvviyP0vVh4g6DsWj/oYawlyfMfP1uwUF53X5QtH1DmHMMnJwsSlMxBCXuZTGSXmIf7ia930PHL/oIEJb1dn7ex6352WJV0EtriIrRV/T0OkJ5Z5OAnzqkSVKJ7PNTcGc2fJlfDWEtSlaAEiuLBzPAcQ6fVi0vRPV4SN4ZU2wGEtrqJXaE+lwA49MkznP2+OpnG3+yi9q4YjtK1fdpfCeruKaPqtohqu/TMIscfaVcnKAF6s57QNjfhberzb99mN6Et7vzJwkKY7JxmvK1wYQ2g/8UxYYISQNM7q6i9O1q4URoOfLxFiKAEENjiwR6X87Z8a6H9ZwpByZGw5K3r1sLJb3XS8Yt+IYKS3gyuaptqLsgRlCK7PWz7cHXeQu5SOPSp1jxBKXy5u2Dbi/82zOj5KSGCkt4MRocB2W9Ys81MX4rBw+OAQv6quTOWV7N6KbxnEmyavBIdepaWlnj7299OTU0N6bQAE2wd61iHEBYWFqivr2ffvn2kUikkjFzBbWsSlNBB9R1RKq5X5hMjpyfXJCiBonhi9hjyFlSFkOyeY+j0OP2H1p5LGd26vO3Xqa91FiQoGT16mt9XmVeaLERQAgjt8OCptwv1dSG5QNuTvbT8sHDhO7zbo9hhLKBKUHJVW3FV2/A2iM2Ren43zJHPFCYogWI31/BgReFGK9D+035VghLAWOs0Ex3q73JXnZXoZV7c9Q7VtsHNLqK7vOiMhdfwoNQwj39FjPRSeWuE6ttV5gdFwhYxU3dv6fIp7QJo/UkfRz6jTlACpfYaFqx7VtwQIrZHfa0wemGKqb5ZoYMM574nRqQBxaqn9p5Y/hlbCz3PDnPkXy4I3SuA0HYPoa2F635zw+n8uit+YyBvpXYpLMwt0vZUL2e/r05QAghuc+OqtmH0rD0/mh2czxOUNv5JxSrLwZdi+OQkBz55TomrjlU2IZdC7/PD9B5QJ6kB2EvlrPLW2rHNEZSMDh0V14fW7KuscRBrbaRyqRGAF198kfLycv7pn/5JqC/rWMc6xPCLX/wCs9nMI488ggYNNWxij+bmNQlK4V0eKm4I5RUQ1Qg1Zq8hr/ynhv7DYwoxuAC8jXbQwuxQiqNfuFCQoBTe7WHDm8pAC8neuYJECr2sxVvvwNeg/h4F6Pz1ABee7C1IUNJKJXlr9dGzU6qkk0Czk8AWsX0mMnD6652qBCVHwkLN3dG89ZsaZgdTqgQlUFQ7J7qmhchnkcs9xFfYwBVCeJdXuO538isX6HxavY5ijVmouTuGbYXC0quB8muDVN4UVm+YgZOPdqoTlFBEhmJX+PAKzOccZRZie3y4qtTv7UTXjHIwUQWTXTPiBCWg7p4YlTerxCADJ7/WIUZQAlwVVjz19rxS2VoYPKIQlExeSXV/tvM3g1x4sleIoIQWvI0O1TpxjqDkrJRpfFs8nxMvhZbvdtPyeHe+vcG5dtvRlikGj48LEZTQLiuKr4VUMqOoRKFYKlfdGskrgr0UjrYIm8avxI7i3rV//362bduWPzj0nx3/6ZWU7rrrLr73ve/l/11FEzFN5SXbehttDJ2dhBSEdrrpPTSyJuHAv9WBu8rG6a8XZlGC4ilec2eU7ueHhRRRtn6wCp1RK6RIgwRb31NF+y8LFyAkuYRUUlnsSC6JVIGXe/xaP7ZSixD7Ggl2/lkts+Mpjv7LBfX2gNEnMafClK17IIZk1Qtf09/sgBIYODBesF3TO8oBxH5bkfA22oQUZyCr/KTCli4W/q0OFucXhfogqqQkyRDc7qPvyHjBMVMsLAGJdDKlqs4EyvMz1pEUJv+IIrDNSekVfo585lz+2VgL1XdEaPm+wMlKlE2i8A4PL36ypWCf1Z7DlXDXWam+PcrQ6Qn1k4AoYzG616eqAJZ7FiUZ1Xux6T0VjLZM0fnLwmxsUBQjHGUyJ7/RwaTaZpgE2/+0hpnBOSHFNnvCQukeX8GTnuE9bnqeV/K3f6tjzbyQWkoxuqGNM2fOkMlkMJlMnD17llhsbTLWOtaxjsIYHh4mHo+TTCpJxYCJHVyLXnPp4rCn0cbw8UnQg7/BycDhAuSgN8boeLpflZQDyql8k9vAwU+cU23rSFiovTvG0MlxWn+krnIZu8qHvdRcWGkn93PTYHDrmR8psBmvh40PldP+i34hpZ/Km4O4Nzg4+bWOwkozK7/Cri9IpNCbS2h6R4KOX/cr90MA5TcEaftZ4XgZ3Hoa3xznwlN9jJ5WP6VXDPRmMHrNTHWKkC5KKDFpC9+HYr/frsfXYKPnhZFXVUnJs8HG4uLSqx4va6lYrKA4laxi0PDWMjLzi3m7srVQjEoWKPP7mf5Zzqs8v6rP4sprvrMco13ihY+pH5YA5beNnF1beeil3683lxTcZPRssBHd7eXIFy4IqTrt+GgNcxNpjv6r+topdqWX4FY3J7/eUZBkmUPN3REGT4wzugbBX28GZ42DwcPjywpja9y7ZHSIroXz9PYq5Lp3vvOdfPazn1XtwzrWsY618Xd/93f81V/9FUrpT0M9WwhqSi/Z1la2rBjjqrMy2Ta1piqOPW7GXWuj7afqGy4mn4H6+0vp+f2QKokIYMNbyjC5JA78X/V5GjpoeKCMrmeHmLiwdg1FZyzJkyckh47U+Nqsn2KUoQC2fKCK2eF5Tn1dnXAt8v0AZft8mAMmTgteU1Rtp/K2EFqDVvi3FQMRtZ0cLCEj0yKbBEXAXqFsuhQaBzkUo6Tkb3Iw0qLYqb1aMDp0LMwtChF65LCRuRFxlSxR2CsslF8X5MRXO1R/W+wKH12/Ua/1gFKjK73Sz8lHCpPLdLJOOKZmv5ENbypj8MgoHb9S74ccMVJ2lZ+T3+gsSPDLP4s57lOBtjX3RpnsnBFSvyrd5yOw2cXpxzqFNpo3PVzB9OA85wQU24wePdHdvoJj111nY+TcJCxka6ZrqJkvLC0wWtfGmXNnSC+k8Xq9HD58mEhE/UDEOtaxjktjdnaWyy+/nCNHjgDgxMNGdqPVaC/Z3hozKXlCC464paB6Tuk+H4PHxgurq+TaXunDVmrmxNc6VFVujC6J+jeW0n9kjJ7fqav2umqtOBMyF1TW11oJMimFqJRWITFU3ham78URIQKBv9lJZKeH09/uVFfbyfXFpC2szKSFuntj9L4wkiceqCG4xaVKENFKJdTeF6PrN4NCQgdFQatYts0OqcdAKylWZUJkEtGvN2mxl5qZaJtSVd0pRklJDhnR6DRC789iYPKoKBO9pA9CZJYiUXZtAA3Q/vPC6ydrzMRSBiGVLFDEAOYn03k73bUg8iyuvKY1bObYFy+o5hBQfluye6agCtLK51ArlZBJrT1PtASNRHd5OPv9bqHvb3p7OfOTaSE1TVeVlegVPs49flHo+Qnv8jDZOc3UxTXuhxbsMQsT7dOgVWyT1xo/KdckbaYzdHdfpKSkhL//+7/nox/9qGofXs/4T6uk1Nrail6vzxOUzFi5WnPXmgQlySVReXOExjfFAZQCc4HxG2x2Y4tahBSJxjqSpKbTqklHkpXbdeyRDk48WphEU7E/iLNGhhQc+L/nChKUIld4aP5AjULkAVVihDVmznuXqiIFx798QZVM5N1ozxOE1AhKADpJS4lOo9pOyjItBw6NqxKU8lC/LJJLYvN7E8jRtdmUL4UoQQkQJiht+0gNpVeLnfwfODBeVB9EkEoqCjmiZJqtH6yi8nZ1JvR0vxhBCVAW20UQlGrvjVJzt/qCe35c2fGxrPCKXQs5gpJUgNmbQya9iEarWeVjfynkYhrY5qTxoXjBtiOnpzj+1QtCBCUAe5mMZNEXVEmC5Wdx459Us/WDhZXIjnz6Qp6gVPdArGDuO/31Ls7/qDtPUCqkAEUK5sZTChFNAOEdbiwBY8F70fOMkr+NPomKa0M0PFh2yXaSRiJwqobqzGZAWWhu3LiRO+64Q6gv61jHOlbjwQcfxOv15glKG9nFbs1NaxKUNryplMRNYfR2PaQpSFAye/TYIhZCW8ROBk12TjMzVHjBqTcr867x1mlaHr9YkKCkN5dQdafyfut6elDVCmzLuyrZ/E7FCkuNFGH2SBhsEnZBRZ7zP+rj+FcuqBKU6t9UiqtOORmkpvRi9BrRaDUsFlhA5qDPeoWrEZSA/KmUubF51bZVt4VI7C+swrcS6RmESTfpmUUhckrlzUE2PSymUpCeSCsWeq+yGMzwyUlhglLsKh9b3n/ptc1LIRoroCiCkrXUTNM7y9GLHK4TmIODkgtyfciNt0Io0WnQmdTVGnJjoOHBMuzlhTt87MttHP2S2GEJ9Iq6mz1a+Jq57/dvdtL8/uqCalXDJyc58i8KQclVZyV2ZWGFhZNf7+TUVxUCdy63rYWp3lnmxgvbVOahB3tcLnjCLj1DXlWp5p4Y1bdH1+yDfNFLXd9lWLGj0Wj4whe+QGlpKX196vlkHetYx2qMj4/j9Xr5y7/8S5aWlnDi5WrNnWsSlHTGEmrujJG4RZnPjJ5em6AE4NvoxFVlW97cL4DZwXlmR+aZHir8vtcZldxw9rEuTqkQVkM7XAopZQFOfKWjIDHFVWdl83uq8vMeNYKQLWbG5DYI/TaA44+0ceqxwmQiOWKk5p6o0PcD6ExatHr1F2NOWWayY207gpdB4H2rM5ZQ/6ZSLCFxCyhRghIgTFDa+M5yQjvE5vcTF6aFCEpFYUGpJ4qSaRoeLKNsn3qNbm58QVhxKNlTHEGp9Cof8WsLqz0CzE8o9R6zR72OlSMoFVIyymExvUiJToNBpT6Wi6mzUqbqzsI1upmBOY5/5YIQQQkUBSyj04DRUXiemHsWG98SZ+Nbywu2PfvYxTxBKX5DIJ+vLoXOXw1y9rtd+Q3WQm0Bkv1zTHWJjd1AkxNHXMboWPtejJxWCEo6WUflLRGq14ivTqPDd6aKpoVdlFDC0NAQDQ0NvOc97xHqyzrWsY7V+OxnP4ssyxw5cgQterZyFc2aK9YkKJXu81F1SwS9rIUMBQlKWpMWZ8KKq7aw8m8OUz2zJPsL23DlVD/mRlO0fO9iYYKSVlFQAhg9M6VKUKq5O0L1XcohXzVShF7WYnJLmP1ic46BQ2Oc+Fq7KkGpdJ8PW0xZg6tZxxlsEiW6EhbT6noeWpNyP0UUbCS7kqvTM+rziOB2F+GdYnMeADIIESxAIYuJEJQCza78fFX1mrMZRs+qE5SKRbJ3Tpig5Kq1Uv/Apdc2L4UoQSnXB1EYnBKVt4Tz46IQNIJsjKmu2TxXQOS6Wn0JOkn94rlnsezaAHK48N5k20/6OPONDiGCECjKumrXzD2H1qiJprdX4Kxce1Nwum+Os99RCEpmvwFvU2EVrDPf6eL8j5TDblqVWMyOzTMzOCf2/GjBXW3F2+BYu00GhaAElF7pp/qO6Jr3TRq1UdOznQgVLC0t8V//63+lqqqK0VExRazXI/5TkpSuvvpqKisrWVhQXg47uJrLNNddsq2zSnlQUqMp+g6McPxra6tzyGGJ8hsUib2j/3qBw586szZ5QoLN70vgbbRBCg79c+uaJxtA2fRvfn91Xl0lebFAcUcCX4OD+NVicn+DB0eZHZln4MR44YbZicvxL7TzosqpYXvCwtYPVSG5pIJWeDn4Njgwewx5IpYajn+pXVUFBmDjW+Ns+7NqoWuCoqCUs0UoBF+jDYNNQqNV72/NXRG2/3lNYSJGFpErPGz/8xrksHqRQHJJsLjEYkZ98iTJijSxp0FsIlsMGt5cJlQAyaFEI7YD1fSOcja/LyHch20fqRFqK4dMmAPqk96xc0le+MezBZ/LlSi/IcCWhxO46wpLQfa/OMYL/3iWqQ6xyZa3zo7ZZ1AlPOZyQt19UVVSU+sTvTz/P88oJCQBvuFo6xTDpwR8m1EIh45SmfJrCm8k5whzTe8sZ/N7awv249jn2uj+jbJQ2vzeBMGda2+EnX60i0P/eoHUaAqjTypoKzc3mKLnhWFavqsUwJ01l35IQ5pSrtbcxfYt25mZmeHxxx9Hr9dz7Nixgr9xHetYh4K+vj5MJhOPPPIIAG78XK25C4/m0vMUe1wpIrQ80UvXbwYLEmjKrvWjt+uZGU5z6JMtBYlEgW1OGt+u5MeLzwwXVLvUm2Hze6uou18pqqylEJJD7Ao/7iqbKrEhh+GWSYbPCGwk6RXbpBc+dlbV4m7Dm0qpuFHJeWpqUnq7HjlgwiNa4Oqc4cDHW1Tj4NlgY8u7E4QECytjLUkO/N9zQupXctisuuDNYeuHqvOkMTVseriCuvsErUFKBFk0KAShnO3eqwnPBtua5NqXYmlhEZYQIghZS81s/VC16sIflPGz7c+qhYjyJVowOQ04axyqbU98qUNVRWkltn6wigaBgtSRf7nAGYHTVKD8NrPPiK9QAQIgrZCKDG49ze9NYA4WmMiklUMj+T6o8KpGz44xPTDLoNraLIvSveo2ycluxf7F7NfT/L5qKm9ee3401pLMr4e8TXYlb67V5zQc/tS5fD6N7fNhcK/9A89+u4uLvxvMq0RZSy89OLdrrmGP/WbKy8vp6uoiFApx7733FvyN61jHOpbx0Y9+FKfTyfDwMCVo2cG1NGv2XrJtjoSyMLdI52/6aX1i7YMvkkOXf8eff7yHo/96bm3lER3U3R/DVa2sj099rbMgiaVsn49N767E6FYUZmYGCm8OBLe5ie0Ws8udbJtisnuayTYVkm92z7/1iV5VizWTz0DT2+PLSiwqe0/eWjtyyCRE8gBo/XGfkJJw3b1RNj0sVjcBOP+DXs5+S/2daCu3YPYaESnfhC5z0/zeSqHf5qq2svk9CSHyk84ILMFSRozMU3NvNK+m9GoifmNAmCgFoBGcL1betvaBqZf14YYAm98jdp+tUTPWiPrkb244zZHPtAqTy3wbHTQ/nCi4oQQw0T7D4U+3ChPRHJUytohZdfzkLCdLr/KtSbrJoff5UQ7+0znlMwKP3PCpSYZE1mYohEPfBgfB7YXt3HIWupW3hdj4rkRBi8nzj/fkVeZq748VrN12/GqQI5+7wNz4AjpZV9BWbiG5QMcv+7nwlKLYIIcv3QmHxs1VmjvY2XA58/PzfOYzn8Fut3P2rJhi6DrW8Z8dyWSS6upq3vWud7G4uEiECq7U3Ipdc+k1mil7aLj72WHaf9VfkMTjbbSjlxX1kRNf7SiolGKLm6nMkc3PTRW2F9NC/ZvixK9X6nJqpAzvBjuBJqdwTWbk7JRYzUurECeOf7GdwSPjBZuW7vPlSTypCZWJlxbspRacFQIbcsD8WIqTX+1QVTsy+w1sfFs5XkH7utkh5boiBBlryIQ1KhbfDW8qJbZXbB5ceVuYMkFbOMFtOwA8dTbhPhQDS9BI+Q3BNa2zViEDS4tLQkQeya5jw5vLVO3OQCHwNTxYRnCbmE2gHDJhi6jfu/Yn+1VVlFai7v4Y1bep1xXP/6CHTkEit1YqwR4zYy9Xj0MqmUFr0lJ7bxSTCqn91KOddPwiaxOocjumemcZ70gyKXhYMrzdQ2i7u+B1UxMLZGaV/ja8NZ4nVV4Ks0Mpzv9AWfPKYROVt4XXvnYGTn2tnbafKvsN3gY7kn3tjnQ/M0DH0wN5QpbJe+m41Wg2sUd7M1WJKs6fP4/H4+Ev/uIv1v6Br2MIngt6feD06dM0NDSwuKgscB142bJGoQYU0lHt3THGO5OcfrSL9p8X9uKsuj2Gwaan7Vf9kCpsjyRJJUgWPc4KMQuwvhdH0UladcUaCUjBiUfbChOZUGzbRs5PMdk+oyr9b09YqLunlIGjY/kHshBsUTNaSYtkEhO5OfVoZ77vhVD/QCklJRpOfLVD4KowcHQMrUH9JSVHDZRdEeDkY51CHe7+zXCeNKGGuYk0pukFIWWgpcUlFhcWSfaodyI1muLF/yPmd2/0KicB5YCpoKrWK4ElaKTEIEYuE5Jrz2JhNiN8on56eB6tWf0+F9sHgOBOF9aAmXOPF5Zd7n62HzloYqpLTN3A22ij7OoABz51ruCYO/GVDqFnIwfJKaHVC/JPJdjxoRpmBucL2qO1/rA3/981d0c4+8PuNfszdHSCufHUMglLpe/9h0bx1NqFfp/kkpBkHXJATIWq6pYwFr+J7udG1sydOfUnySVRc2eM6YFZjn/h0rGwHorSsGThIE+zsLDAlVdeydatW3nqqafUO7+OdfwnxX333cdjjz0GgAYNO7kGs2btomvDW8uw+Ew8//EzpCfSBa2RzH49wWYXJofEmW9fLGiNBGD1GzHYJVUbJVCUPya7puk/omJJogfScOGnffQfGyusPKKHxHVBWn/cR4fKnBKUBbHRZeDAx8Xe9ZJNj6iHc3oizQufOKuq8qM3l9D4UDkXnuwreKovh4m2JBOd0/QeVLdBSOwPMt41LWwfd/jT6uR0APTKyfCZQXV1JoCF+QwLc2JHg86veB+qwV5mxmgXVB4tAnLIhMVvErImu/jMMBefEZuvTvXOsJRVe1RDeiLN/FSa9LR63CbaZnj+fwlYVGehN0PiliitP+tXVfgaOqXMOURR98YYC9MLnPvB2vcxPZHmhf+r/mzkoDNq0Rq1WIMWIbJd/IYA/kYHx7/atmb79Ax5NTZ7uRk5aKLn92s/U0e+cAGzK0sMyuaktTAzkGaqZ5reAsp0K+GIKeNYr4f0GtfN5VO9GUJb3Nhja9tdpmcWFYUxlIKbrdTCoc+0XvJe6yckyiY2MsY0I/Txne98hxdeeIFnnnlm3Xp3HetYA8PDw1RWVjI+Pg5AkBj1mm1rttfJOurvL2OsdZLzP+hl4NB4weuXX6fI/g8eGWFhjoLqLjodmFwGbBEToy3qa+SBExNIdj1zIyqbTjpgAU59vZ05lQ0q/2YH04NzJLvnVO3NjB49DW+K03twVNUqAZTTwjqzDq2kRZWhBLT/YoD2Xw+oNo1f60dn0QmrJPe+OIJBYL4hOXTE9vjo+HmvkCrP6OkpRk+LzUEXZjLMTaTE1Ia0sJhaZHpQvRMLc3D08+qHCEH5fdawmcmLM6+6mpKjTGbWNi9k8yVCLMthYSZD2ig2B50dmsfokPLjvxBOPiLeB1AO59oiZjqfLry5NXhyHHuZmamLYhtK1piJ8msDnHq0s6BqVPtP+2nX9Ys8RoCiWGBQUUhaic1/kmB6cI6W76xd01t5b0uv8tH5zOCa/Ul2z3H8kXZmc2sNlXsyeGycpYUloedOZyzB5DIg+4wMs/YaKfeslV3hxV1jZ+TM+Jq5c/DoeL6ftfeWMtUzs2Y+tJwM0ry0j+d4ksnJSXbs2MHtt9/Ol7/8ZfXOr2Md/0nxiU98gj/7sz9jcXERCQNbuRqTZu26ddk1flyVNo594QKZ1CKjZ9aeI2lNWqK7fZh9Rjp/OaCqBmRyGTB5JHVrM4CMQmSa6FB5Z2qVtkPHJpjsmmV+rMCaV5u1QHthlKET6oedS/f5sJdaOP5Iu5Bai8EuoRV8b5JB7LpaqL0rysVnh4TUc+bH5hk+M8Foi/rvCzS7mBmdyztJqOGc4NwPYGYkxaygs8nCXIaFWbGXbN/BUSGFKABrxIw1bKLrt4UPVBYLo1PCXmZBZ5HIpAr/xtFzU4yeE9uLS00skEmJjZ9MCmZHUqQE5rbzYymO/KtgvRJAC9HLvQwcGyU1Ubg/QycmyKTFyPoAsb1eFheX6C6wlsmkFjn25TZhhSStBHpZh8llECLbeRvsRC73cva7XWu3z5DnGBhdEnLAWNAm7vwTPYoqWYZ8TloLmdkMY61TjJ4VJJ8HTJjcElptCZk1Dkbk1cK0EL7Mgz1uofWJS9cVMyny6rbh3R4CTU5OfK3tkvdan5GItjawgJ4LSyf5+7//e7797W/z7LPPEgiIEQtfD9AsKcb0r3vceuutPPHEE4CySbad65A1azBpV2yqV98Rof3nvaSSaycDe8LCROs0kgwGj6mgQkr4cjcTXUlVAhEoVkR198Y4+eVWIYLLxndVYLDpeeEfxU467Pyvtcwn00KKREiw6R0VnP/BRSECjShq742i0WkKqhmsxKb3VKDRaDj8qSISv0g/7ongqLRx5POtqnZz9oSF2dG0sMXZawWjT1I2Zl6Dblz2F3VMdk1z8muFJctfCeSw9KqOoVcK70Y7Q0fVJ5Sb35dAMut4/n+9uieI/M0O4tcEafnBRcZUlClAUfmpuC7IwX85/6re88aH4gydmaDvOfUJqL/ZQcX1IQaOjXHhx+pkxZq7IjirrBz/0gUhRbW6+6KkZjJrvuRfivKbgrT9pHA/3HVWRk5PgQSyt/DYS9wSou/FYaWvKuSq8cZOTp07yezsLHq9ntbW1vUNs3WsYwWGh4eJxWLMzipzIi8hmjSXrf2B7Ma6JWzEXW2jq0CR3BI2KhsbaXAkLKrkmdhVvoLXW4mcEtEFAUK2JWyk4YEy+o+MCZGOEvuDeBscnH6sk4k29SJFYJsTZ5ksrAAjAr0ZNrylgtaf9gnZe7lqZBL7w5z7QbcQSakYbP9IDbOj8xz/4tok2Xw/6qzCFmevJcx+PTMDr7J/Gwp5xhaz8Pw/iJN5hKEHvVmvSvh5raG365FkraqFmDko0fRgBf1Hx2j/mfgJMxFseriChdmM8AZi7T1R5qcWhKwLRWEJGym/LsCJL4n1YfN7EuhMWl783wIbxXrY9oFqkn2zQmsrvV1P3b1RTj92UWh8WEvNGOy6gsRCa6mZqd4ZSGf/u0Ce0dv1RC5zL9/nAgSrGf0kQ6XtnD9/HoC3vvWtfOlLX1Lt8zrW8Z8Jf/u3f8vf/M3fAKBFx06uxrhWzWvFpnp0r4++Q6MFCSaWkFFRRdGBxWcsqJDiqrYyN55WVUIChSRVfXuYlsd7hAgulbeHsUXMHPqX80KEhub3V5KaSqva8OZQc1+UzqcHl8kHrwKie30YrFpaBdbPADX3RNGbtUWRXUQQ2eslvNXNsa9cyCvSrAWTz0B6JiNscfZaQSfrWJhTV6l6Jdj24RrGLkwJk8GKgdGtUyfb/T+AvcIiRNiqfUMMi8/IwX8q7kCfGqwxE1W3RWj9UU9eVagQLCEj5dcGOPOtjqLs7dSQ2B9kvHNa6MCmHDFS/4Yy+g6M5i3uCiG8y0Noq4uTX+8UyhuxKxQVUpFrA4R2uFXJcdaYSbHFyRJDC/UjtMPNWFtSaaNCrpqs6eFU13Gmp6dxOBycOXPmP9WG2TrWoYZUKkVTU1NecayMahKahrU/kN1Yl+xaHOXWgqpBkl2rWHNlbY5mBgrnF2+jnaHjYg4Ivk0O9EYtPQUOBOb7IWupe2MZA0fG6HtRfd/A22QntsdHy/e781ZVhWCLm3GWy8IKMELQQvVtEbqeHVS1gwNF1ary5jBtT/YL9bkYNL41zuzYsmJLIchh06v+/a8Ekl2rSpx5JYju8eJrcnDok+df9WujBb1Jq2or+FpDa9IiWbSqRB69rKXhLeX0Hxyh94VX1+Kr8rYwi5lFVTvGHMK7PCylF1/Vfkh2LdE9PqWuLnBLKm8LY/YZhNyNQDnQOz04LySkopWg/MYwHb8srFiXg2RXyFg567ZLweCUWJhOkUmBySMVvN9akxZfvX2Z+FeAYJVaSjFQeY6W82fRaDT89//+3/nLv/xL1T6/HvC6t3tLJpMYDIY8QcmJj32aO9ckKFkCEjs/XEvtPYp0bMv3uwsSlBofilN3b6liw5aksIWTBLG9PqpuE7OUcFbIGKx6nNUOofZDp8eZ7hN/mZ36VieHP1uY7CO5JEVmNgVHPn1BlVzS+PY4Wz5QKdwHk9eA2WsQbn/k0xeECEp190XZ9uEaISsrgDPf7ubQv6gTlEBRZ9n8zsJe5Tn4tzqIXFFYAjgPiYI2Vi9FwxvL2P6nYhZnfyioviNC00OVGH1iN0aOGta04HpZ27BE4taQUNvaeyJU7g9ji6tLYJ/8eldRBKWcvZ8aBg6N8/z/PCNEUALFKkVv1uEsF4tH6dU+tn+0RrEFLIDjX2rPE5QC25yqfT7zvS4hghLAwPFxZkdSQgQlAEvIhL1MzCrJu9FOYJNT9Z6PZDe1N70jQcNbKgrmhNYnepnuTyG5lPdAIfsfx/FSmmYvByCdTrNlyxbe9a53CfV9Het4veMv//Iv8Xq9zM7OokHDZdxYkKBUc3eE7R+sQW+G6Z65goQivRkaHojT8MYyAFXiTOXNQcLb3XkLOTXY4xZsa9gPvRTTPXNMD84VPO2xEq0/7hMiKOXstvpfHFMlKJk9erZ9uFo1f+dgjclIVj0Gq5iY6ujZJC/+7xZ1gpJesVgru07c/vWFT5zlzDfVydCOhIWa26PC147fEMDsETtd7UhYMPvF2lpLzWx8eyWxfeoWZ39I2PaBaupF7ewA/2axsQTK4QuX4Dxt859UUHWrukz1TF+Kg59pFSYo6c2w5U+rKL+hsM0sKLZvxWz6mn0GLEHxdUrzexPU3lM41tM9c3mCkqvOqmrFd+LLrZwSeE4ASEOyd5ahk2IFaleFjMkpYReUlK/cH6LiusLzrqlOhaBk9uupv7+U6rvWtmNJT6Tz97n6rux7wH7p59GctlHa2oQX5fsfeeQRampqSK8l77SOdfwnwsLCArFYLE9QClHGlZrb1iQo6WQdW95bRfxGZbP54m8HC5JRym8MUH9/GUa3DhZQtXAqvz5IooDl9kpYg0bMHgP2mNjca6RlksmL08KkldPf6uLMNzsKttEZyVuEnf3WRVWiQeKWEE1vL2yvvhKWoAGLgN18Dme/fVHoXRW7wsemhysKWkitRPdvhzj0r62qBCWAxE1BNr5drOZlj5vxb3aIdQJw14lZDQPU3Bmh+d3i9cU/BIR2utn49krMfrEbY3TrsMbE3sNGh46IoK1KeLeH2rtiQtc+/3g3Bz8tTlAK7/YIWc9Ndc1y6J/PCxGUACSLDoNDwhIUyweeBhvN76vE6Ci8rmn9cV+eoJSzn1wLye45Tn2zQ5hENHY+yVTvrDCx0R434xC0JJQjRqJ7vJSprD2mupR9gJo7omx4oKxgTuh9foTZwXl0Rtjy3ioqCuRq29kwm6avRIuO8fFxNmzYwF/91V8J9X0d63i944knnsBisXD27Fn0GNjFTQUJSuHL3Wx8ewVak0IAKWhrpoW6+8ryB+jUCEr+ZiexK3zCNmyOMvGaVyqZYfLiDOPtYnsXQ8cmOP1YpyrZxpad9022z6gSlLQmLY1vjeOqLZy/czC5JYxuCckiVueZHUxx/IvtQgShDW8Wt/8COP7ldtqeUq9rGF0S1XdGCG0Xu7Zvk6Og3dRKmHySokAjAL2spfHBCoJbxH/jHwIa3hzPPy8isMXNqnZkOTgrZeF5Wv0bYpRdrV63TCczHPtSmzgxSAt1byzNWx0Wwvkf9AgTlADkgBGLX+z3AVTfGaHsmsK/MTWRUfqQURx4tFJhCsr5H/XQ8t3CDjYrMd42zeg5sTq82W/C4jdiEuQflF3lJ35toOD4mB9TCEpak5bae0opLTBPy8xm8gSl0HYXG99egV6+9MUljUS0dQNVNLG0tMRf//Vf09TUlD/8/XrG69ru7a//+q/5H//jf+T/vY2rsK3hBZvDdH+KmaF5BgWLuxd+2kN4p0/Yhq31xz0MqUiN5ZSZ+p4bpe/QqKpqSs1dEc5+t5ueZ0booTALOrjTRWSnh2OfaxWSGtzwxhgGq57hlkkh9Zb01IKw/zogrIhUdXuEEi2cFUxYqZmMcuJKoM/OGpmxs0lhZaSWx7uF/WEjO71IFp2QNVx4q5uyqwJoDSVC7XueH0FS8WzPoeauCI6EzPP/89X3E298KI7RbeDFj6lfu/fwCItLSyzOiMV6wxvjZOYXOXBWvWASuzKAo1Sm69lh1Xt54ZeDhMfTQs9A7lrWMhNTvbOqY2p6ZB5LyIgkF7Z8zMFZJVN2jZ8jny5sudj73EhB26OX9WNgjsUi5CAbH4pjCZoY75guSNbLkapq7o5g8hk5UsB+Z+xckrFzSvvwHjczg/MFSVkHPr58n3N5cC0MHZ1AK5XQ/2LWrkRF+aj1Jz34G51COSE1qrwH+o4WtkKRNQ6u5i7GNnZw8vQJPvvZz/Ltb3+b/v5+JOnVt/hZxzr+0JFOp4lGowwMKKpCara6OQyemqBEKiEtUL9Oz8DA8TEGDqvkw6wix/kf9THWOa1aHM8pfhz+XKuqzZOrRkZn1jF4eFzoZH7TO8uZ6Jym46kBVYKSOSiRuDGEq9IqvEjLzGWYVilc5TB6NskLZwXmAnpofEtcOU3Wrb4g0pv1LMwuMDOk3g+9uQS9XcdMX4q0wHtqvHWa7ueH6XpGfbPA7NcT2OREq9PQKrAwT9wYQqMrEbLUmxtP0394jOFjYjZZWz9YxeTFmaIW20LIquUMHh8XUvDqPzQqLAMeu9JL5DIv6bkFIeWq6C4vMyPzjAoQri8+O8REl5gaV07Vxx43qz676RlYmF1Q5v2CqLotxHxyIW/5uhYOFancmppZEJIDB0APVTdHmBmeK6gmlp6B9MwceruepreU0fbL/oL35vQ3lhWUEvuDBZU7Bg6PMXBiLJ/z5Iip4PN+4sttWEKmfP/VbOWGT4zTKWCZBDB0egKdsURV0alJcxmz+gl6w620tLQgSRKf+cxnePjhh4W+Zx3reL3hu9/9Lvfccw9LS0toKGE7VyMXsNUFxSZosmtayIINoOuZYTJzi8I2bC2PqxN9zH4jMwNzjJ1PcuCT51RJR6VX+eh8ejBrQVa43/YKC/F9fk5+o0uIOFB5eww5aOLAP7cIkZ9SkwvoBK3mQSE+iSB0mRuDrKNd4N0OsDCnvHNEFGfksJFkz5ywMlLrT/qwhsRqXuGdHix+IwOHx1Xb2issVN4cRrJo6TugPp/qfX4Eg02s5hXe5SGw2cmhz4ipbBWD8hsD2MtkjnxGfV4wem4CraQlNSE296q7r4zF9CJHBU6PB5pd+JtdDJ8cU30eBw4Ms7SwlCewFELOis3o0bOQzBS0ZgOYHZknPb2gKF0JjCmz30jZPh+nv91V8N6MnU9y8BPiZKm50ZSwfQ0o99Fb7+DYlwuriSW7lYcqvNuDo8zCqQIK8zMDy1aSrjormdlMwbnriS935Hdi8gp1Bfpx7gfd+ZqamvJRx6/68GxwCuWEhTmY6JxmWGV/wqgxciW3MVnfzYkLx/j//r//j29+85ucPXsWne51vaW0jnWsieuvv56nnnoKgDBxajXNqp8ZPT+FZNGrW7ABZBQr14kOlQJZVpFj4NAYs0PzqiSbnOKHiKWY2W9AsuoYb50WUitJ3BxienCOvhdGVdWL9LKWylvCDJ+ZEFZQSs8sMD8udjhldjAlrMhScXNQIW8Oqb+ztRKkptLMFbK7yzcGg01SyAwC93xuNEXnLwcYK6Dekr+0SUt0lxe9rBOyJy69wo8k6zj+JXUF88VUhou/G2K8TaxuU/9AKcm+2VdXCSuLxofiDJ2cEFLw6n1hhAWRZwuFdFRxY4jzT/QUVMvJIXalj9nhFFNd6nW9rmcGmRsVG6e5cWHySurjL6OMvfScuFJUcJuLpYxSDyyEYuuVqekF0qI1Ly1U3hJmemCusJpYRnkGtFIJVXeE6XlhpOCe7cVnlu0Fg9tcBcfI1MVZjn7hQl69SE356NwTPch+o7CtXO8LI0LWjwDjHdMY7JKqolNMU0lAG6G3tIXjx49js9n49re/ze233y70PX+MeN3avUWjUbq7lYfMjIXLNDes2VaSoemdVQyfnBAqCESu8BDZ7uHol9uElHe2fKCSEl0JL/4f9Q0QySXR/HCC6YFZjn9B/eURucJDbJePnueGhV4IZdf48W9ycuQLbUKkHKNPwlNnEyLNFIPGh+JMD84JK7I0v7+SEp1mFYnh1YAkQ/MH6pgZnOOYoNd9sVAjWyx3RvEjvfj7oVfdwq10nw93rU2YFFaM3Vvi1hAWv1F4AlgMAtucTA/OFVYoy0JySeglhFV7ioEclmh8MMF4e3LV5s+rgcgVHqKX+Tj7/S4hVSU5LFFzVyknv9kplH9EIcklBHd4VDfscqh/oBSz18CB/yv2TO74LzVkUotCz7AcNdD45grGO5OcflQ93mXX+AludXPuBxfzykmF0PTOcnTGEg79s5jV5bb319Dz4hA9z6xNiuhfushJXgAgEonw8Y9/nLvvvlv9+utYx+sEv/71r9m3bx+5aeUmduPWrH26IrzLTXCzS7GwFFjDbX5PgrmxlFAOdtVZqbo5QudvB+h7Xn1BW3e/YrV15POtzI+od2bLB6rQaDVCxBb00PwnCSYvznD+h2JWltE9Hi4+NywUF1GY/Xqq74hx+ttdQr8xF8MLT/YydExswSWK2vuiOOIyBz/T+ppYkJn9etJTaSHSmxwxYXTpC9pXvVI0vLWMic4ZIavBYu3emt5ZzsDRsWWi7qsEvRk8jS7lkITArVGz8/r3oPFtccweI89//Myr+iyAoryUSqaF1loA5TcEMdh1nBHcaBZF+HI3gycnhZ4Dg1tP41vK6f63IaG8FrvKR3iHm9afiD3DDW8tw+IzceiTZ4SenS1/WkV6ekFo/WQOSmx4Y5zOpwcZOKw+Zsuu9eNMyBz5/IWC9/75pV+QZAK9Xk9zczPPPfecesfXsY7XEa677jp+/vOfA+DAzRbNlWs31kHDm8oYPZ+k53fqtR13nY2yfX5OfbNDSHmn/o2lSDYdR/6l8MEbUJSLNr27mqmemfzmfiG4qq1U3hrm4jNDqrZHoChSRnd5Ofn1DlLj6kV0nazDXSULkWyKQeKWEPMTC1z8rdj6uu6NpUiyjqOfVY9hUdDB1vcrVqBnvvnq1jJyUCNbrOyLt97OWMvEq2rnBYqqjn+jsyChZCWKsXsL7XBjKzULjddi4aySmZ9YELNHNILO8tpYyelkHc0PJxhpmaT1CbE1iyhcdVYqrg9x7ofdQvZzkkNH9W0Rzv+o+9X9rToIbnIKEeQA4tf4sZWaOfaVdiHi2+b3JIQJZ5JDx8a3JRi7MMn5H6jH29tkp2xfQDiGlbeFMLkMQpvS6GDjQ+X0HRpl4ND4ms0mlkY5yK9ZYolQKMTnPvc5brrpJvXrr2MdrxO0t7fT1NTE1NQUJWjZwhXYNGurEDsSFkLbPZz+VqeQ5VHV7WHSsxnan1RX3jH7DVTfHqXrmUFGBJS9I7s9+JucnPhaO6kJ9YRWe28UvUWM2ALKQeZk/xzdggdU3HU2xluTZFLih6vVoJe1lF8XpP2XfUJ2ZbkYdvyqn7HzYkpRogjv8hDY5OTEV9teE+s0SdaSySBEgDI4JQxWHZNdr37dJn59gOmBucLKYFkUa/eWuCXE6LkpRs+KHaoQhhZcFVZGL0wJPZdqpJZ/D+LXBnAmZI59oZXMq/wVtfdFyaSWOPd9MRKSt8mO2WN41QlnriorU70zQlZrWpOW2ruj9B0cFcprrhor8WsDXPhpr7r6P8r+oavSyrEvtws9O3VviJFJLdLyPfUYSrKWmrtjXPzdkFA+8TbY8dTZOPf4xYL3/szSYXpoQ6fTsW/fPp588knVa/8x4nVHe29tbaWqqiq/SVbLFsKasoKfSSVBo9Ggs4iFY7p/jkwRCiVjF5LoJLGTVqnRFMOnJxSiigC6fzPM7OC86sa85JJIjabo+MUAHb9QJ2KV3xRk4NAI0/0pugfVJxjb/7yG2eF54cmL0Smh0YorLh365/NC1m1Gn0TdPTHOPd6lak0Hyr3ve3GEiU4xhvC2P6tm+MykEIs8ByGCEkAKLv5a7L4bfRKVN4Zo/1UfyYvqpwM7fzX4mrCaAVoFN11zqLw9TGYuQ5uAjUcxm2+p0VRR3C5JLmHjn1QydGJclZyY7EkxfHqSDsECIygTdI1GsRIshO7fDNP9b8PCxDStSY/erMNdY6VnUL1I66yRqbk9StfvBwuSbFLJxTxBqfqOCC0/7i7Yp1OPLhf/cvmlEE5+vZ3UmNguY/LiPKMtk7QJbOwCDJ8ew1kpCxGUANLTCywtiuVki0tCUwKL6cJ83oAmSoAo/XVnOXP2DPfccw+33HILP/zhD4W+Zx3r+GPGfffdx2OPPQaAARO7NerFyqUMUKJBb9YLbdCnZxZITYnlkNHzU8yMzDF6XiwnXHiqj/A2jxB5B+DYV9rRCyhH6+3KbxNRY9GbS4js9dH+s34uPqM+74rs9hDe6eHUNzqFlI6clTYkqx6tJDb3Gj09xfPnxcghVXeEWZhdpO1nYnOjtl/0E9ziErrvZdf6cVdZOfRZdYWrHGYGxBktye5ZofiBYqMKCJN5RVS2XimKIYbLEROxPV7O/6Cb9Ezh9Ut6BiECTA7FEpTKrvPjrrQKPRNdvx3E7DUK33dL2EjiphCnH+1Q/Z0HP32uKOKTHDKiN4mrZmx4UylGt0FVDaDn98q8zBI24q6y0lVgHTA/kl5FjMzll7XQ9fQgk13TQsUaUNSBfU0uIYISwGRHkpkRwcnr4hKL84tMD4rtSOsMJZSUaFTv0Q7NNYxZB+kxn+P5559HkiQ6OzsJBsWl3texjj9GjI+PE41GSSaVAmgjO/FpVOw0F6BEq0FnKCy3n8PsSIrMXAYEzzSOnpvE6BRTkl2YUxQCRs6Mi127ZYrT3+pUVYTJqboMHZsQImeGdrgYbZ1ibjgtRFDa9HAFM4PzQoVqAIvPgF6wxghw+uudQhVanbGE6rujtD3VL2YxtQBdvxlgZlhMdbPp7XGGW6aETufnIERQyvZFlPyuM5YQvz5Az3OjQgSe4ROTeUuvVxu9z48IEeRyCF3mhiWElLDzKjkCWJijKOVIdND0YJzhs1Oq5MSF5ALdzw8zdGJc+PLRvT50Jg3tTxaup42enmL0nJhSGUCJToPBIWEvk5kbUe+P2W+k7g0xun83RP/BAjXEBfIEpcheL/0vjBRUjWpfUTsXUY06/a0OFsQeM1LjC/QdHGXgmNi8e6JzmmT/rHDtOjW1gNYgNnfVGXVoSjTK+rwA7BoX+7iTobrznGo5xf79+3nHO97B5z73OaHvWcc6/pjxyU9+kve///0AOPCwRXOF6meWMlBSokEyaUkJbNCnpjOkZ8QS5czAPJPd00z1iOWEvoNjZOYXhQhKAOce70FrUp8zak1aMrMZzn5HYG6kheAmlzABwVkpE7vSz7kfXFRVZwKwBIwY3RJavYr8SRYzA/Mc+XyrEFEltN3FEtAnaM/Vf2iMzOyiEEHJU2fD1+Sg5XvdwqQtkfGUw/xYinkR9ScU4oRGpxEiHQFChLpXimII05JdR3Czi94DI+pkmAyMnhMnPhVLUPI22vFusAsdsO0/Mspk94wwQUmyayndG6DtF/2qJJsz37koNLZzkP0mTB5xV5DSfT6sYTMnv9pRsF0u1pKsxV4uM3R87XVAZjaz6nq5/LLmtc9OMTeWUrXEzKHnuWFmR8XUzUDhdCzMi7VdAtKzC8wJKqmWSCVoSjSq975Ws5kyUwUdztM89dRTeL1eWlpacLn+uCwZ1SBWofgjwQc/+EEqKyuzUtca9nBLQYJS4pYQgW0K4/nF/9OieoKm4c1lICl2Rwc+fq6giokcltjwplIALvy4jxYV1mLpPh91b4wBcP7xHlWFlI3vqqD+AeX6qhvzEjT/SQVN7xTzlEcCf5OTytujYu2BubGU8GIJlHiLnLwNbHMu+1wKPOP+BgcGmwRFWM51/GJAqDAgySUsLS2xtCA2Ydj4rgqa318p3I/m91cSucIj1NZdacUaNmNyi/nc2+Jm5KiY92axkGTwNhaWlF8JV6UVV5WYjzDApvckVL1Oc4hf62fHf6kVIrSlksp91OjF0uC5x7uFLQEB5LAJS1DQ0zUFloBE3X3qz9xE6zTP/cOZgoSjlRhrS5KaTjPTL/bCdlbJuGtt1NwaEWtfI9P8cIJyFe/f5MV5UslF7AkL2z5Sg7WscGzOfleJty1uZuO7KgpfuyfFkc8oJ079zQ6qbi/c99Nf78qrJ1TeHsbTsPb4ne5P8cI/nqXvOWUh0vhQHEle+9qB0zW4MyFA8ShvbGxkdFR8w3cd6/hjQjqdxuVy5QlKMSoLEpT0dn0+z/U+N8LBT5wruMnu2WDLE0NOfLlD1b4rcXMQZ7UMaTj+hfbCpCN9VqnFr2d+JK1KsLGWmtnyp1VYwkbSE2lmVFQF4jcEaH44gRwRew/EbwwS2OjEHBRbFCb7ZpkbTwkTbHp+N8IL/3iWmT7191jVnWH0dr0wicMaMgnb4IJCtuh4SszKJE9oF+iL3q5n+0dqCO4QW6zFrvLR+La4UFsAT40Nb51drLFesQVEgMz2SmAJG7GExeaAcsCIvdSCtcwi1D68yy2+ZkA5NV7/QEyo7VJmSdnvFojLeOt0UTa3OqkEk9OAW+QeZcdTbJ8PV536nPT4F9uLsn6b7JllRpCQA5C4KURwq1t4vDS+Pc6mt6vfoxxBqe7+GPXZdelamBlI5+0Da+6O5NfIa+HcD3rzJ2Vr74sqOaPAtQ9+8jzJ7ln05hJq7i48T2v9UV8+3oFtTmJXetds65zyUd2/nRK0pNNpqqur+fCHP1zw+utYxx8zvvrVr+J0Okkmk+iQuILbChKUQjtc+bXOsS+0qx5cSuwPojOWMDMwx9HPtxVUMZEcOhK3KOuevgNjqgd/PA02Km5S1ow9vxtWVUipujNC5W3K9UUsq5oejFN7v9j7CJ1iU1ZxQ0isPcrca0rFSmUljn2hXUi5yF5hIbTTrfxDYO/QkZAxe41o9eI1r4HD40IxRKfw0pYyYuS0qjvCRc2l6t9Uir/ZIdTWGjXjqrRh9orNjU0+Aybfa1PzQqdY0Ioe8/VtsOOtF6+R1b4hRmiHW6itt8nOlg9UoZMFOpMdT6IHRHueHRZSH8vBFjNhDZvFGi8oRJ/4DQHVpnPDaQ5+4lxBVZ+VmBmYY3ZkXpgMbfIZCG9zE73SJ9Te7Dey+U8qiOxdez4CMDeywEJyAZPPwKZ3VWAJFZ6rX/ztIKnxBYxuHbVvKJy7UuMLnPmGYpdnKzNTuq9w3zt/NZhX/gpd5sZZuXYRayG5wJF/vcDg0XEAKm8JFRxf3tOVxBdqAfj85z9PQ0NDnjS7jnW83pDJZNi9e3eeoFTNxoIEJa1E/vmcaJ/m5Nc6ChJKLEEj/mZl3dXx835VQmmg2ZWvvVz4sbpiUPmNQQxOicxsRtU2y+CUqH+gFJNHIpNSJzR5G+w0vbUck0/sPR3c4iK0041J8L0+N55idmiOWcGDMeOt0xz7XJsQqSS8040ka4VJHNaIGVtU8H2HQrZQs9nKQaNT3tFCBCWtUsf01InNMdx1NhI3i891XdVWfBscwu3lkBGtOK+lKEh2HUaX2MUNNj2eDXblkJsAnJUyVXeI7XsBVN0RUd33ymFpYYmlxSW0kvp+4+xQSoiwtwwNcsiEvVRgLGbHtqfOhi2m3r795/1FucdM9cyS7BeveUX2+ohc5lUs1AQQvz5A/f0x1fY5glJkt0f1HqWTGQYOKWT18C4PrprCtcC+F0fzhyuie7xKzihw7TPfyhIqtYpNYCEMHBrjdHadaIuZ8W1yrNnWNGunqmcbMnaGh4eJxWJ8/OMfL3j9Pza8bpSUKioqaGtTSC82XGzTXKX6GU+dHVupWUitxbvRjjVqpnxfQEgBJrY3gDVmQQ5LQoo+rhobUhGnrEr0GqFkB0BKOXUx0iKY9FJw6psdTPYIHKWVlPaiVml1D8SY7J4Rto8L73CjN+uF1J+gOMWgxC0hXJVWjn62hZTAeiqVFLOqyrefTKMzimVeySWhN2mRLGK7Ez2/H8mfvhZBzR1RNFoNL/zjWeHPiCJ6RZDAJhdzk21CtmzF9kGy6DAJTkqSg3O4ZxeQvWLPnYgF40rU3htFDpuExsHBT4jJV+ZQui+AvUzGEpCELOskl0TdvVFOP3axMHkqxbKtWfZ5LYSxc0nOfE/Meg4U0ubM4BzdgicLS0o0aDQIPxv+jU5MLgk5ahBSDQvv9CDJ4rvCnhob1ohJ6NSlf6sDOWgitNNfMCc1arYzvlRJf/gcJ06cwOPx8OKLL7Jlyxbhfq1jHX/oOHr0KJs3b84rV+7gGmRNYXJAaKsTe1zGWS0z1qKeY6K7vejNOjHlGj24a+2YPAaha9sjZsweI556J10D6tfXm5RTDhqNWJF/4MAIZrckTCI6990e7OVjQiQiUAow463qcy+DW0/VLWHOPtalqi4DiuqOu8rG4vwirYKWvMWQN7a8v5Kx1iQXBBUp23/Wj5hGp3IyJ5VMC5NDTC4JySr+vijmdzrLZWrujNH52wF6fic+XxNF3X2lZOYyHP60ep/6D44VPlX+Ehis2bjoESKHpSbTpARt+zp/OSisRAUK8azprXH6D42qSsdPtM/w/P8Ss8vLIdjsYnZ0nlFBJcbIbg9mt8Q5FVuOVRZ/AnE8/WgbklNcNWrg8DhWQZIaKOvGYhRsrVELeotOaI1sLTVjj8vELvcIPdeRvT6cCSv2cjMTbeprzeAWFzqjrqDKlF6j5ypu55zzMMNz/XziE5/gmWee4cUXX1S9/jrW8ceEW2+9lSeeeAIALyGaNJepfibQ7CI9syC01rHGTLhr7MxOpIVUdIKbXbiqbFhCo0JKOp46xUZAFFqphMUiRGOGz0yQ7BNX9Dn59U7SkwIHeXRKexFLJlAOTs2OpoTfvaHtbiw+ozAxd/jkJMMnxWp7wa1O/M0uTj7aqaoCA8CCQswVRWoiLTw3RgcGu4Qki9V2xs4neeFj4rWjyptD6Ew6Dn+quDqMCPxNDuJXBzn9WCeTHervLhG7r5UwOiTmXGJrgNmReeYnUujNWqF7ekzQ2jaH2BU+XFWy0G8QtdbLIbzNhW+Dg4HD44L2diUkbg3T9lSfKnmqmL7MDs5z6psdJLvF8sXMwBzj7UmGj4k90xqNMu8SVa5zVdqRgyZh28TQDjdywETnbweFiI3BzS5SybSQ/YitzIyrysb08Dy9/7Z2TirVVONfCtMROcnJkydxOp0cOnSIxsZG9Q6tYx1/JOjv76e6uprJyUm06NjBNZg0hQ/+OBM2PLV2Rs9PCZGDQ9vdmNxSfuNcDb6NdmaHTExdVLcqNTglbFEzyb5ZBgWUdEr0ipIdgq/10dYklqBJSOUIFBWi8fYks0MC7bUKgeOcgCWr1qSl9CofnU8PCimkSHYt/s0u0GqELJABYRVNUA7wTLRP0yuoujR0fKKgusxKSLKW+fE0c4L1F6Ndj8ktziJq+a747zS6JGrujtH56wHh/heDqlsiLC4s5okchTB1cVbYRg5AZ9JitOtVlXpymJ9IsTAnxmgbPj3JcBHEI60E1XfFGDqlrgSbmljgyL+K1yUBwpd5mBmeF7b7c1VZMfkNqmvB0bMrrPgExMvanuzDaJeEiYHDpyaUOqNge61UIs6VQKnZmpySkJ2gZNfi3WBnMbMotB/vrbPjrbczem6KpMABF/9mJya3VFDBTKvRsoNruGg+RzcX+MhHPsLBgwf5xje+oXr9Pwb80SsppVIp9Ho9bW1tGI1Grt16C9s0V2EJSDS8uSyvHhO+3E3d/TGQFJWjmrsiDJwc5fAnW5FcSlt7QploBHe6qMueCJZcElW3R5B9Ro5/pZXuZ/tpeHMZzhrlFIK/2aEoLGWRuCNE+Y1BTn+ji+NfbSW+L5Q/ueZttK1qW35TkIrbFIbfkU+3MjM4h3ejssHnrrPmlZsAym8IUHl7GEtA+T/mx9IMnFAmMM4qmYY3lyHJyu0su8ZPdZYN6t/qoO6NMcbbpxk4NI61zETDm8swZlnOpft8q06zbv9IDZGr3Ey2zyB7szEMK23De9yrlF5q3xjjso/UUXl7GKNPaZtTRwntdOeVoQBq7opQdo0fa8iMt86+Kt6Bbc68KhQoyibl2dM1J77UyvTILO7sKeeXxfuWEOXZ03hl1/hpeGtZXtXH02BbHcObgvmTfgCOChlKFMs3Z00uhsrf4tf6V6mx1D9QSt2bld9jT1iUtlniTOnVPmruWm5bd3+M8OVuTn+ji/an+1fFO3qll9p7ltvW3hslcoWH1GiKE4+0YXEb1ox3zd2RPBs/N2ZtcYUJG9zpWhXv6jsiefUhSS4hNZNm6PS4EsOtjrzKF0Di1tAy01TKKoZlJ6TejfZV8a7YH6Ri/zIrteHNZcxNztP9b0MYXPrV8b4xSOLW5XhveFMp/q0OYGW8Sy4Z77oHYgR3KkoIZ77Thc6gXR3vu18eb4DZkTnmx9J5meLIFR5q710xZu+JEM2exs7liOBOJ/5mx3KOyMX7rkhewSMXb42kYXFhcVWOAKi6PUL82ly8WZUjat8Yo+GtyzG8VLw9DTZOf72Lzt8OUH7tcszKb3p5vHM5IrDZhtljILhFiWkuR+RQ/8CKeFfJNLy1jB0fqqXu/tiqHAFQ98ZY/vSmtcxEZJsHo0+iYn+Q+jfFVsf7vijhPUpbOazE5cJPFdWj+I1+Nrx1eWytjHcuRyykMrzwj2cxOQ3UPRDLj4FcjlgZb3vCwvnHe2j/TT+lewP5sbUyR+TincsRPc8NMz00m//byhyRj+GKHJEcmOXwl5UJXuL20Koc0fDmsvxJT2eNjK/WwbFHW+n4xQDxa/3UPbA8tuofKM2rDtgTFna/ZTONc3uQjTJLS0vs2rWLt73tbaxjHa8H/M3f/A2bNm1iaWmJyvJKrpbuQtbYiV3lW3U6tubuCJ5GG3LEhD1uxuwycPyrFxhrSRLZ7aFixSmHqjvD+DY7AHBWm6m9J8rZH3Rx5AtthC93k7h5RdvblpUwzX49tfdFMdv1HP3iBYbPTFK54t1TeXMwn98Mbj2190axlBmZaJ+h/Tf9GB3LJJXE/iDhXUpbvV1P7T1RXLUW0IPWoGWyazpPOorfECC6R1E/1Juh9p4o9nIz9riZwDYnpVcFOPWospguu9ZPLHfaVa+0dVYr74jErUE2vVtRi5tomyG2z0fZtcvqgbX3RPFsUHKWI2Fh659Wse3D1aCH2JXeVfGuviuCt0l5R1hLlRiGtrqw+ExEr/KR2L863v7NSgwtYSO190QxuPUku2fpOTDMyv2mqttCeXUis1+Ji9mvx+DWU31PhKrbluOduDmYfycb3ErbnJqUf7sTrbGEdFYut+LGIJHduRiWKDHMzms8jTYaHornPxu/IbCsppKNoSM7j3TVWam9J8p0zxxH/uUCjnJ5Od7ZGLqy72RntUztPVHQKwWYwePjlF23HO+auyP5eNvLlRjqs4eOons8lN+wIoZ3LY9ZOWJS2mbVZCwhA1N9MwxmN4Wr7ggT2JIds0FJiaFHaRva6cbsXd60rbx1Rbw92XhnFbYCW5xU3RGm89cDtP+yX4n3S8ZsLma+zQ6q7lqeF5TfEFwxZkvyYzYX79y7vu1nfQydHCe2+9JjNhfvHKb6ZkmtKOzU3hPNqxM5EpZ8vEFRr4rfuHwvczkCFIUCJd7KvCCy20Pscg9LC4toNKtzxEvjvTJH6O16mt5RvjpHrIh3cIcrnyNOfK2N2YG51Tninmhepcq/WYl3DqHtLpxVtlXxtmZPsXmb7FSvWA/EbwjQ+I442z9Yg9nzknhvsK2KYXiXH3eNTVGbeyC2Ot418qq2sX0+TB4pryzX+Pb4qhyxcszmcsTJRzo58aUOqu+KEMqOl1yOyMUwstuTzxEHPtnC/FQa/2YnevPqHAHKmK3Mxnuqc4axtilmRuez113OEaCs81bmCK1OQ9/hESbaZpR4v2FFjtjspOrO5XhX3Bhk6MQER7/Yht5cQt2bY9grl8fsS+N99cbrqLdsIZPJcODAAcrKypiYePULputYx/9rLCwsEAwGeeKJJzAYDFxds58mzWXoZB2J/cG8Woerzkr8xgDowOjRE93rY+D4GCe+3IHOqMxz5IjS1lkp5595nbGE8G4P1pCZY19upee5YRL7g9jKlOfNHjevmkOE97gJ7/LQ+fQgx7/QSnCzE3uF8k62xkxK2+z5u9AOF5GrlJx/9rGLjHcmcVUr7wg5bMwrN4Hyjotd4cPoUD48N55i+JTyHjX5DCT2B5Gyf/NvduRrI65qK/Fr/UwPzjFyehKjW4mL0a209TTY8mt1gE3vqiC43cHs4DwlRqVtToHHXWdbNbeKXeNj+4eqKd3ne3m8q62U37jcNrLXS2iHC0eFokyc2B/EGjO9LN6gnN7NvXvOfKOLye7p/BzIVmZeHcOdSrxBqYclbg/lVVHkSC6GStvgVifRvctzIE+djRJdCQvJBSyhbNusQoq/2UHpVctt49f7SWTrky+Nt2+jg7IVc6v4NX68TXY6fjVI56/6lXhn37OeDavjXbrPh3+zQyFAfaUdg1WL2f+SMZuL9xW+/HxJZyxRxmz2neyskvNKXADh3Z5l9SEdpGcyDGats+wVllXxDl3mVizYskjsD6LJnpl6Wbx3uAnvXlY4r7gpSCazSPsv+kCzuGrMvjTe8RsD+TmQ2f+SeK8Ys7l4597fZ77TibZEkx/73iY78RVq4mX7fPg2OgBF9WZ2eJ6lxcXleF+/It5X+fI1jNyYdW+w4qySXxbv6F4fwa25eCtx0Zo0ZFKLOGtfMmZfEu+VOSJ2tY/KO5bf9SvHbC7e9goLnU8P0vpkD6GtztU5YoVCUfmNgXyOcFTKOCpkfBuyNbBsjsjH8IYA7qyahMlnIHFLkOb3V5K4JfTyeF/rz9fmjW4dgY1OjG4doR0uEvuDq8bsynhLDiWGF383zNz4Av4tjlVzlVVjNhtvjRYOf7oVraSl/KZAfgzkcsTKGFpjJnqfH6H1Zz0EN2fjoludI/IxzOaI3udHmOhK5u/bpeK9MkdMdCc5/4MOJd67XKvG7Mp4W0JGfBvsHP96B73/NoK/2bGqHrlyzJp8BjbcXEnj9C7cJh8LCwts3bp1Xc1yHa8bPPHEE4TDYSYnJ6mMVHG14Q5MGgvuOhvBLcvKzeFdHuxxC0aXhNElYfYaOJm1qHXVWAluX9F2pztfwzD5JGJ7vXT+tp9T3+jCWSkTXvHMh7a78i4UellL7CovBqfEmce6GDwxvuqZD25z4apV2mpNWmJ7vZh8EvNjKdp+3oe0QhnN3+zE26DkVK0Esb1e5IgEWtAZtEy0T+dJRL5NDryNywcRY3u9WIJGjC4JR6WF8DYXHT9XhBy8jfZVSiCxvd684pN/s4Oae6NoJZgdTOFtsOfVo0BZh+aUXkweifo3ldL4UDlaqQRXrZXgtpfHGxQSVmyvF3eNFXvMgrfBRugl8c7lQsmuxEWya0lNZOh6ZgBWqEYGt7vyqip6WWlrdEloTVoiV3hXx3uLK//u0UolSryz6lDWmAmDXSKzsPSyeKNV4mL2K3NOOWwicXMo/1lvkz1fz8vFUM7OOS1BI7G9XlLJDC3f68bkklbFO7rHm59z5saWVoKe50boe3GUQPOKuOz25PcTja5s26y1/cvifbkbR3aOL9l1SgyzajImn8RY2xTjbcmXx1vOxVsZe44KS75/cOkxm1NNssXNhHd76PrtIF2/HSTQ7MorR+XGbE69yxozEd2zPIfwbXK8LN6WoBJDOaTEEBRiWN/hUVxVyyqDsb1e5LDSR7PfoLTNzhVnBudX2cOuirc3F29lbpjLEbk+rxyzL4t3jRXfJheLC4uwtDpHrByzwKocoZVKqLg1uDpH7FVyBIA9bsmP2TPf6STZO/vyHJG1drPFzPm6LChzZv9LckQ+3lFTPoa5eCduCbHx7RX5614q3gDeekUsRitB6dX+VTli5ZgFRaXN7DPSkz3AUbE/uCpHXGrMdv5qkPM/6CG8y5PfI8zlCH12zLqqrPkccfLrHcwOz+OslNFKL4+3I2HJxzs1kWHw5Hhe1c3oWj1mV8YblFx68bkhkj2zSo7YtzpHrByz/mYn4xeSnPpGF2iV/QNzaDlHrIphk53NlVvZuLSHpUX45je/SU1NzetCzfKPmqT09NNPYzAYWFhQjg586AN/RuNWRXJUDpuxRpWTnaCc2rKXWdj63irqHyjHkZBxlmUn4h4Ja9SMM9e22oa9VM7bpLnrbLhrbSR7Ukh2pa0roXzWXWvDmpX7sycs+Ood+RdKemwBa9SMuzK7IV6TbZt74Opt+BuceTKGNWzGW6O0dVUrbY0OpbG7xoa7xkbT2xJ4N9qxlVrw1ijf46yQlbZZSTt3rRVHQlYIDteFcJTJ+cToiCtt5VxRoMaGo0L5LcGdLrTGEgJN2eJ1LNs2rCRHb60jH08Ae9TC0tISgyfGsQaMWKNmHLkY1mdjmGtbIeOqsfLCP56l7df9SgzLlb97a5Tfk4Or0oqr2op3ox29LGH1mXFWZuNdvRxvAFeVDXe1FSQIbnNjjZhxV9vy99EaNSNl4+2utuKqXpZDlMw6kr3KZqO7Smmrz57qctfaVsnh2sssOMushC9348zG0OJZbuuoWNlWxt/sxNNgw15mwRo1Yw0pSddTuxxvAEe5jKfGrpDnosqYtcWs2fFix16+fF1HhRV3rdL/xgfLsJaaceZiWGtfFW9HQs63NXgMmF1GWNQsxzu2It65GAKSLK2Kr+cl8XZX2/LxBUWC2xa00PmrQVyl2XjnYlhtxVW13NYWs+CpthPY5qTmzijWmBnJqb90vGMy3trV49viW34WVsfbgidr7WHPjtnY1YF8DB0vjWH2GcvliNIrA5Re4c/niFUxzLbN5YiZ/nkO/XPrco7Iwlm5HO+VOUKOGnCWy1gjLxmz2YmvJJWsyhH2kAlr1Ix3sy0fw5fGO5cjDFYDLMJAVpLZXWPDVbk8tl6WI0JmUskUY+3JfI7Ix7D00jnCU6+MlZVj1h6X8dY6lP68JEcEm93YIssxtJdb89e9VI5wxGU2vqtKaZvNEQAml351jkgoOWLbB2pofn8inyMAJUdEX5IjAkqe3fzeWrwNjvz4RlJiuCpHBM1IKEVP3wYHnvrlBYE1as6PgVyOIHvY1tfsxBFXin35eGfH4cocsWP+eq6+8mp0Oh2PPvootbW1rGMdf8zYsmULf/u3fwvA9g07ue+++9Cbs5sStTY8Ncs5y5mwEtzqouFNZUSv9GVztzL19NTbca1o60oon03sD1JzZymOhIzBIpGeSOOps696f7uqbXiyObfmrhjOSivmqIn5kTSeWtvqtjX2fB6y+I04q6zU3aWQKT2VVlyVL7lu9jk2u/Q4KmQqb4my+Z0JPLU2nInlXOipseXzhd6stHUmrFTdHqVsn3/Ve8pTZ8eb7a9er5Ck3StylsltyJM4vLXKybscHBVyfuHpqJDRmbXMjMxBWnl3rop3pRVP9rc7Ss04KmSGz0zx/MfPYA2ZcVa/JN7ZhZstqrT1NztAD44yeVVbZ9VyvC0Bpa0ctlBxTQB3lS1P2sjFMPc+NHsMOCrkvBSxO2FFoymhK6t46aqx5e+NwZVtm30Pe6ptWMMmau+OLsc7e28Mtmy8szH0VFlxVMjErvSiN5cop1ayfeAl8XZVKG31+hLQg7dudbydCWv+XeQoVzZG9FY9rhqZ6B5fvjCfj2H23tjLlLiYXdl5TcKOyWXI2xm6Kq35GNqiFqVtQJkbumut6Fcoaa4c3+aACUeFjC37nvXUKu/6wcPjjLUks22zY9atz8bQnI+Zq0K5TtM7yvFvdi6PWbtOaZt9J7urXjK+a+35PuTHd3l2zFYqMVwes3Z8TY48EWxlvJ3ZtitzhLfBQeQyL/7NTpyJ5TFrjyvxlrKFlVyOOPSpVi4+M5zPEQD27Pi2ZBf6K3NE7d0RLAFjvv/WsHJd84q5eK7tTF8KV40df7bAZ/EblXhn576eutU5AjTMjSuFiVyOcGTH96VyhM6kY2Z4DvTafI5Q7rH1kjki0GRXxkdixZh9WbyX73lwhwtryEx4pycf+5XxfmmOcFVZKbvCT2inO58jckRNd61t+blPK+M7uMNF8/tqCWxxZuNtyN4b26oc4SiV8dTaKL8hSP39CRwJOT839NS+PEfYosrf6u+LKapKuRxRa8WVWJm/lRyRnkgrOaJUpuqWbE6otuVzQC7enjo79mEf1zvuora2ls7OTuLxOEePHmUd6/hjRUtLC0ajkf7+fkrQ8t63vY/6bdUAGO063LX2fK3BnbDirbXT8EAZ9feX4am34cqu43QWpW2uDuColHFnc0nTOyqIXObFu8HG3MgCOl0J7lo7jrIswbc82zZLfird7Se0ValhzY0v4K6146pYXhO5a+35DTH/Jiexy7z5GpmnxoEru+63Rc1KW3sul9vwb3LQ9I4Erjornlp7fs1nDZlw19pX1cc89Xb8mx1U3RbB2+RYfh/6lbZmTy7v2/NWoPYKCyavQTlBD5ic0qoYuqqtq+YFnmo7SxkYPT+FwabE0J4tkrsqZTx1jnxbb50dd62NI/9ygfM/7VHina1zOSos+XiDUqj31tuUtaQOnHFrvm6Ri7dOl2trw5slacT2+vHWOfJreXtZtm1Wld1Tb8ezwmbM5DEx2TW9OobZDSNPnT0/twLwNjjx1SsHuCx+g6JQ6s6St2pteFbYf7jr7fiz5DSTz4i71o7Flx2H1bZVa2pPnT0/fkwuvRLvLPHIXWVV6mG5tvXLn615QwxvkzP/znAm5FX3xrdh+bfqjDpsETOakuwmRLm8Kt6+DXZ8K/rkrrVTUqLUx+yl2RgaczG05UkxoIwfW8jMwOFx5IByH3XZzQ5PvR3virmhp8aOu8qKPW5mw5tKcdfb88Qjd+3qeHtq7fm6hBxQ7o3Jl41LjQ33yhhucOTnpwa3cm+iu5RNi5VzwVyfct+TyxHl1wQp2xfI54hLxTuXI+YnFjjxlQ4ccfnlYzb7W1fmCJ2sI7zVrdzHlWN2hRXNyhxhdCj9d2fvnafOvspO2VO3nCMki46l9BKj56ezf7OtGt8vyxHVduZGU4y3J/M5It+HOvslc4R/s0uJ94o+uOvty+Snl+SIsisDq+O9wb5ce71EjvBvcuUPfuZyBIAk61bniGzubHowTuNb4vkcoQRcieHKHOGqsKEzQtPbK4ns8uZzRC7eq3JEpR20Okw+A2V7A3limhJDx8vyrDa7UxTe6cG/cZmE6qlz5OfQK3PEprk9XLPrBoxGI//8z//MVVepO1usYx1/yPjABz7ArbfeyuLiIltiO7njjjvz71l3jW1VTcDX4MCzwUb9/aWEd7rxNjrQZhVsXZXWVc+mt9GBM2HFt8lB/RvK8G1yYLQayMxmlFpOw8p3siNfby7d5ye8w4vZL5FOZnAm5FWWXN765feJZNES2uGhOnsQ3FEm42twrmqbe+a1khZvo4PE/ih198aUunbj8nWVecIyOcTb6MAWNZO4KUj5dSHlt0q5trbVc4pGR55U4NvoxFlhRStl39HVVrwr8rOv0ZlfG1t8RkweA7NDc2RSiy+bU/g2OHBm85vZI+FtdDAzMMeRz7Vi8RvxNqzof4M9v1402g1K/CttaKXsHuyK3+rdYM/vqUhWPd5GB2afgcAWJ+FtbvxNK667YXkfTS/r8DY6kLO1HUeZTImuJK+M5a2z5/eAcvHO7RHZY2Y8G+wk9ofz9yb/PtQuxxvAlu2vt8GOVirBXWt7SQwd+feJHDQp98akA60yh1s5V/E3OHBm5/hmvxIXyarF5JGouCm0ypbXu8GBM7uWMHuUtjkijLPCihwwkc7aGXoa7Dirlskh3kZHXkHVWWHNzxNz8c7thUlWJS458pazXMbf4GCya4Zk7xzeDcs1Rq1pdbxtpRZ82ftYfmOQ2JX+5bbZeNuytrS2aPaeZ4lHObWbfJ8aHfn3tzVizo5vpbG71op/kyNPqvE2OPLrJDmgxHtljghscVJ2TQBXrRVfgwNHuXJvzL5sDG1K21yOOPvtboaOT+RzBIDJZcTb6MBoz8ZlRY4o3efHV+/MH2wz2LJjNrtXvTJHpCYyeOvt+Dc5QavkCG+jA0t2zumoWJ0jWITpwflVMcxZ+14qRxgceqZ6Z9BqM6vGrDVqvmSOsJXKeGps+DY78zki9zxeKkfYYmZ8Tc48ydviU+IiWbL35iU5wr/JSWJ/WCE6ZXOEwabUvJzV8nKOyChjNrDZSePbErhqbEq8Xdl4J6yrfqur0qrcr0Y79ffH8TYpOQLAUW7BtzL3bLDhyK65y28IEN6+TIBzlMmr8lQuR2RmM2glLcEtbir3K/nbHntJnsrmCNOshSs0t9KwoYGWlhZKS0s5d07c/ekPEZqlnE/HHxk++MEP8olPfAIACQN7NDcLfS6wzYnOrBW2G6t7Y4yhE+MMHReTadv4cAWtT1wUspqS5BLq3xzn1FcvCNmNSXIJNfeUcvxL4nK95TcFafuJmKUGKGonc4IyjcWg/MYgU70zDB0VO81a98YYjjKZ41+9IGTxBArTNjW9INT/8huDjLVOMXZOnGkY3Omi7zkxqcatH6qiRF/CC/9LTJ56+5/XkEllhC3CGh+Ks5DKcPpRMa/QxofijLZNCY/7y/6ijsmuaU6KSCZL0PjmOANHxoQ8451VMhU3BDn/k14mWqdV24d2uim7ys+FJ3uFrl9zVwR3rZ3jXxOzn/M02JhsT5JKCnj/AkhQc0uEtie7hZ5b/1YHAwfGxa4NbP1gFTqjluf+QdCyRIL6e0o59WhxUttCl3ZJha3kXgJ/s4PU1ILwc1V2jZ/MwiIXC1h4rETN3RHmxtPC9o+ND8UZODEmHP+md5Rz5nvdQr9ZkiGxP8rpb10UuvZMxSiHLv6e+fl5zGYzAwMDyLKs/sF1rOMPBOl0GrfbzdSUIoXayE58mrDKpxRU3RHm3I96hKyMzB49ZdcFOf11sfebf7MTZ4WFs98RkyWO7fOhlUpoF7DuBUU9ZyG1SN/zYu//3CJRxHIuB71dnyezvGrQQ9WtYc79UCzuADs+WsPcRJqj/3pB+Gs8G2xCliN6u57oZR7aftkn3B+9XY/FKzEuMFdwVsvU3hWj54VhITuxwDYn8X0BWn7YLWT15UhYiF8boOXxi0KWfL7NDjy1NuFxXPfGGLaYhecF3/3hy93YwmbOfFvsHVR7XxQWEW7f/N4EmhINB/9ZbF66/SM1pGcWhOznQDkBpCZlvRKOhAVryMTFZ9TnsWa/Ho1Oy3SPmIWHPW6m7g2lDJ0Yz6sTqcHbZMdg06ta0L0SGNx65kfE80Fsny9P/BNB3f0xTn+nS+g51Nv11N4V4fhX24XayxET8Wv8nPhyh1BfPI02nHGZ8z8Us1CK7PYwMzTHqKAlcU/VKc60KM/U3/7t3/LXf/3XQp9bxzr+UPDVr36Vt7zlLQBYsLFTc63Q5+xxMya3QdhuLH6Nn/HOaeE1XM29Ubp+MyRo1wSVt8c4/3j3qhPIa38AKveHhK3VQKkXiFqlgaKMomYd9UoQ2OIkNbXAaIuYhWjpPh+BZhenvt5BUvCdZfIZWMpkmBtR739oh4up3lkhu5kcXNVW4f43PhRHL+s4JDhX2PgnFSxlFoXtxxL7g1CiofUJsbGQ2B9kqneWgcPjQu23fbiGsQtTnBewkgFFzXmkZVJo3mj06Km8OUzHrwaE4m+vsFBzR5QLP+sVmleHLnMT2+3j1Dc7hK5vjZmYHU2LWf4B6CB6uY++Q6NCn3FWykJWYjlseEsZJpfEgf8ruKGig/i1Adp/3i9kb1YMdLJOPC6QV48Ssf0DZc6ok0roOyCWj6N7fWRSGeGcVnFTkPH2aUYErWUqbw9z8dcDzInkQB3Er/bT/qRY/W3BN8nzE88wNzeHz+fjwoUL6zWvdfzRYdu2bRw4cAANGjazF6fGo/4hFAWU/kMjZESczExaoru9eRUiNVhjJlyVVjoF13zuOhuSVUefoN2Yq8oKWhg9I/b+N3kldEYtUxfF5xeitlrFIrLbQ/e/DQtbQjW9o5z5iRRnvy1ua2aNmYTetVqpBN9GB32HRsUtqkxajA490wJ2xQan4jrR8/th+g6q31tr1ETVbRFaf9zLRLt6TU1RqPHR9cygkCWfNWrCXWOj4+kBod8b3ePF1+QQtmVzVsrYImY6fy027iO7PWilEuHnpPquCHqzjpNf7RBq3/DWOAuzC5wR3Aeyxc1MtovNFUB5ruSAiaET6nUyvaxFK2mZE9yzk+w6Gt4cp//ImLDFoRw2YXJJQv0pFnpZmye3icDbaC/KUrD0Sh/dvx8Uy8cSlF0bpOPnA2RS6mtVya4lsssnzLeQQ0bs5bJw3J2VMpn5RWF7vsGKNo63Hgbgi1/8Ig899JDQ5/7Q8EdJUtq5cyfPP/88AB7CbNTsLNg+fLmb0Da38AIouNOFPWIW3vDyNzvQaDX0vyi26PA02EglF4QTlbNKZnFxSYjQAUoStIZMQh6JoNg7lV8T5NgjbSDw8CoWTxX0HhgR2ggChYSzmF4UX4RKEL/CT/vPBRZDEkL9Xomd/62W+ck0hz9VnI+nKCS5BGvMwohAAQMUS6p9K5p1AAEAAElEQVTMXEbs974C7PyvtST7ZjnxlQ6h9sWSlHZ+pI6R05Oce1x8kicKySVRvT9E+6/7hAhrxca+WDhrlI3QwePjwgUzpWMIjVNPg42lzJJw/8N73JTu9tP57AA9zwg88xJs/9MaZgbnhMdDeI8be8gsTMiRZIjsCdL2U3GCZPRKrzBZCRTbP9H8Awp57aygt7Iclii/LixMCK3YH8RWauGIyubs7FKS3/MkAGVlZRw6dAiXy1XwM+tYxx8ChoeH8fv9LC4uAhr2cgt6jb7gZ5reWc7ImUnhTfz6B2K0/qxPeHM+cXNQmFAAEN7lpud34htYxW54xfYpi3lRAk7VXWHG26YZFNxIqX9TKSaXgYP/JDaPiuz2EN3l5fxPehgWJNq76qxk5jJMtAnMT/UI/1ZQNo68jQ6OffmCEMnnlcBVIzPVlSQt0H1L2Ejpbi+nv3exqN8hiqrbQriq7Tz/v8RIR8WSlOofiGEJmHjxf7f8e7q5JmJX+UCDMPnFWS2TvCgW+1eCTQ9XIMl6XviYGPm/WMSu9NJVxBxky/sroUTDwU+IPY+xq3wEt7g4/NkLYoREPWy4v5S2n/QyMyw2QIM7XEy0TzEzINbeXm5mYX5RnMxVboYlmBBcvwa2OJmfSgsTNqtuCzF8bkpo8xc9bH5ngou/G1Ilu51cepEhbQ96vZ6rrrqKn/zkJ0L9Wcc6/qPxvve9j0996lMARKigRrOpYHtXtZXILg/HH2kX2sS3V1hwVcjC9QdbmRlJ1gkRKECxckMDyW5x8o1W0gi3N7p1WCMWYcKr0aGj9JoALY93C8VHcuhofLCc3udH6H1ebD646eEES5lFjn6uTag9KESiXkEifLHY8oEq5sZTnHyk4zW5vs4I5oBZmKwR2umGJYTjWSya31/JVPcM574vRjoqlqS09UPVDJ8cf21qdjqovDFE9/MjzA6q17x0RrAEzcLv5GJh8hlofDBO/8FROp8Wr7mgQ+j5kiNGtAYtExfEatzOKpmqWyN0/npAmHy58U8qmBme59z3xGpArjor9jIL7T8VIw2gg9DW4taLvo0OBrNK6CIIbHEK/15QiI+im7OSQ0fZVX7h5yW41YmrxsYplRrxwtICz/IjMmQoLS3l4MGDeDxiJI91rOM/ErOzs5SVlTE4OIgOPZdxA5JGKviZxC0hJjqnhecipft89B0cITUhtjkf3Oai70XxOYKr1ipMNAKFnDR6Try9t8HOaMuE0MY/KMSt6aE5oUNnALErfdgiZk5+o0OI9OJIWKi4IcSFn/YyLvg+yVlRiZCC0CJMNgLF+iq628vpb3YKkXxeCcx+A/NjaUEyhWJt2vPi6GtCEAtucRHc7ubwv55/TUhKsSt9OCtljhUxry4GnjobJYYSBo+MC7UvJvavBIlbQshBE0c/K35oFBAep546G8Mtk8JjuuaeKHqzVnjv0FVrJbrby5nHOsVynBbi+wL0HhhlfkzseXFUWJgbSwuTs0weCTQIP48mj4RGq2FmQFAwJWZmaWlJmLAZ3O5ienBOmBNSc3eE/sNjqvmte6mN89pj6HQ63vjGN/LFL35R6Pp/SNCpN/nDgs/nY2hIKSJXs5GoJqH6GYNDokRfIqwKEmx2IVnEQ1O2T7GWEiUpVdwQYmkJXhQstFfeGkGjgRf+UbD9zSEkWS9MUgpvcWP2GrG4JKb71eOzkIbU9AIjLeIMxhc+cTYvza2KLJlDdPG/4d5SrBEzz/2fM8JkpUP/3EKJWewel13jx7/JyZEvtAmryqSSi0WRZIolu7gT1qKuL6zK80qQguf+7nRRH7EEJEqMWiGlo9RoihOCrGYoPvYADQ+WYbDrOfhP6hOlsbNJTn2rU5g0CMopQ4vfKHQfhk+IFX5z6HlmhIn2pLDiGCmYG0/lrQ5F4GtwFpUTq+8qwxo2M3B4RCinVN0ewVNvY25kXki1rvzGIMFmF6npBSF1s4r9QVw1NmFVq+jlPiwBE3LUIBRXg0OP3qhVbWfSyFzNXfTWnOb0mdO43W6efPJJrrvuOtXPrmMd/1H4xS9+wbXXKif39Ujs1dyi/iE96M06TC6x97611Iw1YiG0zS2kcBTY5sTb4GBuPC1EggrtdFO6189SBqFCsm+zg7Kr/OhMWroECvOWsJHwNjdGp55z3xUr9DrKZAyyXpiklOybZWlR/FxB97PDjLZOihGCsoQjIXJAtv32D9Yw3pakRZD82frjPgZOTAgTlDa/J0FyYFY4noCwugrAdM+cMPEWFIWY9OyCMInu3A96gSLmdkXilKCSZh56xUZCtEAoMu5XohjlMABzUKL+vjIu/n5IaP3U8p0u0jPibDK9XU/zuyoYOTsppNKTJygJku9Of6ODmSLUz8YuJPPWJSKw+IzIATO+ZhcdTwmsh/RQutfPzAY7xwUVKqrviJKZy3BI8MBG1W1RlhaXhIlZ0b0+ltKLHGwRKELqwZGwYnBKQnnIbNejNWiRrOpz0w2abUxHhjk9foSf/vSnVFZWcv68WGF0Hev4j8Lll1/Ov/3bvwGwgW0ENDHVz+hlLTqjFqOsE1LICG5xYfEbaX96QIhUUH5tgBJJK0xSqrw5jEarEVbYq7olhM4srsoTvy6knDY+NSHUf3eDA1vUgsllECKBLC7A3Og8E13ia/4jn2/FKAuumbNkDlGCUvwaP54Ndo58vk1Y9eXoZ8/lLczU4GmwEd3t48xjHUIqTQALc+JqMiA2B89Dp1hPTfXOCivniI6dV4oDHy+OGC45dOgMOiHFMRbgfBE1wYU5cdJwDvEbA1iDJo5/UX2eMDs4z8lHO5juFSMNApTfGMBVZROaJ6wiIwoQm8bOJTn25QvMCRK3AaYH55gWiX0WvgbF+qQdMZJS/NoAvnoHYxeSQjkltNNNbI+PhdmMkFqZf7ODsn0BFheWhIhNgS1OAs3K5pdITdHX5MQRl7GEjEL32eiQ0Ft0qvdLp9FxJbczUNfCiVMn8Pl8PPPMM+zatUv1O9axjv8oXLhwgfr6eubn55Gxs0NzjdDnJFmHZCt8eC/f1q7DVWUjnVygV0DhyBozEdrhZmE+I0SCssXNlF8bRKsrEVI+kUNG4tcHkKx6+g+p90eStcT2+jB7DMLKNq5qKyaPQbgGMTMwh9ZQIkyiGG+d5sRX20lNiKvhCZGTsmh6qJzxtqQw+XPwyDhTF2eYHRareVXfGWFuNCUcT0CYPAGQmlig67fiB7EMTomldIaUoMJN38FRIUWnV4quXw/SVURsQCESzQzPC42hYUEFwhyKiT0oa7Pq26P0HRoVUjvsfHqAxVQRWjJaaHqb+OHg/O8VJDVd+Gkv6SLIbcneWWaHUywJfkQyaXGUy8yNp4TJmGVXB5gZnOOc4AGDxP4QiwtLwu4zFTcE0ZRoOCF4wCN2hQ+W4OTXxNp76+xY/EYhkpLWpEVv1qEX4C9ENOX4HB5OLB7gS1/6Et3d3Tz11FNCffpDwR+NklIqlUKWZdJpZVGyjauwaQorUBRrs7RS6USSS4TtnySXhF5CaDMewJ6wsJRZEmbNyVEDRodBnLwggafaVhTZoZjfWwycNTILcxkhMgoosWx+V4Khk+IqNcGdLry19qJs8IpB6dU+fI0ODnxcrChfd38Mo1vi8CfFCnL+rQ4cUZmW74tt9IV2uolfHaD9l/3FFXqKQFFKSq8A2z9aw2JKXFnL3+zAGZeFlXDKbwjgqbPz4v8RKyTV3RfF4JI48pki2cqCCF/uxlVh5cS3OsSIdBLs+FAt0/3i6lcAkSs8wpZ+ReEVqJV5G23CNplQvJJSeI9bTDkqC2eNzFgRG9h5UmuRv12xD5xUtQL83dJPmWMGs9nMO97xjrx96TrW8YeEj33sY/z5n/85ADacbNPsK9heb9djduvFlHgu8dliLM/s5eaiviewzSlMJgclb4uSvUE5fStM8gGFDAGviYpPsSpQ9Q/EMPtNHBB8Z6KHujujDJ6eEFZpKhZN7ygn2TPLBUFFvi0fqKLv0IiwWlblzUGGz00Jk2u2vL8SjVYjrghaJIpVUioW4V0KUe/Md7uEf3Nif5DRtqTwuN70cAVT3TPCCmdb3ldJz4ERYSvFYlH/QIyB4+PCYzSxP4in3s6hT54VVoSyliqWH1Odr76Sgd5cQnpGfG3mqpEZvZAUzimuOitzg3PCSk32cjPp2QVhoqHZryc9lRH+DaveAUUqtXkabar3eXJpghf5BQDV1dWcPfvaqHKtYx3/XoTDYXp7lTrIDq5F1tgKtndWyUVZ2K/cYC7G5khnLEFnKREmsBg9enRGrbgykkOHwW0QVlZBB/ZocUoyOmOJmOVckbCEsqfyBQkdOmMJmx5OMHBknK7fCCoWVsl4N9iFVU+KhbfJTnibm6OfFzutXrrPhy1qFq5V2CssOEotwqo89riZ2ntKaf9lHwOHxoU+UyyKVVIqFpvenWApvSgcU1uZGVeFTIfgZqi/2UFwi1v4xH3sCh/WsIlTX39tanzOKhlPjY3zP+0VJpZtfm8lyV5x9SsoXo1IGLk9oCLs5OwVFvGchUI8ErUjBKW2VExdX44YhXMuFG91t/J75sYXVD97bOnfGKIXo9HIn//5n/O3f/u3RX/XOtbxWuPpp5/m6quvZmlpiQBRNmi2F2yvlcDoNhZFdsmRAoq1PDP5JGYHxQvSjoT4oSQoXklJDhlJFkFeBYpWIxJFsTajsSt9OMotHP9Ku1h/tBDb5WWia0bIKu2VoGJ/kLmRFD2Ctbu6+2MMnZgQtt8Kbncx1T1LskdsT7bmngh6i54TX35t9leLVVIqFo4KC4n9Yc490S285x7c4iI5KG6NXHlbmJmhOeFace29UQaOjxelcFYMSvf5GGtLCv9e3yYH4e2K8q5oLjI4JUr0FJWLRKGVSopSprIEjUwPzgnnFEvQSHpmQZjIaMwetBa20ZO1ZDIIx3LVO6DI3ChiO5lamuX3PEWGBerq6jh48CAmk0n8S/4DUfIf3QERJJNJjEZjnqC0h1vUCUrNDiquC5G4JST0HcGdLnZ+uA7/VgeAKmFHDkts/VAVcljZyBYhKDW9sxxJLmGidVooedTcHUFySSQvzgstTOLX+nHXWSElpsbibbSx4U2lgPrvBcXCafuf1xC90qvaNofEjSHq7ysTbg8wOzrPwHHxjcS+50aFCUq2uJmdf1FH5ApxudnOXw4KE5QAKAGNRrx5YJMLV03h4uNKDLdM0fvCMMMnxGLkrJHZ8V9q82P7tcDWD1bR9M5y4fbdvxui41eCMsqAf6MTZ7V4jJYyCvdSksVS3OlvXSyaoLTtIzVseneFUNue348oalCi7/MUzAzOMdomPompvTdKbJcPW9ws9gEJtn6oiqrbI0L9ASVnNLy5TOjyOYJS3f3qJ3+BPEGp6vYIloC6+kqOoFRzV0SRjldBjqDU+LY4dfdFVdvnVNO2va+aze9TV+zLofLmMA0PVaq226W5kapALQCf+cxnePDBB4W/Yx3r+H+Bhx9+OE9QChFXJSgBNDxQSs2dYs88wKZ3V7D5PcrzJUJQqrk7Qu09yvMrQlAK7XRTdp0fEFO7tISNlF2rtBdadOoViyIQVyGquy+q2CalEdqEr7otJPyuAcV2q+wqP+U3BIU/M94+TbKnCJJFWnlvipI/mt5Zzpb3qefFlTj2+TZhgpLBrTC+FhcEz13owbPBga/BIdyftl/20/lb8VNcjW+Ls/Fd4vetWAS2Odn24WosYaNQ+8ETk3Q9M0jyovh99jQ4CGx0indKA5oS8QnwwU+eL4qgFNntYcd/qcXsETuteurRrqJIdEOnJ7In7sWXx3X3xkjcJP6sRXZ72PrBqmWSYgHkyD35nKGC0bMKQclVIxPepT4vGj09xcxwGoNbT8WN6r9hom2Gmb4Uers+v34shJmBNOmZReSIieb3JvLP6VrIvQMCW5zs+FAtrjqr6neAYv1ZuT+sGiObxs5ebiUej9PS0rKqtrCOdfwhYGFhAavVSm9vLyVouYLbVAlKcsRI1W0RSvf5hL7DWSmz9f3VuOuU66ptMEsOHU1vj2P2G1mYWxQiKFXfGUEn65gbTgttlseu8CE5FPUnkc1+f7MDe9wMC2JKMnLESGW2JihEUNIptm2BLeLvv/LrAtTeIz7/BZjqmWW0VfwdNXYuKUzkMDp0bPuz6qJ+w9CxCWEyDUCJVgNF1Lx8DXb8m8Vtzqf75uj4VT8jgsRqk89A8/sr8WwQrxkViw1vKaP2DeL3ufM3A4pSmSC89dkYCYpx5U6qSw6xD3T9ZrBogtLGd5RTL/DOB2WMnn9CnKAEMNk1zUSH+OZvdK+P8uuC2MoEa15Aw1vLiF/jV2+4oPxvZc5QQy5nxa/1C923HEEpvMuDyWdQbZ+r60f2evFtdKi2z+XcxC0hKgTmp7l3QOPb4jS8tUy1fQ41d8aou1e9ptakuYw6+yZ0Oh3/8A//wEc/+lHh71jHOv5f4NFHH2Xfvn0sLS2RoEGVoARQsT9C5S1h4e+ovC1M3b3Ku0NkIzu8003p1UrOEiEF2OMWgtuU96sIQUmyawk0K+1FCUrhy5W1pShBKbbXi5wlcItswge3uKi9N6ps2gvA6JIovyFIWGAvIIfJi9n3jSgpIANdvx0SJihV7A9S/4DY+zKHCz/uEyYoaSWlRpHb7xJBsNmNu0ZsTQ3Q/bthLj4jXvOKXx+g5m6BPaVXCGvMROPb4ph8Ygr9Uxdn6fhFP9P94opHgS0uPDV24faaEg0UUfM689jFoghKzkqZze9O5Mkyauj81aAwQQlgomOmKJVYgOo7wpRdJTCPysJVZWXDm8vQCvyEHEEpumdFziiA6T6FoGT2G/DUqc/5p/vmSE0soDVpCW5XX4fMjaaYG02hlUqIXx9QbZ9KZsjMZpDsOmrviyLZCyex3DvAGjOx6R0J4T1c3yYHVbdFsEYLE44kjYk93EwiXsnp06eJRqOkUq+N9eSrjT94u7fW1lYqK5WNjRJKuEpzh9DnBg6NYwmYaPuJ2AbHSEuSYHOKsTNihQKT14RW0qK3isls+Lc6MHuNBLd7hGQC5bCEs8pGpUErLEnm3+zEU28XtroKbnVj8RmRZFRVPwAkp4GlRZgbEU/2x77SgSthEW6fGk1x9F/FySIb31XB8NkJYfWYpaUl5sbmGRTctLAnLBid+qIUuU4XacFx7HNtSIIvH1BiJGqFB8qmXXomzdzYa1eIn59Mk54Sv34x6hQAZx9rFxqjObT/fKCoGIGinONvsgur+Uz3zTIr6Jmau37dvVF6fj8kpDBUrDLYmccvEt7hFp+cpIqb3AIEt7ix+I3CymuhnW4ccZnSfT6hvCe5JNx1NoxOvfDvt1fImANGYdUQSdah0YpPKJM9M8xNiVfaun47yESHWA6ODdRj9Jk5PnCIRx55hLa2Np555hnh71rHOl4r3HDDDTz55JMAVNFETCNGMDn3wx5MbvH32UT7TFGkXsmuR1PEB/wbHeiMWjG7JKD8mgAWv4me3w0IKanEdvtw19rxtCaF7E/0dj22UguZhSVhFailzJI4+QbFdqvj6YGilJR6fj9CD2LtfZsd+BsdnP12h7DazETndFGWoeHL3QyenBRW1pofSXPwn4ogk6fhuf99Br0Y1wUowgovi7nxFDr9a3cWZH4iTWoqzdKi2Kmj9ISYNeJKHPpMa1HqZq9EjdLbZGdmeJ7pHvWC5+i5CZyVsnDxEhQFKWdcFlIGnWib4URbh/jFgfZf9jNWxAn6+ck0S5klzHa9kIJRLmcsZsRzRvk1QTT6EmFVsYrrgthiFrp+Pyx0v4ObHchhM85qWUiVS7Lp0Bq1mJySkF3iyPkk/k3zTAnOpVp/1EdqOiMUH71GT0VHMwPSIDPz05hMJtra2ojFiiMXrGMdrzbGx8fx+Xyk02n0GNiruVnoc8nuOS4+M0Tv82LP+9TFJDMDc0x0ieUTg02PzqxDL2tBYCplKzNjL5PxbbAJ2ZjpZB2BZicGh47zPxBT0Q7v8LCYElenCWx04qiQhRVDjLKOpcwi85Pi778z3+nGFhM/pbowt8jZb4tbzlbfGWG8IymuKKSFyZ4ZxtvF8qjJZ8DklIQsqHIottZy/ge96GTxja+FuUX6D4ofXFxaXGR+PEXqFajCiGJ+LMVCSvzIc7Fzx85f9XHhqT5hks/g0fGiFYV0sg53lSys5jNxcVrY9gVAZ4TELVEGj40LjSdR9fwcLv52kPmJVFE2g4sLS0VZZvsaHUXlDGeljK/JyfzkglAu1hkhtM2NHDTS8h0xpXhvvZ309ILw/TZY9SwWYZox0T7NYhGn+due7GNuXCxHhiYrsDplXkg+yz/+4z/S2trK9773PfEvW8c6XiP8wz/8A//tv/03ADawg4BGjGzR8at+zB51kmEO423JomohBoeE3iy+4PU22DG5DcJ2ScEtbtzVNoZOTwiRplw1VgKbXSR754QIO1qpBGe1FY1OI0xqWlrKHjgTzENzoyku/LSX8SIUjsZbp4VVpuSwCd9GB51PDworpEx2zTBfRO3EVWVl4uKM8PUzqUVOf6O4/cbDnzkvRBTJoViVrPmxVFG1ymKxMJNRFG0EhXYyqcWiLdyKURQCOCfogrMS1piJhZmMkA3gZPcsE13TFON75ayUcSastP1MnQMxP5aiTfAwaA4dvxhgeqgIm8FkmsXMElqTjkxKfR6llZQ8U6IXzxmxvV4kWS98v4NbnPganYycnSA1oX6/7eUWnBVWhmMTQipbWkMJeosOSZZITai3n+mfJ9k7K0yoGzwyzlJmiamLAn3RaCnraGLcMMnwyABOp5OTJ08Sj8eFvus/Cn/Qdm/PPPMMe/fuBUCPxF7NLaqf2fCmUuaTC8KSvd5GG7Nj8yQvCj5sr8D2KP/RnH2QIGxxc1FsyBzRpZjvECUovRIUayG34U2lLC4ucfrrYi9dSYbN761loj3JmcfEizzFYOPDFZhcBp77u9NC7Y0+CW2JuPXfK0Hl7WG0Og1nBRe0rwSvtd2bp8FG5DIvR7984RU/TyIoRv5+459UYPIYeO5jp1+bPkmw889qGTk7xbnHxe6dp8FG/OoABz59rqg+vVb2jcrFKaov9oSFiSLkZl9J3ism563+MEX9ltKrfXT+Uqy4avRJbHhDKce/1qnav+6lNjqMp1lYWGDDhg0cOXJEvFPrWMerjM2bN+fHYBOX49UUPoVp9uipvjvGyW90CRMawrvcwhvoQNHWP6s+WqRlkhwxkewWk/oFxe6pGKsnvRlhck+xKPa36s0lNLy1nAs/6xUmQFTeGsJVZeOFj702Vkl6M2z5QC0TndPCRRh7vDi7l+L7VEL13VEuPjv0iqwMRfBa272Bcu9S0wvC77FXArNfT3pOTBkNPez8cC2T3TOceo3mmzV3R7DGLBz45xbhHFJ7T5TMwmJR1iPFPnvFoNicYfboSc+I26yBoiInQhTL96lIe87lD1JULreWmtHqNcIF5cqbFYKWyL17duknpDRz+Hw+fvnLX7Jhwwbxjq1jHa8iOjo6qKioYHFxETMyl2muV/1M/Ho/i+kloUMgoBTHM/NLzAwUsfmwwhauGBRrH2TyGZgdFC9864wl6IwlzI2Lf4fOCAtFupMU059iLOTi1/vR6kpo/bHgBoEONr+rkvG2Kdp+Kq5EXQyq74zgiMu88ImzQvdcJ+vQGRC2/nslCF3mxmDR0f6L4shQxeC1tnuTI0bCOz1c+FHva2IzmP+esJGk4Du88rYQrkobhz559jV7JrZ8oIqR0xPC906OGCm/Lsjpr3cWFafXyr5RuXZxOcMSMgrbPQKY/cai8vG/67cWmcv9zQ5hQqRO1lF7V4TzP+hWzcnjS8OcND5POp3msssuWz+ct47/ULz3ve/l05/+NABbuAKHprDbhtakJXFjkLan+kgLEjddtdbiLJ7+HbZoxdrIGV2SsJ0RgMkjCREsljvEa2LxBsXbQ6GFmjsjXHx2WNiiL9Dswt/s5NgXL7w2v0MLzQ9XMto6RfuTYnM7k1didug13EDTQvm1QQaOjhVnZVgEXmu7N1As7hYXlhg4JE50LxaSrGUJhHPB5ndXMt6ZFBZSKRbhnW7cdTZOfa2djOAQCe/yUFKi4eIzYkIN8AqevSKglRDuOyg5D8Rt1qD4vFdsXl39YYRzh2TXIVl0wgQtf7MTyaITunfHln7PSMkAbreb5557joqK107t/9+LP1i7t6effjpPUDIjCxGUAExeg5A8WA4VN4aou6dMuP3W91Sx9UNVwu3LbwgoVkGSGHlIkksU2ywJ4Y36qtsjeds5ke9wVslU3q5IU4oSlDa9p4LwHnEZxcrbwzS/vwY5Ks4ul+x6YTk7UPr+/P88I0xQ8m60U/fGmEJMEMTRL16g7Unx0z2VN4ZoeltC+Dskl8T2j9YUFVt7zIw1Ki5vLLkknFWycPtXAqNPwl6EYpY1aMLkNmALi/+OrR+sErKXyGHTexLU3KUuQZxD648vcvqxzqJIK6GdbiHrMABS8Nw/nBEmKAFotBp0Ri3uhLg85+b3Jtj0bvEcJcklbHpPAu9GQXnLFFjLTNTcJXbKJEdQqr0nIqQYlst7Zdf4qdivLlGdy3mlV/vY8gFxO6H4tX52frgOZ43Ys1G6z0dkp1fYKtJeakZv1uEUkG6MaMrZ6rgCq9XK0aNH/+DZzet4/aKuri5PUNrGNaoEJQA5ZkGy6pEDYu/72JVeSvf68W8Ws6Bw1cjs+FCtkK1jDpvfkyCwTbm+yEZ9+Q1BgjsU6VcRgpLBrSeRzU+iBKXKm4MKgUOQbODb7KDhoTL04q9JNr27koaHyoTb28tl9BYdFHFc4fwPe4siKFXdFcbbJC6fnJ6B09/qpOPn4gv42ntLaXiwTLh93f2xoqzY5KgZOWDGVMSJSXvcjN5ehFTTK0Cx32GPyzji4vPB8OVutv5ZtZA1GShEnaa3JYhfLWY7RBrO/6iHU98SJyjpzVB9VwSH4Jzz7He6OfB/xAlKAEa3hMFRTFzNNL+/mlgRdtihnW5hW41czkjsDwrZ+80MKzZrlrAxb3ephumeOfRm2PCWUjEruok06BVF22Jy85b3FGcPXXNHhMqbxe0ULCETFr9YHWC35iY2b2xmcHCQhoYGjh49Kvw961jHq4XW1lbKy8tZXFzEgVuIoAQgB01Yw+LKPZU3h6m+Q/xZqn9TKZveLv6e9G10sOEtZaBTt5ADQAfVd0dAhzBBKbxbsUdamFsUIiiZfAZKr1LeR6Jkg5p7o0KWSjmEdrjZ/J4qZEHrVVAUEoqZT7AAhz91XpigZI2ZKL8xgE68S7T8sJtzP+wWJjJE93hoelsCnVGwnKyDze+txL/ZIdwnZ1zGXiE+Z9HJuqLuwytBsd9hdErYohbMAfHPbHhLGZW3iVmNgTJm6+4Tr5Fd/M0gp77RURQBx1VtJX6juuVFDgf/6VzR5DLJqi+qxllzX5Smd4jnKJ1R+YyolezCHBjdOmErzRxBqfQqn5D9Xo6g5G2yE92r/h05gpKnwUbjQ+K1It9GB1vfX61YZArAXWcjfnWQ4FaxdbrZI2FwSJhD6u8jh8bDDv1VOJ1Onn32WbZvV7fVWsc6Xgu87W1v49Of/jQaNOzkelWCEihj3eg2CO9ZOStlyq8N4hK02jL5JDa9IyFkX5RD9Z0RXLXK9UU20r1N9rzdr8hGvdakJZS1RxIlKAW3uTA4JeHNeTlsInFzKG9lJoK6+2NF2e1ZfEYMdqkoBff+Q6Mc+5w4QSm80409Lr4nRkapefU8J04Qqb4jSuJm8flBdI+3KCs2o13CXmbB6BTfNDV5JEVt9TWEySvlCSkicJbLOMrE74UjYaHhrXHx79BCw1vLCW0Vr4Gc/1E3bU8WQVDSKiQiWXCt1/PcCMe/KE5QAjB7DBgd4vdasutofFs5/mZxK2lHwkLFzep7CrBMUPI3OzF51fuVmc3ZrC3bV6phbjQFWsWmUCTnZGYzoFUsO4vJzbX3Ram+XfzZS9wUovx6sTgByCGjMPelSXM5W2u3Mzw8THV1NWfOvHaHYv+9+IO0e/vxj3/MzTcrEtdWHGzXXK36mZyaxoGPF2H3ALT8oJv0tHjleuTcFFIRydHolNAZdMLEh/BlXsxeI+6EVci2TZJLcNfaMHkkjglKXsf2+jB7jXT+okfM5s0lYbDqsbjFC2HDpyYwOSVxhSrg8KdahdtKMlhjYjHKwd/gwBq1FKeSk0JcVhvo+M0A3jqH8HcYbFoWU4ukBKVyAQ7+U3GM48QNAZzlVn7/P04V9bliUHdvDIOs5zlBBYBXYse2kMqQmRdnsHY/O4ihCNJbsidFsRJKvkYHpiK+AwAJPNW2vL98IQwdnWDo6ERRlx85O4nBWgTZL7WI0abHVW4V/q7ya4OYPeJWkdYyE85KGwldibAyhrfBjkaj4YLgKVO9WYfWoBVWkeo7OoYjITPWJsbU7PzVIJnMorC15MCB8VU2kWr9MgzIVC818zy/pKOjg61bt3LgwAGh71rHOl4NJBIJLlxQ7Jou40bMmsLFzJxyyODhcQYFLQMAun49RHo2w8BhsZMtU11JZkbmGBKUcTW49WgNWvRG8bmaq9pKJmWmT8CaBKB8XwB7hUzv88PClk3uegd6q15cHShqxuQyFKWgMtoyWZQM7/DJSSGbuhxcNTKjF5JFET5cFVZ0kpahY+LvsmJVkbp+O8jMkPhuy8J8Bu28eCFsrCXJ8/+ruMVc7T0xZobnOf7F4qxbRaG366m/v4zBY2PCagwHP1HcGimVXCAzlxG2JkvPLNL74ghDp8aFv6OY8QeQToOz0spielFYXQeKG7tH/qU427qJ9hmmuqcZPS8uTSv7DRhdBmGVJL1dj2eDA0nWcfpbYoczyq8LYPEa6Xh6QOh328ttyCEzoS1uYbtIvUmLuQiLz8mOJDMj4nPts9/vLsqa+Ohnl9fCImpPzqNl2JbamWCEvXv38pWvfIXbb79d+PvWsY5/D06dOkVDQwNLS0t4CPD/s/fe4W1eV57/hygv0TsBggBBggRBkBIpUhQl0U225R73HrfYcktix4md4oln5/fsPpud2dnsTmYmk8lMsplk0uM4ZRKnOXaKU9wk2ypWFyVRYu8kCIJo/P3xAiBpS+K9SOh1Mvw+zzyTRPfyfXHee88999zvPd+2snOW7VOoUrT7i8eknrX/qZOUSZwhjO6bwihzSOFS0JvEU4vetQ7sNRacYQvjIr5TB1UbXFgDRvYL+sDgZjfOBiu9L48JEad0BjBVGJiTuGE7cXQGS5V4FRtA+P3Vl1LjQZm4yBOz4Wl20P2MRNWlDGLfIY/+l0eZm0gLV3YxWHRkZjOkZ8RzOW98Ta7CYmCjC3+nm+2fOSRVyUsGDVdXYfEZeOVTYvHUyO4poZzPYmSSWTJz4rfUe18YYcwlTnpLTmRAogoZgLvJiiNs4ahMJS+JsRs/mZSOUUf3TTErsefJJMFcYcAeMAnL8FWf68VRZ6X3JTEfYnDo8K13oTdphWNzf4cLraLhxK/FquIpZh06oxbFoSMl8B3HDsdxN9uY6RfzIaN7p9Doy4T3bVPHEku+3XIVn3RxE7HpzfyWH/Hyyy+zefNmXnzxRaFnrWIVfwzceeedfPWrX6UMDWdzOYayM59zFSqHTJ+YVUkrghg/FOfIj/uE19bZ0RRTJ2eY7BHb32qNWvRmHTqJnFdFs535+XlGBfNqlesdVLa7GD0YZ25cgNSkQOV6FwaHwlHBGMTqVy+YZLPi697w7ilSCfGE1Ex/Uvi8FMDsNzAzlJSqoORZa0ex64Xk8AqQqkwFHP/FIOkZ8fU7O5clnRT/EcmxFK99VvxcFiB6bZDEyByHvr8yFSkB1txWS//2UXp/J5af2PsNOUm8TCJLeiaDziBYNScLPb8aYkqi+r6IRNebn+FtcaDRlBHvFe9r8pUzNz4nRFaS/WapyQxjh6aZEvRRAAZ7OeYKg3BFIq0CVZ1uTO5yYR8S2FSBo97C8O4JoSpPJk85znor0z0JMam4LCgWHeVO8UuME90zZCTm3uEf9aEtF89PH/nhQowpYlvr3gA181GOZQ+wadMmvve977F161bh571deMfJvX3729/m5ptvBsCGi41lFy7bJ3JNFRVrHez91nEhWSHFomHNXWHe+PIR4UpCnhYxUsEfA7LyRZaAQnw4JcWvsFSXSxGIVhp1l1fS/RPxTW/zrdU4IlZ2/fsRqd8hI2/XcF0AR61ZOAnxToW11ognapMiBcnKvVW02lCseuGg4Z2K6HVB7LUm8W9egvxj56NRtOVaXvyf4geezqgFnUkrTVhaMShgcCgkh8R/vLXWyPQx8eBqRSXr3gRn1ML4sbjwt2y4LkAunRMmUG34YAPaci0v/a/lq4/E5+Mcq3ydwcFBvF4vAwMrU9Z/FatYjHA4zLFjxwA4hyswLENQAuj8cCOpqbTwhr/ucj+ZVJYeQWkSvQnKXXLSa38IZCWVZOWRTB4xosfbBU+rjeRYWsq+mz4WIzWdliZxyEg8dTwcYfTgNMckiczvNPg3u5gdmRMm0pQi9xa6oIKR/ZMk+lew7PdKQw8dD0YY3jcl5Rtk5qo9bGLNbbUMvDpO90/Eb7CFLqig55fitxtXGia/Ivet9VBu0zM3Ku53SpZxKwHORgvjB8Q2ZXq7nqYbg+z68lEhX+JstNB4XTV9L40IfcMTwTfoHjiMXq/n6aef5oILLhB6r1WsolTs2rWLdevWAVBBFevKzlq2T9VmN8GzK9j/nR6mjgk4QR003RTi0PdOCpNJbLUmsb/9R4CsLJzi0JGKZ6RkiwwePcl3UOxVtdlFnyAhHqB6i5fAZjd7vnpUigglI1VV1eWmYo2NnV86WpK83zsFBo8eV8QqZV9ZuTdbrYlyu16KeP9OROAcD56YlZ3/V5BIX4L0Y8vdtZQ7FCnykclnoNyuY/ygOGFupWFw6KSkJeXlK1dOivLNMPkMpCaTUr5Bo2g4+WuxWLj59hoMToVX/2n5S7Vz80mOVL1KX18fTU1N7N27V+ylVrGKPwA33XQTTz31FGVoOJfLUZYhKAGsvauWVDzDwe+KKSJUrLOj0WnEpaa0KtF7RWW8Fj9OUq6p3KkIEZQK0Fu0pGezKyb1JgtLwEg2lZWyb+u9YVLTGfY/KUEqByl5p9jNQSaOJBjYIR6zvBPhqDeTmc0Ky1SVIvfmabYx3Z+UGofvRMRuDjJ+ZEbYN8jKnyl2HS3vCTPwyhi9ghfOQC0QMLz7nRPXKnYdqUmJoFOryu+lJsWdzh8k4yYJs98gLJ+oVaD2Ej/HnhkU8tPGCoWmm0KcfGGEodcmlm0/4O7m4NQetFotv/nNb+jo6BB6r7cL7yi5t1/84hdFgpIDjxBBCaD/pRESQ0khghKAd4MLg6Mce0RMfsIZtRC9OkjTzeKlujZ8sEGqDKs9Yi62FyUo1V3hR7Fo1AowAl0Ul1KUKhIl9tRdXklFq3hJM4DOx6LUiEo9oMo0+Te4pSTPDj/dy8Cr4+IEpfxFQFGCEoBWK1ELEpX41fa+eqy14hWnbGETikV8GioW6Pp4E3VXiJeBmz42K121SBbDu6akCUqbPhZjzR3ipakBYWmuAppuqRaWJQOYl9G8gYV5J1FMqef5IY78WI6x3Hh9kPBW8RLbigU2fKiB2ovFZD7UTuohqRBSkBxKobgUAmeLzdsCQangt5Z9RJ6g5Ot00Hyb4HuhEko3Px4TlzhUIHZjSErSwFlnwRkRH4uDuyYYOyR2Y89SZqF+oA1NmYbBwUGqq8UlC1exilLQ0NAgTVACGD84xYCEzrez3ownJh5PNN9Rx9rbxaSHQK2U0vlh8XL2oMpGufLrigjpodytJ3iuGkeJEpT8m13oTRpxgpIeojcEhH83qHFU23vrpfqEt1bSdJOcfzny4z6O/1Iinii8j+j5YL59TqJySsM1VUXpPdFn2OskNPRQS4pv+JC4jCpA/4tjUpV+SkHPL4elSCu1l/rY9NGY1DP0dj2WoHhca60x0XpvWFyGLg1lZWVodOIxd3GuCj5i8miCky+OcOLX4gSl6vM8BM+qEJalBJXUtP6hiHB7AM9aW9GnLIfCtw6c7Rb77WmYG02jt+upPk/sGQWCUvPtIUx+8eB27Z01UjJujTcGiV1fLfwMZ70Zk8eAt8Uh1H78QJx4b4J+wSp/1SfXELCESCQSXHjhhfzmN78R6reKVZSCw4cP09bWBoCPoBBBCWBozySTx+LCJCJX1IrFb8RWJyZ5YPDoabopJCXrtObOGqI3SEhJePQ0XKdKdIgSlPydTnSWfNUQESU5A0VZMVGCUuUGJ84GuTxD671hqjaLyQuAKqMU2uITllEC6H9piJ7nh8QJSvliVjKkh7LC+it4HqA4dDS9O4RZUGYAVHKEziJXxH/Dh6IEBNdHUL+1DEGpFEwdS0gTlNreWy8l3wZgCRqkNA9qLvQSlsj7FCsUij6jMDYk3qnn10Mc+VGfeAdU6aJaiZwXOlUer+os8TwyOghfXin8W5ITGXQGjbB0dYGg5O90Csm+FeaqPWyiTsL3WgIG1j/cIL7v1cGa20I03iSef/U023BL+MXB18YZ3Sc2P8rLDET7NqLT6ti3bx/t7e3Cz1nFKkrBe97zHp566ik0aDiXK4UISgDDb0wyskfc77sarLgbxSTeAOov9xO7IaQSXARgrFBovSeM2S++BgfOdmMNqb9X5OBbq2ioaFF9nigxxFFvRmvUko6LE5QC53iEfzeoPqnxxiBaifOX0JYKKelwgO6f9NP7gpiCArDwG6Q4D2VS50/+TS4CEhLroEoIyqD6vArW3lUr1WfiyIwwQalUjOydkiIoVbTY1byExNjSKhphKUdQyXt17/Kj2GVi2zI0EpqDRYKS4O9ITWbo+eWQVI7eETFTc6FPWJYSwNVkpelWuTyypcpQ9CnLoUBQcjZYxGQgs5CazC7xW8t2yROUarZ6MXrEv3vNVi+NEvveqk0uYjdWC8nXAZh8RmzVZmw1YrHd7HCKscNxJgTPGytH62gwtjA7O8vGjRvZuXOnUL+3C+8YktL27duLpabsuNlQdv6yffxdLgxehZmBlFTpvpO/GmHHP+4VrkoyfjDO8N5J9n1fjDkNkJnLSZXhC2xyY640ogg6RcWl4Gt30vTuWuFnNF5dRehsL+ZK8QnoXeeQ2iiaKxU0Oo3UAdPxZ4fofraf3ufFSS6peI7uH4sfNrRtq2fz43IHM/ufOilVRclRb8XoFC+1DOrtxrYHG8Q7KApz02lmhsUrH4Qv8dF0y8oSHXydDlrvFSflAcxNpZmVCDRqLvLSfFMNvg6HcB9LlVEqgXboe73SlbOab62m6yPNwkSlwR0TDO+Sq8p25Md9vP6v4kzzVBw0Oi2KRfzEuqrDjSNsofqCCuE+rXfWENoiTki0BBQq251ErxMfj/4ON7aQ+IFyfDBJLjMvXioxBYOvjbHvKfFbEi9/+gDb/178e5z45XDxhmb4kuUTiMYyC5tzF6PVaunr66Orq0v4WatYhQza29s5fFgt6buFa4QISoUD9cM/7BeWbAPY8U+HefVz4uWDD/3HCU7+fkSc4KIpYz6dIzEmTgZyhC34N4gfMNVf5id4ToU4AUMPNVt8NN9eK/yM0DkVuBtteBrFCV2KUYtOr5GSYXv9345y6IdyhNmRPVOM7ResfGKCzR9pol6CVE1aHSeiFXUArEET1mrxNaKy3cmad9dKkU8So3MkRyWqj+phzR2hIgFupRC9ISBMFAZIjqZITqSkyGxt28LErhffiOsMGkweA45a8W+y/dOHOPYzOTL9po/GWHOLOIG557khqepLJ54f4fBP+qR8HIBGrxH3D0DthT4pH2QOGAid5yV6tXiyNXZ9gEBXBXrBT2Ly6bEFzVRtEB9b6dms1G207h+fpH/HmDDJbujVCXZ8ep+UtOierxwnPZnG5FfwCFy4iUy048KHRqPhxhtvZMeOHcLPWsUqRDEwMEA0GmV+fh4vAVrKNi/bxxm1YPDoycQzHPiOeD5qbO80r/3zAWFpo+RImpMvjHDiF+JVXDOJLJlZ8ZyXb50TR9iCwS2W1NcZIHiul8i7xGOJ6gsqqd1aidErnpfxb3RTc4H4nlZn0aHRy6VSR/dOcfCHJ+l/RXxdySQRlt8EiF4TZMMH5UjVvb8ZEa+oA1h8Rix+o9jBQeG9rg3QcqfE5TQdJIbnSErIg/o6HCr5ZAVhD5uIXi932Dk7PCclc+putrH29rDUxQ5bSC4W7nthVP3mEhfVQ+d72fjBGDrB1Nrk0YSUhCCoF1F3f+WYeIcM6BQNilH8JNIZtuBtcVAlEXtFb6hWc+KCZ5E6i47qLT5qLhAnjvnanbgabOLkqckMuVQWNIIHnhk48ZthqcuSu/79qJRvGN07xfH8Hq5yw/L7LF2ZjnOyV6LT6Ni5cydbtmwRftYqViGDD3zgA3z5y1+mDA3ncCVK2fLJe0+z6oMHd4wzdlAsjgI48NRJ9n5LXG6q51dDnPzdsDDBRaPTkJnLkpoWT/y4YzYq1jqE2we63IS2eFHs4r619qJK6i8Xj9VcUSuV653YQ2JEegCdUYe2XCtVXebAUyfp/qn42SFAvC8pLs+lhfYHItIEov1PnhCvtgVYq4xS67y12siad9dKkU+SEykSI3KKOzUX+bBWi19oKwWBLndxPoogOZkiMTCHVhEfv403BolcKU4oLysDe8iMqUJ8r7H/yRP0b5cj07feE6buUvF5Nbx7UqpS2sThGQ7+4CRj+8V9HFnQ6rUoFnH7Bs+pwN8pHncpFi11l/oJni1+WaH6fC/V53nRCsaEWqMWV4MNl0S8nUlk1UpxgujbPsbJ348IV3KbPjHLri8cloqfjz0zQCqeRbFosQkQ1/1TYepYA8BFF13E7t27hZ+10nhHyL0dPnyYhgaVqGHGRlfZJUL9up5oIj2TYfs/iB0Wt9xdi86s47XPiB+SBc/3cPJXEgzaPwCyMm/OmIXxbnGJIlCJXf0vSDjFEmSdVhotd9Wis2h57Z/F5UZqtnox+wzs/bpYsGgJKJTptVLyVKXA1+mgrKyMgZflDkFk0P5QBMWsE5KaKkBW7q3p5iCOBhsvfHKvtPyZKBSXQnCzm5PPD66sDJgCFTGbMJGoos1OZZuTA08dE67UVbPVi2+9i5c/Kf5N3g7ISrJZa42UlZUxdVT85K+izS4nW1fYP74NLsjgVbBWGYXfL3C2Krvw2j8fFBqTvk4HkcsCDO4c5/APlr9ZmFYm2GvbyfDwMB0dHWzfvl3ovVaxChGcd955xWoRZ3EFJgGCUuQqPxUtDvZ/54SQTI/erqdtW5ijzw0wIuhTPa02Jo/Pvi2SQ7KyUaBWbBIl6oB6oJFOpEkMiv8eWSm5FYceNjwU5eRvhxnYLhav6E0aGq4N0vviCJPdglUfmq1q1bkV/PR6ux7/Bic9zw+t2HP0dj0d748w8OqYMPmmFLm3jR9pZHZkjt1fOlbimy4P33on2VSWkT0rK3ltCRpJz2aEpckabwwydTJBv0TVhHX31zE7NsfB78iR81YSJo+exGRaaiz61julyFN6kwZDhYHp4+LO7u2UffNvdkl9x7YH60gMz3Hwu2LfsePhCDqjjpcEY+7xlmO8tudVcrkcfX19+P0SRMtVrOIMmJiYwO12k8vlcOFjfdm5Qv02fDBKeiYtfFgcvrwSc0U5e74sto8HVZ7k7ZKwkpV5M1cZmBtLCUvWgUr0GN0rsW7pwGCRk3VaaYQvr8TkKueNr8l9R2vASPePxYhmikOHrlxHYnBlY05ngwWNXiP3TSQRu7kac6WBHf8ofpFIVu4tcK6HwCYPr/7LYakxLAOdAbztboZ2T67YM9QHgb3GzOQRsaqflqAB/wYXR386IDwXPWttVJ9bwWufP/KOkhKUlWQzuHXoDDopyUV72MSkRI4M3j7pN51Fh7XKICyr54xaqL2okt1fPiY0Jm21JppuDjGwfYzjv1j+4smcLskh93YGBga48sor+eEPfyj0XqtYhQj+8i//kr/+67+mjDLO5goMAhWUvO0OQud5OfC9E0z3LJ8f1yoamm4JceK3w0weFfSpASNzkym18tBKo4RKP5aAkXiv+NmAwaUwPy9eeQnkpeTeDqy5o4b+7WPCpA2tAoGzvYwdmBKuKGSpMhAfTK6oJJ5W0eBqtDJ2YFqKtCL3EFj/3gYGto/S95LYXr4UubeWu2tJjM5x5IdyZDMZ2MIm5rPzQvP9D0G5U2E+lxWWJguc7WZ2NCVFIqq/0k96OkOPoFTr24FSZCBtYZPUWSNaMLoVZiX4C2+n7JuzwSJFPopcVUUqrlbHEkHjDUEM7nJ2fk6MKzEd7eOVQy+i1Wrp7e2lokK8YMVK4f95JaV4PF4kKBkxCROUAPZ/9wS7BEkUCxDnZDXdUk3oHK+UbNCmj8WIXid+49gZsxRl5EQJSr4OBygwvl+coFSQIBMlKCkWDZaAUpR1EoG/y1WUkxNF+0P1dD4md9urTFem0lYlcPy5IWGCEkDdpQFabperDFQKBl+ZkCIoWQIK7mZxJjTAa585LEVQKgX7njzJC/9DjqBk8CpSUoKpsRTdP+5fWYIS0H5/PZErxefw8OuT7P6SOEEJIJ1QF0FLQLyqWd27/HQ90YQiUZjBXKlIyd0VCEr2iNhthuljs2rQoCBcoa1AAPJ1OsReKqX+nzNmkaoIZq5U2PSxGDVbxW/Ftt4Zpv4ycfZ8Jpllfh7hEp+Dr0zQ/Wy/EEEJQJ9yUD2sMpx37NjB5ZdfLvxuq1jFmXDbbbcVCUqbuViIoARq9aQjP+0XIiiBegNifh6yc+J+u/6yKtaKSk8Coa1eOh+NSlUviV4fUEkRonsevZpoB4QJSiafHvTqTWJRglKhZL8MQSlylV/qt+vtejY/HiNwjvhtL4tPjSFTcXHSQjqRY+/Xe4QJSqBWAFh7m5wMrCzSk2m1UpME/8LVbJWycXoyzYt/s0+6OpAsXv7fB6QJSs5GCyaP+G8ZfHV8xQlKepN6AaFW4sb5gadOShFbAMo0oBG9cZ7HhkcaWPseuTEZOMdd9BfLITGiEpRMfkW4wlWBoGQOiJUzSCdyKkFJr45loT55glLBV4qi4ZoqKWlEV8xC7YU+6iRu3s7PAxKfcd83j7P3SfE9oHN3LaacGmzX1dUxOfn2EDdW8eeNTCaD1+sll8thxyVMUALY9+0eDkhUfIX8PBFE9RYvdZf6peRy299bT63EHsvkMxC+TPXxosQLe70ZdDDTlxQmRRSqJwmTYXSqBB0ZhAlKzgaLVGVnUAk0bRKSmJBfrySztcM7J4UJSgDVZ1fQ8p5a4eo4pWL8UFyKoGRw6LBJVGQE9Ya6DEGpFPT+ZoSX//d+KfKQzqJTx7IgCtWzVpSgBMSur6bxWvHcSvxkkkPf75MiCxZum5vc4gOscoOTzkejUvKAikMnlfMpEJREK64nRzMqQUmHcBW4AkHJ2WARro6USS71lSLQWXS0vz9C1WbxfV3zzdXUXyGe88qmcjA/j94kVp1g6liCQ0/3ChGUAMozBiIDbQA8/fTT3HbbbcLvtopVnAmf/exn+eu//msAzuJSIYISwNBrExz8wUlhwoLWWMb8/Dy5jLh/rLusUqpyi6vJSsvdtVLVSwJdblVmKIswOaAgCydKUFIsWtBCciwlTDgqyCvJEJT8G11Sv12raGh7sF5Y/gkW8voyuctsCnp+OSQledZwdVCu2ngJyKZy0lV1LFUG9BI2JguvfuaQMEGpVOz+0jFpgpLJVy5VCWzqaGLFCUoAa2+vwS9Rrbr3d6NyVY6AMk3ZgpSzIJpuqab+Srkx6WywCFXuAYoykIpdK1yJtUBQKncKnptmUQlKWoSrexUISoEut5Q8YmWHS5VGlJDprLvcL1VxTUYOEuDwj/s5+H3xfIH1YBX+XA3pdJq6ujricbnqpyuB/+ckJbtdXTD0KLzv3oeoaFP/e0WbndZt4WIVjcjVVSr5R1FvwrbeG6bcpic1lsLdbKV1W7h4eF/3Lv+Sg/mWu2up6nKz+0vHOPbzQbVtXlbtzVJYa++sIXCeOmh6Xx5lbjpNakpdOGsu8tJ828LBWfMdoeJmyBJQaL0zTC6dY2Z0luoLKlhzx0JSu/nWamrzOuEGr0LrtjD2iJnqsytwNNhoubu22Lbp5iB1+QVLsWho3RbGmZeM8J/nov6KKtrvjwAQuzG44EgUaN0WLhI/fB0OWreFqb6ggpbbw7TcF6bhuoXyxK3bwsUES0WrbYm91z3YQOu2CIpFU2zr71JLsy3YW/23uiv8xG4KEtjoJri5gpa7a4vyE/aI+S32bl6kXalTdGTzgZy11kjrtnCRuFGz1UvzooPK5ttD1FzkZde/HeXgd3po3RYukq+C53tYu6iEdNMt1UVZpch1fjo/HC0SLwJnu5fYO3ZTkLp3Feyt/tbhg5P0vjRC5Uanapc8Gq8PErm66pT2Puu/NLPxo43FtpFrqt5q7zwxw9Nio+39dax7oA6DV6H+yreO2YK9nTFL0YZ1lwZovL66SGwD9WCnMGYL9jbknWvtxb63jNmCnJeluly1d3X5gr3vWGhr8pVTc5E6vs2V6pgtLECB89y0LNKqbbqlmrp8eW3FpbYtkPuqut5k7xtVe8duqCZyZYDWbWE8Lfkx2+lYYu/odUEi1ywE7hs/HKXlPvXfT+sjFtm7crOTrieaWHd/WMhHAIwemGRuOiXkI2xhk/pdNzloubt2eR+Rt3ffC6P0bx+l5oKFIOB0PgLUMWurNjI3lUZjUs7sI7pcRRvWXFiJq8lG9KZTj9mCjyig4boAGz/WSPPNoWLb0/mIyNVVNOYlYDZ9KEbrvZFlfUQBbe+to/7SKppuDi7rI9bcUUPwfA+hc704IlZa713eRxSg0ZWhM6tRw5l8RGHM9r4yxIHvnhDyEe5mK4M7Juj59SB1ly7M8zP5CF+Hg4ome9EmbQ/WndFHtG4L4yr30EoXNpuN559/nscee4xVrOIPwf/8n/+Tb3zjGwBc3X4j629qLv5b9PpAUc6t3K2n+bYQlqCR0AUVxG6tpunm6qLcTsNVfkL59URvV9va69Q1wrveQfOt1cz0Jtn+9wdxN1gX5qYemm8L4WxUfZan1bbEb072zBAfWNggNt8WKh74u2IWtW3+ML/2Eh/2GhOZuSzpyTTNt4WoWKfOMUfETPNtoaLEUWirt0jocTXYaLq5uliK3h42qW3zRJTq8zw0LFp7NjzUQMM1QUx+BXPAQPNtoSLRI3COm+gNC/O4IMHV/O4wGx6O0nxbqEgm8G920bho7YleW0X1eaq99R49a26vVfXTUZP0i7W+I1f5CV2o2lBv0tB8Wwh/l4uKtQ4ar61aYsP6K/zUFqQl8/YuSI9VrLEyTxkT+Vt+4csrl8hjnMre8cFZtv/9QaxB05KESvNtIbzrHaoN6/I2NKl+v/3hCLFF77/Y3tYatW25W7Vh8FwP0WurOPqzAU48P0zjjcHimmzyK6q9fXl7n+0meqNq76Zbq+n6y+Yi4crkWRizBXsvXnsarqli3QN11FzkXRiz+bjGt965ZO2JXOUnlF+/o9cEaX+gDkd+Ta5YZ19i77rLT2HvPBnE1Wxd0rb20qWEjObbQkUpqrIy3jpmr1waJxRk6t48ZkMXVCwZs003V1O5UW1rCRqLYzZ2QzUNN1QvkSuJ3hh4q7396jobuqiCzseixTF8Oh8BULnRSdPN1TTeGGTz4zEhHwFqNbOZoSSZucwSG57OR4Qvr6T2Uh+1l/oInONe1kcUxuzr/9qNRq9Z1kcUbXhrNdlUlvhAclkfEbspiH+zGgMFz66g7l1Vy/oIUMmMze8Jse6eemLXBs/sI/I2tNaY8G920Xp3Ha2LDr1P5SMKY9a73sGmx5qIXqW+x5l8hGetrfhbXQ02otcGlvURBXuXO/VodGXF/34mHxG60Iu7wcrxXw7R/ZN+IR8BsPNz3ZSVlQn5CIDgeV5s1Ub0Jlh7T82yPqL6PA+byy6h0u0nmUyyfv16VrGKPxQVFRWk02lMWLjtujtwNaprhDVkpOHaqiJJpKrLXdw7Rq8PELmmSq1qPZHBEjCobfOH9/5OJ+GLFw6z69/lp2KdnaM/GeDoM4M0XFuFwaG29XU4lhx8h6+oxJefm8N7xpgZSpKaURO13jYHdVcszPnwJb7i3FQcOhquryKbyTE7kcKz1rZknard6i0elusMGhqurcISNFDV6cTb6lwyN0Pne6k6K5+s1UHDtVXFNdnZYKH55lCRuBzcUkFwy8INz4Zrq9TDf9T1sOHaKlxrrbTeHabxpiCh871L2hbWZEswb0OD6ofW3llL+/0RlLydIldXFf2bueoU9r7ER9VGN9Xneqm7orK4nhi95aq98wQG3/ql0mN6i45sRk02Gxw6Gq6tKhKqKtbZqV8kZxe+2Ie/08mRH/Vz4Hu9qg3za7C72bawz0TdCxd8oX+Tg7YHwsUDRlejlYZrF9qGzvcSOMezxN4TPTP0/HIQa7VlSdvAuR6qtyy1YSG3s/EjjbQ/FCkSL6rOclNz4aK2Vy+1d+zWILFbqjG4dVRtdi0ht0Wu9BfzQCafam/FocN/lofmd9e8Zcx62xyqDT161d75ddbb5iC8eMxetjBmC/Y2+VQbelqWjllLpYGq/Pqts+jeYu+Gxfa+cMHeOoNqlwKZyhldasPqLV4C53qou7SSxmur1fGdJyvZ681q27wNA+cstfe6+8LE8vmnM/kIUMesu9nGhg9Fid1SLeQjAIb3TTIzMivkIwxu1S6uJvU3Lusjrq3CXGVg8sgMJ34zTFXngvTX6XwEqDGzo95MYmQOXfnyPqJg78o2F/6N7iVj4FQ+YrG9178/QvOtNcW/ezofUbV5wd5t2+po3Va/rI8oIHp9gMYbqglfUrmsjwhfXomvw0Fgk4uKNQ6iNy7vIwrQG7Vo87HVmXxEYcz2vTLCwe+fFPIR9rCJqWMJjj07SPCshcO1M/kIW60Jd9QKOnU/G7s1eEYf0XBtFRarg81cgsPh4Hvf+x5/8zd/wypW8Yfg5z//Oe9///sBuLTmGhrPX8h7V21yFckrWqOWmq1ejF4FV8xK9YUV1FzgLR6Q+ze6in4TbV6lw6/6LGvISM1WL6nJLG989TgmrwFvu6P4nJqt3uJhuaXKoPqS/KH22MEp4v2zS9raQqp/M/nKqdnqLR7mV7TacdRZSCcypOJZQhd4ceTXE6NHUdvmJY48zTb1IFwLFa0OIlcFir6w3Km2LZB9XE3WhTkPNL07ROymEMYKBcWu2qVAEHA2WIo5AFiQ4IpcFWDtnbWqDfPkI0e9mdAiCV3/EntraHlPHbGb1TXOFjItWdP8G1wLNszb29Fgpmqjm+B5FUvaetsd+DoWfOFie5urjcA88RHVxhXr7Pg3LshN1VzgLZ5vGb2qXbKzOd746nEUi46qTQttQ1sq3mLvApmn8aYgNYvW2eC5HlxR1b8pdpVAWyDLuGJWAud6OPKzPvpfHiNwthtXU76tRbW3IX8u4oiYqT5PjXsD53jofDT61jFboba1h81LJIv9G100XFeFr8OJVlk6Zt9s78qOBXs3XB2k+d01WAL5MRswLhmz3nYHlR2LbLjVW4w5zX5Dfsyq/1bR+lZ728OqDcs0ZUvGbEWLfQl5o/q8imIOw+A6xZg9e+laVJC0K4xZxa6j6aYQ4Uv8BBaP2bPduPOycfq8vQtj1rXWRsu2cNGmp/MRoJ4D1lzgJdDlpv19ESEfUcD40TjpRTLZZ/IR3nYH/g3q365osS/rI/z5MXv4B33M51jeRyyydyadIzEwt6yPCJzjKY7Z0AU+6i+vWtZHFGxYe4mXtXfVETyv4sw+QtFQs9WLyVeunrneXUt0UX7sVD7CkiedW6uNrLuvjsiVAdCe2UcU7K01avCucxK+qHJZH1Gwd7lTh9agQZv/VmfyEe5mG66IlaM/HaD3hVEhHwFw5If9ZFNZIR8BUNnmUC8Xa9WYsubiM/uIilY7TWUdhKy1xONx2tra+H+N/6ckJaPRSC6Xo4wytpRfjdlvxFWXT+rXWTH7jSh5B+est+CoMxM8y4PJa8DiN+KqK2w6LJj9RvQWpdjWFs6zERSwVpuKk8peY8bsN2J0qRtaZ9SKrWbhZos1aMLdbKNyoxNrtRHFosfkVQe7M2ItOgQAW9CMo159jrnShLnSyMkXR+h9fhRXxIptkV6otcZcDAzMnnLMfiO2ahO7vnCU+PAslqoFlp+t1lIc3OX5ts7873GGLJCDwz/qLbZ15t9BsSiY/Ubs+bauetUug68MM3EsjsGmx5FfFFBQ/27eho76vL3zNmR+nlxmvli1ZnFbe636dxWnPt/XjD1sYfs/HOKNbx7DUmXE1aB+R0fe3uZCsNJgwbpIc1Zn0JDJV5Wx+k1q20rTgr2rF9raqk1UtNhRXAqmSqNqw4Ap/1utWIOLvk2NGUf+HZz1NvQmHY78d3bVW7FULWpba8GZt7diV21otJVz/NkhXBHVLgXYw+YFeysa1S71NlDUqiq6cm2RxOGssyzYO29DV/7bOMIWTC4Dpor82Fo8ZgFLlan4HEdItWG5TUv3z/vIJDPYahe1DRpxR1THbw0a8/ZWN7SOiAVHvYV196uHGPZqM65IfkNYtLcx/x0t2KsXfxsdznxbY4UBs99YdObuiG3JzWp72EzlBhcVrTaMLr06DvP2dtZblto7rI7Z488N0vfK8JK27vo329tUHHcooDPpMOdtdjofscTetRZmBpPkcvOn9xF5e7si6n/XlGkptyln9hEFe1er9nY3WLEGTLiblvERfiPWYH4cRqzYQubieDmdjwBwNVgxusp59Z8OkxxKndlH1FuK33TvUz1kkjlsVfnxfRofUYAjbIZ56HtptGjD0/kIR525GGQOvT5OGSzrIwowuspJz6TZ9+TJZX2ErdqEK2Jl5793c/KFQcyVZ/YRhTFrqjRCWRnJ0VT+t57eR5g9ql10ej3jB+O4Gt7U9hQ+wp6fgwUf0fXxJmov9p3eRwDO/FqFAhVr7Rgrys/oIwr29pYFuPaq68lms3zqU5/i+9//PqtYRSn40Y9+xMc//nEAYqynrqUGZ3ihsoY9bCn6IaNTwVZjxho04l3rwBG2FOc8gCNiLc63cqsOW40ZW37eVG1242iwFg/pHRFrMS7Qm/TYaswLa0TYgq3GrG5o9Kr/s/rz80+fn6u1altHWPXHer0avroarJRb9EX5V1toYf7ZQma1rVV9B1fEgqPeSnoyzY5/OYxWry36LEvAiK3GjGmR33fUL9hFq2iZm0yR6E9h9attDfnY0NVgxbHIvznCFlwNVnqeH2LyWBxbjblYicgVseCoW2hrr7PizG9QTDY98/PzTPfmb95GLEUbqf/dijO/Tuntqr31Rh07v3SEVDyjrifFtpaFtgV759/R5C6nTLNQrclVb8FVv/BOthozzvx3ttWoNgzkDxNcDVacDQt2sVWbi+uuPd9WcSo4Gy3F8VP8rWFzcZ21VuVtmCd8uKJW7PVWBl8dZ/JoAkd44f0tfpP6bSqMxd/myPvfiWMzwHxxbBk85aq985tUZ51lydrjqLdirjDgqLNgcKh2KSRhnPVmbDVL2xb+7snfDaPRaYq/xxk2L/ltrohlYXzrwV5rJnpNEGuNCWetOr4LpA1XxFpcTxbsnX9uWRm2GjMao9rYHbXiiCyyd81CnGMNmnDUWWjJX4hwRpaOWdXe+UPwoGrvcnc5x385xPz8/JIx6wxbi9/GVGHAVmPG7M3HhmELerMOe358nc5HFH6bPWxmonuGqROJM/oIR91SeysWPbZ8fHQ6H1G0d70FV8RKxRoHFWvty/qIwlgq2LuQqDidjyjasMZCcizNsZ8NLusj7OGF/Vj/q2NoNGXL+gjV3kZsVWamTiY48szgmX2EW5+3oZH+F8dIJdKYFt0sO5WPKPgFR9iMRgOHf9SXb3t6H+HIj+/0ZJpdXzhMWd7mi234Zh+hN6l20Rt15NLzxUplp/MRhXdwRKz0vaDGnPZ6C67mM/uIxTYMnOWm89HoGX0EgKNOtben1YXVb8Jee2Yf4WpUY7Yu68V0buiku7sbj0euUvAqVrEY0WiUiYkJdOg5q+wynBEb9hrVF1oDJpwRGzqDenDtilrV/2u24qiz4o7ZinsFc6UBZ8RGuU1t64zaiv4BwNfmpPpcNVlp8ipq2+J8s+JqWKjw5opYcTVa8ay1YXQZMHkMiw6XLEvaOqO24tqvWHQ462wMbB9ncMcEzjrLkrjA2WgrrhF6mx5nxIYtaOLw0/2MHJjEHlqYb65Gq3qQTSHvYMOSXyPsIRO57DzHnlMrErobLLgbFq1bEVtxz20NmXFGbEydnGVozwSKRYdrUSV0Z721uJ7YgmpbXeGm+Pw82VSWVL6KkppPyMcfeXsXSByOfAz0xteOs/cbPbiitqLfN3nKcUZUWy7Ye8EuillHekZ9RrlbbWvOExAcb7Zh1ErFOieKQ4fBrtrFXFnwWebiugr58ZK3i2eNA5PPiDWfH7OHTcU9qNrWsmBvnQZnxIbJZaD/lfH8HtpWJHG4o1ZcDYvjSlsxlzY3mUax6Ipj1h21LhmHjoi1uCZb/UbsNRZsITManQ5nvRVn46Kx1WAt2tBcWZ4f33r6XxphdjSJK7LQ1t2wyN5uQ97e5cXvVtnmLBJ7XBEbjvwapziUvA0X2i62t2LTF9dzxZwfh/n8iL3WtCQOczfbCF3gxdVoRVMYs/k8rqNGHVtFezeYcUet9L4wwpGf96nzPp+3sFfnx+Eie7sXjVmTz1CMl07nIxa+jRVH2Mxkt3rwdSYf4WywFv1JGWCuMJ7RRxTyWEaXam97rRlXg42KFvuZfUTEhtm7sM66muxF0s/pfASocYI1YOaNrxwnOZpZ1kcU7N3zqyFmx+awLcqpn8pHFG3YYIEyOPmbIcic2Uc4Gyy4oupz+rePAWXL+ogCbCGVcHX0mYFlfYQrHzMf+kEfR37Wh6P2zD6i8N8Ndh2UlZHKV8A8k4/Q5ce3YlGYOpbAHjbhjp3ZR9jyPrvgIzoeaaDqLPcZfYQ1uDBmK9c7cdSe2Uc4IzYUsw5LmY2rLroWjUbDE088wc9//nNWsYpScPDgQS699FIAWukiWB/AtXisN9qKezOdQYs7ZsfiM+JtteNd41jaNmot7qm1itq2sCZ72x1UbfIU/airYWEOoUX9u/4CicOIO2anotkGWjAvWq8B3I12rHmfZfYacMfsaI1qNRRnvQWTS2H/kyfzbRf8ptFTjjtmL5IKHPUWlQifhd1fPoZGV1bcRxscerWtPR/v1S56X0Bv0jLTn2R2OEW5TcEds2NwqHsxe60Zd9NiG1qx15s58bthxvZP4o7ZMebPoWwhM+5Fa707aiuuJ1qljFw2x3SeoGUNmZa0dUYX9tQFe5fbFHZ/pZvZ8RTumL1I4nAv8m+g2tuaXwcMNj0anZbUhHre6Ios9c+umK2Y87f41G/jXmNdZEPbkraFXIjRpdpbb9Zh9CjqPjO66LfGbNhqFwg27pid8ry97bVqXDB1NEFicA73onGo2NRvY8jnGuw15uI4jPfOMj9PMRermFW7FM4TbdWmpe8btWKvseCoNRdtaMqvJ9aA+lsX2lqKNjz6bB96kxZrfsxa82O2QMRwNViWxNcVa+00XleN2W/A5FXtolHya2dkaaziarQVz7fKdGXqOMxfKLeHzUvbxmzFNdng0lO53kXDtSpJxRG2LBkvnkY1NgEot+fHrF2h+2f9ZJIZPEvmsq2Yl9CbdWrb/Ny1BQxYKo1YKgtE/1P7CFDXOFfMxlRvgrGDU2f0EQUbFlBu1S2cu57GR2i1+Xip3oIzasHX6sAdsy7rIxbPZXfMhmdt/iLF6XxE0d5WUlMZ+rePLesj3I3WYp7l5G+GKCsrW9ZHgEqwcTXYmTgcp//FkTP7CKM6PsxeA1NHE8wMJbF4FypfnspHFM41LVVGtHotR37aB9kz+wiTz5D/NmW88dWjZOdyy/oInVmX/z16sskc2dRC21P5CFDznq6YjbGDakWsilY7zsYz+4gFe9sIdHnUKnrO0/sIyM/7sBlbyISrQc2VnslHFGLFtWzirLPO4siRI7S0tPD/EmXz8zLFoP94qK6u5uRJdYG9qOxGqb6Ku1yVRhN89faH6hl6fYLe340KtV//cIRym8IL/1tQvkpRK4kMvT7O0WfEpB0sAYWKNU7h9qBW+xCVhHu7oViQkrsCtQJQ3/ZRRveKl67reqKJVDzNjn88vGLv52mxEdri5cBTPcwMvDPtLYN199eRnslIyd2d9ZfNTPXMsEdQTtEWNhG9JqDKAAlK4byT0XRzEG25Vvj3AyrZSGK4VLTaiF5TzcBrYxx5WrB0pQLNN4YY3jPB8C5J+RXJ93u7YPAqwpKSoFb18raK+07FoqHtwQZG9k/R/SMxO6+7vw6T18COzx4W9rkdjzTQ86tB4e9Sij9/ff73jNCHxWLhtddeIxKJSPVfxX9u9PT0UFOjEhoC1NNU1i7eWQ96vYZ0QqxcsKfVRmCzh52f6xZqb/LoWXd/hMmjcfZ+U6xEad3lfpz1Znb862Fh6a7QhV4Gd44zNyqu9VXu1ku1f9ugR0qyDNTv4gxbOPQfYpKToN5y965zsvurx1TJqBV6v+Zbq5mbynDkxyunNf92wRWzUHOhjwNP9qhyXgJovj2ELWTmxb/ZJ/ycxhuDaBWNVHz3ToU5YCByRRXdzwwIjzO9CXHJxjzWPxRBb9Lx0ifFZZBdMQsVax0ceOqk1LNKeb+3C3q7vijpJoLQVi/928eF+4S2evG2ONj+9wfF3scEHY80MTM4y+4vHhPqEzjbjStqFW4P8r87PZ/m1/wHABs3buSll14S7ruKVQBcccUV/OQnP6EMDVu4Gl2ZuISRzqKTknyK3VLN+KFpBvMVL0Xa24ImXv3MATKCKhXt761ncOdEkVy4HHQWHd4Wu3D7Qp+VlroqFToDwrYqoO6KSkb3TRXln0Sw4YNRUvE0u75wdMXez1xloPYCH90/HyjKX/0po+HaKrKpnJTc3caPxBg/Ms2h7/UKtTe4dTRcHaTnV0NS3/OditD5XsptOg4JStEDKpFNYnqaqwy03Bmm/5VRYfkvUKsFTRyfYfygZG5R8v3eLigOXZEMKdreE7PT96Kg79TBurvDjB2a4cSvxezccHUVrkYbOz9/WFjucs2dNfS9NCr8XXQGDZlMTuqbHJvfz2H2YDKZePnll1mzZo1451X8p0c8HsflcpFOp2mglZoycRlqUCt+FCSAloOlykDVJjcHBdcQrVHLum11jB2a5tgzYmtVRaudirV2Djx1Uli6q6LFzuTROKm4oMYbamWZtET7tw1ahKXqCrBUGbCHzfS+OCrc19vuIHSel/3f7pGSbpN9v+rzKsjOZVdcIu3tgNGrEDrPy/FfDJEUPNuoPq8C7zoHOz4tLs8bONuN3qwXnjPvZCgWLaELffS9NEpiUCz21ioUyTCiiF4fxFRRzuv/ekS4j8lXjidmo+fXw1LPKuX93i7I+HNQq0xN9cwI+05Ps43KDS72fO2YmB/QQvv9Eab7EhwWjL0d9WbczTYpyUPZ3w3w/PzTpEhyySWX8LOf/Uyq7x8L/08qKd14441FgtJ5XC3Up2arl7YH69VbAqIHu/nLpa995ogwQQng1c8dpvtnfcIH+gaHwnx2nsS4+Oa+7rIAlZ3uosSRCNruraPzUbkAa9PHYkukwZaFovapk9BHVVwKHR9sLko/ifaxVJvwtTrE3w144xvH6f6p/MIkQ6Cy+o2U2/SkJZJjgbPdRamrlcTaO2uKslOi2Pn57hU/wJo6mmD73x+SIiiZKxXaHqwvSpqtFMyVyhJJLREYKgwY3OJzE5AmAA3vmuLYrwfECUp52MMWvK3O5RsWoKjkvpbbaqX6bPxoTMpuloDCpsdjS0pZLofg+R7W3x8pyqGJoPHGEJUb3EX/vhxS8RzzOTku7r5vdHP4R71SJKId/3hIijhW+Nv+LpdaMl8AbWVnEatvYmZmhrPOOkv4WatYBUA4rJa4duARJiite6BOLWmfRpigBDCya0qYoASQGElz6Ee97P2OuIbyPPPksvPiRBg9VG10E71a3K951ztY/0BkoXyvAEJbvXQ+1liUhRJBwzVVbHikoVhtRwRrb61h00dj4h0A71rHkps8Ijj8dD/dP+uXIyiBNIHK6CnH5CsX76BXy9gW5KBWCo6ImbXvqZH6nmP747z2z0eECUql4sBTJ6Xju9pLfEukx1YKlRucRZkvEWSSWYwupXizSQSlEICO/KSP3V8V900AvlYnznqr1PyMXltFxyNNRSk5EdRe6pPe50VvCLDhQ3J9NnyggdZF8rfLweTRE9joJnJp5fKN80hNp5nP5ITnTToBh3/cy+6vHhN+Ru/vRhcISoLfpkBQatlWW5SmORP0ZXq2cA0+n4/XXnutKBuxilWI4JOf/CQ/+clPADiHK4QISp61tqJUqjBRJ/9n93/rhDBBCWD/d05w6Ie9wqQWnUVHLpMjFRdf22rPr6D6nIpipRERrLm1mnX3hZdvuAjt761fIp0k1Of9kSUyEMtBZ4D1DzUukc9avpN6a9fTLBd7vfGN43T/TJ60LUOgMnvVm+/ZlHgS29VsLUpdrSTCl1cukZcQwaHv90kRlEpBcjTD7i8ekyIo6Sw6Gm8KFiVRVgqKQ6dKIopPNUy+8mJ1BWFIEoBm+pIc/lGvFEEJwNPiKMqEiGLDB6M0XiOR+9ZB2wN1UnNaZ9Gx/qFIUbJOBK5GK+33R4oSZyKou9RP4CyP+PfMQC4zzzziea9DP+7j4H+cFCYoAbzxleNSxLFMUiUoORssrBGMPWvLYqypbiWZTHLBBReQybwDWWereMeivr6edDqNn1phglLkqqqirI/MwW68LylMUCr87UM/OMmJX8mtVblMTpighFaVHg9dKO7XLAEjrXfXFavcicAVs9JyT7goUySCyg4Xa+6oKVZCEkHN+V7WPVAv1cdRb8G3TuLMBBh6bYLDP+qVIyiBNIHK5C0vqvWIwtfhLFbBWSkYPQp1l/ulnjM7lOLAUyeFCUqlovd3o9IEpYpW+xIprJWCLWxaojawHLKpeSx+Iya3eOxVCgHoxG+G2P9t8dw6qJUvPWvsRVk4Efg3uFh3f4NUn4oWOy1310q9W9UmF2vvkusTuylI7AbxmFBr1BK6wId/s/j+IxXPkMvk0Iv+/qyqjFWobi6CiSMzCwQl0cfk17G6y/1FOcTlcDaX4/dX8dxzz/G3f/u3wu/3x4TEFuaPg6985St85zvfAaCNc1HKxE6abdUmyiUOCOwRM803h+h7eZTjz4ptiJwxVUpt/GCcwR0Tws9KDqV4+f8cEG4PsOsLR/G02KQOwUf2TDCfFd90KBZIz2ZIjIo/w+BQyKVzJEYkFuZUhnhvgr5XxYlgqbEUL3xyr/gz8piSvLHU8UgEjU7DK38ndpMX4Ogzg1IVrgACXRVQBv0viLOhN364kbnptNRBrtlvLJaXE4UtbCI5nJCudCULS3U5qfF0USJwOSg2BaO7HGvQyOThGaE+nhYbDVcGOPrcAAMvjwv18XW48a51MPLGpPCG+rXPyFXqAqi7wo+vzcmOfxGvvtP7vPicASAFO/5hv7CNC32mehKMHJiU6pOdy4pvhIB4b4pcKkcmLR6ln/z9CK56K5Mnxf3Nnq/3oBiRIoW98inx+Q8qqXH4ddVeNVu9HH9OPKm26WMxkuMpdn5ebF7b/CbKrTrhykrBo2sZcQ4zPDyMzWZjakqyotYq/lPC5XKRy+XQo7Ch7HyhPiaPnnKbHnOlgZE9YuOsZVst5TZFuHoGQOAcN72/HWVEsjrc0Z9IHkSkYfdXjkrdKJs8PsNkzwzDO8X9ZzaZJTObkavWkcySTmaliD3Db0yRmpFL2u79eg96k/z9hIHtYustgMmnp/XuCCd+OyR1QWDHP8mtu55GG/71LlJTaeHn+De7CJ3n5Y2vHyd+claoj7XKiKXShF4vwYez69Gbykj0r2zCRm8CxWkoSveJwF5jFt9E59F6bxidQcurErFR9XlecqksQ4IH5nOjaV78W/HqRgVseKSB1ExGuNrEZLc8s2nf905Ik+4Gd02gVeTsPDeZJpPMSlX7SY6nMTjTUpXLhvZOkp0T94OJkTT7v3uC8QPiG4mBl8eF4/QCCmuAI2Imm54XJkaGtnqp2uBi15e7xeacHgyOcmw1JiHfpi/T01jWym8yz/LZz36Wq666issvv1zo3VbxnxevvPIKH/vYxwDo4HzKy8QOJKzVJjVxLVgNxODR03JnmN4XR4WrFZmrDGh0ZUz3zModNscz7Py/cpV9Dj/dz9CeSalD8IHXxuX8pw7mptLMjYs7ap1FRyaRYW5Cbp0eOzDF8D6JPXUGXvlHuTwhIF3ZqOm2EOUWHa9L5JWGXp9g6PUJqedUn+VBW64V3heAGkOkE1n2fUOcVG2vNpGaydL72xHhPkZvOempOelKV7IwePRkkvPCJEKdTpU+nTo2w3SPWOxp8hlofneI478cFN6DOOssBDd7mOmbZfyQ2Lze/y25AywA33oHofN97P63I8LzWma8FPDaPx9SCS4SGD0wyZSgjQHIQHo2SyopHhNl4hnSMxkpct/YgWnGDk8T7xN/t8M/6kdv0kqRwnZ/6Zh4Y4AMxTXA1+GQOgNpf189s2Mp4TFkrCjH4FQwOHRC48bf28i4a5S+4V5qamro7RUngqziPy/OP/98hoaGMGNjTdkGoT5aoxZTRTkml0H4vKn2kkqsfgO7//2Y8Lu5YlbG9k8zfULCRwHDuyYZ3iURd2ThjW8clSI2zI6lGNk/xXi3eEyYy+RIx9OkJsV9YTadJZ3IShF7xg5Nk0nlpPqc/M0I/S+NSROIJgTPpUAdN613hzn522GGd4t/H9nKzEavQvU5FeRSOeHn2EImwpdVcug/eoWr9RicCvZaM/2vaEEwX6pVNGiNGlKTK0sk1SqgtyhSZChrtQmTq5wTiFcFCl9WidGlSF0CDJ1TQS4Hk0fFxk42lZOqblRA0y3VZOZyHPq+2Fo4Oyyfh+x9eZTel8WrjwGMHYmjWHUgwVWYm0yTTmSkqrclJ9PMTaWlqjaN7hdXbQKV2HPguyeY6RffSEz1JKQvjRbWAGOFAmUq2U8EriZrvtrbCeG5YKooJ5PMMiZgC22ZltjkBobmf8Rf/MVfsGXLFjZv3iz0nD8W3la5t4GBAfx+tQpMkDpimo7lJdvKyk7/b2foq7gU1t4WYu+TPcJSQp2PRdEqWl78n+JSC52PRul/bYyTvxLfQFe02YsH4P9ZUYo83MYPNzJ2aFq4JBpA9LogOqOkFEYpsliKepA1fUw84GzdFiY5nubg9+SCFFmc9ZfNTPcmpDatsnJvAGf/1RrGu6fZ+7WVq9qkuBTW3h7i+HODwjKBigUUZznxEyWUMZcYC86oKu9y6PsnhGUCC1Jkw7snpIlxpcyhPycoFjBXWYST64pFQ8u2egZeHxMmhzXfWo0jYuWNbx4XJtK1bgszeXxGitgkhfya+Gzu2wCce+65PP/88yvzrFX8WeC8887jN7/5DSAvryuL6vM8mH0G9n9bbF1zNlqI3VDN0OsTwjJfwXM9uGM2dn6pW/hQ3hExM3F8Rppo8OeEUqSnai/x4Y5apST1TH6F+sur6P7ZgDh5pgTpOlAlwmaGksJ9Xc1Wqs+pYOcXxcdOKWi+tRp72MILEtJtpci9rb2zBkvAJLVvKQWRq/zojTr2PSl+mCX7bYqQHAuNNwaZm0pzTCKGqr/Cj6POLE2MeyfLt71dcDVbGZOQ6Q6c48bb4uC1z4on4zZ9LEYqnua1fxbrY/IrNFwZZO/XjklV/JPFgfnXOcFhXC4Xe/bsKeY0VrGKNyOZTGIymZifnydMM/WaNcvnvEqEzqAhekM13T/rIylYva/lnlrK7XKE8pa7axnaPSF1iG2vNzN5RPzA588RpcjDrbtPTrIJIHCOh3KbTq6SUCmyWDowusqlSFSRK/2kZ7MrtzfOY+OHG5k8NsOB74jn1mTl3gA2fTTG2IEpOYk0SegM0HhTDSd/PyI+h0r4Nov7io4Fo7ecmgu9HHt2QNjnFKTIRvZPSxHPoLQ59GcFHVgqDcRFL/XpYM0tNYwemBK+ZBI634t/o4t9T/YwdUws0I1c6WdmMEn/K3KEdGHkc16/yH2XHFkuvvhinnnmmZV51ir+LPBXf/VXfOITn0CLjvO4Cm3ZylWeccWsWANG4XXN6FFovq2GgVfG6BUklDsiZrytTo483Sd8edjoVUhNpN6x0ktvB0qRnvI02/C2OaQk9RSLluB5XvpfGRUnhJQgXQeg2HVkZzPCv8vkKyfQ5aH7ZwPSkk8yCJzjwd/hYvs/iO8nSpF7q9nqxdNkZ8c/ifcpBZUdLsodOql4tdypMDeVkv+ukmMhcLabbHKegR3ihTG87Q48TTZpEs07Wb7t7YIlYCTeK36+72yw4GtzCJ+DQP4Sx0yGfd8Uy7HqLVpqL6yk++crO68H53vZzQs4HA727NlDILDyVfgLeFvl3go/zIRVJSgth7Iy1t0fpvm2aulnpcZSvPpPh4UJSgA7v3SMIz8V32yaKxU0eg1anbgZG68P0nBlALdEqdfI1VVs/HAjinjlRYLne2i+Vc5uVV1uItdUSfXxdTpoe7AexSJuA1+ngw0fbKZyo3j5RcUC8/PzZCVuuQAc/J6cFIYloHDWR5upkywXTgopghLArn87uuIEJYCBV8c4+Xu5ZEAp6H91jN6XJCsDSSI1luLVTx8WJiiBSuQphaDU9fEm2u6tF24/fjDO6/9yRJigpL5bjvn5ecr0cq5440djtN7bINWn7go/rdvkSuc7oxaabw9J9alos0s/J3ZjkM7H5ORK2h5sJHqdeOnGVDyHzqDF4hEvtb73myc49tygMEEJ1HldShLWGbWofl5QAnQzl+PxeHj55Zf5/Oc/L/28VfznwOc///kiQeksrhDqY/Lp2fBIA5agvCzBiedHpALz8QNxjj4zIExQAjC6FPRmnRSRIXptkI4HxWQVC9jwSAO1l0pIeqASTZyNEsEaKslC1tZr7ggRlJAoAWjdFqHjYTkbUJY/V5WwdaI/xe5/OyZV3WfdPXV0frhR7t1AfYbEu43tnVarV64wWa33pdEVj4cATr4wQu/v5TTjS8HhH/ZLEZRA/tuAKu/S9ZEmKWm9A0+dlCIoAWQzOXVcS8i3VXW52fDBJux14vpteruelntqpX1C3eV+PBIyuADRGwNS8np6u+rnq88T9yOeVhuN1wYJScj66gxadEad1Dc98tM+9nxJvFpLol+tXlkKQanp5mqabxOLcxvL2mhb287Y2Bitra3Sz1rFfx4Eg0Hm5+dx4lEJSgJouLaKyJXyxLdMMsferx0XJwsA+77Rw5Efi+e8dBYderNOqrpRVZeb2A3VOKPi/s/f6aTtgTp0FvGq0e5mG+Er5PI2zqiF6i3ifgzAVmsidku11LtZggY6PhCTkgxGp8ZdWYnKxAC9vx2RIijpLDo2PRqTkrsDICNf5enw0/0rTlACOPH8EH2vrHzsdeI3w/RLHBKVgkxSldWSIvmV8G0A1j/cwJpbxCVgZ4fm2P/NE1I+h0x+P3GG+8enwrr7wqy5Qy6vVLnBSfR6uQMVk89AnaQfsdWaaLhO7jnBLRW0PVAn1Wfd3WEar5fI62dAsekwOsVySgA9vxriyI/7hAlKoM7rUghKJp+BtgfqMLjFfOnZXIHP5+NXv/oVX//616Wft4r/HNixYwef+MQn0Gg0nM2lQgQlrVFL820htZqFJMb2T0uta7MjKQ7/sE+YoARgdJSjWHRS6gaRdwVovFEuf990azX+jS6pPjVbvVgCcvmrwDkeaVvXbPVS0SInlxu5KqhKykmgTFfGfG5eytapeJbuH/dLVaypu8xP671yaxpAalKcoASQGJzj0Pd7V5TIADC2f4rjv5TLw5SCod0T9EgQ90vFwI4x6Xh1blyeoFTRYqfj/Q1SUom9vxuVIigB5OZyzGfn0UpMO1vYRNsDDVirxee3VtFQd7lfWtbY2+6QksoDCHS5pWQptQo0vzuEt90h3MfkK6fxhiD+DeJ+sUxXht6sk5JL7P7pAAf/Q3w/no5nOfSD0uZ14BwPtZeIxbm+sgCdDZuZnJykq6tL+ll/CN42klJDQwO5XI4yyjhLc9nCP5yqUlJZWfF/1xm06mGUICra7HQ90YSv0yHcx1JdjrlSldqRqXA0M5Dipf+1X1hODuDA0ycZfH1cimQBMJ+bl6qa4mm0Y6uVS4p72xxUNMsFAM5aC0aXIiU/NTMwy8xQkoHXxTc1qTi88ncHparN+DodVF8gp0GaScP0iYRUGW9/l4vOx6KYK8U9v+JSVJKWxGJhrlTo+ngTNRKHAwDdPxmQKuVeKrp/1C9F5oA82UaS0GILm/C0yB3etNxdS9t7xQlHABNHphl+Y0Kqj7XWKE30e+XvDtL9I/EDeoCJw3FG98mVzbYGjBg94rq3AFUb3dhrLVIkxIqYDXOlQZhsA6rU0Xx2Xmo+HH9+kMM/lCv7/NL/2s+B78oRAwvSCRVtcr6x89Eo6yUIAbncPBp9GfYzBXaL1kuLxkJFppq5uTkeeOAB4vH/xGW1VnFKTE5O8sADDwDQSDumMrHDdXOlCY2iIZcVD37b31dP+/vkfKwrT9aWkRIDOPQffVK3/wEOP93L0V+Ixw96k4Zcdp5MQtwGJo8eW9CMs06chF7u1uNssOKX2DQBmHxGrJKJoeF9U4wekos9j/1sUEriC1Siickvl4AaeWOS8QNya1rrfWGiN8odDrhiFswBMcmdAta+p0aa3DV5NEHPL1Y+kTJxeIYTz8uR0EMXVLDpYzH04lwb0EPFOruUVKAlaGTDBxqK81wEY/unGD8sN0ZBrdYj85xjz+THtYy84s5xpk4mSM9IyDgm0pi9Bhx1kvuxVju+deIXOQCcdVY8TeKxcXoyzXxunjKJizYju6bo3z5Gj0Ty7vizQ7zydwek5C9Hdk2RTuQw+RVMHnFyU+UGJ5sfj8kRyaw6dCbxZJLnjXp0Gj0jIyOcffbZwv1W8Z8HN910E6Ojo2jR0aG5YOEfzlQdHNCbdOit4uPdEjTQ+WgUz1rxeW9w6PJSVTlpmbdXP3NYWE4OoO+VUU7+fkTqOWVaDfM5cRktAFejFXdULi/gbXFQKUHqBLDVmLFWGckkxd8tM5thvDvO+AGJdS0Du75wlL7fi9vaXm/G1+EQf0YeI3snmTgi/n3s9Wba7q/D5BOPo3QGDa5Gq1qpR6LPhg9Fqdosd2ja/8q4sJzaH4K+F0eJSxDxAdrur6PxJvHLVaBWLLKHZYI1qLuikqZ3yx1Qj+6dZERGwhBV8i64RS7PuusLR+n9jVzMOnJgmuE3JHNeVUYsfsmDsrU2PM0OFIf4QHXUWnCELRgk+mRmMuSy8+gM4rHXsV8OSee8XvvsEY7+XO7guCDJZ6+XOzBsubuWlrtrhdvnslm05VpMZ7o4uGi9LNcYqJ6JkU6nuf3225mYmJB6v1X8+SObzXLWWWcBsCa3CaVMbP4bXQo6gxYkCl02XB0gdrNcMYACmUdUDqqA/u1j7PnyMak+R37cx4nfSlxg0kIuPU9GQgZca9TijFixh8TXJ62iwdfqwB2Ti9esARNmSX8+um+K0X1y+YThXZPC1UwK8LY7KJcggwKMH5xmZI/celt3hZ/QBXJngGa/AYPEeQyohDBZctfsSEpOirBEzA6lpCT1QK12tu6BOinSCFpVKk9rFO+j2LU03VqNTSJemzo5y/CuCelqRa6oVYoINLJ3in3fOiH1nKmeBKMHp5mbEs/dZFM5rNUm6djL3+nC3SznE9zNNpwR8bxfNgW5rNxFtsTgHD2/HqL/NXFS2Ni+aXZ/6RgpQfk6gHjvLNnZLIpFi2IXjyWtISNtD9ZjqRLfjykWHYpZfFzbDwexauycOHGC22+/XbjfH4q3Re7tf/yP/8F/+S//BYDzuAZF8yZnufgVlkngnLZfHtZaI9GrA+z+t8PCpJ5SZN6a7wgxemCKwVcmhPu83ShFDkpxqWStdxoqNzpVUpPEq3U8EkEx66XkNkpBzVYvlR0uXvr7/cLvV/cuP/71LvZ845gwscdcqdB4Y4ieXw8xsltss65YoPHGWk6+OML4fvHBUIrcW9Mt1UwPzkpJH667v46ZwaSUhN/GDzeCpoyXP7lfuE/rvWF0Ri2vSkp7yKL5jhCOGgvb/2G/FHHPGbOQmkhJVWF6W1Bw1SXIH0r3eZugWKDp3XUc+I+TwpX2mm8L4Qhb2PP1Y8I65c13hMjM5P641dJOsT7+NvcjkiSIRCIcOrSy5U9X8acFo9FIMpnEhpONZVtX9FkNV/lBU8YhwZsApci8mfwKtRdWsvfJnneubFsJsmV6E6TT8v1WGia/gt6gY1LQ54FKulr/YITh3RMc/qEc+VYWbQ/WMTeelqrw0/lYI9m5rBTxqu5yPwanXqoqZ+BsN0anwuGnxW1Qitybs9FCZbtTKqnmabUR2ORh75MnhIkjrmYrseuqOf6rQXp/J3ZwqrfradsW5sTvhhl4eYWkIPLY/HiMxOgcu/6vePUd9OBpsjGyS+7w6+2A3q6XIvXAO1+KzrfeiT1k5OD3xeP9TR+LkZpOC0vF6e161txazcEfnCTRv3JBaHo+za/5D/R6Pf/tv/03Pv7xj6/Ys1bxp4Wnn36aq666CoBzuYpyzZuSh3/EtJvBoydyRRX7nzxBJim252y5u5Zyh5zMW/gyH1M9s4zufef5ygJKkYPSWXRSZKi3C86ohfHuuJQMW/NtIcw+A698So7ALwtPi43qc73s/vIxYdv51jsIX+xn31M9wlWBdBYd0WsC9L88yvgh8fxV5OoqhnZNSFWDKUXurWarl+R4isFXJ4T7NFxbRXI8IyXh13pvGJ1BKxWzRq6uwuDQs+fL4jm8UlDIf772ucOkJsQHqyVgIDOXlavC9HZABzpdCbJypUgmvl3QQcNVAU78ZkjY3jUXeqnc4GLvN48LE/7CF/uYz81z7I9ZLe0UOa+dud8zTC91dXUcOSIuIbyKP380Nzezb98+fARpKdu8os+q7HChNWmECZdGj0Lzu2sYeHVMfA9t0RI4q4ITvxp450oulSJbVjgfX9niPtJQLFq0Ji2zEio8WkVD23vrGXh1XFrCVBaRq6tIz2SkKvysvbOGXHZeKn/lbXdgqjBw7BnxqpzOBgsmT7lUhbBS5N6MXoWKNQ56fzckPCfMfgP+Thc9vxgUJo4YKxTW3FbL8V8MipOitLD29lr6Xh5lbL/8ZTsZrLu/jtmROQ5KxKxowRYwMdXzzksUaY1a6apA73QpOmvIiK3GLEXKb703TDqeYd+3xHK6WgXq3xXg+K+G1UpeK4TsfJZf8x9odBo+85nPFC/AryRWnKQUj8exWlWWW5R2QppT3Eaen39LINr23jrivbNnPuT4I726pboce9hC7/OCjlWBrg83kRiZY+fnu8W6WDR0PNLI6L5pqUPrlrtrOfpcv5RclbvZKl2pqRRykqW6nPjgnBQZwRmzENzs4cBTPcIkDsUCGz7YTLx/ll3/JnEAgVp1R5RUANBwXYCpkzMrTj5TXAoVa63iY65EWGuNtNweZuD1calqPaWQlLo+3sTseIrX/2VlN42eFhvZdE6KdFUKFJdC/UVeTrwwLDz/FJeCRoeUzGRhfE/3Jtj9pWPC/Wov9mF06tn3pBwJxh4xS1e8KoXwaK5UyObkbNF4fZDJkzPCB5qKBdY/3MRUz4xwAG6tNbL29jDDeyY4LEioUCwQPM9Pt4QkVamwBBSabqll/3dPvFVC8jQk3uP1r3P48GG6urr43e9+t+LvuIp3Pi666CKee+45NGi4sOx6oT72sIn6K6p445vHmRtd+eRxzUVejv96SJicE7nKj6fZwa4vHCYhmGxturUaa8DEy/94QPg5lRucGNwKx34mfgPV5NGTnUfOboWCCZKmttaYmD4ut8mMXh8g3p+UqoKw9s4arEETL/zvfVLvaPLoSSeywtJLlqCRynYHx5/rX3GShSOi3g6ekFwDZbHu/jrK7Xpe/t8HhPuUQlKqu9yPr83B9n8+LE1qkYIeKtc5Gd07WZKklgy86x2YPOVSEm6WoJH4SbnqCaWMb71dT8O7/PQ8Pyz3PD2YXHoSg5LEoxLISo6IWWp8W4JGqs/ySJH9Gq7y42qy89Kn9gvbrmVbLUZXudScqOpyM9E9JW23UlB/hR9jhcKefxfb96TqRnm59wV0Oh1jY2Po9RLagav4s0Qmk0FRFObn51nDRvyaU9xGPkXuqvGmILPDKXp+tfLV9wxuHbZqC0OvTwj36fhAAzPDSfaLkmF1sOHhKCO7J6QOrSNX+ul7ZZzEoDhLwBoySlfOKYWcZHDrSE5mpMgIJp+BQJeLo88OiT9PB5s+FGPiaJwD35Hb35t8BinbBc7xMDs2x5hkzlAWOoMGR8TCyP6pFSVz6Cw6Ot4Xoe/lMSkiUCkkpY4PNDA7lmLv11aWCFS4Lb/S1aF0Bgic7WV4z5TwGNIZNOgMGpISBCV0sOnRGOPdcQ5KjG9vmwNzZTlHfypXGchcZWCmT5a9mP//Ej9LcejQgJQtAud6mBtPFasXibxXx3sbmDwWF74AYXDoaNlWz9DOcfHDbZ1aSV2mklupUBw6YjdU0/3T/rdWJjtNzqs3uod9+/dx1VVX8YMf/GDF33EV73x84hOf4K/+6q9QKOe8squE+pQ7Feou8XHkp32kJleeMVPRYmfswKTwwbq33UGwq4I3vnFc+AA6cLYbd8zGG185KvwcW8iE2Wugf7t4tRC9RUsZSFULgdKIBUaPwuyIXKeqTS6SU2nGJCop1VzgxbPWzuv/ekjqHfUWLbkswiQLxa7DE7MxuGtyxWXYjF4FjVbDTL8s81YOdVf4sQaN7Pyc2Lk4lEZSqmi1E9riZc9XxedEqXBEzEz3Jlf8G1lDRkwVBgZ3iF/mM7gUkpLn9jVbvXia5ca3VtEQPNvD0BsTUuQ9tGrFntSkXMBfClnJ5CsnMSjOk1DsOirXu+j5pfgeobLDReUGJ7u/eFRYCrL2kkrsNSZ2/lu3MCHTETGTGJ6Ttlsp8LY7sFQZhfkBKXec7Ynn0Wg0jI6Ooijy8qgyWHG5t4oKtQysEfOpCUrw1iBUAcWko9y+TMJvUT97xMzmv4hR0SpXKgwF4ifm5MgiKXjhb/ax89/FHTGKjtnxlJR8lDNqwRow4W0VL3VsCSg0XldN821yZX473lvPuvvl9LGbb65l04diUn18ax1YAiZARusVjv5igO6fi9++LUCGoATqrWp/h1uqj4ysVQGpsZQ0QclcqUjLnE0fm+X3/2OvtJxYKXjhb/ZJE5RK+U0ju6dKIigpFqTkxBQjuBrtVLaLj4fUWEqKlAPq+D7x+2EOSFSTArW8vaykY+SaKta+u1aqFKW11kjHB5uJXC0hY6dA670RGq+VK2vuarRS2S7u71JxmB2dY/K4+IHc9LFZdvzDXmGCUuE5BYKSjPQdwPoPRFj3wCLfuky1wPmsGhS66sVLWLpPRJifn+f3v/89L7zwgtT7reLPDy+++CLPPfccoN7kPyVOMQ5t1SZ0Ri255WLjRX1b7wtL66oXJKOOPytOUAI4/MN+dnx6nzBBCWDyeIL4wKzUc7xtDrwtDvEOQOTaIO33yUmCRS7zs/kjTZS7xQ+3XTELLXfUUn2eR+pZjjoL7pi4TwE48IM+jv1yUJpElRhJSxFZKtsdVLQ4QOaQX88CyUsCE4dnpAlKrphF6hsB7Px8txQZo1R0/6SfF/5mnzSRRfo3pVVZxlIISvrl9nJvgr/DJS11JktQAlU+49CPeqXHt73GjEeyLPXGDzYSu1GufHrLPbWsf0BOQrPp1mqabgpJ2dzX6sBeb5GSaBw9EicxlJSasru/ckx6TvS9MEpiMC0nTYhaLWzjRxqX/qZlYq9yh57y00ltnaKv0u1GSRmJx+NUVlbKveAq/izR1NTE/Pw8NlynJiidBga7nvLl5IIWjUGDR0/HBxpwRuX2gDoDJEczUgQlgB2fPsT+p8RJjDodxPtmGT8mvtYaPHpcMbuUDIjOoqP5lhq5/SnQdm8dsVvkpFqi11bT8b4GqT7OBguuiGReMgMHf3CSEyXcypchKIG61vol9tyg2lwWmWROJWJIkj5kZc4y8QwvfXK/FEGpVOz49CFpglIpv2m6Z7Y0gpIOKXk9dDoqO1xUrBEfr5lkTo6gBJCB7mf66f6ZeJUGUPNDrga5uVS12UXLnWFsteI2Vxw6Nn4oRs15crI667bVE75czg9VtjvxtjrEO2Rgui/BlES8m5zI8No/H5CqvkGGIkFJRpIOoOndoaVSg8vEXbmMKnNqrRKXh/HtV88efvjDH/LKK69Ivd8q/vwwMDDA//f//X8AbObSUzc6xTg0+8rRm3VSFX3qLvfTcK2czLxWUefQ8G5xghLA0GsT7Py/h6TIGDMDSaZPzEo9x7PGjldS+jZ4TgVr76pbqIokAG+7g3X3N0hJoxk9Cmtur8XbLvd+7pgNV4Nczuvki6Mc/Zl81ap0PCtFrHDUWaja7EErc3yoRa59HrNDKWmCktlvkJNGQz0jkSEolYrhXZPs+LTcnIDSftPE4ZmSCEoyEnEAFS0O/Bvk4nBZghKospGHnu6VHN853M12HJLnjWtvryVyhVw8VHtJJS131Ur1CZzjoenmEIpdQr6sxkzFGjvGCvEJNXkiztRJOU7BsecG1GI2EkNo4vCMSlCSG0JYqgy0bgtj9EjkvKx6DHb9qZ91qpzXqAV3sop4PM769evlXrAErGglpdtvv52vf/3rAFykuWllHpJ/fU+LjbpL/Lz+xaPCFYFa7qrFEjSy4x/3CVcJccYsZOdy0uSXUlFKhaO6K/z0bR+VIkvEbgoycVy8ggmAr8OBwaHIbXzgbZGCilxdhStq4+V/FJdgK0CxaKSkurqeaCI5keK1fxYn6DTfWs38PMLl3EC99W2rMfP7T+wV7lMqSqmkVArWPxyh3ConyedpsVF9npc3vtEjPDdsYRNrb69l4DW5ilKlzL+3q+R6KfNIcSnUbKlQD+Yk+rbcXUvPb4elKjDVXeFn8NVRKQm7t1tusvqCCk78Ulyzu/W+MOYKAy/8n33C9mu9L0w2meONr+bnUmHhl116lwk2duVeYIiTBINBTpyQ09NexZ8XtFotuVyOEA1Ey9a9tcHisVTqOMz3a75VPejZK3jDXm+Cjg/EmDw6I1W5o6rLLVUF6A+FbAUTk1/B3WDjxPPiB0v2OhP+Dhf7vy1+m1hvgtD5fnp+VULVoRKk6GTR8XCEyeMz0lJvsvauv8KPt83B9s+IVxAyefRErg1y/LlBKQm7zY83MTM0y+4vHhPuUwpKqaRUEvRw1seaGd4zISzPCBC9IUAulZP6tuseqKPcJldRqjSpMw3rHogw+OqY1BwsCSXMo+C5HhLDScYkCPaVG5yYvQZhOUxQ/ZArYuOkRHlpKM3mpcIeNpHLIVwNTm/X0/HeCGMHJoWl4kwePc3vruXQj3qZ7M4/548Re52i77PzT6HRaLj77rv5whe+IPe3V/Fng09/+tM88sgjlFHGVs2NZ278B8ZdlqCByOVV7P92jzBJIHyZD0+zg9c+d0S4qo8loErVvaXCxQqhlApH/k4n40fjUtJRofO9JEaS4hVMUP2WwaUwuGNC6v3eDikof6cTX4eLPV86Kiz7V4CszTseaSA5nuINifxQzVYvGkXD0Z+IE1PCF/vwrXfx4v/Zt+L2K6WSUimI3aJWdn3l78TjIUvAQPUWL0d/3Cc81xWHjvYHIvS/PCZVna2U+Vez1YsjbGanjNRuKShhHukMULXZS9+LQ1ISbpEr/Qy8Pk78pHinUvzQ2y036W1zSBFUI1dX4ay38MqnDwrbviFPGD1UuHi5QjmvntxBDpXtwu/309u7svN2Fe9sVFZWMjg4SJR1hMpOQST+Q3Jeb0LwXA86g5ZjPxes6KaFdffWMdE9w/FnxavAuaJWxg6ubIXDxZCtYKJYtNjDFnEpLFTCUUWLQ6qCCVrwtTkZ2TslTxgpRYpOErGbg0z3zgpL+BUga++KdfkKQl8RryCkNWoJX+Sjf/uYFFFp3QP1zPTPcviH8sUhZFBKJaVS0fFIA0OvT3DiefEzn0CXWqRARsKu/io/Fr+JnZ8TPxPWKhrh6jwLnaD51hqG90wwvFN8DpaEEuaRK2YlPZNh+oQ4odoWMmH2G+h/Sa6im0PSD0FpFZtKhcGlUKZDuBKVVtHQck+Ysf1T9PxabLxqjVoarw1w/FdDC3N9hXJev57/IZmyFE888QSf+MQn5P62BFasktLY2FiRoLSe84X7tdxVQ81WidsLeUOO7J7i5f9zQOqAe+D1MeInZ6VkjCJXVLHmVrnbsE03B1l7p1wfg1cBhZIO7Lt/3C9dzWX/t09KEZQABndMyBGUCuQ+yZ+0/gMR6q7wS/XJZeaZz+ZKIkPJEJQAhvdMMvCanO1MPgMmn0Gqz7FfDXDid+KLK6hEsk0fi+GMyTFgS0H7QxHaHpS79X302QGOPid3m6rcpjI/zV5xBuzU0QQT3XFG9sotYqXMv1w6RzYjN4YUl0LHIw0Ezpao4lV4NQlmfWospSbhJH/W7i8dk5aI6/5xvxRBCRbsba0Vv1EF6jjveETuhmvz7SGqz66QetbQrgkme2ak7Lfr/x59K0Gp8J/PkIRRXArtD0WEK7W1arpobm7m5MmTrFmzRvwFV/FnhY6ODnK5HDr0byUonWbMmTx6Wu8Ln7n6xpv75v/z3m+eECYoAaQTMNEdZ3CX+JrpiJipucBL5EqJOEAP7e+rxyW59pnzh3KyB/aJ/pQ0OWKyOyFFUALVfkd+LElQKkFWLnC2m7YH66SrFeWy82Qz8klAWXuP7JtUpcdkiGSVRkzu/M1JCRz9+YC0DE/rvWFa7qmV6lMKXM1WOh9rLMrYCSENx381SK9kPGmpNGKulFubB18dl46PSyHLpBM55jM56b147SU+Wu+TqwRXnEcSc+Pkb0akCEqgVq6SISiB6odkCUqg2lxvQrpiWPNtIeoul9ufNd0cIiKxp0tPppk6McPQHvH4PTGSZvunD72VoFT4z2eIvUIXVBC94TQ3pU/R92zv5ZhMJp588kkSibfnAtMq3lnIZDJ88IMfBKCDC4T7ha+opGrzGW7Qnibuip9M8vrnu6WqmIzsnWLi8LTUoXj44kqabparzF29xUvDtXI3aBWHDp2Bkg7s+18ZlyIGAPT8akiKoAQweTQhR1AqQTIKoPn2GgLnyFXKnJ+H+UxOmqAE8jbvf2WMQck13VJllKqUoj5nlKM/75eynzVkZP1DEez1EvFQiYjdUr20YowATv52mO6fShL4TTosPgPl7nLhPqmJDEOvjzN2SG6MlzL/spl5crIxvw7W3lWDT6Z6R+HVJML3TFKd6zIEJYDDT/dLEZSgND9UsLfRK/5tQSVMttxdK2WLmgu9hC+pxBIUzz0P755QiRISw+LQD/reSlAq/OczxF06i46m20IYlqsomEdIE6VlTSt9fX2ce+654i+4ij8rPPbYYwwODmLC+laC0mnGnNaoJXJVlXTFE1D3csIEJYCsGnuNHRT3xeVOhfBllXJnAkD0+iDWarl1tlDVSPbAPhXPShMDZkdScgQlgCwM7hiXe7/CZ5Xo4qg3E70+KD0msqkS1j/k7T19YpaBHWNSFYQUqxZLlRG9Se43Hf1pP70vyeUR6i73E7lKLu4vBUavQst7aqXH+dGfDjC4Uz5utUjGrcN7Jul/RY6wJk1QAsiq540SwkSAKjkpWwmuOI8khtHY/mkpghLAVE9CiqAEahUzWT8E+fmnVUlOMqg+r4KqTXJVrxqvD1J7gU/83VI5xvZPMXZInKSanc2y9xs9byUoFf7zGWIvV5OV6vMqTv2Pp+h7jukirFYrf//3f088Lq9sJIoVIykFAuoEsOLEpTnNDz8FTD4Dznq5Q6UNH2zA1+GQ6gMwvGuK3V8+JtVn55eO0f2s3AbTUFGO0SO3AVlza4iuDzdJ9al7l5/Ox6KqrJUoFLWajWzJ8LYH64lcI7cYNd8YouuJJilSBYDeqEORXGC7f9wvXcmm+fYQnY9FpfoAHP5BH/0vyDnV7f9wiB3/KMccjp+Yk6r6AuoClsvkyCRXni2ancuSnZN7zvj+uDQ5rvd3o7zw1/ukJd/2fr1HugJa9LogGz8qJ2m4/9snefXTh6X6pMZS6I1aDBIlUAHW3V/H5sfk/IS11siGDzZglznUBNbcIV9Sv+nmIJ2Pys2p5ttDtNwelpJR1Jm1KGad1G/a++0ejj03yPQx8SBq4OVx9n6tR7h9EQq0vbf+1ATc0wQORpceg13BL5HE8+xVN+h79+5l165d8u+5ij9pvP7667z66qsAnM0VS//xDAGqp9WJyW1AbzpNm1P0DW31SpOvC9j/7ZNSB/YTh2c4+swAh58Wj72cdRYUqx6NTjzMNfkVWu8Ky5GhUKsHyR7U11/hJ3q93EbR2Wih7cE6TB45IsGmR2PSEsDlNgW9WS9dMea1zx6Rui0P0PlolJqL5KQVJo8mhKuqFDCyZ4oX/3a/9OHk4KvjUpWXADLJLNm5EhIPksgms+RSWeazckmy3t+NSskmArz6mcNq6WIJDGwfp0e22iqw4ZEGIlfJzakd/3RYmqCjWHQoFrn5pLfr2fx4E/UXy71f5Eo/a+6Qm4fORou0FLfermfDIw0EzpFLcHd8IEbjdXISvSZ3OWaf3P72yE/72fPvclUX9n69R1qmEcC73qGSLU+F06yJjnoLtuplYslFfY3DZgwZC/F4nFBI7vuu4s8Dzc3NzM/P46ISh0Z83jlCZux1p8m/nGZ8rr2rBleznIwFqLJRhyRlxfd9s0eaKGn2lWOSzHlFrqii/X1ye0Vfh4O2B+rk5Md0KglIRv4JIHpDkJoL5WKU0DleOh9rlJZHU6w6aVmKge3j0pVsard6aXtAbm0BVYJTNoZ64yvH2fUFufdLTmQYfHVCqs98dr6kXFQpyM5lpXNr8d4ko3vlbDd+KM4rnzrI5BG59e/oM4PSFdCqznLT/n452eqTvx5m95eOSfUhA4pVj2KVy3k1XFvFhofl/ITBoWPtXfJzPnyZj9D5cnO+eouXdZKk95oLvbS+J4xBYl+n0WsodyjYguK/6fgvhjjy4z4p8tXk0QRHJKrPL0bjDUGquk6xFp5mXdMZyrBUGnHF7MLPcO2pQ6PR8Nvf/pY33nijpPdcxZ8uxsbG+NSnPoVGo2ETFy39xzPkvOy1JqxBE4pZfJ11N9vUC/PyvCZ6fzsiJdk5N57i8A/76H1RnOxg9CgYPUpRWk4EeouWtSWQomM3BaUP6r3tDoLnyj3H6FFovCEoJQ8H0Hp3mPAlchLceosOg10vTR469P1eaWLFmjtqqOyQl/eSrdY0O5Ti9X89woRk7DDVkxCu+lJAJikfD5WCXFp9lmzOa+zgtCqjJYED3znJge/IXSSdOppg6LUJqT4ATbdWS8/D/U+ekCbo6Eza08vanw5aaH9vhMBGuZySt90hnRs3Vig0XB2Q8rNaRbVfRat47ACwblsd4Yvl/IS5slyaVN79TD8HJffePb8eJt4nX8HYWm2k8YbT5PFOl/OqteAIi+e8tLNGfHPVzMzM0NXVJf2OopAXFhfAf/2v/5VkUjXsJs1Fy7Reipc+eUCKxGKvN6M36dAZxEezJaCw5vY6un/ax/Auic1ivrLRoGR1ldc+I17yrYDjvxxaPkn6Jmh06gCSqQzlW+eg3KZIa04rVj1GySTA2OFp9TtJVnF56X/tl+uAKgk2slsuEZCby0mzWSva7HgabVKybaWi8fogZVqkKi8M75qSG+N/AHaVUOrZ3Wyl+lwve792VLqClSwCZ7ux+Iwc+K64/TLJDLm0fNCluBTKbVopAsyLfys/zie646QTckHX3FQWvUmHo9YsVR3J7Deit8otGbkMzOfkAsme5wdJJ7JSVax6nx+l93lJKagUC/JRktJ57Q/Vk5nJiifmUmoFMGvVaW6wnaIk4+ThGV7433ul3kvRKFTkggxzkiuvvJKenhIIVav4k8XGjRsBCBJBX7ZoE7Jc2fRfDNHzm6G3ElLO0M/iK8cgcbMXYM2dNWi0ZXIJ7by00sB2OTLr+IG4dOyQGEkxvHuCEy9IEB306rTNZeXWL0vAiK5cLu6yBkyU2xQSkpVmJrrjagU4CXT/pJ/un8glpy1BI3PTGalKOHqTemskI5kYarjKz2TvLEOSh1iyKHfriV4VoOfXQ1JEpZLIrCVgsjvBjn+SI0UDRK+tIj2XkyaUSUMP0XdVMbRnUopkkknlyJRwu8wVs0gRIA9+V14mIj2ZZurkjPScKnfoMTjkkq2KWY/RVY6z0cL4AbHfVZh/WkUum96/Y4yJbjny//YSyrQXS5NLyuZ5Wm2Et1by+r8dFfYxilmHYtVjqlRInKqy5ylir13/flTsvcrKiv3a5s7hWZ5ifHyc//7f/zt/9Vd/JfR+q/jTx9NPP82hQ4eAMtZr5Co6vPYvR96aiTtD3GXw6DE4y9FL3PbWWXS03FXLsWcHGD8oMb91kEnmGDsgJzmyX0LGt4Ce54ewheRyXlq9agOZ6i+2oAmzz4BO8uKb0amXLpk/3Zug3KmXrk7z+r/I5wztYZM0kTqdkr/AZg0Z8cRsHP3F4IpLsAW3VKBXNByVqFoR702uvOxYHockSfKgSrcFz66g+5l+UhJV0EqBq9mK1W+UqnifTWbJJrNqVTOJ8xGdRYdi1pEYFO/06mfk49bxI3HpPG0ynsHgLMdSaWTqmPgcsQVNZGblnpXL5qt5SkjT9b+qHnAnJ8SDofGDcbYflLuICyyQCyWl82I3V5PLznNQ4sDWVFFO7nQHyaeIu5IjaV75xwNS76XT6KjPreUQu7jssss4cWLlc/GreOegs7MTgPrcWrRli9b0ZXJeY/um1QphEsufyZMnX0v0qdnqRWfSckRCIr0grTR5VG5/OTuSYufn5C4RpeNZTr4wwvhhuRhvPgfzkkcjlipjfv8rnl8zVpRjcCnSccrogWlmR+ak+gzvnJSWzSp3qu8mS2zKJLNkU3J9/BtczI7PSROOZKFVNNRs9THw6hiJQXEbSlfIKhFz46mSzlz9m1yQhf7tcoQyaWghsNHNZE+CeK/4GWAmkSNXQs7L7DdISfn1vzQmTaojC2OHppiW+D0ABoeCQaLgAIBWr8ESUCuvilZiyuZTO2XaM/v9N6PvxVESkn5i/5NypDVggaAqKZtnqTJQe1ElB//jBKlJsY7acg0Gl4LRrTA7Kpbz6n6mX+y9FuW8alJNHOMQb7zxBp/97Gd53/veJ/R+Miibn/8DxVlP9UfzBljLJio1YrcKg1vcpGeyDG6fkH+g5E+oaLNTd4mfPV/uFpYj8nU4qLusiu5n+hh8Rfwday7ycvzZt8dx/znC4FWkpet8nQ4ilwU4+cLwitu+5a5arNUmfv8/9gr3MVcqtG6L0PfyiNT7bfhQA2VlZXIVohRQLIq0bNlZf9nMVM8Me75yXPxRFkCRe1bNRV6qNnp44xvHpKocbfpYjOR4SupWf9v76jE6FF74m33CfUrF5r9oIjObYfs/yB3gKC75b7WKBdgjZnSKhtG94huujR9uJJvOSVU2a39/PZmEBEmpgGU2zkUsWtMUC9S/q5p9EoFRT/1ODh85zI033si3vvUtuXdcxZ8ktm3bxhe/+EU0aLiw7Hr1fxQYb9Fr/Bz8Ud/SQ9kSxqkI1txZQ5kG9vy7+Lqy/iH1Vq9MQtsVs5CKZ4mflNtQrSIPPehNemnZrY6HI2jKtbzyfw6s0IstYPPjTUz3JXhDIkZpuaeWcrvC9r8Xj6FcMQvRa6o5+vMBBl8VJ8rp7XrSibQUCaP59hC2kJkXJWOUUp614ZEG0smsVFIztNVL1QY3Oz69T1xuUA9dH21idO+kdOUrWYS2egluVuPJosyXIMrdeuZG5WXmVqEicI6b3t+KE8UrNzqpvbCSfU8eF/5W5oCB5ptDHPphr3xVpRLWNO96B2WUMShyK3J+nqR/lFdGf4/VamV4WK7q7Sr+dKHX68lkMrRyNl6NWLVZzxorudw8Y4v3KisUd1lDRiLvCrD/OyeYHRJLyFpDRppuqqH7Z31SVXN86x3S1W9WsQDFoZMmr1iCBtbeHqbn+aGFizcrhPAlPrzrnLz0qf3CZAKdAdrf30jvCyNS77fmzhr0Ri2vyxy86kBn0EkTwzZ+JMb4kWkOfU+CtFzCs9zNNuou83PguyekCDNt760nOZ5iv8ThXOMNQWw1Zl75u5WPx9c/3EA2mZEmiOksOjLJzIoT3v5cYfIZ0Js0UgTF1m1hKEOqslns5mpymZw8qb+UNU0H4Qt9HP25eH78ZHQ3Bw4c4L777uNzn/uc3Duu4k8SX/rSl7jnnntQMHBe2ZXq/ygw3gKbXQzsGC0ebK8kai7wojNrOSJRBbzxhiAafRn7vinu602+cuaz88yOrJ4flAqtUStNNmq8IUi5Qy9dJbIUrHugnuneBN0Sle1qL6nEUmlgj4RqkNGjELspxPFfDjK2X/wsRWvUQjYrNa+qz6vAu87BDsnLTlqjViV5SXyupluqyWXmpSojuZqs1Gzx8cZXj5KKiz+s4+EGhndP0PPrlc0DuJqs1F2ixpOy0mp6i5a0xG9axVK4mqyM7ROfH7aQiciVVRz6Ya/wt1IsWqLXV3PsuUEpwhtQUuxlDRnRlWsZF8mvzc+TMs7yyvwvMJlMjIzIVbEXwR9d7i0WU6WRdOiFCUoAVZ0eKb0+gLrLfKpMmeiHyGP49Ule+l/7hQlKALNjKZLjcwzunBDu4+9yEeyqoO5yuVJinY9Fqb1YzhaVG53YwnKlbFGQklQqwFItVz0BwBmzELspKC311ratjg0fbFi+4SKM75uif/so/S/KTRh3CeXTd3/5GL//pDhBCSCbg9mxOeJ9cg5n+98fkpawa7o2SOdDDdJ2LwWt9zawXrJ0+PFnh3jhr/dKy7DNjsxJM3pf/8KRkghKBq8iPeZPvjjM0Z/LVSjwdTrY8P4IgfPkyin6u1zS0oug/q5SxoW5UrKTgrQPVCwqKU9WAqj5phB1l8qVlpw+MSNdPeC1fz5SGkFJUSXwZOxefb4fZ8RKRatNuE/leB25XI4nn3xS7h1X8SeJdDrNF7/4RQA2F0peC8RF3vV23M12ApskfI6eBRkmydjrja8clyIoAUx0z0jfKKu72E/zrXKyO6GtXtrfV69W95Dpd6FXuo+sXBuoFYf0dvl+dZf78Uj4DoDqLg8bHopgr5OLKbt/PsCJX8sRw01+paTf9eLf7uONb8qNpeneWWYk466x/XFe/Nt9UgQlgPUP1rPubnkpFVmYPHo6H26g9kK5PcP2fzwkfesy3j/LzNAsUlvHNLzwyX0lEZQckpK0/dvHOfGbIRIDcvHk+ocitN4lJ9GhN0HDNVVYgkapfqCOeVno7XppP2MPm6TnfuhCb5EYKorw5ZXUbPHhbBSXDR/dM05iOEl6Vvx0cqY3ySufOlgSQcnZaCZ4rlxsXXOBj+BZguXXy8ow9LsxKWZGRkbYsmWL3Duu4k8Sd9xxB5lMBgMmYYISQGCzh9oL5fZFlRscWENG6bhrumeW1z57WJigBJBOZJjuSzBxWJygZA+bCF/sJyAp6dG6LUzVZrm56YxasAROU5n2dNAhLb0GSMkwFWDyGQhf7EMn+Yprb6+l9V65tSg5kuT4LwYYkpR9sIbk166jzwxKEZRUaJjuTTAzJCdd8MZXjssRlIDg2RVseKgBg2NFhAKWoPmWGtruk4vxRvdO8crfHZAiKAHETyakc14H/uNkSQQlnUUnPeZ7fjXI0WfFK16BOv463h/B3+6U6ueMWqjeIpcbAvV3yc5HQH4s6ZD2Z+ig5e7aU8ujnQFNN1cTvkhuHZnonhE7hFqE/U+eKJmgVLvVK6Xb4VvnwNvmlJI09XWr5wSf//znyWRWGW//GfDggw8C0MkF6v8gEBdZqgxUbnDhapKQBdJCoMtdkszb8V8OSRGUQFUdkc15hc6rIHq9nFS3q8lK441BtJLb0YoWu7QtZOVrAdCqRApZeNsd0uehzgYLbffXScdEJ347zInn5Ygoil1X0u/a+bkjdP9UbizN9M8y3St7vpbitc8eliIoAax5d4jIVXJjsBRoFWh/oJ6qDXJyefu+dUJaui05lmKyZwbZai47PnuoJIKSySd31jh5ZIbjvxiUqngFKrmu6WZJaXqtWo3KWCGfv1Ls8vG41qiV9jNGj4ItJDf33c02mm6plupT0aIWu5HxM1O9CSZ7ZkjPiBPDUvEse758rCSCkrFCoWKtXP6v5nwfVaLnQWVlKLNG3Dovo6OjvOc975F7RwH8UUlKY2NjHDhwAIvFwkPbPgCAp8VK18dj+LvUTUjLXTVsfryx2Gfjhxtpe7COl//xAMd/PUDXx2NUX6AmOJrfXU3XX8SKbTsfjdL+/npAPSiv3OAiem0AUPVRu55oWtJ2/QfURKtiga4nmohcXUX0uiBr76lV2+bnWccjDWz40AIRpuuJJmI3qo627vJKup5oIjmZ4bV/PsL6ByJ0Pragh9318Saab1UHd81WL11PNGGtVRc5X5uTbCpLd15OYfNfxFh7Zw0AVV1uup5owhlTk7rr7q9j08diKC6FMq2Gyk6XetsBtYpT1xNN+DocgJrQ2fSxBbts/GiMukv8xG4M4YxZ6HqiicDZ6iBbe2cNmxfZcOOHG2l7n2rD5pur2fBQhMg16oFj863VdH18kQ0fi7L+4bwNXQpdTzRRd4WfljvVd11s7w0faqDjkbwNFdWGDdep3yZydRVNN4ZwRdXJsv4DETofXWrD2E2qvcOX+Oh6oqlIhMhlc2gXSaJ0fbyJ5ttVxxo830PXE01FJ9H23no2fjRGKp6j+ycDrH8oSstdtYBK5Oh6oglPi/oOrfctteHmv4gRuzFE3eWVVLTa6HqiicqN+TF7dy2bHl9q77YHVRs6oxa6PtJUJJY03xFi818s2GXjhxuLY9YSUG1Yuc7J6/9yBO9a+1J7Lx6zeXvXX6l+m+h1S8f3hg82LCFvdT3RRPS6/Jh9l5+uJ5pQXAp9r46TSWfpfGipvQsOueYidcxaAqq9299fz8YPL8zPzX/RRPMdqr0D5+XHbDQ/Zh+oY+NHF+yiM2mLJTl9neqYrWhTNwKt9y6196aPxWjN67Z7WlR7+7vUgKPlrlo2L7b3R2K0vVe1oS1souuJJsaPxun+cT/Nt4XeMmbb8wcs5sr8mM0TZGLXiPkIgMg1VUUf0X5vPS131S3rIwqEv/UPR/CvdxWr+ZzJR7S9b8HegzsnmJ+fxxlVN+an8xFLbLgtjL/DRcWa5X3EuvvVZJozZqHrL5tZ/0CEyGVVZ/QR1lojXU80UbNVTQht/ngT6+5fOMA6nY8AVZ6w64km6i7y49/gZuNHGs/oI7qeaFKrcQFr74mgWPUoed3cM/mI9ocWfHL3s/3oDNplfUQBmx+PoTPoOPJ0/7I+YtPHYsXkccFHrH8ogmIR8BFPNBE4142vxY4zaqXrw4t8xGNR2t+nfhtLQKHr4zFqL/FBWRlNNwfxtjh441s9DO+aovNDDax/uH7B3h+PLfIRAbo+rr6DMmalvb1d/R2trazizxuFb7xlyxbsTg+UlbHuvjAdD9UX22z6aCPRPJkxcLabzR9rJN43y56v9eCKWtnwSIOa5CkrY+OHozTeqM7Nyg4nmz/WWCSsbHhfA951jiKBoPOxRppvU+ebp9XG5sdjePKBcfNtITofa0Rv1xO7KUjno1HW5GMgR8TM5sdj+Nar62zspiAbP7Kw9mz4YJSWe2rp/kk/AzvH2fx4rBjXRK+tYtOiedzxcKS4npS79ehMWiaOqcTDyJX+JetJ+/vraXswf7CgV31A7aU+FJMWxaZn82OxIhmg7cG6JQf2mx+PFQlaoQsq2PzxJoJdHgIb3bTeF6bj4YW2mz4aI3q9asOqLjebH48VCQ1tDzbQ9URzse3GjzTSdLO6RvjWO9n8eKxo3zV31tD5aJSarX42vD9C54cX7O1qtqr2zhMRmm+tpvOxRTb8UJTKDif+Dhf2sInNj8eKcU3jjW+y9yMNtGyrBSAxPgtlZViq1PdtuKZqiS/seDhSXE/0dj2bH48R2upl/EAcU4Vhqb3fV6+SvxbZu6BRXnORl7Z7I7Tn/9a6B5bae9PHYjTk7R0818Pmx2OYfOrHab0vzIb3LqzJGz/SSDQ/Zv2bXWx+PIa1Rh2zLXfXsuFDUY49M8i+J0/Q+eFGmvJrcsU6O5sfj+HKr7PNt4eWxKedj0ZZk4+BnI0WNj8ew7veAaga6IvjpQ0fitJyt2rDkYOTGN3l+DercU30hsCSMbvhAw3FMWvyqDY0ONU1LXKVf4m91z8UYV2eAK43adj8eKxI4PVtdDM/P8/IQfUwue29i+yNau/6/JocutDL5sdjRVLYuvvrlo7Zj8WIXpv3EeeoY7ZAqGnZVkvdRZXs/uIx0okcGz/SSGM+BqrcoI7Zgo9Ye2cNGz60yIYfWN5HLLH3nTWEL6+k+ZYaNj/etKyPALXKTsd768ll50knlvcRmx+PEbqgAoBUIrNEMvx0PgKg9hKfOr5NejzNdppvDZ3ZRzweo9y9MGa7nmii5Q71b5/JR7TcU8uGD6o2tNeZ6Hykgfb71e96Oh9RtGHeJ0evqyZ8ceWyPmLte1SfbA+bCGx2ozNqQX9mH2HyK6pPPsfN0WcHmOpLEL1mIUF5Oh8BKnGy4wMxdn3hKIn+1LI+YvPjMfQmdR+47oE6Oh9rKH6PZX3EB1QfUXdRJaEtXqI3qOPbv0ld16z5hFbLe2rUPVV+Dez8cCOJkSQ7PnNY9REfa1zkI6rpXLQf6PxQA2tuD0FZGef7rsBisfDyyy+vyM2yVbxzkEwm+drXvobRaOQ9N20DVHJK54ca8Ob3vuFLfWpslce6e8M031bNzi8c5chPeul8NErVZheUlVGz1btkXLXeU8uaO1W/qTNA3aX+4j4/cK5HnfP53O/au2qKvhBUP1pzoZfAuR4iV/npfDSKkj9sb769hnX3LRBhNnwwSvgSdT751jvofDRKmUbDvm/0ELmmmrZFl486PtBA/bvU+eZuttH5aLR4sONb7yKdzNCbl8td/1CEhvx64myw0PlotJg/aLi2SvWbOtDoNQTOctN4g/rbLEEDnY9Gi2tE3RWVdHxgwS5tD9TReF2Q6LVBjN5yOh+NFve+4Ut8S9aedfeFab5d9W/VZ3vY+GiUmkvUnEDofO8Sv9lyTy1r35O3oU61YXBLBWvvCLP+YTVvVSA5rLmzZgmZaMOHosV9sr/TScvdYbztTtDpaLot9FZ75/MSFevsdD4axZyXAs+kcyiLiFQdDzcQye/xXM1WOh+NYqtVfVb0+gDt74+QSUL/K+O03FVb3FPbwyY6H43ialTzCZGrq1j/8IIN2x+qp+WuMMEtFVgCqr0r1uXH7BWVC3t1oO3+OprerY5Dg1tH5weiVG5Q1+Tard4l9m69N1yM8XUGDZ2PRvGud7L/WyewBc1L7X13bTFeAtXeBfJJVZdbtXfeFmtuf6u9w/nLnL4OdcwaPHrG9k8zF08TW3QA0/FIA+ErVHt7WtQxWyC4Nd4UXBIvrX8oQkM+D+SMqmPWXq+us8Uxm4fRo5CeUQkRtlrV3u5mdcxGrvQvHbMP1hPL591MPtXe3jaHau/LfMW1HvJjNh8vGRw6Oh+NkhiZo/e3I6qPWGTD1m2L7a3aMHCOmkMPdIn5CICqza6ij1h3T5h12+qW9RFGr3qgFrulmuBZniLx6kw+InpDkPb3qTZUJTDmi/mZ0/qIPNrfV0/jDUF87U78nc5lfUQsH+MXfMSGhxsInO09o4/QWXR5n6zuNTseibD+4eV9BEDVWeqYrVzvILTFS9t768/oIzofjRYJUE03hzD7jUUZzzP5iNgt1cWcaPdP+9EatMv6iKIN3x+h3KnnxK+HlvcR760nlt+XFnzEmrtq0Fl0y/uIR6NFUq1/o4uNjy7Eka3baot7Kp2hjM4PNVB1tpq3qN7iJXSelz1fPc7Y3mla3lNDS8HeqLFWdcHeXW46P9SAzqJDnzHQ2a7K3Z911lms4s8bDzzwAKlUirM2no3D7YSyMure5af53QuHza3bwgTzhGlHnZm2B+rIZnLs/UYPFp+xeB4H6lpUmJvWkJG2B+uxVqs+K3ZjkNAFXqz5fMjaO2upzccQJl85bQ/WYw+ra0T1eRW0bgujVSC0pYLm20PFnHi5U6HtwXpcMXW+BbrcxT0SqPmEyNVVquzYG5O0PVivEoIA/0ZXMacM6t4sml/r0YLBVc74ETXn5W130PZgfZF81HBtoJg/B3Ut8m9yoTfpMHrKabmnvkgiilxVVcyNAKy7r66Yd3NFrbQ/HKH2okoqmu3UXeEv+s2CvUP5uWkPm2l7sB6zX/VZrffVL9lLtrxnwd6WQN7e+TWi5gIvLXfX4m110LqtjpZ7aglfptrbWKHasLD3DZzrWeJjm28LUXuhD2+LA8WuU+3dtMjei2LZ2M3VNFyt2jA5lUKj0xTl2Cs73mTvG4LF+LRgw8oOF4nBOXQmbd7emgV737zIhg/UUbVJzQO5m220PxBhzR21ANRf6af53QuxSuu94SLJ39lgoe3B+iIppO5yP2vevWjM3hMmdIFqQ1vIRNuD9Vjya0TNRT7W3lXL8O5Jjj83xNq7aovFL8x+A20P1hfX3dCWClrvWbDhmjtqimPW6FHt7WxQ1+TAOR7W3bd0zNbn998Dr49j9hvw5GMg/yYX6x5YsGHs5iAN+TN7raLa0Jwn5fg6nKq982mY6PXBYn6pYG9/npTkarRDGUzmiRuRq6uWkEzWPVCnkgpRiXhtD9ZTns+t1b3LX4yt4E0+ol4ds0av2jZ8SSV1l1TS/eN+0vHsGX1EzVbvklh27W3L+4gCmm9TfURFi501t9XS/lBkWR8BKoGvJf/dsqncsj6i7cF6vO0OAFJTaRSLblkfASohp+1B1UdUdbqJXh08o49oe7C+KPFWd4WfDR+K0nxrTdHep/MRtRerYxZUX7nx0SjNtxTij1P7iKK976whfFkl9Zf7qb3Yt6yPKJybKXYd4Yt9lDv0aI3aM/oIrVGd5xWtdoZ3TzJ6YIq6SxaKIpzOR4Aaw7XdV8+xZwZJjqWW9RFtD9aj2NXJUH+ln5Z7wsW/tayPuEO1dehcL/VXVBE6X7W3LWSi7YG6RT7Cq66B+ZzX2rtqmR1L8sY3ezD7y2l7oO5NPmLB3mtuV/kSlJXRqnRhtzv41re+xcCAXHGO5fBHvWpSU6MapqWphdlhdeOWHE+RnEiRzJfRn+6fRaMskE5mR5Ok5zKQgoljsyQnUkVG4PTAbPGQGiAxnCSTUPUa0/E0s2NzDL2h3hyaHkxi8CwwEGcGk8xn1LapFCQnUsQHZqm9sJJsOktyIgX5QkqJgVnKNAsM7OREiul+1fnNDCXJZeepu9jL/m+dZKYvida06P3HU0znNbhnhpIkJ1LMTalEjZmBJNlFjLnZ0YW/Ozs6R3IiRXpafYl4/yzz2XlSYyle/uR+Wu8LE8+3TeTbzo4ttF1ML0uOzjE7McfI3inS06q9E6NzRXtrFyXfZ4fnSE6r32Jw5yTWgJmJ7pmiDRXHAkNyZihJLpnXx0ypf3dmcJbB1+bRWbWYPQtXUhIDyYWKYYvsDRAfmMUaNPLGd09ASm2r0S+y4USK6cF827wN0/nyyZNHEuhMi95/LMXMgGrv2SHVLql8kiDeP4sxmaV1W5jpkwlmxxbsnRzNj8OJuXzbJCyS/kyMzFGmhZMvjVFu0y61d9/s0vcdThb/LXJVgFx2nkT+huJMfxLFvGjMDiWLJQJTs6pdMtkclRudTA3MUu5aNGaHkkU90lRcfd/44IINPWttNN8RYu9Xe4o2KGCxvWeGZklOmEjFU6TGUkweiS+dc+ML9k7k7Z3KkzRn+udQLBlsIXPe3nPFZyUK9p5Sf/vMQHKJfmpieI7pHjVJMTtSsHdhzC5939mROeKDSRSXQsOVATKpLMm8duZ0/yyaRcS02ZEks+Pqv6VmMiQnUuRyqg2n+9/kI4bmyCRUe6fjmSVzeW4mTZm2jMDZbnp/N3paH1H4FtaAEVJw8sURnHVmMovm8pt9hOpP8nbpS6Kza2l7bz0nnh9a3kcU3j+lvv90PtFzOh9RtMvYHPH+2eKYjVxRdUYfUbjFmJ5Wq8Jl5jIMvDaKu9F+Wh8xN6X6ykLf6b4ZTIvm/el8BEB8cBZTZTndP+5nZnAWd4N1WR+RKvrkJMnRVLH0+pl8RKI/WfQRg69M4F/vXtZHLNhQ/Y7OmIVAl+eMPmJ2dK44jpNTaVIzGQxOheC5lWf0EampvE8enmN8fxx7yIypYpHvHH6rj5jJj5epgSTl7nIm8xrUc9NpUlPqbyn6iEU2NFcu+JNNDefQ29vL8ePHGRgYoLJS7rbdKv400NPTw/79+9FqtbTVdXBwh1oiemYgiaZ8Ia5JjMwxnR8riZEkyak06dl5EgMJ4gNJ0paF24eJ4YWxPjs+R2JkjvSM6hOG905iDRqL1SwSQ8lirJIcS5MYmSv66/hAEsrU8trOiJXp/kSxbWo6RWJkjuT4XLHtYqLAzPAsFr8Ja42J5IT6dwva0fHBOcqdC2vK9MAs2XxsmJvNkhiZK94Cig8kMfkW+ayBJPPpRevWiLrGDe+cZLInUdwIA8z0zVK2aF7PDCeLdokPJkkMJRncPcbgy5MY7MqSWCUxstB2dixvw3zVkOn+BBrdwt9NDCYXYpW8vVN5vz/dp/r9/nwlH8WmV+0KzE2qdkmOpYvvVKZb9M0HZhkZS9H722H0Jq36bQo2HJhFb15433j/LHN5nzrVk2JmYHah7WByia749MBs0e+nE+o7lOVvAo8enCQxssje/bMLfj+dt/ei9TAxNsfgzvFi28WxSmI4WVw7E6N5GyZVAo3JU85Ez8Jtw9mRuaIu+2x+rKTi6aINs8ks3vUO4v0JdczmKyoVxlZyclGssujaVC6bw1ZtBj3MTaljtqDz/Wa/PzMwWxz7J38zgtltKNpwZiBJ+aJYZbp/tnijJp23C9oylLy9jRULvjw+MFuMtdLpnDoXhhf+7sxgkvjR2aINF18oTYzMFcdLYiipPiedpvnWaoxuhbHDC7flEsNJpgtth/P2TswX7ZK2ZFQb9s6QGE4W157i+J5Z2OflFs0xyuYx+9Xkwul8RNGGg0lmhpIMvz4OZWD1G0/vI/pni7FKKq7Oe7PfQNPN1UyeSCzrIwo2HNk9iWbRHvB0PqLwfomROdKTabb/82Fqz/Oc2UeMzJHLl5Cf6VP3SeMHp/N/9ww+om+WTL7fZHeC1EymSLw8nY9YsOEs8YEkfS+PAllCW/xn9BGJfKySnk4zM5jk+C8HIX1mH5FOzC/4kzSM7pta/BlP6SMSw4ttqPqI6LVVaHRlTOX3Dqf0ESNzpPPfY6Z/FkOTjYq1Do79bPC0PgIg3ptEsarvv++pHuovr2KmX/3ms6PqXE7NLPIRcwuxYWIoWXwnjU59p+J+pm+pj5gZShLP5y2yiXk2b9rMs889ywUXXMDu3btZxZ8nNm5UD0Vj4TUkh9Sxk5nLEB9YiP9nBpOUL6oUOD0wS1l+7Mz0JYkPJJkZWdhTTy/y+9N9s8xn1MaZDIx3xxnN+47ZsVTRrwPEe2cp0y7MwPiA6kdD5/vIpXPEBxb2avHe2SV5rPjALDP5HMbsWIpcRk14dz/dT3wgSWZmITaM980W5+bcpPoOBb+v7lFzxSo7032zRb+ZnEwTH0gyN5kp/tYyTRlk4PV/PULDtVXFd8jMqjYszLeZwSR6o27JO4wenmbicJx0Iqvau7AmDyaLBxIAU30Lfmjs8CTedQ6mjqp+NDGSfIsNi/M6o9owMZzk5G+HUWw6zD4jhSId8b6lsYpqw7wfGksx1TPD0Z/3k4lniPcm0ZsXte2fJZG3YXI8b8OE+odH901hXPT+0/2zC/HehGrDQlwT708yn5sncqWfxGhKrXSYX0/mpvP2zq+PM/1LY5V47yyzIylG8rFXfCBJMr8mJwaSlFsWjdm+2eIeNXptNbncPLP5HGN8KImhf3ZJ20Ksksmo4y4zl8HVbM3HDG+y96JFo2BvUPfbWkVD+CIvh77fR/xNeaF4/yzxvL2T+bmQSc6TiScZ2TO1pHLDqeydKeYEkuTmcjij+mLbwnecm1THYWq6MGbnllTrmDo+w0ze76fihfG9ENdoy5e+w+x4CnTQ/O4Q6bkcs2Nzxb9bbl9qw0KuO5NUbZhOqTacWbRXUNsmmE8v+Ij4QJLZfFyTjmfQlmvwtTkY3D5xWh+h2jtV9BE9z6sElmxqflHbpT5CHbPZ4t/JzGWI3Vz9/7P331GSXVWaN/wL701GmsjISO8zy/sqeYMEkpAHJCSMEAIhvICWQP3Nmne9s6anZ4bpoQ10Q0M3TUND4xEgEAgJJKEqSeW9T+99hvffHzciMrMqzd1XKBG89azVqxeqe/LeOPfcffbZ5znPw9C+SXUxIo/JM2EihbXPUjFiXh9GRhOM7p/C6NDTcGPVsjEiHirkKpn8M2YYPTKDM2BdMkaQzsfv/PiePB3C3TCnELlUjAClzhwejjO8f5rEdBp3jX3ZGKGM2UJMjpOYTtLz7Gjxty4VI+bnhlNnwoTWrxwjFvThUBxHlZXaa/2ER5eJEYNzuWE6kiY6kcAZsOHf6F02RqQTFGNyqDdG7wtjuIL2Bddmi2M2p1ybXycVYnIhjsVnUgtqrxfGCKUPlX5Z59tKf1Ufx48f5+zZszQ3yxRBL+FPA7FYjK9+9asY9AbWlG+k95hiIRoZjpEOzxuT/bHiGi8RThGdSJBJZEjOZAiPxsnOi0OhgVhxHycVzhAaiBbH88TxEKlopmjRExqMFmtR6Xg6f63yDUXHExitBnxtHsrXe5k6FyrOEem48ncTM8q1sYnkAnW82aEYpc0ubBVmktPK3y3Et9hEYoEiTnggtuC7Dg1Ei44A8YkkoYEomfxnExmKLVjzzfZHiY0nmD4XITIcx7/JW4z1kaE4BttcDAgNxoiNKc8Qn0ky2x1h8lSIqTNhdEZdMQ4V+jsyNjcfhgai8/KaGUzz4sXs/P6OKv1SsJ5S6kk6ps+HMZr1mOxGYvl+yMTyfTib78PxBCGHccEzTJ4KM3Z8ptgvyZm5dxPqXzxXiY0nmTw9O9ffkxf09wUK3KGBKLlclsabA0yeC+X7Ox/LL4ijof5YcU82MZ1kujvMxInZfH8nijV95T5z83diVunDTCyDt8mBp8HB9Pm5ek1oYG6OSEXz4zCf1xT+u7vWTiKk/FvhWyhcmyrkNWMJ9PNylUwiQ0mzE4PNMDdm5/f3vDEbGpjLVSaOzuKqshEvju+FfRgajBfrQpmM0od6vX5hf88bsxf2dyxfB4pPJ5k6GyI+mq95DccX5Iah/ljx+0xMK32YjmeovrIMT52DiWMzi18byvd3vg4QHokp9b9aO/GZ5LIxIjq6MDfM6XJ48ockl4oRBYQHlLrK5NkwOvMorqB16RgxECMby9exkjlCA1EsXhN111cw0x1ZMUYUxvfEqRB6i37FGKG8m3w8ieU4+LXzVKzxLBsjQgNRxYqP/Ldg1BWV4ZaLEZGRuVwlMZVktj/GVH7va6kYMf89xqaTDO+fhKyiZLlcjCjUXjPJHFPnwozsnyKTrwsuFSMyycyCPpw8FUI/7xkWixGFHD8+lSzGiMB2HwarfuF9LogRSh8W3k0CZ5WNio0ehvdNLhkjQMkxC+O361dDJKNlc2M2kiY0EJsXIxaqb4UG8/NlBnQG5X+nZgsxIr4glw0NxIrfeS4FOzddztO/+zm33XYbr7zyCn8o6HI5obn9Eti9e3eRvf4m/dtVt1v33jpcQTt7v9xFcjIJuezKjcxgdpqV6+dDzU9Zqu0y2PZoK5l0lv1/f1Z1m/UPNmAtMfPK/xFI7ZohuLOUgedfX0/5PxXUvakCu8/Mie/K5Pl2PNZObDLBYaE3uhZs/lgz0aE4J7+v/hnXP9iAM2Djpf8us4nb+EgTsz1Rzj+lXu4xsMuHp9rOye/J+vCyv+xktjfC0X9Xb6fi3+bF1+jixH+q91HGDFs+1Mzgq5MM7Z5U3WzTh5uwes3s/iv19m1mJ2x8uI3+l8YZ3P36fmNmn5ktH2pm5MBkUUlNDfxbvFSs88qtxP5M4QyasZVaGTus3nKg9c5qfG1O9vz1SdVtyta5abk1yPmnhxjZN626nbXCTHxUxVyyiAyxo9KsznJUpyQGmz/SgMVlYvf/UP+7RppOc+TMIRwOB+GwzNLuEv40UFJSwvT0NJXUsla/Q10jE+x8tJ3oeJzD/9qr/DcVuZe9zER0PHXxP6jIvSylJhITi7RdAv7NJTTcUMmx7/QQ6lEpV2yCHZ9sZ/jAJD3PqLcdKxT/Jc/354zO+2oZ2jfJ1Cn1MaP+zX4qN/rY8zcn4HXuxqpdpVRt9bFX6GO/87MdhAeiorymcnsJ/o0lYmu01ruCjJ+cZfK4esnszvtrcdc62CO0pW25vYqprjDjgnmy/kY/zoBVbL+464kOJk7NcvoH6q0fWu+owlpmWZWcfN376rF6zWJr5NY7qggNxxnaoz4P/XNGYKdP3BfbHm1lpi/C6e+rHxubPtxELpPj4JfVf18mj4nUjMogc0HuZfKYSEVT6mKUTo+9wsSG9zUoY/5H6i0Ld1ufIhKNcPLkSdra2lZucAl/UhgeHiYQUE5RSmpeDW/xU7HWy6F/7SI+mVZX8zKC0WokHb7AxkZl+c7oXKTtMlj7njp0ep1oHdpwcyXeOgcH/vGc6jagnDAdOySzKftzRfkGD06/la5fyWyzNj3STGwywUlJ7UUjOu6rJT6eED1jw82VVKz18vL/Ur92BUXlKDwUZ+BF9Yp0Ja1OvHUOun4t68Ptn2ln6lyoeDBKDTxNDnwtTrp+KbvXmnfXMXJwivEj6vO1trur8dQ7ZDVlFIWbwVcnGT04LWonhhG2fbyNwVcnGHhB/fvyNNip2ODljAY74D9HmL1GbPMOpqlB1WWlVG0rZe8XT6u2YXRUWem8t47zvxxi4rj6cWj2GklOq7jJIjUvq9dIXEVbnUHZwG1/exXOgI1X/17975qu6Wdvz24qKysZGpJZI13Cnwauvvpqnn/+eeppp1m/TnW7jR9sJDIS58yT+Zp8dmXbHbPTUCQiSGFyGoqb6mrgqrHRfEuQ0z/pL5L01GD9gw2MHppheJ/69ZqzykoykiI5o+23/bmh7toKJs+GikQ0NShf56H6inIOf72rSBJ4veBpcBDcWcqpH/QWyQtqsPHhJmb7o5z/ufpY6G6wU7mxhNNPDhRJQ2oQ3FXK7EA0r5CoDjVXlVOxwcs+YS0vsMNHZDTObJd6K7vydR5ctXZRX4CiZjp+bIae59TXlAPbfTgrbZx5UmiRqgH1N/hxBW3ifcOqHT7isykmT8hs/f5c4W12FA9fq0XnfbXKwb7fqB8bLXcEMZh0on15g82gEL/UfI8X5F6StjqDAYPNwIb31jJ2bIbe36q3LHzF8TSzoVnOnj1LU1PTyg1U4A+mpHTNNdcAUIXMn/vUT4eovbJMRBrqfHsNnjon+/7pnKhdYUNZ0gYQF7tBUauZz/JTg8Y3BQhs8ZGOZRh5dVp1u22PthIdS3Dsm8KNlw0lnPj2eZKCvet1D9QTGYmLiBfl69003Rzk3FMDIrKBr8214KSGWkgLIaAQG3Q6OPVDGZlHQlwr4PTPBvDWO8TtDgqLfwD+9SXYSmUep1rhX1+Co1Lm50sS9v2dvA/P/WJogSS6qluFERd4AEo7XdRcWcHBfz1XVF9b8V6TSXb/lYyEBuBrcuIM2jE79STDKorXeWz5eDPZdI4DX1I/RpxBM8231nD+6SFRotd4UyUOv1WUEHmaHbTfVUP3b4ZFJKA19zeSyyGKG5HRGM6gVdSH40dmRQXDAgoEJdWEozw2f6RJIRwJiFR9L45jdsnGfGV3B0c4RCQS4eWXX2bHDpUklkv4k8CpU6eYnp5Gp9OxzngZuYzKFWUKel8YLZ6sUYv1DzYSGY1z5Ovqc40CsUlKABrZP8VIXj1ILUx2E/GZOeU3tWh6SxW5bI69X1Cf61VuL6Hm8nKOfaeb6JAgf72vlpneCAMvqifKepsd1FxRzskfDajfnEeRkM1lcyJyiL3MhLvOQXQiISIpdT89QvfTss0ak8dE2x1V9D0/xoxgDhrcPaGJaHz6yf7iCSW1GH5liuFXZOMQoLTNjd6gE5GUtKKs04PJYRSRlLqFG6EFnPvlUPF0k1qc1rgB1XJrgFQiK3rWI//areleJS1uzB6TiJhTvkHxpT/+3V71REqUAxhWr5lTgsMNhW9l8OUJJk+q/y47763BUmIWkQcCO300XF+J3qBj4Pfqv7P4TJL4lOz7kuSsBRRi4JKk2SVg95vY8L4mxo7NcPan6gqV0dEUw4em6H9JRtgqiVYR4QyXX375Jdu3P0Ps3LkTgHpdxwpXLkTfixOkYhmFoKQSdVdXULmxhENfP0d8Qn27wqawhKAEcPQbMuIqQGIqRcwtq635N3tpuEEhekmISuseqCc+meTMk+rnFU+DncqtPs79YljUH403VxKfSonyDUeVlY6313L+l0NMnlI//5e2uXEGbGKS0oF/lNdQgleUYbLo6RYU1wFO/Eev+F59z48z0y3LGQBOCQ/XAZR1uilpdotJSlpQ3uGmtMMjJikdE5DkC+h9YQzzQXkeevCfZeR6UKy9gpeVyb6VNLz6N/L6mqvWQUmzG6t3VBWBpYDO+2rRGXSivjQ6jTTfHGBgz7hoI9W/xYu7xi4iUlnLTHS8o46+50cZP6o+L++8tw69Qcf+L6r/pmPjCWKTicWJrEsgMhjX9L4KBCW1hKMC2u+pwRWw8uoX1G9G9780js1nVk1QAigZasBk2svw8DCvvPJKUe3wEv48MDMzw/PPP4/FYqElu1F9zQvofnak6LSgFh3vrCMyEuesINcoEJskBCWAUF+MA/8km8sNZn1e5VVWy6u/3g86HUe/0a26javWRv11fs7+bJDYuPpcr/baCmLjCcaOqM/xrD4zVTtL6X9+VEQSa7o1gN6g58yP1ZNDDGY9pZ0eRWFIQFIaOzIj+k3KzaDxxgDD+ycvUjJZDjNdkaIajQRnnhwgk1C/lwQw2xUV7QkV4N/sw+gwiuZWrajc7GO6Kyx6Tk3vC6UPC4o4ajH0irbDboGtPrK5HCP71Od63Rpz3bI1HiJjcRFJyVllpfGmAOd/MaQoSqtE+ToPtjILvQKil8EMtddUMnFydk5pWwWqryzDGbBx8rvqD224ahWCaM+zI6IxEp9KEZ+W1bwksamAAglSSnw12AxseF8DI4emVNfyMrEMfS+NM3FSVruui6zlCC9x0003cfq0nDezGP4gJKXnn3+eZN6nZ41puyhpSE6lOfvkPMKLTr/iybL+lyYgzcVkI51uyZNlTW8NKKSc7/UydVp9gde/xSvaVC9AchqngPNPDZGKpUUEJYBMKksmLkuGShqc2MstIoISgL3CukDGUC0yiQwz/bKNwwNfPAfmla/7Q8BdZ1sgK6wGZieYnDJyAijEhmE16isXoGydm9muWdE7O/hl+QaAVhz+mrZT8u4GO9l0hnCf+iRASwIFgBmc5WbCA+r73xW0Yyuz4Kl1MCNk2UohVQ0rIDmbJpOWJaLpFNhKLfiaXaL+dNXYi77NajHTGyGXyS2QC1SD878aIjosS3gHfj8h2libD0elGb3VQKhb/T23faoVvVG/NDlykRNlQ/snsXlVkAd1c/01dkjbZne1q5H+0HkeeuihS9Yjf2YoFOCqc63itoN7phf+BxW51/CBqaJd28K2S+dea97bSDqaFm2SO6ttJEJpESEHlM1rqeINwLFvd2H1yJONbCorIigBOKsUIu8A6mOUp96Bw29TfMEESE6nyGZlYqnR8ZRYyUcrXAELzoBdOTksmIPsfhPRSZVqKPOghTDkCFrR6XSE+2Xz0O5V6kOt9zLZwVXrFBFeAEb3T4vvBdremafJVZSCfr3x8hdOisdTZDRGMpxCb1j52vnw1DkW2BSrQSqawllpx9uQFL2zdDyDISFbHw7tmUSn04mJgEf+pVt0/XyUrXWLNvN8nS7abq+m94XRpQmfF+Re0ZEUE6dmGXxVxe+al3t1/VL9abICOkxbSHinCYfDvPDCC1x55ZXiv3EJb0z09/fT09MD6GgxbSKXVh840pEs/c/PK2CryLtGDk2hN+ouJigtk3f5t3ipv66Skz/sE6lylLQ4mTojV13VQhwe2T9NLisjKAGk4hnSwpqXu9aJu8ZRtAZSC0+tA4tHRlLS6RWbq+i4LGc4+d2+P+DR0eXhbXBgchhBQlIygtVjFBHlANLhtKbcy9NgJzIUJS0oHSpEktVR5Tn7syHO/kyu1mL3W8nlcsRG1de8YqMJ0fVFaHhnVp8ZT60TR7mZGSHBUYr+343R/zv5/BqfTi6w6FWFdBZXtR1XtV20kequsSuWz5LnG08plsHCR+x6eqhov6YWU6fDon2N+TA6jZgdxqI9kBqse189JoeJ/f+wBOFokZrXyP5JQhXWRS6+oKlhvg1OUlSrLaBBt44zugO8//3vv1Tz+jPDLbfcAkBNqgOE667pcxd883rDimpKg3smSIRl32PrXTVkkhlOfEf9JrmlxEwulRGrNmWSWRGBqoDTP+rHLKx56Qw6Msls0apdLTy1dgwmvWjz31FpxVvvoO950a2IT6cwGmX7DJlklv1flCn5aIWtxIy3wcFMT0REUjJ78opeQsEmiSLX3L2M6A164kJBj9XqQ9BGzDeYwVpqFfeJhCAzH2anomAjUb4qaXGSSWVFJCWtOPxvXeLxFJtKkZxNqRXxLcIZtOH0rzz/z0cmqSiIJUMp0TvIJLLi9WGoN8b5XwwxeVq2Tjn/C+1qja4am4gUaSs303lvHb3Pjy69Zr4g98rEMowcmGJCxWGZ+bnX2GH5eq3SUMto2Tl6e3vZs2dP8SDXa8EfxO7NYrGQTCapoZl201aAlYlKOj07PtPCxKkQZ396gSqPGvnrpbDEz3EGzdReU8nxb6k/BVTS6qTznjpGDk9x9ifqk4DGmyoJDcUYO3hJwnq1se6BehyVNvb89eu/QdR4S4DAZh9Hv90tIq+sfXcd6VhGZBFXGItDeydEKlZaocXuTSt2fa6DRCjF/n9Qn3R4mh00vjnAmSf7ROSm7Z9uA72OV/63XG1LirXvrsNVbV/VzcpLUGB26mm6JciJH/WpVr8CxcomMSsbi3XXV5DN5uh7bolC2yIFG9XQLVxsmZ2w6UMtTJwOrTgnzU84DnieYXJyklOnTtHc3Kz9eS7hDYNTp07R3t6OTqfjTcZ7iv99pdyr+dYqvI0O9v7juYs35V+H3Kv6yjLSiYxIjWbTI02YXSaRKqLJrqf+ej/dvxkipZHDegnasfPxdibPhDj9w9df3njbp9rIJDKi08aeBjt11/s5+/MBEbFs0yNNmBxGXvm8/NSxFFrt3rSg4aZKApt9HPzyGZEaTcvtVeiMOpHdm6/TRfudNfT8dkQzgViCHY8p1i2SZ7yEPwzK1ruxesz0CyxfWm4NULbOy6F/PSf6NlvfFqTnudGlVfr+gLlX081+fC0uXv3bsyvOk4Xca6apl1dOvoTX62Vq6vUvOl7C6qCuro7e3l7q9WtoMW4AWJmopNOz6UONTJycpfe3F3wbr0PeZfYaCV5WRtdT6usF1jITGx5sYmTfpEhhJ7CthPhMSvNG+SVoR8NNlZS2uUUqoFrh3+Kl4U0BTny/V0R8a7ipEtI5kbqR1Wtk48Mt9L00JrIP0wotdm9aseVjLSRDKZEatbXMRMONAXp/O0pEcIJ9/fsbMFoNolxZKxre4qesw6PJfeASXhuMVqi+vIL+34+TjqufT7Z+spX4VJKj/9atuk3ZOjdGi4HhvUvkNK8h75pftwLACBseqGfqbJie3ywfP3TGOeL/Ed+zjIyMcOLEiUt2u38mmJmZwev1YrVauTJzR/G/r1TzqthcQsUaNye+23cxYUCF5ZsUvlYX6GFSoETRfJtibSg6WG6A4PZShvdNkUm+hhzyEjRhw0ONTJ4O0fe8nGQrxdp315PNZDkuULI0e4zUXlXBwO5xkfJVy21B7JUWTQc+pdBq96YF5es81F3n59i3ukX9Edjuw2g1iN6zrczMmvvr6XluhLHDrz8XYP37G5g+HxEpFV3CHwbOoA2bzywiYfq3lFBzRTnH/qOb2Jj6sRi8ooyxI1NL23T+AXOvig0eKtZ7OPrvvSvOsYW28cpJXuz/NU1NTZw589q/abkkzgXo7e0tqigVCEorQqfH7DOTSWSJjstOhmz+SBOtdwalj0l4ICkiKIFyOmFo7wS9v5GRQio2lFB3dYWoTc215Wz/dBtmn4zZHLy8FGvFKskNaUT1NWWYnbKhFryqlF2f68DTLDu9MtsfJTomZw5rwejhSUaPTovVdWzlFmx+mQVbZDBM/0tjDAo8h0Ehymz+2OqQEhpvqmT7X7SL2/U+P0rXM7JvzOw0YnWbcFTI7OUG9owz8NLrn1ACzPRHiWgYi5s/2syWj7eI25Vv9OBusIvbaYaGsKMlXq15Vx2bPyobw55mFyUtLuquksXhwVcmOP0T9adfAHp+M7o0QWkZOKstbHu0hbJ1LtVtkmGFJZ6JZy7aRFsOunEr2WyWbdu2iZ/zEt6YKCgzBHOCb0OnJxlNk4pmRKohZevcbP5wE/Yyuf1q/wvjYrus008O0PeC7JsK7CqjbJ0Xu18WAzd+qInWO6pEbexlJio2e0VtAJB3n2a46uyUtDnF7TZ/pJl1D9bLGpkgNBjTfOJIiv6XxujfLdu4spVasJdaMJhlUgXdz47Q86xs4W+yK8X/4OWlonZasenDTbTeJVsXjbw6Qc9vR4gK1crsfisOFSei52PyTIih/ZNMnZJbqmpBeChGaECmYlHS5mTHY+2UrXWL2pk8Jiq3l4jarDbsZSb8m2XPaPeb2PrxFnGcq7uqgsA22bjvfWmcvhfGxKp0p78/ILYRBYUUtV4Y4+LTKVKxDCY7qnMvz7laAKanpy9Zvv2ZIBwO09vbC+iKBKUVodNjtEIqkhbbjXa8s4b662XrGFBseSQEJVDUP3qeHRHXGQLbS6m5slzUxtfpYuMHG7GWyubj0k43Vu8qyQ1pRNk6N0ahHX1Jq5Otn2zFXS/LX8ODMWb7VifvmjkXpn/PODM9spqX02/FXinLGeLhNF2/HmLiyLSoXcNb/Kx7X72ojVb4N3vZ9EiTWP2q+zcj9PxWllMaLQacfqtifyVA/+5x+l5cnZpXqD/GTG9U3B/t99aw/v0N4vu56+04qmTj6jVBQ9jxdbrE8arhRj9r31svamMts+Lf4qNikyzP6/3tKOeEagDjR2aXJigtA6vXyPoH6ylpFaxL05COKcp5FxGYloFntIpcLseNN94ofs5LeGPinnuUw3jVSYFyuE5PNpElFZEpmjgCVjruqcHskX/0k6dDIoISQO/vRul9XjYn+FpdVG7zYSuX7Se13Bak+soyURuT04C3SbYfB4jVrl4LrD4zzqBsTwig9a5qmm+T1QABZnoiRIZXZ7+xf/cYgy/LDnhZPCYcARsGoYNF/56xFQmhi2Htu+soX+cRt9OC1jvlY3i6K8z5p4dIzsrqDA6/FWdAlmfExpP0vTgmzpW1YqYnSljoOmIrM7PhA43i79pg1lPSIq8trya0xCuDzUDnO2sVkqkAwZ2lBLb7RG3Gj8zQ8+yIiKAEMPDi+NIEpWVQuaWEFmGMS8ymSIbSGGwG1bmXddiHIWfk7NmzjI299nXHa17pb9y4EYAyFv54ncFwMfNqXmEvOZlk798vwRheRv7aYDZgtC4TcBeRv+58Vy0Go150aqUALao1e/7mBA7hQtJkNYBed7GF3QqovcZP+TovB/9JPfu68ZYA/o0lHP1Wl9jWiByiUzJmp57aKypwB+0iklhyNk0ykiY2LAvwPc/IWaQlrU7a766h+7cjDO1WX5wL9yU40yc/dfXq38hPGSXDChlCimwuB69ZK00dcpkcCK1lAE0n68cOzmhSKtN6in/bp1pJRTOi76zvuTFN5JX4VFIsEQ3QckuQ8HBMZLtXc205NZeVc0QYC7Z8vAWDxSBSpHIGzdRfV4k7aJPb2gn7Y+zgDPHppOg3gbb4AeDf5qX2ioqLY+MyrObwaAK9SY+j3Mo4iyxol9gIWzBvFq65YL68MKHYaLqCF40/IZPJMDk5ic8nS6gu4Y2FVCpVTAA7TFsW/NtKuVfvs+P0PrvEhukSuZe91IzBYlheceXC3MsEmz/YTPdzI2Krh8hAnMiAbPHf+5tRJk7OittpOXhQc40fX6uLqXMRkSXdto+1kQylOPTP6k8olbQ5ab+rhvNPDzOyX31huP66Chx+uapkbCxBOia0eEjBMQ2qi+sfasBg1nPgSzJb2qE9cr/34b1TmgrrU6e0qEPoIZt7TQIZEuQyOSX/EiA6niI6Ls+HNJ2uS0GXhrVUYKeP2qsqOPJv54iOqP/OtIzF6HiC+HRSLBPdclMlnganmIi55aPN5HLI1MAa7XTcU0ff86OiXLblzhpsPrMofkRHUugMOkw2WZX5xHd6xMS3xERKpLw0H2veVUsylObMhcqSywR2o82A0brM71ok9xp4aZKBlyYvvmaF3KuCakbp581vfjP79u1b+p6X8CeBwqZnla5+wX/XGU0XqynNG0fpOBz99yVqIMvUvEw2A0lhzavhBj8ml1GTqqGWOXL/l89iFZJyTFYDOsMiFnYroPEtAaIjcY59S32M92/2UnddJce/0024X6BC82ADOj0c+qrMyr7pLVVMnJoV2bBkklliEwmighPeoFjlSe3yrKVG1r67UTnlLWgbn05rsubSUnslrdgBipFBnAtpRS6r3MtohLRgGE8cl5O1wwNxTQpFWmz2QLH0SieynBAoN4wfnRVZthaQmEiS1mAr1353DbP9UU7+p/qDZaWdbppvruLE93uZ7VZP7uu8vw6r1yTK14xOIy1vDTJ6dFpMGJWuS8P9cQ5/vUtsCTh6cFp2ozw8TQ7qrqlQLGPmv7plHjweTmO0GrGVmFhslllqI+zYt/ouuubCGsd8FSWAWmM7fcaTTExMMD09jdfrXfb3XMIbG5lMhl//+tfo0NFg6FzwbyvVvMaPhxhfKg4uYflm8Zgw2o0khXGp/R01DOwZF9lJAiRn0kzOyGL15IkQkeEECaH9mhZ5ivI1Hqp2lnH46+dEm+Rr76sjGclw+ofqa/5Wn5k199XR9athkf1S5ZYSStvc7FvKhnIJRMbimvbJugXKkAU03hzA4jaKrAABpoViCKBYWB36iqy2BhAbTRIbldtsZjM5squVe2WWFJFdEqlwRkweBDj7U232wVos29wNdhpuqOT0j/pFBJaeZ+RjMTmbJDaRFCkvAlRu91G5uYSDPWdExM/2t1ejM+jENphr7lNqXhKlopqrK/DWOdn/JfWxIBPLoDPoMFhkAbLr6SGSMblNp+T3zEfdtRWk09mLFWaXyb0MFj3GZWp5i+VeM11RZrqiF11zUe51QdsW/QZOZPdy55138uKLLy55TzV4TSSlZDJZlDDfZLpKdbuytS5KW12c+qH8w1e1SLugaGN2mTCYZBm/f5uX2isrOPGf3XJP5CREhmVtzv9iWBMh6uT3ekknZR/HTFcYZ8Aq3sCf7pJPkslwlnO/GCQ8IDvppZWEUn+Dn/HjU6J3ls3mSIRSYkZ0480B9CadyApQK8rWuanaUcrJ7/SQDKufUI5/U6Ye9lrQ9asRun4lnyibb6vCaNFz8ntC4ooGlLQ7qd5ZxpH/6BbZgMUnk6Qi8iJK8KpSwoNxkdqWVPGtgK5nh5kQbqhOnZ2lpMlJLiWLIVNnwxgtss2r8ECSrmeGGdwn2xg99k1tloPS+FbA2nfXYbQbRbK7BqMBg0WPp9kx965XqjIl4eX/pc1CqGyti7J2Fye/rz72tLe2c+DQAa655hoOHz6s6b6X8MbA9u3bAfAgO73ecluA0aMzzJyXzce9vx2/2KJkMczLvbx1DiUpFhJX17+/gfhUUtMGm5SgBHDgH+WL+FM/6adinVdEUAKYOjMrVlJIhtPM9keZPCeL7aefHMBdLVfWO/FdWfEEFPKEzWcRb3DGxxWipgQmu57m24L0754g1PP6Kwi03lFFfDZNr0BNKRXNsvfvXn/56gIOfllOHLKUmmi+KUD/78cXLERfLzTeFCAZlpFRoqNxhbStl63f7AEzJU0uBl5Un2skJlKaCFjdvxvBenha3G76fIRMWlYcmjkfJdQfJTwoy23O/2pY08atlk1RiXXgfDirbbTdEeTcL4dEBVmLx4zuwlxrhdxLTJIvwAQtbwkwemSGGZUbnBtMV3DA8wynTp0ilUphMq2inN4l/MGxe/duANaYdqlu46yyUtbhpvt3ows3dFXg8L90r3zRhTUvtwmLRzbOXLU2Gm+s5MxPh4iOCPOotEJgkWBk/7QmEsqxb/WgE57Oj4zEme4KiwhKABOnQxiM8h29kz/sIzEjqwHOdkc51i1f6/q3eJnpiRCXxF2djthYgtiEjNBQubUEk8NE3+9ef0sJZ9BK1Y5Sup8dISkYWxJLudeK0YPTmkgeVTtLsbiMq/Ksjiorga0+un81SFow/KOjCbIpOcu+bK2b+HRS9K1p7YezPxskPCLLhUKDUaa6woqasABTp2cxu2UxNR1Oc+ZnA6KNdkBTHRUQE5QKaHiLH2uJhRPfltUeTQ4jrirbHCFjpZpXGvZ/SZvtoLPaSlmbi+7fqCdJdjasY++xl7n55pt56aWXNN33Et4Y+PSnP002m6VSVydqF9hewmxflMiQ7NuYPClXQ7KVmTE7jegNspyh8aYAqUhak22YmKAEnPmxvLY2uHeSyGhCrOIxfjxERrhHmc1kmDg1K47tfS+OM3lWTkLRYidrKzNj8ZrE5KHYRIKMkNCAQVEoHj02rYk8JEVgh49MMsvogWlRO4kV3WvFmSflY9hg1lNzdTmjh6eJjmibKyWo2OQll86JyCjJmTTR4YSYNGf2GHAFHSICfCaJiDxYwNjBKWZ7IiKCEsDUeTmHIDGVZPL0LJFR2dpt4KUJhl6RH8LUst+YDGuzDDV7DDTdVEX/78cJ9amPdRavCcOF9p4r5F4DL00wgDaRjsotHkIDMdW8lmpDM5PlfRw4cIBMJoNBoIB5IV6T3VvBbsTK4hshRXaVTr+A1Vy1tQRfm2t5u6BFTjLWaZC8Bjj4j+fY93eyxNjmtaA36gkLpbh2PNbOuvfUi9pYK8wy+dN5mDodFm/GTxwPcVh4MgzgzI8GNPm1j+ybFpO2KreX4KiUqVGZnRDcWUbtlX5Ru5mzEfb/w1lmhRs1pW0ufK0yawiAXU900HpntaiNu9aBw29DbxfyCs1osuXSDA338jY4cNfKZUR3fa6DzvtrRW18zS5cQTtOod3eka93ayJR1V3pp+4aYdwyK+Nfav04tHtSrMQW7ktw+KtdYiLm+aeGOP0jeX8M7p4QkcMKMDv1lK+XfWuuehu7Ptchnjf0Zj16s2xTdHD3BHv++qTY+hEU5vxFv20FO5HqXaWUNM+TpJw3xy51Gs19SJFTP3LkiPgZL+GNhYMHDwKwicXJ4YvmXiYobXcR3LmCitYFY69srQu7cC4G5eTPK58/xeRJGbnGYNaLN4Zqr69g+2fasJTKisi+dqdi3yNFCkY1bLCd/ekQfc/LCiKRgTjH/r1HTIhKTKTEJ+wtpSbKhHEWoPbqCuqvrxS3O/3jQfG8aq+04m1w4q6RyXp33FvD9k+3idoAeBqclDRpyM9Xk4tgkt/P7DThqnGI5dFb76hix2NyW9/SDjdlnbKxNXM+yqF/Pi+2Aau70k/tlfL1ot0vH//RoaQmtYJzTw3RrWEz6ti/94hJZaGeKOF+baRtb7MDk5Dw0HlfLVs/KbBkABKTMfRmA/Zymaz6/i+e5agG5SxgcTvGZXIvkwlKO11UbvUuvH6F3Cs2niASifCOd7xD03NewhsDn/70pwFwsbilTlHN4YKaV8VGDxUbPBiXW74vMu78WixlgVM/6Ofwv8hqPDafBYPFQHJGVgze9KEmWoR2uUanEVet3JYDIDoSJzIoe8bwQJzTP5CvVwdeHKdXaMsFMHNOSBpCUfSWWt8B1F9fSfVOme1FfDzFsW/1iElbZZ1uyoV2qKBY3zbcIKvLOSqteBtdGC3CPjHyB/AIEN5PiJImJ97563eV2PLRFrEtjTNgpbTNjbVMNq+e+/mQJrJMw40Bqi+XHZ4BZfybhbZok6dCIgIbKDaYp3/QLyb0DL06pUnNfvJ4SExMBTBawdMgW5yavUa2fLyFqp0yu12DUY9RqB4wcy7Cvr87I1aMAbCWmShpWVjzXclOJLC5RLFiNs5dX2hzoYpSASVnmgDYs2eP+Bkv4Y2Fr3zlKwB06rYv+u9L7Tf6N3rxr/cu/8f1C8ees8qKVVh/B8Xi6fC/dDEjPNBvsOjRC4UUfO0uNjzUiKVE9pzOKqvY/guADOLfBTC8b1KsGJKcydD96xGSM7LAmYllxPt4BpsBd61dbEvn31RC45vlFnFDL0/S85xsHjE7jZSt9eCslOXMwSvK2PBQo6gNKPlJSaOGmtcqWvthkN/PYNbha3Xj8MtyocotPjY+3CS7GVCx1ktpuyzPi08mOfPkADGhomr5Wi8NN1RiEIYtszM//gVIhjMiUk0BI/umNKlLdf96REwqS0wlxVZqBdjKzRiECuK1V5ezVsj9SIYzGC0GzC5Zfe30jwY4/3OZRW8BvkXG47K5lwECW3yUtbsXXF/MvZZoaxx1Eo1G+eQnP6npOQt4TSSlV155BYAdvGXRf9cZjYsWXg5/vZcDX+1aebN6XtvglaVU7yqj5lqVi/E8q6y0cwUy1BLo/vUIL/+vk+IN9cRMSpEOFKDxxko63lErJiVs+kgznffWiNpghs77a3EGZfcq7XTReEtAdi8Uq72175Yx3wEa3hSg9S7Zb0uG4fj3ejj/rGxh7W6wayKJvfp/T4vsrgAwQ2wySWhYlkid//kQu//7ceJCFvW2j7ay45PyDSUtaL69issfXyMeW3v/9gyv/B+5okx0IkFIeKL83M+GeOm/HyfcJ5vwzD4zldtlXu8AZ37az8nvyDZQXFU2mt5cRa3Qb9e/xcvWT7SI413ZOremb7vx5sDimzzLwNPsYPun2yhpl31v69/fRPMtQVGbUHeMZCRFIiQrFh/+Whf7/17baa+Sdqe4/zvfUbNgg1+N9+vxb3ez+28W+WZ0enS2xRcyZpMZXX7Kf+KJJ2QPeQlvGHzhC18AwIhpaVUGg+Hi3CsFe/7vac78WMVmzby29ddXsuad9aJnNNnBVaeF/aMoG0nVfJIzKRKzKRITsm+99fZqOu+XLeLL1rrZ8tFm7AHZh161q5Saq2QxHaD+Rj+eRllfmjwmNj3SREmbLM7WXlZG663VYlLCyR8OcPoncgWm8g0e8b1mzkfZ/T9OiFRyAOUkiPBkHih5nsSeDxRlqcse66RaOIdrxfZPtLHpIVkRJdQTZY+GfpwdjBEVrnEAXv2bU5oUnzyNdhxBWVGp59lhjgvzLoCW22toeou88Nh5bw0ttwvbmaDuTRXijShH0Err3bJcCKDtbdWse1+9qI3db6LznjrqhHErOi5X6UhFlTEyuFvDaS8TczFSpU9K7TVl1F1dQdm6hcWXlZ7xwD93cWoxBctlcq/NXAvAb3/7W1XPdglvTHzpS18CYKP+2kX/XWdavOZ1/qkRDn6ta2Ulk3ltS1qdNLypkqodsnWns9qqiTgxenCa/V88K1JbAYiMyS3Kgjt8rHlnvZiU035PDY03y8nQDTdVYquQHUxyBq1UXVYq7suGG/y0CIkkAE03V9F0szyuH/tWN/0vyhQYbBUWZZwIcfQbPSK7qwLCQzFCw7Lca2TfNK98/qRY1Wvdu+vZ8qEWURutCGwrYeenO8R9eexbPRz4R3k/hgblKooj+6Z5+X+fFBPSjE6jcphYiNM/6uOscAPF6DTSdmcNgS0yG3p3vZ11D9RjFFpNumptBK+Q5+aBbSVUbPSK2ljLTGx4qIGSFtlarO3uOlrvkB1mTU6niU8lSYZl6+CzPxvSZsmIotRltCLyp+t8Rx11186RFnXmldfSXb8aYu8Xz11E+NIZDOidSx9yteEkl8vx3/7bf1P9fJfwxsKePXuIxWI4cC+pyqAzmxfNvQ5+rYue51TsCc0bvzVXldN6h3AuNoCtQtuJ8DM/HhATINPRDLEJudVb0y1VNN8qy09sFWY631mLrUz2+7zNDsrXeURtAMrXe3AEhPmJAdrursYlPLxW2u6i9c5qLG7Zb+v73RinfySveblr7WICRHImzb6/P8PYYRnZKzaaYLZfrpJ9/D96OSUk9Zs9RrZ+tJWKTV7x/bRg7f31dLxdukecYf8X5f0YnYwz2xcVk6KO/rs2cQNbuVlMkhw9NM2xb3eL1Y1qrq2g8Sb5/l/NVeWacqjy9R7sQpEIs8eg3EvY/8FdpTTdKvttBpuBznfWUblFtu6OTSaJjgnVuTJw5N+6Ndk/Y0Dcj75WJ403VuJtnsuXVsy9MnD0P3rpWcRJY7ncq023GYBvf/vbome8EJrPmzz99NMA6NBhNl38I3X5I2N6s4lscl7CbAaSEBcy3AZemFjw/1VBp6P19mqSkZRIScnsM2P1GMWMXEBkEVTA2aeGqdpSIlZBMZh0YqsM/zov3gYnswNuwgPqT/QHLyvD4beJ2XtWr3klUZBFcean/aSkkojAlFC1AaD5rVVYnCZ2/48T4rZiJOHgP8nHiFYMH5jCKBwjWjF6eBqTRU9SKHOuFVqsObSi+eZKvPVOhl+RsYDHDssnn1B3jJ4XRhjdOylqZ7QaMNqMeGodIkWf6svLsfks4m+7Yr2HVDTDwO/Vx+TYZAqdQYe91MIU6r/VnudGxJYvgFhBrwgzlDa7mBAoJJSvd9N6ew1D+yeVvszlVBVuup4ZZqprYeFRp9eRW8YmK1nouvx8WoDeoWzU6Ww2crGLi5lbAlexf+R5fvSjH/FXf/VXKz7bJbzxUCCYreWyxS8oMNxNRnKpeRU9E5CClNCN58g3u9WfPMlbjtRcHaBycwlHvtktsuQqaXMydT4Mwmcc3jslthoDOPvzQdJxWZ5hdpnQmw3ijbnKzSUYLAaxklLlFh/2cgsz59VLKTsrLZidJgzCub/7+XFCI3GxalNqJsWksI3JY6LlrUFGD09x9qfaToVI0P/COP0vvO63ASA6kWLs8BSTZzUsPjVgeP+UeGNC871emRLnQa8FHW+vJTqe4PDX1CuDRMdToMF2rPuZYXQa8gyLz4xBw3qlalspdp9FpIxU2uqitM2Np3FKZNtpMOvF68XoSIq+F0YZFiqyaVGIKsDTYCc6EicVVW81s/mDzRhtBl75P+rt6Xp/P04ylGH8yMJvdKXcKzGZH1f5+bSA5XIvq8lOc10zPT09PPvss1x33XWqn/MS3hjo7u4mHo+jx4DVeHE+pDPla15WC9n4vGKlEUgjPhU+dTrM2Z8PMn5KxRwyz+qt7a4aUuG0SEnJ6DRi9RgJa7DL1aRQ9PIkydkU8QlZnxjMerEKgLPaSsU6L/HxhEg9pXJTCaUdHgaFlgEWnxmTXX6k/NQP+zRZcmp5Z/XX+3FWWjXZeWrByf+Ub+ZpxdDeScyO1ZGxnOoKY9k7IbY61AotFthaEdzhI7C1lL1/e4p0XP1crMU6OB1Oc/apAaalKhgmPRaPGXuZmdmw+ndQucWXtwOWrcUC20tJxzMii7/4dAqDxYDJIdtu6X1hFKNFHkeOaVSVxAjuajuzKm1sQSEorXt3AwMvT9D3O/VEyXNPD11MYjcYILN0Dl0kz+bn0wL0LoVIp3c6yIYvrntu9V3J7tlf881vfpP/8l/+i+pnvIQ3Dj7wgQ8A0KHfuui/FzZaL8q9DEBm2WGlILcwvp3+ySB2ISGnfI2Humv9nPxeL2GB0qMjYFWsjITLx9neKLO98lh77qmhZdc3i8HiMmGw6ElGZA9Zsb4Eq9ckVlKqvrycme4I54fU14VsJYr9mjQ/nDg2SyqcFpO9Msms6D0DYICWO4IMH5jSZDEnxeTpkNhqVCsysTSDe8aZFdR7XwuG906STcvzZS2Y7Ypq4gNoReud1URHEyJbxlQ4Q0qD7djg7gn0Jnk9z1ZqJqthvVJzZQUTp2bpGVFfI3JU2KjcXMJsT0Sk4KQ36cU5VCaWofuZEaaFqnFjR2bEca4Aq89MKpYR2UC23hbEVm7l0FfyfAIV+42Tp8Nks4MXW1SukHsVx1V+Pi2gQFBaLPcyGAy0N3Vw5vxpXnjhhaLzmhS6XC6n6St3u92EQiFqaaPNtGnhH71A03o+SWnbJ5shB6/+rWDzOCf3xS6gaqePZDh1USFyOax5Vx2eegd7v3RWRByqe1MF090RTZY/qwmzU08yLO9TZ41FrECzmmi+rQpn0MbBf5SRgDzNDuzlFoZ2y0ghOx5rZ/JMSGSBZ/aZKW1zMrRvUqTS1fGOatz1TkXdaxVw2V92Mtsb0WyjIEHnu2pxBuxiVaqSdicGk170bYPy3iZOznL2yUVOQy8BZ40Fd7VTfMq74UY/Ja0u9v+DRrLMKsDsM0MyOUd8EbSTEitXHWZovL6SwX2TIhWyrZ9owWQ3iomLTW8N0PfSxMJ+EZwwW+wk/1ILyrrry6na7uPof3QT6lHicmGjrNh2EaLSS+afEolESCQSmFWcYLuENw5SqVTxnd1guvfiCy4YPwWSkrfZTvvd1XQ/M8LwPkEiLcm95qWSJo+JwNYSeoWnw3Y+3kFsMiFSrrH7TZS2eejbPS4mN602TB6TmABksuvBZBC3W01sfLiRsaMzIsIqJqjcUMJsd1ghlahE81sDeJtd7P2CbIPN1+4kk8iKN1G2PdrK9PkwZ36iPl/Qis77a3HXOtizGoR5YPun2xg/Psv5X6gvBprs4GsvYfLkFClBVzbfGsDbJH9v/s0lREbjYruyDR9oZOpcmN5n5RYdqwV7wCy2ssMEJpNeROL5Y8DTaMcZsIligt1vYuNDLWLioq/ThcGk13QooABJ7rX1o01k0lkO/NMcEWSl3Gui8jz7+16hqqqKgYHV22y+hD8MNm/ezIEDB2jUr6PJuG7BvxUISgXM3yhb995aDEY9B7/Wrf5mGvMuAF+bi0w6y8w59XWo+usrqNxaysGvnhERh/ybvfnYLCfKrCaMVj3pdFZsu2QtM4lt21YTVTtL8TY5Of4tWZ3G7rdiKzWLT/Bu/FATU2dCItUHoxU8jW5mzs+KVLpqrq6gYp2Hff9wRvSMWrH9M+1MnZPV87Si4QY/3hYXB74kqws5g4pVjzSH3fRIE5OnQvQIciGr14iz2s74yVnRd+Pf7KV8rYej33j9a4daYXQaIZ0Vka8K7dICMtQfBUYIbCph6nxIFMvX3F+HvcIiJi5W7Spl9Ois5n5Z9CT/EhtmZWtcNNzg5+QP+wn1KsGkQFIqYDGi0h7LTwmFQsRiMaxWuYLcJfxxodfr0eV0XG+62C75wvFTyL0sJUbW3FtL93NjTJ5cgqixWJ6lbUsUg82Ar9XJmPBAx4YPNhKfSIqUa0xOA94GJ2PHZ8TkptWGwWYQbb4DimWVQd5uNdFyW5CpsyHGhTmUp8FBbDIhOrRQsclLxTovR7/RLbqXI2Alm8kSEzqwrHlXHdM9kVUhUtVcVU7FBi/7/n518ry176ln8tQsgy8L9nsNigJWZDghGpP+LSWUr/GI35u7wU4qlBZbvjXeEiA8GGP0wLSo3WrC7DGKD+yAckAlk3xj17xsZWZs5RYmT6gnBhpsBjZ+oFFMXHQErBithostOCX7jYLcq+3uKnR6HSe/N7c+ulBF6cLcK+Ie46WJ37B161ZeffVV1c81H5olVkIh5SWsRFC6ENPdEaa6ZLvhwctK2f6ZNhyV8g3VwT2TYhLDuV8NMbxvUrwBX7W9jMY3y6SoS9qdbPl4M84amWyXtcKsycYO0ERQAlaNoFS1q5RNH24S/z6rx4TZKT9BNXM2IiYoAWSSGdIRWbANbPbS+KYApUI/+kQ4QyoqD+z1N/ipvmZ1LEcclWba314tti1MzqZJReWFwJZbq2m8US5TmE1lyQjVM8J9CU02FBaPCZNdLljXfHsV6x9sELfTguSknKBUaKcVUktAUMhsa94ls450B+0EtpZSc3m5qF3PcyOcf0au7nHuZ0MX94uKRe+6B+rY/BGZXc/I4RmiY3FyqaX//mL2I5mIcv3b3/520f0u4Y+Pd77znQC4WESKdBmrmlQsTXgwxsQJWQFl48ONtL1Nhez1BWM8NZMSE5QAzv96iN7nZe2CO8upvqIci1s293feW0PrHXJbDrtf+yltLUSjVDS7agSlNe+uo/b6CnE7s9OEWdj/pBQFLAlBCSAZy4jVrwCabqqi+Rb5+06G0yRmZc9oLzPRfGsAS+nqnOgPXlFK8AqZ9SpAMpImEZLN494WD003BfC1y+SQUxrf28j+KTFBCcDsNGJ1y3Ivk8fE+ocaKFvvXvniPwDEBCVQ1PC0EpRMiO0VXXV2Nn6oSWy513BDJdXCvCs6kqJ/9zg9QrW5yeMhTQQlR9DC1k+0ULZWth6bOh9m6tzySfOFuVfpsGIrOjj4+pMdL+EPj0OHDgGsSFC6EJNnw0yuMFYuREmLg00falrZPmSRtcXkqZCIoATQ//Ikvb8bFSsb1VxVscC2Rw1sFRbWvrceR5UsnhidRs3a7+m4nKAErBpBqaTVScd9tRitspKsxW3EIoznANGRuCaLgXQsQyoqm8O9zW5abg3irpPF2GQ4SWJWPj/6t3jxb/aK22mB2Wuk7voKrF7ZwEyE0iQ15PTNN1fRqMGONh3LiJXp49Npxo/KCEoAJpdJbJ0DUHVZKa13y+zNtCIdTosJSoV2WiG1tgTlkKPUOtLsNFJ7rZ/AZtl6oO/3Y5x7Wl7zGtwzqalfGm+uZO17ZPW86XMhZnsjpJcZy4vZj1jDSj7/wQ9+UPaQl/BHx5e//GVyuRyluou/g+WsanKZHFPnwoSEdlcttwWpu1ZeA8nEMmKCEsD5Xw4xsFu23vG1uam7zi+OszVXlRPUYEFv9sgV3QrQQjTKJLW104K66ys0WZRZfSZMLnlMn+mKiEka2USWdEweY+uurdC0RxafSZISxnSDzUBghw+zU/tYkaCkxUlpp7xOk5hOiXNYR4WV1tuq8dTbV754HjIxbfu2s11RMUEJ8mpiLuF6wKAcrvc0LG2Z+oeEFoISoJ2gZFBInRJYSsy03hkU23dW7Sql7mrZejgTy9D73CijB2RqVpGh+MUEJVhxv9HsMbDm/lq8jbL3PXUuwtTZ5esYF+ZejtlydOg4ePCg6F7zoWnJ//Wvf115oAs4TksRlPRm5aPJJlOc+bE8CTbm/Tsjw7KPduMHGwkPxZQTmQJ2dHw0yflfDIvuBbDvn85iltmh4gzYMDtMpBMy9nbnPbWaLMq2faqVyGic499Ubx2CGbZ/op2hvRP0Pade0rX6mjJqL6/g9JP9IqKYs9KG1WMWKQ0BmlV/NnygkYkzs/Qv4rm4HPZ+Qc78HdozTiqSYeKsTILx/FPa7FD8m0rIprPi36YF3lYXpe0eprrDjAgILBJFo/k4/8tBMgn5xKVJ4twMGx5oZPTItIjQpsWPFpSkyOKRF3q2faoVgFf/RvYbtz3aSqg/KnpeZ42FNe9soH/PGAPPqydwdd5Xi7fByUv/+7joG7d6zSB0YpntinLqx31ioqrWE/nOoJm2u2vpfmZkoVVcYf5ZiuWcXfrwdMF+5sJT/fGxJIe+qsS8C0/xL2h/gf3IJq7lVePTHDt2bIVfcwlvNDz55JMAbOQC6cwlCEqFDbTIQJKj/y63XMhlWd6CYpG8qmytm+BlZZz8QR+JCVkhfnT/tPAJ4cxPBhk7NiO+l6XEjCEhW6yaPHmlj0NTnP2Z+jk5eEUpVdtKOfgvXSLCUetdQezlFg5+WWZtuvUTrWTTWfZ/UXZS215m0WQ58sr/OSVuU7m9hLION0f/TZa39f5mVBMB7vRP+jVZeUlUvQrwNLuoWF/CdFdEPC61ILBF2ZAYeFFGpNZiPTx9Zoazv9AxdXJa1K7nmVF6npG/t+AVpXjqHBz/lmDNgrY8LxVNYS+14KiwMo76HKBis5emNwc489MBZWNPJaqvLKNyi0+sLtVxbw22Uov4+975qXaxdV4uk8PiNuH024gIrIVOP9lPKiqPJZqUr3Q6Gm+qxFZq5phgbRvJ2z+ZlrAHWir3OvfUnFS5JPcK+AOMjI3wjW98g/e85z2qn/MS/rg4fPgw2WwWEwsPky1FUNJbleuy8QQDv5cfgDJYTZDLEVtqHb1EPav17mpi40n6fif7htLhNIN75IdwDn71PEarbE61l1mwlpjFVg0tt1Xh9MstytY/2EB0PCGuM2z6UBNDeydFNsIlrU5ab6/mzJMDTJ5SX+OxlVlw+q2K2pMAXb8aAQ3Wmi13BpntjTCyb1rU7ui/dYvvNX12ltM/zTHbI6t5jeybFj8fQGBbKeRgRMNaQgpHhZXA1lIio3Hi0+rn/cE9E5q+t3NPy616AI58vVvcBqDt7dVMnJwV1U/6fzdGv8D6qwBHhZJ3SbH+wQb0Rh0HvyLL09e+p47IaJyuX6r/foxOI+veU8/gy+OisVl3XQWBbaXs/eIZEaHHWmrBaJERF5PTaU58t1dk2waIrwdAp8PsNdLy1ioGX55g6ox6cmwukyOXXWLuKNQzLjjVn47DqR8q6+4LFZTm40L7kbW6nbxofJIXX3xR9fNdwhsD//N//k8A2nSbF/z3pQhKhdwrOZug61dL5EHLKFVmszlxjLX7LVRfVkb3s8MkZ2Q1pVCv/ADOyL4pwoMxsUWZ1WcG4ZaJwQzr3tvI8L5JkSqut9lB9WXlnP5Jv4iYENjhw11j59T3ZXsnHffUgA5OfEdW53RU2tAb5HodWuZUd4Od0jY3Xb8eFilgjR+fFSs2AXT9ehi9Uf7bzglUjAuwl5sJ7iwjNpEguQpuQpVbSjCYDWKy/Zkn5UqZkdE4Z54cIDwg+1a1vreSFifeBiddv5LxEI59U8MeeAacVTYiQ4nFSS9LwFllpe2uGs79chH7sGXga3VRtcPH0f/oEX0DwSvLcAdt4u97w/saiY7LrPOyqQy2cgs2r0WkQtb3/CgZDecOtdrEVWzy4qy0XayEv8x+Y2F+MtjMLGo9sUTuNXpw7hkXI4LP/7f5uVdNeR29Y91897vf5R3vuFgJcSVoIil9/OMfB6CRtcDK6kkFtN1VRWQ8Qb9gQxug59lxep6VkyzMbhM24SZU2To3tVdXcOr7vWJSVHIyKeXV0PfcmIj4U8DAnnEc5UJGFAobMR2RZSkOnxmyObJCJmOoP0Z4OMZslyxIn/6RNmKHVtjLLKSiMoYsZnCWmwkPCMdIOKtJkcdRaUZnQHy/l7+wOvZwAAPPTzC2f0JuG+YEW6VDbJMoJZ4U7+czozcisv8iCfYyK56gnSHkRWcptGyMAkx3RTRtMudyOYlKIADhkQTZdJaccA924JUJkkIFMkCzZZ7WcdJxTw1Gi4EjAqnO5Ewas8OEs8q2kKRUwBK+sUe/tXLMW2zDzFFppvHGSs78epzkMj+zcKo/F4vhNLmoKK+4ZDnyJ4ZUKkUqpXxsVlN+vlpGPakAW5mJuisqOPurMbEiz6Gvdi/9j0tslNn9Vqwes1h9pvO+WpKzKRH5pwDJIqmAA0JbWABSKYb3TzFyWHbqIZdRFPzEikhyTg0AE6dnNc0Dmgi8GuGutuPwy3NYS6mJbCwjVpOZOa/NU95VZyc0GBVZCQ7tmWT88KTIDu214NA/nyalgQtl95vIpBERqVJRbWTCwv2ikylRX7qrFduwVUEK9vxPec480xNhpjdCTFg0zmVzkM2JbSDTkTRph3z5PrRvktCgrNAW7o9pspnWpBIFOIJWmm+p4vzTw4R61H9ANp8Zm1dI7E/Bvn9YOddeLPcKXubD5DTS+3t1ikq5WIwGTxtDI0P8P//P/3OJpPQnhMK7atSvAVZWTyogeEUp6UiakQOyIuT40VmF7LjYFL7MgTu7zyy2K3EGrdRd5+f808PERmVq2elwmrRwvT9xfFaTis/gyxM4/HISQyomV7w2Oo3kNGxWxqdTTJ4NER6RxdjBlyYYfEleF9IKd42dXCYnIwEZweoxitW20nFF6U4Ks9eI3oD4fge/eg6VJenXjKnTYfb+7QmRjR0ARoXgFBmUNdSyoQ2K3aHeqic5LetLV9BOMpTSXEOR4MyPtR1WnDgdQmfQuFASFr3S4TTZZEZMsBw9OkM2A6Rl/X/i2zJifgGaCEcoZCqz2yh6F8lwGpvPgq3MKiIpdT83Baywjl5kw8zoNFJ3VSmDh+IkZpdeAxY20rLhCEajhcqKSgYGBkin0xhXK0BcwmtGd3c3egzYDErNazn1pAIMNqjeUcbwvimS4Xl7gCpsdM/9XF5/spVasJVbyMRkcaH26nIyySwDGvaEIkNyi13JRn0BmQz0vTBGqE8WU3IZxW0kKVTk0cHiee8KmDgd0nQITWqV+1rgKLfirXeKLfpMTgPZjFxdKjambQ1uKzOTnE2KCBeh3hgH/vG0JpKGFpz4nvzQLeRVwTIsjAsrIYOIwHPh/ZLhjOid2/1W3ELVpteCQ0KCN0BsPMn4yVkS07LCYzaTJZvJYbYZRO8gG8uS1qAgPvjyBPEZ2aBMhTOa+kRKUC3A7DRQd10lg69OiOK61WvGVrrMfLjEfuPx76kgvy2Se5U0O7B4jIyeWj6mz8+9GvTt9Ol6+F//639pIinpcjm5Aasu/6NvMN2rmqAEsP2T9SQjGfZ/Uf3LNzvB0+hi7HBIVYKxLFT81IYb/VRu8bHv70+IyBYbPqBIuYvJBWbEikGXsDh2fa6D6HhCM8FDgupryqi70s/ZpwZEhZ6aa8vxtbjEAXDrJ1ow2gzs+evVIR1d9pedzPZGNKtTSdBxTw2+Vje//5/HRN9C402VOKtsolPhYUEiNwABAABJREFUADseayebzorVhrTAGTSz7oFmRg5OcV7D4ucSFoEwZlbtKqX6inIOfu28yKJu00eaMBj17P3b18Er+YLEQWcwYC4x4q6yMn5s+YlnfuG8pN1Jx11BBvbO0vd7dRshuViM36V+QpIYH/jAB/jKV74if/5LWHV88IMf5J//+Z9x4mGX6SZVBCWA2qt8VG3zcujrXUSH1S8ofO0OQr0RhWhxYe4lTxtXxJaPNpMMp0UnlOx+E53vbKD7mWGRggkmRESJS1gaTTcHKF/vZd/fndJuQyXA1k+2QjbH3r+TxeW1765j6nxYdBrQXmZi48MtDO2fpEuDuqoUnffX4q51sEeokKoVOx5rJz6VFOfM695Xz9iRGZHKROX2EhpvCHD6p/2Ma1QqlGDd++qxlVp45fNyla9LWAQaYua699WTSWQ5/h/qN9sspSY2vr+JvhfG1B3okLLrL2xuMODrcBLqCa9IKpyfe236UANGi4F9X1W/oZeLxfh16jvodDqy2dc/Vl7CHwZGo5FMJsMN5vtUE5QANjwQJB1Nc+Qb6se/0QqOoJ2Zc9FVybsqNnqpvaaCw18/LyIxtNxRhcFi4OR/CjcLjGiyXruEi7HlYy1ERuPyd6ABvjYXrXdUc/bnMrXAsrVuytZ4xM/YeX8d9nKLWGVQK7Z/pp2pcyHO/Oj1P7xTfXU51TvLOPjlM8QF35x/sxdvg5NTP5Ad5Nz4cBPotClnSmF0Gtn8cDPD+ybp/a0GVcRLuBjCmFnS4qT+TX5OfLdHRPJrv6cGi8vIoa+qqKm+1rzLbMZoBXulldnuFTbm5m2UWcuMrH9PPQN7QwwdUEecyIYj7E8+xwRDfOITn+ALX/jCa3jyS1gt/OAHP+Btb3sbZboqNhmvUkVQAvC12Km72sfx7/QttE1aYQ/REbAQn04rZJDXIde6EG1vqyadyIiUaww2Ax1vq6bvxXEZccKAmBxzCYujfL2HmisrOPrN85qJCRJ03FuDwWzgqODANEDdm/xEBmMiNR+DGTY90srgnnEGX379D+TXXFVOxQYv+/7+ddhnWQTrH2wgPp3i9A9lOVTDWyqZOR9h8rR6wr2rxqaoDT01yNQZ4WkODai/sRJPnX1V9sD/PwENMbPhxkpyQLdABctghrUPNDHw4pgm5a0VceF+o9mMI2AmPqGCiDgv92q+tRKbz8yxH6ivoWfDEZ5J/Scms4lEQnYICkCsA9fbqxRbWltbiwSlrR+tZ8NDNQDY/WZ2fKqRuut8ALTd6WfHowqB55UvdGMw6dn8EeV/m52w67NtNN2iePi13BFg12fblE1oYMvHmtj04RZabw3ibrCx63MdtN2leFY33lTJrs+1Y/YpF2/+SBPbHm0pPueuz7bTeY/yTHXXV7Drc+04axQZyI2PNLH9023Fa3d+tp0171K8kZORNOjAUeUEYMMHG9n+F+3Fa3c81s76BxsA8G/zsuuJDso3egCwlZrZ8djCawvkpdJOF7ue6KBql2LLsO499ez8bDuX/UUnHffUsP0z7Wz8UBMArnobu57ooObackBRGNj1uY7i39326TZ2fq4DR6UZa4WZXU900HhTJQDtb6tm1xNz1279ZAtbPt4MgKPGzK4nOmm+XfH2bb69Srm20N8fb2brJ+f14RMdtL+tGmuFWenvJzqw5j0aN32kuWgtBQpBqPO+WkAh4ux6ooPmO6rwb/Gy8UNNbP/MXL/s/Gw7695TDygEgl1PdFDaqUi3bvhAI5f9l042fLDxov4u3+hh1xMd+Ld5AWWymd/f6Oe8J0tanex6ooPg5Up/r3lXHTs/O9cv2z/dxsZHlP521ljY9UQHdW9SfIg77qlZ2N+famXzR5U+NPuU/raXmRk5PIW32bmwvz/RwpaP5/vQrPRhy51BQPH9rLm8HHupMg43f6yZbY8u7MOOdyjju/4GP7ueUN4xQE7PAnb5zs920Pkupb+rrylj1xMdeJoV9uLGh5uKY3bzR5vZ9ZcdrHtA6e/K7SXKmF2veLmuf6jhojG7/iGlv40OA7ue6KByewkA6x6oZ8fjc9du/4t2pfgBeJod7PrLTnZ+rgP/Fi+d99de1N+bPqJc66hU+rDhRuW719t0ZLO5IvFk26OtbP5Yvr+denY90UHTWxVf3ZY7g8Ux6wzYcFbZ2PqJhWO2GCNuDrDriY65GPFRZcwOvDLOwO4JZczem48Rb6pg1xMdqmJE8HJlzJa0rhwjHFX2/PygvLwLx+xSMcLT7OCy/9LJznljS02MMPvMNN9exbZPtbLpI0ofqo0RzqC5OGYlMWLdg0q/SGLE+g/Uc9n/rxNXvXLKXG2M2PWXnex4tP3iMbtMjKi9phxyYPOZ2P4X7cXYslKMMFmNpPPqcVpiROMtyphtu6v64hiRH9+YlX5pvq2SDe+pp/mtVex8rBWzMrTY9EgjWz/WNNcvf9FCxzuC6PQ66m8op/3OICd+PELf72fY8N4AWx8OzvXLR2vouFMZH8FdbnZ8vAZPvRmdzcZ77nsXOp2On/70p1zCnwa+8x1lc/OuW+4Gg4HKLW52fLIRd51yunzNO4NseaSueP3Wj9bT8bYAvc9Pcv7ZUda/uwFfpzKwOu+rZtsnm4vXbvtEM2vuV+JmSauDnX/RSuttQda9t5GOt1ex/dNz3/HWj7ew7n31ADirbex8vL2Y17TeFWTHvFi45aPNxfnEXmZi5+Pt1OZjVvOtAXbOm09yOdCblZTUZIedj7dTn58j6t/sV67Nu/Js/FATmz7chNmlxJrmtwZpzs8RtdeWs/Pxdkwe5eINH2hky0fnfuuOv2hn20db2fl4O8HLS9n5eDuOoNKH6x6sZ+vH5+Lb9s+00f52pV/8m5W5s+VuJTaufXfdgvl726faivGtbK2bnY+3U7bWXfy72z41N59s/WQra9+tvCtPo52dj7dTuVWZZ9vfXs32zyjX2v0mpb8fVPrbEbQWnxug9Y6qBbFwy0eb2fBwI/U3+rEHzEp/X6fErKabF/b3pg83FecTTEoc2vWXndj9JupvVPq7INi14YONbP7IvD58rJ3mW5X+Nth16Aw6THYl91r/UMNF/d16txKXAjt97Hy8HWe1EvfXva9eIR0V+vvTbXS8Q5mTKzZ72fl4OyVtyphd865atj3aSv9LY/TvGWfbo6103q/0t6/dyc7H2ynfoOTinffWsO3TC/vbXefAGbDhacj3dz6vaX1bsNjfAFs/1sL69ytjFotCTCic5Wi5NbCgvzd/pLk4n5g8yviue1MF/s0l7Hi8fWF/P9LEpkfmxfLH22m8KT9mr69g5+Pt6IxL93dLfk4OXqGMWbtfGd/r39+gzJf5MbL9M220vk3p78rtJex8vB1Pg/Ii1763bkF/o6P428rWK2PWl8/FO++vXTBmtz3aypp8zunw22i4MUDFZi8AHe+oWZAvbf1E60UxwuQwMLh3Al+HS3OMWNDfK8QIq9eCbt4Kd+fj7apixPr3N3DZf+mk9Y58f6uMEeUbPLTeXa30d2O+v9XEiI1uTB4TnffVimLEjr9ow1KqPL/aGGEPmNn52XY2PLxwzK4UI9rfXs3Oz3Sw8/F2GvJ5pJoYYc3n3jVXlSljtiw/ZpeJEb4WFzodzOZP7q4YIx5ro6RNWfusub92QR1g2ydb6LxfudbX7mTnY23zYkQ12z7VSkmLnbbbqtj0SDNr361c6663s+PTLVRu9eT7MMD2Tzaj0+vQ6XVs/UgT2TTs++og9jIT2z9STXC7Euubbixh2yPVxWfY+L4A6+9Xxqi53EZrSyt6vZ6hoUuHFv4UEI/HyWQyNDU1FQlKa+8P0PkO5TswWmHLh2qp2q6MleAuL1s+VAtGOPT1AdDrWffe2uLf2/aJZmqvKQOgamcJ2z7RjNGp/N0199ew8QNNdNxVjbteWds23KCMHf9mD9sebcWa/4ba761hYz4WAmz5eAuNNyvPVLbWzbZHW3FWKzGr7e7qBXPP5o8005KPb6loGp1OOeUNCvlo/ne86ZFmWu9WxrOr1sa2R1sp7VTGusNvY8vH5r63jQ830Z6vu9kqLGx7tBV/fo5ouNHP1k+0sv2T7TTdEmDDQw3FWGj2Gtn2aCtVO5W6Yd11FQvi5vqHGtj2qTbltxuVuSh4pdKHwSvKlGvzc+fa99QV14Nmr5Ftn2ql7vqKfH/72PZoK2avcnHnfbVsyM89oMxbDW/xY3QaqdjiZdujrdjz6k3t99QU6x2gEIQK80lpp9LfNdeVKWSeu6vZ9OG5Ppzf354mB9sebS3WD1puq2LXX3bS8c7afH830ZbPOZ1BK9sebaVsndLfjTdXztWXAINZj6VEGQ/WMpPS31vy/X2Df0Hc3PBQA2vuV+YTozPf3/m8vebqhf297oH6Ys2o0N+uWht9L41hK1feq9GqTK5r3l03ly+hzFv1+f6u3FpC81uDuILKJNFxXy0bP7BwzDbkx2z5BmV8O6qU/tabdAs2ijd/tIXm25Q+9LW52PZoazGvabkzWOzv9ntr2PFYO613KfOJu97Otkdbi3lN821VbPnovDH7oSba8/OJ0WZg26OtxTmi4aZKtn5irl82fqCRjvyYtebH7JZPKN9D3fUVC/p7/fsbWJOfv41WvdLflyn9bbTryeVyxOMKgWTte+f1N0p/115TGLOlSn87jTgqrfjaXAvH7Cdbi7U0f37MXhgj+l8ao//3Y2z5mLYYUdLqVMZsS37MLhMjbD4TerMOdMq7a7oloCpGWEuN7PxsB9v/Yi4HUhMjjFY9wSvKWP9QA2vfk1//qowR1lJjsb8lMaIl/1srNqqPEc13VLHj8XZctcraR22M2PZoK1seabmgv5ePEU23VJHLKTa2Gz/YSHu+zrlSjLC4jKRjSs1rxRjx3nrWvXdef3+yhZqrlby96rJStn2ypWgFuuZdtazP56egjNm6a3x0vL2a9tsCbP1wA9YSpb/b31bFhgdq5vrwQ3U0vMUPBgPl69ysvb+e07+YYOhAlNabfay/r7x47cb3VNB4nfLtljRa2PygH3e1Cb3Twe233YFer+cHP/gBl/Cngc9//vMAXHPZtejMZlxBCxveG8QZUNYVtVeVsOaeQPH6znsC1F3jY/JMlLO/HKX97mpljshlqb2qlPXvm/uOO++rLdbErT4zGz/YSOvtQdpuryJ4WSkbHpqbpzruraH5VuXbNDkNbHy4ifJ1yjgL7PAt+Obb315Na37Px2BW4l3FJi+g2PNsfLhJ2fxGsTw0WuYOG258uInAdiW+la/zsPHhpuKeVvNtVXTcW4PZYSCbVUgTwfy36Wt3sfHhJiwlSr803hyg8/65WuD6BxtYe38dmx5pxtPgYOPDTdj9yl5H/Y2VrH13ffHadQ/UF2Ohq8amfKvXKd9Y3fUVC+apte+uo+FGpQ9tFWY2PtyEt0lZizW8xb8gL+i8r7ZYE7eUKNf6OpQ5ObirtLiuN3sMdNxTU5zrDbYL+nvrwv5uu7ua1rdXU7HJiyH/bvxblHVy+QalDw35umLLHUHa3zG3NtvysWa2faoNW5mZsk43Gx9uwpzv76ZbA3TcOxeHNjzUSPAKZT4xWA0YrXoMJuXaxpsCxf0hgPXva6A2HwvdDXY2PtyEI6DMEfU3+Fn7nnl9+J566t6kzN/OKisbH27CXavkNbXXVrDufQ0MvjzJwO5x1ryrrlgzspUrfViYk4NXli3s73fWUrHeiyNgxexR+qWQt1ft8BX7G6D9HTW03FHYO9Dni7HK/6rccnF/t909b337cBOVW3y4amxsfLiRTR9uxmBT+qXltmAxtwKlRlAcsx3KmC3kkU1vDRTnelDyp8L87W1WxqytXBnfDW+pZMtHm4vf5LoH6qm7Nj9ma21sfLgJZ1CZZ+uur2Dde+f6W2/Sk8vvxzkCSn97GpQxW3t1eXHtAApRvvFmpb899Q6a3lqFrzU/Zi9fOUbYSs30Pj9avE+xvwUxovXOIG1vW9jfS8UIR4UFvWmu6LXhA42qYkTDWyrZ+dl2aq5SxqzaGOGqtRG8vJSNDzcV8xpVMaLFgclpoPrKsoX9vUKM2Pihue9TbYwwOw1semQux8eAqhgR3FXKlkda2PDBJgI7lP5WEyOcQSs6FKL4xoebsJXl+3uZGOEIKvvEBSV2cYyY14eLxog8NyB4pTJmrSVG2u+oYu27aml8s/IMZpeBDe+rxZevpQW2elj/QI1yGN5goO3uKnRmE8d+MIHBDOvv81PeqTxDxToH6+/zF5+h5S0+Wt6i9Jne6aCzo5NUKkVXl0xQBDTYvd12220A+Ev9kD8YEx1LkIwobKt0Ikl8JkU0z14Oj8SLHwVAZDRBNqlcm0wqLyU8orDow8NxRc45T1aIjsTRmXREhhPMdsWITSUJDUXzfydGbMqu/BEgOpJQFkZ56Iw6XHm5tOhYnNhUkmSedB8ZjpN2zv302ESS8LAioxudSSjXzuaffzC2wOYsNpkgPKRcGxtPEptKEp9WTiIXlF2K144nir8tkf+7sQmFSRYaiqG36klF04wdn8FoMRDLS5IlZjPKteNz15pdpuLfzSYzmOwGjE4TqeFIvl9ixWut5ZbitdHhePH0Z9Obg4plWP7a8FBswfNGh+ML5BILf3ftfXUY7UZiU0myUWVRHR2KY7DPBcPY5NwzxMaV31ra5qakwcnU+TA2zxwbLzYx79oJ5drETP63DsawlpiL0pKxibn+jk8n8/2SLD7/fJpdeCBGNN9nyVnl2mi+v8PDMYz2uWQwOhonEU7j3+al8U0BktE00VHlXYVGYgvH7EicbCI/BpLK353pijKyb5qqXaXYfHP9HRmedyKkML7zYys8EsM1Yefg184V+3v+hBKbSjKbvzYyooz3VP5bCHXHMDnmnj82mSjKwsVG832Yt9cJD8WKNoc6vY5sOkco76Uam8z34VS+XwbjCzyKY+MJwsNxnH4b2XRWuTavPhMaiKEzzhsfY/HivyVmUyRmk5jtRnQGHZHhOKZ5dhSRkTipfIxIFfol39/T5yOYrKYF12ZT2Xx3Z/MxIlZ8j45KJUYc/pcuOu6pWUASnf8tKH04L0YMx9Fb9PT/VrGOrNjgLfZ3dDQfIyK54nu8MEY4q21s/mgzXc8Mi2JEdCLB2LGZ4ruZb+GzVIyIDUdIR9OkE/P+7mh8xRhR1ubCv76EyESMWN6uMhtNrhgjbJVWNjzYwqtfPKH0t8oYAeCqchT/rrveoSpG2Eqs5MiRmM0U76MmRsx0h9GZ9BjmxykVMeJw/mRYbCwujhGYIRnJKdeqiBFV273oDDpy+VM7oaEYNv8iMSKXg6SO2FSSyEicmZ4ormorrip7YcgSHYktjBHT88b3aIL4dLqY2ERGk5jnP/90knDe0jA2kSQ+nSYeUvrYmHBTUVFRVEW8hDc+QqEQVqsVXdgGJIhNpoiMJ4txNTQcJ5OcG5PRsSSh/BwRHU0SGU+SmCl8FwtPLkZG4sV4nJhOEhlLMHluluhIEoffWiQPkcsRGYoV41AqliYyFic6prTN5nIYrHoqt5YwvHeK8PC8uB/NEBmLz+V7Q3FshThkUr7VQtxPpSAyFieSvzY6liAyFi8qeUQGougMOqbPRtj7hdOse7Ce8PCF1+bnw4HYgjgUHY+TCKXIpXJEx5VrC7Kz4aE4addcHIqOxIvfW3wqgU6nwx2ci3fZeZZqkZHYXNyfShIZixPPS+E6AzYy8+aI6HCMSD4OpSIpImPxBbmh0WrAHjCz8cFmYtPJ4vtKhpU+LMSw0PDC/Do0HMPiNlG1rZTQcES5dnQuv7ZXzotDg7E5S7gUxGaS6HQ6oiMpIiNxImPxooVYZGhhHIqOxYvPNH48hMVtJhXN9+FAfEGuEh2LK3kGynwXGYuTiqXZ+HAjJqeJ8MDcadjIaHxe3Ff6MJGfZ0NDcXJZGH5FUe/xNbuK7zwRSi/o79DgwlwlMhxjfDJJ969GsJeZlP7O92FkKI55Xq4SHo4Vx0MqrORts93KicXQSBxrmWXBtYW4n4oq7zEyGsdoNZDLUcyzQMkT5mPh+Fb6u3DQMzIYQ2+5oL9HLujD/CccGoxh8ZjQG/Rzf2vogmtD+X4ZiJGZl1OEB6LM9ir9H59Unj8xU8gj4wuI8ZGRuWc4/K9nabolSGyi8G4WPu9iMSLUF2P6bISqXaVYbHP53koxwl1nZ8dj7Zz6YZ8oRkyfnV1gAxIZi6uKETM9ESxeM+ER5d2pjRF1V1egM+uU/o6kiv2yUoxoenMV8akkU2dCC3LDZWPEcAxfm5uG6/yc/F4/4aGYkquwfIywlljQG/Vk4vnnT6VUxYiJc2Gy2RwWj6nY32piREFty9fpUq6VxIiU8ntCAzHS82TuF8aIFJGxRHHMOoO2BTlNZHQuTiVCyrXxqUKMiKMzGZg6E6X3xQlc1RZi48q/pcLKtbHJ/PgYiRcLgQDh0TjJ/PeXiqeITqSI5tdCkbEU1pK542mRkWQx9qcS0Li+idNnTvPAAw/w9NNPcwlvbHzqU58CoMzjh/zhyPBQomj5k04r30IhD49NKPl8QfkiNJRAl50bv6HhOJG8rVpsPEloOF60AQoPxolNJ4mOJJjtjhEeihMejUEuV1wTpeO5/DPESYXmVDKMFj2+Njfnnxomnl8npPMxITQvboIyZxTWIYlImtBQjHj+G4oMxxecvAwPRYmMzMWh0FCMxEySMz8exL/Fi6feOXftQJRY/u+kohlCQ7FijSAymsDijZEIpZg8HSKby5HJKy9m48ozFOaT+d+4ct80jnIrFpeJ+LTyDAVruthYYsG14YEYOpPy/LVXlGOyGZVYD0Ty12bj2WJ/z88Nw0MxIsMJ2u4MYi+3EhqMkk6ki3023zYuNBibyz9mlP4u7/BS2pxl9MgMucyF/Z1fd4bS+T5MF+/prLExk88xwgNzcT9deDeFNd7IwrrKxMnZYtxPx3PKtfn+Do/GsfjmcsPZASVXcdUqp7sToVQxB4qOxS/qwyLSyvgJDcSYPB6ipNVJyG8lnc4Wr51few0PxYpridhEgunucNHCOTwQJ+FY2N/RfB/G8zWKVL5+MHU2jG3e84cHo0Tyz5gI5cdhPq+JDMWLhCaDQU86linOJ8lw/tp8bhgeXDhPhQeVMequdZBLZxf0d3QkjmVe7XV2IEoqovzudFrJKWylFnQGZcza5vVhaCBKNlWIEfm/mx/fsz1RrB4z5OeQcH90Qa4SGooRmdeHoaEYpNOcf2qYTDy7INcKD8XmcsMlYkTBrq201V2cv9XECFfQztr31HH+6RFRjJjuChcVB8LDMQzWeXPnEjEiPpEmPh4nPc9KbXYwtmKMcARt1FxeTqg/SmR4Xv+vECNctXY2PtTCwa+eUfp7RF2MgBylLU7OzO9DFTHCFbChy/eP8ndjqmLE+NEZ9DY9BuO8d64iRpz6nqIUERqIiWMERkgX+nuxGKHTLVi3lbW5MdmNxXp8bDxBaHjuXYYH4wrpMI/ISILIWJKp81EclWY8NQ7Sqbn8OjkvNwwPJ4jk61jx2QyR0RSxvPpYeDRJOj7/2iSRfA6XCCvXFmq62YiZQCBAMjmXm13CGxsHDx7EYrFgjLmAKKlomtBgnGR+HbFAJYl8/pSPD4mZjHJtqJCXx+fqWCjfUDy/Z5JJZpgdiDHbFSY+ncLsNBb3TCC/bs6T97LJHLP90WJek01nsXpN+DpcTJ4IERqMkcuP+0wGZvujxbgfn04y25//bgxKDJhfT5/tjxbXeIVrC/ulkcE4epue2HiS49/qofGmwLzfmmK2P0o6PldPXxCH+mOkYmml5BwuXKv8e2R4YRya7Y8RzcfNZDhDLpvDFXQAY8p/nxf3Q/0xopPKtZlohtn+aHEfqrTNU3yewrXJSCEO5a/Nz8nR8QSh/hgGm4H1DzQRHonNWaFmlGvj0/k5eSIx14cofWj2mqi9qoLEdCr/bpRnSkwp/zuT/33hoRh64/x5No7BqCM5m8RgMSjXJvN7QIMJEvY56eDQwFwsnO2JMF5umevv4diC3zo7ECMylp8PQ2lm+5Wx23xbFfYKywIFrNBAdK6/I3PXgpJ/6I264vWuanuxHzKxhf0dG0sQmpcbzvZHmTwdZnjfJAabId/fc30Y6p83vuftYWUyWSbPhYvjPzoZv6i/56PQ3zqdjmwG4qMxMsm5fpn/zYX65+3R5sdstvhu4iRn543ZgRixfB8mZvPvMTY3vh1+azGPCw3Mzd+pcCbfh8q10QssrKfOhogW3k1U+bvJcD6vGUugn0caDPdHizHi2De7qbm6omgdFhtLEnIvHyOiY0nCAzG8TY4Fe/grxYjYZIIN72/k/C+HRDFi8mQIvW1hf6uJEeEBZZ+vsE5SGyOCO8swu4xKf4fn9fcKMaLuWj/xiSRjx2cw2YwLrl0uRljcJgI7y+h5ZkTJVfI52nIxwmA1YHIa58ZwBlUxYro7AkYdFo9prr/zfbhcjJjuCjN5MoTdb1nY32piRD6PjIzEF6h2LxcjvE0OzPZ5fTgQWzxG5HLERpOEXHHiU2m6nh3D6TcXLXMz6SyhwdhcPJlMLdgnCo8kyOaMhe4mNJwgnl/DxqdShIbn1bpHFs7LjbWtHDtxjMcee4zvfe97SCC2ezMYDGSzWa4x3IXZrN4zcfOH6shlcxz4iqLElE2+Rq+NFWQbCydLun41Mq/N8j/V7DOz9ZFmRo9Oc/Yn6iXcC0otEiuhPwZKWp24a+30PCOT4K3aVYrFZVzYlypg9pkxmSEy/Pr3i9lnpnqHj/6XJ0XvoaTdScObKjn9o17CA+rbVW4vwdfsEtkYvBY0315FLpPj3M9W5/Ttatq9uRvs1F1dwaknB1flGwpeXoq72s4Jofz42nfXkUlmxe0Cu3xk01lGXp0WtdMEMzj9FsJ9Mlk9d4Md/8YSzvx8QGSlVtLuxB200/ObN76st6veRqg7tvKF87DriQ6iYzILSWuFmcYbKzn/q2Hio8t0pn4uGdbipW2oVOa4QCdUb/Nw7LsjhAWxdp/pSSYmJhgaGqKyslJ8/0tYPfT29lJXV4fD4eCyzB2q27nrrHTcWUXXs2OMHlaKxrmUBq+N+fnWMnmU3W+i5ko/558aFFl/rXuwHptPbs3kCFqJDKj3cP5jIXh5KbP9MUI96uTpAUx2PTVX+xk+OEF0SDYvrma/VGz2kk1nxRZerXcHIQenfyiz12i9K8jUuTBjh9TZW74W2P0m6q+tpPt3I+J3oAWrbffWcFMlmWSW3lWav1vfFmTyZEhkF+OsttF0U4Bzvxgi3K9+/jZ5TAQ2exl6eWJVbAjtfhOpUEZ8r9rrKohNJMTjueaqMqbOR0R98seApdRENibrl5ZbA5St9bL78ydWtpibVxCrvbacTDK7sqXjPIktTbmXXzm1ue5OB7l0jsPfUr82jqWivBj/LhaLhVjsjf3uLgHKy8sZHx/nKsvdWI0O1e0631GJzqjj2DeV+U1TzUtl3gWKiorBZGBwj3opdoyw49F2hvdPitZwRqsevVUvsof7Y8Dut+KusYlsSUFR6rGWmGV9idIvRodeZLGkFUarnoqNXkaPzhaJJmpg91upf5Of7mdGiI6ozxFLWpx4W5x0PfX6296CosaiM+gYeGF8Ve63mnZv1jITNZeV0/f70VUZK742F54GO12/lNVwG26qhFxO3M7X5gIDTB5Xb43yWmCrsBQJSWphLTNRvqaEoZfHScfV5yaOKivOSisj+6eFT7n60NIvWz6et5D8zgp1znl5l9Gqo/Y6P4Mvjy87nnXGuY1aNORd+tq82qYnRv3VHk7/fILwiPrv55T713R3d3PmzBmam5tXbnAJfzQkk0ksFgt1dXW0jV+tup3ZZaDjrkp6Xphk+qxC7shqsJlZgGVyL5PTQMWmEkYPTBU36tWg4cZKPA0ODn5ZZsFpKTGTmHpj7zWCotwSm0wQW64GfiEM4N9YwkxXpEikVAuzx0gynF4VSztXrQ2dQcdsl/p6HihqMHqTnr7nx8TtwsNxmb2fRhhsBqp3ljJyaFr8DrRgte3eyjd40Ol1jB6YXpX7BS8vJdQXKx4GVAOzx0Dt1X4G9oyLvh+DzYCv2cnk2XCR0PV6wuw0kMkgvldZp5tULCMez74OlyKCMvbGjn8FJTFJv1Rs8lJzRTkHv3pe1K4sr462kk1cwflMeUDD0hcuAX2NolrVtBn0ejjzS/VWkJlMhmfD36CyspKBAdn6Smz3ls0qybylo2OFKxciOp4ostFUwwxbP9aEf7NH1g6FnCQhKBUw2xspqp6oRfONfrZ+uLlo0aMWwctLqb/Bv/KFfyBMnQ6LCUoAg7snxAQlUEhbUoKS2anIxZnnne5Qg4r1bgJbSylpUE+cA5g6GWb/P5wVEZQAKtZ68TQIXzh5K7Z5thhq4Wt2FWUG/9xQ0ujEFbTjmneCWw2ab69aYLmlFuVrvXib5O/u6L/3iAlKALVXVlB7ZYW4nX+btyjhrBpJxAQlgNmuqFKcE879UyfDq0pQ8jQ7ipaIEmz5eAtr7q0Xt5s5H2b8uGw+iI8mOf7N3uUJShegwJpe/2Bt0f5ULcLTkJhNi3QRdbVVJMJKovLggw+K7ncJq4+PfexjAFhy5ejr1I//XDZHbCpFaFBGWGm62U/nfdWFP6K6XXQkxanv94s36sePzzJ1Su7FvO5d9UWrKAlabq8q2jetBgZ+PyEiKAGkolnO/2JIEzlGC0HJ1+kqWmJIUHtVBfXXykmOp38wICYoAfha3ZSvka0JTB4TOx6bsxFTC0elHU+DE2dAllf+qaC01U1ZuzDHQLFrKFjtie7X4qZUeL9wf4xD/3xeTMYpbXNSfVk5nmZZrmfymBSrNNPK185HdCSliQzV++yoJsJd3/Pjq0pQqr2uomjvpxb2MhNbPtRC7TWynGbsxCwTZ2YxqXkH89b2vc+NrUxQurB5NkfFRjcbPlAvagcQm4WIsGBmr63PW/288cm1lwCTk0oxztouW2uGR5IiEkgBa99Ti6/VKcq7AEb2TctJNUYYPTbN5BkZmaBqZxmbH27B6pWJsfs6XUW7ptVAdCQuJigBTJ4KifsSIB3PykknRvBv9hYt/9TCVWun9mo/XmHNKzoS5/i3esRjs6TFScUar6gN5K3YCrbCApR1uCnvlNd+/xRgr7Dia3NjK5WtQap2+tj6yVbxWCntcFGu4d11/WJYTFACqL2mgtqr5DUvT5MDT5N6ImgBUiIOQHw8Rd/vRkUEJVAUTVaToGSrsBQtPyXovK+WNffVrXzhBZg4NsPECRVr8Xl5VzqeUxT8JLEvX/Nqeaufmitlc0IkYyM2mSYrOGKfq/GTnlXu81//638V3e8SVh9f+9rXAEiHfNAiGMd6RfUhOi6b3yo2eYu2RBKkwhkGXhgXEZQAps6FGDs8Lb5f211BWu+S18CrdviK1kOrgcmTIRlBCSADI/umNJFjkjNygpIjYMVVY1v5wgtQfVmZpj2dgd0TYoISQPl6r0L8FWLDB+dsxNTC4jZStsaDvUy2H/engrION2Ud8ppX5ztrizZaEvg3+IqWfGqRnMlw9slB8fdjLzNTd50fl7C2bbAZ8LW7MAjDQzKc0USGGj8+q4lwN3kitKoEpdJOd9G+Ui0MZsUWunKjV9Qu1B9l9NC0qA0ofbkSQekiZDK4ghZab/MXbQXVIhozEhmXvQN9Yw3kdIyMyNcSopVOOBwGQCfnNnHy+wtP3+jNphVPlpU0OjHZDRgsi9xPp1+yiFO+0UNZq4sT31XkTtUSlJKTSU3KMQN7J0klsiTDsnZV20vRm/V0/1r24rY92koynBape4DiIzl5PsTA87Liy7r31DO4d4IJwakYs8/Mhgfq6X1hVKQgU9LhpfqyctKpjOg5+18aJzIYZ6pb9hKcNRasXktRDlktDv+L3FsRFCm8TEIe1F/5PzKFiQJ2fa6D+GySA1+UsfW1wN1gZ+399Qzvn+L8U+oVn3p+M6qJ6BIdTRCvToIZEblGenKhAGuFGVeVjbGDsg2l49/tKUpPStBwfSXpWEY8Njd9uInYWIKTeblntei4p4bp3ghDu9UzZM1OaH9HA0P7J0X9UrbOTfMtQc79clDULrCxBF+bB7NvVKS6NbBnHItbuOsIHF/pNNkSqNpVijto4+T3l3gH+oszg1w2h8VtVjVdFVSUAEKDcPhHEcCK5EPoCLyFV7u/wdmzZ1W3uYQ/Dn77298CsKbiBlG7UF+Cw/+2cAzrTMYV1ZTsZRbMTuPiOZZOt2RO1XJrgOneqHjTfWiP+pgzH/0vjRdl7tXCEbRSvtZLMpIWkXn8m0uou66CE9/rExGOyjd4KF/jEasuVm4twVlpLVplqEXrXUEsbhNHvt4tatdwnR+9SS8+/Xz8m13oLPKTGWVr3cz0xUjNyBQm9vy1BpWhVIbYZKIo86wWY4dmNBFIGm8K4N/kZe8Xz4p/nxZs+GAjFrdJrES2929Pa7pfdCwu7kuA3RoVonztTuJTCaIj6vty+MAUsbEEM/0ycmDlBg81V1YQHooxc15928qtJQR3lrLvy2dXVv+ZB1+7k/K1Xk4tlSssgeDlpbiqbOI8b92D9RjMBg7+kywPDmzxEZ9JMirYoIuOpxjeP8XIYRlRYPpspHgKWhVyOWVeMkHrzVWMnZxh6tQS7XUX1xOMVgMWhxFHlZnI4PLzSUFFCeDsb5R76N0usrPq42ZFRQVTU1PMzMzg8fx5bsT/OSCdTpPNZjHohNXbbJbe5xYqwKipedkqTFjcJkz2xWpeS+dd7no7pa0uup4dKdrMqUE6jiZlnLHjM+RyEBcqKQW2+LD5LAwK8721760nHc9wUnhIqOmWAKGBGKMHp0XtGm+uZOLELDOSk/JG2PBAA/0vTTAhKBo7K6003BBAbxhm6FX1cXLqfJij3+wqWn2phbXUiMVtlv024PxTw5zXMFa05AkAh7+mrca25eMtxKeSHFsFFXCj08iWDzcz+PIkfb9TX8OaPB7i5eMnxfeLTeQt59MyYs2ZH6t3BpgPo9OIK2Bl6oysrnrqR/3kkvKaV9NbAmQSGQ6dk7379ntqSMwkxYSquusriIzERcqeGKHlrVVMnAgxeUr9nO+ostJ+dw3dvxkRxQdfqwv/Zh/Dh6ZFZKyhVyexeOQ1r25JLbaQd6GoZ7mrbUu2X6CiVEA2h63UtMB+cSkUVJQAEmE48WIWcAHqY2Zj4CoGpw+yb98+1W0u4Y+Db33rWwDUle8QtUtOpTj31MIxqLdYVlRTspdasJUu8b0sk3sFtvuIjiXEm+7T5yJMn5Nv1Pe/NE46IoutBpuBqp1ligX9uPrcyxm00fiWSs49NVS0kFfbrrTdRf8Lo2QE5Tl3gx1XpY2B3bI9ysAOH/Zyi9hppPryMixuk3g/7+zPBtGb5DUvZ9BGYiYpJrRp2rMyKDasBbsstYiOJNj3D3JVo/J1HmqvreDYN3tWRYGp6dYAzoCNQ1+R7YOf0LinExmOK4fBhdj/JW0KUY6AlVQ0rZDvVCI0GOPYf3QXrSjVwl1to/HNAU79ME2oT/3BN1etjepdZZx+clBEVrL7LZS1u+n9nYyw52124Klx0POcbL+44cZKLB6juFYW3FFKIpQSxelMEvp/P85sjyy2x8aS9I3JCYygKK3N9EYX2nTPwwIVpTwMRrCWmLH5zCsSvwoqSgBDJ9KAGcp8IJhLAv5qhsf6mZycxOdTT0oXkZQeeOABAGymEgB0TQq7OXdu+cWgu96MM2BjcPfCYv9KRZupk2F2n5QX0SvXe3FW508XCdzs6q6vIJvN0fecbKDMnI0wIymo5vHq/z2NtULObE6EUqRm5RsfziqFMSwh/5h9Zlw1dkpDaRFJyeoxojfq0RtlhLaRQ9NkUzlmzgo3hpKKUpQUTW8JYq+wMn7kuLitFpz+kSxIvlZMnQkRGl2d09bxsTjT3WEmTssVMbRgcPcEg8Jk9rWg7fZq7BVWMUlJajFWwJknB0jMyAt8Rothgc+rWnibXJhcRhFJKZkER8CGr9El6pf4ZJx0LF30QVaL87/s5/wv+8WE0OFX5KdpQSEx1uwq58SP+0VEuIoNXmwl8tj+yt+cWdF+ZD5BqQBnJXgCZgYOuMnOLP396Wrnkg2fswaPx8P09LT4OS9hdREKKXOv3aIkdwU1pWzP8vNJYLuHmZ7oRZv7KxGVjnyjV3ySH6C004vZYxIRO0x2PXXX+xncPU50XJbX9GuwgogMxHn1/54klZL9vkwyQyqSJi5c9Jc0OHDXyk8Hl6/zYC+Xk5SMVgNGm7yAcuIHvZrmDeWdyfPRlluDzHSFNRNBJUhFsxz+qrZNLy2YODWD0aEnFX39CUoAY0dmsHpX75Tk8W+tjs1xAW131jDdFZYVmFKIN2IBhvdOEhmNM9Mna6s36dGbDdg9JlEcK2t342txKcpNguHibXTi8MvV4BIzKYwWeWw/+C/nSEzIx/P5X2izqA5eUUo2nVNPYM3lAB2lHW7QszRJaREMvDTJwEuTK+de/otPz/o7TYTGUkRZnqikC8y1DVbWMDo6ymOPPcaXv/xl1c95CauLwrtx2fLvrjmvHnd2mfiXzWItN+KssDB+bOEYXKnmFRtNabI9KG13UbGuRKx4Xb7Bg96oY2TftKhdbDRB36j8YNGxf+/BLFRfAkjMJEnH5aSHkmYXBqtBRlIyQvkaL7lUTjR/WJ1GDBYDepPMxig8HOfEd3tEm4AApCGsQTGz5vIKfG1uXv7fcpKMFgy8uDp2bQWMHpohMbM6p63T8TSjR6eZOrc6Na+pM2ExYei1oOE6bWNFi7IRwOmf9Gv6zk02A5mEfM1Tvs6LrSwmIymloaTJRTqaEZGUErNpkqEUaeEh1YE944zsnRQrPmkdJ1avEf8WHwO/V2mDlycqlXW68dQ7ZCQn4PC/9q1o/TafoFR8Tjc4y/SMUwLjS9f3cjVz9TKr0YnX62V8fHVj0iXIcfToUQCctrz6cUFN6cwy+43ZLN4mO9GJBMnphd/ZSkSl7mfkKg8A/k0lzPZFZSQlA1Rt9TF+clZEQgBFTUSKTCzDgX+U76XmsjkS0ylxHcMVtFHa7hEfPve1uClpdIpJSiarAZNdHv+7fj2E0SrPRxWSkXyear09yNTZMF2/WgXL3Ayc+6m2tbcWhIdiDB+YIiWwHn4tmDgxS3TkNdo4CiAlxrxWtN1Zw+TZEN2SsZJBk9LQbE+Yk9/vIzws26vUGXQYrQYl/xKQlNzVDsrXexl4ZVLUzlPjoKTVJX4XiZkkOQEXpIAT3+sVEwpBUYPTAl+rC/SKCp0ElVt8GMz6JUlKi2H6fJTp890rWr/NJygV4KnUEw9nSbA8USlXN9c2GGhiYLiHz3/+8/zVX/2V6ufU5QRvrrS0lMnJSTZU302lt33uQVYgKa19VxCn38Ke/3Mx43Glk2UrYomNNLMTkiHZoNz+F+2QzYlVazrfVctMV0QsM38Jfzg03lSJt8nJ/n+QqYK4G+y4qmzid7f+/Q0Y7Qb2/73sfiXtTjKJrNjLdsvHW0hF0ppPl0lx2V92Mtsb0aQsJkVpp4vmtwY5/6shEdHF7ISSNi8jR6ZFBJK6N1VQudnHgS+dFJFdPM0OHOVWMTGq6a0B3LV2Dnzp9Vezek0QKlL9KcHs1NN2V61YEa7+Bj/BnWWc/EGvqN2yfbmIitKFWG6zbDGS0vq7XFhcel79txnVJCWAp4/+dwBNCdwlrB50Oh2g481tjy347yuRlHZ8qpHwYIJj37nYVmtZNSU1BKWlxoxws718g4eWtwY5//SQyJrD1+miYo2Hkz/u18KR+dOAsC//GNjwgUamzoboFZL7K7eWEBqKidSsLKUm1r+ngb7fj4mIpyY7eBrdjJ+aFfVnxWYvddf4Of6fPZos9KTovL8Wd62DPRoVh6RY+946DGaDWJXVVWdHr5eTgDY90kR8IsmJ78qIaZXbS5jti4itDzc+3MjYsRkGXry0NvtjIbDTh6vKJrZ23PZoK9lUln3CNZ3JoSO11LBcREXp4kuWyb0uJCmZYNt9Xqb7U5z5TUQ1SWlw+jhHRn5KQ0MD58/Lvr1LWD1cdtll7N69mzU1txL0bZj7hxVISo03llHa7uTVL3VfpGy0bM3rNeRdRquijCTBhoca0JsNHPiS7BtreIuf8FBck8rgJfxh4N/ipXyNh6PfkNVorGUmnAGbWKG5+bYqbD6zWKHTGbSSyyk2WRKsub+OdDLDKeHpZ63Y/pl2ps6FFNv71xl2v5X2t1XT/dyITLnUCCUNTkJ9YdG3XrbOTc2VFRz7j26SAvUzW4UFR4VFRuJBsaUraXJx7Fuvf/3wNcGISHnuTwpGaHpzgPGTs8wIlADK1ioq56d/3C8iYWHSLdmXi6ooXYhl8q7FSEotl5lwVxrY98O4apISwDOH/5psLn2p5vUGh8FgQIeR69c/vvAfViApbXiwhtBAnPNPX1yPWElNaUUsNWYMiDgrdr+FznvrOP+rIRHpqKBAMrB7gozwgO+fDIR9+cdA01sDzPbJFeM9DQ4SMymR0pDBDB331jP46oSMoGYAV5WN6EhMpGblDNpouMHPuV8MrQoJqOaqcio2eDUdztCCujf5sbhNnP6hLK+0+szojIgt2FruCJIMp+kRkiC9TQ7iU7KxAkqePtMVYezIpbXZHwveJgeOKhsDwkPUnffVotPrOPZNWd5sMLPkN76YitLFf2DpPcnFSEobb7Uy0Zeh72BKNUkpmpjixRP/wFVXXcXvfve7lZ+pcH/VV0JRcWE+QQnmFJWWwukfD3D+mcU3MPRmE3rz4gns9k+1sO0Tzcs/1GJFx1xOTFACeOV/n+Tgv8pJIJ5aJ6VtQo9Ls0KKqrte6GtqVhacrN6h6VVF3Zsq2PRhuX+9IpEuZ0TPdkU1kcuyySzZlHyMtd5WTdudcj/hTCKr6YRR402VlG9cJTsBMzTfXoWrXubxm4plyKayYlWdiq1lNN8cxL/OK2qXTmbIprMIwx8zZyOalJssXhMmh1x2ufGWABsfln8LmrHKBCVn0Iy7wS5ut+3RVtqEntzJZBZXjZ3yTtm30P27EV79vydkBCXQTFCqvqqUyz7XhrfVQS67ML4YKv2LEpQAzr8U4uSvlaRU73Gj91w8H11IUALQ5Q1pe3tXVxnjEtRjaEg5DWPUXzzpFxSVlsLx7w3QtcSpA53JiM50wZyZy1K21smuz7ZTvmGFb0W3RFFRSKoZOzTDq/9whuFDstMHZe1uSppd4vu13F7Fxg/J46qrzo7dL4/jrwmrSFBa92A9NVeViduZXSYsTnnuNbx3Skz8MehQcoW0LPcqXVtC6+3VYi/6bDJLJpEhl5blXq46O/VvXjxWvx4oW+um+kr5u0tHM6Rj8l2atjurablNQx6bypIRWpWAooQoJSgBmJwmrG75YmnDBxoJ7FQvSfwnBROUtDkVAqQAtdeWs/UTreLbFeO0EAf/pUtMUAJIRXKLbyasQFDa8uFGtny4kVw2d3Hu5a9YVEWJFJx7IUL383O2b3r3xb91PkEJoMrbCcDIiLbT25ewOjh1Sjmw5nevWfgPBUWl+chmlf8Dep8f58zPFrdeW7TmlctCLsuG99ez4f0Nyz/UEnmXlKAEcOirXRz5Rre4XWm7R17zAjY+3ERgW4mskVGxs5Ppvv/poHyDh877l6+hLgaLy4xZw9wWH0+JCUqgKImmNWyMNr81SMttF5MMVkIqliYdlde8KreWUNLiFLfTiuCVZTiqZIqG2XSadDxDTlhDLGl00nZXDd4WYR6byZHVYL8WG02ICUoAZocRi1e+VgpsK6H9nhpxO81YZYKStdQoHiug2F023CBcT6ShrMODT/gtjJ+cZe8Xz8gISgCpxfOulQhKvlYH2z/RSEmzDS7Iu/S1wUUJSgB9R1OceC4/6ZWVKP93AS4kKAFYjIqqcWFuv4Q3HjKZDNlsFotpkXVDyyJz5bzc69SPBul/efGNU73Fgt5iuei/2yrMbPlIMyUtKyheL1XzEobW6EiCA/94lsnTsm/MU+egfJ2XTEY2Dwe2+mh/u3y9bvWZMXvkCkWvCatIUGq8KUD5evn+mK3EjNktn99muiIarND0ZJLKHpkEriobbXfV4BKquGfTWVLRjHh/01JipmKTF1ZpuDiDNsrXyd9dOp4hLVDvKaDhRj9Nb7l4D2UlZJLyvU1Q7CC12OZZvWbMGuqxTbcG8HXI6zR/EjAo9nnSselrd7HmXfK1mafeQcUar7jdqR8NiAlKoJ2g1HZXFR33VEMmo/zfPOhrqhYlKAGc3R1n8Eh+c6LMp/zfBZhPUAKwW5T87PRpmaKfaCRns0t/aLqmuiUVlZJhGD0klyicOh8ml1ERKHX6uRNouRzb/6KdmXNhTgmZkgBJDUFh91/JrcLMTjNkc+JkI7itlPrrKjE9MySyZaq+pozqneUc+063yH6q/gY//k0lHPjSaZJh9c/a+a5avHVOXvrvsr5xlFmwaJj8T/ynNsuQ5turMNsMYssRrQpD3b8Z1sSA1+RJC/g3+XDXJcQWZVrg8Jnxr1cCkWSMzXZFefX/yqVIR/cq43/qlKyIMvD8hMjysIDyjR6CO8o4+K/nRISe49/URgBxlFo0ecpv+nATFreZPX8tU2NY/2ADRodcHWzTR5rRG2Df38narbm/kWwqq+ndqzgQvxBJxLGo0C6p5cSKGXZ8sp2xYzOc/3leclWFgtL02RC+JgepWdk8FF5EEVTvmbN+W4ygBLBhw3oOHjrA448/zre//W3RPS9hdfD//r//LwAO8+IkBH1d9ZKKSqE++UmY2GSCmb4I090qVFJ0umJhsuGmSsra3Zq+59SMnI2jKHPITz3rdEvXmpZD2+1B0OvY+wXZ79v04SbSsQxH/rVb1u6RJmLjCbGP9s7H2wkPxzj6b8IT9iUWbOXy9/Dq38iLvSa7nvZ31NK/e5ypU+rlDKPjKU3EhYlTYXT6YWbOynKF8aOzmjZpKtd7KF9fQvezI6tCNAvuKsNaYhbbH0rHVgHnfzmoqZ1Wy73WtwWJT6XoFcrHvypUxS3A6jVj911czF4OJruerZ9oY+zoNGcFMuv2MhNr3i1XB/M02mm7q4auXw+LTnQGt5dSd42fkz/qE6k45DL5TSihuptUeaMALXMCKCRUT52DvX93Zi7Qq0gYJ9XWGy5qd/Fz6t1z1m8XEpQKKC8vx2z+Mz1t9GeCmRnluzIuVuxrrp1TVLqgNpaOw/R5uc33+MkQOqOK5GRe3gWw8YONzHRF6Pq1nPSW1mDPIM2BAKXamMstKUawFDx1DjreVkvXr4cY2T+tup2v00XDmyo59cM+wv3qGVzlGzxUX17Oif/oJi5Qnam7XlFo3vf3J0WEMVuJBXuZbK4B6P3tKL2/lVtQVO0qxeI10fULmeVI1y+1ESq7fqXNckSqvFdA9RXlRMcSq2KLZrRCzWXlmMx6kVJUfEKbKnqoN8y5Xw4yLVSwnDwekik25eGut1O1vZSzTw6I7Ma6fzMqtv0CsJZp+xba3l6Nu9ouXns23RLAXm4R5yjt99RgshvEa7qOd9SRy+Q4+BWZemJeSFmMlz+vwdIxrW1OANj0SDNjx2fof15Zh6hRUJodTDDVFSE+Jat5xRdblpXNWb8tRlACWNO5jr2HXuR//I//wde//nXRPS9hdfDkk08C4LYHFr+gpW5OUemC3Cs+JScgZBIZxk/OEhlVEcPn5V7l6z34N5Zw9FvdYnKNln2goVcmGXpF/b5fEXo0xY/6N/mVOCeMj613Bsmmc5z9qaxO0HJHkGQoJbaJ2/BQI+HhGOd+Jss17OUW0lF5rNO0/2eAxhsDjB6eFtkyZZJZmc19HtGRBOeeGiTUK1uHREcSnBQqXQN4Gx3UXFHO9JkQSQ0WWVJUbPDirrGLFYO02g/3/m4MvZq12QU4/5RGu/tdpaTiGUYPTIvaHdVw6ATAUW4lPi7nP2z5aAvDB6dE/Wow6+m4p5ahfZNMHFdfX7WUmGm7K0jf82Oi/N5da6f1tmrOPDkgs+XMKpaXBqGdXc9vRsUxDBDdYz4CW32UdrgWxCU1CkpT5yLyvVQgvNirLpuzfruQoFRAZWVl3hVEPVblbNKmD9YyeSZMz3NLT656s+kiGewzPxZ83Do9ZJUXnE1mSAlPBztrLHTe20DPs8OM7JsWtdWC5GRSbCsHMHYihMluZOLItKhdKpQmFU2TmJV9BLlsjlwmJyIogeIXatDLR7+ULPRa4a61Y7TIPwOzU6+QF4QxXevYslaYyUaTInsygANfPUtWQxKmBZHhJAf/+QwRDUQ/R6VZaSdomgxn6f+ttoTD7DOLCYnuaju2UgtWr5m4UPJRC7SccAWYPBXCXirf/EgnM+jN8m82MZPU9K33vjBKOiIfm1pIEK8Fmz7STGo2JVuYJBXFj0wiH29VEJQAwoNJDv/rHKktl82h0+uWVFAqwgwbb3Mx1pVgYN/c2JxPVFoMuowXgFdeeUXV813C6uPZZ58FIOheJ2pXfXkJvhYnh7++/JyqMxkV67c80TsykOD4twTzcL5oo1Xtr/O+WgxWPUf+pVvcVgtO/1gbwaL72RF0BvkiNTGdIqUhzmVSWU2FrMlTs8wOyjdItRI6tMDis+Dw23BUWEUkJQCTxyQmMKRmUgzt0VDcM4HdYyI6LrvfmV8OMbB7fNWUsI5/qxu9TX6EzWQHTPL+nDypcQPQBCaTnlRUNq49NQ6snhSrpff38v+Wb+6kollmusJMnpFtBiqnFrMg/NRTsymS4bQ45o4enQUdhLoFxRqg7/lx+p7Xlm9rgX9zCTVXlXPoX7tE4zMVz5Au5F25nOrcq+uXC4tKxdxrMQWleajeasEbNHP0Jwvf+3yi0mLIZrOMjcksMi9hdZHJZNCtpLi7yOG9jrcHmOmKMrh36QJ6seY1z+JNpOo8b7MsHc+QFBY4jU4j695VR8/zo5oIDGKkEW/OA0QGYnQ9M8TEadmck45mSMykxBvuubzqTDouazd9PozZYRQrWmklG2mFp96B1SuvDxitetLprFh9RmoJW7yf0wjptLg/D3/9PFkBoea1IB2Hg18+Q1wDqcPqNSrtBE3TcTRbLBqdRvG3YC+z4Kq2Y3KbSMdff+uXrl8Mo4XGPnFylqQGUnM2qW2NlZhMkknI8+2eZ0cvUmlUA61Eb61ov7eGTDzDGeFaOR1Lk01kIZdDZ1IXY9LhNGeenEeAzOZAr1tSQWk+Oq41M9mfYeTMvLlvHlFpMVipA17k0KFDqp7vElYfP/vZzwAod63gpHJB7lXSbKe0zcnZX44uSxrSWywLrN+SMxnZpnI+98qmc8r6S1j2qrmqHIvHJCbxaIVWclP/i2PoLfLafnwySUZDnMuksprUGseOTBOfksd/rYQOLTDZDHjqHYQGoyKSEiAmSYBCbtJE1DaA2WYQE41GDk4xdWp2VQhKAD3PjKA3y+uxBjPozQZSwueMDGmQqgUwgMGgF+cZnkYnqUhaTFLSisP/ou0A4diRaWZ7ZLWkTDJLNp0lJ1TET8czxKdS4ppXZCBO16+HCQ/L3uHk6ZBY7e61wFVjo/bqCs78dIDkjPpcPZ3IkJqnOqvK4g0YvXAtkcmAwbCkglIBvloDJUED53ZfsA8+j6i0GHJZHRNTshqianZGMqk8zHIFm6XUlIw2PSbH8rfKpdPo9LpiAm92Qs3VfgZemSI+poIQkMsWE4e9fyv3tjTkiSpZ4UnK4OWlVF9Rzonv9jIrWYyb0WSvlJxM0q3htNzIvmlNBBmtjECt99OKLR9vxmA28orw5IhUNaaATR9uJZvO8urfyAgTnffXEp9OzamrqL3fQ03EZ5Ic+KJMUWk1yDTzERmW38/dYGfduxoY2j8p6hdHpZnmW6vpfm6EmbPqJ8nqa8qou9LP2acGRGP03M+GxEx9UDxiy9d52fePZzUptUmh5XsF7YpPWttJlOAuhNmJmLC36cNNoNNx4Iuyb16nX9qKfDkUyVQ6XX5+UrfYC17hIx3PMJLf4NB7PeTicXTWZWTCk0oR2eq8uHAW+l457k8v3sybXA88x/Cw7FTtJaweCu+m0tm55DX6+hqy3QuJRVaPEfMi4+EiZDJK7pXPcSs2e9Dr9AzvU6nqkf84ep8dpfdZDbEnvxksxcaHG8kksuICrskOKQ37JloUdQCO/4e2+KhVdUYrCUsLHEEr697dQP/vx0QqPuH+GHv+p0zpD6ByewmNNwQ4/dN+xg+rfx/eZgfVu8o49eSgiPDQdEMA/6YSXv2HMzIiTwoxsem1IBXNgpD4A7Dm3Y2YXSZe+byMoFb/Zj8mq4EzP5GNta0faYVsTlG5EUArMXnbo60kQinN35IUWg5ZpKJZTepg0fEUB/9JrrCamkkx8KJcSRSYs4gTDG1vs4PW26s5+4tBmXITOciByQopwb5s99Pz1seC3MteZqJ8g5ee58eKv0/v9ZBLJNAtYhFRgMlhwGRf/O8P/Hs11Y8tnvNPTc6Qza2y38wliGHQL6MG0VIHpy6OLWa3EZNr+dwrl8miMxjIFewvjVC1vZTJ4zPqFXzyNa+j35Cf7DZatK1rSlqcNL45wOkn+2WntAslQOGQT8ezmmpJs91RjnZ3i9tpVU+c6YpqJuRoQed9tVi8Zg58STZ3nPi2tnx07XsbQId4zmm4wU8ynmFAqPK44cEGEtNJ8dhOCtSv/hCQqG0VYHQa2fhwCwN7Juj7nfo1k9FppOnNlQy8PC5SBytpddJ2Zw1nfz4gGtvDe6cY3iuz4QbFtq3mKj9H/r2L2OjrT24aPzKrycJQi/Lca2kntlCbB6NVbunZ/o4ajFa9+BvS6XVi0jzMI1PpDeQyGXQGdUSusk4n2UyOyVNKHddQVgrRODn78tZ4ZrsOi+Pi2kHm+w70jy7RJq3YCQ4NaVO4uITXHwUrvlLnMiSl1no4uZD0bHYasXpNK5KGcum0knvlLW5ctTYMZj3TavcR8onTxPFZkRLIXPOcpgNvzbdVkcvmxPsQBvPSlkDLISxQB5yP3t9pO3wh3RcrYHAJe7/XAwabgQ3va6Tv96MiwnAqnOHAP8rX+a4axbbt7M8H1I9PwFZmpnKzj4GXxkTEofI1Huqu9XPkG90kJOp2GVaNoAQK0UXLmG54cxWOgI1DX5HlseXrPZjdJrESU8fbazCYDWJC3PFvaXPr6by/jnQ0zekfaVMilULrt35cwzokE8twWoNDViaZ1RSnizAgIqJafWZabg/S+9tRkXJT4bySwSQjho4dmZlTFNPpVOdeJuf/n733jpPsKs/8v5Vu5Zy6ujrn7pnpiRppUA5ISAIFJIEsEQQCIxZsbMDg9Xp/adf2Gi82eAEDNiJjQASRJJIAxdFo8mhy7JxzV1dXrt8ft6rDTId670iN4DPPH6Duuadv1bnnvuc973nO8xjw1NkZOz419y4ZAn6YTZK3rlDzMrNk3gUQ+44P+8eWbjczlSWdTpPNZjGUmBuW3BNPPPEEAAb9ylKsuvoL/ft2f7qD0z8tbSFW3Kzytrgp2+TF31yCn/KCk2iKAxxR+SmhydMzvPRPx8W2WJlUllwqR0LAegNoe3MlV/73dSpZSYDoNX42PFQja4TaJ84aq7id4tCjOORM6sgOH9Fr/OJ2Wz7YwPaPNIvbTXbEme569eWdixjYN0b/Pnli5IzacFfbxO0G94/T96J8Y2HLnzXQcIfcR1ULFIe6KSR97lO9cYYOTzB0SNafFp8ZW9CCQ+jxPn58ipEjk4yvUUFxsiPGzOAspGQZVd3tEXb8TRuKTxYkHJVmbc9cURW7xM0cegIbXOJ2ldcH2fCOGnG7rX/ewJYPtorbZWJZTcpN+/7PaU0+sYpDj71sQX/mS6v6VL7OT+XrVGsvg89T8v32fGOSM08v3jSY/A91vp765NK7ioriwGg0YrPJY9IlrA1mZ9VnajIts1lWkM/U11Qu+vXpJ4bZ85mOku9TTGordwSpvHppa7kLsGCXyxY2LbtZuxKOfrtbE4kgFcuQjMmJIFs+2EL7e2rF7doeqKJsm1fcztvs0NQvZr9pnhRQKkxQc3MYW1jW0BZRuOLjrUSvks3dqViW6Z4ZpnvXZi6dOhtjcP84k52yk2iOiBVHua000t4CDB6aoH/fmFhpKHqVny0fWOUU6CuI+tsimsZ074uj9O2S55Xuajvuaru4Xf/uUfp2r11BcbJzhomzslNeANv+ookN764Rtyvf4SfQLs+FTDa9qmolhKPCii0gtwRue7CK0BaPqI3Zb+J1H2uj7qZlLBiWQWo6RSaRFVupDe2bYM+nTxIflMd4W0RZHDtLyL38bS6i2324K9UHUWrude7pOPv/88K6Qfdn3QD0fGLpnNrn9QHzSomX8NpCkRxuMi5TNynKljdfGHcPfql7ReXwRX+mYInjLLdSdVUQb6NT9kGNYNEQAxKjGQ584YxYRSmXyZGOZ0jPyN7LyitDXPGRVhSPTLna1+ak8e7VVTXOh8VvxBaW1QZAJQMYLfJ8zdvkILTJI27Xcn8lmx+pF7ebODvDxOm1O+Xbt2uU/pc05Aq1djw18lyh94URTZuPbQ9UUXXdyup3ryTaH64lLJxLM7EMPS+OMHpctnFishlwVdtxlMlqudN9Cfp2jRLrWZs8fbp/lolz04tOd5eC8FYPl324WRzPLH4j0asCcm8II+J4BGp8cNXIE7bAeheNd8lrc20PVLHpkSZxu2QsTXJaXvM69q0uTv1YftjFaNFj8c/3Z5EEshoqr/JTsUPNhwyhEmsPwMGfJek6sPj7ZT+v1llz/7L0foDRaMRkMpFbQgHxEl4b6O1VN9gVZZXcq6Vu0a8HD0xx+Julb84Xa17ll/mpurrEOWNBzUtxGDBocB/oeXaEU4/LSQTp6QxpDe/zurfX0qQhh6q6NoivSZiPAvaIRVO/mBwGlRAgRGizB8Uti+MGq4HN728g2O6W3SybZezUFPE1IN8CxEdS9D4/QlyoAmP2mPDUOzCuIhByPiY7Z+h+bpjklGy/ytNgp+UtFZqenxaENntovEs+pgcPjtO3U64I7aq24a0tgY9wHgb2jtO3W+OhMA2YOD3NhFAlG6DtT6povEPen54GO65aeS5kUPSaYoTFp6C45YOs+voQngbhOsQA2z7URHS7rC6ens2SjqXJZWU5Rqx3liPf6GRWg+2e4jZgWLjdWELu5SizUHV1EFthPbGaangRg6eyHP31hfEv9ln1/2c+sXSs8nvVv//UU0+VdB8QpPTf+MY3ALCaVi/ALqeotBTymQsnXJ1ex+CeSeLDCab7V5kIzis+Vt1QTnijl4OPniLWK3jQGpWNBndPMLh7Qt7uUKGN8J6+OieOcjnZqPGuSixuhZ1/Lzu9vv5ddZgdJnb+g6xdxRUB9Iqe3mdkwXm6dxaTBtuK0xoWVKCSatKzWfHpsM5fa1Or2fUJDR7hwNkntSmdGM1GTf2pFXqTHsUiXPSn4JQG1u/o0Wl2Hj0qbjczkOKEBjZusN1Fw+1RTj/ZJyIzDh+aYlig+lDEdG8cV4UNUrJFScXlQfytbrqeGxEpN7XdV4W3zsnz/+OI6H7N91bhjNoYeVn2LLx1DuwheRF54MA4FpecTKXVPg+0KTdt/NNG9EYdu/5pgUpFCaf6j3yni+Ro8oJNsnxCnfhXVFRagCJBqYipT6ZxfeTC4p/b7cZqlc8pl7A2yCyRI83hPH/fpRSVlsUSSazOYODQl89gcpVQJD7vGP76t9eRnsmw/99kc6lWZaOj39R2Inzw4DizpahzngdXpY1cOic+Wdx6bxUjxyY5+YPS5ziT28TWRxoZOjjOacGpOXvIQvllfvK5PJ2Dpeco2VSemcFZZoSFkPRkmiMalPTCW7xU3xDixPe7ReoD8ZE0ZzR4vPc8OyJSeioi1jNLrEdunWe0GDCY1y7vMtoMmCzy+2m1DjmowbYHhHZGC9D+nlr0Rr04T5e8cwsx3RMnMSGPEZVXBUlMpkQqXwBb/6yJ+EiSQ1+SkTXXP1hDbCDO4a/KSNSuCjuZRJahfRMlt0mOphk5MsHocdmYiQ+m2SdUr1wEE2Llpra3VtP17BA9zy4Yb6vkXgN7Rhk7M81Mb+rC3KtgDbGSotJCFAlKRfR8QrlAUam2tpaRsSG+/vWvc8MNN5T0dy9h7fD4448DYDUtQUw+L++iuXZJRaWlkF+icKkzmpjumuXgV86SFm4ORLb4qL4+zOFvnhOpq2BErGoEqmLQoXNyUvn46SmMZp1Y6cZdbcejYXOg5sYIzgobu/9ZphLYeHcVjjKLWL2v/HI/Vp+ZoQMTonZTXXFSU3IippZDawDr31lDNp3jmFDhU/q9itBi8QdoUvABlchj0HAoQCuMFgMGDblXj4YT6LNDSfF4BpUUpcVS0BG10HxPJR2/HhSdRI/1JDjZI8+94sNJpnviZBIyQrOv2U3llUFGj0+SECiYVl8TInKZnz2fPkFGYBFYeV2Q8EafWA1WaywbPDCBxS+veZ17QrtCthblptY/qUZxGNn72fl3vpRT/cd+0EsmlrmAoKSLqx9gNUWlIooEpSJy/xJD/5cX9rfP58NYoiXKJaw9xsfH0Z2fYxVx/u9b6i5QVFoOS+43Ggyc/klvaWSO82peTW+uJJvKckyooKtV2ajzt9r2nfr3jJHWcEDX2+xEZ9SJLY9a7q1k+NCEWGVl48P19O8ZFdUJDFYDVdeEMBj09O8RkJqzeSY7ZpgdlT2IbApNbjaOqJX6WyOceaJPpFCVnc3KvlcBE6dn2H9avu5OTWYYLFVFfwGMigGTzYjBsGRp+RWHyWJY1aFpKUx3zTKNvKZ35ifaVL40We4BdbdFUOwGjj8m26vUqio22TUjyoGKqLo6RHI6LXOSAta/o4b4SFJM1my5r5Lpvrj4eXibnORBpEZGFvpfGmX8rOwZZmez4ue2CELlJsVtpP2hOrqeGWJowd70arnX+LkZDn+zk+RE5gKCkm5WrXmtpKi0EEWCUhEzn0hg/9jivC0aLaez/zA///nPufnmm0v6uyW/4acLwc5uCZZ0fZGoVPt6P6F2N0e+3SMiDen0OqY7ZQQlgIH9Y6DXyQhKwIYHanBGbbzwd7KNdsWnoFgR32/06DSjwhNsoN2buuu3Q1hDpQ22hejbNYrNL2938KsdLEeCXwlayCqg2oBkE1kxGSQ5mdaUvDXcWc7seFJMwtKKlvsqmOyJiy2ypPZ3F4NUTCMJS1EJMv17xxg//uqrYSk+hYabw3Q9P0Ssu3Q2fCqeJRlLk4rJxoviU4hs9tC/a4RUrPQkYPjApFjZDeDsz3vo2TUstpbr3ztGRoNlTOfTQ3jr5YUX6YZcEVrfOcWhxxwwM90hS1A3/5d6LB45wbP3xRF0xiUW2qtslk13XkhQKgWb3+pCZ9Cx71uTFxCUiliKqDQ2Nsbo6Nox/S9BhvxynhzLFHGKRKVtH6ghNZPl0FdkBZRMUk96NdvOJT5Tz/MjpOPyuXTrn7US64tz+OuyjXZHhZXk2KyY4LTIDkiAF/9R21za+fQgEwLJV4B0PM3AvnGGj8ri/0xvggOPniYuPImRHE1ryi1NbhOh9S6G9o+rlmOl3m8qRXIqTTou25xzVtuIbPZw7pd9mohtUnibHQTXuzn5fVle2vnrIc1Edi048T1tC+Ky7V7sAYsm4pcWlO/wY7IbxH2TGE9hMMg3Hn1tTvRGnZg0pLU/X/7aGdIaFPL79owRH5Y37HpmiJkBecFNi9UiaLeStEUU0vG8WJFsx9+0Mnp8SkQ2m+mboW/3KGMnl3jmK+Re6Tik4xcSlFaDK2qg+SYnPfvj9B9KXUBQKuJ8olL/OXWtMzS0dnHiEkrHkSPqYQ2b+TyS0nKbZwWiUqjdSdU1fo7/oJ9YX+nrS53RxKwGe/bxs9PoFT0xIcG49qYwoXaveM1udBgxWnQiMgBArDdBrFce4849OcA5DYe0ep4fxhbUcAhm7xhWDTWvEz/sxShvRt8L2tZe3ibVImnyjCy3TIwmyQpV7QDKX+cnE89qJitJUXVdiPhoQmzjdXCNrF2L0ErArb21jNFjU0x1vPqJrNECldeEGTo8yYxggzSTzJIYT5ESKtYaLXr8bS5GT8bICOpl012zHO+SW+b2vaTO99KYNHJ8ilwWMhlZ3Wtg3wTxYbmSxpmf9XNGg6WRVqsSowVMLrPYcq/5ngpc1XYxIa535xjGJQiCq22WJUYuJCiVgtbrFUxWHYeeSF5AUCpiKaLS2NjYyoe/LuH3imQyuTSJbLncq0BUar0vQiaZ5dSPZTl1LqsnOb5K7Fiq5vXCMHkNhIwN76pnujcutm0zexUyMxmyKVm8WuvDSOd+PUB8UB4fe54bYbJbTgg49JWzZGdl73M2lePsk/JYbFD0uOvsTHbGyc6W/vCzySzxkaT42Zm9CoEWJwMHJkT30wprSMHX5KJ354iIKDFydIqRi7HUEqJ35yi9O+W5s6vWhj1koX+NLAI9DXYUp4mh/ROidsnxFNmknPzuKLegN+qZ6pLllVoPEB7/QZcmwmXfrlGSwnoQQOdvBklqONRx4AuyA45FaBljoCobZVOI39mtf9bI8OFJugSE1FQsQ9ezw0vuM6yYe2VZkqC0GhQ7tF5vofdwmpGO7AUEpSLOJypNj6qKW/F46WOz5Krv+LjKrHQopSeSuvpqpnsTzAwliZ13cj2fySzJai6i+oYA2/58BQnkZeTbYz1JTv+ob/lkZhkMHBhfuqi5ClrvrWDDO+W2DtEr/dTdJpPNvxiMHp2m53fyk+QDL41rUvFJjaXExC1Q1Wr8bXJ5yerrwtTcWCZud+jRcxz7jnxRHGxzE94ot37Z/pFmTXZ93kYX4Xb5/f4QoDgUvHVOgq0eUTtHVOGKv26l8vrSiJNFOMvMeBtd+JtlMp+Tp2fY939OMylh4gLBVicVrwvia5PdT/EpRK/0iy0hUzFE5Ksixo/HOPlD+ebc1Ln4mm7IelsctL6lQtyu9U9qWP+g3BJnYP84I8eEc4NOR9/OMXqfXSbBWcF+pPnN5bTfv7y8ZD6RmFNVWoiJ3hSTfallCUpFnG/9tiwJ5hJeM7jgVNkq+Y2+ppKJc8tYHWWzKx512fCuampuCS//x5cZL307RzUVQ4ZfnmDgoPzkzoa319DwxsrVLzwPjW+K4NRguaoVvc+NMiPdnEvD2Sf7me6Ub2DE+1Mi5RFQ7abKtnnFllPBNhfV14VxCu08Jk7PcPCLZ8VWTr5GB4F1Hkxu2aRYdX2Q7R9txuSW2UgEWlwEWtxy270/EITaPQTWC+XOgXVvq2LrB+XrnvBmDyENefPJ7/dy7LvyPL3upjJqbpCvC7zNDrylWI2fh/hgWkzEAeh6akhMpAI15kqUyC4W1TeFxDZxABsfqqfxdvl6d+TIJMNHZHNKelZHx6+Glo8ty+VeJtj8SC1l7cufrsknk3OqSkXMjmeZGsgQG84uS1AqYqH1mwX1PRgc1EaavYRXF0XLEYvimf/lanWl5lriIykmO+IkphaPk3w2t6SKUhHBDU42vLNGbFmUGM2oBeasrOY1enyaof3yvKv2phAbH5Lbk/nanJS/TiabfzGI9SY0EWrGT8bo01CYzsQyJEblG9+uGpsm66iaG8LU3rhCnr4MTv+0XxPpK7LFR3izR9xu43tqaXqz3EYitMlDaIP8fn8QMEK43YtfaO1odBjZ+ueNRC6T5VBGh4nwZh9uYZ6eGElz5OudTHfJiND2qJXa10fwNchyKKNFT2C9S263mEFMUAKY6UvQ/fSQWFFudijJ4N4J8f20wl5uoeZGuYVhzc3ltL9TXvMaenmCwX3CuUFvYOxkjKEDS+exK9mPRK/00nLL8mNFF0/MqSotxER/lom+7LIEpSLOt37T6XSX6l6vYWQymQtJSqvlXi11jJ2OM7HEIdTV9hvr3hAmss23/N9eZqxMnJ5hUngADVRlI+m6BmDdA9VUXivb7wAov9yHNSRXYtOKsWPTJISHpEEliGsh6qcmM2KihEEBT70dg9BpxB61UHdLBEeZjAA/O5Li1OO9YisnR8RCZLsfs0tok9zkpP3hWrE1lrvSQWSrD4Oydkrga4lAi5uyzSu868ug6voQbQ9UidsF13uIbJXfr3fnKJ1PyffVKq4KUn29PFewhc04yuWHOlKTWU3kueGXJ8VEKlCVqbQQILUiuMGNp15uV73ugVqqrpbHapVwLxSwyekY2j9BanLpOW6l3Kvp7nJ8NcsXuHWzyTlVpSJSCRjvzRKfWJ6gVMRC6zeLwQPA8HDpCnslR71YTE3yPHbZYnM0GWDkvBPyKyULRZgcRgxmPTq9jnzuvARhhQ3e6NV+XGVWjj3WoyY1JSaiWlVLep4bVi2ZhAhv8WJ2mDgrPMG88b11KA6jWIq6/o0RTBYDx4UnhGtvDqMz6MREpQ0P1UBObrFU94Zy8tk8o0dlJziOPdaladHhqrWRnc0ws5pyxHmQ2t8VkYplmB2XJ2E7/15uawaw42/aiPXFNStwiaDA6/6qjfFTUxz7bunjLDWWEluMAaRmVcUJqVT66NFpnj8qvx+KalE2fjYmsmns3T1KcirNyAnZJlRks4eK1wVJTadFCmHBTW6qrwtx/LFOEVHQVWuj4nUBTv+oR6T4FNjgony7n0NfPyfql7rbI4Q2uHnxn4+L2kW2+vDWOQFZLOt5XluslqqXFRfTZdu9+BodHP3mMpurS5zqN/g8KF5zSUW6fCKxyPrt3HOJVQlKRSxUVIpEInPz+yW8NqHXLxgPJRKwzx61XGj9VoIOr2I3YHaY0BkMFya3K8yxLfdVMHRkkjGhQqRWFZfeXaNMnpONW5PbRLDdSz6PiABkcpvY/N46el8cofe50jewTG4TjW+M0PvCiIhMYHKbqL0xRM/OYZV0VCIcFVYa7yjn7M/7mTxb+v18LW7qbomQy+VFFlDDB0eZHUuK5XBNNrCV2USfEbQrFCUnM6Sm5cpNp37Ux6kfydVjmu6N4mt08aLGPFGKdW+vxhGxilUxDmlUHUhOpMUHQQD2f07baSZb2ITOaBCT/Y7/oEfTuqD+1nLI5dlz4pSoXdsDVWRTObESU9WNIbLJrCi2gEq4TM5k6fqN7J3Y+sEGZkeSHBXaFES2+oiPJEUxAgqxukOeY4jfvcKYbLq7nMnOOIPLfc6lci+nB5PdiGJbvTibTybnrN/ScTjxi9iqBKUiiopKgXCY02OQTss3Vy/h1UexkGY3F4g1Jca7mLOcUz9dHFdXIicVYbIbUFwmdJjIC1jG/jYnrkob534xKKp5TXXENam49O8ZE9vCAoQ3enGUWcTKQY13lWMLmMUKOeVX+FHsBjqEhf7wVg8GxSAmKtXdVoZB0XNKqDZXd3MZOr2O/UIr0+M/6FneEmcFWENm8tmsmFC19zOyubCI2fE0iTF5jNvzKVmNs4htf9HEVNeMZqtXKbZ/tIXhoxMya62MNjXDTCJDciJFUqj+nhhJa1ZPdFRYSIwkRNZfk50zHP1OJ/EBWXxx1dlpuD3KyZ/0iNaRjgoLta8v48wTA8QHS/+gloCJyDYf3c+NihSfHFF14/jcrwZF7cJb1ZrewS+fE7ULtLgo2+an5/kRkSXLwN4x4kIVJVCJmuMnBfmaXs2Z3PU2As1OzjyxNPF6qVP9hlAAs9+K0bp6zUsXTyyyfus/vjpBqYiFikrhcPiSevhrGLlcDpNpwcZpifPc4Kz/Auu3UvYbFaeRdNwornlFrw4w1TkjJnFqsdMC6PrtIPFR+ftcfkUAnVFH75BgzBug/Z21KqHqUOl7owYFKq4JM3Jkkpn+0mOxQdFTtt3H6NEpEcFJcRuofX2E3p2jxHpLfw7WgIWGN0Y5+2S/iBQw1RXn2He7mBkS5sAGsPoV1V5OwOkYPTqlSUkvPZshMZYSk7cG9o4xsFeuMlR+uY/IZX72/tsp0ffTiqrrQ/ibXez/vEzJUot6FkBiIoVRg62v1M6sCMVhQK8YxGS/c78a1FKao+aGMHqjTuxoUHVtEPQ6kfIPqOSffDYvVt+KbPeRSWbFB6Jb3lJBYiJDxy9lXIbyy/3ER5JMCBVru58e0hSrxQpfhYddfrmP+GhyWTu7JXOvcAiz14phbPXPqZtNzlu/ZaFrf3pVglIRRUUluyI/mFcySSmVUl8Up1Je8h8HcIXAVe6l+1nZpHz6x8sMpBUISqAm87bAgo3aEos2Zdu92EMWsfyiVtu2fV84jaKB2KzFux7AW+9Ab5IH2GC7F3SISUomh1HT5sDJH/eA3HFK7IdZRNtbq0jHs+z9V20FGCm0Ss5pxXT3DGOn14iAkIJY/ywjUhao1tuNpdj7r9qktrUg2Oam6U0VdD03RPdvBV7LKcSS5QD9u0ZITqcZPi5ra7QaMJgN6BUjEvZPoMWFt86JvdxGSlCgcFXZsZdZcQQVESkqOZ0io4GBffSxLk2xU2usDmxw4W90ceIHJWw8LsgOQ+vd2MtW8bxcYrPs6A+1LWA91XoCHXrO1JQWQItEJZPJRHYtTKQvQTPmSEqC1UdZC8TyFqY6ZYvpvZ9ZRuJ5lfnc26CeCpaSlBreFGH4yKSYsCLdmAdIT6bZ/S9HNVmFpWcypKZlmwM2nwlXlZ3JzhkRScldaSXQ6ma6b5Z4f+mLFpPdgMlqxCBcTI8dHyeXzTFxSqhaEofxE/L8InJFiIodAV7+RocmtSgpBveNy08GXwTGT8UwGOX2ZFoxemKKtFDu/GJwWrhOuli03FuNwWwQ20/EeuRWaACnftwDGg5amxxGDGn5Aia80UsuJScpeRqcqtSzMBamYhmSU/Lxsvf/HEcLp0ZLrAaouTlMrG+WkcMl5MAL5kZfswujWb88SQmWzL32flmQ1y9A+UYzsSkYd5V2fc8nFCr+Wj1ll0yu3anASygdU1PqmLMqHlHeZXGCe7OLwf2ydVvfixP0vTghagPga3TibXCqJCUoueblbXRgC1vofU6msB3rSRDrkZOUjj3WxVIOLqshOZHRdKrbW+9AcZvEJKWyzV4MZjlJSXGaMCjyOf/0z/pAw6aC1MKpiNb7Kskksprt1qU4+X1t1qlaMXpyiunutVMXHDs5Jbbc04wMHP6abBPpYmAvt7D+wVq6nh6k70XB5kkGTQTIqbPTnHy8h6lO2RrSYDag2E0lEV0Wwhm1Ed7oY+LMDOOnSl/H2MsseOud9L80SkxANkrHsqSmtVicDNH7wpCIKAbaLTYdFRb8za7SlBz087E50Owk0OJalqQES2+Wdb44C8hzdYcfzH1GhspLewZFotKlmtdrG/l8fp6kJMi9PGFIjihitZrjjy1DJFgljwqt92BU9GKSUmSbj6neuIjEA2i209r/bydLOZ94AZKTadJx2TrRYDXgb3YRH0qIvp/iNhLZ6iM5lhIRMwwmA4rThF6RJVGxwQQnf9gjJ9xnET83AF+9k7pbIxx/rIuYwHJVK6a7Z5nuXhuiNsBUzywmx+SaEJQAJjtmyGuwLdaKof0TDDGxZvervSWC2W3i0KOyPD2pQQQDVItGLesQk8uITkPD0EYP+bw8pnkbnWQTcpJSYiJDalLeN4e/dlZT7NQaq4Mb3STH06WpTC2YG8ObvKp7xgpOP0vlXkd/pm2/3lthIDeTJV6iyJRKVHKg0+mYnS19vtTlS2SSlJWVMTg4yH/9+H8v+Y8DGE2g0+tIJ/Mg9H1+ZbHy1zTaDOh0OtLCEyp6kw6dXkc2+fv8bpdgtBrI5/Li56A36sgD+YxssjPaCvcTnGpRb6hTh6KQwGW0Gchn5d9PK0x2I/lsnkxiDTIOHZhsRrKpLLm0MOnQ6+B8pbUS2pisBrLJLDnhc9crenLpnGwDS6/DaNGrJ6Ckn/USXjHojDoMRr14TBstBnSGUuYGDRneQui1t8+7dZgyoENHyigbY9/4/JcZGhq6tFn2GoXJZCISifDAWx4StTPbdeRyedKzQPoiCAz5uf95VWDxmskkM2TisvfSZDeSSWXJS+eMS3jlYNKhWI2kZjIgKRjodepcKozFeosek9lIcjolI7PrAIMOpPO9xYDJbCCpYXGrBSanEb1Rr7nQIIXRbkBv1JOSWpTpdWqfCotEJrsRnUEnPmyhU3TodJBLCvNmuwEd8nXdJbyyMNoN5LJ5csL1ktmrkMvkSa+6sXeRuZdBO6Ew49fjyOpJ63IkBbaQydkkn/kfn6C2tpazZ5chBl/C7w2bNm3i4MGDPPKeD2G3l8g+AxQLmMw6ZibzkLiIOH7Ra8WV25u9ZoyKnplB2QabwWbAYNBr2my/hFcOiluBfF48lxosevJ5yAlrSRa/mVwmLy/0G/VqvUuYK1gDZrKpnOaDmVLYy6xkktk1y72sQQvpmQwZ4SawzqQnn5HWoMDqt5CaSZMVrrOMNiOZZFb2/Iw6LG6F5FSavAbS9iW8MtAreoxWo/idVVwmTDYjMwOrzQ0XcRBDD5pYq0XUgnlWjzGrY8YhG9M//Nx/0tXVdUnF8jUKs9lMWVkZd976kKid2w/pFMSngemLII7m87yaNS93rYPkVJqEUGnD4jeTnsmQXYt9mUtYEnpFj9VrJj6WlM1tBjBZjWotQjC0DFYDNp+Z2OCsbJ9SB3qTnlxKNv8a7UasXoXp/viaEI4sfjNml0msiq/5fh4Fo81ArE9IijWoe/3SfMbiUzAohhLm0vNuZzGg0+vE+aHFYwKDXhxbLuGVhcVjIpvOi2uPrmo72USuhHX5RdS8dDp0Zu32n5mNenxTBpKmPDNW2fvwb3/592zevJm9e/eWdL04Q9QLN1JzOdDlCu2MpbfVm/To9LyCpIyV751LqUmJXnj62WDSgw7ywmCuN+nR6SArnED+2KE3qQUNKXlEp9epPtMa1jw6VAKDrI26SSMeL2Y95OXPXafTgV5+P52hYJeoJd/W6bTdTyO7WafXoxcSLIwWA9lMTkwyU++nQy987uRAL9zQ0OnV52cw6sjnZPczKHqyUlLUHxJ0iL+bzqA+NzEhsUAolY7pXCYPGfncIEaBFa036QpzQ+kdk8/ryKJ2pz4vjGVatEEvYc2g0+nQ6/XoDbLnlElCHp160DFf+tg1OdQN5exs8f3Kc9GbwCsgFVMLhXqT7P3SK3qMesgKpRdNdrXoLp4z9GhSefyDgF6H0WIgMysroOiMukI81oNe2J/ZvPiZ6/Rqvq036EEgrmCw6DGYDOKNVZ1BN1fsEaGQq0kLRPNzgDzvQkMBRafXATrx/Yw2Izo9pAWnyAGVKKaT349CzVhvksUhvdGg6fkZCnar4kMIfygodqPwlTXajORzOXG/GBQD+ixksrLxUhxf4vEigm6OIG6y6dW5T0CGM+h0JHR58jodBknNurAWuJR/vbahN8hyr2waclnUNoI1g+LQY1AMzM5ZY2lct5eI9EyG9AxihW2T1YTBpBPZDoGq8qg36kmKCbEUCLGyZn8oUBwG8nlIz8i+oEHRF+ZE2XMo1iqlz12nU9cS0nZWn0Ium5c/dwrrdeH9DGY9+VxefuCNwncU3s9o0RdqUPJ76QzC++nA5jeTns3IxkuhBqXT69ELiLQAuXReVfIVTMHFA2EGRU9OsnbUg9lpIjWT0VTTe81DBzoD4rGiV3QodhOJiZRoTjDZDIV1nUHULjObI5NIrT42Lyp1Ucc/gMmmw2DSkZgsPZbls5A25Mno8+izwnWBXn8p73oNo1jzMgj3c+LTKr/IYAQEawZHuYX0bJbkeGGO0uACIkGsbxZyqgqQBGa3Cb0eksJcyBa2kJyWE1R1pkK+8Ee4DNaZwOJWmJ1MIXBXxmBWa2Ums56sMADmknkMRmE+Y9Srh/oKe82lwuQwYimSjQTzjbrPoVM/p2TZbQKj2SiyMQWVG6DTyd8FnUnNnbJSknehBiW9n8WvYLQYRJaCoK4DdXr5/chCPpsXtzNYjGr+JV3XOY3oDTqSE3+kxF0jag4kjJ3WgHpQTtovittMLpUtcEtKR1GlTTxeJNDr5jgP9qCRTDJHckoQ5LM6YpYcOR0YhbmXFCWnADMzKiv5LQ9/lo/d9YjoJvmuxR7t+RKknqJXevHW2jn8jZ4LPWJXQNtbK7GXW9j9Lwvsu17lhEML2t9di9FmYN9nZHZV2/6iEYPZwK5/PC5qt+l99RjMerGtWft7atEb9Rz4vMym7LIPNwGw+59lvvKXfbiJTDLH/s+ujY1X61srSYynOPfL0j0SLwaV1weJDyY02U5pwY7/1kZ8KCGW9n7df2tjumtG5k+qwJUfX8fY2SmOfadb+Ek1QIHa68IMHxkX2YxphSWk0PTGKB2/HdRsLyhBeKuHulsinP1FP8MHSpc2rL4xRPkVAY5/v4vx46Wz08t3+Km4KsiRr59lZqD0/qy+KURkq499/36WlECmteXeCvytbnb/yzFSsdInyOqbQpRt8bHrU8clbnZrgwWFj+Y3V+CutfPSJ1e2qNEt8K7TOx1Et9lwRc0c+9Hq9kQn/7px0c9l62XWBo+2fp3vftWO2Wxe/eJL+L0gnU7T19fHTY98m0/c9mZR23zf4nmtlNyr5b5yxs/MMLhvcnHutUoeddlfNjF8ZJKONZpLtcDkNrHp3bV0Pz/MwEul23/ZoxY2PlRH764ROn9d+jtmiyisf6CWrmeHRPdzVFhpubeSjl8PlGZ1VEBgvYuGN0U5+4t+hlayOjoP4S1eal8f5uTjPWLbPS1w19mIXhHg1OM9pOOvfgXMHrXgq3fQ/YzM2kYrWu6rwNvoZNe/yPLftgercFXZ2S1st+FdNdhDVl4UttMKb7MDi1ehX2IBchGoujGEYjWsmc3cpvfVoTPo2P852bpn2583ks3kxO3a31NLJpbh6LdlefOWDzSQmEhx9JtdonaX/1ULickUB78oU/DZ9Eg9idEkxx9bWwufkrAg99r2Zw1MnJtZdbzojPM7tnq3k+bbPYydTTB8bHU5/lMfbZr/wQTWlgnRx/2z7E8BcDgconaXsDYoiozfdvdX+de//oCora5rYNHPudjqp/p9zXb8jQ5O/XTwvLxr5fmx+oYQ3no7B/59wRr/NVjzqr89gjVg5vBXO0Tt1r29GqvPzJ7PyOa2pjdHsXgUsV1C4x3lGB1Gjn1LFlM3vKsGg0nPAWFMbX93LblMbs1svKpvCJGezYrt7LQiuNFNcjKtyf5LCy77cDOxvlmOf1c2l27/aAvjZ6Y59UOZRcrlH2th7OQ0Z362NrlJ5DIv4+diJEZe/c0ko0VP7RvK6N8zpsniUQpnlZWWeyrpfGqQUYFdhr/NRf1t5Zz6UY/Its3b5KD6hjAnf9hLfLD07xfY4KL62jBHvt0heg7RqwJUXhnkwJdOi9oFNriovCrEy1/vEG8CvypYSPBZYJkbvdJHaIOb/Z9fOebqlQV5l9+Hr86IJ6pw9tnVY8TRv61Y9HNTU98yVy6Nzzd8m5982YPxYlScLuFVRSqVYnp6mmv/8nH+7b67RG113eflXpOrx5GKq/3M9CcYPz0jqnm1PVjN+Ilp+veszTpYEwyw/oEa+vaMMnas9H0ng9XA5j+tp3fnCP0vlf79DFYD6+6voufFEdH9FIeBxrsq6Hl+hMlzpatgWUMKrfdV0/HUAGPHS7+fs9JK/W3ldP5qkOlubbbwElgDCqGNHvp2jZKOvfqMe8VtwBW1M3Jiak0I/tEdfiLb/Rz4VofofpXXBAlt9HD46x2i+1XfFMbf7OKgsJ1W2MJmLG6FsZNrs3cbaHNhdpvoXaM8veFN5ZjsBo4Ja1Ctb60EHeJ2dbdFyKVzdPxKtl/Q9OYKMrNZzj4py7fb31VLMpbmxPdktavGO6KkZtKlWd+uNRbkYa1vrWSqK77qeFm432gI+IlusRAbTDPZu/pLe+wfyhb9XBEufU8D4M8rfsH/+SgYDKUTsErO0pTCFzvyMnzqiUf5i9veXVK7aAuEXl/Ovi/JEsne58fpfV7WAQCZVG6xCk+JxZrGu6O4q2zs+bSMxKMV0sJJEd3PD2O0yhl2qVgaY1YDM0+j6uXkuTh5DQ2lpKaLhavajjVoXjOSUvdvh7U1VNBEyDj6nc4FJzNfZaTU+830aShGafl+KbQ/Nw33c4Qt2CNWXNW2NSEpDe6dYHDvhLjdVHccd80sM0MaBkwessI94/RMVpUDT8nu17tnlFQ8KyIoAXT+ekhEFLhYiOaGfH4uccims+RWsThdmDAU0bsnTu8e+fi6ZiaO94DCrk2lPYdHW78OwMjIyCXZ69c4cjl1HH3siR+UTFRqu95IrMdD59MTonsdf2yZXE2nWzGfyqZyqhWmEFs+0MDI8Sm61mARkJ5MiwkgADNDCXp2jjByRJaTZlN50rNyK7t8Pq/J7iU+PMtU1wwzgoI7wOC+cQb3yfNtrXBV2HBV21G8Cum4cPPDhOjkG8BMb4KZXo2bLBrud+aXg1gEhb2LxfEf9GJ2aii6F/cKhN9v/MTaSHMX4Wt0YrQYgLXZCDzwBW32W+OnY2S12JprFE1JxdJyNSug69khkhpsdKSHVS4WorlhYe6VyZNexRJhIUGpiBM/mxB/RlM6zS2ZJGeGoCNUWpt/3fAdnn5S7f9LNruvTRTJY319OT7343/nv9zx3pLa+SIQ2ern6E9GRSeYx07MMHZiic0ZnX5FolI6kSWblte8yl/nJ9DqEh9g0gqtJI6eF0ZQHPK5LT2dmVPqkECru/HYqZh66l0IrbVArfA1O0nH146kNHyw9ANWi1B85MLp7cg3O1X74TXCkW92kJjUcD8j4u8G0L9bY56u4X6KW8Hb4CLWO7smJKXprllN67P4SJLxM9PMjgk/Yx7I5ecIqaUim8iRmkmLFf9Hj02Qz+RJCE/lj7w8xcjLpZO2LhblO/wE2paZG85XIMrn5ohK+Wx+VYXzhQSlIsbOZhg7K38ZNk2lqDxs5cT60kgGn2/4tnq/sTGygsPvl7C20Ol0ZDLqeHj/Y6UTlarXQdJjY/BlWf2059ll5sLVal7JLFlpwRxovqeCiY4ZBveuQc0li5gAApCdzdL5m0GmeoQEnmxeVW0SKm3m0catT01nGT0xxeyIbB013T3LgS+s3XrW4lXwt7gZOTolJykZEBONUpNZRkog6L1S9xvYO87Y6ek1UzzteX6EoQMa3x8N3y8+mCQ+uHZrdU+DA6tPWTOS0umfyDgaRYyd1lgLzGt939OkZ+WDrOvZIU3OVad+LDu0cLEQzQ0La16p3Krfb8n9xn0a8vpslmuGc0ya9Iz6SuvTj9b9gtGhNPl8fo5PVAp0+RKz86qqKrq7u/no39h5+BEXQElEpdrmBMFmO7u+2L2IFLDaiX5HuUJwnYuzP78I8ojgDWi5rwJnpU1Mkmm7vxJ7uXXNyTWXsBjbP9JMJpkVK1NpxY7/2kpyOi2+X9v9lcyMJMUkix1/08bsaHLNkqrX/bc2pqRKShphCSlsfV8jw4cnOfnD0lmuik+h5a4o3c8NM35ScHqqxUHbfdX07RpZE3KaqohUztlf9GkiHV3CK4OWeytw1Th46X/LVOg0zQ0lSEkvlTAAhDY5MTosDBxceY48X0Xp9tgMtnyeZ3esvkAvEpQAWqvUzQNpoe4S1gY6nWpl+usz88+7FKLS5tsMxEdSHH98sXrMarlX2VY3yakUY8upsL3C42Tbh5oYPTnFuScHVr94Af4QlJv+2FG2zUvNjWUc/34XE6dLP/2mFTW3hCnf5ufAf5wiPlh6od/b7CCy1cfRx7pEhJzGO8sJrvfwwieOiok8WlBUUnrxH469+jdDVfCx+szs+oRsTqy8JoDFbeLUT2Qbz5vfX4/JbuSl/72yuuArhU2P1KM36Ni3Rsqsl7A0tn2oiYkz02IlrG1/0cToCeHcUErutQRBCRNUXuFjtDtNYpX60EIVJVs6zRszCY4bTJxqX73g868bvgPAN/9tlEf/aZQtW7awd+/eVdtdwtri7rvv5vHHH+ev/9bBe/5UJSyVQlQq80xRvtnBy98fIrMghVpNTcniMeKtt9K3b2JpMsEqikrqNaXnZhXXBgm0uMQ1heobQngbnWu6wXMJF6L94VpymbxYmUortv5ZI6npNC9/RXa/mhtDJKfSYnLNtr9oIj6U4KhQ0UortCopaYIRrvhIK4P7xjgnOElutEDtG8oZ2DfOdFfpm8cWv5FN72mk+4Vhep999dVEnVVWWu6t4twv+0VKsJfwyiJ6dYDQBg/7PyfLf5edG1bKrXSrEzSXIigBuKotKCHXqkSl81WUrh5P4MvkOHblxKr3LhKUANoaxkilUpdqXq9RmEwmTCYT33p5vuZVClGpuT1JciJD5/OL1U5WU1NyVVvJpbPLK+q8wuOk9f5KJs7N0L9LdpBp3duqGTs5LVI2uoRXFs5KKw23Rzn9s941UWAKtLmoeX0ZR77Vwexw6QfBrUGFULuHnhdGyQpIHWVbfVRcFeDgl86sieJTUUlp7/9ZG4GQulsjuKvt7P+8bE70tTqxeuSkocY7otjCZg7+u7aDb1I03FGOYjdy9D/XJm++hKXRen8lU52rKxst1U48N1zEfmOgzcHMjJnUKuX7hSpKhmyWW/uyHHcZSDStnt9/tO4XAJw8OMPH7znDXXfdxQ9/+MNV24HAcdLr9QJw+uR8EvmpJx5dsU2+q4+zvxpj12e6L1At0Vmt6KzWZduWX+4nss2P4iudcVWEJaSIk4rjj/VoIhqlZldXy1gKG99bx46/aRO3q7guQNsDVeJ2ikOPs2b5/l65sbxJcJObyA6fuN2WP2tg24caV7/wPMQGZpkWeoVeDIaPTjK4X87iddXY8TY6xe1Gjk3Sv0/OqN38gXrqbouI22mCAlv/vJHyHX5Rs8REirETkwy+LOtPq8+EI2LFXW0XtZsZSjF+aoqRk2tTPJkdSzE7liQ+KmNhV98YYsd/bcVRKbPickQVqm8Kyd9bDe85qGQxR1TeOLLDx/q3V4vbaY2dmXSOXFqedGuaG/J5FIcOZRknj+USBoCqK/1UXLZ8jDj5140XEJQAfuaw85jTwcDhlY/zLyQogXpi3LrCXHwJv3+cX0z72BM/WPn6vkH2/UffBQQlWD33qro6SNW1K4yhZRJikw1MNvlJ8j2fPikmKEFBuUl4khVUgnHr/ZXidq33VxJY7xK3s0UUTf2CiXmlG0Gb6FV+zH5ZQ3edjcs/1kJ4i1fUbnY0yczQLKnptfHdHD0+zciRCdLTMsaQu9qOu9qOzS3rl6GXJxg+NC4mKJXv8LPpfXWyRheBmlvCbHhXjbjdwL5xBjWcRvM1u/A0yt+FwQMTmu6nFbGeONM9clXCrR9soP3hWnG78BYv3mYN9l3S97wAe9SCySZv13RvlLJtsncdtMfObDpLSsPptz2f0jA35POYVnjPlyQoAY6wQsUOH6EVnt+pjzYttnkD4iYT37U6OaRYmD3uWfGjFQlKAL2n1Pv4/bL10iWsDSIRdd3c0z0/bj/3439fsY2ua4DBQ3H2f3UxQQlA77Cjdyy/VvW1OKi6NoTNv8x6b4VNYKPDKK559Tw9rIlolJ7Nkk3J3+WGO8q5/KMt4naB9S5qbytb/cLzYLSANaTRxlqDKKGrxoa/TT4ntj5Qxcb3yOea6a44091rY6EGMLB/nMEDE+J2vhYXviZ5v/TvGWNAQ67Q8tZKolcHxO20Yv07awht8sgaZWBgzyjDx2QqU0aLEV+DC1eVrOaVmckwuH+MiTNro4CZnkkz3RsnMS5bF/jbXGz7iyYcFRZRO8VjJLzVI39vNTp+GS16LAF50uZtdNBwR7m4ndbYmU/nya6iKLkUlpwbVtsIy+cwWtS4uxSWIyiBSg6v2rb8mD76txUXEJQAnvVa+FHQxsmTK/fpQoISgNVqxWKRjbFLWDsYjcY5JaUi3v/Y4yu20XUPcPJn4xcQlAD0bhd69/JzUNW1QaKXr5CHLzP2DQoYFHlt59i3u8UEJYDMbJasBrXyze9voOb1YXG7qmuDuGrlC0zFbcCgwfEFUFVuhNf7Wp0obllDxW1k45/W42uR7celYlkmu2ZIz6yNZNB0f4L+l0ZJCQlD9qCFQKsbxS7rl8nOGH0vjojVaty1dpreXCF/fhoRbHdT/yb53ubwkQn6dsv3Uj11Dvyt8jx2+OjEmtpBxnoTTGpYFzTfW0HjXVFxO1etDUdUw/6RxnFi9iqaYm70Sj/eRnltbvP7G6i5Wb7+zCZzq6p5LwVNc0M+j8mxfIcut99oshuovjaAp3L5/chj/1B2gc1b1mDgp5UKp90GegZXriMWCUoAvSfVz+hylf4elZyi19TUcOjQIU6dWJw4LGf9lu/SJh1WxLnfDDF0aILUmGyR03R3lOA6N3u/cIqEFrsjIU7/SNv3HDo8gUe40ATwN7mWL2KtgHXvqMXiUdj597IT2lv+rAGzw8RO4cnumuvD6E16+nfKXrbZoSQ6o1yi++g3tbFGt3ywgVwmL7Yx0PrcX/xfshPrRWg93aXYTVi8GndApPdSwGQzYvEKCSspOPZdmU8owOTpGV74u6PidqmxFEeF/qkA4cs81NxQxskf9TC+nMrIEpg6F9dkkxEfTpCYSpOakRWfo5eHCKxz079PFj/b7qvCU+vghf8p69PmO8pxRm3iZxFoduEoly+AtMZOre+sVmx8TwN6k55d/7RYNWIlghLA0e/1YbLr0VxBAwYOhyhbv0CtLZXiax/8Opmn4Hw2msViuURSeg1Dp9MteeJvOeu3fN/FKQsdfayb1MwqrIwlZLA3/5dmUrHMmlkCaVVHGT0xpclX3FPrIJvOiU8Gb3p3AyPHJzn5/dLncJNNz2V/2cLQwXGR+ogjbKX62jAGs0Fkn5eeSTM7liQxISPSTp6L8/K5DlEbAF+bk/pbyzn1ox6RAtN0Z5zpTvkCvOOXg5oUtybPxpk8K7+f4jKiONcm7wKwuhXMbjlReGjfhKb7aT0VptVipv09tZBHbE0kVe4pYmYwQUYDqab6hhCp6bTYDu+KD7cwM5zg5Uc7RO02vL2WWG9crHjqq3dhVAwM7JFtAmuNnfs/t3aqK+5aG+seqKFn5whd59lrL0dQAoj1pDjy3V5mh2bBJD9IUsTscQ/Wlgn1h3Sar/7tN3jn/3wb/7plMbE4NhoAOufIMJfw2kJraysAHecW17yWs37TdcmJ1gsxuHeUyXMzK1sKLGH9Vn6Fj6prQrz89XPM9L36lkx9O0c1xfHRY1OayE3eBgeeOifnnpD1b/3tFbhr7Lz0SZlqX+ufVOEos4htp6quCWL2KIweleWH8YEEKQ0behIFnoVo/ZMqdDrECkW9z2lT4NGap2u9n8WrkFlDuzez24RJg9VuhwZ768REhl1CJWiATAJNquGuGhsNb4xy5sk+Js+UnqcnRjMc/468xpaKpYkPJcgILWwDrW6qrgkx3ZMgLrC6rr42RGSbnz2fPkFGYE9UeUOI8AYvL/6jrC7uaXDgb3JxGlktavS4ttjZ9+IofS++AnYxJZzUB2h9SxWKy8TezyzO91YiKAGcfHIIxaoDtOddJ0+W09S0oF8zGf7v//cJIl+f4vxamsViwW6X1xAvYW2gKAqx2IVrqOWs33TdF5d7nf5xL9nkKu/XEjWvtgdqSMezHP+uPNZpwYnvy/dJAIYOjDM9ID/EH1jnBr2OqXOyGsiGd9QxcniSzt/K5rhtH2qif++YaO43KAbqbo7Q+/yIiAySTeWZ6Z8lJbQ9T46nOPuEvK5gDSk03B6l46kBkQpicjylyfJr5OgUI8JcFGB2JMXsiJxUoziMWLwmDAZYCydNxWXC6pXvhU93zYr6v4izGu2qtSrM190WwWDUi+3GBvZqI0TFBhKQlR/6rb42RHomw/HHZLFp47vriA8nOfW47Pu1vqWS6d44Z4S1vcA6D1POGcZPyWpzWmPnybVQZC1AcRhof3cd3c8PX+DWs9J+Y3omy9HH+tT9HrtcVKaInkEvFeEFtcRslr/43G8w/u80C9lovcdVcpLH4yn5b5ds9/ad73yH+++/H68XXjh4YVFtIVFpIUHJVaXQeleYgYPTdD49sezfX2hBkr+ICOeqsVK2ycfJn/VcoN60EmpeH6b8cj/Hvtslso4CsJcpzAyszUlyrQi2u7CFLGKbseiVfqx+M6d/LFtUFVWbpjvWRt3I2+TAaDMwfEB2Mqn93bXk0jlxkb/6phDZTI6e37360smgnqSJDcwy8NLanEJfS7s3xQH1t1XQu3tMnAxrgb1MoeJ1Ic79bkhE4glscFF7UxnHf9gtGteWkIK33iEm7GmF4gBXrUvsYR/Y4CLY5uaYsLjkbXLgbXBqStzXEopPgVSKlPAw4faPtkA+Ly52l+/wY3YaOfer+Zi7GkHpfOid88zvpdSTFuJPpmNM63T8dMFp7SJR6bvv+DwVg1Mkq/Sce27xiZrWqn7MZjOJxKu/wXEJcphMJjKZDE+dbVry3xcSlRYSlNbfH8bsMrL3iysnyxeVey1IH6uuDzI7lmL4oGwOvuwvm8ilc+wVWqeabIDJRHpyDXy4LgLVN4UYOxUTk2ua3hxl8MC4mCTjbXYQ646RXotD9iYIb/AydiYmeg7uWhv1t5Vz6qd9on6xBUxEtgfoen5kTZ67u9ZGaL1bbGumFWtt91a2zYviNokIbReD6JV+8jk5WantgSrymTzHhMXgwHoXyemMJmKbFtijFvK5HPF+2Xqw9tYyZgYTYtJY5TUBYoMJMSlqrWH2m0iOyt7XwHoXjXdEOffrAdG6x2TTU3ltmIEDo8QH5u+5EkFpKejd8xtm56snLcTW5CxNuQw/NVqYNs3fw9oywff+/Au0dA4x1aqw52c1i9q9ZccZRgezPPPMM1x99dWiz3YJrz56enqorKykpkbPr5+5UFlyIVFpIUHJ5ID2t5bRfzBG357l38uF9m/yvGt+Q93iNxJc56V/14hooz2wwUX9reUc/363iIAAqnJJamLtiCBa4KqxYQ+axTZjvjYntqCFnqeHV794ASwBEzq9ntkhGdFbK+zlFhS7UVx0b7ijHB1wSljTC23yoNPDoEZisxTlO/wkJ9Ni0pdWrLXdW821IYaPTa0JsdDoMFK+zcfQgTESgvfWEbVQd0uEs7/oJ9Zb+uc0Ooy4q2yMnpxa2rryFYbRArYyG1MdsjzPUWEhuN7NuZ/LCFz2cgvuGjt9L7wCBKBXEUaHETIZMsIhtvE9tehNBvb/2+mSCUoAvmYnFo+RvpfmawCrEZTOh94/v1m2lHrSQrx5OM6UXs+v/fOqSEWi0j9++DG2HOhl5koTA/+5WCWnoWoAu92+JBHmEn7/qKmpobOzkx+ebl/y3xcSlRYSlKqvcuIIKxz5/srv5UL7t4upeQXaXKRns0yek+VPRTcUKVHYoAAGg8i+6/eB4AY3sYFZkT0ZQHSHn4mOGWb6ZQHLHrGQGE2QXaNtWFetjdnhpMgOzexVqL0pRPdzI6LvZ7AaCK1zM3p8UqympAUWn4Kv0cHg/rE16c+1tntz1dqweBSG9k+syf28jQ50Rh1jx2SHuyqvCaI36egU1uYcUSvZVFb87mmFuSBKkRSqZoY2e0hNpZkQrj19rU5Sk2lia5A3XwwUh0H8vlqDCm1/Uk3HrwdF6x6DAsENPibOxUiML6h5CfcbDYH5POl89aSFqJnOsnk8y1NlBqaUeRJSkaj0t//4M97w1FE67/Kw/3/PO3/9r0c62PXrKZ566iluuOGGkj5TyZpZd999NwCxZcZT0frtfAWlqYEUs+NpZgZKW7jPJQwKbPlgPdGrZVLoU+finPyhjKAEMHpqiomOGDMjwuLyzWE2vbcRb4tMRsxeptB0dwWKQ4MNiAYMH5oSE5QAep8fFROUQCUnaSEoOaIKwXa5pF7D7eXU3SI/kXro0XOaiDhlW3xEtsiZh9v+opH2d8ulvYPr3UQu0850fC3DErTha3YTaHOL2rkb7Fz+sRbKtstsK7wtLgLr3LirZOoxIy9PsftfTorHdfVVIepuioitK7W+C6kYYoISqG2kBCWA8ZOxNSUoVd8YElsKAmx6uI5Nj8gls0eOTjJyTN6ffTtHF51eLDVh2Pyn1dTcqH6/3HTpRZRRnY4Bw+L5pGj9Fh1UP7/StXgTY6xA0jMY1kij9RLEsNlUtbF0eulN3qL12/kKSlPds0z1lJ7IF3Ov6ptCtD9cU1qjBQXMrt8OiwlKoFpqDR6cELfb9L4m2jXYRZZt9xK5Yu3m0s5fD2kiSZz8Qa8mFZ/xE9oISr42JzahhYEjbKX+1ggRoXXU5Lk4+z57WtwvrhoH4c1e3NWyubtsu5fLPtyMLSz7foFWN8F274r2UX/IKNvqpWyz3PZr/durNdnZRS7zU64hjz36rS4xQQmg/tZy6m6RSzVreRcAZnoTYoISwLknBzSpWnU/M7JmBCWT20TdrRHxuxBod7H1kUZxnh4fmGX05BRTZ2XfLx3PcfbJ/kXPoRSCUvR1XjY+PF9QyU2WVlQc1RsYRcf5V88e99DYpa65nccvHBOxKTUXu0RQem2iokLdIB0bW/ocX9H67XwFpXQMpvtTJdeSFm6SrXtbJeEtntUbLbB+S4yk6X56SERQAoh1xxk6PEFSaEMe2OBiy/sa8TbJal5Gh5HKa0PqxvkaYKojLiYoAYwdnRYTlEB9DloIShaPEXe9XNWj9qYwdbfKa16nf9wnJigBlF/uJ7Jdvu5e/45qmu9ZmWywFCKX+SjbKs9N/hBgtBgp2+bHL7TBs/iNbPlAA4ENsnauqJXyy/04KmTK1bHeBIcePSciKAGE2t00vimK1SdTOtD6LmQSiAlKALGehJigBDDTl1hTglJwo1v8zAHW3V/Jhnc3iNsNHphg8OC4iKAEMHZimr5d8zG3VIJSy70Ryi/3AJAbLf0wZ59ioN+8uOZVtH7bdFglG1pfWrpuUqyrXMJrD9GoajsUm1x6k7do/Xa+gtJ0f4qJrtLn4GLuFVzvorFUG8YF78TI0SkxQQlg+OVJhl+W18pa3lJNi4a51F1rF9uaXQyGX57URJLo3TkqJigBzPRrIyg5yi1imziD1UDTHRUEWmT7VcnxFMcf6xF/P1tAIXplAHtEVvNyVdnY8FAN1oBs38lZaaX8igBGu1yZ+w8BwfVuyjXksdU3hmi+V/7ulW31Un6Z/H7dzwyLCUoAtTeXUX3dhYdqVoOWdwHUcS0lKAEM7Z8QE5QAxo5NrxlByaDoKdvqQ1nBSm0p2MJm2h+uJyC0/07FsgzsHycmjBHZlKqglVggulHKfqOnzkbj7aE5saPsSGk57bQR+qw6Zs7rlqL12427VLXXyK8X75sO9aqf79prry3pPiDwk1EKXzizwmHIvGGJhDYFh76+uhSjzmpddKKflGpVZfUIAmWB4dx2fyWjZ6YZ3D1RctPpjlmOdsgtw4YOjWO0G5kRWst56p0E17uZ6p0RnRKN7FClvY9+p1NElvC2OKi4IsDL3+oQEbi8TQ7KNnnEdlzVN4Xwt7jYJ1RHaLyzEotHYfiQjBRw+md96DXYxCkOPYrbSKxX9vz2f+4kIPcGziRypDVIUe/912NiBRiAK/66lfhwQmyToQWKT2Hr+xsYOjgukuKbOhdn978cEX+/XCZHLp0T23L0/G6EoUNTYitJxQGK10ysW1aIPPe7Iab64+L71b5etVEbPiSzUWu4sxxHmfVCT/lVEL3Sj9ll4uyTMuncutsi6E06sZ3a5g80kM/KrRbLtvrIZXJiNYbeXcPoDXJSqFYC1rq3VTN4cJyRl6fQmUsv1plsesyu+alZZzJx4iM1q7b75QIFJSUWY9//+J+YcjkM+sVxqqlO/T55I7zn/vXAKFVVVVzCaxPBYJCpqSmefmKGm+70LHlN3nRhKtf1fGlzqM5qJTczX+A1u4yYJVZVBRlsX5uTQKtLZGsGaCJPA/TtHiUTl8/BFTuCoIP+F2XKdhvfW0cuk+PlL3eI2tXdGiE9k6b7GZnqYtWNIRLjKTF5YcO7a5jsiNP1G1m/ttxdKbaliw3OcvrJPsY1LDZtEYX0ZEpEqBrYM87oKZlqE0AmkSWbzJIVpl5nnuin63f9YtJX/W0Rgu0eXvzkMVgDoa8ND9Vg8ZnZ/c8ytb8Dj57FpIF/lZrNIBeGhoNfPIngbMwc1LGSIS1830/+uEe8eQ/QdEeFJhu1Te+rY2D/uEzx1ASNb4jQv3+CWE/pazqT20TDrWX07BwVkf08DXYa76jgzM/7GDta+um+YJuLsi1eJjpjjAnev8nOWQb2jTMqJFPFR9Kc/J5c1SK8xYszauH0T/ohn0dnKq2GYPEYMdkXV110RiMn/2JlMl6HSaGjcA9TPM6L//h3mDNqoNEXX5I8XNOqnhTNKfDczhoCvnLGx9dGGfcStCM+u3yky9qVJYtoJ59YPbfQO+yL1JQAzC4TllJJgDo95ArE8htDTPfPit7nxERGbKEGMHEuTu+Lo0wLC8XOiIXoFX4SE0kRmd1db6f+DRFO/aRXZNNgL7cQ2eaj45cDojnAFrYQWu+i4+khkQpMcKOb8EYPh78mVOW+sUyTLd25Xw9iUORzqdGix+gwkBiRJSaHv3oOLTWv9EyWVFxe8zr4xVNkNKjwbPlgI/GhxNpY8Bhh+4eaGdg7TtfvSs+3M7EMez59TKxwk8tCZjZLNil7DmMnptnz2VNiGzWjBYwOk3isDB2aJDGRYnZMViuL7AgQbpfbqJVf4cdVY+P4t2XP3NfmxOJWxLWkyGVejDYT3U8L11hvrURv1HP0m7IYUbEjQD6XFx8+7HlhFKNVHiPmbICFJKXaN4QZOxVj8swMekHNS605LMi99HqO/s3qpJEX3fP3MCYSPPP/fBJbKoVbSaIrDHVdGqrbVSJa3qrj3/+2BpgnIV/Caw+NjY288MILHHx+iitvW5qomrWaLsi9xs4k4czqMUfvdi1SUzLajVi8gr3GQs3LHrHgbXDQ86ystqOFoATQ/9IYuZx8Di7f7sNoMTB2XKbmUndbBL1Bx+mfCFUXN3vIZ/Li7xnc4CYdz4jJC3W3RogNzIrVcZrfXMnwkUm6BLZ02dksJ3/cU7LwxkIobiPZ2YyIUDXdPcv+L54Rq2dl0+peY04ovjR8cJKxY5Ni0ldwo5vKK4Mc/PK5NVH6qr4pjLvaJt7bPPOTflWRTIhMPEvaLP9eJ3/QjZaal+I2kJ3Nk03J3vczT/SRz8mrcw1vijLVExfb2jXeEWX01JRYKar8ch/jZ2MyMqMBqq8JMXRkglkB58LsVWi6K0rn7wZFbj32MgsVVwVITCRJLafQswSSUxm6nxtmqksWx7KzWXqFcwmAs8qKK2pTbSHz+ZL3GxWHEYtfgYXD2mTk2P8XWLHdqNXA6AKLckMqxeP/3xdwziapsk6hi6lj1hTLcdMNai6fdhjQJUNYLEMiUQTxkaZVzeFqo3BucWEx0GxFcRnp2738IC4SlHQGwxy7+cV/FHhvL/hg7nonRptRRFICqLs9wszQrKjdzEBKkzxw7+5RRk9NkxCSm9KxDDlh0ALw1jlxRm24ojbRSxre6MHX7EZx9JGKlX5fq0dB0XBiruPXg5g98l0TqUVfEe3vqcdgNrBLMtZA1BcLISVkzN9PUzNmBmaZ6l4bqwtSKeJDCXFgBm3fb7pjlt3/clLeEMSEIYC6N1Tgb3Wz+7OnRO1TYylNVm/nnurHXSs7rQpg9SooLvk7FNmmLmSkJCV/sxOdUQ/IFjLZ2aymZGrXp46jOORZZu8z2k6+tb6lgp6XRkWkUMUB7mo7uVSWkSMz5NMZdEsQSZbCS5+aT7oNPnWB3vzJjhWJSv5UippslpcNBlKKwtbubqyZDDoWOUMAoMug/j4D+15S39X169eX/N0uYW1x/fXXc+bMGZ749tSyJCUAqqPQuSAXMUF0s4vhkzOkJpZfXM0RlHR6yOc4+QPhKetC7hVsc+NrdAKyfMhZbSPc7lY3lQXofU7b+/zyN86RFPrQA6TjGfJpebzyt7pIxzNiklJki4/EpJykZHErJH3y73fuqQEmz8kWmqTRpABjj1rY+FAdvbtGxCQ1LTZvI4emGBES3+fupyF9muyZwepX1oSgBDBxNoZdA/mdNCwj0LYitJBHoNiX8tx5w9vqSEymOPjFs6J2WlWGzv6yn9lRYY5oAsVpwiI5WIN6UjLY7iWdzIlISo4yM55aB5OdcRFJKZ/Lk01mSc/ICm59O0eZODVFXLhhmZ5Mc/ZJOdE7tMWDxW2i67cyVZPgBheOMqs6n+h05DPpkpSUzjwxDMzfy+BXc6+mT51dkajUkkowqTPQbzKxfrAfdyKh5lfnXWdI5tXfJ8F5OM3MzAxO59qdbr4EOQwGA5n0yu9JprUK47HFB9wcESMWt4mR48u/z0WC0sKa177PCeLbgt2H0EYvFp8iIikBlF/hIzGVFrXLxDLizXmA8VMxDnzhlMhuClRSRiYhXyvaQxb8zS6GDk2IVFa8jQ7KtvkZODguImcoThNmj6JWVQVfsWfnCMPH5JuWWm3Cmu+rxOozs+fTstqJFrIvwInvyw44zt9PUzMmz8WID62RFUQGJjtmmO6TJ4lavl9qIsOhR7UdOJQSlABCW/xUXR3iwJdOi96FTCwjjkUA/S+NEOuTK/BbfCaxahNAZKsPq88sJin529woDqM4DmZmMug0HKbd/x9nNNXTtVolVt8YYuTYFDP9so340HoPOr2OybOz5FLpkpWUDj46Ty7TB9UNsra/71uRqOTIZKhI5Dht0ZMxGmkYGqF8YlLNsc57HQ0ThdxrIs/Pv6/Om+vWrRN9t0tYO9x+++189atfZfdvppclKQFkmioxnlxATDSAr9pMbCizotVOkaBUzL36d43Rv0tQoy/UvDw1dsKbVKtdCanD7FXwNznok9wTGDspj6kAJ3/cRzYlJ1hkZrMLRTtLRnCdm2wqKyYpRS7zkZyUW0BZ/QrZhPz7nfl5H/FhOdlIsodahMFqoP2hOnp3jtD/kuy5ayH9zPQnOP6YttxLiyrV7HCS8dMxkNonasR0b5x8VstROW3fr1eYIyy+lzx3bnlzFcnpNCe+J3uG8UFtdtNnn+wnPSvPEa0BBfOAbL/RoOgpvyJAHpgdLv1dsLgVAuvcxEeSIpISQDqWJitcw0x1xTn4pTOkpQTB2SyDe+UH0JxVVixuRRw3fY1O/M1udYzqdORTqZKUlIYOTTG0oC5uiIQBaP2/RlYkKkVnsiT0zBGVKkYnWd/Zv2Tdy96VLvw+zaQ/Jq556fL5VWlH81/AYCCXy3Gs60KJ4Q+96eHFv1hAVNr63nIMip6XPrv8y7ZQReliPGIBUBDbvQHs+JtWEpMp9n9WRiRpubeCmdEk3cJi6h8EFFAU7SSZtUL1jSE89Q7xJkbZdi8mu1H87DY8VINe0Yvvp/gU9EbE5LTN/6We9HRGkzWdFrzuv7Ux1TWzJvdzN9hpvrOCs7/sl50UUsARVMQqWOU7/ER3+Dn4lQ4R2chZYyXc7hXbH9beHMZZZePQf7z6alYXC8WnaCJwveahwIYHauh6bpjJ06UvgFy1Nja8rZb+fWNihjkA+vNO5pdIVCqiSFICViQpXTsTpyqX44dmhVghOTl95n+g+5ya7CwsixVny+EP2qj89zipJPT391NWJrfFuYRXH11dXVRXV+P06Hl834XS7f9451sW/6JAVHKUm1h/b4S+A1N0PTOx7N9fqKJ0AaNtNZSePi6LhjdGCG30svfzp0iOll4Id9fZiG73c1R4evYPBSa3SRMhZ62x/p3VjJ+O0fu8YBFvgprrwwy9PC6yx7KFTbTeV03nM0Ni0pEtbCI+lhYRhwLtLmquC3P0Ox3EB1/9Z9H2YBWuKjsv/oPsJLnm+91ficFi4OWvdIjamf0mcrNZsbLRhnfXkJySK+REr/STnEwzclj2zDe8q4bhI5MyZaPfA0y2Alnstf+6ixG9yo/ZqYiJSpveV4fiNPHS/5YpjABgAjKLNwNLISotRJGkBKxIUnrL7DRxdPzUqh4oeM9vnuKvf/GEes8F1xVnylMf99PzPj831p1EURSSSW1FxUt49eHz+RgfH+f42QBG4+Lc/X1/8oFFPy8kKrXd7cfsNrL/K8tbCS1UURLXvM4/Hi0kxhSx7UNNJMaTYvWfymtDpGIpBvdOyG/6WocRjEbtJJm1QmCDi0Cbm+NCi3ZvowPFaWRQSC6vva0Ms8skVqsxWvToLXpSQnJay1sqySaymqzptGD7R1sYPzOt6dCpFBa/kZZ7quj83ZDsgKURLG4jiVFZX3qbHFRdE+TED7tFbS0BE/4WN70vjojiS3iLB0+9gxMaN0nXEkaHUROB6w8BjXeU079vjJjA9l3xGNnyvkb6do2q6mBCNaXzWQ2lEpXmrg/Ob46tRFLaOJVifTzDz7wKE2Z1bj439Ql0H1MPAy2Vew1+wskVn5uhsyPH8ePHaW5uFn22S1gbpFIpzGYzlY1m/vXJC5/RZ95x36Kfi0QlgxXa7wvRfzDGwMHliSQLVZQuer9RA4Ib3VRfF+bw1zsWWfSsBmtAIbjBQ9czQ4vVL/5IYLAa1kSF52JR8/owsd5ZRoQk0NBmD5MdcZE9lsFqoOnOcvp2jYmtBRW3QSXrCbrUHrFQfX2Ic78cYLZEy+qLQeU1QUIbPez9P6de9XsV76e4jCK3FwCTw0AuKyeM1b6hjGwyJ1LrAvA1Ockkskx1yQhxtW8oY7JjRqyattYwKAU+22v/dRfD1+TE7DGJyYgNbyrHUS53wQFUy7bceTWvEohKi/5EgaQErEhSur0nxYxBx+8i87nd2dSn0b13EHIX5l55Pbz02Wp2vL+TcDjMwEDpQhiiHVOXy8XExATPPT3LVdfO+2NeQFACVVEJ4FwvJ54cWZaJtsjirQBdQQqq/V1V2AJmdv6vFVRulkoYNMbVQ4+eYWZA3tjb6MQaNouJLls+2MDscJJjwiKDJaRg0KPps4qRgtQachaC7S6irwty9BtnRMQoe8Si6SSN1s0LvUmvSWp707vrQAcv/ZNMuUmn16Fbyk5xFZTv8DM7mtSsNCWCApVXBhk+MikiYemNOtDrxGvhuhvLiGzzc/Q7naLvZ7Do0Rv1kJIVJqY7ZkVqOkU4yq1Y/fKx2XR3BQZFJ44PF4O1JCh5mxzican4FDa9q5auZ4dE7663zoEzasNb6xCRlKbOxVXlrJiwX/RLyxmupqi0/oEojoiF3V++MLlp/mQHsDRZaafJSHceYorC6Qc+X/htkPyDbnRXXmhjeuJ5P1Qq5L+o7oxeIii9dlG04puZvpAQcAFBCVRFJSDW2cuJJ4YY71y6QLmInFSETg8muOIvmxg7PsXJlSwcX4FiDUDnb/rp/M2gmPDgbXDirnVgiygiokvZdi8VVwTY82+nZKQAE7grbExqOEWlBWtNUGq6J0pqOkPHL5ffWF0KtqCFlFTFJ434PgBkC7mXUeYRHljvounOCs49NSCy+dPp1NwEvSw5sQVMeBpd4hPaWuGus6E4TSIbHQCdUVte2f7OOnKpLHuFds4Gkx6jUZ43iwhwC2ALWnCGk0i0IU1uEy1vjtL19BCTZ9foXV8jsVNQx2Y6LY8vTfdGMbtMvPxoh6hdoM2N4jSJSUoHvnAWW0CDF6FOt+SG6mqKSpd/uJ6p7llO/ubCHL/pU+phlKXISr8wWuYKKafe8W/wDsh3V6PbfiHx47kXakmXmfjl42rfX8q7XttoaGhg9+7d/OrnaW5943zefj5BCVRFJVDJSmefmSSfXjqfOd/iDeZrXg23BfHUO9j9qRXi6lL+DRr32A9/9axY2QggtMFNYlJOUmq5v5LkVFpsM2d0GDEa0fRZxcigyWZMKxwVFiquDHL6Z/0isoQjZMERsa5+4XkYP6WtFmRU9Bg11LzWva0ag9nAvs/KcgWdQadJdcbX7CQ1kxYRMy4GoU0epjpiorGpMxjU7ycsegXXual/QznHvtfFpEBtQm/Uo1cM4g2hxEia3ufk9hO2Mm1jM3p1AMVh5JxQzftisJYEJUfUQmwwIYvXRrVu3LNzRHSI0xIw4Wt2MTOSFL0LqYkMez59gjn1h3y+NKLSMpIrqykq1dzoJ9DqZN/3Yxf0S9vfq/WHpchKR2x6hhWFCQOcu/OLhd96yL/egW5zxwXXn90XgICR0f8vCaQuEZRew1AUBb1ez0j/hWuU8wlKoCoqAXCym5M/H2NmGSLmQnJSEcXca9N7axg9NkXX0yvs471CNa/hw5OMnYyJCQ+2kIXgejfDQrsjV5WNiqsCnPhhr/ie1qAis2S6CKw1QSm6w082lWdgr4xM4KywkcvkQUhSktrRAZDNY1AMGEyy3MsaVFj3QA0dvxoQkal0OtAbdIuZBiXA5DDgLLcxdmZ6TYgn1qCC4jCJiVt6gw69Xp7HNt1VQT6X5+i3LtxPWQkGRa9J8UmrapozalXrsQKSkkGB6psiDB0YJ6ZRoVUKLWpWWqE4DOSB9ArqekshusOPNWgWC1N4mx3YQxYxSen0T/pQHLLaNqC+tEuUG1ZTVGp/qJKpzjjdxy/ck2z9v9S8fymy0m9CBoqf8uxNjxb+y0n+ZRu6dReKcfxs9zp6JtQP2NBw4UH7lSAiKV111VX89Kc/5X///fQiktJqiPVoG41jp2KkV/IyXyZhaLijHH+Li12fkBFBtJJ+dmo89aw36DQRXTa/p57ERIr9n5Ox7bb/VQvTnTGOfVdwukWB7X/WzNChCTp+Vfqmkr/NSdPdlXQ/P0TP70pf5DrKrFh9ZhSvmVSs9BOmR78hmziKCF/mIdjiFisGHfx3mYJSEb07h0FDDNon3Awqovr6ELPjqTUhKTnCZqquCqHYZSzl8eMxXjoue1cBhg6NoVf0zPTJvlv3b4c1qZ5VXh/EETTL3h8QqxQU4ay0qgQuIS7/WAvJ6TQH/k0WHy77cBPjZ2KcXomYsASu+HgLQy9PcvaJ0p+5s8ZK21urGTw4LkoArD4TOoMOgQAgoI6xF/7uqKhNEWLilt7AhrdXYvGZ2f3pC9/blYhKo6di5AV+rXOfUVFYMiI9MnDBWkMHVD0yQdfPQjgdTqxWeTHxEtYWOp2OnIaFzvhpDQuOtGphMHZ2hbi6zPu37c8ameqLc/L7pZ9G1moB1fHLQW1EFwC9DpvPJFLHaXhDhFC7l92fOSXa4K+5JUxwnYfd/yxTBKm/LYKrxibO8za+tw6T3cieT8nsPFwVdlIzcmKUJqUToOmucqZ6ZhnYUzrZND6S1mTxOnk2Rt/uUcZOyRb+wwcnxcQfgPIdAULtXoYPjovJd1pQc1OZKhMs/KxHNObNPS8Mk0vJ49GBL2jLm1vvr2TwwDhjx2W5nnQNCGDzm7CHrFgDZhFJqfKaANEdQV7+xjlmekuPu1U3hgi2usSEr6Z7orjKbewRnkBsfHMlFrfCLuFBCaNiUMn9QkjVZhdCai2HTsdlH25icN8YXUusO1ciKk2cizM5LH9XJ01L/L2/HFwy72r76AAHv1HJM9/3Aee4+uqrxfe7hLXDW9/6Vnbv3s03vx7n1jeWnidLlU6KGO+Ik10pz1uKoIRq21a2zc++z8higVbSz17hfYowmLQRXTY9XMfsWJIjwjrNpj+tY7I7LiY9bHxPLcNHpkQkY2vIzPq31dDz7BD9u0vPaax+M86oDYvHSExAmOh4aoiOp+S2e+5aG8ENHnHh/dTj2hSNel4YRW+S1zGO/ae23KTuDRFNY0ULjA4jdbdE6N89SudvSn8Ws0NJ9gvrMwCTnTN0Pz/MTK/ssNzo0SlN1l+B9S6c5VbOCddZ554Y4JyIGq7CXWXXZGu2+ZF6UtMZjnxT9sw3vKuGyXNxVTFIgC0faGDw0AS9z5Ze2zY6jKx/W614rFjcRvUggTDdToykxTleERdYO65GVNLpqb0ljLvCyoEvdVzwzysRlSY74xhdVjHRNmM00rfUUPm/h5fMvYL/zxTDn/Fhs3lwOjUU4S9hTeFwOJielsesmSFtOc3I8Wkmu1YgPCxT82p5SyXxwcTK5KbzoUGRBbTH8Tx59AY9JqFSUWizh6prQhz6yllSk6X3a3CDm8g2H4e+LHOPCG324G9yig9m190ewR4w8/JXO0TtXNU2sskcA3tFzXhZ+L2KKL/cR2I8LSKgZFM5Dn+tQ3yv1GSKrmeGmOqVkXhifQlNDireRidV14SIfWVWNFa0ovxyP86oTaw60ylUNCqi98UR8RwMiPPsIiqvCTLREWO6S5brHfqSfGwarEbcVXYmO2ZEJCVvo4Pa15dx/PvdIps5f5uL8EYPR7/bJSK0lV/uw9vo5Mg3hMq/14dwlsvHit6kF5MDAc78RIPrSgEr2ZQuCZ2ODe+oYfDQOEMHLqz/rkRUGj0xzWzahpRVOKsskz99emzJ3KvlcwM8OlsLwJYtW0T3Eq0GvvrVr+L3+zlzSv1CSyoonY/aKPT2suUd5YyeitP59MTcPy2lorQQPc/JWGhFpGcyZJNZse1b5fVBItv8YpUbrdjzaW2Fnr6XRpkZlG8+ZhIZUnHhC5AC9DoxWWJ6IEl8OMHMgOxznvvloHhBfDEINLtxVdnX7H5aT4Rrxamf9JIYWxtmbKw7ycmf9DApnFQ13683xenetZECB/C3uLB6ZPJ5F4O9/6otPkz3xkUSskVIT/UBKA49mWSWpFBpKDkyS//eMQb3yd6HydMzmjYetWLDQzUYbYbSiQIFBaVMIkcmKV+EDp3RM3Rm5QVM8yc7LlBTunc6RofRwLcf/uqi3+sOq88lD+Tf7kD39Rg6wHo4y/GjKcbGxohGo+LPeQlrC7VgM81Ab5qyqGlpBaXzUR2lqmIab72Ng19bXDBeUkVpAY59V5vlQTqRJaOBlLHxvXUkxlNi/20tGHhpXJOCYt+eUVKxDOm4bOM8PZMhM5tRLYgETXV6bTF54lwMs4ZC/55Py8k/FwNfswvFaRKRlLQiHc9pJ7RpQOczI4ydia0JQQng1E96UOwaVGc0QqJGddEwgafWQWYmIyYpacHk2Tgv/qP84ElsMEFsIM7MkCzf1ht06IRKXQCZeI7UrLwY2P3MkCZlT+kJwouByQab3tdE97PDpccHnQ6T20RmNktqWp57nX5m9efW9Kmzi9SUtiRnieay/MRo5tTD/zH/UXapfysP5D/oRveZSXSA7yV1bXT45WPo9Xo+9alPiT/nJawdPvShD/HRj36Uwy+rE/dSCkrnI9NahfFYF21v9jPRmaBv7/wmwVIqSgsxenSG0aOyTQVAzUtm0mLrosB6F5VXh3j5y6fXxN5MK3Gk+9khEgKLjCJSM9ryUS3K1bNjSaa6Z5gZltk3aiVCa4WvwYm/2cVpY59mBS4JtGyqXgxO/LB75cOtryAysQzHvtfFjGCD5mKQmshoUjbSCn+zC1eVbc1qskeFJKMiJs7GSGpQRNLpdcsJAC0PY2FNJxxjmUSGrqcHGTstOyiRGM1oIrRpRd1tZVi95tIJX4UOzCQypDQQLyYn7Uw+t/Lk0/b3fReoKd02MkunxcBPH/zK4o/za7W2kddB/r/70P2PMXR5cPw6xamJDMPDo3Pq1Jfw2kVbWxsvvvgig90pwpXKkgpK5yPTVEkoO0SgycbJJxevG5ZSUVqInme17c2k4xkyCfm4r39jhMxMVjNpQoLprlkOf71D3G7i7DT5TJ6scJ2Zns2QnE5jUPRkU7L8S8taeLorTlKD8vgxoXXtxSK40cN076xmlRwJsimNyk0aMXp8mvhQck0ISqCuCUy2tat5TQgcOF4JhNo95PN5MUlJC1KTGfZ/Xi6EkZhMMX42RnJK9sz1hsL6Shg204ksKQ153sCeccY98tph9zNyMQvNMMD6B6rp2zVWenzQ6cCgrv8zs/J17kCHmdUeQuv/NbJITalmOkv1TI7ngnpO3XLefuPjah/nFch/MoTuI0PoUlDx40kOeE+h0+n4+Mc/LvqMurxQkqK4aXKsK1IaSamAbbfpmTgb5/STaiKwGkGpiOobg6TjSyzMXiHZxYWIXuknekWAI988J1JVqrw+SPTyAPu+eEasuqE49KRia7OR8ceM8FYPdbdEOP1EH8NLsAlfaWx4qAZH1MZOoTpL5fVB7H4zx4Wbsdv/qgVyeV76pDbVAile99/amOqa0cSolqL6phDRKwKc/FGPSM44uMlNaL1HzKrd9L56rH6FnX+vTQFNiss+3EQmmWX/Z9eu0PDHCsWByAayiM3/pR6dXidWJGt/dy0Gi740ktIyFm/L4Xw1JYPPS+PNDnr2xJgtYQ+4SFRSUikeyk/RWtvJm67bvfiiW7qgKw0HK0FRVO/Ojd0kKvVcrofDB7PccMMNPPXUU6LPfglri1tvvZWf//zn7LjJzv/8YrQ0khJQvRH85Xr2fal7jiCzGkEJwFZmIro9wKkf90N+iVOVrzA2vreO5ESK44/J5sVNj9STmc1w+KvyecpkW1ubpT9WbPzTOvRGnVjxSSuu+OtWprpmZKQJEzTfWcHQyxOMnyh9Aglt8dBwazlnnuxncN+rT6Zqe7AKV5WdFzWqs0px2V82kUvnxCo+jW+KMN2fEBPMdvzXVkZPTXHye9pIkBKEt3ipfX2Y49/vXvMC0x8jTDa9mHRniyisf7CWzt8Mid4fe9RC671VdPx2gJFDJawJhGTO89WUyq8rQ6/X0X+wNKZGkai0Ixlnq3WSD73t8cUX3NcDZ9KwqwJMJkin4fIeqDfxu69VcWOdSgiVKoJewtpDtQbIc6qzrCSSUhGbL88yeWqKrufVguNqBKUiQptc5NJ5hg9NLP6HZVSULgbeJgfV14c58cMeZodkJ2Frbgxz5D87SAjVzowW/YVKHZcghrPKSss9lZz9xcCaEIFqbysjtM4jVmcJrHfhCFvEqk8b31OL3qRfM4LG9o+2MH5mmlM/fPVzE3+bi8Y3RTn5eA9jJ0rfsHTV2Ai0uTj7ywERwazx7ijeOsea1Q83vKuGXCa/JmpWf+wwWtBEIG2+rwKTzchhobpI/e0RLB5leZLSwlxLyPA6X01JHwxQeZmZ4VNJEhOrty8SlYyZDB/ODtJa28l1lx1efNEj/XAiBb+KgtGoene+vpdYk46/CBr48pdmueeee/je974n+uyXsLb453/+Zz7ykY9w64M+/vT/rSiJpAQQLMsSjsKp7/fNWQqtRlAC1RIosM5F365x8tnzcq1XIU+vf2OEzGyWTuG82HhHlGw2x9mfydU6DMra2iz9saL+TREUu3HNSE6b3lfPVFdcbJlecXWAibMzxATKi/aIhZb7Kjn3ywHGBJZhWlF5TZDQRg97hYrQWtH2QBU6vU68bxjZ7iM5IVPBAtjygUZGj06uCRnREbXS8MZyzjzRx3T32ohF/DFDC8nSYDWw7oEqep4dEY0VxWGg4Y4ofbtGmSjFylla8zpPTcm7uRyjGcY6S6srFIlKzZNZ/kTp4R1vWmLP8P8dhqMp+FYZGAyQzcIDA5xptLH+m2Nk03oyQi918XFrvV5PLpfj/be8nRWs7i7AnidygEV6O8o2u8nM5unbuUTisAIUn4I9pDAuOHnb+/yoJqWbxGiSzGwGxa4jJThg3HR3BcH1bnZ/9pSI3BRsd1F+eUBuOaaAt84h6pO5pj5FTMAq2+4lm8qJSUNX/HUrE2emRRuW8dEkicmUJpalFgwfnSSblhfaguvcmJ1y9u/I0UnIyRPl9nfXEh9Nii28tMASUmh7SxVdTw+JyEZjp6exl1mYElhkgNqX7mq5Ctbw4QlcFTZxO62YHU6SnpEXmHf811bGTkxz4gelvweKA8p3hOnbOy57X4uxXLiAsZepDaVWmXW3R1BsBjEpYeN7m9Cb9GI1pfR0Br0G2cZDj5YonbmAoKQ4wFXjZOSwwBPY5yXYouCrMhMfzdArUD87+tCjy//jL847MaYocKweCzB1eQqdrpsvf/nLJd/rEn4/+MxnPkNDQwOHd+lLJigBdB6EzoM5KI9CZ+nF90Crm0Cbk6FDk0x2xC8kKq0AX5tTtdUS7F1ptU9Nx9KkNZze3P7RZlLTabH9VNNd5cyOpeh+Rnaa2RY2kc1AclR42quYKgiamdwmwu1uel4cEbVrvLMcb6NTbN8WH0yg02BLqhVjJ6cYPyPPYX1NTrLJrIikFOuaYeTEJNO9svsF1ruI7ghw9Jsda6KmVH9bBMUlL5oNHpogryGP9be5sQTMYpLS6KkpRtZIWSE5lSI+mmRWqMDRdE8Ud7VDbM8YWO8CYOSw7PuZ3CaRfWQR7jobk91x0TsOsP7t1fTsHBERtxwVVtrfWUvPzhG6BFYlBsVIOp4hMS5TmpjpTZSu7LagWONpsDMznBL1p8HvpazNisGkL5mkVMTX3vvVpf/hsYrFP5tMsE+Vu27uT2IwGHC5XKJ7XcLvB16vl7GxMd5137tQBBWz/bsMgBcjsqJ29HIvmUSOkSPTopqX0WHE6jOJTt6On4xpsoJPTqVIxdIYFAOSAFR+hZ+qa0Mc+so54gI1cGeVlfLL/Jz4vlBp0wiOMguxHvkuv1SVClT7A4DxU7I+3fKBBsbPxkS2dMmpNDODCVIx+dyhBRPC71REYJ0bZ7lVTFIaOjiBToO9aMMd5aSmMmILLy0wWvQ03VNJ/0ujomc+Mxhn8OVx4oOyjSRvvYPgeo9KUhJg9MSUqua6RogNJMgLN3cAtv5ZI2PHpzj3K4FykxHKNnkZOT4te1+LsVzYLYrHiN4gt/SMXObF4lXEqlQtb6nG7FbEm7ipWIa8Bov4M6WSHxYSlIzgrrYxeab0Uz/6YABHSEeo0UxqJkdiovQ4duqeFWpen48s/tlohN9W4wB2Xm8EjvN3f/d3Jd/rEn4/eP/7389HPvIRTuz0lExQAhgeMDA8ANRUYjxZ+nrYHrEQ2eZjumeW6d6EKPeyRywkRhMiAtCZn2qzBErNpMml5e/1hodqSMczHP+uLIeKXO4jE88y/LJsH09xqDVxsX1RsZQuaGawGvDU2pk4PSV6BpFtPkKbPeL6Y3wwScqydvPp8KEJsUIzQHizl3weEUkpMZFmYP+4WB3SHrEQucxH528GSUufuQaENnuw+hQxyW/45Uku8KQq5X7tHmaGEmKS0uDBcaa71uY0bDaZZbovTnJKtiYov9xHYL1bbBXniFrRG3RMCb+fQWg7WYQ1pDA7mhIrMNXcXMbI4QmRlZ3JYWDjw/X0PDfCwN7SiR0GRUdyIi1el6Vi2dIP3i6oeVlDCqnprKg/DZEwoSYFs13HWKfs2T15zzI1L4D/O3jejQzwnSjls1nyX5siHA4u3W4FiFeAra2tAGR8L839rnk71G1U/1tRYP014Cs4yJTVqT8D2FzQdF+UuhsKxTkFNjxURXCj+nNok4sND81vqjbcUcZE9wx7Cwok7Q/XEt7mgXyeYLuL9odr5zbXG+4op+Xe+cLg1vc30Hx3JQDeFgftD9ei+NSL626L0PrWyrlrNzxUQ/QaPwDuVjsbH6nDElKvrb05TNsD859p/durqbxe7WhHpZn2h2uZHU+y59On8De5Wfe26rlr2x6soub1YUDdzG9/uBZXrUqOqLgugCVoYuzEJKQytN1fSd2tZWq3+NRrvU1qwaN8h5/2d9fO/d3K60LYwxYsIQXFofZLYIPah2XbvWq/FJ/NmytouFM9fdD+9lpa76siuMkNqEo0i/rwznKa3zzfh+0P11K23cvWP29kyyP1ah+qH4n6N0ZouW/Bte+upXyH2ofeJrW/a24IU3N9mLpby2i7f0F/v6OGiutUVp6r1kb7w7VzZAe1v/LMFggW695WTfWNoUX97ahUrQoqrw+y/u1qf093zJIcT+OrUz+gJaT2obtBJbFEr/Gz4aGauc/Q+tZK6m6LENjg4vKPt7Dlgw14W9S2kR2+Rf3dcm8FDXcUpGYVtV+yiSxHv9lF+DLPov5uuruCxrvn7ZPaH64lvNUz19+Z2Sw7P6mekj9/zLa/u5bIDh8A/jZnob/nX1Gzc75CuuGhGqJXLu7v4viuvTk8198Wvxl/s2tuzDprrGofRtVrq28K0fa2+fHd9rYqqm9S+1tn1tH+cC3OGusF/Q1cMGZb7q3A7DJh9pqIXnlef7+lgrrb1cWj4tDT/nAt/jYnAI6IFaNimCPVLNXfxTEb3jrf30e/2cXw0Uma7l48ZsOXFfp7mRjR+/wox77TvXjMlhAjtv9V89yYan+4tuQYoVf09O5WZQOrbwyVFiMU1YvYHp0ndpYSI/wbfESvCND6lgrq31js79VjxNZHGnndx9pQfIv7e7UYseFd9bQ/3ABAYIOr5Bjha3Kqdj/F/i4xRvTvH2N2Iknbg/P9XUqMOPz1Tg49eo62B6qovVnt71VjxAOVNN4dWdzf58cInQ70BlruKafhTeqzqbguRPNdUepuVT9/eJub9nfPP/OmuyM03hUhn85ANsuGd1UTbFEYPp6ia8807gplrr9rr7XRcNM8Ea/tDhfhDeo/XvHDPv5aOcfeI5WkUvCj323nP5+4Zu7aR3/wen63pw2Ao6ej/Mf3bmFgRP38Tzy7jUQiQSgUuiR9/QeA+vp6ANLpNGXqf+L0Q+uVoBT4ltFWaLhsvk3TFRBRX038ldD6QBSLXU2co1f6aXrzvHx605vLqbhafTdtAROOcgvHH+9lsiNO5HIvrW8pvMf5PE13lVNViG8mt4m2B6twF/KahrsitN5TRfk29W81vClCVeHdNNnUeOdtVsdgcKN70XvceE85Nbeq7yYm9VpfYY4IrHcturb21jLqbo1w5BtdnPx+L20PVhHcqMYsb7ODtgerMBX6pfqmEA1vmi9ctj1QRWxgloG947jrbOq1bpUNVHVDiMY75/ul9S2VlG33AupGvb/Nja9FjaMVVwdoumd+rm++t2JuTrZFFNoerMIWUd/Vje9poP2dC/KEe6JUXK3GB7Nf7UNntfqBy7Z7ab2/ElvAxI6/amXTe+upuiG0uL/r1GvDW7yL5p6GN0VovrucqmtCeBsdi/o70L64D+tujVBbmE8AHFEbmYRaePG1OdVrCySpmlvC1N+2oA8X9PfwkUmMFgMmm5qrVN0YonFhf99fSdk2tQ/dtfP9vf6d1Wz7yyaa7lrc35ErfHP93fZgFbaA+iGiV/lpujfKyR/0MnxwkqZ7o0SvKvR3WO2X4nxZvsO/aO5pelOUnueGOf2T/gv7e5t30dzTuGDMpuNZjGYDilN9jqEtnsX9/cYINTefN2ZbHFi8Cla/mea3zP/d4phd2IeBdnUs+VrUZ1VckdXcHKbhjYvHbGiLB1CJGOr4LvT3DSF8rU5sAXXOa71/fsw6q9X+NvvVPqy8JkDTm+fHrM2nkC0UPO1Ri9rf4cX9PdeH986P2UNfOkM2lcNRoeaGkSt8tC74rsvFiJPf60WxGRf192oxYtMjdVz24Wac1Tbqb4tQc0tpMcLb6CTWm5gjBpYaI2aHk+gMOsJbCmO2xBhRc32Yulsii/q7lBix5ZF62t9TS/RKP80L1gMrxojLvax7oIbmO9XrG+8sLylGOKttuKrtVFwVWNSHq8WI5HRGJffXWOfIWKXECIvHxP7PnUFn0C0es6vEiPXvrp7v7+uDy8eIShttD1bOxYiWN1ew5ZF5O7ame8rn+ztsou3BSuxRM/lMmsh2Ny33q9/14HcmmBpOEd1iKfQhNN/mwhFR11yhNjNNtzjn/u4t+wf55+pdDI44mZy08o2fXM/xs+pn3PNyA9/86XVz1/74t5fz5HNbAIjHTfzp3zaQzWbZsmULl/Dax5133glAKvfC3O+q67JEa4pFwSxN67J4fOrPXr/6M2QxW7JEbo9SvnneXrHxjjDeJvXddNVYaLwjPLdhHt3hZbJzhpe/qm6uNd1Zjr/VDrksjgoLjXdHMRasXMuv8FNbWDsCbHmknpZ71LhqL1evVTzqtWXbvNS+Yf7autvKCG3yAGAJmGi5vwJL4R0Kb/FQd9t8XlB7a9ncu2nxGGm8O0ouDS9/uQNb0Lxonqq9OUz5Fer7ZnSo1zoq1HfK3+bCWWVhcN8YqZkM1TeGKH9d4VqLqvbiqlH7xdfsXFRHqbg6iLfJiS2s/q3Gu6O469V1kbverl5b7MOrA1Rdp8bC+lsibHhnLb5mZ6G/bWofFpbV5a/zz60dARrvKlfnkQeq2Pyndef1t29u7Qjq3F+cT2xhtb9rbymj+rqQ2t8Lcqu628oIF+Zvi1/tl2J/hzZ50Bn0JEbUTaHaN4SJXKb2t1Lob3u5+oEDG1xztZHURIbZ4STOcluhD/WL+tvX5qRxQdysviFE9KoA9nILWz7QwPp31szl7d4mx6L+rrw2RMW18wXl4r+de2Lgwv6+KkD1DYv7sDgnO6usZFM59v+bqtRYvsNPzcL+vqN8bj4pjlnjAqtis3v+v+tvj8yNWWvIrPahX/338FYPtYUxaw+ZCWxwz9Xdiv1tDZnn+vvCMavOJ3qTTu3DQh4ZWO+i8Y75Pqy5MTRXwzBa9DTcUY6jzIzZbVLH7IL+rrpO7W/14sVj1uqzYDQbSEyo+XbFtUEqr13QL3dH52o77lrbXH93PjVEzwsjVF+7uL/9bWofLhcjxo5Oc+7ngzTcUT5XByolRmx6pJ7m+9TYsHDMrhYjjBYDQwWydnCju+QYkZ7N4qi0zl1bSoxwVdioubGMxjvKiV49b0uxWoxY/2A1l3+4ZS6mlRojNryjlk3vURfWjuj5/b18jPC3uQht9mJZ2N8lxIiBfePE+uLU376gD0uIEeeeHODkD3qpff2C/l4tRtwUovqmwntfHLPnx4h8HnR6Kq/1U1HYNwlvcLPuLZVUFWp27nobjXdF5vv7Sh/V1wfJpdLkszka7qnEW20kNpTnzHMxHEHjXH9H1itUbpufL+uusuCrU//Qti/08Un7YU52Bslk4MVDzTzx3Na5a3/yu8vZd0TN//qGPfzg169jaFR9j3YfbmBqaopAIEBzczOX8NqG1WrFbDbT19eHL6jmVoo1S01jFsWs/uwLZqmond+crajN4g+puZfDmaXi9nIUg0rQ8DbYqSyMV4DoFT4ChXnKYDXgqrRx4id9TPcm8NTZqLkxrI71fJ7I5b6599igQPVNYewRdcCGtnjY8I5afM3qvxeJL+rF6rWOqBrTnJVWqm+ajw+RK7yUXe6b+7n6pjCuKvV9s0csVN8UxlCoBQc3uolc7qPzqSG6nxmm+sYQ7trCfBJS1GutKsMnuMFNdMf8d626Nsh03yyD+yew+NRriyQif5trfp5CXbP6WtR+UdxGyq8IzNW8fC3OuTUpqHXE4txjchiovimMNaB+4PZ319HyJ/N17+gOP8EN7rn+rr4pjLWwh+KutVN9YwiDAls/0EjLPRVz/T3Xh4X45qxa3IdlW31UXROk9vVl2KM2qm8K4yzMIY5o4doC8Sm02UNk23x/O2ttKpnAALawudDf6ho12O6mfOGzuT6EpzCfTJyLoVf0K/Z3kbBu9hb6261+5/XvrFk0T0WvDuBrLfa3eo3Zq/aLr8lJ5TVBeneq6irRK/0ElulvT72d6uvn56nyy310/W6I3udGMCh6qm8KYwurcdVVa1s0p0W2z4/ZbEqteZmsaj+cP2bDW72UbV08Zp1VVkx2A64KG1XXhxb39/YF194YmtsDL/a3rnDtBX14fQhPYW/GGlD70FQYs4E2F6GNHuxlhb3Ja4L4mubHbLG/QR2zC/tbcZvIZdSal1LoQ0thH8rb6KBqQd67cMwe/mYn6XgWa3BBfy/sw2ViRNEFatF7v0qMaLirnA3vrMEWNhPa7Lmgv5eLEY6odZHlXqkxIjGZBr1ubsyWGiMqrvSra56bwiiFXL2UGLHh7dU0vbkCT4NdHS9L9PdSMaL9nXVUF9Z2C/t7pRihOAyE1ruJXDY/tkqJEblUnr4XR7CVmef6u5QYYQuYOfH9HrLp3KoxeWGMqLu9DMVbGLOtzuVjhMdI9U0hzF41F2++q4KND9fMX/u682NECKtfIZ9K4ak2U32rWiM4/cwsE31pAoXcyqBA5VYzVjWtxFlmoGLLfB523bcm+c/wM0xOW0mlDPxq52a6B9Tv09UX4Fc7N1Pk9e450sBLhxsBVUzp4/9YRzqd5vLLL0cKMUnpu9/9LgBj4/PsRWdAjzukMrsUG9g9etyFZ+EJqT/7otB+nR5PmR5PrfpgFAXsYQvuQuHVW2fHHrbMbdB6qu04w/OKJ/awBV+tA3Q63DUO7GVWFEchYNTacS1QVdEBswU1Ck+VHXuZFbNLHQCeusXXOsqt+OrUAdByZyX2oAV7oeDvrnfgrJz/DM4KG76GIrnChr3Mqn4On6IWYRYotLgqbHjq1e9qDVqwl1nnXgxfnRO738Kx7/aQiuVwVtlxFwk2biP2Muvci+Gtd8wFYwCj2UhyKkViKIXepmAvs84pynhrF1/rqrHhLfzd3peGIc/cd/XVOdXPXuhvb51jbgEIYC+z4q11MHBgjMRYEnuZFVOxv+vsuGoci68tfFdXldov3TuHePmbHbjrHDirFvR3dL6/nZVq/1mDanDx1Dsgzxw71llhw1P4/MW+dlaof8vX4Fzc39U2vIWFpj1gLlw739+O8gX9Um3HU2cnOZ0ml81jcSt4Cp/RW3deH1bb8RQCveJQ+9vb4qThznJ8DYuvddfa8NQUvqsy34cAntrzxux549Aemb92bnwXAr+/xYm7fr5I7ii34iv87KosjMNistI4398v/dNx9Abd3BhwFsasNah+Zm+9c5GqkKvChrfwdw2KXu3DSPH9dCzqb3XM2gv9rWD1WujbNUrvM6P46hf3t7PagadwrVIY3+7C+Am0udRrlcXPBkApfIZizJgb38UYUWOfW0SD2t++8/vwvBgRvcZP9Eq/+ncLSWcpMUJv0JNJZnFWWAv9XVqMcESscxtGnvP6cNkYkYLEeAqzY151q5QY0b93jBOPd2N2KnN9WEqM0Ct6xk9NQ6rQhyXGCL1eR2JCJZe5q+0lx4jhlyfI59XvAZQcI3p+N4Jer180ZkuJEUVCnLPChrvwGVaLEZ5aB6ENPhyVZswugzpelooR+Zw6Zgvv/dCRKfK5PHpjIWmrdajzWgHuajuearvqva2A3W/EXaE+Z6vHhN1vnOtvT7kZV9m8ZKE9YMRdIBi6qs0Mjvv4+fNX8vnH7qCzN0L34HzCNzDqp6NbLUD1DAUYHPcxNqEmdT/9dZjh4WEmJia4hD8M2Gw2kskkJo/KfHd4wenXYy28Yt6wDndwPqVzB/V4ymDjTTrqNulx+vXYwsVYvmCeAjw1NryFeGEJKLgqbJjt6vj11i+IhTod7jrnXMyyeEy4quxzCyyjyUAum2P4oKqw4ql34mtQrzXZ1GuL8c9ba8dVWYi/DXZC67wE2zzqtSZwVdnxVBdieZUdV5V9bkPcW+fAW4jd3maHem3h+7gqbbiq7Oit6sXeBieeuvm501VpJ5vIMbBnHGdUvbZIAPbWO+ZiCYCrxj4fy8st5PPQ9fRQ4e868CyIb+4a+9w8awtacFXZsYfUfklOZtAvOBXurnHMLVBsAbPah4Wil6/BiavKTnwkzejxKRSrcS5uKg6D2odRtQ/ddba5PgTw1DkxWo0c/U4nsd4krio7rsLc5K0u9GEB3vr5z4sJzG4TUx3q2PJUq31qKqjPeesdc5+h2IfeQk7kbXTgrrZjchYWWA2ORbnKwvzJEbXiqrJj8ZjIzuYwKHrcC5/Ngj50lKl9aCnMs74GJ54aB2XbvZRt8+Kpmf9MtqD6d4tx1ltvn8sv5vtbvY/FXRiHhVjvbXAsmus9Dc65v2vyG3HX2PG1qos+z4Ixq/b3/Gcojm9XtZ2eZ0cYOTKBIzI/Ty0cs1Ac3/a5PnJV2ecOJ18wDivn+7A4vk2FudPb4IAcc5Zt7ur5PnSWF/q7QPjwNjoX9YunwUmosNC3h9X+ts3lhovHt6fGod4LsBTHbJll7ru5FsSTpWKEq9ZGzS1h9X2tXvB3V4kRVp+ZXCpLKpbGW++Yex9XixG+ZuccqXiuv0uIEd3PjKDX6+byp1JjxMvf6mDo6ITah4UxW0qMmO6OM7BvHE+dA/fCPlwpRtQ7yWXz9L6oKv8uHIcrxYjpzjip6QxGi3FRf68WI9KTaU490YcjPD9vlBIjQhs9mNymufFdcoyI2mkvEMY99Y7lY0TYjKtyPkYkJtOw4JDx4hhhwVWpxgidwaDOa+XzuZUrpOCpUv+O1WnCGTbhCBbWAxUKrsj8tZ4qC8fO1PKlx2/nVE+I7qEQvUNqUamjL0z34HxB8lxvhLM9ah42mzZx7lwfOp2OL3zhC1zCax//+q//CsD45Lx6iTcI/iL/wAjeADgL9VKXR/3Z6oDNl0NZhLn4BoU5pFiQjljx1Nrn3kdv3fx7C+Cus+OqtoFOhzNixVvvxGRTx6S33oGncf69yAMzBXUiW9CMt96J2aXGN0+DA2/DvHKXr9E1F59b76vG1+jC6jMXPp8Db8P83/XVz8dyxaPgrXdiCykYHUaCGzx4FlzraVhwrd2It96Jo7BOctfYcFU4OPerQTKxDN7G+bivtxSuLczJ7qr5OgSAYjUQH0qo6ktGtW7hLsQ0V4Udb72TwnILf6MTXyFu9u8ZJ5/Nz9UYHYU+LPa3r2E+LwA1f3JX2xk4MM50T7zQh8bCvzku/K6FmGULqv3S++IIRx/rwlPvmKvPQGF+Ka7zfZZCHxZqXnV2dDro3z1eeK7OufuYXSa89U7shWu9tYtjrK/VNVe8NhWudUYKfVhtX5T3ehsc+BocZOMZsukc9rAFR2GsuSoX97ev0T4/Zov9Xe8genUAd43twj5cOL7rnLgLdQlneeHawmaHt8GBt2lBH9Y75uYTR5naL8WaQLDdQ6CwHoBC7lLs70BhfHvMc8+m2N8H/+McukI/Apg96rXFOdlda1/0HL2Nzrm6isGoV/u7kEd6auxzzw3A2+Sc+65Gux5XlYOe50cZ2DOOu/a8PmxyzI1DY+HvFvMaX7MTf4tzzlzA1+DA17hw3nXiLszJjuhS/b14zBZrMsvFiMB6F4ENLnWOri3Oh6vHCKNZT3Y2i82vPptSY4Sv0YmrqnitveQYEeuLY/HMb4yUEiOmOuIc+c8OFLsBf3FslRAjTHYjQ4fGSUxk8NY5S44RepN+Ls7aC2O2lBgxsHecfFbtH6DkGDFyeIp8nkX9XUqMKI6JReuZVWJEcL2H6BVBnFVWjMX+XipG5LL46p34Cn939NQkuWwOXeGEvzNqxVvnWNyH9XZ0hkI+VW7CWab+m8VpwF1umiMpeSpMeCrm657uqAl3gSxuq7BztjfCT5++iq//9CbOdpdztnueZHWmJ0JHv0r8Ghl3cbY3wsS0+pn/4zubGRgYICtQyLmE3y/WrVtHIpFAZ1FVfCwW8AfBXCi9enzqz0X4AuD2QdM6aN6g/psloF7sqrTNradArTkV5xPFZsDX6EApbCg7otZF1/oanXNrDoNiwN/swhZU45TJbCCbyjJ2WlXS8zY65mKWwQD+ZtdcfHOErfibXWBQN6Zrri8jXCDegnqts5Ab2kLqAXO9UozlTnyFOGQLm/E1ueZq17aABX+zC1Ph87tr7YtilrfZRT6bZ/xUDIvPpF5bcPRw19jxNy6ct5y4C2tAs9tEPpOnf5e6znRV2dXPP3eta64PTXYj/mYXlgLBZrp/FoNpXvHD2+ic28cxWtQ+tAfUl95RYcXX6CKbgoHdY5gK88Ki/i7Myc6IddFn8DbaMbtNHPtuF1O9cbW/C/HNXqb2i8GwYI3aNP9cHUGLqgKTBXuocK1V/cyeusVx39s0v1fmiFgIrHPPkThcNbY5koza3865vRmLR+1vxaGQSWbV777g7/obnXN7M4pDwd/swlwgsjqrbPianXjq7Xga7PganXPEW6NN7RdrIa9xVdgW5Va+JudcncJg1av9XZgjnFEbvqYFfdjgmB/fVgPhdvfc3p7j/P6ud+BtmM9Viv09cXqGnp0juKscBYXVQs1rQW7oa3LNrW/m+rtA+PDUn5dTNDnn6hZWn/ouGAt5jbvOjg44WrAk9TU71XUSKsHG3+zC7CqQW2rs83kBqiJSkQijuEyFMau+C66q+T1kKNbLCs/Gvri/nVEbvsaF+dKFMcIeUUlGnjo7/oX9vUqMcFfZySSyZFN5fI0OvI2L+3u5GBFodRFctziHKyVGjB2fRqfTzY/ZEmPEmSf66ds1qvahu7AvVUKMmOiYYejgOO5K++L3ZpUYkU1lGSrYoHsbnCXFiFRMVZcymAvFVQMlxYhsKkffrjGVh1LgbZQSI/wtLgxWA9aAufDelxYjQu1emu5UCUSeGsfyMcJuwt/kwuxRn01scJb8ApclX6Nz7t012gz4m9QxqzMYcFZY8VYu2FMOmXCXz5OUvJVGbAWilDOox1c5f0jEXWPm0Ml6vvrjm+ke8nGys4KhUZXR1D/i52Tn/AHLM93lnO2ZJ9U/W6hT/tM//RNS6PJ5udlqMRG98ar/iWG6dPms5nVxup4fJz64QI9vtYRRgcs+0MD4mdiFXuGvgk9s+Q4/OhP0PiOzfdv2oUZMNiM7/+GYqF31jSEUl2lNfND/UOCoNGPxmEWWYQA7/qaVxESK/Z878yp9snlU3xSiYkeQE493iz5n/RsjBNrcYruqbR9qxGg18OL/krXTitf9tzamumY4vAae8q1vqcDX7Gb3vxwhJVAUX//2aiw+hT2flskgb/+rFsjleemTMjsPLXDWWGl/ex2DB8c5/ePSLfcsIQVnuVVslfjHDG+Tg8hlPk7/SCV2loq2B6rw1DnY87nTIgs8R1Qhenloabu98/1gdTK+r06/uL0hGGDbO32MdSQ5+/TKNix5j3PRz1Xt8M6HDrBjY2nvwc33PcSL+/6ZmfgYb33rW/n2t78t+uyX8PvBgw8+yLe+9S2c9ijbNz6CYbo0Od5gDRgnx+h7cWLR71eTs264vQxvg53dnz5zod3bq5B7NbwxQt+LI8RHSpdJtYVNbHpPI4P7xznzROny2Sa3idrXh+jdOcqM0Gb0jxm+NifTvQmRXVLDmyKE2r3s/swpTbZVUlz2l03kM3n2CO0PtnyggVj/LCd/UHquXRxffXtG6fiFzKZBC9oerMJVZedF4TpCKy7/WAuJ8ZRM7twEl32wif49Y/Q8O1Jys9AWDw23lnP2F/1imzgt2PindVjcCrv+SZYz+1ocJMaTxAfXxkbnDwH1t0WIjyXpf1HgZw5c8fEWZseE4wt1HZ6OZxg+WEL+e34uttrlBsOinxvuqcJdrnDgP1cfk3n3fO5l80C4wcBn/+k7Jd/75nveyVMv/Hf1b70Kc+glvDowGo1ks1muu+kfMAhsk2pdIwwdmV5kDZRPr95+48NVTJydoeNX59k6vQpjxtfsxGg1MHRgQtRu3dursQXM7P6XEm0ZCwhudGP1mtfEjusPBRa/EbNLYfKcTHp/24eamB1LcmQN6jSB9S4abo9y8vEexk6UbnlRts1LZLuf/V88LbLWWvdgNdagmT2fko0vrdj+0RbGz0yvSS02enWAytcFOfCFU3NqSqWg9g1hnFGb2JZj03vr0Bn1c4pWryaMDiPbPtBI/55RkRWL0WHEHjYzeaZ0G9o/dlhDZsq2eel+ZkRkZVd9Q4jIZX4O/McpkS2dxWMkvMVHZymWvnrD6tcswPl5l6EsRPtdDsa60vTsW7mWkXfZF/0crIWPfXQn65pKs0e58e0Pc/Tw1xkaOMp73/tevvjFL4o++yX8fvCNb3yDt7/97fiD69iw8W0Y4qWNZZcni3lggLETi+fTfGrl+m9ok5vQejeHv9FFPiOYrDQiss3H6KlJUpMCqx6rgU3vrWNg7xi9z5e+T2lQ9JRt9zF2YorZYZkF+h8zHFErycmUyKIstNlD1TUhDn3l7JxqzauJtgeq0Ol1HPmGLM9rvqeC+HCS7meGS25jUGDz+5vofXGE/l2y9b4WVF4TJLTRI7Yz1Yr2d9eSnEyLraPXv6OGwQPjDB8qfU/OHrHQ+pYqzv6yn7FjMps4Lah/YwRn1MaBL8j2wO0RC+l4WhSH/tgR3uolPZNh7LjsuW18Tx2J8ZR4fHka7OSzMHmuhPz3ImteZddX4a9ROP6b+KrWeTnPPMlQMYM/Cv/+6W9hKDH9u/HtD/P0U3+LwaAjnZbXVOWG36gn+gF6+neTdVpWuXoex38wuJigVApSqu1RLrlET67yoNrfU7vICqoU9O0cFROUADp+M8jpn8kXt8H17jl2tATbPtTIlg82iNute1v1IjnaUqA49LTdX7mIgVwKwpd5uOwvm+bsn0pF892VNL4xuvqF5+Hcrwc49RNZYADVyqloO1UqOp8Z4uCjp8REqmwyRy4j92o/9PVO9n1RVugHuOzDTZrGiRaEL/Ow429a56zCSsWxx3s4+OgpEUEJIJfOkc3Ii7YH/u0kR74pK/IAcxZiEkz3zXL21/10PVf6Zh5A3evL1HdANixZ97bqRZZlpaLlvoo5i5iSocCmR+rnVIpKRfgyDzv+ayvBdtfqFy9AaL2noEoge39O/3yA3p0jIoISQKw3tTRBaSkUSByKA7b9eT3B9uX75HyCUrFdNpUnMS1f8HQdQkRQAgiGXNhsNr72ta+J73cJvx985StfAWB6RiU7Zp2lxaPhDi4gKJWC2Yk06URuzhJpEVbIvQLrXWx+f/2cokmpOP3TfhFBCSA+mKbz6UG6npfFV5MJ/E0uAq2yGBTc6Obyj7XMyRCXCl+bkw3vqhG1AdWqaaGFUqloe7Bqka1XKTD7TbTcXUnVlYHVL16Avp0jnH6yTxNByRYRTnDAka+f4+CX5AWNbDpHLiWbO+KDaQ78xyk6fiMjKIW3eLni4/JxohWbHqlX3zkh9n3hDEe/2y1qYzLp1dwrLevLoX0THPiPUwwclBGUTG7TnE2YBKd/1seZX5RODC+i6c4KGt4kWzea/SY2/5d6fC2yxc7/z95/R0d2Vun++EcVTqVTuVQqVUlVKuVWtzp3u9vGsZ1xtrE9GIMBkxnypDvf37p3rfu9c+98h8sMzDAwAwwMORiMDRhsE4yNY+ec1C21WjlnlSr+/jilktStcHZB9xjTz1qsNdM6r8+pfd6zzz77fd7n8dQ6NCszYa6M7giKn2/Q5sm691avfOA58De5CDZ7xONaftZF2696Vj7wHHS9PKiPoAQF4kbd7eU0Pbj8fTu3WQNa3ZVJyr8jpkagdZf+pt6N976DZG4vAPX19eLzXcJ/HWbvV1fnLjI20wpHz6H9+WHRIvEsUlMZ0ou9q1boedXdEV5gp6UHQ8fHxQQl0BQlW34qz6+la+Z2Mkuw+uEYa95RJR4Xv7msYNGlGybNlsoZta187Dy443aa31lVsNDSi+qbwtTfJXvnAJz6eRenn5bnV5PVsMBWTQ8Gjo2x78snRQQlmK27MgUVG704/kQn+74s73k1v7OqqHlSDJxRG1s+Xl+ws9CLzpcHNAKJgKAEkE3myAhrWIBD3zjN0e+0icfN2rtJkJ5Ic+InHfTuli1wRrb6WHVfVDwv4zeXLbAq1IvoNUHxfQNofKCyoGahF86ojc0fqy9YyumFt1YluMYjfnY6Xxui9Zfd4ndPYiStj6AEkM3XPiZofkd0gbrGuVis7jKZIDWTIzkpn8/9rYgISgBOxwwWi6WgjHgJr3+87W1vA2B4SPvez9j1PQhjI8bzCEp6kBxPkZxMFyx69EINW2m4t6Jgu6QX3buGxMSAzHSG1md66NkzIjsZENroLSgP64UatrLuvdXiWsheZqH61vKCjZJeuKJ2yudZKOlF9NrgApspXTBqRJ7gOo9o2OCxcU482UFSQBydheIWJnOg5clOjgn7NJBfOxf2aTJJOPC1U3Tvkr2/1YiN9e+rEc+TYlF3R4RVD1SKxx3+Tjstgg2ts8jMZAo2cXox2Z3gwNdOMXRCVjMbbUZxDgI4+0I/p38u/221bw5TdV1o5QPnwaho64bS+20rVYhs94tzZaDJJX++0eZJw73yb6tgs5tAk/w79dRTXXS8JFuPABhpmdRHUIJCz6t8s4+q65fncyxWe2UzOVKJ7IoEpXORnIHu04gISplMJyUlOdasWSM7WR7ybAn8n//zf/jIRz7CydafU1G+pUBUWklVyRpQaLwrxNnfDTJ4LH8zZn/tMrv693z+9NK7/ktKltxdZnGZC6pPEjQ9WElqJivaUSMlq8xi1xdOQhGk5qnBGSiCoOGM2AqSeRJ4ap1kkjmGT+hnkpgUI0aLAWupneSE/oKx7Ze9GBT5okTPa8Xtzt70/hqmh5Ls+6KAfZrUSAxStD3bS9uz8h35UoLFLCb7EmSm5B+BxSAxnGJ6OMn0oFCZoshYHvmuvGgDSE5kSU7IzqdGFNY9UitWRCIJ3S/L2einn+3RfEWFYVHcpkVJMCvBW+dCcZtFz5C3SsXms6CW2xg8or8IyySyJCdTjJ6WsdKO/6hDI21Jea5DSdGOPtCIi00PVHL6F92Mzd/dusL7xFXl1OQ0l7gHS92b6dYB9n5n+Ws6V0EJYM31Rsb6Vq40ZslJAInkGO3t7ZSXl6MocpLAJfzXwGw2YzQayWQypFJTmM32AlFpJVWl6NV+HCELR783l7tmi9elaqvOFwe1nVrnqigV/gOL114mqxFFNeOusIt2hrur7cSuLePA11tBwHfp/J2cVD41kOLlfzgqOg/AZOcUiZEkuYys9lLLbTiCNuzlClPd+hNYcJ0be6lVpBIFWu1rNMtqqJnBFG2/7qX/iKyWnRpIMTUwIhoDGqmgdK2Xnf94jJSgRpES2WaxvwiSN1CUos7U4AyT/QmSkxdHjWeyc4oSo/y9XwyxLDWVLVjLSVFMLJvur8TqkSsiTXYmilJJa/lZF6lJWfPR5lUw200LLB31ILjGjX+VG34mW+z3xB1YnPIFxKmBRFHfja99+riYSAUwcEj+XVx7WzmUQMtPZDnPGrAUpMwXw2LNGoDWn5zFGFiexDBfQQnAVwnl9WZOvLzyfL7x3ncU/u99h34NwIc//OEVx13C6wdf+cpXuPzyy2k79QzhyOYCUWklVSWTA2puCNJ7YIyR01ouKjFrY5dTVDrynU5y6SXm1jI9L1uppajmdmxHEHLoX6AGxtunxecBOPK9MyJFnVloVm/yd5yn2kliOEnXy7I6MbhO27Qj+Z0GswFFNWNxmUkKCCjtv+3DrHMBdj4k/bj5WP/+Wqb7Zzj8LcHO/DRFEe7694/qJ5zOP10RC4AAE53T4vq8WKSm0ox3Txcs73WjyFhKns8Fp0tAOiE7n8lqYP27a8WKSABDgn7QLDpfG2J6KCm+7xaXUrC3kyC43sNE9zSDgu8da8CMM2Jn7MyUSPEpl80xPTjDVK8sZ3a9NEjXa4PifJmeSNO7e0Q0xmSFurujnH2hj4kO/XWzGrRicZmX7NkvVXfNdPRx9OfLE2rPVVACqNlSwtTwys/3LDkJIJ1O0NbWRjAYxGrVv7H+Ev7rUVlZydmzZ0kmJ1EUR4GotJKqkq/BjrPcypnn5vrvJfl+51KKSiOnphg5NSVXUSopwepTsPqtTHbrf3asPoXwdj9nft1HZlr/irFU3QM0wsruz58UL0xPDySZ7p8hm5K9U61eBXfMgc2niJSbfA1OvLVOsYqPxW0mmxGudWWg9Rc9jHfJCG2Z6czCdQGdmFNgOiUipyUFKk/z0fIT+SYCoChFneREirGOKZEi1e+Dia5pDDb5OrHkOZuPo98rcr2xiFjGrgviqpArIiVH00Upe536ebdYPMOsKihOeZ/ZE1MJbfHRs3sYieCAM2pHLbeJ1NsBpvqL+248+LU2McESYKJL3nMs2+TFpBjoFH6jWrxmbMsIrCxVe/U9f5bBivCif5vFfAUlALsLQnFo1yHyP7/2Onb452SzWT7ykY+sPHARFGX3Bgst3+ZjMaJS7rimWqKosPF9NfQdGuP000vIzy2yYJbLZCjb7CExnFr+w+APJIW99ZMNpGcy7BE24psfqSKTyBRNnng9Q1ENIoul/wrErg/iiatia4HqW0KMd07Rf0DWUN/8sToGj4zR+oyMdKT4FDHpqOa2cjzVKrs/d3EkES+m3Vvd3RGcFTb2/LPseVN8ikY2EvaHtny8nv5DoyKymKJC9LowPXsHmTirz2YJoOqGMtxVDvGc/K+AoiJWs3q9wxFSWPVAjFM/7xY1dENbvcRvKOfE42fnCFh6CK9L2L6tRByLXReg+7UBMrbzmeKLkZNmseVuM5PDWY48p703n/rVD847Zj5BCeClXf/IdGKQHTt28Mtf/nLZ67qE1xduueUWfvGLX+B2Rtnc/J4Ff1uMqJQ7ruWdpj+LYPcr7PqXpRXkFiMrmV1GgqtddL60QvH8B6i9Ste5qbk5zIknzjJ0TP+z6m1QqdpRxqFvtV8Uu7GLCbMdUvJeyEVH8zurGDg6JrKDUitsBJpctP2mV0QWi+4I4q93svcLQltfM5jtZvEc2fCBGgZPjNMuXKgpBhfb7m3jh2rpPzjC2ecFH/5FxjF2fRBvrVO2GQBNmc3mU2TXiDYnB4+NixenLzbMdoOIpPfHgob7tN1rxx+Tqduuf38NRlOJnAi3RH22VKMGNGKs0WJg6OjEokSlc8lJs4htMhCMmtj5ZLLQ9H/qN4+dd9x8ghJwyertjxgGg4FcLsc11//vBf++GFHJuC//nW6CTe+O0ntojI4XRxb97y5GVsqlU7hrHGRmMssvGP+B5tG6R+NkUjkO/WebaFz1rSFyQOtTcjWf1ztMVgPpxOs7LwfXe/A1ODkmXEAp3+IlMZJi+KTsg3/NO6oYOjlO10rfA+fApJo0koxg/aR8i5fAGjcHv9omOlexuJh2b+HtfvwNTm0hRIBi4ghab3rw2Dhdrwjumwki2wIMn5zQCII6Ueyc/K+AyaoRuN5IMKkmVr2lgjO/6WOsTbBJKG6n/u5KTv2sS6aWtoTt23J1F0BwvYuhlgly6iI9r0XISbNYd6ORyZEsLa9p776nnj3fbnf+IhnAkUPfo69nH/fddx8/+MH5PbJLeP3iM5/5DJ/85CcpLVvH6uYHF/xtMaKScb9We1Vc4cEdtXP4O0sTNRYjKxkMWdw1jotiz2Qvs9B4byUtP+1irF3/s2orVYheFaT16e6iCSyvVxgVTc3n9Y74jSHGOqZEJFfFbcJTrTJ4eET0G/1NLkpXuzj2A6FTjBGMilFMzKm7K8LY2Sl6dxcn/CDBxbZ7q7+nguFT4zLifJFxLG1242twinsgasSGzafQf1BG7o/fGGL07ORFyV2/D4yKoShF0Nc7Itv9GK1G2n8j6xXX3hFGUU0c+bY+dcgCiuh52fwKJoeR8fZpjIsQlc4lJ82itALCtXDohTmazs+f+vZ5x51be/32V/8PBgOki7RPLcruDeYs31rbf7vg35ezf0tOwCv/99TSBKVlUH1jOfEbVrApW+yGKWANytQiXvu/x8UEJdCYvIpXrkyx5RP1rHuPXIK/fLsP90Wyk/i9CErCkCg+hfXvrxHbQTnLbdj88vif/nmPmKAE2kvL5JDtfgtt9bLlQ3Vi+XGz1YjRIqd1eutVsR1XsVB8imYZJrwFZpsRkyL/bRveU82WD8ltEwxmA0aLLPUlJ6DlyS4RQQmKn5NrH42LbRl/X1wsglLs+qDYXlGttLD9b1YRuUL23LjiKma7SWxN0/PaMC//ryMyghKghs/PBysRlNQKhfBWH9W3LM9sXgw7H08VCEqL4VyCEoDqNGA0GnnqqafE57uE/1o8+eSTAIyOn1/MLmf/duQ7ncsSlJZC9Q1BoleXYnavIKOxyPNhL5NJb/TvH+WVvz8qIijNQnGYcUZkOyQjV/i57C8bV/5t58AeMIvzULG42ASl6I4gTW+NisfZA1acIVn8JzqmaXtGRlACMFuKq4U2v7+O9e+Ki8cZLUYUqTqFWSPdFWNTVgy8DSrO2GK+jMvDqBjEyhsV2wJs+XCd2MpOsRkxFXHfBg6NiQlKoM1JR1Bm0Vu6zk3zO6vk960IlaFZXCyCkjtup3SdXL66+V1VbPyQ3DLa6lWwCus8gH1fPCUmKNkD5kUJGystlMWuKaWuCDvNM7uz7Hw8ueyu5HMJSpPp1wAIhWSy6pfw+sCqVasAaG//3YJ/X9b+LQ27/619SYLScqi/I0Ls6hWs25b4LrEK7cb2f7lVTFACsPkt2L1yG/S174rT+KDcqsHX4EQV1nnF4vciKAlFkUxWA40PVOKtl1mxOIIW1JDcXqN757CYoAR5lVRhveCqsrP5Q3WUCS1VDFYjJoG14iwcYSuuKnktVAxMVoNm4SW8TLPNiNEqr4Wa317FukfkNazJVkTNnIbO3w2ICEoAjlBxc7LurrDclvH3xMUiKJVt9Ihzskk1sflj9ZRt9IjGOcosWFzyumu0dYqdnzkutnO0es9/B61Ud5lUE1XXBsTW4gD7n8kUCEqL4dxFMgADvRiNRr7xjW+Iz3cJ/7X46Ec/CsBg/5Hz/rac/VvHiyPLEpSWQmiTl/gNoaJsuRS3LMdO9c6w519bRAQlgFwGrH4Fa6ms9vLUOFj33mrxdZpVI75VF2cd6WITlEqb3cRWsExaDM4KG/aALP7J0TR9e2UEJQCDuaSoWqjxngqaHpT387Q1OWEPxKhZ9RWj5FoM7GUWbKXy95zZLu9DeaocbHhvDa6orK40KkbMRdy3ic5pMUEJipuTathK9a3l8vv2e9zmi0VQsgUUXHH5t0D8xhCrivg+tfiUZZWNlkLLk11igpJZNYJB3vMq3+Kl9hZ5D6q/A/Y/t6zp2Xm1VzJ5GsiyevVq8flmUZTdG8DXvvY17r//flrP/op49OoFf8s4rctavykqGKwKiYFFMvU59m+zu/tPP9NN74GRlS/sHCnsbZ9oJD2dYddn5SxNqbJIMecAmBlNMTMsVwCIXxdisi/B/hb9Ki2la13U3hah7Te9Ihuq2jvD+BtcvPr/ySwXtn6ygVwux87PnNA/KJnG5rPgrHCIyEPFqv6Et/vxxOxiBSxpLACGWiZxV4wy2ir7EDwmZOLOou72CBhKGDwiv1YpKrb7Kd/oY6p/RiSFKWaP5tG7Z5jUCpKvi6GY+1a+3Ye3WuXIt2TXevDrbeJzAdh8FokSIgCRq/zErizj5E86RM9N8yNVWL0KO/9R8IwCW/+ikeR4SqSMoPgUItsCOIJW0X03WkwkJ1OMdco+5rpfHirKbq9gKyewCy3bpCnBnH1pgLPPaTsW9VjvTXQkOfmzbsZax8lMgLFUa9wsp6AEoAZgYpm128UISn0DRxgaGqK2tvaS1dsfIcxmM4qikEwmGRltx+Ne+AGacVqWtX5zhM1Mdi1ea5xn/5bLcvrZPnr3jehTTZlXe0WvLSWyPcCR755h9LTsmZWqBw0fnxBbQQFM5G0azPYSUoLvwdj1ITxxlc7XBkUEm7WPxlFsJnYJdwxt/kgdY11TnHhM/w7v4EYPNTeVc/InnSLLJVfYhk34kQsUFX+A+vsiDB0bF13jqae6oQhP+c6dgxiKsETb9U+y9yKAr0al7rYIZ57r1SwTLzBq3xwhM5Nhz+dl5A7pOx9gqGUMq9vMZJd+uwuAkz/pBuT3rf6+CMMnJ8SWMcXMSTVswxG0iolDmz9YTzadFcd/6ycb6Nk7TLvAxiW83U/0qlIOf7ed8TP6E2X02iCOUps4jon+GTIO+W7dYtRDi1WOW/VgDIPZwM5/msutKzVrAA584wz+Oo0YkBkYLKgpLaWgBGB1QWKaZXP/uQQlgK6e/ZhMJv75n/95xeu6hNcffvSjH9HY2MiZU78kGn3Tgr9lbKblrd9MYFVNJBaxADvX/m3W5q3lp50Mt+rIsef0vDZ8sJZsMsP+L8tJ6VJlkcNF9lymB2bElpoANW8OM941xTFBr8YRttL0QJQzv+mjb9+I7nHhbX7KN/vY/S+yem3do3FKjAaRVUM6kcUZsTPRkxAp/rY+0ytW8gaN7OWucYgVsKT2EwBTPVN07xxk9IysXuh8YYBOobUDQM0t5ZisRvG7uBj4m1zEbyjn6PfPiKytz/y6ryjrtq5XBsgWYWUnVh0FvHUqnjpVPEdaf9FL6y/kc1Itt2MwyhZGvfUq9XdWcPJnnSKLufitIdwVdvYJLaDXv6ea5GRa1rM0QdWOEIMVY7Q8qZ80YbKWMD04w2SfjEk1emqSXZ+V1/XFqEqpFVZWv7WKs8/30/XaCKCv7kpPpDn6WBfTw2kyE2mMIY2Mu5yCEuRrr2U+FRcjKE1O9DE4OEBNTc0lq7c/QhiNRhoaGjh+/DjjY104XQs3c2bspmWt3xS3cUnLpXPt33LpND37Rhg9Mym2TfLVO4nfHOLE4x2Mn5XZOkrVgxJDyaLs66eHUkz3z2AwGpH4vgXXeQht8jHaNiVSk6m+tRybT+HwN2V1YuP9lUz1z4gUSdSIjYa7Kzj1iy5GWvTXGvagBVeFnFR74D/k9TVA5E0BxjunRGtkxVrm9uwZLmpD35HvyNfkbF6F+rsrOPPr3qIINlJU3xgim8mJ1w+lcxE0q+nOFweY7JeJFPTsHqJnt3z9KbLdz0RPglE933/zUMyctPktuKOO5dkni2DVWyopMZSI49/8SBW9+0fo2zuie4wrbqf6xnJOPtkpstMMbfThq3eKv+ESQ0myWXmdffpn8v5mscpx1TeVY3GbOTBPaVZP7XX62V6cES3fZTq6CmpKSykoAZgUjRgrISgBdJ99jpKSEv7u7/5uxeta8tzFDnzLW94CQC6XJZlMnrfgOUtUmrV6m4+N76shMZpi35eXmdxG44KI9O4a0X9x85o2fQdGmeyXFQygLcDn0tmimvhSO68DXynuZXfqF10MHx8RjRk9PcbMWJDEsOypmBlLkZnJiIlbQy3jYi/b5ESWl//ufNb8hULpGjd2ISO9WCSHkhz/UXGEo2Jw6uddlBSxMFcMOl4eJDGUFBNJioXEru33RekqN44idocVi2KIVONnp5nonmb0tEwVLDWZLmpX31TPNAmh5UtyKMnRx9qZFtodjrZMsvtz8qajNaiQ6JOdq3y7j/h1IU4900XvLv3F9nDrNCMtE5x9sR8w6CIozWLg4MIG20oEJVcIVl1hpr89zemdc/n11h1v4alf/WBRghLA4RM/IJvNcMcdd+i+tkt4feFv//Zv+e///b9z4Pi3uWrrX5/391mi0qzV2yxq3xwk0OTkwH+2M9W39HNbYjQWiEqp0RQjkmc8X3t1vzqIxWVmqkfW9Qxt9RLfEeLYj84yfFy209viNzMzqP9aR09PFdXoOfPLHrqcZrEC0GRXgkQRHurJqTTpSRlpYvjUJKOtE0wNyuJ/Mexd58Nf56KEEhFJqVhIrOh+XwydmuDUz7sZOnVx5AlPPdV50XYnTXUnafmp/GO8WPhqXRhNhqKadFK0/ryH1p/LrYsGjo6KFw/NbjOpqTQzI7JEkhieYXooyXiXrM4+9t12nFVy5V2NXCaD2S23AwRY9+46crmcWEnp7EsDWFST9t1fUqKrWQNACgaPLHxGlyMoAdRtN2OxlbDrxwvryluvvY+nfvPYogSlVGqG9vZ2TCYT9913n75ru4TXFRoaGvIE8RnS6QQm08IFz1miUsHqbR42vbuS6eEUR76/dG4pMZsWWL8NnxQ0qOf1vHp2DjJTBAFo3aNxSkpK2FcEudCkmkhP6D/nScFi/XyceKKDyU5Z436yL8Fk3wwzo/KeV3IiJf5t/YfHiuq57PzMcfGYYuFvcOKtc14Um750gqIIOcXi9NPdGM0XR8Fy8MQE6UQno2cvTs+rd8/IRTkPaCSlQJPnolk57v2CvL8zPTTD0PExxtplPf70ZJak4JmexWjHFJlpYZ2dhsPfbiMtzMmJgVRRJFDFYyK5CBl2Objjdhrvi3LqF10MHNT/LZYYSNK3d5i+fcOAoO4Cxs8u/DZdkaCkwpqrjfS1ZWg/OPfvt97wAE89+71FF8kADh/4FqlUioceekj3tV3C6wv/+q//yo4dOzh25DG2bPvIeX+fJSrNWr3NIrhWJXKZh6OPdZMYXnqFtURRCkSlzHSGCaGtE8DQqXFsOxWmFhNfWAbOqI36OzSipYS4ApqaRkpg9zYznOREEXamfftHGDo5Lra7muieJlVEnk1OpMUb0Kf7pxk4OkpiSPbdeeZXF682AQg2ezBZDOJ7XQxGTslq5d8H08NJTj7ZyYSw51ssWn/ZS64IIkkxSE5k6N518fqHpWs9mJ2TYpJSMeg/OFoUqWzg8BglJtl3jlGB5Hia9KQsj6Qm09qmYmE/u/25HgaOyn9bMffaaJPbAQLU3VWBUTGKyXNdOwexuhV5zysD4+fUy8sRlACiq8Dp1ZSU5uOWW9/Kz5/69qK1VyaTobX1JHa7nTe/+c36rm0RlORyxZvar127loMHD2K3Bti++WOLHmPYdfS8f6u+pZThU5MMn1g+SZ/rF7vhA5ol2t4v6GiiFP+zAE05KD2VERMhtv1VI+mEXLmpfLuP1ERa9IFwCedAge2fWsXwyXG5d2sR2PLxekpMBl4T7thuerCS/mNj9O/Tnzxr7wgTbPaw50stYtJFMbj8b5sYa5+8KIuWRcfxrVH6D42IVIOqby0ntMHLoW+3XZQicfvfrGK0dUKs0nUJC1FzWzlnn+sV2U6WbfJQc0uYsy/2c/Y3+i1GnVU24teFOPDNVkgVT/DTUzQEmp1U31jGyZ92M3w8X5CWGDDUxpYfqEDdJgNnDmYXkkZ7Bkg3LT42mZzmxV3/m2w2y+/x2r+E1wFK8gpfOy7/n0seY9hzDOZ9xNkCZkKbPLT+un9Fgs3sbn4AX5OT2lvKOfqDDsb1yFL/HnPLbDdQd1cFbb/qZqpXf7OhWOUms9tM+SavSMnkEs5H41sqcMUcvPbpC7/Q5mtUabi7UlMDFRCPAmtceGtUTj4hWyDd8okGkhOpoghtUjQ9FMUVdfDK/z7/u+kPDWfMzpq3xjj7u346BIoFpevcuKN2WoTklS2faCA9nS5qV78U9fdG8NY4iyJ7X8IcfE1ODKYSBoR22Js+XKspGwk3+USvC0IJtBfbOM6/F/XUXmvfXUVmJs3hb877ViwxYKheXh7fEwanv4SzB895z/UNkm5cfOzhU/9BT28rN954I08//fSK13YJr0984AMf4Itf/CJOd4xNW96/6DHKy+fn7vBmFxN9Scbal2+yZqcXNg8b7qvAZDVw+Js6dqv+njV9+HI/ZKHrFZnyX7HKTd56lWwmx+hFXEh5I2Lzx+oZPD5WFLlWiuZHqjDZTez9VxmhJLYjyHjHtMhKKrTZS+zaMg59q43Jrgu/8LX1U40MnxrnZBGLuFKseXsMxWkWqz3FbyhjpG1SZNUXXO8hfkOIoz9oZ6ztwve8Nn+0nuGWcU4Vsav8EuYQ3u6n7+CoiCA5p2zUR5fg28jqN1F5ZZDWX3QVZ4E3W3eZVvY9dpQrNNwVpuXnPYy15U9mKMFQW7Xi2MgqGGiHmfmvjN4BZtYtPfaF3/w/ZLNZstmLs4njEi4MrFYryWSSN13zPzEuUd+fW3sZbRBsctG9b2xF4aDs9HShhrIFFWrfHKH16W4mLvS7xwixa4L07BlhRiAeUKxyk1Ex4Gt00n/gwm/6eSMjst1PoNnD/n+/8P0Mq09h9UMx2p/rExFK1LAVd9whVvNe83CMdCJzUdZRK68qJbjOw26hwnwxMKtG1r6zmvbn+0Sb3pyVNlwVdjpflsVx9dtiZJJZjn3/wq//lV/mo2y9l31fPiURSbuEc+Aot2K0ykmEDfdWYHGZOfBV2Xewv8mF0WIQKUstgKDnVX2LZmt5+ufzeC0lBkpW1y47zuYE1QP950zjku4BZtYsbovXceYpWk6+wKOPPsqXvvSlFa9tKfxe20127doFwFRi8Qb3YgQlgNM/7xcTlAAyiSzpYphqd0dY+y6Zj3fLE11FKbX0HRrVbECEqLq2jOg1QdEYa1BhyyfqiVwh8/G2BhXq7o6IxsyOCzS7RGMUFervrsBZJVOhWfuuONv+epVoDEnyO4zlylnFYPDEOEPH5aQyT42T0Hqv8FxjjHdOkZ2SEZRq7wyz+m0rEB7+QCjb4mH9+2s0qywBBo+PM9IiVxzwVKuUrvGIxgy3jGtSmxdJ7WlqYEa8y27122Js/xvh3Ee716Xr3aIxik+hdK3smQatgRLaKpvDAJs/VifOPf4mJ6ENPiqvkflGD7dOMdI6q2ykH+Nt05pspuBRK9vkZsMHa1CEfrQGYwm5NJqtQ4lB+x+QbVmBHJiEky/PIyj1DGj/A0xHFh87mX6WbDZLc3Oz6Bov4fWHhoYGAPYe+fqifzfsyS/OG0q0/wHTAylan5YRlADGOxNkk1lMNhlhzx4ws+491bir9XtCp6ayHPl2u4igBNC9Z4TBY2NMCZSUAGJXBqjYHsARkcnA195Wzvr3VYvGAJRt9FK6TpajQSPYmO2ycj2wxkXsellNiVkj2tfdGV752HkY75pmsvfi7KAa755hpHWC8Q5ZnVe6xk2gSR774RNjDB6V1Xlmu4Hmd1bha1x+h8ofCqserNQIHgIkRlKMtE4wqod4OA/BtR4CTR7RGNDUhgYOX5zG6HjnNJPd8u+Ay/6ykYb7KkRj3HE71beUw8rrMwvga1Qxu4WDgPgtIfG4yJv8bPxQrTiHxK4JUnOTLBcAdL4ySO++YfG49l/3iQlKqx+OaXlOYM0LkJ5Ok55VRZhfe51enhAy0sVCglLfoPY/wHRs8bE5pnC73fz0pz8VXeMlvL4wa9U3Prp4jb0YQQmga9eYmKAE2hxNCXedgkY4qr9Xlse6XhoUE5QAevcM0VnEuJpbwkSvKhWNMVkNrH13nLJNHtk41UTF1bJzzY5zx/XXr9ogqLw6iCqsKWveXM7mj9XLzgWMn51i4iL1vAYOj9JfxDs8uM5LYI2s9hrvmmbw+BgzYzJFhfB2P7W3lYvGFAt3jYPGByoxWWXv1YEj8poSILjei3+VrF8z0Z1g8PiYWOGjWIx1TDHeKZuP8RvK2PLxerG3Q/hyP946WY1tshrEY0CzSPQ3yXtla94eIyaszW1BC9GrgkS2+kTjEiNp+g4M0ydUpk0Mpjn5YxlByRm1sfqhGIpXVosaFQOZmaw2H+f1J7ItbSuO7Tw6j6DUO6D9D7DsX3zs1PgvyWQybNmyRXSNl/D6w8MPP0wul6PlxJOL/n2x2iszDd27dRKUQPuGKClhejBJZiYjVkQ02ozU3h7GWSlY78poaj4SghJoyk09e4bFed2/2kXs2jJsQVmvumyTV/xtDOCK2nHH5Qq+atiK0SZzeFAjNoIbPOJzrXtvNRVXBkRjJvsTjLVdHIJ9YjTJwKFRJnpk71V3tUpok+wdAjBwZJzBY/oJ5QAYNREAZ/TiOI5UXBkQ3+tsMkf/oVEmhL0hX62zqDj2Hx5l8NjFER6ZHphhrEB3zJgAAQAASURBVH1KTFBa++44sR2y+sTiVQht8mEUrvU6yq2YVblrS9kmr3icp9bBqgcqxePCl/mpvlH+/dC9Z4juIqz9Bo+MiQlKsR1ByjZ55T2vqcyc2tO8nlfu8PKbJabHFxKUSroHKOnO116HFifgTU+dRlVVPv/5z4uu8VwUbfcGoCgKTqeT8fFxDh1/jDUN+mXMa28L4orY2PNv+pVa5nvvLYtzdpTZSy1YnPJmcOz6IGrIJpLhKsaTEODkTzoZEBJeEn1JDCYDikN2Gyu2BQiu8dB3cIRRgXdr89uqMJgMMrUnRaF0jRuDEY616WfljrYX9/Lf90U5q9kRUljz9mp6dg+JpB+Lvdcv/cMREQECYPjYBMPH5EQeZ8SG2SGf+8XAVeHA5pPb5p1+qsg4/r9HxISo4RMTDJ+Qx3HrJxuY6J4W+6/uL0I6f7RjEqOw6QVQutqDI2gVKXRVXR2kdI2bxNhpxtv0F24VlwcoMZbQ85psIcpgNGAQvlgHj4xzJHuG4dOy+5YcSnLkW7L7VbbJQ9k6L8e+3yqytXRFHVhdZpITcw92LpNZkd3ct2+Mvn35fKozLLH14Aub2PvLtCiP7Nu3C6vVyjPPPKN/0CW8LvHqq6/i8XgYGpHtPjHbYfVDMfoOjtL1yoiuManRFLv+WeeO33m1V2oqhdWr4K5SxepG9beX0/nKoG5v+dRoihM/ku+APvPrXvoPjzLZKSPYlBhLMJjkOTp2bZB0IiPaxeOpdVB/ZwUdLw+IFJ/Cl/mxByyc+aVg0T8FEz3TjAl25gF0vjgo3q0FsOr+SuxBi8jeKTWa4mgRyoRHf3hWbNEHFGVtZrAZcQRtqOU2hoqo26RQy20YLbL5WGwcD3/jjJiQAxSl9BC9tpSyDT72ffEkqSn9O6G7Xxkqyt5vvHOKsQ4Zaatsoxd/vYvTv5TNk9rbIqSnMyI1BV+Tk/KNmuquRP3KZDViMBtEMQTY+6VTeGLyBnPPLjlBadWDlYyemaJLuFvR5reQO8dqT0/tdeTb8l2i6242M9yVof2A/jgePvk4vf29rFq1CrP54nyLXcKFgclkYt26dezfv58Tx56kvlG/bXJ4swtvrYPD39WfJ079TGfOPKfn5QhacATl3+LB9R5cUTstAjs2iWLHfBx//Kx4Q1k6kcWoGDBaZI3nQKOTim0BxjumRMpNTfdXYlZN7P6crM4OX+bDZDcw0an/nTfWMYVBkdeUx38oz2Ma2UvreUnuX/dOeV4H2Pm54yB0fZnsSojm4SxclXZsAfncLwaOUivOiB2D1QAJ/e+EYt6PAK/+wzFx136qt7g4rns0zkR3QqyIdKKI+TjWOY3iMovnSOQyPxM9CZmy1AYv0auCHP5O23m2F8uh4k0BzDYTg0dkfXqjYsAgJDtM981w6JutJAZljeL0RJrWX8g2VzujNso3+zj9TK9ItckZtmMrtZBNzI3JpVMrqimNnUmw/z/yfTmDvriUxiEYNXD8xSxpwRzZtes5FEXhiSee0D/oEl6X+OIXv8hXvvIVerp207Dqbv0DjVB3c5Ch05MMHtX57s8g7vUDZJIZHOVW7F1WoboRVFwZZOjEuP5xGej8nf5vwFkMHh5hvHOKaaEjh6GkpCgb1eg1QbLprMi6yuJVaHxLlI7fDdAjWPgvXe3GU6OKF/1HWyeZFNqUjbRM6u5PzkfkCj/umEM2vzJw5jdydeHOlweKmiOSmM+HO+pgonta9F4tFu6Yg8RIUnSvM8ks7UXE8cxv+jjzvHxcMeo4vkYnkcv8HPvhWZGV48ipyaLs/UbbJsXfYb46lfA2P/1HRpGwoqpvCpFOZER9R1upQuWbSsmms6K+uUkxYrTI7DBB42LYi/h+KMaZp+LKAFMDMwwdlRECHWVWDKaF38B6el7tv5XngtoNMDYIfYJ01dO9j87OTjZv3oyiCBfpz8HvZfcGcODAAdatWwfAjjf9v4V/X0pFaRYNd5fhqrCz89/OV6xYTEVpFo6QQvSqIEe/v8SH0B/Qxmbde6uxehSxZUD93RWYHXKPwYsFRQVLwCYiJQCUrneTTWYZPCJ7oNSIwkTnxdnF46yy4a5y0PGc4GFUYMuH6+l6VbbQpkYUwluDnPhZh5h0JIWiGqi4qozePYNM9ryx7N5iO4JM9SdEtm3FInKVXyvuhQuqGz9cy9jZKVoEVjHeehWb3yJedCkaCiiqQnJI//xQfArlGz2yhez8uVwR+0WxzCsG/iYn0WuCHH3srMgesenBStzVTl7+uyNz/ygkVZ2LpQqHijf5yOVydL60dOG1mO1b3XYDrlIju59MFdSTFsN827cjxx+nu383qqoyPi7cIXEJr0t4vV5GRkaoilxLTey6wr8XVJQWQzbH5g/HGTg+Qduz5yuMnauiNB/h7T4yM1l694wsfsAfqvYyw7ZPrKL/4AinBARWe5mZ2tsrOP2LHiaEKjsXC86YnfGuKTFZpuLKAL27h0QkA7PbTGoqVRQxpxiENnuZ6EmIYl97Wzn2kJUDQquY8m0+sskcvXuKW+yRILDGhVk1FUV6keJi2r3Zy8wEVntpf6Hvgs8Rsx0qrg7Ru3OQqQH9J4tc4adsvVdsixK5ws/w6XGmui/Od4e9zCxWf/M1quRyMHxcRmJTK2xM9E5ftOdailUPVjI9lKTtGdli2dZPNTDRJd8IsFx9tlTtVXdHOW2/HSA1tnQD61zbN7MF1tyoMHg2Tfu+bEE9aTHMt3371Uv/PwDOnDlDNLq8ldwlvP4xMjKC1+sFDFxz/f8q/PtSKkqzCF/mJtCocuR7necpViymojQLk2qicruf1qWUvf+APa+6u8K4og4xKSfypgA2n1IUGeKiwAR2v5Upodqjq8pOSQmMCr9zrX4TiUEh46JIWANmXBUO+vaNiMatfXec3r3DS9fzi53LYyKwzkvPq/3F2UJJYILwZj9DJ0cvSiwvpt1b6To36amMiFxTLPxNLgzmEtECD8Cqt0aZ6klwRrAxwl5mxV6qMCBU8ikaJjBZTSJyjclqILDGLSeKmcARtF4U68FiYC+zEtsRpPXpLtHzEr0mSNlGr5xIuFzdtQRRyd/kwGAy0H9o6Xm/mO1bZBX4K4wceDZTUE9aDPNt37o6d3Hi6A8pLy+nq+t1+l66BBGuvvpqnn/+eWob7qCicnvh31eqvVbdF2KkdUpTVToHy9Venho7JSUlFyVPb3h/LX37h0WWUmbVSPSaIN07h5jqnbmAV1c8rD6FxGhSrPDiW+VktG1qTvlDB4w2I5lk5qLZXbnjDpITKab79fcZyjZ5cUXsnHxSVmd4arXNQsUQo6RQw1YUl5khqZpSEbiYdm+KasQdVxk6Pk4meYHtP40QWu9jqGWU5Kj+CempcVC+2cfRx86K5rGv3slk/4xYka1YKG6j6HcB2MssGEwGJoRKmxavQnoySebi/DQxKq4MkJ7Kisl9ze+MM9E9TesvhBs4i+h5hS/zMnB4jOTk0v2CxWzfGrfBaC90t1JQT1oM823ffvfb/0k6NfUH6Xn9XnZvAGvXrsVk0rZ2nDrza93jjj/ey85/llnqAIS3B/DWOnHXyHd3Sq2Q9v/7aTFBCcARtmIvYhfb5o/W0fxIlXicu9YhshlKTiAmKAH07xsVE5SAoglKkav8Ynu5+PUhKq8QWpwkYednToiJK8F1fkrXuHFHZXNx7aNxNnywRjTGUWGnfJOP4Fq5xdbrHeGtfiqvkt2zyBV+tv5FI46QjKUZ2RIgcrlc9n3Pv7SICEoAsevKiF0rsygDqLmtHKtQihWAJCKCEmjHiwlK+XNJCUrF2Mo5QgqX/WUj5dtlUpueahWrRxHbIx757tmFBCUd8NarKKqcyBTa6CVymcyqEzSbt5UISufCaOnFZDLxm9/8Rny+S3h9YlYRq737t/oHGUrY9S+tixKUVkLF5QHCRcxXs9uMMyawzEjBK39/VERQAkgltIUoj1Baunybjy2faBBbIWEGb4PMNmD8jJygBNDxwoBYBSU1WhxByR4wExXK/wLEbwgRu0b2bm35abeYoARQcXkpke2yuahW2Nj8sXoCwvdQ5ZWlVL5JXjO83hFc76NiewC7T6busu491TQ9uLgP+VJwVmkKQJ46Wew7XxwUE5QwQ/SqILGrZbWXr8lJ2cbi6mspQQlg6NiEmKAEaCRAweksfrPYzhJg9duirHuP3NLSEbLhjMgl31/79HEZQamkBN9qeU3pbXDgb1QpE9pupmZg70+SKxKU5mMy8xIlJSWUlpZeIii9QeDxeAiFQkCW9jMv6B7X9eooB/7zfILSSgiudhJc75HbjoG4T3byx11ighJois1qWP7Mr34oRv09Mvtv0OyQTKpAUiaNmKAEMNY2JSYoAUWTavxNLvE9q7i8lPgNIfG5DnylVURQAs0+pGJbAEdEdo11d4RZ/dD5G26Wg9VtInp1EH8R1rKvd0SvClJxhcxexluvsuEDNdjLZO/yyHZ/UfXr0W+3iwhKABVX+Km5WW4PG97ux+opwtghjYigBJoaW1FKVmnEBCVXlV2sfGVSTWz8UK3YFtwdtaGGbKSFXIX25/rY+RkBQamkBEfYJsu/eZRv8lJ5hbyH0HmUFQlK52JmahdGo/GSxe4bCI899hgA3R2/Eo07+ljPogSllVB5RZDQJvk3oVExYCuV9fD3frFFRFACyCYzuCocOEKyd4Irbqf5kSqUIqyX1LDsXIkhOUEJYOjouIigBGjHF3Eus2oU51uA6pvLKd8iy2e9u4fFBCWAiu0Bwltl51JUI6vfFsMjrCnLN/upFFox/zHAHVeJXVeG4pa9u2puK6fqBlk/yeZTqHhTAHdU1iMeOTXJ0e/JCEoA8RtDlG+W5SpHubVAfpNCSlACmOqdEROUAGaGZQQlo82ILSBfQ41dG6RBaJMOs9+/8h7bwa+2yghKJSWoFfI+gM2vENrkxVPnFI899srKBKX5mJk+QTaTIB6P/0F6Xr83SQng8ccfB6DtrEZSWklFaT5i1/lwVekn9Jx8vIsD/3lKJNkMUP3mcupvrxB72QOolTLC0d7Pt7DzMyfE50nPZMmkZAtR1qDC6gdj1N4sa1JU3xLisr9sFI0BjWDTcI/sIa64JsBlf9WIosqmW/RNQaJXyxbLTv+8kyPfk6v/KKpG9pKg4/lu9n3ppMgyD4As5IT5ffjYBIe+00brc7Ldyc2PVLH1L+T3uRisur+CbX8tP9fBr5/iyPfl0qpkc6SEDYp9/3acw9+QWbApPkWcAwCOfLOVlp/KpK+99SqhDT4iwmJ0/ftr2PAhGfFNUQ1s/midmDzU/EgVmz5yPuN2+ZNB7e0VrHuvbNHL6tOsPMbbZYt5p37azct/d1Rk2aZGlihqVtipXH9nhA0fqBdcHVBiYNc/t3LkB7L5Ub2lBGVyQBdByXREy4NHjv+Ijo4O6urq2Lx5s+w6L+F1iy1btmC328lmswWC+LIqSrMwlGDxK0Svk+WYQ99qY+8X5Haq6x+tpuEueeEPGmFGL1KjKV75+6MiGyTQFq9yqSzWUtlHxtp3xGm4S0bWANj4oVrq75MtzAXWutjwgRqxzda691az+m2yD4XwtgAV2wKi2AMcf6KDEz+Sv8cdEStmt+xch791mj3/LiOvZBNpyMpVJ47/oJ1DX5Pbtl72F41U3yL3Ni8GWz7RIJ5Tbb/u5eA328QEm1w2RzYji+PQkXH2ffkkXbtkTVhnzC63lkvBke+e4cwvZbuTYlcHqdoha0TZA2a2fLKB4EaPaFzdnWGa3ir8gDdr9zkiXOSpviHE2rfHxSTMbDJHJiFvRO36pxMc1GvNnoe9XNhQKikhtMlL410V4ngMn5jmwDfa6XhB/643VxmEGtHISToISqZjWh48dPgFzGYzX/7yl0XXeAmvb7zwgkZOam35BbDyTv75KF3jQA3rn+9drw6z/6unxWSZsk0eVt0XJbBGTuSzCt/9x753ln1flNeG6USGrHBHs8lqYO074lRdJ+sNlW30sPFDtWLSQN1dYeLCBQpfk5ONH64TEy/iN4SIXilbHOp4vo/D324TjQE0ZRhhY733wAj7vnxS3H/NZnJkhbVXYjDNwW+00vmyrJ6P3xrS7vNFQOXVQTZ/VPjtDxz+Risnfyz79i8pKSGXyZGdkfW8DvxnK0e+2yYaY1JN2IrYaHv6qU6OPS6zELZ6TESvChJcL9uIVn9PhNUPy4hvmLT+lbdetnBYfWuIte+Ky84FNNxTyaq3yOo8i8tENpllekDGNureOczOzxwXkbbExLD8Dv6628OsfXuVbKyhhEPf6uTIY7IF+nA9mCcHdBGULPvbAE1Fqb29nbq6OjZu3Ci7zkt43aK0tJQNGzYwOTlJZ8ergP7ay2gzElwre+6PP9HB0e91iNX0Vz0QpeYWOVkTNIUSvcgkNXKTVCUvMZQkk8xicgjrk5tD1N9dCUJuU/3dEWLXyuo1NWyl4d4KjEIL3Jrby6m+VdZ38dSoxK4pExMbTj7ZyZlfytbkABS3CaNNFsQTj3dw/DFZfy2TzJEroufV9usejhaxjrr2XXHCl8ne48VizcNV4jnVf2SUw99qEylfgbZeK43jdH+SA185lbdE0w9bQMFYhEbBke+eoes1Wa1cvsVH1Q4Zd8CoGGh+ZxxvnSyXlm/2iYleAGveXkVps4xAGNrkpemtMcxCEmY6lSUlJEYCHP3uWVp+IhOxkBLlKCnBWWmj8d4KStfK4jE9lObQt87St08/UdfqAF+5Rk7SQ1CyHNLq/iOHnsRgMPCFL3xBdI1LoYitC+fjtttuw2QykU6naWl9hnr0LdwoKpRv1KTvDrZpH2zLWb3NYlaZR/GdY220zGLy6We1Xfm9u0d0Xdss4jeWUb7Vz4knOhg4KGNie+tVhk/oXyUvpsmT6EvSs2eYjldkzf+ZsRTZVBZrUBHZIVlcZkqEBdvMSIpsMoslYCE5oZ9FeexHZxk+LSMnaHNDrtzU/K46FIeJlwU2G8kJSE7Iz3XgP+TKAYCcDAVMDcxgEBZ5xWJqKIm1VL6jvBilrc4XZdZ8syjmntXeHMJTrbLrn46ISC/JiazYwm74hEZGm+6RsY0ziQwlQt97d60Ts90kdgvIpLNkUsJBSWh/rpcJ4W7WwSPjDB45LhqjRhSSo0nRvQJoems15OC1T8vU80480YnVv3RTfzGv2Nl310TH8nMx23KmYPlmcUJp1IRlh5+jP9Y/97v79wDw9a9/XfeYS/jjwHPPPcfWrVtp6/zNAsu3lVB9fSmuSivdrwySyq99LWf1BjCVtxk1u82aSs98LJNEzv62jwmh3zvAlo/Xk01l2f0vMjKK2W7AbDfqtpUabZ1iVxFSw+3P9WFxyb8mM8ksOWH+NJgMmB0m3JV2Rk/rX6zMzGRIJ2SLgGdeGKBn34jIlgs0IooUFr+ZdY9U07t3WKScVYxyzdRAil1FqERI4zCLxEiS6eGLI8GeGJlhuk94rlRe2UuIA18prn4t5p6tfjDK1OCMWG2rGPWLvV8+hbtStkvJ7DSTncmIJbatfgWTVdZAsQcUsskMM+OyOJ5+toeytR6xEtvR78sWGwHccbs49qXr3NS+OUzbr3v1WSrmvz97dg9j8ZqX/Q44t/Yyu82kxjJM9awcw+zp9oLlW8VqMw5vCT0vo1vF6tSZXzExMYHD4eCOO+7QN+gS/ihQW1tLeXk53d3dnGn9DXXobPSaIHaVn/HOBMef0FRKlrMbmUUi/w4yqedYGy1Td/XuHsFoMYqtl0rXuam+qZyTT3QydFz2TlcjViY69dd6x38oI2qApoRy9oU+Bo7JfldyIk1mJoPVYy7EUw+sXoWURda4To6myCTS2iLgiH7SwLEftotr5cRIWnSOWTTdH8VRZmXnPwo2VKaLU4k69TOZKuosirHWmhlKMuW6iHWXkEyijZPHcOj4uPh5BIq6Z5GtPsq3+NnzbydJCq41nUBMYEuMpDnwtVaSk1JFJHnPSw1pNjYlJtm4XCpHekZuD3P6F93MjMlqw8muBPu+JNsUYfWYSCey4m+9hvsqMShG9v6rjm/seX3/E090YV9mQT+XTp1n+Tb77lppLmZb2gqWbyYTlDcYsZldnPq1/nx/8tiPyeVyfOtb39I95hL+OPD0008TDAY5deJnRCou0z0utF4luNrJUMs06Sntfb5S7ZUc1eaq0WYkM6U/P7X/rk+8gRqg6aEYJSVw+JsygohR0a5Rr7pJcjQtt9UGenYPMXxyXKzykk5mSadluSmX06zibKUWkfpKJpEllxZuojo6zkTnNNMDslxdjCqMUYHmd8Tp2T0kWsNKTsjJE5lktqj7nCriXACT/QkSYxfHh36yP8HUkLD2yiC+xwCnf15c/VrMPau/q4LpoSQnfiT7Nirmd7X8rAubX9bDNjlMpCbTpIT1mtWnYPXKNr+YVSPpRIaUIPeC1htKjqbE87jzdzKSF4CtVBGT3hzlVhrfUsmZX/YycERHXZOvvcbPTnPmt330H16a+HZuz8toM5JJ5EiOrRyL3OGWguVbWQy8IRg7hG4Vq8GB44yODlJVVcVNN92kb9AKKMnl/jCG9k8//TQ333wzADdYH9I9LtCkMnBkbjVZD0kJYNtfNZCcTLPnX+YRe/4wP2UhFGi6p5KWn54VLXo3vTWKJ66y50stIhKQs8qGJ65y9jdyO5ZL0LD+/TUkBmc4JlApKdvkweQw0vm8jPiy8c9rmehIcOJx2QvlPIKdnnN9uJbRtklO/bS4F6YEl/9tE2Ptkxz6hpxNLYICWz5UT9drMtKRohpIJrMyPpoCW/+8gc5XBkTnclbZKG3ycFqwiKqoBta9p5b25/vExMhL0KBGFPyNHs78SiY5vvmjdZhsJl75P/oJh6BJjpvtxqXPJyRnLhg6WzSUGAg0q9TdGqJr5zBnfr3yPJwlKdEzgCumMNad1D3vR6uO8sqe32G1WpnWsRhyCX98cDqdTExMUGGoZ5WyRdcYsx0Uj5nJrlRBXWYlkhJAdEeQyBYfh77dznj7vMXoC1B7VVwZYGYsJd4ltu2vGpkeSrJf2OituDJA74HR8wlYl6ALwY0eKrYHNIUjQQhj1wfpPzgsIrFErvAT2uAVE9gwg9lsEBE2Ilf4Ca71FKUiJkXTQ1FcUQevCMjyxSJ+Swhn2CYmHS1KUlwBdbeXYyuzislG5dt8zIwkGTqm/+Or/q4witN84WvXNzAiV/gZPj3OVLf+AtsRsbL2HXH69o2ICIdmu4H4zeWc+JGOHfZF1GDza68N741htGgqlnowS1KibxBPzMzIGf3zfq/xCfoH+nn11VfZskXfe/kS/njQ0tJCXV0dUMKNjod1j3NWWBjvmGuu6yEpAWz4QA3p6QwHv9Y2948XoucFxG8u4+xz/aJF79h1QUKbfRz4WquIMGsNmHFHHWLrsUuYQ8O9FSTHU7Q+o39XvztuR3GZxfV101ujTPUmaBN+l59HsNOBVX8WZbxrmo7fXvh+6NZPNTJ8apyTj8utWKRofqSKvgMjojlvshq0hV7h2ve6R+P07BkWncvqN+FrcNP1kqAfatLUZTteHihqw8IlgOIx4at1iu3oVj8cwx6wyAiHgK/BieI0rXy+YuquWZKSoQQ1bKHpvjAdLw/RtXPlfDNLUqJ3AKvPRHoqrdsmdbLsNC8e/iV+v5/+/kvrKG9EbN26lZ07d1Jn2kjcskbfICPY3Eamh+YWa/XUXr5GJ/Hryzj2w7NMds9csJpr9lyZmSyjrTKi59p3x5kZSYlJ375GJxPdU0VZN10COCttRLYHOPnjTjICRdDSZjej7ZMFEpweeGochLf6NdcRye0ygtFoEF2fp9ZBaINXtIZaLCqvKiW4zsPuIjaKSlG6zo075qDlSZnqjdFmFFsPhjb5cFbaOPljWT3pqXWQns6KCHDll/mw+S2iNcpLWAhfvZPJ/hnRhkNFNdL8zmp69sgIh0YFQpv8dL42uPKz/Hv2vOpuL8PqNXPw6/qe5VmSUkn3APaAkakB/fP+AD+mp7ebAwcOsGaNzvfyCviDSazcdNNNWK2adPBk8xli12mSb/YyheaHKwqWbhVXeFnz1jlbgtImlfgNAdSIguJTWPvuOSnWyOV+mh+Zk3NtfEsF1W/WZPwGW8bBAIFmzWMvtNXL2nfPybE23FNB7Z15uUVFe4mXrnez6SN1bPpo3YJj6+6OUH/3nB3J2nfHCW3VvB0DDa4Fkog1t5XT+JZ5x74rTni7JjfvbVRZ++44ik+h/bc9TA0liF87J2/W/PYqIldpx7ridta+O441qLEYq24oo+mhKA13VlCxLcDqt8WI7dCk7NRKC2vfHS9YTsV2BFn9trm4ND0U5bK/bKT6zeVYgwpr3x0vWJdFrvLT/EhV4dhVD1QWpBCVMoVNH63D26jFO7zdv0DStvEtFdTcVr4ghoFmFyhQca1vQQzr766g7u65+7r23fGCtV7pejdrH40T2qbFtPbO8ALLuPnx9jc5tRiqBtRKC5f9TSNr3zN3nuZHqgry/t76uXiDZmHX9GAlZpsRxWmm+e1VVFwTWBBvR0g7NnZ9kKZ5Nij+VS5MivZgqxEths4qGwCV15ayZp6scNNbo8Rv1O6rUTHiqXPMxfuKc+J9/9ycVVQDa98dZ+2jVWz5UB3hq3wL431fBbV3nDNn81ZcZVs8WN0KFpf24bfYnC3bko/3Wpd2bxSNDLX6HTEa71s4Z8u3+86LN0D1reWsun/u2OZH5uasu9axYM7GbyxbYFnR/J4q6u/R5oCzyqbN2cji8W56W5SqG8pQVAWjxUB4qw9XXNvFXnFNgOZ5UsJND1ZSfYu2U1XLEXHWva+ObZ9oPC/e83OEos6bs0D0qlJMNiMlZi3pL5UjQCOtzc7v8bZpjBbD0jmi2ZWPofa3mtvKaXhLpaZgZVg6RxTi/cCc8tz2v1nF+g9qtm1L5YhZzOYIV9xO6DL3ijliVmpxNkeU5i1Kls0R+XjP5ojaO8tZ934dOQJtzs7GcMvH61n3vurlc0R+zmrnCdPwQIzItkDhehfLEaBZec6fs5lUlokejUCxVI6YxfwcMdEzjbvKsWSOaHqoci4nRxTWvz/O9r9upGyTm8prA6x5eN6xf1ZZyBHWoELzI1Hctdr8tvlNZFJZzvxOK2oa7w1RfYsm8a+o0PyOCvyrtHxSvtXN6ivBltYUBsqa7FRf6S7Ee/X9AQIN2j0PNttYfX+gcA01N3hoaT+Gqqo899xzXMIbE7t27QKgu+QUTfeHC/ZIsev81NwyZx2x6r4wZeu1esleZiP2plLMvhJsQYXoNX7q7piTSF71QAWhLdrz5ozaaXqoEovfTPfL/SRGUpRv9RSObbgvUshv9nKFpoeiBfueyBV+Gu6roGyjl62faqDhzyqouFKbo/aAmaaHoqgV2nu2fJuPVffPPZt2v4LNr81ts1s71l2tPUNlG70L3j21t5cTu157Nrv2DJLN5fA2aDmrdJ17Qd6subWcqpvm6rKmh6KUX+Gl8spS6u4q147Nx7DqpjJq5klHNz0ULXjXextUNnyolg35fB27Pkjt7fOOfWuUUN4j3B230/RQtGBrVnNHmKZ5+WLV/ZWUb9PeyWqFTYth3nKl4soA9fdqedPiN9Nw35zFkb3MvCDe4e3+BfVp/T0Rqm8vx16uYPFrxzpjWgxDW72smpcL6+4ME81bqDTcH2HrXzUW4h3c6FkY79vKqcrnN8xaXJxhK0arkch2/4J4V99STvyWOaWJpofmLGh8TU4cZVamhrTF/6oby6i9bWEMZ620PLUOLYZ2AwZjCWaHibp75h37YGUh3s7YwnhXXhWg/p4Il328kaaHqmh8S0VhzjoiVi2GZdqxkTf5F1inla7zYHGbwTwXb0fEWoj3/Dlbf1eY6LXaM+db42LNu2K483VNaLN3wbun7vZyovn3idluoOmhKKa8BHjpOveCeNfcen68fU3asxxY42Lde6sLvzV+S2iBzVzTQ1EC+TrS16gW5rdFNWELWM6bs2Ub83O2emEMo9cFaXiggi0friN+S4hVD1YW3smz8bb4583Ze+Zi6K5Wsbi1ObpUjijE8N5IIUeMtowT2uRbMkfU3zU3Z2dzhC1oxayals0RZrsWl9kcUXNnmG1/vapw/YvliNl4+5qchRiWrnNTdfPyOUKbs9rfYtcHqbtnzgZguRwRvbaU+rvmjl33vupC3b5cjgAKOSJ+S4j1769eMUdUXqXFezZHVF4ZpO62imVzxOycnc0RjnIryYkU7S9qu9EWyxG+fB0ZWOsq5IjUVJb0dHbZHNH0tigoWt1edUOQLZ+oY92j8XwMKwlu1OKt5YhKzHbt2OiOILW3haBEqxUzmSyT/RqBwhm10PRguBDviit91N05d88b7iknFElgz41hLzMTWu/EHtB6AeHNKrU3ewrH1t7sIbxZ+232gIlEYwt9/X2sWbPmEkHpDYra2lpqa2uBHEOxE4Q2afPVpBqpe3MANf+8+Rvt1N4yV5d7q+2Et7qx+k2YrFB3dxhXvtfga3BSd/fcMx+9Jkgknwv7Do+Qy+Vw12jfBt46x4LvqciVASqvnrM/qLs7gq/BSdNDMda+q4q6uyOY8u5e4cv9hW8Z0CzN/E3a9asVVkw2E5i0Zya8zb/A7qz2tvJCfrOXWam7O4LVY6LztSFG2ycJbfIWjq2+NURZ/v1tDZi1Y/M5q2yjh+pbQ9TcFCZ6dZD4LaFCLlQ8JurujhTsyALNrrneCBC/oYwNH6yh4upSTKp2rFqhHetvclE3L2/GdgQJX563hLTCmndWFd7J3np1QQwrrw5ScfVczVx3d6Rga+Bf49SONc3FO3rN+fEGcEZt1N0TKfRvwtv9VM2P9x3hQn5TI1oMTaoJxWNi00fraJyXc+fH2xa0FOINWp8ifmsIxWnC7DQTvzVU+Ka2+rW4zNp2Bdd7qHnz3HvK1+DElFfZPi/ea1zUzYt31Y5goV4y2Yx4G104o/k52+RcGO/rgkTelJ/vJi0uNXeE2fyhOkrXuxfEu+Lq0vPm7Gz/1x2346qwY3FpvzXypgCx6xbO2dl3sjNqy89vAybVRPWtoYVz9o5woS/hCGvxVvIxLN/iJX7z3LE1by4nuN6zMN7+fLw3avGeu4a5Gs6aj6G9TIth6Tr3glo2fmMZ4W0+MGkKjOWbfKiRefFeYs5qOSLC6rfF2Pzh+nyOmIvh/BwxG+/ZHOFfrWL1WSgxaO/DpXIEgKvKXsgRs2o3y+WI2TkLWo6ouS2MyWbCYCxZMkeAVgfPf9dv/mh9wbZtqRxRiGE+R9iCFtz1jhVzRHhbPob5HDHbx1o2R8zGMJ8jwtt9rHrr3PO4XI5w1zgKOaL5nVU0PlC5fI7Iz1ntPH4a760gdl2ZFoclcoQWb1+hvwSaYsZIm0ZsWCpHFOIyL0dMDUzjrLQvmSPiN4co36rVnIrHROP9ETZ/rA5/k5PAateCnsGCHGEtoe6OUCFH2PwmUokMfQc1glL0Kh+R7Z65eN9WhqtKu4+eGhu1zSks0wNgAn+NhbJmR+E8tde78VRp71ZXhYna692FnBzeaOdk/wFsNhtPPPEEl/DGxLPPPgvA6ex+Kq50Y9SmGaVNDso3z1nhVFzhwRPPz0G3kWCzC5PdiKIa8TXYF1hFV1wZKDybittE7PogitvE0MlxJrqn8Tdqf6OkhMibAoVcqKhGYteXYc33mL11KtGrS3FWamsg0R3Bgl2R0aYda8v39N1xx4Ica3GbUfLvO6MCsevLcJRrz4Uraid2/dwzH9rkI7jBA0Dny4Nk0lmcldpvVSM27dj8WnVwg4fyzXM2XLHry/A2OonfEKLiilJi15cVLKZK17kpn2fZFdsRxJN/n9hKFerfUlGoT0qb3US2z8UwenVpIRdafQqx68tQ8pZLocsWvmcjVwbwNc7GW4uLxatdhK/eSeVVWo41q0YiV/gJ5ONtzsd71prNU+sgOs/2K7LdT/l2P1afglExELu+DHuZlt9ccfuCeJdvnYth+HIf6z9Qg5p/nzijtvPiXTavto1dX4YjZMHsMOGpVc+P99aFMZxd37KXWbCXWclMa6Sh0rXuBRZpsWvnxTugxdCsGikxlGBxm4nOe/dUXlWKr16LocWbj3feLtC3yknkygBr3xGn9vawFu9V+XirC+M9O2dnUdrswR60YrQZ5+ZsaT7eNY4FNmvhy3wF+yk1bKH6zaG5eJ8zZ8s3z8UboxZDc36+OysXxrtsk5fQpoVzdvZ9ooat1N4VxqjO9cvOnbPueD6GQS0uRpsRRTWhhm0L5+y1QTy158cbtDohclWADe+tIXyZT8sRjfNzRFnBtsvX6Cz0rQB8DWphji6VI2YR2e4v5IjxzgT+Va4lc0T5Zb5CbVXIEWVWFNW0bI4oxDCfI4IbPWz8cB2KT7v+xXKEKzrX25nNEa6ondKNy+eI2XiDliMqrw4Uno3lcoS/yTX37QDU3FleqPGXyxFAIUeUrnXTcF/FijmikJPzOSK2I0jVdcFlc8TsnJ3NERafwtTADP2HRgrxPjdHFHJy2FrIEZkkpBIZyjctnSNiN5RhtGi1YelaN2veEaM+X/fHri3FU52Pt18hdn2wMGcDTS4il/sKPa9sNsd4j9bzsniMxK71o7jyOaLBQeTyueuNXO7FbxvDMj6IYodArbVwrCeqULF5Tmm+fJ0Nf632nBttkI6fpae3m/Xr1//BCErwByQpARw/rtnyHD5xEGeldhPtpQqOMgvO/IvWG3eghuZ80J0VNgJNKs1vrSTYZMVRZsOVl9z31jhQy+eC4oo58OZvTNeLA1hUBVdUm+y+uANHyFY41h134K3W/qYo4AjZ8MadmmyYQfv/ZxfEPVWOwgcJzB6b/+iIaf/d5nfV0vRgJZ5qFVdMXXhsTf7YSu1Yq9vERGcSg9GAKzZXXKsRG/5a7UXrrLThCNlQy2YLcxVXhZ0TT3ay9yuncFbY8eSv3xHKH5uPhadaxVkxd73OCjtGiwGr04RaZsURsuHMN/X9tS7U8rm4uGKOwuSuvzmE1a0UHlZPzcIYumJq4RoUVcERsuGOOdj+yVVUbA2eE287nqr8b1UWxtAbd6KW26jeUQ4KeOKOwgtk9vf5qmcbEyqOkA3FbSI5PIPRZMDun/NGV8O2wn11Re04QjZsPu2D1l3twBl1sPMfT3DgP1pRIzZ81fkPwrAWQ3swPw9rnLjmxdBVYad8s4+yTR4cIXs+3rb8sefH21OrXUPLzzoxmo2FOeurc6KG58WwSi3EW/GacYRszIxnGDg8iieqnhNvB558XArxno1hlUoOCtKNi87ZqnNiqCrU3hLCE1MXzENHaC6Gs/NbycvweWocuKrm5rcanouhq3I23rOJ/5y4hOwEVueLlXJbft7OzVlXxdw1uCrseGpUkkNJTj3VhcluxpmPm6/aiRqZi4sz6sCdv16bT4vhZH+Cvv0jeKtV1PC8+1il4s2/LM35GLqi2v+vBqzkctDx3EA+TovnCABPTC3kiLXviuOrU1fMEQa7UvitNr+NV//+GL07R5bMEdqxjgX3psRUguKYK9oWyxGFuORzRO2bw8Svj6yYI2bn7GyOqH9zhOpby5fNERaXUZuHldr/X7rGg6N05RwB4MvPQ7XSgsFswOoxL5sjHCEbSr5p6ok7MJYYOPWLLhJ9ySVzBGjvCee8nGz1KAV28lI5YhZqxIavxsnWTzUS2uJdMUfMxsURsmH3Wclmcgy3TuOtduKMnBPv2aLNp+Aosxbmt7tCxWA0FNSQXFF7IWaKRzvWlc/f3rgdR6mZpruCbHo0hCtixZN/tyoWcATMuPJFkLvSiiMwJ6e558wLDAwM4PF4uOwy/bLIl/DHhYaGBqLRKJlMhmO9BzHbtTngjTvwVM2bv5VW3HmCijNsxVlhZf1DVay6txxPla3wHIOW03z5+auWW3BVOrB5FVJTOdIzGdzRuWM9VSrefG5xBLV8ay/NP0PVKu4qB+OdE2QSGTwVjsKxFr8FV9RRKPi91Squqrln0x1XCax2sfmj9Vh8JlxRR+EZ81Q7cFXOHeupcRZybO+eERyl1sI72VPlKLwDZsf6avMNJzPa9bqtnHyyk0RfClfUgTn/GPlq5/67WgwdePPvaGeFHavHjMlmwuI3461R8dQ4Fxw7+z5XI1pcrJ58832tB8+8nOWqmnsXqSErrqgDS77u8daqeKpU4reE2Pi+WjzxuXjbS7X/7mze99Y4cM97f7urVELrvdTcHMbmVbQYFt6zaiHvaHFRC7/VbDVhMhsK+c8TPyfe84+1m3FFHWSSOXb+3+PY3MqCeHtr5n7bbLxn3wPumAN3zFEgnnhr1AXz0FU5d6wrqt1Hs9vE2ecHmB5O4o7Oi3ds7jyuivw8zOd9b70Td5VK9+4huncP4Y7P1WVqWf7e+K1z1zAvhordxGRPAlJg9Wv3Ri2z5ePgWDhnq5148nGpvy2CK+wo1IPe6oV1mHvenDU7jbiiDm1xOH8NC2JYO3fPzWYDrqijcO88tQ7UkI1YnmjirZ6rgWbj5o2dE0O7mWM/6CA5lsJTvXDOzpJOXBV2XFFHoYHgrVFxhe307h2m78CIliNm52y5FhfbvKbXbO0KGpl/qk/bCr1UjpjFbD4JbvRQe1fFijliNoYWp5YjBo+OsfcLp5bNEQabNmdnc4QjaMFgLmFmMFW4r+fmiNn62hPT7o3db6b2zWHK1nmXzRGz8Z6NYaDRw9ZPNRSOXSpHeGrmYuhrVFHLbIUm0lI5ohCXKi3PWlQTZrtpxRzhrdN+62yO6No1QMtTXcvmCCV/bCFHxByYbXMqW4vliNk57Ylp/3fDfRU0v7NqxRzhqpwfQydGs6EgN+6qdOCZnd+Vdu1Y1+yxDtzz3oE2t0IuL4bkDGvfyTZv/pmrdhTej9p5bZQ2KKy5L0BkowNnuQWrd7ZhY8FdMfdd6q6w4Ilpc9So5th/eC9Go5Hvf//7XMIbF3v37gXg2JlDuKLafLA4SnDH7DjyC7/uqG3BHPRW2wmucdD8Z2E8cQVvtbPwbLqjdrzz8rGv1oE/n/d7XxvEHrAWnjdn2I63xllYoPXXO/HVzX/vOnFH7aQmU1BSgrfGicGab6jXOQvPPICn2lm4RjVkw1vjpOHuMNW3hvDUqHjmH1vrLOQse1DBW+NE8SiaSk4OfPNqIG+tE0989tvdgrfGiT3/nnXHVXx1Lk4/28PBr57GW+MsfKNaXGbt2NJ8fosvrAs8dU4U1ZzPb0a8NU6c+W9YV5V9wTvNW+vEl7/+2BWluCsdBcKKuzIfw9l41znw5a8BU/4bsNLOpj+vI3ZdGd4aJ6Y8ectXq+Krn7smb/Vcj8AZtuNvdFF9cxiT1aC9v+fHsEYt5DdHyIq3xonVbSI5ksZsM+Kc19NYEO+AFsPC4lKNE1+Nk4Nfa+PEDzvw1TgLcbJ4tGNnG/XuuANv7by41DiJvKkUX5MTRTXhrXEWerOearVQx4BWP83WHyee6MBsM819z8Yc58RbLcTQZNX+u9lkhq5XB7GXWhbGu1Y9b87OvpPVCju5HJzJq8r75tVA2jU6C+8mZ1ibs2aXmchlPkIbfQvmrLdGLcxDR1CLt5InfHhqnQuuyVvrnFsACGjz2+ab68H45sXQv8pDZGue4OtV8nM23weKO/DUnvPcVKuQhuM/PIviVnDk431uDH11zvNiODUwQ9erg7hj5+SIOhV//reaZudsvtfmKLWTy0LPPk0pZ6kcAfneaj5H1N4Rpmy9d8UcMdur8uRrwz3/cpKBg2NL5ohCDOfF2+wwYsnXPEvliPnX66lViV0bpPGuyhVzxFz9YczntEoqri5dNkfMxlvNf2tGtvl15QjQ6j1tvmjfhY5S67I5wlvjxOQw5K9BxWg2cuLxDhIDqSVzBGik//n3Ri23FRRelsoRheuv0b5R1r+vhtK13hVyhFrIyYpqwh1VyWVyTHZN46l2LIi3t85Z+O4wqSY8cTtqSLs3asiGUTEW1JC0ei9/rLUET9w+l7/DVtwVCnU3+lj3lgDeqAVvbF6tVWnBmd9IqIYU3JUWTPl3YMvoHnp7e6mqquLyyy/nEt6YcLvdPPDAA2SyGVonD2HMbzB3Re14a+benb4aB85Ivi7zKHhrHDTeHaTm5lJcEaXwzIOWG2cX5a1uBX+9S9uclIHkeGZBvvDXOQvfrGanGX+DC2u+1+CK2vE2uJgaSJKaTOOdt95lthnxN7iwB/JEmArbgvzmq3NS2uym6aEYZtWkHZuvI50RG/6GebmwzoEvv9g/eHwMV8VcX0INacfOCmr4atUCMUD7rS7sXoUTP+5gvGNaOzYfQ2+1uiAuvjpXoe9mC1hwhe0oqgnFbdK+M+e/ZxvmxdCrxUXJf4tVXhEk2Dy3IO6vn4uhxaXgb3BhyRMrXTE7vgYtFmvfVU1glQv3bL6wazG0+fJEmEpHgagDWi6PXllKxRUBTA4tho58T98ZseOrnxfDWrXw3WkyG7C6lQLJWC0/J961jgXf+f4GFyUlBg5+tRWjxXBeDOfXKr76uRg6glYCq91E82QST7W68PrrnYXvZFvAgr9BI9YNn5xgrHMK97y+kK/BiTMfb4tH+62Kms/lMQf+OifdO4fo2TOMv85Z6BEorvyc9cyfs3PXYHWZGW2fJDOdQVHz8Q7k411hxzv/euvmas7a2yu0NaLZeFfa8C/4bXM9AaPRkL9e08J45+est0bFO69W8Te4Cu8Ie5mV4BoPkS2+/LHOBe8tX52rsLHNEbBqMbQa6XxxkMmuxMI5W+csrG9Zvdo8NOfrGnfcga/GSeeLAwyfmsDf4CrcG6s7P2fzm5zc0YXz0GQxMpG3K14qRyy4hrgDZ6WNqh3BFXPEbD1iULR7M3pmkmPfP7tsjsCoxXA2RzjKbChOEyS1PspiOcKZX4e1l2rz0GgzUndHhMhlpcvmCH+DC8Wh3Uh3lYPQRh/r3l2tXdMyOcJd5SjUsraAQtkaL+F8z2upHDE/Lu5qB4rDhOI0rZgjZr9vZnNE12tDnPlN37I5wpiP9/wcYfNZCkp0i+UIdd6c9Te4qLwiQM3t5SvmCH+9q0D08sQdWFQTyfF0/r7OxdAWsOCv13IEaGucs7UVgKPUQi6VLcTQV6dq9x2t3+Cbfw21DrwVBppu9xJotOGNWbA6tfrUWW5eUId5YxbcEe2+KVYj+068hMFg4Ic//CF/SPzB7N5mEY1GOXv2LApWrjbfBfO88ZaEAk13lXP4+2dE9k3eRpX62yOceKKT4WK8ugXY/NE6ZkZTC6W2V8Cs5VP/oVHantUvw3yxoKgGfE1uel6TScvW3hFmvHuK3p0jusc4q2w4glbxuYqGgswKDNj+t00MHx/j2GNCicMiznWxUKx9YDF2b95GFZvXQtfLMsu8i4Yi79P2/7aK8bNTolgoqoHkhNzDvhioEQV3lVNml+dTqLmhjNbf9IrsKK1BBWfYRv8+mUT8xcLWTzbQf3BEJHsfaHZRc0uYYz86y2iLDpndIm3fSkxmNn6wisRQkiPfXUFuNLdw7oSvLMPsMHL2xZXfc9nxcZLKBC+nniGZTDIzM4OiyHyHL+GPC6lUqnCPr+QOrGa7rtqr8kof00NJ+vcOic636oEKFKeZ/V9uvcDy1yo1t0Y48fhZRlunVh6QR+z6IIFGl9wO7CIhsNbF6JlpkW2WvcxMeGuAM7/qFdmVhbZ6GT41USBgXGiY7TI7NU2Fyc6r/3CsiJMhspa7mAht9TLdPyOat8XavYW3+xk5PSayzLuoKOI+1d8TwVfn4pW/F8RilqN7kcJQttHLeOeEKO7BjR6sXoV2oV1O2UYvvQeHX5fzPXZ9EF+9k71fOiW6Pk1lyqTfmrPI2su32k3NDWUc+3EnEx3L17u5zDx5azM03BOl5Rcjus6THR+ntXIPLadPsHHjRnbv3l3U9V7CHw/uvPNOnnzySRy4uNx8KyU6a+349T5O/bxTZN9kL7PScE+E07/oZvS0zBJEitUPx0hOpGX2VyZofriKwePjMquoiwWT1nwfPDImGhbe7icxmhTZWFn9JhxldvG5isas4LtgPm35RAMDR0Zo/YWwP2mSnediwuo34apU6ds3IhpXjN2bGrFi9SkMHLxI91iKIu/T5o/WM9o+KYqFyWoQ2UP+PlA8JlyVdlHcTVYDkSsC9O4bKihF6RqnmnCGrQyf0G85fDGx7tE4/UfGRPlWjVipv6uClp91Mdam4/uk2J6XotB0f5iZ8TSnfr5CvTu/7gJ860uxOI30HlzZ9iY7Mko6neQl5WfMzMwwPT1dcPa4hDcmMpkMVquVdDrN1ca7UYw2SsymFcf56uykZ7KMHJetRUWu9OMIWDnxeOcF7XnZAgq1t4U5/XQPk906PQ7RFDSC6zwc+U77Bbu23wfOShtTA0mRbZZZNRJs9tCzb0Q0zlPjYGogcdFs7IyKzE4tenUpvkYX+/7tVBEnQ2b3dhHhjjtITqaYFqwpFWv3Vow910VFEfepfKuP8s1+9vyr0PruIs4JV9TOzHhaFHdn1IbNb6Fv74j4XJM9CdGzdbEQaHIRWOMWWz1Grw1i8yn6rTmLrL3sIQfVN5Vy+tn+lZ/H+euNRqi8NkLngWldcyo7NEJ35AiHWvdx11138fjjjxd1vUvhD6qkBNDSoi0KJUkwkOo+r/BcFEk4/E0ZQQlgsmOSXA4s7pULk/lQfArr31dTsADSg12fPSkiKAEkJ7KUGA0FhpteVFwTYPt/W1WwytILxacU5KX1Xl8xpKGWJ7tEBCXQLLOKJSi55inY6EHpejeX/0VTwcZJL17+X0fEBKXVb4tx+V80icaAZqkluVegWWZt+US9aMx427SYoFQsho9NiAlKseuDbP/bpoLEt140PVhZsGbTiw2P1rD9b1aJxgC8/HdHRQQlgI0frmfjn9eKxqiVloK6mwQTnUkRQQkgOZTk6PfOighKAIm+pIigpKgUpKUl2PzROnH8FJ8CJSVks7IPyIGDY7z6/x3TR1DKo+mhSiqu9q984Dzk0ilyWchl5B+4XS/06iYoAbQHD5NKpbj++usvEZT+BGA2m7nrrrsAeImfaf+oo/Y6+8KQmKAEkMvmyOVy4mZN5Ar/AgujlTB0bIKdnzkuInqAdlklhhLMdlmJu+EDNax7b7VoDGhywwWChA4MHBgTEZQApnpTtPykW0QAAuh5bbg4glLe3kyCDR+sYf3760RjjnyrvSiC0ra/WsWaB2MrHzgPgbUu6ubZm+mBr8nJtr9ZVbCi0Yue14bF87ZYdL08KCYobf5YPRs+UCMaU0z8MMP2v1hF3Z36n3uAEz/qlBGUgOibStn+qVUFS0O9mN11J0XvnmFx3Pv2jIgJSrPnkhCAfE1Ocf5zxuxs+6vGgsWiXpitRgyGEjGB6si32vUTlNAsQte8PVawaNMLxWogl8sx0StsMqTg+Pf0Nf2z4+MMpnro7D5LWVnZJYLSnwieeOIJDAYDk4wxlO4ll9Q3x079REZQApgaTEA2h1nYUzKpJhreUlGwANKDw984IyMoAaTRrFitsuvzNTnZ8vH6gnWTXpishoK1ld7rK4Y01PXyoIigBJplVrEEpdmdunqhRqxc9vHGwq5jvdj5meNiglL8hjIu+0TjHClKJ6p2BBfs1NaD5keqWP9+WY2SGEyLCUrFYqIzISYoBda42PqpRtm8JR8/YZ+s4e4KtnyiQTQGYNdnT4if/bXvrqb5kSrRGKvfJJ5HAMmRtDju6USWM7/qExGUANITaRlBycSCHf56sfrhmDh+JqtBs/ITtpQmOhPs+XyLPoJSHvEbyiibZx2jB7lkkmyRPa+hff26CUoAZ+MHmJmZ4e67775EUPoTgNFo5DOf+QwAr2aeASCXWvnZHjo5JSYoAZDW+l7Snpe3Tp2z49SB6YEkB7/WJiIoAWRzOTCUFNQ39KLurggN91asfOA5cFbaChZxejB+dlpENAJITWQ0KzvhuJFTk8URlIwUHBr0ou4uzYpVgvbf9hdFUFr33mpqbpH1X9TIQnszPbCVKmz8UF3BHk4vRlsnRQSl3wdDJ8bFBKVVD1bSeH/lygfOgxq2iuMHsOkDdQvs3/Sg+7UhMUHJV+9k0wfrCmrjemEV8B/mY6x9Shz38fZpMUFp9lwSApAatorzn+I2sv59NeJvE4PFgMEsIycCtP+mTz9BCc0itPrmkPh3mZQcZCE5InweM3D2l526CUrTmQla+05SWlrKY489JjuXDvzBSUqKovCRj3wEgL38VvvHTEbXgtmq+yvY9leNuhfqkxM5Xvv0cTH5xeIyYgtYiAgXHRRVI5dI8Nqnj9HyxAqqGedg4MgYyYkUBkX2slz/zjg1t8gWAvxNTi77y0Y5SeStUervlhU2NbeVs+FDMuJB7R1hmt8WFxGV+o+MMn52itG2C7vTEKDvwDDDLXIVL2+tk7J1svk3fHqCkVbZb/LWq6x7T7WIkFcsGu6pEM+JsY4pJnummeySLeZ5apyUrpGRlPr2jzB0gRXXZjFwdIy+gyOiMU33V3HZxxpFY+I3lrHxw3Iyz4YP1YrJfxv/vJY1D8uK8epbKqi9NSI+19TADIn+GdGY5FCS1z59jDO/1L8AGNsRFJPdQJM8DTTIx+39YhtHf9C99AG57AJW85qHK9n6idoV34nZ8fECQelIaietra243e6Cd/slvPHx+OOPYzQayZDhVOqg9o86ai+zHbZ8op76u/XXDsd+0MmBr7SJr9G/yrXABkovAmtdlG/TvwDT/qs+dn3upJjQM9U/w1SvrDnka1Spuy1C1bVlKx88D01vjbL20bhojDtu18YI1ujNdq25EblC9qG99SMNNN4ny/d9B0bo3X9x1DIHjozQd1im6Bdc48G/xiMaM9mbYKx9koke2byovb2cqptkc6IY2ANmVj8cExNtRlrGGTopq4eCazz4V3tEYwAGj4zSL7xXxWD49CQjpyYYP6O/nvQ1qqx9R1zcUFr33mqi15aKxtTeXk5tESS5zR+rF9/fujdHaH6njHBpMEBiNMXwMdkCYMtPu8WqdXV3hkV5DCC4wYtabivYcepFz+5hdn++bVkSVS6TKagome1w2SfrqL4luOJ/e37ttYfnmJ6e5s/+7M9kF3gJf9T46le/CsCenNbzyiWTushKlVeXsvkjdZj09pfTsPffTjNwSPZ8mkx5O4Im4TeLSVuclmD/l1s582sZCXOsfZrpoaR402jTQzHqbouIxjjCVjZ8oEZMEontCBLbsXI+mI/wNh+rhd/Moc1e1j4Sx1Wl/5t5ojPB4NFRRtsvPCl64PgYffvkNV5wg4/AatnGvMET4wyfkNUo9jIr9ffKCHnFInJlQDwnpvqTDJ8aZ3pQ1t8IbvARaJLFr//wKH0XqR7v2TMs7nnV31XJJuGmhrKNHu2Zktxek/a9pUZkC3lNb41SJ9hUAxDZHqD+rgrR8wsw1ZNgok/2jZFOZNn376dFm0NL17nF/X4AT62KX7hoDXDssS5OP7PMRtlzehTxG4Js+EB8xXdidmS0QFDqTJ+m5XQLHo+HH/3oR+JrvIQ/Tvz5n/85kUiEBJN0ZLTvj1wqvTJZyQjNb68ierX+77fOlwc5KVzLA82ax18rf27UiA1fo/5xQ0fHOfKtM2JCz1Rvgglhz8sWUGi4p5LgBhkpuvKqUuruktVrVp9C7e1hOfnqjoj4fbnmoSpqb5Xl+4HDo/TsvTjv2L49IwweldX+nmoHISF5PTmaZvD4mLhGCW3yEdokO1cxMNqMVN0YwlYqW9ccOjkh7nl5a53y32SEnt1DjJy68OqLk/0z9B8YET3DtoDCmoerCApJx7W3h7UNuQKENvnEvWdbqcKat1dhC8rub/XN5TQI84vBaGSqL8FE98qE6Pno2zvCkW/JxCsi2/0iYieAN67Z6pqsMrrOWPsUh7/TSWa5NsT89UYjND8SI3zZyryE7NAI2aERAF7LPMPk5CSf/OQnMepxThPignzFffazn+ULX/gCqVSKXanfsNl8rfaHTGZZC5LhtkmsfgVFAZ2b0QDNZip2TRn7vqiPmTreNs3uzx4hKcwf5duCeOuchLZ6RcQoNaJQtsHPqZ8uszg9D4m+JLs/J7cpaf1VD8kJ2S6R8Z4ZTY3KI+v6quU20jOyYsjiMmO2y6ZcxysDUAKJfkHzJQkHv94mOg9A430VeOucvCyw2ug/MEb/AfluuZf+4YhYOUxKdgNwVdqxB604AgrJoQvLcHYJd6+Dpr40fEz+In/pfx0Rqw5J1YYA1r2nGotH4TWh0kMx96r9hb6CF65eWL2K+JkqXeXE6lYwmoUc1RxilaJjT3QQG04yJlSUOPItmWStv8mJGraJCEqgFVC5TE5sX/fK3x8Xzb/qW0JYnCaO/WiJXau5xckU410JDOYSLVdYFj2ksEAGkEwlGbB0wIy2w/sS/rTw7LPPct1113Gaw0RTjZhnV3OXqb1SU5AYTopJGAD190aY7E3Q+Tt9ufXAf7YWZVcU3xEil8nR/YpM9anyqgAjZ6Z0kxaOS61e0dSe2p/v02oVAXLpnLYzTwCjzYjdbyXQ4NK9UJmaAkU1Y3XLXpidrw4wMyK7WXrnwbnY8vF6JnsTHPm2/rzf8hN99fR8HPlBu3j+zQymxO8jAE9cJZPK0saFtXq2h2w4I3bsQQsTHfo/tFt0fo/Mx5Fvt4uJJaTgxI+F9ZAZtn2ikZ69w7QJrFvHz0xxVEBQAhhvn6JnzzC9uwW5xQyKw4QirNecFXZt57sASr6+m+iVNVGO/bAdg7DGG22d0v0dPYuqm8ro2z3E1ID+B6t8m4/AajfjndP07NL/Ld32bB+dL/aREtzi5ndW0farPia6Fr++3BIk3sRIiuFTy28KmV979cSOQQs4nU7+8R//Uf8FXsIfPd7+9rfz3/7bf6Ozs5MDqRdZa74C0MhKy9m/jbVP4qywASVI5DAcYSuVV5Vy7LtndR2fGEmz5/PHSQtLvECji+AGLxN9Cfr36/9GsnpM+Js9dL6gryZKT6Q59J9tsosD2n7VSzYlI6JP9iUgB2bhope7yiFWBDHbTShOs8h2a+DQKGaHmSlhPV7M+zzypgDhLT52/vMJ3dc33j7NeLvsXQTw2j8dEyuHFWMZaPMreKpUev0WEiMX1pPOV6NiVAycESgjTvUm5AplaBtepR37oSPjYgWwurvCqGE7e/9V1oOWqqgDnH2+H8Ul+1EWl4LFZRbNJW9cxRGyYRQqvGWzOXJp2TPf+fIAmemMSKUIoPVZ2XeCI2zFFbHRvVNoW3WZnxKTgeETsvu79wunRPOvbKMHe9BC26+XuL4l6q6JvgQWt4l0AgxLEJVmyUmzaLMdgin4yU9+ov8CL+ENgZdeeolYLMbJkj2UZ+KFhdJcKr20/VsGJnoSTPbLe16R7X6SE2n6D+qrh04/3V2UFVP06lIMJgNDx2T527fKSWIoyVSvPoJJZxF5e3ogyelnuhkSEoizWXnPq8SofTerISujgk36Fo8Zi1Bxt+uVQdIJ2c0aPlkcEWX122JM9c3Q+kyP7jHdu+Sq9x0vDdChsw6fRSaZ5cwv5X0rT5743yPppRQBRTXiq1UZa5tkul//umbvbjmZ7Ozz/Zx9UehGkynuuVr33mr69oyI7vPMcJL238quLzmWpP35PoaFhC2L24yiCnteERtmh1G0/mq2mchlcySF9fvJJzsxWmQ1XmIoqVl4ClC6zs1o24RIrc0VtRPa4mN6JMnQUf1xHzgyxnDL2PJko3NQfUuI7t1DJIaWyLWLrDcajdqG3IkVFPxmyUkAw2XtJM8mqK6u5q/+6q/0X6AAJbnchTFXbW9vJxbTdhBt50ZU8zwm4iKLZXolshdD9a0hytZ5OfTtVsbbBB/PClRdXUab4OPAXesQ2QKBRnSwB61iYlTDPRUkJ1K0Cpr0l6DB3+SkfJNPZNMV3u7XPH2/eUp0n2rvDDPeNSW2wJPCFbfjr3NelPlw+d82MdY+KbY5kyLQ7MLiNdP5fHGLmxI0PVhJ564h0fNbe0cYe8DCgf9o1T0mtiOIWTUVRVT6k4cC6x6p5tTPO5k4q5/Fv+GDNVg9Fl7+tJD8p4BaZtF9Ln+TtrNl8Kjsw2Tjh2ow2Uzs/KdFrE2WICidC4Pz/F018xfJADqq93P0+FEaGxs5elRmlXMJbww0NDRw4sQJFKxcbb5r4R//wLXXlo/Xkxie4eBX20TjfE1OUpMZ3eQhR8SqLS4JCCZmO2z6yComOqdE7zG1wkbVjiCH/vPCvvveqKi+pZypwYSIyL/64RjjndO0CxQY3NV2gs2eonY3ShHe7meqP8GIsPaXoumhKK6og1cERPliEb22lIFjo0x1X1jyenCjB5tPERGIzW4zjfdG6H5tSKQasur+Srp2Dl40m703EqI7ghhMJbQ9rf/7wuw2s/mDtYy0TnBUJ2FiFs6YXaR4VXlVgLPPDyCRW3FX21l1X5Szv+un67Xz59FSBKVzYXSfvyN3fu01mhrhmOslSkpKaGlpIRCQqXJdwh8/JiYmcOZr9O0lt6Ca5nacLkZUyk7LiR6zKNvgJnpNGUe/f4aJDtlCW/kWr2hh2xG2MtklVBG8I4y/3sXuL7aQFmyci1wZIJfOFUV4+FOHGrES2uAVkZW8dSplm7QxkvsUvtxPYiQpJsBIYQ2Y8dU66RJuTigGWz/VyPCp8aIIRBI4ozZsPstFsaSL31BG/9FRUY4Ib/Ojhq2c+JH+OASaXdh8Vs7+Vm5jewnQ8JYKzj4/IFLxbbi3AneVQ04+NYHNZ2G6T1/PyxG2YrIZGT0tq6kbH6jE7rew98uLbPDQWXcZPOerNpxLUOqqPsTh44fYtGkTu3btEl3jJbwx8K53vYuvfvWruPBxmXLzgr8tRlT6fWqvNW+LkhhN0fKkrO9gL9N2meolDylukyY6IOHMGGHDe2oZ65jULYowe67I9gCtz/YURaj6U0dwg4f0dEZEKIvtCDI9lBTZYNkCCr46Z1EEGCk8tQ5Skxmx7aAUlVeVElznYfc/y2zOikGgycVET4LEBRZscEZt2PwW0b01KhC7vpzBo2MiMl7lVaUMHh/TnVcuYQ6BJhdmu0lECjMqsO49dQydHKdNQDAE7fmdHtA/9/xNLgaPj0FWf8/L6lNY9ZZKOl4aYODoIjWb3vVG//nqYfMJSslMgv3OX5PJZDh16hSlpTJVeb34g9u9zSIajXLLLbcA8DLPLPzjChYkDfdUsOXj9fpOlMtx+mfdvPzpIzKCErD6/hjhrX7UyiUkKhbBLMHBXatfKvrod9o48JUWsXKTp1bFK/S2jlzlZ9tfN4rtvUJbvQSaZdKIAI6Q3EZMEjvQrk3qS1/a5MYVdYji0PXyIPu+KCMoAZSu9lC+SSZn1/xIFZs+IpM5jl0ZpHyL3Bv19YzKq4JEr5DJZVffEmLrXzSiCBSL1YiCt85F6WqZVGHLk10ighJAYLULf6PsWaq9Iyz2NXaEFBRVmMIV5GPQrBol8QaNOLThg7LntnyTD3upFUdQZm2y919PceT7Z3QTlBRVmxMkEZGhqm8qp/5OuX/3ns+f4rXPHSeXnseyOMfabcF5bg2y5aO1S8Z8vsXILI6mdnH0+FG8Xu8lgtKfMI4fP05JSQlJErSmjiz84zK1l9ltZvNH6vRLs+Zy7Pzn42KCEkD97RFqbg7pPn6yUyMoOSJW3UouqSk4+r0zYqKtGraihu34GmUJb917qml+pEo0xmw3EBXaRYB2r6SKNma3GYtfNqjpwUqxpVXpGjfBtR7RmMPfOCMiKAEEV7sJrHZjtut/n5ndZjZ/rJ6w0GM+elWQyjddmI+w/xKYoeLyUiouk5EpNn6olvp7ZXLK5Zt8hDbK5LJToykO/kebiKDkiFjx1Kh4amTP7dpH4wTWyOo1ZxGqofaAVIJKI3NKr81eZmbrpxrEstz+eieBBtm5UqMp9n/tFEd/qJ+gNBs7CUHJHbdT8aZS6oRWeaOnp3jlH4/R+dLggtprvrXbudj85zVU3bD0s75Y7fUaTzM2NsZNN910iaD0JwpVVfkf/+N/APBq7ukFf1vJ/i1yhZ/179Fp/ZrL0btnhJ2fOy4mKFXtCBK9tgxHWL/t0SxBSTKm5aku9n/tlIj4Alrfxi/sefkanGz68zqsftkOX2+dKrZ8A4qyEZPEDrRrW/VnUdEYV8yBf5UbW1B/P3P45ATHvntWfJ/CW/2EhFYv8VtCrH2XzN64fKOP6NVlF0jz/78Gke0BYtfJLBSD6z1s+EANJsEudpPVQHCDF7/wnd71yqCIoARQ2uwhKKw3wtt81N0hs9ZRPCZRDAAwIR+DtjFBarHReH8lqx+S9fHcNQ7cMRW70Nrk+A87OPLdM/oJSia03JBGN0EJIH59GfV3yGp+gGPfO8uef29Z+N5bpv9QttHDukerlrxX8+3dZtGZPs3h44fweDyXCEp/wviP//gPPB4PYwzRmVm4EXQ5+zejovU4StfqzF25HIe+fUZMUAKouzNC9Cr9PYTkqEZQUtxG/RZBGTj2WLuIoASaQoq3xokrKvuurbmtnJrbZN9kRgXxtyloKuII3YSMigFFlQ2qvKpUfH1l670EVsnes2d+1ScisQA4K+2Ub/WjuPX/JqOiqTZJre9i14UoF9rEvd4Ru76M0jWye1t/T4XIFhKgdI2H8FZZjzGThNNPdYsISkabkeBaD+5K2XdM9ZvLxc+6LSBf65c+ewCOcqv42ow2I2vfFccj5BZ46534hc9FJgmH/vM0Z5/T36+ejZ2EoKS4TVTtKKPiclk/KTGUZO+XT9F/cFT3emPjWyKENi39XMy3d5vFK5lfMDIywjvf+c4LRlCCC/zp99RTT6EoCqlUildSv2CbeSHDedaC5NzmTWomA7mcZqej954mtUX78PZS3TthDn//DGXNHtEiNcCGD9VidZt5+e/0LQQnJ7IkJ5J5goB+2629/3pMTJgZPztNJpnF5jOL7L3i14eYGU8xcFD/osCmj9Rhthl55e/1W2GtfVcctdwmsjtTy23YfAqKT3/sjj3ZIbZTA00pxWQz0rt7RPeY3V9sEVupZVJZskLp8OM/7cLqlj2yrridpgeitP+2/4LvTtzyiXpmRlIiUs/h77TjEL78sukcZHOiZ2OiM8nOfzwsspFUVANlW/ya1KNg3O7PtYgJPWrEhqLKFrHq76nU1IP+7sjKB+fReGcFvnoX+7/SwmSPvh/lb3IS2uDDYDaIdhmmp+RbMrpfHmLw4JDo3qoRhYnOpEghq/H+OI5yG7u/IHt293/pBO5a/UWut1HFW+Xg9C96F86hFdjMJSUlmtzlvDhkx8cxOJ3nLZABJFMJes1nIAVf//rXdV/fJbwx8bOf/Yxbb72VFg5Qkaqbs32bxSK1V2o0RS6Tw2gW2BHla+DY9UEGj43rtptq+VkXA8dlNqn2gJm1b48zdHJcty3brKKKvczMVK8+Gaae14YZPDQsshQCSE+nSSdk1iNVO8oINHsYPDamEbF0wBmzs+atMbp3D4mssDZ9oFasKuUI2ykRWkbt+fwxcezMdghu8NP52qButayTv+jm5C+6RepaqdEUZHNIBWSPfv8MU0Myn7g1D8dQXGb2fF5u3SxB5Ao/ke0BDn3ttH7LrRQc/GYbCaGdXyaVJZeUzfH9XzqtkeoECKx1kZpIi3ZvT3YmePnTMnKuI2LF7rdgE2xmMNsNrHlrTJSHAJrfWUNiJMn+Ly2iprgEYlcHUZxmEVlLcSpkZ7JMdsoewr1fOIVZ0Buy+M3MjKVkSlxmWP1gjMneaQ5+rU33sNHWKU7+tJOBA2O6lZRqbi2n49UBZgYXzvHl1JPMdshlcqSmFs7xzOgYRrdr0dqrPbIP2nKoqsr3vvc9Xdd2CW9M/Pf//t/593//d7q6utiTeo6N5msW/H3W/u3cnfzp6Qy5LJisJaQTOt9NaW3RPrTeR7vOhmnbr/oYPTslVkZqfKASZ8TOzs8d12ezlIbEQApMoKgm3bL9h/7zlNiSbqp3mkwig8km8FQDat4cZmYkycEVLB3no+mhGPaAhV2fPaF7TPWtIUpXe9j9zyd014c2v4IasmINmLU46kDXa4N0vTYotlRTK6yY7SaGT+j/6N735dNiYlMumSUjtOY7+9IgfYdGRb/J6jGx+uE4HS/207tnRHQ+Kda+K87MaIrjP9RfB7T8rFvcx8vlcuQyOVHM04ksr35Gf28WABOUrfUweGRE9Bwe/XY7JhkPDzWiWfhIEL8hhDuq8tr/1f+7ItsCVGwPcPDrbbqVimxBC5VXlqLYjbQJrPxSk2myFqHF7qlJ9vzLMVG8rX4TicE0Ezq/GQFqbion0ORm/5daRDaIh759Bm9cf0PTXmbFU+PQrBrnn2YF9SSDkfPmeHZkFIPHfR45CSCdTtNi3gdJ+P73v6/7+i7hjYldu3ZRW1vLkcwrhKjAeA6zZ9b+bX7tlUlCNpOjRPLI5qdxabObid5ppvv0ff+c+lk30/0yIQWjzciat1UzeGxUt6Xo7EK44jbqtiMab59m/5dOiiyFANKT8h5/oNlL5ZtKmexJ6FeVUo00P1JN12uDdL+mX/Vk7buqxapS7pgd86BJZG985Fut4thhBF+Nk9G2STI6eyp9B0YYPDwiOlcmqeVVqWXSicfPkpyQ3d/YjiD2UotYVVkKT42D6NVBTvy4U6SKdPibZ0hNy35TNpUlk5bVraef6tZIdQI4K21kklmRIlJmOsPufzkpIu+ZVSOuCjsTXdOMtevsERmh6cEYA0f15yGAxvujJEZSnPiR/vo4fJkfR5mVff92SvcYxWEkNZVmelDWzzz54079BFC0fJxJZsTPRcO9lUx0TdPyE/3k1uRomhM/7mC8axrNDn5llG3yMHx8/PzrW269MV93ZZILM0R2cAiD33ceOQmgv6yFmbNTxONxPvvZz+q6tmJxwezeZjE0NITfrzEK17CdcvP5uwz0Sq6fP3Dhpa99NI6jTL7wDDIbt0CzC0fQKnpYAbb/zSpmJlLs+WfZokXpejf9+/S/MItBoNklIiiBptpkcZg5/XP9kmfeehVvjSoaczFx2V82ksvkeO3/Hv+vvpQ/CBwhhVUPxDjz2z7RHCrG7m39+2qY7p/huOCF9HpG1Q1lRLYFOPGTjgv+/BUDb6OKt9rJ6af0F+CuuJ2K7QGOfHsRCeZlEGh2aaSCC6iS6W1UmeyYEBGUSte6qLu9gp49Q6KcYg0qVF6hn9B6ni2czoWyDR+oxupRePn/HlsQu5JFbLdWQi6TWXLcmao9nDh5gnXr1rFv3z7xf/sS3njYunUrO3fuxICRHea3LHpMLp0W2efMDZyrvcx2A5v+vIGJLhkBBjRrtYnead1Ek+pbyjn70oBGNtGJqpvKKN/o49C3z4jUO8x2A/Yy6wW1jjLbwR6yi6X06++L0PFiv4ggEN0RZLhlQhSDi4XQZi/VN5Vz+uluenbJfeNfj6i7M4ziNHH4m/rftcXYvZWuc1NxeYBD/9l6HrnijxVbPl5PLpNj1+cuvAS4GGaIXhlk8Lh+YiFoz19iOEmfZOHUDJ6Y44LbDPqanGLrng0fzFvYCr+VKq4MMN4xpTuvuuP2hcfqeF/ZA2bWPlrD6OkJjn4//z0y+84yyGsvctlFa69e81la2IvFYqGjowO7Xa6wdQlvLCQSCex2O7lcjnUlbyJoOl959Q/V86q9rRxfo5sDX5YtPINmD6Z3kVuNWFHLbeJ388YP15GaTInVNt01DkYF5KFi4IzatAawIGz+JhcWt1m04cteZsUTd9C1S04guhhY/95qSkwG9v7rhSVTXyyYrAZWPRil8+VBho7rf6cVY/dWf0+E1Hia1mf1bxZ4PSOwxkXtmyOc/Ekng0dk/eCLAUfYijvmED1/1oCZ8i1+WoU9Z7XCSmIgISZNis4RsZIYTIo2t6gRK6vfWkXHywN0/m5A9ziTaqJ8k0+/JZ8J7H7rHLFLZ5+g4b4KXJV29n7h5ALC7R+653U2vo9jJ45x1VVX8dvf/lb8376ENx7+8i//kn/4h3/AioMrlTsXPWaBuoQE82svI6x/tIbxzimxapHUxq1sk5eh42OkBAvjpc1uotcEOfbYWZFdl1EBxaPoJl4VBSPYAxaxPVXkCj+DR8dFpBQpkexiQo3YaLyvktZne16X79piUL7Vh81v4fTP9T8Txdi9qREbkW1+Wp/uFhNGXq9oeiiGwVDCoW+0/VdfyqIobXYz0TPNdL/s+UtNp2X9KyM4gtYLbjOoRmxMdMpIo3V3RbD5FQ58Reau42t0MjOa0v2bzrOF01F7GW1G1j1SxeDJcc78Ml/j5d9ZJSa5HlEuk6HEdP7m0onMKAdtv8VoNNLR0YGqChU5hLjgJCWAj370o3zuc58D4GruQTGfw3BeomETv7GMwGoXO/9xieR17qWfu5CsE+s/UIPNa+HlT+tX95l/Tr1j6u6OMNwyLiIDzRIlWn/ZI/owi99YRiqZoeM5/R8xr3coKiICQ/Pbq7CHrLz6/+nfdRNodjHRmyAhKGoqry0lvMXPq/90TDR/HCGFyaGkfkWpiELDvTHan+ul/8CFLWqKISkVg/Xvq2Gqb4YTj+snNs0q50iw9tE4RouBvZ/Xz84FzWqw5zX9jdlV91fgiqu8+o/654J0Xv8xoPntVRz/aZeILFoUQVCBNQ/EOPQ9/VZvIoW+PNa9pxp70Mruzx4jOZEVETtccTtj5yzILdV4qb29DFelgz1fPl24xvnvx8XGvZz6OROMUl5eTleXXIb4Et64MJvNpNNpfITYdM6ufsiTlGYxO6fNsOHRGgaPjtK+VP1wTu2lVth0qyjNwuI3s+G9tYy1TnBEuvPGjG5ik9luIH5rOSee6BSp7mz5eD25HOz6J/275i1+M9U7Qhz9/oXdSXSxYbajWx3JbDew4YN19B8e1b8wYIbAKpemlCLAuvdWkxpLyeaPGexus37VIaDu9nIUj8LhC1wPFUNSKgal69xEtgc4/J12/YQ/M1hc5vOUaZYd4jaz/t3VtD/XR+8e/XWUPWBG8Sii5saWTzQwemaCEz/Uv8gomdd/DIi8yQ856HxR/7di5Ao/sWvKOP1st6jW9TU5cYZtcw2RlSDI2YUhdgObPtLAeOfU3LOns/ZyRCxMds6c3ydYgqS06YPVdO8dpuvleTGYtwPt3NorlUrxHD/EYDDw8Y9/nE9/+tO6rusS3vj4+te/zjve8Q4Ari25D9M5TcKlel7B9W7KN/nYv1QTdJF2nS1oEdn3ANTfW4GnysGez58Uqz8iECwKX+5nsjchIhwFml3U3hqh9dlukRJO2UYPlCBSwX69w2RFRJKI3xLCW62K1BudURupsZSI5BZY4yJ6dZAD/9kmUvdRPPkFWp1DTKqJxnsr6HpFRjgqBsWQlIpB/b0VJEeSIoUeq8dEQhA3gLo7wihus7hm9darDJ+e0H2uiqtLKVvrYf+XTuqeq9J5/ceA2tvKaf9dv27VOIANH6iBkhIZQdAE1TeGaP91n/7cLROZA7T54613se/LLdpvEvS87GXW81Srlup5lW/x4F/l4tC32wvXuFLP63DqNbo4TSgUortbRhK5hDc24vE4bW1tVJTUssq89by/L0pSMkL9HRFG2iaXtuA6p/ay+hQRYQY0+7F1j1Yz1DJB2zPCjfpGdBObMELlFaWaC4SAw9H0UAyjuUSkcmu0GYls9dH+2379J/ojgFFBv2KREZrfHmfwyChdr+pXenJF7frVbPKovT1MOpGhTUiMlihrAYQ2+bAHZYSjYlAMSakYqGEr4W0B2n7VrT8ORlBsRhkRygjNb6vSSPIn9NesZtWI4jSLyDlrHq5irH1S9OyJ5vUfAXz1TgymEgYERD933EHdHRExQdBRbkUN2+jdrbNPJsnZ88ZseE8to2cnOf2z/LOns/YqEGDTC99VS5GUGu+L0H9kjMF5GxQX1F7nkJQymQzPZR4jV5Ll7//+7/mLv/gLXdf1+0CmS1okPvvZzxIOa97Tz/Nj0dgSowFFrxR/EibOzqCoUH2rfp/UM7/qpWfXoHjhesvH69n8wTrdx598vFOsVtT2bC+9+4fFVl3B9V5C67yiMWsejrHtrxtFY0JbvWz6SK1oTNkWD5s/VqeRBXSi8S0VbP5ok8hGa3JghpkxWVd84OCYiKAEkE5kyKazqKX6f1DZFg/r31Mn9ps0201YBNYUoJEkdD9DvwfctQ4UVZZSzA4jFqH09ZqHq9n8Uf3PHUAunSNXxC5GyaINwPRwiuRESpRL1ryzlsv+UvbcNT0UZc3D56vSLYfGt1TQ/EiV+Dzb/qpR9KyGt/txVtoJNDhF52r5aSftL8jU6UiiEel0xju83c/2TzVRulbmQ9vykw4GjoxqBCVYdLFgPrz1KuHtmp/zuQSl5WC2mTCYShYlKC2G8UgPkyXaO2XPnj26z3MJfxpob9dUXIbooTe1ApFjdk6nwGgqEdlPzhKUyrf5cET0SfjPDKbo2zfCSeEO19J1brZ9YhW+Jn35JTWV5cRjMoISQPtv+zn5hEwVMNDowlOjElijP7+Y7Qa2fqqB2tv016yg5eb4LSHZmLdGqbszLBqz9VMNND5Ypfv41FSWmdEUMxIrsRRighLkZWrTsn0Wm95Xy+q3V4vGKB4Fi0tmWWZ2m1ErbKIxxaCY81hcZhTVBCn9X9DRK4Nsen8d7mr9ajEWp4lcKksqISu+pgZSYvWgxMgMU4LFeovfzOaPrqLqpjLdY8x22PihWnyNst1D699foztfzeKyv2ik/i7Zsxpa76V8i180pvPFQbp2DYpr3aEj4/oJSmjP3fr3yZ671FSWrp2DtP16XkN2hdoruiMIZhYnKC0Bi8+MwWxYqIq9giXvkdIXAFi1atUlgtIlLMDb3/52brzxRgBeyD2pe1wul8OgGFA8+r+Jp/tmwKR92+jF2Rf66XhpQExQWvP2GOseies+vuulQbEi0sDBMc6+JLfqCl8WILRB1vOK31zGpo/IegnuGgdr3lElGxO3s/ZdcZElVuTKAJv+vBGTKpgL/TNMDcoIa+Pt02IVrtR0hmwyi+LQf21qhZWN76sjvNmn/0TpLBa3GcUp6xHZy6yiuBULR1h+HqtHI2BL0PRQlei5A8iks2SFtTGg2f4JpkNyNEViKCkiHdXeVSl+7uI3lFEnrIcqri4Vj4ntCLLpI3WYrPp7md46Ff8qN95qWV148slO3VadBaTh9FM9unO3u8bBlo804BP241p/3Uf3zqE50tUKtZQtqFC6Tvvu1WurB2B2mDCaDIsSlBbDtHeUHkMbAHv37tV9nkv408CRI0cwmUx05FoYzOjsLWXAaC7BbNWv9jVLUHLHHdh0rv1kklk6Xx2k6yUZoUcNW9nwnlpccZ3f3hk4+7yMoATQ8UI/p4SkFDVkpXStB3fcoX+QUbNKjbxJtv4VvTZI+VZB/YBGgpGep/mRKqpvjugfkIGpgQQz47I6SkpQAsimc+SE7/WGeytovDcqGmNxmcRrc0bFgC1w4dcajTYjVuGaptlhwuo1i54JX42Tte+uwVmpv7+mqEbSMxnSgt4aQGoiI1YPmhqcYVpAlDQqBta/t47yywTPkFFTR5TEAKD+7giuqExZeu274lReVSoaU9rsFueE0dZJ2p/vEyuYTXYn9BOUgMZ7Kmh8y/lKyssiA2ef76P7tXmcjxVqr9JmN0ZFs4g7l6C0FIw2Iwbzwhp3pdrrpP9VsmS49dZbLwpBCTR+/UVBZ2cnBoOBXC7Lq6lnuMysNXCWC0rrM720PiOX0W28P45abqPjlUFdSh7DJyYKfuyKT9Gt/jHeMUVWSHxwVtlY/WAVna8OcPY3+gqVlifl6hj7v3ZaTLYZ7ZjCaDWKlEYsTjOKw4xaqV/BymAyYLaZ8FaphbivhN79IxgsBjRenb6PM4kNVgEKbHp/HUPHxnTPve6Xh+h+WT97GmD46AgDlSrDx/QnyYnOJK/8H/kO++a3xRk+Pc6Rb8ksvqRY/UCM8c4pEQt/52f0q1TMonvXEMlJ2YMnuaZZbPl4PX0HR0QLMW3P9ooZ7v2HRrF7LaIxFo8idq2w+i2Y7bJBkz0JzA6TiHTV9fIgo63jTPbI8s+g0G7ksr9sZLxjSmRdN9mfIDGaFCmRKaqByZ6kaIdl/MYyLE4zXcK8cPT72jmWei/Ol79OphKcmjyMoih86lOfIhSSERYu4Y2P8vJy/vf//t/8zd/8DQd4kWtS92I2a2SLBSpKs8gXw7uElrQAmCF2dRmT/dMc/I82XUNmd+mY3Wbdii79R0YJb/UzI7B8A42kqUbsupWRJMovs+h8cZDh42MilZ7UVJbpwRkm+mQfqHa/hRKDzKrP6lUwWmRE4qHjY0wIP573f+m06HiA6LWl+Btd7P2CfrVDqewuQOcrg+d9nK2EYhSUGu4Io0bsRdVsEtTdEsIdV3lZoL7U8cIAHS/IVFYHjo5gthpF1oQTHdPsEu6Qq7qxDHeVg/3/LptDenPOLLJpGG4Zp/+QfitfZ1TF7DDp5b4A2gK1xWXGJGiAm+0w1Z9gtF2mTrf7X1qw+GVkOoC2p/XXrNFrSwlt9LH/a6dFqlpjZyZJC5qrs++EdoHihL3MTGSLD6vHpBFTdWJmKMXOz+bfeUuQk+bXXmdC++jv6KeyspJDhw7pPs8l/Ong6aefxuVyMT4+zt7U82wwXwUs3/Pq3z9G/345WTd+Y4jgag9DJ0ZJDK78bTzdN1NQXzKpJt1qOCNnpjCahDWHx8Tqh+N07xyk6xV930OdwncTwOHvtIlUTADG2qexuBSRsovJYsTqVUR2ebkcKC4zjnK7bpvLoePjWIXE6J5dw0XZ5a5+OMbwqQm6XtK3GXL01CT7TsnezxMdCbpeHWSoRf93fjqRZXcRlq/Nb69i6PgYJ4vonUqw+s9ijLZNcvyH+jczFFOzdrw4QDYtIxSefkqo1IG2ODt4bEz3cwrQt2+Evn0jovMMHBplukxGprP4FBEpDjRbIbtftpg52ZfAFrCICJzDJyfY/yW55eZEZ0J3DgFNeWmsfYpTP9Pf206Op5nsTTB06v/P3ntHR3aV6d6/iqokVVSVSiWVVFKpVFK3UnerW3LEGeecbRxwxAYHwAbPvf9997vfncwQBzDMkMbAYDIYY2xjjGO3O2d1K+dcWRW/P05VSWp3S/v0RWBm9KzFWrS1T9Wp9+zz7nfv/eznEX/vCmOCsDUcUHu+C5Nbz+T+kCyS28CrUwy8OiW05pVOpzmqeA+VSsX//t//e33Nax3vg16v5ze/+Q0XXHABexSvcWbmGrQqKQesZPVWtIWWCd/FFUTHExz9idh8o7DJrdIqySTFckxkJEF4OEZKJgnGc6Yda30p+77VJ9T+dEgz871R9n7zuDy1mQyER+LEp+SNAUZXCQsheXsYertWNll3al9ItsDBsZ/L32+0NZXibDFzSEbfOx1lo9H3ZmStPwD0vyKTPAtUnenAscHMji+srSpSxRYr7k02tn9OfP9w9miE2aPyLEsiIzGG/zhFbFx8HSY5n+GgTGeA8hYz1oZSjjwvLwedzh732O5Z5o6Lx0Fv06KzaFHIUFLUmtXoHSWo5ew3qiA0FCc6Jm+t+fCPhtCY5FvJnlIx7ySwBUqpOtvB4eeHWZgV39ecOx5DIaNkVelVZOIZWapQKr0K7znlGOxaWe9sJp7hwH9I/fSUtVc6VVRTGi07yvDUADU1NfziF78Q/p7/W/xZ7N4K6OnpoaFBOj1Rx0bqNRtXZW4BuLZYqPmQi13f6F1OIDrVrWuhPFgm2xKr/aF69FYtb/7DQfm2bzKw5bEGht+ZlkVsabu/Dp1VK8u6DE5uNfTfCWa/EVOljuHXxJWotj0VZP54hEP/KWPAOE2rwT8H6i5zM3VwXlY/OB27N9/FLub6osLEsz8bTuPZaE1KOj4WYHLfvHAhYPJosQbMwuTD/4oordUT7pO3sea/upLyZjM7nz0mTqzUQsf99cwcCtMvYxNLLjbcUUOZ18iOr/S8n7y6UtG2yhh0ooR1673SKYc93xhYdUwsXPvb1HMAdHZ28s4776x4zTr+e6OtrY09e/agQMGFmpuBU5CUlkKhoOWeWjLxNAeeO2EsPEXtZWsuZUYm2dDg0tB6t5/pQ/Mc/enabSp4z3dirjGw9zt9wqpKBreWljvrGHlrisHXZGycacDg0BIb/S+kqysHGvBsszN1MCRMZKi9xEV5s5l3v3BEluqV0aMjOpGQrZS11rD4jRgrdAy/Ll57no7dW2mNAUuNQV7//DPhdJ5N4JpKyrxGtsvYnHR32QgPxWVbTv5XwulYbnY+2Uh0JCbLLrFiq5WKTTZ2fUWedbIcaAyw6dEgkZEY+79zEhL6CrWXrbmUmf0rzP2XsPsNTg0bbvVy7DdjzByKrqqepFCp6E0doIc96PV69u7dS319/aq/Zx3/PTE3N4fNZiOXy9Go6MCrbhRa8zL7DNRd4ubgc/3LN75XWK4z1xtlqxYFrvNQ5jWy6ytH1tR+aeNdtYy9NyNLSbzhqkpKqw2yrMvg5FZD/51gcOkwVpQwuVucfNv+QB3zfVF5h0LVkipQQgYh/88Fd6eV0HCc6Ih4PzgduzfXZgvR8QSRoQ9Yf1OD3ibTBlIt2UxM7JsTJglqLWqs9SbGd8/JthP7rwKdQ0NiLiXr97s7rXjOLGffd3rF3x81BK+vJtQfY+Qtec4KcuC7yIWjxcLefz/2fsLrKhuVK41BJ655+a+oQK1Tcug/R4TXvF5O/ScZ0px11ln84Q9/WOWXrOO/Mx599FG++MUvoqGED2mvB1YmKRVQe5GkrPu+w8anqL1MlToi4wlZCi0qvYrWu3xM7p+TfVhIDmzBUqwNJo79alT4/jQmFc231DC6Y0bWRj7k7Ybm/5sOBCpJeScyHhO2EytvMePqsHLwuQFhwhossXWSayW1xtCXazGU62Qp1JyO3ZvOpqXUo2dyr3iN++fC6Twb91Yb9sZSWfutFr+RhbkU8an/pmvMnJ7l5sY7a4mMxWWJSZT5DLg32WQdRpANFbTdW0d4OH7yPecVai9TpY7IWPyUfW6p3ZtKryJ4bSUDr08RHoivXnupNUxnxngv8zI6nY69e/fi98tzz/q/wZ/F7q0Av9/P3/3d3wFwnH2EUmIknWQkjUIBOlHpuSTFzeGGa8Ul+0Z3TDPbE5ZNUNr8iQZaPyouxbv9c0dlK++Eh+WzjmsucLLx9lo8Z4rLgGtNSlo/6sMu05rAGjBhrJB3YsXsN8qykbIGTLTdL88uoOGKSrxnOmVd8/bfHpJHUAK2Phak+WZ5csx1l1bI6p8gEag6HpG3KH78V6N/FqJa74vjsghKZr+R7r9ppuYC8edjDZho+UitLPs634dctN3tx9EibsGTjGR5+28PyWIqe8+toPrMcln35r+6Er9M+x2rTKsRkDaW5KL1Xp/s65pvrqHzyYCsa6ITCRKhlDzltyTs/OIxYYJSaa2ers8EcW22yLq3obemCA9GhdX13N1WKXcuGYOEkK8/RDYwAPprJGu3kpKSdYLSOlbF7t27MRgM5MjxWkrQfiSXk+piGWo9BYKSrbkUh6ClYmw8Rag/wsh2eTWRc5OFrZ9sxOAQO20+8PIEe7/ZJ4swERtNkphLEp+TVxRueSTABhkWaSCdDmq+pVrWNYBwnJdCjmUXQP1lbslGSRBGp46ac11UbROX2e77zTjv/pM8gpJzk4W2u+tk2byU2DU03VQtbEsIEsGt+7NNwn0NYK4nKougdLoI98dkE5TaHqhjy+Pyxun6y9x4zpJnJdZ8k5ctD8mz9TjykxFZBCWAmnOd1Muw+EYDG++qkWWTpzEoZfUZkAiYcq34HBvLaL7NCzJENDxn2Wn5SC2uTfLqtdhkgvkheXODsXdmZRGUWu6ulT1vS8UklauRd8XHhLpLKyCXW5mgdAI0Jg0oFCTD6VUJSgAp8xxDJdLpza997WvrBKV1rAiLxcJvfvMbAA7ndhJJzwldl4plUSgVsqykCpvD1eeKj9Nj780yfWheNkGp+fYagjeJ1yr7/r1PFkEJIDQcIyLzVK29uYyWu2rlzfPU0HBNJdYGefNqg0uHzi5P2UXvLJFlI2Vw6Wi8sUqW5r3vYhe154tbmALs+upx2ar17ffU0XSTPMt512YL3g/JW4/reLieDTKt7UffnZVFUDpdjO+Yk0VQ0lnUbPtUkMou8TpK7yzBf4VblgWko6mMtnvq5FnMpmHnl3tkqZhVtNvwXehGbxNXAq/stsvKUSBZBcqFNSB/nazhqkpZVt0ATTfW0H6fvDogMZ8iPr0gj+CXhkPfHxQmKOksajY/2iDbZnhs9xxzPWEhRT6Q4myul6ye5JBkFUoFKMTXvEZ8+8iQxmazrROU1rEqvvCFL9DR0UGKBd5N/lb4OoVSIUuhOjIiEZQMrhJhO7ZMPMP0wXmmD8qriUqr9bTe46PEKrbHMHMoLCn8yCBMpCIZouMJEjLXvJpuqabxOnnrV2Veg6z9n6XXyYXBJc+twtlhwdlhEW6v0avwfbiC8o3i10zunWfft/pkEZSMbh2td9dhbxQfp1R6Fd5zy4VtCUEiuG16pEGWfVt8MinbQut0kJhJyiYo1V/ppuXuWlnXuDZbKW8xy7rGf4WHDbfKrFffmZFFUAKo+ZBLdi3tu7hCVh9AhWz7Pq1JJe87kN7NmgtdqGRcZqk3suGOGmxBefVNeCQmW60p1BuTRVCqudBF4Dr5Nm8Te+aY3DcnfIlrswVyOSLDpyYonQiNXglKSEWTQrVXUhXnkPYtAH7yk5/8WQlK8GcmKQF86lOf4vzzzwfgbV4kmRWwYzsU4e2/OyybaFF3uZvyDWZcnRah9uPvznHoh1JHlEM0yCSzpBPyKK3WgInOJwPonGLfc/xXo+z5hjyZ4P7fTTB7NMzwu3I2SrIYXXrKN4gnZq0Jmm704r9S/KUs8xnYcEsNwavErzF59BicOlkEqqO/GGHns/JP/Mp5/gDDb08y+Ed5ii72YBlWv8wEOxRjTqZkYdNNVcXTAWsFrU1L670+cc9kIB1JER2LMytDetAeLKO0Wl6BOrFnlsl987IWSUXfy6U48L0Bjv16RJjQAmCtM2Gtl7eYErzOK4uoZqzQUneRm40yFvq0JjC6dNhk9s+B1yYYeVvexuzomzPslHFatu2BOppuljcZUutUZFM5IsOCY4hW+t98zwpqYic5WeM9y4n/cnmkM4DdX+1l99fE8vtOXqXneA8ej4dQaO0nBOv4r4G5uTkUCgULxNidel3omj3P9p6WTWj9hyup/ZD4mHPguUGiwwk0MlJ7ZDRGNpVFqZO3URS4wUPz7eL+7Lu/epwpmaqcw29N0ftbeXYLVr+J0mqjLHJC8+1eGi73oDGIl/JtD9TRdKM8f3proBSbX3ycig4nOPLTIekEn0zIsaua2DvHyPZpZo+J1xAavRpLvQlrnfjvme+LMD8QJSVjT8FcZ6D5Nq+sPn068J4vk6ADzB6LMC/D/gHAFiyTNS8AGPzDJIN/lKdApjHLtyvb8+wxen4prsLmaCrDVGlAL8MKxHepm9a7fLKIavWXe9h4R62sd9rWWEqZzBp3+O1ppvbPy7ao3P/tfmEincGtZfOjftlErXQsQzoufrq28PyPPD/M7OFTvNcn1F4VnRZc7RbZJLr54zHe/acjQgpUqWyKfbntpDNprr32Wm6//XZZ37WO/5646KKLeOqppwB4M/cC6ezq70JsPMF7X+qRrdDi2myhcptNeKM91Bej9wWJnCKHEJWOp0nH5J2Y1ztLaLvPh04wf47vmOOIzJOr0wdCTOyclZRdZMDiM2GRUd+gho131FJ7kfi4q7Ooab3bR/V54hsLOrsGc40Jq0/83o7/Zoy935Rvt6s2qWWRoQb/OMXga/LWvMo3mHFskEcCmT0SZrZH3pqX90NOWUSg04FaJ5Hb5BBo0mmYORYmNCRO5rDUGLA3mVGXiD+c0GCMwTcmmTkiXuPJIUEVMPDqBIefH5Sl2GQLlOJokreu1HSjVxZRTa1TEri6St4hUDWYfSYsMuYFAH0vjTH8prxDArNHIrIspAPXefBdJs/aTGVQk0lmiMmwEVfrJCvQU9oknmTNq+bccuovkTf/ADjy4yFhW5xD6R0cPn4It9vN+Lg8MuU6/vvi3XffxWw2M8ckh9PvCV3T+5sxen8j3yqz7mI33rPEx/aB309KKigqpP8JYGE2SXohg1LmFNnTbcf3YfH80fPzEdn7raPvztD/qrx3s7Raj6W+VBY5ofqcchqu9qCVYfFUf6VbNoHKESzDJoO4nopkOPLjIYb/KP9gmhy7quhogqHXpwgPiNcQShWUt1owVYofmIpNLDB9OERGxt623qGl5gInKr18+y05sDeXUbnNJuua+WNRZo7KW/NyNJVhl0mCGXpjkuG35NUDpxOvA8/10/+yeP1tcJVgbShFbxUn67k322i+rQadjP1wzxnlNN9cI+udNtcasflLEeQrAzDXF2Xs3RlmDsl7pv2/mxAmuGlNKppuqZZNukonMqTj4j+m8PxH354hPHCKtagTaq/Sah1VZzgob5W3JpuYSbHv3/uIC4hCZLIZDhhfJ7GQ4NFHH+WSSy6R9V1/CvxZ7d6Wwm63MzMzgwIFFyhvELpG59TSfo+PqUNhen46sqL0dQHlrfJt35rv8GL2GtnxlWOyCAdyYKouYePtdfS9PMbYO+ILy23315GKpU9r41AYWmSrSdVc4GT07SmSEXFGsP+qSgZeHpN1zencm1y4Oi3UX1JJ/2vjsmziPqjY9nSQVDTNe18QJ4LItXtztJQRuKqKgT9OMPTqB892RC66PhMkHc+w/XNr660LyO7TnjPtJGaTTMuwVfKcY2f6UFieWtEaQ+fU0nqnj6O/HGb2kPgi5JbHG0iG0+x5Vh5pUw7aH6pHZ9Hy1j+uYv15ggSj1qalpExJuG/lhSGFSoXWBB0P+Zk5EuGIoMT8wex2hulFrVbz0ksvce655wpdt451AOzbt4+WlhYAfGygXtEkdF3DlW4sgTJ2feUIqRir1l6lNQYSkzGprSAKFj/h4dia1jct99Si1CjZ/VXxjRxb0ETdRW52P3uMVExGvSIHGmRblhlcGko9JlnkBFvQhNqgZuK9uTW9t9PB5kf9KDVKSVHprxze88rxdDnY++0+YRuu07F7a3+oHo1e9V8iZtXnOKg6q5yDPxhgrkeedZFsyOzTGrOGyk4r/S+JLwxpzBrKm8sYeVPmPGKN37emW6pRKBUc+J54nq3YYsX7ISe7v3lc2MJRLgwODa0f9TN9YI6jP1+F4FiovfJjkS1oYkakjlSq8F9RgdVvYte/HiUVE1sC+V32P8mRo7m5mf379wtds451FHDGGWfw5ptvokTF+crrhK5R6xS03lvP9OGQpBorsOZl9hmYl7nBVLT4+cax5fZyf0LoLGo23Omj/5VxpvbJsH27ppJcFnpOtXH+p4Aa2XZVznYLMz0R0hHxCyvPsDOxZ17WNadzb3JR6tXTfEsNA6+MM/quPKLrBxEdH/OTiqbZ9+99wtfItXszuHS03FnL4OsTjLwlTwX2g4hNj/jJLGTY/fW1W1cpQmaftjWXkolnZOU1e3MZ0fGYsCLQ6d6brI82qdl4q5fel8Zk/ZYNd9aQWchy6Afitrxy0XCtB3ONgPXnCWteap2CEmsJ0dHV17zUOmi528fMoRB9girow9njHGQHKpWK3/3ud+trXuuQhZmZGZxOJ5lMhia24FGKOV5UbLbibLWw/7t9ZJK5VWuvEquWdCJDRsbmNCpovdtHZCTB8V/LP9AlipoLXejMGllqIHqnFt8FFRz9+TCpyAfHV0xjUmGs0MlaHzC4StCa1MzJsUNW8WexU2u8vooSs0a2CMUHEbZAKb6LKzj0o8FVx4MCTsfuzX9VJXp7CXu/+dcfM2uDibpL3Rz5ydCpCSp/Ksjs0yqtEvuGMlm2jyqtEnOdUTZ5aK3fN8/ZDjR6NX0vihNQy7wGai90cehHg2tmY6nSq2j5SC2TB+ZXVzE9Yc3LVKmTlPxWgUKtxtluxtVqZv9zA8Jj1B+zvyJO9C9qr/tnV1IqYHp6GrVaTY4cr2SfBy10fzZYtD7yX11J92eDaPNE1s0f99NyWw3JaJroRJzuzwYJ3iip8NRdWkH3M01F9ZNNj/qLlkOTe0J0f7aJzicDaG0Sy7P7maai4kv7Q/Vs/XSweF9dnwmiNamJjMRxNJbS/UxT0Saq7f46tj212HbbU8GizVt5u5kz/mcz7XmFk9Z7fWx7erHt1k8HaX9Q+ps1aKLlzjoG35hg7J1ZNtxRQ9dnFjcLt36ykY6PSW1N1SV0P9NUVMLR27VYlpyq6nwywKaPS/JbWpuW7meaqLtcOtXQeF0V3c800XyHl21PBdnyWANbHstbL2ih+5kmAtdKMay/wk33M01oTUpIwqaP+9n2VGPxe7o/21RUL/Fd7KL7mSZMHineHY/U42q3FslG3Z+VvhOg6kMOup9pkqzdToh3z89G2PRIoCjBV7HVSvczTZTn7Uta7/O9L95td9WBViKfdT/ThLtbYtO23F1L12dOiPdDUgzbHvJxxv9spupDkvVI8x1euj97QrwfkWJYUJ1JhJLMHQnTdJMUw2K8nwiw+RP5eJuUdD/ThP+qStBC5ycb6f6b5qKF3ZbHGtjy+KLVRfczTTTmJeDqLs/H2/b+PluMYd76peZCqc+aqksw+410firA1k8uPpuuzzQVVXI859jpfqapaAnW9kAd5CgSlLY9FaT1XqnPujotdD/TVJRGb713ebxLvcaiTYO9WXoXKrul02ktH1ke77pLKonNLDD06hRlPgPdzzQVZTybb1se784nA2x61I+9uRTfpdJvq8srAQRvOFm8l/fZZTnimabFHPEJP51PLInhM00Eb6yi9aM+Nt5de8ocUYx3Xl2j5gInSrWSmbzSwMlyRMtHagFJurr7mSaCt1Sz9VNB2h5cOUd0P9NUVHZr/Wg+R+RJMCfmiO5nmvCcI8V7aY4Y/uM09ZdWnjJHNN9S/b54u9qsJCaSp8wRBWx5rIHOJxsprdWvnCOQckQh3sEbqzjjfzbTdNupc8TSPtv92SaC11eh1Ciw+k2nzBEAXU8Hl+UIjUHNaF4d7qQ5It9ny1vL6P6bZro+E8TeXLpijjD7jXQ/01TMEShyKNWKxWdzQo7ofqYJ38VSvJturOKMv5F+a3ImSfCaajYXcrJJIY1rV0rxbrhWGtdyqgwL8QwKtQJznXFJXILLc8Rng8UcUXWHkXnTJABf+tKX1hdr1iEbGzdu5NlnnwWgl/1M5IZpvs1L55OL72bnEwE23iWNJ+Y6A11PB8mpIBlKUX+5h62fXMybW5ZY3Ro9OrqeDuI5y064P4bv4kq2PR0sqrxsftRffDc1Zg1dTweLFmL+K9xs/niQ+d4IYztm6PhYPR0P59XiNFIO8F0qnQSrvdhF19PBonrQpsf8nPE3zUUFnq6ngzTk37fqcxx0PR0sqp+03uejxKQpEpS2fTpI4AbptG1lt52up4OU1ki1Ycs9tUVLrMxCFq1FQ1Nexte5yULX00Fs+XF2w501y8aezicb2XB3DZ2fbKTxpiq6ng5S3iadeGi+pXpZLtzyeICWe2ohJW0wdn2mCe+FUlwCN3jYtiQXbvlEA633SfE2uDS03l1fPFHWcHXlsly46RG/NP4jWVV1PR2k5kInM4cimFx6upbUpx0PL4l3PoaF5+a9wEnXk0E0Zg0ag1RTbH50UfJ121NBAtdIY3LV2fl4u7UYXBrO+Jtmtn5qMS5bP9VI4w1SfqvYaqXr6SDmfC3ecnctKoOKkXxu7/xko2R7hWRp1/V0sGhd0Hz7Yp91d9noeqapeNLa2mii6+lg0fqq6ZZqtn7qJPEGTFVSHAp1TeD65fFe2mdrLnRKz+a8cgD8V7qXxXDTI37aHyzEGyq32hl9b4bIUBzfpRVS2/wJyPaH6tn0yGIMu54O4r9CirdCKf270J/b7j9JvK+T+qznTDs6s4YDP5DIJi331rLlseXxbsrb8lRskeJt8RupPsdBy0dr39dni/HeKMW7YCUokiMqtkjxDt5YxdZPNeLaZKX5Nu8pcwRA4JrlfdbZbiWTyjLXEz1pjljWZ/M5ouNj9QSu96yYI9ofrHtfvBs+fOocseXji3V7IUek5lOkoplT5ohivPN1u3OThc0P1ZOYlVQGTpoj8vMkW1Dqs3VXSe9R8/WnyBHkc8TTQdxd0tyn65mm5TXcCTmi6+kg1edIdU0hR6gNKtQG1SlzBEDdpcvj7e60kYqmiwSl9+WIp4NFFaS2B+ro+kyw+PtOlSNAqoO35Gv82FQKhXpRTelkOaIY71yOzk8G2JyfYym1ylPmCJD67IY7ayCXJUcGjUGFLSjl5Kabq5aPa481LMsRC2eMkSOHyWRaJyit47TwxhtvUFlZSZYMr2V/DkDn4w3FeXLlNiudTzSgyyuaNN/uZcPttSTmk8SmEmz5REMxvznbLXQ+EcDgklRcgjdXF+cy870xNn+8gbYH69BZ1Niby+h8IkBZrfQOBa6vouNji7lw0yN+Suwa5o6HKbGX0PlEAFuj9A41XFPJpkcXc2HHw/VFmzeTR0fXZ5uK70ndZRWLc3Wg/YE6mm6V3n+dQ0PLPXUMvznF1L4Qvotcy/Jm232+4vitNqnpfCJA5RnSGFFaZaB84+Jp0Za7a5fZNnQ+ESjaR1WeYafziQC+S11sesTPhjtrimMPSHnUl58nV2yx0vlEQLJsS0PTbd7ivA1gy2OBonpJeZuZzicCmPIqcsGbqvF024tko82PNtCQz922xlI6nwgULZAC13mKY8/IG9O0fKSWwPVSDVRWa5Dinc9Z/qsq2bxk7Ol4qJ7g9dWgBmOljs4nAjjbLQD4Lq1YNta3319XHL8b8msj7k5pTK69wLls7Gn9qI+NH8nHWwfB66uJTiaY7Y1QdW651Fa9JN73LI93zflSvFvv87H108GiCteG22tou++EeOfnya7NUp/VO6WT3E23eml/YNEGdPMnGqjPr0s4Nkp91lSlQ+8sofX+OjoeXt5nG/LjibXBROcTgaJdX8M1lSgUFAlKHR/z05iPd6lXT+cTgaLSmDTvWIy31V9KMD9+653Su+DalI/3h5f32YYr3YRH44y8NbPYZ/PqTTXnnxDve31svKsWU5UOV6cUh6pzpTrSc7aDzicCqPOCTBs/srzPdj4RWMwRXTapzxZzxAnxfiyA79IKGq6ppP5K9ylzBMDmjzdIa5dIhB6NSc1sr0TyPVmOKKgSmeuN0j1d5KTjoXoab/KsmCM6nwgU19DrrsjniPx+z4k5ovOJQLGOXJojZg6Eqb3Adcoc4f3Q8ni33F1L5VZbkaB0shxR7LN31tD2QB3GSilOWx49RY5AyhGFPus5y8EZf9NM/VWnzhFL51SbH20gcFUlKp0Ko1t3yhwBUp9dmiMMjhIm8jYgJ80R+bV5Y6WOzicDbHk8gNlnWDFH6CxSDAs5QqHModapigSlE3NE5xMBPGdJdWTVuQ62PRXE4NGRTuSou9h1Qk5uKOYIqc82oNIrSC1kUOuUxXkzSLVWId6uTRY6n2hAn1+n9VxvYsQsrV1/5zvfWV/zWods2Gw23n77bQAOsp3Z7ARVZzuK+yAAzbdWF8cerVlN+4N1qHVK4rMLVGy1LbOrbrqlmoarpFyo0qtof7Ce8lYzC7NJnBvMdDzsx51XeWm8oao49qCC9gfrcW2W3rfyNjPt99Uz2xNmct8cDdd4llnotj9YX1SLcTSX0f5gPVqztNYTvEmaH2rNUl5qu68Oz9nSu2ltMNH+YH3RpqnuMjemCl2RoNR6rw9vXs2xzGug/cF6TPncV3uRi435vY1sCkq9BnwXS3ExVepof7C+aLVWc56T1nsWY7jhjhrqLnfTclct1R8qp/3B+uKY7DnbQdt9izFsvs1L/ZWFeKvoeMRPxTYpLpXbbLQ9sJg3gzdV03BNPt5aJRtur0VjlH53xWabtGeSF6JpvH5JvPMxdG+xERtfQGNU0/5gfVG1pOEazzJHhrYH6vDk14FsTaW031eP1qxGpZX2Pgp5E6TcWJWPt8VvlOLt1KLSq9jyiQbaHly8/5Z7fMXxu9Srl+LtkRSNai50oXeUFC08N36kltqLpfHE4Cqh/cF6zD5pjPCeW17ss2afkc2faCjum+lsWtofrC9aX3nOtL+vzxbGeo0p32fzNmbubbbivhNI6zeB/FhvDZrY9Ii/aHvn7LAsi3fguqriPjyA9zwnI+9MEx1NUN5ipv3B+qJKlP+qyuLaSDHeZ0rxVmqUtD9YX1TsqbvMTfPti8qJrff68ObrJbPPiMmt59ivpEMLvosrin0WpLG/EG+TR4p3qVePvbmM+suXW75tvLO2qDCmd0oxtOT3oarOdiyrw5pv81J/xdIcUY8trwjp6bbT9kBd0b7wVDkCwL1lebxdm61kEhmJoHSyHPFgPSqttI5VyBGBaz14zy1fMUf4r6yk+dbFPtt2fx2eM06dIzbccUK8z3OSSWZJTCdPmSMAWu6qLe49mip1tNzjIx2TSDAnzRH5Pqt3SPEu5C3PGSvniPYH63E0S3Xk5kcb2LKk3jsxR7Q/WF9cby/kCK1RjdaoOmWOAChvNS/LEa5NVlLRdJGg9L4c8WB9MQfXX+Fm06P+4u87VY4A8H24orhnn4lnUOtV6MqkNa+T5Yhin83l2HhXDRvvkv6dzeROmSOWxjuXyZBJZtA7tJjz+dtzhn3Z3KHp5mr8V0n3rjGpyJw9RZwotbW1f1F7Xfn6rn9CRKNRSkpKyJDhj8lf0z5bR2RUYhJGRuOY3DqS+U3i6FgCpVLBge9LJwlcbVbiIWnxNzwap6zWSDYvPx0ZTqA2LvKvEqEkemsJ/g9XML5rlvhskmQ033Ykjt6yyCqLTyeZ643Q/9IE1oCJRChJYkaq2sMjcXKZRTZ1fGqheL+JuSS5TI7CGYPwUAyWHDiITyaITUn3m5xLEp9NEptYwFRdgrFCR3xmUS43Op4o3l8ymiM+myQ6Ln3P0FtTOILmZW2zCxI5KBmRPjc6Fi/GRe8qITa+gLZUw8JMcpENnoT4bJLwmHSaIzIep3TWQDLvjaouUaEqUaFzaklMSJ8bGs23HYtLMcyTPqMjC2iMaZpvqabUayQ2vVBk0UbHEsRnkyyEUovxti1h8SkV6PL+uvEZ6Xvi+UX9yEgClogWxKcWSMbTnPHpZiYPzEkxnMz3geE4CvViwOPjCeJ5T91MIksukytKEoeH42gMi10/Op4gFZXuKRVJE59NMvzmFNGxJKGxOCVL/Naj4wmyqXy8k1kphqMxSEqetJlUtkhsiI7Gl506kdrG83GJk2wwsemBOnp/O0Z0JIFKv9hn4zPSdxe+U+qzOYIXOdHo1IT6Fxnh8emF4ufGJhaktvnfHhmJk13idxufXpD6JhCfyvfD6Xy8R5ezeDOpLOER6b8tzEufG8+3DY3EUJYs3m9sPE4i/4wT81IMo3mZ4dBIDG3poj5pdCJBJpal+hwnelsJ8dmFYv8Oj8bRlS+J92ic7JJ3DgWY8xtEkdE4pkr9Yo4YTaBULYn3TJLwWBxvQymxKen+T5Uj4jPJ4m+NjMaJTS8w8s5MMYYn5ojQSKwYz/hsksxCGnI5wkNxcqlT54j4bFKSeAVMFXqy2SVtT5EjCvekNavZ+ukgR38+tGKOCI3F0Vqkd6rppirUelXxmZ8qRxTjPZbA7DOy8bZa3vx/D66YI2KjCZT54ikxlyKXyREaWjlHFBCbXmDuWIT+301gDZooqzaeMkfEphcID8dpurmanJJVc0Qk7zcbn10gGU2h0alYmF9YMUcshFLEZ5NF287pQ2Fyi+tAJ80RkXz/js4nsCpKqftwJXue7ZNyRFp6rslkbtl7HxmLY3TpMJVriQwnmTsSWT5OFPIJEB2LEa/WQzLJXHaGt57/Nel0mltvvZX777+fdazjdHDvvfeyd+9e/vmf/5k9vEmwt54KxaJMdXQ0TjSfh1KhFNHJBJO75+npHcVzlh1N6eLYGRmNs5DfqElGMkQnE4tj8lgCa6CM8hYzA6+OEh6Nk4nnX9aU9Lmx8UJtlUDvLCna7dobyxar0xREJxNE820jY3Gik3pS+XE4Nr6A1qjB4ChhYTpFdCJBON82OrVAdDJBKj9pWpr36y51k0lniQxLbWOTCaKTCZIRKQ+Fh+Ok8+/8fG+M+d4I8/2FvJ8kOpkgMZ8stl1aG0bH4kTGEqi1KhLz+bZz0ueGTshD0bE48bxiZyqcQqlWYG8oY+ClCaKjCbTGxXiHR+LFvJ9KSHFJhBJ0PhEgNp0gNrl4qiIyujj2p1JZKYb5nJVTZFGqlRgcGmJTKSJDMVAuuafJRDGPxsaluDTfXI22VMPs4dDysX8yQXhseQxTsRyp+RTZdJaF8JK8P54ojofxwrMJ5+MyFCOdyBTtp6Jj8eK4lZiR+svC/OIYQT7cllojCoVisVaZkz63QA4JD8dRahbvNzoSR1+po/2heg7+cCDfZ/N9ayRByZJaJTwWJx2VYujutJPLZIkU+uFoAr1jceyMDMeKtUqq0GfHCp8rzWeWtl1aq0QnE4RHEtjNGshJ/87G8791OI5qiZ1fbCJR/K2xfAyT+ZOO4eE4qbLFeEfHE8tqlehkgmQ4SdVZXqlfLqn5omPxxWczm++zM9I95JAsNExVeiJD8ZPmiEJtGB6No9apsNQZKas2MHc8smKOKLEsSimHh2Or5ojFGMYhm8NYqSebzK6YIyIji32g9mIXSq2ShfxpopVyBEB0Ik6pW8+GO7wMvzV9yhxRiGF4WIph7fkuMqncqjkCIDGfJD6XxLXRjFqrWDVHRCcTxCYke8x0NEMmvXgPJ8sRhfc+PBpHZ9Oy95t9gLQ5dqocERmPY5wsQWNQ0nRbDdHpBLmFJfd/khyRiklxiY7E0ZZqijE/VY4o3K/WqC7movBAjPleaX5zshxhWCo/n8uhNaopsWtWzBEgvQsLISmGo+/MYHDoScwmi/ewLEeMSvUrwCtjvyA0OEt9fT0HD4ornK1jHSdieHgYo9FILBbjnexvCY5WF8eI6FSS8GiiOAcJD8VRG5T0/lqy0LA1lBX7dnxGmvOnF6T3XMpDS/L+RBxLrYmqs8oZ2zlLeDROMry4JpDLLE6awsMxomMJRt6aQe8sWVarRIaXr2GEh+PFOWo6miazkCGX/6joWAKNfrFWCQ3FSOZzYzqRIzwaJz69gM6ipqzOWJyDglQTFdax0om01Db/Pf0vTyyTtI8Mx8ktmTeHR+NEJxdrivBonMh4Ar1V+i1Lx9nIaJxw/nsL6ybp/NKbWqdCW6pB59CQmEoRHokRK8wlC23zMS7UKjXnO7E3lREeiS3WH+EU4dE4C/OFeCeW3a9SrcCQrxuSkXzbucWcpVyS98NDMTKpDFsfDzK+c1qKS36tMDqaQLvEom9+OFasVVILGTLJLLH8mBGZSKAbWYx3eDhGNr9OkU5LMRx/b5bEVErK1aPxIpEkPBhDsSSG4dHFcUtnLSGzkJE+BKl/LF3HiozEi/VSfFpaa2q62cvAK+PSOLXk/iPDcSL5Z5PIz5nTkTSVZzgwOEqY3r9o0RAeiRffm8S8FMNE/t0o/Pfi5w7FiObrjVQ037aQ90fjKEsWrTbS8Uxx/E7FMvl452M4mqCkbLFWCY3EyRRUVdPpYv8GiIwl0DuXxHsoRi6To3KbA4vPRGgouti3JvJ9qxDv4fiyPqtQKTDnCYbRyXzbRDb/ufFltUp4JEZ0NIH3Q06pr6+QI8IjcWmMBBbmk8z3R5nYNVt8bifLEQDJsPRbMwtZcjkI9cbILhFWPDFHLI23o9HMUvOGU+UIkGpvvbOEjof9HH9hZMUcEZ1IFNdYqs4tR1+uY2LvorrVyXJEOlFYC4xT3mKm+ZYa3v3HwyvmiPBwnAWj1F9SkTTpRKZoyXmqHLH02YQGYoxtH8BYqaPMe+ocERmJER1boOZ8J0qdYtUcEc//LRVLk5hLoi3TkIplV8wR6URWGhfiaVDDzJEISvXiu3CyHFGwjotPL6BUKfCe6eDQD4YID8VRKJfmiETxXY5PLxAeiVNSBukIjO2YQ6VbkpNH4kQm8m1nFgiPJkjFsiSyCZ5/4QUWFhb42Mc+xi233MI61nE62Lx5Mz/4wQ+46aab2MHvqRipWFarhIcX50yZZI7QUJzZ4xGG/jiNtcFIbIndUWgoTjaff8lkCA3FivktNr1ALpulYpONiT3zy2uVjJQTCuN3YjZJaCjG4OtTkAGTO47GuPj+hQZjxb2ZxHyK0FCMTDw/ZxqNYarQoTVpSM6npc8dl9ouhFLLck9kNF60HipvM5NJ54rz5FQsnc/B0m+Pji3moYXZJGPbZ4p7EMmo1DZV2EMZTyybo4aH4yTmkiiVChby91uY+8YnFwgZF5XjQoMx0vmxMxPPoTGosfvLGHt7VlrvH4ot+dzFPJTJZKXPDSXZeGcN0SkphgUFlvBQbFkeCg0txjCnyOXJACqi8YyUR7VLxs6hxXFrYU66f++5ToxOHWM7Z0mGloydg/HiGkYh3pmYpKKVXsiQWOLAExqMFfdDU5FMPobSDcfGE5DLMXUglP/cxftNJ/LPJr/WEJlIFGsVk0ePUq0kkt/zySSX98P4ZJLw0PL62uw1ELyxiqM/Hcn3w3zbqQVCg0viPRQv7kvVnldBNpsjMS21TUwni3s8hWejPCHehfE7PiO1zSbz6ywjCZRLasPwYJz4ZBJjhQ6y0t5RKr7YZ1NL1EZDQ/HifksyUujf+X44Fi/uyRbiXeizqVg+3pEMgauqiE4mCA0tr8ti+fcxk29b2IfKZnOUlGkx5PfQw0Mn5ohYcUyOTUl/L/XosQXKmNg7t2KOWBbD/hihVXJEJrN0HUuB3l5CJpNbMUdERhKo8+uG9uYydFatVKuzco4oxNDgLKHuUjej706fMkcUnnkh3nWXuMmmsqvmCJAs0SJjcdybbajVSsKj8RVzRGgoJl2rkmK4VGLnpDmiEO+ZBKGhGL0vSApKldtsp8wRhXhDBv+VlcRnksvnmifJEZlkPt6jCQzlumLtfqocUYh3ZiGL1qQiGckwuW+eaL4WP1WOKCCXyWEo16E1q1fMEdI9xEjl6//53giTB0LF+MfzfbYYh5FYcT6zN/IOw6/14vP5OHr0z+AmtAL+YnZvBYyNjeF255m6WOhSXiR03eaP+9EYVLz1/x0Sam+qLiEyKO6bDZKiiqfLQe/LY4y+uTZyvq5OC3UXVdL70qgs27fmO7yEhmJrZq2ltWlxNJbKsinwXezCGijlva/2CNtXtT9UTy6TY/fXxK1XWu/10f/aBPNraAdhDZioOd/Frm8cWzN7OZ1TS8vttfS9Ms7kLjGPTJ1Ti8agItwnLgvYdn8dar2SHf+ydnZvtRe5cHVY2fn148IWiVqTEmOVQZbVV9sDdSTnkhz8gbhsqVwEb6gincpKlpJriOANVYQn4sKWghVbrdR8yCUrxnWXubHUGWVZ/WltWsqbSk/LW1kU7Q/Vc+yFEVn9eOsnG0knM7z3efHfIhfbngqSTWd59x8FrXPyC/imqhIiQ6uML/mhtunmaiz+UvZ9r3dVWziASDbMW7wASJYRf/zjH8XubR3rWAGXXHIJL774IgBncBkGhWHVa8x1BppvrmFs1yy9vxaTTTW4NMTG5dkDbXksALkc2/9l7QrkwsnV974onk9KawzUnudk77/1rdFdSXl+et+8LFu59gfrmDoQYmg1udg8DC4NG27zcew3o8wI2oZ6zrRTUqZdU1lykMhjOXLC/et0ELjeg0avYv93xO2uzHUGYmMJ4edicGnYcHsdg69PCNf2p2P3tukRP4nZpCzrLlOVnoVwmtS82HtZ3mam+qxy9n6zR5aFoxxozBqC13rofWlc2B7vdGD2GfB0O2TFq+WeWrLpHPsF62GNQUnzHbVM7JljVIYVjLvLxtSeuTWzlKw624HepuWojNq2YquV2vMqOPyTQWYPi9fqcuDuslF7novjvxmTZV0JYHBriY0K1MMa2PZ4kPjsAnue7RP67HezLzPPNAqFguHh4eJaxTrWcbpIJBKYTCYymQwOKmhXni10XfPtXgz2ErZ/TmxuUiDbyIFjYxn1l1Zy/MVRJneLrUnIRVmtgcbrqun97ShTe8Vt33wXuYjNLDC+Y25N7kutU2JtLJX1u8vbzDhbLRz+Yf/KFklLELi+CqVawaHvi1s3NVxTyei7M0VC/VrA4NLhPbecnl+NyrOjkwG1Dppv9zH0+hQzh8XqTrVJjdaoLpKVRdBwTSU66yIZVwRy7d4cLWV4z3Fy4Lk+YUsxtU6JzqEtEltEELjOQyqeWdN6uOrcchQoGPy9uJXt6aD6XCfJcJJxQatpc72RukvcHPxen7ANZcUWK47mMvZ9S6xWA+m5WBpMsvKRXARvrmbwD5NEBew5Cmj9qA9yrKkVUEHVYde/HhO7IL/mpbOrV+/3+TWv6nOdVHba2P/9fqG+v5CN8wd+AcC1117L888/L3Zv61jHCvh//p//h//5P/8nChSczWVolauveZVYNWy4tYbx92YYFtwP05pVJOfleRc13VKNSqti37f6ZF0nB4FrPah1Kg78h/jct8SqxdNt5/iv1m7dx1JvJDySkGWV13CVh7neCJN7xeo1lV5F043VDLw6QWhAbBHD4jeit5Uw+s7a2rk6OyyoNMo1/Z7KbTZKrNoiWUMEeqeW5FyaTFJsPUKlV9F8czUj78wwfUBsLD0du7fAdVUkI2lZ1l0lVi3ZVEbYutDk0VN1hp2jvxiVZ+EoByqJ2DP67jTxyTXaaEZSLXK2WSTLcEHUXlyBUq0Qf+9V4L+8krmeSJF0JwKzz0hkTN67LwfWBhOGCt3qVmpLUOY1UH95JT2/GCY8uDZrkWU+Aw2Xe+h9aUy2NZ7WrBa2n2u910diLsURwXlNT3YPfRxGo9EwPDxMeXm5rHv7U+MvqqQEUFFRwRtvvMEZZ5xBhDm2Z19hi/K8Va8benMKo1O3arsCCgSlhms9KFBw5Merkxz6/zBBWbWB0R3yBo7m273orFohYsD4u3OM756TTYQpqzKgMahlkZSa7/CiVCiEiCfJmeQiQUmL0P31vjhO74vjwvcDsOsrghOjJTidCZvWpMTRYhUmXensWvT2EsqbzcIEIrlITCR5958EyRBLrpG7TCWxWtf2VU8tpMmmsiQj4h05GcmSlEFQAoo2PWuJUq9hGXt2NZiqS9BbS5jcI2+B49B/yiNajb0zK4vICMifWGild1+UoGSqLqHphhoO/me/MAnU0VKG3laCxWeSRVJ65x8OF60UV0PFVivec1zs+dZxEhPifXLsvZnlyl0rQOfU0nSjl/3fOi5MUALofWWceq1SiKAUz4YZ9OxFMaLA7/evE5TW8SfDb37zG1paWti3bx9v8CvOzV2NRqFZ8Zr54zHmjkUYekOcwBgbT6Exa2i6sYqDPxwSIkaM75whlZA3aTG4NDTf6uP4CyPMCIwr7321B+Tt4WGtN2F06SmtMRDuF1voMFXpCVztYf9z/UWrpJVQzPEahO9v17/KGxdj4ynZtcfpklYdG8uIjcWJCW6YWuuNyxQG1wJHfiQ2YVuK+ePy2DmpBGQWMmQW1oZwUvyeWJpUVN6molwS0OTu+TXbtC7AVm/C6NYvO026Giq2WJk+MCuLOCWpookv0gKyNjsBUrGsvFo1/67LITQ13+YlFU3LIhzZAqWUmAWLqDzG3pllbOescC5qf6ie6HCMoz8Xrz1Hd8xgrTUKE5Qarq5kIZJm4HcTYgQlgBRM7Jtjvk/scMtcSz/R/fNoFBr27t27TlBax58EOp2Ovr4+vF4vU7kx9mXfYqOya9Xrht+YorR69U21AgoEpcpuO1qDij6BBeqpfSGsdSYm98vL9bUXODFVGYoWWysh1Bfj3X85XFTqEYU1UIpupkQWScl3kQu1UcXRn6yeI9OJ7OIYp0bo/k5nXDzyI/kHrETu/0SodWDxlzG1T2xdQmNQUuY1YvYahDeY5CKdgD3Pylu/S0fSsklT6WiGVMkabSzlkU3mSCcyRZUdEaQTWVkEJYAjz8uvVeXCWmdEqVIw+Hux9jqLGn25jtmj8tbv5JKg5o9F2fkleYfSxrbPMrZdxjqZWnouogQlrUVN8Ppqen4xKkycM1bqKPUYMHsNskhKe57tFV66NfsMEqHrh/3CpDmA4bemUC9RFFkJapOawNWVHPnZqDBBCaT6rqRMLdT309kU/dV7UAwpOPPMM9cJSuv4k+F//I//wcjICF/+8pf5A7/m7OwVaJUlK16zMJtiYu8cY7vmhL8nOZ9BpVVSe4mLgVcmhIgR47vmlqnqi0BjUtFwdRVDf5gUIt4c+dlwUXVIFEZXCeYaI0a3rqgItBq0ZjV1l1Rw/DdjQpvpc8fyczIVwvd39GfyxsVMPCObADbXE2UO+WIIpkodySU2UavB5jehUCnWlKQ08rb8z47L2DsBSdEpFUsXFXvWCqlIuqjWI4qFWXm/JTIcLyr7rxVMFXosPhNTB+eFSUpmn5HIcFyYOAaSa44cghIgiwAGQAZ6fiZjnpJ/1wuq2SLwnltOJpuTRTiy1JsordTLuiY0EGPnV3uEc1HDVR5iMwsMvy7vO6b2zzNzVIyg5N5iI5PJMrFzTjivAIxunymqzK6GaP04w33HKVGWcPDgwb84QQmWCWb95dDd3c0LL0hKEXNMsSv7x2UF7skwvn2O47+UFkELPpEisNQai9K5qyKJdGI+CfbmUuENcoVCgUJOZJMSiab9oXq0JrEL3/vCIdmEDZ1Fi9ay8ibkieh8MkDnI4HVGxaglUhars0W8UtMELi2avWGS9Dykdqi96MINtxVR835LuH2o2/O8Ob/OiCLoFRzgZPuZ5oxecQ3AbQ2bdGvXbT9lscaqNhqFb7mwHcHZClVnQ6GX5uWNj1l1AEdj9Tjv7pSuL3OqcUaMK3ecAm2PN7AlscaVm+4BO/+4xG2/7M4q7v+wx4arqwSzg8Amx71SzlFEJ4z7ZS3m1dvuASt9/qwBsXjVdltp/vTzbK+x+ovk3zsF8Q3laf2htjxLwcYfGVSqH3z7d6id7Fo/yop04CCorThaihvld7B/pcmhO/L1WJBZ9ZS6l0hxrlccSzznGnH5JHsM1dV8MjlSGYX+CMvMDw8zKZNmzhyRB6pYB3rWA179+6lvl46Sfl7fkoqt3oxe/AHg6TmU5iq9Dg3WYS+x1ytx2DXYW8Qy0eDr00VyTo2wRyWCmdQKEBbJljj5H9qZbedhivFaomBlyfY8fmDwgQlgGwmg8agxlIjnoudmyx0fbIJm4wxwtpoonmJ57sIHK1lRe9uEdiCJlqX+FivBo1ZQ8OVHmovrBC+ZscXetj5JXnk9c2P+ml7oG71hktgrjOgMYvXw/WXuWm5p1a4fWo+xXtf7Flzcs/eb/bJVsZpf6gejfh+N9ZGExqD+KTG7DPQ9XQTrk3ider4e7O89b8Piqv1aMB3UQWNN9YIf0ftxS4CN3iE24P03JExbXJtshK4RryuBdjyUAMdD9fLuqbErEFnk0c42vNsL7u+cljs8+0aWu6ulUWWBOTNfTXSe0gKDjwnrixirjFiaxDPjd4LJDvT3l+PrU5gzeXYm32L7bvfobS0lOeff57Gxkbh71rHOlZDVVVV0TpwjEEOZnesuuY13xtj6PfS3KSy2y78XbZAKZY68drj6M9GIA2mKp3wBrlCKXPNK39uKnhTNWqT2JfsebaHgzIUAABKbFp0Fnk5suXuWtrvkVdL+C52YW8WX8dBDd4POVdvt/Q7LqvAc5ZDuL3/qmrqPlwp/Azne2O88/eHZBGUHBvL6HyyEZNH/MCoWqekTHQNFolstfGuWhwbxePb+9txWUpVp4OZw2H2PNsri0AVvLla1nNXm9TSeygDG+6skRR4ZGDvN/vY/XVx8lj1OU4C11Sh1om/9E23eTH7xJ+7rbEUq+B8sYCGqypl9S1zvZGtjzXKmmeVVhrQmjRkM+IbsdGRBDu/dJgRQRK67yIXznaL9A/B7qUxqUGhKNq5rYbCs5jcPc/ou2KkLkutQTqk416B2LFkzcvWXIrBpSMdSdPzi1VI67kc6WyK3/MzBgYH2Lp1K3/4wx+E7msd6xDFl770JW677TZyZHmdX5LJpletvYb+MEUmnkFrVmOpNwp9T4lVQ5nHSGmVWD6aORRm5qC0YW2qFMv5qXgGpRLUogd78inLUm9cXFMXuK89z/YIE5RAsiQqKdNicumFrzF59Gx60E+ZjDFC79RSc4G8Osrk0WP2iT1DAIOrBP+VMubzKmi8rhrPNvFa7dAPhzgoY/4L0Hh9FY03yNs31Zdr0ZjED4E5OyzUC66NApCBQz8YWiSdrRF6XxyTRQgp8xpovL4KlV78txvdOlnttWYVHQ/7sQXFa4nIcJz3vniUUK/4enL9pW5qLxHfyy5vMeM9Vx7ZpGKzDZWMaVNptV6am4iHi+D1VTTdLG+9usSqRW+VN5/rfWGM/d8Rq21VWiV1l7lRaZWyyJwK1TJX9FW+RMopZKD/lQnh7zHXGbDJqIcL6/qTe+YJD6xyKDWXYyjbw5tHX8NgMPDiiy/i88mbQ6wV/uJKSgVccsklPPfcc9xyyy1MMcLu3Ju00S39cYWn7+q04Gq3kstRJC2thHe/KI9IARIxJHBtNbHJhBAxaP93xGVmCyj1GtHbS3B3Oeh/aXXGYzK/zuq/ulLyGhRQcZFj+VRAqC9GJi3jJHhSWkBWaZTCJ968F1Ti2FDG9OFSpgWtRwwVOpQyJsjHfjWCqmRtOXmzxyNYA6WgFKfDb7zdS4lJIy4znEyi1qvRyTkNrQWTS77doRxobVqUamSp1mgMGrSl4rsf9Re7MdcaeeNvDwi/wwWfz7XEwf84jqPFLnxPjpYySsq00qKCIDzd5SiUCJPmTB4tRrceR5NZ2E4vPCp54coh5g2+MilM6gHYeGcNR345KmxXB1DqMVBi1shS8uh/aUIojwKU1uppuLKK8tYIB2TY//S/PEn/65Mnf+4nmfR6z3GS2mJj++dWIMDlr0vmkrxnehkiYLfb2b59u/B9rWMdctDT04PH42FkZITf81MhRSWAxms8qHQqJgSk+6f2hZg6HJKtXNR8mxdzjZH3vtqzqgpRKpaVrQ4E0iROa1QDYsofqZhEvqm7yMVhATW82GiSt/9OzJa4gIm9c1R0WEnMio/ZjmAZZTUmNGaNsI1X3cVuMomMMJFGZy3BYC8RVpJKzafo/e0YY7vlKQDKRXgkTiYhXqdqzBo23FrL5J5ZYcWXkjJ1vp+Iw+DQkEoh/DxOB0aPjuhEQvjd0pZq0JrUstSHGq+pJjaVEFZByKRyxKYShIfXxh4MgBQc/OEAyah4bMuqpQ0mUZS3mXG2W0hGUgy+JrYo5thQhsmtB8SJYzM9EbJZeYpbO78sTuQrbzOjt5cw8PKE8HN3tVulDalKcdU4QBbBsPUuHwa7jrf+8aCssUGODWj9ZW6c7RbCQ7GVCXD52mu2YYDxI9KC8fe//30uukjMgn4d65CDxsZGduzYwebNmxnmOIqcgiAd0h9XWPMqqzVQfXY56hIVA6+uPscRUTd6H9TQdFMNkdG4EDGo97fyFLQBjE4dpVUGnC1mIYXrgp1aZZedxGxSyC7sdIgqM8ciKJXy1orszWY0pRphgo+7w4p7q43wSIzZI2JjpNlrZGE+hah+QP+rExKJZG2c2wCIjMaIjMbJyviOhmurMLn1vPuPYmTZdEI6dKQtlcEUVoPeVkJ8Yu3WvNQmNWo1wjZkACWlatIybC2qu+24NtnY/sWjwmSo8GAclU6mJIdMHP3VCI7jEdKCNbfJo8Pk0uVVHMVqieqzHaj1anYcFRvr1SY1Fn8pqWiaUJ/YdyzMJwkNx5g5Im63MX0gJIvIV3dZBQOvTckis1kaSjFU6JiQod4ytTckUw3Ky8yRkERKFf2O/WGmDodPnlNOsublu7CCdCy9MgEuf106l2aX+VVy81n8fj9vvfWW8H2tYx1y8N3vfpdQKMQvfvELXuPnnJO7ElVhh32F2st3YQU6u5a5Y6vvA8bGF9j5NXE1jgI8ZzuoaLOy77v9q6u/ZBByRjkR9qYyDI4S4TX1TFKy8qrstDH42urr/alIht1fl3cwPjIcZ64/yoKM8bSs2oi9sYzR7dPC9nq1F7jIZnLCCi5qg4pSj0FcSSoDPb8cITK8tkSd8JA8ZW9U0HxrDeM7ZxkSVJXRmGTuNSKpe2UzrJ1FGnm7q0ha+N3SmNSUWDRkkuL35L+yktjEAkd/IlpxK5gfiBJbw5oT4OB/DpCTUW+bPPq865TYPp3RrcNzpp1sVlLtEYHNX4o1UCqLODZzNIJKJW+eJf4sJKKnwaVjYuccGcHtRnO9EUutkTGrhti4+HMUtVID6WCltc7E7q8fl6WGdegHQ8IksPJWM95znSRmkysTlPK1V7RqgkODO1EoFLz44ots3bpV+L7WGopcbhUK8Z8Zn//85/nEJz4BgAM37YozpT+crHDI37qr08L4u3OyvsfdbaPmHCf7vtcrRN6ou8zN0FvTsjbXfRe7cHVYee9rx4Wu05oWyUdC0EL3J5tIzCdlLQz7r64kFUnLln8Tvi2TkmRE3oK7NWgSJlP8uVB3mRtXh5WdX+uRRb6RA0dLGWq9SraNlxy03uvD5Nbzxv86IHzNGX/TTGggKlwAtz9cj96q5c3/9+Dp3uaqMHm02JsswuST08GWxxtQKBW8+48fMNUarbRIOd8jXvieznsoB23313HwR0PCOdHRUkbgqirGd89ybLVTVUtRqJEFvqb1oz5KyjSyyQr1V7gZfHVUKP92fKweFLDzS6eYhJ1iSLUGTUQnklK8VhjPkrkkB8vfZHJyErfbzciIfKn/daxDLsrLy5makiYZ57I6UanErkFr0sjawAZof7COdCwjNLZoDErcXQ4GXpaX87d8vIHImKBcr0ylEAD/FW4cLRb2fbtP2DqrxK7Bf1kl+09jUUkUGgOyyCelNQbCIzHZv3+tseXxAKlYek3tXavOdjBzcF7Yhu500PXZJsJDMeFn3ny7lzKvkbf+t3gd1f1ME9NHQhz5z7WzBXFtspKYW5BteScKo0dHy0d8DL42cdq2gmsFi9/InIy6C6S8lYqtTe3lPa8clAoGZMzf2h6oo6RMwzt/L7YxXIBoPimxa2i7p46hP04JW2oXrnNuMAsRwEprDDTdWM3xF0aFLYwKcLSWMVU4yLNC7bUn9xZz2glKSkr42te+xs033yzre9axDrl47bXXOPfccwHw4KNJsVn6wwr91BowCZNbCrA2mKj7sJtDPxoUshxyd1qZPhomKWPTyNluofrscvZ+u1foOrVukXwkis2faCAxm5RVR1V22yGXE1YykQu1TilM2CjAVKWTbf211nBttlBzXgV7v9W7ZgQfU5WOkjLtmlnKgUQMKd9o4e2/FT8csPVTQWaPhTkquOEQuL4KS62Jd/5B3gEEOdBZJOKNLPsymdhwZw1ao5qdX5GnXrrmUEtERjn2aKeTT+QgcH0Vfb8bE86JxkodG2+rZey9GfplzmFFLSfrL3dTWqlnl0y1/MouOxO7ZoXyVuONVWj0KvZ9+xSE1VOseRkrdSyE8naNK4xn6Vyag843GZ8Yx+/3c1SQmLaOdfzf4KKLLuKll15CiYqzuBytIr/YfIq+qtKr0JaqZNtg1V/phhxC694qLdiazLIVmIM3VRGfSdH/kgBhXIatWgHODgvVZ5Zz8IcDwhv4Kr0K79nl9Mq1jpIBlVYpa7Nf79ASn03K/v1rjeZbvWSSWQ6fhh2wKGxNpURGYsKErtNBx0N+5geiHP+V2B5P9TnlONss7Pi8eM7f/GgDUwfn12wPGyT1pUwqK0tBTA40JhUtd9Ux+NoEk3vXVm1dLvROrewcJ/c9lANbsBS1XiVMmgJpT89UqWf3s8dlvesqLUKkJpVexYZbvIy8Pc2UjLmMSq/C5jcJPXOtWbIW7ntlXJbaFkCpV79IUFqh9hrI9TCgO4RareanP/0p559/vqzvWWt8IOzeluLjH/84X/3qVwGYYpQdudekPyyREC0iH/gCQcl/daWwzG1scoFsOkcuJcbROv4rSf3DVF0iLC8YGZPnG1nYIG97oE7MAiwJe791TLY1hr2xTJY0tdakpPOJgLC9WoEYISonCSwSlOSRdjH7xWUbay9yse2poHD7qYPzxCbkDVCltXpZNnRTe0NrSlACGHxjkrFda/sdw3+cZGz72vnpAkSGk7IISuWtZVSfJ0/mcO54lLCAt3MBLXfXsulRv3B7rU2Lzimvk2tNQBJhgpKjpQytTStOUNLC1k82UnOhuGyqu9uGwanD0SgubTm1N8Sef+sRJii1P1QvWeIlEVapSoZSJKNiC0ha06JV6LFfiBGUANKxDOnoCVVPYXw6YYyyN5dKdoNaKcedlKC05Lp4LsJr/IzJyUmCweA6QWkdfzZMTk7ickkysiLWbwvTKcL9MTQGibgnKuWfimVICvqJp2LZIkGp9mKXsO1SMpZmQfTkav5n2ppL2XinmHVUzy9G2fONHmGCEkhKR6VVBlnWAt7znWyWMb6kYtLGv0WwLgr3SwQlOdZfICkEybH/an+oXpbNVqgvwmyPvE1Yz5l24d8NkoT7WhKUAEbenmb4TfHTRaf1He9MM75jbeu78fdmZRGUai50YnCL1zm5dIbISIzZw4KTfQ10PhHA3WUT/o7SGpmdPJ9r5BCUCvZ2ogQl36UVks2bDJEIR7MZZ4tF/AJg91ePs+/bYptYjtYyNtzhBeQRHjOJDNExsXxYdbYDg0PDwrS4QlU2nSWbzBKbFpuTtdxdi/d8qaY9JUFpSe21K/dHJhgil8vxf/7P/1knKK3jz4JzzjmnaGszTC/7c+9If1hhzatAUKrsshO8SUwyPz67QGYhQzYttuY1+u4sybk0Oouaii1itp2xyQTpuDipqUAoCFznEbZy3//dXtlEb1e7BXuTPDu2lrtrqRK0SShs9MtZVysQlNTy3LwwClrBgKSg1/Exv7jl27EI8/0RcjKsrHQOjSz7wchQYk0JSgATu+cYfF1c4fl0MPruNEN/XNvvSMylZRGUSr16XIIW3AXMHo0wd0y81vZdVsHGu2qF26t1SnQWeQqkah2QRpigVOrVo7WoZRGU2u7zUdkl3m/N9UYsPhNWGdaZ0ZEEu7/ZI0xQaryxCnPBTkowjS5E0iTCgvMYNUXLyJG3poWJlclImqTgmpfJo6PlnlrUOun3n5SgtOS6dC7N7/kp4xPjbNy4cZ2gtI4/G377299y2WWXkSXD6/ySZC6/0HyK2isTz0ib9yrJbsvgWsH2cAnSsQypE9+fUyCTpEhQKm8zC9suJcMZkqJ5IH8rBleJ8H7VxM459n77uCyFEVOFDmtDqSwLN1tTKc23eYVVQzLJLCq9CqNbrC6KT0kEJTl2ViCRSuTYf/mvqsR7nvieyuzxCLPH5a152QKlwtaAADMHw2tKUAIYfG2CiTXebxx4bYKJvXNr+h2hgZgsglJ5i5kSmVZkM0fDhIfF15A33lkra46hd8js5PnuLYegVLBOFOU6lLeYCd5UJVmqCcIeLMPVZhFuD9Ke3sHv9wsRlIxuHb4PVwBiBKUCktG0RHgUgC1YitasJhPPiJPSMjnS8QypsFgxWHOhC2eHBeDUBKUlY1t/7ghH2EUmk+HZZ5/9wBGU4ANIUgK4//77+da3vgXALBO8k3t58Y8nKx7yMLp0lJjFVnvne6K88w+HiY4lMVZo0drEXubgdV4qt4pNbCb3hHj3n46QnElKRAMBaE1KDPYS4UXoyLD0glR9yEHFVrGFpJ1fP857nxe3fktGsqBAll1a3eVuas+vEL4ngG1PBdn0gPiGXMfH6mm+qUaY2JSMpMllchgrxC4I9cbY/bXjslSUfOdXUNFhlUW2aru/Ds854pPlzicDbP1ko3D72UMRISvE/xtM7gnR+6K45HvtRS7O+Jtm4YVJkDY65SyGVZ3tpKpb3BcYoOdnIxwSsPApIgtyxOiarq+i436/cD6wBk1sfqxZlu9y/aWVtH+0Tri9qVwLSoUwuQdg9M0Zdny5R/jUfPPtXtAu5qvVYKzQordpsTeahdoX4nnoh0PC6huN19XiarNiqhabaBb66t5/62Pvv/UJXVNWZUCtV2M82fhywliW0s7RW7kHAKfTycGDa6dKto51nAxjY2NUVUk+57/np8Ryq+9Sa606tEYNxgox//n93+7nyI+k08qixKbSGgPuzTYCl4t5w+95tpfeX0unt0QJOI5AKUa3Ho1gDRkbT4FG2mATwfAfp9nxpR5mBC1tAdLxDAqVUvieAFrvqsN/hTghyHteOZsfa8JUJfb8NGYNbff78V8l/h25TA5kaLYe+cmIbPWs6rOdVJ8lTkp2d9nYeJcYKQ3AsbGM7s82CW/YAgy8PCFbhUcu+l+aYF7GKZstjwckYowgPGfZi6QVEWgMSiq32qk6U/xZxMZT7Pv3fmHSmNGpI5fJsRASXJTVwIZba2Q974776tnyeEC4vbvLRv2lblmHM1RqBQqlQpaS2Xtf7GH3N8Vs9yq2WIvEqdi42JeUB80YK/TCeVNjkAirO77QI9YPNVB1hoOGa8XIFRqzBo1ZQ3Q4wfZ/OUpsVKyGLLFoMVWcYgH3hNprvm2AWZWUb375y1/y8MMPC33HOtbxp8BZZ53FO+9I5KRRBtide2PxjyuteVWUoBNcu0pMpdj11ePEJxYkqypBu/H6yz1Un10uRHSJDCfY/XVJRUmUfKPWQWmVAXtAjLydmJbmqfbmMhwbxRbs9367n73f7BO7IYA0KFQKVGpx2yzXJgsNV3oobxObswJ0PFxP0y21wu0bb6xiw621wqSjZCRNLp1FbxOb4ybm0hz+4VAxxiJwb7VL9oMyyFaB6zyyyDQtd9fKqlkiwwlG3lhbRcbwQJyRt8S/w7GxjG2fCi6SUATQeGOVrP7k6XZQc55LuD1IZBVZdo05yAkSHQFqL66g7X6/cL4xuHRsejRIpQwCuv+ySjbeXivcXm1So1ApSSfEN2znj0V57ys9jAvYmwP4PuwCNcLvktqkptRjwFYvtjhYeN+Gfj/JoefEbC1957uo6nYIEx1NHqld76/HOCKo8GEol5TSNGUnyTknjGUJdYJj1TvIkSMQCLB3716h71jHOv5U+OUvf8nVV19Nlgx/4BckcktIA6eovbQmFSUWDQa72Lja/7sJBl6R5hf6crF6TWtW4z3biadbbB59/NejjL4tHRQXJeCYq415C3Qx8k1yPgOqRaLjapjvjbL7G8dlqYCkExmUKgVaGYSgphuqqLu4Qri9LVhK2/0N6AUPjKu00HJXnVQHCyKXy0FWfJwcfXtGllIMgPc8JxWbxcdJs88oS0RB79Sy+dEGbE0yDqMfCBGRoX54OpjcMy+LSNN8m5emm8XWG0BSz/bJ6E+owHuuk4p2i/AlqUiGvhfHSAg6kWhNKrLprLhdsAqCN3iLB/FF4L+8kpa7a4Xbl3kNNFzlobxFvEZVaVUolApZAi5HfzLMAUHr7jKvAWuDVEOJEvIsdUbKvAZh4pRKK9kZHvrBoDCRrfqccnwXivUplV6F1qQiGclw4D8GJGKlAIzlJRhdYmte0cYJ+jQHUSgUvP7669x0001C3/HnxgfO7m0pfvjDHxYDp8PAWYrL3t9IoThpEWGqLhGycQPY9nSQbCorZPGkNSnRV+hl2S6V1urZeJuPqYPzYlLCWoSVQwro+kyQdCLD9n8WP4VQfV45yUhKtlWeKGovctEnY/LbdHM1sakFYQk/R0sZekcJg6+s3WkmU3UJvvPc7P1Wn1B7nVOLSgnRMfEH2P3ZJub7oxz43imkdE+A/6pKUEDPT8VUVkpr9dSe4+LwL0aErbnk2r35r6okm8py/Ndisp7WoInqM8vZ8+1eob6uNcHmjzcxezQsi0QkRxa/7jI3mYXMmkpImjxaXB12YTUhnVNL4zVVHPzecWGln9JaPQZ7CeM75k7/RldA821eDvzngHCOquy2U3u+i8E3JuW9q4J5UGtSsvnjjUSG48LvaQGOljKm9q5+qrPmAieebgf9r40z/Nr0KcedAk45/pziusncCHsVb4ECWltb2blzp6zfsY51/ClRV1dHb6+0Ed7JeZgV4hvvBrdWaCO56mwH1WeVc/w3Y4y/t/rJG1vQxIxMS9gNd3gxVuh553OHxYgAMq3fvOc78Wyzc/Tnw8IWRBoD+C6u5MhP1kYlrbzNTHQsJkxK0Jg1NF5VyeGfjZCaF7um9hIXEztm1lSJqPocB7mcpHgkArPPIIusE7jOg9VfKmwJojFraLjczcBrk8IKWjUXOsnlELbmkmv3ZnBo8J7nYuC1ceHnXX+Zm9RCRviemm6qptRrkGUVZnBpSCUQ608aaLq2mv6Xx9a0P1Wd7SA8FBPuI1VnO9CZNfTIsKatPschrAwkF65NVhRKZCkrbH7Uj1Kr4t1/lGfzJpoHG66uxB4sY8+zx2Q9O7PPwPyQmM3klscDKBQIW/iecvw5Re31Ru4F4ooodrudL3/5y9xwww1C37OOdfypsWfPHtrb28nlcpRhZavigvc3OkU/1jk0JATfwY6H/eRyOXaJWDypweTSERkW33jQWdS03FPH5J45+kTGGUFro6XY9IifzEKG3V8XI2yCRBTJZVkzJR93p5XRd8Xzc835ThZCKeGcbvLoMLn1a2r/pbOrqeoup+eFUaFnojapUZeIkzFAsuybOxbhmODhucpuO+oSFQOvitUsOrsaT1c5w3+cJCFozSXX7q2y2w4KhMlQxkodlVtt9L40IanLCGDL4wGmD83T+4L4OqrJI/6uVmyxolAgq8/Khc6ixt5iYViwjleb1NRfUsGx34wJx0lnV6O362RbYIrCd7GLwdfGhZWarA0mAtdUMfiHSVlENuE8qIbNH2sgPBTjyPPybJ5F50n25jL8l1fS/8q4lG9WWfM65fhziusiuRDvKF4iR44tW7YUSbrrWMdfArfccgvf//73UaBgGxdiUpxk4/0UfVlrVpOcX/3FtTaYqLvUTe8LY8wcWf2wmtGtk2035T3PibXBxL5/6xMjAsi0frMFSvFdUkHPL0aY7xXcB1WBp8u+ZlbupdV6kpEMC4KqJioteM+vYOj1SVIRsR9f3mZmvi+ypkpEtmApKo1SWGlFX64lPim+1+jeasPZbmXfvx0TU4xRQc15Lib2zAqTgspbzCjUCmHClVy7N5VehWerjfE988LPu6AuI3pPnjPtODaYhQ+8g0QiyoFwf/KeW87YrlmhvHG6sAVKScwnhdXPbMFS9FYtw4LiAyDVCWs1nyr16tHo1EK5soDGG6ooKdOw5xvi80JAOA9WbLbh7rRx4PsDwv0PJFWrZCgtlJObbqlGrVezV/Aw4inHn1OMV/tz2xlT9GO1Wnn++eeLdvMfRHygSUoAb775JmeccQYAKjScp7h61Wt0Ti0d9/uJDMeEFC+qPuRgYSbJ5B7xF01rgpZ7GzjysyHCfatvWLQ9UMfxF0eF2haw4Y4acuQ48J3VySultXpZnw3Q9Zkm0vE02z8nNjhoTUo23OXj+G/GZJG0tCaluPXUnwG1F7kYeXNS6J6qzyun+oxyjv5ymMldHyzfUFF4zrFTc7ZL1m+QS1La+ukguYwY0e+DCrm/ofq8cib3z8tS2lpTFA4FyLidtvvrmDowLzx5qNhqpe4iNyPvTMsiIJr9RqGcYaouoemGGg78R58sol/rvT5G3p0WIhy1PVDHzNGwbHJj083VHBRgcxsrtLR+1E9Y8P1Z8E/yx2N/IJvN0tzczP79+2Xd1zrWsRbYunUr7777LgAb2UaFYvWTKM23eymrMrLjKz1CBIWGqys5Kki2LaD6HAel1QYOfHf1usjRWkZ50MzBH4idwgBpkzt4nZf9z/WzML36byitMUi2aYKoudBJZaedwz8eFCZdVXbbsdQZhX5zARqDPLumtYbBpcHsK2X0LTFb2C2PB8ils+z4grjq5wcNWx4LkMuI/wa5JCXXJit1H67g6M/ESXIfNLg2Wam7pIKeX40UZe5XgsaswbmxbM0WPE8HGoNS2OINwNpoouoMB4e+3yf8jm5+1I+yRMW7/yCDcKQBg0OMNNp8SzWpeEZWPjb7DFSdVS5kv2T2GfBdXMGubxyXRQR1tJahUquEiKwb7vBS6jGy4/OHhZ7HwYq3GB6VDj3s3LmT9vZ28RtbxzrWAENDQ9TU1JDNZk99OO8EqHVKOj7WwHxfRGjT2t5cRjadlbepr4aNt9XQ+9K4kA1T4PoqRt6akkVu8l3kQqVX0fOz1XOQzqEhMZeSRW7a9GgD6XiaPc+KLf6qdeC/upqRt6cJ9YkXU2qdUthK6c8B1yYL00ciQqQPW2MpDVd5OPrLYVmqnx8kWAMSSaTnFyPCGyhySUpt9/lQqJTs+lcBot8HFG33+VColWJkRaSN2vBQVBYhba2h1iHL5i1wnYe541Emds0JtTf7DARv8DL4x0lZ6lzGSp1QntRa1ASvr+bIT4eESaYA/ivcTB8JC+Xwhms9RIZisslovotcQipbapOajgfqmeuNCL0/KXeI18d/RyaT4bzzzuPll19e9Zp1rGOt8fjjj/O5z30OgA7Oxq5YXZWu+pxyyjda2Pet4yQFCAqebrssEgBI5AFzrZHeF1Y/BG5063A0l8k6bK01qai7rJLjvxkVIk3oHVphdQ+Q6s3aC1wc/ekwoQGxOspSb8RaX0rvi2IH34FFi7i1dTQThsakorTSIEyyaLqlGqVayf7vyLMz/iBB7m+QS1IyefQ0XlfFsV+PrLlK+Vqh8BuOvzDK7NHVx2+VVonFb1pzm2Q5UGmVstSQ9A4tld12+n4zLnxd4/VVlFg0wvO1AkqsWiECkedsBwrED8IWPrtym00oF5dYtdSc5+TYL4Zk2ciZKnVojGqhvuE9z4mjqYy93+oVIsj1VeyhZ/QIWq2WvXv3EgiIq8X/JfCBtHtbiu7ubvr7pWSXIcXvcj9a9I09BRITSeZ6whx/QWyxdejVKYmgpJU27UWsunTlBrRGNbZ6MRm83V89TrgvjtamxewXk/stsWrQWcTkCAsEpfJ2Mw3Xitlw7H+uT5igBIBWjc6sFbaiA4k8sPnjjcL2Z9aAia2fbBS2ZDN5tGz9dBB3t5jkoTVgwtPlwHexmG3M4CuTbP/cIVkEpZaP1LLpUXHbOrnQ2rT4r6pEaxJ7fYdfm+aN/3VgTUlW7/zdIVkEperzynF1WtbsfmoucLL1k43CNo4g/YbdgjZeAFXd5TTfJG6D0vlkgMbrqoTbtz9UL0uisuW2Wro/2STDWhL09hLMNeLy42PvzLL/+/1CBCWdU8uGOyR7FVFSo9lrQq1TodKLSYOXt0unXfZ8o1eIoIQWdBYtFsHf3HCtp2jfIkJQAklFbf5YmJ7frH5K9GBuBztHd6DRaPjwhz+8TlBaxwcG77zzDtdccw0A+3ibY7nViRN9L48xfWBOWJGnsCHuOdOOV9DSsqzGiKFcTK5+ak+oSFCyNYvVahq9Go1BTalHzP6sQFBquqlayJat/6UJ9n2vX5YqlLnGINnpCbq+acwaNn88SOB6cUu2wA0eNtwpbofVcHUlHR8Tt+AIXOul5lxx29Ld3+yVRVAyuDRseSxQtLdaCzg3WWRZGG//3JE1JVmNvzfLm//vQXEVL7OGmgudsuwD5aL9oXpZ/W78vVm2f6lHiKAE4LvAifdcJwaX2G+o7Laz5RMNwr/ZVKVn86N+cftDA2z+eIDgjeK1nT1QKpzDCtjxrz0ceE5s4a/+MjcWvxFSiNujWbXoHWL2BeY6AxoDzPfGhAhKAGafiRKzFoNj9ZpcY1AWc9HUnpAQQQmg93djTB2YW5WglMqlOFDxBsOjQ5jNZubm5tYJSuv4QKCqqor5+XlKSkpIEOPV3E9J51beOEonskzsnmXgNbGNqekDoeLmduD6KtS61dcSdBYNOlsJZq+YD+SRHw0RGU6g1oGpSizX6Rwl6GXY15GWTtt6PyRWVxz8wQB7/l3egrfJrccqaMEEUH+5m46H/cL2ZwaXjrb7fBhOJdN/AtQmNe0P1OEUtJbQOTTUXlhB9Vliaqgzh8Ps+LI8W2LfpRVsvKtWuL1cqE1qKs+wC1uGzR6J8PbfHlrTTZ3dX++VRVBytJQJz0FOB/bmMtofrEdnF/QCRPoN+2RsiNae78J/hXid03JPLb6LxO3nAtdX4btM3GbFd2kFHQ8HhPsFajBVGigTzGEg1Tj7vtsnRFBSm9T48/YqIgQlkKyLtSYNap2YvVHBLrDnF6PCJFOTS0epV2zNq7LbXrRiFLUBTEfSTO6eZfC11dsP5Y7zXvhNVCoVd9111zpBaR0fGPzzP/8z//AP/wDATv7AcG71WmHsvRnGd84IEZSAIkHJUm/EtVlsLcHk1mN06hZJOCsgOpooEpRMgmtYSq2KkjINBsH5X4GgVHW2A42AVdz0gRAH/qNfmKAEYKzQUVqtF7auU2mh7aP1eM8RX2PydNtl2Z+5t9hk7cnUnO+i5gLx8e/IT0dkEZRUehXNt3mxCVolnw5KvXpZn3/wucE1JVlFhuPs+PxRYYKSSqvE2WFBJcM+UC4arvLgPVfcCjAyHGfXvx4TIqEAOFst+C6qELaKNPuMbLijBq1Z7DdrTSqab/UKfz4q2Hh3LTWCa/YgrduXVhpAJW6hffhHQxwWVIp0bbYW852owpHBWoJe0LJT79Ci0ipZmE0KEZRAsmPXO7RoTAJxVUnWyKggMpIQ7htj704zvnNWiKB02PkuPaNHsNvtTExMfOAJSiDsbP6XhdfrZWFhAb1eTzab5TV+xpm5D6NXnHrhoLChrHNqabqhmp1fP7aqwoh7sw2DU0fVGQ6GXl2ZWRfqjfHmktPOWhNCdkxtd9ei0ih56/+sbjHx3uflb254zylHY1AjQj0qEJtcmy2ojSrJxmgFJGeSvPn3B2UptYzvncWeLBO+JhlKotQoKPOZiI6tfuI+Mix9sNYgvnjR88KwLIs7uSpQuVxuJVXc96HmQieV2xzs/bee4u9ZCY7GUlxtVmKTC4zIZOR/UFDZaSebygo/h84npGQqavmAAlAqhO3tCpDTfu+3ZZyg0wI5yGTE+5JapyRrFE/RY7tmqciK5SGQ2r31/4kpNqCVLFkOfn9QmHBUd76LshqjLOvN4T9OCyskBG+swhYoIx3LCC3WFHK0qL0PgK2hlLJqg9A91V3uRlOi4vDzQxx4bnVC01u5l4gwhyqu4qabbuJ73/ue8H2tYx1/Dvz4xz/miSee4J//+Z/pZT+h3BQdirNP2T42muTozyVyXsPVlcRnkkKnFFztVpQapZAF1dJNcVG1IFtzKY3XVDFaNUPfiysvpM4fj/H234nnCJDUlMz1JrxnOjj2q9XJiQVik6iS1EGBfLIUqfkUof4ok/vEiclaoxpVifhEPpfJgYw6p+cXI2QT4iewRYluBcRmUqAApVZ8Erzl4w2kkxl2/auYrLP3rHJQKhh7Z+3sMdYSzo1leLZJtmczAvE1+ww03VxD38tjwr85l5XXL0Desz7y/DCO1rCwvV1hA170O0qr9Kh0KhbCYn01FYP53ijje+aE2gP0/HxUstMRuCXPmXZiUwvMHo4QFVEl0YBjgxljpY65HvEN+Z1fFq9ng9d7SUZT7PzS6tcUcvTAyxMMvCxGonBttlFaZcDWXLrqZrnGAE23+jj4n0PERpP0/Hzl/BvLxXiDX8EoVFZWcuDAAczmk1g7rGMdfyGYTCYikQjl5eXMzc3xe37KmbnL0SlOTWQpbEypTWoarqzk6I8HVlUYMdcbsfhMODaaV7UQS0yl2P7Pi/NvUQWT5tt8aEs1bP/c6nP3g/8hrhRZQNVZ5RjLdQy8PrGqqlJ8QpqHltUa0Nu0jL83t2L7dAK2f+GILLWmyf3zKBTi6i7JaBq1Xo3BqSU2vvpFBTUkEWIZSM/tyE+GZKlmidpsFZHLSeO+IBwtZdRdXMmB5/qElLaMrhK8ZzvJJDKrPrMPKqrPcpLLZIXJXxs/UoO6RMWur4nVpkqNAoVSnu0eyHvWe795HGWJjG2DHGQz4v1CY1ChkHF0evpgCLVGKf4b0vDeF8QP5haUhEQJR5VbbNiCZozvzQpfM3skwvYjYuuanrMdVHU7OPSjQeaPrb4OV8jROwWVsgBc7RYyyazQe1axxYreqqX3t+NCtp4HctsZoQ9lVMnDDz/MF77wBeH7Wsc6/hx48sknqa6u5qabbuIgOwjn5ggqOk7ZPhXJFIlH7i020gsZIbsuZ5uVkjI14ztWn1cPvLL4bqm0CKly6Mu1NF5Xxcg704y+vfJeWmImye6vi1tbgWQx5GyxkkvnhJShCsQmT7ed4XemV1U7krMXAFJMZg+HmOkRr3PUBhUag/iaVyaTJZfLCVtDDfxeXM0KIBOXJwGViWdQKBVC5LUCgjdVQQ4O/XBIqL2ny4HGoJJlufVBgsmjx3uOk4W5lJA9odasYuMddfS9PMbMQbHfLHfPF5ClQjS6fYbIRFzY2k9VIhVRotaEuvIS1HqVeP/LwNTBEKF+cSWr8R2zjO+aFXpvLH4jmYUs4cG4MOHI1WYh4U1yRFAJFeDoz8TbNlzlIRVLC63FF3L0zMGwcB+y1pmwNZQyczREaDU7XhXUX+pm4NUJkkvGn1Mhk8vwOr8kNZ6kpqaGffv2YTKJH7z5S+IDb/d2IkwmE9Go9GK00IVLsfKpDt/FLiq22Dn0/ACzAifXtTbtIlFBixC5pv2henRmDW/906FV29ubS9GY1LI2OeouraC8xcLOrx9flUQhqajIs1fb+ukgICnJiKL1Xh/HfjUsy5LprxXl7Wb8l3k4/tsRWeQmUZT5DPguquDYL4eESEpoobRSnr3ftqeCTB8KCcmog3y7t21PBZk+HKJH0CpCa1KiNavFfi/QeF0VCiUc+k+xwkoutj0VZCGUEpa9/mtH8x1ext+bZVpwwazucjcV7VaOvTDC+I454e8xVmiFckTL3bXorFpxEhqAFvwfrhTq0003V2OpN7HnG8fEclY+9y8bD1bBlscbUKqUvCNgxzK24RD79+8nl8vxzW9+k7vvvlvoO9axjr8E/v3f/73YR0UtSLY8HiAVS4v5emtAo8lbJmkQ2rw3uLW0fqSeiT1zHP/16sSg2ktc9P1G3KISDWx5qIHQSIwjP1p9MmNwaIjJkOsvWHUNvDbB8OtiizG2oAlHs1nI0uW/Alrv86E1qNn+LzIUP2Wg4epKUomMcL8wuDSkwhlhay//FW4sdSbh+5dr91Z/mRtroHTZ5vFqMFXpiQyJ1Y5Gj466iyo49uthYVKQHLi7bNSc6+LgD/uZP/4B8iZcIxg9Orxnl8siHXY+2UgulWW7oBw6SIpZqVhq1TxaYtfQencdI29NyVoQrthiJTq5sLrNpQa2PtZIZDQuZlW5JPdrzBohYpktaCJwdTUDr02semgj5Jihl71MTk7icrkYG5NhJbCOdfwFsGHDBg4cOACIWZA42y3UnO/iyI8HmV9tsROJ1FTc5FcjRMhpuNZDWbWBHV86ump7Y6UOvU0ry47UtcmC54xy9n2nl+TcKl+gBrVOLYts0f5AHUqNkve+KH4Q0H9VJcNvTReJTv+VYarS0XRTDb2/HRVTKJYJnV1N7QVu+l+dEI6nwaUTInEV0P5QPTOHwgy8KrZRKNfurf3BemaPhukXJN6qdUrURqUwichztgOtTiWsZiMX7Q/UkYykOfA9+cTAv0b4Puxi5nBYKCeCdHi39oIKWZaBADqLmsRqOQtJBcpcZWDXN4/LIkF6znYwLHDwx/shJ65NVvZ+67iYjVw+96t1StLprNA9bbizBq1RLUSCmtzQw94De8hms/zoRz/iuuuuW/0L1rGOvxB27dpFZ2cn6XQaKw42Kz606jXNt3rJpLIcFtynUBWIAYKkF61JRfPttUzumRMiBjk7LEzsmZNlfxa8qZr45AL9r6w+rmlNKmEFKYDSaj2Ba6oY+P0Ek3vEDtAZXCVYA6VCOe+/Auouc2Owa4X33uTCvc0GGYn4IgKtWUUmnhMm1Tg7LDg3moXvX67dm/T5FvZ9u0+oPeTtv0JJsXfMrMLTXc7oOzMkZIociKDUq8d/mYejPxsiIkhk/muG1qTCvc0uy35yY15FW847oNIqgeyqBE6VXkXzzdWM7ZgVIpMWUOY1kF7IEBtfZb6igtaP+IiMJYT2JZbmfpUgUUzv1BK8zsvgaxNMrVKbJvURjpTuYmx8jM2bN7N9+/bV7+kDhA+83duJiEQiRYmqvbzFodzOFdv3vjjOjn85IBGUtGCqXlnaq7Ah3Xqfj64ngkI2ZeO7ZwkPx4UITdMHwkWCUutHfULWTNGJBNl0FpKrzxqSEUn5p7RWL2zFceC5XnZ9WZygZKouwejWU32WuNRb2wN1bPq4uAVamc8gyz7BGjAJ29yBZL3V/qBYfCYPzJOYT5IUPFkNEgnHLijtHOqNsfurx4UJOySRRVACyKayZFPyFKFkf74MZnAykhX/vcDh54eECUpyYl9AdDROeEhs8aK0Vk/3Z5uo7BaTT7cGTfivFrMXBChvLcN/lXh7V6eFbU8FhW0ktSYwe414uhzC33H8l6Mc/OGAEEGp7nI3wRukd1eUxJgMpUklxCY7wRuqJJu3JMKku7Gds8QmF4Tup+nmask2T5CgVOaTpMO3f+noqgSlZC7J73I/Yt++fVRXV/Pqq6+uE5TW8YHHXXfdxaFDh1AoFCSI8XLueVK5lRc+t3/xSJGgtKp1UgpSsSwGl4auJ4PUXbq6BHNsNElkLMb4HjHCd4GI4txkofYSAQnmFKQSGeFxv0BQClznoers1XPr+HuzHPiPfmGCEkinmqz1pcK2bxa/kc5PNmJtFD81UXepG3OduB1C/WVujB4xq5LKbjvbngpSYhf7AeHhOKFheeQVW9AkHJ+jPx2RRVyLjaeECUog9Z/MGtZd6WSGzIK803eiBCWA6HCCvf/WJ0xQsjaa0BjEp5WJ2SSx6YQwQan1Ph8dD4tbDNZf5ha2bQOJtGZwi1sEdzxcT/Pt4pa/nm12zDUm4f4PsOsrRznwH32rN9RI8TE48uQegUeWTUN2IUNsavWNYo1ZQ/Nt0m8d2z67OkEJIAXhoRgTu+dW/3yDRGhqukmS01+NoFTIOTOHIuz4/MFVCUpHc3t4Z/Jl5ubmOPfcc9cJSuv4q8D+/fu54YYbAMmC5PgqtrsTu+bY+aXDxc14vXPlNa8Cucd/hZvNH2sQsimb2jfPfF9UaCM7OpIoEpQarqkUsmaKzyTJJNJkRUqvtPQbdHY1Tbd5hfThD/1ggD3PiisHaC1qrP5SKvI2SCJouNZDy921wu11Do0sayxjpU7Y5g6kg0BNt4qNVZGhBNGxuKw1L7VOSVmtWN2YmE5z6AeDsghfcghKAJlEhnRSXm0k6/MXMsJrFiBZMspRORr+w5QwQUmtk1Qv5WB+MEZoWKwW1FnUbHk8IGwxaHDJ65umKh3VMqygy2oNbHq0gVKvYG2nBnvQjLtTbM0OYHzHHPu/2ydEUKrYYsX3YendFSEoASTDaZKxjFAOrTq3HFujtKYpulk/eWCe0GBUiKDk/ZCTzo8H0NnVpBOrE5QK1pT7v90vuVSsgHQuze9zP2P3vl243W7efvvtdYLSOj7waG9vZ3x8nLKyMmaZ4g+5X5LJrZzvD/zHAId/LO1T6ARsazPxDCq9iraP1uER2E9IRjLM9UaZ6RE7XDyxcw4ykpqMe6tN6JpkNC087hcISu5tNspbV1ejDQ/GOfBcvzBBCaB8o5nyZrOw7ZveoaXl7lrxsQGJ+GKqFLdfd3ZY0DvFrbfaHqijxCrWPjwcY15kbr0EBldJnqSxOkbfnhEmKIGkxiNH9SeXzpGWuSYlB9Lny1OLXJgVIyiB9Ht7XxgTJijJiT1AOpEhPBwjIljP1l3qlmUx6NpsFbdtQ3p3RXJVAQ3XePB9WNyS195sxt5YhtYsrsB58Pv9HPmZ2H5v/RVuSqxaMsnVCUoAZHKk4xkSc6s3Vmmh5kKprgsNxFYnKAFkYKYnzNQhgRyXJzTV5ud9qxGUtGY1qCA+kWTPN3pWJSiN54Z5LfYCk1OTXHPNNX91BCX4KyQpARw+fJibb74ZgCGO8cfcr1dsX7A/2vSAn5Y76oS+Y2p/iNjkghDxaPTNmaIHZ93lbrQCL3x5uxljhZ6qs1d/2cd3zPHuPx4hGcli8oglk/ImMzpLCdbA6ptTkcEFkhFps12E6BMZXGDHl3tkqdqkYxkyCfGBrvZ8F9aGMiESF0jer46mMuHPX5hLkZgWXCBJws4v9ggpcRXQ/mAD/ivESVP25lJqLpRB+rq/jpaP1Aq3f/efjnD812u3KC/n860BE51PBrAGxR6u2W/Ed7FLiDAIUHtRJcHrvUXyiAj2fbufY78QYL0Caq2KVDzN1GGxiUL1meWUb7QI92XPGeWUbzQL/16lWkkuk2N+QEx6MRmBHf9ymD3fWN0KxFRdUiQcicrFW+uNlNWIEaYK+ezw80PsErQbsfhLqTpTzP/Xf1UlWpN077sFZdMnD8wTn0kKEZRaPlLLhttq0Tm1q44VEec8e61/IEcOtVrN0aNHOffcc4XuaR3r+EujsbGRhYUFtFotWbL8np8yn1thYzi/Nmr06Gi5s5bANasTL2PjKaKTCSYPiC1i7Pv3fqLDCTRmDV5Bf+zKrXbKN1iE2u7+2vGiPZzBJUYsMNcYiwvKq6GwkdhwpVuIuLD3u32898VDQgQEgOhIlFwqi0ojVuprDJL/uadbjMCqMWsob7NQfYZY+7njIZLhFBq92IS199djQipWBdiCJoLXe/GeLVhLacB7XrkwycoWNLH5Ub8wkaX/pQlZNlpyIffzm2/zFokmIqg+xyGLsNZwpYeWe8TmWACzhyPs+bq4JVliaoGEoPwzGihvsVDzIbFaQWPWYG8y45Vx+CKdyJCSoeBx5Plhdnylh4Xp1V9g/xVuDG4tqVhWSKHNVm/CYNdhaRCbBxXITDu+0MPs4dVrO882G2U1RqH+YHBo8J4nxf3gc4NCKiqpGETHBXO/BlruqKXlntritSthtq2XAYV0UvORRx7h1VdfXf071rGODwh++MMf8rd/+7cAHGc/23OvrNi+YDUWvLmajbfXCBF3pg+HCQ/HhWzKZo9GigdEKrtsaC2rf4GpSofVX4ZLgOgQ6oux++u9EvlI4LMByqpNmCr0lFWtnp8Sc2nSiSw6h4aa81fP98m5NDu/eozeF8QJzelImpQM+w7PNgflrVYhEheAp8uOa5NV6NmCRPwSXvMCDnxvgFCf+GZZ8+01NFwlvuZlqtLh7rQKt2+4ppIGgTlEAXv/rY+RN8QPAMiFnM/XOTS03ecTJhLpnSVUdtmEn62zw07TTTWyiEq9vx5j6PeTQm2VJWoW5pKEBsXWgNxbrFRssQn3ZXennYrNViGCJIBKoySbzBCfECTcp2HXV45w6PnVFSy1FjW1+bmkiBUhgC1QiqVObM6ns0sxGX59igPfFVMKcG40U9klRrCq7LajNqmJTyxwWNDSZ+ZoiPBoXIhE5/uwi5Y7axfJrytckjYl2Od4nRRJTCYTPT09bN26Veie1rGOvzRsNhszMzM0NDSwQJxX+SmR3CrzkwxoTCqab63Be+7qc89MPEN4MM7scbHc2vfiGPHJJCqtRJYRQcVmK+UtYpbWx385WiSxaM1iPmJWfynWerENjoJllXurTYi40P+7CfZ+s1eMgADEZ5NkFrIoVAqxC1TSmqCzTawWUWmhqtuBs8Ui1D4yliAxk0QpOJZP7p5n8DWxcRkkMlzzLTWUC94PKnA0l6F3iK1h6Z1amm6uFia+TO6d59AP1sbx5HQ+33tuObUXi5NqbE2lGFwrH+xYivpL3TTeIC6oEZ9I0vPzEWHSVHxmQegQWQHuLTZhMrZKCxWbbNI8QhDpWIZUVHzNa/SdGXZ/s5fk/OrXVGyWCFOZpJhVnb5cS1mVkTLBg4has4pMMsvB7w8SHly9drQ1SgQrk2f1z1fpVcUcO/SHqdUt2wAyMD8gTjptutlLw+XSHGu1fBhqGmaf4i0A/v7v/54f//jHQt/xQcNfJUkJ4LnnnuOb3/wmAHGi/C73Izo/HaDtAWmBvLy1jO5nmotqJ633+igp1TC5Xyowtj0VpD1/ItfsN9L9TDM1+YnJhjtqqPmQs7iJ3/XZJrZ8UlJvMlZo6X6mmbpLpaTXdHM13c80A5I1UMUmK5vzn6s1Kel+prmoohK4tkpqq4XJXfOkY2nswcUF5e5nmovqQfVXuOl+prlIeNr0cT9bP9VIy11+Wu/z0f1MU/EEb+1FLrqfaaa0VnqROh7x49ho4c2/P8DskQjdn20qnujynGOn+5nmotJM+0P1bHtKsnurv9RN+UYzrff5AKjYaqX7mWZcnRYphvf56PqM1DY5k2TbU0G2PRXEVF2Co0WKt+ccKd4td9fS/dmm4m8zVepRaqWiocxnkOKdJ+U03+Gl+5nFtls/2YjaqGLHV3pQGvLxvlxSVmi6qaoYb5AUkbY83sCBHwyy4yuH6X6mmcC1UgwbrvVIMczXTlsea6DzSek57vlGL9ZAWZGhWneZFG9jxZJ4f7JxybNpYsuTAYlMdIGT7meaiySYjo8txhCg+7NNpBJpjv16BM+ZUrwdLdJzbn9weduup4O03V9HzfkuKrc56H6mmYqt0oDR+lEfXZ9ZjMu2p4K0PyT1LY1RTWmNgaoPSZuDLR9ZHu+tnw6y6VFJucpUXUL33zRTd5XUZ5tve3+8N39Caqu1SfEmX98Fbzgh3k8E6HwisCQuzTTeUIXOqcV/VWU+3lJa2fyJxXgX2jbfUo3WrEatUxG83lskqWx61F+0HSzEsCD557/MjXubHatfepDtD58Qw8800Xqv1Gfd3TbszWXM9oUJ9cZou7+OrqcX2257Ovi+HNH+cD325lJa7z1JvE+SI2aPRIhPJdm8RIlr66cW431ijihsYhXIkp1PBtjyWIMU75PkCL2thL3fOwZJyULsxHifmCOmD0d45x8Os+nB9/fZE3PExntrMXm0bLir7n3xPlmOqLuoEltTGdueXhrv4Io5QmNQ887nDy/GMB+nE3NE64M+Wu/1F9/BbU8F6XhEartSjnjvq8fQ6FRFZTad8+Q5wlRdgrPFwuZPNLHlcSneaDl5jrBJY8SWxxrwXVTBrn89Voz3SjlC79QxeyREYiIpxfsOKd4n5gjtRXH2Rd8kEolQX19PKpVCqxVnr69jHR8EaDQaFhYWqK+X3tN3eYVEyxRdTzehMUskm/YH69jy8YbiNS131JKMpOh9ZZLqcxx0Pd1UJHm03udjy+OL+W3bU0HSkQzh/hiVZ9no/pvm4qZ4yz21dD65mN+2fqqxmN823FpN1RkOKvJ5aMOdNWz91GLbzicbi/mt/7VxVFolFVukcbb5lmq2LcmFnU8EaP2olN9MVXq6nm6i/aF6Wu/x03hr1bLxZMsnGorjicGhoevpJsb3zbHn6700XF1J19OL48nmR/1FFRiNAbqebsJ3aQUGhwZHq5VNDzUUFYA6PlbP5kcXlSe7nm6i4Uo3pMDd7aTrM00EbpJyWNsDdWz5RMOStkECN0gTGecmO2q9msRcqhjvpePJtk8Hab5Fym8VW6xs/ngTva+OcuC7A7Tc/f54b8iPyY7WMrqebsJSa2DPvx1DqVW+P955AoHFb6Tr6SYqtlqJjadIzCbZcFvNYgwfDxTHE6NHR9fTTUUlqsD1Hro+00RDfnzc8okG2h+U4q0xS/EujBH+K90Erq5m6I1JRt+aYNMj/kU1UY0Uw/rLpDGi9hKX1A/NSjzdDjbcXvP+eOe/03teudTWoSGXgxKzlg231i7G8KlgcZGisttO19NNlNbk++y9tctqoK2faiyShFybrHQ93SQpPwEb76rBXLtI7u38ZGOxBrI1l9L1dBPOvJJD821etn6qEY1Zg8Yg9dmWe6V7MvsMdD29qPQYvLGqWC+pdErMtSba7s/3WZcUwwKhJHDN8j5bfa6Tppuke9AYlHQ93UTtxdKpn/rL3FLbfJ/d9IifbDpL3yvjxRj6r5DiXXOh8305ovPJQPHvXU8HCVwn9dmVcsSRn4xQ5jUW1XbcXTa6nm46eY5IQTaTLday5W1mup5uwrFRqsVPzBHtH60jNpng0E+GsDaapD67So7Y+80+RnfM0vV0E56zpHgHbvC8L0d0PFKP/0o3BoeGzQ/58eY3xk+VIzQGJY4NFto+6seXryPrLl0e7xNzRODqaqYPzzHy5jTeC6R4F4iPJ+aIM/5HM20PSvnGc5bUZwuKU6fKEX0vjjP4xgRNN9YUldlOlSPqr/Tg6XLQ9ZkmytukhZvm270nzRGuTVYCN1bR9XQT04dDTO0L0XRL9bIa/3054skmIpMJjr0wIuWIE+JdyBEYYKTpADt27cDhcPCrX/2Kf/qnf2Id6/hrw6c//WneeOMNFAoFc0zzau6ntD1YV1THMVbq6HyyEVd+jKi7rIJSj57R92YhLa09FMZvnUVN55ONxY1v30Uu/Fd6OPIjafF/y+OBYq2i1knvqic/Jlef65TeebWknlN7QQXt9y/moc4nG4traZXddjqfbERtUhMZShCfjlPevLjm1flEoJjfKrZY6Xyysbj53Xybl46H62m5p47gzdVseTxQVBh2tJTR+WRj8bR88OZqqs508O6/HCbUF2PzxxuK44l0KKqxeGAvcJ2Hzfn6tOZcF54zHDTla6CyWgOdTzYW12v8V1Wy5TEpF6YjaToermfTo36MlToMLinehTHCd1nFsrxp9hmLJ6y1hXjnx+TaC5zL8mbbfT4MzhJ2PdtDOpGm88nGorJM1bnlUgzzBI6Wu2tpu8/H8V+NsvOrx+j8RGNRgamyS4p3gdi14c4a2vP1ac/PRnBsMOO7TIq3a5OFzicbMeYVBJpu9dLx8OJz3PJYgLYH6zDXG7E3S/EuKCU13ljFpkcW225+tIFMKkfPz4exNkjxLhD1G66pZPOSsafjY/788yqXFFyebCyOEf4r3MvmAx0P1dN8u9RntWYNjmZzkdjk+7BrWbzb769j4121gGRh2PnJRrwXSHVNzfnL4936UV9xzQikPqvSSIWC5yxHsc8CbLxLivfStr6LXegsatydUp8tEE+ab68prtGB9B7VX+5Ga9KgLdUSvKEaU54QH7y5mo6PLYnhJxqKJKyaC5zUXlSBLSDVg43XV7H50cUYbnrET2N+HcjsM+A5w8HkwTnme2M0XLPYZwvxPjFHNN/uxewzUHdZxbJ4nypHxMYTRIbjtNy1+Nva7vMV51Qn5ghJYSNHOiGtfbXcU1ucUxViuDRHWHwmDv5nP+nE8j4LJ88RifkUu756nMB13mXKmifLEQ3XVaJ3luC/uppNDy6J9ylyRNUZDtzb7Gx+bHm8gzefOkcYynXs/KpkHdnxcL2k6AbvyxH1V7vZ9LEAdfl3sP2BumK8V8oRe/69D5VGUZxToeakOULvVFN1ZjmbHqp/f589SY5ouKaSDR+pwX95JYfyFsSdTwRWzBGWulImds8Sn1hgy2MBGvLxPjFH6M5J8Z7iNebm5ujo6CAcDqPTiauVrGMdHwSoVCqOHDnCrbfeSo4sb/FbItWTdDzsL5Js/FdWsuGOxTWN5ttqiM8kGd0xg8VvpONhf1F5p+4yNy35cQqkdedMKktsfIEyn4GtnwoW9/JqL65YNk613F1bVBmvudhN/WWVxTxUc56zOK8H2HhnLfVXSm2HXp9CXaLC1iSNyZ6zHcucRJpv89JwjZQLtSYVHQ/7abjOw8Y76qi+wLmsLmi6uZrG66WxR6WFjof9TB8NceTHw1RsttHxsL+oetR4Q9UyFZiOh/1UbrOh0quoOrOc9vv9aEwSEarhGs+yA1TtD9YXxxNzvZFNj/iLaz31V7rZeOdiDNvur6PmPOlvllojJRZtURSh7lL3MkXL1nt9RdJKabWejgf8DPxhguO/HqXmQtfyeN9VS11+zcjgKqHjYT+lXiP7vttHLp0rrv2BtG/sv1LKhSVWLR0P+7E3l5GJZ4iMJWi8bjEOzbd6CeQFIVR6Kd6FGsi9zcbmR/1FZa3gTdWLrjIqKYbuLZIqlrPDQtPNXgZeG2dy7xyN11cVa1mAjocWP6e8xSz12TIVNRe4CFxXXaytANoeqC+uu9kCpVKfLddCFkyVBgLXLBLQWz/qK47fZT4DHQ/7i0pUvosraPmoT7KxAlru8eHLx9vk0dPxsL+4L1JzgbM4XwHY+JHa4j6OvlyKoS0g9dnqc8ppe6AelV6FSivFu0CK15rzMcyTRDzddjoe8hfj62gqW9JnlXQ87C8S/NxbpD5buN/AlR6ab1nshx0P+yWLPKQ1pI6H/aj0UuPAtR5yORj8g0Qqa3+wHs+ZUrztzWXvyxGt9/qkz1JJazIFEuNKOWL07RnMNcaiok+ZV4p3afXJc0QmmUGRX/MyunV0POzHUi/VkSfmiKabawmPROl/ZRydLR/vVXJE74tjTOycleLduiTeJ+SI4M3VeLrtqLTQercP12apBjpljlBJ9V3rR+uoLMS7VYr3qXJE43XVTBycY3LvPLYmqc8WVKFOzBGdTzbSdp8flVaJpV6Kt9Et9dlT5YjJvfMcf3GUhqs8lHnzffYUOaL67HK85znZ9DE/lryrjffc8pPmiFKvnqqzpZhFRhOEemN4zjoh3ifJEZHROENvTOLeZlsW76U5IkOGyY09vHvwLex2O2+++SaPP/44f60Q19/6AOLuu+/mqquuory8nGw2y+e/9C9c0n4FAPHpBLHJBJExiS033x8ll80t2gMpQJNPNPGZFLHJRNFWYm4ggqpkkb+lUCpQqaV/pyJpqW3eGmp+IIa2TFoITs4kCQ9HWZiVGIDJZJbYZKJoIzU/FJHYq3kGXKg/hkIpFR56ewmxyQRz/ZIaSmgohsmth6TUODQQQ6OT7nfo7Sl8F1ZIcttI8oDmWiMLoUz+c6OUlGkgKZEgUEA2Kw3YkREpLomZhWJbvV1aFNr59WO03OUjlP/c6ITUNlqIYV+UXDpXjEt0Kk5ZpRHfeW6OvzgixTvvsTnXH0WhXGQyh4djJOZSUiLQKJbHsDeKWrfI2A4PxSSblZkkxiotC+EFwoPSPc0NxtCaFzf3w4MxsulFm77YdILwZCQfsygGR0khhIQG4svYzInQAvrykvx3Rin16ElFksVnozUs3lN0IoGpQk/FJhsj26exTCZI5Jmh8/0xdJZFFYToeIL5/ihTe0OY/cZ8vBP53xrB6FqcqEVHE4RH40wdmEVbpqb6rAqiE/m2/VFymcV4R0bixPO/c9/3+mi8uopoPt6zAxEU6sV4R4ZjLISkjclkNIdCAY5GM8cZY74/isa4GIjwYJR0SvqeZCRJbDJRvMe5gegymcrwYIzcEkGs2GQChRo2P9jAxN4ZYpMJknlpyNBgDLVGsaztXH+M8XfnyCSyeLocRXZtaOCEeI8nmMs/8+MvjFF7iYv41OKz0dmWxHssTmgwlv//CWITCQZellSd5vuiZBcWbzg6Eieal1mMTyeITSUwlOtwdViLOaL4W0diJGakGBZyhM4mkbFOzBGRoagk3czyHGGqLlmWI6S2MTL5g/En5oicMiO9R33Sbw0PxFEsoZIuzRHJhTQochjKVSRnlucIkPrs0hxh8RspdRuoOc+9mCOWxjv/uUtzxJ5v9BK40YOmZLG/RMcW391ijpiO0/lkgMTcAtGxRDHHRUbixPOnN+OTiWU5YvZIBJ25hGN5SfNCjgBIzC/PsyqtEoVSUbRgK+QIgGxM6rMn5ojI4AKHfzxI+Qbzom1AUorh/NDyHGELWDG59cRmEiSmFinKsckEc3mFqkKOMFbr2PiROmb7wqiVSg7lT6tFxxNFNavQcKyYI3qqd9D/2z5UKhVXXHHFXy2jeR3rKKCnp4f777+fr3/967y+51UiuTkcMalonh+IoV4ifxseiTN9MERqPkVqIYNChVTvjCaZ71ueh8JDseL7ZiwvQaEAna2E+eOSBPJSGerwUKyYH47+fAT/5e7FmuKEvB8ejBbz/sL0ApHhGOl0hq2faiQ8Eie8xFJsfiBazEML4TSRkRjj++aw1pkIDcZQKRd/23x/tHhaPhVLERmJEcmPRSqdskiQKLQt5KFUCiIjMcKDMWJTKQb+MI61xlRUSJrvjS2rVSIjMebz1gyR4RjZDis2Xykas0Yaz5fWT8Ox4gn4yEicyEgMjVnNlmsbmO0NL1OiCQ/HmMtLS0cnF6R7OibFPxVPkRxYHu9w/h6kPB4jNrUgPcf+KIol9xsaiBbzfnIuSWQkRnxyIR+HGAZnCe4uG6NvzRAaiC7WKpGMFMNR6XtC/TEsPiP2oJmjvxqR4l2w2EhJ8Q6P5OvTgRg6i5aBVybz10YXa5V8vOeH8mPccJyIM0ZsPsuB5/qxN5pRLbn/8EiMUP6kTTgfw1QsQ2wqwsi708tqlfBwrJj3o2NS20L/ySxk0Rg1ODaWMbUvRGQoxvzg4tgZGYmRmM3HpTeK3q4r1hWRwRjhfBwS0/l4TxRiGIVsjra7pcny/GC0WKskQlJcinX7YAxlXklr7zf6CFxTuVirhDMnxDCOpnTxfZw8MEeuGO4skZHFdy40HENv1y7ps1EUSpg5IJ0Kiows/tbwSJxSd4xULFV8Vo5gGY4NFnp+MUp4JE5oYLGtFG+pFivkiObbvAy8NrksR8TG8zHMW4MVcoTGrIFUZlmOiE1J/Ts2nSh+biFHWPxGwiNRqZ5OwcKc1Daa77Nz/TFYMp9BQfE5FXJEJB/D0EAMdcli/5jvj1JaY8TRbGHkzfF821jx2SzNf4UckYpl2fOdHurOryQ8WIh3FIND+74cUXW2A2erhchYjPmBxRwRqdSTjaeKn7s0R0TG4tLcIrWYIxbyuXWuN7o4n9GAQq1Ak7/HUF+ciDfGwvRiP0xG3p8jht6awtlixrnBUjwFeOJ8ppAjPN12VDrV+3LE0vljIUdsvKuGHDkiIzGG3pwiNpok1B8rzuUL35NKZEi6orw1/TuSB5LYbDYOHDiAwyFucbyOdXzQ0N3dTSwWo6Kigvn5eb78rS9wYZO05rUQShPqjxbXD0KDMVQlqqJailKtQJ1f7E0nsoT6o8X1sdBwfNkcValWAtK7mk5LY2lsTPrcyGiMUL9WsllLZ5nYO0squnjqNdQfJZy3FI2OxQn1R6UPAWZ6omh1KnyXVmCpMTLfHy3mt+hEglB/lFR+bJrri1JSpiabzDF1KETlVltxjIhPJ6W2+boh1B8lGU5BWiJMKLVKcjnp/hNzKUL9UeIzi3kom1/HOvyjIRquqyyuoyTnpM+NTy+uuy2df88PRHFutFC5zU7vb8eXxTt8wvx7vjdKMpHBd1kFGoNKaluI92icEsviuspcb5RcRlJsUuuUxCbjREbzcRmJE3JECyFkLp/304kskCU0FCU6mY/3uBTvdH6Dbq43uqxWiYzFMeXXvArxXgjl17H6oiQsi7XhfH8EW6AMZ4uZ4Tdn8jHOx6UvSjq2+Mzn+yJExhLM98bQOTRSDGcXY7h0zWiuL8LCTIqZQ/MoDWqqux3EC2PEYGzZOtZcX6R4f4d/NEz9JRVFm4zQQByNcbHPzh2PkM4/13QijVKlwNFsZuB3k4SH4+iWrGPN90aX3VOoP4olfwguMlqIYX487IuiXnJP8/1Rspkc7Q82MPLOlNQ2mi3+TWta0gf6IoSGpHr84A/6pTWv/Cn0UH+MhfCiQmKoL1qsVQZenkSlVhCbSBY/d6mt73xflFi+3y2EkoT6ooy+PVuMNyfGezY/nwmlCQ1EsfiMOFsszPZGUC2tVf5/9v4zvK3jTvvHP0Q5BECAAAkSIAgSBEiwSiQlUZIld1vulnuNW2zZTpzEdppT9tl98avPPs9uNluSbLIpTnViO3GJa9zjJjf1QlHsvTeQIAiiEP8XBwBJizhnmJ/z302W93XlShgNh3PmzPnOzHfuue+uYHptmIoRuhwNJecUnhIjpruW9jPLY4ShQE9wKESgS0qr7AS6Vn5Hy2NEll7+OZx8nuluOUYs7+9UjIjMy+9Vn1QKSsWIFf29PEYMzJHns8DishixvN7kvm95jJh6IUgkFMOQu/z7DKbtX5bHiIa7fYQnIwR6gulnne6eY2E6lXtdGZMDHXPkuk0M7h1P9oscIwAWw7EVMUJj0KKVNBhsOsLTsXSMkDtcfp6Px4j5yRgnHu/B5rOs2D/O9MwRSD5rKkaYirLJ9+cyMzhHoHtJMWq6+9SYrLfo2Pw5P5PtM4SnI2kbwkBPMD1mUzE5Mhuhr+Q4rW+1oNFo2LNnDz/84Q9Zxzr+kvHrX/+aiy66iD179vB+75uEXpnBFZEJnoHeOaRlqnHTHXIcigbjLEYX0WZrkCx65kcjzPaFVsSh6a6ldViOXSJLA5JJrmu2P8Tisrg/3TmXniv7/ziKVpfF3FBy/TEwv0J2YqorSCS5PorOx5lql+Na/V0+ZvrmmOpYUm4KdC3lVeKRONMdQSbaZ5kfW2CmP4ROu1TxdPcciWSsi8flZw0l26A1ZaHRZaVFYgJdoRV5oemOIMHRMPH5OO0vDGArM7OYtGT9+B51ujPIXDL/MT+xQCQp6jD4/gQzPSHCU9EVZVO5qYVAlOmOIFlaqL25lKnOuRXKL9MdwfS+fmFGLjs3JP8cX5DjbLoPO4PpWB6bizHdEWQhECUSiDE7OI8uZ1m/dAXTe+FYWO7DVA5sbmgem8dEfq2FyROzBLpP7e/U+dbcUJiFYAznlnyG90/JZzip+Tye6sNkv4wvMN0RZPRIQP637jm0y9YqU53yugzk/Md0R5D4XILmR3uwlJhO6e9U3m1+Si4bm48TDcbpfnUYadkZZ6BzLp2bigTkfonMJcdaOEqO3YbNl8N0+xyBzqDsSoR8vjjdEUyf+80OzGMpMaVzIFNdQSKp/p5P9ksyPxYcmkcjaai6qhitpGWqbXapD+cT8jhMfhvB4TB6izy+u/4wzMJUhHhybRiPLyb7O1l2dJ7pjmBa2aj37bHk/mfZeEmO7/lxuf3x1JhN5rpTqjzTnUH5/At5zMplk3ms3jmkXB2urXaG9k0y3RFM591SYza1pk7FCM95DsaOTq+IEQuzyXGY/LZTMUIraUCbxXTHUoyIzkbTYzbV36kYYXRIBHqD8ncUl2OKkf3SAAEAAElEQVTEx8fs8jxWlkaDzpDsw/SYlcvODs8jdSxbG3bPYSvPwbEpj9HmafndJNdAc2Nyf8eT/Z2OEXFofqQb9xmFBEdT/S334cdjRF6lmaIteQR6gswNLMWI6Y5gOh//8RgxcSKARptFPLKY7u/o7FIfLo8ROpMWKbmuDI2G5T6cTY3Z0Io8VipGjB0NMNkWwF5pXervwfmV+5lkjHAlFaM+3t8r8ljJGFF2gRONlMV0R5Cx4wHmxyPoTXKblpdlEeLGCO/FXiF8dJ7i4mKOHj1Kfr6Yzed/VWQlUjv5v3A4HA7GxuRkTAHFbMo6XbH8pvsqSMQTQhZAUr5EJBiBiGxPFBxQ1x107czHe66Tlqf6VG3CKna7sJSYOPQDcdsGKV/Cc2bBEukqY0HY/sUaxo8H6HxBzM5Kypeova5EqG9E+yOFzZ+vgKwsDn6vXah86jbtB//QolpWMkPTg3WExsMc/qF62yuvcVNQZ+XoLzoI9qnL6RkcEuFR8Wetu82DVqfh6M+6hX9nTZAQsiMEmbEcC8cZeFdMnvr0v61jpneOY79UlyPOKZJw73TQ/cogkaC6pZ9kXlIV+qRhr7Pgu7CIlid7hd5pqj0g1qamByvRGbRC49Fcmk3DHRVMtc9y4jF1menKa9w4NtpofbafsUPqlhfus+2Unl7IoYc7hcdlTpHE3LB62fLLXSSii3S9LCZvL+VLbL6nnJGDU3S/ovw75tJsCmpsquWWw7nNRukZhez79zbVMZ9SWDrwHfUYs7w/RL/vvCozVVeX0Pp0v6IFXjARpLPwAKNjoxiNRh5//HF2796tWv861vGXghdffJHLLrsMgCyyOINLMWRlthzIqzbjv6yY5sd7mROQ0s+269PWSMv/txI2f66CeGSRIz9RtpHSm6D+Lj/drw0zuQYrV8/5DsaPTKlaMHl2OXDU2zj8w3aiITGr27ILHMQXFul/e1y1rKlAL2QDBWBySWy81Uf36yOMHphWLe/ckkfFpS76946lST9KqLmhhDy/hQM/FLOy2v5QNeHpiJDVl94kk7pELe4sZSb8l7lofWZAaIz9KdCb1C2mQB6zxdvt9O+dIBpQf4C6Wz3kenJ4/+9PCLXDtUPegA69PylUHj3C/bhW1N3qITYXo/VplT3JMoh+01afibqbyxh4f1xoPDbc7cNUkM373xazRtz+UDWLkUX2/VubSLPZ9NlyYuE4x34uZtcBsmpVaESlMXrYeHMZJ5/oE44Z3oudFNRY2ffvrarP6r3YycDbI0JjN4WGe3xMtc7S95ZyTMqvMVN5RQltzw+kiWpKSPeHHvR6se+p/i4vi7EEx1X2JUcTHzBnnmJ+fh6fz0dbm9h7Xcc6/lJwxhlnsHfvXgDclFObtUWxfNV1JWh0WbQI7EV1hiSvKCbbE4nYAFkrcqjc7abtmf60jW0muLblkVdpofnXvar1Lm+Tc1sBA2prIx1suruCseaAetl03RoqLi/m5O/7Fe2LQLw/Uqi5sRSdQcOxX4jNFZs+U442W8v+7wjELB1se6CK4HCYE79R78viHfmUnung+G+6haysJJuOyLT4s/oucqLL0dH2lLhF75qgQ/X9pJBSJhg7LGYdvf2hGqY6ZoXarjPrKGrKY3j/FDEBu1edASEbxT8FRkc2/stcdL48nCbbqTcIdDqxNtXd4sFozxYaj5JNx+Z7/IyfCNDxvHq+uXhHPp5znLQ9O8BEs7olbH6dBd+uIo7/ukv4G0yRfNTg2pZHll4jbOGnM2jYeKeP0cOyeqVaG/JrchkUXacjr3nLznfS/EiX6nuq/ZQHXbZYrnn5Ny36fRsd2dTeUEr784OKFpCxRIzmwvcYHRvBZDLx7LPPcv7556vWv451/KWgtbWVxsZGwuEwerLZycVIWZlV8Y2FEhWXFtPx4mDa6kwJerOWaFA+aJfM2qQqnTJSKkhtT6vMXVqovqaEwQ8nmO0VtMpEVoWZHQipWjbZ63JxNeVz4nd9xAWtbgvqcsnSZTF2RH2eFu0PkPux9kYPvW+NMt0+p1re7DZSc30pvW+NMnpwWrW8e6edoqZ8jv5SzMqq/k4vC4EorQLri5TKjKjFnWTV4bugiN63R5lfwxnlWqCVxNqjNWoprLMyeTIg9K5Kzy7E0WgTW+8CtoocNHoNky1iFlloEbZWWys85zmIxxaF9xmw8vtWgmTVsfE2H/17x4TGo++SImw+s6zoKPC89Z/2kliEY7/sVi+MrASVSCToeE6MRwCywpWIbZvvoiJ63x4TjhmF9Vacm2wc+3WP6rM6NtuYaJkVrhtkJavZgZDq3sHokKi6soSu14aF7N3S/aEFraQVapP3oiI0uixV/kZ/ooNBSwdzoTl27drFSy+9pFr3XwL+akhKADfffDOPPfYYAFq0nJd1jdDvVV7jZvx4QPHAGeTD9fo7Kgh0zNL8qHKiJ9dnovrqEg7/vDut8iMC9xl2Bj6aUD2Ib9jjI8dl5OCP2tdEnBEhiJRd4KD4tALanx8QIkuATLSaGw0z/OGUcFtE4GyyEQ5ECQgsMkC2yxo6OMFst9gC7E8izAiSgzZ/oYIsTZYQWSJVPjYXF9polpxbgOdMB23P9DN2RH1zv1ashaS0Vmz/Wg2J+CIffbtVtay5NJu6m310vTIkNBbLdjko3m5n/3dOChGm1kL0Sv9KUs1HBLU3ltDx6qhw+fJLi+h8cXhtDRJA/Z1eTv6uV6xPkC3psrKy+PCfTqqWXes3tOV+P9m5et771gnVvnefbWfgLbGkUQobbisjkUjQ/Ihy0lbKl2i6z8/c8Hza2lMJdbd5aH+6V+hZe6QTtC0cB6C8vJyPPvroL57RvI51rIZQKERhYSGhkLxIr6SBsqwqld+S7bp8FzhofUJ9015/p5ccp4H932lRPcyuvbmU2FyMtmfFN1Pooagxj+F9yusXvQmaHqhlbnSeoz/tFq9ekNSy9UtVLEYXOSBI4tZb9fgvLeKEynr0T4HnfAe9r48KlTU59biaCugQJMLrrXoh0s7KX0KIcGIq0FN/VwU9b4yovk+QD7O85zs59HCXUJu2frEKFhPsE0yqrAVrJSmtBc4teZRfUkT784NCB3d1t3rQShrhcb758xXEQmLr1z+FLLWWMWMpM2GvsdD9khgR2lpuQitp1kRWFEHR9jykHJ0QsQrAscVG+cUuul8bVt1LicaUFEwuicY7K5hsm+Xk7/pV686rsQkRGlPItuvZcHMZLU/2EhpSXtjV3FCCrdzCwR+rkxpt/hxs5Wa6BQjz0USU97NeYiERRq/X86lPfYqf//znws+wjnX8JeEf//Ef+frXvw5ANkZ2cjG65VfXM8B9ZgEzvXOqB1WSTUfjngomT86okg4MBXqqriqh5Ym+NRFb8usszHTOqh7El19WROEGG4d/2kFYkJwNYgSRgvpcyi8upv0FMYIlyASLyFyM8aOfbP7F6jMRjy4S7BcjnLjPKpBvewsSVHQGTVppSRiC5KCaG0vR52iF1ww1N5USjywKEYPyqy1UXuWm7Tnxd7QWrIWktFZs+kw5ZGWlbeSVoDPrqL/dS8/rI0yeVH/OgvpcvOcXceznnUJknLUQvZa3SYSMBeA518Ho0UlhElHxDjuD768txyMC/5XFdL8+Ktzuhj0+tNkaDn5f4B2tkXRWc3MplmITB//9pHos2pjLeMvMmt6R70InWqNW9dKyzgCbP1fF7MA8LY+r7xl9lxbR98aoULwY1/VxKPqB/Hs+Hx9++OG6cuU6/ioRj8fZtGkTx44dA2AjOyjKKlH9Pa0ERacJEK2RzzLyK3M58vMu1cPslC3aWsgSIO+tVAk8Wth0TwVzQ2HanhGfG0VJLXWf8pBIJIRzWFpJQ8kZBfS8IZabWgsK662MHRU789QatTgarAx9IEY81RrFSAkrfwkhwolW0rDx01763h4TIu+Y3Ua85ztofWZAiGBVe1MpWknzZzkPXCtJaS0wFxuovr6UzheHmGpTz+14znOgN2vpEMwdV17tZjG+KFb+TyBLiX5DIFsM5pWbGd4vNh6NBRI6ozatAvVJIdcnK2OJXg4wu41UXVVC9xvDTJ5QHrtr6Q+QCWH1ny5noiVAz2sq8UIrW0VOd4hxDUD+piuvcNH96mhaaTMT3DvtOLfkc+xX6qRGY6FErieHkf1ifIoDvMVkYhSdTsc3vvEN/p//5/8Rfob/6tCoF/nLwaOPPpq+WRYnzquJ3zGeUDnwl6CgJhdv0q9ZCcG+BQI9QTpfV0+WznSF+OifW4lMRsj1majY7VL9HSlfwnOuk8ZPl6uWPfJwF61P9a2JoNR4bzlb7q+RiRkK6Hl1lP3fbxcmKAEUbrRRvN0uXL762hLq7/CqlhvZPy0TlCS5f9TQ+lS/MEEJZHKFZNZgcKjXDTJ5Y9sX1A9gAQ5+r0OYoLRWjDfPMN21JKGnBtfO/BXewJ8k1lr3+PGA8ELQmCdLky8IHk71vDbKe39/QoiM4z7Dzs6v1VG4ySpUd8pHdy2kwxOP9wuVzymSx58IQSnXZ2LrFyuFvgeQiX4Wt4ninYVC5QE++nYrh/5DnaBUd6uHpgdrhdsCcOCH7bT8rk+VoGR2S5Sd5RSKEzlFElXXyJvE47/qUSUogfweA52zdL2u3uf2Ogu2MjOe84tVy3Z7D9GTaEOj0bBjxw46OjrWCUrr+KuFyWRibm6O8847D4A2jvB+4hXV3ys7uwB7VS6WsszKSyl0vzHKeHNA6FD+xKN9aYKSf7dLtn5SQd2NHrwXFqmWjYbgxG971kRQMjn1ND1Qg19gDXj4h+3CBCWA4m152HzmtAe2alsK9Gz+XAUmp3qfpAhKpgL1sqGRqDBBCUiTTcwlRqHyji02dj5US36dRb0t41E++McWIYISyNLciQSY8tWfE2D06DQjh8XJ+FXXuinYmCtcfi2outZNQYNY3bNDc0y0zjDdJnbAl5WlXmY5Dv57h7Bq6NbPVcqqqgIwFehlQs4aSG2zPSEhglLqew90hoQISnW3ePBerL5XTMHVlI9zs/jcP3pgmv3/3i5EUNryhRrqbvEI1x0ainDit72qBCWAmpu9lF/oQq8emvFe7MTklBWxDnyvXZWgBND71giTbTNCKlreXU4cDTbVcpOJUdqKP2IhEUaj0XD06NF1gtI6/qrxta99ja6uLrKzs1lgnj/ye6YT6gdVrqZ8POc4VMtFpmOMN08z8L46yTI8HuXIT7qITMcw2HXpgzMl6AxQcUkx/qvV8wedLwzT/FjPmghKlVcXs+mzVegMyuXGj85w4AftayK/FDXl42oSj+3uswqovFp9/xjoCskEJZ1MDlHDwNvj4go6yDZeOoOs7iKC+ru8bNqjnpMEaHm8b01rYxBfZ8wMzDN6bFo455VXZcZ3ifhcvRbkVa6t7pGDU4wKrhkNVh2JRILYgtiJ1vjRGfb9a6sQQSmv0sxpX6oRWkcDmJzyhyNK9AHo/eOoEEEpNf5ECEoGu476O73CY9biMWJPWhWK4sjDXRz9qfpltbJdDjZ/rgqDXawtAC2P9nHi8R5VgpLOrKPikmIqr3Cr1qkz6yg7X47hXa+MqLsqIBOrRo9M0/eOejzPKTbg2GDDfYZ6HO91H6NFexiNRsM111xDZ2fnOkFpHX+10Gq1HD16lL/7u78D4Bjvczjxnurv2TfYKGrMw+TMVi07fGCa0cNTQsSWgbfH0wSloqb8FZajmeA5p5CKS4qRrCpl43DyyT7anl8DQcmopf6uCtxnqJ8Jnnyid02X7Gx+MwUbrFhKxXJHWqOW6utKyM5TP6NInUuJ9F98Pi5MUEqVBzAInpWY3Ua23FeJ1aee24tHFjn8o05hdaHYvJzz0pvE5rDRowFGDk0LlQWZkJE6L/uksZa6IzNRhg9MpW3s1LDGlBdtTw8IE5pqriul9maxc1K9WbZ6XQshZ2EqIkRQ0hq1oJWt60QISp5zCnFtFd/nOOvz1lQ+ODDP4Z92qhKU0MKG2334LioSrjsajNPyu151ghLg21VE+SXFcv+ooLDRiiFfIj4fp+XxflWCEiTzxkemhEiBxTvsFDXlycQ2BcwngrS432cyMYrFYqG1tfWviqAEf2UkJYCdO3eSSCSw2WwAHOIdPky8nvkXInDwJx0c/JF8e8LZZFOsv/lXvYRHI+QUSWx/qIa8KrNqmyoudclJVpW5KTIZofePIxz+ubpVGcBEMqHS9GAlldeob2pGDk/JPuACgS8yGQEJmh70U3aBejLr6M86OPBd8cM1kysbg12c2LDjyzU03F4mVNa5zcbOv6kVnsiaHqym7kaxZP901xyTgoc8KYi24+D3xA95wqMRmh/pFbLuAijcYMVWIZaYWCvWWnfnC0PCVl9jR2b48B9bxKT0zJo02UcEwZEwobGwEBkvr8bMxlu9+K9UTzICbPtyFZs+K3YIV7Q9j8a7/ZTtUv/OAOyVFvQmHXrBRx3ZP82Rn7Wr97kkk/Cc22yAmDrS0P5J5kbCqkQsg0OOl4UNuRBBVbUOIDgQoffdUY7+olu1bMVuN/baXCGy1Kb7KqhLLhabH+1TJDWm5oOJ5lmO/KJDMRE0mRjn1cTvaO9qx2q18vd///e89576xnUd6/hrwOuvv86jjz4KQJAAryZ+x0wic2xtf3aIwz/rYLYnBHoUE+ezPSHak5vB2htL2SCwFjAV6Cmot+G/WH1T0/x4L92vDQsRIQKd8lxU0JDL1gcrVYlNoZEowcF5hgU2+SmLJ+eWPLZ8wS8rziig59VRDj/cLiRnDZCVrUWy6LGVixFbPOcV0nivn7xq9XUuyDZbmz4rdqDlv8JF/e1ectwqJ4jIG7zZwZAwWRlkcpgIyWLqZJB9/9KqalGTQu/ro6rWV8thr86lcKP4YclaYK/OpbBOrO7QUITW3w0I24gd/1Wv8IGjCNFwOSbaZplsFVtHV9/gYcsXaoTK5lWbOe1rNeTXCI7X28vY9mWxSwcAJns25iL18ZrCwe93cPwX6vs5zy4HjffK341IDIqGYLZvjuED6kkp/xWudN2icaLl0V66XhlWJYXqTRqKNuVTfpH6ujiv2pyOl6GRKK1PKiS9l80Hx3/ZyUEV6/H9iTc5wFsMDw/T1NREPB6nurpatU3rWMdfOrxeL+FwmC1btgAJ9vFHDif2Kv7OoZ90cvK38q1oa0WOrK6SAV1/GCE8EUNn1rHpM+XketVjfdm5RRRvs6MzKKcYY2Ho/MMQ7Wo2JUmklJ823FomtF8ePRog0BUUUj1JETHqbi2jeKf64VrzI93C+RoAi8tITqH43LH5M342CB5qWH0mtn6xCotH7OBu02er8F+lrvwAMNkWZFxA0Wc5corFnrPlsT7leWAZYsEYXS8MC5PU7DW5ODbmCZVdK+y1a6t76KMpYauv4ECYQz/oULTVSkFnYE1kmXAgynRPUGjtZXRkU3+HVzgvtfGOMmo/JZZHtfpMNN7rp3iH2GFWbqmZbJsEOrFjxNneeQ7/tF3Vhg2dvGex18n7IRHFoLFjM8z0hlSJWKl4mTojEFFGiwVjdLw0SNuz6t+E99xCnFvyhYhbVdeVUHG5fEmm57VRRVJjaj6YGwxz+Gcdigd8oUSQ1xNP0drfQk5ODt/97nd58sknVduzjnX8NeD//r//bw4ePEh2djZjDPDHxO+ZT2TObY8enOboL7sIjSwAKBJtFqYiDCTjl/sMO+WXqV9y0xq1uLbnU7xTgFj45hidLw0J2THNj0UgLivT1N1ahl6FxBOfjzPdGRQ6K0sRMSweo3zZXeVgfqJ5hqO/7BRWgNFqwWCXsLjE1iT5NRbq7ywn1yOW0yi/1EX19WJrKcdmGxtuK8MoIIoQHJhnqmOWyKx4zktKklvUEJ6McPxXPcwNiRG+J5pnhIUFAByb8sj3/3nOG9dSdyQYZ+CdcSF7NYCeN0aFSUeiZLMUJk7OMCmg5gRQdr6T+rt8QmWNBRKN95YLr/39l7mov0OsbgCTMxuTS51UmULbMwO0PKYuEmCvy6XqGjdoEVMYi8NUW5CJFnXlWmdTnlw3pGOtGrpeG6bzD4PqbdGCe0eB0B7RWChRd2sZUtLiT03pLjUfdLwwRLOKlV1H4jjv8gcGBgY444wzmJmZwecTf69/KRDf3fyFYWpqirvvvpuHH36YGSZ5LfEEp3MxxqxTk9cpNSIpX6L8kmKKmvI5/EPlpKix0IBGnXAHyDeMc30miMhECiWVl4F35UVJXo2ZqitLaH26X/VAX6PLQqdX37wNfziVvqFbtstBz9ujqoQlbbYOk0AwTpFl3GfbySszq8oCHvyeuqTucoy3zDA7KHaINNURInZmHG22GAdv9Mi08IHJWqWgt36xEp1Rx/v/S8y+I6dIIhoRU+spPa8QvUErpL5z5MfqN4T+VKylbovXSMl2Ox0vDAqpHeXVmJkStODwX1mCzWdm3/fbhfov0D7H4XYxQuBUZ5Cp1hl6X1e/rQSwMBMlKnj7bLJ5isI6q/w9CqDr5RG6BKwv8qrMlJ3n5NB/dBAcUO8PszMbrV6DToBJXHpeISMfjTHVEhR6Pzo9ZGlAa1Cve/PnK4hHFjny4y76/6g8qaes9478uItcn0novWslDTqBGwTm0mwqLimmoNbK8V/1EOzLvNgZq+6gc6AdZsFoNNLf348krW0Ru451/KXjpptu4oorrsDlcjEzM8OHvIIjUUJD1o5Vy6dUN+pu8GAty+HAiLr9j9aoQSupx5HQeJRjv+wm2C8nMxTtoqKk10b1d3lJLCY49nPlNYzOoCVLp0EjsIpOrYf0Jg32jVZVpRSdSYM2W4vJqiekcigTGomCHupv89L58jBzA5kTD3MDYT74hxb1Bicx9MEYOU4DU51ic3A4EEGrE1t39bw1DgkU25tGFNX3sRw5bgMNn/YxemhaWOHJ6jMJEZX0Vj3ecwsZeH9M7nsVvPdnsG77U+ouu8DBwnRUSGEq2y6z40SUbgA23OxhfjLCYRUySQpda7C07XplmFyPmFIYQDQUY7ZXbLz2750gO09MQQsQtviru7mUsRMzjB0OqH6/AIY8PXqBdRd6KN5qZ/C9CVXL8RQ02Ro0AvtDmz+HyitLOPF4L8H+eUYOKIwTPej1Mqny2CNLMVYJWVmQpddgytcTUCFiNXzah8lu4P22E0mi1OrlQ4kQY/42ptplZYC/+Zu/+au7SbaOdYhg//79fO973+P+++9njEHeSDzFTi7FkHXq4UxaGUUHVVeVEBya58RvlBPLBqsOjcC6C+DkE/2YnIa0ak8sRkb7oolmOelschqoub6EtmcHVG3oNFIWGoH8TqBjjkBSvt+xycbosWlVGyUpRys0J6SUa/LrLNj9FtpUlExE7JWWY+TgFOGA2CW0uaEQkWCULI0YiWPwgwnhfNrAO2uzkNlwaxkmRzYf/XOrUHkpSbIQsQgs2JiLlKtncK+6+k77M4O0I5avWSvWUrfBrsO1xU7fexNCikRmt4GgyJoYKN7hwLU9n8MPi1kgzo8ucPK36kqKqbLD+ycZ+FCMXBWejhKPihHgA30hJk7OMLhPrO7RQ9OMClzyMDqyKTvPQcsTfWJqTmYdOoMWnVE9lhTU5zLdFiQ0EubkE+p9qNGBRq8RykNX31BCliaLlsf6VO0jU9Z77c8NYfpoSkhBS2/QkiWwLZNsOmquKWWyfYa2pwcVx9RkWS8dUydZDMRxOp10d3djMIiTMNexjr8GbNq0ibm5OXbs2MG+fft4lz/gTdTiz9qwavmUkkbJWQU4G/M4+kt1+x+dQYtOIHcen49z4rHetLKHmsVYygLLe6ETbbaGjueUcyUanQatPossgWVg6lK0VgKr16J6xqaVNOhNOiSzTrU/UsSq8ktdDO2bkElUmcoG46rnucsx2TaLxWVkblhsfbQwHSEeFTtKnzg+jU7SMD8htq7r+oN4nkRWrypneN9kmtymBqNDYl7AjUcraXButjHRGmRhSr38we//eRxk1lp3Yb2VWDguZPWmNWrRaBEmNFVd42ZhOiq0FgCE7c8ABt4bx1wsRjpCIzvNhBS+geUY/GgCo12cdNTyuNjzlZ5dyOxgiOn2OSICfZht0aHPEfhutJBfaWGyZZa+t9QVIAG0uiwhsp6xUMJ/WTHtLw4yPxpRtXpL2c21/LZPSD0JQCdp0Fv0qn3iu6SIvHILh3/aSXw+nnEcxhNxBvzNdHe0osnS8IMf/IB7771XqC1/ichKJBKJ/+xG/DnR29uLz+djcVHePLkoY0PWtozly3Y5GDo4TWQykj4AV4NkhuprvUKKH9u/VkMitqi6gbfXWai43E3zrzuFCAYpOJtsjOyfVixjLs2m4Y4KZnrn1uYxKqFKatp0XwXZuXrhg7CyCxzYfGbhww3Rdvw54Wyy4dpm59AP1IlWRdvz0Jm0qmQLACQ4/Wt1zA6EhG7obftyFRq9Zk2HjqI4/W/r1j4+BFB5jRvHRhv7/6NN3aow1R99IaFvy+yWcG0vFCKSlV/uwpCnp/lX6ozfPyvWMJadTTaKdxRw8EftQr9Te2MJNr+Fgz/uEOpr0XZI+RJNn/MTGg2rfre5PhORudiabCk3fbaC+EJc9Rso2+WgeEcBnX8YVI15xTvtZFt0QuSu5XG//NIiOl8bztg3kUSEt3mWBAmsVivnnHMOv//971X/xjrW8deOPXv28NOf/hQADVrOYjf6rNUPf/QmKNpakFaoUSQULYNnl4PQWJjxI8qJ3aKteXgvLKL7lWFVksaG28tILCaELCNTMDn1oMlStTpquNuHqcDA/u+cELKuA2Q1JZWuMDn1NNxZwciRaTECiB4a7yyn540RYXUVkXb8uVFzQwnB4TD9KjdSQE5gDX80LkQS2XCbh9zSHCHSj6XMRP1tXvr3jtH7htimWRR1t3rI9eTw/p+B2LT9oWoiwZjQunXD7WVYSkzC7SjeaScyG2X8mPotp4a7ffS/OyZkr/ZnwxrHcv1dXsaOB1TJham6t3+xmuDQvHoMWWM7NtzmwVKaw8EfqpM5CzbmCr2PFMwlRmquL+XkU/2yup0Ctj5YSWIxwX4B9dzam0s58USf0HOm4r6pQI/Vb2FIQX3iROIgA8hjubq6mpdffhmPR9z+bh3r+GtEMBikrKyMyUn52/FSgz9rY8byhY1WZnvmCE/H0gfgqtCB/xIX7SqHWgCN9/jI0mRxSOWgKKfYQNVVbk4+OUBoRNy+LK/SrHoIIdl0bL7Hz2TH7NoumulQJTVVXuMmt8TE/u+3qZYFmexQUGel5bE1kJYE2vHnhNVnonhHgSqRDeT3oc/RCZFKALY/VMN056yQotLGT3vJztWzX5AsvBZsf6iGqbWODwEU78jHc46TIz/rEhrXpz1Uw5RgfxhsOgob8+l7U/2Cm2tbHiaHgY7nxW2Z/yxYw1i2eIx4znJw/LEeod8pOacQ15Y8jv6iU52ktIZ26Ayw+fPVYmTOAj0kEkIkqRQqr3GTpcmiVeXAs2BjLuWXFNPxwmCa3JkJeVVmjPZsdTUpWBH3XdvyGDo4lbFvYokYe3mRCAtYLBauvfZafvazn6n+jXWs468dP/rRj7jvvvtYXFzEgIntXICUleGyqhYK66xphRo1QlEKBXW5ROfjBLqU8zYWj5HKK0rofm1Y1Qas7DwHWoOWzhfF5wbZkkqreljvu6iIvEoLhx/uFFNMAVlNSaWo3qxlw61eRg9NMShiu6YF/2XFjByaElZhEmnHnxvuswqIBKKMHVEnuTib8phqnxFSx/KcU0hhg439/96m+oySWUvD3RX0vTPGyH4x21pRlJ5diKPR9mdZ09V/2kt0PiZEtPGc56Bwo1WoP0Be58YXFpnpVU/kll/mYuzotPi4+3NgjWPZd0kRgZ45dRu2JOrv9DI3sqAeQ9bYDs85hRTW24TInJZS45r6WLJqqbqyhM6Xh1UVl2puLEWj19D8iPqZuOecQgbeGxOy60vFfa1Ri7XMpBirhxO9HONDAGpra3n99dcpKhK3v/tLxF+d3dvH4fF4iMfjbN++HYAhengt8QSRxOqjp+e10TRBqek+PxsFbEVKz3VhKTVRUK9uoTF+bFpIrmyieZYP/7GF4EAEg0PCe6G6/3npeYVUXFpM6XmFiuWCfQt0vz6yJgLKhtvK2PGVWiSz8pA59IMOPvgXcdJMbokJQ56kaoWXwmlfr2HzPWI2WsU77TQ96BcqW3JuAad9vUb1+QDMLiPGfAmzW73Rwx9OiRGUACKyJV/Xa2ILxcM/ahcmKNnrLJz29RqhMbpWbHnAT8MeMZm5tqcG+Oh7AgQlgAgMfjhB716xg8DgQEQ4wZTrMWF2icl5Nn6mnM2fFxtz/iuL09YaarDXWdj5UJ3q95pCXrmZbIseUYGeE4/38963Tqj2df2dXnZ8pQZJzCGFyGSErleGhGwp627yUH+bV7WclC/hu0iOcYf+Q8z2cOiDUUJjYUaOTquWLTm9gMJGdXn2nCI57tfdIh92db6YmaA0WdPD0by3SZBAo9Gwb9++dYLSOtaRxMMPP0x7ezs6nY5F4rzJ72lJHFq1bDREmqBUe2MpTff5VW3UAJyNeXjOUrcjmGieIjgYYviw+gb7+C970uQCz3mF6E3qa4K6T/nY8Cn1OfDEb7pof3FAmKCkt+o57Us1VF2rbOcbGony/rdbhBVq9CY9BptEXqWYbHLp2QXs+EqtsK1X/Z1ePILzWuO95dTdKkYusJTmYPOKqep0vjgkRFAC6N87Tq+gkuFsT4iPvtsmTFDacHsZDfd88jK8BQ25bPtyFeYSsRtXH37rJMd/IaZ62fPGKIMfiN3GAxh8b0KIEGMuMWIqMGAsUL/JlW3Xs+0r1Ti22ITasPlzFRQ2ilnfNd5VztYvitm86U1gyM8mt1TQ0i4KH/7rSVWCkt6q57Qv11B5lZiFMMDxx3rpfGlIlaDkOd9B5ZVuob7znFeI3qon2D/Pvn9pVSUogaxsO3xIPZYWNORi85kp2aFuP1B3i4em+yrQm2QVvEwEpWgiSn/1MQaz5PXn7t27aWlpWScorWMdgNlsZmJigvvuuw+Ablp4M/EMC4nVCRJjhwMyQckAm+8tp/Jq9XhUtCkPe601bWWkhOGDU4ypHKiDbC908PsdhEbC6Mw6ISuo/DoLVdeUqJaNTMdoe2FgTQQU34VOtt5fhc6sfNu37akBYYISgKXEhKnQgE5QdGTTfRVs+JR6HhIgv9pC/Z1esbJ1FrZ8wZ9WMlKCIV/C7DJicqo3eqotKExQAuh/Z4z+d8XWGi2P9QofZpmcBjZ/zi80RteK2ls8VF0nZvEy+P4k+77XJky8635jmMEPxfojPB0TIigB5HpysAqunSuvcbPhVrExV7wjn5obxWwJc4oNbHuwGtc2Mas8q8+MsSAbnUFMqaL/zTE++k6rKkHId4mTrV9Q/7ZTiIWh/bkBTvxWnaRXd1MZtTeo953OoEnHrbanBlQJSiCvuwI9QQKd6vG09KxCirao97POrGPzZyrw75btpIY+ykxQCpQOctT+NhEWMBqNHDlyZJ2gtI51JHHvvfcyOTlJaWkpYUK8o3mO3kSG+SpOmqDkPsNOw50+JBUbNYCipjzcAlZDs0m7sECnOsmg543RNLmgoC4XrYCqr393MVVXK+elQLZRan92QJigpJWg4U4fnvOU83rRYJxDP+4QIygh276ZHNnCCjX5VRY2f8aPySmmOuO9qAjHZptQ2YrdLnyXiJEL8rw5WARzDyP7p4QISgBjxwN0vzYiRBiJBOMc/GGHMEGpbJeDSoGxsVbkuAxsvMMr/E6O/rybtqfFFC+HD0zS+9aoMIFmqi0oRFCSrFpyS01C9nBaSUP9nV5sfrF1WtU1bqw+sbIVl7nYeIdXqCxayHEYMBcJqjkBR3/ZrUpQ0koaGu70UXKWej4ohd43x2h7fkCVoJRfJe8F86vUc9r2ulz0Zi2RQJxjv+wRsoSbODHD2JFp1XI5LgOF9Tbya9VzkaVnF9LwaV+aqJSJoBRPxBmsOkGzZh8AX/3qV2lubv6rJyjBX7Hd28fxwQcf8Prrr7Nr1y4SJHiLZyhKeNiYtX3V8pHJCLN9c/S+o34Q0fHcECMHJ9KKR0Xb8zLeuF1uzbXlfj/BgTCtTylvTmquLU3eiBhTtMjqe2OMbIuePoHDk9TtiuKddoq25nHgO8o3YsdPBNAZtUIWXURkm67Ky90c+WWXIklChIywHLODIWEfVYNNj96kI6dIStvRZcLcYJjEIhgKDUSCyhNPx3NDqrKYy+G90ElelYWD31O/dbyWeoXeRRLR+TiLsUWyxNTA14TFWIJ4RLwtIupkKaQkQ9VQfpmLXI9JSCUA4ND3xe0GE7EEi4J6c6bCbLJzxexDZocXCE8vMPKRYIJOUKa78d5y4mF58hVRRxprDpClyyKiImzgvdCJzW/m0Pc7xBQFgJ43RwmNqS8A6m4qxZiXzcDeEcV2mN0SdTf7OPn7ftmuT+F2rmTWkOszM350hkM/7SISVO+MueEIwf4QfQrEuPlEkL28ROJEAovFws6dO9m7d69q3etYx383VFRUEI1GOffcc3nzzTfpp53BRJeiqlL/BxMsLiaElJQO/eCk7DuEfOgy2z27KgEoGlqyC8urNlNxkYujv+5WPOzXW/UU7yjAUmLiuAqhu/25ASE57miItOpT473ljB6dVlQLiQaizI3OMy5AbE8pldTd4oHFhKIdVDQQ5YN/FCeTDx8OkFdpITwmtvbKtknkhMR2+4uxRRYF1w8fffukUDkA9NBwh4+JkzMMvKM8xwY6QwQ6RaWtEBqbKSxGF4WsFv4UJGIJovPiN7ajIbF+DvbPC1l4gUziHjsaELqxHeyf5/3/LabOZLDqSSwmCA6pv5cctwHJLK/3RTDZMiNfjhBANAQf/ZP6uDO5JOpuKKPlyX6hvosGooTGwowdV7khqYdNe8rpf3ec8WMzjB6YVq279/VRNLos1bLZdjnGmYuNqqSqyitcGAqzOfpwN90qipSOLTZGD0wzfmSG0Mi8kC3i4IcTxMJxRQJnc2I/g3RBC/h8Ph577DG2bcusjLyOdfx3xfe//32++tWv0tjYSCgU4m2eoyxRTWVW/arlY2H5EHxcLR4Bw/ummO6aTZMB8ussTDavnmBdrnJb+ykP86Nhul9TJlb4LnSSV2FhvGVG0QZssnmW/vxxBhXWUMvLgqww4t5h59ivldVZJtpmyc6XxJSlYjIppuqqYlqe7FO0Sep6cZguxG08Ah1BwtOC1gJGLdlWCaMjm/lR5X13aDTMYjwh26uoWEaN7J9WVSteDscmG4X1VtV1M8Dg++Jk6FhYPM+0uBAjERMvvxYsRhdZFLQ2A8TGUBKi/exsspFflSsTZwSqF7UlAViMLBKXxJ7P5DBgtIutpRYmIwSH5hkTvJ3f/+YY/W+q57MrrywGDfKBpEBfTLYFkSx61fdS2GilcKON5kd6mGoVU/7senmY2IL63qf88mJsPjOjx2YU2yHZdNTd4KHzlWFmukOKdn06A+S4cwh0zNH8WF/SZ1MZsWCMiZYAIwrEwrR6Uu8COTk5XHLJJbz44ouqda9jHf/dYLVa6e3t5W//9m/5n//zf9LKYXoT7WxnV0ZVpfHmWbQ6jZBN0rFf96BN2u7muAyEJyKrn7/El+zCjIUSvguLaH9+QJHEopWg9BwHud45Ol9QPovqfnUEvUVgvx0nTeao2O1iqiOoqM4Sj8jlpzsE4m3yUUrPLkRr0NL9cuZ1VTwCR34idkkLINA9x0zfHAszYnO3qUAiIXhQFI8kSMTF5te1upmUX+Ziti+UJsBlwvx4hPlx8bM4YRUsIB5ZXNOZoCiysiAeiROPiBtAibYjEogJW7L5ryhmqiOoqmYo1xvn0H+InTfqzTri0QQL0+r5EsmsxZAvIQkSrafagoQLBPOWcTgm4F4jmbX4r3TT9eqwkG1gPLLIbN88gW519f7Kq92MHp4m0DXHTJd6DnCydRZdjlbIVrLsXAfTXXOqpKqipnzMbgPtzwyqfk+5HhMzvTI/4egvO4XIgmPH5DqVvq3BRDfN7IOTUF5ezu9//3s2bsysjPzXhr96JaXlOP/880kkEtTXy0maYXoVVZWO/bKHma4Qkhl2fLOW2hsz35xJEZTqbvNQfqGLXJ8K81WSPxYRL+xDP+ig/dl+mZSishdsf0ZmjZZd4GDrFytVy+e6jeiNOlUFoZH902lrJ9fOfNV6NZosNLoscgRuTIO84d725SrVept/1UuPSoIrhc4Xh3n/f7WoEpQAplqDfPitFqFgmIK5NBtJgB1rsOmRcnRCalFSvsSmz1VQuEmdhWl2S5z29RpKzlVnpc50hfjo262Mqdji/Ck49P0Ojv9KbCG17StV1N4kduuq8TPlQgpiACa7JEwOWqua1JGHu4TtCI/8pIsPBQ60QCZrHfz3DlWyWd3NpTTcLa7EoM3WCN2EcO2Ub3ENfzjFkR+rL95znAayLXrVcey90CnHHmDovUkCCnZCKfWmQz/poPXpPlWiVCKOHFcK1W90Nn7GT+Vumc0fmYxkJGwZHBI7/6YW/5XyDeKjv+hmtnv1Q8aZ+j6OWd9Lqyc9++yz6wSldaxDBX/84x85ePDgClWl44n9q5ad7Qlx8ndyIta/28X2h6ozqipFQ0uEkaor3Gz8tLrinTE/myy9hkWV3EM0EOXkk30cf1Se2/QKS7rp9rm0ksyWL/gpVrnppjdpkCx6zIXq66NjP++RD9j0CCnF6ExaofifQv2dXioucymWiQaiHPlJlzDJZd+/tHLicTE7k6M/7RYm4KaQVy1wOz4K2VZJeA3qOa+QDbeJqbFUXe8WVlc88WhfmiD3SWL8yAz7vtOmqqoDUHJWAVu/VCWkTubYYqP+Lq+QgpjeqpfVHXPVEyWmAj2mArE1GsjEsX3/0qpqoQgwNxDmg39sESJKgaza1vZ75Rt2ehM03e8XG2uAIS8bjV5DllblJoBeVhgCeeyr2S3qTXo5VqjdANXD5s9XULRdvj2vSCRKvoaFiSitT/UJWVvqcnTojerv2ebPoeISF/4r5JiiRFCqus7N9q9Wg16OoZksbsKJEAM1xxnK6gbgvPPOo7Ozc52gtI51KMDv9zM3N8ftt98OQA8n+WPi94QzqCp1vTjMbO886KDp/kp8l2a+qZkiKJXtclC5243Fo37rVm/UostRjyFtTw1w8olemTyjQ/E65cA7sgJnQX0u9Xd5Va9emhwGsq2SqjrLTHcobcmWX21RrTdLC1pJK++RBZDrNdF4j09VUanrlRFZ3UQAo4em2fevraoEJYDweJRDP+gg2C9urWew6zAIKC/pLToMVklIqUZn0FBzU6ncx2plzTo2f66Coq3qCjHh6RiHftQpTC5ZC07+tj+da1VDwx4fvsvEbjxXXesWUhAD+UKcMV8SIuXkegVVIJPoeH5I2I6w/ZlBDgpe+ouFFznxm15VcpDnXIewOhPIlhk6AYJ66jsOdMwpkn1SMDsMGGx6dAbltbBjk7xmBvkwcLY3M0k99b23/r6flt+p98ViDDSSBoNNPYFce7OXqivlnFcsGCOW4dPWmXU0PVBJ2fmyWknnC8PMDa5eOOgf5nDem0RYwGAw8NZbb60TlNaxDhX8v//v/8vQ0BBut5swc7zFM3QlVr8YtjAVoTdJxnRsttF4Tzn6TKpK8aVDbf/uYiHFmuxcPbpsrapKTDwCJ5/so/Ml+fBeqxBy5scj6fOy6utKsNepnKtowZiXLaSi3P3KSJrYpHqWipzz0gtcEkyh7AKnqhpVPLJIx3NDwuSc5l/30vOq2KX67peHhc8xU8hxiUlvmuzZwhew7HW5+C4SW5u4d9qpvVlsTu5/e1yV5PanIDgY5sSjfSxMqeeE8irNbLzdK6ROZnYbKb/cJZY31YLRLiEJEPS0Ri2SVVwLJjwZofmRHiHyWCQY58hPulTJMylMtsym90oZoZVtzSylYgpKuhwdumwtWWrqF9ql77jr5WFVSzatpMFg02NSy49r5diTXyvvHUYPTquWj0cWaX26X8jaUmvUoDdpZYs6BRjyJSqvcuM+Uz6LVyIoFZ+WT8PdPrSS/L773lqdhB9PxBmqbuFElnxOcu+999LR0fHfiqAE/81ISikcOXKEvXv3kpWVlVZV+ijxRsbykQgszEaYFGD2Nv+ql8EPJ9KTt8Wb4WOPwEffbqX513JyuPam0sxlIU0u2fr5SjmpqwKjTUIjqQfclt/188E/tBAJLsr2ZSpzm8Eh4Tu/iIbblUkTE82zvP+/W5honhUi5+gMWrTZWiyCUozbvlLFlvvFrNwKG3IVCWbLUXJugRCJRjJDwx0V1KjYsICsgPPBP7QIqdpEghGMeRJWj7qEX3AgQiIuziiWzAjZ2a0VOUWC/mOkVJfE2mzMk8gRkBcHmVAoYn1ncEhUXVnChtvU5ZhzfSYa7vYJ2aDlVZnTFmFqKNxkZef/qMW5zSZUXp+rF2NLJ1/Dge+2KyoMgfzOfOcXCdn0WZPSk8d/1SM0jiWzHo2kVe238stcND1YJ8uxR+SYkQl1t3kwOGRFtPf/t/JhpLlUXti0PzdI6+/VE1Hh0QgLs1FmFRQbJhPjvJr4HR8e+YBEIsHZZ59NPB7nnHPOUa1/HetYB2zatIloNMpFF10EwBBdvJZ4gplE5k3W7GCY8HRESLmm9dkB2p6VDw5Mrsxz0uB7E3z07ZNEA1FMLknRSm3qZBCiMimm6YFa3GeokI+sepl8blJee0VDi3z07ZO0PStvlERs1DbeUkbFZcWqRJMjP+7i6E+7kw1SrRbJrCPbJnawVrQ1jx3fqBGWI66+voQct/ocrjdp2HB7GSanejvqbvFQc22pEInmo2+fpFVQ7tnsMmJyiK0/EwuLLEbF115rIeeIQm/VC71fgEQiAXExdbLcYiOmQoMQIS0aiPLhP52k+yX15FzFFW4a7vELtbnqOrfQQSTIB3vWcrFDuM2fq2Dz58TIZYZCE1qDFq1ebM082TzLh/90UtUurf42L/7L3KrjV2/SYCrQy338rZOq6kV6PeiytUIJym33V6VtiSdbMu9rLWWmNNnoxKN9HFBQg01959Ptc/S9PUb7s+pJoEBXiPlJ5QP1g4m3eYcXOHHiBF6vl6NHj/L666+r1r2OdaxDxi9+8Qu6urowm83EiPIOz3Es8YHi78yNhZkRsH7seW2UntdH0gfzRkfmxPKRh7uWLtLtcpBTnHltEEjm0DZ8qozN96rnerJtEjoBEuXAO+Ps/04bsWAMg02nSkDQGTT4d7upuU45LzQ3GGb/d9vS7VaDVq9BZ9KRnS+W46i/0yts5WYuMaTt09VQsDFXkYyWhg4a7qzAe7EyoR1g4O1x9n+3TUhBKBZexOwyYnapr71iwRiJWEJez4hAh7Cl11ogQtRKIb6wSGJBjNxvdhnJKRIbD11/GFGcj1PQGTTUXu8RsnE02HVUXVei+k2A/J2Lkq8sHiPbvlxFwUaxC4LZNh3ZAsT3FHGw5bE+TvxamWitM+vwX+Gm+ir1XHAqLnW9IvexmoKXzqhFZ9SpjjXnFhubP18tk8ZiMhEyE3yXODHYdcSCMQ58r13RQtGQ3F90vDhM6zPqlpaxYIzQxALB4cwExVAiyBuJp3m/7R2i0ShXXXUV8/PzbNmyRbX+daxjHVBUVER/fz//1//1f5GVlUUHx3gr8Szzicx7rvmJBeZGw0QFVJXanhmg5w15X6hEhpjumOPIT7uIBOPozVrcCnZLoZEFiMvqSw13+ymsV74Yp5VAb9KqX2CJw7FfdjPwtkyUMBao71PLdjmovNytSjTp+sMwbam4J8AzMVj1SAIXtkCeuzZ9tgKzWyw35D7DjrFQxNpLJkuJ2ICVnl1IzfWlmYlry3Dsl90ZiQ8fh6kgG4vgc8Uj4md3gBA5aK3QShpF4tzHsRhfFFInMzmyyS0xEY8IENLisgPQkIDNYOlZhdTf7hNqs3unnbxKsQtxxaflY1bYOy1H5ZVuYWGI7FyZfKXRCeS8tHKsOPLTLlW7tLLznFRe7lYfv1rZHi8eWZT7+EP1PtYZxS6G1N3iofpqee0XzEDIBsjOk9IExoF3xjnxaF9Gcmd2MtcWnozQ/dqIOgkMmB2cZ240TFxhqHUmmnmDpzjecozy8nI6Ozv54Q9/qFr3XyOyEsK7vb9OnHHGGSuUMBrYiSNLmXhy2tdrmB0M0fwr5U1R7Y0l5FXmcuzX3YoKPVK+RNN9fuaG5znysLKiifdCJwarnpbfid88L6jPlQ/hM6iDpLDjmzXEFxb56J9bFcuVnldI37tjQqQbkPsrPB1RJU6sBXW3eYjOxWl7Sn1DtumzFRjzJd77pxOqbd78hQqkHL0Q4aX8MheD+yYU7eyWw15nUSRi/Lmx83/UEp6W1XvUcPrf1jHTO6cqNWnxGmm4vZyRw1PCN8s+aVj9OQR654THo+8iJ6NHplQVtmpukL/f/T9oV7Woq7/Ti7nYJFTWXJpN9TWlHH24XVU5SBT2OgtVV5cw+MGEMEO/bJeDnrdHFfvNfbadsrOcDLw/rlpv2S7Hmm4HGBwSNdeWcujhDsU2mEuzqb+jgun2WU6o3O7b+qVKdAYt7/8v5e8312diw81l9L47ysBbyuoLI3Unae9sZ35+Hp1Ox3vvvcfWrVsVf2cd61hHZpw8eZKGhgYiEfnDt2DltKwLFX+n5KwCik+zc+yXnar2Qad9rYZwQH3NUXNDCbZyCwd/3K6sSKOH+tu9tDwxsCarL/cZdgbeVY4vnvMduE+z0/b8QNoKbtUmmKCgIV/RHm5FvecVUrzdzvFHe1WJE6LQW/VsuLmU1if6CClYmoBsJbX5Hj+THTO0/k55nWYq0NNwj5/hg5OqhJcctwGbN0e1X9NtNkF2vlHYvuyThv8KF46GPD76bpvq2Km71UOuJ4f3/17dEq3xM+UYrNKabPs+adj8OapKQCmYCvTY66z0vaW+kd/+UDWhsbCqApXeBE0P1DDTF0pf+FCC/woXWZosVRWltaDhbh+SRc++f1HeN6WgN2koaLCpfsdbH6wkS6dRtTi0lJnQaFmTXWHV1cUERxZUlafq7/SS4zTw/rdb0naSq8Hmz6H2Bg/Dh6boejGz5D7IyqCmIqNqf43phwgUD9Dd3Q3AlVdeye9//3vF31nHOtahjAceeIDvfve7AGShYTNnkp/lUPydzfdVEBycp01lj19yTiHu7XaaH+tRVBNBB9seqGJ2YJ4WFcVFxyYbOY5sulRImsthLjGQWCSjOkgKW77gZzGyyCEVpeTCRitTJwMZlUk+js33VRAORDnxG/U5SRS+C50sLiaE9tiV17ixeXM4+P1W1TbX3FhKjtPA/u+0qdbr2pbHVNssYRV7uBQsHqPyOPgzY+sXq5ifXBCyndv+UA1THbOqOUWdWcfWL1Qy9NEEPa+vTQ3hk4LJaSASCAuPR+cWGzP986oKWyXnFFK8NZ8jP+lQfce+y4ooqLFy+OEOVbtAg02H/0o3LU8OrMn6Tgk5xQbqbvIw8J6Y3SPIsWSyZVqx3/KqzFRdVULf22OqVoTOLTZGBOx3U9CZdfh3u2j5XZ+iApZk07Hp7gomWmboeF6Z7L3h9jKM+dns+1fl9ZTBrmPDrT4G9o4zvE9ZmW2suoP23lbmQnPk5uayd+9eNmzYoPg761jHOjJjcnKS0047jfZ2mVjqwE1D1k7F37H5c/Cc46D1qQHCKucKDXt8LMxE0yrkmeDeace5JZ9jv+oiElAIQloov8RF35ujQoSpFPJrLEy2KJ9z5ddY8F1YRMcLg0x3KOQPtJBfqV7f8no95zhofbpflTghCq0EFZe76X59RLm/kJVzGj7tY/LkDD1vKK8NtEYtDXf6GD4wqUp4kcxaLJ4cIXsxuXL5kv9a7Nw+STg22/Cc7eDIzzpV+6z07EIcjTah9WfFbhcWt0nYPu3PAZMzW3hs6c1abD6zkNpR/Z1eQhMLdKhd7tJC493lzPbNC6kBOZvy0Jm0aXLgJwHfJUXkOAxClnCA/B1XWFSt2GpuLEEy61V5ENl5EjqDhrkhcRVY12n5RGZjqt9Q2QVO8v0WjjzcqWgVaMiX2HBLGUMfTTCo8v26zyogz2dW7a9gYobR8g46OzvIysriS1/6Et/+9rcVf+evHf/tSUoAw8PDlJWVpQ/M9Ejs5JLV/WMl2HxPBZMnZ1WTBVK+hP8iJ82P9qV/zkRgyCmS0qSJknML6N87rkq6aLy3nMhMVPXg/rSv15BIwIcqhxlluxyExsLClmD2Ogtl5zs58F3l2zz1d3qZ7pmj7w11dq/BIdF4ZznD+yfFCQ8Syn0lgSQhRghRq+tPhO8iJ8WnFdD+woCY5/wa2pFXY2ZK4TZ0CuWXu5gbnhf6+6IkJcmswXthMYP7xgj2KU/cZrdEZB5VEo9cr+D7Ijm+F+HDb33yh3VraYfS971UCLH3KsFpX6phsk09aQZyOzfe5af5sV5F0pz3Qie5pSbVRcBy1N3iUT0ALL+0CNdWO52vDjH0XuYJO9dnovqaEo7+qluV3Oc+w87ARxMQkcdOylJzNaT63rUzH8mkE4odW79YSd87Yxm/h47EcbqQD4udTie7du3ikUceUa13HetYhxi++MUv8m//9m/pn6vZRGnW6rfmHVtsFG+3c+gH6hvU0rMLmBtfYLJ5Fr1Vr0gOMTn1hEai6E0a8mpyGVVJOptcErXXeTjxRK+iFZX7DDtl5zrpem1YmZCgh6rLi4UVf0BOTE+2zSrWa3JJVO4u4fDPOhUJBin4r3Bhq7AIky3Qo1pvtl0vZEcGMuEk+slwqVZg25erSCyimsRfazuy7Xq0WaiStcwlRgrrrXS9OqzaX2shKRU2WjHmS/QKrKut5SZxEovAewUo2p5H+YUuOl8ZYvhDMTuaNUGwHWrf91rqApk06Gy0cejhLiFCYunZBeQ4DcqWhXpovLOczpeHhQmDBQ256Axa1b7d9pVqEosJ1e+2+voStJJGncylh6LNefLf1ctWAZm+4eV9X3Wdm64Xh1QVuDznO7B6TBz9Wfeq/x5NRHmfl1lgHq1WS2VlJe+//z5Wq7rV5TrWsQ51BINBamtr6e+XY5YJC9vZhS5r9dvwNTeWMtMbUj201xk0lJ7nSBMVdWZdRlKCZNMRCcYgJl+kGz8xo2pdVXl1MfHIIp0vKBMhN3+ugixNlqrSTEF9LvGFRWFLsJxiA97znBx/rEexrRWXuwiNhoVs2nRmHfV3eBk5MKXav0u/hGpfKfX9Wuv6U1BQn4v/Mjftzw+krZA/qXaYSwxCNnXFO/IJT0WZPKl+yClKUkIHJWcUMtkyS2hEuQ0Gm45FUCXxgGwDJko62vTZCrK0WRz8d3UlpbViLe2QbDr1Z1vDe910XwVTbeq59VS9G24qo+OlQcIKa/DCRit5fgutT4hf7PVd5KTr9RHFdjs22Si/2EXXK0OKRCVDgZ7qq0s4+XS/YjsB8usszHTOEQsvYrDr0paaqyH1fVsrcjDlS0KxZuOnvQy+P5HxexhO9HGMD4EEhYWF3HzzzSv25+tYxzr+v+FXv/oVe/bsIRqNkoWGek7LKIxgKTVSvN3OSYHYlV9jIRaKM9MbQmvUKtqUSVatbEmkBZs3R5kohEySqdhdTNfLI4pkKasvh8or3fS8PqJKzBC5wLccZbscBIfCiiQDvVmL94IiOl8YIC5wzuJsyqOwzsqxX3erWuEBskqTSjm1vl9RVkKonWtF3a1laLRZwiQS0XZojVq0krKdFciqXvn+XMaOTisSPWBtJCVLqRFDnsTYEXXSj9EhMS8oICHyXkEm3VdfU0r3K8OMixLG1gLBdmglZCUepbKCdQHk11pwn2an5Xd9QoTE/BoLFpdRlYjnv7KYwQ8mhEld5mIDUq5elZS44bYyNLqsjDmkFNw77egterpfVt4vooW8cjNTbfI+UDJrMypwLf++3TvtDB+aVv3e82st5FWY6XhxaNV3Ek/EOcb7jDGERqNh48aNvPXWW+s5L/6b2r19HEVFRSwsLPCNb3wDgCgR3uIZDiXePbVwBA7+e0d6E7XtK1U03LO6ZVJkMpImKFXsdtH0Ob9sbbQKUgQlg0PCc4aDhtvUbZj0Ji1SrrrM2Ynf9tKWsj1SkJ3reW1UJihJ8gG+vU7ZIz6/Opdsi17V7uvoz7rTBKViFR/Y8HSExdgisbBYdN10XwXbv1ijXCgiE03MpdmUX64iVZ2c0wrqc8mrUZfeq7zGzWlfV/n7QNcfRxg5MsXI0WnVsgX1uZz+tTrKdinfbgSZAFZ7nZjNWOfzQ2IEqTUgElyk9al+VYISQNU1HpruE7Pa2HJ/LZu/IFa28+Uh+t9VP6iru83Dtq9UCdVZnpQ/VyMomd0SFbvlMaVGUPJfWczOr9am7cjUEI/ECU0oZ4vMbom8KjORIBz4Trsq8cfqyxHyhN78+QrcZ8vfquKhVvLT73xxmN53RhUJSiBL3GslLdZSZXsWg0Oi7FxnOg4qEZS2fqmSzffI1iVD72UmNxY25LLzb2opbJAlx/f9a9uq38NMYpLu8kP0auVDP7vdTm9v7zpBaR3r+ITxr//6r0QiEYqLZSuCkxzi9cRThBKnbgBHD0ynCUqFjVZO+1pNRpunvrfGmUyqFm66u5zGz5RnbENKlan6hlLKL3ap2jCZXbINVJZGudzAuxMrCUqZlmpR0gQl95l26u/yKtaLHkyFBvLKldcnoaEIh38kE5Rs/hyy7cprxfB0VF53CahgW8pM7PhKDSUKsuFAmtzgu7RI1aYuRQzynFeo3gC9fEu+8gp165G+d8fo+IMYAazxM+Vsuk/dThlg8z1+Kq5Qt/sN9s/Lh7biAlxCGDscECIo6U0a6m4uU7Q1TMGzy8HOh2oxl6hLgE8cm2LowKQQQWnbV6rxCKxn82vMS9+0Sn95L3Km7dBU//4D1Wy4TWydHJuPE48sqtbr3CLb0fW9Na5MUAJyHAYMeRJ5FcrfbH6dhU2flWPV+JEZ5b5Nfk7tzw/Q/Bt10rmUq0MvYH1Tf6sX764iOQ5GyUhQyq8x0/R5P+4z5XVi6xMDGQlK9Xd52fIFmXza+/poxuRST8Fxmgv3soCsvvGtb32LEydOrCdr1rGOTxBms5m+vj4eeeQRtFotIWb5I09zInFg1fItj/elCTQNd/uouXF1+4BYeDFNUHI22dhynx+rb/U1WmRaJijpDBrKLy6m5lp1SwLJokcSkPY/8dte2p5Nkk0UQt740Zk0QWnjHWVYK5RtbK2eHIyF2RjzlffQHc8PpUkD9jpli6tYMEY8HBfOeVVdV8KWz6rb36Xs7NxnKq/RUkQMc4lBtqFSQfFOezqWK2H86Az9748z3a5+mGNyGjjtyzWq+UGQ15IbbvGiE3C7GHx/UoigtCbEoP/NMVWCEoD3YheNe8TyWA13+9lwe5lQ2c6Xhuh7W53I493lYNNnKxS/gRSKd+QD6gQlnVlHyTnyGl2NoOTalse2B6oUbR2XKpbXXgsq6y7JpsPiMUIMjj/So0r8sflyMBcZVPug5qZSnE02AFm1LdOjJesZPTRN50vKBCWALI0GnVGHyaHcBzqzDv9lbiqukPfCSgSlDbeX0fBpLwCBjrmMBCVziYGtX6xKnzsc+3n3qt9DOBGmu/wQLbr9QIKqqioGBwfXCUrrWMcnjNtuu435+Xkuu+wyEixyhPd4J/Ei84lTFQdn++bTBCVzsYHGe8sz2jxNtswy0ysnUWqvL6X6usy2limSSdm5DiouLVa1YcrOk9Dn6MhSOTEOdM3R8cLgEkFJodoUQcnmz0mfoSjBUmwi16O8PokG47Q9LROUjIUSklX5uSIzUaLzYgxayaqj8e4KChuV96IpwkJho1X176eIQWqWeinU3lyqaNWXwsDecbpfE1MerbjCxYbb1c+bAerv8OI5R91GOBKIMbx/UpWgtFbM9s0LEZTQQt1NZXjOE8g51Vpo+lwlOS71NcrswDy9b40yflJ9TVv/aS/OpjzVckaHtPS3VbYAhQ1WJKtOHjcqZTfe4qX8MvXvCmAxskg0FCeqQrax+uT90WTLrCpBSTJrySkyYClR/mZNzmw5VmllGzZFglLyc+p8aUhV1RdAb9GTbVFf/Jad55Rz/8k4mImgZHRINN5VTmGD/L0OvDeRkaDkvdBJ7c3ynnbyxCwdz61OUBrJ6aHZsZcxhpAkiccff5zDhw+v57ySWCcpLcP/+l//i0QiQVmZvFEcZ4hXE7+j4u4C6pKDzbUznx3frMHqlz9WraTBWJhMWEiw/Ws1bLhN/v3CTVZ2fLOGwoZcRg5OsBhbpPJKeeEgmWH7V6vTHvN5NWa53jIT3a+PEFuIc9rXa9JEoW1fXiJDWbxGdnyzhqGDkxz+USc1N5Sw829r06SarV+slDemyAojdTd55Mldgp1fq+P0v6tLP/OWB/xLZBBJtnyrvtqN3qSj5MwCdnyzJk1E2PyFCrY8sJScsFdbGD85w9xwBO9lTnZ8swYp6a+66b4Ktn6xMl32tK/XsPXLlXh3OfFfU8yOb9akyRoN9/jY9uUkeSQCGp0Ga5ncv+4z89jxzZr0s9Xf6WX7V5cOkQx5EiCLgRU25Mr9vUn+uDfcVsb2ry0RiOo/XU7RljyQZEnfHd+swbVT3pjX3Vy6gmxUdXVJOmlmdkvs+GYNJefKi4Oa60vSZeenFtBIWWz6/FJ/7/hmDd4L5Yncf6X8rESg/feDbPmMn82pBE+yv1MLtPJLi9jxzRpmumYIDs1jr8td0d87vlFD1TXy+Cnb5WDHN2sYOT7F4IcTbPpsBVu/tLK/a2+Uy7rPsLPjmzWU7y6i5voSGu72rSDrbP9aDXW3ygc4ziab3N4sVu3v5WPWXmdhx/+oofE++VCl7jbPiv7e9pUqGu6Wx2yuz4Rk0TEzIDP2a28sWdHfW79UmT5IzimSyNJCNJi8oX1NCTu+sVS26UE/m1P9bdZQcYkLg01OXFbsdsntT2LzF/xsuV/uw9jcIvocHf4r5SSA76JTx2zTg5UUbc/DtdXOzv9RS/W1ch+WnCt/C2a3XLbx3nK2fbmK8kvcOBrzOO3rNRljRMMeub+nu4KEZyLU3exbNUaAvAjc/jV5vOz7lzbc2wpOiRHObTa5v2/x0LDHn27jajEiRTSqvd3DaV+v4fAPO/ngX1pOiRE7vllD2QXygq7yWjdGezbWUrn9q8WI8stc5NWYOf3rdez4H7UgQd8bY6fEiB3frKHyGjf1d3jxXuqg+toSDvywg5H906vGiPo9cr/YaywsJhJ0viIvRFbEiGTZuuShY2hyAY0+K2OM2P5QDRtvLyPQOUM8tkjF5cWrxohIIsJ0UzcHdG/R3tFOWVkZjzzyCOPj40jSGoyQ17GOdQhDr9czMDDAc889h1arZZE4e3mZbs+RFd9x42fK0/NJImsRbbYGq0/+5j0XONj+UHX64L7hHh+N9yYP+08EMORJeC92ojfJtnHbH6pOk2bq7/Ky+XMVHPt1D92vDLPpvkr8V7iw+ky4duSz/aFqTC75+99wexklOwv48FsnmRsIs+0rVWz9ohzvHFtsbH+oOn0oV3eLh+Kt8vqi7AIHp3+zLh2z8mvMbH+omvxkzKq5oYStX6wit8SEwSbRdL+fulvkslafie0PVaeTI1WXF0MikSaPNj2wdLhhcklsf6gaV/LAwb/bxbavVFN9bSkbbi5j8+cq0iQovVXP9oeq00QjnUmLZNZBVP63xnvLlwj4etmCK0U0yaswo9FrmBuVk2INd/tWEMG2P1SNL0n09V7kwLU1H/9u+ef6O+X+TmHbV6rTZKMNny6j5MxCXDvlzf2G2zwrDsS2fqmKquvcEIVEYhH7Riu25Dxbd3MpWx9cmk+2PlhJ7Y2laaLH9oeqKdgoz7NV17vZ+qWl+STV3+PNAQI9QbY/VJ0moVReVbxi7tn8+Qo23l5G/94xhg5Osv2h6vThWsVlLrYtG7ObPltO/R4vVde6KWyU33np2QXJfnHKYzaJxnvLsbiXNvTbH6rGe5G8jiw9OzlmkwS6+j1etj9UjWOLTe7Dr1ZTkUxIFO+0y2O2QB7f1TeUEgsvMvCBnBTc9uUqKq+S10DOLXlsf6g6TUqyek0kEom0Nd7WL1VRdb1MbirYmMv2h6rJq5bHrH93KfbKpYsMWx+sTK+BbP4cub8bcsm269HosuS1dxJbvuBPk4Zy3Aa2P1RN0dY8fBcUUXezl21fWeqXzZ+rSK+Bsu3ymHWfY6docz51t/syxgi9KTlmz3cwNxgCDRljRLq/L3Yy+N4Eo0emV40RKZz2dbm/vRc7V40RqTGrN8n97d6Wzwf/3EJ4OnJKjGi6f2l8V+52Y7QbMBXoM8YIkL+h079RR90tHqZOBtGb9CtjxNXymM2vMeO92CnbGkUTHP5hZ8YYkfqOdCYtkZkI0dDiKTHCe/HSmJ1sCZJYTFCQOoT/WIzwnO9IjlkIjy+gz9FmjBGapjAnit+jbewEoVCInTt3kkgk+NKXvsQ61rGOPw9uueUWYrEYl156KQADdPJa4glKbsql/DL527RW5ND0QGU6ZmkNWiypSyY62HRvOZXJPbW5xEDTA5XkV1uY6ggSm49Rfon8bzqDvE5IkWUNBXqaHqjEVmmm/dkB5gMLbPmCXyYgIMe4mpvk+URn1tH0QCXjzQFaHuuj5JxCtn9tKY5uuL2M2uR6CR1s+JQ3PZdu+2I1O/+mNk0uqL3Fs4IM0vRAJd6LnWTbJJxb8mh6oBJdksxZc1Npeu4BKGrKY+zYNPOjCziacml6sBJDcp6tutadnnsANn/OT/0eH/7dxZScU0jTA5WYS+TDiMori9m0bO7R6DVY3PJz59eZ5f5OEqbKLyti07LLXRa3IZ2fySlO9ncyT+i7yMnmzy/NJw33+PGcXYjOINs9NT1QmZ4jPOc6Vqyt6u/wUXvjyv52bZPnbPeZBTQ9IK+twpMR9DlaNtyxsg+LT5fXQMU78uU+NGjof3OMyms8bFxe9v5KSs+R5wjnFhtND1SyuBBjsm0GW2XOCpL+li/48Sbnk4KNuTQ9UEmgJ0jvGyP4LnPTuOyC6Ob7KtLzSV6l3IclZ9nx7nLgv7KYTcvmnk2fKU/ngSweI00PVJKVPADxXVrE5mX93XiPj8pr5DFrchrY+uVKeazpZBLQij68y0v1DXI+xmDTYXYZmO6SSXCl5zhoun9pfbrxjjJqPyWPWZ1BnndTB6bFp9vT/Q3yOmHDrUt9WHmFm2yrvN4o2nrqmN2YJLBEFxYx5EmUnS33YWGjlaYHKjHY5bLV15XQsMdHrtdE6dkOtj9UhS+55syvs9D0QGWaYFR5dTGN9/goO6cQ9zY7mz5fkTFGVFzuYtNnK5gdnGduJEzl5cWrxggA3yXJMRuTSTSORtspMaKgXl5jlO1y0PT5SqqvkcfpajEiRTTyXuyk6YFK2p4e5MB/tLPhUytjRNMDlel1e/EZdvL8lvSB2moxouScQoyObHZ8tYbtD1WjM+sYPTR9SozY8gU/ZbsclF9WhKMpl7qbPBz/TTeTzbOrxojKa0tAB7luI4nEIgMfybYsH48Rmz5bQUVynzQ7NI/OpM0YIxrv8VF5dTHB4TCxcIyK3a6MMWK2qZ8P9C/R3tFOaWkpTz/9NCdPnkSnE2C2rWMd61gztFotzz//PM3NzTidTsLM8S7P0+04ysa7vOnD+IorXFReLcfCRAIMNj2mZDy2b8ylYY8PrVEuXH6ZK01MGjkyhclpwHVaPlpJng8b9viQrPI37b2oiJobS+h5bZSOPwxSfU0p7p12jA6JXI+Jhj0+jIXy/FK2y0HJGQUc+UkX8+MR6m4rS8/n5mIDDXt8aeJUyVkFuLbLMdVel8uOh2rT51vGQkmea5JzhHunnY13eMkpMmIqyKbmxhK8F8nziWTV0bDHR16lvPd1bc8nSwtdf5AJ8DU3lqYJGFqjloY9vjQZ3LHZRsMeH5VXuPFf5qbySjf+JPETrXwekyIZ6AxasnP1aLVyPRW7l/oboOEuX5poYnYZybZoWUieS5Vf6lpBBKv/tJfi0+Q9dX6dBf/lxZScKc+73gud1N60RMLfeHtZmjzuOb+AyivdODYn12XnOdK5P5Dnfk+SFMwiFG3Kw1IqrxXdZxWkz5IAam8qpWyXg0DXHLH5OA17fGliSaq/U6i+vgTfJUVMtswycXKGhj0+8qvkOcK1NZ/6u5bmqapr3JRf7qL3rVFGDk7KfZgkVqX6OwX/lcX4ryzGfYYdS6mRhj0+HJttABTUJcesJOexyi93rRDDqL/LhyuZM82vsshjNkkc8V1URONnyrEl57yNd3hxJ+dvqy9HHrMFyTF7roPofIyxpCjEhtvK0uSuVJtSxCCrN4dEFmnrsLpbPJQlyU1GhzxmU3sS984CHButabJJzY2l6bPe7Dy5rK0iB61Ri0bS4NqWv9Tf15VQfqk8ZvVmeczm11rwnO2g5kbPij6svNq9RNxLjdlGK+6dBVRdLa/ZVosRQLq/p7uDLMYTGWOE3N9eXKflM90xx8jBKRo+fWqMSJfd46Pm+hKKT8tfNUakCDlo5f2Yc0s+h3/SydzQ/Ckxom7ZWtZ/RTG5ZSayc6WMMQJkG7bTvlKD96Ii5sciLMYXT4kR9Xd6MTmzKWrKp/q6EjS6LE4+0Z8xRpicMgdBMuuYn1qQVaQ+FiMK66003O1DK8H8aITFeJz8ZWIzy2NEfo08ZvVmLeHJKJJFnzFGaMqjtLo/5GjwI2ZmZ9i9ezehUIjrrruOdSxhnaS0Crq7u2lra0sfTP/o4R/ym1d+xXwiSDQYk2/aLsibyen2IAuT8qTVdF8l2uwsFmbkn2OhOLH5OJFQnOBAhMnWWSJzUdxn22n6Yh3x+CILSb/OWFguG5uLM/jeBOHpKNFQjKprSmm420ckGCOarHcxWTYyI//uQiBKliYL766k+stsjMhs8nZJRG7vwkwUIhCdixJdWKLzRWdjKzxDY/NxggNh3vv7E4y3zBCbj6cPFyKBGNHZlWUjyVsvRQ15ZOmyICL/e2QmSmRZ2eh8jInjMwx+MJGeQGMLMrkoOhOVZb+TiMzFCAeibP1iJaVnOuWyyVtmkZkYkbmlsuHpyJLPpUZuUywkl12YiRKdW7plMz8RYbJrVu6H+Six+TjR5N8Nz8SIhlbWO90tJxdiUbne1LOHA0vs6/4/jjM3GE73A5GI3N/JhczCrPx3AJBk64TUBE2EFWXD03LZSASOPNxFeCqyor+j83EWZiMr6p3umKf7lREigcjK/g7FWEj+HEmWtXnN5FVa5HcTXF42mr69FJmLLbU3+azL+zv1blLtgSxyCuTJZ2E6SjS01N+RYCzdL4uRGLFQnNGD08n2r+zv5eM7GoFoMMZYUk5xYTaygu0emYmlv7FNn60ksZggPJ3s72B0RfujM1Giye+k9al+IjNRwjOpPkw+a9LmMTIbJRqMMfzhFJ2vDrEwG2Uh+R1Fk2Uj86k2yH145CddtPy2l2goRjj5dz4eIyJzUaJzccaPznDwex1E56KrxggAfa4OnUGTvvkUmYutGiNS72ZhJkrXK8On9OHyGFF2gYO8MjOL8SSrPbJ6jEgkFrH6c4gE5PHQ/Ehv+tk/HiMWAhGmWoJE52PE55fY8qvFCI0+C0upCYvLlOzv1WNEfCGGpTiH+ju8RGZixOZiGWOENluTTiiN7JuS+3yVGOG7yInOqCEWjxMJwsmn+uU+/1iMOJTYy4nC99i3bx9arZZbbrmFjo4ObrnlFtaxjnX8+XH55ZcTi8W45557AGjvaeU7//Fv6dv90ZmleWr8+CzzEwtEAlEsZSbc2+0sLi45Fy9MR9PxrevFYTnWzMRovKcS19Z8onMxiC7FgIVAFKIwvG+KSDBKblkOtTeXkYjHic7FiEfkuiPTkXTsBkCThd4sYSkzEZ2Lyf8Jx5bakIxZk21B4pFFQmOy4mB0flEum4yd4ZkoC7MRTjzax0f/3EokGCORSMh2SuFYum6A8GwsXa9rRz7ZVomsJPEiHknIZYNLa5VIMErnS0O0PNbDQmCpD4nKz5aKlZEZ+W/k15hp+pwfrZTFwvTSs0bnluaMyEyU+YkFpjpD6E3JODrzsbk/+fPcyALh6Sjtzw0n+2VlH0aCURaS7R36aJLIbJRAUnZ3IRBN15Mum2x/xwtD8ppjPjUfxtLzNchrgXDy57wqC1pJk+7DyMyy+Q95PRWZiTLwzgT974zKfZhcyyx8fH06I8+7/W+PE+iaT/Zhcg03E0mTq0GeZxcCUew1ueRVWeWyweVzz7J6A1EW40tjODq3tM6JBOPJsovpftEZtBRukDfS0eDSukZeb8SIJpuxMB0lNDrP3EA4/W5S9UZDctnFqNyO+ZEFgkNLNzojwWh6n5Ee33Nxyi91YfGYVvb3bJRwcp0QnZfbGwvFWZiIMnxgkvDUkhpiZNm3nFhIjsNQjCMPdzJxMkBkWR8uzERZmJZ/dzGWHIfTMY78ooOhAxMr1qfLY0Q0Kq+DIzNRmh/tY6JldkV/L48RALpsLQU11mQfxlaPEUmEp6NMdwfpfmmEaDCWMUY0fqYKvUlHeDYGUTLGiNTBcWg8zND+CULj0YwxAmCybZZYOJ7+PjPFCM+5Thz1NnkMJ/twtRihlTTUXOeRv+XpKMFkwu7jMSLbokdn1FKQJNXP9MwRnlw9RhRtyUOj1xCNQtuzQ0x3zp0SI2bGZ2l27uWPR15meHgYq9VKW1sbe/fuZR3rWMf/f/DCCy8wNjZGcXExCRL84vGf8dR7vyWcCBMPx+UcwoIch0aPTDM7IJOT624qw5AvsZCcI+KRhLyPnpdj9PCBKRYCEfKrLWz5Qg2JxcRSTiCWLBuKM3lylsikvN+uvcFDzU2lhKcjLASSc0ZsMbk/l+NxdDaKRq+hNEm+WAgszREg7+VTc0hoLEx4WdxZmI6siOULM1HmxxbY/29tjB8JEJmNkpdU81sIRAgvq3dhJppuf8npDvQmHYuxZNwPRFeslxYCESZOzNDz+giBriCR2Wh6jggHYivaFA5ECM9E2XBrGb4LXXLZcGruia1o79zwQtryJEufJb+b0Oplp3uCjB4LEAvDYpwVZSPB6Ip1WKAnxNjx5C31mBzHI8lcQzS4FNcnT84y0TxDeGJlf6fmnoXk2ioWk8dLjjMbrWEp1bwwGyUSTK5Vgqmy0Pb0IPPDC+lcjvyulvJPqbklNCLb6EWmo+lcFCTnx3RuSi6b68mhsDGPcOBjZZf9HF9IrFwLBqIfezdLa9DFWAwSWVg9Jogl8zPTK9cFqfERi8ntT72rSDCycr00HSWcHN+xGMyPLTCRVH9dPo+m2pT6Fhrv8ZFIkJ6/I6Fk2Viq/5fKDrwzzuxAaEW+KTIbZTGZIovMyP0w0x2i7bkBgkML6W85VTYeWcqrLMzE6Hh+iOO/6WZhKrr03X8sRoRn5fVocCBM86975XezSowAkHL1GPKkNMFpeR8ujxGp9gaHQnT+YShZdvUYUVCfS9Hm/KX1dGz1GLEYi2EuMcj1DoRof34w+W5OjRHR2SjzowuEJhbkf4ul1uKnxogECQrrbFjLzMm/kyFGzEawV1moutJNdD5GeCJCPLR6jMjO1ZHnlw90J5pnmB9bWDVGODbZMDmM8rPHoOWJPhYmT40RnYkTHCl8iw/2vY9Go+Ghhx6is7OTq666inWsYx1/ftTW1jI8PMyPf/xjJEmifeQkP378B/TEZRX/hemlOW1uKMx05xyxmTiSVYf3fCeJBJCMccvj0NjhAMHBeaKzMSqvLqXkzAIWAlES8VQcihCeTp1hzhGejmApNVF3Yxno5FiZUsGJBJbOIACysmQl7xyXgXhkcWXZYCzdhuBQmIWZCKFhOeeVLhtOlp2Tyw68M87Rn3UTno4Rjy2iN2tJxBMsBKJLOf1gLL0uyPWZsJbloEudoyXLpuaT2Jysxtf1yjAdfxiWz3ECK+fS1NlTNCTHQilPovEuHzqjduksj+RZ39zSfBjoDjE3uABaOXZ/fE2RnqcCMQJdc/S/KavNLMxECU99bJ0wu5TLDPTOEeiW8y6RmdiKNVB4eik/1vXqCMHBeWILS+uy1Boi1YbUmUqux0i2VSK+sNSHK9en8jw71RZkeP+03C+pvMTcyrkylf+YPCFb3C4ElnJi0eDKNedCcv4u2pxPXrlZrjdVNq2UuJTHioUXl/1uhIW5pZzGQiAq25ohz9fZFj351blLfydZb3xBrjeezNdEZmPM9s8zPx5J9mEk3YZYWC67GJX/bmh0genOJcuU8PTSWmUxmvwWFhYpbLBir8n92F5iaQ2diMbTzxOfjzPw7jhzw0uylOFl64/FePLZ5+K0P9PP0L6JFe88dQa3/F1FgzGaH+lm6KPxU/p7xc9Bud7+t8eZbJ2R/22VGAGyyEdhkriT6pfVYgTI69PRY9MMfjBJLNXfq8SI2htKMRVky2vdOBljREoVLTgQpv+tcRamIhljBECgK8j85AKR5HjPFCOKt9txNtnktWHqXa0SI7QGLTXXe9AatSwEosz2LeU9l8cIfY4WU4EBi1cmx401zxCeWD1GuHcUIFl0LMZheP8k48cCp8SIudkwrQUf8Wb/H+gf7Keqqoqenh6effZZtFpl5bX/jshKJBIJ9WL/ffGtb32Lr33ta+mfJQzs4CKkrFOVNfxXFaM3aDnxWB9Skmi3ml1UTpFE5dWlaesSKV/KaBVVfpmLwX0ThEcjmN1SRtsjKV+SN/4RWfVl9MiMqv1U04OVDH00yeB7mX1hq68twV6XS9sz/bIVXAaUXeAgFokz8JaYx2zdLR7CgSidzw9lrnOXA71ZR/vv1WXdqq6R23n8193MdIUUy0r5EiU77HS+kPlvp2B2SwTHImkbuEyoub6EuYmFtK1dJmz/ajWBrjlOPqlsDyHlS9Rc7abnrVEC7cp+wbU3lhCLJmh7akC5kWvA6X9bx0zvHMd+2fOJ1Gd2S/h3l9Lx0iCz3afKmi7HhtvKmO4KqvoV5xRJbLi9nMGPxun/47hi2cZ7y+n4w4CqLZ3Fa1RtH8gL5dwyk+rfBVnZTJut5YN/aFEta3BIVF9VItv0ZICUL7HxVg/HHulV/cblX4D6W7yq/q3bv1ZDVhaK7ZTMUL/HT/9744x8NK1Yn+8ipyybDYqxa/m/+a8spvf1YSLBVWRCJZAkOaZWXVNCLByj88XVvWYNDonwaIScIomq6zwc/83qfRXyj/JB57vE43EkSaK+vp69e/euKyetYx3/iYhGo9TV1dHe3p7+/2rYQknWqbZt2XY9NdeW0vx4H9FAlGy7PqNFUUotrufVUfQmDdHo4qq2UnqrnuJtefS8KicZTE592hbu40j/mx5KdhTQ/7bynFC0NQ/n5jwO/6xT0dJq+0PVxMNx9n+3PXMhPdReV8qJpK2wGvRWPXU3ldL8q+6M1kwg3/Q6+cygkJXW9q9WszATVZyzUnCfaWeqbSZjXy5HjtuQJtYolfGe5+D4rxQsSZGViJyb8zn8sy7VZ3LtyMdSbKT1SeX1lKXMhPd8By1PDgj1kwjqbvWQ68nh/b8/8YnUB7JSTmJRJnUpwebPwbU1n/ZnMtt2pVB1dTFmt4kD31MYm8i3pvRmXdoCKCP0YLLqCalYd4D8DQ/uHU3bA2aCzZ9DzQ0eBj+coDeDBexy+He7CA6HGd6X2WKt/FIXGh20P6u+dwB5vMcji4q2bY4tNvyXFtP//rhiO1078nHU21S/s2y7njyfmeF9U2nlrUzvMxW7TC6JfH9uxtiltyZt9fRQf5s345hfHlOrrnMTnorS+/qpzxRNROkqPkzvYDcAJSUl3H///WnL9XWsYx3/OXjuuee47rrriCQv71iw0cS56LJOVdYo3mEnO08vx3cd6HSaFYcOKejMOvyXu2h5ok+2eDPriC0j/i5H0dY8pruDhMejGOy6jLZHuiTxJRZepGBjLjP9IVX7qQ23lzF6ZJqxw5ktI4p32vGc7aD12f60ZfBqKKjPRStpVrUMXw1luxwsxqDvzcwxvmBjLjkOAz2rxMzV2llyRiEnHu9htlc5Z6EzgGOLncG96vk5g01HOBjLbHeVRMk5hcTmYorzJcikmpmeEF2vKNuP6AwavBcVMXJoSvV5POc6yNIg1E+i2P5QDVMds59YHi015vveHmNuUHkd67vESXAorDguU3VuvLWM4f2Tqv1edV0JfW+PMT+qnPMyOrJVy4CsxGX1moXG+4ZbyzDkSez/bptqWZ1ZR8XFRWlbo1XLGDRU31DKyacGMsaNj8N/ZTHtLwwqjuPGe3zoTDr2/5tCO3Ww4aYyRg5PMX5M2ealaGsew4emIIZi7Fr+b8Wn2xk9Elj9uZbFVPeZBSQWExm/YcmmIzIdQ2fWUXWVm/bnB1aNhwslAT4YfotIdAGdTse2bdt466231pWT1rGO/2Tccsst/OY3vwFAi46NnEZh1qmWTVqjFt8FTnrfGCESjKM3a9ME7o+jsN6KVtIyvH8SrYRM+lilqFbSYN+Qm75ILlm1aVu4j2P5vxXU5TLerBwXLR4jrqZ8Op4fSFucrYb6O70sxhIc/5XyuZPnPAe9b42qWl6B3FflFxfR+dJwRmsmkJVjBvaOZezH5dh4h5foXExxzkohr9JMaDzCwpT6WU12nqRaTrLqcJ9WQNfLyjmVvEozxafZaXu6P6N9VQq2ihxyio0MqOQus/Mk3Dvs9O8dzTg21orSswtxNNrY/x31tYIoipry0ehg8INJxXLGAglHo43+vZltu1Jwbc8nr8JM82+Uc435VRaybXqGPlT+22hlSzSRfixssMoXXVXaaCyQqL2xjMEPJhjer/L3kRWFYvNxRYu1wgYrkkWneh6bgs2fg0avYfJE5jrNxQaqry9l4F3ldlp9OTg32WhVWZNrjVosbgPT7XOgBa2kzdhXqdilN2ux+cxL1pSr1Jmqo/wyF/1vja76HWmTR4XxiKz8FA0viXEsRzwRZ9DVysmh44Cc8/qf//N/cvvttys+2393rCspqeChhx4ikUiwa9cuACKEeYtn+DDx+ill238/yInH5MOiulsraHqwNm2Vthxzw5E0QcleZ2Hr5/wZvSM7XxgiPBpBMmuo/7R/hT3BckQmk0QaCUpPd7DxVs+q5VIwOCT0Ji2GfOXD+JNP9jO8f1KRoATyoV+KoLTpvoq0EkwmmF1GbEkZwox1vjaaJiiVnleoWLb33VHmhudVCUoAtdeV4Nycl7b5ygSDQ6L+Tj/1t3hV67RVmJdsDxTw4T+dVCUopWB2GdM35RXLlZjITcmv/xeFtcKCsSAbjU495OSWmrDXqPfl3HCED/+xRZUoVLjJislhSFsDZUJOkcTGW30rpJszoeKyYkpPd6z6fX8cQ/smmWpbha34sTbmFMnEGrVDqHx/DtkWibwK5XfeeG+5bCMXQZWgBND5h0Fan1Efm3qjDmuJcl8W1Ofi2m5PW9FlIihZvEYa7vSnrQnbnxlcnaAE7PhKLRs+LUtatz7Vn5Gg1LDHx+Z7/EhmeYwc/F77KQSlscQgb2Q9zQed75KVlUV2djYHDx5k37596wSldazjPxl6vZ62tjZaWlowm+VY08IBXk88SSCxcrO0MCETZKKBKHqrns33+qm+vmS1aul5dTRNPNpwu5dtD1SvWi4aiKbLVV9fQsMef9o+6+NIEW6qrnBTemYhljLluGxxG5Esq9e1HO3PDchJdiVESROUChutadvWTLBXmjHmSelbIZlw7Jc9RAMyeSFl75UJk60zDH6ovoHVm6D0TAcVl7pVy264zUP97b603VYm5FeYsZTmYC1X7vO+t8bZ96+tQmSigtpcbOXKzwzyDZscpxGb97/22iu3LCct+a2EgtpcrD6zTDJRQevTg6oEJQB7bS4FAmu5jTeX0XC3P02qyQRTgZ7ibXb8V5YqlgOY7pljtm+OIZXDvJTlR/tzQ6oHf1aviVyPcl/mVZvTa8iBdyYUCUoAowem6X9PmaAEYMzLRrLoVb+Jups8lJ0vS5BHQ4sZCUr1e7w03FkBeggNRTISlLwXO2n6vF+2BIzC0Z92ZyAoQdMD1dTdIMeg1icGViUo7U+8yX7za/QOdqdVK/v6+tYJSutYx38B7N69m4WFBR566CGysrKYZZo/8jRHEu+fUnbw/Yk0AbVydzGbP1+JznBqnbFgjJbHZIKSyWlgy33+tP3CxzG8b4rweBR0UH9HedrO6ZQ6w4tpQpT3giKqr159zZeCzqwjO1ePwZatWG7wvQl63xxVJCgBjB+dSRM2am4sTVtCZILVm4PNp7xWGD82kybeODbZFMuOHg0w3TnL7KD6pSrvRcWUnlGIwaZMRNAZNNTvqaD6KuW+BCjcYMVeqz63H/5xlypBCSAWWyS/Kpf8ZRaymWArF1vT/Gci120kt8SELls955VflYu9Wr0vY8EYh/6jQ3WdYi4xYPOZZcUnBejMOupv96bt1ZTg3eWi7Fznqt/3xzG0b5LxE8qEq1yvCUOBnlhQ/bA3xy1bAqmttSuvcadzz+3PKBOUADr+MET7s+qktGybHrNT+cFzig2UnefEl1x7ZSQo2XQ03OVPW+UN7p3ISLzacl8lNUkLxoF3xjMSlMovK2LT3RVp8mfzIz2nEJSCiRne4lneG3qD+GKMgoKCtGrlOkFpHev4z8evf/1rJiYmaGxsJE6Mw7zL24nnCSZWxtL4fJz2ZweJBONoJdh4m4+ypC3qxzF2NJAmAngvdtFwp2/VcvHIYvpw3b3TTv3t5WTnrZ4LTxErXFvzKbvAmbbOyoScQiMGm3pevf2FQbpfU18r9L4hE5TMxQZ8SYu4TDAVSpiLjOQUKq/7ul8eJhqMI5m1mN3Ka7nx4zOMHFKegwHQgndXEaVnrr7WXQ7PeQ423FKWtjfLBFNhNnmVFtU2TrUFOf6rHlWCEoDVZ6ZAYC2n0YLNZ8ZUKLAI+E9EbplJaH1oKTVRUKt+xgow9OGkKkEJ5PyPyLlt2bkONt5Wjl7lfWuNWkrPclB6lvIZOMD8eISJ1hkmTiqvvVK2fqMHpxUJSgA2rxlrmXJfGgulNIdhun1OkaAEEBwM0/vGqCqRSrLoMORJqn1UfnERvgtcsgVenIwEJe9FRWz4lGw3GA3GMxKUCuutbLq7PG0H1/nC0OrfkRbq76qgbJf87APvTaxKUOpIHGef5VVODh1HkiT+j//j/6Cvr2+doCSAdSWlNSASiVBdXU13d3f6/yvCw8as7aeUtddZcGy0cuJxefNVvNO+umKRBA23+2h5rItIUFZoyUS0qbqmhLHj00y1BhUVX+x1FubGFwiPRihsyGWsZUZVCajuVg/tLw4rKrNUX1tCXpWZAz/szFjOXJpN/e3ljJ+YUb6RJJFuk5KSFMjKUGVnOenfO0aPwI3ogvpcxo8qkKokyCs3M9WiTBwB+Zl73hklPKrCbjZrMpIrPo6cIom8mlx1FZ5lffRJIK/GTNWVJXS+PMTYIeVJTFRJqenBSiIzUSESzJqg8uzCfZiqTvD9VF9bQv/eUeaG1TveXmdJy3OvBtVxuAw7vllLPBLno2+3Ziyz4hlU+kcya2h6oJpA3xzNCioT9Xd6MTkMfPAvLYr1VV9bwvCRKVVVL+c2W1phKWPMY2Wcq7vFQ/sfVo895tJsgiMLEJEVwyY7gqve5JPyJawlBsaOzJBXY6aowZaOvcsRlYKMlffSfKJZbq/Tyd/93d9x//33Kz7XOtaxjv88PP3009xwww3EkpYGOiS2cwGmrFOT1lXXuhn8cJJg/zwFG3MJdAZXPah3bLFhKTLKCjMKSi6mAj3uMwppSxKmzSVGgv2rr70cW2yMHpgG5Fvxajdvbf4cbOVmul9WSMzoYduD1QS6g7Q+kXlNVXdzKeYSEwf//aSyyoyetIKT3qRRVM3Z+qUqsjRZfPTtk4rPkYLNnyPfZsmAvGozUyfV1105bgOFG610v6SesFJ7huVwn2Fn9NiMMllpWf98UthwmwedUadKQBZVUnJssVF2joPmx3tV1abWBIFnL95pZ6J1JqNa2SlVCrwfk1OPc4tdXXEJ9TEmWgbAs8tByY4C2p4bUFQxSCsJCaDyChf5tVYO/aQjYx+ZCvTU31XByOEpxW8/266n7ByHqqqX3gTmUvnbMjn1aA16ZntWDwIml0RoKEJetZncUlOajPlxpOKc3qqn8nIXzb/tXXVsFG3NSx+aVl1dzMjhaQKr7GHn60c42nWYmdkZsrKyOOOMM3j77bcVn2sd61jHfy4uv/xyXnjhhfTPXmrwZ208pZzZbaBwgzWtnptx/aOTCU1dr44SC8YwOQ2ERlafw4pPtxMcnGemO4ShQC+Tl1ZBTrGB+EKM8ESMXK+J0HCImMq06LvEycD7E4rqS+4zC3A15XPs550rrA+WQ7LpaLiznPGj03QL5KdAWUkKIL/aQtXVJfS+NaqodJ6CxWNUVR8SKQOyQtL4samMJIsUdIbVVbNWg2TTYfOaGT00rVxQhyqxZC0wOrKpub6Unj+OqJLORJWUNtxaRnQ+pjonrxkqz64z67BXmRlJ7i9UqxN8P+6zCpg4Ecj4bS1HrtfETHfmzYXoGAPY8gU/i/FE+sLualjxDGr9Y4DGz1Qy0z1H2zOZL3f4Li0ir8LCgR+0KdbnPquAmZ451efJqzSnLyHm11kyjrPlcc53kZOhDydWjSnLlcw85zoIjs6vWqfOoMFSamKqLYjJacC52UrXH05dS4Z1YQJVPRw9fhSQc17/8A//wB133KH4XOtYxzr+83Ds2DEuueQSBgbkecaMlS2ciZR1Kjml+LR8prqCzI9GMBcbmJ+KrnpQb/EYMbuMDH0wmVRy0REJnBqDtEYtRVtsafUUQ75EOMMZndWXQ6BrLl2/Wrw0FkjYvGaG9ikQFLSw8VYvM30hmZCUAe6zCiioyeXYz7vTdlKZ6kupLmkljWLZ2ptL0efoOPKTLsXnSCHHZWBuKPNi0+TMJjSirlQombXYa6zK/ZKE2jMsR16lmbmheWWy0rL++aRQdp6D7DyJVhVRBlElJbPbiHeXk44XB5kf+wQPRgWe3ebPITQcFiJ8gdj70Zu1FAi+b6NDYn4iothOtXGYQn6NhfKLXXS8MKgonrBcSUitj5xNebi25tP8aM+q8SRV34ZPeRg7ElB8Zq1RS1FTHgPvqJztasHsNBAcDKM3a9Hn6DJ+ZymFMmOhhNVjzkiOSsU5raSh5OxCet4YWfW5l8e84tPyme6eW/VvL5RPc3R8P9OBKbKysrj88st5/PHHMRqVCYbrWMK6ktIaIEkSXV1dTExMYLHITMRhenk18TtaEgdXlJ1onk0fktfcUIJ3l5O8mlVuZ0fgyE9kgpLBIbHhFi8bby9b9e+3PtXPVKscVDZ+ykvTg5Wrlptonk2Tavy73TTdt3q5FKz+HGxeM+UZmNgpBPrnWJiNKRKKgn0LvPetE+mNfmFDBnZusorCTVaaPufHd5EzY539fxwXJiiZ3RJVV5ZQf4c3c6EIMkFJIq30kgknn+xPK1kpIUUecZ9hV21jzY1llJ6uzopNk0Y+IWGX6GyExZjYwkYUi7FF4cWSEFLPqrIGKb+kGM8ZDgwO5c5xbrMhmVElKKXe78kn+xUJSq6d+RRuklnSSgQlKV+i8soSGu5Z/dbCx9HxwgAnfqtMCNtyfxWbv+CXf8jQxJwiCbNbIhJc5L1/OqFIUAJZbSA8rWxnKJkhvyYX73mZv1GQv+WKi4vxX1kMkDG5WrQ9j423eNPffPOvV7dik/Il6u+oSCuZnXi8P6PU+KY95VRcKv/dqZbgKQSl+USQNxJP8Xb0ZZpPNGO1WvnGN77B8PDwOkFpHev4L46rr76aaDTK//l//p9kZWURI8JeXuCtxLNEEyuT661PDqRJRBWXFtOwZ3X1ydED02kLrA1pJZdTy4XGo2mCkvciJ/W3ezOqC6UISv4rXFRe6VZV+PGc48C5KU8mh2RCFMJTC6se/C9H86N9fPivMkEpx23IrLiS7K5N91WwSWVtePKpflqfFrOSq7/LS811nlX7MIUUQamw0UrBxsw3t+YGwmmCkpq6TjS0iN6qV6wPZHKG5xwHvguU17lpIoa62JUw4guLLAooFK0FiVhCOGmiitSzCvBwPGc7qLlWXcnIuSVPrlKFoKQ3aQiNRFUJSv7dSze1lFB3q4eaGzyqikMAva+N0vPHEUWCkvciJ02f82PzK98my0/u79qeHeKDf25RJHGFxqOEAxFm+pW/6bLzHORX52JyKj9L/V1+qq6U9zKhkWhGgtKWL/jZeIu8Jp06GcxIUKq71cPG27wywSwQpfnXqxOUCjbmUn6xK22j2fr04Clxqj1xlFcTv+PdI28TjUUpLi4mGAyuE5TWsY6/ADz//PPMz8+zYcMGALpp4dXEE/QkVhKXgwPhNEHJfWYB/svd5FWusk6KQdvTg8SCMXQGDRtvK6PymtWVXAb3TqRJERs+5aXh7tX303OD4TSppuqqEupuVd53G+w6Cjfm4d6pfMM9NBJmfnwhI0EJIDIdY993W9MEJauKWpLFY2TLZ/24FW7XT56cpeuVISGCks6so/bGzH2YQurwsOx85fVP/5tjhCdiaTu9TEiRR+wCCuL+y91pdT/lSpP//QkJu0RDcRKf8LorHl0kvvAJ1pl6VhVyVulZBXh3FWHIoOiaQl6lWSbBqRCUUu934O1xRYJSXqWZ/Go5361EUNIZoOZ6T0bls4+j9ff9tD2jTPRquLucjZ/2yj9k6B+dWYfRkU0sDPv/vU2RoAQw0xMiNB5W7m8duJryKTlDOU9rLjFQdU1JWsUkE0Ep12ui/g5v+pvvenlk1ZiiM0D9ngqqkkpmvX/MrOi24bYyKi6Tc16hkfApBKVYIsbexEvsjb/A0eNHsdls/Nu//RvDw8PrBKV1rOO/ODZu3Eh/fz/PPvssFouFIAHe4nk+SrxOJLEyXz74wSTzyTO/8otdVGdYC8z2zssEJaDsbAcbb/OhNZ6qUhKfj6cJSgV1uWy4tYzcDKp8qcN6x2YbVVeXqCr8FG3Jp2hrftomaVXEITS2QHBAmfA08PY4hx/uJB5ZRLJqM6sQJdMk/iuK2XDb6uerKXS8OJTOC6rBe6GT6mtLV+3DFFLkBbPbmLEPASLBeJq8oZWU117xyCJaCVX1Tr1ZS/klLlzbVM4lU2kkZcGaNSEWXSQe+eSYT1kaiEfin1ydqWcVqM67qwjvRau7HS2HrULOEamdiaaUfNQISq6t+aBF/rYV2uk5p5Ca60qRrOovcLJlls6XhhQJSgV1uTTuKV/6ljP8bXOxrKg1sn+KQz/uyEhQAjmmhMYWmBtVJlI5GqwUbcpTdXmquqoE/xVynIsG4xkJSlXXllBznbyemh+LZCQoec4ppO5TZejNWuKRRXpeXZ2gZHRI+K8oxrU9H5Bj78f/9khigDcST/NO52uEF+bZsWMHMzMzPPvss+sEpTViXUnp/wP27dvHmWeeycLC0gD1UUtF1oZTypZd4EgnhOvv9NL1yuCqFkjV15Yw8MEowYEIxTvtTHbMrqriU7bLQXgmwshH0+T6TITHwqsSMZzbbISnogTa57D6cwj0zq1KSDCXZhPsk5+j/NIiOl8bViQulF3gwOYzK94M913kxLXdTvdrI4rJlsZ7yznxm24hpZuK3S4MNknRs9Z/ZTG9rw8SUbmw77+yGEeDjbZn+hXt7MxuifpP+5lqm6Hlt5lZwc4mG/7L3AwdmKTz+cyLHIvXSCIaz2iBlYJk1tD0YA3T7TOrqsIsFYSdX60l0DMnHyZ8AhBVUhLFzv9Rp9p/qXKBniDNj6g/h7PJlpG0kq7vb2qJhmLs+9fMLG25n6uZ7QupPu/2r9WQlQUf/EOLavvKL3PR//5ERlJfrs+Ef3cxB/6jXUgxq/bGEia7gmmlotVw2tdrSCzCh9/K3L6i7Xm4ttk5qGLX4j7bznTrLHPDkRXx4eNYrihVfrkr49hfrixVd6tHvpm/ynN7L3TSnZSHr7mhhL63V1e2qr62hOk+uT8KG3JZmI2dokIXSUQYrW6lt6+XUEj+t8suu4znn39e8dnXsY51/NfFHXfcwS9/+cv0z9kY2cFF6LNWJvCtPhNZ2iym2+co2pqHwS6tqs5jcupxNRWkkxMlZxWsan+kN4HvomJan5YT4UrKQJ5djrSFk5KyS0rZxOSSMLtMaaJTJjTeW07fu2OKN8O3fbmKRAL2/UtmZT7nljzMRQaxhIweGu8qp+3ZfkJDq09WpgI99jorfW+pqxtuf6iaeDjO/u8qz0F1t3iwlJj44J9bFAk0Tff70Rq0fPgtZcWngoZcxlWsi0G+TWcty+H9/608z1dd5ybfb1EtJwpRJSVR1N5cSm5pDh/8o3L7qq8vIa/CzPvfVu5nkMcrkHEcAFRc5sKxyUbzoz0EOjMfbFVd7ya/wsL+H3QoKhU5ttiouMRF/ztjquNLb9Lg2lmgaJ9Wd3Mps4PzQmNVb9VTdYWL4wqEb/cZdjznOOh+fYSh9zMnnurv8sry+0p2LXoo3VmQblsqPpxSzATZ+bLakc2fg0aXxeQq6rB6qx7JrGVuIIxzSx5ZOla1oDMV6Mlxmxg7HMBSZsJeY1k1Vua4DXjOKOTE4zJ50X2mnYF3Tt3fDejbmC8OpJWHCwoK+MMf/kBTU1PmZ1/HOtbxXxb9/f2cfvrp9PXJ334WWVSxmdKsU4ngy/fn/t0uBj6cZH701D2k+6wCplqDhEbC5FdbCI3Mr3qAX1CfSyIOE80zGB3ZREPxVdWIrBU5LEYXme2dx+Q0EAmEV1VVWq7M5NqWx9DBKUXiQkF9LgV1Vtm2LgMKG62UX+yi+9VhRcWbqmvddL48oqimlIJrWx5ml1GRfFG8087owSlVYoprWx6e85y0PTeguH7UmXVsvrec8ZMzdL2QmTxsLjGw4RYvQx9O0vvHzPNtilijqtajg20PVKn+XYCtX6xiuiso23p9AhBVUhLFti9XMd4yo0q+3vblKqY6xJ4jr8qcvqiaCU0PVhILxTj8YwUlCB1svb+KQHeQtqeV/27jPT50Bh37v6usdADy+Jpqm81I6jMU6Km4tJjjv+kRUszynOtgbjTMRHPmNfvm+ypAk8XBf8+8l7BW5FCyo4Djjyjn9/LrLIRGw4THo4rKbcsVQxQVw5cpT/kuctL31siqsWi5GqXnXAejRydXVTJzn1VAeCLCRPMMFo+RRDxB8GNKqrFEjBF/K33DvQSDQTQaDXv27OFHP/qR4rOvYx3r+K+L73//+3z1q19lfl6OO3kUsokz0WatJCYY8iV0Bg3BwbCsnOQwrkqGkMxa7BusadKSvS539TirBfcOe5q0pKTYUthgZeyIfOFHSUFIssoKTpJZi6nIoHrxyH9FMaOHp5npzZxLqLu1DK0+S9HVw+IxYnEZGfxAXb0GLVRe4abvrbGMKlJao5Z8vzmjbdRybLzDS2IxoXh2CbKykL02l6M/7VIku1RfV4LBns3hH2ZWIgSwlBqZ7VNXN3SfWYBjo42DP1DOyRWflo9zc75qOVGIKimJwn1mAQV1Vg7/pEOR2JN6jiNJkpsSJKuWLI2WhanMOa/CRitl5zo5+WSfYn+n/u7xX3UpXjI0u41UX1dC39tjq1qILYdWAvsGm2K5krMKWJiJKl7IW6pPQ+m5Drpfzrx2tfpy8F9RTM+rI4wrrM98FxUR6FOxgNNCYZ01/R2l4sNq5Yx5EvPjsiqSzqhdVblNK2nQm3WEJyNYPEb0Jt2qtnZ6sxZToYFA1xySVYu9cnVlK8mqpWiLPa3qll9rWfV5JhLDTPsG6e7uIpFIUFdXx1NPPUVVVVXmZ1+HItaVlP4/YOvWrYTDYd588030enkT3sUJXk38js5E84qyKYJSXpUZi9uEY9PqzNaTT/anyStl5zqov9W7arme10bTZIWa6z1s/vzqH8HIR9Npi6ba6z1s+8Lq5VIEhFyfiaIt+dRd78nw1DKsnhwMGfxqU+h6eYTx4zOqt8EO/6iTSHARqz9HVXkmtyyHHBVv8PZnZIJSXpU5o09vqtzJJ/sUCUoAwYEIc8PzchJLASP7pxl4f1yRoAQw2z2vSlACWf1nbnieyQ4VtlUEQuMLBPrV7S0kM6rqQ8KQZAKXyN+cG51nqlvlOSQI9oeYaBGzSFMjKIF8W6vjJeX3EQkuEuyfZ+Aj9VuLh77fSvPjmReZklm2ZYSkj6mC6lhBTS7ZZj2W4szMWtfOfOpulb/FE4/3KxKUAHrfHqXjBeUkW647h2yLHkmBqSyZwXOWk8qr5VtxmQhK7jPsVF9bmv7OMo19/5XFVF1Vklahan5kdYJS8U477h0FaZWllt9mVrbKr7bgapLj6NiRmRUEpUgiwkemV3mLZ2g52YLVauXCCy8kkUisE5TWsY6/cPziF78gkUhw9dVXA7DAPG/ye95JvLBCWSnQFUonQBybbDjqbavWFxqJpsk63ouceM52kF9nOaVcNESaoOTckkft9R5Kzlr9RnyKJOE530HtjZ6MSj8pAkLl7hLKL3QpKviYnHoMNgmzS/k2RsdLQ3S/qnw4MnJgKv3MtTeWrvq8KVhLTBjzJPLKM5cJjUfTxAr/buXnaH60l/3/oZ7kGD40xVTnrCpxpvOVYU4+oa74JEJQAphonWWqI6iqpjTTE5LVcARUl9TUcNaCbLte6G8GekLMDiir9QBMdQYJ9MwJKSmFhiKKBCWAjheG6Ht7TJGgBDB6aJqZnjlVK7XRA9OceLxXkVRUenYBOW4D0dCiIkEJwFRkxFa+uhpaChtvL8PkkogGoooEJYCBdycYOTitSFBCD4b8bKxeZUWm2utKKTmjMD1eMvV14z2V1N4orw2n2+dWJSgBbL6nnNqk8tXIgalVCUoAdbd48V1QBMBsTyij1WJRYx7WCnOarPZxgtJk8QCvJn7HichhBgcH8fv9HDx4kLGxsXWC0jrW8ReMkpISent7aWtro6ioiAQJTnKA1xJP0pdYeWEttT83FOjJr7FSWGddtc6Bt8eX2SAVUXPj6rmn8aMz6UO06qvcNN65eq4o0LFk0VRzfQkb71hdSTNFQDDYdXjOdeJPqpJkQm6pCVNBtqLKz9jhAIMfTKpacrU+OUAsGMNQoKf6OmU1b6vPjFkhRwCyanEsvIjJacC1LS9juaGPpmh+tEfV+iwWjDHdEWT8mPKBRrA/TM/rI4oEJZD7WsROjBhMdwQJdKvnsgI9QcVDyzR0st3cJwWDXaAuHUx3zzGTQdFwebmJkzNMtiu/jxTUCEoAJ5/4/7H33tGNnfeZ/wftohIA0UgQIEiQYJ0hp3BmNCNp1DW2Rr13W1ZzkS25KI6S3fw2e/ZsTrybTazEjhM77lWWbMmyLbmo9zK9Fw57rwAJolwAxO+PC1wCROHE9m7iBM85PhaHL+997/e+5Xvf93mfZ5j+F9awSU7C7KkFps5ic/Xgt/o5/mSZ3Fq9os41/v58WdUxi8+IwaHFVGYN19JslFUzh16ZKktQAhh4aZK+Ndb4jC4deoe2/LtTQ/MH62j+gDQOlGqv1S0mOm9roG67tPZUUjF8SzUdt/hkpbH+3xQnKFmajTReWiurLA29MlXSarF2UzU1G62ApIqSS1BKppMcNr7JKzzD8d5jGI1Gbr/9dlKpVIWgVEEFf+T4+Mc/TiQS4Qtf+AJarZZ5pnmZp9mXfp1UeoXsEJsTCY9J44JzvRXXZmvR64nhlExQcnSa8V9ei8Vf5Ns0hUxQMnn0tN9cj3ND8VwuS1CytVfRcatPVpYpuHeGgOC9wEXTLndZVSWVXoXBpcXgLL/vN/DCBIOvls9DFoeiMkHJs9NRVtlIaxYwuHRUlVGGSkVTMrGitqe8OtTpn49x4sdnsUZ1IsTciYU1iTNDr09x+mflD/0DZ0VQAlgYXGL2eGhNNaXF8SjzZxbLK2FlIFhUfzB1Jo1JdVb3XJqISvnjGgpJi2NR5k6vHWcAMZQqS1ACKfcf+O3EmvGePxNm7vTCmiro4dEox58YKks8srVXoXcKpETWJDKZ6w1l2ztIAgF6h0BKXC5LUAJJQW30zdmyBCUAY62u7B4nSCRI30UuWT2plCJT+431tFwrqSdFp8WS1pIdt/kIXCnlkItD0aIEJYDm3XU0XlaTuWdpZStLownnOgt6p1S/1QSliG2eV9M/Zz9vMDw8RGdnJ729vRw9erRCUPo9UVFS+gPimWee4eabbyaZXOlgXpppV2zKKyfYBJm8sPlTAWJzYlHlGFO9FpVWTah3Cc8FdnRmgTO/KPwYs3dWoasWGH1zlqpGPQa7tiiBo3ZbNel0msn3g1gCRuILiaIqTTVbrTIZIve/S6Gmx4rOKpS1Y2u8vIbazdUc/nZfSdJB5231WJpM7P+XM0XrtRq5cSyGrZ9pRaVV8c5fr30qfd1dDZxeg1Qi3ZSzUr1Zq26WgJHOWxoYe3fmrGzs/lA450/bWRaXef/vSisswNkpKbl32Gi6zE3/CxNnJUv+h8L2x9qJTMU59I3SJ8XWiv9KQc5axWjkvVkWB8onIJ231WNtruLIDwYKVH2K1m2N+2/8WDM6q0ZSOChRrvteP1qrhvf/tvQ7FWwCzZe5yityIZ0WXehfQAyXV6rKHRfab/Jy4qki1xWgYadLat8CtFzpKXpK0ew34DvfKbc1z3krpzZyUd1uovUaLyd+Okyod6noOw6nw7zPC+hNOsJhaUHv3HPP5c033yz73BVUUMEfL3bt2sVvf/tb+WcBHdu4BJ0i/6NMY9GQCCWobjPRfEUdJ54alq3hcpF7srXjtnoGX50sShZousJN3/NSTuY5387ou7NFiR6Bq9z0ZnK3kmo+GrC1VDF3bBGNRYPBrlmT5NFybR0Dvx0jUabYlkdaWRyNcLLYGJ257zmfbic8HilPxtAgP1s2jsVgDRjpuNnH1MHgmipNFr8B5zqLHJuyyLl/uTIajbKsxdj6uxvQO3W8/7flVZf+kPCcb6fhwhqOPzVUUnkLzl5JacvDLShUijXzuD8kfJe6qNti49C3zhCZLP0iyrWN/IKsrdrk0OC9wMWpn66tbnDO59uJh0QO/HNpdVe5bmvc2+AW6P5QM9OHS7dhg1tg/Z1+ht+YLktOqr/AweJYdM3TovK4oAFHm5mZI4VjhKFGg0K9ooqUiCWLbji7NlsJjy4RmUzg3m4jPB4ragHnv6KWpckYU/uCWJoMJJYSRd9txy31aMxqDmXUGYq949PpQwTNkyyGF0mn0+h0On7961+zc+fOss9dQQUV/HHi0KFDXHzxxczNSeOfAgXNrKNR0Z5XTm1Sy6pBnXf4EBcSRed8nV2NWq8mPBLD1lmFwalj5NXpgnLGOh0Gp5bpgyF0djUGh565k4XjoKXZiFqrktWX0mKqKImiusXEfH8YkmenVmNuNGB0ahl/v/TBNecGC74LXBz94UBJwoPvIhc1m6s5/J2+8iQeNZDMj2MxrP9QAzqbtqyCZhb+K2oZf3umLKkk995rYa266exquj7UxOg7s/9P14s2fSJAOrHMgTKq73B2SkoWv4GOWxrof2H8rA7J/aGw+aEASxMxTv6k9PqNWqckmVxe+12d5ftsuMTF7MmFAqWe1fBd5MK91caxJwZLbhrltY017t96gwdzvZE9Xz5VslzT7lrM9UYO/HNpFQm1Dup31tD/2/KELZNXRyyYJBlOYmk2SmT9IvfNHRcaLnEx+FKRdVs11GxYWTerv9DFcJGNc51Dg/dcp6ye5VhfKt/T0XaDh95fjrE4FC3ax+LpGPt4DWVVmsXFRRQKBTfeeCNPPvlk2eeuoIIK/njxF3/xF3zhC18gkZDyBit2ujkPQZHP5FDpVaSiKfQOgeYr6jjz6zHZGi4X1mYjwTPSN2r9BU6mj4SKKgjV9FQzeWAeUhJJYu70YlFCiHubjfH3pLwwV3luNbJKPyoBdPbSKk1Z1J1jY3J/sCy5pOO2eiLT8dJ7ayro/rCf8ESMvnJrVCrkZ8vGsRh0NoF1dzQwsXeO0TVyG51NwNZiOms1p7OxI1MJyrLxaLjUhaXBWHbP7A8Na7ORwFUeTj07UnIvDM5eSan9Fi8ao4bD3/x/9wy2jioaLqzhxFNDRGdKb9SVaxv5BVnzfar0Kmq3VDNaRMl/Nbrv8yMuJMo61Jxt3QSTis47G5k+FCzZhgWTivabfYy+O1uWPG5rryKxlFyTsJU7LpQaIzQmFWqdiuiMpIqkQFH0cEJVvR4xLJHJrM1G4ouJouOcc4OFxFKSYO+SRMhKLBclRXnOd2BwaDn9jPQ9UCyOE+kRRkwnWIgskE6nqa+v55e//CXr168v+9wVnD0qSkp/QFx33XUkEgmefvpp1GrpxMYIZ3gh/RSH0+/J5XI31hUKIEMTE2wCQs7h3vBwXFZBqtlQjXNdcfby7LFFeVO/5SoPTR+ok8gPqzDx3rxMLGi7rp4NHyl+wixbpqpRT/OutT1c6893rul5Gg8nSMZTJQlKAMd+NMzevz9JbEpEsAllFX9M9Vp6Phago4z/+cGv9XLk++UXJkB6TnODkaYyqksgvZ8dn+uQlW1KofV6Lz0fD1DVWJo9GupdIhZc258TJBJI4+U1a9YtcG0dgql8l57YM8fIO2tPfmeD+TNhpo4EmSmyOJiLhktdsoJOSQiSjY3ZX57pC7A0EZMWFMug++4Gzvl8e9kyOpfAjkc7aLuh/ElGwQTWgFlSuVgDx340zMmnh8sSlHo+1kzXPY3SP5ToDtWt0kBw4J/OsO9LpQlKAJHZOIlI+SQksKuG6hZz2TYpmJS0XOOl885moLRSVdsNXpo/UIc9o7xRlKAEbPhwE57tDkmxSaTk4l/dFhtVPiOmei1AAUEp++9LmYTD4JR+zh1H48Ic453HeVfxa1KZFaaLL76YdDpdIShVUMF/cPzmN78hnU6za9cuAERivMFzvJJ+lkh6ZSzObqxrLRoUCghPSh9FWVWQLLIEJYvfgMVvwtVV/HR6lqBkcGjw7XTRcWPxfCSXoNR6tRdfsVwjgUw46LjZS8fNDWXVcixNBhydFnwXlZ+XxKUE0dniSnjZ++778imZoGQpNQdn9tDW3d3A5o82oylRLNi7xPEnh87KRs53kQt7p2VNVaDW6+o45zPtaAzl85ttD7fRWUJ9NIvQ4BKLw2uf1K9qMLDu7vK5L0gbDHU7yue/M8cXGNszS3iizHv4V2DkrRlG3ym/GKaxaGjcVbNmzHyXuPBfUbvmPSOTMZamYmUJSha/gS2fCBRv3znovK2ebY+0rfnevRe5sLWaMTjWlo06+oNBDnyjdL7ffrOXno8FJBWqEo9gqNGgMSiJjIvs/YeTZdtwZEYkGU2RWMOyp267g4ZLyufvnXf4aLnSI9et2IYVwPq7m2jPKHVO7psvSlDSGKBpl5vm3dKJs/F35ooSlABc663UbpLGtlBfJO/dagzKvLajUCjk/84lKIXXT3DA9gqDnCK0EKKlpYUnn3ySSCRSIShVUMF/YHR3dzM7O8vBgwdxOp2kSdPLEV5I/4TT6cNyubyN9ZxxRK1TotatjDGx2SThEWlNpGZjNbUbi+ddS2Mx2bag8TI3gas8qIsctA+dWZIX01uvqWPdh4qrL82flghKglVN67VeWq4rr6pUv9OJ5zxn2TLJSIpEJEksWHq+HHpliv3/eJrYTAK1Tlla6SVTt00PNtO0u/RcfeLHgxz7YXnVPwCdVY2z04r73OIqoDLU0POJFlquKR+Puh12ej4WwOQprXYQm02yOBYlOrN2DuS90Ckr1ZSsmk6J53wHalN5ZaPRt2YYefsPs+a1NC0y/Na0pLJZBq6NVqpbyis1ArTe6MVYV14hAiA0sMTCUPmcte3meno+1lK2jNqkZssnW2Wl6tIFwdltxXt++TYOUhsuS1DSwcb7m2i9QcpHShGPsm3n1E9HOfDPvWWJTLE5kfhieYZ73XYXro3VmLxl4quGjlsa5PYdOlOcoFR3rp226+vldbmiBCUgsLuOxktq0WWUu4oRlADsHRZsrWb5mVfne1l7RDEUAxRoLdLPueNoTB1jct1J3lQ+xxILLC8vc80117C8vFwhKFVQwX9w/I//8T8QRZG//Mu/RKvVEmSW13iWd9MvEEuvjMXZjXVNlRoUIC5KPwuW/HkzS1ASLGqcXaXnr8m9EkFJpVfhv6yWxkuL5yNZgpKhRkvrdV7cW2xFy2WJDA2Xumm7oR6VUHq9Qlst4N5qp7antFokQHwhSbTcIfUUHP3eoExQyiqkFCsH4LvYRdeHGlHpi8sCxeZEjj85tCZBCaB2iw3Xxuo1VYHcW2xsvL8Zjam8FNH6DzUSuLp8frY4GiXUv/aal84m4N9Vu6b6kcmjx9ZeWlUdYHEsxvAb00Sn/zBrXmPvzzG6Rh6nEpS4NllLvqcs7J1m3NuKt8dciKEECyNLZQlK2mqBDfc2UdtT/nqe8x1suLdpzbq5ui3UdFejXcOpCODEU8Oc/llpu17PDjvd9/gL+nouNCYVKr0KMZzi8Df7y7ZhMZwivpggES2/5uU9z0HdtvL5e/0FTlqv9crPWSp/bL/Zh/8DK6pIRdVTVRC40kN9xtUgeGapKEEJwL3ZhnO9FYDojJhHUFIJrLyfdDr3UzWPoBRpnOOw83WO8A7BcJDOzk5eeeUVBgcHKwSlPzAqSkr/F/Haa6+xa9cu4vGVQdqMjW2KS4qW3/RQMzqzwNslTlFnlUNqeqw0XFLLsR/1F9owCZmTHO8H0bkEWnbXcfgHAwUkh6pGPSa3nvG35zDVa9FXa4vanjVc5mL8nSlJWaWMqlJVo57FgSiWgBHBpGb6QGkZ4ZqtVmq6qsuyerd+thWVRsk7XzhRskzXPY30/3ZsTes0wSaw4Z5Gep8bY76EJYKpXlvS0ioXGx5oYmLfXNlTVOXi/rvgnM+3k4gk2fel0vYozo0WWq/2MvL2tGwt+PvgbJSUzhY7/qwDcSnJ3r8vzZSu2WqleVcd/S9NMP72WTDM14DnPDsGl67sqTgE2HhvM32/Hi/L9AbJ1q5cO9v8yQDBvqXyrPwM1t/dwNAb0yXv2X6zF1urmeNPDpU80VnTY6VmQ/k+hACNF9YwkDlJZvYbit4zt1/n9vfV1/Ke62DklRkQoOkyd9Fn9VxgR1+tpfdnYwgmJZYmU9FxpeueRtRGFfu/LJ2EK6V81XVPIyaPgb2Pn0AMF54UmEgPc5T3SGeYnjabjXPPPZef//znpeNSQQUV/IfGbbfdxhNPPCH/rETFBs7FrihcnNfaNWx+MMDsyYWiii25qiEbHmwiOhfn1FOF5RzrzcycXIAENO92szgRZaqI7YfvUpdsR1W3w87YnkL1JY1BiXNDtXTivIyySlWDQSYg1F/gKGuHBRLBaOy92ZJqPrZ2E23X1zO+b66k3ZOlyUDNpmpO/WRtdZvGD9Rg9ho49PXS85TBoSGyhhWINWDEu8OxZj7SvNvNwmjkrHzX14LnPDv1F7g48eRQWRWczQ8FUOlUvP9/fn9lprNVUjobNFzmwnOOg8PfGyhJUgFJrVGtU52V+sKa0EDnzT5OPzNSVs3KtdmKo93MsR+svaFqcAslLc9snVU0XlzD4W/2llUTAzB6dPjOc3K8jOT6OX/SjhhOsP8rpU/or9WHQCIjRmdFlkZjmLz6omptaMDRIaknaSwanJ3mogoTjm4zkbEokZkEtVuqWRgOFxDFNAZouW4l7s4NFqaPhQrGlaoGA+03eDn1sxFCfZHSqlca2P7ZDsITEY58u3if25t+lXkklRODwYAgCLz++uuVRZoKKvhPit7eXi6++GJGRlYOrrjw0MlW1IrChfL2W+qp8hp4/+9PFiUHZJVDqnx6Ald6OPWzEZbGVh3sUoOtuYq5k4uodUr8H6yl/1djBdZKOrsak9vAzJEFdFY1epeu6Pe1a6OVud4wyXBSUk/pCxetm6FGR2Qyht6lRWfVlFVfMjcaqO2xcaqMEk7XPY1oLQJ7Hi89DweucjP63hzRqfJrVWqdknV3NTDw4iShEusMOofmrCzYWq6rY/bUYlmLuGzcT/9i7KxUetbCpo81k4imOPLtgZJlTB4d6+/yM/T6FGNv/f7KTGejpHS26PlkC4losmzeW+XT03FLAwMvTDB1IPh739PWVoXJrS9vvaeGtuu9jL07W3JTKAudVV1WZavjdh8LI5GzOvHvv6KW6cNBmYC4Gp6dDrzbHZx4aqhke7X4DdRsLt+HANxbq2WFM2OdrnC8IF85zbXRytyJBZKxVfmqWiJxZ99N3Q570fzM1lmFyZWJuxqq/SaJ9LgK/t21GOxajma+YUopj/mvqMW1zsr+f+lFLBL/UHqOg7yJiDQG2Gw2brnlFr7yla+UjUsFFVTwHxdf/OIX+S//5b8QiUjjpwET6zkHs6KQ0KMSlGx4oJmZYyGGXi6cL3JVQ5qvdpMMpxgsUs5UpyM6I5ISl6npqSYeEouulTi7Mt+jqczY2xcuUJRRCWBprpKslFRQ5SmurKKzCbLCk73TzOzJhbLqNA2X1TB3cqGkqoveKdB5awNj78/K9nfF7ulcb2H4tUJVz2LPavWbOP1s6TxCsKgQQ+UPlusdAu5tdsnKtEzRmp5q4kFRJpn9PjD7DbRk8uxyKjhtN3rRVQsc/Je1RSDWwtkqKZ0N7BnbwhNPDRMeLV3/wDV16G0Ch7818HvfExU0XOBi7P1ZEmUs3Krq9dg7LGvaqIFEFCxleWao0dJwsYtTPxtbUyFJsKhwb7YX7btZdN/rJ7GU5PgTpdfFGi51MXd6sWzOaPLoScVTRGdEtNVCSXu8rGJSXn9ffa06HeJSEjGUxOI3EgsmCq+XifvIO7OkoinpuqPRgr4iWNS0XO1h6NUpSbGtjLLUhgebCY9HOPPz4vu4vemjDHGKZVLodDr8fj+//OUv8fuLH36p4PdHRUnp/yIuuOACYrEYR48exWCQjp0vMMcL6ad4Lf0LxHR+pxt6eYqZE5mNKEEaPATbCpsyu4kvmKVTFeFJ6SMltwziihJS/XlOTB5DUT/IxYGoTAZpvbaewFXeoupLgy9IhAXBpKRpVx0bP9pc9FmzNlgtV9URuKI8q7emqxqDS1f0fln0/Wqc8b3lySqHvzVAeFRE5xLovrf0ICEYFagEJQaXtmSZLEGp/SZvWaWkg1/rkwhKAiXrH5sSpcnvLAhKjZfXlIxpFu9+8URZghLA9IEQx54YXJOg5Ogyr6j4/J5ovLyG1uvLqxAB7P2H45z8SfnNxcn3g7z1v4+VJSh5LrCz8WPNZdtNFqNvzpZdbBJMgCgpFZUiC5nqtWx5pAXBpCxPhBNArVOjs5Y+7e85z07gWqlfHPnuYFlSVN/zI8ydWii76OnstGCs0eX3/VVYf2sDddvsshJRsXtm1dI675LafLa/r8aGDzfhO88lqyKVImO5N9uwt5kBEMPL+QQlgTyluFzkEpT8u2poyig7DL0xzdzxhQKC0on0QY643uCEeq9MULrxxhuZnZ2tEJQqqOA/OX70ox+RTqd54IEHUCgULJNiP6/zQvon9Kfzic/x2QQzR4KMvC0tQDRc5sJz3sopkIJN/AytX2NQ5inBzBxZkEkB9g5zyZNjWYKSoUZDw0UuOouoLyUiy/KCeOfNPlquzqisrEKWfFLVYMB7vpPWMgoAWrsGk1uPo91csszciTAzR4IMvFTaIiHUF5EJSoGr3Dg3lFZJ1FsENGucHIrMJNBYNGz6eHPRZwRJnSlLUCql4ARw5rnxsyIoaQxKuu/z4+guHYvRN2d552+Or2nTdeKnQ9Im6xoIXOXOa1e/DyRr5PKqk4MvTHH0B+UJSiDlQHu+XJ6g1HVv45pqUQAk4NgPhkoTlDKvd2pfsCxBqeOWeho/IBEKSxGUAPQ2AbVOhVJfOvfqvNOHxqJhaTRWlqAEMPbuDH2/Kk001xiUmNx6XF3W0hfRQOCKOgJXSn2xKEEJSW4+cIUHNNIYU2wDTGOAwG4PzddIKgQTe+aLKlkZagxYGoy4t0snyaYP5hOUNJmT+LFpqS3obVJOmDu2ae0aOu/wyVZ404eDBYuyiXSCN9PPsa/6JZmg5HQ6efPNN5mfn68QlCqo4D8xAoEAw8PDjI+PEwgEAJhilFd4hnfTL5BM5y+8j7w5zeS+eYnYopYIMYJ1hcyU3cTXZta84nMS4SBPPSeJbPXm2liNrcWMzl6onhKbTcpE78YPumm52ltUfWnqQFC6rxoCV3novKX4elBkUqpL0wdqpbG+jKCPo9OMud6Qpxq1Gv2/nWD0rfKbYL2/GCc6FUdtUtNyvadkOaVOKa1JlFkfyBKUPDsdBK4qrcZ5+pmxFYJSKaGn2DKnnzk7gpJro5X2MgroAPv/5UxZghJAeDTGke/1r0lQMnl1aypBnS1qNltpuKS8SiTAwX85zamflSfTLA5Fee+LJ8oSlGxtVXTc7ivbbrKYO7lYlqCk1gFJOPnkSMnNJp1VLR0gM5UnKAEIRhV6S+m8y9ZWJceq//mJkgQlgNG3Z5jcN1eSoARgC1RhrjfkjQ+r4d9Vg+/iGlmdqhhBSbCqab3OS8tuqU1MHQgWEpSAlt11+C+vldXNSlkUuntsONdnvoGS5BOU1JR8d7kEpZrNVurOlfLr8fdnmdg/V0BQGk33cdj5Bgc0ryMSR61W88lPfpLZ2dkKQamCCv6T49Of/jRLS0t885vfxGKxECHMe7zIq+lnmUjnf/emxGXG351l+nAQkIg1js6VtZDVm/hZJQuVQJ7KTngsJtuMOddZqCmhfDl9OCSrLzV9wF1UfSklIhMWPOc68lRWcpElKAkWNY2X1lBfRtFSpVdhbTRiaTSWLBOdFhl7f5ap/aX3nmJzovwtXNNTjbW59PUEs1pSrSqz7CWGUqj0Ktpu9JZUuYnOiNI+S4qyqkuTe+fPjqCkgqbdbqyB0nVf6I+w9yun17Tp6n9hnCPfWZugVNtjw95Zeo3tXwPfxS6M7vKqk7PHFjj6g4GyBCWA3mfHOPzdgbJlmq5wn13dUzD48lRpgpJK+t/icLQsQclzvkNWdypFUAIQqtRoDGpUgqJkmYZLXWhMEhGuHEEJYOTtGQbLEdtVYGk0Ymspr5zVfKUb30VSvleKoNS0203LVd6MPSFFCUqooOVaLw0XSut/of6lotfTmgUc61bGrcWhfIJSVhFJDCdRKECjl/pZ7tim0qtouNQl99WJvXOyAlwWqXSKQ+m3OWB/hQGOs0yKzZs3c/jwYY4dO1YhKP1fRkVJ6f8h5ubm6OrqYmxsRZ5NiZLNXIRVkb+hlT0FferZEWYOl/Z+NNVr6f5QM7PHFzj508KPYlmhRIBtn2pj5K2Zwo8tAWo3VjPx3jyCTaBlt5uj3ysklXjOszN7epHYlIh7h43Zk+EC9RPBBJYmM9OHFjB5BDRVQnH1IgEQJVsrS4NRVnsphp6HA8TmEkXrBJK9mr3TzLEnBmV7vHIop4qz+VMBlCoFe75YntV7zufbEZeS7P9yafJQ+81erM0m3vnb0nZd6+5qwFSn590vlrf0gtJqM/8atF7vxdFpZs9Xeste62yUlHoebkGtU/Hu/yqtdnVWyCZgazxa5x0+zD4D7/x16futv7sBo7t8PJ0bLQR2exh+a0pSBiqBhktd1G2zc/RHpUlFZ6vAteWRFlTa0rGqbjfReo2XU8+MlCQnCTaBhgudK+SrTB9aDfcOm0T2ylFVK3i2y1wyoa3x8hoGXp0suFbNViumGj1nfjGOYBOw+PSFCmkCbP5ogIWhiKSeVKqNCrDj0Q4i03EOfq18crvtT9pJp5Z5/28LN07Dm0c4euooi4uLKBQKAoEAN910E3/1V39V9poVVFDBf1588Ytf5POf/zyJxMqmvAsv3YrtBWW3PNJKOrXM3jWIwd33+dHbtSXHdI1BSSKyTOBqN4YaHYf+pfBUtaPbTKh3gUREUh1aGI4UnljXgOccO6NvSHmb5zx7gSUmSF7bWYJOzeZqafOvoFLI5IWmK9wMvzVTXEkFqG4zEdhdx/Enh0sSLbY92kY8lFhzTIfyijiWJgPtN/kYfGlSttorhvoLHHh2ODn+5CChvuJzssYAGz/WRvDMYmkpZA1se6SNuZML9JY4NZN7vUSCkhZhZ4ttj7YRC4pF20EWZ6OkZPLq6bq7kdF3ZxkqYTtxtiippJNbxgCbPtHG/MkFTpeIVbbM9NEQ/c+XXog5W9Wmnk8GSERTJZUIDDWasrZzWVgDRtpv9jH23qxMDlyNzjt8qA2qsu/Fd4mLmeNBqf3m9KFcVLeZCE/ESYQSeapqudDaNVR59MwcWsDgFjC69IWkOg20X+flzC9HSEQk1ampw8GCa7m326jbYpPHqVLvsvW6OmwdFvZ/tZf4bOmYOTdYCOyuo/+3EwV9MOGKMG0b4NjxYwCYzWba2tp45ZVX5AM4FVRQQQW5iMVifOADH+D1118nu9QooGMz52NSWPPKOtabab6ijlM/K/0NDBLJYOP9AaYPzdP/m8J1o1yFko0PNDH63mzhGKsGW2sVc8cWUeskq5Ezvx4vINnY2qqIzMaIzSSobjWxNBUrVDfJUU8RrGp0VoGFgSK5iRpIgt6lpbrJxFgZu9bOO3wkIkmJ+FMEdTvseM9zcvzHpW22cqGzq4nNFt/46Ljdh2BUcbDM/AfS3J1cQ93Ie6GTmg1WDn71dIGSVRaNl0oWvwe/VrpMFqXUZv41qNtup36nk0Pf7i+rQHU2Skqdd/jQ27W//6l/NajVrPn8DZe6cKyzlFUh9++qobqlikNf7y15PZNXR8ctDYy8PiWrDBWDY72ZxstqOfHUUElS0dkqcK27swFdtcDeLxWvu6FGR9uNXs48N1a8vyC9f3ePbcU2LdOHVsPeaZZtHW1tVTJpMRc1m61MZpRta3qsTB4MFlzL0mzEVKdn9PUZ1Dqo8pmKjkWdd/hYmowx+OIUap2yKMkJYMunWwlPRDnxo/Lk+A33+1GolBz450IFz6V14xwbOkJoQRrDWlpaePDBB3n00UfLXrOCCir4z4uXXnqJe+65h+FhaexRosJHKwHFuoKyHbfWo1ArOfb98ofJ/btqsfiNHPiXM0XVfbIqJa5NViwNRk7/fLSgnMmjJzonkoqmcG6wEJsXC3MYFdjbcsb0juKKK7nqKaWcIlAh16Gmp5qZYwsllVT0ToHmK+o486uxknZRXR9uRAwnObmGoh+UV8TR2QTabvIy/No0cydKq1TaWqtouLSG08+OlibfqGD9nY2EBpbKqj113+tn9uRC0fXD1dcDyio4nQ267mkkHkpwqkxOdTZKSiq9io33NTH69iwTa4hXrIVySjorhaDr7kbmzoRLK0WqpINm00dDJRW4AAJX16GrFjjynYGyt2y7yctyMs3pZ4rH6mzUt0BS4Oq4pYGxd0vHyrvTgd6uLXkvkHKqyHSM6LSY14fy7uUSSMVTiKGU1K+no6RWCx7pVRhrtSz0R9CYVBhrdEVJdd6dDsb3zJOKpjD7DCyMRgruafEb8eywc+yJIZn0WOxdurfYqNtu5/B3+8sSvoxuHe031tP/wkRBH0zpo0w3DHHkuGRbXlVVxY4dO3jmmWfQ6wuFXyr4v4PyZt4V/EFhs9kYHZUGhXPOOYf33nuPZZbZw0uQBi8ttCs2ANIp6PF9QXnDf/uftrM0HuPwqoEuPBknNLjE4BvSR1zzVW4is3FZkSb79xafEYVKIXtJ5pEJRJh4T/pw9V/kwtJgLDrh505sjRfV4N3u4P2/y99sEMPI6imtN/jQVgm8/TfHCskUmZ8bL69FZ9EUJUlkkV6G9HJpLt2pp0cQXl0hYxltAksTxS+28WPN6G0Cb//N8aL32/cP5Tcms1gcjbA4Vn5xKDi4hKFGhyCAWOLZShGvVmPjx5vRW0tbAYKkNOTd7mT/P54qao0FUqxOPX1Wt1wT5RZOstj40WZQSKf1S2HdLQ2YG4wlLb2yOBtrkMhMHLVRXZbwFOpdJBaMM7WnfLIz+OIUgyU2tkDapDbW6Nn7T6UJX1kS056vnEYow4YXgyLpdOlTVwDt13sw1uoZfHVaul+RW3bf58dUq5cJhMUISu4dNrw7nKgEFX3PjZckCPrOd6HUKDnzi3HEOZHpnGeUxw8RVBolglGaSsRVZdquqpPGLBGCvYtMHy9iWdSoZ/3tjYy9P8vgC1Mc+Hpf3nXC6TB7eJEkCdgLer0enU7Hr3/9ay644IKS8aqgggoqAOmU2ac//Wlef/11rrrqKhYWFphihBfST6HDwGYuwqCQNtv3PH5KVh5puMxF7SYbh795psCSbOTtGWxNGWk4DXRcX0/vL0ZlFZns/6t1KtTalWNVuWSCmRylOVeXFWujsZCklEAmKPmvqMW92UZ0Ns7cKvJ3diPOUKOh6QO12AKmQuWYzCMYajTUbLQimFSceLL4YotKqySdhvhi6Y+8/f94Wn7OciQkg0ND94ebCfWFi6rZhPoiZ0V2njgYwhowEZkofeI6EYF4SCQyW4Y8nID3/mZt9SOtXcOmBwPMHgmWJOiAZAOcjCY5+r3SOcrZ3O9sEB6Jls0DQYr3ug81MfDiRFllqZ6PNbM4FpUtKIohETmbuiuJLyQI9ZfeXAaYORpCX0ZxMotyBEGNRUP3PQEWRpY49v3i8c6SmIK9S+z9x96yRKx0Ml32+0JjgLqtdiw+g6SQWuxSGmi7vp7IdIxDX+8vas0I0HVHI0qtkplDC0TGxaL9xVJvoDpQRd25EpF8tWVkdvxYFtMoBZXc73KfsXZLNUKVmqGXpxl5dwZUCuILhRXvvMOHsUbH+393iumDIYIDkbzr9KYPM8ApFFPAFBiNRi6++OKKWmUFFVSwJnQ6Ha+++ioADz74IN/4xjcQUzHe4QWUaRXNdNKgaAMkJcrgQEQmpWz6RIDwWKSAqCOGk0wfDTK+T/p+r9tuRwwn5DE3+/c6hwaloGQ5IY3teYSXJHKe5dpsx9FpYfLgfAExI5fs0PQBN6lYigOrCdk56inNV9RhcuuL29dlfm64yEWV18DUgdmSpJLl5TTpZOk5aeztWaYOh1aetQwJqeV6D1a/if1fPVOU8HP8h2uvqwAETy8SW4PQvDi0hMVnQBLpL76WM/DiFANl1lWyaL3Ri8VnKFhjzIWtrYrGy2o49v2Bkso/Y+/MliWE/WtwNmtQrTd4UOtUZcs2XujCtcnGgRKWXlmstQYFEJmNo7NryxKeYjMxFsciTBc7uZ6DmSMLJXMXkNRAbW1mDnz9TMl6Z0lMR78/WHY9S1xKQjqNSihdpuFCJ44OC9NH5qT2XeSWgavc2DssLE1GiM0mixKULH4D/svdaKo0jLw6LanhF0H9eQ60FoHR12dIxsgjKOWOH2qdCrVO+qbLJSipdUoaL6uh91cS4XH6UJDgYOGGnM6qZv09TYy9O8vY27Mc/dFwXt+Mp2Mc4A0WCcIRac2rtraWZ599lq1bt5aMVwUVVFABwCWXXMLQ0BD9/f3cdNNN7Nu3jwGOM5A+jg0X69mOoJA2JY4/MSwrj9g6qqjf6eTEkyMFCiZTh4PEQ6JMHvBd6GT0vTmZKJD9f41BJY39mXK5ZIJcok3tpmoSS0lODK1ag0ohE5ScXRYaLqkhGUsV7ElmyU0qvYqWKz3MnFhg8IXJgmtly3i2O9BZNSXnVJVGCek0yUhpMsixHw6Qyvy6HAlJpVex7vZG5noXC+uEpM508KtrH+4LDSyxMLxEdLrMelZK2vuKlVCwyeLQN8oT0SFjBXh/E5OHg2WtXJt2uyENfc+XXhf7g9ipIbWrUmTnLFSCks47fAy/Pl1WWWr93Q0sjkbp+2WZw4mpteuuUkkxXxovzzSfO7mI3rm2/cvJp8qQ3lTQeVsjC0ORkvEWTCrEqGS3dvCbfWWJWOnldKn0XL5f/U4n4bEovT8fK05WU0H7DT7CE1FOP1OaQNdylRtttcDBr/aRCKcIhovkQzaBmg3VpKLLjO+ZY2Eov59nx4/l5DIqQYm+WpBsJnOe0ew3oDVrmD4YYuZECJVeiVjke8d3oRNLk4nD3+xnaTzGga/nx2oyPcop9iNG46SPp7FarTzwwAP8r//1v8oErIL/W6jYvf0b4d133yWdTvPRj34UhUKSbRvhNHutLzLb1YeYFjG6BLY/1oH7PBvRORFNlZpzPt9OTY+VhktdbP1sKxs+3MTR7w2i1irY/lgHzm4r3u0O2m/2sv1P2+X7tVxZR3whwfSBEIJNYMtDAbY9Ki0OtVzvYftjHQCc/OkIYliU5KsF2PqZVnb8eQfNGTnopt1utj/WwYlnBjn5zAibHgqw9dE2ardJMo/bH+uQLcDmziwCaXRWAcGkpOfTLWz5dItcp3M+305sOsaxHw/h2W5nx5914Ltckm7c8EATWz/bCsC+L/VS5TXQeZePdXc10HJDHdsf66C6Xdog7L7Xz8aPSJJrmz8aYMMDAdnSzNltZvtjHdT0WAFYTqUk6crMXL71s6103yf9rSVgZPtjHdTtsOPeYePc/9rJ9sdWYrj1M62yNdvQKxN4znFQf7ETnUug/SZvXtktj7Tg3mKTbNoE6T1mLawC19TJ8QbY/MkAWz7Xir2zSo5hICNP3XRFLdsf62DmeJCZEwts+kQzWx5ZieH2x9ppu0GKt6lWj0qrxNImXWfjR5vZ+pnWvHh33ibJbNftsLP9sQ4sGenH7vv9crwBUEonnUA6dbT9sQ4cXZKsXtc9jWx7dOVZt32uTY63vbNKivdWKd5aswa9fcVmb+tnW9nwQBMgkVO2P9ZBPCJtbjVf6eGcz6+K98ekeLfdLLXRhsskOcG2G/Lj3fNwgE0PNdP3/ATHvndGivduqc02XyW1WQTQuQTW39OEQqWQCVHbH+uQpdP9u2o49y862fwpSap+48dXxftP22m/WYr30lQUhVKyE4RMm82J97n/tZPue5ox1gq4e2xs/mQH1a0rbXbb59rY8EATOpfAurubiExEmT60gHOjJdOXzZJS0cMBtv1JO4e+3s+xJwbZ+BG/bG9Y3W5i+2MdtN0q1T8pplheXpZJPtl4CyZY9yEf2x/rQKVVMvDqBIJRlTdGbHmkhR1/JvV1IWOjMnlQIi/mjhE1PVa2PBRg6+ekZ33/S6cw+4wFY4RjnYmqegNbP9dKz8MBjv9YUoXb/lgH7Xd4abvBS8NlLtbd1ogYSRKbF9n4sWa6P9QAQH/6BCNtRziof1UiKAE+n48TJ04QjUYrBKUKKqjgX4WdO3cSCoWYnp6WZVpjRHhb8TxDLYeY1Usfiu03eNj0iWaicyLR+TjrPtxEy9VuAle5qb/EKSsI9f5inPV3N7D1kTaszSaqfAa2fqaV1hul8di5wYK5wciZ56WNts2fDLD14RZZcnnLp1vpuEWak3t/PYpg1mDrrKJ5t5utn21jy6dX5pMtn2pBbxPo++04qfgy2x5to+sjjaCRNka2flbK5yKTCZJiCpVBSu+9FzvY9mibbNcVuNrN+ruaOPajQU48OcKmjzfT83AANBIBYtujbdRf4GDm0AIzx0NseqAJQ42GdXf52PBgkzx/o4FNn2ihcVcNJq+eDfc2s+PPO2Q7tu77/fL8HZlJgDJNMrO64znfzrZH2zA4JMJK1z2NbH5ImnM3fbyZHf+lk5aMPWrtlmq2PdqGyavPkDOW6b43IFvDbf1MK603SfF2dJvZ9mgbQ69OMfrGLJ231bPlkZwYPtIq50DVbSa2PdpG5+3Sz603efLm755PBghc4Wbu9AILE1G2PdpG7RYpz225tk6ON4DeocVYK52uMTikGGat3Zp3u+VcGySifPf9UtvTGJRse7QNX8YWQ2fXolQrZFu0DQ80seHBJvlvtz3aJtug1V8gvdcsoa77Pj+bPi7FW2PWoDGosLdLuWDdjky8a6Sy6z/cwOaHAkwfDjF5cJ6tn22j9QYphjWbpXhXNRiwdVax4cEmtnxqJQfa8ulWOQdyrJfiXeUzcPCrfdRsrM5vsw+30HmHD61dg6XJQN05doKZBYjWG/PjveUzLZz7XztxrDdj9OikeGe+K1qudrP1c1IME6EE6eVlNEZpUVVrl+Lt3SlZnTVd5Wbjgy103dsIQOet9XK80UgxbL+tntYbPPgudVHlM8jS3933++V4uzZbOefRNrwX1nL8x4PMnwnnxbvrI41s+UyLrKyUTqeJZuyI3NttbHu0DaNHR+2WajZ9vImeTwY4/YtRjny/v2CMOOdP2+nJ5Jme7Q4SkaSsdJk7RvQ83MLWh1uwdVYxuW+exeElOm9tXInhp1rovNOHd4dj5T26jZz6ySitV0tjRP0FDmztJjY/FEDv0LI0FcNQI8XQ2WkmkU4w2nyME553GOAkkEalUvGpT32KcDhcIShVUEEF/2p89atfJZlM8qUvfQmj0cgyKU5zmPfNv2V2XT/JdBK1TkHPwy04N1gIj0dRm9T0fLIFi9+Ae2s1Xfc00n5TPf3PT5CMpel5uIW6HXY82+14L3TS8/DKPNV8RR2xYELa7FLDtkda5e/6uu32jBI0jL01S3gySuMl0rza9ZFGtny2hfoLpTm5psdKz8MtnPr5CL3PjdF+az2bPtEsW0FsfiiA/3Lpb2dOBFEoM3aaaulaG+5fsQPY9IkA8XCC408MYm6oYssjLXh3SnlCy3V1bMzMPSd+NIzJYyBwTR3+D9bgOV+qb3WLtH7QtLuWrrsbAWi/rZ7NH1uZT4x1OnoebpHrl06lUahWyFvd9/lpz8wnOruanodbqNlspbrFxPbPd7Dlsysx7LqnkY7bJbu7kTdn8JzroG67DcGqxnO+Iy/e6+5swHuuk6PfHSQZW6bn4RY85zsy8bZl4i3lpB23+9j4sSYsfilZ7PlUi2wNVrNZindoYJHJ/UHab6mX1+jkeO+S4q13aNBZBaoydi6tN3jy4/3xZpp2S+tu1S0meh5uwdwo3TNwTZ2cn4JEMDF7pd9V+fT0PNyCLbOW5t9dy6ZPBOSyG+7303qjlAPpXVp6Hm6R18cMLh1m34q6YNdHGmV7O8EqxXuZNNPHgtRssOXFcP2HGiTLVcBzofTO67ZL7aPuXOnn7NHizjsbWHd3A5N7gxz/4RA9D7fgvVBaP3VvrZbibVIjWNUErq1Ho1PJbaDnky2SzQVS/rHjzzvkGLfd6M2L4eaHAvg/KMV7cSKGQoV8KC23zYKUW216MIDepcXSbGTDg81YMtY4zVe62fSxZlpv8KCzq1l/h4/weJT5U2FMHqnN2jqrQC0pzG9+KMCZX45z9IcDtF1fT1sm3jqHhp6HW/Bn3msikWI5lZZJel33NNJ+Wz2opX7S83ALBoeW3uekA8J5bfbuBrZ+tlWyKVGDtlpg/OAK+TE7RlT59Gx9pFX+Rjn0jX6sTaaCMcISMGHvsNB9bxPd9/oZfGmK0JklNj8UoPlqNw2XuHB0mVn3IT+xkEgsJNJ6o5d1mW+SqfQYI61H2Gd8WSIoAd3d3Zw6dYrx8fEKQamCCir4V8Hv97N3714ikQjXXXcdarWaOaZ4XfFzBpoOEq6SCLy+nU46bq0nEU4SmYjTcnWdZEG1xYats4ru+/wsp5YZe3eOhktddN/vx9ltxejUsu6uBnwXS2OhqU6Hvd3MyJsSwSVwfR1bP91KVb20PtJ5u4+Gy6T5pPe5MbRWDRa/EecGC133+un6cKNc9/Zb6jF59PT+cpTYXJzu+/w0X+VGJYB7m43uzL5fKpoitpBAnVnzqm4z0X2/X7aCcm2ysu4OH8efGGTwxSlarvOw7q4G2Yqr+z4/rk1WwmMxJg8E6bjVh7ZajX9XLc1Xu2nN7LEBrLvLj3uTDcGkYsNHmtjy6RYEk7QW0XSFm/ZbvHKdFBpYTklkc2uzke77/LIFb+PlNXRkxv2Wazxs/dzKGkaVTy8dgnfrSInLJJdStN1cjyZzn847G2jIxNtQo6X7Pj/TR4JMHw7h2elg/d0rMey4rZ7GTH6qswl03+encZf0t54ddnnvDiT3l4bLaiTC/miE7vv82DqkHMi9xSbvO4FkAVaVyXNUghRDZ5dFjnf3fX5ZkanlGg8t163YE2fjDVL+JFRpZJJc05Vuea4H6P6IH/c5ktOQrVVqh4JFKuv/YK2cy2pMavQOLdZMjmzxS/HOEoQaLquh83YfE3vnmT22wLq7Gqi/QMqXTB4p3qY6HYYaLYFr6qT2kUHnHT45X9K7pBgaaw30PjtGlc/A+g/lxPvWevy7atGYVGirBbw7HUQyCp5159jo+shKDNfd1cC2R9sw+w2o9Cq67/PLeXtNT/VK3puC5dTKmle2zTq7pXg7uy30fKqVlmsy+5iX1RTEu+FSF96dDuydZuztZgZekhTPm3a7abtJindVvZ6u+5uo22Lj5E+GmTkeovs+v2y76N9Vy/p7GiVieQrSy8tE56RnM/sMUrxdAmafgZYbPHTe4WPw5SlOPjVSMEZs/Fgz6z8k9UHnegvxcILxjHBE7hjRepOXrY+0YPEbWRyOMnd6UeInZNB+Sz3+D9ZSt8UmtdH7/FTVGRh5fQZ3jzRG2DqqqKrX03ajF5NXUl9TmaR4V/uNpNIpprxnOOl9l8O8TZwYDoeD//N//g/z8/MVgtK/ISokpX9j/NM//RPLy8u8+OKLGAwGlpaW2H9oH6/xLD/vfYLxsQnEeclOI9i/hLiUkBYKttmJLySIByUyQjKeJhFJcOa5MQ5+e4BYMMEyac75fDuCSUk8lEAMZpWTkqQSyyyOSoxGhVpBKrVCq4zNJYgFRaqbTKh1KhJiSmboxuZFEpEE82ciLPRHiAdF1IKShoukAUVcShANSoNWdDqOGE6wnISO2xvRVmkQc07lJyJJovMJQr1LiMEEKMGzzQmC5GmZe/JXDCeILSQw1xuoqjOQiCRIxqQNr+i8SHxRKtv/2wmS0RTRTH3ji0kSkYR836XxFbZx5x0+llPLxOelv01FE1LZcIKF/jCpxHIeEzO+kCA+Lz2bGIVEJEHtpmo23ttMNChKJ4OyZUMJ4kHpug2XOFFqFEQz8Y8G4yQiK88WDyYQ9GoaM4NyIrISw1hQqtPUnllOPz1KPJggnnOaTVxKEgtJ1w2eCRMPiYT6JUZrfD5epGyCrZ9txbXBQiKSIBWVfh+fS+S9G4DlpNQmxGwMM7GIzouISwm2P9aO9yIHYjgpn7ATI/nxnj4WIja/wgAXF5MyO385liIRSRDqDXPsB0OZtrUqhvMizo0W7G0W0ull+Vljofx4KzUqtBYBMqpViUhipc0uSG2282Yfm+4PEF9KSO0tg0QkQTRTx2hQJJVcJjItbTaJ82JBDKvqDQg2gYXhKPEFkWQ8nXmP+W02FowTC4osTYiIIek9JjLxjs0nSMSTGFw6vNsdiIuJlRiGMzGMpNhwTxM6s4C4JP0u1LtEfDFBLNNmE0sJFCqwBywgQGw2kVeH7Bjh3+XF4jORjKeIBxOMvjZLLJiQYiisxBslGBxaEJOISysxTMQSpNNSe5jcGyQVX5bbaDaGsXmR9Xc34OqW2tbYu3Mc/HovSxP5EvniUgKjQ4e9w0wqJT3r4e8OMrk3SHg2wt7DezjoeJUzHOHkyZPU1tZyxRVXkE6nGRwcxOfzUUEFFVTwu8LhcNDX10c6neb2229Hq9Vy+vRp9kfe4YX0U7z23qsszcaY2hfk0L/0Iy4kSCSWcXZZMdcbEBdX8o/YvEhkIsrBr/UydyJMfCFBdaCK1uvqSCwlERcTsoLl0niUZCxFMMeWNhaRxlhxPiXdZymFzqZBoZYUgeRyQZHYXIKJ9+ZJxJIkEylMdXp8F7iIzYvEF1bKLk3EiM2KaAzg3e5EqVYiZnKkaCa3CmVOpcWXRLRmgc6bfZBIIC4miGfm+nhI+rluq4Mqj1EmkwKQQJq3giLhkSjh8SjR+ThZR73YvCjnpwDRGZHIRBytXYNzvVWKS7bs7EpetjQVIxlbyTnFsFSH5VimTsEEYjTJpgcDBK52S4v92fkwnI13Co1BSVWDMe+9x0MikeyctiS9P4vfhMVvIDafkPMLgFgoQWwuwamnRlnsX0JclHJD+dly4r0wuMT8SenkXyITl2xOGgtJ8c6SiuJBcWVeTSxLZTP5SDqTc5Ebw5zTceJiguomiWASzzxrNoi5ZUN9EZYmY5IUeubvxMUEicyhr/icSCwocua5cWYOLRBfWKmTuCSVTcUSNF5cg8GhJZbzHuMhUc6vE/Ekaq0KW5u0sBKdE/PbbEgkGhTZeF8zDZfWyPWQ6ptYlS+JpMQUoWGpj0jxzuScwQTLCck6EWBxNCpbtyxHpbLZa8VmRZLRlGwFJAYTefUXFxMYnTqsTSbE0Ep9snUQgwk0BiVNH3CjUCuJB6W+El/IlE1I7UaMJBGMGjpulBbJYnMi0YzaWrZsMpbCd5ELoUpDLCgS6o8QGZfaw0oOlyQZS6HWqjB59VI7zKnvcmqZ1LLULub7FklEknLbjc5L8dbaNWz9XBtppO+3wz8Y4OgPBqQYLuW3Wc8OJ55zHZn6hDn2/SESMRgfmeDg0ju8ofoFx3uPMT8/T3d3N2+99RaJRILHH3+cCiqooILfBw899BDhcJgTJ07Q3NxMNBpl/5G9vMIzvDT3LONDk4jhJKefHmX+xCKxeRH3OXa85zuJzYnEsyq7yWXiQZG+58Y5/tQw8aBIejnN5k+2IFjV0nics/YQWxBZGJRyHoUmzXJimWTmszQyHSc2J0rK11UakpFleR4TF5PEg9LYHh6NEZ8T0RhW1mtiOfOLGEwSmYqRFlO07K7DVKuX8wDIztHSdcSlBEq1krrtTtQ6JdH5BLFg/lwUnRextZixNpmIB1fWR2LBlTWL4demic7GiWWsPFPxZF7ZyFRMPuXccKmLVHKZWEZlMhmX1i3ExSSL4zHESDIv34jOiTnrN1K87essdN/TRDy8Kr+bj8t1qtthR2NQEV/MrsFk1yqXM3GIo7NqabgkG0NRzr2y8Z49ucTQK1PEZuNEc1QxYzlrg4ujMRaGl1gclvLp2NzKvCrVSSQWTNB9r5/aLTbiQZFkdHnldznPmk5Lh7xAUseJB0V57ozPS+sbPZ9qwb21WspzMn+bFlNSvDO5yuTeORaGV06Vx+ZX2uxyUor34nCU/ucmiIfy6yC1WRGTR4f3HGkDLfusYs56L4BSUGCs0cnEr3hQWmeS/kaKofdcOxvvC5CMp4jlqFPHcta1xHASMZwkmlnzigVFonO571XEXG9EsKqJTMVYmoiRjGe/fZJEZ1fKLo5FWByXcrNkNJWJd6ZsSMpFLI0majbYiM6KxOalmEnrUlIMW66qo8prkNtOeDQmtcNgNoZpVBolrvVW1DqIzyaITK6oGWTHiLqtdpzrrdK1F5LMHF6Q1uiC+fFGATqbJvOeRcTserCYIA0kk5JiRzwoEs69T1DKvfy7aqg/30k8KBIaiHDwa70s9i/Jm3dS2QQ6q0Btjw2U0rvqfXqEuWOLLM1EOdp/mCOuNzjEW5w8dRKHw8Fdd91FOp3m4MGDeL0rm7YVVFBBBf9a6PV6nn76aRKJBH//93+PzWbjTF8v7yy8zEvpp9lz8j2WZmIsDkc5/ewo0bk4qWiKuu12LA1GYnMiqXhm/g4mWByJcvibfSwMRYjOidjaqvDudJCMLRObE+X1saWxGLHZOIuZOVGhUpBYyuYqkvJLMpbCYNOiUiuJZMdNFfI8G+xdIiVK38q2lipc3Tbii4m8uSc8HCE2K1lTNV5Si0avQsysuyXCycz3eWZfcEHEWKvDf2ktpKR5ILsOIGbKWppMWJtNpOLLeXN0dE4kHk4ghlPMnlxgcTQqKyvF5uJ5dVoYiBCdjKHSq3B1W4nNiyxncoz4fILonHTP8KQ0v2Tn5GQslRfvaFBEXEiw/m4/nvMd0rNk5rGUmF6Jtwoc7eYVuzYgOreyZ7gspkin0zjXWTHV6YiH8mOYjffom7OEx6WcOJHZZ4uHE3l5wezxBWaOSirdqWwMMzmQuJggNidia66i+14/8cV4fv4xt5IvpRMZJetMEONBMa9sdFakyqun47Z6ElHp3WQtxWLzK7lKbE5k9uQCS6Ox/BiKyyvxnhWZ3DtPqH9JyikyOWcqkx8lY8t4z3Vg9Zvyc6A5kXhmDysVX0Zr1mBpktYWxVAib67P5iodt/pouFj6ZklklLnii0mpjWawNB1DXEwSm45DKp0Xl8RikkQ8hSdzuDR4Opyff+S8m8RSkvBUjJF3puX2kpfHz4roHVrs7WY5hstiZt8ymwerIHCVB41OSXwxKfXLqNSX04ls/RMYXTrqL5LIRotjUXn/PBFLym224RIXBqdOOuQ7I73P3BwuGVsmvphAY1CjtwvEQqJM5AJpzSud4STM9y4SmY7L44m4kCQyF0clKOn6cCNKjYL4vMjpX4xz9AdDUlwy/T47RtTvdFK7yUZsTiQ0sMTAbyZATDE9NstJ9X5eV/+cQ8P7mZ2dZdu2bRw7doypqSk++9nPUsG/LRTprFF8Bf8uIIoimzdv5ujRo3n/XkU1m9gpyzNWNepZHIhi9htYd3sjQ69OFviMNl5eg629SrYwC1xTx9BLY4irHBk2fzKA1qzh7b8qbyFxzufbic7FObTau16AqjqpPjVbrdRusnHwW335dlQCeM91MPLKDAjQvMvNmV+MF1zH3WNj/O05BJMSs9/EzOF86WHBpJQVcJquqGXk3bmSVlsbHmwinUwXlzgUYPtn24kFE2WtyECKdTqRIjxaeJ+aHisWn4lTT5eW6mu41IVrg5WDX+0taWfm6DIzc3KhrE2ZJWCk5co6Dn13sOQzg7RANPZ2aXnrTZ9oJjIR5+RPS9f53P/SycLQEkdK2ICYPALtNzcw+MoU0weK24lUt5tILIpF45ZF971+4sFE2boAODdaSt4HoPV6L2afnj2Pl5aENHkEGi9xl3ym2m3Vsu1hKdg7q2i9vp7J/fP0PVcou+jsNuP/QB2Hvt1HrISncfNVboZfGUcM57dnGQLUdFmZ3BtEMCmp7jAX2LZZAkZMNTpG35zFVK9Fb9cVxKfhUsm6Mdv+LQEjoZzNcfl5rqtn6I1JRl8r3Wa67/VjcuvZ85VCa7u6HXbiIZHZY4s0XenG7DNw4OtnCtryts+1IUaSHPjKGQQTKA2CHKOod5r90+8TiUmLyEajkUQiwXe+8x1uvfXWkvWqoIIKKvhD4JlnnuGuu+5iaWlljFShZh1bcSmkUymGGg2RuQQkpPxCLSgLrak0klf53MlFRl6fwdZuQqVVFdhuGRwaNjwQYO70YlmpX+9OB95zHRz5/iDhkXxJXYvfIJON1t3dwOzJhYI5zLnBwsJIhPhsAvd2GwvDEflDPgvXZitTh4OQkNSIcm3o5McyKElEltEYlLi3Oxh6qbhktsEt0HlrI6efHSHUV2jL1viBGmo32jj6o0EWB0vbtmXrXsqurOOWevpenCA+W9qCZPNDAWZPLsiqNMVgazcVWOetRsu1dai1qqJWdVkY3AIanVp+H6vh2mzFc46dIz8YKmk/1nmnD7PPyDtl7NxarpU87svJUdduqWZiT+lcxlCjoe0GH6eeHS1oC3nQgLXBmEeqy/u1RUP33Q2MvjNb9n6Bq93Mnlpk/mRhnE1ePcuxZIGd4mpseKAJoUrD+39b3Hpu/YcbWE6kS9qsaO0anJ0WRjIS5hqDZGWXC1tnFXOnFyEhKUpNHp4vsHdr3FXDQIYAVbfDztie2bwyGgO039ooyY73LmHy6gv6LUgKCzqrUNbOBg1s/2wHS9NRDn9jIP9XBiV15zrktr3xY81MHQwW5P6e8+zUn+/i0Nd7icwk8uqTSCcYrz/JqWHJalGhUGC1Wunq6uKFF15Ao1nbmq+CCiqo4HdFMpnkzjvv5Cc/+Qmp7G4PCpy4Wcc21ApJtcVQoyMyGUNnV9P14WaGXplkcpUVpmujFdcGK0e+PQBI6jNT++bzLJlAUh+qqjMUt2XLwaaPB4jOxTnxROG8n61PlU+PZ4eD3p8N51tuqcG13srUAamOnvMdjL6xyj5DDfZWs6z2ZGkwElplVaHWIV/XvbWa2dOLJa22Wq6rQ6lRcrKEhe/mhwLEggmOfb+0vStIdlRKrTqP/JGFudFAdbOprA2ZY70Zz3Z7gY1VLqp8ehbHomXjr3dpCex2c/qZkZJ2btn7lbMpa7+lnthsvKzN3LZH25k/s8jpp0eL/l5tUtNxk5fR92YLLZkzMHl0EiGoTC4TuMpNKr5M/28LLWBykZvbF0PduXYcHWYOfb20hYtgVeM730nv6rXWDGxtVUXt0XJhrNPReVsDY+/PFrV/MXl1tFzt4fiTQyWfu267nakDUj9U65QF/RGgutUk2aupwdZcWC+9S4uxRsvM4QUEqxpTjb6gjKPLjK3VzKmfSO3f5NERXpXfGmp0rMvYwpTLWZt21+JcZ+Xg13oL2p6trUoi1PdHqN1Sja21imM/Hipoyxvu95OMLnP0+4OgBp1lxZYxZlvgcOQ9QtGgVC+DAYPBwA9+8AMuv/zykvWqoIIKKvhD4NChQ9x5550cOXJE/jcjVXTQg1UhqfpoTCqWxRQpUVK50Vk0hd/YKmj6oJvF4QjTh0IYarRoDGpC/fm5jEqvYuN9TcwcD5XNH6wBI/7L3Jx8epjIZL7Nmd4pEJ2W9g0aLnWxOBpl7kT+PGDy6KXDbaEk1majRMaZyd+QqPLpiUzESYnLVNVncpFVtlYqQUlKXEYlgK2j9FqUxqSi7XovAy9OEh4rzJmcXRbJQu8nhc+zGmafocDuKov6C5xMHpxDDJW28mq70UtoIMLE3rmSZUwefUl7rizcW2wIFnXZ9yRYVKi0KqIl9rpMHj2eHXb6fztess71FzhxbbCy9x9K7925t9gw1GoL94xzYPEbC9pbLlR6FYHdboZenSpoC/kFwejSlbRxUwlKWq/3MHkwWNDuclHbY2NpKiqT83IhWNQolMoCO8XVaNrtxlSr49C3+4tarjVc6kKpUtL/m4niddWrsAVMTB8OyXXPkrayMLp1xGYlMpfZn2l7q+7l2mRl6lAQUpIi6XxfOL+MCvyX1zJzNMTicBRttSAd4lx1ncbLa6jy6Ne00tv40WaWxmOcfjY/F1cJYF9nZWp/EICW6zzMnVqUrSGzyI4fx38skZa01YIc61Q6xZx7iCPjB0mRRKFQYLPZuOmmm/jyl7+MSqWign8/UP9bV6CCfAiCICcM//N//k/+8i//kmQyySLzvMazKNIKOthC3cCKFF18QZS9xttv9hKdExl8cYqB304ykPkQrm414eq2olIrCwgh+77UK1unmeq1rLvdT9+vxphetVEVmYqxMBKRrwcZz24RFgekgdjeYsaQY+8lQ0QiKAGtV3pxrDMTGlzKJyGJMP52Ru7tTj96h5aF/hN5JI7sfwsmqNlsw9xgLEkyUqgUUIqCJ8K+L52Sr2eq1xIeLp48dN4ixfrd/3Wi4HeTe4Oyv3kpctDZ+Mpn45AlnxXDcnIZjVGNo62qJAmp4xYvtjYLi+ORktfZ/4/lSVlng/CoyJ4vlveIDeyuQyUoeeevC+OWhdaqQVnGk97sN7DQHylLUALKksQcXWYWRmOER8WSBKWmK93UbpKsRYoRlYy1AksTEhFn79CJkmSzpLiMQgF6q1CUpGT2G6jZUI3WLCX6xa6z6YFmdBYtk4eDiOHlAoISQNv19SgUSIz34XjRtmtpMKJ3aiWlJJEVgpIA9ec5GX55mtlji8Quzmcxy/V4KEAqluLQ1/s58eN+tA59UXJcw8U1xBek2OT6/BprBQJXezn+wz7EsDR+rKhFgbgYZg8vE1WEUYwqyPJlW1paeO2116itrS0a4woqqKCCPzSuu+46wuEwkUiE888/n/3795MiySHehjRYsLNx4nw0CmnjfnE4KstLaywaWq920/v8OPHZRB6R23dRjeyVnYvITIIjPxhkcUzKqbruaQQFHP7mQH656RiR2bhMLMjNM+RNDA0Ya3QkosmC+Sv3vvXnO0nFUgXEqqnMZp/GoCRwpYfaTdUc+Xb+XJmISHNV4BoPVr+JmUPzRYklWrOAQqkgGS8+Rw78epLR16el62kkS9hiRCP3dhv+S2sRqtSMvlGY72QJQwaHBo1ZU5QQte/LvQX/thpZgpLRoytJ2NE7tag05YVnu+5uQgwnSuZXU/uCcpx/H5z+2VjZ31sDRpo+4EZnFxj4dfGNMIu/CqFKQzpeerHL4BaIjIslCUogWa8VkPRyULO5msl98/T+vPTiUsctPtKpNHseL07Wydbj4Nf6ZCvBYlCoFCiLNzkA2q73YrDrGHlnBhKFBCWNRUPbtV5Cg0sc+8EQk/sK80BHt5m6rXaWk2mGXpoqmYcbnDocHWaCvUt5BCVrwEgytkx4JEpoMFKgXgoSMa/x0loOfbuP+GyC408OFm3b/l212DstTB8NEhkX876D6i9woDFq6Ht+nPmTCzg6LaCRbInDI1Em0sMcZw8anYbYsNTmDQYDf/VXf8UjjzxSOogVVFBBBX9AqNVqnnjiCQB++tOf8tGPfpSZmRmmGeMVnkFIa+mgB+dkRuJfoWBpMkaoT5q36y90kYwkGH9/nqkDQZkUpHNoqD/fidakllX1sjjxo2FMXh0kJSLH+jsbGXhhsoD0EBoME8ucdjfW6VCqFSwOSeN5lsBja6nC5NYXPlgSuS512+3Un+ckMhWT1sxyymQX2FuuqsPWYmbvV3rziD0y8UkN3p0uqluqShJxlSqltO5VAoe+3itfT+fQlCSVtN/agFKtKJo/LQxEWBiQ5iN7p7lggwBg5shCWdIQIMexXD3SYgqtVaCqwUgsWHwNyLPTQf25zoyiZ/H87UQZcvnZIhlOrrm54t9Vi9YisOeLpYnHeoe2YKMo7/cuLdGpeFmCEkg2hWNvFc8/TF4dyXCSWDBZkqBU02PFf5mb3udGCw6DgtQvxHCSpbEY+//xdFFiEcByAhRKBYKp+HvUWdXU73RicGnpfXas6HXabvZiaTCx70unSMaWixKnWq+pQ61XM3N4ATGYZC5YWMZcb6DKo5d2NpLkEZRcGyXCYGQyRngylqfOlUX7rfWQltpL328mmDwQLEqOa7rCTWxeJNQ/wMSeeZnsJFjVNF5SQ99vJkmGkyyMRklmvptIQngmxjHeZ5oxlEEly8vLKJVKLrzwQn784x/jcDiKxriCCiqo4A+N7u5uDh8+jCiKPPzww3znO99hKbrIHl5BmVbhpoHWxQ2oFNLGfXgsSiLzzaoSwHdRLaNvTSOGU3lr/3Xn2KmqM7D/n/Lzh1Q0xZHvD5JcypCMLqtBo1fR+/P8NY34QoLF0YhM6LG1VjF3ZhFSyAQlVGD2SWo2q8kiuQSc+p1OUol0ATE7m39kFWQWhpcKSDDZebp2q53azTYWh6N5Kj9ZqPUqFEoFqUTxOXL6cIi5k4vy9QSTCjFcuPZi9hlouc7D0CtTTB8qzHeGX5OUclR6FVqzuijh6eRPyh/4h5X46GxC0ecBKQ/RVpWnCLTf6CMRSXL8R8Xzq/BotOwBzLNF1gasFLTVAi3XeBh7Z4axd4uXNdXq0Du0LJde8pLJLKUISiC1ieNFDi1kkSVLlSOJtV7jBQUc+c5A0d8LFjViKEnfc+OytVoxKFVKFJrS+X7DxS6sjUbmToZIiRTknSpBSdsN9QT7wvQ9P85CkZzT6NZRv9OJQqlgcu8886eLH+jMOgwsDkfzyFdZu73otMjCSITlZOGmvMmjx395DSefHkEMJTn59HBR4pur20bduXYWRyJEp0VOP7NCYrK1V6G1aBh/d47F0RjhsZUxID4vspCe5xh7SOrixMZjKBQK/I1+vvCFL3DzzTeXjGEF/7aoKCn9ESAcDrNp0yZ6e/MnfB0GtnGZrK4EktpRIpqU1JME0OWQJeydVcxmTgBt/lSAdCpdsKHi3GjBf7mbA1/vQ5wTqdlqZfJgsEAVZcunW9Do1bxd7MR3hhRh9hvovNXHmV+NF5BMcpVxuu5p5OSzY3kECMEE7u0u6ZRwrgpTDqpbTSyNhRHDlKxnFm03eJnrXSggXoFEYmm9xsvU4SC9zxZuADm7zSwn03LsiqH+Yie+812MvDVdkpDkvciBZ5uD/f94okDNCiSlm3W3NjB7fGFNZaFSEGwCzo6qAlWt/ELgaDMXXZjIYk0lpXot6USapYnSTGBTvRaT27CmOlG5eu54tJPoXLwkEa3rnkY0JjX7ymyUbX+sg5SY4v2/LXNiHYmolJto59Xjcx3EFkT2f7lIPQTovsvPoe/1l2x/uSpNzm5zQTvUuQQsDQYm3w9iqtdS5TXKhL0sAtfUsTQdY/ztOcx+A7FQsoA0tPlTAVKxZQ5+ra/kc3Z9qJGqekPGii3/72u3VTNxYB5E6WR+KpYqWJjznGenfqeLw986w9KEmDeuwArRLtuvht6cyuu7J9IHSddFCC2ECIeljtDQ0MCdd97J//yf/7NkvSuooIIK/l/iG9/4Bp/61KeIRFY+3pSo8NOBX9Eu/1v9BQ685zk5/N0BwiPRAsKLNWCUVVXW3d7AmV+PFagVdd7pQ6FUcPS7g2gMYGkqPB1u8urp+lAjs8dCnHqmNFml695GFApFwSlrrV2DWqdiaTRG7bZqBJOmQBGpdls182fCxGcTuDZbmT+zVKD8I6sPacDRUVx5CSTSU8s1Ho6VWMTY+FFJHee9vymujuO71MXQGgTvLZ9uRaFUlFTYAWkui0zHOPWT4qfkNzzQhK5aKEpEP1u4NlsJDy2VVQQy1EgEt8jk766kVN2WOclURniodls1s0dCMrHsX4vWGzzY28wc/EZv0bpqLBo23utn6NXpomQeAN8lLrw7HJz+xWjJE4ggqSAkIsmiRJzAVW6cXVaO/Wiw6Kado9uMya0vScZCk8l1jyygMSjR2rQFqka5pD/vTodMYsrC4NDQcEmtTIqzdVYVKCk4N1jwX1bLkW/3Se9fQ9H3s/1PO4jOxzn41VX5WU49s0pkvb8YLSCIbXiwiXQqLfVrDVi8K2oLuSpvmz7RjEpQ5W2WxtIR9vM6Vo+ZsbEx0uk0Go2G7du389Of/rSyQVZBBRX8u0AsFuPmm2/m+eefz1FXAit21rMDnUIn/9vGjzWTiqckcvcqtRKTRydZJCSh43YfSrWUX+WiyqcnsLuO408OEptNSieF+8MFqijr7m7A4NQVzzMypAidXc26O/z0/2aigGhhaV5RSQpc5Wbkjel8AoQaajeuKCBmSRW5MNToEEOSLUWpembh2ekgMrmKFJWByaNj3e2NTOybY7CIIqbJq0OlVRWoOuXC1llF69Vehl6dYuyd4utN9k4zvotcHP7OQFFFJZ1Dw4aPNDN1eJ7+X5VXFioFtU6JtaVQdT2/EJi9BplcVQxrKSnpHBpIp+W2VbSMXY2hRl9SaelssOXTrUSm4yXVrvy7azE6dbJaWDFsfiizvruGSnw51fWeh1uIB0WOfKd4PVquqaP/NxMlyUvVrZk8NVlcFUptUmP2SbESrGrM9YaCd1i33Y64lGDm8AJ6l5aUmCpQEeu43Uc6neZEiW8MAP+uGlwbqzn87YECdbDqFhOLw2GSMWi90Ut6OV3QBqpbTTRfUcexHw3J6mnyJjcrxDJDjY6uDzUy+PJknkrTaLqPhdpJFpYWWFyU2kZjYyOf/vSnK6TwCiqo4N8N3nzzTR544AGOH19Zg9BhIEAXtYp6+d+qW0w0fcDN8SeHiEzG89RKAAw1WiKTcQSTivZbfQy9MkVwVT7hu9iFWqei7/lxUEGVJ39cBYnQ0/WRJqYPBRl6dbpkvf27alEbVHnEBZAIPRq9iticiNlvQGcVZCWWLMx+g2RXFkpS5dNnbLfymSGmOp2sklRO7QgVNFzkYvCVqaLkkuar3Zjceg5+va/o753dlqIEpVx03FaPxqguq6IYuKYOcTHJ0MvF18+adrux+Izs/1pvSRLMWjD7DMRCUtxKQTCpQKUoWeZslJSMbh1LU7Gy9bQ2G1kci5GK/m4P495io26HnWM/HCyqtKQSoOPWRkbfmSlJ1LG1V9H0ATdnnhsrWQak5wGKkqFcm6zUnyepbhX7vcmjp8qtL03cyulHKgEEy4ryWBa5aki2jipCZxZlCz2QlMHcW+1y2ymmvGXy6Gn6QC2nnhmViG4qir6fDQ82E5uLF5LVcuupV9F+o5fBl6cK7tN8lRulWin36+y4kq1nIpqClKSqpLNoOJyTF6fSKU6wD5U3xejoKOl0GoPBwOWXX863v/1tLBZL8RhW8O8G5Y8GV/DvAiaTidOnT5NOp/nbv/1bWYI/RoTXeJYX0k9xIP0mIKn9HPmmRNjouL6ezQ8EMNZKJKZcIkFiMYm4IE0axlqBztvqQYDpAyHe+98nZPJD0+V1bHogUFCnQ/9yhr4XJEKHqV7L1s+0UtWYOU2WGewEk5rlRJpQJunIqi8BMkHJudFClcdAXU913vXFMLKNQecN9fjOd2EJGPPKzJ8KZyyzoGlXHRvvay4Zw+rWKuovcBX93czhBRaGlhh6qfim3/ShBSl2gkQCkZ8zB8MvTzO+Z7asYlI8mCCdliaNYgj1LhE8s0j/b8qflDd5BJzd5qK/E+fE8gQlpHi2XVePYCpbrCzab/DRdU/peAOEh+NlCUrei9bYFBFh8sA8w6+V2aRcRvKzLYMzz43S+4viMd3wQJNcj6IEpUw9Zk8sMvBi8UU0Z6cFk1tP06XFlX/MfgNNu9x03ukDKEqU67qrEf+lbkCK22qCEoBznQV3jw2Ahf6I3EfNfoNEDARSsWVSscJMofMuH+vvlhTBTv50iDO/GSsgKFW3mmj+QB3t13gBOPBPZ2SCknuHjaYrpfqFBhZJxVMI5sJxZcsjLay7rRGQ+tWex48x8soM0+kxxjuO86bul4xwmtGxUaqrq9mwYQPxeJyBgYEKQamCCir4d4V7772XpaUllpaW2L59OwqFgmVSnOEIL6Sf4rX0zwmlZxl+bYY9jx+XCRDr72xkwwNN8nWyZAONUUUymiQ0KJVr3FWDIzOXH/v+kLyB5r/CQ8s1HpnUkkV4JMqZX41z6pfSfNZ5h4+Wa+sK6p2KLZPMfqxrJDUagPhsQiZPuXtssnpgLibem5eVjfyX1bI+M2/lIqs+1HFjPS1XFtYzC89OJxa/CUtTcQmcwVemJBnhEsgSlDzn2+m8o7AeAL2/GOXUM+VPyq+VI4y+PcPo24VWFqtRl/GHL4apfcE1Lcu672mm5Zr6smXKweDQ0HGTj6bL3GXLTbw3X5Kg5FhvRmsvb+PV/+IUM8dCJclU2io16TTEgqWly4demmL49amiBCWL38CGB5tAI6kuFCMoAQy+NMns6YWSqgL15zlxrreWrMOGjzQRuNIDGkkJbDVBqbrNRMPFLpp3S/EceX2mgFzk2mzD2rzShnM3IC1+6d+WJiIsJ5bRmDNxzVyjqsHA5ocCcrzP/GqMY98rJJBvvK+ZwJVSP46Mi+z54imCvUtoDNB6kweNRfr7xEICcSEh3yMbF5NXz4Z7A/gvk3LQI986IxOUJn299Dbs4Q2eY4lFgsEgzc3NfO9730MURV577bUKQamCCir4dwOdTsfPf/5zkskkzz//PDU1NQAEmeUNfsFL6ac5kd4PSN+px384AED9eS423BvAUCNtAoRHYzKJR1xIIGbI1mqTGv/uWtQ66UT9/n86I5NPAlfVsf7OxoI6nXxykDOZvEuwqum+z4+xLkOWytxDrVeTiqeITErzjMmzQqbKEn5MXh32dgu2zlUL5ElkYoPvIhf+XbWYG/PzpshkTCKFqCFwtYd1tzZQCjUbqvGeW3xcD4/GmD4WZPSt4jlPeCQm1VctkbNynyOLuWOLDL06WZKgBCCGE5BOIxiLn8iPzSSYOjDPcBGlzFwIVjXVLcUXrJKx5fIEJcB3vovOWxvQWX9384DmD9Sx/u6msmVis8myBCXXRuua9xl5Y5rx98rEIw3pIqfRc3HqZyP0Pld8zavlujpqeqR6lCIoAUzsm2foteKbwiavDlurmZottqK/19nVtF7rJbBbymmK5W8dN3tp2iXlXWIwWfQdurfY5DWv6FRcJijpXVrZByIZTRZd8/JfXkPLNdL9+1+a5PQvRgsISjq7mtbrvdRfLOVNp34yIhOUqltNeM6X+s/iWIzEUgK1Xtoyyd1IX3dnA+vukPphZDLG3n84wcSeecLpIOPtJ3jb8DzH2cfoxCgWi4Vdu3YRjUbp7++vEJQqqKCCf1c477zzOHbsGMlkkkceeYSqqipiRDjCu7yQfoo96ZcJpxeYPx3mwFdPy4SBths8tN3ola+T/XeVXoW4mJTHXme3RdqzAIZenpIISkhjfdv19bLyShZiOMWpn40wmpmr6i9w4tlZmNckYymSkcw8oJJUgkBSb8qqBbm6rNRuLlzzWuiPyCQa/+W1BK4qXFPLEpQ85ztoudYjX381nJ0WHB0WTLVF1DWBsXdnJfeVElyaLEGpusWEf1fxPaWBFyc581xpdWrIrHmVWfea2DvHyJvTaxKUSuVdAAtDkbIEJYD2W33yusTvApUgqW17tpVeewMInlkqSVAy1ekQLOVtvKYOBZnYM1fSCk6lV5FOp0lESgds7sQigy9NFiUoaasFWq7zgEoiJ5VSa5o9GmTqULDk7909NpwbSpNrmj7opuUqDyoBUiIFBCW9Q6DpCrccz7nj+QQlkBTKnOssmDxSG84lDsnKSHMiyVgKlTZDI0mtPGf7zV4Ei5Sg9f1qrKj4R2B3nbQ2h9RHj35vULqPCjw77BK5DYiHVr7bYGVcEUwquj/SJD9H33OjMkFpzjlGX+N+XuZpxhlkdnaWdevW8eKLL7K0tMQzzzxTISj9kaCipPRHClEU2bVrF6+99hq5r1CBgmbW06how+QR8J7r4kTGn37b59oI9S8VqPS03eDF3mHm0Ld6CY+KCCalbEPl3GghGUkxfypM6/VeLI0G3v/yqTzFmPqLnXi3O9j/9TPEpsSilmWCCXoe6SQyFStQedG5VtSeNn8qwMJgpGBQ81xgZ/Q1KUlpv9nLiZ+N5NXBvcPGQn+YpQkR50YLod5QnlqRYFIiissgSteaPrJY1LqqutVEy9Uejv14oMBCyxIw0nmLj7F3y5ORmq6oJSUur2nxVhYZNapiOOfz7aTT8N7/Ln7qv26HHe+5Dt77h5NFr2Gq12JvszD42lTJe6ylpOToMqOzCwXqVll03dOIQq3Is73JRdMVtbi32On91WhRO7Nyz39WEKD7Q34Ofae0uhECnPPpdiJTsaIy3t33+kFBSbZ64+U1sp1i1g4uF+4dNplslFs2i9ptK/Zy1a0mkmIqr9+YPAIdtzbS96txZo8t5vUTuUy9lu4PNRPsDxdIwBtrBZbmRBBh8ycDoEBSWMtBy/UerH6jrDLl31WzIo2f8w62fqYVpUZZoDRhrBVYd3cT43tmGX55mroddlQ6JcMvTxMVwkQ7pth3YJ9c3mazkUwmefrpp7nkkkuKxrWCCiqo4N8rXn75ZW677TampvLndzPVbOICNAoNnvPtxBcSzBxawHeJC1e3lYPf7C9QJNr2aBvxhYSkrJLljSQADXi3OyTSBLDl4RamjoYKVIU2fbyZZDzF4W8MoDGAUl9ondZxWz1Wv4k9/9hbcH+tXSrv6Dbj2+ni6I8G8/7e4jeQSqQJj0Sp2VxNSkzlqztpwHOOXbZjc26wFJBSDA6NrC6TW3Y1uu5pRAwni8pDr7u7AYNDy/t/V0YNUQPrbvVx9ImhsipDa6KECk7Wfq7/xQnG3yl+iqnrnkbii4mSik11O+wsTUZLknLWVFLKtIu5U8UJRBqDkg33NTPw6mRJdautn20jvZwubUlS4vnPFr6LnaTE5bJked/FTtxb7Rz+bh+R8VU5jVdP+431HH9qqKj9ntauwdpgYnLfPBqDkkRiOa++GoOSKp+BuRNhjB4d+mqhoM0GPuiWLejc220F77N5txtjnU7OX7P9JBfd9/kxOHS887fHC+KVVVIzuAW67m5i4IXJPMUpjQG67w0wfXyBoRensGYOYMhkRoOSRGSZqgYD6+9oYPS92YK+33JtHeZ6g2y313K1m9G3Z4jMJIi3zXNi5jDTM9LfaLVatFotV1xxBd/97nflgy4VVFBBBX8MSCaTfO5zn+NrX/sa0ejKd7KAlha6cSskEkptj42BzFi54X4/C4MR+ld9e9edK9mvHf6OpKyi1illRRhzo4H0cprFoSh159pxdpo5+K3+PMUie6cZ/65ajnyvn9hMQlZSyYMatj7cRng8yvEf5n+bC1a1TLjovMNHeCzG0Cv543tuLtVwqYvBV6fy6lDdYiIWShCdimPxG1gaj+Wr2qhBrZaey95pZnEsUqBCAxLho+16L6eeKULicGhYf5dfstEokfMA1Gy2ohKUZcusiYwaVTFs+lgzClVx+zmQ1u0aLnRx5LsDRZV9dHY1Vn+VpBJd4h5rKSlV+fTobdoCdass/Ltr0Zo0Ja3lXBut0in7X40VV5Ys8/xnBTW0XuPh1LOjZa+z6eMBlqZinCpiC9O0uxahzDPU9GQU65OSjdtqKzRbW5WsIJZbNovqFhNKjZLZYwsYanQo1fmWbIJVTfuN9Qy/Ns386XBeP5Ef06Sm5+MBZk8uFKwTC1Y1y7EkyRi031aPRqcqWNur22HH1WXhQEbNsnZL9Uq7yHLYktI3h65aYO/f5ys8qE1q1t/VwNSBIGPvzFLdakKoUjO5N0gynSTcPcbeQ++TRlqXt9lsVFdX88Mf/pCtW7cWjWsFFVRQwb9XnDlzhgceeIDXX3+dZFIaj5WoqMFLCxsQFAK21iqSiRQL/RFs7VXUbbVx8umRAkWignWerAKLKqMmnLGP7bitnrnTYSb35h90b7nOA8tw+tlRUIGgL7RO85wn2bMd/k5/AYlGY1KRCKcw1GhpuNjFmefHEEMrf6+zCShUErnD7JPIVKtVk3Jtbs1+Q4FNVq6dWylLXJDs7kini+4VNlzswtxg4PB3B0oTiVTQeEkNAy9N/s5qSNnrFPt7s89A6/VeBl+aZPpwcXWnxstrWBaXS6pcVbeYJNvYEqSbNZWUVJLdX3gsWpwQpYLOW3yMvjNLqL+48ue6uxpQqhR5Kjurr/H7xM/WXoVKoywZo2wZ34UuTv5kuIAIJVjUBK6so/+3EwWkIpAIUlUeHcHeJVQCgDLPuk0lgN4pqR0JJhU6pza/TaokEuB4xgovq+yfC9cmK5YGo6xYlO0nufDvqqU6YOLgv/QWEJuySmoak4rOOxoYfmWauVM5hH0VtN/gJdgXYWLvHHqngEpQyQQolSA9k2BR0fWhJsbeni1Qi3JvsVHdapL3Ot3n2Jg9EUIMpUh5ljgZO8LYjJS7CoJAdXU1H/3oR/n//r//D5WqPEmtgn+f+N2PlVTwbwpBEHjllVcA6O3tZefOnUxMTJAmTS+H6U0fRjWiou3Hm6lTNIAAy8llEpkTJ+4dNqz1Bo7/eISTPx3JI1n0PNzG0kSMQ9/oz7NpU2b7eGZwarqilr4XJxh+eZrhlzMTlADr7/ATmc4nI4lhmHh/lrm+sPy3So2S3mfHVogXAqgFFRqdUv45e68sQclzgR1bm5n685wr94Q85ZnA7joSSy72PL4y6WVJVwjSqaqaDdUFhA0AnV1AoVKQThRy90K9S7z9N8flOlW3m5g/UciYday3kk6VJilZAkY6bvIx+OpkUcWcmq1WmnbVMfDSRNHfD7w8QXi4tGz1cmoZhUqB2VOYPIGk1BMe/j0IVLDmyTWVVoWyjFdq3/MTpMTl4gQlJPKQGE4U2BFmse1P2olMREuSqBp2ujDW6CX59NVqTgJybN794omSJCaloIQSj+DoMlN3jh3BpOHU0yMFBKWarVaaLnNjsGs584vxAoISSMllKr7MxHvz+ZLsmXYvhkSUGiWmOj2zxxblfmIJGGm40MWhr/cTHo4zc2yBgVfz36fJI9B9T4D53kWOPzGcZ4eXa1+4nFjOu2eWoGSq19L1oWamjwTp/dkYh78/IN+/pseKvd3Mse8PsTQhkk4to1RJgRp4a5xT5j1MpMdQJVWkDqRQqVQoFAo+8YlP8PjjjxcPaAUVVFDBHwEuvvhiJielcfIv//Iv+cIXvkAsFmOBeV7lZ5AG2+suutiBRiFZRCwnlmWCUNtNXqaPBJk7Eea9x0+iMUiEgZYPurGvs7L3KxKZKEtQ0lg0pJfTpOJS7mZrN7GcTBPsXWL/V1bmx+YrvVQHqgrISL3PT+A91y7/27q7Gxh4aZKl0ZhMvDA4JHuPeFalJUNUyT0BXX++A4VamU/4SCCTjgJXuXF2W0ksJfM+gLPqQq1X1mHvtLAwHGVxsDAvUQpK1Lri4q5Hvzsok7iqGgwsjkUKiCG1m6ox1xup3VCdZ7WQi847fOhtgkzsWI0NDzahMaiLEnjG35lDqVKUJCgBqLRKNMnSH8PlTq6fFRLI7aIYjHV6FBolqXhpm7ej3+9DZy9URgBpA8d3gYuTzwwzf7Iwt3Vvt1F/vpOjPxwsSiACcHVXw3K6KEnJ0mQg1Bdh6OVpht6YLkqGSqfTKNQK9NVC0Xusu60BjVHN5L7ialHd9zah1qt598QJlkZjBdfw7XTh7LISHFxi5tBC/vvMtHuVQYlGt/Ies/2k6Qo38UWR0TdmGXp1CmONruAZuu5txOjU8c4XThAZF1eI3Rrwne9k6OVpEpnmrxKk9p7bX7ruacTg0vHu/zrB4mCEg1/rlUl+rVfWMXNqkbljiyRiKVI5igqH3j3Iu9PvkESEE6BQSDlZe3s7P/7xj+nq6ioMdgUVVFDBHwHUajWPP/44jz/+ODMzM1x//fW89dZbiMtxjvI+R9Pvo5030P7CRpwK6SR8KpFGzKx5VbeYsPqN9L80ydhbs8wdC8kki40fCxAei3Lix8N5lmBKTSYfyeyN1G23MbZnjtljC3kbT+vvbGBxPJpvOZWEoVcmicxI5KWaHiuCSWD41ak84oXGoEJlyNwnh6iSJbJUt5qo7bGRWErmkYByT2u3XOMlsZTgYO6hsCQkk9L86N9VSzwkSpZ4q6CzaFBqlBQ7rxqbSbDnS6fkOpm8OsIjhXOyu8cGSkVJkpLepaXzVh9DrxVXVjQ3Gmi7oZ7BlyaLkoD6fjtBvIxq43JiGaWgRO/SFtjFgKRwNDFbWtX7bLA4FC167Sw0OlXJ/BVg6kAQhZKS1reb7m9GXEoW2BFmsfGBJpamY5wuYfPsaDdT3VQl2S+vXp9Tg9GlY2ksJtm7lCAxqXWqlZPxq2Cs09F4aS0Gu5b+30wWEJSqfHparvUwsUeyEJzcGyy4hn9XLcuJZWaPLeQT4jLtXgwnUetU6O1a5k+H85ST6nc6OfWTEZLhJKPvzTKxavNabVKz6f4A08eC9D03kdcXq3x6lCoFoX5J8TK9nEZtUpMMJ+VvBbVJzeaPNjN1YJ6BF6c4+fQoyZh0f4vfgL3DTN9zEyTDSdLJZciQkKZPBhkwHWUofQaFSkHqkLTmVVVVxec//3n+7M/+rHiwK6igggr+CNDc3MxLL70EwNNPP83nP/95ent7GWeQcQZRpzXUnvTRQjcqhQoUkEosyyQHz/kOFgaXWByOcvhbA2gyKik1PdV4tjs48r0+xFBKJiipBCAt7VmCZPGkVCkIj8Xy7Nw82+zU9tg4/N2+PKLRxL4gqVhaJrU0Xl7D5P55ojMrNm46myApX2bVdzJElViOeEHddjuCSc2hb+QfVM/mfs4NFhouquHk08N5uUGWoFTbY8Nznp3YvFiUpKPWKUmXWKoZfHlKrpPOJhALiQVEGrPHgK3VzMJwhLkTxRUc6y9wUlVvKGkf23yVG71Ny5HvDBT8bmEoQt+vx0teG0CtV7GsLp33lLM9OyukJLWfUtBZBFSCknSqtN7K6WdG0FYXV74y+w0Erqjj9C9Gi+Z3Zr+BxktqOP2z0ZIqSzUbrChLkJT0LoHolMjciUXmTi8WJ0Ol0qgEJRqTuihJqekDtRhrdBzoP5MhB+U3msDVXnR2LQe/egYxnEIM56+v2pqrqDvHTnQ2TrB3KZ+glGljakGJxqCSf872E9cmK+lkmunDISb2zbEwEikgKPl31WJtNrH/q70kwinp0G3m2s5OixSXzHMrMstquc/ZcKmL6kAVB/75DGIoxeFv9sl9qO4cG+HxGAtDEZLxlLS2manjwPEhDoXeZ4E50iNpFAoFWq2WD37wg/zd3/0dfr+/SLAr+GNCRUnpPxi+9a1v8clPfpKlpXyWpBoN6zkHh0KS3dvwYBMGu5a3Mye2PRfYGc3INndcX89c3yKT7wdpvspNdbOJPV85nUfmcG600Hq1l4n9c5z5Rb7sYNOVbkL9YWaPLdJ8lRuDQ1twmmXLIy0oBdWKGlAR5ZyehwOotOoCxaBcctCGB5oYe3cmz0IrV/3JudFCdDaWp4pk76xiaSZObKq46lIWOpdA0+W1HPv+UMHvOu/0YW00cfj7/UVUo1ZUm4pCgK0PtTLw4kRR6y8Eyf6h99lhwqNl5IR+D7WhztvqESOpojJ8UF5JSecSaL+hnr5fjxclQa2Js6h3x631ROfEouQegE0PNRPqW6Lv+YmS1yimPASw5dMtqHVq3vnrQrUCZ7cZi99E78+KxyVXHaluh71g0zFXManpitr8+mXUncbenWXm8AKWgJHQ0FJeLALX1OHssrL/a72Fdc/ErWm3m5pN1Rx7YpBQTrLh3mGjdnM1+78sbVx33OJl6LWpAgLVjj/vQAwnC06IBa6tw9polMl9Xfc0MvLODPMnwtg7q4gvioSH43Td04ipzsDbf3NMIlOlRQ7xFkFm0Ov18ilXlUrFBRdcwFNPPYXNVlwWvIIKKqjgjx2JRILrrruOX//616RSuV+hClx46KAHjUKDxqKh5+MB5k4tcOqno5i8elSCglBfhOo2E7UbqjmeOcW8+aEAM8cXGHopn4C6+aEAGoOad1flRQa3QF2Pnd5MPrbhgSZG353JU9SpbjPRdkM9Q69MSXNXEdUco0dH191+xt6dYSiHCI4GTDV6wiNRHN1mXJ0Wjv1kOO/vfRc75b/x7nQUEGpqNlfLijLFVJeyaN7tZuZEqFBxSAPnfKadWFBc+RDOQTHFm1w0fqCGKre+qHIigO9SF4JeJcewJH5HtSFLkwHfhS5OPDEgE1VysZaSUtMVbpRqZBWgfzXWqLfRo6NpV23RzUyQrOJ8F7rY99Xe0tfRgEZDwfNZmgx03trA9OFg0fi23eSl77eTBWpfICkLmeoNzJ8MY6jRoNJp8ohuJq8ejVHF/MlwgSoRILXXLqucy2fJUrnY+plW4ouJQvXPnJht/Wwb4mKiQA22804fi8MRhl+bwdZZhdGhZfi1/LYfTNvLQgABAABJREFUuMqNa0M1R38wkEf+0xhg/T3NTB8OMfL6DLVbqjG5ddI71pBHutv+px0sDC/JJ8lm05Mc5T1UeiWxWEzeaG5sbOS//tf/yn333VcQywoqqKCC/yh47bXXuP/+++nt7c0j2hgw0ckWrArJGqTlujqsTVW8/7cnAWkumzmxAElpkXxpMsbMkQVqt1Tj7LJw/IcDJHP2lUweHevv8jP+/iyDq3Kyuu02lqbjhM4s4d5ajclrKFDkWXdnA1qrZkUNqIhyTscdPnRWgf3/mE+iziUHtVzvYeZoKO9gU5VPsmVYHIpi8RtIRJbzSCDGOh2peJLYbBJzo4HIRKyo4pDapMZ3gYO+5wrXVRoucVHbY+PoDwcKiEpqHSSThc+zUgC6P+yXFXKKof3WegZfnipUpFp1nd9VbajhUhfLSRhedaAri3JKSmqdksC1HkbenC5K0loTZ1HvhktcJKKpkkT29lvqWRyPMlqGpF5MeQikgwl6uzaPcJaFyaujutlcMi656kjFVCFqt6zkJ3XbbflENTW07K5j5sQC86fCGGp0RGZjeXWo227De56LQ98+Q2y1XXImbjWbrTRcUsuJp4bySITVrSbcW+3yBmzDJS4mD87J1o1ZbHmkFTGcKFBFr9tux9FpljehA1e5mToSYmEggsmrYzkhWbj5P1iDc52Vff98hmQ4STKdpJfDjDOAoBfkNS+dTscVV1zBd77zHUym0jY5FVRQQQV/zEilUvzVX/0VX/7yl+VDewAatHhpopF2ibCkgk0PBJg9HmLo1WkEixq1TkVkMo7eJeBaZ5UIOUDbjV7m+8JM7Q/m3av1Bi8Gp5YD/5x/aF0wqXCsszCWUYhpvtrN9JFQ3r6U3iHQcUuDZD1/OFRUNUcwqVj/IT8jb8/k31sF+mqB6IyI0a3Dud5SoFrk7LLI5JRi86PFb5QVfoqpLmXh2mRlaaK4DVj3fX7ioURRlfFiije5cHZZMDcaOFNizcjeaUZn0ch2eiXxO6oN6R0C7m12hl+bKlrPtZSUXJusaHSqtetXCmvUW7Co8J7vou9X40XLmep0eM93cuInw2UVrVSqfHUjkNSF1t/ZwMSBeUbfKMzbPOc7mDowXzQuKgH0Dh3hsRgakwqNUS1bnUn1ViOYNIRHowWqRNl6O9ZbGfiNlMtnyVK5WHdXA2I4mUf8yz5P9lnX391AIpLi5CrlzYaLXURm40wfCmGo0WKs0clWhVm4NlnxXeDixJNDsl1i9vpt13mZ611k+mAIs89AlUfPaMbm2NpoJJixx97wYDMLA0v0Z55jKR3mJPuI6haJi3GWl5dRq9Vs2rSJ//bf/htXXnllQSwr+ONFRUnpPxjuuece7rnnHgD++q//mv/+3/87sViMJAkO8AakQYWGiX/ejK9K8tE21go0XFCDxWfk2PeGOPPLYZm0o9GrUKqVMpGi4xYvw29OMX0ghFKjkJVwtn6mVbKQePw0fb9cmQxNdXq0lhUGq7PbzPShBfY8fhrBJLFv6y924t3h5MRPh/KUieZPh9FWSU1UMCnx7nTR9/yEXEbnEjA4tdjbzHlkn1z1p6znea5N1WyOZ3zgijoSkXzVJflvL6vF0mjC5BEKyEK9Pxui8XJvAUEJVlSb7J1VtF7rpe+F8XzFIJEV2xJh5d9yf3/gK/nJ2Go4usy0XO1l8OXJkosazo2WvFjkwlRvJBn93VZ7rI1G9DYtWktxywhnt5npEwul7eo+3U5sXizY6MnF8SeKy00LNgFxTpSJOKux9bOtiItJDn6tryhBCaD/NxMYaoorCfgucqExaIqSlLLqSHqblr5fjhfEPXBNHTUbqonOxZncGywgUAmCdJrN1WVl5vCCTDCqatRjaTQy8soME3tnMNbqWF71anoeDqBUK3n/b0/R99w4I69NIoaXEWwCWrOKxYEoRqcOnVmQyVnHfywlFQ2Xuqg7x8Hhb0t2jn2/HmfycBCQCIWLw0tMH1pApVJKfT1Dhjr51IA0DgjQdn09S9MxDn61j8M/GECMixzgddTVCsSESDgs9Umj0UhPTw/PP/98ZZGmggoq+E8BjUbDL3/5SwBCoRBXX301b775JsvLy0wxwhQjKNIKbMFaIn8dke2Wmj5YK1lG/fVx5k+GCQ9L46jGAEq1EkXmgJJjvRmDU8vQy9Mc/mYvVY1VgHTCt+OWBgZenGBiz7xM/jB6dOiqBXSZ3Mvk1ROfizN/Mszex0/KCjRbHsos3ucQM8RwiqXJKOP7goAknT3fu0BkMkF4RMp3nO0WqnzGgjhkCUq126rxXeAC8pV/sgSl5t1uXButJGOpQsUeDTjWWyS7rb5VhJEEjL49Q2io+EJPlqDU9ZFG1HpVgRLjwK9zFtMsmgJCzGpLrWLourcRrVkoaZemMYCp3lRUiUhv02J06Uv+fi1YGg2yamHhjcHWbGKuiLongOd8O/XnSZZ+xZSsAJZGY0UJShoDJBIwc2QhX0krg5rN1TRc4uL4k8MsDkZIFCEwhfoiEkHp14WLZVUNBmwtVaRiqaIEpu57m1DpVLx38mTG5i7/Bp23+lhOLLPn5OkCGWuQ5MKrPAbZRi1LUPJd6mLotSlJNWxwiaWp/AVCW2cVrVd7ZYuWA/90Wu47tvaVWBtr9NmD9cwdW2QO6Ruj55MBkuIyB7/aR++vx5nrCxPqj2D06HBvqqb3F+MkIqASVGhM0rfOxJ55WTWs82YflgYjs6fDJEIJ9v7DSUaWhjjJfqprrExPTbOcXoYorF+/njvvvJPHHnusMPgVVFBBBf8BccEFF3DqlDQX/+xnP+Phhx9maGiICGH28AqkJcLS7NObqNFL60Fqk5rmK+qobjJx+tmxPCs1jVGDSquSCUoNl7qYOhwiPBrj+FNDhAal+WX9hxpQCUoO/kt/HjHD5NFTVaeXf7b4DYT6Ixz9/qCstGNrq6L5yjpO/WyE0JmV+Wru5AIGp1b6QQ11W6WDUFlijFqnxNJglPKmHJJS7glw/+W1qAQVe7+0sqa1lLNB0HKNh2Qkma+6lIFnmw1np5XJA8G8vwEYfE3KjYqRdLKxMtbpaL+pnoEXJvM365KsEETUoFaTRwADOFFizScLY52OztsaGHp1sqhKD2RiPRwpSgiy+o2kEmmGXy17m6Iw1Oqo8hjQWYWizy8RvyIFz5TFpgeaic6L+Upbq7Ca+JZFVvGnlAVb10caSURSnHhiuChBCWDgxUmpTRb5df0FLowuHcNvThX83txooOVaD+PvzTH0ylRRglLjpbUkY5INdDElLUuTifRymvlTYZk4p7OrsTSYmNwXZOrIAuYGI8lY/nnpzjt8CFUaDvzzGSb3BZk9tkAytoxap0SwCEQmY2jNGgxOrWy3mI2hY70Z/y43x340yNJYjNO/GGVpVOpnddttRGdFiSynlNTS1DqpPQ68MC6/w85bJXW04z8Yov+FSU7/apRT6QNELSFS6RQLC1IsjEYjF154IU8++WRlzauCCir4TwGVSsVf/MVf8Bd/8ReIosif//mf881vfpO5uTn6OU4/xxHSWuqSjaS+kkKlliRUvOc6qW42sfcrp4lOiYwEM/OeSlKiVqmkHMlUp0Pv0DJ9KMSpn43IOZVgUbHuDj+DL08yd2JRJihpTCpMbr1szaatFkjGUkRnRA7+yxmZQNJxcz2p+DKncsjIqRTM94UJ9knf7dUtJiIzIvF5UVbPsTYZsTaZUL06Se45xCxBqapeL+VeWmUe0SlLUCqlupRF7eZqorNiIWEEaQ0tWkJJMktwadxVi96m4fiqHGP6cEiuo0qvWlGOyqCUFV0u/LtqMdXpSh7uQwWmGl0+ESUDtV6FpcHItE0gES6tRFkK5noDWnNpEpXJo88j5+TC2mzEf7mbUz8bKWk3J4ZSeXvWMjKKP+GxWNHcq8qnp2mXm9M/HyUyGSeVKiT9x+dFRt+eZfpwYV4kWFTUbKiGdHHVcUkdSeDgV/tIhFMFRKbWa70AHPnOQFH1pap6A1a/USaxZQlKzi4LcycXSYnLzJ9eJBHJv67eJdB+g4+BFyeYPx3m+BPDct8x1a28Y5NHL6lHHQoRmYzLBKq2G72ggJNPjTC1P0h0Nk54LIZgUeFozxAKU1JfV2fUyheGIixNRCAFnp0OajdVc/gbkprSkW/1E4zPcYqDCDVKpqenWV5eRikq2bRpE5/97Ge54447Cp6/gv8YqCgp/SfBo48+yt///d+TWLV7oESJn052nLODud4lxDmRjR9vRmfR8M5f55/UN9Vr6f5QM7PHFzj50xGqGvXEF1KIcyLtN0sD5oknRzDVa2m5pp5TPxnKU3Gp22HHf1ktI29PM/jCyge5vbMK38WuPAWYiUPBPMJS5x0+rP4iykU5qjybPxVgWUznsa11LgFTjY6Zwws4usyYavV56jy5qkv2zioWh5ZWrOFAJigJJnB0FSrnALTf7MVUpy8gOulcAl13NXL8ycE8JadcnPP5dlJiij1fLCRJSUQkDwMvF7eF2/RQQJpIimxK1Wy1Evigh/E9s2XVhkqhnJLSWtjxZx0kIsmixC+QmLnhiVhRlaRzPt9OdDZecOIJpM1S30U1DL5Umpi14YEmIjPxgtNwDZdJFn/v/cPJAvKUYFJi67Qw8d48gglAmdcGaretWMY17XbT99xKQmOsFfDscHHq6RG5jrkJR+22ahovqeHId/skolsRFamtn2lFpVXlKzsJ0HGdl5H3ZlkciNJ6vRelWupfudj+WAepeGqF9JZB2w1eVIKCYz8axlgr0Hqjj9PPDBEeFXF0rciB7/jzTiIzsQJVis47fFj8Jt7+35Jakuc8O/3vD7Mn/iqOejvjE+PyWNLQ0IDZbOY3v/kNtbW1hS+lggoqqOA/IcbHx7nyyis5cOBAgZ2GGRubhJ14u1xM7ptHY1DS80gbM0WUZrrv92Owa3nnC1JOliVImLx6mq9wc+z7AyQiy7Te5EFcTOaRcQC2PNyCQq2UVQSyaL3BgxhOMvCbSSxNBpydFolEkpMmnvP5dsTFRJ61HCArzJi8ejpv89H73BhzOQTw3BPWgavcDL89k6dylKu6tFpVSWPRkIgkICERYOZOzBco82gMsOHBVkbfmSmwYGu52o2mSiMrzqxG3Q47votc9P5yNE9pKouuj2SISI8XEpF8l7rQVWs49VThYhJIxBSVTsV7f3Oy6O/LYS0lpXLwX1GLe7OkdFCgQIWkolV/vrNoblW3w079TifHnhgqSmDq+WQAhVLBnr8vntOZvHpar/Vw+HuD+cQvDWx+MMBc72JBm4RMGzk4Dwkw1GgyBKTMn1o0GGwaQv0RrAEjCpUij9jlu8RFqF8i/djaTSyOx/Pu3X2/H9I5m6OrVKQsTQY6b2tg6kCQMzk5XXWbCXtLldwHu+/3M/jiZJ76ke9SF97tDk78ZCiPFGZwC7Rc5eXYj4dJhBK03uAhEU3R//wEWrsGlRoik9K/29vMBdaMIPW38HiUo98dxODQYKjVs+/wXoL2cVDB1JT07WQ0Gqmrq+OBBx7gT/7kT4q+lwoqqKCC/4z41re+xZ/92Z8xMbHqsBA6AqxnXet6otMxYsEkrTd6MdcbCojHapOano8HmDo8T/+vJtHZ1SynQAwm8V7oRKNX0v+rSdQmNa3Xeuj79VieGoyl2UjHTZLNWe6ahcmjw3ehS85PGi5xMd8XzlOJ8V3kwr3NxtEfrFIuylHl6bjdBwo4npPnqE1qjE6BUH8Ek0eHud7I2Dsr9zY3Gkgvp1kcimLy6ogFkyTDK+wUnV0tKdGoJQuxYqRk74VObM0mDn2nP4/Yojap6by1nt5fjOfbeeVg44NNpJfTRUlSxjodHbf4GHplqqjtW8ftPkbfnsmLUxYmr471d/oZfmu6rNpQKZRTUloLPZ9qIRktTvwC8O+uJT6fKLputfGjzcSCYlGSVnWriZZrvAy8MFE0HiAphCUWkwysItg7N1jw7HBw5FtnCshTah1YmjKqD2pQ69R5bSBXPWm1OpJgVePebMsjBOW2EUuzkcDuOo7/eFhqA0VUpLruaURrXUX0V0PDBS5mTy0QHonhOd+BYFLR/6v8vHHzJ1tYFlMcWLVm5dnpQKhS0//chNwfB16YJDIZk4mCIK23hSdjeX0GpD5Ys9nGvi+dIhlbllQxTi1wMPEW+no1E5MTiKK0eFdfX4/f7+cnP/kJDoej2GupoIIKKvhPh3A4zGc+8xmefPJJQqGVNR01Gpx4aFd3Y2+slpRSVLD5owEmD84XEDWarnBjaTSy/yuSqmSWICFYVPguqGHw5UkS4RSeHXaWE2nG9+SvAbXfUo9QpS5UzzvHxnISJvbOobMJ2FpMjO2Zy1PJ6b7Pj7hYhBicUZgRLCrab/T9/+z9d5wkV33uj787Veecp2d6ctjZnHcl7SrngAAJZBBYgIQNCBNt4Ivtl/262NgggskIASIIMAhJCGWU0+a8Ozu5J/XMdM90ztXp90fN1uxoJSP/fO3re93PP7tddarq1OfUdH36c57zPEw8HZFJUSCRYs4owPi3OIgNpmTbKlipumQJGlYcK1m/16iK0r7cfPEcZR5U0H9LK/OH4+dYoPk2O9A7BVlx5rWwthvpvKaJ8Sdm5T6ejdbLJJXxkz+bOGefs9+CwaVl+sWFc/aBpIKtcwivq27+x/DHlJT+LbjXWmm95I2JX3qPQGC7i9Hfnys6YG030n6Fj+GHZlYoFJ1B703NaPTq140HSEpGnVf5GX109hwCUe/bm0nP5Jnb9zqk7fYlB5Wl5+hsm0KVoERr10gqY6+jjuTst8jWgUa/DjFTXnHtjqv9qLTKZaLba1SktHaBNbdKz8/Zf296j4C93bRCkWxuf3xFXByrzBIp6+GwTLwDSYUseLGXqRcjiKkqTdsd1IG5fXFUehUqQYGYquDf5qBpu5MTPw3JNoxnsO4D7WTniow/NodKr8Lo1hKaDDFvC1HTlmWlNoPBQGdnJ3/zN3/DzTff/Lrj0sD/W2goKf0PwV133cVdd90FwN/93d/xpS99iUKhQI0aY5xkbN9JFChw04zvqBV70CIdKMDOT60icizJ+GNzHP7BKMWk9EOt54YAglHDni+eXkGecPXZ0FkFzhBLmy9ykRzLMHsohsGjlQlKm+7sopytcOLeCVndSDCBrduC2qCWyDdLpI6BX0zh3mCVCUrb/rKPhWMJQk8t/4CtFKrUSrWl8yhRGtQUo6KsqBO80IPWollBjjlbaajr+gD1Kuy/a5mcdUZBqe+WdkxePfGxzDkKPW+0sr0YFTnwVelHuM4j4OwzE35xZSIWH8lQSLw+gWlxKE3rxR6KsddXBDpyRjb8dRA5kMTo1jP+zL+foPQfxeij/3aR598iPhViJTLTr7/Kf+FYDFe/ldlDK2MomMC/w8Pk09E3VGeqVmqgUCCYJCWms7HmfR1ozRrmjyaWFMSWE8O2y70EdrhQaZSEX4mtICgBdFzVhClgQHhBOu+ZF/8ZWc/MVI5auY7GvPQgi1J/13+wh9hQhvFH5xh8cJpSeimTWGommATs3RYUaiUDE1MyCcq9zkLHVU2c+mWI7HSJ8L5FUhNSwtBxjZ/xp+dAlFj9CqX0XObmRflZWfveNswtBtLhUcS4yMlfLJP+tv9VH5nZPAM/nyJ6IolCqSAhzhFtmmZ4CqZKUlEnEq3g9/ux2Ww899xzDSu3BhpooIHXgd/v5/DhwwAsLi5y4403snfvXqrVKmnivCD+Dg6BHhMbyztJjWVZOCXlJP23tGDw6Tn49WGO3xPC4JdUkQxeDb1vayE2kGL4odkV7zyzT0/FLr2/NAYl3s0OZl5aZOT3YfRLK/St7QZ6bmxm+KEZhh9Yflc3bXNibTMx+eycpISzROo48aMx0Ejvko6r/dg6jCvsvjRGFTWxRiYszYSYWw1kJvMyQcng1eBea0OpU64g9pwhKAUucNJ6oReVVimTgc8QNzQGSRnAu8l2jg2XUi/JzVReszIMYOQsaevmXS5m9i6uIKgsHIvh6DKxePr1V5FlwoXXPS/8cbWl0LMRaq8tLv0XYOaFearF6usSlAASQ9k3VG/KLxQpJsU3VFiaP5pApVWds71pp5OFgTTZmcKyjc3ZWIr5mdWRZ8PgF2i/3Ie9w7Q0obWSrLPh/ZKf/IGvDZ+rjqSRVCasrQZOhCZkopDBqyEfl8htlXwVamcRA8sSuciz2srBb4yQGs8z9NDMMrFu6XkPbHNiajLIZL0zz93qW4MoBSUnfjTB1ItRlCoF8cEsxoAOc0DP/P4ECqUSvUOLa5WZub3xFX9fG2/vIh8rcvyeEKEnwoSeiVJOlWm70ot3nV22b0yMZYiNpDhVP4TJpmZ2fJYcOYiB1+ulpaWFz33uc3zoQx963bFqoIEGGvifjrNVxe+//34+/elPMzU1hVgvMsBBBoYPokGgiQ5sJwyUc8vvny0f62HucJzwS4sc+u7okpcZdFzZhNGn58BXh5h5YXnCxt5pxHiWOrNrrYVcRLJ/m35lgdkDUl2g7xZpFf/Ig+FlArUaPBvsaO2CRL5ZInVMPR8lNZ2TCUobPthB9ERqBdGlkqvAmVerGnRWiWCUWiKcNF/gxhwwMHswJhNFzib4dF8vrXo+217ujFVW11V+nKusZOcL59hwKRUKUHAO+aSSrciTgmqTGkeX6RxyTfREiqr4+rlVbrZIIVaiEH/9mtjpX74+6RwkhaepFyLShON/MYZ/N4NSc26Ocwah17HPO4PsXIH84uvfb2I8SyqUJT6YXLlDDb4N0iKAkYfOnYADqJZrKAClTg3FlQPV/bYgJp+e1HiaSpEVBCXXWgtd1wQIPT1H5FDyHHWkwHkuPP022VbtDEHJ2KQjN1skFylRLVVR65fiUUG2+0uM5ph+IcrII2Go1OV7oSKpa3k3OtAYVIzOzMn2KKaAju63NDPyuxmyYWmMi0s1PP9WOwsnUlSKNaxBI5qla1ayFdkCrv0KL54Ndo79cJRirMLJ+yZlS8ENf95JbrbAyMOzxIbSaAwqspU0U64hFNkak2XpHEJEwO/3s379en7yk59gs9leN+YNNNBAA/+TYTKZ+MEPfsAPfvADCoUCn/vc5/jlL39JNBpljgnmKhOoRtU4cNNdXUv0RJLkuPT7PrDLhb3dxMmfTjD++Bxau1TzUulV9L69hYXjSaZeWFhBOjE366nXkEhKKnD3S0SgiacjGFxSzUuwqum9sZnxp+ZlIgaAc5UZ30YHkeMpSWFoidRx6hdTssqLe50VV7+F4QemqS5NHam0KiqFKsWlPEXnECjGRZn8o9Kr8G93IpjVspUdLKsu2TqNdF0XIPSHeVnJSCYkqaDzmiay84VzVJVUgtSneuVcbZH5Q8v35VhlJjWWkfsLkJrKkRjJkJk+l6AEkJt9Y5Wj2ECaf8tsLfzqv58U/r8DCwNSPF+PoARQiIqvS1ACELNl8tHiG+Ze0WNJBMu5bjG2LiO5+SJiqvKGji8ASuW588Iak4quayX728mnIysISgC9N7eg0ig4ce/rqyO17HKTnS0w+vtZWRlKY1JRE+tUxRrlXIVa5aw8tAqufgveTXZO/XySUkJk6IGZZeLT0vPuWW3D0WchciROVUS2Bgxe7EEwqxl9eJb46QxqnYrUVA7Bqsbo0ZEYyVIHzM0GzAEjsVR6xd/X2ve2kY8WGX4wzNyhOIsDKcrZKu61Vpp2Ojn2w3GoSs9XbqHITD1EzZ9lLjpLhgwkwePxsH79er7whS9w3XXXvWG8G/h/Ew0lpf/huPfee/nYxz4mS9eejRZfK+vM61l9dT/xkTRKpQqdRY3OrSV6Iolap6JerjP5UpTuG5pw9dqIHEmQGM3g6DEztrQSeefn+6mKVfZ/eQgEyepj4ViKzqv91Ko1suEi0ZNJWs53kwrnUCggeiCGmIVtf9mLUqVg7z8NYm7T41ljI3wkxrpb2knN5MhFihSiJXKLJZq2OEmMZ0gMZtnw4Q4MDh0HvzOAGJeUhQSThtREjnQoT8/NAaxBE6d/FaKyNDGRDmdRKlXUqnUcPSaix1MkBrO0Xe4lFysgmDQsnMzQcp6TQrLE7Mtx3OssGL3L6kxrb29DzFYZ+tU0gklJy0VewvtjrLo5iN4mMH80zvijUsGi5WI3YrZM5EASwQSr3tXO2KNhsmERe58Je6dZliFsvshFtVSTFJUE6LzCT/RkElu7Cd9mB/HBtBzvwPlO6jXkYlbndX4WTkk+vZZ2A+7VVtIzebquaSI2nCYXLcrkqY5r/SRGMqy6OUg2kic3X2LsKYn44ttmR21Q0bTFhZgtk57Ky/E2+gR8W5xMPz+HmAXvZhs6m8Dk0oRe+xVeTM0GVFolg7+dJrDNyfSrMcS4iHuDFYNby+QfpLZtl3vJRQosHE8jOAQ6r/ISG8kQPZDEtdaC2a+XyWmtl3pwrbEimDSc+MkY3g0O5g/GyM2L+LZaaT7fK6/WOjvemKD/bUGmnpkHpQJHnwW1oJbjveZPW4kNZ5jbE6fjej+KOkRPJslMFFj3gTYEi8DBrw2DAO2XehHTFZmgtO0ve1EJKvZ8eQBzk/TMjj01R2Crk1qtjlKjkJ7VsSy1Sp3ESIbEcJbVt7VibTby6tcHIAstl7igrqAm1tC7tNTEGvlEidbdXmb2LaIza4gcj5OdKtF5vQ/fBifzR+KMPTJH+xVeMnMFFk+k2fHZPqrlOsd+HEIwKmi+wENxUUSpVuBcZSF6PEl+sURgh4vsfJ6TE0eJFReZnp6WbdwsFgtKpZLNmzfz2GOPIQjLFo4NNNBAAw28eZTLZW666SYef/zxc9QtBaWOzd1bWN22HpNfR3oqT3pael8vnE5BHerUiRxJYvbrab3Ei1Kl4MDXhmne5SK/UCQ+mKX7bQHc/TZOPzhF4lQGz2YrgkFDKV2m7RIv80dj5CIi9jYT+VgBwSyQCGVJj+VxrTHS/ZYg0SOSykzTTidirowtaMTSaiQ2lGbhRAJLi4lCvIS1zcTUs1E0BiVbPt5LIS5y9HtjoIHWCz1kIzliJ3KYWw103xAgHcoy+sgcvi126jXQ2jVMPROl9TIPKkHJ+GPzmJr1OPvMZGYL5CJFbK0mjE0C409GoCypI8ZHsmQm8xj8An03tXLipyOUU9IqcrVeRWo0w/o7uihmyow/NktqPL9EmrIz+2qUch5ar/CgUCqYWFqx3bLbRTZSJDGURevU4NtkZ3Z/gnKqjKPfjN4hEH45xvo7OqhWaszuWSQ+mEVj1dC01c7sAamtvdeEyatj+kWpgBM430kpVSaw04Var2JxIMXC0QT5xTK2LiOWFgOmJj2WoJGp56OIubKk8rQUw3q9TtMWJ5MvRNAYNTJZyrfNTq1SJ3o4KbddPJ0mFy4u2aiZcPVZCC+pKdRry7Z7rZd5iI1lyIYKGAM6XKss8iICzyYbjm6zvMI/eKmH1JJdmcEv4Nlgw7fBSW6uwPyRBBqDWs45V/9pK/mFIqHHIhhcGtwbluPddrWX8lK+5NtmR6NTyfH2brFjCRqYeCaKrc2AxqRCqVQy89IixoBk9zL9SpT5vQnsvUYsLUbmjyQoxcp4NpjpvLaZVCjHwC+m5HjnFwponRosTSYUagXOLjMTz89j9BiYWlID2PG5VRQTJY5+bxyNVUnTDhfJ4SS+zR4WhzMY3VpMXh0qQSkVxhR15vclASnfUygU7PvSoPzMTj4dpf1qH76Ndiaem2duT4LABU4MToH5o9Jvn0K8RDEuko9Jv13Gj0wzmjtJtpAlFJImepVKJW63G5VKxd1338211177n/F11EADDTTwPwIvvvgiH/rQhxgcHKRWWyYTK1ASdLbRrdtE/8WtJMfToFCiFlRYWg3MH4pLEwLlOpFDSZovdNK0zUV4b4zEcBZbp5HZV5dqAJ/qpVyqcuRbEvmn+UIniZEcLRe4QQHp6TyLQymat7ukSSONksRAhkqxxro7OtCa1Rz46jA6pxpHr5X4cIreG1tIhQvk54rkF4tUChUc3RYyswUyUwV6bwpg77Jw9J5RiotlrJ1GdDYNmZki+UiRwC4n7tU2hh6YoZyv4llnJTtfRK1RUhWrWDuMpMZzpEJ5vJttFJNlBJOaxFAGzyY75VyFhWMpzEHJzu4MeaXzBj+1ap3Qo/OodeDZ5CQ+lKLtMj/WViPhfQvMvCDFxbXWQq1al4jBaknxeer5BQrREsYmHda25Ri61lmoV5btSJrOc5Icy2FwCzRf4CZ6PCm3dfSbUaoUskJ0004n6akc2XARnUuDo8dCeibHqrcHWTiVIhcpysqdTTucpGdy9N/SRno6S3q6QPRwjEpRsn0RzGp8m+yUCzUSw2lyCyXSE3kEmxpXv5Xo8RSVbEWO9xkrOt8WO0a/Dq1FYPh3YTzrltta2gwYvVrm9kl5mHeTDTFTITGSRa1T0rzbRXa2yOLJ9FK8DbIalmeDTaqDeQ0cu3cUR4+V+FCKYqyCpV1H26VNHL9n/Nx466DzMh+z+xNUxSr2ThMqrUqOYcf1ftKhHIsn0zTtdIICUhM5crNFOq73YfIZOP7jcaiAb7udSr4qx3v9BzvQ2QQOfWMYtVGJo9fK7P4Yrj4LVbGGxiDFMDWRo5yvyM9s+1VevBscHP3eEMVkDfcGK0qlgnKxitGtp5IvU0qXaL2kiZm9C2j0auJjOYqRIt7NNjqubCL86iJTz0flZzY1lpPUlqo1Bn45iRLw73BSjInUqnX8WxzMHYwjZip4NtjILRQJRUZZqM0yMzsj18LNZjM6nY7rrruO73znO+h0yyTEBhpooIEG3jyq1Spf/OIXufvuu5mZmZGVxRUoMCksrG3ZRKutA3OLgdREjlJSpGW3m9hIlnqlBihITWQRjGqad7sRDGqO/yiEY5UZMV0hGy7g22IjeJGPoQenSY3lMLcZ0Jk1FOIibZd4iRxNUEyJ6J1ayvkyap2a/EKB3KyI3i+w+p1tzO2LEd4Tw95tolqqoXMKOHvNLJ5Ok5rIYXBpKaXKmAJ6KYdQwZY7e8jOF+RaiXu9lVJCJB0uoLMKtF/mJT2dJ7wnhrXdiEIJGqOaheMpqValUzK3L4FgVWNtM5JfLFHOltFZtRh8OomAVJWUg7KRAoWoiGBS0XltE2NPzCKmqphb9GiMalKTeda/v4NCvMjU8wvk5opoTCpsnSbiw1mqhSrONRYEg4q5pUWBzn4LpaRIdraISq+SldqrhSpGvw69XWBxIE3HtX6USogcTZKZLqASlEuEqCxitorBq8Xo0clkLEePmXKxgnuNDZ1dw8LJFKmJLGKqit4tYPLr0dkEPOttjD0+S61aJx3KS2SzNVbqlRrNF3iYeimKSqOUczZbp5F6baWVXma6QDEuorULWIJ6nL1mokdTVMpVlCqFvNDNvW4phhFRjvfCyRRUJQs3R7dZnrd8bbytPSaad7jJTOeJHE2gMaqJD0qL3Fov91DOV5l9JSbFsGc53u4NFmqilMvauowoNUr5mTW16LG2GYkeSaCzC2jMapQoWBxII1hV9L6thdm9MWKnMxi9AgafXo63MSDQ/442Fk+lCT01Lz+zhXgJjUWN0S3lLO7VVqZfXkBnE1g4LsVw44e7yC+UGPrNNCoBnGusZMIF6TfFdA6tTUBvk/qzeCqNUgOJMUkBau3721HrVBz5zqgc74WTKdz9VoKXeJl4eo7YqQyOPjNah0ByJEPz+W6K6TLFWIlisoRvo5OZU/NMV0dJ15OEQuPU63UUCgUej4fu7m6+/OUvs2PHjv/sr6YG/hujoaT0Pxxnrzbbs2cP73znO5mell600/OTTM9P8ujIw7S1tnH55ZejKFlQKhUEtrmolWvUa3WUWgWeVXbEYoWFgSTBCzxY243YO00c/JcRamUpwQDofWszrl4rglnNke+MseodzfiWVs/Y2kyY/HpQKMjNlRAHs2h0asS8NInn2+TAs8ZGbrHI/q8MsfUTPdhaTdTroFCASqPE6NGSGJS8z41OPXqHETGeo+MKP/Vqneml1fuuXisoQCyAd70V30YH6akckSNJNt3Zhc4u4Oi0sOeLp/FvdciTbv6dDnybHNRrddKTOQLnudE7BJmkZPYb5NhaO0z4NjqoFKoc+cEom/6sC+8Gh0xSCmx3UilUiRxI0n1jCyafgeDFPgZ+PkXzDhfmgIHxR+cQHALBXR5qFYmkpLMJ+DY6pBddpoxaq8K30bFMUjrPDbU6s3tibPl4N1qzgGBUkw7ladriwNlnJXI8Tildxtpmwt6xrPDk22hHv8ReF8wazH4jkSMxsmGRlvPdKDVKcnMFStkKvo12TD4dicEsnnV2fBsduFZbCe9bxLvOhsagkV/2vi1O6tUaVbGGq9+Cb6OD7FyBSFyk5QIXOrsWnVlg6IEZ/FsdFJMiC8fT2DsNOLosWFtNRA8kaT7Pjd6plUlKTduclLJlxp+YRWuR4lIpVsnNR2nZ5UFjVONeZ2HheJrANieVkhTvrX/Wi2BUU9pYZuyROdouMmAJGhl/dI7+WyXLFb1Lx9yeODOvxNj6kW7UgoqhiRkMbp3MaEcE92o7KkGBYFQTeiqCRqeWVgKK0LTJiWu1FZVeibvPRrlYkSe0AM77m34cvWYOfnWYerWOQqnAGtBTFxV419pR61SUC1XUOpUU+/kC+740SOtlHnybHLjXWtn7xUGsbSZq1Rpjj8zRcY0f32Y71miJxRNpxGwFvV2LvdNA0zYXar0Se7uJuQNxFAoFzvVmxg+cZt8TzxGaCFGv11EqldjtdsrlMrfddhvf+973/vd+8TTQQAMN/A+FRqPhd7/7nfz505/+NHfffTeZTAaxVmTP0MvsGXoZUHDVVVfRvr0DlAr0TikvWRxO0/OWAEqVUvqhPCIV1pvPc6NUK5h8IUJ6Io97lRW1WlpZ03V1AIBXvzDAwrEU2/+qj2JCRGvVYC0aJfVLsUq1WMO32QUKBdElVafgRW7qNdj3z4OYWw2svbUNvVODo8tKMVlCaxGYejZKOV+jVq2j0p65ph/POjuzBxTETuTwb7WjtwmUl1a4NV8g5SoHvzECGghsd4FiWZ3Ss87Oga8NUM5Dy7tcCDYN5iYjx+4ep2mbE61NQ2YyT+slXvR2gaZtHib/EKXlAjcqrYq5vXFGHg3TfW2AwDYnqfE8rn4bge0ukmMS4SawTbJrOENSCux0k53NkxjK0vvWZsxNBorxIpFDZZrPc6F3aAm/HEOjV2Ew6wic5yI+mMXWZiCw3UUxXkZjVBHc7aFWqcskpebz3BSTIrn5AlqnJENdKVbJvxwjsMOJucVIeiq31NZFOV9h8Xgao0dHYLuLxeEUhbiIrc2Erd0kk5SkvExB01YHp341TWC7C5VGxXh4Dv9mO65VVsrFKvWaJK1NrS6RlDTQvNONf5uTQ18/jX+jHc/6ZZJV68VuBKNA8BIPU89GCWxzYnBINjLu1TaaNrmYfDFCeG+MjXd0otYvk5SsQSNmv4HQYxEcq6xSvMezUIemLU7q1TrhV2LM70+w4zOryEUKJIaytF/uQ6VWkhjNsHAsxboPtGNwaZl5aZF6pYrGoKJ5u5P5vQlUGhWB7S5cqywc+uYonvWSouPEU0t58E4XpXQZrUVDrVpDMGiYejHKoW+Nsv6OdoxevUxSUihBbZByOnunmcAWF4JehaPbjMGrRWcV2POPkgXf1k/1ojGoEEwCc3sWUQsqogNJAFa/uxW1oGLyhSjxoTTejXYC290oUOJebcXg0qFQKVGqFOidWkRTjmPhPTz6qxkymQz1eh2j0YjZbKa9vZ377ruPNWvW/Ee/bhpooIEGGgB2797NqVOnABgdHeWDH/wgr776KqVSicnYOJOM8/TPIdjUyuVXXI5yTo1SraBll5t6pU5FrIECmnd4KGVEUqEsnjUWmna4cPdbOHZPCDFblpV1ms5z0rrbh8GZYPDX0zRf6Ca4y4NGr8S92oa52YBKo6QQKZENF9E7BMQlZRtHt4W2S7zUxCrH7gmx5k/bcHaZqRQqqPVqVIKS5ESOzNQMmdkijm4LWrOG4mKZ3hsD1OvIat7N57lRKhXUq1UsQT3BXR6Gfy8pCfa9swV7pwnvOjsHvjZMyy4PhYUSp+6bxNJmoPUiD/U6FBZL+Lc4sLWbZZKSZ42Neh1Cj84jWHUEd3mgBoO/nab/liCBbW6ZpBTc7aFSrBIfyNCyy42rz0qtWmfkt2E8621419mZfTWGWiepPFVLVdmSLLjLg9YYJzNXQGvWENzlIXo4QaVYo+U8F0qNisUTadb8aRumgJ7o0QTZ8DzOPist57s5+uMR8tEStnYTjm6zPOHVcoGb+OiS4oJZQ3CXWSI4zRQJ7HSitQnERzLUxBrNuzykp3OkJ/JYWgwEd3nwb7ZLk5o9ZowenUxSatnlplatUS3UMDdJcRHTZRZPpgnsdGLvNKOzCIT+EJHiHS+RGMmi92hp2iblhosn0/g2O7B3mmWSUvMFbsq5MsMPzwAKKd7A7Ksxghf6MPl1sl1byy4PNVGK95pbWrG2mChna0w9H8Xg1OLd6GD21Ritl3rwrbdjazWyeDLN7J4YOz6zioglTmi2iK3FhM4hyLZw3rU2tHYBwaRhdk8MnU0gv1CkUqzh2WgnuMuDWq+kaYuLYrqESqXi0LckO5cd/98qinGJEF4Va1Iu5NaiEGp419vQ2bTkF4roXVqUaiWZcJ4j3x3FtcZC27VemndW2f+VIezdZipilanno/i22Om40k9yMktqLEd+sYit3YS11YhzlQWdTcDVr2ZiaVGiZ4eNYyeOcPjgS4yfNTnmcDjw+XzceeedfP7zn//P/BpqoIEGGvgfA5VKxV//9V/z13/91wD84he/4Etf+hIDAwNkyilenXqOV6eeQ3Ncy8UXX0hTsA2FUiGRhNfbiRxLYA16qFXrmLw6WaGxZZcbwaxh4ql5srNF6rWarNzce2MLKq2Cff88yMmfTbDu/e0Uk2W0FjXlYhWTV8/kcxGqRfD021BppHwKoO0KH9QllcnkSIZ1H+gkejyBZ52dzGwec5NByiGqUClWUeul+oFrrYWOK/1MvxAlPVXA3m3C1mmiXJJUcwI7nCjVCtlRJHiRB7WgRCmoKGcrBHd7OP7DMcRslY4rHdg6zNhaDQz+ZobghR4WT6eYfCaKe4MNe7cZ15SV2T1x/Fsc6BwC8cEQIw/P0HVdAM9aG6G5eUx+Pa0XeSksimTDBTqu8KPSKGSSUssuN+mZPNnZOYK73Pi3OhgsTRMfyODdaMcaNEqkGaMaU0CPQqUkMx1Ga9fQepGXcbFGvVKn4+om6tW6TFJqPl+qwSQnctSrNVov8jL5HBI5q9+Ke52N6DFpHJvPc1MtVUmH8qgEFa0XeaVF+HMFjG4B7wannLMFdrrQmNUUFkoM3T9D60Ve5vZL5DJHp4nABdJ1UUrzrCpBJZOU2q/0UavUOfK9MaxtRlov8pKayCGmKgQv9GBpMVBMlokcStCy20NsUIq3OWikdZdkM7hwKkX39QEMLq1MUvJvluZzZ1+JYW7S0XqRl2JCpJQq03FlE7VyndhAmuRojvUf7CQ7lycbLtB9fQCdVUNurkByNEf7VT5s7SYWB9JURTD59Pi3OYmdzlCrQ+vFXgprrZz6+RSuPhsKBYT3LcjxLucqaAwStUNrE5h6McrAL6Zov8aLd51DUuqvglIFgkVqp/doCe7yMncwhm+DHXOTHpNfz8FvDUMVVr+nFXOzgck/RJg7GEdr0RA9IT07vTc1Y3AIJMeypGcK1Kt1mrY7qRZruFdbMfn1aLQqlCoFBoeAOlDhxIHjPPvsFJl0mlq9hl6vx+12c9FFF/FP//RPtLe3/2/97mng/140lJQaeF2Ioshb3vIWnnnmmXNW+gNYtHa2tJzPeTdtYP5wgsXBJJ51dsxNBk7/cpzum1rRaNUc/f4YuoDAuj/pYOaVBXILRYK73Qz9egIxK1lMFRIljv8ghOAQUC7R5jbe3kUhUWL0kRnERAkxC+7NFrquamb00TALR1M0X+gkFytRToiYAkayc3lMTTpaL/Qz/OgM5XSZ7HRJWnFzVRPhvQtMPbOA4BAQ9CCmKojZGoJDyeYP9REbSDP84AyCQ8DoUiCY9UQOJfFsseBd5+DEzycAMDVr8axyyASiwA47ocekCS6jT0ChV5MN5XFvsKJQ14keTy9ZeCkR7BpW3dRKRawy/NtpyiKy/VjHdX7Gl1SLzrTNTktShBs/3MnCiSQzL0mFClOLlmykJNuHCXat3FbnkUhGxajI1k/0kI8VGXlgCjF7btszMT9jYWdq0SImSmz5WD/pmRwTz86vaKsRJPuw5bZlxGwNBPCss9B2cROTz8+TGMuvbBsQ5HgjgMl7Vv+9AmveEST05DyJ4azUtrAUFwHca81UinUSp7JSXKxqTAEj7Zf6mHgxSux0Ro6hqUWLa7WNiSciCCYl5nYjsRNSEmFfbUIwaojsT2DvM2Fq0TP9woJEJtrlwN5u4tRPp0CAll0uIkfSiHERwQSbP7qK9EyOUz+bkmMo5uqIcRGdR2D9+zoopcsc/e6YHMP+WztRKGHk9zNkIyVad3uYO5yk5QIHYw9LRLVtf9lHKS1y7PvjclwUKiVrb20nPp5h+tmI/Iz4tltpv6SJ6T0LzLy6SOfVfuoVGH90jk0flaxEBn8xg3+ng+adLgYfmMTRacXeY2b0EakP2z/eRzKc5pGHH0HfJDAzPUM2J6kl6fV6AFwuF1/5ylcanq8NNNBAA//FeOKJJ/joRz/K2NgYr03P1QoNbeYuLrvicmwtJo79OIRGA103NhM9nqSUKdF+aRMTz0aIj2Toe2szglnD8R+G6LjORzlfZfrZBYIXu/FvdTL420lSYwU0Vg0ag4LmnW6cvRaO/3SMeqUuW3Ct/2AHap2KQ9+QJhrar/YSejpC8w4XkUNxNFY13dc3U8lXCD0h2cWVU2XWf7ADwajmwLeGoQwGnwYUCvJz0vu6/71BzF49+74+JO33C1hajczvTaAxQOf1LSyeSrF4Mo3WqcHVbyY9VSQzmce/w05qMkt+rgwasHUYSQ5JhYjWyz0sHJFUikA6r7lFT9tFfkaeCFNcKMl9cK23Us6XSY1INigGr4Zypko5X8Peb6LlAjfH75aUbTRWDRodclwMXg3l4pI9nQYMLoH8oohvo53mnS5GnwyTHFw6r0sjx+VMn/KLIpQlaz6NVU3bJT4sQSPHfzD6R9ue6b/WqaHtMi96u5aj3xt7TVvQWIUVbQFKMem8gQtd2NuMnPzJ5DltNVYN3g1WZl5YlPtQTomsfo9EmBt+aHpFW0urjlqpTmIoi7XbSD5coJyvgQaCu91MPbMgPzuRo3F53Prf1cr0s3NkpkXcG60U4wUys1L/u9/ehLPLyt6vnpaej6V4A5TzZVov8eDf6OT0ryfJzxfRmFVobVq6rgsw/odZ0pNFHJ0mMlNZDE1aaiiIH8/g32EneKGXwd9MSepaS2PT/84W9HaB4z8dJ78oojFooFym75Y2tGaBg/8yjNapoeNKH1MvLGBpMdC0w8nxu0co52Hd7e2UUiJDvwmz9rY20jN55o8k8G2041lnZ8+vjzCjHKGiKDMxMSH/XdtsNiqVCtdddx3f+973sFqt/85vjQYaaKCBBv7/RaVS4a/+6q/42c9+xuLiSvsKJUrsgpu11k1se+d65o8kiA+nsXUYsbWZGX14muClPrQWgdO/nEKwqVn1jlZm9y2SnSsS3OVi7NEwlaJkMVVKiZz+5TRqk1TwUqth7fs6yEdLjD05SyVbpVKsYWrTseptQcafkGxBnGstVPIVSjERY5OBXCSPYNbQdV0zo4+HEVNliotlzEE9fe8IEn51gdlX46hNatRaqJSWrL10sPUjvSyeSBJ6KoLapEZrAcGkIzGcxdyqw7fFwcjvZqECOp8GR4dliUCkxLPJLivw6Gxq0KkpzhextBlQ65XER7KShZdOidqkouvaANTrDD8cplZZthdrOs/J7P7YUltQmzSytdyqP2khPpIhcjApXceloZItUyme21ZtUqNUg5issPa2NgrJMhNPSPFGDTrbyrZqNRSTlbPOW2XTnT0kQhmmX4i+cVunmkquRqVYAzVYgno6LvMzs2eRZCiPWrtsl6dzqpfjfaYPybIcl56bmpl5eZH0RB6dTU3lrLhYOvTUgcx4QY6h1irQfX2AyecjJEZzcludS4Oty8T83gRqHeh9ejITkp2HoUmHziYQH0hjbNJhatIRO5mkUgRHvwl7p4WxJTsU7xY7idEMYlLq75Y7u0lN5hh5cFbuf6VYp5KtoDapWfveVsRUhVP3Tcox7Li2CY1RxdhjsxQXy/i22FkczODdZCO8RNbf8OediOmyZHe4dN5apc7GO7pYPJ0k/PKiHAtrp47u64OEX1lg7kiCpq0OFBol4RcX6b81SCkpLTK0dhppu8TL2BOz6GwC7rU2Qk/NUUyW2XB7J6mZLC899zIERMKzEiEcQKfTodFo6Onp4Utf+hKXXHLJf/h7pIEGGmiggTeP4eFhPvOZz/Dcc8+RSqXk7QoUGBVmWnU9bNq0EWeXldNLyi/NF3hIjmUpJksEd3uZPRAjHcoT2OXE4NQx8lAY32Yb1UqNhWNp7N0mWi/xMvL7WXKzBVR6FSpBgbPPQtN2J6d/NUmlVENMSe/Vzuv86OwCp5bIRL4tduaPJHD0mElNZFAJalp2u6lXYfpFabFTOVul41o/Jq+OUz8PURVBsKoAhXze1kvc2LrMnLx3fGm/Gr1LILVkw9tygYvUVF4i6+hVWFr0FJMihaiIrdNAKSFSiFdABQaPlvycND/n3mAjNZpBzEpkKMGqQmfV0H5VE6E/zFOMi3IfTM16oEZ2piS3rYpQLVTRewWaz3dLlqwiS3FCtiYTTCqqVamtdKwaMVvBHNATvMjD5PMRslPFf7MtVVAJSlR6Jd71djzrbRz/8Ti1N2wLKr1a7r/GpMK7yYHJq2XwNzMIVjXVQoWqeG5blV6FUiWNDYBjlQlbx5JLjQoE08q29i6jrBApnbdG25VeNHoV40/Or2ird2qgriAbLqD3CoiJimTbpwL3agsLp9JQBe8mO4lQGjEhWQq2XeYlejxFfq6IuV1PJVuWxrQK/p1OfBvtHL9HInGfiSEgq2C17vYw/LswhYUSKr0SlaCk69ompl9aIDNbxOjWUkyVEMxqFBolmVABS7uezqsDjDw0Q3ZWUteqVaH1Eg/WoJFTv5igWqiASgXVKsFLfBg9Ok7+dAKNSUXTNgfR4ykEs4bmC9wM3j9BtQAd1/gpF6tMPxul/QofuViJxFAaS9BIYLuT44+NElaNIGoLjI2PyX/bNpsNp9PJbbfdxqc+9Sl5/rGBBs5GQ0mpgdeFIAg8/vjj8ucf/OAHfPaznyUel1ZPpUsJnh19hGf/6REUKDBj59YL343OLiBm4dS9k2z4804C5zvJzBZQKKFWrZEazVFca6PvlnaO3xOimBTJhqUXmmedBf8mB8funWD61SjFmEh2ukTfzc3Yu8wc+uYQew4NyH0KbHdTr8P+Lw+SDUtkEkWzkXq1TmIkCyJ03SBZmu358gAsWXxuvL2DSrHCoW9IUtyIUIiVWDiVBMDVayY7X5BXRLm6rJj8BgSTgBgXyY6XyI5Lq7VbznPi2+ggv1AiciC5RMpZIh1d4adeh+hB6YUnZmuI2RKFxdKS2s9Kz9HxJSWk/luDAAz8fEred+Q7S1/uAuhsgkwcks4L9lV62i7ycfJnkzLhCODA14ZXXEPMgpiVjjUFBFz9dlkFClhxXmorP4txEctaC9Z2M7N7YivbitJ9nrlX5CiAe50F3yYHJ+6dkHecOdbUIhGmDn9zdLkPYRFrl5H1f9rGsR+MsnAoc1b/a4hZEbEAzedVSI8tE5QAPGsd+Dc7KKXKzO2JywQlgJ5rmwGI7E+QGMySGMzK+7zrHGjNarl/088s0nmdn7FHJPu63EJR9k0Ws+Bca6T9Eh/jf5hjfn+CfV+TlJH6bmpm/NkoYhaqxSoKtYLsdAnBBJNPRyWVo/UOcvMl5vcn2P9l6bj1d3SgswuywtLCqRSTLyzQdbUPnV3g8LdGmd+XIrDdQzlXIbDDiTVolOOm0ihRKpUIJvCstRHeEyMzUaJ5uxadVcPp6ZOUgilO/3wP4bDkc6zMKrFYLGg0Gi644ALuv/9+HA4HDTTQQAMN/J/BVVddxciIRAbK5/O8+93v5sknn6RQKFCplxlNn2b0fknVRYuePsM61tg60Du1zO9PoLPGadrsID6SQaFUoNZJK7zGH5lnw591ICYrlFIVikmR1Jg0mbH6lhZyswVCz0QRcxVyYemduu3TvWRnCxy7e1zuX9NOJ/5NTkrJCjMvLaIxQH5OpFqSJtbyi2UMXg0t5/k59uOl48rSca0XeRh6cJnckhiWJrNY4sG7V9tku7FyXlLk0ehVLJ5MU4qVCb+07HfefL6HwHY3B/9FIkCdISg17XQS2Oaikq+SX5Qm0s5cT8yWyYzmJPLMEhaXVmdpnRrW/Ekrp387Je9PDGRJDEh5gsEvEXjKyzU08vEy/e8IEn51kVQoL19nfn+C+aVVanLbxWWyv2+LXVJbLItL91qjnBdft+2Z/rfsdhEbSJFfLK9oW4qVGfrXmRVtz6D7hhbmjyflbWfISQaXhvximfALi4SXSEjlPJTzIv23tFDOVRj5/ZxMUDr7vPmFEtTqK65TTpXpuKyDeq3OwaFhUiO55XvdaKd5h5tqqUb45Rihx5fzTYNDg6XJgGetk8z0HAtHUljbDbj7JSn12Kk0WoMGjcQVIh8ps+kjXSg1Sg5+fZjJJ6NMPhvF3mHCv9PF1DNRypkq9XINRU0B5bJsbbf6vVL/4sczzO1NMLc3gdapYcdn+pg/kmDiqQjTLy8gGNRQq7Plz7uZemWB6OEkmXCBmlt6JnquD5CazpMLF7EGjSgVCjRmDe71FmrlGkO/kfIrvUtLJp5jz+KzuCasTL88TaGwNHloMKDT6fB4PPzzP/8zt9xyCw000EADDfyfgVqt5qtf/Spf/epXAckW7uMf/zgnT56kXC4TEyM8v/A4z3/rcdRocOHjqo1XY/ToqBRh/NF5em9uxrPBRno6i1ItqUEWoiUyc0W6bmhh8NfT5KNFclGp/mEJ6gme72bwgSlCf5inXKhSXCwT2OWiaYuDYz8el5WQAILnu1GoFBz+9ijFZFoipTh01MQq+bCkZNO000l2rsCBrw9JuRWw9tZWqmKN4z+SyNZqID2RIz4i1UcsAT1itizlY4C93YK93YLOGqUYq1CcLzM7v2TDtsYqqQJlyiyeSC8ReJYm9q7yo1ApiJ+W6hKVokToyc0VQCmRiM7GGaJT++Ve1HoVIw/PyvtO/3Ja/r/OppaJQ9J5wRgQaDnPzcjDszJhB1iuM8mNkY/V2dTYu83MHVjOzc4+L7WVnyvZCrpmHa5mA4sn0zIB6cx50+MFjp6VG1eWSkqmgA7/NicjD4bP7YNLIkydXd8rJivoPVpW39LCqV9Nkx4vnHWvUgwr2SqllEhmJr/ifq1BI20X+qgV60SPJmWCEki5ilKjJD6QJjdbJDdblPd51tox+ZYnhiIHExJp7FWJNJaayJFcslOhAlqrwPr3tRD6wzzRo0mO3C3VJFsu9LBwMi71sVBBoZTuVa2D+YMJPBtstOx0U05XiB5NSjbQQPeNTViCRnnhw8zeRSJHkjRvd2AK6Dn500lSY0UKsRJiroqzx4Kj28zJn0qTxmpBhaiUCFW+DXZm98fIThexd1gwuLTMZWeIe8MMPbJPdgdQDCuwWq04HA5uuOEGvva1r2Gz2WiggQYaaOD/DHp6enjwwQcByRbuS1/6Evfeey/j4+NkK2lOFQ5y6pWDKF9RYcVOe6GPPm+Q4mKJ+GCGuQNxnL0W0lN5QIFaJykpzR9K0n1jgHKuSqVUJb9QIjcrvR/bL/dSiIvMH0pQq9TJL82brb2tjexsUXYmAbAEDTSfL9UwFk6klkg7FapFSUGonK2i0qvwb3Mw/sTScVWwtBvovjbAyKNhmdySmsyjUCmpLpVPrG1GWSEIJCVnrUUgHcpTLVTlnAykmhfAyZ9OQBWZoGRpN9B6oYfJs1SMxFQVqlCMi+TmSzL5ByA7I8VApVfRfX0Tk89GEFNShwoRkZEHpLxFsEoEnupySoGYrdJ6sYfFwTS5uaJ8X5mpAqeW3s1ntz0Da7uRSrEqt6+KkrPKGZTPaiv1v4Kz30ImnENMVamKlRVtZ15cWNH2DJp2uElOZJevU6hSRSI2lQtV4qezxE9n5TESUxWad7moA+GXFmWC0tnnzUdLqATliutUC1XaLm5GoVJw4t4JCpHlepg5oKf1Yh8oFCwcS8k1KACVoMLRaaacrpCfK5IJFdA5BKxBI6lQjuRoRnazORPDnrcG0Fo0nPjJBLGTaWKn0+idAs7VFqJHkqCS4lmr1aFaXfo7kNRIlSoFJ0ITpEMFjnxnFJWgZP0HO4keSzC3L07kcILEcIaqWKfnbS3MH0qQGMmSDS8PemCni0JcpLAoSnZ0StDoBcxN0qLH6SVFcpNfR6lU4nTmOFqxxiO/miGXl3JIvV6P3W5n8+bNfP7zn+eiiy6igQb+GBokpQbeFO644w7uuOMOQFJZet/73scDDzxAsVikTp00cb7zs28CEvvZqfayxdSF2a8n/EqM8P5F/FsczB9NoHcK6KzSl/Cxu8fZdGcX/p0OBIMGhUqJGBeZeX6RDX/eia3dRGomj9YmSCo8wNZP9pAYy3Lyp+Polzw3A7udtO7yMvJomP1fGZL77V5jw9SkJzEoqfAAxAbTlPPSy8a72YZvk4OBn48hLr23WnZJ1ib775IIIwO/mkZwCEuqOko2friHqZeizO2JM/bIHNVSjciBJAC9b2sm9NQMYhZO/nQcwSbdp73PRKVYJTNRkGUeAda9v53YaFq2WwOJhLTkjncOtn6kB6VGKZNZzsC73i75jwoss4OWYPQJeDc6GH98fsX29subMAcMTLwQOeeYN0LwQg9ai0a29TgDe48JU0Av2+mdDd8GBya/HsGEHGOQYuVcZeH0b6ZWJGIABrcWtU6FscmAuLRPMMGa27oYun+K3LzIwa+PyO2bL3Ix8/wi44/NUUyIzO2RJjNbLnaTjxSJDWSYeGaeXHT5xbv5L7opLJYY+MUUp34yuqJvbZd78W10UIiJzO6JcfyeEK2XeVh7Wxsn7p1gbk8cd7+VbDiHKSCQDYuYWrQ4+izUazD0wIxcLNv2qV7q9ToHvjrM+GNzlFIi8dEc2z7Vy+yhGDPPL5KezFEr1TAFBHrfHmTi6QhiXESpVKBQSg/D+g92sHgqReRAkq4bmhCMagSHQMt5TsRsRS56GZxakroIL/Eko3u9zP52FrEuwqTEXhYEgZaWFr7//e9z6aWXvrmBb6CBBhpo4L8UBoNBLt4AHDhwgNtvv51Tp05RrVYpUeBYfh/HvrwPAB0GrtJfQ4vXDWU4/atp1r6vjeDFbhYHkghmDYJJxfSLi2itala/p5VTP5tEqVaiUCkop8pkwwXWf7CDwd9Ok53Jk5xcWuG124VnnY3jPxqlVq3JJJz1d/RQq9Q4/O1lonHz+R6cvRamX12knCpj8AskJzLYpozEl8jB/e8KkgzlpBXVQOACJ4HtLkrJMvMHpXPv+/ogGul3MKve0YJg1XDsB9Kk0Ol/nUIwSQQsR78ZwaBm/mCC2T0xauWafA7/Dgdze+Pk50SZ7G0M6Oi82s/xn4RkgpTBpUWtV6Oza1cQcAAcfSZ639pCeH9MtlkD0Bg0WJoNVDbaSYXy54xf4AInyVCOXLi4YnvbpT5y0QInxif+6DMAklJR8wVu9C4tw0sFpDMIXuph7mBCVl1a7psSc9BIvQbxgcyKfWtu60DMVuQJo7OhdQiolqzP5Ps434klYOD0r6dXXN/cKtkbZybzjD4aJjtfkq/dcqGX8cclErdaqyL88pKl8DY7Lee7OfCtYfKRMoe+M7qi7z03NlOvw8KxFPHBLJmpPH3vaGP65QWSozkWB1KgVKCxSsylcl6ykdHZBYmklK9x8BsjeDfZ2fKxVYz8PsziyTRjj4XJzJXous6PpdXI4W+PUoqVyUWLZOcLdFztx+AS5PxcoVagMajwbbNjaTFw/B5pgldrEzAVq2gMSlyrLUy+ECUfKdO8S4dgV3OMV9E2qTj+kxeJRqVnJR2KYbVa0Wq1vOc97+F//a//1VBLaqCBBhr4b4rdu3dz+PBhQFJZuuuuu/jOd75DOBymUiszzzT3PnU3PAUatLgVfta72zFmJSuSyecj+DbYSQxlMLq06J1SLWj4gTCr3hWktNaCSlCi0CglIlAsTe/bm7E0S6rgmdmCTOpZ9/52UhM5Tvx8EqN7qabUY6LnLc2MPBpeQZRp2u4kv1Bi4L5J1DpArSZyLAlLqpzmoJ7ADhejD4clRSCg9RIvKCRrE4Cp56PMHozLKkAb7+hi+uUoiyfScl51ZjKn5UIPc/sWqRRrnPj5JAaX1D9jk1Sby80WCT21TEzuus5PZrZA5HBS3qZ1Cmh0K3OOM1jzp21oLRoOfXNkxXb3KgvWDhNqnVK+jzNQm9R41lrPqVP5d7rwrLWxcCJ1zjFvhObz3ZgDEknpbOg9Wiwtenkx44q+rbViazOiNqlXEIqaznPScr6bwfunzskXdVYNGqMGg0sgfeYYNax6h1QPKkRLnPjxxPI11luXJsCSVMWa3D/XGgvlQpXUWI7QU3MrCPmr391KKSUy+sgco7+bpnIW58q1xkJwl4dqsUrkcJKRh2bxbLDRfWMTIw/NkhrLER/NkJ7JyUQrwaamaZsDtV5B6IkI449JNcZ1H2hHqVZy9PtjRI8mqVVqJEezrL+9neixJHMHEpJyRA0Em5ru6wPM7o1RyVZQqBQolyyqe97eTGIkQ2wgjX+rHa1NQOdU4+i2IOYqjC6R2szNBmbmZ9hXf5qxSTuze2YplUowA1arFbPZzKZNm/jyl7/M1q1b39S4N9BAAw008F8LlUrF5z73OT73uc8BMDU1xd/93d/x2GOPEY1GSdQXSdRf5vAPX0aNBisOdpjPwxL0QlUimghX+XCvtxIfzqJ3CAhmDdEjSTSGFO1X+Qg9MS/VvBQS2SQzk6fnrQEmnp0nFcqRW5DqGPZuE/6tDoYeDDP6SJjkmES46HlbCwqFgoFfLhONPautNO1wEhtKI6YqCFY1xXiJxcE06aV3fevFHjLzBVkYwNou2Y2dsQIDOP6jEKoljkrgfCdGr57hB6RFaMO/m0EwSQWxMzb08eEM6VCekYfDpJZIxfZuE4mRLGK2ytD90rGCSUXwEi+hJ2ZlgpRgUqG1aCTrtMWVNS+9R6D/Ha2E98SYP7S8OFAlgK3bTL1WJze3sq4F4OgxU4iXzjlf+xU+cnNFRh4On3PM6z8I0Hapl4WTKaaei67Y5V5rJRXKriBBnTnG0WNGKSjJTBVW7Oq7qYVyvsLgr2d4LfROLbwmHbR1GbG2Gpl8JsrcvuX719oFlBooREXGnpyjmpf6oBLAs87B3ME4makC40/NET+9tAigXbIGPv2rKaqFKsd+HFpBGuu4WrLfOxHKUVgQmXx6juBFPhZPp8hMF1gcTKPWqVAJUl5UFWv4t0hCBdEjSajCwC+mMAX0bPhgN2OPz5IcyzHxTAQxU8a72Y6j28TpX01TFWukJ3LkokU8G22Y/HrGH5OIdSqNErVOhaXdgLXdKOdXBrdWjq97tZWZVxcpxkXs3Sb0Pg0TqkFEd4aTj7/MfETKAVXjKux2O51dndx+++3cfvvtDbWkBv7daJCUGvh3QxAE7rvvPvnz1NQUN954I8ePH6darVKnzmJlnn/68j8BEmlp4+JGLtVeBiIcvyfExg930vWWJub2LaI1a9DbtYw/Nke9UmP9Bzs4dvc4glmD3lZl9OFZKrkKGz7UycCD01AH6pKVmGOVlU13djH+zCzZSIGFoxKLeNNHuyhnKhz6xgAI0hu/921BTC0GDv3LgExIcXSZMbi18mfvVhtH7hnHuFRoab3Ug2+zg5M/HUcEjE0G6vWl1eSAuU0vJxz2PhPOfgv1ejPDD86QmxdltaTu65pRqGDfP59FLhJA79bixLKCpHT4W8uTfd7NthVFkPDeGILp3D/b4/eEXpegBNB9Ywt6p5bxZ+ZX7B95bBaNQfWmCUoAJ+8dxRw0n7O99RIveqeW6VcWzjnfiZ9OnENQAgg9NYvaoFpBUDpzv3N74jLR6Ay0Lj1ai4BnnZ3Q/HLRq/dtzTj7LRSiJWIDmeXClADNO90UUyKxgQyRQ0ks7Qb5uLOtdMSsVAgULGoOfn2EiT9EKMRLiJkKOo9AMSpiazehO4vhfPyHITZ+pBOdVWDPP54mO13ixM9DaM0atv9VH6d/M0U6lCc+kqFWrtH1liZMfv3yxKBSgUZQ0fPWZgSTailOSgSjBnPAgKlJj9qollea6R0ClbweU0DA1m5k7LFZxLiIwaUlkp3l+frvcHmd7PmXx8nlpGR1YWEBq81KpVLhb/7mb/jEJz7xR0a4gQYaaKCB/47YunUrx44dkz9/97vf5Qtf+AJzc3PU63WK5Hno2ft56FlpvxY9AfEWjE4L+UiZ0B/mCex0MX8shcmrw7BE8j787VHWfaAd/w4HGqManVWglC4z8Ktp+m9pQTCrqVXrKJQKynlJKWjd7e0kQzkWTiWpL/3At/ea6Lo2wPCD04T3xWTyybr3dpKdz3PyJ0sEbQ2YmvTUa3Vm98QweDWkpwsM/25GnmzZfGcX2fmiXGSp1+sr3tn1el0mPAV3S+TpMxNoZ/51rbHQfqkPwaSWFZpA+qFtcGoxWDWyalFiKMu+JWVDNODoNsvknvhglsRohrk9K4sl5VSZQ98cpHwuPwmNQUlwlwdra46B+6ZW7Bt6aJrEePbcg94A5VSZk/dNSnYhr7lGYJsTs1/HqZ+vvEY5X5MUHs91a2b+cIJ8dGWBydEv3a+s2nn2vm7zitznDFbd3EK1WOXQt0ZJDC3fT/sVPpyrrESOJ8iFi8y8tIgxoCMXLlJKlanXweiRPgsmFRs+0MHU81EihxMM/26G/HwR1zoLi8fTlMs1jF49zh4LydEcU88toHVq2PLhLmKnUww/NMvgA9OU0mVW3xpEpVNx/J4QkRMJXP1mysUK6z/YwfzBBOXUch8NXg1d1zcz+UyEVCiPZ61NWiCggbW3thHeG2N2T4yOq/3obAIaq4bg+S5KKZGBX0kr85VGOJU9yGnlACdfdBCJRqjX6yhmFbjdbvR6PRdccAG/+MUvcLlcf3ygG2iggQYa+G8FtVrNZz/7WT772c8CkEwmufPOO3n00UdJpVKU6yVm6xN85dtfltojsKa0loD1YirFGiMPz9L3zhaCF3mYPRjH6NaRcWiZeWGBehX63tnC4G+n0TsEarU60y9kKecqrHpXkNBj0kRBvSYp+6iDBla/p1Wy/RrLEB+WcpT+dwWpFKsc/NawXCNquciLZ62dQ98dlcky9g4z5mYDlYqUtNl7TJz48Ti6pZqXs99C68UeTv9mmkq2gt6hhXodMSMdr/do5fxK79FKJBWtgtBTESrZikyw6brGj9qwXL84A3PQiNqgXkFSGvzVsmqStdNIamxZiTH86qI0ifQajD4yB+o5WS3qbHRc4cXWYSZ6JLGCjDT90iLRY8k3TVACGPztNJZmwznbm893Ye80EzuVPud8oSciTD8fkezmzkL0cAy9XVhBULJ2GklN5kiMZCVV0LOgM6kxeXXYu0wUosvK5U3nOQnu8lDJV0mMZFcQqNou81FMiKTGcqRCefSe5dhJObT0/0oROq7xYW7Sc+yeEIsn01TFGmK2gs6pphirYA0asLQYpZmCCow8GKb35mYsLUYOfHUIMVnh+E9CqDQKNn2ki9FHZ0lP5Fk8lQalpGpqbTdyemkhgkKpQKFWErjAhcEhSMpZatA7tOhdWtQGFVqHICt+mXw66uUaapMaZ7+V0JPzFGMVtNsF0iTYU/8DJq+Ovfc8QTYr5XbViIjVasVut/O3f/u3vOtd73qTI91AAw000MB/JwSDQX70ox/Jn59//nn+4R/+gf3795NOp4kR4dFjD/LoMVChwYINt+oKDA4rC4UU40/MEdjpIjmeweDWYm6SiBLDD8zQcY0fxyozCoUCvVtLtVBl6oUFWna7UW+2Uy1UUSgVVAtVkmM5Oq7xk50rsHgqjWJJKVPnEOi+oYnxJ+eJ/2xZwaf/llYys3nGfn+WIlOrAYVGSfx0Bo1JhZgtM/TANJlpiVDTe1MzxYTI5FkL4eq15ZqXUqWUFW6atjkxBwzExzJQRSYoGbxaOq72M2uNMXdweQ7NEjRibjKgNgpUxSXVpAWRY/csE9zNLXq5L4WoSORYgoUTyRXjURXh5L1jMtFpBZaszJITOZn4cgbDD81QSpRe56A3QBVO/nySWvlcIlLLLjfmFsM516CKpN7+mkMAZvfHqRRW7jhzvyMPnUucsraZsDTrQcWK8/XcGKBaqjLwiykKZ7nWeNY5aDrPSXIqSyEqEj+dQWsXKCVEypkK1OsIVjWFBRGVCla9t43Z/THigxlCT80hZqtYggbSU3mqokRgEzNlMtMF4qczkgLSHZ0snkwy9cICk89FoSqpWglWDSMPhcmGCxJJLlOm+4YAsSW1q3qtTr0GKpOK1gs9RA4nyM0VsV1oRO+Q8v72q3zMHUoQG0jjXmfF6NUhmFTYus2U0mV5nlvjVDFZG+YUJzBPGInuj1Kr1VDMK3C5XASDQd761rfy93//942FeA38h6Gon131b6CB/w0YGBjg1ltv5cSJE1Qqr1NBAM477zyaHa3EHy3j3+kguMvDwK8nadvtxeDTyUpBmz7aRXIsh0IJnnU29tx1GkRY+942CkkRtaDE2mmSyT/rPtBOYjyLs8+CmJEkle19Jjqv9BM+sIC1ycTg0qTX9r/qIzGSZfjBJaaxQ2DLh7rIhPOyCk7LxW58G+2y5Hb3WwPM7lmQyUc7P7eKUrYs227Z+0yyjdi697eTmckTeiqC0SdgDhqZ35/A2mXE5NURfiW2gljU89ZmIicSpEZzcn82f6iL3HyB4z8MnRPDnrc2y30/A2uXkcAO5wopaZ1HQK2RbNTeLM77fD/pqdwK1ac/Bme/mdhZK/bdG6w4u80M/mZlH1sudpOayMns8jMw+gTWf2Bl/EGyvxt9aEoiOS3FS3AING9fVodqvdTD5DNRjD6B3puCDD84RTYsYu8xySQo9zoL3Tc0M38kIfnRIvmpLp5OkQ7lWfXOFrQOgaPflSbpBJOSLR/rIztXkIsmZ5S0YoNpRh+exbvVhtGlQ+/UolRLso+CQ2DDBzqY2TOPu9/BzMsLxAYyrH1vG3qPjtP3T9J1bYCRh6Q+bvxIJ2qtimP3TrD21iBzByQ1iP53B7G0GNj7T4Osv6MDpaDgyLfHQBCxXivw/HPPk81l0AgauUAjCAJ+v59sNssnPvEJPv/5z7/p8WuggQYaaOD/XpyxK5mbm6NWO3cixuPycv75FxD/XQWNQsP6D3ZQzlYYeWiKjR/uJT6YZvSROQLnO3GttjLw83HWf7CHUlLkxL0TmFsNtF/mZfSRGVa/q53UZI7hB8K41ljwbbQTPZ0keIGXY3cPU85D/7uDVHIVipkK2XCe+GCWruv82LvNHPjWsEygWXtbG0a/nr13nZa3rbu9nWy4yPjjc1g7DFiaDUy/KNmPdVztx7vBxslfTJJZUnqythtIhfKYmvV0XOXj9G9mKKfKBC5wyio+wUs8zO2NSqQiDVCWVIraL/Mw/NvlQsXq97Ribjaco/IDYO0woHcsT9SdQc/bAkSOJkiNL+c19l7TCvLOH0P/u4NYgkb2fvH0mz7G4Bco5+sr+rnqHS1MvhQ5RxGq42o/44/PvfYUrH1fG0avnkPfGJJX3tu6jNg6TUw8GVnRtmmnk+REhvyciGeTjcRYjnKqTPBSD0a3ltNLE45nxgNg44c60RjV7L9rSO6zZ62diSWFhc13dhHeG5NjumYp/gf/5bRMAOt+SxO2DpNsYdx9vZ/UbI7mHR4GH5giPyey6pYWVFolibEs1maDTCba9uleoieSKJVK1EYlw/eH0Vg1bP7zLsJ7FlDpVFiCy2pJ2z7dSzKUJXIkQc9bmhl7fJb4YBbvjTrGwqPs278Pq81KJpOhWpUqWB6PB0EQWLVqFffccw/BYPBNj2EDDTTQQAP/d2J+fp5PfepTPPHEEyQSCV5bVlWhZuuWrbRYWkk8V8HabqDj6iZGHp7BvdaGo9ssk3n63xUkNZWnVqrSvMvDkbvHqGQrtF/jo5KrUavV8G2wy8pC3Tc2kZ7OY+swUS3VGH14Fr1HS/d1TYT3LWLy6eVJr40f7iI5kiG0NOGg1sHmO/tIhrIM/Vaq07jWWAjscHJs6V0YuMBFbDAl25Vt/otuxHRZrtGYAjqyS0qRXTc0kV8oMbsnhtqkxhLUEx/IoHNpsDQbiR5NrohLYJeLVChLdqa41B8lmz7STXomz+C/TvNatFzoYfqFlURxvUdL01YHY48u5zVqkxq1TrHSyu2PYNun+0iMZZYt2t4ELG0G0hPL+Z6pWYd7jZXQEytzJtcaC8WkKN/n2f3c9OddJENZhn+7XCdrv9rH9EuLspIVFWmsPBuczO6VctkzC/rUJjU9NzQx8UyUfKS4YjxMAR2r39XG7P64HDf/VjuZuQLZmSItF3owB3Symilq2PbxPtJTOQZ/PS1v2/jBLuKDaSafjWJtN2D06dGa1aiNakYeDKPWwZrbOpl+OYqr10r0eJLESJb2q7zY2k2c/vUk7Vc0Mfms1Me+d7SgcwicvHeM3ptbWTiRIno0SeslHlxrrBy7e4T2q5oQzBpO/WySSr2C661qXn7xFWKpGDq9lkxGqjVqNBqampowGAx86lOf4gMf+MCbHr8GGmiggQb+78WTTz7J1772Nfbv308ymVyRe6lQ47V52bJ9G5lnqqiqAp3X+6mV6oSempecTIbShF+JYW034t1gY+yJeXpvDFDKlhn7/RyCVUVwt5fplxfpvMZPdibP1AsLGP06POttxIfTNJ/nZvC3M1QLVYIXe6hWaojJMsWUSGaqgGejDe86GwO/nJItzlov8+Lqs3D07jF5W8e1fkpxkfCeGDqHgDmgl+3b3OusBC/yMHT/NNkl21a9W6CwICJYVbRe6GPy2XnEbBVHn5n4oPR+dK+1Eh/KSNdYItyoBCW+7Q7CLy3KsWq92INrtZUT946fo1CkcwjonQKJkZW1rKbtDtIzhRXWYAavlnzkzZORWna78ay3naOU+W9BsKqoV1daxDXvchE7nT5Hwcm32bFCCeoM2i734uixcOxH47Kqkd4lYG01Lbdfipet00gxUaYYF7EEDRTjJcRsFVe/BaNfJ+fXeo8gE5e6bwxg8Gg5tqRyKphU2HstRA5JNa5V72whciQpLzJovdSDa5WVoz9c7o9/iwPXGouca/u3OcgvlvBttDP1UpRCVCSwy4XWoiE5ksUcNDD5tJR7rn1fO4unUlTLNXQWDVMvLIAKNtzeSXjvItTA1mmSCVprb2sjFcoROZ6i+7ompl6Okg7lcezSMluY4sCBg+ht2hU1L7fbjcPh4KqrruLzn/88brf7TY9hAw28GTSUlBr4347+/n5ZJhskpaU/+ZM/4cCBA5TLUtHg1VdfBV4FQHtQS1eyi4WJBLHQFs7/5Bo2fbSLw98cRaNXo7WpOf2LacRcha139nDs3gn0Hh0qo4qj3x3D3KZn8190MfL7WQxuHfVynaPfHcO9wcr6OzpITmfRGNTEjqeZezVJ/7uClLJlyoUK+YT0su+4xo+13cjEsxHSU9JLY93t7ejsWvYvra4XHALufitak1oi7wiSj7qYle6p9VIPtk6TtEJeBL1reQVTLr6sqtRxpQ+dVUv4QGxZdUgA5yozBp+Wo6MSSUaMi8ztjzG751wLNf9OB67VFipF3wobt+AFbkxNBtmeDqB4hu17ZiH8We/w/luDaC2a1109/1oEdjtp2uLk2L0T8rnPxEWMiysISgCB7S6JpfsahafmHS68620r7NpAUsaaPxyXFJ+WYO8zYWs10Xp5QCoeLZ1n1dubMXh0zLwURczWmHxJShKqNdBaNHjWOciG57G0GGi92MvR74+xcDyNa1WGyCHpJS6YlPg22jH5dBwPhTj9r9P03dzMzs+tYs8XTyNma4T3LaI2qth0ZxeHvzWKmK1RKVZRqmHDn3cy8OtpIgeSbPxIJwqlgo5r/ejtgvTMCNC6uwl7txnfJgfVao39dw1ibtOjswpYO80ELzYCCpkEpzGo0TsFArudWFtNnPxFiLRvjgOnowwNDxGpR1BVVFQfWE7OmgJN+P1+PvrRj/LRj370j45jAw000EAD/+/hk5/8JJ/85Cflzz/4wQ/4x3/8R6ampqjVakQXIzz4u99KO+tw6nd+7BYHypwJ40NG+t4eJDWdR2eVJLLLeTj49WHWf7CD7rc0kY+VMLh0lItw4GvD9N3cTM/bAtTKNUxNBk7+bJLowRSrbmkhO1tAa9Gg0igZfmgWg0vD2tvayC0UEXMVmYy0/oMdJMYzxEcy0jYNbP9EH5FjCZkg07LLjclvYHrPIpRh7sgiKjUyQWnt+9tYOJkiFcrj6rdgcGphaQVWeJ80qaN1aghsd2LyaCXyytL123a7cPZYMAZisi3b8G8n8W52nUNQAui6pgmVTrWCpKQxKHF0m1HrVaTGlwniZwhKGqtmxbkMXg2rbm5l6qUFFo6l/ui4rr+jg8JCkeGHZs+6JpTLnENEMrg0WNtNNFdrK4hX7Vf78G60kQxlZAWqMxh8IIxnjWWFNUjrJV50VmEFSUljkCx/nb1mTtw7QfRwUiJ7AZZmPTq7drndRR6i9hSRwwnC+2Io1QqZGNZ2iQ9L0Ej45QjlPBz61ihbP9mLvcPE6V9PE3o2gsGrpf/dHSwOpAi/EqOYEBGzFdqu9KIRlIz8fg6DS4PmEjX2LjOdV5qZejFKajzP6luDGLx6rB0GOq70c+zH45RiZdbf0YFaq8Tg0rDqllZCf5gncjhB7zubZRn1jR/uRMyUOXX/BMX1UULPn+Tk6EmqyirVB5fzrmq1Snd3Nz09Pfzwhz9sKCU10EADDfwPhM/nW6Eunkwm+fSnP83DDz9MLBajWquw9+Ae9rIHAO20ls5nu8jPlWmZ7mHzbX2sfV8bJ348gWDRoHOoGXt4ETFXZfUtLQzdP42lSU+lUOPUfZMsnEiy9rY2Qk/PY242olAqGPrNDKZmHX3vaCExnkEwa8iFC8ROZWi71EO5XKOUKlNISPmCd7MNV5+VkSfDFCLStq4bmrC0GGTrXrUOAjtcGNxaqf6ihsnnItSq0kSgs9+Ce61Vsg4rgjmgR6WVLCkqxYqsRNl2iQ9Li5H4YHKFupB/kwNb0Mip+yaXjqkx+VyE2PC5xG5rp5Gm7Q5qtdqKyTXfZjuOXgvhVxYoLtnjVbIVKllADWo1K67ZfoUXg1snX/PfgqPXTMsuF0MPTlOMLS+4PGPjdjZBCcC/1Ymtzcj08wsr1JVaL/ZSKVRk4tcZVLIVpp6PsHhyOZfUe7R4VtuoizUmnonKSlHtVzXh6LawOJhCTFYkCz+ASg2jV4e920Q+UkTv0tK8y83gr6bJhotEDsdZOLU06aaGlt0eUlM5hn4zw/QLUZovdLPl4z0c/NYwVGDy2XlUeoVsBU0FxEyZaq1O3ztamHhqjlQoT987WtAYVPi32jGepRDecUUTxaSIrdOIUqXkyHfHEGxqTH495mYd3nVWVFql3F5rE9BaBRy9Zjwb7AzeP0XCEKewuMDwnmHm6nOoVKoVuVfA2UR3dzef+9znuOmmm/7oODbQQAMNNPD/Hq688kquvPJK+fOLL77IV77yFV555RUSiQSzyTAPP/kgILm6nNzjw2P2oqnbGHpQoP+dQXKRoqQg7hCoFqoM/HKKruubCFzgIjdfwLykpDhw3ySBC1w073IhZivY2k2E/jBPanyS5l0uSqkyWquGWlXKUVR6FR3X+MlFC5QyFZmM1HVDE5npPKFn5uVt6+/oIHo8KVuLeTfacPYtE4xS4xnmjWqZoNRxjZ/keJbCgog1aMLo13GGnhUfkfIulaCkZbcHk19P6Kl5WRHItdaKb72d+FBaJtVMvhglv1g610INaL3Eg87+GpKSCtzrbegc2hUkpTMEJZVetcLSTKVX0fOWJuYOxkmOLitlvhE6r/NTTJVX5HosOQKLqZV9VOlVuFfbUKqVK6zh3GutBM53ko8XzxFFmH5hgUy4sKKP/u1OLM0G5o/GpVhVpWu2X+EnPZNj7PdzpKfycj+Mft2yyqYKfJscpMZzxIczzB+Oo9GpZaKTd5MDzzobiwNpqoUqp/91mjXvaZOJRXMHYyTHc7Rf5iU1kWPhRIpiSqSYLOPZYEWjVxPeE0OlV6G7RMDk1eHb4GDhVIpsuEDwYg/WVgM6h0DwQjfDD4UpJUQ6rpWUwM/Ef+q5KPHhDIELXGjNUs2r+8YA5VyF0PPzFLtivHxyhFMzpxCVJaovLsdHW9OwevVqrrzySj7/+c83lJIa+E9HQ0mpgf9yiKLInXfeyW9+8xuSyeQ5+3VaHXq9nmwyR6e7j5v/7C1EDidAocCz1srEcxHm9yfY9qlexGyFhdNJgud7OPGrMbIhkXXvbwcFlBJlHH0W9tw1IKkv3dZGbqGEq99KpVDh8LdGMfoEuq5vplqtYnDqZULS+js6qJRrqFQKWcVo6yd7WDiZZPbVRcRsjQ0f6kRr0cgqTqtvbcUc0LN36bN7nYWF45IM84Y/60RrW257Zp/OI9D3thYGfj2NUg3FpAii9IJOT+Xk400tWtbe2sHsgZhsW3L2+c/G2QSl5Y2w81OryC0U5dXiIMVEY1bLSlBn8HpKSu1XePFssMsqV3K/3ttJbCB9jqoTIFulnQ1rl5HCfE5WRtr+8T7y0eKyepIAq9/RyqlfT4IoXSM7XaLjWj+CXsXg/TMIJiXGJgOJ4Syr3tmCrdMkq2wZfQIKlaQc1f/uIOZmg2R7IsKqdzRj61p+Juw9Jtqv8JGeyjP68Cz+nQ68G+zUxBqR4wkiB5KsekczljYT8dEM1CXJa3ufib63B4kcS2ANGhj5/QzZ6RIbP9yJxqhh+uUoLee52f/NIRBh88e6qVfrTL+8QNfVTYw+Pkt+vkDfO1qBOoe+McrOz61ibmqeX/78X2ntbyYejxOJROSVAQqFgnq9TlNTE21tbdx1113s3LnznJg30EADDTTQwGtx4MABPvGJT3DkyBHy+ZU/2hUKBTabjVwqj75m4uZbb8Ljd7H/riE2faSLarnG4G+nsbWaaLvMy+D9U7Rf4adeq3Ps7nE0Vg3r39vGxHMR2q/wU1gocvJnk1jbDQQv8pAJ5/FtdnL83jHycyKd1/ipUsPdZ2PxdIrQ4/P4tthxrDKjFlTM7FkkPpCh6zo/Bq+OyWclWy6NVcPmD3cROZog9Pg8GoOSjR/uJjaQZuyxOQx+gapYpxQry2o5CyeSjD02h63LSHIyB2XoubGJQlxk+sVFDH5BIvtooOctAYbvX6mqpHdoZSsOjVWDYFLJhKYz0Do1lGLnkpq639KEc5WVIz8YXd6vga0f7WV236KkqLmEN1JS2vihTnILxRX9Wvu+Ngwu3bJF3Zvoi6PPtGyRd4kH/xYHR384Jrd1rbFgcGuZem4BjQHQaFCqoeeGAIMPhCmnyivOse3TvWRnC/JK/NfuS45mZGLVtk/3kosUOfWzSTRWDb5NVtz9NnlCdM17WqlUaigVCvl8Wz/ZS3Y2h1qnZvDXU5TzNTZ+qBOVWsnicBqtWcPQ/TNoDEo2f7SXuUMxzH49lWKVwd/MYO020PfWIONPzuHf6kCtVXH426N4N9lpvcRDeO8iGqMa3yY7v/7GQxStWQxmHaHxECWxJP9d1Ot11Go1a9euZdeuXdx1111oNJpz4ttAAw000EADZ6NSqfCtb32Le+65h7GxMYrF1+QOghaD0Ug5UaXF0M5b77yW8N4YlXyF5vPdTDwdITaQZt0H2ikXqkQOJei42s/Qg1NkJot0XutHrVORmSsQ2OHiyHeGZDuvUrqCe5WFarnGiXsnUOuUdN0QoFysYG0xyu/f7hubqNVBrVbKqkrrPtDOwqkUCyfTVLIVet/ejCmgl1Wf2q/w4uizyJ/PVk/svrEJS9B4zj61SU3XtX7Gn5yjVgEqFSpFaNrhoBAT5YkwwaZm3W0dzO6NyepBZ5//bAg2NWLyXNX2LR/rITtfWKHK1H6ND5NHt0KtG15fScm7yUZgp4vD3x+VyUKCTc2GD3SxcDwhK1L9sb7oPVrK+apsubfhzzvJL5RWqCd1XONj/Kl5qIDOpaG4WMa/1Y7OJkjXUYO5SU9mqkDwIg/eTXZZZUuwqVGqJeWoZTWiMSrFGs0Xumna4uTw9yXLP1NAR8tuD7m5IlPPR5fIX06qpQrxIck6rvlCN541ViKnkqhQMvV8FJ1Lw7rbOgnvX8Ts1zPz8gLZcJHem5sxenSEnpqn9SIPJ385RSVbof89rSiVCiaemafvpiChp+bJzObpvj4gqY7/eILNH+1mYW6R3//mUVyrbKRSSdm6GqTcS6FQ0NzcTH9/P//8z//MunXrzol5Aw000EADDbwWU1NTfPWrX+WJJ55gYmKCUmlZ5UeBApvVRjUHloqDC6/cja/VzbEfjNPz1gAKpYLQk3MIVoHOa5sYe3QW32Y7So2S4d/OoBKg96YgM3sWCV7gJh8XGX90DsGqpmWXm9RUjuAuL6d/PUlhQcS72Q5KcK+yEh9KM7svjiVowNFnRqlRsjgguXp4NtqwtBgI71mksCCCSlIzjByOM7svDipY9952YsOSCpRgVUEVxGwVlQBr39fJwvEk4T0x9G4BMSURpPzbHFSKVRaOpxCsasmaTgXN57mYeXVRJjG1XuzB3GLg5H0TS8pLIFiEc1SKNCbVCjWjM/BtdtC0w8nJn4dk+zuANe9tY/5gnMWB5XnLN1JS6r4xQClVXkE6arvCh7XNyLEfjp1j6fZaUtQZmJp0MrHLscpMyy43p/91Su6XqUmH3q2VFguqQCWo5BhMvxilnK2uOMfa97WTnSsQemL+nPOve1878dEMM0vEqrXvaycXLTL+6BwqQYmty4hnnU1WG2+9zEu9VkOpUsp2amve00ZmNo9SpWTm1QXK2SrdNwQQLGqix5PonVopJirYeEcX8wfjCDYNVOtMPhdF71LR87Y2Jp+dx9FtQWtVc/pX01iCBtou9zG3X8qlWy5y88y9L5HQLaB1qgiNhyiWln+XnKkHr1mzhhtvvJGPfexjqFSqc+LbQAP/mWgoKTXwXw5BELj77ru5++675W0vvvgiH/nIRxgaGqJYKspfloMLx/nCP5wAJD/1NaE1rF23FnGfSDEhonNoqJdh/Ok51r2ri9Cz8ygFJSqdkulXFgg9NcuOT65i7kAMg0eHSqti/5cHsfeY2PLxblJTOYweHSd/MUE6lKfnrc3UlTUMbi2JkQynfjODd6sN92orSrUSMVNFzNbouNqHUqUgM71UMBHA6Ncz/bKkemTvMdF9QzOOrjRDD8wQG05jCRjktr5NDlIzRZq2ONE7tQhGBdnp5eTJvcaKvdMkk5DEXJ1yvkJsaHnV/Zl9fTc1Y2k3sf9fJCKOGBcRHAJr3h3k5H1TEmFJhNRkjoWTyRVj8dpCzb+F0FMRQk+tLMpkIyWy4TxTrywnEmve00ouUiT0VEQmKPW+rRlrp9TH1NksalEiZmVnl5nYvg12rK1GWnd7mHw6KsfF0WVCqZZW6QXOc1Or1UkMZ1kYSKExqREEEEVY9/4uiimRI98eZeC+KTb/RTer3trC6X+dZuF0Gp1Hy/rbOjh29ziJ4Szd16swBfT039LCwK+mmdsTZ+f/1493A/g2OmS5xm2f6qVeq7P2tjbq1Tp7/mEAU0DAu86Os8dK/zvsFBZKnPppiPbrAihUCqxBI31va6EqVjlx7yh972ynIlapiTXMF6g5PnyMJ594ArvDzt5vPCHbtg0NDWEwSM+Ly+Xiuuuu4ytf+QoOh+NNj1cDDTTQQAMNnMHWrVt5+eWX5c/lcpm///u/595772V+fp5EQlrRLVLinp9/X1rBXK/y4ncELrvqckzrrZTnK1RKFQI7nBz94Rib/6yLLR/rYeyJWRQaJZY2A0e/N0L3W5vZ9JEuFk+nMXr0DD4QZuKpKP3vClIRq5h9eup1OPDVITQGWPOnrdTqYPbpZSJ0z9sD6OwCGp1Knpzqe3uAwmKR+KCU/7Rf46eUKjO25E/f85YWdFaNRBYvV8nO5okcTwJgaTFgXLLatbSZ0LsrTL+4KKsRBXd7cHZbcPSlZLJNZrZAvba8lqOcKlNOldEYYMOf9RA9kWTy6ahM9Gm9zIPWomH4AWmyK7x/EbVWRSl9FmmoLN33m8WR756rdDl3KI693SR/1jo19L29hYGfT8h90RiUbPizLhZOpZh4KrJCQSkxlsXRbZImCpfQepEHpaBi6rmFJZu1MuZWA0avHs9aC4un03g32JdjM5OXlEOR7O6cfRaO/Vgioc28skjTdqd87tREDq1dI9vv1cp1VFoVvbc0s3A0ycmfTdJ7UzPmDiMd1/qplWsc+OoQ9l4TvW9roWm3C2enRbZ2W3d7O4JBTfBiN77NDvZ+9TT2DhPOXgt1IHC+k+CFHgZ+NYnepUVtUJOfK1Cul6n35Hjw4QcYGh7C5XYR+0NMkrDOgsFgoFqrYjAY2LRpE3/zN3/DFVdc8abHqoEGGmiggQbOQK1W8/GPf5yPf/zj8rahoSH++q//mueff554PE4iIa2gP50/yuCXjwGgqCvpTfeyfv16Kqcq5OaLmAJ6lIKCoQem6b+ljdBT86h1KgSbhuyhOAe+McTmD3cztz+GpdlAKVvh6A/GJZLJ+9uJj6SwBI0M3j/F2MNzBC5woRSUWNtMxIbTDP1uFmu7AfdaG2qdilq5RiVbwbvZhkqvJDG6rJht6zAx/aJU89K5NPTdHCR6PEHoiQiJsSz1ynLe5F5ro5AQsXeasDQb0RjU5GaXJ0V8mx1US1WZpFSrQDFeIjW1XC86kwMGLnDhWWvjxI/HqRRriMkKap2S3re3MPJoWCYJxQZSEin9LIQem+fNInI4SeRwcsU2MVshPpRi7siyhUj7VV5K6Qqzr8bkawcucOFZZ+PEj0YpRFfan+QiRXLzy/dubTfgXm2jGC8zuzcm29Q5+iwIJjX8IYJ3nU2qOU4ViA2n0TsFqCypMLyvg0KsxMmfTjL5bBSTX0/LJR5Cj82THM1gadbTfZ2f00vqSoJRBQEt7Vf7CD0+T2osx5aP96BQKnGusjD2+xlmXlhg3fvbUShBZfChFpTsv2sQtUlN0wedWFoMdFzlpxAXOf7DcZrOc6IUlBhcAh3vbqVerXHs3hDd1zZRKVaolKpYt2sYXRzimSeewWDXs+/HT8q2bbGheYxGI4Ig0NHRwXXXXcff/u3fYjKZaKCBBhpooIF/L4LBIF//+tflz9VqlQceeIAf/vCHHDp0iHg8Tq1WI02C+54cQ6VSUa/DngcN7L7sAgyrrZQnaoi5Mq5+C6EnZum6oZk1721j7LFZVBolZr+O0/86TWCnk/53BZk/nMDSYmT6+SiHj48QvFCywTJ4tChUCk7+dEJS6LnKR61ax9Zu4uj3pRpPYKcTrVODYFJLBCWg/QofmXCe1NRS/rPNKakMLS1wC+72Yg4YOPI9iXCeGMvKdRm9S4vRrWNxII2900RVrLFwPCWTdBw9Zrwb7KQn85JKEFJ+otQqZSJQVUQiKKlgzbtaiZ3OMHcwLhOUXP0WdE5BJufEhlJoLWrE7Eqy9smfTrzpcTtjQ3Y2Fk8mKefKcr9UehUdV/oYf3J+maCkgtV/0kp8UOpj9qwcMztboBgTqYrLeWlgpwutVSORlKpQLVQRrGpsbUYy0ybio1kcvRaykSJUITGakdWi/FscNJ3nZOCXEglt6sXoCsJXfDiNwaXDvdbKwokUlUINtU5Fy6UekiMZJp+O0LTdgWeDBd/WEvWagpM/m0DnEFj9rlbysRK2diNTL0QpLIh0XOPH4NTi6DPTfL6L4z8aR7CpaevwUspWsLYb6bquieHfzaBUKdE6NORni1TrVbRbKjz90pMMDg1i81iJfXup5pUGQ9aAUqWkq6uL888/nzvvvJMtW7a86bFqoIH/LDRISg38t8Du3bs5ceLEim3f/OY3+frXv87U1BSVivSyOzlwkpMDJwF48YdSAlKv1ikly2h7ryO4y8fJn47T/ydt9N7YzMn7QlQKFZx9Fiaemce3ycHOz61i6pUoGr2aYlzk4L8MsupdbSiUCjQGiSm65x9PgwCb/6KLWrWOzqplzz8OAJJFmsGjRaVWcfhbUlKw/rZ2FApJFhnAucpCMS0SekpaRe7staDUKACJtWwOGLAG9Yw/NsfMoRhiRJTVjhYH0xz+1iAIkj9b53V+tDYNB/9FYhoLJiUbP9zD9EsLzO6JIeYqVEvVFZZq1mYdWrOAe5VZTmRk3/nXQgBnl/kcu7YVTc5SLloB8Vyik8GnR2NWw1mEpmJKxCwus5y3fKybbLjA4P0zHLt7HPcGKxs/0smRb48xvz9Bdi6PmCiz4zN9JMeyDN4/w/FfTUpxAjwb7NTKNSafjmL06DC4tYASqJEIZaQCzhIUCjD4dfi22Znfn8DeZca1ysra97cx8+oi+78yxLrb27F2mFj3gXbyiyX2/OMAgd1Ogru8dN/UhKPDwpHvDGPtMBG8yEOtWmfNe1oxtxjZ848DrH1vG7VqnWKmTPfbmrG1mjn0/RF639JMpVzm6cefpdCSJ3xghOHhYUqlErVTy3Lg+Xwev9+PSqXi4osv5stf/jJdXV1vOB4NNNBAAw008B+BRqPhC1/4Al/4whfkbXNzc3zmM5/hqaeeYnFRKjqINZHHHntUbmMIGWhpaWFSnCbzhw3svnoX/s0OTv96inV/2o5KrUBMl9HaNBicAnv/+TQ7PruK2GmJUKyuqxj/wzylWImtn+wlPprG1GRg9PdhBk5O0nmNH61VjSVoIhXKcvyeEI4+E03bnBg9emb3LZIK5fFtsWP06amJy+/SOnUWBpIAKPUqDF4dJp+O7EwBz1obAOFXYhz8+jAaq0R67nl7AGuriQPfHGJxICmTltbf0cHkcxGmljzne94WQO+SfObLZaiKNUrJlYpFtg4TakEpf87PiZz+9TSvB2uHgdR0Xraeez2crf50NhaPp1k8S0nT1WdBbxcw+HSkxqViUzlfo1KqUs5L+bN/h4PADhcHvz1MZjLP0e+Ps+odLWTnC0y/uMjJX05SSpfput6Po9fC/ruGyEzmOXTPKOXFMr4tdmztJtzrrSwcS6GzCzh7LczvTzD5QhSDW4trlY2puSiVUhWFCla9u4XT900zdP8M2z7Vi3eDDaNHx/ADYcIvx9jx2VUIRjXBCz0c/b5ECN/yF91UyzUstxuoFKoc+s4onnUW1HoVRo+ede/tID2ZY+5AnKbtDsRsBa1DQ89bmimlRCafi7LqnUEmhqc4WtyLo2rlxQcjTE1NScS7X54lQ65S4ff78Xg8fPjDH+YDH/jAGw9GAw000EADDfwH0dvby29+85sV25544gm+9rWvcejQIRKJBLV6ldPDA5welmpPzz8Czc3NqFBTWQDjoILmXQEGfz1Nx5Veet/azLGfjlNKlbF1m5h6YQFnr5mtn+hh7LE5NCY15UKVw98bpf1yL83nuVAJSlSCkoNfl5Qi17y3lWq5hrnJwP6vSETq9qu8mAJ6BL2GgZ9LdaTutwZQqBVUluo6jm4L2fkC4SXVI0ePBa1ZKjE7es04ey0kRrNEDiWJjWWpLJF5Nn+0m8WBFIe/PyoRcpBUlQwuLSd/uqTkrYaNt3cys2eRhWMpKoWKRHw5y1JN5xIweLTY2kxEjyYBXlfp6Mz5zqgSvSHULOWNK1WvqMDoI3MrNlmaDVRKNWZfXVbFLCVFqqUqS6VLVr+nlfxCkdATEUYeDGMO6ul/dysD902SCuU59uMxiskymz7SRWIsQ+iJCEMPTlPJSvfo3yItUJs7kEDvECSymk4JxRqRE0nMTfrlDinB3KTDtcbC4sk0ybEcgfNd9NzUTORQnGP3hOi6zo9rlRW1oKSUqnDw68PYu010v6WZpvPcuFZZOXnfBDqbQMsuaZK1/Qov7rU29n9liM5r/SioI6bLtOx24d3o5Pi9IQI7HdSUNV79wx6yHUkWJ0YZfmqEQiFPffQs44Z8Hb/fj9fr5YYbbuATn/gEzc3NbzweDTTQQAMNNPAfgEql4uabb+bmm2+Wt2WzWe655x4eeughTp06RSKRIFfN8PgfHpfbGH5rIBgMslhKktrTy9ZLN+Hd5GDwt9Os/0AnSkGFmKlSr9YxeXUc+e4oG/+8i4VTSQSLBoVGwcwrixQWRdbe1sbCqRT2TjPjT8wy+YcIno029E4t9k4TibEsA49MofcIeNfbsLWZmN0fIzdXxBI0YGrRr1ASUighevyMZawSa9BAZiZPPlLCs9aGWqticSDNwC+nUJmkOU7/Ngeu1VYG7pvkxOyy4lHn9X4ih5MsLikF+bc5sLQYZHXNcr5KKbuyGGXtNKKzLpOUytkqk2cpIJ2Ns5Wd3ggGr5b8YukctaTsbHEF6cjcpMPk06O3a8ieISlVpT5WStJna7uRlguW1ZOGfjtDYJcLMV1m4ViK0cfmoFrFu9mOb6OdYz8eR0xVOPbTENVsFXOLHvcaq7QgbyQriUqYNcSHM0SPJzG16DE3GygsiFQKVRRqJe2XeQk9GSH8Sow1723DudqKYNMQfmmRE6EcG/+8C61RjX+zg+GHw8zui7PqnS0AGL066rU6R+8ew9xuQGcT0Fql2lZqKs/k8xG8m+2UkmVUeqVc85p5MUrv21sIj84xlD2OsU3L4ZcXCE2EpJrXb5eDqVRKhKTt27dz6623cvnll7/hWDTQwP9JNOzeGvi/Cvfeey9f/OIXCYVClMvnzuyo1Wq0Wi0Wi4UmfxNuj4e+7j4sdjPlfAUxV8bo0lMp1dj/L4Oc95l+6rU6ufkiSp0Cg11HciaLNWAiHy9gdOlZOJVg7kiM/pvbUQlKqEmMXL1bh5gWQQkGp456vc7wgzNorQKtl3pQKBS8+r+k4tJ5f91PtVxj3z8P4ttqpeOqAHOHY4QejbDz8/0oFHDwO6OseVcQtV5FMS6yMJBCsKgJbHNRq9TZ+8XTrHpHM9YOE/UajD4Spv0KH5VCjaPfH0PnEdhweyf5SIHjP5yg5+3NOLpN7P0nSZVg8190Ua+DYNQQPrhAYIuL6PEUzj4zar2KerXO3q9Kakzn/U0/tUqNvV+Ujt35+VUoFAqO/3gU92o73k126nXITOYQbAJqrZKD3x0BEbZ/po/UWJbxZ6Ose08rar2Kkz8bJxsWWX9HB4JJLcfc0mokM5WjmCrj3eSgXq2RDucZ+NkU697fjtGvk1aWpUU6r2qiEC9x5NtjbLyzE51VYPT3YSpijb6bWqT+f3GQjqt9+LZIq/L2fWkIe4+JVe8MUi1XyUwXoA7mZgMqjZJ8oojeoSUfLTHz8gKd1wZQa5XUanUKCyWUGgU6u0C1WGNm/wLtF/upFKtkZwsY/TrUWhWFRAm9XUsxU2IhFSUcDnNg/wH0ej0lsUQstly4EgQBURRRKBSsW7eO9vZ2fvjDHzYUkhpooIEGGvhviVQqxV/+5V/y6KOPEolEpBU4Z0GhUKDRaLDb7QhqgVWr+zGqTfSv70OhUBI9mcTTb0WhUhAbSKE2qrF1mIgOJrH5jVSpIeg15BeK6GxaVIIShRIGfztNdj7P1o/2IWbLqPVq5g7G8K63k57MYWrWIxg15CJFjv1gnNXvbcXaapSsan8yyZoPtGLxGxn45TjJsSLbPtULKtj/pSECFzhpvdhLYixLZjqPd4MdlVbJyZ+N493kxBzUY/LoCf1hnrm9cbZ+oodatUalWGP+YILWSzyc/s00mck8/e8KYvn/sXffcVJV9//HX3fq7mwvLLuUXXpViiKKgFQ7FqxoFLH3aGzRxPzUWEi+iUaNiVFRUbHE2BAFERRQUBSkqPS6wBbYNtumz9zfH8OODLtUWUB5Px+PZWfOPefec2fm7ny493PPyXfx3bPrCFYH6Xd7F2q3eFg1eQuZnVPodEYrPBV+EtIc1Bd7ScpLZM2HW+h5aTvCwQi1m+pZ/tZmel3TnuS8RNZ8WETZ0mq6nN+a7B5peMv9LH52Hcfc3AkMA5vTwtpPiuh0ems2fbmN0m+q6HxWHumdU1nwxCoKRubQ4ug0/O4gP7y8EXuanb7XdsC9vjaa+LW5joz2KXz791Uc97suWJ0WAnUhNn2xjfIVNRx/RzdC/gjfP7+avjd1xZZo5au/LCejQzLdzmuLp9LP0ufW0/vaDrhyEihdVMmGaaUcf083rA4LGz4voeSrKo67oyv2JCs1RR42z9pGl9FtMc0IVruVcCCMLdHKmmmbScp20eaEFoSCYSyGhe8mrOXYazsRCUWo3ezBlePEmeZg1ftbaD8yN3qXn2kSDkSwO21UVbjZ5i5lzeo1rFq1msysDCoqKmLT6hiGgc1mIxQKkZubS6dOnfj973/PmWeeeSgOJxERkT364osv+Nvf/sY333xDZWVlo9ir4ZxXWlo6OS1akNuiFR3zO5LRMh2fO0B9uY+szikEakN8P3Ejx/22M+GQSeXKGhypNlLyXJSvdpPVKZ2aojoyO6VSsricbYsr6TQqn4QMJ2F/mNrNHhKzHPhqghgGpOYnQcRk9eQiDMOg89mtsDisfP1o9JzXCfd2I+QPs/Afa3C1TqD3Fe3Z8lUZm2eX0/+ubljtBgv+sYLOo/NJyLDjLQ+wdUkVtmQbHU/JJeyPsOAfq2k7JIeWfdIIByJsnLmVVidkEQmZrHhzE7YE6HtzF2qLvKx8azOtBmWR1zeT756N3tDX46J8rE4DR5KD4m/KaXVCNqVLqsjsmIwrx0nIG2HpyxsI1YUY8McehHxhFmxPzOp/V1esDis/vLKexGwn+SflYEZM3BvqsCXaSEi38/0rGyAEfW/qhHttLZu/qqDb+W1wptpZ9V501KLO57bCle0k5I/gqfCTlp9E7WYPtUVe2o3MJRIKU7W+nnUfFtPxzDyye6ZT+HkpnnI/R10Wnfrjh5c20nVMG9Lzk1gzuRhvVYBe49oTCUdY8PhqWvROo/NZrfHXBvjuqbUkZNs55obO+GuDVK2pJeyPkNUtFVuijboSL6ltXbg31FH8TQXtT8nFlRXtX22RB9M0SW+XhN8dZNPX2+h2Tj6B2iAVK2pI75SMM8VOTZGH5LxEPBV+aiKVFBUXs3jhIqwOK8FgkIqKitiUbQ6Hg2AwiNPppGfPnpxwwgn85S9/0QhJIiJyWPJ6vbz66qu88847fP/991RWVsYGS2jgsDui57ysTrp170ZCIIUex3YGDIq/qaBl3wzsiRZKFlZhmiYFQ1qyZf42knNcRCImrmwnVWvqSGmTiMVhwZZoZfkbhXiq/Bx/W1fqynwkJDso/GIrrfpl4d5QS3JeEsmtE3Gvq2P1e1vIH5lD6/5ZbPvRzboPS2h/akty+may8u2NVK/3ctTlBdhT7Sz+11rSOybR/aJ8ti6twr2+fnv/rKz5sIiUti6S2ySQ0yOddVNLKPuhmp6XFWCaJmFfhKL5FdFRiz4poa7YR/6QFmT3SmfphPWEvWF6XJJPfamPwi+2kZjloPOo1tSV+qL7uL6OjPbJrP5wC0df0Z5wIIJ7fT0bPy2l/Sktye0XvcHRvbaevOMzKRjaEveGOla+vZmu57fB4jCwJ9pYM7WYzme0YsvX5VSuqKXlsRm07J3O9y9tILtHKrn9MvBWBVg3pSQ6Jd4V7alYXUtG+2Qq1tXSolsq37+ygZ6XFOBIteFzByn6upyaDR763NCBkN9kxVub6H5RW5LzEljw1BocKVa6X5RP/TYfq97eQocz82jRM41Nc7ZR8k0lva5pjyvLydqpxZT/UEPP3+ST0jaJsh/dlH5XRfuRuZgG2BOt+GsCuFoksGbqFuxOGx1ObUXIG8KwWPjx7UKOuih/+2tThyvbQXrHFH6YtJGCk3KwJdswDPBXB0lMd1Cx1U2NWcmGtetZuWoVaVmpVFZW4vVGE+8bzslarVYKCgro2bMn99xzD/379z8ER5PI/tFISvKLMm7cOMaNGxdXtnz5cu677z7mzp2L2+3GNE3KysooKYne7fTJJ9OwWq1kZGQQDoVp3bo1uXl5ZJ+bReWWajJbp5GQ6aB6cz2uzARcmQl4q3w4XHbMiElynouju2cQ9oUgAu61tVRtqqdDWxeGxY7FZmXNzE3kH59HwfAc7El2DAw8ZdEhAfve1BEMYtN9ZB+VBkDIGw14woEQhs0gUBlg6+IqCoa2JOAN0XZQDoYl+qW0ae5WcIAt2YrFbuHHSdHp6VoPyCYpN5Euo9uwcc42DAu4WiQA0Tu5gp4Qx9zaCavNgq8qQDgUwWI1CHrCBD1hfFUBNs3ZRlqHJFLyXHGjMe04DUigLkSwPkhdUYCU/CBBTxgzYlK71UeKxcCW42TAXd1Z+c5mgp4Qvuog+YOycaTYCXhCGC4Hx9/TgUB9EH9tkO8nbKDvzR2xOAx8NSHWf1ZKdXE9nU5vTXpBMtlHp0bnWY1A4WfbSOuUhGmaeMujF50cSTYwIOAJU722HgMDrNDy2HTWTyslp1c6VoeV4+7oQuEXpdFhJw1IbuXC5rQQDkZwF9YRDkVwZSbgTLfTZXRbir8to/UJLfDXBDBsBs50B4bFwL25nvZD8wh4g5RXlLOtZhtrF63BNE18Ph9FRUVxcx0DBENB8vLyCIVCtG3blssvv5x77rnnwBwIIiIiB0FaWlrc9LwNXnnlFf7zn/+wfPlyPB4PtbW1eDweNhdFRw6aPM2Cw+kgNTUVyzcWCgoKaN26NQnVKSQHEsnpmk7RwnLy+mRiWA1MoH6bl9S2SdQWe+l2XltqtnrABF+1n8AWD+ntkrElWElpm4Svyo/PHcAwDY79bSccyXZCvjAVq2rJOSad5BYuMKG+JBo3WJzRJHMA95Z68iMmvqoAW74sp2XfdDAgrWMyecdkUrfNi3tDHSXfRaf1sLts+OuCLH1+PRldoxdYup3fhiX/WYtpgMVmIbd3Gpu/KMdfEx0a+4Q7urF1cSWBuhCecj+GAd6aALak6PR1Rd+Uk9rWhW/7XWxmOHphJ1gffe5zB/FW+imcFR0RwF8TxLCBGbbh2+onUBei7aAW5ByVTtWa2thInjm9M7DYLPir6ul8TivSOyQTqAtRta6ebd9X0/2ifAL1IbDDgmdW0/38tqR1SKbgpBw8VT6sNgvlK9wEPRDyRTC2/0/RsBoYVgOLMzoqqHtDHUm5CaR3SgJg/fQSOp/dmjYDcsjskEJNcT1Wh4XU1kl0OD0Pu8tK5dp6QnVh0jsnY4ZNupyRT/XG+mg8bDPwlPvoclYeFls0hk5unYhhtVBX4cF2lJ8FS79h0+ZN2O12ysvL2bYt/o49wzCADPLy8giHwwwbNozbb7+dPn36/IwjQERE5OA66aSTOOmkk+LKSktLefrpp5k6dSobNmwgFAqxbdtWiouLgCUAWC1W0jPSiYQj5P3YilZ5eWSf0oLS5RW07JZJar6L8mXVpBckk9zKRW1JPY4UOyFvmITUBI76TSe81X6IRCj73k1duY8uXVpjTbRitVtZ+f4G8gfnkdc/k4SG8yQboiNtd72oDYbVwFO+feTrXqkYFoPw9unJArX+7bEalC6spMu5bajZ4iX/pBbYXDbqSnwUL6gAG9iSLdiT7ax6bQO1m7xkdU8ls2sq7U9uyYZZW7FYLbFRhALVQfw1QbpflI8z2UbNFg8WiwGmQdAbxl8TJFgbYtOXZaS2SyKtjSs2ZRqmGTcip6fMR9Abpq7IF439aoKYERNfZQBHUgRHqo3jbu3Cqve34HcH8NeEaNE9haTcBPzuABCm702dCNQF8VUHWfW/LXS7KDoVcdmPQbb96Ka+wkfXc9rSokcaVatqSWzhxIxEk+ATc5xEQpHYtHCuTCcWq4WgN4R3mx8zYmJzWsnskULZ0mpan5hNYoaD3te1Z9OXZdRt82IGo1PJ2BOthIIRypZVEQ6apLROJDHHSfcL81n3yRY6jWqDt9IPhklKKxeGzULZimq6nNEWb6WfqtoqKhPKmT97DWEzjN/np6i4KJYE3iApKYm8vDwSExPp3bs3l1xyCZdeeumBPBxERESaVWJiItdffz3XX399XPm8efN48803mTdvHoWFhdTV11Ffv5XNJdERJj+aZ+B0OElLS8NYayG/IJ+83FbYqhKoL0sjt08Wm+eW0bJPOtYEC4bNoHpzPS26p+FeX0e3C/Kp3lwXnZmjIoB7XT2pbV0kZjmIhJPwVQbZ+r0Pq8Wg+5i2uHIS8Jb7o8lObRNJ75yCGYpQt300cGeGPTqdCOAp9xEKhPFVBalcWRudQtZuwZlho+3gFtRu9rB1qZuy5dUAJGRGk9JXvb6JxBYOTBM6nJHHirc2YZom9kQrWd1S2LbYjc8dJGJG6HNNR0oWVuBzB/GU+7HYDAL1QbxuP4HqEJtmbyO5dSL+6mj/zIiJGYGQNxp7BWtDuDfVUfR1dFQmnzuA1WkhEjQJVAbxuYO0Pj6LrK6pVKyswVcVXU9uv0zsyTaqNtSTe2wmLY5KxecOUl/ipWJ5DT1/U0CgJghWWPZmIW1OzCa3bwZtB7ZgddkW7Ik2ypdVEfaG8deHcNSHIGyCCfZEG9bE6Ojo7vV15PRKJ7NLMiXfVLJ+Wik9Ly2g1fFZpLR2Ub2pHk91gIz8ZGwuK66WTkoWVRKuD5PeKYVwyKTT6W1wr63DW+7HkWKlZlM9rfqlY0+2Ub+ujpTWLmxJFso3VOM6NsKyzUvZVLgJe6I9ev1x2zZ2HF/GMAxSzRTatm1Lu3btGDFiBBdeeCHt27dvlmND5GBRkpL84vXo0YPJkyc3Kv/888958MEHWbJkCXV1dbGpS6rcVfy47MdYPYvFQnZ2NhaLBd9UHwMHDSIjLZ3sUAuSbEk4ku1UrHXToksGdWVe0jun4mqVSDgQoWpDHekFKbTsnoUzxU6gLoi3wo+3yg8YDLivO1gM3BvrKJxRStuRWaS0SiISjLD58+gIO1aHlXAw+gXtTLVjAkVflbOyeDN9r+1I9fp6bE4bA+7uwdYfKrG77NRs2D6dhzdE0BuifpuXQGWAHydtxO+L3mnnrw1SuqQKV1YCdpeV5a/HT/dW+lVV7PHW79zxL14EPKU/DYX93fap5gBKvq6k5OvKuOrJbZ10HZ1PfbkH71YfG7cPs11T4mHbgui6w4EwkTAUzo5eVKov9uOvDpLVLYWsriksf3MjgdogZT9WUf5DDe1G5sZOaqW2dWEYBkF/9HnNhnoyuqbS4ZRc1lPKwn+v5dgbO9H+lFxaDciitsRL6aJyOo9qS8HQPKw2A29lAMNiYIathAJh0tslU1/uwzQh5AsT9ofJ65eFryZAeVUZ9YE6Vs5dSSAQIBAIUPJhSXSatshPJ7Lsdjupqan4/X7sdju9evXi2GOP5Z///CcOhwMREZFfoyuuuIIrrrgiriwYDPL444/z+uuvs379erxebyyRpHRr6U8Vp4DL5SI7K5vSGVs56uiedOrciUQjCVedk6SWCXgqfTgSbNHkaouVrM5JeKr8eKt8hP3RkXRSWrsI+cPYHBZ+/F8heX0yyOmdTkKaA0xY8MwaElq46HF6LoYBJYuisUtu7wwwDOqKo3GOxWYlUBui5KsqLFYLmZ1TWDOlhH43dCYcjlC1rjY6BDXRZCJPlR+b3UrQE2HF65vI6p1KxdLo9Gu+igBb5hXjurAjxd9VseHTpoe+LpwZXx4ORIiETNxr6wHY9Nm22FRzAMteK4yrv+Q/6+h+UVvqy/1Ewiab55VFy19Zj91u4CkJ0GZwNsmtI9QVeyhbGj355Cn3U7uljhPu6s6q9zbjKfdjTbDy4+sbSW6TSCRi4quIJjzZEqIX+QhC5fJawqMiOF0OcvunU7asClcLJ2ntkjn+nm5sXVpJ8cJyUnJdONLtpKU5qVhbQ8gbpqbIgy3RFh0uu8COrzKAvYWN0h+raNE1DTNsUrO1hhq/m0p3Fcs+X4bLlUhZWVnszvwdT8ykpqYSiUSw2+3k5eVx1FFHce+99zJ48ODdfmZFRER+qXJzc3nsscd47LHH4spXrVrF448/zpw5cygqKopOGReJUOWuYvmKZbF6FouFrKwsbFYb3m8CDDxpAOkpaaTUpGN1WHDlOCleVEGrY7Oo3eIhp086qe4g/rog5SuqyeqcSlbXTJKyE6kr9+LZ5qes1I1pQL/bu2CxG5Qtq2bL3G20ODqFnKMyCNSFKJ67PeE7yU5oe0KQIzV6w1nJd5V4tvrodkFbago9hL1h+t/ejeKFFdRsqo9NzRb0hPBW+vFU+iEES19aRyi0PbnbE6bsBzdWhxVXtoP1U0vjXp/yH3+aHrd6XT07TsIbDpjUbPHEnv/4yk+xVtWaOqrW1MWty5Fuo+u5bQi4PXjL/BRvn+bOWxPEvSpaN1gfIhI0Kf4muqxmi4eQJ0Rm52Syu6Ww7K3NeMp9FH1TS+WqWlqdmEVo+/m7xIxo4lfDtCjbfqim7aAW5A/NYePMrSz6zzr6XteRDqfmktcvk+pN9ayZVkT3c9pScFJLbIlWqgvrCfkjBL0WImGTnKMyqC3yEAlFCNaHCNQGaTeyFb7yAJW15fjw8tVna6jz1hMOhyh5ugSfzxd3zstms5GWlkY4HCY7O5vu3bszYsQI/vjHP2Kz6ZKCiIj8Og0cOJCBAwfGlYXDYaZNm8Z///tfFi5cSElJCeUV5YTDYUrLd5ga9qto8lN2djY1i2vp0LEjnbp2xB50UVPqIDkvkbptXqx2CyFfBDMCuX0zqNlcT81mD/6aEGbEJK21i3AggjXRyor/bSazazJZXVJIyk3EiMB3/1qLI8lK6xEtsdqtbJ4bPS+U3iEZw7Dg3X4ey5pgwecO4F7jYb1RQmbXFIrmltHtvGiSeeniKsKehiRu8JR5sTltBOvCbP6iHHdhPbWF0bjMV+ln6/duEjMTYtP67qhscfTcU9n31ZR9X/3TaxcwCdaHqCuKrqd8eQ3ly3+K0wo/iz9Htvq9LbQelB2NrUIRSr+LXsdc8d5mbHYr/qoA6Z2SCAXC1G314F4XPZdWU+ihenMdx1zbmbVTivC7g1RtqGPd1BKcqQ4iETOWOOVMtoEZPR/nLQvgrQyQmOogq3sytZs9bJlXRsveGfS+tgPbFldSOLuUhEwnCRkOMrukUP6jG39NkJpNHhzJNlyZTlzdE6jeUIcr20nxt+Vk9UgDEyo31eIxqqkxq5n9xkycyXbKysuoKK8gYkYanfMyDIOcnBw6dOhAz549ueOOO+jevftefnpFfln0Pwr51Ro+fDjDhw9vVF5ZWclDDz3Exx9/HBsBp6Kigkgk+oXw8ccfxepaLBZSUlJwJbrwTPPQuVNn0tPSSXQl0qlTJzI7pkLEJCknkXAgjMVuITEzeoEt5I+ABbZ+X0GL7hn0+E077Ik2IqEIqz/cTI8xbUnOd2FYDKo3RL9Ik9skYFii05HVbvSSkObAfpSNle9sJlAbIDUviR/f2MQxt3Qi5A2TlJtI3WYPRfMqSMhx0P3CAgC+/dtK2g5sgdVhYf5fV8b2p8dv8qneXE/R/AqOv70bnm0+fpi4kbbDWpDXL4tv/7aSnR09th3WJCtLnl1HansXPccUULKwkuKvy+hxWXuWv72Zus1+vnt6Dd0ubENG51RS27vI7pFGbt8MEtLsbJpZxvcT1nHsbd1of3JLnOc5WPbmBnL7ZuHKhqq1taR3SiIx04nDFU3usbtsgElyWyebZ5XR5sQWtDwqg+QWCRQtrSChhZOEdAc9xxTgrwlQU1hPSptErHaDtPwkEjLtWO1WvNUeXJmJOJJsWBOtBANByuu2sXnZZkLhEFuKtmAxLNTU1sSGU99xSHW73U5iYiI+nw+Xy0XXrl1JTU3l3nvv5dRTTz0gn1UREZFfOrvdzr333su9997baNmsWbP417/+xbfffktZWVl0FMLiIsLhMIsWL2LR4kWxuk6nk/T0dELBEKmpqRS0K4BV0LFjR1pk5eBIthKsD2GxG/gr/TiTk+l0Sh4J6Q681YHYXeg9LmlLUlYC4XCEuhIvdRVejr6yHSmtXYSDEcqWVuPKc2B1WrA47NF9SLSR0spFcmsnFWtryeiYRP02P9Ub6jjujq74qv0ktUhk/uMrAMgf3oLWJ2SzKTk69Vx2jzSC3jCLn10HgCvbTsdRrVn59kbyBuSQd0wmP7y6Ds/WIL2v7YC30s/qd4t2eiGh381d2PxFGVsXVdHz8gISs5wsfHI1rQdm4cp2smZyMSvejl5qO/7ubvhrAlQur6XP2A6Y4QhLJ25ky5flpBW4yO6ejjPdgcVmsOa9zXQ8qzXeyuhoTDm90rHYLBCEjHZJWGwGyfmJMA/cG+rJ7pFGv9s7U72ujlUfbaLrqHzaj8wjUBfCYjUo/b6ClkdlkdUjDbvDSiRsEglFCAXCpLRyYbFbyOqcgjfgYVPRJqqqq3C73bjdbiKRCJWzKqmrq2uUiJSSkoLP58MwDDp06EBOTg6nnnoqt912G2lpaQf0cysiIvJL1bVr1yZHvKyrq+OVV15hypQpLFu2jPLycqqqqgiHw9FzXtN2OueVnIIryYX3Wy8dOnUgvSidREcSnTp3pEXPdAwrpOUnEfQHsTksOHPtpLRNJOgNY1gNihaUkdMjk67ntSUxw0nIF2HVlM20G5FDRpcUbAlWyldEL1SltEnEYreQ1iYBT5GPlLxEXC0crPhvHfVbvaTkJrBuShHdL8knHIqQ1jYJ94boRTBbso1u57fFYrOw6F9raTswm4QMJwufWh3bn/Ynt8RT4WfrIjd9b+hIfZmf1e9uIatHKvkntWDxhHUQP4sL7U/PxZXpZNnrhSRk2Tjqsg4Uf1vBtsUVdDq7LRs/LcHnDvHDxI20HpRNTp8MylfV4GrhpN2IXDbP3UbxV5X8+PpG+t/WlTaDW5CY7mD1B1vABFduAhVr6nDlOshon0LtlugFusRMJxYrJGTbqVxVG7txLiHTwbYf3bg31pKSl8TRl7enptiDe30tKW1cWBzQ8ugMknMTsSXYqK+ow5GWRGK2g4RUO8FAmMqaCpZ9u5QQIYq+iU7RV1tXG5vGpqlzXsFgkPT0dDp37kz37t256aabOO644w7kR1ZEROQXy2q1MmrUKEaNGtVo2erVq3n77beZN28eq1atoqysjNLSUoLBIIuXf8fi5d/F6jocju0zvkRITkqmXbsCLN9YaZ3flkxXJmmZLnxVAezJNjyFdaRnp5A/OJvkNi7qiuqJBCNUrKij4+m5pLRxEQmZVKypoabEQ7vTWtKiRzohf5iqNXU40mw4Uu04iI6yZHNao6MTLa+hYnUtmd1SCdaFcK+v4+hx7fCU+UkrSGbpC9FzWpndU2h/ci6bZm+jdouXvOOyMIkmEQFYE60UDMuhcOZW0jsl02ZQNqve2YKvMkCHM/MI1YXYNKdspxcSel5SQPE3FVStqaNgWA4pbV38+PpG0tsnkZSbSNHccormRgec6HVVewJ10WSg7qPbYBrR7bvX1pPa2kVunywcLhu2RBvrZ5RSMDSH+lIvgboQ+UNysKdYIQyJ2XbsiTaS8hIo+76aihU15A/J4agr21G1spY1HxXR+ezWtDu5Fd4KHxarhU1zy2g7sAUZ3VNJSHUQ9ERn2gl6QqS0S8Jqt5BzdDpB/JR6iqn+oQp3rZuqFVVEzAiVyyqpra1tdM4rOTmZSCRCekY6+fn5tG/fnosuuoizzz6bxMTEA/mxFTnsKUlJjjiZmZk89dRTPPXUU42WrV27lgceeID58+dTWlqKz+ejvr6e+vp6QqEQC79bGFffZrPhcrkwTZO0tDSysrKwW+1kZGWSnJxM69atyOyWitVpwfRHv4giYZNuowvAgEg4QsgXxpnp4IQ/dMdqtRAORQjWheg6JprNbDWs1GzwUL3JQ87R6bQZlEkkZJKY7aS6sI6SxRX0v7sb4UB0NIFN86KZx5vnb6PtwJYkt3WSmJVA/kktsLtsOFLsFH1Rgb86iLswmhzVML1IclsndZvjpy0zbAaGJRrI1BR5CHpCVKypIamVi8RMJ0ddmk/IF+b7CRuwOq14qn34yjysn+Ehu0cqrY9vQUaHFMyQycY5pbTpnw1AYgsnLXqlQQTWfVRCzyuiCVYZ3VNo6wtTu6We1Pwkjr68AyFvGH9NAGuClaTcRDpmtsLqsBCoD2FPtOJItuNMdVBXV095RRnlKyvw+3zU1NRQXVONx+MhFArhdrsbDVFtGEb0YmgoRDAYpGXLlrRs2ZKkpCSuvfbaRtMLioiIyL4ZNmwYw4YNa1QeDAZ57733mDhxIsuXL6eiogKfz0dVVRXBYJCKygo2bNwAwOwvZwPRO9Lsdjs2m40W2S1ISU3BYXeQnp5OTk5LMtLTSWufQjgUvRDnrw2S3MpF+wwH9kQbgfoAgfowx97aCXuyDYvNoGxVNXknZJLdMxUMyOiYwvopJbS8txutT8jCU+4DTGxOG2unbeGoSwswIyapbZII1AUpmleB3QXeygCO5Oh/r466ogCr00pihhNHRgLV6+vI7JyCpzI6UhEG0SlJdpLSyoVhQKA+Wq+msB62n8zI7pGGI9VO3xs7sn56CeGASSgYpvCLaOxXvKCc/EE59BjTFnuijTUfbCS3fw6pbZPwbvORe2IWKW1cbP5yG/VFPuyJ0dEMOp6dR+WqWiIhk6yOaRx/dxJ1W33460LYnVaye2WQfXQ6AU8Ih90GtmgyeXrnJKpqKijaUkwwFKC6upq62jrKK8qxWCzU1tZSW1sbdyEMICEhgaSkJLxeLzabjS5duuB0Ohk8eDC/+93vyM/P/7kfORERkSNWcnIyN998MzfffHOjZeXl5Tz33HPMnj2bdevWUV5ejs/vw+P1EAwGWbTop8RxPo1ekEtyJWFikpYaPedls9nIzMzEleCiVdtWZB0VvXDjr/GBAaFAmB4XFmBYIBKM4HMHsSfZ6Hd7Z+xJdsL+MPVbAxSMiE73Zo1Y8W7zU7WmloKRubTs5yMSiJDcKoHKNdVs/a6Cvjd0JFAfwpnmYOPn0RGTtnxVRruT83C1TMBih/Yjc7En20msjCYp1W/zUbt5+yjknhBYDJJyEqgvjj8nZLEYEJ3dA191CJ87QHVhPfZUJyltXHQY1YqwP8Kq/23BkWylbpsX7zYvtZu85B6bSduBOSTlJWLBYM3HRbQZmA0G2JNstBncAkyTLXPKKBiZg2GDFr1SCdQGKV/lJrd3Fr3GdcBfHaBuq4+EdAeZnVNIbpmII8VG3VYvrhYJuHKc2FolUldfT5WvijVLVuENeKlZWkNNdQ31nnrC4TButxuv18vOMjIyYvFYq1atyMvLo2vXrlx66aWMHDlSoyKJiIj8DF26dOH+++9vctm3337L5MmTWbp0KevWraOsrIy6ujq8Xi/lFWVs3BQ958X86K+EhAQcDgc2q40WLVqQsjkFu8VBelU62ZnZZNgyaHlMBpFgGAzwu/1kdU7Fle3E1SKB+hIv/roQ3ca0xZXlxO6yUbSgnMwuKWQdlYbVaSWlbSKbZ5fTZmA2KUNy8JT7MDFxptpZN20LbU5qgcVukNEhBV9VgLJl1VitUL2lHqsjGjS1Ozk6kmNKaxeOtOj0vb6KAL7tIxVZLAaGrfE5L0eyDcOAkD8al9QWebE4LRCGzC6pJOclkJTjpHh+BYH6EOFghOJvo6NzFs2voP1pebQ/NRd7oo2Nn5UQiUTI6JRK/VYfmd2TyemTzvpPS/BVBkjMcmBxWGk1IJOaTV78tQFa9konvX0S1RvqqS/1Yk+20/rEbHKPy8RfHcSSDFanBVdWAi0dadQFaigqKyFY5qOmuobauloqKiqxWI3YOa9QKD4D3ul0xhKR8vLyaN26NW3btuXkk0/mwgsvJDMz82d/5kR+LQxzxxQ+Edmt0tJSnnzyST755BMKCwvxeDxYrdbYSQCLxRI3NHKDhmSmhISE2OO0tDRsVhuZWZnY7XbS09OxWCxkZGTgSnRhtVkBCPvDGBYDi82CYTGoq/Dg3RYgq2t06L8Ns0ooGNQSi82Cr8aPGY5OIedIsmGaJsvf20Ru7wwyO6ZSuriCDTO30m5IS5JaOzEDsPyNTfS4LJ/lb2+CaAzBiX/sQc2men7cPr1Iu5Nb4q30Ew5EaDe8JaU/VOFeVYM1Ebpf0AFMWPTCenpc3AZXdgIhTwirw0rhvFIKBudiRsBb7seZYcfmtOKt8FG5to7Wx0cTlsyIibfaT2K6E8MwMAwDr8dLXX00YKurq8PvD1BfW4fH58Fd5SYcDuP3+6mtq6W+PnpCZueAwGKxYJomiYmJZGZmUl4evWjWuXNnWrVqxU033dRk9ruIiIgcHmbMmMHrr7/OggULKC4uJhAIEAwGCQaDGEb0hMfO/50xDAOn00lSUlL04lpSEgkJCWRkZGAxLGRkZpKQEF3ucrlwuVwkuZKImCZgUr/NS2JmAla7BUzYNGcbmd1SSM5NxF8dIFAbIjEnAYsVNswsod3QPEL+EM5UB+5Ndaz5YAt9r+2EaRose2s9FsNGakEiLXtlsH56Cc50BzanleKvo9OB9PhNPqn5ScwfHx2hye6C9qe3ZvW7RXS7sA0RoL7YS9G3FRQMy6HVcdlsXVSBe2MdXUdHE3oCdSECNUFsyVYSUh2E/GE2zyujw8l5mKbJtsVVpLRLJCnLRTgUIRKM0JB4hQGhYAif34e7yk3EjMSGna6ujiZ719TUYJomHo+H+vp6fD4fwWCw0WvfEAvn5ORgGAZ1dXVkZ2fTqVMnBg8ezM0330x2dnazfmZERERk/7jdbt59910+/fRTli9fHrt5z+PxYJomhmHs8ZxXQ+yVmpqK3W4nIyNze2JTBkQMsltk4XQ4sTnsEDG3J2Yb2BKt2BxWajbX4S700vqETCxWC6smbyH/pJY4kq14ynwEa8M40uy4spxgmiz/byFp7ZJodXw2W+aVUTS/gpa900lqmYhhwLqPS2h/ei6bZ5US2p6f1P+ublStq2XN+9ERLXP6pBMKhAnUBGk/MpfSJZXUFfvBCNP9onYYVoOlE9bR8fQ8Mruk4an0YXfa2PBZKZ1OzyMSMand7MWZZiepZQLVG+uoWFFL+1NyMawGIV+Y+q1eUtskAWBYDTx1Hjze7T/1nmiyWH30ubvKTSgcwu/3U1dXFzvnFQwG4173hnNeCQkJZGVlUVtbS0pKCu3bt6dLly5cffXVDBgwoFk/MyIiIrL/VqxYwfTp01mwYAGrVq2itLSUmpqaWOy18yg88NM5L5fLtT0GSyIxMSF6fRELmVlZJGw/J5bgSMSV4MKV6iISjmAYBuWrq0lvk4QjxY4ZNlk9pYiMzsm0PDqD2mIPtVt8pHdKwuqwsPajLbQbnkfQEyaltYuyZW4KP9tGj0vbYrFYWf3+RsJBSMpLJKdnOlu+KsdiM3Ck2KnYPqVb25NakNM7ne/+uSa6A1ZofWI2RV+W03pgFlaHhfqtfipW1ZDdM5V2I3Ipnl9O1bo6el5SgGEzqC3yEqwPYU2wRG8YrAlSOHsrPcYUEAmaFM7eRlIrBy2PyiTgDRGqDRMOhknKScCwGAR8QQJhP+6KaiKW6DkvDDM2wEF1dXTUz4YBK3Z3zgsgKysLp9OJw+Ggbdu2tG3blpEjR3L++eeTnJzczJ8akV8PJSmJHGBr167l5ZdfZs6cORQWFlJVVYXf78dms2Gz2airq4vdpbRzUs2OHA4Hdrs9FnBYrVYSnAlgRKfBsFqtOJ1OwuEwycnJ27NzTQwjmnHtdDqpqKgkPT0Nu92Ow+Gguroam8VORlY0IcrvDVBbVk/brq3wVQeo+L6a3GOzcabYCXhCBGtDVKyrps0JLfD5/GxZVkput6zoRafaeurr60hJTcEwjGjCUE0tScnRky6+7SMZpaam4vF4Yj92ux2fz4fX6yUUDBEKR0cwahitKhAI4PP5Gt1136DhtXM6naSlpVFdXY3X66Vdu3Y4HA4Mw+Doo49m4MCBXHbZZcpMFhER+RULBoPMnDmTDz/8kEWLFlFSUkJVVRWBQACn00kgECAQCGC1WolEIk1eWIPoSAF2u50EZwJ2h52kpCQMw8DhcMROPCQkJBAOh2OJTYmJibjdtWRkpOJ0OgHweDwkJyfH6tbXeEhOScKV7MLAYNPCUtod1wan087GWdto2TMdR7INe7Idf3WAoq/LyT0+g4QMB4WLt5BekIoj0R6dHq28EjBISUuOJWu5K6vJzM4gEAjEkuYbkoNqa2ux2+0Eg0ECgQA1NTVYLBaCwSB+vx+Px0M4HMbn8+H3+5t8XQzDwGq1YpommZmZGIZBTU0NCQkJtGnThlAoRJcuXejVqxcXXXQRRx99dLO8zyIiInJ4KC8v56OPPmLu3LksX76c4uJiqqurCYVCGIZBfX197OazPZ3zstlsJCQkRM95Waw4E6LxVGpqKlarFYfDQSQcITkles7LNE0wwZngxOl0UlVWRVpWGjabDafTSXVlNYZpJatlBlabFV91EPcGN+2Ob0vdVh9bv3XT+vgsErMS8NUECFQH2bbMTcfT8/D7AmyYv4WCE/K23x1fR527lpTMlNjNiXU1HpKSE8GInvNyV7lJz0jH5/NRV1cXO+fl9/vxer0EAgEikQjBQJB6T/Scl9/v36tzXg5HdKTQurq62J34ycnJ5OXl0atXL/r27csZZ5yhC2EiIiK/YuFwmBUrVjBv3jwWL17MmjVr2Lp1a+y8l9frxefzYRgGpmnuMr6wWq2xuMvhcOByuTAMg4SEhNg1SKfTiRkxSXQlkpiYiMvlorqqlvSM1FiMVldVR2pW9ByYGTapLq3Fle4iLTuFSCDC5q/KaX1sDq4UJxumlZLeLgVnpp2knARqi71sW1xF1tEpZHRKZsO8YlLzXSTlJmJGIlRsriJihEnPTSPgDxAKhajYWkl2XlY0fvJGR3yyWCzU19dTW1uHzWqNJnb7/NTW1mKxWggEAvt8zgsgPT0du91OKBQiOTmZ7OxscnNz6d27N126dGHIkCEa+VvkAFOSksghVFdXx/vvv8+8efNYsWIFJSUluN3u2B1qtbW12Gw2HA4HoVAodoLHYrHETnaEw+FGGb37y2KxYLVaCQaDsS/nSCRyQNfvdDqx2WyxfWwY+tDr9eJyuUhPT6eyspJwOEyrVq1ISkoiLy+PHj16cPLJJzNkyJAD0hcRERE58qxatYpp06bxww8/sG7dOrZt2xa7Y8rr9eL3+2PTyXm93thFtoYRG8Ph8C4TnfaVYRixu7DC4TA2m223iVT7s/6GOLJh5AOXy4XD4cDn8xEIBMjNzcU0zVgclpubS2pqKr169eLoo4/mzDPPJC0t7YD0R0RERI4soVCIr776igULFrB8+XK2bNlCWVkZNTU1sQRqiCbmBIPBg3LOy2KxEAqFsFgssfjoQK6/IfmqQUpKCpFIBL/fT2JiIunp6Xi9XpxOJy1atCAjI4MuXbrQvXt3+vXrR+/evQ9IX0REROTIU1ZWxqJFi1ixYkXsnFdDUlPD6IwNcZDP5yMSiRy0c152u/2Ar7/hnFfDqN4NgzcEAtEpYzIzo7PYNMRgqampdOzYkV69epGfn88xxxyjhG+RQ0hJSiK/cIFAgBUrVvDNN9+wbNkySktLYxfZ6uvr4y6yWSwWbDZb7C4wu90eGx6ypqYGp9NJKBRi5cqV5OXlkZaWRiQSISkpCZvNRiAQoLa2lqysLIDYiEipqamxoadtNlusfkZGBrm5uXTp0oWLLrpIX/giIiLyi1ddXc2iRYtYtmwZa9eujU2J1nAHW0NMFA6HY4nmNpuN+vr62AhNDRerDMOgsrKS8vJyunTpgtVqJRAIkJGRERsBKRKJkJaWRjAYxOfzxUbTjEQisZED7HY7mZmZ5OXlkZGRwfHHH8+xxx6L3W4/1C+XiIiIyH4LhUJs2bKF1atXs2rVKoqLi/F4PPh8Pmpra/F4PIRCoViSU0OcFQwGYxfGHA5HbITJcDjMqlWryMnJISMjAyA2ikAoFMLr9ZKSkhK7YGeaZizxqOEil2masfNdWVlZFBQUcNJJJ+mcl4iIiPziBQIBNm7cSGFhIRs3bsTtdhMIBKiursbtdsdGhmyYESUYDGIYRux8VcMUdTue89q2bRtdu3bFarUSDodJSUmJS1hKTEwEiF27tFqtJCYmkpqaGovB8vLyyMvLw+Vy0aNHD9q3bx8baEFEfpmUpCQiIiIiIiIiIiIiIiIiIiIiIs3Kcqg7ICIiIiIiIiIiIiIiIiIiIiIiv25KUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWtkPdATm8bd26Fbfbfai7ISIHSXp6Oi1btjzU3RAROWIp9hI5sij2EhE5dBR3iRxZFHeJiBxair1EjiyKvWR3lKQku7R161YuPO9CsB7qnojIwZKQkMBrr72mwEFE5BBQ7CVy5FHsJSJyaCjuEjnyKO4SETl0FHuJHHkUe8nuKElJdsntdoMVbKvTsfhsgAXDYoDx049hsYABGJZo2U7Ld/2zvY3FABqeGzs8N6KTERrEnpsNZdvr7/jcNH5ah9kwiWHDOhvqxv1uaLe93g5tzIb1GNEi0wDTskM746d1m3FtiGsTt31+aheru1Pb2A+7rx/XZhdle3wcKzPjysy4dZpxz6PbNxu1p9E6t9ez/LTcMMxosdHwvOFt3GH59t/RRT/Vsxjm9vbmDs+jdaIfARMMM1ZuMczoMnYqM0wsRH8Mw9z+Ud1eZuxQf/vv2A8mBhEs27dlMSLbl4GFCIZhYt2+PasR2f7bxDAi0fLY8h2fR2LrthiRWB9shJtYFsECWBrWt307DftiwYzbTrTu9r5uf2zFwACsBhgY25//9NuCgcWwsLnIzqP/TMftditoEBE5BA5Z7GVYDqu4K/b8MI69TMsObQ+HuGunOodj7GW1HF5xl5Xt7RV7iYgckXTOK1rUZOxl4bCKu3YuO1xjr8Mp7jocz3ntHHvZjLDiLhGRI8hhE3sZlsMr7tohrjpsYy/LTv3g0MddsGOM1fBWHj6xV0PcdLjEXTrnJYcjJSnJHhkeGxavA4yGoMESCw6iQYMBlp+CBmOH5XHLYs8bHlsaBxnbn5vG9m+qHZaZxvZvJaPha+WnOuYO36Dm9joNX/g/BSQ7Pt/pscVoFBDEfRluT1JqCGR2FUw0/m00Cgx2VXdPAUJT9fa4nD3VbSJw2HkZOy7bOVAwGy0zGh7vnKQU9ztax2gIAHYOGnZYZsYem3HtLDRsu+FE0E8/Bj+12TkIsOyyLNLouXXHL++GL+WGx4YZ/ULfIRBo+DK3GhEshhGrH/3N9nrRL/Fo++gXuWV7sGE3IliJxNZt3f68YZ3RoCDy0+Pt2/7psbnDtn5avxVj++NogGDdHihEn1u2P47+FhGRQ+9gx16mxXJ4xV1xdTksY69YktLhEnfF+nD4xl42S+Swirt+qq/YS0TkSKZzXjvXbYhzDp+4a5fLOYxiL8vOSUo657Wn2MtuhBV3iYgcgQ557GWxHFZx10+xxmEce+2cpHSo467D8JzXzmU2S/iwirt0zksOR5Y9VxEREREREREREREREREREREREdl/SlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWZlO9QdkMOf6QoRsQBYMCwGGD/9GBYLGIBhiZbttHzXP9vbWAyg4bmxw3MjmkJnEHtuNpRtr282rAcDM/pg+2OI/kPDCqLLIz+1MRvabd9crH7D89i6tz+3GDssiy6O/kNceVwbA4yG7e1Q1rDNhjKzifa7qx/XZhdle3wcKzPjysy4dZpxz6PbNxu1b3r/ze3vlbn9dYi+wIbR8Hz767Pj8u2/DXYsB4thbm9v7vB8+7seW4e5Q99MTMzt+2YSie1LtNzEJGKY2z+qJhbM6Dp3+h37wcQggsVge93I9mVgIYJhmFiJtrMake2/TQwjEi2PLY9/btn+cY7+NrAYYMOCFbZv18BiGNHfgKVhfdu3Y8GM/cStN7bOnx5bMTAAqwEGxvbnP/2ObsvC5iJ9JYiIHA4OeuxlWA6vuCvW359+DrfYy7Ts0PZwiLt2qnM4xl6m5fCKu6zboyDFXiIiRzad89rheUP3LBxWcdfOZYdr7HU4xV2H4zmvnWMvm2FV3CUicgQ65LGXYTms4q6fYofDOPbaPtzJ4RR3wY4xFodd7BXZHjcdLnGXznnJ4UifENmlSCSCzWYj1MV9qLuyf0x2CCD2nrHTb/nlaXjrI4e6I7vVEFkdXgPa2Ww2IpHD+5UTEfm1+kXHXoq7jmiHf+x1eMZdoNhLRORQ+UXHXaDY6wh2+MddcLjGXoq7REQOnV907KW464h2+Mdeh2fcBYq9ZPeUpCS7ZLFYCIVC3H///RQUFBzq7ohIMyssLOSRRx7BYjn8ghkRkSOBYi+RI4tiLxGRQ0dxl8iRRXGXiMihpdhL5Mii2Ev2RElKskcFBQV07dr1UHdDRERE5Iig2EtERETk4FDcJSIiInLwKPYSERE4HMf+EvkV+uKLL7jrrrsYNmwYaWlpGIbBuHHjDnW3mjRp0iSuv/56+vXrh9PpxDAMJk6ceKi79bMFg0HeffddrrjiCrp3705ycjIpKSkcf/zxPPvss4TD4UPdRRERETkAFHcdeoq7REREjhyKvQ49xV4iIiJHBsVdh57iLpEDQyMpiRwEL730Eq+88goul4v8/HxqamoOdZd26f7776ewsJDs7Gzy8vIoLCw81F06INatW8cFF1xAcnIyI0aM4Oyzz6a6upopU6Zw0003MXXqVD788EMMQzMEi4iI/JIp7jr0FHeJiIgcORR7HXqKvURERI4MirsOPcVdIgeGRlKSXcrKymLcuHFkZWUd6q784t1yyy38+OOP1NTU8PLLLx/q7uzWhAkT2LhxI2VlZdxwww2HujsHTEpKCv/6178oLS3lgw8+4K9//Sv/+c9/WL16Nf369eOjjz7inXfeOdTdPKR0zIuIHFr6O3xgKO469BR37R0d8yIih47+Bh84ir0OPcVee6ZjXkTk0NLf4QNDcdehp7hr7+iYlz1RkpLsUnZ2NldddRXZ2dmHuiuH1LvvvsuQIUPIyckhISGBVq1aMXLkSN599929Xke/fv3o2bMnVqv1Z/UlEokwYcIE+vfvT2ZmJomJibRp04azzjqL2bNnx+rNnj0bwzB48MEH+eqrrzjllFNIT0/fq8zdkSNHUlBQ8LP62SAQCPCPf/yD4447jpSUFJKTk+nRowd33HEHVVVVsXrt2rWjXbt2VFdXc+ONN5KXl0dSUhInnXQSixYtAqC4uJjLLruMnJwcEhMTOeWUU1izZs1e96V169bcdNNNJCUlxZUnJSVxxx13ADBnzpwDsNe/XDrmRUQOLf0dVtz1cyju+uXRMS8icujob3CUYq/9p9jrl0XHvIjIoaW/w4q7fg7FXb88OuZlTzTdm8huPPvss9x0003k5eUxevRosrKyKC0t5dtvv+X999/n/PPPP6j9ue+++/i///s/OnbsyKWXXkpKSgpFRUXMnTuXmTNnMnTo0Lj6X331FY899hjDhg3juuuuY9OmTQetr16vl5NPPpl58+bRuXNnrrzySpxOJ2vWrOG5555j7NixZGRkxOoHAgFOPvlkfD4fF198MVu3buXtt99m5MiRfPXVV5x66qnk5eVx2WWXsXbtWqZMmcKZZ57JihUrfnZAZrfbAbDZ9CdRRETkUFHctf8Ud4mIiMi+Uuy1/xR7iYiIyL5Q3LX/FHeJ/DrpKBHZjQkTJuBwOFiyZAk5OTlxyyoqKg5Jf1q1asX333+Py+WKW1ZZWdmo/owZM3jppZe48sorD1YXY/70pz8xb948Lr/8cl5++eW4L/fq6upGX/YlJSUMGjSIN954I/YF3rdvX37/+98zYMAArrzySh5//PFYhvZNN93Es88+y+TJkznvvPN+Vl9feuklAE455ZSftR4RERHZf4q79p/iLhEREdlXir32n2IvERER2ReKu/af4i6RXydN9yayB3a7PZb9uqNDNY+mw+FoMps3MzOzUdkxxxxzSIKGUCjE888/T1paGk899VSj/qalpZGcnNyo3d///ve4DONLLrkktr5HHnkkbgjJhmVLly79WX19/vnnmTZtGsOHD+eMM874WesSERGRn0dx175T3CUiIiL7S7HXvlPsJSIiIvtDcde+U9wl8uulkZREdmPMmDHcc889HHXUUVx66aUMGzaMQYMGkZqaGlfvySefxO12x5WNGzeOdu3aHfD+/Pvf/+aoo45izJgxDBs2jAEDBpCYmNhk/eOOOy7uudvt5sknn2xU78EHHzyg/Vy5ciW1tbWMHDkybpjF3cnIyCA/Pz+uLC8vD4DOnTs3yuZuWFZcXBwrmzhxIhs3boyrd+6559KnT58mt/nRRx9xyy23UFBQwKRJk/aqnyIiItI8FHftH8VdIiIisj8Ue+0fxV4iIiKyrxR37R/FXSK/XkpSEtmNu+66i6ysLJ599lkef/zxWPbtmWeeyT/+8Q/at28PRAOHwsLCuLZDhw494IHDU089Rfv27Xn55Zd55JFHeOSRR0hISOCiiy7i8ccfJzs7O65+y5Yt45673W4eeuihRus90IFDdXU1AK1bt97rNjsHY/DTvK27WxYMBmNlEydOZM6cOXH12rVr12TgMHXqVC644AJatmzJ559/HgtERERE5NBQ3LV/FHeJiIjI/lDstX8Ue4mIiMi+Uty1fxR3ifx6KUnpV8Lj8fDWW2+xfPlyVqxYQW1tLffddx+nn376Ad9WWVkZzzzzDAsWLCASidC3b19uvfVWWrVqFVfvpJNOarL9ddddx2WXXXbA+9UcDMPgqquu4qqrrqKiooIvv/ySN998k7fffps1a9bw/fffY7VaG2XUNhebzcZdd93FXXfdRXFxMXPmzOHll1/m1VdfpbS0lOnTpzfq/47atWuHaZrN3s/09HQAioqKmn1bO5o9e/Ze1fv44485//zzyc7OZtasWXTo0KFZ+xUIBHjxxRf59NNPqa2tpWPHjlxzzTWNss+bsjfH29atW5k6dSpff/01W7ZswWq10r59e8aOHUu/fv3i1jdt2jTGjx/f5Lbef//9uKFF/X4///vf/5g+fTqlpaWkpKRw1FFHceWVV8aC5gYLFixg4sSJrF69GrvdzrHHHstNN93UKCDb23UuWbKEt956izVr1lBdXU1ycjKdOnXiiiuu4Oijj97j6yYi0twUex14irv2j+KuvdPc8RjABx98wKJFi1i+fDnbtm3jtNNO4w9/+EOj9e1LnPPaa68xb948ioqK8Hq9tGjRggEDBjB27NjYe9/g1Vdfjf1NqqqqYty4cVx11VVN7tPChQt57bXXWL9+PeFwmDZt2nD++edz6qmn7vH1EBE52BR3NQ/FXvvnSI69DkY8BdHRCN566y1KS0tp0aIFF1xwAeeff35cnZdeeomJEyc2autwOJg5c2ZcWWVlJc899xxff/01Ho+HgoICLrvsMoYNGxZXb9OmTUyePJnly5ezZs0aAoEA//3vf3d5sXHu3Lm8/PLLFBYWkp6ezhlnnMHYsWPjppf57W9/y5IlS5psb7VamTVrFgCLFy/mtttua7IewDXXXMPYsWN3uVxE5EBS7HXgKe7aP0dy3AWHV+z1xRdfMHnyZNavX09NTQ3p6en06NGDK6+8stF+f/bZZ3z11VcsX76coqIi+vTpw9NPP73HPr/66qtMmDCB9u3b88orr8TKS0pKuPjii3fZbtSoUdxzzz1xZatWreLll1/mhx9+IBAI0KpVK8466ywuuOCCWJ1dxWn9+/fn73//+x77Kz+PkpR+Jaqrq5k4cSItW7akU6dOLF68uFm24/F4uO2226ivr+eyyy7DZrPx9ttvc+utt/LSSy+RlpYWV79fv36cdtppcWWdO3dulr41t6ysLM4991zOPfdcysvL+fzzz1m7di1du3Y9JP1p1aoVl1xyCRdffDFdu3Zl5syZeL3eXQ7HeDB17dqV1NRUFixYQFVV1V4Pw3gwNAQNmZmZzJo1i06dOjX7NsePH8/s2bO58MILadOmDdOmTeOee+7hqaeeolevXrtst7fH29y5c3njjTcYPHgwp512GuFwmOnTp3PHHXdw7733Njn/7dVXX93oJMvOc/c+/PDDzJs3j7POOosuXbpQXl7O+++/z4033sjEiRPJzc0F4KuvvuIPf/gDXbp04frrr6e+vp533nmHW265hRdffDHuAtrernPLli1YLBbOOeccMjMzqa2tZcaMGdx666389a9/5fjjj9+v90JE5EBR7NW8FHftPcVde6e54zGAN954A4/HQ/fu3amoqNjlOvclzlm1ahWdOnVi+PDhuFwuCgsL+eijj/j666956aWX4j6DEyZMIDMzk86dO/Ptt9/ucvtz587lj3/8Iz179mTcuHEYhsGsWbN49NFHqa6u5qKLLtrbl1VE5KBQ3NX8FHvtvSM59joY8dTkyZN5/PHHGTJkCBdffDHff/89Tz31FD6fj9/85jeN1n3nnXfGfS4sFkvc8vr6em6++Waqqqq44IILYq/NAw88QCgU4uSTT47VXbZsGe+++y4FBQUUFBSwZs2aXe7T/Pnz+eMf/0ifPn247bbbWL9+Pa+++ipVVVXceeedsXqXX345o0aNimvr9Xp5/PHH4y4wFhQUcP/99zfazvTp01mwYMFeXYwUETlQFHs1L8Vde+9Ijrvg8Iq91q9fT0pKChdccAFpaWlUVlYydepUrr/+ep599tm4/Z88eTKrVq2iW7du1NTU7NW+btu2jUmTJjX5uUtPT28yTvrmm2+YMWNGozjp22+/5b777qNz585cccUVJCYmUlRURFlZWaN1tGjRguuvvz6ubMfBHKQZmfKr4Pf7zfLyctM0TXPFihXm4MGDzalTpx7w7bz++uvm4MGDzeXLl8fKNm7caA4dOtR87rnn4uoOHjzYfOKJJw54Hw6mWbNmmZFIJK4sEAiYffr0MQFz48aN+7zOr7/+2gTMK664Yp/a+Xw+c968eY3Ka2pqzNzcXNPpdJo+ny/Wb8B84IEH9rl/Oxo/frwJmC+//PI+t7377rtNwLz88svNUCgUt8ztdpu1tbWx5wUFBWZBQUGT6wHMIUOGNCrfsGHDPr+OU6dONZ1Op5mbm2uuXLlyr9v9HMuWLTMHDx5svvHGG7Eyn89njhkzxrzhhht223Zvj7f169ebVVVVcW39fr/5m9/8xjzvvPPiyqdOnWoOHjzYXLFixW63vW3bNnPw4MHmv/71r7jy7777zhw8eLD53//+N1Z2+eWXm2PGjDEDgUCsbM2aNeaQIUPMf/7zn/u1zqZ4vV7znHPOMe+8887d1hMRORgUex14irsUdzWXgxGPmaZplpSUxD7Dp5xyivnoo4/udR/3Jc6ZNWuWOXjwYHPmzJlx5cXFxaZpmmZVVZU5ePBg88UXX2yy/e9+9ztz9OjRpt/vj5UFg0FzzJgx5rhx4/a6zyIiB4viruah2Eux1744GPGUz+czR40aZd5zzz1x7f/85z+bp5xyillTUxMre/HFF83Bgwc3Oh+2szfeeMMcPHiwuXDhwlhZOBw2r732WvOcc86JO5dVXV1t1tfXx7VriK92dvnll5tXXnmlGQwGY2XPP/+8edJJJ+3x2Jk+fbo5ePBg89NPP91tPdM0zTFjxpiXXHLJHuuJiBxIir0OPMVdirv21eEWezWloqLCHDp0qPm3v/0trry0tNQMh8OmaZrm2LFjzVtvvXX3O2ua5gMPPGDedttt5q233mqOHTt2j/VN0zRvv/1287TTTot9Xk3TNOvq6sxzzjnH/MMf/hDrw67sy7bkwNNISr8SDodjrzP75s+fz6RJk1i9ejWGYdC7d29uvPHGRtM3NWX27Nl069aN7t27x8oKCgo45phjmDVrFtddd12jNn6/HwCn07mXe3P4OPfcc0lNTeWEE06goKCAYDDIjBkzWL58ORdccAEFBQV7tZ65c+cyYcIEgFim5ty5cxk3bhwA2dnZexw6zuv1MnDgQLp06cKxxx5Lfn4+dXV1fPTRR5SWlnLXXXcdkNd4woQJzJ07F4AffvghVtYwvOGgQYO45ppr9rieP//5z8yfP5/XXnuN+fPnc/rpp+N0Olm/fj2ffPIJc+fObXL+1uaycuVKRo8ejd/vZ+jQobz55puN6rRr1y72nhwoc+bMwWq1cvbZZ8fKnE4nZ555Js8//zxbt25tNJ9vg7093po6dh0OByeccAJvv/02Ho8Hl8vVqI7H48HpdGK1WptcBjTKTG/4O9PwWaupqWHjxo1ccskl2O32WL1OnTpRUFDA559/zi233LJP69yVhIQE0tLSqKur2209EZGDQbHXgae4S3FXczkY8RgQGxFyf+xLnNMwGubOdXc1FcnOPB4PKSkpOByOWJnNZmt0l6qIyOFCcVfzUOyl2GtfHIx4atGiRVRXV3PuuefGtR89ejQzZszg66+/5pRTTmm0/vr6elwuV6OpaACWLl1Keno6xx57bKzMYrEwbNgwnn32WZYsWRK7+z41NXWvXouNGzeyceNGfve738VN7TZ69Ghee+01Zs+ezRVXXLHL9jNmzCAxMZFBgwbtdjsNU6RceeWVe9UvEZEDRbHXgae4S3HXvjqcY68GGRkZJCQkNDo/tat+7cqSJUuYM2cOEyZM4KmnntqrNuXl5SxevJhTTz017vM6c+ZMKisrufbaa7FYLHi9XpxOZ6PRNncUCoUIBAJNXkeV5qMkpSPM9OnTeeyxx+jfvz/XX389fr+fDz74gJtvvpkXX3xxtye2I5EI69evb3LqqO7du7NgwYJGyRCffPIJH3zwAaZpUlBQwNixY+OG0T3cjR8/nk8++YRvv/2WKVOmkJSURMeOHXn22We5+uqr93o9a9eujZs/E2DdunWsW7cOiH457ClwSEpK4q9//SufffYZX375Jdu2bSMjI4OuXbsyfvx4xowZs+872IS5c+c26uu8efOYN29e7PneBA4JCQnMmDGDZ555hkmTJvHCCy9gtVrJz8/nhhtuoF27dgekv3urtLQ0FsC+9dZbTdYZMmTIAb9YtmbNGtq0aUNSUlJceUNwsHbt2ia/sPfneNtZZWUlCQkJTQaUt912G16vF7vdznHHHcfNN99M27ZtY8tbt25NixYt+O9//0t+fj6dO3emvLyc//znP+Tl5TF8+HAgOicuNP2fAqfTyYYNG6ioqCArK2uv17mj+vp6gsEg1dXVTJ8+nQ0bNnD55Zfvcp9FRA43ir32nuKuKMVdB96hjMd2Z2/jHNM0qa6uJhwOs2XLFp577jmsVut+n4Tr06cPb7zxBhMmTOC0007DMAxmzpzJqlWrePDBB/drnSIihwPFXftGsVeUYq+9czDiqYbp1bp16xZXr2vXrlgsFlavXt3oQtnFF18cm5Jm0KBB3HzzzWRmZsaWB4PBJs9ZJSQkANGpdfd1KrXVq1fH+rWj7OxsWrRosdtp4txuNwsXLmT48OF7nEZnxowZAL+ovysicmRR7LX3FHdFKe7ae4dr7FVbW0s4HKaiooL//e9/1NfXxyWD76twOMxTTz3FmWeeSceOHfe63eeff04kEmn0N2DhwoUkJSVRXl7OH//4RzZv3kxiYiKnnHIKt9xyS6O4cPPmzZx66qkEg0EyMzMZNWoU48aNi0tEl+ahV/gI4vF4eOqppxg1ahR33313rPy0007jsssuY9KkSXHlO6upqSEQCDSZQd1QVl5eTn5+PgBHHXUUw4YNIy8vj4qKCt577z0efvhh6uvrG2VlHq5uvPFGbrzxxp+9nnHjxv3sLyS73c4999zDPffcs8e6Q4cOxTTN/drOxIkTmThx4n613ZnT6eTOO++Mm4u9KRs3btzlsl3tR7t27fZpH3/Oa/JzNCTo7GzHY6Yp+3q87WzLli188cUXDBs2LG6kJKfTyemnn07fvn1JSkpi1apVvP3229x0001MmDAhFtTYbDYefvhhHn74Ye67775Y+65du/Lvf/+blJQUADIzM0lOTo5lwjeorq6msLAw1s+srKy9XueOHnjgAb799lsgegycffbZjB07tsl9FhE53Cj22jeKu34exV27dqjisT3Z2zinsrKS0aNHx563aNGCP/3pT3t9p+XOrrjiCkpKSnjttdd49dVXgehJvz//+c8MHjx4v9YpInKoKe7ad4q9fp4jLfY6GPFURUUFVqu10Qjcdrud1NRUKioqYmUpKSmcd9559OzZE7vdzvfff8/777/PihUreOGFF2IX9PLz8/nuu+8oLS2NG/Xy+++/322/d6ehH7vapx37ubPPPvuMcDi8x4vq4XCYWbNm0b17d9q0abPPfRQRaW6KvfaN4q6f50iLu+Dwi70a3HjjjWzatAmAxMRExo4dy5lnnrlvO7eDyZMns3XrVv7xj3/sU7sZM2aQlZXFMcccE1e+ZcsWwuEwf/jDHzjzzDO57rrrWLJkCe+++y51dXU88MADsbqtWrWib9++dOjQAZ/Px+zZs3n11VfZvHkzDz300H7vk+wdJSkdQRYuXEhdXR0jRozA7XbHyi0WC927d2fRokW7bd+QGbrjlE4NGqYKaKgD8O9//zuuzhlnnME111zD888/HxuOT+TXzu/37/Uxs3M72PvjbUc+n48HHngAp9PJ9ddfH7ds+PDhcSMWDR48mP79+3Prrbfy2muvcdddd8WWpaSk0KlTJ4YOHUqPHj0oKiri9ddf54EHHuDxxx+PDZF49tln88Ybb/Dcc89xxhln4PF4ePbZZwkGg436uTfr3NH111/PxRdfzLZt2/jkk08IhUKEw+Em91tE5HCj2Evk8HAo4rG9sbdxTmpqKk888QSBQIA1a9bwxRdf4PV693u7drudtm3bMnToUE466STC4TBTpkzhkUce4YknnqBnz577vW4RkUNFcZdI8zoY8ZTf79/lXesOhyNuGxdeeGHc8qFDh9K9e3cefvhh3n//fS677DIARo0axeTJk3nggQe45ZZbyMzMZNasWXz55Ze77ffuNIwqvuPUuTv20+Px7LLtzJkzSU9Pp1+/frvdxnfffUdlZWVsP0REDjeKvUSa1+EWezW499578Xg8FBcXM3XqVPx+P5FIZLfTqe1KdXU1L730EmPHjiU9PX2v223evJlVq1Zx0UUXNdqu1+vF5/NxzjnncNtttwHRka2CwSAffvghV111VWxWmXvvvTeu7amnnsrf/vY3pkyZwkUXXaTzY81MSUpHkC1btgBw++23N7m84Q4Tv9/faP7IrKys2Jd8Q+LBjnY35VMDu93Oeeedx+OPP86qVavo1avXPu+DyC+N0+ncr2Nmf4+3cDjMgw8+yMaNG/m///s/srOz99jHXr160aNHD7777rtYWV1dHbfeeitjxoyJG96zW7du/Pa3v2XatGmxOxSuvvpqqqurefPNN3n99dcBOO644zjzzDOZPHlybPjqfVlng86dO8cen3LKKVxzzTWMHz+ehx9+eI/7JSJyqCn2Ejk8HOx4bG/tbZxjt9tjF7JOPPFEjjnmGG6++WYyMjI48cQT93m7Tz75JMuXL2fChAmxkznDhw9n7NixPP300zz33HP7vU8iIoeK4i6R5nUw4imn00koFGpyPYFAYI9x18knn8y//vUvvvvuu1hyT8eOHfl//+//8fjjj3PzzTcD0VHBb731Vh5//PE9TrnWlIYLfA3939t+FhcXs2zZMs4777w9TiEyY8YMrFZr3I2GIiKHE8VeIs3rcI29jjrqqNjjESNGcPnllwPE4qx9MWHCBFJSUjj//PP3qd3upsRt6POIESPiykeOHMmHH37IsmXLYklKTbn44ouZMmUKCxcuVJJSM1OS0hEkEokAcP/998fNzd2gYUqozz//nPHjx8ct++KLL0hNTcXhcDQ5vFtD2Z4SInJycoDocHMiR4KsrCzKysoale/pmNnf4+1vf/sbX3/9NX/605/2aR7YnJyc2BCNAHPmzKGyspKBAwfG1evTpw9JSUn88MMPsYQiu93O73//e6699lo2b95MZmYmbdu25c9//jMWi4XWrVvv8zqbYrfbGThwIK+//jp+v193R4jIYU+xl8jh4WDHY/tjX+Kco48+mqysLGbMmLHPSUrBYJCPP/6YSy+9NO5uM5vNxvHHH8/7779PMBhs8o47EZHDmeIukeZ1MOKprKwswuEwVVVVcdOOBINBampqmpy2ZGc5OTmNjsGhQ4cycOBA1q5dSyQSoUuXLixevBhgtxepdqWhHxUVFbRs2bLRPnXv3r3Jdru7oLYjv9/Pl19+ybHHHtvk3zMRkcOBYi+R5vVLiL1SUlI45phjmDFjxj4nKW3evJkpU6Zw6623xk1dFwgECIVClJSUkJSURGpqaqO2M2bMID8/n65duzZalpWVxYYNGxr9XWrYv9ra2t32q+Hvyp7qyc+nJKUjSEOiwJ6GlD3uuON44oknGpVbLBY6dOjAypUrGy1bvnw5rVq1wuVy7bYPxcXFsT6IHAk6derE4sWLqa+vj909ANFjpmF5U/bnePv3v//N1KlTufXWWxk5cuQ+9bO4uDjuuKyqqgJ++s9GA9M0iUQiTU5FkpmZGfviD4fDLF68mO7du8f6uT/r3Jnf78c0TTwej5KUROSwp9hL5PBwMOOxn2Nf4pxAINDobtS9UV1dTTgcbjLuCofDRCKRRrGaiMgvgeIukeZ1MOKphlEmV65cyYABA2L1Vq5cSSQSiRuFsimmaVJaWtpkPbvdHpc81DCa+J6mXWtKw/pXrVpFjx49YuXl5eWUlZVx9tlnN9lu5syZtG7deo935c+dOxePx7PHZCYRkUNJsZdI8/olxF4QPZdVX1+/9zu2XXl5OZFIhKeeeoqnnnqq0fKLL76YCy64gN/+9reN9qGoqIirr766yfV27dqVhQsXUlZWRn5+ftz2YM9/L/R35eDZ9wkC5Rerf//+JCUlMWnSpCaHb2uYNzY7O5t+/frF/TQYMmQIK1eujPvjtmnTJhYvXszQoUMbrWtHHo+Hd955h7S0tCazG0V+jYYOHUo4HObDDz+MlQUCAaZOnUqPHj1id1xt3bqVwsLCuLZ7e7wBvPnmm7z11ltcfvnlXHjhhbvsT1PH5tdff82qVavo379/rKxNmzYAfPbZZ3F1586di9fr3WNw8tZbb1FRUcHFF1+8X+tsSGjaUW1tLXPmzCEnJycuq1tE5HCl2Evk8HCw4rG9tbdxjtfrxefzNao7e/Zsamtr6dat2z5vOyMjg+TkZL788su4ob89Hg/z5s0jPz9fieAi8oukuEukeR2MeOqYY44hNTWVyZMnx7WfPHkyCQkJcRfPmjoOP/jgA9xuN8cff/xu92Xz5s1MnjyZE088cb9GUmrfvj35+flMmTIlLvH7gw8+wDAMhgwZ0qjN6tWrKSws3KubCmfOnElCQgKDBw/e576JiBwsir1EmtfhFns1dS6rpKSE7777br+Owfbt2/Poo482+mnfvj0tW7bk0Ucf5cwzz2zUrmFkyl3FVMOGDQPg448/jiv/+OOPsVqt9O3bF4D6+vpGU/eapsmrr74KRBMspXlpJKVfkXfffZe6urrYcG3z5s1j27ZtAJx//vkkJydzxx138Oijj3L11VczYsQI0tPT2bp1K/Pnz+eoo47id7/73W63MXr0aD766CN+//vfM2bMGKxWK2+//TYZGRmMGTMmVu+9995j7ty5nHjiibRs2ZKKigqmTp3K1q1b+eMf/6jpA+SI0aNHD4YNG8bzzz+P2+2mdevWfPLJJ5SWlvL73/8+Vu/RRx9lyZIlfPHFF7GyvT3evvjiC5599lnatGlDQUEBn376aVwf+vXrFxvh6MYbb6RLly507dqVpKQkVq9ezdSpU8nJyYnNHQswcOBA2rdvzyuvvMLWrVvp0aMHRUVFvPfee2RlZcUFB59++ilz5syhd+/eJCYmsnDhQmbNmsWoUaPiAp59Wefdd99NixYt6NGjBxkZGWzdupWpU6dSUVHBgw8++LPfFxGRA0Gxl8gvw8GIxyD6N2Dt2rUAhEIh1q1bxyuvvALAoEGD6NixI7D3cc6WLVu44447GDZsGAUFBRiGwapVq/j000/Jzc3lggsuiNv+9OnTKS0txe/3A7B06dLY9k899VRyc3OxWq2MGTOGCRMmcMMNN3DqqacSiUT4+OOPKSsr4/777z9Ar7qIyIGluEvk0DoY8ZTT6eTqq6/mH//4B//v//0/+vfvz9KlS/n000+59tpr46b7uPDCCxk+fDgdOnTA4XDwww8/8Nlnn9G5c+dGIxldfvnlDBs2jJycHEpKSpg8eTKpqanceeedcfXq6up49913Afjxxx+B6PGenJxMcnIy559/fqzuTTfdxH333cedd97JiBEjWL9+Pe+//z6jRo2iXbt2jV6/vZ3qraamhm+++YYhQ4Yc0BE7RUT2lWIvkUPrcIu9xo0bx7HHHkunTp1ISUlhy5YtfPzxx4RCIa6//vq4vi9ZsoSlS5cC0SRDr9cbOz/Vu3dv+vTpQ3p6epMJ2f/73/8AmlwWDoeZNWsWPXv2jI3mtrMuXbpwxhlnMHXqVMLhMH369GHJkiXMmjWLyy67LDbV3erVq3nooYcYOXIkrVu3jk23+8MPP3DWWWcp+fEgMEzTNA91J+TAuOiiiygtLW1y2X//+1/y8vIAWLx4Ma+//jrLly8nEAjQokULevXqxXnnnbdXB922bdt45plnWLBgAZFIhL59+3LLLbfERkkBWLBgAW+++Sbr16+npqaGhIQEunfvzqWXXsqxxx57YHZY5BfC7/fz4osv8umnn1JXV0eHDh245ppr4kYu+u1vf9sokIC9O95eeuklJk6cuMvtP/XUU7Hs4BdeeIH58+dTUlKCz+cjKyuLAQMGMG7cuEZztNbW1vLKK6/w9ddfs3XrVhITE+nXrx/XXnstrVq1itVbvnw5zz77LOvXr8fv95Ofn88555zD2WefjWEY+7XO9957j88//5zCwkLq6upISUmhR48eXHLJJfTu3XvvX3wRkWak2Evkl6O54zGAxx57jE8++aTJ7d93332cfvrpwN7HOW63mxdeeIGlS5dSVlZGKBSiZcuWDBgwgMsvv7zR0NMN/W/KjvEgRC+UvfPOO2zevJlgMEjHjh0ZM2bMfo8OJSLS3BR3iRx6ByOeApgyZQr//e9/KSkpIScnh9GjR3PhhRfGnWP6v//7P3788Ue2bdtGIBCgZcuWDBkyhLFjxzZK7nnooYf44YcfqKqqIi0tjYEDB3LVVVc1GqW7pKQkbkTwHeXm5vL222/HlX355ZdMnDiRwsJC0tLSOP300xk3bhw2W/x94ZFIhAsvvJCMjAwmTJiwm1c4OnLB448/zvjx4xk4cOBu64qINCfFXiKH3uEUe7300kvMnz+foqIiPB4PGRkZ9O7dm8suuyx2U96OdXd1zXLcuHFcddVVu9zn3/72t1RXV8eSmnb07bffctddd3HbbbfFJY/vLBQK8dprrzFt2jTKy8tp2bIlo0eP5qKLLorVKS4u5rnnnmPFihVUVlZisVgoKChg1KhRTV7blANPSUoiIiIiIiIiIiIiIiIiIiIiItKsLIe6AyIiIiIiIiIiIiIiIiIiIiIi8uumJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISEREREREREREREREREREREZFmpSQlERERERERERERERERERERERFpVkpSEhERERERERERERERERERERGRZqUkJRERERERERERERERERERERERaVZKUhIRERERERERERERERERERERkWalJCUREREREREREREREREREREREWlWSlISERERERERERERETlMGIbB0KFDD3U3RERE5Fds48aNGIbBuHHj4srHjRuHYRhs3Lhxj3UPlHbt2tGuXbu4sokTJ2IYBhMnTtxj3cPZrvZD5EimJCURERERERERERE5YoXDYV544QWGDBlCZmYmdrudnJwcevXqxTXXXMOHH354qLu4W7Nnz8YwDB588MFD3ZWDaujQoRiGwezZs+PKfwkXrn4JfTyYZsyYwZ133smIESPIysrCMAwGDRq02zYvvvgi119/PccffzwulwvDMLj//vsPUo9FRER2zTAMDMM41N0QETls2Q51B0REREREREREREQOhXA4zKhRo/jkk09IT0/nzDPPpE2bNgQCAZYtW8Ybb7zBypUrOfvssw91V+UIsmLFClwu16HuxkHzr3/9i8mTJ5OQkECnTp2orKzcY5s777yT6upqMjIyaNWqFevWrTsIPRUREfn1Gz9+PPfeey+tW7c+pP0YPXo0J5xwAnl5eYe0HyJy4ClJSURERERERERERI5Ib775Jp988gm9e/dmzpw5pKWlxS33eDx88803h6h3cqTq1q3boe7CQfX73/+eRx99lG7durF582bat2+/xzZvvfUW3bt3p6CggIkTJ3LllVcehJ6KiIj8+uXl5R0WiUFpaWmNYnMR+XXQdG8iIiIiIiIiIiJyRPrqq68AGDduXJMXQVwuF8OGDYsrmzhxIoZhMHHiRD7++GNOPPFEkpKSyMjI4IILLmDNmjVNbsvj8TB+/Hj69OlDUlISycnJDBgwgDfffHOX/fv0008566yzyMnJwel00rZtW8455xxmzpwZ63dD/x566KHY9CI7ToO2Y38/+eQThg4dSlpaWmwako0bN2IYBuPGjWuyDw3Tqu1oxynmFi5cyGmnnUZaWhoZGRmcf/75bN68GYD169czZswYWrRoQWJiIsOGDWPp0qW73N+fo6FPhYWFFBYWxr0WO+/bypUrGTduHG3btsXhcNCyZUsuvfRSVq1a1Wi948aNwzAM1q9fzz//+U969epFYmIiQ4cOBSAQCPDMM89wxhlnUFBQgNPpJDMzk5EjRzJt2rT96qNhGLH176i6upr77ruPrl27kpCQQEZGBqeeemrs89DUth588EGWLFnCmWeeSXp6Oi6XiyFDhsQ++4eDAQMG0LNnT6xW6163Oe200ygoKGjGXomIiDQ/v9/PX/7yF44++mhcLhepqakMHjyYt99+u8n6pmny1FNP0aNHDxISEmjdujW33HIL1dXVB2w62YbYZ+PGjXusG4lEuO222zAMg/POOw+v1xtbNn36dM444wyys7NxOp107NiRu+++G7fbvVf92DGGbUp9fT133303+fn5OJ1OOnXqxF//+ldM02yy/ttvv81JJ51EWloaiYmJHH300YwfPx6/399k/e+++47zzz8/FocXFBRw0003UVJS0mT9tWvXcuGFF5KRkUFSUhInnngiH3/88V7tq8iRRiMpiYiIiIiIiIiIyBEpKysLgNWrV+9z2/fee49p06YxevRohg4dypIlS3j33XeZNWsWX331FV27do3VdbvdDB8+nMWLF3PMMcdw1VVXEYlEmD59OpdeeinLli3jkUceiVv/Aw88wJ///GeSk5M599xzadu2LcXFxXz11VdMmjSJkSNHcu655wLwyiuvMGTIkLjElp0vUr3zzjt88sknnH766dxwww0UFhbu8z7vbMGCBfz1r39lyJAhXHvttfzwww+89957/Pjjj0yePJlBgwbRrVs3xo4dS2FhIe+99x4nn3wy69evJzk5+Wdvf0ft2rXjgQce4MknnwTg9ttvjy3r06dP7PEnn3zCeeedRzAY5KyzzqJTp05s2bKF9957j48//phZs2ZxzDHHNFr/bbfdxpdffsmZZ57JGWecEUuoqays5LbbbuPEE0/k5JNPpkWLFpSUlDBlyhTOOOMMXnjhBa655pp96mNT3G43AwcOZPny5Rx33HHcfvvtlJeX8/bbb3PKKafw7LPPcv311zdqt3DhQv7v//6PAQMGcM0117Bp0ybeffddRowYwZIlS+I+pyIiInLwBAIBTj31VObMmUO3bt24+eab8Xg8vPPOO1x88cUsWbKExx57LK7NzTffzLPPPkurVq247rrrcDgcfPjhh3z77bcEg0HsdvtB67/P5+M3v/kN7733HjfffDNPP/00Fkt0fJSHHnqIBx98kMzMTEaNGkVOTg7ff/89f//735k6dSpff/01qamp+73tYDDIqaeeSnFxMaeffjo2m40PPviAe++9F5/PxwMPPBBX/w9/+APjx48nOzubSy+9lOTkZKZNm8Yf/vAHpk+fzqefforD4YjV/+ijjzj//PMxTZMLLriAgoICvvvuO5599lkmT57M3Llz40Z+XLNmDQMGDKCiooLTTz+dPn36sHbtWs4991xOP/30/d5PkV8tU0REREREREREROQItGjRItNut5uGYZiXXXaZ+e6775obN27cbZuXX37ZBEzAnDJlStyyJ5980gTM4cOHx5VfccUVJmD+9a9/jSv3er3mqaeeahqGYS5evDhWPn36dBMw27dvb27ZsqVRHzZv3hx7PGvWLBMwH3jggd321zAMc9q0aY2Wb9iwwQTMK664osn2Q4YMMXc+jdywTcCcNGlS3LKrrrrKBMyMjAzzkUceiVv25z//2QTMJ598sslt7YuGfs2aNSuuvKCgwCwoKGiyTWVlpZmenm5mZWWZy5Yti1v2ww8/mElJSWbfvn3jyhveu1atWpnr169vtE6fzxf3fjRwu91mz549zYyMDNPj8ex1H03TNAFzyJAhcWXXXXedCZjXXXedGYlEYuWrV682U1NTTYfDYW7YsCFWvuN79PLLL8et6z//+Y8JmDfeeOMu+7Czf/zjH+YDDzyw1z/vv//+Xq97Rw2fx4EDB+51m4bP+B//+Mf92qaIHHz19fXmiy++aN55553mGWecYQ4ePNicOnXqfq/v1ltvNQcPHtzkz9ChQw9gz0X2rOH7d08ee+wxEzBPP/10MxgMxsq3bt1qFhQUmIA5b968WPkXX3xhAmaXLl3MqqqqWLnf7zcHDx5sAruNL3a2qxiwIfbZMa7YuW5FRYU5cOBA0zAM8y9/+Utc+88//9wEzAEDBsT10zR/+s6+/fbb48qbio0a6u4cxzS8NqeffnpcjLV161YzLS3NTEtLMwOBQKz8q6++MgGzbdu2ZklJSaw8GAyao0aNMgHz0UcfjZXX1taamZmZpsViMb/44ou4bf/lL38xAfPkk0+OKz/55JObjHE/+OCDXcZjIkcyTfcmIiIiIiIiIiIiR6S+ffsyadIkWrZsyaRJkzj//PNp164dWVlZjB49milTpuyy7fDhwxk1alRc2S233ELHjh35/PPPYyMVVVRUMGnSJPr168c999wTVz8hISE2LcUbb7wRK//nP/8JwOOPP07r1q0bbbtNmzb7vK/nnHMOp5122j63251Bgwbxm9/8Jq7siiuuACAtLY177703btnYsWMBWLJkyQHtx9569dVXcbvdPPTQQ/To0SNu2VFHHcW1117L4sWLWb58eaO299xzT9wd8w2cTmeT70daWhpXXXUVVVVVLFiw4Gf1OxAIMGnSJJKTkxk/fnzc9HudO3fmt7/9LYFAgFdffbVR24EDBzaa7u6qq67CZrPx7bff7nUfnnzySR566KG9/vnggw/2d3dF5AhQXV3NxIkTKSwspFOnTj97fZdffjn3339/3M+dd94JwHHHHfez1y/SHF566SUMw+CJJ57AZvtp8qOcnBz+9Kc/ATBhwoRY+SuvvALAH//4R9LT02PlDoeD8ePHH5xOA4WFhQwcOJBvv/2W1157jd///vdxy59++mkAXnjhhbh+QnQquT59+vD666//7H48/fTTJCYmxp7n5ORwzjnnUF1dHTeF70svvQTA/fffT25ubqzcZrPx+OOPY7FY4l7nyZMnU1lZycUXX8zgwYPjtnnnnXfSrl07ZsyYwaZNmwDYsmULM2bMoH379txyyy1x9c855xyGDBnys/dV5NdG072JiIiIiIiIiIjIEeuiiy5i9OjRzJo1i7lz57J48WLmzp3LBx98wAcffMDYsWOZOHFiXGII0OQFB6vVyqBBg1i3bh2LFy+moKCABQsWEA6HMQyDBx98sFGbYDAIwIoVK2Jl8+fPxzCMA5pU1L9//wO2rgb9+vVrVNaqVSsgOn1Zw5RoDRoSrrZs2XLA+7I3vv76awCWLl3a5HvRMO3fihUrGiUx7e71W7ZsGX/729/44osvKCkpwefzxS0vKir6Wf1etWoVHo+HgQMHkpmZ2Wj58OHDeeSRR1i8eHGjZU29R3a7nZYtW1JVVbXXfdi4ceM+9VlEZHeysrJ4//33ycrKYuXKlVx33XU/a31NJSJ9+umnAJx88sk/a90izaG2tpa1a9fSunVrunXr1mj58OHDAeK+2xseDxo0qFH9E044IS7RCaLf3RMnTmxUt6kYaG+tWrWKAQMGUF9fz7Rp0xgxYkSjOl9//TV2u53//e9//O9//2u0PBAIUFZWRkVFRWzq5X2VlpbWZIJj27ZtAeJinEWLFgE/vaY76tKlC23atGHDhg1UV1eTlpa22/o2m42TTjqJjRs3snjxYvLz8+Pel51jX4ChQ4cyZ86c/dhLkV8vJSmJiIiIiIiIiIjIEc1ut3PKKadwyimnABAOh3n33Xe56qqrePXVVxk9ejTnnntuXJuWLVs2ua6GO7Srq6uB6EhKAAsWLNjtiDp1dXWxx263m4yMjLi7w3+uHe8cP1DS0tIalTVcINvdsobErIOt4b144YUXdltvx/eiwa5ev/nz5zN8+HBCoRAjRozg7LPPJjU1FYvFwpIlS5g8eTJ+v/9n9bvhs5SXl9fk8oZyt9vdaNnOIxg0sNlshMPhn9UvEZH95XA49jo5Yf78+UyaNInVq1djGAa9e/fmxhtvbHJ0ux3NmDGDxMTEJhM6RA61/flub2jTVAxqtVobHVMbN27koYcealT35yQprV69msrKSvr06cMxxxzTZJ2KigpCoVCT295RXV3dficp7S6+AeJinL15rTdt2oTb7SYtLW2f35vdvS/QPDG4yC+dkpREREREREREREREdmC1Wrnooov44YcfeOSRR/j8888bJSlt3bq1ybalpaXAT0k6Db9/97vf8cQTT+zV9tPT06moqMDr9R6wRKWdR4JqYLFYAAiFQk0ubyrx5Zeq4b1YunQpvXr12qe2u3r9HnnkEbxeL7NmzWLo0KFxy8aPH8/kyZP3q687auh3w2drZyUlJXH1msOTTz65T5+FPn36NDpmRET21fTp03nsscfo378/119/PX6/nw8++ICbb76ZF198cZdJBG63m4ULFzJ8+PADmvArcqDsz3d7amoqEI1BO3ToEFc/HA5TUVERN03w0KFDMU3zgPb7rLPOomvXrvzhD39gxIgRzJgxo1GiUVpaGpFIhMrKygO67f2142vdsWPHRst3fq339b1p+L2n/xuIyE+UpCQiIiIiIiIiIiLShJSUFIAmL/A0NW1DOBxm7ty5APTt2xeIThNmsVj48ssv93q7J5xwAh999BGffPIJo0eP3m3dhmkl9ndUnIyMDAA2b97caFlNTU1sCrRfCqvVSiAQaHLZCSecwLvvvsuXX365z0lKu7J27VoyMzMbJShB05+RPfWxKV27dsXlcrF06VLcbnej0QNmzZoFsMsRDQ6EJ598ksLCwr2uf8UVVyhJSUR+Fo/Hw1NPPcWoUaO4++67Y+WnnXYal112GZMmTYor39Fnn31GOBzWVG9y2EpJSaFjx46sX7+eNWvW0Llz57jlTX239+3bNzYt8c5JSvPnz99lwvmBdt9995GYmMjvfvc7hg4dysyZM+NGETrhhBP4+OOPWbZsGT179jwofdqdvn37smjRImbPnt0oSWnt2rVs2bKF9u3bx+Krhhh+9uzZXH311XH1Q6FQLKZveG8a6s+dO5dwONxoyrfZs2cf6F0S+cWzHOoOiIiIiIiIiIiIiBwKb775JjNmzCASiTRaVlpaGpsW7KSTTmq0/PPPP+ejjz6KK3vmmWdYt24dw4YNo6CgAICcnBx+85vfsHDhQh5++OEmk4nWrVvHhg0bYs9vvfVWAO68806Kiooa1d+xrOHu9U2bNu1xf5uSkpJCt27dmDdvHsuXL4+Vh8Nh7rjjDrxe736td19s3LgRwzBo167dz15XVlYWZWVlTfb7yiuvJD09nYceeohvv/220fJIJLLPF5LatWtHZWUl33//fVz5iy++yPTp0/e5j01xOBz85je/oba2lj/96U9xy9atW8fTTz+N3W7n8ssv36e+74uNGzdimuZe/0ycOLHZ+iIiR4aFCxdSV1fHiBEjcLvdsR+LxUL37t1ZtGjRLtvOnDmT9PR0+vXrdxB7LLJvrrrqKkzT5O67746LD8vLy3n44YdjdRqMHTsWgEcffTQ2xRhAIBDgD3/4w0HqddTtt9/Os88+y7JlyxgyZAjFxcWxZb/73e8AuPbaa+PKG9TX1zN//vyD1teG1/CRRx6hrKwsVh4Oh7nrrruIRCJxyUjnnnsumZmZvPnmm436+eSTT7JhwwZGjhxJfn4+AG3atOHkk09mw4YNPPPMM3H1J0+evMukdZEjmUZSEhERERERERERkSPSN998w1NPPUVubi6DBg2iffv2AGzYsIGPP/4Yr9fLOeecwwUXXNCo7VlnncXo0aMZPXo0nTp1YsmSJUybNo3MzEz+/e9/x9V95plnWLNmDf/v//0/XnvtNQYNGkTLli0pLi5mxYoVLFiwgDfffDO2/VNOOYX777+fRx55hO7du3PuuefStm1btm7dyty5cznhhBNiSSBdu3aldevWvPXWW9jtdgoKCjAMg8svvzyWKLUnd999N1dffTUDBw7kwgsvJCEhgVmzZhEMBunduzdLly79Ga/ynjUkidlsP/909YgRI1iwYAGnnXYaJ510Ek6nk969e3PWWWeRlZXFO++8w+jRoznhhBMYMWIEPXv2xDAMNm/ezNdff01FRQU+n2+vt3f77bczffp0Bg0axEUXXURaWhoLFy5k7ty5XHDBBbzzzjv71Mdd+ctf/sKXX37JM888w4IFCxg2bBjl5eW8/fbb1NbW8swzz8Q+P780c+fOZcKECQDU1dUBsGbNGsaNGxers3PS04QJE2Kjlq1duxaAKVOmsGXLFgC6devGvffe28w9F5Hm1HA833777U0uT0pKarK8uLiYZcuWcd555x2Q7xWR/bXj99jO/v3vf3PXXXcxbdo0Jk+eTO/evTnjjDPweDz873//Y9u2bdxzzz0MGjQo1mbIkCFcd911PP/88/Ts2ZPzzz8fu93OlClTSEtLo1WrVrFpfA+GG264gYSEBK6++mpOOukkPv/8c/Lz8xkxYgR/+ctfuO++++jcuTNnnHEG7du3p66ujsLCQubMmcOgQYP45JNPDko/TzzxRO655x7+7//+j6OOOooLLriApKQkpk2bxo8//sigQYPiRmVLTk7mpZde4sILL2TIkCFceOGF5Ofn89133/Hpp5+Sm5vLc889F7eNf/3rXwwYMIDbb7+dTz/9lN69e7N27Vref/99zjrrLKZMmXJQ9lXkl0LfziIiIiIiIiIiInJEuvPOO+ncuTMzZ87k+++/Z/r06fh8PrKyshg6dO9iCTgAAQAASURBVCiXXnopl156KYZhNGp73nnncd111/Hoo4/y8ccfY7fbOe+88xg/fjxdunSJq5uamsqcOXN4/vnneeONN3j33Xfx+Xy0bNmSzp07849//KPRlDQPP/wwAwYM4Omnn+ajjz6ivr6enJwc+vXrF7uTHqJTh73//vvce++9/O9//6O2thbTNBk0aNBeJyk13Mn/xBNP8Morr5CRkcE555zDY489xvnnn78fr+y++eGHHwAYM2bMz17X/fffj9vtZsqUKcybN49wOMwVV1wRSwAaMWIE33//PX//+9+ZPn06X375JQ6Hg1atWjF8+PB93t/TTjuNKVOm8Mgjj/Df//4Xq9VK//79mTVrFuvXr28ySWlPfWxKZmYmX3/9NePHj+e9997jiSeeIDExkf79+3P33Xdzyimn7NsLdRhZu3Ytr7zySlzZtm3b4sp2TlKaO3duozbff/99bESrIUOGKElJ5BeuIYH1/vvvJzMzs9HynadUajBjxgwATfUmh9zO31M7evLJJ3G5XMyYMYMnnniCN954g3/+85/YbDZ69+7Nk08+ySWXXNKo3bPPPku3bt147rnn+M9//kNWVhajR4/mscceo02bNo2mM2tu48aNw+l0Mnbs2FiiUocOHfj973/PwIEDefrpp5k7dy6TJ08mLS2N1q1bc91113HppZce1H7+9a9/pW/fvjzzzDO8+uqrBINBOnbsyCOPPMKdd96Jw+GIq3/OOecwb948HnvsMaZPn051dTW5ubnccMMN/OlPf6JVq1Zx9Tt37sz8+fO59957mTlzJrNnz6ZXr1588MEHlJWVKUlJZCeG2dSE6iIiIiIiIiIiIiLSyMSJE7nyyit5+eWXd3uHvOy9O+64g+eee47CwkKys7MPdXdEROQgWrlyJddddx333Xcfp59+eqx81qxZPPDAA/z973+nf//+e72+yy+/nFAoxJtvvtkc3RU5LK1Zs4YuXbowZswYffZF5LB38MZ8ExERERERERERERHZyZw5c7j22muVoCQiIjH9+/cnKSmJSZMmEQqFGi13u92NylavXk1hYSEjR448CD0UOfhKS0tjo4w18Hg8sWkRR48efQh6JSKybzTdm4iIiIiIiIiIiIgcMt99992h7oKIiBxk7777LnV1dVRU/H/27ju+iip9/Phnbm/pnRQILRCKgIgUQZoi2HtfFcV1Xevqz7K69nXXtbfv2sW1KwoIIlIUpEtvIQklpLd7k9v7vfP74yYDMXRpwnm/Xih37pmZc2ZCcnLPM89jA2DJkiU0NDQAcOmll2KxWPjb3/7GP//5T26++WbGjBlDYmIi9fX1LF++nN69e3Pvvfe2OaYo9Sac6F555RU+//xzRo4cSVZWFnV1dcyfP5+qqirGjx/P5Zdffqy7KAiCsF8iSEkQBEEQBEEQBEEQBEEQBEEQBEEQhKPmyy+/pK6uTnn9yy+/8MsvvwBw9tlnY7FYOOuss0hNTeXTTz/liy++IBgMkpaWRt++fZkwYUKb40WjUX766Se6d+9OXl7eUR2LIBwtZ511FuvXr2fOnDk0NTWh0Wjo3r07d911F/fccw+SJB3rLgqCIOyXJMuyfKw7IQiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAjCiUtkUhIEQRAEQRAEQRAEQRAEQRAEQRCEP5AtW7Ywe/Zs1q5dS11dHfHx8fTq1YtbbrmF3NzcgzrWf/7zH2bOnMmQIUN47rnn2r3v9Xr56KOP+Pnnn7HZbCQkJNCrVy8eeeQRDAbD4RqSIAiCIAgnARGkJAiCIAiCIAiCIAiCIJyU/H4/5eXldOzYUSywCYIgCILwh/LZZ5+xceNGRo0aRZcuXbDZbEydOpVbbrmF//73v3Tu3PmAjlNcXMwPP/yATqfb4/tut5u77rqLxsZGzj//fLKzs7Hb7WzYsIFQKHRQcygx9xIEQRAEQZR7EwRBEARBEARBEARBEE4q8+bNY968ebjdbjZs2MC7775LQUHBfvfbvn07Xbp0OQo9FAThaBL/tgVB+CPauHEjPXr0QKvVKtsqKyu56aabOPPMM/nHP/6x32PIssztt99Ox44dWbNmDfn5+e0yKb300kvMmzeP9957jw4dOvyuPpeUlDBp0qQDnnv90Z1sP19OtvHCyTfmk228cPKN+WQbL5x8Yz4exqs6pmcXBEEQBEEQBEEQBEEQhKNs7Nix/Pvf/+bOO+88qP0CgcAR6pEgCMeS+LctCMIfUZ8+fdoEKAHk5ubSqVMnysvLD+gYP/74I2VlZUyaNGmP77tcLmbNmsX5559Phw4dCIVCBIPB3933k8XJ9vPlZBsvnHxjPtnGCyffmE+28cLJN+bjYbyi3JsgCIIgCIIgCIIgCIIgCIIgCIIg/MHJskxzczOdOnXab1uv18tbb73FddddR0pKyh7bbNy4kWAwSE5ODv/4xz9YvHgx0WiUXr16ce+999KtW7d9nsNqtWKz2ZTXBxo8JQiCIAjCiUsEKQmCIAiCIAiCIAiCIAiCIAiCIAjCH9zcuXNpbGxk4sSJ+207efJk9Ho9V1xxxV7bVFVVAfDOO+/QoUMH/v73v+PxeJg8eTL33HMPH330EampqXvd/7vvvmPy5MnttpeVlRGJRPY/oD84t9tNUVHRse7GUXOyjRdOvjGfbOOFk2/MJ9t44eQb85Ecb2Fh4QG1E0FKgiAIgiAIgiAIgiAIgiAIgiCcVCKRCKFQ6Fh3QzgMdDodKpXqWHfjmCsvL+fll1+mV69enHPOOftsW1lZyZQpU3jsscfQ6XR7befz+ZS/v/zyy5hMJgC6devGX/7yF6ZOnbrXUnEAF1xwAcOGDWvTx2eeeYb8/HwKCgoOdGh/WEVFRQe8YHsiONnGCyffmE+28cLJN+aTbbxw8o35eBivCFISBEEQBEEQBEEQBEEQBEEQBOGkIMsydXV12O32Y90V4TBRqVTk5+fvM9jmRGez2XjwwQcxm808/fTTqNXqfbZ/7bXX6N27NyNHjtxnu9ZrOmzYMCVACaBXr15kZWWxadOmfe6fmpq6z0xLgiAIgiCcfESQkiAIgiAIgiAIgiAIgiAIgiAIJ4XWAKX09HRMJhOSJB3rLgm/QzQapaamhtraWvLy8k7K++l2u3nggQdwu9288cYb+w0KWr16NStWrOCZZ56htrZW2R6JRAgEAtTW1hIfH4/ZbFaOlZSU1O44SUlJuN3uwzsYQRAEQRBOeCJISRAEQRAEQRAEQRAEQRAEQRCEE14kElEClFJSUo51d4TDJC0tjZqaGsLhMFqt9lh356gKBAI89NBDVFZW8tJLL9GpU6f97tPQ0ADAo48+2u69xsZGrrzySu644w6uuOIKpSSb1Wpt19ZqtZKXl/f7BiAIgiAIwklHBCkJgiAIgiAIgiAIgiAIgiAIgnDCC4VCAG3KVgl/fK0lySKRyEkVpBSJRHjiiSfYvHkzzz77LL17995jO6vVisfjITs7G41Gw4ABA/jnP//Zrt3zzz9PZmYm119/PZ07dwYgLy+Prl27snjxYux2O4mJiQD8+uuvNDQ0cOmllx6x8QmCIAiCcGISQUqCIAiCIAiCIAiCIAiCIAiCIJw0TsaSYCeyk/V+vvnmmyxZsoShQ4ficrmYM2dOm/fPPvtsAN555x1mz57Nl19+SVZWFhkZGWRkZLQ73uuvv05SUhLDhw9vs/2OO+7gvvvu44477uCCCy7A7Xbz1VdfkZuby4UXXnjkBigIgiAIwglJBCkJgiAIgiAIgiAIgiAIgiAIgiAIwh/Itm3bAFi6dClLly5t935rkNLvNWDAAJ5//nnef/993nnnHQwGA8OHD+e2224TWckEQRAEQThoIkhJEARBEARBEARBEARB+MN6/vnnWbJkCX6/n4yMDG699VaGDRt2rLslCIIgCAfsiSee4KGHHsJgMBz0vq+88gpXXXUVmZmZyrHsdjuvvPLKYe6lcLx57bXXDqjd3//+d/7+97/vt91XX3211/cGDhzIwIEDD7hvgiAIgiAIe6M61h0QBEH4o5IkiZEjRx7rbgiCIAiCIPxhPfHEE0iSxIIFC451VwRB+AO74oor+Oqrr5g9ezYPPfQQzzzzDA6H41h3SxAEQRAO2JNPPonf72+3PRwO73ffV155hbq6uiPRLUEQBEEQBEE47ESQknDUPfjgg4wZM4bc3FyMRiPJycn079+fJ598EpvNtsd9XC4XjzzyCD169MBgMJCUlMS4ceOYP3/+Xs9TVlbGbbfdRo8ePTCZTGRkZDBkyBDeeecdgsFgu/Zz587lvvvuY8yYMaSkpCBJEmecccYhj7OpqYl77rmHTp06odfr6dChAxMnTqSqqqpd28mTJyNJ0j7/qNXqQ+rH/Pnzufjii8nMzFT6MW7cOGbNmtWmXWVlJbfffjunn356m7bDhw/nww8/JBQK7fUcH330EYMGDcJisZCQkMDIkSOZOXPmXtuvWbOGyy+/nIyMDHQ6HXl5edx+++3U19cf1NhuvPHGfV6z4uLiNu2P5HU+XObOnYskSQwaNGi/bT/77DMkSRJ1vwVBEITDQswZdjkSc4YpU6Zw5513Mnz4cOLj45Ekieuuu26/+y1dupQJEyaQnJyM0Wikb9++vPLKK0Qikb3uM3PmTEaOHElCQgIWi4XTTz+djz76aJ/nOdh7E4lEePnll+nbt68yp58wYcIeSwwcC8OGDUOSpHZfv3tSUFCAJEmsXbv2KPRMEIQjoWPHjuh0OiD2MEkoFMJqtR7jXgmCIAh/FNMeWcJnd/x0xP5Me2TJPs9/2223ATB8+HD69evHhAkTmDhxIiNGjKB3795A7Oeb3W5X9klNTWXnzp089dRT1NTUcOWVV9KvXz/WrVsHQG1tLeeffz6FhYWMHj2apqamI3LtBEEQBEEQBOFgiXJvwlH38ssvM2DAAM466yzS09PxeDwsX76cJ554gnfeeYfly5eTm5urtG9ubuaMM86gqKiIXr16cdttt+F2u5k+fTpjx47lvffe4+abb25zjpUrVzJq1Ch8Ph/nnHMOF154IU6nkxkzZvDnP/+Zb775htmzZyNJkrLPm2++yfTp0zEYDHTt2vV3/eJms9kYOnQopaWljB49mquuuori4mI+/PBDvv/+e5YtW0bnzp2V9v369ePxxx/f47EWLVrETz/9xPjx4w+6Hw888ADPP/88OTk5XHDBBaSmptLY2Mjq1atZsGABEyZMUNpu376dTz/9lNNPP52LLrqI5ORkbDYbP/zwAxMnTuTjjz9mzpw5aDRtv23cf//9vPjii+Tk5DBp0iSCwSBffPEF559/Pq+//jp33HFHm/YzZ87kkksuIRwOc/7559O9e3eKi4t56623mDFjBkuWLCEvL++gxnn33XeTmJjYbntqamqb10fqOh9OY8eOJT8/n5UrV7Jx40b69Omz17bvvvsuALfeeuvR6p4gCIJwghJzhiM/Z3jmmWdYv349FouFnJycdoFRezJ9+nQuvfRSDAYDV155JcnJycyYMYN7772XJUuW8PXXX7fb54033uDOO+8kJSWF6667Dp1Ox5QpU7jxxhvZuHEjL7zwQrt9DvbeyLLMVVddxZQpUygoKOCOO+6gqamJL7/8khEjRvDNN98c8yDqSZMmsXTpUt577702X7+/tXDhQkpLSxk4cCD9+/c/ij0UhBOP1+vliy++oKioiC1btuByuXj44Yf3+P0yGAzy/vvvM2fOHFwuF126dOGWW27htNNOO+Tzv/TSS8yaNYtgMMjgwYPb/M4tCIIgCPvidQTwNgWO2fnfeust3n77bRYtWkRiYiI33ngjq1evZvHixcTFxe1z38cee4wPPviAL7/8kn79+gEwbdo0VqxYwerVq0lJSeGqq67i7bff5uGHHz4KoxEEQRAEQRAOlizLNG6zs3VRDUk5FnqOzUNSSfvf8Q9KBCkJR53T6dxjbe1HHnmEZ599ln/961/83//9n7L9iSeeoKioiEsuuYQvv/xSWfB69tlnGThwIHfeeSfjxo0jJyenzT4ej4fJkydzww03KNtfeOEFBg0axJw5c1i0aBEjRoxQ3nvwwQf55z//SY8ePaisrCQ/P/+Qx/j3v/+d0tJS/va3v/Hiiy8q21977TXuvvtubr/9dmbPnq1s79evn/JL5G8NGTIEOPhAlHfffZfnn3+eG264gXfeeUd5qrTVb7McDB06lObmZlQqVbt2Z599Nj///DPffvstV1xxhfLe0qVLefHFF+nSpQsrV64kKSkJgP/3//4fp556Kvfffz/nnXcenTp1AsDv93PLLbcQCoX45ptvuOSSS5Rjff7551xzzTXccccdfPfddwc11taMVftzJK7z4SZJErfccguPPPII77777l7rim/bto2FCxeSm5t7zAOrBEEQhD82MWdo70jMGV5++WVycnLo2rUrCxcuZNSoUfts73Q6mTRpEmq1mgULFjBw4EAAnn76aUaPHs2UKVP44osvuOqqq5R9du7cyf33309ycjKrVq1SxvrYY49x2mmn8eKLL3LppZcqY4CDvzcAX3zxBVOmTGHo0KHMnz9fmdvfdtttnHHGGUyaNInRo0fvd0HlSLryyiu55557mDlzJvX19WRkZOyx3XvvvQcc+zmgIJwIHA4HkydPJiMjg65du+4zO9m//vUvFixYwOWXX05OTg4//PADDzzwAK+++ip9+/Y9pPP/7W9/4+6772bdunXs2LGjzUNJgiAIgrAvpgT9cXf8yy+//HfNp8855xxSUlKA2O8wGzduPORjCYIgCIIgHM9C/jAVaxrYsbwO6w4HmT2T6X5mNh0KU477QJ+QP8y2JTVsmVdBU7lL2V6xtpEz/9IHY/yRnaceKyJISTjq9hSgBHDFFVfw7LPPsnXr1jbbp06dCsBTTz3V5on89PR0/va3v3HvvffywQcf8Nhjjynv7dixA4ALLrigzbHMZjNjxoyhqKiIxsbGNu/tvljze7jdbj7++GPMZjNPPPFEm/fuuOMOXnrpJX788Ud27Nix3yc7N27cyPLly8nOzubcc8894D4EAgEeeeQR8vLy9rjYCKDVatu83lOb1nYXXXQRCxYsaHdv3nrrLSAWYNa6oAXQqVMn/vrXv/L000/z4Ycf8uSTTwKxRbD6+noGDhzYZrER4Oqrr+a5555j5syZlJeX07FjxwMe7+91qNd5b55//nkefPBBhgwZwowZM0hOTgZgxYoVPP/88yxevJimpiYyMjKYMGECjz/+OB06dFD2nzhxIo8//jiffPIJ//nPf/b4b+a9995DlmVuvvnmdovEgiAIgnCgxJzh4PyeOcP+gpJ+a8qUKTQ2NvKnP/1JCVCC2Fz6mWeeYcyYMfz3v/9tE6T0wQcfEAgEePDBB9sEFSUlJfH3v/+dm2++mbfeeqvNvPdg7w3Af//7XyCWHWr3ecppp53GlVdeyccff8yUKVO46aabDmrMu6uoqGD8+PFs3bqV999/n+uvvx6IZWp59dVX+fLLL9m6dSuSJNGnTx/uuusurr76amV/o9HIddddx5tvvsnkyZN58MEH253DbrczZcoULBZLm30FQTg0KSkpTJ06lZSUFIqLi/ca/FdUVMT8+fP5y1/+ovzbGzduHDfeeCP//e9/le8xAH/961/3uqh6/fXXM2nSpDbb1Go1p556Kl9//TU5OTmH7fd8QRAE4cR20T+HHesutGOxWNq8VqvVbUo++/3+fe6/+zxdrVYTDocPbwcFQRAEQTjuybJMyBcm4AkT9IQItPzZ9fcwAXeQoCe8a3vET2iogbz+aSRmW47bB4DCwQiV6xrZsayWirUNRIJR5b3tS2rYvqQGS6qRbiOy6T4im7h00zHsbXtNFS62zKtg25JqQr7YHE+tVZHbL43KdY1UrW9k6sNLGHXHKWT1TDnGvT38RJCScNyYMWMGQLunJuvq6gD2GNDTum3+/PltgpR69epFcXEx33//Pdddd52y3ev18tNPP2EymY7Yh5XLly/H5/Nx9tlnt3vaRaVSMW7cON555x1+/vnn/QYpvfPOOwDcfPPNqNXqA+7D3LlzaWxs5J577kGlUvH999+zadMmDAYDgwYNOqixRyIRZs2aBbS/Nz/99BMQezLnt8aPH8/TTz/NTz/9pCxq7etetm5fv349P/3000Etav3www84nU7UajVdu3Zl9OjRxMfHH/D+h3qdfysajXLPPffw+uuvc8kll/Dpp58qHwh88MEH3Hrrrej1ei644AJyc3PZunUr7733HjNmzGD58uVKyZrMzEzOO+88pk2bxjfffMO1117b5jzhcJiPPvoItVrNxIkTD7m/giAIgiDmDMdmznAg9nXNRowYgclkYunSpQQCAfR6/X73ac282NrmQM6zp3vj9/tZunQpJpOJ4cOH73Gfjz/++KDvze7Wr1/PhAkTcLlczJo1i7FjxwKxoKLRo0ezdu1aBgwYwMSJE4lGo/z4449cc801bN68mWeeeUY5zqRJk3jzzTd5//339xik9Mknn+D3+5k0aVK7RSBBEA6eTqdTMjbsy8KFC1Gr1W0eKtLr9Zx77rm88847bbKfvfnmm4fUl0gkQnV19SHtKwiCIAjHQlxcHA6HY4/lqQG6du3KihUrmDBhAt9++y0ej0d5Lz4+HofDcZR6KgiCIAjC0SLLMuFAhJA/QsgXJhQItw0oagk0Cu4efOTeLRjJG0aOygd93pXlJaz8vARLqpHc/mnk9Usjq1cKGt2R/Tx0fyKhCFUbrLHApDUNhPy7ArjjM0zkD84is3si5Wsa2LGsFrfVx9pvt7H2221kFSbTfUQOnQZloDUcmxCZcDBC2a91FM+rpL60WdmekGWmx5hcuo3IxmDR0VThYv5ra3HUeJj1zK/0v6Qr/S7uiuo4zwp1MESQknDMvPDCC7jdbhwOB6tWrWLx4sX07duXhx56qE271NRUamtrKSsro7CwsM17rRmTSkpK2mx/5plnWLp0KTfeeCNfffUVhYWFOJ1OZs6cSTgcZsqUKW0y1xxOrX3p3r37Ht/v1q0bAKWlpfs8js/n45NPPkGtVnPLLbccVB9WrlwJxJ6Y6d+/P5s2bWrz/ogRI5gyZQppaWnt9rVarbzxxhux2peNjcydO5dt27ZxzTXXcP755yvtPB4P1dXVWCwWsrKyDmicqampAJSVle2x33u7n/tz++23t3kdFxfHv/71L/7617/ud9/fc5135/f7ufbaa/n222+54447ePXVV5UMR6Wlpdx222106tSJhQsXkp2drew3f/58zj77bO6++24laxjESo5MmzaNd999t12Q0owZM6irq+Pcc88lNzf3kPssCIIgCGLOcPTnDAdqX3NKjUZDfn4+mzdvZseOHfTs2XO/+2RlZWE2m6mqqsLr9WIymQ7p3mzfvp1IJELnzp3bZDnd1z4HY968eVx66aWYzWYWLVrEKaecorx3zz33sHbtWp577jkeeOABZbvf7+eiiy7i2Wef5bLLLlNK9Z1yyikMGjSIX3/9lQULFjBy5Mg25xKl3gTh2Ni6dSs5OTmYzeY221u/l23btm2vJRr3xO12s2zZMoYNG4ZOp2PRokWsXbt2r/+2rVYrNptNeV1eXn4IoxAEQRCEw+u+++7jrLPOwmQy7fFz65dffpm77rqLRx99lHPPPbdNYPBdd93FpEmTMJlMTJ48+Sj2WhAEQRCE3UUjUYK+MGF/hJA/vCu4SHkd+3vYv9s2X4RQINymnbJ/IAIHH2PUjlqrQmfWojdrWv4f+7Pr7xr0Zh06s4Ztm3cSqlVTW2TDbfWxZW4FW+ZWoNap6NArhbz+6eT2S8OSavz9HTsA0XCU6s02diyrpXxVPUHvruyQllQD+YOz6DI4i5T8eCXrU27/dAZf35PyVfWULqyiepON2qImaouaWPqRmvzTs+h+Zg4Z3ROPSqYoZ72HLfMrKV1QRcAdAkBSS3Q6NYOeZ+WRVZjcph/JeXFc9MxQln1UROnCatZ8s43aLU2M/OspmJP2XLHqj0YEKQnHzAsvvEB9fb3y+pxzzmHy5MntFsHOPfdc3nvvPR5//HG++OIL5an1xsZGXn75ZQCam5vb7NOjRw9WrlzJ1VdfzYwZM5QsTVqtlnvuuYfBgwcfsXG1PrWSkJCwx/dbt9vt9n0e56uvvsJutx9SIEpDQwMQKztWWFjIokWL6NevH2VlZdx///3MmTOHyy+/nAULFrTb12q1tinnIUkS999/P88++2ybdocyzmHDhpGYmMjKlSuZPn06F154YZvxrl+/Hmh/P/dmxIgRTJgwgcGDB5Oenk5NTQ1Tp07lySef5I477kCr1e530en3XOdWTU1NXHDBBSxdurTdohnESqKEQiFeffXVNgFKAGPGjOGCCy5gxowZuFwuJfvWuHHj6NixIwsXLmTr1q3Kgh+IBTVBEATh8BFzhqM7ZzgYh3LdDmQfj8eDw+HAZDIdsXP8dp8D9cknnzBx4kS6du3K7NmzlSyTADabjU8++YSBAwe2m2sZDAaee+45fvzxRz777DMlSAli86Vff/2V9957r02Q0sqVK1m/fj39+/dvU05PEIQjz2az7THjUus2q9V6UMeTJImZM2fy8ssvI8sy2dnZ/OMf/2jzO9Tuvvvuuz0u4JaVlbUpo7M3breboqKig+qjIAjHP/Fv++QRjUaJRqP4/X5k+TCs+h0mDzzwQLt5rs/nU/4+cuRINmzYoLz++9//rrS59tpr2zzk2JpFtHX/m2++mZtvvrnN8U40gUCAUCjEtm3blAdHgXYPPQuCIAjCkbJ1UTXL/7eFgCd0+A8ugdagQWtQozPtPdBo9+16y673DiYDksdoo7CwkJA/TM1mG5XrGqlc24inyU/l2tjfAZJy48jrn0ZuvzTSuyWiUqv2c+QDF43K1BbZ2LGsjp0r65TAHgBTkp780zPpMiSLtK57DzLS6NR0GdqBLkM74Lb62LqomtKFVbgafJQuqKJ0QRUJWWa6jchGzjj8ZXGjkSgVaxopnl9B1YZdn3OYUwz0GJ1LwcgcTPsIONIaNIz4c1+yeqWw5P3N1BY1MfXhJZz5l77kntL+geI/GhGkJBwzrWU86uvrWbp0KQ899BD9+/dn5syZDBgwQGn31FNP8eOPPzJlyhT69evHmDFj8Hg8TJ8+nezsbCoqKtr84gGwdu1aLrroItLT05XFNrvdzieffMKjjz7KtGnTWLly5V4XV44HreVE/vznP7d7b+fOnXv8UPWJJ54AYr9sQ+wp+++++45OnToB0KdPH6ZOnUpBQQELFy5k2bJl7cq49OjRA1mWlfT4U6dO5bHHHmPx4sV8//33JCcnH/KYzGYzr776KjfeeCOXXHIJF1xwAd26daO4uJiZM2fSr18/1q1b1+5+7s1vS5117tyZ++67j4KCAs4//3weeeSR/ZZj2dd1PhD19fUMGzaMHTt28Mknn3DNNde0a7Ns2TIgVtagNWPF7hoaGohEIpSWlnLqqacCsdKAN998M4899hjvvfcezz33HABVVVXMnj2bDh06cO655x5SnwVBEAShlZgzHJ45w/7mZsL+vfrqq0yfPp1hw4bx3XffkZSU1Ob9lStXEolEkCRpj9c1FIp9WLFly5Y226+66iruvfdevvnmG15//XXluO+++y4QKwknCMLRFQgE0Gq17bbrdDrl/YPR+jPjQF1wwQUMGzZMeV1eXs4zzzxDfn4+BQUF+92/qKhILHgKwglI/Ns+efj9fsrKyjAYDBgMJ8aT6EIsaFmr1ZKfny/uqyAIgnBUhfxhlk4uYusvu0qOq7UqNHo1WmMssKg1wCj2/9jfNQYNWqMarb7l/7u9p215T2PQoDNoUOtURyXjz+60Bg0dT82g46kZyLJMU6VLCVJq2NpMc6WL5koX67/bgd6sJeeUVHL7pZFzShqGON1Bn0+OytSVNLNjeS1lK+rwO4PKe4Z4HfmnZ9J5cBaZBUlIB1n2zJJqpP/FXel3YRfqSpopXVhF2Yo6HLUeVn1ZChLULwzQ/cwcOp6ajlp76GXtPM1+Sn6upOSnKjxN/thGCXL6ptJzbB65/dIOKqCr2xnZpHdJ5KfX1mIrd/Hjc6voe34+Ay/vjkpz+ALDjjYRpCQccxkZGVx88cUMGDCA7t2786c//alNqZGsrCxWrlzJ008/zcyZM/m///s/UlNTufLKK7n77rvp1q0b6enpSvtwOMwVV1xBY2MjK1asIDMzEwCLxcJDDz1EfX09r7zyCi+//PIRWThqDXzaWx3w1u17qy8OsHnzZpYuXUpOTg4TJkxo9/7OnTvbZC5o1Tqe1mP3799fWWxsZTKZGDduHO+//z6//vpruwXHVmq1mry8PO6++24yMjK4+uqreeyxx3jjjTd+1zj/9Kc/kZuby3PPPceCBQuYNWsWPXv2ZPLkyTQ0NLBu3bo29/NQnHfeeWRnZ1NdXU1RURF9+vTZY7v9XecDUVdXh9PpJCcnhzPOOGOPbVpLCTz//PP7PJbb7W7zeuLEiTz55JN89NFHPPPMM2i1Wj744AOi0SgTJ07c50KqIAiCIBwIMWc4PHOG/c3NDsWhXLeEhASsVisOh2OPWUp+mwXpUM9xsPsciF9++QVZlhkzZky7ACXYNZ9auXLlHoO+W/12PmU2m7nmmmt4++23+eSTT7jzzjvxeDx88cUXmM3mdmV1BUE48vR6vRJYuLtgMKi8fySlpqYqZUUFQRAEQRAEQRAE4VA1V7mY/+o67NVuJAn6X9qVU87v/LuCXI5HkiSRkhdPSl48/S7sgt8VpGqDlcq1DVRtsBJwh9i+tJbtS2uRJEjvlkRu/zRy+6eRnBu31wArWZZp3GZn+7JYYJK3eddDS3qLlk6nZdJ5SCZZPZMPS6YmSSWR1TOZrJ7JDLmhkJ0r6ihZWEV9STNV661UrbeiN2vpMjRWDm73EnL7Ikdlajbb2DKvgvLVDcjRWLZOQ5yW7iNz6TE6l/gM0yH3OyHLzPlPDuHXT4spmlvBhhll1G1pZtSdpxCXdujHPZZEkJJw3OjYsSOFhYWsW7cOq9Xa5kPDjIwM3njjDWWxq9VPP/0EwGmnnaZsKy4uZtu2bQwYMEAJUNrdqFGjeOWVV1i9evURGUfrk5elpaV7fH/r1q0AdO/efa/HaH1Sf29P9I8cOXKf6Yhb+7C3xaHWhZ8DTfE7fvx4gDalXsxms7KoV1tbS1ZWVpt99jXOUaNGMWrUqHbb//SnPwFt7+ehSktLo7q6Go/Hs9c2+7vOB+KUU07hlltu4cYbb2TEiBH89NNPdO7cuU2b3Rfz4uPjD/jY2dnZTJgwQSlZeNFFF/HBBx+gUqm45ZZbDqm/giAIgrA7MWc4PHOG/c3NDkVBQQGrVq1qk2mxVTgcpqysDI1G02beUVBQgNVqpbS0tF1QWW1tLR6Ph5ycHEym2C+vh3JvunTpglqtZseOHYTDYTQazX73ORDvv/8+//73v3nyySeJRqM89dRTbd5vnU/de++9vPTSSwd17FtvvZW3336b9957jzvvvJMvvvgCl8vFxIkTD2puJgjC4ZGSkkJjY2O77a3BiEcrgGjevHnMmzevXXCjIAiCIAiCIAiCIOyLLMuULqhi6UdFRIJRTIl6Rt5xCh0K2z80eCIyxOnoOqwDXYd1IBqJ0rDNQeXaBirWNtJc6aK+tJn60mZWfVmKOcVAbr9YWbjs3qmodSpsZU62L6+lbHkdbuuuz511Jg0dB2bQeUgW2b1SjmimIJ1RQ/eROXQfmcPqxeuJVhvZtqgaT5OforkVFM2tICk3ju5nZtP1jA4Y49s/UOV3BSn9pZri+RU467zK9sweSfQcm0en0zIOW8CaRqdm6E29yOqVwqJ3NtKwzc7Uh5cw4s996HRa+3iI490fNweUcEKqqakBOOCAkf/9738AbUpstaaGt1qte9yn9cPQ1lTyh9vgwYMxGo0sWbIEl8vV5r1oNMqcOXMA9rjgBrGUwx9//DFqtZqbb775kPowZswYJEmiqKhIKeOyu9ZMVfn5+Qd0vOrqWIrC3y5CjR49GoDZs2e32+eHH35o02Z/7HY7M2bMIC0tjbPOOuuA9tkbh8NBcXExkiTtdYyH4zq3uu666/jiiy+oqalhxIgR7QLUBg8eDMCiRYsO+ti33norAO+99x5z586lvLycs88+m44dO/6uPguCIAgCiDnD0Z4zHIx9XbNffvkFr9fL0KFD22QcOZTrfLD7GAwGhg4ditfr3ePc5mDvZ6vExETmzp3L8OHDefrpp3nggQfavD9o0CBUKtUhzacGDBjAqaeeyoYNG/j111957733gF3zLEEQjq6uXbtSVVXVLji0qKhIef9oGDt2LP/+97+58847j8r5BEEQBEEQBEEQhD++oC/Mgv/bwKJ3NxEJRsnpm8rF/xp20gQo/ZZKrSKzIInTrirg0ufO4KrXRjJsYi9y+6eh1qnw2PwUz69k7otr+PjWeXx59wKmPbqUjTPLcFt9aA1qugzN4qz7BnDtf0dz5m19yT0l7aiWMjMmazntyu5c+dpIznloIJ0HZ6HWqmiudLHik2I+++vPzH1pDeWr64mGo9SXNrPwvxv4/I6f+fXTYpx1XrRGDYVnd+SS587gvMcG02VohyOSUSt/UCYX/2sYaV0TCHrDzHt5LUsnFxEORg77uY4kEaQkHFWlpaV7LA0RjUZ55JFHaGhoYOjQoW1KPESj0T0+2fjxxx/zv//9j6FDh3LRRRcp23v37k1iYiIVFRXKAkQru93OCy+8AMQW5X6v4uJiiouL22yzWCxcf/31eDyediU+3njjDXbu3Mm4cePaZdtp9fXXX9Pc3Mz48ePJzc09pH517NiR888/n4qKCl599dU2782ZM4cff/yRxMREzjnnHGX7mjVriETafwNzu93cfffdAJx77rlt3rvtttsA+Oc//0lzc7OyfefOnbz55pvo9XpuuummNvv8NnALwOv1csMNN2C323nqqafapfffvn07xcXFbUoC1NXVUVVVtcf+3njjjfj9fsaOHUtGRka7NnB4rvPuLrvsMqZMmYLVauXMM89k8+bNynt33HEHWq2We++9d48ZtoLB4F4X3MaPH09OTg4//vijklFg0qRJv7u/giAIggBiznAs5gwH6rLLLiM1NZUvvviCVatWKdv9fj+PPvooAH/5y1/a7HPTTTeh1+uVOWer5uZmnn32WWDXvWh1KPem9byPPvoofr9f2b5y5Uq+/PJL0tLSuPTSSw96zHFxccyePZsxY8bw/PPPK19PAOnp6Vx77bWsWrWKp59+eo9fg9u3b6esrGyPx26dP91///0sX76cvn37cvrppx90HwVB+P1GjhxJJBLhu+++U7YFg0FmzZpFYWHhXr8fC4IgCIIgCIIgCMKxZCt3Mv3RpWxfUoOkkjjtqu6Me2AgxoQjW7b8j8SSaqTn2DzG/b+BXP/OWMY9MJDCs/KwpBmJhKK4rX7UOhX5p2cy5p7+XPvWGEbd0Y+Opx6+rEOHSqWSyOmbxui7+nHNm6MZelMhqZ0TkCMy5avqmfviGv43aR4znljO1kXVREJRUjrFc8YtvbnmzVEMvbGQ5Ny4I97PuDQT5z82mL7nxx66LZpTzozHl+Go3XulgOONKPcmHFWzZs3i4Ycf5owzziA/P5+UlBTq6+tZuHAhO3bsIDMzk3fffbfNPl6vl4yMDM466yy6dOmCSqViyZIlLFu2jJ49e/L111+jUu2Kt9Pr9bzyyivcdNNNTJo0iS+++IL+/fvT3NzMd999R2NjI4MHD273JPzixYuVoKbWoKitW7dy4403Km0mT57cZp+ePXsCtCvv8eyzz7JgwQJeeukl1q1bx6BBg9iyZQvTp08nPT2dN998c6/XqLWcyO99svvNN99k7dq1/O1vf+P777+nf//+lJWVMW3aNNRqNe+9955SNgPgqaeeYsmSJQwdOpS8vDxMJhOVlZX88MMP2O12hg4dysMPP9zmHEOHDuVvf/sbL730En379uWyyy4jGAzy5Zdf0tTUxOuvv06nTp3a7PPRRx/x4osvMnLkSLKysrDZbMyYMYPa2lruvvvudgtnEAsoKy8vp6ysTDlecXExY8eOZciQIXTv3p309HSqq6uZO3cudXV1dO7cuV2Q2u4O13Xe3QUXXMD06dO5+OKLGTlyJPPmzeOUU06hR48efPDBB0ycOJFevXpxzjnn0L17d0KhEBUVFSxatIi0tLR2AW8Qyyo2ceJEnnrqKZYuXUpmZiYXXHDBYeuzIAiCIIg5w9GZM0ybNo1p06YBscApgGXLlilzzdTUVCWYHiA+Pp53332Xyy67jJEjR3LVVVeRnJzMd999R0lJCZdddhlXXnllm3Pk5+fz/PPPc9dddzFw4ECuvPJKdDodU6ZMoaqqivvuu69dGbhDuTdXXXUV3377LVOmTKF///6cf/752Gw2vvzySyKRCO++++4hl1EzmUzMnDmTSy+9lNdeew2/389bb72FJEm88cYbbN26lccee4yPP/6YM844g4yMDGpqatiyZQsrV67k888/32NWrGuuuYb7779fCQwXQd+CcGR88803uN1upXTbkiVLaGhoAODSSy/FYrFQWFjIqFGjeOedd7Db7WRnZzN79mzq6up48MEHj1pfRbk3QRAE4WBF5Chr3DuwhpykauMZYOmMWhLPgQuCIAjCiU6WZYrnV7L84y1EQlHMyQZG3dmPzIKk/e98EtPo1EqptyGyjL3ajdvmJ7MgCa3h+A5T0Vu0FJ7VkcKzOtJU6aJ0YRXbFtfgdwZRa1V0HpJFz7F5pHVJQJKko94/lUbFoKt7kNUzhYX/XY+t3MW0R5YwbGIvup6RfdT7c9BkQTiKNm7cKP/1r3+VTznlFDklJUVWq9VyfHy8PHDgQPnxxx+XbTZbu32CwaA8ceJEuXv37rLJZJJNJpN8yimnyP/85z9lj8ez13MtXLhQvvjii+XMzExZo9HIZrNZHjBggPyvf/1L9vl87dp/+OGHMrDPP7+1t+2yLMs2m02+66675Ly8PFmr1cqZmZnyTTfdJFdWVu61z0VFRTIg5+TkyOFweK/tDlRDQ4N8xx13KH1ISUmRL7roInnFihXt2s6cOVO+9tpr5W7dusnx8fGyRqOR09LS5DFjxshvv/22HAqF9nqeDz/8UB44cKBsMplki8UijxgxQp4xY8Ye2y5btkweP368nJmZqfRp/Pjx8qxZs/Z6/I4dO8qAXFZWpmyrqKiQb731Vrl///5yamqqrNFo5Pj4ePm0006Tn3nmGdnpdO71eIfrOgPymWee2W77zz//LFssFjkpKUn+9ddfle0bNmyQb7jhBjkvL0/W6XRyUlKS3KtXL/nWW2+V58+fv9fzVFRUyCqVSgbkhx9++JD7KwiCIAh7I+YMe3Y452aPP/74PueZHTt23ON+ixcvlsePHy8nJibKBoNB7t27t/zSSy/tsz/fffedPGLECNliscgmk0keOHCgPHny5H3272DujSzLcigUkl966SW5d+/essFgkBMTE+Xx48fLS5YsOaDr0ar1uvz8889ttgcCAfniiy+WAfmGG26QI5GIsv3111+XhwwZIsfHx8s6nU7Ozc2VR48eLb/88suy1Wrd67luueUWGZCNRqPc3Nx8UP0UBOHAXH755fLw4cP3+KempkZp5/f75TfffFO+8MIL5TFjxsiTJk3a48+co6G4uFgePny4XFxcfEDtN2/efIR7JAjCsSD+bZ88fD6fXFRUtMfPh/dlbtN6+az1T8h9V92r/Dlr/RPy3Kb1R6inx97jjz9+0NfpQHz44Yfyli1bDmnf119/Xb7hhhvabT/U+yocfQc79/qjO9l+vpxs45Xlk2/Mv3e80WhU9jkDcuMOu1z2a628cdYOedn/iuQ5L62Wv314sfzVfQvl1d+Uyl6H/zD1+Pdbv3qjPO/VNfK7V8+S3716ljz7PytlnzNwrLt1xJxsX9OyfOBjjoQicsO2ZtnnOr7uv7vJJ898ernyNbrwrfVy0Lf3z+iPh3ssyfJvUsAIgiAIgiAIgiAIgiAIwkmgpKSESZMm8e6771JQULDf9kVFRRQWFh6FngmCcDSJf9snD7/fT1lZGfn5+RgMhgPaZ17zBu7fMZnfLqS0PjP/QucbGZvU97D1MRwOo9Ec++wCkiTR3NxMYmJiu/d+Tx9HjhzJPffcw0UXXXTQ+77xxhusWrWqXcWDQ7mvwrFxsHOvP7qT7efLyTZeOPnGvL/xylEZnyOA2+rD1ejDbfXhtvpb/h/7E/JH9nsetVZFtxHZ9B7ficQOlsM5hIPSuMPB7Bd+JWAPI6klBl1VQO8JnY5J5pyj5WT7moYTY8zRqMy6qdtY++02ZBkSs82Mvqv/HsvPHQ/jPfYzXUEQBEEQBEEQBEEQBEEQBEEQhONMRI7yn8qp7QKUIJYSVQL+UzmNUYm9f1fpN0mSeOyxx5g1axYjR47kscce429/+xvr16/H7/czePBg3njjDXQ6HdXV1dx9992UlJQgSRIXXnghTz/9NA0NDdx2221s3boVWZa58847+fOf/wxAp06d+NOf/qSUvb755pt59NFHAXjmmWf49NNP0ev1AEyfPp1//etfAAwfPhy1Ws2cOXN44IEHUKlUbNu2jYaGBoqLi9sFMqWmprJq1So6derEli1buOeee6itrQXg9ttvR6PRsGrVKu69916eeOIJnn32WSZMmMALL7zAV199RTgcJj09nbfffpuOHTvicrm45ZZbWLduHWlpafTq1euQr7EgCILw+8lRGVejNxZw1BgLPnJZfbhbA5JsPqLh/edHMcTriEs1YkkzYklt/WMg6AuzeXY51h0OiudXUjy/krwB6fQ5txOZPZKPWnCQLMts/rGcXz8tJhqRsaQaGX1XP9K7Jh6V8wvCwVKpJAZc2o3MnskseGM99moP0x9dypAbCikYlXPcBdaJICVBEARBEARBEARBEIQT2Jo1a1i9ejWbNm2ioaEBh8OBwWAgMTGRzp07069fP4YMGUJKSsqx7upRM2/ePObNm4fb7T7WXREEQRCOU/+rX8D7tfOxRzx7bSMD9SE7/674lkc6Xva7zqdWq1m5ciUAt956K8OHD+fdd99FlmUmTZrEq6++yv/7f/+P6667jrPPPpspU6YA0NjYCMCdd95JQUEB3377LQ0NDZx66qmccsopDB48GAC73c6yZcuwWq106dKFm266CZPJxAsvvEBtbS1GoxGv14tKpeKtt97i7bffZtGiRW0yKa1evZrFixcTF9f+qfzdhcNhLrzwQp588kmuvvpqAKxWK6mpqXzyySdtMil99tlnlJSUsGzZMtRqNR9//DG3334733//PU899RR6vZ7i4mKcTieDBw/m9NNP/13XWRAEQdi3gDuEs8GLq+WPs96Lq8GHsyEWnLRMrtjn/pIEpmSDEnwUl7YrCKl1m0an3uv+XYd1oK64mY3fl1GxpkH5k5ofT59z88kflIlKc+iBwfsTcIf45Z2NlK+qByC5wMi59w1Db9EesXMKwuHSoTCFi/89jIX/3UjV+kYWv7eJmk02zrilF7UqO9NsK9gS3EnP6h1clHI6HQ1px6SfIkhJEARBEARBEARBEAThBOPz+fjmm2+YMWMG9fX1yHLsaVadTkd8fDyBQICysjK2b9/O3Llz0Wg0DB06lCuuuII+ffoc494feWPHjmXs2LFKyZED0VztxmcLHeGeCYIgCMcLT8S/zwCl3dnCrt99vokTJyp/nzZtGsuWLeOll14CYj/X1Wo1brebxYsX8+OPPypt09Jii0vz5s1j9erVAKSnp3PJJZcwb948JUjpmmuuAWLZjjp37kxZWRlDhgyhW7duSuDTueeeS05Ozl77ePnll+83QAliJb38fr8SoNR63j2ZNm0aK1eu5NRTTwUgEtlVBmj+/Pm8/PLLSJJEQkIC11xzDdu3b9/v+QVBEIS9i0aieGz+lkAkX0sQklf5f9Ab3uf+Ko2EJaUl8CgtFnwUl2rCkhYLQjInGX5XEJEkSWT1TCarZzL2GjebftjJ1l+qsZY5+fmN9axMLaHXuE4UjMpBZzq8gUMNW5v56fX1uK0+VBqJ06/tCTluEaAk/KEY4/WM+3+nsvH7MlZ+VcqO5bXMkzbww9D1SEhEkfm1bieT637miY5XcmHqoKPeRxGkJAiCIAiCIAiCIAiCcAKZPn06H374Ic3NzXTp0oWbb76ZXr160aNHD0wmk9JOlmWqqqooKipi5cqVLF68mEWLFjFs2DD++te/0qFDh2M4iuOLLMsseX8T9aXNBMu09L+kKwaL7lh3SxAEQTiCzGoDiWrzAQUqpWj2H7izPxaLRfm7LMt88803dO/evU2bg8kA+NuyHgaDQfm7Wq0mHA6jVqtZvnw5S5cuZcGCBQwePJjPP/+c4cOH77ePrcfZPajI7/cfcP9aybLMww8/zK233rrftsdbqRJBEITjVdAbUrIfueq9u2VGipVnkyP7LslmTNQTn24iLt1IXLqJ+AwTcekm6uyVnHJaHyTV0fl+nNjBwhk39+bUy7uxZV4FRXMqcFv9rPi0mDXfbqPH6Fx6jeuIJdX4u84jR2U2zipj5ZelyBGZ+AwTo+/sR2rnBIqKig7TaATh6JFUEn3P70xmjySmTF7CrMHrWsoXx/4bafn/E+Vf0t+ST95RzqgkgpQEQRAEQRAEQRAEQRBOIK+88gpjx47l6quvpnPnznttJ0kSubm55ObmMm7cOAKBAHPnzuWTTz5hzpw53HjjjUev08e5itUN1BU3A7B5djnbFtXQ/9KuFI7NO6KlBgRBEIRj508ZI7k2fQTjNz5NQ8jBnpZzJSBdm8hDeZcc1nNfdNFFPPfcc7z99ttoNBqam5ux2Wx07dqVESNG8OKLL/Lwww8DsXJvaWlpjB07lnfffZd//vOfNDY28u233/L111/v8zwulwuXy8Xw4cMZPnw4mzdvZu3atQwfPpy4uDgcDkebcm+/1bVrV1asWMGECRP49ttv8XhiAV0FBQWYTCY+//zzduXe4uPjcTgcbcb64osvctlll5GcnEwoFGLTpk3079+fsWPH8uGHHzJixAhcLheff/45p5122u+8uoIgCCeOaFSmudJFwzY7DVvt2KvduBq8+F37zgCr0kjEpe0KPorPiAUjxaWbiEszojXsOYSgqaj2qAUo7c4Yr2fAJd3oe15nti2pYdOsMuzVHjZ+X8amH3bSeXAmfSbkk9o54aCP7XcGWfj2BirXxsqndh6cxRm39DrsWZoE4VhI75aE/5YoklVC3sNsVkJiqm0Fd2efd1T7JYKUBEEQBEEQBEEQBEEQTiD/+9//yM3NPej99Ho95513HuPHj6e+vv4I9Oz4MW/ePObNm3fAGSmy+6Qy4LKurJu+nWhIJuAJsfx/W9gyt4LTr+1Bbv80kd1BEAThBKSWVDyQezH375iMBG2Wdlq/6z+QexFq6fAGrL788ss89NBD9OvXD5VKhUaj4T//+Q9du3bl448/5s4776RXr15otVouvPBCnnzySV577TX+8pe/0KdPH2RZ5pFHHuH000/f53kcDgeXXXYZHo8HSZLo1q0bN9xwAwD33XcfZ511FiaTiTlz5uy1n3fddRePPvoo5557LikpKQBoNBqmT5/OnXfeybPPPotKpeL222/nz3/+M7feeiv33XcfL7/8Ms8++yzXXnstNpuNUaNGARAOh5k4cSL9+/fnH//4B7fccgs9evQgLS2NM844g0AgcBivtCAIwh+LzxmgYaudhm0OGrY2Y93hIOSP7LGtIU5LXIapJSNSy/8zjMSnmzAlGY5JsNHvpdGp6TEql4Izc6hc38jG78uoLWpi+9Jati+tJbNnMn0mdCKvf/oBja+uuImf3liHtymAWqtiyJ96UjA6V/xuJ5xQ6mUH7GWqKiNTE2g+uh0CJFmW953PTRAEQRAEQRAEQRAEQRBOQCUlJUyaNIl3332XgoKC/bZfu3wDzrWwdVF1m+3ZfVI4/bqeJOf+/nI/giAcfUVFRRQWFh7rbghHgd/vp6ysjPz8/Dblz/ZnXvMG/lM5lfrQrgxAGdpEHsi9iLFJfY9EV4WDcKj3VTj6Dnbu9Ud3sv18OdnGC0d2zNFwlKaKWJak+q12GrfZcdZ727XTGtWkdU4kvVsiKZ3ilTJtRyIT0PF4j61lDjbO2smO5bVKGbuELDO9J3Si2/BsNDp1u33kqMz673awespW5KhMQpaZ0Xf3IyUvvl3b43HMR9LJNl448cf8avVMPqpbQIRou/fUqLghc6TIpCQIwp6Fw2GsVisNDQ1YrVZ27tyJ1WolFArR2NhIeXm5Uke8ubmZSCSCVqslHA7j9/uJRqNEIhECgQBGoxGv10swGESj0aDRaLBarQDExcVRU1NDfHw8KpWKaDRKUlISKpUKr9eLWq0mPj6eaDSKLMvIsozZbCYYDBIXF0cwGESr1ZKQkIBOp8Pj8RAfH0+PHj3QarUEAgH69OlDp06diI+PJzs7m/j49j/0BUEQBEEQjqVgMIjH48HtduNwOGhoaECWZXw+H2VlZTQ2NpKamkooFGLt2rUYDAays7Oprq5m+/bt5OTkkJiYyNq1a/H7/fTq1YtwOMy6deuQZZkuXbpQUVFBXV0dLpeLrKwsevTogcfjoaGhAaPRSGFhIdu2bSMYDDJw4EAMBgPr169Ho9EwZMgQANatW0deXh5du3bFbrfjcrkYPHgwiYmJuFwu4uLi6NKlCxaLBYPBgNlsRqMRvwYKgiAcKn28hjP/Ukjh2Xks/7iY+tLYE4fVG21MfWgxBaNzOfWybhgT9Me4p4IgCMLhNDapL6MSe7PGvQNryEmqNp4Bls6HPYOSIAiCcPLyNvtjZdtaSrc17nAQCbYPKkjMNpPeLYn0rrHApMRsC6o/YFakwyU1P4FRfz2FQVd1Z9OP5RTPr8RR62HJ+5tZ/VUpPc/qSOFZecrvaF5HgIX/t57qjTYAup7RgWETe+21xJ0g/NFdlHI6k+t+3uN7MjIXp+w78+aRIP61CcJR5vf7KS0tpbi4mJKSEsrKynA4HPz87SKMKToCoQAupwvUMkaLEbfbQyQSPqBjS5KELMvo9XrUajVerxeQSEpKRKVS0WRrRq1SkZ6ZjizLNNQ20iE3C51OR8AbxO8JkJqail6vx2Aw4PcFsDc6iI+PJxgMUl1eg4xMZnYGkUiEhroGEpISkCQJn8+Hz+fHbDYRjUbx+XwHfW0SEhJQq9U4m9yYDEY6dMzCXuuk/7BT0Ov1JCYmMmTIELp3705eXh55eXlikU0QBEEQhH1yu93U19dTX19PZWUlVqsVt9vNO//4CFWcjMvuJhQNIpllQnIQn9dHmNAea3T/lgo1EhI6oxaVSkXYE0Vn0qA1aFm/ZgMhZwRLphG1Ws321TuRUJHUOQ5Jklg+czXmND16g55QKIRer2flrHVokzQYk7V4XB5mrpmNOVuPLMt89s5XyEQxpGiJRqMsmb8MWS2j1ktEIhHCgQiyKko02v7Dq99So0avM2COMxFuBnVUQ2JWPHqNHl9lmLtf/TNut5uCggK6detGSkqKMkcUBEEQYtK6JHLe46dTtqKOXz8vwd3oQ5aheH4l25fW0u+iLvQ+pyNqbfundgVBEIQ/JrWk4rS4rse6G4IgCMIJIBKOYtvpjJVu2xoLTHJb26+r6Uwa0rslKgFJaV0S0ZsPf4akE4E5xcjp1/Sg/8VdKV1QyaYfynFbfaz9dhsbZuyg6xnZZBUms+LTYnz2AGqdimE39qLbmdmivJtwQutoSOOJjlfyRPmXSEhEkVEhISPzRMcryTOkHfU+idV9QTgMvF4vRUVFlJSUsG3bNsrKyqivr6ehoQGbzYbb7abJ1gxSLPPQ3khyMnqzHtkJJq2JgoLuBHxBqjfW0/vMHiQlJ7Luu2I0ES3DbhyATqdn7TulaNV6Rj14KkFniLVv7qDnFTkkdYpn48c7cJX7OfWGbmj0Klb8pwRkOO2q7rgbfGz5tBJDQEfBuTmU/1SPfasHimHc9edSv95OY6UdJOg1pBO+Jj87dtZhytDR57rO1Ky0Ullvpfu4bFK6JrDyzWLC/iin39kDSS2x/NktAAx+pAeuJjfL/28TXS7OxJJmomT5Nqo21NPnom5EIhFWzFhDmDAFhZ1xuVx4mrahNWmwO+zYA3Z++OEH5RpNnjxZ+btGoyESjhAXH0dKSgo6nY6MjAzi4+NJSkpi8ODBdOvWjc6dO9OlS5cjdfsFQRAEQTiKZFnG6XQqgUc1NTXU19djtVqprq6mvLwct9vNhhWbCKoCRKLtg701aDHoDFh0ZmSDhMarJSM3FUuCiYYVLjRoKTg3FzkkUTXHRkq3RPJHZNGwxkHTWi+FV3YiOS+elS+UAtD/5i4EHCGKPqlAq1PT59pOVC2x0bDWTmpqHBmnJlP8ZSWRQJT0hES0Jg3VO6xghbhcEwm9TFQtsZItgdmgJ6N7EuULGohIUXIL0jClGCiZUglA30vy8dsClE6twZJlpPDqPCoWN1C3vJkeV+ZgyTWx7D+biBCm543ZBAJBNn1eBmaZjmelYa92UrWygcQCE5IhSsWaOsIE8Uke7F4bTtzce/e9RH+T/leSJLTo0MkGuvXvTEJCAgMGDCAjI4NAIKAENKWlpZGeno5OpzvyXwyCIBw0l8vFkiVLOOecc451V04IkiTReXAWeQPS2Tx7J+umbyfkixDyhVn5eQnF8ysYdE0POp2WIT70FgRBEARBEISTWDQqU7m2gdotTTRstWPb6SQS+u1nL5CUG6cEJKV3TSQhy4x0EmdJOhQ6o4be4/MpPLsjO1fWs3FmGY07HJT8XEnJz7HP15JyLIy+qx9JOaJct3ByuDB1EP0t+Uy1rWBL4056pnXi4pTTj0mAEoggJUE4IFVVVaxcuZL169dTUlLC9u3b2bx2C4GwnyiRvT5pL6EiMysWNOO3hbDozQwY1Q+/PUTdMjsDL+1NdrdM1r25jbAbBt1SgCQRCyYKwJCzC3FWutm8qYKOhnQ6FKYgrbPg3OkjSZOG3qIlQUqBKER8UQK2EAAVP1kxX27EkKjHVe6nZrmVjH5J6OI1BJ1hqn+1odHGUhH7G4MUfVpBpzEZqNUqbMUupf8ag4r8c7Ko/tWKfZsbAK1BTfNWF9VLmgCIeGVcVT7C9thkKuAI4WsKAGDK0BENyjRv8BInJRIvJ5GSnMDOkibypWQKOnVDpZLwSXpQwZAxhTgrvWRu3knXUVmk90qi6Kud2Eu8DLy3K4FIgPmvLseLi8ILOmNttLFpWRFmgxFJkqisqKSkpETJKPXxxx/vGotGQyQcxaA1kN+tE1lZWRQWFpKXl0dhYSFnn322yMokCIIgCMeBSCRCbW0t5eXlVFRUUFZWxvbt25n+wSz8eAlIXsJy28AjlaRCK+sx6Y0kZSYRtkE6OeT0ySA5M5HqH5vRYeC0ST2JOCRKv67GkmmkxyW5lM2rxbbZRce8DJK7Wlj763YAOiXmEfJG8ElaNFUqLCThCkfQS1Ga1nvQa3Wo9SoigSj1a+3oLLF5RMgRwVbkJhqKzQ+bStxojFo0ejWRQJTGDXaMaQYy+ifRsMHeZhzmTAPmDAPlPzUo6bw9tX4cOzwAaIxqPDV+ZT9JLeHY6cW63gmAuyZAJCCjlXRo0WEMxROp95EspWOKN9C1Qw5lm2tRS4l0zMoguWsca1dtAwn6ntuZsC9C0afl6OLU9LqpI2UrqihfXkviqUY0qVAyZydBAnicXhrrGvl1wSqCBAgTajMOSZLQY0Avm0hKTmTEecMYMmQIeXl5WCwWevfuTXJy8uH7ohEE4YDV19fz73//WwQpAfPmzWPevHm43e7ffSyNTs0pF3Sh25k5rP5qKyULKkEGV4OP+a+sJaswmcHX9ySloyh1LgiCcLw4kAykwh/Hvh4MPpFt2bKF2bNns3btWurq6oiPj6dXr17ccsst5ObmHtSx/vOf/zBz5kyGDBnCc889t9d21dXV3HDDDQSDQd555x169Ojxe4chCCe0aFRmx7Ja1k3bhr3a0+Y9Q5yWtK6JZHRLIr1bIqmdE9AZxTrV4aJSq+g8OIv80zOpL2lm4/dlVKxtpNuIbIbeUIhGL7LeCieXPEMad2efR5GjiMLswmPaF/GdThCIlQH55Zdf+Ou59+HGgQ8PUU2YYCRARI60a280GjEnmInaophUZgaO7U+gKUzjKid9zi4gv38e6/5vO2F3lAGXd0WtVbHypVIIwKn9etC8w4N6eSVSrQ51Nw3GFCMutw93jQ9Dyq4yGn5HkIgv9guzdaOD1IIEDMl6nDt9WDc7yOiXhEoD0TDYtjjRtExePDV+bMVuNPrY6/rVDjQGDfE5JqxFTmqW2Oh6fgdyzkijanEjEX8YnzWA39F2gSnsj+JvDhJyhSEKpjQ92UPTKF/QQDQYRWNQEQlEqFhQD4DGosbbEKD211gdV2OqAW99gIb1dgDkKHjq/ESDu47vqYulrzSn6Qh7w9iKHQBEfDJhXwT7Vm/sdVBGHdWRLmWDBvr26klTqQOTlEXHUzPoMCCZde9vx+cP0u+OzoSiAX5+cyU+3PQ4rxO1VbVsWVeCzqShsbGR4uJi5s+f32a8EhKpqamo0eC3hojXJXLzI9dzySWX0Lt370P74hIEQRAEoQ1ZlrHZbJSWljJp2N34cONX+QhIXrwRDwF8bQLAtZKOhMQEtHo9xkAaHbpmkJqdTN0CJ3oM9Lu2GxGnxI6ZdRjjtRRMyKP853qaS9xkm1NIyY3HJ5UBEG6kTfCPzxZAjsbO5djuwZikQ6VXEQ1Ead7mQp8Ym5eF/VGc5R6QY0+uuSo8WDIN6OK0+AIBmra4SOxiRqWRiIZlGtY1Y8owIKljr5u3ukjtnUD92mbCvggRf4SAM4QcaftBetgX2976JF1y9zjUGhVN5bEgcn2ilqZSF67q2PxJrZGwbnYQ9kWU/W1bYgFLKq2E3x6keeuuQHN3rQ93tT/W1hPGWbHrw7GgI4izMnZcjVlD2CUTqVKRIKWQbU4lKdtCCBNIUDikIwFniO0zatDFa+hxdQ7bFldQu8lKwil6NKkyxfN34sdLSBdg2jfT+Ph/H7e5rxq0mHUWkpKTiDao0EdNJMUn8ca85+nXrx9arUhdLgiHor6+fp/vW63Wo9ST49/YsWMZO3YsJSUlTJo06bAc05SgZ/ik3hSencfyj7dQWxR7uKe2qImpf19CwchcBl7RDWOCKJ8pCIJwrOh0OlQqFTU1NaSlpaHT6US2uz84WZZpbGyMZX89yX6P+Oyzz9i4cSOjRo2iS5cu2Gw2pk6dyi233MJ///tfOnfufEDHKS4u5ocffjigjLivv/46arVY2BeE/YlGZXYsrWHt1O04amOfv+jNWjoPySK9eyIZ3RKJSzeJn0FHgSRJZPZIJrNHMtFIFJVaday7JAgnPRGkJJw0gsEgy5cvZ9GiRaxbt47S0lJKNpUSjAbaZUJSoSIrPYtoQCZoi9CxoCM9+ndj58wGDO44BtzQBZVOzZrXt4EMA/sW0LzDzdbV1ahtRlRRFeZ0Iw63B0+tH3OWUTl2wB6ClvM1b3eTdWoKphQ9rnIfznIvujgtKp2KaDCKp8aP1PKz0lMfIOAKo9HFfgFwVnhILUggLseMY6cHd42f9FOS0BhUhP1Rwr4wcdkGaoFoOIqkljClG6AotnDVtNUVCz4iFuRUtWTPH1ZXLmxU/u61BbCXefA1xqKMDMl69Ak6/PbY68ROFjR6NT5rSyalVAMhb5iwO7bQptGr8dTGFsY0JjXRQBRXVWwxTJ+iJ+SNYG/JFKBSq/DbgrRWGpFDMu662L6WDCNhf4SmluxOapWKsDei9IsQqCM60qUOqHQq+vTqThZ5JK7vSMdBaWSdmsqad7fitDnJvTQJj9/F8u/X4MdDUnISjQ2N2GnGHrTy+OOP8/jjjwMQZ4kjPSOdjh070rt3b/Ly8jjvvPMoKCjY9xefIAiCIJyEnE4nW7dupbS0lK1bt1JcXMz3X/yIV3a1ybyjx0icIY7kpCTiqpMxYqLLGXnoQgaaV/gxJxrpfkkuFQvrcWz3khGfSGpuAkFVOcgQaZaUrEX+5jCB5qCSBttV48OSbUJjUhP2RnBV+zAkxT50lcMynjq/8sGE1+on4Aihi9PgDwTxNgbRmjRIagk5IuNt8KPWx9qGfVEi/ij6BC0+a4CQJ4zGoMaQrMPbECDkj6CL06A1qgm6wwTdYdw1PiWYKOAIEfhNcPietnsa/Kg0uz44MSToiIajrVNJjKl6vI2xeZdKq0JrVMeCqQB9vDY2P2rJcCmpJfzNIaUPsgzulnmZSicR8kbw1LYEKek1+JuDeK2xvshRcLcERgGE/RHc1bFAcq1JQ9gtg01LgpRMlimFpAwzYckCQMGIHAL2EGVz6ojGBUkfFU/5mioaq2xokqOEdH4aow2xhwScEQYNGoSEhAEzqekpnHXeGAYMGEBubi65ubn07t37pFt4EISDccUVV+zzQ25ZlsWH4EdBSsd4JjwyiPJVDfz6WTHOei/IUPJzJTuW19L/4i70GtcRtbbtAl9EjrLGvQNryEmqNp4Bls6oJfEBuiAIwuGkUqnIz8+ntraWmpqaY90d4TCRJImcnJyTLnjmiiuu4LHHHmvzO9Lo0aO56aab+PTTT/nHP/6x32PIssyrr77KuHHjWLNmzT7b/vrrr6xcuZKrr76a//3vf7+7/4JwIopGomxfWsu6absFJ1m09J7QiV5nd0RnEp9pHEsiQEkQjg8iSEk44fj9fn766Sfmz5/PBy/9Dy9uQgSRaZvCV6vRkp6ZjqfBjyFspv/IvmTndGDHJ1ZUkopTr+yGfYeH7d/VkKKNI69DFv40NU6PF099AMtugUd+RwhJankKv8xN2JeqlPxwlHswpuiVjEfuOh+SOvahsM8aJOgJo2opveYo95BcYMGUqsdd48NR7iGlR7yyb1OpE318bALjqQlQv6EZfULsdeNmBz5bAGOqHleVj+qlsWxGrSXeKn5qAFCCmJpayrrp4jXEdzTTtMVBtG3lFIU5y4A+Lvbkfs1ym3Icd42Pkq9j9VtRgXOnB/sOF2F/FJUG3LVe6tc1KefxWQM0bIhlSrJkGQg4gsrT/qYkPf7mIH5rLNBIrVfhafAr54qEZNwtC2e6OA0hdxh3ZWxxDAm8TQEloCkakZVFN2OKjog/gr0s1lYlSYR8YYJNYQySicykDsghGa+kQ2VQcer53ahf20TFz42kjbCgz4MFXy/D6W8mKT0Ol8vFTz/9xE8//QTA/fffD4BBa6RDhw4MOK0/o0aNYsyYMSJ4SRAEQTgpNDU1sXnzZjZt2sSzt7+IGwdeXAQJKG106EmMTyI1ORXJ1oF4fTw9R3fBUxzFszNAan48aX0S2fJVBciQaUhD1oJLaiRgDxN0hJBULcFEDX6CeWY0BjVhXwRPvR9DS8YjOSLjaQgoQUo+W5CAI4i2JUjJ3xREF6dFUknIURmvLaAEAQWdYYKuEHqzFr81iKfWhzFFjy5OQ8Aeonm7m7hsEyptLCiqYb0drUUDUiw7U80Km3LesDdC7a9NIKEEOTl2xj6YMqXHArND7j1PvCSVhDnTgLfR3xLcHqPSSNiKncprtUFF3epmJROU1qymbm0TIVcsCEljVNNU6iTsjb3WmtQ4dsYCvCW1hFqjwtES0KQza4kEonhtwZZzxQLrI4HIruta3xoMJbVc95bXOomgK4yvZQ6HLCtzOIBIIIqn3o8kSViM8aQZ0/H4ZSxSGpl5ycTnmCitrEKWZbLHJ9JY10jZ2iqCRi+SMczXn3zDhx98qDxUoEKFEQspSSnEqRN48q1HKSwspGvXriJ4SRCAuLg4br75Zvr167fH98vLy3niiSeOap9OVpIk0em0DHL7pbJ5djlrp20j5IsQ8oX59bMSiudXcvq1Pcg7NR1JkpjXvIH/VE6lPuRQjpGhTeCB3IsZm9T3GI5EEAThxKPT6cjLyyMcDhOJtM+iL/zxaLXaky5ACaBPnz7ttuXm5tKpUyfKy8sP6Bg//vgjZWVlPPPMM/zlL3/Za7twOMxrr73GZZddRnZ29iH3WRBOVNFIlO1Lalk7bRvOuth6lN6ipc+EfArPzhPBSYIgCLsRQUrCH1Y0GmXp0qXMmTOHX3/9lZKSEip2ViBLslKDWq1Sk5qWRtQrI7k0DJkwkJSUNKqm2InPNVNwSS6OnW6Kv6wi15xJWnYi7r4RrBsdRHxRkvLN6OI1uCp9SJJE3hmpbNpZgbPSS3K3ODJOTaR+tZ1Ac5D4PAuGZB3+piByVCbrtCQaNzjw1PnRmTXknplO+fwGAo4QmQOSMWXp8dYGCPvDZA5IonZFE65KH6hUZAxMwv2dD0+tj8yBSSR0NtNc6kFrVJPQ2axcg4xTEkGSaFhvR6NT0f3iHAKOEJs/KSepq5mcEWmE3BFKv60kZ1gaMjLmdCONm+ykFiZQu8qGSqsie3AqaYUJbPm6AqKgT9KSUhhH4wY7AAUX5xB0h2gqdZGQb6bDoBQkFVi3xIKm1HoVkUAUc4YBGbBtdoBKIntwCkFvmK3TqjGl6UnuEY/GrGHH97VEQzKmDANJXWPniUQi6OO16BI0hD1htGY1Kk1soc+Ypkcfr1GyF8TlGNElaJFaIp4tGQblPZVGhT5ei7choLTV6NWEvbFFPnOWEZV615PDhkSdkvkpPteIWhcL4gJIy0kmLttE10AfkOC0i7sTCURZ8+Y2oklBcs5NpHjdVko3bsWYrMPhtjNlyhSmTJkCgMlkwmQy0alTJ3Jzcxk9ejRXXXUVqamph/ufgyAIgiAccR6Ph6KiIjZt2qT8WTh3EQE5FkQsIZFoTiLJlExSYxpp6al0GdQRT1EEb1mIvIFpxGWb2TazmoAjRHJCGnG9w2zfWYO/OYhKpyKlMB7bZic+a4i0PgnK3CroCZNWmIB9mxufLYhapyK1dzx1K5vx1AdI6ZmAKV2PtyFAJBAhpSCepmIXIXcYrVlDSs8EqhY14qnzk3FqMvEdTTjKPPibg6Sfkoi1yEk0GCUSjGLOMuAo9xD2RzFnGgjYgwTsITR6FRn9Ewk4g3jrA8Tlmsjol0jFgga8jQHS+iRiStfTVOzC2+gnrU8iPlsAQ5IOd50fU7KO+nV24vPMGFrKtjkrvKj1KuLyTOjWawi6w1hyjGQPSaV8Xh0+W5C0PgmodSrUOhX16+ykn5JI8zYXKT0S8NuDaI1qalc2kdw9Dp1Fg6Pci327G1OqHnOmgbCvCb89iFqvIjHfgrPci0qrQkbGkKDDU+NHbVChNqrR6FWE3GBKMygBWJIkYckyKIFHWrMGY7IOlbZlnpakR2NSIRFL8GRM0yMHWwKKtBKGRB0OuSVAK1WP1qIh7I0FaBlTdMp8T5IkUjokIbk0hCQdiR1MdDori9KpVbjrfaSNMBE0+tn84za8uMAYYru1hMsuuwwAtVpNnCaB8684l7y8PPLz8znrrLPIzc0VWWOEk0r37t1xuVzk5+fv8f1IJKL8viwcHWqtmr7nd6briGxWf7WVkgWVIIOz3svcl9bQoVcKwStknnB+yW/vTEPIwf07JvNC5xtFoJIgCMJh1loaTAS6CycaWZZpbm6mU6dO+23r9Xp56623uO6660hJSdln26+//hqXy8Wf/vQnfvnll8PUW0H445OjMqULq1g3bXssgyqx4KS+5+XT86yO6IxiKV4QBOG3xHdG4Q8hGAwye/ZsZs2axadvf4EPDxF2PX0uIaFCTZwugV79eqJy6wkXaek9uitpfRMp+qICj9tPp/ROaDQSVVEnznIfIW+YQEvJM3edn+RuEaUEms/mx5iiJxqMEvZHCTpDBFvKY7irvARcYeSI3LJv7En7sH9XCY/WABpXpQ+/PYjckuXHVuokLntXnVlXpZ9IcNdHkWFvBFXLU/j+piBEJZI6x9Nc6qGp2IXWrCG1MB5rkZPa1c1E/BE0BhXRMDSst9O8PfaEvN8RwrrRgdcaIOyP4q71EY3IeBsCNJfFjhNwhvA1Bgk6gsR3tCiZiCLBaJsn9+vXNWPfHltcCrpCOMo9hLxhHDs9mDOMqHUSznIvxlQ9pnQ9vuYgnlo/AXeQuEwT0bCMs9LHzrl1aE0aNAYViZ0tNGyw428KYEzTkdozEWe1l2ggiindiEarpnlrLNtTNBzrt6sitgga8UVx7HArGZuiYRl3S2S6pYOBSCCKo9LT8sUhE3CG8DfFxhPxR3HXt5Q20aiI+CO4qmL7aowaIoEIjorYNYyEIm1KroT9Udz1sT4kJiaQnZZDUKUmXsqm65AskjrHseylTTTRQMboeGrraiktKmWNbS2rVq1i6tSp3Hnnnei0OjLSM+jbry+jR4/m3HPPFVmXBEEQhONKc3Mza9asYc2aNbz4wOu4aMaLW3nfiBkLCXRNLyCjQwaBLaAPmCk4Oxdvg59qqw2jrCfZkIo/bANCeBsD6OJiGXuQwWf1Ew23lGlzhAi5w8jB2GTE1xQg6A4rmXxi2ZJ0IMd+Hvubg4Q9sTlbyB0m5A4rWYzctX50cVplEb55m0vJwhTyRvDU+Qj7YvsGXWHkCGgMaoLB2HFTesTHsjT5I9iKHOjiY5mXQi3ZkYItcwOfLUDtqial3Jq3wY+vKYC7Ohbc7qnz47UFCDrDRIJRvC0Zj+pWNWHJMRL2tGYpihJyhYmEYmMPOkLULLfia8lq5LMFY2ORY3M0T52fkDtCU4mTSCiqZNmsX2vHlKYjEpRRaSQaNjiIt4cIByKYMw34rEEl21FivhlJJSmB2oZEHUFHaNdc1r7r7yq9hKvSp8yfdGYNnnq/kv1SpVPhawgoGZ1iJXhjx9Wa1fisfmVfVOCtDyhzXzks42l5T61XEXSElUBzGQl/SyYslaTCJMURJyWQ1xJv1GN4Lk2lLqrW1hHNDKDpFKFsfQXfffw9XrWLUCR2n9RoSEtMJ15K4rHXH6Zfv350795dLEYJJ6yLLroIv9+/1/czMjJ46KGHjmKPhFamBD3DJ/Wm8Kw8ln28hbotsazDVUVWPqpehGwBfhNTKbds+k/lNEYl9hal3wRBEARB2K+5c+fS2NjIxIkT99t28uTJ6PV6rrjiin22s9lsfPTRR9x+++2YzeZ9tv0tq9WKzWZTXh9ohidBON5Fw1G2La5hzVc1BOwVABjitPQ5N5/CszuiNYgleEEQhL0R3yGF447X62XWrFncffn/w0ETfrxtApLUKg3JiclEmyQSSGHw+FOJ0yWx/bsaNFoVvfrnU72iEavkxGsNEPJElEUeb50PXZyOaOsCmDVIoDm2gOGt9xNwhgm3LIY5yryo1Golq07zdjfRlsUjny1M2BMh2rLAYt/pIalzXEvGngg1K2zEZZuUPlu3OPHUxT4o9jWGQAZjsh5PjZ/6dc10GZ9FXK4RV6WPos/LMWcYULVk9Cn7sRa/PdZ/V7WPpII4jKmxkibWjQ4y+iXS7cIcSqZWUbXYCkBCvhlPvZ/qZbsm/9aiXeVBAKVsG4C7NoC7dldJlrAngrtm1wfbraXjWq+Zz7rrddDp2vV3dyxwKblHHJ56P66dPlw7fXQ4PYW4XCMl31ZBNFY+zpimp+zHWoLO2L2tWWbF1lKCTlLD+o920HrbO5yeQuNmJ84KLyoNxOeZsBY5CbnDaAyxUiWNLWXkVHqJ+g12GtfGXptTjTRtdcXOo4qVN2ktlWJI1eKu8VG3uhkArVGNs8qHpzp2LaJhlDIoKoOKoDuMbVNsX71Fi98eoqm4JRgqKuGq8aGRdKSTQ++OnciRu5K5pYD4TiY6jEpi+XcrqbZWY8hU4fZ7+P777/n++++57777MBqMRP0Qr07kmjuuYOLEifTtK56UFQRBEI48q9XKmjVruH3cfbhoxoUdH7Gfb2rUJBlTyZRyMHgtJMUn0/30ztT/aifoDJOSFocpQU9l0Borv9oYIOBsDQAK4msKKnMpnzWIMWVXCbFYgMyu8mjuWh+hlsAYf1MQV6VXCfL2NwXR6FtS98uxOZHUsm/AEcJa5IgFPxELFlKpJSRJQkYm6AhjyTbSmurHUebBnGnEUxfAbwuyfVYNekssYMW+w0PQFVYCdNw1ftJS9WiMakKeMM4KL1mnJeOq9uKq8uFvCiKpwJgSK7e7y67ybq0B8P7mXe+6d2sbDYO/Oaj0P+AItQmSdtfsflyU47b2MeyLoE/UErCHcNf4UWkksk5Lxl7mUdrG55iQozLN22KBZo4yD+4aHwFHCJVGwlnpjc2P5Fh2I12chvq1zSCDKVmPSqdSgrrD/gjNpW6CLeXqAo4Q9u0u5ChoLRqiIRl7Wey8WqOGgDOsBC1Fg1FsJc5YoL+EEvQOsfJ0/pYxAEgSOCo8RAItwU+BqJLNSa1XEXCG8NT60EkG4nRJpCYkoA0mI0uQOSARb9jDjrUVuHAgxQepqavguuuui/VLo8UiJ2CJJJKSkMbrM//D4MGD0WjEr8fCH9+IESP2+X5cXBzjx48/Sr05MX0f2sjdG77+fQe5ECLjIwS9YUJSBL8ptNemMlAfsjN6/ePoVIfv+9T1GWfyp4yRh+14giAIgiAce+Xl5bz88sv06tWLc845Z59tKysrmTJlCo899hg6nW6fbd966y06dOjAeeedd9B9+u6775g8eXK77WVlZSdFuUW3201RUdGx7sZRczKMNxqRadzgpmqJk4A99tmIxqQie0g8mafGodYF2Lqj9Bj38sg5Ge7xb51sYz7Zxgsn35iP5HgLCwsPqJ34FFY45tatW8dnn33Gzz//zNpV636TIUmFHgO9Cnqhd1vQVceTXZBJ9uAUtnxVSdgbwRCIQ2OKPU0Y9kYJe8PozbGFJletj4AziClVh7vGj7cxgNay66npoCusPH3uro49/a6L0+Kp9eOu9WNM1aMyqIj6o0RDshJ4FA1HsZXEnqwH8NX7adxsp3UlLRqSsXQworVoCLnD+KwBsgYm46r0EA1GKfmmEo0p9s8v5A7HFuW8sQm5Rqei0+gMrFsc1K+x46zwYs4yoE/U4arwUvFTQ5vr17zNTSQiK4FXqCDrtGTc1T6qlliVdvnnZOGt81G/zq5sS+4eR9opiWydWk00HN3nfco6LRlzhoFtM2uUbfpELR3HZFC5sEF5Mt+QpKPDaSnIEZnmrbGFMFuJk6ArpGRq8tT6Kfm6MtZdDaT2TqShpV8qnYq8EenK+FGBq8qrPOmvMWgonVql9De9XxJakwZ/c+z8cVkm5doCNO9wE265toYkHX57SMkKFZdtQmvSEHK3ZFkKRfHsthAoR2QlSMmcpkclSfiaYv2QtLHFsdbrLssyntrYwpnGpEJSSXitLRkHLFo0ES3JrhwSpQ7k98lEo1NTMq0SK3WkjDCwfesOqmursEbrePXVV3n11VeRkOjYqSMFBQVcf/31XHzxxZhMu4LfBEEQBOFghUIh1q9fz7Jly1i2bBnTPv9OCUjSoCGOJDpY8sjKyCKyXYOJOLJ6pxDyhLFtcaLyq5DCKtR6NRCOBQBlGpFUEnJUxmcNoNLF5mWRgEzYG0HdUs4r5A0jIaE1xcqaeRoCmNMNSt981oCSpTLsj6I1a2Kl0nw+vA3+NiVmPXV+pN3Kt2qNGqKJMv7mICFPBK1ZQ1wHI85KL65qH+46H2qtikgwqgTXtIrPNRGXY6JmmRU5Ggu0iss24qrxEfbHsie1kqOxuUHrvANipdGSuscRcNqUQCNdnIbk7nE0bnQQCe6aY2X0T8Lb6P9NQFN7Ko1E5qnJNG11xTJrtvY1z4TWrMG2xbnbNjP6BC11q2L9jIZlHOVefLZdAehNpbuCyg3JuljWzJZAKEu2sWX8NmRZJuyP4rUGlCxXvqZgLNuRHAv2TuoaR1NLtkuNQY0pRYen1rfr+pS5CbVcY41Rg7PCS2v9IlO6AXd1rK1aJ7UEZIWVY/msAUItGbK0Zi1h324fWMuy0metSU3AEcLfkvlTY1ATdIeVoDZJrUZl15MqZZFpzKZDlxQaPA5cNjdyToBQoocdm8qxUUelYxvDhw9HhZp4kjj32nGMGzeOs88+m4yMjH3eJ0EQ/tjmzZvHvHnzcLvd+2+8Gx9BGkKO398BCTiIRAT2iAcO4zqeJ7L3jFuCIAiCIPzx2Gw2HnzwQcxmM08//TRqtXqf7V977TV69+7NyJEj99lu8+bNzJkzh5dffhmV6uCzOl5wwQUMGzZMeV1eXs4zzzxDfn7+SVFdoKio6IAXbE8EJ/J4I+EoW3+pZsP07bgbY59tGOJ1ZJxmYuS1p500mZNO5Hu8NyfbmE+28cLJN+bjYbwnx3dM4bjhdrv58ssvefiWx3DSTAA/rasWKkmFTtKTJKfRq3chnfO7UjkzlrGnxyk5OGt81NTY8DYEiASj6JN0hL0+gu4gcR2Mu85R61MWx3zWWJk1tVGtvE7vo1WeNrdvd2HK2LVvNCSjMcTa+psCmNIMJHe2YC1yUr+hmYAriEqnIhqMEo1A6zw/GgZLphFTqoGyOXU4K7z47DXozLEgJU+DH2e1F1QqIEpcrpnsISlsm1GDvzlI1WIrlg5GUMUW5XbOq1dKXwCk900EScJV4VW2ZQ5MomGDg6A7jHXjbh+QRmH7rFpC3rYLcIHmIAFX26czA44QrkrvfgOUALzWQJtFNoCAM0SgOYi8q1od/uYgpdOrlAxJECsZ0lo+LqVHHJ7GWOYCgLgcM2m9EnBWePE3BYkGo5TNqcPbsrBmzjDQsK6ZaMvhcoanodJKbPsuFizlqffvWsBSgbPCi6OiJQgpx0iH01LYPjvWVqNXI6kk5ToE7EGqljTGjq2C1IIEbCWxa6mzaGJtWzJtqXQqnFUefI2xflsyjMoCHIBKJSkLZfpEHQFnSFmA1MVriAQjSkCTpJbwN8dKl3Qw5dCjYy4pdXnY69wkF8ah7RHhl2+X0iw3YrfbmTNnDj/++CMAaalp6DFy3S3XcOWVV9KvX7/93jtBEATh5FVbW8uyZcv426UP48CGk2aiRJFQkaBKIo0OJKiTKTi1K4EyGZ81iNliICnbQvXOWNBO0BVS5lbRUJRoOIrWqMYH+O1BAq4wGqOKkCdCyBvBaNj1QWgsy48Od62foCs2J2o9VtgXQVJJqDQS0bBMNCQTn2fGXeNHjshYNzlaY1uIBGQkSYoFGgWiRENRMnonUe9rJugO07DRjiFp15OfPltACUaSozIZ/ZMIeSPYtjgJ2EMEnWF0lliwlKvSh68xoAS4aE0aEvItBN3hXUExZg1akxpvY0DJjtnKU+/Hb9+VCSl2zliGyd/OnbyN/nZBUnsSDct4GvxK1qndrydy27b27W6k33z23Jp9SVJLWLIMbYKi4nNNRIJRJdDJWeGNlZSLxrIbSapYpqXYuNVkDUyJlehtDiK1ZMtqnQOptBK1q5uU7KJJXeOQw1FctJxPQgl2UmklHGUevC2B58YUA4ZEHTZfrB8qjaRkLQWIBCL4m1rLxmli2axazitpVMgRWbnmkkaFt7ElA5MKNHqVMj9UG9REQ1FC7jBaSUeSKRm9UYtZygQgbVAc9Y31VO6owqVtZvrU6Xz66acAmLUWMlOyUNeZ+eTXd+jbty96vX5/t08QjjsjR47k448/Jjc391h35bgyduxYxo4dS0lJCZMmTTrg/YzoSNcmHLZ+BKPhWADSfiSqzYc1k5JZbdh/I0EQBEEQ/hDcbjcPPPAAbrebN954g9TU1H22X716NStWrOCZZ56htrZW2R6JRAgEAtTW1hIfH4/ZbOa///0vffv2JSsrS2lrt9uBWGBUfX39Ph/wSE1N3W9/BOF4FglH2bqwinXTd+C2xj7vMCbo6HteZ3qOzaN0e8lJE6AkCIJwuIjvmsIR1dDQwOTJk5k5cyYbNmzA4dgVTKNT60nRpWH2JdAxsQsDL+pDxcIGHDs9pKriMRl3BQ95GgJKFp6gM4hKrcKcqsdT7cNZ6cWUakRjUhH2Rgl5IujiWr60o7FsSfE5ZhzbPbhr/DRusiO1PNEfCy4yKIFH9m1uEjpbaNxgJ+yPUr+mCWdLaQuikNE3iYgvSlOpi8aNDjL7JykLXA2bHER3W5zKHbYrmCboCFP3qw1zphFXlY/m7S7kaFR5Cl8Xr6HT2AzqVjVhLXIqAUqtxy7/uaFNIJEhSUdy93h81qBSIgMgrW8itmJnm+CZVjUrbO22eer9bYKh9qV1saqNKJT/JrMToAQoJXWzxMq+tATvoIKUwgT0tT5qWkrROXZ68NT5lFIwOosGb0tJEFTQcWQ69nIPNS0l56qWNKI1x+6vxhRbrGrtW1KXOLKHpBCYEcLfHMTTEKBuXbMSWGTO1FO3pkn5WsoamIKj3INjZ+we166yKRmh4nKMhLxhJTuSOcOgnBfAXe/H15IpyZCii2Xgqo9NUFsD3YLOlnHLYC9zK2MyJurxKAFMOgLuEN6W+2CI02IKx1FAP5Cg4KwcHHUuVi1ag11vRWeUqK6p5t///jf//ve/sVgsZGZmcuaZZ3LxxRdz1lln7Tc9ryAIgnBikmWZHTt2sHDhQhYuXMgvv/zCzp07ATBgJNmQTnogmwQ5hY4FeegtOurXNEMU9FETEWPsZ1HAFSLkiaA2xMrYhn0R4lJ3BWa4qn2tVdoI+6JIEqi0KiBC0BEioaNZyXjkqPSgNbb8/JRjJb10cRr8TUECjlAs8DxRh88aaAng2RVQrU/SYUzWUdvUFMvQs9ODLkFL0B0m6ArTtNVFqCUQRWvSkN4nUQmmcVX50MVplACo5q1upTwaQGJnM8ZUPTUrbMhRmZA3ovQ55AlTs9yqBNcAWLIM6OK0u+YoxLL5qA1q/E1tA5QAQp4wTSUufmt/GZR2t6e51+7nbyVHZeRoLMjHmKZX5i4QmzPG55nxNgaUPjZssCNJsRuo1sWyS7XOHS1ZRpK6WKhebosF9ngiNG52KHNWrUUTm9O0XJrk7nFK8Fesz24kVezYmpbgoNagLmOynsQuFrwtJdt8TQGi4agSHGZI0inBVSqtCmOKHm9Dy3glcOzwKAFephQ9QdduweJqiaA7diCVToWvKUigpc96ixYkSQkYk2XwtwShI4FWpcPiTaKjZMKYqCetVwLbllXQHLASSnLT5Gukke0MGjQItUpN/wH9Offccxk2bBinnXYaiYmJ+76RgnAckGV5/42EA3autg//r/DKw3a8iBxl/ManaQg5fhuHGiNDUtjMDz0exWgWgZKCIAiCILQVCAR46KGHqKys5KWXXqJTp0773aehIfaZ/qOPPtruvcbGRq688kruuOMOrrjiChoaGqirq+PKK9vPfx5++GEsFguzZs363eMQhONNJBShdGE167/bjrtlLciYqKfvefn0HJOHRr/vbGWCIAjC3okgJeGwqqqq4oMPPmDWrFmsWrG6Tek2o8pE18wCtHVxZJBD93NykSMyZT/WgQP8jiBa066MRyF3WAk8ioajJOSZqVlmIxoGa7FDqVccdIYxJOkwphpwVXhxlHvIHpKKxqAi7I9i3+Em0hLgEw1HSexiQWvRULmwkeaWUhWGJC3e+limoEggArGER6i0KvLPzqRkShUhd5iSqVVtMhQldDLjawoQ3OrGVeEl/ZREIBb8U7WkUQm8AcgYkExS1ziKv6okGo5i3+5RysEFnWHK5ta1WVTKGZaKJdtI8ZTKXaXcWvibg+226xI0pPdJIOwLK2XWAIxpOuJzTbEyb7sdRqVTEZ9rxFnuUbIU7Y8xTYdKo2rTTwBLByOmdL1Ssi12Asjol4Sz0kvN8pYAqShsm1nTbjyt1yljQCIpBfEUf1MVaxOFsrl1BFqCnrQWDUFnWAmCyuifSHyumS1fVUAUmre6CNiDykJa5oAkrFscSn8SOpqJhmPl5lBByTdVsXtNLFtVYr6Z0unVsa5GaLPgGPZGKF8Q++XNkKQjo08ilYtjr+VIlKatLmXhMD7HhLvWp1xvc5oeT31LJgCTBmeVB0dLVqy4DgZ0Zq2y6BaV2VWeRQVyBILWKDlSF3pm9qHTqAxKp1fR0FwHBV6ag03s2Ladbdu28f7776PX6+nQoQODBw9m3LhxXH311SJoSRAE4QQlyzIlJSVKUNK3n08j0JLBJo5EUo2ZDLCcgcmdQJwljqyBydStaSLoChNyRtBbdi2FBh0hWiOPIv4oOosGfYKWsDeC1xZAbVArAT+SJKGLj/0aIUdl/E1BDEm6WIYiTxhnhYfWKBa1VkVytzh8LRkZrZsdGFNaFlhlWoJUWku8RUjtlYBK68VT58dZ7sFR5o51SwZdghZTql4pFxawh4jLNuKs8BLyhKld1aSUCpNUEml9E3FVeXGWewm0BA63BuU4dnpiwVYtl0CllcgamIx9hxt3rb9NgBLEyuvuXl4OwJxlxJCko66pqc32uBxj7Fr8JmhcH68lGo4qJX73R1JJGJK0+JuDSiBPbDtYsk34rIE25dAMyTqSOlvw24JKQI7PGqCmOaiU0Wu97rIsI6kgY0ASnlq/Ut7WXeMj6AopGY1UWpVSclelkUjrnYhjp1sJtmpYb1euiz5ei8asVuaJungNliwjrpaAf0+DH39zMHZtJcg4JUk5r6SOBRFFQ7F+agwqmkqcu8r5ZhvRx2txVsaOFSupuyvQSmNQx75WiM219PFawoFd839H+a5spOZ0A67q2GuNXkXIEybk2pUZKuAMogsayJBySM9KJBKK0uhoxiXZUXUNUlFUwbOr/kWIICqViniSuf2hW+nXrx9jxowhOTn5gO6vIAhCK7Wk4oHci7l/x+TWH3m7tLwYPKsL3360mIFXdqf7iBwlIFQQBEEQhJNbJBLhiSeeYPPmzTz77LP07t17j+2sVisej4fs7Gw0Gg0DBgzgn//8Z7t2zz//PJmZmVx//fV07twZgPvvv59AoO0DM2vWrOGbb77h9ttvp2PHjod/YIJwDEVCEUoWVLH+ux14bLHPOEyJevqe35keY3LR6ERwkiAIwu8lgpSE38XpdPLuu+/y9P3P4sJBlF0LJXqMdErtQoY6G0N9Igk5ZvKGp7N1ZjVBZxhHuYeEPLPS3t8UVIKJAo4gplQD8blmmkpc2La0PCnfEjyki9NiTjdi2+Qi7I3SsMGO3qLBRayEWcAeK8uGP0okGCVnSCqe6li2nvKf6wm5gsp5M/ol4qzw4q0P4NjpIRqJYk4zxLIM1fmRJJTzWrIMZPRPonRaNdFglC1fV7QJ/EnsYkFSx4KUgs4wKp0Kc5YBT62f+jV2mre6lYxIOouGbhdmU7+2OZY96TeBPw0b7bhqfG2On9Y3EWOyjooFDe0CfYKOMCVTKwl72263ZBpJ7BJH/Rp7m+1x2UZyz0inxFpJ0HFgUUqZp6agUkts/76mzXZzpp6Ejua2QUpR2PZ9dbv+tPY7LsdI+ilJlP1Yp1wTW5GToCvSZmytmY1UGhVdz+uAfbub2pWxxcDqZTaaSl2xgDKNCnOGPrbgSOz6JnQ046nzx8YXhdKp1cpxOwxOwZCoY8esWIpaT70fqeU+A6gNKqpbsj3p4jWk9Uog4AzhcIYJuoJsn1WjlKTLGJCMWqtS9g04Q8piosakwu8I0bg5FixlztATn2OmtiVwK2APUrt6V3anpM4W7Dtii2wag4qgM6iUxtNbNLgbfATsIRKkFDrl9kTSqOi0sw6v7EY7KEjp1mLKyyooKyvj888/Z+JNE9HJBi644jxuuOEGJkyYsL/bLAiCIBzHKioqmDt3Lo/c8gTNNBIkgIREHIlkafLISs5G12BBK+lI655I2BeheauLkCeMrzmAxqCOBSl5woQ8ESS1hByRiUZk4joYcVV6kaMythKn8vNYDslYMgz4GgOxLEXVXuLzzMq+YV9ECTSSIzKGJB1qnYrmbW581iC1K23Kz3p9vJbEfDPeRj/RkEzzNjemtFjQkhwFT51fyeoTDcukn5KIvzmIs8KLq8qLq3JXsInWHAuCcdf6iIZkQp4w+gRty89hmYZ1zYQ8u+amCflmzOkGan61xcrLhXe9Fw3JNJW68DXtmiNKaom03gnYd7gJusJtA32IlVlTaX+zSCzFshHJEbldkFJiZzPhwK4ya/ujMahI651I/bpmpewcxDIBxWUbiQajbYKUvA2x+9Ma6KO0b+l3So84/M0hJYum3Brg7Wzbz9YMRZYORhI6mWP3LyQTDcvUrWlSzqmPjwVZK/c2UYsxZVcmJ29DIBbALccCnDIHJtNU6iLSFCsb56rxKVkntWZNrCRgy2tTmgFDkhZfyxzIvt2NuqVMoFqnIqVHPI2bYnMrSSURcoeV4HKNXoV9u1sZtznTSLCl1K+kknBWeJT5pT5Rhz5RpwQ0yRGZwG/mxT5bAJWkJsWUTmZGEim1uQQIIWcGcJua2bljJ88/+yIhAkiSRJycRLKUzr8/f4Lzzz8fk8l0AHdbEIST3dikvrzQ+Ub+UzmV+tCuDNTJYTND53Qjf1saPoIsemcTxfMqGXJDT9K7JR3DHguCIAiCcDx48803WbJkCUOHDsXlcjFnzpw275999tkAvPPOO8yePZsvv/ySrKwsMjIy9lii7fXXXycpKYnhw4cr2wYNGtSundsd+/y6X79+9OjR43AOSRCOOjkq47UHcDX6sO6ws/H7nXiaWoKTklqCk0aL4CRBEITDSQQpCQclGo3y7bff8tFHH/HjzDmE2LWQY8BEujGTHvmFhIt0qCQV3c7IxlPvp6bBhqfWh6fRjzFZT9AZe2I5vFvWokgwSmphAs2lbsLeKLUrbXhbopSRIKNPEgF7CMcOD1WLrSR0NCv7mtL0ykJE2BvBZwsSn2fGusmBp9aHtcRJtCUIRGvU0PnsLLZOryboDlM6vbpNUEzWwGR8TSGlFJrP5seQqMPfFMRT71ee4AbQ6FTkDEujZpWNoCNM6bSqNkFF2UNSMGcYlOxJrU+DAwTdYepWN9G8Y1cpD41BRdbpqVQvs7bJGNRKDkeVJ9t3l9QtjubtrnYBQQCNGx1KgMzuHGUeSmyV7c6xL5W/NLQpldKqfp29XRAUoPQnLttIwBVqc65IIJYhqzWTEcQyKrVmt0rtnUAksOt1NBylbnWz8uR7bCNKKbe0vvGk9kyg5JtKwv4oQXe4TRBZzhlpuGq8OFqut6fGrzw1jyr29dc6BlOansx+SQSagriqfQSdYbZ8vStzVd7IDJBg59z62LXc4WkpcxMLSjIm66hdFQukMiTqMWcYkFsW8CLBKNt/qFayR2UOTMFTH6Cp2AUqqFvTrGQsSOxkwZhmwN9sjQ03IhPebbFV0qhoark+ycnJdO6WRWJVBzx2P8bOYE+wsX7NOtw4+eqrr/jqq6+QUNGnb28GDRrE/fffT0FBQbv7JgiCIBw/nE4nP//8M3PnzuXDNz/CS+yDwHiS6EAnspKziY8kE3GCPk5LarcE6hxNRIJR3DVeTGkG5VgR/25Zi3wRjCl6fLZgrNRavT8WyNGSwsGYpEdr0VC3KnasujVNqNS7fmgbk3W4a2NlV722AImdzHgaAsgRGXetTwkYkaMyiZ0tRIKxcrnexgA+W1Dphz5eS3K3OAKOEGFfBGelF61514c+XmtAyY6EDMZUPbo4DY4yDz5rIJZ9UMmGpCK9byLN21y4a/1tApSgJUuQM9QmRYU5w4Asy7sCanYjSbGfvdHfBCdpjLGsUkFXuF1AEDKxYOo9JLioX29HpTnwzBchb4TqZVYlK9Lu56hZYWNPNYGioViGJEOyXplPKO+FZeW6t2oNAlJpJBLyY4HSrXNqb4OfaCjaZozh1ixQEqT2isdT78feMrdyVniVebLGpCYhz0TzNnfsvHLseK0BUGqDOpZhqeXQcR2MqA0qJeDdvuP/s/ffYZJUh703/qnq6uqc48Sd2dnZnNjALktYEBlEUgBsP5aulWz/rn2vLWFZVw5XlvTalq588c/ytV5fOeteWwEJIQkhCZBAFhkWWNhlc5qcejrH6ur3j9NdMz3T3bPISICoz/PoQVCnq0+dOnXqTJ/v+X4XnKsUu4X4rgDTB1OAEMSlz+WNc9mDKsVk2XC/Uj1Wcc+mhOtUeiRvzMEdIZXAkIf8jJhblTMVEkfSxjX7VrkMEZdkkdBKVar1OZvVYaEwV6ac1ZAkiYA7TNwVxyt1UavVUIdhfGaUyeQY49Jp7rzzTiySBX8twm9/4jfYv38/+/fvN6L2TExMTJZyVWArV/g3cyB7itlKmrDVyw73avKrizz1r0c487T4+3PmVIpv/fcnGb60h913rsUZsK9wZhMTExMTE5NfVE6cOAHA448/zuOPP77seEOkZGLyVkbXaxTmi2RmCmRmC2RnCmRnC2Rm6v9/rrDMUdsZtLHtpiHWXdFripNMTExMfgaYIiWTFTl+/Dh33303//iFf6bIIoEOVkLE2bhqM/5ClMJMmWC/h9jWAEdPiriu6ZeTeLocAOgaSJKEVH+f52dLxHcG8PQ4yIwUyIzmjd3TIIQtwbUejn9rnOJcmVPfm6BQFy3ZfAq9+8JoRY3MSIFzP5rGGbMZn7X5rdS0RnSITn6yiH/AReJYhuxkkbljGWPXt+KQGbixi3OPzFCcL3Pq+xNNYp/+/TFUn5Vj3xilnNYYr7vrNK7J6hGREg23HmQMUdPEU3PC0amBDINXxUmezjJ/PMvckUxTW6s+K66oDdWtUFy0k78hxpo9vHznvc1vpWdvCElCuAotPp9XxKOxXLsE8KoESrBoYWop+pLvW4xcFwiN5hl9bNb4z/mZkoj6q5dZWkd3zE61siBSAoz/L6syq6+NM/ncPNlx4Zw0dSBJZkS4ZSGLSLaGAxEyqB4Fq31hMpk6syAOC2/0Eb8gIOL8shr5mRJHvj5iXO/ANTHyUyWmX0yKepzMCtclxCKcPWhl5qA4ZvOp2IOqIWiqVqoc+8aIEanXtTtEMVnm3A9FVNyJ744j1636g2s8dO8JcfTeUUDEoliOpY2+GlzrIVmvt6zK9Zic+iKvz0r6XM5wLwjEQ/SEurE9HwLAu8fK0dOHOT11kkOHDnHw4EH+7u/+DgsK+y69iFtuuYXf/d3fRZYX9VcTExMTk587uq5z4MAB7r//fu7+xOdJk6BGDQcugkRZq26lO9xLeaIelToYoDBXIp0W86j8dBHFYaFa1hciwurCo0pOw93toDAnBB3pkbwhANL1GuGNPmZeSlGcL5M8naVWW/iBxrvKhWKzMPX8PNWSzsQzCRR7/Z1Rd7lU7Bbh2DRXxt3toJwV7kO5qSLVRSJrd48Dq9NC4miG4nyZsSfnDBG2xS4T3xVk7nCa/EzJiHZrYFFlFMeiH4dqYHVaqOSr6BWdyQPzC6ImxDzJ1+9i5uUk1ZJOoVRuOp/Nb6WmC9efJiTxjp19ebnQ29PrxB6wMvF0YtlnLFYRJ9dKQESN5aKmFVgmUFp0LgCLTW6KpwXhQhRc62H8qbmmz8+fWIgDXponZLFZsAesIv6sPv/RtZoh3HLF7NgDKnNH0+JzNZh6PmncV8VpEQ5L9XMqNguKQzEEXrVqzRAzAUQ2+yglK8bcde5I2nClsroUgus8zL6colqtoWu6iPTLir8T7EFVRODVz211Wpr6emasYPQBm18lssnH+FNzaNUqhbkSE88ljDYLrfdSSmvGdS5+Jmw+K1aXQnlRhOBiJAlSI+KaLKqFaCSAZc5GROrD6lbQQnlOnz5Fgmk+9clP8Qn9E6jYCRLlo//zd7jjjjvo7u5ueXtNTEzeulgkmd2eNU3/zRN1ctXv7GD80BxP/Mth5kfEeH7838c488wk228dYvP1A1is5uKJiYmJiYnJW42/+qu/Oq9yH//4x/n4xz++YrmvfvWr53W+66+/nuuvv/68ypqY/KzR9Rr5+SLZRSIkQ4A0K/63dAPaUiRZwhWy44k4GNwTZ+1+U5xkYmJi8rPEFCmZLKPhlvQ3f/M3/OSRn1CpiQUBVbHh1QL02AfYsfMC8ucqZEYLrN/bh1ascu6RaZKnMjgiKvEdAcafnMNqs+DuceDpd5I5l2f+ZIbIVj+FuTKlZIVKXsfT5yQzUqCYrNB3WQSL3cLUgXlmDqcJrPGIhYhEmfAWL+6uOIf+7xkKM2XGnp5FVsTimD2osu4dfYw/NcfUgXmmnpvHu8qJrMjomk70ggA2r0LiWAa9rFPOVHDG7aTP5NGrNSx2GUt9oc3mUwlvcpA6k6MwU6aQLJE6uxC/Fd7iwx13cObBSWw+lbnDaTIjYgEtMOwmtNaDxalw/L4x/ENukqfF4oUzYsMeUqlWhIuBf8hFtaiTGSug2GX8Q27SZ/Mc+doIjrBKeKOX2cNpZAU23DlAZizHuR/NgAzhDV7SI3nKabGTe/Zoyljk8Q24jB3mq6/tQtdrnH14ilKygs1vxdPjYPaVNINXxymkyhQmS4ZgJ7zJS7YuclHsEuFNXhJH0+iaiGeT7TKB1W7mj2WxOi3kposUZstY3QqhjV7CG7yM/PsM1aKO4pBJnsyBDonjC22kOGX8g26SJ7NoRR3fkIv+y6Kc+9E0qTM5gmuFm8KZh6dEe2/ykh7JUU5XccZs2P0q6bM5qmUdZ8xGrVYjN1FEVmWcURuVQpXAGjexCwJMHEgw+2JK1OFY2liQ6tkXQvVaGXtcOFZlpwqkzqpGvEzfZRGSZ7JkzhVAFotlSHV7z7gN1WNh5qAQjMV3BAiu8zB3WIiJHEGVsw9PoxV1VJ/C2lt6SZzIMPLIDJ4+BzMvzZMZE+fqf1sUb5+TI187h+pVsLotTDw/RyWr4elx0HNJ2FgcDa33UClolFMVrG6F2AUBquUqufE8ri47vtUurA4xpAfXeVBUC+NPzqE4RSRKZK0PeVZljbQFV6+N2cI0Lxx6nrw9xRNPPMG///u/83t3/R7Da4e55JJL+PjHP87Q0NBrPLqYmJiYmLQik8nwwAMPcN9993HPv36DMkUUyUrIEqOrup2ecD9+j4/0SAFHQCW83sesniY/VWT+WAbvgAurW6GS1bB5rchWmUpOo5Sq4Olx4Ot3kjqbp1KoYpckVI8iXGhqNWLb/Uw8O0+1KIQgikOGeVGv/v1REkcypEeEE6EtaMWiChFOZIsPR8jG2R9OUS3rzJ/MGi5BsiIR2eRDr+gidjWrYQ9Yjcg0xS43OQo5wiqyRSYzmkdCIjtRIF93AbL5rbjjDip5jfQ5EUWXqs+tLDbx7vcPukkcy6AVRHxdpa6FccXs1HQdvapjsVmw+azkp0vU9Bo2vxXZIpE4KuZPzqiNSq5KJafhitsJb/Ix+pMZqiUd1aNgsVkMZ6JSskwxUTKu1REWrkX2gEp0m5/Zwymy48X6tdmolqpYVBlX3E5hriwijss6VpdFzDEa7RBS0Ss1SukKkgzOqB1JEkKb1NkcNo/VcPmxB1V8q5xIssTkgXlcMTvFZJlqURfxtPW5Egjhdq1Wo5QUc/roNj8Wm8zEMwksNhm7XyU3VWTi6QQ2vxW7zUIpVaamizYsZUR8HpL49/x0kZou2l9xWijOl4lu9Qu3rKNpox2zEwUkWUK2SES3+UmP5g0xdW6iSDnfEBJZsQdUI8pPdVuQFdkQQAlXSVEfWZEIb/SRGctTzmSxuhVK6YohMgsOu/EOuBl5dBpdq2FRZSafT6AVq1hdFuK7gqTP5UllNexBlVw9Ik+SRWyzzWdl+oUkikOItsrpihFh6OqykxktiHaI27H5rRSTFRS7BVe3ndTZPMVkGZvfirfPicXmpXZGZVN8OzVVZyo5wVR2nHnLNB/+8If5yIc/QsAS5n2/+15uuukmLr30UtNlycTEpCPdm0Lc9qcXc+ThEZ772nFKuQqVYpVnvnyMoz8aZe97NtB/QfT1rqaJiYmJiYmJiYnJz4RKUePsc9NkpvKLxEh5snNFYyNTOySLhDtoxx1x4Ik4xD/DTtwRO+6wE1fQ1uQgbmJiYmLys8UccU0ASCQS/PEf/zFuyYvFovDud7+bRx99FNVqI84qbttzJ7/5K7/FhdKVbF+3k/49cYLrPQCc+/cp3F0OnBEbugbhjX6iF/gBmD2SRlZkolt9gNhl7x9w4YoLO/Jyukx8ewBkqGQ1rC4F/2oXIOIn4hcIAQiIyAvVZUGpOxNFt/gZvCYOYCz2NCIsXHEbq6/rIrLFW/+sZuwKB7HoNnR9N4pdxuFTUVTFELAEhtz07osQ2eKv/7sHR1jUV/VZiWz2ozgsKC4F36CL6HZRDlks+pSLVUZ/PIPqVujaFcIRVLH5rUS2+IhfEOTcj6ZJnswR2eInMCyubfWN3Qy8LY4jLNygPL1OYjuCgHBrkq0San0RS1FlunaFjB3t7h4HkQ1+49pCG72ENojrHnl8BoffiqfbUW8XO127QkLcVQNvj5PwJp/x2fjOIJ4eUdbms4qy9fYOrvUQ3egTiycyxC4I4O13AiLyJbLBx/SLSTKjBQLDbqJbF+oUXOvFN+gSi1B+G127Qljd4nrccTuKTaZQX+yLbvPjGxJ9wOpR6NkbYt07+nF3O/APuIltD6AVdU5/fxL/oJvgsIfAsBur00LXrhD2gJXpg0kyY3mimxbuTWSzn8Ba0d5Wp1K/r/X27nKK+EDE4lt8Z4CuXaL9ZUXG7lUNd62+iyMMXt1lXJvVbSUzUTQcnFZf30VsR0BcW8xBrVZjpi406t4bYtWVcfSy6Iv+VU6K82W0vI4jZKPv4ii1sujDgbUebF4rlYIo27U3jOqykh7NYw9YiWzy4giLZy447MG3ysXIT4Q7U+yCAMH1HpwRGzafSvyCAFMHkyRP5vANuei5MMzwxiG2Snt5780f4L3XfpBt4d341CBjY2P8wz/8A8NrhrFKNm6++Wa+/vWvY2JiYmLy2nLy5En+8i//kpAUw+f1cccdd/Cdb3yXLvrZKe/nVy9/Pxf3vI1eaYhVW3qIbgtgUWXyMyWKiTL+QfHeUr1Wwhu9OCPinZY+l8M/6MZis1Cr1nB1OfAPuQEhrnHFbHj6nEY9XDE71rozkdVlMeYf1ZJOrSbexQDI0LcvgqvukFluCFfqhDf76Ls0DAjXHK1YNdyRbH4rqy6PGe9aZZGzIRLEtgWIbPGhOC2oXgVPl5OGVsPT7cAVtxuipuA6Dza/FSRQ3QqB1R7mXkmTmyri7rIvzE3CNgLDHiyqhdlDaRS7hdA6L7JVwua30ndZ1JiHgZj/OUKqqL9eQ3UrRtyYM2IX7S0Jpyf/ajeq1woIB6LQOi+K3UIhUSY/U8Lb7zLO6xtw4YzaQZKQFVmUrbe3I2hrqoO3f2GObJR1irJ2v0pw7aKyfU5qNUgczSDJEqF1XlS3qJPNZ8U/6Dba2tPjwNPjNNrbFbOLCLOaiAgMrfMaLkHuLgddu4PG/DC4zoPdr5KfKZGbKhJa58XmV7HYhOjKt8oFNZg9lEJ1KdgDKkjCWanR3rIqYw+oeHsdRv09vQ5s9fr6V7vpvjCExdaIzlWAGtSEc1b/5RECw+J6LHUnyfy0EDsF17rpuyxixOupHiv5qSLVko5slei7JIIjJJ4Ne0BFsVkMp83QOg/+QRdavopkESJ6SZLQtRp2v5XQBh+5SfE9nj4n7m4HFquMJAkRXjmjUZgrYfNZiWz04elzQA08PU5Ut8LMS0nxPRu8xDeFiDt62BLcxbsu+2Wujd/GOukC7A47f3n3X7J//36csps+aQ1f+tKXyGYXuV6ZmJj8zHjooYf42Mc+xuc///nXuyrnjWyR2XjNKt79F5ex4ap+432Znsrzg//xHN/7zLMkx80xxMTExMTExMTE5BeL2dMp7v1vj/HI/3qR5+45zrFHRhk/NEdmukCtWkOySHiiDro3hVh7eS873zXM/t/cytv/eA93/tXl/No/XcMd///LufEP93DZr29lxzuGGb6sh64NITwRhylQMjExMfk5I9UW5ziYvKU4d+4c/+N//A/uvfdexsbGAJCQcOElRi9DnnXoWRlk2HTnKhInMkw8nUBWZGRViGf0sk7X7iCBNR4Of+WsEXemukXsl6zAhttXMXUwaTjCKHYZXRefje0M4Ot3cuzeMaNeNr9V7PSWYe0tPcy8nGL++IKTkaTIVLIa/iEXvlUuzj4ybUSFeXocZOqxIN17Q6TOLsRfKU4LjoBqOBd5+lxNUWLhjV7So8KdaGlsmepT6N4d4twjM0b01mKi2/34B12c+PaYEeu1mMFr4yg2mePfGm95L4LrhXtQo64GLWLQFh/beEc/ydM5xp+ca1Pop2Pzrw4w9WLSiDB7LbC6Fdbd1svkc4mWsXVA6+uVoXt3iMnn5lu2fWDYQ8/eEMe/PWY4BCwmus2Pf7WLE9+eaHvvlsa5qD5FxPcBka1+5k+kDZGS6lVwBG2kzuSQFRlPr8NwopJVmfjOAIkjIr7GHlLRcpoQMCGctnz9Ts48LMREjohKYUYslMkKDN3Yw9yRNImjGRSnBV2rGbFxka1+Qus8HPnaiFGPRh+VFVj/7lXMHEoxczDZ9IyBeBZ8Ay5e+fI547N6WUcr6ih2mfW39zP5/DyzL6VQ7DKFcJIj44eYq05TlTRqtRoOh4OLLrqIO++8k/e+972oqtr6HpqYmJiYtKRWq3Hw4EHuvfdevvGNb/DSSy8hIRMkQoguIpYunJKbWrWGp8eBf7Wb0cdmqek1ZKuEJEtCUC1B774wqXN54TwjLcRQ1ao1PH1OPD2OprmBEQkmQfeeEKnTOcORpyH+0bUarrgdV8zO9MGkEdtldVmo5IRgNrTBS26qaETSyoqEbJXRClWsLgVn2EZ6JGdEbzViuagJl6ByRjPcfSyqjD2kGnMfi10Wwpk67m6H4Za4FFmRiF0QIH0ub1zHYqwuC/GdQWZeTjXH59aRLBLeXieps7llxzrh7haCr/EnZo241dcCT58TX7+zKRb3tcA/5MYZsTH+1Fzr+DlYFvsGQuQkW2XDOWop8Z0BKrkqc0eWz+cki0R8R4D0SN4Q+Cw9HlzrIXkquxBTtygmT3FYUD1KU/yeM2KjkBDxbjaflUpeM2LzbD5rPfJWuDDZvFZK9fhoSRZC+dxUkeJ8GYsqU9Nrxr1zRm14epxMPS+swxS7Ba1YNerUtStIZqxAdryArEjUahg7M909DnyrXIw9MSvEVLaFmD9Jhp59EZKns2THxGeRJGpVEcHoG3ThjtsZa0RI22ukLXOMZ0eYkyYp1HIossI73/1ObrzxRm644QZCoVCbG2hicn787d/+LXfeeSc+n2/lwm9Bjh49ygc/+EG++MUvsm7duhXLHz58mI0bN/4carYyc2fSPPEvh5k8Mm/8N8kisfm6AS64bQjVaX0da2di8ubijfRsm5iYmPwi82rnXm923mrvl9f6emu1Goe+f5an//UIulbDGbTRuzWyyA1J/NMZsCPLr487sXmPf/F5q13zW+164a13zW+E6zXj3t5iHDp0iM9+9rP82798mQr1BSYsBInRxxAh4siSTGyHn/B6H4e+LIRHJ78/Yew61nWdDbeuYvZIiqkDSaZeFP9riEviOwIE13o5/OWz6Boc/caIIdJAhrW39TF/IsPEMwmmnhfRbA0iW/1Et/o5es85tKLeJF4CGLqph8JsyXAjSp5cWFzy9jtZdUWMU9+bIDdVXCbc6b0ojOqzkvnGKFpRbxIoyYpMZIsfi11m6kCySaAEYrei6lFQPYpYbFtCZjSPZJFaCpQARh6dbulb1hBVJY5klh2zuhXW3NjN+NNzRqxJEzqce3SGcnq5MAcZBq+OM/lcgsLs8voqdhmtrLcXQK2A4rSgLXKmWkz3vhDFRHnZNVWyGqOPzxjxd63qPHxzD+mRfFOfQEcsriHEb8g03Z/54xkKs6WWAiWAzHgeyUJLgRKIxSy92nysIVBSnBYim3zUNN0QVpXTmvH9wfUe4hcEyM+WqGQ19LLO+BML/a7v4jDVSo1TD0zU65o1BHeOsMqaG3o49+NpUqdz6Bocv2+hv3ftDuGMqBy9ZxSAmYNJZl5OinrZZdbe0svkgQSzh0Qc3+GvnEWu97HoBQF8/S5e+YoQJY0/OcfsYSHCklXx2akX5pl5KSWes2+OGs9odEcAX18v1q94QQLNWWbGdZaT08f54Q9/yA9/+EN++7d+m23bt/He976X973vfdjt9pZta2JiYvJWR9d1nnzySe69917+1+e+QIEcClbCdLGViwgSQ5HEdLxnb5jMaN4Q3uRnSwsOkTE7vgGXELHUYOLZxILAAyE8anw2O1YgM5o3jrl7HPgH3Yw9MUutWlsmWInvCpKfKZE8mSU3WWwSljgjNkIbvYw/NUe1qDP3SrMoJbzJR60m3lGVnEYqt/B+tthlIpt9zL2SJj9TojDXPB9xhG34VjlF/Fq11iRQAiE0amfVrWs1clNFQ4yylEquysQzCbRC81xFcVjQNR29UmspUPINuLD7rUy9kGx53txkUThEtRAoueJ2FJulrfBJtsqGs9SrRgLZIrX8XqtbwdfvbCkAz4zlheNQG4GSI2wjsMbN5LOJpnOXUgvtulj002DmpRR6m3tTq9bvTZt5mWKTmyLuxIcwxGvOiA1X3E5+pmTUOz+zIFgKrvNQnK8Y8/hSqmLU1+azEtseYPL5eRHTptMkpPIPCefNyfo8Mz9dMsRQFlWm68IgiaMZIXyrwcQzCcOhydPnxBWzG39fZMcK5OvlJFmia3eI5Kks2fECNR3Gn5ylsRXI0+PE3eNg7HEhQkudyRnPmSRL9O6OMH/SiTcXplarUQ0WGE2d47tf+T5f+cpXsMgWAnqUz/z9p7nuuuvo7u5u2bYmJp349V//9de7CiY/I0IDXm78oz2cenKSp//vEXIJEXXx0v2nOfHYOBf+8jrWXNxtxkmamJiYmJiYmJi86Shmyvz4b1/i3AGx6XvVrhiXfmgzdre5gdrExMTkzY4pUnoL8Morr3DFxmuZZYIqdfEFViJ0s4p1+KUQyLDuHb0kjmWZOZhk/kSWYqJiiFicERv9l0c59vVR0GHsqVlyU+JHfb2sM3htnMxontlDaRLHMkIYU/+sI2Qjss3Pqe9NLHy2sQCmQ2xngGpJZ/blFPMn0pTTFUMwoThFtNnE03NoRZ2xx2YpJpp3Vnt6HEy9kCR9Ls+ZhyabdtT7h1xUSzqZ0QKjT8yC3rygEt3mJ3E0jVbUOX7fglADhDtNdHuAyQPzFBPlZYIpq1shtt3P6E9mKcyWl4mBXF12ui8McfrBCcOFZzG+QRf9l0U58d0xw01nMdWiRupcjtxEoe29zY63PqZ6FBS7hXY+aT37wqgea5Mo5nwJrvfQsyfMoX87azj1NH23Q0GztRYwLRaVLUOH9Jkc2RaOCQ369kcBOHl/syNVQzjWdWEQxaEIUVidwkzZaF//kAuLVWZukYBq5Mczxv/3D7mo5KuGa4OWr3Ls3gWRXXiTl/RI3hApzb6cIjteoJIV/x7fHWT6xaTRLqcfmkKxiZgWZ8SGu8fBdH3hszBbNgRKALEdforzFePfJ59LYA+IXa+KXab30gjjT89RTglnppHHZsjV7390ux/FaWH8cbFwNnsotfCM1cVfkwfmKac1dE18trEoF98VwBW1c/K7E8Y15cYb7hqw9ZY1TDwbomtmGE0ukxuc5ejZQzz99NM8/fTT3HXXXVgKKn/5d3/Br/3aryHLpi2qiYnJW5uGMOnOi9/LFKOUKaJiI0IPUboJEEWWZCE8GnQZooe5I2kqdZGPrtWIbvKRnymRHS+QnykJN6OGu5FTIbzRJRxgapA4mqacEZ+t6TX8Q24qeY3cRJHCTAktXzUEP4rdgm/AReJohppeq3/vwnvbEVKx2C1ChDFbQj+YWhAQSUJgXZgroxWqJI5nmuYCsiLh7naQPpenWtSZeDbRJGpW7BZsPiu5qSLZ8QK5qWKTEMnmtSIpEsVE2RD1LsbVJWLKivNlwzlnMaH1HspZjcxoYZlACUS8V7VSY/ZQatkxgEI9PrgdNb3W0pkJhAipEVe2FIsq03NRmJmXk8vEWudDfGeQUrLM/InlbSIhBMgWVV5W92pRXyb+Wkw5XSE3WWwrOFI9CrELAky9MN8kXFrshhXe7CNxNGP0XWDh3kgiyi19Lmc4H1XyVSafTRjHvb1O0qN5o2+nz+XF/LYe9eYIqU1zw6kD84ZwyB4QP0o25oGlVIWpF+YNAb+nz0lxrmREPs+fyKLYZaPu3n4nqTM5dK1Gtawz83LKuE53twMkIUYC8c/GMUkWAr3UmRzljEZNrzF7OGXMB93dDmw+qyHqy04WKGUqxjV37Q6SPJlFK1RFLPChhc96+124okGU55wMSOvR3EUS1knOJc7w/ve/X0TNOeOEcl38++wPTIclkxUpl8umA+pbAEmSGLqoi/4LIhz89ikOfuc01YpOIVni0b85yJGHRrjoP20gPGA6aZmYmJiYmJiYmLw5mHglwSP/60VyiSKyIrHnVzaw8Zp+U3xvYmJi8guCuZr8C8rZs2f5wAc+gCrZ2LhxI1OMICPTxSr2cg2XS7dwSf+VbL+mbuWlQ/JUlvyMWAQopzVsPiveficgfvzPThSQ67K27FgB3yqn8X2VnGbEI5TTGrnJAvag+DFUK4v/rtiFWCN1KtckFlLdVtT6jmotrxvRWQIJV9yOI2QT3zteaBISuXsc+IbcRk9uRL01iGzy4V/trp+72vRZq1shvNGHd8Alji9ZxHFE7ITWeXHFWrvE2ANW3N0OVG9rrV+1pFMpaOht1qJSp3Oc+eFkS4ESiDi98SfmltULhBhn8Np46xMjnICO3zdmuF8tZeZQisnn51seW4nMaIGRn0yD3nrR68zDU0y/mGz7ef+Qi3Xv6m05+ky9kGwZ29Jg7PFZzi0SIC2lktOo5NvYWQGeXieefmfb46H1PsIbvE3/rdH+siIWpALDnqbjjcVKZ8RGaK0HR2hhEUDLV42FM3ePg8Aad9N1L3bIcscdOMK2hWvJamRGRH9WPVZUj9VY4FOcMqlTOaNukgyL5+ZWl2KcW7FbqGS0hQW7bgdaoWoshhXmyuSmF9o8ssVHMVnvN7JM4kSW3LSoR3x9mA2xLVyoXc3beAcX9l1CyBMmS4oPfOADeD1edu3axVe/+lX0Nv3DxMTE5BeRWq3GgQMH+OhHP4rL4uHiiy9mmjFi9LKLy7mUt7NB2sHQmjW4ow4ASpkKmbECUv29oBWqQhhRp5gsG++0aklHr9ZQvUK8Wi1XqeQ1I6qtMFfGUp9ngXgnNH60qZaFqEe21iPh9BpWp8UQ1JSSlSaHH9Vrxe6rR8PUaHKQlKQFAQaI99xiBx6rS8Hb50RxWIzji3HF7WJuWX9nLXVK8vQ6cHc5aIczbDMEvK3QinqTw9RSZl9JM39yuXtlg3K60lIALlkkui4MGqKYVmRG8iSOtT63rgkhSjvnp5VInsySbSNaL2c1pl9IdhRXRbb68fQub9dquT7vbiNqL2e0ZQKlxejVGtVidZkjZQPFbsEZsRl/AyzF5rXiXeXE6mg+3uhT9pCKb8Bl9PPGscZ8yBm1LbuuBSGRhLvLbjwzAHpFN8R8itNi/H3RoFiPlBN1l5vqvVigJlvFxKtRD6vTQilVMe6BXtEXYuMQYqrF9SrMlqnURXT2gNokMCunKk2irHh/lN7qMLuky9mvvJ2d3fvQSzqvcIBIOEJ/dIB//ud/Jp1uE6Vs8pbntttu4+677+bo0aOvd1VMfg5Y7Qo7372Wd372UlbtjBr/ferYPN/8g8f5yd+/TDHz6sWyJiYmJiYmJiYmJj8vdL3GgW8c57uffopcooivy8Utn9zHpmtXmQIlExMTk18gpFqtndeKyZuNRCLBJz7xCf7281+kjPhx24JCmC4G2YBb8jY5xXj6HES3+Dn7wylD7ODqshsuMmtu7iY3WWTi6YTxHbIixDO+ARd9l0Y48Z3xlvFnQzd2I0lw4jvjy46pXoXhm3sZf2q25S754DoP4c0+jt072jKOLLbDD5LUHAm2iOg2P5nxPIWZMrIqL3P7CQy7SZ3Oomu0PO6K2Q2hTKvjNr91IcJCZlkdbf56LEabtSKb34rqVsiMtl5sUpwyQzf2MP7EbNsy/iEXNp+VqQPJ5QdlsPvUlvflfNn8qwNMvZhk5mCL858HsiKjOOVlsXkgFmPCm7yMP51o6cQEov9kJ/Ktr69+fv9qV9vFQBALWy1FWvV7pnqV5fWTQZZldE3HEVYpJctNEX6L+4Nv0EVuolk0t/h414VB5o6km79j0Xf3XBRm7LFZytnlbRTbGcAdW3A3Wsr62/tIn8svizQE0Tf6Loly/DutRWqD13UhSRgRdI1nGsS9Gbw2zrkfTZObKmIPqGgFbSEKbrsfe0Dl3I+EUCy6zU/ieJpyTmPSeYZCOMmZkdPUajVsqo3tF2znU5/6FFdffXXL6zAxMTF5s3PkyBH+9V//lb/41N3kyWJFJUYvMfrwE0axWXCEbYbwJbTeSzFVNuZasiIhKzJasYrNZyW0wcvU8/OG0EaSoVZ/zUS3+amWl0eugYhDje8MMvXifMuYLf9qN46QKuKrliKJc+enSy0FOhabTGDYQ+JoWogyJJpELRa7jCtqN9xzJIvUJD6SrRKq2yrmJXXxVG2RWF2SJSw2Ga1QRZKbjzXqZ1Fl0SZLvruB4rC0dE5q4IzaKMyWjLZcineVE9VtbeuwJCsSvgEX6ZF8SxGUxS7e/+3OvxKePie+fqeI8/sp6RTF6+13Us5qbV2g7AFVxL4dmG8bsWfzW9EK1fYiMEn0lWXOTYvumcW+/Pji/mJ1K4aIeulxySJh91uXOVE1jqseBatLaYorXPzdvlUuqhW9tQhNlojvDJA8lW3pdOWK2QkMuxl/as4QJi0mtqPuCtui/1hdCvGdAaZeSFJOV5qeaRDzSdWtMPOS+KzqUQwhlWyVCW/wkjydpZzRhNOYRaI4X6ZUK5KNzjJWOMN0ZhIZmb7IAB//9O/znve8x4ziNTG4+uqrKZfLwmlnaIgbb7yRq6++Go/Hs/KH30IcPXqUD37wg3zxi19k3bp1K5Y/fPgwGzdu/DnU7D/GyIszPPkvr5CaWNgcY3Nb2XX7Wta9rQ9ZNhd5TEwW82Z5tk1MTEze7Lzaudebnbfa++U/cr25+SKP/K8XmTgsfr8avqyHff9pI1b7GzsUyLzHv/i81a75rXa98Na75jfC9ZpOSm9ydF3nr//6r1m3bh2hUIjPf/7zVKkQoZvdXMkV0q3s8FyMWxLuMNGtfgJDwlkoM1Lg5HcnDAGCf8jF6mu6DAekE98abxIoDVwZo/9tMQBSZ3Ic+fo5QwijOGUGr43jjIgdyWNPznLmh5PGZxWnhcgWYS1eTmtMvThPZmRRTIeM4UhUmCsJ16Y2sVEW1dI2TgMZ/GvcePuEW85SEYzqVujZGya41tvyuD0oRBoNt5xln/cqrHl7D+GNdbedpes0Mqy+tovei8Kt6wfEtgfo2tMhmkGH/HSJwqJYu6UkT+baCnh8q1wM39yDPdR6t79il4nt8KM4f/rH3z/kwjfoant88No4fZdEWh4rzpcZ/clsW4ESQG66KOIG2xDa4KFrdxDF2WZnvt/Kmhu6Ca5r8eO7LoQ5Qzd00703tOyYrukgw6q3xejZ13wNjTrLCnTvCRHdHmh5XHUr9QXh5h36jf5idSkoNhmtTRsU58pkFzlKqb7mSfjkcwkSx4VAy9VlxzewcC+SJ3OceWjSECgNXBklMOw2jp/+3gTnHp0CRGTP+ttXNcWlvPLlc4ZIr2dfmIGrFhy7pl9IGgIle1AlutWPI2hDlmT6pTUMjexgf+0WVrORcCDMs88+yzXXXIPH4+Htb387Bw8ebHm9JiYmJm8mEokEf/M3f8OePXvYsGEDf/apP8dHmAu4hEt5O+vlHYTUKJIkYXUr+Ifcxrxl7kjaECiBcLjxrxZjeClVYfzJOUMEYnVZ6LkojLXuNjl7ONUkUHJGbQTXivdcOasx9XyzQMkRUrG6xWdzU8VlUWGGS0xNOMi0cyKsVWtYrDIWdaH8Ymwe4SxpODUtEbl4+12innXByFIRUmDYTWSzmCMuEyghBFax7YG2AiVX3E7XriAWtc280SYTXOdtcitcSiWrUUq1F3frWo35E9m2Ap3wei+hJU6Mi3GEVGN+/dNgUWU8vQ4kS+vFZNWj0L07hM3b2mUqfS7fVqAEwonScFFshQTBtR48ve3dKANrPES3+pcfqN8zd7eDrl1Bo58Yh+v9xRWzE98RWDbHX3w8tMHX9vP2oNrkRLb4uwEkRUJu035IIuqvXI+ss9hkw+0LxLH5E1lDoLS4vwPMvJQieUo8X6rXSmij17hXlZzG2BNzhqPlUlfO1OncgkDJrRDfEcTmF/dRr+hMH0waoiVX3G442dokO9FUP1uzl3AJN7DWtpV8Jcuv//qv43F4ec973sM3v/lNzP1IJvfddx8f/vCHWbduHSdOnOCv/uqveMc73sEnP/lJnnvuude7eiY/Y/q2RXjHZy5h9y+tM2LIS9kKj/3DIe77w8eZPPrTuSubmJiYmJiYmJiYvNaMPD/NvR/7CROHEyg2C/t/cyv7f2PrG16gZGJiYmLy02E6Kb1JeeSRR/iTP/kTHn3kUWrUAAk/IQbZQEiKGeV8g8Lx6Nh9o5RT2jJnoO49IWSrxOhPZkEWUVAN9x4Rb+Vn/mSWSlbDPyQW0ZInF3bhGW40Mgxd3830wXkjomoxofUeYjuCHPvmCFp++QLP4DVxFIeF4/eNtbzewWvjZMcLxo/4S4lt9zN/Kks5rTU5wzSwB1VjcabJCakF3n6n4QbQiuBaD4kTmbZOSZ5eB4VEqeV1NlDdSksHnRWRoeeiEDMvpVq6FIG4b54+V1OU2GLc3Q4Groxx/NtjbdthJSel1dd3US1VOfvD1tFrzpgNrVilnGp/jeEtPioZbUm83/nT0glpEf4hF8nTubb3qZUT0mKcMRvlTKXtfVTdClpRQ9dauzYt7oexHX7mT2Rb1lexy6y+vouJpxPL4gpBOIt1XxgSz3CLz/ftj2D3q62fHVmIC1Nncswfz6LYhUtUo16qVyG0zms4a4S3+MiOF4xrUZwWrE4LhdkyjrBK78URzv5oyqjH4vFk8LouJBlOLXJ/KtfKnOYwc+oEhUqeWq1Gb28vv/Irv8If/uEf4na7MTExMXkzUKlUeOCBB/jnf/5n7v3GN4EaIeJ0sYowXVikBdFsdLufamnB8WixU4zisBBa72X2lRTVoo7VpVAtLUSmWV0WVI/VcIPxrnKSmygaUVCSRUKShGjGGbVhD6gkjrZ2FYzvClJMlEieWv6eVZwWunYHmX051dI5xua34l/tZvqFZEvhkGK3YA+qhivNUneYxrU23JEki9QUKbcYiyojKxKVNi5AFlVGcVraz90k4QTUSYRjsckdY+A64QipyIrcMY5WcViQZKjkWl9DeKOXGjB3uHUk10pOSlaXQmxHgKkD81Ryrec+9mDdRbPNX3aK3YKry952frgSK7WhRZWx2C2GGGcpkixhD6oUZtuL8Feaoyt2i4hRk+r/f4l7VqMfLu2fS/H0OlA91pauZCCenXKm0vLZsthkunYHmXsl3fLZsQdUPL0O42+Wpe3mCNuoVWsU58tY7DKOgEp2smjcN5vPakTDBYbdVIs66UUbOxrjidVpIb47yPQLyaY4vlwtwwRnmbGNkitlceLmv33q93nHO97xuu+OMnn9OXPmDPfffz8PPvgg8/PzSJJENBrlxhtv5LrrriMWi618kl9QflGdlBaTSxR5+l+PcPLxZrfeNZd0c+Evr8fpby/mNTF5q/BmfLZNTExM3oyYTkq/2Lza661qOs9+5Rgv3X8agNAqD2/7Lxfg62q/Sf6NhnmPf/F5q13zW+164a13zW+E6zWdlN5EJBIJeqXVKJKVK664gkceeQQ7LtayjbdxG7ukywlJMeK7g3RdGAQgM5Jj8tkEWn1BQy/rBIY9KHZx67ViVfzYD6AjBEqNXiHLhDf58PSKXcnJk7kmgVJ4k5e1t/QKRx4dTt4/3iRQim73071PONXMHclw5J5mgZIzZjN2Ck89P8/oYzNtr72UrrTd4S+rYoe8t19MWpYKlBSnhaEbuonUd3cvXfyQFZnhW3oIrhe7mlsJlELrPcau58Sx5QIlWZUJ152iMqOFlsIW34DLcDdqJ1AavK4LT5+j5TEQCx/ePpexC7IVukbHBajseIGXv3Sm4yLQSpx6YKKtQAkgP1XqKFAC8K9y4Yq3j6KQFSGwWewStJiGOK7h0LWU5EkhULKH1JbnSJ3OoRV1FLtM32UR5CWC/PyUEJopdpm1t/Usc44qZzUjMnD1tV107Q42HW/0Q8UuExz2Gu5eyy9UopzWKKZa34/E8QxjT84ZwiD/kKtp5B55dIbT3xc/NNtDKquv71pwmNLhzINTRqxi974wa27qWbiGtLYQ/SNDeMOiesqg5asUZsUCnGSR0ApVo+/6h1woi1wrpp5PGKI21acwdEMXbp+TddJ29lWuZ3/gesLEGRsd5zOf+QzhcBifFOTBBx9s3S4mJiYmbwCOHDnCKmktLtXDLbfcwg++8UPWsJlLuJHt0sXEpF5sDpXIVr/h5JM6kyN9buE9LCuS4aJTLVWplqtGvEolpwmBUt2UxRGyNb0v0mfzhkAJIL4zYLzT8tOlJhGFxSYT2eLDUp/jTb8w3yxQkoTgBsT4Pnc4TaGNsEcrVtHyGlKbvxTsISHEkOrXsVSg5Bt0Edvur4tGassESo6wjdiOAJJFolrWlwmUJItEYI3bON5qzuIIqcINqu4EtQwJ3F1intFOXOMIqcJ1sUPajc2v4oh0XrjVCtW2AiWA2cPptgKl86GS0xj995m2AiWot0GHrSeyKuOO243+0Qp7QF1wC13CgsOXgs233LGpWtYNgZK7y76s79T0miFQcsXsLZ2tGvfZ1WUnus2/7L40/mbx9DiI1/tP83fUr2NJ/2x1Le3+rgCYeyVtOL42BNuLPzv+5JwhUPIPuXF1Lcxni/PlJoFS956Q4TQLUJgtGU60dr+Yo0qNako0CY70co1q/dmRrTKOkGoIHrWiTuJIRkRMI545T68Dl+RhjbSZvaVrudBxBT5CfOKP/oRNmzYRsXexRdpDqdReKGbyi83AwAD/+T//Z77+9a/z6U9/mr179zI7O8s//MM/cOedd/J7v/d7PPLII2jaT7GZxuQNjyto54rf2s7b/3gPwf4FR7cTPxnnax/5MS8/cBq9+lPmlpqYmJiYmJiYmJj8FKSncnz7E08aAqVN167i5k9e9KYSKJmYmJiY/HSYIqU3Affeey/bt28nFAoxxmkkJHoY5DLezsXSdfRLwwSGPMjK8tupa2JhxBBMOC307A0ZC1zTLyaZfHbB4ju43sOGd/eDLARNR746QuLIwgKYp89hiHWSJ7OMPTm7XJBTr4YEyNLC4sDSeK/+y6JiAQLIz5QMMQRgCEMa7k3jT8w1CaRA7EpX7MLJ5ei9o8y+vMRlqV4PLV9l9LEZZl5OLmsf0UY6hblS06LAUjw9Djw97cVD/tUuYlv9RmRdK6Lb/MSXxIMtRrHLSLJYkGhHca7MK189R36m9eKCzW+l//Jo2xi0nyfhLT5i2/1tj5/47jjjT861Pa5rYpFyaazHYlwxO7HtgeXxHouIbfMb/awVtoCKK25H9baOYdHKOoVExVhQWlbPss7IT2aYejEp/sOSx1Ar6hz9+iizh8TiZHC9pylqT8tXOfPwFJWsEF2tvW1BMCe+AObr0W72kHAz8i8RTDXcoKx2C5IsGYt4S8eEyecSTD4nnnfFLhPfFVgoo8ORe0aYrguNui8MseambuOz+akSp38wKQR6MnTtDhHe7Gs63nBhs9oVkCS0+gKgt9+JveRmu3QJV3Arl6y6koAzSJp5rrnmGuLxOO973/tIJpMt29jExMTk50mhUOBLX/oSl112GRs2bGCCs3TRzx6uYq90FauktThtTkOoUa3oYs5Tf1+VkpUmwYqnx0mwPneq6TB7KN0kyontCOCtx2hlRvML4lHEe9Db7zTEFvPHs02uKoBxTK/oSJKExSrG9YY7UwNnxEZ4k8+I08rPlJpELa64ndgOEatWLerMHck0ncOiyobYIjtWYPLZ+eUuS/VXdmYkz+zh9DLxUgMtr1FOV1q6NIF4RzlCtoVIuhb4Bt2GkL4VNp+VwBoPVlf7cwhnKqmjuCd5MsvsodZOngDePieuWHvR9c8LEWvnaRt7V05XGHtyjmobB0mox+1JUttYORCie++q9j8WKnYL/iGPESXbCntA7Xhcy1WF+KbNfcmOF0T/akQLLqludqzA5HOif8pWGWe0WRCVnymRPiueI2d0QTDXoJLTjGfU2+cktLFZEL/4uZAWf/eSejQc1RqCJmfUhrooki83WWT8qQQ1XfTFnr2hJvFW6mzOcFVzhlURd6c0hIE14e7Voo1kRcIRtOEthtgk7Wa/chN7ei5FK2m8zNP43H5+6Zd+iVdeeWX5h03eElgsFi699FL+/M//nHvuuYff+I3foLe3l6effppPfOITvOMd73i9q2jyMyS+Psit/88+9v2njahO8ftFpaDx5JeOcO/HH2PilcQKZzAxMTExMTExMTH5j3PyiQnu/fhjzJ5KYXNZufrDO7jovRuxWF//tS0TExMTk589ZpjnG5TZ2Vm2RXYzxShV6gv9BBliIyEp3lRW9Sr0XRJh/Kk5EkczTD7T/KNScK2H0EYvx785hpavcuze0SYnH5vfiuKwkJsokp0ooHqsyDLouhDwLEa4MFmYP55BK+qGQ0uDtbf1kBktMPFMgqkXksuuK7zRS/JMFi2vc/rBybZuPlpRJzddpJJtvStdccrEtgdAlph9ObVMACUrMmtu6iJxIsvsS6mWzkKumB1ZkciMFUTcXQsakV1nHm7vGgSQOJIhfS6P1iaqBODk/RMdZYFaUW+KylqK6lbQyvqya20q41GwB9WOQqe+/RFjF/hPizNio/eSMGcenmobuaZ6FCwthHMGi3a7L41Ka3D6B5Md65GbKHL03lEh8GnDyI9nO7Z7bqLIkXtGFtyxZJqdsnQYeXTaOBbZ5FsWO5ipu28pdpk1N/cw+VyiSVTXeI5kVfRbq9PC1IHksrrIsnDGyE+3FqEV58qc+M644Rghnqec0e8yYwUjMs7qVhi+qYexJ2eN/l9OaYbDlavbQXCtt0nEuPi6M2N5yg3HBhkCQ+6F512Ho98YNcrGtvtxxuyc/r64X7mpIifvHzeO9+wLkx7JMfbYHLIkYz8XYDMXs5YyU5GTzFWn+cd//Ef+8R//ke5QD5/67Cd53/ve17INTExMTH5WvPzyy9yw5TYmOItGhQARNrOHKN3IUvMPJN5VTuwBlYmnE9SqNUPgCYAEkS1+8jNFchNF0udyy6JNHWGb4SqTmywa87Kloh5ZkfD2OSmlK5SSywWzjrCN4FoPE0/PoWtL6oEQFtn8VuPdUs4k2roKlTNaW0EugLvLgavLTmGuRE1nmcDIGbXhW+Vi8sA8ulZrKf52dzvIjheo5KvMn8guO96I66rkqow/PddRPDT1fAuR1CJKyQrjT801OVEtpdM7F4S4X8tXO9ZDcVo6zjMUh4XQBi9zr6SXxZO9GvxDbqhB8tTydgOoVWuoHquIF2t3zTXRp5Bax++VUhVKqfaCLIDE0TR6tX2DaMUq40/NtY33A5g7suAq1SoqsJSuGA5BNr8VvaI3Cf9qOkZf9fQ6cEbsTL0w33SfGgImV9SGd5WLwlx5QdTUVF+dYqL1MRAOqg1hn8UmY/NZm/rM4n7sG3Bh96tMPb+wAWTxxgJ3l4NKTmuKxFvchzPjBeOY6rUK57X685qdKFKYKxvOa/EdAVJncoYAavHfOo1xYeyJWfRKDblqwTMeY5cUI1dLkwpPcu893+TLX/4yfinM2vgGHjp6Px7PIpG8yVuGYDDIL/3SL3HhhRdy991389JLL5FO//TObyZvDmSLzMZrVjG4N84zXz7GsUfE33bzI1nu/9RTDO3r4sJfWY8r8NOJcKs1nQPZU8xW0oStXna4V2NpZ89oYmJiYmJiYmLylkIrVXniXw5z9EdiDhpbF+CK39qGO9R+I5qJiYmJyS8epkjpDcYjjzzCXXfdxXPPPQeAgko/w6xmE4q0cLvCm30Ehtwcv2+MclrjxLfHmxaW7EEVyQKFmTKlVIXCbBlZkdE1fVnUWO++MEgSJ+8fp5zSmkVOMgxcFSN1Osf88SyjP55dJlyyB1TjuxMnsuSniy2vTbHLRLcFwCIx+1JqmUBJcVoYvCbO5LMJMqMFxh5bLqJxhFUKiTJaXufYt8bailN0TSczWiA/2bougOEW0BB1LMU34KJ7b4hT35toK6YKrhURIYmjmbYCJd+gi8JMqW3EG4jovOJ8hex467oAxHcHsQdUji0ShywlM1IgM9L+OEA5U6HaQcR0PmilKsX5znFx44+vLIIKb/YRvyDAka+dM9yAliKrMvELAkw+N7+s7wFGHwhv9DJ7JL0siq/xGatbIbY9wOjjM8vKNP594MookiIbYpul+PpdRLcFyE4Umpy/GmhlncxYnvxU6wVPvaxz/FujhvuYM2ZrKqtrMPrYgmBuzU3dwsFhUURMQ6AkqzLRbX5kVWa6hSCwWtSZP5Ex+vfi5xQgdSpH5lxBtI8Ma27oZupg0hBcib4kPusbcNFzUZjCXNn4/sViuVKmgmVRBKF/yNUk0jr+zYU+Gd7iwz/g4sT946i6St/sBvrYwCyTnOIQc9lZ3v/+93PXXXfx/ve/nz/6oz/C620dPWNiYmLyH0XTNO677z4+//nP8+ijj6Jio4fV9DCIU3Ib5SQZotsCYoyfLpE6k18epRZUhWCgVn/X1t9rSx2NrG6FyCYfUy/OU0ouf/fbAyKqaualFNWSztgTc8vEOIrdglasUkqVyYzm24p1XHE77m4HhVkhLFoqknF3iditmZdSVHIaqdPL5ypWlyKOncuRGcu3dUcqpSvkZ0ttxR6qR8E/5KaS09q6V4Y3+9HymhB+tDqNJESzqTO5Ze1qFJGFSCM/XWor1pEVCXePg8xIoW3bWVSZrt1B5g6n2zpYAk2Rey2piblKqznMq2ElgZOu1Zh8dmX3i/jOIIW5UkuRWAObT4idWgm4Gu1usclYnUpLYVtDoOSK26mW9dZxfIDVaSG6zc/sobQhSlqKb5WLakVvG5dXSlWEnVGbqW1mrEB+RvRLSZaw2OWmOXs5XTGEQfaAiF+beSm50L9qGM+yMyLiGNsJngqzpYVzS6DYLAux2ggH28YavTNqwxG0GYKtWrVmuDuB6OfVUrVpDtjoz5IsUUpVqNT7hNWtUNNqxnflJouUUhX0iqhjfGeA9IgYu1ySF9eUl3htiGnGmXac4+mJfyfkDfO7H/0dPvCBDzA8PNy6MU1+4cjn8zz44IPcf//9HDt2jFqtht1u54orrni9q/Zz46GHHuKhhx4im20/Jv4i4/DauOxDW1j/tj4e/8dDzJ4WY87Jxyc4d2CaC945zOZrV7V07W7HQ/MH+ezIvUxVFkSvMauPj/bdxlWBra/5NZiYmJiYmJiYmLx5SIxk+OFfvUByLAsSbL9liB3vXINsMQXtJiYmJm81zJH/DYCmafzZn/0ZqiR+EHz++efxEuAiz5X8xh3/mQu696BICr37w6y/ow+A0nwZe8BK98UhQESNrL+9z4i9WHNzDxtu7weEq4nikOneGwRAcSvs+M/DxHaK6LHMWAGre0FgsOptUfrfFjX+PbjGg6tLnNe7ysH62/uQ63qpgatjbH7PAKF6PFV4g9eIb/ANuFh/Rx89+0LIikx8Z5BiqsRs3YVm7Tt7jbgoT4+DNW/vRitoVCs63XtDrL6+y6jD8K09xHcFWH1NF/37o6y/vc+IM4nvDrLm7SKWKrjWw8ZfXkVsZ4CJZxLoeo31t/cZ8SSx7X6Gb+kB4MzDU0gydO8Rbah6Fdbf3oerS+wWtAetqB7FECgNXhune58oqzhl1t/eR3CDB2+vk/BGL+ve3WfUd+CqGH2XRQDo2h1k068O4FstojECwx7W375Qtv+KKL2XRPAOiKiX9bf3GZF6vtUu0d6qzOQzCfRSlYErY8Zn1727j/BGIeDwDDjZcGefESXWc3GIwWsXXLfWvqOX8BYfUweSFOZKrL+9z4in694TYuiGhfZ2RGz4Von6OCM21t/ehz0k7mt8V4D+/VHOPTJNOa2x5u3dxHeLvmUPqKK9Y6K9o9v9rH1nr3He1Td00b233t5uhchmLzOHUmhFnfBmH2vfsVB28Jo4vReHUewygWE3m36lH2+/qFNovYf1i9p7zY1drLoqhn/QhayINmxEBQaG3aL+ASvubjuD18ab+vf62/sIrhPtXc5VcXc7kOtRKb2XRBi4eqG947sCzLycpDBbxtMnngWru96GF4UYvDrO2GNzlLMaa9/Zw9p39iIrMq4uu2hvn4KW1+m6MMjQzd0MXt1FdLuf4Zu7ie3wi7YPizZ0RFWK8xWcMRvDNy/Erg3d2E3X7iB6Wef0D6cIrvXg6rIT3uil95Iww7eK/q1rOvaQjfjOAMii7bf/xpAxRoQ3eRm+VZxXsYs6Np5jxS2ehUYspMUqU6vWjEXGre8bZE39OUKuL3gmxEJm14VB1t3Wh6dffE/f/gi9F4cNEVrXjnrkoS7GiK3vX43qlglLcd5xyR3cuf+9DNjXkp5P87nPfY6enh6uvfZajh8/jomJiclrxczMDH/6p3+Kx+bjXe96Fy/++BCb2cPbh25n76aLcUpuJIvEqrdFccXt1HQhvAhv8GFRZfSKjrfPacxj7H6Vgavjwu0GKMyUCK71GHFl4c0+451cyWqU8xpq/f2hOC107wkZ72RHRMXb5zTip8KbfXjr72SLXRbvgQvFe9cZtuGM2AzhUHiTj9BGL86oDdkq4+52kDiWoaYLB8mu+vsaILTBiyNqp5zVkBSJ7j0h7EHxrndGbHTvCeHtdxLb7ie0wUNw2GO4uHTvEbFUkkUius1P994QerlG6nSOwBo3ofUL4tKuC4M4ozbKGY25IylC671GNJ5/tcuYx4AQejUis1Svle49IcPFxjfgIr4jYMTAxXYEcNejeK0uhe49IRSHBUfIRveFIeK7FiJ2o9v8ePtEGyoOC32XRvAPinvs7nEQu2ChbGSLD9+Ai2pZZ+5IGv+Q24jocnXZie9aaMPIVh/++vxOtoo2tPlFWWfURteFQbRilcSxDIEhD4E1on9IcnN723xWPH1O49qDaz1CCF+ne08IvaKTHS9gD6p07wkZ/SOwxk1og7epbCN+zuYTbSjX58y+QRc1vUaqLoaJ7wzgrs97VY9oQ4tdxPqFN/uIbFmIOYtdEDDmEFaXhcGr40Y8rafPSXRRxG90qx9vvxNHyIYrZhf9u97f3d0OsVEAqBSqWOwWHGHRDhZVFm1Yj1J0xe3INplEXcgT2ug1njG53mdlRSYzkscZtbHqbTEc9flqcJ2HwLAoW63odO8JEdnsJbY9gCMi2rDR3oFhD8F1HmMzR3xn0PjbwR5Q698jiQ0Qc2WC6zzC5azfSdfuIK643bivvgEXFlXGHbczcE2cyKLI4diOAK54vQ0dFvxr3MYY4Rt0Ed26ULZGjUqh7n7ZZWfNTd2oHlHW3WVH9VgNQVTfZRF66n8TWuyyUV8AT48QIjbKxncGCG30IksWutVVXLf1Zq6M3UIXq/if/+Nu1q1bR19ggIcffpha7T+2qcHkjcuBAwf49Kc/zW233cbdd9/N0aNH2bBhA7/3e7/Hvffey8c+9rHXu4o/N6666ir+/M//nN/+7d9+vavyuhJd4+fmT+3j4vdvwuYWY3ClWOXp/3uEb/y3xxg/fH4uzA/NH+SuU//UJFACmK6kuOvUP/HQ/MHXvO4mJiYmJiYmJiZvfGq1GkcePsd9f/g4ybEsDr+NGz5+IbtuX2sKlExMTEzeophOSq8j09PT/NZv/Rb33Xcf5XIZGZn18U2ssW2heE5D0WXSI3kq9cglX7/L2NWbGSsweSBJJScENJIioTgsSPVFn9HHZ3HWFz5ARATo1fqO/qKGVtCo1Xd05yaLIqqiTiVfJbLVT+JIhuxkgcnn50nWd1uX0xrpkTyubgeZcwXSI3l0TWfumNhFnj6XN3bHlzIVCjMlfINuMqMFctMliot2SWdG8lTyGkM3dDH7Spr0SJ7p5+fRirqINmvsGJfF9eamS+QmpyllKoQ3+tBKol0KsyVq9WsTiy+6ER9WLemkR/LGuWRVLLw04jsyowVj57ZeFmVlqxBt5KdLTQ412fGCsUNZ1yA9kidxNEMxWcYVs5MZWdj9nJ0sGrvIT3xnjNiOAOVMvV3SZdKLyuaniuQmCgttOJKnlBb1L2cqRhuXyzqJE1lj0aHRhoX6DnbVpeAM21F9Klq+KGJdFkWxZUbzlFJl7AGVSl7cx4YbTm6miFZa2OldLVYN5yetVG1qw8JsmZpeQ3HKyLJMZjxPMVFpWXbxAi1AdqxAOVtvb00ndTZvxJaU5oUbhFHfiQLVok45rfHKV0eI7wwY8WPFVKWpDZNncqTHC8K9R260YaO9RdnMSIEjYyOE1nqQ5IU2TI/kDSHa/ImMWLDSdVxddvLTRUOwJNq7YLgKBIc9KE6Lsas9P11siiIppSp4e13Y/MKBIj2SN/pEfraEXtaZnp0nM15AskgU63XQivU+m9cZ/cmMiA4JqcLR7Gye7FieYv0Zq9T7RyWn0b0nRLVUbXIGy44XxBihw8i/z+Bf7aKSq+KIqJTzVcMpScsLp45Gf1h9VQxZkY17VUpWmK/fJ1mVqRZ1ivOiHWSluQ1Tp3NMeoQbGgjB22IHhbmjGVJnhfuIpEhYHRYcUQflbI7cdAmLXWZNaStrpK1Ydhc4NHKQH/zgB6xdu5bh4WHuuusuPvShD2FiYmLy0/Diiy9y99138+Uvf5lKqUKXsor1XZuQJ4UQScvoVAtizLL7rahuq+GYMn8ySzmnGVFXsiphdYqpdHG+zORzCSPCrVoRsbW1unpIK2hoeU28Y2qQmygY74yaVkNWZYLDHiafmyc/XUIr6Mb3FudKVDUdxWlBLwuXvHz9eyr5apPLT3G+jKur7p40VyY3VTTeyZWCKOuK2bH5rRTnhRtMfqaEJENuuki1Ps+plqrkpotkRgsUkxWsDsuCYKEmymrFKlaHxYiTaxwvpSqGgAaEKNkeUMlPl6jkxHlr9ddlKa2hFaqoHoVyRiN5OktpfmFeJsqK85YzFap1oQ41IQRrzJF1TZTVNXE9E88kDCEUQGGuZLS3rtVInsmRnSjUY8Q0474BFBJlox2Kc2VyzqLxftTyVfIzCy6ddr+K1amQPJWjVq23Yalxz6vkp0tYbHWhb3LBfadWq9XL1tu7LOrRcAMqJstI0kL9G+2tOCzGvaFFe6tuBVfcTupczjhvbrpouEWVMxrVkr4wH5kpUamLV4w+q9WYP5mlkCijOBbmcPnZBVdQvVJj9kiabH3OUclqRn2M9i6IOaGsSHh6nVTr39nU3jXhRFUtVZGtMpIiNbdhvkphSriAWVQhukvV5yM1vd4u9TbUClV0TccZsVOYK1NKVppENrnpIoXZEpIkoVdF+zeex1JKtHc5o1HOZNAHXEgWicgWH8mzuaY2LM2XkRRJCMt6neSni4YAqNHeerVGbqrI7KEkWkFci81vpTC70Gezk0WQU+hVHXtAJbDGTfLkgpOL6N/ivBJQzmlUS6IOlbxmjAEAMwcXnJ8UuwWLXTauvZytMvdK2rh3FpsFq0thDhE1l5suYs3YWSttY71nG9muGV46+QJXXXUVw8PD3HHHHXzsYx/D5XJh8uZmenqaBx54gAceeIDJyUlqtRp+v5+bb76ZG2+8kYGBgde7iiavM7IsseHKfgYvjPPsV45x5EcjImZ0LMt3P/00qy/qYs+vrMcVbB0BV63pfHbk3pbGdjXEWPbZkW9yhX+zGf1mYmJiYmJiYvIWopSr8JO/e5nTT4n0it5tEfb/xhYcPtvrXDMTExMTk9cTqWZukfy58/LLL/Obv/mb/OQnPwHAhp1VrKOXIeRFP9bYgyr9+yOceXiKclrsuF8aGdYQ2yDDmrd3M/X8vCE8WIynz0H/pVGO3z9GOdU6dswRUSnMiIW52M4Ac3WHm2Xn6ncycEWMUz+YIDfRIk5NhthWP1MHk6ALUYPeNm4DBq7pYur5+bbnGr65h+xYgYnFMXRLUL2KEOTILI/yWlzOpxDbFmDkJy0iv+oM39qDVqi2jfwCsWM5eSZnRGO1wtUlFknaXTsIRyaLamkbJ9dg4MooqXN55o+3t6FXnDL+AXdTLMRS3N0OBq+Oc+K7Y8a9bsXmXx1g6sUkMweTbcusuakbrVjlzINTbct4+hzoWq31vW3U2y7Td1mU6ReT5Kbal0MWzg7totQaePudpDvcF1mV6bskzOSB+bbt7ul1MHBlnNMPTraN4POtdmH3WplqEbW2uM6Nfmb00RaoXoWhG7oZf3KO1Jnc8gIyDFwRY/50ltSpFscb34X4Pv+Qi1K60vYeD9/Sg1Zs38f9Qy60glgIVt0Kuqa3jeMbvCZOrapz5uHp1vW+Kkb6rBD0yaqInFz87C1ul4EroxSSFaaem286TbaW5ozjEGlpnnw+Tzgc5r/+1//KRz/6UVRVxcTExKQTtVqNH/zgB3zuc5/joYcewoaDPoboZhBVav5BxLfKhazKzB8XwmGLKjdFhkkyIEnUqjVccTt2v5W5I63jvsKbvOharW0cWMPdRq/o2HxWIVhtE4vVcFiZbvNeVt0KsipTTJSR5LpepM0M3xmxYQ+oJI5nWpZxhFQCwx6mDsy3jUuz2GRDSNIQerTD2+eklKm0fefaAyrRrX4mn0u0jca1Oi14ep3Mn8i2jWdDEs5BK82pVLciRM8d6mzzWRdcqNrE1wHY6g5L7aLKACJ1t62Zl1Nty3j6nPj6nU2Rr8vq7bUSvyDAxLNzTaLoJiRwRe0U5kpt4/BAuDzZ/SqJY52j6hSHEGN3agNZkVDslo6xxvaAij1gbY5IXEJkqx9JEpFoLZEgsMZD+myubb9slKO2pI+2wDfowuaztozMhQV3q9lDqbZ9RbKIsQAJPN0OMnUB3bJz+a3EtgWYPJCgnFneTrIi4YrbDYF3I2KxFYrTQvyCANMHky3PZQ8IJ7bGWCFbZUOU1qAxrilOC+ENwtW0umieV6vVmGeG2cA5RubPomDlDz7xcd73vvfR19eHyZuLhx9+mO9+97scOHAAXdeRZZldu3Zx4403cskll6Ao5r41gKNHj/LBD36QL37xi6xbt27F8ocPH2bjxo0/h5r9bPmXqUf40tSjLY/pmk45r1FdFFcqSWB1KFjty/tNWddIVtuP8w38Fheq/Nr1u1+N7ec9sctfs/OZvLX5RXm2TUxMTN7ovNq515udt9r7ZfH1Tp9I8sPPv0B2RmzU3n3nOrZcP9C0ifwXgbfyPX6r8Fa75rfa9cJb75rfCNdr/iL1c+Q73/kOd9z0S+QRQhM3PtaxnYAUWSi0SIhRTmuUsxqyIhaxlv74H94kIguOfn0Erahz4lvjzV8ogytiJzdVJDdRInEiY+zmXUp4k5f4jiDH7h2lnNWWiQSQwT/oInlSCHPaCpSgHhHhJz9TIjNWWC7SkaF7b4jZgynKWY1T351o32i6cGbJTrYWioCI2fL1uzj69XPobdZHXF2iHcopjZEfz7T/PuDcI9PtF8AQwirVY8W6aHd5K/ouiZCfKXHukRbijTrRrQH8q90c/vLZ9uKq+oLoSmh5vaNACcQu+DM/mqIw116gdL6MPz2HXu6scWwlmFuKVtSRrTKyrfNuyu49IfwDbg5/pX1bOSIqq66Ice7fp9uLeRALfXa/2nYhMzNa4MyPptoKlABSp3I0lhs9PY4mByODej27dgfxD7k5+o3RlqK1clYjdTZHrl0/10U8YYOu3UFSZ3JN7hmL2ySyyUcpo3HuR6373ukHJ4zFcXtIRZKEQ1aD5MmFtuu+SES0HLt3rOW5EicyRvdU7DKKU1lYZNfhzA8W6t1zURhH0Np0rsXCrVJGQ6svyi0W8LklL5uLF6HJGsd5kYnZs/zRH/0Rn/vc5/jlX/5lPve5z+F0OlvWz8TE5K1LuVzm3/7t3/it//RfyZLCg5/N7CFKT5MoXHFY0Cs6ulZDK1WRF80Blooh4ruCFGbLJE9lyU0WyU02z4WsTgtaSYg6clMlIcxsQ+wCP6VkhcSxjOFC2XQut0JNq4m4sOOZZUKDxXj6nMhWIVKqtSimehRsfpXMSJ78TKn5/bGEUrpCbrJoON8sRVYk4ruCpM/kxLuv1VRAEnOlcrrZ+bAVxfkyUy/OdxS5KA7h/tJJWeQM2wht9DLxVMJwvlxWLVkiuj1A+lyuo6BZskjIDQFKBzqJkxrMn8zyWhhGVLIaUy/Mt53LA8LlqpPgezErTC0li0R8Z5D02VzHexgY9mB1KUw+234zgcUmi/vXQdA2fyzTOV6shiEelGQJq7ONMKq2UPfMaL7tfS7Mltr2ExAOVaWUmOkpdotwqDqba6p/o3/YfFZ8g24K82XDVanpXMlKk0DJEVIpJMrGuXStZgiUFLuF+K4As4fSTQ5fDfSyTma0YFy76qlvYmm4cM2XKdZdVhvxeXNH0k3PfGNckxBubA0xV0PAJyERJEowGaVfWc8Z7Tif+sSn+NSnPk2/YzXfe+7brF27tm3bmbyx+OQnPwlAV1cX119/Pddffz3RaHSFT5m8VchVi0xX2otocbT6jyVY+fXXlmQ1B+2H31dNrnqe7z0TExMTExMTE5OfGzW9xsH7T/PsV49Rq9bwRBxc8dvbia7xv95VMzExMTF5g2CKlH4O/P3f/z1/8Ad/wNSUWKwPEWMdF+CU3MvKdl8Ywj8ohBi6pi9zqVG9CjaflcxIQUQC1GjrcLL0XBNPNy8eyKqMK2YjM1IgcTQtIg7aLBCFNwgRU26qRCWrtRQoBdd7SBzJkJ8qcfSec23rpagy3h4nhZkS5TbOQOFNXqjB7OF0+x3VdaZfTJKbLLYVKMmqzKorYsyfyCxrg8VEtviYOZRacQe+rsHJ+8c7lgE49cAEegexE8Dks3NiwaPDehM6nHmovVsRIIRfF4aYfSXV1ikL6gsbHRblXg0rORo1CG/2iUXKDt97Pu05/WJS7Pjv0FaFmTKnvjfRcYFOL+sc/2Zrwc1iGu3kGxCuRO3cLaxuhVVvizH1wjwzL7X+gXfmpSSFRKm9q5YO40/MAULo070vzOhPZluWlxUZT5/TiO1pxfHvjBviRk+Pg1K20tQvtLxOoyHj2wOo3vYipNHHZrD5VKNu9qCtSby1WAwWvSDQUUg283LScJ2QVRnfKmeTO9ji5zO6NWCMX41zKbrCBmkn62oXkB2c4sj0y3zhC1/gf//v/80VV1zBP/7jP9Lb29vyOkxMTN465HI5/vZv/5a/+Iu/YHx8nDBx1rKNAJGmCC0QYof4zqAhWlkqOoK6eHy2JCJPTmbbuthIFonYjgDpc0IY0UpgYPNZKWc1atUac0cyIgKuDeGNXorzFeaPZxYicBehOCzIioioShzLdBRY27xWnBGbiFVtUUy2SvhXu5k/kUWv1Fq7+tVpuEM1hBCt8PQ48A24GH9yrq2jj9WlIFslSsn2LksNCnPlFQXW+ZkS2nPzHYUnNb3G1POJjg47AMVEue17v4E9qGKxyiuKglrdu5+Gml5rKWZbiuKw4IrajWjVVuSnS0Z8bdvvq9bqbj2dvzN5MstKvrytBH1Ladw3SZZwxmwdXTh9A05cMTtjT8617M+1ao3E0XTH9hLRbuL5c3fZ0au1tm2iehWcERvpkXxL4VopWWH8yVmjrzujtmXnanyXYrcQ3uRj7pV0y3mcVqwyczBFMSn6n81vpZzWjOdb12oLsbkWieg2vzHmLKVa0UkczwhBVP1cWr5qiJQqeREFZ5yrhYDPXnWzXrqANdbNzIdHeWX8ZdatW8dVV13FXXfdxbXXXtuyzUzeOFx55ZXceOON7Ny58/WuiskbEJfFTtTqW7FcrVajkteolJrfaYpqQXUqSLL0ujkpuSyt4+dMTExMTExMTExeH8q5Kt//7LOMHhRu0YN741z6gc2oTuvrXDMTExMTkzcSpkjpZ4Su63z+85/nrt/5PTQqSMh0M8BatqNIzc0e3uKjWqwyfzzL9MGkiN9os3bSvTuE1aOQGRlDKy53znFEVBSHQuZcnumD8x3P1bU7gLfPxStfFQ5Ey37clsHT6yRzLs/soTTZ8SKVNiImT6+D7gtDlFIVchPF1jFxfQ5yUyW0os6Rr490FJs4o/bO0RKqTO/FYUYfm0XLV0md7rCYVtY58/BkR9cAR0Qlui1AOaO1X5iTYeBtMaZfTHY8l+pWKOfbC76a6qbRcREGRLut5Ehk96n4B92kzuY6ipQCwx5kC22jaV4N9qBKcK2H8afnOt7LwGoXuelSR5ESiAUgSZbaLlRq+WrL3elLaSwWqj6lY1sgQ+++yIpuCrEdAQqzpbYOXJWsxumHJjveR62oG+5E0W1+ytlKk1vRYmwBFUdQRXHIlFuIlHRN59g3R4029w24SJ1bInTTMQRO8V1BEV/4g9bRbmd+NIXqEWOS6lawOOSmmDgtr6PlxbVFtvoJrPFw5KsjLd1Bxp+qx9XpwnEsuN7H7KJ4m+JcmWJ9kTm4xk18Z5DcRLHls7JYwCcr0LMvwtQB4bQhSzLeM11cSBfTjDLpO83DDz9MX18/1113LV/4whcYGBhoeb0mJia/uKRSKf76r/+aP/nDT6JRIc4q9nINbsnbVM5ik/H2OZk/KaLDOgkxFLuF0AYvtcPC1WSZUEYCV9xObrJYF3Wk2p5LViQiW/ykzmSFE0oLFx6rW6FaqqJXaswcTKGV2r/3AmvcIEnMHEy2nDNJMth8KsX5MpmxQtsoKlE3GZvXimKX24qwnBEbkkUiN1lsKcBaTGasQClV6Rg55ul1YHUpTB2Yb1vGEVKx+TrHhAFY7DLVon5ec6+2UWl1FIeFml5bUchkD6hYnZaOIiXJIuHtdZKdKjTFaf20uOJ29IreUbBlscm4exxkJworxqLZvNbOQp7zcIoyXHlkkCzLo8UWo3oUPD2OjvNQe8BKYMhDab7SVnCWOpMX7d5BHNVoI1lZEOC1E/KpXiu1DiKl/HTdfaxWj7dzKsvaptHXbX4roQ1etHxrdzCtWGXimYQhXrP56/dgUdUaAkBJlghv8glHqLPL56q1ao2p55NGO9kDKlpp0Xy5RpM4LDjsoZisGI5Uy8+1IOBzRmxIsmT0b6ViJTIxSJB+JjnHM08+y3XXXUeIGN949KtcdtllLdvO5PXnj//4j1/vKpi8gXlP7PJXFZU2cyrF4/9wiJlTC3/jWR0WdrxzmPXX9HHj4f+H6UqqnckiUaufB7b8IZbXwmLQxMTExMTExMTkDcfkkQQvfnGCSraKRZW56L0bWXd577JNgyYmJiYmJuYvA68xuq7z6U9/GtVi43d+53fQqdLPMFdwKxulXcsESgCebgfOqA0QQozikoWHrt1BfAMuAEafmOHkd9rHo8V3BIlu8dfPpS87l81vxdMnPLsnnpnn5HfH2wpMYtv99F8aQbGLbtJqx7wzJuqdGS1w/FtjbYUasirTd0mU2HZRt5bfKYMjLBxbzv1oumMsm82n4AzbsHnb6+zsIZXuvSGg7vqzggPP0W+MdHQOsDoVrG5lxbzcvv1RBq/p6lhGVmD9u/vwD7k6lnNGbAy8LW7c/3YU58sc/rezKwqe3N0OPP2vTSyW6lbwrXJhdXbWOh7/1jjjT86teL7Ba+LEdgQ6F5Jh+NYewps77/b09jtZe0svjojavpAuhFGqu3P9T31vfMWIwEa7O2M24rs6X4MzZsMVb7/bMzdR5Og9o0JgJQsxWKu6g1jM7rs0QmRT+/Y4+cAEIz8RsW/2gIqsLhn2dQwxV2xngFVXxNqea+LpBKe+P4Gu6UKEtM6z7FyNtvCuchG/IIDN33qHxOzhNMe+NWos4PVfHsUeWrjWxQI+e8iGu8sBLRIWo1IvW+cv5ULH5Thx873vfY9169axd+9eTp482fZaTExMfnGYnZ3lj/7ojwj7I/zxH/4xMfrYx3VsknYtEygByBYJR9iGUo9tLaebBQJWl4XAsHC71IpVxp+eayvKsTosBIc92HzWlucC4aqCJEQMUwcSRqzTMiSIbvHh7XMa3730XJJFwlKfl80dyTQJQZfi7nYQ3uRFVurzlhYrhlanBSTh9jPxTKKjgMfmsxrX2Q4xL7BAbcE5ph2JoxlmXkp2LGOxWYz71A7Vo9C9J4Tq7Vw3T4+DaGMe2gHfoItwh/dqg+TJbFsHxQYWq4y7247F+tr8yeUM27D5O8xtEK4+Y4/PdhYoAY6Qjdj2AIq9c/s6Iza6dgdXjIeLbPEvnxcsQZIlFIdw0GpHYa7M+FNzKzpiNfqqb9BlPBOtsNgt2PxWLB1ihRNHM8yfEM6OVleb9qg/P95+J5FN3rbtUUpWmHgqYcxvrC3mmQ2BkkWViW7x424zL6zpNSafSxibFVpdRyWnGSJF34ALX3/7vxkmD8yTOi2u0xFS8fQ1/01QyVUXxFY+K/bA8mfKIlnokQbZlb2SLZa9FCmwf/9+usO9fP/73+8c2WfyhkDTNL761a/yoQ99iOuuu44rrrjCOHb8+HH+5//8n4yMjLyONTR5IxNZ7ePmT17EJR/YjM0txohKocpT/+cI3/qDJ/mQfDWwfIhs/PtH+241BUomJiYmJiYmJr+gZGcLPPgXB6hkqwR63dz66X2sv6LPFCiZmJiYmLTEdFJ6jdB1nc985jP84cf/CJ0qFiwMsp5BNiIv+RFGcVoYuqGL8acTZM7lOf391g4nDZxRsWs6RSOmqZnwZh+l+i75kUen0TosSnRdGMTqEE5Mellv6dTijNjIz5SYeiFJ6my+bWybp9fBwJVxzjw0KXbMt3DAkRXQ664up34wsUw0tRgRT+fiyNdGW7q0gBA76WWdwkyZI1/r/OOpu8uBu9uBrMhtz2cPqPjXuJl8JrGiS08lq51XTNjYk7NYlgpBliLLZMbzIj6mA/mZ0orxZa+GkUenX5PzAPVoiXOv2fnOPTJNKbmCA4IO2fECpWTnCJb0aF4sKs90Lnfqu+0Ffw0az5wrZsfVZWf6hWTbsp4uB55eJ5MH5tuK4s78YCG6r9Gf29F9YQjfgIuj95xrGWdYyWqcfGCcwmy57fn0so5eb4b+yyNUcu1dlUb+fQZ7QDXOpbqUZeLExjPsX+Ohe3eI7ESBcnp55ZInc0Y8JED33hAzL6ea3Nga4ijVp+AIqwsL6UvIT5V45SsLfW34lh7mT2abFuc9hRD7pGvJO1JMRU/z1FNPsWbNGi666CL+9m//li1btrQ8t4mJyZuX+fl5Pve5z/GZP/0MNaCX1axiLTbJsaysu8eBM2xj+sUklXy1o3hWtsjYfCoWVaZa1pc54FhsMu4uB6kzOeNc7QQhisNCaL2XWjVFYa5MpcVcQ3FaqBZ14er0YpJKh3iw8EYvkkVi+oVkW8caySJRq9bIjBYoJMpt3Ywki0TsggDpkdZRUUvP1xBxtC0nSzjCwsml1XU28PQ6KCZEW+iVzoKG7HihKWK0FeWsxtwr6RVdf8o5bUWhOQjBSidBy6tBK1YZe2Jlofb5MtNBlPZqKcyVmHg20VEMBKLd8jMlJEnqKEBJnc5R7eCiBFBKVZh6vr1zVoNG3/atcpGdLLR1tZIsEs6wjUpOI19sPaeuZLWFOFkJcR1tHJUki0Rsez2ycaT1M5E8nSM7IVycJBkRdbfkdIudjaJb/Uw+l2jpqlQt60weWBAHWt3KMtfaxeNPYI2HcqZC4mhrJ6qpF+aRLaKP2/xWLKrc5A5Vq9aMqlqdCqrXSjtPq8XPuyOk4htwMf1i0hhPJEkipvcSpYdcZI7j+UNcd911+Ajyv7/yBW6//fY2ZzZ5PSmVSnzkIx/h5Zdfxufz4XK5KBYX/s7s6uriu9/9Lh6Phw9+8IOvY01N3shIssT6t/UxsDvGs185xpEfjUAN5kcy8Kfwazddznc2PM90deGdFbX6+WjfrVwV2Po61tzExMTExMTExORnhV7V+dFfv0gpV8HVpXLLp/ah2DpvijIxMTExeWtjbmF6DVgnbUe12Pj4xz+OBAyxmf3cwpC0uUmgpPqEJkzLV8lPl9AKrQUZitPCmpu6DZeik/ePM9VBGBEYcuPpbey615eJI+wBFVdM7NAd/fEMJ+9vL8zoujDIwNVx4bai01JUJNelbZnRAucenSYz1n7xaOjGHvouiQCtz7WYyQPzjPx4pq2gCGDo+i76Lot0PE+D2ZdTHPtme8ETiEVL3yrncneZxcjQ/7aocf9WojhXXtHRSC/rjD021zmOrM75CJTWvauXyJaVd/2/HsiqzPrb+wxXinYUZssd71WDiac7uFA00CHxKiLt4ruD+AY7u1V5+hzC0apDV5l6Icnxb411dO1q4IiobHhXn+Fs1orJZ+cZ/clMS4FSg4ZAyRGun6+3/fnO/miasadEFrTcqjsveua7dwcZvDbe9noTRzIcu2/UECgFhpe7JzQW2uwBsbhla+NyUU5pHL1nVDieAYPXxgmtb+PGIItnojAnylrdSlMdnQUfg2e3s5er8RLgqaeeYufOnYSkGJOTnQWhJiYmbw7S6TRD0iaiwRh//qefoZc1XMINrJW2NQmUJFlCrjvYVHKaEF220ai44nZCG4TrUildYfLZREfhkbvLbghZWpVzRuoOmYUq40/NtY3nkmQhimi4J1Xyy92TRDnxz/kTWeZeSS8vUMceEC6SDXecTgLsWrXGzKEUmdH2AiXjfCu4GUHd9eXAfFO81FIkGVxxx4puQI6wreP7rPmLaRvTtZhSstJWeNJ0umptReG6K2an68KV3YVeLzw9jpXdKWviuVgJLV8ldSbXVtjToJSuGA5BK6E4LATXdnZdkhUJV9ze0b2rVq0x8WzivO4/QHCtp+N8uVatMfNyquPfNtQWnJACazxE6g62rSjOl5l6cSH2rZV5SEOgJCtiLOjU76eenzfEQ6pHWe4gVVuInXME6y6UbUiP5Jk9JAQENq+V6FZ/W7F4taRTnF+Ib1z8vZIk4Z4Nsz13Gdu5BFmVuOOOO4jY4uyWrmh5PpPXjy996Uu89NJLfOhDH+Kb3/wmN954Y9Nxt9vN9u3beeaZZ16nGpq8mbB7VC75wGZu/pOLCA8uOFe6vm3ll//6Iv4g+Q7+dNWv8Hdr/388sOUPTYGSiYmJiYmJickvMAe+foKpY/NYHRbW3RY2BUomJiYmJitiipT+A/z93/89oVCIY7xIjRqr2cB+bmFQWr/MPcm32sXaW3qN6KaRH88sd3mpf0QrVqmW9La7vWUFuveFjGikk/ePMf5U+13aPfvCxHYG6ufWWwpBFKf48qkXkpz90VRbdxd7QGXdu/oNYUWneDSAuSNp5o62X0yzuhUGr+vC6lbQy3rnRQFERFSnxTkQAofwxvqPZCuIRWZfTnH0G6Md3WzsPhVHUF3RHSm8ycvwLT0rPlWePsd5CYpcMTtDN3ajOFee0KXO5NougBrIsO7dfStGx70a1tzUveK16GWd9Ll8S6etpcR2+Om9JLxiOUdEFdEjKxDZ4hP3ZAWcYVvrWLVFTD47f34CJF306+FbegyhYSsKM2XmjqXJTbTv87qmG4Ks7r2hhX7d6nyJMonjGTIdHCdKyYoRIzd0Y49YYG3D+FMJzj06La5XpqWQryFQ8g246Lko1DZerzhf5ug95ww3jJ6LQ+3bRhbjlOHgtvRrdRh/cs4QAvZdFmHo+u5lp3FLPi6UruSy4HV4rX4STNPb28sVV1zB+Ph42+s2MTF545LP5/nsZz/L4OAgZzhCF6u4mOsZlragSsvHlOg2vyGQLSUrwi1oqc6iPtXStVpbZyIQgoDG+7OUrDD+1FxbdxfVoxDa6DXEFa3KNcQANb3G7Msp0iPt51O+QZchhNAK1bbfC8KpJjOS7+iO4+524K1Hv5aSFWod3mullGi3TuIT1Wsltt0vIrxWSHqq6TD5XGJFdyTVpawY34YE8Z0BQ4jfCd8q13nNpwLDHtzdK4ujKnlNiMhXuF5P7/nN+c4XR9h2XvOfclYjP72yyN1ik4lu859X27i7HSveE8kiEd8ZMER67ZAVCZuvcwSbrtUYf3puZQFSbaF+DaFhO7LjhY6iPBB9vqbXsNhkwpt8bYU7ANmJAtmxFc5Xn//agypdF4baXrOu1Zg5mDSejVaReLVqzYh28w+5CQy1F3olT2WNOEXVXR+/2l2KBNWKvuC6tqRcOauRPFWPw3OLeMWlcb6SJBGW4uwoX87eyBUUy0We5RH27dvH9773vbb1NPn58sMf/pALLriAX/7lX0aSpJaxC93d3UxNTbX4tIlJa6Jr/Nz8qX1c/L5N2Fz1uU++SvrvM5Q+V6BvLGhGvJmYmJiYmJiY/AIzfmiOF+47CcAl79+MPbjC7zkmJiYmJiaYIqWfigcffBC75OADH/gA84kkq1jL5dzCamlTkzhJVmVjQSt1Jsf4U3MUE62FJJ4eBxtu70f1KqDD6R9MtnXj0XVwxx3GAkArlxWb37ogiHp0mjM/aO+eFNvuZ/jmXiMqqpMLUHG+TOpsznAxaYW330lsux8QkRkNd5RWSBZQbDIWa2cnI/+QaMf54xnyM50XK7RCtWNUCohFqHBj0WgF0YkQWIyuGB1WSlbEgtUK53PHHfhXd3YVArHQo2v6irv5QQhoVlrwkxWZ3HiBcm5lsdD5kp8pUc6svAt//Mm5Fe8bQK1K21iaxThDNnwDLmSl8xBWmCuTnSisONKdemCCqedWjh9BF45oK7l5VYs6WqG64rVMPjuProHqVXB1dV5kVeyW5Tvml9Rt4pmEUcfeS8Ltr1sXi1edHCV0bWEs6N4b6ijAS53JceLb48Yz0sqVqjFOKXYZV8yB6m7jTKaLMashgBy4Mkb/5dG29Rx/Ys6IjrG6FTw9zYvLypyTCwr72cUVxMNdPProo/T09PLBD36QcnkFYZ+Jickbgmq1yt///d8TdIX42O9/DGfCzz6uY520HZvUPHbafFZDVJA8lTUW1lsR2uAlWHeBK8yWOsaZKQ4L9qBqCMhbCXsa865yRsRLlVKt37eSDPFdwQWhULqzUKiYKHd0J0KCwBo3FlWmptc6RrcBWKyy4TDVDpvXapwvs4L7UK1aQyvrnd95EgSG3UKgsfJrntTZHHOHO4vSJUm858sruAE1HHms5+MGVdVXdAwCcY/TZ1d2ZdIK1bb94KehWqoKUfoKDk6lVGVl10mEC1itWkM+jxg8d7cDm7ezq2itWqOQKK8cIZfRmHgm0VFwJ05Y/+4ex4pi8mpZX/F85YxmiPod4RWEVBYJiyp3jAhcfD5vn7OtYyQId8ncZLGzyLA+FshWia4LQx3nhjMvpUgcE66hVqelpfipMa5Y3YpovzZdu5SqGJtAFIeFnr2htvO0SlZj7nB6QXwVUJvaSDgrhdjDVWy1XMSRl49w/fXXE5f6OHnyZNvrMfn5MD09zbp16zqWcTgc5HKdNyK90Xn55ZfZv38///zP//x6V+UtgyxLbLiqn3f/xWWsvbzX+O+Jcxm+88mnePT/PUg+dX6udyYmJiYmJiYmJm8eCqkSP/pfL0IN1l7ey9C+5ZuJTUxMTExMWmGKlF4Fhw4dYuvWrVxzzTWUKNHNIFdwK8PS1mXOSQDxHQF6LgqJWCVdCHaW0hBZ5KZKpEdybR19ZFWm95KI+MFYh2PfGO0YZ9V/eZT4LuGeVM5qHeOi5o5lmH5hvr2bkCzO13BJGX9iDi3fIUKty7HiLnTVqyArIubp+H1jIoKlDeH1Xnr3RYSAqwON+KqRH8+QOt35h1VXzIY7vvLO+/iuwHntLgfIjBUYf7K9o1WDiWcSHP/22IrlsuMFTn9/5XgqV5cdR7jzwg0IR6PRx2ZXFFu9GsafnFvRTQtE/20IzTox/WLyvNpw7kiGI18bWTEeLjteYOLpxHnFr4Fww1qpLW0eK86orWN/1DWd0z+YXIg4XGGk7d4TontPqGOZc49MM3UgCbDiQp0zbMMVt6N0cP+aeSm14Ea0P9rRiWL25RQzLyY7tmPjGfb0OOi/LNp2DNCKOse+MUrypOg3XRcGO44X6bN5MnWXglYRdcX5siHQi2z20XdZpGU5vxRiw/RetssXY8PG3/3d3xGPx/nYxz7W/qJMTExeV2q1Gvfffz/btm3jAx/4AH4iXMS1rJd2YJecy8pLFonIZp8RcVRKVagWlwxcEobAozBX6ii6tvmseOoxbPnpElMH5tsKWOwBlegWP1ZXPdq3g1i6VheKdhIe2bxWAmvcxnV0in6VFRl7UDW+ux2NyLbU2RzJk+0FWQDBdZ6VnRfr7VjJCdFCJ/GRYrdgD6zsSqm6FZzRzuKRBjVdiGQb0aLt0LVax8i9xSRP5ToLwgAkcIRUJMvKwp7CXHlF0diroZypO9qch9DL6lJEJGonajDzcsqII+vE5HPnEbcLpE7nzkvADsLJ6Xxi/ewBtaMACITQsCFKXMmwQ3FYCG/0dhQqVfJVpp6fp1oW7rYd+64k5mad5obVsm7MmVWPIp7vNl1Ir9RInsxS6CDwr1UX3N/8Q25C69u7SOUmi0wdEIJui13Gv9rdto10TSc3VTLEf61EWo2NB5JFIrzRi7tn+T2UJImo3sOOzNvYyC6SzLJ2eC133HEHc3Mrz/VNfjY4HA6SyWTHMuPj4/h8b8wY8fNB13X++q//mvXr17/eVXlLYveqXPahLdz8J3sJDSyMS8d/PMY9H/kxh75/Fr16nn+cm5iYmJiYmJiYvKGp6TUe/X9fopAs4e9xcdF7NrzeVTIxMTExeRNhipTOg0QiwdVXX83mzZt56aWXCBHnMm5io7RzmTjJ3e0wxBiTB+Y58e3xtgKh4HoP697Vi2KX0TWdscfmFiKOliDLdTFKh/gEWZWN2LZzj0xz7pGZtmV9Ay6Gb+1BVmW0fJW5DoInWZax+awrLg6oPvHD/PhTc5z8bnvnJoDBa7vo2dfZjabB7OE0J+4fN6KlWuGM2Fj3rv7zivwAGP3JLGce7Gxjr3oVgsNeXCuJmeoirqWxB+3OCawomlHsctvorKXEdwSJ71w5+kNxigXC1xLFLp+XQMoVt9N3SdSIKFzpnCvFhBhlnZbzGsViO/wri6Rk4aqx0qJsZrTA0XtGO/bHxay+oYu+Szr39XOPznD6BysL0gDsIZU1b+/ueD3JkzmOfmMUraiLcaGDA5Osytj9VhRXezFeOa0Zu/VjOwMMXB1rWzYzVuDk98YN4VDH50IWosZO/SJxLMP8cbHo2L03wpqb2+/GGH9yjlPfm0TXxHXFdviX9Y+QHudS6e3sjl+CLMl85jOfIRQK8U//9E/t62liYvJz57nnnuPKK6/k7W9/O2OHptjN29gi7cEpNTsRSjJ4+pxIsli0nzww39ElLnZBAN8qMX7mp0sdhSuqR8GxgihUsYuxszhfZuK5BJUOrj7hzT5DlJmfLlHtEDVrsclYXUpHFxfZKlxe9IrOxDOJjoJvZ0TEhHV05FvE9IvJjs5SAMG1HkIdYkgXoxWqTDydWFG84gjb8PYtF6AtxRmxnVcsmyS3js1qhepWzkt4pLoUIpv9WM9DxG51Ws7rnK8GxWHpGEHWIDDkNvr6SljP59rrwqhOEW0NFIeFwHD7KLIGNq8Vb59zxXs0+3LqvETxjXN27wkZorxWaIUqE88kKMyen6tHYNhNZKu/fYEaTB9MGiKulZ4zxW4Rbd7hsnOTRXSthqyICL1GfGQrZg8vxGuv5P6kuq04Qirtvlyv1AwhnEWV6d4bEuVbUKvWmHg2YUTeOcK2ZQ5MkiTRLQ2wj+vY2r2Db9xzL/FwF3/2Z39GNtt5jDF57dm0aROPP/44mUzrv/2npqZ48skn2bZt28+5Zq8d3/72t9mwYQOrVq16vavyliY6HOCWT+9j369tRHWKcaGc13jinw9z3x8+ztSx83AxNjExMTExMTExeUPz0gNnGH1xBotV5m2/fQFW+wobpUxMTExMTBZhipQ6oOs6H/7whwmFwjz00EO48XER13KBdAmq1PrH2vAGL6F1YsFGL+stdybL9Z246XM5EsfSaB3ck3ouDgkhUVHn6NdGOjoEDV3fRd+lIhaplKy0d0ZC7MovpSsdxTL2kIrqVtA1neP3jRnOJ60IrvWw9ube8xLqAIw/Mcvkgc4/TMV2+A3BSLuYvAbFVIXUuRyFuc6738Mbvefl6ANCmHHk6yOkTnVeFLEHVJwRW8cFAQBkGLqhm+69nR1zAAJrvQxd3230lU6c/v44Y4/NrlgutMHL0A1dK5Z7NUS3Bxi4Mr5iucxonqNfH1lwFupA90Vh+vavLGCzuhXWv7PPiOrphDNixxFcQfikw/FvjTP57Pn9YKo4LfReEllxFE2fyZFcYWFNL4tYP1mV6dsf7SgqKs6VGXtiruPzKE4q/rHq8iiD17S/R3pZPN+Nft6IH2pHOa0ZER/taEQ8evocDN/c0z6uRIfj940x+1IKgOg2f8dF5/mTGUMshUzLuL/GIr23z0F4va9tXIlvKs62xH5WsY7kfJL3ve99bNiwgaNHj3a8NhMTk58t09PTfOADH2DXrl08/aPn2MY+drIfn9RajGtRLfhWOVHrQupWDkaLxRfZsULH+FGbz2qMWZnRAtMvJtuX9Vvp2hM0xpmVHH0qWW3FGKzGPCo/U2L6xWTH6LHoVh+B4bpoawVnnfxsidnD6eXOUouQrRKBYQ+SLIkYsBViz/LTpY5OLyBcWPxD7vMS1YBwRpp6IbliOatb6SjaaOCM2eneGz6v7w9v9q3sHoVwKB17cva83IdiFwTwnIeY6tXQtTuIM7qyKH/uSJrZw6kVy8lWma6dQZwrxJ+BcOyJbQ+sWE6ySNgD1hXFOvmZEuNPJdAr52ENhRCnrSRkL2c1spNFqqXOz1pjrHCE1BUFb6kzORJHO8cPNp5Bq9NC94Whjq6X+ZkS0y8kqelC0NQQO7Y8bU1cU6exo1atGc92cJ2H8Ob2LjiF2RITzyREzJ9VwjfoauuqVK3oZEbyRmRhKyFbtaQbsXKeXgeurtZtaZEUwuMD7NOvo4tV/MEf/AE98R7uuecearXzu/8m/3HuvPNOMpkMv/u7v8tLL71EtSr6VbFY5LnnnuOuu+6iWq1yxx13/NTfkc/n+Yd/+AfuuusubrzxRi677DIeeOCBlmXL5TJf+MIXuO2227jqqqv49V//dZ555pmf+rtTqRRf+9rXeN/73vdTn8PktUOWJTZevUpEwO3vMf773NkM3/7Ek/z4bw9SMCPgTExMTExMTEzelMycTPLMl8Xv6Ht/dQPB/pXXaExMTExMTBZjipTacM8992Cz2Ln77rsJB0NcNfx29kpXE+2OsOGOfsM1qHtPiE2/uspY1FB9CtlJsYvWGbGx4Y5+w2kmvivA1l8bZO2tPciKzMCVcbHIrguhy4Y7FpyAotv9rL21B2+vC1fczuobuui+SIhbVLfChjv6jXiE8BYf697Vy8QzCcaemGXw2rgQTyBcaTbc0Y9vwIVil1l7Ww8b7uinOF/m3A+n6d8fof9yIWxChg139BsinjVv72bzeweNXtJ/eZSBKxccVDbc0U9wvZh8VDUdSZWp1n9A770k0iSMWPfuPmI7/MR2+PH0Oei9OGIkHHRfFGL1IvHM2tt6iG7344w6CAy72XBHv+EA1HVhkDU3LTipDN/SQ9eeIHpZZ/5YhnXv7DcciGI7/AzfsvBj2NCN3cR2BfD0OFF9og0bC5GRrX7WvqPXKLv+9j56Lw2hl3UUp0W0d128Ed7kZf27+4yy8Z0BclNFiokyslpv70HRhsF1Hjbc0S8K6qAVqziC1qb2buw09w+52HBHP7IiM/Nykvxcif7LIk11CtcdC3wDoqzilNE10V8Gr13U3u/qJbxFLFB4ehxsuKOfzGiOMz+contviKEbF7XhrT3EtvsBcMZs9TqIuxPfHWxyrhm+uZv4brFQbA+q+IdcTL04v9Detza3d0OQpboVhm7sNhaBIvU+20D02TAAs68ksdhkQywT3uhl/e0L7T1wVYy+/REqWY2J5xLEdgSMPhtcW2/vRp99W5RVb4ty+vuTTDyTEH12nWhv3+p6e9eFYH2XRei/PGK07+L29vQ76+0tFpF6Lg6x+to4nh4HjpDK2nf2GjvsXV32pjFC9ViJbhHHFLss2ntHvb2XjBE9e4LEtvux1fv7mpu66bqw3t6Lxoj54xmi2/1s+KV+QvVnsN0YMfFsgvx8qUV7Lx8jXF12hm7sZst/Glho7ytjTWNEfEeAQkL8mNx3eYQt72s/RvTui5AZy5ObKIo+e2e/IcBqNUZEt/nx9jnx9Ik+21j4b4wRuYkiiSMZ1t7Ww/DNPQzf1oOr295yjEiezPHKPSOsuiJGbFeAnotDeHpF2cYY0bUzyA23Xsdl8s1sGtrC8ePH2bhxIzfddJO5u9/E5OdMpVLh7rvvpjvWw7/8w5e4cOBi9nAVEamb8Eaf8a6UZOi5OEx0mx8QYpWaXjMW0YNrPca4CGL8WHV5FHePA3tQxTfoMhb7A2vcxjgPYvwIrHHjjNix+ax07w0ZEU++QReR+nsVCeK7glidiog5k6B7b8gQGnhXOY36OaM2ei+N4OlzkjqTo1qq0r03hLXuXufpcxK7QIg+HCGVwWviBNYJ4ZFit9C9N4TqEWOhu9tBfNeCWEuySIY2qeF40hDuuOJ2ui4MiuhPp4XwBi/2ugBKskh0710QUTijNlEnh4I9YCW8yUNwrce41u69ISMWyxFS6dkXQpKFKNTmVwltWGjD7r0hI67NHlDpvTSMK2ZHVmT8Q27Cmxa19+6gMQ+zB1X6r4hiscnUqrXm9kbMtRqRUqpbwRWzG8463n4n0fo8BiC23W+4MVVyGhZVxmKrt3evg9iOBZFNdOuCIH72cApXl90QvLm77E3tHd7sw79a3JuaLv4GaIjKXDF7U2xraIOXwLCb6ReT5GdLze0dsTUJ1oPrPE0C4e69IUOIYw+qdO8NGeKQwLCbclYjPyNE+d17QsbfDja/6LOyVa5fq5PwpkVtuCuIu97eqrfev20yekUnN1NsciON7QgYf2dYXYro304L2YkCpVTFmDeCmIM26q84RJ+VgImnEzhDNuI7F9o7ssVnzJEtNtFnVbeCrEgEht107V7U3pu8+IdEe8uK6LPefqfYHBC1tWjvxnNfwxWzYw+oyIqEI1xv7/ofHsvGiL0ho78sa+/6GFEt6ZQzGl0XBolu9yMrUtsxopKvMnefZKLAAAEAAElEQVQkjX+125j3qh6l7RgRGPIweG3ciJa0uixNY4S724HVqVAt6SDBwNUxfKtFG7YaI6xuhVQ99i6ydVF7txgjei9eeD7DG71GxKQxRgRU0iN57EHx3HdfKPpQaH3rMWL6hSSlZKneh8V9Cgx7msaIgYu6uSC2h/2+G3ArPt797ncTtsR5/PHHMfnZs337dn7nd36HU6dO8du//dv8n//zfwC47rrr+MhHPsLY2Bgf/vCHWbdu3U/9HalUin/6p3/i7NmzrFmzpmPZP/uzP+OrX/0qV199Nf/lv/wXZFnmox/9KAcPHvypvvuLX/wi7373u/F4zAWSNxIOn43Lfn0rN31iL6FVC/fm2KNjfO0jP+bwg2fRVxBGm5iYmJiYmLTnlVde4e677+Y973kP11xzDe9617v47//9vzMyMvKqz/XZz36Wyy67jN///d9v+u+pVIp/+7d/47d+67e46aabuOGGG/iN3/gNHn744dfqMkzeRJTzFX74+ReoVWsMXBhj/ZV9K3/IxMTExMRkCab/3hJOnz7NltXbyZFGQmY1m9g3tI/cRJEMBSo5jdTZHHpJbBnNTRcJrnXj7hGLJakzOfKzwslDK1RJnc2JyCVF7DifO5YWLkeaTnokbziSaCVx3kpBI7zFRyFRYv6kxNTz80LE5LNSyYsd21pZJ3U2RzmrMXBlDKtHIX02b8QrZUbzRoSIrkHqbI5SpoI9aMPmsZI6t+DAkp0ooFcXfhBKnc0JhyVg9LEZXIt2amcnCsiLdtCmzubwrXKRnypRSlWYO5RC1+rtMlUwfrQH4SajOBS8vU6yE1OiXep1zE8Xm9wHUufyFGbFDmPVqxDe6EMrafWyS+JRpBqhDV6mnk+iFUW7aIX6eWebXXsyo3lmD1dInc2hqLJo73osS3GuRFoV1yYrYPdbKefUehvWRNl6REkhUSZ1VrShK2anMFeinK7vbtb1pjYsJhfKAiSOpBfMDvR6eydFPUspUTdd10GH5PFs087/9Nk8hbpLTCktyrqidgJrPKRGcliSC7uwU2fzhmtRKSvKllMaWlFHcVio5Bd2Y6fP5cjPCdGJlhN9tuEGVpgpoVf0RWXzFBt9tlgleTJHth5tsdSZIj2Sp5wVZfWyjlaqEtzgITteoJgokzq7EMeTGSugFer3YlYjeTJnOBQU5stNER/Z8QK6Jlpx7kgam9dqLE4X5+vtrS+UXbznu5SuUKy3d7nehuiicHaiiMUqYXUr9F0aoZguG+1dydSf+/r35iaLlNIas4dSoEP6bI5ivQ1bjRFasUr3nhCefifJU5mWY0TjvpUzGrmJotGGrcYIEDvha9UawfVe5o5kyIzkW44RpWSF1Mk8erFG78VhZl9Jtx0jinNlzv14Gpt7wZ2i0xhh81ib+kerMaLh/qY4ZewBK6pHQSuWW44RmbEC2fECNr+VUlZDtsuQbT1GaDkNySJRydbbu7p8jNDLOumRHFVNJ7jGQ2Yk33KMUHSF+Mm1DGxYy2Onf8R3vvMduuJdfOJPPsFHPvIRTExMfrY8+OCD3HrNO8mToZfVrHdtw4eXlCTGj2KibLj61GpirHdGbCgOC1qhSna8aLiYFOfLIAkxU02H3ESRnCzGTMkikZssipMAxWQFWZFQ7BYUp4XcZJFiskw5raHYxb83xr9yukK1WMXqUohu9VGYK1PJaZRSFSw2uR7NpNfLaoYzjDNsQ9d0ypn6+7BSE2Xrx8uZilGfwlyZqQPzRgSdrunkJovGmFbJaZRTFXwDLlJncmRGFo3lVXHeammhbG6qiKfXiTJTopAoG+8waqJsQ6yl5av191pFCEuitgVnppp45zVcZ6rlKja/irvXSeZcnlKy3OQkmZsootXnGFqxSvpsnvRInlpVCMkquUVlp4pUcqKs3WcVcWv1w6VUxRC+A+SmS8Z7wOqyNLd3Rmt6T+VnSsY8RyvoJE9mjXeVmFssuG7mZ0tN7ZAdLVAtV+ttWCU/tVC2MFdCL+tCKJTRmts7rxmbFGChz5azGkiiDRvXUymI9jbKzpex2GRsHvHuzU0WqTTauyjKNvp/KVlp6l/ZyYLx7q+W9Kay5WwFV9yG6lEoZzTyi9q7Wq6ft7owr1ns5pOfLhrzML2iG31Wr+jkpopNUXf5mZJxz40+W2/valmntCjirzBbQqu3Wa3eZ7VyFe8qF54eJ8nTCwLhwtxCn63poo65adG/VLfS3IZLxojcZJGqptO1O0huqlR/7hfae/HkcPZQmnw99k2rt/fSMWJxH/D2ubD5VSpZreUYIdqvhGKzUKsJwV12vNB2jEgcTaMVtPMaI6xOi4h4LDXmcMvHiOxowbh3Nq8Vi1UmdTrXcoxInsqJeMya+JtF9dbdn1qMEdlx4U5VmCuLa240y5IxolIfT2x+FYtqIT9dbDlGKFkHW+wXMRAb5uD8M1xyySWssg7zwvTT+HztnaBM/uPceuutbN++nfvuu49XXnmFdDqNy/X/sffeYZJc9bn/p6qrcw4zPXlnw2xO2qRVDrtIgIQC2QYMxpaxCbYRGAMXBzD2FTZc2+ja8IPLJVwMBhFFVM457mp3tTnM7E4OPZ1DddXvj+rumVntdJ1aJK2krc/z8NjaOVV16tSpb1f3eet9/axYsYLrr7+ehQsX/k77j8fj/PSnPyUej7N3717+5E/+5JTt9uzZw1133cWf/dmf8Xu/93sAXHnllbzvfe/jK1/5Cl/5ylcabT/0oQ/x3HPPnXI/73nPe7jhhhvYv38/e/fu5aMf/ejv1H+bl47kUiMC7vk7B3jqlv2U8yrlvMrD39zDvnuOc8EfrqS1z9ytz8bGxsbGxmYu3/ve93juuee47LLLWLx4MRMTE/z0pz/lj//4j/nKV77CokWLhPazd+9efvOb3+ByvdAVdvfu3Xz9619n69at/MEf/AEOh4P77ruPz372sxw7dsx2sjyL0HWdB//PbjKjBQIJLxf98RqkZlnmNjY2NjY28yDptr86YES7fehDH+KrX/0qAAnaWc25KNIpdFwytG+KkR4wHEKQaRqb1r45RrDLy/6fn2jaDow3eJdc1cHAQ2OmMWMA0b4guqY1jX7ytbhnBCQmfU2sCRPs9HHk9iHTvioemUVv7GB81/RMBJMJsktuGkPnCiksuDzJwANjQtFgroBCaIGP8d3NIxhiS4NUciqZE4Wm7WbvVy1rTfsKhpOTWqxy5Lbhpu0Uj0zXxS0MPT5pGpUV7PQSXx6k/4Fx0+OHF/pJrAhx6NdDTduBcW3VvGoeEwasfk8vIztSjO1MNW3nDCi0rA4ztmvaNOamZW0Eb8xF/72j5n1dGcITdXFcIMaubXMMtVhtRIbNR7DbS+/lbRy+faghApoPb8JFYdx8/oExp5PrIww9Odk8PrH25v/kPrF7pefyVkqpMiNPp5ofX5Ebi15m/VxydQfju6eF+hBZ7CexKszh3w43n4e1muKJu4yFv3maKh6Z5MYoJx6ZMK0tYLiB5YaLHH/QfA4kVodJrAix/+cn5u/rrNrXdWEL489Pz1tjigsmeeL4Q5TUEr29vXzzm9/k0ksvNe+0jY2NJYaGhvjoRz/KD37wAyIkWMZ6glLklG2dfgf+pIdU/dlIYt6IM9kp0bYxRupwlvyoeYxIbGkQV1Bh+CmBuE8JIgv9pPvzM6Kfk5vI4HAbAqpm/QTDIaZlTYTUkazp8wEY7ieBDm8tKsr8EV5ySA0hynyEFvhwOGWmDoo5yPmTHoqpckPscMrjyoZLVGagINRPMGJU1Vki6lPhjjhJrosy/NSkadxaoNOLJBmxfWZElwQopStC8yW+PEhxqkJupPmzhMMtE2j3kjk+/1ypE+z2Ee7xCT331COGzY4PRoyqIYhvPrcMJyNDzGs2rorPQbjXz+TejOm1bVkbQQJGTZ4nZUVqxAyK4I44kR1SQ9A3H/52D4Xx8hxB9Xw4AwqxviBju6abthe5pxrHT3oIdnkZeTZlvo0ELWsi5IYLzefhrJri9CuNFy5Oha/FjVbVTWOz621jy0IMPTHR9N6u96F9U4zsUKH5/VXrqzvsxB1yGoKoU6BJVcZi/ewZfxYHTr5087/wZ3/2Zzgc88fg2by0VKvVF2X86yKlT33qU7zhDW+Y87evfOUr/PCHP+SXv/wlfv9M1OZ3v/tdvva1r3HLLbeQTCZP3uW8/PCHP+Qb3/gGXq/hYJbNZnE4HFx66aV86lOfMt1+37593HDDDXz9618XcpLas2cPK1euFO6fzVzy0yWe+P4+Dtx/Ys6/L720i83vXIo3ZB5BamPzUmDf2zY2Nq9GnnvuOZYvX47TOfPS6cDAAH/4h3/IJZdcwt/8zd+Y7kPXdT74wQ+yYMECnn76aRYuXMgXvvCFxt8HBweRZZm2trY523z0ox9l165d/OIXv2g8h4lg9dnr1c5r6fNl3z0DPPD1XUiyxNV/ey7JpS8Umb+WzleUs+2cz7bzhbPvnM+284Wz75xfCedrx70Bt912G26Hh69+9au48bKFbayXLji1QKlGoMOLrxZ9Ybbgnu7PM3kw27RdPe6iOFlm30+PNxUoxZYHGzERUwcyTUUnrrDCoje0N2LZzPpayahUMhXTdrIioxY19v/suKlAaeEVbY1YBTPRDRhv69bfxp33+C4ZWTHeiDcTKIEh5pqJgZgfxecA2divSF8P/WaIE4+YLyg5g4oR1SCwT9kl4/AoQsefPpITEigBBDt9BNrEvyyI4HDKhBf4G5EUzRjbmRISKAFIityIYTPD6XPg9JgfPzNQ4OCvT5gKlICGQKkeN9YMT9hJbElwTkzKqShOlRviIMVn3l81V6VaNJ8DmmpEEvZd09GIhzllu3Ltfq31QVaaj28lXzXcKczmoQbIsHB7G13nJeZtphY1TjxkCJQ8MRe925JNr/GBWwcZfNS4t3xJN3KTS5E9UWDqUKZ5X2t/cgYU/O0enP75d+g5FuMC9So66GXwxCBXXHEF7373u1HV5gu3NjY2YlSrVf7zP/+T7o4efvKDn7GKzWzkknkFSmDEGnli7hlXkybr/VpFJztYaLi+nQpJlhqfXVOHsow8m5q3raxIxFeEcHhk0CF1ONdUdBJZHJyJKjPRJWhVnUp+xlWlWX/BcCwZeWaqqTjEFVRoXWdEUomIKbSyZi5KgEaMWG6kaNreFXQS6vLhcJt/ltdd9cwESmA4CQ09OWEqpKnv1+ESW2SXFVn4zb+JvRkhgZDidhBo98xxkXkxcEecjeg4M0Z3pITEb5qq43DJSIp5X3VNR/E4hK7t5P40Y7ubi8jrx6+WjTgz2Wneh0C7F39b8+cuMFx7tIqG5JBMr0Pd9dNsGtTvKX+7h/jyUNO2uZEiw09PoVd183mgg5pXze/F2i3tb/fQtiE6x5XyZPJjpYZAKbLI34htnK/t0OMzAqV6hNx8fcgMFiiYiZ9qfXUFlaZzVtYdJCcWch5XEne38JGPfITOYA+HDh1qvn8by/zkJz8xbVOtVvnsZz/7kvflwIEDdHV1zREoAaxYsQKAgwcPWtrfNddcw/e+9z2+8Y1v8I1vfIMLLriA66+/ng9/+MOnbD8+Ps6+ffsa/zt27NjpnYjNaeELu7nkT9dy9d+eS6xnVgTcvcf50cce4Pk7++0IOBsbGxsbG0HWrFkzR6AE0N3dTW9vr/Azzm233caRI0e44YYbTvn3jo6OOQIlAEmSuOiiiyiXywwODp5e521eVUwdz/Dwt/cAsOntfacUKNnY2NjY2IhyVse9ZbNZ3vSmN3HvvfciIbGIVSySVpy6sQztG2NMHshQSlU48LMTp25XI7k+QqDDy6FfD5EbKTZdzHBHnCx8XRuDj00wuS9j6kjj9DlwCYhCAMrTKgP3j82JyzoVkcV+Uodyjci6ZnScH8ff4uGAgDMUgFrSGtEOTZGN+IMjtzd3JQLouSiBM+A0+iDAoV8NNhU5NPZ7SSsAh38jJvzRyhplATFRYaxsOmfqTB+ZicgyQ/HIjagwM478VuycrFCcKvP8D/rFN5BBls2df8wcnGYzcN+YcNvCmJg7EkC410/3xS0c/MWg4RA0D/mxEs//cEDIzQggtixI+6YYB35xgnJ6/nt98LGJmf8wcUDTyjpqScPUGK+2j/jyIK3rohz4xXHU/Kl3nBsqNgRdvhY31Yo2/0KnBv33j1JqMk6zcQUUU2FbQ3Akw4JLk2RO5Od1VSpOlRvXKLLYT8uaCId+PXRK0VIlq7LvlplM9vbNMaYOZl9wjWVJZiWbUL15nik/wn/9139x66238s///M/86Z/+qdB52tjYvJAdO3bwJ3/yJzz++ON0spAlrMEpnXrx2ulz4I27SQ/kKUyUKUxMzrtf2SnRujbC1CHDkSjdf2rHjjrRJQHcESdDj08KCXkUjwPF5RASj04fzZEdai7gUHwOQ5RQqJq62zlcMm0bo0weyFIYL5kKn3TdiOjSBJxb0I24UzMUr4O2TTEm9kybuteAEdd24pEJU6cdp1+hbWOU0WdTTUVls6lHlpkh+iwFRnysCJJDMs5JYN20lDbG4MVm6oCY41UdWZFMnZzAEDSJUC1qjDwt4DpWa2uF1rURqmWNieebX4/JfeYuTrNJro9QSqtMHZj/XquWNSb21I5r4oAGhhiyKuDQhG7sL3lOhPxYqWltmu1m5k24jft9HuoRa6LuU4rH0YgRnI/6vvxtHmJLgww+OjHv/rOz3Glb10XIjRbnfREgc3zGccnpc+CJuU7pwOSRfKwqn0tPbDE7Jh9n6ZKlfPRjH+Uf//EfcbttV5UXgy9/+cvEYrF5HUI1TeOzn/0s999//0vel4mJCeLx+Av+vf5v4+PmLwLNxuPx4PHMiBfdbjder5dg8NQvKt16661861vfesG/HzlyhGrV/HMmm82yZ88eS320OTXL3h1l+EmF/vtSVEs6pVyFh/7vbp79zQEWvSFGsMO+/21ePux728bmtcmZdgk4E+i6ztTUFL29vaZt8/k8X/3qV3n3u999yuezZkxOGr/TmEU2j4+PMzEx8/3YFoi/+lDLVe6++VmqZY3ONXHWXi0WI2hjY2NjYzMfZ61I6Tvf+Q7ve+8foqMRJs46LsA1zyIZGMKKUK+fSl4VeiO5MFnG4W6+CF+PaSqlKhy7e6SpXb6syAS7vEwfzZnGPwH0bkuSHSowvidtKjoK9fjouqCFclYlP2Iec5E6lKUsMAZ1Ac3AfQLxXqtCxJYGOfiLISGxx/CzKdxBp2m7QIcXtVSlOFFGEzBBGX5yUujNcG/CRe/2No7eOWwaC6Z4DFegZoKUOrICsss87qTedvnbexh+cpLxPWKLa2eaVe9cwPi+NCMikTqyIWYRGTdk8MZdQiKk3u1JqhXddF5O9+dwPuWgOG2+T03VQIb40iATe5svNqeO5JCdYvMBoHV9hHCvnwO3zi8K1FRtTuSgWaxi+ngBZ0CZV6B0Mh1b41QrelOhW31hSvHJ9G5rY/DRiZmYyZOP359vLNIpPgfeqGv+KEYNjt49TCVjjJdZvF0lW6U4WRZyIlM8MuFeP6V0ZV4hmpLxsZlt9HOAE9pBPvjBDzaiKXw+n+kxbGxsDMrlMv/4j//IP3zuH/ARZBOXEpHmd18DcIWc+Ns8ZAYLpkIiraJTSqumsU6SbIhMUkdyM65M8+COOKlkVTRVZ+SZ5p9brqBCZFGgERVl1o9YXxBd0xkziSoFQziQOVGgZPJ5VI+hqmRV0+cCSYbkOVEyJwrkhs1FSmqhytTBTFPRbh1/0kNutCgkIqnkVSb3Z4QESvHlIXRNF4oYdvodVPJVITGRwy0bQgyBtqFuH/42D4OPvvjio5eCQIeX6OIAAw+ICbodLtkQ3giMheJxoKmaqQDKFVBoWRNm+JkpU9HS9LGckOimPrecfgVJwtRZK3UkZ+rSWkdWJJLnRJk+mpv3OQagMF5qiIhMhWA6hrvbtJgQzx1yklgVYuSZFOX57g2dxnfSQLsHV9DZ9N6YXRM8MRelVBl9nqHODRdR8zMCqHrdPCWSIcgTFQ+6Iy78bV7juW+eXQanEpzHFRxz7eV//a//xTf+45vc/fCdnHPOOULHsJmfNWvW8PnPf55QKMSGDRvm/K0uULrvvvt485vf/JL3pVQqveCNfwCXy9X4++/Cpz/96aZ/v+aaa7jgggsa/33s2DE+//nPs3DhQjvu7QywajXkryvx+Pf2cvBBw4khN1TmuW8Os/yybja9YymeoJiLoI3N74J9b9vY2LxWuOOOOxgbG+P973+/adtvfetbuN1u3v72t1s6Rjqd5pe//CVr164lkWj++87vKhB/tfNaEMEe+vUEUwNZnH6Z9m1ent/7/LxtXwvna5Wz7ZzPtvOFs++cz7bzhbPvnF/K8xX9TnXWiZRSqRQLootJM4mMg9WcS1Lqnrd96/oIk/vTqHmNfT8eaOpmEu0LEGj3MnD/2JxF+FOheGT6ru1i7LkU43vSTQVKAC3rwsSXhcgMFoQW36uqwBv0NdL9eQ79etBUbBPq8ZHuz5MfKZmKmcKL/HRtTXDgVycoT5uLMXKjRVwBp6lAqS6+KE6UKQq8yZ9cHwEQjkRrthgxm2pZIzOQN485ABKrjWv3/A+OmQqlwguDdJ2fYO+PB0wdtTQNTjwyQW6k+dwBY74tflMng4+Okxkwb2+FxVd1kB3KC4nnBp+YpDAhNsa925MoHgcHbzW3i+06P0Gwy8fz/23u6pQdLIi9+a4hFCVYJ9zjp31LnPx4qem9pJU1xncZi9JmYiIwxD+yUxZyLQPo3daKw+1oOucrWZXhJ40Fd3+7h8JEc1HPsXtG0QWdoqAW2yIyxkDbhhiBDg97fzR/fa2Lz2SXzNLrOhl/Ps34PAv7s53rAh1eEiuC9N83fsraohY19s6q6y1rwkwfy51SQNYj9dGjLuA5/5Pcc889hANhvvDFL3DjjTcKnaeNzdnMU089xaWbtpEjTS/LWcgKZOnUgmCHR8YTcZEbLhr/GynOu5AtOSRiS4OkB/JUss1dUgCCnV4CnV6Gn5yqCYnmbyvJkFgRIjtUNBV7gxHbplV1JElI32EIBkzc72SnhMPtoJJVTZ2hAFrXhCnnqqbjAKBrRrTpvAKIWdTFTyJxqa6gQmx5ELVYFRNk6AiJpAAKk+YuUgBI0Lo+SvZEQejatawOU86qpo5WYDyvljNiQpNQjw9X0Mm4QNyZFTwxF9ElAYaemDQdj8JkqRGjZtZW8TjoODfO6M6UqRhNcki0bzGcCLODzZ8rK3mV3EhJ6DlG5EWQ2cT6AlQrmunzWj3yDMmIJGgmoNNUnfx4SShSEAyxdduGKGO7ppv2v+FYJoE77GzatpSuMPzEpCG0E0DXEP7eJzslEivDpA43v3Z14WCgw0uwy8vwU1OnFovqc13LYkuD5MdnYuZOJjtYIDtkCJQcLhlv3HVKNzeHpLCospquyEKennqYjRs2sjS0mqcGH3lBPJiNODfddBMf/vCH+cxnPsO///u/09fXBxgCpX/4h3/g3nvv5brrruMv/uIvXvK+uN1uKpUX3gflcrnx95eSRCJhuphm8/Lii7i59IPrWHZZNw9/azdTA1nQYe/dAxx5fJjN71zGsku7XvQYVRsbGxsbm9cax44d41//9V9ZtWoVr3/965u2HRgY4Ec/+hF/+7d/2xCLi1B/fsxms/zlX/6lafvfVSD+aufVLoI98tgQI08b7lfb/nwjXWuaP0e/2s/3dDjbzvlsO184+875bDtfOPvO+ZVwvuaWMa8hvvGNb5BMJkkzSYxWLuZNTQVKik8msSJEpDdg/IPJj+uSQ0LxOIRGVS1qTB7MkD5usuhU29fIU1Mc/s2p44sa/fXI+NsNi/OB+8ZMF1u6L2khttSwPzcTKLnCCj2XthJbfmq79JPJHC8wvnfaVKBUj2ArjJXnxlvNQ8+lLSx8fbtQHwAO/XaIY/eaOzkFOrz0XdOB4hO7JcppleMPjQstuIzunKb/3lEhJ6fMQI6BB0dNBUoAaDB1ICPsyJMbLAi/5WyF3GiRouCi0tSBzLyLFiczuiPFoGBMyujOFEfuMI8JBGNh2EpUSnJjlJ7LW03bTR/Nsf9nx03vpTrhXj8r3tqNO9LcESw3UmT4CcM6VySycGJ/hrFdgguiMvRc3ErH5ljTZpWsilrUUDwyi97Qjic6/5dWNa9x+DdDxuKbDMGe5m5Dxx8eMyIeNUxrp1bWmDqYIX1MMA7RKyO7HWhas6w84//ILpnEyjCRRYH525ZdrMmdzyo24/F5+PjHP86FF15INmstesfG5myhVCrx6U9/mnPPPRcJiS1sY7G0al6BEoC/1UOox2eIKqCpsELXdBxOGYdT7LO7MFkmc6Jg7vAjGYv+I8+mTEUu7ogTJFDzVcZ3TTd1U3H6HCRWh5EckiGSMnGgCfcGSKwMNe/rLKb78+SGzYXI9eGfPpYzFUE4fQ46z4vjDpu7VwKUMyqDj04ICZTiK0IEOrxC+wXIj5bExOQ6jD47ZSqeqTO5L0PG7Hm8hpqvCsXdAVTyVVP3q9OhWqpSGC8hSeaLtNWiJhQRCKAWq4ztnhZytdKrOqM7UkICM12D1OGscCyZwyWTPCeK02/+0DO+J23JTbR1bYRoX5PP+RrTs52XTIZZzVeZPpYXfh73t3loXRPB4Wpet+r3pj/paf5sgvGsmDpkPIu4Qk4kx/yd1io6w09NztwfJudXmCyRPWHuZgdGbZFdMqZTs7Yrb9xFaIG/aX9dKT9b2MYix0oOZHazdu1annzySdO+2Jwav9/PF7/4RQKBAH/1V3/F4OAguq7zuc99jrvvvptrr72Wj370oy9LX+Lx+JzIjzr1f3u5BER33nknn/zkJ7n55ptfluPZmNO+Isb1/3gB5757OU6v4U5eylZ48P/s4ta/e4Sxwy+u+NfGxsbGxua1xMTEBH/913+N3+/nH/7hH3A4mid9fPnLX2b16tXzxgHPx7/927/x2GOP8YlPfIIlS5aYtk8kEixbtqzxvwULFlg6ns2ZIzOW54Gv7wJg3TWLTAVKNjY2NjY2opwVIqViscill17KH//xH6OWq6zlPDZIF6NIp/7xO9jtRVZk1LzG/p8eb/rjtzOgkFhtZO5O7s3MLLbPQ8d5ccK9xtufI09NNf1B29/uYcXbe/AmDEGA2VvNHVsTdF3Y0rTNbByKZBp1Uqc8rXL4tiEmTaKsFI+M4jPcYUScdXouaWXhlW1CfQCY2J1mcp/5YoTikXEGFNAQik7TdZ1KrioUfxVZ7BcWa4EhrJg3yuok1KJG6pCYACPc6yeyWOxNYrWocfyhcWGBkBWGn5hk+rBYn11hpeFuZUZ+RHAxEkM0JuKsVccdcdKxVSxju1qoogqKu+r3sydm/uZJXcgnshgIxvVe/rYeXKHmi3aZgULDccMTN+mHBkfvGub4I+NCfUCWkJ0SUvPvtw1a10bouailufhPm3FOWPi6NnoubS4IG3k6RTmtIitGrKUrPP94pA7lOPzrIdDAE3U1RJmn7EZZY99PjzP6bAowHDDm+4Rslxawqbid9mAnDz30EMlkkm9+85tN+21jc7axe/duzj33XG76nzexoLqczVxOUIqcsq0kSw0RTLo/z/BTU01FFb5WtxHNqmPq+qJ4HcSXBw0hUaFK1uTzOL4iRHyZUSvM4qEcLpnWtRH8SU/Tdg1kCdkhmS/g10gdygrFwSk+oygXJ8uUM82FEorXQcfWhLDoSC0aAgyRz6p6P6olMTGKWqwKC1fCvX6hON46lZz4vstZVUzELRluXKL9KIyXTJ1ST4dKrkrqcE4oTg/Am3CbCqLrFMZLQmIUgNJ0RbgPYIhtmomc61QrGmqxaiqeARoxfQ633FToUidzoiAsXgNoWRshusRc1JQZyBuiSZd5P3JDRSP6TnB+Sg7x72tIkFgZanzXnI96bXMFFDq3xpsKwqrFme8x3oSb0IL5xee6BuO7phtCvkC7p2nfs0NFhp+cRK/qSA4Jd+jU81SWZBZqK7gociVjhyfZsnkLn/rUp07pwmNjTjwe50tf+hKapvGxj32Mv/u7v+Oee+7h6quvflkdQpcsWcLx48fJ5eZ+j6xbjYssdr0YbN++nZtuuomPfOQjL8vxbMSQFZk1b1zIW794MYvPn3lJbezQND//m4d58Bu7KGZf/N82bGxsbGxsXs1ks1k+8YlPkM1m+eIXv2gq+n7qqad47LHHeOtb38rQ0FDjf9VqlVKpxNDQ0Aue1QC++c1v8rOf/YwPfOADXHnllS/V6di8AtBUjXtu3kE5r9K6JMLGt/ad6S7Z2NjY2LyGeM2LlO666y4SiQT33XcfERJczJtolTrnba94ZHoubqVlrfHmulps/gNydEmAltVhZJO3Yeu4wy7hhaHCRJnMQJ5SSuzN3OMPj3PszhHTdvVFpKN3jZq+fexPemhdFwEwjXgD6LqohYVXiDsdTR7IkhIRuNSGN3OiMCdSYD7aNsZYcnWH8AzPDRU5epf52AEEu3yEF4iJg+LLg3RdKKYul10yXRckTEUodSKL/MSXiTksKD5ZSDhzOljZtzfmJrE6YgjIBEisCRPtExOEhXp89G5PCrV1h5yEe/1CYz2+Jy3k8lWnbXOMRa9vR1aaTz5NrQn5BByEADKDBVKHc8LxI4mVIZa8scP0HAvjZdAMAVn7luaOSmq+ysFbZ6IhFU/zjo8+m+LI7cNC4j8w3Kim+wVdknwKrpBiuNcJEFsepGVtuOlY153qFI9M90UtTQV1iqawMrOVlWxC13VuuOEG3va2tzV3bbKxOQvQNI0vf/nLbNy4kYM7jrCZy1kkzR/vBhDq9pFYFW7EdzQTSUgyRBYGhIVBslPG6VfE3ZbGxQWy1bLG8FNTpm4ystM4r0pWZXRHSsBByY/DJaNruqlQSvE6aN8Uw5sQi8WpljSygwVTMRPQcJTKDORNnXhkRaJtQ4xgp7gz0vSRnOHyY4LidRDo8Jo6z9RJrAwJP2v7Wt3Cc0lxO4gsCgh/7ig+h7i4xCKKV3zfoS4vvhax+aF4HEQWB2hyu84h2hcQnnuGSEnguugw8XxazFUUoya0bYwR6mru3AjG/d2Y+wLDlxsuCH3/qdO6LkJ0sbmoqX5uwS4vTl/z+ZQdLDC533hJRDarYzXh5vQRMYfHSqFKbqSEWhCMtvM6cPrEnuFlp0R4ofn8qNfDYJeXxJpwU5GXM+VnM5fTKy/nC1/4Aps2beLIkSNC/bGZS3d3N//8z//M1NQU999/P1dffTV/9Vd/9bL24dJLL6VarXLrrbc2/q1cLvPrX/+alStXkkyKfa+zeW3jj3q47MPreeNnthDprNVXHfbeNcAtN97PvnsGLAlmbWxsbGxsXquUSiU++clPMjAwwE033URvb6/pNqOjRvrEZz7zGd7xjnc0/jc2NsbTTz/NO97xDn71q1/N2eYnP/kJ3/zmN3nb297Gu971rpfiVGxeQTz1owOMHkzh8ilc9pF1pusdNjY2NjY2VhD7lfFViKZpvP/97+fb3/42EhIr2ECntGje9orPgZqvohY1Dt8+RGGs+VtZnpiL4mSZ0WdTTO5NN41hcwUUHB6ZwniZI78dMu17YlWI6WN5KtlapFgTnAGFrgtbOP7gGJWsSrHcvN+J1WFa10bY/7PjQg5DoR4fgU4voztSpm0BBh+ZwBk0n1ayIqOpWsPxxYzui1pwOGWOCoiwAIafmmR6IC8Ux9ayNkLmRF7YiWfgvjFh8ZPscggL2DxhJ8EuH2O7xezLj909KtyPWF+I1rURdv2/o2IbWKDtnBj+Di/7bhkwbTt9JCckMqsTbPdSzlWYOmDeVpIlZKeM7JKb3o9gOHWk+/uF+yErkFgdIXU4axrnMb47RW6wgKaKu0O0b4lx8Jcnmop5tLLWEEvV75+m/dibRi1VheNHQp0+Qgv8jO1MmYozwYiL9MZc7P/piabt6ov9HefFKacrjO+eXxg5O6KyZW2Eqf3peftSTqtzjh3q8TWtJ4OPTBiiKm1GXDXfvtWixqHfDjXcWZwBZd7F0g6pl6TWxe7go/zoRz+ira2NH//4x1x00UXz9sXG5rXK0NAQ73vf+7j99tvpZglLWIOjifWawyVTLWukB3LkRotNF5kcLhmtqqNXjagiM6GPJ+qiOFWmnK4YzkxNkJ0y3riL3HBRSKAU6PAiKxLp/jyVnEmNlSC5PkphoiQkypadEv6kh3JWFRLwqIUq47unhSLIJFlC13TTCDuoRW5tiDKxJy3koqSpOmO7UkLiJ8XjwBN1kh0uisWQFaqceGRcqK2sSIbIQXC90h1yIisSuRHz2DK1WGXggTGxHQPJdRGyg0WmBSNKhZGgY0ucib1poX6P7EgJj4fkkPAl3GQHC6YCOTCeR0TFUqPPifcDwOlXcAUVUxGgrsH4nmkx4V2NxOowal41vSfzozP3YP3+acbkvgwVgXEzdgj+NkPUV8mbuzs53DLtm2NM7ss0rVP173cOt0y0L2h8T52nXupVndThbKO9O+ycc84nkxmYec5yBhSqJQ2tcupnKa2iM/T4ROPYitfRdE6lj+UpjNWcvCTjXtYqL+y3LMks1lfRlejhiZ0P0rdoKf/x1f/NBz7wgXn3fTbzrW99q+nfV6xYwcGDB4nH43PaSpLEe9/73tM+7o9//GOy2Wwjuu2hhx5qLIK95S1vIRAIsHLlSi677DK+9rWvkUql6Ozs5Le//S3Dw8P89V//9Wkf2+a1ScfKOG/+nxew67ZjPPPjA1SKVUrZCg98fRd77xnggj9cRWJh+Ex308bGxsbG5oxQrVb5+7//e3bv3s0//dM/sXr16lO2Gx8fJ5fL0dnZiaIobNiwgX/8x398Qbt/+Zd/oa2tjfe85z0sWjSznnbXXXfx5S9/mde97nV8+MMffsnOx+aVwfGdY+y49TAAF92wmmCL+YtBNjY2NjY2VnhNipSOHz/Oku5llMjjI8AGLsUjzf+WtKzI9L2pk9ThLENPTJoKlGLLgnRsiXPgFycopSqmC/pdF7XgcEocuHXQtO+yS6ZldQSHU2akFjvUDMkBilt8gaD+Jq6IQAlg6IlJ5GfM2/mSbooTJcpZVcjpZdEb2yhOlE1FWHWygwVhFwRkQ2SQERBAyYrhdiRJCImUXAHFOD9Bs5SxnSmxhhhijud/IC6cAYT7MXkgTW7UfCHrdBh9LoVjv3kE3+lw5PZh4bbTR3NCC6+zkV2GaMVUUCTLJFaEqRarTKSbRx6qeY1MfbFJxvQa5YaN6BFNcG3N2+Ji4fZ2jt07Qm6oyTXVaEQHBjq8pvEm43vSTO5PC/djbNf0vLEcp8LhcuBwi9UdxeegZVUIXdVM3d4AYkuDdGyNc/CXg00jDeu1uvuSVhSPgwM/n19gVa8HroBC37WdjDwzNW9fHGWFteULOcRujk8d5IorruBv//Zv+dSnPmXadxub1wp33HEHV1/xJkDiHC4kLjWPcg10eAkv9DP0mLGIbSaIaFkTppJTmdibMRUoOf0KrWsjjD6XEoo59bW4CS/wkR8Ti7qSnZL422M6pI7kKGfFYom0is7QExPoAp/vrqBCOaMKCZTcYSeJVWFGnpkSEp/omk5+rETZTIQFhiONPhPdadqXqOFmmDURnwANVxXRCDJN1YUi8upMHRRznDkdRndOCwuWLaHD8DNTqHnBD2wLwqBKTrXkHjnxvIXnv1o/6uJEM7wxF/42jyHEMjmHxtyTEDrf4kQJVTCWECDaF0TxyKZzqy7okxwSikduHiOow8jTk0L3OhguaKlDWQqC0c2yQ8KhSDWHOvNB8Sc9+Ns8RuSfQJ/iy4JU8tWmc6Beq50+B22bY3Oi4E5Fpfb9NNzrx9/qYfDxiXm77h4PspXt7Jd38Kd/+qd84dNfYuexpwkEzJ2sziZE44i//e1vz/nv31Wk9IMf/IDh4Znvcffffz/3338/AFdccUXjOn36058mmUxy2223kc1mWbRoEV/4whdYv379aR/bKnfeeSd33nkn2exL93lg8+IgKzJrr1rI4vPaeey/9nL4EeMFwLGD0/zsMw+zYnsPm962FHdA/DuqjY2NjY3Na4H/+I//4KGHHuL8888nk8lw++23z/n7FVdcAcDXvvY1fvvb3/KDH/yA9vZ2ksnkKd0rb775ZqLR6JwXMPfs2cM//dM/EQqF2LhxI3fcccecbVavXk1HR8dLcHY2Z4J8qsS9/7kTgOXbull4rnhyio2NjY2NjSivOZHSD37wA37vnb+Hjk43S1gmrTfdRlM1Rp6ZIn1cTOAweSCDpmrCizH99402IkyaIhtuKQd+ftxU+KR4ZNSyRnlabbrQXifU4yM/XkTNa4zvMl+86bm8lfSxHKlDOXPRggwLLk2SHSowcL/YG+aT+zPCMQ4AUwfEfjT0tbhZsC3JkTuGhURHmgp7f2TuAASADH3XdjK2a1rIWcoVUlCLmqmrz+ngCissuCzJ8QfHGtFbzVDzGmr+pREpiTr11Om+pBW1oDL0+ORL0h9vwiU0JrIis+Jt3YzuTJkuOmlljb23DFhabOzd1oqmQf89o03bqUWN4w+KifUACmNlUoezlKbEFqk8URe925MMPjrRECnOh6bWos4uaWXoicmmi/vFiXLjHov2BZk6lGkqyBq4b2YcmjkTgSGi3P/TWXXQROw1uT9DcbosJEYAOPHIOE6v2MdfOasy8swUkwIL2YulVSyMLOLJ4oN8+tOf5vbbb+dXv/oVPp/9ponNaxdVVfnsZz/L5z//eWIkWc1mXE2E4XXyo0U0VTMVHNWZPJClWhQTOlZyKkNPTZo/Z9TW7rODBfKjRVMhTMP56ZiAC6QE3ribwnhJyBHJ6VcI9/qY2JsREuT42zzElgYZfGyCqoDYopJXyZ4Qc8cBQ1yQOiT27BVfHkJTNeFntdxQ0YjQErj0gXYPoR6/sJOS0+doCB1ebMIL/UiyJDwupi5bvwNlAXerOs6AQmxpkLHnpud1vfldkGtCGBHhUajbR7Dbx4mHzZ970sfzpAfEHFfBOM/WNWFGnk2ZzvNsM5H3KSiMl5rGkJ1MdEkAd8jJ0BPNn3XrYiBfixt3xGl6D9X77XDJKF4Hpen550ElX2288CLJgCQ1rS3p/jzZwYLRJwFd09iuaWHxYCVfZXx3WkhQCZA9UYukNNm9IjlZqW+ip7OHJ048TDLYwSM7HmTt2rVCxzkb+Pd///czctwf/vCHQu3cbjcf/OAH+eAHP/gS92h+tm/fzvbt29m3bx833HDDGeuHjTj+mIfLP7Ke5Zd38/C3dpM6kQMdnr+jnyOPDbPlncvou7hT7Dc4GxsbGxub1wAHDx4E4OGHH+bhhx9+wd/rIqXfhWPHjlGpVEilUtx0000v+PunPvUpW6T0GkHXdO77yg6K6TLR7gBb37PiTHfJxsbGxuY1ymtGpKRpGu9+97v5/ve/j4yD9ZxPXHqhEnw2vduT5MdKjO5ImS7eu0KGKGTggTGKk+WGQ8l8hHv9tK4Nc+i3w0KuRR3nxfFEXRz+9ZBQ1NLCK9qo5KocvUsg/kyGjq1xsoMFMTGEDA5FFv9RR4Ojdw1bEh1N7m0+3nUSa8L44m76720u9KijlqpkBsSi22SXjCzPH/n0AjQ48ei4UBQMQMe5cZw+RUhEhgwr37mAkacnmRAYG0mSKKfNXbzqxJYGkWSE9m0VT9RFbFmQ4SenhEQ8lZx4vwGWv72bib0ZIVeq2PIgnecmeP6WftP7TlM1hp6cJHPCPGKj3h6MWiAizMqcKKBZWCcN9/pJrApz6FfmjmtWXA6KU2WO3TUifp5abfHLM39E02zcESed58UBmDpgPr+CnV4WXJ7kyJ3DTZ2g6nMksthPckOMQ78abHpN8yPGfdm6PoKv1c3R2+evjeW02riGvduT5EZLTedX3UFJ8TlYeEUbg49MzBuxI0942aRv4xke4N5772XJkiXceuutbNq0ad7929i8WhkcHOT3f//3ue+++1jMKnpZjiTN/+zgCjmJLgkwtjOFpupNY4UAgl1enD6Fyf0Zc1GGBIlVYQrjJXLDRdNnEodbJrk+ysS+NKVUxVQs5Y44aV0TYfiZKaHnHX/rLBGRgHhDViRkhwy62KJ/briImq8KCZTAcGgSih2ToHVthOmjuaYCiNkUJsScVwAcHplqUTONzaqTHysZnwcCzRWPg/bNccZ2pYTEEMFuH4E2j6mQpE61pNFkes9BViSCXT6ywwWqFp55RPG3edAqmtB5ahWNSk41hCoi+273EOn1c+IRsWeN1vVRyumK6XcpgPy4oDsXNK657JTRq7rpnKnkVHIjYm5odeLLQxQmS6a1qCgoDK8zfSRnSdQkybX7X9AJKrTAjydiLoKqE18RRpIxF+XX6mDr2gjFqXLTGN167ZEViZY1RiRys5pRF2s6/YZobnz39Ly1sVrWGu1D3T4Ur6Pp/AoMtrKFy3mOx9hwzgY++7nP8j/+x/9oeq5nCy+nI5GNzctNx6o41//PC9n926M8/eODqKUqxXSZ+7/2XCMCLt4bOtPdtLGxsbGxecn58pe/LNTu05/+NJ/+9KdN251KcP6GN7yBN7zhDZb7ZvPqY+cvD3PiuQkcLpnLP7IexSW2RmBjY2NjY2OV14RIKZVKsXnzZg4ePIifEBu5FJfkMt2unFOF3yhXixpqsSocmVDOVShnVWHnleyJQvNIgJMYfmZKfNFDg8O/HRKPhdDEY7aC3V4yAwUh5xqAxW9sJz9WEv5Rnapuyb2mnFaFI+RaVoeILw+z94fHhCOuzMRpsxl8bAKnX+wWk2UY3zNNzmSRpE4pVeHY3WLCLTBidWSH9JKIlJwBB+EFfsZ3TVPOml+r4SenLO1/cn+G3IiYwCZ9NEclpxr3qsi+91kbj47z44S7/UKxfFbHWi1UqVaqhkuawL3tibvo3Zbk2D0jphGVdYGSP+mhMFVu6u6llTUO/sJcKFWnlKpw8BeDwgt4mRMFRp6dah5VN4v8WIncYEE4orKSUylnxL88qcWq8OcAGG4kZgussiSzkUvILBrhmf7HOPfcc/na177GH/3RHwkfx8bmlc5DDz3EW9/6VqaGU2zkEqJSi+k21ZK1+02r6EICHwD0Wh0VFO1Uyxr58ZJwbSlNV5g6KO4CmRspUkpXhPtfmq4wKiDGlZ0SDpcRI1UScNNxBRXiK0KM7kwJPTfKioSmalQtOO6YCTwaSNC2IUbmeL6p+GE21ZJGoSS2f7VUZWTHlOHAIkApVUa38IxpFps6G1mRjeisidJLIlLyxt2oxaqQSKla0iw975TTFaaP5YUFM5P70sL3nVqwVgMkh0THuXFShzLm7kc6pA5bi2vSqmICuDrhhX6cXodpFG3jvpfAHXKaCv5yI8V5xc+nInU4i2xBBJXutxaHXJgoCTul6lqt9grXap1quSr8/a5a1oy5aIJfCnGu43IGWvbymc98hmPHjnHzzTfjdrvF+mVz1mLHvb26cSgya69exOLz2nn0v/Zy5FHjd6zRAyl+9j8eYsUVC9j41j7c/tOLgKvqGk9nDzNeSZNwhtgQWIRDVPVrY2NjY2NjY/MqY2T/FE/+8AAA5793JdGu4BnukY2NjY3Na5lX/bfrxx57jHg0wcGDB9mwdBPXrn87LsmFO+Kk79pOvAlDrJRYFWLh69vxtbgJ9/rp3dZKtVRlcn8GZ0Ch79pO/EkjniS2PMjiqwx7ymCPjwXbWkmui3DktmHUgkrftZ0EO70ARPsC9F0zY2W5+Op2OrbGKYyVGbh/lL43dRLu9QOGU0rftZ2NUe84P86Sq41t0/15Igv9RBb7G8ftu7YT2WU07jg3TvclLSRWGm+CJddH8USNc/O3e+i7thPFZ7Rt2xSl5/JWZJdMx/lxFl/dTqjLh6YacQJ913biCim1/UTo3WY4TrkCChs+tISOCwxXFE/MRd+1nY3jtKwJs/DKtsa5LnpDO0ve1EliTRhXyBhDX4vxQ3BiZYhFb5zJqu25vJXkxijZwQKljDGG/vbaeC8NNsYBoPuSFjrONfoweTCLN+4m2G2Md2RxbQxrdF2YoKPm4tJ1cQsrfr9n/vE+L07XhTOLqKFeP9P9RpxdsMs7Z7zbt8TovqS10XbJNR0se2sXrpAya7wNIURyY5QFl8+0XfSGdhIrQ5TThkit79pOXGFjvFvXR+h93YzD18Ir2mhZE0ZTIX0sT/dFLXjitTm7eu54925LktwQmbnm13fiSxrjHV8eZPHs8b6slbbNMQAUn4w77GT8eWNBJdoXZMmbZo33xS10bDXGUFZk+q7txOExxiG86KTxviBBZ21+gBF/Jysyz/+gvzFfZKU2Z7fG6b54ZryXXNNBtC8AsnGP9V3biVI7TtvmGD2Xzozh4qs6iC03HoJzQ0U6tyZwBWpzdkOE3m0zbRe+vp3E6rBxrn6Ftg0x3CHjR8iWtREWXjFrDK9I0rrOGMN6jei6ME5iZahRI2bGu7Ux3vUaURwvcfyhsTk1AowIu/b6eHvkRo1QPDJL39LFsrd1zYzhhbPH2xjDcK+f3EiRqf1ZFl7ZPqdGdF2QmDPe9RrhDCq4I86Ge0XHuSeN95s6iC01xtDf7qHvuk56X5ekbUO0USMa4/3G9kZtmV0jercl6bu2o1EjABZe2UZijTHe9Ws+e8yWv33mXHu3J2ldb4zh7Box9tw0iZUhlr55pg7UawQYjkX1GlFOq+THSiy5ugNvwoUrpMypEbKrNt61GqFrOv5WY5+BDi/dl7Y0akQ9snF2jfDG3UZUHbD4TR10XTQzhn3XdMzU5C4vC1/XRv+9Y1SyKh3nxVj+9u6ZMbyqg9iyWeN9bSfR4Q7WVy7C7fRwww03cO2112Jj82pH13W++tWvctGFF1Eer3LVmrcQcxj1JNzrJ7ok0Gjbui6CN+Em0OnFHXGSWBlm6mAGTdUJdfsaNQqMZwxfqxsk4xkoeU6UYqrM9NEcwS4v8eUzb8InVoXxtxn3uSuk0HFeHMXrIHUoi+KRG/UMIL4iRKD2zObwyLRvieONu0CHSlad04fYsiDBbiOeUXbKJM+JEujwoPgc+BJufC0zMXbRviChBUZbySGRPCeKO+zE1+ImsshP8pxoQ4wRWRwgvNCoJUiQPGfmGa5ldZhFr29vLMKHF/qJLJ4Zw+Q5UaO/gDvsZMFlSVrXRUGC0AKf8bk6a7zrz2GuoELyHKOmFifL+Fo8jRpVH+/6c6/T7yB5ThSHW0ar6BRTFcIL/LPGO0SgVqsVr9FW8TpwBhTat8RoqX0mgOFMU39GdriNMawLtv2tHvSqRm602BjvUGO8jTF0BY22vhY33Ze0NI4bXRJo9Kkx3hHjs94TcxnnqhvC2fAC/wvHO2aMoSdqtJVkKGdUHG7H3PFeb8xZMMQlyXOiyIoEktGH2fOlda3h3AfGM3TynCiO2nOkN+GilCo3BFOJ1TNz1umrjWHNsTDQ4SXcOxMLGl8ZItBhjKHiqbWtPXP62zwkVocZ3z1N6lCW+PIgwa7aeLuM8a4/L/la3bSsjRjjq0gkVoYI9fga/508J9p4XvIm3I3P60quitPnmBlveZ7xruFrcRPsmun/7PF2R5y18TYmeLjXT2JliNiyIJIsNWoEGE5ryXOiyE6jbajbR3RxgIm9afJjpZkagfFcVp+zwJwa4Ym56LmstTHeim9mzoIRIVivEVMHso0aBUaNMOZsbbyTHlpWz8xvb8KF7Db+Vq8Rs+dsa228wagRbRujtKyJNO4Fd7g23vG5Y1ivEa6gQtvGKG2bYo0aUZ+zs2tEuNdPtawhyRK9r2vD2zJTI5LnRBsuTvUaUc6olDMqresixGvP1/UaITtrY9jta9SIzPECoQU+/EkPnphrTo0ACHR6ia8wxlDXdCQHeCJOkIw5Onu8/e0eEqtmxjDU46eUqqBrRh86z0/M1IikZ049iS0L4nDJpPvzyE6JrotaGnPA1+JuPNODcX9GukL0DK9ipbyJb/yfb9CdXMC+ffuwsWnG9u3buemmm/jIRz5yprti8zvgj3vZ9ufn8IZPbSbcbnx+6Trsue0Yt3zsfg7cfwJd0K2yzp1TO3nDc//AH+//Tz555Lv88f7/5A3P/QN3Tu18KU7BxsbGxsbGxuaMUspVuOd/70DXdBad187SS7vMN7KxsbGxsfkdeFWLlJZK69i6dSsaGqvYzOrExsaCkK7qlDIz8R1qsUolW6F1bZiWtWHK2Wrj7Xld0yhlKlRrb3RWixrlTAVk6DovgS/uplJzIdI0jLa1t0XVYpVSbQHCFVYI9/hxR1xz2qol4zjVsnEcaqICxeUgtMDXWIgoZSqNN5G10ty25byKw+OgbWPMWPhIz7jFaOrctmq+SiWj4m91E+7xGzEPhXrbueNSKVQbriA6hgtJKVWZs1+tOnOu5ezMm8DFqTJDT04w/tw0eu1cG/stVue8gVvJqlQLVUaeTZE+mjXa1t7Sb4xLvW1ORdM0OrbGkeW5410tndQ2qxrXUTYWk7TyjOuCWqqetN8qlfzMf5emKqRr0SfVykn7zVep5Gb+W1N1nD5DEDJzHWtzK6dSnuWsUM6o+No8JDdE0CrGeOvVmWszu20pa0SfhXp8uKPOOeOiFtQ5jg3lnEqlNmc7tsTxxtxolVofStqc/VayKmrtumpqbQwrtXlYqs5xGShnK7OcYYxzqwtftJPGu5xT5zh+lTKVhitPfQw1TauNtzpnvpTTKmpJI9jhpfvCFjS1itaYs3PdacqZSsN5QJeMhSBkfWYMZ/WhkqmgFurnqqFVdTrOjdXGsEppdh8y6gtqhCvgwhV2NmrEzLi8sEbkJ8pkjhdmakS9D3n1lDVCLWs43Y7GdTLaVhrX8VQ1oh5ZBKDmqlRmjcucGlHQmDqYpTxt/L180hi+oEakK/TfN8rg4xONGjFzruopa0Q5ayxqzbk22QrVk2pPvUa4424UjzJnv43xPkWN8ERctG0wrlW9Rhg71k9ZI7oubKFza8KYW/U+afPUCNkQ4Pla3HOcUubU71k1whVWCHX5cAUds9qqM/s9qUa4/E68cXdD8FnOzlyb2TUiJEV5fe+bWbK4j1tvvRW/FLLf1LZ51VIqleiSF/Fnf/ZndLGYLZ7LUCou6lYkaqmKOstRRS1UkRWJyMIATr+DSl5tfL5Uy9oc1zu1UEVTdfxJD9HFAarlavO2tfoQ7PLhi7sbC0/Vij63bbE64x6nGQvpkYWBWtuZ56N622qtHqPrVPIqoS4f4V4/mqpTKczUwmpxrmtTJa+iVXV8rW7cYdec2l0tnaJt7Zmzklfn1JZqSWvU2Jm2xrlpVZ3p/pwR2aTX2568X6OtXjX6rxaqTB3Mop00hpV8teGWpGvGtoE2D+6w02hbmDve1drnmK7pteuoo3gcONzynHNVizOOKvX91mO6qrV4snqf57iv6C9si05DvKCWNNRydW7b2edaUIktC+L0O+aOt37SGKqa8XktS/ha3IZrVGnuuNTnllYbQ103REixZaE5ji6VvNr4fNfq41Kfh2UNtTD3XtAqpx4XraLNmR+zx2X2eNfbzrk2RW2mbW3OatV6W73hohpfEcLb4p7VlrltVW2uq5gMjppYqL7feoyaruqNZ576tXFHnA2B3Jxr02g7t0a4Q04cHrl239f6VNVOWSMK4yU0VW/UiMY1n6eeOFwykiTNjHdVP2luza0R1XIVf4vbEEfVr03tzyfXiPxoieyJmgvYSeNyqhqROVFg5Jkp429zxls/ZY2olozjza4RjTnbaDtTIxSvjNPrwOE0nl3qc7buDnVyjdB1nVCP3xC5N9rW+nSKGqF4HbSuiaB4lTn7na9GBNo8xFeEavV71n4Lp64RwU4fnphrzn3/gv3OqhGuoNIQV1YrWuN5GubWiE5pIduXvYl8Oce6leewWboMGxubs4PONQne/IUL2fzOpSg1UWkxXea+r+7kl597jIn+5k54de6c2snHD3+LkcrcmMzRyjQfP/wtW6hkY2NjY2Nj85pC13Ue+PpzZMcLBFu9XPhHq5BE8+5tbGxsbGxOE0m3+jrRK4T3vve9fOc730HBySYuIyA1z5qvRyjJCoAsbDHvCiuGoEPQwd7X4iY/Jhh7cRrtXSFF2H4fDKcW0SgzK/jbPcJxTWA48FQKKiNPp4TaR/uCJM+JsP9nJ5pGU50u3Re3UBgvmcY1nC4dWw1Xh/57xCLZ+q7rNEQkghFu9TemzWK+Gvu/poOpwznGd02bNwZWv6eXkR0pxkSiZxSZJdd0MPLsFNOHzeMkZJcRgZIbLArdh94WF0ve2Mnh24eE5lyw00vb5hhHbh8WjvGxgiuk0HVBC8cfHmsIhF5MOs6P4424OPTrIaH2nriLrgsSHL1zGDUvdq+4I06qxapQrJwlZIRrJRh1WVMRr8chBbWoCdcET9xlxNAJ9skTdQnH1oHhUlYfc5GYvt08zpDeTyQS4bbbbmPLli3Cx7KxOdOMjY1x/fXX88hDj7CcDXRIvU3bG7FhxiOm7JTmiDXNULwO4UgoSZZwuGXh9rIiIcmScDRR3ZGkLkQQ2whLEVIiOFwySAjHajlcMvEVISb3ZYQjUFvXRyhOloWj2Kzg9DkIL/QzuT/bEI+8mDjcMolVYSb3i0XyuSNOkuuinHhsXCiOTXJIuIIK5fSMkLsZvhY3oR4fw0+JRdwGu32Ee3zCkcWBTi/euFvoOQ0MsZeu68LPRfGVIRxOmdEdYvuPrwhRyaqkB178uQPG9w6nV7Ec5yaCrEi0bYoxuT9DcVLsGSDU40OSJaaPiseouYKKcBShFSQZoTlZx+GWhesIGHOnYhJze9rtJaNWifZHckiGoEmf+xkzHyWpyHPao0wzwRe/9EVuvPFGsX7ZnJXs27ePG264ga9//essW7bMtP2ePXtYuXLly9Azm9MlO1Hgsf+3lyOPDzf+TZIlVl7Rw8a39uHynToCrqprvOG5f3iBQKmxD6DVGeE3az5jR7+9BrHvbRsbG5uXB6vPXq92XumfL8/f1c9D39iN5JC45u+30rI48jvt75V+vi8FZ9s5n23nC2ffOZ9t5wtn3zm/Es5XMW/yykJVVS644AIef/xxfATZwjYUqflptKyNkFgZ4sDPjtcWkZv/ENq2KYo37ubIbcNCIoTkhghIEiNPTQkJjhKrQmhVncm9GaH2saVBZEVifE9aSKAUXuTH3+Zh8OEJIYFSuNdPcmOUw78ZElq88MRcLHxdGycemWDqQMb8ABhv9uoW9CJTBzJGBJPAb9augIIzqFgSTUkOac7b8M2QFRnZhbAABGDw0QnhtgAHbj2B4hL/gUtUnFQnN1ainK6YNzwNNFWjMF5CzYldYK2skbGwAFoYK/P8D44JC2oyJwpkTpwQ3n8dUQGgmleRFQmnTxEWKdWFWSLnPfjohCWhj5ozHAsUt4KaF5gXMiy6sp3sUIGB+8eEjtG+xYgdOXLbcPOGtX772z3El4dMRXr1a+oMKLRtiDLw4FjTc69fH8Un07ElwfEHx5sKnIoTxni4I046tiYYuHek6TyqC5TCvX5a10c48tuhpu3rNaHzgjj+Ni/7f3q8af9XsYUQMY7k97Bt2zZ+8pOf8LrXvW7+DWxsXiHs3buXq666iuOHT7CRSwhL8eYbSJDcECU3UiR9LG8qUJKdMq1rw0wdzFKarpgKjmSnTGxZkKkDGaolzbS95JCILg6QOpytLWo3748kG/FL00dzYuIqCeLLgqSPFwyBjMAmLWsjFCdLZI4XzBtjRDy5Q06GnpgUai8rxmJ+1YIgaPTZlPCzkTvipJxRhcVbslNGdoi/JGBVSFEtaYw8LSYIAiMW7vjDY8LiOb2qN5xGRftTtNDeKmqhSnlafP9WRCYAU/szpgKQ2Uw8b130Lztl9KomJLCRJAmr68CukHOOg9V8aKrO4GMTloSFuk7DUVUEf9KIWxx8bEJoXjvcMq1rI0zuy1AyeX7XNUCCyKIAhYmS6TytH9/f7kErG+5mzajPHX+bB13TyY82/+5abx9e4KdarpJt9v2s5giHZERfFibKZAfnr4n1euNwybRtipE6lCU3Mv/+3bqHDVzM4cBzfOxjH2NgYIAvfelLyLItKrCxeS3xnZF7+X8j9536j5dD9SKNcr7ScLMDkJ6UcPkUFJfjBZuUNZVUdX4Rqg6MVFJcvuPvcMkv3k+q70lewh8kL33R9mdjY2NjY2NjI8Jkf4ZHv/M8AJvfuex3FijZ2NjY2NiI8qoSKY2Pj7Nu3ToGBwdJ0M5azkMW+MV66mDaeHtYUORQmCxbsjN0uByWgvN8SQ+6aoiURPC3e3AosrDrjzvoxB089Vthp6KcrVAYKwm/XV2cLHPsnhEyA2ILa2BNtBPu9TPdnxMWaiRWh4ksDLDnB8eEtxF1OAKILQvQtjHG3h/2C80h2SVbd3/SEJ6fik+mZXWEiT3pORFvzRh8xJpoyiqiYpc6iZUh1FKV1CGxN9BPx/FHxNmmTs/lrXjCTvb/1FzcpKlw8BeDlvrStiFqzNHjAnO09ndvi4tqQTO9xmpRE3Zdqu+///5RS0K3wkRJeGEZQHE7cAcV4WvgCTvxJz2Gy4CA8MsddOFtceMKKkLOR7JTwuGSkBUxq6dSpkIpVUEVvI8n9mQojIs5NnVLS2iNtvDw2N1ceeWVfPGL9pv9Nq9s7rrrLt7ylregTuts5nK8kt98Ix3Sx/IUU2J1RlM1yhnVgpsGOGqOSCIoHhl3xInDJaOp5s86DrcDb8xNbqhIuWJek2RFQvEqyIL9ASilysKf4QBTB7Mo3hcupM1HJV81YuEEcHhkJFkyngNFNFmyRMvqMOljeWHnnNJ0hVFB1x+A1nURChNlUofEnHNEXFVOxoq7lzfhRpIQdj8tpSum4pLfheJkWdj1BwzRS6DNS/p4XkhYZnUsAZCMuSGyf4dLpuO8OBN70kJj2ky4csquOCRa14aZPpYnIzJHdUACd9gpJEYT2ucscqPFWpykWI0zRG5lcZGhbriVVXIOSojNO2/MjVqomoqU6rjDRkScmUipjuyU0HXBL8i6Eck8O9auGdWyxvTRHIUJ877Ikszi7Fr8oSD/9m//xuDgIP/3//5f/H6BzzKbs4I777yTO++8045jfhWTqxYZncf1qIFvnn//HT6qU9UcvIjGzbmq+Et3NjY2NjY2NjYvBpWiyt03P0O1otG1roU1b+g9012ysbGxsTmLeNWIlPbt28eq5auoUqWX5SyRVjffQDYit4afnELNa4wLLNQEe3xk+vNMH84JxVbVF+CtuuaIRnrVGbhvzJIIanRHCnaIty+Ml4VFJnW3GVGBUrQvgOJxCC+UuUIK3Re3oDwuMyEo4hp8dILJ/WKuS2BdBJU6lEW1EI3VsTmGv93Dvh8dF2ofWxYktMDH0dtHhNq7gk6iiwNMHcqCyG+p8qwYqxc/YcXoU0gBDeEF12CPHzWvCouUYsuDhHrEx6hlTZjWdVF2f++o0DmPPZeqCVjEcUecSLIktEg4+uwUY7umxcdfht5tbaQHcpx4SKy+eGIuWlaHhe7luuuYaNya6HWqM300ZykCJXOiwN4fDwiPT26kyL5bBoT3Xxgrc/BWQ1gmKzKapjU9VnGiTP+9Rp32xF1opeZiseJUuSGWalkTJj9eaurs5h4Nc67+Op6U7ubjH/84Tz31FP/1X/8lfD42Ni8X3/3ud/mD9/wBUVo5h60oUnMBtDvkRPE5yA0Xm7pb1HG4ZSRJQi1Wjc9xEyRZQtd1qkWNkWdToqdBJVdl6HExByIwXGoGHxd3VtEqOiPPiLv4AMKRapJDQpIM0YhIjBlAdEmAzPGCcMxbqMuHN+423GQE0DWdoccn5zgSNMPpc6BpulCsWp2JvRlhcawkS3Sen2Bib1pYQJFYHSY3XKQwLtbeG3chyZKwSMnhlg2XmJcgshgMty+HpxaLKHAZHE6ZQIfHEMsIRiMmVoXJDReERSwd58bJDRWZPmb++V8ta4zvTlMSFDICIIEnIhbLqld1hp+eshT7G2jzEO0LcuKRcWEBW6DTi1qomj8L6oZQD8RdwqYOWBNMiH7XqjO+Z9qSe9TkPrHvZXWmDs70X0REOPu50R0xF4vVhWuyIhHs8hnzbp5DSJJEe2YRMi5+fMuPue+OB3h2z9O0tbUJno3Na5nt27ezffv2RuSIzasPv8NDqzMs1FbXdMp5FbU89/PB6VFweR0gSaZOSnUiDv+L6qTkd3hetH3Z2NjY2NjY2Ijw6P97ntSJHL6Im0v+dI3wy4A2NjY2NjYvBq8KkdIjjzzCBedfiI7GKjbTLi0w3cYTdhHu8ZMZyAsJaoLdXnovS3LkjmGht3UDHV4WXNbK0TtHhBbiXCGFhVe0cfyBcaH29Uimsd3TRkSUwBpH14UJSmmVMcE31RMrQ0SWBDj860GhWDhXSGHptV0MPj4h/EO1t8WNO+AU/uG8nFY59OtBChbeDgeE3yb3Jz30XNLK0XtGhCPH1KJmSaQxsT9Ndlj8jW9d0y29zZ8fKbHn+/3C7b1xF0ve2Mnh24csReJZYcHlSUrTFWGHqiO/teD8A2gVzdIYTffnLLkvWY3PA+Ocy9Nljt5lfs4iMZNz0ODoncOW7gOn34Ev6cEVUMTEYjL0XdvFdH9O2GkrsTpMZJG/Ifgxwx1x0nVBC/33jZovrmuGgGjBtlbG90wLCyEXXtlGfrzEyFNiAoFFr29DLVQ5epeY4K37ohbUQtU86q5GZFEAp988ftInBThffiOH2p7me9/7HuVymVtuuUXoGDY2Lwf/+q//yo033kg7vaxgg5BzpbfFjSugkBsW+6yJLQshSTVxtQDxFUGQJMZ3iT1ThHv9KF6HcBSVJ+bCn/QwuS8tFEHlcMvEl4WY2JcWc0iRILk+SuZEXlhME1noxxNzCYusHB4Zb9xtPGsKfuRPHcqSsehUY0V8E17ox+FyWBJyWYuo1Zl4Pt0QgZgiga5qwlF1YF2gEVkUwOGShee2VVwhJ8l1UU48Ni4k/ipnVU5YdNXUq5oRaybI1MGssBMOICwQq+ONuWhZHWHw8QkhoZUVgRIYAuhiqmLNYSvmopSuiH8PqQmhBh+dMI2hg5oj1LoI6f688HgFu7zITpnpIybfXWqn6Ym6CHR4GN8t6NgbchJdGmRsZ0qoDrjDTlrWRBh5dkpIaOmOGHN7+KlJoedZV8iJv81DdqhgWoeTUhexRIRHp+5lSfsy9h3fQ2dnp+kxXq1omsbRo0cJhUIkEok5f1NVlV27drF+/foz0zkbmxeRP0heajkmbeDZMR759h7SIzO/CXkjbs5913J6z0vyxl2fZ7QyfUrtowS0OiP8Zs1ncFjNIrWxsbGxsbGxeYVw6OFB9t1zHCS49EPr8IbdZ7pLNjY2NjZnGa94kdLPf/5zrrvuOiQkzuFC4lLzNx5lxYhjKk6V2fejfiHxDUBmoGBJxJEdLjD+/LSY4AjQyhrFyTKljNiP2LIio+sI/YA9BwurCaVMhfx4SXiMymmVwccnSB0SX6gZfFh8QURWZDRVM2KTBFn21i4m9mWEnLLAWIA4+OsTwqKUcK8ff4fH0nkUxsqWRC9TB7KW35a2QmlKNQQvgm/Cnw4nHhkXjrA4HVKHcpaEYuVplfK0tQXFcK+fQKdH2Lmo/95RymnxMVU8Mkuu6WT4qUmhc6nfB/X7wozMQIF9A+LuQmgw+MQEOQuCuuJkmXxIMZzdBC53tebi4XDJQk76mqqBDrJD/MfewmRZyFWhztjuaWF3EYBj94xYqsOHfnWiUVPNrp2iKfSd2ESKND/60Y8499xzeeCBB3C5XMLHs7F5sdF1nU996lN84QtfYAHLWMLqF0TgSoqCrs48PEiyhK7pRjSXhZeuJveKLYrXyQwULDlLlrOqpajK+mmKCJTAcPDQEY/GkiQjBqySE69B6f68pc/valETdkSCmWsnKujwtboJ9/oZfmpKWOQz8XzGcBYSJLI4QGG8JCw60jXxGDZjA4TdOk+X6aM5Xsp1y3JGZeSZKevxwhawOkZWRUdIEFkYoDAhdq0Lk2WGnhATKNUJdnrxt3kYFhAy6xqNfdfvCzOsuhflx0poqi78XKFXdUrTlZfMkQuMlyXQxc9ZLVYpZyrCTmqldIXpo1kqObEvnKVUheGnxQRKYDybDj0+YdTt+ufP7K7JDtBm5oxzPMAG/WKe5gH6Fizj7gfvZOvWrULHejUxPDzMJz7xCY4dO4YkSWzdupVPfepThMOG20w6neYv//Ivuffee89sR21szhDd61toX3khz/3qCM/+7BDVikYhVeLe/9hB290xPvR7r+fvpn+AxNySUi8zn+i+zhYo2djY2NjY2LxqSY/kefAbuwBYf+1iOlbFz3CPbGxsbGzORl7R36q//e1vc9111yEjs4XLTQVKAAuvaKfn0lYAIfFNy9oI0b4AgJBAyRN14Y44QYORp1PmBwBklxELd+zuUdS82I/MWlnjyG+tOd8cf3Dc0o/lmYGCuPimNlMm92WExlV2yUQW+4X7AtBzaQu925PiG8iQOpwlP2rNHciKgMgZVPBGxVXkvqSb1nURS3eWK2RNK9h1YQs9l7UKt9dUjcyJwku6kJUfKZnGMswm2ONj2du6kV3iAyW7ZBSPePtAh5eWNWK272DE0XijbuFrV5wsCwv8wHBTSvfnKVlwhwj2+Fjxjm5cAfE54gooBLu9Qm2nD+eMmiR4ztnBWs0QnEpqUePQrwaFHQYAjtw+bCkqbviJyUY8p8j8mD6Sa9TVcK95jSpPq6h5DcUj03Npq+mcrc8Jf7uH5W/rxpdsXj9kSWYzl7OkYymPP/4455xzDqpqYWLZ2LyIaJrGBz7wAb7whS/Qx1r6pDVzBEqSorxAoOQKOenYGsfpdxj/YLJuLSsSsaVBJIdEtawJLb57ooZwr5SuCH3WyIrR58J4icxxcSFmYaIs7LoERozc2M6UsFhH14wIWdHFeiTDsUhUiOmOOJGd4p+TisdB5/lxXEHxz5hKvkpuuGjJhUjXdGFhiSSDO6hYOo9Ah9fSOchOCckhrqZzuGTat8QsHUMtVC2J0ayiV3VK6YqwoA4gviIk9Lk3GyviMkk24s+cPofYBjq4QwqKR7x9xaI7UimjCju71UmsDhNdErC0jTfhFhKl6VV9RswlOAVTh7KWnMUyxwvmLkqzKE1XGN+TFhIogVGTJvdl0Kt6o9Y2RTf6hA6KzyE0p8oZo0b6Wt34k+bxR/X7IL48RGJFaO4ftaohVJJn5plfCrGZy/D43Fx28WU888wz5ufxKuMrX/kKiUSC//7v/+brX/86pVKJD33oQ4yPjzfa6Fas0mxsXoMoLgfnXL+Et37xIhZsnPl9Zfj5ScY/O8UHjr+OFmXu7wmtzghfXPQ+tkfXvtzdtbGxsbGxsbF5UaiqGvfc/CyVQpXk0igb3rLkTHfJxsbGxuYs5RUrUvra177G+973PhwonMeVBKWo0HZTB7NMWXD68Sfd+FvFs987zovTfXGLePutcfqu7RQeaW+Li2Vv7cIVFl8I6b0iaUkQFFnsZ+EVbciCh5AVWP6WbhIWBB+xpUG6zm9BEV2owLh2qSMWHIVqQrH8iNib29G+AEve1CF83gDjz01z6Fdi0VYA/qSX+PKQsIjDFVJYdn034UXi1684WbL0trqvxU3b5phw+9Mh3Ou3ND8qWZXcUAHZQgVaem0nbZvEzyPQ6SXaFxRuP74nzcFfDlpKZWtZG2HhlebiyTqDj05YEsnlhotM7M+gWhCYtW+J0b5Z/O0HxSOz/K3dxJaJj1VsaZCFV4ift+KRWfzGdlPBzmy6LmyxVGuT6yP0XdslLHyL9gXovrgFT0zMtcgZVPC1uHELigoLY0VSR7JC7h6yJNM7tJaF4aXs2bOH1atXUyy+NNGMNjbzUa1Wef/738/Xv/51VrKJBdLSxt/q4qRTUcmqZAcLwuIBxePAHXHiELxXnQGF1rWRhlDJDFmRaN8cw98u/mwXWxa0JN5whZwkVoctCV1aVofxxsVd0vxtHto3x5Bk8WPElgYJL/AJt9dUQzwrLJrCuN5pwbhcgJY1Yfxt4tdC12Dk2ZSl55xglxdXyCncPrIwQPIcse8VYJiUFibKltxsAh1e46WGlwhJhlCPz9JztuHiJX6tfS1uOrcmxIQoGNcuvMCPKyh+3iPPpoRdacGIP0uuF68H5XSFzAlrUYb5kSI5Cy9AONwyiZUhvHHxZ5xgp5f2TTFhoZLkkEisDluaU74Wt/GdRBDF66B9cwzFKzanJFmibWOMYLd4zUmsCBFZLC4Ac4dduMPi55wbLjafT7PESh7JxznVi3CpPrZsOJfHH39c+DivBnbs2MEHP/hB2tvb6evr40tf+hJr167lwx/+MCMjRuTxyS6JZyt33nknn/zkJ7n55pvPdFdszhDBFh+v+9hGrvirjQRbjZd99KqO8wfw3q9fyOfKb+d/9r6L/7P0g/xmzWdsgZKNjY2NjY3NqxJd15noT3P///ccY4encfudXPbhdZYSDWxsbGxsbF5MXpFxb//5n//Jhz70oZpA6Qo8ksmPnzJEFvpJHcoxuV9QoFSLKzp6x4ilvvXfPWLJ/WX8+WlKqbKw8EGr6BQny403SM2QFRk00C2+rK2pmrALjKbB1KEMWQtuBOO7pskczwvHhwCW3FNcIYX4shAjO1LCDkFqSaOUrgift+yqRTVZEK2M7UwxtjMl3F7Nq/TfP0puyMLY7rEWj+ONu4gtCTD8xKSl7azgb/fgS7iFY/eKk2WOPzhu3nAWJx6boCJ4X4DhsHM656z4ZGHHs0quQikjvkAIhqDLGVAY32U+VlpZs3wOJx4dt+zwlDqSsxSVUy1rVFVNOPZNLWtoGjgsOGMUp63FE04dzFKtaML1YOpAllKqIuzyVBgrs/cW8Tg9TTVEaWDUK6dfMXXGW5xeS5kK+/btY+3atTz77LP4fOKLfzY2p4uqqrz3ve/l+9/7PqvZQpvUA3BKYVLdRckdcqIWq1TLmqXP73JWZehx8bpWyaoMPTkpLK7QVJ3pozlLIpdyVkUXjGwDkB0SaLqwm5AkS2hVXTgWDgxxRXawIOxuAjDytHmk1Ww0VbckOAq0e6jkq8IxbGC4TVmJg5UVydI4AZbmE0B6IC8skgMjejl1yFosr7/NY0TWWXCZtEqwy0clpwo/a2ctinWKqTKjO1PCsV4AJx629mwH1ByIxKLG9KpOJV+15OQlOSRCXT4ygwWhmDVL0YFAtaQx9PikpSjZYqpsmM4JnoZeNeqNFVGJrumGU87JWUXzUC1plDMV4ZqjazrTx3KW3DLHdk+jVcSv3dSBWd/rBc5jtuucN+Ge+RyouynVqf3/cgE26BfxrPwgF11wEbf8+BauueYa4f69kikWizidMwIvWZb5xCc+wZe+9CU+8pGP8Dd/8zdnsHevLLZv38727dvZt28fN9xww5nujs0ZpOecVjpWxdn5y8Ps+PlhqhWN4mSZ4s1l2lfGWPK+JI6gvYhnY2NjY2Nj8+pB13XGDk1z9Ilhjj4+Qnpk5jegi/5kDYGEWBqDjY2NjY3NS8Er7hv2zTffzIc+9CEUnFzA680FSkBieYiu81uEY7N8STfL39qNx8Ib7W2boigeI7atnDZfKHOFFJCNqKCJveLOTqVUhWN3j4qLmlSNo3eOWFogTB3KGccQpeZYJBo3Uo9cEl2YkV0yCy5vtRR75k96jTdxNfGFr0x/noH7xoTbt64Ns/IdPcLtTwdNNeKn1KL4efiSbkOcJsjE3gx7vt9/Ot0TZvCRCQ7+QtxxCoz4HqeFGLNMf154Dp4u7Vti9F3TJdw+dSgnHplYI9jlJdRjTXiSXB8hsVLsbXg1bwh1ZEUWrvDDT0xaWmSaPpqj30KdQoMjvx2yFLs0/ty0sOgNDJHB+G5DwCfqsFBfiEysCQtvA9C7LWnNUe/cOB3nirlbrZA2smHJZg4cOMCqVasol1/aOW9jo6oq73rXu2oCpXObCpRmE11qzX0otixoyd3O6Xc0Yn5EBUp1B5DsUNHSQnj2RMGSm0txqmxJMKxrOhPPp62Je/JV4ZopyRKSbIiORAU+/nYPAQtuUwC+pMdSrQQjltfKZ3fHuXGCXS/tj2RqwZrQyuGSxSPJaow8PWVJAGYVXTMEQYUJ8bGVHBJOv/hzl1bRjWv3UiZCSdB5fsKS29bk/oyl6FxJMtw1rcT1KR4HsWVBoQg3oCFQEnWdquSqlkVjE8+nLd1LhYkyk/sy4kIoTWdib8aSqDA3XKRa1pBkhIR/1aJmxMQ5ZUv3uTOg0LElLuwcpngdhrtVwsTdSnagSE42yBcTDcR587Vv4eGHHxbu1yuZnp4e9u3b94J//9jHPsbWrVv55Cc/eQZ6ZWPzykdxOdjw5j7e+i8X0bNhJgJuaM8kP/nUQzz+/b1UinY0t42NjY2Njc0rF03TGd47ySPf2cN///m93Pq3j7DzF0dIj+RxOGUWbGzlio9vpHdz8kx31cbGxsbmLOcVJVL65je/yZ//+Z+j4OR8rsQlif1gPb4nzcFfDQqJhwDKmQq5kSJlQacOV0gh1hck0Cn+Y2rv9jZ6L2s1b1gjsthP33WdDYGPCD2XtRK0IHbwJlx0X9xiSeDSdUGC5PqIcHvFI7Pszd0kVonHC3iiTjwxF7oFx6KpAxme/2G/sGOMJ+5qLHaKkjqUY+hJcVcCX4ub5W+3Jn6LLQ9aiupTPDKLX99BxEI83CuVhVe20bJKPCLOFVJo3xKz5GS24PJWui8RF5NMHcoy+Lg10ZHikQkvFL8exx8e5/Cvhywdwx1z4bIQdyErMsve2kVybUR4G0/MxZKrO1B84uMbWeyn3UKUoOyS6d3Wijchfo8k10dY9MZ24fb+dg9L3tQhXhtliC8LElkiHj+SHS6QteB+1n/fGEduHxZuHzu0gB76OHr0qB39ZvOSomkaf/RHf8QtP7yFNWwlKXU1jXabzdjOFFMHxd1lilNlShYc0nytHmMRW9A4xBt30b45htNC/FXruoilWDhXUCG2NGgpgi3c67ck7HG4ZFrXRXBYeB4Mdnlp3xIXHisAp0+xJFgBGH02xfQxcVG8N+4SFm3UmdibpjAuPk8M8Zt4/ZadEqEeH7IFZ79gl4+WteLPK69UfC1uSxFjYLjRmAo9ZuEMKHRsjYuLunSY3JehMGnNvcgVVIRjyTRV58Qj45bE2Do67pAThwVxWqDDuA+t1IdQt8+S2FNySET7gpbqgyfqImrhGUd2yrRtjFqKlouvCJGw8EzviToJdYvfh2qhSmGyJO6eW6gy9MSkmKOe7EDWXaxMnUuQCBdfcAl33XWX0HFeyVx88cXccccdp/zbjTfeyLZt2wynLRsbm1MSbPVxxcc38rqPbSDYMhMBt/MXR7jl4/dz+NEh+x6ysbGxsbGxecWgqRonnhvnwW/s4vsfuptffu4xdv/2GLmJIorbwcKtbVz+5+t59/+3jdd9bOMcMbaNjY2Njc2Z4hUT9/bDH/6Q97///ThQhAVK7Ztj5MdKTB8Vs5qvixvUvGbJUaecVtn74+PCP4wCHH9oDK0s/qNFJVulOFkWdtSRXTJOn2Jp8ccTdeOJudAsuA/p6Fj57UUta4w8O0XKgrNTfqTEvh8dF25fd7SyEsPWsjqCr8Vl6TjFqbKlN5arFY3sYIHytPibdeEFfqpljdQhsfFSyxqHbx+iZKFfbZuieKIuy9GGVogs9tO6NsL+n54Q3qb/nlHKgu4YAIrbQXRxkNThrPACZm6kaCk2pjhRpmjBlQAg2hckuT5K5kRBrEbUmliJleu34nyG8cVkbGeK9HFxFwc1r6JrOopXQc2LjYE77MQTF1+81FQNp1/BFXQKX8NiqmJJmJYbKjL46AQZUQcLDQ7cOmipvtcdm8AQz5kJZLWyhlY26nbXhQkGH50wjedZKq1D8cscOLCPzZs3s2PHDmT5FaUrtnmVo+s6H/7wh/nOd77Das4l6Vxguo3DJRNaFDTiFQXvGYdbplrSyI9aEyFMH8kZTjSCJbwwabgbVURjZiUopSuoOfGIJofbgeJ1iEewSeAKOVFL4seQnTK6pltygsqNFg0nFwvPa1bjy2SnZPRJ8BiyUyKxOszE82lL196KMxAYrp1WFgkVj4Ngt4/8aAlN0IwnczxPblRcLCrJkNwQI3XImouUVRKrwxSnysKOPIWJEsNPTVqaJ74WN+i6cHxitVglP1q0dE2sxqsBJFaFyY+VxOexDkiG65hIVFy1qDFkMW63MFFCUzVLEY06IFlZ49aNZy/nhEK1KDa3ZEVC8TqQZIReCNEqGqW0KhSNV2f6iPj3PoD8aInCRFk4tk+v6kwdMK61rBjRgGbnohaMuuuNu1C8DjKDzcfL4XCzXr+YXf4HufqNV/Po44+ybt06of69Enn3u9/Nu9/97nn/fuONN3LjjTe+jD2ysXl1smBjks41CXbcepidvzAi4PKTJe7+8rN0rI5z/ntXEukUF4La2NjY2NjY2LxYVCtVTuya4Ojjwxx7apRSduZHDpdPoWdDKwu3tNG5NoHisuYObWNjY2Nj83LwihAp/eY3v+Ed73gHMg7O4woxByUZPHE3mqYLR531XNKC06dw4OdiQgpXQCG5IcqJh8eEF7A9MRfFyTL5EWs/uOdGipaiRrSyxqFfWYvXmjqQYeqAePQcwImHrLnKoGEpAsUTdaGWqqYL9rPpOC+BO+QUvo4AA/eN4gpbiJOrxaCMPJ0S3qaUqnD8wXHh9gBHbhN3VwFAM0QYVihnVCPr4iWkkq8aC4sywuIxK/MdjEWsPd8/Zmmb2WISUYJdXnytbuFrP7Evw9ShrCWRS2x5kI7Ncfbe0m8p6i/Q4SU7KLYYaeU+BFCLGocsOjwZY5QS36AmCLLC9NGcpThLMKJgwKgvIgvE9WsXWezH6XcytjMldJzYsiDtm+Mc+MVxIXGi4pHxRF24w06hmrcotwZXp8KuXbu4+OKLefDBB4X6ZWMjwl//9V/zla98hRVspN25UGgbxevAFXIiKxJVASG24nPQvjHG+J5pYfFJsMtLJVelOCW4gC0ZIla1WBUWUgCgW19YL4yXLB9DtJ7UqeRUxixEXYIhqMgXxfvlDjktxWU5XDIdW+OM7xa/jlpFZ/CRCUtC4VC3j2KqbDy3CGL1WaKcUTnxkLVntWpZExblGUiUUmWqFkQep0Mlo1Itij8/axWdcsVaRM3E89aeJTRVJ3XY2n2FBKEuH4XJsnC048izU1QtPD8BtG2MUZwqWxLoOVxGdK7IsU5HjJkZsBYJqGs6w09aE0/lx0qWhWBWvy/OFocqXkdDINQMvaojOSQii/xMH80JCzNb10UoZ1Ujyk4AV9BpxMSZiJQAFMnJuupFPKHfzZb1W9lzcBeLFy8WOo6Njc1rF8XlYONb++i7qINHvv08A88aLzwO7prgJ598kDVXLWT9dYtxel4RP6/a2NjY2NjYvIZRS1UGdoxx9PFh+p8Zo1KY+Q7tCTpZsClJ75Y2OlbFcVhIU7GxsbGxsTkTnPFv0Tt37uSNb7wKCZlz2YZHEozo0eDIb60tqA8/OYUzIK4a9ra48SU9yC4ZTTX/cVp2ySx6fTuTBzIMC759G+0LEO0LcvT2EaFjACQ3RMgOFcXFKjIk10YY2ZkSFpB4oi4CnV7Gd4kvlCVWh/FEXBx/UNylqn1zDMXn4MDPxAVH47umLUeUAJYcjnwJN5HFQUsipXCvn9xoQdgd53QIdHgJdnkZelx8gUL0R/zfhZyV+Vgj1OPDm3BZGuPTIdjppZSpCMdB+pIeQt0+4X7VXXKskO43FvBUC4ue8eVB2rfE2f+T45SzYucS7PGRWBGyJIbztrjwt3gsiZyCnV5wSMLuRbIi07Y5yuiOKeH7JbEyRLDHL1z3FZ/M4qs6GN2ZEhYJ+Ns8uPxOxnYKNSd1KIMkideWclpl/4/F3dwAugZXMM4EDz30EFdeeSW33Xabpe1tbE7Fv/7rv/Iv//IvLJM30OXoE96uNF1h+EnxqEM1X2Vyf4aChZglT9SF5KgIO9AEu3yEe3yceHRC2JWjZW2E3FBBeOHe4ZYJtHtJ9+eEo2k9UReaqlkS3PjbPZRSFaEFfgAkaFkVJt2fFxYdKV4HyXOijO2eFhZcaarG5L4MxZS4sAmwKOwxPn+1qi48Zg6PjMPloGxBcHU6hHp8lKYrlKbFjqNruqUoxNPFSvQeABKEe/wUJkrCzxGng+yUcfodlETniw6BTi/VsiYsUrIqUAKYPpIVv7dqtK6LUEpXLD1LR/uClKbL4oIlCQJtHgqTZaolsfOSZIlAu4eMoIsWGOJEZ0ARFrtLDomW1UZ9Ea3H4V4/gXYPg49NCNVK2SHhibrIj5aE76+pQ9auY0PoLov9BiCVFNbrF/Mkd7N+5QZ27d/JggXmToM2r17uvPNO7rzzTrLZl75u27y6CSX9XPFXG+l/apRHvvM82fECWlVnx62HOfjQIFvfs4LezUmkl/gFMRsbGxsbG5uzi3K+Qv8zhjBpYMfYnN9afBE3vZsNYVLb8iiywxYm2djY2Ni8ejijn1qDg4Ocs24DoLNJuoRz3ryC8EI/AOGFfpZe34lc06J0XZCg+5IWPDEXS9/cxfJ39hDtCwIQ7Pay9PpOFI9xOh1b4/RcPpOruvwd3cRXBilOldFUnaXXd+IMGDtu2xyjd3uy0XbxVR0kVocBqGRVdFVDdhr7TW6IsPDKtkbbRW9op3V9BDAclJZc1c7YcylGd6RoWRth8RvbG20XXtFGcmMUMOKBll7fiT/pQavoOH0OFr1hZr+921pp3xIDjIX2pdd3GiIAILYiSNcFLQSShttUz6WtdJwfBwyR1NLrOwn1GEKvyGJ/Y9uWNREWvi5J14UtxkFkWHp9J5HFtfHurY+3ca49l7fSc3FLY4b0XddJbGltvLtOGu9z4/Rua0WSJSQZllzTQWJlCDAW3JZe34mrPt6bovReMTPeslsmX4vQ8CZcLL2+E0/UBUDr+ggLXz9rDF/fTnJ9hPxYiWKqzNLrO/G2GG0Ta8IsvqpjZgxfl6RtkzHe3RclWP+BxfjbjTFLrAzRd81M2wWXt9Kx1RhDxWOMYTFVZt8tA8SWBum7rrPRtvuSVjovqI23YoxhuNePrMDCK9tY8Y6exph1XZig++KWxrazxzvU42PV7/ew7G1duAIKHefF6blsZs72XdtJbHltvDtr4+2T8cRctK6P0LttZgyXvKmDxKraeCdr4x0yxju5IcLiq9ob12rRG9tpWRsBwBOvjXesNt7rIiyaNWdb1oRJbjDausLGnPW1GNFeidVhllw9d7y7L06ADM6A0TbQUZuzy4P0XTszhj218fYmXIQW1OZobc5G+wIsvX7WeF/cQtcFCeM/ZFj/gcX01f4+X42YPd7RvqBxj2yONa0Rfdd2Eq+Nd3awgCQhVCN8LW6WXm9cq77rOklubF4jll7fiTfhQs1rOFwOFr/evEaAMWejS4McuW2YclZtXiOWzcxZXdUJdvvoutgYw/lqxOzx7t3WRnxlCJTmNaLj/Djdlxhj2LouwpKr2k1rRGMMr26nZVUYf5vXtEYsvqqDljXh2oKqztI3m9cIAIfLAZJObswQTjWrEa7anE0dznHk9mGhGhHs9qKpRnRK33Wd+JLGvTFfjZgz3jL0XNbKyt/raVojll7fieySWS9dyMplK7n99tv5+Mc/jo3N78IPf/hDbrzxRnrlFazsWktL7fMDIL4i2KglDrdM24YIzoCDyCI/bRsjtK4Nz7RdHiK0wKglslOmbWMUd8gJgC/pbtwzuZEisb5g4/lOckhG24jR1ptw01arfWBE9NTrDBK0bYw2Pqc8URdtG6NItT9HFvlx+hyM70mjV3WSG6KNzyl32EnbxmgjFjfc6ye2LIgkG5FU0cWBRo11BRXaNkYN1xQMR5/4iplxadsUI9oXAEnC6XfQtjGK4jEWvIOd3sZnAhifj4FOQ1AcWRygbWMUp89oG2j3ND6DAeIrQ4S6jTF0eGS6LkgQ7DbG35/0ND4/jPEOEl5gjKGsGGPojbtAAnfESXLDzBjGls4ab9loW6+bTp+DqlqlMGEIKCKLA0SXzMSUNPaLsd+2jVGQJHIjRUI9vkadB+aOd6g23k4JySHR+7o2kufM9L91XWRmvAO18XYb4x3s9pFYGWL4yUmygwVa1oQbzxBOX228vbUx7PTSUhvvQJuX3m1Jgl3exhi2bYw2hOz+dg+ts8d7RYiui1oI9/pxuIy2rqDR1tfqJnnOrDFcFmzUbn+bx5iz4VPP2WhfgMiiQG28jc8xf7sHJOOz3xhDo21k0SnGO2GMocNrnKvkmDtnG+N9ThRfq9HWFXIaQv/auYZ65s7Z1nUR/G3GeDtnjbe/zUN4ob/x3AjMGW+l1gelNmfDC/30XTvzvSmxMjQz3u7aeNf+5m/z1K6zm5Y1keY14qTxLk6WG8c0qxHRJQEiiwPElgYJ9vhMa0T9+2Jhokxseci0RjTGu/adY+pg1rRGtKyNNL5nKF6ZxKqwaY2YPd7RpUHjBZFmNcI9M2edPgctayN0bI3NtD1FjajPWV+Lm7YtMfy1+dOsRnjjxhjqVR21WCXY7TOtEfU5Kzkl1EK1IVCar0aAEXkdWeRn6IlJStMVoRoBhnNtbGmQQKcXp9/RtEaAEQ0Y7DLadmyN0bElitNvtPW3eU76XAsS6vbikjycG7kczVFl4+pzyeUsCgJfoVx66aUMDAyc6W684ti+fTs33XQTH/nIR850V2xeBUiSxIJNSd76Lxex/rrFjc+Q3ESRu/7tGX5705NMD702aoaNjY2NjY3NmaOYKbP/3uPc9i9P8t0/vYt7/2MHR58YoVrWCCS8rH5jL2/6+6383v++jPP/cBUdq+K2QMnGxsbG5lXHGXNSyufzrFu3Do0qqzmXsBynMFlGrcUWqMUqhckyWu1HzmK6gixLVMsa5XQFraqh5tW5bWsv35bTFaplYz+yIuNLeAj3+JnYk6Fa1ihMltFrrkXldAX0mTfvC1MlnD6ZjvPiRjzJZBm99rJmOaMiKzNvkhanypQzxlufDq9MYbLM9LEcWlmjnK1QmHTMaVupvRmuqUYfqmWtEVMR6JyJuCukKqi5eluMcSkZnahkVUZ3pBh5NgUwN05C0+a0VQvGf2cGCuy9pZ/o0tDMuWrGfuv2/GqhPt7Gvib3pkkfyzacl4qTZSr18S7NvTal6TLViqPhVtJ1QaLxhna1qNWuTX2850aPFcZL5IaNMahfG612PuVMBcU9M4alqTK+Dg+RjJ/cSKkxhvVxKUzOvLFcTFUab+KX8yqldKXxdnI5q85xdSimyo03srXauNTnYSWvUpzVtjRdbkSXNNoWqmgqHLl92FjQqo/ZdGXOW3RGW60xhvmpEtWCRjmvGnN21lvBhYmZyIvKrPk9vmsaTdXmOEkVJktUctW5Y1jrYzlTxb/eS+f5CY7dPUpxsky5lk+sVU66NtkKxVlztpJXKWeqtba6Md6VWeM9NTPeWkUnsSrC5L4speny3Dlbj4Krj2FtvMf3pBnbmabzgnjj3NV89aRrU0GffX/OitqZr0bMHkM1r3Lo10NILkgsD5+yRhhtS5Tzc8ewWY2o1Oa3Wjb6UMkac0wtanPeNp9dI7SyNmfOamoVd8SFM6BQyarz1oiZMSw16kXTGjFrzmYHC4w8OWlaI2aPd3G6bEQNmdSI8nQF2Wn87djdI7RviZvWiMYYjpUYeXaK9NE8nqireY2YNBwf0v15iqkyyXOiTWtEuTEuOun+PGpeM8Y4P3+NaIx3rUY4PDLOoHNW2+Y1opytsOiKdoafmZq3RjSu42QZNGNMZJc0x5nk5BphtDX+e7XjXIaCw3zpS19i6dKl/Mmf/Ak2Nla5//77ec973kObtIAl8lqqJW2Oo0olqzbqg67plNIVdFWnkleRfe45cTzlnEq11hbdaFut3ceeiAt/qwdZkdBxUCnqaCe1rd8n1bJGKV0h2hcgN1Skkq/O1H0do23tntcqRltdNxbWq2UNtTRTd43aXq+xM22B2me1hq4ZkZCRxYHGuWpq7Vw1o7FarDZEJWDU0lK6gl7V0aontS1pyJm5Y1gtVhl7bhrF6yDY5UWrzrStfyY0xrtWS/SqzujOFJnjhVrb6hwHwHJWbZybXhsXtWAcxx12NsQT9WtTd5XS6+NdG8NquRZJVR+X/NyaW0pXqNaus6bqVApVI47pSM4Yw1lv7J1yvDXDHaWULlOa3f/MrLYnjWG1WKU8a7zLs8al0bY6q21tzk4fyyE7pZnYVK02X6q1cy1plE4ab0k26nZ9fp88Dxttc2pjvg8/OUVksb/xOaWVtTmuL5XczJzVdWPcWtdEGEiNNeZso21BnfNsWEpXjDH1OtBr58pJc3bOtZk13q6QQrwvwMizKWO8ZhmJlTMzz716fX5XYfCxCbwJd0OkYbSduZcb931tvCs5lfx4qfHfxrWp7bc23np9DGvzOzdcJDdSwt/mmbdGVEunGO96NOA8NaLRtlYjFJcDrbafU9WIelvJMTOGkmSI9PNjpXlrRGO8MyrFlBE7aVYjZo/35P4Moe6qaY0A474vTVcY35NGzVfxxFzz14hZc1YtVBl6YgJ3yDXTh1PUiPr5VMsa6WM5pg4YTjFmNaI+3pP7MgTaPU1rRGnWc3Ilo1KtPTc6PPK8NQKMe0HTHMa8lQxhUqFWx5rWCNlBOafha3EbzqfPTs1bI4xxMZ7Pdd2BWtRRC2qjJlfL1bk1Ijczv50FLxd0bufuw7/ine98Jz/96U9RlDNuQv07Mfs7lY2Nze+G4naw6e1L6buok0e+vYfjO40o2RPPjfPjTzzAmqsXsf7aRXYEnI2NjY2NjY0lNFXjga/v4uBDg43vQwDhdj+9W9pYuDlJfGHIdm60sbGxsXlNIOln6NeqgBQmR5olrKZXWi60jazQEBlYwd/uoTBRnrOw0oyWtRFCXV4O/Vo0VsjBsuu7GNmREo5HC3R4iS0Pcvz+ceGYt2CPj3K6Ih6fgPFDfHHCWhaVJ+oStvWvE+0LNgRaovRd08HY7mlSh8TfNFv0hnZyo0VGnpqy1D8rBHt8dJ2f4NCvB4Ujwl7J+JJu9KpOYVz8mq5+Ty8jO8RjsmRFJtDhITtctDQHXql0X9KK4pEtxaRZRfHILLmmkxMPjzcWpc2QFZmFV7YxsdfafRPs9lJKVyxFHio+B5qqW7qenqiL4nRZOFYSGRLLQ5ai5aJ9AfxJr3CspKzILH9bF1MHswxZiOFMrAxz6DdDwucf7PaSGRCPXTm5jyKfA2W9zKPybaDofP/73+fNb37zaR3P5uzk0KFDrOhbRdAR4xwuRJbMo28kGXB75/yblhGIPZIM14xybuYRU1fnrz+yItGyNsL0kZx4rNBCP/6kESuE4JNstC9IYaI0R3xshj/paQhERZBkCdklWYqjqr+F3xBpCKB4HchO2VLUma/Fjb/Nw9iuaeEx80RdRPsCDD85KRx1dzq0rAlTyVdJHXr1x+3IioQzoFCeJcgwI9htxBYef2hc+DiG0EgSjkh7JdOIIXwuZSki0SrhXj+Kz8GEhecOX4ubQIeX0R0p4W1kRcIdcQlHKtZRvA7LkXRWt1F8DhyKLBwRKTkkYn1B0gN54bkW7PQS7vUz+NiEcF1rXRepCdxM6m0ttk1WJBwuGi8OmCF7Zl4IMhz1xM5/XB9ih/YAy7vXsaf/GaFtXqlccsklfPe736W7u/tMd+UVyb59+7jhhhv4+te/zrJly0zb79mzh5UrV74MPbN5paPrOseeHOHR//c82fGZGhZIeNj6nhUs2GRHwL2asO9tGxsbm5cHq89er3ZEP18OPTzIPf97BwCxniC9W5Is3NJGpDPwqnqeOBs/T8+2cz7bzhfOvnM+284Xzr5zfiWc7xnxAHzXu95FjjRt9AgLlNo3x1jypk5LPa5HZuSGrAknxnamhAVKYLi/DD4+yeR+gYW7Gk6/A6dXERYoAbStjzQinkSQFVh0ZbulbRSfzJKrO0isCZs3ruEMKHRujRNd5LfQN5nidKXhGiLK4d8MWRIoeROuRvSZKJWMyvTRnCWBUuv6SCM6ykrf6tEWoix6g7XrCZAfKVkSKJ0OmqqR7s9bus9cYYVlb+tuxGMIIRuiq0YUkAD+pIeFV7RZqh2Z4zmmj1qzaZcVGrF1IqhFjb0/HBAWKIExzpWc2niDXaxj0HVBC4kV4vc0Miy9rovkuojwJorPYdSOVeLHCbZ7adsUszQHHE4ZxScLX09N1Rh8fIKx51LCx5g6kOXAz09Yms91gZInbu2+blkTbsS6meGSXJwf2IZTcfKe97yH0dFR4ePYnN1kMhmuvfZanJKb9f5tQgIlWZFoP68VX8Jp2raOwy2jeBxIDmWOQAlAauJAoak6I09PWRJIZ47njecu0XIogcMlI8niP+q4w05iy4ONOCsRAh0e2jfFG/FHIgS7fbRvjs1xZjE/jpfErLgpEeoOLMJjhuEIOPS4NYGSO+K0dC4A+dGSpesvOSQSK0ONKD3RbZx+xVLf3GEjVs0hUKPraKpOKSUuUDpdKrmqZYFSeKHfiHS1gMMlW35eDS/wGw48gqjFKtnBwozzoyCKx9GI+RJh+mjOkkAJoFoxnr2szBtvi5v4ilBDgChCsMtL28aYpdoRWeQ3Ym4t9C26ONCI4RNB13QcbrkRvSZCbqTIxN60JeHl6I6UsEAJak5veR1kRyPWTgRJhuS6MKHegHljICG1s2nhxTw/8Czf+MY3hI9jY2Nz9iBJEr2b23jLP1/EumsXI9fqeHa8yJ3/+gy3/bMdAWdjY2NjY2Mjxu7fHgPgnOsX8+abLmTDm/uIdgVfVQIlGxsbGxsbUV52kdLNN9/M9773PfyEWC1tEd4udTTL1MGssEOHJ+5iwWVJIovFhTPRviCt6yPC7YHGwvLUgYylBe2pA1kO/WrQ0rEO/XqQ4w+Kv2GtqXDsnhHjjXlB1LzGwANjpA6IC64qWZX9Pz3OhAWRlqZqDNw3RnZQXKBhZZGwTtvGGD2XtlrapjhVZvDRCUvbKG6HpR/vAbovaqF9c9zSNrmhAoUJa29lJ9dH8CXdlrY5HZIbInhbXOYNa2gljdxgwdLb356oi8Wv78DfZu18ZKeM0yc+f1KHckzuE5/PAOGFQXovS1oWxcku2ZLoqv/eUTL9efEDaEbtsDSnNTjx8LglYY+arzLwwBjju8XrTeZEgf0/O05uSNylZHxPmqO3j4i7NWFcT7WoCQmBZuOJu+i+pMXSNr3bkpbu6+n+HFOHxD8/lIyPxfm15PN5NmzYQLn80goQbV79aJrGe97zHvbt3s85gdfhlM3rp+T1ojs9ZEfmRnaZEVkSomWdBcGuBLGlQUsiAyRjkVmr6JYckdBhfPe0JWeT0nSFwUcnhJ06ALKDRcZ3Tzeih0TIHM8zsdeC4ApIHcoy8qw1V8niVNl4lhZEckiWRF1gCFaT66J4IuLPA2CIGqxcT9kpITtlK0NmCI42WRMcVStzY3RFcAUUgp1e84a/I66gQqDD2nEqWdWSIytAZFGA+NKgpW1kp4Rk4dkG3RAQWXEgA0isChFeIP5dr46VOVBKVYz7xsJky48UGXxU3EUIIDdSYmxXylrtOFEwInot9G1yX8bSd0N0Q0Bk5f7UVL0R9WxFdAWGaNMTE68fvlY3retjOHxiQiVdg+xwkeJUBdnlRHaZbxedWkyXaxk3/PGf8NBDDwn3zcbG5uzC6VHY/I6lvOWfL6JzTaLx78d3jPPjv36AJ3+4vxE1bGNjY2NjY2NzMqMHU4weTCE7JFZcseBMd8fGxsbGxuYl52UVKT3xxBP8xV/8BQpONnO50DaKx+hiYaxs/AgrSHGizJE7hi1FInnjLnwt4uIHxSOz/C1dJCy8kax4ZDrOjVsSJciKjOKR0VRDCGCF3FDR8jbTR40FfSuUs6qliKfY0iCyFS2HDEuv7TTeFrbAsXtGOf6AuLALILY8aDi1WGDwsQlOPGRN2NR/7xgjz4rFT9UZeTZlaU4DxJaH8LdacCs6TRLLw/hbrLw1r3H8oXFLi2XFqTKHbx8iNywubsuNFDn0q0FLi8xguCJZqQfTR3Ic+OUJSw5csiKz4u09xFZYW/zztbgtuQ+dTmzh6dSB6aM5S+IhmOmbVXFXuNdPbJn4uMkumWXXd9FqwR3K6XXga3HjsiCQPHbPCCceEnc4Kk+rjDydAmY+78xolTpZwHJOnDjB5ZeLfZbanL187nOf49Zbb2Vt4DICjohpe8nrbbh/ZE6UqJbFV7+nDuaYeF5c4Olwy7jDzsYb5yKEuny0bbLmOuRPeiw5bdT7BlAtWStquqZbjszVKta3AWt9c4WcllyHAALtHjrPi1saazVfZeiJCYop8fNxBRTL16da1BjdkbL0jFtKVRh+etLSuKm1CDpdsyBSCjkJdos71Zwu7rCTYJc1kVJ+rGTpBQEwPtvH91pzH5o6mCUzYEFQjSEo97VaE6GP70kzaeHFCoBQT62GWECSJUvPhLoGmkVXKK2iWRaQVUua8R3MyjZlDXRjvCULX3ckh0S4129JdBTo8NK+OWbZwc7Kc1d+tMTIsylLArfsUMlw85WM8zITKkmSxArfecS8rVx11VXs379f+Fg2NjZnH+F2P6//5Ca2/eU5+GPGd3ZN1Xn2Z4f40V89wLEnR9B1KzJrGxsbGxsbm7OB3bcZLkqLzmvHF37pXzi3sbGxsbE507xsIqVisch5W85H12Ezl6FIYj8+9m5vo3ebNSec+tvLVtw5AAYfneDoHSPC7dWixtjuNCkLsVD+Di+RRX5kl/iPtckNEZZe32VJ1NO6PsKiN7aLbwAkVofp3Z60tE1saZBlb+u25FAS7PTSeV4Cd9TaW/bHHxln6rC4AwCAVtYsLfx5oi46z03gS1iLIDudO6k4VaY8bW1hwWrUGcDz/91vSeB3uuz+3jHGLUZoeKIuSwsRaLX4RuuaG8suOh1bYsQtROloqkZxwuLCtKox+NgE6SPWhGcdW+O0ro1Y2qZ9S4wlb+qwtE1ksZ/FV1nbJrY8SN91nZa26dgaZ/EbOyzdR+GFfsK94u4JWlljbM80qSPiNSRzvMC+Hx23tABYGCujqYbzmzsivuge6PCy7K09wq5nfdJqlvYu46GHHuLf//3fhY9jc3Zxxx138NnPfpbF7nNocXY3/l0OvPDekbxeJK8XV9BB+4YgTgtiXWfQjcPrRK/qVCyIRqpFjaEnJi3dY/mxEun+vCXnEH/Sgzch/gOPJEu0bYwRsiI0kaBtYxRv3NqzTev6CB6Lz0PJDVHL4pRwr5/IIrF4ozr5sRIT+6w5PAHGHLCwTaDTS2Sxtb5ZdWcBQ0BWzlh7gKhHGFohO1iw7Mh5OmSOFxh63JrYXXJIlp1J1WLVssMRGI5nlqL1QgqJFWFLLkdqoWrJeQhq8/p5a8+rzoBCYmXY0jOr7JToODduyRUIyXCHsiTWkqB1XQR/m/h3F8kh0bElZsmJS1YkAh1eXEHxMShMlJg+mrMk8hvfNW3UeAvU72t3xD0nEs6M+LIA8aXG5+F8rkqOkFGbZMnBOaFtVIoq56+5lGrVdkOxsbGZH0mSWLiljbd+8SLWXbNoVgRcgTv+19Pc/i9PkR6xI+BsbGxsbGxsDPJTRY48OgTA6tf3ntnO2NjY2NjYvEy8bCKlyy67jCoqy1iPXxJf+B/ZMWVEYAgS7PHRu73NkstIqMdnyZFjNmM7rb3FPX04x54f9FvaZmxnisHHJywJM0rpiqVIEzAW8a06pxSny2T685ai7jIDBfb9dIDCmAVBh2aMnRVHmMTKEF0XJswbzqI4Veb5HxwjfVz8x/Fwr5/V7+61tOjjibrovCAu7JwChtPM4td3WF6YfCWzYHvSkrMNGNc1sTpsaZve7UkWvq7N0jaHfj3EwP1jlrYJ9/otC/2mDmQsvwXff88oR+4YtrRNfrTE9DFriz7VskYlr1oSxpWmKhTGSpa2GX9+muMPj1tyYeq/b5Qjt1kbg/Hnpk/LVcoVUmjfbM11oXdbko6t4vUnO1xgfFeK/Jh43e46ugoFJzfeeCNPP/20pf7ZvPYZHBzkXe96F3Glg0We9U3bSt6Zz5VKrsr0QJFKXuyGlBSF6BI/8eXmz1GSMvM5GV7gtyRGqKMWq+SGrYnQR3emSFkQOeuazsTzaXIj4seRZIliqmIpwlRySKiFKppq7dkrP1K0LLYZey7FpIVYXjBcWqw+SyZWhiy7Ik3uy1iKFwVoXRshZjGCLNDhteSGAxDq8ZNYJf695ZWOJ+qifWOs4ZYmgsMlE1nktxRrrHgcdF3UgjskPheKU2UGHhwznH4sEO0LWLquaqFq2bmsnK5w4tFxS89rWkUnN1qkWrQgZtGNZy9Lwivd+N6nWjiOXtWZ2JexVEurJY0Tj1hzQK2WNMv1uo4/6Zk7f0zER+6Ik+T6iCGiEhQqZYeKpI/P7V8zVyVH2cMq5yVMlIf5+7//e6Fj2LzyufPOO/nkJz/JzTfffKa7YvMaxOlR2PzOZbz5pgvpWD0TCT7w7Bg//sSDPPWjA6hlW/RoY2NjY2NztvP8XQNoVZ3WpRESi6yte9jY2NjY2LxaeVlESp/73Od49NFHidNGt7RYaJu660lmoEDmhHgsQaY/z9E7hy25KIV7/USXWFvoWHxVBy0WnUyC3V5jxC2+jKwWNcsRX9OHc5bfrp7cn+H4g9ZEGfmREoOPWX9b3KpQoGNr3JLwDEBSZGTn6SyAapauUWG8xPBTk5bixJwBB8FOa1Eg5azK4d8OkbEQ06F4ZPqu62y4i72ULLyizfI9MXDvKCM7Upa28SbclhcZJ55PM77bmpuU1ZjEOrJTtuZ2JRsuR/6khfg2K/GKNaaP5hjbmbK0TWagQP89o5YW0HMjRY4/NG5pm/K0SsbiW/P18/e1uC3FM7pCCkvf3GVpvH0tbiKLA5YcFAYeHGPgXnFnPjQjzhFN3PVLlmQ2cjEOh4Orr76aYvH0FgJtXntUq1Xe9a53kR7PscZ/KZJ0akFC3T2p8d8OI6YoO2S+gC8pSkN0NLE3w9RBcRGQ4nEQ6PSiWIgfc4edtG2MWvpcd7jkmWNYdAMqTpUtiSX0qk7qUNaSk5Re1Zncl7EsOMqcKFCathYLVRc/iOIKOQn1+Cw54ciKdFoOR2AIOqwwfSxHdshabJk77LTkAgOQ7s8xYTHqLNjlJb78pRc2uSNOkhuilq5RKVVm+KlJNCsiGMl49rLkcFSsMrkvY0m0p2tYdkUCIzrX6rxzh5yEFlh7Drca/QhGFLCVmgAwdSBLwaIz5/SRnOWouMJ4CU21ON46IGFZiBjs8pJYZe2H9kCHF48FZ7pSqsLIs6mZeio7TMVKpWm10X72HJrPVQkg5mxnWWgDn//85/nud78r3L9XAr//+79PKPTaEV2+WGzfvp2bbrqJj3zkI2e6KzavYSKdAd7wqc1c/ufr8cWM3zKqFY1nfnKQH//VA/Q/LR4XbmNjY2NjY/Paolqp8vyd/YDtomRjY2Njc3bxkouU9u3bx9/93d/hxMU6zn9hg1MtnMmw5Kp2Os6Pv/BvTajb6VsRNQEM3D/GkdsGxTeQDfv6Ukr8B2TF52DBpUlaLPxAKysYApNuawKTtk1RSzFDYMQ6uULWFm7Ci/yEF4rHLYHhWtV3XaclByFZkQl2eS29jQ2GA1X/PdZ+7Om5vNWyS085rTK+29oCVmagwN4fDlhzrtIMAYgV1yqovV39MrydV8pac5AAI3LDirgLjPvV6nXNnCgwbSGWEYxoj0VvbLckiJo+muPwb4asuWJoEFrgtxwR1L45Ru82a65NrpBCcmPU0jbIRqyjlXsWGRJrwsLRZXUWXtlGYqX44omsQO/r2mhdI35O5bRKcaqMpolfo9ShHPt+1G/JQaE4UUYtasguea7LmsmCmSfmYsVbu08dZXeKbYNSlI0LtjI0NMQ73/lO4f7ZvLb50pe+xL333sta/6W45Rc+Q0jB4BxxEoA3qtCxIYTD3Xyx35GIN8RJDreMJBsCE7Ugfk+pxSqDj1pz5NCrOqW0ilYRP06wy0dyXcSSiCPQ4bUU9QngCiqWopbAEFBZrfsAoW6fZQeqxKqQZRdGl99hfP5Z0DBoqs7Yc9OWBFSukJOW1WFLzj4AxcmyZXHXxPNpUoetPQtUSxqVnLVnm2pZs+Rqc7roVZ1KVj3lV6n50FTd+CyzcF2rJY2hxyctj3duuGjZFSnQ4SXaZy36b+L5tGW3HsXnwJdwW6oNDpdM28aoZaGbN+6yHOno8MjWYuIAxeuwfJ97oi6S51gTugU7vbSsjVgShlXyVcpZayKq0R1TTM+KQ5Zk8+OVai/BKN5Zz0uyA0ek+Xe7yCIfLate+MKS7HIiBV44HxfI6+iI9XDD+z7A1NSUab9eKXzgAx8gHLbfyraxOVNIksSire287YsXs/ZNCxt1NDNW4PYvPsXtX3yKzKjFF3dsbGxsbGxsXvUcfmSYYrqML+amd5O13/ptbGxsbGxezbykIiVN09i2bRsAG7gYWTrpcPVf1U/+dV2DsV1pUgfE38oPdntZcnWHJbcdZ0BpCICsRKmhweCjE6QtOH+o+SqHfjvImAU3F9nloJJVLS0KKD4H0SVBawtfMrRvjlt+6zu6KGA5aqNa0SilKpbEOZqqse9Hx5ncJx5TIrtkYTeS2ehVHd1i7EpsWdCyGON08Ld76DjXmnBPLWr03z1qLVrvNBl8eIKpA9aiZMK9fpLrIy9Nh2YhKzKJlSFLTjiVvLGIJ1lcOAUsHQdg3y0DjO+xJnQrZSoUp61dV3fYSWJ5yJKIUfHIdJwbP7VoZj40iC8PWXbwquRU1JL4wq6mwtG7hhl8wpqbW/891u8JTTXGwtI4AItf30bXBSfFvjURKhUny4zvnSY3fJLYtr7NKbYNHEoSIMzPf/5zfv7zn1vqn81rj507d/I3f/M39LrXEHO2v+DvUtD43JZPWrQtZapMHy9SLc2vXpDcc58tYksDloSFYAjxJIeEbtGUpJxVLX/GpI5kGd05bU1oU7EuMPFEXZbrnTfuIr4ibGmh3+lzEDqNmLxyVrUc55sdKvL/s/fe4ZJc9Z33p0JX59w35zs5SaNRQBFJoEAyNpjg9QIOC7tetOyuX14bA2uvdxE2Nut1AIMNBvQa24CQTQYJiSSUIwozmpxumBv63tt9O3dXeP+oTjf3aUmjkaY+zzOPdLvP6ar61alTp+p8z/c39bjY5LtIOrAaEvbpEXF0UTwy/i4Pyx8rXgyCAz5h4X9+piQsjG6HckZn/nBG7FqS7LGXyy82TmkHLajiTYiNjy3TEu4bQNzFKzdVbd8iYq2ySTmjC+9foM8n7AAa6PES2yL2jKUFVYL9PqE4GCXDTusrUMfuG+aFXK+K82UWBVMO1+LsiWp1EWMrQiV32EXvpSvFZJJn7XOQny2xOL5ykZOcsJ+7lguVJElii3Eluqlzyy23bLhPDg4ODs24PCqX/bvtvPUTV9Ozs5FS/PQTM9zxez/niX9zUsA5ODg4OIjx3HPP8Zd/+Ze85z3v4aabbuJtb3sb//N//k/GxsaEf+vP//zPefWrX82HPvShVb+/7777+A//4T9www038La3vY0vfvGL6LrYghaHBpZl8eydJwHYeeOQWHYGBwcHBweHlzkv6hvqW265hYmJCQbZQlCKNL5Yb8lvNR2a6ERUZqzAxINJoTRviZ0hopuCHPz6qZZFStEtQVx+hZlfpFrfueoxiU6K63mDk/cIpAuq1nnu9tNiqaBMOPRv40LbATh5zzSyYAvKnSkKnSOgrRR58e0hui6M8Ow/nxSqO/YzsXR3AJ0XRlg8lSc/XWq5ztBrOrEshByBvFGN0KBPLL2eDC6fKuxW1A41px2RiVBvh5tAl8dOc9UiwT4v/dd0cPS7ky0fl6zaQjy9ZLTuhmPC8R+caXm/avRfncDf7eHQHeLXlEhbnz8o1keC3U/u/8opoWtCz5sc/sa4kIsQwKF/HRO+bsfvS4pVgMZ1J9hPeDs0EjvCjN3b+jXfeVGU8JCf9Olcy9uafHSeSq4p9UiN2v+bK19ATz+RqpZh9e2sUncf1/KI54f89m//NidOnHDSeZynlEol3v3ud6PpfraELl7yXU2ctCqSLRJZK83bcnGSHAljptLMH8miCLxAkWSI7wiRGcsLCb2jWwJkJgpiaTir6pf69dci+dkSzLZ+PwdYPJ1ncUxsAj57pkhhriw00V/JG0w8MCsskhAVB9SVQ4J0XRQlN1UUEuiUFiuUnhVLx+oOuYhtC5KbaX08qXoVOi+MMPtsWmhM5Eu4wbSEXL9kVcKy2ktdJoQEikvGqJitny8L/N0eylld6NqI7whh6iYLAgtIfB0ePDGNQrL160nUEQnsNF19VyWYP5ghNy1YX7Ctzx8WH3sln00JX7OZsbzwdZufKdn9l8DxVPKG0CIQsNt1vS8WjF+w30slb1Ccb+2ZWFIkErtCpE/myE7Z12BNqGSZq2+4lK4we2CxvshHCTUERjWhklVc2ibLGQNY/5hqQiUra18DHtnPruCVfOUrX+Gyyy7jv//3/97SMZ0rGIbB7OwsyWRyzUmlvXv3nt2dcnA4z4j2BXjDRy/j+ENTPPxPz5FfKGFUTJ644yhH7p3gyt/YycBFnS/1bjo4ODg4vAz4l3/5F5555hmuv/56Nm3axNzcHN/4xjd473vfy2c/+1lGR0db+p2DBw/ygx/8AE1bffH7Qw89xEc/+lH27t3Lf/tv/43jx4/zj//4jywsLPDBD37whTyk84bpwynmTi6iuGS2Xz/wUu+Og4ODg4PDWeVFEyk9++yz/P3f/z0efGyVLmx8sUFOgk2v7yU/W+TMI/Mtb0tWbZcLkRfnAGcemWf+cEbIRckb14TTog1c04nqVThxZ+uCh2CfF8UjkzrW+kSPrMogI5wODNqoU508F4mdFlJxh1xkVlmpuh473j7I/KFFISFL+mSWSq4iJFpQPTKmKR6Lg7ePCXuSZSbFYgCQPLAo7LYT7PEyfEM3R747QXHuxXVTGnptN0bF4OQPWxfWTT3a+nVeo5SpkD6ZwxJI16UXTfb/8wkxx7QqWkilvNh6xbmDi6RPiTkoyJrMjrcNcOaxeaEJMC2g4olpQpP9mAgLekQFSvXtYDvWiUwIayGV8HCA2adTLdcJj/rpe1Wcw98Yb1kkp3oUfJ1uof2benyBmadSQrGrizJlVo+7rKwqVPLENEZu7ObUj6ftScfVaKqrSRoXd1/J/Sd/zFvf+lbuueee1nfS4RXDJz7xCQ4cOMCl/jchSw1R3HoCJS2gEN/iY+ZADqO0snEvFyjZH9r/MYomhsAFYZkw/eQiRrH1+5HilvFENSHxgqLJdF8aI7k/LSQuCfR5KcyWhFJUKZpsl29DjyKaCgsJYbGDJ6pRyelC2/J3eYiMBph4MCl0XHMHF1dtQ+uhuGXhOvmZEoXkrNC+WYZlpx8T3Nb0k+KpnOI7QlgmJAXcU9tBC6h074tx5rF5IcHR5ENi7oNgO+GYgqKr1IksHBfeFJIiIUmtu2tZhkVy/yLlRbF0YqFBH/5uj9AzJ4A74kLPGy1fU/VrVkDQI+IstnRjVZGcoCOVN+HGKBlC7r2dF0QoZ3VSx1t//vZENSSp0rJIyTIsph5fwKisfH8gydKaQqVCslwts/rvSh73CqESQHjYi8urkHxu7WOSAoG6UKlLHmW4a4L//b//N+9617tIJBJr1jtXME2TL3/5y9xxxx1kMus/c/z0pz89Ozvl4HAeI0kSm67oYWBvB0/+21GevfMklmGRmSlw1ycfZ+jiTi5/zw6CHb6XelcdHBwcHM5h3vGOd/BHf/RHuFwNF+DXvOY1/NZv/Rb//M//zB/+4R9u+BuWZfHXf/3X3HzzzTzxxBOrlvnMZz7Dpk2b+Iu/+AtU1Z4f8/l8/NM//RNve9vbGBoaemEO6Dxif9VFadNVvXhCYim/HRwcHBwcXu68aP6Bb3rTm7Asi4u4pvHhBgIlgMx4nvxM6ytuVZ/C9rcPEtkkloKnlo5JZPIK7Bf7IiIMgMVTOdInxQRUkU0BOnZHhOp07A6x/W0DQu5GWkBlx68NCqXJA9jy5j56LxdLPRbdEmTw2k7hVjf7bIrMhJiop7yoCwm8ADr3Rtn2ln6hOnUEJw3nD2bacsIRpTBX4vTPZyinX3wnpakn5m0Bx4tMeVFn8qE59LxY0NsRKHVdHGXLL/UJ1Skky2TGxNqrWTaZPZAmL+A2ANBxYZi+K8QmRNwRF7t+bUg4NdHo63vovULsmu+9Ms6mN6xMN7UegR4vHbvDdWeuVshNFVg4lkVAt0ZmrMChO8aFBFRm2bTdA2SE9g8Ztr6lf+3UhrKyIo1bMVUme6awcfq7pnreUzFCRPnRj37Ej3/849b3z+EVwaFDh/iTP/kTBtVdhNTGtbqugxJgVCwKC5UV4g3Jra0uUAJCvRpde8OrfrcWsksCyRbmiEyeGyWTM4/MC02eW6ZFdrwgVEfRZCIjflyC6Tq7L44SGhSbOIpuDhDfIZgmL6rRd0VCONVbfGdIeIxXXrTFwKLCq1Kqgl4Qc7vqfVWcQK/Y/QjExVpG2SR9ModZaSOXmCDpEzkWBcXK7VDJG8w8kxJOT9gOuemikCMS0JZwD6Dv8jiBHrE2UUiKiQsBigviKcgkWaLzgohwGrvIpgCdF0SE6rgjLvquiNdTnbW0f4pE7+UJfF1i13x42C98TLnpIoV5sTYx+0xa2HWu1qes1vdJsrRmCjhfh5vey2JrprKTPO4VKeBKizqF+Y3fDdRclSRJYrh4KZlUjt/7vd/bsN65wN///d/zxS9+EUVReP3rX8+73vUufuM3fmPVfw4ODmcPzavyqn+/nbf+6VV072ikgDv1+Ax3/L8/58lvHHVSwDk4ODg4rMmePXuWCJQABgYGGB4e5tSpUy39xl133cWJEyd43/vet+r3J0+e5OTJk/zSL/1SXaAE8Ja3vAXLshyBextk5wqcfNSeZ9z1Okfg5eDg4OBw/vGiOCl9/OMf59SpU/Qygl8KtiROqiEqcjDLBgtHs2QFRCz+Hg8jN3Zz4u4podRj4RE/6RPikw4iaS9qjN07iyw4EbVwPEs5ZwiJMSzslAIFQZedhcMZSmkxgdf04wukjmWFBT3J/WLuQbIm031RlORzaWEHnKygw1Fkk5/4thDH7jwjdFzBfi+5mZKQa9PAqzuQZInTP209RZxeNEkff/EnygDxNH7Ycei9IsGx700IiY68HRpmRSz9SseeMP5ONyd/1Hr8Fo5mKAim/QE7lWSlYAj1F0IpJKtMP7nAmUfFXB5KqQpzRzKUsmLXb2aiQFmwzsLhDFlB57T5IxlSx8Qc7vS8KeyEUEMLqShuWSgd55Zf6qOS01tPx2naTn+5jVJCNqdxM2k9FV1Tvb1cxUOuH/Kud72LkydPrmnR7PDKwrIsfud3fgdFdzMa2gtsLE6qYZRMUicb/fdawqRmiimdiiHW58e2BJBkidlnW7+nuwIqZtkUFh+YuiXsaGeUTSYemFvTmWMt5g5mhEUixVRFSHgAoBcNMmN54VicEUkRW6WSN6jkxfpub1xDUiShhQZgixYqeTEVcXxniOJcWSi1l+pVkCT72FpF8ch0XhBh7sCikKNgW+6DbWAZVsuONM3Et4cwygYpgfGhpEhoAVVo7C/JEondYRZP54TGa8kDi8JtQvHIBLq99nXf4iVczuhCQkawBZBnHpkXvuYLcyXKGbExVCVnkJ0q1p3rWto/w2L+0KL4M9qTC8LpCYVT6zXhiWlCbdcddtG5J8TUkykquZWxXy0FXCldITNRwDSVFeWX1G1KAVdsQaBUr1cVKrmzsCNwGbfddhs333wzv/Zrv9byb7wU3HXXXQwMDPC5z30On89xZnFwONeI9gd54/+4jGMPnOHhfz5IIWWngHv860c4cu8EV/zmTgYu7Hipd9PBwcHB4WWAZVksLCwwPDy8Ydl8Ps/f/d3f8a53vYt4fPUFqocPHwZg27ZtSz5PJBJ0dHRw5MiRdbeRTCaZm2u8n2hVPPVK5rm7T2OZFj07Y8QHxRayOTg4ODg4vBJ4wUVKqVSKP/7jP0bFxXYualmg1H1JDElGeKLZ1OGMYMqo3HSRqcfnhUQVoUEfg6/u5Fh+kvxGE801ZBh8dSfTv1gQejmvemT0oimcdqy8qFNeFHPnqWR1xu9PCtUBhNOO1RB1ropuCVDO6kLnyh1WiYwGWDguFotSqiK8f5ZhTxyKCJS0kMrwa7s5fe+MkIilkCzBGquF18IT0wgN+Jh5JiUsDhMlOODF5VOZP9R63Cs5g9xkQXjfBq/rIjdZEGq7RtlEF0zzUk7rbblQhUcClNJlofOremSiW4IsHMm0nLJM1E2qRjtp9kTSr9UoJMsUEJxANcE0qTvCiYiVuvZFKGd0odSfQ9d1opctoXSc008uCE9Czz7bnnOav8tD9yUxTtw9vXEsZAXN9HDR8KU8fOR+fvd3f5e//du/bWu7Di8vvvzlL/PTn/6UiwOvQ5HUlgRKkgKdFydYODBPpSDYN+ZMwAO0LkhJn8wju8TE19FNASzTYvaZ1tNm+TrdyKosJDqWZAnLsoQFSmC7sYgi7EiD7SYi6kAC4mmjZJeMN66Rny0JiRY8MTeKJihSstqLn1kxMXWxNhvs9+EOqUw9LiDsNe37mCHovuTrdGMUTUqC6cdEkWTwd3spzJcwWhw3AJQWK8Lx80Q1OnaFGb9/tvU0bKZlO1cJXlbttAlFUwj0eslNFYUERO6QC9klCS3WaMe5SvT5Aux23s7imDVTxK5D7VqXVUmoz1B9CsE+HwtHWh/j2IKjCFNPLrScoq+0WGH+SFZIZGiUTXLp9QVKaxEe8mL5gmRnN96eFAjQk9nKTOwEH/3oR3nrW996TgvEC4UCN954oyNQcnA4h5Ekic1X9TJ4UQdP/OtR9t91Csu0WJzOc9efPcbQpV1c/q4dBDvEnSgdHBwcHM4f7r77bmZnZ/nt3/7tDcvedtttuN1u3vGOd6xZpiYwWk3EFI/HlwiQVuPb3/42t91224rPT5w4gWG88t0Cs9ksBw4cqP9tVEz23z0BQGiXsuS7VwLLj/d84Hw75vPteOH8O+bz7Xjh/DvmF/N4d+7c2VK5F1yk9Ou//uvous4l/muRCwqyCt4OD4W5MmbZRAuoqH6lLvTxdmgYZdO2a1dsl6NaWVdARfOr9ZWanriGZVTdU2QYvbmH3HSB6SdSqD4Fd9hVF7N4YtqSyQ9/j4fSQhm9aKJqMoWm1ZueqAYS9RWd/h4PpXQZPW+iemTcUY3F03mOfn8Cs2LhiWsU55rLVtDzBrJmT+zkpotg2sKmQJ+37g7l7/JQzulUsnq9bGG2iKk3uXnMldn61gHSp7LMPmM7AcmqjLdDozBbxtRNtJCK6l0aw8hoAD1vMPdcekm8l8fQm9AwKibltI4WUunYE2b6yQX7WJfHsDneTTGMjAYoZSuYFau1eHtkYttDBHq8nPzRNJpfXSXedgxr8a7FsOuiKKVUmRPV7awWw1pZLayiaLYjyoGvnMLX5UYLqJTXiLfqVuov8v09bmJbgkz/IoWe1+0Y1uK9WpstmZQXddKnc+gl+9xvFG9ke/9L6TJHvjuBaVj4ezwbxlsvmqg+mcJCeWm8Wb/N5s4U8Xe66d4XZXEyT3F24zarhVWUpknkdeO9zIEmsSeMVhUprdpmm+Lt63CjlwyKC2UmH07i7fBgbtBHNMdw7N5Zyunyhn2Ev6sRw8Wx/JIJw43abC2GiV0hkCE7Udww3mCn55h4KNlSH1GLdyFZRnbL9LwqjlEymD+cXbuPqMbb1+VGLxhERgJ44hpzzy2u20fU2qysgr/Xiy/uZuFIFgs2bLO1/iQ86scb15iqujdt1GbdYfvcde+NMPVUCoyN413b301v6GXqiQWSz6TX7SPcEReyKlFIlvF1ePBGTbJnihv2EbUYnnl8nvx0ecM+otZmy4s62ck83g4Psipv2EfUY7hgoHplBl/dwewzKdInbQGFN65h6Mv6iHpc7P1AllC9KrImYxkmpZS+ZrxzZ4oEj/fjVXx87nOf42Mf+xixWCNlgMMrj1wux4c//GF6vKN0xLYDoGgSkgx60Z5sdvkkjLKFqdviJJdbwjCwHToUCZdXRjfValkZo2JhViwkGVxemUrBTtGmBWSiQx6ShwsYFQtXQMEsW9VxHLj8KpWcjmWC4paRVanheiE1JvdlTUV12642lmGhaDKKJtfFfy6fgmlazD6bRtYktKBaLyu7ZFSPXHdAUX0KmNXfluxrFSA7WUB2SagepVHWa09Y19IHaUEVvWDg7/YQGvQz+2yq7sC4atmigVmxkFUJV0Al0O0hfbIqHJKx00FWyxol2wFKUiRcPsU+NgsCfR7MilUX8zS7RdXKLo2hjGmYeCIalZyOUTYxSva42eVXqOQMLNOOoazJ9RSWLr9CeCRAIVkiN11EC6gbxtsomvWx4djPZzE2indTDBeOZJBd9rlaN95NMQz0eNBLJvmZkl1WWhpDvWhiVkxkVUL1NmK4OJZHbhJtawHVjssq8a61w/TJLLIqL413PYZL413J2fsvu2QyE/lqvKvtuymGy+Nt6hZGySQ06Ecv6JQP6mvG22pqs1pArRvirYj3Gm3W1C1kTSaxM8T0kwsUiuUN46167WshO1lA9SioPmXVeK+IoUfGKBlMPjKHqVurxnut635xLF9fdLGizS6Lt8uvYuomkiTh73ZTmCu31GaRAMti8uG5lvoILdCIYaDfizvkolB9ob5uvKsx1IsG8e0hclNFyll9/XhXY6h6FFwhFQnIz5TW7SMUj4ys2DGUFInQkI/8dLH+92p9xPIY+hJuLAvKmcq6fUStzSLZC0N8HR4m7k9uGO9afyJJEt6ERnFBo5Asr9tHmLqF7JJsN6rH5qjkjJbabKUAWLZQSfUub7Orx1vWJGRZwgQCXRpaSCF1smjf1xRweRXKOcOOtybZbRb73qEqOopLQpdsIaDLI1EpWFgWKC5byFUpVO+t3qqoKxhkS+U67jv+L3zqU5/igx/8IOcqo6OjG04gOTg4nBtoPheXv3sHW6/t54Hb9jN10H4GP/XoNONPzXLRr2xmzxuHUVzrCzINy+SJ7HGSlUUSrhD7AqMoktjCAQcHBweHlxenTp3iL//yL9m1axeve93r1i07NjbGHXfcwR/90R+tK7Yvl+3x/mplNE0jn19/UdWb3/xmrrrqqiX7eOuttzIyMrLCnemVyIEDB5ZM2B78yRh6YYxAh5erfvniJe84XgksP97zgfPtmM+344Xz75jPt+OF8++Yz4XjfUGfTPfv388PfvADhvtH2L1vBwBaWGP0xm58CXsAE98RYuj6znqdgas66Nob5cyj8yQPLDJ6Uw+Bbg8Asa0Bhm/oaiqboHtfFLBdR2JbgnirYo3opgAjN3bXy/ZdkaDnUntiVlZh9KYeQsN+hl7TyeB1nYze1FM/+p7LYvRe3lCBj97UQ2TUdiEIDvgYvakH1WNPbPdcHKP/ykS97PBru4lvrZbt9TJ6Uw9awJ7oiwwHqOT0+qT80Gs6ie+wrRv9HW67bMje/84LIgxea8dl+ol5IkN+EjvDAHjiLkZv6sETt3MLJ3aG62UBBq/tJLY5iDusoYU0Rm/qwd/pbsT7NY0Y9l/dQfdFdlzCI376r+og2OerxjvI8GsbMey/MkHPxbF6vEdv6iE44COxO0zX3qgdwyq9l8fpuaw6ES7XYmjb4IeG/fRcFseyLMyySfelUfquaMRw5MZuopvssoE+bz3eYLsN1F5gAwzf0EVsa7Vst2dJvLv2Rhm4umF9PXR9F/Gddrx9CTve7ogd7449YQau61xSNrE7gsuv4o7aMfR22GUTu8IMXdfUDq/ppGuv3Q791X3wd9nxjm0LMvzapnhf1UF3NYYun2qX7fZSnCsTHvQzckNTm728qc1qdrxDg37Abkub39CIS89lcXouW9Zmh6vxHvQzelMPsiYzdzDD4nie/lc1xfuGbmJbqm22Gm+Xz45h974Y/Vc1xfC1XcS22WX9XdUYhlyNeF/TiKEnqJEZqwovOuwYeqLVNrs7zGDzdX9dJ517IvY+DPkZvbkHX6KpzV7fFO+rO+rx1gJ2DFW37Ta2UR8xelMPgT57hWF0U4CRm7vrDj1r9REA4WF/vY+IbArQc3FrfQQg1Ed0XxSjv9pmy2kdPa+jhe12t14fAfZ1n9gZxtRNFJe0YR/ReUE1hiGN4dd0031xDH+PZ90+Qqu22WCvHcPeS2MMXN343bX6CIDIaNCOoWXfBwau7li3jxi9qQdZtWPYdVEUy7TIVF1D1usjuvdF6/E+cdcU/m6vUB8R7PPVJ/TW6yMGr+sksdvuk91RjU1v6GHb2/rQwuq6fYQ75Kr3yXrBxBvTlpyb/qvidF8UAexJwNEbOvH3VNvslhB9V3Rw7HtTlDM6fZfH6LmkqY+4oZPQoF02Muxn9IbG7950xRsxDIM3v/nNOLyy+fM//3OmJqd49VU3IVVvl+EelWi/q16mc4uGL2p/qflkOre5wbRIHq0QHIkQ295wXurY5sWfqAqW/AqdO30oLvtlSahXI9Dtwqy6bnRe3EWgxx6zuXwqXXsj9gQ1EOjxkNgZwuVT6LwwTMeeEMFqf6y4FbovSdiiZex7accFkfo+xLaHCA34bXcP07431e49/k43nRdGG2W3BgkP2/2OrEj4Ep56akVvwk33voZIL7o5QGTU7ueR7N/1xDQKc2WKCyW6L7JdPQEiI36imwP1ul37onir9yl32EXPJTHcYReWZREe9hHb2ohh54VRfNVxmDvkontfDKWawrfzgihdFzX2v3NPGH913Ovyq3ZZjx3DYJ+PxM4Q7pCL6OYAiV1hAtX+WPUqdO+L4arFu9dLR7WPAojvCOONaVimheqxy9b6Qn+Xh44Lm+K9LUS4Ot6oZHTMilUfF/g63PX+DCC2JUh4xC4rKZJ9bqr9pje+LN6bAkSqfXct3t6YHRdPVKP7kjiBan8XHvYT29yIYddF0brgTKvGUFZlJFkiMhogtq1hhd55YaQeby1YjaHbjndowEd8RxizYqEXDDr3hOvbdPntuNTGmYFery1MrtKxJ1RvL7UY1uLt7/HQuacp3ttDhKr3v9lnU/gSHrRgNYadbjr3Lo13aKjaZlXZ/t3qteBLaEvaR7Q53rIdb0/UjrcnbKe+rS28iIwG6vdKqMY7Xm2HEa0aQwnZJRHbFqyPBcG+P65os1XRenjQT3RLsC4k6bgggr/LbrNaoBbvapvtt+PdiGGY0KB9rC5fNd5rtNnEzhDBfh+KRyY05Kfn0viGfQSAoslCfURzmy2ly6juxnPGWn0E2OL27n0xLMPCqi5GWa+P6N4XQ1bsvjM87KPzgkh9XL9eHxEa8BPfHqqec+i/IkFkxN7OWn1EPd677T5C9an1fVivj6i1WdWjEB70kztTAGn9PkJxVeMddlHJ6SyeypNoOuet9BE1EdvGfUQCqRbDIT89l0aJbq7FMFx/dtBC9v2nlkYzMuwncWGi/ruRIQ++hN0+NL9C5y4/imaXDfa6iW1quJF0XBDF9ATJzhi4PBKd29yobrusv0MlPtKYlImNaAQ6qs/9wQ62D1/ARz78UcbGxjhXec973sPPf/5zDh069FLvioODQ4vEBoO88Q9fxbXvvwBv9V2BUTZ57PbD/OuH7mP86bVThN+z8DSvf+ZjvPfwZ/iDE//Eew9/htc/8zHuWXj6bO2+g4ODg8NZZm5ujg996EP4/X4+9rGPoSjri1n/5m/+ht27d3PdddetW64mTqqJlZopl8u43e516ycSCbZt21b/NzQ0tP6BvIKxLIv9d54EYOdNQ684gZKDg4ODg0OrSJZliee2WINdu3Zx4MABrov8Eh7db690lMEb0yilypg6qD4Z1aPWHUmC/V4CPR7OPGGn8vBGFEopHVO33TVUv1p3JNHCKhjUV3V6ExqlRR2zbJd1BdT6Kk4tZL8wrK2Ir5XtuTRKaVEnd6awbtlKVkcvmsiazKbXdVNM64z9bMYuK1FPAbW8rDukUpgvo/lUVJ+MUW64jHjiGnpBR8+byKqMO2KXxbRX0isuuS5o8sQ09KJhu6+o9uRCI4YKqkepx9ATtZ1PKlm9Kd7VGPpkVG8jhu6IC0u37Bguc0lZEcOwCtbKGNpuNzKKZ+N4m+WmuLQY7yVlAyoojXh74hp6rlp2lRjKqsTANR1kJvKkT+bRi7V42zGslVV9CqpbacQ7qqGXjJbarDviwtQtKlmd7e8YoJQqc+rHsy3F2xvT0IIuAr0eph9faDneqkdm+zsGmDuY4cwj82IxbLHNYtrxllSJLb/Ux/RTKTITecE2uzTeS9rsKvE2dYtd/26I2f0pZn6xsGG8azH0RDU8EY3ZZ1It9xHeDo2tv9zPyR9Nkz6Re/HabEjFFVAZuKqDiYeS6AVjw3i/FH1EbZ9aabP16z5UdSJqsc220ie/GH2Ey6eQGSus2UfU411ts56Im8HrOhi/b5bF8UJLfYSvQ6P7ohhnHp+nktPXbbO+Dh+ldBmjbK0SbxVLpxHvqEYp04ihO+6lMKfjDdspFecPZevuEN740rIuv1pPWaOFVI5GH+PYqaM89thj7N27F4dXHuPj42zdupUebRc7u66pOycpLkCy3ZMAVI+EWbEwDXvSO9ilUEiZlCU3igpSKoVeqpWVMXULU7edlJSqKBQLZJeELNNUVkKfS9ddl1SP7TJimdWyqu0IEhzwkj6Vw9LtSRXL0HF5FfSiiWXa7hqyS647ZHgiGh17wkw9uUAlVy1bMm2XFFVC1hplFY8Mpv27roAKprWkrKLJ9RRBNeGKUU396fI1fldSJFT3+mWNsmnHZXlZTQaZesot1adg1srKEqpHplKouXZUnWaqdVWvgqmbS2LYXFZSJPSCUT0XtvOJWTFXibf9uzUhiepVsAzb5QqJdeOtehQsc1nZtWLokcFaGhfVpxIZ9TP7dApJltqLoVsGqRHDVcsWDHwJNx17Ikw+PFd3j9ko3pIs4e+uOvIVjTXjvTyGoSEf0U1BTv14uimGS9t3Pd6rxbAW73XabO1YvR1uQv0+Jh+ea7nNttK+V4t3ZNSPv9vL1BPzG8a7uR0GerzkZ4uYht0G7RiuEm+lEcPE7jAun8qZR+Ze9Dbr6/KgBVTmnlvcMN4vRR8hqY00va202ZoTkSugYpSMDfuIRn9y9vsILaBSzhmYFXPVPmK1eMe3h5AUWDia3TCGkmq7ifq63MiSRPpUfsM2q0SC9r3KsJ0szcp69zWpnhJa9ciYnZ2YJoS0AqW8STln2WVVW+hWvwe6Jft60LEdvbx5fnT8/+Pf//tf50tf+hLnKj/+8Y/567/+a6666io2bdqE3+9ftdxGq+5fKdxzzz3cc889ZLNZnn76aT7/+c+3tJr/XFhx6HD+Uc5XePyOIxy46xTNb3KHL+vi8nfvIBBviC7vWXia//f4bSuyrtamQf/P6G9yQ/SCF32fX24417aDg8PLmWw2y3/7b/+N6elpPv3pTzM8PLxu+ccff5zf/d3f5dZbb2XLli31z//Lf/kvDAwM8KEPfYhQKITf7+eHP/wht956K3/3d3+3op/81V/9VXbs2MGtt97a8r4eOnSI973vfS2PvV7uNN9fJvfP8f2PP4LqVvh3n74et9+1Qe2XH+fj/fR8O+bz7Xjh/Dvm8+144fw75nPheF+wdG8//vGPOXDgAAm5D3XRg041vYdJfTIZ7Jezer7xtzvqIjIaYPoXaUx9WdmiiV5s/F2bhNZCKoEeL/OHMmuXrU5u16j97sT9K+3N1yoLYJZN5g5nsIzWytb+7toXxd/t4eDtjZWUtUlpAFM3l9StZHUsj8zAqzuYemKhPtltl10eQ6P+0hjANMy6df9G8a5NztfK1tIrwdrxXu1Yy1kTshvHu3aszS9QWo9hBG/czcm7p+vfbxRDgMxkgeJ8RSiGNSGCXbj1GE48mKSStye8Nipb+11/pwdfh0co3nrR5PhdU/WJhVZjmNgZItDv5eQPpzcsCw1xTz0uG8S76ejwdbgJj8Q5cecZoXifuHuK4nzJfsFPazEM9fvwdYrFsDBb5tRPpslN225PrcawnbLlRZ3smQKVvLE0hhvE2xvTSOzq4Mg3JzaMd3P7llW5OlFj//1Cte/lZZfHYaM223xuMKGc11ctu1a8E7tCYEHywOLaZZfFMDzgo2NPhANfO72ibGV5+67GMK+XSJ3MkU/aYibYOIb56TLH75xqHO96MZxbGm/VYxHd7GfhaK6eum3VskUTc87+PjzkI9DrZeqxVP375WWX3wM789s5Yh7mN37jN3jqqadweOVx66234vf7GRq6EX22UP/cqABNUxI18RKAZdmCcNOAchYMHSg1lzUbZU3QC/bf3phKJWfUJ2drv2tWrHrZSvPYpGJhVuy/555rjNeo7tpaZQEqeZ3MRN4WoSwvq1uYeuPvmshCViW690WZP5KhUh3brChbahybvR0Df48Hy7DTrzVvZ7WyzUE09UYcauKHelyaylqmtfR3yyZGU3dSu6/bZVlRtvm79craopHmXbTqjlcbxbsmhgDbnS51PFcvv1a8a1TyBkh2yk192XfrxdAyrJbj3Vy2lK4w89RCXaAEG8cbwBNx1dPMNsquH8PsRIHiQvUDgRh27ImQncgLxdBT/aiVNlvfB90itj1AfrpIfrbUcgwzEwVy06Ul+7HuuanFMKZRWqxQTpYaZdeId430iSyyIlfLrh/v5vYtEu9a2VK6UhetbNhma79bjWFxrkT2TFGozcqKtOTvDWPYfN230Gbrv9s0dlmvj4CVfYRZdX2C1uKtuGVCA35SJ3JL9nG1eNcwdYv4jhDZqSLpE7kN4107N4X5Epa5tI1v1EdkThdaK1s2sZbd13xxF8W0XnVVa2zTrFiYLLsHVgW9gS4VY1ynbNWuZZb0/c33Qywg72Oo62r++Z//mT/+4z8+J1eHl8tlHnjgAdLpNN/73vcAkKSlK7cty0KSpPNGpHTDDTdwww031CfKHBzOZTSfiyves9NOAfelA0wftlPAnXxkmvGnklz0lk3sfsMIKPDnY99YIVACu7uSgD8f+ybXR3Y7qd8cHBwcXiGUSiX+4A/+gLGxMf7v//2/GwqUAGZmZgD4H//jf6z4bnZ2lne+8538l//yX3jHO95RFzEdOnRoyYRmMplkdnbWcXIXoOaitOWavlekQMnBwcHBwaFVXjCR0n/6T/8JgN2uK1gyk74ByWezzB/M1ifXkRUwjXXrhIcDdOwOkzqWq4tDNkL1yEQ2B5k/mG5sq0XmD2Y2LrSMM4/M4Y6uncd3NbxxN4EeL5a5Uki1HqM395CbLjJ279o2z8uJbQ3ScUGYI9+cbDmGAJve2EtupsjUo/Mt1wn2ehl+bTfHvj9Jfra0cYUqlayB4hI8WcD04wvCdfqv7kBSJMZ+NiNUr5beTITkgcUlootWyU+3HrsaRsVcMeHyYmHqJkZx/Wt3NbKT4jGc/kWK6V+khOuljuWE6wQHvPRenuDItyYwy63Hcvy+pPC2KjmD4nwZWUWonxq+qRujaHLih1MbF66ihe1UbmP3zS4RK25E96Ux/J0ejn1vsuU67oiLrb/cz+l7Z0ifaP0c+Lo8WPpqr1bXZu7wItkzRaFzZZZNJh8Q63dr+Hs8qB5lzeOS1MZtVqra98a3hQj0eFg4un4sZE/DKnnmQJ6pp9fP774cnxwkKnXxzDPP8L3vfY83vvGNQvUdzm1OnjzJF7/4RYa7r0NVPECLfakFU6dllmT8jUdhbp17pwThfo18Umdxcqm1txwJY6bSq1bzxjT0skEla98bLL21js0om6SOi/XXpm4x/eTC0on3FnCHXHWRUqt4427iO0NMPji3QiSwHl0XRcnPFsmMt37fc0dcxLYGmflFSmhbtVRes8+sfm5WQ1IkSosVjIrYuKGS00kdzwrVUTSZzgsjzB1crLvDtYJRNpcINFulnTGDqVuUFwUeamr1ykZdGPJiY5bNhhitRYxSe2PDqcdaH/vXsNN6iY8N49tD6CVDaMzQLN4WoZLTha4tsPuNrouitptitvX2Gx724wqoJJ9t/bqUVYmufVEWjmaFjjG2LYgWUJkSfC7yJtzkpoorRODrMbt/cYlwsBVE+tzavUNSVaSqE3BuurjmdSaHGynwUBRkBaIjHhZOFMknN7im++xU3JYJZ8ZcWJYLidb7t4Guyzk19RAf+tCH+OpXv9pyvbPFpz/9ae6++242bdrEtddeSzwe3zAFiIODw9nhH6d/ypenf9Z6hbeCXjIo53UaBvk/QX5QQvJJLK7zbGAB05UUr3nqf6LJL9hrYd7ddS3v6bruBfs9BwcHB4fWMAyDP/7jP2b//v38yZ/8Cbt37161XDKZJJfL0dfXh6qq7Nu3j49//OMryn3yk5+ku7ubd7/73YyOjgIwMjLC4OAg3/nOd3jzm99cH0N+85vfRJIkrr322hfvAF9BZGbynHrCnn/aefO5t6jBwcHBwcHhbPKCPI3efffdHD16lE55AE32gBvM0gYvHiUZT8xFcb4iLBqafTrFwtFFIXFNcMBH90VRUsczQvV6r4iT3J9e4SCyEXrRRBeY+Ad7ZfNzXzstVAdg7L5Z4ZfrpUyFzHhBKBYA2TP5xqryFslNlTj9sxkhgRLA/GFxcZgWUlG9irCgpzhfQlLE8v9qIZXIaIDkgUUhQUQ7yJpM974ocwcXl7q0bMDCkSwLR8QmDtsldSzXlgio44II5cUK6ZPidUUJj/iRVUkoJpWsQe5MAVmum+y0hOpT8EY1MhOtT0ZnJwttibYmH55busq9BcoZfVXXgI0ozJawDMH+JlVh/IFZoVgAnP6xmGgQas5QYn1vjcSeMKVUWUh82LEzhOpVhSZSp55MYT4qFsPafVKLeTF10BfX30dZs1fi7A1ewX2F7/H7v//7jkjpFcbHP/5xotEoA52XAWB0R1Gm1p+MloIekMAS1f9aMP2smEgOIDTopZzVWTiaa1mg5IlqKJpMblr8OhYRu9RoduVsleJCmeSzaeGxVyFZEpr4B9v9pDBXFt7WwtEsogvjLcNqa8zgDruo5PW6q1arFObFj8vX4caomEJjoXbxxjVkl0xuSqwtzrWxuKFd2hkrqz4Ff6eH9Kkcq1osvIDIqoS/y2M7PQmc63JGXCwHdgpYUYG+yP27RilTYfqpBfS82PVczooLokzdEo4fQGY8v8IhZyOMksnkQ+Ki7XbEfGCnkfN3e1p+BrB0HcWvEdnkRy8aLT+TmgacebqwxAWppe1ViysdAfQySOn1+0ejJ4YK7N52FXfccQeHDh0651JX/PSnP2Xbtm185jOfQVVfOGGCg4PD8ydnFJmptC5iBew1B4H2t5kycu1oidckZ7T3HO7g4ODg8Pz427/9W+6//36uvPJKMpkMP/zhD5d8f9NNNwHwuc99jjvvvJOvfe1r9PT00NXVRVdX14rf+9SnPkU0GuWaa65Z8vn73/9+PvzhD/PBD36Q1772tRw/fpxvfOMbvOlNb2rJuckB9v/wFFjQtydBtO953MQdHBwcHBxeAbwgb6ZuueUWAHa6XtVaBUlG9chsen03s8+kmXm6dVcZWZMxyyZ6XnCy5kiWzFh+RSqK9dDCKpFhP5nTeSGRUv9VCcpZnZmnUi3XkVVAltsSu4i4oDTXaafe9BMp4TqmbgoLUGRNxh1WKcyKrYpO7AwTHvbz3FfFxF7tOBt5424690SYP7goJF4ZubmbSs5g/L7Wna9Uj0x4yE9mLC80MSerMsi86CIqe2OgarLQNQZ2Gqv8TEmojfg63Ay9tstOFSfgqBAd9SO5FKFJ2OJCuS1XpMSuMPEtQfb/yymheqpPRvWoQqvl23HZwkSoDdZIn8yRPim+uecjllN9slCf74lq9F2Z4PTPZoQcDqKbAmQnC0IipdM/TwpfX7XyikcRch+TVdjyhk7mj+SYfsrELG583tWyn4S7mwMHDvDEE0+wb98+oX11ODc5ffo0t912GyM9r0FRWnNttHwegnGZQExi8pDRujhBAkmiLWeY6V+kwTKwBJxe3BEX7pBLSKSkeGRiW4LMH84IiRNklyQsrAFbNNCOm8/imLjQq5IzSB0T7z9FHaXAFq+Y1XRZInReGGHhWJasgBDVKJttHVegx0ulYAiNhbSASseeMNO/SAnFxR124fKrwiIlWZVsd6MXWQAEtvsVliV0fapuWxiSmcgLtf/Y1iCSLDF3sPUxs6RIREYDwuIcUVFzjc69UdKncmQErzWXX0Uv6K3H0aItoVwh2cZ4jfaEVLaLVXtIioRlirXhYL8XWZWFxvOqVyHQ4yE7WWi5fei5MhP3zWAh5v5T69ckTcEqtx6bYFwimJA4c9jECgc2FCoBxHyXosgP8Jd/+Zf83d/9ndB+vtiUy2UuuugiR6Dk4HAO4lc8dLrCbdc3DZNyTsfQTQzFpOjb+D4VUfwvqJOSX/G8YL/l4ODg4NA6R48eBeCBBx7ggQceWPF9TaT0fLnyyiu59dZbue222/jrv/5rwuEw73rXu/jN3/zNF+T3X+lUijqHfzoOwO7XOS5KDg4ODg4Oz/tp9Omnn+bIkSPE5V7bRamK7HavdFNqWtKtF01O/yxJYX6Vl7XrpHzb8st9ZMbyQqs8ZVXG1E1h8UQ5rXPgK+LORogtWgUgujlIz6VxDn79tNB+9l4eJzdVFHsh7JPxd3vtOgIh8fd4MMqmkCgEYODVHcwfyghNOAZ7vQxe28mhb45RTrcuMph6bIH5I4KrymVb9JKfLQnFI30i19akQWY8L7wauryot+Wy1XdlHG/CzeF/GxeuK0piZ5iei2M88/+dEKp39Dutpw2rUc7ppE/kMAVdgE7+SNyZB2zXLEBIrJjcn2L+kLj4bfDaLpDg+PfPCNXrvTxOZiIvJLCRNZnQgFfYAcsT13B5FaGURapHpvuSOMnn0kJ9yOB1nbgjLo58c6LlOnrBPk+qV6YiMAd+5NsTYnZZNARHtftMM9I6E0BaSGXzG3uYeCBJ+lTBngxsojnVW31bOow/nCI3XV5SZrlYqeaiVGNTeR+TnOaWW27hwQcfbPHIHM5lPvWpT4Gl0t95yZLPV3NTsnyNsVl2zqSUk1afeF4j5Zs3ohIdcTP1zNqChtVSvkkymGVxZ6P0iZzwOEpRZSRJXHDUtTdKYb4sJJZxBVT8Xbbzh6j4yiiZYuIhyU6ZV1yorOgj1sMT1dBCKounxIQasa1BjJLJ3HNi967Jh+eEYgG2sAwLYTe/madTQuXBTn2bnSwKj71EUw6CLe7ov6qD5IG0sINoO/RcEiM3UxRLi7ZQbsstp7hQFr42jZLJ2M/FBdGSDC6fKuw8NvXEPIbg857Lr9BzSYzpJxcoCTgCaSEXvoRbONWhy68gSZLQsUmyfV2X0hUhEaE3ruHyqyyebr0vUDSZ3sttJ2FhMaZg+ygulJl4ULwt2jHQkTV1hbBsSaq3ZYQH3biDCjP7q/EwlvXH1VRvzeTSFqW8VXdVssL2auflYiWjJ9bYB8nNQOer+PznvsAf/uEf0tfX19qBnQW2bdvG+PiL/1zo4OAgznu6rnveqdIs0+LIzyd46F8O8vfv/BHZQGnVvlkCOl0RfrDnf6CIWm86ODg4OJxz/M3f/E1L5T7ykY/wkY98ZMNyt99++5rfXXPNNSsclhxa48jPJyjndULdPvov7Hipd8fBwcHBweEl53k/jdZclHa4LhOumxkvCDsizfxigdQJsZfB/a9OMPK6HqE6yFUXmjYYvy8p5KIEdizOPDonLKTyxt1oQTGtWWjQz8DVHaia2PH1XByj55LYxgWbkDUZb8KNKyC22jUzXuDkPVNCAiWwXZtERVTeuMam1/US6PYK1WuX5P7Fs5aCbe65RaafWD/9zwvF4liO8QfEHYfaQc8bTD48Jzx51S5Dr+mi+2Kxtq/nTeE0kQCTj8wxfr/4hJ6/24M75Nq4YHOdLjcDV3fi7WjNiaVG994I3YJ9gV428Xe7cQfF9nHu0CJTgm1YL5oc+96ksBNbTaAkC/aN4VE/O945gOpp1FtPoAS24G12f5p8UmwfM2NFYecmrxxgsGeIJ554gmPHjgnVdTj3WFxc5HOf+xz9nZegKivFbOthGlDKiYlJyjmD9Hh5QwGQHGms/FY0md7LorgjYte7rFZnUQQdaMpZnZmnU0JCHrBToom65KhuGU9UExblxLYECfaLjTO0gErH7ggun9gYSvUqeKJi/TrA/MFMW6lXjZK4+1JkJEB8+9pighcSo2SSPiUmKmsXy7SY3Z8WErs8H+aPZMjPnJ3UKvnZEvmZF194BeAOa3RfHLPFbALoeUO4H6jkDaaeXKCcFTtnqkfGE3UJC3Mim4KEhv1CdWRVpmN3BHdYrE9VvYrw2NAom8wfylASHMNmxgttLd4AhFNug+3gFh5c6tixnkAJoDBXYXFCrA2bOpTbMPbq77wEWYb/9b/+l3jlF5H3ve99PPLII6uusHdwcHj5I8kSW6/t552fvJZfn7va/nCN2+LvD/yKI1BycHBwcHA4S1iWxf477WwLu24eQpLbcDlwcHBwcHB4hfG8nJTm5+e5//77CUgRfPLKHKp1N6VlD76RTX6imwOc+tE05lrvP9dwU2pH3JE6mkVxi03wREb89F3RwZFvjgsJIXwdbooLpbWPaw3KWZ25g4IOQMCx74m70MwfzJCdLAgLoo7fOYniEWsyZtlsy8XH1M22Uj0MXtfJ/GH7+FqltFDm+A/PUJgVm+TpvTyOosmM3SsmKAn2eSkslIQEesFBHz2XxDj+/Umh85afLcFZWMkPtvNYOS3ehvuuiqO4FU7/WMzlyN/loZLTha7P4ICX7otjHPvumRWuN+sxft+ssAMDQP/VHSyezgmtYBcV2dUQcRqqkZkocOgbY8JiqvEH5zAFUmUAYMKhO8T7gnbSUtbwJjRKi7qQqGf4tZ0oHlWob81NFUnuT2MKNpHZplSntYdTy7RWdVFqJr7NT6DbzamfzQNLHZWWuyjVGJb2cLp8ig996EPccccdYjvqcE7xpS99iXw+z4Wjq4vDa25KzQ5KAPFBmXzaopBeZwJ/FTclo2yRmxGbvDfLFdIns5QzYn1Lx54I5WxFaKwnKRKKJreV3qy4IN7fFubKFObmhetNPb6AJDYUpZzRmXgoKXz/yU4WhMZBNXSB9JM1PDENT8Ql7DqUOp4VFibILomOPREWjmSE2pbilpFdslD6T4D4jhB63iB9SuDYrPZTerWDSGrYGopbpmNPhPlDi0JxlF12um7R6zq2NYheMITSHZYWK7YrkqDTljvswtfhZuGowPOiBeU2RGX5mfZEW/MHF4XGoGALhyYeSgrHIzNeEHK9rCHiftuMJEu2i6VAqjnVaztZzTyTEkqhV0sRZ+n6hsLwGuXcsvgp1U7ZMFZ1UaohyRDvk8jMW5Sq3UGzo1Kzi1INzeVnqH8v3/jGN/jUpz6F2y0mKn6xeOyxx9i7dy8f+chH2LdvH5s2bcLvXymakySJ3/iN33gJ9tDBweGFwB1wccuvvpHeQ3H+7+x3WPQ27gXBjIff0q/nNcHdL+EeOjg4ODg4nF+kjhdJn8nh8ipsuebccVp1cHBwcHB4KXleIqWPfvSjWJbFNu3iVb+XPG4or3zZaJkWZtncWMjTJFSSNZn+KxNMPTEvPKEuIhCokZ8tMf3UgrBTy9Bru1gcyzFxf+vW9d6ERngkwMyTKaGX1rImCztq1GjH4cXUwTxLzjXdl8YoJEtCK3JlVcYddqG4xVaDmXp7QohKTseoCK48k2H4hm7OPDpH8kDr6VT0gk4hKS5+Cw76kGWpLWcEUbSQSmjQT/JAWihlVmmhgqyJT4wO39BF8rk000+kWq5jFE1K6QqyilAsC4JuNzU8URfFebFuVvXIdF0cZe5Apq0JdCHM9voCPS9+vmqslhZtI8LDfrSQi1mBND9aQGXzG/uYeDjJvIAAdO5QRthFT88bTP+iad+k1ifeOy4IYRRN5g/bE6pKKIC1yn2zGVM3VxUtyB43cmcCc2ql4M+zEMGNl+9973uYpoksO6tmX45YlsXf//3fEw9tw6OFVy1T7PTgW1wqUEKy+zyrlUu3KwHTtiueL6EiAblka/2E5HZj5nJY0NbEePpUDrMi1j/4OtzEtgWZuD8p5OYT7PNSzulCk+JI9uW9PL1QK1im1VY9UVFCu7j8Cr5OD4un80KOQ4pbxuUXf5xo77gkKjld2LUp0O0l0OsRTitVzlSE91NSJHvBwny5LXGzKN64hqlblNKtt2PLsCilysJx9HW6iY4GhNO36SVDOBaWYQmLocAWUmkB8fbojWuogmls26XddvF8+gJJkYSua0mRCPZ7yc+UhASgkU1+vDE3kw+3fq3pBYOFoxnhsWVzOkVL15F9vpbqqW6JYI/GwqlS3V3EGuxBWic+lsmaQnQrHGBx1E9oFaFmV+hyjp16jG9961u84x3vaGn/Xmy+9KUv1f//8ccf5/HHH1+1nCNScnB4ZfCWbZfzS5sv5dv3P8xjDx5Fm1PonYhiWTr/dtf9XPlbO+ndGX+pd9PBwcHBweEVz5lH7Hmgrdf2o/nE3G4dHBwcHBxeqTwvkdJXvvIVVFzElZWp1KSqs4MSCmAsLl3Nmj6RJ31CTDjkCbvwdYqvQEzsCVNaKAu/dC4v6iSfSQtv78RdU5iGeMq26GiAqUfFVuZvekMPxfmykJOP6pEZvqGbyUfnyE+3vvo3POInOhrg5I+mhfZx+LVdoMDJH4rV83d6sAyT9InW65i6yZFvibvJhEf9uEMuZppFBi0w20b7wIQj35lAz4tNvBRmy4zNiqcAi28PoriUsyJS8nW46bk4Rup4VmiiQUSs1czxu84IuyLkZ0uc/omYYxOAv8dDeNjPpOAE59HviDudmToE+3xkxgpCIqXwsJ/+qxIc+tcxIbet2PYg/i4vYz8Ti8vAtR0UFypCwiFPXGPzG3o5+aNpIZcPf7cHb9wttK1yVufkj6bICLqJtDtBqXpsZ4rZA2n0vIllGEjKxrYp/g73iolYSXOtK1RaOFZg4djK/ZQ7E/Z/uztXFSoNerdypPAUn/zkJ/nQhz604b45nHs8+OCDPPfcc+zb9p5Vvy922uKk/OYovqNNjkgWLEy20C+oS9usyysjq1JLIiWrYIt9XdEA3oBJZrIgnF6rHVeY/EwRPW+ICy463EiyJCRS8kQ0OvaEmXx4TkgwEOz3omgKqeNibqCxbUHbuUnAmUdxy/RcGmP2abGUY6pHwd/pER4v5M4U2xJ6R0b95KZLVHKt38fNip2GSpTMRJ6coFsmtHc/UFwy8W0hpp9aOCsipdCgn0peFxIpmbol5jRUJT9dbOsaXTwlvlgE7OumkjOExkKFZKktJyuXX8Udcgmf847dYfSSycKR1tulJENsW4jsmYJQ/6MFVSKjAWafSQkJHmPbgqgeRSgVuWVaBHu9VLK6kEhpcSxPZkz8usm26ZrpjrhQ3QqFjC28tgpFJK9n/UqyhDukororS8bLliKtK1San1j9u9TuKMCqQiW/t4N4ZID/83/+zzkjUvrrv/7rl3oXHBwczjKqovDWV1/JG/ZdwmNfO8zBiTEAUhNZvn/rI2y6sodX/fvt+KIb9J8ODg4ODg4ObZE+kyN1rAgS7Lxp6KXeHQcHBwcHh3OGtkVKd999N+l0mn5ly4rvpHVS1fi73ehFg1KqxUmJqptSfrbEwdvHhPczuilA7kxR6KWzN6ERGvIz+9SCsHNNO84n84cybU26zD6ToiK46lTWZIyKKbwaV1YlJFU8V27qZBZZEXfsaCeNXbv4Ozx445qwSEkLqbbTluAcVDsTPKpHRnbLlNNiDVJUHPZ8SB3LkTomoCqr0u6xtetupPoUTN0SciFzB10E+30gzwmfb1FM3WyrryskSyQPigu+ZFlCaePatgwLyxQUIMyVmf7FgtDEOcDkQ2LisBrtCo5Cgz7cYZeYEFGG2JYg+WS5PsnfilDp5I8a4kM50Ei3IVXTtq0lVpJVCA14SZ1Y/RhXEyoNmTsY9x7mtttuc0RKL1P+4R/+AY8WIRYaWfFdTaC0Gp6gRDFr1V0jVrBMnFRzU0qPtdbP1gRKYLuYBQdVYYFgoNdLJScmtgDb4UK0TwGWup+1SCWvs3AkIzyGskzbBUsUSZFEjNmq27JYPJWnUhC8p86VKcy119eKIikS3oSbYqpCRUATJSkSkiwJu22ZuoWpizsAqh4Fo2IKie30osFpQdHv82H6yYWNC61CO8fWbhwl2XY4Er1uvAk3SOUX31WS9lx3AXIzRWGBpGVWn6tksYvbMizMiomsykICuNyZovgznIWw8xjYjqXtICkSwb6qc5NA2klvzI0WVClkGm1kI6GSXjCZerrR8Vh9nY3/r6agXEuspGp2e66soalaTai0eXgfDz/6LY4ePcrmzZs3PKYXm717977Uu+Dg4PAS4QloXP0fdrPt+gEe+OJ+Zo/bz7rHHjjD6Sdn2PerW9h105Cwq7CDg4ODg4PD+uy/6xQAA3s7CHevTLXs4ODg4OBwvtL20+fHPvYxADarFy75fD2BEkDPxVH6Lhe0E5ZtIUM7HPnmhJDlPIAv4Sa2OSgsUOq7Kk5sa1Cs0vMgdSwnvHq9vKhz4q4psfQmwMKRLCfumhKqA/Y+zh8WF2C1Q8+lMba9rV+43uTDcxz7/hnhelt/uZ/OCyJCdbSwSv9VCVSfWHuO7wyx5Y2vzHzFnXujbHpdr3C9xO4wiZ0h4Xrb3zZAfJvYdTp/OMOhr48JC5Q6L4yw49cGxSq1STmrM/34gpCLEthOVqIOaQDj9yVJPivuJjb7TFrYAatdVJ/C8Gs78cQ0oXqBXi/hEbGHRj1vsv8rp1e4kFhGa5NtLv/GrkvN+Lvd9F0WwZtY2yJY7u5c+res4i4GOHjwIIuL7TmYObx0FAoFvv71r9PbsRdJWnoPWU+gpPkgMaSgCS6Oll2tTWo3C5QACvMVzvxC3EXJ3+3BHRKzvHb5VWLbgshtCC3bwSiZbTl+ZCcLQulra8wdWFyS0qgVzIrF4lgesyIuimqH/qsS+LvFGpdlWJx5ZF5YtB3o8dD7KvGUJP4eD/4ucXeAroujBHq9wvVeDvRcFsMv6FCraDKRTQEUTWwMG+z30X1xTKgOwMwvUmTGxMVDvZfHCfafnfOWnym1tfhg9pm0cL1K3iB5YFHYoau0WGlrH9vF32W7jwphWQT7fbgEU/WljmdJHll5bMvvS6shqxII3jqiPRLhjvUrLY4uPXa/sgtF1vjqV78qtjGHtviv//W/csMNN3DzzTdz880383u/93sv9S45OJxzdIyGefP/voKr37sbd8Aee1cKBg//00G+8dH7OfOcmMO7g4ODg4ODw9qU8xWO3DsOwO7XDb+0O+Pg4ODg4HCO0ZbyxzRNHn74YbxSAE1uvPRfS6CkhAIooQAAx++aYvw+MdFQdEuI7e8YRPWJTeK2K8GaO5jhua+dFq7n8qsobrGNBnq97Pz1IdwRsYm5YL+X6JaAUB2w3X/aiUs7IjHVIxMe9QuvxIptC7LjnYPC+5mZKDB38OwIogBO/2xGOHWLy6fi7/UKx2ThcLatlfm9V8TpujgqXK8dPHGN0Tf02G1MgORzaU7fK35svoTbXmUvyNi9s21NFrdDdqrA3HPiYpDey+NsfpO4cMvX5cbf04ZNu2y7rIniCqjIgn58nqhG54UR4W0Nv7aL4Ru7hOqYZQNX0IXLK3bvmHxojqPfFnRzW8fuxDKMdcVKQ9cnGLpxZdpUsB2Vaq5KzWTGSxz5wSyFZAW5M1FP9bac5UKlIXUHALfeeuua++NwbnLnnXeSzWbpju1Z8vlaAqX85ij5zVHKeZg6rFNezdhIVVa6KFXpuKSDyNDafaxVKK47ESz7xSapp59YYFFQkCC7JFw+FVNQEJXYHW5LVB7s86IIjockWUJ2ifevkiI+gQ6ghVy4/OJGqV0XRQkN+oTrpU7mKGfEnazaIT9bIrlfXBzrDrmExQ9gC0nyM2KiNNWr0LEnLNxO2iU05CM0JH7eZp5KUZgTE65IioQ3prUsYKyRmymSPNBGiuQ2WTydF3Zkk1WJ3svjeONiomZJkfDGNft6FaQtcaWEsEgM7PSWmrAIVKH/qoSwiFp2ScLPw5YJEw8khVP1yb5q218llOvdoxRNovciP+4tnat+bylS3VWpmfkJi+S4fb9J7Y7WU70tp1mopChuEpGt54xI6ZlnnuHTn/40c2s45yWTST796U+zf//+s7xnLxy///u/z1133cVdd93FJz/5yZd6dxwczkkkWWL7awZ4+1+8mu2vGaj3owtjWb73sYf56WeeIp8ST5/q4ODg4ODgsJTDPxunUjTwJlz07hZfdOXg4ODg4PBKpq036N/61rcol8v0KMOALU7ayEGphqnbjh8iZCYKTD62gC6Y2mzrL/fRc5n4yt12OfnDabH0QEA5W2HhaEY4VUlkNEBiZ1ioDsDo63rov2L1yey1kDWZHe8cEp7Q83d7GbymE9Uv1syKqTKpE1lh15rsZKEtZ5etb+0nsUvckWfxdJ7yolhbzp0pcujrY8L1ylmdzEQbqassoI0UM21hIeycAVBO68KOYACnfzrD2L2zGxdcRvpkTrgPQoZtbx8gukXsGshPl5h5KiW2LSA3VSR1SlxI1b0vRtdF4qK0He8YpGtvRKiOFlLZ/qsDBAfFhAi+Djcdu8PCoqj06ZywKNDUbTe9tq6dNtBCKjv/3eCaDg5rCZXmT+pMP7v++V5NrNRqPyJ3d9bFSh1yP8FgkG9+85st1XU4d/j6179OwNuF32vfw4udnnUdlJrRl2sR1hEn1UhNmeRYvc9ba+LXE1XpvTQsLGJol1KqYqe7Erz15KeL5EUnw10y4dEALp+Y2MUb1+i/MiEsSAgP+ei5VHwMGxnxtyU2yk0X20qbl50oUMmJjc/9XR66LxE/NqNktp1WOXVM7P4BUF6sCKcoA1twIdom28Zqb1uldEXYkUcvGJx5dF74fBtFU9jBFeyFHF37xMc02ckC5YzYOM/ULXJTRfSC2LGpHoWO3RFhYaC/20PfVQlxJ5/NQToEXVzBTmMrKsDSC2ZbrmyZ8UJbaczbJTzkpXPX2gt3VrtfGWWLuayP8gaPH8vFSoZOy9fb4qi/LlYaGdzJ/v37eeihh1qr/CLyta99jfvvv594fPUJkkQiwQMPPMDtt99+lvfMwcHhpcAT1Lj6vbt58/+6gsRI453Y0fsm+foH7+XZH5zENF7kfPcODg4ODg6vUEzTqqd667k0iLTOAlcHBwcHB4fzEfFlxcDf/M3fADCs7GxZnAQweF2C0qLO9BMpoe3peZP5g+KTC/NHspQEJzNCgz76r0pw9DuTQkIG1SMLp1kCe5L5zCPidspj9862JTGbuD9JRfAFPKbJ+ANJsmfEJvrTJ3McSo4JC0Ly0yXy0+KrtoKDPsqLFeGJkOxkQbiOK6AS2xxg7uBiW+ddlPCwH5dPIXlAzJVn8iEx17LnQ3G+3FZKQG9CIzwSYOrRs2MrHt0SwDQs0scFREAmZCbylLOCk2wyhAf95GaKQiLL5SnDWuX0z2Ywy4LXN3Dm0TmKgtdAeVFn7L4ZcpNi/cL80UxbKSAXjojfA2q00z8PXteJ4pZba9PVh8zyos7C0SyldVxFLMNAUpaKQ3Kz7bmQeKIq/VdEGX/OotxCk5G7O2FqhrA7xtGjR8nn8/h84mIGh7NPqVTiO9/5Dl2xy4D107s1o6kWnaMKc2MGhmAzK61harSee5JeMMlMFuuT2rLfj5nbuHF2XBChktOFhSSyKmHq4goN0RRqAGbFZPzns8KigmKqwuyzKeH9zE0XhftlgNlnUm25umQF+3KwHV1cfpViqiwklNELhrBjCtiCL8vi7KSukiA04CM/WxISrugFoy23p3ZZPC2eDg1skYxeNNoSD4kiu2T8nW5y00Wh66CS19tqJ6pXQdFkYTeldsZelbzOxINJYcFXcaFMcr+402Z2Ik9uWvwBcOoJcTGnZVptty+wXaZEFi+oXoWui6LMPpNqSWRWc1EqpipUNhhjW4UiknfpfTPfZtbbUEJCViHVYvnFUT/B41tQFRd33303l19+eXsbfoE4ePAgF1988bplLrzwQh577LG2t5HP5/nqV7/KgQMHeO6558hkMnz4wx/m9a9//Yqy5XKZL3zhC/zwhz8kk8mwadMm3vve93LppZe2vf1PfepTfOpTn2LLli3ccsstbNq0qe3fcnA4X+jcHOHNH7uSQz8Z47GvHqaUq1Ap6Dz05ec4/LNxrvzNnXRvP3sLQB0cHBwcHF4JjD05Q2amgOZT6dgjmBLbwcHBwcHhPKAtJ6XHHnsMvxbE5bNX2HuiKlpQrv+iv9OFotkTJKpXxt9huz8Ylorid+OJNtwg/D2eeiox1ScvSVXkiboIDXrpvSyK6pHx9/lRfdWynqVl3REXnqYVov4eD6njWTITBWStWra6i1pYxZtoKtvlqaeB0EsG+WSJct5+OaqFVLwdjbK+Ljdatays2r8rqzID13ay5Vf68HU0RFu2tX6trL1PNfcQLaDi7/IQ2xZEC9j7o4XVRgybyroC6tK4xDU7PZzZKLtmDGManmhj/03TQq8e2/IYeqIantjSGKo+GVOHzFgOLdhIFbdavGsxbI53Oavb8e5YGm9tWdlayigtpJLYFarHbWkMG/GuxdDX1Yj30HWdjTRSq8Wwq3GszfGefGQO07TqZVWfsnq8m47V16GR2B3BHXOtG+9aDGvx7rsmztZf7W/EO768rLL03FTjHdkcIL6zsbKtuc2uaN/NbVZeq802yq7VZqVaDNeIt7dDa6R2q5X1bBzv5W3W3+OhY1e4vk+e+CoxXKV9d+2LsO3t/au22SUxrFJrs5FNQaIj/iXxbqWPmH06Te5Mcf14szTeLp/C8I3dhKuuFuvFe0kfIUNsa5DgYMORp5U+Qs8bmPqyNttCH1Gcr1Cspn1ZUnaDPqKSN+pxWN5m1+wjzDXi3UIfER71ExzwrhPDlX1E574IO945ZPezq7XZNfqI0mKF3Gxx1bLr9RFnHp3H5VPXjbc71Lj1BkcjqB6ZyLCHjl0+/J2NvsYdVvFEG1pif4cLV9iNpLlQ3DLu/hg6GrIio/nBE278ri8qo1Y3K6vgj9vtSu7upKMyiGVZfPGLX8Th5cF9991np3qLb6XY6UGSLNwuC6k666wqFpramAzWXBaKbP+dj/sobw4jyYCqoHgUXE36cpcblGozkyTQvBCIS3gC9ueuoYb7oiqVG2l8JNACSl0QI7skJEUiM2GLClSv3EgVK4EWVOtuQrJLtscUVUqpMnqhMSm9pKwqLSmrepX6v/6rOgj0eurOTSvKepQlqYK1oIoWduGJ2emZtKBaFx0pHhlXc9mAWk+rVCsryYAFiltekgLJFWik+5XkWlmp+jfoTW48Lr/SVNbep1oMFU2u932VnIFRNBppw6SlZZfHUPUpqB4FywSzYi2L9+oxrOGJuvDGNJDWjveSc1NNX+ftcNtuT1Ij3hvFEMnuX7NThZUxXC3e1OKt4u/22OMfv7oyhnIjhs2p3Vx+hd5XxQn0eFbEsDneYN+za/GWXRKRTYHGvWiNeC+JSy3eWisxbL3N1uK9ZpuV1o93I4aN3w0P++v30uVtthbvRgwb8e69PE54xL8khsvjvbzNqj6F8EjAvv4Ca8RwlT7CMhoimVVjuEYfER72k9gdXlq2hXgr1XHMhvGu/W5ARXHJGGVzjTa7dh+haLIttqv1J8tjuEYfYeoWmI2+vrnNrttHWBu02TX6CMUt4024W+qTm3+3++IYsS2BRtkW+gijYjulGbrZiPd6fURAQZKhlNYppStLy/qV+rsISbbvVZTsMZ3iklBHO5EVCHdIuP2g1IZeEmge6udRVsHlaTgqqW7IjARIDwQBC49qIkv2+VAkC7fa6Os1xcJVvQ9nRiPEI5u46667eKlJpVIkEuu7KsdiMRYWFtreRjqd5rbbbuPUqVNs3rx53bJ/+qd/yu23386NN97If/2v/xVZlvn93/99nn766ba2/Tu/8zt87Wtf44477uCSSy7h937v98jn2xfbOTicT8iyxI7XDvL2v3g1267vr38+fzrDd//3w/zss0+TTzsp4BwcHBwcHFpl/522i9K21wy0lbbbwcHBwcHhlY7w3fHYsWNks1l2795T/6zvkiBdu22bddUtM3RNhEC3PeEcGfYwdE0EgKkns/jiLrovtq37ZRVGb+isp6WIDPkZvaGzvlc9l8XqL8NN3WT0hk4iI/Z2ggN+Rm/qqU8a91wSW5LGbPObeum5zN5OsM/L6E09aNUUHd37YvRf3VEvO/SaLuLbbcGV4pIJ9vrwhO3977wgysCrOxtlr+uqv/j2xjVGb+rBE3Ux+0wavWgweH2j7MC1HXRWLfm1sF3WX50QiO8IMXRDJ72vitvuTVd30LXXXpmkBVRGb+oh2GsLFGKbAwy/pquxD6/tZOevDaGFVVRNZvSmHgJ9dtnIpiAjN3Y3zs3l8XrKu+CAh21v7Sc8bCu3w8PVGFbfM/dcGqPv8ob1+8iN3UQ2BQkP++m6JMboTT2otXhfHKX/qka8h1/TRWxz9dz02vEeuCZBxwURuvbGGFgS707iO2zBjb/DbZ+bWrz3RBi+sbset8HrO0nssuPtiboYvamnnq4gsTvM0HWNuFQKRv2lsqcW785qvLcHGXpto2z/1R1074shqzKhITsOwWoMY1uCjNzQiGH/FQl6qmlJ5Gq8ZVVh/z+dxBu1979G76sa8UaG0Zt6iAzbcQkN+Ulsj9TdCrovjdJ3eSOGIzd2E91st0N/NYa1yQTLtJakWxh+bRexrfbv+rs9dgyrEwZde6P1eG/9lX62v22gLnDydthxcVdFQB17wgxe12izg9d10rHHjrfLr9jxropH4jtDDF3fiOHA1R107bWvMS2osvkNPVzwnhGCA15iWwMMN8f7qg66L7bjonqUJW1WkmT7+Krz032XJ+i+tNZH2PEODdltNjIcsOMtQyFZRvXYk481Rm/q2bCPOHHnGU7+aIaRG7rrKQxb6SO690bQwir+Tvuct9JHaH4XpmFSqDq6JXaFW+ojtIDKyE3dS67lVvoId8TF8E1dDF7bQU+1n22lj+i7Ok7X3ojdJ9/U03IfselNvQxW+6ZANYat9BGjN3ez/W0D9cnKVvuIvssT9F2ZYODaRtmN+oj4thATDyXRyyYDr+6k8wI7Lhv1EaHBxn1A86lr9xGSRP/l8Xq8tbDK1l/pIzhUva+NBBhtinfvZTF6LovZqd9kGLomQqjfjb/DRWzEy9A1EeTqZFnXHj89FzVSmAxdEyEybCuPggM+BvZ6mHy2RHHRpGurm95dDaHX4D430QH7h/wxmaFLPGhVzduF116Opmn84z/+Iw4vD+666y4SiQSRHQMAuF0WvR06NVOusN+kI9pwkuiK6QT9JmVdIp1V6O0w6pPIgZhEfKAx/Iv3ywTiVcGBCzpHZAIR0HwSvohEYtAuaxWKxDb7CfXZ14yiyXRdELQnfwF/p0bfZeH6RHZsk49QvwfZ70dWJbr3xXCH7TbpS2hL0ji5IxqeiN1+Jdnug2uCSE9Mo3tfQwgTGfUT3RzAKJskn0sT2xbCG3fXf8e+t9uFw8N+Yk1pOjv3RolvDRLbGsQdctG9L1Z/URQe9BPb3hADd1wQwd9tX2+aX2X4hu56ys9gv29Jyt2OXWECPfYFpvoUuvfF6sKHzgsidDcda2JnmGC/3T8obrtsrS/0d3vsVE6SfV9K7A4TrqbUVFyyHcNQNYadbjr3Nn43tiVIdGuQ+I4QLr/9u+5qTL1xtx3DKtHNASKj1b5Fsu+7vVckkBWpHu+aYCU84l+S6rTroii+qojXKBmYhoVcFUWEhnxLUgN37o3gq/axWlCtx1v1KkRGA8Sb4t25J1wXdLr8dtnaGCjY5yWxK0Ry/yJzzy2S2BUiUL3/qV77WGsChUCPl44mgUp8RxhJsUW16rJ4+7o8DXE7ENsWIlwdb0hIYIJZdYLxdbiXpFONbQ4SHqmWVez2XRPyjtzYQ8+ljXtlZFOAyKZGX969L4Y3ZsfFE63Fm3q8Y8vjXX12cIerbdbVaLMD13bWx2IdF0bwVcW2WqAaQ7cdl9CAj/iOpWmizbJVjXe1zdb6iN6lMUzsChHsq7rWLJSJbQ7WRUz+bg+de5rivT1EaKDavjW7zUoSjN83i8uv0tmUWja+NUioeq9ctY+4OGqLdySIbgkSqcV7gz5CdklUmlxcu/fFWuojQgN+Bl/dWR8XtNpHBPu9xLYE7bLVeLfSRwT6vbjDLrvN7mqK93p9RI+H/ms66qKm2PZQS32Ey6cwckM30er1WY/3Bn2EN+4msTO0JIat9BHlTJnMRKHeZmvxXrePCKj4Oz31dN+hAd+afYQ7EaDrglBdCBvd5Kfrgsbvxrf5bWEi9nNH1wUhXD4Fq1DE3+kiMSCBBf4wJPolgrHq4ioVuoZltKrI2x+CzsGGM120T8alwEJBQZGhP1LBUxUIB9wm/eFGu0v4deJ++74sSzC8ZwsPPvggMzMzvJQEAoEN92F6ehqvd/XUxa0Qj8f5xje+wde//nX+83/+z2uWO3DgAD/60Y/4j//xP/L+97+fN7/5zfzVX/0V3d3dfPazn11S9pZbbuHVr371qv8+//nP18vt3LkTn8+H2+3m13/91/H5fOzfv7/tY3FwOB/xhDSued8e3vy/Lic+3OiHj/x8gjs+eC/773JSwDk4ODg4OGzEwniGyf1zSBLsvHHopd4dBwcHBweHcxLJsiwh8/ff/d3f5a/+6q+4tu8tePLVCfOgjGVCJWc/qHqiKuWsjlmx3TVUr/0CUS+ZyLIFJhSm7HQ/3rhGKaNjlk1Uj71yt1B19Kg5XpQX9WpZlUpWRy+ayC4Jd0ilkGwqK0E5bZfd9rZ+ylmdE3dOIWuyXXa+DKb9ElRSpXqKA09cQy/o6HmTxK4QpXSZzGQRzOqqTZdMsSoy8MQ09KKBnjeQVftldylVxtQbK1RraSg8UQ2jYtovymXwxjRKKR1TN1F9MqpXte3sTRNXwIWpW6uX9ciofrXudBIa9hHfFuTUT2YxyybehEZpsSmGgWVxqcawa2+E+M4wB+8YwyybjbisUhZs55ZKVqf3igTukIvx+2cbZQMqKI14e+Iaeq56blQZd0QlvjOEUTBJPreIvEa8a2Vr58YVUHFHXBTny+h54wWPdy2G7ogLS7fQQi5Gbuxm/IFZ0qfyq8cwrIK1NC6txLs5hnpxjXg3tdl1y7YQ7+YY1uId2eRHUiUyY/lqvO0Y1sqqPgXVrTTad1RDLxls/9UBpp9JkR3PN8VbRvWo9Xi7I0vbrL/Tg7dDI3UsB6a1pM1qYRUM6qn/1o3hSxnvdfqIgWs6qOR0Tv9kdkW8X4w+wt/rxqhYFGdXj/dqfQQm9F+VYPrpBUrzldbiHVJtIeKFUQ5+/TSugFovu1Ef0X9NgkCPl4O3jwm12a59tjvexENzK9rsen2E6pGRZPlF7ZOb+wh/t4dCskRhvmyXXSuGVWe7ckbH3+Nh0+u7OXbnFLnJ4pptVq/Yk4jeuEqlJGOULWTNFkMUF6pOfgHZbrOZxr1VL5joRRPjwmHcHjCOLOCPypTzJpJMPe2bJ2SnuNPLtiBY88sUM6Z93Xtgf/EbLCwsPK+V8g5njwsvvJA9e/YwntmDaUpIkoWqgK6DhYQiW0gS6IY9mepSLQzTwqVIlHUL2SOj6+A/soisgKyAXs2YpWpgGvY/JPtvowyWZZdTyiX0UjV92+I8plEVzUrg8trtzDLBE1HpvCDImcfSVPKm7QRiWVRSdqN0eWX0kollWMiq7SRSyRu4/Couv0IpXcGoOg65fEq9rKRIqG65ns6n5jDSXNYom5j6GmUlMIpLyyKBZdrC+krBsN1MNBlJltCLdl3Vp2BWTMyKhSRLREZ8lAsGucmiXVaR6mnAVK+CqVuYFfs6VD0KetHAMqHvygTZMwXSJ3L1spZh1ffD5VWqMbSQXVLdQab3VXHmD2VsZ5HmsqvEEKquI16F0KCfueq4a82yy2KoBRQsbGHH84p31QmwFm/Vp2DWysoSqseOd8euMJIqMX8w04i3V8HUa/G2Y1g7N7JLto9nlXg3YmjHW3ZJyKrcKOtRsMz1411Lx7pq2XXijcWKNiurEt64RnmxQjnbegw9cTfhQR9nHptftc0uiXdTm3WHXZiGRXG+vKLN1uJdb98r2uzSeDdi+CLFW5WQtUa8FY8MJvVUac3XvaxKeGMa8R1hzjw2V08T92L2EbLLdkqq5PQ1471aHxHs8yHJErmpwgbxXtpHxHeEKKYqLJ7Or4j3en1E7+UJFo5myJ0pttxmZZdMbFuAzFieUnVctjzeq/URtQUSqkd+YeK9QR/hDqnImkx+prQy3rU2q1fdkaJ+KgUTLOjYHUCSJGaeydT3d7V7lZRIIKsgKxJld1U05rLNqUwdu6wL9ErjHth8v5y5MYoFBCZNJMlCAnRTwrQkZMlClS3KRtVJs+qipJsSYKGWZ7j/3z7Jl770JX7zN3+Tl4qPfOQjPP744/zjP/4jXV1dK76fnp7mPe95D/v27eNP//RPn/f2Dh48yH/8j/9x1XRvn/3sZ7n99tv57ne/i9/fSH/xT//0T3zuc5/j61//+qr7KMK73/1uPvCBD3DZZZdtWPbQoUO8733v4/Of/zzbtm3bsPyBAwfYuXPn89o/B4dzHdO0OPij0zz2tcN1t3mA2FCQq35rF11bo+vUfnniXNsODg4OZwfRsdfLjfv+4VkO/niM4Uu7uOF3951395fz7Xjh/Dvm8+144fw75vPteOH8O+Zz4XjVjYss5e6770aSFKwLLoeHDgONCdQatQlWwJ4kLZqMvCYCBpz4ydIJ0ZogqVG28XdtIhwAy6xP8gKY5aV/LykLHLpjvO6gsqJsdmnZ2qS0K6DSc0mcsftm6qs4K1mdSnPZ+aZ90G03F09cI9jrZXZ/uv7i3Y5DoywmS/ZBz5vo+cbftcn5Vcsui8viyTyLJxu25euVbY7L9C9STP8i1djMBjGsfXf6JytXW64VQwBTt393/N7kinprla1RyepLVj+vFu8aet6ox1sLq3RdFLEnd6DleOtFk+N3nrHTOlXP+YoYplfGJbY9SHQ0wLHvn1m7zcKKNmuUzWp6rfKGZZv/7twbxbJMJu6fs+OyQQxrpI7llmxjvRjC82uzuakiualio/wGMazhDmv0XhHn1D3TlLP6umWbz43qkXF5VXLTxVXLrtW+E7vDBPu8nLhrau2yq7TvsXtnq5Mjq7TZ5rLL2mxoyI/Z47Xd1gTinZtcaqXeah9x9LuTLGejPmL26TSzT6er37fez47/PLl22XX6iOknlt4HKi30J2C3QTA37JPrx1qNd7DPditIHlhsVGyhfY/c1M3ieJ7CA3PrxzBVsfNkAbkzRZ79p9OY1UnXtfpk2WuLlApz9t+S5sIsQ7HciEU5u/a91TRlCnkI74oy1Fvi+INFiouN8s3/b+pQTDf+XhzuIvdUlFTqBOPj4/T3N+z8Hc495ufnefrpp5m4YAeBGxUG7zKxLIlK02VjmNKSOhVdwu2C3g6d8ZRKqdL4vi5IqqI3dUNYoDd1PVamSPPVqRfNJWUr+aY2l9IZuz+FZTTEBGZTipVKU99n6hambv8d6PHgjmhM1e7fy8pahrXk79pEuL/bQyWn22LvDcqu9rvL/64JJerH2rwPpsVC0/10RdlCc9mlvzvxQHLNsnYMm+JSsTAr9t9j984uqbeibFMMwZ70N4omxYVUdR9Zu+yyuNTENCAWw0DVaaqSL1S3uX4Ma3Xnj2aQpIb4ANaPoS28sd0fc9NF8jPNjXTtGALoRQMtoGIa1opjW61sDdWjENseYu7gYjWV6sp4rxYXw7DIThaXfLdeDGv75Im3Xrb+u2WT/GwjFmvFu1a2mWCfF9OwSJ/IrRnv+u82nRvVq9ixNGtl145h87npvDBCZjy/5LlvrRiC3WbzyTKVx+fRC0Z9e63ERZIlQoM+0idyGGWzpf6kdtylpnvlavFuphbv9MmlY+1Vy67Svqceb4yF1or3au17/OeNvmGteMPS696smCSfbRoDsUF/ItIOVykryRKBXi/F+bJQPytrMvEdIQpzybVjKElYJpTmcshVt5/kc7n6vQfWvldJ2GMiU7eQS3nMkA+9eVBpQaW571x2v6xU7brCgwbanMWZTCNFr2lJlI3GvVZfcl+WGL++E/VnMX7xi1/wUvKOd7yDBx54gFtuuYX3vve9XHLJJSQSCZLJJI8++ij/8A//QLlc5p3vfOeLvi9Hjhyhv79/iUAJYMeOHQAcPXpUSKSUyWQ4ePAgF154IZIk8Y1vfINMJrPmC7dkMsnc3Fz971OnTrVxFA4Or2xkWWLnjUOMXNbNo189xOGfTQAwfyrDd/74IbZe28elv7YNb9i9wS85ODg4ODicPxSzZY7cZ98zd71u+KXdGQcHBwcHh3MYYZHS8ePHcXsjYpVMi7EH0vU0QABKwI+RXflSd8nOeWS2vbWPsZ/Psng6v/RLSbKXOK632WUvNzeiktXZ/5VTYIrVC3R56LwgwuwzaaF6nRdG0IIq4/etLuZZCy2sYpbMpS9gXyGoPpmeSxPMPLWwVJSxAYomowVdGxdchqmbS0QurWKUTMo5Y+OCy+i6KIYn6uLINyeE6pWzlRUTNK0QHvVTyehLJrFeLGTVTiWWmSisEJ2sh1ExKaUqmKaQqRuR0QA9l8Z55ssn6gKzlrZXMqi0ce6axTAiaH4VwyV+8roujlLJ6cwfzLS13XMaGTwRjfJiuZ7mrxWCgz46doc5/v0zQpsLD/vxdriXipRa4Oh3J5dMoK2LZdWFShvde+RVUmhY5Qqb39hFbrbM1C+y69av7Bmt/39mEY7obnJhN9pi665IHT17mJl8gi9/+ct8+MMfbrmew9nnkUceAcA9OixUr4DE+IJKSW9MlGa3hAkcWX+sEu6S0DyQfK6w4ju5M4E5s/aYpXmSuFmgBNSvj+Vjt4WjWWTXUpFVK4QGfORnSktEShsiQcfuMOlTecqLrY8xJFlCcctLxQOvIPzdHmRFIjOx8pyvR81BRZTl4pRW0YtG3VGnVWRVovviGLP70xSSrY+FLNN2Lmxu062guGXcIRf5ZAnEqraFFlCRm9wFW0UvGsLHBnbassJcmdTx9e9Tq23PFNyeZVor1WpS/AABAABJREFUBM8tIYHLp9bTkbWK6lMI9vlIHc+2FZtzHVmVkBRphahoI6JbApQz+pKFCBtjEd0UYK6yuFRItQGFZInx+5Krx19aeT7NQgHZ623pfMmdiRWf+SgS3epl8oi10WsFJm5spMM7o6sYYQkjLBEYbz2e7pEhHnzwwZbLvxjs3buXW265hc985jN84hOfAECSJGrm2pIk8YEPfIC9e/e+6PsyNzdHPB5f8Xnts2RS7B2JYRh87nOf4/Tp06iqyubNm/mzP/szAoHAquW//e1vc9ttt634/MSJExjGxu02m81y4MABoX10cHg5k7hGxT3SzfEfzJGbtsfRh382wbGHzzB4XYTufQHhe++5iHNtOzi8MnmpXQIczi8O/WQco2wSGwrSvf2V5zro4ODg4ODwQiEkUpqZmaFQKNDZsx2AwuVbAfBWHZVWpSo8sF0qlr7Ea0WolDyYttMqCRDZ5Ce+LcSxO88IiRdAXNgEkDywKDz5/XwYur6L0mKF0z9e6XC0Hlve3MvC8RzJZ8XEVFt+uY+Zp1KrrhReCy2gsvWt/YzdOytUT3WreGMuZFXs5UZhtsyRb4kJfwCCA1783V6mHp3fuHAT6RO5euoWEaafnEd2iU/qzTQ5YInQfXGM7GT+rIiUVI9K3+UJTv9shrTApFJxvszpn4q1ZYDU8ax9XIKX7MKRLAtHxCbXoP22ssINo0W8EQ1ZEX/Jt/Wt/eSmC3XXrVYZeV0PiyezzAmIomRVZvMv9TD9i5TQ9eCNa2x+Qx/Hf3iG3BmBSS/TdsKQNVmorx6/X2ySo0bLAqUaVaFSYk+IQKeHkz8Sa9epY1nKG4SjWaAEtqNSrtqcywNxtLG1z3t+e2M1ejQxisvl4jvf+Y4jUjrHefDBB5EDftSEPWl3+mb7HjJ419rXgFkV/TQLlGpsJFQqZS30lLgoM77NT2G+Qn62vFKgtAG1lEIinBHsi8GepLdM6mPTVtFCKl0XRpl4OCkksPEm3ISHfEw9sSAkWPF3e/BENeaeExtbRrcE0AIupp8US+OoehWUNsYmqePi4yCA8JCfwkJZSCgGtHXvNg2LM4/PYwgIJcAWo88fFhcJa0EXiZ1hxu6bPStCF3+PB3fIxdTjYtdsZlxMkFYjuT8tLBQDmD/UnuC6nbai5w3hawDsFGDukJ1+1hA4d964RmJ3eG1xzTr1gv0+Zp5KCe1noNeLN+Fm9mmxetGtQRSXLLy9drBMGPu5+PjXXpAh1r7MQgHF7yWxPcDiZJFSqvVnkErRJHOqCJJ73c02C5QAyjT6y2y/vK5Qaeqqxg939/fz2He+TzabXVM4czZ4+9vfzr59+/jWt77FwYMH6/uzY8cOfvmXf5nR0dGNf+QFoFQq4XKtXGSkaVr9exEikQif//znWy7/5je/mauuuqr+96lTp7j11lsZGRlx0r05OKzFTrj0tSbP3TPG41+3U8AZRZMTd86zeFDnqt/aSeeWl/dkrHNtOzg4ODg8H0zD5Lm7bYfO3TcPI62y2MLBwcHBwcHBRkikdPvttwMQ6xJ7YAv2aoT6PUw8IjbZohd0ph9PrV1gDTcly4BK0RAWL/RcGgMJzjwiPvHVDu2+JB6/fxarjcX8uWRJeEJI1mTKmQp6SWyDetlk6skFeyW5AMWFMoe/IS42ahdvzE2wz8vUo2L1mlMJirA8XVarqD7ZTk8guL0j3xgTNQZrm3JWZ/8/n8LUBTcog+ZTKed1oWvWTqPVhvhKttO4iApQ2m0r7XLyR9Nt1UvuT4s5i1TRCzpGRezcmbpJYa4stEoeoLRQ5uSPp5akfWmFzHih7YnVdvB1uem5OMaJe6Zbv/YsC7Nsoa/hVLCai1KN5EF7wl/SxFzhojETn99iYkxpuY4se/D5Ahw/flxoWw5nn0ceeQT30KDwi41YwKBQliiUxcQnpdn1lXJruSmZFRPLsDYWKDWN3RRNJrYtSOpYdkUqthcDs2KR3C8m1AYoZ3Smn1oQdiAxyybFVEXYUccyrBWpjlohP1OiuCA2zgPaEl0/H3ydbvSSIT4mdcn2GEMkntbKlKItIYHikoXPQyFZYuzns1iCQrh2WTiaXc1gZkNkVQJJXCDY7nUqqxKWhbBwq9220g7ljL4kBVvL9bK6LcISPOWmbtnjJwmhunrRoJwWj8eiwKKRZtoRBz4fwiN+zIq5dLy3QSM3cgUM3b/mc8RqLkpgp8XMzhpI5LFCvpb3UcKiS9FJmwoFq/V7rDUyjGkYPPnkk1xzzTUt13sx2LRpE//P//P/vKT74Ha7qVRWtuVyuVz//sUkkUiQSKzeNhwcHNZGVmR23TzEyOXdPPqVQxy5135/N3dykW//z4fYel0/l/7aVrwhJwWcg4ODg8P5x6nHZ8gmi3iCLkav7Hmpd8fBwcHBweGcRmjm6v777wcg1rF9yec1R6UlmFZ9pbrLp+AOr66HUgJ+lIB/6YeWCZZJoNeDt0Nbf6dWeWmZPpkTdhl6Pmx6Qw+JXSHherLWXpqMwmy5rdRTkw/MrUybtwFm2eTUj2fE3E6q9ZLPpNubGGqDrr0RdrxzULjezFMp4dRrAP1XJ9j0evGBZmJXiNi2oHC9kRt76L9K/CWqqSMs1ns+CAuUsFeSb/vVAfxdHqF6Wkil94o4qk/sOoptCbLj7YPC11+7baX70hjb3j4gXK9d5g9lyE6KC3nGfjZL6pj4BNbYvbPi/YMOmbFCW851yHZqQRFUj8yWX+4jONj6BBTYk6mmyZJUpa0wf3CR8VUcBNYTKIGdJigy4sXSK1jlpZM2lT2jK1yUarg0C4/Xvt+WB+KUB1amzmh2Uaph4GduTsxxy+Hs8+yzz+LqW3m/qTkqNWO6pKqLkoXbZaGs0XSzW8Jkt4SXfCbli8jFIp6QhLRBk19twnfu2Tly4y0KgGpjN9nWK4mmM/XENLouim64nys2K9vCDFEsw7JT0AqKEEqLFVLHxCf487OltuqV0hWhlGbPl97L4wT61u/XVuPMo/OCqaNsQVv/lQk80Q2eC1apFx7xC7tYusMu+q5IoHjEx+pnS6Bkb0z8+gGIbgmS2BHeuOAy/F0efJ3ik46de6NERvwbF1xGO20FoO+qBP4esXFluxglk9xUUfi8l9KVtsRNxfky6VPi47VK3mhbZCa14ewZ6PW29Xy8cuOtbTv5VJLC9ErHrrUESjVcXgmXT0JezCMvLn1OnrgxtsJFCexT5pUs1OrJy/bLZPtX9hXNLkoAlf4ekCQOH17Hhfo8Ih6PrzoOrX12tgRE99xzD3/wB3/Apz71qbOyPQeHVwq+sJtrf+cC3vRHryI22HjHdfin49zxwZ/z3D2nMc/mmMjBwcHBweEcYP+dJwHY/tpBVK31xaQODg4ODg7nI0Jv3vfv348kK6jqygmCJUKlZQ+i80cLHL9b3J2o++IYXRe2YBW87OWlFlIFj8zmzKPzbbkolRZ1Kjmxl76yKrPr3w0R2y4mWFF9Cr2viuMKiM3Sy5qMJ6YJx0VW7Ql+UbSwSmST+GRExwURtr9DXNCRPVMkKZgW5fmQfCbN1OPibSXQ4xUW44DdNmefTQnXG7i2oy1RVDvImszwTV3Ck0KltM7pe2eEXXVUt0JowIfqEbsWMhMFTv98pi1BVTtkJwrMHRRvm92XRNn6lj7het6ERnhY/NqTVYQFXwCugGr3uYIkdoaIbhFPdbHznYN0XrRywmg99KJJabGCJZiippAsc+LOM5TbEFuqPgXZ1bg3bSRQAvBEVfoui+CNiTkpzUwpHDu89Bw0C5VWEygBRKM96LrO6dOnhbbncPZYXFxkfHwcV/fq57BZqGS6msdCEmcWVLJFsWva5ZVIjLhQtI0nhZsnfq1SYUl7bwlJwiiaJJ9NC7uxWYZFOasLizNCQz56L1sp4tsIX4cbX4e4MEPxyG2leJVdGwvFVsMT01B94i/Bei6LtSU2Wjydb8vRpR1M3WTmmZSwU6Csyfg7PcJphCtZnZlnUsJiWnfYRXxnqC0xXDv4uzxENonfSxdP50mdEBfCucMuPBExoRjAwpH2BNTtsngy15Z7ad8VcfFxumQL7hX3WbrWJXuMIVpPccuEh/zC14K/x0P/1eJiEaPUnigqfSLXcFESsQmT7GM0C412tpFACSDUrRDqEu03JU7oGhlrab1modJygRKArLlwx2M89NBDgtt7ZbJ582bGx8fJ5ZaK7g4cOFD//mxwww038IlPfIIPfOADZ2V7Dg6vNLq3x/iVj1/J5e/ZgctrP5OWchXu/+J+vv2HDzBzNPXS7qCDg4ODg8NZInkyzdTBBSRFYscN4ovpHRwcHBwczjeEXm+OjY3hcm0w+d3mSpm6m1LTjNPxH0wy/sDKlCKr0vQSc8sv9dG1NyK8D+06G43fN0ta0ELfNE0mHkwKv7DXgirhET+K4L4G+7xs+aU+NEFxU2RzkB3vHEJWxbYXHgrQf2WHUB2A/GyRhaMrV8FuRG66yOzTKeF6vVfGGX7t6pO/65GfLbWVdurkPdOM3bvSYWUjspMFCrPi7lmKKiO3sfq5XRSXgiyLbc8sm6RP5IQnAvOzJQ7ePibsKlbJ6qSP54QdpsLDfra9fUD4WshOFkg+I55eKDddJHVcfKV8fFuI7kvFRDwA/a/uZORGcXew/qsSDFwtfq0HB3wEetpw4HhsntRx8YnV0z+ZaW+CVG7j3iDDjrcPEtsSAMtqSaAEkJspc+g70xSS9qR/zU1pLQellSxt1Ks5KjXTNzAMwB133NHi7zucbWoTddoaIqUa5gqBUGtjsZqbkpS3nUrKOYszB8roxdbqy50JzHwef7eHvsvFxT/tuHOA7UCycER8rJCfaW+M4YlpeOPiIqXE9hDRNgTbnRdGiYyKC0/i24L4O8SF0NnJQltpQrOTBWERp+yS6LkshjssJsa0TNtBxhRMS1rJ6kw+PIdeEBNLmLpFcb4s7lIkITxOeD5IMm2N8yo5va1zPn84w/xh8WuolK60JVhJ7AoRGhJzQQRbkF7JiR9fZqJAuY16HbsjwuIt2SXTf2WHsDuY6lXovTSOFhS7hmSXTKDXIyycLC6UmTuwKCy8K8yV204l2c69ITzoo3ufvbjJLBRaEigBLIzpzJ9snPOam9JqDkorWXmvXM1RqZl4RwdPPvlkS/v2Sue6667DMAy+/e1v1z8rl8t8//vfZ+fOnXR1iT+jOzg4vDTIiszu1w3z9r94NZuv7q1/njyxyLf/54P8/PPPUlwUf5/l4ODg4ODwcmL/nacAGLmsG3/s7Dj7Ojg4ODg4vJwRUqxkMhl8wbWdPfJXbMV3/6EVn2//lQTJQ3mSz62daswql5E1F2apkabC1MHUW3yhbTVeEo79fJZiWuwB2B1xsfWX+zn5k2kyAinRbPcRVXy1rklbL/nz0yWe+6q460VmosDJH00JTyZlxwuMG7PCrjOzz6ZYOCruHpM7UxROHQXg7dCQZZnctFjd4lwZ3SM+aRLZ5MesWMLp89olsTNEKV0hMyEmsjj5o+kXaY9WYpZNjn1vUrierMokdodIHc+2tepdFNWnEN0UYOFIBr3Yersu5yrk2hC5qD4Zf6dXWMiYGSuQGRPf3uSj4g5fAMn9aZQ2JlbPPNbe9k7cNdVWvYUj4gIlsB3hJFUWTkG59Vf6KSRLYuJCE07/fIbCTAlJVbHKZSSthUlIE/T80jZpDfWiLhbRQ+s93JrsusBkekomuSzT6ZZ/neSpj64+yWPIwwBMTIinMXQ4Oxw/fhwAdZ3J1lNvlBj44dLPQl6TaMDk1KzKejPLWkqn3OHHfapx7zQEjHHM5DxyIEAhmUdvQ4AQ3RzA5VOZfnJBqJ6iyVimhSnojlbJGcLOl2Cn0WyH+cOZ5uFpyywcybTl9jf5yLxw6iigLdE1EngiGuVMRew8WLZLnSEoTJZdEr6Em/xsSfi8t4PqUfDENVvcKrC5UqrCbCr1ou3XcrJnitDGuNkddqG4ZfIzZyc9oCdm3wNFheWldEVorFZDC6qYhiXcL7U1rrdg/IFZ4XZp6iazz6YoCY599YLB9C8WhJ/pKlmdiQfFU7waRZN8sb12onhkjJIpdA15YhqdeyKMP5AUimlupkSx6uymRCJY6QxSeGM3WXOVMGa2hAmdNFgcXtthKSbrxBWDI5WVAtZP/ulnePd3//Pq+9nTyeLYmQ336+XOv/7rv5LNZuup2+6//35mZuxB6q/+6q8SCATYuXMn119/PZ/73OdIpVL09fVx5513MjU1xYc+9KGXcvcdHBzaxBdxc937L2Tb9QM8cNt+FsayYMGhn4xx8tEpLn3nVrZdP2CnYHZwcHBwcHgFUUiXOPaAPS+y+3VDL/HeODg4ODg4vDxoeUa6XC5jGAYeT2TV763qM2b+qm0rvps7XCA309pLadltv+hTfQrDr+2sv9Rel2UzQHb6CcEXt3mDiYeSFJJiL/qD/X62vWVAON2RJ6qR2BkSqvN8MMumPQkl+J6/nNXbEwWsMtneCp64hrdDPI1E1wVRel4l7h4zfyjDzFMp4Xrx7WFiW8TTqI3c3E3vq8TdJmI7QgQHxVeSvxyQNYnOPRG8MTGXCnfExba39ePrEqwXdtF1UVQ4ZWJhtsz4/UnhieNgn4/BazuF0yaqHpnggLjTkFk2hV2pwBZAiorgwBb6FQVT9T0f/D2etlJJDlzXxcA14o5P008uMHdIXHCZPp5bMoFolVuLUc/FIRLbq8e3pdWHWpnkrER+WVe966+eAeDCj6++Yt/tsfvMY8eOtbgdh7PN2NgYkUikPjZajqXa45+xm5Z+XqzILGRlWrW+KA3Z9yV/XCbY2VraGzPZECgaJZPigmA/YFlkJwvCAk6A+I4Q0Tbuwd6EW9hR8vlQyRvCDj5QdZ1pQ0xlGRaWqKOpZN8XRVNAKZpM5wURYTcXU7dIHc8Kx0X1KES3BIWdRN0hFz2XxoTruQIq0dHAK3YSzZtwE+wTH1dGRv3Et4s/vwR6vAQE0wGDLaArJMUFMrGtwbaOz+VXUb3iKRPNiiUuELRstyFRdzAsu4+wjBdfrAeAZKcVFE1n5/Ip9L0qIdxHVLI6yQNp+/gEVJ56waCUWqqytdIbC0xdHonYkFpPn5e+uDVX0bwlkzRUlp/4z97yaQC+/KbPrlpPjkYYGxvDakfB+jLia1/7Gl/4whf45je/CcC9997LF77wBb7whS+QyTTOy0c+8hHe/va3c9ddd/E3f/M36LrOn/3Zn7F3796ztq/33HMPf/AHf8CnPvWps7ZNB4dXOj07Yrzl41dx+bu346reV0vZCvd9YT/f/qMHmT2Weml30MHBwcHB4QXm4I/HMHWLjtEwHZsjL/XuODg4ODg4vCxoeaamlnLE41spsLCWvb/PX7VtiaPS7IG1J6BWm7iV3W4UzUT1qhvPry17weeOuIgM+5l9dlFITGCWzbZWyuemCpz+2YzwatZAn5fufVGSB8QmvxO7QkQ3BTjybTHHmvCwHy2oMiuYdirY78XlU4VdnzouiKB6ZM48Iuay0r03iupXOCp4fOP3zyK14QKjhVXMivhK63Ycg8BOZ1fOiE88Hv7X8ba2t+PXBlk4lmWqTXcdEWRNZuevDTL50JxQe9HzBs9++aTw9oyyQW6qiF4Ui2fuTJFn/1F8e8jgjWmUUuVVV12vRfpEntz0mLATQHDAT/+VCZ772imhuv4eDx27w7aLlsAmPXGNUL9PWLTn7/IQGvRxRrCNdewJEx7yc/S7YtdSbEsQb8JN6piYsGH68XmsNixG2k1VEtkcQnZJLBxp1G/FUUl1K/Zk5zKBkrpoC2jXclSaPrN0UrUmUKpx4cef5KmPXrTkM1mW8fv9nDx5ct19cnjpGB8fp7+/n9V61JpAqcbYTdQdlcq6RFlfe6JdS63sxEpDcYKFFHILI8NmgRJAYDiKUbEoTKQ2rgz1sVs76aYAFo5lhSava0Q3BcjNFIXHbF0XRclOFoTdGsNDfvLJopjgSLIFHcX5stD9TVIkYluDLJ7OC6W5UjSZrr1RZp5OCQnNjJLJxENJYYGFJEsoHtkWKQmcwnJGbytdrlExKcyXMQUFHYVkibGfi2/P3+0htjXY1r62Q3jEj6/DLTzeTh1rz5WwnNWRVXEhdHK/eNpbsNsnsu3mI8LsM2lxwR4Q3x6ktKgLp5MMj/jRC/a4VARfpxu9aFJeFLCww36OrGR1Smmxet0XR1k8nSc/27rwS5Ik4ttDJA+kherpRYOZp1PCafeMsrl0O5a1JK37mvupSIS2dFCYr2CUG+d+Q0clCRRVQlZg/qKlAqXQSbsPXs1RqWjJLM+MWhMo1fjymz67wlEpEgiyUCwyOTlJX9/aDtUvd26//faWyrndbt7//vfz/ve//0Xeo7W54YYbuOGGGzh06BDve9/7XrL9cHB4pSGrMrtfP8Lo5T08/C+HOHa//dw/ezzNt/7oQba/ZoBL3rEVT1B8kaKDg4ODg8O5hKmbPHe3nflk1+uGkFp4fnFwcHBwcHAQcFJ69tlnAfAFOpd8vlygVKPmqKT6ZEL9boEt2VQKMke/O7m+Q8cqE1SemEZid6SlSbYl9eIa8e3iq/L1omm7AAi+r08+m+bZfzopvL1yRifXxopiX6ebyGhAuF54OEC8Dccn2SWhesRXIo8/mOT0T2c2LrgMvWgKp3ECGLq2k/4rxJ2N2mX6iZTwxMfzYfbplFD6wueDqZtMP7lAbkY87Ug76HmT8fuSwq5p7eLv8LD5jX144mLOTaZutpXGLn0qx5FvTwiLm2SXjOpWkGWxTjfQ5aHzgohQHQBvQmurbylndPJt9GVj981y+N/ERXv52RKFWXHHJ1+Xm9hW8XtDeNhHdJW4bOSoNPbAAtMFcVc4n88kELTbynKBUo3VHJX8fj+ps5iayEGMyclJent7V3y+XKBUo+ao5HGZuNYosx5Jb4T05PrCmOUCJQB/p4Y32uLAq2ns5ut04/KLjxUqWb0tp6HJh+facm4qpcvoJcHtSRDo9eDyiQ1IJVmy0+AJOj5Jki3okATH20bZZPKROWGxA9hCJUtw/KsFVXovjbc1RmwHvWCQOpY9a64zpcUKC0fbEwC1QyFZaqtNt0t+pmSnwDtLRLcE2nIuNcpmW2kBZ/enSZ8UP3+KJiMp4i+iw0N+vHHxydlAtwctKO4KV0xVhFMtWqbF6XtnhARKdj0oLpTbuvb8XZ6ljlYtiFJlVSLcr63qXLqeo1KlYDF7rML8Ba05KNWQsAhIBkpVbblcoFRjuaOSGrGfq8fH21uA4uDg4PBywxf1cP0tF/LGP7yMaH/1+diCgz8a4+sfvJeDPxlrS1js4ODg4OBwrnDikSnyqRLeiJuRy8WeKxwcHBwcHM5nWn67OT09DYDmCdc/W0ugVCN/1TZ6J0/Re3GIw99NLplsbzX1zZqs8bIyfTxH+rj4y/rwkI/EjjBzB8UEJIFeL96Em9mnU8LbFBU2gZ3KbrEN0YnoCusa4/e1txJ8+vGFtuqJOhrV6NoXwSiZJPeLOVONP5DEamOTg9d1UlwoC7vOuCMujLIhnApv5KZuMuN5Yect0fLPCxNhpy6wV9iNvr6b6ScX7JSELVcET0SjvKgLuaa5AiqD13Zy5pE5oQmXwlyZE3dPUZwTm8jVwipde2NMPz4v5N5hlk2KbfSTmdP5toRpyQOLbbWX5P5F4esOIH0y197Eahv9JtgOU/5Oj/A1GxkJEB7yC7mDSarK6Z8m1/y+FUeltVjLUamrx0JVLbT/vH/d+ssdlVRVJZ8/O0JGB3HS6TSJRGLJZ2sJlGqM3QSXP2ZS0iG5uHSYt5qDkgirCZSg4ZgpBwKY2XUm+JeN3aKbg2TG81RyYm0w2O+lmKq0JU5uw1CNVBvjSiyYeHBOvJphteXCY+pWW+lrsWgrJZ3ikQkN+Fk8lRMSPZSzOlNPLmAIir60oEpkJEDyQFpIfCIpEoomCx+jJ6oRGhR3F9TzBtn82RPxlDN6W45kgR4P7rBL+LlHdslIirizUbDfi+pRhAVcqeO5VrNWLiHQ4wFJEhZUiR5XjXbceAFhF8oaU20+Z7XroNVOvwm241M5XRF2r4ttDzJ/OLP0ut3IUckbYuKxtY9vQ0eldVjNUUkFBl0VTlU0/s/7/3bd+s2OSrmAPUFfqYgLQ19IMpkM999/P6973ete0v04F7jnnnu45557yK43fnFwcHje9OyI85Y/uYpn7zrFk/96hErRsFPAff5ZDv1kjKt+cxeJ0fDGP+Tg4ODg4HCOsf/OUwDsuGEApY1MHw4ODg4ODucrLd81k0l7wtXttlf/bSRQqjHZO8DRO8UFSomdAXa9ewTZvYprSRspPjZi+okU+79ySriev8dDbKu4i0jHBREGXt0hXE/1KWiCq+tfTnTsCZNow7nJHdLQgi7heoVkWSi9SQ2zYgoJY2qM3NhN596ocD29aGBUxNt9eNiPOyIel3aJbPKjhcTbp14whFOxuHwqW36pj+CAV6ieZVoYFQNLsB8xdZPsZEH4vMuqjCfqQtbEHlK0sEr/1R2ovlfmw42syXii4kKd0KCPTW8QX5US6PIQ2yY+OTX50BzPfe10y+UltbX2v+p9cMsQva8fYsvFG99ga2KlGmOnJLT/cGiN0ktpdlTyer2USuKOVg5nh8XFRUKhxj1xI4FSjUcvVpjPLHWqaUWg1Ndn4LkgSmlopcPgWgKl5ciBNcZEq/S5Ew8k2xJehwb9wi4ikmyPMdwh8Xui6lWQ5FemXbfilolsCthptQSQFdk+B4JhsQyL8mJF2IEJCwzdFH4E8MY0ei+LC7vcWKYl7DgDtnjLEzt7aUtUr9LWvdQ0rCUpsVolPOyjY5f4BKJl0pazkV4w2lrAoHpVXD5xt65Ajwd/9+ppVV8JKG4Z2SXel8W2BtuKS2jAh9ZGnzt27yy5M6s4s67RASiRSEu/u5qj0uLF3cRfFyfg3vh6r4mVACrA4bKbT/7OZ9eu0ETNUUly29frwkJ7QrMXiunpaT7xiU+8pPtwrnDDDTfwiU98gg984AMv9a44OLzikVWZC944wtv+z6sZvaLxTD97NM03//AB7v/iforZ57mg1cHBwcHB4SwyczTFzNEUsiqx/bWDL/XuODg4ODg4vKxoeUZibs5eDa65gy0LlGqbKGfFX/Lnpksk96+yKnWD2YnE7jAjN3cLbw9oy6Fj+vEFDt0hbtcuKpCo0XtZnKEbusTrXRln8LrOjQsur3d5nN420qGN3NzN8E3i++mNu/HExNJpAZz+6QyTD4k7FiR2hwmP+IXrjd+fbMs9ZuzeWZLPirsNjd0721aauP4rE0RGxY+vLWQYuLqTUL9PqJqpm5y8Z3r1yYh1qOR1Tt4zRe6M2Cp5PW9w8ofTFJJiL79Uj0zPpTFhEVZxrsyRb05QnBfdnoKvy43sEps4Dg542f3uYbSw2H76uzxsflOvsCgqOOhj61v6hEVYsc0Btry5TzgVKCAsaAOY/kWKg7ePiW9MgGaBUmyrn9HXrd8HriZUWpyDuck2JnJ1GbTWb2I1oZLX6xVODehw9lhcXCQYtMV1rQqUAAxJwhQbrAGQSkkUCivrbSRQ6tzlX5LubYVQ6QUWl088kBS+ZwDiwhjsFEK9l8XxRMUm2hVNpvviqLCYSnHLdF4QERZYuPwKA9d0CAvZZUXCE9WQVLH2UsnpTD+xgFESC6rikQkN+oRFQ+WsztyBReHUUcWFMtNPLgjXK6UrzD0nPs7zxtx07D57LgD+zvYEuPmZEqnj4q4hmbGCsPsSQHay0JZ7ojeu4e8SF8ekjmfbSrvnCrhw+cXF9h17wsS3iy+yiGwKEBoQGzcDxLeHCA2J1+u8IEJosM3ngja68cmH5tpLD7jetpbdT5oFSoltXnzx9c/fcqGSBcxlFUq66D1TQkdCklsPzJff9FncHvs59/Dhw4LbE2N6enrdf7UFaA4ODg4vBf6Yh9d8YC9v+OhlRPqq9yULnrvnNHd88F4O/XRlCjjDMnk0c5QfzD/Bo5mjGO0M7B0cHBwcHF5g9t95EoBNV/TiC4vPaTk4ODg4OJzPtPwWtua0oGgaImqeSNAg+vZhTky68P5k/TQ0zRTmKhSqaZVktxuzVGppkksv6FRy4ituEztDeDs8jP1sRrhuOyTbSIsFMPNUSni1O0A5XcFwicfFqJhtTS4uHM20NSd5+qdnJ/41wkN+iqkS6RNiEyeyCqaJsLAtNy0+qQq26wymiSmY0ePQN8cwz9ZCNBOe+/qpJa5praJ6ZPSyKRZPEzIT7aVUkVVZ2BFJ9apENgVYHM9TXnx+KZNaIT9d4vC/igsgSwsVZp5OoRfEjs80THTB9Dtg97mFOfFGljqZo7RYEb6G2k152S7hUT+xLUFO3DW1brnlDkpG2WopFVU99duWIQCyAgvra25K2/7hCK4pP8rhKMXNrf/AhR97kvve56JYbK9fcnjxKZfLaJqGpZhCE8R9JYP09RKLqsymr7feX+VytUlai9JQDPep+ZYclCoF8/9n7z3D5LgOM923qqtznunJAYOcCBAkmKMCRImkAqlE7toKtqwre3dlr7yS7OvrteSV17LCtb1ea+21vNeyLdmSlRNFUaQkSswJJAEix8mpc66ucH9Ud0+e6VMEQZCo93nwkDNTp6vq1KlTp+t85/usZ+I8mtFvqwwGOi6JkhstUc289LE3pgGzL4iPvQzdZOrZNLWiWL9vGibVbM2We4xeM4QFVbpqkD5VEO7HayWdyafsRU7ZQfG6CPf5KU5W0AWFQ5IsLZmwWgtDM61njSiSJeASvX7FyTKlmfPXp+ZGSuTHxJ+JkgxIkrB4S6vYi2VGspK6RNu1L+7B5XXZHj+LYmdBAFgiLDtzpUbNwBBs0wBqUROOTARIHslh2HBmFYm8PRe0bQ1TSakrxzLXo98WOyhpVaOle7YR/Zbday1sypYb363XLhs5Yz0LPv2ZvyU52k85H8QXav175P9+yz/who9bIvGXkne/+91Iq8Tjmaa56t8dHBwczge9O9u589M38MKPzvDMt06gVXUq+Rq//LuDHP3ZKNf92g4SQ1HuTz/PZ0e+zVRtbizf5Y7y8YE72Rff/TKegYODg4PDxUwxXeHU49b74p1vXPcyH42Dg4ODg8Mrj5ZFSo1JzMu3CbqBKCYeBeIRFbm7r+VykssSEjRXaC+e/VqD+EaxCDYl6MKlyMSGxFaXukMuZLdMNf3ST7CdCzovFY8aA+jcZa8cN9orJoqvzY2pWyvfRQkkvLRtElv97E94MFTxiS930IWumRiCzgOBTi9aRT8v4hiAQJeXgXCC7stsXncRZMsJoJpVhYU17rCCXtbExFsuCHb4KKdV4esAsOEWsagxWQFfm5dKWrU1MWSXLhuxggDb32XvS1VsvXjs5fnE5ZNxBxUqgoIql1fGHXQR6l5jMmmFiZ5oK88Ulww+a4JMlq3JY12gTQceGUSqupA0Gc+0qKPGUcdJ6QJGVVWGh4e5rF3s/oprBhVJouySiK9rvZ9TFBPDAMOw2rMSVjCrrbnChLqWRk6Zqn/VOd9Ap5dQnx9dRNwqQbDbRzVdsy+YOI+E+8TdTsB6LtqhbZO4q44dXF6ZQKePwkQZ04YQq+/ahND2SsBFsNNHbrgoJAaR3RLugCI8PnQHFQIdXlvuP3bwRNz4Ym5k5fz0x764ByXgoiAo9lZ8LiRFakmEOx9/uwfZI9tyQAMYvFnMDdbf7gFZorySyOUCw/Z9u/3cHse5JtBR//6SF28vWkVfdeGRpCjgXvoqY7ln0bKEQyQSVr/gdpnoBkIOhGeev5R8sg1vsIjH13o70zQDOI26XOzvOSQcDvOBD3yAPXv2LPv3s2fP8slPfvIlPQYHBweHVnApMrvfsoGN1/Xw2FeOcPoxa7J3+niG7/4/j1B5h8HfrXtgSbnpWpaPnvoSn9/wfkeo5ODgcNFz+PBh7r33Xvbv38/k5CSRSISdO3fyG7/xGwwMDKxa9tlnn+WrX/0qx48fJ5vNEgqF2LRpE+973/vYtWvXgm0Nw+D73/8+3/3udxkbG8Pn87Flyxbe+973Ltn2YuDI/cOYuknXljiJDefPUdnBwcHBweHVQssiJbfbirn493fcz2f/7k1CO/GOLly5bmbXXskeHQoQ6vIyuT+Dqc17QbmGWElygeSSMdTzY/0b7PPjCSjCK2/bd0ZwB9xMPikWURbo9OJyy8IOMrJHBhkMUZcbF0iAKTgP6Ila7UUVnBTqvDSGVjVIHRGL2Aj3+9FVg9L0+ZmMCHR60aqG8Pl1X9lOJVUlc1IsgiLQ6UUri7/kb98eoZysCtdL/00d5M4WyZ0VW52fuCRKYbxCJSWwv/qEcyWtCk1Uyx6Z3ivbSJ0oCE1CSS4IdPkpz1bPSz8he2QiAwFyYyWh+88TdtOxK8LMwRyqgBhO9sj4Ym5KySqI3LcSyC6E3bokF7i8LrSSWCfhCSsEOn1kTheE3JRCfX7im8KM/HJaqJw/4SXY7bMVt9gqkmtePJMMslteWwjna1gBF6AjTrQTghGJydNrT/rPvqMxme2HEOzuGBc63ndHj/DDcxzD5XBuURSF9vZ2Pvem73L7z97RcrmzXogdstpHtq51CY2uPSHa3W1QLEoUixKekYa7jmw5Iq2CrEhWDOO85mSW5o1TVmhnySNrHtJSJNDKOqWZipBzpqxIdO6Jkz6RF3JukmQIdNafUaLRZh4ZXRN0CazvU9SVRZKt54Za0ITccdxBF7GNIVJH8ugCz0SXR6Y4VaE0UxV247GD7JbIhtxUMqqQq5g35ia6LkjyWE7oOrg8lkC1IrgIwRNW8LV5hMdPwW4fhuojKTj+9cbceEJu8qNi+1P81iILkfEFQKjXjyeskDoq9r3HHXQhuaTzJrb3xtxIsiQctduIIhR1WHUHXZiG1TeJIMn17lHwFpLdEqaJsEDQ3+5BVw3h7xOJnVGq2ZpwO1MLftSCds7d8iSvZ97/zwk6ZZdVn2v1n2ZnG+QNGC9TGgrRH9coVGQK1bVFgt53zwDwTTZAJ/xm37NCx769fsleahejLVu2kM/nWb9+/bJ/13Xddvz8q43777+f+++/n8IaYx0HB4eXlmC7n9f/9mWMvXaWR750iOxEER2Tf2l7yHpOLuo2G7/67Mh3eG3sElySs/DGwcHh4uVf/uVfOHDgAK997WvZuHEjyWSSb3/72/zGb/wGf/M3f8OGDRtWLDs6Ooosy7ztbW+jra2NfD7PT37yEz784Q/zmc98hquvvrq57f/6X/+Lf/u3f+OWW27hjjvuoFAo8L3vfY/f/u3f5gtf+AI7duw4H6d7QaDXdA4/MALAzjc5LkoODg4ODg52aFmk5PFYLwM3DJzk//vM3/DmD3645Z0Ezy58EWpMrv3iN32qiKzIaCUDQ130YtNY+QVw79XtRNcHOfzV4ZaPr4mM8ETS7CGxyYQG1WwN2S0Lr9AeSHQge1zC+x16fRdK0MWJ74lNYq+/pRvZLXPyh2LlNtzag2nC+KNiIixkCb1qCIu+7F6HoX1dVDIqk08JZCwBHLK1O9vHaXd/0aEghckKqSNi9dm9t438WEXseGWIbw6THysJT+7MvmCvXqafzdgqxwHx/XkiCkOv72L0kVlKU2KiLzvH6Q4pIMHMwayQY0F4MEDXpXEm96dRs62Xi24IMnhjJ0e+OSK0v/jmEN2Xt3P4a2JRf/HNIWIbw6SO5ISEUbnREoWxsv176SWmEfvWdVmM9q0hDn115cg+ORQE5oQcphonPQWybKK1MK86Elv487a+1u/zP+l6yNqn2Y6itDwUcDjPKIqC3++nO5Hm6Xf9Peu/83+1XFauuRb8LBXXfnF/+nR94tuU0FLzx1p+jOzK91z/NVEyp8sUpq2Gu6yo6RxOhhYnxd1YJNmK/qqkVSExjuyWiG4IkRsuUUm3LnhweWX6rkkw/XxGqJzid9F7VTtTz6aF3H/cQRdtWyJMPpMSEiC4vDKmAYXJsrDbX25EPGbMG3ET3xxi+vmMDXdB8YjX4lRFWFDzYjB0L+6QIhxPJntkPDbKIVnOs+crDu187adBdCiIyysLX0O7x2kaJpIsCZfvvDSGrhrC3+u6LotTK2nC59e9N041pwl/Xwr1+KiVdeHz02sGRk1c3GS7vUisKNySfT5gfp+qItWj03r3hsiPq+SnV+5zzb4umKdXz1dcHJuSMerPvrXQQgufH+G21r9DXu+TyeSsZ/FLHbV7xx13rLqPrq4ufv/3f/8lPYZXCvv27WPfvn0cPXqUD37wgy/34Tg4vKL5p6mf889TD774D3of1CoaZVWl4l95PGwCU7UMr3vuE3jkc/Od9hZzGzu4eCbZHRwcXh28+93v5o/+6I+aJgMAr3vd6/i1X/s1vvKVr/Bf/+t/XbHsm9/8Zt785jcv+N2dd97J3Xffzde//vWmSEnTNL773e/ymte8hj/8wz9sbvua17yGu+++m5/85CcXlUjp5KMTVHIqwTYfQ1d0vdyH4+Dg4ODg8Iqk5W9xsVgMgKkZg4E+mR988X+2JFTqLyTp2ufnyP1zEwtydyfG5PSq5QwVtMIKQgDZtaJQKXU8b+uFaM+VbcQ2hoTFTbJHRlZAK4mpm0SdkBqM/GLGVrmp59JILvEVmzMHs0iutbdbzPDPpsQLgW2XE3+HB1NDaCIQoJKtCb9wB4htDFIr6bZjK0Rp2xqmklGFxTEn75l4iY5oGQw4/t0x8XIyJLZHyI2UzssKe1mRadsSIjtcEhLjGJpJOSXupCErMsEuL8WpKobWetlaQWP8MUGRH5AfLXH0myOoglEspekqY4/OolfEyuXHSpz92RSaoCtV+niB9HHxFctqTrMlUJIVGdkjCTs+dV/ZRtumMIf+9WxL25uahqQoZE4XVu2PLIHSQqSz45iAtq53zf0M/9FCwcn2KciMbCV249E1yzYESmBNkun6hR+ZdbESDocXrOw/fcfftSRU2ntYp+A1SVbnhnnZDV6ip1Z/hhiGhPfE8s9vORpZUag0e7RIrX5vrei6JElLhEr9N3aQOVUQjpyS3TKmbgi5DZmGvQlzo2Yy9vCscDldNZh6Li0ci6VXDWYPZamVxMrVSrrVh9fE+mK9Ki6sAJBcEp6gglqoCV0HQzOsqFxBfZLLK+OLeShOV4TL2kHxufDG3MKCuPJslfLs+YsYK05WbIn2PGEFl9d13o7VE3EjK+LORlpZFxo7NVACLiRo9kutUrIZDzf7gr3vL5nTBVtOZKljeQwbMYtTNsX9otetgdVXm5iG2LH2X99B9nRhyfdlS6C0FLNcRvL7SZ0oryqYN/uWTh6Ej1rXLr917XgG/3+YW7QjGdA/6uUzpTv5vZ3fXrPs9fVY32rVmmzfvHnzmmVeDDfddNOqfw+Hw9x6660v6TE4ODhcfBT1CtO1c+Rc7ALWSFxvkNGLYi7Sq1BWXto4TgcHB4eXguWi1gYGBhgaGuLs2dbeZ87H5/MRjUYXvI/SdZ1qtUo8Hl+wbTweR5ZlvF7v4o951WKaJi/ca9XrjlsGz1tsu4ODg4ODw6uNlkVK7e3tAExO6Qz0WcXWEioFD09Rjsokz2pLXIrk7k6AFcVKwS4PbZtinH1wZnl3oxWESpWUautFauZMwZo0EaRrT4zYBnFxk6/dg7/NY2uS3g7lWXtftAvj9sRUIo4q8/FEFWRZFhYb9V2bQCvqnHlATBw1+WRq7Y2WoXNPnPJMVViktP6WbkqzFaaeyQiV69oTJ3umKCxSeiWgeGR6rmhHV03UXOsrwpWAi/W3dDP+eFLoOrhDLnqubKda0IQmj7WSzsiD4iJBf7uHoX3dnLx3XOj6yR4Zf9xDcaYi5vBmICxQAksUlTom7jahlQxyw+JuGnbxJzx4o24yJ8Um1Tv3RGnbEuHQv4h9Oc+eKQjH4ZiaRjUD1czy12E5gVKD9i1+XL0wdXr5vy8WJzVIBqDghSfPbOUNQysLleYLlABKpdJF9SLhlUYkEiGXWygMWkuolHjKRcYNqrFUmJzdYF3rlcRK0aiBHHdRSi//ln8loVIlbbX1tWLhFguVUkdztvqrvmvbSZ8oCI9R/AkvtaImHMlkCxNbEUemYdoTSpgIOUQ1kcATVKiVdSGxhCeo0HVZnPEnkkL1WSvptsa+npBC+7YI5ZSKISDE8sbcxDaEmH4uI3R+3qib9q0RS9j2KkxECnT48Ld7hEVKkcEA7oCLpKBDZ6jHhzugCH9Hs+vEE1sfRJIlZg6ITZQqfhemYQoL0u0IhsBeHwHYWmDxYgh0eFEL4n1n79VtZM8UyY+K9dWpY0ufDSsJlBqY5TKVVWazlxMogeWyF++WqCoGqrb8GGu+OGk+2ahGzW3yydNv45Prv7vivhsCJYBC0Wpbiyd3HBwcHF4NBF0+Ot1riz5bRTU0S4C0BjFX8Jw5KflNz9obOTg4OLwCME2TdDrN0NBQS9sXi0VqtRrZbJYf//jHnD59mve85z3Nv3u9Xnbs2MG9997Lzp07ufTSSykUCvzjP/4j4XCYt771rat+/uzsLMnk3GJcO+KpC4Wpo2mSZ3K43DJbXzvwch+Og4ODg4PDK5aWv8V1dHQAMDm18KXtSkKl4GFLLFLJGlSydiZNDDwhBVmRMVaadFlGqOSJKsSGQkwfyAhN7JdnVMoz4kKe9PGCrRXMsQ0h2jaFhSdqOnZFCfX6Of3jSaFy4T4/3jYPs4Iv64M9PtwBl7AgIHFJFJdXZuppsRi1vqsTyIok7AA0/OA0po05RyVgvTQWdcI69u1R4WhAsGL+1Lz4gR7+mo34QmDbuwZIn8wLi6LsICsy2+8aYPyJlFD8hFYxOPCPKygyVsMwqaRrwpOy1UyNA/98Wvz6ydYkqVrQhMoWZyoc/8GYsPAu3Odn8Cbx+LVAl5fEjiijD8+u3Hcugy/uIdTjE3YpCnb5CPb4hCPt2raFadsc5sT3xaIkYxtCxDaEhPuk9ImCLbGm3WdDeNCPS5HJnFp4nKsJlMBy7/BUCkBIaH/T4bn//8kKQqXFAiWw7JoDgYDQvhzOH5FIhGx26XN7JaFS4inL+jBbs2GBCPhnM9Tcq2+znFDJ3+bG0AzKrQxp5gmVStP2hLczB7PUiuKT9O3bIsu6c6xF12VxcsNFyknBfrzfTyWtUisKPPclCHb6qGRVdAHBt6xIxDaEyI+WhNxjFJ+L7r1twvFyaqFmCZQqgmMaCVwe2Xp2C+g6ykmV4V9MCwuGjJppCToEyxWnKrYEMsEuH/HNIUYfEnffskN0XRB/h5fJp8RE95lTBTKnxPenVXRboq3U0bwV4SWI7JYBUzgaMH28YGt/7VvD1Mq6cPxaZDCAXjWE20ygw0utrAs7roV6/ah5cTfYjt0xSjbadvu2CGkbrnezL+SolcX76sXPhrUESmCJjYKdbioZDV1d2F5WEiiB9UhSPBA+lSc52PrEuilDLjrX/60kVJovUAI4M+ar79dGA3VwcHC4wHlv12t4b9drztnn6abBrQc+xXQtu/zww4Roxc83Bj5Kx7pzI446dOjQOfkcBwcHh5ebn/zkJ8zMzPDrv/7rLW3/iU98gieeeAIAt9vNW9/6Vt773vcu2OYP//AP+eQnP8mf/MmfNH/X29vLF77wBXp7V3eF/973vseXvvSlJb8/ffr0K87h/eg3rUXM7TsDnBo50VKZQqFwUT1jLrbzhYvvnC+284WL75wvtvOFi++cX8rzbTUCtmWR0qZNmwA4earGYs/dxUKlhkAJABnCCZlyxkBbZm5nOUclQ62RH66RH27hRegioVIg4aVzd4zU8ZyQ8EQJuIgMBsicyGMIvEutpFVh8QHA5NMppveLu/jUShpqQXzVbajPT7g/ICxSim8MEez2CQsCPEEFxS8+STr2uL1JHTVrb0Xxutd2o9d0ztwnGE9nzyiK8cfF47teDMmjeUoz5yeSzjAMZg9nKSfPj9uTVjEYeXD12MgVsXH9wj1+hvZ1W4IjkYlqA7Ht6+THypy8d1w48kfxuvBG3WCInWS430/XZXFhkVKgy0f7toiwSEmvGEIT4g0mnkjZiiupZmq2HAvCA34wxCM640N+FL+yQKS0lkAJYOp5S+UhkcOcF/u2koNSg/YilBUo1U2RFgiVDIPP/OBeah8Igbzwc0qlEj09Pa2cksPLQGdnJwcPHlz2b4uFSg2BEoBbNnFJJhV9+XaznKOS98QUrcqKFwuVQu0mal6n5bukLlTyRt2W45CgW5nd6KGxR2dtRSvVipotp5TouiBGzRQTKWEJAmYPZylVxJ6n7pCCpMiI5F1oFZ2Jp1PCUZimgS1HKk9IofvyNiaeSokLzWyIY2pFTUg4/WJRCzVb8Xl2qWRUtOr5e6FrV1gI2Lp+7dvCmIZ4nJotVzGscbNoNBmAO+BanGbZErGNIYqTFbKCIqXIQID8WElYpFQrarbqZvThGVvnZ+c7suSS8Ld7qKRUDM1sSaAElqAt1udiJlNCZ05tu5pACazXCNNnrJMLH80uiH1byUEJQNbBo0pUfGZTENcUKpkm0ccrXHLzUhH49Ix1v3Z3d7d0XueS17zmNfzzP/8zAwPOau/53H///dx///0L4kwcHBwuDFySzMcH7uSjp76ExKKhRP2H6+7bzPdOPcrON67j8ndswhNYY8WFg4ODw0XA2bNn+Yu/+At27tzJm970ppbKfOhDH+Kuu+5ienqae++9F03TloiHAoEA69evZ+fOnezdu5dUKsVXvvIV/uAP/oC//uu/JhaLrfj5b33rW7n++usXHOOf/MmfsH79erZu3WrrPF8OCskyjx61FpPfcPce2gbDa5SwOHToUMsTtq8GLrbzhYvvnC+284WL75wvtvOFi++cL4TzbTkw9fLLLwfgxKnlX4b+4Iv/E1gkUMJamThwmY9gojXBiqHasL2X5z47c7LIwX8+I+yM42/30Hd1Ak9YzNrXE1Lo3BND9ghmzxoIiaEaZE4WGXtYXOgy8USKY98aFS43+sgsR78hXm788STDPxcXkKhZzZbgqG1bmM49MeFyE08lmdov5vYE0HtNO12Xi+9PCbhQfOI5xYOv7SSxMyJcbub5jHAknW0MmHomIzx5rPhkNtzWQ7CntUmIJjJ4IopAL2bha/Ow/o3dVlkBijNVzv5sSrh9Bjq89N+QQNR93FANKx5OcC4pN1zi+HfGhPuXmQNZDn75jFghrDYmGncJkD1TZOQX4vF5gJBDVIPYxiDR9WuLhBbTuStG4hLxVZlnfzrNyR/OTW61IlBajHS2dZepbTMwuGgO9ydnrC/5n/3qj/B/Mofnr5ZOvuRyOfr7+4WPzeH80N/fz+joys/g03f8HbBQoAQQ9+h0+1rvBLwnBIW6WEKlBlP7M6RPCE7uSRKRdUHC/SvH86yEv92DLy4exWBHoASQOpa3JaocfXhW3I3HhOFfTAuLQQzNZOqZtHA8JaYV9ykqzJBcErGNIWFBeq2kM/VcWtiBSfG7SOy0XDpFkGSEy4AV99axK4okWLRW1IWjrV4M1WzNlqNrqNdPfJOYYx9Yjl2Wu5EYkcEAkUFx177MqaIt0Ve4348/IR5lqpV14ag3gOSRPPkR8ejb8ceSZM+Kn9/440lb7SxzsmBLOGQaCIvMZEUi1OcXbi+K30ViexTF52pZoASgVw1GH0lTnTdOX0ugtBzho60J4nwVma4pD9Kievnk6bcRf7DM7n83AT9b2iYKhSyyLLNx40bhY3uxmHaUZhcB+/bt48/+7M/48IeXuoM7ODi8/OyL7+bzG96/JEYuIYV5xy+uZNOJLkzD5OCPzvD1j/6SEw+NOf2dg4PDRU0ymeT3fu/3CAaDfOpTn8Llau07++bNm7nyyiu5/fbb+fM//3MOHz7Mpz/96ebfNU3jIx/5CMFgkI985CPcdNNN3HHHHfz5n/854+Pj/Ou//uuqn59IJNi6dWvz37p1617Ueb5cjL+QxDRMOjfHWhYoOTg4ODg4OCxPy28NY7EYkiQxPLrypILhXWpbrlXgxMMlspOrT0bI3Z0LHB5kBXb+uwHatrX4Al22F23SID9W5oWvnBV+ceuNuuncFcMdENt/QyjhDgkqFxrCjPOFTccgu0SHgrbEP764h4CNyYjSVNVWlBMSlhOEIBve2E3P1QnhcnYmB8CKDPNEz1N7ka1JqEaEngimbgq3NV/Mw9Y7Bwj3Ck5wSyDJ4tfOUA1ywyUMTexA3UGFYLcPUTVVqNdP79XtQmVeNOfxfrcr2Ou92p5AML4xTHyz+ITsyXsmOPuATccuwNQ0IYHS1jcn6Ng+byJXktZ0UQJ4qhdOtS39/V/2PIX7m9YkmfubCydCZ5MGpmm2nE/vcP7p7+9nYmKC2ipRR3JlaftIVl2MlNZeRZzd4MUzM9cuwl0uuna0/iyVoxGMF+E8MPtCVti9Daz+Mdgl/syPDAaIDIgLJewKM2xznudVokNBPILjUUkGf5sHl6BI39RNqpmaLcGYJCEc4eWNeui7JiF8nJj1sZfgDl0eGW/s/K3gV/wuPGHxcZ5pmracceKbQnTYEM1j49qB5fxjJ9rRG3ULfzcDq4/wRs+zA8P5ut+lumBP8Dq4fDKJnRFcgmM2l9dFfENI+N6rFTRGfjmDKuhANx+zXG5ZoBSMQe+WhZViuqRVXZQASgGDsT4Vc5nT67/XEjpJP1wqQBseNeju7sbtdpw+HBwcHFplX3w3P9r1X/n7Lf+BP1v/q/z9lv/AfZd/gj/4T+9m77s246qP08uZKj//X8/zw089Tmrk/DlpOjg4OFwoFAoFPv7xj1MoFPj85z9PIiE+BwFW3Nv111/PL37xC6pVawHVc889x+nTpxe4IQEMDAywbt26FV3AX21kx60xfmLIxvdiBwcHBwcHhwUIvTX0+/2Mjq3+oji/Z6l1uVpgzclvY9qK+ZJ91qSTocHs4XzrApJ5kW8bb+uhbYugktlAWHwAlrjp4D+fEY8RMkF2SUiC78/D/QG23jkgPAES7vez+Y4+Ycen8GCADbeJRwEldkXZfvegcDlfm5twv/gE4vijSc7cL+4EER0K0rZNXPU+/miSqafFHZjGH08xcyAjXG7kwWlbE7n9N3SQ2CbuAmMHxSOz7rVdhPvErp9WMTj940lhtwk1pzH84DTlWTG3iUpS5dSPJlBzYpNevjaPJY4RnOfMnily9Bujwv2LL+62osYE6b26nc139AmX67w0Rv8N4l9ee69pZ+CmDuFyg6/pZODmTuFyuOyJzE7fNyke61jHzrNh01t7ia4PIikKRqF1l4TUyRLFaeu5Zw5Z13HwU2vPYFY9oNbnqWXN4M8//3Ve+IvPwrvHkE9bz0f5lI7/7hn8d8/g+80kP/pxDID29vMshnNomXXr1mGaJiPjq/dXqUsWthHdlNDNte+Tjset2Fkzagn4qnmDwlTrfaMxm0T2evEnPHTsEn/W2HU2mjmQJXlEfOJBkiVb/UdiR9SWyLFtS9iWe0x8c6gubhWj58o2wjZEWMEun7AjklEzmXgyJewwJbkkwv1+YcGDVtaZOZhFr4j1x2q+xvTzGfSaWLlqrsbsC1lhhylf3EPXpXFbghw7hHr9tG8TfzlanKiQOSkuMMwNl0jbKXe2RO6suNNQsMtnS/Q1+0KO3LD4/vwJL+6guOir//oEgU4x4aQkS3TsiuKJiJ2f7JbpujwuLE5zBxT6rknYECRKSC5ZWExVK1piIzsiMzsCukCHh/b64iYpGkGaaS1WXS1DbmZuh7kdMQBK/3uNsbQEmtsqJxkmb/vOs/z7Lz/OV3/0RcI/rH+n+X4B/jJl/fuHDBgmjz8bIhJxJjQcHBwcRHFJMleGN3Fr2+VcGd6ES5JRPC4uu3MT7/z8jazbO/duYfJImm//3w/z2JcPo5ZsuPU7ODg4vAKpVqv8/u//PiMjI/zZn/3Zi16QWK1WMU2TUsn6XpVOW/MghrH0u/Vy0XCvVjJ1kVK0V/wdkYODg4ODg8NChN5SdnV1MTV9Ztm/3faffrv5//k93YSfnWz+3L5eQfFITB0V+3I49WymtQ2NhYOgWkkXnowAa9K8OFm2NfElSiWtcvKeCeFy5ekKww9OUyuIDfy0qk41W0OWBc1STBNTN5EVsXi60nSFlFt8hmbqmQxTz2SEy9klMhjAG3GTOg/XHKAwbjMCpDGXJ9isT/5o3FY0lh20isHR74ygFW3sT0b43AzNsBUBYhd/u5fE9igzz2dY5vvYOWf2hRyzL4gL0/LjJdSSjQkhwYnYBrWihq6K3+uTT7c2ebSY8UfE4y7tIiswdEsPU/vTYrGJciM+aa5ejEKxJUelmcPik6rREgzk4EgCNAXacgXe9OghJHPpnKLyyyoSYEpwIGSJtt761rcK79Ph/LB9+3YADh1T2bBu6UT2xq/+ZvP/U5eYtB202pxLMkl4ddKqjGq0LgZRSyZqqbXxhTE7716U3eiizxrTxBt1ExkIMHOwtXidF4vdZ0bmdMFWH6lV7EVHAbbcVfJjZdSCeP8//vj561clCaJDIWusXrHhZCmIoZm24q0AS2gkeB1Ks1Uqj8+eN3ec3NmirZgxO+cG1nes80mo1081q4ovBrHJ1DPiCxCQIHu2SE3w3pPk+thLUJEjSdYYw9DEymkVnennM8LXUCvpzDyfESrzYgj2+PGEFNInChjVKrK3NfGXaZjoqoE0L4pUmklhdixjMzmPWtX6J0o040JTTIohA1+lxvv/4VEi+QqmxNz3tpKB9NmUNR6LyZjvijA9PcuuXbeJ79DBwcHBYUXCHQHe8F/2Mrx/mkf/8RD56bIVAXfPGU49MsHVv7qNDdf2INlwQ3dwcHB4JaDrOp/85Cd54YUX+NM//VMuueSSZbebnZ2lWCzS19eHoljTgul0mng8vmC7fD7Pgw8+SGdnZ/NvAwMDADzwwANcffXVzW2PHj3KyMgIb3nLW16KU7vgyIxbi3aiva275js4ODg4ODgsj5BIacuWLZw+fRrDMJDnRbPNFyg1aDgqhZ+dRPFKuFdYMd1wUJpPw03J7dPxxTxkz6zy8t1Y+qJ1+Oc2o3lkew4dQ/u6KM1UmX4uI75LQfGPVrEnzCjPqAz/TLxe8iNl8iPiwprSVJXSlI03vjbp2BUlvjnMsW+NCpUb+cWMrf0N7etC8bk48YPVowAWE9toDWAzJ8Wu4ea39lHN1oSvoahb0ItFzYrvz5/wsOn2Pk7dNyEkBPFEFOIbQswcygkJsWIbgwzc0Mnhr59FK7VeLn08T/q4uJit6/IYkcEgx78zJlzWDnbv2ZkD9kQCdsvZ7R9E+0wAxSez/o09jD+RFGpjske24n4ENQaSrDD8i6UirLWESt6IC0/ERU5Z6kzVcFMa/q9Ln1EeHUIqGDK8cO1XADC/1wd3j0PRbBp6NOakzaBE8asJjnwmhyRJXHPNNWIn6HDe6O/vJxwOc/iYypvfsLDtzBcoNWg4KiUOgs9l4JKWH3s1HJTm03BT8hkltKqJrq48Ab5AoARUsxrVLMheL0a1hXt73qS8ieWuI+Kq5I26iW0MMbU/LSy0sIQBYmXUvL1nqR0nF4D0cXsReraF0DbpvqKN/FhJqF81NJPRh8THXi6vTN81CaaeSwsJVmRFItjtozRdFRLSeWNuui6NM/bYrJDQzNRNdJsOYXawhCri+2vfFsHlkYW/uwQ6vLaEX12Xx6kVNFLHxMZRU/ttiIaAnqvayJ0tCbt02sKE/Kj4vWdopi0xuq4awvUIVtu0I9iz02eC5eLrDihixypJS6IBWxUqVTQ/lWX0lmsJlXwhS6SU3hxb8reGm1LgQ0vH8Iom0TAs/PzubzF9XwTlP+n4n64h1V9PSHp93HWlD/NvujACEifPlHj/bzjjLgcHB4eXgsHLOund2c7zPzjFc989hV4zKGWq/Oyvn+PIT0e47v07iPeLO6k7ODg4XOh84Qtf4OGHH+a6664jn89z3333Lfj7LbfcAsDf/d3fce+99/K1r32Nnh4rOeNjH/sYHR0d7Nixg3g8ztTUFPfccw/JZJJPfvKTzc/YunUrV1xxBffeey/FYpGrrrqKZDLJN7/5TbxeL+9617vO2/m+XBiaQX7Kes8Tc0RKDg4ODg4OLxohkdLevXv58Y9/zP7nauy9rHVL+6kj9la/JnbGiQ54VxYpLSNQauCJKsKCieGf2hM3qUUNrSK+snjrO/spTJQZe1hsBXvikijVrCosRFACLjBMNMGoDDsuPrICod4ApemK0P7CgwH6rm7nxPfHhMpVUio5OyvJbZI8mkNWBHO/gNiGEJIkCYuUpp/L2HJj6L2mndJMRXh/dpA9Mn3XtjN7KNt6TCPWavCJJ5NUBSdOfDEPiUtipE8UUAUmHkszVSaeTonfBzYpzarWpIsg/Td04PJInBXsl0K9fmolTdh1QPbItly3PFHFmsAXKSpD99420sfzQsfpCSlsfccAww9Oi4k1ZQk1XxN2etFKBqfvFXO8kxQFJSBjaCxbn6sJlWJDPuI7YuQeE9olM2Hr3wKu8GM+ux5p86kl2+ef7YGAzKmzAaJR/wLRscOFhSRJ7Nixg4NHDgmVM5A4W/TY2mf7jhC5U0UKM8uPaxYLlBrISqOfW0OoNE+gVM3WqGbFhY6GblIrasguSchNxJ/w0rEzyshDM0KiKMXvItDhFRcdSZa4RjSiDMSFW2Adp6xIwqKq9h0RtLJO9rTYWKE0XUErnh9nHaNmkDyaQxN0gZHdMtGhENWs2DNAK+kkj+SE3Wo8IYVgj4/0icJ5cVMKdHhR/C7htlkYL9tamBHs9qGrhrDYJXe2iFE7f+Kt0lSVmqCrpMsr03lpjOThnNA9JCsS7pBiRR+KnGKj+gWrRVYsIY9offriHlweWVi4FdsYwhN2C7tMGTVT7LtLfaxcnKiwuCdaS6gkRSO4PNKK4trVhErtfRIToRAI6sySiYVtROtzMfy1drbsnkIqzTuOgIT5zT5wSxw8LFMqm2zatElsZw4vKffffz/3338/hYI9gbCDg8OFheJxcfnbN7Pp+j4e++fDDD9jvU+ZOJTiW//3w1xy6xCXv30Tbp94vKuDg4PDhcqJEycAeOSRR3jkkUeW/L0hUlqO2267jZ/+9Kf827/9G4VCgXA4zI4dO/ijP/ojLr300gXbfvrTn+arX/0qDzzwAE888QRut5vdu3fzgQ98gMHBwXN7Uhcg+Zkyhm6ieF0E476X+3AcHBwcHBxe8Qh9K7vzzjv50z/9U77zwzJ7L/Mu66C0mAXRb4sinZZzUZrP9MECUwfEV5h2Xhqjc3eMg/98Rris4pOFxQvjj9qLyZh+LmPL6aZtc4jCREVYpLT1jn6Sx3JMPiXwklmGXe9Zz8STSWYPtX4t3CE3617bxdmfTQlNnNQKGvnxknCcVn6sTH5MfBVzfHOI9m0RTnxfzBHJjlMNwJmfTNkqJzpx2MAX99gS0NlBlsHf5kHxuoTKaRVDqG01yA2XeOHLZ4TLqTmNWRvRQp2Xxgh0eoWvYX64RN6Gm0Z5toLkFheP9F3XTmm6KuwStv2dA8wezTH1dOv9g6zA1jsGhPsHT0ihbXOY4lRFSKSkqQYTTyYpTotNsGklXVjsBeLCLaluldy1J06o28vRb4n1K5O5GKlnV99m8FPmEjcl2VjootTk6zkWT0FLgPsbJWrvDZFO11i/fr3QMTqcf/bu3csDD2QAqy9fzkFpMY3oNwkTc1ErWM5FaT6TJwx0zY+E2GRd92VRClNVcsPl1h2VACTLxVJEkFMraKSOijuJqLkaySM5YVGAO+Ai3B+gMF4WEq2EevzEN4WE++PouiDBHh/jj4mNLyODAdxBRVhMUM3UMGzEJNt1ikpcEqU8W6U42XpfbhoIbd9AK+u2nJt01bDlwiO7ZbwRN5IknOJlC5fPhSckPslWzdpbQGLXPbGctBe513VZnOzZIpWUWPnsWfFxs2mYlGerwpHh3qibjktijD4yK3Qf2e0fwv0Bgt3i/YMv7sETUYTbdXGyIlz/QOv7WSTklxUx8akUjSDJ0LM7QOp0lVJS7Lv1USUCaxxq6X/3LXRTahyeBF/Y9NXmr/3P1pBLC49dKpkMP5lh4Lo4P3vEOtfdu3cLHaPDS8u+ffvYt28fR48e5YMf/ODLfTgODg7niEhXgFs+upezT0/x2D8dJj9TxtRNDvzgNCcfGeeaX93O+qu7nQg4BweHVwV/9Vd/1dJ2f/AHf8Af/MEfLPjd29/+dt7+9re3VN7r9fK+972P973vfcLH+GqgGfXWE7S16MfBwcHBwcFhIUIz4FdccQUul4uHHhWL6cnv6WTTnTESQ3Mv0dcSKAHoVQNDnYt/W8AqLkqZ0wXOPig+Id22Ncz2u9Yhe8SFAb42cceC9PGCrQmQY98eE34xDTD80Ix4PIAB44/PkhsTm4iqZmoc++4ouVGxcpWUytjDSWFHF1mBYI8PWXCeRqsaqAVxoZgv7iG+OSRczi7hAT/hfr9wuVM/mmD62cy5P6Bl0CoGx749Jhx5oQRk2raGbd13dvAnPEQ3iFuyamUdtWgvzs4TEZ9ATB7JM2tjMvDkPRNMPCXeP0w8lRIWwxkGnPnZFFnBiWo1p3HoX84Ki7cM1RK0iTppeEKKrfbVf0OCzW/ra2nbhkAJYPZQlvFVhCBGYWk9m0PWftQWHgmN6Dfrw+D30hN8tf3hpcf0dau/NztdGF/vxey0BITufyty5KhKoVDgxhtvXHuHDi8r11xzDUePHiWVFmv3rm0aPZtV5ity1hIoAej1bq4R/zaflVyUAJLHChTnxTgucb0wzWVVG91724itF++TZUXCJXhfN4QnpiGmHiknVcYemRV21Sknq0w/nxEqA1CarVhOPIJkThWZOSC+v8J4mdKMeASnyyej+MWEyWA9T+2IovztHlv7s4OsSAQ6vfMcwlqjklaZfDptKx7LDvmRki2htzfmxhtxvwRHtDz+hBfXCtHfKyJBragJ33eSS8ITVlii0l0Do2aSOVUUdj4rp1TGH08Kt+lKWiV5WPzaFSbLtsplThVsfSdQ85otkVlL9+pigZJbpv/6BP72pd+rjWp1ifhVikYA69Eyc7RMJbfyc1KaWfr8y+2IYZgShrl2Y2lEvwFEci4+XDnEX2/86oJtQvdbg7j8G72c/EUH+Vus52DoJ9bvz5yZZMOGDQwNDa25v5eCf//v/z2RSORl2beDg4PDy8W6vV2843M3ctnbN+GqLwIrpar89K+e5Ud/+iSZMcdFzcHBwcGhNbLj1vtcJ+rNwcHBwcHh3CA8a9vT08OJU/6WXJTm72Y8rTCVWN5mfTX6ro6R2B5cXqi0AmpOs+VcUhgrM/boLKI2PrGNQTa/pU94JbMnopC4JCpU5sWQHy7Zcm5KHskLR+eBJVQSioCq4094rGg6AXztXjbc0oO/XcxqMz9cYvhn4oK26PoAvVe1C5fr3BNj6PWdwuU6dsVI7Dx/beV84m/30ndNArfgNY9tDLLprb3C+4tvDtNzhXhflDqWZ/wRcfFP//UdtvYX6PLaEtZoJR2tJH7jpY7lxVfKG9Y9VLMh9LNDuN9PdEj8i2Df9QnWv6FbuFzyhRzTz2XW3G6+QAmgmtHIjwk4hAz1ISuwfjf4F8e2rcFzV/8rl20/Tm/nUuGveVcY4/0RzP3r4IYA5v51GO+PIN8V5fs//b8Aa8LK4cLm2muvBeDJM19oyUWpQV6WGFNcpHYKxlX5ITFoxQktJ1RaiWpWWxLts1o8T4PMqQKFCXHBdseuGFEb4iZfmwfPeRJn6FVDOHoToFbUKc+Ki4aMmmErUktWJNxBcTFtfGOI+GbBTgvInCzYEj20bY0Q6Gj9+wCAJFtjL29M7Jq7vC4S26MovvMjijrfRAeDhGyI3xM7IgR7xG3tEzsj+OKCCzpMa2yi5sTuIU9IofvyNuFr5/LIwt8/ADCx5VqqlXVb4kC9Yth2whJGsiL+RAWhit9F71Xtq993yzhXmLrJ7KEc1RaueUOgZBWEal6s/8vtiBH16bQHxMewn9jxLbp6R5ecQuENPsb/KsbY38WpDSmMfTHO+F/FKLzBx7FakccPbGs+018OPvShDxGNvjq/Tzo4ODishuJxsfedm3nHZ29gYE9H8/fjLyT51u8/xBP/epRa5fy803BwcHBweOWSmbBESlFHpOTg4ODg4HBOEJ4Bv+qqq8jlcqgVsdUmUxmFkiqT39PdkotSA0mmuRJW9nmtvIdVXJQatG0J07ZNbOJELWikjuUxBL+bFsbKnPnZFGpJrKC/3Uv35XFhcVN0fZAt7+gXvnrBLh9dl8fECmE5FNlxDeq+Ik5ih/hqzY239tK2RezaVZJVTt4zTjkpPtHpDinCdTnzfIbDXxsR3pdW0VEFXWAAztw3wemfTAqX2/TmXnqvERdT2cETUdh+9yDhPrFJr/xImRe+clZ4IldXDVvimPHHkxz7ztjaGy5CCbiQFXHR0NmfTzHx1NruJYvZ8MYe2raK3QdKwMXgazuFJ2N9cY91rwqeXnjAT8cu8cmO3qvbbYn12rdHbIn1Jp5MMWnjGhSnKmTPrO4utVig5Akr9FwZRwmsXplGoYip1poOSkr9krXweAMsN6UXrv0KimKwc+MI7bFlnsnvi8GnO60sRrD+++lOeF+M73//+/h8vpd1ssyhNTZu3EhXVxcPPvigULmKLJN2uUCSSF1ituSiBNYwyzRBrs/Vm9EQZi6/qosSgOyRiAz6kd2LnDG83lVzryoplZoNl7r0ibytuLHoYIBQtw2RxY4IkYGAcLlwn19YFCXJ1pjN5RUUBgRctG0JI7nELGSC3T66LosLlQFInyyQOiru6CK5pCXtpBXGH08KX3PTAL2iCzsb1YoaI7+cEXbb9MU99F3bLuzAZJfYxhAdNhY8TB/IkDoifu20qj0h3OgvZ8Xj+iSExTFgOf9MPJUSFg4Fu3107RG/D4LdPltup4EOr62ovshAQFhUKMkSPVe2CY8PFZ/Vp4g6mOlVg6nn0qj5Fe6fFaJ1TMOkNFNds40tECgBgXYFX2ztY5RmUkiVKrkdsXm/XLNYk9L/7uMLm76Kz18m3r70mVq+0kPuDv/c+UkSuTv8lK/0kJpVeOqpp9ixY0frOzyPmKbJyMgIU1P2oskdHBwcXglEuoLc8rG9vOG/XE6ow3p2G7rJ898/xTc+9ktOPz6BeT7yeh0cHBwcXpE04t5ivecvXcPBwcHBweHVjPCb3w984AMAeNX9zd9t6lYZTFgCA0U2uGSwQrS+KjER1tg5UEWRDXriNTZ1V+m71hJNyApsvr2D6KA1WRQd8rP59o7mUfVdHQNg9pA1Sbz59g5iG4MgSUQGA2y5s6/pNNJ7XTuDr52b9B58XSed9cnzcJ+fLXf2NSeNe65qY+j1XXPH/5ZeEjutl52de2Jc8r6hZjxT1944698458Cx8bYeOnZbx+Vr99Q/VyE/XKJzd4wNt/U0t13/xu6mKMgTVdhyZ19zBXjikigdO6Mc/PIZ1ILG0L4ueq603FbcIWvbUK/1pbl9W3hB5FBiZxjFYwkmZI/Mljv7CA9aE2fxzWG23Dm37cDNHfTfkAAg0O1l4KbOpvNAdH3Q2rZe3/3XJxi4eW5V0ZY7+4hvDhPfGKb36nbrXOtRDb3XtDP4urn63vy2PtrrorBQr1Xf/oQXd1Ch58o2ht4wr77f3Nt0kAp0eNlyZx+eaL2+L4+hFmvNiZMNt/XQuade322e+udaK7E7dsfYWK9vQ4Ouy+J0XGpNLngiVh0Gu3z1OosscN0Zen0XPVe1Eejwsv1dA+yYJ65p2xpm8x1zdTj42k56r6u32UZ99wcxNIPYxuDC+r6pg/4b6nUoW3UY21iv76Egie0RJp9MA9B3fTsDN8+rwzv6muKscL9/QX13X9HO0Lz2vfmtvU0BWLDHZ9VhfaKj+4o4Q7dY9Z09WyQ6FGwKSfwdVh02VrN37Ymx/k3z2uybeuiq17c74LLqu6Ne37uibLx9Xh3e0kV3vc16Qgrrb+minKxQzddI7IiweUF9dzbFUoqvXocD9freEmbjm+eOYeDmTvqun+sjttzZ13TPada3bImbdNVk4KaFbbZR3yv2EYYVG7b5jr6mkLGVPmLbuwbpvylBsKte3y32EUOv62qKmzr3tN5HpE7kiW+c+9LTSh+h+Fx4o276r2tv1ncrfcTgazvp3tvWrMNW+4gNb+xpTmyH6/XdSh8hyRAZCloCQWi5jzjzkymK06UF9d1KH1FJqRSnKqy/pZuuva31ERtu62Fzvf0ogXodLtNHmJrG4M0Jeq+xPtef8NB3bRuh+raxjUG2vG3umvff0E7/9e1IHg/IsHkvRDtBLUNqHAa3z2mKejfBwNZmUTZdDvH6qXvXe/nWA9fzzKENjM/Eeey5bTzw2J7mtt/72TW8cGIdAOMzcb71wPXkCtYx3f3ffp3Tp08zMDCALItPADucXyRJ4g1veAPf//736ShaSgu/YbC1WsNdf4neqekMqXNCzw1qjXZNJ2AYdNU0tlZrmJ1WWw+1SSQG5mZl2wckQm3Wz4ob2vpkctMmhgbBWN1VCZA8Htq3Bgn3W58jeyS69kTwhK2J4UDCQ/dlkWYf0LY5SGTQj1GpICsS3XvjzQlyf8JLd/1elBWJ3mvam88/SYbuvfFmjK6vzWNtWz/k2MYQ8U0h1LyGVtbp3hvHn7D6TW/MTffeeFOkE10fXCB67rosTmGyQupYHk/E2lauxz5E1gVo3z438d15aYxgXczkDimE+vwYulX/4X5/c9wI1vOx0R8rfhfde+NNR5b2HRG6Los1t03sjBCui51cXpnuvfFmXxjs9tF5aQyQaNsWpmtPnMg6a1vZbW3bEDwFOr0LhEVtW8JE6/1q43OXq2+A+KYQscbzRbLGbZkzhQX1LdW7htiGhW5J8+tb8brouCTaFOREh4ILxLVde2LNPtYTVujeG8flsSJe+2/ooH2ekL1zd6zp0OMOWts2nHDC/X4Sl0Qxdau9d1wSbfaxjfpuuDGGenzNZ3Cj/mtFHTVXa9ZLY7wU7PI1xzxgPUuj64L1+pbouiyGN1qv7w4vXZcvqu/6s1KSrfbti3ssMXpBaz6XYK7NLqjDepyVL76wvpe02cvjzXGBN9pos/X6XhfE3+amVHfd6pxf36F6fdeFbuGBwIKFAx275rZ1B+ptti5ECfX5FwifEpdEmyKcwliZ6Lo5kUywx0fn/PreHiFSH2+4PPX6DiuYhmnV4fw2uzXcHN8t10f0X5+g79oEis9FfHOY2IZQvb5X7yOi64OEenzNpMtW+4jCRNk6zk5r21b7CMXval7HZn230Ee0bQ3jT3gJ9S4UfK/aR/T46LmqDXfQNVffLfQRkmxd50afJrlW7pNhro/QyjqjD88Q3xRaUt+r9RG+Ng/VTK3ZDpf0EfVnl9VH1Os7rDB4c0ezvUcGF9X37mizj1C0Il07fChe63Pj6zx0bp0TnyY2eQl1WnWmeCVrW58E4SDBNpneiPW8zFZcKDLE/JagTZFNBmI1vEq9r/fq9EXnnq2RQZ3x4QFSswnUiocTR7ZTLFjtMpOOc/LI9ua2Y8PrmByzxoq6LvOfP3cTuq5z22238XLy4IMP8t//+38nn5+LgJ+YmOD9738/73nPe7jrrrv45Cc/ia6LL6pxcHBweCUgSRLr9nbxzs/eyGV3bmw+o4rJCg/8j2c59C/TzUloBwcHBweH+TTi3qI9jpOSg4ODg4PDuUB4+eab3vQmFEXhxNGDrLvxZpSKQVmVqOnWFzsDKFVkNN16c1nTJUpV62/95CmO1CgWdCSvF1OGcqpGrWy9CNTKOuXUXERYNVcDyRI1GAaUpktoZeuFmVYxrKiIejSbmqmheeZeps0ezJI9aw0cahWdclJtOiRVczUMbW5JdSlZpVa0yga7/LjccvPvak5Dkucm88opFbVgvaw0atYxGKpBdEOQQIeXyrz4ikpKba4gNWom5aSKplr7qRU0Sslq81zLabXpCmNq1uc2VgCrJZ1yci4OoDBaIauWMFQDWZGtbctW2VpRWxChUUnXMA3rRfDMgSy+qKf5uVq9XprbZmsLzzVpuRuMPjJD8qiHxPZosw7VXA193grl8my16RDU+NyJJ5JoFYO2rWEMY241UilZbZ6rptavTX3FrJrXyI+U0SpWxVSSKmq+Xt+qVS+6Wr82hRrl1NyqWXfIhbtk/Ww06rBar+/iwjosp6vUSjqVdI2RR2aJ9Pmo1c+nVtIWxKxU0tY1tj7Y+lzZKzF0SxfpE4VF9a3SPFOjXof1eqmVNcopFdknYRSsODxZmavDSkqlVnfjatRhI3nQG3MvWG1dSlabq/v1+r0wv802mDmQxR1U5rat1uuwZm1bzdcWRIpVUlWq9fo26+faiO9RC9qCOqyk1Oa+DM2gNK0ycyCLmtNQG+27Wd8qWr0ejHq9NNqhErImd2TFEptVM3Pn0ti21mjfpXqbNSzxjVpUMect0rbuhXn9yTJ9RPcVcUzDpDxbbbp3tNJH5MfL5IdL6LWl9b1iH6EZuEMK7rBS7w9qVJJzbXa1PqI4XoF5i/ha6SMqKZXj3xmja0+seZ802uFqfUQ5qZI6kp2rwxb7iNSxPOkThXp9awvqcLU+Ink0j+yWMet1WM3VWu4jqhkNiXnHtEYfoVU99F7dzuTTacrphW12tT4CwyDYGbBEbVq9Ha7WR9SPLz9SYuqZDGo9ikUrLazDaqYGLtfctTmTQdNiePxQU6Gcn0vJVMs0JwEBKgUo+b1UEzIuzeD7P91AKLCBX3nLk0RCRTzuuZuhPZYjGCgD4HXXaI/mUFw61/3ub+KtnCGXy/Hrv/7rOLwyeOMb38iXv/xldhYLKHIUwytRkKVmF1GVpDl1G1CSJVRJIqYbbNhfpVyWyBkSWtxPxW8iV+bab60MWr39GiZUSyaGAS436DVQh+cclGpVGb1Sn7A1oJrTMDSrbK2oM/VcDjVf75eKWvO+ME2oZmsY9WePoS6MK/K3eyjX4yab29bvY6O2cNta0epzJZdEZCCAVtGb97xRM61t6xWjlXQMZa4vr+ZqzXGkodU/tz5ZrpUWuu1Uc7Xm88/UTLKni5RmrGPUKgaSPHe/qXmt2W+ahnUMDUHN5NNpvPOclBriKmtb61zNeh3qVYNqzhq3jf5yhlCvfy5Cz7Q+t/HsaWw7v14MzaQ4VUGSG/Vd/1x1aR3OXyNeSanNPqtxbRqLyGulhc+4+dfG5ZVxB5QF2xraXDus5rRmH2to9XoxTPLDJbSShjlvDryar6HXx36GbjS3Bet5LrlqRAYDmLqJmteazxdTr9dLvb61qrEgHqxW0NBUA8klNa/N3Lb6gjpUC1qzLUmyhDfqbjr5LK5DtaA1rzFYn6vXDLSyTvZMsSkAatbhvPquZmvN/eiN9j2vzerz2+y8bRv3QqOd1soahQmj6VCk5mpz9a2bS+tw3kF4QgpaxQ0Tlblt6+ejV/QFDjhqfu6+kVz1Z3ZdsKdXjOa4sVnfi+4FSZZo3xGhnKoubIcFrTkeXa6PKM1UKc1U0aq61WaNRf3JCn2E7JYWRL0trMOV+wijZrn4NO65VvuI4mQFxeci3O9v/r2VPmLmYBZdNfDFPYvqe5U+omIw+Uya0nS1eW1a6SMMzSR9otDsr5vbttBHNI5hcf+9Wh/hb/dg6ia6qi/ZdmEfUUNr1reJy+vCG3Nb172sLxgH1yoSpqEANas/KRjN70nJU1U8/rnPVUsGWtWcO/6CgRkIQA30monncAa531rEo2pz7zFME8o1CcO0ftYMiYomUei1PttrGnzmu+8g4jL4ow/8DYFgAZfLunZud41AaG5S2+cvIcvWAd75Lx+hcPIbrF+/nj179vBy8t3vfpdUKkU4PCcs++u//mvOnDnD5ZdfTi6X4+c//zl79+7lLW95y8t4pA4ODg4vLYrXxd53bWHTjX08+o+HGH3OcvzPnq7wrd97iF23r2fPHRtx+8RdDx0cHBwcXn1UcirVgjVXGe12REoODg4ODg7nAsm04WW7fft2jh49xhXv/jNkWUaptJahEHn4+JIoNbNaXX7jBjJsf0c3qaNFJh6fXvr3c23FKzM3QyxA7zXt+No8nLpnQqhc9xVx3EGFkQdnhMp5QgqSIglHZL0SiG0M4gm5mX4uI1Ru05t7yY9bAoGXmkCHl56r2hl5cFooCqRjV5Suy+Ic/KczQvvrujyGJ+Rm5Bdi7cTX7gHDElGIcMl7hph6LsPM85mWy8iKjL/DQ3lGXSDwWYvwYIDOXTFO/mhc6N7rv6GDYLeXo98Ybb0QNB2Gxh9bPbroXKAEXGy8rYfxx5PkR8otlwt0eIltDDH5VFI4fvJCR1bAF/cuEGm2QrjfT9eeOGfun2yKGFuhbUuYrsviHP7asI2DpeVjXBz7tuJ2Hs/S3WwbYts1MDNi/VuNamJxpIzBff/fP6Ioax/odb/7mwDMPPt1Th1+nGPHjrF58+aWjtvh5WVqaoru7m4633k3kcuvBEDzrz3+kUyT9d+usDjPxp1evT8Kt0tEOiTGjhgwsnRcY6qtPVOMSovxThILJqNbKiJb0ZHJo3kqqdafcS6PTPv2CJmTBbEoL8ly+KkVNeFjvdBpCL6K05WmoLgVfG0e4htDTD6TnifYeemIbQhhaIZw5FvvNe0UJ9eO75yP5JJI7IySPVNcIHpqpZw7qFAr1IQi5sIDAaKDAUYfbj0SG2i6HzVELa3StiWMmq9RmGg9gk2SYeDGTmYPZ5simZaOsR4ZljqeFz5OO0QGA3gjbmYOZoXKhfv91gIGgf7klYLid9VFQ2Jfctu2hqkVNPJjrY9hwXL1qqTUte/V5WLfVngeyF7v0k0Xxb6tSHjpJILrhnaifoPTSTdrZb41REpzh2jybx/5fEu7fsuXP4qp64z+v5/m/Xe9m7/9279t7ZhfIt7+9rdz9dVX83u/93sAlEol3vzmN3PzzTfziU98Ak3T+MAHPkAgEOBv/uZvXtZjPd8cPXqUD37wg3zxi19k69ata25/6NChCza+z8HBQQzTNDn71DSP/fMhCrNzY6Ngu49r3rOdoSu7kFaIKnVwcHBwsIfo2OvlZvJIih/8t8cJdfi5+3+8Rrj8xTZ2vNjOFy6+c77YzhcuvnO+2M4XLr5zvhDO11bOy913341pGmTGDgKg+WQ039oftdxku+T1Ii3z0nGuEIw+lmHmwAqCglW+KG56a28zpqtlbAiUwBI8iAqUwFrxbeeF/cDNnfReLXhuWFFUjXipVlF8Mhtv721GHbVKdCjIJe8ZakZotUog4WvGeIhw4gfjtgRKiR2RZgRDq5Rmqpz84bjYBCdW/NrIQ2JCI4CpZzLCAiWA/usSdM+LJ3kp8Xd42HBLD9642Eqz/HCJkz8UEygBJI9kmXgiJVYI614VFijJdaFYVOzctJLO0W+MCgmUwIp/iQwGhAVKQ/u6FkShtVzulq4FMTCtIHtktr17oBnb1yrB3gAbb+vF37ZUrLMapmG5XogIlMBye7IlUALhNukJKey4u59wn2/Zvy8nUAIwjpxh5Aikl9HhNqgm/MsKlEBeU6B03e/+ZlOgBFDJjtDV1eUIlF5BdHV1cd1113FVZc6lQSlLKOXVX5abksRyM761uJ9afOV7t5Q1mRleXqAEK7dlX8xN3zVz0T4tY0PfYhow9mhSWFCg1wz0miG8S09IoWdv2wJXw1bwxT30XNW21hz4EkI9vmZEpggdu2ML4sJawTRMK7ZqnvtMK1RSKhNPpoQFSorf1YwPEyFzqiAsUAJIHc1TnGpdjAOWQ9PM8xkhgRKAJ6jQfVkcl2Bd2iW2IbQgGrZVUsfyQgIlsNaFzBzMCC+Q0Co6089nhL/veKPuZvSaCLnhkrBACcDf7m3G2LWKyyczcGPHAre0VvDG3HTsji1wIGqFyLrAghi5VmnbHF4QydYqumrMuS8JMP1sprV7dbnFRot+JXu9ywqUGsQGPSQ2r9JOlhEoAZiPJZnMKazWORd65UUCJRMwMVvo0N/y5Y/yli9/FAD3+CjVTJrrr79+zXIvNblcjra2tubPzz//PLqu8/rXvx4ARVG44oorGBsbe7kO8bxz//338/u///v8z//5P1/uQ3FwcHiZkCSJoSu7eMdnb6Tv+giya14E3F/u58efeYrsROtidwcHBweHVx+Z+nMg5kS9OTg4ODg4nDNsiZT+y3/5L0iSxMSRXy74/UpCpdCDxwk9eBwlILP19jbCvUsnt1YTK2WPpVdf2S1Jy4qVMicL5EfFxAEAQ2/oov/6hHA5QLhGZw/YFFo8PsuY4GprgOJMlYrw5IKBUTOETavKqSrTBzLCQovxx+0JvuzSviNCZDBwXval5jSyp87fy43hX0wz/vhL7xgEUJ6pcOKHYwuirV7S/c22sEL7HOEOKCS2R/HHxSfL7JA6lufIv61hqbMM6ZMFMqcKa2+4CL1qNiNXWkVWoDBeXhBR0gr50RJn7p+kPCvWTgrjZc78ZEqojF28MTfb7xok0NH69TY1DcMwSB0vLLkHJI9nRVFHg/xjZ9CWMaZYXpxksW2zTk+Xxuve+wFe994PLLvNfHESQDk3w/j4ONdee+2qx+Nw4fGud72L++67D72ycFyzklBpw7cqbPhWhWjMpKtn+Qf4SmIlXQP16OrP4eXatVrSyNVFmS27KAGeiJvea9qR3TaGpaKLmk1IHso1IyVbRS1oTO5PC4uTtapOeVYVFiMYuoleExcHFCfKlGZad7kBwLQEvOfLQcYdVIgOhZBc52dFeiWtnhcHH7BiRieeTJ63/aVP5Ekdz5+XfWGyIFL1pcbf7iXcf37G5wDTz2XIj4iNK03NJHOqQE30eptWTJ1piN3jtaK+IJatVZJHc7bGh9nTRWGBn3ifbNVBfHNoicByNXESgJnNUcnolJLL9Mvh4IoCJbAWT3keX34ByFJxUv0jZYNNHhUZk3f9xcd41198bNnyDXFSg8kXDtDW1sZdd921ytmcH4LBILlcrvnz/v37kWWZSy+9tPk7RVGoCDzDX+ns27ePP/uzP+PDH/7wy30oDg4OLzNun8K618YtsdKuuUWho8/P8s3f+yVP/duxZrSug4ODg8PFRXbcms+J9joiJQcHBwcHh3OFLZFSKBRiw4YNFFPDGMbCF9WrOSppJYPcuEqtLP5yu/fa9rWFJIuESrMv5MjbEDGUpqsUp8VfzK1/Uw+DN3UKl3OHFDwRsZW75VlVeKIMYPLJlC2RzOn7JimMiwm+1JzG9LMZjPM0mdF5aYwtd/YJlzv6jVFb0V87f3WIjt0xoTKKT6Zjd0zYXaprb5wd/26dUBkANavZaid2MDSrXYq6z/Rc1cb2uwaF9xffHBJ28QEryi6xKypUplbQeOErZ4WiYsCKu7DTJu2SPV0kfVx8EmrkwWnhclrJYPShWfHISQPh2BCAYNfy7kSr4U942Pkr64TERmC5iuTHylQEJwJrOZXJpzML3J7WEicBDFwXJ9Ah5iwFBtmsRLG0cl+yWKAEMH7ofgD++I//WHB/Di8373znO1FVleKhF5b8bTVHpWoFSkXxPDVPyEVsaO37bn4bN1ST/FgFrSB2j2tlXVxYgyVu6r8+gcsrOJyVEHZEwsRy1RHUDWklncypgrDbUGm6SuakeH9emqkKR7y+GHqubCPYLdY/l2erjD40I1wn4T4/fTYWEfjiHvzton0s9F2fEHZ8Mg2olfTzFgmoVw30qvg4e+DGDmEXUZdHJtTjExaXhQcC9F0nft0ypwpMPZMWLmenTdrF0KzxgiEo9K5mayQP59becBHl2aqtBTi6Dedel09GdosLCdu3RWjfLu72VM3WqM5zLltLoNSgPJKmlFp0bquIkwB8YYlIl/hrENWUyOoujFWUWIsFSqauUzj4PO94xzvwtDAmfKkZHBzkkUceIZvNks/nuf/++9myZQvh8JxAbHJyknj8/DjxOjg4OFyIRHuCvOn3r+T1//kygm3WmMLQTJ79zkm+8bFfcubJKUzRVZwODg4ODq9oMuPW+5lYr7iTsYODg4ODg8Py2BIpAfzar/0apqEze/rJJX9bTag0sb9AJb2yaGKxo5JRtl7EBto8eMItTCgtEipF1weFhQzTz2VsTfRnTxeERQwA69/YTffetrU3XET/9QnCog5AsjXJIyuCl1623EVECfb4hCdBlICLbe8eIDokpkwvJ6vkBFdAvximnk1TGBfbnzuk0LUnhjcq9pI6P1xi+jnxiZrEjgiJS8QEOXbxtXnou74d2SPWtnJnbZ7b9gjxjeLRFZP708KCO7uUk1WyNoSSm9/WZyuWMb45JFz/SsCF0kJc52KCXT7xSX6sqErRPsGf8LDhTT3C/Z1WMUgdz1NJi4kf1JzG6EMzYgJL2RKlza/LVgRKSkDGG1NwuSU4dqb5+9UclBo7nJhWyOWXv3bLCZQApMIwnZ2d7N69e81jc7iw6O/v56abbuKS1PKOYisJlSoViXyuEfu2PEsclUYmkBUJT8iF1EJq1fy2Lrsl4XhYo2aQOVkQnuivFTVywyVMQY2Gv81D9942YXGTN+omvkn8hZTLKwvHSAHIiiQsEpBcEv6E11aMVOelMaEyAMWpiiXKOQ9UMqot4VawW3wsCpYjayUtJlaV3RKxDUFx4ZxNQr1+YSEuQOp4nmpGTMymBFzEN4eF4xwrKXvXzS7FqQq1ophA39/uoffqdmEBljfqxm1jLKT4xeMAJZdkfRcW1A352jxE14uv9o2tD9FxSUy4XGm6YsPNzbQWCU1W1ox3m483quBdHMW8hkAJQPFIePxWRUafmXumruSg1KBqyszoK1/vxQIlAO/ZU2ipJHfccceax3U+eMc73sHs7CzveMc7eNe73kUyufTYDh06xKZNm16eA3RwcHC4QJAkifVXdfPOz9/IpW/d0IyAK8yWuf8vnuG+zz1NbsqJgHNwcHC4WGg6KTlxbw4ODg4ODucM22/QP/axj+FyuZg4/PNl/94QKoUePL7kb/H1XoIdq7/QXRz9duKHE8y+0OKK03lCpY6dUeKbxIUMdsQ1qaN5WyKl0YdmbEVy+do9eAVfjPviHob2dRPqFVth3Lkrxua39Am3mK49ceFJL62kkx8rUc2LTQzlR8tMPmVD7LIzwvo3dguXmz2YFY6sKs+qHPynMxQnxJy6SjNVZg+Jr7j2J7y2Jq/s4A64CPUGhCevilMVkkfEo0qOf2+c4Z9PC5ebPZilIhhJ17YtzMbbeoT3lR8pM/W0eJvMjRSF21aw20//dR0ofrGbtPvyNja+Rdztqf/GBF2C4krZI+OLuYUnb8splTP3T1IUFAXWChoTT6SEIidlBdq2hoWFnMEuH527Yij1rrUVgRJYjlQn7pkhPz43obe6OAnAoKdLw+NeqMxoRL6tJFBKjx9iZmaGffv2tXRsDhceH/jAB/jpT39KLbl83GtDqLThWwufMS6XSTiy9mrf+UKlSkZj+mARs0X9SaPNy9SIbQjhDohNwksuiUCnV2gC3tRNcsMlYXFTJVNj8pmUcGyV7JYtcaagSCC2PkTbVvGxaM+VbYT7xMSZik+mY2dUWDih5jVKs+JuVrnhkuUwJUjnpTH8CbHxSa2oU5wUdzpNHs4xcyArXK44KS52aYjEXHaiC23gjbpbW8SxiOKkuLismqkx8osZYeemWlETjwwDOnbHrD5BkNxwSTiKVqsYFKcrwu5e0aEgkQGxe1RySfRe1S7sEOmLuem+vA2XoBjd5ZXxhMUXmmROFkgdEx+fl5MqZcG+xK7YK9TtJdzrw8zWvyO1IFACKCQNZs8sbP+riZMA/JJBWNZZbJPWiHxbTqAEMPXUE/T09HDLLbe0dGwvNa95zWv4yEc+wvr16xkYGOBDH/oQt956a/Pvzz77LMVikauuuuplPEoHBweHCwe3T+HKu7fy9j+7gd5L5iLgRp6d4Zsff4inv3EcTXUi4BwcHBxezeg1nfyMteA55sS9OTg4ODg4nDPE3wbW8Xg83HDDDTz44IOopSyewFK3Fs0ngyyBsfBlXmJLgMK0SnFm9RfIRmXhC05ZAcWvCL14PnXfpK24se7L4hi6Key4Eh0KYmiGkBV/aUp8UgjgxPfGhctUkion7x0X3mfmZIFyqioc5TX84NSC6KNWGXtYXLQFlrhMzWvUBCLOtIpOrSj+UiHY40N2SbZiF0RxhxRCPT7SJwtC12DkFzMv3UEtIj9a5ujXR4TLBbt8yIpkKwJMFCXgItznJ3u6ICRc0auGrdi8cL+fcqqKVhK7B6aeyQjvK3umyOHpYTTBScfpA2m8Z8Qnr07dO4kkOAdrqAbHvzsmvC9bEXEydFwSI30sJ9QHBXsD9F2ToDQtFplUnKhw6GvDGDXredeqhsETUVBz89rWyRFIbFm1jM8Lne0GpZKMOk8b4D+VXFGgBBAtHUCSJL7whS+0eHQOFxrvfOc7+fCHP8yv+mS+tsI2SlkClwTzJts9XojFTUpF0PU1WufkwueG4pXRWhQlGGoNVYXRR2aFJ/vdfheJ7VEmyymhcZ7slgl0eIXGa6ZuCosYwIpaEp18B8icEY97A5g9lEOriPXptaLO6CMzzb6oVSopexFxLo+My+cSFippZR1DE3s2Si4JX9xDNaNiaC99xIY36sbQTaExpV4xmHgi9RIe1ULsRIZJMvjavFSzqnA7sYOdegTQyprw8bm8Mi6PLHx/14oa2dPifcL085mms0KrmIbJ1HNp4e8e5ZTK5NMpYZFYcaIivDgCQFcNYSFnw3VXNAo4us76/iy6ICN5tIjkAsnnhWq1JZGSyw26xgKtUeRIhkLv6sL7iMvALxnkjYUC3NCYvqJASa+UKR09zO/+4R+iKLZfu5xz7rjjjhWdnfbs2cM999xzfg/IwcHB4RVArC/Erf/3lZx+fJLHvnyYUqqKXjPY/60THP/lGNe+dzvr9na93Ifp4ODg4PASkJsqYRombr+CP3Z+FoM7ODg4ODhcDLyoZb7//b//dwDO7v/+sn+P/eRYfS+S9a/OyZ+mmdi/uuOQ3lgRKck0ZsLX39JD/w0JoWNsCpQEz/Tsz6c5/eNJsUJAxyVR4lvEV8v3XtdOfLN4hIisIHxudkRRakEjPyIuItFKhrCwCSxRjmhcDMD6N3QT2yBWj5mTRUYfEhfzdOyK0nlpXLjchtt6iG0UU90Hu7yWS46NWK4LnY7dUbouE6/Hjbf3Et0gVo+hHh/913Uge8QcPrKni7YEX+te20Xb5ohQGU9EIdgjtrq+gahACUDNaraEdrWCtlBc0wKiUXRWIRja1yXsCBbs8tF1aQy3oMNEfrjEkW+OCAmUGohOpkYHfWy+tQNfXAGXy/oHeB8/tmq5SlXmwBGFbN3gwH8qif+UJeyMP7H8c8us5ti/fz+7du0iFosJHafDhUMgEOBXfuVX+D//5/9gasvff4P31SejXXWxElAuweiwtKZAyX14uP4/CrgV3EEX3ZeF8YTF+kzTFL/X1YLG2KOzwuICxe8ivkncuckTVmjfJj5eA4QjofSKYUsMUs3WhAUJIN4XNfCEFWGXlmC3j85d4rGyqWN5YSGDy23PJcqf8NJhI/o2tjFE2EZM3IWO7KnXo2AEYaDTS2Kn2JgGILYhZGtMnz5eEH4WBzp9tmILvVE3sh33KxNxwZxpiXhEHeAwERbMSzLCzm9gXevoOvEVwqFeP5F+wShyYPpAhtRxQdemxnm5xcaHbQMK7YPW88IMeDEDVvnen64uLpzSFIZrc6L+0JhOaMwadyeeXeFaPv0Eqqryvve9T+gYHRwcHBwuTCRJYsM1Pbzr8zex+y3rm98JCjNlfvL/PsOPP/cUuSkx92cHBwcHhwufTD3qLdYTRJJsfMFycHBwcHBwWJYXpXi4/vrr6e3tJT1yAEPAlsSoz0nIraXhNJncn2bs0RYcdsyFL4v7rm9n0229QvuyM9kPlnPT8E/FI6i8ITfugNhkgeKT2fHvhohvFJtkC3b5WH9Lt/DVj28OkxCc5FF8Muvf2C0suui4JMrATR1CZQBO3jNO0kYsmiekCMc7Df98htM/FnezMqp6y/E5DTKnixz+2llhR57ea9ttRdnZIbYxyLZ3DVjCOQGGfzbDmfvFBYF6RReeGMqcLHL462eF729PRBE+L4Bj3xsldVSsPbZtjTD0WvEVeIOv66RNcMLdF/fQe027sHio89IY3VeIC8u2vr2f7ivFIuI8IcWaSBXsrxrORuUZcbGRqNtDfHOI7XcPLhARGuW1hV/58QrjT2WopAVcY2QDMDAMGZFKSR/7MZqm8bGPfazlMg4XJr/927/N5OQk+ef3C5SSME0JJNP61yK1ok7yWBG1sHafqRfmxOcuj0zfdR1NV41WEXXtAFBzNUYfnhWOrpIkCcWvCAsTouuDdO8V7/+i64IEu8XGQrJbIro+KByRGez22RK+d+2J4xcUhBYmykw8Je4cJMmS8HlpFZ3Rh2eExU2mYaKLCkKAmeczpE8UhMrIikTPVW3Cbd8uHbuiRAbFRCF6xbDqMStYj7ppSwA3/VxauB4llyQsmAMojJeZfEY8ZrdjV0z4/vRG3SR2RoRFi6FeP/52sS/BkiyR2BHBHRQTYwY6ffRf34Ekix2jy+sSjg8GSB7KMWvD3QtTXFzZuStCdOMi0dzs2n1RekwjNy0Y9Vm3XTIEFF+mYTDzyEPccMMN9PWJxyo7ODg4OFy4uH0KV/27bVYE3M55EXD7Z/jmx3/JM990IuAcHBwcXk1kJ6z3XVEn6s3BwcHBweGc8qJtWf7oj/4I09QZO/iTBb9vuigt2Nuco1L3pUE27Vt+kqfpojQfSaY4qa49MWEufcFZGKuQOSX2chyg+4o4G27rESpjJ1oO4PR9k0w/lxEqo1UMJp9JUZwSd0FxeWRhUVSwy0dIUGykVQxkl4Qs+HJ8+vkMx78vLgAqz6rC8SFKQGbrOwaIrheb5DFUQygyrMGZB6bJnlndSWzpzrAVm1eerVKcFI94sINa0MiNlYTrxNAMW+d25oEp8sPiq9REhV4AG2/tpfuK9rU3XISa1YTPbXp/ipP3TgjvS4IF0RWt4I25iQ4FwRA7RpdXRvGJTZQBTD6dIntarC9WcxrHvztmywFOtD+Obw6x5c4+YdFWOV0jc6q45FqvJVQyNEifUZsOSvNZyU2pq8Ng1zYNGWOBg9J8FrspGYbG2WP76enp4Vd/9VfXOh2HC5xt27Zx++2303X0BcxFY56mi9J86o5KkmTSP2ASWkG70nRRWvBLhXKeNfuW+QIlsMRGhYkKek3s2S+7JbqvaMMXF5vAtxOlVs3VmNqfFnYzKU1XyZwUH1PKHkncqcWEULdPvL81wY59ysTTKYoTYmNKo2bacnuKrg/SuTsmXM5OzFslpZI6KujSUt+XaYjtzzRMSjNV298HRKmkVVtxtIZmCo8ZykmV1DHxejQN8Xs0kPDSd21COFbW1E1bC00mnkhSnBT8PiVZYkfRc/O3efBExERsjf5jma+5q1LJqKSP54XbcX6kRPKI+LUG8WvdeWmM0DynLaPS2veWUsagupyj5xpCJa0KquRpOijNZzk3JQmTjR6Vdpe1r/kOSvNZ7KZUPHSQQjrVdJ5+ufjoRz/K4cOHbZUtl8t8+ctf5lvf+tY5PioHBweHVwfxvhC3/sGVvPbDewjEreeKXjN45psn+ObHf8nwfvEFrA4ODg4OFx7ZhpNSr/hiMAcHBwcHB4eVedEipQ996EOEQiGKo08J7FUiM1xl5rC4wCDcH2DjbT1CR549U2TWhrtOOaVSnBIXePTf0GHLvUZWLMGMCLMv5IQjl4pTFU78YFzYLWT0oRnO/GRKqAzAyXsmyI+JvfjXSrrw8QFEh4L0Xy8WCaiVDIZ/OU1+TKw9Brt8rH9jt7ADEzLCsW1KwMXQ6zvxCa68Th8vCIvf7FKaqjL+SAtOZ4vova5dPHJHthcd1nV5TNjJB2D04RnhCc7oUJC+68WFTYZmTaiKcvan08LHmD1d5PBXh4WFZRNPpBh9aFasEFZ7LM+KnZsnIm5hFRkMsO3dA8KRQGpBozhdaX1yWZJAkqgkVSaeFHMS6dwdpvdqcTeWdEZmYsaF91TrThE3D8yiqip/+Id/KLw/hwuT3/3d3+XAgQP8ryt2tVzGlGXSKYkWTL6WENsYJNgl9vzJni2hlXWQXda/FjBqJpW0Kux64/LJ9F7Tjkcw3hEQdvOpFTXKSfE+On28QH5EbJxhaCZjjyaFHW+KUxXSotFJWGMv04a2JrYxJOwcVBgvk7QhHIoOBQnZiGCTFUlYtxXs9glHXpmG9WwVdfayS360LDxmcAetqENZERQR2qhD2V13ABKMY6ykVaYPZITbY3yTeFsES1gp6uRTzdSYOZgV3tfMwSzZ02KLFfSKwfRzGWEBll4xhL/Lym7x6wzQsTtmCd8FqaRVasXWB6KSz4vk81KcrlHNt14fkgSJ9QpKm5hbnIkV9ZY35GXFScuW0XUGTxzmpptu4vrrrxfa37kmk8nwW7/1W/zO7/wO99xzD4XC2iLbF154gb/4i7/g3e9+N//0T/9EW5v4dycHBweHiwVJkth4bQ/v/PxN7Lp9LgIuP13mvs89zX3/79Pkp50IOAcHB4dXMplxawztOCk5ODg4ODicW2wEGC3lwx/+MJ/+9KcZP/IgvdtuXt5FaRGVrE4lK/4CX6sYmCa4g25q+dYnbTwRhcSOKOOPtS6iyJ4qkkXQ8QYoTJRQvOIuI5ve1k8lpTL8s9ZX28iKTMelUbKni8KTFJ6IIixwsosnqqBmxfbVd307pekq6eOtOxa4Ay5hBwawrrUdZEVG9khCIo/1+7qR3TInfyjmFKUEFVyCgigl4ELxu6jYmFAVRfHJuEOKsAjF7XOhCbpERIeCDN7YyZFvjgiJ2WRFRhKclANrElAUd1jBFxObCEGGodd1MX0gI+QcpARcGKpuy9lLFCUg23IR67o8RmGiQnGi9ckyf4eHTbf1ceZnYq5ZalEjN1ISFjoWRY6vnkHetiWMaRqkjwv0IS6XVV7cEATpcLqlp1L8iUnSV3VjGCr/8A//QCKR4Dd/8zfFd+hwQfLa176Wq666ij/+4z/GvP3tSJK0vIvSIorlxjNE0B0GQHGBW4Fa6/dVoMOLaZiWqEd2gbH2uM+OS5FeMShNV4RddvztHjouiTH2+Cy6gOudN+LGHVYoCAqwJVlCku25AYkiySC5ZCGnKE/ETbjXT/KImLDfE1ZQBcbkgCVgK4t/D5BcknC8luJ30XtVO1PPpoUEX7JbtiWIdgdd6FXjvFxnd8CFXhMT2MguCcXnEnbl6dgVo1bShATRkiyJi/mxREO6qGBbsiJiRUV9gU4v7oAi7HLq8sq2XMTsYGdf7qD1nagwXhYSe8U3hVF8Lqb2i8XmlWcqaDbqI7fM+M6oVJB9S917JZ8XJIj0eSlOq+hq641YingxPRKGsPOehDECnhaem4lnDWb3yHhOHOWJJ57gK1/5iuC+zj1///d/z49+9CO+9KUv8ZnPfIbPfe5zDAwMsHXrVuLxOKFQCFVVyeVyjIyMcPToUUqlErIs8/rXv57f+I3foKtLPIbawcHB4WLD41e4+le2seXmPh750iEmDlmLmIafnmbs+Vn2vG0jO25fx/PqWWZrORLuCJeHNuAStY10cHBwcDivmKZJpumk5IiUHBwcHBwcziXnRKT0J3/yJ/zlX/4l4wfvo3vLjS2XkxXouzxM5myV/IT1InrZqLd5lJMqp+5dwc1nlbftitdFbH2Q1PG8kGBDCci0b4kw9Wym5TKZk/YELxNPJFHzYpPqhmHQtjlMraAJiZQSOyN0723j0FeHhSIpNr21l0pKFXJRiW0MMnBDJ0e/OSIUSeEJulF9YvUxeyhnyzUrMhjAE3EzK7AiujhVERYaAUwfyAjH32klnRPfE99X56UxIgMBjvzbiHBZUdp3REhsj/LCV84KlTv7U3EL7NJ0lbFHZ6mVxNrHxBNibjdgCWUiAwGrDxCYe5k9kGX2gNgKe3dAwR1wIQm2j4EbOnB5ZE78oPU24okobH5LH8MPTguJsHqvSuBr83DsW6OtH6AMsQ0h9JopJFKqplVGH5klPyq28rCSVBl/VMzVK7o+iFEzWqsLae76RAb8mCYripSMchnZv9T1Y/rg2s8J7+PHqF69pfFJbBzSyedl8jOtN8Sxgw+QTCb5+Mc/jiw7L0BfLUiSxB//8R9z66230rNlJ8Et21ou6/OZBP0GyVmJhl3GslFv88gOryyaXBz1Nh9/woOpmXPOQy0KlbwxN5IkUUm3Pq7J2BAbV9I1Zl7ICk/+eyIKwS6fsEip58o2SrNicXG+uIfEzijjj88KCVE698SpFQUFJZLlSiUrkpDAZlpgjNzclywR6vNTnq1agqUWsSViq+rMvJAVHjOIOl816LmineSxnNDzzi6de+LkR0vLCj1WopqrCX2vaZA5VRCO8tKrBtPPi+8r1OOjVtLFBEcmts7L5RaPsG0K355Lrx1FPo/45jCKT2ZGYHwouyX6rkkweyhLaaZ1Absn7CbcFxAW2mfPFHGJRlMCBdH2LkG4109xqjWBqeSzhP9uv0yoy0NptsaKgtvZFCQWuv/oNZgdWXs/vT9NMf46q2xI1gnLBnnmnpdrYZompx/4Cbt27eKuu+5qqcxLza233sqb3vQmHnvsMe655x6effZZ7rvvviXbybLMhg0buOmmm7j99ttJJMTciV+p3H///dx///0tuUw5ODg4rEW8P8xt/89VnHp0gse/fIRSpopeM/jasw/xUOL/Ix+ce152uaN8fOBO9sV3v4xH7ODg4OCwGuWsSq2sIUkQ6Qq83Ifj4ODg4ODwquKciJRkWeajH/0on/rUp8h+/xu0Bfa0VM7QrJe8LsHoK4Bwnw9DMylOVWlleWhppsqhrw0LiQwAvFEPHbti5MZKlGdanyzzRBXiG0NMPZNpuUx+xEYGiwGHv7r65OJyZOpRFIYmViGZEwWqgu4khbEyw7+YRquIlTt936TQ9guQEbrWoX4/wYRXSKRkd1/nY9KqwewLWdInxONU7JA8kqcwdn7OrVbQSB2zcV6C1wog0O6lfWtU6F62u69aQeO4DTHa5P4ULrfYBJuhGSSP5ihOtz7hBTD9XAa3aKSSAUe/ISBqahTTEI4sCg8GULyykAMbQPu2CIbWgkhJWjhJdeaB6dbjR13WNUps8ZM6VRZyowqOpvF2eMgJzA9HHxvn+clHiEajfPrTn269oMMrgje+8Y1ce+21GIefJ3B63ZK2uSKSNektKRKmQBuUZPC3KZQaGuUWHJWSR/JL55BbECpF+gMYhikkUgLLuUmvGlRzrYkGTMOkPCvWB4LlrmfHYS91LC8kyAErhjJ7tijsvJY5UUAXHONVszVbgiPAmr8XOEbTNImuC6CVdeE6Ed6Xga3rbJfJZ1JolfMT9zb9XEbILevFIOpQBAhfqwahXj+lmarYPm3uy4qkFruf9arB9IGM8OKS8mxVOGbP0ExrXy32aw2KkxWKk+Ljcjv3ZHggQGm6IiT49IQUYhtCVNIqhrZ0f/PdlBoCJYBayWD8mWWeLStgBrx4/IAJqmB1hKYNgl6DvMArE+XeF6iMDvP5//NjXC5xZ+WXCkmSuPbaa7n22msBOHPmDDMzM+RyOTweD7FYjPXr1xMKhV7mIz3/7Nu3j3379nH06FE++MEPvtyH4+Dg8CpAkiQ2XtfLwJ4OnvnWCb574gl+9Obnl2w3Xcvy0VNf4vMb3u8IlRwcHBwuUBpRb+HOgPC7dwcHBwcHB4fVOWe2Cp/85CcJBoOcKD2NYbT+gvL0g1kyZ6sgS9a/Fum+Ik779rD1gyRb/9bCANkj4wm1/qKxOFHh0NeGhQRKAIGEJWxQAmJV3LYtTO/V7UJlmgjsSivpZE8XhUUUs4dyQrFLYEX0ZU8XbUVRyQrCrXTzHX30XStWh+OPJG2JQ7bfNUjPFW1rbzgPb8xNx+6Y8L62vXuA7iviQmXUnCbcdu2ilXSKU2Jv/2UFLnnPEG1bwkLlwgN+YhvFLFZlj8yu96wnvlns5XvySJ5D/yrmDuUJKVzyK0OEB8VWWNiJlQEoz6gUxsUm2LSSweRTaSEnNYBKWhXuA2QbcthAl5eBmzuF6yQ2FKR9a0R4f6d+NMHwgzMrbyBJS0QgvvZ6tORaVehyNQVKgQ43nbvDBBKtxVL6TyXxn0piqHD6cZXCbOvXa9b9MOVymU984hOOi9KrEEmS+NSnPsXjjz9O8sz+lstVyhIz0zKmKYGr/q8FPCEX8SEfSkNY7lasf6tRn0RWAote5Mgu698KzB7OkbThihgeCMzdly0iKxJtW8JLj7EFRNMZKmlVWLxi1AzyIyXh6LBqroZWsieUEY1T87V5GLixQ6ycCaMPzQqLh4JdPgZu6mjV1KSJP+HFE3EL76v/xg6xHQFqXhNyvXox1IoauuBzPDoUpFtw7IpkCYdcXsFn8vogPVcK7guYfDot5A4FEN8UonNPTGxHrRvkLMA0TCopVdhZqpJWhdyQrJ1BJaUK9QF2k2Oi64P4E2JRxS6vTHQwgOIX60PVvMboI7PUVumnJJ93gUDJ5bEiM1sRKJkBL2bAKhuOS0Q7W7/QoTGd0JhOoSozmWt9EGsaGjMHf8jll1/OG97whpbLvRwMDQ1x5ZVX8vrXv54bb7yRXbt2XZQCJQcHB4eXEk/AzZW/spUn33ba+sWiR1HjcfbZke+gi2SzOjg4ODicN7L1qLeoE/Xm4ODg4OBwzjknTkpguSl97nOf4z/8h/9AsvN5dnZey/ShMt6IzMA1EcaeLlBOaiS2+In0eTj1M8uxZvD6MLWijlYxSR2YZeOdvYw9lqI4USGxPUx8U4jj358AYN1rO6iVdcYfSzH8yxnW3dxJeNBPfrhM26YAiZ0Rjn17DICBmzsxNYPRh2eRFdj01n6m9qfpvDSGrEiYBhz7zigY0H9DB5ILRuoT1Fve3s/MgQzp4wUigwG6r2jjxD3jYED33jiK38VwPaJq8x19pI7kSB7JE+r103tNO6funSBzsoi/w0v/dR2cud+Kp9v0ll4yp4vMHswS6PLSf30HZ+6fRM1pdF0eI9DhozRbxRNysfG2HvJjZaafy+Br9zB4cyfDD05TSap0Xhoj3Ofn5D1Wvax/YzfRoSATT6VIH88ztK+b0YdnKE1VSVwSJbY+yInvWwKcoX1dVHM1Jp5IER70s/G2Xk58b5zCeJm2bWHat0U4/h2rDgdf14lW1hl/NInskdn05l4mn0ohuyX87T7C/f5m5NPATR2YBow+NAMybLmjn6ln02RPFYmuD9J3XTuZU0XGH03Sf30CSZEZedCqwy139jH7Qo7UsTzhAT89V7Zz6p5xZI/MJe9dT2G8xLFvWce0+W19pI/nmT2UI9jjo+/aBGfum0QtaHRf2YYv7iZ5JEctr7Hpzb1kzxaZOZAl0OGl/8YOzv50imqmZtV3p5/T91p1uOHWHooTZaaezeCLexh8bScjv5ymPKPSsduKTGtEu62/pZtyqsrkU2mSx3K0b4+QGylZbXZHxGqzdcHT0Ou7UIsa448lUQIyG97US2GiTNvmMKZuEN8cnqvv13Si13TGHk4iKzKb3trL1DNpsmeKxDYGcYeU+mpvq74BRn4x12ann0uTOVkkOhSk6/I4J34wji/uZt1rOylOVRn+2VybTR7OkTqaJ9zvp+eqdk7dO45WMui9un2BiG/zW3tJnyww+8K8+q632e4r4vjbvE3Hq+13D6Lma5z84QT+hIeBmzoZ/vk0lZRK154YwV4/pxpt9k09lKat+k6dyNN5ebw5cZPYFSW2LtiMLhu6pYtqusbEkyk8IYWhW7oxVANJtmIc45vDHP+uVYfrXtdJraRb9e2T2XBbLxNPpcgPl4hvCoJsNoVUK/UR2dNFohuCdO2Ji/URPxjHUA16r23HE1aYfj5Deba6Yh+hlXR6rmrDG3E3+4jLPrSR/GiJY98eW7GPOP1jq74bfUQ1WyM84CfQ4Vu1jyjNVpl6Oo0nojC0r5vSTJXJp1PENoRW7COUgIsNb+ph/LEkhfEy617fSWQwwIF/OLNqH5EbLhHfHKJjV4wTPxhn+7sGqJU1StPqin1E12VxTnxvFEOD/usT1iSZBIZqrNhHaBWD3mva8QRdlqMRVjRS+qTlvrRSH3HmvnqfXO8j0sfzeMLu1fuIN3VTnKzU+wg3G2/tQfG7OPmjCfwJb72PqNf3LV2UkyqTT6fxRDwM7Ysx8WyR4nQNf1yhVtIpTFriwcEbY9SKOhPP5FF8MutfG2fy2Tz5CZW2IQ9tWwxmxhQMHeL9LgwNxl+oISuw4RovUydq5CcNor0yHRvcnHjImvxs78vx8yeeY2BggI985CM4vDp5/etfz+23387Bg09xSXgLU4UgpikRixvIMqSS1kx1d49BLidRKkp4vSZt7QaZjIRhSIQmp1E2BUidsAQBHdv9FGdqlGY13EGZtvU+Zo+VqeZ0CpM1ov0ekiesfrSt36Ts91EYr6AEXCS2h5k9nEcr6YR6ffjbPeRGynTtjlItaJSmq+RHy7h8Mh07wtbzuqAR7PYR7PIx/VzG+twtYWoljcJYGUmW6NgdI3Usj5qrEej0Eu4LMLU/bW27NYyuWmLomQMZOi+1nifVTA1/wkt0KMjkU1bUZ3xzCNOoR4ZJ0L23jczpAp6wQqDTSyDhY/LpFJgQ2xhCkqWmm1v33jjZsyXKs1W8MTddl8cxayajD88QGQzi8srNaLWuy+IUxssUpyp4Im7atoSZeT6Drhp0XxFHkqVm/GjnpTGK0xWKExXcQYX27RFmDmbQKwbhfj/emIf0sTz+hBd/u4dySqUwVkbxu0jsjJI8lKVW0gn1+vEnvMzUo7USOyMofhfp4wW0ik7HrhipIznURn13+5quSe3bImhlnezZIu3bwrRvj3L2gSmqjfruDzD1TLp5bfSaVd+SS6Lrsjj5kRLpEwX8bR4i6+bV9yZrwjt9Yq6+s6cLlJMqvriH2MYQU8+kMQ2T2IYgsiI3XRK798bJDZcozVTxRt3EN4eZfjZNNVtDzWm0bwuTPFyv7z0xChMVq77DCm1bI836jgwG8IQUFL+LSqZGbChIaaZCYaKCO+iifXuU2ReyaGWdcJ8fX9zDTN1VM9TnR81b7jWKz0XikijJw1lqRZ1Qj49Ah68ZZda+I0KtoJEbLhEdChIeCDD9bBo1rxHs8hHq9TfbbPu2sCXgP1NEViQrmq/uUhro8BIZDDD5dLreZq3xYuZUEUmGrsvbyJwsUEmr+Ns9dF/RxujDM9QKutVmpXp9A91XtJE9U2y22fimMFP705RTKr42D21bws367rrcio0rTVfxRtzEt4SbLk2RdQG8ETe+uAetotO+PdB06fGEFNq2RZg5kEGvGoQHAngjCrMvWCJDf7u3GbOnBFwkdkSZPZS1+og+P/42TzP6LLEzSjWrzvURl8RW7CPat0eolTRyZ0u4PDIdu2MUJstUM6v3EY02mz6Rp5qpEd8UontvG0e/OYJRM5fvI04VqNTrLLYhxOTTKaJDQdxBBb1qrNhHxDdZbdbQTKJDQXxxN9mzJWtcvEofERkM4A4qJA/nQIL1b+gmdTxP9nRxxT6i4QTbsStKOaXiUmRCfX501Vi1j1BzGrmREi6vTMeuGKZholeNVfsI2S3ReWmc9LE81VwNb9RNraI3Y++W6yPmt9no+hBT+9OYuklsfXDFPsLf4Se23s3MiRqmAdFBL7FBH6VkjZnDJTovCZIfr1JOaXjDLmJDPmYOW4LOyLoAiidHsmqJ1l1uKOWtqWCPD+I9ErMjJroG4Xbw+CSSY9bfO3oMQiMpipujVGoSnRGdyZxCTZeI+nUCbpOJunCpJ6JRqklkyy7csknt2EOk0tN86R//HqlVd0MHBwcHhwuKH9YO8DvPf/2cfZ5qaGSM4oqiaBOYqmV43XOfwGNnddcKvKfrZt7b9Zpz9nkODg4OFyvZCUukFOt1BP0ODg4ODg7nmnP3DQj4rd/6Lf70T/+UAyf3M2BuwSyCHghRTs+t8lVLOuX0nKVONavj8kgktvooDiuUZ6voVWtFZbWoUU7OucBYK9Ctz6kVDMqz1aaxRW3RttWMilFf3WrUYx60ks7EEylcfplI35zDSSWjIs1zcSrPVqkVrWPQyrolNLi9l9JM1Tq+eRb45dkqatE6H61qbYth7bearmGaJrJixRaVktXmJIRetY6/sSpWzWvILpWp+qRE7zXtVOsTI0atvm09zqGar6Gk5larVlIqum6QGy5iaGa9Dhv1pFFKzq3YLafmzk1yydYCYmVeHc5b0V5NqXOrsw3rGLSyTv/eBFr9+Odfm/mLWhvbguWwo5WtyQhkq75lZW6JbzmpUmvUYcWqQ8MALaeROpZrThA1Pre6pA7rbStbA9MkdcSaLAgPBpoxDJqqL6jvara24BiqGZXErhiVXI3ydHVBHar5GuX5dZhWqWatz00dzeENu9Hr7VJdXN/patPJwNCs408fzzP+aJJwv5/y7ML2PRfZYZ1brWztp1bSyZwoNKPiyml1wTuO8my1uRK5Vq5fR8PAF/PgCSlW5E5z22Xqu35LVrIqes2ayACrzTbqUK8srO9qVlvgLGOaZtOlQFfr26pzbdaVnN9m6xEeBswcyOJyy2hq/fjzC+uwklKbx2Bo1ufOHMxSSamEBwML22FqzqWied/X61DNamROFlFzWvOaL9dHwNx9D5YwTqtqFMbnXddl+oiGm46araGX9eZE2qp9RLbWPAaA7Jki+VFLKLBSH9E8hpRKNV/Dn/AQ6PCu2Uc0ztvQTGrFGm2bQmRPFVbtI6hHIWn1PtnldWEac9d8pT4CoFacq5fp5zO4vDLavBiQxX1E474Hq49QC9pcHa7QRzSuo65a56oEZKuPyK3eRzQoJauYwLZ3DTLxVHLVPqKSUqnmrPo3aia50RKVdI3CeAWX17Xg+WNdGw0kGUM36v2JiScoo5YMitNzfVo1o1ErN9qsQTldQyuqUKtRK8qUUzXa1/kwgWLSmGsvBpSzBlr90mlV62dj3BKxDfeepVKp8A//8A84vLr53Oc+x65du+h7t0byJxVME2ohH7I019arFdAbt7UBlYpEJGKi61A7Y1oOmHVnIzWvo6tWWVMzqeb1ZqquWtQxdBnZLWHUTNSc1hyXmbpJNVtrOovoVQM1p1HN1Jh5IYc76Gr2z2ZNt/rg+r25OKJNLWgoXpm+axNMPpNaddtaQWvet6Zu9QkNdNVY8HOtqGMa8+olo2KohiUoDCm45t3ztaK2YGxYzdaazzSjZlCcrDQn5bWyviByq5qtNftNo2YdQ2O/siIv6PeruVpzDGHo9W3r10qrGEj5Gu6gFSFcmCijN+pQNxc8x7SKviAOSs1r+Nu9uEMKtZK2YFvr2syv71qzLy9MVlD8rmZUnF41FkRuqUUNs+HoYlrHoBY1agUNT1hZVN/a3NjQbPTX9c+tWWLjjl1Rpp/LUCvpSPJcHVYyc8fUrEPTOs/8mCVMmV+HzfrWzAX13XjOzNaduaJDweazqLntvDqszh9zzhu3m8ai+q4aC7at5bVm+/a3ezA1o9kutaq+sA4Lc9+LzHq9NAZ1i+u7VtSa59LYttHWDN3E5ZZRvC5qBZ1aSVswNpxf30bNOn5MEzVXswSAysL23Rj36pqxpA5N3WyKibxRd3Pb5ep7vjajNFNt3q+NNtvsIyr6grg0NV9DqxgEOrxE1wfrMWAr9xHNe6F+bSopFa2k4426V+wjaNah9XMlXSNzstD8edk+olHf9f5EckkEEl6q+VpzbNKoQ2Nxm603aa2so/T4iAwGrPHEKn2EVtabQxXF60JySXPXcYU+olkvOateqtUahmag+F2r9hGN8UejDvNjZbSyji/uWbGPMI1629IMJFmqH//qfYRer8NGnxzfFELxuyhNVZb0EYYhIykKes26F/R8ETkYpFY2SJ+pUKm/R1DzOnr9uumNZ5XsAsWqF0OTwAUuBaolqNXNXg3D+rlRx5pq7Vyq1j+3JCPJ0B7Smcq5KNekxrAdTZeozGvfFU1C0yUiR7MYUpVDI49x991385a3vAUHBwcHh1cmZVSma9nzvt+MXoRzmBZc1MUjXx0cHBwcltKIe3OclBwcHBwcHM49kmnOm7E9B/ziF7/g5ptvJioluNr3JmsnwbUjj6RyvjnR1Sr+dg8bb+1m5BfTZM8UbR1vq8Q2BqlmawtEJWshKzLb3j3A7AvZ5mR7q4R6/cLxTecL2SMLR0SdT2SPTHxDkOyZolCbGripg9TxfFMI1AremJtgt68pjHopCXR5kWRJ6Pjscsl7hph6LtNcbf1Sofhkgj1+8iP24gBFCHb5UAIuK+ZQgN7r2smPlMiPtH4/RjcELbGVaKTHeURW5Obk34WGr92DVtSE7l/ZI7P9nQNMH8g0J1JbKqfItO+wXAlair9sdWX8Mlkr2949QDmpMfLYGsdXqy35lTLUjbHG46chUFLbc/xy4ofs2rWL/ftbjwFzeOXy4Q9/mH/8x3/ksoFfw+e2nCO0uH/VMrJs4jo4tvQPxupvx9s2+FD8MhMPTdg+3rX2ASDJEsEuL8WpCiLpB+F+P5HBIGOPzrYUCdRAViRkt9wUtVxQ1NMmL+QUCE9IQXbLVNKtj5N9cQ/eqFt4DO9v96BVjAUCkZcCySXhjbpRczXhuD1RwgMBooMBRh+efUn3A+CJuDF1Y06Q/BIS7PJRyahNUVMreCNu/B1ey82oRWS3jC/upjyrLhAZXWhILkk4Iu584Ym4FwiTWiEyECDc72fssaRQf+sOKbg8MpXU0v5CUpauoZJDLU4ILCrrjyu07Wlj8pSJtsapNURKzX26IL1z7fjwyFFrTDdavJ+TI/s5fvw4AwMDrR2vwwXF0aNH+eAHP8gXv/hFtm7duub2hw4dYseOHefhyBwcHM4nn3vua9wnHTlnn6camiVAWgNfyY1iyLj9Cm7fi19P7DgpOTg4XOiIjr1eLr76Oz+nMFPmzX90Nd3bxKPMG1xsY8eL7Xzh4jvni+184eI754vtfOHiO+cL4XzPqZMSwE033cRrXvMafv7znzOtjdCpDGAWLWeQ1cRKWsUAGYKdXoqTrU3sN+J08qNikxu+uId1+7oY/tlUy6KjzElxEZShGUw9kyI/KiY2ig4FGby5k5P3jAuJHOKbQ7i8rqblf6u4Q0pzpXgrvCiBkkxrQoA6nohC25Ywk0+lWy6j+GR6r040ozRapRGdJkK4P0D3ZXErLkPgvDbe1sPskRzZU60fX9eeOJJL4tTEi5gYvsAIdvsZvKmTo98eaTr9tMLG23pIHs0J3ZdtW8P4O7zCIqXxR5JC2wN0Xx6nOFkRun9jG4OYJkJtQvR+mo+oQEm0nwDr/k3sjDK9Py0kOOq/LoGhm814wFYwVIOJp1LC4k5DM4TFeBtu7aY4XWHq6WXKLSNOajD2VH71el8kTlICMi63TDWrrSpQaoiTwHJjOqo/icfj4atf/erKhRxeVfy3//bf+PrXv07njnFyxy2RkpK27oWVxEqGIeECFJ+EoZlzQtG6o9JKQqL8pNqyVm8+0XUBlICrGdG1FqZhUrAhyi3NVq3+RlAHkLgkusAtphVkt0RkIEBupLzASakVXB55zoluLcwFJnDiSAjVh7/dg2kgJDgK9fpxhxShMpW0KrR9g/imMMXpCtnTrT+TAh1eAp0+Zl9o/fq6vDKdu2JM7U8vcOZ5pRPbEESvGCSP5FouE+jwEujyCX3HkFwSbdvCJA/lhMZD1VxNuL69EYXE9iijD8+0LuaTINIfoDhVaf1erJcT7V8aCAmUpLqgXLBvCfX60Sr6sgKglfBG3HRdFhdu68XpiuUgJlgftYLG4r0sJ05q4Am6iG/0M3uk2HT6W8AKZStZjdTE6gKlxeIkjx/U8tpa2oY4CSBXnuTIqSf4zd/8TUeg5ODg4PAK53b3Lj62465z9nm6aXDrgU8xXcsu/7g0IVz08d6/uwHZtL5kRXuCXPf+HfTtSpyz43BwcHBwEEdTdQqz1rs1x0nJwcHBwcHh3LPybOqL4Lvf/S4ej4eTvmesCJE6DbHSSnRfFmPodZ3IntYPa/ZwXtiBpZJVKc9Um1b5reLv8LDxth6h40seyaMKTuxnzxQ5c/+ksAtLsMtPqNcnVMbf4WHr2/sJ96/uuLCYoTd00X9Dh1CZ7ivb2PoOsRe33oib9q0RvDF3y2XUnMbhr50VXpkve2SCPWL1lzqS5eBXzggLRfSqIVxm5JfTnLl/SqhMsMfHlnf04w6dcz3iEgZu6mDgJrE2kR0ucvSbYgIlAL2qN6M5WmXkFzOc+P64UBlPVBFqew2OfmOU8SdSQmVi60O0bQoLlencHWP7XYNCZbwxN9vvHiTQ4RUqt/4NXQy+plOojD/hJToYFO6jzzwwxfjj4uKw1DGx/rbnqja69saF91OarlJJL5rxkuRVBUoAxSmVcnKZ46vVlnVP6ro0ytDrE6s+qecLlAAu/51+JiYm+K3f+q0LeiWSw7klHo/zl3/5l3zjG9/gw39y9YK/NcRKyyHJ0LnNT6hrmX5Ods0JluZRKxmoRXF1pFrUhPt6gMi6gNAYpRFNKkr6WJ7k4dZFGwCYllOMO7i0nlajfXuE9h0RoTKesELfte0LYs7WQpKh77oEwS6xsU2o1y/8jEifLDD1TOuC8gaK34XLK/Z1ZOKplLDg2NBNYbGHVtYZe3R2QaxbK7RtCRPb8NK/wFR8LrqvaMMdFBvjzR7Mkj4h5gBqGqbwIgVTNxn5xQwlwfvRE3EjucSUkOWkyujDM0KOV+6Ai8i6oND3OoDeq9sJ94l9b2rbEqZtq9gYzxf30HddO4pPrH/xt3nwRsTGrtVcjalnxcV4etUQ+r4qKxIdu6Io/rlzkhRlVYESgGGYVPPaUoGSoqwoUALLfa60QrcuVbVl3ZM61rsIta3e/uYLlEzTwIg9z44dO/jzP//zVcs5ODg4OFx8uCSZjw/cCcDip4uE5Zb6h1vfxSW3DDUXgmQnivzo00/ywP/YTzF5YTrsOzg4OFwMZCeLYII35MYX9rzch+Pg4ODg4PCq4yVRLkQiET772c/yn//zf+ag/Ai7vTc0/2YWSys6Kk0fyJEbLgm/BI9tDNJ1eRvHvzvWWlkDhn8+LbQPAL1sILkk3AEXVYFjjG0MEl0X5OxPW99nfkz8i+joQ+JOQOUZlYknkhSnxSYQCpMVdMF4vvxoCU0wmiM/WuaFr5wVKgMIRwcCtG8N03VZnINfPtOygMhuRNmZB8TERgBaSfyc9IpBaaqKeR5ivco23BAwEBbxAZx5QPz+BXEXsK49cQIdXo5+Y/Ql39eZ+6eEZaOFsbJwbIhpmORHy0tFNmsw8UQKXbAdZU8VxZyh6mglHa3Uuoo0tjFIZCDI8C+mhcR/kiwhi7ohmCaTTy+aiF9DnNR7TRveiMLZh5eJrllGnNRg4sk0vjbPiue0WKCkByr8j//xP+jq6uJzn/vcqsfk8Orjrrvu4ktf+hL/8T/+RzZF7kJxzYlMlHR5WUcl04DZ4xXU1Z4vsmtZS4mOXRGqmRq5FqMwm86VLUS9zUeSJOG+UZIl4ptDdUFha8+mmkCf08DQTMYeFRdU5kdXF+0vh1bWhcdqpmEJ30UjnGYOZoWdUexGWHVeGqM0XSEj8Kyws69KShVylrF2hJjDTh21oJ2XSC/TMKlmVGFnRDvRdeWkSjlpY5wnuCtZkei+LM7s4SwlwfYuel61os7owzNixyjV76m82Ni1klGtvkwANVcjeThnORUJMCPoqNugmhXrJ9q3RyhOVoTc0GSPjCRLzTa7ljipgTqTJ1NeJPxbpaysQOeOAOkzVZbz41ssTmpg6DB9SkdbpenNFygBpLSnefqJJ3j44YfxesXEnQ4ODg4OFwf74rv5/Ib389mRbzNVm3uOdLpjfHzgDvbFd8P7YOvN/Tz8pReYPpYB4PTjk4w8O8Nlb9/EJbcO4VJeknXGDg4ODg4rkB233lNEe4PC3+ccHBwcHBwc1uYls1f5nd/5Hf72b/+WI0eO0K9vos3V3fzbSvFvhmpQmrFedHoiSmsr7g2d0kyV4oS4qCfY5aNtW4SRB1sTPKgFTdiJBayIDlmRkRUxUcvQvi6quRoTgo4svrhH6IVx8ojYamqAWYE4lAbFiQpFG9EtdoiuD9K5K8rx77V+vdIn8+THy8IOR0Ov7yI3ViIlUo+yFUsnIjyKDAaIbQgJCewqadWWeM0OdtpE25YwvoRHKFJNVmSQBUVAMmy8tZfp59JC8YsTjyeFXai6Lo/hjXoY/pkNIZVg2yvNVIUd19ScZqtNiAonPREFraQJ9XlKwMXG23oY/eUsxanW+wqXW0ZWJOH6G39MTFwQ3xzGG1WYbMS8rSFOalCaqVp1USwhN557q4iT5vcPpemlfflicVKD09FnMHIGX/ziF5Fl5wXmxYYkSfzN3/wNu3fvZsMtaYaf7F7w95Xi3xquSC63hK6Zy0/YL4qA09NZKkE/NUHhMUB0XZBqvtayYETUFREs8YasSMJuLN6Im7atYab2p4UED5IsIStSy4IWUYEDWAKMzMllhI5rIBqBCdiOsmrfFqGaqwntc+ZAxnKXFMAX9xDu9wtF84ElgDENs/U4MCC2MUQ1IybQsVXnNtBVg/QJ8TbRtjVMcaIi5Joju61YSJG2Eez24Y24rUjkFjE0k4knk8Lxa1174mROFYSFNsJt3YTipI0YSkHBFVh1IVpO8bvQymKipuj6IC63LHSdJJfVv5qCOZRaSWf6uUzdPam1Mm2bQ+THyzTPqhVhkwmVjE6tbCDlZjB7LafXlcRJ/z97fx4nx1Wf++Pvqq6u3rfpnn1G0mi3FsuWLa+ybIMxGDBLCBBuApjEwC/rJQuB3IBxgEASckP4JjckkGCCw2Kzg/G+ypZtyZatfV9Gsy89M72v1VW/P6q7Z0aamT4lI2+q9+ulF3jmVNepT506VdPnqecBcDihUobyPKf3dHESQLY4wd4Tj/Hud7+bq666qnG/XgU89thjXH/99Qu2qVQqfOMb3+D3f//3X6Ze2djY2Lz+uSFyIdeH1/FC5gTxcoqYM8hG/1IcM75TiC4JcvNtV3D0yUF2fP8whVQJrVjhue8f5sgTA1z9kbV0rI2+gkdhY2PzauXgwYPcf//9vPjii4yMjBAMBlm7di233nprwzjiXbt28YMf/ICjR4+STCbx+/0sX76cD3/4w6xfv/6M9uVymR/84Ac88MADjIyM4PP5WLVqFX/xF39BS4s1B/5XO4kh8+/tcLsd9WZjY2NjY3MuOKermI888giKovBi6XH0OVaqa2KlytTsL/06Louw7KY2ZMEvL81F97hl5xLZJeNpcqJ4rZXBE1OJWYjpSJ7IcvLBEcuuO/mpkuUv20NLfax4R6fpvmGBzqujRFb4LW3jbXYRXmbtIc0TU2nZELa0TWRFgNXvsxYTpxUqFDOapQgHLadTOIu3xHXd2qINwKItLSx9c7ulbRwuB2rAoq5QNhfzRK+ll4IaUlDc1q4lxeNAtSgCalrpZ+0HFls6JkWV0cs6ukVnA62gT7t/CFIp6pYXiDquiLL0Jmvjwd/hsTQPAah+hejqgLWZXzYFk1ajf7o3N9Pz5g5L28iKRH6yZNmVa+JQ2lIUoivsJLYuZGkfte3qc6ugQAkgcTzL2J4ZeSMLCZSAtouDLL+pddYYrwmT5hMoHS6/wIkTJ/jgBz/IzTffLNw3m9cXPT09/NM//RP/+Z//yXjq6JxtamIl54FphzjJAa3rPPhbGkQEzYh/OxtHNjBjy5wea/FFSOacZyXqLL4/ZTn2rZyvUEyWkWRr4qaWDWHLz1BqQCG62tocLsmmwF52Wuufr81t+V7bsiFMsHtu59P5qJQqll19ytmKZQccQzfQK4aVaRhZkei6uhl3k7V7meJxIDutPdvITslyhN3ZIMnSrNgssY3A6XEgKdbGUOvFEcJLrY1xDPNcWaWcszYmZIdEOadZFBaaz15W/14KdHos19wTc+H0WtvG2+IitMTa31iqX6HjsiiukLWoNy1XoWRRcGpUDOL7khQT4vcAX5vbcu0cqowaUKbnZEHnJb0Cib7irGjohQRKkgytyxwEYrOvi9AeU8w+l0BJN3T29v2cxYsXc8cddwj169XA7bffzt///d9TKMytxhoYGOD3f//3ueuuu17mntnY2Ni8/nFIMpsCy7mpaSObAstnCZRqSLLEymu7eO8/bmHNmxZNR8ANZbn3b3fw6P+3i+zky/Pyp42NzWuH733vezzxxBNccskl/Mmf/Ak333wzu3fv5tZbb+XEiRMLbjswMIAsy7zzne/kE5/4BO9///uZnJzkj//4j9m+ffustpqm8alPfYo777yTyy67jD/90z/lAx/4AB6Ph2zW+gtmr3amnZQs/i1sY2NjY2NjI8Q5lS50dHTw1a9+lT/+4z/mxfJWLnG94Yw2RjZn5lHM+OMsfiBNdqzYWNRzWmRIeJmP8FI/vQ+JLVan+3Kk+6xHbkSWBQh0e4gfSDVuPIPgIi+Voi7sEDJ6eqSQAMneLP3SmOVIC9XnpOSxJqyIXhDEE1VJHBd/CPW1uoleECS+PyEs2iokiqT6csiKLLz4dbauTS0bwujVL95FORvHnPj+pOUFrKmjaaaOWnO9UgMKK97RSe9jo2c11q2w5IY28uNF+reKu/SM7U5Y3k9qIEelrFsS/WkFnZMPzi3umA81qNB6cROjOyctRdLF91ubFwBy4wXLcR7BRV787W5L81BwkZfWiyNMncgKizpVv4LTr2BYVOINPB23vBhVSmn0WYjFBGi+MMzEoZQlkWposY/o6iCTh5KWxtHIc1VXO1nsuCLLfQS7vZx6Ytx0eTJ09EwGuUEcSHx/hsJkeVbf9GIR5hEo6ZEMQ+NHaW9v55vf/KZQ32xev9x666387Gc/Y+fOxwl5O1CVMxe6lan8rGcvo4IZi5NqPA/pyRSSbDrSSLLpiJcdLQgLls4mikiSJUJLfBi6YcnFRFYkvM0uMoLPA3pZt+QmUmPqeIZK0WJcnCTVBTB6WWz+kmSJplUB4gcMSwKs4CIv2eGCpXtZfqJIOWvtmKxEttVwuGVCi3wkTmZmCQoWopgsWxbx65rB+P6k5eg7K8+DNcJL/Ti9CqMvWn+Ot4I74qR5XZiBp8eFa4cBo7sSlvc1eSRt+WWQ7GiBrMV0Y3+HB8MwLD3D65rB5GFr160kS2RHCpZE5ZJDIrjYR6VkTYwe7vGRixdJnhS/PhyqjOK2+AyV1Rjfn7R8bVhxrgRQg04kyWI8nGQ+e6UHc2RGxLerlHRGXkiAw4Es+KJGdLmb7HiZQrJ6jio6Uv8otMzvPGHoMDmoU8rNvo6kZJrg4bn3O1rYRqYwwgPf2UYoZF34/kpx2WWXce+997J3714+97nPsWLFivrv7rvvPr72ta9RLBb5nd/5nVewly+N733ve/z4xz8mk8nQ1dXFv/zLv+D1WhPd2tjY2LzSuPxOrvrIWlZe18XTdxxg7FgCgBPPDtO/a8yMgHvLEtNp3MbG5rznfe97H7fddhtO5/QLC294wxv4yEc+wne/+10++9nPzrvt29/+dt7+9rfP+tm73/1ufuu3fosf/vCHXH755fWf33333ezatYt//dd/Zc2aNb/+A3mVkaiKlMIdtpOSjY2NjY3NueCc+6v80R/9EXfeeSc7duxgQDtGl7J87oa17AVJppTR6gspilc8EqtSNpAkyZKYBUx3jECHuOhoZOcEQ88Jf3ydtksi5CdKlr4MVrwOWi4MM7RjQizKSMeSaKiGVQEHwOCzE5YXLOIHU5ZFHPnxEvlxa7FMYMaCuSIK+XFxwZY7oqKVLC40Ak6/QtnC4p/ViK6zpZTW6H10hOzoud/f4FNxNKuLtGdBKaVRSlmLN1HcMlpJtxQH5vQoeJtVS9IcxetAdkqUktbeSD+ba3bo2QnLXnjxAykSJzKWrttSSuPozwYt9g6KibKlN+ybVgeoFHRL0U6emErrhjCFyaKlGL+x3QniB1PCAiU1pBDs8lqeu+pv/lcE6y2b85ZW0EmcNI9HLy587eq6xu7yNhwOBz/+8Y/tmDcbJEniP//zP1m/fj3exYcpD1yMJM3jmjLj2Ss/Zc7fslLVgDeY/OrjW8Ky8xCAv91NfqIkFOtkVAyGtk9gWHTDU4NOwssD5KdKVAri854nqoIkCQuBrApfattYFbHomsHg03HLzkPDz01adny0MqfORPE4TOdCwT5KSKhBJw6njF628AwhmQ46Vmph1VnrbEn15c7qmrBKMVlmdJe1aMKz3peF+3kNhypbi20DnF4HFhPEcPoUtLxmKcZP1wzLUZJGxbz+sHhqh5+ftDwezOvP4jVoWBvjkgzBRaZwSFjkhjl3Kx4HY1bEbgbm37KA5BD7+sHX5qKQ0i3FQUq1ZFLNEH72qsWxF9IzXJeSC4vepjJ97D/5JB/60Ie44oorhPv3auArX/kKd999dz3O7dZbb+Vtb3sb//RP/8Rjjz1Gc3Mzf//3f8+GDRte6a6eFT/5yU/Yvn07//Zv/0ZLSwsnTpxAEXTgsrGxsXk1EusJcfPtV3Bk6wDPff8whXSZcqHCju8d5sgTg1x1yxo7As7GxmbOWLbu7m6WLFnCqVOnLH+e2+0mFAqRyUx//67rOj/60Y+45pprWLNmDZqmoWkabrf7JfX91YphGCSHq05KdtybjY2NjY3NOeFlWc187LHH8Pv9HChvJ6c3eNN1xjfMrReFWHFzh3BkV7ovV41Vs/aFeNOKANG1IeFq6Bqgm8IUT0w8JuDEAyOWXGYAnD4H4R4/3qjFqKVrm2ndGLa0jayAr138wbIudLAyimqnxuLIU7wOmlYFLG3TfnmEJW9ss7RN3+NjDD1tTRDVtDLA6vd0W4o6U9wyLReFUSzEP6hBhbW/vZjAIgtvguqQ7s9bFpOdDdnRguVFrBXv6qTjSmtfqDStChDo8ljapuvqZla83Vr0WHa0wOEfDVgSn8XWBFnx9k5L49vX6ibQae146p9v5bRWt9EsLNQ7/YrlKBTFK7PinZ14mq1tF1rssxxtko+XOPTjfkuL6cHq9WPlmogs8xNbG5p+S1EXW0ifPJLh1KPiNhIdm8Isv6m5fq4aCZQAXig/zvj4OJ/5zGe48sorhfdl8/qmvb2dO++8k3vvvZfe8Wcab1B99pJkaFnjJdguHhc0eThDXjQqtXrtSA7TGckTFZ8nagIld0R8m8JkiaFnJywJlAC8LW68Fp7vwHQubL04guSwJkZwVsWtotQFKVZ2U1t7tyiucIWcOH3ii7uSDO2bmvC2iD9LaoUKI89PUs5ZEzm3bYwQ6rFmue4KO/HErD1Ph5f5abkobGkbLV+hbDE+62zQNcN0s7Eg6nE3qXRtjlkacw6XjL/DY2lsO1wynVfGLD9DTB3LkDhuTYjeelGYgMVoQm+Ly3JsYv36sSKiksz2VgSWatBp+VoNLvYSXmbtenD6FPydHmSHtT/KJg+nie8Xdxhz+hSz1gbCtZNkCHZ7Z90j9HTjcWFUYOJYgVJK7PqTHdC23IEvMl3wRgKlkpZjT99PufLKK/mP//gPof282njf+97H17/+ddrb2/n3f/933vOe9/DYY4+xZcsWvvWtb71mBUqVSoU777yTv/zLv6S1tRVJkli2bBmqam0esrGxsXm1IckSq67r5jf/7xYuuGFR/TkhMZjh3r/dwWP/uovslB0BZ2NjMxvDMJiamhJ2/cxmsyQSCU6dOsU3vvENTp48ySWXXFL/fW9vL/F4nGXLlvGVr3yFN7/5zdx4443ccsstvPDCCw0/Px6Pc/jw4fq/sxFPvZzkJgtoxYrpqNtiu3La2NjY2NicC16W18q8Xi/3338/11xzDcci21k39Ya628Oci7DVxbKJI2m0gm5ZYBHo9BBZFRCODRreOcnoiwlrC/7AomtbADj+qyGh9lp1AcYTU8lPloT2lx8vceCuU5b7VinqVErWXkVu2xQl3OPnwA/E9xde5qPjshiHftgvLA4LLfHRdXWMwz/uFxZMBLu9dFweJXUqK7zN+N4kE4esx7YApkhAsAapgRz6U2OWxHGyS6ZlfZh8vEg6Jyaw0HI68YNJiglrUX6tl0RI9WUtOUqdDa0bw2QGC5acwqaOpCmmrQmboquD5CdK1pxz9iRwWBCRAZbGwPR+kmSGCpa2i60NogacpAfF3YqWXN+C5JAtOaB1b27G6VM4cd+w8DbN60KEl1qbExyqA61QoZy2tkB78oERS+IuT7NKfrxUn1dFCC31seiaFo79apB8XPx6GH0hwcSBlPA1Hl7mw9eiMmhR8Bg/mCEfL6Hn5xYn6cXirKi4DX/UzoNfGWHLli389V//taV92bz+uemmm/j0pz/NV77yFe744ef5/B/eX/+dNDSHYNrQMSqQGihRTFsTjEgOiXCPj/xEUSj2zagYDD83adkBRg0otFwYZnT3lLAoVi/rIIHT4xAWwkwcSll2HjKfuyrIikRFUJAgyRKtG5tIncqS6hePZG3ZEKaYKluKj2peH0IrVJg6Ki4AiawIUEyUmDomto2hw9iuBKWzEehUxRyiTB3PCMfk1fC1uFHcDktuM/mJIiWLzylq0IkaUMgMnp0blfB+/AqusNPS85CWr5DszVq69pxehchyP7nxAobg1KCXDcb3Jay5jFkcAzVGX7TmJuVwyUQvCDK+Nykcj+1wybRvijK+NyEccyYrEu2XR5k4kKIwJbYfSZZouTBMqi9LykJMs142sGQlhem2Ovh03JJwyOFyoOUrlpyXmlYGqJT1enSioWlIDZxtDMnByO60JXFX01I3maECpax4HfQKJEZ0CmljXnGSPDaF3hIx+2UYFAJP4w+q3HXXXa9p8cvy5cu56qqr+MEPfkCxWCQUCvG7v/u7BALWXgqai1wuxw9+8AMOHDjAwYMHSafT/NVf/RU33XTTGW1LpRL/9V//xYMPPkg6nWbZsmXceuutbNq0yfJ+x8fHKRaLPP7449x99934/X5+67d+i5tvvvklH5ONjY3NqwG3X+Xq361FwO1n/Lh5bz3+9DB9L46x8T0rWHvjYjsCzsbGBoCHHnqI8fFxfvd3f1eo/ec+9zl27NgBgNPp5B3veAcf+tCH6r8fGBgA4Ic//CGBQIC/+Iu/AODOO+/kk5/8JN/4xjdYtmzZvJ//i1/8gm9/+9tn/PzkyZNUKuc+mcEqiRPm39nusINDRw695M/LZDIcOHDgJX/Oa4Xz7Xjh/Dvm8+144fw75vPteOH8O+ZzebyisbAvm/f11VdfzWc+8xm+8IUvUJYf4xLXGxtuo2W1ushE9Sv1CLhGSA4J1a8gq7KYwEk3LSsVrwNfi1vY/n9g27jlN79Vv8Kyt3YwsnNSPDpINyOA3BGncEzY0LPW49HGdieIH0haEljkxotMHktbEhdkx/LED1mLTUocT5M4mbUcU2UZGda8fzHj+5OM70kIbaLlKpbjukpJjX139lraRtd0Rl8Q69NMoiuDVPKVcy5SaloRpFI2LImURCMWZ3L059ajxyzH68mw9gOLGd01ZSniSy/pZIasLUqeenTMkqMWwNTxLLLT2hdPqb4cTov7GdoxQeJkxtKcUEyUTcGRILIq4wpVYxlFU9EU6LmhncTJjKW5Lnkiy4nssLBASXHL+No9JE+KiyPBdEZR/eK311ocYSmlURgXm0uSepyvfe1u2trauO+++4T3ZXN+8YUvfIFt27bxvve9jxXh9+JyNl58zE2UQJKRZJAkQeMwwxQBlQSdL2HaEcgTVSkkykKL0aW0xsjOSeHnwRrhpX68zS6Gtk+ILchX26h+hXJOLEaqUtItR0IausHYrinLop7sWMGSQBNMd0Cr0VtjuxOWhUDFs4i+83d4CC3xmYIJ0f2cRfzY5BHrwvWz2Y8rqOBv95x7kVJAIdDltSxSshrlV5gqWXaCNXRD3GGtSqDLS6DTY/lvGKt/i1WKOoPb4ugWBDBGxSDVl7U09xgGZAbylDLiY8jQDUZ2Tlq+7qw+e1qZ22r42j2El/oZesZa5OT43oQlFy53zE0prVnah6yA4pLMm5YgDgUqGuQS8wuUTufUxJMc2fMsd9xxB52dncL7erUxOjrKF77wBfbt28fy5cu54oor+P73v8/HPvYx/vAP/5B3vvOdL+nzk8kk3/72t2ltbWX58uW8+OKL87b98pe/zOOPP8573/teurq6uO+++/jLv/xLvva1r3HhhRda2u/4+DiZTIb+/n7uvvtuBgYG+MQnPsGiRYtes+5QNjY2NnPRvDTEO/7mSg4/PsBzPzhMMVOmnK+w/X8OceSJAa66ZS3tFzS90t20sbF5BTl16hRf/epXWbt2LW95y1uEtvn4xz/O+9//fsbGxrj//vvRNG2WeCifN//myOVy/Od//ietra0AbNy4kQ984AN873vf47Of/ey8n/+Od7yDq6++elYfv/jFL9LT08OqVavO5jDPKfv7TwFjtCxpEl5oXYgDBw78Wj7ntcL5drxw/h3z+Xa8cP4d8/l2vHD+HfOr4XhfNpESwOc//3kee+wxnnrqKY6Vd7HceVHjjQydUI+P7qtjHLt/lILAF96pvpylt09rtG2M4O/wkOzLCi2W1xYuZFVGVkynm0aUMhp9j4+RGrDWv67NMbwtLg7d3S+8jeKWia4JMrorIXQ8Vhe8wBQCjTw3aWkbLaczunPK0ja6BpZtbTDjtxSfIt5HHcb2JsiOWPuyP7zMhyRLlhwKzgZ/h4dKqWLJBebA918e+9SDd/VZ20A2I76yw3lLAhCrqH6FyEo/EwdSlvYzumvKdEUSxNvsIromxOAzccvub1avPVEh5UvdBh1yo+ICr/AyH1remlCreU2Q5vVhDv2wT/j86Br0PjpCyYJbkzuiUpgqWRLRRdcEia4OkR60EJlo6IzvSTC+R3g3dF/ThFGpcOI+MXFXSS+w17GVSrHCr371K7xe23bYZm4UReGuu+7i0ksvpRjcjpK9Docs8Ohn6MRWeKhoMHlcbA4Yrwp0JFnC0MUWl2WnRPSCEIkTGeF5oyYSUDymo4cI6YGceV+34NIiO2VaN0aYPJomOyw+b7hCTiSHJOzQYlVwBVjqT43cmEWxLlgWSoB5TsM9flL9OeHzU0yUSBw3LDnpyE4JX6ub7GjBkquLVWSnhBpwCp9PgPRA3rIQ6GzIDBfIWBwLTp8DSZYs3T/PBm+zC10zhB2EwIxntPr8FFrio5zVLIvRrbq46Zph+W9Lo2KQPGX92Uv0ugFAMh2EM8MFcdchyXRWy44VLUXrZYbylLPi4iGHKqNXDLO9yDYOB5IMTSt8ZEeLJE+JX0N6UWdsn3itnW5oWeZgYk+KYkZszI0mD3FkcCu33347t9xyi/C+Xm089thj/OM//iPZbJbf/M3f5OMf/zhOp5Orr76az3/+83z1q19lx44dfOpTnyIYDJ7VPqLRKD/96U+JRqMcOnSIj33sY3O2O3DgAI888gi///u/zwc+8AEA3vzmN3PLLbfw9a9/na9//ev1tn/4h3/I3r175/ycD37wg3z0ox/FVXUbveWWW3C5XCxbtow3vvGNPPvss7ZIycbG5nWHJEusfkM3Sza18vxdRzj0WD8YMNWf4Vdf2M7yzR1c9r9W4w1bizq2sbF57TMxMcGnPvUpfD4fX/jCF3A4xF5YXbFiRf3/33jjjdx66618+ctf5gtf+AJA/Vlr3bp1dYESQGtrK+vXr2ffvn0Lfn4sFiMWi1k9nFeM5LD590Wow1qsto2NjY2NjY04L7sH7GOPPUZbWxsntH2MaQNC2yRPZRl5cUpIoDQTd5NKz5vbhK1uh56d5Ng9Q5a1MMve2k7X1c3C7VN9OdBNEZEoIy9McuIB8ZgmADXgJLYmjK/VLbyN4pZZ+RtdhHp84juSzUgxK/uRVZm2SyOW3EYCXR5W/WYXsgWnBsWnoAasafHi+5KWREBgujRYqhnQcUWU7i3i46a2TWytWJb0qx13SGXRlhY8zeJfmvg7PKx4Z6cl5yF3k0psTdjabKdDfL94PAeA06fgaXJaWmDr2hyj+1prY6D5wjC+dvFrDcxx42m2Fkmx4l2dxNZYW5yIXRCiaZW1mIjRPQl6HxkVFijVrv/caFFY3OVrd7P85g4CXR5rfXshwbFfDc59Tk+3lzF0Wi8K0npR2NI+AIa3xxnfkxRqq+s6x6LbyefzfPe732Xjxo2W92dzftHe3s7PfvYzXnzxRQ4O3IthiC0wpwZLpAasC1sCXR4CnR4k+TRHizksmfSywfDzE5ZdQNwRlfbLmnD6xO7vlaJOOWvuX9TRQy/rjO5KWBYE+Ts8+DuszTX+Do/luUP1KwQXWxMouoJOy/ePplUBQkvEn2+MioEaUHBYeFYr5yqmgNSKiMwhE1riR/GIP+M5XDKtF0eExw2Yz9It68OWjufVTLDbS2SZtS9Zm1YGCC6yNtZ8rW68Fp7vAMpZzZKQGEyxosMlfm5kp0T7piZLfxsobgeBrjnmtAVQg07zmUN8E7zNLlo3RiztxxV0ElritzY+DRjdlbAkupIVCQxrzmKRlQGa1wn+zVJdODF0GN2VItk39z1BT88WVUnoRJe6cLgsFBooFyB5JCMsUCpLY+wf+Dnvfve7ue222yzt69XG7bffjtPp5B/+4R/4oz/6I5xOJ2DacH/rW9/ihhtu4KmnnuIjH/nIWe9DVVWi0WjDdk888QQOh4N3vOMd9Z+5XC7e9ra3sX//fkZHR+s//3//7/+xdevWOf999KMfBaC7uxun04k0w1FLsuCuZWNjY/NaxB1Q2XzrOt7xN1cSWzp93z321BA//POt7LuvF71y7l4KtLGxeXWRyWT4y7/8SzKZDP/4j/941qKgmoh969atFIvm90K157umpjOd2iKRCOm0defiVzOJIfNvj3CHtfUeGxsbGxsbG3Fe9m/cFUVh586duFwu9rONrC4QjVEVDGDoeGKKpV4rbgeKT2wDXdPRchVkVSa0VPwBZOS5STNCxAK+Vjer3tMtvFhUSmmUkuZbz6Iindx4kYN391laYNMKOrmxIuWchTesdQj3+PC0WFuMaFoRxNsqvk0xVSY3XjK/KBdk5LlJ+h4ds9QvxS0TWx+yJIbqfWiU3gdHGzecQSmrWYqAAOh9cITBZ6yNtSU3tNJ6ScTSNlZR/Qor3tVpSahWmCpx+Mf9pC3EoegVnXKmjFYQf8s81Zdj///0Cjmd1Yis8FteyE32ZjnyU2tRdIVEmcKUtTEQWeHHb6Fvilsm2O3FFXQKbyMrkB0pkLcg0gI4ds8QA9vE43oUtwy6tZiSZW9po/vaFkv9yg4XGHp2QtjZQg0qdZFBbd5dkGpeisPtwOGxIKALg14skhsvCl8HxuZRBob6+cAHPsD73/9+4X3ZnN9s2rSJ//qv/2Joag83fjAstE0xXTHFg4aO04LmxuGSkZ3mfVpksb1SFSi6Qk7hGMvCVImJAynKFmPSoquDloS+pWp0mZXnjskjaeL7xESHNcpZzZxvLayl1iKKLQkaIk787dYEVOWsZumZ0NBhZOcUxaS1e5sr6MQTFRfTaoUKA0+N18+RCLpmmMciKNQD0+Vp8Jm4pag8V9BJ2yURS+PmbAgt9tG00powePJoxnLUrlaoUClaW9wa35e0FK8nOyV8bW5LsWAAEwdTllyrJFmimLT2HKkGFYLdXmGBJ4AroJjPxBaEd1qhQjFREnaiAygmyww+Exd2X6rVV8tXhJ3SXCEnHVfELEcGTx1LkzjRwKnJ4agLlDxNTiTZjM4UqltFx+GUcaiScJ0lCZzFDFIyTTYuNq8VKzmOTdxHV1cn//Vf//WaF71cfvnl3HHHHVx22WVn/M7r9fKZz3yGv/7rv67HeZxLjh49SldXFz7f7O9dLrjgAgCOHTtm6fM8Hg/XXnst3/nOdyiVSvT29vLoo49yxRVXzNk+Ho9z+PDh+r9Tp14e92EbGxubc0HL8jDv+PyVXP17a3H5zO9+ynmNZ+88yE//z9OMHLLmgG9jY/Pao1gs8ulPf5r+/n7+7u/+jiVLlrzkzzMMg1zOfLlh2bJlKIrC+PiZUeDxeJxwOPyS9vdqIzlUdVJqt0VKNjY2NjY254qXNe6tRkdHB/fffz9veMMb2MEjXK3fhCq78Xe4KSRKaDkdxSvjDqv1uCV3k4rslum5roX4oRTZkQKFqRJaroLilnE3uciM5EEHV9iJrEjk4yWO/nwQX7sbowLljIasynhj023VkPm2d37cXIz3tboJLfMRWeInO1bEHXSSG8uja+aX1IrHUY8/8ra60PIV0oN5ZEXG3+WhMGn2SQ0qOD1K/Y1gb7MLrVShlNSQFfNL4sljafLjJVS/gjOg1MVEnmYVvWyYb6vK4G/zUJgsohV0Vr67E71icOwXQ2bbmIpRoe744u+YbmvW0DxWT9RsB9QjK/wdHgqJolnvWg2H8gw8NY47ouKOqnX3Kl+72/xSf5569z0xNl3DdjeltDZvvRXVQW68yIG7TuFrdqMGFUqp6ba5sSK6pp9Rb8XjYPTFSVNIpoC3xUMuXkQv6QvWGxlCPT7S/WZkk9NvuivV6x1T0bUZ9V7ko/2SCMVEifxECVfIWW/rjqqgN6h3VXDhblJBol7D0+tdmChNt42oSA7qDk4zaziz3qWMZo7vkDKr3uW0Rikzs4bTY1bXjfpCrq/VTTmvmfVWZLwt89fbFXROn5vT633amHVFnWh5Da1YqY/ZWtu56l0bs6WcNmt8K15H9brPT9fbmB6zskNm4Jm46UQmVO/Gc8RcY7Z9UxOpgTzZ4cKcc0Q5O7vehUmzZrIqzzlHzFfv/Hhx3jlivnof+fEAnlYVV9g55xxxer2dfoXeh0fFx2x1jhh6dgJ/hwfFK58xR9TGLLJZb8UtE+j2kh7Mz19vpzRrzCpuma6rW+jbOoahGXPOEWeMWVUmNZQnN2Ye23xz8swxW8pplBJlMiP5ejTQXHPEzDHbvqmJQIeXfd/tBX2OOaJW76I5Zl0htymEemYCd1TFHXHWxWf+Drd5XyjMvq8pbpllb1nE1PE0A09NTLet3QPdMu6mGffAiJP92oucfOQgW7Zs4bvf/S42Nlb47d/+bfbv388nP/lJLlz0btrzLThUCVmRKFdFnE6vjK4ZVEoGkmz+tzuk4G9xMnYgh6xIFKpprU6fA6NimEImyRSravkKieNZHKqMGlAopTUkWcLpdaCXp2OM1KATLWfGBslOGafPQeyCIJmRQt1RZ1bbvIZeNpAVCcWrUEqVyY0XUTwOZFWqiwnNtubie71tugyGKVovJkuUa58bUKgUdSolHckh4fRNt3W4ZWSHTDmr4Qo5abu0iZHnJykmy/W25UwZQ6+JsmTKM2Lo9LKOJEvomoHicVDOahgVA4dLxuGU6xFvTp+CXtEpJssUU2XUgHO6rSrjcMn1WC6z3qaQAckUlY++OIWhmzVU3NNtFa/jzBrmNFJ9OTJDedSgsy7uUarCyvnqXUxps9pKkul8dHoNT6+36ldAMiil5693vYZumeBin/kcNGE+F1fKOpWiWUenX6Gc0TB044x6O/0Ker0tOP2n1VCdrrfilkmeyprCOImF6+11YOhVgU5ZP2PMKh7HdF1Oq7fD46gLu2SnhOJRZtdbmo55rY1ZMAU0atA5PWYXqLfkkJAUiXJVbGOOWanuGDZvvSsGKNX/zs5VwzPrXZgszR6z2gL1XmDMqoHpGp7e1tfipml1kP6tYxiVM+eIueptVAwqJX3eOWKuejtcDhIns7PbzpgjJPnMeufGiuQnS6gB55xzBJjjvVKarncxrZEZnqruc6ExW613VqOU1szj8StnzBFzjVl32IleMYTqXZsjgt1ekCVTPDTHHGG2nT1m9YpBZjg/XZcG9ZadZpxgpVATEclnzhEOB4pbRpIlyrkKslOiZX2QqRM5Uv15c8x6q3NnbZ5VquO7ouP0yehlCa2gM34wZ95jtIrZdp77mp5ME+x0ElrhYfDFHLoGDqeE7JzR1iOhV6BSMuMnZW+FnUMP4JV1nnjiCSKRc/vSx8vBP/zDPzRsc+ONN7J+/fpz3peJiYk5HZdqP4vHxV98qPGnf/qn/P3f/z0333wzoVCI3/u935s36u0Xv/gF3/72t8/4+cmTJ6lUGgv/MpkMBw4csNxHGxubVzev+Wu7HS78eCunHk0wtssUC0/1p7nn89tpXu9j8RsjqH5rwmMbm9cDa9aseaW7cE6pVCrcfvvt7N+/ny996UusW7duznbxeJxsNktnZyeKYi4LTk1NnfGcm06neeKJJ2hpaan/zuv1csUVV/DMM89w6tQpFi9eDEBvby/79+/n5ptvPodH+PJSLmhkJ83vY0O2k5KNjY2Njc054xURKQFcd9113HHHHdxyyy08y0Ns5m303NDG0I4JJg6lCS7y0XlZlP3f60XXoP3SCLIi07d1nPRQnnW/vZiRF6eI703i7/TQvbmFg3edQivotF8SQfEpdSHPkje1IskSJx8YQXE5WHRtC4d/2k8ppdF6UQRPk1p3QFl0fQuJExmO/moQd9BJz5vaOHrPIIWJEi3rzZilwz8yY+oWXdtCqj9nLkxHnFzwvkUkjmc4+vNBYmtChBb7OHhXHwBdW5rJjxfp3zqOGlDpeVMbvY+OoGs6kVUhoquCHPie+fZe11XNFFNl+h4bw+lV6HlTG31bx0iezFLKaAQXTT8cdV4RQytU6H14FFmV6XlTGwNPx5k6mibc46f90igTR1OEF/soJMoYBpy8fxhk6HlTG8PPTRA/kDLrfWWM/d8/hV7S6bomhifmYu+3TgLQc0Mbo7sTjO9J4OvwsOiaFg7+sA8tV6F1YwRXwMnRnw/ijqosub6V+KEkoy8k8LW5WXJ9K4d/1k8pqdG6IYIn5uLITwZAN+ud7s8xsC2OJ2rW5di9g+THS8TWhQh2ejn0w34Aure0kBnOkRstUcqU6XlTGyceHCY7XCC6Okh4qZ+DP6jWe3OM/ESJ/q3j9NzYSvPaMAd/2E+6L0fTSj+xC0Ls/2613lc3U0qXOfXoGIpbpvvKGIPPjJHuz9O8PkTrxRH2fae3Xu9KuULvg6PIilnvwWfjJI6nueB9i1HcMi9+4zjo0L6pCUmWOHGfGdPX86Y2hp+fIL4/RaDbR9dVMY7dbx5r2yURFI+DY7+sjtk3tjG+L8HYrgS+No85Zn/cj6fZxaItMQpJjaM/M8fs4utamTyaYuT5KXwtLpa8sY2jvxikMFWi5cII7ohad5NadF0LyVNZhp6dqNf7+P1D5EaLxNaGCHZ7OXS3We+mVX7AYOCpOGqwOmYfHiE9mKfpgiBNy/0c+L5Z77aLmyhMlSkmyqjB6ph9Yoxkb5am5X5ia6fr3XlVDC2rkejNEuz2ElrsZ+DpcaaOZggv89O+sYm9/22Ou47LoxgVg5MPjJhj9i1tDO+YIL6vOmYvj7H/uyerc0QTsiJx/F6z3ktuaGXkxSmalvspTJUILfbPP0e8oZX4QXPMBjo8OJwO4vvMxaU554jjGYafm8Qbc9Hzpjbih5JEVwZJnsribXHNO0f0vKmNE/cPkx0t0HV1M54mJ/u/u/Acke7PE1kVILoqyJGfDaDlKnRdMf8cEVnmp+XCMPvu7DWFQNc0U05rC84RM+utBhQmj6QZ25NYcI5ouzSCQ3Vw/FdDtGyI0L2lmRMPjTC+a+E5AmDJ9a1MHEsSP5CoXxtzzhHVeidPZhnabo7ZlrVhjp0yP2fOOWIox+C2CVxhlWVv6wDd4Ni9QwS7vfPOEWrArGHvY6Ok+3IUpkoEuzz16M/T54ieN7XR/9QYiRM5Isv8LH5DC8fuGSJxPEvn5VEqZZ3eh0aRFYmeG9oY3D7B5OE04cU+2jdF2fs/vWgFnWKmjDrD4arnhjaGd05W5wgvXVfGOHh3H1pBp7xmilPbDrN8+XIee+yx02+pNjZC/O3f/i39/f3cfffdqFxLz5rV+GJOhnebb4g1LXVTTFVI9BVxOCVaLvAyfiRPIanhaVIItKn0908iyRJNK/yUshWmjmZwOGVaLwozvi9JYaqMJ6bSvC5Iqj/PxME0keV+tFyZiUMpZEWi7eII4/uT5ONFPFGV6KogQ9sn0AoVmteFMAyI70+CBG0XR5g4lCI7WsAdUYmtCdH/5DiGbhBbGyTU4+fEfcOUMxqtF4WZOpomM1zAFXLSvC7MwNPj6GWD4GIvTo+D0V0JAFo2hEn2ZkkP5FEDCq0bIgxuj1Mp6AS7vLhCTtMRKFXG4ZRwRZwUk2WcXgdtF0cYfm6Ccq5CoNODJ+ZieIf5dnJsTZD8RAl/u4fsaJ5Ah5eRFyYppU1Rrq/dzdCzpjAxekGQYqLE1LFM9fm0mdFdU6T783hbXIQW++rudE0rg5RzGpOH08iKTNvFEcb2JihnNbwtbsI9Pvq3mm80Ni0PUCnrTBxMITnMescPJMmNF/E0uYitDXHqUdP9MbzMj4TpfAPVeh82XwZwhVWa14YY3jmJwynja3PjUGXGdps1bL0owtTxTF341LI+zOAzcQwDltzYZt7TnjT71HxhmFRfjnR/DtWv0HpRpH7Og11eHG6ZkeeqNVwXIjtSINmbna7385OUsxr+Dg++FjdD2yfwtbvpvCLG2O4EiRMZHG6z7ciLU5RSZXxtbgKdnroDZXR1kFJGI9mbrR/r6O4piomyWe8lfgaeqtZwZQCtUGHiUJqmlQHCPX6Gn5sgP1HCE1NpWhmg/wmzbWSZH6NiED+QQpIhtjpI/GASXTPwtriIXRCib+sYGBBe6kOSJcb3zq43mOKmtosjDGwbR9cMQot9ONwyY/UxGyF5MkN6MI8r6CTY5WXwWXN8BLt9qAGF0RfMZ5fm9WHSAzlSfTlUn0LrxRGGdkwQ7PbicDtQXDLD1Xo3rw2RHTXrrVTrPbJzklJGI9BpxhcOPBWvj9nCVInE8QwOl9l2dJfpnOVrdRPo9pI4nsHfaTp2lTMak0fSOJzVMbsnQWGqhKfZRXipn4Hq+PDEXGSG83Xhy1xzRN8T5rNsZKkfwzBFOfnJEsFO77xzRKjHh6zIjO9JIDslOq+KMr4nQWZIbI5ID+RI9lbH7DxzhFnvEOmhPKlTOTxRldgFoQXniNx4keTJLIrHrEsuXiB5Mou32b3gHFEbs6WURudVMZDg+K+GF5wjCpMlvM0uIsv9jO5KIDukhnNEdPV0vUNLfLNM3uaaI/qfGseoGISW+Agv9ZHqyzG+NznvHKEDwS4PTq+D0T0p9LKBrhl1FynV76BlfZDh5xNoBZ1Apxt3UGHkhep1s94HEgzsSKO4ZVrWehndm6Wc0/G1qHijCiPV+1p0uYfcaJZ0AvKTGpFFKopLpqTpeGMK/maF4T2mAD+yxEUpq5PoKyEpBodKD1E2prj33m309PRwPtHe3n7O91EsFutxczNRVbX+e6sEAgG++MUvCrV9xzvewdVXX13/71OnTvHFL36Rnp4eVq1a1XD7AwcOvO4XPG1szkdeL9f2hkth7OgU2+44wESv+aw5vjdL8niRS967ggtuWITseH3EGdvY2JjRuNu2beOqq64inU7z4IMPzvr9jTfeCMA3vvEN7r//fu666676894nP/lJmpubWbNmDZFIhNHRUe69914mJia4/fbbZ33Oxz72MXbu3MknPvEJ3vOe9wDw4x//mEAgwAc/+MFzf6AvE8lh828Jd1DF7Rd3fLaxsbGxsbGxhmRY8a4/B9x222184QtfwEeQa5veipYz0Es6cvUt/JorihpQQDJjzwCCPV5kh0TiaObMtn4zEq7W1h1T6bgsytiuBLmxImpIMV1FdPNtVskxHenjblLRChpaTkdWofXiJvNLfN18c9ehyqabBqaTiFY02yJDbG2Q/FiB7GgJxSujuJS6e4kr7KRSMuPkkM1tS0kNb4uLRdc2M/hMnGSvaZ+phpS681O9bVpDL5nuGopvxrEGFdCpv3Hrjk63rdVFL+o4PHI9qqFelzna1j63eX2Q5rVhUxRR0HFHVbSshlY4s22thrELQoR7/Jx4aBgtU22ryGfUW1akeg1X/kYXWqHCiXuHkRVQQ2q97en1doWdyKrMsre0M/DMOIXJMqVkCV3jjHrPrKG33YUnojJ1JIuuVWvoVeruPGpIgcrcNbRS7+5rm8mNFZg4mJ5ue1q9Z9YwuMhL99XN9D4yUndombPtjBo2rTTFKqceH509ZnNz11vxOnAGFLRshXJGmzVma/Weq4brPriEyaOmUGX2mJ3R1j1dQ3dUweFUyI4UZo3ver3nqGFwiY9Ap4fh5ycXrveMGl7wW4vIjRc49cjYmdf9XPXOa7RsiJAezlNOa/PPEQvUcME5olrDSlnH3+ohPZhbcI6YWcM1H1hEdsw8loXmiFoNgz0+OjZFOX7fEJWSLjRHdFwRJbIywNGfDQhd92pQofWiMGpA5fivhhZuO6OGsiITWeUneTyz4BwhMmZPnyNqNeza3Ixe0hnbm1xwjphVw6hKsNPD2K7kgnNErYaugEIxraFlNbE5omyg+mW6r2tlbFfCFDvMN0cUzShRd5OKJ6IycSht3teg7oIw5zwbLzJi9LNf2kFbWxuHDh0iGAxiY3O2lEol3vrWt7Jz507WljcTUpuoKKagQHFJ6DroZdNFQnGZDhiGbsZA+lqcJA+M191vJCQzmkcyHTQqhUq1rYSn2YUroDB5NINDlTHKWj0yS/E6qBR1jIopSJBVue504m5yIsnTTncz20oOCYdruq1DlfG1u0mdytXb6iUdXZu7LbIZL9e0KoBDlZk4mDLbyhIOt2y6ihiz20LVHUnT0cumw5TD7ai3lZ2mg00tPspsa+D0OiimyyjuGXVxSsiKXHcvUdwODN2o17D9siayQwVS/aZrleycbuuoxmPOrKFeNui4PEp6IEd2rDDDLUYGgznr7QqbzlBDz0xQzmpmW6g/I85V70CHB3dENcVJ0uy2Z9S7Whd/h4diukQ5PaMuZX3Oes9dw/nqPV1DV9iJr8VddcaZYxyeVm+HW6ZpRQDZITG6O1Ftq5tuVKfXe0YNm9eHKKbKpAfyc47ZuWoIUClUQDptHM7RVi/p+No9hJb4GNk5OXvMzldvWcIZMB14jKozkciYbbkwTHa0QDFRXrDetRp6W1y0XBim/8lxKkUdxe1Arxin1Xt2DR3Ve11mOD89Zudqe3oN5xmz89VbcZtjyqjWc745olZDb4uL5vVhBreNoxX0BeeIWl2aVgbQNYOJgymhOcKoQOfVUbIjBaaOZRacI2o1VIMKsdVBJo9kKGXKC84RM2voCjsxdKP+fDfXHLFgDeepd60ukmSK3SaPpClntQXniJk1dPoVjIpBMVmePWYVuT5HSE7VjGmTJNxhJ9nRIopHrouVJNl0vdIK1eveQbWGOrLfhzfmxNukED+Sr7aVq/Gk5v1HVsy2Rj6P4jafp8qSl0rZQHFJVEpG/b5mtjWq/ZcwDCiPTXGgvJ0RTvLNb36Tj3zkI9icHYcOHeJjH/sYf/VXf8VNN90063cf/vCHiUQi/PM///Osn/f29vKhD32IP//zP+ed73zny9bXw4cP89GPfpRvfvObtkjJxuY85vV2beu6waFH+nj+riOUZkQ4Ny0OcPVH1tK68rXvEmhjYwN/8id/wq5du+b9/datWwH40pe+dIZI6Sc/+QmPPvoop06dIpPJEAgEWLNmDR/4wAfmdKQ8fPgw//Ef/8H+/fuRJImNGzfy+7//+3R3d1vqs9Vnr5eTY9uGePz/7aZtdYS33zZ3dLBVXm/3l0acb8cL598xn2/HC+ffMZ9vxwvn3zG/Go73FRcpAXzoQx/izjvvJESUTdL1IEkNt1l0XQvusFJ3N7GETN0hYyECXR4WX9/KyQdH6hFBoiheR/0L2wW7osh0XhVleMeE+eWqIMve1kFmMFd/21cUWZHRNfH9WOH0yDURAou8VIqVelyT0H5mxCCcK3ztbro3N3PsV4OmwORcIENokY/0kBlDd65Y8sYWnD6Fo1XXIBHWfXBJ3TlLhKaVgVkuO+cKb6sLXTPq4pdzQfe1LRgVve4acK4wF0Zk4eteVmWaVviJ70+J70M1nS/Sfbmz7abQPqycc8Urs+xtnQw9GyfdnxfeLrYmSKWsM3U0I9S+FldjheXv6KBS0Dn54IjYBg5J6F7CjNtsbG2Q1osiHPnFUOP+GQb51gTPjD2Ky+Xi2LFjdHR0iPXNxmYBkskk1157LaOjoyyfuhyvHEDyL2xh7XBJtK3zEd81Rm58eg6W5MbPbEhglMWux+b1IYC604wotUghEbwtLjCox0qK4G5SiSzzM/LClBmZJYjkkCy1t4or7KSU1iztw9fmJjdeFN5GViQM3VzUP5dEVgQwdIPEcbF5/mxw+kwBUS0W7VzgUGU6r4zVXWxECHR7CS3y1p2zRGi7JEIxVRa+L54NsmJG0Ikex9ngcMm0bAgT35+qx6eds31ZmCfAfElGkiWKybL4NjNiJ88FZzOnBBd5UYNO4vvE51XZab5QUYuGa8SCtT3tb3up6pTjCio0rwsytidJKTPPNanP2LkEsk8sbsHITz9jtm0MUSqrJPobj+PKVIKT6m6OpfbVXZ9fT8wVbzYXkiTx4Q9/+CXvbyGR0p/92Z8xPj7OnXfeOevnO3fu5E//9E/58pe/PMvp6Fzx8MMP8/DDD5PJZNizZ48tUrKxOc95vV7b+VSR575/mCNPzP4OfcWWTi77wCo8Idcr1DMbG5vzlVezSGnnD4/w4k+Ps+r6bq756NzReVZ5vd5f5uN8O144/475fDteOP+O+Xw7Xjj/jvnVcLyvWNzbTL7zne8wOTnJr371K14wnmQj15i/WECsNPDUGLJDYGHsNJa8sQWA3qp7yUKkB/Ic+emAZUHMoutbcIedQgIqXdPr8RxWyI4VyFtcMJgZeyeKGlRQXA6hhbxSSqu/zSvK2YgnzkagFFriw9syHbXQcB9pjexoAVkWVLRhCk587S5x4YVOPXLkXDK6J4GsnFsb59RAjsoTY+dUoARYErMBeJpVKiW97uAjQn6yOHtBpAH+Dg/BRV6GdkyIDhUAdA1LgkG9pFsSKNW2sXKNhZb6SJ4QH5OBLg+LtrRw/P5h8QVMHXJjBfIT1s5l/ID4scfWBGm9OMKRnw9aEiqduHcEWfCu6O/w0HVNjN5HxuYXzc2hAY7vT5Hqyy/cr+p2U8Y4B5I78Pl8PPfcc7ZAyebXRigU4oEHHuDaa6+lT32RxaOX4KnqHOYTK1WKBiN7spTGZ4/3WjzPfGIlp89B89ogY3umhK7HiYOp+meK4nDJtF8WZfJQSuh5JTdmPUKmnNHqTmyiOH0KrReHGdudqDumieBuUoXn1JqTnBWyI9aE97pmXWQlyRLBxV5y40XhebicKVsWQiluB8gIvRgA51acVKNS1hnbk6CUtn5urDB5JI1+DgVwYJ57SwIlCVxBJ6W0tXNZmCpRKYqfm9ASH4WpkiXxEGBJoARYum7r26QsCJr8CpWSbqlfsTVBKkWdySNp8T5lNMvzql7WLQkGWzaEyU+Wztxmgb/niymN4ecTZx7/PH2NrvZjOFQSvfPP4TPFSTXG9qbAv7ALpZ4wBVxDgUMcG9/HF7/4xdedQAngjjvuWPD3kiRhGMavTaS0EMuXL+fFF18km83imyE+O3DgQP33Lwc33HADN9xwQ32hzMbGxub1iCfoYsvHL2TV9d08fcd+Jk6ZzxFHtw5y6vlRLn3fSlbfsAhZ5AUUGxsbm9c5iWrcW7hD7AUJGxsbGxsbm7PjVRNAfc8993DttdcyySi7jWfMHxrGnIu8YC7wawUz2mjJDa04/WIry6n+PEkLi/Y1QUzrRWEz8keA8X0JMyLOAu4mlVXv7cbTLJZzO/LcJCmLAp+p4xkmDloTOXRf00L7ZVHh9rICy9/eQdPqgPA23lYXPW9uszQal72tg/ZNTcLtXWEnvla3cPtyRqN/67glQVSgy8OSN7ThbhLPKg4t8dGyISzcXvHKrP3txYSWij8k58dLZIetLUhaRctVLAuuVr2329I59La6aNvUZGmcdGyK0nVVs6V+xfcmLYmB3BEnvja3sEBJcctc8FuLCHR7hPfRclGYtkst2HDLsPLdnZbGSajHx6JrWvDExMdvfrLIxNG0pQVMraDT/8S4sEPZ0pvazfNugcljGUZfFBNEALRdGjEjSTRd2NmqkCyRGcrPLVqY497VcUWU8DLzfMw7r8zYLmlMsVvZRqVS4ac//emr7q0im9c+ra2tPPzww8iyzHD3XoqG+UxhZLIYmbnn80rZHJ/eZhfB0+Yw02nnzGc2LV8hFy+ha2JfeOua6djjcMkEusTmyUpRZ+pImrxFl73QEh/RNWLxiZWSztSxjCUHk3JWI9WXq0c3iaAGFFrWh3GFnMLbeGIuWi+2FtUQWuzD1y7+XOSOqHRcEUUSfEHA0A08URfOavSZCJnhgmXn0qZVAcJLxO91kiwRXOS11K9Qj4+2SyzU1zBFN2cj7rJCKa0Ji7PAvG67NsfE3M+qBLo8lsai6lNovSiC0y++TaVouiQK10syx6PisXYOY+tCwu0lWSK2NmRpnPja3KYTnIW1vchyP5GV4n8zAaQH82THrF0nhckS6QGxlyjUgEL7piYzPs4CU8cyZIZm7EOS5hUoKR4H/jbTsUFUoARQzDkoJOYe80Y+P0ug5HDJNK30ITmqEabzfKyeSNYFSr3lA+wf38knP/lJ/vqv/3refryW+drXvjbnv7/927/lwx/+MD6fj+uuu+6MCLZzwXXXXUelUuEXv/hF/WelUol7772XNWvW0Nraes77YGNjY3O+0boywjv/9mquumUNqrcaP5/TePrbB/j5Z55m7OjUK9xDGxsbm1ee5JAtUrKxsbGxsXk5eFU4KdV49NFHueyyy9i5cye7jWfYIF1p/sIw5v2SU1Zl1ICC0+cQWpCe+dap6JvqsiITXhHAAMYE4tXyM1wG3FFVKJqqkCiRHy9SKVp4w1eGJTe0ku7LMXGo8du0VhxSavQ/OWYp7kzXoJAoU7awaKJrBopLNmPcBJ2YMoM5ChbcA8Z2JYTO3UxkVSbY7SFxXKxu6YEsR+8ZtCTY8LW68ba4GNst1jctpxM/mLS0D2+rC3+bR3gfZ0Og04Mr7LQk7pk4kLTkBuaNuogs9TNiQQB46tFRHG7xBaaziZOL709ZcziSId2fs+QkpLgcyIr4qpesyBSmypYcNpInsxxLD5KPWxAc5XTh8yGrMsve0sbw81OzF7EakB3NU5gSOw7FLYMsoeUqws5LTr9CZHmAUkoTciVQvA7QDbSczsBTE2c2mEdY6wo6qRQWmBdnbFeKptmfewajaPDoo4++LFEXNucnXV1dPPLII2zZsoWRxftpPbUWt+QFTLHSfK5KikfG6Z37EdLQjVkiCEOHRPX5Q3ZKYIg587jDKoFOL9mRglD7mrjFocroFUNITFTKaJadVVwhJ6EeH+N7EkJOMVYF5aW0xvBzE5aeo7RChVK6jCRLwm4pslNC1sVFCOWc6TApSULJTwCMPG9NsA+YohBJ3PFo8kjaUqyWYRgEOj2UcxXhGhcmS5ZjyPztbkoZ7ayceEQJdHnMvgkeRymjkezNWnLU8ba4QSoKOxaVMtXxa0GY54mqFKbK4v0yYPRFawtopVTZ0t9YDpdcn0tEqZR0U4RsQZs2tjdp6fkOsPQ3gL/djRp0MnlY3HVJLxsUEuL1qkWc10XbArHtnqgTX7OLzGhxdr3mGQOKR0bL6+Qm5r6e5nJPcqgyTo9jwXi8mjgJIB47wZH+F/irv/orvvSlLzU8htcqF1100by/27x5M29605u49dZb2bJly0vaz49//GMymQwTE+az8rZt2xgbM52s3/Oe9+D3+1mzZg3XX3893/jGN0gkEnR2dnL//fczMjLCpz71qZe0fxsbGxub+ZFliTU3Lqbn8jZ2fP8wR7eaKQATvSl+8blnWXldF5t+ayWeoB0BZ2Njc/5h6AbJqpNSyBYp2djY2NjYnFNeVSIlWZbZsWMHl19+Oc8//zy7jG1cJFUXZ2sLuDO/+JQkSiltVqyarMhCEUqhpT66Nzdz/N6hhovyuqZz9KeDlqKZAGJrg7RtbBKLjNOh7/FqBJ1owpgOlYJuOephyZtaKSTKQuKCmmhIVqt1FejXwFPW4usKEyWO/mLI0jajFgVHNZx+RdhdJdjtoXtzC7l4v1BcmK5hSdwCMLR9DpFDA0ZfSFhq72v1EL0geG5FSl1e/F0eS2Idq9Fl8QMpS5FfYLr2iDrjALRtbEKSJY7/Smw8Km4ZrSR2XdT7lNMZ2BYX3wDr40Qv6dPziQC1BSZRgZLqV+h5SxsDT8aFXS9kRUIr6pSygsKp6jxoZbx3Xd2MGlSEojZrlDMah380IDy/L77efKv7+L3D0z+cR5gE1bmzpHPywWrM5umLd6dtO2WMsy/9LIqi8MMf/tAWKNmcc5YuXcrjjz/OG97wBoa69tDRvx63bH4RU3NUmilWcjSFSfUl6v891wLwTLHBTMFS87owlVJFaP7PjhbIjRctRxS1XBSmMFVm6mjjRfl8fIZYVEJIXFAp6egl3ZIgSA06aVoZYGz3lOno0YCa6ER2ykICnHJGY+qYeCwTYLl9paiTPHkWEbUSyA5J2CWnaVUQrVARdv604lIFgAGDz1i7p1qNFAMILvKRHsydU5FSaIkPvWwIi5S0fEXYTafG6AvW36a3IrBz+hw0rwszuntKWFjtUGXL4kKrLmtavmJZCFWYLAkLiCQZkMy5syL4d1yox4fDKVuKedMrhiURH5IpehSZP8GMW2y/tImJg9WoTQGBEkB6oEBmqGDOuQ3mUdWv0HpRkLG9KcozhtZcwiQAyQFGxRR8ju425xE5PNtFa6Y4CeBkeR9H+3fxoQ99iL/9278VOobXK93d3WzZsoXvfe97vPGNbzzrz7nrrrsYGZmOmN+6dStbt24F4MYbb8Tv9wPwf/7P/6G1tZUHHniATCbD0qVL+fu///sFxVS/bh5++GEefvhhMhlr90UbGxub1zqekItr/3/VCLhv72eyGgF35PEBTj03yqXvX8mqN3TbEXA2NjbnFZmJPJWyjqxI+Ju9r3R3bGxsbGxsXte8qkRKYAqVtm/fzubNm3nmmWd40XiSi6VrphvMJVaq0r2lGVfIybFfNhYYJE9kkR2S8KJ8bQG7aWUAT7PK4LbGCxzxgynKuYqlyDBZlVn+9g4mDiSF3JH6t1oTBIEZQSHqWASm8GvVb3QxdTwj7JqiBhVaLoww8PS4sIDD06yCgfA58ba68Da7ie9LNm4MxNYEabukiQN39aELLG4kTmbJjfdbqlWox0dosc+SQMQq3lYXkiwJR7iN70kwvidxzvoDVRHNdvH2ilvG1+Eh3Ze3LP4TJbIigK/VbUk01/vQMMo87iBz0XFlDFfIydGfiYliPDEVX5uH+IGk8HURWeFn6nhGuH1sTZBK2RBfYPI6WPXuLkZ3TVkSjhWnShSTVlyXKpx8YKRxQ8x5cMU7Ohjfk7S0GDe4fQI1IHb+vK0uWtaF6Xti3NIYHHwmjiwYdxRZEaDtkgjH7xk68z4wh7Ap7ZlgV/EppIrE/fffz3XXXSfcLxubl8Ly5ct54oknuP766+nv2EXX0AY8sr/++7nESgAOt0zbxWEmDqcpTDYWGEwdS1Ox4nqjG0gOiaaVAZKnskLRVpOH0pTz1oQhvlY3gW4voy9MNRQeaXlxp7bpbTTKmTLCSijA3+Eh1ONjePuEsMDH2+ICA1MsIIIEnqhrtlirQXt/m5tCoiwsDmq/tIn8ZInEcbHF3/jBpDVXUcy5Nj9RtOQwYwXJIeEOOykkysJxf2cjQrfKwFPWBM+uoBO9Ylh2hbJCdHWAzEhBWHBUzlYY2j6BVhQbTw5VpuPKKPH9KeFx6293U0yVhd25nD4FwzCEo/QkGUI9ftL9OWHxVHCxD1+Lm6EdE8LOS1qugq5YuzZyY0VyY+J18rV7GNs1JeQSB6agaXxf0nRREhAoRZb7KUyVKKQR3kcpoxE/lKGY1JD9jR0dmtcFKSbLJHvPFDGdLk4COKHv5Zi2m9tuu43bbrsNSVBo9XomHA7T19f3kj7j7rvvFmrncrn4gz/4A/7gD/7gJe3vpXDDDTdwww03cPjwYT760Y++Yv2wsbGxeaVoWxXhXV+8ioMP9/H83Ucp5zWK2TLbvrWfw4/1c9VH1tKyPPxKd9PGxsbmZSFRjXoLtftskaaNjY2Njc05Rjzn4WVElmWeeuoprr32WiYY5TnjMfTTv8k0jDNi4CaPpi0taE8dNRdMQkt8+NrdQts4XDJOj6CIQaf+1nloiU+o2npJJzOUJye6YFSle0szzReGhdqOPD9l7S1cTWf0hSni+8XEQGDWKdDpwR1RhbfpvqaF1g1h4faBLi/R1QHhUZzozTL4bFxckKBjSaAEpqBL8TosXVkr39NFbE1QuH3rRRHaNjZZ6terDV+Hh0XXtJjxXIKsfl83TasCwu0dLhnFa22K0zVr53x8r7UYwWCX1zzXgkPQ1+qm66pmAp0e4X34292W2ms50y1g8qj428OljEbvI2NCLlWK2xReuqPic4Gu6aSH8mRGxRwfAou8yIpMOaMJi/ecHsW8VkWQofWSCMimU0IuXpq+By3gopTuzzJ1LD0tUJKkebdJBsfYYzyLqqo888wztkDJ5mWnp6eHrVu3IkkSJ5ufJ6Ofec83MlmMTBZHUxgw3RzTg3mKC7gNGrpR/1fOm9sgmVFVoiguGYdTbD4vpsroZVPc5Ao5hbfJx625Njl9Ci0XhpEERIt62WDikLVYstx4gakjaWGBEpiCI1dY7JgB3BGV2Nqg+FyI+TxrZR9TxzOWIj4rBd1SXBaY93srkVm+Njftm8SfoxyqTPO6sLAI9tVKeJmfYLeF54kOD60bI8LtJVlCVh2z3NNE0AoV4XOuazoTB1IUE+KORcFFPlwh8WeQ0BIv0VXiz+WKV8HX4rJ03JnBvClAtzDWs6MF0oOCz0VdpsjRCsW0Rn6iKCQekmTMeUCSqpG8AscumdeSrEime1Lt3zy4QgqukHnN5eMlZL8PI5+v/5uPzHCB3IzodTkcQk8kzxAoGYbBQGQfx4q7+fznP8/f/M3f4HCIz4WvV0qlEjt27Kg7HdnY2NjYnB/IDpm1b17Ce/9pC8s3d9R/Hj+Z4hefe4Ynv7mPQurcvBBgY2Nj82oiOVRdL2y3o95sbGxsbGzONa/ab9tlWebxxx/n5ptv5p577uFZHuQy4wYU6bQuz1jszQ4X6gvU0dUBkr1ZoZs90HwAAQAASURBVEX05nUhtLzY4vb43iTje80vOUWj5Zx+he5rmnHuUojvbSz0GXq2+va1bNZBZB+GvvBi+Vx0b2kmP1US6lNd1CQYRZcfL3HwLmtvYPY+MmIpFmP0xSlGd4pHMWi5Sl2YJoqv3U3HZVGO3zcs5L40dTQt7GBTIzOYpyD4xjlA/5NjQn2p4W120XlVjFOPjFpy9bJC1+YYumZMj90GJE9kOTzWL94fGVKncsJv5gPE9yWFXbYAOq6MgoHwMYC5aCLq/AVmTOH4PnEHjuxogaO/GDTfUBek9xELLl7V61nUFURxyyx+YxtDO+Lkx8X6JLtkDANhZ4xaPNrQ02LnQVZkuq+OkTiRFXKuqM3byd4syV6x6CJ/m4fY6iCZobx5n2gw18bWBEmcyKAVdEaenzFHzbNdv3GMI6nd+P1+fvnLX3LppZcK9cvG5tfNokWLePLJJ3nLW97Codw2lmc3EZabz2hnZLKgV0B2kOozF4tlp4Q7rC7o4lMTAbmCTkJLfBSmyg1dXYyKMSviVTRmLbTYh7fFZc4LDZpr+Up9Ppgrvm4uas9mskMSjmtS/QqhpX7i+5INj0EvG9O1FDRgmjiUsiR6KEyWGN4xKR6ZZsDQ9klLYq6zcTcKL/WjazqpvpxQeyv3ejDjyLJjYoJWMMfH4DNxSxFj4aV+DMM4u4g8ARSPg+iqABOH08Lnb2x3wowZE6Sc1cRdtjCvbyvOnbJTonldmMkjKWGXI0O34BRWbT+0w5qrVfxACocqXqhyRrMWISiZsZGitQ10enC4ZBInLIwlC/NAbc4rZzThSGx/uymCGto+KSSkrM3btRdeJGdj0Zi/w40kSRSTaYxyCSM//zmRnRLukJNcvERubHrO0QsFSJzZXjd09pefZWT4JJ/+9Kf57Gc/27A/rxfuv//+OX9eqVSIx+M88sgj9PX18Z73vOdl7tkrhx33ZmNjYzONN+Tiuj/YwOo3dLPtjgNM9afBgMOP9dP73Aib3r+SVdd3Wxal29jY2LxWqDkphTts0b6NjY2Njc255lUrUqrxy1/+ko997GN885vf5Gnu5wrjRlRp4S82FbdM68URHG6HkMvJiQdHLEdOucJOlr6lnaFnJxoudJczGsfvG7IkZgDoeVMbGHDywcYRSVYjH+pY+BLb6VdY9tZ2hp+bFF50UdwyvjaPkBigVHViqIkUGlJtonhlU4wmsIniddBxeZSRFybr+1uIclajnNdQ3DIlC4tTildGy4m1tyKKAYQ/t0alrFNKi4t7zoZyvoJhwe0BsCaY0q1Fp8gKIAuOoyqVkm5J6NdxZZTcWIHEcbFrwelXKGc04bmmdh2ICpRUv4Ir7CQ9IOhYIcPKd3UxdSwjvKgoVxftKnnxupaSGsd/1TiCEyDQbTpsnXhw2FIU54kHRiiIuCrIsPzmdtKDeYZ3iEVXAmSG8hz+cb+wc1TLhgiSIgvVNb1iiCNHdxMKhdi9ezeLFi0S7peNzbmgo6ODrVu3cvPNN/PCC0+ySrucZkfn3I2rQiUwnd+CXR7yk6WGIp9isszQs+IxZjVCPT7cYZXRFxsLlJO9VQcfC7tQ/QotG8KM7Uk0FE1XijpjFqNUK5qOBMiKRKUk1rFAlwdvi5vRFwRE2dWPdIWdlLMaernxPmoCF1FxVk2g5FBlYdGOt9mF4nWQOiUmOtI1HV1Q+FVDclTFawKblVJlSilrz0VWBEpm+4rVdwesYZgORKLxc1BzNRPfRTFZppgUr5PslITGXL29Q6ZSqghfC4rXQaDTS/JkRmzukEwRoZV5pnYdiAqr3U0qxaR4DKAn5iK81MfoC1PC/TqbYSTquASmsNp0exMX0acH8xSmSkLH4ImqNK0IMLJzUvhcA0wcypgGlOXGz3e+Vhf+drd5/6meOr0wtxDRcGgcUp8hnh7ie//zPX7rt35LuE+vB7785S/PGWlnVCcsSZJ44xvfyMc//vGXu2uvGHbcm42Njc2ZtK1u4t1fuooDD55i54+OUs5XKGbKPPVf+zn82ABXfWQNzcvCr3Q3bWxsbH7tJIerqSgdtpOSjY2NjY3NueZVL1IC+MY3vkFnZye33347LwYeY136SnzS/Db8WkHn6C+Hpt8GbeD+UxMyuCMqi65vof/JsYYuIcVEmWRvluyI2JfAtQX3QJcHp09h8nBjt53JI9aiQQBaLwrjiapCbir9W8ctfXY5o5Hqt+Zm03JRhNASH8m+rJCIyNvqoudN7fQ+MiLkbOX0K6x6dxdDOyaEaqqXDNwRFVdIFRIplVIavQ+ONu74DBa9oQVXwMnRnw8KtZdVmUCHmJALzHHadmmEwWcmhN54LibKnHrUgrvOWWDF0QqgfVMTlZLO2O6EUHtvswu9Ygg7MoSXB+i4LMqBH/QJC5WsHoMrpAq/cY4My9/eQfKkmNsPwLKb2ikkSvQ/IXadxtaFCPf4OPTDPnTBbqX6smSHxReySikLgqNOD62XROh9cERI3AOQHS0ycTQtJFBS3DLNF4YZ3jEp7tShw9SxDBnBeXvJDa0Uk2WGn5sUOwa5dv8ZFBobsfcrPHLXM3R3d7N7927C4bBQv2xszjXhcJgHH3yQ97///dx33338x9f/g7v+6LG5G+umyCXdlyE7WjAX6wWcf2qL26EeHw6nLBRDm48X0XLijitaoQKS6aqU6s81FBKUsuZzTiN3p5k4VJnY2hCTR9MNr/tKwbqwqZgsW3ZFaV4bItmXI90vJgqKrg4gqw5hwWp4qQ9PzCUs9nS4ZJw+8T85RB2U6p+vynRcGSW+L0l+Qux+4PQ6QELYwacWTygqBBYWDJ8lWqHCxCFx506HWybc4ydxIiMmwJHAHa4KcASds1o2RCgmSkwdE3Mj0QoV4vvFhTGK24ErqAgL2HytbiLLAww9GxcS07hCTprXhxnZKeYuJjkkYhcESfXlSAlea1pOIzdWtCScylgQHEXXBClMlYSjb8Ecq4agos7X6qac0yilNcq5yqzY9fkoJsukh3J1od9CLkqq30HTSj/j+9NomULjqa96r0kPFMiOFqnkFj7uopEns6qX8X0j/Pd///d5J1AC+PSnPz3nz2VZJhAIsHLlSmKx2MvcKxsbGxubVyOyQ2bdTT0svaKd7d87zPFt5ndBoycT/L9v/IrwZX42bV7JFS2rcFix67SxsbF5FWM7KdnY2NjY2Lx8vCZESgCf+9zn6Ozs5GMf+xjPKY+yTrucmNQ+b/vaQlGgy0PnVTFOPDDcUJSi5TVKycbRIzVqDjiKV8Yddplv7DcgvCyA6nMICWpmuhW5m1ShhfhyoYJDcAGvRtumJjCM2bFE8zBkJc4AGHlhylyQE9Ra5UaLxA8kKAq6x5QzGsPPTZA6JSbw0TWdIz8ZEOvMDAKLvKQHckLHMXEwhewQtz72t7lZdG0LR1ODQufYMAwUtwOHU0ZULqZ4ZfQSlh3DRHH6Fco5Tfg8O1yypTfD2zc1YRhw4r5hofbpgTxDTAgLlHztborJkiWXqpP3i/UFMJ2gnp2w5EgwtidhyQlq6NkJJg6lhAVK6Ahd8wBqUKF7czP9T41TSontQNcNtFxFSNwjqzIOVaac0Rh5TmzR29fhIbzUz8SBVENXLlkBf4eXVF+uHtcpQiFRoiggZgTovrYZhyLT+8hoQ6GCbuhMXXySh3/wIuvXr+fZZ5/F6/UK98vG5uXA4/Hwk5/8hD/6oz/i937v9/jUpz7FC18bqDswyG73GU4VelED2UFsTRAtXxGKJ9JyFXRFbK4rpbW6w5E7opoOag1uJorLgb/DY17PjUTWxrRAxuGS0ctGQ4FGpayjFSuWhEQOt0zTigAThxqL0WceswhGxWDkhSnxCDcgMyIuaKi1z1uIcTMFO9ZEO7JTRnHJQq6LlZLO5KE0RcH7E0BkRQC9rAvHncqKbAoiRJHA4RR3m7KK5JCQJITFLrJDMiPMBMep06fQcmHYdB4VHH9Tx9LC/ZFkCTWgWHouKkyWGLEw7vITRYyKIdynclYjeTIjfO0YFYPh5yYtPVuXcxXhlxJCS3zoZd2SK1KlqAs/OyoeB1q+YilS2Nfurs5JmYYCJVfISSldRi/rwi5qlZJOKVuhkm8chad4ZJrXBJg4nKGUqaClz6yT7HbX/3/RneJUaA+FwQKPPfYYV155pVCfXm/cdNNNr3QXbGxsbGxeY3gjbq7/ww2sfkMX//XgQ9y3YTeZgHmvvmPgCZr6/Pz1svdwQ9OGV7inNjY2Ni+NUq5MPmHOb6E2+3taGxsbGxubc81r6lWHW2+9lccffxyHw8Fu6WlOGYcbblNIlMmOFIS+YNcKOr2PjKLldDOmrN3dcBuA9k1Ruq6OCVWz/8kxjlsRNwDN60Mse2sHitfRsO3kofS0kEjw7MqyhOwQHwqK18GKd3Xi7/A0bKuXdNP1QDaFDiKMvpAQdl4BmDiUttQeTBcW0f54YipLrm8ltEjM5jM7XLD0Bn1mKMeRnw8Iu8EUE2WO/XLI0qLC6t9cRPSCgHB7q6x6dxct68PC7QeeiguLUQBOPjzKwDZx569yRmPSgsNA1+ZmOi4Xf2vY2+oSblsj2Zu1dM6SJ7PCC1OusBNA2OVs+ds7iK2Z343udBSXA8khWbrOssMFeh8WcyHr2hyj581twp8NkDyR5fBPBoQWsJsvDNN9TTOKu/E8JyvTjhkjz08xdVRsHGWGCmQEXKkKRoHDndvZtWsX73rXu9izZ48tULJ51aIoCl//+tf5v//3//IP//APBN9WoGJMX3MzF4Dr6BXy8TyF+eYjefazTHa0UJ/rXCGnkBDEoco0rwvha2v8nKYVKgxtn7DkAokELRvChJcK3PcNmDiQsuS+ZFQMJFlCdloQNLe7aV4fEmpbE1ko7sbPjWDeO6zUR8tVrNWzihU3pchyP02rxJ9bsqMFS+6jE4dTTAi8MFAj2ZsVjjoGCHZ5zZcAzhH+djcdV0SF25ezFcZ2J4RFU+WMxtCOCUvRvMVEWdhh0t2k0npRBIfAfRlM0aCsWFGJgV42yI03FrvU22uG8HOXw2WK1iolXShCzx1Rab04YukYJBmQBdtXmyWOZ4TcxBwumfZNTXhbrD3Pju9JkDgu4pRlEF0dILR49vPNfC5KakABvYyWLTKxb/IM17u57jWVok5+qkwpmZsz2m3mNlOOEXYUHkJRFLZv337eCpRsbGxsbGxeCvvbBvnR5h1k/LOfryalDH9+4r/56aFnX6Ge2djY2Px6qLkoeSMuVK/zFe6NjY2NjY3N65/XjJNSjS1btnD48GE2btzI0cm9pI0k66TL5m1fzmj1WDN3k4on6hJadG6/LIqvzc2hH/U3dIcZ3DaO0+8Uc5GptlGDCkve2MrAU/GGX6BPHExSzmnCESdgvn3bvqmJ4/cNN1wwEI2fqqHlKhRTZfSK+GJQz5vaUNwO4Qi0yIoA4aU+Tj4wItQ+ujpAoNMjFHMHsPStHZRSZSERRT5e4vj9Q+RGxRc6wst8KC6H0Bv6uiYuLplFgxjDmfQ/NU4+Lt5/q/Q/NU5+wsLnW+g7mGK3kuDCmhpSiK0OMbZ7SlhUc/xXg6ZLggC+djdLb2yn97FR0gKRNKEeH00rApx6dEzobfumlQGCS7zm2BToftOqAB2XRzn6i0GxcSSb4k0r7gW58SLHfikW89a9pRnF7eDkg2LXLsDwjkncIbE//npubCM7VmBsl7jT1OgLCVJ9OaHx0LwhQmxVkIM/6m/4+YpXJrw0QHxfUui+MmXEeZEnMYZ0Pvaxj/Hv//7vQv23sXklkSSJP/uzP2PZsmX8r//1v1CKHi5ybcEtzS/gqUcNyQ787W5y443jjWSnGeGYOJ5p6ExZKemM7Jw044YEqC14B7u9OH0KE4ca3JsNM3LXivAITFF5KaM1FLPoZUM47rSGVtBNwYhAlB6YcWZtm5oY35sUEkFLskT0giCZ4bxYe4dEdHWQ9EBO6H7iblJpWR9m+LkJofOWOJFpGM83E9kpEej0khnKCwlxKhbF7YBw7cG8b1oR+FglFy8KR9UBlvpew4obl6/dTaWoCwvu8/Eiwzsnhc9DZEUAh1Nm9EUxB8jomiC5saLws2/z+hDpQbGxb7YPU85ojeeSKrqmU85qlmLeRJzowBQctV4UYeJQSvjZrlI0XcREnt3VgEJkhfmsIyRyq0bHje1OmJGbDZBkiK0JkBmUhISA3phKMa1RKepMHlj4hQfDMOivHOFw/nmu2XINP/rRj2hubm58DK8j/u7v/u6st50vGu71xsMPP8zDDz9MJiMWVWljY2NzPlIxdP6h/6fm4+TpGurqc+Y/Dv+c2NM+Nr1vFW7//PGuNjY2Nq9WknbUm42NjY2NzcvKa06kBLB48WL6+/u5/PLL2bdvHyljisu4nnBniHJOo5goIysyvg432ZECeklHDSl0XB5F8TqYOpqe9WW6rICvw0t+rIBW0FGDCslTGeIHkqCDr9VNRdMpTJRAhkDXjLZ+BVeTaooVZFj21g6SJ7PE95uRQoFFXvLxIlquguJ14Im5SFcXyw3dwBlQoCpSCizyUpgsUc5oKF4ZT8xNeiBniliSZbytLlxBlfRgDk9UpZgsU0ppKG4ZT4u7HkfmblJBMsgMF6gUNAJdHoops62syvja3GSHzM91R1QcbpnscIHo6gDRC4L0PjpKKTmjbbWGrrATp1chM5Sn79ExfO1uM25lqnRmvYMKrqCz7iiU6s9OL3acXsOggivkJN1vtvW2ulDcMpWyjqyCr81LPl5Ay+k4/QruWr0Bb7MLAwO9Anpl/noDeJpVJCRy40UGt8VxBhyofoXSafVGB3dUxaHIZEfNhVaHajovzVdvh0uuL8oGOs0YKkmSmDyWqda7gK7ps+oN4O/wUM5p+NvceJpdJE/lZo1Zl99Zf6vb1+6mUtApTJVYdnMHsiJx8r7h6RrOqPfpY1bXjLrgQvUruCKz621UDPLxUn0c1uLk56t3fny6bWGyRPJkFsXrMGPxavWOqUgOqS7uCizyUpws4fQpLL2pjZEXp8zorTnqPXPMhnt8NG8Ic/L+QbQCZ9Qw0OmhmCnXx2z0giDhpT5Gdk7NGrMz6336HKHldNSQTKDTM7vec8wR2eECgzvi9UWYueo9c3wrXgdOv6MuUPI2uzCM2fWeOWbdMRW9ZIA+e8zON0dMHk+jazqyIuFtdU3Xu9sz7xwRP5A0XQCqzDdHBLp8tFwUZmTnBOn+uet9+hyh5bV6DNDMMTvXHNFyYZihHZOUMxpqQJmOtVxgjiimy0gOc3zl4zPanjZHZIcKLLq+mVR/nvxEYdaYXWiOSA/kSPfl0Et6fczON0fELggS6PKSOJbG0+xacE5Otg2z9+jTyLrEd7/7A973vvedeXOzsXkV8853vpMnn3ySd73rXRwqbmNx4iKi7lacbmddIOn0OkCW6uJoT5ODyDIvelmjkKjg9E/HOykeB7JDqgs5nF4H8QNJChMlZEXC6VcopcoYerWtItVdMV1BJ1rJfKZwRZyEl/oZ253A0Mw4VFmVKaXM/agBBV0z0PIVtJKOGjQFNkbFwOGSUVwOinO0LSbLuEJOtHwFV8hJMVlGcTvq/Vf9Sj3WEol6m2KqjEOVUbyO6br4FMCoi0pcYSflbAVDN2heHyY/Uajfk50+ByDVBVKusBMtZ0YylTLl+n4wTGdLaUa9XSEnWqFCpahTKemk+nJmJB5z1HBGW8lhRm/Vou1Ob6sGnaYzZqFSb1tKa2AYODwyLsM5Zw0l2dy2lNYoTJWIH0wiO2WgckbbWg3LmWkhh9M3PV6cfgV0wxQ41dpmNfSyUX9Gq8X6mfuYXW8tV6FS0pGdMk6fg1JaI7LcT2GqRDlbOaPelZJeH4fFZBk14KT9sibGdyfq9+SZNTx9zCLNjtitjdlKYbrepZSGoZtjdqbL1Kx6y5L5/JnWzDHrllFUc8xWCqU5612rocMl18dsbE0Qxe0gfjA1a8zW2542ZmPrQpSSJVLVcVkbs3pZn2N8Owh0eilMFilMlk6rt2SexznmiHJGq19jp9cbY/YcMXk4jSdmPm/PVe9ZY1YyHSBrTmUzx6xROXOOcIWdSLKErhln1nueOWLiYBKjVpc56n36HFHKaGTHCshOqT5m55sjYmuDlHMV0gN59PL0mJ1Z75lzhNNn7rOc1abrPc8c4W12ISkS2eECxURp9nwyzxyhawaVYsV8lk2YEZiKx4HslGfMEQp6UUfxOPC2uqZdjA1mjdnpGupoeR0qJZw+J+N7Jimly2fWsFpv3aA6ZhWCXU6ywxUyIzP6P8ccoQThmPNFjgwc4BOf+ARf+cpXUJTX5FcfL4n77rvvrLaTJOm8ESndcMMN3HDDDRw+fJiPfvSjr3R3bGxsbH4tfGf0ce4cfeLX9nklXSNRWUBMLEEmWOQvVvwPyk4HqldBcYm5us7HB1uv5UOt172kz7CxsbGxQmLIFK2H2sXSNGxsbGxsbGxeGq+puLeZeL1e9u7dyy233EKONM/7H8V3oUxsrRlh5AorLLm+FU/UfHsjuiqIK+TkxH2mG0jX1TGaLzRjMxSf2dbbYtrCR5b76d7cUhcRrHhXJ0tvNKOIFLfMkutb8XeacUChHh+Lr2sBQJZlgt0eomvMeApZMdsGu02r+/ASH0uubzVFIyUdraATXRVEVmTUkNmH0BLzISjQabZVVPMUtW6I0HF5lLZLIsTWhlh0bSvhpaaq29fmYcn1rahe84vXlgvDtGyIMPDUOLoG3de20LTS7JOvxWW2DZh1ia0N0XmVGXNVKev4OzzE1ph18UTMmDN3xHQ4ia4O0rV5OhKr+5oYK3+jk8Air+kMdX0rvmYzNqBpVZDua6bfVG1aGSS4yOyvu/q5vjazhpGlfhZtaam37bg8iq/FTd+jY8iyWcNAp1nDUK2GVdo2NdG2sYmpo2n6to5VY9nMtsFFXpZc34pc/T667eIm2qvRG9nRAl1XNRPsMevtb/fMqnfbRWE6Lp+O6Vh0bQsr3tVFaIkPb4vbrKHf/ODm9SE6Z0RudF3TTDFR5uSDI3hj1XqHzLaxNUEzGrDWdnOM6AVBHC4H7rBZF0+kem4uCNG1ebqGnVfF6lEvqVNZvM2msAnMN8y7Z9bwiigtF4YBcHoVlr+1nZaLIwCEl/lZfN10DTs2RWm9yPydrJr1dlQjYkKLvbPrfWkTbZdMH+uS61uJLPebsTjL/Ga9a2P24gjtl063XXxtC6GlforpMqn+HG0XNdWjaFo2hGfFliza0kJkuTlevK0uwj1+HG7ndL2vnFnDZmKrq2M2qhJbFeLkQyPomk70tHp3Xh07Y45Y8c4Owst8RFcF6ZoxZjuviNK8bu45wulxnDZmm2jdYNb79DlCliVU/7RLUPtlUVo3Vus9xxwRXRGkb6vpCNa2sYm2S6fH4RlzxBtbURSZxPGsOUdcNqOGc8wRK97RSWipj5YLw3RcPt22+5r55wh3SKX9stPqfcGZc4TilYmuDhLq8RPfZ4o0u2bU+/Q5onl9iI7LozRVz3PH5VGaq5GBql85Y45Y8kZzDh56ZoJAp5fWDWYNFXWeOUI2FylbLgzRtrFaQ5k55whPzMnKd3fSdWWM9kua6gvQi69rmXOOUP0KbReF8TSpHP3FAFpBnz1mZ8wRuqFTuHiMJ/c/RlNTE9u2bbMFSjavWTZu3MjOnTtZs2YNL+qPcu1fraF1YwzJYYoBgot9RJZNv3EWuyBEsjdLbqyI6pdpuyiEwymD7CDY7SWyYjrOK7YuhLP6HONpdrH0Le2oAXPuDHR6aFo1HVEZXRPEX50fVJ9CZJkfp8e8n/ja3cQumNF2dRB/u9m2lC7jjblx+hScPge+Vnd9jgLTya4W9+hQZVo3RAj3+ImsCOBrc9fnKIDwcn99LpEdEq0bIpSzpgjWHVVpvXhG26U+QovNuUSSzWc6d8RZXeyXzeeu6hvJoSW+WTFzrRsiuKvPsq6QSueVsfr9PbTIW593wHR38cbMOVYNOAkt8uFwmjFZga7T6r02hK/VXa9h64aIGUs6WcLf4SG6erousQuC9QhkxeOgdUMEp8d0i3S6FaIz4kObVgXrccAOl9lW9SumCMLlILZ2OrIusiJQv/85nGa9a+fcE3PRcWW03j6yzE+wWsNavV2h6n2qSaV5bZjBp+MUE2XCPT5CS6p1kWr1rrYNO837h2Hey4OLfYRnjNmWC8P1vx1cIbOtrEhoOVNUU+uDWe8Q3uo9zek3a1h7Bgot9tJ+WVM93iu2Nlivt9Nr1qUWQervcNfHEpjuoNP1NuvirEY++1s9xNYG8URV3E0qTauCBGrPG9Ux66w+n3qbXfXnmMxQAcXjqNdbVqr1Dk7XuzauwIyr83eZbaVqvd3VaFl3RDVrWBuzPX4qhUrd+ad1Q8R8YQJzzLZuiMyaI1o3hImtM8d8y4VhPLUxGzTr7XCadZk5R+hlnfBS//RzWHXMOqqLX7PmCIO6uAjM82zWe+45omlFgFJao5Qq43BXa1gVjZ0+R0RXm3NEOVvB0IxZY9bb7DpjjmheG6R5fag+vl3VerujKi0bZrStzhGSbGrgm1YG6n9/uSPO2fWeMUfITomW9REKyRK6ZtTrLVfrffoc0XFFzIxnlsw5onVDBEd1zJ4+R7RcFMbX5kbLV0j352lZH6kL3P2dHqKrgmZnDYPYanOOkBymSKr1okh9Tva3eWbPESt8+JoVgh1OomtC5vioOjD4WtxnzBGhpSEkGRxSmeZVXhLHMyRPZfHEXDTPGLMz54iyR+d4+Dl6x47x5S9/ma9+9avnpUAJ4K677jqrfz/4wQ9e6a7b2NjY2LwEspUCY+Xkr+3fggKlGRS8ZTL+ApNy5iXvM1s5M87VxsbG5lySHDbnulCHLVKysbGxsbF5OZAMY4YdyGuUO+64g1tvvRWAlY4NdGnLQGb6TW/dFA6Yb82ab3yueFcnelnn+K+G6221rIaumV/yKx6ZUtJs270lRn6qRHyvaemvhhS0rG66l5zW1uk330TXchW8zS60UmXetkp1waHjsiiemMrJh0bQ8jp6SUdWZBTfzLYykmx+MVzOaGYf6m1NEcXMtrIsm+4fbplV711E/GCS0eenptvOUxc1qNQFVI1qqAYVOq+KEd+fJD2YX7itX0HXdbqvaQFJYvCZ8XnrbdZQR8vpRFb4cQYU4ntSDesN0LIxTGawQG60MEcNZ79NHFsboGllkCM/H0SW5653ra0aUui8IsrEwTSZodyZNVTkuhvErBoq5uLfr6vep7edVUP3mfXWcnp9vJezGr0PjTasoRpSWPnOLkZ3JZg4lJpzzM5s64qoLL6mhRP3D6OVKvPWe/aYPbPetTFbO1atcNr4Fqm3xRq6IwotG0yRW368eOaY1WZ/btOqAKrfycBT8Vl1Ob3etTkiekGA1EAeQ9cXrLeWNY+zbVMTE4dT5MdK89a7VsPQUh/dW1o49stBChOlOcfszDlCDau0XRRhfG+SYrpkrd4NxqFe1ln5zm4mj6aYPJIWHt+uiFp3xJq7hub4br20ieZ1IQ7dfarulmTMUW9d01HDpmAqN1Scv96njUMtr7PoumbGdidMR40Fxqw7pLLo2hZOPTFKYbI8b70Vn0KukudUbA8nT57k0ksv5cknn8TtNhdYbWxey5TLZT75yU/yta99jd/+7d9m6LtZHJKC7JSRJOqRQA63jF42MCoGrrCT1o0RRp6fopQxHVYkQ59u65LRNbOt4pWr8UIpjIqBrEhIDolKcbqtUTFMxx2JuruKQzX3bxgs2BZMgW7iRIZcvDjdVpUx9Nlta9e/XjGQnVI9nsqhyhiGgV42po+1ZLqMBJf4CHZ7GHx6wnRjUWUMwxRanN5WckizPnehGkqyhDvqxNNkRhdLDglJkuZpaz4byIoZBRU/kKCcqcyq91w1lB0SoR4f6YGc6XSyQFsMU3DjiblIVR3p5mqrl3QM3RS7xNYGyU+UyAzm56nhdFtvs4orqDJ5NI3DOX+9Z9VQoh7fOqveM2ooq+L1nt22cb1rdXGFnbReHGF4xyTlrLZgDWVFIrjIi7/dw8C2eMO2kkMyhScGTB3LzDlmazWUFWn2+BapYb2t4JhVZTi97QL19jSpuMJOJg+n567hjHrLDonomhCJ45m6q89c9a7VRVYkFI9CKV1uWMNKUTeFY5IZP9eoLUDrxgiVYoX4/tTc9T6thq6wE3dEnT7WX0e9q2PW1+rG3+lhbG+CSkEXHrOSJNWdt06vd72tZArNc2MFJo9kzqyLUzbrUo1zczc5KaW0BWuo66ZISJZNlypP1IXsksmNFeYds86gB8OASI/p+jp1PL1gvQ3DIN+UZH/peXw+Hz/+8Y/ZtGkTNjYi1JyUvvnNb7Jq1aqG7Q8cOMCaNWtehp7Z2Ni8nLxeru2X3Umpiq/kgtPSZJ0u01nJVCWLYzsp2di8vrH67PVy8KNPPkliMMNbPn0pXRf+emOiXy/3F1HOt+OF8++Yz7fjhfPvmM+344Xz75hfDcf7unil8CMf+QibNm1i8+bNHEq+yBiDXFTZXBcFAOYieWE6dmHomYlpHymdWW31kk6pNN22f2u8/v+jqwNMncjWIxxOb1tbsA4t9dG9uZnj9w3VP/v0trVF86EdE7hCztl90HRKyZltdbOjVVx+Jx2bzGg2XZvd/5lttYLO6M5JEicy1c9lwbqUUhr+Dg8dV0bpfWikYduT949M//dCbat1mTycRi/rC9a7VkMw3+qVHVLDegMgQ9PyALJDJjdamKOGFWaSHS3ibS2jqDJaYeF6l5IaJx8Ynf9YmV0XgCVvbEVSJE4+MDK7beHMtubBYS4I6o3bKm6ZYKfXXDhAP6MupZl1AY7+bHB6NwvVsHZsxtxtT69hKalRSmrs6+3ldOZqC+Yb4FqxUhenmG3nriGYi40i9QbzTfpF17Rw9FeDlJJaw3oXJjT6Hh2b/tkcY7bWtpTU0DIVJKSG9S4lNZx+hZb1YbSCztTRdP13c9Yb8Hd4CXR6GX0xMaMuc9cQID2QZ3zXlBkxx9xjtt59DQrxEr0PT4/h+Wqoa5jOWgb0bx1vWMPafsZ2T5E4kamen/nbhpf5CHR56X9iHG3GGJirhjVGX5ikEC/WRUnz1RCg+2rzj8jjQ0MN24Z6fKQHs+glnd4HRzmduebkUlJj5MUp0n35BdpCf+IkR9270fo1brnlFu64444zPt/G5rWK0+nkn//5n7n00kv5+Mc/zpI1Swge6MJfDs5qV5kxHxQTZSYOpOoRS/ppX17XFqXBnM/Gd5uObA5VRg0o5Ktz3eltMab3E1sTolLW625uC7Ud35c0o9BmSPUrpbnb1n4eWuYnN16kMFWa3fa0Y80M5tFy5kL8GZ97WlujYlCpGDStCqCX9bobzZxtdTNutRZfacazGfO0Nf+7gk6yN0MxodXj3Baqi+SQ8MbM6NCaSGm+tmC6sQS6vGSG8tVYqPnbGhWDUlqrx882qkt2pEh2pCjUtlIxTIeijRHGdiVm3VNOr2GlMOOkGwaV8nw1nN3W6VFAnu7LXPWuUUyU6Xts+vliobro2ml9aNAWzTBFMqczR70rFVPk4omacaq1KL0z+l9tC6aoRKTeNaKrg1QKFSaPpOeoy+wa6mWd7GihHu+7UA1NMZXpYqUVK7Pqckbbal387T68zS6Gn5ucty61tmC6tmn5CtmRQsO2gPn3VO0/56l3vWYlndxYkdxYsWENJVmiZX2IiYMpShltwbY1IVNmpIBWrKBlp58Vz6y3gSQbRNcESfflZl0Xc9fbqB/b+J4k5Zw2d13KOphTOWpAoWV9hNFdU/XouLlraEZ5ukIqubFifQzM5PRjLaeqseG9GnpFX7AuWrHCCQ7QO3qIDRs28OCDD9Lc/OtdWHitks1mUVUVp9PZuLGNjY2NzeuCD7Ve92sV+FQMnZv2foGxcnLmn091JKDFGea+jZ9hZP8kT3/7AMmh6b9r3EGVyz6wihXXdCLJ1sRKNjY2Ni8HekUnNVJ1Umr3N2htY2NjY2Nj8+vgNRv3djrr1q1jZGSEzZs3M8kYW7mHjJGct312tFAXSSy5oZXYDBv6+VC8DtouaarHIi1E8kSW/ifH6wtJC6HlpgUbHVdG8TSrDbeRnTIO1XSfaUT8QAqtoKO45XokxEIUEuYC3EyxQSOW3NA6K7ZgPpK9WdKD5hfOsoBEru+JsdOEFQugw7FfDDIyc2FiAfLxEn2Pjlk6TneTWo/gaMTUyQxTx9KNG1ZZ8a5Ouq6KNW4IuAIq7ZuiuKOvvS+bmy8M0SxwvQF4YioXvH9xPTqmEcVkmYkjqVmCkXmRIbzMZ2kWjB9IMbxDbHyVMxqHf9I/S6C0EKm+HAfv7jtDVDMXsmK+uT+6K9GwreKVWfGuznrMjAj5eJH8ZOO5S1ZkgtWImto807A/Lkc9WqQRXZtjuMJO0M25Q4TBZ+IMbBtv2E5WZTM+c02oYVvVr7D85o565NJMAcTp6IbOYMdh9rIdgO9///u2QMnmdcvv/M7v8NxzzwGwx/sUQ0bvgu1rQgCnX6FlQxjZ2fgLan+Hh8jyAJLAtDFxOCV83y1MmQIlxeuYFa82L5L57FWL71oIvazXhQnuiFqPaVqIUlozneYEUYOmM5VIf9IDedORRWBBoFLUGXx2gmJVTNaI7GiBoe0Ts8QvC5E8ma1HagohUY8Da0Q5XyHVlztDYDMf7ohK19XNdXetRgS6PfW4tNcSqk8hdkEI2Sl2nJEVAaFn+hqZobzwOVWDznrsmgh6WWfiUHqWOGUhkr1ZRl+cEv78+L5k/UWOhahdO8VE2RTiNCDQ7RX6e7GGrukUU2W0QqVhW1fIaToTzZhnFkSScFSdjxqh+pV6NGUxVRa6rktpjbG9CaG6eFvdRJYHhOYtf7ubplWBel/K2flrU3GX2OV8ilPyYW677TZ27NhhC5Rm8La3vY3vfe97s3524MABfvSjH71CPXp18fDDD/PpT3+af/mXf3mlu2JjY2PzqsUhyfxl97uBM/+0qf33X3a/C4ck07kuxm/83WY2fWBVPX63kCqx9T/2cs/ntzNxag6xvY2Njc0rTHosj151wvZHbRd8GxsbGxubl4PXjUgJwO128+STT/LlL3+ZilRmh/wIp4zDC28kQ6VsoBUbfyms5Soc/flgfYFa8S5cvuRJc1E9vMzHkje2Nqy2rMr429z4mhs/CCV7sxy/dxhd0xv2o0bbpVE6r4417IeW0+l7dAy9ZAqbRCjnNcq5xjWssei6Fpa8qb1xw+qahL/DIySyqIkkvM1iC1oAkRV+YeFRxxVR2i6OCLVNnsiSOC4mrAAY25UgfnB+8cNMsqMF9n/3FLlRsUWh2JogPW9uE+6LFaKrA5Y++9gvhuh7Mt64IabQZ2h7XGwRBtO5Z+R5scWp0GIf3ZtbcIcaiwIBWjeGha81d0RFVhAWwMXWhczrUqB5aImPVb/ZhRoSNcIzYz1K2caL37XrPb4/taAQp0bzhhDdm5vNqJdGn12NrosfSNH7UGPhoeKW8bW58UQbn5/QEh89N5pjsDBZopiYf6FMVmRkxXQJO37PkNB40Qo6lbLRUCRRMHIcX7yTg4N7WbVqFYODg/zmb/5mw8+3sXkts2bNGnbs2MH73/9+DvA8HR/0ohkLL1ZLkumuIbIAXhMd1OJ9FroOtVylHvkVWxcyRY4NUP0K7ojaeAHfgPj+ZF2MISL4kJ0ysXUh/O2NhbYzhR4iC/iVYqUetSSC4nXQcUUUV1BA3GyAJIOvTezZqBYzJSo+cagyfgHRPIDTq9C8NoQrJNZvKyKlUrpM/GBSWGA1cSjN+F6x5zSA5gvDwgIrqzSvDwk/6xZTZfqfGkfLi42X9ECO5Cnx59d83Hy5QYTIUp+YKBBwBZ24m8Se0QCcPnP8iZxPNaCg+qvPUQKnv3l9iPAy8bdp9ZI+2xFrASSHhK4Zpttsg75LsvlMXxOIL9zYnEuMisHYbjERkRpQcDepjUWhEkTXBE0RJuaz10LUBKmZwTwjz08KnSO9InaPmDBG2OV+koqvyEMPPcTtt99uOwadhmEYGMbsWm7fvp1//dd/fYV69Orihhtu4O/+7u/44z/+41e6KzY2Njavam6IXMg/Lr2FFufsF71anGH+cekt3BC5sP4zhyKz4eal/OY/XkPPZdPfF44emeJn/2cbz/z3AUo5sZcibGxsbF4OksPVdbx2n+34ZmNjY2Nj8zLxuhIp1fj0pz/NCy+8QCgU4ih7mdp4Es2Y58tTHfqfGKuLSVoviSz4hXjNJt/X7mbVbywSciaSZBkwGgoQ9JLOkZ8PEj9gvlWiBgVECDIse2sHnVdHGzYdenackw+OCAkhwHQ6Wn5zJ+2bmhq2Hdw2Me0YIzCqkr1ZJo+Ivz3TflkTsbVi7juBTg/L3tohdG4AmteHCfWILZgMbB3n+P3DQm1rfYmuFnuTOtmbFRYdAfUIPBG0YkV4ccoqlbJuyY0KqEe9NEIrmG/QixyrO6LSfGFYyKELTBHhkZ8PCC2suSMqsQtCeGJiC7aLrmtm0Rtahdr62t20XRzB3yY2XrNjBRInMsJuUVquwskHRho6NKlBhZW/0W3pzf/RnVMcf2C44fl0R1RWvbvLdK5q1GVVRq5GMB7+yYCQ0K8WYSRy7pe9rZ2uLS3AmRFzp9NxeRSnX0HXdE7eP7ygM941t6/nGccDnDp1ig9+8IMcOnSIpqbGc6eNzesBn8/Ht771Lf77v/+bn/zkJ/Qt3cvfPPWn87YvpTXi+5NggMMlN1xwr4lOmlYFaF4Xbtif2hdKhsCtJjdWZOSFKYyKgaxIQm4j3hYXHZc3NXTg0ctm5G5mKL9gu5n4Wt20XxZtKIKqFHXiB1LmIr7A92darkJmMD8d39QAV0ilaWUAp1dMeBRbE6RJ8HlHDSiEe3xCDkblrMbQ9gkhgQWYgg9/p0fos3XNIDdWrMfyNUK0XY1KsWJ5G/HP1oXFVWCt76W0tqDYdya+NjdqQDw9fGxPgqljjZ2LwLzOaq4+jXBHVNovjeL0ifUl2O21JDrKDOXJx0Vci8z/yY4WhIReoR4frRdHhK5hMOe00V0JIXfJyHK/sCNW7XrJDBcY3TXVeO6sDSeBfrsjKh1XxOpzyUIiQqfPUf/7LTdWJHF8/rFiOCos+1iUF3mKiy++mJ07d/KGN7yhcYdsbGxsbGxszpobIhdy3/rP8p8r/4C/6/kd/nPlH3Df+s/MEijNxB/18MZPXMxb/moToXbzuc4wYP8Dp/jhn2/l6JODZwhpbWxsbF4JEkPm3x521JuNjY2Njc3Lx+tSpARw0UUXMTY2xtvf/nZ27tzJs+4HGTMGFtxGVmXCPT4hcUt2tMD43kQ9umwhpo6m6X1kDDAXnxZ8s7/6vW1gkZeV7+xq7B6kw9juhNCb3bpmxhQgQ/e1zQ3fTtY10zVg4rAFMdGmJpbd1NGwXbJ32mVIRFhw8sERTj06JtSH9GCevq1jQucG4Ng9Qww9PSHUtpTRhEVeAMElXppWiYmrkKFlQ1j4zfi2SyN0XNVYnAaQOJ6lf2vjCKyzIXE8S/8TYufG1+pm6VvbhR2JWjeGheIPwYyFaF4XQrdwfkQX4QpTJQ7+sJ90X06o/anHxhjZKebolB0ucPinA0KL2LJiLjSLRM5FVgRY9Rtdwm5opZRG/ECShMDCV9fmGN5Wc5wWJhqLvApTJcb2JEgJLNgtfXMbi683RUSNrrXICnNBPNWX4+SDI+gCa+9jexKM70k0bKe4ZYKLvQQaRA1qhkbikl4+97nPEQwGefLJJ/nOd77TuCM2Nq9DPvShD7Fr1y5aW1u55ppruPIzF6A3WO12h1V8bW4hcVCqL0eyT0C4WDGI70tSqkaWNbyvVr8Xj64JEbug8T07Hy8xdTwj5JRSc5lUg04hQXR+okiyN4teFruZOVSZ9k1NQo4zyVNZdK2xKxyY8/bQsxPCLpmJkxkmDoo9L+YnSgw+MyHsNCMSgTWTcI8PNSDmpOL0K8KidodLpnl9SFi4NXk4LewwZJXJI+KfHV7mFz5GNaAIR+wCBLq8ltyODH1hkcpMpo5lGBO4X0P1OWNvgrKAaySYro7xA43/dqpdK7nxYmOhnAStF0WEaw1mBGbqVLahm5PT56iLqrR8Rcj9KT2QJ3Gy8XzpCjnpuDw6LTZb4LMVr6PuWDVxINXQQQmgkCiROJ4RmkvcEfN+0Ej8lDYSHO3Yybe+9S3++Z//mYceeoilS5c2/HwbGxsbGxubl45DktkUWM5NTRvZFFiOQ+CPi671MX7j767m0vevxFF14s4nSzzx9T3c8/ntTPaJRXbb2NjYnCsSQ+bfTqEOsRdlbGxsbGxsbF46r1uREoCiKPzyl7/krrvuwjAM9vAs7rcV5l0w00s6R382UBf8RFb4548xqoqDANxRlRXv7BRyPmq/vInOK2MN26X7cozsnCQ7WmjYdupohlJKQ1bMOLJGoh9FlfE0qUIxKPEDqfpniyxaZEbyZIbFhBxQFTW9vVMggs78YtsdFet3LWpPVgTepK8ulgg5V2EKI1a/t1vo6hl8ZoKjPx8U+lx0iF4QxCsar6IbYGHdTvHK5+SKV9wWPlc2F6hEnJdkRaZpZRBPVEy0FT+Q4sAPTgmJyDquiLL0JoG4QaoxZbKg+1O1DsVEWUi8U1uwbuRyBBBbG2Tlu7uFotUA8pNFMsP5hrWWVbkedzi2K9HwOGVVxhN11SM+FqJpVYBAtzlvjO9NComIhp+fZPj5xiKs4CIvnVdGhWIgO66I1t3mkiez5OPzn5vwMl/dyenIT/qZPDL/l2Uf/s472e55gOeff54tW7YwMDDA5s2bG/bHxub1zLJly9i6dSu33347X/rSl0hv6uf/2//5edtnRwuMPD9ZdzJaSPBQzkw7vERW+Al2N448cgWdRNcEUQVizhLHM0JCTUM3yA6bz2fuiCoUS+n0OnCFnA0FQrpm1EWrarBx+0pJJz9Rqj8nNUJ2SrRfFhUSRNfEJCIilHK2YoqOJITcVcyIOLHYPDBF3AGB821UDAa2xcVcbzBFOYFur1Cfdc3AMDDzCgWQZLHoPstI1j7X0I2642AjXEEngS5xkc3I85OkBATckizRcXlUWNBUc/YRcYCqOaeJCGYUj6MeS6iXG0ertW5sEq+HYYoMi6nGAnhXyAmSKTiqxTwuhNOrmPNHAzGn5JAILfHVP1ukJsVkmcnDaUrpxg9pTSsChJc2frNYcTtovTiCwy2DwYJCfFmR6nNoeiDPyAtT8wqldEPn2s9v4AXnEwQCAR555BH+9//+38jy6/orDRsbGxsbm9cFDqeDi965jPf+4xaWbJp2Hh89PMVP/882nr3zoB0BZ2Nj84pRj3uzRUo2NjY2NjYvG+fFN3rve9/7GBkZYePGjdxzzz08wS+IG3NHdtUW0WVVpn1TlOZ1jd+olyTzLW8t11jEcOL+EfqqrjONHE5qsW+BLg/d17Y0PFueqJtwjw93A1GHVtA58tNBkieqQh4B0UPbpVEWXdvSUPST7s8z+kICQMgtJ9mXZep4RtidaPH1LbRfEhFqG1sTZNVvdgkdX3iZj5Xv6hISXuTjRVIDOSEBVP24BK+0g3f3ERdwxQIYfSHB0HYxByhvs4sL3rtYSNBhlZ43t7PouhahttnhAifvHxY637qmc/AHfUweEnijqlZfwXGUHSuQGRZz2lp0bQvL39rYHQxMMcyKd3YKtfW1ulm0paVhzFGN9GCeqROZhiKimmisMFFicFvj8dF2aaR6bTfug6zIppjz54NC5yWyzE94aeP4n+AiL93XNgPmGFlI4FWbV1J9OY79ckhIyKkVKkLCOMUt03lFrO6kMp+oSjM0Djc9z4c//GEMw+B//ud/eOKJJ/B6xc6ljc3rHUVR+OxnP8vTTz9NMpnk4osvptc4NK9IvPZjf7uH6OqgkKuSXjKoCLgNFVNlhndM1l2VZOf8n13OanXRaNPKgCkkaICv1WU6fzQgO1JgbFcCQ0fo+CSHRPP6EIGuxvNK4ngGrVBBkht/tl42RVAiQgoAT1SleX3IFOw27DS0bYwIiccAWi6KEFkuZqWenygKCXoBS1FU2eECQ89OCDnT1By6RN16mlYHia0JCbW1givkpOvq5rrYphHJk1kyw43vlWA+aww/11goDEzXV6B2kgy58YJQ7Zw+Bx1XRIWeyWWnRMcVUTwxMUF7uMdHdI2Yw6mhQ2Y4T15A6FObV1J9uYZiH1kRv7Zr13NuvMhoNZZyIVSf6YTl9DQYG5IpJFf95sNfo2epmihu4mCq/vfpQlTKOpWSjiQg6PN3emhaGZgWZM5ziBkjyd7gU9x222184hOfYOfOnVxzzTUNP9/GxsbGxsbm1YU/5uGGP93Imz91KcFW83nI0A323dfLD//iSY49ZUfA2djYvPwkq3Fv4Q477s3GxsbGxublQsw65nVAOBxm586d/Nu//Ruf+MQn2FXeRtRoZT1XokhnlkEv6Ry7Z5BSyvyi2dfuNr/AnWM9LB8vcfKBEQBUv0JsfcgUj8zRVi/p6CVAhqVv6yA3UmBgW3zBvjt9Cqqv8UJEdrTAoR8OoGvmjhW33HBhvuWiME0rAxz52eCC4oehHRNMHU/XP7sRgW4Pi65t5eRDw+RG539DODdarP9epL+nHhmjlBaLt0gN5HC4ZaE+J05mkR2yUHRGYarE0DNi4iAw3/5vWhXg0N39jRtbiCoDs2a6pjd0qClMlel/aoziOYgdGXl+korguHD6FfFFRgu0XhwhtMTHkR8vHOlYoybQE2Ho2QmURos9tc89maUkGCGXHS1w/N6hhm/Qy4qMrusUE2VGBSLkFr+xjUq5Qu+Do0L9GHp2gqmj6YZjqOPyKP4uD0d+OtBwnNau5ZMPDgu5JykeB06fgqzMLwwC00lt2VvaGdgWJ9mbXfB6DS7yogadxPclGduVWHD/vlY32fECWkHn6D2DlJLzd2LSN8zBygvkJ/Jccskl3HPPPbS1tTU6RBub85LLLruMXbt2cdttt/FP//RPhDe6UZ6P4JfmFm6k+nNkxwtVlx0JxeOYV9SQnBEf6e/wUM5q88YxaXnTZcgTcxFdFWD4+ckFo8Ykh4Tidgi51UwcStfFGrIioWsN3FkcEm2XRMgM5UkPzC+WNSoGY7sSlHPi98zY2hCGbkb1LkTN+UaSMZ2BFuhyfqLEyPOTYk5NBqSH8vVn50YkjmfQimIOUAvV6gwk06kzPZAXilK1ikOVhSLL0v05YdclK5SzGuP7k0K1k2QJSabhuJyFSFPp/8/ef4dJctX3/virQlfn3D09eWdz0Gq1K2kVUUASQkhCIIEvYGPAJhhzjb/YJplrG0ywMRh8L9g/84AN2BgHQGQFlLO0Srur1Wpzmhx7Osfq6t8fp7tmeqbDCJRg6/U8erS7c7r61KdPnTrT513vN/RdECZxIkt2srMAytCrJFa49ipnKyJKbAVrVkOvkh7JUUyubH07dzBtRoy0o34tZ1YQHa35bHSdFWB6z/yK3IgMvcrU7s7XtmyT6D4nRPJk5xrX+1tMlRl/bK6jc5YkCbcjxS5Dpn1/g+u9aF6Vqafn2457SZbwD7lIjeQwytX285AkBFWljE5qOEd2okCrZFBDMhiWDnNKPsRgdJB/+c43uOGGG9p32mIZd9xxB/v37zf/PjYmnH4/8pGPNG0vSRJf+MIXXpK+vdzcdddd3HXXXWQyHS4GCwsLC4sXlIGzovR+4VU8c8sJ9vz4mHCITRS57//3DAfvHeXi39tCsL/zQ28WFhYWvyqFdIlCWnyf5Ou2HkC1sLCwsLB4qTgtnJQW84EPfIDJyUnOPfdc5pjiCfedTFWbi0fqmyyyJjN0RYzuszs7+Lh7HPgGXKidvgA3YHrPPLMHOj+NGj+U5titwn3GEdTaRiXUBTk9O0Osu6GvoztK4niG+KF05ygrA/IzYgOg94Jwx8i19FiemWcTbQVKiwmu97DhpoGOkWuF+RKGLsRgmr9921JKF65OK9HPGLSNdVqGLMRHzmjnp7wz43nmDqRWdLWpLpnNbxk0Y8Dat1XY/JZV+Fd3VvgbukHiWHZFbjLPl/RYfsWf87rreum9MLyithtu6qdre2BFbTPjeeZX+Pl1nxtccdwIiDG30k3O7ERhRU+Y16NDVhLxMXBphLWvW5mTE8D03nkzsrId5nW86NpuR/xImvjBVMfrqduce+SOAqX6OI8fSnP81s6CpsJciZn9yRVtVnsHnPhX4FKlOmSGXtNNbFsAoKVAqVQtkdo5zO7sIwB85zvf4cknn7QEShYWHXA6nXzxi1/kkUceIZfL8ZTtPl71ya0Y1eYCi0rtPuXtdxLbHliR65Aral9RFGxhvkTiRLatQAlqAqFnEuRrrm4d7xlVIT7q2RnC09c+GqpaEaKK3AriyMpZHarifu9f1XldkBrOkRpeuQi366wgwbWd1xDlrPisVuIslZ1YmVsOiJipyvNYl9hcysqit6pibbJStyjfgIvYjpW5dAbXeeg6K7CitqW0bjp4vZAY5aqIs1uBmMgVtdN/cXTF11Hv+eGVOX1JkBzOrajGmlfF0/P8nDxXsj4CoIopimmH6lSQbTJVo4peaC/uUh2KiKZbgZMTQCldJnE801GgZHMppntm/dpuh1Gukh7NmfNQK+pzj7c297QTKNncQphUrcWWdzo2iDV2cgUxmLIq4epyoHk7zxP+VW6i2wLCPalKS/FTqjrPyaE9HK8+x5/92Z/x7LPPWgKlX5KxsTEef/xx87+xMeFSsfjflv53unDVVVfx+c9/ng9+8IMvd1csLCwsTjsUm8KON67jzV+8hFXnLDi0Tx6I88OPP8xj/2FFwFlYWLz41KPePBEHNsdp4+lgYWFhYWHxsnNa3nVDoRBPPPEE//qv/8r//t//m33s4lT1MNu5GE1a/iW6UTI4edeU+UWuM6qJPzf5PnX+SMaML5M1mdBGb8v4rsSxhS9811zbI157pL3Qouf8MKomceSn423bzR1IUc7qHTf9Symd6b0JQESelVJ6240BWZPx9jspJkoU2znGGJjuJc6IRjmjtxXIJE/l0Lzqip++X3VlDL1QMR2s2hE504+3zyVixjrQvTOEM6hx4o4OxzVETAJ0FnjkZoor3mzRcwbJU1lK6c6/hOu5CqOPzJJewVPeAOFNXoop/YV1FZCha1tAbM6s4LMbe3SW0gqdlJInM+RXWLfsRIHsCqJMVIdMcJ2XYrJMoUN8h2/QRfc5QY7/YqJjlGNgrZvwJj8n7pzsKPjzDroYenWM43dMrKjPs/tT2DydnZy8A07SI+2dOeqoDnEdF+Y7XMcyxLYHmNqToBAvdawZQPxQinK63NHBLLjeS9+F4Y59qIuIJp+aJzOeb+uK5Ahr2P02ksezjD3a3M2ujitqJzdTRC8YDN871fY6Gvcc40jhWcqPlznvvPO45ZZbiEQibc/PwsKikfPPP5+nn36aT3/603z2s59l7ca1uA/FCEnN40JTIzkKibKIN5LEBn9dLLOU+joGhFuSWHMsb1utVM17oD1gwz/oZmZ/sm2Eks2tED3Tz8y+ZNs5sFqpkjiRXdmmf23ul2ThAtVp3rb7bDijdlKjubZ9XewkZffbWjpL1UmP5lbs1GQP2IidFWTy6fiK4qwiW/0kT2bb32MQrkTRbQHih1Idj6t5bXj7XGQmCh1jr1bigFOnmC5jdHCeMY87kV/xmk51KDjD2orXaSvF7rehaPKK+lGYL3Uc43XK+QrZyc61hVoU2grPyx7QcMccK4qci57ppzBfWtFaJnqmn9x0cUWxr6H1XpAa54pW6IUKqeHO7kyKJiMpEnq+sqJa2P02XFE76dF8WyGR5lWRVXnFdXg+c094k084VR1sL6h3ddlxRR3M7hfxhuU2GiVPr5PsZIFKyRBOwq1OTQKbU6Gcq5AezZGbKbZ2T7JVOKo/y6h0jPW29dx666289rWv7Xh+Fs35n//5n5e7CxYWFhYWFm3xRl285s/OYWT3NI/++wFSUzkRAXfrSY4/MsH5b9/Emgt7VhQla2FhYfF8SdSi3vw9VtSbhYWFhYXFS8lp56S0mHe/+93Mzs5y9dVXk2Keh5XbOFp9tmnb7FRBbLrLMHRlN33t3GBqX7gG17iJnRnA5mmvBZNV8YW4voKNolP3THHq/mnxujZuTaWMbjq6RLb6TUFNO6JbA0S2No9gqWOUDA79cFTEm9T63olVr47Re0H7DX2jZAjXI1jRk8sjD80wUqtDJ8ppnXKmvKLRXkyUyM2tbPPp4A9GVrTZAcL5qff88Ir6MP7YHPnZlcVWzB9JryyCBTEOfKteWMtSzaPSdWYAZ8i+ovap4dyKhC4AU08nVrSxF9rgXZHzFIBeMDjwvWHmj3S2868UDfLxUkeBEkClXKWU0Ts7kgHp4Rwn75rsKFCqXwfZqUKDoLEZzojGqlfHCKztXAcx34jrOH6ovSjSHXUQ2ezH29PeuUJ1KQxc1oWsypRSujk/NG3rEBfB/JE0x2+b6LiBrZcM9EKFarXzpmnXtgBdZwbEX9p8FJpPZc3reohs8QG0HGfpapKjq57kufRu3G43P/vZz9i1a5clULKw+CWx2+187nOfY/fu3UQiEZ7mAXp/10Wp2uS+W8V0ofH0OOk+O4Rs63wT9Q+5O7oZ1Y9fKRkdBRnlbIXJJ+fNe1e7CLjsZAGjbCApEqEN3o5xcZrPhn/Ijc3VXoianSww+VS8FoPXtikgBAZdZwVQHe2Pm5spmsKvTrGmxUSZqd0rj7PS85UVOVlWSgalVLljPBVAdrrA+K65FYloAJxhDWe485qymCivWHBTzlY6ir/q2DwqgTWeFcUGPh+cETvegZWt5yolQ7gurYByRm+IUWyFJINvlWtF1yOI2LvJp+IraltMlimvZF0riRjHepRjJ2YPJFfkmFq/ZlIjuZYCmjqBtR4iZ7T/vQkwr9nMRIHJp+c7jnVvvwvfCj5fd8yBq0usv+tzT8s+1NyxZvenVlQHo1wV7kYdhq7ikAms8eAI1tyT2pxacJ2HaG2NZujVpo5r1WqVKWmUPZ77mdZG+PznP8++ffssgdKvSHd39y/1n4WFhYWFxUvNwI4ubvq7V3HOm9ej1NaauUSRe/9xL7d+7nHmR5+HA76FhYXFCkmMi9+D/b0r21+wsLCwsLCweGE4rUVKAB6Ph1/84hfce++9BINBTnKQB6o/Z7460/wFBpy6d4qp3fOAEBK0EurMHUxz6McjlDM6yCLSrOkhdRi+Z9rcKO+/OIIr2lz0YZQMM45ozTXdDF7R3IFgMe4uO+5Y55iFY7dNMFwXQKlthkbtO/DQRi8bbhpAdbUfRqfunWL0kdmO7w8i7mzttT1Ea9FLrSjMldALBrIm44q1F8gkT2YZfWh2RZtl80cyTD01v6K+1o+3kugwxSkTXOtZ0WaZrMqENnhNMUc7XFE7sXNWFlFy6AejjD86t6K2K6WU0nn2OydXFAPhHXR1FMHV8a92rziSzb/ajX9oJfF4sqjpCpNlslMFRu5vMQ8sIT2c6yyakzGjODqJr2RNZs3reujeGVrR++dnS5y4c7KjmKn3wjBrrq1Fx7WpQ/36z04VOHTzSMf+am4Vd5e9Y1yju8fBxjcN4K7FvrR0gZDFPOgIaWDAyTunWoq6NJ9q1nX04VmO3TLW8v3r82oppTN833TLaD6janDUt5fHpbsYHh7mpptuYmpqiuuvv77t+VlYWKyMrVu38sADD/CNb3yDn/3sZ+wLPsRo9XhLMWJmIs/0voS5CW9ztxbUTO2eJ3lCCFHrjjPNKCbLppuIza0KsWuLDfn6Zrrdb6P3gnDb9wchdLAHbB1FHMVEmfHH5kxRhiS3UQRUAQm6tgfNyKhW5KaLTO2e7xhrVce/2i2i9TosO+rRXiuJfYsfSq84bi1+ON3SJauB2vCQbdKKhD+uLkfL9fRSbC5lxfFenh7HimqQny0y8uAMhr4yUdVKSRzLMPX0ytaqvkFXRxEciJo6I/YVieBsbhXfgAt5BbFwpvhthSVYsZi9CvNHMx3HmOZRkRQJo1ztKGjyDggHzZXE3YEQW8/ubx+vq2gyPeeFF9b/bepQv/7nDqaYebZzbK89YMPu6zwOw1t8pihbL1RaiqQ0r2qK/gvzJeHu26K/rqgdJBHPOb5rtqWLkyRLC8KvUzlm9iVa9lP3FtjLw+wzHmPbtm3s2rWLj3zkI9hsnc/RwsLCwsLC4jcHVVPYcZOIgBtcFAE38VycH/75w+z67kFK+ZW5wVpYWFishGRNpBSwREoWFhYWFhYvKae9SKnO5ZdfztTUFH/yJ3+CLpd4ivt5snofpWoBe8BmCkZkFYxS1YwuG7q6m1WvWXjSUPOrC+ISGVS7CrKIGei/KIKnf0EspPnUBYGPLARPNo+Mq8uOM6qh+dW2bWf2J4kfTKM6ZOwB25K2CxsSU7sTjD0ixCneQZf51C2IL+/rTk9GycDh13CENDa+uZ/QJm/Dho3No6ItcoUqZXVSIzn0nIGsyg1tVZdits3PlrC5FOxhjf6LIwtt5Xpb2RQ36DmD6X0JksdTZr1btQVYdVUXg5d1NdTFbOuQG2rYtT3Aqqsa29YFZktr2P+qCJEzfObfRdvaGNAW2sbODrDu9X1oi167tK0jqJGfKbH/v09RyRsNzlqOoGY6YtXbqg6Zvgsj+Nd6Gurd0LZWQ1fUTmi9F9WjNNRl6ZhtV8OlY9YR1MyNWtWxpK2vSdsW9V46ZkPrPATXeZrWe+mY7bsobNa/Xhez7aIxCzDxeJzRR2ebtrUtattzbpiNbxpYVu865piVYdUVXXgHncvq3dC2Jo4ZuiqGM9K53tGtAVZdEcPVo3WsoVEyGHtklsSJzLLrfvGYjWxd2HgqZ/W2be0BG8mTWRLHs8vqvXjMqi6Zjb/Vb4rfZFVuOWb9a904ghq5mSIHvz9CpWS0HbOVgsHsgSTZqULDHAGNY1bVZLwDTnOuajdm+y6K0HtxBGQxh8la87auqJ211/YS3eYDWWyENhuzY7ZjPOm7i5PJI6xbt46DBw9y8803o2kr27y2sLBYGbIs8573vIdDhw5xww03cJCnie84TqI6i6RIDc4+ik02XQOdETu9F0TMeWlpW1mRzPksuN5LaKPXFB1I8pK2NhlFk9G8au3+qyxvKy20rZQqJE9mKWcrKA7ZFMpIMg1tK6UK03sTQhQhCWcjU1QjNbYF4UbiX+UmtiMgjmtrbFsXjsiKRGG+aAoCFLu8IIQy24rXlnMVVIdiCmoUTW4QTS1umxnPkziRNZ1jFE1uEHepzoW6qC6F7nNDpvi9XVvZJtO1fcFRVLbJKPZFbR2KWRebR8Tq1e+Hsk1qaGvWW4Le88IE1noWfTZL2tpF27mDKeYOpRs/R1VCcSxpa5Pw9DkJrHU31luVGtyo6vX29Lmw+20NNZSUJW3b1GXZ+NZklEWiq45ttcYathrfikPBt8qN6lKX1XvpmHVF7XRt85vns3h8Lx2zer7CxJNxUwRXr+HitpIsPpfe80L4hhZEda3aurrs+Fa5mta7oS6yRGijF1fU3r4utRpGzvATXOdZUdvMWJ65Q+mGn9XniMVtg+uFO5bptLRojlg6ZqtGlexkgVJGXzKfNI5Z74CT3gvCZm0Uu9x0zMqqhCOsIdsk4ofSzB/LLBuzS8d3brpIaji3bI5YOmbtfltNqCY11NtsW6uh6lKIbvWbc4BRrrYcs6FNXqLb/CiaTKVkiHnJ2ThmcRgcV5/lodztKLEqP/zhD7nnnnvYtm0bFhYWFhYWFqcv3i4XV//ZOVz94XPwRsWDadVKlX23nOAHH36AY49OrMhx28LidODAgQP8wz/8A+94xzu4+uqrefOb38wnP/lJRkZGOr52z549fPzjH+dNb3oTV111FW984xv58Ic/zL59+9q+Lp1Oc8MNN3DppZdy3333vUBn8vKQnKiLlKy4NwsLCwsLi5cSS6S0CFmW+fKXv8zY2BgXXXQRCWZ5WLmN5NoxwjUhgLvHyfob+nD4xYZ1IV7EUXuK1RHWWHd9L13bxea+O+pg/Q19uMJ24ofSpEZy9F8UBSCw1s3qq7vp3iGcUhxBjfU39GH32Tn8ozE0t4111/bStT2A5lMZujJGz04RMaR5VNbf0AcVsbEU3uRj6zuGiJwpXGoGL++ivxZHpzpk1t/Qh2+VE2RY89puNr9l0DzngUuj9F8kjiuriP522UkcyyDbxWvrQof+iyMMXBo1X7v6ym5KGfH0SuycABtv6jOFA/0XhhtcntZd10v3jgCePifBDW7W39BnChR6dkZYdUXMbBs9w09ocwDNrxLeHBD1rglEus8OsfrqBVGYw6+ZbiyusJ31N/Thjoovzbu2B1l7Ta/ZNrY9iK/PLQQcflFvd7f4RTey1c/a1y20jZ4ZMN2c6vX2DtTabvGx/vV9gHDL0gs6veeKz1HWRM3qTyKH1nvEZwVgQP+lUfovqUVFyaLeoZpwJ7Ba1EUvGBy8eQRvn5OByxbV8PW9hDeJcehbJcZh4mSWA/89TN95YVa9eqGG667tXRizvS7W39BHz3khMY7ODTN05ULbta/rNc/VHXPUPnOp9rkGWf3aHrPtmtf2mOIVZ1hj81sG2PimflHvs4INNay/F4ins30DbiZrT/6Ht/hYd+1CWxEJWBuzLgVFVchOi881vMnHuusX2g5c1kXfRbXj+sRnE1hVq/e6Wr1rM1v/xREGLhFjduLJOVS3SqjmaOZfJepdF9H0XxRh8PIuHAEh1Ft9ZYzIZlFD74Cod32jtff8MKuuiKE4ZCRVZvXVvaZL1NI5ovvsMEOv6WbmmQQn7ppk1aXdTecIgK6zg2y8aQAQDmCrLu9aNke4usQ4jJ4ZYPCyLjPypdkc4e0X433VlTHWXddLdqLA7LPJ1nMEEFgrxInJ4+IXtGZzRGCNG3vAxurXdLP5LQMt54j1N/TRdZaf9W/oI7LVy/ob+ph7LiWuhSZzxOrXdmPzqLi7nah2lcy4cHBaOkdsuKGPvlqf5o+k0Zxqyzli4xv76doRJDdTZGrvPN07wk3niFI0w/7Aoxwo7aZarfK3f/u3HD58mPXr12NhYfHiEY1G+fa3v80jjzyCoig8yX24ry/j27YgDAxt8pki10K8hKLKpjtMYLWb3vPC5oZ+cL3HjLid3jOPK2LHFbWjeVRc3Q56zwub97jgWg/hzT6ykwWmnp6n+9wQvkEXnl6ncE06L2zGDARWuwlv9pMeFfNS3wURBi7rqomcRNv6hr9v0E3Xovvq0FXd5rrA5lbpPS+MzS0mTm+/i9hZQXIzBdJjebrODOAbFG1Vh0LveWE0j1hnenqdeHpcprNT30URArXjKppM73lh0+HH3e2ge2cIV9SBI6QR3uwjuFbUUFYles8Lm46FjqBGeKO43zkjdkIbvQvunzVRUN0JRvOoyLJkrr2C6zyENi2IunvOC+GuCUztflU4QzprNVzjNu+rAN3nBnF3i/lY89mIbg2Ya0P/kJvoIvfF7h1BPL1OqEJyOIe314mtJoTwDbjpOitgto1tD4p7Y1U4JPVdEDaP6+1zEdu+4EAZPTOAf5Wb5Ikss/tTot7eWg17nA1ulZEtfgKr3Uw+GSc7WRD1rgmu3TEHPectuB+GN/sIrPPQtS0ghHXnhXHW6u2q/b1OcIMX7yJ3rN7zwrgioobOkEbveWFT1BFY62HVlTFTINJz3oJgzB6ojdm6kHiVi3JGN+PeYucEcdfiW80xaxc1tLlUStmK6foU2x7E2+cyP/Pe88LYXEJc4h10meMboOusAL6B2vh2ijFr89gwylVys0V8i+IXo1v9pvtlfcxqPhs2l4q330X3uYvqvdlHYI1oKwRPYRxhG7Ii4Qxr9Cxym1w8R0iyZI7Z6b0JShm95RwBMHBJFE+vw3QYajZHmJ/NBWECazzY3GrTOaIe/6Z5VfoujODpdZI8mTWv5WZzBIgxbOgGRrnaco4ACKzxsOrVsbZzRPfZITx9TkIbvUTO8OMMaRST5aZzRO+FYXFdAc6wnXJap2pUl80RrqidwcvFmk3PVSgkywvuUEvmCE+Pg/6LIkiyRPJElkqx0nSOqFarZPqn2e26n3HlJO9///s5ePAgN954I5L0wkYkWlhYWFhYWPz6Mnh2F2/64iWc/aZ1CxFw80Xu/eoebvubJ0iMZV7mHlpYvPz853/+J/fffz/nnHMOf/zHf8zrX/969u7dy3ve8x6OHz/e9rWjo6PIsswb3vAGPvShD/GWt7yFeDzOBz/4QXbt2tXydd/85jcpFlcWLf5KpqIbpKZyAPh7LCclCwsLCwuLlxKpaj120JL77ruP3/7t32ZiYgK/309vcj0D9jW4u+xkJ/MYes39w66QnSqw5toeNK/K8dsmKKV0ZE2utS1i6AaaX8XmUlHtCgOXRpl8co7UWJ5SUkdWwd3tJDtdxCgZaD4VR8hO73kh5g6kyE4XMEpVCvMlERvV6yQ/W0QvCOeS/kujzB9JM38kgytqx6hURVzCkraefgeKTSZ5IiccgfwqVUPEpwF4+53k40X0nIHqUnB3O3B3Oxh/bA5HUEOSIT+z0LaQKFPO6Kx/gxC2HPrRKBgiAk1WFjaxvH1OiskypZyOqsk4u+xio8+ou61I5KZEW0+vk1KmTO8FYTS3ysQT8cZ6OxUz+snd46Cc0ymldcIbvJQyekMNbW51oW3MgV6sUEyUm9Zb89hMUYQrZm9bb7vfZkZgNdS7SQ2dIU2cqwxb376K5MksIw/MLmpbQs9VUF0yzpDd3AB1hFvXW3XIOCN20uP59vXOLIxDm0fFFbEz82zSHLNmDbN6w5hddUWMqT0Jkqcy2Fzq8nondWRVpmtHAIffxsm7pp53ve3eFjVcUm+bR8URsJl1cUY1qgaU0jqb/9cgyZMZJp+OL6834IyIDZP87OLPpnW9F2+8Lq7hsnq3GLON170Ys/4hF6pLYe65dMt61+eI2NkBYjtCHPzBMKWkvqTei2qoi3GoeWxkJkWfWo1ZZ5eDoStiTD4ZN+NDmtW7vhmWHss3rXd9jvCvdpGdKqDnDHxDLqp6te2YLWXK9J4fYfbZBEhSyzHrH3LTd3GE6d3zJI5n2tZ701sGqBQqHPnJ+LJ6L54jguu9DF4W5fgdE6SH88iqjLvb3jAODUeJ7IYZHn74YTRN421vextf//rXUdX20XUWFhYvPIZh8O1vf5s///M/J5PJ8LGPfYz7Prkbh8dOtYrppmT32yjndBRNoff8MPNH08IpBEzxUrmhbUW481WFALSYKkN1wSnEjHPz2bAHbXi6nUztmUd1KI1tFUlE+CLmcneXg+lnEkiyhOZRKaXLVI0Fx5q6kNvd7aAwX6JSFG5vNqdCKaNTrVRR7MKppZQWbTWPiiOkUUyVKaXKaF5bY1u7QilVxu6z0X1eiJm9CTGPSqL/5ayOoVdRNFn0Py36b3OrVKtVUcNmbZ0KlbJBz7khEscyFOZLy2polA1km4TNpVJMltG8KpJNwigaZlyb3W9Dz1eolAxkVcLmVtvWWy+0abuo3ppXpVIyqBQNJKVebyGoUBwyim1RDb0qlbJBpWDg7XMS2uRj5IFpjHLzeht6Fb1QQZJpWW8Q7ozVStV0yGpWw2Ky1tatUK0KQXR9bVnO6RjlKrJNiOzMti4FT58Td5eD0YdnW9YbhJA7uNZDZjxPfq7Uud6La+izUSlWltSw+ZhtVW/fgAvPgJOZvYmm9ZZkCc2rthzfHWtYv+aojVnj+dW7Pkf4V7tJj+UwSs3rvXiO6L8kSn6uyNxzqfZjVgK714Zeq2G7eke3BVDsMjPPJFrWW9FExF7yVA6bS1le70U1VJ1KbT0tYQ/YKGcqbces6pCxuVVyM8W29Q6sdqP5bUw+GUd1tq63M6zRfW6I8cfmKCbLLedZo2zQc16IqlFl8sl5c8xKEg1zxGx2Cn1bkqeeeoqrr76af/7nf2bNmjUd7hAWFi8uhw4d4r3vfS/f+MY32LhxY8f2zz33HFu2bHkJemZhYfFSYl3br2xSU1ke/fcDjOyeMf9NViS2XruaHTeuxeawvsexOD3Zt28fmzZtaohKHhkZ4fd+7/e47LLL+Mu//MvndbxCocBb3/pW1q1bx9///d8v+/nx48d597vfzbve9S7+9V//lU9/+tNcfvnlz+s9nu/a68VifizDzR95EJtD4R3/+poX7YGJ0+3+crqdL5x+53y6nS+cfud8up0vnH7n/Eo4X0uktAI+//nP86lPfYpiscjAwADRkdWEpK5l7WRNRnOrFOZLOIIadr+IV2qGI6yZm/7hTV7mDqfBWN5O1mSMkvhBaKOXzFje3EBoRe8FYbKThZbvDTX3lDf0M7M/yWxNuNAM/5Cb3vPDHLttnFKq9fvW3WiMkiFcbJqcy2JWX9ODntMZeWCmZRvVIYMsIuA6Ed7kpWdnmMM/GW3bTxCRd8G1Hobvne543MgZPlKnch1rvvq13eRmCkw9nWjbLrTJS3ayQDFRbtvO5lEZuirG5BNxU8jTilVXdFEpVRl9qHUtny9bf3eIqb0JZp5JvCDHc0Y0Vr06xsl7psxx34q11/aQGskxs6/1uARAhvAGL6nRvLkB1wzVIbP2+l7GHpkzNwpbEdnqF1E+HT5v/5Ab36CLkYdmOo71odfEsLlVjvx4rH3DGo6gJoRGLXDF7Ky6PMape6ZMgU9TFl2H9c2udgxe0YWsSpy8Y6plm5XOG6pDpveiCBOPxzvWMnKGj/iRjBnVVp/vluLpdaIXKhTiJTSfip4zMPTlbVWXjK/fTfywEIW5YnZT3LQYvarjfF2RO+64g0qlwrnnnst//ud/Ws5JFhavAJLJJJ/5zGf46le/Sjgc5tOf/jT/9d7bkOuZRotYPL+5onYK8yXTDWYxkiIhKxKVkoHNrSBJUst5UVIkqhXhJuIM201RbysUu4hrmz+WoVppvaz29jnx9DmZfHLedG1pRvRMP3q+wvzR9k8F1yOURKeBNit6zasSOcPPzDMJU1jQDNWpCJHCCug+N0QpVTbn25ZIEFznJTddMIUirVDsMo6A1rHm9oCN4DovU7vn29ZcscvYfTZys8W29QEhrLX7NWb3t19/aB5Ry6m981QKndeoK8E74MI/6GL04dkX5HgAoQ1eqtUq80fajyNHUMM/5GZmX6LptbMY1SmiWtuuPwDfKhc2p8rcwVT74zlEfG5uuvMTuOFNXjLjBVPE1K6PPTtDzO5PmtGI7VA0GUOvtr0mQxu9SLLE3IH251O/DutxcO2OqToVYtsDzO5PtT0nT58TX7+LiSfjbce6M6xhc6umYLMVil24v9UdtiRZatpPSRbOavXPRnUppgis2XuXMjqVoiEEj0Wj6TF1bwH53JwZ5/bJT36Sm266qW1/LSxebO666y7uuusuMpkMzzzzjCVSsrA4zbGu7V8PTj01xaP/foDMzMJ3fO6Qgwt+dxND53VbrowWFjXe8573APAv//Ivz/u173znO3E6nXzta19b9rMPfehD+P1+3vjGN/L//X//36+1SOnkE1Pc9Q9PE1nj542fvehFe5/T7f5yup0vnH7nfLqdL5x+53y6nS+cfuf8SjhfK+5tBXz84x8nlUrxrne9i7GxMZ7mAR6r3km22rgpY5QMU1wQ2uQVsQ8tKlwXajgjGj3nhfGvam4nWd+wl1WZ2PYgoUWRA02RRTSE5rO1baYXDOKHUm2FTCAcBw58f1gIf2Sx4d+qn0bJQHXIbHzTwEJMSAvSw9mOX6LrBQM9J4QLA5dFTSFUM+YOpjnys7GOAiUQT9nYXGrb44EQXkXPDBBY2zmPuDBfMp8Sb0f8YLqjQAmgnNEppspUmogwlpKdKZKfbb+ZV0d1KS/oVb/S4xl6lexUYUU1ys+XOgpqxEHF595JBCOpMoV4iUKi/QaY6pDpOtNvRvK0w+ZWUJ1KR4ESwMm7pzh1V2vhD0B0W8B833YCJYDCXJn0aI7CfOtxJGsyG97YL5xDoGU9ZVVs6gMM3zfdVqAEC/NGarj9vIEsNj0dgfbzkM2jinmtFtHSSqAE0HdRmGgt0rKU0psKlADCm/10nxNEVms24EsESkbV4Eh1H49ot3LbbbcxNDTEI488whNPPGEJlCwsXiH4/X7+/u//noMHD/LqV7+a9773vUxuOchMdZyl2vr6/CarEqENXlxdjqbHrFaqpqDH2+9qiHtq1hbA1eUgsM5jRj+1wuZS0bydn9rNzRVJj+bbChcAZvYlmT8mhCU2j2rGVC2lfj6ePiexHUGaaLhMyrkKuekieqG9AKkuUHJG7GYUW+t+Jogf6SBQAuEy45DNGLJ2uCJ2/KvdZrxZy37mKpTS5bbnDFApGkJQs4JHMvSC0XFNAaAXKysSPYEQesi2F3CTRFr58YQbV+fzMXTDdMzphJ6vdBQoQe3zyXZ+b2fUTmC1p+PnKKsSil1peS0s7ePE4/G2AiVZlQiu9yDJQrjY6ZrMzxZNUU8rXF12es4NISlSW9GTVrum9XyFscfmOoqu8nNFUiO5tgIlANWlmlGF7fD0OkWMXq2WrfrpDNsJb/Kh1KK8WwmUJFkI4uqxg3q+suyYpWqBg9XdPJS7nb179/L1r3+dp59+2hIoWbwiuOqqq/j85z/PBz/4wZe7KxYWFhYWK2TVOTHe/MVL2HHTQgRcNl7g7v+3h9s//wSJcSsCzsKiWq0yPz+P3+/v3BjIZrMkEglOnTrF17/+dU6cOME555yzrN29997Ls88+y/vf//7n1Z/Z2VkOHTpk/nfq1Knn9foXi+SEmC8CvVbUm4WFhYWFxUuN5aT0PJmdneW3f/u3ufPOOwG48sorKd5txyG5lrW1eVQRzeVS6D47yPjj8aab8JpPNTcRImf6SZ5o7uSiOmT0kgEGBNd7yceLHV1potsC5GYKZgRXM2RVZs3rupnaPW/GNjWje2eI8HovB34w0lpMIEPfhWFm9iVXtDEC4ovtdk/hO8IaQ1fGGL53ekUbI7FzgsQPdRavrATVIaO/QE/J1wlt8GIP2Jh4PP6CHrcTzojGuuv6OHHnZEdHoZU6Ka1/Yx/FRJnh+zq7Ur2QuGMOQhu9jD0211bY8nx5IT/v2PYA88czK7oOVr+2m2K6zPgjcy3bePudFBPllQm4QEQgHUubUXfN6H9VFG+fkwPfH24puJJVWHVlN/NH0ySOtRYnyapM984gk0/Nt/9MZIhtCzD1TAKM9k/mL3YyWzxPLiW43oNiV4S7kwyq1vxzvPAvNvO1r32NmZkZwuEwX/rSl3jnO9/Zuq8WFhavCJ566ik+8pGPcO+993LppZfy2c9+lk9f9pVl7WSbEAdQbXRfa0bdhUhx1Jx2Wji5yDYZoyxirNw9DnH/bLNyllUJb7+L1HCWapup0NVlxxm2C6eZFseTZOi9IEJmPN9WVG7zqDhDWkfxd52l8WjNCK7zIKtyRyccEI4wjqDWcW2xUupOVi8UsirhX+0hPZZreb95sQhv9qFoMtN7E23brdRJyRHU6NoWYOyxWSrFF3Z92gn/ajelVHlF7kTPB1mVViSQ6oRil3FF7B0dSKHmLLbFz/TeRGvhniSEOp3ESXVUp4I75mh7rco2id4LIiSOZ8i06acjqOEbcDG9L9F2vrH7axG3k+0fVrC5FVSHQn6uJARhUvNrTLHLOIKaeTzFLjcdZ7Iq4VvlJnUqa0bHVZqs/fRqmfXv7eK73/0uNpuNP//zP+f973//ijdKLCxeSqy4NwsLC7Cu7V9HkpNZHv23A4zubYyAO/O61Wx/oxUBZ3H6cscdd/DZz36Wj33sY1x33XUd23/4wx/m8ccfB8Bms/G6172OD37wg9jtCw+sF4tF3v72t/Oa17yG973vfezevXvFTkrf/OY3+fa3v73s3z/xiU8wODj4vM7theTIT2eZeSbLwGV+Bi4JvGjvk8lk8Hg6Pwj/m8Lpdr5w+p3z6Xa+cPqd8+l2vnD6nfOLeb4r/Z3KWqk/TyKRCHfccQcHDhzgbW97G3fffbf492o3WzgXTVp46rwuknF3OfD0OpHl5jqA+sa76pDp2uqHKk2jlBZvuke3+sjPldrGpQEEVruxOZUOIiXxNH65Q7zH5FNxMmP5BQFCs1g3A8YenjOP231OmPEn5loKIJxRjd4LwlR0g+Tx5l/qF+ZKHPzByMIx2sTJqS6Z0DovlXyF2efab6w5Ixrd54Y5dddUS1eWes39q92kF597i/fuPjvM5JNzbYUuNpeCI6C17Vsd76CLYryzs5C7x0E5q7cVxBQTJUYemqYQX9lmy0qYfCLedFNiKd5BF/npQkcBkH+1m+xEvmM7zafiCGodBUqx7QEKiXJHxzD/Gjfp0c7vG9seQFIlJp+cb9tO1mSCG7wYBm2FXrIKhg4nfjHZ9nggYhxzMyVG7m8tCPOvcYMhHNDGd7UWPNXfd/LJOeKHbG0doQwdKmWDTnJW1SXijtJjedJtNsodQY3I1gD5eInUcOsN47qTmaTIzDyTaDu2PT1OFLss5k2DZZ/jjGeY/end3PWZHxAKhfjwhz/MF7/4xfYnZGFh8YrhnHPO4e677+a2227jE5/4BJdeeilhYqzhDPxSyGxnlBcmKkdIo5zVW4qU6vcuV9SBt89JfrbYVFRklMU/OoI2Aqs95OeKbSO+NJ8NT4+D9FieqtG6XdUQDjbtBAjV2j2kvj6TZJr2sZzRzTWnM6xhVKptXRsDQx5sboXJp1rfyxZHzbV63zrOsIanx0l2Mt+2HYi4VL1YabsurUftaV5bR3dBR0hDdShtBVJGpYrdp5Kfay2KrSPbJDRP5/eVbcKVs1N8XXokB/IL56RUypSZ2Z/suPZS7DUhWof1o2KXUR1Kx/MA0NxqRycu2SbjG3SZ4pWW7RZ9vu3aSYpEeLOPxLFMxxhCZ0jD2+8iM1loKXKrj+VSWmf88bm2158rYie82cfEE/GW7y3JEr4BF8nhLHq+0nK9WX9fo1xlZm+CYrp9vStlg4ouxJHtI97saB61o0jJ2+/C5hQiJXGNNj+mK2LHO+AiN12kalRbCuEkWcIVFQKuYrK8bDwaisGIcZiT1cM88m9w00038Y//+I+Ew+G2/bSwsLCwsLCweL74u9289qPncOrJaR77znNkZgsYlSp7f3qcow+Pc8HvbmZoZ8yKgLM4rTh16hT/8A//wBlnnME111yzotf8wR/8AW95y1uYnp7m9ttvR9d1KpXG34O++93vous6b3/72593n2644QYuvvjihj5+9rOfZfXq1S9r3NvR/34UgA3bV7N6S8+L9j6nmwj2dDtfOP3O+XQ7Xzj9zvl0O184/c75lXC+lkjpl2Tz5s3s2bOHXbt28a53vYuDBw/ykHwrYaOHMzgHVVoQoSRPZs0vrWVVZu31PUw+FSc90rihohcMDt48agovYmcHKKV15o8st6k9/JMxZFlY2gbWuqlWaPrF+JGfjJlxXKGNXoqp8rKNIb1gNIgkBq/oYmZfgvzMkg0aA3MTqOe8EJ5eJ0d+OtZS4OCOOQms8bR1c8nPlDjy07HOEWi19xi4LIrNrXL81ommzfScwaEfja7IXadaBVWTUF0ypVQb8ZFDpv+iCDPPJjs8CS/h7XOSPNH+Ke6pPe2OsYCswuClXcw+m+j4mqErYsweTDHVZsPR0GnrhPPLsJKn1WVVZtXlXUzunmd233Lx3eJ2A6+KMv1MoqPjwPyRTNPrYimePheSrdD+qXZNpu+CCPHDqY7iI8WuIK1g1jRKBod/PNZ2HPrXuOndGebYbeMrcls6ccdkx83G0AYf1XLrTTKAyFY/kc0+Dv9kTEQqFpqI1mTovyhC8kSW9Fie4XuaC6NkVSZ2doCJJ+OUUjoHvtfckUl1yUS3Bph4PE5hrsShHww3FYRpHpXunSFGH57FKBkc+fFoc+GYDKtf0016JMfsc6mWYs2J6inmukeYnJzEbrfz4T/5OJ/73OfMudPCwuLXB0mSuPbaa7nmmmv44Q9/yF/91V/xxIF7uOH1NzD10xxeKdDQfrHY29PrxO63MXdguXg5PZIjOyHENbJNIrDaQ+JE1hQn1cnPlRh/bFYIKiTwDbqEcHuJwKIQLzH2mBA/SLIQB6RHc8vEO4vjo+wBG46gRvLE8rl7cZxd97khEsczLV2fANzdDqoGbddV8cMpMxKzE6pDIbYjwOyBVMtjpkfzZMYLHQVKIM5DrnR+b2+/C0+Pg/Fdc22Pa/fbsLnU9i5OVdoKshbj6XbiW1VzNGojYHHHHARWexh5aKZtu5W6H64Uo1xdkbOPp8eJp9fJ2CPtnZncMQfeAZdo10GMPNPkAYql2NwKrqid1Kn26013jxP/oIuxx+bainAUmxBbrcT4NzNRIDtdbHu86JkBSukyiePZjuebmylSSsfbCrNsLgVPv5P8XLHlZy3JEDs7RHYyT3o03zLeTfOoeHqdxA8LN9i5Fg9b2P02ZJtMfrZI4kSm5Xk4wxpVQ8QIzx/NtIx1c3XZkVWZzHie9HheiLyatHUENfxDbqb2zFMpGYw/tlwMX6lWGJOOM+k6QS6X433vfx+f+MQn6Ovra95Ji5eFcrnMgw8+yMGDB8lkMhgtBLUf//jHX+KeWVhYWFhY/HJIksTQzhj92yLs+ckxnvn5cQy9SnauwN3/dzf9Z0W48B1b8PdYcU4Wv/nMzc3xsY99DLfbzWc+8xkURVnR69avX2/++eqrr+Y973kPf/u3f8tnPvMZACYmJviv//ov/uRP/gSXa3miSCcikQiRSOR5v+7FpFqtmvGQ/t7TxznDwsLCwsLilYIlUvoVOf/88zlw4AD33Xcf7373uzl+/DgPKpOEKt1s5hw0qdExR9Ykylnd/IK6HglXZ7GowRmxt95EMjC/UAys8YDUXKRUbwsiZqyZSGkxNo+Kw29D1dovYJMnxBPD7RxY0mN5Dt68EA3nCGtN4+nqm17B9R6iW/0cv22ipaNN4kQWzdW+b/X3i5zhwx6wmc5OSynMlTjy0/G2xwIh4jp260THp+r1XKVtbNZSvANOshN5jBb7V4YOR3++AgEXcOz2zv0DUWOjXO3oLLQSVIdMeJOPucPpts4Ehm5w+MedhWOGbnDw5uGW9ajj7XOSnSmuSIh27JZxU6TX8n1LBkd/PraijcR27kQArqid2NlBTt073bF/2ckCyVPZtgKl2NkBPD2utkImWQWbx0YxUebUXRMd65cazqLY5fb9M8AR0Cj4S22FaPaASmidt7ZBnW/tmBa0E1znZf5ohkK81Naxyhmx4wxrZCeWO2+Z86UB5WwFvdh83OVXzXG8eJCJiQm0uMZb3/pWvvWtb+FwOJq2t7Cw+PVBlmXe/OY3c+ONN/Jf//VffOpTn+IYx7jxjTcy9qMUPim47DVG2WgQGiyNJqoLjWxOFbvfRivrOLOdS8Xb7yI/V8Jodu+ovVzz2fDVXEnaCx1UNE/7JbmhV8mM5zuuCWafS1F/SFh1KuJ9l5xO1ag5SUnQdVaA3HSxpchHL1bITBY6RuhWDeF+FNrU3vVmsUNTO1LDOTLjnZ2Zkic7i03qSIqEzaW0jbnLTOTJTLSP9ANxD89NFzu2UzQZV9Te1t3n+eAIaUgSHSPXkqeyZKfau+uAqHOn85AUCZtbpdRCXLOYYqIs1kodTjU9khPuZR1qohcqTO1uLzALrvNQTJbJzXQ+XnaqQLnNmlW2SXSdFSRxLENhvtTyurW5FMq5CqWMzngHoVXVEOOqszuXjM2jdoy/8/Q4kFUhUmpXZ0+vk0rRoDBfats/zaMi22qL5SrL2tYjL/ViBT2vIyvL+2coBvNd40wxzNTUFG+46g188pOfZNu2bW3P2eKlZ3Jykj/90z9lfHy8rfhPkiRLpGRhYWFh8WuHalc4939tYP0lfTzy7ecY2ycE+6N7Z7n5Yw+y7fo1bH/DWlT7ykQbFha/bmQyGT760Y+SyWT4x3/8x19aFGSz2bj44ov57ne/S7FYxG63881vfpNIJML27duZmBAPj8fjcQASiQQTExPEYrFfqwdD86kSpZwuHkSLPX/hlYWFhYWFhcWvhiVSeoG4/PLLOXbsGLfeeit/9Ed/xIkTJ5iTJwgaXWzmbBySWOjouQon75wyX7f6td3kZ4uM3L/cCeTkHQvtYmcHcAY1Tt693NHk5J1TppjJN+jC0+sUEQZLNnaO/mzcbBdY60ZWZOKH0w1tyhmdwz8aM//ee0GY+KH0si/WczNFcjPiSe7ImX6cQa2pm0ldCNF1VoDomQEO/XAYPdd8x6kwXyI3017AsDhGKrjeQ/JErmVUm6TIKLbOv3iqLpmhq7qZeCLeUsBVP39Pr5PcbBuBjCHcZQJr3cQPpZu3QcSVrXp1jInH55g72LrdSgRKQFPxVzNCG3yUc/oLIlKyBzWiZwZIjrSO7KqzEqcgoOXYWEz/JVFSI9mW4jMQzgBVoyrGaJtD+gZdpEZzHfu35nU9JI5lll0vS1E08cR/u/c0o+VylaZPoS8mN1tCVtofr/+SLpxhjUM/GG0pUPL2O4luC3D89glKKb2545YM3WcHSZzIUpgrcfTnzQV8mk8lcoaf8UfnyM+WOPCDkabXg7fPiX+1h9GHZoRg8XsjTa9V/2o3XWf6OfLzcUoZnUPfH2n6vs6oxtprehm+f5rUcI7Rh5bPN8PVI8yGRoifjOPxeHjPe97DV7/6VUucZGHxG4iiKLz97W/nLW95C9/5znf4m7/5G45xjNdd8zpmbssTkBa+jMvNFKG2ZnGGNSJb/CLCaYkAoZgqM/GE+JJNkhFihROZZfficlZn/NE5020kuN5DdrKwTPxSTJQbnGL8q8X8v9SlKTOeN0VCNo+KI2AjPbpcNJSqrYEkWSJyho/kyexywU21prGSoGtbgPxcsbUwqCr6WGoXPVXFdHjqFIVWrdackpTOUQrumANnWGsZzVs1qlRKwrXK7re1Xg/VBWFelapRpZxtvR4JrHHjDNnbCo7biUOWt+vcVrHL+Nd4yM+XOq6VVoI75kCSO4uUqNIxHq1Opwg3V5ed0HovY4/ONkQqNmuXm2kvnJFtEqpDCMXa9c/ut+EfcjO7P9nxM5FVCalNpJ6kSDgCNvJzpY6xaEa5SjHRWpwE4jPtPjdE/FCa7FRr8Vlog5dCoiREgC0E36pLwRWxkxrOUZgvtby2XF12jHKVwnyJ+OEWrkiSiPnOzZYopcrM7k+1dE8Kb/FRmC+RnSgIV6kWhDd5UV0qU0/Po+cqy35n0atlRjjGvG+cxGSCN7/5zXz2s59teArb4pXFV7/6VcbGxrj66qu57rrriEajK3663sLCwsLC4tcFf4+baz5+LiefmOKx7xwgO1fA0Kvs+fExjj40zoXv2MzgOV1WBJzFbxTFYpGPf/zjjIyM8OUvf5mhoaFf+XjVapVcLofdbmdqaoqxsTHe+ta3Lmv75S9/GYBbbrkFr9f7K73vS0my5qLkjTo7PrBvYWFhYWFh8cLz6yNt/jXh2muv5fjx49x9991s2LCBOSZ5WLqNyuVz5KrLN4kmds2Zdv6uqB3/mubWs3quQmnRxottyRP39c1/R1DDGba3FDXU2/kG3PiH2tvcqi4F36ALR8jWtt1KmN6XYPShmbYilPxsyRQeuHscbfunuhR6zwsT3tx64TvzTILh+4SoS3W0Hup6waBSMFp+kV9H1mQGL+8itj3Qtl1gnZve88JovtYawFJK5/htE20FSnWGXhOj+9zlzhCLsQdsDF0d6+jEcOyWcYbvbR7d9XzJThR49jsnOwqkei8IEznT37aN6pDZ+OZ+3D2dxSTHfj7O1O5E2zbRbX76Lmr/tIjqUhi8rIvo1kD7N5SFk0Q531rIVB9f6bE8R38+3lI4J2syfeeH6drWuh6yJptjLD2cMzfMWzH5VJyRB5vHndWplA2ogqq1n/J9q9x4e51t29j9Nvyr3Gh+MdZaCfZUl4IzrCHX3nNpTdSaI1opXaaU0Zv2TfOoRLb4ABENOfl0nMx44wajUTU478838Ez0AQ6zl1wux/vf/36mpqb4xje+YQmULCx+w7HZbPz+7/8+Bw8e5Lvf/S6nTp3iSe6jcvkcH7/z/cucIgqJMvHDaVOE4O52LLiILEJSJPRChUpNOK0smaPqawZZldC8tpbOl3UBg+pS8HQ7UO3t52FHwIY75oA235dLNRGQ0c41pgqzzyVJnsq1bgMNQidvv9M8djO8fS5CG71ILU6hWqkyvSfREFHXikrZEPemDnj7XUS3+tv2CyC00Ye3r/2Tj6lTOSaf7hz7Zvfb6NkZ6vienj4nvsH271lK64w+OPOCCJQA5g6kmN3fXNhVR3UqhDf7UDqMNf+Qm9CGzl8gZycKTD4131agpDoVwpt8OIJayzaw8Hm2G98gBG+VktFWoFQfX3MH021dozw9DkKbfG3HozOsYXOLdc380dZOYACVosHMs0my052dqjptfGkeVcxBbfoGQpzmCInatvx9pSrc22y19dXSdovnsEqh0vLzdIY1c42WHs0zf2T57yqlapE17w3xhPsuRrTDvOUtb+GZZ57hf/7nfyyB0iuc3bt3c8455/B//s//Yfv27fT19dHd3d30PwsLCwsLi19nJEli9XndvPmLl3DWDWvMBykys3nu/PLT3PHFp0hO/uoPcFpYvBKoVCp86lOfYv/+/fz1X/81W7dubdpudnaWU6dOoesL33HPzy//HTmdTnP//ffT1dVFMCj2JN7znvfwuc99ruG/d7/73QC87W1v43Of+xxOZ/vvlF9pJMfFHBCwot4sLCwsLCxeFiwnpReJK664ggMHDrBr1y7e9773ce+99wLgqfrZyHaCUhSg4Un54AYPnh4nySZPtC4Ws4Q2eOk9P8zhn4wuc4CZ3ptgem8CAFfMTt+FEU7dNbUsymr4vmlTouYdcOLpcTLxZLxB3KTnKhz8wYj5b907Q6ROZk0HpTqz+5LmnwNr3ThCdiaXCiuMhTi66LYAgTVujv18rKXzS3izD82ttnT80XMVjvx8jFKys0OPPWBj3bW9jO2aJXGsyfEMOHHHpPlXWaVpv4ySwYk7J8jPtBflxA+myYznO7rzmHWUaeuUU0iU20aTAFRKFWwOBdWprCi27KVEscsopfabL7Imk4+XKCY7O0Kt5PxO3j2F5mo/vem5CsduGyc/2/o9ZVXG0A2G72kj7JJh7fW9pEfzHZ2RjJLB0VvH245b/yo34S1+5o9nWo6h6Jl+Ams9HPv5GKWU3rSdK2YnvMnPyP3T5KaKHL9tosn5Qfe5YWafTVLK6Bz+0WjTsejpdeJf7WLs4TnSI3kOfK95rGHv+WEUh8LI/dPMH8kwf6S5e8fQVTFsbpUjPxkjP1viVIv6+le7iW4NED+awSgZDRuzuqwzEzvBsfgh7vmbHxIKhfjABz7AV7/61V8ra2ELC4sXBlVV+e3f/m3e+ta38pOf/ITPfvazXHXVVZx99tmUnlbpoh9ZkqlWqqagQbZJBNd6qBppEXm1CKNcZe7AwpwT3RaglCovc9Qz9CpTi4Qv4U1eStkK6ZFGcZCeqzD22EIMVmCth9xUYdk9LT2aFzGbVVAcMp6Yk+RwY6SZUTaYWbT2Cm3wkh7NLYuxqq8dJEUitiNIeiTXUsyhOhX8q9yUs5WWbi7Jk1kyE50j2Orn5wjYmGzm3AcU4iUKcfE+kiy1FF6kR3Pk5zrHeM08k2iI8GuG+XOJtm4/eqFCMVlGViQqbd5XVqSmAreXG1kVbkXtREUgnJZaiapNarUqZ9uvvfR8hfFdc1SK7Y+XPJklN1VoWX9JFvFopVSZuTbxcq6oneAGL5NPxDt+7unRvHBBbSN48q1yU0qVW7qOSYpEbHuA9Gie7FTBHLtL8Q+5KSRKFBPL54o6mlfESqZH8+Smi83dpyRxrPxskVJaZ+bZZNOaKQ6Z6Bl+Zp9LoecrTO9JNH1P1anQszPEzLNJCvFSa/ckCYLrvAuRxEvmJ91b4EThENPKKE98B17/+tfzxS9+kcHBwebHs3jFYRiGJSSzsLCwsDitsDlUdr51I+svFRFw48+K7+1G9sww9uwsZ71+DWe9Ya3lomLxa80//dM/8fDDD3PRRReRTqe54447Gn5+9dVXA/D1r3+d22+/nf/5n/+hp6cHgI985CNEo1G2bNlCMBhkamqKW2+9lbm5OT71qU+Zx2gW5ezxCHHP5s2bueSSS16ks3vxSNRESv6e9g/yW1hYWFhYWLw4WCKlF5nzzz+fvXv38uyzz/KBD3yAhx56iKeq9zPQP4BnJEafNGS2HXt4znRk0XwqQ1fGGL5/ZtkX4YmTWWRVMoUJkS0+cxN/KeW0bn7BrDrkxii12h+dYTuuqKO5UKb2b7Iq4xtwoRcqy0RKi7EHNJyh9k9R52YKqHa5pUAJYPieadOBxeZRKef0Zf2rCz28A056zg1x4s4pyk0ELMVEmdnnkqRGmkctLGboyhiSKnHiF5NNf14XKDkjGpWS0VJEUv93V8xObqp1vWLnBPEPuhoi9payTPDVBD1ncOSnzeO5FuMfctN1VoAjP2n9fiul+9wgmtfW0ZmpWZThUkopvb0QCBErGN7o5ciPW8eaqQ4Z2S5TSuptxUz+NW6Sx7NtBUq+QRf9F0c4fvtkyw1bAAzEE/VtIkR6zw+jeVRO3j3VUqCk+VRKKZ35I2nSI9m2sYfZyQI2l9r2GlLtCs6QDdUlt3Ywk2V8gy7ycyVKR9ItxXKaR8UVdSBrsphnFrWTVQAh5iplddRK84P4h9wUk2UK8yVm9iebtgHof1UUQzcYf2yOmf1J5g6lG+a2QjWH71p44K67KI2XiEajfPrTn+bP/uzPLHGShYUFsixz44038sY3vpE777yTv//7v+dO7mRwcJIPfehD/PRP70eVhEOkUa42xLEF1nqoGlUz3mwx84fTpnORzaUga3LTCLJyvkKlKMRCklIT39TFBbX/y6qIn2p5b6m1s/tsuGJ2UiO5ZY5QdRRNRvPZkFQZaO7+UjWq5OeKFNuIPuoik7qQQ7HLTQUn9X+LnOGjmNKXibHqZCbyFJOdI2ttboWus4LMPJuk1Kx/VUwXIkdIaykOqQtVVKdCpWS0FDVJikTPuSESJzLLhGnmsYpGx3hXWIjf60R4k49SuizEZ78CkizRtT1A4limbW1LaZ2p3Z0do9q5D9XpOTdEemwhjrAZmkellNHbCpRUp9j00fOVZWK6xUS2BtDzlabuPYvJx0vIJ7ItBUqKXSa61U/8cJpSWjcd0RqQamL0ssHMM4m2IqZqpSrWSh2E8ppXpVI22sY12/02XF0OU4zYVLBVBYffhl6oCLHhkjayKmHoVSpFg3KuQjPDJlmVcIQ0ctNF9HyF+KF0037Z3CrhTV6mn0lilA0mn4ovq0WyOsfATUF+9KNb8Pv9fOxDH+MDH/gA0Wi0bT0sXnls2bKFU6dOvdzdsLCwsLCweMkJ9Hp43Z/v5OTjkzzyHwc44pwg5yky/MQchx4e4+Lf3cKqc2IvdzctLH4pjh49CsAjjzzCI488suzndZFSM6699lruuecevve975HJZPB6vWzZsoW/+qu/4qyzznrR+vxKIGE6KVkiJQsLCwsLi5cDS6T0ErF161YeeOABpqen+eM//mNuvvlmdEY4XN1DP2tZyxnI0oKISFZlStkFhxR3j4P8TAFDF24ss7WIOM2n0n1OiEq5uuwL/dxUkZNTU2a79Tf0M/bozDI3oek9CfPJW1fUTu+FYU7dM90g+DF0g8M/XnBZiZ0doJgsLzvW1KIn5r39TlxddqaeTjS0yU4UyE6IjZHAWje+ATfDD0wvE0jUhQmrr+6mkCi1FLGUM+KJ93Ku9cbBVO38NI+Ku8fR0uFl/nimYwQFwMBlXZQSJU7e3VpY031ukPBGHwe+P9IyEisznu/4pDsINyhnWGvuBLWIutClFXqxQjFVXhCb/Aro+UrHGAvVpYhInTZvpflVXBF7x3PLTRZQbFJbYU7PeWE8PU4OfL+50w+IyIzBS7o4pU+13WDMTRdIHM+23ERWXTK+ATfxQ2niHWL7CokSlXLrTTl3zMHqq7sZvn+a1HCuqUDJP+QmuN7DyTunyM0Um4oFnVGN4Fov44/NkRrONT2/elTi6COzGCWjwS1tMd3nBrG5VEYemCF+ON18w1aG9TcOkB7JMf7YHLPPthAfyUKolRzOMv7onHn9m+e/aH4r58oL14SxMA/Eq9MkV01wcvQ4lVsrrFu3jg996EP87//9v5u/p4WFxWmNJElcffXVXH311ezdu5cvfelLfPSjH8XtdxNIxuhnLU7J3SBmqRQq1LVAkiKhOhVzLbRY4OPuceIMaU3jOFOL4tX8Q+6mbkKGXm34t9AGL6WsTmaJiGWxy4psk/APeUieyDQICColg8knF/rhX+0mO1VojBersiC8koS4PT26XERUP64zrBE5w8/Ek/GWMWWljI7eZt2l5yrma11ddgrxUlMRSDlXITOe7+jU4wxrRLb6mXiidZ8kGWI7gmQm8k2FZiDEJpnxfFNRe+PBhIi/lCq3d+qRaoKRNms5vVBZUbRdJyQZyhm9o/tRK4HZYpwRO6VMubl4x3xDsU5t53Ip24RL1/zxzLLxu5jAGjeKXWlwHWtGZjzf9vxcUTuFRAmjXG0rnDLKBuWs3vazC2/yoToUpnbPNxcoSRDe6CU7VaQwX2rp7uobcFGYFwKmxQ5ni3FG7CiaTGY8L9zSRpf3XbHLRLb4mTsoXJGmWrgiubrshDZ4Gd8VxygbDY5vDe8ZthNc76UwP4dRNhpEaZIsYXMpNXFZhXK+gqQA5YV5wKgaJH3TjKnHmIxPkHx2A1/4whd473vfi9/fPsbZ4pXLH/zBH/DBD36Q++67j8svv/zl7o6FhYWFhcVLiiRJHNsww7ff8yDT+sK6zZN+lmd+copX37OVC9+xBV+sfaSzhcUrja985SsraveJT3yCT3ziEw3/dtNNN3HTTTf9Uu+7Y8cOHnjggV/qta8EkhNif8hvxb1ZWFhYWFi8LFgipZeYrq4u/vu//5tSqcRf/MVf8M///M+cyhxiVDlKoBLlTN+5OCpuCvESJ++awhHUKKVLrLo8Rnosx8y+pCma0Pwq1QocvHkEvVDBEdboOtNPKaMz+2wS1aUuPHEuQ/zwgptQdJuP9FiBwlwJ1SGjulUKcyUkVQJDbISAEEtpfpVSWscoGciajOatuaoosnAJkhecgxxhDT2roxcMPH1OfINuU6Rk86hIi9uGNGxuVcRlyDJaUBXnZtTaKsItafyxORSHZDpBySpofs1sqxcrTD49DwY4ghreASfzR9PCPUYW/1ZKljB06NoRxD/oZP5YBgxRQ6NcFRtestiErDvd+IdcFFO6WcN6vcsZneH7ppHUhTgw1SE31FvzqSSOZ0mP5TFKBo6wtqyGhbkS2YkC5azeIC5q1ja0wYtvwLW83iENPSfqHdzgZfCSKAe+P0wppTetd3G+xPC908iqjCO8UEPVpSDbJPPcZVVCsUu1PzfWW3XJKJpiRm/ZAzYqJcOs4eJ6D766C9WucPiHo2YNF9fbEdQIrnYT3OAjM5FHdTTWsGpgbiQaRpWZZ8V7Lh6z9bYYMPbIHM6oVrtultcboJzXGb5/QaC0tN6eXge56QJ6zmB2f7Lxs1lU7+iZAcIbvSROZTEKRsOYBXB123F3O5nZkyBxLI3m18xoP9WloCxy4dCLFab3zZMazrWsd9WoIikyzqidclZvWm9PtxP/kJvJp+cxSkbDmK23repVXFE7nh4HpbTeUG8MKNVcy2SbbG4ULq13dHuAZC2ObuaZBHqpYgrf6vWWJOi/OMrYIzPoRYOjt4xTzugNc4Ssybi77ay6PMbkk3GSwznmjy7E3GkBlbnoKCeTR5iamkIdU9m+fTtf//rXOfvss1cy5VpYWFhw1lln8e///u/8zd/8DV/5ylf4+te/zkj6KDfccAMjP50n4ohRyRukx/Iomoxil8UG/zoPU7vna7FYVSRZQnHIJI5nSI/Ioq1DJrjWy9xBcX8yykatrRCo1sVNil3GFbWb4gTVoWBUDIxylYpuIKuSufaSFAlZldHzFTP2TfPYcARtJE+Ke0ilUKFqiPu1bBNtZZuEp8eBnq8JhKSas1DBoGpUxb3dqYh4taroE9VFLkQuhUrRIB8vEV8ifFfsonN18Utupmj+2dPrpJguU67FyymaDJJoK6sS4S0+ksezpIZzSIqEYpdNoZFik0WEXKWKoslCGJbVG+qt5yvk50pM7000xMKpTgVDFzWUZFAcCjP7k5TTZWSbhKzIQii9pN6p0RyqUzGjxWTbonoj6g0S4U0+5o8L95nFNazXG4TTkJ6viDiuRTWsVmptNdkUt7Sqd7Ui+r84Om5pvett44fTQkDnUhZquKjeqkuh/6IIU7vnyc+VGmpItdZWgdB6D+mxPLmZYsOYVRyK2VZWZXJzRVPI1Kzeer7C1N4ElaKO6lCW1LuKUTZAguRwjmql/iBGYw0Vh4zmUsnHS+TnirXPRlpWb0mRCG3ykhnLm3FlS+vt6naQr43NxInGmMSGeisSudkClbyxrIb1tkbJQJLFZ9iq3kjg6XOCJIR7TestC4cl1aFQmC8tq3e9T3UkWVo2ZhWHjCOokatFzSVPZWviOMwaVivg7XOCLBw3c7MF8nEhclSdSkO9A6s92P02xnfNIWsy8YNps95Vt85o5QSZwBwjIyNs2bKFL/zfv+N3fud3LMfK3wAeffRRduzYwac+9SnOOussNmzYgNu9/MlxSZJ45zvf+TL08KXnrrvu4q677iKTaf4Qk4WFhYXFbw53zT/Dh49/e5mRZcZT5LYbnoGfwvhH5zjrhjVse/0aKwLOwuI3GL1UIT0jvp/xW05KFhYWFhYWLwvWN40vE5qm8YUvfIF0Os2//du/MTQ0xByT3J++hWO9TzNZHcER0Fh/fR/uqJNjt41jVAzWXNNNeJOXgcuirHp1jO5zQui5CppHZf31fahOlUrRILzJx9rre4XwABi8pAu7V8MoCUHN6qt7GLysC4DAOi/rr+8DhMuRYVTpuzCC5lHZ/NYBNr1pgOAasVgLrHGz/vo+Tt09ycQTcfouirDhjf30XhAGYN11vQTXewHIzxbRXCqqS8YZ0djwxj5WXd5l1mDt63qQVYmTd0/h6XWw8aYBBi4RsQHd5wQZukLY7GbG8/SeFyG6LcC663vpvTjC+uv7cARFrFz3jiBDV4m2kTP8rLoiRtf2IACusJ311/fhjDoA4cpiVDGdY4au7Kbn3BAgYlXWX9+Hu8eOf8jN2uv7WHdDn9nfVZfH6Nkp2laKBuuu6SO4wYN/yE1oo4911/WabQcv7aL7nCDZiQKyJrP+hj4CQ6KGoXUes94AfRdF2fimfoLrhWp//fV9hNaJPweGRL2n9yU5/MMRei8MM3DJQg3XXddLcIPP/Ltsk6jvyPScF2LVqxesitde00P4DL9wABpysv76Puw+EXnTc26IoSu7zbaOsIavXzw55Iw6RA3Dot5d24Osfk23qL8MQ6/pJrYjINqGtIZ6VwoVNO+CFnLoioUa1sdsdrrI4R+PijH7up5F9e6i97wQyLDmdT1sfGMfvgEnAMH13oZ6D1zaRf+lEQzdID9TYv31fQRWN9ZbdsgE13vpuzBCeMvCE+Drr+8jtEGMWf8qFxtvGjDHXu/5YfM6AVh7bS+hTaLeuakikiKjqrJZw8X13vCGfvovCKM6ZNzdot6OQG3Mnh1izTXdbHhTP55eJ6uv7kZ1qLXaizHritpx9zhY/4Z+Vl/dTWo4x4nbJxi8LEr32WJ8OwKauG4uF++rOBQkacF9qD5HuHscrH99r3ndHPz+CM6gxtprF43Zy7o443eH6N0p+hze4DPdmhbPEY6wxtDlXay+WoyX+JE0qy6NiTlChq6z/Ky/vg+9oKMXKvRcEGHgVVFTbLbuul56L4qw+upufANOhl7dzciD08w+l6L3vBCrLu+iUM0ReBM8UP45uw4/RCaT4R3veAcTExM8+eSTlkDJwsLil6K/v58vfOELjI6O8k//9E8cOXKEp4z7ORjdxRu+chl6VSewxk14s4/MeJ6p3fN0nRXEHXMQ2erHO+Ckd2cYRZOplAx8q9xEtviplA0qRYPYjiD+2r1H89jo2howHYIiZ/gZuCRaE8BA11kBvLX7bG6qSGDIg82l4l/tYfCyLrrOCpj9jm4NYPfbmHg8jqzK9J4XpvvcEDa3iqfHSWyHuCcY5Sp6wTDv7cE1HgYujmIPiL+7Yg66tweZ2Sei1cKbfPRdHKmJbCV6d4bFvb0WQdW7M4w9YKP7nCDhTT6C68S9Ekn8zFVzh4lu9TN4SZcprgis8xDaKO6Vhl5FkiTTncURsNG7M2wKcvyrRQ0Bwpt9DF0Vw90t1hCaTxX1rgl2XBE70TP8uKJ2JFkitj2Ap1esC2xu0bZaNqgaEFjtJnrWwr0+us2Pb0DU2+ZS6L84aq4VPb1OYtsX1fsMP75+J+O75ijES/TuDJvraXe3w7wHQ01YJC/8uXdnGLu/Vu8uh1hj1sRi4Y0+ArX1Xb3e9YhkR0AT/asZVAbXeQnV1tMg6u3pcYgIr6BG784wklKr91oP4drapFI0TBcwEELy3p1hlHq9h9xENvsZ3xUnPZYndnYQT4+ooea11dYACq4uOz07Q0S3LtSl66wA3r56DVX6Lohgc6mUUmU8va7GMXumqLcjpKH5VHrODiGrykK9dyzUsOfcEAOXd6H5bChaYw3dMQfd54h1Y7VSpZyvCOEPQuzUuzOMoza+nV12Bi+NmmMitMFLsF5vWdQwssVH9Ew/zrBGdEvAdGENrveItaAkxmT/xRGcUTuzz6Wo6oYYs2q93m4GLo2iOhRTzFUXGdn9NnOOCKzx0LU9SGSLn+SJLHMHUsR2BM3+aR4bg5d10X9JBFmV8Pa7kFXJnDMWzxHhjT4GL+uqRf1WkRXZrLfikImeGcA36MIoC2FV784wmseGUa6ac0RooxdnxE5kix9Jgqnd8yj1MRuwkarG8b2hyr2Zn3G0sJ+rrrqKp59+mv379/O7v/u7lkDpN4RvfetbPPbYY1SrVfbs2cP3vvc9vvWtbzX973Thqquu4vOf/zwf/OAHX+6uWFhYWFi8iFSqBl8Y+VHTpN36GvzBVx+irFd4+uaj3PzRBxne3do938LC4teb1GQOqqC5VJw+7eXujoWFhYWFxWmJVK1WW+cTWLykHDhwgD/6oz/i/vvvp1KpoKCyyruOwcIGVF1D86jYvCrOkIYr6mBmfwKjXEXzqqTH8ni6nRTiRfSaq0vv+SE83U4O/M8I9oBwVCnMl0AW0QSlZIlCQidypg//oIdjt4wDQoRAVTjwdO0IkJsukJspYPdrlPM6mstmRiw4QhqRM32gw+jDs3h6nRQSJfRcBdUh4wjZyUzmiWzyEd3m5+S9U+SnhBuLu+bkUs7oyJpM34ViU+LoT8fR/CqqppgiCXePg3JWJ3KGn8xEAaNkkJvOY+hiE0t1KsJlCPCvcpKfLwtBkiE2tXKzReEs41OxOVWyMwXWXtNDKaMztXeeUlJHVsHV5TTbhjZ5KSbLZjSVM6phlKvC/UYWrjWhTV6cIY3jt09i9y3UxRnRzHp37wwR3ern0M0jlFI6qkvGEbAv1DCs0X9xhNSpHNN7E7UaFtFzxkIN620jGhKQnxU19PQ6KabKlDN6Q70xxMaUbJPIzyzUu5zWWXNtD5nJAomjGbPt0npve/caZvbNM/H4PLImixpOFzF0UUNnWGPw0hgjD02LyJd8hVJqeQ01n4rNrZo1dEXt6KWKcBuSRf9z06KtzaOiedWGeld1MAyDVVfEmDuQJnUyg14QTgGOgGbWZeg1MdwxB/v/8xQY4rj1a6Feb1dUbG6evHeKSskwXYGWjlnvKjfZiTyllI4jqCEpC/UOrPfQfXaQ0QdnKcSLTeut5w3KGR13j4NqxSA3XVpUw9qY9auoLoXIRj/TexMomkw5r9dqKOPqEvUOrHXTtc3P2KOzpEdrNYzZ0QsVc8z2XdKFw2/jyE/H0FxijjBrGNMwisIxoP+iCDPPJcmO5c05QvOqyKpEeiyPM6QRWOsheTJLbqbYMJ8EN3iIbPZz5CdjAPiGXJQWuYzVx2z32SF8gyK+MTO6MEcgCXcRWREuGTaPQmDIw9hjs2gem1nDuHuCOf8oY1Nj6LpOf38/b3/72/nrv/5rNM36hdHCwuKFpVqtctddd/GVr3yFW2+9FY/HQyDXxYBtLc6CEIhoXpVqpYp/jYf0aI6qISJwqzWnH0lZEBXY/Spd24KkRnKkRnLY3CrlTJmqIZxxbJ4FR7rYjiCp0Rz5maKIXvKolDM6NreC3W+jmChTyurYfTbhSKMbVAoGkizErL5+F7MHkmAIkULdgc7mVqhWoFKq0LUjSDFZJnUyi6FXTZeoUs3xSPOpRM7wEz+UphAvofls6DnhYiTbxHxd1Q08fS7SY+ILvLobi+azoed1jHIV1akg22RKqTKKJiMpEpIkotwW2lawuRVCG7zMH89SmKs5vDgUJAXK2Yq4P7gUSmkR0yUpEja3SildNh2lbE7R5/kjaco50a4uzKnXGyT6L46QnSmYcaw2j4pRE5NJsoQrZsfb52LmmQRIwtGplKnXUMWoiHojif6XM7rp9rS4hvV66wXhXKV5l9dQdchENvuZfDqOoVcba1hr61/tIrDGy6m7RUyz6lRAwnTv0Xw2vL1ObB6V6T3zqDVxUL1tQ7294oGFSkk4WamuhRqqDgVJFVHJS9surqGnz4U9YCN5PGuOb82jmoI8RZPpvyRK/HCa9EgOxS431tCjYugGsbOC5GYL5GZKlLOtaqiieVQRR1ar4eK2gTVuJEVmdn8Sm0uhWh+HtbaVgo5REQ5Emm/hGlNdyrIxq9glbC6VzHge1dlYQyTRNrY9SDFVJjWcE2uXJTW0uRVi24PED6fJzRQba6iK45fSZYJrPRiVKrnp4kINvTWRkSpRzlWw+21oHpX0aA7ZJiPbZCHqliC61U9upkh2soBiF2OplNKpGlWz3nqhQt+FEdITedKjOXOOsHlEDTWPip6voNhlvH1O8vH651CLIUQn7plk0naSqfgkg4ODvP3tb+f9738/AwMDv8LsavFKZc+ePStuu3379hetH69EDh06xHvf+16+8Y1vsHHjxo7tn3vuObZs2fIS9MzCwuKlxLq2Xzn8+9R9fGfq/hfseCVDJ1FpHt+7GEfOhlJZEGermozmspkPZDxffjd2Ge+IXf5LvdbC4jeZ57v2eqE5/tgE93xlD13rAtzw6Qtf9Pc73e4vp9v5wul3zqfb+cLpd86n2/nC6XfOr4TztURKr0AKhQJ/+Zd/yTe/+U3i8TgAZ555JuxzEZMavzB29zhYc3UPJ++ZJF2LcqsjqzLuXgfp4ZxwvLkyxswzSbEJsIjIVj+ebgcn7xIbI4vjrRaz+S2DZCbyjDww07Lv4U1ewmf4OfqzcdPNZaFDCEGMT6X3/DCjD8+amy9LcUY0M7YKo2kTBi7rInUqa8ZoLGXtdb0YusGJX0w2/Xnv+WHxpX4t9qsVgbVuqlVIHl/+PrIKsiaLaLkWqC7hpNPs9c8HV8zO0JXdHP/FhLkBsxRnRCO80cfow7Mtj+PtF7Es9ViyZmz93SGm9ibE5l0TZBXcvS7y0wX0QvNzD23wIttlZvclm/4cxGdUSpfbjqmVoLpk3DEnyRPta9xqbMuaTPe5QcYfm2s53kCcd/8lXUw+FW96HN+gi8HLujh++4Qp+Grop0Om/1VRJp+eX4hiXII75sDT5zBjEpsRPdOPbJPatomdE8TX7zKFRc1wBDXW39DH6COzzC+J9kEWm5l6roJ/yE14i4+Td00tu677XxUhM5EncSyL5lNR7LIpjFvMhpv6KaXK5jxTp1DN4b9O4v777yeTyaCqKjt27OD//b//x4UXvvi/JFpYWFgADA8P87WvfY1vfvObTE1Ncf755/O+972P/3j3z1CkxnTkyBl+FE1mavf8suPYPCpGSQgWXFE7No+67N4kq5JwVzmZpVgT9lTKBksf63XHHIQ2ehl/bM6MCGtG9zlBMhMFU7jbDN+gi0rRWLYGXNomP1cyBRXLzs2t4htwEj+SaYinqqN5VWLbg0ztTZjij8UoDhn/oFtEybX57UOSwbfKTepUriHezTyOXTZjuVrhDGsUk2XTwemXJbTBi2yTzIjbZnh6nVSKIpKuGbJNxuZWKCbLLc/bO+DCP+hqu35THQqyJjetbZ3AWg+Z8bwpzFmK5lGJnhUQMYYt1uArxRmxU5gvNR0LdVqNbRDCdUOvmjHWrajHQ6dHmq/Xo9sCVCtVZvc3X286wxr2gEbiWIsoJ0mM/dxU0Yyra3YegXUe5o+kMcpV8bT9knOSVYnY2UESxzItxwJAaKPXdEZb9j6LxnbkDOFomZtuXE/WBWv1iEl7wEYpJcSQi3GENLrODDDxxJwpYKtT9GWIvcbDHXfcQTqdZufOnbzvfe/jXe96F4pixZpYnJ5YIiULCwuwru1XEv88fjtfm7jj5e7Gr8z7e67mD3uvebm7YWHxiuPlFint/tFRnvr+EdZf2sdl79/2or/f6XZ/Od3OF06/cz7dzhdOv3M+3c4XTr9zfiWcr9q5icVLjcPh4Itf/CJf/OIXueeee/iLv/gLdu3ahYHBc9Un6aKftZyJQ3KQnShw/I4J0zll6MouimmdicfjGLphCnA0l4rNpZqbPZpfRc8aGLrB7LNJZp8VX+x7ep0MXRXjxJ2T5jHrHLtt3NzsCax1Y/fblokk8vMl0iM5U8hgDwg3AMAUf9i9NvGUepuNI0+vC9+qmkipCbIKmlupxZs1Z/Lp5V/+L2Z815z558iZfrG50WTPK7DGA0ZzkZKhC0cFWZPpPS/E+GOi7ovRc4b52lYiGXFS0HVmgPihVFPhT26mSOJ4puXGE4DqUvHUnrSvx2stJT3aehNzpRg6HcVdrqgd1a20FSnNH0sLp4IWRLb4SI/nF8bQElSHjKHXatxCoBQ5w0cprZMazrWsvbvLLjZOD6abiocCa93kZouUkjrD97a2e06N5pjcM99UoASibnXHgJYipR4H/lVupvYkWgqmbB7VjG5ZjKzKKA7xFH5uqgBNNg7dMQfB9V5GH5qhMF/i+O0TTTet17++j3JO5+SdUyRPNooBnRHNdJeyuVVUl7iVLK6vM6IxcFkXJ++cpJTSGXlgmmJC/NyoGmR7Ztk3sZscaaRbJbq7u/njP/5j/vIv/xKHw9H8xC0sLCxeJAYHB/mbv/kb/vqv/5qf//znfP3rX+c973kPHq8HXzpKH6vxEkCSJOYOpswIMtWpEDlDrCH0fKXh3itrMqp9YcPf5lIo5yoYepXpRSLg0AYvyNIyYXB2qkA5q5sCpeA6D5mJPOXsonWABNnpoilcUTRZOD0tuX+ojvbCA0mWcHU5qJSMliIlxS6j2JWmwiGAUlonfjTdUkRTKRjEDwtBrHAYUpoKVFSniqfbQX6maDrzNBynJuJwhDRkVVom4gBMkUg9Eq2VkEZ1KmgeteV9Oz9XBKn9U9POkEYpo7cUphhlg2KivahqJeiFCrQQ0YAQgQnXxtZCtErJIDOWbylQkm0ionnp7wAN71MT0uRnm9dMUiT8Q26SJ7JtxXWuLjtGublISYxHO9nJAoV4qeWaCSB1Krts7d1wTqosxn8TYRGIj9cdc1ApGC1FSlWjiq02ZktlveE4qkNBL4jrOjddbLpO9w26KKV1CvOllutVe8BG11kBJp+cp5zVG4RxkiIhq5I59hWHjGyTFhxea/hXu5FVmfkjYj07+VR8QaBkrzBZHWW4eJRUcp7g3UE+8IEP8Ad/8AcMDQ21rJ+FhYWFhYWFxcuBW3HQZfN3brhCVuqkFFDcaLIqXOBzesPvPrIsobltTb+Pa4Vbsb7fsrB4JZIYF/NBoNf9MvfEwsLCwsLi9MUSKb3CueKKK3jkkUfI5XL89V//Nd/85jeZmD3FBKdYs3oN8nEXg+MbkCXxC1IhWTY3yDSfim+Vm/iBJKWM3uCoMnhZF4Ze5fitEw3vl5nMM/H4nLk5ETs7QG66SHo03yhACNlxhO1AAhAbAIZukJsqmrFr3n6ncP5ZJKICSI/lSY+JvsiazNprexjfNdfQZuaZBDPPJkznpdj2IGOPzZniJ0OHY4v63n1ukPRIvkFssfh4Q1fFyM0Umd6bWFZjR0gjdlYQPaeTOLb8F9aTdy84v8iqeO+l2P0q3j4XznCmpUtBaJOXnnPDHPnpaFOxjM2lEt3qp5yrLHe1ATAQTj9tSA/nONhBPOSMaATWeJo+wb1S/Kvd2JwKs8+1dhZo5wZQpx7D0hRZuFXY3CoTTzTva/+rotjcalu3IN+g2xQpLXuL2ueZHs1z6AfDTT9bZIidHSI7nm96TppfZdWrY4zcL0Q/S0VZsirTfV6QmWeSlJdch3WC6z3Y3CrTexLmf0sZuipGdqrAzL4k4482Hwdrr+tBz1c4ccck6dF8gyCtfo2qLgVXlx3VIaMXFlw16m5S9X5OPh0342AW4x9yM3hZF8duHSc3U2xwKnP3OLB7bcQPpykmdEqJkmmJnZ8tkazOE77GxgMPPEBuIoeqqlz+qsv55Cc/yeWXX970nCwsLCxeSmw2GzfeeCM33ngjp06d4l//9V/55je/yeNjd7N161be+c538tOP3Ie94hQvkKCcKZviBleXnXK2QjmrkxnLk0HMw3afjdiOIJO755eJeOaPZ1BUsY5T7DKeHiepkRzVStUU6SiajCOo1cQ0FSRZEl+YV2lwmAlt9CJJUoMICjDFQSDWZza3SvzQwr9VjSqTT8VN8YW330k5V2kQhywWi9T7mTyVbRBs1NdeNrdKaIOX2f3JpkIVb78Lu09l8qnl4pNyVmd815wptJJklomuQMT5SkpzkVKd2I4gpVS54fwX4+524Azb24iU2rv8AMw821qMbb5PjwM9X2kpul4J/lVustOFlmL1SsFoEOA3bVMyWjqQghBcBdZ4yM8Umz5MoDoVenaGmN2fbFkbza3iitpbOjrVP8/Z51ItnaWcYY3gOi+F+VJT1yzvgAubUxHrjeTymmo+G/ZaHHZ2qrBsbS6rEv7VIuLWKBtinbmkL3a/jcAaD9N7Exh6lcmnlj84YQ/YiJ0VZOKpOOWM3lBb8xoFHAGNqlGlME/D9WAPiAc3MmNCkD93IEU5t3wxGt3qp2pUmdmXpJQqm+tESZZwdzvIzRQxygZ6voKsLBy/mC4TZ4pNbxvg5pt/iq7rXHv9tfz+7/8+r3vd6yxR+GnMvn37uO222zh69CjZbBa328369et57Wtfy7ZtL/6T5BYWFhYWFp14R+zyFzQmrVI1eN2+zzBdTjZdgkpAly3AbWf+BUrtO/ZSrszTPzzK/ttPNYiVVu2MccHbN+ONOl+w/llYWLy0JMeF066/x/My98TCwsLCwuL0ZeXSf4uXFZfLxd/93d8xMzPDQw89xJVXXsnIyAhHeZb7lZ+QvWCM2eokk0/OM1cTfvj6XcTODFD/mDXfgiZt+L5pJmvCD1fUztrrerF5VDAwXw/gG3DjitgBIWKQa5toE0/EOXG7EAl5+5xs/l8DOEJaQ5/To3lGH5k1N6yiZ/qXtVE1GT1XoZQWX8irjkVDsvYduzNsx9Vlb1kbWQXfgKttm1JWXxZ1UKcQL3H4x6OmQEl1LXEbMMR/ml9l45sH8Q8tV9jnZ0oc+P5w2xiVxNE0E0/OtXTzKWd0Dt080lygtIjIGT4iW3xt29Q/p2Y4gmIDStZ++cvf2+vEv7r1Ir7d+4P4nAcujYox1woDDv9ojImnWoupJp6MM9kkbmcxx2+bYPShJnFyMqy9vo/unSHxdks/FlmMeQw4dst4S9GVnjXaRqbIqrgW3bHW49MZaT7GF18P5by+fKNXhq7tAbOOk0/GGXtseT+HXhNj8IooAMkTWQ7/cNR061r8GfgH3Liioh/pkbzpbhA7J0j/xRHx+pNZhh+YNjd0VZeCXDtEcK2XcG1sGrrBybunSc+nWf/+KPu7H+YJ7ub2228nEonwwQ9+kGQyyb333msJlCwsLF6RrFq1ik9/+tOcPHmSW265hS1btvAXf/EXPCzfhvraDO/+zzdRzJbEuqn2nbV/1cI8Wnc/ASimykzvW4hBC6734OkTX2rruQrF2r9rXhvumANqacxK7V5dKQkhRV2QETnDJxyYljB/JEPihPiyTQiJHOIb90UY5WqD8KPuNrT423pHQENrc4+2+224uuymEHUZ1Sp6sSKivpowfyRtCqlkVVrWx7ooyb/aTde2QNNjxI+kmTvQWiwNkDiWEUKqFqRO5Zjq4Lyp2GWC6z2tz7VGu597Yg4cAa3lzzsh22Q8vY62jlid+ufucbRdK4Nw75rYNdfS7VTPV4gfSpNv42xUTJUZ3zXXVKDkDGv0nBcW47rJW8i1p9JzM0UmHp9rGetnlAz0Yuu1lxify8f+YhxBGzZ3rZ6L+lK/ZvViBb1YWbg+athcCu5uIe4pJsrM7E8ucy+1eVT6Lgpjc4traPqZhCkclxTJ/KzsPpv5exYgBHdVMea6zgqgOkX/EscyDaLCupObJAvHV7vfBkB2skB6LE+mmmLdH0R4OngPu3mI3bt38yd/8ic899xz/OxnP+PGG2+0BEqnMV/96lf54Ac/yC233MKhQ4cYGxvj0KFD/PznP+eP//iP+cd//MeXu4sWFhYWFhYvOIok89GBG4HlS8T63z868EZToASguWxc8PbN3Pi3F9O9KWj++6knpvjBRx5gz4+PUSn/ahHKFhYWLz3VapXkhOWkZGFhYWFh8XJjOSn9GnLxxRdz1113YRgG//Iv/8L//b//l8cee4wqVdwuN65sgDVshucgfjQjIhBkWHddH/NH00w8EaeU0ikhvlCXbcJhpf4Fe2Ctm9xUcZn7UveOIP4hNwe+P9wQQ1VIlpk7shCTFTnDR2a8QGG+ZApuZBXCm31IstTwVH4po3PijpoTiwzrXt9H8lS2weUneSJrRiOoDpnBV8cY3zVnHsfQ4fBPxsw+RbcFKMSLDS4yi51nes8Pk50qNDztXD93/2o3/RdHOXbbOIUlT4iXkjrJU1myky3i0mrvP3BZF5VyhfFHGp9mN/QF5yBnVCM/s3yDpy4c8a9xN42XA3DFHFTbROUF1rrpvyjKwe8PN42Nmz+SYf5IpuXrV0Inl6TByyIodqXB7Wox9qCGp8dJ1Wj+xL+n10khXmzafxDuV4VEiWKi3NSVwBnRGLgkyvB9M01jRAAR4XcyS2as+ee5+jXdSIrE8VsnlomQVIdM74URJp4QT86bY7iGrMn07Awy8cQ8esHg4A9GlkW39V4YppTRmW3hjKT5VNa/vo+xx2ZJHMsy9vDyNrIqE9nsRy9UiB9Mk66fS82FKnkiSzmjkzieodrke5PunSGCaz0c+N4wRsngwP8Mm68PrHaLSJiCQVWvYiyKyll8PW560wCTT8WZfS7F+GNzGLqBXtWZj46SCyQ5cuQID/wzhMNhbrjhBr761a8yODjYtOYWFhYWr0RUVeXaa6/l2muvZX5+nu9///v827/9G29729vw+/28+c1vZve/HiZIFxNPxE0BgjvmILDGw9ijs1Qr1Yb1T7VSNSPIFE3GVosBzc8WzRgtSZbo2Rki0eRelRnPm0IexS7jCGjCZadQgZpe2hHS8A+5yU4V6pongAZBtavLTnC9V8QELxIULXYH8vQ5kVWJ1KkFx6bcdFGIVatC1OEdcJE6lTOfMC7nKszV3BYVu4x/lZv5Y5mG2DWjLP4c2eqnUjSaCo7ys0UqrSLOaoeyuRTCm33MPpdaJoyprwEkGRS7suzn9f7KNhnVIZui+aU4w3Yy44WWUXix7QFKWb3l+mqqiUPi88EoG4y1cFEEUePe88NMP5No6dZk99qoGtWWzlOOkEYhXmopUKrHFbYS5AfXeagakDieaemQVEzpZCcLTd21NI9K144gM88kKCbLy9o4wxo2t0pqONe0D/aADdWhCKHOSK7BYQzA5lYIrPYw+1wKQ682dRQNrHHjCNmZfDJOpWCYY7ixH3bc3Q7Rhyrm9aq6atGB00XKGeHgWSk1jjdJFr+HpIazpEfzpIZzptOnYpexucU8UCkZVCtVUyC1OPbQv9qNO+aorbmqC/NLNU+ud45iMM3+/fs5+N8BLr30Uj70oQ9x+eWXI3WILbQ4Pbjtttv4wQ9+wMDAAO9617vYsWMHoVCI+fl5du/ezbe+9S1+8IMfsG7dOq655pqXu7sWFhYWFhYvKFcFt/H3a97FF0Z+xFR54fedLluAjw68kauCzd0EQwNervvL8zn28Di7vnuQfFKs15783mEOPzDKRe/cQv9Z0ZfqNCwsLH5FcvNFygXhUO2NuV7u7lhYWFhYWJy2WCKlX2NkWeZ973sf73vf+0gkEnz605/mu9/9LtPZMWYYIxgIYp/3sprNuA0vIw/PUEzWhERbfPhWuTl+2wSZ8TyZ8QVxQ+95EeJH00w+ERcRUYYBBsweSJKPF4XYQoZVl3cxtTdBYa5kujIhQ3RrAMWWEhtDMmAIgc7BH4yYfe+9IIzqUhi+Z3rhhAyxiVOYF1/2O6MaVZ0GkYnqUlFs0vLNjUV/9a8SERCLRUoLRRObHHqLDa/0SJbpZ2zLBEp16mIS1SET3uJj6unEsjal2i+rrXAENda+rpexR+eauia5YnYGL+li2JhuGsnRULMmZCbyTO6Zx2jdhReduUPptk5N2YnCgiCmCX0XhcnHS83PVa5Fn00WGHmgiUMSQuxVSuuUmmwmuqJ27AFNuDi02TSc3Z9sEOYs7YMzrOEI2JY9PQ9ifPgG3KSGc6RH8ssESgCKTUaxLdkwkkWcWvJ4llJKZ+bZ5LKNaf+Qm9iOAEd/NoZRMjh484gZg1i/3mRVFi5qlSqzz6UaYgx7zw+Tmy2QOJZl/kia/FzR7F89Ak7VZPovijL5dJzZ/amGmMTwJi+BNR6O3TqBXjAYe2yW9EgOo2qQ7p0i6Zzh0KFDVGeqeAteLrroIj73uc9ZbkkWFha/EQSDQXPtdeTIEf793/+d//zP/+Q4x4nFYvzWb/0Wj/3js/gJk5spUClWTGFO11kB0mN58rNFEouEyM6oncBqD2OPzFI1qsiqhKFXqRpV5g6mTIGCK2pHdSikRnINUVvOkIZ/tYfcTE2MJAFVca/NTRepGsK9JbYjyPyRxniswnyZ5PGMKVByhjXhkrPYWUaRkJUmAodam7r7U3o03xCDUMfmUtF8NiSpuXYleSLb9HWAuJfXhEOuLjuljL5MOFwpG5RzFSHKb0FwnRe739YyPja43oPqUJh6erk7Y6VodIzbTY3kqJRbC8hfbKqVKvNH0i1FVkDLyDsQjo6RM3xMPB5v6oDkjjkIbfQyvqu1u1E5V6FabV4Db7+TzEQBo9w6bq6U0Ukcy5iuYkuxuVQ0r631OYTs2NxCpNQMoyKuLVmTqBQW+ll3UNVzFbLTxabxceHNPiE8GsmRGhX/mYO5dr25IkK8VBeB1cVHNreKt99J/FCaqkHDNVh/UL9qCIF+XXxEdZFQUILomQEy42LuyE4WTMGjbiuRicziWqfy8IMPos6oXLD2Am6++Wauu+467Pb2zlkWpx8/+clPiEajfO1rX8PjWXDFDYVCXHnllZx//vm8613v4sc//rElUrKwsLCw+I3kquA2Xh3YytOZ48yWU0RsPs72rGlwUGqGJEmse1Ufg2d38fTNR9n/CxEBl5rMcfvfPcnQeSICzhOxIuAsLF7pJGpRb76YC6VDGoSFhYWFhYXFi4d1F/4NIRAI8OUvf5mpqSmOHj3KO9/5TiRJYpJhHuUX3F/9GY+fepBUQjwRrBcrlNILX8L3vyqCK2YHAw7ePGKKEqJn+dn8W4MgQym18IS43WfDHlyIrXBGNTMu7sD3h5l5Vry+97ww667vFY1qsWkApVSZYqK2wSaDd1Co1uePpMnPin/v3hFi4NLGJ1EK8RJHfjouhCEybLipn9DGxriToz8bZ/wJsZkU2eoncsaiaDQDjt06sXB+2wJ4+xZ+gTR0mKnFj3j7nKy7vrcxgq6Gb8hNeKOvaVzZ1J4Es7Unr53R5dEehfkSIw/OtIx1y00VOXrrWMtNnDreQVfTK1jPGczuSy4IV5ow9JoYvReF2x6/FZpfZdNvDZhxNs1Ij+ZbOkG5exwdo+aO3TreekPQgJEHZ5h4cvlGo+ZTkTWZckbn5F1TTWsQ3tw6Lq/rrACrrugyz6EeVQjCHanv4jCyJqPnDA79YLRBCGcP2Bh8dZd5rRz43rAQKC16/YYb+wiuFxsCIw/MLBO5hTZ4GXhV1IxmnN6bEKIhlyKuTyA/X6SQKJuRevVzDG3ysunNAyCLfzvwgxFzHPoGF54KsQdsZixIMVE2P6funSHWv6EfECKvwz8ZZXZ/CmToOS+Ep1dcJ+VcRWyYy2BUDcbKp3g4fwf3yT9m16kHOXXqFOeeey7/8R//QSKR4OGHH7YEShYWFr+RrF+/ns985jMcPXqUxx9/nN/5nd/hRz/6EU9yH4cHHudQaS9Ts5NUq1UkWaKc1c052x6wmXNzZizPxBNzQqgjQc95YTMKLj9XMkUhqlNpWHfYA2Iuz0wUGN81Z4qRes8P46xFSNUFUrIiUUqXTQGK5lWFGKpskKnd61SnQnRrAOeSaN7UcM4UVbljDmJnB1n8HX5hvsT4rjmMsoEki3tZPY6q/vPJJ+MYuhCJ+Fe7G6LJismyKa4Jb/GZUVoNSCLa1x1b/jOjXGXuQAqjLI6vNFljJE9lzXtiMxJHM+b6rxWyKqF5mz/fkZ8rmVF+zdB8NnrPD5txZs+X4DrPsvXuYgy9Smai0OBUZSJh3vdbkZ8tMvlkc4ESQHa6wMyzyaYCpXpkWma8cd1UR7HL+AbdOALL+yDb5IbY2sx4vkHJZg/YzPGQGskxuz/Z8HpPr9OMsEucyDCzr/Hn7m4xXgEqBYOpPQkqS1w6I1v8+GvXYjmjmwJAx6Lfc8pZfeEBhypmH2M7gnj7xWvTozlTBKfYZWw18ZMkC5eo+rjMzRSplMS10ntBBHe3uNbTIznT3UnzqvhXu83303O6+dmWjSKj5RPsrj7Ig5VbeHryMWRZ5pvf/CbT09M88MAD3HTTTZZAyaIpJ06c4LLLLmsQKC3G4/Fw2WWXceLEiZe4ZxYWFhYWFi8diiSz07uO14XOZqd3XUeB0mI0l40Lfnczb/ybi4htXIiAO/n4FD/4yIPs/ekxKm0enrCwsHj5qUe9+a2oNwsLCwsLi5cVS6T0G8jatWv59re/zdzcHPv27eO3fuu3cPrsjHGCh7iVPeH7eOjovRx88Bgg3FPc3Q5sTrFBYPeruGsClOTxLNN7501x0Zpre/AOOCkmyhy+edR0HOo7P8JgXVBUc04CSI/nSdaeJEYWDko2j8rscylToBFa52XV5V1o/saNnxN3TXLqvilARFAMXdnVIBiSZZnsVJ5cLWZB86kLI7rWX2dYMzfqmuFf5cI70NzW0zCq6MVK08ix+ME0B28epZzRkVWaCpncPQ7WXdvXIBCpU4/LcsXsOELLhUz1KLi6MGQpjpDG0KtjBFY3X0yrLoXeC8NN+wVig6Qw2yIGrRNV4dbUzKUIhPDLP9R6kT9wSZS+C5sLpFxRO7IqREBLnRJAbHyCcIdo9vOhq7oZvKS5xXJd+DPy0AzHbmkeQ6cXK+jF5ht0dXckd1fz8SSrEs6IHYe/9nnWhk19k8soGWSnC5RSjXWLbPHRc14IEOPq6M/Hl7UZuLSLvgsigIgdHL53Gr1gENrkNWudmyqSPJFFlhvFS/7Vbla9OoYzIvpx4heT4tqTYejKGIG14vXJExkmaw4SqktZ2AiuPd3vCIvXx0+l2PXELqbPOMyDtp/xyIl7ySlptm7dype+9CXi8bi5WV/vi4WFhcVvMpIksXPnTr70pS8xPDzMAw88wOtf/3py0Xke5x6ODD7Blj/q5fiRExRqjpY2t9pw/9e8NmRVCHfmF0Xourrs5r0vNZwzI9E0r0rsrKApPlksTslOFEwhen0dVCkZxA+lTafH0EYfwfWNohc9X2H8iTlTpOEfci8TJJfzFQrxkhk1pzqFEKMu2lCdCvaArWW0VN11qX6ujYUU967FsXMmVSECr6+fFougFhPa6CNyhn/Zv1eKhhnV1kxkXSkZGLqI16qLbpYSWOshvKm5yBnE2qypwAqoFCsiHu+XpJTWWzoMKZqMf8jdvKaI8+3aHmhZs7rwqpxdvv6xuVUhtqnSEFdYxxnW6D43ZApyFiPbZJBqTlS75hrcv+oYutFWVO8M29uK4jWvilYX7tXGoIj2E+dazuii34tKI9tkwpt9ZpvZZ5PMHWp8cMDmUujaFjCv0dRwjtxMUUQXLlrj5qYLpjitaiz0IbLZh3+NEIGU0jqTT81TKRk4gpo5PqsGJI5lhEstotb1Pil2BWdIM+PeZkfjHI0fQH5NivvKP+OZ3C62XraJr3zlKxw9epR7772Xd73rXQQCgZa1srBYKVY0oIWFhYWFRWfCgz6u/6vzuewPt+HwiTWjXqzwxH8f5ocfe4jRfbMvcw8tLCxakRiviZR6LJGShYWFhYXFy4m1g/wbztatW/ne975HMpnkscce46abbkLXdSYZ5jHu5AnfnTheW+Kx7+8xnXsiW/z01kQkhfkShXnx5bvqkKlWqhi6+AbeN+gyXYqO3zHJ6CPiFzB3j4PNbxlE86ukh3Pmk+muqJ3gGo/5BXz9qen44TTHfzFBKSk2j1Zf0yM2zgzMf7P7bNg8NvTaRobNo2LoBmMPz5lCqVWXd7H6Nd0N5z9y/wwj94tIsNBGr3C6WcTRn40z/rhw7Alv8i48tYzY5Dt554JIqu/icMMVU99U6bsoytq6W9QishMFhh+cNuMemtF3QYSec0NNf+YIa6x+TbcpIllMIV7i2O3jDTFeSwkMeVoKtKb3JNrGfrSjlNIZfWi2qUgIak4HLTbpQDhZTT61PE4FYPDVXfRdHGn6M2+/k94Lwrh7Wh977OFZxnYtd2CKbguw/vo+IdoyaIiE8Q66iJ0jnn6KH0wz9vDC61WXYn7upjvSIvck/2o3q68WYy4/W+LQ90ca4gm9gy7W39BnCn7GHp4jO1VA1mTTCUl1NTpjFOIlVIfM2mt7TJevsUdnOPELIazSFrUNrvWaT/AX5ktMPBHH0A0GLuti6Eox1pMnshy7dZz8bAlnRKP73NqTXgYggayIflRKBpkJcW6BtR76LoiYjlf7f3qC9W/o5dS6vTyi3cpzuafZv38/mzdv5iMf+QipVIq9e/fyp3/6pzgcrT8fCwsLi990ZFnmkksu4Z/+6Z8YHx/nzjvv5Prrr+f73/8+T3E/z0QfYPV7grzv629jcre438g2icgWnxBEVIWzUIMjzqL9Yt8qF6pToZTWmXgqbsZGRc7wEVjroVqpkjyVNR1vnGE77tjCWqDu5jK9Z57EceGO6QhqRLb6kRSp4d6uOhXzPiApEpIiUUqVzfWi3W+j97xwg7tQOVsRkWE115nIGX7T8QkWXJfqTjKBNYvENVWYP5oxxSy+VS7svoXX1muiaDI9O8NNXZXmj6aJH27tmGQP2Ahv9jXcSxcTWu8lvHm5yAkgeTLL1J7m6xcQdWy17qoUDRKLYvWeL9mpQlOXIhDiFk+vkxZJa+Smi0Ik08QFydVlJ7YjiNJC1B5Y4ya4rrWDU36uxMy+JOWla0IJus8OmoKexeNZkiUCaz3iPasw+1yqITp38QMGieNL3JEksV6vi4fih9IN0YkgYqfrwr5SRhfjtbow9quVKqpTQXXUYt4KFRHX1mUnXHPaLOcqTDwVN4VZdQcsxSbj6XOaEXHpsTzFZFmsFy8Mm/8+dyhtCgrdPQ5zHFeNKlSrpviolNVNZ6fwJh+e2ho3P1vk+NMjvPbz55M89xT3FX7GEeUZdF3ns5/9LAcPHuS+++7jAx/4AKtXr275+VhYLGX16tXcf//95HLNfz/N5XLcf//91riysLCwsLBYAZIksf6SPn7rS5dyxmtXUdf5Jiey3P63T3D3/9tNdi7f/iAWFhYvOcla3FvAclKysLCwsLB4WWn+Db3FbyTnn38+N998MwAHDhzg7/7u77jtttv48Y9/DIDT4cSedzN23xCrvGsAIQZa/dpuJp+MM/tcilP3TpsCD0+/E1fEzuz+FEbJwNHnpJwRUSLpsZwpMOq9IEwhXiJ+OM3+/z5lOswMXRmjnClz8u5pclPiKWJZhUqpYm7iOEIasiKRPJk1N8VUh8yGN/QxtTfB7LMLGxcjD84ia5L5Ok+3oyHaQ1YanwqV1ZrjU60/vlVu9IJhPqW/GHeXHXeXA1kGY8kez9SeeZzh5ptS9Sgtb78T3ypXgwAG4NTdU02dmgAKcyVO3j3ZIIpZTL1mqkNedgw9V+G5/zrV9HUAyCKyJT9TahDsrARX1I6er0V+NeHYLePN31KVMQyjYSNqKSfvnGrpZJQezXP0Z+MNIiAQmz+h9V5GHpghO9V8A2/uYIpKC1csV0TD2+NkSl5wDKtjcyv4BtzMH84IBwSjfi5i7Bj1GB1NNkVrzoiGu0uMvfRwjtFHGvslq7DpTQPMHU4x9dQ8k0/Om8fw9jlJnsiiFwxhD13bM6xfS+4eB6tf082JOyfJThQ4dts4GEK41Ht+iLFdccoZndxU3kxLcUY1KrXryRmyE1zrZfoZEQc4+tCMWZN11/WROJlh/NE54gfSjBwa4UTxMHK/zuTkJA985qfYbDa2bdvGm9/8Zj760Y9aTkkWFhYWbVBVlauuuoqrrrqKr371qzz++OP86Ec/4oc//CHf+MY38Pl8XHPNNez/3glKjxSxGUJ44Rt04YzYGX9sjtx0sUEo4e11Ukrr6PmKEFu4FPRchfxcyRSRqw4F3yoXieNZIUiuLX/sARtdZwWYeCIuxEj6gnCkqldNIYkjpFFMlE2RBSwIkMd3zZluMcVkmZn9STOqzd3joJhYiJSTVQmkBYGKJDe6zdjcKu6Yg8xEAUNvvPdLsrhnVUrGMgehSskgfjhlxgM3/KxoUKkZFgXXe8mM500HJRAxpxNPtI41S5zINIjClh5bdA4kCdNNynztsUzzF9ZQ7DKyKjV1LGqHpEjYXIpYdzURIhXmS4w90vxJbVmVMPRqy7VXbrpIpbA8Aq3O7HOphmi+OoG1HuEilNabOiwJwVnaHBuNJwTOkEYxWSZfWO4u5Yo6gCr52WKDO9LC2JEa1/SSiHUrzJeoFAwSJzLmuqeOt8+Jf8jN2KMiVnGq5hypeVWMchW9IK4noywiF6li1iyyxYesykw/k6CU0UWtq2IdrdhlUsM59HyF7HSRakVEO6oOxRxjnh4n+dkixVSZYqpMKSOi2zy9ToLrPIw+PEu1UmVy9xzzxTlmmEBeU+L48eM89X/u5eqrr+bTn/40v/d7v0dfX1/Tz8nCYqXccMMN/N3f/R1/+Id/yO/93u+xfft2AoEAiUSCPXv28K1vfYuZmRl+//d//+Xu6i/Fa1/72oa/FwoF/vAP/5C3vvWtL1OPLCwsLCxOB+xuGxe+cwsbLuvn4W/vZ/pwAoATuyYZ2TPDjpvWsfV1Qyiq9R2ahcUrgbqTUqC3eQSyhYWFhYWFxUuDJVI6Tdm8eTPf/va3ARgdHeWLX/wiP/7xjxkZGSFRneVg5inWrFmDNGWncnsJf8DP4BVdGEUDd4+D9Eieclrn6ONzyJrM0GtieHtcDN8/RaVoiNiSmnAjuM5DKV0mfjiNzaOy9poeRh+ZZfzxOVwRB0NXxZg5kKTn7BC5mULDU/rr39BHtWLw7L+fwt3jILrVz/C9M4w/HscesNFzXohisowkiUgq8TR1keiZfqJbAyRO/v/Zu+/4OOo78f+vme19V73LTe4FY4wx1WBD6D2UXEI7kly45JLLpeeSIxd+l/JNLkfKcSEkkIQkBEKoMRBMMbiAjXu3bMuyellt77szvz9GWlvIBgMGCfv9fDyEtDOf+cxndrX4s/q85/2Ok09qlM30YXWbOfBSLwCTLq/FVWFj51/aUFSFqpMDtK/sJ5fMUzbdS2CSh2h7gp71YerPLifRnWb3Yx1YfWbqTi8nl8jTtqKPkkkeXFV22l4xsjVNv7GBfEZj91/bsbjN1J5WSvf6ELaAFV+DC5PVVBxDzWmlZON5+rdGsJdamXx5LXuf7STRlcE3zoV/govWF422486vINmfpXdDGNWs0rConL5tERwlVmoWlBLrTNHybDeAkRVI1+lZH0a1QuO5lfRvixJrT+GucVA23UvPphATLqgm2pYgE80VA2XGLa5koNnIsGT3WRi3pJIDr/ShZTXKZ/mwOM24a+xGdi3VyNITaUngKLNSeVKA7o0DpPtzlM3wYvVa6FxtBGXVn1OOzW9FVeHAy31UzQvQ+VqQbDxPyVQP/olu9j3TRTqUpe7McpJ9aQZ2xbB6zUy8qJrwvgRdawdwlNkon+UrPt+1Z5RitpuxukxY/RZqTimhe0OIdDBL5SklVJ8SYOsDLeTTgyU2Zvno3xLBO95F7YJSWl/qoWd9mPRAjnHnVrD/hV6c5TYal1QQ3BGjd2OYXX89QMPZlfRti5DoStN0ZS3OchubfrWP2IEkzjIr5TO9xfKFEz5ShWJW6d8ZxVVpx9foIh3KUDrVRzaex2RR6XpjgHhXinGLKwjtM57DmlNLqTo5wOYH9pGN5ol3pfHUOnFV2rG4zCiqQvRAgu43BtA1jUmX1TDQHGdgZxT/BBf+iR76d8TIxfN4G5yEW4w7pCdcUI1qVdn1aJuxWG2CmlNLyUSyVMz2E2lLkOrNsP+lbtriLdhP09m9ezfBoPHaucNu5s+fz2c+8xkp4SaEEO+SqqqcdtppnHbaaXz/+99n69atPPbYYzz11FNs4w2UvFEy7qyzzmLl3ZsJdJdQMtlDOpSldKqXyIEEFqeZ7vVGRhxXpZ2SKR7yqQJdawewus3F7EVWr5lAk4fogQRaDgKT3JisKsGdMQZ2xnBXOcjGc9gDVgoZDbPDVJx3uaps1C4sp2NVP4meNL4JLvLJAvGuFPlUntKpXqJtCVyVDnKJPDafhVR/BkVVqDwpQKwjRd/mMIpJMcawP0E2nsfmt1B7WhmhPTFCe+J4653ouk7Ha4PZLAfLbw3sjmEyG9lqejaGQDcCTJwV9mLQS+k0L/GuFLqmYw9YqT29lLYV/WQjOdw1DlSLQrwjhdVjpnSah/C+BOmBrBF43OAitMeY55TP8qGoCr2bwoAR1JQeyJAKZjE7TZRO89K/JUIhq+GssGH1WAjvjVN9SgmqRSXUHCuWAPNPcBvBMWljnmx1mQntGbw7c4KLXKKAvcSKxWkml8wTaU2QTxaMrEGlNnKDAS2+cS7ymQKJrjSq2XgOM9EcJZM8BHdGsQcsBHca4/c2ONF1iLUnURSFkikeYu1JsjHjdfHUO7H7LMZzajeBrhcD38tmeEmHssQ70+iDz//Arii6Bp56B74GF51rgmg5nZImD4meNOlQFovbjLfBidluIhvLYXWbMdkO/v40LKog2Z+hf2uEfKqAf6Kb0J44Wl6j8qQAmXiOcHOcrrUDBJqMPwin+jMEJrmxBaz0bQ4T3BXFWW7DP9FNeG8ci9NE4+JK+raGibQkCbfE8U9wk40bwXqOchvVp5TQvS5EvDOFo8xmBOH5AXTsARuJrhTBnVFsfgvOchsDg+Xd6gfnnF1vhEiHczgr7NgDVnwNTuK9aexeK7H2FJqm4210YvVaGNgRRSvoBCZ7yMbyRA8ksQesmJ0mChnjd6VmQSl9WyNEWozsW6VTvNh8Rhavoexn4b1xEpEEIU8fFQs9vPrqq8QyMUpKSjhjxhl84Qtf4NZbb8Xtlj+ci2Pn4osvprm5mb/+9a/ceeedgJEFQh9MxabrOldffTUXXXTRKI7y3XvuueeKP/f39/PRj36Us88+exRHJIQQ4kRSOs7LZd8+jeYVHaz54y7S0axRAu5Pu9i9vJ3Tb5lO7czDZ48XQnwwcuk8iaBxM7GUexNCCCFGlwQpCerq6rj77ru5++67SafT3Hffffz+979n69atJJNJ9sS3E8gGqMrU4AqV0Ng1Hm+dC01TmXFdI92bQqiKQtuKXkJ74/jHu/DUOZh0WQ27H2037kofvKHZ1+DEU+PAZFOJ7E3grLRhdphQFGVwcU1BtSqUz/KR7M2Q6ssQbjUWPqxuE2XTfYT2xAk1x6iaX4LJasJVZcJkVlFtKqpFweo1M7A7ViwvYnaq1J1eRrzzYEYiXdOI96TIhHM4yo2yEooJ0EAxq1g9ZpxlRskF02C/YCwy2kssOEqsmK3G9qHydQCarhsZcDDu+jbbTSgm6N8SQctp+BpdWH1mtIyGyaZiyhr92rxmLG4zFrcFyKBalGIZCtWqUjLZh82bondDGAb7VU0KkdYkrio7FsfBt7LJphaf7ylXN2B2mhjYZSyUqWaj30woy75nu/CNcw0bv8luKl5r8TyD3ZlsKiabapTAM0Hd6eWYLAfLwFjcZpouqaNjdT8mi4rZZir2a7aZSPakSQ9kUUxGv0NZgqwuM4GJbipm+endFMZsUw+Wl1EVrF4LzgojU5XJohRLkrgq7ZisJlLBDK0vhLG4zYPjNcav5zSjrMbgeUxWFVPOeOCrd+IotRazAygmMNmN59DkMGHzWrG4Bp9TTcUesGB1m0gAid40FufBazPZTJRO9aCaVLrWDpCJ5unbZmT4snqNMZntZjy1TuJdSXQNQoOBYCVTvJjsJiPYqzWGs9zIolF5sh+TXcVkVsnG86gmDVvAir3ESu+GCPaABVeVHbPDxMDOKKgKA3tjxDtTlM30UTrNR6Lb+MDVvqqP8hl+FFVh6nX1ZJN5tLRG7+YE0USEXnM7YS1IW6iNdDqNaY2J2tpaFi1axHe+8x1mzJiBEEKIY0dRFGbNmsWsWbP49re/TXd3N8888wxPPPEE99xzD8l8klpvLafNPI3OF3rJ7ahCzVuw+6146pzYA1binSkSvWmirUZAqtlhomSKh0JWIxvLE2tPgm78G+dtcKEXdPq3RUn2ZyirtJFPFyhkNbS8hslqwWxXcZRYKRQ0wi0xEr3GvyHewZKiba/0kRrI4apyYHGYcVXYiLZpxr+tNtXIbtQcK2bC9I134RvnIt5hzL0UVSEbz5HsNzLnmByq8W+wDihgcZqwuMxGhhz1YGkuMDIxOsutpAasZGN5TFb14L/fgxl2CoNZGFWTYmRuzBvZcoYCkYbKuxn9GqlybD4LinIwI4/JqhTLcHlqHfjHu41sUlmjX9Pg/CjSmsBd7Si2VRTFGJOi4KqyU3lSgOiBg1k5VYuKYjIydSpmhcBEd/G8ikkxSokNZZ+yKKj5Q8ekko3l6F4/gMlmQrWahvXrLLfhrrbT/UboTc+LkW0o3JIgHcriqXcWfx/AyO7jqnSQ6E6jvOn5NjtMWL0WTDYTWi6PalVRVIpzU5NFpW9zGC2v46l3HizXB6Dr6EMZOtWh52XwNaywoRwS56xa1GJGJKvPgtVlLmYxUswK9sF5fC5ZIBM+mCkMBex+C455ATpWB1EVhUhLnHhnypg7WVQKZg2734KW1zFZVQp5nVw4R2Cim/IZPsJ742h5ozRiNpbH6jFj81kwWVW0gk4hqxmvuU1FK2jkEgXcNQ7841wku9Okghly8YM3VVTM8aOaFfq3Rkj1ZwkOBkG5Ku34J7rJJfIoJoWB5hhxPUzY2oc2JcO2bdsoxAtM3jOZK6+8ko9//OMsXrwYk+ng6yzEsfb5z3+eRYsW8cwzz7Bnzx4SiQQul4umpiYuvPBC5syZM9pDPCaef/55ZsyYQU3NyLLsQgghxPtFURUmn11H48mVrHtkNzuWHUDXIdKZ4Jn/Wsv406o47ePTcJWMLF0thHj/RbqNz3B2jwW7xzrKoxFCCCFObIo+dNucEIexYsUKfv7zn/Piiy/S12dkr1FVlYaGBnKtCnOmzoUuK9lInsp5Abz1Tpof78DqNWPzWIh1pDDbVaZ+tIH2VX2E9yYwO1XySWMBY9oNDcTak7Sv6Ec1A6hoeY0p19YR3henZ30Ys9OEzWcZzPwSoHt9qJjZRy/ow0q6+Sa4qD+znD1PdxbLT5idJqrnl9D1epB8WsPb4DRKLoRzxf1Tr62ne0OI/i0R3szT4KRqboCW57qKpbGGyn2pVpWaU0vpfiM4opTY4cYH0HRlLflUgZbnug/7nKvmwZJyh3TnrLQNKzd2tAJNbpJ9meK1Hq2ZnxhHz6YwfZvDR3+QCqWTPUT2J45Ywu5IDnd9h5ZQezNPvYNx5xllzw4NPrP6zFSdXEL7q71GKb9DlEzxgAIDO2NG4NIhXVee7MdRajMCsN58WWaYel0j4b1xo8zNIdca3B0DzTg+Hc4Vy/sBTLi4GkVRhpW/swesVMzxc+CVXtCgbJbPKHfSm8ZeYiPemUK1qky7tp7OtUFCzfFiOT+r18yUq+rpeK2fgV0xY3tWAw2mfLSeaGuCrjUDmJ0qjjI7sQNJymf5KJ3qZecjbQD4pzvY1bYTz0wLu3btKmZLstlsTJ06lWuuuYZ/+7d/w+l0Hs3LJoQQ4hjLZrO8+uqr/O1vf+Nvf/sbu3fvRlVV5s+fz/nnn8+y/15FubeSVI/x73rNaaVEWhIketPY/VaysRxaXsc/wY09YKF7XcgoT6Yq6AUdV5WRgaljVT9aTi+WA3NW2AhM8tCx2ihlZfNZyCXyRrCKRSXRkzayI010EzmQGFYerHJugHymQPCQ+Y6jzIbJqhLvTBml28oG/50f/NThn+DGVWkzMikd5pNI2QzfYKafwX/jB4NXwCjtpeUHy4EdQjEpBCa5ibQkKBwyf7D5LVTOCdC9fuDw5ccGjx0qSzd0PovTPKxU3NEwWVVsPosRjPUOPmF56p34Gpy0rzx82bYjMTtMWJwmUsHDlFx7K4e5PkUFXeeI466Y7QeFYuapIe5qO7rGiJK7qkXB2+Ai0pJA1/SDJdswnqeymT5CzYcvCeepc+Ab76ZjVX/xdTE7TJisKplIDpNVxdvgJLI/UQxesrjNVM8roWdjqJitCIwyhAyOT7UoeGqdxNqTmJ1m8sk8Wl7H1+jCUWale13I+F3QdNCN7Fr2gIWuNQPFa9JyxvulZIq3OD6bz0I+ZQT+VZ1SQrwzRbwzhdlhQvfmaOs5wMRLq1m+fDnRaBSn08m8efM499xz+cd//EcaGhrewYsnxLvX09OD2+3G5TryXePJZJJYLEZlZeW7OkcymeShhx5i+/bt7Nixg1gsxte//vXDZmfKZrP8+te/5u9//zuxWIyJEydy++23M3/+/Hd17kPdeuutXH311Vx22WVH1X7Xrl188pOf5Fe/+hVTpkx52/bbt29n+vTp73WYQogxRt7b4ljrb4mw6v7t9O4JF7eZbSZOvnoSM6QEnDiBvdO517Gyd1UnL/18E5VTAlz2H6d9YOc90f59OdGuF068az7RrhdOvGs+0a4XTrxrHgvXKzNh8ZbOPPNMHnroIXp7ewmFQvzwhz9k/vz59PT00KG3sHTHX3kh9Riv6c+zce8bdDcb5cmy0Ty1p5dRNt2LpkH3xhDxLmOhqWJOgEmXG3c07nu2i97BQJjAJA/TbmgwSlP9pZ2ewe2lUz2MW1yFloXO14LFO7btJTbsJUaGHdUMJZM9JDpTdKwOFgOUGhZV4Gtw0ra8rxg4UzUvQOXcQPEa88kCe/7WSf9g9pvKk/2UzfIV9+t5nUwsVzze6jYXA2BcFTY8tQ7Uw3yoPHR8h2p9qYeO1wYXoQ7zDmw8r4rx51cN25bsMQJ47KVWvA0jA0gq5viZdNnIu0RDzfEjBih5G5zUn1N+2H1HEmhyU7Ow9PA7NQjujI0IUCqZ4qHpitoRz5FqVimb4QUOXt+hY5t6bT32kjfd0TDYRawtRetLPcMClIb6dJRasfpG3gnhqXXgrnYUx6qaVcyDWZly8QLZ6MFFMnvAyrgllYPZGKDl+a6DAUqAo9RK9amleGqN/nrWh0n2Zhh/YTX2UuPcPRtCdKzux1FuxV0zeF4FHOU27H4rqlVlYEeE2IEk1aeWUn+W8VpoWY1tD7USao5Tf0454y+sBoz31P4XuhlojlE23UvTlXXF8fRtCRNpSaCaYeLFNcVMT/HuFFs3b2cTK9lS8SqP7fwjW6JrWb16NW63m6uuuorXXnuNdDrNxo0b+da3viUBSkIIMYqsViuLFy/mv//7v9m1axf79+/nl7/8JY2Njdxzzz28lnyRF2NPYrs4RRvNdLR0kollQQeTXaXipAAokOxNEz1gZFlSFCOYyVFmI9GTpndDGC1nBHZUzg3gn+Ai2ZspBiiBESTkqXeSHsiS7MugmIwsOja/pdjG5rMY2Rp3R4vnsrrNlM3wkgkfDDCy+a2UTvMOy7AYbokbwS66ESBUOs1bzJQIkEvmi+XrVLPCIQmPsAesxSw7hzLbTdi8lhFzq0w4R8+m0MFgGGX4/qHyvDbvIX3qFAN4XNX2EceoZoWqeQEcpcPnG4WsNiwY6838E90j5zZvo2SyZ/jYDpFPFQ4boFQ5N4CrauTd2faA1chmecj1DSmb6ad0imfkSQavfaA5RnBndMRuq8eCxT0yOa9iUnCW27C4jNdd1w5mbCpkNfLJPIfeKuOudRTnS/HOtFHe9pDAMd84F/7xruLxoT1xHGU2ApOMcmi5eJ7+7RFyiRzOcltx3LZh41OK2Y8qT/Ib7YBIW4LudUY2qrrTy3AMvkbRtkTxc0rVvEBxHpkJ54ysmLqOu9pOoMlTDIwLd0doG9jPLn0jWwIreK77r+xgHe3t7VxxxRU888wzDAwM8Morr/Cd73xHApTEB+r666/nkUceecs2f/nLX7j++uvf9TkikQgPPPAAra2tTJo06S3bfu973+Phhx/m/PPP51/+5V9QVZWvfOUrbN68+V2fH2Dv3r20tbWxaNGi99SPEEII8V6Vjfdx2Z2ncdanZmL3GHP6fKbAmj/t4rGvr6BzW/BtehBCHEvhTuPzoL9GSr0JIYQQo03KvYmj5vf7+fKXv8yXv/xlwIh4/9///V+effZZ9u7dy7bQBraFNuB0Opk6dSqrXm+jJFkNWTNoOpMurWXnX9qItSfJxo2FkUw0x7TrGuheFyLWmUJZP1DMnjP5slpiHSm61gwQPZBEGywfMfmKWgaaY7Qt7y0uRHnqXNQuLCPRmybUHMPqNpON5427tgfHbw9YcVXa2PO3jmLATMlkD2WzfOx5qrMYJGN1WyjkDmZMysZzHHjRCL6yl1iZdGkNba/0EdmfINaeYscjB4xjVRh/fhW9G8MketLG+AYFmjyYLAr926NkI4OLQio0XVZLtD1Jz7pQsW3/jgiq6fDxg1VzA1icpuJi4JBUMHOwhNqbkg/5J7rw1Dppe6Vv2HaT7ZDFvKNMfGRxmg+7UOYb58Lb6KTt1b4RfWVjeZL96eLrd+i4Kk8KEG1LDgsQAmNxamB3tBhsBkbptIkX1dC+qo9YW+rggqjPTMWsAO0r+kgHs+z6S7txgAr1Z5UT70wRao7T+nLvsLE1XVlDsjdD2yt9DOw2sitZfWaykTxaQcPqtWD1mUkHs6T6slTOC+CpdrDn6U5SfVl2P96OyaZSMtXDwM4YuWQe1aRgsZvQvGYSXUZGgQkXVaMoEO9MkQ5n2fVIG2a7yvTrG+haGyS4M0b3+hC6FsTqNTPp0lraXu0l1pZiYHesuKg7+Zo6Qs1xYu0p4n1pTDujqCpUnlKCu8ZB8+MdaLpG877dmMfD1tB6BgYGyPYaz2FpvpTTTz+d2267jY9//OOYzfK/fyGEGOsaGxu5/fbbuf3229E0jQ0bNvD888/z/PPP02LZwa7uTZSVlXHWBWdx6qkzeP6nK1E0G9l43gj8sanEu9JEDyTIxnOgG6W1/JPc9KwPEdobp5Ax/nG0B6yUTvXStXbACBAZylxUacM/0UPHqj4jo8xg8IdvvItCRjNKomEEoChmBUVVitltXJV2MrEcna8Fi+epnBsg0ZMuBjGZ7UapN92IScJkV4m0HMxM6J/oxuIy07PemCsFd0SLY3BW2LB6LIT3xskl8nStNTLeoEBgoptoW5JCRisGbNtLrJQ0eejZECoGleQSeaIHkmRiI4O6zQ4TgUkeChlt2JxEy+ukw7niNR1KUY2MTonuNJno8D4tThO5xNHfI6KYFMxOE4pZGbGvZLKHZF+GdOhNQUoKpMPZw2aB8k9wkY3ljXnPm8Q7khRyw6OrfI0ubH4LvZvC5AdL0oGRPSk/+Jwc2pfVa8Fb56B/e5RCWjMCvAe7dJTZKJvupfN143chuDNmlBwezJJlBE8ZjXVNR8tpVM8vIbQ3TnogS2hPDK2g46q0kw5nDz73igIKmCwqyb4MFpeZsum+YkalgeYY6MZc1VVlp/O1IFpep3vdALlEAf8EFzaftfg7MTCY3clVacc33kXna8bCUbwrRS5eQDEZAWqhPXF0DdLZFN1tHSz4l9k899xz7Nq1C13XGTduHKfMPZXzzz+f6667jtLSIwT5C/EBOpok2u810XZpaSmPPfYYpaWl7Ny5k0996lOHbbd9+3ZeeOEFPvOZz3DjjTcC8JGPfIRbbrmFe+65h3vuuafY9p//+Z/ZsmXLYfv5xCc+wSc/+clh25577jnOOOMMPJ7DBF4KIYQQHzBFVZiyqJ7GUypZ93AzO144ADqEOxIs/f/WMPH0ak79h6m4AlICToj3W2QwSMlXLUFKQgghxGiTVWrxrk2ZMoW7774bAE3TeOGFF3jwwQd59dVX2bRpE4WCsZhht9tpUpo41X0q8UIU2qD61FIsDhM9G8OE9sXJJbJko3lMdpXJV9Wy+7EOBnbHios7VreFxvMq2fN0Jx2vB8mEjO1l07yUz/Kz6y8H2PVYWzHYpXFJJdlojtbB4CJU8DY6KZ3qJbg7hpbVsJdayURyxDtTxcComgWlBHdFjcw+QMk0H1UnBdj56AHySY10OEv3GwNEDhgT2pKpHtJBI8uA1WnGZFMpDAXjHBL846q0Y7arw0u/acYd2onu4eVKYm0HswNVzS8h1BwrLq4deLnvsNmXYu0pYu2pkTsA1aJidowMYAo1x4y7wN+B3k1h2DRyu9muYnGaDxvsNFTy4s0GdsWIdaTIxQ8uolXPLyG4K0o2mqf7jdCw9tlonlhHknRo+IKf1WXBXWPH6jUbr//QdQ7esW+yGE+YqqqUz/bStzWKltfoXhciFTz43DcsqsAesLL70Xay0Tx7nmynYm4JUTVhLAIGs1DQsXrN5NMa2WiemgWleBqcRgk5YO/fOnFW2phyVT37/t5FoitN26t95JJ5ak4rxV1tZ/djHeTTGl1rg0TbU9SdWYbFbaHl2S5AI7TX+L2vmOMn0OQ2gq5U43lM9Wewus1MvKCatlf7yOby1C8uY/Xq1Wwr38bAwAD5dcbz6ff7mTt3LosXL+bf/u3fKCkpefsXWAghxJilqirz5s1j3rx5fO1rXyOZTLJ69WqWL1/O8uXLufPOO8lkMvj9fs466yzGnVTJeeedx3fP/Rn5ZIHqeSV0vh4kG82hDiY1Sg9kqVlQSqQ1QSaSI9aeRBsM1K6Y7ScTHZwn5aPFUl3V80tIdKXp3RQuBn3bA1bKZ/voWjNA35bIsECmWHuSWHvKyIhkUkj2Z4oBNFaPGZvPQve6gWIwS+WcAKlghtCeOADR1qQxj8HIYOSstJPoSqHroJqUYoZNYFjAi6PURrwrPSyQKJfIk+zLDCsHhw7RNiPw2Ww34Sy3FR/nUwW6Xg8Obz8ovDd+2NdJ13TMdhOqdeSEre8wZYXfil7Q6d0YHrFdURVMNhXlcPFOOsOCvA7VuylslDIbZHaYcJRaibWnDpuRKR3JUsgWRmy3l9rIJfIHA7eGyvFpOqpFLZZFs7rMmOwmUv0Z0gNZgjujxdfDZFONeffOKMneDOG9caweM94G5+DNCTqpYJZCpoDZaSKfLKCoEJjkJrQ3TqInTaLb+Cqb7kW1qPRuCpNL5Ol4rR8tr1N7ehmh5hjJvgzJ3rRRKs6mUjk3MFiesEAqlDVunlCg+pQSou1JI9NTpmDcQKEaAU42v5We9SEKjizTLh/Pvn37WLlyI9u2bQOg6/F9LFiwgBtvvJHrr7+eyZMnoygjg8uEGOv6+vreU2ZVq9V6VEF5y5cvx2Qycfnllxe32Ww2LrnkEu699156enqKJed+8YtfHPX5NU1j2bJl/Nu//ds7H7wQQgjxPrK7rZxx2wwmL6pj1f3b6NtrfDbYu6qLA+t7OfmaJmZ8pPGw2fqFEMdGuMv4HO+vcY/ySIQQQgghQUrimFBVlfPPP5/zzz8fMP44uGLFCn73u9/xyiuvsGPHjuLdjxazhTeWevCqATyZUpy9TYw/v4Zdj7WR7M1gcRtlGfq3RZl2fQMDu6JE25NEO5Jo2QKRfQkmXFxNOpQl1BxDtUTR8kYQS9OVtYT3JehcHUQfXO3y1DloOLuCPUs7jSAhzciQNPHCavp3ROhcHQTVKP/laXCSGsiS7Mlg9ZqJd6ZoT+bJJ40FlXGLKwk1x4vBOGXTfcS7UiT7MmSTefY82Vl8TpouqyXWmaJ77QDtKw4GF/nGufDUOWhf1U/P+nCx/bjzK4l3pIqBTKpVxTfORT6ZLwYpDWUjMttV6s+poGN1/7AsRCWTPZRM8bDnbwczQw3sjBWDaA772lnVYpDWW7/IoKoUS90dKrgzRvBN5yib7sU7zsW+Z7uGBS/VnlFKqs+48/7QACWzXcU33kU2liMYNfqyuM00nldBx6p+Uv1Z2lcYZfK8DU584920Le8l3pli51/aQAOb38KEjxgBPPHOFPuf7yk+72a7StlMP+lwzsiC1Zai4ZwygrtjxNpS9G0Og8ko65LoSqPlKT7/yWDGOMZqZEDq3RKmd2OY7nUhOl8PMm5xJYpJoeXv3SR7MnS83k8ukWPKR+vpXjtAZH+eWFuSbDSHvdTK+POr2L+sm1w8TypoZEFQrSpTr62na+0A2VgeXYHwPuOD0/jzq1DNKrtW7SU3LsruFevpC/cQIcLL//U4iqIQCARYuHAhZ555Jl/60pckKEkIIY5zTqeTxYsXs3jxYgDS6TSvv/56MWjpRz/6Ed/97ndxOp3MmzaPXRsHcOR8+MIl+CdUY7abCe6KEutKgQL5dIFCVqP29DI6X+sn2ZemkNeNgI10gZrTSunZGCJ6IGn8+60bJd/84130bAoT3BEtZtspn+kjP5hJZyhOw13jwNvgon1lnxHQohilwlxVjmKgtdVjpn97pJiJyV5ixVluK2brsfmt+Me7Sfam0TWdeHcaBjMX2gNWSqZ46FkfIp8q0LnmYBafkikeI7NRJFf8t9XqNuOf6DbON5hByBaw4KqyE+tMFUuNDQUoGQHnJiKtBwOAFFWhfObBueCQoRJhh6OoipGp5CiSlSgmZVjJsyG6po8IeFJUo6Ry9EBiWMCR2W7CP9FFcGes+LwOsZdYcVU5iHemi8FLrmo7Nq+FgV1GkHwmnENRwT/BTbIvQyaSM0okD3blG+fC5rXQuzlMNp43AtoHuarsWD0WUv0ZIztSXqdkioeBXTEKGY3+bRFyqTwmq0ohq2FxmnFW2Im1J9F1Yx7ka3ThrnPQsaofXYOO14KYbSp1Z5TRszFMLp4n2pZE14w5v6PUVhyDkUEsj3+iG7PNuFlAURUSvWkKOQ1vgxNXpZ2utQOYbKqRgSqex+I0UTknQNeGIHFzmEihi64dnVjGK+zbt4+XvvYkkyZN4pxzzuHmm2/moosuYubMmW//ggoxCh544IFhjzds2HDYdpqm0dvbywsvvMD06dPf93E1NzdTV1eHyzX8LvZp06YBsGfPnmKQ0juxbt068vk8CxYseMt2/f39BIMHS+y0tra+43MJIYQQ70b5BB+Xf2chu15uZ+1Du8jEc+TSBV7/w052L2/n9FunUz1NsnAKcazpmk6kazCTkpR7E0IIIUadBCmJ94Wqqpx99tmcffbZxW2vv/46Dz74IK+88gp79+7lQHwvsJdtLWsIhANMmTaF7tfCnD55AXVnlNHyXDd928LY/TbyaY1MMMv0G8ex/c8HiLUlUS0KuXieRFea6R9rZN9zXcQ6UmSjGRI9afwTXdSfVc6Bl3sJ7o4WA33GXVBJNppn/4s9ZGNGkEzlSX4CEz3sfKStON7KuQFclXZ2PmxsMztNKCa1uIjjKLPSsbK/uBBUMcuPf6Kb3Y+3gwbhlgTpAWPByh6wopgg1Z/F4jZj9ViGZx1SoZDVyWcO3q2uZTWaH2srBgUNBc+AEVhkdpgwveku/UwsRyaaN4KJ3hR35GlwkolkD5abAxrOrcDmtdD8RMfbvqYlkzzULChl5yMHyKcPdl4yxUN4b2JEObdcskA2khuRXcliN5NzHLxOe8BKPpUnn9bY/de2YUFQhXSeQkZDMQ2/E121KFjd5sG7izQ8dS4i+xNkwjkibQmyCeO1rjzJj2+i28iOFM/T/GQ7znIbYAR8qTbjOVTNxmtTebKf8hl+tv/5AFpWY9cjbVSe7GfqtfXsfLgNLatxYHkvhZzG1Ovq2fdcF9mIRqjFWPCsOa0Um99Ky7NdqGaVRFeKbCLHuPMr0Qs6rS/24q4xFt8KOY36cyqwByw0P96Bf6KLWGeSVDCDp85J6Qw3K596neqLArywcyltbW3kyMF+cDgclJSUcM4553DKKafwz//8zxKUJIQQJzi73c4555zDOeecA0A2m+WNN95g1apVrF69mj3uPeyOGVlfxg2MY/78+Vxxxzk89PWnaTp5HLl4nmw0R7I/g81nJd6Vpnp+CTaPhXiXkc1PNanFzDVaQSfekSIVzKDndZK9GSpm+0mHssS70kZwjW7Mn8pm+AhujxoZMgeDW2pPKyWyP0H3G0aJNtWsUDk3wEBzjERXGkVVDmZKGoqt0XU61wSNoCLFyOoUPZAk0Z0mny6Q6EkXg4rsfivpcBbVpBiZmN6c1EYx5gKHBu4kutIke9LompGJUjFBYXDOY7KqRnmyQ+iaTi6ZL5YJHta9ScFRYh0WvGSyqtScVkrf1siw8nFHUjk3QDqUHZa1yewwYbKoI0rJgUIukSefHp75SDErmKwmVJNCYTDgyeoxk43liXekjKxUhyaWyusjgpl0zSj5a7IZ57Q4zWh5zSilF8kV56+KqlB1SoBoa5JET5pwSwKL04TZYSKfKqAoxuusmpVipqTa08tIdKcI70sY2ZF608XsXomuNPFu43fMP96NalEY2BUjlyoQbU2iANWnljCwO0Y2lsNsN5EayGJ1m6mY46d7fQgtp1HIFsgl8qgWldqFpfRvi6AXdExWtVg+uHSKl2QmQXu0lTmfmMS6zSvZnd1NKpPC1GZi9uzZnH322cyePZvTTz+dqVOnvu3rJ8RYcP/99xd/VhSFjRs3snHjxiO2Lysr45/+6Z/e93EFg8HDZlwa2tbf3/+u+v373//O4sWL37a09ZNPPjkigAugpaWlmBH6rcTjcbZv3/6uxiiEGLvkvS0+UFUw+1OVHHg5TM96Y74fao/zt++uoWymi3GL/Vg9snRzLHwQAdhi7IsHjb8XqCYFT7ljtIcjhBBCnPBkpis+MAsWLBh2R+PAwAAPPfQQS5cuZcOGDaxZswYNjf0v7MRsNqPqZny7A8yZPxvNaSXWCa6OJFUnB+h8Lcjkq2qx+a1G+bWWOK5K487phnPKKZ3mp3v9QDGop/uNEBMvqSHZlybZmyGfMhay7AErEy6so2dzmP6dB0uxTb66joFdUYKD28x2lSlX19P5en9xMaN8ph97qVEeDCATyRLZfzDLksVpItJqLOaUz/bjqrCx85E2+rdG6N9q3P3uqrRTd3Y5LX/vom15b/H89eeUk4nkiiU+7AEj+07H6iCh5hjZaJ7mxwcDi9TBxaaIEbA1dM3DyrupULewjMgBI8tU8TXYFRsR6HQk8e4U3esHhgUoWb1mak4tLfZ16Hkj+xNE9h/MNmAPWEmHsux/oedgpyqMv6CKeFeKtlf60PJGu/qzymh9sZdsPE/Lc90A1J1ZjmpVOPBiL+G9CcJ7jb4rTvJTPtNPojtllGGL5bG5LWQjeWORVAXVrqKlNbyNLqpOChDvMNruW9rF1I/WYy+x0b12gOD2KLGOJJMuqaZ/W5SB3UZJukJGo35RBXpeo31FP6pdJdGTweazMPHCGlpf7CGbyGFxmsinC/jGGwFyO//ShqPESjaeJ9mbxlluY/z51ex/oRubz4rVZaJ3Y5ismiXXqPH6nvXsD+7HrlsI/SGErutsWArl5eXMmDGDc889l6uuuoqzzjrrqF4zIYQQJy6r1crpp5/O6aefDoCu67S1tbF69Wpee+01Vq9ezRe/+EVyuRxvvG5jzpw5dKzppypSRXlZBdqAQmhvHE+9E7VfJTWQpfoUo2RcojeD1W0CVSHWaZQu7d0UJjWQoZDTyYSzWJzmYjmvdChHNpkHDQJNHnRdJ7zfKDEHxnzIXeMw5hkpY57hbXTiKLUVg5hMVtUIdhosD6aaFeJdKbIxow+TTS1mclItKuWzfAzsjpHoTg8rmVY63Us+VSDSkqB/29A8z0TJVA/BHQfLkfknGBmCutYa5x8qAQcUg26AYlk64GDZM8BZbiPQ5CEd7i9maipktRGZJN9KeF98RLZLT60De4mVrjUDw86ra3ox49TQNeXTBXLxPD0bDpbQdVXaKZniofP1IIWMhq6Bt96JalEJ74sbpdH6MpidJspn+ujbGiGfLAzLDlU+y2eUaNsXJ58uYPUaHyl1TSfRlS4GLekFnbLpPpL9Rjm3VDCLYlKoOa2UjlVBIyPU5jBWr5nKkwP0rA8Z5fcGy71Vn1pC76Yw2UQeS8Io6euf4MLsMNO/LYLFaSIVzKLlNCrm+MmnCoT3xY2SfR1J9IJOYLIHs1WlZ2MY/wQ38e60cZNCSZ6ws5d9La0knVHWtyUYGDCe085nmpk1axZ33XUXp556KieddBJut5QDEB9OQ+XZdV3nC1/4AhdddBEXXnjhiHaqquL1emloaEBV3/8yM5lMBovFMmK71Wot7n83vvnNbx5Vu8svv5wzzjij+Li1tZW77rqL8ePHM2XKlLc9fvv27bLgKcRxSN7bYjTMOQX69oZZef92+vcZfy/u35ogsjfDvGubmH5BA6pJSsAJ8V5FOo3P7t4ql7ynhBBCiDFAgpTEqCkpKeGOO+7gjjvuAIwU86+//joPPfQQr732Gs3NzfSHu1m2ogsw/nBavrUct8VLQTeRej7KnI9Mw1vnJHogybglVWRieYI7o/jGu/BUO+jdEmbKVfW0r+oj1pFE13TSwSyapjPjxkbaV/WRCmZJdifJxjXqzy4HhcGMAUbZt5IpHkome+jdEibWYZQjqZ5fgsmmsn+ZEUBjdZupP7vCKGGCEbzjH+8i1p4kG8nTs3EAs80EGCXMxi2upH1lH4WcRrI3Xcxu5Kq0k+hJD7+zX4V0KEvrSz3E2lLF82UHF7hqFpTia3Sx6y8HilmIHOVWxi2u4sBLvSR60qDB3mc6h5WGA4h3po769cpG88XFvEO37X6ifVi/Ey+qIRPO0r7y4N2vNQtK8U9wsfORdiODkVUFzchgcOCVXlJ92WJwUzaRp5DXUa0qNr+FQrpAPq2R6k+jDNZlrz+7nFyqQPfaAfq3RkmHs8XgqcBENzF7ilhHikRPmvqzyzHbTXSuCjKwI4aOzsRLa9j1FyO4rH9bBKvfwvgLq2l5tot8OkuiN43JoTLl2jr2Pt1JPlEwsmgVNMZfUIWu6XS+FsRRYSPWYWRFarqsjlh7koE9McpneOleHwJ0quaXkEvk6V6bYuKl1XRs6mFvcCeWiTpbd0do724nraXRXxgsbWO3EwhUMH/+fK699lquu+46vF7vUb9OQgghxOEoikJDQwMNDQ1cf/31gFEibihQfP369SQS69iw4zW0bg2LxcKM+hmMGzeOA7s7cEQ9mPcrlE7z0rMxhLvah81npX97hFBzzCiT1p7EXePE1+Ckb1uEZH8GxaQQbU1QNt2Hnjcy7+g6xUxC1fNLiLUnSYey5OKD5eJm+8lGc0QPDAY7K0ZQ8sCuGKl+Y+Ha1+jC5rcW50Z2vxWb30KiO42W04xsRSHjHL5xLlAg0mJkXdQGMx+pFgVFVVBMgxmEBoOJUIzgI7PDmLsNZXTUCzqqWaHq5ACR1kSxTB0YwVcmq1KcKyW606QHsgf7HJToTh/1a3a4bEuhPfFhGZ1sXgul0730bgoXA6cUk0LlyQFi7clicP1QSbVEj5F1qpDRikFVmqajDGZZsrjN5OJ58qkC6VAOXdOxuM2UNHno2xJGy+v0bY0Ug6fMDhOeGqNknJYzSgNWzPbTsaofLa/TsylESZMHT51R1m+o5F75bB+xtmQxcCk9kKVkigctpxFuSWCyqWTCOSxuM9XTffSsGzCyW6kK+VQGV6Wd0qle2lf24ap2kI3nSPVlsfkslEzx0rV2AHupFbPTRNvmTtKBOP36fkpqvWyPbKe7qxu6jM8js2bNor6+ngsvvJBzzjmHurq6o36NhBjrTjrppOLPt9xyC3Pnzh22bbTYbDZyuTdnhDOyAA7tfz+VlZVRVlbGsmXLWLZsGfF4/O0PEkIIId4n5RP9XP6fC9n9Uhtr/7zbKAGXyvPa73ew6+V2zrh1OlVTJYO6EO9FuNP4+4JfSr0JIYQQY4IEKYkxQ1VVFi5cyMKFC4vbNE1jxYoVPPXUU6xatYpdu3axr3cPOjr7YztZ/ddleDwe6urqyPWPh0kqyU06ftWNf5KbdCRH5xtBquYG6Fo3gKfWQcVsH3uXdtO/M4qnzkm8K0XtaRWoFtXIAJAtkB7IUcjnmXXzOPp3RchEckRaYqhmhYmX1JBL58kl8mgZDVRoPL+CWFeK6GAQU+XcAJlYrrh41bCoAtWksPuvHZjsxsJSLpknn9SId6fxjnOS7E4z/oIqBpqj9GwIk08WjL7PrcBsN7H3b12Y7SqOKhuNZ1XSvqqPZF+GgV0x4h0pIwtRiZVsNE8qmCXelUJ/U2kTi9uM2a6S6s8abeN5PDUObD4L0bZkcTFMMSmY7QcP9jY4cVU7infiW91mFNUokaZrRlDWUKBSsj9NKmgsIKpmFavXTO+WEImeNKpVwew0M+Ej1cS7UvRtjZAJZfGNd1J5coADL/eR7Euzb2kXVq+JyVfVE9wepWfDABaXmf4dxh1F+WwB1aKAipG16Mwy9j3fRbw9Te+WMLULShnYFSYb1ejeOEDFnAClMz0Et8bIhnNkY3marqql+40B4r1pXDqoqsKky2vIxfMM7IqiqwrpUJayOT7Kp/ppfqqD8lleMpEMid4spdO9lM/wsfVPrUy8oIpYZ4p4b5KK2caibdfGIM6FOv2mTjrjnRyoOsCq50PFP4Cr21ScTif19fXMmDGDk08+mU996lNUVFQc0/eVEEIIcSR2u33E3CuZTLJp0ybWr1/PunXrWL9+PTuz28jredYdUGmggblXzGXSzBrsdjuv3vcGmQEVb4MTdCeJ3hSqWRkMaonQsKiccEuCRFcKs9OEdbB8XO3CMgaao+RSBbLJPHosT+lUD2aHiWwsTzqcRcvrOMpt+AZL1hZyRuYfV7Udq9dCbDC7kWJS8NQ56N9hBAhZPWaqTg7QvS5kBCopoAxOaxI9adw1DlSLgqfOiafGQfeGEH2DWS7NDhNV8wL0b4uSDmUxO0z4Gp1Y3BZ61huBMv07jTLCh5aESwUzWJzmYikzlMHgJtXIaqTljPK1el7HXeMwAqxThWLpOiMAxyitppoVPLVO0pEsmXAOk01F143t+VTBCKxSFXRNp5AtGCXXBsu8mWwq6BDcYZTXMztM2HwWAk0eutcNgA6ZSI6KOX6yiTyxA0nig/PXwCQ37hoH7Sv7sThNZGM5CmkN3aKjazpmp4lsNE/pFE8xWCk9kCWbyOMb7yK0O0Y6bAR7V5zkp/uNEIW0Ebhk81mw+azGuCI5rB4LFo+Zsuk+ejaFyERymJ1GWbqqeQGysTzJvjT2UhuR1gQ6UDHbT7wnRSacw9vgom9HBHuZFXeNg0R3ipwti7m+wKTzZ5Kvj/P666/TubOTWCYGGfAVfFRPOZ3bb7+duro6zjrrLKZNm4aivLkWoBDHp1tvvXW0h1BUWlpKX1/fiO3BoJH1t6ys7AMZx5IlS1iyZAm7du3ik5/85AdyTiGEEOJwVFVh6uIGxs2vYu2fd7Pr5TbQIdQW4+n/fJ2ms2qZ/7EpOH3vbyCvEMerSJcRpOSrliAlIYQQYiyQICUxpqmqytlnn83ZZ59d3KZpGmvXruXJJ59k7dq17Nq1iz179rBt27ZiG+tKK36/H5vioDZQS6yzlKoZVWS7NGw+K01X1rLr0TZm3NgIQNuqIKoCjedW0rVxgIqZAcIH4lg8FgqpAoWUTtNltTjK7HS/MUCsI0X9OeXYfFbMLhNaXsPf6KJvawhnqYPSaV70wUxIqlnFP95FZPBOdpvXTMlkD6F9Mfq3RGk4uxyTVWX9L/bQsqyburNKMVlNpMM5bH4LgYkegruNRbfSmV4qZgfoei1IuCVB02W1aHnNCGByqsz4h0Zi7Ul2P9ZBeiDLhAuq2PXXdlSzQt0Z5ejoOEts9G4OUXlSCR2v9eMst+FtdFF5UoAtv28BDWx+CyWTfXStMYKSJl5cja7p9KwL4hvvoe70MrR8gdDeBFa3GbPDRM/6ELGOFCVNXvoyYTx1DiM4y6Ky65E20uEsNQtKsfksdK8fIB3J0XRlHf1bwwzsjpGJ5mi6rJZ4T4q9f+ukYnYJuqbTtW4Au99Kw7kVOCpstDzTjbfWiafWSXhvnEhLgoZF5Uy8sIZN9+0jM5DDUWZj6nWNbH2ghXQwh7fGiaKCt8aFltdwlNuId6bwNjqpmV/KQHOceGeSfKZA1bwSvPUuQntjg9kJfBx4sdsIpDqphFhXEpvfhj1gQQfGX1xBb6ibA93tmPwa6/f00tnZSSaTQV+mF3+Py8rKmDBhAieffDLnnnsuF154oQQkCSGEGHOcTueIwKV0Os2WLVvYtGkTW7duZevWrdx777309BglXC0WC5Mik6itr6W7f4BqaxWOghvfJCeZaL5Yei0by1M1v4SeDSH6d0YJTHThKLGhZTWsXosRzFPQyPdnAYUpV9fStyVMNpYnlyxQdXLAyBCpGOVhtaxmBMTM8eOpdRI5kCQdzOJtdOEos5EZLAXnn+DGZFUJ70tg91toXFTBgVf6iLYm0YGa+aV0vt6Pf4Ib1aJgcZrJxo1nPAHGAAB6WElEQVRja04rJdaeJLwvjtVjoXJugJ6NIfSCTkmTm9LpPvY/321kAprsQTUbQc56QadqXgnJ/gxWj5lEbxpXuZ2uNwbw1Dnxj3cRbUsR3mdkRvLWG4FQ2WgOd42DqlOMIKtMOEf5TB+qRUG1mOhZP0D1KaUM7I6S7M/gKLPhKLWBDqVTvbir7cS7UgR3xgaDtUro3x4mtDuGu8aBp9ZB2/I+kv0ZvHUOvLUOgrtiJHvTeBudhPbE0Qs6pdO9+Me72fHnA1icZvwT3aBC74Yw8e40DWeXk+hLk+hMoxegZn4JuViORE8ai8OMs9JOzYISQs1xvA0uEl0pcqm8MX/2WOjdEiYXz6NpOtXzS9Dz0PVGkAkX1RDeFyMTyxGY4ME/0U3Lsm5qF5SSTeZxVzlQfdDR0U6uNEW8EMaOjX3JffT29kIvPL/5b0yZMoWamho++tGPcuqppzJ79mzq6uowmUwf9FtKiDFny5YtPPPMM+zZs4dEIoHL5aKpqYmPfOQjzJ49+wMZw6RJk9iwYUPx/EO2b99e3C+EEEKciOxeK2d9ciZTzq1j1f3b6G8x/ibc/GoH+9/o4ZTrmpi2RErACfFOhQfLvflrpJS3EEIIMRZIkJL40FFVlQULFrBgwYJh2+PxOC+88ALPPPMMmzdvZv/+/XT3d9LW0zrsWNcOF+Xl5VROq+SvD2xixoJpVE6sINWWJ9oex1Vm48CKXsqmeUkF01i9VpzldhL9WaIHklhcZiweEyazSj6fJ9+fo29blLJpXmrml6NaFEJ74vRvi+Aot9JwTgXpgSxda4KggrvSTiqUIbzXmBiH98ex2I23os1nwea20ba7H3+jGzSdvUs7SfRn8E90gQ6qSSHangQNutYGGX9+FZXzAvRsCNG7KURhsPxGuCVBeiBL3ZnlmKwKHav70TWweSxEDiRIBbOkBoxMTOb1IRwlVjAOJRvNEW6JFZ+3PU93khrIouUh1pZg/wt5NF0nE8xidprxT3DRuLiSPU91cuClHtKRHIqKkempOYamaUy5tIFwS4yO1RGSPRnGX1BFIVsg0W0sZrW+0EugyU3JJDdWtxmr22xkF9DA4jCR6E3TtXYAgHQ4i9VrJh3KoeU1wi1xfOPclM3wEG1L0fZKH74JLqZ/bBzdGwfoWjdAOpzF4jZTPs1HtC2B1Wkm2JEitCeGltcJTPIw0BwFDQ682oNvvBtdgXBzDHuFhYIvy0tPL8fdaKenp4eedT0kk0mSySS6bgQjWa1W3G43EyZMYMKECTQ1NXHbbbcxc+bM9+fNIIQQQnwA7HY78+fPZ/78+cO29/X1sXnzZtatW8eePXvYvn07B3J72LpxPQAmk4lx48bR6GkkMD3AyXPm8Pefv0Lt5GpsOTOpoJGRUUcnvC9G1bwSBvYk8NQ6SPZn6NsaIdGbxllqRysYk5RsPE82miMbzaGoCvVnV5AeyNC+so90JIerxo6r3EbflogRMK6CrulEBkvHZQbLyGVjRikzd4UxL0NVjECm/QlCexJGwJRJR8vrmGwm0gNGWbJET5rymT46VgWJdaQwO8xG6TSMErKqWaHypAB92yL0bAxRyGgoZgUtp5Hqy6AXdDpW9WN1mynkjeO0jEasM0UuYWSlTPSkafl7N9mY8Ti4K4Ze0DHZVHLJAj0bQ5RM9mDzWwnvjZMZzGaZS+UJ7YuT7M3gG+fCXeugd3OIbCyPalEpm+Ej3BLHUWol3pEysllOcGOyqIOZnNRiRqZcIk/flgjoxnOeieaK48mEskYm0Don2YiRgVI1K3jqnTjK7aTDWSKtcVwVdhzlxp3e2UQei8NEpCWO1WvBWWEEVumaTjqcI3ogSclUL5H9cTKRHK46C32hXvas3E3jkip64gfoCHWwa/MuksnBDFqdCpWVlZw27TQWL15MaWkpp556KqeeeioWi+V9eCcI8eH3s5/9jEcffbT4+UVRFHRdZ9euXfztb3/j2muv5bOf/ez7Po5Fixbx0EMP8eSTT3LjjTcCRqm3pUuXMn36dCorK9/3MQghhBBjWcUkP5d/93R2vnCAdQ83k0kYJeBW/9YoAXf6LTOomhIY7WEK8aERGSz35pNyb0IIIcSYIEFK4rjhdru54ooruOKKK4Zt7+3t5fnnn2fNmjVs27aNlpYWent72b9/P5qmsfflHQCYzWaUN1QqysspKy9n+xqN6tpq6sbVEGrNUDGtlHQog2pWcZbbSIWzxNtT1JxShg546lyE9sRAA5NVpWyaF2+9i0Rvmp4NIRRVZdy5FfgnuunbHiGf1LCXWvE1uIgOZllKD2TQCjro0Pl6kKYrasmnC6hmlfozK2h+uoN4Zxp9MJiofHaA4K4YwW0R0CDWkTICezCyBtg8ZtpX9GGyqsVSbumg8T2XKqAZa03kkwVSZIrPmZbTycaMRSqzXSXWmSoGMNkC1mIZO4B8Okv3QJZETxqzw0T5HD/7nu3CbDeRCmaI7DM+AHS+HsTf5MZkM2H1mulcE6SQ1Wg8txJ0nbYVfVTM9NO+oo9sNI9iUUj1pwHIxHJYbCZKp3rpWNVPcEcMT62LpqtqCTfHaH2xl4ZFUDE7gH+8B1TofmOAypMCOMvsxiJZwEIhD+GWOBaXGS2vU9Lkwea1kOhJE4vFyFREeXX5TggU2LxvgO6ublSrQixmBFoBqPtUrFYrPp+PSZMmUVdXx7nnnss555zDySefjKrKnUxCCCFODOXl5SxevJjFixcXt+m6Tnt7O7t372b37t00Nzeze/duNm3axBNPPEE+n4deI7C3qamJgQ1RSstKsdud9L7eSc3kKpJJMFmNErXOMjuFvIbVYyHcksDmtWBxmbH5LCT70mSiWaJtSXyD2ZPMDhPRjhSh5hjeeieeBgd6QSPamkRRFXzjjblIdjDLUjaRB8WYC0Vak5RO8dK9PkTZDC9aTqPr9SAoxtzO4jajmBSCO6Lomk42nifVn0HXdBQVfONcRFoS9Gw0ype9mcl6cI6QTeRRVGXwOYNCuoBeMOZwuqYXA4JUs1EiLp8ukE8Zc7NMJEf/tgiFnIav0UU2Nhi4FcuDDvlUgXinMVdzVTtIh6Moqk7XGwOg61SdbGSzspdYUVWFaFsSq9eCltPIRIzzKoqCo9yGeZ+JfKpA7ECCwAQ3qqqQ6E7TtzWCu9pO9SklxLtTZAaDxnRNwzfOTbxDwVXpoH9nGJvPjMlmwuQwvls9FkL7Y9jqFdq72shZ0qQDSbbtHSCaiZCzpInsiRSfq21LvUyfPp1Zs2axYMECTj31VObOncvkyZNxOp3H7PdZiOPdM888w1/+8hfq6+u55ZZbmDt3LiUlJYRCITZs2MD999/PX/7yFyZNmsSFF174rs/z6KOPEo/Hi6XbVq5caWQ6A6655hrcbjfTp0/n3HPP5d577yUcDlNbW8uzzz5Ld3c3X/3qV4/J9R6NZcuWsWzZsmJJbiGEEGIsUVWF6ec3Mn5BFWsf2s3ul9sBGGiN8fR3XqPp7FpOvXEKDikBJ8RbyiZzJMPG2odfgpSEEEKIMUGClMRxr6Kign/4h3/gH/7hH0bsa25uZvny5bzxxhts27aN1tZW+vv76ervQtM0dvRsBiMZAKYNJvx+P36/n0AgQL5No7qumnxHgoCvlFw8R2CCi0w0h91vI3wgjqZppCMZGhdVkAxmsPkshPbGycULTLi4Gme5Da0AwR0R7OVW6s6uwOYzF+9iN7tM+Ca46H4jRJcnyLglRrai8UsqyaUK6LmCEUAEuKrt1JxaSrI/Q/RAEkUBxayQi+fJAZhh4kdqSPSk6F4fYvySKmIdSdpX9FMyxUPNqaXsfPQA+aQ27DmqPb0Mq8dC8xMdWH1mxp9fRefrQZK9GRqXVNK+os8I8mlL4Si3opoVzHYVu99qlCexqXSuDBJrS+Ab78RRbmXcuZXsfbaTspleMEHL0i684104yq0UBsvkWZwmvHVOIq0pEr0pIu1Jyqf7cFfbieyLE+tMYrYqVM4JEGjykInm0HWdVDRLYIKbspk+XBUOdC2JalUI58KktDi9kT7UnE44HCYUChEOh8nlcuRyBxcTVVXFZDLh9Xqpqqqirq6OM888kwULFjB//nz8fv8x/z0VQgghjgeKolBfX099ff2w4CWAfD7P/v37hwUvNdcY33d2bDUCmNYabb1eL3V6HV6vl+rqaiZNmsRrj6/HZ/ZhztpwmPxYnGac5Xb0vI4tYCHemcJsM2FxmKg+tQSr20KyJ02hoGMvseKZ4cBeYiXcEkc1qdj9RjbIoYAeXddwVtqxesz0bQ5TcZIfd42DdChLxUl+oxRaXi8GIAUmuvHUO0kNZNByOqpJQSvo5ONG4JPNa6FksofezWHsASslkz10vmYEaVfNKyETzhLaM3xh3GRTqVlQSv+2CKlg1gg691voWjOAb5wLi9tM/7YIuaQxV1TMChixTnhqHFjcZvq2RChkCmSiOUw2I4OSosDA7hiVcwP0bw+TieYon+WlMBiwrhd07KVWymZ4CW6PEm1L4SyzUTU/QDqYJRPJEWk1slxZ3GYcJVbCe2PYvFYUE3jrneQSecwOE9l4HnNApT8SJFOdYHdfG3VzK+genHe172qnv78fre3gnNPr9TJp0iRmN0wnEAhw9tlnM336dBobGykvL5cgcCGOgSeeeILy8nL+7//+D7f7YJmLkpISFi9ezIIFC7jlllt4/PHH31OQ0p///Ge6u7uLj1955RVeeeUVAC644ILiub/xjW9QWVnJc889RzweZ8KECfzgBz/gpJNOetfnfqeWLFnCkiVL2LVrF5/85Cc/sPMKIYQQ74TDa+PsT81iyqI6Vj2wnb7WCJ21IXb3drHix9u5/IwFzFjSKCXgTlA7duzg2WefZcOGDXR3d+P1epkxYwa333479fX1b3nsxo0beeihh2hubiYSieB2u5k0aRI333wzs2bNKrZLp9MsXbqUFStWsG/fPlKpFHV1dVx22WVcdtllY76sdqTLuIna4bdhdUrWXSGEEGIskCAlcUJramqiqamJ22+/fcS+zs5O1q5dy8aNG9m5cyf79++nq6uL/v5+WltbyefzbNx9sL3JZMLpdOJwOHC5XPj9fny6j9KqUtR8lmQmhS/vx17hwD/BDYpCaiCNzWul4iQ/vnEeCrk88a4UgYlu3LVO3JV2Yl0prG4zqlnBW++kfIaXztcHaDivnHxKQytoTL2ugeRAmnxWo3v9AGa7is1vwdvowuoN4a5yUHlygPBgCRA0aFvRS7LPyKoUbU2gmhTyaW3E89C7JYzVZUzes5E8ba/2EmlJggrJ3jSl073UzC+h+clOKmf7sTpNmG1mtJxG94YQ5TP9uCrt5KJ5oq1J6s8qp3tjiHQoR9XJpWTjWcxuM6pZxWw1MfHiKsL7EkQPGHf1Ny6uIBPJY7apxDsTeMe5US0q9oCVYGeIgWQCZ4mDcKGPSDBCNBMlvDpMKpUitjpGPB4nl8sVSxoAWCwWnE4ndrud8ePHU1JSwtSpUzn11FOZMWMGc+fOxW63H+PfNiGEEOLEZjabmTRpEpMmTRqxr1Ao0N3dTWtrKwcOHGD//v20tbWxb98+tm/fzrJly4jFYsP6KikpwZ/wU11dTYm/BHuVnbLqEnw+H+Xl5ax49HU0K5Q0+Ej2pnGW2oi2J3FX2XGW2bB6LEY2yf4MgUlufBPcWBwmdIwSb44yG946J3v+1kX0QIKy6T661w9QMtWLyapgcVkI7ogCCooZLG4znjoHoeY4VScHyMbypENZChmNRHeaQqZwsCzvvngxKH3Y85DVGNgdIx3KFduZncYffDPRHOg6tQvLCO6Mkk8VcFc70DKaUW54b4yK2QECTW5sPgvdbwxg81pQTIqR+ajWQaDJTaQ1YWR1UhR8jQ4K6QKpYIZEZxJnuQ3PkkqibQl0QMtquGsdeBtcpGJpsuYMcSXG5DNn4J5hIRwOo1cn2du9l75EH4neBKFQaNhrZTKZ2BPxM378eKZNm8Ypp5xCVVUVCxcupKGhgaqqKkpKSo7hb5oQ4nBaWlq49NJLhwUoHcrtdnPOOefw9NNPv6fzPPzww0fVzmazcccdd3DHHXe8p/MJIYQQJ4rKyQHcX3Lz0z3PMWA6eLPD0tgmLv7fk7j9IxdQOVlKwJ1o/vjHP7JlyxbOPfdcJk6cSDAY5LHHHuP222/nnnvuYcKECUc8tr29HVVVueKKKygpKSEWi/H888/zuc99jh/84AcsWLAAMNZJ7r77bubNm8f111+P0+lkzZo1/Pd//zfbtm3jm9/85gd1ue9KeLDUm2RREkIIIcYOCVIS4ghqamoOWz5uSDKZZP369WzYsKGYhamzs5NQKEQwGKSjo4N8Pl8sE3Yos9mM0+nEZrMVA5scbQ4KOY1AqR+r10pS9RDca8FmtjHuulLsDju6quOosuFv8uCudqCaFXq3hUhHspRP89G/K0b1KaU4ym04S62E9sYJNHlA0XGUWgntheiBJPVnl+Mos5KN5Glf2ce486voWN0PGqiHlCJRzSqpvizlM/xY3GYykSy1p5fjb0rRvylK3+YIk6+tI9mfpmy2j2QwS8k0L5OvqUXPQcvybtzVdtLRLNEDSSpPCeCstFE61YOzwoau6Fh9Jpo+VsVAR4j2rjbiiQR5d45IKELLNo1UOkUmmyGVSpHJZEiuSpJIJMhmsyOeW0VRMJlM2Gw2AoEApaWlTJ8+ndLSUqqqqjj//POZP38+DQ0Nx/aXRQghhBDviclkora2ltraWk4//fTDtgmHwxw4cIDW1lba2tro6OigtbWVYDBIS0sL7e3tBIPBYYHJANYtVrxeL263m9LSUlwFFza7jYG9EWxWG1afFU+Jm1Q0gkd145piwl8bwGqzkE9olM7w4vBbKJnsJhPNkuhOUzbDi81noW9rmOpTSlDtYDKbiLQkcFXZUVQFT4OT9lf7sPksuOsc2ANW+jaFsXktmOwmwnvjxZJvAIpJQS8YZeTKZ/no2xqhZIoHk91EJpQjvC+O3W/BUWLF4jBhcZrIRnNUzgvgrneQ7Mmg6ToVs/30bgphtpuomOMnEzdKsRWyeRSzQtXpfrLpDIlonPhAiHxFjrglQVjLk+5Mk81nCFT7CQaDxGIxEvsTxOPxYYFHT7xhfHc4HNTU1OD1eqmoqGDmzJk0NDSgqirTp09n5syZ1NTUYDbLx04hPgwURXn7RscRKfcmhBDiw2RZaDNfbvkt+puS1sTdGR5e+DqxB1NcXDeP+TdMxuGVEnAniuuuu45vf/vbWCwHMwSdd9553HrrrfzhD3/gW9/61hGPvfTSS7n00kuHbbvqqqu44YYbeOSRR4pBSiUlJTzwwAOMHz++2O6KK67g+9//PkuXLuXmm2+mrq7uGF/ZsTOUSclXLUFKQgghxFghfy0W4l1yOp2ceeaZnHnmmUdso2kanZ2d7Nq1iz179rBv3z66urro6uqir6+PSCRCLBZjYGCAQqFAJpOhUBh5V/2hzGYzNpsNk8mE1WrFYrFg22jDtsOGqqpYLBZMPSYsFgu5XA6r1YrZbObAJhXNomE6y0SbJYwSVVBUBeVshQ49hb5Ax202oygKq3e9iq/Sh2uCC03T6NPaKDgKFGoKbO/uwmQykZ2WJZ/Ps2b7AVRVJefMkc1m2b1aQVEUstksGVuG3X9bZ/ycyZDen0bTNLLZLNlsltwzucMGcQ2xWCxYLJbidQ1lRpg6dSperxev18vcuXOZNGkSNTU1zJkzB6fT+a5fUyGEEEKMXUNld2fPnn3ENvl8nr6+Pvr6+ujp6aGnp4dgMEhXVxcdHR3EYjH6+vro7u4mEokQj8dJJBJH7M9isWC1WrHZbNh223A4HJgsJmytNsxmM4E5AXZlD6BndaxWK645LnK5HLF8Ho/Tg/cyK/l8mng2irWkhPrpPuLxOIqiM/eq8aTTaeLxOJlMlMlzKrDZbCSTSYLBIDVznFgsKv39feQqc3hmW7E58zR3b0Nr0jCZTOQdDva29xtjrbCQzWbZuM7IIqkFNNYvXU46nTbmXbkcmTcyI4K4hgxlBfX7/RQseRwOByUlJTQ1NdHQ0EAul6OxsZHJkydTUlJCRUUFgYDcqS3Eh8X48eNZvnw5//iP/3jYz0zJZJLly5cPW3w63km5NyGEEB8WBV3jh22PcdiZvALo8Oq5u5hwXwX713RzyvWTmbq4AVU9sQKQT0SHlmUbUl9fz7hx42htbX3H/dntdnw+37Ag7qHP4m921llnsXTpUlpbW8d0kFK407gWyaQkhBBCjB0SpCTE+0hVVerq6qirq2Px4sVHdYymafT29tLS0kJbWxudnZ3s37/fuJM9cbCERiZzMLtQPp8nFAqRz+dRFAVN09B1nXw+j6qqaJqGpmnFAKihn98qQOhIhrIVqaqKohgBSWazGVVV0XW9GFAERukWm82GzTa4kBcIYLfbsdlsuFwu3G53cfu4ceMoKSmhpKSEefPm0djYKCXXhBBCCPGOmM1mqqurqa6uPupjcrkckUiEgYEBQqEQ/f399PX1Fbf39/cTj8dJp9NEo1H6+/vJ5XIkk0k6OztJp9PFedehX0N9D825hr7eCUVRUFUVVVUxmUyYBwPKFUUxAtVtNjRNK2aSHAo8GMoo6XA40DSNmpoaKioqiv2MHz+eqqoqwMgeWl1djcvlOuGyqAhxIrn88sv5wQ9+wGc+8xluvfVWTjrpJPx+P+FwmI0bN3L//ffT19fHbbfdNtpDFUIIIY4Lv+t5md/3LD8mfWW1POHCkW+uQIG4N8Ov/2k5poIKvIi6UsXmMqOa1SMf9zY+UXkON1UuetfHi9Gh6zqhUIhx48YdVftEIlH8/Pvcc8/R0tLCJz7xibc9bmBgAACfz/eW7fr7+wkGg8XH7yZ46r2IDJZ789UcvuyxEEIIIT54EqQkxBijqipVVVVUVVWxcOHCY97/0OJYPp8nm80Si8WIxWLFRbhEIkF7ezsej4eSkhLKy8ux2+2oqlos56FpGlarFavVeszHJ4QQQgjxQbJYLJSVlVFWVva+9K/r+rAgpmw2SzqdJpVKkUgYpdSy2Sx+vx+r1YrH40HXdRwOBx6Ppxg4NBRgJIQQ78bFF19Mc3Mzf/3rX7nzzjsBIxByKLuarutcffXVXHTRRaM4SiGEEOL4kSik6c1FPtBzpp25YY9jOpA7fNujkSik39uAxKh4/vnn31Hw+X/8x3+wZs0awPh8fPnll3PTTTe95TG5XI5HHnmE6upqpk6d+pZtn3zySR544IER21taWt62qsR7pWs64S4jk1JfoovY9r739XyHE4/H2b59+wd+3tFyol0vnHjXfKJdL5x413yiXS+ceNf8fl7v9OnTj6qdBCkJcYJRVePumaEgI7fb/Y6yDQghhBBCiKM3lPloaO4lpWmFEKPl85//PIsWLeKZZ55hz549JBIJXC4XTU1NXHjhhcyZM2e0hyiEEEIcN1wmOxWWt84wc7TeNpPSIL/JhVlTySRyaIWDxeEURcHqNGO2vbObHlwmyXL/YdPa2spPfvITZsyYwYUXXnhUx3z605/m+uuvp7e3l2effZZ8Pv+2wUP/8z//w/79+/nBD36A2fzWy4yXX345Z5xxxrAx3nXXXYwfP54pU6Yc1RjfrWhPgtWFA5gsKnNPm4UyCiUQt2/fftQLtseDE+164cS75hPteuHEu+YT7XrhxLvmsXC9EqQkhBBCCCGEEEIIcQKYM2eOBCMNWrZsGcuWLSMej4/2UIQQQhyHbqpcdMxKpRV0jYu2fJfeXAT9MPsVoMLi55lZ/45JUdEKGtv/foB1f9lNLnUw2KR8go/Tb51O+UT/MRmXGFuCwSBf/epXcblcfPe73z3qTLxNTU3Fny+44AJuv/12vve97/Hd7373sO3/9Kc/8dRTT/GP//iPR1UJ4v3MXPx2wkOl3qpdoxKgJIQQQojDe/cFiYUQQgghhBBCCCGE+BBasmQJ3//+9/nc5z432kMRQggh3pJJUflK/VWAEZB0qKHHX6m/EpNiLPeoJpWZF43joz86m0ln1hTb9u2L8MS3V7Pi11tJx7IfwMjFByUej/OVr3yFeDzOj370o3cdFGSxWDjjjDN45ZVXyGQyI/Y/88wz/N///R9XXHEFN99883sd9vuuGKRU4xrlkQghhBDiUBKkJIQQQgghhBBCCCGEEEIIMUYtCczmRxNuGVFCrsLi50cTbmFJYPaIY5wBO4vumMMl31pAoM5tbNRh5wttPPJvr7DzpTZ07XC5mcSHSSaT4Wtf+xptbW18//vfZ9y4ce+5P13XSSaTw7a/+uqr/PCHP+Tss8/mX//1X9/TOT4okcEgJX+Ne5RHIoQQQohDSbk3IYQQQgghhBBCiONcLpfj1VdfZefOncTjcTRNO2y7r33tax/wyIQQQghxNJYEZnOufybr4/voz0Ups3g52T2hmEHpSKqnlXDVf53BtudaWf9oM7l0gUw8x4pfbWXXi22ccesMyib43rIPMTYVCgXuvPNOtm3bxn/9138xc+bMw7br7+8nkUhQW1uL2WwsC4ZCIQKBwLB2sViM5cuXU1FRMWzfxo0b+c53vsPs2bP51re+hap+OPIfRLqMsr6+asmkJIQQQowlEqQkhBBCCCGEEEIIcRzr7u7mi1/8Ip2dnej6kTMmKIoiQUpCCCHEGGZSVOZ7Jr3j41SzyqxLxjPh9GrW/GEne1d1AdC3N8Lj31rFtMUNzLuuCbvbeqyHLN5Hv/jFL1i5ciWnn346sViMv//978P2X3DBBQDce++9PPvss/z5z3+muroagC9/+cuUl5czffp0AoEAPT09LF26lGAwyJ133lnso7u7m2984xsoisKiRYt4+eWXh51j4sSJTJw48X29zncrXMykJEFKQgghxFgiQUpCCCGEEEIIIYQQx7Gf/exndHR0cMEFF3DJJZdQXl6OyWQa7WGNqmXLlrFs2TLi8fhoD0UIIYT4wLgCds797ElMOa+eVfdvJ9wRBx12LDtAy+tdzL9hCpPPqUNRldEeqjgKe/bsAWDVqlWsWrVqxP6hIKXDufjii3nxxRd5+OGHicfjeDwepk+fzre//W3mzJlTbNfV1VWcL/3kJz8Z0c8tt9wyJoOU0vEs6WgWkExKQgghxFgjQUpCCCGEEEIIIYQQx7ENGzYwb948vvnNb472UMaMJUuWsGTJEnbt2sUnP/nJ0R6OEEII8YGqmV7K1d87g63P7mf9o3vIZwqkYzle/dVWdr40WAJuvJSAG+t++tOfHlW7b3zjG3zjG98Ytu3qq6/m6quvfttj586dyyuvvPKuxjeaIoNZlFwldix2WQoVQgghxpIPR+FYIYQQQgghhBBCCPGuaJpGU1PTaA9DCCGEEGOIalaZfekEPvqjs5hwWnVxe9+eCE/8+ypW3b+NTDw3iiMU4t0bClLySak3IYQQYsyRICUhhBBCCCGEEEKI49j06dNpbW0d7WEIIYQQYgxylTo4719O4qJvzC8GdOg6bH/+AI986RV2L29H1/RRHqUQ70y4yyhR569xj/JIhBBCCPFmEqQkhBBCCCGEEEIIcRz79Kc/zfr163n55ZdHeyhCCCGEGKNqZ5Zx9ffPZP4NkzHbTACko1le+eUWnvrP1wjuj47yCIU4esVMStWSSUkIIYQYa6QQqxBCCCGEEEIIIcRx5IEHHhixbe7cudx5553MmTOHyZMn43KNXLBRFIWbb775AxihEEIIIcYik1llzuUTmXhGDa//ficta7oB6N0d5vFvrmTaBY3Mu7YJm8syyiMV4q2FB4OU/FLuTQghhBhzJEhJCCGEEEIIIYQQ4jhy//33H3Hfxo0b2bhx42H3nUhBSsuWLWPZsmXE4/HRHooQQggx5rhLHSz+wlzaN/ex+rc7iHQljBJwz7XS8loXp35sKpPOrEFRlNEeqhAjaHmNaG8SkCAlIYQQYiySICUhhBBCCCGEEEKI48jdd9892kMY85YsWcKSJUvYtWsXn/zkJ0d7OEIIIcSYVDe7nKu/X8LWZ/az4bG95DMFUpEsy+/ZzM4X2zjj1hmUNHhGe5hCDBPtTaIXdMw2E84S+2gPRwghhBBvIkFKQgghhBBCCCGEEMeRk046abSHIIQQQojjhMliMkrAnV7Daw/uYP+aHgB6doV47BsrmfGRRk6+ZhJWp5SAE2NDZLDUm6/aJdm+hBBCiDFIgpSEEEIIIYQQQgghjkNbt27lV7/6FTt37kRRFKZPn87tt9/O9OnTR3toQgghhPiQcZc5WPKFk2nf1Meq324n2p1E13S2PrOfvau7WPCxKUw8Q0rAidEX7jTK+UqpNyGEEGJskiAl8ZZ6enoIh8OjPQwhxAfE7/dTWVk52sMQQogTlsy9hDixyNxLvJ/27t3LF77wBXK5XHHbunXr2Lp1K7/85S8ZP378KI5OCCGEEB9WdXPKueYHZ7L5by1sfHwvhaxGKpzh5f81SsCdfusMSuqlBJwYPZEuI5OSv8Y9yiMRQgghxOFIkJI4op6eHj569UfBNNojEUJ8UOx2O7///e9lsUwIIUaBzL2EOPHI3Eu8n/7whz+Qy+X4xCc+wTXXXAPAY489xm9/+1v++Mc/8s1vfnOURyiEEEKIDyuTxcTcKycx6YxaXntwB61rjRJw3TtDPPb1lcy4sJGTr5YScGJ0hIfKvUkmJSGEEGJMkiAlcUThcBhMYN7tR02bARVFVUA5+KWoKiiAohrb3rT/yF+Dx6gKMPRYOeSxAqrx49BjfWjbYPtDH+vKwT50dfAChvocajvs+9Bxg+0OOUYf6mcwK62ugK4ecpxysG992DEMO2bY+Tl4XLHtm44tfvHW7Ycdc4Rtb/tzcZs+bJs+rE992GPj/PqI4xnR52A79eB+RdGNzcrQ46GX8ZD9g9+NXQfbqYo+eLx+yGOjjfEroIOiF7erim7s403bFB0V40tR9MFf1cFtyiHtB78Xv9BR0FAHz6Uq2uA+UNFQFB3T4PlMijb4XUdRNGN7cf+hj7Vi36qiFcdgpnCYfRoqoA71N3ieoWtR0Yedx2g7ONbBn00oKIBJAQVl8PHB7yoKqqLS1mHh//uZn3A4LAtlQggxCkZt7qWoY2reVXw8hudeunrIsWNh3vWmNmNx7mVSx9a8y8Tg8TL3EsexzZs3M2vWLG6//fbitttuu40NGzawcePG0RuYEEIIIY4bnnIH5//rybRt7GP1b7cT7RksAbd0P/tWdbHg41OZsLBaSsCJD4yu60QkSEkIIYQY0yRISbwtJWlGTVlBGVooU4sLYsZCmQLqwYUy5ZD9w/YVHw/9rI5cWFMPWRjTGbZPH/ogowwtpRxsox+yaqQPthla5Dq4CHfo4zf9rCojFsGGLQANBikNLeAdaQFt5HdlxGLYkdq+3aLY4dq97X7eru1hFsvevI9D9715cUwfsU8Z+vnNQUrDvhttlKFFrzcvlB2yTy/+rA87TmXo3IMLaYd8KRw85s0LX+oRt2kjHpsOXbAaWoga+lnRjUWsQxa/hhawTIqGqijF9sZ3BtsZC1fG8cbilTq4wGZRNExoxb5Ng4+H+jQWwrSDPw+e++DP+iHnOti/CWXwZ2NRzDS4OGY8Vgd/Nr4LIYQYfR/03EtX1bE17xrWljE59yoGKY2VeVdxDGN37mVWtTE17zrYXuZe4vgVCoVYvHjxiO3Tp09nx44dozAiIYQQQhyv6k8qp3r6mWx5uoWNT+ylkNNIhjO89PNNRgm4W6YTqJMScOL9l45mySRyoICvSoKUhBBCiLFIgpSEEEIIIYQQQgghjjP5fB6HwzFiu91uJ5/Pj8KIxpZly5axbNky4vH4aA9FCCGEOC6YrSbmXj2JSWfWsPr3OziwrheAru0D/PXrK5l54TjmXj0Jq0OWpcT7J9JlZFFylzkwW02jPBohhBBCHI769k2EEEIIIYQQQgghhDh+LFmyhO9///t87nOfG+2hCCGEEMcVT4WTC/5tHhd8aR6eciNgWi/obPlbC3/50ivsXd2FruujPEpxvAoPlnrzS6k3IYQQYsySkHUhhBBCCCGEEEKI49Df//53tm3bNmxbR0cHAF/+8pdHtFcUhR/+8IcfyNiEEEIIcXxrOLmCmpmlbHpyH5uf2meUgAtleOlnG9n1YikLb5lOoNY92sMUx5lwp5El018jv1tCCCHEWCVBSkIIIYQQQgghhBDHoY6OjmJQ0putWbNmxDZFUd7vIQkhhBDiBGK2mph3bRNNZ9Ww+rc7aNvYB0DntiB//doKZl08jrlXTcJil6UqcWwMlXvzVUsmJSGEEGKskpmfEEIIIYQQQgghxHHmz3/+82gPQQghhBACAG+liwu+PI8D63tZ/bsdxPtS6AWdzU+1sHdlFws+PpXxC6okYFq8Z5HBcm8+KfcmhBBCjFkSpCSEEEIIIYQQQghxnKmqqhrtIQghhBBCFCmKQuO8SmpnlQ0rAZcYSPPiTzdSM7OU02+ZLmW6xLtWyBWI9SYBKfcmhBBCjGUSpCTelu7Mo6kAKoqqgHLwS1FVUABFNba9af+RvwaPURVg6LFyyGMFVOPHocf60LbB9vpQPyjoDN1hoaADxn8Y6sDYrx08Rh86bvB0xfZDj4t9Dz5WlUP2GbsZuqtDedMXh7YbPN8h24bOObRNP8zxb9V+2DFH2Pa2Pxe36cO26cP61Ic9Ns6vjzj+8NevD75W+uDzYDzBijL0ePD5OXT/4HeFQ7eDquiDx+uHPB581Yt96IeMTUdHH7w2Ha14LcZ2HR1N0Qd/VXVUdKPPN30vfqGjoKEqDLbVBveBioai6JgwjjMp2uB3HUXRjO3F/cMfq4O/zsZ3BVUBMyomGDyvgqooxndAHepv8DwqevFrWL/FPg/+bEJBAUwKKCiDjw9+N86l0tYh/yQIIcRY8IHPvRR1bM27iuM9+DXW5l66esixY2He9aY2Y3Hupatja95lGpwFydxLCCGEEEKID9ZQCbhJZxol4No3DZaA2xrkr19dwaxLxnPSlROlBJx4x6I9SXQdrE4zDp91tIcjhBBCiCOQWZ44Ik3TMJvN5CeHR3so747OIYtmR09503fx4TP00mujPZC3NLSaqI72QIYxm81o2th+5oQQ4nj1oZ57ybzrhDb2515jc94FMvcSQgghhBAnpoKusdvVhXa7QuW+MmIPxkn2pdEKOpue3MeelZ2c9olpjJtfKSXgxFELD5V6q3bJ740QQggxhkmQkjgiVVXJ5/P8+7//O42NjaM9HCHE+6y1tZW77roLVR17C3hCCHEikLmXECcWmXsJIYQQQogT0bLQZn7Y9hg9uYixQYWK23xc274Ay59By+skgmle+J8N1M0uY+HN0/FVu0Z30OJDIdwZB6TUmxBCCDHWSZCSeFuNjY1MmTJltIfxofbKK6/w5JNPsm7dOtavX080GuXmm2/mgQceGO2hjfDggw/y6quvsm7dOrZs2UI2m+X+++/nlltuGe2hvSe5XI4nn3ySJ598kjVr1tDW1oaiKEyfPp1bbrmFT33qU5hMptEephBCCCFzr/dI5l2jT+ZdQgghhBBCiMNZFtrMl/Y9MCIRb18+wj1Vf+c/77wB68MK7Zv7AWjf3M+jX32V2ZdO4KQrJmK2yecIcWSRoUxKNRLUJoQQQoxlEqQkxAfgN7/5Db/97W9xOp00NDQQjUZHe0hH9O///u+0trZSVlZGdXU1ra2toz2kY2Lv3r1ce+21uN1uFi9ezOWXX04kEuGpp57ijjvuYOnSpTz55JOSBlYIIYT4kJN51+iTeZcQQgghhBDizQq6xg/bHjtspXAdo0Dzz+PPsvQr36TtjT5e+/0OEsE0Wl5n4+N72bOig9M+MZ3GUyrks4Q4rMgh5d6EEEIIMXZJkJIQH4DPfvazfPnLX2bq1KmsXbuWhQsXjvaQjui+++6jqamJxsZGvv/97/P1r399tId0THg8Hn7xi19w880343Id/JDy4x//mEWLFvH000/zl7/8hY9+9KOjOEohhBBCvFcy7xp9Mu8SQnwYLFu2jGXLlhGPx0d7KEIIIcSY9Luel/l9z/Jj1l9WyxMuJI64Xwd6cmEWb74Tq90Mt0MulSeXzhcDm36a+DumVSo2pwXF9PaBSs/P/o9jMnYx9um6TrhrqNybBCkJIYQQY5k62gMQY1dpaSm33HILpaWloz2UUfXoo49yzjnnUFFRgd1up6amhiVLlvDoo48edR+nnHIKM2bMeM9lLTRN47777uPUU0+lpKQEh8NBXV0dl112GS+//HKx3csvv4yiKNx5552sWrWKCy64AL/ff1R3mCxZsoTGxsb3NM4h2WyWn/zkJ8yfPx+Px4Pb7Wb69Ol88YtfJBQKFduNGzeOcePGEYlE+MxnPkN1dTUul4uzzz6b9evXA9DZ2cnHP/5xKioqcDgcXHDBBTQ3Nx/1WGpra7njjjuGLZQBuFwuvvjFLwKwfPmx+9D9YSTveSGEGF3y/2GZd70XMu/68JH3vBCja8mSJXz/+9/nc5/73GgPRQghhBiTEoU0vbnIMft6qwClQ4ULCeOYfISQJUHckyFxyFfUnqJPix7VOcWJIxnOkEsVUFQFb6VztIcjhBBCiLcgmZTEEZWVlXHbbbeN9jBG1T333MMdd9xBdXU1V111FaWlpXR3d7NmzRoee+wxrrnmmg90PF//+tf54Q9/yMSJE/nYxz6Gx+Oho6ODFStWsGzZMhYtWjSs/apVq/iv//ovzj33XD71qU9x4MCBD2ysqVSK888/n5UrV9LU1MStt96KzWajubmZX/7yl9x0000EAoFi+2w2y/nnn086neb666+np6eHhx9+mCVLlrBq1So+8pGPUF1dzcc//nH27NnDU089xSWXXMKOHTve8yKkxWIBwGw+sf+XKO95IYQYXSf6/4dl3vXuybzrw+lEf88LIYQQQoixzWWyU2HxHbP+3i6T0hC/yYVVHfl5oZAtkE3m0bSDBeNUVcHqMmOyvLfPKeLDb6jUm6fcIb8PQgghxBgnfxkW4i3cd999WK1WNm7cSEVFxbB9wWBwVMZTU1PD5s2bcTqH3w0wMDAwov3zzz/Pb37zG2699dYPaohF3/rWt1i5ciWf+MQnuP/++4ctaEUikRELXF1dXZx55pn88Y9/LC5azZ07l69+9assXLiQW2+9lR//+MfFrAR33HEH99xzD0888QRXX331exrrb37zGwAuuOCC99SPEEIIId49mXe9ezLvEkIIIYQQQhxrN1Uu4qbKRcesv4KucdGW79Kbi6AfZr8CVFj8PDPr3zEphy8Ckkvn2fDYHrYs3Y9eONhL/dxyFt40DW/liVXma8eOHTz77LNs2LCB7u5uvF4vM2bM4Pbbb6e+vv4tj924cSMPPfQQzc3NRCIR3G43kyZN4uabb2bWrFkj2m/ZsoX/+7//Y/fu3bhcLs4991w++clPjvi8PFrCnUapN5+UehNCCCHGPCn3JsTbsFgsxTu+DzVaZRmsVuth72AvKSkZse3kk08elYWyfD7Pvffei8/n4+677x4xXp/Ph9vtHnHcj370o2F31d94443F/u66665hZVOG9m3atOk9jfXee+/lmWee4bzzzuPiiy9+T30JIYQQ4r2Redc7J/MuIYQQQgghxIeBSVH5Sv1VgBGQdKihx1+pv/KIAUoAFruZU2+cytXfP5OaGQc/J7Zt6OPRr6xg3V+ayWcLx3jkY9cf//hHli9fzrx58/iXf/kXLrvsMjZt2sTtt9/Ovn373vLY9vZ2VFXliiuu4Atf+ALXX389AwMDfO5zn+P1118f1ra5uZl//dd/JZ1O89nPfpZLLrmEp556iv/4j/94Py/vHRnKpOSvGfn5VwghhBBji2RSEuIt3HDDDXzlK19h5syZfOxjH+Pcc8/lzDPPxOv1Dmv3P//zP4TD4WHbbrnlFsaNG3fMx/O///u/zJw5kxtuuIFzzz2XhQsX4nA4Dtt+/vz5wx6Hw2H+53/+Z0S7O++885iOc+fOncRiMZYsWTKstMhbCQQCNDQ0DNtWXV0NQFNT04g7Mob2dXZ2Frc98MAD7N+/f1i7K6+8kpNOOumw53z66af57Gc/S2NjIw8++OBRjVMIIYQQ7w+Zd707Mu8SQgghhBBCfFgsCczmRxNu4Ydtj9GTixS3V1j8fKX+SpYEZh9VP4FaNxd9Yz4tr3fz2u93kAxlKOQ0Nvx1D3tWdLDw5uk0zK14+44+5K677jq+/e1vD7vZ57zzzuPWW2/lD3/4A9/61reOeOyll17KpZdeOmzbVVddxQ033MAjjzzCggULitvvvfdePB4PP/3pT3G5jExF1dXV/PCHP2TNmjWceuqpx/jK3rmTr2liwsJqbO6RNz4JIYQQYmyRICUh3sKXvvQlSktLueeee/jxj39cvOP8kksu4Sc/+Qnjx48HjMWy1tbWYccuWrTomC+W3X333YwfP57777+fu+66i7vuugu73c51113Hj3/8Y8rKyoa1r6ysHPY4HA7zne98Z0S/x3qxLBIxPmDW1tYe9TFvXoAEinf3v9W+XC5X3PbAAw+wfPnyYe3GjRt32MWypUuXcu2111JZWcmLL75YXHwTQgghxOiQede7I/MuIYQQQgghxIfJksBszvXPZH18H/25KGUWLye7J7xlBqXDURSFCadVUzennA2P7WHrM0YJuFhvir//v3U0zKvggn+b9z5dxdhwuLJs9fX1jBs3bsTn5qNht9vx+XzE4/HitkQiwRtvvMF1111XDFAC+MhHPsLPfvYzXnrppTERpGRzW6icfHQ37gghhBBidEmQ0nEimUzy0EMPsX37dnbs2EEsFuPrX/86F1100TE/V19fHz//+c9Zu3YtmqYxd+5cPve5z1FTUzOs3dlnn33Y4z/1qU/x8Y9//JiP6/2gKAq33XYbt912G8FgkFdffZU//elPPPzwwzQ3N7N582ZMJtOIu8jfL2azmS996Ut86UtforOzk+XLl3P//ffzu9/9ju7ubp577rkR4z/UuHHj0PXDVfw+tvx+PwAdHR3v+7kO9fLLLx9Vu7/97W9cc801lJWV8dJLLzFhwoT3dVzZbJZf//rX/P3vfycWizFx4kRuv/32ERkXDudo329gZCh46KGH6O7upry8nGuvvZZrrrlmWJsDBw7wxBNPsH37dpqbm8lms/z5z38+7GLhz372MzZu3Eh3dzfZbJbKykrOO+88brjhhhEZFo72Gn//+9+zcuVKOjo6SKVSlJeXs3DhQm666abi782Q/v5+7r//ftauXcvAwABlZWWceeaZfOITn8Dn873tcyeEEO8nmXsdezLvendO9HnXWJpnHW2fPT09LF26lNWrV9Pe3o7JZGL8+PHcdNNNnHLKKSP6jMVi/N///R+vvPIKmUyGadOmcccddzBlypQRbZPJJL/97W956aWXCAaD+Hw+ZsyYwTe/+U3sdvu76nNIR0cHN998M9lslnvvvZepU6e+7XMshBBCCCHE4ZgUlfmeScekL6vDzIKPTWXy2bWsemA7XdsHADiwrveY9P9ho+s6oVDoqG/kSSQS5HI5IpEIzz33HC0tLXziE58o7t+3bx+FQmHEZwWLxUJTUxPNzc1v2X9/fz/BYLD4+N0ETwkhhBDi+CJBSseJSCTCAw88QGVlJZMmTWLDhg3vy3mSySSf//znSSQSfPzjH8dsNvPwww/zuc99jt/85jcjAgdOOeUULrzwwmHbmpqa3pexvd9KS0u58sorufLKK+nv7+fFF19kz549b/mH/PdTTU0NN954I9dffz1Tpkxh2bJlpFKpI5Yg+SBNmTIFr9fL2rVrCYVCR1165IMwtFBWUlLCSy+9xKRJx+bD8Fv53ve+x8svv8xHP/pR6urqeOaZZ/jKV77C3XffzezZR05h/E7eb0888QQ//vGPOeecc7j++uvZvHkzd999N+l0mn/4h38ottu2bRuPPvoojY2NNDY2vuWHyJ07dzJ79mwuvvhirFYrzc3N/PGPf2TdunX87Gc/Q1UP3t10tNe4a9cuJk2axHnnnYfT6aS1tZWnn36a1atX85vf/Kb4+5tMJrnjjjtIpVJcddVVVFRUsGfPHv7617+yYcMGfvWrXw07vxBCfNBk7vX+knnX0TvR511jaZ51tH2uWLGCP/7xj5x11llceOGFFAoFnnvuOb74xS/yta99jYsvvrjYp6ZpfPWrX2Xv3r3ccMMN+Hw+Hn/8cT7/+c/zq1/9ivr6+mLbeDzOv/zLv9DX18dll11GbW0t4XCYzZs3k8vlikFK76TPQ/3sZz/DZDK9uxdKCCGEEEKI91mgzsPF3zyVfau7eP3BnSTDmdEe0qh4/vnn6evr47bbbjuq9v/xH//BmjVrACPw6PLLL+emm24q7h8KMCotLR1xbGlpKZs2bXrL/p988kkeeOCBEdtbWlooFApHNcYPs3g8zvbt20d7GB+YE+164cS75hPteuHEu+YT7XrhxLvm9/N6p0+fflTtJEjpOFFaWspjjz1GaWkpO3fu5FOf+tT7cp7HH3+c9vZ2fvnLXzJt2jQAFixYwC233MKf//znEeetr6/nggsueF/G8kF4+eWXOeecc4bdGZ/L5RgYMO7GOPRu5PdbJpNh3bp1nH766cO2JxIJ4vE4FotlzARtmM1mPv3pT/P//t//4/Of/zz333//sAWNSCSCyWTC7XZ/oON65plnuOaaawgEArz00ksfyKLt9u3beeGFF/jMZz7DjTfeCBipcG+55Rbuuece7rnnniMee7Tvt0wmw3333cfChQv57ne/C8Bll12Gpmn87ne/4/LLL8fj8QBwxhlnsHTpUpxOJ3/605/eMkjpF7/4xYhtNTU1/O///i87duxgxowZ7/ga77rrrhF9zpgxg29/+9usWrWKxYsXA7By5Uq6u7v5wQ9+wMKFC4ttvV4vDzzwAHv27GHy5MlHHLsQQrzfZO517Mm86905keddY22edbR9nnzyyTzyyCPDskheccUV3Hbbbfz6178eFqT08ssvs3XrVv7zP/+TRYsWAXDeeefxsY99jPvvv59vf/vbxbb33nsv3d3d3HfffcMyNx0aSPVO+xyyZs0a1q5dy4033sjvfve7Iz6vQgghhBBCjCZFUZh4eg31J5Wz/q97Rns4H7jW1lZ+8pOfMGPGjBE3MB3Jpz/9aa6//np6e3t59tlnyefzw4KHMhkj2MtisYw41mq1ks1m37L/yy+/nDPOOGPYGO+66y7Gjx8/ajcifZC2b99+1Au2x4MT7XrhxLvmE+164cS75hPteuHEu+axcL0SpHScsFqth41kP5zXXnuNBx98kN27d6MoCnPmzOEzn/kM48ePf9tjX375ZaZOnVr8oztAY2MjJ598Mi+99NJhF+iGJrE2m+0or2bsuPLKK/F6vZx22mk0NjaSy+V4/vnn2b59O9deey2NjY1H1c+KFSu47777AKMExNC2W265BYCysjJ+9KMfvWUfqVSKM844g8mTJzNv3jwaGhqIx+M8/fTTdHd386UvfemYPMf33XcfK1asAGDLli3FbUMlPc4880xuv/32t+3nP//zP3nttdf4/e9/z2uvvcZFF12EzWZj3759PPvss6xYsYKTTjrpPY/3aO3cuZOrrrqKTCbDokWL+NOf/jSizbhx44qvybGyfPlyTCYTl19+eXGbzWbjkksu4d5776Wnp4fKysrDHnu077f169cTiUS48sorhx1/1VVX8fzzz7N69erigrXX631P11NVVQUwrC75e7lGoFhq7tA+k8kkwIhsEEP/n/sw/v9ECHF8kbnXsSfzLpl3vVNjbZ51tH0e7r1vtVo57bTTePjhh0kmk8XSusuXL6ekpGRYOUe/38+5557L888/TzabxWq1EovFWLp0Kddccw01NTXkcjl0XcdqtR72eTuaPofk83l++tOfcu2111JbW3vY51MIIYQQQoixxOq0cNrHp719w+NIMBjkq1/9Ki6Xi+9+97tHnQX10BtKLrjgAm6//Xa+973vFW/SGPrsm8vlRhz75s8Oh1NWVkZZWdnRXoYQQgghTgASpHSCee655/iv//ovTj31VD796U+TyWR4/PHH+ed//md+/etfF4MFDkfTNPbt2zfszt4h06ZNY+3atcP+oA7w7LPP8vjjj6PrOo2Njdx0002cf/7578u1vR++973v8eyzz7JmzRqeeuopXC4XEydO5J577uEf//Efj7qfPXv28Nvf/nbYtr1797J3717AWLx4u8Uyl8vFD37wA1544QVeffVVent7CQQCTJkyhe9973vccMMN7/wCD2PFihUjxrpy5UpWrlxZfHw0i2V2u53nn3+en//85zz44IP86le/wmQy0dDQwD/90z8ddU3sY6W7u7u4aPvQQw8dts0555xzzIOUmpubqaurw+VyDds+tHi1Z8+ewy6evZP321A2pKlTpw5rN2XKFFRVZffu3e86q0Y+nycej5PP59m3bx/33XcfTqdz2OLbO71GXdeJRCIUCoVitgGTyTRs8XTOnDmoqspPf/pT/vmf/5ny8nL27t3L7373O84666yjXqgWQojRJnOvoyfzLoPMu47eWJpnvZv365sNDAxgt9uHBcDt3r2bpqamEZm7pk2bxlNPPUVbWxsTJ05ky5YtZLNZ6urq+Na3vsWKFSvQNI0ZM2bwr//6r8MWHo62zyGPPPIIsViMm266iVdeeeWI4xdCCCGEEEKMjng8zle+8hXi8Tg///nP33VQkMVi4YwzzuAPf/gDmUwGm81WvEFrqOzboYLBoAQgCSGEEOIdkyClE0gymeTuu+/m0ksv5ctf/nJx+4UXXsjHP/5xHnzwwWHb3ywajZLNZo9Yexj+//buOyyqY/8f+JsOAgKi0gQMVoqIBYioSFGiqFhQojexxBY7iRLbVROvGpNoVOwNg8Z8FdRoIgEEsWDjqgSjiFiiIGiogtJR2N8f/NjrugssZanv1/P4JDtnZs5n9jDukfPZGSAjIwMmJiYAACsrKzg7O8PAwACZmZn49ddfsXbtWuTl5Yl9E7mxmjNnDubMmVPrfqZOnVrrhzBKSkpYsmQJlixZUmVdJycnCASCGp3H399f4h7RNaGiooLFixdj8eLFldZLSEio8FhF4+jYsWO1xlib96Q2MjMzq5wzklRnvmVmZkJBQUFs1SElJSW0bt1a4j8gpfXgwQOROWBiYoINGzaIrMhU3TG+fPkSY8aMEb5u164dVq1aJZJ41LFjR/j4+GDXrl0i5x86dKhUc4CIqDHgvVf18L6rdlrifVdjus+q7nx9X3JyMiIjI+Hs7CzyjeeXL1+iZ8+eFfaZmZmJTp06ITk5GUDZlm+GhoZYsWIF8vLy4O/vjy+++AKHDh0SPjyQts/y/z906BDmzp0rlgxG1Jg8evQIW7ZswZMnT6ClpYVJkyZhxIgRDR0WERERkcwVFRVh2bJlSEpKwubNm2v9JZWioiIIBALk5+dDRUUFH3zwARQUFPDgwQO4uLgI67158waPHj2Cs7NzLUdARERELQ2TlFqQW7duITc3F66ursjOzhaWy8vLw9zcHH/++Wel7avae/jdOgCwa9cukTru7u6YMWMG9u3bJ9yCgqi5KyoqknrOvN8OkG6+FRUVQVFR8l/nysrKFZ5DGh07dsTmzZtRUFCA2NhYREdHo6CgQCzW6oyxdevW2Lx5M4qLi/Ho0SNERkaK9QmUJS+Zm5vjww8/hL6+Pv766y+cPHkSWlpamDdvXo3HRERUX3jvRSRbjek+q7rz9V2FhYX4+uuvoaKigs8//1wsVknbJ7zf57v3Ulu2bBGu2NSlSxfMmTMHp06dwsyZM6vVJwDs2bMHhoaGTPagRm/dunVwdnbGjh078OjRIyxcuBBWVlb1vpIcERERUX0qKSnBN998g3v37uHbb7+FlZWVxHoZGRnIy8uDkZGR8N83WVlZYl/GyMnJwaVLl9C+fXvhMQ0NDfTt2xdhYWGYMmWK8N8aZ8+eRUFBAZOUiIiIqNqYpNSClH+79osvvpB4vPybsUVFRcjNzRU5pqurW+XewwAqffilpKSEsWPH4scff8SDBw9gbW1d7TEQNTUqKio1mjPVmW8qKip4+/atxH6Ki4tr9VBaXV0dffv2BQAMHDgQ4eHhWLFiBQ4cOIDOnTsLz1+dMSopKQn7dHBwQO/evTFv3jzo6OjAwcEBAHD37l0sW7YMu3fvFm6vMnDgQKirq8Pf3x/Dhw/nAwciavR470UkW43pPqum87X8oUJCQgJ++OEHsa0SVFRUhO0r67M8wah///4iW8pZWlrCwMAAsbGx1e7z3r17CAsLw5YtW8S2hiNqbFJSUuDq6gp5eXl069YNpqamePbsGf/NQERERM3azp07cfXqVTg4OCAnJwdhYWEix93c3ACUrbgaGhqKgIAA4bbzX331Fdq1awcLCwvo6OggNTUVwcHByMzMxDfffCPSz4wZMzBv3jwsWLAAHh4eSEtLQ0BAAGxtbWFvb18vYyUiIqLmg0lKLUhpaSkAYOXKlWjTpo3Y8fJtBc6fP48NGzaIHIuMjETr1q2hrKxc4d7DAKrcf7h9+/YAyrZDIGoJdHV1kZ6eLlZe1ZypznzT1dVFSUmJ2Ldf3rx5g9evX0vcdqSmHB0dsX79ekRERAiTlGo6xnI9evSArq4uwsPDhUlKv//+O3R0dIQJSuX69++Pn376CbGxsXzgQESNHu+9iGSrMd1n1XS+bty4EdevX8eqVavQp08fseNt2rSptM/y85f3/f43ocvL3k2ElLbP3bt3w9raGgYGBvjnn38AQLgqXGZmJlJTU6GnpyfWD7Vc+fn5OHbsGOLi4nD//n3k5ORg+fLlGDZsmFjd4uJi+Pn5ISwsDDk5OejUqRNmzJgBW1vbGp3b09MT4eHhmDx5Mh4+fIi0tDRYWFjUdkhEREREjdrjx48BANeuXcO1a9fEjpcnKUni7u6O8+fPIzAwELm5udDU1ISFhQVWr14ttj10t27dsHnzZuzZswfbt29Hq1atMHz4cLGVYImIiIikwSSlFsTIyAgAoK2tLVzFRBJbW1ts3rxZrFxeXh5mZmaIj48XOxYXFwdDQ0ORb+1K8uLFC2EMRC1B586dERMTg7y8POGKGUDZnCk/Lkl15luXLl0AAPHx8ejXr5+wXnx8PEpLS4XH68KbN29QWlqKvLw8YVlNx/iu4uJikYdnL1++FD7cf1f5SgYlJSU1HgMRUX3hvReRbDWm+6yazNddu3YhODgYCxYswODBgyXG2qVLF9y5cwelpaUiqxndv38fqqqqMDY2BlD20AAo28bhfRkZGTAxMal2n2lpaUhJScHHH38s1ufy5cuhoaGB4OBgiXFTy/Tq1Sv4+/tDT09POD8rsmHDBly8eBHjx49Hhw4dEBISgiVLlsDX17dGK//Z29tj/fr1+PnnnwEAS5YsqTKRl4iIiKip27Ztm1T1VqxYgRUrVoiUjR07FmPHjpX6XNbW1mLbzBMRERHVBNdsb0Hs7Oygrq6OI0eOSNyyoPxbsW3btkXfvn1F/pQbNGgQ4uPjRX75/uzZM8TExMDJyUmsr3fl5+fjxIkT0NLSEv4Snai5c3JyQklJCX7//XdhWXFxMYKDg2FhYSH89nlqaioSExNF2ko733r37o3WrVvjt99+E2n/22+/QVVVVeSBmrRycnIk/j0RFBQEACJzWNoxFhQUoLCwUKzPixcvIicnR2TVJGNjY7x8+VLswUZERAQA1GniFRGRrPDei0i2Gtt9lrR9AsDRo0dx7NgxTJo0CePHj69wjIMGDcLLly8RGRkpLMvOzsaFCxfg4OAg3ObNxMQEnTt3xpUrV0T+Prhx4wbS0tJEVqeRtk8fHx+sX79e5I+npycAYO7cuVi1alWFcVPLpKuri1OnTuH48eOYM2dOhfXi4uIQERGBWbNmYe7cufDw8MDWrVuhr6+P3bt3i9SdN28eHB0dJf7Zv38/gLLVApcuXYq5c+fi3LlzOHDgAPbt24cHDx7IdLxERERERERERFR9XEmpGTl58iRyc3OFy/RfvXoVaWlpAMqWPtfQ0MCiRYuwfv16TJ8+Ha6urtDW1kZqaiqioqJgZWWFL7/8stJzjBkzBkFBQVi6dCkmTJgABQUFBAYGQkdHBxMmTBDW+/XXX3HlyhU4ODhAT08PmZmZCA4ORmpqKv79739DSUlJdm8EUSNiYWEBZ2dn7Nu3D9nZ2TAyMkJoaChSUlKwdOlSYb3169fj9u3bIg+LpJ1vKioqmD59OrZs2YLVq1fDzs4Of/31F8LCwjBz5ky0bt1aWDc3NxcnT54EAMTGxgIom68aGhrQ0NAQPni6ffs2fH194eTkhA4dOuDNmze4c+cOIiMj0b17d5GlgqUdY3JyMhYtWgRnZ2eYmppCTk4ODx48QFhYGPT19TFu3Dhh3bFjxyIkJATLli2Dp6cn9PT08Ndff+HcuXPo27cvt24gokaB915EDaux3WdJ22dkZCR2796NDh06wNTUFGFhYSLj6tu3r3CLSCcnJ5w4cQIbNmxAQkICtLS0cPr0aZSWlmLatGki7ebPn4/Fixdj/vz58PDwQG5uLgIDA2FsbIxRo0YJ60nbp52dndh7Xr7ypY2Njdi2vETKyspSbTV96dIlKCgowMPDQ1imoqKC4cOHY9++fSJbCe7cubPK/p4/fw5VVVVhMmCnTp1gZWWFv/76i0m6RERERERERESNDJOUmpGAgACkpKQIX0dGRgp/Ee/m5gYNDQ0MGTIEbdu2xS+//IJjx46huLgY7dq1g7W1Ndzd3as8R6tWreDr64sdO3bg8OHDKC0tRa9evTB//nyRbUR69OiB2NhYBAUF4fXr11BVVYW5uTmWLl2KPn361PnYiRqzFStWQE9PD2fPnkVubi7MzMzw/fffw8bGptJ20s43oOyhmKKiIgICAnD16lW0b98e8+fPF/tmfk5ODvz8/ETKAgICAAD6+vrCJCUzMzP06tULV65cQWZmJgQCAYyMjDBlyhRMnDhR7GG3NGNs164dHB0d8eeff+Ls2bN4+/Yt9PT0MHbsWEyaNAlaWlrCuiYmJti/fz8OHDiAsLAwvHz5Em3btsWECRPEHsgRETUU3nsRNbzGdJ8lbZ+PHz8GUJbAvW7dOrHYfH19hUlKCgoK+OGHH7Br1y6cPHkSRUVF6N69O5YvXy6yhRtQturTxo0b4efnh3379kFVVRUDBw7E7NmzRbaaq06fRLLw6NEjdOjQQWSbRgAwNzcHUDZHypOUpGFsbIyioiJcvnwZAwYMQGJiIu7cuSOSnPeujIwMYYJx+fkAiK24VpFnz55BQUFB6viIqGng3CZqvkxNTaGqqtrQYdD/V1RUBED6e6+mrqV9vrS08QItb8wtbbxAyxtzSxsv0PLGLOvxSnPvJScQCAQyi4CIiIiIiIiIiFqU+Ph4zJo1C8uXL8ewYcNEjk2ZMgU6OjrYunWrSHlCQgImT56MxYsXV5hgVJEbN25gz549eP78OVq3bo3Ro0fjk08+kVj34MGD8Pf3r1b/RERE1HRt3LgR9vb2DR0G/X9hYWESv6xBREREzcP+/furXNmaKykREREREREREVG9KCoqkrgNqbKysvB4ddnZ2UncolASDw8P9O/fX/g6JycH27Ztw1dffSWMoSKJiYlYt24dVq5cCVNT02rH2dJs374dCxYsaOgwpNKQscr63HXdf237q2n7mrSTtg3ndvVwbjeOczeXuV2TttWd22pqajWKi2TDzs4OK1euhIGBQZX3Xk1dS/t8aWnjBVremFvaeIGWN+aWNl6g5Y25PsYrTb9MUiIiIiIiIiIionqhoqKCN2/eiJUXFxcLj8tS27Zt0bZtW5EyQ0ND9OjRQ+o+TE1Nq/xWIAEaGhpN5n1qyFhlfe667r+2/dW0fU3aVbcN57Z0OLcbx7mby9yuSdvq1pf1vQVVj7a2Ntzc3Bo6jHrV0j5fWtp4gZY35pY2XqDljbmljRdoeWNu6PHKN9iZiYiIiIiIiIioRdHV1UVmZqZYeXnZ+wlE9WHw4MH1fs6WoCm9rw0Zq6zPXdf917a/mravSbum9DPYlDSl95Vzu/76q0376rZtSj+DRERERCSOSUpERERERERERFQvOnfujOTkZOTl5YmUx8XFCY/XNz7slI2m9L4ykaH++mOSUtPXlN5Xzu36649JSkREREQkLSYpERERERERERFRvXByckJJSQl+//13YVlxcTGCg4NhYWEBPT29Boyucrq6upg6dSp0dXUbOhQiqkOc20TNE+c2NbSW9jPY0sYLtLwxt7TxAi1vzC1tvEDLG3NjGa+cQCAQNGgERERERERERETU5J08eRK5ubnIzMzE6dOn4ejoiC5dugAAPD09oaGhAQD4+uuvERkZCS8vLxgZGSE0NBT379/Hli1bYGNj04AjICIiIiIiIiIiWWKSEhERERERERER1ZqXlxdSUlIkHgsICICBgQEAoKioCH5+fggLC0Nubi7MzMwwY8YM2NnZ1We4RERERERERERUz5ikREREREREREREREREREREREREMiXf0AEQERERERERERE1B8XFxfjuu+8wbtw4DB06FLNnz0ZsbGxDh0VEdWDjxo0YPXo0hg4diilTpuDq1asNHRIR1ZHY2FgMGjQIhw4dauhQiIiIiJo9rqRERERERERERERUBwoKChAQEIBhw4ahXbt2uHDhArZu3YqAgAC0atWqocMjolpITEyEgYEBlJWVcf/+fSxatAjHjh2DlpZWQ4dGRLVQWlqKuXPnQiAQwMHBAVOmTGnokIiIiIiaNcWGDoCIiIiIiIiIiKg5UFNTw9SpU4WvXV1dsWPHDiQlJaFbt24NFxgR1Zqpqanw/+Xk5PDmzRtkZGQwSYmoiTtz5gzMzc2Rl5fX0KFQE3D//n2EhoYiJiYGKSkpaN26NSwtLTFjxgwYGxtX2jYkJAQbNmyQeOzUqVPQ1dWVRci1EhMTA29vb4nHdu/eDUtLy0rbp6enY8eOHbh58yZKS0vRq1cvLFiwAIaGhrIIt058++23CA0NrfD4yZMn0a5dO4nHDh48CH9/f7FyZWVlnDt3rq5CrJX8/HwcO3YMcXFxuH//PnJycrB8+XIMGzZMrG5CQgJ27NiBu3fvQlFREf369cP8+fOhra0t1bmuXLmCn376CYmJidDW1oa7uzsmT54MRcX6S0+QZrylpaU4e/YsLl26hEePHiEnJwcGBgZwcXHBhAkToKKiUuV5Fi5ciNu3b4uV29nZYdOmTXU5pCpJe40r+lk3MTHBkSNHpDpXU7nGAODo6FhhH3379sXmzZsrPY+XlxdSUlLEyj08PODj41Oz4GugOp9DjXkOM0mJiIiIiIiIiIhapOr8kr64uBh+fn4ICwtDTk4OOnXqhBkzZsDW1rbC/pOSkpCTkwMjIyNZDoOI3iOrub1582YEBwejuLgYH374IczMzOpjOEQE2czrV69e4fjx49i9eze2b99eX0OhJuz//u//cPfuXTg7O6NTp07IzMzEqVOnMGPGDOzevVuqz4Xp06fDwMBApExDQ0NWIdcJT09PmJubi5RVdX+bn58Pb29v5OXl4dNPP4WioiICAwOxYMECHDx4sNEm+Xp4eKBv374iZQKBAD/++CP09fUrTFB61+LFi6GmpiZ8LS8vX+dx1tSrV6/g7+8PPT09dO7cGTExMRLrpaWlYcGCBdDQ0MDMmTNRUFCAY8eO4cmTJ9i7dy+UlJQqPU9UVBT+/e9/w8bGBt7e3njy5AkOHz6MrKwsLF68WBZDk0ia8RYWFmLDhg2wtLTEqFGjoKOjg3v37uGnn37Cn3/+ia1bt0JOTq7Kc7Vr1w6ff/65SFlDJB9Ke42BsgS6JUuWiJSpq6tLdZ6mdI0BYOXKlWJl8fHxOHHiRKX/pn9Xly5d8PHHH4uUdejQofpB14K0n0ONfQ4zSYmIiIiIiIiIiFqk6vwCd8OGDbh48SLGjx+PDh06ICQkBEuWLIGvry+sra3F6hcVFWHdunX45JNPGv2DJ6LmRlZze9GiRfD29sbt27fx5MkTqR5YEVHdkMW83r9/P8aPHw9NTc36GAI1A15eXli9erXIw10XFxd89tln+OWXX7Bq1aoq+7C3t0f37t1lGWad69mzJ5ycnKrV5vTp00hOTsbevXuFCU729vaYOnUqAgICMGvWLBlEWntWVlawsrISKbtz5w4KCwsxZMgQqfoYNGiQ1CuV1DddXV3hyl3x8fEVXocjR46gsLAQBw4cgJ6eHgDA3NwcixYtQkhICDw8PCo9z65du9CpUyf8+OOPwlVXWrVqhSNHjmDcuHEiK1TKkjTjVVJSws6dO9GjRw9h2ciRI6Gvr4+DBw8iOjpaLHFNEg0NDbi5udVp/DUh7TUGAAUFhRrH3JSuMQCJ44yJiYGcnBxcXV2lOlfbtm0b/BpL+znU2Odw40ndJCIiIiIiIiIiqkflv9A8fvw45syZU2G9uLg4REREYNasWZg7dy48PDywdetW6OvrY/fu3WL13759i9WrV8PIyEhk+zciqh+ymttA2cOcPn36IDo6GtevX5fVEIjoPXU9rx8+fIj4+HiMGDGiPsKnZqJHjx5iq08YGxujY8eOSExMlLqf/Px8lJSU1HV4MpWfn4+3b99KXf/ixYvo3r27yApMpqam6N27Ny5cuCCLEGXm3LlzkJOTw+DBg6Vuk5eXB4FAIMOoakZZWVmq1X0uXboEBwcHYXIDULYllrGxcZXXLyEhAQkJCRg5cqTItlBjxoyBQCDAxYsXaxx/dUkzXiUlJZEEpXIDBw4EgGrN7bdv3yI/P796QdYxaa9xuZKSkmpvedrUrrEkxcXFuHTpEmxsbNC+fXup27158wYFBQXVPl9dkfZzqLHPYa6kRERERERERERELVJ1fkmvoKAg8m1DFRUVDB8+HPv27UNqaqrwl3+lpaVYt24d5OTksGLFCq60QtQAZDG331dSUoLnz5/XWcxEVLm6nte3b99GUlISPD09AQC5ublQUFDAixcvsHz5cpmNg5ofgUCArKwsdOzYUar63t7eKCgogJKSEmxtbTFv3jwYGxvLNsha2rBhAwoKCqCgoABra2vMmTOn0tWgSktL8eTJE7i7u4sdMzc3x82bN5Gfn49WrVrJMuw68fbtW1y4cAFWVlZi2/RV5OOPP0ZBQQHU1NQwYMAAzJs3D23atJFxpHUnPT0dWVlZ6Natm9gxc3NzREVFVdr+4cOHACDWvm3btmjXrh0ePXpUd8HK0MuXLwFA6q0Jk5KS8NFHH+HNmzdo06YNRowYgalTp4okeTQ2hYWFGDZsGAoLC6GpqQlXV1fMnj27yrnZHK5xVFQUcnNzpV4hDQD+/PNPuLm5oaSkBPr6+hg/fjzGjx8vwyil8/7nUFOYw413VhARERERERERETUCjx49QocOHaCuri5SXv7N8MePHwsTGTZt2oTMzExs2rSpUf9Cmoikn9u5ubm4fv06+vfvD2VlZVy+fBkxMTGNdqsaopZM2nnt4eEhsr3Ltm3bYGBggE8++aRe46WmLzw8HOnp6Zg2bVql9VRUVDBs2DD06tUL6urqePDgAQIDAzF37lyR7XgaE0VFRQwaNAgffvghtLS0kJCQgICAAMyfPx+7du1C165dJbZ7/fo1iouLJSYWlpdlZGTAxMREpvHXhRs3buDVq1dSJTJoampi7NixsLS0hJKSEu7cuYNTp07h/v372L9/v9jfS41VZmYmAFR4/cqvr7Kyco3alx9v7I4ePQp1dXXY29tXWdfQ0BC9evWCmZkZCgsLcfHiRRw+fBhJSUlYs2ZNPURbfbq6upg4cSK6du0KgUCA//73vzh9+jT+/vtv+Pr6Vvpv2eZwjcPDw6GsrIxBgwZJVd/MzAzW1tYwNjbG69evERISgu3btyMjI6PSFR7rw/ufQ01hDvM3JURERERERERERJXIzMys8iELAKSkpCAoKAjKysoiKzj88MMP6NmzZ/0ES0RSk3Zuy8nJISgoCFu2bIFAIICRkRFWrVqFLl261Gu8RFQ1aee1qqoqVFVVhcdVVFSgpqYGTU3N+gmUmoXExERs2bIFlpaWGDp0aKV1XVxc4OLiInw9cOBA2NnZYcGCBfj555/h4+Mj63CrrUePHiLbYA0YMABOTk747LPPsG/fPmzatEliu6KiIgAQ25IIgPCheHmdxu7cuXNQVFSEs7NzlXXfX1HFyckJ5ubmWLt2LU6dOoVPP/1UVmHWKWmvX0UJDsXFxSJ132/f0NuhSePnn3/GrVu3sGjRIqk+F5YtWyby+qOPPsLGjRtx5swZeHl5wdLSUlah1tjnn38u8trV1RXGxsbYv38/Ll26JJLI+76mfo3z8vJw/fp12NvbS/25/91334m8dnd3x1dffYXAwEB4enpWa8u4uiTpc6gpzGEmKREREREREREREVWiqKhIqocs+vr6iIyMrNfYiKjmpJ3b6urq8PX1rdfYiKhmpJ3X71uxYoVM46LmJzMzE0uXLoW6ujrWrl0LBQWFavdhbW0NCwsLREdHyyBC2ejQoQMGDBiAyMhIlJSUSBy3iooKAODNmzdix8offpfXaczy8/Nx5coV2NnZSb3l1/uGDBmCnTt3Ijo6uskkKdX2+pX/fVte9/32jf3aR0RE4MCBAxg+fDhGjx5d434+/vhjnDlzBrdu3WqUSUqSeHl5wc/PD7du3ao0SampX+NLly6huLi4Wlu9vU9OTg5eXl64ceMGbt++DTc3tzqMUDoVfQ41hTksX+seiIiIiIiIiIiImjEVFZUm/5CFiMRxbhM1P5zXVB9yc3OxZMkS5ObmYtOmTWjbtm2N+2rfvj1ev35dh9HJXvv27fHmzRsUFhZKPN66dWsoKytL3BKovKw271l9uXLlCgoLC2uVyAA0vWtcvvJcRdev/PrWtL2k1e4ai5s3b+Lbb79Fv379sHjx4lr1Vb6yTk5OTl2EVi9UVFTQunXrKn9em/I1Bsq2R9PQ0ICDg0Ot+im/xg0xvyv7HGoKc5hJSkRERERERERERJXQ1dVt8g9ZiEgc5zZR88N5TbJWVFSEZcuWISkpCd999x06duxYq/5evHgBbW3tOomtvrx48QLKyspQU1OTeFxeXh5mZmaIj48XOxYXFwdDQ0O0atVK1mHWWnh4ONTU1NC/f/8a9yEQCJCSktKkrnG7du2gra2NBw8eiB27f/8+OnfuXGn78u1w32+fkZGB9PT0RrtdblxcHFauXIlu3bphzZo1UFSs3YZUL168AIAmde3z8/Px6tWrKmNuqtcYKIsxJiYGjo6OlSbqSKOhrnFVn0NNYQ4zSYmIiIiIiIiIiKgSnTt3RnJyMvLy8kTK4+LihMeJqOnh3CZqfjivSZZKSkrwzTff4N69e1izZg2srKwk1svIyEBiYiLevn0rLMvOzhard/36dTx48AB2dnayCrlWJMX8+PFjXL16Fba2tpCXL3vMnJqaisTERJF6gwYNQnx8vEii0rNnzxATEwMnJydZhl0nsrOzcevWLTg6OkJVVVXsuKQxS3q/Tp8+jezsbNjb28sqVJkYNGgQrl27htTUVGFZdHQ0kpKS4OzsLCx7+/YtEhMTkZGRISz74IMPYGJigjNnzqCkpERYfvr0acjJyWHQoEH1M4hqSEhIwNKlS6Gvr4/vv/++0lX3EhMTRd6XvLw8sW2xBAIBDh8+DACwtbWVTdC1UFRUhPz8fLHyQ4cOQSAQiPy8NpdrXO78+fMoLS2tcIU0SeN9/fq1yDjL6/3yyy9QUlJCr169ZBrzu6T9HGrsc7h2KYBERERERERERETNnJOTE44dO4bff/8dEydOBFC2bUxwcDAsLCygp6fXwBESUU1wbhM1P5zXJEs7d+7E1atX4eDggJycHISFhYkcd3NzAwDs27cPoaGhCAgIgIGBAQBgzpw56Nq1K7p16wZ1dXU8fPgQwcHBaN++PSZNmlTvY5HG119/DRUVFVhZWUFHRwcJCQk4c+YMVFVV8fnnnwvrrV+/Hrdv30ZkZKSwbMyYMQgKCsLSpUsxYcIEKCgoIDAwEDo6OpgwYUJDDKdaIiIiUFJSUmEig6Qxjx8/Hi4uLjAzM4OysjLu3r2LiIgIdOnSBR4eHvUVepVOnjyJ3Nxc4QpzV69eRVpaGgDA09MTGhoa+PTTT3Hx4kV88cUXGDduHAoKCnD06FGYmZlh2LBhwr7S09MxadIkDB06FCtWrBCWz507F8uXL8fixYvh6uqKJ0+e4NSpUxgxYkStVx+r6/HKy8vDx8cHOTk5mDBhAq5fvy7S3tDQUCQRZNKkSbCxscG2bdsAAA8fPsSaNWswePBgGBkZoaioCJcvX8bdu3cxcuRIdOvWrZ5G+j9VjTknJwfTp0/H4MGDYWJiAgC4ceMGoqKiYG9vjwEDBgj7ag7XWENDQ1g3PDwcbdu2rTCxSNJ4r169isOHD2PQoEEwMDBATk4OwsPD8fTpU8yaNatet7eT9nOosc9hJikREREREREREVGLJc0vNC0sLODs7Ix9+/YhOzsbRkZGCA0NRUpKCpYuXdqQ4RNRBTi3iZofzmtqaI8fPwYAXLt2DdeuXRM7Xv5wWBIXFxdERUXh5s2bKCwshK6uLkaOHImpU6eiTZs2Mou5NgYOHIjw8HAEBgYiLy8P2tracHR0xNSpU9GhQ4dK27Zq1Qq+vr7YsWMHDh8+jNLSUvTq1Qvz589vEttfnTt3Djo6OujTp4/UbYYMGYLY2FhcunQJxcXF0NPTw8SJEzF58mSJqzE1lICAAKSkpAhfR0ZGCpOt3NzcoKGhAT09PWzbtg07duzA3r17oaioiH79+mHevHlSbZHl4OCAdevWwd/fH76+vtDS0sKnn36KqVOnympYFapqvACEnyV79+4Vaz906NAKV6sBAD09PfTs2RORkZF4+fIl5OXlYWpqisWLFzdYcpo019jBwQE3b95EaGgoSktLYWRkhFmzZmHChAnCVdIq05SucXmS0rNnz/DgwQN4eXlJNcZyZmZmMDU1RXh4OLKzs6GoqIguXbpgzZo1IqsS1QdpP4ca+xyWEwgEgjrpiYiIiIiIiIiIqInx8vIS+YXmu9799ntRURH8/PwQFhaG3NxcmJmZYcaMGY12ew6ilo5zm6j54bwmIiIiavqYpERERERERERERERERERERERERDIl/TpWRERERERERERERERERERERERENcAkJSIiIiIiIiIiIiIiIiIiIiIikikmKRERERERERERERERERERERERkUwxSYmIiIiIiIiIiIiIiIiIiIiIiGSKSUpERERERERERERERERERERERCRTTFIiIiIiIiIiIiIiIiIiIiIiIiKZYpISERERERERERERERERERERERHJFJOUiIiIiIiIiIiIiIiIiIiIiIhIppikRERERERERERERERERERERA0iJiYGjo6OiImJaehQiEjGmKRERERERERERERERERERETUTISEhMDR0RHx8fEAgOvXr+PgwYMNHBVw6tQphISENHQYRNSAmKRERERERERERERERFSFwMBAuLi44J9//hGWlT8AbCwP24KCguDk5IS///67oUMhIiKiRiQqKgr+/v4NHQZOnz4t8b6pZ8+eCA8PR8+ePRsgKiKqT0xSIiIiIiIiIiIiImph/vnnHzg6Olb6x8vLq6HDbDRycnJw+PBhuLu7w8DAQKbnunHjBhwdHbF48eIq6/7nP/+Bo6MjwsPDAQBDhw6Fnp4edu/eLdMYiYiIiAQCAYqKiuqkL3l5eaioqEBenukLRM2dYkMHQEREREREREREREQNw8jICEOGDJF4TENDo56jabwCAwPx+vVrTJw4Uebn6tu3L/T09BAdHY3U1FTo6elJrJebm4vLly9DQ0MDjo6OAABFRUV4eXnB19cXd+/eRY8ePWQeLxERETVu3377LUJDQwFAeM8AAJGRkQCA0tJSnDhxAkFBQXjx4gXU1dUxYMAAzJ49G5qamsL6Xl5e+OCDD+Dp6Yn9+/fj6dOnmDVrFry8vBAcHIyzZ8/i6dOnyMvLg6GhITw9PTF69GiR9ikpKSJx2NjYYNu2bYiJiYG3tzd8fX3Rq1cvYZsLFy7gl19+QUJCAtTU1GBnZ4fZs2ejXbt2IuO7dOkSjhw5gi1btiA6OhrKysoYOnQoZs+eDQUFhbp/U4moxpikRERERERERERERNRCGRkZYdq0aQ0dRqP29u1bBAUFoUePHjAyMpL5+eTl5TFs2DD4+/sjNDQUU6ZMkVjv3LlzKCoqgru7O1RUVITlrq6u2LFjB3777TcmKRERERE8PDyQkZGBW7duYeXKlWLHN23ahJCQELi7u8PT0xP//PMPTp06hUePHmHXrl1QVPxfSsGzZ8+wZs0aeHh4YMSIETAxMQFQto3bBx98gP79+0NBQQHXrl3D5s2bUVpairFjxwIAFixYgK1bt0JNTQ2TJ08GAOjo6FQYd0hICDZs2IDu3btj1qxZyMrKwokTJ3D37l34+fmJJFCVlJTAx8cH5ubmmDt3Lm7duoWAgAAYGRmJJEoRUcNjkhIRERERERERERERVcnR0RE2Njb45ptvsHv3bkRFRaGgoACdO3fG559/LvKt93L5+fk4duwYLl68iBcvXkBZWRnm5uaYMmUKrK2tReouXLgQt2/fRnh4OA4fPoyIiAikpqZi0qRJwkSq8m/JP336FOrq6ujfvz/mzJmD6dOnAyhb8QgA1q5di/DwcOzZswcWFhZicfn5+eHQoUNYvXo1Bg8eXOm4b9y4gczMTPzrX/+S+r1KS0vDV199hefPn2PlypVwcnICAGRlZeHIkSO4du0a0tLS0KpVK/Ts2RPTpk2DmZmZsL27uzsOHTqEkJAQTJ48GXJycmLnCA4OBgAMHz5cpFxbWxu9evXCxYsXsWjRIrRq1UrquImIiKj5sbKygrGxMW7dugU3NzeRY3fu3EFQUBBWrVolsrpm79694ePjgwsXLoiUP3/+HJs2bYKdnZ1IP9u3bxdJmvb09ISPjw8CAwOFSUoDBw7EgQMHoKWlJRbH+96+fYs9e/bggw8+EOnb2toaS5cuxfHjx0US7YuLi+Hi4iJM7h41ahSmT5+OP/74g0lKRI0MN3UkIiIiIiIiIiIiIqnk5uZi3rx5SEhIgJubGxwdHfHgwQP4+PjgyZMnInVfv36NOXPmwN/fH5qamhg1ahQcHR3x8OFDeHt74/LlyxLPsWrVKoSGhqJXr14YN24cDAwMAAB//PEHVq1aheTkZHz00UcYOnQo7t27h0WLFuHt27cifXh4eAjbvK+kpATBwcHQ0tIS2fKkItHR0QAAS0vLqt8gAAkJCZg7dy7S0tKwceNGYYLS8+fPMWPGDBw/fhyGhoYYO3YsPvzwQ9y4cQNz5sxBXFycsA99fX306dMHL168QExMjNg5njx5gvj4eHTp0gVdu3YVO25paYni4mLExsZKFTMRERG1TBcuXICGhgZsbW2RnZ0t/NO1a1eoqamJ3YcYGBiIJSgBEElQys3NRXZ2NmxsbPDixQvk5uZWO674+HhkZWVhzJgxIn3369cPJiYmuH79ulibUaNGiby2trbGixcvqn1uIpItrqRERERERERERERE1EI9f/4cBw8elHjM0tIS9vb2ImWPHz/G6NGj8cUXX0Bevuw7sL1798YPP/yAX3/9FT4+PsK6W7duxdOnT7FkyRKMGDFCWJ6VlYWZM2di48aNsLOzE3nwBACZmZn46aef0Lp1a2FZTk4Otm3bBjU1Nezbtw/GxsYAgJkzZ8LHxwcPHjyAvr6+sH7Pnj3RsWNHREREYP78+VBTUxMeu3HjBtLT0zF+/HgoKytX+R7dvXsX8vLy6Ny5c5V17927h6VLl0JRURHbt28XabN+/Xq8fPlSbPWByZMnY+bMmfjhhx/g7+8vLB8+fDhu3bqF4OBg9O7dW+Q8Fa2iVK5bt24AgNjYWIkPEomIiIgAIDk5Gbm5ucIE7/dlZWWJvC5PHn/f3bt3cfDgQdy7dw+FhYUix/Ly8qChoVGtuFJTUwFAeM/3LlNTU9y5c0ekTFlZGdra2iJlmpqayMnJqdZ5iUj2mKRERERERERERERE1EI9f/5cJDHmXePGjRNLUlJTU8Ps2bOFCUoAMHToUPz444+Ij48XlmVnZ+PChQvo3bu3SIISAOjo6GDixInw9fVFdHQ0HBwcRI5/9tlnIglKAHDlyhUUFBTA09NT5GGVoqIiZsyYgblz54rF7+HhgW3btiEiIkIkhqCgIADAyJEjJY77fenp6dDQ0Kgyoen69ev4+uuvoaurix9//BGGhobCYw8fPkRsbCzc3d3FkoaMjY0xYsQIBAYG4smTJ8Jt3wYOHAgtLS1cunQJX375JdTV1QGUbX8SFhYGZWVlke1X3tWmTRsAZdvOEREREVVEIBBAR0cHq1atknj8/cSf95PLgbL7yS+//BImJiaYN28e2rdvDyUlJURFRSEwMBClpaWyCF2EgoKCzM9BRHWDSUpERERERERERERELZSdnR02bdokdf0OHTqgVatWImWKiopo06aNyFYe8fHxKCkpwZs3bySu1JScnAwASExMFEtSMjc3F6v/999/AyjbtuN9FhYWEh9MffTRR9i7dy+CgoKESUovX77EtWvXYGVlhY4dO1Yx2jKvX79Gu3btKq1z4cIF3Lx5E506dcLGjRuho6Mjcrx8K7esrCyJ78ezZ8+E/y1PUipPQjpx4gTOnTsn3MLk6tWryM7OxuDBg6GpqSkxnvLyV69eSTVGIiIiat7k5OQklhsaGiI6Oho9evSQmIAkjatXr6K4uBgbNmyAnp6esFzSlrXSKu8nKSkJffr0ETn27NkzkRU0iahpYZISEREREREREREREUmlfDWf9ykoKIh8S/7169cAyrb+uHv3boX9vb8dCPC/VYDelZeXBwBiyT8AIC8vDy0tLbFyTU1NODs7IzQ0VLhCUUhICEpKSqReRQkoWzGguLi40jr37t1DSUkJrK2tJcZY/n5cv34d169fr7CfgoICkdfDhw/HiRMnEBwcLExSqmqrNwDCeFVVVSuNm4iIiFqG8nuCnJwckSRnFxcXnD59GocOHcKsWbNE2rx9+xYFBQUVJkWXK08WFwgEwrLc3FzhPcu71NTURBLbK9K9e3fo6Ojgt99+g7u7u3BFy6ioKCQmJmLq1KlV9kFEjROTlIiIiIiIiIiIiIioTpUnM3388ceYN29etdpK+qZ/eX9ZWVlix0pLS/Hq1SuJqx2NGjUKoaGhOHPmDLy9vfHHH39AXV0dzs7OUsejpaWF9PT0SuvMmjULV65cwYkTJ6CgoCA25vL4vb294enpKfW5O3XqhO7du+P+/ft4+vQpNDU1cePGDRgYGKB3794VtitPinp/ixYiIiJqmbp16wYA2LZtG2xtbaGgoABXV1fY2NjAw8MDR44cwaNHj2BrawtFRUUkJyfj4sWLWLhwIZycnCrt29bWFkpKSli2bBk8PDxQUFCAoKAg6OjoIDMzU6Ru165d8dtvv+HQoUPo0KEDtLW1xVZKAspW6pw9ezY2bNiAhQsXwtXVFVlZWThx4gT09fUxfvz4OntviKh+MUmJiIiIiIiIiIiIiOpU9+7dIScnh3v37tVJf506dQJQtjLT+wlG9+/fR0lJicR2lpaW6NSpE8LDw9GvXz8kJydj9OjR1VphyMzMDM+fP0dqaqrIFibvUlZWxvr167Fq1SoEBARAIBBg/vz5wuPlW9jdu3evWklKQNmKSfHx8fjjjz+go6ODkpISuLu7V7htC/C/7ePKt44jIiKils3R0RGenp6IiIhAWFgYBAIBXF1dAQA+Pj7o1q0bfv/9d+zfvx8KCgrQ19fHkCFDYGVlVWXfJiYm+M9//oMDBw5g165daNOmDUaPHg1tbW189913InWnTp2K1NRUHD16FPn5+bCxsZGYpAQAw4YNg4qKCn755Rfs3bsXqqqqGDhwIGbPnl3l6k5E1HgxSYmIiIiIiIiIiIiI6pSuri6cnZ1x/vx5HD16FBMmTBBLqomLi4OZmZlUCUMDBgyAmpoa/vjjD3h6esLIyAhA2TYkfn5+lbb18PDAli1bhA/JRowYUa2x2NjY4PLly4iLi6swSQkoS1Rat24dVq1ahcDAQAgEAixYsAAAYGFhAQsLC0RERKB///7Ch4LlSktLcefOHdjY2Ij1O3jwYOzcuRNhYWHQ1NSEvLw8hg4dWmnM9+/fF8ZORERELc+wYcMwbNgw4WsFBQV4e3vD29tbYv2RI0dWuR1uYGBghcf69++P/v37i5W7u7uLvG7Tpg2+//57sXq9evVCZGSkWLmLiwtcXFwqjWvFihVYsWKFWPm0adMwbdq0StsSUf1jkhIRERERERERERFRC/X8+XMcPHiwwuOffPIJVFRUatT3okWLkJSUhN27d+Ps2bOwtLSEhoYG0tPTER8fj+TkZJw6dUqqJCVNTU3Mnz8fGzduxMyZM+Hi4gJ1dXVERUVBWVkZbdu2rXBlITc3N+zZswcZGRno1q0bunbtWq1xDBgwADt37sStW7eq3CZOSUkJa9euxerVq3H8+HEIBAIsXLgQALB69Wp88cUXWLNmDU6cOIEuXbpARUUFaWlpiI2NxatXr3Du3DmxPtXV1TFo0CCcPXsW2dnZsLe3rzRZSiAQIDo6GqampjA2Nq7WWImIiIiIiGSJSUpERERERERERERELdTz58/h7+9f4fHx48fXOEmpdevW2LVrF3799VecP38e586dQ2lpKdq0aYPOnTtjypQp0NLSkrq/kSNHQlNTEz///DNCQ0Ohrq6O/v37Y/bs2Rg/frxwdaX3qaurY+DAgQgLC6v2KkoAYGBgAFtbW1y8eBHe3t5QVlautH55otLXX3+NEydOQCAQwNvbG4aGhvDz80NAQAAuX76MkJAQyMvLQ1dXFz179oSTk1OFfQ4fPhxnz54FIL4iwfv++usvpKamCldxIiIiIiIiaizkBAKBoKGDICIiIiIiIiIiIiKqieTkZPzrX/+Cs7Mz1qxZI7HOlClTkJKSgl9//RXq6urVPkd0dDS+/PJLrFy5Em5ubrUNWabWrl2L//73vzh69Cg0NTUbOhwiIiIiIiIh+YYOgIiIiIiIiIiIiIioKjk5OSguLhYpKyoqwo4dOwAAAwcOlNguKioKT58+xeDBg2uUoAQAffr0gb29PQ4fPozS0tIa9VEfkpKScP78eUyePJkJSkRERERE1OhwuzciIiIiIiIiIiIiavRu376N77//Hra2tmjfvj1evXqFP//8EykpKejduzdcXFxE6p8+fRppaWkICgqCsrIyPvnkk1qdf+HChQgPD0d6ejr09PRq1ZespKWlYerUqRgzZkxDh0JERERERCSG270RERERERERERERUaOXlJQEPz8/xMbGIjs7GwBgZGQEFxcXTJgwASoqKiL1vby8kJ6eDmNjY8yePRsODg4NEDURERERERGVY5ISERERERERERERERERERERERHJlHxDB0BERERERERERERERERERERERM0bk5SIiIiIiIiIiIiIiIiIiIiIiEimmKREREREREREREREREREREREREQyxSQlIiIiIiIiIiIiIiIiIiIiIiKSKSYpERERERERERERERERERERERGRTDFJiYiIiIiIiIiIiIiIiIiIiIiIZIpJSkREREREREREREREREREREREJFNMUiIiIiIiIiIiIiIiIiIiIiIiIpn6f8MMSu151WHwAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "title = [\"100-158.489 keV\",\n", + "\"158.489-251.189 keV\", \n", + "\"251.189-398.107 keV\", \n", + "\"398.107-630.957 keV\", \n", + "\"630.957-1000 keV\", \n", + "\"1000-1584.89 keV\", \n", + "\"1584.89-2511.89 keV\", \n", + "\"2511.89-3981.07 keV\", \n", + "\"3981.07-6309.57 keV\", \n", + "\"6309.57-10000 keV\"]\n", + "\n", + "position = {\"l\":184.600, \"b\": -5.800}\n", + "\n", + "i_iteration = 19 # ==>20th iteration\n", + "th = -5\n", + "\n", + "fig = plt.figure(figsize=(30, 15))\n", + "gs = GridSpec(nrows=3, ncols=4)\n", + "\n", + "ax0 = fig.add_subplot(gs[0, 0])\n", + "ax1 = fig.add_subplot(gs[0, 1])\n", + "ax2 = fig.add_subplot(gs[0, 2])\n", + "ax3 = fig.add_subplot(gs[0, 3])\n", + "ax4 = fig.add_subplot(gs[1, 0])\n", + "ax5 = fig.add_subplot(gs[1, 1])\n", + "ax6 = fig.add_subplot(gs[1, 2])\n", + "ax7 = fig.add_subplot(gs[1, 3])\n", + "ax8 = fig.add_subplot(gs[2, 0])\n", + "ax9 = fig.add_subplot(gs[2, 1])\n", + "\n", + "axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]\n", + " \n", + "ax_spectrum = fig.add_subplot(gs[2, 2])\n", + "ax_likelihood = fig.add_subplot(gs[2, 3])\n", + "#ax_background = fig.add_subplot(gs[1, 3])\n", + "\n", + "#plt.subplots_adjust(wspace=0.4, hspace=0.5)\n", + "\n", + "image = all_results[i_iteration]['model_map']\n", + "\n", + "for i_energy in range(image.axes['Ei'].nbins): \n", + " plt.axes(axes[i_energy])\n", + "\n", + " data = image.contents[:,i_energy]\n", + " data[data < 10**th * image.unit] = 10**th * image.unit\n", + "\n", + " hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = \"s-1 sr-1 cm-2\")\n", + " hp.graticule(color='gray', dpar = 10, alpha = 0.5)\n", + " hp.projscatter(theta = position[\"l\"], phi = position[\"b\"], lonlat = True, color = 'red', linewidths = 1, marker = \"*\")\n", + "\n", + "### \n", + " \n", + "plt.axes(ax_spectrum)\n", + "\n", + "energy_band = image.axes['Ei'].centers\n", + "\n", + "err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux = get_differential_flux(image)\n", + " \n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "\n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlim(90, 10000)\n", + "plt.ylim(1e-8, 2e-3)\n", + " \n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {iteration+1}\")\n", + "plt.grid()\n", + "plt.legend()\n", + " \n", + "### \n", + " \n", + "plt.axes(ax_likelihood)\n", + "\n", + "iterations = [_['iteration'] for _ in all_results]\n", + "loglikelihoods = [_['loglikelihood'] for _ in all_results]\n", + "\n", + "plt.plot(iterations, loglikelihoods, linewidth = 1.5)\n", + "plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = \".\")\n", + "\n", + "plt.xlabel(\"Iteration\", fontsize = 12)\n", + "plt.title(\"Log-likelihood\")\n", + "plt.grid()\n", + "\n", + "###\n", + "# plt.axes(ax_background)\n", + "\n", + "# plt.plot(iterations, background_normalizations, linewidth = 1.5)\n", + "# plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = \".\")\n", + "\n", + "# plt.xlabel(\"Iteration\", fontsize = 12)\n", + " #plt.ylabel(\"Background Normalization\", fontsize = 12)\n", + "# plt.ylim(0.7, 1.4)\n", + "# plt.title(\"Background Normalization\")\n", + "# plt.grid() \n", + "\n", + "# plt.savefig(f\"fig_{i:03}.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "71f5f43f", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.html b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.html new file mode 100644 index 00000000..dc659dd0 --- /dev/null +++ b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.html @@ -0,0 +1,1890 @@ + + + + + + + DC2 Image Analysis, Crab, Upsampling — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

DC2 Image Analysis, Crab, Upsampling

+

updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)

+

This notebook explains image reconstruction using the pixel resolution of the model map finer than that of the response matrix.

+

Note that this notebook is advanced. It is assumed that you have already performed the two notebooks (Crab-DC2-ScAtt-DataReduction.ipynb, Crab-DC2-ScAtt-ImageDeconvolution.ipynb).

+
+

Point

+

In the current implementation, the pixel size of the model map can be differnt from that of the response matrix. The model pixel size is used in the following instances:

+
    +
  • coordsys_conv_matrix

  • +
  • image_deconvolution

  • +
+

Thus, make sure that NSIDE in these instances must be the same. In this notebook, I present the case with NSIDE = 16 in the model map.

+

When we convert the model map in the galactic coordinate to the detector coordinate, the pixel size will be downscaled so as the converted model map has the same pixel resolution matching the detector response. Thus, using finer resolution in the model space does not improve the angular resolution in principle, while the reconstructed image will be smoother.

+

There are three different NSIDE defined in the analysis:

+
    +
  • NSIDE for the pixel resolution of the model (coordsys_conv_matrix, image_deconvolution)

  • +
  • NSIDE for the pixel resolution of the response/data/background CDS (full_detector_response, inputs_Crab_DC2.yaml)

  • +
  • NSIDE for the pixel resolution of the spacecraftattitude binning (exposure_table)

  • +
+

Normally, these three values are set equal, but in principle they can be different.

+
+
[11]:
+
+
+
from histpy import Histogram, HealpixAxis, Axis, Axes
+from mhealpy import HealpixMap
+from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.ts_map.TSMap import TSMap
+from cosipy.data_io import UnBinnedData, BinnedData
+from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from astropy.table import Table
+from astropy.io import fits
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.gridspec import GridSpec
+
+import healpy as hp
+from tqdm.autonotebook import tqdm
+
+%matplotlib inline
+
+
+
+
+
[2]:
+
+
+
nside_scatt_binning = 8
+nside_model = 16
+
+
+
+

In this notebook I assume that the NSIDE for the exposure table is the same as in Crab-DC2-ScAtt-DataReduction.ipynb. So the binned data will be reused.

+
+
+
+

0. Prepare the data

+

From wasabi - cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5 (please unzip it) - cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori

+

From docs/tutorials/image_deconvolution/Crab/ScAttBinning - inputs_Crab_DC2.yaml - crab_spec.dat

+

As outputs from the notebook Crab-DC2-ScAtt-DataReduction.ipynb - Crab_scatt_binning_DC2_bkg.hdf5 - Crab_scatt_binning_DC2_event.hdf5

+
+

Load the response and orientation files

+

please modify “path_data” corresponding to your environment.

+
+
[3]:
+
+
+
path_data = "path/to/data/"
+
+
+
+
+
[4]:
+
+
+
%%time
+
+ori_filepath = path_data + "20280301_3_month.ori"
+ori = SpacecraftFile.parse_from_file(ori_filepath)
+
+
+
+
+
+
+
+
+CPU times: user 16.1 s, sys: 1.34 s, total: 17.5 s
+Wall time: 17.1 s
+
+
+
+
[6]:
+
+
+
full_detector_response_filename = path_data + "SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5"
+full_detector_response = FullDetectorResponse.open(full_detector_response_filename)
+
+nside_local = full_detector_response.nside
+npix_local = hp.nside2npix(nside_local)
+
+nside_local
+
+
+
+
+
[6]:
+
+
+
+
+8
+
+
+
+
[7]:
+
+
+
full_detector_response
+
+
+
+
+
[7]:
+
+
+
+
+FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'
+AXES:
+  NuLambda:
+    DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+  Ei:
+    DESCRIPTION: 'Initial simulated energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Em:
+    DESCRIPTION: 'Measured energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Phi:
+    DESCRIPTION: 'Compton angle'
+    TYPE: 'linear'
+    UNIT: 'deg'
+    NBINS: 36
+    EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]
+  PsiChi:
+    DESCRIPTION: 'Location in the Compton Data Space'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+
+
+
+
+
+
+

1. analyze the orientation file

+

This section is the same as in Crab-DC2-ScAtt-DataReduction.ipynb.

+
+
[8]:
+
+
+
%%time
+
+exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt_binning, start = None, stop = None)
+exposure_table
+
+
+
+
+
+
+
+
+angular resolution:  7.329037678543799 deg.
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+duration:  92.36059027777777 d
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 7979955 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 31.8 s, sys: 2.12 s, total: 33.9 s
+Wall time: 34 s
+
+
+
+
[8]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(532, 13)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(532, 26)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.955010022713545, -23.741156770888438][45.95764244902919, 66.25906763976249][1.0000000000065512, 0.9999999999969589, 0.999...26359.0263590
22(532, 42)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
33(564, 42)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[49.549399237968544, -29.168814518824405][49.59320571194872, 60.83674837374497][0.9999999999969589, 1.0000000000065512, 0.999...111115.01111150
44(564, 63)[[51.09862804289071, -31.321406880638527], [51...[[51.09862804289071, 58.67859311936147], [51.1...[51.90542254254405, -32.39811966891759][51.917215575378705, 57.603714738909005][0.9999999999969589, 1.0000000000065512, 0.999...57871.0578710
.................................
133133(468, 13)[[40.16189499252812, -13.801710443269755], [40...[[40.161894992528104, 76.19828955673026], [40....[40.89892831460051, -15.138427135287458][40.92208802371745, 74.8623891583036][1.0000000000065512, 0.9999999999969589, 0.999...67576.0675760
134134(499, 13)[[41.655148156368654, -16.49006256585185], [41...[[41.655148156368654, 73.50993743414816], [41....[42.7796358426142, -18.460371889534287][42.82335612555313, 71.54190445396517][0.9999999999969589, 1.0000000000065512, 0.999...99833.0998330
135135(716, 188)[[145.12720043519377, -61.03941171474516], [14...[[145.12720043519377, 28.960588285254847], [14...[145.15270150626816, -61.035193201971055][145.1526970180014, 28.964811462201155][0.9999999999969589, 0.9999999999969589, 1.000...992.09920
136136(128, 128)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
137137(58, 188)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
+

138 rows × 10 columns

+
+
+

You can save SpacecraftAttitudeExposureTable as a fits file.

+
+
[9]:
+
+
+
exposure_table.save_as_fits(f"exposure_table_nside{nside_scatt_binning}.fits", overwrite = True)
+
+
+
+

You can also read the fits file.

+
+
[10]:
+
+
+
exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(f"exposure_table_nside{nside_scatt_binning}.fits")
+exposure_table == exposure_table_from_fits
+
+
+
+
+
[10]:
+
+
+
+
+True
+
+
+
+
+

2. Calculate the coordinate conversion matrix

+

CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.

+

In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.

+

If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.

+

If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index.

+

In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it.

+
+
[12]:
+
+
+
%%time
+
+coordsys_conv_matrix = CoordsysConversionMatrix.spacecraft_attitude_binning_ccm(full_detector_response, exposure_table, nside_model = nside_model, use_averaged_pointing = True)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 5min 29s, sys: 5.25 s, total: 5min 34s
+Wall time: 5min 33s
+
+
+

You can save CoordsysConversionMatrix as a hdf5 file.

+
+
[13]:
+
+
+
coordsys_conv_matrix.write(f"ccm_nside{nside_model}.hdf5", overwrite = True)
+
+
+
+

You can also read the saved file.

+
+
[14]:
+
+
+
coordsys_conv_matrix = CoordsysConversionMatrix.open(f"ccm_nside{nside_model}.hdf5")
+
+
+
+

Check the matrix shape

+
+
[15]:
+
+
+
coordsys_conv_matrix.contents
+
+
+
+
+
[15]:
+
+
+
+
Formatcoo
Data Typefloat64
Shape(138, 3072, 768)
nnz1695744
Density0.005208333333333333
Read-onlyTrue
Size51.8M
Storage ratio0.0
+
+
+
+

3. Load the binned data

+

Since NSIDE of exposure_table on this notebook is the same as that in Crab-DC2-ScAtt-DataReduction.ipynb, you can use the files generated before.

+
+
[17]:
+
+
+
%%time
+
+#  background
+bkg_data = BinnedData("inputs_Crab_DC2.yaml")
+bkg_data.load_binned_data_from_hdf5("Crab_scatt_binning_DC2_bkg.hdf5")
+
+#  signal + background
+Crab_data = BinnedData("inputs_Crab_DC2.yaml")
+Crab_data.load_binned_data_from_hdf5("Crab_scatt_binning_DC2_event.hdf5")
+
+
+
+
+
+
+
+
+CPU times: user 63.5 ms, sys: 274 ms, total: 337 ms
+Wall time: 349 ms
+
+
+
+
+

4. Imaging deconvolution

+
+

4-1. Prepare DataLoader containing all neccesary datasets

+
+
[18]:
+
+
+
dataloader = DataLoader.load(Crab_data.binned_data,
+                             bkg_data.binned_data,
+                             full_detector_response,
+                             coordsys_conv_matrix,
+                             is_miniDC2_format = False)
+
+
+
+
+
[19]:
+
+
+
dataloader._modify_axes()
+
+
+
+
+
+
+
+
+
+WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.
+
+
+WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.
+
+
+
+
+
+
+
+
+... checking the axis ScAtt of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Em of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Phi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis PsiChi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+...checking the axis Em of the event and response files...
+    --> pass (edges)
+...checking the axis Phi of the event and response files...
+    --> pass (edges)
+...checking the axis PsiChi of the event and response files...
+    --> pass (edges)
+The axes in the event and background files are redefined. Now they are consistent with those of the response file.
+
+
+
+
+

4-2. Load the response file

+
+
[20]:
+
+
+
%%time
+
+dataloader.load_full_detector_response_on_memory()
+dataloader.calc_image_response_projected() # mandatory
+
+
+
+
+
+
+
+
+... (DataLoader) calculating a projected image response ...
+CPU times: user 3.18 s, sys: 12.4 s, total: 15.6 s
+Wall time: 23.8 s
+
+
+
+
+

4-3. Initialize the instance of the image deconvolution class

+
+
[21]:
+
+
+
parameter_filepath = "imagedeconvolution_parfile_scatt_Crab.yml"
+
+
+
+
+
[22]:
+
+
+
image_deconvolution = ImageDeconvolution()
+
+# set dataloader to image_deconvolution
+image_deconvolution.set_data(dataloader)
+
+# set a parameter file for the image deconvolution
+image_deconvolution.read_parameterfile(parameter_filepath)
+
+
+
+
+
+
+
+
+data for image deconvolution was set ->  <cosipy.image_deconvolution.data_loader.DataLoader object at 0x45dfcf820>
+parameter file for image deconvolution was set ->  imagedeconvolution_parfile_scatt_Crab.yml
+
+
+
+
+

4-4. modify the parameters

+

Do not forget to make sure that NSIDE of the model map is modified to 16

+
+
[23]:
+
+
+
image_deconvolution.override_parameter(f"model_property:nside = {nside_model}")
+
+
+
+
+
[24]:
+
+
+
image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 20")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:background_normalization_fitting = True")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:alpha_max = 10")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:smoothing_FWHM = 5.0")
+
+image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 100.0
+- 158.489
+- 251.189
+- 398.107
+- 630.957
+- 1000.0
+- 1584.89
+- 2511.89
+- 3981.07
+- 6309.57
+- 10000.0
+nside: 16
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+  - 1e-4
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10
+  background_normalization_fitting: true
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 20
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 5.0
+
+#### Done ####
+
+
+
+
+
+

4-5. Start the image deconvolution

+

With MacBook Pro with M1 Max and 64 GB memory, it takes about 9 minutes for 20 iterations.

+
+
[25]:
+
+
+
%%time
+
+all_results = image_deconvolution.run_deconvolution()
+
+
+
+
+
+
+
+
+#### Deconvolution Starts ####
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Iteration 1/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+
+
+
+
+
+
+
+
+WARNING RuntimeWarning: invalid value encountered in divide
+
+
+
+
+
+
+
+
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 6.378051295931451
+    loglikelihood: 23017854.415656216
+    background_normalization: 1.0601294839329405
+  Iteration 2/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 23389718.937870078
+    background_normalization: 0.9812662983421157
+  Iteration 3/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.7177423417891535
+    loglikelihood: 23646065.85953915
+    background_normalization: 0.9780686891833531
+  Iteration 4/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 23746910.686555795
+    background_normalization: 0.9775991374802415
+  Iteration 5/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 23830530.1976484
+    background_normalization: 0.978345437696951
+  Iteration 6/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.021476183346016
+    loglikelihood: 23967842.15747451
+    background_normalization: 0.9793198466237346
+  Iteration 7/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24019580.204579435
+    background_normalization: 0.981448524626097
+  Iteration 8/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.812242608052198
+    loglikelihood: 24100330.103994556
+    background_normalization: 0.9825545993834066
+  Iteration 9/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24136588.0699614
+    background_normalization: 0.984296483841905
+  Iteration 10/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24168974.532973
+    background_normalization: 0.9851397032430448
+  Iteration 11/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24198023.705265246
+    background_normalization: 0.98587630869807
+  Iteration 12/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.031559874472495
+    loglikelihood: 24250030.307958953
+    background_normalization: 0.9865335818399789
+  Iteration 13/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24271140.353945933
+    background_normalization: 0.9876964380028733
+  Iteration 14/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.4680827707120705
+    loglikelihood: 24299097.586975046
+    background_normalization: 0.9881862047896464
+  Iteration 15/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24315854.264261693
+    background_normalization: 0.9888006762468168
+  Iteration 16/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.7425947696281046
+    loglikelihood: 24342291.21582216
+    background_normalization: 0.989170960160712
+  Iteration 17/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24355494.445937328
+    background_normalization: 0.9897325057623165
+  Iteration 18/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24367675.03234405
+    background_normalization: 0.9900176796661229
+  Iteration 19/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0043049006590876
+    loglikelihood: 24378984.30944805
+    background_normalization: 0.990272359532349
+  Iteration 20/20
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> stop
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 24389413.438546576
+    background_normalization: 0.9905055720767687
+#### Done ####
+
+CPU times: user 56min 5s, sys: 7min 42s, total: 1h 3min 47s
+Wall time: 12min 36s
+
+
+
+
[26]:
+
+
+
import pprint
+
+pprint.pprint(all_results)
+
+
+
+
+
+
+
+
+[{'alpha': <Quantity 6.3780513>,
+  'background_normalization': 1.0601294839329405,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402dcf610>,
+  'iteration': 1,
+  'loglikelihood': 23017854.415656216,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402dcf700>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b27c3340>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9812662983421157,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402dcfca0>,
+  'iteration': 2,
+  'loglikelihood': 23389718.937870078,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402dcf5b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b78a1b70>},
+ {'alpha': <Quantity 1.71774234>,
+  'background_normalization': 0.9780686891833531,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d74ac0>,
+  'iteration': 3,
+  'loglikelihood': 23646065.85953915,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d75420>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d74be0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9775991374802415,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d76fb0>,
+  'iteration': 4,
+  'loglikelihood': 23746910.686555795,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d74b50>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d75180>},
+ {'alpha': 1.0,
+  'background_normalization': 0.978345437696951,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402db8970>,
+  'iteration': 5,
+  'loglikelihood': 23830530.1976484,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402dbae30>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d769e0>},
+ {'alpha': <Quantity 2.02147618>,
+  'background_normalization': 0.9793198466237346,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402dcf580>,
+  'iteration': 6,
+  'loglikelihood': 23967842.15747451,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402dcf340>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d76fe0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.981448524626097,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d777f0>,
+  'iteration': 7,
+  'loglikelihood': 24019580.204579435,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d74910>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d76800>},
+ {'alpha': <Quantity 1.81224261>,
+  'background_normalization': 0.9825545993834066,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d755d0>,
+  'iteration': 8,
+  'loglikelihood': 24100330.103994556,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d76890>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d75d50>},
+ {'alpha': 1.0,
+  'background_normalization': 0.984296483841905,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d75d20>,
+  'iteration': 9,
+  'loglikelihood': 24136588.0699614,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d74970>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d77700>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9851397032430448,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b7043250>,
+  'iteration': 10,
+  'loglikelihood': 24168974.532973,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42dcbace0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b3cd01c0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.98587630869807,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b705ecb0>,
+  'iteration': 11,
+  'loglikelihood': 24198023.705265246,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b80904f0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b27c3a90>},
+ {'alpha': <Quantity 2.03155987>,
+  'background_normalization': 0.9865335818399789,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d75540>,
+  'iteration': 12,
+  'loglikelihood': 24250030.307958953,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d75810>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d18490>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9876964380028733,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d77e50>,
+  'iteration': 13,
+  'loglikelihood': 24271140.353945933,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d76d10>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d18190>},
+ {'alpha': <Quantity 1.46808277>,
+  'background_normalization': 0.9881862047896464,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d76c20>,
+  'iteration': 14,
+  'loglikelihood': 24299097.586975046,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d740a0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d18520>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9888006762468168,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d18cd0>,
+  'iteration': 15,
+  'loglikelihood': 24315854.264261693,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b78a07f0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1a770>},
+ {'alpha': <Quantity 1.74259477>,
+  'background_normalization': 0.989170960160712,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1bf10>,
+  'iteration': 16,
+  'loglikelihood': 24342291.21582216,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1bd90>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1b6a0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9897325057623165,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d19de0>,
+  'iteration': 17,
+  'loglikelihood': 24355494.445937328,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2b80905b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d18fa0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9900176796661229,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42f402a10>,
+  'iteration': 18,
+  'loglikelihood': 24367675.03234405,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42f403fd0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x42f402590>},
+ {'alpha': <Quantity 1.0043049>,
+  'background_normalization': 0.990272359532349,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1bfa0>,
+  'iteration': 19,
+  'loglikelihood': 24378984.30944805,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d193c0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1add0>},
+ {'alpha': 1.0,
+  'background_normalization': 0.9905055720767687,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d19930>,
+  'iteration': 20,
+  'loglikelihood': 24389413.438546576,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1bd60>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x402d1b2e0>}]
+
+
+

(If you want, you can save the results in the directory “./results” as follows)

+
+
[27]:
+
+
+
import os
+
+os.mkdir("./results")
+
+for result in all_results:
+    iteration = result['iteration']
+    result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')
+
+    with open(f'./results/result_itr{iteration}.txt', 'w') as f:
+        paramlist = ['alpha', 'loglikelihood', 'background_normalization']
+
+        for param in paramlist:
+            value = result[param]
+            f.write(f'{param}: {value}\n')
+
+
+
+
+
+
+

5. Analyze the results

+

Examples to see/analyze the results are shown below.

+
+
[28]:
+
+
+
## Crab location
+
+source_position = {"l":184.600, "b": -5.800}
+
+
+
+
+

Log-likelihood

+

Plotting the log-likelihood vs the number of iterations

+
+
[29]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['loglikelihood'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("loglikelihood")
+
+
+
+
+
[29]:
+
+
+
+
+Text(0, 0.5, 'loglikelihood')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_46_1.png +
+
+
+
+

Alpha (the factor used for the acceleration)

+

Plotting \(\alpha\) vs the number of iterations. \(\alpha\) is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts.

+
+
[30]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['alpha'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("alpha")
+
+
+
+
+
[30]:
+
+
+
+
+Text(0, 0.5, 'alpha')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_48_1.png +
+
+
+
+

Background normalization

+

Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1.

+
+
[31]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['background_normalization'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("background_normalization")
+
+
+
+
+
[31]:
+
+
+
+
+Text(0, 0.5, 'background_normalization')
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_50_1.png +
+
+
+
+

The reconstructed images

+
+
[32]:
+
+
+
def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['model_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the reconstructed images in all of the energy bands at the 20th iteration

+
+
[33]:
+
+
+
iteration = 19
+
+plot_reconstructed_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_0.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_1.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_2.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_3.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_4.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_5.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_6.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_7.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_8.png +
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_54_9.png +
+
+
+
+

Spectrum

+

Plotting the gamma-ray spectrum at 20th iteration. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixel at each energy band.

+
+
[34]:
+
+
+
energy_truth = []
+flux_truth = []
+
+with open("crab_spec.dat", "r") as f:
+    for line in f:
+        data = line.split('\t')
+        if data[0] == 'DP':
+            energy_truth.append(float(data[1]))# * u.keV)
+            flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)
+
+
+
+
+
[35]:
+
+
+
def get_differential_flux(model_map):
+    pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr
+
+    differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths
+
+    return differential_flux
+
+
+
+
+
[36]:
+
+
+
iteration = 19
+
+result = all_results[iteration]
+
+model_map = result['model_map']
+
+differential_flux = get_differential_flux(model_map)
+
+energy_band = model_map.axes['Ei'].centers
+
+err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers
+err_energy[0,:] *= -1
+
+plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')
+plt.plot(energy_truth, flux_truth, label = 'truth')
+plt.xscale("log")
+plt.yscale("log")
+
+plt.xlabel("Energy (keV)")
+plt.ylabel(r"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)")
+plt.title(f"Spectrum, Iteration = {result['iteration']}")
+plt.grid()
+plt.legend()
+
+
+
+
+
[36]:
+
+
+
+
+<matplotlib.legend.Legend at 0x44b8d7d60>
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_58_1.png +
+
+
+
+

check the discrepancy between the model and reconstructed spectrum

+
+
[43]:
+
+
+
import scipy.interpolate as interpolate
+
+f = interpolate.interp1d(np.log(np.array(energy_truth)), np.log(np.array(flux_truth))) # log-linear interpolation
+
+for idx, e_center in enumerate(energy_band):
+    truth_value_interpolated = np.exp(f(np.log(e_center.value)))
+    print(f"Energy Center: {e_center}, Truth: {truth_value_interpolated}, Reconstructed: {differential_flux[idx]}")
+    print(f"diff: {(differential_flux[idx].value / truth_value_interpolated - 1)*1e2:.2f} %")
+
+
+
+
+
+
+
+
+Energy Center: 125.8924143862528 keV, Truth: 0.00037509332308051504, Reconstructed: 0.000372443360635917 1 / (cm2 keV s)
+diff: -0.71 %
+Energy Center: 199.52617227070743 keV, Truth: 0.00013100640643159297, Reconstructed: 0.00013752711756448815 1 / (cm2 keV s)
+diff: 4.98 %
+Energy Center: 316.2279229021369 keV, Truth: 4.5008043531443166e-05, Reconstructed: 5.046801422979159e-05 1 / (cm2 keV s)
+diff: 12.13 %
+Energy Center: 501.1869894550339 keV, Truth: 1.5462910559040303e-05, Reconstructed: 1.7623484148658698e-05 1 / (cm2 keV s)
+diff: 13.97 %
+Energy Center: 794.3280178868179 keV, Truth: 5.312405290582567e-06, Reconstructed: 5.767412265132285e-06 1 / (cm2 keV s)
+diff: 8.56 %
+Energy Center: 1258.924143862529 keV, Truth: 1.825139915500053e-06, Reconstructed: 1.8325489081869999e-06 1 / (cm2 keV s)
+diff: 0.41 %
+Energy Center: 1995.2617227070734 keV, Truth: 6.270348197761169e-07, Reconstructed: 5.962884413278615e-07 1 / (cm2 keV s)
+diff: -4.90 %
+Energy Center: 3162.279229021372 keV, Truth: 2.1542244490397355e-07, Reconstructed: 1.9482232171230163e-07 1 / (cm2 keV s)
+diff: -9.56 %
+Energy Center: 5011.8698945503365 keV, Truth: 7.401022931546242e-08, Reconstructed: 6.505555070939067e-08 1 / (cm2 keV s)
+diff: -12.10 %
+Energy Center: 7943.2801788681745 keV, Truth: 2.5426787880752837e-08, Reconstructed: 3.552391422512448e-08 1 / (cm2 keV s)
+diff: 39.71 %
+
+
+
+
+

Plot All

+
+
[44]:
+
+
+
title = ["100-158.489 keV",
+"158.489-251.189 keV",
+"251.189-398.107 keV",
+"398.107-630.957 keV",
+"630.957-1000 keV",
+"1000-1584.89 keV",
+"1584.89-2511.89 keV",
+"2511.89-3981.07 keV",
+"3981.07-6309.57 keV",
+"6309.57-10000 keV"]
+
+position = {"l":184.600, "b": -5.800}
+
+i_iteration = 19 # ==>20th iteration
+th = -5
+
+fig = plt.figure(figsize=(30, 15))
+gs = GridSpec(nrows=3, ncols=4)
+
+ax0 = fig.add_subplot(gs[0, 0])
+ax1 = fig.add_subplot(gs[0, 1])
+ax2 = fig.add_subplot(gs[0, 2])
+ax3 = fig.add_subplot(gs[0, 3])
+ax4 = fig.add_subplot(gs[1, 0])
+ax5 = fig.add_subplot(gs[1, 1])
+ax6 = fig.add_subplot(gs[1, 2])
+ax7 = fig.add_subplot(gs[1, 3])
+ax8 = fig.add_subplot(gs[2, 0])
+ax9 = fig.add_subplot(gs[2, 1])
+
+axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]
+
+ax_spectrum = fig.add_subplot(gs[2, 2])
+ax_likelihood = fig.add_subplot(gs[2, 3])
+#ax_background = fig.add_subplot(gs[1, 3])
+
+#plt.subplots_adjust(wspace=0.4, hspace=0.5)
+
+image = all_results[i_iteration]['model_map']
+
+for i_energy in range(image.axes['Ei'].nbins):
+    plt.axes(axes[i_energy])
+
+    data = image.contents[:,i_energy]
+    data[data < 10**th * image.unit] = 10**th * image.unit
+
+    hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = "s-1 sr-1 cm-2")
+    hp.graticule(color='gray', dpar = 10, alpha = 0.5)
+    hp.projscatter(theta = position["l"], phi = position["b"], lonlat = True, color = 'red', linewidths = 1, marker = "*")
+
+###
+
+plt.axes(ax_spectrum)
+
+energy_band = image.axes['Ei'].centers
+
+err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers
+err_energy[0,:] *= -1
+
+differential_flux = get_differential_flux(image)
+
+plt.plot(energy_truth, flux_truth, label = 'truth')
+
+plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')
+plt.xscale("log")
+plt.yscale("log")
+plt.xlim(90, 10000)
+plt.ylim(1e-8, 2e-3)
+
+plt.xlabel("Energy (keV)")
+plt.ylabel(r"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)")
+plt.title(f"Spectrum, Iteration = {iteration+1}")
+plt.grid()
+plt.legend()
+
+###
+
+plt.axes(ax_likelihood)
+
+iterations = [_['iteration'] for _ in all_results]
+loglikelihoods = [_['loglikelihood'] for _ in all_results]
+
+plt.plot(iterations, loglikelihoods, linewidth = 1.5)
+plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = ".")
+
+plt.xlabel("Iteration", fontsize = 12)
+plt.title("Log-likelihood")
+plt.grid()
+
+###
+#    plt.axes(ax_background)
+
+#    plt.plot(iterations, background_normalizations, linewidth = 1.5)
+#    plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = ".")
+
+#    plt.xlabel("Iteration", fontsize = 12)
+    #plt.ylabel("Background Normalization", fontsize = 12)
+#    plt.ylim(0.7, 1.4)
+#    plt.title("Background Normalization")
+#    plt.grid()
+
+#    plt.savefig(f"fig_{i:03}.png")
+
+
+
+
+
+
+
+../../../../_images/tutorials_image_deconvolution_Crab_ScAttBinning_Crab-DC2-ScAtt-Upsampling_62_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb new file mode 100644 index 00000000..5c64fa33 --- /dev/null +++ b/tutorials/image_deconvolution/Crab/ScAttBinning/Crab-DC2-ScAtt-Upsampling.ipynb @@ -0,0 +1,2264 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "0d44413a", + "metadata": {}, + "source": [ + "# DC2 Image Analysis, Crab, Upsampling\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "This notebook explains image reconstruction using the pixel resolution of the model map finer than that of the response matrix.\n", + "\n", + "Note that this notebook is advanced. It is assumed that you have already performed the two notebooks (Crab-DC2-ScAtt-DataReduction.ipynb, Crab-DC2-ScAtt-ImageDeconvolution.ipynb).\n", + "\n", + "## Point\n", + "\n", + "In the current implementation, the pixel size of the model map can be differnt from that of the response matrix. The model pixel size is used in the following instances:\n", + "\n", + "- coordsys_conv_matrix\n", + "- image_deconvolution\n", + "\n", + "Thus, make sure that NSIDE in these instances must be the same. In this notebook, I present the case with NSIDE = 16 in the model map.\n", + "\n", + "When we convert the model map in the galactic coordinate to the detector coordinate, the pixel size will be downscaled so as the converted model map has the same pixel resolution matching the detector response.\n", + "Thus, using finer resolution in the model space does not improve the angular resolution in principle, while the reconstructed image will be smoother.\n", + "\n", + "There are three different NSIDE defined in the analysis:\n", + "\n", + "- NSIDE for the pixel resolution of the model (coordsys_conv_matrix, image_deconvolution)\n", + "- NSIDE for the pixel resolution of the response/data/background CDS (full_detector_response, inputs_Crab_DC2.yaml)\n", + "- NSIDE for the pixel resolution of the spacecraftattitude binning (exposure_table)\n", + "\n", + "Normally, these three values are set equal, but in principle they can be different." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e3bb550f", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "from histpy import Histogram, HealpixAxis, Axis, Axes\n", + "from mhealpy import HealpixMap\n", + "from astropy.coordinates import SkyCoord, cartesian_to_spherical, Galactic\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "from cosipy.data_io import UnBinnedData, BinnedData\n", + "from cosipy.image_deconvolution import SpacecraftAttitudeExposureTable, CoordsysConversionMatrix, DataLoader, ImageDeconvolution\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from astropy.table import Table\n", + "from astropy.io import fits\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.gridspec import GridSpec \n", + "\n", + "import healpy as hp\n", + "from tqdm.autonotebook import tqdm\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "e246b643", + "metadata": {}, + "outputs": [], + "source": [ + "nside_scatt_binning = 8\n", + "nside_model = 16" + ] + }, + { + "cell_type": "markdown", + "id": "8d093a5f", + "metadata": {}, + "source": [ + "In this notebook I assume that the NSIDE for the exposure table is the same as in Crab-DC2-ScAtt-DataReduction.ipynb. So the binned data will be reused." + ] + }, + { + "cell_type": "markdown", + "id": "2a7ca026", + "metadata": {}, + "source": [ + "# 0. Prepare the data\n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5 (please unzip it)\n", + "- cosi-pipeline-public/COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "\n", + "From docs/tutorials/image_deconvolution/Crab/ScAttBinning\n", + "- inputs_Crab_DC2.yaml\n", + "- crab_spec.dat\n", + "\n", + "As outputs from the notebook Crab-DC2-ScAtt-DataReduction.ipynb\n", + "- Crab_scatt_binning_DC2_bkg.hdf5\n", + "- Crab_scatt_binning_DC2_event.hdf5" + ] + }, + { + "cell_type": "markdown", + "id": "dc91fb24", + "metadata": {}, + "source": [ + "## Load the response and orientation files\n", + "\n", + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "f648e175", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "66a8b44d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 16.1 s, sys: 1.34 s, total: 17.5 s\n", + "Wall time: 17.1 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "ori_filepath = path_data + \"20280301_3_month.ori\"\n", + "ori = SpacecraftFile.parse_from_file(ori_filepath)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "4709061c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "8" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response_filename = path_data + \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "full_detector_response = FullDetectorResponse.open(full_detector_response_filename)\n", + "\n", + "nside_local = full_detector_response.nside\n", + "npix_local = hp.nside2npix(nside_local)\n", + "\n", + "nside_local" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "328808b4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "FILENAME: '/Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/DC2/prework/data/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "full_detector_response" + ] + }, + { + "cell_type": "markdown", + "id": "63e57ca0", + "metadata": {}, + "source": [ + "# 1. analyze the orientation file\n", + "\n", + "This section is the same as in Crab-DC2-ScAtt-DataReduction.ipynb." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6c61a321", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "angular resolution: 7.329037678543799 deg.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "duration: 92.36059027777777 d\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979955 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "89da9cbe97d24f3d84d467571c966f7c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/7979955 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
scatt_binning_indexhealpix_indexzpointingxpointingzpointing_averagedxpointing_averageddelta_timeexposurenum_pointingsbkg_group
00(532, 13)[[44.62664815323754, -21.585226694584346], [44...[[44.62664815323755, 68.41477330541565], [44.6...[44.77592919492308, -21.83137450725276][44.79590102793104, 68.17007080261746][0.9999999999969589, 1.0000000000065512, 0.999...71072.0710720
11(532, 26)[[45.66020516346508, -23.269427365755966], [45...[[45.6602051634651, 66.73057263424403], [45.69...[45.955010022713545, -23.741156770888438][45.95764244902919, 66.25906763976249][1.0000000000065512, 0.9999999999969589, 0.999...26359.0263590
22(532, 42)[[46.29919922293719, -24.286823740507035], [46...[[46.29919922293719, 65.71317625949297], [46.3...[47.169799754806256, -25.642813300423782][47.188380045186555, 64.35902575261872][0.9999999999969589, 0.9999999999969589, 1.000...71137.0711370
33(564, 42)[[48.1115581160702, -27.07000329743496], [48.1...[[48.111558116070206, 62.92999670256505], [48....[49.549399237968544, -29.168814518824405][49.59320571194872, 60.83674837374497][0.9999999999969589, 1.0000000000065512, 0.999...111115.01111150
44(564, 63)[[51.09862804289071, -31.321406880638527], [51...[[51.09862804289071, 58.67859311936147], [51.1...[51.90542254254405, -32.39811966891759][51.917215575378705, 57.603714738909005][0.9999999999969589, 1.0000000000065512, 0.999...57871.0578710
.................................
133133(468, 13)[[40.16189499252812, -13.801710443269755], [40...[[40.161894992528104, 76.19828955673026], [40....[40.89892831460051, -15.138427135287458][40.92208802371745, 74.8623891583036][1.0000000000065512, 0.9999999999969589, 0.999...67576.0675760
134134(499, 13)[[41.655148156368654, -16.49006256585185], [41...[[41.655148156368654, 73.50993743414816], [41....[42.7796358426142, -18.460371889534287][42.82335612555313, 71.54190445396517][0.9999999999969589, 1.0000000000065512, 0.999...99833.0998330
135135(716, 188)[[145.12720043519377, -61.03941171474516], [14...[[145.12720043519377, 28.960588285254847], [14...[145.15270150626816, -61.035193201971055][145.1526970180014, 28.964811462201155][0.9999999999969589, 0.9999999999969589, 1.000...992.09920
136136(128, 128)[[180.0238082643748, 46.67626678787605], [180....[[180.0238082643748, 43.32373321212394], [180....[180.01420731505038, 46.68360608975279][180.01420553833427, 43.316394483057174][0.9999999999969589, 1.000000000001755, 1.0000...646.06460
137137(58, 188)[[325.1571038593629, 61.0351405587937], [325.1...[[145.15710385936296, 28.964859441206304], [14...[325.15317939441115, 61.03567974667542][145.15317503922358, 28.964324759952632][1.000000000001755, 0.9999999999969589, 0.9999...970.09700
\n", + "

138 rows × 10 columns

\n", + "" + ], + "text/plain": [ + " scatt_binning_index healpix_index \\\n", + "0 0 (532, 13) \n", + "1 1 (532, 26) \n", + "2 2 (532, 42) \n", + "3 3 (564, 42) \n", + "4 4 (564, 63) \n", + ".. ... ... \n", + "133 133 (468, 13) \n", + "134 134 (499, 13) \n", + "135 135 (716, 188) \n", + "136 136 (128, 128) \n", + "137 137 (58, 188) \n", + "\n", + " zpointing \\\n", + "0 [[44.62664815323754, -21.585226694584346], [44... \n", + "1 [[45.66020516346508, -23.269427365755966], [45... \n", + "2 [[46.29919922293719, -24.286823740507035], [46... \n", + "3 [[48.1115581160702, -27.07000329743496], [48.1... \n", + "4 [[51.09862804289071, -31.321406880638527], [51... \n", + ".. ... \n", + "133 [[40.16189499252812, -13.801710443269755], [40... \n", + "134 [[41.655148156368654, -16.49006256585185], [41... \n", + "135 [[145.12720043519377, -61.03941171474516], [14... \n", + "136 [[180.0238082643748, 46.67626678787605], [180.... \n", + "137 [[325.1571038593629, 61.0351405587937], [325.1... \n", + "\n", + " xpointing \\\n", + "0 [[44.62664815323755, 68.41477330541565], [44.6... \n", + "1 [[45.6602051634651, 66.73057263424403], [45.69... \n", + "2 [[46.29919922293719, 65.71317625949297], [46.3... \n", + "3 [[48.111558116070206, 62.92999670256505], [48.... \n", + "4 [[51.09862804289071, 58.67859311936147], [51.1... \n", + ".. ... \n", + "133 [[40.161894992528104, 76.19828955673026], [40.... \n", + "134 [[41.655148156368654, 73.50993743414816], [41.... \n", + "135 [[145.12720043519377, 28.960588285254847], [14... \n", + "136 [[180.0238082643748, 43.32373321212394], [180.... \n", + "137 [[145.15710385936296, 28.964859441206304], [14... \n", + "\n", + " zpointing_averaged \\\n", + "0 [44.77592919492308, -21.83137450725276] \n", + "1 [45.955010022713545, -23.741156770888438] \n", + "2 [47.169799754806256, -25.642813300423782] \n", + "3 [49.549399237968544, -29.168814518824405] \n", + "4 [51.90542254254405, -32.39811966891759] \n", + ".. ... \n", + "133 [40.89892831460051, -15.138427135287458] \n", + "134 [42.7796358426142, -18.460371889534287] \n", + "135 [145.15270150626816, -61.035193201971055] \n", + "136 [180.01420731505038, 46.68360608975279] \n", + "137 [325.15317939441115, 61.03567974667542] \n", + "\n", + " xpointing_averaged \\\n", + "0 [44.79590102793104, 68.17007080261746] \n", + "1 [45.95764244902919, 66.25906763976249] \n", + "2 [47.188380045186555, 64.35902575261872] \n", + "3 [49.59320571194872, 60.83674837374497] \n", + "4 [51.917215575378705, 57.603714738909005] \n", + ".. ... \n", + "133 [40.92208802371745, 74.8623891583036] \n", + "134 [42.82335612555313, 71.54190445396517] \n", + "135 [145.1526970180014, 28.964811462201155] \n", + "136 [180.01420553833427, 43.316394483057174] \n", + "137 [145.15317503922358, 28.964324759952632] \n", + "\n", + " delta_time exposure \\\n", + "0 [0.9999999999969589, 1.0000000000065512, 0.999... 71072.0 \n", + "1 [1.0000000000065512, 0.9999999999969589, 0.999... 26359.0 \n", + "2 [0.9999999999969589, 0.9999999999969589, 1.000... 71137.0 \n", + "3 [0.9999999999969589, 1.0000000000065512, 0.999... 111115.0 \n", + "4 [0.9999999999969589, 1.0000000000065512, 0.999... 57871.0 \n", + ".. ... ... \n", + "133 [1.0000000000065512, 0.9999999999969589, 0.999... 67576.0 \n", + "134 [0.9999999999969589, 1.0000000000065512, 0.999... 99833.0 \n", + "135 [0.9999999999969589, 0.9999999999969589, 1.000... 992.0 \n", + "136 [0.9999999999969589, 1.000000000001755, 1.0000... 646.0 \n", + "137 [1.000000000001755, 0.9999999999969589, 0.9999... 970.0 \n", + "\n", + " num_pointings bkg_group \n", + "0 71072 0 \n", + "1 26359 0 \n", + "2 71137 0 \n", + "3 111115 0 \n", + "4 57871 0 \n", + ".. ... ... \n", + "133 67576 0 \n", + "134 99833 0 \n", + "135 992 0 \n", + "136 646 0 \n", + "137 970 0 \n", + "\n", + "[138 rows x 10 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "exposure_table = SpacecraftAttitudeExposureTable.from_orientation(ori, nside = nside_scatt_binning, start = None, stop = None)\n", + "exposure_table" + ] + }, + { + "cell_type": "markdown", + "id": "0084ec4c", + "metadata": {}, + "source": [ + "You can save SpacecraftAttitudeExposureTable as a fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "640e422c", + "metadata": {}, + "outputs": [], + "source": [ + "exposure_table.save_as_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\", overwrite = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b7e8280c", + "metadata": {}, + "source": [ + "You can also read the fits file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "af522267", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "exposure_table_from_fits = SpacecraftAttitudeExposureTable.from_fits(f\"exposure_table_nside{nside_scatt_binning}.fits\")\n", + "exposure_table == exposure_table_from_fits" + ] + }, + { + "cell_type": "markdown", + "id": "5e42a177", + "metadata": {}, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_attitude_binning_ccm can produce the coordinate conversion matrix for the spacecraft attitude binning.\n", + "\n", + "In this calculation, we calculate the exposure time map in the detector coordinate for each model pixel and each scatt_binning_index. We refer to it as the dwell time map.\n", + "\n", + "If use_averaged_pointing is True, first the averaged Z- and X-pointings are calculated (the average of zpointing or xpointing in the exposure table) for each scatt_binning_index, and then the dwell time map is calculated assuming the averaged pointings for each model pixel and each scatt_binning_index.\n", + "\n", + "If use_averaged_pointing is False, the dwell time map is calculated for each attitude in zpointing and xpointing (basically every 1 second), and then the calculated dwell time maps are summed up for each model pixel and each scatt_binning_index. \n", + "\n", + "In the former case, the computation is fast but may lose the angular resolution. In the latter case, the conversion matrix is more accurate, but it takes a very long time to calculate it." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5a6488b4", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c4551bcb89a84647981fe0e030c6c158", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/138 [00:00FormatcooData Typefloat64Shape(138, 3072, 768)nnz1695744Density0.005208333333333333Read-onlyTrueSize51.8MStorage ratio0.0" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "coordsys_conv_matrix.contents" + ] + }, + { + "cell_type": "markdown", + "id": "4ae2fcdb", + "metadata": {}, + "source": [ + "# 3. Load the binned data\n", + "\n", + "Since NSIDE of exposure_table on this notebook is the same as that in Crab-DC2-ScAtt-DataReduction.ipynb, you can use the files generated before." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f0df301c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 63.5 ms, sys: 274 ms, total: 337 ms\n", + "Wall time: 349 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background \n", + "bkg_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "bkg_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_bkg.hdf5\")\n", + "\n", + "# signal + background\n", + "Crab_data = BinnedData(\"inputs_Crab_DC2.yaml\")\n", + "Crab_data.load_binned_data_from_hdf5(\"Crab_scatt_binning_DC2_event.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "6952e6a5", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "42ae33b7", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "dc875668", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(Crab_data.binned_data, \n", + " bkg_data.binned_data, \n", + " full_detector_response,\n", + " coordsys_conv_matrix,\n", + " is_miniDC2_format = False)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "20f9c0be", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... checking the axis ScAtt of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "8982e77a", + "metadata": {}, + "source": [ + "## 4-2. Load the response file" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "9f4407c5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... (DataLoader) calculating a projected image response ...\n", + "CPU times: user 3.18 s, sys: 12.4 s, total: 15.6 s\n", + "Wall time: 23.8 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "dataloader.load_full_detector_response_on_memory()\n", + "dataloader.calc_image_response_projected() # mandatory" + ] + }, + { + "cell_type": "markdown", + "id": "e6091c9c", + "metadata": {}, + "source": [ + "## 4-3. Initialize the instance of the image deconvolution class" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "a1c17851", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = \"imagedeconvolution_parfile_scatt_Crab.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "1b162894", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> imagedeconvolution_parfile_scatt_Crab.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "4e385143", + "metadata": {}, + "source": [ + "## 4-4. modify the parameters\n", + "\n", + "**Do not forget to make sure that NSIDE of the model map is modified to 16**" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "46c7a9f0", + "metadata": {}, + "outputs": [], + "source": [ + "image_deconvolution.override_parameter(f\"model_property:nside = {nside_model}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "1e5a7300", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 158.489\n", + "- 251.189\n", + "- 398.107\n", + "- 630.957\n", + "- 1000.0\n", + "- 1584.89\n", + "- 2511.89\n", + "- 3981.07\n", + "- 6309.57\n", + "- 10000.0\n", + "nside: 16\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + " - 1e-4\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "37d20ae145aa4857a648dad07785cdb5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/3072 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 6.378051295931451\n", + " loglikelihood: 23017854.415656216\n", + " background_normalization: 1.0601294839329405\n", + " Iteration 2/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 23389718.937870078\n", + " background_normalization: 0.9812662983421157\n", + " Iteration 3/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.7177423417891535\n", + " loglikelihood: 23646065.85953915\n", + " background_normalization: 0.9780686891833531\n", + " Iteration 4/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 23746910.686555795\n", + " background_normalization: 0.9775991374802415\n", + " Iteration 5/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 23830530.1976484\n", + " background_normalization: 0.978345437696951\n", + " Iteration 6/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.021476183346016\n", + " loglikelihood: 23967842.15747451\n", + " background_normalization: 0.9793198466237346\n", + " Iteration 7/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24019580.204579435\n", + " background_normalization: 0.981448524626097\n", + " Iteration 8/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.812242608052198\n", + " loglikelihood: 24100330.103994556\n", + " background_normalization: 0.9825545993834066\n", + " Iteration 9/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24136588.0699614\n", + " background_normalization: 0.984296483841905\n", + " Iteration 10/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24168974.532973\n", + " background_normalization: 0.9851397032430448\n", + " Iteration 11/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24198023.705265246\n", + " background_normalization: 0.98587630869807\n", + " Iteration 12/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.031559874472495\n", + " loglikelihood: 24250030.307958953\n", + " background_normalization: 0.9865335818399789\n", + " Iteration 13/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24271140.353945933\n", + " background_normalization: 0.9876964380028733\n", + " Iteration 14/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.4680827707120705\n", + " loglikelihood: 24299097.586975046\n", + " background_normalization: 0.9881862047896464\n", + " Iteration 15/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24315854.264261693\n", + " background_normalization: 0.9888006762468168\n", + " Iteration 16/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.7425947696281046\n", + " loglikelihood: 24342291.21582216\n", + " background_normalization: 0.989170960160712\n", + " Iteration 17/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24355494.445937328\n", + " background_normalization: 0.9897325057623165\n", + " Iteration 18/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24367675.03234405\n", + " background_normalization: 0.9900176796661229\n", + " Iteration 19/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0043049006590876\n", + " loglikelihood: 24378984.30944805\n", + " background_normalization: 0.990272359532349\n", + " Iteration 20/20 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 24389413.438546576\n", + " background_normalization: 0.9905055720767687\n", + "#### Done ####\n", + "\n", + "CPU times: user 56min 5s, sys: 7min 42s, total: 1h 3min 47s\n", + "Wall time: 12min 36s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "8b9266e3", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.0601294839329405,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 23017854.415656216,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9812662983421157,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 23389718.937870078,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9780686891833531,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 23646065.85953915,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9775991374802415,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 23746910.686555795,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.978345437696951,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 23830530.1976484,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9793198466237346,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 23967842.15747451,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.981448524626097,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 24019580.204579435,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9825545993834066,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 24100330.103994556,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.984296483841905,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 24136588.0699614,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9851397032430448,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 24168974.532973,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.98587630869807,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 24198023.705265246,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9865335818399789,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 24250030.307958953,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9876964380028733,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 24271140.353945933,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.9881862047896464,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 24299097.586975046,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9888006762468168,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 24315854.264261693,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.989170960160712,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 24342291.21582216,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9897325057623165,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 24355494.445937328,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9900176796661229,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 24367675.03234405,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 0.990272359532349,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 24378984.30944805,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 0.9905055720767687,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 24389413.438546576,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "import pprint\n", + "\n", + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "ebaca93a-b4d2-4d76-9395-56b739d64758", + "metadata": {}, + "source": [ + "**(If you want, you can save the results in the directory \"./results\" as follows)**" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "e6e9207e-cf89-4ab5-88ff-3bc24791e112", + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "os.mkdir(\"./results\")\n", + "\n", + "for result in all_results:\n", + " iteration = result['iteration']\n", + " result['model_map'].write(f'./results/model_map_itr{iteration}.hdf5')\n", + "\n", + " with open(f'./results/result_itr{iteration}.txt', 'w') as f:\n", + " paramlist = ['alpha', 'loglikelihood', 'background_normalization']\n", + "\n", + " for param in paramlist:\n", + " value = result[param]\n", + " f.write(f'{param}: {value}\\n')" + ] + }, + { + "cell_type": "markdown", + "id": "ed1e8893", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "4cbb34e6", + "metadata": {}, + "outputs": [], + "source": [ + "## Crab location\n", + "\n", + "source_position = {\"l\":184.600, \"b\": -5.800}" + ] + }, + { + "cell_type": "markdown", + "id": "eef989ce", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "f96c2978", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHMCAYAAADF4Oz/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpZUlEQVR4nO3deVxU5f4H8M+w7/siIIosLizuS6moabnl8ssSrZtrtJrmrTTzlunVyja7bmm2cUu9LnXtVldRMper5A4ugAoBIyLbDOswMMBwfn8gUxMwDgww2+f9evWKOec553wfBpiP5zznOSJBEAQQERERUbMs9F0AERERkSFjWCIiIiLSgGGJiIiISAOGJSIiIiINGJaIiIiINGBYIiIiItKAYYmIiIhIA4YlIiIiIg0YloiIiIg0YFgiIiIi0sBK3wWYErlcjj179iA1NRVpaWmoqKjA66+/jkmTJrVpf0uWLEFycnKz6ywtLXHs2DEdqiUiIiJtMCy1o7KyMsTFxcHX1xehoaFISkrSaX9z5szBlClT1JZVVVXho48+wpAhQ3TaNxEREWmHYakdeXp64sCBA/D09MT169fxzDPP6LS/5gLRkSNHAAAPPfSQTvsmIiIi7TAstSMbGxt4enpq1fbMmTPYuXMnbt68CZFIhH79+uH5559Hjx49NG6XkJAAe3t7jBw5sj1KJiIionvgAG89OHz4MF577TXY29vj2Wefxbx585CdnY1FixYhLy+vxe1KS0tx4cIFjBw5Evb29p1YMRERkfliWOpkcrkcGzduxJQpU/DBBx/g0UcfxRNPPIHt27cDAHbu3NnitkePHoVSqeQlOCIiok7Ey3Cd7MKFC5DJZBg3bhxKS0tVyy0sLNCnTx9cunSpxW1//vlnuLm5YfDgwZ1QKREREQEMS53u9u3bAIClS5c2u97R0bHZ5Xfu3EFKSgpmzJgBKyu+bURERJ2Fn7qdrL6+HgDwxhtvwMPDo8l6S0vLZrdLSEgAwLvgiIiIOhvDUicLCAgAgFZfTvv5558REBCAiIiIjiqNiIiImsEB3p1s6NChcHR0xM6dO1FXV9dk/R/HMTW6efMmxGIxHnzwwU6okIiIiP6IZ5ba2XfffQeZTAapVAoAOH36NAoLCwEAjz76KJycnPDyyy/j7bffxlNPPYVx48bBzc0NBQUFOHPmDCIjI/HXv/5VbZ+8BEdERKQ/IkEQBH0XYUpiYmKQn5/f7Lq9e/fCz88PAJCUlIRdu3YhNTUVNTU18Pb2Rt++fTFjxgz06tVLtU19fT1mzpwJd3d3fP75553SByIiIvodwxIRERGRBhyzRERERKQBwxIRERGRBgxLOqqursaNGzdQXV2t71KIiIioAzAs6UgsFuPpp5+GWCzWdymd4rffftN3CZ2GfTVd5tRf9tV0mVN/9d1XhiVqFYVCoe8SOg37arrMqb/sq+kyp/7qu68MS0REREQaMCwRERERacCwRERERKQBwxIRERGRBgxLRERERBowLBERERFpYKXvAv4sLS0N8fHxSEpKQn5+PlxcXBAREYHY2FgEBga2al/vv/8+fvrpJ9x///147733WmyXm5uLefPmoaamBjt27EDv3r117QYRERGZCIM7s7R7926cOHECgwYNwpIlSzB16lRcvnwZsbGxyMzM1Ho/169fx6FDh2BjY3PPtps3b4alpaUuZRMREZGJMriwFBMTg/379+Oll17ClClTMG/ePGzevBlKpRK7du3Sah+CIGDjxo2YMGECPDw8NLY9d+4czp8/j5kzZ7ZH+URERGRiDC4sRUVFwdraWm1ZYGAggoKCtH6kyOHDh5GVlYWnn35aY7u6ujps2rQJjz32GAICAtpcMxEREZkugwtLzREEASUlJXB1db1nW7lcju3bt+PJJ5+Ep6enxrb79+9HRUUF5s6d216lEhERkYkxuAHezUlISEBRUREWLlx4z7ZxcXGwtbVFTEyMxnZSqRT//Oc/8cILL8DR0VHrWiQSCaRSqeq1uTxAl4iIyFwZfFgSi8X4+OOPERERgYkTJ2psm5OTg2+//RarVq2658Du7du3w9/fH1OmTGlVPT/88APi4uKaLM/KyoJSqWzVvoyRTCZDamqqvsvoFOyr6TKn/rKvpsuc+ttRfQ0PD9eqnUGHJalUitdeew2Ojo5Yu3btPe9Y27RpEyIjIzFmzBiN7VJSUnDkyBF8/PHHsLBo3ZXIadOmYcSIEarXYrEY69atQ48ePdCrV69W7csYpaamav3DZezYV9NlTv1lX02Xqfa3vq4e8jIFKqXVkJdUo7K4GpL0EvRdEAo753vf4d4RDDYsyWQyLF++HDKZDFu2bIGXl5fG9hcvXsTZs2exbt065OXlqZYrlUooFArk5eXBxcUFjo6O2LZtG/r27Qs/Pz9V29LSUgANAa2goAC+vr7NHsfLy+uetRAREVFTdQolKourVf/JS6pRKa1GZYmi4XVxNeRlCkBoum3Fw3KGpT9SKBRYsWIFcnJysGHDBgQFBd1zm8LCQgDAG2+80WRdUVERZs2ahRdffBExMTEoLCxEfn4+Zs2a1aTt66+/DicnJxw8eFDnfhAREZkDQRCgqKyFvFihFoZUgai4GvJiBRSVtW0+RmVxNbxD2rHoVjC4sKRUKrF69WqkpKTgnXfeQWRkZLPtJBIJKisrERAQACsrKwwcOBBvv/12k3YffPABunTpgjlz5iA4OBgA8Oqrr0KhUKi1u3TpEr777ju88MIL6N69e/t3jIiIyEjV1ShRKa2GTFIFmbQKMkk1Ku/+XyatQmVxNZQ19TodQyQC7N1s4ehuBwdPOzi628HRwxYOHnaQlBegSx/N8yZ2JIMLS1u3bsXp06cxfPhwVFRU4MiRI2rrx48fDwDYsWMH4uPjsXfvXvj5+cHX17fZS2ebN2+Gu7s7oqOjVcuGDh3apJ1MJgMA9O/fn487ISIisyHUCw1jhCRVkEmrIZNW//61pAqV0ipUV7T9jBAAWFpbwMHdFo4ednD0sIODx90w5GkHx7vL7d1sYWHZ/Dji2tQy2Dnp5xIcYIBhKSMjAwCQmJiIxMTEJusbwxIRERHdW211XcMZocazQaozRA2hqLK4GvXKZgYJacnazhKOnvZ3g5Dt72Go8T93O9g6W0MkErVjrzqXwYWlTZs2adVu5cqVWLly5T3b7du3T6v9TZo0CZMmTdKqLRERkaFQhaGiKlRIqlBRVAVZYcPXsiK5TmeFRBaihgDkaQ8nTzs4ednD0dMOTp72cPRq+L+Ng5VRByFtGFxYIiIiot/V1ShVQUhWVIWKIjkqiqpQdKsYl2R5qC6vafO+bR2tVaHHydMOjl53/+9pDycvOzhouDRmThiWiIiI9EhZq4RMUq0KQQ2B6PdgVFXWxjAkAhw97ODsbQ8nr7v//SkQ2dgzBmiD3yUiIqIOpqisRUWBHOWFclQUylFe0PBfRaEcMml1s/MKacPBwxbO3g6qQOTsbQ8nb3s4ezvA0dMOllY8K9QeGJaIiIh0JNQLkJdUo7ywShWKygvkqq8VsraNG3Jwt20IP172cPJ2gLNP49f2yCnMRmTfiHbuCTWHYYmIiEgLylolKorUw1Dj2aGKwiooa1s/z5CtkzWcfRzg4nM3CP3pzJCVTcuP+cotNu1B1YaEYYmIiKgZNfJa3EmRIveqFLnXJCgvkLf+ctndcUMuvg4Nocj37n8+DnD2dYCto3WH1E7ti2GJiIgIQL2yHkW/lSH3qgS3r0pQlFEGof7e6cjS2qLhrFAzYcjZ2x6W1pofAk+Gj2GJiIjMVnmBHLnXJMi9IsGdFClq5HXNtrOwFMGju0uTMOTi6wAHN1uILHhJzJQxLBERkdlouLRWjNyrEuRevXtprQVuAY4IiPJCQJQX/Pp4wNqOH5nmiu88ERGZrHplPSSZZbh9VYLcK1IUZpS2eGnN1skaAZFeCOjriYAoLzh52ndytWSoGJaIiMikVBTK74aje19a8+3lfjcgecEzyAUWvJxGzWBYIiIio6Wsq0fZnUqU3K5A5q9SXPvshMZLa67+juga1RCOeGmNtMWfEiIiMnhCvYCKIjmKb8lQcrsCJTkN/y/Nq4SgbPmONVsna/hHejYEpCgvOHnx0hq1HsMSEREZDEEQIC9VoCTn90BUnCNDaa4MdQrlPbcXWYrg29NddfaIl9aoPTAsERGRXihktXfDUAVKbssaAtJtmdaPBrGwFMEtwAnuXZ3gHuiMSlEphjzUjw+HpXbHnygiIupwFUVVyE8rvhuMGgKSvFih3cYiwMXHAe6BzvAIbAhG7l2d4NrFERZ/eFBsamoqgxJ1CP5UERFRu1PW1aPgRglykouQk1yE0lyZVts5eNjCo6uzKhB5BDrDLcAJVracBZv0h2GJiIjaRWVxNXIuN4SjO1clqK1ueYyRjYMVPLr9KRR1dYKdk00nVkykHYYlIiJqk3plPQrTSxvOHl0uQrG4otl2IhHgHeaGwL7e8A5xhXs354ZHhIg48JqMA8MSERFpTV6mwO27Z49yr0hanPDRztkaXft5I7C/NwL6evGMERk1hiUiImpRfb0ASWaZauyRJLOsxbbewa7o2r8hIHkFu/KWfTIZDEtERKSmuqIGuVclyEkuwu3LRaiuaP5WfhsHK3Tte/fsUT8vOLjadnKlRJ2DYYmIyMzVVNVBklnWcPfa5SIUZZRCaGFSbM/uzuja3weB/b3hE+oKC0uL5hsSmRCGJSIiMyLUCyi9I0NheikKM0pRmFGGktsVQAvhyNreEgGRXgjs742u/bzh6GHXuQUTGQCGJSIiE1ZbqcStS4UNwSi9FEWZZaitan5QdiP3rk6qsUe+Pd1hacWzR2TeGJaIiEyEsq4exeLy34PRb2UoL5ADuN3iNiILETy6OcMnzA0+IW7o0scDzt582CzRHzEsEREZIUEQUCmtVgWjwoxSSLPLoayt17idg7ttQzAKbfjPq4crZ8cmugeGJSIiIyHJLEPuNQkKM8pQlFEKeanmZ6tZWlvAoYs1gvr6wyfUFT6hbnD05FkjotZiWCIiMnDSW+W4sOcmcpKLNLZz6eKgOmPkE+oGj27OuH7zOsLDe3dSpUSmiWGJiMhAVRTJcXF/OjJO32lyt5qNgxW8Q9xUZ4y8Q9xg58JZsok6AsMSEZGBqS6vQfJ/fkNqghj1db+nJEdPO/SbGgy/CE+4+TlCxBmyiToFwxIRkYGora7DtUPZuPJTJmqrlKrltk7W6Dc9BOEPdYOVDQdjE3U2hiUiIj2rr6vH9WM5SPp3BqrKalTLLW0sEDmpB/pO6QFbR2s9Vkhk3hiWiIj0RKgXkHk2Hxf33bw7H1IDkYUIvR7oigEzQuHozhmzifSNYYmISA9yr0pwfs8NSLLK1Zb3GNoFg2LC4ObvpKfKiOjPDC4spaWlIT4+HklJScjPz4eLiwsiIiIQGxuLwMDAVu3r/fffx08//YT7778f7733nmp5WVkZDh48iNOnT0MsFkOpVKJbt26YOXMmxo0b195dIiJSkWSV4fyeG8i9KlVb7hfugSGze8En1E0/hRFRiwwuLO3evRtXr17FAw88gJCQEEilUhw4cACxsbHYtm0bgoODtdrP9evXcejQIdjYNL2VNiUlBZ999hnuu+8+zJ07F5aWljhx4gTWrFkDsViMhQsXtne3iMjMlRdU4sK+dGT+mqe23KO7M4bM7oWufb0gEvHuNiJDZHBhKSYmBqtWrYK19e+DGceOHYsFCxZg165dePPNN++5D0EQsHHjRkyYMAGXLl1qsj4oKAi7d+9Gly5dVMseeeQR/PWvf8Xu3bvx+OOPw96es9wSke7kZQok/zsDab/kQFD+Pg2As7c9Bs0MQ8hwf04BQGTgDO5R0lFRUWpBCQACAwMRFBQEsVis1T4OHz6MrKwsPP30082u9/f3VwtKACASiRAdHY2amhrcuXOnbcUTEd1VI6/Fxf03sW/pCaQm3FIFJTsXG9w/rw8e+2gUQkcGMCgRGQGDO7PUHEEQUFJSgqCgoHu2lcvl2L59O5588kl4enq26jjFxcUAAFdX17aUSUQEZa0SaT/nIPn7DFRX1KqWW9laIurhHoh6uAds7I3iTy8R3WUUv7EJCQkoKirSaixRXFwcbG1tERMT06pjlJeX46effkLfvn3h5eXVYjuJRAKp9PeBmdqe7SIi0yaTVEF8sRBXD2ZBVlSlWm5hKULvcd3Q/5EQOLja6rFCImorgw9LYrEYH3/8MSIiIjBx4kSNbXNycvDtt99i1apVzQ7sbkl9fT3Wrl0LmUyGpUuXamz7ww8/IC4ursnyrKwsKJXKphuYGJlMhtTUVH2X0SnYV9PVHv0VBAGyOzUouSlHcXoV5IW1Tdp4RTig22g32HkA2bm/Abk6HbJNzOm9Nae+AubV347qa3h4uFbtDDosSaVSvPbaa3B0dMTatWthaal5mv9NmzYhMjISY8aMadVx/vGPf+Ds2bP429/+htDQUI1tp02bhhEjRqhei8VirFu3Dj169ECvXr1adVxjlJqaqvUPl7FjX01XW/tbW12H3KsS3EoqQk5Sodps23/Uta8XBs/uCa8g/V/SN6f31pz6CphXf/XdV4MNSzKZDMuXL4dMJsOWLVs0XhoDgIsXL+Ls2bNYt24d8vJ+vzVXqVRCoVAgLy8PLi4ucHR0VNvuq6++wvfff49nn30WEyZMuGddXl5e96yFiEyHTFKFW0mFuHWpEHmpxVDW1jfbzjvEFd0G+KDbIB94dnfp5CqJqCMZZFhSKBRYsWIFcnJysGHDBq0GdhcWFgIA3njjjSbrioqKMGvWLLz44otqY5n+/e9/46uvvsLMmTPxl7/8pd3qJyLjJdQLKMosw61LDQGp+FZFs+2sbC0REOmJbgN9EDjABw5uHI9EZKoMLiwplUqsXr0aKSkpeOeddxAZGdlsO4lEgsrKSgQEBMDKygoDBw7E22+/3aTdBx98gC5dumDOnDlqE1oePXoUmzZtwkMPPYQXX3yxw/pDRIZPdXntUiFuJRWhurz5y2uOHnboNtAH3Qb6wC/cA1Y2mocGEJFpMLiwtHXrVpw+fRrDhw9HRUUFjhw5orZ+/PjxAIAdO3YgPj4ee/fuhZ+fH3x9feHr69tkf5s3b4a7uzuio6NVy1JTU/HOO+/AxcUFgwYNQkJCgto2kZGR8Pf374DeEZGhkEmq7oajQtxJkaK+Tmi2nXeIa0NAGuADj+7OnGWbyAwZXFjKyMgAACQmJiIxMbHJ+sawpAuxWIza2lqUlpZi/fr1Tda//vrrDEtEJkYQBEizy5F9vgA3E+8gsbD5aT94eY2I/szgwtKmTZu0ardy5UqsXLnynu327dvXZNmkSZMwadKkVtdGRMZFEARIxeXIOpOPzDN5qCisarYdL68RkSYGF5aIiHTxx4CUdTYf5QXyZtvx8hoRaYthiYiMniAIKBZXIPNsPrLO5DUbkEQiwC/cEz3u6wKFcxn6D43SQ6VEZIwYlojIKAmCgOJbFcg8k4+ss3koz9cckIIG+8L+7uNGzGXWYyJqHwxLRGQ0BEFAcU6FagxSSwGpSx8PBN/nh6AhvwckIqK2YlgiIoP2x4CUdTYfZXmVTdo0BqQew7ogaGgXPrCWiNoVwxIRGRxBEFCSI0PW2Txknmk+IEEE+DUGpCFdeIs/EXUYhiUiMhhl+ZXIOHUHmWfyUHan+YDUpbcHgu9jQCKizsOwRER6VSOvRebZfKSfyEXBzZKmDURAl17uqjFIDu52nV8kEZk1hiUi6nT19QLyUqS4eTIX2efzoaypV29wNyD1GOaHHkMZkIhIvxiWiKjTlOVV4ubJXGT8LxeVxdVN1rt3dULYqACEjPCHIwMSERkIhiUi6lA18lpknsnHzZO3UXiztMl6WydrhAz3R9ioAHj1cOFM2kRkcBiWiKjd1dcLuHNNgvSTucg+XwBlrfplNpGFCF37eaHn6K7oNsAbltZ8FhsRGS6GJSJqN6V3ZEg/mYv0U7mQFyuarHcPdELPUV0RMsKfd7IRkdFgWCIinSgqa5F5Jg/pJ3JRmFHaZL2tkzVCRvij56gAeAbxMhsRGR+GJSJqtfp6AXeuSnDzZC7EF5q/zBY4wBth0QG8zEZERo9hiYi0Vl9Xj8s/ZCLt6C3IS5peZvPo5qy6m42PHCEiU8GwRERaqZbV4JeNybiTIlVbbufceJmtKzyDXPRUHRFRx2FYIqJ7Ks2V4ciHF1FeIAcAiCxF6NbfG2GjuiJwgDcsrSz0XCERUcdhWCIijW5fKcIvm5JRI68DANi52OChlwfCt6e7nisjIuocDEtE1CxBEJB6RIwzX6dBEBqWeXR3xvhXBsHJy16/xRERdSKGJSJqor6uHon/TMX1ozmqZd0H+2LMC31hbcc/G0RkXvhXj4jUNDeQu9+0YAyO6QmRBedIIiLzw7BERCp/HshtYSVC9NNRCIsO0HNlRET6w7BERAA4kJuIqCUMS0RmThAE5J0vx68JtyDUN4zk9ujmjIdeGQRnbw7kJiJiWCIyY40DubOOlqiWdR/kgzGL+nEgNxHRXfxrSGSmOJCbiEg7DEtEZqjpjNzAqGf6ciA3EVEzGJaIzExzA7nDZngwKBERtYBhichMNMzIfQtnvklrMpA7pyhLz9URERkuhiUiM9DsjNx/HMhdpMfiiIgMHMMSkYnjQG4iIt0wLBGZMM7ITUSkO4YlIhPFGbmJiNoHwxKRidE0kJszchMRtZ7BhaW0tDTEx8cjKSkJ+fn5cHFxQUREBGJjYxEYGNiqfb3//vv46aefcP/99+O9995rsv7UqVP46quvIBaL4ebmhsmTJ2Pu3LmwsjK4bwuRViqlVTi/9yYyTt1RLes2yAcPcEZuIqI2M7i/nrt378bVq1fxwAMPICQkBFKpFAcOHEBsbCy2bduG4OBgrfZz/fp1HDp0CDY2Ns2uP3PmDP72t7+hf//+eOmll5CZmYmvv/4aJSUleOWVV9qzS0QdrlpWg8s/ZCL1sBjK2nrV8r5TgzFkFgdyExHpwuDCUkxMDFatWgVra2vVsrFjx2LBggXYtWsX3nzzzXvuQxAEbNy4ERMmTMClS5eabfPJJ58gJCQEH330kepMkoODA3bu3InHHnsM3bt3b58OEXWgOoUS1+KzceXHTNXYJACwtrfC8PnhHMhNRNQOLPRdwJ9FRUWpBSUACAwMRFBQEMRisVb7OHz4MLKysvD00083uz47OxvZ2dmYOnWq2iW3Rx55BIIg4Pjx422un6gz1NfVI+3oLez76wlc2HtTFZQsrS0Q9XAPzPrHaAYlIqJ2YnBnlpojCAJKSkoQFBR0z7ZyuRzbt2/Hk08+CU9Pz2bb3Lx5EwDQq1cvteVeXl7w9vZGenq6zjUTdQShXkDWuXxc2HcT5fly1XKRCAgb3RUDHw2FkycHcRMRtSejCEsJCQkoKirCwoUL79k2Li4Otra2iImJabGNVNowOV9zYcrT01O1vjkSiURtvbZnu4h0lXtVgvN7bkCSVa62vPsQXwyO6Qn3ACc9VUZEZNoMPiyJxWJ8/PHHiIiIwMSJEzW2zcnJwbfffotVq1a1OLAbAGpqagCg2TY2NjaQy+VNljf64YcfEBcX12R5VlYWlEqlxvpMgUwmQ2pqqr7L6BSG0lfZHQXEx0pRllWtttylmy26j3WHc1db5JXdQl6ZDscwkL52FnPqL/tqusypvx3V1/DwcK3aGXRYkkqleO211+Do6Ii1a9fC0tJSY/tNmzYhMjISY8aM0diuMSQ1hqY/qqmpga2tbYvbTps2DSNGjFC9FovFWLduHXr06NHksp4pSk1N1fqHy9jpu69leZW4sO8mss7mqy336O6MIbN7oWtfL4hE7XOXm7772tnMqb/sq+kyp/7qu68GG5ZkMhmWL18OmUyGLVu2wMvLS2P7ixcv4uzZs1i3bh3y8vJUy5VKJRQKBfLy8uDi4gJHR0fV5TepVApfX1+1/UilUvTp06fF43h5ed2zFiJdVJZUI+m7DNw4fls1qSQAOPvYY9DMngi5349TARARdSKDDEsKhQIrVqxATk4ONmzYoNXA7sLCQgDAG2+80WRdUVERZs2ahRdffBExMTEICwsDANy4cUMtqUokEhQVFWHatGnt0xGiVlDIanHlp0xci8+Gsub3uZLsXGwwcEYoeo0NhKWVwd3ASkRk8gwuLCmVSqxevRopKSl45513EBkZ2Ww7iUSCyspKBAQEwMrKCgMHDsTbb7/dpN0HH3yALl26YM6cOaoJLXv06IFu3brhxx9/xLRp01SX977//nuIRCKMHj264zpI9Cd1NUqkHBbjyg+ZUFTWqpZb21ui75RgRE4K4uzbRER6ZHB/gbdu3YrTp09j+PDhqKiowJEjR9TWjx8/HgCwY8cOxMfHY+/evfDz84Ovr2+TS2oAsHnzZri7uyM6Olpt+QsvvIDXX38dr7zyCsaNG4fMzEwcOHAAU6ZM0epMFpGu6pX1uHkyF5e+S4e8WKFabmElQvhD3dF/egjsXFq+UYGIiDqHwYWljIwMAEBiYiISExObrG8MS7oaPnw41q1bh7i4OGzcuBGurq548sknMX/+/HbZP1FLBEFA9vkCXNh7E2V5larlIhEQGh2AgY+G8YG3REQGxODC0qZNm7Rqt3LlSqxcufKe7fbt29fiuujo6CZnnIg62pmv05ByWH1+rm6DfDBkVk+4d3XWU1VERNQSgwtLRKYs+3yBWlDy7eWOIbN7oUsvdz1WRUREmjAsEXUSeUk1/vfZVdXr++b2QcSE7u02VxIREXUM3odM1AkEQcDJHVehkDXc7dZ9sC+DEhGRkWBYIuoEqUfEuH1ZAgCwd7NFdGwkgxIRkZFgWCLqYCW3K3Bu9w3V69HPRnFKACIiI8KwRNSBlLVKHNt6Gcrahhm5IyZ0R9d+3nquioiIWoNhiagDXdifjmJxBQDAvasThjxu+g9bJiIyNa26Gy45ObnNB+rfv3+btyUyRndSpLj63ywADbNyj1nUD1Y2lnquioiIWqtVYemll15q86DU48ePt2k7ImOkkNXixLYrgNDwevCsXvDs7qLfooiIqE1aFZbmzZvXJCylpqbi3Llz6Nq1K6KiouDu7o6SkhJcu3YNOTk5GDp0KMLDw9u1aCJDJggCTn15DZXF1QAA/whPRE0K0m9RRETUZq0KSwsXLlR7ffnyZezatQvLli3Dww8/rBakBEHAjz/+iE2bNmHOnDntUy2REcg4dQdZZ/IBALaO1hj9XBREFpwmgIjIWOk0wPuLL77AfffdhylTpjQ54yQSiTBt2jQMGzYMX3zxhU5FEhmLikI5EuNSVK9HPBUBR08+FJeIyJjpFJZu3LiB7t27a2wTFBSE69ev63IYIqNQXy/g+CdXUFulBACERQcg+D4/PVdFRES60iksWVtbIz09XWObmzdvwtraWpfDEBmFyz/8hoKbJQAAJ2973D+vj54rIiKi9qBTWBoyZAjOnTuHnTt3ora2Vm1dbW0tdu7cifPnz2Po0KE6FUlk6Ip+K8Wl7zIAACIRMOaFfrBx4D8SiIhMQasGeP/Z888/jytXruDzzz/Ht99+i969e8PNzQ2lpaW4fv06SktL4enpieeee6696iUyOLXVdTj+yRUIyoZ5AvpND0GXXu56roqIiNqLTmHJx8cHO3bswKeffopjx47h119/Va2zsbHB+PHj8eyzz8LT01PnQokM1dmd11GWVwkA8A52xcAZoXquiIiI2pNOYQkAPD09sXLlSixfvhy3bt1CZWUlHB0dERgYyLFKZPLEFwtw/ZccAICVrSXGLOoHCys+RYiIyJToHJZUO7KyQnBwcHvtjsjgyUsV+N+Oq6rX983pA1c/Rz1WREREHaHdwtLVq1eRnp4OuVwOBwcHhIWFISoqqr12T2RQBEHAyU+voLqi4caG7oN80OuBrnquioiIOoLOYenq1atYv349cnNzATR8iDROUNm1a1esWLECkZGRuh6GyKCkJdzC7csSAIC9my1GPh3Z5ucmEhGRYdMpLGVlZeHVV19FdXU1Bg8ejAEDBsDT0xPFxcVISkrC+fPn8eqrr2L79u0ICgpqp5KJ9KvkdgXO7vp9otVRz0bB3sVWjxUREVFH0iksxcXFoba2Fu+//z6GDRumtu4vf/kLzp49i9dffx1xcXFYvXq1LociMgjKunoc33oZytp6AED4+O4I7Oet56qIiKgj6XTbTnJyMsaMGdMkKDUaNmwYxowZg6SkJF0OQ2QwLu6/Cam4AgDgFuCIoU/00nNFRETU0XQKS5WVlfDz0/zsKz8/P1RWVupyGCKDcCdViis/ZQEALCxFeGBRf1jZWOq5KiIi6mg6hSVPT0+kpKRobJOamspJKcnoKWS1OPHJFaBhkm4MjukJzyAX/RZFRESdQqewNGLECCQnJ+Pzzz+HQqFQW6dQKPDll18iKSkJI0eO1KlIIn0SBAGnv0pBZXE1AMAv3ANRD/fQc1VERNRZdBrgPW/ePPz666/YuXMnfvjhB/Tp0wfu7u4oKSlRPRvO398f8+bNa696iTrdb6fvIPPXPACAjYMVRj/fFyILThNARGQudApLrq6u2LZtG7Zv346jR4/izJkzqnU2NjaYNGkSnnvuObi48HIFGaeKIjlOf5Wqej3iqUg4edrrsSIiIupsOk9K6ebmhhUrVuDVV1+FWCxWzeDdvXt3WFm12wThRJ1OqBdwYtsV1FbVAQBCR/oj5H7NNzQQEZHpaddnw4WEhLTX7oj0LvfXcuRfLwUAOHnZY/j8cP0WREREesFnwxE1oyizDDknSgEAIhEw5oW+sHGw1m9RRESkF3w2HNGf1FbX4fjWyxAaJulG32kh6NLbQ79FERGR3vDZcER/UFWmwJGPLqIsr2EiVa9gVwx6NFTPVRERkT7x2XBEd5XkynDk/QuoKKoCAFjaiDDmhb6wsNJpOjIiIjJyOoUlbZ8Nd/HiRa33mZaWhvj4eCQlJSE/Px8uLi6IiIhAbGwsAgMD71nPnj17kJ6ejrKyMjg5OSE0NBTz5s1rMn6qvr4eP/74I/7zn/8gNzcXdnZ26NmzJ+bOncuxVmboTqoUP2+4hBp5w51vDh62CHvUA27+TnqujIiI9M3gng23e/dunDhxAoMGDcKSJUswdepUXL58GbGxscjMzNS47e3bt2FhYYHp06dj6dKlmDVrFoqLi7F48WKcPXtWre0nn3yCjz76CMHBwVi0aBFmzZqFnJwcLFmyBKmpqS0cgUxR+slcxL97XhWUPLs7Y/rfh8PR10bPlRERkSHQ6cxSRzwbLiYmBqtWrYK19e93Ho0dOxYLFizArl278Oabb7a47ZQpUzBlyhS1ZY888ghmz56N/fv3q86A1dXV4T//+Q/GjBmDN954Q9V2zJgxmD17NhISEhAeztvETZ0gCLj0XQaS/p2hWhbY3xsPLO4PG3srIF+PxRERkcEwuGfDRUVFqQUlAAgMDERQUBDEYnGra7Szs4OrqytkMplqmVKphEKhgLu7u1pbd3d3WFhYwNbWttXHIeOirFXixLYrakGpz0Pd8NArAxuCEhER0V1G8Ww4QRBQUlKi9R11lZWVqK2tRVlZGQ4fPoysrCzMmTNHtd7W1hbh4eGIj49HREQE+vXrB5lMhn/+859wdnbGtGnTdKqXDFu1rAY/f5yE/LTihgUiYNgTvRE5OUg17QUREVEjo3g2XEJCAoqKirBw4UKt2r/11ls4d+4cAMDa2hrTpk3D3Llz1dq88cYbWL16NdatW6da5u/vj61bt8Lf37/FfUskEkilUtXrtpztIv0pL5Dj8PsXVFMDWNpYYMwL/dBjaBc9V0ZERIZKJAiC0B47qqur65Bnw4nFYjz33HMICgrCli1bYGlpec9t0tPTUVpaisLCQsTHxyMgIABLliyBg4ODqk1xcTG2bdsGBwcHDBo0CMXFxdi1axdsbW2xZcsWuLm5NbvvL7/8EnFxcU2Wr1y5Et26dWtrN42GTCaDk5Nx3iFWcVuBtH2FqJM3zDZp7WiB3jE+cA5o/rKrMfe1tcypr4B59Zd9NV3m1N+O6qu245PbLSx1BKlUikWLFqGurg7bt2+Hl5dXq/dRW1uL2NhYdOvWDWvXrgXQEOyeeuopDBgwAEuXLlW1zcnJwbx58zBz5kw8//zzze6vuTNL69atw2effYZevXq1uj5jk5qaapSD37PO5uH4J1egrG0ISm4BjpiwbDCcfRxa3MZY+9oW5tRXwLz6y76aLnPqr777arAjWWUyGZYvXw6ZTIYtW7a0KSgBDZfhRowYgV27dkGhUMDW1haXL19GVlYWXnzxRbW2gYGB6N69O65du9bi/ry8vNpcC3U+QRBw9acsnPvXDdUyv3APPLh0IGyd+Kw3IiK6N53D0oULF7B3715cv34dMpkMzZ2oEolEOHbsmNb7VCgUWLFiBXJycrBhwwadH5WiUCggCALkcjlsbW1RUlICoGFiyj+rq6uDUqnU6XhkGOqV9UiMS8X1ozmqZWGjAjAyNhKWnJWbiIi0pFNYOn78ONasWYP6+nr4+vqie/fuWo0p0kSpVGL16tVISUnBO++80+JDeCUSCSorKxEQEKAaG1VSUtJkOoCKigqcOHECPj4+qnWNM4EfPXpUbfbxGzduICcnB1OnTtWpD6R/NfJa/LI5GbcvS1TLBj0Whv6PhPCONyIiahWdwtI///lP2NjY4J133sGgQYPapaCtW7fi9OnTGD58OCoqKnDkyBG19ePHjwcA7NixA/Hx8di7d69qFvFly5bB29sb4eHhcHd3R0FBAQ4ePAipVKr2bLpevXph8ODBiI+PR2VlJYYOHQqpVIrvvvsOtra2mDlzZrv0hfSjUlqFwx9cRPGtCgCAhZUIo56JQujIAD1XRkRExkinsJSTk4Px48e3W1ACgIyMhkkCExMTkZiY2GR9Y1hqzuTJk/HLL79g3759kMlkcHZ2Rnh4OFatWoV+/fqptX333XexZ88eHD16FOfOnYO1tTX69u2Lp556yizuajNVkuwyHPngIuQlDZOk2jpa48GXB8Kvj4eeKyMiImOlU1hycXFp99muN23apFW7lStXYuXKlWrLZsyYgRkzZmi1va2tLebNm6fzhJlkOHKSCnF0UzLqFA1jzpx97DFh+WA+DJeIiHSiU1gaPXo0Ll68iLq6unaZU4morVITxPg1LhWN9xf4hLnhoVcGwt6Fj64hIiLd6HRL0DPPPAMnJyesXr0aBQUF7VUTkdaEegFndqYh8avfg1KPYV0w+W9DGZSIiKhdtOp00KxZs5osq6urQ2pqKk6dOgUnJyc4Ojo2aSMSibBnz562V0nUjDqFEsc+uQzx+d+Det+pwRgyqydEFrzjjYiI2kerwlJzcyhZWlrCx8dHYxsDniScjJS8TIGEDy+i6LcyAIDIQoQRCyPQe2ygnisjIiJT06qwtG/fvo6qg0hrMkkV/rv2LCqKqgAA1vaWGPfSAHTt663nyoiIyBRxVDYZlcqSahx8+5wqKDl62mHCssHw6Oas58qIiMhUMSyR0agqV+DQO+dQXiAHALj6OWLyG0Ph6G6n58qIiMiUtSosxcXFQSQS4ZFHHoGLiwvi4uK02k4kEnE+I9KJQlaLQ++eR2luJQDA2dsek1cOYVAiIqIO16qw9NVXX0EkEmHs2LFwcXHBV199pdV2DEukixp5LeLfO49iccPjSxw97DD5b0Ph6Gmv58qIiMgctCosbdy4EQBUd781vibqKLXVdTjyh7ve7F1tMPlvQ+Hs46DnyoiIyFy0Kiz1799f42ui9lRXo0TChkvIv14CALB1ssaklUPh6td0Li8iIqKOotMM3kQdRVlXj6Mbk3DnmhQAYONghUmvD4FHIO96IyKizsWwRAanXlmP41suIyepCABgZWuJCcsHw6uHq54rIyIic9Sqy3CjR4+GSNT6x0iIRCIcO3as1duR+RHqBZz89CqyzuUDACytLTB+2SD49nTXc2VERGSuWhWW+vXr16awRKQNQRBw6osUZJy6AwCwsBLhoZcHwj/cU8+VERGROWtVWNq0aVNH1UFmThAEnPk6DTeO5QBoeNbbuCUD0LUfH2FCRET6xTFLpHeCIODC3ptIOSwGAIhEwJhF/dB9sK+eKyMiImrHx51kZ2dDLBajuroaEyZMaK/dkhlI/v43XP4hU/U6+pkohNzvp8eKiIiIfqdzWEpLS8MHH3yAzMzfP+waw1JycjKWLVuGt956CyNHjtT1UGSCrvw3Cxf3p6teD18Qjp6ju+qxIiIiInU6XYbLysrC0qVLkZeXh5kzZ2LYsGFq6/v16wdXV1ccP35cl8OQiUpNEOPcruuq18P+0hvhD3XXY0VERERN6RSWvvzySwDAZ599hkWLFqF3795q60UiESIiInD9+vXmNiczdvPkbSR+lap6PWhmGKIe7qHHioiIiJqnU1hKTk7G6NGj0bVry5dNfH19IZVKdTkMmZjffs3D/z69qnrdb1ow+v9fiB4rIiIiaplOYamqqgru7ponC1QoFKivr9flMGRCxBcKcPyTyxCEhtcRE7tj8KyenL+LiIgMlk5hydvbW21gd3Nu3rwJf39/XQ5DJuL25SIc3ZQEQdmQlHqPDcR9c/owKBERkUHTKSwNHz4c58+fx4ULF5pd/8svvyA1NRXR0dG6HIZMwJ1UKRI2XEJ9XUNQCh3pjxELIxiUiIjI4Ok0dcCcOXNw/PhxLF++HBMnTkRxcTEA4MCBA0hJScHRo0fRpUsXxMTEtEuxZJwKbpbgyAcXoaxtuBzbY2gXjHo2CiILBiUiIjJ8OoUlNzc3bN68GevWrcN///tf1fJ//OMfAIDw8HCsWrUKTk5OOhVJxkuSVYbD719AnUIJAAgc4I0xL/aDhSUnjyciIuOg86SU/v7++OSTT5Ceno7U1FSUl5fDwcEB4eHh6NOnT3vUSEaqOKcCh949jxp5HQDAP9IT414aAEsrBiUiIjIeOoWlkydPYtSoUQCAsLAwhIWFNdtu8+bNWLx4sS6HIiNTlleJQ++cg0JWCwDw7eWOh14eCCsbSz1XRkRE1Do6/RN/7dq1uHz5ssY2mzdvxnfffafLYcjICPUCEjZcQlVZDQDAO9gVE5YNgrVduz2KkIiIqNPoFJb8/f3x+uuvtzh9wJYtW/Dtt9/yuXBmJi+tGKW5MgCAe1cnTFgxGDYO1nquioiIqG10CksffPABHBwcsGzZMhQUFKit++STT7B//36MHDkSa9as0alIMi43T9xWfT1gRijsnGz0WA0REZFudApLPj4++PDDD6FQKPDKK6+grKwMQENQ2rt3L4YPH441a9bA0pLjVMxFjbwWWefyAQA2DlboNtBHzxURERHpRufbkoKCgvDee++hqKgIy5Ytw5YtW7B3717cf//9WLt2LaysOE7FnGSdzYeypmE+pZAR/hzQTURERq9d7uGOiIjA6tWrkZGRgW+//Rb33Xcf1q1bx6Bkhm6eyFV93XN0yw9YJiIiMhatSjPx8fEa1w8ZMgSpqakYMWIEfv75Z7V1EydO1OoYaWlpiI+PR1JSEvLz8+Hi4oKIiAjExsYiMDBQ47bJycnYs2cP0tPTUVZWBicnJ4SGhmLevHmIiopq0r62thZ79uzB4cOHkZ+fD0dHR/Tq1QuvvvoqfHx4+ai1yvIqUXCzBADgHugErx4ueq6IiIhId60KS++++26zz/ISBAEikQjC3UfJb9iwQW2ZSCTSOizt3r0bV69exQMPPICQkBBIpVIcOHAAsbGx2LZtG4KDg1vc9vbt27CwsMD06dPh4eGBiooKJCQkYPHixXjvvfcwbNgwVdu6ujq89tpruHbtGqZMmYKQkBBUVFQgLS0NlZWVrfm20F1/HNgdNqorn/tGREQmoVVhacWKFR1Vh0pMTAxWrVoFa+vfbzUfO3YsFixYgF27duHNN99scdspU6ZgypQpasseeeQRzJ49G/v371cLS/v27UNycjK2bNmC8PDw9u+ImamvF5B+quESnMhChNCR/nquiIiIqH20KixNmjSpo+pQae5yWWBgIIKCgiAWi1u9Pzs7O7i6ukImk6mW1dfX49tvv0V0dDTCw8NRV1eHuro62NnZ6VS7ObtzVQJ5sQJAw/PfHFxt9VwRERFR+zCKEdiCIKCkpARBQUFata+srERtbS3Kyspw+PBhZGVlYc6cOar12dnZkEgkCAkJwQcffID4+HjU1tYiODgYS5YswcCBAzuoJ6ZLbWD3KA7sJiIi02EUYSkhIQFFRUVYuHChVu3feustnDt3DgBgbW2NadOmYe7cuar1t283jK3Zv38/nJ2d8eqrrwIAvvnmGyxbtgw7duxASEhIs/uWSCSQSqWq120522VqFLJaiC82TEpq52yNwAHeeq6IiIio/bQqLI0ePRoWFhb4+uuvERgYiNGjR2s1iFckEuHYsWNtKlAsFuPjjz9GRESE1oPEn332WcyaNQuFhYWIj49HXV0dlEqlan1VVRUAQC6X4/PPP4evry8AYODAgXj88cexe/fuFsdG/fDDD4iLi2uyPCsrS+0YpkomkyE1NVVtWf7FCihrG+ZWcu9jhxs3r+ujtHbXXF9NlTn1FTCv/rKvpsuc+ttRfdV2zHKrwlK/fv0gEolga2ur9rqjSKVSvPbaa3B0dMTatWu1ngk8LCxM9fX48eMRGxuLd999F2vXrgUAVf2RkZGqoAQAvr6+iIqKwrVr11rc97Rp0zBixAjVa7FYjHXr1qFHjx7o1atXq/pnjFJTU5v8cKXvTlR9fd+MvvDsZhpTBjTXV1NlTn0FzKu/7KvpMqf+6ruvrQpLmzZt0vi6PclkMixfvhwymQxbtmyBl5dXm/ZjbW2NESNGYNeuXVAoFLC1tYWnpycAwMPDo0l7d3d3pKent7g/Ly+vNtdiikpuV6Aos+ExN55BLiYTlIiIiBq1ywze7U2hUGDFihXIycnB+vXrtR7YrWl/giBALpcDAEJCQmBlZYWioqImbSUSCdzc3HQ6njlRn7E7QI+VEBERdQyDC0tKpRKrV69GSkoK1qxZg8jIyGbbSSQSiMVi1NXVqZaVlJQ0aVdRUYETJ07Ax8cH7u7uAAAHBwfcd999SElJURugnZ2djZSUFAwePLide2Wa6uvqkXF3biULKxFChnNuJSIiMj2tugzX3MBmbYhEIsybN0+rtlu3bsXp06cxfPhwVFRU4MiRI2rrx48fDwDYsWMH4uPjsXfvXvj5+QEAli1bBm9vb4SHh8Pd3R0FBQU4ePAgpFIpVq9erbafZ555BhcvXsTSpUvx6KOPAgC+++47ODs7q00zQC3LuVyEqrIaAED3gb6wc7bRc0VERETtr1Vh6auvvmrTQVoTljIyMgAAiYmJSExMbLK+MSw1Z/Lkyfjll1+wb98+yGQyODs7Izw8HKtWrUK/fv3U2gYFBWHTpk349NNP8c0330AkEmHgwIF4/vnn4e3NW9+1cfMkL8EREZHpa1VY2rhxY0fVoaLtoPGVK1di5cqVastmzJiBGTNmaH2sXr16YcOGDa2qjxpUlStw61IhAMDBzRYBfTnonYiITFOrwlL//v07qAwyNr+dzoOgbHhwcmi0PywsDW74GxERUbvgJxy1yc2Tt1Vf8/EmRERkynR63ElBQcE924hEIjg6OsLR0VGXQ5EBkWSXoVhcAQDwCXWDW4CTnisiIiLqODqFpZiYGK1n8HZzc8OoUaMwf/78ZieDJOPxx7mVwjiwm4iITJxOl+EmTJiAvn37QhAEODk5oX///hg7diz69+8PZ2dnCIKAfv364b777oONjQ3+85//4Omnn4ZEImmv+qmT1dcJ+O30HQCApbUFQu7303NFREREHUunM0uPP/44Fi1ahHnz5uGJJ56AnZ2dap1CocDu3bvx7bffYuvWrejWrRt27tyJL774Al9//TVefvllnYunzleSLodCVgsACBriCxsHaz1XRERE1LF0OrO0bds2hIeHY+HChWpBCWh4WO2CBQsQHh6O7du3w8LCAnPnzkXv3r1x5swZnYom/Sm8XKn6Omw0B3YTEZHp0yksXbt2Db169dLYpmfPnrhy5YrqdXh4OIqLi3U5LOmJvKQaJb9VAQAcPe3gH+Gp54qIiIg6nk5hqb6+Hrm5uRrb3L59G4IgqF5bWlrCxoaPxTBGGafuAHffyrDoAFhYaDe4n4iIyJjpFJaioqJw4sQJHD16tNn1x44dw8mTJ9Uehnv79m14evKMhLERBEF9biXeBUdERGZCpwHezz33HBYtWoS1a9di9+7diIqKgru7O0pKSnDt2jVkZGTAzs4Ozz33HACgrKwMFy5cwMMPP9wuxVPnKfqtDKW5DeOVuvR2h4sv580iIiLzoFNYCgkJwZYtW/CPf/wDV69eVT0Et1FUVBReeuklhISEAACcnJzw/fffNxkMTobv5gnO2E1EROZJp7AEAKGhodiyZQsKCgqQkZGByspKODo6IjQ0FL6+vmptLS0t4eTE2Z6NTV2NEpm/5gEALKxF6HFfFz1XRERE1Hl0DkuNfH19m4QjMg3iCwWokdcBADz7OMDart1+bIiIiAxeu33qFRUVNTmz5O3t3V67Jz364yU4n348M0hEROZF57B0+/ZtbNiwAZcuXWqybuDAgXj55ZfRtSvHuBgrmbQKudekAABnH3u4dLPVc0VERESdS6ewVFBQgBdffBElJSXo1q0b+vXrB09PTxQXF+Py5cu4ePEiXnzxRXz66ae8RGek0v+Xq5pbqeeorhCJavRbEBERUSfTKSzFxcWhpKQEL7/8MqZNmwaRSH2Swv/85z/YsGED/vnPf2L58uU6FUqdTxAEpJ+4O+moCAgbFYBbhVn6LYqIiKiT6TQp5blz5zB8+HBMnz69SVACgOnTp2P48OE4e/asLochPSm4UYLyAjkAwD/cE05e9nquiIiIqPPpFJZKS0sRHByssU1wcDBKS0t1OQzpyc2Tvz/KhjN2ExGRudIpLLm5uSE7O1tjm+zsbLi5uelyGNKD2uo6ZJ1pmFvJ2t4KQUM4txIREZknncLSkCFDcPr0afz000/Nrv/vf/+LxMREDB06VJfDkB5knctHbbUSABByvx+sbC31XBEREZF+6DTAe8GCBUhMTMSHH36I/fv3o3///vDw8FDdDZednQ1XV1fMnz+/ncqlznLzxO+X4MJG8RIcERGZL53Ckq+vL7Zu3YoPP/wQycnJTS7JDRgwAK+88gqnDTAy5QVy5KcVAwBc/RzhE+am34KIiIj0SOdJKQMDA7Fx40atng1HxiH9f+oDu5u705GIiMhc8NlwpEaoF5B+9y44kQgIjeYlOCIiMm+tCkvr169v84FWrFjR5m2p89xJlUImqQIABPT1hqO7nZ4rIiIi0q9WhaVDhw616SAikYhhyUikc24lIiIiNa0KS3v37u2oOsgA1MhrkXUuHwBg62SN7oN89FwRERGR/rUqLHXpwokJTVnmmXwoa+oBACHD/WFpzbmViIiIdJqUkkzLzZO3VV/35NxKREREABiW6K7SOzIU3iwFALgHOsOzh4t+CyIiIjIQDEsEoOnAbs6tRERE1IBhiVBfL6gmohRZihA6wl/PFRERERkOhiVC7lUJ5CUKAEC3/t6wd7XVc0VERESGo91m8G4vaWlpiI+PR1JSEvLz8+Hi4oKIiAjExsYiMDBQ47bJycnYs2cP0tPTUVZWBicnJ4SGhmLevHmIiopqcbuKigr85S9/QWlpKf7+979jzJgx7dwrw3bzxB8Gdo/uqsdKiIiIDI/BnVnavXs3Tpw4gUGDBmHJkiWYOnUqLl++jNjYWGRmZmrc9vbt27CwsMD06dOxdOlSzJo1C8XFxVi8eDHOnj3b4nZffvklFApFe3fFKFTLaiC+UAAAsHOxQWB/bz1XREREZFgM7sxSTEwMVq1aBWtra9WysWPHYsGCBdi1axfefPPNFredMmUKpkyZorbskUcewezZs7F//34MGzasyTaZmZn4/vvvMX/+fHzxxRft1xEjkZmYh/o6AQAQOsIfFlYGl5+JiIj0yuDCUnOXywIDAxEUFASxWNzq/dnZ2cHV1RUymazZ9Zs2bcKoUaPQt2/fVu/bFNxUuwuOl+CIiIj+zChOIwiCgJKSEri6umrVvrKyEqWlpRCLxdixYweysrIwaNCgJu2OHTuGa9eu4bnnnmvvko1CcU4FJJllAACvHi7w6Oas54qIiIgMj8GdWWpOQkICioqKsHDhQq3av/XWWzh37hwAwNraGtOmTcPcuXPV2igUCnzyySeIiYmBn58f8vPztdq3RCKBVCpVvW7L2S5DwYHdRERE92bwYUksFuPjjz9GREQEJk6cqNU2zz77LGbNmoXCwkLEx8ejrq4OSqVSrc2uXbtQV1eHJ598slX1/PDDD4iLi2uyPCsrq8kxDFm9UsCNu2FJZAnUepYjNTX1ntvJZDKt2pkC9tV0mVN/2VfTZU797ai+hoeHa9XOoMOSVCrFa6+9BkdHR6xduxaWlto92DUsLEz19fjx4xEbG4t3330Xa9euBQDk5eXhX//6F/7617/CwcGhVTVNmzYNI0aMUL0Wi8VYt24devTogV69erVqX/okvliA2spbAICgwV3Qb1DLUyv8UWpqqtY/XMaOfTVd5tRf9tV0mVN/9d1Xgw1LMpkMy5cvh0wmw5YtW+Dl5dWm/VhbW2PEiBHYtWsXFAoFbG1t8eWXX8LLywv9+/dHXl4eAKC4uBgAUFpairy8PPj6+sLCoumQLi8vrzbXYkgyTt1Rfc1LcERERC0zyLCkUCiwYsUK5OTkYMOGDQgKCtJ5f4IgQC6Xw9bWFgUFBcjNzcXs2bObtN2wYQMA4L///S+cnU1zwLNQL+DOtYZxV7aO1giI8tRzRURERIbL4MKSUqnE6tWrkZKSgnfeeQeRkZHNtpNIJKisrERAQACsrBq6UVJSAnd3d7V2FRUVOHHiBHx8fFTrYmNjUVZWptYuMzMTX3zxBR5//HFERkbC3t6+A3pnGKTicigqawEAfuEesLA0ipsiiYiI9MLgwtLWrVtx+vRpDB8+HBUVFThy5Ija+vHjxwMAduzYgfj4eOzduxd+fn4AgGXLlsHb2xvh4eFwd3dHQUEBDh48CKlUitWrV6v20dycSk5OTgCAPn36IDo6uoN6ZxgazyoBgH8EzyoRERFpYnBhKSMjAwCQmJiIxMTEJusbw1JzJk+ejF9++QX79u2DTCaDs7MzwsPDsWrVKvTr16/DajY2d1IZloiIiLRlcGFp06ZNWrVbuXIlVq5cqbZsxowZmDFjRpuOO2DAAJw8ebJN2xoTZV098q+XAAAc3G3h6u+o54qIiIgMGwermJmijFLUKRrmg/KP8IRIJNJzRURERIaNYcnM3EnhJTgiIqLWYFgyM2phKZJhiYiI6F4YlsxIbXUdCtNLAQAuXRzg5Gm60yMQERG1F4YlM5J/owT1SgEAL8ERERFpi2HJjHC8EhERUesxLJkRtckowxmWiIiItMGwZCaqZTWQissBAB7dnWHnYqPnioiIiIwDw5KZyEstBhqGK/ESHBERUSswLJmJP45XCmBYIiIi0hrDkploHK8kshTBt7eHnqshIiIyHgxLZqCyuBpleZUAAO8QV9jYG9wjAYmIiAwWw5IZ4CU4IiKitmNYMgN/DEt+DEtEREStwrBk4gRBUIUlSxsL+Ia56bcgIiIiI8OwZOLK8+WolFYDALr0coeltaWeKyIiIjIuDEsmjo84ISIi0g3DkoljWCIiItINw5IJE+p/H69k42AFzx6ueq6IiIjI+DAsmbDiWxVQyGoBAH7hnrCwEOm5IiIiIuPDsGTCctUuwXHWbiIiorZgWDJheRyvREREpDOGJRNVX1eP/OvFAAB7N1u4BTjpuSIiIiLjxLBkogp/K0NttRIA4B/uAZGI45WIiIjagmHJRKldgovkJTgiIqK2YlgyUeqDu730WAkREZFxY1gyQXUKJQrTSwAAzj72cPa213NFRERExothyQTl3yxBfZ0AgGeViIiIdMWwZILuXON4JSIiovbCsGSC1J4HF87JKImIiHTBsGRiFLJaSLPKAADugc6wd7XVc0VERETGjWHJxOSlFUNoGK6EAF6CIyIi0hnDkom5w0ecEBERtSuGJRNzJ0UCABBZiNClt7ueqyEiIjJ+DEsmRF5SjdLcSgCAd7ArbBys9VwRERGR8bPSdwF/lpaWhvj4eCQlJSE/Px8uLi6IiIhAbGwsAgMDNW6bnJyMPXv2ID09HWVlZXByckJoaCjmzZuHqKgoVbvq6mocPHgQp06dQmZmJqqqqtC1a1dMnToVU6dOhaWlZUd3s0Pc4SNOiIiI2p3BnVnavXs3Tpw4gUGDBmHJkiWYOnUqLl++jNjYWGRmZmrc9vbt27CwsMD06dOxdOlSzJo1C8XFxVi8eDHOnj2ranfnzh1s3LgRADBr1iy88MIL6NKlCzZs2ID169d3aP86EscrERERtT+DO7MUExODVatWwdr690tIY8eOxYIFC7Br1y68+eabLW47ZcoUTJkyRW3ZI488gtmzZ2P//v0YNmwYAMDDwwNxcXHo0aOHqt306dOxfv16HDx4EPPmzUPXrl3buWcdSxAEVViytLaAT5ibfgsiIiIyEQZ3ZikqKkotKAFAYGAggoKCIBaLW70/Ozs7uLq6QiaTqZa5ubmpBaVG0dHRANCm4+hbRaEcMkk1AMC3pzusbIzzUiIREZGhMbiw1BxBEFBSUgJXV1et2ldWVqK0tBRisRg7duxAVlYWBg0adM/tiouLAUDr4xgStUec8BIcERFRuzG4y3DNSUhIQFFRERYuXKhV+7feegvnzp0DAFhbW2PatGmYO3euxm1qa2uxf/9++Pn5oXfv3i22k0gkkEp/DyaGchbqTkqx6msO7iYiImo/Bh+WxGIxPv74Y0RERGDixIlabfPss89i1qxZKCwsRHx8POrq6qBUKjVu849//APZ2dl47733YGXV8rflhx9+QFxcXJPlWVlZ9zxGRxEEAbeuFAAALG1FKKrOhST1ToccSyaTITU1tUP2bWjYV9NlTv1lX02XOfW3o/oaHh6uVTuRIDQ+HMPwSKVSLFq0CHV1ddi+fTu8vLxavY/a2lrExsaiW7duWLt2bbNt/vWvf2Hbtm146qmnMG/ePI37a+7M0rp16/DZZ5+hV69era6vPUhvlePAitMAgG4DfTD+1Xtfcmyr1NRUrX+4jB37arrMqb/sq+kyp/7qu68Ge2ZJJpNh+fLlkMlk2LJlS5uCEtBwGW7EiBHYtWsXFAoFbG3VHyx76NAhbN++HdOnT79nUAIALy+vNtfSUfI4ZQAREVGHMcgB3gqFAitWrEBOTg7Wr1+PoKAgnfcnCALkcrna8v/97394//33MWrUKPz1r3/V6Rj6lHuNk1ESERF1FIMLS0qlEqtXr0ZKSgrWrFmDyMjIZttJJBKIxWLU1dWplpWUlDRpV1FRgRMnTsDHxwfu7r8/Ky05ORlr1qxB37598eabb8LCwuC+FVqpV9Yj/3rD4G47Fxu4d3XSc0VERESmxeAuw23duhWnT5/G8OHDUVFRgSNHjqitHz9+PABgx44diI+Px969e+Hn5wcAWLZsGby9vREeHg53d3cUFBTg4MGDkEqlWL16tWof+fn5WLlyJUQiEcaMGYPjx4+rHSMkJAQhISEd2s/2IsksQ21Vw8By/whPiEQiPVdERERkWgwuLGVkZAAAEhMTkZiY2GR9Y1hqzuTJk/HLL79g3759kMlkcHZ2Rnh4OFatWoV+/fqp2uXl5akmqfz444+b7Gf+/PlGE5Zy+Tw4IiKiDmVwYWnTpk1atVu5ciVWrlyptmzGjBmYMWPGPbcdMGAATp482ab6DM0fJ6MM4OBuIiKidmecA3UIAFBXo0RheikAwMnbHs4+DvotiIiIyAQxLBmxgpslUNbWA+CUAURERB2FYcmIqV2C43glIiKiDsGwZMTu/GFwt184wxIREVFHYFgyUjXyWkgyywAA7l2d4OBme48tiIiIqC0YloxUXloxGp/qx/FKREREHYdhyUj9cbwSwxIREVHHYVgyUndSG8KSSAR06eOh52qIiIhMF8OSEZKXKVCS0zADuVewK2wdrfVcERERkeliWDJCeSm8BEdERNRZGJaM0B2GJSIiok7DsGSEGgd3W1iJ4NvLXc/VEBERmTaGJSNTUShHRVEVAMC3pzusbCz1XBEREZFpY1gyMrwER0RE1LkYlowMwxIREVHnYlgyIoIgqMKStb0lvENc9VwRERGR6WNYMiIlt2WoKqsBAHTp7QELS759REREHY2ftkaEl+CIiIg6H8OSEVELS5EMS0RERJ2BYclI1CvrkZdaDACwc7aGR1dnPVdERERkHhiWjIQkqxy1VXUAAL8IT4gsRHquiIiIyDwwLBmJP16CC+B4JSIiok7DsGQkGh9xAjScWSIiIqLOwbBkBOpqlCi4WQIAcPKyg4uvg54rIiIiMh8MS0agML0Uytp6AA1TBohEHK9ERETUWRiWjMAfxyvxEhwREVHnYlgyApyMkoiISH8YlgxcjbwWRb+VAQDcAhzh6G6n54qIiIjMC8OSgcu/XgKhXgAA+IfzrBIREVFnY1gycHzECRERkX4xLBm4xrAkEgF+fRiWiIiIOhvDkgGrKlOg+FYFAMCzhytsnaz1XBEREZH5YVgyYHfuPjgXAPwjPPRYCRERkfliWDJgeZwygIiISO8YlgxY43glC0sRuvTimSUiIiJ9sNJ3AX+WlpaG+Ph4JCUlIT8/Hy4uLoiIiEBsbCwCAwM1bpucnIw9e/YgPT0dZWVlcHJyQmhoKObNm4eoqKgm7a9evYrt27fj5s2bcHR0xAMPPICnn34aDg76f/ZaRVEVygvkAACfMDdY2VrquSIiIiLzZHBnlnbv3o0TJ05g0KBBWLJkCaZOnYrLly8jNjYWmZmZGre9ffs2LCwsMH36dCxduhSzZs1CcXExFi9ejLNnz6q1TU9Px1//+ldUV1fjxRdfxMMPP4wff/wRb731Vkd2T2t5nDKAiIjIIBjcmaWYmBisWrUK1ta/3/k1duxYLFiwALt27cKbb77Z4rZTpkzBlClT1JY98sgjmD17Nvbv349hw4aplu/YsQPOzs7YtGkTHB0dAQB+fn54//33ce7cOQwdOrSde9Y6edf/OLjbS4+VEBERmTeDO7MUFRWlFpQAIDAwEEFBQRCLxa3en52dHVxdXSGTyVTLKisrceHCBYwfP14VlABgwoQJsLe3x7Fjx9regXYy8qkIPPzmMAx8NBTeIa76LoeIiMhsGdyZpeYIgoCSkhIEBQVp1b6yshK1tbUoKyvD4cOHkZWVhTlz5qjWZ2ZmQqlUolevXmrbWVtbIywsDOnp6e1ZfptYWlvCr48H/PpwYDcREZE+GUVYSkhIQFFRERYuXKhV+7feegvnzp0D0BCApk2bhrlz56rWS6UN44E8PZuOBfL09MTly5db3LdEIlFtD6BNZ7uIiIjIeBh8WBKLxfj4448RERGBiRMnarXNs88+i1mzZqGwsBDx8fGoq6uDUqlUrVcoFADQ5HIfANjY2KCmpqbFff/www+Ii4trsjwrK0vtGKZKJpMhNTVV32V0CvbVdJlTf9lX02VO/e2ovoaHh2vVzqDDklQqxWuvvQZHR0esXbsWlpba3T4fFham+nr8+PGIjY3Fu+++i7Vr1wIAbG1tAQC1tbVNtq2pqYGNjU2L+542bRpGjBihei0Wi7Fu3Tr06NGjyWU9U5Samqr1D5exY19Nlzn1l301XebUX3331WDDkkwmw/LlyyGTybBlyxZ4ebXtjjBra2uMGDECu3btgkKhgK2trery2x8vpzWSSqUaj+Xl5dXmWoiIiMj4GNzdcEDDZbIVK1YgJycH69ev13pgt6b9CYIAubxhkscePXrA0tISN27cUGtXW1uL9PR0hIaG6nQ8IiIiMh0GF5aUSiVWr16NlJQUrFmzBpGRkc22k0gkEIvFqKurUy0rKSlp0q6iogInTpyAj48P3N3dAQBOTk4YPHgwjhw5ogpQAHD48GFUVVXhgQceaOdeERERkbEyuMtwW7duxenTpzF8+HBUVFTgyJEjauvHjx8PoGFSyfj4eOzduxd+fn4AgGXLlsHb2xvh4eFwd3dHQUEBDh48CKlUitWrV6vtJzY2FosWLcLixYsxbdo0FBYWYu/evRgyZIja5JVERERk3gwuLGVkZAAAEhMTkZiY2GR9Y1hqzuTJk/HLL79g3759kMlkcHZ2Rnh4OFatWoV+/fqpte3Vqxc2bNiA7du3Y/PmzXBwcMDDDz+MZ599tn07REREREbN4MLSpk2btGq3cuVKrFy5Um3ZjBkzMGPGDK2P1bdvX3zyySetqo+IiIjMi8GNWSIiIiIyJAxLRERERBowLBERERFpwLBEREREpIHBDfA2No3PmTOXB+reunVL68fOGDv21XSZU3/ZV9NlTv3tyL52794ddnZ2GtswLOkoPz8fALBu3To9V0JERESt9dlnn93z2a4iQRCETqrHJJWWluLcuXPw8/PT+ABeU9D40OA33ngD3bt313c5HYp9NV3m1F/21XSZU387uq88s9QJ3NzcNE6UaYq6d+9+zxRuKthX02VO/WVfTZc59VeffeUAbyIiIiINGJaIiIiINGBYIq15enpi/vz58PT01HcpHY59NV3m1F/21XSZU38Noa8c4E1ERESkAc8sEREREWnAsERERESkAcMSERERkQacZ8nMpaWlIT4+HklJScjPz4eLiwsiIiIQGxuLwMBAjdseOnQI7777brPrDhw4YHADD5OSkvDSSy81u27btm2IiIjQuH1RURG2bNmC8+fPo76+HgMGDMDixYvh7+/fEeXq5J133kF8fHyL67/77jt4e3s3u+7LL79EXFxck+U2Njb4+eef26vENpPL5dizZw9SU1ORlpaGiooKvP7665g0aVKTttnZ2diyZQuuXr0KKysr3H///XjxxRfh5uam1bFOnTqFr776CmKxGG5ubpg8eTLmzp0LK6vO+dOpTV/r6+tx+PBhnDhxAunp6aioqICfnx/Gjh2L2bNnw9bW9p7HWbJkCZKTk5ssHzp0KD788MP27JJG2r63Lf18d+vWDTt37tTqWMbw3gLAqFGjWtzH4MGDsWHDBo3HiYmJUT1p4o+mTZuGV199tW3Ft1JrPmcM9XeWYcnM7d69G1evXsUDDzyAkJAQSKVSHDhwALGxsdi2bRuCg4PvuY+nnnoKfn5+asucnJw6qmSdPfroo+jTp4/asoCAAI3byOVyvPTSS6isrMSTTz4JKysr7Nu3D4sXL8aXX34JV1fXjiy51aZNm4bBgwerLRMEAR999BG6dOnSYlD6o1deeQX29vaq1xYWhnEiuqysDHFxcfD19UVoaCiSkpKabVdYWIjFixfDyckJTz/9NKqqqrBnzx5kZmbi008/hbW1tcbjnDlzBn/729/Qv39/vPTSS8jMzMTXX3+NkpISvPLKKx3RtSa06Wt1dTXeffddREREYPr06XB3d0dKSgq++uorXLp0Cf/4xz8gEonueSxvb288++yzass6+x882r63QEN4X758udoyR0dHrY5jLO8tALzxxhtNll2/fh3ffvsthgwZotWxwsLCMGvWLLVlXbt2bX3RbaTt54xB/84KZNauXLki1NTUqC27deuWMG7cOOHvf/+7xm0PHjwoREdHC2lpaR1ZYru5dOmSEB0dLRw7dqzV2+7atUuIjo4WUlNTVcuys7OFMWPGCJ9++mk7VtlxLl++LERHRwtff/21xnZffPGFEB0dLZSUlHROYa2kUCgEiUQiCIIgpKWlCdHR0cLBgwebtPvoo4+EBx98UMjPz1ctO3/+vBAdHS385z//uedx5syZIyxYsECora1VLduxY4cwatQoITs7ux16cm/a9LWmpka4cuVKk22/+uorITo6Wjh//vw9j7N48WJh7ty57VO0DrR9b99++21h/PjxbT6Osby3LVm/fr0watQooaCg4J5tZ86cKSxfvlynWnWl7eeMIf/OGsY/FUlvoqKimqT1wMBABAUFQSwWa70fuVwOpVLZ3uV1GLlcjrq6Oq3bHz9+HL1791Y7I9W9e3cMHDgQx44d64gS293PP/8MkUiEBx98UOttKisrIRjY7CI2NjZanfE4ceIEhg8fDl9fX9WywYMHIzAw8J7vWXZ2NrKzszF16lS10/ePPPIIBEHA8ePH21x/a2jTV2tra0RFRTVZHh0dDQCt+j2uq6uDXC5vXZHtSNv3tpFSqURlZWWrjmFM721zampqcOLECfTv3x8+Pj5ab1dbW4uqqqpWH689aPs5Y8i/s7wMR00IgoCSkhIEBQVp1f6ll15CVVUVrK2tMWTIECxatOie45306d1330VVVRUsLS3Rt29fPP/88+jdu3eL7evr65GZmYnJkyc3WdenTx+cP38ecrkcDg4OHVm2Turq6nDs2DFERkY2uWTaklmzZqGqqgr29vYYOXIkFi1aBA8Pjw6utH0UFRWhpKSk2edI9enTB2fOnNG4/c2bNwGgyfZeXl7w9vZGenp6+xXbQYqLiwFA60vEOTk5mDBhAmpra+Hh4YEpU6Zg/vz5nTaGp7Wqq6sxadIkVFdXw9nZGePGjcNzzz13z99DY39vz5w5A5lMhoceekjrbS5duoTx48dDqVSiS5cumDlzJmbOnNmBVd7bnz9nDP131jB/C0ivEhISUFRUhIULF2psZ2tri0mTJmHAgAFwdHTEjRs3sG/fPrzwwgv4/PPP1f51YAisrKwwevRo3HfffXB1dUV2djb27t2LF198EZ988gl69uzZ7Hbl5eWoqalp9l+BjcskEgm6devWofXr4ty5cygrK9PqD6yzszNmzJiBiIgIWFtb48qVKzhw4ADS0tLw2WefaT0uRJ+kUimA5sfceHp6qt5TGxubNm3fuN6Q/etf/4KjoyOGDRt2z7b+/v4YMGAAgoODUV1djePHj+Prr79GTk4O1qxZ0wnVto6npycef/xx9OzZE4Ig4OzZs/j+++/x22+/YePGjRoDnrG/twkJCbCxscHo0aO1ah8cHIy+ffsiMDAQ5eXlOHToEDZv3gyJRILnn3++g6tt2Z8/Zwz9d5ZhidSIxWJ8/PHHiIiIwMSJEzW2HTt2LMaOHat6HR0djaFDh2Lx4sX45ptvOu1OC21FRUWpXa4YOXIkxowZgwULFmDHjh0t3vWjUCgAoNnBhY2/uI1tDNXPP/8MKysrPPDAA/ds++d/cY4ZMwZ9+vTB2rVrceDAATz55JMdVWa70fY9a+kPb01NjVrbP2+vz0tV2vjmm29w4cIFvPzyy3B2dr5n+xUrVqi9njBhAj744AP8+OOPiImJueedop3tzwPRx40bh8DAQHz22Wc4ceIExo0b1+K2xvzeVlZW4tdff8WwYcO0el8BYP369WqvJ0+ejGXLlmHfvn149NFHW3Upr7009zlj6L+zHLNEKlKpFK+99hocHR2xdu1aWFpatnofffv2RXh4OC5evNgBFba/rl27YuTIkUhKSmpxzFXjrde1tbVN1jX+gmpze7a+yOVynDp1CkOHDm3zXXsPPfQQPDw8jOZ91fU9a/yD29j2z9sb8vt99OhRfP7553j44Yfxf//3f23eT+PdUxcuXGinyjpWTEwMLCws7lmvMb+3J06cQE1NTasuwf2ZSCRCTEwMlEpls9NFdLSWPmcM/XeWYYkAADKZDMuXL4dMJsOHH34ILy+vNu/Lx8cH5eXl7Vhdx/Lx8UFtbS2qq6ubXe/i4gIbG5tmT+M2LtPl+9XRTp06herqap3+wALG9b42nopv6T1rfE/bur2hzSHW6Pz583jnnXdw//3363yrdOMZh4qKivYorcPZ2trCxcXlnj+jxvreAg2XrpycnDB8+HCd9tP43nb277OmzxlD/51lWCIoFAqsWLECOTk5WL9+vdYDu1ty584drScQMwR37tyBjY2N2pxCf2RhYYHg4GBcv369ybrU1FT4+/sb9ODuhIQE2NvbY8SIEW3ehyAIyM/PN5r31dvbG25ubrhx40aTdWlpaQgNDdW4fVhYGAA02V4ikaCoqEi13pCkpqbijTfeQK9evbBmzRqdB2bfuXMHAIzmPZfL5SgrK7tnvcb43gIN9SUlJWHUqFEaQ4M29PHe3utzxtB/ZxmWzJxSqcTq1auRkpKCNWvWIDIystl2EokEYrFY7Xb70tLSJu1+/fVX3LhxA0OHDu2oktusuXozMjJw+vRpDBkyRDXpYkFBQZPbrUePHo3r16+rBaZbt24hKSkJY8aM6ciydVJaWooLFy5g1KhRsLOza7K+ub429336/vvvUVpaqtVgYUMxevRoJCYmoqCgQLXs4sWLyMnJURu7VVdXB7FYDIlEolrWo0cPdOvWDT/++KPa5dnvv/8eIpFI68G1nSU7OxuvvfYaunTpgvfee0/jJQexWKz2PamsrGxy6UIQBHz99dcAoPXEh51FoVA0O/7kn//8JwRBUPsZNYX3ttEvv/yC+vr6Fs8QN9fX8vLyJsML6urqsGvXLlhbW2PAgAEdWnMjbT9nDPl3lgO8zdzWrVtx+vRpDB8+HBUVFThy5Ija+vHjxwMAduzYgfj4eOzdu1d16/nzzz+Pnj17olevXnB0dMTNmzdx8OBB+Pj4YM6cOZ3el3t56623YGtri8jISLi7uyM7Oxs//vgj7Ozs1AaMvv3220hOTsbJkydVyx555BH89NNPeO211zB79mxYWlpi3759cHd3x+zZs/XRHa0cPXoUSqWyxT+wzfV15syZGDt2LIKDg2FjY4OrV6/i6NGjCAsLw7Rp0zqrdI2+++47yGQy1Sn306dPo7CwEEDDDO1OTk548skncfz4cSxduhSPPfYYqqqq8K9//QvBwcFqj5QoKirCnDlzMHHiRKxcuVK1/IUXXsDrr7+OV155BePGjUNmZiYOHDiAKVOm6Hz2tT37amFhgVdffRUVFRWYPXs2fv31V7Xt/f391T6c5syZg/79+2PTpk0AGm65XrNmDR588EEEBARAoVDgf//7H65evYqpU6c2eyt3R7pXfysqKvDUU0/hwQcfVN2Beu7cOZw5cwbDhg3DyJEjVfsy9vf2j09CSEhIgJeXV4sBp7m+nj59Gl9//TVGjx4NPz8/VFRUICEhAVlZWXjmmWc67ZKjtp8zhvw7y7Bk5jIyMgAAiYmJSExMbLK+8Ye4OWPHjsWZM2dw/vx5VFdXw9PTE1OnTsX8+fMNcj6e6OhoJCQkYN++faisrISbmxtGjRqF+fPn33PqfwcHB2zcuBFbtmzB119/rXo2XGueWaQPP//8M9zd3TFo0CCtt3nooYdw7do11WBSX19fPP7445g7d26zZ6f0Ye/evWrPuzp58qQq8I0fPx5OTk7w9fXFpk2bsGXLFnz66aeq50wtWrRIq8sYw4cPx7p16xAXF4eNGzfC1dUVTz75JObPn99R3WrWvfoKQPUB++mnnzbZfuLEiS3+Sx4AfH190a9fP5w8eRLFxcWwsLBA9+7d8corr+glHGvz3g4fPhznz59HfHw86uvrERAQgGeeeQazZ8/W6rE8xvLeNoalW7du4caNG6pB7NoKDg5G9+7dkZCQgNLSUlhZWSEsLAxr1qzR6s7Y9qLt54wh/86KBEObnpeIiIjIgHDMEhEREZEGDEtEREREGjAsEREREWnAsERERESkAcMSERERkQYMS0REREQaMCwRERERacCwRERERKQBwxIRERGRBgxLRKR3eXl5GDVqFN555x19l9IuDh06hFGjRuHQoUP6LoWI2gHDEhEZpCVLlmDUqFH6LqNZphbuiEgzPkiXiPTO29sb33zzDRwdHfVdSruIjo5GeHh4pz3VnYg6FsMSEemdlZUVunfvru8y2o2Tk5PqifFEZPxEgiAI+i6CiMxbXl4eZs2ahYkTJ2LlypUtXn5rXN/ot99+wzfffIPk5GSUl5fD09MTI0aMwIIFC+Dq6trs/p944gl89tlnuHz5MsrLy7F37174+fnh5MmTOHbsGK5fvw6JRAIrKyuEhITgsccew5gxY1T7OnToEN59991m69u4cSMGDBigavP6669j0qRJam2uXr2Kb775BikpKVAoFOjSpQvGjh2LJ554AnZ2dmptR40ahf79+2P16tXYtm0bzpw5g6qqKoSGhuLZZ5/FgAEDWvutJqI24JklIjI48+fPR3x8PPLz8zF//nzV8rCwMNXXp06dwurVqyESiTBy5Ej4+PggOzsb//73v3Hu3Dl8+umncHZ2Vttvbm4unn/+eQQHB2PixIkoLy+HtbU1AGDHjh2wsrJCVFQUPD09UVpaitOnT2PVqlV46aWX8OijjwIAQkND8dhjj+Hbb79FaGgoRo4cqdp/ly5dNPbr2LFj+Pvf/w5ra2uMHTsWbm5uOH/+POLi4nDu3Dls3LgRtra2atvIZDIsWrQITk5OGD9+PEpKSnDs2DG8+uqr+OyzzxAcHNym7zERaY9hiYgMzsKFC5GcnIz8/HwsXLiwyfqysjK8/fbbcHV1xdatW9VCytGjR7FmzRp88cUXWLp0qdp2V69exfz585vd5/vvvw9/f3+1ZXK5HC+88AK++OILPPzww7Czs0NYWBicnJxUYam5fTWnsrISH3zwASwtLbFt2zaEhIQAAJ555hn8/e9/xy+//II9e/Zg3rx5attlZGTg//7v/7B06VJYWDTckzNw4EC8//77+Pe//41XX31Vq+MTUdvxbjgiMjqHDx9GZWUlnnnmmSZnc8aNG4eePXvi6NGjTbbz8PDAnDlzmt3nn4MSADg4OGDSpEmQyWS4fv26TjWfOnUKMpkMkydPVgUlALCwsMDzzz8PS0vLZqcasLe3x3PPPacKSkDD5UhLS0udayIi7fDMEhEZnZSUFABAamoqcnNzm6yvqalBWVkZSktL4ebmploeGhqquuz2ZyUlJdi1axfOnDmDgoICKBQKtfUSiUSnmtPT0wEA/fv3b7LO19cX/v7+yMnJgVwuh4ODg2pd165d1V4DDQPiPTw8IJPJdKqJiLTDsERERqeiogIAcODAAY3tqqur1V67u7s32668vBzPPPMMCgoKEBUVhcGDB8PJyQkWFhbIyMjAqVOnUFtbq1PNlZWVABrObjXH09MTOTk5qKysVAtHLU2nYGlpifr6ep1qIiLtMCwRkdFpDBNxcXGtGuAsEomaXf7f//4XBQUFeOqpp5qMGdq5cydOnTrV9mLvagw9xcXFza5vXG4qc00RmRKOWSIig9Q4RkepVDZZFx4eDuD3y3G6aryU98c72xpduXKlxdpac2an8U6+5OTkJusKCgqQm5sLf3//JpfciEj/GJaIyCC5uLgAAAoLC5usmzx5MhwcHPDZZ58hKyuryfrq6upWBanGQeJXr15VW56QkIAzZ840ae/s7AyRSNRsbS0ZOXIknJyccPDgQbWaBUHAp59+CqVS2WROJiIyDLwMR0QGaeDAgTh+/DjefPNNDBs2DDY2NggNDcWIESPg5uaGt956C6tWrcLChQsxdOhQdOvWDbW1tcjPz0dycjIiIyPx4YcfanWs8ePHY/fu3di4cSOSkpLg6+uLjIwMXLp0CaNGjcLJkyfV2js4OKB37964fPky1q1bh65du0IkEmHChAktzrXk6OiIZcuW4e9//zuee+45PPDAA3Bzc8PFixdx48YN9OnTB7Nnz9b5+0ZE7Y9hiYgM0pQpU5CXl4dffvkFu3fvhlKpxMSJEzFixAgAwP33348vvvgC//rXv3Dx4kVcuHABdnZ28Pb2xqRJkzB+/Hitj+Xj44NNmzZh27ZtuHDhApRKJXr27ImPPvoIhYWFTcISALzxxhvYvHkzEhMTUVlZCUEQ0LdvX40TUz7wwAPw8PDAzp07cfLkSdUM3vPmzcMTTzzRZEJKIjIMfNwJERERkQYcs0RERESkAcMSERERkQYMS0REREQaMCwRERERacCwRERERKQBwxIRERGRBgxLRERERBowLBERERFpwLBEREREpAHDEhEREZEGDEtEREREGjAsEREREWnAsERERESkwf8DCyo3UHINcuoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "5e58ab72", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "74e8bf4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAG5CAYAAACQpg7iAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABalklEQVR4nO3deXhU5dk/8O8syWTfNxIgIWSBQCDsIiRsShEF24JLvVxQW627rb5W+/ZttaW1P2trsVqrWKVuFVyoWBVFDCAgyhIgEAgEkiGQhSRkmySTzHJ+f0xyMkMSMsuZOWeS7+e6vGT252SSmfs8z/3ct0oQBAFEREREfkQt9wCIiIiIXMUAhoiIiPwOAxgiIiLyOwxgiIiIyO8wgCEiIiK/wwCGiIiI/A4DGCIiIvI7QzaAMRqNKC0thdFolHsoREREJLEhG8Do9Xr85Cc/gV6vl3soXnfq1Cm5h+Azw+lYgeF1vDzWoWs4HS+P1XeGbAAznHR2dso9BJ8ZTscKDK/j5bEOXcPpeHmsvsMAhoiIiPwOAxgiIiLyOwxgiIiIyO8wgCEiIiK/wwCGiIiI/A4DGCIiIvI7DGCIiIjI7zCAISIiIr/DAIaIiIj8DgMYIiIi8jsMYIiIiMjvMIAhIiIiv8MAhoiIiPyOVu4B+BOrVUDpV5XoNJigCwvA+CtGyz0kIiKiYYkBjAtUKuCbf5XAahEQmxrOAIaIiEgmXEJygUqlgi4sAADQ2WaSeTRERETDFwMYF4kBjIEBDBERkVwYwLhIFxoIADAZLbCYrTKPhoiIaHhiAOOinhkYgMtIREREcmEA4yKHAIbLSERERLJgAOMiBjBERETyYwDjIscApkvGkRAREQ1fDGBcpAtlDgwREZHcGMC4SBcWKP6bS0hERETyYADjIubAEBERyY8BjIuCQhnAEBERyY0BjIs4A0NERCQ/BjAucixkx11IREREcmAA46KAYC1UahUAzsAQERHJhQGMi1QqFXShWgAMYIiIiOTCAMYNPVupWQeGiIhIHgxg3NCTB9PVbobVwo7UREREvsYAxg32ibxdbWYZR0JERDQ8aeUewEBKS0vx+uuvo7i4GF1dXUhOTsayZcuwcuVKuYfWp51AUETgJe5NREREUlNkAPPdd9/hiSeeQGZmJm677TYEBwfj3LlzqKurk3toAPpr6Bgq32CIiIiGIcUFMG1tbfjDH/6Ayy67DL/73e+gVitvlYvF7IiIiOSluOjgyy+/xIULF/CTn/wEarUaHR0dsFqVlSirC+1dMjIygCEiIvI5xc3A7Nu3D6Ghoaivr8f//u//orKyEsHBwVi8eDHuv/9+6HQ6uYfIGRgiIiKZKS6AOXv2LCwWC375y1/i6quvxl133YWDBw/igw8+gMFgwG9+85t+H1dfX4+Ghgbxsl6v99oYHdsJMIAhIiLyNcUFMB0dHTAajbj22mvx0EMPAQDmzZsHk8mETZs24Y477sCoUaP6PG7Tpk1Yt25dn+vLy8thsVgkHWPr+U7x39VnalFSIm8QYzAYUFJSIusYfGU4HSswvI6Xxzp0Dafj5bFKIycnZ9D7KC6A6VkiWrRokcP1V1xxBTZt2oSjR4/2G8AsX74cc+bMES/r9XqsXr0aY8aMQXZ2tqRjbI5pQzFqAAChgWFO/aC9qaSkRPYx+MpwOlZgeB0vj3XoGk7Hy2P1HcUFMLGxsSgvL0dMTIzD9dHR0QCA1tbWfh8XFxeHuLg4r48P4BISERGR3BS3C6lntuTimi/19fUAgKioKF8PqY/AkADA1pCaSbxEREQyUFwAs2DBAgDAJ5984nD9J598Ao1GgylTpsgxLAdqtQq6ENssDAMYIiIi31PcElJWVhaWLl2KTz/9FBaLBXl5eTh48CAKCwtx8803+2yZaDC6sAB0tpm4hERERCQDxQUwAPDoo48iMTERn332Gb7++mskJibi/vvvx/XXXy/30ES6sACg1pYDI1gFqNQquYdEREQ0bCgygNFqtbj99ttx++23yz2UAYmJvALQ1W52SOwlIiIi71JcDoy/cOxI3SXjSIiIiIYfBjBu0oXZ9UNqZR4MERGRLzGAcRNrwRAREcmHAYybHJaQuJWaiIjIpxjAuIkdqYmIiOTDAMZNjktITOIlIiLyJQYwbuISEhERkXwYwLiJS0hERETyYQDjJu5CIiIikg8DGDdxCYmIiEg+DGDcpNaoERhi68TAAIaIiMi3GMB4oGcWhktIREREvsUAxgM9eTCdBhMEQZB5NERERMMHAxgP9AQwglWAqcMs82iIiIiGDwYwHtCF9jZ0ZB4MERGR7zCA8QBrwRAREcmDAYwH7AMYIxN5iYiIfIYBjAdYC4aIiEgeDGA84LiExIaOREREvsIAxgNsJ0BERCQPBjAe4BISERGRPBjAeIC7kIiIiOTBAMYDunC7OjBcQiIiIvIZBjAe4BISERGRPBjAeECjVSMgSAOAAQwREZEvMYDxUG9DR26jJiIi8hUGMB7qWUZiR2oiIiLfYQDjIV2YLZHXahFg7rTIPBoiIqLhgQGMh5jIS0RE5HsMYDzEWjBERES+xwDGQ2wnQERE5HsMYDzkuITEnUhERES+wADGQ1xCIiIi8j0GMB7iEhIREZHvMYDxUM82agAwcgaGiIjIJxjAeIhLSERERL7HAMZDXEIiIiLyPQYwHmIhOyIiIt9jAOMhbaAGmkDbj5HbqImIiHyDAYwEejtScwaGiIjIFxjASEAXatuJxACGiIjINxjASKBnBsZissLcxY7URERE3sYARgLcSk1ERORbDGAkwJ1IREREvsUARgKOtWC4E4mIiMjbGMBIIIhLSERERD7FAEYCXEIiIiLyLQYwEtCF9zZ0ZABDRETkfQxgJOAwA8N+SERERF6nlXsAFysqKsJDDz3U720vvfQSJkyY4OMRDY7bqImIiHxLcQFMjxUrVmD8+PEO16WkpMg0mkuzD2CM7IdERETkdYoNYCZPnoz58+fLPQynMImXiIjItxSdA9Pe3g6z2Sz3MAal1Wmg1qoAMAeGiIjIFxQ7A/P000+jo6MDGo0GkyZNwj333INx48YNeP/6+no0NDSIl/V6vS+GCQBQqVTQhQWio6mTMzBEREQ+oBIEQZB7EPaKi4uxYcMGXHbZZYiMjERFRQXWr1+Pjo4O/P3vf0dWVla/j3vttdewbt26Ptf/8pe/xOjRo708aqDoH1XoqDdBHaDCZb/w/uvZMxgMCAsL8+lrymU4HSswvI6Xxzp0Dafj5bFKIycnZ9D7KC6A6c/Zs2dx++23Y/LkyXj22Wf7vU9/MzCrV6/G2rVrkZ2d7fUxfvzUHtSWNgIAbv/XYmgCNF5/zR4lJSVOvdlDwXA6VmB4HS+PdegaTsfLY/UdxS4h2Rs5ciTmzp2LHTt2wGKxQKPpGxzExcUhLi5OhtHZOPZDMiMkyncBDBER0XCj6CReewkJCTCZTDAajXIPpV+OO5G4lZqIiMib/CaAqaqqQmBgIIKDg+UeSr9YzI6IiMh3FBfANDU19bmurKwMu3btwowZM6BWK27IAICgMLt+SNxKTURE5FWKy4H5zW9+A51Oh4kTJyI6OhoVFRX4+OOPERQUhLvvvlvu4Q2IMzBERES+o7gAJj8/H1u2bMGGDRvQ1taGqKgoFBQUYNWqVRg5cqTcwxsQAxgiIiLfUVwAs3LlSqxcuVLuYbjMPonXyACGiIjIq5SZUOKHHGdguAuJiIjImxjASMSxDgxnYIiIiLyJAYxE2JGaiIjIdxjASCQgWAuVursjNQMYIiIir2IAIxFbR2rbLAyXkIiIiLyLAYyEepaROANDRETkXQxgJNQzA2PqMMNqtso8GiIioqGLAYyEHHYitXMWhoiIyFsYwEiIO5GIiIh8gwGMhILC7Ro6MoAhIiLyGgYwEnKYgeFOJCIiIq9hACMhhxyYVgYwRERE3sIARkKO7QTYD4mIiMhbGMBIiEm8REREvsEARkKOHakZwBAREXkLAxgJsSM1ERGRbzCAkZAulNuoiYiIfIEBjIQCQ7SArSE1AxgiIiIvYgAjIZVa1dvQkUtIREREXsMARmLsSE1EROR9DGAk1pPI29lugtUqyDwaIiKioYkBjMR0Yd2JvALQxY7UREREXsEARmKsBUNEROR9DGAkxgCGiIjI+xjASIztBIiIiLyPAYzEHGdg2NCRiIjIGxjASIztBIiIiLyPAYzEgriERERE5HUMYCTGJF4iIiLvYwAjMbEODLiERERE5C0MYCTGXUhERETexwBGYoGhWvHfDGCIiIi8gwGMxNQaNQJDbEEMl5CIiIi8gwGMF/R2pGYdGCIiIm9gAOMFunBbIm+nwQSBHamJiIgkxwDGC3pmYAQBMBnNMo+GiIho6GEA4wX2tWCMrcyDISIikhoDGC9gOwEiIiLvYgDjBY61YJjIS0REJDUGMF7AdgJERETexQDGC7iERERE5F0MYLyA7QSIiIi8iwGMFzg0dGQAQ0REJDkGMF7AJSQiIiLvYgDjBUziJSIi8i4GMF7AHBgiIiLvYgDjBRqtGgHBGgBAZxvrwBAREUmNAYyX6EJ7GzoSERGRtBQfwLzxxhsoKCjAbbfdJvdQXNKTB2M0mCAI7EhNREQkJUUHMOfPn8dbb72F4OBguYfiMrEjtUWAyWiReTRERERDi1buAVzK3//+d+Tk5MBqtaK5uVnu4bjk4p1IgcGK/lETERH5FUlmYCwWCy5cuIDa2tp+/3PHwYMHsX37djzwwANSDNHnHGvBMJGXiIhISh5NC5SWluKVV17BoUOHYDab+72PSqVCYWGhS89rsViwZs0aXH311Rg7dqxTj6mvr0dDQ4N4Wa/Xu/SaUuNWaiIiIu9xO4A5efIk7r//fmg0GsyYMQO7d+9GRkYGYmJicOLECTQ1NSEvLw9JSUkuP/dHH32E2tpaPPfcc04/ZtOmTVi3bl2f68vLy2Gx+D4Hpamtd8nr1PFyNKvPe+21DAYDSkpKvPb8SjKcjhUYXsfLYx26htPx8lilkZOTM+h93A5g/vWvfwEA/vGPfyAtLQ3z5s1Dfn4+Vq1ahc7OTrz44ovYtm0bHn/8cZeet7m5Ga+99hpuvfVWREVFOf245cuXY86cOeJlvV6P1atXY8yYMcjOznZpDFLQnK+EfmsTACA+OhHjc0Z77bVKSkqcerOHguF0rMDwOl4e69A1nI6Xx+o7bufAFBcXY86cOUhLSxOv69kurNPp8PDDDyMuLg5r16516XlfffVVhIeHY8WKFS49Li4uDtnZ2eJ/qampLj1eaj11YAAuIREREUnN7QCmra0NycnJ4mWtVouOjo7eJ1arkZeXh/379zv9nJWVlfj444+xcuVK1NfXo7q6GtXV1ejq6oLZbEZ1dTVaWlrcHbJPsR8SERGR97i9hBQVFYXW1lbxckxMDM6ePetwn66uLhiNRqefs76+HlarFWvWrMGaNWv63H7DDTdg5cqVePDBB90dts+wIzUREZH3uB3ApKWl4cyZM+Ll3NxcfP311zhy5AgmTpyIiooKFBYWurSUM2bMGPz+97/vc/2rr76K9vZ2PPjggw6zPkrGGRgiIiLvcTuAmT17Nl544QXU19cjLi4ON910E3bs2IH7778f4eHhMBgMsFqtuPnmm51+zqioKOTn5/e5/r333gOAfm9TKsdt1KwDQ0REJCW3A5hrr70WCxYsQHh4OAAgIyMDzz33HN58801UVVUhOzsbK1aswOzZsyUbrD/RBmqg1Wlg7rRwBoaIiEhibgcwWq0WMTExDtfl5ubimWee8XhQF3v++eclf05f0IUGMIAhIiLyAkU3c/R3PXkwnW3sSE1ERCQljzsMNjQ04MSJE2htbYXVau33PkuWLPH0ZfxSTwBjMVlh6bJCq9PIPCIiIqKhwe0AprOzE3/605+wdevWAWcXBEGASqUavgHMRYm8Wl2wjKMhIiIaOtwOYF5++WVs2bIFo0aNwqJFixAfHw+NhjMM9uy3UhvbTAiNZQBDREQkBbcDmMLCQqSlpWHt2rUIDAwc/AHDEGvBEBEReYfbSbwGgwEzZ85k8HIJjktIDGCIiIik4nYAM3r0aDQ2Nko5liFHF2bX0JHtBIiIiCTjdgBz4403YufOnX36H1EvLiERERF5h9M5MAcPHnS4HB8fj5kzZ+Luu+/Gddddh6ysLISEhPT72Ly8PE/G6Le4hEREROQdTgcwDz30EFQqVZ/rBUHA66+/3u9tPbZt2+bW4PydLpwBDBERkTc4HcDcdtttlwxSqK8gNnQkIiLyCqcDmDvuuMOb4xiSmMRLRETkHeyF5EWaQDU0AbYfMZeQiIiIpONxL6T6+np89dVXOHnyJAwGA8LCwpCZmYmFCxciLi5OijH6LZVKBV1oANqbOhnAEBERScijAObDDz/ESy+9BJPJsdvyF198gbVr1+Lee+/FD37wA48H6c90Yd0BDJeQiIiIJON2ALN161asWbMGkZGRuOWWWzBp0iTExMTgwoULOHToEN5//33x9oULF0o5Zr/SUwvG3GmBucsCbSD7RREREXnK7QDmnXfeQWRkJF577TWHpaLRo0cjLy8PV111Fe6880688847wzuAsduJ1NVmYgBDREQkAbeTePV6PRYsWDBgnktCQgIWLFgAvV7v9uCGAodqvFxGIiIikoTbAUxYWBiCgoIueZ/g4GCEhYW5+xJDgsNWaibyEhERScLtAGbOnDnYvXs3zGZzv7ebzWbs2rULc+fOdXtwQwHbCRAREUnP7QDmnnvuQXBwMB555BEcPXrU4bYjR47gkUceQUhICO6++26PB+nP2NCRiIhIem4n8d55550wm81oaGjAfffdB41Gg8jISDQ3N8NisQAAYmNjceeddzo8TqVS4d133/Vs1H7EPoAxMgeGiIhIEm4HMIIgQKPRICEhweH62NjYPve71OWhjjMwRERE0nM7gNmwYYOU4xiyHAMYNnQkIiKSAnsheZkulLuQiIiIpMYAxsu4hERERCQ9p5eQ1q1b59YLqFQq3HbbbW49digICNJApVFBsAgsZEdERCQRpwOY119/3a0XGO4BTE9HamNLF2dgiIiIJOJ0ALNmzRpvjmNI04V1BzBtTOIlIiKSgtMBTF5enheHMbT15MGYOiywmq1Qa5l6RERE5Am3t1Hbs1gsaG5uhsnU/xJJYmKiFC/jtxzaCbSZEBypk3E0RERE/s+jAKa0tBSvvPIKDh06NGBPJJVKhcLCQk9exu8FXdTQkQEMERGRZ9wOYE6ePIn7778fGo0GM2bMwO7du5GRkYGYmBicOHECTU1NyMvLQ1JSkpTj9UsOW6m5E4mIiMhjbgcw//rXvwAA//jHP5CWloZ58+YhPz8fq1atQmdnJ1588UVs27YNjz/+uGSD9VfsSE1ERCQtt7NJi4uLMWfOHKSlpYnX9fQ50ul0ePjhhxEXF4e1a9d6PEh/pwtnAENERCQltwOYtrY2JCcni5e1Wi06Ojp6n1itRl5eHvbv3+/ZCIcA+xkYI/shERERecztACYqKgqtra3i5ZiYGJw9e9bhPl1dXTAaje6PbohgOwEiIiJpuR3ApKWl4cyZM+Ll3Nxc7N27F0eOHAEAVFRUoLCwEKmpqZ6P0s/p7HchMYmXiIjIY24n8c6ePRsvvPAC6uvrERcXh5tuugk7duzA/fffj/DwcBgMBlitVtx8881SjtcvMYmXiIhIWm4HMNdeey0WLFiA8PBwAEBGRgaee+45vPnmm6iqqkJ2djZWrFiB2bNnSzZYf8UlJCIiImm5HcBotVrExMQ4XJebm4tnnnnG40ENNYHBWqhUgCBwCYmIiEgKbMrjAyq1CoHdy0id3IVERETkMQYwPtKzjMQlJCIiIs8xgPGRngCmq90Mq1WQeTRERET+jQGMj+hCe7dSdzEPhoiIyCMMYHyEO5GIiIikwwDGR9iRmoiISDoMYHwkyD6AaeVOJCIiIk8wgPER+xkYI2dgiIiIPOJ2ITtvKS8vx+uvv47S0lJcuHABQUFBSE1NxY9+9CPMmTNH7uG5je0EiIiIpKO4GZiamhq0t7djyZIlePDBB3HrrbcCAJ544gls2rRJ5tG5z6GhIwMYIiIijyhuBmb27Nl9+if98Ic/xE9+8hNs2LABy5cvl2lknmESLxERkXQUNwPTH41Gg4SEBBgMBrmH4jYuIREREUlHcTMwPTo6OtDZ2Ym2tjbs2rUL3377LRYsWDDg/evr69HQ0CBe1uv1vhim01gHhoiISDqKDWBefPFFMedFrVajoKAAP/vZzwa8/6ZNm7Bu3bo+15eXl8NisXhrmE4T7NoHNNU3o6SkRLLnNhgMkj6fkg2nYwWG1/HyWIeu4XS8PFZp5OTkDHofxQYw1113HebPn4/6+noUFhbCYrHAZBp45mL58uUOu5T0ej1Wr16NMWPGIDs72xdDHtT+kCp0tZuhtmidenOcVVJSIunzKdlwOlZgeB0vj3XoGk7Hy2P1HcUGMKmpqUhNTQUALFmyBD//+c/x+OOP4+WXX4ZKpepz/7i4OMTFxfl6mC7RhQWgq93MJSQiIiIP+UUSLwDMnz8fx48fR2VlpdxDcVvPVuquNpPDkhIRERG5xm8CmM7OTgAYEjuRBAHo6jDLPBoiIiL/pbgAprGxsc91ZrMZn3/+OXQ6HdLS0nw/KIkEhdvvRGI/JCIiIncpLgfm2WefRVtbGyZPnoz4+Hg0NDRgy5YtOHPmDO677z6EhITIPUS39akFkyjjYIiIiPyY4gKYhQsX4pNPPsFHH32E5uZmhISEIDs7Gz/96U8xd+5cuYfnEdaCISIikobiAphFixZh0aJFcg/DK9hOgIiISBqKy4EZynShbOhIREQkBQYwPsQlJCIiImkwgPEhLiERERFJgwGMD7EjNRERkTQYwPiQ/QyMkXVgiIiI3MYAxoccZmC4hEREROQ2BjA+pNaqERCsAcAlJCIiIk8wgPGxnq3UDGCIiIjcxwDGx3ryYDrbTBAEdqQmIiJyBwMYH+sJYASLABM7UhMREbmFAYyPsRYMERGR5xjA+BhrwRAREXmOAYyP6cLYD4mIiMhTDGB8jEtIREREnmMA42NBXEIiIiLyGAMYH2NHaiIiIs8xgPExLiERERF5jgGMjznOwLChIxERkTsYwPgYt1ETERF5jgGMjwWyIzUREZHHGMD4mDZQA62OHamJiIg8wQBGBj15MEYGMERERG5hACMDsSO1oYsdqYmIiNzAAEYGPYm8VrMAc6dF5tEQERH5HwYwMmAtGCIiIs8wgJGBLpQNHYmIiDzBAEYGbCdARETkGQYwMuASEhERkWcYwMiAMzBERESeYQAjA8d2AuyHRERE5CoGMDLgEhIREZFnGMDIgEtIREREnmEAI4MgdqQmIiLyCAMYGejCeuvAsB8SERGR6xjAyECr00ATYPvRcwaGiIjIdQxgZCI2dGzjLiQiIiJXMYCRSW9Has7AEBERuYoBjEx6asFYuqwwd7EjNRERkSsYwMjEPpGXtWCIiIhcwwBGJqwFQ0RE5D4GMDLRsRYMERGR2xjAyIQzMERERO5jACMTx35I3EpNRETkCgYwMuESEhERkfsYwMiES0hERETuYwAjEwYwRERE7mMAI5Mg+zowDGCIiIhcwgBGJo5JvAxgiIiIXKGVewAXO3bsGDZv3oyioiLU1NQgIiICEyZMwI9//GOMGjVK7uFJRqvTQK1RwWoR0GngLiQiIiJXKG4G5p133sH27dsxbdo0PPjgg1i2bBkOHTqEH//4xzh9+rTcw5OMSqWy60jNGRgiIiJXKG4G5vrrr8evf/1rBAT0LrEsXLgQt99+O95++2383//9n4yjk5YuLAAdzV3MgVGI9uZOWDotCE8IkXso5EdO7a7C4f+WY9I1YzD28mS5h0M0bChuBiY3N9cheAGAUaNGIS0tDXq9XqZReYcu1JbIazJaYDFbZR7N8NZa14EPH/saG36+A2cP18k9HPITJqMZO189goaKFux89QhMRrPcQyIaNhQXwPRHEAQ0NjYiMjJywPvU19ejtLRU/M8fgh0m8irH8a1nYGw1QbAKOPxxudzDIT+h31cLk9ECwHYiot9XK/OIiIYPxS0h9WfLli2oq6vDHXfcMeB9Nm3ahHXr1vW5vry8HBaLxYujc1+HuU38d8mh4wiJC7jEvQdmMBhQUlIi1bAUzRvHKlgFHCs8J16uOtqAom8OQxcp/58H31tlO/qZY8BS9NkJdMU0D/o4fzxWTwyn4+WxSiMnJ2fQ+8j/CT0IvV6P5557DhMmTMCSJUsGvN/y5csxZ84ch8etXr0aY8aMQXZ2ti+G6rKW/cdQd9gWxIxMHI2k7Gi3nqekpMSpN3so8MaxniuuR1frGccra0OQMztD0tdxB99b5Wq7YMTuCseZ3uYKI1KT0hEaE3TJx/rbsXpqOB0vj9V3FB3ANDQ04Be/+AVCQ0Pxu9/9DhqNZsD7xsXFIS4uzoej85xjNV5upZbLya/P9b1uxznkXTsWKpVKhhGRPyjbVQUItn8HRwaio7kLEGzXT16WLu/giIYBxebAGAwGPPbYYzAYDHj22Wf9LjhxBnNg5NfVbkL5dzUAbA02E7Nss2AtNe04f7JJxpGRkgmCgJM7egPfefdOFv99csc5CIIgx7CIhhVFBjCdnZ14/PHHUVlZiT/+8Y9IS0uTe0he4dCRupUBjBzKv6uBpcu2Ayx99ghkLxwp3mb/BUVkr6G8BU3nDACApHHRGJkbh8TuJeCmcwY0lLfIOTyiYUFxAYzFYsGTTz6Jo0eP4qmnnsLEiRPlHpLXcAZGfvZBSmZBCsbMTIJWZ1uqPL2nGuYuZSaAk7zslx0z8lMAAJnd/7/4diLyDsUFMC+++CJ27dqFWbNmobW1FV988YXDf0MJGzrKq/V8O2qONwIAIpNDET82EgFBWoyZlQQA6Go3Q7//vJxDJAWymq04tbsKAKAJUCO9+/dlzKwkaAJsH6mndlfBytpORF6luCTesrIyAMDu3buxe/fuPrcvXrzY10PyGsckXgYwvmZ/lpxVkCIm7Gbmp4gzMyd3nMPY2SNkGR8pU+WhOhi7l3xTpyUiMMT2d6wLDcDoaQko31MDY6sJlYfqkDotUc6hEg1pigtgnn/+ebmH4DOOS0jcheRLgtUuCVMFZMzpLQE/YnwMwuKCYajvwLnDdWhvNCIk+tLbYmn4sA98MwtSHG7Lyk9B+Z4a8X4MYIi8R3FLSMNJQLAWKrXtrJ8zML5VU9qI1roOAEDKxFiExgaLt6nUKmTMtQU0ggCU7aySZYykPEZDF84csC0rBkcGIiU31uH2lElxCIqwLQ2fOXAeRpZHIPIaBjAyUqlU0IXaJsEYwPiW41n0yD63259Zn/xa+dtiBUGAoaGDeRdeVr6nBlaz7Xdh7JxkqDWOH6FqjVqczbOaBXE2hoikxwBGZrruRF7uQvIdc6cF5d9WAwACgjVIm953mj8yKVSsCdN4VvnbYr97pxTvPrANW9cUKT7Y8mcX71rrj0Pwy634RF7DAEZmPbVgutrNsFp49uwLFXtrYOqwbY8eM2uEuG36YvZfRCcUvC229Xw7jnxqa0Cp338e1SUXZB7R0NRc3YbzZU0AgJjUcMSOjuj3frGpEYgZHQ4AOF/WhObqtn7vR0SeYQAjM/tE3q42s4wjGT5O7HDcfTSQ9MvstsXuqoJFocszxZ+Uw37S5dCm0/INZghzWHacO/DvDdBbG+bixxGRdBjAyIzF7HzL0NCBqqMNAIDwhGCxemp/AkMCkNq9vNRpMKGySHk1YTqaO1G67azDdeeK61FfPnhHZHKeYBVQttMWiKjUKoy127XWn4zLR6CnjVbZzioIVi7rEUmNAYzMHNoJcMeC15Xt7G3Al2lX+2UgWQrPZzj6uR4Wk21mKDyhdyfVoY85CyOl6uMXYKg3AgBGTopDSJTukvcPiQ5CyqR4AIChvgPVx7ms5w0ntp3Fpie/wdnDdXIPhWTAAEZmvi5m13TOAEN9h9dfR4kubsBnX/p9IMm5cQiJtn1ZnTlYh46WTq+Nz1VdHWaUfKEHAKg1Kix5fAaCI21J4RXf1qC5hrkXUinrp3XAYDLze2dpyriMJLnmmjZ8/eoRnD/RhMIXDqGrg0vwww0DGJnZBzBGLwcwFXtr8cFjX+ODx77GhTOtXn0tJao71SwmVCaNj0F4fMigj1Hb14SxCDi1u9qrY3TF8a8q0dVu+9DOmJuMyKRQTFiSBsBWv6b4k3IZRzd02Hat2bZDBwRrkTotwanHpU5PRECwrUxC+bc1MHeyr5aUij4sE5fmOg0mHN1cIe+AyOcYwMhM56N+SBazFd++dQyCAJiMFux9t9Rrr6VUJ7b35opkOXkWDVzUpE8hy0gWk0XceQQVkHtNOgBg/BWjERBs21V1YvtZtDca5RrikFGxtwYmoy34SL8sCdrA/netXUwbqBH7apmMFlTsq/XaGIebpnMGnNrlWGCy+JNy5hEOMwxgZOarJN7Swkqx8iwAVB6sQ80wWpc3d1lw+hvb7IlWp0Fa9xeLM6JHhiMuPRIA0FDRoojZq7KdVWhvtC1npU5PRHRKGABbTtX4K0YDsBVSO7JZL9sYh4qTX/d+UTqz7GhP6TlU/urAB2Xizrueysdd7ebeoJ6GBQYwMnNM4vVOAGMymlH0YVmf6/e+e2LYFD07c+C8uNySNiMRgcGutQHLKlDOtlirVcDh//Z+UE9elu5w+8QlaVBrbcnJx748g652npW6q+2CEVVH6gEA4fGX3rXWn8SsaITH25Krq47Uo+0CZ8Q8deFMK07vsZ2MBEUE4upfzYRaY/t9P7K5AsZWboYYLhjAyMwxidc7f3hHP9ejo9n23KnTEhCZHAoAqD3RiMqDwyN7/1IN+JyRPnuE+CFZtvOcrEUH9ftqxVyeETkxSMiIcrg9JDoImfm29gimDjOOfXnG10McMk7tqhLP9DPyB9+1djGVWiUm/QoC+ix7kOv2f3BS/PfkZemIHhmOrPk9v+8Wh+CehjYGMDLz9hKS0dCFw91balUqYPqN2Zh+fZZ4+771J4Z8jYr2pk6cPWQ7iw6NDUJyTuwgj+grKDwQo6fakjc7mrtw7nC9pGN0liAIOGxXqO7i2Zcek64ZA3R/1x75rALmLiaQukoQBMfA18Xlo97H9e5G8oe+WkpWX94M/V5bLlFIlA7jr7Qtl075/lix6GTJF3q0NytntyB5DwMYmQWGBIhfNN5YQjr8cbm4dJJZkILolDCkzUhEfHdOx4UzrTj1jXJ21nhD2a7eQmIZc1PEDuCuUkJrgeqSC6g7bStSF5sajpRJcf3eL3JEKMbMtOX5dDR3cRuvGxoqWtB41gAASMyORkTi4LvW+hOReFFfrQpl99VSsv3v282+XDtWTKgOjQ3GuIWjANh2jR1mNephgQGMzNRqFXQhtlkYqQOYtkajuLVQrVVh6opMALYu2NNv7J2F2f/eCcWWyfdU39ovl66geimjJseLCYP6fbWydBC3bxMwafnYSy5p2M/OHP5vOaxDfKZNalLMvvQ+3nEWhlx3/mQjKotsS96hsUEYt9Cxi/zka8dCE2j7Sjv25Rm0cQfekMcARgF6lpGkXkIq+rBMrNKac2UqwuJ6K7WmTIxD8gTbUkrr+Q6UFlZK+tpK0aBvQWOlbddQQmYUopLD3H4utVaNjO4S8lazICYS+kp9eTPOFXcnlCYEY8zMvl207cWlRyJ5ou09bqltR8V3NV4f41BhNVvFmj+aALW4HdpdYy4b0dtXa3c1rBYGk66yn32xLRk5bmcPidIh58pUAIDFZMWh/5zy6fjI9xjAKEDPTqTONpNk+SjNNW1ij5yAIA0mX9s3V2KG3SxM0cZTMBmHXiVLh9kXN5J3LyZnTRj79gCTrkmHWjP4n+/k5b3v+6FNp5l/4aTKQ3UwtvQkvic67BZ0hy40AKO7C+AZW7rQdHp4VsN2V83xCzhXbOthFhYfjMx5I/u936RlY8Tu8scLK4dt1fHhggGMAoiJvALEfBVPHXj/JITus7yJS8cgOKJv75b4sVFIm2E7i+9o6hTL0g8VFrNV3PWhCVAj/bIRHj9nbFoEYkaHAwDOlzWhqcrg8XM6o7mmDRXd1WCDIwOdDsaSJ8QibkwEAFtOx7kjDV4b41BS5lD7xf1lR3v2wW/dYbZ5cJYgCNj3Xu/sy9QfZECj7f+rKzhChwnfs83CWM0CijZyFmYoYwCjAI47kTzfSt1Q0SJOfweFByB3adqA9512fZbYNffQptOy5HV4y9mDdTC22o5n9LQEj8+ie8gxC1P8Sbm4nXfCkjSnq8GqVCqHWRgmNw6u02CC/oBtp0tQROCAidKuGpkbJ+ZQXTjRPqT+1rypuuQCao7Zim5GJIUgY5CAMveaMWILhxM7zqKltt3rYyR5MIBRAPsv1p4vXE/s23BC/Pfka8fadjoNIDolTDyb72o34/B/h84XnP1OIVdaBwxm7NxkcSdT2c4qryfHtjcaxTYIAcEasdKus1JnJCEiybaDpupoA+pONUk9xCHl9J5qWM3du9bmJDu1VOcM+xwqwQKc/nZo7/6Tgm32pffzbOoPMwZ9P4LCAjHxqjTb4y0Cijb2LeJJQwMDGAXQhdv1Q/Iwkbfm+AWxOF1obJBTX3ZTV2SKlVuPbK4YEv1zjK1dqDxwHgAQHKWT7CwaAEIidRg52fZ8bReMqD7q3WWZI5v14hfq+CtGuzyTpFarMMluR5J9Lg315WnRw0tRYl8tJTt7uB7nTzQBAKJSwpB+uXPLeblL08S/k7Kvz/lsqZd8iwGMAkjVTkAQBOx91+5sZUWGU0sNYXHBvdn7XdYhsW5sv9NDyrPoHr5qLWA2WsVKumqtChO7u027KnNuMkKibHlQFXtr+YE+gObqNpw/2QQAiBkdjtjUCEmfPyY1HNGjunOoTjaJFZWpL0EQsN8+92VFBtRO1nAKDAlA7tVjup8H/bZSIf/HAEYBHNsJuB/AVBbVofZEIwAgMjnUpdoVk69NR0BQb/Z+S61/f7B68ywaAEZP7c2pKf+uxmv9hmoOtMLU0V2IMH8kQqKD3HoeTYBGnFaHAJZbH0DZzt7fmwwJlx17qFQqh6Rg+9eTg8loxrdvH8fe9SdgMSmrWvOZA+dR3120MWZ0uFiY0VkTlqQiKNz2N3rqm2pcqJS/CStJiwGMAkiRxCtYBexd3zv7Mv36LJdmHYIjdJi4tPuMxeJ45uNvGs+2ih98sWkRiOk+45WSJkCD9Nm2XU2WLivKvVBjxdxlQfW33VVbVd3tATwwbtEoBIbYkhvLvj7HxoIXEayC2HlapQIyLvd811p/MuYki9W3T+6skq2Vh2AVsO2lwyj+pByHPjqFXa+XKGabvWAVHOq+TFuZ6XIF7YAgbe/SqQAc+MB/P9OofwxgFECKJaRTu6vEgm1x6ZHi9mhX5C5NE4OpU99Uo0HvnyXPT0hc+2Ug9s/tjXyGk1+fg6nNVohwzMwkRI4I9ej5AkMCxJwoq0XAkc8qPB3ikFJTekGsG5IyKd7t2a7BhEQHISrd9tyGug7UlF7wyusMpug/ZWJfIQA4se0sjm1RRuPPir01uKDv/TzrqaHjqpwrUxHcs3T6XS3bOAwxDGAUwNMlJKvF8Wxlxg1ZLnfNBWxfcHnfH2u7IDjuZvIXVosVp3Z2n0VrVBjrpbNoAIgfGykGFTXHG9F6XrrtmlargGK7ZZ6Bmja6asJVaWJF2ONbz3Arr52TXqj9MpD43N6K0Pav6ysVe2tx4P3uvBC7j4pv3jiGqhJ5awVZrQL2v9+bszJtZaZbn2cAoNVpHMoI7OcszJDCAEYBPO1Iff6gAa3nbWeOyRNikZLr/o6b8VeMRmis7eywsqgONcflOTt017kjDWhvsnWiHT0lod8CflJRqVTImuedZN6K72rE+hXJE2MR191801MhkTpkdVcxNRktKPlyaBUvdJe504Ly7m3NAcFapE53fQbTFTHZwQgItuWclX9bDXOn7/JPGs+2YvtLh8TLM27MxqRl3cvHVgFfrSlCa518tVNOf1ONpnO2JPOEzChxx5+7xi0chdAY22famf3nWUZgCGEAowCeLCGZjGZUft0sXp5+Q9Yl7j04baAGU1dkiJf3rj+hmHVxZ5zcLl0DPmc45DPsOCdJPoMgCA5NG+3PIKWQe/UYsXjh0c16mLuUlbwph4p9tTB12H4O6ZclOV0o0F22/kq22UFThwX6/bWDPEIaRkMXtvz5AExG27GOvXwEJl0zBtNvyBYDBWOrCVv+ckCW1iJWi9UhV2Xade7PvvTQBmp6Z5bh2FOJ/BsDGAVQa9Ri5UhXA5iSL/QwGWwfRmkzEpGQEeXxeDLzUxCZbFsaqS1txNnuujJK19lmEr8IdGEBGDUl3uuvGRobjJTuhomtdR2oKW30+DnPHWkQ1+pDRwSKTTelEpEYgjHdbRWMLV1ikbzhrEzCztPO8nVNGKvFisK/HRRn9mLTIpD/k1yoVCqo1SosuC9PLHh4Qd+KHS8X+/zkpWxnFVpqbONLGh8j2e9+1vyRCIu3NbM9e6he3K1J/o0BjEK405G602ASz9RVKltbACmoNWpMt3uuvRtOyLZTwhXle6rF7ttj5yQP2C9Fag5fRBIsI9mX+0+5PMLjM9D+2OfUHP5vOawWq+Sv4S/aGo29Xb7jg5GYFe2T103Kjha/VM8V16PNywUkv/t3qdgQMSgiEFf+fKrY+BCwfQZd+cg0u6WtGhz6yHdFD61mq0O9lukSzL700GjVmPIDu1kYP95lSb0YwCiE2JHaYHL6rOfwf0+LzR8zC1IQnRI2yCOclzYjUcy7uKBvxek9yi977q3WAYNJm5EkWT7D+bImVHVX9o1ICkFsdogkY7xYbFqEuGRgqOvA6T3SbwP3F6d2Vol9pjLyU1zerusulVqFzLndrQUEiI1HveHk1+dw5NMK2+tqVLji4SkIiwvuc7/olDDMv3eyuCy6770TONNd0drbTmw/i9a67l1gubFIGhcj6fNn5qcgIrG3pYbcycrkOQYwCtEzAyNYBbFw2aW0NxpxZHMFAEClsbUDkJJKpcIMu3ya/e+dhNWs3LP05uo2seR49KgwxI6RtoLqpWh1God8hoq97gcDh+3K/E9alu7VL1P79gKHPz7tV7lOUhEEwbHooZd3H10s46LZO2+8B3WnmrDz1SPi5ctvy7lkcJA6LRHTruv+PBGAwhcPovGcdys3W0wWFP2ntwL4tOukmU22p9aoMcUuv2//eyeH5e/8UMIARiFc3UpdtPEULF22gCJpWni/Z1OeSsmNE9egW2rbUbpNubkSJy/KYfDGssulSNFaoKnKgIp9thyekCideHbuLSPGxyA+o3uW7Uwrzh6q9+rrKVGDvgWNZ21fzolZ0YhI9KzWjqsik0KRkBUFAGisNEhee6m90YgtfzkgLq2OWzTKqf5oedeOxZhZtsq3pg4Ltvx5v8d92i6ltPAs2hpsS2ijpsRLksvXn7GXJyMqpTe/r2fpkPwTAxiFCAqza+g4SADTUtuG44WVAICAIA1GzpFmi21/7Hc1FX1Y5tPtns4SrIJYkl2lgtjx15cSs6MRntCdz3CkAYaGDpef4/B/y4HuE8KJV6VBE+DdnTAqlQqTl/XmBRza5P89sFxV5sPaLwOxz6Eqk7AmjMVkwZd/LUJ7o62sQGJ2NGbfluPUY1UqFQruzkXMaFsV65aadhS+cNArndfNXRYctJ99WSntbLI9tVrlMFvNWRj/xgBGIexnYIyDnOnsf+8khO5GhROXjkFAqPe+6BIyopDaXdW3vakTRz+v8Npruav62AUY6m1nb96soHopth433V9Egm03hSvaLhjFnTCBIVqMWzRK6iH2K3VagrjjrOZ447DanWE1W1HWnXeiCVCLO7N8LX3WCLG4YNmuKkmWagVBwK7XS8TGlKGxQVj08BSXEtsDgrS48pGp4mfT2UP12Le+1OOxXezYl2fE2k2pMxIRN8Z7J2SArap1T2BWd6oZlUX+scuS+mIAoxDO1oJp0Lfg1G5bQq0uLAC5S9O8PbTu3QC2fx/adFpx1VtP+qh1wGAu3hbrypndkc8qxO7Z469MRWBIwCCPkIZKrcLkaxxzYYaLs4frYWyx9R4bPS3B4W/Ql3RhARg91VYq39jShbMSLGsc23IGJ7qXfDUBalz5s6kIiXS9qGN4fAgWPTxFzMU6/HG5GPRJwWQ099Y8UgHTJM7l64/q4lmY9zkL468YwCiEYw7MwA0d7cv7531/rE++6KJHhovJhl3tZhz+r3K+5ExGs9hIMTBEi1Q3e6ZIITwhBEnjbcmRzdVtqDvVPMgjbDoNJhzfautBowlQY8KSVK+NsT9j5yYjJMb25abffx6NZ4dH196L86bkJGVNmKqSBnzzxjHxcv5duR5Vck7OicVlt4wXL3/9SrHYLNVTJV/oxSAyfdYIcWbE21KnJyCuO9G/oaIFFXt9U0iQpMUARiGcaSdQc/yCON0ZGhvkVDKeVKauyIRaazsLO/q5Hu1erlnhrPJva8S8nPTZI7xeQXUwWW58EZV8qRcro2bNG+nWmbInNFo1cpf2dro+bNeDaajqNPQWPQyKCMRID9pvSGHkpDgERdjy4M4cOO/2LGdrXTu2/rVIrNs0adkYSXLCchaPRtZ8WwsKi8mKLX85gPbmTo+es6vdJP6uqVRwqADubSqVyiHX5sAHJ/2i1hU5YgCjEIMtIQmCgL3v9s6+TF2R4dMv6/D4YDFgMnc6bnmUk5LOogEgbVaSWBzs1O6qQcv0m7ssOLrZ1o9IpbKV+ZfDuIWjxN/Bsl1VbiUh+5PT31bDarZ9YWXMSYbaR0UPB6LWqsVAw2Kyin2ZXGEymrHlzwfEz4+Rk+Mw/YZsScanUqkw5/YcJGRGAbDlbG39axEsHuTrHN2sF8c6dk4yoiSsY+WMkXm9u50aKw1+UeuKHDGAUYjBtlFXHqwTEywjk0Nl+bLOu3YsAoJsX87Hv6oUS5LLpbWuHdUltmaTEUkh4oernAKDtUjrTnruajcPWgTsxPazvVPos0eIhbZ8LSBIi5zFtgBVsAhi0bOhSmmBLwBk2O2COuHiVnxBELDj5WJcOGNb/otICsGC+/OglrCOkCZAgysenoKQaNsMYW1pI775V4lbz9VpMKH40+7ZF7UKU37ou9mXHiqVClOvs5+FKRvWFan9EQMYhdDZb6O+aAlJsArYt7539mX69VlQa3z/1gVH6jCxe6lBsAiyN0Vz2AJb4PvaLwNxtrWA1WJ1WK6ZdI20TRtdlfO9VGgCbb9Xx7+qhLF14Fwsf9ZcY1/0MBwxqb7JuxhMbGoEokfZZiHOn2hCc02b04899NFplH9rywULCNbgykemeSUpOSQ6CFf8bKq4a+r41koc+/KMy89T/Gm5QxXxyCTf1t/pkTIxFknjbK0jmqvbcGoXZ2H8CQMYhdCFasV/XzwDc+qbavHMKi49UjzDl0Pu0jRxtujU7io0nJG28JazHCqoqoDMuco4iwaAERNiERpr28p99lD9gLkCp/fUwNBdOn3k5DjEpvmuenB/giN0yJ5v275t7rSgZIte1vF4S9lFlXeVEviqVCqH32Nnt+Lr99di33vdJzgqYP69kyVtK3KxhIwozL1zonh5979KUHP8gtOPN7Z04Wh3FXG1RuXQo8jXVCpVb9VhAAc+VHbFcXLEAEYhNAEaMXfCPoCxmK3Y/17v7MuMG7Jk/cANDAlA3rXdHzgCHGaGfKm2tFFcwkrOifVKJWJ3qdUqZHR/EQlWAaf6+SISBMFhy/Lk5fLOvvTIvTpN3DJ7dLMeJuPgbS38iWAVcLL7/ZCr6OGljJ2bLJYsOPn1uUETSxvPGbDt74fEAojTr8tC6jTvn+BkFqRgYncJB8Ei4Mu/FsFQ71ze1OFPTvcmrc8fifB4eZZNe4wYHytWHG893+Hy8h3JhwGMgogdqe22UZcWVqL1vO2DIXlCLFJk3i0BAOOvHI3QGNsMQ2VRHWpKfV/8zCGHQcbaLwOxr+p6op+aMGcP1YuzagkZUZI3rnNXeHwIxl5uK+jWaTApun2EO2pKG8VZr5RJcbIUPbyU0Ogg8W/cUNdxyb+tzjYTtvx5P0wdtmBgzKwkTL7Wd4HwzB9lIyXX9sVvbOnClr8cGLRSd3tzJ0q+6C0ZMOX78s2+2LOfhTm4sQwWk/IqjlNfDGAUpDeAsXWkNndaULSxd7ePfVl/OWkDNQ5bHvetL/VpIShzl0XsnhwQpJF1SW0gUclhdjscWvv0uLEv2z9pWbpiljEAx1ycI5+WD6kpdSUm717s4gaP/bFaBRS+cBAtNbZZyJjR4Si4O9env0dqjRoLHsgTW2g0VLRgxyvFl/wsOLzptBjkjFs4CqGxypg5TcyKxsjJ8QAAQ71xyAXuQxUDGAXp6YdktdiCl6OfV6Cju8R22oxErzU4c0dmQQoiR/SWoPdlI0D9vlqxY3fazCQEBGkHeYQ87GeG7GvC1J5oRM3x3h1lchbf60/M6HCMmtL7YX7qm6GR2GjutIjbkwOCNT5ZanFH2vREBATblpPLv63udyv+vvWl4t+cLiwAVz4yVZa/g6CwQCx+dJq4O/H0N9UD1hFqu2AUE341gWpMvlYZsy89HGZh/nNq0BIIJD8GMApiv2ugpbZdLLGtUgHTrlfG7EsPtUaN6df3/sHvXV/qs0JQJ7b3BgNZ85R5Fg0A6Zf19rg5tbtanMk4ZJ/7sixdzDlRksnLHNsLDIUiX/r9tXbLLSPEnDOl0eo0GDPLtoxn6rBAv8+xSmzZrioc/rh3C/Kih6fImkcSPTIc8+6ZLF7e+24pKov6lg84+NEpsSt2zpWpCInybcHGwcSnR4onE+2NnWJ1bFIuBjAKYl8LZu+7pQ7bDL25q8BdaTOTxHLcF/StPikE1dliRtUR25lnWHwwkrKVkTvSH11YAEZP6+1xU3moDo1nW3Fmv+3DPTQmCGMVlkTaI2lcDBKzbNtLG88acKafLyR/4w/LRz3sc6jsx11/uhlfv1IsXr7slvFIzon16dj6kzYjsXdZWQAKXzyEpiqDeHtnsxmlX1UCsAVok5bJU7BxMPZ1YQ5+dHrIJbEPNYoLYNrb2/Haa6/h0UcfxdVXX42CggJ89tlncg/LJ+wDmJ7pYbXWsfGYkqhUKky/sbfS5/73vL8Fse5IG3qW2DPzUxQ5e2HPvrXAiR3nHKbXJy5Nc6k7sK/Zf8n0nPH7q7ZGI84dtg98o2Ue0aUlZceIO+vOHa5He6MR7c2d2PKXA+IsRtb8kWLxQSWY8oMMsXN9V7utKnBXu21H5dmdzWKz0glL0hAcoazZlx6xoyMwZlYSANtJR8kWzsIomeI+PZubm7Fu3Tro9XpkZPi+OqOc+is8lXNlqqK2CF8sZWLvFsSW2naUbvde8psgCKg73Fvcy/4sValSJsUhuHuqvPLAebGTry40AOMWjpJzaIMaPSUB0SNtM3+2vB3na30ozaldVb2B79xkxQe+KrUKGXNtv9+CYAt+t/61CG0XbD3IEjKjMOf2HEUlf6vUKsz76SSxGF9zdRsKXzxkKxx4yDYbExCsRe7VaTKOcnBTV2QA3T/Wwx+fRlcHZ2GUSnEBTGxsLDZu3Ij33nsP99xzj9zD8Sn7GRjAtsPGl9si3aFSqRx2RxV9UDboVkp31Z9uRke97YwuMTsaEYnyVO90hVrT2+PGahEgdJ+F5nwvVbHJxz1UahUm2eXC2Ofu+BOHoodw3OWjZPbLXPs3nEBt95bqkGgdrnh4CjQBysvhCQzW4sqfTxVPxiqL6vDf334LoXtiNndpmrhZQamiR4Zj7OW2v9lOgwlHP6+Qd0A0IMV9ggYGBiI2Vv41XTlcHMBMXDpGsVOt9hIyopA6IxH6vbVob+rE12uLETNa+vLs5440iP/OUmDtl4Fk5qeg+JPeJRhNoBoTFqfKOCLnjZ09AvvfOwFDvRGVRXXY//5JaAO9c95Te74ZpjLpm4R2dVjQWGmbAUjIipKtbL2rIkeEIiEzCudPNomzR5oANa742VTF1a+xF5EYioUP5mHzH/dCECDupNSFBmDiVWnyDs5JU3+YgdPfVEOwCij+b7lLPaVc/T0WrLYCi1arAAgCrN2XL/7PahVs9xUuvq378X2ut92mUttONFVq+/9sJyhq9UXXq3pvc7zd8TnUahWgBurqmqFrqhIDPl9TXADjrvr6ejQ09H7B6fX+VwbdPoDRhQUgt7vSpT+Yfl0mzuyrhSDYdtyc2u29hF5NoFpcp/YHMaPDEZsWgYYKWy2Y7AWjEBSh7LPQHmqtGhOXjsGeN44BAIo+LPPq651Bk1efX+nJuxfLzE/B+ZNN4uW5d05UVDmFgaTkxmHWzeOw583j4nW514xBYIj0/Zm8IXJEKDLzk3Fi+zl0tZux913XKo57+/dYSbpq1AxgPLVp0yasW7euz/Xl5eWwWPxjP7/ZaIVGp4KlU0BKQTjKKpxrlmgwGFBS4l5XWCklTA1D7X7D4Hf0UPykUKd/NkoROzUQDRWANkSN4Cyz0++XEt5bIckKXaQGnc3+8Xc0kIAwDUzRLbL/PAHn31dzjBWB4Rp0tVqQPDsCprhmlJQ0+2CEnlONFpCQF4bzBw0IjFRDk9qhiJ+9s8JyAc0e2+cxDayjo90r72tOTs6g9xkyAczy5csxZ84c8bJer8fq1asxZswYZGdnX+KRypLxlwy0N3ciLi3S6ceUlJQ49WZ727hsK2qON4rbv72huu4cZi3Og1rBu3f6lQPkXtYKXWiAS9P/SnlvM5/JQu2JRjGXwRsqz1Zi1EjvJDar1EB8RhRCIpWxJOvK+5r5TCbaGo0ufSYoRU6OgLpTzahuqkRu3sTBH6AwWdmZqD/tWsNaV3+P7ZdsbMs4Ayzv2C/7qByvs/9PfdFtgjDQktRF1wu9y1G9S1aOt1kveo4zZyqROT5dtlYoQyaAiYuLQ1yc/H2CPBUSHaTo9e1LUWvU4o4kb2kvafC/4KVb9Ejp84J8JSg80OuVa9tDG5CWo8zquHIKjtQhWCGBl6tUKhUSMqJQX+JcZ22lCYsNRpiL7Q6G0+9xW3CDrH3c/PObgIiIiIY1BjBERETkdxjAEBERkd9RZA7MBx98AIPBIG6L3rVrF86ft/ViWbFiBcLClNcXiIiIiHxHkQHM+vXrUVNTI17esWMHduzYAQBYvHgxAxgiIqJhTpEBzIYNG+QeAhERESkYc2CIiIjI7zCAISIiIr/DAIaIiIj8DgMYIiIi8jsMYIiIiMjvMIAhIiIiv8MAhoiIiPyOIuvASKGzsxMAoNfrZR6J9505cwYajUbuYfjEcDpWYHgdL4916BpOx8tjlU5qaiqCgoIGvH3IBjA9lXxXr14t80iIiIjIVWvXrkV2dvaAt6sEQRB8OB6faWpqwnfffYcRI0YgMDBQ7uF4jV6vx+rVq/GrX/0Kqampcg/Hq4bTsQLD63h5rEPXcDpeHqu0hu0MTFRUFBYvXiz3MHwmNTX1kpHqUDKcjhUYXsfLYx26htPx8lh9g0m8RERE5HcYwBAREZHfYQDj52JjY7Fq1SrExsbKPRSvG07HCgyv4+WxDl3D6Xh5rL41ZJN4iYiIaOjiDAwRERH5HQYwRERE5HcYwBAREZHfYQBDREREfmfIFrLzZ8eOHcPmzZtRVFSEmpoaREREYMKECfjxj3+MUaNGXfKxn332GZ5++ul+b9u4caMis+OLiorw0EMP9XvbSy+9hAkTJlzy8XV1dXjhhRewd+9eWK1WTJkyBQ888ACSk5O9MVyP/OEPf8DmzZsHvP2DDz5AfHx8v7e99tprWLduXZ/rAwMD8eWXX0o1RLe0t7fj3XffRUlJCY4dO4bW1lY88cQTuOqqq/rct6KiAi+88AKKi4uh1Woxe/Zs3H///YiKinLqtXbu3InXX38der0eUVFRWLp0KW699VZotb77OHPmeK1WKz7//HNs374dJ0+eRGtrK0aMGIGFCxfixhtvhE6nG/R1HnzwQRw8eLDP9TNnzsSzzz4r5SENyNn3dqDf7dGjR+Ott95y6rXkfm+dPdaCgoIBn2P69On4y1/+csnXuf7668V2N/aWL1+ORx991L3Bu8iV7xml/s0ygFGgd955B8XFxViwYAHGjh2LhoYGbNy4ET/+8Y/x0ksvIT09fdDnuPPOOzFixAiH68LCwrw1ZEmsWLEC48ePd7guJSXlko9pb2/HQw89hLa2Ntx8883QarXYsGEDHnjgAbz22muIjIz05pBdtnz5ckyfPt3hOkEQ8Oc//xlJSUkDBi/2HnnkEQQHB4uX1Wr5J1Kbm5uxbt06JCYmIiMjA0VFRf3e7/z583jggQcQFhaGn/zkJ+jo6MC7776L06dP4+WXX0ZAQMAlX2fPnj343//9X+Tl5eGhhx7C6dOn8cYbb6CxsRGPPPKINw6tX84cr9FoxNNPP40JEybg2muvRXR0NI4ePYrXX38dBw4cwF//+leoVKpBXys+Ph533323w3W+PBFx9r0FbMH0Y4895nBdaGioU6+jhPfW2WP91a9+1ee648eP4/3338eMGTOceq3MzEzccMMNDteNHDnS9UG7ydnvGUX/zQqkOIcPHxa6urocrjtz5oywaNEi4be//e0lH/vpp58K+fn5wrFjx7w5REkdOHBAyM/PFwoLC11+7Ntvvy3k5+cLJSUl4nUVFRXC/PnzhZdfflnCUXrPoUOHhPz8fOGNN9645P3++c9/Cvn5+UJjY6NvBuaCzs5Oob6+XhAEQTh27JiQn58vfPrpp33u9+c//1m44oorhJqaGvG6vXv3Cvn5+cJHH3006Ovccsstwu233y6YTCbxuldeeUUoKCgQKioqJDgS5zhzvF1dXcLhw4f7PPb1118X8vPzhb179w76Og888IBw6623SjNoNzn73v7+978XFi9e7PbrKOG9dfZY+/PHP/5RKCgoEGprawe973XXXSc89thjHo3VU85+zyj5b1b+UzfqIzc3t09UO2rUKKSlpUGv1zv9PO3t7bBYLFIPz6va29thNpudvv+2bdswbtw4h5mb1NRUTJ06FYWFhd4YouS+/PJLqFQqXHHFFU4/pq2tDYKCSjgFBgY6NSuwfft2XH755UhMTBSvmz59OkaNGjXo+1VRUYGKigosW7bMYer5Bz/4AQRBwLZt29wev6ucOd6AgADk5ub2uT4/Px8AXPpbNpvNaG9vd22QEnH2ve1hsVjQ1tbm0mso5b119Vh7dHV1Yfv27cjLy0NCQoLTjzOZTOjo6HD59aTg7PeMkv9muYTkJwRBQGNjI9LS0py6/0MPPYSOjg4EBARgxowZuO+++wbNn5Hb008/jY6ODmg0GkyaNAn33HMPxo0bN+D9rVYrTp8+jaVLl/a5bfz48di7dy/a29sREhLizWF7xGw2o7CwEBMnTuyz5DeQG264AR0dHQgODsbcuXNx3333ISYmxssj9VxdXR0aGxv7bfw2fvx47Nmz55KPP3HiBAD0eXxcXBzi4+Nx8uRJ6QbrRRcuXAAAp5c3Kysr8b3vfQ8mkwkxMTG45pprsGrVKp/m/DjLaDTiqquugtFoRHh4OBYtWoSf/vSng/4N+vt7u2fPHhgMBlx55ZVOP+bAgQNYvHgxLBYLkpKScN111+G6667z4igHd/H3jNL/ZpX3F0D92rJlC+rq6nDHHXdc8n46nQ5XXXUVpkyZgtDQUJSWlmLDhg2499578eqrrzpE0Uqh1Woxb948XHbZZYiMjERFRQXWr1+P+++/H3//+9+RlZXV7+NaWlrQ1dXV7xlTz3X19fUYPXq0V8fvie+++w7Nzc1OffCFh4fjhz/8ISZMmICAgAAcPnwYGzduxLFjx7B27Vqncw3k0tDQAKD//I3Y2Fjx/QwMDHTr8T23K92///1vhIaGYtasWYPeNzk5GVOmTEF6ejqMRiO2bduGN954A5WVlXjqqad8MFrnxcbG4kc/+hGysrIgCAK+/fZb/Oc//8GpU6ewZs2aSwZc/v7ebtmyBYGBgZg3b55T909PT8ekSZMwatQotLS04LPPPsPf/vY31NfX45577vHyaAd28feM0v9mGcD4Ab1ej+eeew4TJkzAkiVLLnnfhQsXYuHCheLl/Px8zJw5Ew888ADefPNNn2W4uyI3N9dhqn3u3LmYP38+br/9drzyyisD7rbo7OwEgH6TyHr+oHruo1RffvkltFotFixYMOh9Lz47mz9/PsaPH4/f/e532LhxI26++WZvDVMSzr5fA30YdnV1Odz34sfLtcTiijfffBP79u3Dz3/+c4SHhw96/8cff9zh8ve+9z386U9/wscff4zrr79+0B16vnRxovGiRYswatQorF27Ftu3b8eiRYsGfKw/v7dtbW345ptvMGvWLKfeUwD44x//6HB56dKl+J//+R9s2LABK1ascGkZSir9fc8o/W+WOTAK19DQgF/84hcIDQ3F7373O2g0GpefY9KkScjJycH+/fu9MELvGDlyJObOnYuioqIB83h6tqGaTKY+t/X84TizVVUu7e3t2LlzJ2bOnOn2bqkrr7wSMTExfvHeevp+9XwI9tz34scr+b0GgK1bt+LVV1/F1Vdfje9///tuP0/PzpV9+/ZJNDLvuf7666FWqwcdqz+/t9u3b0dXV5dLy0cXU6lUuP7662GxWPrdNu9tA33PKP1vlgGMghkMBjz22GMwGAx49tlnERcX5/ZzJSQkoKWlRcLReV9CQgJMJhOMRmO/t0dERCAwMLDfacie6zz5mXnbzp07YTQaPfrgA/znve2ZRh7o/ep5P919vBJrHPXYu3cv/vCHP2D27Nkebx3tOTtvbW2VYmhepdPpEBERMejvpz+/t1u2bEFYWBguv/xyj56n53319d/ypb5nlP43ywBGoTo7O/H444+jsrISf/zjH51O3h1IVVWV00WHlKKqqgqBgYEONU/sqdVqpKen4/jx431uKykpQXJysqITeLds2YLg4GDMmTPH7ecQBAE1NTV+8d7Gx8cjKioKpaWlfW47duwYMjIyLvn4zMxMAOjz+Pr6etTV1Ym3K01JSQl+9atfITs7G0899ZTHybdVVVUA4BfveXt7O5qbmwcdq7++t/X19SgqKkJBQcElv8idIcf7Otj3jNL/ZhnAKJDFYsGTTz6Jo0eP4qmnnsLEiRP7vV99fT30er3DtuOmpqY+9/vmm29QWlqKmTNnemvIHulvzGVlZdi1axdmzJghFmqrra3ts/V03rx5OH78uEMQc+bMGRQVFWH+/PneHLZHmpqasG/fPhQUFCAoKKjP7f0da38/p//85z9oampyKiFUCebNm4fdu3ejtrZWvG7//v2orKx0yAMym83Q6/Wor68XrxszZgxGjx6Njz/+2GFZ8T//+Q9UKpXTCZS+VFFRgV/84hdISkrC//t//++SU+Z6vd7h59LW1tZn6l0QBLzxxhsA4HTBNF/o7OzsN5/hX//6FwRBcPj9HCrvLQB89dVXsFqtA86i9nesLS0tfZbFzWYz3n77bQQEBGDKlCleHXMPZ79nlPw3yyReBXrxxRexa9cuXH755WhtbcUXX3zhcPvixYsBAK+88go2b96M9evXi1tw77nnHmRlZSE7OxuhoaE4ceIEPv30UyQkJOCWW27x+bE44ze/+Q10Oh0mTpyI6OhoVFRU4OOPP0ZQUJBDYuDvf/97HDx4EDt27BCv+8EPfoD//ve/+MUvfoEbb7wRGo0GGzZsQHR0NG688UY5DscpW7duhcViGfCDr79jve6667Bw4UKkp6cjMDAQxcXF2Lp1KzIzM7F8+XJfDX1AH3zwAQwGgzhdvGvXLpw/fx6ArcpyWFgYbr75Zmzbtg0PP/wwVq5ciY6ODvz73/9Genq6Q7n2uro63HLLLViyZAl++ctfitffe++9eOKJJ/DII49g0aJFOH36NDZu3IhrrrnG41lKqY9XrVbj0UcfRWtrK2688UZ88803Do9PTk52+NK45ZZbkJeXh+effx6AbQvqU089hSuuuAIpKSno7OzE119/jeLiYixbtqzfra3eMtixtra24s4778QVV1wh7vr77rvvsGfPHsyaNQtz584Vn0vp760zv8c9tmzZgri4uAGDjv6OddeuXXjjjTcwb948jBgxAq2trdiyZQvKy8tx1113+Wy5zNnvGSX/zTKAUaCysjIAwO7du7F79+4+t/f8YvVn4cKF2LNnD/bu3Quj0YjY2FgsW7YMq1atUmytkPz8fGzZsgUbNmxAW1sboqKiUFBQgFWrVg1aWjskJARr1qzBCy+8gDfeeEPsheRKnw45fPnll4iOjsa0adOcfsyVV16JI0eOiEmDiYmJ+NGPfoRbb72131kcX1u/fr1Df5cdO3aIAdjixYsRFhaGxMREPP/883jhhRfw8ssvi31V7rvvPqem4C+//HKsXr0a69atw5o1axAZGYmbb74Zq1at8tZhDWiw4wUgfvG9/PLLfR6/ZMmSAc96ASAxMRGTJ0/Gjh07cOHCBajVaqSmpuKRRx7xecDqzHt7+eWXY+/evdi8eTOsVitSUlJw11134cYbb3Sq3YVS3ltnjhWwzfSWlpaKicrOSk9PR2pqKrZs2YKmpiZotVpkZmbiqaeecmo3olSc/Z5R8t+sSlBSOU8iIiIiJzAHhoiIiPwOAxgiIiLyOwxgiIiIyO8wgCEiIiK/wwCGiIiI/A4DGCIiIvI7DGCIiIjI7zCAISIiIr/DAIaIiIj8DgMYIhpQdXU1CgoK8Ic//EHuoUjis88+Q0FBAT777DO5h0JEHmIAQ0QuefDBB1FQUCD3MPo11AIuIhoYmzkS0YDi4+Px5ptvIjQ0VO6hSCI/Px85OTk+6/hLRN7DAIaIBqTVapGamir3MCQTFhYmdhMmIv/GbtRENKDq6mrccMMNWLJkCX75y18OuHTUc3uPU6dO4c0338TBgwfR0tKC2NhYzJkzB7fffjsiIyP7ff6bbroJa9euxaFDh9DS0oL169djxIgR2LFjBwoLC3H8+HHU19dDq9Vi7NixWLlyJebPny8+12effYann3663/GtWbMGU6ZMEe/zxBNP4KqrrnK4T3FxMd58800cPXoUnZ2dSEpKwsKFC3HTTTchKCjI4b4FBQXIy8vDk08+iZdeegl79uxBR0cHMjIycPfdd2PKlCmu/qiJyEWcgSEip61atQqbN29GTU0NVq1aJV6fmZkp/nvnzp148sknoVKpMHfuXCQkJKCiogIffvghvvvuO7z88ssIDw93eN5z587hnnvuQXp6OpYsWYKWlhYEBAQAAF555RVotVrk5uYiNjYWTU1N2LVrF37961/joYcewooVKwAAGRkZWLlyJd5//31kZGRg7ty54vMnJSVd8rgKCwvx29/+FgEBAVi4cCGioqKwd+9erFu3Dt999x3WrFkDnU7n8BiDwYD77rsPYWFhWLx4MRobG1FYWIhHH30Ua9euRXp6uls/YyJyDgMYInLaHXfcgYMHD6KmpgZ33HFHn9ubm5vx+9//HpGRkXjxxRcdAoetW7fiqaeewj//+U88/PDDDo8rLi7GqlWr+n3OZ555BsnJyQ7Xtbe3495778U///lPXH311QgKCkJmZibCwsLEAKa/5+pPW1sb/vSnP0Gj0eCll17C2LFjAQB33XUXfvvb3+Krr77Cu+++i9tuu83hcWVlZfj+97+Phx9+GGq1bT/E1KlT8cwzz+DDDz/Eo48+6tTrE5F7uAuJiCTz+eefo62tDXfddVefWY9FixYhKysLW7du7fO4mJgY3HLLLf0+58XBCwCEhITgqquugsFgwPHjxz0a886dO2EwGLB06VIxeAEAtVqNe+65BxqNpt9t18HBwfjpT38qBi+AbSlNo9F4PCYiGhxnYIhIMkePHgUAlJSU4Ny5c31u7+rqQnNzM5qamhAVFSVen5GRIS4ZXayxsRFvv/029uzZg9raWnR2djrcXl9f79GYT548CQDIy8vrc1tiYiKSk5NRWVmJ9vZ2hISEiLeNHDnS4TJgS3qOiYmBwWDwaExENDgGMEQkmdbWVgDAxo0bL3k/o9HocDk6Orrf+7W0tOCuu+5CbW0tcnNzMX36dISFhUGtVqOsrAw7d+6EyWTyaMxtbW0AbLNA/YmNjUVlZSXa2tocApaBtpZrNBpYrVaPxkREg2MAQ0SS6fmCX7dunUtJrCqVqt/rP/nkE9TW1uLOO+/sk4Py1ltvYefOne4PtltPIHLhwoV+b++5fqjUwiEaKpgDQ0Qu6cn5sFgsfW7LyckB0LuU5KmeZSj7HUU9Dh8+PODYXJkB6dlBdfDgwT631dbW4ty5c0hOTu6zXERE8mIAQ0QuiYiIAACcP3++z21Lly5FSEgI1q5di/Ly8j63G41Gl4KbnkTg4uJih+u3bNmCPXv29Ll/eHg4VCpVv2MbyNy5cxEWFoZPP/3UYcyCIODll1+GxWLpUzOGiOTHJSQicsnUqVOxbds2/N///R9mzZqFwMBAZGRkYM6cOYiKisJvfvMb/PrXv8Ydd9yBmTNnYvTo0TCZTKipqcHBgwcxceJEPPvss0691uLFi/HOO+9gzZo1KCoqQmJiIsrKynDgwAEUFBRgx44dDvcPCQnBuHHjcOjQIaxevRojR46ESqXC9773vQFrwYSGhuJ//ud/8Nvf/hY//elPsWDBAkRFRWH//v0oLS3F+PHjceONN3r8cyMiaTGAISKXXHPNNaiursZXX32Fd955BxaLBUuWLMGcOXMAALNnz8Y///lP/Pvf/8b+/fuxb98+BAUFIT4+HldddRUWL17s9GslJCTg+eefx0svvYR9+/bBYrEgKysLf/7zn3H+/Pk+AQwA/OpXv8Lf/vY37N69G21tbRAEAZMmTbpkMbsFCxYgJiYGb731Fnbs2CFW4r3ttttw00039SliR0TyYysBIiIi8jvMgSEiIiK/wwCGiIiI/A4DGCIiIvI7DGCIiIjI7zCAISIiIr/DAIaIiIj8DgMYIiIi8jsMYIiIiMjvMIAhIiIiv8MAhoiIiPwOAxgiIiLyOwxgiIiIyO/8f1QEEyg5PsvXAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "c49100a2", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the background model is accurate and the image is reconstructed perfectly, this factor should be close to 1." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "f672d9cb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkwAAAG5CAYAAAB802v0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABiRUlEQVR4nO3deVyU1eIG8GcYmBmYYR0QRMEN3BcsrVxwLbfK6tpiq7aZWl3t1s3ldrvp9abtaYtbXtG6pqbpL02910wkzQW31HBDBXFBdpgZmP39/YFMjAww8M4wAzzfz8cPM+96jgPyeM55z5EIgiCAiIiIiKrl4+kCEBEREXk7BiYiIiKiWjAwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBQMTERERUS0YmFxAr9fj7Nmz0Ov1ni4KERERuQEDkwtkZmbixRdfRGZmpqeL4nYXLlzwdBEaVHOqL+vadDWn+rKuTZen68vARHViMBg8XYQG1Zzqy7o2Xc2pvqxr0+Xp+jIwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBQMTERERUS0YmIiIiIhqwcBEREREVAsGJiIiIqJaMDARERER1YKBiYiIiKgWvp4uQHVKS0uxdu1apKWl4fTp09BoNJg1axZGjx7t1PkajQZLlixBSkoKDAYDunTpgqlTp6JTp04O77Vq1Srs3r0b+fn5CA4ORrdu3fC3v/0NCoXC1VUjIiKiRsZrA1NxcTGSkpIQGRmJuLg4HDt2zOlzrVYrZsyYgQsXLmD8+PEIDg7G5s2bMW3aNCxfvhwxMTG2Y7VaLf785z8jNzcX999/P1q1aoWioiKcOHECJpOJgYmIiIi8NzCp1Wps2rQJarUaZ86cwaRJk5w+Nzk5GadOncLcuXMxZMgQAMCwYcPwxBNPYOXKlXj77bdtxy5btgzZ2dn46quvEB0dbdv+5JNPuqwuRERE1Lh5bWCSyWRQq9X1OnfPnj0ICwvDoEGDbNtCQkIwdOhQ7Ny5E0ajETKZDBqNBtu2bcO4ceMQHR0Nk8kEQRAgk8lcVQ1Rrv2ej7yMEhg0RvS4tx0Ugd5RLiIioubGawOTGOfOnUN8fDx8fOzHtHfp0gVbtmxBVlYWOnTogJMnT8JoNKJ169b4+9//jr1798JqtaJbt2547bXXEB8f7/D6eXl5yM/Pt73PzMx0Sz0u/HoNZ3dfAQC079eSgYmIiMhDmmRgKigoQK9evapsr2ixys/PR4cOHXDlSnkYWbZsGaKjozF79mzodDokJSVh+vTpWLVqFcLDw6tc54cffkBSUlKV7ZcuXYLFYnFZPbSGEtvrc6fOI1jn77Jr15dWq0VaWpqni9FgmlN9WdemqznVl3VtutxV365duzp1XJMMTAaDwWG3WsU2g8EAACgrK7Pt++STTxAQEAAAiI+Px5QpU7Bp0ya8+OKLVa4zduxYDBgwwPY+MzMT8+bNQ7t27Rw+hVdf5gsXcfXX8tAUqY5G+64tXXbt+kpLS3P6m6spaE71ZV2bruZUX9a16fJ0fZtkYJLL5TAajVW2V2yTy+UA/ghQAwYMsIUlAOjWrRtatmyJU6dOObx+eHi4w5YnV5MH+tleG7Qmt9+PiIiIHGuSE1eGhYXZjTGqULGtomuuIvSEhoZWOTY0NBRardaNpaydQvVHK5leWzUAEhERUcNokoEpPj4e58+fh9Vqtdt++vRpKBQK2zxMFd1neXl5Va6Rl5eH4OBg9xe2BnJVpRYmDVuYiIiIPKXRB6a8vDxkZmbCbDbbtg0ePBgFBQVISUmxbSsqKsLu3bvRv39/W1dcbGws4uLisHfvXhQVFdmOPXToEHJyctC3b98Gq4cj8kpPxbFLjoiIyHO8egzTxo0bodVqbV1p+/btQ05ODgBg3LhxUKlUWLZsGXbs2IF169ahZcvyQdFDhgzBhg0bMH/+fGRkZNhm+rZarXjuuefs7vHKK6/g9ddfxyuvvIKxY8dCq9Vi/fr1iImJwQMPPNCwFb6FolILE7vkiIiIPMerA9O6deuQnZ1te5+SkmJrNRoxYgRUKpXD86RSKd5//318+eWX2LhxIwwGAzp37oxZs2YhNjbW7tjbbrsNH3zwAVasWIFly5ZBoVAgMTERkydPthsI7gnskiMiIvIOXh2Y1q9fX+sxs2fPxuzZs6tsDwwMxIwZMzBjxoxar9GnTx/06dOnXmV0Jx+pD2QBvjCWmmHQMTARERF5SqMfw9TUVbQy6TXskiMiIvIUBiYvJ785tYBRZ4JgFTxcGiIiouaJgcnLVQz8FgTAUMpuOSIiIk9gYPJyHPhNRETkeQxMXs5+LiaOYyIiIvIEBiYvZz8XE1uYiIiIPIGBycvJK60nxy45IiIiz2Bg8nKKQM72TURE5GkMTF7ObtA3u+SIiIg8goHJyykqdclx8koiIiLPYGDycvJAtjARERF5GgOTl7Mb9M3ARERE5BEMTF7OTyGFj1QCgPMwEREReQoDk5eTSCS2ySs5DxMREZFnMDA1AnJl+TgmdskRERF5BgNTI1AxF5PZYIHZaPFwaYiIiJofBqZGgAO/iYiIPIuBqRGQqzjbNxERkScxMDUClZdH4XpyREREDY+BqRGw75JjCxMREVFDY2BqBBR2XXJsYSIiImpoDEyNgF0LE7vkiIiIGhwDUyNQeQwTB30TERE1PAamRqDyU3KcVoCIiKjhMTA1AhVLowCAXsMWJiIioobGwNQIKJSVWph0bGEiIiJqaAxMjYCPrw/8/H0BcNA3ERGRJzAwNRIV45g4DxMREVHDY2BqJBS2wGSCYBU8XBoiIqLmhYGpkaiYi0kQAGOp2cOlISIial4YmBoJzsVERETkOQxMjYT9enIc+E1ERNSQGJgaCbvJKzkXExERUYNiYGok7Lvk2MJERETUkBiYGgn7Ljm2MBERETUkX7EXyMjIwPfff48zZ85Ao9HAarVWOUYikWDt2rVib9WsKSp1yek5eSUREVGDEhWYjh8/jjfeeAMmkwlSqRShoaGQSqVVjhMEzhskVuX15Djom4iIqGGJCkxLly6FxWLBm2++iVGjRjkMS+Qadi1M7JIjIiJqUKICU3p6OoYPH457773XVeWhatg/JccWJiIiooYkatC3QqFASEiIi4pCNfHz94VEKgEAGHQMTERERA1JVGC66667cOLECVeVhWogkUggV3IBXiIiIk8QFZimTp0KrVaLhQsXQq/Xu6pMVI2KuZj4lBwREVHDEjWG6Z133oG/vz82bdqE7du3IyYmBgEBAVWOk0gk+PTTT8XcilAxF5MOZoMFFpMFUj8OsiciImoIoqcVqFBWVoZz5845PE4ikYi5Dd1k/6ScCcpQBiYiIqKGICow7dmzx1XlICfYzcWkMUEZqvBgaYiIiJoPLo3SiMg5FxMREZFHuDQwlZWVIS8vD2VlZa68LN1UuUuOs30TERE1HNFryZlMJnz77bfYvn07rl+/btvesmVLjBkzBuPHj4efn18NVyBn2XfJsYWJiIiooYgKTAaDAdOnT8fp06fh4+OD1q1bQ61WIz8/H9euXcOKFSvw66+/4tNPP4VcLndVmZutWwd9ExERUcMQFZj+85//IC0tDcOGDcPkyZMRGRlp25eTk4MlS5Zg165dWLNmDZ599lnRhW3uyqcVKMcuOSIiooYjagzTzz//jI4dO+If//iHXVgCgBYtWuDtt99Gp06dsGvXLlGFpHIVE1cCgJ5dckRERA1GVGDKzs5G3759azzm9ttvR3Z2tpjb0E1sYSIiIvIM0YvvFhUV1XhMUVERFArOF+QKcj4lR0RE5BGiAlPXrl2xa9cuXLp0yeH+jIwM/Pzzz+jWrZuY29BNUl8f+CnKZ/fmPExEREQNR9Sg76effhqpqamYNGkS7r33XiQkJCA0NBSFhYU4duwYtm/fDrPZjKeeespV5W325CoZTPoytjARERE1IFGBqUePHnj77bfxwQcfYNOmTdi8ebNtnyAIUCqVmD17Nnr06CG2nHSTXOUHbV55YBIEgev0ERERNQDRE1cOHToUd955J/bu3Ytz586htLQUAQEB6NixIwYOHIiAgABXlJNuqnhSTrAKMJaaIVdyUlAiIiJ3Ex2YACAgIAAjRozAiBEjXHE5qoH9k3JGBiYiIqIGwMV3Gxm72b41HMdERETUEOrUwrRjxw4AwKBBgxAQEGB774xRo0bVrWTkkN16chz4TURE1CDqFJjmz58PiUSCbt26ISAgwPa+JhUDkxmYXENut54cpxYgIiJqCHUKTDNnzgQAqNVqu/fUcCp3yRnYJUdERNQg6hSYRo8eXeN7cj/7Ljm2MBERETUEUYO+jx8/jhs3btR4zI0bN3D8+HExt6FK7AZ9cwwTERFRgxAVmKZPn47t27fXeMx///tfTJ8+XcxtqBK7aQXYJUdERNQgRAUmQRCcOoazUbtOxcSVAGDQsUuOiIioIbh9HqYrV65AqVS6+zbNhp+/LyQ+5QGU8zARERE1jDrP9L1gwQK797/88guys7OrHGexWJCTk4MTJ07gzjvvrH8JyY5EIoFc5Qd9iZHzMBERETWQOgemymOWJBIJ0tPTkZ6e7vBYiUSCzp0745VXXqlzwUpLS7F27VqkpaXh9OnT0Gg0mDVrltNP5mk0GixZsgQpKSkwGAzo0qULpk6dik6dOlV7ztWrVzFhwgQYjUYsW7YMnTt3rnO5G8IfgYldckRERA2hzoFp3bp1AMrHJo0fPx6PPPIIHn744SrH+fj4IDAwEP7+/vUqWHFxMZKSkhAZGYm4uDgcO3bM6XOtVitmzJiBCxcuYPz48QgODsbmzZsxbdo0LF++HDExMQ7P++yzzyCVSutV3oakUMlQDB1MegssZiukvlzhhoiIyJ3qHJiioqJsr2fOnImOHTvabXMVtVqNTZs2Qa1W48yZM5g0aZLT5yYnJ+PUqVOYO3cuhgwZAgAYNmwYnnjiCaxcuRJvv/12lXMOHTqE1NRUPP7441i9erWrquEW8soDvzVGBIQqPFgaIiKipq/Ogakyd05cKZPJbDOK19WePXsQFhaGQYMG2baFhIRg6NCh2LlzJ4xGI2SyPx7PN5vNWLRoER5++GG0atVKdNnd7da5mBiYiIiI3EtUYKpgMBhw5swZ5OXlwWRyPBC5IdeSO3fuHOLj4+HjY99V1aVLF2zZsgVZWVno0KGDbft3330HjUaDZ555BikpKbVePy8vD/n5+bb3mZmZriu8E+zmYuI4JiIiIrcTHZi+//57rFixAjqdzuF+Tyy+W1BQgF69elXZXtFilZ+fbwtM+fn5WLVqFaZOner09Ac//PADkpKSqmy/dOkSLBZL/QvupOLSYtvr9NOXUCjUPNu6K2m1WqSlpTXY/TytOdWXdW26mlN9Wdemy1317dq1q1PHiQpMe/bswcKFC9G+fXuMHj0aX3zxBQYOHIiuXbvit99+w8GDBzF48GD069dPzG3qzGAw2HW5VajYZjAYbNuWLFmC6Oho3HfffU5ff+zYsRgwYIDtfWZmJubNm4d27drV+BSeq/hkZ+Hy7iIAQERIJDp3dTyI3R3S0tKc/uZqCppTfVnXpqs51Zd1bbo8XV9Rgem7775DaGgoFi9eDIVCgS+++ALx8fF48skn8eSTT2Lnzp1499138dBDD7mqvE6Ry+UwGqt2VVVsk8vlAIDff/8d//vf//DJJ59U6b6rSXh4OMLDw11T2HqQVxrDxC45IiIi9xP1PPrFixcxYMAAKBR/DDq2Wq221/fccw9uu+02h91X7hQWFmY3xqhCxbaKrrnFixejZ8+eaNmyJa5fv47r16+jqKjIdmxtCwt7SuXlUTjbNxERkfuJamEym80ICQmxvZfL5dBoNHbHxMXFYcuWLWJuU2fx8fE4ceIErFarXcvR6dOnoVAobPMw5eTkIDs7G4899liVa8yaNQsqlQrbtm1rsHI7i4O+iYiIGpaowKRWq+1aciIjI3H+/Hm7Y7Kzs906GWReXh50Oh1atWoFX9/y6gwePBjJyclISUmxzcNUVFSE3bt3o3///raxTG+88YbdeCYAOHr0KDZu3IipU6eiTZs2biu3GAq7Ljm2MBEREbmbqMDUpUsXnDt3zvb+zjvvxIYNG/DNN99gwIABOHHiBFJSUtCnT596XX/jxo3QarW2ULZv3z7k5OQAAMaNGweVSoVly5Zhx44dWLduHVq2bAkAGDJkCDZs2ID58+cjIyPDNtO31WrFc889Z7v+HXfcUeWeWq0WAJCQkODVS6NU0DMwERERuZ2owDRkyBAsW7YM169fR8uWLfHUU09hz549+Oqrr/DVV19BEAQolUpMnjy5Xtdft26d3cK+KSkptnmSRowYAZVK5fA8qVSK999/H19++SU2btwIg8GAzp07Y9asWYiNja1XWbyJ1E8KX7kUZoOFXXJEREQNQFRgGjRoUJXZtP/9739j69atuHbtGiIjIzFy5EhERETU6/rr16+v9ZjZs2dj9uzZVbYHBgZixowZmDFjRp3uOXr0aLfOYO4qikA/aA0WDvomIiJqAC6Z6buywMBAPP74466+LN1CrpJBm6eHQWeyTQ5KRERE7iFqWoEdO3YgOTm5xmMuXLiAHTt2iLkNOVAxjkmwCDCVmT1cGiIioqZNVAvT/PnzIZFIMHDgQPz973+3TQhZWUpKClatWtWgS6M0B4pKUwvoNSbIAvxqOJqIiIjEENXCBJSPW/rll1/w6quvoqCgwBVlIifIAznbNxERUUMRHZgefPBBTJo0CefOncNLL72ECxcuuKJcVAsFpxYgIiJqMKIDEwA8+eSTmDNnDkpKSvDyyy9j//79rrgs1cButm8NW5iIiIjcySWBCSifXXvhwoVQKBSYPXs2vvvuO1ddmhyo3CXHFiYiIiL3cllgAoDOnTtj6dKlaNu2Lb744gt8/PHHsFgsrrwF3aSwW0+OgYmIiMidXD4PU2RkJL744gu88847+L//+z8oFApX34JgvzwKu+SIiIjcy6UtTBUCAgKwYMECPPTQQ9Dr9e64RbOnqPyUnI4tTERERO4kqoVpz5491e7z8fHB9OnTMXLkSBgMBjG3IQfkt8zDRERERO7j8i65W3Xp0sXdt2iWZP6+kEgAQeA8TERERO7mli45cj+Jj8Q2jolPyREREblXnVqYBg8eDB8fH6xevRoxMTEYPHiwU4u+SiQS7N69u96FJMfkKhn0GhNbmIiIiNysToGpV69ekEgktjXjKt6TZ8gD/YDrgKnMAovZCqkvGwyJiIjcoU6BadGiRTW+p4Z161xMASFVFz8mIiIi8dgk0YjZzcXEbjkiIiK3YWBqxBSBnFqAiIioIdSpSy4pKaleN5FIJJgwYUK9zqXqsYWJiIioYdQpMK1cubJeN2Fgcg+FigvwEhERNYQ6BaaFCxe6qxxUD/JKXXJcT46IiMh96hSYEhIS3FQMqg85W5iIiIgaBAd9N2K3TitARERE7uGyteQsFguKi4thMjn+xR0ZGemqW9FN8sDKg74ZmIiIiNxFdGA6e/Ysli1bht9++w1ms9nhMVwaxT3kSj4lR0RE1BBEBabz58/jlVdegVQqRd++ffHrr78iLi4OYWFhOHfuHIqKipCQkICoqChXlZcq8ZVJ4SuXwmywcB4mIiIiNxIVmFatWgUAWLJkCdq2bYvBgwcjMTEREydOhMFgwBdffIHk5GTMnDnTJYWlquQqP5gNFrYwERERuZGoQd8nT57EgAED0LZtW9s2QRAAAHK5HNOnT0d4eDiWL18uqpBUvYq5mPRak+3vnoiIiFxLVGDS6XSIjo62vff19UVZWdkfF/fxQUJCAo4cOSLmNlQD+c0n5QSLAFOZ4zFkREREJI6owBQSEgKNRmN7HxYWhitXrtgdYzQaodfrxdyGasAn5YiIiNxPVGBq27YtLl++bHvfo0cPpKam4tSpUwCAjIwM7N69G23atBFXSqpW5bmYOHklERGRe4ga9N2vXz98/vnnyMvLQ3h4OJ544gmkpKTglVdeQWBgILRaLaxWK5566ilXlZduYbcAL5dHISIicgtRgemBBx7A0KFDERgYCACIi4vDJ598gq+//hrXrl1Dp06dMG7cOPTr188lhaWqFIFcHoWIiMjdRAUmX19fhIWF2W3r0aMH3n//fVGFIufJ7ZZHYQsTERGRO3AtuUZOUXkBXk5eSURE5BYuWUuuqKgIGRkZyMvLq3Z5lFGjRrniVnQLeSAX4CUiInI3UYHJYDDg008/xf/+9z9YLBaHxwiCAIlEwsDkJnaDvtklR0RE5BaiAtPChQuxbds2dOjQAYMHD4ZarYZUKnVV2cgJ9oGJLUxERETuICow7dmzB506dcLixYsZlDxEHuAHiQQQBD4lR0RE5C6iBn1brVb07t2bYcmDJD4SyJTlrUych4mIiMg9RAWmzp07V1kKhRqe4ubAb7YwERERuYeowPT8888jNTUVv/76q6vKQ/VQMY7JVGaG1Wz1cGmIiIiaHlFjmLp3746PPvoIs2bNQseOHdGhQwcolcoqx0kkEkyYMEHMragGlQd+63UmBATLPVgaIiKipkdUYCouLsbSpUuh0Whw5MgRHDlyxOFxDEzupag8F5PGyMBERETkYqKnFTh58iTuuusuDB8+nNMKeAinFiAiInIvUYHp4MGDSEhIwHvvveeq8lA9KCqtJ8flUYiIiFxP1KBvQRDQuXNnV5WF6kkeyNm+iYiI3ElUYOrRowfS09NdVRaqJ7sFeNklR0RE5HKiAtPUqVNx5swZbNy40VXloXqQqyovwMsWJiIiIlcTNYbp22+/RYcOHfDZZ59h48aN1U4rAAAzZ84UcyuqgX2XHFuYiIiIXE1UYNq+fbvt9dWrV3H16lWHx0kkEgYmN1Io2SVHRETkTqIC07p161xVDhJBfss8TERERORaogLT8ePHERYWhjvuuMNV5aF68JVJIZX5wGK0skuOiIjIDUQN+n7vvfdw8OBBV5WFRKiYi4ldckRERK4nKjCp1WpYLBZXlYVEqBj4bdAYIQiCh0tDRETUtIgKTAMGDMDhw4dhNHLcjKdVtDBZLQJMeoZYIiIiVxIVmF588UUoFAq89dZbuHTpkqvKRPVgv54cAywREZEriRr0/fzzz8NkMiE9PR2HDh2CTCZDSEgIJBKJ3XESiQRr164VVVCqmV1g0pgQGOHBwhARETUxogKTIAjw9fVFixYtqmyv6T25nqLS1AJ6tjARERG5lKjAtH79eleVg0Sy75Ljk3JERESuJGoME3kPRaX15PQaBiYiIiJXEtXCVJnZbEZWVhZ0Oh2USiViYmLg6+uyy1Mt7NeTY5ccERGRK4lONCUlJViyZAl++uknu+kF5HI57r77bkyaNAnBwcFib0O1ULBLjoiIyG1EBaaSkhJMnjwZV69eRVBQEHr27Am1Wo2CggKcOXMGW7duxfHjx7F48WIEBQW5qszkgLxylxwDExERkUuJCkyrVq3C1atXMX78eEycOBH+/v62fXq9HqtWrcKaNWuwevVqvPLKK6ILS9XjPExERETuI2rQ9969e5GQkIApU6bYhSUAUCgUeOmll5CQkIBffvlFVCGpdjKlH3Bz+isDB30TERG5lKjAlJ+fj+7du9d4TPfu3ZGfny/mNuQEHx8J5MryVibOw0RERORaorrklEolsrOzazwmOzsbSqWyTtctLS3F2rVrkZaWhtOnT0Oj0WDWrFkYPXq0U+drNBosWbIEKSkpMBgM6NKlC6ZOnYpOnTrZjikuLsa2bduwb98+ZGZmwmKxIDY2Fo888giGDx9ep/J6C7nKDwatiYO+iYiIXExUC1NCQgKSk5Nx+PBhh/uPHDmC5ORkJCQk1Om6xcXFSEpKQmZmJuLi4up0rtVqxYwZM/DTTz/hT3/6EyZPnozCwkJMmzYNWVlZtuN+//13LF++HEFBQXjmmWfwwgsvQC6XY86cOfj3v/9dp3t6i4q5mIylZlgtVg+XhoiIqOkQ1cI0ceJE7N+/H2+88Qbuuusu9OrVC2FhYSgoKMDx48dx8OBByOVyTJw4sU7XVavV2LRpE9RqNc6cOYNJkyY5fW5ycjJOnTqFuXPnYsiQIQCAYcOG4YknnsDKlSvx9ttvAwDatm2LNWvWICoqynbuQw89hNdeew1r1qzB448/XmVclrezn4vJBP9guQdLQ0RE1HSICkzt2rXDhx9+iPnz52P//v3Yv38/JBKJbe246OhozJ49G+3atavTdWUyGdRqdb3KtGfPHoSFhWHQoEG2bSEhIRg6dCh27twJo9EImUyG6OjoKudKJBIkJibi6NGjuHbtGjp06FCvMniK4papBRiYiIiIXEP0xJU9e/bEmjVrcPLkSZw/f94203d8fDx69OgBiUTiinI67dy5c4iPj4ePj31vY5cuXbBlyxZkZWXVGIQKCgoAoMbJNvPy8uwGsmdmZoostWvYTS2g4cBvIiIiV3HJ2iUSiQQ9e/ZEz549XXE5UQoKCtCrV68q2ytarPLz86sNTCUlJdi6dSt69uyJ8PDwau/xww8/ICkpqcr2S5cuwWKx1K/gLlBSVmx7nX76IgqsNQ/Irw+tVou0tDSXX9dbNaf6sq5NV3OqL+vadLmrvl27dnXquCa32JvBYIBMJquyvWKbwWBweJ7VasU///lPaLVaTJ8+vcZ7jB07FgMGDLC9z8zMxLx589CuXTu7J/EamuTaZVxOLgIARIRGolPXGJffIy0tzelvrqagOdWXdW26mlN9Wdemy9P1FR2YioqKsG3bNpw5cwZardZhC4tEIsGnn34q9lZOkcvldmvaVajYJpc7Htfz6aef4uDBg/jb3/5W65N54eHhNbZAeYp9lxynFiAiInIVUYHpwoULmD59OjQajW2gtyMNOY4pLCzM4USZFdscDSZfuXIlNm/ejJdeegkjR450exndRRH4R8uaQcfARERE5CqiAtMXX3yBkpISPPPMM7j33nsREREBqVTqqrLVS3x8PE6cOAGr1Wo38Pv06dNQKBSIibHvpvr++++xcuVKPPLII3jyyScburguVTHTNwDo2cJERETkMqImrvz9998xcOBAPP/884iKimrwsJSXl4fMzEyYzWbbtsGDB6OgoAApKSm2bUVFRdi9ezf69+9vN75p165dWLRoEe65554msTiw/TxMfEqOiIjIVUS1MPn6+qJVq1auKoudjRs3QqvV2rrS9u3bh5ycHADAuHHjoFKpsGzZMuzYsQPr1q1Dy5YtAQBDhgzBhg0bMH/+fGRkZCA4OBibN2+G1WrFc889Z7t+Wloa3n33XQQFBeH222/Hzp077e7fvXt3h3M1ebNb52EiIiIi1xAVmBISEnD27FlXlcXOunXr7NapS0lJsbUajRgxAiqVyuF5UqkU77//Pr788kts3LgRBoMBnTt3xqxZsxAbG2s7LjMzEyaTCUVFRViwYEGV68yaNavRBSZfuRRSPx9YTFa2MBEREbmQqMA0depUTJ48Gd9++y0ef/xxV5UJALB+/fpaj5k9ezZmz55dZXtgYCBmzJiBGTNmVHvu6NGjnV7MtzGRB/qhtMDAp+SIiIhcSFRg+vrrr9G+fXssXboUP/zwA+Li4qBUKh0eO3PmTDG3IicpVDKUFhig1xohCEKDz7RORETUFIkKTNu3b7e9vnbtGq5du+bwOIlEwsDUQCrmYrKaBZgNFvgpmtzcpERERA1O1G/TdevWuaoc5CJ2A781JgYmIiIiFxD12zQqKqpe5924cQPXr19HQkKCmNuTA7dOLRAY4e/B0hARETUNouZhqq9t27bVul4b1Y+cUwsQERG5nEcCE7mPwm49OU4tQERE5AoMTE2MfZccW5iIiIhcgYGpibGf7ZstTERERK7AwNTEyFVsYSIiInI1BqYmhoGJiIjI9RiYmphb52EiIiIi8RiYmhiZyg+4uRoKF+AlIiJyDQamJsbHRwJ5QHm3HLvkiIiIXMMjgUmpVKJFixaeuHWzUDGOSc95mIiIiFzCI4Hp0Ucfxfr16z1x62ahYi4mY6kZVovVw6UhIiJq/Oq0llxSUlK9biKRSDBhwoR6nUt1V3ngt0Fngn+Q3IOlISIiavzqFJhWrlxZZZtEIrG9FgShynZBEBiYGpjd1AIaBiYiIiKx6hSYFi5cWGXb2rVrcfjwYYwYMQI9e/ZEWFgYCgoK8Ntvv2Hnzp3o27cvHnvsMZcVmGqnCOQCvERERK5Up8CUkJBg937r1q04fvw4li9fjnbt2tntGzVqFB5++GFMnToVAwcOrHIuuY/95JUc+E1ERCSWqEHf3333HYYPH14lLFXo0KEDhg8fzgHeDezWLjkiIiISR1Rgunr1KoKCgmo8JigoCNeuXRNzG6oj+y45tjARERGJJSowhYSE4ODBg3aDvSuzWq04ePAggoODxdyG6kiu5HpyREREriQqMN199924cOECZs6cifT0dLt958+fx8yZM3Hp0iXcc889ogpJdVMxDxPAwEREROQKdRr0fatnn30W586dw4EDB3Dw4EEoFAqEhISgqKgIer0egiDg9ttvx8SJE11UXHKG3QK87JIjIiISTVRgksvl+Oijj7Bjxw7s2LEDFy9exI0bN6BSqdC5c2eMHDkSo0aNspuridzP/ik5tjARERGJJSowAeUTVI4ePRqjR492RXnIBXzlUkj9fGAxWaHnU3JERESieWQtOXIviURia2XiPExERETiiW5hAgCz2YysrCxotVpYLBaHx3DiyoYlV8lQWmiAQWuyLU9DRERE9SMqMAmCgBUrVuD7779HaWlpjccmJyeLuRXVkeLmk3IWkxVmgwV+CpdkYyIiomZJ1G/RVatW4euvv4ZKpcLIkSMREREBqVTqqrKRCLcO/GZgIiIiqj9Rv0W3bduGyMhILF++nJNTeplbpxZQhft7sDRERESNm6hB3wUFBUhMTGRY8kJcT46IiMh1RAWmqKgo6HQ6V5WFXEhut54cAxMREZEYogLTgw8+iP3796OwsNBV5SEXUdiNYeLUAkRERGKIGsM0cOBAnDhxAlOnTsWECRPQsWNHKJVKh8dGRkaKuRXVEWf7JiIich1Rgemxxx6DRCKBIAhYsGBBtcdJJBLs3r1bzK2ojuSVBn0zMBEREYkjKjCNHDmSEyJ6qcpdcnoNu+SIiIjEEBWYZs+e7apykIvJA9klR0RE5CpcS66JkisrtTBx0DcREZEoDExNlI/UB7KA8gZEzsNEREQkjuhB386QSCRYu3atmFtRPSgCZTCWmtklR0REJJLoxXcd0el00Gq1AAC1Wg1fX65j5glylR9wAzCUmmC1CvDx4QB9IiKi+hCVZNavX1/tvuvXr+Pzzz9HYWEhPv74YzG3oXqyTS0gAEatCYogWc0nEBERkUNuG8PUsmVLzJkzBxqNBsuXL3fXbagGikAO/CYiInIFtw769vX1RZ8+fThppYdwtm8iIiLXcPtTcgaDASUlJe6+DTmgqDTbNyevJCIiqj+3BqbffvsNu3btQmxsrDtvQ9Xg5JVERESuIWrQ97Rp0xxut1gsyMvLQ3Z2NgBgwoQJYm5D9cT15IiIiFxDVGA6fvy4w+0SiQSBgYHo27cvHn30UfTt21fMbaieKo9h0jMwERER1ZuowLRnzx5XlYPcQGE36JtjmIiIiOqLS6M0YXZdclwehYiIqN5cNgW32WxGVlYWdDodlEolYmJiOMO3h3EeJiIiItcQnWhKSkqwZMkS/PTTTzAa//ilLJfLcffdd2PSpEkIDg4WexuqB1+5FD6+EljNAgd9ExERiSAqMJWUlGDy5Mm4evUqgoKC0LNnT6jVahQUFODMmTPYunUrjh8/jsWLFyMoKMhVZSYnSSQSKFQylBYZ2MJEREQkgqjAtGrVKly9ehXjx4/HxIkT4e/vb9un1+uxatUqrFmzBqtXr8Yrr7wiurBUd/JAP5QWGTiGiYiISARRg7737t2LhIQETJkyxS4sAYBCocBLL72EhIQE/PLLL6IKSfVXMfDbYrLCbLB4uDRERESNk6jAlJ+fj+7du9d4TPfu3ZGfny/mNiSCQsWB30RERGKJCkxKpdI2m3d1srOzoVQqxdyGRODUAkREROKJCkwJCQlITk7G4cOHHe4/cuQIkpOTkZCQIOY2JAKnFiAiIhJP1KDviRMnYv/+/XjjjTdw1113oVevXggLC0NBQQGOHz+OgwcPQi6XY+LEiS4qLtWVXMUFeImIiMQSFZjatWuHDz/8EPPnz8f+/fuxf/9+SCQSCIIAAIiOjsbs2bPRrl07lxSW6k5RqUtOr2ELExERUX2InriyZ8+eWLNmDU6ePInz58/bZvqOj49Hjx49IJFIXFFOqie7FiYdW5iIiIjqQ1RgWrBgAdq3b49HH30UPXv2RM+ePV1VLnIRu8DEQd9ERET1ImrQ908//YTCwkJXlYXcQB5Y6Sk5jmEiIiKqF1GBKTo6mnMseTnOw0RERCSeqMA0ZswY7N+/H7m5ua4qD7kYu+SIiIjEEzWGafDgwTh27BimTp2Kxx9/HJ07d0ZYWJjDgd6RkZFibkX15CP1gSzAF8ZSM1uYiIiI6klUYBo/frxtGoFFixZVe5xEIsHu3bvF3IpEkKv8YCw1cwwTERFRPYkKTCNHjnTbtAGlpaVYu3Yt0tLScPr0aWg0GsyaNQujR4926nyNRoMlS5YgJSUFBoMBXbp0wdSpU9GpU6cqx+7duxcrV65EZmYmQkJCMGbMGDzzzDPw9RU964JXUKhk0OSUwaAzwWoV4OPDqR6IiIjqQlQimD17tqvKUUVxcTGSkpIQGRmJuLg4HDt2zOlzrVYrZsyYgQsXLmD8+PEIDg7G5s2bMW3aNCxfvhwxMTG2Yw8cOIC//e1vSEhIwLRp03Dx4kWsXr0ahYWFeP31191RtQYnr1geRQCMOhMUlZ6cIyIiotp5bROKWq3Gpk2boFarcebMGUyaNMnpc5OTk3Hq1CnMnTsXQ4YMAQAMGzYMTzzxBFauXIm3337bduyXX36JDh064KOPPrK1KAUEBOCbb77Bww8/jDZt2ri0Xp5gtwCvloGJiIiorkQ9JedOMpkMarW6Xufu2bMHYWFhGDRokG1bSEgIhg4dir1798JoLB/8nJGRgYyMDNx///123W8PPfQQBEFAcnKyqDp4C7upBbg8ChERUZ2JamF67LHHaj3Gx8cHAQEBiI2NRWJiIoYNGybmlk45d+4c4uPj4eNjnwe7dOmCLVu2ICsrCx06dMC5c+cAoMq4pvDwcEREROD8+fMOr5+Xl2c3/1RmZqaLa+Bati45cPJKIiKi+hAVmARBgMViQV5eHgBAKpUiODgYxcXFsFgsAMrDR2FhIdLT07F7925s3boV7733Hvz8/Gq6tCgFBQXo1atXle0VLVb5+fno0KGDLfQ4aslSq9XVTsr5ww8/ICkpqcr2S5cu2ertTQq1Gtvri2czoFXk1ftaWq0WaWlprihWo9Cc6su6Nl3Nqb6sa9Plrvp27drVqeNEBaYVK1bg9ddfR2xsLF544QV07drVNs1AWloaVqxYAa1Wi6SkJBQXF+Pzzz/HgQMHsG7dOjz11FNibl0jg8EAmazqOJ2KbQaDAQBsXXPVHVtaWurw+mPHjsWAAQNs7zMzMzFv3jy0a9fO4VN4niYvuoZLKAAAqIMj0LVru3pfKy0tzelvrqagOdWXdW26mlN9Wdemy9P1FTWGacmSJTAajfjoo4/QrVs32xQDEokE3bp1wwcffACj0YilS5eidevWmDNnDiIjI7Fr1y6XFL46crncFoYqq9gml8sB/BGUqju24rhbhYeHo1OnTrY/3j4w3G62b3bJERER1ZmowLRv3z7cddddVcYKVZBKpbjrrruwd+9eAOVB5bbbbsPVq1fF3LZWYWFhDrvTbu2Cq9xF5+jY+g469zaKSk/JcdA3ERFR3YkKTDqdrtpuq8rH6HQ62/vg4GAxt3RKfHw8zp8/D6vVarf99OnTUCgUtnmY4uPjAQBnz561Oy4vLw+5ubm2/Y0dB30TERGJIyowtW3bFj/99BOuXbvmcP+1a9ewa9cutG3b1rYtJycHISEhYm5rJy8vD5mZmTCbzbZtgwcPRkFBAVJSUmzbioqKsHv3bvTv39/WFdeuXTvExsZiy5YtdoO1N2/eDIlEgsGDB7usnJ506zxMREREVDeiBn0/9dRTePvtt/Hcc8/hvvvuQ/fu3REaGorCwkKcOnUKP/74I8rKymwDvE0mE1JTU9G3b1+nrr9x40ZotVpbl9m+ffuQk5MDABg3bhxUKhWWLVuGHTt2YN26dWjZsiUAYMiQIdiwYQPmz5+PjIwM20zfVqsVzz33nN09pk6dilmzZuH111/H8OHDcfHiRWzatAn33XefXdBrzPwUUvhIJbBaBC7AS0REVA+iAtPgwYPx5ptv4rPPPsN3332HDRs22PYJggB/f3+88cYbtpYavV6PN998E+3aOfeU1rp165CdnW17n5KSYms1GjFiBFQqlcPzpFIp3n//fXz55ZfYuHEjDAYDOnfujFmzZiE2Ntbu2P79+2PevHlISkrCwoULERwcjKeeegoTJ06sy1+FV5NIJJAHylBWZIBBwxYmIiKiuhK9NMq9996LwYMHY+/evUhPT0dpaSkCAgIQFxeHgQMH2oWawMBAJCYmOn3t9evX13rM7NmzHa5pFxgYiBkzZmDGjBm1XiMxMbFO5WqMFCo/lBUZ2MJERERUDy5ZS06lUmHUqFHV7rdYLJBKpa64FdVTxdQCFqMVZqMFvjJ+HkRERM4SNej7+++/r/UYi8WCOXPmiLkNuYC80oK7Bk4tQEREVCeiAtOiRYtqXKDWarVizpw5dk+rkWfYLcDLJ+WIiIjqRFRg6tGjB+bNm4ejR49W2VcRlvbs2YOHHnpIzG3IBTi1ABERUf2JCkwLFixATEwM3nrrLZw/f9623Wq14p///CeSk5Px4IMPYtq0aaILSuLYtTCxS46IiKhORAUmpVKJDz/8ECqVCn/9619x7do1CIKAuXPn4ueff8YDDzyA1157zVVlJRHs1pPTsYWJiIioLkQFJqB8PbaPPvoIVqsVr7/+Ov7xj39g9+7duO+++/CXv/zFFWUkF7DrkuNcTERERHUiOjABQExMDN5//30UFhYiJSUF9913H/7617+64tLkIorAyoO+2SVHRERUF3WahykpKanG/V26dEF6ejrUarXdsRKJBBMmTKhP+chF7LrkOOibiIioTuoUmFauXOnUcatWrbJ7z8DkeZXnYeKgbyIiorqpU2BauHChu8pBbqZQsoWJiIiovuoUmBISEtxUDHI3H18f+Pn7wlRmZmAiIiKqI5cM+qbGoWIuJnbJERER1Y2owLR9+3a88MILyMvLc7g/Ly8PL7zwAnbu3CnmNuQiFeOYjDoTBKvg4dIQERE1HqIC044dO+Dn54fw8HCH+8PDwyGXy/Hjjz+KuQ25SEULkyAAhlJ2yxERETlLVGDKyMhAfHx8jcfExcUhIyNDzG3IReymFuDklURERE4TFZh0Oh0CAwNrPEapVEKr1Yq5DblI5akFDJy8koiIyGmiApNarbZbdNeR9PR0hIaGirkNuYjdArx8Uo6IiMhpogJTnz59kJqaitTUVIf7Dx06hEOHDuGOO+4QcxtyEc72TUREVD91mofpVk8++SR+/vlnvPnmmxg5ciT69OmD8PBw5OXlITU1Ff/73/8QEBCAJ5980lXlJRHsFuBllxwREZHTRAWm6OhovPfee5gzZw62b9+OHTt22PYJgoCIiAjMmTMH0dHRogtK4tl1yXHQNxERkdNEBSYA6NmzJ9auXYu9e/fi9OnT0Ol0UKlU6NKlCwYMGAA/P7/aL0INwn7QNwMTERGRs0QHJgDw8/PD0KFDMXToUFdcjtzEftA3u+SIiIicxaVRmhHOw0RERFQ/LmlhysnJwbFjx5CXlweTqeovYolEggkTJrjiViSCn78vJFIJBIvAQd9ERER1IDowffnll9iwYQOsVqttmyAIkEgkdq8ZmDxPIpFAofJDWbGR8zARERHVgaguuS1btmDdunXo3bs35s6dC0EQMGrUKLz99tsYO3YspFIphgwZgk8//dRFxSWxKqYW4KBvIiIi54lqYdqyZQuioqLwwQcfwMenPHtFRUVh+PDhGD58OIYNG4a//OUvHAzuRRSB5eOYzAYLzEYLfGVSD5eIiIioZlarAIvRCsEqQOIj8UgZRAWmzMxMjBw50haWAMBisdheJyQkoF+/fli7di2GDBki5lbkIvaTV5rgG8bARERE9SdYBZiNlvL/iN/8z/gfX60wG8zlX6s95pbjHRxnMZUP+4lbHA//YLlH6il6DJNKpbK9VigUKC4uttsfExODw4cPi70NuYj8lqkFlGEKD5aGiIgagiCUt9CYDGaY9RaYDH+EEpPeXP7VYIFZb6n02uzwONv+m9ssRmvtBXARs9FS+0FuIiowRUREIDc31/a+VatWOH36tN0xly5dgr+/v5jbkAtVdMkBnFqAiMhbWS1WmPTlocV486tJXx5QTGXlr69mFqMs7fzNbRaYDWYYy26Gn7JKx988XxA8XSvn+Egl8JVLy//I/vhqMOttD5R5gqjA1L17d5w4ccL2fuDAgVi9ejU++OADDBw4ECdOnMDBgwcxePBg0QUl15ArKwUmHQMTEVFDsFqs0JcYUVpkQGmRAWW3fC0tMqCs2FAecsrMti6o2mSiyL0Fd8AWZuRS+ClufpX7QirzgZ/cF75yH/hWfJXdDD0K+/BjH4h87Pb5+Dp+Hi0tLQ2qcM81wIgKTCNHjkR+fj6ys7MRFRWF8ePH49dff8XWrVvx448/QhAEREVFYcqUKa4qL4lktzyKhnMxERGJYTZYUFqkR2lheeApDz9GlBXp7QKRvsTYoC08Ekn53Ht+Cl/4KqSQ3fxaEW58FVL4VYQW22vfW0JQ1W2+MqnHBl17mqjA1Lt3b/Tu3dv2PiAgAEuWLMHevXtx9epVREVFoX///uyS8yL2y6OwhYmICCgfuGzSm2HQmWEsNZX/0Zlh0JW/NujMMOpMKCs2orS4IgjpYSpz3ZgaucoPMn9f+Pnbhxw/he/NPzdf+5eHnuz862gX19Zum59/+TFSPx+Pdl81RS6Z6RsAiouLkZ6eDp1Oh8DAQNx3330IDg521eXJRW59So6IqKmwmCwwaswovKKxBR+Drjz4lIegmwFIV/W1sdTklhYgiVSCgGA5AkLk8A+VIyBYDv8QOQJuee0fLIe0mq6o6pjTShDTNcL1hSaHRAem69evY9GiRThw4ACESt9tEokE/fr1w6uvvoqWLVuKvQ25SOVB33p2yRFRIyAIAgxaE3SFepQWGG5+1UNXYEBpod72Xn/zQZbDuOr2Mvn5SxEQooB/sAwBIYqboaf8dUUwCgiRQ67ya7ZdWE2NqMB09epVvPzyyygsLETr1q3Ro0cPhIaGorCwEKdOncK+ffuQlpaGL7/8EtHR0a4qM4nAFiYi8iYWs7U89FSEn4Ly8UDlX/947+wg6LqQ+EggV/pCFuAHmdIPsgBfyJV+N99XvK60LcAX/sEy+AfL4adwWQcNNRKiPvElS5agqKgIr7/+Ou6//367/lJBEPDDDz/gk08+wZIlSzB37lzRhSXxbp2HiYjI1axWAQaNEXqNsXztyspfiyq1EBWWD4YWSyKVICBEDmWoAmapAeFRYbeEnkrBR+kHeYAvZEo/+MqlHOdDThMVmI4cOYIBAwZg7NixVfZJJBI88MADOHDgACeu9CJSXx/4+UthKrNwHiYicopgLe8SK9MYoS8pDzllJUaHX/UlhvIHSlw0HkgW4AtlmAIBoQoow+Q3v5Z3gSnDFAgIU8A/UGbr9kpLS0PXrl1dc3OiSkQFJqvVirZt29Z4TPv27XHs2DExtyEXk6tkMJWVwcAWJiICYDVbUXhVi7xLxSi4rEFZkRFlJQZby5BB4/pH4iu3CgWEVXxVQBkqv/m1PBSx64u8hajvxI4dOyIjI6PGYy5duoROnTqJuQ25mELlB21uGQxak0cXMiSihmc1W1F4pTwc5V0qsYUkV4wR8pVLoQiSwT9QBkWwDIpAGfwrvgbJy/cFycpbhYJk/LeHGhVRgenFF1/Ea6+9hq1bt+K+++6rsv+HH37AoUOH8Mknn4i5DblYxcBvQQCMpWa7cU1E1HRYzVYUXNHgxjENCvafQv6lEhRkOR+OpH4+tsCjCJLDP0gGxc0//rd8VQTK2BpETVqdvruTkpKqbOvduzc+/PBDrF27Fj169EBYWBgKCgpw8uRJXLlyBX379sXRo0fRo0cPV5WZRLKbWkBrZGAiagIsZisKr2jKW40ulrceFVwugdVc0ZdWUO25wS2VCG8XBHW7YIS3DYIq3B/+wTIOiiaqpE6BaeXKldXuy8rKQlZWVpXthw4dQmpqKiZMmFD30pFbcGoBosbNYraiMEtj61KrGo6qZxeO2gUhvG0QZAH8TxNRbeoUmBYuXOiuclADqtyixPXkiLyPxWSBrsAAXUEZtPl66Cr+FOihzS9D0VVt7eFIAgRHlYcjS4Ae3frFQ92G4YiovuoUmBISEtxUDGpIdnMx6djCRNSQrGYrdIUG6PLLoCsoD0LagopQVB6Q6jw3UUU4an+z1ahdMNRtAm3hKC0tDS27qN1QG6LmgyP0miGFXQsTAxORqwhWAWXFBmjzKrUM2UJRGXT5epQVGUQ9oi+RShAUGYDwdpXCUdsgyPz5zzmRO/EnrBmSB1Yew8QuOSJnCYIAfYkRmtwyaHLLoM0tvfn15vu8MlGP50skgH+oHKowfyjVCijVCqjUCijV/lCGlb/3D5bDh4/jEzU4BqZmSGG3PApbmIgqVCzyWjkM3RqIzAZLva/vHyKHKkyBALUCqpsBSKn2vxmKFAgIkcNHWrcV64moYTAwNUN2T8mxS46aGWOZGdpsIzJ02bcEolJoc8tg0tcvEPnKpQiM8Icqwh+q8JshKOyPQBQQpoDUl2GIqLFiYGqGbp2HiaipMenNKLlRipJsHYqz7b+WFVd8z1+v0zWlfj5QRfgjMMIfgREBlV6XhyRFoIxzFhE1YQxMzZCfvy8kUgkEi8B5mKjRMhst1Yai0kJDna/n4yuBKrw8DFWEoD8CUQD8gxmIiJozBqZmSCKRQK70g77EyEHf5NUsJgtKcsrswlBJdimKs3XQFeiBOj5t5h8iR3BUAKxyI2I6RSMwvDwMBbbwR0CwnGubEVG1GJiaKUVgeWDScwwTeZHi6zpcPpqDq6fyUHRNB11eWZ0fwVcEyRAUFYDgKKXd16BIpe3R+7S0NHTtGueGGhBRU8XA1EyVD/zWwWywwGKyQOon9XSRqBmymq3IPleIy0dzkHUsF8XXdU6dJ1f5OQhFSgRHBXAmayJyCwamZurWqQWUoQxM1DD0WiOuHM/F5WO5uPJbLoylZofH+fn7IjgqoDwItbRvLVJUetKTiKghMDA1U3aTV2pMUIYqPFgaasoEQUDRNR2yjubg8rEc3Dhb6LCbTSIBIjuFIrZ3C8Tc1gIh0UoOsiYir8HA1EzJlZxagNzHYrYi+0yBraut5Eapw+NkAb5o3SsCsbe1QOte4Ww5IiKvxcDUTFWei4lTC5Ar6EuMyDqei8vHcnDlRB5MZY672oJbKhF7WwvE9I5AVMdQ+HAyRyJqBBiYmim72b4ZmKgeBEFA4RUtso7lIPNoDnLOFzl8zF/iI0FU5/KuttjbWiC4pbLBy0pEJBYDUzMlV1VuYWKXHNXObLSgMEuD/IwS5GWU4MqJPGhzyxweK1f6oXXCza62nuF2XcBERI0RA1MzZbc8CudiolvotUYUZGqQl1GCgswS5GeUoOiaDoK1+kmRQlqVd7XF9m6BFvEhXESWiJoUBqZmyr5Lji1MzZUgCNDl65GfUYLLqUW4uv0I8jNLoM3T13quj1SCqC5hN7vaIhAUya42Imq6GJiaqVvnYaKmz2qxovi6DnkZ5S1GBZka5GeWODWGTSKVILSVCuq2QVC3CSz/2jbYNnM2EVFTx3/tmqlb52GipsVstKAgs+Rml1r5uKOCLA0sJmut5/oppAhrEwR1myCo2wZC3SYIoa1VnA2eiJo1BqZmSurrAz+FFCa9hfMwNRGCVUD22UKk772Kiweyq32svzL/EHl5MGoTiDLfEvQa0BVBkQFchJaI6BYMTM2YXCWDSV+GkhulOPTtWSQ80J7rcDVCxdd1OP/LVaTvu1btU2sAEBQVAHXbIIS3DbK1IAWEyG3709LS+Mg/EVE1vDYwGY1GrFixAv/73/+g0WjQoUMHvPDCC+jbt2+t5+7atQtr1qxBZmYm/P39MWDAAEyePBkhISF2x2m1Wnz99ddISUlBbm4uQkNDcfvtt+PZZ59FZGSkm2rmPcLbB0GbVwbBIuDElos4uzsLvf8Uhy53x0LKyQS9ml5jxMUD13H+l6vITS+ust9PIUXs7ZGIjA9BWJsghMUGcrwREZEIXvsv6Pz585GcnIxHHnkErVu3xvbt2/Hmm29i4cKF6NmzZ7Xnbd68GR9//DFuv/12vPzyy8jNzcWGDRtw9uxZLFmyBHJ5+f+orVYr/vKXvyAzMxMPPvggYmJicOXKFWzevBmpqan4+uuvERAQ0FDV9YhBk3ogMCIAv/83A1azAIPWhAOrT+P3HRnoO74T2t0ZxbW8vIjFZMHlY7lI33sNWcdyYLXYP+IvkQCteoQjbmA02vSJhJ/Ca3+8iYgaHa/8FzUtLQ27du3ClClT8PjjjwMARo4ciYkTJ2Lx4sVYvHixw/NMJhOWLVuGXr164eOPP7b9su/evTtmzpyJrVu3Yty4cQCA33//HWfOnMH06dPxpz/9yXaN2NhYLFiwAIcPH8agQYPcXFPPkgX44c4nO6PriFgcXncOF369DgDQ5JTh50XHEdEhGHc+2RlRncM8XNLmSxAE5JwvwvlfruLSgWwYdFUH6IfFBiIusRXi+rdEABdRJiJyC68MTHv27IFUKsXYsWNt2+RyOe69914sW7YMN27ccNhldvHiRWi1WgwbNsyuZaR///7w9/fHrl27bIGptLR8MdCwMPswoFarbfdrLgIjAjD0lQT0GNMOB9ecwfW0AgBA7oVibJ17EG1ub4G+4zshpJXKwyVtPkpulCJ931Wk/3LN4cK1/iFyxA2IRtzAaKjbBHmghEREzYtXBqbz58+jdevWUCrtB6B26dIFAJCenu4wMJlM5f/7dhR25HI5zp8/D6vVCh8fH3Tq1An+/v746quvEBgYiNjYWFy9ehWLFy9G586dcfvtt1dbvry8POTn59veZ2Zm1que3ia8fTDG/O0OXDmei0PfnkXhFS0AIPNIDi4fy0Wnoa2h6lH9TM8kjkFrwqWD13F+7zXcOFtYZb9U5oO2faMQPzAa0d3VnEmbiKgBeWVgys/Pt7X0VFaxLS8vz+F5rVu3hkQiwcmTJzFmzBjb9suXL6OoqAgAoNFoEBwcjJCQELzzzjt4//338dprr9mOveOOOzB37lz4+lb/V/PDDz8gKSmpyvZLly7BYrE4U0XvJgc6PxOGnN9kuLynGCatBYJVwJldWfBJAW4c1SD6riBIZU3/F7ZWq0VaWprbrm+1CCi6UIbckzoUnCuF4ODbJ7itAhE9lFB3DoBU7oMS5KLkbK7Ly+LuunqT5lRXoHnVl3VtutxV365duzp1nFcGJoPBAD+/qo+3y2Qy235HQkJCMHToUOzYsQNt2rTBoEGDkJubi4ULF8LX1xdms9nu3ODgYMTHx+NPf/oT2rZti/T0dHz77bdYsGAB5s6dW235xo4diwEDBtjeZ2ZmYt68eWjXrh06depU32p7nW7dAdM4M05tz8CJLRdh0ltgNQFZKcXIO6HH7ePi0HFI6ybd0pGWlub0D5MzrGYrirN1KLyiRfaZQlzcf93hWn4hrVSIT4xGhwHRUKn9XXb/mri6rt6sOdUVaF71ZV2bLk/X1ysDk1wut3WvVWY0Gm37q/PGG2/AYDDgyy+/xJdffgkAGDFiBKKjo5GSkgJ///JfPteuXcP06dMxe/ZsDBkyBACQmJiIqKgozJ8/HwcOHMBdd93l8B7h4eEIDw8XU8VGw0/hi94PxaHzsBgc+z4dp3ddhmAFyooM2Lvid5y6+URd7G0t+ERdJRXBqOiqFoVX/vhTnK2DYHHcrakIkqFD/5aIH9gK6nZB/PskIvIiXhmY1Go1cnOrdjlUjBuqKayoVCrMnz8fN27cwPXr1xEVFYWoqChMmTIFISEhCAwMBABs374dRqMR/fv3tzt/4MCBAICTJ09WG5iaI/9gOfo/2w3yODMKD1uQkXoDAFB0VYedHx1FVJcw3PlEJ0R0CPFsQRuY1WxF8Y1SFF3RoPBmOCq6okXxdV2Vx/4dkfr5IPb2FohPbIXWPcLhw/mviIi8klcGpri4OBw7dgw6nc5u4HdF32VcXFyt14iMjLQNDNdoNDh37hwGDx5s219QUABBEGC12q+tZTaXLyfRJMYiuYG/2g+3v9YL2WcLcWjNGeScLwIAZJ8uwP/9fT/a39USfR7riKDIpjWHldViRUl26c1QpEHRFR0Kr2pQfM25YAQAPr4SBLdUIbS1CqGtVAiNUaFlVzXkSs6uTkTk7bwyMA0ZMgRr167FDz/8YJuHyWg0Ytu2bejatastCN24cQN6vR5t2rSp8XrLli2DxWLBI488YtsWExMDQRCwe/dujB492rb9p59+AgDEx8e7ulpNSlSnUNz/zl3ISL2B1LVnUZJd/uj7xQPXkZGaja4j2iDhwQ5QVFrk19sJVgGlRQZockqhyS2DJrcUmWm5OL3ql7oFI6kEwdFKhLYKRGhrFUJuBqSgqIAmPd6LiKgp88rA1LVrVwwdOhTLli1DUVERWrVqhR07diA7OxszZsywHfevf/0Lx48fR0pKim3bN998g0uXLqFr166QSqX45ZdfkJqaihdeeME2LQEAjB49GmvXrsWHH36Ic+fOoV27djh37hx+/PFHtGvXrslPWukKEokE7e6IQpvbWuDMz1k4+n069CVGWC0CTm3PwLk9V9Dj3nYIbxsEeaAM/kEyKIJk8JVLPTI+RxAE6DVGaHPLygNRRTDKKYM2r/yPxWSt/UI3+UglCG6pLA9EN0NRSOtABEcGsGuNiKiJ8crABACzZ89GZGQk/vvf/0Kr1aJ9+/Z47733kJCQUON5HTp0wC+//IJ9+/bBarWiQ4cOmDNnDoYOHWp3XHBwMJYvX44VK1bg119/xQ8//ICgoCCMGTMGL774osOn9MgxH18fdB3RBnEDo3Fi6yWc3HYJFqMVxlIzjnx3vsrxUj8fKALLw5Mi0K/S60pfb772D5RBpvKDj49zActYaqoUgkqhySmztRZpc8tg0te9q1UilSA4Slkeim7+CWmlQnCUksGIiKiZ8NrAJJfLMXXqVEydOrXaYxYtWlRlW79+/dCvXz+n7hEREYGZM2fWu4xkTxbghz6PdkSXu2NxZMN5nN9zBYKDXiyLyQpdgR66Ar1T15VIALnKzz5M3QxUFpPVFoY0uWUwaKs+XekMX7kUgRH+UEX4I7BFAALD/RHYwh95pdnoPaAnFyMmImrmvDYwUeOlDFNg0KQe6HlvO1z7PR9lJUboNTf/2F6boNcYq33EvjJBwM3jTQB09SqTj68EqnB/BEYEIDCiPAypKr1WBMocdhOWphUwLBEREQMTuU9IK1WN688JggBjqblSiLolUJXcus1YbZeaRAIo1Qq7EGQLRxH+CAhVQOJktx4REdGtGJjIYyQSCeRKP8iVfghuqaz9BABmowUGjRFlN4OUxEeCwIgAqNQKjiciIiK3YWCiRsVXJoWv2h/KBlouhIiICAD4X3IiIiKiWjAwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBQMTERERUS0YmIiIiIhqwcBEREREVAsGJiIiIqJaMDARERER1YKBiYiIiKgWDExEREREtWBgIiIiIqqFr6cL0BQYDAYAQGZmpodL4n6XL1+GVCr1dDEaTHOqL+vadDWn+rKuTZc769umTRsoFIoaj2FgcoHs7GwAwLx58zxcEiIiIqqr5cuXo1OnTjUeIxEEQWig8jRZRUVFOHToEFq2bAmZTObp4rhNZmYm5s2bh7feegtt2rTxdHHcrjnVl3VtuppTfVnXpsvd9WULUwMJCQnBiBEjPF2MBtOmTZtak3hT0pzqy7o2Xc2pvqxr0+XJ+nLQNxEREVEtGJiIiIiIasHARE5Tq9WYOHEi1Gq1p4vSIJpTfVnXpqs51Zd1bbq8ob4c9E1ERERUC7YwEREREdWCgYmIiIioFgxMRERERLVgYCIiIiKqBSeubOZOnz6NHTt24NixY8jOzkZQUBC6deuGF154ATExMTWeu337dsyfP9/hvk2bNnnl0xvHjh3DtGnTHO5bvHgxunXrVuP5ubm5+Pzzz5Gamgqr1YrevXvj1VdfRXR0tDuKK8q7776LHTt2VLt/48aNiIiIcLjv3//+N5KSkqpsl8lk+Omnn1xVxHorLS3F2rVrkZaWhtOnT0Oj0WDWrFkYPXp0lWMzMjLw+eef4+TJk/D19UW/fv3wyiuvICQkxKl77d27FytXrkRmZiZCQkIwZswYPPPMM/D1bZh/Pp2pq9VqxX//+1/s2bMH58+fh0ajQcuWLTFs2DCMHz8ecrm81vv8+c9/xvHjx6tsv+OOO/Dhhx+6sko1cvazre77OzY2Ft98841T92oMny0ADBo0qNpr9OnTBx9//HGN93n00UdtS3hVNnbsWLzxxhv1K3wd1eV3jbf+zDIwNXNr1qzByZMnMXToUHTo0AH5+fnYtGkTXnjhBSxevBjt27ev9RrPP/88WrZsabdNpVK5q8guMW7cOHTp0sVuW6tWrWo8p7S0FNOmTYNOp8NTTz0FX19frF+/Hq+++ir+/e9/Izg42J1FrrOxY8eiT58+dtsEQcBHH32EqKioasNSZa+//jr8/f1t7318vKNRuri4GElJSYiMjERcXByOHTvm8LicnBy8+uqrUKlUePHFF1FWVoa1a9fi4sWLWLp0Kfz8/Gq8z4EDB/C3v/0NCQkJmDZtGi5evIjVq1ejsLAQr7/+ujuqVoUzddXr9Zg/fz66deuGBx54AKGhofj999+xcuVKHD16FJ9++ikkEkmt94qIiMBLL71kt62h/+Pj7GcLlAf4N998026bUql06j6N5bMFgLfeeqvKtjNnzmDDhg3o27evU/eKj4/HY489ZretdevWdS90PTn7u8arf2YFatZOnDghGI1Gu22XL18Whg8fLsydO7fGc7dt2yYkJiYKp0+fdmcRXero0aNCYmKisHv37jqf+5///EdITEwU0tLSbNsyMjKEIUOGCEuXLnVhKd3nt99+ExITE4XVq1fXeNyKFSuExMREobCwsGEKVkcGg0HIy8sTBEEQTp8+LSQmJgrbtm2rctxHH30k3H333UJ2drZtW2pqqpCYmCj83//9X633efrpp4Vnn31WMJlMtm3Lli0TBg0aJGRkZLigJrVzpq5Go1E4ceJElXNXrlwpJCYmCqmpqbXe59VXXxWeeeYZ1xRaBGc/23/961/CiBEj6n2fxvLZVmfBggXCoEGDhBs3btR67COPPCK8+eabosoqlrO/a7z5Z9Y7/rtIHtOjR48qiT0mJgZt27ZFZmam09cpLS2FxWJxdfHcqrS0FGaz2enjk5OT0blzZ7uWqTZt2uC2227D7t273VFEl/vpp58gkUhw9913O32OTqeD4GXTtclkMqdaPvbs2YP+/fsjMjLStq1Pnz6IiYmp9TPLyMhARkYG7r//frum/IceegiCICA5Obne5a8LZ+rq5+eHHj16VNmemJgIAHX6WTabzSgtLa1bIV3I2c+2gsVigU6nq9M9GtNn64jRaMSePXuQkJCAFi1aOH2eyWRCWVlZne/nCs7+rvHmn1l2yVEVgiCgsLAQbdu2der4adOmoaysDH5+fujbty9efvnlWsc/edr8+fNRVlYGqVSKnj17YsqUKejcuXO1x1utVly8eBFjxoypsq9Lly5ITU1FaWkpAgIC3FlsUcxmM3bv3o3u3btX6UKtzmOPPYaysjL4+/tj4MCBePnllxEWFubmkrpGbm4uCgsLHS7U2aVLFxw4cKDG88+dOwcAVc4PDw9HREQEzp8/77rCuklBQQEAON1dnJWVhZEjR8JkMiEsLAz33XcfJk6c2GBjeupKr9dj9OjR0Ov1CAwMxPDhwzF58uRafw4b+2d74MABaLVa3HPPPU6fc/ToUYwYMQIWiwVRUVF45JFH8Mgjj7ixlLW79XeNt//MeudPAXnUzp07kZubi+eee67G4+RyOUaPHo3evXtDqVTi7NmzWL9+PaZOnYqvvvrK7n8I3sLX1xeDBw/GXXfdheDgYGRkZGDdunV45ZVX8OWXX6Jjx44OzyspKYHRaHT4v8GKbXl5eYiNjXVr+cU4dOgQiouLnfpHNjAwEH/605/QrVs3+Pn54cSJE9i0aRNOnz6N5cuXOz1OxJPy8/MBOB6Do1arbZ+pTCar1/kV+73Zt99+C6VSiTvvvLPWY6Ojo9G7d2+0b98eer0eycnJWL16NbKysjBnzpwGKG3dqNVqPP744+jYsSMEQcDBgwexefNmXLhwAQsXLqwx5DX2z3bnzp2QyWQYPHiwU8e3b98ePXv2RExMDEpKSrB9+3Z89tlnyMvLw5QpU9xc2urd+rvG239mGZjITmZmJj755BN069YNo0aNqvHYYcOGYdiwYbb3iYmJuOOOO/Dqq6/i66+/brCnL+qiR48edl0XAwcOxJAhQ/Dss89i2bJl1T4NZDAYAMDhgMOKH96KY7zVTz/9BF9fXwwdOrTWY2/9n+eQIUPQpUsX/POf/8SmTZvw1FNPuauYLuPsZ1bdP75Go9Hu2FvP92S3lTO+/vprHD58GH/5y18QGBhY6/EzZ860ez9y5Eh88MEH2LJlCx599NFanyBtaLcOTh8+fDhiYmKwfPly7NmzB8OHD6/23Mb82ep0Ouzfvx933nmnU58rACxYsMDu/ZgxY/DXv/4V69evx7hx4+rUrecqjn7XePvPLMcwkU1+fj5mzJgBpVKJf/7zn5BKpXW+Rs+ePdG1a1ccOXLEDSV0j9atW2PgwIE4duxYteOwKh7LNplMVfZV/JA68+i2p5SWlmLv3r2444476v003z333IOwsLBG89mK/cwq/tGtOPbW87358961axe++uor3HvvvXjwwQfrfZ2Kp6oOHz7sopK516OPPgofH59ay9uYP9s9e/bAaDTWqTvuVhKJBI8++igsFovDqSTcrbrfNd7+M8vARAAArVaLN998E1qtFh9++CHCw8Prfa0WLVqgpKTEhaVzvxYtWsBkMkGv1zvcHxQUBJlM5rBJt2KbmL8zd9u7dy/0er2of2SBxvXZVjTLV/eZVXym9T3fG+cZA4DU1FS8++676Nevn+jHqCtaHjQajSuK5nZyuRxBQUG1fo821s8WKO/GUqlU6N+/v6jrVHy2Df3zXNPvGm//mWVgIhgMBsycORNZWVlYsGCB04O9q3Pt2jWnJxjzFteuXYNMJrObc6gyHx8ftG/fHmfOnKmyLy0tDdHR0V494Hvnzp3w9/fHgAED6n0NQRCQnZ3daD7biIgIhISE4OzZs1X2nT59GnFxcTWeHx8fDwBVzs/Ly0Nubq5tvzdJS0vDW2+9hU6dOmHOnDmiB2tfu3YNABrNZ15aWori4uJay9sYP1ugvHzHjh3DoEGDagwOzvDEZ1vb7xpv/5llYGrmLBYL3nnnHfz++++YM2cOunfv7vC4vLw8ZGZm2j2GX1RUVOW4/fv34+zZs7jjjjvcVWRRHJU5PT0d+/btQ9++fW0TM964caPKo9iDBw/GmTNn7ELT5cuXcezYMQwZMsSdxRalqKgIhw8fxqBBg6BQKKrsd1RXR39PmzdvRlFRkVMDiL3F4MGD8euvv+LGjRu2bUeOHEFWVpbdWC6z2YzMzEzk5eXZtrVr1w6xsbHYsmWLXVft5s2bIZFInB5w21AyMjIwY8YMREVF4b333qux+yEzM9Pu70Sn01XpxhAEAatXrwYApydHbCgGg8HheJRVq1ZBEAS779Gm8NlW+Pnnn2G1WqttKXZU15KSkipDDcxmM/7zn//Az88PvXv3dmuZKzj7u8abf2Y56LuZ++KLL7Bv3z70798fGo0G//vf/+z2jxgxAgCwbNky7NixA+vWrbM9kj5lyhR07NgRnTp1glKpxLlz57Bt2za0aNECTz/9dIPXxRn/+Mc/IJfL0b17d4SGhiIjIwNbtmyBQqGwG0T6r3/9C8ePH0dKSopt20MPPYStW7dixowZGD9+PKRSKdavX4/Q0FCMHz/eE9Vxyq5du2CxWKr9R9ZRXR955BEMGzYM7du3h0wmw8mTJ7Fr1y7Ex8dj7NixDVX0Gm3cuBFardbW/L5v3z7k5OQAKJ/JXaVS4amnnkJycjKmT5+Ohx9+GGVlZfj222/Rvn17u+UncnNz8fTTT2PUqFGYPXu2bfvUqVMxa9YsvP766xg+fDguXryITZs24b777hPdEuvKuvr4+OCNN96ARqPB+PHjsX//frvzo6Oj7X5BPf3000hISMCiRYsAlD+OPWfOHNx9991o1aoVDAYDfvnlF5w8eRL333+/w8e83am2+mo0Gjz//PO4++67bU+mHjp0CAcOHMCdd96JgQMH2q7V2D/byqsm7Ny5E+Hh4dWGHEd13bdvH1avXo3BgwejZcuW0Gg02LlzJy5duoRJkyY1WPejs79rvPlnloGpmUtPTwcA/Prrr/j111+r7K/4JnZk2LBhOHDgAFJTU6HX66FWq3H//fdj4sSJXjtXT2JiInbu3In169dDp9MhJCQEgwYNwsSJE2tdJiAgIAALFy7E559/jtWrV9vWkqvLGkee8NNPPyE0NBS333670+fcc889OHXqlG2AaWRkJB5//HE888wzDlupPGHdunV262OlpKTYQt+IESOgUqkQGRmJRYsW4fPPP8fSpUtt61K9/PLLTnVp9O/fH/PmzUNSUhIWLlyI4OBgPPXUU5g4caK7quVQbXUFYPslu3Tp0irnjxo1qtr/0QNAZGQkevXqhZSUFBQUFMDHxwdt2rTB66+/7pGA7Mxn279/f6SmpmLHjh2wWq1o1aoVJk2ahPHjxzu1hE9j+WwrAtPly5dx9uxZ28B2Z7Vv3x5t2rTBzp07UVRUBF9fX8THx2POnDlOPTHrKs7+rvHmn1mJ4G1T+BIRERF5GY5hIiIiIqoFAxMRERFRLRiYiIiIiGrBwERERERUCwYmIiIiolowMBERERHVgoGJiIiIqBYMTERERES1YGAiIiIiqgUDExF5hevXr2PQoEF49913PV0Ul9i+fTsGDRqE7du3e7ooROQCDExE5LX+/Oc/Y9CgQZ4uhkNNLeARUc24+C4ReYWIiAh8/fXXUCqVni6KSyQmJqJr164Ntho8EbkXAxMReQVfX1+0adPG08VwGZVKZVtpnogaP4kgCIKnC0FEdP36dTz22GMYNWoUZs+eXW1XXMX+ChcuXMDXX3+N48ePo6SkBGq1GgMGDMCzzz6L4OBgh9d/4oknsHz5cvz2228oKSnBunXr0LJlS6SkpGD37t04c+YM8vLy4Ovriw4dOuDhhx/GkCFDbNfavn075s+f77B8CxcuRO/evW3HzJo1C6NHj7Y75uTJk/j666/x+++/w2AwICoqCsOGDcMTTzwBhUJhd+ygQYOQkJCAd955B4sXL8aBAwdQVlaGuLg4vPTSS+jdu3dd/6qJqB7YwkREXmnixInYsWMHsrOzMXHiRNv2+Ph42+u9e/finXfegUQiwcCBA9GiRQtkZGTg+++/x6FDh7B06VIEBgbaXffq1auYMmUK2rdvj1GjRqGkpAR+fn4AgGXLlsHX1xc9evSAWq1GUVER9u3bh7fffhvTpk3DuHHjAABxcXF4+OGHsWHDBsTFxWHgwIG260dFRdVYr927d2Pu3Lnw8/PDsGHDEBISgtTUVCQlJeHQoUNYuHAh5HK53TlarRYvv/wyVCoVRowYgcLCQuzevRtvvPEGli9fjvbt29fr75iInMfARERe6bnnnsPx48eRnZ2N5557rsr+4uJi/Otf/0JwcDC++OILu6Cya9cuzJkzBytWrMD06dPtzjt58iQmTpzo8Jrvv/8+oqOj7baVlpZi6tSpWLFiBe69914oFArEx8dDpVLZApOjazmi0+nwwQcfQCqVYvHixejQoQMAYNKkSZg7dy5+/vlnrF27FhMmTLA7Lz09HQ8++CCmT58OH5/yZ3Vuu+02vP/++/j+++/xxhtvOHV/Iqo/PiVHRI3Sf//7X+h0OkyaNKlKq87w4cPRsWNH7Nq1q8p5YWFhePrppx1e89awBAABAQEYPXo0tFotzpw5I6rMe/fuhVarxZgxY2xhCQB8fHwwZcoUSKVSh9MQ+Pv7Y/LkybawBJR3TUqlUtFlIiLnsIWJiBql33//HQCQlpaGq1evVtlvNBpRXFyMoqIihISE2LbHxcXZuuBuVVhYiP/85z84cOAAbty4AYPBYLc/Ly9PVJnPnz8PAEhISKiyLzIyEtHR0cjKykJpaSkCAgJs+1q3bm33HigfJB8WFgatViuqTETkHAYmImqUNBoNAGDTpk01HqfX6+3eh4aGOjyupKQEkyZNwo0bN9CjRw/06dMHKpUKPj4+SE9Px969e2EymUSVWafTAShv5XJErVYjKysLOp3OLiBVN9WCVCqF1WoVVSYicg4DExE1ShWBIikpqU6DniUSicPtP/74I27cuIHnn3++yhiib775Bnv37q1/YW+qCD4FBQUO91dsbypzURE1JRzDREReq2LMjsViqbKva9euAP7omhOroluv8hNvFU6cOFFt2erSwlPxhN/x48er7Ltx4wauXr2K6OjoKt1vROR5DExE5LWCgoIAADk5OVX2jRkzBgEBAVi+fDkuXbpUZb9er69TmKoYOH7y5Em77Tt37sSBAweqHB8YGAiJROKwbNUZOHAgVCoVtm3bZldmQRCwdOlSWCyWKnM2EZF3YJccEXmt2267DcnJyfj73/+OO++8EzKZDHFxcRgwYABCQkLwj3/8A2+//Taee+453HHHHYiNjYXJZEJ2djaOHz+O7t2748MPP3TqXiNGjMCaNWuwcOFCHDt2DJGRkUhPT8fRo0cxaNAgpKSk2B0fEBCAzp0747fffsO8efPQunVrSCQSjBw5stq5mJRKJf76179i7ty5mDx5MoYOHYqQkBAcOXIEZ8+eRZcuXTB+/HjRf29E5HoMTETkte677z5cv34dP//8M9asWQOLxYJRo0ZhwIABAIB+/fphxYoV+Pbbb3HkyBEcPnwYCoUCERERGD16NEaMGOH0vVq0aIFFixZh8eLFOHz4MCwWCzp27IiPPvoIOTk5VQITALz11lv47LPP8Ouvv0Kn00EQBPTs2bPGySuHDh2KsLAwfPPNN0hJSbHN9D1hwgQ88cQTVSatJCLvwKVRiIiIiGrBMUxEREREtWBgIiIiIqoFAxMRERFRLRiYiIiIiGrBwERERERUCwYmIiIiolowMBERERHVgoGJiIiIqBYMTERERES1YGAiIiIiqgUDExEREVEtGJiIiIiIavH/Fs9Tz8juixMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "0f6be4ef", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "6a3118de", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "b8fa452b", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "e35ad147", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4kAAAHiCAYAAABFgonlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAD//klEQVR4nOydd5gURfrHv9XdkzYvcclRQIFTVFQUBRUMoOKZwMMDc/bErKdnTqdnznoqIgio/PBMiIAgKElUgig5I2mXZfPOTHfX74+e7u2Z6bS7swnez/PMw7JdU10zO9PVn3qr3mKccw6CIAiCIAiCIAiCACA0dAMIgiAIgiAIgiCIxgNJIkEQBEEQBEEQBGFAkkgQBEEQBEEQBEEYkCQSBEEQBEEQBEEQBiSJBEEQBEEQBEEQhAFJIkEQBEEQBEEQBGFAkkgQBEEQBEEQBEEYkCQSBEEQBEEQBEEQBiSJBEEQBEEQBEEQhAFJIkEQBEEQBEEQBGFAkkgQBEEQBEEQBEEYkCQSBEEQBEEQBEEQBiSJBEEQBEEQBEEQhAFJIkEQBEEQBEEQBGGQEkncsmULGGNgjOHyyy9PRZWHJIMHDzbeR4IgCDsuv/xy41qxZcuWhm6Owfjx4412jR8/vqGbQ6QYVVVxzDHHgDGGW265paGbQyRA3z+CSGbevHnG9+Lhhx9u6OaklOLiYjRr1gyMMbz11lspr7/eIonjx4/Hww8/fND9gZz47LPPjNd84MCBhm4OEUOWZcyePRv33nsvTjvtNLRp0waBQAAZGRno1q0bRo0ahc8++wyKolSr3t9++w233HILevXqhYyMDGRnZ6Nv37649957sXXr1jp6NQRBHIpEo1G88847OP30041rWPv27XHuuedi6tSp4Jyn/Jxvv/02fvnlFwSDQdx333225bZs2YJp06bhvvvuwxlnnIHmzZsbN2mDBw+u0blTeX3dunUr7r33XvTt2xfZ2dnIyMhAr169cMstt2D16tU1ap8bixYtwpVXXolu3bohLS0NzZo1wzHHHIPHH38c+fn5dXLOhqBv377G33rOnDnVfv4PP/xgPP+II46oURt27dqFL774Ag8//DDOOecctGnTxqizc+fOnusxy4WXhxcxl2UZkydPxgUXXIDOnTsjLS0Nfr8frVu3xuDBg/HEE09g9+7dNXrd1eHJJ5+Ma7vXAE9hYSGef/55DBkyBHl5eQgEAkhLS0PHjh1x7rnn4t1330VlZaWnuoqKivDss89i8ODBaNWqFfx+P9q0aYNBgwbh5ZdfRnl5eS1eYePi3HPPNd7rd999t9rP37ZtG0RRBGMMzZo1M97jrKws3HbbbQCA+++/H4WFhSltN3gK2Lx5MwfAAfCxY8dalhk0aJBR5lBh7NixxmvevHmza/lD8T2qb7777jverFkz4312evTv359v2LDBU73PPvss9/l8tnVlZmbyyZMn1/GrIw4VqnttqS/ef/99o13vv/9+QzfnoGXz5s28X79+jtevIUOG8MLCwpSds6ysjOfl5XEA/B//+IdtuZdfftmxXYMGDar2uVN5fZ04cSLPyMiwrcvv9/Pnn3++2m20Q1VVftttt3HGmO05W7duzefMmVPrczWG799zzz1ntOGyyy6r9vOvvPJK4/nPPPNMtZ//+eefO37+OnXq5LmuuXPnerpX8Pqeb9y4kR955JGu9WRmZvIJEyZU+7V7Zc2aNTwQCMSd0+7e3cyMGTN4y5YtXdvfpUsX/vPPPzvW9c033/DmzZs71tO1a1e+bNmyWr9e89/xoYceqnV9NWHatGlGGwYOHFjt5z/66KPG82+88ca4Y0VFRTw3N5cD4Pfee2+qmsw551xCCujcuXOdjFoeasybN6+hm3DQs3PnTuzfvx8A0KxZMwwZMgQnnHAC2rRpg2g0iqVLl2LChAkoLi7GTz/9hFNPPRVLly5FXl6ebZ1vvvkm7rrrLgCAz+fD3//+dwwaNAjRaBQzZ87Ep59+ipKSEvz9739HTk4OzjrrrHp5rcTBy/jx42k62SHKgQMHcPbZZ2PNmjUAgMMPPxxXXnkl2rdvjw0bNuDtt9/G9u3bMXv2bFxwwQX49ttvIUm17+pff/117N69G6Io4u6777YtlzgDIxQK4bDDDsPKlStrdN5UXl+/+uorjB07FoqigDGGiy66CGeeeSZ8Ph++//57fPjhh4hEIrj99tuRmZmJq6++ukZtNnPffffhhRdeAACkp6fjqquuwnHHHYfS0lJMmzYNs2bNwp49ezBixAgsWLAARx11VK3P2ZBcdtlluOeeeyDLMv7v//4Pr7/+OjIzMz09t7y8HJ988gkAQBRF/P3vf6/2+RM/fz6fD3369MGvv/5a7brMjBw5EqNGjXIsc/TRR9seKy4uxqmnnopt27YBALKzs3HFFVfg8MMPR3p6OrZu3YopU6Zg1apVKCkpwdixY9GsWTMMHz68Vu1OhHOOa665BuFwGOnp6SgrK/P0vKVLl2LEiBGIRCIAgG7duuHvf/87unTpAlmWsX79erz33nvYu3cvNm/ejCFDhmDVqlVo165dUl1z587Fueeei2g0CgA44YQTMHLkSLRt2xZ79+7F9OnT8d1332HTpk0466yzsHDhQhx22GGpexMagHPPPRctWrRAfn4+fvjhB2zcuBHdunXz/PwPPvjA+PmKK66IO5aVlYWbbroJjz/+OF555RXceeedaN68eWoanlLldOBQjJI11tH+Q5kPP/yQ9+3bl3/00Ue8srLSssyOHTt47969jb/dmDFjbOv7888/eVpaGgfAJUnis2bNSipjHt3t0KEDr6ioSNnrIYjGRGOIZBzsjBs3zniPzzrrrKTrSUFBQVyU8dVXX631OaPRKO/QoQMHwM844wzHstOnT+c33XQTf++99/iKFSu4LMtxs42qE0lM5fW1rKyMt23b1ig7fvz4pDLffvstlySJA+AZGRl89+7dnttqxS+//GJEELOzs/mKFSuSyjz00ENGm/r3789VVa3x+RrL92/EiBFGO959913Pz5swYYLxvHPOOadG5/7xxx/5Nddcw998803+008/8XA4zDnntY4k1jYCZY4EHXXUUbygoCCpjKqq/P777zfKHXnkkbU6pxWvv/46B8DT09P5I4884jmSeNpppxllr7jiCh6NRpPKlJWV8SFDhhjlbr311qQylZWVvGPHjkYZu8jXCy+8YJQ57bTTavJSDRpDJJFzzm+99VajHf/61788P2/+/PnG8/r06WNZZt26dUaZJ554IlVN5iSJdQhJYuOjsLDQUye8atUq428XCoV4WVmZZTnzDdtdd91lW9/FF1+c0ps2gmiMNJab1IOVPXv2cL/fb9zk7dmzx7LcqlWrDDnJy8vjsizX6rzTp083/q41mQZXU0lM5fX1xRdfNMpcfPHFtnXdddddRrk777zTc1utOP/88426XnvtNcsyqqry4447zij35Zdf1vh8jeX799lnnxntOPnkkz0/zywi06ZNS2mbGloSTzrpJKOur776yracLMu8devWRtni4uJandfM9u3beVZWFgfAn3vuubjPi5MkVlZWclEUjcGaAwcO2JY13zsdffTRScenTJliHD/22GMd78eGDRtmlJ09e3a1XquZxiKJy5cvj/sceh0QMk/Bfu6552zL9e/f3xgsq81gk5k6z26qZ+z8/vvvjd9ZLfi1S2ijqio+/vhjjBw5El26dEFaWhoyMzPRq1cv3HDDDVi1apVj2x5++GHjHPp0zjlz5uDSSy9Fly5dEAwGkzIEyrKMmTNn4o477sDAgQONBbWZmZno0aMHLr/8csyfP9/2nHrmQXN4uEuXLkmv2e698pLddMmSJbj22mvRs2dPZGZmIj09Hd26dcPYsWPx3XffuT4/MYlAWVkZ/vOf/+DYY49Fbm4u0tPT0bt3b9x3332pXwjbgOTk5Hh6f/v06YNevXoBACoqKrBhw4akMpxzY2qMW7a/f/zjH8bPU6dOrW6za8WiRYtwww034IgjjkBOTg6CwSA6duyIkSNH4quvvnJ8rlVWsG3btuGOO+5Ar169kJ6ejpycHJx44ol4/fXXIcuypzaVlpbixRdfxNChQ9G2bVsEAgE0a9YM/fv3x4MPPoh9+/Y5Pj/xu6IoCsaPH4+hQ4eiXbt2kCTJMkHBnj17cPfdd+OII45Aeno6mjVrhuOOOw7PPfecsUi+c+fOlgkOvvnmG+Oc5r+nE//4xz+M58yYMcPTc7zglt20rv5uX375Jc4991zk5eUhGAyic+fOGD16NBYtWlTt1xCJRPDuu+/ivPPOQ4cOHRAMBpGTk4O//OUvuOOOO2yztq5duxbp6elgjCE7OxubN2+2PUdhYSE6duwIxhhEUXS8bjcFPvvsM2O616WXXopWrVpZluvTpw9OO+00AMDu3bvj+t+a8OGHHwLQpo7+9a9/rVVdXkn19dX8+1tvvdW2rltuucW4rnz88cfVarOZkpIS4zuflZVlmxgk8bXVR//w008/oWXLlmCMIRAIWL7O2tx7DR8+3Phs/vDDD9i0aZNrm7Zt24a5c+cCAFq0aIFzzz23hq+ucbJ3717jZ6epk6IoomvXrsb/vU4H9cINN9yA4uJi9OvXz/E7kEhBQYExjbdVq1bIzs62LdujRw/jZ6u2m+9PL7vsMsf7sTFjxhg/f/TRR57bW1P0KaCMMQiCYEwTT+Sbb77B5ZdfjsMOOwyZmZlIS0tDt27dcPnll+OHH36wrf/II49Ev379AGjJs/TPuxPmKdiSJOGyyy6zLTt69GgAwPbt21O3fC0VpumUuMYcQXR6WNn9hg0b+FFHHeX4PEEQHMO25qkc3333Hb/pppss6zFH+gYPHuypzWPHjjWmMpgxRxDdnm/3XtkRjUb5Nddc41r3JZdcwsvLy23r0csNGjSIb9y4kR9xxBG2dXXq1OmQjITqozIA+OLFi5OOm0fM7KYA6CiKYozgCYKQ0tFBO0pLS/nIkSNdPyvDhw+3bU/iCNyMGTN4Tk6ObV1Dhw61ncar8/XXX/NWrVo5tikzM5P/73//s63D/F0pKCjgAwcOtPzcmvnuu++Mxd1Wj759+/Jt27bxTp06WT5fURTepUsXDoDn5ua6ThuuqKgwztexY0euKIpj+ergNksh1X83WZYdr2uCIPB///vfniMZP/30k/Fe2j38fj9/8803LZ//9ttvG+UGDBhgGym76KKLjHL333+/43vaFLjwwguN1/Ppp586ln322WeNsk5RODcqKyuNKZ+nnHJKjeqoSSQxldfXoqKiuGmfbt9F83KD1atXe2pvIl988YVRh9vUyb179xplW7ZsWaPzce4tkjhz5kwjcU9GRoblFN5U3HvdfvvtRtkHH3zQte3m6ZhW0xRri12/4EQqI1DmPsprJLF58+Yp6zcmT57MAXBRFI1kMF4jiRUVFcY0bJ/P5xhJ/O2334w6zz///KTj5ujgjBkzHNv8yy+/GGXz8vK8vVALvPwdf/nlF+N9lySJf/jhh0ll9u7dGxfttntcddVVPBKJWJ7HnNjLaSmTjnkK9ogRIxzLrlixIuXfoTqXxAULFvDp06fHXXSnT5+e9Pjjjz/inrdhwwbeokUL4zkDBw7kTz/9NJ88eTKfOHEiv+222+Ju+Oz+8GZJPPvss40P27333ssnTpzIx48fz2+88Ub+559/Gs85/vjjeUZGBh8xYgR/9NFH+YQJE/jHH3/MX3rpJX7ttdfy9PR0xz/Ezz//zKdPn85PPfVUo9xbb72V9JoTsz95kcRRo0YZZYLBIL/uuuv4Bx98wCdOnMjHjRvHMzMzjeNnnnmmbchZL9OvXz/eq1cvzhjjI0aM4G+88QafOnUqf+qpp+LmjVdnysjBQDgcjrup3rVrV1IZ/aLrdoHVMf99lyxZUgetrqKyspKfcMIJxvm6devG//nPf/IPP/yQT5kyhT/++OO8R48exvHTTjvNsjMyX1xHjBjB09LSeCgU4tdddx0fP348nzx5Mr/jjjvivhNONw6ffvqpMW3F5/PxCy+8kL/yyiv8448/5v/973/56NGjjSyGgiDYZvwzv5f69/rII4/kTz/9NJ8yZQp/++23+c0332yUX716tXGjq3/un3vuOT516lT+8ssvG1OBBgwYwNu1a2d7M/Hkk08adUycONHxb/Dhhx8aZR955BHHstWlOpKYir/bjTfeaJTz+/38mmuu4R988AH/8MMP+S233GK8t+bpdXY3qQsXLjTKM8b4WWedxZ9//nk+depUPn78eH7dddfF/a3s6jELk1Xb//vf/xrHTzjhBMs1NE2Nnj17Ov7dzZg/A2effXaNzzlnzhyjnppOv6yJJKby+rpo0aJqnd/8/Zo6daqn9iby1FNPVUsw9MEpALbTiN1wk8SPPvrIuL62bNmS//TTT0llUnXvZZb8zp07u05/69atm1F++fLlNXn5juh111QS+/Tpw/v27cszMjJ4MBjk7du35+eccw5/4403HAfkdcyDNk5rEh944AGj3MMPP1ydl2hLfn6+kZV03Lhxxu+9SiLnnA8fPtwoe+WVV9quSRw6dKhxbZ87d25SGb2/BqoniQD4vn37PL3eRNwk8bvvvjMGmdLS0vjXX3+dVKagoCDuM3rkkUfyRx55hE+aNIlPnjyZ33///ca9g9P7mZ+fH7dkoKSkxLHtZin97LPPHMsqimIMAPXq1cuxrFca5RYYiqLwo48+mgPggUCAf/zxx5bldu/ebYx2CYLAf/vtt6QyZknUL3hFRUWO5589e7bjlz4/P98YFRIEgW/atMmyXKq3wDDP5W7durXlCOeWLVviRujt1meY3xO/38+/+OILy9dprqs2YlNWVmY5OFCTh1tq5VRgvsG3mlfPOY9b9O3lJmDMmDFGeatRqlSSuJbH6oIeiUTi2vTGG28klUlMAd6xY0e+bt26pHJLliwxRhpzc3Mto1Lbtm0zLsQdO3bkK1eutGz7kiVLeHZ2NgfA27dvbzkilzhDYdy4cY4jruZR3BtvvNGybOK1wupmYvfu3cZNltvN5imnnMIBbeR2+/btjmWrS3UksbZ/N/Oi+ZycHMuU5GvWrDG2R3C6SS0uLjYSoOTk5PB58+ZZvr7169cbg1Tp6emWNwf79+/n7du3N97jBQsWGMfWrl1rCHBWVhbfuHGj5Xm88scff6Ts+lXTGx1FUYy/lSiKrtK7adMm42/RrVu3Gp2T8/iBkU8++aRGddREElN5ff3ggw+qJZwPPvigUf6xxx7z1N5ErrjiCsfvQiL69QJA3Ge5OjhJ4ssvv2xEUzt16sTXrl2b9PxU3ntxzvmxxx5rtOe7776zbff3339vlOvXr5/3F1wNaiuJTo82bdo4vj7Okwdus7Oz+bhx4/jbb7/NJ02axJ988knet29f4/gNN9yQsoGtv//97xzQ1qqZpaQ6krhu3bq4GUDdunXjDz/8MJ8wYQJ/7733+L333mtE4gKBAH/vvfcs6zF/L1566SXHc5rveQHwH374odqvnXNnSfz000+N7UCaNWvGFy5caFmHPgDKGOMvvviiZZmSkhJ+xhlnGOeyk2DzDBe794lz7X5e/862atXK0+dBnwnJGHOM+HqlUUqieT+Rl19+2bHs2rVrjcjENddck3TcfOOXnp7Od+7c6ek1ubFx40bXTiTVkmjOWGc10qGzZMmSuM7AaiqW+Yv36KOP2tb1zjvveCrnhvkzUtuHl06+Nuzfv5+3adPG9cbotttuM8q88sorrvVWt3xN+fPPP42RqgsuuMCxbCQS4V27duUA+GGHHZZ0PLGTnD9/vm1do0ePdix3yy23GDe4v/76q2O73n33XaOuSZMmJR03f1eOOeYYR0H86aefjLJ9+vRxTOJhrtfuZsKcJMNKvDjXrkt6meHDhzu+1ppQXUmszd/NnKnQKiOkzpdffhl3TqsbY/Meap9//rnjazRHsOyytc2bN48LgmD8vQoLC3kkEuHHHHOM8dxUDMgkDiDU5mE1uu6FoqIio47mzZunvLwdf/vb34x67AZ23KiJJKby+vrSSy8Zx+644w7Xuqpb3oq//vWvRh1Wg7C1LW+FnSSaM2b27t2b79ixw/L5qbz34pzz1157zajPaWqdWRzczltT3K7rVsydO5czxvhxxx3H77nnHv7ee+/xTz75hL/zzjv82muvNQYzAW2K4rfffutYX3l5Ob/22mt5MBi0vT6cfvrpjtfr6vLNN98YdScu4aiOJHKuScuQIUMc9/y84YYb+Pr1623rMM/wcMvma45eAjVP6mQniW+++abRf7Rr1852avnPP/9sPP/22293PNf+/fuNz8XQoUMty3z11VdGfU5T+M0DZW7n1bnhhhuM59R0sMlMShLXpBp9kXxWVhauueYax7I9evTAcccdBwD49ttvHcteeOGFaNu2bUra2LVrV2PvvCVLlqSkTie2bNli7PPTt29fnH322bZljzvuOCNpwdatW/Hzzz/blhVFETfffLPtcb0eAPj999+r2+wmh6IoGDVqFHbt2gVAW4B/0UUXWZYtLS01fg4Gg651h0Ih4+eSkpJattSejz/+2EhuceeddzqW9fl8GDlyJABg/fr1tslCAKBfv344+eSTbY87fVY455g0aRIA4PTTT3fdC2zkyJHG3m5u3+ubbroJgmB/Kfvf//4XV1YURduyXhbzX3/99cbP//3vfy3LmH9/7bXXutZZl9Tm7xYOh43kG61bt3ZcND98+HAcfvjhjm3Rr+09evRwTUxx2mmnGddru8/AoEGDcO+99wLQrnXXX389HnjgAeOaN3r0aMc2NyUa6nqzdetW4+dmzZrVuJ7qksrX2xDvXWPoHxRFwTXXXIMnnngCAHDiiSdiwYIFlnvXAam/97r00kuN1z5t2rS490SnvLwcn376KQDA7/fjb3/7m4dXVj/07NkTa9euxZIlS/D000/jiiuuwEUXXYSrr74ab731FjZv3oxhw4YB0BIeXnrppSguLratLxQK4ZFHHsG4ceNs+6y5c+fiqaeeMvZBrQ1lZWW47rrrAAAXXHABzjvvvFrV16lTJzz//POO9UyYMAHPPPOM7Wf4oosuQk5ODgAtgdKDDz5oWe7VV19NSqzn9N5Wl0cffRTXX389VFVFz549sXDhQhxxxBGWZfXvBWMMd9xxh2O9ubm5xmdi/vz5CIfDSWXOPPNMo29bsGCBZfI1zjkmTJhg/D9xb0Sn8+uYr901pfY77NYBCxYsAAC0adMG33zzjWt5/aZv69atqKioiLvYmnG6UUqkuLgYkyZNwtdff41Vq1YhPz/fNsvUjh07PNdbU5YuXWr8fMYZZ7iWP+OMMzBnzhwAmsTqF/NEevToEfehSsTcmdQmy2nnzp3BOa/x8+uLW2+91ejwOnbs2CQ3LNe/P4D22fzss88cy5v/rn/88YdlVlBA2/DWCafPyurVq7F//34AQGZmpmubACAjIwMHDhzAH3/84VjO7Xu9bNky4+dTTz3Vsaye7deJU089FT169MC6devwwQcf4PHHH4fP5zOOR6NRI7Nx27ZtU74ZcnWpzd9txYoVxoDDoEGDHAUb0AYA7P5eRUVFxobqrVu39vwZAOD4GXjkkUcwZ84cLFmyJC4zZJcuXfD666+7nsMLDz/8sG0G7oMd/XsL1K8kErWjsrISF198MaZPnw4AGDZsGD755BOkpaXZPifV9165ubk4//zzMWXKFJSVleHTTz9NyvL66aefGkJx3nnnpW4T8BTQpk0bx+O5ubmYNm0ajjvuOKxatQoFBQV44403cM8991iWHz9+PK6//nqEw2FccMEFuO2223DUUUfB5/Nhw4YNmDBhAp5//nnMmDEDixcvxldffYUBAwbUuP3//Oc/sXXrVmRlZeGVV16pcT2AJsHjxo3Da6+9BkmScPfdd2PMmDHo3r07otEoli9fjueffx7Tp0/HO++8g6VLl+Lbb79NysCcnZ2NF154wZCexx9/HN999x0uueQStG3bFvv27cP06dMxe/ZshEIh5OTkGIP2ToPBXlFVFTfffDNee+01AED//v3x9ddfo0WLFrbP0b8XOTk5cffiduhiGA6HsWnTpqTBU1EUMWbMGDz99NPgnOODDz5I6l8WLFiAjRs3AgCOPfZY9OnTx9PrM39/UrEzQaOTxNLSUhQUFADQUp1XN912YWGhrSTajZ4lMnfuXPztb3/D7t27PZVP5eiGHfqXBIhPMWyHuYz5uYk4fTEAIBAIGD9XVla6nrcpc//99xsXjtatW2PWrFmO749+Awt4e28qKiqMnzMzM2vRUmfM0cBLLrmkWs91uqjU5rNibtO0adMwbdq0lLQJcP9e//nnn8bP5tTiVuTm5iInJwcHDhywLcMYw7XXXos777wTe/bswRdffIELLrjAOP75558b6c6vuOIKV7Gqa2rzdzO/d927d3c9l1OZ7du3Q1VVAFoHaB7McMPpMyBJEj766CMcddRRxs2m/rusrCzP52jsNNT1Rr/hEUXRtm+tC1L5ehvivWvo/uHee+9FUVERAG2rgffff9+YnWFFXd17XXHFFZgyZQoATZISJdE8EHvllVcmPd9pMCktLc3ToHldEgwG8c9//hOXXnopAOCrr76ylMR33nnHmFVy++2347nnnos73rt3b/z73//GiSeeiPPPPx+FhYW45JJLsH79ek+R6EQWL16MV199FQDw5JNP1noW3dixY41tKKZNmxYXTQwEAhg4cCAGDhyI22+/HS+88AJWrFiBm266ydi+wczll1+O0tJS3H777YhGo1i4cCEWLlwYVyYzMxOTJk3CQw89ZNzDOgU0vPLyyy8b34shQ4Zg+vTpcd9VK/T7l8LCwhp9L6y4/PLL8fTTTwPQoq8PPfRQ3HYgbt8LO8x9nvmaUlManSTqf7yaoo96W+Glg1u/fj2GDx9uvLk9e/bE2WefjcMOOwzNmjWL+7Jee+212Ldvn7F/TF1iDt2np6e7ljd/6J2mrqRiZOZg4PHHH8eTTz4JQLupnj17tquM61MmACA/P9/1HHoHnPjcVFOb75DT96c2n5W6ahPg/r3WZwBIkhQX8bMjPT3dURIB7QJ///33IxwO45133omTxHfeeQeAJpNXXXWV6/nqmtr83czTw5wiEDpO16bafAai0ajj8RYtWqBZs2bGta5r16445phjany+xkhGRgYkSYIsyzhw4ABkWXa86U/V9UYfRFAUBeXl5Z4+B6kgldfXhrhWN3T/YN77tKyszHUmT13dew0ZMgTt27fHjh07MH/+fGzZssWYrbJ161ZjP7e2bdtaCp/TTXmnTp0cl0jUF+YZKFbTRCsrK41p8c2aNcPjjz9uW9eIESNw5plnYubMmcZMoFGjRlWrPZFIBFdddRVUVcXxxx+PG264oVrPT2Tp0qWGIJ511lmO002feOIJjB8/HoWFhZg2bRr+/PNPS0G9+eabMWzYMLz66quYPXs2tmzZgmg0ivbt22PYsGG47bbb0Llz57jlUPoSr9pQ3e8FUDf3Lz179sSJJ56IhQsXYvPmzZg/fz4GDRoEIH4KdjAYNAYgvGBuayoG9RqdJJrl5pRTTqn1JsDV5amnnjIE8f7778djjz1mu9mn25z9VGIeWfSyuar55q4uo1ZeKS8vd11b5pWOHTvi6KOPTkldAPDMM8/gX//6FwBtpGrWrFmeQvtmifTSUZnnh3uJBtcU/TvEGIMsy41iIMD8vX7wwQfxyCOP1Nu5dXGRZRnRaNRVFL18v5o3b46LLroIkyZNwrfffott27ahY8eO2Lp1K2bNmgVAuznq0qVL7V9AA2L+u5WXl7uWd3rvzHWNGTPGmJKbCm688ca479e6devwwAMP4N///ndK6l+zZk1K1ggBwMCBA12ju1YIgoBu3bph7dq1UBQFO3bssJ0aDqTuemOeYrp///56k8RUXl8b4lrd0P3DU089hSlTpmDhwoWYPn06Ro4cialTp9pe/+rq3ksQBIwdOxZPPPGEMbXuoYceAgB88MEHxk36mDFjGnzWRU0xT/GzGmBctGiRMW37xBNPdL15HzJkCGbOnAlAE7TqSuKiRYuM9eXdunUzBsAT0fNcAMDKlSsNee3Zsycuvvhi45h5beCQIUMczx0KhXDiiSfiq6++Auccy5Yts5XKrl274vnnn7etq7S0FNu3bwegDVLarRmsDrfeeiv++OMPTJ8+HYsWLTKE3Ok+WV/6ovfxqeKKK64wIqjjx483JNE8Bfv888+v1qBRqpcHNDpJzM7ORkZGBkpLS+tlrV8is2fPBgC0atUKjz76qK0glpSUxP0x6hrz3Pj169e7ljeXSVWyntqwd+/eaofp7Rg7dmzK1gq+8MILxtSQ7OxszJw50zWpio5ZJJ2SAwHaPHj9giwIgmuCj9rQrl07LF++HJxz7Ny5Ex06dKizc1WnTTr1/b1u27atsRZu06ZN6Nmzp23ZwsJC1yiizvXXX49JkyZBVVW89957ePjhh/Hee+8ZUyobOmFNKjBfOzZs2OBa3qlMXX0GJk2aZCRFOuaYY5Cfn4+tW7fiP//5D84888y4xDw1ZcqUKSkb2Jg7d66nta9W9OnTB2vXrgWgXXOcJNG8FtfrehYrOnfujB9//BGAdgPSvn37GtdVHVJ5fT3iiCMgCAJUVcXy5cuhqqrj4Fkq3rvqtH/fvn3GzWfLli2T1nHVhMzMTHzzzTc466yzPIliXd57XX755UbynAkTJhjJSswDRYnTUHWaQi4Dtyiwedq+lynw2dnZxs9eBi0TMb9negTQjV9//dX4Do0YMSJOEuu7/Trz5883XsuAAQMcZ054xefzYerUqRg1ahT+7//+z5MotmvXDgcOHMDevXs9DTR75ZJLLsGtt95qRA5fffVVpKen4/333zfKeE1Yo2P2kk6dOtW6jfUWYjBfkN2+9KeccgoA7YbOy41JKtmzZw8ALemBUycye/Zs42bQjuq8ZjfMiWf0SIUT5qidXdKaQ53XXnsNt99+OwCtQ50xYwb69+/v+fm9e/c2bphWr17t2LEuXLjQWLt60kkn1Wl0Vx+NAtwzg9YX/fr1MzqXOXPmuH53Usmxxx5r/Dx37lzHsvrUJy8MHDgQvXv3BgC89957iEajeO+99wBog0wjRoyofmMbGUceeST8fj8A4Pvvv3edWq8ny7KiRYsWxkjw4sWLU7KWe/PmzbjxxhsBaBHjyZMnY+LEiRBFEaqqYsyYMXE3cE2dM8880/hZjzTYYU48ctZZZ9X4nGbZ0QW1Pkjl9TUrK8tI4FRUVITFixfb1rV9+3YjCtOxY8caRy8GDx5sTNWdP3++4/og89+yNn+rRHRRPOmkkwAA06dPxyWXXGI7fbuu7r26d+9uJBjbtGkTFixYgPnz52PTpk0AtOia0+BdY8ccdbWKApvFSo+MOWGOVjWGRD4N1X6zLKVy6YYuihdeeCEAGKJo1yfp91SVlZWYP39+ytqRlZVltKG0tBTTpk3Dli1bjM9T+/btXSO3iehJ3hhj6Nu3b63bWG+SaJ7K4DayMHbsWONnu/S4dYU+lWbTpk22Yqcoim343kx1XrMbnTt3NqZYrlixwlEUly1bhu+++w6ANpLQGNbm6NlNU/FIRRTxnXfewS233AJAu7n8+uuvq51FjDFmjLZxzh2zh7388svGz/qWE3XFqFGjjBv7f//737X+7KUCURQxevRoAFoHYrd1RF1glrXXXnvNUXReeumlatWtpxffvn07xo0bZ9zIjh07NmWjjQ1JIBAw0nnv2bPHcVR6xowZrplo9Wt7eXm5sWi/piiKgtGjRxsd+8svv4zDDjsMAwcOxD//+U8AwM6dO3H11VfX6jyAlt00VdevmkYRAW3qkf7dnjx5spEgKZHffvvN6APy8vLiBo6qy/HHH2/8XB/bPemk+vpq/r3T9/yVV14x+v7qJv4yk5GRYXx3iouLbfstzrmRYCSxnalAF8WBAwcC0BLB2IliXd57mSMi48ePj3s/qhstaUyEw+G4+0H9b27GPNCyePFixymLiqIY69GA+EFOrwwePNjTtcgsYWPHjjV+n5gsyNz+Tz75xLEP3bJli3GdEAShxkuD5s6da7wPXbt2NWQqVUiShClTphhbnC1atAhnnXWWpSiOGTPG+PmRRx5JaR6SxO+FeQr22LFjq7VcSFEUYxZEr169UpO4rXbbLGqYN8q125DzH//4h1Hm+++/d6xPURTev39/o/ytt97Kw+Gwbfny8nL+/vvv88mTJycdM2+C7GUT46FDhxrln3/++aTjkUgkbuNXOGzO+vzzzxtlPvjgA9dzmzfytmLq1KnG8TZt2vA//vgjqczWrVt5t27djHKvvvqqZV36cS8bG1enbFPggw8+MDaDTUtLq/Hm1pxzvnPnTp6WlmZspjt79uykMuYNazt06MArKipq0Xpv3HHHHcY5Tz31VL5r1y7bsoqi8FmzZvHHHnss6ZjdJrRWuJXdvn07z8nJ4QB4IBBw/U7s2bOHP/roo3zFihVJx9y+K4kMHDjQKH/jjTdyRVGSyiRumO5l0+UDBw4Yf3/zY926dZ7aVVPGjh1rnGvz5s1Jx1P5d1uwYIFxPDc3l//6669JZdatW8fbtGkT9x6YN/PWKS0t5Z06deIAOGOMP/PMM5Z/C50DBw7wl156ic+aNSvp2L/+9S/jXBdddFHcsWg0ygcMGGAcf+uttxzfg6bEuHHjjNd19tlnJ11P9u/fz/v16+faB3ilsrKSp6encwD85JNPrlEd5nuE6vQjqby+lpWV8bZt2xplx48fn1Rm1qxZXJIkDoBnZGTw3bt3u74ep2vQL7/8YvQ12dnZlteyhx9+2Kinf//+tnV5wfxeJH7/SkpK4q6DI0aM4JFIJK5MKu+9EikpKTE+RxkZGTwjI8Pog4uKimr0eqtDda7rnHO+fv16/uyzz/Li4mLbMvv37+fDhg2Luz4WFhZalj3++OONcieccAIvKChIKiPLMr/++uuNcq1ateKlpaVJ5bx+/twwf17s7t0553zfvn3G3w4Av+GGG7gsy0nlCgoK4l7nsGHDLOvbtGkT37p1q+35vv32W2NDesZYre7ROHfu46LRKL/ooovi/jZWn8cLL7zQKDNy5EjHz2w0GuXTpk3zdO1VVZV37tzZeK2tW7c2zrN+/fpqvc4VK1YYzx03bly1nmtHva1JPP30043Rvquuugq33XYbOnXqZCxU7t69u5E+XRAETJs2DQMGDMDOnTvx0ksv4eOPP8bFF1+MI488EtnZ2SgtLcW2bduwbNkyzJkzB2VlZXjsscdq3c5bbrnFiNLdfvvtmDdvHs4880w0b94c69evx4QJE7B+/XqceuqpWL9+veMUmNNPP934+e6778a+ffvQs2dPY151u3btqhUOvuSSSzB9+nRMmTIFu3btwtFHH43LL78cAwYMgCiKWLZsGd59911jJOSMM84wpmIRGjNmzMCVV15pjNRceeWVOHDggOuebUcffTQ6duyY9Pu2bdviueeeww033ABZlnH22WdjzJgxGDRoEGRZxowZM4zRMEmS8Pbbbzumszavgd28ebPjmiMnnnrqKSxfvhxz5szB3LlzjZG4AQMGoGXLlohEIti9e7cRld69ezdOP/10PPDAAzU6nxfat2+PKVOm4LzzzkM4HMbYsWONjXkPO+wwhEIhFBUVYd26dVi8eDF+/PFHKIriurehF9566y30798f5eXleP3117Fo0SJcdtllaN++Pfbs2YOpU6fixx9/xIABA7Bt2zbs3LnT0whednY2Ro4cGTciO3jwYBx22GG1bnNjYeDAgbjxxhvx+uuvo7CwECeccALGjh2LgQMHQhAELF26FO+++y7Kyspw/vnnO36X0tPT8dlnn2HQoEEoLi7G3XffjbfeegsXXnghjjjiCGRkZKC4uBibNm3C0qVLMW/ePEQiEWMzY50ffvjBGL1v37493n777bjjkiRh0qRJOOqoo1BcXIzbbrsNgwYNatJT2nQeeughfPPNN1izZg1mzJiBo48+GldffTXatWuHDRs24K233jKmhA0ePLjWa2MDgQDOOussTJs2DcuWLUNpaalryvjE64g5497mzZuTjh999NFxGYJ1Unl9TUtLw9tvv40RI0ZAURRcccUV+Oqrr3D22WdDkiR8//33mDBhgpH98IUXXkDr1q3d3yAH+vXrh7vvvhv//ve/UVRUhBNPPBFXX301jjvuOGN6mb4kICMjI+lznEoyMjIwY8YMDBs2DAsWLMD//vc/XHzxxfjkk0+MWQ91ee+VkZGBiy++GOPHj49LrHfhhRemfKua5557znbrgQMHDiR9/rp06ZI0nbG0tBR33XUX/vWvf2Ho0KHo378/OnXqZGS//umnnzBlyhTjs61vu2OXZOSll17C4MGDUVlZicWLF6NXr14YO3Zs3D6JkyZNMqY6A9pn0Es2+7qmRYsWeOKJJzBu3DgAwBtvvIH58+fjb3/7W9w+iR988AH27dsHQOsbE7f50Pn5558xatQonHzyyRg8eDC6d+8OSZKwY8cOzJgxw1i2wBjDq6++WqvZF25IkoTJkyeDMYZPPvkEixcvNtYomj+X7733HtatW4dVq1Zh6tSpmDlzJi655BIce+yxyM3NRUVFBXbu3Ilff/0Vs2bNQmFhoacpsowxXH755cZsFX3J28knn+xp2ykz5uU0559/frWea0sqTNNLJFGW5bhRrMSH1Qj2n3/+yU8//XTb55gfoijyd955J6mO6kYSOef8vvvuczzXSSedxPfu3WuMiDuNTF166aW29SS+V16iI9FolF999dWu78dFF13Ey8vLbevRyx1qkcTEaJHXh1VUxMyzzz7LfT6f7fMzMzM9jbaan2MVIaoO4XCY33zzzVwURU+vccyYMUl1pDIipbNo0SLetWtXT23KyMjgK1euTKqjupFEzjn/7rvvjEim1aNPnz5827ZtvF27dhwA/8tf/uKp3iVLlsTVM2nSJM9tqin1GUnkXLt+//3vf7d97wRB4M8884xjJMPMmjVr4qJdTo9AIMBnzJhhPLewsNC49gqC4HhdnzhxolFPv379HKMiTYnNmze7vn9DhgyxjWpUl88++8yod8KECa7lq3t9dYpicJ666yvn2mdCj2JZPfx+v+UsIjPVieSoqsrHjRtnRBStHq1ateJz5szx1H4nvHz/SktL+SmnnGKUO++885Iiiqm497Li+++/T3r+d999V9uXnYR+ffD6sLq3+fXXXz0/v2PHjp7uL7/99luel5fnWl96ejp/7733bOup70iizn/+8x/u9/td29+5c2e+ePFi23o++eQT1zpat27Np06dWuPXZsZLHxeNRvkll1xilDv++OOTooVFRUV85MiRnj8X//rXvzy1b/PmzUnXB6e/vx3HHXec8XlUVbXaz7ei3iSRc84rKir4008/zQcMGMBzc3Pjbl6dbmTmzZvHr7vuOt67d2+ek5PDRVHkWVlZ/IgjjuAjR47kb7zxBv/zzz8tn1sTSeSc8xkzZvDhw4fzFi1acJ/Px9u0acNPO+00/s477/BoNMo5554kUZZl/sYbb/DBgwfzFi1aGFNZrN6r6tz4Llq0iF911VW8e/fuPD09nYdCId6lSxd+2WWXeepsnC6OtSnb2KkrSeSc81WrVvGbbrqJ9+jRg6enp/PMzEzep08ffs899/AtW7a4Pr+srCzuRsVqOkpNWL9+Pb/33nv58ccfz1u2bMklSeJpaWm8S5cufNiwYfzJJ5+0FDHO60YSOdcuyBMnTuSXXHIJ79KlC8/IyOCSJPFmzZrxY489ll9zzTV86tSpllNtOK+ZJHLO+e7du/mdd97Je/bsyUOhEM/JyeHHHnss/89//sPLysq4qqo8FApxAHzw4MGe6lRV1Zga06xZM15ZWVmtNtWE+pZEnS+++IIPHz6ct2zZkgcCAd6xY0d+6aWX8oULF3LOvd2k6qiqyv/3v//xsWPH8h49evCsrCwuiiLPycnhRx55JB8zZgwfP348379/f9zzzJ30vffe63gOzjkfPXq0Uf6OO+5wLd9UiEQi/O233+annXYab926Nff7/bxt27Z8+PDhfMqUKSm7SeBc68c6duzIAfChQ4e6lq/u9dXLDWptr69mtmzZwu+++27eu3dvnpmZydPT03mPHj34TTfdxH/77TfX59fkJn3hwoX88ssv5127duXBYJDn5OTwo48+mj/66KN837591Wq/HV6/f1aiaDWAUpt7LytUVY1bDtO5c+eUfk51UiGJlZWV/JtvvuEPPfQQP/PMM3mvXr2Me7isrCzevXt3PmrUKD5p0qRqDT4VFRXx1157jQ8bNoy3a9eOB4NB7vP5eMuWLfmgQYP4448/7rg8hPOGk0TOte/Ogw8+yAcOHMhbtmzJfT4fDwaDvH379vzcc8/l77zzjmOAgnPO8/Pz+ZtvvslHjhzJDz/8cN6sWTPu9/t5u3bt+Omnn85ffvllfuDAgRq/rkS89nGyLMf1L1aiyLk2jXzcuHG8X79+vHnz5lySJJ6RkcEPO+wwfv755/Pnn3+eb9y4sVptPO2004zzpqen85KSkmo9f926dcbzn3jiiWo91wnGeS3TbhIEkRJmzpxpZLb7xz/+Ue0kKkTtWbVqFf7yl78A8P43mD17NoYOHQpA24PpxRdfrMsmEkSD8MILL+D222+HKIrYsmVLvW2FQRAEQTjz4IMP4rHHHkN6ejq2bt2asqy4Db/LNkEQAKr26MzMzKzTtYGEPeYsg17XQr7xxhvGzwfD3ogEYcX111+PvLw8KIqCZ555pqGbQxAEQUDLnvzaa68B0PKqpHLbFJJEgmgk6JJ4++23o2XLlg3cmoOPBQsWOO7P+NprrxmJI9q1a4dzzjnHtc7ly5cbiVqGDBlS4z3VCKKxEwqF8PDDDwMA3n777bgNtgmCIIiG4eWXX8b+/fvRvHlz3H333Smtm6abEkQjID8/H61atUKLFi2wcePGpM2gidrTvXt3VFZW4uyzz0a/fv3QsmVLRKNRbNy4EdOnT8evv/5qlP3iiy9sJfGbb76BqqpYt24dnnnmGezatQuAlnFT37SaIA5GVFVF//798csvv+Dmm2923LuQIAiCqFuKi4vRpUsX7N+/H2+++aaxd3OqIEkkCOKQoHv37ti4caNjmVAohHfeeQejR4+2LWPepkTH6/rFb7/9FuXl5e6NtaBFixbGhtgEQRAEQRB1CUkiQRCHBIsXL8a0adOwePFi7Ny5EwUFBSgvL0dubi569OiBIUOG4IYbbnDdG02XxIyMDPTo0QM33HADrrzySk/7Knbu3Blbt26tUfsHDRqEefPm1ei5BEEQBEEQ1UFq6AYQBEHUByeccAJOOOGEWtdD42oEQRAEQRzsUCSRIAiCIAiCIAiCMKDspgRBEARBEARBEIQBSSJBEARBEARBEARhQJJIEARBEARBEARBGFDiGoIgCKLBURQFFRUVKC8vNx7m/5eVlSEcDiMSiSASicT9bPX/SCQCRVGgqmrcv/pDVdW4Y4CWudbuoWevFQQBoihCkiT4fD7jYfd/v9+PQCCAUCiEYDCIYDCItLQ042fz70OhEDIyMpCWlgZJou6ZIAiCaDioFyIIgiBSAuccJSUlKC4uRnFxcdLPRUVFxu/0f8vKylBeXo7KysqGbn6jIi0tDRkZGXGPzMzMuP9nZWUhJycH2dnZyMnJQU5ODkKhkOVengRBEARRHSi7KUEQBGGLqqooKirC/v37UVhYmPRv4s+KotTqfKIoIi0tLe4RCoWQnp6OYDCIWePng3EACgM4A1QGqABT9Z9N/+cAEPuXQyuv93i86vdM/53pMMyexRAraPo/49qCDcbBBf3/PO4YF2KVi9rjrGtOQ2VlJSoqKlBRUYHKykrj//q/4XC4Vu+f3+83hNH8yM3NRYsWLdCiRQs0b94cLVq0QHp6OgklQRAEYQlJIkEQxCGKoigoLCzE3r17sW/fPuzbty/p5/z8fMiyXK1609LSkJWVhczMTGRlZSErKwvff7QYTGaALIDJAhBl2r8KA1MYoGg/QwUYDl1x4TGp5JIKSBwQVXCJA1LsX5HjvFvPMCKzBw4cMP6NRCLVOlcwGDSEUZfH5s2bo1WrVmjVqhXy8vLQvHlzY6otQRAEcehAkkgQBHGQoigK8vPzsWvXrqTH7t27UVBQ4Dnyl52djWbNmiE3NxfLv/kdLCoAUQEsUvWv8Tt+6EpeQ8ERi2T6OLhPBfepgOnfIVedjIKCAuTn5yM/Px+lpaWe6pUkCa1atULr1q2Rl5eX9G+rVq3g8/nq+NURBEEQ9Q1JIkEQRBMmHA5j586d2LZtG3bs2BEngnv27HGNAoqiiObNm6Nly5Zo1aoV5k9cAoQFsIgIFvsXERK/gw0ucMCvgPvV2EPBJfefa0SQ9+zZg/z8fNdBBEEQ0Lp1a7Rr1w7t27dH+/bt0a5dO7Rr1w5t2rRBIBCop1dEEARBpBKSRIIgiEaOqqrYs2cPtm/fnvTYs2cPnC7joigiLy8Pbdq0wS9frgarFKseEUETwEN4eidhDwcHAip4QDEew245Dbt378aePXuwe/duxymujDG0atXKEMcOHTqgU6dO6Ny5M1q1akXTWAmCIBoxJIkEQRCNBEVR8Oeff2Lz5s1xj507dzrejGdkZKBjx45o37495vz3xyoJDItaVJAkkKgDOLg2pTWkgAcVXPrYCOzYsQM7d+7Ejh07UF5ebvvcYDCIjh07onPnzoY4durUCW3btqXtPwiCIBoBJIkEQRD1jB4Z3LJlCzZt2mTI4NatW21l0OfzGdGYhR/9DFYpgZWLYBUSIDMSQaJRoQkkBw/K4CEFf3v8fGzfvh1btmzB9u3bbadBS5KEDh06oGvXrujWrRu6deuG7t27o0WLFpSJlSAIoh4hSSQIgqhDZFnGli1bsH79eqxbtw7r16/Hhg0bbKMsgUAAnTt3xvr5W8HKJbByCUK5CIRFEkHioICDgwcV8DQZPE3B6deeiK1bt2Lbtm2oqKiwfE52dnacNHbr1g2dO3eG3++v59YTBEEcGpAkEgRBpIiKigps2LAB69evNx6bN29GNBpNKitJEjp27Igti//UIoLlEoRyCagkGSQOTfQ1kGqaDJ4m49RrTsCGDRuwfft2ywQ6oiiiY8eO6NmzJ3r16oVevXqhW7dulCyHIAgiBZAkEgRB1ABZlrF582b8/vvv+OOPP/DHH39gy5YtlklkMjIy0L17d6z6ah1YmQRWKoFVSJQxlCA8wBnXoo7pMs7/5xnYuHEjNmzYgJKSkqSyoiiia9euhjT27NkTXbt2pXWOBEEQ1YQkkSAIwgXOOfbu3Yvff//dkMK1a9ciHA4nlW3WrBl69OiBnz5eBVYmQSiVaKooQaQYDg74VagZUYz+9/lYs2YN1qxZg6KioqSyfr8f3bt3x+GHH44+ffqgT58+aN26dQO0miAIoulAkkgQBJGALMtYt24dVq5ciVWrVmH16tXYv39/Urn09HT06tULyz9bA1YiQSjxgUXFBmgxQRDGdNWMKC55bDjWrl2LtWvXorS0NKlsy5Yt0adPH/Tt2xd9+vRB9+7dKdpIEARhgiSRIIhDnvLycqxevRqrVq3CihUr8PvvvydFCfVpbBvn79BksMQHVkERQoJozBhJcjKjGPHPoVi1ahU2btyYtMYxEAgYkca+ffuib9++yMjIaKBWEwRBNDwkiQRBHHIUFRVh+fLlWLlyJVauXIkNGzYk3TRmZmaib9++WDJppSaFpT4wlYSQIJo6XFDBM2WMfelC/Pbbb1i9enXS+kZBENCjRw8cddRR6NevH0kjQRCHHCSJBEEc9JSXl2PlypX4+eef8csvv2DDhg1JCWZat26NfauKIBT7wIr9WsZRihISxEEPBwcPKeBZUZxx60CsWLECO3fujCtD0kgQxKEGSSJBEAcdkUgEv//+O3755Rf8/PPP+P3335MihZ06dcL2xXshFPsgFPvBwrSWkCAIDe5XoGZHcNYdp+DXX3+1lcb+/fujf//+6N27N3w+XwO1liAIIvWQJBIE0eThnGPr1q1YsmQJli5dipUrVyatKczLy8Pe5QcgFPkhHPBTghmCIDzjJo2hUAj9+vVD//79cdxxx6F9+/ZgjGYiEATRdCFJJAiiSVJeXo6ff/7ZEMPdu3fHHc/NzUXRunIIB2JSGKbMhQRBpAbuV6DmRDD4xuOwbNkyHDhwIO54Xl6eEWU85phjkJmZ2TANJQiCqCEkiQRBNAk459i8eTOWLFmCJUuWYOXKlZBl2Tju8/lw5JFH4teP10A4EKA1hQRB1AscHDxdxpVvXoyffvoJq1atQjQaNY6Loog+ffrgxBNPxEknnYQOHTpQlJEgiEYPSSJBEI0WWZaxfPlyLFiwAD/++CP27t0bd7xt27bYvawQQmEAQpGfso8SBNHgcIFDzY7g/IeGYOnSpdi2bVvc8Xbt2uGkk07CgAEDcOSRR9L+jARBNEpIEgmCaFSUlZVhyZIl+OGHH7B48eK4jbD9fj/69euHZZN/h7DfD1ZJ0UKCIBo3PKDghomj8eOPP2L58uVxMyDS09Nx3HHH4aSTTsIJJ5yArKysBmwpQRBEFSSJBEE0OPn5+fjxxx/xww8/4JdffombqpWbm4uiPyog7A9qawspWkgQRBOFiyrUnAiG3n4iFi1aFLeWURRF9OvXD4MHD8bJJ5+M3NzchmsoQRCHPCSJBEE0CHv37sW8efMwd+5crF69Ou5Yhw4d8OeiAggFAbASH0ULCYI46ODg4JlRjPrPOfjxxx+xadMm45ggCPjLX/6CQYMG4ZRTTkHLli0bsKUEQRyKkCQSBFFv5OfnG2K4atWquGO9e/fGmq+2QigIQKigNToEQRxaqEEZV7x9IebPn481a9bEHevduzcGDx6MQYMGIS8vr4FaSBDEoQRJIkEQdUpBQQG+//57zJ07FytXroR+yWGMoW/fvvh9+mYtYhihfQsJgiAAbR3jNeNH4vvvv8dvv/0Wd6x3794YOnQoTj31VJqSShBEnUGSSBBEyikrK8O8efPw7bffYsWKFVBV1TjWp08f/PH5Voj5JIYEQRBucL+CGyaNxvz587F8+XJjoE0URRx77LEYOnQoBg4ciLS0tAZuKUEQBxMkiQRBpARZlvHTTz/h22+/xYIFCxCJRIxjRxxxBNZ+uQ1ifpDEkCAIooZwn4JrPxyF2bNnx01JDQQCGDhwIIYMGYLjjjsOPp+vAVtJEMTBAEkiQRA1hnOOdevW4dtvv8WcOXOwf/9+41inTp2w4/sCiPuCYGESQ4IgiFSiBmWMfvVczJ49Gzt27DB+n5WVhdNPPx3Dhg1Djx49wBgl/iIIovqQJBIEUW3y8/Mxc+ZMzJw5E1u2bDF+n5OTg5LfwxD2hsBKJcpKShAEUcdwcPAMGec/cXrSYF23bt0wbNgwDB06FDk5OQ3XSIIgmhwkiQRBeEJRFCxduhRffvklFi5cCEVRAGgb3Ms7GYS9IW0fQ05iSBAE0RBwcPCcCE659Zi4af+SJOGkk07CsGHD0L9/f0gSZZAmCMIZkkSCIBzZs2cPvvrqK3z99dfYu3ev8fvevXtj7WfbIOQHwRShAVtIEARBJMIlFTdOGY0ZM2Zg7dq1xu9btGiBM888E+eccw7atWvXgC0kCKIxQ5JIEEQSsixj4cKF+OKLL7B06VIjm15WVhbK/pAh7AlBKKeRaIIgiKaAmh7FiCdOw6xZs1BUVGT8/vjjj8f555+PE044AaJIa8cJgqiCJJEgCIP8/Hx8/vnn+Pzzz+PWtfTr1w+rpmzUooY0nZQgCKJJwhnHA3NuxpdffomlS5cav2/dujXOO+88DB8+HM2aNWvAFhIE0VggSSSIQxzOOX7//XdMmzYN8+bNgyzLAIDc3FwUrwxrUcNKihoSBEEcTPCgjAv+MxRff/01iouLAWhrFwcPHozzzz8fffv2pcyoBHEIQ5JIEIcokUgE3333Hf7v//4vbr+tvn374o9PtkEoCFDUkCAI4iCHCxx3fnk1PvvsM/z+++/G77t27YqLLroIQ4cORSAQaMAWEgTREJAkEsQhxr59+/DZZ5/hiy++wIEDBwDEMpRuFyD+mQahjDZhJgiCOBRR06M4818nYtasWQiHwwC0WSV//etfcf7559M2GgRxCEGSSBCHCJs3b8aUKVMwa9YsY0ppy5Ytsf+nCoi7Q2AyZSglCIIgAC6quPrDi/Hpp58aWa39fj/OPPNMXHzxxejcuXPDNpAgiDqHJJEgDmI451ixYgUmT56MRYsWGb8/8sgjsXrKFm1KKW14TxAEQVjAGcd9396AqVOnxi1LOP744zFy5Egcc8wxtG6RIA5SSBIJ4iBEURT88MMPmDx5srHGhDEGts8PcUc6hFKaUkoQBEF4g4ODZ0Vxwk198MMPPxjbIh122GEYPXo0Bg0aRFtoEMRBBkkiQRxERCIRzJgxA1OmTMHOnTsBxNYbbhUh7kyjLKUEQRCHOnrkz+32jzHLMjwo49ynBuPrr79GRUUFAKBDhw4YPXo0hg4dCp+PBiEJ4mCAJJEgDgLC4TC+/PJLfPTRR9i3bx8AIDMzE+W/qxD/TAOLWqw39HqjQBAEQRxcmKeI2vUBLmW4pGL0W+fg008/RUlJCQCgVatWuPTSS3HOOedQRlSCaOKQJBJEE6ayshKff/45Jk+ejIKCAgCxZDRLKiHuCYGpQnLnnrh+hC4BBEEQhxZW6wjd+gqbMlxUcdUHF2Lq1KnYv38/AC0j6qhRo/DXv/4VwWAwRY0mCKI+IUkkiCZIRUUF/ve//2HKlClGp9y6dWsULKyAsCdUtb+h+evtpcMnCIIgDg3sEs649Rs2ZTjjuGXaZZg0aRJ2794NAGjWrBn+9re/YcSIERRZJIgmBkkiQTQhIpEIPv/8c3z44YcoLCwEAOTl5SH/h3IIe01yqMO5fSevHycIgiAOPdyykrr1HzZlOOO444sr8cEHH+DPP/8EADRv3hyXXXYZzj33XPj9/tq0miCIeoIkkSCaALIsY+bMmRg/fjz27NkDAGjbti32fl8KYZ+FHFYHugQQBEE0LWySytSoTB3BGce4z8bigw8+MPqtli1bYsyYMRg+fDgkiRKpEURjhiSRIBoxqqri+++/x7vvvott27YB0DrZwkVh68hhdXFLWECXB4IgiMZHChLPJJWpI/RpqBMmTDASq7Vv3x7XXnstBg0aRPssEkQjhSSRIBopy5Ytw5tvvol169YBALKzs1G6XIW4Ow1MTVGnSkltCIIgmiZertduZepR0DjjuH7KSEyYMAEHDhwAABxxxBG4/vrrcdRRR9VbOwiC8AZJIkE0MrZs2YLXX38dixcvBgCkpaUhvEbQtrJQLLayqA3615+S2hAEQTQtUpx4pr7gooq/vTkMU6dONfZZHDBgAK677jp07dq1XttCEIQ9JIkE0UgoLCzE+++/jy+++AKKokAURWB7AOL2DDA5xXLoBbo0EARBNG68JCZzK9NA0z25T8GwJ08y+jxBEDBs2DBcc801yM3NbZA2EQRRBUkiQTQw4XAYn3zyCSZOnIjy8nIAgFAQgLglE0JlwsJ+FpNFrtZ9w+jSQBAE0bipL8FjQu37HZs61KCMk+7og3nz5gEA0tPTMXbsWFx44YXw+Xy1OydBEDWGJJEgGgjOOX788Ue88sor2LVrFwCgR48e2DwtH0JxQopwZookOnXUqejIqxpocw5KakMQBFEveLne1ocoeumDvAxiOpR5fvm/8Morr2DNmjUAtOQ2N998MwYMGEDJbQiiASBJJIgGYMeOHXjppZewZMkSALGMpQujse0sEhMLJEw1teqAvUpkdXBKcECXDYIgiPqhsSSfceuLUtBXccZwxxeX46233sL+/fsBAP3798ctt9yCzp0716DRBEHUFJJEgqhHKioqMHHiREyZMgXRaBSSJIFvCULckQGmJoywJna4OuaO1UunXBPckhrQZYMgCKJ+aCzJZ6z6JDdRTCzj8TgXVVz00mn45JNPjL5y1KhRGDNmDILBYA0aTxBEdSFJJIh6Yv78+Xj55Zexd+9eAAArDEDanB2/7pCr9nLopUyqJZEEkSAIouFpDMlnnPomt8FNvUw16+ABGcfe0h0LFy4EAOTl5eG2227DgAEDvLaaIIgaQpJIEHXMvn378OKLL2LBggUAtE4uf14Ywv4gGOqgY6/rpDZ0ySAIgqhfGsuaPLdBzDriwbk34aWXXjIGWU855RT84x//QKtWrRqkPQRxKECSSBB1hKqq+N///oe33noL5eXl2pYWW0PxU0tjMEG7AeBqCr6OtUkq4Kl+umQQBEHUO/UVLfSSeKZWp2COfZ3dcS6ouPClU/Hxxx9DURSEQiFcddVVuPDCC7X+lSCIlEKSSBB1wObNm/Hss8/it99+AwCwEh98m3LByuK3tNDlUMeqY6yWQLolCrArUx3okkEQBFH/NIYspimSxKpT2Pd5dsd5uoyel7XGqlWrAAC9e/fGvffei06dOtW6bQRBVEGSSBApRJZlfPjhh/jwww8hyzJCoRCiv/sh7kkHQ9XoaKIc6iR2iG6dpUUF5ic7H68pdMkgCIJoGBpi7aGX5DTVqt55cNSqfzSXYQIDB8fNn1yKN954A+Xl5fD7/bj88ssxatQoSJKU9HyCIKoPSSJBpIjNmzfjiSeewLp16wAAwv4gfFuywSJah+UmiG5lPEuil8QANYUuFwRBEA1HQyao8ZKcxlP1zoOkXgZRjRk2fhlH3dDZ2E6qZ8+euPfee9GtW7datZEgCJJEgqg1iqJgypQpeO+99xCNRpGZmYnKXyQIBaFqJabhKvckkLWCJJEgCKJpU9eiWJsMpZ6qd26/l74wbpYNOO74/HK8/PLLKC0thSiKuOKKKzB69Ghaq0gQtYAkkSBqwfbt2/Hkk09i9erVAAChMKCtPYymvmOqtSTSVFOCIIjGD2PO19raSqJbchq9TB3iJoo1gfsUHDfuMCOTeJ8+ffDAAw+gbdu2KT8XQRwKkCQSRA3gnOOLL77AK6+8gnA4jLS0NERW+SHuS4uPHjIBEBigcvskAE7H9TIAuKJYHHJfs2hkinOq34tA0qWCIAiiftBF0O66mwpRBNyzYde4eueEa0yP8NU0G7f+/IR+UY8qvvjiiygvL0coFMKtt96Ks88+G6yxbCNCEE0EkkSCqCbFxcV45plnMH/+fACAUByAb3NzsIqEDkgXQMBaAt2O62ViJEoiE1hcR+qaGdWpfpJEgiCIxkOi0CRef1MliUCdZDF1zWBqngbqdn6r4+bnWwygqiGOXn9vgZUrVwLQ9lW88847kZOT49p2giA0GmZXVIJooqxYsQJXXnkl5s+fD1EUIW3PgW9tKyM5DQCtcxPFKgFMxO24Xsamk2YCixdEpzI1qN8SEkSCIIj6w00Ka3tNTsyEXYfTS2vdH7kdF8V4aQQgRCSsfbcQ1157LURRxPz583HFFVdg+fLl1Ws8QRzCUCSRIDwgyzImTJiACRMmQFVVtGvXDvu+lSGUB6oKKUp8dNCMHslzOw7YdoZcUazl0BRFtM2K6lQ3RREJgiAaH3bRQv16nMpoYlz9dZfF1Oir7BLKuJ1bP273fD2qaDr+yvJ/4bHHHsO2bdsgCAKuvPJKXHbZZRAEipMQhBMkiQThwv79+/HII4/g119/BQAI+enwbc0FUxM6GJU7RwfdcEpM4yJ5TtnguFlQnep2gi4TBEEQ9Y+TCHJeO1FswCymXOX2ougFp75WUZIkkgsqBv+zN2bOnAkA6N+/Px544AHk5ubWvA0EcZBDkkgQDqxatQoPPfQQ8vPzEQqFIP+WBnF/elwZvaOzSizjGTtB1DtCPUpph4vouWZGdXo+XSIIgiAahobc7sL1qcyxb2Gi6Ny3iKLz4KgbDqLIRDGpT+bguG3aaLzwwgsIh8No0aIFHnzwQRx11FE1bwNBHMSQJBKEBZxzTJs2Da+99hoURQGrkODb0BJCpc8ow0TRSFVumXmUMa0TdDouCICqgisWHanAwBgD59y6I/WSFdUmoU38i3WJJNIlgiAIomFoxJKoPd0+i2licrUk9GifbQZUPbO3dR/FfFLsuPUArd0ArhqMoM05AWzduhWCIODGG2/ExRdfTNlPCSIBkkSCSKC8vBzPPvss5syZAwAQ96dD2lw1vdSQQ8BSAA05dDqur4WwEsSYHGpPdxBEwD0rKkkiQRBE06WJSCJQwyym5uOWzzdn+E5+vi6K2nGLwVhT/ebjidNPzzjjDNx1110IBAJJdRDEoQpJIkGY2LVrF+677z5s2rQJoihC2JINYXc6GFi8HOqYJDBODu2OJy6UN0uiSQ6rnp4giYnTaxIl0SGpjS0kiQRBEI2XuhTFOkxOA9gkqDH3OVbH456f3D6zLJolsep4lQxanV8/zsFx3Yd/NWYM9ejRA0888QRat26d3CaCOASh1E4EEWPlypW47rrrsGnTJjRr1gzi760g7s6AIEpgkmQriIwx7biNIDIWE0w7QRQYmCg4C6LAnAXRKkU4CSJBEAThhJfEZY5Pt55masij3UwXvb+ymipq6u8so4eiUDUVNSpbHBcdcwXoxxkY3v77Z3j++eeRnZ2NdevW4ZprrqFtMggiBkUSCQLAjBkz8Oyzz0KWZbByPwKb8sCiySOU1cbt66W6JJxxer6HrKUkiQRBEE2cJjTlNBFPWUxdsoK7rhWs7VYWjEH1RdHxr0GsX78eoijijjvuwDnnnFO7egmiiUOSSBzSKIqCt956C1OmTAEACIXpCOzIA+OCY7ZS14ymghYZ5HLyKKdWQWzqaTRq+3yn+h0T2phwzbhKkkgQBNG4aWBJdM1i6rb1k1v9ouA4IMpE0XlA1eezjkjqz5ck+75YL+P3QZUjGHhnd8yePRsAcNlll+Hqq6+m/RSJQxaSROKQJRwO49FHH8WCBQsAANKuHPj2tQATJUBR7BfBi6LtcQixaTAqt+6UYlNPOefWgigIjvWb1zVyRamRJMZlo6upJMayuhIEQRB1TCOQRB3bLKZOeNjqwpg+atOvGNFIO1n0xTKP2w2sSrFMqDayyPza89VoFCNfPAUffPABAOC0007DfffdRwltiEMSkkTikKS4uBj33XcfVq1aBZ/PB7axOaSSnKoCCZJmyKHNcUMOdRIlUV+XGCNJEnU5tDt/QtIbR0GMbY3hJIhADSXRfLNClw6CIIi6pxFJIlALUQRct7swzpHQvyRNWU2URZ8v/v+JWcWl+OUjibKoS6LOrZMuxDPPPANFUdC3b1888cQTyMnJsWw7QRysUAydOOTYs2cPbrrpJqxatQoZGRkQ1rWxFUQmimB+v73ACQKYT7LMwKZVoCW1cVyTkSiISVVYZEW1rcu6o45LJACPghjfiLq/USEIgiAaHYlSmNifVAurJGwWeFqH6NQvJgzsJkmhJMWJY2ICnJdGT8N//vMfZGRkYNWqVbjxxhuxe/du13YTxMEERRKJQ4qNGzfirrvuQn5+PlhUQmBrBwjhhGkkugDaiZuigHNuL4Z6FDEheqhjRBGd5FBRtJFSm04wKZJokfnUEF27FOVeJJFzezmkSwdBEETd0wgS19hJoS6QniOJZly2ujDOEetrbAdb9ahiYjTRjKIkRRPjziHLSdFEAFADYeScHMbu3bvRsmVLPPfcc+jcubP9eQjiIIIkkThkWLVqFe655x6UlpaCVfo1QZQTOgUxlprbZZG7q2C5rRV0WqSvJ6VxSjpj2j7D9vwObax2JNGyErp0EARB1Dn1MYujmlNOq41LhlPX5DSA+4wat3O4vY+BABCNJP1alaLIO4tjy5YtyM7OxjPPPIPDDz/cuS6COAig6abEIcGvv/6KO++8E6WlpRDKQghu7lR9QRQFsIBfK2d5XAR8fueOShQdp9p4EkR9+mltO22CIAiCSAVWe/VWA64otZdAUXCMSMInaQ87wmGtD09AkH3YM0PE4YcfjqKiIowbNw6//PKLc1sJ4iCAJJE46Fm6dCnuuusuVFRUQChLR2BrBzDV1NnE5M92KorpOFdUwGJzX4giIEn24iaKgN9XJaIJMMa0zs1J/GhdIEEQBNGYqeWei9Vda2jZBBtR5JFYsjg3WfT5k2SRKSK2TIvi6KOPRkVFBe666y4sWrTIsR0E0dQhSSQOan788Ufcd999iEQiEEozENjaDozHPvZucqiXSTxunqapRw/1MrIMmBfAm+XQBi0xjds+U/FZRV33PyQIgiCIhsAqquiyBCMJL1HFBFk0JBAeooqAsygCSbLIVAF/TCzFySefjGg0igceeIBEkTioIUkkDlrmz5+PBx54ANFoFGJpFgI7OmiC6FUOHaOLJjl0ih66yCFFDwmCIAhbmvL13yyKNVkD7xZVBOp+CioQJ4tMBZa9V4hBgwaRKBIHPSSJxEHJ4sWL8fDDD0NRFIgl2fDv6ggGZh0ZjMEVFeCqsxwKzJscOkUPBQ9yCDTtmwOCIAiiaVDbKaJudTeSKaieZDEcdigTE0UwLP1vQZwoLl682PH8BNEUIUkkDjp++eUXPPDAA5BlWRPE3R0gSD6wYNBe/iTJQ3RR1I7b7kUogPmcp5bCNSlNrCOrQ0G02giZIAiCIOqMVIio2zILD7IIpz4eAHyS5VYYVcf9YH6/IYqnnHKKIYpLly51rpsgmhgkicRBxapVq4w1iGJpJgIFXSGEQs7TSaTYCKKdmIkiEPADjCVtyKvDnPY81Apogukkf8xDdNFt6o0LKRNE2v6CIAiCqGcYY+5bWTj1xeGw1ue7yKKjKAoMzO+H4A/gp3f34+STT0YkEsEDDzyA3377zbltBNGEIEkkDhrWrVuHe+65R8tiWpGJwIEeVZFBRU3e2kKSgGDAXiB1OZREW7mrih7adEoxOXSc5sIE160xPK3NcICrPDWCyDkJIkEQBNGguMqi16iigywyv89SFnl5pdZfCwyCP4CfJ5bi+OOPR2VlJe655x5s3rzZ68sgiEYNSSJxULBr1y7cfffd2j6IlRkI7j8MzPzxNouNWQ6dooe6HFqUcZVDrVDt5RCg6CFBEMShCK1Ld8VTVLGWU1DtZBGAFlUURKz6JIzevXujpKQEd9xxB3bt2uV8ToJoApAkEk2e4uJi3HXXXdi/fz+ESAjBgh5g3KZT8Dq11CV66GVqqasgepFDK0EURTC3Ti+GoyBWZ40ICSJBEMQhCXPrq7yQijpsqPUUVKDWU1AZk7D5GwldunRBfn4+7rjjDhQWFjqfkyAaOSSJRJMmHA7jvvvuw7Zt28BkPwL5NoIoic5TSwEt4YxD9BCih+ihKNZ99FD1lkqcppcSBEEQjQFXiauPc9RxVJHBh90/ZiIvLw87duzAP//5T4SdsqUSRCOHJJFosqiqiieeeAKrVq0CVBHB/B4QVH9cGe6TwNOC4H6fbWSQSyJ4KADuFGF0ix6KgiagTnLHmNbB+BwWxDPmHOHzIogqr9meVHbtIQiCIA5O6nL7i8RTufUnLvsCM7/P29ZRLudhbks4POydyP0+7b4iAUHxo+jXFsjMzMTq1avx9NNPg9NAK9FEIUkkmiz//e9/MW/ePPh8PgQLukOQQ3HHuc95aqkuh46dgSBonYHkIoii/fRUMBaLHrpsbeF0TFXdBVHl2gPQprzW4fQegiAIog5pSgN01RBNT1ND3Y7HksbUuA5B0PIKpEgWk6qXg3j88cchiiLmzJmD8ePHO5+HIBopJIlEk+S7777DxIkTAQAsvxPEcJZxTI8eugmiZzl0mH4Kn+SyPpFVyaGTRLoJohu09yFBEATRRKhtVBFA7aKKsTX/nmXRAauo4j8v+BB33HEHAOD999/H7Nmznc9BEI0QkkSiybFhwwY8/fTTAACpoh2kypYALOTQonPwHD30IodOkcHaRA9FoWrrjupED2tCPU41IgiCIJoWdTkjxSyKzG4tYKqiih5k0ZEaTEF99Z6FGDVqFADg6aefxtq1a53PQRCNDMZpsjTRhDhw4ACuvfZa7N69G0IkB4GS3mByTKSc1hRGZS0Bi9NFnnNtP0XAup5YEhcmK87nkWVnOZRl8MQ9GxNRVPBIxLGtPOpSB1e9Ja/xsn6RLhMEQRD1Q31NNfUwSOhJEr3U45TQDXBPKAOAuUgaVA44ZCDV6vDZ5w7QB2UDfuvjOlFZG5B2Ok8kquVDAEe/czkWLlyIvLw8/Pe//0VWVpbjcwmisUBhBKLJoCgKHnnkEezevRtMCSJQ2gvw+6DmpIOnB+2nlvpE8DTn6CH3ieA+5+ghD/oct8bgAtOO12btoVGZu7i5drpeSFWCG4IgCCI1HGSDcinpq7wguCR+A7TspXaSGIsqOuYgALR7CRcZVZplQQ36wcDw65cq2rZti927d+Pxxx+H6jFDOUE0NCSJRJNh4sSJ+PnnnxEKhRAoORzwBaEGJHAGcKuppT4RSrofql+0PK6XUUM+TRDtEAVwyfmrwgVt7SF36jy8rLHwsuWElxuImPxR8hqCIIgmSFPZfqgxLVnw+b2JIuCaiZxLoqMscsa0vt6uvxe0hxr0g3EJjz32GPx+PxYvXmzkUyCIxk4j+nYThD0rVqzA+++/DwCQ93cCQs2hBpwjg6rfeTQwLnpohSiAByRHQeSC1pk4djhA/DlE0XobDE/y5yaQavWig147+KaUaY8gCOJgoa5EMVVTTesJ16mmQNXaRF0U3V5jLHJofUJmyKIdnLEqWbQ9hyaKN42ahNtuuw0A8O677+Lnn392bhtBNAJIEolGT1FRER599FGoqgpBaQNBbA9u03eZo4fxvxfA/ZJRJpXRQ1cSBSvx/1YjxqIY3yl6ijDSFBaCIIiDjqYQUawNHtYjVhs9oU0dRBV5esJ2Wx6jii89+BOGDx8Ozjkef/xxFBUVeXghBNFwkCQSjRrOOZ566ins27cPjKdBUnral3WJHnLGHKOH3C+Bh/ypjR56mV7qhl0ZQaha6+EgiI1pNJggCIKoAY1RFFORsKauqWZUkYcCyccSooqWy1s8RhVnf1qKjh07oqCgAM899xwodyTRmCFJJBo1X331FRYuXAifzwdJ7gOG5Cknql+EkpEcPUwso6Y5Rw+5JDhHFxETyaBFJ2Iu47aoXY8KunUOqnsZzrlrBNFThlOCIAiicZMqoWhiU009EXDol2NRRZae5l6Py77HXBKd7yNioqgGre8BGET861//giiKmDdvHmbOnOneJoJoIEgSiUbLnj178OqrrwIA1IrOEHhy2mjVL0INOIud6neJMEqClgBHFGynsWpJaUQtwuj0rdFHHO06WL2TlyTrdYlGo7k25dRu7yjAfQ9FL9AUVYIgiKbBwbg2PBVbX1QHt30V9SzldmsRGQMEuIsiYCuKt1w2GVdeeSUA4MUXX8SuXbu8tZ0g6hmSRKJRwjnHs88+i/LycoDlgEld4o6rfhFyph9qQLQVO9UvQkn3uQqiLoeOgih62SsqBVNLAU0QHY+rhiAyxlw7WcsR4eomuCEIgiAOCVK1N6LrJvcNiZe2OS0pEUzJ7xxQg9ZRxffe346+ffuivLwcTz/9NE07JRolJIlEo+Trr7/G0qVLAQgQpL+AoeqCrkcPzWKn+oW4bKd69NC8dkAJiEYZu+gh94nggdgFXY8eugmi29pDr6nMVe5NEGtLTeXwYBzFJgiCaAqk6vpbj1tWsMbeZyREFXlaMPl4Qv4BNcOUtCaWkCZRFJWs5KmvSaIoCFi9pjkCgQB+/fVXfPPNNzV+GQRRV5AkEo2O/Px8Y5opE3uAsQwAztHDKlmsXfTQ+J1D9JD7RHB9zaHt9hmituGukxyap5zayaF5yqmNIHqJJhpQ9JAgCIKoa7xE6lI11dRpPaJej1MuAfPWGXbHdVG0umtOjCra3BckRhUZSzOmnb722ms4cOCAwysgiPqHJJFodLzxxhsoKysDWDaYoE0ztYoeJqL6haToYSJcYs5rDwFAYM7RQ8YA0UPmUjc416aYOEUPuQquKI4RRNc6CIIgiKZLPUYRUzbVtLHh9h66vW49qmh7HK5rFXXMovjWfzeje/fuKC4uxmuvveb6XIKoT5rgN504mFm+fDlmzZoFxhgEsQ/UkIhIjoRIjgQlaP1xVf0CopkSIlkOZXwMSkhANEOCHLK5iItM20/RKWW3l20tvMC5+9RRrrrKn5d1DCnLbkprJgiCIAiPNLp1dq6iKDiuQ1Qyg67rEKPNglCCIpSgfZlwrh9yugg5XQRjAu68804wxjBz5kwsW7bM9WUQRH1Bkkg0GmRZxosvvqj9h3WAmpYLJVg1LdQqQqj6BU0MGQC7CKOPaRFEfR8jK0QtIylnLGl9o4FJELlPBLfJXKbDJdF6KwyTIDJBAKwymJoEkYmi5bScuA7YZtPgJEGs6QhwY+vsCYIgDgWaYhTRvM7PYZ9f11PVxVRTm/eTp5vXGtq0zfy6bESx6n4F9qJoaoKcJuKmf3yOCy64AADwyiuvQJZl6+cRRD1Dkkg0Gj777DNs2rQJYD7IzY4wBNEKPXpoFzkEqqKHuiBaokcPhaoyPDFayGLrERJ/50ZiGc4Bq6mj5o6Zq7Ey9lLG9WmqDnCVpyaC6DXpDkEQBEFYYNln1WdSm8RzWc0ISvy/S1QRcM9uqouiU1QRTBPFT2eVITs7G5s3b8ZXX33leF6CqC9IEolGQUlJCd577z0AgJpxOLjodxREI3qYgBLUjjlFD9WAoF20TdHDpDJ6NNFhemm1ookO00uNaKLD9FI9mugoh7Fooqsceo0mkhwSBEE0HE08ipiI0X81VBQx6WBsYNgcRUwk1lYlM2hbRBfFaHZyGdeoIqDdy4g+XH755QCAd999V8vLQBANDEki0SiYPHkySktLwcVMqKFOlmUimQIqWvoco4eKj0FOc44ecqYlpjFHDy3LCC7rD71GE72sPwQo+QxBEARxUMM5b9gootVxT2sVnctwnwglZH9vootiaXt72Xzxgw3o2LEjDhw4gIkTJzq3iSDqAZJEosEpKCjAp59+CgBQM3pZXrCVAIMcZLbrDgFNEFWf/fpFAOAioPpjkugogPC296FTtC02vZSLgvXaxFgZrqpaB2Qzcso51zKcIhZRtMK0x6KnEWGCIAii8VLP+yKmZHmCh76HiaJr32nbz5nx+avTMkcc8xXoZUSXpHYx1ICzKHIBiKbblGECbrjhBgDAJ598gr1797qejyDqEpJEosGZMGECKisroQRyIWe2STquBBjkgCaIsi6LiWUMQWRQAgyKRRkuwtjaQp+Waomx56IAJWDRWZk6N+4Twa2S3CRGD606IC9rC71EISkCSRAEcfDQQJvQO65lr4ttL2yT2nh4/V6E1Gmqqd4E01RTO1GUTdNI7UQx3KzqXHaiWNncFzuPvSje+s5iHHnkkYhEIvjoo4+cG08QdQxJItGg7Nq1C1988QUAINLiiLgLvxJgCGcJhiACSIokKj6GaFqVIAL6qGBVGXP0MI7E/sAqQ6pV8hmn43oZ1+0tLARREOOiiZaCyFj8KKtVh86E1EQTG+hGhSAIgkgBNRS7GkUVvUYRk07G3cvUFA99WKIYWkYVE8tYRRUTnqIGhCRZ5Kb/6qKYKItcZMbaxC+//BL5+fmur4Eg6gqSRKJBmTp1KmRZhhJqCTWtpfF7c/TQboqpOXqYeFHXo4nm6GHS8wOmaKJTkpyA8/QYI5pol70U8QlsuKpaRxAT04bXZQTR680DiSJBEET9Uc/TTO2IE8W6iCLGnSxhOyc3PEw1rW4UMelY7O8gWySjMcrERNEcRUzEdfqpRVTx2tfmoW/fvhRNJBockkSiwThw4ICR6jnSrAcAIJzNUN4qIXqYgBxgiGQIcdHDRDhjUCWL6GEiDhLqGcYAFe5SJwiW+x0m1SUwb4luHOtJUTSRIAiCOCTxHFGsaRQx7mTc+1pET5lYqx9FtDzuYa2i2z2EGhCMqabW59FEsbhTbCYRq4omfv755ygoKHA+AUHUESSJRIMxffp0hMNhKIFsqKEWUIKAnKZnFbV+juIHopkMctA5OY3iB1SH/kZfQC6HBMgh546J+2LbYdihcEBk9slpADA1Fol06nBU58X8WmO8TGVVAa46d/Dco4TSNhgEQRD1QyOJIlZVE2uP1/4iFXgRU5cyLBhw7bsct72IIecEtSzoLlKq+AUofuf3PJrOIIcctgdh2j1LNFMrc/0b89G7d29EIhH83//9n2tbCaIuIEkkGoTKykrjwhfN7QElxDRBZNBk0So5jV+bRqrJHYNscY3nIqBK0JLcBBmiFhdl7jV6yLWH7WijwsGiCpiLtDE1JnacA6IAJlkIp8oBVYk9QbDeI8okiEyPOCaVqWqLbSTRS4fvlrmVIAiCSB2NTBCTsOs3UhFFBOL7RTsJNE8z9SKTTstEvG5hpZe3eZ2VLaraZCeK5S2rXpudKFa0EGLtiokiYxg1ahQALZoYDofd20sQKYYkkWgQZs6ciaKiIqj+NJR3aGsIImAtcbogxiWwScwpowsiHMpY1R1kydHEhH5F9SdEExWeJIfcJ8ZFE5nKwWSlShCNA4kr3E2CCNjIn8cIYgJJouhVEAmCIIhDFstBxsT+oy6XNHiNKCaUs1yLmNCneY0iJlVj8XoTf2clijzhV1aD4ElJbTIZbvm/n5GXl4eioiLMmjXLtc0EkWpIEol6h3OOzz//HABQkddNyxSWJG7ahVTxA9EMFi+IMeSgFk00ppdaBN/kQFU0sVoRxMRfmcXOQhCNcjFRjIseJkqXHk1UOSDL8YKoo0cTHZLhxEUTPckfCSJBEESjo7FHEc1Uc+pptaOIZswSaFdGLweXZDXmrauqGUWMq8YkheYoohnz9FNzFLGq7tj9S0wW9Shi3HmYdq6//vWvAIBPP/3Udcssgkg1JIlEvfPHH39g/fr14ExAuFVHyzKcAWqganqppdwxQJWYMb3UEqZN74ikOy8uVwIMSkCwFEQd1S9A9Ymu00uNqJ/TBV1VreVQR++IUnDzQAlsCIIgGimNMIO0a5/B1ZRNM3VN5gZoEugmwB6nn9Y0ihhXjcBQ0Trgaa1iYhTRIDZoLQeZfRkATy3chkAggE2bNuGPP/5wbjhBpBiSRKLe0aOI4VbtwCXrkTjVD4RzOeQ0+3pUCYhmaslubIklqHGMIHKAufQvTOVgURVcZOB+lyQ2iG15YYfemQkuZWqzxUUMx82RkwrTKCVBEES90RQFEfAmdl7P5+U98PtcI5gs4HftM3VBZG59nZfMqII2i8mJstYCFJedOMrbMEQzHM4j+TFo0CAAwNdff+3aLoJIJSSJRL1SWVmJuXPnAgAq2nZOOq76gWgWhxzijnKnSgCXYhdqhyiifkwJANGQxcfdJIhx+yaaq1E5mFzVQVmeT+FgERlM0ZPP2DU8NsUUAJNEa1FUY1NMAcdtM7S9FGONtxhlrZYckiASBEE0Xepjqmk1SFkU0Zw13EkU9T7XaYDV1C/biaJbFBEAKltWDW47iSIXtD2cnURRv8+JZsBWFj8qKgMAzJkzB5WVla7tI4hU0biuKsRBz48//oiKigrIoTRUtm4GxXQ9Vv1IkkM5xOOymKqStl6RSyYBDCVEE1myPFquR0yMILJkUUwUREBbdxgXTVR4lRzqSCK4LyFbWyRqCKJB4qitWRBhP8oaJ4hG4ap2Wwqi1U0EySFBEET9k8ooYqq3vHDCyxpDj5FGT1HERGJbPMXVE7CYkZTQB1pNM00URTkn6DmKGPd/MVkWy1qb+uOYKCbKYnle/H2LLotmKltyRJq1QJs2bVBWVoYFCxa4to8gUgVJIlGvzJkzBwBQ0bZ93H6IuiAmiZxJ7ozoIUsWQDktJorMJtIHUzSRA0y1mWJqvmZbCKJ+PuMcVoKo45M0UTRFD5NOJwhaNFHlQFSOE0SDhGiipSCa2+cUQTTfTJAgEgRB1D8HsSB6prpRxERiosgCfueZOzo2ZZhT5nELzFHEpCbFXlJZayFpvSJnyVFFy7WICaKoDZozDB06FAAwb9481zYSRKogSSTqjZKSEixZsgSAJokAoAQ5ItncWhBjyCGOaEZ89DARbhE9tCqjxJLhOKEEBKh+wVIQjbp8Irgk2AtiDOYgiAYunbOWxVQABMFVED1DgkgQBEEgtcnNvE4zdY0iWu0VnAhX3cVOdU9Wwzj3PM3UKckMEIsqOryfuijGRRGTGqSJYmXLqn76P5u2AwCWLFmC8vJy17YSRCogSSTqjSVLliAajSKakQk5MwtKiCPSXIGcbi+IAKD6gEiOimi6s9jIidNOE2AcAHcWSaZwiBHVURC1RnGAMW3LCzuUWIZTh9TdXFWto4fmMuZtMGoriPo0nUaYMIEgCIJopHiIWDLG3PfzjeFpOweXMiwQcC3D04LeB0Vdyqmi8/0DAJTliVAdAqAAUNYeiGa6Jc8BIs0VRHO1+wM5MwsdOnRAJBLBwoULnZ9LECmCJJGoN/QLW2WrPCghDjVNAQQONV2BnJZ8wVQlaOX8zklsAFSlk7YRRcYBxKaYKgFmuZktUzgEmQM8tt1FIFkAmcIhVsoQoi4JahQVLBqLIEqipSjGCaLALKffGIIIAIIAJtp8ZS3WaViWiXsxJIoEQRD1TipnclRz38JEPEURmeBpywsDVbWXxcSlE1aYo4g2ZVggUNWHOb2fersd2iRnm6KINnXFJauxeSvK8kSosZfnJIpchHa/ks61QXILKtrKVesUcxWAMQwePBgAaF0iUW+QJBL1gizLxlTT8o55miDqF1qGJFFUJWhyaN7DPsSTZTIxIY1FghqzIBrtCcaLolkQjfMliCJTeJUcxuCSEB9NVFSwcLRKEG1IiiAyliSKcYKoYyWKiYv4rTrzWt5IEARBECkk1aJYg2u852mmXvZEtBp0TJQyu4FQM1bTTK3eq8TzWWTp5mkWU0gT2iRnB5OnhybUU9nSb8ifUcTq5SaUUX3JsljezrwGEoYsmqloK8ffncdE8fkNWwEAy5Ytg+IyA4kgUgFJIlEvrF69GiUlJVD8flS2y3JNUKP6kzsFzgAlzSSKdmsYg1o0kXGAKUgSRHN9gLUg6vXHlYlaXJRjU065T6yKHlp1aKZoou0UU1OnZymIOmZRtLkxMDp/t5sHiiYSBEE0DKleG14NUfQsiF6nmdqhS5nDWsXqTj1lAac9JWJ7FacF7eXWJIq26wdN50uUP6OI6R6hLM/+9emiWN6OW2+ZkSiKNgltyjtnIiMjAyUlJVizZo3t+QgiVZAkEvXCr7/+CgCobNsCEK0vympIRTRbtRREHc6gfWpdpp4qQW1aKUvc5sKEEmBQfMxaEPU2+QRwSbAWRON8TBNRl+gh4GENohCLKHpZp5iq6CCJIkEQRMOQSlFM9V6JHqaZetrGwsM6Rc65p2Q1zOdz77M4d49+qmr8NFObepyymeqUthFtRdI4nc95T0VdFCvbOPT9ooBjjz0WAIyZWQRRl5AkEvWCIYmtm1seZ34VUlYEQvMw1HQnIQPkNPt5/ACMLS6cE9QAYlhb66gE7L8GgqKdR/XbX92ZrIKpKrjk0AOoKiDL2pYXTtnf9I2AvYzMOtwQOG6DkVSYMp0SBEE0CA0wSOd5HWKq8LlkcgHAHBK8GWV8Pi3Tt1uymlBASxzngJIZtB0c1gm30ARRcJnZqa8xdKKsPYfiMAAOAGrHSoi5YUhZEdsy/fv3B1B1T0UQdQlJIlHnRCIRrF69GgAQ7ZKddJz5VYh+BYxxCIzbfyr1bS4EhwXfvOqCrgQBOWSVoAYQoxws1ofYyaQgcwgRrRD3CZaiyGQVLFKVoMZSFFUViERtXlQMJVbGlKTG8uZBVeO3wbDoyOME0amjt1jDQRAEQdQTDbBfYrUFUTX1N4nFvLTfw5YYTJK8JcYR3Pf55SFTQhsbUVQyg+CxJRtMcZi5ZGqTnSjGTTO1S2jTnoNLWhZ3J1EURAVMUMEE1VYU79/3PQBgzZo1kN221yKIWkKSSNQ569atQyQSgZrmg7+dCDG96sJmFkQdKT0aH01k+t5DVb+K29De+GXChZwBclp8tlNdEOMT1DAowarKBZlDqlAMQdTOZyGbZkEEtI4pURQtBDEpmqgkT0G1SwJguU+iqUO3jCBa3TyQHBIEQTQcjVUQ7UjoWzwLouChbV4S4/gtpn0mJqoxC6KOhSjyhORvTOFJsqhHEeOamSCKZXli8hRSq7xxUnyyGsWfHFVUO1TGV2MhihmtS8FaBJGVlYVwOIwNGzYkn4wgUghJIlHnrF27FgCgtMmEKABp6ZUQ02VLQQQAxjikzJgoMthuXquYp50mCqJRWdW2GFaCqCMHNFE0oodWQUpTNDFJEKsaXyWKDhFEQxQtBNHAHE20E0Rz+5ymmDL3EViCIAiiiVEX6xDtiPUxngQR8CSInqaZ+v32demJaqwEUcckikqm/TpEXRTDLfy2CW30+wxLQTQqqvqxrL3VwC3ioopqh0oIYvJ9gFkUM1qXQhJUgDH07t0bALBq1Srb10IQqYAkkahz1q9fDwBQWmUCAETG4Q9ELQVRhzEOX1YEaqb9dArOACXIofpd1gww7eJvJ4hGfYLzOkY9mmgriFWN1zoutymmgGPyGVYNQSQIgiAIO1K1DtGzIKZomqmxDtEJ7rKOHwAUFWqaPymKmEg022ef8VRvk+qShAYAGFDWUY2PIlqUCfQsshREo0hMFCWh6l7h8MMPB1B1b0UQdQVJIlHnrFu3DgCgtM4AAKQHIujYrBBZmeW2z2EChyCqjp9QpgBMYZBDHHLIvpwQ1QRPDthf+AWZQww7S5gQVSFEFHCRxe+NmIisgMmKc8rvWCIbJ7iipC7qR/skEgRBNA7qOVlNvSeq8SqIgLfBT7fsqAG/axk1MwgwBkF2LscFBiHq3Kay1qK2vZZTmQ4qVB+3nQmlE/TJyEgLO5bp3W4XuuQWGP9/pUDLbLpp0ybnygmilpAkEnWKLMvYsmULAEBplYH0QAQ5wQr4RQWtM0qRmVGR9BwmcCPC6E+PgKcnyxRTAEHWNzGErSgKUUCITetXgoAcTO4sBZlDqtSijKpPgOpP/loIURVCONYOxsAlwVoUZaVqKwxJtN482CyINinGDUGMdXyMMfsR15gA2t4IJAoibXlBEATRMNTzWsRUCiJzicIBiO/zbMQtaYqpXWIcPSuqqS9MImCaGmpTRhdEvS47UYzkVq1DtBPFUtM0UztR1AVRK2QviuldigAAosBtRfGINnsQlKLwi4ohimrLdADAli1bKHkNUaeQJBJ1yu7duyHLMrjE0LpdGDnBCi2DKQBJUJNE0SyIgDbt1J8ZL4pxgqhjsXeiIYj6skXGkkTRLIg6ij9eFOMEsaphyS9WF0Rz9C9BFJMiiAJLEsVEQaw6pdWK+IQyiTcEdhFEEkWCIIj6pTEKotfTVVcQdTzskaiVS8hNkLhthpUoBizWDlqdL/F9txDFSK4fPGEP50RRLLVYh2glioYgGoWSRTG9SxECUtWTrURRF0QdXRQ7di5DMBhEJBLBn3/+mdwAgkgRJIlEnbJjxw4AgNg8AJ/EDUHUkQQVohBbDJ8giDpmUbQUxBhyUIsmClFAKo8XRB2zKFoJoo4uipaCqNelRxNlBawinCyIxovURNF2iqlJFO0EMa6s0QCbUVq9jNsUUxJFgiCI+qGxCqKXumoqiDqm/swxUY2eGMduX0Vz32gliObzxcqpdolqTKJoJYg6uiiWtRZs1yFqS1+0n8s62A3MVoliWufiOEHUSRRFsyDq+EUFAZ+K9u3bAwBJIlGnkCQSdYouiULzgG2ZFmllyM6ssE1iA2iiKKbJUIMO4iMAqsShigBU2Cap4YxBUGAriFXl4LxeQk9Qo6ruew5y7rwG0dzZeRl5pTWGBEEQTYODXRA94qkut2ynsT7XLbkMAPCQ3/m95xxyumQriDpClEOV3M9X3oYnRxHNMI7sboUI+uzvBXRRPKLNHsdz5eXlAdBmaxFEXUGSSNQpe/ZoF7rMVvYXzqAYRYesQuQ6JLJRZBFcYbab1QJaBFGMMCgBQHFIZCNGtD2RFKdENlEVUqUCLglQbZLUsKgCFlUAQYjfGzGp8bFtLgSnMgq4nqbbJpOb1wynjlthxFforRxBEARRMxpgP8RU1eVZEL0kqtHrchrg9GsRRO7WNwX8YBb7H5rhadqWGMwhUU0kJwAuekhU00qEGHEp056DSxzMZqaTTsgfhV9yXkd4evt1OCJrl2MZXRJ37XIuRxC1gSSRqFMKCrSF1q2bV6JNqCjpuMQUSIIKv6igXUaRpSgqsghVYeCcgYUUKOnJF30hCoiVTIsMMkAOWouiGIlNMQWg+BkUq0Q2MUGEQx/Eooq2DYYaS71tJ4qKCkSjWqcnMGtRTBREi5uKJEG06eC5hzKxCu2PEQRBEI0Lr8llUrXVRSoF0ZcQHfQwE8ZWFINV+yHaiSJPC8QNttqJohFB5NxWFMtaxdYhctiKoi6IAMA4bEUxp/MB42c7UTylzQZkiGEEBBld0/Ity/wlcyf+wP8AVA3EE0RdQJJI1Cn79+8HAKRlcfhY1YVaYgqCYhSSoMYlskkURbMgAgAEDqTLcaIYJ4g6FqJoCKKRyCZZFK0EMTGaGCeIxi8tRNEsiMYJEkTRLIhmTB2cbQQxoaO3jCBa3QyQIBIEQdQ9qYoi1rMgeqYmgqiTKIr+5HWISaJoEkSj/oT+M1EQjXKJiWpyEpbAWIiiIYhGmWRRNAuicS4LUczpfAAhf/waw0RRPKXNBmRJlcb/dVFMlMWgEEVA23YaRUXJg+8EkSpIEok6RZfEQBZDh+B+tAkVGdFDgVknsmmXUYScjIpkQdQxiaKlIOqw2LpCJAuijiGKAeYYQdRF0VIQjfOZRNFKEI32M62skyDqdblNMY11+I5TTM03BSSIBEEQdU8T3gux1olq9HrsBDERC0HUMfpQC0E0zhPrR+0E0SinJ6qJTTO1OFlVoppEQTTKxItioiAa5zKJopUg6kiilsAmURB1AoIcF1X8S+ZOAIA/Q6ubJJGoS0gSiTqlrKwMAOBLZ/AxBYen70KX9IIkOTQjCSqahcoRCEaTBVFH4OCSqmULc/AeJQBw0TlJjX4KpnDnKaacA4qbtDGtw7ITRDNO9Th0dARBEEQjpjEmqmmMgshV90Q1AODzub6nTFE99ZtKus85UQ3nCGfZZzLVymiiWNbeuY9nHEjvUGIriAAgMI4RHVdaCqKZgCDj8tY/IihodfnSSRKJuofuRIk6paJC2wNR8gMBIYpMoRKHhfagXfCA7XPKZT/CigRBsDc2XimChQUoQQ45zf5CLUa01NSKz75TkMIcUoWqRQv91l8JJqsQKmVAZNqWFnYoCiArzh2aomiRRoFZ732ol9GznDrdAHjJcmouQ9teEARB1B0kiN7xxTavdxgwZX6/1ge6ZP3moQDgkKQGAOTsALjAIEbsy1W00LKditZ72xuUt2GWeySaCXYpgV+SEZGdRThXKkO2ZJ+4DwAGZqxFjlCOo0NbAAC+NO33paWlzo0giFpAkkjUKbokpoVkBFlsBIwptqJYLvtRFvVD5Qw5oUqE0pOv1LxSBKsUwFQt26kSshZFMaztlwgASlCbVpqIFOaQylWAaxFF1ZcsikxWIVZEjamaXBKsRVFRwMKxcqIIZjWqqQsirxLAJFGMCWLSWsakNyI2xcYpImklkSSKBEEQqYcEUavLSxRRF0Qdi37MEESjjE0CmlAAXO9vbURRF0QdK1HUBRHQooB2oljelkH1cTAOCGHrv0GwSwkCPu2eR+WwFcXhbVcD0O6L7ERxYMZapLOIVi+L4ujQFoixge9o1D5KSRC1hSSRqDNkWYaiaENtaYH4BdpWomgWRAAQBRXNM8rjRDFOEHUsRNEQRCNJDUsSRbMgGvWb1jECyYJolEsURbMgGo1IEMVEQdQxi6KVIJrKVTWghoJovDASRYIgiJTRGAXR6+kaWhB1TP1ZkiAaZRIS1ZgFUSdBFBMFUSdRFBOnoVqJoi6I5jKJomgWRKPZFqI4vO3qODG0EkWzIBr1syiOzNimvTZZdl/aQhA1hCSRqDPMFy6r/tMsiomCqGMWRUtBNE5QJYqJgmi0xySKVoJolItNO7UTRHM5SKK1IBovICaKdoKoo3dgdoJoLldbQdQhUSQIgqg9jVUQU7XVRX0IorkeO0HUiYmipSDqxETRThB1dFGsbG7ddrMoJgqiuYwuilaCaDTbJIpnt/3dMnJoFkUrQdQJ8KqB95KSEssyBFFbSBKJOsM8jdLOe3xMQV6gCBlSOEkQdURBhV9SAAZrQTROGPtHhUOSGn1/Jacy2jFBVt2zgXIOJiueytVqb6jEck6CSBAEQdQPJIixujyU85KkRuXOghiD+332ghhDCfkcBVEnmiFClezLMQ5EcqwF0VyGtw7bCqKOyoFBrTcgVyqzLeNjCi7JXmYriED8n1efsUUQqYYkkagzbJOymChRgyhVguiQVojWadajYcWVAZRV+CGmyVDT7C+GYiWDVMag+AE1YF1GquTwlXOoEqBarFEEtJFFsVIGFxm4z77jY1EFiES1jGp2yWwUBVxPZOPUiaocUFX39ywmh443Cl6iiABth0EQBFEbSBBjdYnuYidJ3toV8Dtn/gbAgwFtmYaDHCmZWhnBIUkNAIRzfeBCLAO6DeWtGVQRkMrsX2O0QxiiqKK0POh4viHt1yFDDKNUsS83NH0NcgQVbaUK2zKCWNXetLQ0x3MSRE0hSSTqDME0ypfH9icdL1GDKJTToXABPqagU9r+JFEsrgygpCwIrgpgjENMtxZFsZJBKmFaFBGAHEwWRamSw1fGwWIdkOJnlqLI1KoyXBIsRVEXRL2cpSjqgqhLm50oqhxciUUjBcFeFNX4aKTlDQMJIkEQRN1THUF0kyMSRK2ugGkqqo0o6oJoPMdCFHVB1LETxXCuD6r+Mm36xPLWDKoeAOXWohjtEIbk09rBVWYrikPar0O2qImfwgVLURyavgaZsS3CfICtKGYoWpSRMQa/330KL0HUBJJEos5gjCEUCgEAWsml6OArMI6ZBVEnURTNglhVZ7IoJgqijlkUEwVRJ1EUxYgKIRzf6SSKYpIg6phFMVEQq15AfOdrFkRTPUmiqFpPV2UWyWxcIUEkCIKoOTURRDtJIkHU6jILot5HJfSxiYJoPNckiomCqJMoinGCqDc1IZoYJ4hGI+JF0SyIRhELUTQLotHWBFE0C6KOlSg2EyuhVGptSEtL8zRriyBqAkkiUaekp6cDAKIVDJ19B9DBV4ASNYgiOS1OEHXMoqiqQpwg6phF0U4QdeQgwLi1IOrooihGVIgVsmU5XRRtBVEnFj21FMSqF6B1wlaCaKrHuPDbCKJRXXWy3JEgEgRB1JzaRBDd/m9ZxSEmiDoJomgniEYdimIriDq6KFoJon5OXRQtBdEop4milSAaRUyiaCWIOvp9kJUg6phFsZlYCR84Kiu159FUU6IuIUkk6hRdEivKBfjAkSOWI8iiiHL7jsjHFPgF2fY4oIkiOMCisBVEAJAqASEC+4u9Xp+qdSC28gcACgdkxbkMAIiCe+epci1JjZu0uQgiQRAEUU+kYoopE6oerlUcAoLo99kf1Pcm9kmu51PTXDKixpBDorUgms4ZTXe/Z6jIU8ArnN8vrjIc1izfVhB1TgptsBVEHR+AfgEVvljGvcoK7b3VZ2sRRF3gIdUUQdSczMxMAEBpqYgi1YcSNYgO/gIoELArkmP5nF2V2dhTnoXsUCUUzlBRnpyFRi7zQSwVofq1nSXESpsGqFrWMX1/RDGSfCGWKjmkcgVcYlC5oGU1TYBFFQjhKCAK4JyDKTbipsQijYyBi9r2GMll1KrfM2YtivpWGAIDVMFRFI1Mp8y5nOP5CIIgCHtSuQbRUxXVEETBNOvEqkh9ZzHVy3DV8b1g+vIMzq3fX8bAAz7tmKJqA7AWaIIogEUVx2RzkSwt26lUySEHrd/fiuYCuMjgKwOi6db1VLRRwH0ccMq2DqBPuz8REqPYXNECXUL5lmXOzFyFNEFGOQfSGCDsU5A2uQKBxREIZRxqOkN4gB9po5tBbOVDe0nADrkCRUXa68zNzXVsA0HUBpJEok5p2bIlAKCwUIKCiJakBgo6+/ehna8QO6O5cbK4qzIbO8pyIHMBoqCiWVoF9gNxoiiX+SAWi4DKwAVACXIALEkUpUrAV6YLlLUo6oJoJKrxCVCBOFFkUQWCeb9ESQQHkkUxJoh6OUtRjAmisdWFIGh7PpnFLXGvRAdRTNoKg0SRIAgitTQFQQRifUX8tb3OBNFuqwpRjH+/bESRSaKxPEMrlyCKZkHUj1uIoi6IgDYgDBtRjGT5wEW9LliKYkVzATy2FQZTYSmKhiDGiBb74ctK3qqiT7s/ke3XbkpkLliK4pmZq5ApaFtmqJVAxkNFyPq0AixhF43gggj4C6XAyCz4HmsBiMCBA9rte/PmzZPOTRCpgqabEnWKLom7C/w4oFZNi/BBQRoLo7N/H9r4DwCIF0QdXRRDadputmZB1NFF0ZwoTKoEfCU8fipqTBTNsmgWRKM+nwBVMn01VCRLlSSCmzurBEE0TmlOVJMoiDqC4H4TIrCkjtZ2r0QvNym00J0gCMKdpiKIOubMn3UdQUzsgxIFUSdh4DJJEJNOliCIRj0xUdRPbxJE46k8llzORJwgGnXF/9csiEZdMVE0yuSpcYKoNYIhWhy/ptIsiDq6KOqYBZFVcnQYsx/Zk5MF0WhLFGATi8H+9ifaRwM4UKhJYosWLayfQBApgCSRqFP0C9jegoB1oppYVFHlLEkQdeJEUYXlFA+zKFoKok5MFBkHfKX26wt1UTSmmVqhi6KNIBqn1Ds6K0HU0UUxMYoYV6ZKFG0F0TgpiSJBEEStaGqCaC5SX1NM9b7IThB1YqLoKIixaKKlIJrLKKqlIBrtNYmipSDG0JPUWAmiUVdMFCvyVHC/zSwdkyhaCaKOfn9jFkQAaP1QEdIWRxK9NQkOgC2qhP+hQkQrLwJAkUSibiFJJOqUNm3aAAD277XvZLZHmqNUCSDdF7YtIwoqVFUAk+0/slwAmAIIYedkNmCAKjLbjsMopnKto3GamqmPbLpN30zBDQRBEARRT3gVRI9JaNyraYKCCGhtcRNEAMznc48gAto2Ui518aDPtR7GASUgOvfzHJCD9oKoE24Ge0HUURnS08K2gqjT3l8QJ4jiXgXZn2qJbdw+AcbxqcXYvmmTVl/79i7PIoiaQ3euRJ3SqVMnAMD+XaKtR0W5BJULaBksRbbfOgvY3pIMlBUFwX0q1ID1xdpXxuArBbgERNMZFJv9ZaVKDl+5ClViUH3WXwEhokKokLVRTbtOUlbAoloZSJJtp8sVFZBlQGD2+xmpqnWSm7gyVZlOXW8ovGREpXWJBEEQyVRHEFNxOovlBJZ4yCrqac+8BhBEA9Whb/L7XNfM81AsgmiRYE5HzvBBzvCBC9rex3aEcwRwAZDK7M9X2QJQJQ5fkf17kZFXioy8UkiiinUHWtqWG5C9EX6mYE2kqkzO1HLbKaa2RIHt27YBADp06FDNJxOEd0gSiTqlXbt2EEUR4UoBOaUlyBHL445virTClkptuoSPqZaiuLckA6UHQoDCAIGDB61FkSnagzMtqqj6k0VRquTwl8S2umCwFEUhokIoj4LpC+lFG1HkvGqqDWNax5VQzhBEwBgBTurEEwTR68a4tqJIgkgQBFEzGlIQner0IHaNXhCd8FdNMWWq9fZQhiACWv9sIYpyhg+qyKDqEUSbpRnhHMEow1RrUdQFEQCYDEtRzMgrRdAnI+jT+vmIbJ0PckD2RmQJ2r1NuRowRDFtcXLSGzcK/H5UKApEUUS7du2q/XyC8ApJIlGn+Hw+tG3bFgCwb6cfzYWwIYqbIq2wvqI1wmpVJ5IoivtK06sEUcdCFH1lDJJpgTmgyaJZFOMEUSdBFOME0ShjIYp6FDERkyjGCaJRV4Io2kQQk0XSer/EJFEkQSQIgqgZjSGCaFX3wSaIidFEf/IaxERRNAuiUSZBFHVBTCQxmmgWxKrzxYuiWRCNMgmiqAtiIonRRLMg6uiiKDhEMe3YlJYGQFvO4/Mq4QRRA0gSiTqne/fuAIAtmwMQADQXwtivZCQJoo5ZFGVZjBdEHZMo+soYfMVaFDERXRSZgmRB1DGLIufxgmiUMYmirIBForYjlEZHliiIRl02EcWkU5pGQh3kzxBFL4JIEARBJFOPgsgE5jzF1Pz7g00QdXRRtBBEow59ayoLQTTKxETRThC1c3FDFK0Esep82r9WgmiUiYminSACWjRRF0UrQdQpVwNQ06ufQG5dRgYAoGfPntV+LkFUB5JEos7p1asXAGDzJm2PCgFAmhCGJNhLjY+pKIsGEAk7dDQCB5MZWBTgDv0aZ9pxpzJgAFM4hKiDaDEGpqra/ohunTJjzmtH9JsAiuoRBEE0LPUsiJ6S3YhivQoiE0V3QdTrchNEycMW3AE/4JPc33u/e5IaNSTZC2KMaIYIJcBcyyl+e0E06spRbAVRp0PmAQjgtoKoU3h8yPG4FWsyMwGQJBJ1D0kiUeccfvjhAIDNmwIAgE1yNjZFWiFbrEC6ZJ3RdFNpc+wsyoYoKWA2WcWEEgn+A9pHWPUBqk2iGl85h6+cQ/ExqD7rDkIIqxArZE0oJZsRy2hsqwsgFlm0+fqoKrisOIuiooDr00xtOkAet+bRIaurhzIEQRCEBV4kqxoZTI0ooc0xT/V4zHSaSkGEwKoedvjc5Y9JHsQv4NfKuCWpCcY6dYckNUqaD1xgEMP2ZaJZErgAgAG+CvvzhXOZVqbEvv2RFgogqSgoyLAt0y03H+mittZwYUl323IdfAXYc0kmLCZUOaJLoj4ATxB1Bd1VEnVOjx49IAgC9hf4sHxvLlZVdkBY9UFkqqUobiptjm2FuZBlAYxx+AIyfOnRJFnUE9UAsWmlFqLoK+fwl3AwResYrERRCKuQymVtaovAwAUG1S8myyLnVdNV9Q4uURRlGTwSrZr6aSWKZkHUO1O3tOCAt5sL2h+RIAjCG14F0Wt15o3sE677jV4Q3TALot2ewNURRBd4sKqcXZIaXRD1NlmJoiGIehstlomEcxnCucyYbSTI1qKoCyIA8KhgKYpmQQSAMjmQVKaDrwAdfAXwMQXRViL2XaTV42WfxN2BAPYGAhBFET169HB5BkHUDpJEos5JS0szLmYLVubFrUO0EsWwIkE27YfIGIcgqvAFZEMUhRIJvuL4j2+iKCYKok6iKDI1oeOIjaZygRmiGBdFrGpYvCjKshZBTFwb6Dr11CSKMVmMiyLGlU14zR7K2J6TZJEgiEOVOhTExN953gOxsQii+Xc+yTqCmCCKtRJEc4KaoD9OEI36E84XJ4imesyimCiIOuZooi6HictRhITZpGZBNE6XIIqJgqhjjibqcugzJVHY8lAuio8PeNoncenRzQBoU03TYglsCKKuIEkk6oWjjz4aALBnTfIxXRTzAkXYXZmJPcWZlnXoUUVEBPgLBftENbooqkgSRB3FxyCHBEAFxEqbtQUxUQTnQDhik/SmasqMpSCaywksPopoVY+OXVIcwLhxsRTEhDKukCgSBHGoUQ+CmHTMrT4PgsiYe8IzAKmJIArMfXppTNxSEkHkvEoO7crFoomWgmiqR4yqtoIIaIPCvgoeFz20wlfCEGmhWAqicbqodhI7QQS0aOLCku6GICbVERTwxwetUPC3NHCbqafcBxT9LYTfzr4BANCvXz/7hhNEiiBJJOqFY445BgBQsEbRomQJiEzF5vIW2FGS41gPY1z71Dp8cjkDhCgghZ0nb4hhDqlScey4WFQFi8jOnZvXqJzKLV97Il7KEARBEDUghYLotP4wrq4UCaLrsgSLvXot6/IyxdRDghptJo2Hch4kkvt9ronceFAC94n2ghhDDtkLok4knUFyWJ8IAHI6h1Qk2gqiTlgWbQVRJyRGLQVRhwcFLHysK+b+cBjy785A2cl+VBztQ9nJfuTfnYHNi1tiz1PZ+GXFCgAkiUT94CEFFUHUnr59+8Lv96OyMILy3QrS2yR/9CoUH6KKAL8kA4ifcqoTLg5AKhKh+jgEaJlNE/GVA/4iDi4wyEEGQeYQ5OTOgKnaGkMuMQCClrU0sYw+7VMQwAHLMlAUQJbBRAFcgXU0UTHthygIyftEJSIw+2hiKre6ICElCOJQIUWC6Hn6aIrWIMYJol3/IQixGSuxcjZ9TLUF0Sq5jC6Hets4t39vJUk7n0MZ7ve5tkkNVUUPBVmFapNgTs7wgQuAWMmhBK3rDGcK4CIsZyPpRLI5VMm5TDBbWyajqgJW5rfFX1r8aVmuRaAUPqbg+7JeGJRuMZ0KwD4lEwoXUNw8hMKbM1B4c3KZaesOw969e+H3+/GXv/zFvmEEkSIokkjUC8Fg0Igm7l6uQGDxHdi6stbYXKzNtWeMwy/JkBJG78LFAUgFPjBFn1bKoYR40vQMpgCCfmFngOpjUKX4zkKq5JDKq67+XGLgCUloWFgBC5ssVBCSykCJrVXUp92IsZFci5uDuAih1Ygw5/FTUa06zZggOk41NZUjCIIgcHAIomUdQpXUmctZPCclEcSYICZNfbUacNQFUT9uUSZJEBPkljMWJ4hameR65AyfIYiANggsVlokqYkJoo6vNLmMLojGy9ifPAc0mB2GKKoQRa29ldHkge9m/jJDEAGgSE7D92XJGUl1QdTZGM1NKjOnvAc2/qq149hjj0UwGEwqQxCphiSRqDcGDhwIANizQrtg6qK4piwPvxe2RkSuunLrohgKRKtkUY5fh8gZwAVNFnVR9JUDvpLki75ZFKVKDl+pnLTG0CyKLKxAqIwkd0aCAC6JVbKoJnd8jDFNFvWbBHMUMaGuqpNz67WK5o4x1YJIUUSCIA4FDjZBNEcV9TIuU1FrJYjmqGJMEB2RpHhB1EkQRdsIYkwUOWPaFFOLMoIp26kuh4lTTM19fDhTSBJEQBtUNotioiACAJPjRVEXxPiXxrAyv63x/xaBUgQEOWmKaZFclWxmn5KZJIgAUMl9caI4p7wHipQQhHXdAFTdSxFEXUOSSNQbJ554IhhjKNqqomJ/LEspU1Gh+OIEUYcxDkFQ4ZdkRMr92toAC/SoohgB/Ad4VRQxAV0U9WmmlnVJDKpPBESH6Z56p8w5INtvqMt0kVSs12EC8Lb1hb53FRPcBdErJIgEQRwKHGyCaNQhJEcPrcog9RFEWzivkkOHxDLc73OdYuokiAAAlUOQ1bjooRViJTfk0C5JDVM0ObQSRKNMrKu3EkSdiogPK/PbxkUPrfi+rJchh4mCqFPJfZhT3sMQxIr9Ktas0aaqnnDCCbZ1E0QqIUkk6o3mzZujb9++AIA/l2kX0DWlbbC9JMex/youSQM74HPcREiPKrrlkBZkDsFh010AYLKqbXmROLXUjKIAssNiheritkZR5QBXvd+oEARBHOrUpyB6SVADeBNEUXQfQPRQhokCmM8iomdVl9t75SWC6HNfW2gkqHFrkyS4JqhRA6Jrgho5xFyT2EXTGaQyZiuIOiws2gqiGSdBBIDtlc0wvyR52qmZH0t74PfytihSQgCAP3/S6jzqqKPQokUL1zYQRCogSSTqlaFDhwIAdi7RhuW0KKJ2ZbYdMJSZtg5R4rYdgq+UwVeijRTaXei1aaYqIDAoPgGqjQQyRQUUDi4ItqLI9Gmm+miuBVxRtammgkPaclWtWs9ol948JojGuVMhirT1BUEQBzP1LYheiPUFTrLFPGQn9ZbB1EObRDG1ggg4bt/E/b6qc1klgQPA/ZL2YMw6UVwMNaRFGUWHQd9ouiaaTs4WTde2wRAskuDpKGkcShoHVKBsb7ptuZA/ClFQsSi/i22ZYjkIlQsokwO2ZX4s7YEyOQBZrfo7R1Z0AACcccYZ9g0liBRDkkjUK6eddhp8Ph9KdnKsWNcMW0viF2gn9sdFxenAAb/2H6aJouqLX3vgK2XwH9CihJxpoqgEkmWRqRyCvm+iwLSppYnJaiIqhHDVFFJLUVQUIBoro0/3SehAuaJqU1F1uRO0dYrWEhjfyXnZB8vxxoX2SCQI4lCmsQlibPql+dpudZ2vd0H0sn1TdQTRgThBtC0jgQuC1u8CgIX/qSHJEEQglqDGQhR1QTSaWJ4sr7og6viLktunpHFwUXsAAIsmlwn5o4YgAkBZxJ8kisVy0BBEnR9LeyTVtbi0e5xA7g5no3inik2bNsHn82HQoEFJzyGIuoIkkahXMjMzMWDAAABA4dIyI4poxrycQZUZBPOyPwZA4HFRRaYibosLzmDIoi6KUiWHVJbckZhFkUVUiOURQElIaJMgiiwxWY0uiuYRWa5aJ5Ax3yiYooiJVJXh1vUghaJIskgQxMFCIxREt+gh0ECC6FampoKYmBTOThBNkUJdEBMxRxN1OUychmrOMRBNF5IEUasnvt5EQQS0aKJZFHVBTMQcTdTlUBdEo0zEb/ysy6GaMBXKLIOLS7tjcWl3FMuhuDJh1YftP2g3QQMGDEBmZmZSewiiriBJJOqd4cOHAwBKlxUDUft5IEUlaVVRxERiUUWpgsFXbF3ELIpxUcTEcjFR1KeZWpYRBEASNamLWiSr0WVLELQkNQ7TZOJSgjusRay3iKJ2Mu9lCYIgGhteB7waQBBtq2AMTBQbpSC6iq3P5xxBjIlbdSKI1vVoomiOHlo2OawacmhXzlfOEU1nloKoo087tRNEoCqaaI4eWrEov0tS9DARsxwmCiIAqGEV+T9p212cd955tvUQRF1AkkjUO8cddxzatGkDVqlA+n2fbTlVFuKjiIkwABy2mUoBTRTFCIcY5lBF+w5GUFRNEh3KQFXBrAQxrk3uI8ZaMfcythlRq4NXUaRspwRBNFW8DnLVoyDaLi8w47Cm3UBfN+jhfK6kav2h5JLhBQB8kqfzcVG0F8QYqt9ZEAFACbgnulH8DL5ybiuIAKAEAbGS2QoiAHAfR1lhyFEQAaCwPOQoiADw8/6OlnKoU7S8HKWlpWjbti2OPfZYx7oIItWQJBL1jiiKGDFiBABA+mWXpaAUFqcBRT5j6qgVvhIhlqxG29rC6losVQD+UlXLjCrAXhRj13ptaql9ym0jK5tdx6co4LJsbFlhV4+xJ6LT/la6/DpkzUvZlhgEQRBNEa/Rw1QKotMWD/AobGZBtHsNHiJ6TBTi9+W1I5WC6DoF1TQt1G4A0idpDwFgVnsEA1CDEtSgBDBAiNgLmRwSwQUGqdKpjHaP4JTERglq+Q6Yg/txX+z1RAXs2ZNtWSYii4jIIjhn+Dm/vWWZ9cUtsb64JSpkH9YXt7Q+F+fI+FU7dt5550HwsmUWQaQQ+sQRDcKwYcPg9/sh7ilFdFMZZCX+o6jKQtwCcStRZAq0PREZAEGTxURRFBRu7G/EGbMURTGsQKyMFRKsRZEpClgkNg+FMWtRVBTwaLSqUxRYrGO2+ZqZp0clXPwto4jVmT5qVOSerpuiiARBNElSNL1UK1YNQdSxeE61BdEOD8JmyKH+Gq1eayozmFZDEA2s+hefpPXXDjN3dDk0trWyqEcOiYYgAto9gZUo6oJonL40uS4lEJ8Qz78/OdxoCKJOOLmMLoc8dtNSGUmekqvLYYWsHdP/NbNodyf8tDQHa9euRSAQwLBhw5LKEERdQ5JINAg5OTk4++yzAQChpVsRkUVDFPUoYiJmUfSVCMlrEVm8KEoVgK88vsOwFEUV8WsDY6LIfWKVLFomq2FaQhsjWQ237hDNUUVzFNFcFxAvinYRQtNNgGsU0YsgEgRBNEVSuP6wRoKoY/pdrQTR/DsLYUv6f3Wih07vldcENTURRB1zvxgTxETM0URDEBPLRKv6NF0OnRLUyCGWJIgA4paxKIGYIFoksYl7CYmCGMMcTdQFMZFfC9oZP+uCmIg5mrhodydUhP04ZYOW2Gb48OHIycmxPD9B1CUkiUSDcemll0IURQS27oe4u8QQxcQoohl9+qkRRUyEVU0/ZbwqihhfR0wUfQxM5lVRRDMCDFlkqloVRYw7F6uSRc61aaZ2OE0/1esCqhLfOOE5cyl9vQmCOAip7wQ1doJoLpaKCCJjjsKm/95REPX2pipBjSS5C2Js6qjtmkC9T7MRRDN2gghU5R8wRw8tm1ypQg5qcmi/tzI35NBujaJ/vwju47aCCAAIi3HTS60oD/vjppdaof9+yR5NEKW9xVi2bBlEUcTIkSPtz08QdQjdRRINRtu2bXHaaacBANKWbQXnDEWF6WD5fsc1Ab5SBl+pQ8X69FOB2XY2nDFNFgHn6ZYC3DvaamQGdRRAcz1ebl5cT0aRRIIgDjLqUxBF0X39IWMpSxrDqjPF1PFcqZnOasiho0RqhuWYNMYnAaLgKIjGzB2XJnFmn71UR5Xss5ca9Qj2cqjjdB9SdTLETS+1oqQ0hE17WtgKIgDs3JeDbzf2RFmlltH9wl0ZALS9pdu0+f/27jxOivLAG/jvqepjZhiY4RhxkEMEBBMkEAlGiawn4pX1jsrGNW5isvHaJEazvCoJxhg18YpvNMn7bjbZaNh191VXXcUYTxRFPDhEERBQrmEOZpirp7urnveP6qqurq6re3pmeobf9/OZz8x0PfXUM8NQ3b9+rvoQDSEqPYZEGlCLFy8GAMQ374Pa0gmZVKAkBYQmPG/QIi0g0t4L2gBApEsi2qUbTwJeawIkjLmI0mchGtGjAckUrL0Q3cqlM4vVCAVQPF4I6BKwL1YTRtA716UIkkREg0V/B8TA5ojs4mNe9/UQq5MWtA1GmIAYop6SDC+NhOitjAYHTRkNrkePq9Djxu9ITbivPqPFBbS4ETSjne5vyOpR4wMCiHlsnwVkA2TUZW5itjJASIHWfd57F7Z3VEJPC2gp73+XXY210HtUpDqNgKg2d+CVV14BAFx22WXe1yfqYwyJNKCOOOIInHDCCRAAql/fmj0gAaEJKGnvsAjAc/VToQFKOrNPkwrICPLCotABkTYql4p7CBSZeYbW3AevJzv7/EDhHiZzehHdXlBIl/mKrvM7sr8Qzxc7hfQico9EIip35RoQe1tPmHBoLoLmey1lQAOi61ZU0dx6hMs+xM6AqKTyn7v0uJoz+sftNYEZDs3nebd9kfUocoagKimX9jiGn6pJt+d7WAERAEQy//fe3lFpBUQvuxprrYBo99VPItB1HX/zN3+DKVOmeJ5P1NcYEmnAfetb34KiKIhvbUTl9rbsAYnMRrrZoBjtEIi159dhD4qRLolYZ/6ziL1X0exFdNZh71W0ehHtZZxBMZ1Z0dTJIyjmKKceRQZFIipXgyUg2h8rVUAsYe9hYEAMM/8wohbWg2jnmG7h2oPoKGMGRD9WQHQ2wdabaAZEJ3tvouvwU+noTcyEQ+F4d9rem2iGQ2dA3NOcXeTGDIfOgKhv6cTrr78ORVHwzW9+06VBRP2HIZEG3OGHH24t71yz/oP8OYIyGxTNoaZuzHu2vRcxr4zZq4hsL2JeGbNXUYHrfEUrKJo9j34rkSqZJwCPfaCsYUpuvYg55cz5k+5tzlmhr9i5iEFzT4iI+ttgCYiF1hO2BzFIAb2HgQExzPxDnzJCl9n9D73KaBIyqvoOMRVp3Rpe6hUQ1YSWM7zUjaJJa3ip1wI2Skr6Ll4DZHoTHb2HeW3O9Cb69R6aQ07deg8BAFJi4addAIxtwiZNmuTdKKJ+wJBIZeEb3/gG4vE44vtbUNGwN7+ABKIHFMRb/SeTy8xwk6B3HoMWIzDq8X4ytIafBtQTWtATeEF19fK/NYMiEZWDcguIqtp/AbFEPYgiEinN8NIQi+HIgBBplFGCy6hK7uJyrmVyh5e60SP+K5wCAQvuZIi0e++hndqpBA4vFc0x7NxyiHtABFD52T6sW7cOsVgM3/jGNwLbRdTXGBKpLNTV1eGiiy4CANRs3ODa86akMnMIpHdQjHRJRDNDTb3fgZRQu9KZrTA83hVM6RDJtP+7pmkNSGuZd5Z95gZmfhbPJ2pdt3osexMUpXNeZNEVBWzBQUTU10r0ZlVJA2JgIQHfRWzMeoLeXDTL+DFXOfW514tIJKjFRkAE/O/7ZkD0KWMFRN8yRj1eo3gAQI8aP7uS9B5Zo0eNN2kj3T71RASkgO9K6OZrhFibdxmhAZBArMn731/tVIxye+Pe9TTHoCQF1Hb3fy+R1vCFjbsAABdeeCHq6upcyxH1J4ZEKhuLFy/G6NGjEenqRM2mLe77IMJcTMa4eTvDoqLlbpTr9m6k0KUxLCbT4yjV/D2whK4DWqZyr5VNpTQCXqYXULjUYz1hZh73HPKj2xajcSujy8KHkQa8gCAiKjuFDHv3C0j2IfheSrXyqLVnrn84FEHhz2yPWcatrLlATUA4DAyI5vxDP9a1/HoG1WxABFynX8iIYgREn9+PHlWNgCgASAnhkjX1qLACovGAS5mIsAIi4D71xHpdYJZxW1ZAywZEAFCS+WXUTiUbEAEoLovciOaYFRC9xPZGMXLVduzZswd1dXW4/PLLPcsS9Se+gqSyMWzYMFxzzTXG19s3Idra6RsUrbAYIjt5DluxD081g5zZi5hXNvvixexFdB7L6VW09SICyHn32AqBtl7E/MuFfyddes2LBAoLiuxFJKKBUkg4DAiIgfq699D2vWfvof37UD2MHr2Htu8L6j10st//zXDos7CM5/DSnDIeW4TYVh+1wqHz12PrTTTDoXN4qL030QyHzlGh9t5EKxw6yth7E61w6Ne5mgmHwmcpAdFihEO/gBhtiCLa2oXRn34CALj66qtRVVXlXSlRP2JIpLJy8sknY+7cuRC6juEfr4PSA0QSArE24TpsxN6rGO3IDjV1I4WA0mMMNc2vKNurKKTM9iLmlRPZITW6Sxl7UPQKXG5B0YMwF8YpdjEaqyL+VyeiMlaC3kPj8AAExKB6wvRoepUxHw/oPQR6GRBz2lPA/EM3mTct/XoPReb50QqIeRfI9ibm9B7mXSvzydZ76GRth2XrPcwrk8rvPXSKNal5vYd59TTFIFqMD6XH/WJKW8QIhw1RqAmBr4oOJJNJzJ07FyeddJJ7xUQDgK8cqawIIfC9730P0WgU8eYGxPftBnQgkgDUHo8et0yvopIGVJd9j3LKmkNNXQ8i26vo9wQZ9MLACoo+LzKs4UT+Q3CssqV4YUREVI4GY0AMsYiNiEZ6FxBNkUjZBEQZUY0pGgGroAYNL5Wq8A6IACCMYOgbEAFA8Q+IRl3+ARGAsYdjQO9h7AACew/jTQqUHuEZEAGgaq8CNSGgJgTi+3bhjTfeQCQSwfXXX1+6BeyISoAhkcrOhAkTcNlllwEARmx6HyLZA0hjrqGS9L9BQ9qGovaG4h0URVoDUmn/J0ApAV3zfWKX9t5IvxcbZqj1q8tvuCkRUbkq5EWxz4iKfg+IgfWE3LvQNwCp/m82Zq4jAkNbiPmHIfY/lJFMW4ICohCu8wWtetTM9AyfETvG6uGAmvSpKPMrjiR8ymSaGuvwfo4UmvscSLtIwv+1R/SAQPSAcJ3faKpoEahoEVB6jO+VZAKTPtsEAPi7v/s7bnlBZYchkcrS17/+dUyZMgVKKokRm97Prv6ZCYvOm3WkG4h2ZZ4oMu8GOoOimtAR6fJLmMYcCMWcj2gGRbf5FtaCNB7vluoyN9x5BTx7G13qks6wy2GjRDRUFNNr4hIUyykgWqEtqI6gawWEQ/NaOc9Rbr/PUD2MwdeSIcpYAdGvHtU2t9/55mZmyocZEF3LAMYx26/Yde9kx7xDtwVshCaNDx2ABOJteUUQSeQGxPj+/J/PDIdmQIy15Zcxw6EZECElhm96H21tbZg6dSq+/vWvu/wQRAOLrzipLMViMSxZsgSqqqKicTcq93yWc9zZqyg0lycBR6+i0KX3O5cmzTHX0FxIIHDfxRD/lcIGvKC6HKEzVC9ib+c0EhGV0mDb4iLUSqghew+DFBIQ/RQTEB1vTFqrlzrL2MtleiHzAqJtqwupipyAmMfWe+j7yjTM02iIPwkzHNoXvlMc01XMcGh/U9q+yqlX76H9e2fvoWnYpztR0bgHqqpiyZIliEajwY0m6mcMiVS2pk2bhiuuuAIAEN+7DiLVnXPcq1cxh0evYsG8ehVzyoSYX5gJd1LTfResseop1aqlYXBlUyLqD70NiJk3vQIDolBKs8VFKYeXBultQBSisOGlPgrpPQze+N79+VOk9dyA6HaJhLnHREBbXFYtzSti7z304Ow9dOPsPXST13totiHZjfp9xjDTK664AlOnTvVvNNEAYUiksrZ48WLMmDEDQk8hvvcd1yBjLlgTPFcxxAV938EURrBL+w9ZhTkf0YtQwk9OD/EuORetIaJBo796EIXLvrXOIv09/zBIKeYfhvqZgtsrw/xMQcNLFfj3HprX8gmIRgH4HhdSZqeb+Ii36nm9h87ruPUe2kU7ZeDcw3ibdO09NK6hY4HYjfb2dkyfPh2LFy8ObDfRQGFIpLIWiURw8803o7KyEmp3E6LNH7mWM278AUFRl74rlykpHUrCbXKDjTnMJsyGz2HCW5gXTP0VFAvZxJqIqFCluL9khtv3dm/YUG/UhQ2Iftczh6n6hqnMAjU+9/G8+YdFttd39VJz5e4wq3ubW0F5UZBZnMa7jDSnc/j8+oJWJbUu5zLnMHss82Zy0ruM2mN8xPd7l4l2yMDew3irhJLM7z00Vez+COvWrUNVVRWWLl2KSJghwUQDhCGRyt7EiRPxgx/8AAAQa9mEyIFG94LSCIqKS6+i2iOhmkNWvJa51gOGgLopVVB0qSdn0ZqgTZYREBQLGZrKoEhEpVaqgFhIGY8gKULsbxh6gRrzem5tM8NhYED0v7+Hmn8YOGRWCQ6Iwn3DemcZq72eewEjex2XMs5rCJcVTIOGsIalpJE/h9JB7YHVw+gWAKMd0giImfeQYwfy64q3SiMg+gTIql0NqGr4GADwwx/+EOPHjy/kRyHqdwyJNCgsXLgQ55xzDgAgtm8NIp3d1g07hzkH0dGrKNJ6/juapZqCF/giwLk6qp6/aqlZj8krrIYIip5hkUGRiAZCHwXEvN7EsD2IfgEx7AI1fqtWm/U4f27n9269h47vQw0vDRMQ/Z6nbAExh/15yh4QvZiLzvjNT3Ser+dvWZUXDqWxOnkhzN7DoHBoBkQv0U6Zrcs8L5lbJt7m38NY0SJRsa8b9cmPIKXEOeecg1NOOSX8D0M0QBgSadC47rrrcMQRR0DoPYg2roHao3m/a+fTq+gsV9KwqGmQaZf0an+nWJfeIbBEw1hLFhQZFomoN/q4B1EG7SNrC5KhAmJQU4KGl5r1lGB4acnmH4YYXurbe2gOL3UpI6y9fhH4nOF5DfO4T++h61YYDua8xEJ7D13r6pRGQAyYexhvkzkrnjpVtEioPRrm1e5CS0sLJk+ejGuvvTbwZyEqBwyJNGjE43H85Cc/QVVVFZRkM9TW9VBTEvE2HdEOlyRo61VUtPx3K/PKlorvPI3gYaNGuRD/NYvd1iLoHXAiolIYiCGmrs0QvQ6IQojggGiuplqq4aW9CYhBw0uB4OGlmTKBz1sBvYfQZKiA2FtqQpau99CnZzDWoVvh0CsgVu/WULFfQu3Robauw/r161FdXY3bbrsNFRUV4X8oogHEV4o0qEyaNAm33norhBBQO7dDad8GNSmhJnQoXhPkzbAYFBSDMldag0gFLGwTtvctzHYZvRRq9T8ionIVZvho4AqmmTp6GRCNbZB86gizp26YFVdLsdWS+TMHLUDj35Dg4aVmHQHX8X3eDTMyRsrAnkShIbj3MCkRP6B79x526Yh26769h7EOHUrav/cwfkBHtFOH2iOhdG6H2rUDQgjceuutmDhxou/PQVRO+CqRBp3jjz8eV111FQAg0rYeSDUZTyJpCTXpExaRCYqaXty+iVIaQ5fCBMFCwqLrdfTsu999pdieSCKiMHqz92pQ76A5/9qnXM7WFH5D/L3ON3sPwwTEoHt+QEC07vdBATGwhzFor94wbbWV0Qr/veXU4cf2+1CS7vNCgp6rre0qAsKhmjSmnigp93LRbuO1g9cqqbEO3QqIXuIHdMQP6FB7Mvt49jQh3vEBAODb3/42vvzlL/v+LETlhiGRBqXLLrsMp512GgAJ0bkGUnZa7zYGhUURplcxjLBhMUjAO8N9GhSJiMpNiIAYNGw+1N6FPkNQc3oPwwRE78aGCojBC6AFzU9U8gOi8zmukIBY7HGzTBDnAj2OnkIhg5+jg3oP7eHQc9/D7kzvoU/4s3oPPcrYw6EZEKF1YExqAzRNw6mnnopLL73U92chKkcMiTQoCSFw4403YsaMGYBMQUuvgZTGxkT2sNhnvYq5jQk+XmyvolVF4UHRdx8xIqL+UOj9NWxA9CvjFRDN3kRrKGWIgOgn7PDSMAHR8xpKuIAYpJDeQ78ybg+nHb9XP2G2cypR72HYcNjb3sOccAgAegL1Izahra0NM2bMwE033cQ3e2lQEtJ1LX6iwaG5uRnf/e53sWfPHkCMgKoeCyGym9OaG/EqPRrUHu9lTqUwhruIHp/JCKm0/3EASKchUz5lNN1YAdV3bqRRxrOt5rDXgOGioUJi0JBT3h6IqLfCvEAOO/+w2IBoUtXAOX2BC9SYIaeXw0sD6wgKh0BwQDR/Vr9VR4MWuIkEr6IqY/6bwusx/9VcAUCP+19HVxXoMcX3eUmrMH5ev1XNtQrhG/z0iNFOvzLmQjs54RAAZBroXAXobTjssMPw61//GiNHjvRuDFEZY08iDWqjR4/GL37xC9TU1ADyAHTtPUhb8LF6FXUJkdI856UICeOYT7ASuv+k+LB6+75M6He5S4HbYBBRXytFQAyzcnSpAmIJ5h/2enhpIXPjSzE8tDekDO499Bn1A8CYRtKjBfQe6r69h2pCg5rQfMNfpMu/dzHariHaruX3HgLGm65d7wB6G2pra3H33XczINKgxpBIg96ECRNw5513oqKiAlI2QU+vzw9iEoCUxhOR1wIGMMpA8w+LvQ2KvR12YvUkAr0LioUsXMOgSETFKMG9w1rB1OueFWZboTBbXIRdaMXrOaCQ+Yee1wixemmJpjgEbn9h8lq8JozM70p4jOQxpn34vwEr0jJg7qFuBESf5201oRkL03iE0UiXbgTElPfPGm3XoCR1KEmXMlJCtL8PaI2oqKjAz3/+c4wfP96zLqLBgCGRhoTPfe5zWLZsGVRVhcRuyPRG9x67TFD07FWUtiejoKDYi7BY0vkJ/bXvIYMiERWiBMNMA7fyKTQgutz3rdEZfmE0zJZCpZh/GKTQXkGP56lQ4TCgjsBzbOcJt9+75h/+RFpmA6IHMxx6BUSr99Cnp9IMh14B0ew9dA2HACAllPZ1kNgNVVXxk5/8BJ/73Oc8r0c0WDAk0pDx5S9/GT/60Y8ghICOTyFTHwKZm76MKdDjmTkTmScloUkgrfuHxTC9ikWGxZJvccHhp0RULvoqINoDnMvxnDcHVTX8HohewgxjLdX2Fk72n6XYYaMuz08FBcRiBC484997mBMOi+w9tIfDYnsP7eHQHhDTVdm/qciBFJT2DdDxGYQQWLJkCY477jjX+ogGG/+ZxkSDzOmnn45UKoW77roLutgB6ArU5DRAUYzJ+XbmEttSQMIjKJo0CRlRjfKptHvZIsOTGRRLsoaU+aKrr/dAFIKL2hCRu14GxMDeQyDc/EMvug4oSriAGKQUw0sDr1GaOYXlEA6DyoXpOQQQamipm3SVikiXUUeYoaVupCoQbU9DSgmpb4Ku7AAA3HTTTZmtuYiGBoZEGnLOPvtspFIp3HvvvdCVbRC6gJqeCiWZBjQJqPnDcYSWWcbbLeyZT1hBT/ZhQpOqGAHO5QlOCFGaoNhfGBSJyKlEK5n6ChyCGrQ4jRquniC9DYiB9Zdg5Ib5JuQAB0QEzDuEFjy0VKqKbzhUejSoUcV3aKmSkr7hUO1MIaoIz4CodiUz9WhIi63Q1O0AgO9///s488wzPeslGowYEmlIOu+885BKpfDggw9CUz4BdAlFmwShaZBQXYOijCgQmgqRShtPqG5h0fzweuIOE5qEAsBjEr8QkIDxIsdvgZ0QzHfjPbfCEErf9zgS0cGjlIvUeBfwPxwwvDRcz51/+DPCW0CZ3gq7iE4IXgHRDFwSerjfi2vlIcJhAOsNWo+6lKTxfKkNc2+jklkUR6R1z4CodqetbStcj3caW1fJiOIbEEVKg0ilkVa2QFO2AwCuueYanHvuuZ51Ew1WDIk0ZF188cVIp9N4+OGHoSnbgFgKsR4jKEIXkIqSGxbNoUdSQugAIN3DIpDbu9hXzCftvgyL/TU8lYiGtr4OiOa9yq/nLkRA9J0HHqaH0wyIgDEixKU9vZ5rbj/f7U3JEoRTe4+c0CWk14/u9aZomDdEtcyUDsA1oIm07luXGQ79rqX0aNl6XKjdaetaAoBekfs3YoZDkVnB1Vq7wF4m03soUhokJDRlEzTlMwDAd7/7XVx88cWe1ycazBgSaUi77LLLEI/Hcf/990OL7URyuIZY+xEQEt5hEcgu263DePIM6jk0j6tqZsEbn518C+XoVRRCGG3yW1DHhVAEexWJqPQKDUVSzwtkgQExaJ+9vg6I5rlBPZm9HV4apJcB0W+4Zg6/EBiy99AeEGU099/H6j30oCT990S09x5al62MZo8n8o87qZ0pKxy6HreFQwCQkEgN2wpN2QUA+N73vofzzjvP83yiwY4hkYa8Cy64AJWVlbjrrrugxfYgWZ1GrGMaBJTMfERbWHRy9CpKVYGIqEBayytnzh+xhoyWUgmGnwLsVSSiEuuPHsRieg/tPWDFBER7L6G999BHnwbEEvce+vIKZwX2HubIvBHb295Dt3BoNS9iXENJaFBS+W/UmiHS2XuY11RHOASMIbmpik3Q1H1QFAU33XQTzjjjDNfziYYKIQfVShlExXvppZewbNkyaJoGJTkS8fYZEHC8wFAUIJWGcFvB1HwS17T8kGinaZBpl/Ot47pvT6OU0giEXv81M2FRBm1w7BP2PHsUQ5ybW463D6KDVq+HVSp9ExBNmeO+4c2vDnO6gV9AVAK2MgoMf0pwGefK3IVcI+TiNzKi+t/PI/6/a2n+rt223BACiJhvQrpfQ49HjBDrt3BNVPXtGdQzvZVuARHIzs30Cod6PAKlJ50TDgFAQkOyciP0aAtUVcXNN9+MU045xbMdREMF90mkg8ZJJ52En/3sZ4jFYtBj+9EzYj2kSOYW0n0m0JuP69K3V0/aF7gpQuC70cUuMFBQI3hrIKI+FBQQgeCVQ33rF/7lwux/CPTt8FKg9yNEAt/wCz4uVcW/99B3VVId0HQI6dGDiMzUDp96RErzDYiiRzM+PAKiSKQhEmkoKfceRKuMpnsGRKU75R4QRRI9w96HHm1BPB7H7bffzoBIBw2+EqSDynHHHYf77rsPNTU10KMdSNSsha505xaS0nji8+vNM+cdujzBC0UBFDVbzinz4qTXnfhhX+T0pVIs0U5EBw+hhFwgRvEMQFYw8wpYQvi/mRYmnJbq3tpXoy10GW5eem/mFkoJoUvvYaqa/6qk0DPPox7BzFgp1DtAWuFQ1/PmNFplEung44m0EVRdKN0pKN2pzAii3DK60oWeynch1Q7U1NTgvvvuw/HHH+/+sxINQQyJdNCZOXMmfv3rX6O+vh5S7UGiZi000ZYtoCjG0JrMO6R5YVFVskOU3MKi4hgi5XwCtA1fklIOSFgMtVl1QRUyKBJRAEc49F1Iy6uKMD2IvQ2I5S5sOCy2dzBz3NoiwznU1HxuDBMOfQKib+9iJhwK87nVsbicFf6CjmuasfVVLHcJDns4RCoNxKI5x/VUMyoO+xgy0oP6+nr8+te/xuc//3n3n5doiGJIpIPShAkT8NBDD2HGjBmAkkbPyA+QVhqMJzRVMYbfANleRXtYdHsR4tOzmFPG4wmxJFODnS9u+nvIKHsViQ4uhdy3wvYeepQTImDun1Go3wNivy7r0NvewzDTINx6D+1zIt16D6O2AOYSDqUtgOX0Hrqw9x66HreFQ7cyznBotSEzJzIvHJrHzYV1upPQ5G7I+o/R1taG6dOn46GHHsKECRNc20M0lHHhGjqodXd348c//jFWrVoFAIi2H4ZI90TjSTKRzD9B2Hrt0pr/AjSaDugBC9y4vMsqhAhevAYAdN37BYr5BN8fi9e4nsvbCtFBIcwbQ349g9YKoh5lghaGsS/84hIQhQgYaRG0vUaIlU1FbxaWAfwXzwGMkOZ3v7a/qelVv9+CMLZFa9yGlsp4NBv63OqJRbNvkLo8p8nKWHYop9vCNrFIdtsMl+AnYxEgMx/R7bgej1r1uw0rlbFI9vpui9Jl2ojuHqQrP0VqxG4AxvSUpUuXoqqqyvUcoqGOIZEOeul0Gg8//DD+4z/+AwCgdo9EvHUKRBqeQ2UgROYd016ERF36r4Lam5CYqT8o6DEoElGvBPbuBQQspZerhypKYMgKDHGBeywWX7+U0pinXuz1pfTvHZXSmB7h94ah38qkug4ZjXjPO9R1oyfQq+cvrUFWxLyHlZrH/UKqqnr2HAKAVJTg4357EwvhGQ4BY7VTPSKRHL4ZWuV+AMCll16Kq666CmrQ3wbREMaQSJTx7LPP4he/+AVSqRREqhIVDVOg9KjeS5RrGmRa83wRI9Pp7BOn2zvVHj2JlsEeEgEGRaKhrhchMbAXEfAPiWZ4KtOQaN6ffUOilEDEY8tq8/7pdb457NMrBJorhkY96td1o4zfcSlzhovaibQW7nhFzL1+M7h5nI9kKtxxj/abo4Hy5lSaxzPn69EUekZ/DD3ajWg0ih/+8IdYtGiR+zWJDiIMiUQ2GzZswM0334yWlhZAi6Ci8XCoHVXZuS6OFysylTJ6EzNDluwvZqSUQDqdPQ7khkXdmMfoH/T8FwcIDIkAexOJqG+EnYPsEgJzFs/yGWpqXMblOvbgVGYh0Xlf9gyJZjlnSDQf1/XMQmguc+Bzzne0T7cdj6j5/05mr5wecFxKQFWzc/TNnyedHToqo5G88/OOO3//mXAoNKMXM6/9yVS442nNCKjO9plTRTK9pHntM8NlWkO6uhMVUxvQ1taGUaNG4ac//SlmzpwJImJIJMqzb98+/K//9b+wadMmQALR1npEm8dAQOSHRU0zgqLJERZlOm0ERftxIBsWw/QmmsNo3F5olHtvIm8vRENTIYtUOUJg3urKbiHRViYvJDrvhWUUEt3ux3kh0VnGHhLN+ehA9rnG/vM7F41xrqbt3G/Q2ctm9h76Hbedn7PoTDp/XmHgcXsvoi0cWscr49lz/I4DOeHQ7bg9HLq2zxYOJSRSo/YhXbsHUkpMnz4dP/3pTzF27FgQkYEhkchFT08PHnjgATz11FMAALWzGvGGiRB65gnVFhat3kQ7+2IIZm+i87gpTG+i/Xz7C45yD4kAgyLRUFPoKsa2+53r9jvOkOgoI3wWpgFQNiHR616cExKdZdRMT56999C6rq0X0dl7aDJ72XSP42YItPce+h13nG+GLHPoqFPgcTMkptJ5G9lbvYwu4dA6HlFdw6F1bVVxDYcArF5QezgEAKmk0VO3HVpVOwDgq1/9Kq699lrE43EQURZDIpGPZ599Fvfccw96enogUlHE906E2jMsW8DsMfRaxEYoxuI1XpPqhVJ4SASyLxz6Y8gpQyIRmYrd5kYo/vuz+qwyKoK2thjgkOi3OqpvQASMXkR772FOvZmQ6Ld1RUTN7z20M392r3u838qo9lVR3QJgNJINdh7HzZ/LGQCBTIB0CY/W8UzbnOHQYv4tuv3uVDX7vGk7X4t1omfsNshICvF4HD/4wQ84/5DIA0MiUYCtW7filltuwc6dOwEpEGs+FJHWzPDTDGv+odcLKE33D1u69NnOwmcVVUUp/95E3mKIhoYBCIjGZQNCYsDxXoXEoC0w/H4uXUL4rDwqpYSIRNxDjlEgGyJd69f9jwf9e/m1XdONXkavutOasaCM1/FUGrIi5hkAA4+H2M/RU08SiMdywqGERKpmH/S6BmiahvHjx+O2227DlClT/K9DdBBjSCQKobOzE3fddRdeeuklAIDSVY14wwQomjHUJme7C7cnZil9t8uALiE1zXPeoec7zVb1ZRwSAQZFoqGgFyHR+ORxfl+HRL+9Er2ubd4TPVcezdwTvQJm5ny3gGqteuqcb5gtYDbc+zkB8F1523XBG+f5Xquiarr/qqjm0FKvVUdTae/j5oqmqkf7zONebQs63pOE1HQI27V1NYWeuu3QKzsAACeeeCJuvPFGVFdXu9dBRAAYEolCk1Liqaeewq9+9Sv09PQAmop4w3hEumry90R0PnFrmd5ArxcqZkgEvF8U+O3J2B+rnIaow/9c3mqIBrViQmIh8xFdjucsWuN2bww4nnu+y4I5zsfs90FVye9FlLbhlYrqf77L9h32e7XXgjZWiHQGVOe8Qedx53OE1/nmZ2eIM3v1NM041xlw7QvTRNT837cZ4PyOm22scJn/Zz8ed9k2I5W29hYWbudnAiIAKySmq9pQcWQz2traUFFRgeuuuw5nnXWW/96bRASAIZGoYDt27MCyZcuwefNmAECkbTSiDWMhNJf/StYqqPZVSt3ftZZe8w6BwJAI9ENvYm7h8GXzzuUth2jQ6sWqpsZDPiubFhoSA1Y9zV8V1fG9vRfQ7f6Xs+qoI6A5A6L9zTivLZGcbXOsWpoXIJ3PAfY6VNvWFW4jTezHneHQ/NkU2/MTkLuStr0X0WXV0pyAaQ+Hfsftz2H2kOd2PJ6/Kqq0rRSeExJ7Mvsh2oeuxlUkR+1CekQTAGDatGlYunQpJk6cCCIKhyGRqAjJZBL/5//8HyxfvhwAIHpiiO0eBzVRmV9YiNyQaHK8wMgLiUDOAjVlFRKzJxV+DsCgSDRY9WJvROPhgP0R/ba+AHKDU8Bx9/NF9tqK8F/QRSj54dBkBki3kRpCCb/iqaP30Doe8V911Lq+1/OC/Xy3qQpmiHN9brKFRI9VS63zzaGlfsfd2miGPK/j8eyqqPZwaLJCoq330KRVdCE5bhdktAcA8LWvfQ3f+ta3EIu59E4SkSeGRKJeWLNmDW6//XY0NzcDEog0j0a0aQyEdLz40T3mJJovWLxCol05hkTjxOLOAxgWiQabMCHRb6EXZIJiwGIwvsMBvebi2Y77nh+0mql9mKXbPcq+2qnz/hcwvxKAbw+jUUXA9c32e81Tt69K6lbGvtiN1/OKeY2gRXGCjgfV77coG+AaEI3qMyuL2/dUFDpSY/ZBG90MKSXq6upw0003Yd68ee7XICJfDIlEvdTe3o4HHngAK1asAODRq6hp3u9YI/NCwWdhmkyh4hevAfo2KBon9+Jc3oaIBoWgkNjbgIjeb1kh/I57Xd++EI1930In3VxxNGBFUq9zpQ4RifisZh2wIqqmG8c9rh20YqrUdYho1DOcSV3PnwtpP55OBx/3WURIpjXv9ptlUin/f+N0Om9bEq2iC8lDd0HGjd7DRYsW4dprr8Xw4cN9r0VE3hgSiUpk5cqV+MUvfoGWlpb8XsWAkAiECIohgmRvF7AZsJAIMCgSlbte9iIGDjUFrF64PutJdIYPqefem91W9HQsRhO4IqnzGvY36IJWU/XoRbV6zBThuuCNde83Q6bzfGteYojjHquWynQ6+LimGSHU9bgG6BqEx7BPmcpseu/1O0rb5i5GjTqk0JEavQ96XQt0XceoUaNwww034Ctf+YrrNYgoPIZEohI6cOAA7r//fvzlL38BkOlV3Hso1I4qQOrGu8AeL176LSQC5TU/MacO3o6IylIpA6JX2aD5iHZBQ0bdgqK9F9EZDs06vRajMY8767Tfs5wB0R4OvVYkdVzD2UtnhUPzuD2AOcIhkOmFtQ9ntYU/t+NWGdvvwhkCrSGfZh1exzO9k86QKM2FbzIrgDtDohUOzZ/VLYSmbXMXVRVQVGhVHUiO3Q0ZMxauOfXUU3H99dejpqYm/3wiKhhDIlEfeO2113DPPfcYcxUBqK01iO0ZAyS93yXv85AI5L8oKnWvInsTiYaeUgdEt3OCVjZ1CupNhGPYqRkQ3cIhkBsQPRajseYqet2n7IvZuC14owRcQ1Xz59o5jyuKazi0mmnrJXSGP9fjjjqEqlhB1xkOPY87hq6aIdEZDq3jtpAoU6lsODTZQ6LLNWSFgmTdXmg1rQCAMWPG4J/+6Z+wYMECEFHpMCQS9ZGOjg789re/xZNPPmk8oadVRHePhrp/OATyw+KAhETrxBKFRfYmEg0tfRUQ7ed5lAnsTQw77NQZzNxEI/5D8oN6LoUthAL59zEzIPpcQ0Qi7uHQftwjHALZXkK38JetQ/U/Hou6hkPX4y7zGkUkYrQhM7TUjYjF8nsP7WJR93AICa22Hcn6RkDVIITAueeei6uuugrDhg1zvRYRFY8hkaiPbdiwAXfffTe2bdsGAFDaKxHdVQelJ/tuqhCiJIvXGEVCDjl1PbkEYZFBkWho6MuAaJ5bwEqgrnqziI1JcQS8vEqC2xm42qe50Irf/TFMG/zuw2HCcJg6go77rbRt/j14BESjjHAPhz7X0OM9SNbvg17dDQCYPHkybrzxRnz+85/3roeIeoUhkagfpNNpLF++HP/6r/+KZDJpLGzTWItIwygI3fYiS9P8X5j1ZW+iVUEJ5isyKBINfr1cydQoEtCT2JuQaC7g4lPGKySa90nflVR1mT9P0X7MPlfRtw6fa9gXvPE7rvhdQws+7ldH0HHA6Nnz+zlsC+t4l9H8/2bMYGirQyoaUoc0Q45th6ZpiMViuOKKK3DJJZcg4rPKKhH1HkMiUT/avXs3HnjgAbzxxhvGAykV0T22Iai67v+iYbCExBD1BJ/PWxPRgCrVnohB5xYTFJ0rfHqUcZ6bHa6pGwHSeW3n/c252qlzKyG3oOtcJMwtzEiZs6Kp54I4Zsh0+z2b4c7clsPvuF8dZjvc6jCHfXr9HGY4NAOe2+qwmWPG9h1+xzXr38QaWjq2EYgax0844QRcffXVGDduXH4dRFRyDIlEA+DNN9/EAw88gJ07dwIARGccsV11UDpj+eHI/uKhDEKiUYS9iUQHhb7qTQxYtCa3CUWEREdAtIdDAPkB0e2epthWK3XbZ9YZED0Wo8m/h/tsqeE25zBvRVQtt4wzADqPF1OHPRx61aHpucNCnb9TWzg05YREWzi0jkcj0CsSSI7bB70qAQCYMGECrr/+esybNw9E1H8YEokGSCqVwmOPPYY//OEP6O7uBiSgtlQjsnsklJTjydg+3yVo3iKGUG8iwKBINJD6ojcxYPsL92bYjntt1m6WyQTEnPug474poraVSN0EzVMEcgMkkF/WDIg+i83krZiaty1HJrzZ5/g5y1irqrqEQ3sdfmXMOtzCof1nAfJ7D03m79QlHJqskKhpOeEQAPRoGunD9kMb2Q4AqKysxBVXXIELL7wQUY+9F4mo7zAkEg2wpqYmPPzww3j++eeNB3SByL4RiOytzZ2vaOcTFEP9l2ZvIhGFUYKQaBQRwWV9gqKwBUBfOfsUetx/3PZQDNmObINs7fC6z6lquIVmAP+w6ndcVfxDKGAEQK9w6OT1s0Qi3uHQ0Va3cAhk5n9mrm8PiFLRkR7bCmVilzFnH8DChQvx7W9/G3V1df7tJaI+w5BIVCY2btyIX//611i3bp3xQEpBdM9IqE3ZLTMsg2XIaci6guvgbYpoQJSqJzFEkAzVm+gXEs3jXvdHKXP2InQvIoMXswnqZTQXvPGjabnbbuQ1RA/+nUndP4ja5wn6lQn4vVtzCT3CoTmX0H9lbWMOqHRuaTHmAFKH7geixu9y9uzZuPrqqzF9+nTfNhFR32NIJCojUkqsXLkSDz/8MD777DMAgEhEEd09EkprVXZxmxD15CyK4GQfHuX1QoRBkejgFiYgAuGHmwaFnt6ExKDVQQHPgGh/GZSzr6K9jH1enVeIzFmIxqWMPWSFKeMVNO2rgPrUYQXeMGVc5PzMbr83sx3SJxTrtt7HTBkJCb22E6n6/ZAVxn6JEydOxHe+8x3Mnz8/eNsTIuoXDIlEZSidTuOpp57C73//e7S2tgIARGcM0T0jobTGAWsBVPcnU+m2OIKT2yp9OZWUWUgEGBSJ+kupA2LI8kUPOfVaHdTkEhCDFrNxnVPnDJG2e6C1rUbeAi+OHji3cBdUxt4DJ6XRDmcwswU/q70ebbHa6hKKrZ/b/ntxkJqWF8Bz6PlDU6WqQB/RjVR9C2SVMay0pqYGV155Jc455xxuaUFUZhgSicpYZ2cn/vznP+Oxxx4zFrcBoHTEEdlZC6U9bpVzffHjtVqfyW21PiDcXBv7tdibSDR0lCgcGkUCVjV1E3YBG3tQDNrI3hYQvRazsQdEzzl19kBlzq1zXDOn585r7p4ZqPzm9jnqcO3t9Cnj1RbXMhnOcJgto9rK2HoP3X4ml3AIANqIJNLjWqBX9wAAqqqqcPHFF+NrX/sahg0bBiIqPwyJRINAa2srHnnkETz++OPWxH6lrQKRXTVQOvPDYvYd8l4sLhO0sp91OnsTiYaEvg6IYc8vJCjaVw91kwmIzl7DnPqC5tPB4424vHqU4HuuIoLLqKpnqLPaElAGQM48Qs8yquIZDo32OuZ4utWjqp7hUB/Wg9S4Vug1xnYWsVgM559/Pi677DLU1ta6tomIygNDItEg0tjYiH/7t3/D008/jXRmqXKltQKR3flh0bM30akE4Y1BkWgIKPVKpr2oo9eL2ABGcDG3TghYzCZI3pYabu0poTCh1bOMrrtvA2KnaeEW+gkK4bqeE1it6qsTSNe3WeFQVVWcffbZuPzyy7liKdEgwZBINAjt3r0bf/jDH/D8889Dyzw5KwfiUHfXQGmPZ1dDHaohMadO3sKISmKQhETfuYn2wGP2NDrZ7xleYdNZjxvncFUXORvFhygT5lqBZfyCr3ktM9y5NsjW6xpwLWt+JDIL0gxPID2uDfpwY1ipqqo47bTTcMUVV2DcuHHudRFRWWJIJBrEdu3ahUceeQTPPvusFRZFexyR3SOgHKjIrIZ6EARFgGGRqLf6a7hpyDrcgqJrQPQaJhm0mI1bQLQHLcA9SDmv57LvonOj+LBlPK9ltidMm93K2MOheS2v34+9jEd77AvfSEjoNQmk6lshq43pEJFIBGeccQYWL17McEg0SDEkEg0BDQ0NeOSRR/DMM88glTKWFBedMUT2DIfSXJm/z6LTUAiJOdfgbY2oKP3VmxiyHntQzAuIXsMk7QHI615gD1Jec+7sAdHnWlZPmudCNOHKuF7La4EYezm/Ms5w6FbGa76mS5vsLxklJOTIbqTqD0AOM8JhLBbDOeecg0suuQRjx44FEQ1eDIlEQ0hTUxOWL1+OJ598Ej09xnAfkVCh7h0OtXEYhF78nohhlFVQBBgWiQpVbr2JAKCI8HP+guYpAsE9jG5lPK4lhPAOfmZVjk3kveryDH1ebfJqt8cKrjnXspfzC9tu4VDRoY3phDa2HbLCmBtfUVGBc889F1/72tcwevRo9/qIaFBhSCQagvbv34/HH38cjz/+ONra2owH0wrUhmGINAyHSLkMoerP3sQSXS/cdXiLIwqtP0Ni2Hq8Nq+3sebG+YVEc45d0GIsQPDvwVzUpRRlzOuFaVPQIjJ+C9Eg83tyblfhVc6x8I2Makgf0g7tkA4gYpw7YsQInHvuubjwwgu5WinREMOQSDSEJRIJPPfcc/j3f/937Nq1y3hQB9SmYVD3DIeSiGYLD9XeRIBBkSiMQlboDNkL2Oug6NOLmL93YAkWffFa7Ma4YO73YcqFrcuvTWa7wpTzkPe7CiiTU31FEtqh7dBGdwKZZhx22GG46KKLcMYZZ6CysjLw+kQ0+DAkEh0ENE3DypUrsXz5cnzwwQfW40prBdSGaiitmUVuhmpvIsCgSOSnmC0c+ro30SUg5rxk0WW2jNdiLvDpZXSbg+c3pDPMoi9muULqcvIaIupRxr6IjJPzJZ5vGfPerWQXo9EOaYdem7DKzpw5E5dccgnmz58PNcTWIUQ0eDEkEh1k1q9fj+XLl2PlypXZFxcJFeq+aqj7KiHSvX/iL8veRIBBkcipN/v79WVvoi0g5gVDZxmXBWg8exn9et3CLubitihOiRaGcRWwgAyQG/7C7ueYFw4BSFWDNrYLWl2HNd9QCIEFCxbga1/7GmbOnOndTiIaUhgSiQ5Su3fvxhNPPIFnnnkG7e3txoO6gNpUCXXvMChdsaLrLtveRIBBkchUig3g+yIoOss67yceQ1DdXs4UveBNgb15RdUVYpiok9dLNuf8wVBsv1e9KgltbAe0MV2AYjxeXV2NM888E+eddx4OO+ywgttKRIMbQyLRQS6RSOCvf/0r/t//+3/YvHmz9bhojyGydxiUlkoIWfiLSQZFojJWioAI9F1I9Lt/ePUyOqsL8TPmDEX1CG1hyhRVLqBd5s/g+zItM+TWl20YaU6voZDQR3chPbbD2t8QAKZNm4bzzjsPp556KioqKvzrJqIhiyGRiAAYL0o2bNiAxx9/HC+//DLSaWOoEdICamMV1MZhULqi/pU46yznoAgwLNLBq5x6EcNuhQEEByJ7tWEXvCmyjLNc2PpClfMLfy49q4Fl7Icqk9AO6YQ2uguIGvfdSCSCk046Ceeeey5mzpwZvgeWiIYshkQiytPc3Iynn34aTz/9NBoaGqzHRUcU6r5hUJsrIbQQy9IXEhKzJxV+TrF4+6ODVW9DQD9ugWEpoMfMd8Eb89IhypSsXNi22Xv9nNzup35Dc233UhkBtNGZuYbVKevxQw45BF/96ldx9tlnY9SoUfn1E9FBiyGRiDxpmoZ33nkHzzzzDF577bVs76ImoDZXQt1XBdERM1ZG9VBUUMyeXPy5oa/BWyAdpPpoRVOjWD8FRI/5ikEvbcIMV+11OZ+5lEHlPI85uQ3Nzdw3JSTk8CTSh3RBH9UNqEa5SCSC+fPn46yzzsKXvvQlrlJKRK4YEokolNbWVqxYsQJPP/00duzYYT0uuiNQmyqhNFVB6YnknderkJhbUWnqca2bt0E6SA3U3ogF1AcgXHAqYChqnwkT6sKUK5Tt/qjH09BHd0Or64Ss1KzHDz/8cJx11lk4/fTTufE9EQViSCSigkgp8cEHH+Dpp5/Giy++iEQiu4eWOBCD2lSVMxy1ZCHRakAfhUXeCulgU2hPYn/2Ikq9z4ailrxcKe5x5n0tzM/scg+Uqg5tdDe0MV2QI7KL0FRWVuLkk0/G2Wefjc997nOca0hEoTEkElHRurq68Morr+Avf/kL3nnnHduiC4DSWgG1qQrK/gpA86+nYAyKRMUrNigUENp8g6JbPc7/04UERKD4OXy9LRfEL+y63ccKKCuFhD4yAW1Ml7HhfeZUIQTmzJmDhQsX4sQTT0RVVVXh7Saigx5DIhGVRGNjI1544QX85S9/wZYtW7IH0gJKcyXUpgqItrjv/MWCMCgSFa4fFqzJFnW5lv18r//DftewnyOUwufvhSlbSJ1unG30OubkU9YakaEA+oge6GO6oY3qBiLZ9k2dOhWnnXYaTjnlFBxyyCGFt5uIyIYhkYhKbuvWrXj++efxwgsvoLGxMXsgpUBpqTAC44F4Ufsv5mBQJAqnn/dFNIqWaGEcrx63Ug31tCu2Tr/AG/Y+5ShrBkMJCVnTA210AvrohLVtBQCMHTsWp556Kk477TQcccQRhbebiMgDQyIR9RlN0/D+++/jxRdfxKuvvoq2trbsQTMwNmd6GIsNjFzQhshfqeeh9WVQDBOqCh2KGqSQ+Y/2sn1w77GCobAFw1G5wbCmpgYLFizAaaedhlmzZkFRSvz7ICICQyIR9ZN0Oo33338fL730kktgFFBaKqG0VEBpLSIwcqsMIm+DpRcxzPXDzvELszCOs+4w5UrEbUEvKST0mh7oo7szwTBbpra2FgsWLMCJJ56I2bNnIxLJX0maiKiUGBKJqN+l02msXbvWCoytra3Zg5qA0ho3AuP+OEQ65B5e/REUc67HWycNEqUIiSUMiGZAKqqXMbei/i/rw+/n8lrlWUY06CN7oI9KQK/tsfYyBIBRo0ZZwXDWrFkMhkTUrxgSiWhAmYHxlVdeweuvv547h1ECoj1mBMaWCigJnxdJ/R0S867PWymVsQFc0dQtIPXJMNS+LuvC72dz7S2EhKxMQx+ZgD6qB3J4Eva1vMaMGWMFw6OPPpob3RPRgGFIJKKyIaXExx9/jNdffx2vv/46Nm/enHNcdEWg7I9D2V8B0R7LH5Y60EERYFik8lVIUCxi3p9fOHIrF0Tqsm+GrfZCMfu+SiEhhyeN3sKRiZwN7gFg2rRpmD9/PubPn48jjzySexkSUVlgSCSistXQ0GAFxvfeew/pdDp7UBNQ2mJQWjPDUnsyvYwMikS5+qEXMVx14YahhilbqELqdpYtKhjG08Yw0toe6DW5w0ij0SjmzJmD+fPn4/jjj8fYsWMLrp+IqK8xJBLRoNDR0YHVq1dj1apVWL16Nfbv359zXHSrEK3GwjdKawRCL4MV/3h7pYHUz3MRg6vKbY9X+CpFT6NfsAvbjkJIRYdek4Rem4Cs7cnrLaytrcWxxx6L+fPnY968edzgnojKHkMiEQ06uq5jy5YtWL16Nd566y1s2LABmmZ7UaYD4kAs09MYg+iIQmCAhnDxFkv9bQC3vHA/vffDUIPmNYYJemHbEYaEhKxOGauR1mbmFtp+TaqqYubMmZg3bx7mzZuHadOmcasKIhpUGBKJaNDr7OzEu+++i7feegurV6/G3r17cwtkhqaKNiM4is5I/4dG3mqpr/XlXLZS703oeolwoa/YIaC9ISEhh6Wg1yQha3qgD08Ckdw21NfXW6Hwi1/8IoYNG9avbSQiKiWGRCIaUqSU+PTTT7FmzRq8++67eP/999He3p5bKO0IjV39FBp5u6W+1FchsR8CYrmRkJBVaeg1PZA1SegjevJCYXV1NWbPno1jjjkG8+bNw/jx47noDBENGQyJRDSkmUNT33vvPbz77rtYu3Yturq6cgulBZQDMYgDUSjtmeGpeh++2ONtl/pKKUNK2HBoLhY1WMOk1DMrkKagj0gZK5EOT+ZsZg8AVVVV+MIXvoA5c+Zgzpw5mDp1KreoIKIhiyGRiA4q6XQaH3/8Md599128++672LBhAxKJRG4hHRAdUSjtUWNu44EYRLoPXgDz9kul1teL1bitHjzYwqHUIaMa9OEpyBFJ43N1KmdOIQBUVlZi1qxZmDNnDmbPno0jjzySG9oT0UGDIZGIDmrpdBpbtmzBunXrsGHDBqxbtw4tLS155USXCtEehdKR6WnsjOTv01gM3oKp1HoTFO2BL8x2Mn0ZEKVeeP3OXk2zl7AqbfQUVhvB0Ln6KACMGjUKRx99NI4++mjMnDmToZCIDmoMiURENlJK7NmzB+vWrcP69euxfv16bN++Pb+gDojOaCY4Ro3g2K0WP7eRt2Lqrf6eD+cV4IrpbXSeI5TgkOhyHQkJWakZK49WpyCHpyCH5fcSAsDkyZMxc+ZMKxiOGzeOcwqJiDIYEomIArS1tWHjxo348MMPrY8DBw7kF0wLY5iq2dPY2YvgyFszhTWQ4TBMb2Mx5zjDoVcgrNAgh6Ugq9NGKKxO5S0wAwDDhw/HjBkzMGPGDMycORMzZ87E8OHDw7WdiOggxJBIRFQgKSV2796NDz/8EB999BE+/PBDbNq0CclkMr+wJjKBMQKlMxMeu4pcGIe3azIdZD1eUpGQVSnIYWnow4zPclgaUPP/T8TjcUyfPt0KhUcddRR7CYmICsSQSERUAul0Gtu2bcOHH36Ijz/+GFu2bMHWrVvR09OTX1jC6GHsjBrbb3RFoHRFgAR7HSmEIRx2JCRQoUGvTBvzCIeljZ7CSg1u/zVisRimTJmCadOmWYFw0qRJnEtIRNRLDIlERH1E0zTs3LkTW7ZswebNm63P+/fv9zgBEN0RKziK7gLDI2/nB4chEBKtoaJVmTBYmf0Mj10lRo0ahalTp2Lq1KmYNm0apk6divHjx3MbCiKiPsCQSETUj6SUaG5uxpYtW7BlyxZs27YN27dvx44dO9yHqwLZ8JiIGD2Q3ZnPiYj71hy8rR8cBkFYlBEdsiJtLCZTmTaCYSYQui0mAxi9gxMnTsThhx9u9RJOmTIFo0eP7t/GExEdxBgSiYjKgKZp2LNnD7Zt24YdO3aEC48AkBK54TGRCY8J1VhIh3f4oa0MgqJUdSMEmmHQ9tm5Ib1dLBbDpEmTcPjhh2Py5MnW1/X19RwuSkQ0wBgSiYjKmBket2/fjp07d2Lnzp347LPPsHPnTjQ2NvqfnBYQParxkVCMYas9aiZIqhDaINsEnfo9FEpIQM0MDY1rkBUaEM98bX7vspqoXV1dHcaPH299TJw4EZMnT8bYsWM5VJSIqEwxJBIRDVLd3d3YvXu3FRrNz7t27UJLS0twBVaIVICk8Vkk7V9neiOL3fuReq8PQ6GEBCISMqZBxnQgpkHGdciYBsR0KwgGhUDAmC9oD4Ljx4/HhAkTMG7cOFRWVvbZz0BERH2DIZGIaAjq6enB3r17sXfvXuzZswd79uzJ+b61tTVcRRqM0JhUMh8qkFIgUiLzORMsU2px23pQvmKDoZRG8FMkEJOQUR0yqgP2zzEjBMq4EQq95gU6jRo1Coceeqj1UV9fj7Fjx1rfV1RUFNdmIiIqSwyJREQHoe7ubjQ0NGDv3r1oampCY2Nj3ue2trbCKtWQDY4pBUgrEGkjTFpfu32WDJcWW0CUQgciOqQqjc8R4zMiEtL+ORMCzSDotTqol5qaGtTV1WH06NGoq6vDmDFjUFdXh7q6OisMMgQSER1cGBKJiMhVT08PmpubreDY1NSE1tZW7N+/3/q8f/9+tLS0+C+uE0QDoCmAJiA0AWQ+hC4cjynG1zoAXRgfUkDkfG98LfRMOZl5DM6vjU9BQ2lltqDtszQ+Cxi9dkJCKubXmc+KhLR9DQVG2FN0Y46fasz1gyohlezX1rGIHrqXz00sFsOoUaNQW1uL2tpajBw5ErW1tRg9erQVAs2vY7FY8RciIqIhiSGRiIh6RUqJ7u7unODY2tqK9vZ26+PAgQNob29HR0eH9X1HRwcG/ClIIjc45oRBuG7g3p8URUF1dTWqq6sxfPhw68P8vrq62gqBZhCsra1FZWUlRBmsfEpERIMTQyIREQ0IXdfR2dmJ9vZ2dHd3o6ury/Wz8+uenh4kk0mkUqmcz26P6brepz+DqqqIxWKIRqPWh/178+tYLIaqqipUVlZaHxUVFaisrMx7vLKy0gqBVVVVUBSuQktERP2LIZGIiIYsTdMgpYSmadB13fVr+2chBBRFsT6bH87HhRCIRCLcwoGIiIYkhkQiIiIiIiKycAwLERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgsDIlERERERERkYUgkIiIiIiIiC0MiERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgsDIlERERERERkYUgkIiIiIiIiC0MiERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgsDIlERERERERkYUgkIiIiIiIiC0MiERERERERWSID3QAiokJIKZFIJAa6GUREBamoqIAQYqCbQUQUCkMiEQ0qiUQCp59++kA3g4ioICtWrEBlZeVAN4OIKBQONyUiIiIiIiILexKJaNCKrT4EQmbe6xIKhCIAoQCKAISAUMxjmceFABQBYZaxjgnrHOsDsD2m5B43TrQek0Jk33Kz1WE9LrLXsj8mhVGNdUwx6jUeF9Yx8xyZecw6DmTrUDLlzePIvUbOOZnmS8XlWE555LQx+5jIO5Z3DuztcByHx+Me9Xm1I+8cv3qtx2X++bZzrOO2umTmcdjOM45JW3uM48J+zCprHpNWncJeXkjrmPUnZj5uVpcpY/wpSOt78xwl871xzPjePM86JiQEsucpmcesD0jrPEUg53HjfD17HszyOlTznMz32bp0qz7VVr8K43HVrM8qq0M164TZDj1bHtm6jTp1KDCubxwz6lMzjwnoUM3zbeeogHEejOuYvw/ze+NaMvM1MscklMzvRYWAAkDN/GMrEJnHBFQhoECByPzLpZIqLvjWoSAiGmwYEolo8NJE5uUajJCITKDLvPrOHhOAkk1EwkhcmUrMtKAgLwVkE1huMjHrzEsNcDxmvwZcHnOeh2w4tIXEvMdsoc7+vbOJueVdzlF8jnn9GHnt8Pix/Y55/aqKrc9Wp1uA7NOQ6HYczu+lVbe9HfZruh2zQiVsZezl886RLteSOR/2kJgNnpkPr2Mwg6RRpT1QmmESMMMerJBlP2aERD0bsoQ9ZBlfK0IYAS7zGdbXwjrPqAeZOs1zkTkv87jbMds5aibgqlY7zZAoA0OivT7V/H0g9zEF9jba/g2JiAYRDjclIiIiIiIiC0MiERERERERWRgSiYiIiIiIyMKQSERERERERBaGRCIiIiIiIrIwJBIREREREZGFIZGIiIiIiIgs3CeRiAYvVUJKYwNtY98/YfssHBvcm59tX8P+mLR9HeKYbdO87JbnXo9nP8ucr5FzngQAaT6erVNCABLWufbjVh05m/vZ2+LyvcxpkuP34fHhLBtmL0S/Y6GvFfKY/ZK+58mAOqVHGz32SXTUK+zHrLKOfQ/Nr83ywr4/ofmYrX6rPmmrr7h9EiWy50khcz9gfDaOIedxXUhA6Nk6YV5Lt+3nmCmTOS6FbtWHnPozn81rZb5XMmXMzwDyHtNt/63Nr3UB6Mjuk6hnHhPw2icxs/E9jP0YzX8z83slc45z70XFOiasvR0BWHUpEMZ+jxAQmT+SVNLt/yURUfljSCSiQSs5b99AN6FvmK/Bi+TMOEQm+5+WPpANKZo9pXMwFBFRX+EdloiIiIiIiCxCStmL96uJiPqXlBKJRGKgm0FDSCKRwN/+7d8CAJ588klUVFQMcItoKHD+XdXW1kII9u0T0eDA4aZENKgIIVBZWTnQzaAhqqKign9fVHIVFRUMiEQ0qHC4KREREREREVkYEomIiIiIiMjCkEhEREREREQWhkQiIiIiIiKycHVTIiIiIiIisrAnkYiIiIiIiCwMiURERERERGRhSCQiIiIiIiILQyIRERERERFZGBKJiIiIiIjIwpBIREREREREFoZEIiIiIiIisjAkEhERERERkSUy0A0gIiIKq6urC8uXL8crr7yCvXv3QlEUTJgwASeffDIuuOACRKPRoutuaWnBo48+ilWrVqGhoQHxeByTJ0/GokWLcNZZZ0EI4Xrezp07sXLlSrz//vvYunUrWlpaoKoqxowZg1mzZuG8887D9OnTi24X9b1y/Lvy8sMf/hBvvfUWAGD27Nl44IEHim4bEZEXIaWUA90IIiKiIHv37sV1112HvXv3AgAqKiqg6zqSySQAYNq0abjvvvswfPjwguvetGkTbrjhBrS1tQEAKisrkUwmoWkaAGDevHm444478sLC+vXrcfXVV+c8VlVVhVQqhVQqBQBQFAVf//rX8Q//8A8Ft4v6Xjn+XXl59tlncccdd1jfMyQSUV/hcFMiIip76XQaP/rRj7B3716MHj0a99xzD55//nk8//zzWLp0KaqqqrB582bcdtttBdfd0dGBm266CW1tbZg4cSJ++9vfYsWKFXj++efxT//0T4hEIli9ejV+9atfubZLVVWccMIJWLZsGZ566ik899xzeP755/Gb3/wGs2bNgq7r+MMf/oCnn366FL8KKqFy/bty09zcjAcffBDV1dWYNGlSwe0hIioEQyIREZW95557Dp988gkA4LbbbsPcuXMBGL10p5xyCm644QYAwJtvvol33nmnoLqXL1+OlpYWxONx3HXXXZgxYwYAIBqN4vzzz8eVV14JAHjqqafw2Wef5Zx72GGH4Y9//CNuv/12nHjiiaipqQEAqKqKo446Cvfeey+mTJkCAHjkkUeK/Ompr5Tr35Wbe+65B+3t7fjud7+LkSNHFtQWIqJCMSQSEVHZe+655wAAc+bMwcyZM/OOn3LKKaivr88pG9aKFSusOsaNG5d3/Pzzz0dlZSU0TcNf/vKXnGOHHHIIJkyY4Fl3NBrFwoULAQC7du1Ce3t7QW2jvlWuf1dOL774Il577TXMnj0bZ511VkHtICIqBkMiERGVtUQigQ0bNgAAvvzlL7uWEULg2GOPBQC8/fbboev+9NNP0dDQAADW+U5VVVWYNWtWwXWbYrGY9bU5F40G3mD5u2pra8P999+PWCyGH/7whwUvdENEVAyGRCIiKms7duyArusAgMmTJ3uWM4+1tLTgwIEDoeo2hxoG1X3EEUcAALZv3x6qXrv33nsPADB69GhrOCoNvMHyd3X//fdj//79uPzyy317rYmISokhkYiIylpTU5P1dV1dnWe5MWPGuJ7jp7m5uaC6Ozs70dXVFapuANiwYQNWrlwJADj77LPZC1RGBsPf1euvv44XXngBkydPxmWXXRbq2kREpcCQSEREZc3+4jkej3uWq6iocD1noOpubW3FsmXLoOs6xo8fj0svvTTUedQ/yv3vqqOjA7/85S+hKApuvPFGRCLc2pqI+g9DIhERUYl1dXXhn//5n7F3715UVVVh2bJlqKqqGuhm0SDyv//3/0ZTUxPOPfdcfP7znx/o5hDRQYYhkYiIypo9XPX09HiWSyQSruf0d93d3d246aab8MEHH6CyshJ33XUXpk6dGqo91H/K+e9qzZo1eOaZZ1BXV4errroq1DWJiEqJIZGIiMqafU5YY2OjZzn7fDH7OX5Gjx5dUN3Dhg3zDQpmQFy7di0qKytx5513WitYUnkp57+ru+66CwDwj//4jwCMnmn7h7ngjq7r1mNcOZeISokD3ImIqKxNmjQJiqJA13Vs27bNc7uCbdu2AQBGjRqFESNGhKrbXF3SPP/www93LWeuVul1HMgGxPfffx8VFRW48847MXv27FDtoP5Xzn9Xe/fuBQAsW7bM9zrr1q3DokWLAAC33347TjjhhFDtIyIKwp5EIiIqaxUVFdZG52+99ZZrGSklVq9eDQD40pe+FLruCRMmYOzYsb51d3d3Y926db51d3d348Ybb8T7779vDTFlQCxvg+HviohooDAkEhFR2TN7S9577z1s3Lgx7/hLL72E3bt355QNQwiB008/HQDw4osvYs+ePXllHn/8cXR3d0NVVZx22ml5x82AaB9iyoA4OJTr39Wrr77q+2H+fc2ePdt6jL2IRFRKDIlERFT2Fi1ahCOOOAJSStxyyy145513ABhzsl566SXcfffdAIBjjz0WxxxzTM65//Iv/4IFCxZgwYIFri/WL7nkEowaNQqJRAI33XQTNm3aBABIpVJ44okn8H//7/8FAJxzzjl5m5knEgn86Ec/sgIiexAHl3L9uyIiGmick0hERGUvEongjjvuwPXXX4+9e/fie9/7HioqKqDrOpLJJABg2rRpuPXWWwuuu7q6GnfeeSduuOEGbN++Hd/61rdQVVWFZDKJdDoNwBgOeM011+Sd+/LLL+O9994DAGiahqVLl/pe67bbbsPRRx9dcBupb5Tr3xUR0UBjSCQiokGhvr4e//qv/4rly5fjlVdewd69exGJRDB58mSccsopuOCCCxCNRouqe/r06fjDH/6ARx99FG+88Qb27duHiooKHHHEEVi0aBHOPPNMKEr+4BsppfV1MplES0uL73XMcEDloxz/roiIBpqQ9mc4IiIiIiIiOqjx7SsiIiIiIiKyMCQSERERERGRhSGRiIiIiIiILAyJREREREREZGFIJCIiIiIiIgtDIhEREREREVkYEomIiIiIiMjCkEhEREREREQWhkQiIiIiIiKyMCQSERERERGRhSGRiIiIiIiILAyJREREREREZGFIJCIiIiIiIgtDIhER9Zn7778fCxYswLXXXjvQTaEB1tHRgbPOOgsLFizAq6++OtDNISIiH5GBbgAREeXr7OzE5s2b8dFHH2HTpk3YtGkTdu3aBSklAODf//3fUV9f3yfXllLiwgsvRGNjIxYvXoxvf/vbRdWzefNmPPHEEwCAq666qoQtHFiffPIJVq9ejfXr1+OTTz5Bc3MzNE3D8OHDMWXKFBx33HFYtGgRqqurB7qpZaW6uhqXXHIJfve73+FXv/oVjj32WMTj8YFuFhERuWBIJCIqQ9dddx02b948INf+6KOP0NjYCAA44YQTiq7noYcegqZpOPbYY3H00UeXqnkD6rrrrsP777/veqylpQUtLS14++238ac//QlLlizBvHnz+reBZe7CCy/EY489hoaGBvznf/4nFi9ePNBNIiIiFxxuSkRUhsweQ8DogZkzZw5GjRrVL9d+7bXXAAB1dXU46qijiqpj3bp1WLNmDQAMqSBghufhw4fjzDPPxJIlS/Dggw/id7/7HZYtW4bjjjsOgBEYlyxZgrVr1w5kc8tOZWUlLrjgAgDAo48+iq6urgFuERERuWFPIhFRGTrzzDNRW1uL6dOnY/z48RBC4LrrrkNLS0ufX9sMifPnz4cQoqg6/vznPwMA6uvr8YUvfKFkbRto48ePx+WXX45TTjkFsVgs59j06dNx4okn4pFHHsFvfvMbJJNJ/PKXv8Qf//jHAWpteVq4cCH+5V/+Be3t7XjmmWdw0UUXDXSTiIjIgT2JRERl6MILL8Spp56KCRMmFB3UivHZZ59hx44dAIofatrY2IhVq1YBAE4//fR+bX9fu/vuu3HGGWfkBUS7xYsXY9q0aQCA7du3Y+vWrf3VvEGhvr4es2bNAgD893//9wC3hoiI3LAnkYiILOaqk+YQ12K88MIL0HUdAHDyySeHOiedTuPFF1/EypUr8dFHH6G1tRWapqG2thZHHHEE5s6di1NPPRWjR4/OOW/BggUAgEWLFmHJkiX49NNP8Z//+Z94++230dTUhGHDhuHII4/EZZddhtmzZ1vn9fT04Nlnn8WKFSuwc+dOJBIJjBs3DqeddhouuuiiXi+o8sUvftGaU/rZZ59hypQpRde1fft2PPnkk1i7di327NmDRCKB6upqDB8+HPX19TjmmGPwla98BRMnTiyq/nQ6jeeffx4vvfQSPvnkE7S1tUEIgREjRqC2thZHHXUU5s6di/nz5yMajeac6/z9b9++HY8//jjWrFmDpqYmdHd34/bbb897w+Hkk0/G2rVrsWPHDnz00UeYMWNGcb8cIiLqEwyJRERkMYeaHnfccYhEinuKeOONNwAY8/YmTZoUWH7Lli249dZbsXPnzrxjjY2NaGxsxFtvvYWtW7diyZIlnvW8/PLL+NnPfoZEImE91tPTgzfffBNvvfUWbrjhBpxzzjloamrCkiVL8NFHH+Wcv23bNvz2t7/Fm2++iV/+8pe9CorpdNr6WlGKH7Tz5JNP4r777oOmaTmPt7W1oa2tDTt37sTbb7+NrVu34pZbbim4/tbWVvzgBz9wXSTJ/N1v3rwZ//3f/41HH30U48eP96zr2WefxS9/+Uskk8nA69oXMnrjjTcYEomIygxDIhERAQCamprw4YcfAih+qGkymcQHH3wAADjqqKMCh5pu3rwZ11xzDbq7uwEAc+bMwcKFCzFp0iREo1E0Nzdj48aNgfvqbd26FS+++CJGjhyJq666yrr2O++8g3/7t39DIpHAvffei9mzZ+OnP/0ptmzZgnPPPRdf+cpXUFtbi127duGPf/wjtm7dinXr1uHRRx/FN77xjaJ+BwDw7rvvWl9Pnjy5qDo++eQTKyCOGDEC55xzDmbPno3a2lpomobm5mZs2rQJb775ZtFDeu+77z4rIB5zzDFYuHAh6uvrMWzYMHR2dmLHjh1Yu3atNXzYy6ZNm/DCCy9gxIgRuOiii3D00UcjGo1i+/btOPTQQ/PKT548GZWVleju7sa7776LK6+8sqj2ExFR32BIJCIiAMDKlSshpUQsFsOxxx5bVB1bt261etGmT5/uWzadTuPWW2+1AuL1119vrXxpd/zxx+Ob3/wmGhoaPOvavHkzpk2bhvvuuw/Dhw+3Hv/c5z6H8ePHY+nSpUin07jmmmtw4MAB3H333Zg7d65V7sgjj8SXvvQlXH755WhqasITTzyByy+/HKqqFvTzA8aQ3W3btgEwgvKECRMKrgMAXnrpJasH8d5777XmOdqdcMIJ+OY3v4m2traC6+/p6bHC9wknnICf/vSneWFz9uzZ+Nu//Vt0d3f79ohu27YN48ePx4MPPpizCq/X6riqquLII4/E2rVr8fHHH0PX9V71uBIRUWnxjkxERACyQ03nzp2LysrKouqwDxkN2rLjhRdewK5duwAYq7m6BUS7sWPH+h7/0Y9+lBMQTSeeeCLq6uoAAPv378f555+fExBN1dXVOOOMM6xy27dv972em6amJtxzzz0AACEE/vEf/7HgOkzmSrbV1dWuAdGupqam4Prb29utQD979mzf3sjKysrA4bff//73C9qmxSybSCTQ1NQU+jwiIup7DIlERISOjg689957AIofagoAzc3N1tcjRozwLWuGUgC49NJLi74mYAxf9ApSQoicYwsXLvSsx15u9+7dBbUhkUhgyZIlVrhzLpZTKDPYdnR04KWXXiq6Hi81NTXWKq1//etfe7VnYV1dnWvw9mP/+7D/3RAR0cBjSCQiIqxatQrpdBqqqmL+/PlF19PT02N97darZ/fxxx8DMHqUwixw4yfofHtb/FYBtZcrJDSlUincfPPN1mI4X/nKV/DNb34z9PluFi5caPXeLV26FFdffTUeeeQRrFu3zhqi2xvRaBSLFi0CAGzcuBEXX3wx7r77bvz1r38tOCAXs3qrPSTaFxsiIqKBxzmJRERk9erNnDkTtbW1Rddjn8MXtMpla2srgGyPWW9UVFT4HrcPpfQbSmufF2du4xEknU7jlltuwerVqwEA8+bNw49//OOi5jPajRs3Dj//+c/xs5/9DI2NjVi/fj3Wr18PwPg9z5gxAwsWLMDZZ58dGMi9XHvttUgmk1ixYgUOHDiAp556Ck899RQAI7zPmzcPZ555ZmCPaFCvsRv7GwrFrqRLRER9gz2JREQHuWQyibfeegtA74aaAsb8OdOBAwd6VddgkE6nsXTpUmvbj7lz5+L222+3hnH21jHHHIM///nP+MlPfoIzzzzT2oJC0zR88MEHeOihh3DppZdaAbVQ8XgcS5YswZ/+9Cf8wz/8A774xS9aIbqlpQXPPfccrrvuOtx88805oc6pmEVn7Ivt2P9uiIho4PGtOyKig9yaNWus4Yu9DYn27Q6CQmJtbS0aGhoG7aIlZkA0e2G/+MUv4o477ujV/opuYrEYTjrpJJx00kkAjB7Yd955BytWrMCbb76JAwcO4JZbbsGjjz6K0aNHF3WNCRMm4O///u/x93//99A0DZs3b8Ybb7yBJ598Evv378err76K3/3ud7jmmmtK9nO1t7dbXwctSkRERP2LPYlERAc5M+RMmzYN9fX1varLvifgp59+6lvW3CKjubk5sGy5cQbEOXPm4Oc//3nJA6Kb2tpanHLKKbjrrrtw7rnnAgC6u7uxcuXKktRvDmW98sor8fDDD1tDeV944YWS1G/asWMHAKC+vh5VVVUlrZuIiHqHIZGI6CCm6zpef/11AMZiK701duxYjBkzBgDw4Ycf+pZdsGCB9fWjjz7a62v3l3Q6jR//+MdWQJw9ezbuvPPOwHmRfWHevHnW1+Ycz1Kqr6+39nksZi9GL62trdb2J5///OdLVi8REZUGQyIR0UFs/fr1Vriwh7beMIPLjh070NnZ6Vnu5JNPtgLI//zP/+C//uu/fOttaGgoSft6I51OY9myZdYm9H0ZEF955ZXA4GfOJQWAww47rKD6d+/ejTVr1viW2bNnj9XjN27cuILq97Nx40br6y9/+cslq5eIiEqDcxKJiMrQzp07rZUsTeb+ewDw8ssv56xCWllZiRNPPLHg65i9YePGjStqGwM3J510Ev7nf/4Huq5jzZo1+Ju/+RvXcpFIBD/5yU9w9dVXo7u7G/fffz9effVVnH766Zg0aRKi0Siam5vx0Ucf4eWXX8b06dOxZMmSkrSxWLfddhtefvllAEYo+853voM9e/b4njNy5EiMHDmy4Gv913/9F2677TYcc8wxOOaYY3D44YejpqYGqVQKDQ0NeOGFF6xe4EMPPbTgrUsaGhrw/e9/H+PGjcP8+fNx1FFHYezYsYjH42hra8PGjRvxxBNPWKvUXnDBBQX/DF7efvttAMZ8y+OOO65k9RIRUWkwJBIRlaH169fjjjvu8Dz+0EMP5Xx/6KGH9ioklmKoqWnu3Lmoq6tDY2MjVqxY4RkSAWDq1Kn41a9+hVtvvRW7d+/Ge++9h/fee8+1rDmHcSDZN7XftWsXvvOd7wSec8UVV+DKK68s6nrJZBKrVq3CqlWrPMscdthhuOOOO3y39vCze/duPPbYY57HFUXBpZdeivPOO6+o+p3S6TT++te/AjB6r4vdvoOIiPoOQyIR0UFqy5YtVi9Yb1c1tVNVFeeffz5+85vf4M0330Rra6vv3otHHnkk/vSnP2HFihV47bXXsHnzZmv+28iRIzFlyhR86UtfwqmnnlqyNg4GS5cuxerVq7F27Vp88sknaGlpsYaf1tTUYOrUqTjhhBOwcOHCorbcmDVrFh588EGsWbMGGzduRENDA/bv34/Ozk5UVFRg3LhxmDVrFs4+++yS9TIDsP4mAODCCy8sWb1ERFQ6QkopB7oRRETU/37/+9/j97//PUaOHInHH3+8qL3uvHR0dOCSSy7BgQMH8O1vfxuLFy8uWd00uN10001YtWoVjjnmGNx7770D3RwiInLBhWuIiA5S5lDT448/vqQBETA2RzeD4fLly9HV1VXS+mlw2rhxI1atWgUhBK666qqBbg4REXlgSCQiOgilUimccMIJuOKKK3D++ef3yTUuuOACjB8/Hm1tbfiP//iPPrkGDS6/+93vAACnn346jjrqqAFuDREReeFwUyIi6jMffvghVq1aherqalx88cUD3RwaQB0dHXjssccgpcT555/vO0+ViIgGFkMiERERERERWTjclIiIiIiIiCwMiURERERERGRhSCQiIiIiIiILQyIRERERERFZGBKJiIiIiIjIwpBIREREREREFoZEIiIiIiIisjAkEhERERERkYUhkYiIiIiIiCwMiURERERERGRhSCQiIiIiIiILQyIRERERERFZGBKJiIiIiIjIwpBIREREREREFoZEIiIiIiIisvx/bhFQHD9vr/kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADO70lEQVR4nOzdd3gU1f4G8Hdmdje9AAlFuoCAooCKXVEB9YqKvfeOP3u71971WrnqtZcLWAAbeFERRAG5KkVEmvTea0ISUrbM+f2xmcns7rRNNslu8n6eZx9C9uzsbJLdM++cM98jCSEEiIiIiIiIiJKc3Ng7QEREREREROQGAywRERERERGlBAZYIiIiIiIiSgkMsERERERERJQSGGCJiIiIiIgoJTDAEhERERERUUpggCUiIiIiIqKUwABLREREREREKYEBloiIiIiIiFICAywRERERERGlBAZYIiIiIiIiSgkMsERERERERJQSGGCJiIiIiIgoJTDAEhERERERUUpISIBdt24dJEmCJEm4+uqrE7HJZunEE0/Uf45ERFauvvpq/bNi3bp1jb07upEjR+r7NXLkyMbeHUowVVVx2GGHQZIk3HbbbY29O5Qi+LlAFKspZ6dQKISePXtCkiQ88MAD9fIcDTYCO3LkSDz++ON4/PHHG+opG92ECRP011xcXNzYu0PVgsEgpk6din/84x84+eST0a5dO6SlpSE7OxvdunXDxRdfjAkTJiAUCsW13cWLF+O2225Dr169kJ2djby8PBx88MH4xz/+gfXr19fTqyGi5sTv92PevHl49913ceONN+Kwww6Dz+drkIDw7rvv4o8//kB6errtQcm6devw5Zdf4oEHHsApp5yCVq1a6ft34oknun4+Y/Bxc5s+fbrjNsvLy/Hee+9h6NCh6NChA9LT05Geno799tsPp5xyCl599dUG6a9vvPHGiH13e2y0ZcsWPPnkkzj++ONRWFgIr9er910XXHABxo0b57rv2rZtGx577DEcddRRaNWqFdLS0tChQweceuqp+PDDDxEMBuvwCpPLwQcfrP+sf/zxx7gf/7///U9//IEHHhj344UQ+OWXX/DEE0/gtNNOQ8eOHZGeno7MzEx07twZ55xzDj766CNUVVU5bmv69OlxvS+cPhNKSkowffp0vPzyy7jkkktwwAEHQJblej1JunXrVkycOBGPP/44zjjjDLRr105/vi5dusS9vUS+rysrK/HWW2/htNNOQ9u2bZGWlobCwkIceeSRePbZZ7F79+649y9Z3XbbbfrP/ZFHHon78eXl5cjLy4MkSfB4PNiyZQsAQFEUPPzwwwCAV155BatWrUrofgMARAKsXbtWABAAxFVXXWXaZuDAgXqb5uKqq67SX/PatWsd2zfHn1FD++mnn0TLli31n7PdbcCAAWLVqlWutvviiy8Kr9drua2cnBwxZsyYen511FzE+9nSUP7zn//o+/Wf//ynsXenSTr00ENtP7fq6+e+b98+0bZtWwFA3H777ZbtXnvtNdv9GzhwoOvnNP49ublNmzbNdntz584VXbt2ddxO69atxeTJk13vZ7ymTZsmJEmKeM7HHnvM8XEjR44U2dnZjvvft29fx8+F0aNHi8zMTNvt9O/fX6xevbrOrzcZPhdefvllfR8uv/zyuB9/7bXX6o9/4YUX4nrsX3/9Jfbbbz9Xf8MHHHCA+P333223N23atLjeF3Y/8+Li4pi/xehbovuY//73v7bP17lz57i2l8j39e+//y66dOniuJ3vv/++Dj+BMDfZqb7NmzdP34dOnToJVVXjevzo0aP1x59++ukR9wWDQXHAAQcIAOLiiy9O5G4LIYTwIAG6dOkCIUQiNtWsuTl7THWzefNm7NmzBwDQsmVLDB48GEcddRTatWuHQCCAOXPmYPTo0SgpKcHcuXNx0kknYc6cOWjbtq3lNt9++23cd999AACv14srrrgCAwcORCAQwOTJk/HFF1+gtLQUV1xxBfLz83Haaac1yGulpmvkyJGcitdMRY+uaSME9T3L480338S2bdugKAruv/9+1/uXkZGBHj16YOHChXV6/ttuuw0nn3yybZs+ffpY3rd+/XoMHjwYe/fuBRD+uV199dXo0aMHPB4P1qxZg9GjR2Pt2rXYsWMHzjzzTMyePRv9+vWr035Hq6iowA033AAhBLKysrBv3z5Xjxs/fjyuueYa/VirX79+uPDCC9GpUyfs27cPS5YswciRI1FSUoIFCxbg5JNPxsKFC5GdnR2zrY8++ghXXnml/v9TTjkFw4YNQ2FhITZu3IgxY8bg999/x/z583HKKafgt99+Q2FhYWJ+AI3k8ssvx9///ncEg0F89dVXePPNN5GTk+PqseXl5fj8888BhEeWrrjiiriee/fu3frIVFZWFgYPHoxjjjkGHTp0AAAsXLgQI0eOxPbt27FixQoMGjQIv/zyCw466CDHbV900UW4+OKLbdsceuihlvcJISKO3yVJQvfu3bFr1y4UFRW5eXlxi/6M8Hq96NOnD+bPnx/3thL5vl6yZAlOPvlklJSUAAAOOuggXHHFFejatSuKi4sxadIkfP3119ixYwfOOeccTJ06Fcccc0z8P4Akcuihh+KQQw7BwoULsWHDBvz0008YNGiQ68cbj0OuueaaiPu0vuL666/HZ599hkceeaRWsxcsJTwSW2iOo4vJOkrSnH300Ufi4IMPFp9++qmorKw0bbNp0yZx0EEH6b+7K6+80nJ7W7Zs0c9iezwe8cMPP8S0MZ597tixo6ioqEjY6yFKJskw0tLU3XXXXeLRRx8VX3/9tdi8ebMQQojHHnusXn/ugUBAdOzYUQAQp5xyim3b8ePHi//7v/8TH374oViwYIEIBoMRIw21HYGt6+syjqCdeuqpory8PKZNIBAQV155pd5u2LBhdXpOM/fff78AINq3by/uuusu1yOw+++/v9720UcfNR0p2bVrlzjkkEP0diNGjIhps2PHjohR3Lfeeiumjaqq4s4779TbXHPNNbV9uUKI5PlcGDZsmL4fH3zwgevHGUeZzjjjjLifd+bMmaJLly7i7bffFiUlJaZtioqKIo6TTzjhBMvtGUdg3Yzc2yktLRUXX3yxePHFF8VPP/0kiouLhRCRx+yJPn795ZdfxA033CDefvttMXfuXFFVVSWEELUagU3k+/rII4+MGKUPBAIxbb744gshy7IAIHr27Gnaxq1kGIEVQogRI0bo+3HFFVe4ftz69ev10ftWrVrpv0ejvXv3ivT0dAFA3HDDDYncbcEAW48YYJNPUVGRqykSixYt0n93GRkZYt++fabtjJ38fffdZ7m9Cy64QG/373//u9b7T5TMkuVAtbmp7wA7fvx4ffujR4+O+/HJEGDbt2+vb2vJkiWW7YqKioTH4xEARMuWLev0nNHmzZsnFEURAMSXX34Z8XuzCyIrV67U27Vp00aEQiHLthMnTtTbnnvuuTH3//Of/9TvP++88yy3EwqFxMEHHywACFmWxYoVK+J6rUbJ8rkwYcIEfT+OP/541487+eST9cd9+eWXcT9vaWmp8Pv9ju22b98eMa17zZo1pu0SGWCt1GeAtVKbAJuo9/WsWbP07bRv3952oOGWW27R277//vuu9zVasgTYHTt26JfAZWVlidLSUlePe/LJJ/X9v+222yzbace/GRkZlidwaqPeqxBrlXVnzJihf8/sInOrAgaqquKzzz7DRRddhK5duyIzMxM5OTno1asXhg8fjkWLFtnu2+OPPx5T4OHHH3/EJZdcgq5duyI9PT3mIvVgMIjJkyfjnnvuwXHHHYfWrVvD5/MhJycHBxxwAK6++mr8/PPPls+pVQgdNWqU/r2uXbvGvGarn5WbKsSzZ8/GjTfeiJ49eyInJwdZWVno1q0brrrqKvz000+Oj48uqLFv3z689NJLOPzww9GiRQtkZWXhoIMOwgMPPFBv00gaQ35+vqufb58+fdCrVy8A4SlfZhegCyH0aUVOVTlvv/12/etx48bFu9t18ttvv2H48OE48MADkZ+fj/T0dHTq1AkXXXQRvv32W9vHGotFaO/RDRs24J577kGvXr2QlZWF/Px8HHPMMXjzzTddF/0oKyvDv/71LwwZMgT77bcf0tLS0LJlSwwYMACPPvoodu7cafv46PdKKBTCyJEjMWTIELRv3x4ej8e0EMT27dtx//3348ADD0RWVhZatmyJI444Ai+//DLKy8sBhC+JMCsk8f333+vPafx92rn99tv1x0yaNMnVY9xwqkJcX7+3b775BmeeeSbatm2L9PR0dOnSBZdddhl+++23uF+D3+/HBx98gLPOOksvaJKfn49DDjkE99xzj2XhkOXLlyMrKwuSJCEvLw9r1661fI6ioiJ06tQJkiRBURTbz22y9tFHHwEITwc+55xzGnlvamfHjh361z169LBsl5+fr0+XdTu9141gMIjrr78eoVAIZ511Fs4991zXjzXue7du3SDL1oduBxxwgP612f4bjw/spsLKsozLLrsMQPg4bOzYsa73t7bmzp2LwsJCSJKEtLQ0fPbZZzFt6nJMOHToULRu3RpAuCjTmjVrHPdpw4YNmDZtGgCgoKAAZ555ZtyvKzs7G16v17Fd69atccIJJ+j/dzq+pcS9r43viwsuuADp6emW2zJOv//000/j2t/a2LlzJwYMGKD36XfffbfpZZu1PdYrLCzEGWecASD8szF735kxZpzo6cNG2udIRUUFvvjiC1fbdiURKdjuLILxLI7dzews0qpVq0S/fv1sHyfLsnjkkUcs9814hvOnn34S//d//2e6HeMZphNPPNHVPl911VWmQ+bGkVenx1v9rKwEAgFxww03OG77wgsvNJ1KodHaDRw4UKxevVoceOCBltvq3LlzsxxBHjBggP4zmDVrVsz9xlHaPn362G4rFAqJ3Nxc/W82kWehrJSVlYmLLrrI8W9l6NChlvsTfaZ30qRJIj8/33JbQ4YMsZyarfnuu+9E69atbfcpJydHfP3115bbML5Xdu/eLY477jjTv1ujn376SbRo0cLyOQ8++GCxYcMG0blzZ9PHh0IhvVBEixYtHKeCV1RU6M/XqVMn21GTeDnN7kj07y0YDNp+rsmyLJ5//nnXIy1uim74fD7x9ttvmz7+3Xff1dsdffTRIhgMmrY7//zz9XYPPfSQ7c80ldXnCGxlZaU+KmQ3rdFOMozAdujQQd+W25Gafv361ek5jZ577jkBQGRnZ4sNGzYIIYTrEdhVq1bp7dq2bWv7WfLNN9/obe+8886Y+419/dKlS233+auvvtLbHnXUUe5eqAk3v8fJkyfrU5uzs7NNL8dJxDHh3Xffrbd99NFHHffdOMp0xx13uH3JtWacrTV27FjTNhyBrZGo97VxVNVsWr3Rnj179LaKoljO0HPiZgR27dq1eiEkAOK5556LaZOIYz1jYS03n/M///yz3r5v3762bY2FwhJ5WUa9B9iZM2eK8ePHR1xTOH78+Jhb9AfpqlWrREFBgf6Y4447Tvzzn/8UY8aMER9//LG46667Ig5Grd7Exg7ib3/7m94B/OMf/xAff/yxGDlypLjlllvEli1b9McceeSRIjs7WwwbNkw8+eSTYvTo0eKzzz4Tr776qrjxxhtFVlaW7QfavHnzxPjx48VJJ52kt3vnnXdiXvO8efMiHucmwF588cV6m/T0dHHTTTeJUaNGiY8//ljceeedIicnR7//1FNPtZwuq7Xp37+/6NWrl5AkSQwbNky89dZbYty4ceK5554TnTp10tvFM92mKaiqqoo44N+6dWtMmzFjxjh++BgZf7+zZ8+uh72uUVlZKY466ij9+bp16yYefPBB8dFHH4mxY8eKp59+OuJD8eSTTzY9KDJ2lMOGDROZmZkiIyND3HTTTWLkyJFizJgx4p577ol4T9gdPHzxxRf6FDqv1yvOO+888frrr4vPPvtMvP/+++Kyyy7Tp7LIsix+/PFH0+0Yf5ba+7pv377in//8pxg7dqx49913xa233qq3X7JkScTUrP79+4uXX35ZjBs3Trz22mvi2GOP1cOQNiXJrBN99tln9W18/PHHtr+Djz76SG/7xBNP2LaNVzwBNhG/N2Pn7vP5xA033CBGjRolPvroI3HbbbfpP9uzzz7b8UD1119/1dtLkiROO+008corr4hx48aJkSNHiptuuinid2W1nfPOO892399///2Ig++6XKuU7OozwP7444/6tu+9995abSMRAXbAgAGiZ8+eIjMzU2RmZorOnTuL888/X3z88ceufrfGk9d218oZ31sjR46M52VaWrFihX4d2L/+9S/9+24DrBBC9OnTJ6Kt0zWwaWlpYtmyZTFtevfurW8nngCbk5MTd4VSjVOA/fTTT/XP/cLCQjF37tyYNok6JjSeeO7SpYvja+rWrZve/s8//6zNy4+L8QTDb7/9ZtrG+Pnep08fcfDBB4vs7GyRnp4uOnToIM444wzx1ltv2Q5iOEmVAJuo9/Xw4cP1++MJsABM/17dcAqwCxcu1KtXK4piet12oo71AoGAaNOmjd4vO1UfN157bPxMs6J97mRnZ1uecI5XUi6jEwqF9KUC0tLSxGeffWbabtu2bfrZOFmWxeLFi2PaGDsI7UNv7969ts8/depU2zf+rl279BEfWZYtr1NI9DI6Y8eO1e9v06aN6dmmdevWRYxsWF1vafyZ+Hw+MXHiRNPXadxWXULXvn37TE9c1OYWHfzrgzF8HHrooaZtnnjiCdcHH0KIiCICH330UYL3OFL0tblmB3h+vz9in8w+tKPL9Xfq1Mn0WqjZs2frZzdbtGhhOpq3YcMGfRS6U6dOYuHChab7Pnv2bJGXlycAiA4dOpheOxQ9s+POO++0HZUwjtDecsstpm2jPyvMOtFt27bpB1pOB+InnHCC3vFs3LjRtm284gmwdf29Gc+05ufnmy7xsGzZMn2JFbsD1ZKSEr0YUH5+vpg+fbrp61u5cqV+Ai0rK0vs3Lkzps2ePXv0s++KooiZM2fq9y1fvlwP57m5uXVeCmTp0qUJ+/wyey11VZ8B1njS5vPPP6/VNhIRYO1uPXv2FAsWLLDd1s6dO0X37t31x7Rt21Y88MAD4sMPPxSjR48Wjz32mN7fybIsnnrqqVq91miqquqfBYcffnjEwVs8AfZ///tfxAmnfv36iWeffVZ88skn4t133xV33HGH/vmal5cnvv32W9PtGE+s281yESLyelkAYtOmTXG/fiHsA+xrr72mj8507txZLF++PObxiTwmFEKIww8/XN+fn376yXK/Z8yYobfr37+/+xdcSzNnztSfr7Cw0PJA3+0yOu3atbN9fXZSJcAm6n1tPJ676667bJ/TeL0s4Hwy24rT4J82iJKeni4mTJhguo1EHesJIcS9996rt7GbnbBv3z59sMzr9brq066++mp9206f1W4lZYD98ssv9bavvfaabdvly5frIzpmFa6MHURWVpZetbGuVq9erW/X6g2R6ADbv39//f7vvvvOcjuzZ8+O6BDMPgSNb74nn3zSclvvvfeeq3ZOjH8jdb3V98Xue/bsEe3atXM8aDNWkHz99dcdtxtv+9rasmWL8Pl8AjAv4mHk9/v16pY9evSIuT+6o/z5558tt3XZZZfZtrvtttsEEA4b8+fPt92vDz74QN/WJ598EnO/8b1y2GGH2YbXuXPn6m379Olje/bPuF2rTtQ4xcuqsMny5cv1NkOHDrV9rbURb4Cty+/NWLnTbkTKOHXR7EBViMi1GP/73//avkbjyN8zzzxj2mb69Ol6RcjOnTuLoqIi4ff7xWGHHaY/NhEni6JPbtTl5rRWaV33L9EB9tJLL9W3bXXSyUldAqzH4xEDBw4UjzzyiBg1apT4/PPPxZtvvikuv/xyfVQTCI8QOh0Y7d69W5x//vn6MYPZ7cILL3T8fIrH22+/rX/u/fHHHxH3xRNghRDizz//jLi0Jfrm8XjEQw89ZHuc8/DDD+vtzz//fMt2xiJO2s0qEDqxCrAPPfSQ/v2DDjrIMiAn8phQCCHeeOMNfXt2qwxcc801rp+3rqqqqiIqSL/44ouWbbV1hI844gjx97//XXz44Yfi888/F++995648cYb9RPA2t/ElClT4t6fVAmwQiTmfT116lS9bfv27W0vqYm+FLG2hTmtstPXX38tMjIyBBA+GTVjxgzTxyfyWE+I8Ew1bX/sZieMGjVKb+f0vJrnn38+oX2yEEkaYLVpaLm5ua6WHDn66KMt/+iNHYTdB1VtaCMOVmXVExlgjT/jgw8+2HFbgwYN0tubjZxq9ymKIvbs2WO5HWNQr8tCxKkSYIPBoDjllFP057ILH8Zrkd977z3HbT/44IN6+2effTaRux3hX//6l/48v/76q2P7Bx54wPLv1BiEnM5AG0Nn9LWLqqqKli1bCsB5GQ4hwtd0aCODZr9v43vlww8/tN2W8YDNaWqQccqcVSdqDFb333+/aZv77rtPb+M0ylEb8QTYuvzeKisr9Q6yTZs2jlN/jNMTzYKUNjpywAEHOL5GIYQ+fcou9BjfVxdddJG+TAkAcdlll7l6HifNOcBq0+uB2o/A1TbArly50jaMbdiwISLQ9erVy/FvdPXq1eL666+3/P34fD5x4YUXRlxWVFubNm3SR0XvvvvumPvjDbBChKfgm13zr91atmwp7r//fsuqt6tXr9Y/W+36LuNoTDz9iZnoABsMBiN+B8ccc4ztcUgijwmFCJ+k1k5+WFVdNY4y+Xw+sWvXLtevtzauu+66iM9ss/oqmi1btthWhd6zZ484/fTT9e21atXKceZhtFQKsELU/X0dDAYjRnKvuuoq08+SCRMmxATl2h7PmWWnDz74QN9+27ZtbaetJ/JYT3PEEUc49lXGWRxmszfNGOtWPP30064e48SDJDRz5kwAQLt27fD99987tlcUBUB4QeOKigpkZGSYtjv++ONd70NJSQk++eQTfPfdd1i0aBF27dplWZFw06ZNrrdbW3PmzNG/PuWUUxzbn3LKKfjxxx8BhCsWH3HEEabtDjjgALRo0cJyO+3bt9e/rks14i5duphWTUs2d9xxB6ZMmQIA6NSpU8QizalCe/8A4b/NCRMm2LY3/l6XLl1qWr0XAI466ijb7dj9rSxZsgR79uwBAOTk5DjuExCu3FhcXIylS5fatnN6X//+++/61yeddJJtW60qt52TTjoJBxxwAFasWIFRo0bh6aefjqgwGQgE9Op8++23H4YOHeq4zfpUl9/bggUL4Pf7AQADBw7UP2utDBo0yPL3tXfvXixcuBAA0KZNG9d/AwBs/waeeOIJ/Pjjj5g9e3ZEhe+uXbvizTffdHwONx5//HHLSvlNnfa+BYCWLVs26HN3797d9v6OHTti0qRJ6NOnD7Zt24Zly5bhiy++wEUXXWTa/rnnnsPDDz8MVVVx/fXX4+abb8aBBx4IAPjrr7/w9ttv4/3338dnn32GWbNm4Ycffoio6huvW265BSUlJejcuTOefPLJWm8HCFcHvfLKK/HVV18hKysLzz33HM4//3x06tQJ5eXlmD17Np577jnMmDEDL7zwAubNm4f//ve/yMzMjNjO/vvvj4ceeghPPPEEAOCGG27Al19+ibPOOgsFBQXYvHkzxowZgzlz5qCwsBCVlZUoLS0FANvqx25VVlbiggsuwPjx4wEAp59+Oj7//POY/TRK9DFhixYtcPbZZ2Ps2LHYt28fvvjii5hVIb744gv9dZ911llo1aqV69cYrxdffBEffPABACAvLw/jxo2Dz+ezbN+uXTvb7bVo0QJffvkljjjiCCxatAi7d+/GW2+9hb///e8J3e9kkYj3taIoeOutt3DaaachFAph1KhRmDdvHq644gp07doVxcXF+P777zF+/Hh9lQKtUn4i3hcA8Pzzz+Mf//gHgHC18SlTpmD//fe3bF8fx3rXXnutnjdGjhwZc0y0fv16fUWXtm3b4rTTTrN9To3x/ZOwlU0SkYITOQJbWlpap7Pb0WdrjWc47abdGv30008x13PZ3fbff3/T7SRyBNZ4puWdd95x3JZx3b4HHngg5n7tPjfFmbS28Zw5T0XGkZw2bdqYXotjlKxTiI3TJ+O9RU/XNY7k2RX5iW4bPZpgXJsw3pvZdBfje8WpUIVxWpabtfi0607szgK/9NJL+jaj1wX84osv9Pvqq/JtPCOwdfm9GT9HHnzwQcf9Mn5ORY8EGounxHvzer22z7t69eqIAnYej8eyAEpTVJ8jsNq0M0VRar2N2o7AuqVV+AUgrrjiCtM2xs93u+mgr776qt7u8MMPr/U+jRs3Tt/ON998Y9rG7QhsMBgUxx9/vADC14DOmTPHtF0oFIoobmZVdEtVVfHAAw/olxqZ3dq0aSNmzZoVURjJqU+0YhyBNU5vvfzyyx0LcCX6mFAzefJk279J4yiT2bGj3XXukydPdv2zeeedd/TnycrKEr/88ovrxzoxFpqMtxBnqozAJvp9/cUXX+jVsM1uPp9PvPPOO+Kcc87Rv+fmmNyM8XPR+L7o27ev2LZtm+PjE3mspykuLtanL5vNTjBeK2w1A83MDz/8oD/ulltucf04O4k5bZBAe/furdPjtdECM1Yjs0YrV67E0KFDsW3bNgBAz549ceedd+KNN97AmDFjMH78eP2mrSkVCoXqtM9uaGcCASArK8uxvTZyEf3YaIk6c5Tqnn76aTz77LMAwmu9TZ061fHMe35+vv71rl27HJ9j9+7dpo9NtLq8h+zeP3X5W6mvfQKc39fazAmPx+NqLT4376+rr74aaWlpAID33nsv4j7t/5Ik4brrrnPcVn2ry++trKxM/9puhERj97Ory99AIBCwvb+goCBidHD//ffHYYcdVuvnoxra33koFNLXSk42xlGCZcuWxdy/efNmvPjiiwCA3r1749Zbb7Xc1m233YbevXsDCM/emDVrVtz7s2fPHn1d8AsuuKDOszC+/PJLfbTlmmuuwYABA0zbybKM1157TX/Pv/POO6bvHUmS8Oyzz2L+/Pm46aab0LNnT2RlZSEzMxMHHnggHnzwQSxevBiHHXYYSkpK9Me0adOmTq8DQMSa0/v27XOcmVVfx4SDBw9Ghw4dAAA///xzxLrTxlGm/fbbz3TW2znnnGN5u/HGG13t2+jRo3HzzTcDCPdjEydOxDHHHBPHq7Pn9L5IdfXxvj7vvPOwatUqPPLIIzj88MORn58Pn8+Hzp0749prr8Xvv/+OG2+8MeJ4rm3btnV+Lcb3RUVFhatcUR/HVXl5efpa3/v27cOXX36p3yeEwOjRo/X/2639Gs24r26ymBtJN4XYGLxOOOEEzJgxo0Gf/7nnnkNFRQUA4KGHHsJTTz0FSZJM295www0Ntl85OTn6124WVzceeBof21jKy8v1qbl11alTJxx66KEJ2RYAvPDCC3jkkUcAhKfe/PDDD+jTp4/j44wB19j5WVm/fr3pYxNNew9JkoRgMJgUJymM7+tHH31Un77WELRQFQwGEQgEHEOsm/dXq1atcP755+OTTz7BlClTsGHDBnTq1Anr16/HDz/8ACB8gNS1a9e6v4BGZPy9uQkvdj8747auvPLKiEXQ6+qWW26JeH+tWLECDz/8MJ5//vmEbH/ZsmUJOwA87rjjUFBQkJBtNQTjiYE9e/a4OpHR0IzT04qLi2PunzJlih7kBg0aZNmnA+HPzZNPPlmftj5nzhzHafjRJk6ciB07dgAACgsL8fTTT5u2+/nnnyO+1todeeSRGDJkiH7ft99+q389ePBg2+feb7/90Lt3byxZsgSlpaVYunQpDjnkENO2ffv2xdtvv225rSVLlugH0j169EBeXp7tc7vx3HPPYezYsfj1118xfvx4XHTRRRg3bpzl53J9HRPKsoyrrroKzzzzDIQQGDVqFB577DEAwKhRo/RgfeWVVzpeOlEbY8aMwTXXXAMhBNLS0jBhwgTHS1zi5fS+SHX19b5u06YNnnzySdtp/3/99Zf+tdUJpXicf/75yM3Nxeuvv44VK1bgpJNOwrRp07DffvtZPqa+jvWuueYafPrppwDC04ivuuoqAOEpy6tXrwYQvjSpV69errdZH5eiJF2AzcvLQ3Z2NsrKyhrk2tJoU6dOBQC0bt0aTz75pOUborS0NOIXUt+M1zysXLnSsb2xjd0boKHs2LFDP6tTV1dddVXCrk0dMWKEfl1IXl4eJk+ejH79+rl6rDHkzps3z7atqqqYP38+gHDHqZ0JrA/t27fHn3/+CSEENm/ejI4dO9bbc8WzT5qGfl/vt99++rWXa9asQc+ePS3bFhUVue7ob775ZnzyySdQVRUffvghHn/8cXz44YdQVRUAXJ+FT2bGz45Vq1Y5trdrU19/A5988gk++eQTAMBhhx2GXbt2Yf369XjppZdw6qmn4uSTT67zc4wdOzZhJ12mTZvm6lrrZNGlSxf88ssvAMIHIdqoVTJxmt2yZcsW/evc3FzH7RmDmpsTWtGMo4pur8OeNm0apk2bBiBci8EYYBt6/zXGsBhPDRE7OTk5+P7773Haaae5CrH1eUx49dVX45lnngEQHg199NFHASDi5Fr0tbEap5FjO59//jmuuOIKqKoKn8+HL774wlVtk3g11KyvxtJY74u//vpLn3XXrVs3x2uS3XrttdcgSRJee+01VyG2vo71Tj75ZHTq1AkbNmzAjBkzsG7dOnTp0gX/+c9/9DbxjL4CkQG2c+fOCdnPBhuaMZ4ZcHrjn3DCCQDCB5tuDpoSafv27QDCBUDszmZMnTpVP1C1Es9rdmIswqSN8NgxjnZaFXBq7t544w3cfffdAMKd6qRJk+I6k3bQQQfpB3NLliyx7Vx//fVXfSrWscceW6+j4gMHDtS/TtSod131799f72B+/PFHx/dOIh1++OH619oBohVt2pgbxx13HA466CAAwIcffohAIIAPP/wQQPgE2LBhw+Lf2STTt29fvZjIjBkzHKc1aYXjzBQUFOiFNWbNmqW/H+pi7dq1uOWWWwCER9rHjBmDjz/+GIqiQFVVXHnllREHcRQ/44m65cuXN+KeWDMGLbPZLcaD240bNzpuzziaX5/Fe9yKd/83bNigf12X/TeeKE7k5RBaiD322GMBAOPHj8eFF15oealAfR0Tdu/eXQ/ma9aswcyZM/Hzzz9jzZo1AIBjjjnG9oRnbUyYMAGXXnopQqEQPB4Pxo0bhzPOOCOhz6Fxel+kusZ6XxuDXKIvE3r11Vdxxx13AAjPJDrxxBMjgrpRfR3rabMTgJppw1qxMyA8BdiqUJ4VYyFGqxkhce9nQrbignEaiNOZD+0HB0A/I9ZQtOlRa9assQydoVBIv17STjyv2UmXLl30abMLFiywDbG///47fvrpJwDhMx3JcC2YVoU4EbdEjL6+9957+jVKWVlZ+O6773D00UfHtQ1JknDBBRcACL/JX3/9dcu2r732mv51vG/8eF188cV66Hj++efr/LeXCIqi4LLLLgMQ7kTef//9BntuY5B84403bEPYq6++Gte2b7rpJgDhzvPOO+/UT2JcddVVrq63TXZpaWk4/fTTAYRP7mnTisxMmjTJsWK09tleXl6Of/7zn3Xat1AohMsuu0wPwq+99hp69OiB4447Dg8++CCA8DVS119/fZ2eBwhXIU7U51cqjb4C4emsmtmzZzfinpjbs2dPxPtW+3s1Mobwb7/91rYuRElJCSZNmqT/33gCzK2rr77a1d+CNmUVAB577DH9+//6178s93/s2LG2z/2///1P/xxq0aIFunXrFvf+A+GD9Llz5wIIn3SNt390ooXY4447DkA42FmF2Po8JjSOJI0cOTLi+CLeUSYn3333HS666CIEg0EoioJPP/0UZ599dkKfQ1NVVRVxnGr2vkh1Df2+BsKXk2jHevn5+QnpX6L961//wp133gkgPJvSKsTW57He1Vdfrc9AHT16ND7//HP90sRzzz037ssJtL4jJydHP5FdZ4moBOWmCvHtt9+ut7FalFcTCoUi1na74447bNfEKi8vF//5z3/EmDFjYu4zVvlzs/7ekCFD9PavvPJKzP1+vz9icWvYVEx75ZVX9DajRo1yfG6nSs3Gqobt2rUTS5cujWmzfv160a1bN72d1QLL2v1uKkLG0zYVjBo1Sq++mJmZWad1GTdv3iwyMzMFEK58OnXq1Jg2xgqMHTt2dLWOXV3dc889+nOedNJJYuvWrZZtQ6GQ+OGHH8RTTz0Vc59dhdp4227cuFGv8JuWlub4nti+fbt48sknxYIFC2Lui2ddaSFExLqJt9xyiwiFQjFtotf6dFMJsbi4WP/9G292a/QlQjxViOv6e5s5c6Z+f4sWLUwXg1+xYoVo165dxM/ArBpuWVmZ6Ny5swAgJEkSL7zwgunvQlNcXCxeffVV8cMPP8Tc98gjj+jPdf7550fcFwgE9LUgUYcqkamiPqsQV1ZWiqysLIFaVDLV1KYK8a+//iree+89UVlZadlm48aNEesW9ujRw7Sqrd/vFx06dNDbDRs2zLR6eXl5uTjrrLP0dn369BGqqsa0M75narNmpcZtFeLFixcLWZb1tlbrTq5fvz5iLUurap9LliwRO3bssHy+jz/+WF//OT09XSxbtiyu1xUteh1Yo9LS0ojP52HDhsVUi0/kMWG00tJS/e87Oztbr0CbmZkZ99qpdn744Qd97VlFUcSnn35aq+2sXLlSvPjii6KkpMSyTfQ6sC1atBBFRUVxPU9tqxAb+4B4qxfH+55K9Pt6+/bt4q+//rJ8vnnz5omOHTvq2xk5cqTr12bGKTvdeeedEZ9tZutwJ+pYz4zxb8DYv5sd59opLi7Wj7nPPvvsuB5rp8GugR00aJA+CnXdddfhrrvuQufOnfWL47t3766v+SbLMr788kscffTR2Lx5M1599VV89tlnuOCCC9C3b1/k5eWhrKwMGzZswO+//44ff/wR+/btw1NPPVXn/bztttv00c27774b06dPx6mnnopWrVph5cqVGD16NFauXImTTjoJK1eutJ02OmjQIP3r+++/Hzt37kTPnj3h8YR/7O3bt8fBBx/set8uvPBCjB8/HmPHjsXWrVtx6KGH4uqrr8bRRx8NRVHw+++/44MPPtBHJE455RR9eh2FTZo0Cddee60+un7ttdeiuLjYcf2sQw89FJ06dYr5/n777YeXX34Zw4cPRzAYxN/+9jdceeWVGDhwIILBICZNmqRPu/B4PHj33XeRnp5u+TzGa67Xrl1ruSark+eeew5//vknfvzxR0ybNg37778/zjvvPBx99NEoLCyE3+/Htm3b9NH8bdu2YdCgQXj44Ydr9XxudOjQAWPHjsVZZ52FqqoqXHXVVXjllVdw1llnoUePHsjIyMDevXuxYsUKzJo1C7/88gtCoVBCClu88847GDBgAMrLy/Hmm2/it99+w+WXX44OHTpg+/btGDduHH755RccffTR2LBhAzZv3uyqIEJeXh4uuuiiiClFJ554Inr06FHnfU4Wxx13HG655Ra8+eabKCoqwlFHHYWrrroKxx13HGRZxpw5c/DBBx9g3759OPvss23fS1lZWZgwYQIGDhyIkpIS3H///XjnnXdw3nnn4cADD0R2djZKSkqwZs0azJkzB9OnT4ff78dHH30UsZ3//e9/+uhChw4d8O6770bc7/F48Mknn6Bfv34oKSnBXXfdhYEDByZ8OmBjmD9/fkRlSCCyGNBXX30VM83yuuuuq3VBsbS0NJx22mn48ssv8fvvv6OsrCxidpGZ6M8RYwXKtWvXxtx/6KGH4txzz4343vbt23HDDTfgnnvuwamnnorDDjsM7du3R3p6Onbv3o1ffvkFX3zxhV50MScnB+PGjdP7VyOv14vXXnsN5513HoQQ+Prrr9G7d29ceeWVej2CpUuXYvTo0fo0Q6/Xi3//+9+2hWEaykEHHYTbb79dH5l98MEH8d///ldfB7aiogKzZs3Cxx9/rI9CdezYMWKE1+i7777DQw89hMGDB+O4447T+5l169ZhwoQJ+jqQPp8PY8aMqdf3TXZ2NiZNmoTTTz8dM2fOxNdff40LLrgAn3/+uT6LpT6PCbOzs3HBBRdg5MiREcUvzzvvPFfXVbrx559/YtiwYaisrNS3nZGR4Xjc0atXr5hCOWVlZbjvvvvwyCOPYMiQIRgwYAA6d+6MrKwsFBcXY+7cuRg7dqz+nvN4PPj0009tr4H96quv8Mcff0R8b+3atfrXL7/8csyIm1VhMrdefvlly/VAi4uLYz4junbtGjNdN9Hv6w0bNmDAgAE44ogjMGjQIPTq1QsZGRnYtm0bpk6dim+//VafwXX//fdHzAyoDyNGjIAkSRgxYoSeO6ZNmxZRT6I+j/WuueYafRr61q1bAYRndcZbV2L69On6MXdCZxwkIgW7GYENBoMRZ9mib2ZnH7ds2SIGDRpk+RjjTVEU8d5778VsI94RWCGEeOCBB2yf69hjjxU7duzQRxLszhZdcsklltuJ/lm5GVUKBALi+uuvd/x5nH/++bbrY2rtmtsIbPQom9ub06jGiy++KLxer+Xjc3JyXJ0NNj6mrmuvVVVViVtvvVUoiuLqNV555ZUx20jkSJ7mt99+09eWdLplZ2eLhQsXxmwj3hFYIcLrO2sjwGa3Pn36iA0bNoj27dsLAOKQQw5xtd3Zs2dHbMdqfbVEasgRWCHCn99XXHGF5c9OlmXxwgsv2I60GC1btkz079/f1d9AWlqamDRpkv7YoqIi/bNXlmXbz/WPP/5Y307//v1tR21ShfFn7PZWl1kmQggxYcIEfVujR492bB/v/pkdNxjXIHa69enTx3SmRrSPP/5Y5ObmOm6voKBAfPvtt5bbaegRWCHCoyf33HNPxEis1a1v3762a7a++OKLjtvYf//9xY8//ljr12bk5nOhrKxMnHDCCXq7s846K2YkNhHHhGZmzJgR8/iffvqpri9bV5v3rNXfxPz5810/vlOnTq7e+8b+xO3NirGN3TGM9hnu9mZ3/Jmo9/XcuXMdt5GTk2O73mw83GQnIYS4++679Xbdu3ePGYlNxLGembKyspg1cR999NG4X+eFF14oAIiMjAzbmQPxarARWEVR8MMPP+DVV1/F119/jWXLlqGkpMT2erR27dph6tSpmDFjBsaMGYP//e9/2Lx5M0pLS5GVlYUOHTrg4IMPxoknnohhw4YlrBLYs88+ixNOOAH//ve/MXv2bOzduxcFBQXo3bs3LrnkElx99dWmZ3nNfPTRRzjhhBMwbtw4LF68GMXFxRHrPcXL4/Hgvffew3XXXYf3338fM2bMwNatW6GqKtq2bYtjjz0W11xzTUIqb5J79957L0477TS8/fbb+OGHH/QRvM6dO2Po0KEYPny4Y+U14zIlPp+vzmd/fT4fXn/9ddxxxx344IMPMG3aNKxZswZFRUXw+Xxo06YNevfujeOOOw5nnHFGXLMB6uKoo47C8uXLMW7cOPz3v//F3LlzsXPnTlRWViI3Nxf7778/+vfvj8GDB2Po0KGu1mV146STTsKyZcvw0ksvYeLEidiwYQPS0tLQvXt3XHzxxRg+fDgyMjL0anluS70PGDAAeXl52Lt3L1q2bInzzjsvIfubTBRFwejRo3HhhRfi7bffxpw5c1BSUoI2bdrg2GOPxW233Yajjz7a9fXpPXv2xLx58zBx4kR89dVX+O2337Bt2zbs27cPOTk56Ny5M/r27YuTTz4ZZ511Flq0aKE/9uabb9bPpt9///2215RedtllmDRpEj755BPMnz8fDz74IF566aW6/CiapTPOOEOvSvnRRx/hiiuuqPfnHDx4ML7++mv89ttvmDNnDjZt2oRdu3ahpKQE2dnZaNeuHY444gicd955GDp0qKsZE5dddhmGDBmCkSNHYsqUKViyZIk+CtSyZUscfPDB+Nvf/oarr7466aq2yrKMl156Cddeey0+/PBDzJw5E6tWrUJJSYn+eX744Yfj/PPPx7nnnmt7jHLxxRfD6/Vi2rRpWLp0KbZv346qqiq0bt0aBx98MM4991xceumltrOFEk2rRXH66afj559/1keYP//8c/06v/o6Jjz++OPRrVs3fYmQLl26JO216r1798b333+P3377DbNmzcL69euxa9cuFBcXIzMzE61bt8bhhx+OM888E+eff77+s2vKEvW+7t27N0aOHIlp06Zh3rx52LZtG/bu3YtWrVqhW7duOPPMM3HVVVclZN3XeLz88suQJAkvv/wyVq1ahRNPPBHTp0/XR2Lr61gvKysLF154oV6cUpIky6rcVkpKSjBx4kQAwOWXX57QAqaSEHUsj0tECTF58mScdtppAIDbb7897oJCVHeLFi3SK+S5/R1MnTpVX/LijjvuiCnAQtQUjBgxAnfffTcURcG6deuScjkdIiJKHh9++CGuu+46SJKExYsXJ66AExqwCjER2dPWIM7JyanXa1HJ2r///W/9a7fX3r711lv6101h7VciMzfffDPatm2LUCiEF154obF3h4iIkpixr7jooosSGl4BBliipKEF2LvvvhuFhYWNvDdNz8yZM23Xn33jjTf0YkDt27d3tTbfn3/+qRfiGDx4cMI/oImSRUZGBh5//HEAwLvvvmu5NiEREdGYMWOwfPly+Hy+hBTZjcYpxERJYNeuXWjdujUKCgqwevXqhF4nQGHdu3dHZWUl/va3v6F///4oLCxEIBDA6tWrMX78eMyfP19vO3HiRMsA+/3330NVVaxYsQIvvPCCXp3vf//7H4499tgGeS1EjUFVVQwYMAB//PEHbr31Vtu1r4mIqHkKhUI46KCDsHz5cvzjH//Ac889l/DnYIAlomahe/fuepEOKxkZGXjvvfdw2WWXWbYxK7/v9nrZKVOmRBTrikdBQQGOO+64Wj2WiIiIqKlggCWiZmHWrFn48ssvMWvWLGzevBm7d+9GeXk5WrRogQMOOACDBw/G8OHD0aZNG9vtaAE2OzsbBxxwAIYPH45rr73WVRXULl266BV04zVw4EBMnz69Vo8lIiIiaioabBkdIqLGdNRRR+Goo46q83Z4zo+IiIio8XAEloiIiIiIiFICqxATERERERFRSmCAJSIiIiIiopTAAEtEREREREQpgUWciIioSVFVFRUVFSgvL7e8VVZWwu/3w+/3o6qqSv/a7P9+vx+hUAiqqkb8a/Y9VVUBhKtVW920itWSJEFRFHi9Xv3m8XhMv9Zu6enpyMjIQHp6uuXXGRkZyMjIQFZWFrKysuDxsKsnIqKmg70aERElHSEEysrKUFJSgpKSEpSWlpp+bfxeWVkZKioqUFFR0di7n1QyMjKQnZ2N7Oxs5OTk6F8bb7m5ucjPz4+4ZWRkmK57TERE1JhYhZiIiBqEEAJ79+7Fnj17UFRUFPFvcXFxzP8DgUCdnk9RFGRkZCAzMzPmlpGRgR9G/gxJAFAlww2QzP4vAKD6XwFAaN8zfC0Q3p6hqfY1Ir4WNd+TEH6QHP5XVP9r/B5kQMjV31MAyAKn3XgSKisrUVFRgcrKSsuv68Ln8yEvLw/5+fn6v/n5+WjZsiUKCgrQqlUrFBQUoKCgANnZ2Qy7RETUIBhgiYiozlRVRVFREXbs2IGdO3di586dEV/v3LkTu3btgt/vj2u7GRkZyM3NRW5uLnJycpCbm4ufx8yGFJSAoGz4VwaCEqSQBIQkICSHwyeab6gSkgAUAXhUCI8AlOp/PQLCowKKwLA7T9VHtIuLi/VbVVVVXM/l8/n0MGsMtgUFBWjbti1at26NgoICKIpST6+WiIiaCwZYIiJypKoqdu/eja1bt2LLli3YunWrftu+fTt27tyJUCjkalu5ublo0aIFWrZsiQVT/oIUkAG/Uv2vDCkg13wtmm8AbUxCFoBXhai+aV/Do2LIDSdg165d2L17N3bv3o2SkhJX21QUBYWFhWjbti3atGkT82+bNm3g8/nq+ZUREVGqY4AlIiIAgN/vx5YtW7Bx40Zs2rQpIqhu377dcfRUlmW0atUKhYWFKCwsxP8+nRsOoVUKpOp/GUqbHj3s+kIQPhUiTcWFD52BXbt2YefOndi2bZurExySJKFNmzZo3769fuvQoQM6dOiA/fbbD2lpaQ30ioiIKJkxwBIRNSOqqmLnzp3YuHEjNm7ciA0bNmDTpk3YuHEjtm3bplfRNaMoClq3bo127drhz+/+glSphG9VSk04bcZTdsmagAB8KkR6CCItBJGmYujtJ2P79u3Ytm0btm/f7njNbmFhITp06ID27dujY8eO6NKlCzp37oy2bdvqlZ2JiKjpY4AlImqCVFXF1q1bsXbtWv22bt06bNy40fb6xszMTHTq1AkdOnTAtA9/C4fT6qCKKgZUqh8CAvAKiPQgREYIlz59NjZv3ozNmzdj06ZNKCsrs3ysz+dD586dI25dunRBhw4duIQQEVETxABLRJTChBDYsWNHTFBdt26d5YiWx+PBfvvth44dO2LWuPmQKhRIFR5IFQoQYEil5CJQXXgqIwiRHsLlz52LDRs2YP369di4caPl1HZFUdC+fXt069YN+++/P7p3747u3bujdevWrJhMRJTCGGCJiFJEMBjEhg0bsHLlyoib1eiUNjK1+peNkPZ5IJV7IFcoQKXCkEpNgoAA0kNQM0MQGUEMGX4c1q9fj3Xr1lmuB5yTk4Nu3brpt+7du6Nr1668xpaIKEUwwBIRJaGqqiqsXr0aK1euxIoVK7By5UqsWbPGdLRJURR07NgRG+ZuhVQeDqrSPk946i+DKjVD+jW3mUGoWUEMuukYrFq1CuvXrzctJiXLMjp27IiePXuiV69e6NmzJ3r06IH09PRG2HsiIrLDAEtE1MhCoRDWrVuHpUuXYunSpfjrr7+wbt060wPtjIwM9OjRA0u+XwmpzKuPrLKyL5EzIQmIzCBEVhDnPnwaVq9ejVWrVmHv3r0xbRVFQZcuXdCzZ0/07t0bPXv2xP7778+lfoiIGhkDLBFRA9u5cyf++usvPbAuW7bMdLpjfn4+evTogT++WgJpnxdSGUdViRJNG61Vs4K48uVzsWzZMixbtgx79uyJaev1etGtWzf06tULBx98MPr06YO2bdvymloiogbEAEtEVI+CwSBWr16NBQsWYNGiRfjrr7+wc+fOmHYZGRno1asXFk5cDqnUC7nUy2VpiBqJHmqzA7jkubOwbNkyLF++HCUlJTFtW7VqhT59+ui3Hj16cJSWiKgeMcASESVQZWUl/vrrLyxatAgLFizAkiVLYkZXZVlG165dsfaXLZBLPZBKveFpwAyrRElLQABpIag5QZzzyClYvHgxVqxYETPV3+fzoWfPnnqg7du3L3Jzcxtpr4mImh4GWCKiOigtLcWCBQuwcOFCLFy4EMuXL485oM3KykKfPn3w+7glkEuqpwKrciPtMRElipAFRHYA175xIRYvXozFixfHXE8rSRK6d++Ofv36oV+/fgy0RER1xABLRBSHyspKLFq0CH/88QfmzZuHFStWQFXViDYFBQXYs7QUcokPUkl1oSWOrhI1eQICIj0EkRvA3+4ZiAULFmDDhg0RbaIDbb9+/ZCTk9NIe0xElHoYYImIbASDQSxdulQPrEuWLEEgEIho06FDB2z5fTfkvV7IJT6giteuElGY8Iag5gUw9O8nYv78+ZaB9vDDD8cRRxyBPn36cE1aIiIbDLBERFE2btyIOXPmYPbs2ViwYEHMNayFhYXYvbgU8l4f5GIfJL/SSHtKRKnGKdCmpaWhX79+GDBgAI444gh07tyZVY6JiAwYYImo2ausrMT8+fMxe/ZszJ49G5s3b464Py8vD6WrK8NhtdjHpWyIKGGENwQ134/BdxyDuXPnYvfu3RH3FxYWYsCAARgwYAAOO+ww5OfnN86OEhElCQZYImp2hBDYuHEjZs2apY+y+v1+/X6Px4ODDz4YC79aGQ6tvIaViBqAgIDIDOKG9y/G3LlzYz6bJEnCgQceiGOPPRbHHHMMunbtytFZImp2GGCJqFkIBoNYvHgxZs6ciV9++QVbtmyJuL9169bYtaAUcpEP8l4fpBCrBBNR4xKygMj147ynT8OcOXOwZs2aiPvbtm2LY445Bscccwz69evH9WeJqFlggCWiJquiogJz587FzJkz8dtvv6GkpES/z+PxoG/fvvjzi+WQ96RBquC0YCJKbsIXwm3jrsIvv/yCP/74I2J0NiMjAwMGDNADLacaE1FTxQBLRE1KUVERfvnlF/zvf//D77//HnGAl5ubi7KVfsh70iAX+bgWKxGlLCELqPlV+NvfT8Cvv/4ace2sLMvo27cvTjjhBAwcOBAFBQWNuKdERInFAEtEKW/37t2YMWMGpk2bhoULF8L4sdauXTvs+H0v5N1p4TVZOcpKRE2MgIDICuKyV8/Cr7/+ihUrVkTc36dPHwwcOBADBw5E27ZtG2kviYgSgwGWiFJSUVERfv75Z/z000/4888/I0Jrz549sWrKpnBoLWcBJiJqXkRaCDeMvAjTp0/HkiVLIu7r1asXTjjhBJx44ono0KFDI+0hEVHtMcASUcooLi7Gzz//jGnTpmH+/PlQVVW/78ADD8TybzZA2Z0OqYrrshIRAeHrZod/chlmzJiBhQsXRnxu9urVC4MHD8bJJ5/MacZElDIYYIkoqVVUVGDmzJmYMmUK5s2bh1AopN/Xq1cvrJy0CcouhlYiIifCG8Jtn12FGTNmYP78+frnqSRJOPTQQzF48GAMHDgQ2dnZjbynRETWGGCJKOmEQiHMnz8fkydPxs8//4yKigr9vgMOOACrJ2+BsisNUpWnEfeSiCh1CY+KW8ZehqlTp2Lx4sX6930+H4466igMHjwYRx99NNLS0hpxL4mIYjHAElHSWLNmDSZPnoypU6di586d+vfbt2+Pbb8WQ96ZDrmSoZWIKJFEWghXvXsOfvjhB6xbt07/flZWFk466SScfvrpOOiggyBJrCdARI2PAZaIGlVxcTGmTJmCyZMnY+XKlfr3c3JysG9FEMqOdEilrB5MRFTftGrG579wasyJxE6dOmHo0KE45ZRT0KpVq0bcSyJq7hhgiajBqaqKP/74AxMnTsTMmTMRDAYBAB6PB+p2BfKOdMh70iAJhlYiosYgICDyAjj53iMwffp0VFVVAQAURcGRRx6JoUOH4uijj4bHw1kxRNSwGGCJqMHs2rULkyZNwrfffostW7bo3+/ZsydWf7cF8s50SEG5EfeQiIiiCUXFneOvwbfffhuxLE+LFi0wZMgQnHnmmejcuXMj7iERNScMsERUr0KhEObMmYOJEyfit99+06teZmVloWKVCmVbBuR93kbeSyIickPNCOL8l07B5MmTsWfPHv37/fv3xznnnIPjjjuOo7JEVK8YYImoXhQXF+Obb77BhAkTsGPHDv37ffr0wbKvNkDelQ5J5RRhIqJUJCSBJ36+C9988w1+++03fX3ZVq1a4cwzz8SZZ56JwsLCRt5LImqKGGCJKKGWL1+Or776Cj/++CP8fj8AIDc3F/uWBiFvz4BczjPzRERNiUgL4aLX/oZvvvkGRUVFAMLXyh577LE455xzcOihh7KCMRElDAMsEdVZMBjEjBkz8NVXX2HRokX693v16oVV/62+tpUFmYiImjQhCTwwZTgmTJiABQsW6N/v1KkTzjvvPJx22mnIyMhoxD0koqaAAZaIaq2oqAj//e9/8fXXX2PXrl0AwmfdxVYvlK0ZXP6GiKiZUjODGPrk8ZgyZQrKy8sBhGfjDBs2DOeccw4KCgoaeQ+JKFUxwBJR3DZu3Ihx48bh+++/16cJt2zZEnv/rAoH14DSyHtIRETJQCgqho+9FJ9//rlefd7j8WDQoEG48MIL0aNHj0beQyJKNQywROTaX3/9hTFjxuDnn3+G9tHRu3dvrJywOVyUidOEiYjIhIDAo9Nvx2effYaFCxfq3z/00ENx0UUX4cgjj4Qscxk1InLGAEtEtlRVxezZs/Hpp59GXNMk7/FB2ZQFqYTThImIyD01O4CB9x6KadOm6Uurde7cGZdffjkGDRrEZXiIyBYDLBGZCgaD+OGHHzB27FisXbsWQHjal7rZA2VTFuQKHmAQEVHtibQQzn15MCZOnIh9+/YBANq2bYtLL70Uf/vb35CWltbIe0hEyYgBlogiBAIBTJ48GR999BG2bt0KAMjMzETVCkDZkgnJz+tbiYgocYSi4ur/nIPPPvsMxcXFAMJ1FS666CIMGzYMmZmZjbuDRJRUGGCJCADg9/sxadIkfPzxx9i+fTsAoEWLFij5IwBlWwakEK9NIiKi+iNkgeHjLsGYMWOwY8cOAEBOTg4uvPBCnH/++cjKymrkPSSiZMAAS9TMVVVV4dtvv8Unn3yCnTt3AqiuKPy7H8q2TEgqr28lIqKGIySBuydei08++QQbN24EEF6C5+KLL8a5557LEVmiZo4BlqiZCgaD+O677zBq1Cg9uBYUFKB4dhXk7RkMrkRE1KgEBB74YTj+85//YMOGDQCAvLw8XHrppTjnnHOQnp7eyHtIRI2BAZaomVFVFT/99BM++OADbN68GQDQunVr7Pm1IhxcuRQOERElEQGB+7+/Ef/5z3/0fqtly5a49NJLMWzYMBZ7ImpmGGCJmgkhBH799Ve8//77WL16NQAgPz8fpfNC4WtcGVyJiCiJCQjc8+11GDlypF5ksG3btrjuuuswZMgQriNL1EwwwBI1A4sWLcKbb76JJUuWAACys7NRsViEqwqr7PCJiCh1CEng9vFXRlwC0717d9x8880YMGAAJIknZImaMgZYoiZs8+bNePvttzFjxgwAQFpaGoKrFCibsyAFGVyJiCh1CVngmlHn4JNPPkFZWRkA4NBDD8Xw4cPRs2fPRt47IqovDLBETVBpaSlGjRqFr776CsFgMDytaksaPOuzIAW4jisRETUdwqPi7FdOwvjx4xEIBAAAQ4YMwU033YTWrVs38t4RUaIxwBI1IYFAABMmTMCoUaNQUlICAJCKfPCszYFc7mnkvSMiIqo/Ii2Ekx4+DFOmTIEQAunp6bjssstw8cUXs9ATURPCAEvURMydOxevvvqqvtRA165dsWliEeRidtpERNR8/Hvp03j99dexcOFCAOFCT8OHD8eJJ57I62OJmgAGWKIUt337dvz73//Wr3PNz89H2dxQeEkcsKMmIqLmR1tD9q233sKOHTsAAIcccgjuuOMO9OjRo5H3jojqggGWKEX5/X6MHTsWH330EaqqqqAoCrAhDcqGLEghFmgiIiISssBl7w3Fp59+iqqqKsiyjPPOOw/XXXcdMjMzG3v3iKgWGGCJUtCcOXMwYsQIfUF3aa8XntU5kMu9jbxnREREyUf4Qjj27wdj2rRpAICCggLcfvvtGDhwIKcVE6UYBliiFFJUVITXX38dU6dOBQC0atUKe38NQN6ZzunCREREDp6ZdV/ECeAjjzwSd955J9q3b9/Ie0ZEbjHAEqUAIQS+//57vPHGGygpKYEsy5A2pnO6MBERUZyEJHDpe6fjk08+QSAQgM/nw1VXXYVLLrkEHg8r9hMlOwZYoiS3adMmvPzyy5g3bx4AQCrzwLMqF3IZpwsTERHVlpoeRN+bu+L3338HAPTo0QP/+Mc/WOSJKMkxwBIlqVAohM8++wwffPAB/H4/fD4fQst9ULZkQhKcLkxERFRXAgL3f38jXnvtNZSUlEBRFFx++eW44oor4PP5Gnv3iMgEAyxREtq0aROee+45LFq0CAAgFfvgXZUDqZJTm4iIiBJNeEM4+v6D9CXpunbtir///e848MADG3nPiCgaAyxRElFVFePHj8c777yDyspKZGRkILDQwzVdiYiIGsBDP/0fRowYgaKiIsiyjEsvvRTXXHMNvF5etkOULBhgiZLEtm3b8M9//hN//PEHAEAq9sK7Mg9SldLIe0ZERNR8CI+KEx7uq1f8P+CAA/Dwww+jS5cujbtjRASAAZYoKUyZMgWvvPIKysvLkZaWhtBfPshbOepKRETUWB766f/w0ksvoaSkBD6fD8OHD8e5557LdWOJGhkDLFEjKi8vx4gRIzB58mQAgFTihWdFLmRe60pERNTohC+Evv/XFXPnzgUQXjf273//OwoKChp5z4iaLwZYokaybNkyPPHEE9i8eXN4Xdd1GeF1XTnqSkRElDQEBIZ/fgneeust+P1+5OXl4aGHHsJRRx3V2LtG1CwxwBI1MFVVMW7cOLz33nsIBoNo3bo1iqYGIJewXD8REVGyem/Ni3jqqaewcuVKAMBll12G6667Dh4PZ00RNSQGWKIGVFJSgqeffhqzZs0CAMi70uBZmQspJDfynhEREZETIQmc/uIxmDBhAgDgkEMOwaOPPorWrVs37o4RNSMMsEQNZMWKFXj44Yexbds2+Hw+qH+lQd4WVahJKwxRH29Lp23X53MTERGlIkky7RcfmDocL7zwAsrLy5GXl4eHH34YRx55ZCPsIFHzwwBL1AC+/fZbjBgxAn6/H6hU4F2aB3mfYU05Y0VDs7dkfd7v9FitDT8qiIioObI4wSvSg+h8SUt9SvG1116LK6+8ErLMWVVE9YkBlqgeVVVV4dVXX8U333wDAJD3pMGz3DBlOLoUv124bIz7jW34UUFERM2Vxcne6CnFxx9/PB566CFkZmY28A4SNR8MsET1ZNeuXXjooYewdOlSSJIEeV0WlI2Z4SnDVmvIaW/Hxr7frA0/KoiIqLky6zcN/eJd31yDl19+GYFAAF26dMEzzzyDjh07NuAOEjUfnONAVA+WL1+Om266CUuXLkVubi48i/Ph2ZgFSZLtw6PkEG7r+37AvA3DKxERNWdWM5Sq+8sRZ/wHr7/+OgoKCrBu3TrcdNNN+O233xp4J4maB47AEiXY9OnT8cwzz6CqqgpSuQLv0haQKlOgxL4WcK3uIyIias6s+kgD4Q3hgGvbYPHixZAkCf/3f/+HCy64AJKLxxKROwywRAkihMCoUaPw4YcfAgCkIh+8y/ObzhI5/KggIqKmzKlgocsQKiSBU587AhMnTgQAnHvuubj11lu5XixRgjDAEiVAIBDACy+8gMmTJwMAlC2ZUNbmRC6RY0aSAaE23v3xYIEnIiJq6uz6tThGUQUErvv4XLz11lsAgKOPPhqPPfYYizsRJQADLFEdlZeX45FHHsHcuXOhKAqk5VlQtjt0UJJhVNYsYNb3/fGqzdI9REREycbtmugap+r9Dh768RY8/fTT8Pv96NGjB55//nkUFBTEtQ0iisQAS1QHe/bswf33348VK1YgPT0dwXkZUIrTrB8gRU0njg6X0fdHt3G6381z1AarExMRUVNQ24DqVMXfxr8WPoYHHngAxcXFaN26NV555RV06tQp7u0QURgDLFEtbdy4Effddx+2bNkCBGR4/2oBucxr3tgseAI14dLpfqs2TvdHt6ktu46bHyFERJRKnPoyu5BqV/DQhkgLou25mdiwYQPy8vLw0ksvoWfPnnFvh4gYYIlqZdWqVbj77rtRXFwMVCjw/WVSadgqUDaGRF0Ha7ptfoQQEVEKqYdR1sjtm9efEB4VXa9sgeXLlyMzMxP//Oc/0a9fv7o9F1EzlERH2ESpYenSpbj99ttRXFwMqcwD36KWtQqvkmzfQTrd75pTkSciIiKyXys9HkI17V+loIy1o4rQv39/lJeX495778Uvv/xS9+cjamZ49EoUh0WLFuGuu+5CWVkZpBIvvItbQgooNQ0k2TEUSrIESZYgVOuRy4SFV+snYHglIiKqTyZ9rRSSseSNLTj22GPh9/vx8MMP48cff2ykHSRKTTyCJXLpjz/+wL333ovy8nJIe33w/tWiZo1Xl4HQzair1sYp4NY65Ca6QjERERFZizpGkISEuS+swqmnnopQKISnnnqKIZYoDgywRC7MnTsX999/PyoqKiAVpcG7tGU4vMYRXO0Cp9tAWufgylFXIiKixmHohyVImPbYQpx++ulQVRVPP/00fvrpp0beQaLUwCJORA4WLFiAe++9F1VVVZD3pMGzvCUk4S5E1mUqcPQIrNm27EZpDY0apkIxERFRKkjEda6unsfmpHF13ywgMOipfpg0aRIURcGjjz6Kk046qWH2jyhFMcAS2fjrr79w9913o7y8HHJRGjzLWkKu7pCswmMir18VqrDcnqvw6u5JErANfowQEVEKqadKwzFtbO8O18MQEDj5yb74/vvvoSgKHnvsMZx44ol12z+iJowBlsjCqlWrcPvtt4cLNu31wbesIGLk1SxASrLk3Km57fRcBEun62Rdj9DWFT9GiIgolSRiFFYLqFb9qIsAq1FVVQ+xHo8HL7zwAg4//PC67yNRE8QAS2Riw4YNuPXWW8NL5ZT64FvaCpJa0xGZTu91Ko7kpnhSnAWWLEO0zf0mG3Fu47gNfowQEVEKSWSA1UT3p3EWdxQQOOaBnpg2bRoyMjIwYsQIHHjggXXfT6ImhgGWKMru3bsxfPhwbNu2DVKZF76lBTXVhqtpwTAmuNY0iPx/bTq5OANsna6RrSt+jBARUSqpjwALRPaptVidQEgCB//ffvj999+Rl5eH119/HV26dKnjjhI1LSxJSmRQXl6Ov//97+HwWqHAt6xVTHjVWIbXyEbu2tRRna67ZWViIiKixKhjxX9JSFj05mb07t0be/fuxT333IPt27cncAeJUh9HYImqBYNBPPDAA5g9ezYQkOFbXAi5ymPeuKFCXwJGRzkKS0REFKW+RmDj3oRFoUZPCG3O9WHDhg3o2rUr3nzzTWRlZdX5+YiaAg69EAEQQuDll18Oh1dVgm9Zq9jwKsmAojh3WLIUvtWF0+O1M7zJMnrK8EpERMlCkuwDagMto+Nq7XaLvlwKKtg+oQqtWrXC2rVr8cQTTyAUCtXTnhKlliQ5+iVqXGPGjMG3334LWZbhXdEC8j5fZANJdg6VboKr1saund19yRRaiYiIkllDrffqwHWQjf6W34Nnn30WPp8Ps2bNwptvvllPe0iUWngkTM3e7Nmz8c477wAA5DW5UIozau7URl3dBFOn++vahsGViIgoPk6jsQ2oNqOxd/R9Eg899BAA4PPPP8fXX39dX7tHlDJ4DSw1axs3bsRNN92EsrIyKDuz4FnTApIQ9iOuxmtK7TojrZ3TduzuF6pzcK3jerFut+H8JPwoISKiJGAVWLV+KlGBNo51XmN2RVvNQFGsN6D1zYqCy985Be+//z4URcGIESPQr1+/ePeWqMlggKVma9++fbj55puxfv16SGU++Ja1gaRdXlKXYJooboovAQywREREmoYaba3FEjnRhCrsA2y4EaAoEBA44cFe+OGHH9CyZUu8//77KCgoiGePiZoMzkmkZkkIgWeffRbr168H/Ap8qwohQ4bk9UBSrN8WkiSF77fplCRJgmTTgYa3odi2AVD/AdmI05OJiIhquBhdrc11rdHbcOrrJY8nfNwACT//cyn2339/7NmzB48//jiCwaD98xM1UTxqpWbpq6++wsyZM+H1euFbVQA56AFkp+CqJKSN3f0R25JsOrZEVDpOFCE4+kpERE2HFjwTMMrqqviimyArSZBUGU899RQyMzOxcOFCvPvuu477R9QUMcBSs7NixYqaSn6rs6FUZtY5dDq1cRNu9XbxjMzKUuOOnjK4EhFRU+YigCZiNBaAqxB7fc8H8cADDwAAxo4di59//tl5u0RNDK+BpWalvLwc119/PTZt2gS5OBO+Na0hIarDUFUIIexDqVOb6vsBm3BraKO3iyKEcC4apRV7cpDw62D50UFERMkmEdfAWoVNQz9pde2qsa+1vL7VUJzJkl7kyXxfznrxKIwbNw45OTkYOXIkCgsLrbdF1MRwBJaalREjRmDTpk2Q/Ap86wtiw2u1Oo+6ynL4OtdEjrrW95RhtyO5nDJMRETJqL4LOMUxGmtbnCkBo7Ff3/8bevbsidLSUjz33HNQ1QQUYyRKEQyw1GxMmzYNkydPhizL8K5tDSlk0rlIUvW6rzZvDbdtHEOp7Fh9UC8a1RASUYmYiIiosSTi5Kqb616dKge7fB5XJ68tnksSEh5++GGkpaXh999/x1dffVX3fSJKEQyw1CwUFxdjxIgRAAB5cw6Ufemxjdxcp+rUxk241dol6kyxy+tgHa/PISIiSnUpNkPIMcQCliH2xt4P45ZbbgEAvP3221i3bl0C94woeTHAUrPwr3/9C8XFxZAqfPBsbxl5pySFy9TbTvdx18ZNheEGW6MuXm6nECfr/hMREQEpGWIdg6yimAbZt67+L4488kj4/X4888wzXFqHmgUGWGrypk+fjp9++gkQgG9ja0jC0ElIsdepSFLUlB2rNlpnYzXqKsuRYS+Ro65ERERkrTHrNbiahhzbJjrESh5P7AOjj0cgYcGH25GdnY3ly5dzKjE1Cwyw1KSVlpbqU4c9O1pArqieOpyIUVctoNZl1DWOdWFtJWoacWMuyUNERJRo8YTYJLgcpzajsVLQg+HDhwMAPvjgA2zfvr0+d5Go0fFolZq0999/H0VFRZAqDVOHXRdPclGkIcWmDDsupeNWEr0mIiIiWyk2pRiI/9rY1y//CocccggqKiowYsQIcJVMasoYYKnJWrlyJb7++msAgHdTAWRZgeTzQvJ5rddekyXA6wnfrM6yVlcFDI/Omr+F9DOoDRVwExVMWYmYiIiobhyWvpO8nvDxgc0xguTz1SzHZ9fG4wnfIOHee++Fx+PBr7/+ihkzZtTpJRAlMwZYapKEEBgxYgRUVYVSlA1PZbb9guFAbLl6s6lELqbqGs+aug6xdZlGbAyvLtans8TwSkRETZGbE8WJmj5sPI5w095N/+9iRpjk8eCmvk/isssuAwC8+eabqKqqcn5+ohTEAEtN0uTJk7F48WJAleDd1dY+vGqjrk5tFMW2g3N13Yr1g+N/jCoSM/Iq1NqFV04jJiIisucwGhtuYz8aC8BxNBYIh9jP/v4bCgsLsW3bNnzxxRfx7i1RSmCApSansrIS7777LgDAu6sActBr3dhmkXC907EbdZVkSIr9YuT1MgprF1zjGYXlqCsRETVljTX6Gq368ZLXpLKw3ia8H5LPZ70fTiFWyLjpppsAAB999BGKiops2xOlIgZYanK++uor7Nq1C5LfC8+eluaNfF4gLc2hs1EAj6fhKvO6HdHk9a5ERESpx+2UYqeQqiiQsrMs73/5ks/Rq1cvlJeX48MPP4x3L4mSHgMsNSmlpaX45JNPAIRHXyVh8ifu8UCSZfuORFZcTPmRAEW2D7jVI7i1nlpstc1aEqqoqUTMJXOIiKgpS8ZLXdyuCe9mJQSf+QwzCRJuueUWAMDEiROxfv36ePaQKOnxCJaalLFjx6K0tBSSPw3KvlaxDbTwCoT/NVskvDq8SlL19GKzSsOyoQNSLM6WGoOmnMBleWopYUvoAI27QDwREVGiNMT0YW07xmMOixArpaU5bzMjveZrixD7wNAPcOyxx0JVVXz00UeO+0aUShhgqckoKirSCxb4ivaDBEPn4PGEy83bBURtyrBhxDRm5FQfdbUbvXVRsMFKos4WR3XIluG1NqOwDK5ERJTsknH0NZqb0VhFcQ7HPm9skJVlXH311QCAqVOnYuPGjbXfT6IkwwBLTcaXX36JiooKyFWZUMrzau4wjLpaMoy6xoRWbRRWtulotFFY22nJiRmFDReFct8xJ3zklYiIqJmol9HXmDurT5obR19r8RzRIfbOwW/i6KOP5igsNTkMsNQklJeXY/z48QAAb3EbSJAgpadBys6yDa+SLEPyem2vU5Wk6irESXQ211WITfQ1rgyvRESUCtz218lUC8LtdbHG6cNmfF5ILWpO4l911VUAgB9++AGbN2+uyx4SJY0keucS1d63334bvvY1kBYeffUoEHal6oFwR5DmC4/Q2nUcTiOrejvnyoGuRmFdLLsj3IRJVhkmIiKyloh+0u3oq4u1XsPHEQ6zsHw+22V2AEDIUvj4BsA9p76DI488EqFQCOPGjXPcV6JUwABLKS8YDOKzzz4DAHj3tobk8ejhVXg95gUOFAXwVHc6HsW8mJNWxAnVnY+b6TsNICK8WgVrQ6fsOP3J7RnoJBqBJiIiMhVvX2UTYl1NH3bDGFwtQqxkHFm1CLFSVmbN1xYhVmtjDLEXX3wxAGDy5MkoLS11vdtEyYoBllLejBkzsH37diDkgcff1t3Iq6fuo6CWj6unUVghROOPvDLEEhFRUyPU2vWdtb321c3xhVmIjeqDzUKsMIRuLcQ+dNEYdO3aFRUVFfj222+dn5soyTHAUsr773//CwDwVLQJF2OKoo/C6lOGTTocbRRWC6AmnUuDj8IaQqxtcNU6K5sOOGGjsERERMmqridZ45m95JZVWDV8X7K6rtUwpdg4+mpknFJs1kbI4WOJCy64AADw1VdfIRQKud17oqTEo1ZKaRs2bMD8+fMBAXjKW1s3lOWEjLpKHo99JUFtO06BUHY/wus46qoKXu9KRETNW6JmCAm1YSoPA4AsQ8o0D6aRz+VcSFLy+SJGX6O9fvd05OTkYNu2bZg3b57zcxIlMQZYSmna6KscaAlZtSg/ryhQszIgLBb7Dm9AhkjzOofcRFAFoIrqSsI2b8Hq4GpbYErjEJgdl9JxG4BZiZiIiJoySXbuMyVZ78sdqS76V4c+XMrNARwuj1JbZENkWi/DI0HGkCFDAADfffed8z4RJTEGWEpZwWAQU6ZMAQB4/O1iGygKRHpaeAqxDOuzl7Jcc9bSZRl7x7OqimzeIbnp7IRwHxSN27PoABleiYioSauH+gxCFe7WUbdoE3GcYBFipXTD1GGbECtkKXycYhdipfBa9SIzzTLIfvPpRgDAzJkzUVJSYr0toiTHAEsp648//kBxcTEgvJCkwshqw4pSE1yr/8qF1xM5CivLEB4lsuCBx0WBJ7eiQ6xJJxczCmsREmNGYV2e+WV4JSIicskkRMb0oy5OTpue5HY7Ehu1fSk3p2ZftBAbFWTVFtmGB9QE2Yg2OZmQRQ569OiBQCCAH3/80Xl/iJIUAyylrKlTpwIAlFBrSLLh+hBjeDUyjsIaR12jCK/HOcS6GYU1cjvyaqY64Ooh1m5b1R2fqzPHDK9ERJTqEjX6ajcCWoeR2Mg2qh5kI0ZfLfZFys2JOVYxHY01+xlEh9jql6dNI54+fbrz/hIlKQZYSklVVVWYOXMmAEAJtQEAqD4PRFa6eXitJrweiDT7QgcAXE8ldiziYDWVOOKpXDyXNkrrpoNMJIZXIiJKVg24tJtQhXOBRlW4OrltG171RtYn2oGa0diI0deYbYRDrJpTUyjqg1fmAwAWLFiAPXv2OO8HURJigKWUNH/+fOzbtw8QaZDUPKhpHgTz0qCmWYdXAIBHhpqdpi/ubUqSwlOJndaTdZoOJAQQcl5bztXarqoabucUvF2PqrJqMREREQBXS8k5rt+eaPk5jqsVBNrmIZTjEIYlCf5W6fC3CLeTRAZ69+4NVVXx888/J2pviRoUAyylpF9//RUAoIQKINK8UNPC17KGsrxQ002qDcsyhFeBUKqvDbE6ayvVFHOyDbHaFCBZNh+FFYZrVCXZNHgKISBCIecgrIVX/bVY7Ht9rF9HRESUjBpg6nDcm3I68Q24WzZHC68OqxUIWYKQgFB2GkLZ5oWbqgozIRQJQpH0EHviiScCAAMspSwGWEo5Qgg9wEpy63B4re7IhGQSYmVZD65ahyfSlMhRWMN9Ed8zExU4Y0KsMCmwFBVihRCxwTWmUJMKEQq5G6E1GVG1DbFuO+wGnJ5FRETkSgP3TW5GXyWvx3mt1gwXU4eByNCqhdioIBsszNW/FhL0IGukhVe9XXWI/WDEHwCAhQsXorKy0t0+ESURBlhKOWvWrMGOHTsAIUP4CmNGU4Uk1YRFY3g1kiSo6Z5wiLXpcCJGYQ3FF6wf4Fwd2DS8GvZLey7b4GoMp7WdDswQS0REqSaRfVIipw4nYM12AOHRV7NtG0Zjg4W5EcFUEx1iTdsoEgJ5LdG6dWv4/X4sWLDAeZ+IkgwDLKWc+fPDBQgkuSUgm0/XCWV4EMpKMw+vGrupxIY2Zmc+Y5rJcs3C5taNwv+6KKXvatQVqPu1rAmcOkVERJQyGnrqsJvRV6frXquPScyCqUYLsVWFNlOVPTKOOOIIAMDs2bOd94soyfDolVKOFmAhtzK9X/VKCGYo8LfwIZRtU6wJ1VOJfSbXzOoNqoOk3XRcISBUNdxGsXlLaWHTrnOqHp11rEycqGrEbgIwKxETEVGySESf5DK8SrLk2E9Kdv2+1ia9elTUqc91OFkOAFUd8hFKtx8VLu2cjvI2XlQUWAfrAQMGADAcUxGlEAZYSimqqmLhwoUAgFBWQez9XgnCIwESAAmuRljVdI95iBUCkhYUZRkwK40vhPtrVKu3JVkVZYiaWmwZYl2E14StA8vwSkREyaYB+ibJxaU6kmKYoWW3T5KLy37Mpg5HqWqfFz7GkSXbEKt6JL1wk1WI/ft74Voia9euDa/qQJRCGGAppWzYsAF79+6FkBRUtWyFQG7NB7geXg2CmQpCWTYjrID5VGJjeK1uA48SGWLNwqskR47CChUIhZxDp8V1sTEh1qw4VPSm3IzOMrwSEVEqq20f5ea6V7NZV2b9ZvTJaCFi9ksffbXbloslcwBEHuNUh9joIFvWKXKqslmIrSj0QE3LQLt27aCqKpYuXer43ETJhAGWUsqKFSsAAGpaPoQioypHQSBXMQ2vAAAJCGR5HENsxFTi6PCqb8sQYq1GXmWpJsQaRl1jNyVFnrW1uS5WD7FWwdTQGTO8EhFRsxFvX1Xb8Ko/n2GWlO0lQ9UzrtLTrOtwaNtyGV6r2ufFflOOHI0t65QO1eRYyBhiKwo9UKuvoe3Tpw8AYNGiRY7PT5RMGGAppdQE2PAHuZCBkFV41bgJsZIE1ecBPIp5eDW0AxyKLMWzBqtDeNWfy+W0YReN3O4ZERFR8mvoE66iuuaFU3FHF8vqhLfl5rrXPPvjHFnCrkMyTcOr/lTVIVY1FIDq3bs3AGDlypWO+0CUTBhgKaXoAdaXDwAIpQHlbRRUtrC+FkRIUnixb7tgGRKQVBXCq0DYVRNU1fAIrV2HEwoBITeh1EVRJzfchlLX7Tj6SkREKSKBy+rYjr5qtGV1nFYUkGTHYwEpNyd8zGCjqkMeVK8M4VTbMQ2oyrdvtLebjNLONW1e+GIegPDyhESphAGWUoYQAqtXrwYQHoENpQGhdAmqAlS2kE1DrPHaVsvrYavDK4Dw9bBpHvMQq6o1nZGimIdYY3iVZNPRWD28GoOiRYh1HH2tDqUJKdgUfkJ37YiIiBpbvOHVpi+MK7zCfk13yVgY0iLESjnZNSfWLUKsFl7DD5AsQ2xRj/CKC0KxDrElXSQIj4DwCD3Eqr5cAMCWLVtQXl5uvnGiJMQASylj7969KC0tBQBUtcpGKL3mw1zIsSE2ujCTkCQEsqOmEhvDq0aSYoOnFl6NAS86xJqNvEaFWNPwaoHhlYiIKMFM+kRX4dVsUyYhVvJ5Y6+1jTo2kHKyIaKvoTUJsXp41R8YG2KLevigGlYMNAuxWnjV21SH2NL909GqVXhJwnXr1sU8P1GyYoCllLFp0yYAgOrNgPB4Yj7EhQz9bKbV8jkRIdYsvGrttKnEqgoEgrHhVaOFWLtpw9Uh1jG8VodhoRWIYnglIiIyV5epw8ZiTG7Dq2J+qZIxxJqGV031MYJpeNXbhPQgW9XBpGgTEBFio8Orvk9RIdYYXo3fEx6Bjh07AgiPwhKlCpuL/YiSixZgQ+lZlm2q8iRIqoK0YuvgJiQJwXQFkt8Dpdxv3kiSwpWEJck53AnheJ0LAFcjr24LNgEMr0RE1Ewl4rpXobqqShx+Pvt2QghIiuK8vZBqHV4NAq1zYkdfI/ZHwu4DHVZXqA6x/jwAsO7n27ZtCwDYtm2b434RJQuOwFLK2L59OwAgkGcdYIUMVLaUUZVv/acthQSkkADsChcHVSAYgvAogF1Rp1AoHDpty+mrEKHqSoM2na7Qpg85nQ12G0xdd8yJK4BBRERUrxLcZzmeDLaoZxHRxFc9DOpQkEnKyoQUCNq2CbTLh/BIkP32fX0oDQiZjL4a7e3nR2W3Kts2WoDdunWr/caIkggDLKWM3bt3AwD8LX2oLLBaE9U+xEohATmgQhJAKN2DUGbsp78UrJ42DISn6liF2FAIQi/+JJuHWC28OhDRnZ5VZ1mbaU9uMMQSEVGyS2Rf5WYNdRfh1UgIYRlipazM8P6rwjLEauEVACQhLEPsnt7Vo6+SdYgt6eOHkhaC7FXh72Q+26yqbRAvrfoDQM0gAVEqYICllLFnzx4AQCjTBxGdJyVEjKiahVhjeNUeE8qIDLER4VX/pkmINYZXINzBRYdYs/BqMgobE16N24xoWIvCE25HYQGGWCIiSl71FF41MSHWZXjVR1+17ZiEWD28akxCrDG86o8zCbF7ensRSjM2ig2xJX38UNJr9kELsTFB1iOgZoQfvHfvXquXSJR0GGApZWgBVs1IQ6AgWDMKazVYaQixMeFVYwixpuFVb2d4kujwqjGGWLuRV0OItQyvxm0CdSv9zxBLRESprJ7Dq0YPsbUMr/p2DCE2JrxqokJsdHjVn8MQYmPCq96oJsRGh1eN7FUjRmOr2oafO5TGAEuphwGWUsa+ffsAAGqaF1AE/O0CqGjjUBRJBvzZEkIZcmx41UiAUCQIxb6zEh4FUGTz8KrROjw3hZicFkHXtuP2mtdEYEEnIiJKJg0UXjVCFe7Cq0VVYn07QgA+r/3+V4fYQLt8++cSAnu7eszDq94ICBxbYhpejWSvikNOXgFUVyZWGWApBTHAUsqoqKgAAKgeBZIsIPlUBNoGUNHaOnTJfkAOhIOsdRsVsj8E4fNA+Kyr+kkhNdzZyDYbC4WAYBCQJUhWnZahGrFlmziwGjEREZEDl7ORJEVxPAmth1ebE9FSenr4i0DAdluhlrmQA/ahc0/PNIR8EpRK22bIzaxEXu4+2zbHd1uF/TL24vjeKwBUDwogfIwVDNoXmCJKFgywlDK0AIs0BZCrA6DHOsTKfkCpEpAE4M+W4c+LLcQk+1XIVcHw6KwkQaSbh1gpGApPLxaiZu3XaFp41TduEmK18Gro9KyDrmEqkwWGVyIiarISNfoaT3jVWPSvEW2i+nO9TXq6PoorhLAMsaGCPMATvsxJqTAPj3t6piGUpl1OBMsQKwaER1C9imoZYo/vtgp53vCxVEtfOY7vvSJiWR8GWEoVDLCUMqqqwqXgo9dGMwuxxvAKhEdgq3IjQ2xEeNU3FhtiI8KrJjrERodXMybhteZpo4OuSTGJKAyvRETUZDVmeNVE9bOmbcz69agpyGYhVguv+rZNQmxEeNU3FhtixYC9yMmoWS7HLMQaw6umpa8cxx64Wv9/wGG0mChZMMBSyhBa0DLp1IwhNjq86o83hFjT8KpvrCbEmoZXjRZi7cKrNgprE15rntbh+lk3Jf9rGtjfr7djeCUioiSTDOFVU93f2rYx9O/61OGYJjUhNjq86vthCLGm4VXfWE2IjQ6vGmOINQuvmpYZ5frXXAuWUgUDLKUMPeBZhC7JoyKYpyKYDcuCTUIGQt5wwSbLok7hJwu/O4RwDnluQqBDeA03Ea6KPzmGVyIiolTVwNXw3ayp7qpehRCQPB7HAlAiI800vOrPFRKoKPRZh1d9Q0DFQRWm4VXjVVQ8O+Ary/AKRL42TiGmVMEASynDqQMR5R7IlRIqWwpUtjRv66kQ8JarCGYqCGXGXhOrP5c/CKkqGLv+q1EoBBEMhTtbq7O8qqhZKseu+FN1W1tCTWx45egrERElkwauOCy5WapOu0bU4SS0lFZdItgiBEqSBJGTBUgS5H3WobO0SyZUD5C+x76PLj2sEt60IErKzUd8AeAfPb5HF+8unJk/37KNMBwLtG7d2vY5iZIFAyylDKV6+k67FsUx94lyD5R9MqBKEApQWRAbYj0VAr4yFZIqwuXmszymIVbyByFVBsIBT5LMQ6wWXrVOT5HNr1ONnvZsEWIt14zVG8QRXt1MH2Z4JSKiZNJY4VVj0ndKStR2LEKsHl4B05PRenjVjgFCqmmILe2SCdUb3i85JCxDbOlhlfClB6p3STINsf/o8T328xQBAHLkSssQ20aqWT4n3WL6M1GyYYCllJGRkQEAGJCzBh3aFOnfN4ZX/XtRITYivGpMQmxEeNW/GRVio8OrJjrEqlHThi1CLMMrERE1a40dXjWGPjQmvGqiQmxEeNUYRmFjwqsmKsQaw6vGLMQaw2vNLkWGWGN41ZiF2Ha+vZCqapbwyczMjH0tREmIAZZSRlZWFgDA56/CoLbL0aFNkWl41RhDrKQiMrxqDCHWNLzq7apDrCSZh1eNFmKNU4ejtgNA78gYXomIqFlLlvCqEap1eNVoBZvMwisQPoEdDFqHV011iDULrxpjiC09NDa81uxS+PFm4VVjDLHtfHvhlUIIVoW3nZGRAdnpUieiJMG/VEoZWoANVgA5SiW65e2CnBUwDa8aoQCqL/yvJQkQkuRYsEkKhsKdlouCD8IuKFZXJbZto7d1+RZ1W3WYiIgoWSRbeAUAu2rD8bRTBeDxONa/CLTKQtpekxPeBnJIoLK1gC/DepkbSQKu6DLbMrxqcuRKPNx6BrxS+DmD1dWMtVluRKnAuooNUZLJyckBAPj3CaypKMTW8ly0K9yLLaoEeYf5WVBfiQRfCeDPliCpCnylsZ2EUqFCKQ9AeBVABSS/RQdRXUlYkmUIILx8TrSQav79qO3o4VWW7Is3CRWSLNmPwjK8EhFRMnFYNSCiTUKeL0HjMdXbEULYF470Vq8VHwpZBlkpMwOQJEiVVRDp5scogdY5UL0ypKD9Ce2iXhJUD6BuzoK3/b6Y+yUJuOnAmWjr2YttwTy09eyFd2cIhePKkDu7EkqZilC2jJKj0lF4eTbSWmfhmrzF+M/ePqgqCT93ixYtbPeBKJkwwFLKKCwsBABUFguoqgchISPDG8B+bYrhL1Cwa1dORJD1lUhIKwqXpBcKUJUrAYgMsUqFCk+Zv7qwkwSRFu6IokOsFAiG14PV/m8WYqvDa004lWMLPgiTqcVWIdZ4LY5ViI03vGojzURERPXBGPys+pxGCK+Oo6+SHDHDyjLEauFVa2MSYqXMjJqRV1WYhlgtvGoydgVRURB7WF7US0Ko+qGyX0IgKsRq4bWjdw8AIFQho+3Tpej01R7IUefj82dWQvyrGLgoFy2eKgAAVO4N/35atWpl8kMhSk6cQkwpQwuwO3alYXN5nv79DG8AeemV2K9NMdTW4YIIxvCq0UKsPyfc0USEV011iBW+mg5KCgQBfyC2cIMs13Ra0eFVEz11yKoMv5tqiC7auNLAa+wREVEz4aZ/SYHwqonp0w3h1apNRHjVVIdYTXR4BQApKJC+O3IJnqKesh5eNVqIBWLDq1yp4vjrVqHLuNjwqj9PAJA+LoF06RZc41uEyuLw/hcUFJg/gCgJMcBSytA+XPfulhFQY6fsaKOxaroaE141xhArqcKisFNNiLUKr3pTvSS+SXjVaG2MU4dN27lYj85FG1cYYomIKJGs+pXoEdmEPV/9hleN3m+bhFdd9cwq0/CqqQ6xZuFVIwdqQmxRTxmhdPNjBtkvxYRXAOj/9Ea0nlMGp3lWAoD0WyVaPrEPPaWhADgCS6mFU4gpZbRr1w4AoO7xw6p0wo7ibMhVEgLZgG+veRuhAEIyD7g6SYJUfc2r0+Llrq+9cdqOKng9KxERpZaGHnWNQ13Dq86hEJMQIly52KldVoZleNWfKiAQTJcsw6smP7s8Irym7Qygy5fh/zu9Iv3+cSXYmLMaANChQweHRxElD47AUsro3Llz+Is9VRBB86AXCiqQVAn+fAF/rvlHuK9EIG1vCKE0GaF083M4UmUQUkVVuDNK84UrCZoQqhpe702WrAs+qC4KO7kMr/p1sHUtWMHrYImIqK4aI5hKsus+0LYAolRzjaplE0WBpF0qZHMSWkrzAZIM4fdb70tOJoRHhreo0rJNWQcfyjr4ICQge731zza7VxG8sor/bDlW/17Xz3dBdigGFbPfAWDjqlUAgI4dO8b1WKLGxABLKaNVq1bhpXQEcJK8EPvn7Iq4f/3OFsDO8MUiQgb8LWJDrK9EIL0oVF3YSUIoXTENsZJxSR1JAjxKTIgVqhqeXqwFT7MQGxVebasaOojpiBNVdZGIiChejRVe42QaYqO3Y9JGiq4ubHHiVwuv2nbMQqwWXgFACoVMQ2xZBx9CXiBUPVNZqTJ/vuxeRchJD19PW1KVrofYwjllpu3tVMgydlaG96VTp05xP56osfAImFKGJEn6B6y6vQKH5azXQ+z6nS0Q2poJOWCoIBgVYo3hVW9jEmL10ddohhAbE141xhBrMfIaG3KdR18tzyLXJsRy9JWIiOoiRcKrJqIPtdqOoU1MeNXbRBVzNIZXw3aMIdYYXvXHRYXYsvY+PbgaRY/CGsOrpqQqHaO2HgPvvvgvQVqbmQkAyM/PR25ubtyPJ2osDLCUUrp37w4A2LVeRpZchcNy1qMi4I0Jrxo9xOZJkFSrwk41IVaqDEIur7QOeZ7qTs0svGrsphNXqwm5CbjuNZ5OneGViIjqIsXCa1zbUYV1eAX09eABi/Bq2A5gHl71XakOsWXtfQj5zDejVAk9xJqFV01xZQYCWfH/jFbk5AAAevbsGfdjiRoTAyyllN69ewMAdq4Nf6BnyVVomVEONc06BAoZkEKA4rcOb0KRwlWJhYBQHN4WssuiDwyLRETUlDT1CvYu+vbwdbEursOVJcvwqgnlWodXTVUrQA7CMrxqFvdvb78hE8uyswEwwFLqYYCllNKrVy8AwM71EoQKTC06ECt3FELODSCYbV4oKW2PhIwdAiGfhFCG+Z+8Z18QSll15+D1QHgszsAGghD+QLgTt5xiJCAcijYJIWqmKzl0grZFKMIN7O+veVJ37YiIqPmRJPuAmsLh1dUSdNrsKbtiTR5PTcgNWBdsktLD9Tjk0grLNsEWGVAVGdlbgpZtyveTEPIJQAW2LG5j2a5Py63437AeCHni+x0t4wgspSgGWEopXbp0QXp6OgIVEiYt64ZZG7sgEFAgycI0xKbtkZC5VUAOCggZCGTIqMr3xARZSRU104slyTzEBoIQVf6aDtAsxGrhVQuLsnNZ/fC2zNskLLwSERFZcVqrtbHDax36upildMy2FX3pj0mIjQivVs+VnhYOr3JNLQyzEKuFVwBQqlTTEKuH12pKeexz92m5FX1abkWWUoXSgnTMOasLALhaB7bU48HarCwANbPbiFIFAyylFI/Hgz59+gAAls3LQCBQEyDNQqwURERZeSEDqiccZLUQGzH6qj8wKsRGh1djO0OIFcbqxUaGEBsx+hqxrci3o2N4jQdHX4mIyIxTYG3s8KqJM8RKsuS8DixgXbfCEGItw2uwJnjqwTW6XVQYNoZXTXSIjQ6vGuMorBZcs5Sa45cJ9/XHqsMKXa0DO+PwNhAIVx8uKChweARRcmGApZRz6KGHAgA864tj7tNCbKhNFeQqIGOneXDTRmMlAXhKKk2LO8WEWKvOU5JqltixmXqkh1gX69K5Cq+cOkxERHXhFE6TJbxqXPZ7jsHVbvk7I1W1H3kV4bXgI0ZdTcilFQi2yDANrxqlKrxPVuEVCI/CblncRg+v0YLpCt779/FYcEEHqCZVjQFA9UhYfVEB1lx4DwCgf//+lvtNlKxiF8AkSnKHHXYYACBty55wGIzqNCRZADvSkL5LgpBtCjfJgKpI4WBpdc2qJIUDYND6GhUAQEiFCDl0rKoaHn1tSAyvRETNhxbG7D773YbSZAuvgKtqxK5GXSXZ1YoBUBTnwk6KDAQCQJp1NSaR7oNnbxX8LTNsN+UtF45FnVQPTMOrJpiu4Ik7zkDbq/di+I8zUDi7FN59KgJZMnYemYO1F7RCVYEXfzy9AAADLKUmBlhKOQcccACys7NRVlaG9J1FqGzTMqaN7JcgB4FQOgBIphWI00pU+Pb6IbzhEVYpYBJi/QFIlX5AkiB5POEA6lCgSQ+9Zlxc05rQ0VciImoe3ATOZAylbiU4vALhS3osQ2z15UEipIarDpvxeABJDrexeDqRmQ7IsvkxRrWqFuHDcUkF8lYBe7ubtwvkCsAj8OWi/jjv4PmmbdbuawW/6sGGnFZYNrwtlg1vG9PmxXknIH3NPMiyrM9qI0olnEJMKUdRFBx99NEAgIy1OyDLkWFObEtH5vbqzkmWEEoHQr7IriWtREXa7ipIQRVCAoRXgZrh1cOsRgqpNYFVkiDJcmzhppAKoY3QatOEoztEN6OvbsMrERGRUXSfk4yFmOqiHsKrJUWJ7OdVixlW1eFVVxVblVgLrxrfntiCTlUtPFA9EtTqCsKeytjjgECu0MMrAKDMiy8XxY6cri9vCb9aMzb19e5+MW1eWj0E/iVlAIA+ffogPz8/9rURJTkGWEpJxx13HAAgbfUOyJKqh1ixLR3ZG2XIhn5EC7H+HEkPslJIQArWdEhCCrcTXqUmxPoD4VuUiBBrDK+a6BCrhddEhVNe+0pERBqrYJqMhZjiJblYbxV1C68RJ5ctl8cz9LseT2x4RXik1hhio8MrEJ7pZQyxWniNlre65ms9uHqi+vSymotc15e3xPrylqgMRV74WuzPjAixL60eguKyTJxcFl4+59hjjzV/vURJjlOIKSUdeeSR8Hq9wN4KeIr2IdgyG7IcQigoRYRXjajutELpAmmlAr5i8/XbhATAq0CqCkCqqLKcLizJcrhMvdV1r7Ic7vCk6mtsAw7X0CZ66jDDKxFR05dqRZjikajgqm3Lpq0QIlysyYYIqZDSfLb7JUIqkJke/o/FEnraVGKr8AoAngqBvNUSdvU3Ca4GXy7qj8O7rY8JrkbF/ky8tHpI+OuyTEiVAfz5558AGGApdXEEllJSZmYmBgwYAABIX74NkgT4t2cifacEu/rxvhKBtCL7MCkkuFu7VXW4HlaWAVG9LqzbTpaIiJo3SWr617PaSeSoq7Y9p/VbXfwsJUmyPmmttUnzhU9+OxxDKBVBy/CqE7ANrwAg7fZh7uJutm0Wre6AbRtaorgsEwCQvnI7gsEgunfvjk6dOtnvA1GSYoCllDVkSPiMYsaybYAQ4cJNfkBVYBli5SAgB1UIrwzhMf/zlysDkMorw5UFLaYTiWAICIRHcd10fOENO3Sgbsv+u+H2AIiIiJKH22m/qfr5roVTq4DqIriGm7mcMqxtz2aGk96H28xckrRqxDb9cHh01j7kqhleqBleSCEVWVvsKglLEDKQt9RiSjMAqUqCpAJKmfXPbNHqDpAqFEjBmjbH7QqXOdaOoYhSEQMspazjjjsOWVlZUEorgcWVyNhe8+dsFmLTilWk7665plV4ZahpnoggK1cGIJdW1Fzvosjha13MgqyhQzQNsaFQ7LqwZp2uoUO07JRrW3U4VQ9yiIiaG7ejrk3lcz06rCY6vDo1kaKW0VFV0xArRS+lY7Ksnh5etf/viy3WpGZ4w7U2qrclV8VuJ5gu6eEVADz7REyIlaokPbxqFi2NHUnVwqumck865JIKLFy4EJIkYfDgwTGPIUoVDLCUstLS0jBw4EAAQPaqjZCjTmaqCiAMQVYOAkogOlAiYjRWCgnz0GkYjTWOvhpFdITV4dW08rCLkVjXU6PcaCoHO0RETVVTLsSksQuVDRFenU46AxH9v6QoseEViDmhHB1eAQAhNSLEauE1mnEUVguuImr3PfsM+10dXKWowxTjKOyi1R1iwisASEEZGUu2AAiv/VpYWBizP0SpggGWUtrQoUMBAJmbNkEKmpSwl8JB1lciIkZfY9p5ZUgBNTx12IpxSrHFdCRjp2i7bI7WkdlNR3LRxrVUP/AhImqq3BRiSuXPcKcpww058qrarPuqEaImuFo9ZzAYvt7VLLxqqqcSW4VXoGYU1jjqaiZ3mRIz6hpt0dJONVOGK8xmjanovLoEAHDmmWdab4goBTDAUkrr06cPunfvDklV4du93rKdHBKQgwmozBsKAaqLokyqat9JqiIxwdQtViUmImpYzbkQExBXOG0wrkKwTXDVKDJEIGD/+/MogD9gGV6B8Br0GTsDtuEVANL2CtvwCgBZaz3mwbVaxuZt2L17N1q0aIETTjjBfmNESS7JPlmI4iNJEs4++2wAQNqOtaZBLb1IIH13ENDWejXpcJTyIOR9leHOSFHMKwj6AxB+fzh82lU1NE5BqsPBib6sTl0PABheiYgalvbZ3xQLMbmRwODq+rIau+c0jKbazo7SLhWyqzasrwNvswqBRwEkCZLNdoRXgZAA2R9Czkbzpf3kUPgGAeSuMv8ZpO+Ukb5ThuIHMjZZB9jTKsKve+jQoeFlCIlSGAMspbwhQ4YgOzsbin8f0nduhRw1U1gOCsgBASFVh1cJsSE2qEIKGjojbf1WIyEipw6bhFghRExgjAmxLkZfY9aETcYz2UREFCv6M98sqDK8utxUnNWGzbjZhqJEFmtUVfMQqygRvzvhNwmensg2yt7Ygk5aeNXbVMaGYS24ovpwwFse+1RacFWqd8NjchVUzgoF+fNLMG/ePCiKgrPOOiu2EVGK4RExpbyMjAwMGzYMAODbuQKKX9VDrD76ahAdYvXR12jGEBsMhacLxbSJCrGqGlsECibVDmsr3gMDjr4SETUMrt/aOOHVjsU2IkZhLZbLi+jLtYAbU6zJEDw9Skx4BQApEHUMEhVeNTmba44x9PAa8cDIUVgtvEYzjsLmrFDgLRMY1i78uEGDBqFt27axDyJKMQyw1CRccMEF8Pl8UCqLoJTtghIQkAM1o6/R9BArS+HrVYMWU4G0KcWA9TpykqG4k5vAGO/oq9nzERFR8nBbiKkph9eEbq7+wmsEq/BaTYTUmuBq8bsTfn9NcLVoo+ytCAdXi/AKVJ9MD1mE12refZFThs1oo7BaeJX8ZZgxYwYA4JJLLrF6qUQphUfC1CS0bNlSr0js3bMCUIGM3SoytwcgWQRCIUlQKoKQy6psiywAcFfUATAdfY1XQpfQISKi+tVUQyngLpgm2/WuCSQlalRdVSEkWIZXAJC06cI257B9ZSry1oQswysAZG9WUTBHhrcsvKGL+2RAVVUcffTR6Natm/1+EqUIBlhqMi6++GIoigJP+U7IFXug+AXkqhCkoGoZYqWgqk8BsgyxgSBEVXVvYdUmFIIIhcyLP1UT2jW0Dh2v4whsQ1YvJiIia6kcXp1CoHZ/AtZvdbc7DfOzjLikx2LWlL4GLAAEg6ZttGnFkiQBVdaJUigyIEnwFsVeC6s/nwjvS/YW6+34ylTIQQFPpfUxQvZmFUqVivTi8HGNFNiH77//HgBw6aWXWj6OKNUwwFKT0a5dO5xyyikAAN/OvyI6JimoQg5YB1mNkKXYICuqiy5pHZ7V2nDa88mybZAN71ADFGXi9a9ERPWnKYRXs37IrH+yapew3YnzZ1nLE7mxRRVNalZETys2O26oDq769kwqEgtF1sMrACAQG4QlURNeAfNiTr4yVQ+vVrI3q3p4NTq3h4xAIIDDDjsMffv2tXw8UaphgKUm5dprr4XP54OnYhe8RVsj7xQiYjTWUx6AXGpSvAmG0Vjj6CsQeY2LXNNxCbNy+oYQK6IrGOvbi3wLOo6+EhFR40vV8Op08tTtlOFUGHmN6k/dFFKMCa8a4yisNuoazXCsoAfXqHbGUVg9uBpPNkeNwmrBNTq8Zm9WI75WqmLDa/rOYkyZMgUAcOONN5q/LqIUxQBLTUqbNm1w7rnnAgDU0DIIk4tJtBBrnD5sRshSzehrzEaiQqzVaKfb0Vi33J515ugrEVH9SOXwavd9N1OKG+N6Vysu+0PHVQCEiJwybEYVkVOGzYRCsaOu0QLBmFHXaNoorN2oq6ci/NqztsQGV80JvfwQQuDEE09E7969rV8bUQpigKUm5/LLL0d2djaAMghsMW3jKa2CXGJ9PYor2tlVFx2w45lfVhYmIkp+yRZeEzVi2sB9UEJGXRtyn2XJ3XJ4TkWftBFXm5PMcmXAccqwr8iPVkv88FRahPjAbvz6669QFAU33HCD/T4TpSAeNVOTk5ubi8svvxwAEBIrIWBy3UlQhRQIQjJbqFxrEwiar/1qFAxCmFzXEsFqQXQjoXL6MBFRMmvo8Op2um8DFVlKlAYLr26eRw6PlppeBhS1HcfjAUmCVG5+WVJ4A+Hg6im2PnkuVwUhhQQyt1q38RX5IftD8BZXWTyPiu4F2wAAQ4cORceOHe33mygFJd8nG1ECnHfeeWjfvj0gVUEEVkAO2gTVUPWU4ugAGbKfYhy5kSQ6K8/pw0REidMY67c6hdIGnu6bKHUOr25eV1ShRWHWJ2qX99j9XqMLNtodD9gUc4oZdfXHBmG5KqiHVwCQqkyKORX59fBqJWN7Jbw7V2HNmjXIzc3F9ddfb73PRCks+T7diBIgLS0Nd955JwAg5NkE4d9rG2KdpvS4YnaQk8jRVy6fQ0TUsJJh1NX4f6frWO3aNKI6X+8a3ohzmzhGXaN/txGjsBbbiRmFNdlOxCismynD1cFVC69mtODqFF6lqn1Iz90EIFy4KT8/37I9USpLvk85ogQ58sgjceKJJwKSQDBtOVAVhFIRgKekElK5+dQbfTS2KuA8XSikmk8fbszRWI6+EhElRjKNurq5322bBpYMU4aFcZk7p9+r3f4aQ65NMSen4OoprogZdTWShED6zkrHUde03X5kbK9ExvZKyJVBnHBONvbt24devXph6NCh1q+DKMUl3ycdUQLdeuutyMjIgKrshapsCZ/lrAxAMpnCoxMivDac0/RhuxHRxphypj0vERHVTaI+SxuyyFKShdeEjLqGN+TcxuF5JEmqe3g17ksdCzVJ5ZWOo65KUbnjqKt3ZxnkyiDkyiBCyh5MmTIFkiTh7rvvhmJXVZkoxSXXpx1RgrVu3RrXXnstACCQtgqqVD21J6QCwZDpIua6REwrduJ6WZw4pg8zxBIR1V6iw2uKFVmqq4QF1/DG6r4J7fdp199Xs73kp3pfbGdnuThmkIIh+3Bb4YdU4bc9ia7srYCytwJS9SwwgQDyOoVXXTj33HPRq1cvx/0gSmVN75OTKMr555+PPn36AFIIgTTD2rBChINsdKcWCEJUGaYYm3U0VtOHI9qEzItHRKmX6sONNQJMRJTKGnrktYlJWHANb8x9W5N+1NWyNzHbMVv3PWqE3KzPrj7hrfX5UkXsZUpSMBQRXqWy2ErDenCtDq9KaWxVYy24SoZjkEDaKuzcuRPt27fHjTfeaPsSiZqCpvfpSRRFURQ88MADSEtLg+opQsi7ObJB9Gis2chr9Pfcjog29tI4DLFERO7UZ3iNLrLE8Oq0sbo9vCFPRFQHVy28CiFiRk/14Go4jjAGUMtRV0Ob6FFXjRrcipB3GyRJwgMPPICMjAy3r44oZTW9T1AiEx07dsTNN98MAPDnbYLqiTqraTUaGy0ViyQxxBIR2UvE52SirmVNMQmfMlyf4dX10ngu9iNq1NV0M1GjrqZtokZdzZiNugKAkAPI7rYTAHDBBRfgkEMOsd9noiai6X2SElk455xz0L9/f0BWUVW4DgImYTWkQgSD9iOnQoTvb6gwy+VziIjqT6LCayLapJhkGnUFEjPy6rj0HQDh90eMuprui8moawR/wPFaV6miynTUFQAEBPqek4bdu3ejU6dOuOGGGxz3m6ipaHqfpkQWZFnGgw8+iNzcXKhp5fC33GzdWKjupv9adUwOHVvN06TgiC4RUVOQqFoBTTCYAs7hNKHhta4SuS+2xR3V8M1uJFcVECEVoiL2+lWdPwDhsNqBVFEFhEKm4RUAglnb8Ntvv8Hn8+Hxxx9HWlqa9fMRNTFN81OXyEKbNm3w4IMPAgCCuTsRTN9j3VjrpKJDZigUueC52RlW1WUAbgipOO2ZiKg+NeQ1kilIC6dmITWhU4brSpYiwqubE8e15mY2lCrsQ64/UBNeYVHsqaJKD69WQqHdCFWfhL/tttvQvXt3d6+BqIlomp+8RDaOOeYYXHLJJQCAqsINCIl99mdTo0djraYPMygSESU/hldbduE0aYIrUPtR13j7ai2Q2lFFTXi1Uh1chWGEVwQjR1f14Gp1TFJRCVFVhvwBZQiFQjjppJNw1llnuX0lRE1G0/z0JXJwww034KCDDgIUFVXt1kMNBZxDrNlobEy7Brw2loiI4sPwaslpZLXew2s89R7qsi9u1oPVgmW8o65mokZdzbgZdUVFJdRgEAdfnI1t27ahXbt2uO+++xJXcZkohUiiXudbECWv7du34/rrr8fevXuhlOTBt7UDJCGAoP36riLkcP0LAKiqu0IQTttJRAEnvsWJiHi9q42kGVl18/N1ujbXze9ZUZx3xeuxb+D1hf+16aclr9c2uMIfgJSZYXtMIYLB8HaCIfgLtyHYchfS0tLwxhtv4IADDrDfR6Imqml+EhO50KZNGzz11FNQFAWh3L0IttwVrkIccnH9qoszuI4aqrowz84SUXPXxMKrm+tQ3YyoJtX1rMnE6cSvKoCqKut+PBgEgkHH8OpUEEpU+cOjt8EQgjnF4eMUAP/4xz8YXqlZS55PY6JG0K9fP9x5550AgEDBdgRzSsOjp0I4B1nVxbqxNhqsAjFHYImoOWuC4dXp/pSqIJxgdZ5YaPf46mtdbZfQcVqKr3pKsd1JbFHlD4fX6nAbSqsAuuwAAFx++eUYNGiQ48sgasqS5xOZqJEMGzYMZ599NiAB/g5boaZX6eHUdZAlIqLk04TCq1kwdfq/1XbIhF0NC7fB1U14tbleNiK4VodX1RtAzuF74ff7ccwxx+D666+P51URNUnJ8alM1Mhuv/129O/fH5BVVHXbBtVbfR2sIcjW52gsERElWBMLr7VtY1wSh+HVgsOoq+vganWc4HLUNboCsVBCaPs3YNeuXejSpQsefvhhyHJy/E0SNSYWcSKqVlpailtvvRVr166FVOFF2sr9IIUMhR60TsNh8XEAzoFXqO6mELOIExFRfJpYpeFmFzqdfu5uwrzT34Ash/9ObPpHyRMu4mR3mCwpsnVfL0vhYlFOy+torzfquEJIKqq6boaaXYnCwkK8+eabaNOmjfV2iJqR5Ph0JkoCOTk5eOGFF1BYWAiREYB//20QkqHT0UZZ7c7EEhERueC2yBIlVvjSoJDjyV3bUVfteMDmRLQIBMOh1Gq6cCBY0yY6vELA33E71OxKZGVl4YUXXmB4JTJggCUyaNOmDV566SVkZ2dDza6Cv8sOCJh3UAyxRERJJlHThut59JXBtQ7qUADRdb9td0lQ9YlsqwAsQiHHgCwCQcttCAj42+5AKL8MHo8HzzzzDLp16+Zuv4maCQZYoihdu3bFc889B5/PBzW/HIHOO21DrGWHaLewORERJVaKXPPqFF6plmyuQbXtqyO2YVPPwjALy4oeXK3CrTbqanU/BAKtdyLUugQA8OCDD+LQQw913m+iZoYBlshE37598dhjj4XXiG1ZhkBHQ4iVpJjraxyDLBER1R+G1+atrsEVcBdcaznqGhFcjW2UmjobIhhEoGAXgm33AgDuueceDB482N2+EzUzDLBEFo4//ng8+uijkGUZoYIyBNrvhNDCqEUVQNejsZLMgxUiokRIgfBqNy2YU4brwGHU1d02HEZdrYKrokQGV5vwanW/JEkQwWA4vLYuQnC/YgDArbfeimHDhrnbf6JmyNPYO0CUzE466SQEAgE888wzCLUuA4QE78YWgEC40zQ56LCtQKyF2CSpbklElNJSILxSPbBd1k5AOPxKJUmyvc5VCAHJYbqw03RiqKr9dGGtcJOqIti6BMEOxQCAG2+8ERdeeKH9CyBq5vipTeTglFNOwf333w8ACLUpRaBjUc10Yrvy+XYHRZxWTEREFL967D8jphw7VSB2ut9mGyIUqh49VhFouxeBTkUAgKuvvhqXX355XV4CUbPAEVgiF4YOHYpgMIiXX34ZoTalgKzCs6YFJEg1IZZTwIiIiOpHIoKr1l8rFrOnbB+rRrSL2UL0/YbrW/Xn0EddBQQEgvsVI7hf+JrXK6+8Etdcc42LF0FEDLBELg0bNgw+nw/PP/88QoX7IGQB7+qWkER1N1YfQVaSOVpLRGRFiMRMI6bkFlVDIm5267VaXJta81jVsp2xjd39xuAKhKsNhzqXINg2XG34xhtv5MgrURwkwcUsieIyffp0PPnkkwgGg5CL0uFdWVATYqO5CJ/CaU27ugZYvsWJqClLketgWajJJePvwqz/c/O7Mv6sTfpYSZFtA6c+emoRTI33AxYhuLrIU/Q+CAgEuxQh1GYfAOD222/H+eefb/tyiCgSAyxRLcyaNQsPP/ww/H4/5L1p4RAbsuhUHQJovQdYgCGWiJq2uoZYBtjkof0urPo+p9+VHDUryq6N1S5U/z1ZHSK7ud+soKOQBALddkNtVQFJknDffffhjDPOsN0XIorFAEtUS/Pnz8cDDzyA8vJySOVe+JYXQPJHzcqva3h1sQ1X+DYnoqaMAbb5cCqQqCj24RWwDrBuLgWyWIEg5v7o8Kqo8B+wCyK3Ch6PBw899BAGDRpkv59EZIoBlqgOVq5cifvvvx+7d+8GqmT4lhdCrvDVNBCqHlLNDl4YYImI6iiFpxAb+wC7gCtU4Xi/3Tbqer/bfWiQkG72u3J7jaxQw/eb7acqnO/XtmFSoCni/qh9EL4g/D13QmQGkZWVhaeffhqHHXaY9X4SkS0uo0NUBz169MDbb7+NLl26AGkq/AfuQCinPKKN1qELVcQEVledPdcoJCKylogTdI1QLM/VCUxDO6v2TttJxP113Ua9cvO7E2pNu+h+VxU14dXpfpNw6nS/mlGFnCEBiMwgCgoK8O9//5vhlaiOOAJLlAClpaV48MEHsWDBAkAFPGvz4dmZpVcRNuvcjcHWEQs5ERFZS4FRWOMJS7s+wW2b2myjoe9POKcCT9FtzNrpBZhE/dxvuIY3lF8BT/8KVFRUoEuXLnjxxRfRpk0b8/0mItcYYIkSxO/349lnn8VPP/0EAFC2ZsGzPg8SpLqfneY0YiIiaykQYMNPYd8fOJ3YTJX7643T0nLxVDCuj/ur2wgRQmi/MoQ6l0IIgf79++Ppp59GTk6O9b4TkWsMsEQJpKoqRo4ciZEjRwIA5OI0eFe2BAJ17NQZYImI7KVAISfnXXAOuMl+v5W6XkPr6hpbNwG3Pu9HdaXh/YugFlYACK8hf8cdd8Dj8dg+jojcY4AlqgfTp0/Hs88+i8rKSkgVCjzLWkKu8No/SOsUnQpU1Bbf6kTUVCViBBZIihCbyuqriJSbIlP1ye3+IU2F/4DdEDkBKIqC22+/Heecc05D7SZRs8EAS1RPVq5ciQcffBDbt28HghI8K/OhFGVYP8DqOhqz+2qDb3UiaooSFV4BBtg6srtGtjZVmBNZpbk298ezf2pOFXJPBHbv3o2cnBw8+eSTLNZEVE8YYInqUVFRER555BEsXLgQAKBszoayLguSZFKCH7C/5oYhlogoUiLDK8AAWwfxFHhKRIGq6HaJvD+e/RMQCO23D+i2D6FQCF26dMEzzzyDjh07xmyDiBKDAZaongWDQbz99tv47LPPAADSXi+8y/MhBRTnaomJxrc7ETUViQ6vAANsHTRkgaj6qp4c774JRUWwezHUVpUAgMGDB+Pee+9FZmam6XaIKDEYYIkayPTp0/HPf/4T5eXlgF+Gd0Ue5L1p4TsTPV3YDt/yRJTK6iO46ttmgG0M8RSHqs2ydHEtW+dy39TMAII990BkhODxeHDbbbfh7LPPhlSff59EBIABlqhBbdy4EY8++ihWr14NCEDZmA1lYxYkVHd4Lioc1gnf7kSU6hhgm526VkeuNaHG/E0ICKhtyyH3qoDf70fr1q3x5JNP4sADD0z88xORKQZYogZWWVmJESNGYNKkSQAAqcQL74o8SFUNVGKfb3kiSnUMsVTfTFYGEJ5QeMpwyyoAwJFHHomHHnoI+fn5jbCDRM0XAyxRI5kyZQpeeeWV8JTioATP6lwou2yqFMdDe1ubHeTxLU9Eqa6+p2kyxKY+u6XpnO43zoSqvl/Nq0LuCeEqw16vF8OHD8d5553HKcNEjYABlqgRbdmyBU899RSWLFkCAJB3pMOzJhdSqI4HT8a3dXTnyrc8ETUFHIUlKyYB1NX9JpfwCFlCqFMp1A77IIRA586d8dhjj6F79+4J3GEiigcDLFEjCwaDGD16NEaPHg1VVYFKBd5VuTUFnmrD7G2tHezxLU9ETQFHYSma3VJ0Tveb3KdmBRDssRciKwgAGDZsGP7v//4P6enpidhbIqolBliiJLFo0SI89dRT2LZtGwBA3poJz7psSGotDqKs3taSxABLRE0HQyxprAog1mItdSEJhDqUAV0rEQqFkJ+fj/vuuw/HH398AnaUiOqKAZYoiZSXl+Ott97C119/Hf5GpQLvyjzIJb74NsS3NRE1B8kaYE2q1zY4p31oCvfXAzWzetQ1OzzqeuKJJ+Luu+9moSaiJMIAS5SEfv/9dzz//PPYvn07AEDZkgllfZyjsXxrE1FT1xAFdOIJok7XXjaEuhQvMt5v1aau9yd6HxNESAKh9vsgdatEMBhEbm4u7rrrLpx88sks1ESUZBhgiZLUvn378Oabb2LixInhb1TK8KzJg1Lk8tpYvrWJqDlIhhAbHahqG8y0Nm5GHqPbOO1DvPdHt3G6vz72wc0+JoCa40ewewlEZnjU9dhjj8W9996LVq1a1cvzEVHdMMASJbk5c+bgpZdeqrk2dlc6PGtyIAUU+wfyrU1EzUFjBlg3oc6sXSJHNusaPJ2uHU3ENurr/joSiopg51Ko7SoAAPn5+bj11lsxZMgQjroSJTEGWKIUUFFRgQ8//BBffPEFQqFQeN3Y9TmQt2VAgkUny7c2ETUXDR1i7QJVIsOlWRs3oU6S63Z/IrbREPtQSwICaqsqBPcvAXzh7Z9++ukYPnw48vLyEv58RJRYDLBEKWTFihV46aWXsGzZMgCAVOKFZ00u5H3eyIZ8WxNRc5JMo2WJCHZAvY06NnciPYhg11KoLasA/H97dx7eVJX4f/xzk27pAq0FoVA22VWwCBQVQRQERHAU1BFRdBx/6ozKPI9fRx2+OszoKC6Po87oVx2/o44L4vYVxA1FAWWRRdkUQdbK1tKFlpY2TZN7f3+kuU2hLW0pTdK+X8+TJzd3OTk9lppPzrnnSOnp6br77rt19tlnh7hmAOqLAAtEGJ/Ppw8++EAvvfSSysrKJEtyZLsU9UuSDG/ggw//rAG0MuEUYhF2LIcpX/oROU7zqKKiQlFRUbr22mt1/fXXKzb2BNZdB9DsCLBAhDp48KCee+45LV682L+jwlDUL5XDivlXDaC1IcAiwLLs3wd7uHCPw1Ksv1d76NChmjFjhrp16xbKWgJoJAIsEOHWrVunp59+Wrt27ZIkGSVRitrVRo6i6ONcCQAtDCG2dQv+SGsYMl0V8p5WLCvZI0nq2LGj7rzzTp1//vlM0gREMAIs0AJ4vV7Nnz9f//73v1VSUiJJcuTGKmp3oozyqBDXDgCaCaGkdTrqo6wV7ZO32xGpU7lM01RMTIymTZuma6+9luHCQAtAgAVakMLCQr300kv66KOPZFmWZErOA/Fy7kmouj8WAFoyQmzrEvQx1nJY8nU+oph+pn+OCEkXXHCBfv/73ystLS1UNQTQxAiwQAu0fft2Pf/881qzZo1/h9eQc0+CnPvjZVh8uAPQwhFiw1PQvamNOh58TnBwlSXzVLe83Urs+1xPP/103X777RowYEBT1BxAGCHAAi3Y6tWr9T//8z/auXOnf4fboaisRDly42pfPxYAIh0BtvnVFT4DHzWPd7y+5wR2yZKZ4pGve4msBK8k/32ut956qy666CLucwVaKAIs0ML5fD4tXLhQ//u//6u8vDxJknEkSs5fEuTIjyXIAmiZCC/No65wevRHzMacU8vHVLOtR95uJbLaVEiSEhMTNX36dE2ePFkxMTH1qTmACEWABVoJt9utd999V2+99ZY90ZNRHKWorEQZhTEEWQAtCwH25KoreNb20bIh59QWXBMr/ME1xT+zcGxsrKZMmaJrr71Wbdq0qU/NAUQ4AizQyhQXF2vu3Ll677337EkujKJo/9Diw3xrDaAFIcQ2vbqCZ10fKY93/DjMhAr5uh6RmVouSYqKitJll12m6667Tu3atWt0uQAiDwEWaKUOHTqkN998U/PmzZPH4/8m2yiMVtSeRBlF0fTIAmgZCLGNFzw8OEQfF83ECvm6lMhM9f9/yuFwaNy4cbrxxhuZWRhopQiwQCuXm5ur1157TR9//LG8Xv8kGEZRtKL2JDC0GEDL0FpCbEMnQ2rAhEnNzWzjkbfLEXuosGEYuvDCC3XjjTeqe/fuoa0cgJAiwAKQJOXk5GjOnDn6+OOPq3pki6Pk3JMgRwGTPQGIcA0NscebObcp1ee9GjJZUk3nNfacZmTJktW2Qt4uJbKS/ZMzOZ1OjRkzRtdff726du0a0voBCA8EWADV5OXlae7cufrwww/ldrslVc5avDdejrw41pEFELnqs8ZoQ84/USfSY3q8+03re87xzmsG9nI4XY7YswpHRUXpkksu0bRp09SpU6eQ1g9AeCHAAqhRYWGh3n77bf3f//2fPdmTyh1y7o+XM9slw+cIbQUBoKEaMmT2ZIXXE+kJrc+9qCG8X7WhLMOSeWqZfJ1LZcX7JEkxMTGaOHGipk6dqg4dOoS4hgDCEQEWQJ2Ki4s1b948vf/++yooKPDv9BpyZrvk3B8vw+MMbQUBoCHq0zsZfN7RGjO0uL7v1Uo+kllRpnxppfKllUkxpiQpISFBkyZN0tVXX82swgDqRIAFUC8ej0dffPGF5s6dq6ysLP9OU3Lkxcm5L16OI9GhrSAANJX63GcaxhMghSszzitf51KZp7olp7+dOnTooCuvvFITJ05UQkJCiGsIIBIQYAE0iGmaWrVqlebOnat169bZ+43CaDkPxMuRz4RPACJYfe4NDbPJj8KZf2Imj3ydymS18yjwsbNPnz665pprNGrUKEVFRYW4lgAiCQEWQKNt2bJFb7/9tpYsWSKfz3//ksod/uHF2S4ZFQwvBhBB6nuPqURoPQ7Lacp3qltmWtX9rZJ03nnn6de//rUyMjJktJbljQA0KQIsgBOWk5OjDz/8UAsWLFBhYaF/Z2B48QGXjOJoemUBoBUw4yvkSyurNkzY5XJp/PjxuuKKK1jDFcAJI8ACaDIej0dLlizRBx98oB9//NHebxRH+YcX58XJMAmyANCSWIYlM7VcvrRSWW0r7P3du3fXFVdcoXHjxik+Pj6ENQTQkhBgAZwUW7Zs0QcffKAvv/xSHo/Hv9NryJEbJ2eOS0ZJFL2yABDBTJdXZocy+U5127MJO51OjRgxQldccQXDhAGcFARYACdVYWGhPvnkEy1YsED79u2z9xtHouTMdsmRGyfDy5qyABAJLIcps125fB3LZLWp6m095ZRTdNlll2nSpElq3759CGsIoKUjwAJoFqZpasOGDfroo4+0dOnSql7ZwL2yOS4ZRdwrCwDhxpIlK6lCvg5ume2r7m11Op0aNmyYLr30Up177rnMJgygWRBgATS74uJiff755/r444+1ffv2qgNup5wH4+Q4GCeHmw9CABBKVoxPvvZumaeWyUqomkm4c+fOuvTSSzV+/Hi1a9cuhDUE0BoRYAGEjGVZ+vnnn/XRRx9p0aJFOnLkiH3MKI6S86DLP/FTBUOMAaA5WE7TPyHTqW5ZbT0KDIqJjY3VqFGjdOmll+qss87i3lYAIUOABRAW3G63li1bps8//1xr1qypWlfWkhyHYvy9sgXMYgwATc0yLJkp5TLbu2WmlktB3xkOHDhQF198sUaPHq3ExMTQVRIAKhFgAYSdgoICffXVV/r888+1ZcuWqgM+Q468WDny4uQojJFhEWYBoDEsWbLaVPiHCLdzS9FVHwe7deumsWPHasyYMUpLSwthLQHgWARYAGEtKytLX3zxhT7//HNlZ2dXHfAacuQTZgGgvixZstpWyJfqltmu3F76RpJSU1M1evRojR07Vr1792aIMICwRYAFEBEsy9IPP/ygRYsWaenSpSooKKg6SJgFgBrZobVd5fDgoNCamJioESNG6OKLL9agQYPkdDpDWFMAqB8CLICI4/P5tGnTJi1ZskRLly5Vfn5+1UGvIUdBrH+ocWEs98wCaHUsw5LV1iNfarnMVLcUU/VRLykpSSNGjNCoUaM0ePBgRUdHh7CmANBwBFgAEc3n8+mHH37Q4sWLjw2zPslRFOPvnS2IlVFB7wKAlslymjJPKfc/UjxSVNXHu7Zt29qh9eyzz2a9VgARjQALoMUwTdPumV2+fHn1e2YlGYej/b2zBbEySp0yRO8sgMhlxXnlqwytVtsKBf9JS0lJ0fnnn68LL7xQGRkZhFYALQYBFkCLZFmWdu7cqWXLlmn58uXVZzOWpDKnnAWxchyKkVHEfbMAwp8lS1ZShd3TaiX4qh3v0aOHhg8fruHDh6t///5yOFhDG0DLQ4AF0Crk5eVpxYoVWr58ub777jt5PJ6qg5VDjY1Dsf5JoMronQUQHqxYn8xk/7BgM7n60GCn06mzzjrLDq2dOnUKYU0BoHkQYAG0OqWlpVq7dq1WrFih1atXKy8vr/oJbocch/y9s46iGBk+ejEANA/LYclq4/EH1pRyWfHVe1nbtGmjzMxMDR8+XJmZmUpKSgpRTQEgNAiwAFo1y7K0a9curVq1SqtXr9bGjRtVUVFRdYIpGcXRchRWhtniaIYbA2gylixZCV6Zyf4eVqutRwr6zszhcOj0009XZmamMjMz1bdvX5a7AdCqEWABIEhpaanWr19vB9p9+/ZVP8EnGYf9YdZRGCOjJIrhxgDqzQ6sbT2y2lbIbFt9WLAktW/fXsOGDVNmZqYGDx5MLysABCHAAkAd9u7dq7Vr12rdunX6/vvvVVRUVP0EryHH4WgZgR7aIwRaAFUsWbJcPlnJHplt/Q9FV//oFR8fr7POOkuDBw9WZmamunXrJsPg7wgA1IQACwD1ZJqmdu3aZYfZ9evXq6SkpPpJXsM/5PhwtByHK4ccm3wQBVoLy7BkJVbIbFMhq02FzCSPFFP9o5bL5dKAAQM0aNAgDRo0SH369GGZGwCoJwIsADSSz+fT9u3b9f3332vdunXauHGjSktLq59kSsaRKH+YPewPtkYF968BLYUVZfrDapKn8rmi2j2skhQbG6sBAwYoIyNDgwYNUv/+/QmsANBIBFgAaCI+n087d+7Uxo0btWnTJm3atEm5ubnHnljmlKM42t9TWxIlo4SJoYBIYBmWrHivv4c1ySurjeeYWYIlqW3bthowYIAGDBigM888U3379lVMTEwIagwALQ8BFgBOEsuylJOTY4fZTZs2aefOnTrmz25lL61REm0HW9aiBULLkiUrzicrqUJWoldmUoWshAqphgEUXbt2tQPrgAEDlJ6ezj2sAHCSEGABoBkVFxdr8+bN+umnn+xHYWHhsSd6DRklUXKURNvhllALnByWLCnOJzPB6w+riZVDgaOO/YiUkJCgfv36qV+/fjrjjDN05plnKjk5ufkrDQCtFAEWAEIo0EsbHGh//vlnlZWVHXuyTzJKK3tqj0T5g+2RKBmm49hzAdTIclQOA06o8AfWykdNYTUmJka9e/dWv3791L9/f/Xr10/p6elyOPg3BwChQoAFgDDj8/mUlZWlzZs36+eff9b27du1Y8eOmkOtJX/P7JEof7gNPOitRStnyZJiTZnx3srA6g+tVrxPNf3TiImJUY8ePdSrVy87rJ522mlMtgQAYYYACwARwDRN7du3T9u3b9f27du1bds2bdu2Tfn5+bVcIBllUTJKnVWh9kiUDDfBFi2LP6j6ZCb4ZLkqw2rlo6b7VSX/JEu9e/dWr1691KtXL/Xu3VtdunQhrAJABCDAAkAEKygosEPtrl27tHv3bmVlZcntdtd8QSDYljkrH1H2s7wG4RZhy3KaslyVITXO59+O98py1R5Uo6Ki1KVLF3Xv3r1aWE1NTWWSJQCIUARYAGhhTNNUdna2du/ebYfawKO8vLz2C71GVah1O6ttE27RHCynWRVOg4OqyytF1/5xJSYmRl27dlX37t3VrVs3de/eXT169FCnTp3oVQWAFoYACwCtRCDYZmVlac+ePdq7d6/27t2rPXv26ODBg8cu7xPMZ8hwO2SUOyW3U0a50x9yK7cJuKgPO6DG+mTFmVKsr+p1rK/OkCpJqampSk9Ptx+B0JqWlkZQBYBWggALAFB5ebn27dtnB9rA8759+2q/zzaY1/AH2XKHDI9Dhscpo9wheZz+14TcFs2SJTktWbGmFOOTFWvKivHJigl6Heercabfo6WkpFQLqYFH586dFR8f3ww/DQAgnBFgAQB1Ki8v18GDB3XgwAFlZ2fbz4HtgoKC+hVkyh9oAyG3wiFV+LdV4X8d2CcfYTccWA5LijZlVT4C24qp3BdbFVJruw/1aMnJyerYsaPS0tLUsWPHao8OHToQUgEAdSLAAgBOiNvtVk5OjnJycpSbm6u8vLxqz7m5uSosLGxYoT5VD7VehwyvIXmrbx/zbBJ6a2IZlhRlyoqq/qwoS1bw81Fhtb6hNKBNmzZq166d2rdvr9TUVLVv317t2rXTqaeeqrS0NHXo0EEul+vk/JAAgFaBAAsAOOk8Ho/y8/OrhdvCwkIdOnRIhw4dsrcLCwtrXu+2vnySfIbkqwyzXkMyDRk+o3J/YLuyl9eUZPrPkSX/NUGvZRr+fZXbCvwf06oMypbsfcfrMbaqTgx6tvzPhiSHf9tyWPa2KretoG05Ks9xWpLT9A/ddVYeC2xXPixHZVBtYBANFhMTo+TkZKWkpCg5Odl+BAfUQGCNjY1t/BsBAFAPBFgAQFgpKyurFm4PHTqk4uJilZSUqLi4WIcPH1ZxcXG1R0lJiUzTDG3Fg8KsLB0VVIOeQ8QwDCUmJioxMVFJSUnVHoF9wQE1JSVFKSkpcrlcLDkDAAgbBFgAQMQzTVOlpaUqLi5WaWmpSktLVVZWZj+CXwe2S0tLVV5eroqKCnk8Hvs58KioqKi272QHZKfTqejoaPsRExNT67PL5ar3IxBOExIS5HA4TurPAADAyUaABQCgHnw+nyzLsp9N06xx2+fzyTRNORwOORwOGYZR57ZhGIqKipLTeQLjfAEAaCUIsAAAAACAiMBYIgAAAABARCDAAgAAAAAiAgEWAAAAABARCLAAAAAAgIhAgAUAAAAARAQCLAAAAAAgIhBgAQAAAAARgQALAAAAAIgIBFgAAAAAQEQgwAIAAAAAIgIBFgAAAAAQEQiwAAAAAICIQIAFAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACICARYAAAAAEBEIsAAAAACAiECABQAAAABEBAIsAAAAACAiEGABAAAAABGBAAsAAAAAiAgEWAAAAABARIgKdQUAIFQsy5Lb7Q51NQCgQeLi4mQYRqirAQAhQYAF0Gq53W6NGzcu1NUAgAZZuHChXC5XqKsBACHBEGIAAAAAQESgBxYAJMWsPlWGVfmdnuGQ4TAkwyE5DMkwZDgCxyr3G4bkMGQEzrGPGfY1MoL22/uqyrSPqeq4ZRhVXy0aVeXY+4OuC95nVRZjH3NIUmC/YR8LXGNV7rOCrwmU4ag8376m+nG7TEmWKvc5ajhW7XxVq2PVvqPrUcM1qn5NteOq47qgMmu6trYyq6nzGqva9UeXZx8PKsuq3K+jrpNhBV3vP24EH7PPtexrDPu8oPMryzEMq+pXsHJ/1X9qyz7ukGW/9h+THJWv/cf8rwPX2ccMS4aqrnNU7rMfCt6vavurrjHtfQ5ZchimnIFjla/t45XbkuS091lyyr/faZhHXWfKWbktyd62z1dVeQ75r3fI//7+Y4Hr/PsMmXIGrlegHqackv86+d8v8LMFXvvfy6rcVlVd5P9n5pRh/3N3GoYcMir3GZWvHZW/OoYqPE5N+X8dBQCtHQEWACTJZ1R9lDQcMlQZNiuTQdUxQ3JUpTXDnwYrCwmkHYeOSidBycZxbLqqShlB+3XUvuD3UA37jr5OVcE1KMAes++Y/aohEB99XEFBuurHqvVYbT9GjfWozzX1aKomKPP4obeJA2xNx3X0a6uG/Va196zpWCBYVR0LPm4FXRe0T1YNZVY9ggNsVSiufKj2/XZwNBQUUKuCrhQIorIDYPAxf4A1qwKg4Q9//usqg6Bh+MNl5f7Atn2+jKCwLDmNqmenFBQ2azhW2Yz+11ZlALbswOq/zjpugK2pPIeq9vlfB9cx6L8hALRiDCEGAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACICARYAAAAAEBFYBxYAJMlpybJM/7Yh/0KQ9rNR9XVftXVUg7YVvM+q2q62v5ZjQYuCWrUsblq1v+rZqratatdZkmTZq3HaRywZkiX7WuvoayqvO9bR+wILn1ar0lHtUcvj6HNPZK3Xuo7VVWY93s+o6Xi1fTWt51rD8WPqWMs6sKp+3Ag+Zp9bVaYRvMZr4Pxq67IG/3rVsg6sGr8OrKWq6yzDqv5Q8H5V22/a5ZlV7yNLMsyg9Wqtasctw5QVVA9LVuXryudAPSpfOyrPcQTtD97nr4e/OIck06h6NlW1DqxZuc9QbevAGnLIv76sU1X/zQKvHZXXHL22rMM+ZgSVV1WWQ4b92v+fxVCFp6Z/lwDQ+hBgAUCSJ/NgqKtwcgTywQk4OjoDUvVfLTOUFWm04N9sBqQBQKTgLzaAVsvtdoe6CgAAAGgAemABtFqxsbH29vz58xUXFxfC2rQ8brdbv/rVryTRvicD7XtyhXP7hlNdAKC5EWABtFqGUTUoNi4uTi6XK4S1adlo35OL9j25aF8ACB8MIQYAAAAARAQCLAAAAAAgIhBgAQAAAAARgQALAAAAAIgIhmVZJ7hCIAAAAAAAJx89sAAAAACAiECABQAAAABEBAIsAAAAACAiEGABAAAAABGBAAsAAAAAiAgEWAAAAABARCDAAgAAAAAiAgEWAAAAABARokJdAQCoj9LSUs2dO1dLly5Vdna2HA6HunTpoosuukhTpkxRdHR0o8suKCjQnDlztHLlSuXk5Cg2NlY9evTQ+PHjdemll8owjDqv37dvn+bMmaM1a9aooKBALpdLffr00aRJkzRq1KhG16s5hWP77t27V8uWLdP69eu1Y8cOFRQUyOl0ql27dho4cKCuuOIK9e3bt9H1ak7h2L61+eMf/6hVq1ZJkjIyMvSPf/yj0XVrLuHevnv37tW8efO0Zs0aHTx4UD6fTykpKerZs6eGDh2qK664otH1A4DWxrAsywp1JQCgLtnZ2ZoxY4ays7MlSXFxcTJNUx6PR5LUu3dvPf3000pKSmpw2Vu3btXdd9+toqIiSZLL5ZLH45HP55MkZWZmavbs2bV+AF65cqVmzZolt9stSUpISFBZWZlM05QkTZgwQffee2+DQ0RzCsf23bRpk26//fZq++Lj41VRUaGKigpJksPh0PXXX6/f/va3Da5XcwrH9q3Np59+qtmzZ9uvIyHAhnv7vvPOO/rXv/5l1ycuLk6GYaisrEySlJiYqE8++aTBdQOA1ooACyCseb1e3Xzzzdq5c6dSU1P13//93xoyZIhM09TixYv1xBNPqLS0VOecc44ef/zxBpVdUlKi6667TgUFBeratavuv/9+9evXTxUVFVqwYIGeffZZeb1eXX755brrrruOuX7//v36zW9+o7KyMg0YMED33XefunTpYvcGvfrqq5Kk2267Tddee21TNEeTC9f2Xbdune666y6dd955uvjiizVo0CC1bdtWPp9PP//8s5577jlt3LhRknTPPfdo4sSJTdYmTSlc27cm+fn5mj59uizLUmpqqrKyssI+wIZ7+7799tt67rnn5HQ6NXXqVE2cOFGdOnWSJBUXF+unn37SmjVrjvmyBgBQO+6BBRDWPvvsM+3cuVOS9NBDD2nIkCGS/L1vo0eP1t133y1J+vbbb/Xdd981qOy5c+eqoKBAsbGxevzxx9WvXz9JUnR0tCZPnqybbrpJkrRgwQLt2bPnmOtffvlllZWV6ZRTTtGjjz6qLl26SPL3FN50002aNGmSJOn1119XcXFxI376ky9c27dz58567bXX9PDDD2vUqFFq27atJMnpdKp///566qmn1LNnT0nSm2++2cif/uQL1/atyd///ncVFxfr97//vVJSUhpUl1AJ5/bdsWOHXnzxRUnSrFmzdMstt9jhVZKSkpKUmZlJeAWABiLAAghrn332mSRp0KBBOvPMM485Pnr0aKWlpVU7t74WLlxolxH8wTJg8uTJcrlc8vl8+uKLL6odKysr09KlSyVJl19+eY3DE6+77jpJ0pEjR/TNN980qG7NJVzb99RTT7W/EKhJdHS0xo4dK8l/D3I4f0EghV/7Hu2rr77SN998o4yMDF166aUNqkcohXP7vvHGG/J6vRoxYkTE3AsPAJGAAAsgbLndbv3www+SpHPOOafGcwzD0LBhwyRJa9asqXfZv/zyi3JyciTJvv5o8fHxGjhwYI1lb9q0SeXl5XVen5aWpm7dujW4bs0lnNu3PmJiYuztwD2J4SRS2reoqEjPPPOMYmJi9Mc//jGs79cOFs7tG/wFV+CLFgBA0yDAAghbWVlZ9mRIPXr0qPW8wLGCggIdPny4XmUHhh0er+zTTjtNkrR79+5arw+cU9f1u3btqle9mlM4t299rFu3TpKUmppqDzEOJ5HSvs8884wOHTqk6dOn19nrHW7CuX1/+ukneb1eSVLfvn21ceNG/elPf9KkSZM0ZswYXX311Zo9e3a19wEA1A8BFkDYysvLs7fbt29f63nt2rWr8Zq65OfnN6jsI0eOqLS09Jj3SUpKUmxs7HGvD36/cBHO7Xs8P/zwg5YtWyZJmjhxYlj2GkZC+y5fvlyLFi1Sjx49wnaisdqEc/sG3xO7ePFi3XnnnVq+fLk8Ho+cTqeys7P16aef6uabb2YGYgBoIAIsgLAV/IGwrpAYFxdX4zUns+zAEhjBx+u6viHhrLmEc/vWpbCwUA8++KBM01R6erqmTp1ar+uaW7i3b0lJiZ588kk5HA7dc889ioqKrKXhw7l9g+/JfvHFF9WrVy+98MILWrhwoRYuXKgXXnhBPXv2lNfr1RNPPKHNmzfXq14AAAIsACCClJaW6k9/+pOys7MVHx+vBx98UPHx8aGuVkR67rnnlJeXp8svv1xnnHFGqKvTogSvUBgTE6PHHntMp59+ur3v9NNP16OPPqrY2Fj5fD69/vrroagmAEQkAiyAsBUcTAITJtXE7XbXeM3JLNvlch1zvK7rwzFkhXP71qSsrEz33nuvfvzxR7lcLj3++OPq1atXveoTCuHcvmvXrtXHH3+s9u3b65ZbbqnXe4abcG7f4O0xY8ZUG8Yc0KFDB40ZM0aS9P3334flRGQAEI4IsADCVvCHvtzc3FrPC76vraYPijVJTU1tUNkJCQnVPpQG3qe4uLjOD7iB64PfL1yEc/seLRBeN2zYIJfLpccee8yeATZchXP7Pv7445Kk3/3ud5L8PdvBj8DkSKZp2vvCLWCFc/sGv09gJvKadO/eXZL/97u+E0wBQGtHgAUQtrp16yaHw/9nqq5ZfAPHTjnlFLVp06ZeZQfPHFxX2YFZQgMfNGu6vq6ZRAPH6prJNFTCuX2DBcLr+vXrFRcXp8cee0wZGRn1qkcohXP7ZmdnS5IefPBBjR8//pjHxo0bJUkbN260961YsaJedWsu4dy+PXv2rNf7BA81DseJyAAgHBFgAYStuLg4nXnmmZKkVatW1XiOZVlavXq1JGno0KH1LrtLly7q0KFDnWWXlZXZH+SPLnvAgAH25C6B9z9adna2srKyGly35hLO7Rt8zj333KP169fbw4YjIbxKkdG+kSyc2zc9PV2dOnWSJPtvQE0Cy+8kJCTUO1wDQGtHgAUQ1saPHy/Jv+ZnTTN1Ll68WPv37692bn0YhqFx48ZJkr766isdOHDgmHM++OADlZWVyel06uKLL652zOVy6YILLpAkzZs3TyUlJcdcP2fOHEn+++FGjBhR77o1p3BtX6kqvAYPG46U8BoQru379ddf1/kItHNGRoa9Lxx/h8O1fSXpkksukSQtWrSoxuV7cnJy9OWXX0qSzjnnHLs3GQBQN/5aAghr48eP12mnnSbLsvTAAw/ou+++k+S/N2/x4sV64oknJEnDhg3T4MGDq1378ssva+TIkRo5cmSNH0CvueYanXLKKXK73br33nu1detWSVJFRYXmzZunf//735KkSZMmqUuXLsdcf9NNN8nlcik/P1/33XefvfZjWVmZXn31Vc2fP1+SNH36dCUlJTVRizStcG1ft9ut++67zw6vkdTzGixc27elCOf2vfrqq9WxY0f7+uCAvXnzZt13330qLy9XbGysbrjhhqZpEABoBQwr+AYMAAhDBw4c0B/+8Af7vr24uDiZpimPxyNJ6t27t55++uljQuLLL7+sV199VZL09ttvKy0t7Ziyt27dqrvvvltFRUWS/L2lHo9HXq9Xkn9o4OzZsxUTE1Nj3VauXKlZs2bZs5EmJiaqrKzMnvBmwoQJuvfee8P6/rZwbN/PPvtMjzzyiCT/MiSJiYl1/gwPPfSQBgwY0MCfvHmEY/sez4wZM7R+/XplZGToH//4R4OubW7h3L5ZWVm666677ImgArOXB9aRdrlcmjVrls4777wTaQIAaFUia9VyAK1SWlqaXn31Vc2dO1dLly5Vdna2oqKi1KNHD40ePVpTpkxRdHR0o8ru27ev/vOf/2jOnDlasWKFDh48qLi4OJ122mkaP368JkyYUOfQvnPPPVevvPKK5syZozVr1qigoECJiYnq3bu3LrvsMo0aNaqRP3XzCcf2Df5u1ePxqKCgoM73CQSKcBSO7duShHP7duvWTf/5z3/0zjvv6JtvvtH+/ftlmqa6du2qoUOH6te//rU6duzY2B8dAFolemABAAAAABGhZX8tCwAAAABoMQiwAAAAAICIQIAFAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACICARYAAAAAEBEIsAAAAACAiECABQAAAABEBAIsAAAAACAiEGABAAAAABGBAAsAiAjPPPOMRo4cqTvvvDPUVUGIlZSU6NJLL9XIkSP19ddfh7o6AIBmFBXqCgAATq4jR45o27Zt2rJli7Zu3aqtW7dq3759sixLkvT2228rLS3tpLy3ZVm68sorlZubq2nTpunWW29tVDnbtm3TvHnzJEm33HJLE9YwtHbu3KnVq1dr06ZN2rlzp/Lz8+Xz+ZSUlKSePXvq3HPP1fjx45WYmBjqqoaVxMREXXPNNXrppZf0z3/+U8OGDVNsbGyoqwUAaAYEWABo4WbMmKFt27aF5L23bNmi3NxcSdKIESMaXc7zzz8vn8+nYcOGacCAAU1VvZCaMWOG1q9fX+OxgoICFRQUaM2aNXrjjTc0c+ZMZWZmNm8Fw9yVV16pd999Vzk5OXrvvfc0bdq0UFcJANAMGEIMAC1coKdV8vdcDRo0SKecckqzvPc333wjSWrfvr369+/fqDI2btyotWvXSlKLCimBYJ+UlKQJEyZo5syZevbZZ/XSSy/pwQcf1LnnnivJH2ZnzpypDRs2hLK6YcflcmnKlCmSpDlz5qi0tDTENQIANAd6YAGghZswYYKSk5PVt29fpaenyzAMzZgxQwUFBSf9vQMBdvjw4TIMo1FlvPXWW5KktLQ0nXXWWU1Wt1BLT0/X9OnTNXr0aMXExFQ71rdvX40aNUpvvvmmXnzxRXk8Hj355JN67bXXQlTb8DR27Fi9/PLLKi4u1scff6yrrroq1FUCAJxk9MACQAt35ZVXasyYMerSpUujQ2Rj7NmzR1lZWZIaP3w4NzdXK1eulCSNGzeuWet/sj3xxBO65JJLjgmvwaZNm6bevXtLknbv3q0dO3Y0V/UiQlpamgYOHChJ+vDDD0NcGwBAc6AHFgBwUgRmhw0MW26MRYsWyTRNSdJFF11Ur2u8Xq+++uorLVu2TFu2bFFhYaF8Pp+Sk5N12mmnaciQIRozZoxSU1OrXTdy5EhJ0vjx4zVz5kz98ssveu+997RmzRrl5eUpISFBffr00bXXXquMjAz7uvLycn366adauHCh9u7dK7fbrU6dOuniiy/WVVdddcKTC5199tn2Pcx79uxRz549G13W7t27NX/+fG3YsEEHDhyQ2+1WYmKikpKSlJaWpsGDB+v8889X165dG1W+1+vV559/rsWLF2vnzp0qKiqSYRhq06aNkpOT1b9/fw0ZMkTDhw9XdHR0tWuPbv/du3frgw8+0Nq1a5WXl6eysjI9/PDDx3wZctFFF2nDhg3KysrSli1b1K9fv8Y1DgAgIhBgAQAnRWD48LnnnquoqMb972bFihWS/PeJduvW7bjnb9++XX/+85+1d+/eY47l5uYqNzdXq1at0o4dOzRz5sxay1myZIkeeeQRud1ue195ebm+/fZbrVq1SnfffbcmTZqkvLw8zZw5U1u2bKl2/a5du/Svf/1L3377rZ588skTCrFer9fedjgaP3Bq/vz5evrpp+Xz+artLyoqUlFRkfbu3as1a9Zox44deuCBBxpcfmFhof7rv/6rxgnDAm2/bds2ffjhh5ozZ47S09NrLevTTz/Vk08+KY/Hc9z3DZ7Ua8WKFQRYAGjhCLAAgCaXl5enn376SVLjhw97PB79+OOPkqT+/fsfd/jwtm3bdMcdd6isrEySNGjQII0dO1bdunVTdHS08vPztXnz5uOuG7pjxw599dVXSklJ0S233GK/93fffafXX39dbrdbTz31lDIyMvS3v/1N27dv1+WXX67zzz9fycnJ2rdvn1577TXt2LFDGzdu1Jw5c/Sb3/ymUW0gSd9//7293aNHj0aVsXPnTju8tmnTRpMmTVJGRoaSk5Pl8/mUn5+vrVu36ttvv230MO2nn37aDq+DBw/W2LFjlZaWpoSEBB05ckRZWVnasGGDPSS8Nlu3btWiRYvUpk0bXXXVVRowYICio6O1e/dudezY8Zjze/ToIZfLpbKyMn3//fe66aabGlV/AEBkIMACAJrcsmXLZFmWYmJiNGzYsEaVsWPHDrv3sW/fvnWe6/V69ec//9kOr3/4wx/sGWqDnXfeebr55puVk5NTa1nbtm1T79699fTTTyspKcnef/rppys9PV2zZs2S1+vVHXfcocOHD+uJJ57QkCFD7PP69OmjoUOHavr06crLy9O8efM0ffp0OZ3OBv38kn8Y9q5duyT5Q3yXLl0aXIYkLV682O55feqpp+z7aoONGDFCN998s4qKihpcfnl5uf3FwIgRI/S3v/3tmCCckZGhX/3qVyorK6uzJ3nXrl1KT0/Xs88+W2227NpmsXY6nerTp482bNign3/+WaZpnlBPNQAgvPEXHgDQ5ALDh4cMGSKXy9WoMoKHAR9v2Z9FixZp3759kvyzLtcUXoN16NChzuP33XdftfAaMGrUKLVv316SdOjQIU2ePLlaeA1ITEzUJZdcYp+3e/fuOt+vJnl5efr73/8uSTIMQ7/73e8aXEZAYMbpxMTEGsNrsLZt2za4/OLiYvvLhoyMjDp7cV0u13GHVN91110NWuopcK7b7VZeXl69rwMARB4CLACgSZWUlGjdunWSGj98WJLy8/Pt7TZt2tR5biAwS9LUqVMb/Z6Sf0hqbSHPMIxqx8aOHVtrOcHn7d+/v0F1cLvdmjlzph08j544qqECobukpESLFy9udDm1adu2rT2b8pdffnlCa7K2b9++xi8F6hL8+xH8ewMAaHkIsACAJrVy5Up5vV45nU4NHz680eWUl5fb2zX1hgb7+eefJfl74uoz2VNdjnd9cF3qmq03+LyGBLqKigrdf//99sRQ559/vm6++eZ6X1+TsWPH2r2es2bN0u23364333xTGzdutIddn4jo6GiNHz9ekrR582ZdffXVeuKJJ/Tll182OLw3Zpbl4AAbPPEWAKDl4R5YAECTCvSGnnnmmUpOTm50OcH3jB5vNtrCwkJJVT2NJyIuLq7O48HDY+saHh18H2ZgKaDj8Xq9euCBB7R69WpJUmZmpv7yl7806v7ZYJ06ddKjjz6qRx55RLm5udq0aZM2bdokyd/O/fr108iRIzVx4sTjfllQmzvvvFMej0cLFy7U4cOHtWDBAi1YsECS/4uFzMxMTZgw4bg9ycfrba9J8JcdjZ3xGgAQGeiBBQA0GY/Ho1WrVkk6seHDkv9+zYDDhw+fUFmRwOv1atasWfbSQUOGDNHDDz9sD809UYMHD9Zbb72lv/71r5owYYK9jI3P59OPP/6o559/XlOnTrXDc0PFxsZq5syZeuONN/Tb3/5WZ599th3wCwoK9Nlnn2nGjBm6//77qwXOozVmAqbgiaeCf28AAC0PX1MCAJrM2rVr7SGpJxpgg5dMOV6ATU5OVk5OTsRO4BMIr4He67PPPluzZ88+ofVjaxITE6MLL7xQF154oSR/z/V3332nhQsX6ttvv9Xhw4f1wAMPaM6cOUpNTW3Ue3Tp0kU33HCDbrjhBvl8Pm3btk0rVqzQ/PnzdejQIX399dd66aWXdMcddzTZz1VcXGxvH2+CLgBAZKMHFgDQZAIBrHfv3kpLSzuhsoLXPP3ll1/qPDewzE5+fv5xzw03R4fXQYMG6dFHH23y8FqT5ORkjR49Wo8//rguv/xySVJZWZmWLVvWJOUHhiffdNNNeuGFF+zh2YsWLWqS8gOysrIkSWlpaYqPj2/SsgEA4YUACwBoEqZpavny5ZL8Ew+dqA4dOqhdu3aSpJ9++qnOc0eOHGlvz5kz54Tfu7l4vV795S9/scNrRkaGHnvssePeh3syZGZm2tuBe4qbUlpamr2ObWPWmq1NYWGhvYTSGWec0WTlAgDCEwEWANAkNm3aZAef4EB5IgKhKisrS0eOHKn1vIsuusgOR5988onef//9OsvNyclpkvqdCK/XqwcffFBff/21pJMbXpcuXXrcUBq4d1mSOnfu3KDy9+/fr7Vr19Z5zoEDB+ye0k6dOjWo/Lps3rzZ3j7nnHOarFwAQHjiHlgAaOH27t1rzzgbEFhfVJKWLFlSbbZgl8ulUaNGNfh9Ar2InTp1atRSKDW58MIL9cknn8g0Ta1du1YXXHBBjedFRUXpr3/9q26//XaVlZXpmWee0ddff61x48apW7duio6OVn5+vrZs2aIlS5aob9++mjlzZpPUsbEeeughLVmyRJI/MN522206cOBAndekpKQoJSWlwe/1/vvv66GHHtLgwYM1ePBgde/eXW3btlVFRYVycnK0aNEiu/e8Y8eODV7+KCcnR3fddZc6deqk4cOHq3///urQoYNiY2NVVFSkzZs3a968efZs0lOmTGnwz1CbNWvWSPLf33vuuec2WbkAgPBEgAWAFm7Tpk2aPXt2rceff/75aq87dux4QgG2KYYPBwwZMkTt27dXbm6uFi5cWGuAlaRevXrpn//8p/785z9r//79WrdundatW1fjuYF7ZkNp8eLF9va+fft02223HfeaG2+8UTfddFOj3s/j8WjlypVauXJlred07txZs2fPrnN5oLrs379f7777bq3HHQ6Hpk6dqiuuuKJR5R/N6/Xqyy+/lOTv9W/sEkAAgMhBgAUAnLDt27fbvYcnOvtwMKfTqcmTJ+vFF1/Ut99+q8LCwjrXlu3Tp4/eeOMNLVy4UN988422bdtm32+ZkpKinj17aujQoRozZkyT1TESzJo1S6tXr9aGDRu0c+dOFRQU2EOK27Ztq169emnEiBEaO3Zso5btGThwoJ599lmtXbtWmzdvVk5Ojg4dOqQjR44oLi5OnTp10sCBAzVx4sQm652XZP9OSNKVV17ZZOUCAMKXYVmWFepKAAAi2yuvvKJXXnlFKSkp+uCDDxq1lmdtSkpKdM011+jw4cO69dZbNW3atCYrG5Ht3nvv1cqVKzV48GA99dRToa4OAKAZMIkTAOCEBYYPn3feeU0aXiUpMTHRDq1z585VaWlpk5aPyLR582atXLlShmHolltuCXV1AADNhAALADghFRUVGjFihG688UZNnjz5pLzHlClTlJ6erqKiIr3zzjsn5T0QWV566SVJ0rhx49S/f/8Q1wYA0FwYQgwAiAg//fSTVq5cqcTERF199dWhrg5CqKSkRO+++64sy9LkyZPrvC8aANCyEGABAAAAABGBIcQAAAAAgIhAgAUAAAAARAQCLAAAAAAgIhBgAQAAAAARgQALAAAAAIgIBFgAAAAAQEQgwAIAAAAAIgIBFgAAAAAQEQiwAAAAAICIQIAFAAAAAEQEAiwAAAAAICIQYAEAAAAAEYEACwAAAACICARYAAAAAEBEIMACAAAAACLC/we6Dytf3icDWAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADF70lEQVR4nOzdd3wUReMG8Gf3Snqn9w5SVBQLgoIIKiIiiqCigF3symvBLlYs+LP7yisCgogNO4o0FaSoiKB0CL2HkJB+dzu/Py637N3t7u0ll+Queb6fTz6E3NzuXHK3s8/O7IwkhBAgIiIiIiIiinJyTVeAiIiIiIiIyAoGWCIiIiIiIooJDLBEREREREQUExhgiYiIiIiIKCYwwBIREREREVFMYIAlIiIiIiKimMAAS0RERERERDGBAZaIiIiIiIhiAgMsERERERERxQQGWCIiIiIiIooJDLBEREREREQUExhgiYiIiIiIKCYwwBIREREREVFMYIAlIiIiIiKimBCRALt9+3ZIkgRJkjBmzJhIbLJO6tu3r/p7JCIyMmbMGPVYsX379pqujmrq1KlqvaZOnVrT1aEIUxQFp556KiRJwp133lnT1aEYsXjxYvW48OSTT9Z0dYiiRqtWrSBJElq1alXTVYm4G2+8EZIk4ayzzoIQIuLbr7Ye2KlTp+LJJ5+sUwevL7/8Un3NR48erenqUDm324358+fjoYceQr9+/dC4cWPExcUhOTkZbdu2xZVXXokvv/wSHo8nrO3+888/uPPOO9GpUyckJycjLS0N3bp1w0MPPYQdO3ZU0ashorrk4MGDmD59Oq6//np0794d6enpcDgcyMrKwmmnnYZx48Zh/fr1VbLv9957D6tWrUJ8fDzGjx+vWyaSx1ftBRErX4sXLzbdXk5ODubNm4fnnnsOl19+OVq2bOn3/Kqwfft2fP755xg/fjzOP/98ZGVlqfvr27dv2NvLzc3FpEmT0L9/fzRq1AhxcXFITExEixYtMHjwYLz//vsoKSmxtK28vDy89NJL6Nu3Lxo0aACn04nGjRujT58+eP3111FUVBR2/aLV4MGD1d/7+++/H/bzd+7cCZvNBkmSkJmZafl37LN//3588sknuP/++9GvXz907NgRWVlZcDgcyMjIwMknn4yxY8di6dKllrfp8Xgwc+ZMXHrppWjWrBni4uKQmZmJk08+GY8++ih27txpeVtCCHz33Xe4+uqr0b59eyQnJ8PhcKBevXo466yz8PDDD2Pr1q1hvWYz+/btwzfffIMnn3wSF198MRo3bqz+fSoa5nbs2IGHHnoI3bp1Q1paGpKTk9GpUyfceeed+Pfff0M+3xcmw/0KddyJZp9//rn6Os4+++wKbaN///7qNmbPnq3+/JFHHoHdbseyZcswY8aMSFX5OBEB2dnZAoAAIEaPHq1bpk+fPmqZumL06NHqa87Ozg5Zvi7+jqrbwoULRWZmpvp7Nvs67bTTxJYtWyxt96WXXhIOh8NwWykpKWLWrFlV/Oqorgj32FJdPvjgA7VeH3zwQU1Xp9a58847hc1mC3nskmVZjBs3Trjd7ojtu7CwUDRq1EgAEHfddZdumUgfX7XvJytfixYtMtzWmjVrQj4/0l5//XXT/fXp0yes7c2dO1fUr18/5Oto3bq1+PPPP0239cMPP4isrCzT7bRp00b88ccflfgNeC1atEjd5hNPPFHp7VXE559/rtahd+/eYT9/woQJ6vNvu+22sJ//4IMPWn4fX3bZZeLYsWOm29uyZYs46aSTTLeTnJwspk+fHrJuhw4dEn379g1ZL6fTKSZOnBj2aw/09ddfm+6nZcuWYW9zxowZIjk52bTukyZNMt1Gy5YtwzreABCSJInt27dX8DdxfJ8Vec2RUFpa6nccsHrO67Njxw4hSZIAIDIyMkRJSYnf49dff736+kpLSyNZdWFHBLRq1apKuofrmli+ihMr9uzZgyNHjgAAMjMz0b9/f5x55plo3LgxXC4XVq5cienTpyM/Px+///47zj33XKxcuRKNGjUy3Oa7776L+++/HwDgcDhw7bXXok+fPnC5XPjxxx/x2Wef4dixY7j22muRnp6OCy+8sFpeK9VeU6dO5RDdOmjdunVqz2WXLl3Qr18/dOvWDenp6Th48CC+++47zJ07F4qi4JVXXkFeXh4mT54ckX2//fbb2L9/P2w2Gx544AHdMlVxfPW588470a9fP9MyXbt2NXwssMfXZrOhU6dO2LZtG4qLi0PuvyIC95mQkID27dtjzZo1YW9r5cqVGDJkCMrKygAAbdu2xbXXXovWrVvD7XZj8+bNmDJlCg4ePIjs7Gz0798fa9euRdOmTYO2tWjRIgwePBgulwsAcOaZZ2LEiBFo0qQJDh48iDlz5mDhwoXYtm0bLrzwQvz2229o3759BX4D0WPw4MGoV68eDh8+jCVLlmDr1q1o27at5edPmzZN/f66666rUB0cDgdOPfVU9OjRA+3bt0eDBg1gs9lw4MAB/Prrr/jiiy/gdrvxxRdfICcnBwsXLoQsBw+U3LdvH/r27Yvdu3cDAFq0aIHrr78enTp1QlFRERYtWoRZs2ahoKAAY8aMQWJiIi6//HLdOrndbgwcOBB//PEHACA+Ph6jRo3CSSedhIyMDOzatQvffPMNlixZgrKyMjz44INITk7GbbfdVqHfARD8uXA4HOjatSv++uuvCm3vu+++w+jRo+HxeCBJEoYNG4YLLrgADocDP//8Mz788EOUlZXhvvvuQ0pKCm688Ubd7bz33nuWRh3MmTMH06dPBwCce+65aNmyZYXqHQ2cTidGjhyJ119/HYD33OLpp5+2/Pxp06ap+e/qq69GXFyc3+Pjx4/HlClTsGPHDkyZMgW33npr5Cof0Thsoi72LkZrL0ld9uGHH4pu3bqJjz76KOhKkc/u3btFly5d1L/dqFGjDLe3d+9ekZiYKAAIu90ufvrpp6Ay2l6E5s2bi+Li4oi9HqJowh7YqnX++eeLkSNHmvaKffrpp8Jut6t/hwULFlR6vy6XSzRv3lwAEOeff75huUgfXyP5ftqyZYsYNWqUeO2118TSpUtFYWGhEMK/1yXS5syZI26//XYxZcoU8ffffwu32+03Yi2cHth+/fqpz7vuuuuEy+UKKlNYWCj69++vlrv77ruDypSUlIgWLVqoZR566CHd/b366qtqmX79+lmup55o6IEVQoi7775brcdjjz1m+Xm//PKL+ryuXbtWaN/Z2dkhe1VXr14t6tWrp+7r448/1i03fPhwtcx5550nCgoKgsosWbJEPTfJysoSubm5utuaPn263/mJUW/ie++9p5arV6+e7vvPqqVLl4qbbrpJvPvuu+L3339Xe+Z82w+nN7KwsFA0adJEfe7UqVODysybN089JiYnJ4v9+/dXuO5CCHHGGWeo+5sxY0altlXTPbBCCPHXX3/5/e4VRbH83LZt26rPNWqXzjrrLAFAdOzYMaxth8IAW4UYYKNPbm6upQ/Q2rVr1b9dQkKCerIT6J577lHL3X///Ybbu+KKK9Ryb775ZoXrTxTNGGCr1pEjRyyVGzdunKWAaNWcOXPU7ZkNSYz08bU63k9VGWD1VCTAlpSUqEPH7Xa7OHr0qGFZ7e/2lFNOCXr8448/Vh/v0aOH6d/roosuUsvOnz/fUl31REuAXb16dYVO1H3DIAGIV155pUrrOGnSJHVf1157bdDje/fuVYdsJiQkiAMHDhhu68UXX1S39eijj+qWGTlypFrmrbfeMq3bqaeeqpZds2ZNeC/MgooE2P/7v/9Tn3fFFVcYlrv//vvVcv/5z38qXMd///1X3U5aWpooKiqq8LaEiI4AK4QQJ598ctgXPbUXdrp162ZY7q233lLL6XXyVFSVz0Lsm1n3559/Vn+mdxO00eROiqLgk08+wYgRI9C6dWskJiYiJSUFnTp1wtixY7F27VrTuj355JNBN1ovWLAAV111FVq3bo34+PigmTzdbjd+/PFHjBs3Dr1791YnN0hJSUGHDh0wZswY/PLLL4b79M0Qqh1y0rp166DXbPS7sjKZxIoVK3DzzTejY8eOSElJQVJSEtq2bYvRo0dj4cKFIZ8fOIlEYWEhXn75ZfTo0QMZGRlISkpCly5dMH78eOTm5obcXqxIT0+39Pvt2rUrOnXqBAAoLi7Gli1bgsoIIfDpp58CQMhZOe+66y71e+1N7tVh2bJlGDt2LDp37oz09HTEx8ejRYsWGDFiBL777jvT5+rNHrlz506MGzcOnTp1QlJSEtLT03HWWWfh7bffhtvttlSngoIC/N///R8GDBiAJk2aqJNPnHbaaXj88cdx6NAh0+cHflY8Hg+mTp2KAQMGoGnTprDb7boTQRw4cAAPPPAAOnfujKSkJGRmZuL000/HK6+8og4dMpoV8IcfflD3qf17mrnrrrvU58ydO9fSc6wINQtxVf3dvv32WwwePBiNGjVCfHw8WrVqhZEjR2LZsmVhv4aysjK8//77uOSSS9C8eXPEx8cjPT0dJ554IsaNG2c4u/LGjRuRlJQESZKQlpaG7Oxsw33k5uaiRYsWkCQJNpvN9LgdCzIyMiyVu+KKK9TvQ7WRVnz44YcAvENghw4dalguksdXOi4nJ0cddtmgQQOkpaUZlu3QoYP6fWFhYdDj2vODa665xvTvNWrUKPX7jz76KKw6V4RvWK8kSZBlGa+++qpuuR9++AFjxoxB+/btkZKSgsTERLRt2xZjxozBkiVLDLd/0kknoXv37gC8E/4sWrQoZJ2KiorUdt5ut+Oaa66pwCuzrnPnzur3+/fvD3p88eLF6pDNCy64AA0aNDDclvbvN2vWLN0yBw8eVL8PNUw81HurJmjPp+6++27Dcnfeeaf6Xv/kk08qvL8PPvhA/f7KK69EQkJChbdllcfjUWf09Z235+XlBZXbuXMnHnnkEZx++umoX78+nE4nGjVqhAEDBuCdd95Rbz/Qox0Wb/X2JG05s2H1I0aMgN3uvWPV15ZERCRSsNkkTtqeV7MvvatyW7Zs8bsqoPcly7LpUJAnnnhCLbtw4UJx++23625H20Nq5WZ232vVuylZ2/Ma6vlGvysjLpdL3HTTTSG3PXz4cNMrQ75yffr0EVu3bhWdO3c23FbLli3rZA/yaaedpv4Oli9fHvS49kp3qGFFHo9HpKamqu/Z/Pz8qqq2qqCgQIwYMSLke2XQoEGG9Qm8cj537lyRnp5uuK0BAwYYDh30+f7770WDBg1M65SSkiK++uorw21oPys5OTmid+/euu9brYULF4qMjAzDfXbr1k3s3LnT8Iqox+MRrVu3FoB3soJQQ8GLi4vV/bVo0UJ4PB7T8uEINboj0n83t9ttelyTZVlMnDjRco/Z77//rv4ujb6cTqd49913dZ+vHc7Ws2dPw8mKhg0bppZ75JFHTH+ntYm2l6BTp06V2lZJSYk6FPGcc86JUA1DH1+FYA+sT3FxsToE0uFwmPbA/vPPP+r2L7300qDHtb2qc+fONd3vqlWr1LKNGjWyVFc9VnpgV61aJRo2bCgAby/zhx9+GFTm4MGDfkOpjb5uuOEGUVZWprsf7cRaVkYnaIfYDhkyJJyXXSHa3iq9Hlhtr+qDDz4Ycnu+8w4AYsOGDUGPX3PNNerjoXpge/ToIQAIm80mcnJyrL8oi4zabiN5eXlqb3RaWlrINlZ768K///4bdv1cLpf6HgUgVqxYEfY2AoXqgS0uLhaXXHKJ32da79zjueeeE3Fxcaafi/bt24uNGzfq7ufw4cPC6XQKACIpKSnkcPfCwkKRkpKiHpMOHjxoWr579+4CgMjMzIzYuVCVB9hff/1VzJkzx++NM2fOnKCv9evX+z1vy5YtfvcC9O7dW7zwwgti1qxZYsaMGeLee+/1Oxk1OihqA+zAgQPVA/FDDz0kZsyYIaZOnSpuu+02sXfvXvU5Z5xxhkhOThZDhgwREyZMENOnTxeffPKJeO2118TNN98skpKS1G3q3WPy559/ijlz5ohzzz1XLfff//436DUHzhJoJcBeeeWVapn4+Hhxyy23iGnTpokZM2aIe+65R31DARAXXHCB4RAZX5nu3buLTp06CUmSxJAhQ8Q777wjZs+eLZ5//nm/+2TOPvtswzrVRqWlpX4n/Pv27QsqM2vWLMP3vR7t3zcSBz4zJSUl4swzz1T317ZtW/Hwww+LDz/8UHz88cfimWeeER06dFAf79evn+5BRXviMWTIEJGYmCgSEhLELbfcIqZOnSpmzZolxo0b5/eZMLug9Nlnn6lD4RwOh7j88svFG2+8IT755BPxv//9T4wcOVKdzVmWZcOhLNrfpe9zfdJJJ4kXXnhBfPzxx+K9994Td9xxh1r+33//VU/Cfe/7V155RcyePVu8/vrrolevXmoYatq0qWGD8txzz6nbCHXvy4cffqiWfeqpp0zLhiucABuJv9ttt93mFyxvuukmMW3aNPHhhx+KO++8U/3dXnrppSEDx2+//aaWlyRJXHjhhWLSpEli9uzZYurUqeKWW27x+1sZbefyyy83rfv//vc/9fEzzzyzUvdsxZrZs2f7tQOVsWDBAnVblRl6p2Xl+CqEf4A97bTTRMeOHUViYqJITEwULVu2FMOGDRMzZsyo1N82FgKsEEIMGjRIfd71119veA/sgAED1M+W3qzMvuMlEF6ABSAOHTpkub5aoQLswoUL1aCVmJgovv/++6AyOTk5fvfbnXTSSeKpp54SM2fOFLNmzRKPPPKIeuw2a5PDPVHXBuYvv/yyIi/fsi1btvi9hjlz5gSVmThxovp4uAH2008/DXr8008/VR+3eg/smDFjwn5tVvi2bzXALlu2LKzPkrbdnD17dtj1++qrr9Tnd+nSJezn6zELsLm5ueLss89W93nDDTfoXqzV3sqWnp4ubr31VvH++++ruUWbRRo1amR4vNW2qVOmTDGtt/bCjt6FskBjx45VyxtdsAxXVC6j4/F4xCmnnCIAiLi4OPHJJ5/oltu/f7/aQyvLsvjnn3+CymgDLOANwnl5eab7nz9/vmnv5eHDh9UeH1mWxbZt23TLRXoZHe29Kw0bNtS9grR9+3a/ng2j+y21vxOn0ym++eYb3dep3VZlQldhYaHuhYuKfIVaHiAStOFD7z4iIYR46qmnTBvlQKNGjVLL611djqTAe3P1TnbKysr86vTOO+8EldGeeADensRNmzYFlVuxYoXaQ6A3lboQQuzcuVNtTFu0aGF4D82KFStEWlqaACCaNWumeyU9cGTHPffcY3pVT9tDe9ttt+mWDTxW6DUo+/fvVwN2qAbznHPOEYD3avWuXbtMy4YrnABb2b+b9j6X9PR03YkaNmzYoC6xYhY88/Pz1cmA0tPTxeLFi3Vf3+bNm9ULaElJSbonzkeOHBHNmjVTf8e//vqr+tjGjRvVcJ6amiq2bt2qux+r1q9fH7HjV0VDQDjOO+889e/w+uuvV2pb2os2eifAFWHl+CqE9WV0OnbsKP7+++8K1SVWAuymTZv8Rq60bdtWPPnkk2L69OliypQp4qGHHlJ7h+Li4gxPQK+77jp1G6+99prpPrXnHADEkiVLwnmpKrMA+9lnn6k9R5mZmeK3337T3Ybv4pgkSeL//u//dMscO3ZMnH/++eq+jAK6dmSG2Yn69u3b1R6+Bg0aROwiWHZ2tno8+Oyzz8S7774rxowZIxISEtR6XXfddbrPnTZtmlpm6NChpvvZv3+/39/vmWeeCSqjKIoYOnSoWiY+Pl7cfPPN4u233xazZs0SL774ol/7OXTo0JChv6LM2l492t+FlU6Exx9/XC3/9NNPh12/IUOGqM+P1L3QRgF27969olu3bur+jCZb+/LLL9Uy/fv3F4cPH9Yt9+6776rlRowYoVvm22+/VcuEGm2jDcVmo+V8pk6davm4Y1VUBljtel2hGt+NGzeqPTo33XRT0OPak9KkpCSxZ88eS68plK1bt4b8IEQ6wPq64AHoXqH0WbFihXrQbdmype4VG+1BbcKECYbbmjx5sqVyoWjfI5X9snKgqowjR46Ixo0bhzxpu/fee9Uyb7zxRsjthlu+ovbu3ateYb7ssstMy5aVlYk2bdoIwDu8JFBgEPrll18Mt6WdDEKv3J133qmGjb/++su0Xu+//766rZkzZwY9rv2snHrqqabh9ffff1fLdu3a1XRtTO12jRpR7YRceqFQCO9xyVdm0KBBpq+1IsINsJX5u2kbbb0ZHn20jR+gH2BfeeUV9fGvv/7a9DVqe/6effZZ3TKLFy8Wsiyrf6/c3FxRVlbmN9lIJC4WBV7cqMyX2VqlkaAdGdKwYUPdGUrDcfXVV6vbi8TELVaPr0J4A6zdbhd9+vQRjz32mJg2bZr49NNPxdtvvy2uueYaER8fr24nJSWlQiE2VgKsEN5A1b9/f7V91/saO3as2Lx5s+E2tCMTTjvtNNOJjLS9vgDEt99+G1Z9fYwC7Lvvvqt+fps2bWo4rPPPP/9Un3/fffeZ7uvIkSPqBdABAwbolvnuu+/U7ZmdqGsvUofabzjeeecdw79fu3btTIfybtmyRS2bmJhoOnTzpZde8tu20QgKt9stHn74Yb8RfIFfp5xyivj2228jOotsoFBtb6DXXntNfc64ceMiXl7rwIEDfsP4Qw2ZtUovwG7atEm0atVKAN4LNq+++qrh80888UQBeHvPQx3rr732WvUcbOfOnUGPu91u9dgsSZLhhV/thZ2GDRtaurCzYsUK9Xd/ww03hCxvRUQmcYo0302+qampuOmmm0zLdujQAaeffjoAYN68eaZlL7/8cjRp0iQidWzTpo26dt2KFSsisk0z27dvV9fI6tatGwYOHGhY9vTTT1fXy9uxYwf+/PNPw7I2mw133HGH4ePadffWrVsXbrVjjsfjwZVXXol9+/YBAAYNGoRhw4bpli0oKFC/j4+PD7lt7c3+x44dq2RNjX3yySfqzfr/+c9/TMs6HA6MGDECALB582bDiXMAoHv37jj77LMNHzd7rwghMHPmTADAeeedh5NPPtm0Xtqb/kN9rm+//XbdtfJ8vvrqK7+yNpvNsKzZJBA+2nXM/ve//+mW0f785ptvDrnNqlSZv1tpaak6+VTDhg1NJzAZNGgQTjjhBNO6+I7tHTp0wODBg03L9uvXTz1eG70H+vTpg4ceegiA91h366234tFHH1WPeSNHjqzySVeiybp16/zeb2+88QaSkpIqtc0dO3ao32dmZlZqW+EcXwGgd+/e2LFjBxYvXowJEyZg1KhRGDZsGMaOHYsPP/wQmzZtwmmnnQbAe0wdMWJE0BqTtUnLli0xadIkXHLJJYZlpk+fjhdffNGwjRk2bBjS09MBAL///jsef/xx3XJvvvlm0CR/+fn5Fau4jgkTJuDWW2+Foijo2LEjfvvtN78JjLR8xw1JkjBu3DjT7WZkZOCiiy4CAPzyyy8oLS0NKnPBBReox5Zff/1VdyI4IYS61idQ8bVfw+FwODBgwACcccYZhmXatm2Lc889F4B3gqmRI0fqrl26fPnyoMlRjf5+NpsN999/Px5//PGgdTx9Vq1ahRdeeKFCE/ZVleo8B/vwww/VyQ4vvvhi1K9fP6znW/Xnn3+iV69e2L59O+x2O6ZPn4577rlHt+zff/+trik9duzYkMd6X1vo8XiwYMGCoMdtNhuuvfZaAMHvfy3t2q/XXHONeq5mRjsBobZNqYzQe60Bv/76KwCgcePG+OGHH0KW952Q7tixA8XFxYazgpmdxAXKz8/HzJkz8f3332Pt2rU4fPiw4axrvsWkq9LKlSvV788///yQ5c8//3z1DbpixQo15Afq0KGD6cyW2kXQKzMbcatWrdQ3fDS7++671ZPlFi1aWJ6NLZr4Pj+A97355ZdfmpbX/l3Xr1+vO3sv4F3s3ozZe+Xff//FkSNHAAApKSkh6wQAycnJOHr0KNavX29aLtTn2rdAOwC14Tfim5XbzLnnnosOHTpg06ZNmDZtGp555hk4HA71cZfLpc5A3qRJEwwaNCjkNqtSZf5uf//9t3oxpE+fPqbhH/BenDD6e+Xl5amNbcOGDS2/BwCYvgeeeuopLFiwACtWrPCbkbJ169Z4++23Q+7DiieffNJwpvxosX//fgwePFg9Mbvtttv8ZiOuKN/nFqh8gA33+NquXTvTx5s3b465c+eia9eu2L9/PzZs2IDPPvtMvShXm7jdbtxzzz146623YLfb8cADD2DUqFFo164dXC4XVq9ejUmTJmHOnDmYPHkyVq5ciXnz5gXNUpuWloZXX31VDWTPPPMMFi5ciOHDh6NJkyY4dOgQ5syZg/nz5yMhIQHp6enqBQezC4VWKYqCO+64A2+99RYA4LTTTsP333+PevXqGT7H16alp6f7nQsZ8YXW0tJSbNu2LejCms1mw6hRo/DCCy9ACIFp06YFfb5//fVXbN26FQDQo0cPdO3a1fJrDOXWW29VL4SWlZVh3759WLRoEV588UW88847+O9//4tnnnkG48eP133+66+/jjPPPBOFhYX46aef0KVLF1x//fXo2LEjioqKsHjxYnz00UdwuVxo06YNtm3bBsD47/fDDz/gyiuvRF5eHvr27Yvx48fjjDPOQEJCAnbu3IlPP/0Uzz77LJYsWYLzzjsPH3/8MYYMGRKx30cs0M4+fP3111fJPubPn4+hQ4eioKAAiYmJ+Oyzz0w7q7TneqWlpSHb1D179qjfG7Wp1113HV588UUA3othTzzxhN9M5RW9sJOVlaV+H6mVTaIuwBYUFCAnJweAd7kEsyn79eTm5hoGWO2JmplFixbh6quv1p3CXE8kr0oa8TUggP9U5ka0ZbTPDWTWaADwuxpXUlIScr+x7JFHHlEb1YYNG+Knn34y/f34Tq4Ba7+b4uJi9fuUlJRK1NScthd1+PDhYT3X7MBSmfeKtk6ff/45Pv/884jUCQj9ud67d6/6fZs2bUzLZmRkID09HUePHjUsI0kSbr75ZvznP//BgQMH8M033+Cyyy5TH//666/VpQmuu+66kKGvqlXm76b93YUKE6HK7Nq1C4qiAPA2vNrGNxSz94DdbsdHH32Ek08+WQ1vvp+lpqZa3kcsO3LkCM4//3z1RHXYsGF4/fXXI7JtXxiw2WyVWjIi3OOrVVlZWbj77rvVk/3vvvuuVgbY0aNHq0vZfP755369sHFxcejduzd69+6N++67D6+++ir+/vtv3H777eoSMFpjxoxBQUEB7rvvPrhcLvz222/47bff/MqkpKRg5syZeOKJJ9RzCKvLOJl5/fXX1SVA+vfvjzlz5vi1pXp87Udubm6Fzgn1jBkzBi+88AIA/RN17cUVvcAyb9483Z5Pn0svvdRS/ZxOJ1q2bIkxY8bgyiuvxMUXX4wFCxbg4YcfRlpaGm677bag53Tt2hVz587FsGHDcPDgQWzfvj2oJ12SJDz++OM4duyYuhyR3t/vhx9+wKBBg6AoCoYNG4bZs2f7Bd127dph/PjxOO+883DOOeegpKQE1157LTZt2qSOQqwp1XUOtnLlSvz7778AvB1rZqGyog4cOIBBgwahrKwMGRkZ+O6779CzZ0/T52jPq5566qmw9mf0uejUqRN69uyJZcuWITs7Gz///LPfhX3thZ3TTz8dXbp0sbQ/bVus/TtURtQNIdZb2ygcZuscWWl8N2/ejEGDBqnhtWPHjupVz1mzZmHOnDnql28IQXUMWdIOd7AyJEz7wTYbKhGJK6q1wTPPPIPnnnsOgPeEf/78+SEvFPiGYQHA4cOHQ+7Dd2Em8LmRVpnPkNnnpzLvlaqqExD6c+0bOWG32/16So1Y+XyNGTNGDX6TJ0/2e8z3f0mScMMNN4TcVlWrzN9NO0QrMTExZHmz311l3gMul8v08Xr16vn1DrZp0wannnpqhfcXS/Ly8nD++eer670OHjwYH330UcQunPje5x6Px/SE3UxFjq/h0J5gbdiwIWLbjRYrV65Uw+uFF15oOoT42WefVYPK559/7ncRSuuOO+7Ahg0bcO+996Jbt25ISUlBfHw82rVrh7vuugtr1qzB4MGD/dqtSAQW7ZrThYWFlkZmVUX70bFjR5x11lkAgOzsbL81oouKivDZZ58B8A5Nveqqq4Kef/PNN2Po0KGGXxURHx+PKVOmqMfsp59+Wr3oF+jss8/Gpk2bMHHiRPTu3RuZmZlwOBxo0qQJRowYgV9//RVPPfVUyL/fuHHjoCgKZFnGa6+9ZthenH766RgzZgwA7zllNIxOq65zMG3v66hRo6rkorQQQs0SZWVlIc97gKo7r9L2qvpGk/lYXfs1kLaukVo7N+p6YLXB65xzzsHPP/9crft//vnn1asDjzzyCJ5++mnDhb5D3Z8bSdqrRVYWkNaeeFZlb59VRUVFIe9ltKpFixY45ZRTIrItAHjxxRfx2GOPAfBeofzpp58sDRfSnoCZ3Tvqox33H8mTt0C+z5AkSXC73VFxkUL7uX788cfDvlpYGb5Q5Xa74XK5QoZYK5+vrKwsDBs2DDNnzsS8efOwc+dOtGjRAjt27MBPP/0EwNu70Lp168q/gBqk/btZCS9mvzvttkaNGhXUMFbGbbfd5vf52rRpEx599FFMnDgxItvfsGFDxIJR7969I9LzCHhPJC+44AL1nt8LLrgAn376qaULNVZpLwwcOXLE0oUMrYoeX8OhHZ5mNnoiVmnvRe3fv79p2YSEBJx11ln47rvvIITAH3/8YRh427Rpg0mTJhluq6CgALt27QLgvYBldI9qOO6++26sX78ec+bMwbJly3DBBRfgxx9/ND1P8d1O4jvGRsp1112n9jxPnToVffr0AQB89tln6oX/Sy+9tEovOAdq0aIFTjjhBPz777/Yv38/Nm7caDi3QFpaGh544AE88MADhtvTzmvgu1/cJzs7W328c+fOIeeI6d+/P/773/8CgKWh3FWtOs7BSkpK8PHHH6v/r6rhw40aNcLEiRMxcuRIFBYWYtCgQfjuu+/U96QebZu6cOHCkLdIWTVixAjcfffdKC4uxmeffYY333wTSUlJKCwsVEd0xMfH48orr7S8zUjeiuITdQE2LS0NycnJKCgoqJZ7SwPNnz8fANCgQQNMmDDBMLweO3bM7w9S1Ro3bqx+v3nz5pDltWUiNXFVZRw8eLDCVyUDjR49OmJX/1599VU8+OCDALzvvR9//DHkBEM+2pMws4myAO99P75JuGRZDjnZTWU0bdoUq1evhhACe/bsQfPmzatsX+HUyae6P9dNmjRR773ctm0bOnbsaFg2NzfX8gnwrbfeipkzZ0JRFEyZMgVPPvkkpkyZol4xr+nJmyJBe+zYsmVLyPJmZarqPTBz5kx1grBTTz0Vhw8fxo4dO/Dyyy/jggsu8JukqqI+/vjjiF10WbRokaV7rUMpKCjAwIED1UkE+/Xrhy+//NJwEpaKatWqFZYuXQrAexLSrFkzy8+tzPE1HNU1uqWmaHtRrQyLT0tLU7+3ckHOyC+//KL2kPbs2dPSZC2hOBwOzJ49G1deeSW++OILSyG2adOmOHr0KA4ePGjpIqRVw4cPx9133632uPpO1LU9bka9TFYCU0Vpfw+VuSCTm5urtn1JSUno3r273+M19b6KlM6dO0OWZSiKgtWrV6s9yUa082FYvYj2xRdfqH+DXr16VWnnw4gRIyBJkuUQW1VtampqKi6//HLMmDEDBQUF+OyzzzB69Gh89tlnaufY0KFDwzrWavNSy5YtI1LPauua0b6pQg0ZOeeccwB4TzatnDRF0oEDBwB4JwAx+yDMnz/fcGiHTzivORTtJEy+Hh4z2t5Oowmc6rq33noL9913HwBvgzF37tygK5RmunTpop7M/fvvv6YHkN9++029V7pXr15V2iuuPdhFqte7srp37642kAsWLAj52YmkHj16qN8vWrTItOzixYstb7d3797q/R9TpkyBy+XClClTAHgvgNWGSS5OOukkOJ1OAMDPP/8c8nYJvZkNferVq6f24CxfvjwicwdkZ2er94glJSVh1qxZmDFjBmw2GxRFwahRo/zCTW1RVFSEiy++WA2W55xzDr755htLM3GGS3uit3HjRsvPq+zxNRzakVpVeYJZU7Thwtcjakbb06TtnQ6XNshF8nYIX4i9/PLLAUANsUbHBF+bVlJS4jfUt7J8J+qA94LQ559/ju3bt6vvp2bNmoXs8Y40IYR6jyEQeg4DMx999JE6VHTkyJFBx4eael9FSmpqqjpJYV5eHpYvX25YdteuXWpvc4sWLSyPJvC16UDV9b5qDR8+HDNnzoTdbkdhYSEuuugiw5GoVXmupzeMuKLDhwH/SaNOPPHEylWuXLUFWG1Xd6grN6NHj1a/N5rivar4hkdt27bNMHR6PB71fh4z4bzmUFq1aqUOm/37779NQ+wff/yBhQsXAvBe6YiGe8F8sxBH4isSva+TJ0/GnXfeCcB74vv999+HvGE+kCRJ6iyfQgi88cYbhmW1E6pU9QQjV155pRo6Jk6cGBVXSm02G0aOHAnA2wgaLT9TFbRB8q233jINYa+99lpY277lllsAeBvHe+65R72IMXr06IgO46wpcXFx6pIUBw4cUO/D0zN37tyQM0b7ju1FRUXqBCoV5fF4MHLkSPWk9/XXX0f79u3Ru3dvPPzwwwC8sy7eeOONldoP4J2FOFLHr8r2vpaUlGDIkCHqSU2vXr3w3XffhT201yrtkh5Wl4yLxPHVqiNHjvh9bn3v19pEexHh008/NT2Gbd++Xf07ybJc4dttFi1apN4H2qZNGzXoRYrdbsfHH3+sLqO0bNkyXHjhhbohdtSoUer3Tz31VETnHdGeiE+dOtVviZDRo0dX+y04X375JQ4dOgTAO9lZ27ZtK7SdgwcPqqNGHA6H7lIs7dq1U0Ptrl27gibyCqQdSqu9MFyTtOdTZu33G2+8of5drU5uuWPHDvVcOjk5OexJMStq+PDh+Oijj2C321FUVISLLrpI9+J6jx491Ivos2fPVieaioRzzz1XXZFi8eLFWLx4sdrmNG/eHOedd15Y29O2HWbLRIUlEovJahfmHj16tG6Zu+66Sy3z888/m27P4/GI0047TS1/9913i9LSUsPyRUVF4oMPPhCzZs0Keky7AL2VBeQHDBiglp80aVLQ42VlZeK6667zW+DZaNHlSZMmqWWmTZsWct99+vQxXVB99uzZ6uONGzcW69evDyqzY8cO0bZtW7Xcm2++qbst3+NWFlIPp2wsmDZtmroIc2JioqX3hZE9e/aIxMREAUDY7XYxf/78oDIffPCB+jts3ry5KC4urkTtrRk3bpy6z3PPPVfs27fPsKzH4xE//fSTePrpp4MeM1qAXk+osrt27RLp6ekCgIiLiwv5mThw4ICYMGGC+Pvvv4MeC/VZCdS7d2+1/G233SY8Hk9QGe2xwuxzrXX06FH176/92rRpk6V6VdTo0aPVfWVnZwc9Hsm/26+//qo+npGRIf7666+gMps2bVIXQPd9ffDBB0HlCgoK1IXbJUkSL774ou7fwufo0aPitddeEz/99FPQY4899pi6r2HDhvk95nK5RM+ePdXH//vf/5r+DmJFaWmpuOiii9TXdcYZZ4i8vLwq3WdJSYlISkoSAMTZZ58dsnykjq+//fabmDx5sigpKTEss2vXLnH66aerv4/27dsLl8sV1n5878dwToe05zzhnkZpn2u1TT106JD6NwAgxo4dK9xud1C5nJwcccYZZ6jlLrroIt3tbdu2TezYscNwf/PmzRNpaWnq57QybaQQ5scYl8slhg0bpj5+5pln6r6nL7/8crXMiBEjTN/3LpdLfP7554bnP1qKoohWrVqpr7Vhw4bqfjZv3hz2a9WzefNmMXHixJCf1Z9++kltI82O3UVFRWLFihWG29myZYs48cQT1e08+eSThmVHjBihlmvXrp3h++LZZ59Vy8XFxYldu3bpltN+LvTaJjPhtL0+hYWFokmTJupzp06dGlTmp59+Ena7XQAQycnJYv/+/Za2/eSTT6rbve666yzXKRy+44/ea/7000/VehsdS7/++mu1ji1atBArV6403d+///4rbr31Vkt1054Tadv3Rx991NLztbp37y4AiKysLNM2PxzVdg/seeedp/ZC3XDDDbj33nvRsmVLdTavdu3aqUswyLKMzz//HD179sSePXvw2muv4ZNPPsEVV1yBk046CWlpaSgoKMDOnTvxxx9/YMGCBSgsLMTTTz9d6Xreeeedau/mfffdh8WLF+OCCy5AVlYWNm/ejOnTp2Pz5s0499xzsXnzZtNho9orFA888AAOHTqEjh07qveRNG3aFN26dbNct+HDh2POnDn4+OOPsW/fPpxyyikYM2YMevbsCZvNhj/++APvv/++egXz/PPP152CvS6bO3curr/+evVK3PXXX4+jR4+GXD/rlFNOQYsWLYJ+3qRJE7zyyisYO3Ys3G43Bg4ciFGjRqFPnz5wu92YO3euehXbbrfjvffeMx3mp73nOjs723BN1lCef/55rF69GgsWLMCiRYvUK+g9e/ZE/fr1UVZWhv3796u9+fv378d5552HRx99tEL7s6JZs2b4+OOPcckll6C0tBSjR4/GpEmTcMkll6B9+/ZISEhAXl4eNm3ahOXLl2Pp0qXweDwRmZjgv//9L0477TQUFRXh7bffxrJly3DNNdegWbNmOHDgAGbPno2lS5eiZ8+e2LlzJ/bs2WPpyntaWhpGjBjhN9Sub9++aN++faXrHC169+6N2267DW+//TZyc3Nx5plnYvTo0ejduzdkWcbKlSvx/vvvo7CwEJdeeqnpZykpKQlffvkl+vTpg/z8fDzwwAP473//i8svvxydO3dGcnIy8vPzsW3bNqxcuRKLFy9GWVkZPvzwQ7/tLFmyRB0F06xZM7z33nt+j9vtdsycORMnn3wy8vPzce+996JPnz6m9z/HgjFjxuD7778H4B2WO3bsWLWHwIzVJT30xMXF4cILL8Tnn3+OP/74AwUFBYbLnkTy+HrgwAHcdNNNGDduHC644AKceuqpaNq0KeLj45GTk4OlS5fis88+UyddTElJwezZs03v03z//feRnZ3t9zPtPYaBx7+MjAyMGzfOtO6hBG5TOxtndnZ20OOnnHKK37JcgHcY6bPPPqv2or3zzjv45ZdfcPXVV/utAztt2jS19y4tLQ2vvPKKbp3+/PNPXHnllTj77LPRt29ftGvXDna7Hbt378bcuXPVWwEkScKbb74ZkXu2jdjtdsyaNQuSJOHTTz/F8uXL1XtitUNcp0yZgk2bNmHt2rWYPXs2fvzxRwwfPhw9evRARkYGiouLsWfPHvz111/46aefkJuba2nYsyRJGDNmjDrKwncb2dlnn21p6TArCgoK8OCDD+KJJ57Aeeedhx49eqBVq1ZISUlBUVERtm3bhnnz5vn1gPbq1QsPPfSQ7vYKCwtxxhlnoEuXLrjwwgvRpUsXpKSk4PDhw/jll18wZ84cdVmZq666yrRdf+655/DTTz/hyJEj2LJlC7p27YprrrkGZ555pt86sNoetCeeeCKse+H1vPLKK4ZLuRw9ejSozq1bt9b9eyYmJuK9997DkCFD4PF4cN111+G7777DwIEDYbfb8fPPP2P69Onq7NevvvoqGjZsGLJ+onx9YJ/qGD4caNiwYZAkCVdeeSWKioowaNAgfPvtt37nRIMHD8bjjz+OCRMmYOfOnTjjjDNw/vnno3///mjWrBkkSUJOTg7+/fdfLF68GOvWrYPNZsM777wTcv+jR4/GhAkTIITwW47TNxu1VTk5OX6z5EdsVEMkUrCVHli32+3XCxL4pXelae/eveK8884zfI72y2azicmTJwdtI9weWCGEGD9+vOm+evXqJQ4ePGh65cTnqquuMtxO4O/KSq+Sy+USN954Y8jfx7Bhw0RRUZHhdnzl6loPbGAvm9Uvvd4krZdeekk4HA7D56ekpOiOEAikfU64Vy8DlZaWijvuuEPYbDZLr3HUqFFB24hkT57PsmXLRJs2bSzVKTk5WaxZsyZoG+H2wAohxMKFC/2ubgd+de3aVezcuVM0bdpUABAnnniipe2uWLHCbzszZ860XKeKqs4eWCG8x+9rr73W8Hcny7J48cUX/UYbmH1mNmzYoF6RDfUVFxcn5s6dqz43NzdXPfbKsmx6XJ8xY4a6ne7du5uO5IkF2t7CcL4q68svv1S3NX36dMNykTy+zpkzx/Lzu3btqjtSI5D2uGHly6htD6cHNtzfhdE5lBBCvPzyy8LpdIbcRqtWrcTy5csNt/Ppp5+G3EbDhg3F7NmzQ/5OrbByjHG5XGL48OFqOb3RBXl5eX49hqG+HnvsMUv1y87OVkcN+L6mTJlS2Zet+uuvvyzXWZZlcfPNN4uCggLD7R06dCjkdpxOp3j00Uct9Xb9+eefon379iG3abfbxTPPPGO6LW15s3OYcI9loc4/Z8yYIZKTk01/H3qjKo0sWLBAfW6HDh0sPy9cVnLE559/7tcTu3DhwqAykydPFqmpqZU6ruk599xz/Z57zjnnhP0a3377bfX5eqMUK6raAqwQQhQXF4sXXnhB9OzZU2RkZPidWJudZC1evFjccsstokuXLiI9PV3YbDaRmpoqOnfuLEaMGCHeeecdsXfvXt3nViTACiHE3LlzxaBBg0S9evWEw+EQjRs3Fv369ROTJ09WhyhZeeO53W7xzjvviL59+4p69eqpb0K931U4J+XLli0TN9xwg2jXrp1ISkoSCQkJonXr1uKaa64RCxYsCPl8qweFcMtGu6oKsEIIsXbtWnH77beLDh06iKSkJJGSkiK6du0qHnzwQbF9+/aQzy8sLPQ72Obk5ETgFXuHLz300EPijDPOEPXr1xd2u10kJiaK1q1bi4suukg899xzuiFRiKoJsEJ4T1ZmzJghhg8fLlq3bi2Sk5OF3W4XmZmZokePHuKmm24Ss2fPNmzEKxJghRBi//794j//+Y/o2LGjSEhIEOnp6aJHjx7i5ZdfFoWFhUJRFJGQkCAAiL59+1rapqIo6nC7zMxM0yGPkVLdAdbnm2++EYMGDRL169cXcXFxokWLFuKqq64Sv/32mxBCWA6wQnh/b1999ZUYPXq06NChg0hNTRU2m02kp6eLk046SYwaNUpMnTpVHDlyxO952hPYhx56yHQfQggxcuRItfy4ceNClo9mNRVg3W63aNGihQAgBgwYYFguksfXY8eOia+++ko89NBDol+/fqJDhw4iMzNT2O12kZ6eLk444QQxevRo8fXXX1sekhbrAVYIIbZv3y4ef/xx0bt3b1G/fn3hcDhEfHy8aNasmRg8eLCYPHmy6cVrIYQ4fPiwePfdd8WIESPECSecIDIzM4XT6RRNmzYV5513nnj99dfF0aNHTbcRDqvHGLfb7ff5Nhoiv2rVKnHPPfeI7t27i6ysLGG320VycrJo3769uPTSS8WkSZPE1q1bw6pjv3791P0mJSWJY8eOhfsyDSmKIv7880/xwgsviKFDh4oTTjhBpKSkCJvNJhITE0XTpk3FgAEDxFNPPSW2bNkScntut1vMnj1b3HLLLeLkk08WDRs2FA6HQ9SvX1/06NFDPPbYY5a2o1VcXCymTZsmhg4dKlq1aiUSExOF3W4XWVlZ4swzzxQPPfSQpd+p9r1cnQFWCO9n44EHHhBdunQRKSkpIikpSXTo0EHcfvvt4p9//gnjtyHENddco+77+eefD+u54bCSI4TwhlhfJ4lRiM3NzRWvvPKKOP/880WTJk1EXFyciIuLE40aNRLnnHOOuP/++8WCBQvCGsI7ffr0sM+FA5111lkCgOjYsaNQFCXs5xuRhKjk9LhEFBE//vgjLrzwQgDAXXfdFfaEQlR5a9euVWfIs/o3mD9/PgYMGADAu8bh//3f/1VlFYlqxKuvvor77rsPNpsN27dvr/QQQiIiqt22bt2qDsV/5513cOutt0Zs29U7vRoRGfKtQZySklKl96KSsTfffFP93uq9t9p7SWrD2q9Eem699VY0atQIHo8HL774Yk1Xh4iIotzzzz8PwLsiSqTvI2aAJYoSvgB73333oX79+jVcm9rn119/NV1/9q233lInA2ratCkuvvjikNtcvXq1OkFN//79La8tRxRrEhIS8OSTTwIA3nvvPezdu7dmK0RERFErOzsb06dPBwA8/fTT6vKOkcIhxERR4PDhw2jQoAHq1auHrVu3IiUlpaarVOu0a9cOJSUlGDhwILp374769evD5XJh69atmDNnDv766y+17DfffGMYYH/44QcoioJNmzbhxRdfVGfnW7JkCXr16lUtr4WoJiiKgtNOOw2rVq3CHXfcYbr2NRER1V033ngj3n//ffTs2RNLly71W2UjEhhgiahOaNeuHbZu3WpaJiEhAZMnT8bIkSMNy+gdhK3eLztv3jwUFRWFrqyOevXqoXfv3hV6LhEREVFtwQBLRHXC8uXL8fnnn2P58uXYs2cPcnJyUFRUhIyMDHTo0AH9+/fH2LFjQ64R5wuwycnJ6NChA8aOHYvrr7/e0tpmrVq1wo4dOypU/z59+mDx4sUVei4RERFRbWG84jcRUS1y5pln4swzz6z0dnjNj4iIiKjmsAeWiIiIiIiIYgJnISYiIiIiIqKYwABLREREREREMYEBloiIiIiIiGICJ3EiIqJaRQiB4uJiFBUV6X4VFxejuLgYpaWlKCsr8/vS+1lZWRk8Hg88Hg8URQn6PvBfwDtbtZUvm80Gh8MBu90Oh8Ohfhn9Pz4+HvHx8UhISPD7PvD/8fHxSE5ORlJSEhwORw3/RYiIiCKHAZaIiKKOEAJFRUXIy8vDsWPHkJ+fj/z8fN3vff8WFBSoAZXzEx7nC7N6XykpKeq/6enpSEtLQ3p6OtLT05GcnBzxxeeJiIgqi7MQExFRtRBCoKCgADk5OcjNzcWRI0eQm5sb9L3v/2VlZZXanyRJSExM1P1KSEjA/Om/QlIAKJLmC5AC/g8hectBAgTKv8q/h+Z7AUi+n2kehjYDSoD6iOT7Et4beiQBIQGQhd/PIAPC939ZADaBi249D8XFxSgpKUFJSYnaqxz4/8qw2+1+gVb7Va9ePfUrKysLaWlpDLtERFQtGGCJiKjShBDIy8vDwYMHcejQIfUr8P8lJSVhbTc+Ph4pKSlISUlBamoqUlJSsPTT3yG5ZcAtQ3JJ3n/dMuCWAI8EySMBHtkbRlF3Q5WAAOwCsCkQdu/3wq4AtvJ/7QKX3nshCgoKkJeXh6NHj6r/hht+HQ4HsrKykJWV5Rds69Wrh0aNGqFhw4aoX78+7HYO/CIiosphgCUiopCEEMjNzcW+ffv8vvbu3Yv9+/fj8OHDlntMk5OTkZGRgYyMDPyzcCNQJkNyyZDKZMDl+97m/V6puwG0JglZAHYFwqEADu+/vu8vuKUvcnJykJOTg8OHD+Po0aOWtinLMrKystRAq/dvfHx81b4wIiKKeQywREQEAHC73di3bx927dqF3bt3Y+/evWpQ3b9/f8jeU0mSkJGRgQYNGqB+/fpYOvsPSKU2SGWy+i/KbAyltYyQBOBUIJweCKcCOBVc+cQQ5OTk4ODBg9i/fz8OHjwIl8sVclv16tVDs2bN0LRpUzRt2tTv+8TExGp4NUREFO0YYImI6hAhBHJycrB7927s2rULO3fuxK5du7Br1y7s3btXnUVXjyRJqF+/Pho3boy18zZCKrF5g2n5vyiTIQmGUwomILw9ufEeiDgFIs6Dwff2x4EDB9SvwsJC021kZmaqgbZZs2Zo2bIlWrVqhSZNmnBoMhFRHcIAS0RUCwkhcPDgQWRnZ6tf27dvx86dO1FUVGT4vLi4ODRv3hzNmzfHL9NX+IVUlNoYUKnKCHt5wE1wY9TEYdi9ezf27NmD3bt3Iy8vz/B5drsdzZs3VwNty5Yt0bJlSzRv3hxxcXHV+AqIiKg6MMASEcUwIQSOHDmC7du3Y9u2bX7/GvVoybKMxo0bo1mzZvjji7WQim3lX3ZvL2odnviIopOw+cKtB6Nf8oZb3wUZowmnfO/z1q1bo127dmjTpg3atWuHJk2aQJblan4FREQUKQywREQxQlEU7NmzB5s2bcLmzZvVL6NJdGw2G1q0aIEdK/dCKrIf/yphTyrVDgICiFMgEtxQEt0YeFdf7NixA9u3b8exY8d0n5OQkIA2bdqgbdu2aNeuHdq2bYu2bdvyHlsiohjBAEtEFIVcLheys7P9guqWLVt0e5skSULTpk2x9+9DkAo1QbWYQZXqJvWe20QPlEQ3LrjzbGzduhXZ2dmGs2U3bdoUHTp0QKdOndCxY0d07NgRSUlJ1VxzIiIKhQGWiKiGCSGwe/durF+/HuvWrcO6deuwdetW3VlbnU4n2rZti40Lt0MutEMqcHjDKmf2JQpJQEAkeCCS3Bjx9MXYsmULtm7disOHD+uWb9GihRpoO3XqhPbt23OpHyKiGsYAS0RUzY4ePaqG1fXr12P9+vW6wx2Tk5PRvn17rPl2I6QCO6RCB6QiG+9RJYowYVcgkly47o3h2LhxIzZs2IADBw4ElZNlGa1atcIJJ5yArl27omvXrmjRogUkiZ9JIqLqwgBLRFSFFEXB9u3bsXbtWvz9999Yt24d9u7dG1TO6XSiffv22DAvG9IxO+QCB1DCsEpUU4RDgZLswqhXLsOGDRuwYcMGHDlyJKhcamqqGma7du2KTp06sZeWiKgKMcASEUWQy+XCxo0bsWbNGqxZswb//PMP8vPzg8q1aNECu38/CPmYwzsMuNDO+1WJopiAAJzeUDv8mUH4559/sGHDhqB7am02G9q3b48uXbqga9euOPnkk5GVlVVDtSYiqn0YYImIKqG4uFjtXV27di3WrVsXdEIbHx+Pzp074+8vN0LOd0A65oDk4TIeRLFOSAIiyY1b/nc1/v33X6xdu1b3ftoWLVqge/fuOPnkkxloiYgqiQGWiCgMLpcL69atw6pVq/Dnn39i3bp1cLvdfmXS0tJwbFsJpHwH5Dwne1eJ6gjfsj5KigtDHumPNWvWYMuWLQg81WKgJSKqOAZYIiITHo8HW7ZswapVq7Bq1SqsWbMmaCmbBg0a4PA/+ZDzHJDynd7la3jvKhHBO0GUklqGoU+cj9WrVxsG2tNOOw2nnXYaTj75ZK5JS0RkggGWiCjAwYMHsXLlSqxYsQKrVq0KmiE4LS0Nx7aUQD7qhJzn5GRLRGRZqEBrt9vRrVs3NdC2b98essxbDoiIfBhgiajOc7lcWLt2LVasWIHly5cjOzvb7/HExESU7HZDOuqEfNTpXXeVgZWIIkDYFShpZRj0UF+sXLkS+/bt83s8LS0NPXr0UANt/fr1a6imRETRgQGWiOqkAwcOYPny5VixYgX+/PNPv2HBkiShc+fO2PD9dm9gPeZgYCWiKicggHgPbp85Cr///jtWrVqFoqIivzLt27fHWWedhZ49e6JTp07snSWiOocBlojqBEVRsGHDBixduhRLliwJ6mVNT09H/qYSyEeckI/GQXLzpJCIapaQBESKC1e9PBi///47NmzY4DfcODMzE2eeeSZ69eqFHj16ICEhoQZrS0RUPRhgiajWcrlc+Ouvv/Drr79i6dKlfstbyLKMzp07Y/132ZCPxHlnCmYvKxFFMWFXMO6rG7Fs2TKsXLnSr3fW6XSie/fuOOuss3DWWWehYcOGNVhTIqKqwwBLRLVKQUEBli9fjiVLlmD58uV+J3gJCQko3aVAzomDnMteViKKXUISEKlluOTJ8/Dbb78F3Tt7wgknoE+fPujTpw+aNm1aQ7UkIoo8BlgiinnHjh3DkiVLsHDhQvz5559+67JmZmbi6L/FkI/Eee9n5XqsRFTLCAiIBA9umHwFfvvtN6xdu9ZvqHH79u1xzjnnoE+fPmjVqlXNVZSIKAIYYIkoJhUUFGDJkiVYtGgRfv/9d7/Q2rJlS+xecghyTjykAg4NJqK6RTg8uPOT0fj555/x119/wePxqI+1atVK7Zlt27YtJInHRyKKLQywRBQzioqK1NC6cuVKuFwu9bE2bdpgx6IDkA/HQy6212AtiYiih7AruHfO9Vi8eHHQCJUWLVpgwIAB6N+/P4cZE1HMYIAloqjmcrmwfPly/Pjjj1i+fDnKysrUx1q2bIndvxxmaCUiskDYFDzw3S1YvHgxVq5c6Xc87dKlC/r3749zzz0XmZmZNVhLIiJzDLBEFHWEEFi3bh1+/PFHLFy4EPn5+epjzZs3x96lR7yhtYihlYioIoRNwbivb8RPP/2EVatWQVEUAIDNZsOpp56K/v374+yzz0ZSUlIN15SIyB8DLBFFjb1792LevHmYN28edu/erf48KysLR/8uhnwonsvdEBFFmHB4cMuMqzB//nysX79e/bnT6cTZZ5+Niy66CKeeeipkmTO3E1HNY4AlohpVVFSEBQsW4Mcff8SaNWvUn8fHx6NsJ2A7GA/pqJOhlYioGoh4N655ewh++ukn7Nq1S/15w4YNceGFF2LgwIFo0qRJDdaQiOo6BlgiqnZCCKxfvx7ffPMNFi5ciOLiYgDwzoZ5xAHbwXjIOXGQFF7tJyKqCQICItmNQU+eg/nz56OgoEB9rHv37hg0aBDOOeccxMfH12AtiaguYoAlompz7NgxzJs3D9988w22bdum/rxFixbY8/MR2A7FQyqz1WANiYgokJAExs8bi++++w5//vmnusZsUlIS+vXrh4svvhgnnHBCDdeSiOoKBlgiqlJCCPz999/49ttvsXjxYnXWS6fTCfduGbb9CZDyHRwiTEQUA0ScB9e8cwnmzp2Lffv2qT/v1KkTLr30UvTr14+9skRUpRhgiahKFBUV4YcffsAXX3yBnTt3qj9v27Ytdsw7CPlgPCQPhwgTEcUiAYEX/3gY3377LX7++Wd1Xe6UlBQMHDgQQ4YMQfPmzWu4lkRUGzHAElFE7dq1C1988QXmzp2LoqIiAEBCQgJKs+HtbS3gLMJERLWJsCu47oPL8NVXX2H//v3qz3v06IGhQ4eiZ8+esNu57BkRRQYDLBFVmqIoWLFiBb744gusWLFC/XmLFi2wd1Eue1uJiOoAAYGnl47Dl19+ieXLl6v3ytavXx9Dhw7FJZdcgtTU1BquJRHFOgZYIqqwwsJCfP/99/jiiy+wZ88eAN6ZhKUcB2x7E7n8DRFRHSXiPLji/y7At99+i7y8PADe5dEGDhyIK664As2aNavhGhJRrGKAJaKwHT58GJ9++im+/vprFBYWAgCSk5NRvFGBbV8CpBIOFSMiIu8MxuO+vQGffPIJtm7dCsB7obN379644oorcNJJJ3mXUCMisogBlogs2759Oz7++GPMmzcPbrcbANCyZUvsWXDEO0yY67YSEZEOAYGJv4/HJ598gmXLlqk/79SpE4YPH46+ffvyPlkisoQBlohMCSGwdu1afPTRR/jtt9/Un0t5Dth2J0HO5TBhIiKyTklwY+BTvfDDDz+oS6s1aNAAV111FS6++GLExcXVcA2JKJoxwBKRLkVRsHTpUnz00Uf4999/AZTf33rICdueRMjHnDVcQyIiimXCruDayZdgzpw5OHLkCAAgIyMDV1xxBS699FIkJyfXcA2JKBoxwBKRH0VR8Msvv2DatGnq/UpOpxPuHTZvcOX9rUREFEFCErjzi2sxc+ZMdRme5ORkXHbZZRg2bBjS09NrtoJEFFUYYIkIAODxeLB48WJMmzYN27dvBwAkJSWhZANg25sAyWWr2QoSEVGtJiSB+7+/CTNmzMCOHTsAeGcuvuSSSzBy5EhkZGTUcA2JKBowwBLVcW63GwsXLsT06dOxc+dOAOUzCq8TsO1J5PqtRERUrQQEHl98Fz788ENs3LgRgDfIDh06FFdddRV7ZInqOAZYojpKURT8/PPPeP/999XgmpKSgqJ/FO8argyuRERUgwQEnl12P6ZMmYL169cDABISEjBs2DCMGDECqampNVxDIqoJDLBEdYwQAitWrMDkyZOxefNmAEBaWhoK/vZ413BlcCUioigiIPD00nF4//33sWnTJgDeW1yuuOIKjBgxAklJSTVcQyKqTgywRHXImjVr8N5772HNmjUAgMTERJSul9jjSkREUU9A4Imf78aUKVPUSQbT0tIwevRoDBkyBA6Ho4ZrSETVgQGWqA7Ytm0b3n33XSxfvhyAd1ZhzzY7bLuTILkZXImIKHYICDyy4Ha/W2CaNGmCm266Ceeeey5kme0aUW3GAEtUi+Xk5GDKlCn47rvvoCgKbDYbxG4n7LuSIJVxVmEiIopdAgJ3fTkKU6ZMUdeR7dixI2699VaceuqpNVw7IqoqDLBEtVBJSQk++eQTzJw5E8XFxQAA+XAcbNuTuY4rERHVKkIWuPb9wZg1axaKiooAAGeccQbuuOMOtGzZsoZrR0SRxgBLVIsoioKffvoJ7733Hg4dOgQAkI7ZYc9OgZzvrOHaERERVR1hVzD4pXPw1Vdfwe12w2az4bLLLsOYMWOQkpJS09UjoghhgCWqJTZs2IBXX31VXWqgYcOGyPm5GPLheEiQarh2RERE1eODna/irbfewtKlSwF4J3q68cYbcfHFF8Nm4+0zRLGOAZYoxuXl5eG9997Dt99+CyEEEhISULbe5p1ZWGFwJSKiuum5FQ/gjTfewPbt2wEAbdu2xV133YXu3bvXbMWIqFIYYIlilMfjwbfffovJkycjPz8fACAfjIc9OxmSi1eYiYiIBATGfnoVpkyZgmPHjgEAzj//fNx2223IzMys4doRUUUwwBLFoHXr1mHSpEnqgu5SoR32rbzPlYiISI+wK7johV746quvIIRAcnIybrnlFgwePJjL7hDFGAZYohhSVFSEyZMn44svvlAb4JK/Jcj7EnifKxERUQiv/zsBr7zyinoB+IQTTsC4cePQoUOHGq4ZEVnFAEsUI3777TdMmjQJBw8eBMDhwkRERBXhG1Y8efJkFBUVQZZlXH755bjxxhuRkJBQ09UjohAYYImiXE5ODl5//XUsWrTI+4MSGxxbUiAfjavZihEREcUw4fSg90MnYuHChQCAJk2a4IEHHsApp5xSwzUjIjMMsERRSgiBH3/8Ea+//joKCgogyzKknfGw7Uzm7MJEREQR8syy/+Cll15SRzgNGTIEt956K5KSkmq4ZkSkhwGWKArl5OTg5ZdfVtewkwrssG9OhVzoqOGaERER1T7CpuCiib3w5ZdfAgAaNGiA+++/H2eccUbNVoyIgjDAEkWZhQsX4tVXX0VeXh7sdjvElnjYdidykiYiIqIqNvGP8XjxxRexd+9eAMCgQYNw5513IjExsYZrRkQ+DLBEUSIvLw+vvvqqei+OVGCHfVMq5CL2uhIREVUXIQsMebUPPvvsMwgh0KRJEzz66KPo2rVrTVeNiMAASxQVfv/9dzz77LM4cuQIbDYbkB0P264kSCKg11WSALOPbKjHiYiIyJKXVj2CZ599FgcOHIAsy7j22msxevRo2O32mq4aUZ3GAEtUg1wuF/73v/9h1qxZAACpyAb7pjTIBTq9rlJ5mDX6yFb2cSIiIvIjbAr6PtEd8+bNAwB06tQJjz32GJo3b17DNSOquxhgiWrI7t27MWHCBGzYsAEAIO9LgD07JXiGYSng/4Ef2VCPB5bhR56IiCgsD/10K1555RUUFBQgPj4e9957LwYOHFjT1SKqkxhgiWrAjz/+iEmTJqG4uBgpKSkoXinDlhMfXDAwnAL+AbSyjxMREZElM/e/heeeew6rVq0CAAwcOBD33HMPEhISarhmRHULAyxRNSotLcWrr76K77//HgAg5Tng2JgGqcwWXFgvfFolBMMrERFRhAkIXPvBYHzwwQdQFAWtWrXChAkT0KpVq5quGlGdwQBLVE327t2Lxx57DJs3b4Ysy5CyE7wTNWmXx6lMaLWK98gSERFZYzA54sQ/xmPChAk4cuQI4uPjcd999+HCCy+sgQoS1T0MsETVYNmyZXj66adRUFAAuCQ4NqRBzos7XqA6gquP2T20ZuGWhwoiIqqNKjgJonB4cOLtrfDHH38AAC655BLcfffdcDi4/B1RVWKAJapCHo8HU6dOxbRp0wAA0jEHHOs1Q4arM7gClZsAiocKIiKqrUJdzDV43DekeMqUKRBCoFu3bpgwYQKysrKqsLJEdRsDLFEVKSwsxIQJE7Bs2TIAgLwvEfZtyd61Xas7uPr4Pu5G+zebAIqHCiIiqq0qOSnihKX3qSOt6tevj6effhqdO3eugooSEQMsURXYu3cvxo8fj+zsbDidTij/JMB2ML7mgitgPLGT9nGAkz8REVHdFOribojHp+yYhIcffhg7duyAw+HAuHHjcNFFF1VBRYnqNgZYoghbvXo1HnvsMeTl5QFlMhzrMyAXxMD9MGYBl4cJIiKq7SJwkVnYFJxxf0f8+uuvAIARI0Zg7NixkGW50tsmIi8GWKII+vbbbzFp0iS43W5IBXY41mfoL5ETi3ioICKiWBZqQsIIjZISEBj5v4vwwQcfAADOOeccPProo4iP11nvnYjCxgBLFAFCCLz33nuYOXMmAEA+HA/75jRISg0OGY40TvBERESxzuqMwxHw4I834/nnn4fL5cIJJ5yA559/HpmZmRHbPlFdxQBLVElutxsTJ07Ejz/+CACw7UyCbVey//qusS6MGRmJiIiiVqgJCiM8V8XLqx7BI488gvz8fDRq1AgvvvgiWrVqFdF9ENU1DLBElVBUVITHH38cK1euhM1mg7QhCbaDiTVdrcjj7MRERFQbVHSipkqYsv0VPPDAA9izZw+Sk5MxceJEdOvWLeL7IaorGGCJKig3NxcPPvggNmzYAHgk2DemwZZbS+9v4QzFRERUW9RAiBV2BR1uaIB//vkHcXFxeOaZZ3DGGWdEfD9EdQEDLFEF7N+/H/feey/27NkDuGQ41qVDLnD6F5LKZxwUSvVXsDrrwEMIERHFkhpa0k7IAt3vaYUVK1bAbrfjkUcewXnnnVcjdSGKZQywRGHas2cP7rnnHhw4cAAoscHxbwbkErt/oVDBUdJMp69XJtTj4eyjqgM0DyFERBRLanBNdiEJnP1YVyxYsACSJGHcuHG45JJLaqw+RLGIAZYoDDt27MC9996Lw4cPQyq2wfFPpv8yOVLAOm+B4THU45HYhpV9RBIPIUREFEtqMMAC3mV2Br54Jr766isAwNixY3HVVVfVaJ2IYglXVSayaOvWrbjrrru84bXIDsdaTXiV5ODgGMjK42bhMxL7ICIioholQcLcB5bj2muvBQC88847+Pjjj2u4VkSxg2e7RBZs2bIFd999N3JzcyEV2OH4JwuSy2Y9VJqVqarwS0RERFFJgoRPxi7AmDFjAABvv/02Zs+eXbOVIooRHEJMFML27dtx11134ejRo5COOeBYlwXJE0NhkUOIiYiIjqvhIcSq8gvPV713PqZOnQoAuOOOOzB8+PAarBRR9Iuhs3Ci6rdnzx7cd9993vBaEIPhlYiIqK4JFVCr68KrxZFRH938I0aPHg0AePPNN/Hpp59WZa2IYh7PxIkMHDhw4PiETUV2ONZlWgqvkmzecIZ6PFLbCLEBDjkmIqLaK8p6WU2LQMKsW+apIfaNN97ADz/8UNU1I4pZPIMl0nHkyBHce++92L9/v3e24X+zILltpsFRkqVKPR6pbYTYAYMrERHVDZIUHUHWQtvrC7EjRowAAEycOBFLly6tjtoRxRzeA0sUoKioCHfffTc2btwIlNjg/KceZPfxdV6F4v+R0QuUocpUxTYM+e6B1Ws8I3F/LA8hREQUTYxCq7a9qo5gaxRaA1cY0D4EgX4TTsIPP/wAp9OJl19+GSeffHLV1ZEoBrErhkjD7XbjiSee8IZXlwznuiy/8Bqosj2qkdpGiA0YN6KR6I2NhqvbREREoURLe2XS9kqQsPDxv9GrVy+UlZVh/Pjx2Lx5czVWjij6sQeWqJwQAi+99BK+/fZbQJHgXFcPcoGzpqtlyHIPbOgNRWAbPIwQEVGUiIGgGoqQBU64pQH+/vtv1KtXD//9739Rv379CFaOKHaxB5ao3PTp073hVQCOzRkVD6/VdI9ppXtmiYiIqOIi0N4bteWSImH9ewfQunVrHD58GOPHj0dxcXGl90dUGzDAEgFYsGAB3n//fQCAfXsabLkJ+gXNGisrEyRxEiUiIqLaI0Ltum6I9ch4/vnnkZaWhk2bNuGZZ56BolTx2u5EMYBn0lTnbd68GS+88AIAwLY3GfYDyfoFQ4VXMwyuREREtVcE2nm93tjRLe7Dc889B4fDgV9//RWTJ0+u1D6IagOeUVOddvToUTzyyCMoLS2FfDQO9p2pwYVCTYJkJbzWdtFyvxEREdVtNd0eVcGw4nGnPocHH3wQADBz5kzMmzev0vsgimV14MyaSJ9vxmF1rdfNmZCgafhChVMrw4krE3yJiIgoOlX2liJLuzh+TvLyxR/g2muv9X7/8svYtm1bpbdPFKt4Bk111jvvvIO//voL8EhwbMqCpNhDB0+gesJnrAVczkJMRETkJxITLUo2m3o+8MntC9CjRw+UlJTgscceQ2FhYaW3TxSLYugMmShylixZgk8//RQA4NiSAbkkLvSTZMn7VdkyoWiDa1WH2MouoSMEwysREZGBiK0YIMmQIOHxxx9H/fr1sWvXLkycOBFcDZPqIgZYqnMOHDhwfNKmfcmwHU0K/SQrjU8kgmsFAmuFG8ZIhFciIiIKKVIhdnjD2zFhwgTY7XYsXrxYvRhPVJcwwFKd4na78fTTTyM/Px9SgQP2XenmT9DrUdX7fyR7XauaUBheiYio9qnpCZxCCOyNrWiovfeU53D77bcDAN59911s2bIlIvUjihUMsFSnTJs2DWvWrPHe97olC5IwaTwq0+tqNdRW972ulQ2uAMMrERFRCGbhNBK9se9e/Tl69eqlXpgvLS2t9DaJYgUDLNUZ//77Lz788EMAgCM7A3KpI7iQL3hWx72u4YTcSIhEeCUiIqrrIjXDsJXtGJwnSJDwwAMPICMjA9nZ2VwfluoUBliqE0pLS/H8889DURTIhxNhy9G571WWIFkYfhSqjCSF2E4kwm/gPqszCBMREUWbKB8+bKgSIXZEozvw0EMPAQA++eQT/Pnnn5GsGVHU4hkt1QkffPABdu7cCbhkOHZm+D8oS5BscuWDKUKH20gH1xoRqycJRERE0cjK7UQGF7+fPO9tDBkyBADw/PPPo6ioqCpqSBRVGGCp1lu3bh0+/vhjAIBzRxYkj+34gzq9rnohNFQZvXArSZrGpgp6XYmIiCj6VHhUVODPbLbgMjrb/vGJVWjSpAkOHjyI//3vfxZrSRS7GGCpVnO5XHjhhRegKApsOUmwHU30PhBNva4RGv7LYcRERFQnVefIoKpuRyvQGyspMsaNGwcA+OKLL7Bhw4aqrCFRjePZLNVqn332GbZv3+43dNhqKI1EGSIiIqKwhXlv7KN9XseAAQOgKApeeukluN3uKqwcUc1igKVa6/Dhw5g6dSoAwLE7A5JweIfj2GyAbPDWl2VrZbRfJhhwiYiIyI/NFvLWIt8oMbPzCMl3rlJ+LnLHHXcgNTUVmzdvxmeffRbxahNFCwZYqrXefvttFBcXQy6Igy03JfQQI1m2ViZMlkJsrA0jZjAnIqJoEGXDh8Ne49VCeWvnETKubHoXxo4dCwCYOnUqcnNzw6sLUYxggKVaafXq1Zg/fz4gAMfuepDMGh1fr6vp0jehe1uJiIiIwmZhokdLty3JMl4bMRudOnVCUVERpkyZEsFKEkUPnpFTraMoCt58800AgO1wCuTiOOPCZr2ukmQtuFoItuyFJSIiimGRan/1Zhb2KX++ZDPeV8j5OSDh9ttvBwB88803yM7ODl0nohjDAEu1zuLFi7Fp0ybAI8GxL1O/kM0GOByhe10Z0oiIiKJTbWyjZcnS/BqS02n4+AO9JuGcc86Boih4++23I11DohrHAEu1itvtxvvvvw8AsB9M91/z1UcOvXyOpeHCkmTtntlIDz2OlqVwhKjpGhARUV0mRO1siyRrIdasN/fWW2+F3W7HihUr8Mcff0S6hkQ1KkrOhIki44cffsCuXbsAtw32wxnBBTThVTJqIMp/pj6uF1K1PwuxncD9mgp38oeaUFtPGIiIKDZVdZtUHcOHfdvxlTELsQ5HeRHjEHtj1ycwZMgQAN4JnQTbbapFGGCp1igrK8MHH3wAAHAcyoSkBARIm808RGp6S/1CrlZN9bqGqcrug2UDSERE0ai2tE96F8gDzim05yZqiA0MsrKEkSNHwul0Ys2aNfjrr7+qstZE1YoBlmqNefPm4dChQ5BcNtiPpB1/IIwhw7qz/Pl6Yc22YWXCp0j2wtbEMOLacnJARES1U1W0UzXR++r3QynkkGL13CXg+dd0eAiDBg0C4O2FJaotGGCpVlAUBR9//DEAwH44A5KQIdntkJxO80XAJUltMIzKGQ41Di4YfsWrUNhr0REREcW6WL7YauVCefnwYf0i3hArJSaoPxs5ciQcDgdWr16N1atXR7CyRDWHAZZqhaVLl2Lnzp2AR4Y9N817xdQmm/dm2myAww7IIdZWCycIWujpra57YYUSohEXSqX3QUREVGtVY+8rgNAjuSQJkt1uuj1Jkrz1ttsBAKM6PYyLLroIAPDRRx9ZqwdRlGOApVph1qxZAAD7kXRIwuENr1L50F+9A73Ndjwkar8PpF2TrYbvaw1i0rAyvBIRUZ0UZaOhrJLKAycAw/MNv6VzjEKss7yHVhNihw8fDkmSsHz5cu9El0QxLsrOyInCt27dOvzzzz+AIsFxtN7x8Ap4/w0Mp2aBVauivaA13AsbMrxWVIyeFBAREYWtJnpfzf5vddvaepeH2JtOfRY9e/YEAHz++efW6kMUxRhgKeZ99dVXAADbsVRIijO40dHO0Fc+ZDiINtTKkm6ZGumFDdU4al6rUIS1ntfK9L4yxBIRUbSKVBtVzRMl+vW+amlXR9D2vmppZyB26twfK3kv6g8bNgwAMHfuXBQUFFS2ykQ1igGWYtqxY8ewcOFCAID9aJZ+ISv3w/rKhSgj2WT9WQLDZbUX1qIq63UlIiKKBdV8gTViMw87naEvjlvtjTUJ3o8Meh8tW7ZEcXGxet5EFKsYYCmmzZs3D6WlpZBK4yGXJOgXkiVIDod6L4guSfIfelyVFMX7BeOZj4+XtXYva7XMOCxEbM/uSEREFEqkhg5HkBQfb34OA0BKSoQUZ9BLC0CCpC6p8/3330e0fkTVjQGWYtrcuXMBAI78TEgIXL9VgmS3QbIwq5/2OSHJUuheWKNgqkRw8qSAocCWGtSKBnQGVyIiilbReHuL1d5XK3y3NoW6EC9JkOKchkF26iNLYbPZsG7dOmzfvt3avomiEAMsxaydO3di06ZNgJBgL6kPya5pLGTpeHD13T8iy/4Hf9/i4Fq+6ecjIXDbBuFVtxdWEca9r5W9jzVcDK9ERFQXVPfETRZI8fHH/+MLsQFBVkpK1PzneJD1304cJMWBs846C8DxDgCiWMQASzFr/vz5AABbSSokaCYu0IZXLe3/za7WWhlKbKUXViucnlezYcMhgmvEe2EZXomIKJrF6sRNFnpfpfj44JFher2xer+DwBBbvp0BAwYAABYtWgTBNp5iFAMsxSQhBBYsWAAAsBdlen9ot3uHzpgMGQ7qhTVi9f6WUBMrhNuwcjImIiIia2J54iYrzPZXHmL9el+DdlQ+pDg+Tv3RC9fPQXx8PPbv34+NGzdaqwdRlGGApZi0Y8cO72LcQoKtOB2w2SAS4sqXyTF5W9tskJxO76RORiT5+NI7lVXNVzctzUZcncOPiYiIol0UTtwkJyWGnugxPQUiMd68jCRBSUuGkpLk/a+wqWvCLlq0KBJVJap2DLAUk5YtWwYAsJWkQJKdEA47IEkQToc3xAaSJG+wDdUY+BqxUCG2PChKvu3q0YZXgzJCiPCG8Jg0sgyvRERUZ0Tj0OEI9b7KSYnH72U1e53l5zUiIc57EV+HkpbsPduXoYbYvn37AgB+/fXXkHUhikYMsBSTli5dCgCwlWZ6w6uGiHP6h1i9yZrsdv9eWEnnvlejRi0gKOqGWL1QGlBGN7hW8ApvlYXXaJzZkYiI6rZaPHRYCjxnKQ+xQUE2NdmvjC/Iaqnh1ac8xE68YQ5sNht2796NvXv3hqwTUbRhgKWYc+zYMfzzzz8AANmTpV/Id6DXC68+vhBrdvVV2wtrNjOwloUeVdNe11ANZUB9q7znlSGWiIiiRSTbpCgcOiwl6qxpH9gbm5qsP7IrMMTqvTwZEMlp6NKlCwDg999/r3yliaoZAyzFnL///huKokByJ0BW9O/9EE4HEOesfEPnG0ocopFTe2ErG17DxGHDRERENSzSQ4cNNyKZ37pUXkYkxEGkJpnsCDj99NMBACtWrAhZL6JowwBLMWf16tUAAJsrVb+A3QYRZ4eSGA8RH6LBsNv9148NJJTwQqmFwBxyUoZQoVQTSKvlyjCn2SciomhQAyOCQl4oluSQ7bZkZfUDwNLrU+plQMSZb6+sSRrKGiTBlWU8Q/Fpp50GwHtOpYSz1B9RFGCApZjjC7CSTWf4sN0GYStvAGRYa+yMQqw2vMrGEzpZ7lHVNBCGITaM8GpZZSaoYHglIqJoUBXh1WKbahhite1rqPZbUUzXhJfNlsPxbSIrHbCV3+9qEmKFTYKQvV9GIfb2sZ8jPj4eBQUF2LlzZ8h9E0UTBliKKUVFRdiyZQsAQEloCCVZc6+HNryWE/GO0L2wevR6XnVCbFB41ZvpOESjdbxcxcJrlfXCMrwSEVE0qMqe18qGWC2duTKCel91zgdCDh320Z7jlIfYwCBb1th/dJpeiHVnJAA2G0444QQAUOcVIYoVDLAUU7Zs2VI+1CUekhwPd0qcN8TqhFcfkeAMbyix2bBhTYg17HnVhliT4OrXC1vJnteQITbcXliGVyIiqisqEmLN2lXfUntGQ4c15wZWw6uSlR78Q8m/N7ascaruuZA2xLozEiDKzxm6du0KAFi7dm3I/RNFEwZYiimbNm0CAEhS+RVGCRAO4/DqYynE2mzegBoqvAklohMxWZrZmIiIqC6qrvtewwmxVmYvDjWxky/EWgmvDTL8e1+DdibhWJcs03MhX4gVmgvevh7YzZs3h6wDUTRhgKWYEhhgPU4ZpVlxcKfqz0bsx6yREAIQwnu11MJkC6YTMSlhTvwUqvfUQqMacmhTOPfOsveViIiiQRQu4xYymGqFaE+l+HiIELcYKQ0yIGQZwmzmYQAeh4SSTPPzl7xWcchrdfzWq8ce/xEAsGPHDrjdbtPnEkUTBliKKVu3bvV+I6XC45ShOGUodgll6c6QIVY4De6HLQ+vPqYh1uPx/ivrLCoOBIdXgwYn+N5Zg0aa4ZWIiOqi6g6vkehV9ZVzaM4hDNpVKTFRbfuNQqwvvKqbMjinONYutfxx4xCb38IJYQeEHZoQm4CEhAS4XC7s3r3b7CURRRUGWIoZQgj1AOtJTIXilCHK38HChtAhVgZEXMBQ4oDwasoXXtXtBYRYo57XgAbH8vBjhlciIqqLojC8Wt6UQydABrSv2vCqFtEJsXqBNfBnx9qlQrFLmseDQ6wvvKplykNsfut4tGnTBoCmg4AoBjDAUszIyclBcXExBADhSFLDq4+wwfweEcA/xJqEV79eWEUEh1d1e+UhNtSw4fIGxzS8+hozoTC8EhFR3RSl4dVK76tuePUpb2f1wqtaRFHUIKs0yDDeVPk5RWB4Pf64f4gVepm6vDe2efPmAIB9+/YZ150oylhcWZmo5qnDW+REwwanLMUBeATs+SXGG5IBOOyA2wOUuQyLSZIEAVgLguHc82okjMmcLE3nb3ljDK9ERERGrCxXJ9ksBGEhQs97AUBkpIa85/VolzRIBtfWgeMhtizZfDuNGjUCwABLsYU9sBQzDh48CADwxCcZF5JCDyWWPALwhAilHg+ERwFkW9Dar34U4Q2moa4YK0qIiZ8sTs0Pi+E1nN7XKJwkg4iI6qAo7H2VtKOjjMr4wmuICZmkuDgg1GRJmWkQsgzJZZJOAXicEtzx5r+vQ91l5HU0313jxo0BMMBSbGGApZiRk5MDAHCnxKOofnColHzthgS40hy6IVbyCG/PKwDhsHt7YgP5wquPUYj1hVfAf+3XoHIhwqReIDVoVCMeXtX9McQSEVENiubw6mOlfTVo86W4uOO9r0YhNjMNQnO+YRRi805IKS8AwxB7+CQJSpyA4hDIb6u/u6KGEu7/4VcAxzsJiGIBAyzFDF+A9cTFee93LScpmvBaTshSUIjVhlfvDyQIp8M/xAaGV5/AEKsNr2oZnRAb0JAF9cKaBdKAxrXKwqu6P4ZYIiKqAbEQXn0C2lndocOBbb82vPoEhtiA8Ko+NyDE5p2QAo9Tsy2dEOsLr2p1ykNsYJAVNkBxemckzsvLC34dRFGKAZZixpEjRwAAijMexfUlFNW3BQVXLW2IDQqvPtoQaxReA+mFVx9tiDW6Cqs+biGQljeyVR5e1f0xxBIRUTWKpfDqU97emt73Wn4OoBtefTQhVi+8qvUpD7FB4VUtAHjivD8PDK9qdRz+vbFFDcqX8HF4V2bIz8+Hx2jCSqIowwBLMaOwsBAAoDgcEDagqLGEwkbmswIKWYIn0Q4l3mS+MkkyHwLsI9sASba2DE6oYcNWCSWyEzaF3B8ndCIiomoSheHVMguTMcFmC13O7QYy00JuqrB1sn54LSdkYF8/j2541VIcAp6Lc9WZiZXyACuEQEFBQch6EEUDBliKGcXFxQAAYbMDEqDYgcLGEgobGodY2SUgu5SgtVj9eDzeL7sdkt0kEJcvb2M+GVP5cjom+xNCWOt99V3htdJIEhERRZNQ4TRKw6ulNre8t9T0grbD4T1fcJlP2iSlJIcsU9A+DR6HBHuJ+bmDLdkNpV6ZaZn6nQ+hQXIBUk4/5P2BLEMpfz0MsBQrGGApZpSUeJfGEXY7hG9SQBtQ2EQ/xMouAVupdziMJ9EOJTkueKMeDyRfwyFLxiFWKMdnLvat/RoocC1YvQXIwwyvPpYa1MpeWWbvKxERRYKvjTQKqbUgvProhlhfePUxCKhSSjIgy5AUAamkVLdMQfu04z2vAoYh9tBZ3n3IdmEYYut3PoRUp3c/GfHFmhDrfU0ul/HSgkTRhAGWYoYaYAMbD50Qqw2vQPlQ4mSnf4jVhlf1iToh1hdetaEyMMQGhlcdFQ2vPlUaYhleiYgoEgLDaaj/V7UqDK8+gSFW9yJ3wPmGL7yq/9cJsX7hVd1ZcIg9dJYbtqTj29cLsdrw6uMLsaL8d8QAS7GCAZZihq+BEAhuGNR7YhvagsKrWkYbYvXCq482xOqFV005SZLMw2t541TZ8OpTJSGW4ZWIiCIhVI9rLQyvPmqIdTiMC5WfdwSGV7UemhCrG17VnR0PsYHh1UcbYvXCq09GfDFsZd4Ogr/++su47kRRhAGWYobviqYE/cCl2IHSdAmuZJP7T2UJwmEzvycW8IZYWfaGu1Cz+1ZjAIz4hE4Mr0REVFmSFH33vEaS1QvDsmw+TwYAyeEwPQeRFAF3VoLphE0AAAHknCR0w6taHbvAvQO/MwyvgdxG69MSRRkGWIoZoRoFezFgLwGKs2SUZOpfAZVLPJBL3BBOh3f5HCNuD4TbHbz+q5YiIDwe80ZZUazNWgyEDMqWw6vV5XQYXomIqLKiNZhGasZh33ZCtMGSzeZdms9sKZqE8rXpS40nWiprkg4hS4jPMR/Oe/B0QIlX4DlmfC4z/pS56BS3F9c1W2q6Ld/Ati5dupiXI4oSDLAUM2zlQdJVL/hKor0YcBQAUADFJqG4XnCIlUs8sBW7vEN+ZUDEOfVDrC+8+horvRDrC68+VhpwsyFKDK9ERBRrakl4NWxjA7djUM4XXk0lxB+/EO/x6IbYsibpEA7vPmWPMAyxB08HPInl7b2Abogdf8pctHJ6J2mqb883DLEZ8UWQk7znOElJSeavgShKMMBSzEhMTAQAtM48gNIWx0OsNrz6BIZYv/DqoxdiA8OrWlYTYgPDq09g46XX+6oXYhleiYgo1tSS8OoT1NYabSegnF54DTpH0IZXn4AQqw2vPnoh1i+8qjv0D7Ha8OqjF2Iz4otglxSIUu/2fOdZRNGOAZZihu/AGucuw0ltdqO0RaluePXRhlhJCP/w6qMNsUbhVS1rAyTZfHiQr4EyGzqsDbFWQ2coDK9ERFRdall49VFDbKjtlJcz63lVzxX0wqtPeYjVC68+2hCrG17VHXr/0QuvPtoQq4ZXj4BweZ/MAEuxggGWYkZycjIAQCn2INlRioysAriShW549VFsEjxxEoTN5K0uQxM8TQKe4vE2NqEmgEKIxc3VQhEKr0RERNWllobXsHdnZeIqmy3k/B0iNQn2Y+aTLMkegaIGsnF4LTey60rD8OpT356Pye0/hl3ybkuUHd8mAyzFCntNV4DIKjXAFnmwPT8TxwoS4G7igqQ4kLBfv4FwHhNw5itwJdsBEQdbQXAjIZW6IZW5vLMH2m0QbpMeVngbLSHL+j265T29kiQZh9gwZhK2NHw4nCAsSeyFJSKiiqnl4dXScjoAJN9FcY/HcKJHyeE9xRYul3fmYR0iI9V77uE2b8ePdIqDsANJ2+0obKU/U/BVZy5HU2cudrmy0NyRA+chN5p+koeMFUWwFSrwJMk4ckYimlwbh4SGyXip2be4f/fF8BzznvMkJSXB6XRaeflENY4BlmJG/fr1AQCefDfKPDYoHgmyw4PSZkBpQwlxB+x+QdZ5TCA+1wPJIyBkCa4UbwOiDbFSqRtSaZk31PnWfwWCQ6yv99X3PL0QGzBMWTfE+gKphdAZ8fB6vGIMsUREFJ66FF6FYrhdKXBEl06IlRx2v9mL9UKsL7z6OI4Uw5WZELS/I53i4In31s1Wph9irzpzOVrFH/ZWp1hCi8eOov2cA5AD5oDKWlIE8TqAEalo/HQ9b/l877aysrJ0Xy9RNOIQYooZvgBbkCMhN+/4THmywwM50Y3SZi4UN/IGM2149fGFWE9yHICA8KpurDzE2jWNkS+8Bk7cIEnHGx+De2x1hw7VZHglIiIKV10Krz46bWxQeNXblja8+pSHWHXTAeEVACS3AseRYr+facOrjy/E+gw/c6UaXm0lHgy66R90/CQ4vKr7cQHSjHxIV+/FxKxvoDDAUgxigKWYofbA5rqheIIbG29vrAvuZASFVx+/ECuEfk+kNsQahFcfSTNpkxHJyv212jpWR3iN1pMRIiKKLtHaXlTHsGFNW2saXstHaOmGV5/yEKsXXtV9aEKsXnj1sZVPXjz8zJVoG39Q/XmvZ7eiye95CHUWIQBIy0rQbEIxrki7BABQr169EM8iih4MsBQzGjduDACwHys2DIO2I3bYSgBXsvFbW8gWJl6QNaEzVKC0MKnT8Z1HaMkcIiKiyrASTKMxvEpy9d7zKhTzddx95ND1kuLjQ54zSG4FnjibYXhVd5fi8guvCYfK0HHOAe82QlRVfXx2PnZt2gQAaNq0aYhnEUUPBliKGQ0bNoTT6YTkUWA7VqxbRnZLkBSgJENCWZr+xAqOArf3PliHHcJhcBt4mcs73EeWAIfdcJIGIUTImYmF0IRgk8Yt4uu9mm6DQZmIqM7yBVOzgBqt4TVim7Lw+mzH14A3XV3AV8atP8ESAEiJCYAkQSooMixT2igZpY2SISQgLdt4W/ldyyDLAm9t7KP+7ITP98PmDq9tl1zA7tWrAQAtWrQI67lENYkBlmKGzWZD8+bNAQA9k9ejcf08v8elA3FIOOBtkIRN0g2xjgI37PklgEdASBIQ5zQOsYH3xgaEWDW8qmWCP05+4VWtaCU+drzvlYiIKiMwmOoFVYZXwwvXuuU07b9eiPWFVwCAR9ENsaWNkuFxyvA4vduSS/XDaH7XMtgTvPsoKopTQ2zjlUet1TfAztxcAFDPr4hiAQMsxRTfFUL74QL0bJCthljpQByS9sh+kxYEhlhteFXL6IVYX+9rIE2IDQqvahlNI6YXXn0CGuJqnbSJva9ERHWTUTDV/pzh1XzUVWA5vYvXmhArxccF/04DQqwvvAZK3e5/nqENrz6+EOsoNF8CUE+uw4Gj8M7VwQBLsYQBlmJK+/btAQDHdrmRbCtFzwbZABAUXn20IVZShF94VctoQ6wvvBqFPF/Dpxde1TIWP1blDTLDKxERVblYvuc1YpuqfM+rGmINwqvf/uLjjLdXHmKNwisA2EoUNcTqhVefoqI4uJIs9hhrbExOBuDtfU1MTAz7+UQ1hQGWYkqnTp0AAPk7vAf0ZFspklJK4I43fo6weRssyWUcOoXf1ecQHwuLC52HnPyJw4GJiKiyQoVOycLEhVa2UxOqO7xa2J+6hF6oi9U6tx4FEonxhuHVpyRDhlwKw/Dqs6xbG/P66PAFWN+5FVGsYIClmNKxY0cAQMlhBa4CBT/t64SC3akoSxcoS9F/TlyugoRDLihxdoh4/ftdpdIySMWl3u/tNkA2umLqgfAo5g29ophP9gD4T80foUY1JPa+EhHVLlbCa6yqqfBqcvHZb/13k5FYkt17riFKSgzLiJREQJaRsK/QsExhYzs8TkBSBOJXGfeQtm10CD9c1BVue3i/s/WpqQCOn1sRxQoGWIopKSkp6n0aP69qjL1b6kMukSBsQjfExuUqSNrvguxWABnwJDjgSYsPDrJC+K3lqhtifeHVV07vxMAXXsNcDqfaQiwREdUOoe5bZXgt31QF2ledNtwvvBptxm73hlffPoXQDbG+8Ap4R4fphVhfePVxFATXqW2jQ2jb6BCSHaU4mpWIhQO9QdTKOrAKgH/q1wcAdO7cOcQziKILz4gp5px88skAgMLVZZBLjjdMeiFWdsMbXtUfAMIuwZPgUEOstvdVyy/EBoZXtZBeiK3Y0OEqDbHsfSUiqj1CBVaGV0iyVLl2VdOWG4ZXTS+sGlwD9xnQ/oqkhKBtBYbYwPDqo+2FbdPwMJIdpUh2HD9/mXJPL/xzcmNL68AuO70R8j0eJCQksAeWYg4DLMWcU045BQAQvz8n6DFfiC1sKiB5BBIO68zsBKi9sQAgFZUEB9NyfiHWoIz2/qKQQ4dDqJIQy/BKRFR7hFq7leHVWltqZX+KCN3z6vH497rqECUlEEkJ3vBq179FyTdPh1F4Bby9sPGrEtGm4WGkOIN7dsvi7HjmlUFYcllbeOz69fHYJfwzvAn23P0KAODEE0+E3W6wnCBRlOI7lmJO9+7dAQDOvDzIpaVQ4uL8Hhc2gfgcGQmHPd4JnIzmPZAB2MsnYjAKpz4he1UFhNnMxGo5TtxEREQVEMvB1IrqDq9WyKGHDcNm8/bEysan1JLDARSVQKQmmW7KUeCGx2l+ai5s0A2vPmVxdtx9wwg0GXEUDy+bi6Yrj8JR6IEryYY9p6fj38uboLieE3umrgFw/JyKKJYwwFLMyczMRJs2bbBt2zbE5RxEcZPgtcvkMsDmEnAneBseW2lwuLQVuiAVlhy/Gqqz+LhwewBXGQBAstnK728NEUJlKex7YNX9RXpJHfa+EhHFvtocXqv7fler+/RtS1GMQ6xmbXijPUtOZ8gL5e5U71IKkiKQvqUMR9vpd8GWpUkQNuDvpe1xUq/NumV25GWizG3D9vgs/HFLK/xxS3CZV1eei7Z//gIAOO200wzrRRStOISYYlKvXr0AAAn79kEEXIZJOCgjea9voiXAnSDDE+c/ZMdW6IKcVwTJXR5s7TYgzgkEDqMRSuj7YPRCrV4jGiJ4WgqvRERUtzC8WtxUhMJrwH2shheuA5fIcQVfBJccDr9zBik/eLImd2q83z7txcEX3MvSJDW8AoAzX8Lfv7UPKucLrz6zd/UIKjNpVX84N+ehtLQUDRo0QLt27YJfG1GUY4ClmNS7d28AQPy+gxCyWw2xCQdkpG5XYCvTNDblIbYsxaEGWcmtHA+vajnJG2R909+7Pbq9sn4htrxh0733VduYRmroMHtfiYjqDoZXi5uKYHjV4dfG22y667sKIfxCrORwBJdTFL8Qq4bXAOlbytTvfcFVBGzKmXf8eTvyMoPCKwDkFcf7hdhJq/pDyXfghtSGALydAVJtfo9RrcUhxBSTOnbsiPr16+PQoUOIP3AIJU0aQdgBSYF/ePWRAGEH3DYZ9kK3d+iwEbvNG1xdZYZDgSVJgpBl7+zEZkHR4nBiDh0mIiI/tTlY1MT9rhUMrypFARwO0yJCCMi+MjohV90OjMMr4O2FTd/mwsHuzqDgqvX3b+2R3iUnKLhq5RXHY9Kq/t5d5zsARcGSJb8BOD6ajSjWsAeWYpIsyzj77LMBAEnb90BIAvH7bUg8oECYNELOfDdseSbhNVyh7oclIiLysTJLcCzPJBwqJEpyzaxpHol9ll+0Nt2NTYZwuYzDq09pWcjALHmEaXgFgPhDEgp+r2dapnhDOhzb4r3hFUD8/sPIzc1FWlqauqoDUaxhgKWYdf755wMAEnbvh+RyQ3YBtjJAscEwxEpuAcnjAWQZwmAqe7jc3gZIks2HE5U3ZJIkGQ/BUUTNzDwcyydARES1kZV1WmP1uK0NpkZhMcLBNaze10q2w1KoQApveIUkm4+6ctgBhx2SR4H9cIFhMU+8DcImIXO9cWCWywBJAA7jzaB4QzrshRJk1/Hf1ai4dABAv379uHwOxSwGWIpZJ5xwApo1awbZ40H62oNI3uObuEnSDbHOPDfsucXe/5RPjS+cDv8g63JDlJR4h+DKkrcxstmCg6yiBPW+VvQ+kogPH9aK1ZMhIqLaxMqxOFaP13rBNPBnNRlerTK6ZSgwvOr0wqrhtZwo0Rnp5bD7XVyWyoLXqffE29TwCgCOQg8yN/jvTy47Hl59yv7KCNqWL7z6xB22QXK78csv3tmHBwwYEFxHohjBAEsxS5IkXHDBBQCA+H07YCvzexCKDVDskhpk1d5XH9+sf9reWCH87x/1ldH0xorAMgF1UkWq97Wy24jVkyIiotrASm9rrB6na2DIcIXDq5W2VLvqgM0WXs9rwHb8QqwvvAbQ9sL6gqsvvKpPLTh+3uILrlLAKYi2F7Z4Q3pQeAUA2SUhccdeFBcXo0mTJujSpUvI10YUrRhgKaZdeOGFkGUZzrzDgOuY/4OSN7wqNsBe4IE9r1h/I76FyhUForTUuIwvxOr0vvrvVrIcXqtt6ZxYPTkiIopldf1+14jvspK/K4sXhEMGV48Hkk3WD68+vvbdILwCx3thtb2uejI3eIJ6XQOVrc5Qg2tgePXpnec9xxk8eDBnH6aYxgBLMa1hw4Y466yzAAByUbZ+IUmCpHiXzjEkWziJ8M0oLITxoubQTLcfovGu1nVfOSsxEVH1itWAYCV41sBETBEZNhypeksShEcx355NhnC7Td8Hwm6DPbfINLwC3lugzMIrAKRuFYbBFQDsx3KxYcMG2O12DBo0yHxjRFGOAZZi3qWXXgoAkIt2AUrwuq1xR91wHin2NiKyrNuYSCVlEMUl5cOdDMKsxwPhNwS5Ghr5mpgAioiIKicWw6uViZhCPVYFJFmqfHi1OpRZLp+U0WyFAe1a8EYsTOgk7DbvttwexO3Vn4lJ8ghIHgEIIGNT8PkNACQcFEg4KGArE0jeaby/axsmAQD69u2L9PR08/oTRTkGWIp5PXr0QLNmzSAJN+x52yG7/Q/gkltAcmmCp15AFeJ4Q+Nr6ALLKDr3vgY0YkK7HXV/wR+zKp24KWg77H0lIqo2sRperZSpgfAagY2ELlM+34X/PBZ6a8r7h1fh1gmVgcOKi4MndFLDq2+zOhM6+YIryptwe2Hw5FG+4Gor8xaylwS39+mbFKSvL8S8efMAAEOHDg2uM1GMYYClmCfLMkaMGAEAkEq2Qi71qCHWmVfe+xpIOxNgSRlQonPvqzbEBva++lcgdCVrau07IiKqHrF6P6uVZW9q85Dh8uBqek+o729r1t7b5ODwCniHGmv/HxBefbS9sGp4DaDthfWF10DaXtj0TQqcBR6MPjcLLpcLJ554Irp162b8GohiBM+oqVa48MILkZWVBYgSSGW7IJcJyG4B2RXQ+6qlaYwCG5jjZTQh1qwn09eoWehZZe8rEVEtE4vBFaiRWYStqO7wakhRjp8rGIRX4XYfD65G+ywugbDbDMMr4O2F1Q4Z1mMv9PgNGdYtU94L6wuvEC589dVXAICrr77a+LUSxRAGWKoV4uLiMHz4cO9/SrdCUhTE55TBebjQPMSVlukO7/HD3lMiIjISjeE1SidiMuO71zVqwqtaznxbkiSFnrRRiNA99MJ/yLAee5ELqdnFhuEVAJL2lqLh7y5veAVw85UtUVRUhNatW+PMM880rSdRrIiuoxdRJQwZMgQpKSmAUgi49kFyKZBK3YBHMV631aN4GxazBtPtDjmTIBTl+OzDRjghExFR7RJt4TVKJ2IKJSKh9fjGLBcN2W4DgMHtQ37Djl1lumUAqOcXUqHBUn7eigAA4g7oT+YEeMOr5FZgK9GfzAkAkvaXQi51w3mk/MK8cGH27NkAvL2vspVbnohiAN/JVGskJiZi2LBh3v+UboSAJjB6ytduNR0GHGIYEWB+BZXDh4mI6o5oDK9WytT18Fo+YZNlOpM5BfXc6rXtAfvRnfBJBEwOqTOZk73IpYZXI0n7S73htdh/H2Mua4y8vDw0b94c5513nuHziWJNdB3FiCppxIgRyMjI8PbCFm/3f1AR/r2xpTqTNwU2bL7e10ABMxWy95WIqA6JlfBawxMxmYnYcOHjGwxdpqL70/TCGg471vbCGuzHrxfW4LxB2wvrC66B4TVpz/Fbn3zBNTC8Oo4WqL2vN910E+x2u369iWJQdB3NiCopMTERo0ePBgC4EnZAQGfoT3mIlTwKhNFab7J/QNWl7Y1l7ysRUd0QK+FV+3gUhtcIbzB0GYN9WhpGDISeqVgRIXt3hdsd3OsaqLwX1qzX1TeMWK/X1Wfw5ZkoLi5Gp06d0KdPH+P9EcWg6DqiEUXA4MGD0bRpU0B2wZ24R7eMVFzqnbzJLFRG+MpwxBtsIiKqXtUZXmNwIiYrIt7rGup3EO6Q4apk4UK25HKHHDIsHytB2sZ8w/AqUISvv/4aAHDLLbdYm6yKKIbE3pGPKASHw4GbbroJAOBK3ANF1lnjVVGODw02alCMhg9rCRF6EihA7VkN2XDH4MkIEVGdEMkQYKXXNFS5GGwvIn4h18qoJSujn8yoy+0ZLMmnpXMPa2A9pIIiwyKSy9tDazt8zLg6x0oAjwdSgf6kUAIC3c/2wO124/TTT8epp54aut5EMSb2jn5EFpx77rk48cQTAUmBK3Gr4SyCauOniOBGThHGw4fVMprHLV7lDXnfT2WHe3H4MBFR5IRa/iTs7ZmEUyvH/ygcEhxKxO93jTDdYcSBa79WdMbigPML4Q4uI7ncanj1/T+oOsdK1PBqxJZbCBTtxooVK2C323HXXXeFrjNRDIqtIyCRRZIk4b777oPNZoMnIRcee455iNUG2coKbKQNrhCzN5aIKMpFOrhWpEc1iidisqLKg2tV9MIaLDcTdi+sxSHDoe6LVYNrqPDqKkFmpzwAwJVXXokWLVqEri9RDIq9IyGRRW3atMEVV1wBAChL3wm4XZDKXJCKSiACZx8G/ENsOMOH9YTRGxuiQMhtBNaJiIgioDqGDFsZKhxqG1EsmntdA6ntudlaqVZ7YfVGdWlIBUVBva6B5KOFIXtdbXnFsOUWwpZbCKnMhWEPd8P+/fvRsGFDXHvttaHrShSjYu9oSBSGMWPGoH79+hD2UrhS9nqH/LpcgFE49fXGejyhhw9Xl3BOWjhRAxFR5UXqWGp1SLCV7cSYaguvkfzdmIXXCBJlZSF7XaWCItNeV0kRkPILvBfmy1xQHEX46KOPAAB33nknEhISqqTuRNEg9o6IRGFITExU7wFxpe6Dx1HofSBwTdgaUiVL6zDEEhFVXCTDay1lFk6r9X7XCP6OJUmydOHa0jBiM0qI55eWAaVlEB6D248U4V1PtrhEvZ9WQEGzs11wu93o1asXzj777MrVkSjK1d6jK1G5Pn364LzzzgMkoDQrG0LSNAqKzhVQj2LYcKiECN2IKSJy67qGK9KTjhAR1QUMr6a04VQvpFbrkOFwf8dmQ3rD+btbufDtKtPZv8cvvIqikuAy5cHVdw4iFfrPNCwpQg2u2smgXKn7sXnzZqSmpuI///kPl82hWq92HmGJAtxzzz3IzMyEcJSgLH2v/4O+EOtrlIQSPcOHK4uNGBGRNQyvpkKF02rtdY3Q71iSpKoJe0GrGujNTqz5mUGvqy+k6vW6+nhEHpTMAwC85zpZWVmVrz9RlKudR1miAGlpabj//vsBAO7MI/AkBqzD5ptwoTZOgsQQS0RkLhLHyRhc3saqWjtkuKoF9LrqCuh1DWTU6woAQlLQ9FwFHo8H55xzjne0GVEdUDuPtEQ6evXqhYEDBwISUNZ0L4TNZL22UEE2Aj20lu5/JSKiqhWp8FrL+IJpqPBajRWq/DbK213T8Bqp+2BDBVePx/ReVwDeocg6va4+Fz7YEVu3bkVaWhruu+8+Dh2mOkMShuuAENU+hYWFuPHGG7Fnzx7Y8pPh3NUUEvwP+MLtPj7rn1Fj4PF4Gx2jxtvC/a9VMoGT4Xb4MSci8lOHhwxLsmTaBkXt8jcR+F1LNoM1XoUm3FqYjViy20Nvx6FfRl1qJy7OeAeuMtMy7uQ8lDXdBQB46aWXcMYZZ4SsM1FtEXtHXaJKSEpKwpNPPgmHwwFPagHcmUfMn6A3zb12/ddY6EVleCUi8lfHw6v2X6PH65JI9eUIIbw9uIqi30vrWxbHd+6gN9mTq+x4eDWgoACODt7zl6uvvprhleqc2DvyElVSx44dcccddwAAXI0Ow+MsDN3TqW3cFMW/YQmxYDkREUURhlfDx+pCeA0Mq5EIr8J3Ydts+LEvuAaeP2i53ebnFK4yCHcpWg2JR2FhIbp06YIbb7yx0vUnijWxd/QlioBLL70Uffv2BSSBspb7oMBlLcSaNXQMsURE0Y3hNezHap3ytlpoR1NphAyiRuWNnhPY66rH7fZ+md1b6yqD4vGg/0OdsGHDBqSkpOCJJ56A3WAoM1Ftxntgqc4qKCjATTfdhD179kAuiIdzW1NIHmsTOIVcJxao/D2wkVxDlh9zIqrr6mh4rXXhNBK/fwu/E8lmMy/ge9wk7EoOu2lwFR4PJKfTNLgKISDZZAiPAndWHlzNDkGSJLzwwgvo2bOneR2JaqnYOgoTRVBycjKef/55JCUlQUkugavpIQhRft+KSYNUbdd8YuwkiYgoatXC8GplXdZaF16jhaKU96oanCv4RmyFCK8Qwjy8ut2AywXhUeBJKoLS0nvf6y233MLwSnVa9ByJiWpAq1at8Pjjj0OSJHiy8uGpfwyAhSFBlVStS+iw95WI6rI6Fl4ZXKuQ9rzALLyaEB7P8fBqVMbt9obX8n0oDhcSTi2Ex+NB//79cdVVV1Wo+kS1RfQcjYlqSM+ePXHrrbcCAFzNcuBJLQYQMClDFQVZIiKqQrU8vAYGVQbXKmLlPCDUPBnQ9LoalPMLruX7EzYFTQbJyMvLQ4cOHfDggw9yvVeq86LniExUg6688kpccMEFgAS42h2GknB8antLswsSEVF0qWXhNVTPKsNrFYlQcLXS6xoYlIUkcML19ZCdnY3MzEw8++yziDNbO5aojuAkTkTlysrKcP/99+Ovv/4CymQ41zeCXOY/u58kSeVhtnITMFkeQhyJiZz4ESeiuiSSvVNRFF6pXHVN4mTlfSSHqItvG1ba4YCgLCDganMYnswiJCYm4o033kD79u1Db4eoDoiOIzNRFHA6nXj22WfRtm1bwKnA1fEghN1/cgU1vEZyhmAiIoqcSF20i4LwyvtZq0gl56EwWoLHr0yo4cK+XlmD4cnuZkfhySyCzWbDM888w/BKpFHzR2eiKJKcnIyXXnoJDRs2hIh3o6z9IQjZaKKG0L2s1TpZExER1QoMriaq+gKyEmL2YKvDhUOUMeNqkAd3o3wAwPjx49GjRw/T8kR1DQMsUYB69erh5ZdfRmpqKkRyGVztD0FIJiE2UsOFiYgoMiLRC1tDI20YXCvIQntsykJwtdTrGuLxkOG1Xj7cLY4C8C6Xc/7555uWJ6qLGGCJdLRs2RITJ05EQkIClNRSuNodhpDKGy5ZCh5aFqLhZG8sERGFwvBaQVV4scFqcDULpkaPa++zFULAlXUM7la5AICRI0fi6quvrmCtiWo3BlgiA126dMGLL76I+Ph4KOklcLU9BBGqkeSwYiIiqgCG1wqobK8rYNrzahZcJUmKyHBhX0D2ZBTA08YbXq+44grcfPPNXC6HyAADLJGJk046Cc8//zycTieUjBK42uVAhJxSP0JXgjlRFBFRrcf7XSvALLhabTsre69rqGHqijAPrx6POjGkJ60QSsc8CCEwZMgQ3HHHHQyvRCYYYIlCOPXUU/Hss8/C4XBAySyGq30OBMyvqAK8mk5EVGMicfJfDbMQs52oZlZ7bM3KhAi+IR8HAF+wVQQ8WYVQTjgKj8eDgQMH4t5772V4JQqBAZbIgjPOOAMTJkw4HmI75By/J5aIiKIHwysFCie4GpXzBVOjMoGP6/19PZ7j4RWAu34B3O1z4fF4cOGFF+KBBx6AHGptWSKCJEKOgSAin5UrV+KRRx5BaWkppHwnnBuyICnGjU2l73eNxDBifsSJqK6IgfDK4FoNtH9DvXZU72+sLSfJxwOorx0P3I7Ndvx7vfXhtY/rDCV2NyqEu9VRAMCll16Ke+65h+GVyCIGWKIwrVmzBg8++CAKCwshHXPAuaEeJI9+o8MAS0RUTSobXtnrWntIsnn7GSrg+sKnXjD1PV+WjMOtbxsG98C6mxyDu4V3ndcRI0bgtttu47BhojAwwBJVwMaNGzFu3Djk5+dDKrTDubEepDJbULmoCLAAQywR1W4Mr+QTKrxaKeN7PxiVsfK4zmMCAu6WefA0LgQAjBkzBtdddx3DK1GYGGCJKmjbtm0YN24ccnJygFIbnBuyIBc7/MpYCrBCMT55YoAlIgotxgOsUESlHqfoJyQBV7tcKFnFAICxY8fiqquuquFaEcUmBliiSti/fz/uv/9+7NixA3BLcGzKgi0/Tn3ccoD1CTyJYoAlIgotRu991bYRRgE1nDIVfdxXpqofr+o6VoeK/B6ETUFZhxyItDLY7XaMHz8eAwYMqOqqEtVavFucqBIaNWqEt956CyeeeCJgF3B1Ogx3ZmF4Gwm8F8cs0BIRUa0Q6gKnUISli6BWtlOZ/Viph9XHrYT0itahqvnqYPYa9B5X7C40viIOIq0MSUlJeOmllxheiSqJPbBEEVBaWornnnsOixYtAgDYdqbAtjsZsiyH3wurZeVeHiv4MSei2i7KhxFrg41Ru+ArE+pxozJBPX8BZWrb49WhonUUioCSXIaUvgqOHDmCevXq4aWXXkLbtm2rtsJEdQADLFGEKIqCt99+G5988gkAQD4cD/uWdNNldvxEariw4fb5USeiWizKA6x3F5LpRU0rjwOVD8BV/bhRmUg+XtUqUj9fGaEIeOoXQe5ShLKyMrRu3RovvvgiGjZsWGX1JapLGGCJIuzrr7/Gq6++Co/HA6nAAceGTN0ZioMwwBIRVVwM3AdbWZEIwLH+eFWrTP0A70zDnhbH4GlWAADo3bs3Hn30USQmJka0nkR1GQMsURVYvXo1HnvsMeTl5QFlMhwbMyHn270PhlpAvarwo05EtVWkliGJ8gBb11XVJFaRur9W2BS42+dCySwFAFx77bW44YYbIMt8XxFFEgMsURXZt28fHn74YWzduhVQAPu2VMgHEiChvAGtqhmHjfCjTkS1USTX0GSAjWpVfY9thQkFSqIHjYckYOfOnXA6nXjwwQc5WRNRFWGAJapCRUVFeP755/Hzzz8DAOSD8bBvTfW/LzbUguiRxI87EdUmkQyvAANsFKvq+2srpLzd9tQvgf3EEpSUlKB+/fp4+umn0blz58jsg4iCMMASVTEhBGbNmoXJkyd774sttMO+MR1ysd2/YKRmHDavTNVun4ioukQ6vAIMsFHMygRSlb1/1bLytlpIAu7Wx6A0LgIA9OjRA48//jjS09Mjsx8i0sUAS1RNVq9ejSeffBJHjhwBPBLsW1JhO5xQ/RXhR56IYllVBFd12wywsSii4dSM5iKziPPA1fEoRIoLADBq1Chcd911sNksTNpIRJXCAEtUjXJycjBhwgT89ddfAAB5XwLs21MhKdW4th0/8kQUyxhgqboIRXd0lCerBPE93CgoKEBKSgoeffRR9OzZs4YqSVT3MMASVTO3240PPvgAH374IQBAKrJ5hxQXOaqnAvzIE1GsY4itO3whsiq2CxhvW+eWHiErcLc5BqVhMQDghBNOwJNPPonGjRtHvn5EZIgBlqiGrFy5Es8995x3SLEC2LanwLYv8fgsxVWFH3kiinUMsHWDWXi1GkBDLV1ncWk7JcmFRoMTsWvXLkiShGuuuQbXXXcd7HZ78POJqEoxwBLVoKNHj+KFF17Ab7/9BgCQcp1wbE6D5KrCe2j4kSei2oAhtvYKJ2CG87jeRIkhHhcQ8DQpgtS+GG63G/Xr18cjjzyCU045xeQFEFFVYoAlqmFCCHz11Vd48803UVZWBrhk2LemwpYTX1U7rJrtEhFVJwbY2qcCAdPy40az/Js8LuLdcLXLg0jzTtR09tln44EHHkBaWpr+toioWjDAEkWJ7du3Y8KECdiyZQsAQD5cvmasO8InUvzIE1FtwRBbe1QgYFp6vCJVgYDSqBj2LmUoKSlBQkICbr/9dgwePBhSVb7niMgSBliiKOJyuTB9+nTMmDEDHo+n4r2xQhif2PEjT0S1RVWHibocYkNNnhSpx6t6/fMwiTg3XO3yIdLLAADdu3fHgw8+iCZNmtRwzYjIhwGWKApt3LgRzz33HLKzswEA8qF42LeF2Rvr+2jrneDxY09EtUF19IZVJMRW1cy51aGq7j81KhMlfL2ujq4uFBcXIy4uDrfeeiuGDh0KWY7RvyVRLcUASxSlysrKMG3aNHz00UfHe2OzUyAfirc2U3HgR1t7osePPRHVFtEUYiszM662TKjHK7MPo8cDQ2WoxyO1jSigJLjgbpcPkeq917Vbt24YP348mjVrVsM1IyI9DLBEUW7Dhg144YUXsG3bNgCAdNQJ+9ZUyCUhpu7X+2j7TvT4sSei2iIaAmy4y7JURc9mJGfmtVImnG1EaXAVkoCneQGk1qVwu91ISEjAjTfeiMsuuww2WxWuBkBElcIASxQD3G43Zs+ejQ8++MA7U7EC2HYlw7YnCZLgva5EVMfVVIityllzjcqE2zNq9LhZqLQSPK1sI0qDKwAoqaXeXtcEDwDgrLPOwr333ouGDRvWcM2IKBQGWKIYsnfvXrzyyiv4/fffAQBSkc3bG5sfF1yYH20iqiuqa2bY6gh2kZh1N8rDY00SDg/crY5BaVACAMjMzMQ999yDPn36cIZhohjBAEsUY4QQmD9/Pt58803k5uYCKF9yJzsFUplNW7CGakhEVM0YPCgEIQl4GhchrosHRUVFAIAhQ4bg5ptvRkpKSg3XjojCwQBLFKPy8/Pxv//9D19//TUURQE8Emy7k44PK+ZHm4jqAoZXCkFJK4W7zTGIRDcAoFOnTrjnnnvQuXPnGq4ZEVUEAyxRjNu8eTNee+01rFmzxvuDEpt3tuIjcZD46Sai2ozhlUwIpwfu1seg1PMOF05LS8Mtt9yCiy66iEvjEMUwBliiWkAIgQULFuDtt9/G4cOHAZTPVpydDLnQUcO1IyKqAgyvZEDYFHiaFcLWxoWysjLIsoyhQ4fi+uuv53BholqAAZaoFikqKsKMGTMwe/ZsuFwuQADywXjYdyT73x9LRBSrGFzJgJAElIZFSDpFRl5eHgCge/fuuOuuu9C2bdsarh0RRQoDLFEttHfvXrz33ntYuHCh9wcKYNuTBNvuREgeDpsiohjGAFu3CRH0HhAQUDJL4Wl1TF0Wp0WLFrjtttvQs2dPzi5MVMswwBLVYuvWrcPbb799/P7YMgn2XcmQ9ycYrx9LRBTtGEhqJ51w6veYj6aMklIGd8tjEGkuAEB6ejpuuOEGDBo0CHa7vSprS0Q1hAGWqJYTQmDJkiV49913sWvXLu8PS2TYdyZDPhgPCTwRJKIYxBBbexiE06DHNGWUJBc8LY5BySwDADidTowYMQJXX301kpKSqrCyRFTTGGCJ6gi3241vv/0W06ZNQ05ODgBAKrLBtjMZ8uE4Blkiii0MsLVD4Gmo7+9qcHqqJLjhaVkApV4pAMBms+Giiy7C6P9v797DoyoPPI7/zkwmyYSEJFwkgSAgIKBAQSCUq3jhIupWQLtaV9uqte1q7W7XVpenSgu1VH28re7jWp9tt64ilVql1gssCioIRJSbcjHcr4m5kHsmk5lz9o+ZOZnJjdzIZML38zzzzJnzvuc9bzIR5zfvOe/73e/qggsuOJc9BdBFEGCB84zH49Gbb76pV155xZ7kwqiMk/Noj8DSOwRZALGCEBu7mhhZbSq4Wok++QZWSplemaYpwzB09dVX6/vf/76ysrLOcWcBdCUEWOA8VVVVpVWrVmnlypWqrKyUJBkVcXIe7yFHEUEWQAwgwEZfc/et1q/Tho+cptsn/8BKGZm18vsDEzRNnz5dd955JzMLA+cpAixwnisrK9PKlSv1+uuvq7q6WlJwRPZ4Dy4tBtD1EWLPnTZMqtRknVYyk2rlH1gp6wKvQh9Vs7Ozdccdd+iSSy5pc7sAYh8BFoAkqaSkRKtWrdJf//rXuhHZKqecJ3ow2ROArq25AEXAjRT62Nfc76W5Ok1d+nu2Oi0UmJypUmbvGnvf9OnTddttt2nUqFFtbhdA90GABRChvLxcr7/+ulatWqXy8vLATo9TcSeT5Mh3yzD5MAigizlb0CLENj1ZUkvrNPVxsSV1ztY1WbJ61sqfVWnPKmwYhmbNmqXbbrtNw4YNa1O7ALonAiyARlVVVemNN97Qn//8Z5WUlAR21hpynk6S87RbRq0zqv0DgAhnmb32vAyxLf1dtHJCpTbVa4QlS2afGvkHVMpK8UmSHA6Hrr76av3TP/2TBg8e3KZ2AXRvBFgAzfJ4PHrnnXf02muv6dSpU4GdpuT42i3nySQ5qlkoHkAMaGmA7YqXHbdmoqTQdnPaETo7guU05e/nkb9/pZRoSgqs4zp37lzdcsstzCoMoFkEWAAt4vf79fHHH+vVV1/V3r177f2Oong5T/aQUebiPlkAXVdL7vk8W73Odo4nSupsVrxf/swq+TOrpbhAv1NTU7VgwQItWLBA6enpUe4hgFhAgAXQKpZlaffu3Vq5cqU2bdpkzw5pVMTJeSpJjsJE7pMF0LW0dTKixo7pqDrt6VeMfXQzk2vl718lR3+ffL7ApcJZWVn6x3/8R82bN08JCQlR7iGAWEKABdBmx44d02uvvab33ntPXm9g4g3VGnLmu+U8nSSjhvtkAURZSycZ6sjlYjpqgqTW1OtiLIcls49H/swq+/5WSRo7dqxuvvlmTZ06VQ6HI4o9BBCrCLAA2q2kpERvv/22Vq9erby8vMBOS3IUJwQmfCqJ5/JiAJ2vJfd6dvQoaEdOkBSDrITgZcL9qiVX4Gd0uVy68sortWDBAtZwBdBuBFgAHcbv92vz5s3661//qm3bttn7jSqnHHlJcuYnyvDzjTuALqSjJz7qxuG0KZYsmelemZlVsnrX2reWZGRk6B/+4R903XXXKS0tLbqdBNBtEGABnBPHjh3TG2+8oXfffVdVVVWBnabkKEyUM98to5RJnwAgllkJfvkvqA6MtgZnE5akSZMmacGCBZoyZYqcTm4lAdCxCLAAzqmqqiqtXbtWq1ev1sGDB+sKqp2Be2W/TpTh5QMOAMQCy7Bk9qqRP6Na6lU32pqcnKxrrrlGN9xwgwYOHBjlXgLozgiwADqFZVnav3+//v73v2vdunV1o7KW5CiOlyPfLUdxAqOyANAFmUk+mf2q5b+g7t5WSRo/fryuvfZaXX755cwmDKBTEGABdLrq6mpt2LBBb7/9tnbt2lVX4HXIWZAox9eJMirjCLMAEEVWnBmYSfgCj6yetfb+Pn366JprrtH8+fM1YMCAKPYQwPmIAAsgqo4ePap33nlH7777rkpKSuz9RqVTjgK3nAWJLMcDAJ3EcgQuETb7emSm10jBefecTqemTp2q6667TpMmTVJcXFx0OwrgvEWABdAl1NbWKicnR2vXrtWmTZvq1pWVZJS65Pw6UY5CZjEGgI5myZKV6pX/Ao/M3jVSXN1Hw+HDh2v27NmaM2eOevXqFcVeAkAAARZAl1NRUaEPP/xQa9eu1fbt2+sKzMDaso6CRDnOJMgwucQYANrCkiWrh09mX4/8fT1SQt0swhkZGZo9e7Zmz56twYMHR6+TANAIAiyALi0/P1/r1q3T2rVrdfjw4boCvyHHmXg5ChMDkz8RZgGgWZYsWcm+wH2tfWqkRL9dlpKSoiuuuEKzZ8/WmDFj5HBwtQuArokACyAmWJalAwcOaN26dVq/fr3y8vLqCv2S40xCMMzGyzD54AUAUv3Q6olYrzUhIUFTpkzR7NmzNXnyZMXHx0expwDQMgRYADEntCTP+vXrtWHDBp0+fbquMBRmixICI7PcMwvgPGPJkpVSK7NPjfy9I0Or2+3WlClTNGvWLE2ePFlutzuKPQWA1iPAAohplmXpq6++ssPsqVOn6gpNySiLl6MoQc7iBGYzBtBtWQ5LZlqNzN41MtO9UnxkaJ02bZpmzZql7OxsJSYmRrGnANA+BFgA3UYozG7YsEGbNm3SkSNHIsqNyri6kdkK1pkFENuseH9gyZteNTLTvPaSN5KUnJysqVOn6vLLL1d2drYSEhKi11EA6EAEWADd1vHjx/XJJ59o06ZN2rVrl0yzbkRCNY7AjMZn4uUojedSYwBdnj1zcDC0Wim+iPLMzExNnz5dU6dO1Te+8Q3WagXQLRFgAZwXSktLtXXrVm3cuFFbt25VdXV1XaEpGWWuwL2zJfEyKhmdBdA1WC4zcGlwujcwyhp2abBhGLrkkks0bdo0TZs2TYMHD5Zh8G8XgO6NAAvgvOP1erVjxw5t2rRJOTk5OnnyZL0KjsDIbCjQ+hidBdA5LCM4AVN6ILRayZGjrG63WxMmTNC0adM0ZcoU9erVK0o9BYDoIMACOO+dOHFCOTk5ysnJ0eeffy6Px1NXaElGRZwcJcFLjcviWXMWQIexZMlK8stKDYywmqleKS7yo9nw4cOVnZ2t7OxsjR49Wi6XK0q9BYDoI8ACQBiv16vdu3dr69atysnJ0aFDhyIrmJJR7pKjND4wOlvukmERaAG0jCVLljsYWFO9MlNrIy4LlqTU1FQ7sE6aNIlRVgAIQ4AFgGZ8/fXX2rZtm7Zv367PP/9cBQUFkRX8waV6SuPlKHXJqCDQAqhjyZIS/DLTaoOB1SslRAbW+Ph4jRkzRpdddpmys7M1fPhwORzcugAAjSHAAkALWZalEydO2GF2+/btOnPmTGQlv2RUBEZojXKXHGUuZjgGziOhmYKtnrUye3pl9qxtEFhdLpcuvfRSjR8/XuPHj9cll1yi+Pj4KPUYAGILARYA2siyLB09elSfffaZtm/frh07dqisrKxeJcmoigvMclzmkqMsXqpxMMsx0E1YTjMw6VLPWpkptbJSahvcwxoXF6dRo0bZgXX06NGsywoAbUSABYAOYpqmjh07pi+++EK7du3S7t27G85wLAXWoC0LXG7sKHfJqIiTYTJKC3R19v2rKbUyk2tl9ayV1cOn+t9H9ejRQ6NHj9bo0aM1ZswYjRo1Sm63OzqdBoBuhgALAOdQUVGRdu/ebYfa3Nxc+f3+yEqhUdryODkqXIGJoariuJcWiKLAvatmIKiGAmuyr8HoqiRlZGRozJgx9mPw4MFyOp1R6DUAdH8EWADoRNXV1dq7d2/Eo8HEUFLgXtpKlxwVcYGJoSrjCLXAOWLJkuJNmck+WT1CgdXXYHZgSUpMTNTFF1+skSNH6tJLL9WYMWPUp0+fKPQaAM5PBFgAiLLCwkLt27fPDrT79u1TRUVFw4pmcKS2Mq4u3FbGMUkU0AqWYcly+2Ql+2T18MnsEbwM2NXw45DT6dTQoUM1cuRIjRw5UqNGjdKgQYMUFxcXhZ4DACQCLAB0OaZp6uTJk9q7d6/279+vAwcOKDc3t/FQK0kehxyVYaO0VXEyqp2M1uK8FhpVtZJ8MpMCYdXq4ZOV5JMa+c7H6XRq0KBBGj58uB1Yhw0bxmRLANDFEGABIAZYlqX8/Hzl5ubqwIEDdqjNy8tr4gAFQmxVXOSDYItupkFQTfLJSvIHgmoj96tKgUmWhg0bpmHDhmn48OEaNmyYBg8ezFI2ABADCLAAEMPKy8vtMHv48GEdOXJER44cUWVlZeMHmJLhccqoDobZ6uC2xyl5Wd4HXZflMAMzALv9shJ9ddvNBFWn06kBAwZo0KBBGjp0qB1WMzIyZBj8rQNALCLAAkA3Y1mWCgoK7DAbCraHDx9WVVVV0wf6jQah1qh2BsJtLeEW557lsOrCaaI/cK9qMKg2NqFSiNPpVFZWloYMGaLBgwdr0KBBGjx4sAYOHMioKgB0MwRYADhPhAfb48eP68SJE/bj9OnTMs2mA4L8klHjlGoCgdbwOGXU1D2r1iDg4qwshykr0ZSV4JcS/bISgkE1IfBQfPMfSVJTU5WVlWU/LrzwQg0ZMkQDBgyQy+XqpJ8CABBNBFgAgGpra3X69Gk72IYH3MLCwubDrRQZcL0OGV6njBpH4LLk4D5Gcbs3y2nKijeleL+shMC2Fe+XEgLPVqK/0Zl+60tJSYkIqeGPlJSUTvhJAABdGQEWANCs2tpaFRQU6PTp08rLy7OfQ9uFhYVq0f9KTAUCrTcYaL0OGbWBh0LPwX3yM6LbFViGJblMWa5gOA1uyxUWUOODZU3ch1pfSkqKMjIylJGRoczMTGVkZKhfv37KzMxUv379CKkAgGYRYAEA7eL1evX1118rLy9PBQUFKiwstJ9D28XFxS0LuSGmIkOtzyH5jLM8OwKTVBF8G7AMS4qzZMWZUpwpK86S4kzJGdoXfHZZgbAaDKktDaUhycnJ6tOnj/3o27evvd2/f3/169dPycnJ5+inBACcDwiwAIBzzufzqaioyA60RUVFOnPmjM6cOaOSkpKI7SZnUG4JU5LfCIzg+h1h20bkthm2bQVfm5Jhhl4ruM+QYaquTuj/mJYkBV8H950tOFt1Fes9W4Ftw5IcgYmM5Ajuc1iSYcly1G3LoUDwdFqS05KcZuCY4GvLGTw+tB1nSs62/0rj4uKUnp6utLQ0paWl2du9evVqEFLdbnfbTwQAQAsQYAEAXUpNTU2DUFtWVqby8vJmH36/P7odDw+3oW1DDQNrFCUnJys5OVkpKSn2c/h2amqq0tPTIwJrcnIyS84AALoMAiwAIOZZlqXq6mqVl5ersrJS1dXVqq6uVlVV1Vm3a2tr7YfX67Uf9fed64DscDjkcrnkcrkUHx+v+Pj4iNfh2263u8WPUDjt0aOHnM52DMUCANAFEGABAGgB0zRb9PD7/TJNUw6HQ4ZhyOFw2I/w16FtwzDkdDoVFxcX7R8RAIAujwALAAAAAIgJjmh3AAAAAACAliDAAgAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATIiLdgcAIFosy5LH44l2NwCgVRITE2UYRrS7AQBRQYAFcN7yeDyaO3dutLsBAK2yZs0aud3uaHcDAKKCS4gBAAAAADGBEVgAkBSfc4HkN2Q4DMlw2M9yGFLwUj3D4QhsG8FnhyHDCH4PGKoX3G9vS/X2RbYZeK4rt0L7HaprI7Q/9JVj/X2GISt0NaERfO0IvLAMhZ1L9jGWYQRf17VpBbsS6IvCjoksjzgmVMfRSFl4/Yiy8H31+9HEMarbF14uye5DU+eKqN9EP+q3aWvsfPYxVuQx9dqzy1W/3Kqro7q6dW1bdpnRoH54WWC77rmuHcOw6v4Ew/fbZYFyhwLb4cc4guWBssC57H3hz6o7zlH/ESwLvFaD/YFjTHufQ4HXkuQ06l47jMgyh2GFlVtyKlAncJwZdpwpZ3ibwe1Q/fDjHLKCx5pyBssC5wrUdxqWDJlyBl+HH+OUAscpcL7QzxZ6HTiXZZc5jGBf7G3D/s/aaRhyyAjuM+QM/vIdcsiQoVqvU4t+kCEAON8RYAFACoRXM/BBUUbdc10yUOCjpmFIjrq0Zn/8jEhCDql+QqlLh2qQeoywYyMSVEv2q4lyBYOuIgJsxL6IJsJeNwjE9csbOabBj1yvfmPdbbQfTTyaKmvqV9XW9sLabDIw1w+ojb3N4eWqX95EgK1fXq+sfoCt229FnLOxslBIrSsLL2/sGKuRc0U+wgNsg0dTZY0FW1n2a7tMdeVORZYFAqxZFwCDZYEAGHw2jEC4DP7th7ZD9Z0y5LQDrOQ06p6dCp0rsN1omf3aCobZ8JBaF1qbC7Ch9uoCbLDdsPYD5wrVD3sPAeA8xiXEAAAAAICYQIAFAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGIC68ACgCQ5LVkyAws1Gqr3bC/IWG8dVaPeuqehh1W33ZKysEVIrSYWN21sf92+0Oqainxt2atx2iWWDMmSfaxV/5jgcQ01sc8KK4pY29QI734z668azZTVO21byppb67W5stBms8c1tp5rI+UN+tjEOrBqeJzRoH54Wdgar0ZYXYXWXw3/82piHVi1fR1YS3XHWfUfwTIruBZu/f2mYUmGWXceBV+Hfi5FllvBMivs3JZdFtaP4GtHcNsRLAtthz+bYf9Zm0bdsxn8kR3BbTP4J9r4OrCGHAqsLxsqM4L7nQpbSzaszdA6r/Y6tsGywDq2Rl2bwX8jAqtSG6r1NvbfIACcfwiwACDJm/11tLtwboTyQTsY9Z4Bqe7PylJd6Ist4X/ZXJAGALGCf7EBAAAAADHBsCyrnd/NA0BssixLHo8n2t1AB/J4PPrWt74lSVq9erUSExOj3CN0BN7XSImJiTIMrokAcH7iEmIA5y3DMOR2u6PdDZwjiYmJvL/dEO8rAJzfuIQYAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJjALMQAAAAAgJjACCwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADEhLtodAACcn6qqqrRy5Up9+OGHysvLk8Ph0MCBA3XllVdq0aJFcrlcbW67uLhYK1as0ObNm5Wfn6+EhAQNGTJE8+bN07XXXivDMBo97sSJE9q4caN27NihgwcPqri4WE6nU3369NHYsWO1YMECjRgxos39Oh90xfe1KT//+c+1detWSdK4ceP0H//xH23uGwCgcxiWZVnR7gQA4PySl5en++67T3l5eZKkxMREmaYpr9crSRo+fLiefvpppaSktLrt/fv36/7771dpaakkye12y+v1yu/3S5Kys7O1fPnyBkFq9+7duueeeyL2JSUlqba2VrW1tZIkh8Oh2267TXfeeWer+3U+6Irva1PeffddLV++3H5NgAWA2MAlxACATuXz+fTggw8qLy9PvXv31pNPPqm1a9dq7dq1WrJkiZKSkpSbm6tly5a1uu2Kigo98MADKi0t1YUXXqjf//73WrNmjdauXat/+Zd/UVxcnHJycvTss8822i+n06kZM2Zo6dKleuutt/Tee+9p7dq1euGFFzR27FiZpqk//elP+vvf/94Rv4pupau+r40pKirSc889p+TkZA0aNKjV/QEARA8BFgDQqd577z0dOnRIkrRs2TJNnDhRUmB086qrrtL9998vSdqyZYs+++yzVrW9cuVKFRcXKyEhQY899phGjhwpSXK5XFq4cKHuuOMOSdJbb72l48ePRxw7YMAAvfTSS3rkkUc0a9YspaamSpKcTqdGjRqlp556SkOHDpUkvfLKK2386buvrvq+NubJJ59UeXm5/vmf/1np6emt6gsAILoIsACATvXee+9JksaPH6/Ro0c3KL/qqquUmZkZUbel1qxZY7fRv3//BuULFy6U2+2W3+/X//3f/0WUXXDBBRo4cGCTbbtcLs2ZM0eSdPLkSZWXl7eqb91dV31f6/vggw/08ccfa9y4cbr22mtb1Q8AQPQRYAEAncbj8eiLL76QJH3zm99stI5hGJo8ebIk6dNPP21x28eOHVN+fr4k2cfXl5SUpLFjx7a67ZD4+Hh7O3TvJWLnfS0tLdUzzzyj+Ph4/fznP2/1pE8AgOgjwAIAOs3Ro0dlmqYkaciQIU3WC5UVFxerrKysRW2HLl89W9sXXXSRJOnIkSMtajfc9u3bJUm9e/e2LzFG7LyvzzzzjM6cOaPbb7+92dF2AEDXRYAFAHSawsJCe7tv375N1uvTp0+jxzSnqKioVW1XVlaqqqqqRW1L0hdffKGNGzdKkq677jpG78LEwvu6adMmrVu3TkOGDNF3vvOdFp0bAND1EGABAJ0mPFgkJCQ0WS8xMbHRY6LVdklJiZYuXSrTNJWVlaVbbrmlRcedL7r6+1pRUaEnnnhCDodDv/jFLxQXF9eicwMAuh4CLAAAzaiqqtK///u/Ky8vT0lJSVq6dKmSkpKi3S20wn/+53+qsLBQN9xwgy699NJodwcA0A4EWABApwkPfjU1NU3W83g8jR7T2W1XV1frgQce0Jdffim3263HHntMw4YNa1F/zidd+X3dtm2b3n77bfXt21d33313i84JAOi6CLAAgE4Tfg9kQUFBk/XC748MP6Y5vXv3blXbPXr0aDZEhcLrzp075Xa79eijj9oz3SJSV35fH3vsMUnSj3/8Y0mBEfXwR2jyKdM07X3MMA0AXRc3gQAAOs2gQYPkcDhkmqYOHz7c5JIrhw8fliT16tVLPXv2bFHboVloQ8cPHjy40XqhWW2bKpfqwuuOHTuUmJioRx99VOPGjWtRP85HXfl9zcvLkyQtXbq02fPs2rVL8+bNkyQ98sgjmjFjRov6BwDoXIzAAgA6TWJiokaPHi1J2rp1a6N1LMtSTk6OJGnSpEktbnvgwIHq169fs21XV1dr165dzbZdXV2tX/ziF9qxY4d92TDhtXmx8L4CALoHAiwAoFOFRrm2b9+uPXv2NChfv369Tp06FVG3JQzD0Ny5cyVJH3zwgU6fPt2gzhtvvKHq6mo5nU7Nnj27QXkovIZfNkx4bZmu+r5+9NFHzT5C7++4cePsfYy+AkDXRYAFAHSqefPm6aKLLpJlWXrooYf02WefSQrcg7h+/Xo9/vjjkqTJkydrwoQJEcf+4Q9/0MyZMzVz5sxGg8zNN9+sXr16yePx6IEHHtD+/fslSbW1tXrzzTf13//935Kk66+/XgMHDow41uPx6MEHH7TDKyOvrdNV31cAQPfCPbAAgE4VFxen5cuX66c//any8vL0r//6r0pMTJRpmvJ6vZKk4cOH6+GHH25128nJyXr00Ud1//3368iRI/rBD36gpKQkeb1e+Xw+SYFLTO+9994Gx27YsEHbt2+XJPn9fi1ZsqTZcy1btkxjxoxpdR+7q676vgIAuhcCLACg02VmZup//ud/tHLlSn344YfKy8tTXFychgwZoquuukqLFi2Sy+VqU9sjRozQn/70J61YsUKffPKJvv76ayUmJuqiiy7SvHnzNH/+fDkcDS9AsizL3vZ6vSouLm72PKHghDpd8X0FAHQvhhX+f2wAAAAAALoovqoEAAAAAMQEAiwAAAAAICYQYAEAAAAAMYEACwAAAACICQRYAAAAAEBMIMACAAAAAGICARYAAAAAEBMIsAAAAACAmECABQAAAADEBAIsAAAAACAmEGABAAAAADGBAAsAAAAAiAkEWAAAAABATCDAAgBiwjPPPKOZM2fqJz/5SbS7giirqKjQtddeq5kzZ+qjjz6KdncAAJ0oLtodAACcW5WVlcrNzdW+ffu0f/9+7d+/XydPnpRlWZKkP//5z8rMzDwn57YsSzfeeKMKCgp066236oc//GGb2snNzdWbb74pSbr77rs7sIfRdejQIeXk5Gj37t06dOiQioqK5Pf7lZKSoqFDh2rKlCmaN2+ekpOTo93VLiU5OVk333yzXnzxRT377LOaPHmyEhISot0tAEAnIMACQDd33333KTc3Nyrn3rdvnwoKCiRJM2bMaHM7zz//vPx+vyZPnqwxY8Z0VPei6r777tOOHTsaLSsuLlZxcbE+/fRTvfzyy1q8eLGys7M7t4Nd3I033qhVq1YpPz9ff/nLX3TrrbdGu0sAgE7AJcQA0M2FRlqlwMjV+PHj1atXr04598cffyxJ6tu3r0aNGtWmNnbt2qVt27ZJUrcKKaFgn5KSovnz52vx4sV67rnn9OKLL2rp0qWaMmWKpECYXbx4sXbu3BnN7nY5brdbixYtkiStWLFCVVVVUe4RAKAzMAILAN3c/PnzlZaWphEjRigrK0uGYei+++5TcXHxOT93KMBOmzZNhmG0qY1XX31VkpSZmalvfOMbHda3aMvKytLtt9+uq666SvHx8RFlI0aM0KxZs/TKK6/ohRdekNfr1RNPPKGXXnopSr3tmubMmaM//OEPKi8v19tvv62bbrop2l0CAJxjjMACQDd344036uqrr9bAgQPbHCLb4vjx4zp69Kiktl8+XFBQoM2bN0uS5s6d26n9P9cef/xxXXPNNQ3Ca7hbb71Vw4cPlyQdOXJEBw8e7KzuxYTMzEyNHTtWkvS3v/0tyr0BAHQGRmABAOdEaHbY0GXLbbFu3TqZpilJuvLKK1t0jM/n0wcffKCNGzdq3759Kikpkd/vV1pami666CJNnDhRV199tXr37h1x3MyZMyVJ8+bN0+LFi3Xs2DH95S9/0aeffqrCwkL16NFDF198sb7zne9o3Lhx9nE1NTV69913tWbNGp04cUIej0f9+/fX7NmzddNNN7V7cqHLLrvMvof5+PHjGjp0aJvbOnLkiFavXq2dO3fq9OnT8ng8Sk5OVkpKijIzMzVhwgRNnz5dF154YZva9/l8Wrt2rdavX69Dhw6ptLRUhmGoZ8+eSktL06hRozRx4kRNmzZNLpcr4tj6v/8jR47ojTfe0LZt21RYWKjq6mo98sgjDb4MufLKK7Vz504dPXpU+/bt08iRI9v2ywEAxAQCLADgnAhdPjxlyhTFxbXtfzeffPKJpMB9ooMGDTpr/QMHDujhhx/WiRMnGpQVFBSooKBAW7du1cGDB7V48eIm29mwYYN++9vfyuPx2Ptqamq0ZcsWbd26Vffff7+uv/56FRYWavHixdq3b1/E8YcPH9bvf/97bdmyRU888US7QqzP57O3HY62Xzi1evVqPf300/L7/RH7S0tLVVpaqhMnTujTTz/VwYMH9dBDD7W6/ZKSEv3bv/1boxOGhX73ubm5+tvf/qYVK1YoKyurybbeffddPfHEE/J6vWc9b/ikXp988gkBFgC6OQIsAKDDFRYWau/evZLafvmw1+vVl19+KUkaNWrUWS8fzs3N1b333qvq6mpJ0vjx4zVnzhwNGjRILpdLRUVF2rNnz1nXDT148KA++OADpaen6+6777bP/dlnn+l///d/5fF49NRTT2ncuHH6zW9+owMHDuiGG27Q9OnTlZaWppMnT+qll17SwYMHtWvXLq1YsULf//732/Q7kKTPP//c3h4yZEib2jh06JAdXnv27Knrr79e48aNU1pamvx+v4qKirR//35t2bKlzZdpP/3003Z4nTBhgubMmaPMzEz16NFDlZWVOnr0qHbu3GlfEt6U/fv3a926derZs6duuukmjRkzRi6XS0eOHFFGRkaD+kOGDJHb7VZ1dbU+//xz3XHHHW3qPwAgNhBgAQAdbuPGjbIsS/Hx8Zo8eXKb2jh48KA9+jhixIhm6/p8Pj388MN2eP3pT39qz1AbburUqbrrrruUn5/fZFu5ubkaPny4nn76aaWkpNj7L7nkEmVlZWnJkiXy+Xy69957VVZWpscff1wTJ06061188cWaNGmSbr/9dhUWFurNN9/U7bffLqfT2aqfXwpchn348GFJgRA/cODAVrchSevXr7dHXp966in7vtpwM2bM0F133aXS0tJWt19TU2N/MTBjxgz95je/aRCEx40bp29961uqrq5udiT58OHDysrK0nPPPRcxW3ZTs1g7nU5dfPHF2rlzp7766iuZptmukWoAQNfGv/AAgA4Xunx44sSJcrvdbWoj/DLgsy37s27dOp08eVJSYNblxsJruH79+jVb/uCDD0aE15BZs2apb9++kqQzZ85o4cKFEeE1JDk5Wddcc41d78iRI82erzGFhYV68sknJUmGYejHP/5xq9sICc04nZyc3Gh4DZeamtrq9svLy+0vG8aNG9fsKK7b7T7rJdU/+9nPWrXUU6iux+NRYWFhi48DAMQeAiwAoENVVFRo+/btktp++bAkFRUV2ds9e/Zstm4oMEvSLbfc0uZzSoFLUpsKeYZhRJTNmTOnyXbC6506dapVffB4PFq8eLEdPOtPHNVaodBdUVGh9evXt7mdpqSmptqzKb///vvtWpO1b9++jX4p0Jzwv4/wvxsAQPdDgAUAdKjNmzfL5/PJ6XRq2rRpbW6npqbG3m5sNDTcV199JSkwEteSyZ6ac7bjw/vS3Gy94fVaE+hqa2v1y1/+0p4Yavr06brrrrtafHxj5syZY496LlmyRPfcc49eeeUV7dq1y77suj1cLpfmzZsnSdqzZ4++/e1v6/HHH9f777/f6vDellmWwwNs+MRbAIDuh3tgAQAdKjQaOnr0aKWlpbW5nfB7Rs82G21JSYmkupHG9khMTGy2PPzy2OYujw6/DzO0FNDZ+Hw+PfTQQ8rJyZEkZWdn61e/+lWb7p8N179/f/3ud7/Tb3/7WxUUFGj37t3avXu3pMDveeTIkZo5c6auu+66s35Z0JSf/OQn8nq9WrNmjcrKyvTWW2/prbfekhT4YiE7O1vz588/60jy2UbbGxP+ZUdbZ7wGAMQGRmABAB3G6/Vq69atktp3+bAUuF8zpKysrF1txQKfz6clS5bYSwdNnDhRjzzyiH1pbntNmDBBr776qn79619r/vz59jI2fr9fX375pZ5//nndcsstdnhurYSEBC1evFgvv/yy7rzzTl122WV2wC8uLtZ7772n++67T7/85S8jAmd9bZmAKXziqfC/GwBA98PXlACADrNt2zb7ktT2BtjwJVPOFmDT0tKUn58fsxP4hMJraPT6sssu0/Lly9u1fmxj4uPjdcUVV+iKK66QFBi5/uyzz7RmzRpt2bJFZWVleuihh7RixQr17t27TecYOHCgvvvd7+q73/2u/H6/cnNz9cknn2j16tU6c+aMPvroI7344ou69957O+znKi8vt7fPNkEXACC2MQILAOgwoQA2fPhwZWZmtqut8DVPjx071mzd0DI7RUVFZ63b1dQPr+PHj9fvfve7Dg+vjUlLS9NVV12lxx57TDfccIMkqbq6Whs3buyQ9kOXJ99xxx36r//6L/vy7HXr1nVI+yFHjx6VJGVmZiopKalD2wYAdC0EWABAhzBNU5s2bZIUmHiovfr166c+ffpIkvbu3dts3ZkzZ9rbK1asaPe5O4vP59OvfvUrO7yOGzdOjz766Fnvwz0XsrOz7e3QPcUdKTMz017Hti1rzTalpKTEXkLp0ksv7bB2AQBdEwEWANAhdu/ebQef8EDZHqFQdfToUVVWVjZZ78orr7TD0TvvvKPXX3+92Xbz8/M7pH/t4fP5tHTpUn300UeSzm14/fDDD88aSkP3LkvSgAEDWtX+qVOntG3btmbrnD592h4p7d+/f6vab86ePXvs7W9+85sd1i4AoGviHlgA6OZOnDhhzzgbElpfVJI2bNgQMVuw2+3WrFmzWn2e0Chi//7927QUSmOuuOIKvfPOOzJNU9u2bdPll1/eaL24uDj9+te/1j333KPq6mo988wz+uijjzR37lwNGjRILpdLRUVF2rdvnzZs2KARI0Zo8eLFHdLHtlq2bJk2bNggKRAYf/SjH+n06dPNHpOenq709PRWn+v111/XsmXLNGHCBE2YMEGDBw9WamqqamtrlZ+fr3Xr1tmj5xkZGa1e/ig/P18/+9nP1L9/f02bNk2jRo1Sv379lJCQoNLSUu3Zs0dvvvmmPZv0okWLWv0zNOXTTz+VFLi/d8qUKR3WLgCgayLAAkA3t3v3bi1fvrzJ8ueffz7idUZGRrsCbEdcPhwyceJE9e3bVwUFBVqzZk2TAVaShg0bpmeffVYPP/ywTp06pe3bt2v79u2N1g3dMxtN69evt7dPnjypH/3oR2c95nvf+57uuOOONp3P6/Vq8+bN2rx5c5N1BgwYoOXLlze7PFBzTp06pVWrVjVZ7nA4dMstt2jBggVtar8+n8+n999/X1Jg1L+tSwABAGIHARYA0G4HDhywRw/bO/twOKfTqYULF+qFF17Qli1bVFJS0uzashdffLFefvllrVmzRh9//LFyc3Pt+y3T09M1dOhQTZo0SVdffXWH9TEWLFmyRDk5Odq5c6cOHTqk4uJi+5Li1NRUDRs2TDNmzNCcOXPatGzP2LFj9dxzz2nbtm3as2eP8vPzdebMGVVWVioxMVH9+/fX2LFjdd1113XY6Lwk+29Ckm688cYOaxcA0HUZlmVZ0e4EACC2/fGPf9Qf//hHpaen64033mjTWp5Nqaio0M0336yysjL98Ic/1K233tphbSO2PfDAA9q8ebMmTJigp556KtrdAQB0AiZxAgC0W+jy4alTp3ZoeJWk5ORkO7SuXLlSVVVVHdo+YtOePXu0efNmGYahu+++O9rdAQB0EgIsAKBdamtrNWPGDH3ve9/TwoULz8k5Fi1apKysLJWWluq11147J+dAbHnxxRclSXPnztWoUaOi3BsAQGfhEmIAQEzYu3evNm/erOTkZH3729+OdncQRRUVFVq1apUsy9LChQubvS8aANC9EGABAAAAADGBS4gBAAAAADGBAAsAAAAAiAkEWAAAAABATCDAAgAAAABiAgEWAAAAABATCLAAAAAAgJhAgAUAAAAAxAQCLAAAAAAgJhBgAQAAAAAxgQALAAAAAIgJBFgAAAAAQEwgwAIAAAAAYgIBFgAAAAAQEwiwAAAAAICYQIAFAAAAAMSE/wc9PpBRKQ1l6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADaUklEQVR4nOzdd3wUZf4H8M/MbElvEBIg9CqgAoqCcoIgoGBB5UBPBeud+lNEUSwHNtQTURHs2BBQEUXxLCAgoKB09Og9dEgCpJC6uzPP74/NTGZ3p212k+wm3/frlRch++zM7CY7z3zmaRxjjIEQQgghhBBCCIlwfF0fACGEEEIIIYQQYgUFWEIIIYQQQgghUYECLCGEEEIIIYSQqEABlhBCCCGEEEJIVKAASwghhBBCCCEkKlCAJYQQQgghhBASFSjAEkIIIYQQQgiJChRgCSGEEEIIIYREBQqwhBBCCCGEEEKiAgVYQgghhBBCCCFRgQIsIYQQQgghhJCoQAGWEEIIIYQQQkhUoABLCCGEEEIIISQqUIAlhBBCCCGEEBIVwhJgDx48CI7jwHEcbr/99nBsskHq37+/8j4SQoie22+/XTlXHDx4sK4PRzFr1izluGbNmlXXh0PCTJIkXHDBBeA4Dg8++GBdHw6JEnSNSIi2SK3Lw2Hu3LngOA4pKSnIzc0N+/ZrrQV21qxZePbZZ/Hss8/W1i7r3MKFC5XXXFBQUNeHQyp5PB4sW7YMTzzxBAYMGICmTZvC6XQiISEB7dq1w0033YSFCxdCFMWgtrtt2zY8+OCD6Ny5MxISEpCcnIxzzz0XTzzxBA4dOlRDr4YQ0lC43W4sX74cU6ZMwYgRI3D++eejefPmiImJQXx8PFq3bo3hw4fjk08+QVlZWdj3P3PmTGzevBkxMTF48sknNcvs3LkTH330Ee6991706dMHbdu2RVJSEhwOB5o0aYK//e1vmDRpEg4cOGB5v4WFhZg6dSr69++PJk2awOFwoGnTpujXrx9mzJiB0tJSy9sqLS3FBx98gGHDhiErKwsxMTGIiYlBs2bNMHjwYEyfPj1s9TVjDHv27MHnn3+O8ePHo3///khKSgo5zK1ZswZ33nkn2rVrh7i4OKSlpeGCCy7ACy+8gFOnThk+Vx0mg/2KZg8++KDyOiZNmhT080tLS5GcnAyO42Cz2XD8+PGQjqe8vByffPIJrr32WrRp0wZxcXFISUlB586dcf311+PNN9/EsWPHdI9l8eLFmDx5Mq699lp069YNmZmZcDgcSExMRIcOHTBq1Ch89dVXQV3HuN1ufPDBBxg4cKByXZSVlYVrrrkGX375JRhjIb1mf6Io4rPPPsPw4cORlZUFp9OJtLQ0dO/eHRMnTsThw4ctbSeYv2Gjz5w6TAbzFc25JicnB3a7HRzHIT4+HmfPng16Gy+88ILyXtx3333Kz2+++WZ07NgRhYWFuvVFSFgYZGdnMwAMABszZoxmmX79+illGooxY8Yorzk7O9u0fEN8j2rb8uXLWVpamvI+G3316tWL7du3z9J2p06dyux2u+62EhMT2RdffFHDr440FMGeW2rLJ598ohzXJ598UteHU+/s3LnT0rkLAGvdujX7/fffw7bvkpISlpmZyQCwsWPH6pa7+OKLLR2f3W5nzz33nOl+Fy9ezBo1amS4rbZt27KNGzeabmvDhg2sTZs2psfWpEkT9vPPPwf1/mh55JFHDPejd72kR5Ik9vDDDzOO43S3mZGRwX755Rfdbaiv14L5atOmTbXfByvXiDVt06ZNyjG0bNmSSZIU1PNnz56tPH/o0KEhHcuyZctY27ZtTd/zadOmaT5/0aJFln9v5513Htu5c6fpMWVnZ7MePXoYbuuKK65g+fn5Ib122b59+9j5559vuL+EhAQ2e/Zs020F83ds9PenrleD+fr000+r/T5EQl1+zTXXKMfw4YcfBv38du3aKc9fv369z2Py54bnebZjx45wHTJjjDEbwqB169ZhvzPTEK1cubKuD6HeO3bsGM6cOQMASEtLwxVXXIHevXujadOmcLvdWL9+PWbPno2ioiJs2LABl19+OdavX4/MzEzdbb733nt47LHHAAB2ux233XYb+vXrB7fbjZ9//hlff/01zp49i9tuuw0pKSm48sora+W1kvpr1qxZ1EW3AWvbti0uvvhidO3aFS1btkRcXBzOnj2LrVu34ssvv8SxY8dw8OBBDBo0COvWrUO3bt1C3uc777yDkydPQhAETJgwwbBscnIyLrroIvTo0QPt2rVDamoqRFHEoUOH8NNPP+G3336D2+3GM888A4/Hg+eff15zOytWrMA111wDt9sNAOjduzdGjRqFZs2aITc3F99++y2WL1+OAwcO4Morr8Qff/yBDh06aG7r0KFDuOKKK1BYWAgAyMzMxO23344OHTrAZrPhwIEDmD17NrKzs5Gbm4trrrkG69atQ/fu3av9nvm3fiUmJqJFixbYsWNHtbb35JNPYtq0aQCA+Ph43HXXXbjoootQXFyMBQsWYOnSpcjJycF1112HVatWaR57kyZN8O2331ra3+TJk7F582YAwB133FGtY44UPXv2xHnnnYctW7bg8OHDWL58OQYOHGj5+erzbSjvxTfffIObbroJbrcbPM/jqquuwoABA9CsWTMwxnDs2DGsW7cOixcvNt1Wly5dcNFFF6Fz585Kb4KCggJs3rwZ8+bNw5kzZ7Blyxb069cP//vf/3SvYwoKCnDVVVdh165dAIBzzjkHd955J7KysrBv3z7MnDkTR44cwbJly3DDDTdgyZIlsNmqHx9OnDiB/v374+jRowCAli1b4s4770Tnzp1RWlqKFStW4IsvvkBxcTFuv/12xMXF4cYbbzTdbteuXfHCCy8YlmnZsqXuY2PHjsXw4cNN97N3717lHJiYmIgRI0aYPieS3XHHHfj+++8BeP/O77rrLsvPXbVqFfbv3w/A+/736tXL5/F//OMfmDRpEg4dOoTnnnsO8+bNC9+BhzUOG2iIrYuRcGeF+JozZw4799xz2eeff87Ky8s1yxw9epR17dpV+d2NHj1ad3vHjx9ncXFxDACz2Wxs6dKlAWXUrVItWrRgZWVlYXs9hEQSaoGtWcXFxezAgQOGZUpLS9m1116r/B6uvPLKkPfrdrtZixYtGAA2ePBgw7I7duxgbrfbsMzcuXOVVkSbzcaOHj0aUKa8vJy1bNlSeR1PPPGE5ramTZumlBkwYIDuPu+8806l3JAhQ1hpaanm6xw9erRS7rrrrjN8HWbef/999vDDD7PPPvuM7dq1i0mSxFasWFGt1sjNmzcr71lycjL73//+F1DmmWeeUbbdq1evoFsZ1fLz81lMTIzSenL48OFqbysSWmAZ8/1bue222yw/79ChQ8p736hRI1ZRUVGt/W/bto05nU4GeHsNaP0OZeXl5SwnJ0fzsVOnTrHjx48b7uv06dM+vSHuvfde3bLjxo3zOV/4X6OcPn3ap3X2rbfeMty3mZEjRyrbGjhwICsuLg4os3r1auXaqlGjRoYtv/K2+vXrF9JxWfX4448r+7z77rtD2lYk5ASXy8UaN26sHIfVnoeM+Z5XX331Vc0yTz31FAPABEFghw4dCtdhMwqwNSgS/jCJr/z8fEuV+tatW5XfXWxsLCspKdEspz7xP/bYY7rb+/vf/x62kz8hkYoCbGTIzc1lgiAoAbG6F9yyb7/9Vvm9WunSZ4U6ZH/00UcBj8+bN095/MILLzQ8bw8dOlQpu2zZMs0yzZs3V8ps375dd1v5+fnMZrMxACwtLS34F2aiugF2+PDhyvPefvttzTKSJLGLLrpIKffDDz9U+zjffvttZTuDBg2q9nYYi5wAm5ubqwz1iY+PZ2fPnrX0vOeff145/gcffLDa++/duzcDwJKSksJ6Ia9n8+bNPjfPteTk5DCHw6G8J3qheevWrUqIz8zMZB6Pp1rHdPz4cWU7sbGxuvtjjLFXXnlFOf6JEyfqlqvNAOvxeFjTpk2VfYY6TCNScoL6WnbSpEmWnlNSUsISExOVeubkyZOa5bZv365s+9///nfYjrnGZyGWZ9b99ddflZ8FMwhakiTMnz8fo0aNUga6JyYmonPnzrjvvvuwdetWw2N79tlnlX3IXXR/+eUX3HzzzWjTpg1iYmICZv/yeDz4+eefMX78ePTt21eZNCIxMREdO3bE7bffjt9++013n/JA8E8//VT5WZs2bUwHkwczC/G6devwz3/+E506dUJiYiLi4+PRrl07jBkzBsuXLzd9vryf/v37AwBKSkrw6quv4sILL0Rqairi4+PRtWtXPPnkk8jPzzfdXrRISUmx9P5269YNnTt3BgCUlZVh3759AWUYY/jqq68AwHRWzrFjxyrff/nll8EedkjWrFmD++67D126dEFKSgpiYmLQsmVLjBo1Cj/++KPhc1euXBnwGT18+DDGjx+Pzp07Iz4+HikpKbjkkkvwzjvvwOPxWDqm4uJivPHGGxg0aBCaNWumTN7Qq1cvPP3008jLyzN8vv9nRRRFzJo1C4MGDULz5s1hs9nQunXrgOfl5ORgwoQJ6NKlC+Lj45GWloaLLroIr732mjIRTOvWrcFxXMDzFy9erOxT/fs0MnbsWOU5ixYtsvQcK8xmLqyp39sPP/yAa665BpmZmYiJiUHr1q1xyy23YM2aNUG/BpfLhY8++gjXXnstWrRogZiYGKSkpOC8887D+PHjdWdk3L17N+Lj48FxHJKTk5Gdna27j/z8fLRs2RIcx0EQBMPzdn2Snp6O9PR0AN76zGxiHzNz5swBAMTGxuL6668P+fgAb/dH2cmTJwMeV9djt956q+F5e/To0cr3n3/+uWYZ9SyYet2MAW8dIb93JSUluuVq09mzZ5XzR1JSku5ENP71UCh1zSeffKJ8f+edd1Z7O8HIy8tDr169lHPXI488ojk8rbp1Wnp6Oq6++moA3t/t/PnzLR2X+lquut2HV61ahbVr1wIAxo8fb9iVNVzMPmOAd7JRl8sFwDvpTpMmTTTLdevWDQMGDFC2pb6mD8bKlSuV3+mQIUN09wf4fq6/+OKLau0v3BYvXowTJ04AADp37oxLLrmkVvb74YcfwmazgeM4ZGVlYfv27QFlQrmuUv9dz54929Kw0AULFiiTPg0dOhQZGRma5bp06aIMZ5g7d274hpyGIwUb3V1Tt7wafT3zzDMB2923bx/r3r274fN4nje8W6DuUrN8+XL2f//3f5rbUd/56N+/v6VjHjNmjOadbasDwY3eKz1ut5vdc889ptseOXKkZhcpmVyuX79+bP/+/axLly6622rVqlWDbEHu1auX8h6sXbs24HF1K223bt0MtyWKIktKSlL+ZouKimrqsBXFxcVs1KhRpn8rw4YN0z0edWvBM888wxYtWsRSUlJ0tzVo0CDdrtmyn376iTVp0sTwmBITE9l3332nuw31Z+X06dOsb9++mn+3asuXL2epqam6+zz33HPZ4cOHWatWrTSfL4qiMgFMamqqaVfwsrIyZX8tW7Zkoigalg+G2V3bcP/ePB6P4XmN53k2ZcoUyy2wVibTcTgc7L333tN8/syZM5Vyffr00W0NGDFihFIunHd+I11BQYHS0mS320MatlBeXq505bvsssvCdozqXilaLbDqVtVFixYZbkvd0pSZmalZJisrSyljtQW2e/fuwb0oC6rTAvv9998rz7n66qsNy+bm5ipl09PTq3WM6rotNTXV9JxuxkoLbHZ2NuvYsaNS7j//+U9AmXDUaf/973+Vclb+nn/77Tel/Pnnnx/My/Zxxx13KNvZv39/tbcTDHXLl14L7I033qiU+frrrw23N3XqVKWsUY8zI+pW1ccff9y0vHzdBIDt2rVLs4z6eram3XDDDcr+pkyZEvL2rLTAvvjii0qZTp06abbeh+O6qmfPnkrZ5cuXmx77gAEDlPLffvutYdmHH35YKfvnn3+abtuKsEziZESe1n3ixInKHQOtCQTk1i7Z/v370bt3b+XOcd++fXH11VejVatWEEURmzZtwqxZs5Cfn4/JkyeD53nTqaynTp2KRYsWKZM3dOvWDR6PB+vXr4fT6VTKlZWVISEhAQMHDsQFF1yA1q1bIyYmBidOnMD27dvx2WefoaSkBJ9++ilSUlLwxhtv+OxHHgg+Y8YMrFixAgDw/vvvB9xpqs4duNtuu00ZBB0TE4MxY8bgkksugSAI2LhxIz766COcPXsW8+fPR2FhIRYtWmR457qoqAjDhg3D7t27cd111+HKK69EWloaDhw4gHfffReHDx/GoUOHMHr06AbTegF4W4f27t2r/L9Vq1YBZbZt26Z8f8EFFxhuj+d59OjRA7/++iskScLOnTtx0UUXhe+A/VRUVOCKK65Q7vi2a9cOo0aNwjnnnAO73Y59+/Zh9uzZ2LNnD3788UcMHz4cS5cuBc/rd8r466+/MHXqVDDG8K9//Qt9+vSB0+nExo0b8d5776GkpARLly7Fiy++qDspy4IFCzBq1CiIogi73Y5rr70W/fv3R0ZGBoqKirBixQrMnz8fZ8+exfXXX4+lS5cqd3313HrrrVi9ejXOP/983HzzzWjdujWKioqwZcsWpcyOHTtw9dVXK62sPXr0wK233oqsrCzk5OTgyy+/xO+//45Ro0bptkbyPI977rkHTz31FPLz87FgwQLccsstusf19ddfK70X7rrrLsP3tiaF4/c2duxYpRXC4XBgzJgx6Nu3L3iex/r16/HRRx/h8ccftzQBxpo1a3DFFVegtLQUHMdhyJAhGDx4MJo3b46ysjKsWbMGc+bMQWlpKe699144nc6AFqd77rkHP//8MxYsWIA1a9bgueeeCzj2jz76CF9//TUA7+Q/0bzUQTA8Hg8eeOABZeKjoUOHIiYmptrb+/3335XPTbjOWT/++CO++eYbAN56bOjQoQFlWDXv0p88eRKnTp1C48aNfX5+3XXX4e233wYAPPLII/j2228RGxvrU8bj8WDcuHHKOWDcuHHVOoZwC6auSU9PR6tWrXDo0CHk5eUhNzfXsJVLy8cff6x8/49//MPn+qgmbN26FVdeeSWOHz8OQRAwc+bMgFbfcNVpV111FTIyMpCTk4NVq1bhwIEDaNu2re6xhWvyJvn6qVGjRmjbti2OHz+O6dOn47///S8OHToEh8OB1q1bY/DgwRg7diyysrKqvS/A28Ks7il0ww03aJYL5m/rwgsv1HxeMKr7uQa8fyedOnXSfXz37t3o27cvdu7cibNnzyI1NRWdOnXCwIED8a9//ctwMk4rTp06pUx2ZLPZfFqIawJjDOPGjcOMGTMAAL169cJPP/0UcG4L13XVHXfcoUzaNmvWLFx++eW6x3bo0CEl36Snp2PYsGGGr6V3797K9z///HNIk+MpwpGCw72MjiiKyp0Ap9PJ5s+fr1nu5MmTSgstz/Ns27ZtAWXULbAAWN++fVlhYaHh/pctW2bYennq1CmlxYfned1JNcK9jI56TFBGRobmXeSDBw/6tGzojbdUvycOh4N9//33mq9Tva1169aZvgY9JSUl7Ntvvw3L16ZNm6p9HFbNmTNHed09e/bULPPcc8/5tHKZUU8OMmfOnDAfsS//sblak6q4XC6fY3r33XcDyqhbCwBvS+KePXsCyq1bt05ptdC7Y3/48GHlbmrLli3Zli1bNI993bp1LDk5mQFgWVlZzOVyBZTx79kxbtw4wxZOdQvt/fffr1nW/1zh3wLLmPecI7dsmd3tveyyyxjgnbjgyJEjhmWDFUwLbKi/N3ULREpKiuZyJbt27VKWWJG/tFpgi4qKlMmAUlJS2MqVKzVf3969e5UJfOLj41leXl5AmTNnziitaoIgsFWrVimP7d69m8XHxzPAO94s1BaPnTt3hu38pfVaqkMURZ/tzpkzhz311FM+Sxq0bt2aHTx4MKT9vPTSS8r2vvrqq6Ceu2HDBuX4vvzyS/b666+zq666StmeIAiara+M+bZYTZ8+3XA/6roRAFu9enVAmby8PNa+fXulTGZmJnvyySfZxx9/zGbPns2eeeYZpb7jeZ5Nnjw5qNdqVXVaYNXvhZWx5fK5B4DP58IKl8vF0tPTleeHo741ukZctWqV0jskJiaGLVy4UHMb4arTGGPs0UcfVco8/fTTusetHuNnt9ur/dnNz89X9te9e3f2888/G/YGiomJsbw0y9mzZ5XP2DfffMNmzZrFHnnkEZ9xmt27d9ecBEkUReX8LwiC6eRrBw4cULbZrl276rwV7NNPP1W2cf311xuWPXnypM/78sILL2iW03sf1V9Op5O98cYb1TpmmXoSsGuuuSakbcn06nKXy8Vuvvlm5bFBgwZpjtkO53XV6dOnlUnGzMaIq69/H374YdPXefDgQcu/d6siMsAuWLBAKTtjxgzDsrt371Ymq7jnnnsCHldflMbHx7Njx45Zek1m9u/fr2xXr6ILd4BVzwL3008/6W5n3bp1yiD5Vq1aaXavU3+wn3/+ed1tffDBB5bKmanu2nNaXzU9CcSZM2d8Tv56F23qLhFvvvmm6XaDLV9dx48fVyZluOGGGwzLulwuZT26Dh06BDzuH4R+++033W3dcssthuUefPBBpaI060Ly0UcfKdv67LPPAh5Xf1YuuOACw/C6YcMGpWy3bt0MJ59Qb1crwDLm2/VRKxQy5j0vyWWGDRtm+FqrI9gAG8rv7brrrlMenzVrlu52fvjhB599al1ov/baa8rj//3vfw1f4y+//KKUffHFFzXLrFy5kvE8r/y+8vPzmcvlYhdccIHy3HDcLPK/uRHK14oVK0I+Hsa8XdT19pGQkMDuvPPOsITlf/zjH8p29S6O9Bh197z00ksN1yv98MMPlbJmM+oOGzbMZ9t6kxedPn2ajRgxQrlm0PoaOXJk2Lq4aalOgL3++uuV52jdbA61vNo333yjPDeULrNqeteI3333HYuNjWWAd2blX3/9VfP54azTGPPtWtu6dWvdvy112DLbrxH1+s3NmzdXbq717NmTvfbaa+zLL79kb7zxBuvTp4/P3+KCBQuC2rb/V1paGnv44Yd1J6EsLCxUyjZq1Mh0X8GW17Jv3z5lG3FxcSw3N1e3rLrLMgD26KOPapYDvIH6vvvuY++++y6bP38++/TTT9mECRMC1ts1umFh5rzzzlO2Y9Zl1iqtury4uJgNHjxY+fmoUaN0J+IL53UVY77XNx9//LFmGUmSfG6UWq0X5M96dW9++IvIACvPtpeUlGRp7I78ode64FRfeBgth1IdcouD3piUcAZY9Xt87rnnmm5r4MCBSnmtllP5MUEQ2JkzZ3S3ow7qN910k+l+9URLgPV4PD4nDqPwoR6L/MEHH5huW55KHAB76aWXwnnYPt544w1lP3/88Ydp+SeffFL371R9sdWjRw/D7ahPjv5jFyVJYmlpaQwwX4aDMe8JXL4zrPX7Vn9W9E6ysokTJypl9e7Iy9QXb3oBVh2sJkyYoFnmscceU8oYjTmprmACbCi/t/LycuXCMSMjw3TmyXPOOUfZllaAlXvMdOzY0fQ1MsZYs2bNGGDc2q3+XI0aNYpNmDBB+f8tt9xiaT9moi3A9u3bl82dO1fzLnuwLr30UmW7WsvdGNELsBkZGey5554z7JlQUFDgM25bbxbSN998M2D7n3/+ue529+/fz+6++27d987hcLCRI0eaLlNSXdUJsIMGDVKeo7VUmz/1TQej90LL1VdfrTzXrOXbKq1rxI8++ki5kZCZmcn++usv3eeHs06TqWdr1vtMXn755UqZYG8EqK1Zsybg70yvJ9ATTzyhlGnUqJHmEjNqRgH26quvZgsXLtQN6MeOHVPKNm/e3PR1uFwun89Jdanf10GDBmkG7DVr1ihBX/765z//qbk9vRsfjHmv6dTXAEDwvRIYY2zjxo3K85s0aWLaWm2Vf12el5fn87f5f//3f7o36MN9XcWYdyytvG+9evfXX39VylxwwQVWX6pSnzscjpCW+JLV+BjY6li1ahUAoGnTppYWcxYEAYC3T3ZZWVnAuBbZ3/72N8vHUFRUhM8++ww//fQTtm7dilOnTunOSCgvxlyT1q9fr3w/ePBg0/KDBw/GL7/8AsA7Y7He2KWOHTsiNTVVdzvNmzdXvg9lNuLWrVuHb+axGvTQQw9hyZIlALxjlNXjX6KF/PkBvH+bCxcuNCyv/r3u3LlTc/ZewHcMgxajv5Xt27fjzJkzALwLf5sdEwAkJCSgoKAAO3fuNCxn9rneuHGj8r3RmA4AyqzcRi6//HJ07NgRe/bswaeffooXXngBdrtdedztdivjRZs1a2Y6NqSmhfJ7+9///qfMUNmvXz/lXKtn4MCBur+vwsJCZVxyRkaG5b8BAIZ/A8899xx++eUXrFu3zmfW1TZt2uCdd94x3YcVzz77bMSNoY2JiVHOqYwx5Ofn46+//sKHH36IL774AqtXr8bMmTPx9ddfK7PqVof8uQWAtLS0oJ47b948Zc6G0tJSZGdn4/vvv8crr7yCZ555BtOmTcO8efMwZMiQgOcmJydj2rRpyrjDF154AcuXL8fIkSPRrFkz5OXl4dtvv8WyZcsQGxuLlJQUZXZQvfHm//nPfzBx4kRIkoS7774b9957rzJT644dO/Dee+/hww8/xPz587F27VosXboUHTt2DOo1R7OTJ08q11wOh8NwjH8opkyZgieeeAKAdyzrkiVLDMeh1kSddueddyrXVbNmzQo49x86dEhZuSIzMxNXXnml4T6NSJLk8/9zzjkH06dP1/w7femll/DLL79gw4YNOH36ND777DP885//1N12586dlfOAKIo4ffo01q9fj7feegs//PADfvjhB4wYMQKzZs1CfHx8tV9DOM2YMQO9e/dW5l/o2rUr7rzzTnTq1AmlpaVYuXIlPv/8c7jdbrRt2xYHDhwAoP+5vuyyy3T3JQgCJk+ejJycHHzwwQcAgBdffDHoVQHUs3LfdtttsNnCH58OHz6Mf/7zn9i9ezcA4JlnnjGsd2riukqej+LYsWP47bffkJ2djTZt2viUqe648EaNGuH48eNwuVwoKSlR6vdqCzkCs/C2wJ49ezaku9v+XYTVd86Nut2qLV++PGA8l9FX27ZtNbcTzhZY9R3I999/33Rb6nX7nnzyyYDH5cf+9re/mW5LLltbi0TXFXVLTkZGBtu9e7dh+UjtQqzuPhnsl3+3EnVrgdnaYP4z36qpZ9EM9kurG5j6s2I0Xp0x324/Vlqk5FYfvRZYxhh79dVXlW36d/P6+uuvlcdqaubbYFpgQ/m9qc8jTz31lOlxqc9T/i2w6plNg/2y2+2G+92/f78yVg3wrkm3Zs0a0+Otr9RDPy6++OKQ7nbLXfAEQQjb8R08eFBZl9Vutxu2vr355pvKuHOtr8TERPbf//7XZ4jNzz//HLAd9fndaGjS9OnTlXIXXnhhWF6vWiR3IZ4yZYryvL///e+Wn2dGfY0oj8MDvF2U9daOVAtnnSYrKChQujRqjfdTj/HT6mmzatUqw7Hu6lbFLVu2+BzTK6+8Yvh633//faXsyJEjTd8fPeqWR63fZ110IZb99ttvhrPmchzHnn76aZ/rJq1rWauOHTumDK1zOp2m1w1q5eXlPmOWjWYxD5a6Lpc/GxzHsXfeecf0ueG+rpKpezD4XxOox4U7nU7DHpz+1L15jLqOW1U302IaKCwsDOn5cmuBFr2WWbW9e/di2LBhyppZnTp1wrhx4/D222/jiy++wLfffqt8yXe1RVEM6ZitkNdaAmDpLpr6zob6uf7qambUSPPCCy/gpZdeAgA0btwYy5YtM73znpKSonxvZZ3F06dPaz433EL5DBl9fkL5W6mpYwLMP9dyzwmbzebTUqrHyufr9ttvV2bmlO/qyuT/cxyHu+66y3RbNS2U31txcbHyfVxcnGl5o/culL8BeUZdPY0bN/ZpHWzbtq3pjJr12d13342BAwcC8PbAsdKTSY/8dy6KojIbcahatWqFl19+GYD3dyufe7U88MAD2LVrFx5++GGce+65SExMRExMDNq3b4+xY8diy5YtuOaaa3zOr/6zjR47dgxTp04F4G39euCBB3T39+CDD+Kcc84B4O29Ic96W5dqq66pjbVf1bO8l5WVWbp+qon6Izk5WVnTuKSkBAsWLFAeY4xh9uzZyv+1WpkmTpyI66+/XvdLve6w/+/A7Nykfnz//v2GZY0899xzynXMV199hR07dvg8npCQoLQkFhQUmK4HHs5rmL/97W/Ys2cPpkyZgr59+yItLQ12ux3NmjXDqFGjsGrVKjz33HOGn+tgNGvWTHkvKioqDNcP97dw4UKlVf/iiy/2WV83nOT3nzFmaQ3qmrquUs/6778m7Ndff61kiuHDhxv24PSnPl4recxMxHUhVgevyy67rNqLJVfXf/7zH5SVlQEA/v3vf2Py5Mm6y9Dcc889tXZciYmJyvdW/rDVF57q59aV0tJSpWtuqFq2bImePXuGZVsA8Morr2DSpEkAgNTUVCxduhTdunUzfZ464B48eNC0/KFDhzSfG27yZ4jjOHg8noi4SaH+XD/99NN47rnnam3fcqjyeDxwu92mIdbK56tRo0YYMWIEPvvsMyxZsgSHDx9Gy5YtcejQISxduhQAcMUVVwR0vYk26t+blfBi9N6ptzV69Gilm3U43H///T6frz179mDixImYMmVKWLa/a9cu7Nq1Kyzb6tu3b8AyCDXhyiuvVIaRrFy5EldddVW1tqO+MXDmzBlLNzKsHp9M7qqpp23btnj99dd1Hy8uLsaRI0cAeG+0+F9gLlmyRLkJMnDgQMOl5TiOw4ABA5QuduvXrzfthl/TaqOuWbNmjfI3npWVZWmoUnWMGDECSUlJePPNN7Fnzx5cfvnlWLFiBZo1a6b7nJqq0+644w58/vnnALzdIseMGQPA22VZDo69e/cOWOYxWFlZWYiPj1fOj8nJyYbl1Y+HElJ4nsegQYOwZ88eAMCvv/7q89ngeR7t2rXD7t27IYoijh49qjuECAj/NUxycjImTJiACRMm6JZRh+5evXqFtL9GjRop3xcUFFh+nnpZqZq6sQMA8+fPxx133IHc3Fw89thjAIBHH31Ut3xNXVd17NgRl156KX7//XdkZ2fjt99+Q79+/QCEtqyU3N3Z4XCEpTt7xAXY5ORkJCQkoLi4uFbGlvpbtmwZAKBJkyZ4/vnndSu6s2fP+owNqmlNmzZVvlevT6pHXcaoYqgtubm5yt3OUI0ZMyZsY1OnTZuGxx9/HID3by+Y9anUIXfTpk2GZSVJwp9//gnAW2nId/hrQvPmzfHXX3+BMYZjx46hRYsWNbavYI5JVtuf62bNmiljLw8cOGC4jlx+fr7liu3ee+/FZ599BkmS8PHHH+PZZ5/Fxx9/rIx3Mhq3FC3U5459+/aZljcqU1N/A5999hk+++wzAN6Wi1OnTuHQoUN49dVXMWTIENN1hK2YN29e2C4OVqxYYWmsdajUNy6DuVjz17p1a/z+++8AvBcgoa5PKQvX8QHeNTblVoI+ffoEjE87fvy48n1SUpLp9tQBwsoNrZoWTF2Tl5enBI309HTLa8CqW1/HjBlTozc+Z8yYAY7jMGPGDEshtqbqtAEDBqBly5Y4fPgwfv31Vxw8eBCtW7f2eS/0LtLNbrqocRyHbt26Yd26dQDMQ6n6cbOwa8bsc9atWzdlzOWmTZsMA6x6PgkrN/lDlZ+fr9Td8fHx6NGjR0jbq04L8tGjR5VcEBcXh5tuuimkYzDSpUsXrFixAgMGDEBOTo5piK3J66o77rhDOe/PmjUL/fr1w8GDB5W/+6ysLAwaNCiobcqZqWXLloY3Ea2qtaYZ9cmQmUzmIw/IPnDggKWLpnDKyckB4J0AxOgEvmzZsoCB+f6Cec1m1JMwyS08RtStneFafL6+efvtt/HII48A8J7kFy1aFNQdvq5duyoXc9u3bzc8gfzxxx8oKioCAFx66aU12iou3ykDELZW71D16NFDuXD85ZdfTD874aRefF1eeFtPMBclffv2RdeuXQF479C63W7lTm2TJk1w3XXXBX+wEeb888+Hw+EA4L17b9bdT27x09K4cWPl7v/atWuVz0MosrOzcf/99wPwXuB88cUXmDt3LgRBgCRJGD16tM9FS0OirjtDafFVX6jKF7rhEK7jA3zDl1a3fXVolVtqjahbmtStNnWlf//+Slfu3377TeklpuXnn39Wvrc68VBpaakyARrHcUG3rFTH9OnT8dBDDwHw9pjo37+/z40GtZqq03ieV1pd5W7DJSUl+PrrrwF4uzmOGjUqLPtS94AwuwmhfjzUlk6zz5l6AjX1344W9VCEUCa1surzzz9XurrecsstiImJqfa2Tpw4obREOxwOtGrVytLzZs2apVyv3HjjjZZugIVCDrEZGRkAgMcee0wZ/uCvJq+rRo4cqfS2+frrr1FSUoJPP/1UyTKjR48O6ibXwYMHUV5eDgA477zzwnKMtRZg1U3dZnc05RMK4G0Wr03yL+zAgQO6oVMURcMxO7JgXrOZ1q1bK91m//e//xmG2I0bN2L58uUAvGONImEsmDwLcTi+wtH6+sEHH+DBBx8E4L3w/emnn9CnT5+gtsFxHP7+978D8FZ+b775pm7ZGTNmKN+Hq0LUc9NNNymhY8qUKRHRgiAIgjKj5aFDh/Dhhx/W2r7VQfLtt982DGHTp08Patv/+te/AHgviseNG6fcxBgzZoyl8baRzul0YujQoQC8N/fk7nZaFi1aZDpjtHxuLy0tVcZAVpcoirjllluUIDxjxgx06NABffv2xVNPPQXAO/bx7rvvDmk/gHcW4nCdv2qj9bW4uNjnd3XJJZdUe1sXX3yx8r3cghQOM2fOVL4P5fhWrFihBI62bdvixhtvDCijDuE//vij4bwQRUVFPjOUqm+A1ZWEhATlc1hUVKRbBzLG8NZbbyn/t1rXLFiwQPkcXXbZZWjXrl1oB2zRG2+8gXHjxgHw9hrTC7E1WafdfvvtSmvQ7Nmz8dVXXylDsG644YaQW0BlN910k7KfTz75RHe8KWPMp34MJSgePXoUP/30k/J/rc/Z8OHDlff2iy++8Bm7q7Zt2zblujIzM9PnpkJNyM3NVXq92O125e+kuuRzOOC9IWK1C6v6s1aT3YfVzjnnHKxYsUIZ8zthwgTNEFuT11WJiYkYMWIEAG998vXXX/uMC1ePk7VCXXeo65SQhDwNFLM2C/HYsWOVMkZrNjHGmCiKrFevXkr5hx56SHcRX8YYKy0tZZ988gn74osvAh5Tz0JsZf099Xprr7/+esDjLpeL3XHHHT6zeenNVvr6668rZT799FPTfZvN1Pzll18qjzdt2pTt3LkzoMyhQ4d8Fhh+6623NLclP25lZuFgykaDTz/9VJmNLi4uLqR1GY8dO8bi4uIY4J35dNmyZQFlPvnkE+U9bNGihaW1jUM1fvx4ZZ+XX345O3HihG5ZURTZ0qVL2eTJkwMeM5qhNtiyR44cUWb4dTqdpp+JnJwc9vzzz7P//e9/AY8Fs640Y4z17dtXKa+3/p7/Wp9GsxDLCgoKlN+/+mvPnj2Wjqu6gpmFONTf26pVq5THU1NTNRdL37NnD2vatKnPe6C1DmxxcTFr1aqVMtPiK6+8orvGHWPe93f69Omaa19OmjRJ2deIESN8HnO73cr64IC1mdujwfPPP8+2bdtmWObkyZM+64B36NDBsP40U15erqzHaDZr/Xfffcfmz59vuEaiKIrs1VdfVc7BANjy5cs1yx44cIAdOnRId1tLlizxmblT71zucrlYVlaWsr/rrrtOcxbS0tJSdu211yrlunXrpjmDs/ozY+U8offcYNY037x5s/KeJScna54Xn332WWXbvXr1srzt/v37B3WtEiyza8Rx48b5/L1qrTccrjpNi7o+UZ/HtOrzUNx2220+9ZDW35Z6BtgWLVpofnYnTJjADh48aLivffv2sfPPP9/S9Zv6/b/qqqsCrlHOnDnjM8u33nUlY77vpVYdwJj3c7Zu3TrDY1evHvDss8/qln3iiScMzxEej8enrgDAVq5cqVtebeXKlcpz2rVrF5a1S/0Z1eU7d+70WRFlypQpAc8P53WVP/W5Sv256Nu3b1CvkTHfVTiMZp0PRq2NgR04cKDSCnXXXXfh4YcfRqtWrZR1Bdu3b4/27dsD8HbrWLBgAfr06YNjx45h+vTpmD9/Pv7+97/j/PPPR3JyMoqLi3H48GFs3LgRv/zyC0pKSjB58uSQj/PBBx9UWjcfeeQRrFy5EkOGDEGjRo2wd+9ezJ49G3v37sXll1+OvXv3GnYblWeBBLx3UPLy8tCpUydlfE7z5s1x7rnnWj62kSNH4ttvv8W8efNw4sQJ9OzZE7fffjv69OkDQRCwceNGfPTRR8qd1MGDByvd64jXokWLcOeddyp34u68804UFBSYrp/Vs2dPtGzZMuDnzZo1w2uvvYb77rsPHo8HV111FUaPHo1+/frB4/Fg0aJFSuuAzWbDzJkzDbvBqMcFZGdnG45HMfKf//wHf/31F3755ResWLFCaZno06cP0tPT4XK5cPLkSaU1/+TJkxg4cCAmTpxYrf1ZkZWVhXnz5uHaa69FRUUFxowZg9dffx3XXnstOnTogNjYWBQWFmLPnj1Yu3Ytfv/9d4iiaLp2qxXvv/8+evXqhdLSUrzzzjtYs2YNbr31VmRlZSEnJwdffvklfv/9d/Tp0weHDx/GsWPHLHWPSU5OxqhRo3y6MPbv3x8dOnQI+ZgjRd++fXH//ffjnXfeQX5+Pnr37o0xY8agb9++4Hke69evx0cffYSSkhIMHz7c8LMUHx+PhQsXol+/figqKsKECRPw/vvv48Ybb0SXLl2QkJCAoqIiHDhwAOvXr8fKlSvhcrkwZ84cn+2sXr1a6QWTlZXl05oHeD9rn332Gbp3746ioiI8/PDD6Nevn+H452iwYMECPP300zj//PNx2WWXoUuXLkhLSwNjDDk5OVi3bh2+++47pYUqISEBn376qdLCUh1OpxNXXnklFixYgI0bN6K4uFh3/b4DBw7g4YcfRuPGjTF48GB0794dTZs2VT7bO3bswMKFC31mVh0/frzuZ3zTpk246aab8Le//Q39+/dH+/btYbPZcPToUSxatEjpss5xHN566y3d1m273Y4ZM2bgxhtvBGMM3333Hc455xyMHj1amY9g586dmD17ttJ92G6346233gpprFZBQQFeffVVn5+puyf/+eefAefcAQMGaI7b7tGjByZMmIApU6agsLAQl1xyCe6++25cdNFFKC4uxoIFC5TutQkJCQGfCT3Z2dnKZJlJSUlKq0ttmjZtGjiOw7Rp05TrqxUrVviM8avJOu2OO+5Q3gN5LeFWrVqFZfy82tSpU7F69WpkZ2fjnXfewdq1a5V66OTJk/jiiy+wZs0aAN5z2Jw5czQ/u++//z6mTp2K3r1745JLLkGnTp2QkpICj8eD48ePY/Xq1fjpp5+U7reZmZmGrXPPPPMMFi9ejF27dmHRokXo2bMn7r77bjRv3hz79u3D+++/r3S979+/f8jzO5SUlODiiy9G165dceWVV6Jr165ITEzEqVOn8Ntvv+Hbb79VupvefPPNhr/Dd999F1OmTMEll1yCSy+9FB07dkRycjLKysqwY8cOzJ8/X1lHFvBOzmq19Vhdr6tb6mtL586dsXLlSlx++eU4ceKEMl+LetKrmryu6tevH9q0aYPs7GzlcwEEP3kTUDV8q3Xr1jj//PODfr6mcKRgKy2wHo/HpxXE/0vrzv/x48d97iQbfQmCwD744IOAbQTbAsuY7x0wra9LL72U5ebmKi0JRndgb775Zt3t+L9XVlqV3G43u/vuu03fjxEjRhiucyWXa2gtsP6tbFa/9O4kyqZOnWq6VqFWDwF/6udYWTvYSEVFBXvggQeYIAiWXuPo0aMDthHOljzZmjVrlLUlzb4SEhLYli1bArYRbAssY971neU7lVpf3bp1Y4cPH1bWpzzvvPMsbXfdunU+29FbdzCcarMFljHv+VvdeuD/xfM8e+WVV3x6Gxh9Znbt2uVzR9/oy+l0skWLFinPzc/PV869PM8bntfnzp2rbKdHjx4htURGAnWLitlX9+7d2aZNm8Ky34ULFyrbnT17tm65adOmWT6+xMRE9sYbbxju96uvvjLdTkZGBvvyyy8tvY65c+eypKQk0202btyY/fjjj7rbsdoCq742svpl9HmVJImNGzfOp/Xa/6tJkybsl19+sfR+MObbk+Gee+6x/LxgWLlGZIyxRx55RCnXvn37gJbYcNRpWoqLi1lCQoLPc59++ulQXrKuvXv3mn6OU1NT2eLFi3W3oV5L1+yrf//+bN++fabHlZ2dbXpOvuKKK1h+fr7hdqy0wObl5Zket8PhYBMnTjTsoRPMexEXF8fefPNN0/dBVlRUpPQ84XmeHTlyxPJzg2FWlzPmrS/VLaAvv/xyQJlwXFdpUa+HDGivmWxmx44dyvMnTpwY1HON1FqAZYyxsrIy9vLLL7M+ffqw1NRUn5OQ0Ul75cqV7F//+hfr2rUrS0lJYYIgsKSkJNalSxc2atQo9u6777Ljx49rPrc6AZYxxhYtWsSGDRvGGjduzOx2O2vatCkbMGAA++CDD5TuUVYCrMfjYe+++y7r378/a9y4MbPZbLrvVTAX5WvWrGF33XUXa9++PYuPj2exsbGsTZs27NZbb7VUecn7oQBr7csswDLG2NatW9n//d//sY4dO7L4+HiWmJjIunXrxh5//HHT7j6MeReIVp+8T58+HYZX7K0wn3jiCXbxxRez9PR0ZrPZWFxcHGvTpg0bOnQoe+mll3RPZjURYBnz3oiZO3cuGzlyJGvTpg1LSEhgNpuNpaWlsQsvvJDdc8897Msvv2TFxcWaz69OgGXM273y0UcfZZ06dWKxsbEsJSWFXXjhhezVV19lJSUlTJIkZXH7/v37W9qmJElKJZqWlsbKy8uDOqbqqO0AK/v+++/ZsGHDWHp6OnM6naxly5bs5ptvZn/88QdjjFkOsIx537fvvvuOjRkzhnXs2JElJSUxQRBYSkoKO//889no0aPZrFmzAhZKHzVqlLKPJ554wnAfjDF2yy23KOXHjx9vWj6SnThxgs2aNYvdc8897KKLLmLp6enMbrczh8PBGjduzC644AL2z3/+k/3888+mF37B8Hg8rGXLlgwAGzRokG658vJytnTpUvbUU0+xQYMGsdatW7O4uDilzm7Xrh27/vrr2TvvvGPp/Hbq1Cn23nvvsVGjRrFzzjmHpaWlMYfDwZo3b84GDhzIZsyYwQoKCoJ6LTk5OWzKlCls4MCBLDMzkzmdTuZ0OlnTpk3Z4MGD2bRp00wv0usqwMr++OMPdvvtt7O2bduymJgYlpKSwnr27Mmef/55lpeXZ/m9EEVR+b0CYGvWrLH83GBYvUZkzLersFaIZSy0Ok3PnXfeqeyX4zh24MCBoJ4fDJfLxT788EM2aNAg1qxZM2a321laWhrr06cPe/HFF03//rKzs9l7773HRo8ezXr06MEaNWrEbDYbczqdrEmTJqxPnz5s7NixbPXq1UEf18yZM9mAAQNYRkYGczgcrFmzZmzYsGFs3rx5lrrQWgmwHo+Hffnll+xf//oX6969O8vIyGB2u52lp6ezCy+8kE2aNMlS6GaMsbVr17LXXnuNjRgxgp133nmsadOmzOFwsNjYWJaVlcWGDh3KXnvttaCvpz788EPldQwZMiSo5wbDSoBljLHdu3ezZs2aGYbYUK+rtBw8eJDxPG/586vlqaeeYoC3odGou3ewOMZCnB6XEBIWP//8szJhw9ixY4OeUIiEbuvWrcoMeVZ/B8uWLVOmk3/ooYfwxhtv1OQhElInpk2bhkceeQSCIODgwYNhW06HEEJI/SSKItq3b4+DBw9i1KhRmDdvXti2XWuzEBNCjMlrjSUmJtboWFSiTz2Dp9Wxt++++67yfX1Y+5UQLffeey8yMzMhiiJeeeWVuj4cQgghEe6LL77AwYMHwfM8nnnmmbBumwIsIRFCDrCPPPII0tPT6/ho6p9Vq1YZrpP29ttvKxOfNG/eHFdffbXpNv/66y9l0qIrrrhCWeeUkPomNjYWzz77LADvEjh6a3YSQgghoijihRdeAOCdBEueMC9cqAsxIRHg1KlTaNKkCRo3boz9+/cjMTGxrg+p3mnfvj3Ky8tx1VVXoUePHkhPT4fb7cb+/fvx7bff4s8//1TKfv/997oBdvHixZAkCXv27MErr7yizM63evVqXHrppbXyWgipC5IkoVevXti8eTMeeOABw7WvCSGENFxz587FbbfdhuTkZOzZswdNmjQJ6/YpwBJCGoT27dv7LN+hJTY2Fh988IGyOLgWran0rY6XXbJkCUpLS80PVkPjxo3Rt2/faj2XEEIIIaS+oABLCGkQ1q5diwULFmDt2rU4duwYTp8+jdLSUqSmpqJjx4644oorcN999yEjI8NwO3KATUhIQMeOHXHffffhzjvvtLRubOvWrX3WgQxGv379sHLlymo9lxBCCCGkvrDV9QEQQkht6N27N3r37h3yduieHyGEEEJI3aEWWEIIIYQQQgghUYFmISaEEEIIIYQQEhUowBJCCCGEEEIIiQoUYAkhhBBCCCGERAWaxIkQQki9whhDeXk5SktLla+ysrKA/7tcLlRUVMDlcilf/v+XvzweDyRJgiiKypckScrP1I/JeJ4Hx3GGXzzPw263w2azwW63K182mw0Oh0P5ufx/p9OJmJgYxMbG+vyr9X18fDwSEhLgcDjq8LdBCCGEhBcFWEIIIRGprKwMRUVFKCwsxNmzZ1FUVISioiLd74uLi5WgKklSXR9+xHA4HEhISEBCQgISExOV79VfiYmJSElJ8flKSEiwtDwUIYQQUptoFmJCCCG1pqSkBGfOnMGZM2eQn58f8K/6+/Ly8pD3FxcX5/MVGxur/Lt87u+ABHASByhflf9nHCDC+6/EgWOV3zNUfnnXA/b5PwM4+Weqh+XvoXzPVN8D4CufyDPvZlX/B8cAHmCV/4JngMAw9N6BKC8vR3l5OcrKygK+l4N8KARBQFJSkk+oTU5ORmpqKho3bozGjRujUaNGaNy4MVJSUijsEkIIqRUUYAkhhISMMYbi4mLk5uYiNzcXeXl5ypf6/8GGKrvdjqSkJCQlJSExMRFJSUn4Y8FGcG4e8PDgPJz3XzcHiDwgcuBEDqj84nzSY8PC4A27sDEwm+T9V6j818YAQcINjw5FcXExCgsLUVhYiIKCAhQUFKCkpCSofQmCgLS0NJ9Q26hRI6SnpyMjIwMZGRlo0qQJdWcmhBASMgqwhBBCTDHGUFRUhBMnTmh+5eXlWW4xjY2NRVpaGlJTU7Fj5V7AzYNz8+BcvPd7l/f/cPHe1s8GHELrCuMYYJfA7BJg8/7L7N6fDf2/ATh9+jROnTqFU6dOIT8/H1YvJRo1aoTMzEw0adIEmZmZyMjIUP5t2rQp4uLiaviVEUIIiXYUYAkhhAAARFFEbm4ujhw5giNHjuD48eM+IdVK62lycjKaNGmC9PR0rF3wJ7gKHpxLAFfBA5X/chJ1Na1PGBjgkMAcEphDBBwSbpl8A06dOoW8vDycPHkSOTk5qKioMN1WamoqmjdvjubNmyMrKwtZWVnK/xMTE2vh1RBCCIl0FGAJIaSBKSgoUEKq+uvYsWNwuVyGz23UqBGaNm2KHcv3gSsXwFUIlf/yQIUAjlFrKQnEUNmVOUYEc3q/hj82BDk5OcjJycHJkydx9uxZw20kJyf7hNtWrVqhdevWyMrKoq7JhBDSgFCAJYSQeogxhjNnzuDgwYM4cOCA8u+RI0dQVFSk+zy73a60fP3xxSZw5YI3mMphVaKASmoGEyRvwI0VccdrI3Hs2DEcPXoUx44dw+nTp3WfJwgCmjVrhlatWimhtlWrVmjZsiV1SSaEkHqIAiwhhES5oqIin5B68OBBZGdno7CwUPc5GRkZaNGiBTb/dzu4Mhv4MgFcmQ2o4GnMKYk4jJfAYkWwGBF3vXETjhw5gkOHDuHQoUMoLi7WfV5GRgZat26N9u3bo3379mjXrh2ysrJgs9EqgoQQEq0owBJCSJRgjOHkyZPYu3evz1deXp5meZ7n0axZMxz/Kw9cqa3ySwBXbqOWVFIvKONvYz1gcSKuHj8Qhw4dwsGDB5Gfn6/5HIfDgTZt2qBdu3Zo166dEm5pjC0hhEQHCrCEEBKBRFHEkSNHsGfPHuzZswd79+7Fvn37dMcJZmZmInfHGXAltqqwWkZBlTRczCaBxXnA4jwYNn4A9u3bhwMHDqCsrEyzfJMmTdCxY0d06tQJ55xzDjp16oTk5ORaPmpCCCFmKMASQkgdY4whJycHO3bswM6dO7Fz507s3r1bc9ZWm82GNm3aYP/qI+CL7d7AWmIDJ9LMvoSYYWBAjAgp3oNbp1yPffv2Yd++fTh58qRm+aZNm6Jz587o1KkTOnfujI4dOyIhIaGWj5oQQogaBVhCCKllxcXF2LVrF3bs2IEdO3Zg165dOHPmTEC52NhYtGvXDjuW7AdfYgdXXNmySjP9EhJWTJDA4j3418xbsGvXLuzatQtHjx7VLNuyZUt07twZ3bp1Q7du3dCmTRsIglDLR0wIIQ0XBVhCCKlBjDEcO3YMW7ZswZYtW7Bt2zYcPnw4oJwgCGjXrh32/XoE/Fk7uLN2cGUCTahESB1hggSW4Madb43Crl27sHv3bs2W2ri4OHTp0kUJtF26dKFWWkIIqUEUYAkhJIxEUcS+ffuwdetWJbRqta5mZmYid2s+uLN2b2AtsdN4VUIiHLNJkBLduHXqcGzbtg07duxAaWmpTxmO49CmTRsl0Hbv3h2ZmZl1dMSEEFL/UIAlhJAQuFwu7NixA//73/+wZcsWbN++PeCC1mazoXPnzti56AC4sw7wZ23g3NTlkJBox8DA4jx4cO7t2LZtG7Zt24bjx48HlMvMzESPHj3QvXt39OjRgwItIYSEgAIsIYQEQRRF7N27F5s2bcLmzZuxZcuWgMmW4uPjUXrEDb7IAb7IDq6YWlcJaSiYXYSU5MaI567Cli1bsHv3boii6FOGAi0hhFQfBVhCCDHAGMOhQ4eUwPrnn3+iuLjYp0xqaioK95SCL3KAK6qcGZjGrhJCADBeAktyY+R/huGvv/7Crl27NAPthRdeiF69euGCCy5AUlJSHR0tIYREPgqwhBDip6CgAOvXr8f69euxcePGgDGs8fHxKDvsAVfoAF/gAFdKky0RQqxhggSWqB9oeZ5H586d0atXL/Tq1QtdunSBzWarwyMmhJDIQgGWENLgiaKIXbt2Yd26dVi7di12794N9anR4XDAnQPwcmAtphZWQkh4MEGClOTG9c8OwoYNG3Dw4EGfx+Pj49GzZ08l0DZv3rxuDpQQQiIEBVhCSIN05swZrF+/HuvWrcOGDRtQVFTk83j79u2RveI4+AKnt1swrb1KCKkFzCHikW/uxoYNG7Bx40YUFhb6PN6iRQtccskluPTSS9GtWzdqnSWENDgUYAkhDQJjDNnZ2Vi9ejVWr16NXbt2+TyekJCA0oNu8PlO8PkOcC6aJZgQUrcYGFiCB7e/fSM2bNiArVu3+nQ3TkhIQO/evdGnTx/07t0biYmJdXi0hBBSOyjAEkLqLVEUsW3bNqxatQq///47jh075vN4hw4dcGD5cW9gLbJTt2BCSERjgoR/L3kAf/zxB9auXevTOisIAs4991z06dMHffv2RYsWLerwSAkhpOZQgCWE1Cvl5eXYsGEDfv/9d/z+++8+F3gOhwOekwB/2gn+jJPWYiWERC0G5p0M6pWh+OOPP5Cdne3zeJs2bdCvXz/069cPbdu2BcfRDTpCSP1AAZYQEvXKysqwdu1aLF++HGvXrvVZlzUxMREl+93e0JrvACfxdXikhBBSM5hTxH1zb8Hvv/+Ov/76Cx6PR3ksKysL/fv3R79+/dCxY0cKs4SQqEYBlhASlcrLy7F27VqsWLECa9asQXl5ufJYZmYm8jYXgj8dQxMwEUIaHCZIePT7e/Drr79iw4YNcLlcymOZmZlKy2yXLl3A83RTjxASXSjAEkKiRkVFBdavX48VK1bg999/R1lZmfJYs2bNkLOuAPypGHAltMwNIYQA3jD75OL78euvv2Lt2rU+N/syMjIwcOBADBo0CO3atavDoySEEOsowBJCIpooiti8eTOWLFmCVatWobS0VHksMzMTeRuLwOdRaCWEEDOMZ5j0y4P49ddf8ccff/icT9u0aYNBgwbhiiuuQGZmZh0eJSGEGKMASwiJSPv378eSJUuwdOlSnDp1Svl5kyZNcHpzsbeltZhCKyGEVAfjGSYuewBLly7F2rVr4Xa7lcfOPfdcDBo0CP3790dKSkrdHSQhhGigAEsIiRinT5/GsmXLsGTJEuzdu1f5eWJiIkr2eCDkxoA7S8vdEEJIODFBwrhv78DSpUvx119/Qb40FAQBF198MYYOHYo+ffrAbrfX8ZESQggFWEJIHauoqMCqVavw888/Y8OGDZAkCQBgs9kgnRTA58V4l7yhiZgIIaTGMYeIu2eNxLJly7Bnzx7l5ykpKRg8eDCGDh2Ktm3b1uEREkIaOgqwhJA6kZ2dje+//x5LlixBUVGR8nOuyA4hN8bbRdhDs2MSQkhdkWI9+PtrQ7B48WKcOXNG+Xnnzp0xdOhQDBw4EImJiXV4hISQhogCLCGk1pSVlWHFihX4/vvvsX37duXnTZo0wemNJeBzY8CX2+rwCAkhhPhjYHh+9SP48ccf8ccff0AURQCAw+HAZZddhmHDhqFnz560viwhpFZQgCWE1Lg9e/bghx9+wNKlS1FSUgLAO7aK5drAn4wFn++gca2EEBIFmF3CP+eMwo8//ojs7Gzl5y1btsTw4cMxZMgQapUlhNQoCrCEkBrhcrmwfPlyfPPNN9i1a5fy82bNmiHnjyIIOTHg3EIdHiEhhJDqYmB4c/tk/Pjjj1i6dKmyLndMTAyuuOIKDB8+HB07dqzjoySE1EcUYAkhYZWXl4fvvvsO//3vf1FQUAAAsNvtEI/zEE7Ggiuk1lZCCKlPmCDhga9uw7fffuvTKtu1a1cMHz4c/fv3h9PprMMjJITUJxRgCSEhY4xh69atWLBgAX777TdlfFR6ejrObCjzBleakIkQQuo1BobX/pyEhQsX4tdff4XH4wEAJCcn45prrsENN9yAxo0b1/FREkKiHQVYQki1VVRUYNmyZfjmm2981m3lCu0QjseBP+2k1lZCCGmAmF3EmA+vx3fffYfc3FwA3uXRBg4ciJEjR6JDhw51fISEkGhFAZYQErSzZ89i4cKFWLBggbK0gtPphPsQD+FELPgSWuyeEEKIt1X26ZVjMX/+fGzZskX5eY8ePTBq1Cj07t0bPE89dAgh1lGAJYRYlpOTg/nz5+OHH35QJuzIyMjAqbUlEHKomzAhhBB9M7Y/j6+++gorVqxQhpq0aNECI0eOxJAhQxATE1PHR0gIiQYUYAkhpvbv348vvvgCv/zyi3LRwRXbIByLA38qBhyjbsKEEEKsYQ4RN04bhO+//x7FxcUAvONkR4wYgRtuuIGW4SGEGKIASwjRxBjDn3/+ic8//xzr169Xfs4VOGA7GgeugGYTJoQQUn1MkHDvFzfjq6++wokTJwAAcXFxuP766/H3v/8daWlpdXyEhJBIRAGWEOKDMYaNGzfi008/VcYr8TwP5NghHI2n8a2EEELCioHhiSX3Ys6cOcoyPA6HA1dffTVuvvlmZGRk1PEREkIiCQVYQggAb3Bdv349Zs2ahe3btwPwXkB4DgqwHYsHVyHU8RESQgipzxgYnlv1MObMmYMdO3YAAARBwJAhQzB69Gg0a9asjo+QEBIJKMAS0sAxxrBmzRrMmjULu3btAuANrmK2d4wr56LgSgghpPYwMEzZ8CTmzp2LTZs2AfAG2aFDh2L06NHUIktIA0cBlpAGijGGTZs2YebMmUpwdTqd8OwXvMHVTcGVEEJI3Zq25Rl88skn2LBhAwDAbrfj6quvxq233or09PQ6PjpCSF2gAEtIA7R9+3bMnDkTf/75JwAgNjYWrr0chGPx4Nx+S+FwlRM10amCEEJITeI43brmtb8m4eOPP8bmzZsBeHsKXXvttbj11ltpsidCGhgKsIQ0IPv378eHH36I33//HYD3TrZ0yA7hiEaLK6eaYVjvNEHhlhBCiFVW6gyTMq9segofffSRMslgbGwsbrrpJowaNQpxcXHhPFpCSISiAEtIA3Dy5El88MEHWLZsGRhj3lmFTzhhO5wArkKnxVXN/zThX4ZOI4QQQsxYqTsslGEc8PK6x32GwKSmpuL222/HNddcA5vNFq4jJoREIAqwhNRjxcXFmDt3Lr7++mu4XC4AAH8qBsLhBPBllRW8fArQCq4y9WnCSsAlhBBC/FXnBqlWucoyDAz/XnY/Zs6ciWPHjgEAsrKy8M9//hP9+vUDZ1SvEUKiFgVYQuohj8eD77//Hh9//DEKCwsBAFyBA7aDidVbx5UxaxcVhBBCiBGzusQsdGrUR4xj+L+v/oFZs2YhPz8fANC1a1c8+OCD6NKlS6hHTAiJMBRgCalHGGNYu3Yt3nnnHRw6dAgAwJUKEA4mgs93gkMN3Y2m0wghhBArarBVlAkS/vHeUHz55ZcoKysDAAwZMgT/+te/0Lhx4xrbLyGkdlGAJaSeOHLkCGbMmIF169YBAJKTk1GyWQKfEweO1XA3KrNxTHSaIYSQhsFsoqZa6Nb7Rc47+PDDD/HTTz8B8E70dOutt2LkyJFwOp01vn9CSM2iAEtIlCsrK8OcOXPw5Zdfwu12w2azgR10QjgaD07kzTcQKivjl+g0QwghDUN1JmqqITO2PYcZM2Zg+/btAIDMzEzcf//9ND6WkChHAZaQKMUYw8qVK/HWW28hLy8PAMDlO2A7kAS+vBZnYDQbt0SnGEIIaVjMbmTWYnhkYHh88T/x3nvvKXXlxRdfjHHjxqF58+a1dhyEkPChAEtIFDp8+DCmTZuGTZs2eX9QLsCWnQj+TA2Oc60uOsUQQkjDYjarfR20fjJews3vXYXPP/8cbrcbDocDt912G26++WY4HI5aPx5CSPVRgCUkirjdbnz++eeYPXu2UgGL++wQjiWAkyIsuMroFEMIIQ1LBHfP/fjga5g2bRo2btwIAGjZsiUeeeQR9OzZs46PjBBiFQVYQqLEtm3bMHXqVGRnZwPwdhe2708CVxHhC7YbjX+i0w8hhNRPERxiGRie+PlfeOutt3DmzBkAwODBg/HAAw8gJSWlbg+OEGKKAiwhEa6kpAQzZ87EwoULwRgD3DxsBxLBn4oJ7C7MVU7axKTaP1AtZhM80emHEELqpwgOsDImSBg25VKlfk1JScHDDz+Myy+/vK4PjRBigAIsIRFs7dq1mDp1qjLxBJ8bC9vBZHBuv4Kc32zDkRZgaYInQghpeKIgxALA9K3PYsqUKUoPp379+mHcuHFo1KhRHR8ZIUQLBVhCIlBJSQnefvtt/PDDD94flAmwH0gBX+gMDKf+4RWIjABL4ZUQQhq2KAmwAMA4hn/MvApz5syBKIpISkrC2LFjMWjQIFpyh5AIQwGWkAizadMmvPzyy8jJyQEACMfjIRxOBCf5dQ/WCq7qxyMdnXoIIaR+i8Lg986uF/Hyyy9j7969AIBLLrkEjz/+OFJTU+v4yAghMgqwhESIsrIyvP/++/jmm2+8PygXYN+XAr7IGfzGoiHE0qmHEEKiG8eZn8ujMMQyjmHMJ9di1qxZcLvdSElJweOPP45LL720rg+NEAIKsIREhN27d+P555/HkSNHAAD8yTjYDiZVtboGSyvAqltsq/N4OOmddqxcDBFCCIkcZrPK13WANZvc0ODx9/b8B5MnT8aBAwcAANdccw0eeOABxMbG1sSREkIsogBLSB2SJAnz58/HzJkz4fF4gAoe9v0p4AtiQtuw2TjZYB8PN1pahxBC6gd1QDU6t9eVEG/eMp7D8Gl/w/z58wEAWVlZmDhxIrp06RLuIyWEWEQBlpA6cubMGbz00ktYv349AIA/HQPb/hRwnmq2uqpZHSdbF+NojZbWodMRIYREH6Ml0iIpwMrUdZzFx19e9xheeukl5OXlQRAE3H333bj55pvB82GoswkhQaEAS0gdWL9+PV588UXk5+fD4XBA2hkLPicucF3X6mKSfjg1e7y2Wl+1LmrodEQIIdHHbLb5ugyxod7IVT3+Tf4HeO2117B8+XIAwMUXX4x///vfSElJCdPBEkKsoABLSC0SRREff/wx5syZAwDgSmyw7UkFX2av4yNTqcsJoOh0RAgh0ccooDIWmQHWCo2bvQwMD317K6ZPnw6Xy4X09HQ8++yzOPfcc0M8UEKIVRRgCaklBQUFeP7557Fx40YA8kRNyeCkqoqd473fM6kOP5bVmOgifPum0xEhhESlug6pRnVTCCGW4znNOvndXS/gmWeewZEjRyAIAu655x7cdNNN1KWYkFpAAZaQWrBjxw48/fTTyM3NBUQOtv3JEE7FKY/LwRXQDq9mj6vLGD1uKRgbTfBUV7MTE0IIiWx1HWAB8xuw1d68dv3KeAmXTeyGZcuWAQAuvfRSTJw4EfHx8SHtjxBijAIsITWIMYaFCxfizTffhMfjAVdmg213KvhSb5dhdTAFAitHs8f9yxg9HnJ41Xo83Oh0RAgh0SmSJmsym224WpvXrmv9uxS3atUKL730Elq0aBHS/ggh+ijAElJD3G43Xn/9dfz4448AKmcZ3pcCTuQDgqlMrhTNHtcrY/R4UAG2rid4IoQQEl0iKcDKzGYbDmrzxnXu9C1PY9KkScjLy0NCQgImTZqEPn36hLRPQog2CrCE1ICCggJMnDgRW7ZsAc/z4LMTwB+LNxwbwySmG1zlxwHzcGtWyVYbhVdCCCFGIjHEAuY3Zy1v3rj+nZfzNp5++mls3boVHMfhrrvuwm233Qaurt8XQuoZCrCEhNmBAwfwxBNP4OTJk4CHg31fGoSCmLo+rNBDLAVYQgghRuo6qIUYUM03b/76GMdw5Uu98N133wEABg4ciCeeeAJOp7NGj42QhoSmSiMkjNasWYP7778fJ0+eBFcuwLE9HUJhnPGTON680q3hSjmi1fUFESGEkMhQQy2oVh+3tA8I+PnJjXjssccgCAJ++eUXjB8/HgUFBSFvmxDiRS2whITJt99+izfeeAOMMXBFDjj2pIETK9d3NZtQorpL15gtHaBsvnozF/ttJPjjC4bWqUgOr3SaIoSQyFfTNxyDqTd1N2E+Y7+Vx02PkUn4z5pHMWnSJBQXF6N58+Z45ZVXaHInQsKAAiwhIWKM4cMPP8ScOXMAAEJuHGwH08AxVSVnNpFEsLP/Brm0jdHsxiGHV4vHYL4P1XH4XwTRaYoQQiJfbfSYCaZ+1Hx6aLP/Ww6wlWbufhETJkzAyZMnkZycjBdffBHnnXee8TYIIYYowBISAo/Hg6lTp2LRokUAANuRJAjHk8BBI7xamdm3OhNQBBlgQ5qdWOsYwjU2Vj4VaV0A0WmKEEIiX10EWCCo2YZrahUAo2Ocd+JNPPHEE9i1axfsdjueeeYZXHbZZcbbIIToogBLSDWVlZXh6aefxrp16wAG2LJTYctLCH5DTDKucEMMr95i+jMch7y8Tk1P7gRQgCWEkGhQVwFWZlafKpuoXoiVywQbYAGA8RIueqQtVq1aBZ7nMWHCBAwdOtT0WAkhgSjAElINZ8+exWOPPYYdO3YAEgf73kYQCmJ9C8kVXDiWsDFiFCBDHCMb8v7DhU5ThBAS+eo6wFreRA0fpyBo1v0MDAOfOw8//fQTAOCBBx7AyJEja/ZYCKmHKMASEqSCggKMHz8ee/fuBTw8HLsbgy/2mx7fLLyqK0+zMmbhMsQJnrybiPAAC1CIJYSQumZlYr3anMip2psI8RitTGBoEGKvn9YX8+bNAwDcdtttuPvuu2mtWEKCQAGWkCCcPn0aDz/8MA4ePAi4eTh2poMvc1QV8K8U/Ssvs8e1ymmVUYfbECd48hajAEsIIcSEOmTpnZMbQoD1Pw6telAQqr73q2MZGMZ8NBQzZ84EANxwww146KGHKMQSYlEDXlySkODk5uZi7Nix3vDqEuDY0aQqvPJcYDj1Z6XC9N+OVgA22k41KvaQwishhJCGiePqZp3u2rppGgyzutev7ubAYfZdizB+/HhwHIdvvvkG06dPB7UpEWINBVhCLMjJycGDDz6II0eOABUCHLuagC+3Ww+u4Sqjh+PDcleaEEIICQq1GnpZqYf96vq3b/oKEyZMUELsjBkzKMQSYgFd8RJiQu42fOLECXDlNjh3ZYCvsFtvUTV7PNQyFFwJIYTUJbk1lsJsVZAVRf0yqjp9+ogvMGHCBADAggULKMQSYgFd+RJioKCgAI888giOHj3qbXnd3QS82244ToXjONNxLGZllMeMgquVrr81HW4jsSsXIYQQYsDS0Bmj+pPjzW8+W2iNlet6/xD71ltvUYglxAAFWEJ0nD17FuPHj0d2djbgEuDcnQHebQd4/Y8Nx3Gmj3OVEzvoVU6WJ3Go6WUAzNR2eKU7+4QQQmqTXghlkvcmspVeVGa7qLyhPePv85QQ+9VXX2H27NkhbZeQ+owCLCEaysrKMGHCBO9SOW4ezj0Z4D1ObziVpIDwqQRTnfBq9rhSJhpCGpOo5ZUQQkjDUI2xrVapryU4jsObI7/EQw89BAD46KOPsHDhwqC3SUhDQAGWED8ejwfPPvsstm/fDnh4OPc1Be9yapa1GkzrRXAFKLgSQkhDFS31VE2xGmRDNPO2hbj99tsBANOmTcPy5ctD3iYh9Q0FWEJUGGOYNm0a1qxZA0gcnPsyfNd5VbHcXdgs3NYxy+vhUXglhBBS1+p64sIaao1Vm/fAcgwfPhyMMbzwwgtYv359SNsjpL6hAEuIypw5c/D9998DDHBkp4MvjQksxPOmwRQ8b/w4zMNrJIRbBYVXQgghxMtKiA4hxHLgsHjiZgwYMAAejweTJk3C/v37q709QuobCrCEVFq8eDE+/PBDAID9SCMIhfGBhawsE2CljEm4NX0ccgtwBIVcQgghJAJwPGfYu8hyz6NQj8PKECGdG94cOPwxdR969OiBsrIyPPHEEzhz5kwNHSkh0YUCLCEAtmzZgldeeQUAYDuZDNuppMBC4QiuYQi3dTJmtq67bBFCCCFBqq2gasZykPV/HuMwefJkZGVlIScnB//+979RUVFRQ0dJSPSgq1LS4OXk5GDSpEnweDwQ8uNhO57qW8BqMDV7vJp3YX03ExmVMSGEEBINzFpja1N1WmP/nvl/mDJlChITE7F9+3a8/PLLtEYsafAowJIGraKiAhMnTkR+fj64UgfshxqDQ2UFE64W1TAF12qH1/rUekoBnhBCal8UnXv1wmokhdhgg+zdXSZh8uTJEAQBv/zyC+bMmVPDR0lIZKtHV7aEBIcxhqlTp2L37t2Ah4cjOwOcVPmRsFJZhxJu5RmMrY51JYQQQkhIwtoaG+J2LNXtqmuEJ/vNwCOPPAIA+Pjjj7Fx48aQ9k9INKMASxqsr7/+GkuWLKmccTgDvMcJzmYDBEH/SXLoNKp4rARTs21UlqHw6oe6TRFCSO2LlHNvbfYoMgmo1R3X6r8N02sBu13Zzlv/WIBhw4ZBkiQ899xzyM3NNX4uIfUUBVjSIO3atQvvvvsuAMB+rBGE0njjiqhy6ZyQy1SWMyVvw0rZ2lLXXZEj5QKKEEIaooZ0DpbrOwutrNWdZdhvI7pBVgnKldsYN24cOnTogMLCQjzzzDNwu92mx0hIfRNBV8eE1I6SkhI899xz8Hg84AviYTuTah5Mw9FaarHLsFKJWWh9bRBL6TDWsC6cCCEkUjWUc7G6XuXN69lwtMZWbshwH+B5XNvkPkyePBkJCQnYvn27cjOekIaEAixpUBhjeO2113Ds2DFwLhucxzKqJm3yp9Oiqr4TGvZWV+oy7KuhXCwRQki0iOCbijU6UVNNtMZqDVmy0Bp7xzkT8e9//xuAdzjU2rVrTY+NkPqEAixpUH766ScsW7bMO+71cCY4UWe8a4itrkrIDbbVtaaYdP+1XOnXZjfiCL1AIoQQgto/R9f1MBYgqNZYzmw+DTMmrbGTh32MG2+8EQDw8ssvo6CgwHybhNQTEXA2IKR2HD9+HDNmzAAA2E82glAaG1iI58AJJuHVShlYvBMrCMbhVd3aGwommTxs8ULEZDuEEEJIVDMKnpU4IQw3pit7cJluwyAw33vvvWjdujXOnDmDqVOn0vqwpMGgAEsaBEmSMGXKFJSVlYEvjoEtLzWwEM9VBkqDjwXPmd8FDtd4mWCYtaAaHLPl8FrbqDs1IYQQiyJlnVcfFoYGmYZYQLeOvy7jfkycOBE2mw2rVq3CokWLqnOUhEQdCrCkQfj+++/x559/AhIHx/FM33GvcnA17O5jIdzK5UyEM7iGcreVSSz48BoJXbgIIYQ0LNFe91gIsaZBVufm+Ng+r+Kuu+4CAEyfPh05OTnVPkxCokWUnxEIMXfixAm88847AAB7Tjp4l6PqQTmYGs04qNXqyvHmsxTyvq2s4W51DTW8RgVqhSWEkMhE52d9ViZn0ijjH2I5uy1wOxohdvbYlejWrRvKysowffr0oA+XkGhDAZbUa4wxTJ061dt1uCQWtjOVXYfNWl3lgFrDra6clTGufmUYY9rh1WI34qgJr4QQQoiF1tewdR+2Mv411OBe+Xzd64JqtMZy4PDYY4/BZrNh9erV+O2330I7RkIiHAVYUq/9+uuv2LhxY2XX4abersMcH9jqqsWs0vRvhdUrVlutrmbBlCZgIoQQEg4R1voadTdmrazzHuTY2Psu/A9uvvlmAN6uxCUlJdU+PEIiHQVYUm+VlZXhrbfeAgDYTqWBF2MAm837pVd5cBzAC94yerMM8pz3MYE3bsG1GHBNVYbWkGYXDFd4re0QTDMqEkIIsSCaQiwn30Q3ukaw28zn55CvaWzersajR49G8+bNkZeXhw8++CDMR01I5KAAS+qtuXPnIjc3F5zLDnt+uoUWVYszDJvdOVVvw0KINexGrApw5svy6DzuFzqr3dWKwishhJDabH0NcvKmkEJsuLoPBzursJU62ehmucxmw3XNHsSjjz4KAFi4cCGys7PNt01IFKIAS+qlI0eOYN68eQAAe15TcNCYCEEmt7qaLZ8j8CZrtvLhmymRscAAF+x6sEwKT+gM13Ys70/jtRNCCCEWVGuG/bpmYfk909ZYALDZ8O+hH6Ffv36QJEmZwJKQ+oYCLKmX3nvvPbjdbvDFCRCKE/ULGrW6cpXdhI1aXTkLEz0F2wprEN4st8KaBE7LrbDU6koIIUQWwa2v/oIKsbXY+mo4tlWum7VmHw5iH/feey9sNhvWrVuHdevWmZYnJNpQgCX1zo4dO7Bq1SqAAY48vzVfK3E2Gzi73bzVlTNpdQ23hhzgGvJrJ4QQ0jCY3UDmK3uFGREEcDExug/f1fNF3HDDDQCAd955Bx6PJ9ijJCSiUYAl9c7MmTMBAEJRCnhX4AmeM5p8SSav4WplpuIwBFzLEzTxvPFdYPmOc7i6Mkf74vGEEELCI4paX4Pel8TMZ/KvbWYhluPA2fTLjBkzBklJScjOzsbixYvDfHCE1C26OiX1ysaNG7F582aAcXDkZwY87hNeBcH7f39yeEVllyGzyROszDZsUMYnvIZygRBplS8hhBASTXTq0bB1H7bbzOfLsDuqvtcJsZzdXvW9Togd2WUiRo8eDQCYPXs2tcKSeoUCLKk3GGNK66utqDF4T1UlwAk8OIfduILhOW85K7MM+1c+1QyeAS2vwU7UJNOqdE3uYFseB1tbd8IjbF1BQgghlaKw9bXaM+7X5M1g/1UKrOCFwCDr9/vgbIJmkL322muRmpqKkydPYsmSJcEeLSERiwIsqTc2b96MXbt2ARIHR0GG8vOgugxr4NQTPRlN+BREKyxjTL/bsOlETaqQHYndnkJBIZYQQiJLfT4v69Xpqro1rK2vWvtXH4O69dWfWZdiBLbGXt/hcdx0000AgDlz5lArLKk3KMCSeuPzzz8HANjONgIn2QG7HVyM07hiEbx3LS3N7mtlHVkLLI93rQUR1wpLCCGk4arN1lcr+wrnDWKz1Qqs4AWf7sOam7IJ4BLilP8PHz4cycnJOHbsGJYuXWptP4REOLoqJfXC3r17sWHDBoAB9qIm3q64NsG4VZTjKssYVSreJXQs3YGVl90xKaM57laNN5kYSgrf0jaWlxmoreV0IijcE0JIg1efW18tMK2vAQs9vHhwDoOWVWVnvLX1YO12wGawzI7M4Q26N3R8QmmFnTdvXkTdRCekuijAknrhiy++AAAIJangpVhvMAW8YVAroHJcVdi06SwOLq/NWhkoLVVkNU0VXi3PkqwjqDXyaqMFlipVQgiJHLUdXiOt9bW2OezgOOMVELgYZ1XI1QuxMU6fbQLAddddh9jYWGRnZ2PTpk3hPnJCal0EfoIJCU5ubi5WrFgBALCXNqsKrzL/ikAdXtU/8/+/OvhanVypplphJaluWl7VaqrCZ4zCKyGENGQRGCjD1vpqpbUUvmNtdUOs+mdGIVbNYcffz38WV111FQDg66+/tnQ8hESyyDtjEBKkH3/8EaIogq9IhOCODyygakX1trZq/NnLEz1VdhnWa7Wt1VZY+ZgNgmuwrbBMYtULrzWFgishhESeKO06HK7W11rvceUIHNeq1O+Vr4lTt6zK5BArB1mtMpVuvPFGAMCaNWtw9OjR0I+ZkDpEAZZENY/Hgx9++AEAYC9J1y8oWGkZ5fS7HAPen+utHeuzHWszElsaVxsu4bq7Hc675BReCSGE1PWyOdVlZeZhC0GYczoMV0HwD7IBzLoUV/pn/+m4+OKLwRjDTz/9ZHpchEQyCrAkqq1btw55eXmAZINQlqZZhgk8mNkasFYmdAoXJnm/DJbuAVDV8mrlmMwq7nBMwiQfNyGEkPorGm+uhnN/VoKwhfBqeX8W3m8uLtZ0nywxDixWvwUWAIYNGwYAWLx4MS2pQ6IaBVgS1RYtWgQAsJWng/P7c2YCD2a3VXUN1iN3G7ZaaVtqhdW5W2olAAYx3tVnNkG9Sle1z2rfoQ53cKXWV0IIiTwNvOswYHHdVyvb0Vr31b+M0yHv1KRg5eNmN+I5DizWqRtkXxq7FMnJyTh16pR35QZCohQFWBK1iouLsXbtWgCAzdPUG1YrMfWYVvln/rMNawVXwaALcTA4PjDEaoVA/1ZYreCqMSaXMWZtKvxwtbyGE4VXQgiJPFE663BYhan1lbPbgm991Xv/Y2MC9+93DCw+1nc7lUHWp0xcDDjwGDx4MABvKywh0SoCzx6EWLNq1Sq4XC5wYhwgJSg/V8KrP/+KQqvVVZ6h2CzEWh0LqxyUxZZX3W1VhVjD4CpXvgbdfYNqhQ1neKXZhgkhhABhDa9ha301G9YTDCsTRTk11ob1vy6JjdEPtv435DW2pQ6xrLKMHGDXrFmDsrIy0+MkJBJRgCVRa9myZQAAwdUEHDjAbgOLcRjeHWU2wdtSa9al2ApLMwBbKBNEoAzXAuS1PtkFBVdCCIlc1HXYWni12vpqVsbpsHYdYnZMggAWF6P/uNylWFXmwb/PQdOmTVFeXo5169aZHishkYgCLIlKxcXF2Lx5MwBAcKcDNh5SnAPMblK5CDzgsHu7Exsxm9DJyhhVJnmDm9myNfLjRvurDICmFazFJXJqdSkdCq+EEBK5qOswwHPmN4iDGV5kpfeSyf5YYry3R5kBMTUeUrzxxE3gOHiSYyAmectx4NC/f38AwIoVK8yPk5AIFIFnEULMbdiwAaIoghPjwPMJYHYBjAOY0w7m1Lj7yVd2DQ5mwia9ECupJ0XSWTJHDq/yvrUqbKkq3BoGU79KTresOpSaXCDUWgsshVdCCIlcURxew9l1WGYaYk0e92l91RvGo+46rLM9lhBXNZbVKMRWrhcvxdohxQauJQsAnuQYMJ4D4zklxMoBdu3atXC73frbJyRCUYAlUemPP/4AAAhiIyW8AtAOsTwXGFxtgnkrrBaNlteAEKsOrz7HoPq46bWAqgOz1phRvTvAWtsLR4gN5WKDwishhJAaUJP1l+YkiWZ1M3S6DvuFWM1xr1p1pd+cHUzgA4KsmBrvW74yyKrJ4VXZVWWIfWjUZ0hLS0NZWRm2bt0auH9CIhwFWBJ1JElSZh/m0UQJrzLGoerkz+u0uHKVY2atdiW2urSNVngNeAHajystqzxvfpfXZ+bi6gfFGrsIoPBKCCGRLUpbX8Pag8hgW0qI1btxbLWes9qduHJ7LCEu8HG/1lgxNV77uPxCLNN4fYznICXFoFevXgCA9evXW3gRhEQWCrAk6mRnZ6OwsBBgAoBkzTLMYQOLsRt3F7balVhvVmP1puRWWCszBBtth+PMgzJvoSW36sBM9xl2FF4JISSyRWl4Dev+LNTJVrsUm07cxCTt1lf/YnLXYT1yiDUaj1sZYj3J+pM7MZ6jAEuiGgVYEnX+/PNPAADHUsBp/AkzgYfkECAmOHXHhCjMuhJbWfqFMTA5dPLV6JbssykL4U+SVHeGTSpgkzu/liZzCnYpnSidzZIQQhqEKA6vNTHu1XBTVmYdFgTzm8lOp7X12y38bjxNkiA6jY+rrGkcytOdqGikH5rlALtv3z4UFRWZ7peQSEIBlkSdv/76CwDA2RoFPOYdJ8J5x8KquxLrMepKrA6veq2wViokmWQcOhljVa2vuhM1Sdb3VxfhVUYhlhBCSCSGV6v7sxJebaqWV6urAOhN3JQYr/lzNU96ordbMMcZhljJxikTN+mF2GvHfIgWLVoAALZv327hyAmJHBRgSVRhjCkTDohx6RDjVWM9KsOrmuS0QYox6dqj1ZVYq+XVP8RqTvTABbbCyrMNq8OgX0XsE17Vx+WzHZ3w6l+pM6luwyshhJDIFKU3F2tr3KuyPwvhVZNqdQGFM3CZG/+6nCXGW/rd+IxprQyx/kG2LDM24Dn+IdaV4gATgHPPPRcAsG3bNtN9ExJJKMCSqJKXl4f8/HwwcGCOZLjjbRDj7ZrhFfC2wkoxdvMQq+5KbNRtWA6xRi2v6hArB1eDMKgZXmVyhWbW8ipXahZCZ62F1yi9UCKEkHopirsOh21/YQyvPq2v/uR6ViO8yuQ63Wp49aQnahyEb2tsWWYsJJv2xE1yiJXDKwB069YNAAVYEn0owJKosmfPHu83QiLACWACIAmcZniVWQqxHOedcZgzmYgJCK7bsFEQlBdOtzC7seX9mR4OTbBECCENThSH17C1voazFddKyDUKuJUYY5Z+N+4miZozCis4DvnnJGiGV2VflSGWqQ79nHPOAQDs3bs3bNcZhNQGCrAkqigB1uadfViycyhvbIc7yXiyJtPxsJIESAzMbjOumCoDIGc0A6B/d2GTbRnOJijPcGhWwVkMpmHthmWGKkNCCKl7DSW8hqHnkKWVACqvEcwnZOJN62YuPs50f+4miWA27V5maqIdKE8xfu/PtrDhbIuqYD1m/NcQBAHFxcXIzc01fC4hkYQCLIkq+/fvBwAwIQmSnYNo58B4wJUkmIZY3fGwleFVxmyCdoiVKrsWcxzA89ohVh1eOU4/DEt+wVRrW36Vo26IVVeQFi4camUiDAqvhBBS9xpKeJWFEGJ911fX2Y5fna4bYh2q6xG9td/jYqtaVXX2J4dXZX86IbawrXfJHMbrh9ji5gIkGyDZUBViOR4tW7YEABw4cED7tRASgSjAkqhy9OhRAIAnLhGinQPkoZ8WQqxmV2K/8ArAu86af8Uph1dVmYAQq9XyqhViJQvBNGByKF67rFbFGK4LiOpuh8IrIYTUvSiehyCk3kJaIdZke5r1sIXhPYBGiHXYA+tP/3o/Lta7nqvJ/tThVfmZX4gtbBsDSXVZoxVi5fCq7MpW1Rrbrl07ABRgSXShAEuihiRJOHbsGACA2ROU8CpjPAJ+5s8nxGqFVxlfOVmTxABR0g5l6hBr1G1YHWKNuhPxvPEEUv4h1mhbJuHT8sVBsCGWwishhDRMYbp5GpahLgaz/gfsz3R4UeW2DIYXKSFWK7wq26rseaUVXjX2526iMWmTvL/KEOsfXpXH/UKsVhm5NTYrKwsAcPz4cd39ERJpzEeYExIh8vLy4HK5wMABtljNMq5EAWCAvcitux3GAcwugNkFcBUe7UIcBybw4EQOEI2CYuWkTyGOveE4ztoECjxvHLzrEoVXQgiJDFHcdTiswjXvg5X3UxDM3weJ6YdXFTEtXrP1Ve3MOTHgRP3H5RDriTc+9qZNmwIATp48aXpchESKCD3jEBIoJycHACA543QrCaUrcaJ+V2JOrFynzeSuKydKlS2xBh8TUaycRdBkIibRoJaBaikd08maKpfTMauUw7EOrIXt+Iji7mqEEFJvRHF4DdtEg/IxmU2iZDWYmu3OZvPWy5JxXc/FOMF5jMuIjb0zDvNu4/pXsnMQncbHf+Y8hsIOxtvJzMwEAJw4ccKwHCGRhAIsiRqnT58GAIhxMShrrP+nyzjAlawdYjmRgRMlcKyyFdapPakTJ6omYtILsaJY1erIc9qVeDDhVTlIvcma/NaC1avo6yK8yijEEkJI3Yni8Fpj9CZRCja8Go2JVdfHOiGWi3F6yzGmG2Ll8AoAYEw3xOZ3rFxfloNuiM3vxiA5JTC7hOLW2tspT2cY9d0PAIDc3FxaSodEjSg48xDidebMGQCAGOPUHM8BAKg892qFWHV49f6AA3PYfEOsOryiqlxAiK0MrwGBUl2Za4VXv9Cpuw5swGRNknbF4h9i6zK8EkIIqTtRHl7D3vqqZmXyRH+aqxEE1o2c1nqvfiFWCa8yjRDrE15V5fxDbH5HJyS7qpxGiJXDq3I4Dm+I9Q+ykgBIDm8YdrlcKCsrC3wthEQgCrAkaigB1uFERSPm2wrLoIRX5UeqEBsQXmXqEKsVXlXlFFrhVSaHWKOW18oKSje8+u9TL7z6bS9iwiu1whJCSO2i8CpvSP8x/+XrjBiuB19VRypdhzXLea8BAsKrzC/EBoRXVTk5xBZ08AuvyoFUhdj8rr7hVTkch6QEWcDb+goATBDAKieJLCws1D4GQiIMBVgSNYqLiwEAksMBSQBKMxlK0/mA4KrGOMATx0OKEQLDq0xuYTWr1OQyeuFVzUpYrO4U/dGAQiwhhNQOCq/yhsKzHSskCZzAm89wbBOMy1SGWLGx/ozDcrmzLZ0QHQbb4oAz/SogxZiMnXVIiBuSA0nO6BwHye4AABQVFRkfByERggIsiRpy1xZWeWeUCUBZJkNpE/0/Y97DwHsYmFEF75G8X3YbmM3grqu8xI3h5E/Me9dVb0xsZRnvREwmH7/KFlrTu8VyWDaovGu963A0hm5CCIk2FF7lDZmX4Tlrra9mdTMAzl7ZbdhgjgvO4Q2FMJm0SUqKA1dhXKawXRxEOyBUGNetzlg37GnlhmXadjyJjLhiNO9ZNWmT5PAOt5IbCgiJdBRgSdQoL/eelJnNpqz3ynj9EMt7GAQXAycBnjgBnniNmYk9Eji3CE4OXHohVpKqKiFB8K79GlCG+Y570Qqxkv+4WZ2PoF/3Yt1K1z+YalTiFF4JIaQeovAqb8i8TDDh1aScEl5lGiFWCa+A7/WDHyk53ruePGPgy7SX9StsFwdR3hzTD7GFF3uvkQSB6YbYth1PItFeAQBIcZYpIZbx3usel8ul+TxCIg0FWBI1lADrNzZFK8SqwysAgAPcCTbfEOsfXmX+IVar8vEPsf7hVYt/eFUO1u9jqDM2NqDy1QumqsqcwishhNRDUT5Mo96EV5nJagNa1xFyeFW2rRFifcKrTCPEFl5cDmesW/m/VohVh1eZHGLlMbAej3aIJiTSUIAlUUMJfxoVjDrEBoRXmTrE6oVXmRxiDe6cKiHWKLzKrbB64VUpx8sv0nBsrFIJWwimFF4JIaQeqovwGslrvRqpjfAqqwyxPq2vaqrrCf/wquxDFWI1w6tMFWL9w6tMHWK1wqssxVkGZ753kszFixfr7JCQyEIBlkQNpRLSCUqMB9xJgDuODwyvykYAycYBAqcfXqt2WP2DrSHemYspKBJCCKkl0RpeYXHGYSvh1WhWYp9tmZSTJDCH3XCcLccYKtKc+uFVxoCCcz2a4VUmCAwTL/+vbnj1R12ISbSgAEuiBm8ysYJQzkGoACrSOJSnalcivEuCUCFBctogxRjcTfWI3rup/uu/qokimNxaajRGtbKF07AilSTrLZgWLwAsXyiE4+KEWl8JIaTmRfG411qfbZjnzGfxV/d+0tudHF7Nbh5XzuTLDHpRsfhYgOPAlekHxbJm8WACEJtv3Dvq9AUi4BRRUaoxv0elief9hA7Ok7i92e/Gh97Yu43LL7/csBwhkYICLIkaSoBNCbyTKJRzsJcAkLwLc5c3CgyxvEuCrbRyDVcOkGLs2iG2MrxycmUlCIEhVh1e5W7CFiZa0gyx/uFVJ6j7Tv5kNC2/avKn2gixFF4JIaTmUXgNKrzKdEOs1vwT/rvzb3nVC7F2h2kZFh/rE5i1QmxZs3hlnVdOZLoh9vQFIhDr7Y7MJE4zxE487ye0sJ8GAKQJxbohtpGzBHyc97gSE02W8yEkQlCAJVEjLi4OANAy/hRYizLl5+rwKvMPserwKtMMsf7hVdmJKsSqw6tMK8SqWl/VfEKsXsurX8WqPfmT1sLoGvuryRBL4ZUQQmoehddqhVdZQB1qtAKAvDu9bsP+1wf2wL6+/tcIPuFVtS91iFWHV+UYNEKsOrxW7c83xKrDq0wrxDZyloDnGFiFdx/x8fEBr4WQSEQBlkQNOcDa3S5c2OowWIsyzfAqU4dYjkEzbPmEWL3wKpPXn9XrHqQOsXJ41dkWx3Hm3YYrKzvjyZ9UlZ3BZEw1EmIpvBJCSM2j8BpSeJUpdamFNdhNx7zKdbtGeJUfl68VNMOrel9lLs3wKuNEhpgC77a0wquyKcn7fK3wKlOHWDm8AoBU7t2+fJ1FSKSjAEuiRkJCAgDviTbRVoGMtCJ44iXN8CqTBEB0ApJgUKlxUC4QdMMr4B0Ty5jxWFa58jQIr4BJKK2OcM0kTAghJHJQeA1LeA2K1QmbrIRcm800MIvJsbCfNV6+hhcZytM53fAqu73zWt3wKksTivFWmwVKeAUAqXJGYwqwJFqYzAlOSOSQx2aIJRIOFqehoCQWaFaOcikWMbnaFZe9mMFxlsETz4NjdtiKA2fr410iOJcHsAlgjIHTWzZHxnHgoBNCRREQJW+Fy2uHWGayVI5CksyDrsUZiWtkSR2Oo1ZYQgipDpNZ9X3K1JZ6Hl45jjNvfZV7WpndrJaX1JFE3ZmHuRindxkfl9s787AGMSUOzMaDEw3qXg7Ib2+DJADOw05UtNSeUfiuC35HU3s+jrtT0cyeD3ueB02/LELKujIIJRLEeB4FvWPR9LY4OJsk4PmmP+PpE0MguSWlBTY1NVX/OAiJIBRgSdRo3LgxAMBT6IFbFCCKPGw2EZ6sMpRk8BBynD5B1l7MEFPgXQ+W8RzcCTwA3xDLu0Tw5W5AAhjHgbPbwIDAECuKVevB8jwgSYEhVg6vMo0QGxBe9UJgMOHVJHTW6HqwFGIJISQ46mCkdw6l8Fpn4VWmG2L914PVCLFyeK3ckGaIlcOrzHnGjYo0v6BbGV5Fp/e/vEs7xN51we9o6Tjl3W4Zh6yJhWj7bR54v3v2aavLwKafAUYloelk7zWVWOS9tnE4HEpPN0IiHXUhJlEjPT0dAFCWz5B3tmqiAZtNhCPWDZZVhvIm3gsBdXiVySHWk+CtINThVSnDcYDdBmZTVUbq8CqrXDdOqdz8w6uM480rV/8KMozh1bJQthOB6+USQkhE0jpf+v+Mwmudh1dZQF3sH1619qcOr1UbAueqSpP+4RUAOFGC84wqcfqFV5kcYmW391yjhFehXMKge3ai/fzA8Kps1g1wc4vA/eM4nk9ZDE9lgG3UqJG1dXMJiQAUYEnUkAMsK3JD9ASeZG02ESyrDJ54BIRXmTrEchLTHD/rE2K1wqtMvfi5Yfcfvmo9Or2uw/J2rIRX5UDNQ6el1tdwhGCq9AghxJjReVJ+jMJrxIRXmVInG4VXyXudoBleqzYEzuXWDK/K8cohVie8yvjKyYtv77kGbZy5ys8vevEgMtefhVnNzwBwa8rR7Pky3NXoHgBVvdwIiQYUYEnUaNKkCQRBAOeRwJdoLwIu5TvBuwBXgsGkTTznnbjJAFMCpcVF0MNVcYeR5a7DhBBCag7HWQumURpeOZ6r3fDKc+ELr1bfcyv7E8x7XDGnQze8KtsRJYh2Tje8ymISXD7hNTbPhfbf5Hm3YXas8jdfFuHorl0AgObNm5s8i5DIQQGWRA273Y6mTZsCAGz5JZplODcHTgIqUjhUJOlM7FQiwn7WDckugDl1Jl9we8C5Pd61X22CfiUnepfeAWdQoTIJzKiFFvCOgapsneXUXZO1yME0HBcfYeuCTGGZEEICRGrvlDCG17CxGl6tbErVq8mgkGkZTuC9wRQwvKHN2SvHrrp0+u0CYDFOQOAhFGlPwgQAZZkxKMuMATgOiYf19+fqUgZBkPBudj/lZx2+zoPgCa4u5tzAkVWrAAAtW7YM6rmE1CUKsCSqtGrVCgDQXdiLVo3yfR5z5cXBmVe5dqqgHWLtJSLshW5v92EOkBw27RDLWFUo4zjtECuKYB7V1PdaIdY/vJrdDVbRDLH+FahBhW96YUHhlRBCag6F12A2Zl4m2PAq0wqoFsoowVWmU2cq4RXw1ocaIVYOrwDASZJmiC3LjIFk4yDZvMdmq9CuW11dyhAT6+2FdrYsRgmxGRuKNMubOXziBACgRYsW1Xo+IXWBAiyJKvIdQi6vDJc0PqCEWFdeHGKOC+BVedI/xNpLRNiLPL5rvWqEWKX11Z9NqAqg/uFVebIqxOq1vPqHWIOxsT4Vsd7d31BCbKgovBJCSKB6Hl7DqibDq8x/9n+TMgHhVSnjW+f5hFeZX4hVh1fleX4hVg6v/vxbYdXhVSaHWHuJyRKAGkQAhypft9xAQEg0iMAzGSH6OnToAAAoPCwhTqjAJY0PgDEuILzKfEKsBO211lQhlnN7vDMF6gWzykpIM7wq27MwPkcOsZbXhDUJisGG2HC1vhJCCPHVAMJrrY95tbKpcIwzliT98Ap4687K+lgzvCrlvGW0wqtyKJUhVi+8At5WWDnEaoVX2dmyGLjjjSej0nIkNhZlHIfY2FhqgSVRhQIsiSqdO3cGABQdkSB5GOKECqQmlkKM1Q94rPKczruNFwqHBG+lY1bBcZx5pSsx89BZi2qkJZZaXwkhxFckhleOj+4Jm8w2YzZvRBA4kxmJAXgDqdWwbBSGAUgJDt3wKqtI5SC4oBteZRvPa21+TH52JyYC8DYOCFZeOyERggIsiSrNmzdHYmIiJA9w9jjDL7mdkXM8Be5kCe5E7UDlzGeIPS1BcvIQY7SnwecrPODLXQDHeZfP0Rur6hEBj8dbqepVvqKktHAadmeSA6DBuNhwLakTMCNxJHYjI4SQaBap4TVsm4q8Ma+WgytvHjqV8Gp089lWdQ1hODmj0+HdZpn+hE1iUgwYzyE2Vz+YlmTyEB0AGCD+laxbrnN6DpZcfQ48JmHY366kJABAp06dgnoeIXWNrmJJVOE4TmmFXftXOnYfaAq4eDCBaYZYZz5DXJ4E3s3AOA5iLA9XsiMwyEpQze6rE2Irw6sSKrVCrBxeVRWgpbvDGiHWJ7waVeTV7Q4cyoUNtb4SQkgVCq/BbMy8TF2FV5lWiLX5XTdo1b1Oh/dL3h9jmiFWDq8AwLtEzRCrhFd596WBu+ucnoPO6TmIs7lQ2CgOvw3zDrOysg4sAGxp3RoA0KVLF5NnEBJZKMCSqNO9e3cAQOF2N+Cq+hPWCrGcCPDuqv8zjgMTvEFWDrFK66uaf4j1D68yrRCrc/fWZ1p/rQCoCrGaLa/VvIAwXA+2Ohc4FF4JIaQKhVerG6rd8Mrz1QuvMnXd6R9eK/m0wsrB1X9/fnWmOrwqh+oXYv3Dq/JcVSusHFzjbFXPm/Nwb+zskWlpHdg9vVKxz+V97vnnn2/yDEIiCwVYEnV69uwJAIg5cTqgYpBDbFlTCZwIxJ7Rbp2UW2PBceBLXdqh0y/E6nbn5TlArgCttIYaBUCzZXY0lukx3FW4x+FSeCWEkCoUXq1uyFq5cIZXrTDpvy2zcZ8S0w2vAKpWG1C3umrtp9wFMSlGM7wqh+zyziKsF14Bbyus+L9kJbz6c8fY8Mq0wVh3Y2vdsbWijcOuURnI+c9XYIyhZcuWaNy4sf5rJCQCGXwqCYlMnTp1QlxcHEpLS+HIL4QrLcXncSYwOE8LiDnNvBM46awrzjgOzCZXcHpL1HDe0CaaTE8vit7uwwaY1RmHzfCct1IN10zCHE+zEhNCSLAovFrdUHi2Y5WV9datrsluYWIjTuC9vbTs+pfUzG4DX+yCmOQ03JatVILoMD42JjDN8Cpzx9jw2L0j0OyWAjy6agmari+EvUSEO17AiYuSsWdEE5Q3duDsom0AqhoFCIkmFGBJ1LHZbOjevTv++OMPxJzMDQiwAMC7AN4DeJzeClgoDwyotlIRQrELzC54u9toBFDO7QHcHoDnvWUYM59YSQ6YeuRQrEWSzLcfzvAKBLct1bgeQghpsOoivMpBUO+cHe3hNRytr0GGV8aY/jaVnlX6qxNwNpv3MYOb08zpAHgOnMGNcHeiHeA4cBJDcraIwjbawdmd5L0xv3rDOejba6dmmcNn0+CWeByKT8OWe7Ow5d6sgDKvbB2E8//4AwDQq1cv3eMiJFJRF2ISlfr27QsAiDt6EhB8w1RMrg2xOZVrsPEcPE4OYoxv5WMrFWEvLAcneismZhfAnLbAKe8Z850tWBACKzt166tcWftVxAGtr1qVoZXwGgRL3YerPQFUBLY8EEJIbajL8Or/vdHPqrWbWl4mB/DWlzURXk3mmtAlCL4trxLT3JYSXmXuwPXh5fCqbLoocEInd6IdTODAKg/NVhZYL7uTmBJeAcB+lsfqjecElDtSnAq3VPUa55+4MKDMK9sGw3PYgxMnTsDhcODCCwPLEBLpKMCSqHTJJZeA4zg4TxVCcJUqITYmx4b4IwyCqneNHGJdSbwSZHlR8oZXGccBPA9mF5QQq7S++lOHWK2uw34hVrfrcHUugiy2vtZoeJVRiCWENDR1HV61fhbG8Bo2YRzzCoTQ8uozm792GZ8bxxYmdOJstsDwCnjredU1g394BQBOFH1CrBxe/SVnV7XWysGV+R2avajq9RwpTsWR4lS4RN9ChRUxPiH2lW2DUVYUg2cae5fNueCCCxAbG6v9mgmJYBRgSVRKS0tD165dAQCxh3IAOwOcEjgJPuFVxngOkuANspzIIBTrjB+pbI0FY4DLrd9VVqsl1mc7VSHWuFzVJBO13nU4HCjEEkIaikgJr8E8bnk3kRleTZehk2caNt2XybhSxszHuzJWFVwN1nhnTodmeJXJXYn1wivgbYVNzhZ9Wl21rN54jhJc/cOrrLAiBq9sG6yEVwD47bffAHgbAwiJRhRgSdS67LLLAADxB44DAOy5dsTkMaUbjhZHiQRHkc6sTjILMxcqjEInxwOShTGzwUzuZOHCIOwzDxNCSENXm+FVXm6GwqvJNsI45td/+JBmIc68PrfZwLncpq+Pr/Dohldldyyw1dWf85SAo5ubGZY5sScdroMJSni1FRZj9+7dEAQB/fr1M94BIRGKAiyJWldccQV4nkdMbj5sRSXgXRwEl/eErxdieTcDJ0pgAq9beXAVbm8FJBisHyeKYJ7KrkJmFbHFcGp5UfbantHRCE3mRAiJZlbOu7UdXmtRra/xCtReeLV4M1oJr0Y9nAReuSmty2arnMTRYEInhw3MYQMnMjhPleuWE2N4MB5I2a2/O97FAQywlei/xhN70mEr5cF7qso8ldAaAHDRRRchJSVFfweERLAIuhImJDiNGzdWpn9P3HIScSerKhatEOs8K8JeWNn6ynNgAg/JIfgEWa7CDa7cVVUBCdoLoTPmN6mDVoUsikG3vupW2v6Vps7FQlCtr6FeKFF4JYREM/l8azbMo7ZEc3i1qjbDq5pGqOQEPrDlVSvECr71LdMKqHJ4lbddHjhMiTl8ux/L676qiTG8El4BwF4qBYRY3sUp4VWW+7+MgG3J4VV5GWdsAGNYtmwZAGDQoEGBr4OQKEEBlkS1IUOGAADijhwJWCqHCYBkqwqyvJuB96gqnsqZD31aYyWN7rw859saK4ra68KqK2Y5vFZj3deAyttwSZ4QP8KR1JpLCCG1xf88qxWaKLxa2ZD1snUVXrWKWOkyLPAB4RVAYJ3sF169ZSSfEKuEVz/qVlg5uPrffLeXVl1HKMHV/xBUrbAn9qQHhFcA4D0cnCdP49ixY4iNjcWll14acDyERAu6eiVR7bLLLkNCQgJsZSUQSnMDC3DeIOsokapaX/1Vhlh4JG/XYT2VITag9dVvWwqz8GoQcE0nrtDaXHXHvlbnwolaXwkh0crKxHoUXq1syFq5mlomR3sj+o9V1rem4ZVJVcFV5zUySfIGV63w6rc/vfAKVLXCqltdtSTvQUCrq7/cLRlKcPUPr7Kby+MAAIMHD6bZh0lUowBLolpsbCyuvPJKAICtIFu3HCcx32Vz/PGc99Ngqcuv/qLmvts0+XhVo3W2xlBLLCGkIYiU7sLKPmvv3Ftna7xa2Vw43nsrLa+Wxjybj+flOA7weIxfnyB4l9Ux2Cez8XAUuAzDKwA4z0qG4RUAErOhG1wBgC8vV2Yfvu6664w3RkiEo6tWEvWGDx8OALCVnATnLgl43FkkwZnv9rbG8hyYRmXCl7nBlbmqpuTXqnA8qombOIMJnphUNfbVytp0Opgclg0LqcbPhnJxEuzyPLR8DiEk2kTaeauWw2sYN2atXDj3acRCizknCODkZXLMhuXwHCBpDBNStiVP+mSwncp9cQb7YjbvdQTvlhB7skKzDCd5v8CA5P3a9XRsHkNsHgPvBuKP6r8P/27VHKIoomvXrmjfvr3+sRMSBSjAkqjXsmVLXHihd6Fux6n94D2+j/MeBs6tOvFzCAyxzDs7sfdxTj/EqisjrRAraYROrRBr0vpqKbzqCOuFiuGOIuxikBBC9ETa+Soaw2uYZxpWM53wENCuN8PRGwqoem0+w4ACQ2xA92OtYUd+68lypYHhVA6vylMqNPZVGVzllld7aeB7JAdXvvIw/OcCAYCkvUDSbhELFiwAANxwww2Bx0xIlKEAS+qFm266CQAgFB8CX1GuhFhnkQRHgSfwCaoQq7S++lOHWHXrq892/EKsuvXVf1u8hbu2wTBoNQ3qgiXY1lefHUXYRSEhhPiLtPNUtIZXq6q5T0shVs1ieNXsNux/M9pknK7mjMWAb30uCAHhFQA4j2849Q+vMnUrrBJe/ahbYeXw6k/dCpu01xt8J13dHgUFBcjMzMTll18e+CRCogwFWFIv9OrVCx07dgTHRAhnD4D3MPAeb+ur1lT1AJQuxQCqWl/9qbsU67WIcqrHrbSa1mDrq+9hRU73LUIIqRORdG4KpgUzLLuLzMmaQiKpekqZHo9OeFXzb3UN2J9oPumTy60ZXH12U1oBZuN1wyvgbYVVdxnWYi9liDkFxJyCZngFqlph5fAKJmHevHkAgFGjRsFmsxm/HkKiAAVYUi9wHIdbb70VACCczQZEN2LyRThPuQwnPuDLPNqtr74bt3AAJpVgHaj2rMTV2hnNSkwIiSCRdmOtIcw0HOquwtUduPLGs7XtmQXcMB0TY+Z/k4xpLpGjZisVkXzIDcGlXyj+pIj0zUzpcvzinT1w4sQJJCcnY9iwYebHSkgUoABL6o2//e1vaNGiBTjmhlB80Lvuq0v0tq7qNZ5KEiBJSkusJlE0n21QqlobVrfSlCRvBaXuTqzHrFINpdsvIYTUZ5EUXIGwh1ejCfsieaZhw12FM7yallG1FGut6e49IOXviOn10FJ3GXZrDDGqJF9f8MXlumXkm8CxudqTOQHe8Mp7GIRy/fo//qQIwSXBKQ+dYgyzZ88GAIwYMQIxMTH6x0BIFKEAS+oNQRBUrbB7wVhVyyonSt7ZAA3ubDKe0w6yElPNKmzQRUrV4mlpHVcrIbamW3XDEYSp9ZUQEinqcXg1C6fRMFmT5u5qKLxqz0dhpUeV/ySPGvWkf5dhjaFByjWFai6NwEK+68rzFYFB2FYqKuFVT/xJUQmvas/c2gUHDx5EUlISbrzxRt3nExJtKMCSemXw4MFo06YNOMkNvniP74MS82mN1es+7BNiRRFwaww08Z+pUOcurlIxy62vAdsJU4Xrp1a7DxNCSCSo5+HV6GfRNFmTsisrN3oB7fDqX1dabXk1PyjNH/u0wuqNd1W1wirB1W97Pq2wOjd/1a2wcnD1D68JJ6r2JQdX//DqLHDh448/BgDccsstSEhI0D5uQqIQBVhSrwiCgHvvvRcAIOEwGAK77MghVu4+rEUJserWV3/qFlKDwMjJy/LoCbZLcbi6D1M3ZEJIfdHAwqv6sWicrMlycDWtG43LMMbMj1cULYxPlXRnGVZUDkfyaXX15xEDWl39ya2wRq2ucjdirVZX2f23tUFubi7S09Np6RxS71CAJfVO7969cf755wOcBI+wX7OMUOoCV1phvMh4hE3KFGmTRBFCSESop+E1rOHUfGfWykVSl+Fw7cvKa7dURrvV1YeFITec27zLsO2sC6l7y3XDK2NuzJ07FwBw5513wul0mu6XkGhCAZbUOxzH4b777gMASMIJSFxhYCGReddmY0w3xHJuj3b3YZ/tVHYfNqjUvcvimLR2Sjrrx/qUsdYtmLoPE0IajHocXsPGbExrNIZX9fAcs30Z1YnyazeqfyvLaK4F73c8XLnBqgaV++DP6k/mxLlFQGRwnirTLWM76wLnliAU6e/ruiFxKCoqQuvWrTFkyBD9YyIkSlGAJfVSly5dMGjQIACAh9+lP9MgoITYgCBr1H1Yi1E3pXBNdBRp3YdpAidCSF2IxGVywhBew97qahZcaym8Wp7Y0Cy8Wvi9W9qX/2vXCrmWyvgdj1ad6N9lWON6hHOLSngFAK4isIztrEsJr3ocp8tgO5OD7777DgAwbtw4WveV1EsUYEm9df/99yMhIQFMOAsJR71jX/VUVjBGXYotU1X01PpKCCFhFknBFYieVlf1/yNxvKv5hrR/rqpj9ZexU9WNeq+dmZfxaYXV2RfnUvXcsthlGCJTwqsWObiahVdUeNC+ZykYY7jiiivQs2dP0/0TEo0owJJ6q1GjRrj77rsBAO6YbMBTBr7CA6HEBa5cZ601uTXWavdhvS5F6kqfWl8JISQ8KLxa2Vhoj8sisctwqPsyeu1yyLVUxmhSKMl8oqaz5QGtrv7sBeWmra72ggo4TpfBcboMXIWIsS/1xo4dOxAXF4f7779f/xgJiXIUYEm9dt1116Fjx44A54Hbud9bUbg93vGvehgDRAutorUtXLNahm07EXYhSQghtYnCq/GuwhFerXQV5/nwTNbEc9YnazJipdXV5TZtdfWGXONWV6GgFFyFCK5CBOMq8O677wLwTtzUuHFj0+MgJFpRgCX1miAIGD9+PHieh+jIhWg/pQRU3bVZwy2cQc+kcrV8IUQhlhASbSLpfBNp4TVMY3AB1O36rsGq3IbpDWeeM+59pCyJZ3BzW2Y0mZOV8CoaX3twLrc34BoMP+JLysGXlCs34xkYel7F4+zZs+jYsSMtm0PqPQqwpN4755xzcPPNNwMAXLF7wLjKrsESq+rqo+ap7BosMf2xp6Lofa4RSTX+Ve8ucnXGv5pcqFCIJYTUO5F0nomk8Bru4Fob412B8HQbthqAjV5TNV6zZp3t12WYqwgcgsSJkk945Us11qmXg2vltQNfGjjcSQ6u6p5koj0Hf/zxB2w2G5566imauInUexRgSYNwxx13oE2bNgDvhithPxjUMwL6tcYyBqYOp3oh1mQsqWYlV0utsZZnsgzXxU+kzQhKCKk/IuncEkkzDYcruAK112UYCD28WpmtGDAPp+Fq/daq6/1aTzmtcbHqyaf0Wl1VMxb7t7oqu3efhTPjGABv1+G2bdtW84UQEj0owJIGweFw4KmnnoIgCBDj8iHG5fsW0GuNVT8erhl+wxn2qEsxIaQ+i5RzShiXyQmLCAqvQXUZDnXMq8HzfW4a6y5pJxk/HgyTiZqAwFZXzTJ+ra5atFpdAW/X4fOvtqO4uBidO3fGTTfdFNxrICRKUYAlDUanTp0wevRoAEBFo8OQbBozEYuS8ZqxUlUrbbQI6wQhhBBSWyIpvIZlM/UzvFrbT4R0GbbyuNk4WImBma1SAJ1WVzWPaDrWlatwa7a6ysZMvgDr1q1TbtJT12HSUFCAJQ3Kbbfdhq5duwK8iIrGB8CgU3EYdQ+20hKrHv9qIOJmOiaEEFIlksJrtI53DRcLdWrYugWbMboOEEXvl95yfYB3rg2TdeK5Cm+41Quvov0sZs6cCQAYO3YsWrdubeXICakXKMCSBsVms+HZZ59FUlISJGcpXClH9QszSTvIsspWWoMKzGowtdz1KgQsXF2fCSGkNtX1Db5IC6/hUltdhutCXdd36h5cWn+/HrEqvALgyl0BRbgKtxJe9TB3KZK7nYYoihgwYACuueaakA+dkGhCAZY0OBkZGXjqqacAAJ7kPHicp43v7PqHWKYaDxumsbHVvhgwmUiq1tX1BSchpH6pq3MKTdakqdp1lZXW0zCwdPPYaJhQdcmtrkbk4Ko+Rr/jVYKr3vtV4QKrqMAFt6YgJycHzZs3x2OPPRa5NxQIqSEUYEmDdMkllyiTHVSkH4YklJmH2FC7FZvQvKtd13eTCSGkoaHJmjTVeEiKpBugVtaDlVkJrqpWVy1WWl1R4QJEEbf+5yKsWrVK6VEWHx9v/VgJqSc4RoPwSAPl8Xjw0EMPYevWreBcTsQe6wB4OPPKyGyiJ57zLsNjdsfZYPyL8rE0C7AWWmAtdSEOV0sunU4IITWhtlqY6mN4rc0lcgyPIwwTOVnYDidY2I8gGD8uMcBkQiRL+7HZDOtF5nKDi3EaXy+Iovd4RRGeuCK4mh8CYwzjx4/HddddZ34MhNRD1AJLGiybzYbnn38e6enpYI4KVDQ5BCZJxsvpWGFlpmKzyRuoOxAhhETdGtMROVlTJLA6g3AksDRRowjm8eg+zETJeyPbJLyCGd/sZi63dz+iCMleDqF9LhhjGD58OIVX0qBF0RmFkPBr1KgRXnrpJTidTojxZ+FOP+l9wGxdWKsaWotklF1sEkIiWG2fS0IMjfVtvGvY1HZ4NQqgRvNWWJnTQhKruhfr1O/e4Ko/7Ii53FXhVYd/GcZ70OjSUpSWluL888/Hgw8+aHychNRzFGBJg9epUyc8+eSTAABP2ml4UgqqHgxHkLWw2HlNqbMZiCnEEkJCUZvnkDC0eEZUeA3DEjn+qj3arA5aXnWP1SzYGlEHV739Kq2uxsHUcriVwysYzvl7LI4ePYqMjAxMnjwZdrvd+HgJqecowBICYMCAARgzZgwAwNXsJMSEYt8CUhhCaB0G2TpBIZYQUh21HV5DenqEzTQcKa2uQOR0Gw5Hq6sBn+AaYqur/zYYGPo+mIVNmzYhNjYWL730ElJSUoyPl5AGgCZxIqSSJEl48cUXsXTpUkDi4cxuAaE8NrAgk0wrPMaY+WRQJpM8MWahYo20SZx0t0+nGUKIBVEWXuv6GHzUcHi1PDdDqMHVbD8Wtq9MsKRX//Gc+Xtv5f3kBeP6U95HNcu40nPgaXQagiBgypQpuOiii8yPiZAGIEJujxFS93iexxNPPIELL7wQ4CVUtDoKyRG4yDgkBsaYcZcqsxmIJcl8G4QQQmpGOINjJKgv4TVczFpWQ705LG/fqJxJq6x3RQP9Mu7UM/A0Og0AmDBhAoVXQlQi5ExDSGSw2+144YUX0LFjR8AmoqLVETBBY6bByoXGwxFAIyLE1reLOUJIdKqt82GIvU4irvW1hmiuT17XzG4Qh0IOk2bh12ow1WMSbj1x+fBk5gAA7rnnHlx11VVWXwEhDULknz0JqWVxcXGYMmUKmjZtCuZwo7z1YTBBpztwmFpSI6I1NgoupgghJBKEPEFeFJxvIy641jQ5uJqNlw1Xq6sOT2wBxDbe5XKuu+463HrrrUG8CEIahsg/gxJSBxo1aoTXXnsNjRo1AotxobzVYTDO7X2Q58CpF0FXtcZGfZAN5/qDhBBSHVHSClttUXCObVDh1azVVR1cqxtM9boLq68lPB6IMYVg7fMgiiKuuOIKjBs3rmH9LgixKPLPooTUkaysLEybNg2pqalgsRWoaH0UjGmMiZUF062Y5w0rJWqNJYSQyBZ0K2xN3iAM05JpEdlluKaog6tReNULroJgOo4VgPHjHAd4PN7wGlsC1jEPbrcb/fr1w1NPPQVBHXAJIQq6SiXEQOvWrfH6668jKSkJUlwFKtocB4NobQKnmhynUxvCebHVUC6ICCENRlDjYOmmoFdt1ItW92EQXJVVAIxa6U1aZZlJqywTJW94lRjEmFLw3c7A5XLhkksuwdNPPw2bzWbtdRDSANEZlRAT7dq1w2uvvYaEhARI8eWoaHMMDB7zbm48r7TK1phouSiq6xZlQkj0qK0bXiGcP8MyiVN9ZFTfhasuDGEFALNhOj6PGwRPZhJMmSh5W7KNwqvkbf0V40vBn3saZWVluPDCC/Hcc8/Bbrcbvg5CGrooufolpG516tQJr776alWI7XDcO7ETY9bCWU0HWUIIqQ9qI7yG2LuEwmuQwlX/GdW3JvtQgqlBObOhO0pwtfq4xt+JUqbyGMTEErBz8lBWVoZevXrhpZdegtPpNDwOQggFWEIs69KlC9544w0kJyeDxblQ0fEEmK1yiZ1ggiwhhJBAtRVeQ3o6hdeg1ESrq//fiYVWV7Pg6h9e1eOAzYKrXMbs8apW18rwmloKsUMuXC4XLr30UvznP/9BTEyM4XYIIV4UYAkJQseOHfHmm2+icePGYLFuVHQ8AcnhripgJcjKFZjJRE4AanxxekIIiQj1PbzW1YzHdaUmW1153tI+fFpdjR7XUvm71gumct1tuVXW71g9qWchtsuDx+PBgAEDMHnyZDgcDt3tEEJ8cazOpzslJPocP34cDz/8ME6cOAHOJcCxLxN8uV/lw3HeitfK3WEjRrNLWrwoCmnNwnBceNFphhCip76H1zAdg6kwHGOtzEDMm7wP8jHo1RumN35VAbe6xxAijuM0wzMDg6dJITzNzwAArrrqKkyYMIFmGyYkSBRgCammvLw8PPzwwzh8+DAg8nDsbwKhODawoMkdYkNmwTNaAixAIZYQoq+mg1NDCLBAyCHWbHm3sARcvfAo15VWA64WxrzL2+jVu3I9pBcYrRxDZQ8qXaKoeQwMDO7mpyE2KQIA3HjjjXjwwQfB13CYJqQ+ogBLSAiKiorw5JNPYuvWrYDEwX6oMWz5CVUFVOvCalX8ylT9RhcdYQixERFgAQqxhBBtER5gvZsI8RijNMCqLxNrLMCqw151AqzRGFmtx/WOgTH9x0Wx6nutACw/LkkBjzNOgrtVHsTUEgDAfffdh5tuuqnhrLlLSJjRbR9CQpCUlITXX38d/fr1A3gGd5s8uJsUgKGyslSNc9WdKILnjBdSr0+osiaE1IWGNgY1TMLexuEfDMMxVtbsGPXG0PofA2PGj8v86zFR9H6p5rfw2T3vQacxyRBTS2Cz2TBp0iTcfPPNFF4JCQG1wBISBpIk4e2338ZXX30FABByE2A/2hgcOJ9WWDV1sA0Ir+q76HXdAmtxH8Fvk049hBCVCG+FbUgtsHqXhiGHLnW40wquVrrTWh0jq/e43Doq79+/nNXH1S2uWo8zBsnpRpMrORw5cgTx8fF44YUXcMEFF2gfFyHEMgqwhITR/Pnz8fbbb4MxBr7ICUd2Bjg3Z+0utlbIlFtnzZgEzIgMsMq26RRECAEF2HAIQ4A1qq/CEmBDmVxJnhwxlMdlWuWsPC7/XO91CALAGMSEEjh6lqK4uBhNmjTBlClT0K5dO/1jI4RYRgGWkDBbvXo1Jk+ejLKyMnAVNjj2poMrs5s/sYbHqUbMOFjN7dNpiJAGr74H2DAcg6kaXnotlEmeLE0CFeoET2ZCDcDqY9HBeA5i40KIrQshSRK6du2KF198EWlpadU4YEKIFgqwhNSA7OxsPPnkkzh+/DggcrAfaAShIM74SVa7CmtdAFGAJYREu5oMsJEQXsNwHKb0jlM+/9fQLMVGkxVaeVwuw2lNjmRlgiezgBuux3Uol9I84G55BmJ6MQDgyiuvxKOPPkprvBISZhRgCakhhYWFeOaZZ7B582YAgO1YMoSjieB0K8gguwqrL4SidRyssm06DRHSoDWE8OrdWPi2pcX/WI3mV6gG/wBqNkOx1RmMldbZYMfImoXbYB432L5e67HPJbRDRLt/pGD79u3gOA733XcfRo0aRZM1EVIDKMASUoM8Hg/eeustfPPNNwAAvjAG9n1p4DyC9oVEdSZski+IqBWWEBKNIjS8hjW4Vm00/NtUM5oAsAbDa3Ue9y/D+U+e5C+YcBumx/UCuP9rk5LKEXtRBQoLC5GQkIBJkyahT58+2q+DEBIyCrCE1ILFixfjtddeQ0VFBVAhwLGvEfhip/fBYGYcBkIKkhRgCSERpabCayS1uvpuuGa2C1TVJXrn+VqaodjKDMaaM/MLgrUJnozCp1n4Ndu+RnAF9F8bA4PYtAhiiyIwxtDh/9u79+ioykP948+eySSZkEACRAj3W7gKglysIogoiChtBW1tbdFy/Fl7WvUsj2fpoV5rrT26bO3SU+tx1dKqqK03pFWoKKgoV0VAMZSLILeEkPttMpmZ/ftjMpPJZSYzk0lmJvl+1sqayX73fvc7r+MwT9693zc/Xw8++KAGDRoU/DwAOowAC3SRQ4cO6d5779WxY8ckU0o5mi1rUaZ3qR2p/S8fPh0MkgkbYvkoAnqWnhZevZV3Xt3tzVrfyRM8hdJueO3s2Y3DFKxtbW03rW41jCqRJ9shSbriiiv0H//xH0pLS+twOwCERoAFulBNTY0eeeQRbdy4UZJkKbXLdjhHhruNiSuCidcIbAfPHV79fBwBPUKCXjbsPTxx29YhoV6Xx+zUgNuR5XliMrtxCCG/BgfpF3eWQ9lzTBUXFys1NVW33367Fi9eHHUbAESGAAt0MdM09dprr+l///d/5XK5JKdVtkN9Za1MD9jJE/yLTncdgfWfg48koNvriQG2vc/0eMxQ3N7sxLGYvTiMcBzN7MXhTiDVXt1BtfHaTcOUa1CFPIOrZJqmhgwZogceeED5+fmh6wIQUwRYIE7279+vX/ziF/5Liq2nspRyvI8M04jZkjltfRFjFBZA3PWENV9bV9r892CzyrcU6g+a4Yp0duJwJ4AKJwCH0ZcdmSAqaHj1/Ttobd13geXtTqjYWO5Jc2nMtdnat2+fJO8lw7fccosyMtpZIg9AzBFggTiqq6vTE088ob///e+SJKPaJtvBfrI4WlxS3IElc1p+ESPAAkgIPWkUNtRneFeMzIY7O3Fb/z6EGfAiKg8Qyf2xYZcH/hsYEGDbKm/v9ZsWydOvVraz61RbW6vMzEzdcccdmj9/fvAXBaBTEWCBBLBp0yY9+uijqqqqktyGUr7uLWtRr6YJnqQOL5fj+0KW8AFWIsQCPUFPGoU1LME/O6MdmQ1XuLMThzN7cXsBN9wAHCBWsxs3G1UNLG8MsMHKQ71+M8WthlFl8uTUSZKmTJmiu+++WwMHDgzxigB0NgIskCBOnz6thx56SLt27ZIkWSpSlXI4R5b6lKadQn0JChAspBoWgwALIDF0doCVEivEtn2Cpueh1vnuLJHMXBxNeG25T2eKNqAH4e5bq4wZLlVUVMhqteqGG27Qddddp5SUlPYPBtCpCLBAAvF4PHr99df19NNPy+FweEdjj/aR9XRG89HYdnQ4pLZ/gs6tXyLEAj1BAl9G7K2iCwJsqM/Tzr43tj3hBNxol+5p7/7YcMo7qo0+NFPcahhRJk8/76jr6NGj9fOf/1xjxozp+PkAxAQBFkhAJ06c0MMPP6w9e/ZIkiwVabIdypbhDP8vv50aYgmwAGIhwQOst5r4rZ8aciK/eC7JE66OTP4UTnm02rhM25QpT06dMs/zqKysTFarVT/4wQ+0fPly2Wy2jp0PQEwRYIEE5fF49Nprr+npp59WfX29dzT2WJashZlhjcYmfYCVCLFAd9dZATbG4S4uITbUvbFtlbfcL1R5V4XfWM9+HO6/a+HO5O8Lr6ku76hrjkOSNGLECK1cuVLjx48P73wAuhQBFkhwx44d0yOPPKLdu3dLkowam2yHs2WpSQ15HJcRA0gKsQ6xnRDOujzARnNvbHuTP8Vj5DZWE0hFGlx92ulH0zDkHlAt24R61dXVKSUlRd///vf1wx/+UGlpaeGdE0CXI8ACScDj8eitt97SU0895Z2p2JSshb2Ucqy3DE/bX0a6RYCVCLFAdxfLANuJ4axLQ2y0sxa3tU+4I7ex1tH7Z8PdxydYPwTpR09GgxpGlcvMdEqSzj77bP3Xf/2XRo4cGd75AMQNARZIIqWlpXryySe1YcMG74Z6q2xH+shSlt7qsmICLICkEYsQ28nBLK73wgYKZ0m1SAJwsvJdCh3hv0Wm1SPXkEppiENut1u9evXSzTffrCVLlshi6SZ9A3RzBFggCW3fvl2/+c1vdPLkSUmSpTxNKUf7yFLnnWii08OrDyEWQEfFagQ2TgHW93mbMAG3PR2Z2Tic+2s7+xyB+0TAlClP/zplzTJUWloqSbrooot02223qX///hHXByB+CLBAknI4HHr++ef10ksvyel0Nl1WfLy3DLela0IsARZARyTB/a9NVQe/yqW98Gp6zMQJuB25fzZWdcTiHCG07G9PhlMNIytkZnkvFx46dKhuu+02zZo1K6z6ACQWAiyQ5E6ePKknn3xSmzdv9m5wWpRyrLcsRfaI1o6NSlcFWIkQC3Q3nTEDcScF2MAw1PKPg+2NzIbap8t19P7ZRKqjDS373ExxyzW0Sp6BtTJNU3a7Xddff72uueYalsYBkhgBFugmtm3bpieeeEJff/21JMmotinlSG9ZKjt5JkVGYQFEojPXfpU6ZQmdUFe0hBqZbas8rtq7ZzTc+2tD7dNVdQRo2eemYcozqEZpE92qqamRJF166aX6yU9+otzc3LDqBJC4CLBAN9LQ0KBXXnlFf/7zn1VbWytJspSmyXq0t//+2JhjFBZAuDo7vPrP03WT8fgCalshN6HCayxEMWlSp9QRILDfffe59p+brsLCQklSfn6+brnlFk2dOjVm5wQQXwRYoBsqLS3VqlWrtHbtWrndbsmULEUZSjmWJaPBGnmFoSbdIMACCFc3DLChhAqwCXVfbIIIp098+7T8g4Gnd71cwytlZjVIknJzc3XTTTdpwYIFzC4MdDMEWKAbO3r0qJ5++umm+2PdhqwnMmU92Svo+rFtCjX5RlcGWIkQCyS7HhRi2wpjXX1vbCyCciTBMtr6fcK5pziQJ6NB7mFV8vR1SJLsdrt+8IMf6JprrlF6enpU7QGQ2AiwQA/w2Wef6fe//70KCgq8Gxossh7PlLWolwxPGF842psdklFYAOHqIQE21MRPLctbam9pnnCW7gl3n3Dq6My2tHfPcLDgaqa75BpaJfMsh0zTlNVq1ZVXXqkf/ehH6tu3b9C2AEh+BFigh/B4PNq4caP++Mc/6vjx496N9RalHM+S5XSGDDPEl8oYTbQRM3xsAcmtm4fYUPfFBpYHCmfyp0j3iXYEuDPa0nKf9vomaHBNdcs1pErG4HrvLTKSLr74Yq1YsULDhw9v8xgA3QsBFuhhXC6X1q1bpz//+c8qKirybnRYlXIsS5biEEvvdHVIDYWPLSC5dVWAleI+EttSOCOMke4TTlCO9jyxPFdH1ic3bW65B1fLOqLBu/a5pG984xu68cYbNXbs2KjrBZB8CLBAD+V0OrV27Vo999xzKi0tlSQZdVZZj2fJcsbeekQ2kQKsRIgFklkPD7DtBbnuuk80zFS3XIOrlTK8Kbiec845uummmzR58uSYnw9A4iPAAj2cw+HQ66+/rtWrV6uioqJxo1UpJzKbX1qcaAE2EB9jQPLpwSEW7TPTXHINrpZliFMul0uSNGnSJP3oRz/SzJkzZXTl+wdAQiHAApAk1dbWas2aNXr55Zf9I7Kqt3hnLT7dONlTIodYiSALJJOuDiCE2KTgSXfJPaRKRp7Tf4/r1KlTdf311+vcc88luAIgwAJorr6+XmvXrtWLL76o4uJi70anRdZTvWQttMtwJcmXQD7agMRHiEUjT0aD3IOrpQH18ni8fyydOXOmli9frnPOOSfOrQOQSAiwANrkdDr19ttv64UXXlBhYaF3o9uQtcgu68kMGfUp8W1guPiIAxIXAbZHM2XKzK6Xa1C1zGynf/sFF1yg5cuXa+LEiXFsHYBERYAFEJLL5dJ7772nF198UYcOHfJuNCVLSbqsJ3rJUm2LbwPbw0cckNgS7V5Y00PQ7WSmYcrTv07uQdUye3nvb7Varbrooot03XXXKT8/P84tBJDICLAAwmKapnbu3KmXXnpJO3bs8G83KmzeIFuWFnwJnkTARx2QWOJxL2OwYBp4fz/hteOC9KeZ4pF7QI3ceTVSqncfu92uK6+8UldffbXy8vK6uqUAkhABFkDEDh48qJdfflkbNmzwT7Jh1FllOZUh62m7DHcCfgHkow5IHIkQXtualK698MrobFO/tdUPQfrUY2+Qe2CNUkd65HA4JEm5ublatmyZlixZoqysrE5sMIDuhgALIGqnT5/Wq6++qjfffFM1NTXejW5DltPpsp7KkKUuwS4v5uMOiL94htdQM6kzOhtay74L7Is2+tWUKU8/p9x5NTL7NN3fOmbMGH33u9/V/PnzZbMl2L8RAJICARZAh9XW1uqf//ynXnvtNR05csS/3ahI9QbZkgS6vJiPPCA+EnX5kwhGEnucYIHfsAQtM21uuQfUyT2wVkrz7mOxWDR79mwtXbqUpXAAdBgBFkDMmKapzz77TK+99po2b97sv7xY9RZZCzNkLbLLaLDGu5HxPT/QUyVqaOnI6GygcC4vjvUlyLE8Z+ClwRGu+W3KlJnVIHderSx5Lrlc3omZsrOztWTJEn3zm9/UgAEDIqoTAIIhwALoFEVFRXrzzTe1du1alZeXezeakqU0TZYie3wnfeJjD+h6iRpgw9GRy4tjfQlyuPVF2rZompLikfusOnkG1MnMcPm3T5o0SVdddZXmzZun1NTUDp0DAFoiwALoVE6nU5s2bdKaNWu0d+/egAKLd03Z03YZjjisKctHH9D1kjHERjP5U6hLb9vSXtgM95LmcM/bgeBqypQn2ynPgFpZBrr9o61paWm69NJLddVVV2ns2LFR1w8A7SHAAugyR48e1T/+8Q+tW7euaVRWklGeKutpuywl6TI8XfQFl48+oOslW4AN53LacC5BDtzPp72wGevzdnS0Nc3lvbf1rDr/va2SNH78eF1xxRW65JJLlJmZ2aFzAEA4CLAAulxDQ4M++ugj/eMf/9D27dvl/xhyGbKcSfeOylbZOv8SYz7+gK6XbCE2VqK4tzTeTItHnn71cp9VJzO7aSbh3r17a8GCBbryyis1evToOLYQQE9EgAUQV0VFRXr77bf11ltvqbCwsKnAYZW1OF2WYrssdZ14iTEfgUDX6qkBNkmYRuMlwrl18vStl6xNn5EzZszQFVdcoQsvvFBpaWlxbCWAnowACyAheDwe7dq1S++88442bdqk2tpaf5lRnSLLabusZ9I7ZxZjPgaBrkWITSimTJmZDXLnOuTJrZNsTZ+JQ4YM0YIFC7Ro0SLl5eXFsZUA4EWABZBwHA6HPvroI73zzjvatm1b03I8ZuP9smfSvffLumO5HAUfhUCXIcAmBI/dJU//OrlzHZLd7d+ek5Oj+fPna+HChRo/fjzrtgJIKARYAAmtvLxc7777rt555x3t27evqcAjWcrTZClJi12Y5eMQ6DqEorjwhlaHPP0cMns1LX2Tnp6uuXPnasGCBZo+fbpSUuIwOzwAhIEACyBpHDt2TBs2bNCmTZv01VdfNRV4JEt5qiwl6bKUpstwRRlm+TgEuhYhttOZMmVmuOTp55Cnv0NmRtNIa0pKiqZPn64FCxbowgsvVEZGRhxbCgDhIcACSEpHjhzRpk2btHHjxlZh1qhIlbUkXZbStMjvmeUjEeh8BNdOZcqU2asxtPZrHlptNptmzpypefPmafbs2crKyopjSwEgcgRYAEnv6NGj/jB7+PDhpgJTMqpsspSmeUdm66zhLc3DxyLQeQivncI0TJl9nHL3rZenr6PZWq2pqamaNWuW5s2bpwsuuID1WgEkNQIsgG7FF2Y3b96s/fv3Ny+ss8rqC7OV7awzy0cjEFsE15gzUzzy5HgDqyfH2WzJm7S0NM2aNUsXX3yxzj//fPXq1SuOLQWA2CHAAui2Tp8+rS1btmjz5s369NNP1dDQ0FTYYMhSlub9KU9rfd8sH41AbBBcY8aUKdPu9odWs3eDAv8O169fP11wwQWaPXu2pk+fzlqtALolAiyAHqG2tlbbt2/XRx99pC1btqiysrKp0JSMapssZaneMFvVODrLxyMQG4TYqJlWjzzZTnmy6+XJqW92abAkjRkzRrNnz9bs2bM1duxYWSwxXF4MABIQARZAj+NyufTFF1/oo48+0rZt25pPAiV5R2cr0ryBtixVhjPCiaAAtEaIDYspU2Zmgzw53tBqZjUfZU1NTdU555yj2bNn64ILLtDAgQPj11gAiAMCLIAe7/Tp09qxY4e2b9+uHTt2qLq6ulm5UZMiS3mqjIpUWSpssVlzFuiJCLGtmDKldLc8fZzen+x6ydb8q9mwYcM0a9YszZo1S1OnTlV6enqcWgsA8UeABYAALpdLX375pbZv367t27eroKBAzT4mTcmo9gZaS0WqjMpUGR6+lANhI8TKTPUF1np5+jil9OaXBffq1UvTp0/3h1ZGWQGgCQEWAEIoLy/XJ598ok8//VSffvqpTpw40XwHT+NSPRWNgbbKRqAFgumh4bUpsDrl6e2U7O5m5VarVRMnTtS0adM0a9YsTZw4USkpKXFqLQAkNgIsAESgqKhIu3bt0q5du/Tpp5+qqKio+Q6exgmhKm0yKm2yVKa2nuEY6GnCCa6BX0eSNeiapvce1gyPzN5OebKcMns3yGwjsI4bN07Tpk3TtGnTNHnyZNnt9jg1GgCSCwEWAKJkmqZOnTrlH53dtWuXSkpKWu1n1Fq9YbYqVUaFTYbDGnoNWqC7CBZEg331SLbgapoyLY2TLvVuaAytDa3uYbVYLMrPz/cH1ilTprAuKwBEiQALADHiC7R79+7Vnj179Pnnn7ee4ViSnIY3zFalyFJt8152zMRQ6G58YTSSrxmdFWBNM/K6fe0OeB3+CZcyXTKzGuTJapCZ2SC1+N83LS1NEydO1Nlnn63Jkydr0qRJysrK6vjrAAAQYAGgM1VWVuqLL77Qnj17tHfvXhUUFMjpdLbaz6izeoNslU2W6hQZ1TYZZpKNRgHRimSktr0g2vIYw2g/wAb5KmTa3PJkubwjrL6wamu9b79+/TR58mR/YM3Pz+ceVgDoJARYAOhCTqdT+/fv15dffqmCggJ9+eWXrSeGkrz30tZ4g6ylOkVGjU1GbQoTRKF7CQyV4X4difSYlsE1RFg1e7m8o6uNgVVpnlb72Ww2jR49WhMmTNDEiRM1efJk5eXlyUi2y58BIEkRYAEgzioqKlRQUOAPtPv27VN5eXnrHc3Gkdpqm3dt2saAyyRRQPhMmTLt3rBq9mrwBtZeLim1dVg1DEMjRozQ+PHjNWHCBI0fP16jRo1SampqHFoOAJAIsACQcEzTVFFRkX+U9uDBgzpw4EDboVaS6i3eMFuT4h2lrU2RUcdoLWDaPDIzXDIzXPJkeEdWzQyXZG29r2EYGjp0qMaMGaNx48ZpwoQJGjt2rDIyMrq+4QCAoAiwAJAETNNUSUmJDh486A+0Bw4c0IkTJ9Tmx7gpyWGVpTbFOwsywRbdlClTsnlkZribgmrjT1v3q0pSenq6Ro8erTFjxmjMmDHKz8/XyJEjWcoGAJIAARYAklhtba0OHTqkAwcO6MiRI/rqq6905MgRVVRUtH2AL9jWWb1hts7q/XGkSPUWlvdBwjItpsx0t0y7q/Gx8XmIoGoYhvLy8jR8+HB/YM3Pz9egQYNktbYxDAsASHgEWADoZkzTVFlZWbNA63usrKwMfqBb3jVq61KaHuusMhxWyUm4ReczjYCQanc3BdV0l3dCpSBvQcMwNGjQII0YMUIjR47UiBEjNHz4cA0bNoxRVQDoZgiwANBDBAbbY8eO6dixYzp+/LiOHz+ukydPyuVyBT/YI6neKqPeG2gNh6XpeT0BF+ExLabMNLeU1hhO/Y+exu2tJ1IKlJmZqSFDhvh/hg4dqpEjR2ro0KFKS0vrolcBAIgnAiwAQC6XS0VFRTp+/Lg/2B47dkwnTpxQUVGR3G536Ao88gbZeosMp1VG46OcjUHXaSHkdnOmxZSZ6g2hZqpbZqrHG1RTPd6fdHebM/22lJGRoSFDhmjw4MGtwmqfPn1YrgYAejgCLAAgJJfLpZKSEp06dUqFhYX+R9/z4uLi9gOu5L3/1mmR4QwItw3eH99z+X53GYTdBGAajRMk2Tz+R//zxmCqVO8IqlLC+zpht9uVl5engQMH+h8HDBjgf967d29CKgAgKAIsAKBDXC6XiouLVVhYqOLiYp05c0bFxcXNnpeWloYXcn08agqzDRYZLkNyWbxr3rqMoI9yE3zbYsqUUkyZKY1BM8UjM9ijzSOlNj6GGUp97Ha7+vfvr/79+ys3N1f9+vVTbm6ucnNz/YE1KyuLgAoAiBoBFgDQ6dxut8rKyvyB9syZMyorK1N5ebnKysqa/VRXV0d/Io8kd2OQdRuS2+J97jFabA94bhqSx/BeBu3x/a7GbYYMs+m5fP9impLU+HvjtvaCs6mAf24NNU1IZJiNv5uSxXspru+5Gp+b/ueNj1bTu5+18bnVlKyeINvNiINoIKvVqj59+ignJ0fZ2dnNHn1B1feYkZFBOAUAdCoCLAAgoTQ0NPiDbXl5uUpLS1VZWanq6mpVVVWpqqpKlZWV/ufV1dWqrKwMPQlVVzHVLNQ2hVQFnUG3K9ntdmVlZTX7yczM9D/v3bt3q6CalZUli8US76YDACCJAAsA6AZM05TD4VBVVZVqa2tVW1ururo6/2Pg88BtdXV1amhoUENDg5xOp5xOp/95y22dHZANw5DNZlNqaqpSU1Nls9n8P4G/p6amym63h/WTnp7uD6iZmZlKSUnp1NcAAEBnI8ACABAGj8cT0Y9hGDIMQxaLRYZhyGq1NvvdYrE0K/OVAwCA4AiwAAAAAICkwE0tAAAAAICkQIAFAAAAACQFAiwAAAAAICkQYAEAAAAASYEACwAAAABICgRYAAAAAEBSIMACAAAAAJICARYAAAAAkBQIsAAAAACApECABQAAAAAkBQIsAAAAACApEGABAAAAAEmBAAsAAAAASAoEWAAAAABAUiDAAgAAAACSAgEWAAAAAJAUCLAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAkgIBFgAAAACQFAiwAAAAAICkkBLvBgBAvJimKYfDEe9mAEBE0tPTZRhGvJsBAHFBgAXQYzkcDl122WXxbgYARGT9+vWy2+3xbgYAxAWXEAMAAAAAkgIjsAAgKXX7WZLbkGExJMPif5Sl8TI9w5BhsUhG43bD8JcZvv0Mo2m70XRcs20t6vTu11Ru+o6zBJQH2W4aRtPvkszGqmQYMi2SZHi3+c8l/zFm4+9NxxlNx1uayrzHNC8PrNP07WNR0Pr89Qa0semxZTtaljf9N2qrXJK/DcHO1Wx7kHY0f11N52yrrOkYs9n5Wp3HV66W5WazY3z7NrXL9JcZgfsb/lfbWGa2ePTVacowzGZvL1+d3v80TeWWxvqabWt83lQWsC3g0Vtf0++BP5K3bu/vaioLOJ/F8Pi3eff1SJKsRtPvgcf4fm8qN2WVp7HMlNXwBBznkTXgOGvjdqs8rY6zyHesR9ZmZd79rYYpQx5Zfe2Tx3+MVfIeJ1+Ztz+s8p3T9LfD+3vjo9T43GjsK8lqGLLIkFWNj4avzCJDhhqcVi37fwMFAD0dARYAJG949Xi/KMpoevQnDcOQIV9wbdzemE4MbyJUU9oJOK5VgrK0SErNUkbAcWqxLdh2BX8MCIf+5y0f/dUZAdUarZrYvLxlnWoM0sHqa90dreptsyzUcWF0VbT1NT4GC7edFmCN1gE2sKxlgG3abrZov9mqzPDV2VZ5m8eYbZyrxY/kD7Atf4KW+UNlQLANCLr+MjWVNwVRBQRYT/MAaPgCYOOjYcgqX33e595Ho9lx3rokqyH/Y9Nx3ueBZZIaQ6tvX18ADgyp3ja3F2CbnSvwPGp+Pot//4D/hgDQg3EJMQAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAkgIBFgAAAACQFAiwAAAAAICkwDqwACBJVlOmPN7FHw01f5S865Va1GIdVV9ZwO+G0bhOZsBx7ZUFLERqBlnctK3tTdu8j2ZAuSlJptFsm3cfQzLVrD4z8JjG41oLss0MKGq2tqkR2PwQ668a0a/1GqqsvfraK/M9hDyu5fqrQcpbtTHIOrBq/dxodZ7AMrPFo69O37qrgW+vIOvA+uuLbh1YU97nZosfX5nZuBauv6yxTo9hSoYn4DyNv6vx9ahluWQaHm/djfWYzcqab7cEnMv3vOWjtx3e/60DHz2N3WRpfO5pfIu2vQ6sIYuMpnVl5e1zq3xrzzat9Rr4u8X/3Hucf/3axrosMmQ1fGWGDBlqcLb1/yAA9DwEWACQ5Jx1Ot5N6Bxmi8cotMyngI8vQnra2zFh+RI+F6QBQLLgExsAAAAAkBQM0zQ78Hd5AEhepmnK4XDEuxlJw+Fw6Fvf+pYkac2aNUpPT49zixIb/RU5+iw86enpMgyuiQDQM3EJMYAeyzAM2e32eDcjKaWnp9N3EaC/IkefAQDawiXEAAAAAICkQIAFAAAAACQFAiwAAAAAICkQYAEAAAAASYFZiAEAAAAASYERWAAAAABAUiDAAgAAAACSAgEWAAAAAJAUCLAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKKfFuAAAgcrW1tXrppZf0/vvvq7CwUBaLRUOHDtX8+fO1bNky2Wy2qOsuLS3V6tWrtWXLFhUVFSktLU0jR47UokWLdMUVV8gwjJDHnzhxQqtXr9aOHTtUWloqu92usWPHasmSJZo3b17Q42699VZ99tlnIevOzc3Vq6++GvFrSsT+Kikp0e7du/Wvf/3L/1NZWSlJ+t3vfqdp06aFdf79+/frr3/9qz777DOVl5crKytLkyZN0tKlSzV9+vSoXlN37K/OfH8BALoOARYAkkxhYaFuvfVWFRYWSpLS09PV0NCggoICFRQU6J133tHjjz+urKysiOvev3+/7rjjDlVUVEiS7Ha7amtrtWfPHu3Zs0ebNm3Sww8/HDTAbNmyRffdd58cDockqVevXqqqqtKOHTu0Y8cOLV68WHfeeWfIEGy322W329ssy87Ojvg1JWp/rVmzRqtWrYr4nIH+/ve/67HHHpPb7ZYkZWZmqqysTB9++KE+/PBD3XDDDVqxYkVEdXbn/vKdM5bvLwBA1yLAAkAScblcuuuuu1RYWKh+/frp5z//uWbMmCGPx6ONGzfq0Ucf1YEDB/Tggw/qkUceiaju6upq3XnnnaqoqNCwYcN09913a/z48WpoaNDatWv15JNPavv27XriiSd0++23tzr+5MmTuv/+++VwODR58mTdddddGjp0qH80b9WqVXrrrbc0bNgwff/73w/aju9+97sRh65gErm/DMPQWWedpbFjx2rcuHHq169fRG34/PPP/eF1zpw5uu2223TWWWepoqJCzzzzjN58802tWrVKI0aM0Pz588Oqszv3l08s318AgK7HPbAAkETWrVunw4cPS5IefPBBzZgxQ5JksVh0ySWX6I477pAkbd26VZ988klEdb/00ksqLS1VWlqaHnnkEY0fP16SZLPZtHTpUv+X/rVr1+rYsWOtjn/22WdVV1envn376te//rWGDh0qScrIyNCKFSu0ZMkSSdJzzz2nqqqqKF595BK5v5YvX65XXnlFv/rVr3T99ddHfLnvH/7wB7ndbo0aNUoPPPCAzjrrLElSnz59dMcdd2jWrFnN9gtHd+4vAED3QIAFgCSybt06SdK0adN09tlntyq/5JJLlJeX12zfcK1fv95fx6BBg1qVL126VHa7XW63W++8806zsrq6Or3//vuSpG9/+9ttXl76gx/8QJJUU1OjDz/8MKK2RStR+0uSrFZrROcLdPLkSe3Zs0eSdO211yolpfUFVb7+Liws1O7du8Oqt7v2FwCg+yDAAkCScDgc+vzzzyVJ3/jGN9rcxzAMnXfeeZKkHTt2hF33119/raKiIknyH99SRkaGpkyZ0mbde/fuVX19fcjj8/LyNHz48IjbFq1E7q+OCqwv2PknT56sjIyMsM/fnfsLANB9cA8sACSJo0ePyuPxSJJGjhwZdD9fWWlpqSorK9W7d+926/ZdNtpe3aNGjdK2bdt05MiRoMePGjUq5PFHjx7VV199FXSfd955R+vWrVNJSYnS0tI0ePBgzZo1S1dddZX69+/f7mvxSeT+6ihf/+Xk5CgnJ6fNfaxWq4YNG6aCgoKQ/e3TnfsrUKzeXwCA+GAEFgCSxJkzZ/zPc3Nzg+4X+CU88JhQSkpKIqq7pqZGtbW1rc6TlZWltLS0do8PPF9LJ06c0JkzZ5Senq6amhrt379fzz33nH74wx/qgw8+COv1BLZJSrz+6ihfO9sLXL62hervlnUGHteWZOyvQLF6fwEA4oMRWABIEoFf6EOFxPT09DaP6Yy6fZeo1tXVtSoPdXxb7Zo6daouv/xyzZw5U/369ZNhGKqurtaHH36oP/zhDyorK9P999+vJ554QpMmTeq01xSOjvZXR/nO315/+9oWzuvqzv0lxf79BQCID0ZgAQAJYcWKFbr88svVv39//zqxmZmZuvzyy/X73/9emZmZcrlceuqpp+LcUiQj3l8A0D0QYAEgSQSORvkmTGqLw+Fo85jOrNtut7cqD3V8pCNrgwcP1lVXXSXJO2FURUVFu8ckcn91lK+u9vrb17Zwzt2d+6s90by/AADxQYAFgCQReO9hcXFx0P0C70sMd1Kafv36RVR3r169mgUM33mqqqpCBhTf8YHnC5dvWRfTNHXq1Kl290/k/uooXzvbuwfV17Zw+rs791c4In1/AQDigwALAEli+PDhsli8H9uhZpX1lfXt2zesGWKl5jMHh6rbN5vsiBEjgh4fOONssONDzUQbK4ncXx3l67+ysjKVl5e3uY/b7dbXX3/dbP9QunN/AQC6DwIsACSJ9PR0/yjRtm3b2tzHNE1t375dkjRz5syw6x46dKgGDBgQsu66ujrt2bOnzbonT57sn5zHd/6WCgsLdfTo0Yjb5vPFF19I8q5FOnDgwHb3T+T+6qjA+oKdf+/evf7Jk8I5f3fur3BE+v4CAMQHARYAksiiRYskSbt27dK+fftalW/cuFEnT55stm84DMPQZZddJkl677332ryE8vXXX1ddXZ2sVqsWLFjQrMxut+uiiy6SJL3xxhuqrq5udfzq1aslee9tnDNnTrMy0zRDtu/kyZN6/fXXJXkv9czOzg7rdSVqf3XUoEGDNGXKFEnSyy+/LJfL1WqfF154QZI0cOBAnXPOOWHV2137q7PeXwCArkeABYAksmjRIo0aNUqmaeqee+7RJ598IknyeDzauHGjHn30UUnSeeedp+nTpzc79tlnn9XcuXM1d+7cNgPEtddeq759+8rhcOjOO+/U/v37JUkNDQ1644039Mc//lGStGTJEg0dOrTV8StWrJDdbldJSYnuuusuHTt2TJJ3ZG3VqlVas2aNJGn58uXKyspqduwLL7yghx56SFu3blVVVZV/e01NjdatW6d///d/V1VVlVJSUnTzzTd3i/7yeDwqLy/3/wS+7urq6mZlTqez1fE//vGPZbVadfDgQd1///3+e0srKyv1m9/8xj/SefPNN8tqtfbo/uqs9xcAoOsZZnt/lgQAJJRTp07ptttuU2FhoSTvpZ8ej8f/pT0/P1+PP/54q5D47LPPatWqVZK8o3Z5eXmt6t6/f7/uuOMO/yysGRkZcjqd/hG+mTNn6uGHH1ZqamqbbduyZYvuu+8+/2yymZmZqqurk9vtliQtXrxYd955p38Zk7ba5jtvSkqKqqur5fF4/HXdeeed/pHecCVqf506dUrf/e53w3oN//3f/63LL7+81fa///3veuyxx/z9m5mZqZqaGv+I4w033KAVK1aEdY7AdnW3/urM9xcAoGulxLsBAIDI5OXladWqVXrppZf0/vvvq7CwUCkpKRo5cqQuueQSLVu2TDabLaq6x40bpz//+c9avXq1Pv74Y50+fVrp6ekaNWqUFi1apMWLF/sn+mnL+eefrz/96U9avXq1duzYodLSUmVmZio/P1/f/OY3NW/evDaPu/jiiyVJn3/+uU6cOKHKykrV1NQoKytLw4cP18yZM7VkyRL17ds34teUyP3VUVdeeaXy8/P18ssva/fu3SovL1dOTo4mTZqkpUuXtholDUd37K/OfH8BALoWI7AAAAAAgKTAPbAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAkgIBFgAAAACQFAiwAAAAAICkQIAFAAAAACQFAiwAAAAAICkQYAEAAAAASYEACwAAAABICgRYAEBS+N3vfqe5c+fqlltuiXdTEGfV1dW64oorNHfuXH3wwQfxbg4AoAulxLsBAIDOVVNTowMHDqigoED79+/X/v37deLECZmmKUl6+eWXlZeX1ynnNk1TV199tYqLi3Xdddfpxz/+cVT1HDhwQG+88YYk6aabbophC+Pr8OHD2r59u/bu3avDhw+rpKREbrdbWVlZGj16tM4//3wtWrRImZmZ8W5qQsnMzNS1116rZ555Rk888YTOO+88paWlxbtZAIAuQIAFgG7u1ltv1YEDB+Jy7oKCAhUXF0uS5syZE3U9Tz31lNxut8477zxNnjw5Vs2Lq1tvvVWfffZZm2WlpaUqLS3Vjh079Pzzz2vlypWaNWtW1zYwwV199dX629/+pqKiIr3yyiu67rrr4t0kAEAX4BJiAOjmfCOtknfkatq0aerbt2+XnPvDDz+UJOXm5mrChAlR1bFnzx7t3LlTkrpVSPEF+6ysLC1evFgrV67Uk08+qWeeeUa/+MUvdP7550vyhtmVK1dq9+7d8WxuwrHb7Vq2bJkkafXq1aqtrY1ziwAAXYERWADo5hYvXqzs7GyNGzdOQ4YMkWEYuvXWW1VaWtrp5/YF2NmzZ8swjKjqePHFFyVJeXl5Ouecc2LWtngbMmSIli9frksuuUSpqanNysaNG6d58+bphRde0NNPPy2n06nHHntMf/nLX+LU2sS0cOFCPfvss6qqqtI//vEPXXPNNfFuEgCgkzECCwDd3NVXX61LL71UQ4cOjTpERuPYsWM6evSopOgvHy4uLtaWLVskSZdddlmXtr+zPfroo7r88stbhddA1113nfLz8yVJR44c0aFDh7qqeUkhLy9PU6ZMkSS9+eabcW4NAKArMAILAOgUvtlhfZctR2PDhg3yeDySpPnz54d1jMvl0nvvvafNmzeroKBA5eXlcrvdys7O1qhRozRjxgxdeuml6tevX7Pj5s6dK0latGiRVq5cqa+//lqvvPKKduzYoTNnzqhXr14aO3asvv/972vq1Kn+4+rr6/X2229r/fr1On78uBwOhwYNGqQFCxbommuu6fDkQueee67/HuZjx45p9OjRUdd15MgRrVmzRrt379apU6fkcDiUmZmprKws5eXlafr06brwwgs1bNiwqOp3uVz65z//qY0bN+rw4cOqqKiQYRjq3bu3srOzNWHCBM2YMUOzZ8+WzWZrdmzL/j9y5Ihef/117dy5U2fOnFFdXZ0eeuihVn8MmT9/vnbv3q2jR4+qoKBA48ePj65zAABJgQALAOgUvsuHzz//fKWkRPfPzccffyzJe5/o8OHD293/4MGDuvfee3X8+PFWZcXFxSouLta2bdt06NAhrVy5Mmg9mzZt0q9+9Ss5HA7/tvr6em3dulXbtm3THXfcoSVLlujMmTNauXKlCgoKmh3/1Vdf6f/+7/+0detWPfbYYx0KsS6Xy//cYon+wqk1a9bo8ccfl9vtbra9oqJCFRUVOn78uHbs2KFDhw7pnnvuibj+8vJy/ed//mebE4b5+v7AgQN68803tXr1ag0ZMiRoXW+//bYee+wxOZ3Ods8bOKnXxx9/TIAFgG6OAAsAiLkzZ87oyy+/lBT95cNOp1NffPGFJGnChAntXj584MAB/exnP1NdXZ0kadq0aVq4cKGGDx8um82mkpIS7du3r911Qw8dOqT33ntPOTk5uummm/zn/uSTT/Tcc8/J4XDot7/9raZOnapf/vKXOnjwoL797W/rwgsvVHZ2tk6cOKG//OUvOnTokPbs2aPVq1frRz/6UVR9IEmffvqp//nIkSOjquPw4cP+8Nq7d28tWbJEU6dOVXZ2ttxut0pKSrR//35t3bo16su0H3/8cX94nT59uhYuXKi8vDz16tVLNTU1Onr0qHbv3u2/JDyY/fv3a8OGDerdu7euueYaTZ48WTabTUeOHNHAgQNb7T9y5EjZ7XbV1dXp008/1YoVK6JqPwAgORBgAQAxt3nzZpmmqdTUVJ133nlR1XHo0CH/6OO4ceNC7utyuXTvvff6w+ttt93mn6E20AUXXKAbb7xRRUVFQes6cOCA8vPz9fjjjysrK8u/feLEiRoyZIjuu+8+uVwu/exnP1NlZaUeffRRzZgxw7/f2LFjNXPmTC1fvlxnzpzRG2+8oeXLl8tqtUb0+iXvZdhfffWVJG+IHzp0aMR1SNLGjRv9I6+//e1v/ffVBpozZ45uvPFGVVRURFx/fX29/w8Dc+bM0S9/+ctWQXjq1Kn61re+pbq6upAjyV999ZWGDBmiJ598stls2cFmsbZarRo7dqx2796tf/3rX/J4PB0aqQYAJDY+4QEAMee7fHjGjBmy2+1R1RF4GXB7y/5s2LBBJ06ckOSddbmt8BpowIABIcvvuuuuZuHVZ968ecrNzZUklZWVaenSpc3Cq09mZqYuv/xy/35HjhwJeb62nDlzRr/5zW8kSYZh6Cc/+UnEdfj4ZpzOzMxsM7wG6tOnT8T1V1VV+f/YMHXq1JCjuHa7vd1Lqm+//faIlnry7etwOHTmzJmwjwMAJB8CLAAgpqqrq7Vr1y5J0V8+LEklJSX+57179w65ry8wS9L3vve9qM8peS9JDRbyDMNoVrZw4cKg9QTud/LkyYja4HA4tHLlSn/wbDlxVKR8obu6ulobN26Mup5g+vTp459N+d133+3Qmqy5ublt/lEglMD3R+D7BgDQ/RBgAQAxtWXLFrlcLlmtVs2ePTvqeurr6/3P2xoNDfSvf/1LknckLpzJnkJp7/jAtoSarTdwv0gCXUNDg+6++27/xFAXXnihbrzxxrCPb8vChQv9o5733XeffvrTn+qFF17Qnj17/Jddd4TNZtOiRYskSfv27dN3vvMdPfroo3r33XcjDu/RzLIcGGADJ94CAHQ/3AMLAIgp32jo2Wefrezs7KjrCbxntL3ZaMvLyyU1jTR2RHp6esjywMtjQ10eHXgfpm8poPa4XC7dc8892r59uyRp1qxZuv/++6O6fzbQoEGD9Otf/1q/+tWvVFxcrL1792rv3r2SvP08fvx4zZ07V1deeWW7fywI5pZbbpHT6dT69etVWVmptWvXau3atZK8f1iYNWuWFi9e3O5Icnuj7W0J/GNHtDNeAwCSAyOwAICYcTqd2rZtm6SOXT4see/X9KmsrOxQXcnA5XLpvvvu8y8dNGPGDD300EP+S3M7avr06XrxxRf1wAMPaPHixf5lbNxut7744gs99dRT+t73vucPz5FKS0vTypUr9fzzz+vf/u3fdO655/oDfmlpqdatW6dbb71Vd999d7PA2VI0EzAFTjwV+L4BAHQ//JkSABAzO3fu9F+S2tEAG7hkSnsBNjs7W0VFRUk7gY8vvPpGr88991w9/PDDHVo/ti2pqam6+OKLdfHFF0vyjlx/8sknWr9+vbZu3arKykrdc889Wr16tfr16xfVOYYOHarrr79e119/vdxutw4cOKCPP/5Ya9asUVlZmT744AM988wz+tnPfhaz11VVVeV/3t4EXQCA5MYILAAgZnwBLD8/X3l5eR2qK3DN06+//jrkvr5ldkpKStrdN9G0DK/Tpk3Tr3/965iH17ZkZ2frkksu0SOPPKJvf/vbkqS6ujpt3rw5JvX7Lk9esWKF/vCHP/gvz96wYUNM6vc5evSoJCkvL08ZGRkxrRsAkFgIsACAmPB4PProo48keSce6qgBAwaof//+kqQvv/wy5L5z5871P1+9enWHz91VXC6X7r//fn94nTp1qv7nf/6n3ftwO8OsWbP8z333FMdSXl6efx3baNaaDaa8vNy/hNKkSZNiVi8AIDERYAEAMbF3715/8AkMlB3hC1VHjx5VTU1N0P3mz5/vD0dvvfWWXn311ZD1FhUVxaR9HeFyufSLX/xCH3zwgaTODa/vv/9+u6HUd++yJA0ePDii+k+ePKmdO3eG3OfUqVP+kdJBgwZFVH8o+/bt8z//xje+EbN6AQCJiXtgAaCbO378uH/GWR/f+qKStGnTpmazBdvtds2bNy/i8/hGEQcNGhTVUihtufjii/XWW2/J4/Fo586duuiii9rcLyUlRQ888IB++tOfqq6uTr/73e/0wQcf6LLLLtPw4cNls9lUUlKigoICbdq0SePGjdPKlStj0sZoPfjgg9q0aZMkb2C8+eabderUqZDH5OTkKCcnJ+Jzvfrqq3rwwQc1ffp0TZ8+XSNGjFCfPn3U0NCgoqIibdiwwT96PnDgwIiXPyoqKtLtt9+uQYMGafbs2ZowYYIGDBigtLQ0VVRUaN++fXrjjTf8s0kvW7Ys4tcQzI4dOyR57+89//zzY1YvACAxEWABoJvbu3evHn744aDlTz31VLPfBw4c2KEAG4vLh31mzJih3NxcFRcXa/369UEDrCSNGTNGTzzxhO69916dPHlSu3bt0q5du9rc13fPbDxt3LjR//zEiRO6+eab2z3mhhtu0IoVK6I6n9Pp1JYtW7Rly5ag+wwePFgPP/xwyOWBQjl58qT+9re/BS23WCz63ve+p6uuuiqq+ltyuVx69913JXlH/aNdAggAkDwIsACADjt48KB/9LCjsw8HslqtWrp0qZ5++mlt3bpV5eXlIdeWHTt2rJ5//nmtX79eH374oQ4cOOC/3zInJ0ejR4/WzJkzdemll8asjcngvvvu0/bt27V7924dPnxYpaWl/kuK+/TpozFjxmjOnDlauHBhVMv2TJkyRU8++aR27typffv2qaioSGVlZaqpqVF6eroGDRqkKVOm6Morr4zZ6Lwk/3tCkq6++uqY1QsASFyGaZpmvBsBAEhuf/rTn/SnP/1JOTk5ev3116NayzOY6upqXXvttaqsrNSPf/xjXXfddTGrG8ntzjvv1JYtWzR9+nT99re/jXdzAABdgEmcAAAd5rt8+IILLohpeJWkzMxMf2h96aWXVFtbG9P6kZz27dunLVu2yDAM3XTTTfFuDgCgixBgAQAd0tDQoDlz5uiGG27Q0qVLO+Ucy5Yt05AhQ1RRUaG//vWvnXIOJJdnnnlGknTZZZdpwoQJcW4NAKCrcAkxACApfPnll9qyZYsyMzP1ne98J97NQRxVV1frb3/7m0zT1NKlS0PeFw0A6F4IsAAAAACApMAlxAAAAACApECABQAAAAAkBQIsAAAAACApEGABAAAAAEmBAAsAAAAASAoEWAAAAABAUiDAAgAAAACSAgEWAAAAAJAUCLAAAAAAgKRAgAUAAAAAJAUCLAAAAAAgKRBgAQAAAABJgQALAAAAAEgKBFgAAAAAQFIgwAIAAAAAksL/ByKJ7lCTN8+DAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADi3ElEQVR4nOydd3gU1frHvzPb0kkIIdTQO4hSFBVBBRXl2vsVwXb9WdFruXbF3kWxXr0iTRGBC4qIXLABiiBFRUR6CS0hJKQnuztzfn9MZjK7O22zs5vd5P08Tx6WzLtnzm52z3u+533PezjGGANBEARBEARBEARBRAG+sTtAEARBEARBEARBNF1IdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRg0QnQRAEQRAEQRAEETVIdBIEQRAEQRAEQRBRwxbRuWfPHnAcB47jcN1119nRZLPk9NNPV95HgiAIPa677jplrNizZ09jd0dh2rRpSr+mTZvW2N0hbEYURQwePBgcx+HOO+9s7O4QCYQ8Lpx++umN3RWCiIimPFd/5plnwHEcunbtipqaGtvbj1mkc9q0aZg0aRImTZoUq1s2OgsXLlRe87Fjxxq7O0Qdfr8fy5cvx4MPPogzzzwTbdu2hcfjQVpaGrp164arrroKCxcuhCAIYbX7xx9/4M4770Tv3r2RlpaGFi1aYMCAAXjwwQexd+/eKL0agiAIwOv1on///spkiOM4fP/997be4/3338eGDRuQlJSEhx56yNJzdu7ciUmTJuGkk05CmzZt4PF40LZtWwwaNAi33nor5s6dqzvW7tmzB7NmzcJdd92FESNGoEePHsjKyoLL5UJ2djZOPPFE3HPPPfj999/Deh179+7Fgw8+iAEDBqBFixZIS0tD7969ceedd2Lz5s1htWWFw4cP44knnsCwYcOQnZ0Nj8eDDh064JxzzsHUqVPh9/tN21Av6Fj5Mfrbh9OO+ieeFrjC5dVXX1Vex7XXXtugNnr06KG0sWbNmrCfX1VVhdWrV+PNN9/Eddddh/79+8PpdEb0ffX5fPjggw8watQoZS7ToUMHnH/++ZgzZw4YY5bbYoxhzpw5+Nvf/oYOHToo39VRo0bhP//5j6XPqZqvv/4aV155JTp16oSkpCS0bt0ap556KiZPnozKyspwX6opdr4X8cz69euVz0ynTp0a9LpuuukmpY0XX3xR+f3EiRORlZWF3bt34+WXX7az2xLMBnbv3s0AMABswoQJmjYjR45UbJoLEyZMUF7z7t27Te2b43sUa7799lvWsmVL5X02+hk6dCjbsWOHpXZffvll5nK5dNtKT09ns2fPjvKrI5oL4Y4tseKjjz5S+vXRRx81dneaFZMmTQoZd7777jvb2q+srGRt2rRhANjEiRNN7f1+P3v00UeZ2+02HWtLSko027jyyistjdUcx7Fbb72V+Xw+037NmjWLpaWl6bbldrvZa6+9Fu7bo8uMGTNYSkqKYf9POOEEtnPnTsN21N8tKz9Gf/tw2pF/0tLSWGVlZYPfB7mdkSNHNriNSDh8+DBzOp0MAEtJSWFlZWVhPX/FihXKa+jbt2+D+mA29wj3+7p79252wgknGLY5evRo3e+XmuLiYnbmmWcatjVo0CC2d+9e07ZqamrYVVddZdhWt27d2G+//RbW6zXCzvfCjHiYqw8YMEDpw/Lly8N6bmVlJUtPT2cAmMPhYAcPHgy4/tRTTynz1iNHjtjZbeaEDXTu3LnJrCA0JnavShOhHDhwAMXFxQCAli1bYvTo0Rg2bBjatm0Ln8+HtWvXYsaMGSgrK8Mvv/yCM844A2vXrkWbNm1023zvvfdw//33AwBcLheuvfZajBw5Ej6fD0uXLsW8efNQXl6Oa6+9FpmZmRgzZkxMXivRdJk2bRqlrxIKf/75J5577jkAQGpqalSiCO+88w4OHz4Mh8OBf/3rX4a2fr8f48aNw5w5cwAAOTk5uPTSSzFo0CBkZWWhoqIC27dvx/Lly/HLL78YtpWSkoIhQ4Zg8ODB6NGjB1q2bAmO43DgwAEsX74cS5YsAWMM7777LioqKjBjxgzdthYvXowJEyZAEARwHIfLLrsM55xzDlwuF3744QfMnDkTXq8X99xzD9LT03HTTTeF/0apmDlzJsaPH6/8/+yzz8aFF16InJwc5OfnY/bs2Vi3bh02btyIs88+G6tXr0ZOTo5pu3feeSfOPPNMQ5v+/fvrXluwYIGl/v/73//G119/DQC44oorkJKSYul58Uhubi7OO+88fPHFF6iqqsJnn32GG2+80fLz1ePt9ddf36A+BEf08/Ly4PV6cfjw4bDbOnbsGM4991z89ddfAIA+ffrghhtuQIcOHbBjxw68//77yM/Px/Lly3HJJZfgf//7H5xO7Sm/1+vFhRdeiJUrVwIAOnbsiJtvvhndu3fH/v37MXXqVGzZsgUbNmzAueeei9WrVyMjI0O3bxMmTFC++9nZ2bj55psxYMAAFBUVYdasWVi7di127tyJMWPGYM2aNejYsWPYrz9a70WicP311+Oee+4BIH02R40aZfm58+fPR3l5OQBgzJgxaNu2bcD1u+66Cy+++CLKy8vxyiuv4IUXXrCv47ZKWAPiYWUg1sRrNKI5M3PmTDZgwAD2ySefsJqaGk2b/fv3s379+il/u/Hjx+u2d/DgQWUV2+l0smXLloXYqFeoO3bsyKqrq217PQQRT1CkM/YIgsCGDRvGALDzzz8/wNfaFen0+XysY8eODAA7++yzTe0feeQRpQ/XX389Ky8v17U9ePCgboRy27ZtuuO0zDfffMM8Ho9yv59//lnTrrKykrVr106xmzZtWojN//73PyUalpaWxg4fPmx4byMKCwsDIqrvvvtuiI0oiuzuu+8OeK/0iPV3y+/3B7xfq1atiqg9uZ3GinQyxtiCBQuUfpx22mmWn6eODDmdzgZ/LsaPH8+effZZ9vXXXysRJPU8MZzvq/pzM2bMmJB5xdGjRwMif2+99ZZuW6+//npANLO4uDjgenV1NTvnnHMUm/vuu0+3rYULFyp2eXl5IZFRQRDY9ddfr9hcdtllll+zHna+F1aIBz1TWFioZNeFG7lXR7TnzZunafP3v/+dAWBZWVmsoqLCrm4zEp1RhERn/FFSUsJEUTS127Rpk/K3S05O1k0rUg92999/v257l19+uW0DHkHEKyQ6Y88bb7zBALDU1FS2d+/eqIhO9WR9xowZhrabNm1ShNtFF11ky/3NmDhxotK/xx57TNNGPbG+/PLLddu6//77LU2uzXjhhReUdi699FJdO0EQlFQ5nufZtm3bNO1i/d1avHixcr+ePXtG3F48iE6v18tycnIYIKVkm6U0y8yYMUPp//nnn29rnxoiOgsKCpS09dTUVFZQUKBpt2nTJsZxHAPA2rRpw/x+f4iNz+cLeE/++OMP3XumpqYyAMzj8bCioiJNu+OPP155PYsXL9a0qaqqYnl5eYrdpk2bLL1uvX7Z9V5YJV70zEUXXaT048MPP7T0nL179yrvQ3Z2NqutrdW0U3//P/jgA9v6HPXqtXKVpx9++EH5ndYGdb0CQ6Io4rPPPsOVV16JLl26ICUlBenp6ejduzduvfVWbNq0ybBvkyZNCtmk/c033+Dqq69Gly5dkJSUFLJB3u/3Y+nSpbj33nsxfPhwtG7dGm63G+np6ejZsyeuu+46rFixQveecmXJ6dOnK7/r0qVLyGvWe6+sVMRas2YNbr75ZvTq1Qvp6elITU1Ft27dMGHCBHz77bemzw+uJFdZWYlXXnkFQ4YMQVZWFlJTU9GvXz889NBDKCkpMW0vUcjMzLT0/vbv3x+9e/cGAFRXV2PHjh0hNowxzJ07FwBMqzlOnDhReSynncSK1atX49Zbb0Xfvn2RmZmJpKQk5OXl4corr8TixYsNn/v999+HfEf37duHe++9F71790ZqaioyMzNxyimn4J133rFcaKCiogKvv/46zjrrLLRr1w4ejwctW7bE0KFD8fjjj+PIkSOGzw/+rgiCgGnTpuGss85C+/bt4XQ60blz55DnFRQU4F//+hf69u2L1NRUtGzZEieeeCJeffVVVFVVAZC2C3AcF/L8r7/+Wrmn+u9pxMSJE5XnLFmyxNJzrGBWvTZaf7cvv/wS559/Ptq0aYOkpCR07twZ11xzDVavXh32a/B6vfjwww9xwQUXoGPHjkhKSkJmZiaOO+443HvvvbpFS7Zu3YrU1FRwHIcWLVpg9+7duvcoKSlBXl4eOI6Dw+EwHLcTkb179+KRRx4BADz99NPIy8uLyn1mzpwJAEhOTsbFF19saDt58mT4/X5wHIfJkydHpT/B9O3bV3msl6qoHnfvuusu3bbuvPNOZVz57LPPGtwntR82KlzD8zyuueYaANJ859NPP23wPe3ko48+Uh43NJ00XKqqqjB27Fhl7Lryyivh9XpD7DZv3ox77rkHxx9/PFq2bAmPx4P27dvjggsuwMcffwxRFDXbd7lcGDduHADJf1vdomBHaq2dLFy4UHlfrr76arRu3VrTrn///koa9uHDhwPm4TLffvut4m9HjRqFfv36abbVunVrXHXVVQCA2tpafP755yE227dvx6+//gpAKrp03nnnabaVnJyMf/zjH8r/I/me2fle2I1af/Tv3x8HDhwIsSkqKsKzzz6L0047DW3atIHb7UZOTg5OO+00vPTSS6ioqNBtX/1ZtPpZnj59urId8pprroHb7da0O/vss5VUf3n8twU7lKtRISH1ioDRzxNPPBHS7o4dOwJWTbR+eJ7XXdlkjLEnnnhCsf3222/Z7bffrtmOOhJ5+umnW+rzhAkTNFcJ1CtXZs/Xe6/08Pl87B//+Idp21dccQWrqqrSbUe2GzlyJNu5cyfr27evbludOnVqlpHaoUOHKu+BVsqWOhrav39/w7YEQWAZGRnKZzbcIgYNoaKiwlIhjrFjx+r257vvvgv4ji5ZsoRlZmbqtnXWWWeZpsN99dVXrHXr1oZ9Sk9PZ59//rluG+rvytGjR9nw4cM1P7dqvv32W5aVlaV7zwEDBrB9+/axTp06aT5fEATWpUsXBkgpJ2Zp0tXV1cr98vLymCAIhvbhYJZFYfffze/3G45rPM+zF1980XI05pdfflHeS70ft9vN3nvvPc3nv//++4rdySefrLtqfdlllyl2jzzyiOF7mojIKW+DBg1S3gO7I501NTXKFoIRI0YY2lZVVSm24aQvRoo6Oqk1HygtLVVW91u0aGH6XVRvr9i8eXOD+qT2qVu2bDG0/e9//6vYDhs2TNMmlpHOoqIiJXqkVWikIajnHFocPXpUSRMHwG6//faQv5PP52MTJ05kPM8bjh0nnXQSO3TokOZ9fv/9d8Wuc+fOpplP6shQq1atmNfrbdDr16Mhkc5LL71UeY5eeqTMyy+/rNhqZWPde++9yvVXXnnFsK25c+cqtlrZAm+++aZy/Y477jBs65dfflFshw4damhrhJ3vhVXM5uqCILBbbrlFsTnllFNCUpYZk77Tctq23k9ubi776aefNO/j8/lYbm4uA6xH7rt166a0vXHjRkPbiy++WPHvepHtcIn6TtpnnnkGRUVFePTRR5VS5Fqb2OWokszOnTsxbNgwFBUVAQCGDx+Ov/3tb+jUqRMEQcD69esxbdo0lJSU4OmnnwbP86bHsbz88stYsmQJ2rRpo5Sr9vv9WLt2LTwej2JXXV2NtLQ0jBo1CoMHD0bnzp2RlJSEQ4cOYfPmzfj4449RWVmJ6dOnIzMzE6+//nrAfSZOnIiLLroIU6ZMwXfffQdA2pAfvALTkFXpa6+9VlkJTUpKwoQJE3DKKafA4XBg3bp1+PDDD1FeXo7PPvsMpaWlWLJkiWFkr6ysDGPHjsXWrVtx4YUXYsyYMWjZsiV27dqFd999F/v27cPevXsxfvz4JhclMMLr9WL79u3K/zt16hRi88cffyiPBw8ebNgez/M44YQT8MMPP0AURWzZsgUnnniifR0Oora2FqNHj8bPP/8MAOjWrRuuvPJK9OnTBy6XCzt27MCMGTOwbds2LF68GBdddBGWLVsGntdPfvj111/x8ssvgzGG//u//8PJJ58Mj8eDdevW4b333kNlZSWWLVuGZ599Fk899ZRmG/Pnz8eVV14JQRDgcrlwwQUX4PTTT0dubi7Kysrw3Xff4bPPPkN5eTkuvvhiLFu2zLRgxrhx47Bq1SoMHDgQV199NTp37oyysrKAYxT+/PNP/O1vf1OimSeccALGjRuHDh06oKCgAHPmzMGPP/6IK6+8Ujfqx/M8/vGPf+Dhhx9GSUkJ5s+fr0QotJg3b56SJXDjjTcavrfRxI6/28SJE5XMDbfbjQkTJmD48OHgeR5r167Fhx9+iAceeAAXXXSRaX9Wr16N0aNHo6qqChzH4ZxzzsHZZ5+N9u3bo7q6GqtXr8bMmTNRVVWFW265BR6PJyQr5B//+AeWLl2K+fPnY/Xq1XjyySdD+v7hhx9i3rx5AIBhw4Y1ueO6Zs6ciaVLl8LhcOD999+Hw+GIyn1+/PFH5XtjNmatX78+xPbbb7/FO++8g9WrV6OoqAhZWVkYOHAgLr/8ckyYMAEulyui/q1btw7vvvsuACnjRCsS++effyqr+8cff7zpd3HIkCHKfOWPP/4IiKRaRb5fuGzevBmMMUO//c477+CFF15Afn4+AKlQ09ChQ3HRRRfhyiuvjLhIyscff6xEj7QKjdhNfn4+zjnnHGzZsgUA8MQTT4R8XxljuOKKK5T5Y9u2bXHVVVdh4MCBSElJwd69e/Hpp59i/fr1WLNmDUaNGoVffvklpPjRgAEDMHjwYKxfvx579uzB999/jzPOOEO3b+rI0Lhx4yL+vNpBOHOPIUOGaD6vsds6/vjj4XA4IAiC8v1syLmXdvbfDmpra3HNNddg/vz5AIDzzjsPc+fODfkcvvHGG7j77rsBSMXSLrvsMpxyyinIzs5GUVERvv76a3zxxRcoKCjA6NGj8csvv4SMQ06nE+PGjcOrr74KxhimT5+OJ598UrdvK1euxM6dOwFI7//xxx9v+FqGDRuGBQsWQBRFLF++HFdeeWWY74YGdihXu49MEQSBDRo0iAFS7vhnn32maXf48GElEsrzvGYuujrSCYANHz6clZaWGt5/+fLlhlHCoqIiJbLC8zzbtWuXpp3dR6Z8+umnAasfWiuwe/bsCYgg6O0fVL8nbrebLVq0SPN1qttas2aN6WvQo7Kyki1YsMCWn/Xr1ze4H1aZOXOm8roHDRqkafPkk08GRJPMGD9+vGI/c+ZMm3scSPBeU61CHV6vN6BPWoUu1BEzQIrYae05WrNmjbKPKysrSzNqtm/fPiXam5eXx37//XfNvq9Zs4a1aNGCAWAdOnTQXFkOzqC4++67DaMX6kjobbfdpmkbPFYERzoZk8YcefO+2d6kESNGKJGC/Px8Q9twCSfSGenfTX1UQGZmJlu3bl2IzV9//aUcpyH/aEVjysrKlII0mZmZ7Pvvv9d8fdu3b1f2/KSmpmqWbS8uLmYdOnRQ3uOVK1cq17Zu3arsP8rIyLC8d0uPLVu22DZ+2VGCvrCwkGVnZzMA7J///GfANbsjnc8995zS3ty5cw1tJ0+erNhOnjyZ3XHHHYar+P369dP1n8Fs3rxZeQ/nzp3L3nzzTXb55Zcrn18AbNKkSZrPnT59uukcRc3jjz+u2D/99NOW+hfMGWecobRhlLXBWOD+TwBs//79ITZWj0zp1atXxEdRqDPM5s+fH1FbMnJ7wePmn3/+qYwJPM+zd955R/P56j2548aN06yzIIoie/jhhxW7Bx54QLOtt956S7ExKhQoimJAZMjOIz5kwo10CoKgfOYdDofpMUG7du1S2u/WrVvIdfUcz2ye6vP5mMPhYIBUUCk4Sqz+zFt5Lep9nQ3xkXa/F1bRm6uXlpYGvAfXXnutZp9++eUXpd/HH3+87jE0ixYtUuYbJ510kqbNH3/8odzPLHKvLuD0xhtvmL7O77//XrEP9jMNJS5F5/z58xXbKVOmGNpu3bpV+RL84x//CLmunkimpqayAwcOWHpNZuzcudPUKdktOtXVt7766ivddtasWaOkg3Tq1Ekz9UztpJ566indtj744ANLdmaoPyOR/liZNERCcXExa9u2relE65///Kdi8+abb5q2G659Qzl48KCSGnXJJZcY2nq9Xta1a1cGgPXo0SPkerB4WbFihW5b11xzjaHdnXfeqTgHs7SODz/8UGnr448/Drmu/q4MHjzYUHCq03j69+9vWEBA3a6W6GQssCiUXtGPrVu3KjZjx441fK0NIVzRGcnf7cILL1Sua1X8lPnyyy8D7qklOl999VXl+hdffGH4Gr/55hvF9tlnn9W0+f7775VUu06dOrGSkhLm9XrZ4MGDlefascATvCARyY8dQlA+A69jx44hlWHtFp1yFUMAugtFMg888IBi27NnT+X7Pm7cODZ16lT2ySefsIceeoi1atUq4HumlXpm1Hbwz8CBA9mcOXN0nysXWwLA7r33XtN7hWuvxaOPPqq0YVShU11ISP7RWkD/6KOPmNPpZCNHjmSPPfYYmz59Ops7dy5755132Lhx41hSUpLy/PT09AYLpA0bNijt5OTk2JZOKrepFp2rV69Wzq50u926AYbq6mplS8bQoUNN06NPO+00BkgLTlrbIIqLi5WKx6mpqbrVlX/44Qel33qLz5ESrugsLS1V7LOzsyO2V285MaoybcVePUe1UhwoXPtg7H4vrKI1Vy8oKAh4Pffcc4+uADz//POV76nWApOaxx57TGnzxx9/1LRRbwX79ttvNW3UFZjdbreldNmCggKl3VGjRpnaW6Fx8r1MkDetZmRkBGw21qJnz55KGs///vc/Q9tLL70U7dq1s6WPXbt2Vc5uXLNmjS1tGrFnzx5s3LgRgJQecu655+rannjiiUpK4t69e7F+/XpdW4fDgTvuuEP3ujq18c8//wy32wmHIAi46qqrcOjQIQDA2LFjcdlll2naqjd4JyUlmbadnJysPJbPSIoGn332mZIadd999xnaulwuJWVi+/btusVbACkl9bTTTtO9bvRZYYzh448/BiAVKzBL61CniJl9r2+//XbDdDl1wYPbb7/dMA3RqMCIzC233KI8/s9//qNpo/79zTffbNpmNInk71ZbW6sUQMrNzVWKcGgxduxY9OnTx7Av8tjes2dPnH/++Ya2Z555pjJe630GRo4ciQcffBCANNbdcsstePTRR5Ux75prrjHscyLy5ZdfKlss3n77baSlpUX1fnv37lUet2zZ0tD22LFjyuNt27YhKSkJy5cvx8yZM3H99dfj6quvxnPPPYc///wTAwYMUNp/+OGHG9y/9PR0nH322Rg4cKCuTWOM1ddff70yhs2bN093rHjggQdCCiKWlZWF2A0fPhx79+7F999/j6eeegrjx4/HZZddhltvvRUzZ87Etm3bMHToUKXP8jaGcJk6daryOJrppF9//TVGjRqF4uJipKWlYfHixbj88ss1bZcuXYrCwkIAwD//+U/T9Gj5O19WVqZsMVGTlZWFCy+8EIBURFFOww8m3goIAfZ/lu1sL9bfs3iZg+3atQunnnqqMkd//vnn8eqrr2qmC5eUlCgFHK+++mq0b9/esG21/9Lzg+rPprqAqRr5vHgAOP/885GdnW14X0D6nsio/UAkxOXpqPIBtW3btlUOJjZCnkTu3bsX1dXVAR8sNUYTr2DKysrw8ccf46uvvsKmTZtQVFSke+D2/v37LbfbUNauXas8Pvvss03tzz77bHzzzTcAJFGstxenZ8+eAR+sYNRfiEiq2Hbu3LnBe1xiyV133aV8sfPy8ixXBIsn5O8PIH02Fy5caGiv/rtu2bJFs+orIOX3G2H0Wdm8eTOKi4sBSJNEsz4BQFpaGo4dO6bs89HD7Hu9bt065bHR3h0ASjVnI8444wz07NkT27Ztw/Tp0/HMM88ETMx8Pp8y8Ldr1w5jx441bTOaRPJ3++2335QFjJEjR5ruGxw1apTu36u0tFTZZ5ubm2v5MwDA8DPw5JNP4ptvvsGaNWsCKpR26dIF77zzjuk9rDBp0qS42BNaXl6OW2+9FYC0iGom3O1A/t4C5qIzuGroo48+qvmdysnJwccff4yBAweCMYaPPvoIL774ouGB8y+88IJySHltbS327duHpUuX4sUXX8TLL7+MKVOm4N///jcmTJgQxquLHl27dsUjjzyi7LH6xz/+gfnz5+OCCy5Aq1atcODAAcyePRtr165FTk4OampqlEmhlqjq3r274f06duyIJUuWoH///jh8+DD++usvzJs3L6x9WLW1tfjkk0+U/99www2WnxsOs2bNwg033ACfz4ecnBx89dVXAfvtglH7tJKSEtOxQ10ldMuWLZqfwRtuuEGpmjpt2rSQfeNVVVWKGPV4PPj73/9u8qqI5shvv/2GMWPG4PDhw8r+eqPvzY8//qiMkw6Hw/Sz7PP5lMd6fvDqq6/GPffcg5qaGsybNw9vvfVWyGJkQxZQXC4X0tPTUV5ebtspFnEnOisqKnD06FEAUml8s/LswZSUlOiKTrMVBZnvvvsOf//733VLrwejtSppN3LkDZCEohlqG/Vzg2nVqpVhO+oCSzU1Nab3TWQeeeQRvP322wCkSfGyZcsM3x/1l9rKe1NdXa08Tk9Pj6CnxqijlVdccUVYzzUaWCL5rKj7NH/+fGWTfaR9Asy/1wcPHlQed+3a1dA2KysLmZmZARGbYDiOw80334z77rsPBQUFWLRoES655BLl+hdffKGsyl9//fVRK/BilUj+bur3zmzSa2aTn5+vONuVK1cGTCTNMPoMOJ1OfPLJJzj++OOVSbv8OyMRk4g88MAD2L9/PzIyMjBlypSY3LO2thaANEHS860yweOaUabSgAEDMGzYMKxevRq1tbX48ccfDTN41Hg8HvTo0QM9evTANddcg5EjR2LTpk247rrrkJOTE3JUQ2ON1U888QS8Xi9eeOEFMMbw9ddfhyyk5+bm4vPPPw947UYLwUZkZ2fjrrvuwkMPPQQAWLx4cVii8/PPP1cWGYYOHYr+/fs3qB9GbNiwAePHjwdjDHl5eVi2bJnpnEbtP26//faw7qc3dpx11lno0KED9u/fjxUrVmD37t3o0qWLcl0dGbrwwgtDFlw2bNiAffv26d53+PDhpmNvQ7D7s5yWlqa8RzU1NaaZE0btxfp7Fg9zsJEjR6K0tBQejwdz5sxRIuh6qD/L7777rlIEzQp6n+XMzExcfPHFmD17thK5Vy+iyBkSgBTMGzNmjOV7ZmRkoLy8POC9i4S4S68tLS2N6PlaZzrJmDlMQEoxHDt2rCI4e/Xqhbvvvhtvv/02Zs+ejQULFig/8hk2DUlhCRd1KkBqaqqpvfrLaJRG0FgVNeONZ555Bs899xwAaZK+fPlyU0eYmZmpPJarLBshL6YEP9duIvkOGX1/IvmsRKtPgPn3Ws5QcDqdllLFrHy/rrvuOkWsffDBBwHX5P9zHIcbb7zRtK1oE8nfTZ2+FFx9Twuj9y6Sz4B6tVeLVq1aBUwKu3btalrJMNFYuXIl3nvvPQBS+pZdW0XMkD/ngiAolWn1UI9rHTt21D0zT0b9N5KrKoZLVlZWQERbq3pjY43VHMfhueeew8aNG/F///d/6NWrF1JTU5GSkoK+ffvi4Ycfxh9//IHBgwcri9ccxyE3N7fB91RH9f7666+wnqs+mzNaUU5BEJSsp5qaGktnBEfDf/A8j/HjxwOQtn/MmDEj4LpZZGjKlCm4+OKLdX+iVR01LS1NSds+duyY6ftn9lkO57vh9/uVz6nL5QoZ72P9PbP7vWgI8j39fr8l4RutuZBRiq26AvP48ePDWgiX+2tFP1kh7iKdarE0YsSImBzgqub5559XFP0jjzyCp59+WreMs9l+UztRr8ropfmqUU8WoxlVs0pVVZXp3jyr5OXlYdCgQba0BQAvvfQSHnvsMQDSBGbZsmWWVnjVotRoL6SMOifeSrS6ocjfIY7j4Pf742JhQf29fvzxxw3LetuN7Bj9fj98Pp+p8LTy/crOzsZll12Gjz/+GP/73/+wb98+5OXlYe/evVi2bBkAYPTo0QEr54mI+u9mJjgA4/dO3db48eN19540hNtuuy3g+7Vt2zY8+uijePHFF21p/6+//gp7Aq9HQyMgU6dOBWMMycnJKCoqwjPPPKNpp34fZs6ciVWrVgGQsh4aMu6oxXxxcbHh4kOvXr2Uxy1atDBtW20TyWTs1FNPVdLAfvnlF1RWVgZMiBt7rB44cKCyYKDF5s2blcXrHj16WHrv9FDv1TLK2AjmwIEDio9OTk7G1Vdf3eA+GDF06FD87W9/w/3334/CwkKcccYZ+O677wyPpVGPHbt27bJtXL3uuuuUxeYZM2bg8ccfB8dxylEqgJRJc9ZZZ9lyPzvgeR7dunXD1q1bIQgC9u/fr7slBjD/LPfs2RO7d+8GIH03jNrav3+/8jnt3r17yNy4Z8+eyjGBZt8zv9+vpEGnpqZazkRUY/d70RAWL16MsWPHorKyUjlCzSi7QP1Znjp1qm17hUeNGoWOHTsiPz8fP/zwg/K3ZHVHqcgEp5Eb4fP5FC1htrXCKnEnOlu0aIG0tDRUVFTEZK9kMMuXLwcAtG7dGk899ZSu4CwvLw/Y6xJt1Odkqc+P1ENtE6sVcSMKCwvDTpXWY8KECbbttZw8eTIeeOABANJnb+nSpaZFbmTUwtSoWBMg7XWSN5nzPG9acCUS2rdvj19//RWMMRw4cAAdO3aM2r3C6ZNMrL/X7dq1U/YS7tq1K2BiHExJSYnlidott9yCjz/+GKIoYurUqZg0aRKmTp2qpJA2dgEhO1CPHTt27DC1N7KJ1mfg448/VopUDR48GEVFRdi7dy9eeeUVnHPOOabnvFrh008/tW2h5LvvvrO0dzgYeaW6uroaTzzxhKXnqIvC9O/fv0ETrc6dO+PHH38EIInODh066Noed9xxymMrIlJtE4nQ4jgOqampKC8vB2MMZWVlAaKzb9++4Hkeoiji119/hSiKhotx6n3g0UgxDUa9uB5O7QktGhrNmT59ujJ2XXLJJRH9Pcy47777wHEc7rvvPkV4fvvtt+jXr5+mffDYYZfo7NGjB4YPH45Vq1Zh165dWLFiBUaOHGkpMjRt2rRGq/nQv39/bN26FYA09zASWmaf5f79+2Pp0qVKW0Zjk5W2ZNavX28ocH799VdFwPbt27dBZ3TK97TrvWgII0eOxFdffYXzzjtPEZ6MMVx11VWa9tHygzzPY8KECXjmmWcUofnEE09gxYoV2LVrFwDg5JNPRu/evS23qdY4WmfVN6iftrRi5UaqAd6soMyIESMASBNEKxMdOykoKAAgFaEwckrLly8PKZoQTDiv2Qx1ISA5kmKEOqpodqB3c+Xtt9/GPffcA0CKBi9ZskSp/meFfv36KROwzZs3Gw4gP/30k5KWIq/KR4uRI0cqj+2KLkfKCSecoOyv++abb0y/O3aiLlAhr8LqIa9uW2H48OHKJGnq1Knw+XzKJL9169amezsSgYEDB8LtdgOQJsZmWwnk4mVatGrVSolm/Pzzz7bshd+9ezduu+02ANJq+ezZszFr1iw4HA6Ioojx48cHTMKJ8FFPzuTJnR69e/dWBEF+fr6yt1kP9WJdJJGH0tJSHDlyBIAkQIMrM2ZkZCgFtUpLSzUrmsrk5+crVZzz8vIMI3B2oRYvkabkqwVsOO+pug/RSq1Vc++99+LVV18FIC1Kn3nmmdi8ebOmbTR9WnBaYnCqbTiRoVhxzjnnKI9lwaiHeg+x1l6+eG3LKo1xz2BGjBiBJUuWIC0tDYIgYNy4cUqFcS1bWWDb/VlWf1ZnzJgBxlhEFZjVhYvUC4oRYce5K1bO6ZTPpYGFs4DmzJmj2F599dUR9U19vpqVM5AyMzOV86n0ztjx+/1syJAhAeeMaSGfSwiLZxCZndM5aNAg5fr//vc/3XZ++eWXgLPrjM7pNDvgPlzbROH9999XzjJNTU0NOFg+HNRnb/7rX//StVOf7fjWW281tNuW2Ldvn3JOZ48ePVhFRUWD21Kf9/jEE09EZHvrrbcq1//97383uE+MhXfur93ndKqZMmWKYn/bbbcpj++///5wXk7YhHNOZ6R/t4suuki5PmPGDN12vvrqK8UO0D6n88UXX1SuP/TQQyav0hi/389OPvlkpb0PP/xQuaY+2+yiiy6K6D6Jht3ndH777bdKe1bOrHzooYcU+2eeeUbX7vfff1fG4LS0NFZZWdngPr722mvKPYcMGaJpoz5784orrtBt6/7771fs7rvvvgb3ySpTp05V7nfqqadG1NbRo0cDzpjWOuNYixUrVijP6dKli+EB8w1Fbx6h/tu1bt1a84zSiooK5WzXli1bsoMHD9rWr/LycpaamspQd26iehyL9O9hhXDP6WSMscLCQsXHp6WlsYKCAk27TZs2Kd+xNm3aaPo+n8/HcnJyGADGcZzm+8+YdGaj/D4lJSXpnvNo5Tz56upqlpeXF9b8WA873wur6M0/VqxYwdLS0hggnU/8ySefaD7/3HPPVZ6/dOnSBvdDixEjRgS8/3J/kpOTWWlpaVhtvfDCC0pbRucgh0PMROfEiRMVmx9++MGwPUEQAg47veuuu1htba2ufVVVFfvoo4/Y7NmzQ66FKzrPOussxf61114Lue71etn1118fMLnSm5yqB9Pp06eb3ttsIq0W423btmVbtmwJsdm7dy/r1q2bqcBpzqJz+vTpyuCTkpIS0cTswIEDLCUlhQFgTqeTLV++PMTmo48+Ut7Djh07ah5WbTf33nuvcs8zzjiDHTp0SNdWEAS2bNky9vTTT4dcs1O85OfnK4s6Ho/H9DtRUFDAnnrqKc1DzsMRnYwxNnz48ABxqHW4uHqssCo6jx07pvz91T/btm2z1K+GEkvRuXLlSuV6VlYW27hxY4jNtm3bAia7eqKzoqKCderUSZngvPTSS4YHvR87doy98cYbbNmyZSHX1MLysssuC7jm8/kCBGmkixyJhN2is6amRplsnnbaaab2RUVFyvc8KSlJsw+FhYVswIABSj+1Fux+/PFH9v7775uOlx9//DHzeDyGnzvGpMPR27Vrp9hNmzYtxGbZsmXM6XQqE9jDhw9rtqWe8xiNQZs3b2aFhYW612fNmqVMmJOSkthff/2laffTTz+xDz74gNXU1Oi2lZ+fz0488USlTz169GA+n0/XXs11112nPO/JJ5+09JxwMZpHTJ48Wbmek5OjKXzefPNNxea4444zHWN//vlny4t/6vFUPY795z//sfT8SGiI6GSMsbvvvlt53rnnnhvyPSkuLg4QgEaL3a+//rpiN2jQIFZcXBxwvbq6mo0ZM0axMVqMWbhwYYAP3bt3b8B1QRDYDTfcoDt2q1H7ZD1tYfd7YQWj+cfKlStNhef69euZy+VSfOqSJUsM77dnzx5277336gpqNer5pvqzPG7cOOsvsI6LL76YAWA8z7OjR4+G/XwtYiY6P//8c8Wme/fu7O2332ZffvklW7JkCVuyZAnbvn17gP2+fftY+/btA968iRMnsg8//JDNmzePTZs2jT311FPsggsuUByi1qQ5XNH5xRdfBDiTCy64gL399tvs008/ZU8//TTr0aOHMpHv0KGD4eT0t99+U9rJzc1lr7zyClu0aJHymn///fcAeysT6auuukqxSU5OZrfeeiubMWMG+/jjj9k///lPlpGRoVw/++yzdVcsm6vo/Oqrr5jD4VBe0x133MEWLFhg+hM8cKp59913lfZcLhe78cYb2YwZM9jUqVPZ5Zdfrghcp9NpOrioP3taYsIqXq+XjRo1KuCzMm7cOPb222+zzz77jM2aNYu98sor7Nprr2Vt2rRhANioUaNC2rFTvDDG2Ndff61MsgCwgQMHsscee4zNmDGDzZ07l/3nP/9h//rXv9iIESOUv5NWFDpc0bl58+YAcXjCCSewV199lc2ZM4dNmTKFnXrqqQwAO/nkk5Vxp0uXLpbaDl6EOv300y09LxJiKToZYwFRXI/Hw26++WY2Y8YMNmvWLDZx4kRlDFZHRfUm/xs3bgwYp7p168b+9a9/sWnTprF58+axqVOnskcffZSdffbZymdl5syZAW2sXLlS+Xx06NAhZJLEGGO7du1S7pOSkqI7oW9q2C06GWPs0ksvVcYRs0wlxhibPXu2Mu45HA527bXXKgvDDz/8sBJZkceAqqqqkDYWLFjAACn6dOmll7Jnn32WTZ8+XfH/Dz/8MBs4cGDAd++yyy4zjNJ9+eWXyueG4zh2+eWXs6lTp7IZM2awG2+8UZkIAmAffPCBbjtWRefLL7/M3G43O++889hzzz3HPvnkE/bJJ5+w5557LkAgut1utmDBAt125PciIyODXX755eyFF15gM2fOZHPnzmXvvfceu/baa1lycrLSXnp6OtuwYYNue2rUkT6e5w19XSSYzSPUwicnJ0cz+jV+/HjFxul0sksuuYS9/vrrbM6cOeyTTz5hb7zxBrvppptYly5dlLHFCt9//33A31MeM8rKyiJ5ySF888037JFHHgn4Oe644wKEQfD1kpISzbZKSkpY7969lef26dOHvfrqq+zTTz9lzzzzDOvYsWOAT/J6vbr9qq2tZaeddppi37FjR/bMM8+wTz/9lL3yyiusT58+yrW+ffuyY8eOGb7OK6+8UrHPzs5mDz/8MJs9ezZ76623Aj73bdu2Zfv27dNtx6rotPO9sILZ/GPVqlWmwvM///mPMkYCUlT9mWeeYR9//DH77LPP2HvvvcfuvvvugKzK/Px8075VVFQo91b/fPPNN2G9RnUE3M45TcxEp9/vD4g2BP9oTXYOHjwYMHE2+nE4HJpOIlzRyVhgepDWz6mnnsoKCwuVFXujiMjVV1+t207we2VlIu3z+dhNN91k+n5cdtllmo5cxswBNNQ23gmOZln90ZtAy7z88ssBE5bgn/T0dM1IfDDq50QiOhmTHMkdd9wRILKNfsaPHx/Sht3ihTHGVq9ezbp27WqpT2lpaSGLM4yFLzoZk9IE5QiM1k///v0DFruOO+44S+2uWbMmoB2rKW2REGvR6ff72bXXXqv73vE8z1566aWAVVaj78xff/0VsPJs9OPxeAIWa0pKSpSxl+d5w3F91qxZSjsnnHCCYcZMUyEaolMdvTBKsVbz0UcfKWJG72fkyJHsyJEjms+XhZaVH7fbzR555BFLkb1Zs2ZpTsrUbWllOakJR3Sa9b1r166mE8Jw3ov+/ftrZofo8eGHHyrPPeussyw/L1zUf3M91CnQWsJTFEX29NNPB0S2zT5fVhBFMcQnafnDSGnI/MNoHrB7927TcXT06NG6wlVNcXExO/PMMw3bGjRokKVFiZqamoAAidZPt27dTD+nVkWn3e+FGVbmH6tWrWLp6ekMkPSJ1rzgiy++YLm5uZY+B9nZ2bpjZTDBC+GdO3cOO2VenWZuZ8Q/ZqKTMSlE/8ILL7CTTz6ZZWVlBUyGjSZG33//Pfu///s/1q9fP5aZmckcDgfLyMhgffv2ZVdeeSV79913dXP8GyI6GWNsyZIlbOzYsaxVq1bM5XKxtm3bsjPPPJN98MEHimOzIjr9fj9799132emnn85atWqlpO5ovVfhTKRXr17NbrzxRta9e3eWmprKkpOTWZcuXdi4ceMsrWiEMyiHO4DHM9ESnYxJewZuv/121rNnT5aamsrS09NZ//792QMPPMD27Nlj+vzKysqAiY9d6Qzbt29nDz74IDvppJNYTk4OczqdLCUlhXXp0kVZgdcSdoxFR3QyJi2ezJo1i11xxRWsS5cuLC0tjTmdTtayZUs2ZMgQ9o9//IPNmTNHdz9qQ0QnY4wdPnyY3XfffaxXr14sOTmZZWZmsiFDhrBXXnmFVVZWMlEUlYiB1dU9URRZixYtGCDtNzJKgbOLWItOmUWLFrGxY8eynJwc5vF4WF5eHrv66qvZTz/9xBhjlkUnY9L79vnnn7MJEyawnj17soyMDOZwOFhmZiYbOHAgGz9+PJs2bVpIFFO9iv7ggw8a3oMxxq655hrF3sqexEQnGqLT7/cre7DCESZ79uxhDz30EDvuuONYZmYmc7vdrH379uySSy5h//3vfw0nQn6/n61atYo9+eSTbOzYsax79+4sLS2N8TzP0tLSWKdOndjYsWPZyy+/zA4cOBDW69mzZw/717/+xfr168fS09NZamoq69mzJ7v99tt197SpsSo68/Pz2euvv84uvPBC1rNnT9aiRQuWlJTE8vLy2NixY9mHH35oabtFeXk5+/zzz9mDDz7IzjzzTNazZ0/WsmVL5nQ6WWZmJuvTpw+bMGEC++KLLwzT1bVQBwOsLIw2FKvzCPU+eb2I58GDB9lTTz3FRo4cydq0acPcbjdLSkpiHTp0YKNHj2aPPfYYW716dVj9e+qppwL+pnZ9d9TYLToZk7Ka3n//fXbmmWey3Nxc5na7Wbt27djYsWPZp59+GpbYEEWRffrpp2zs2LGsXbt2zO12s9zcXHbmmWey999/33K6tsySJUvY5Zdfzjp27Mg8Hg9r1aoVO/nkk9lrr71mqdZEOKKTMXvfCyOszj9+/PFHU+FZVVXF3nvvPXbBBRewjh07suTkZOZ2u1lOTg47+eST2Z133skWLVoU1oKpeo+2Fb+uxd///ncGSOm/kdQFCYZjLMKyqgRB2MLSpUuVimoTJ07EG2+80cg9an5s2rRJqdJm9W+wfPly5Ry3u+66C6+//no0u0gQjcLkyZNxzz33wOFwYM+ePYZHpxAEQRCJSVlZGdq1a4fKyko88MADeOGFF2xru/FPjScIAkD9GbHp6el49NFHG7k3zZO33npLeXzGGWdYes67776rPG4KZ3MShBa33HIL2rRpA0EQ8NJLLzV2dwiCIIgoMGXKFFRWViI9PR333XefrW2T6CSIOEEWnffccw9ycnIauTdNj5UrVxqeD/r222/j/fffByAd4Py3v/3NtM1ff/0VCxcuBACMHj06Jmf6EURjkJycjEmTJgEA3n//fRw8eLBxO0QQBEHYSllZGSZPngwAuP/++9GqVStb26f0WoKIA4qKitC6dWu0atUKO3fuRHp6emN3qcnRvXt31NTU4Nxzz8UJJ5yAnJwc+Hw+7Ny5EwsWLMDGjRsV20WLFumKzq+//hqiKGLbtm146aWXcOjQIQDAqlWrcOqpp8bktRBEYyCKIoYOHYoNGzbgjjvuwJtvvtnYXSIIgiBs4plnnsFjjz2GLl264M8//0RSUpKt7ZPoJAiiWdC9e3fs3LnT0CY5ORkffPABrrnmGl0bjuNCfmd1/+f//vc/VFVVmXdWg1atWmH48OENei5BEARBEERjQqKTIIhmwc8//4z58+fj559/xoEDB3D06FFUVVUhKysLPXv2xOjRo3HrrbciNzfXsB1ZdKalpaFnz5649dZbccMNN4DnzXcrdO7cGXv37m1Q/0eOHInvv/++Qc8lCIIgCIJoTJyN3QGCIIhYMGzYMAwbNizidmidjiAIgiAIIjwo0kkQBEEQBEEQBEFEDapeSxAEQRAEQRAEQUQNEp0EQRAEQRAEQRBE1CDRSRAEQRAEQRAEQUQNKiREEARBJAx+vx9VVVWGP7W1tfB6vfB6vQGPtX7n9/vh9/shiiIEQQj5V/1YLoHAcZxSrVj9mOd5pboxz/NwOp1wOp1wuVwBP/LvnE4n3G638m9ycjKSkpKQlJSk+Tg5OVn5SUtLQ3JysqWqyQRBEATR2JDoJAiCIGKK3+9HWVkZysrKUF5ebvhY/reyshLV1dXwer2N3f24ged5pKamIi0tLeAnPT094P8tWrRAZmYmMjMzlcdut7uxu08QBEE0I6h6LUEQBBExfr8fxcXFKCkpCfk3+HFpaWnER8/IkcGUlBSkpKQgNTVV+X9SUhKWTv0enMgBIgCRU3449f9Z3f8ZACZFKJXHrO4xpMec8n/lVwCn6pDymNU/5gDw0v8ZX9eI/DseAMek2/JM+nEwMJ7hnBtPR01NDaqrq1FTU4OamhpUVVUFPPb7/RG9fykpKYoQVQvS7OxstGrVCq1atVIeezyeiO5FEARBECQ6CYIgCEO8Xi+Kiopw5MgR5aewsBCFhYXK/4uLi8MSkhzHIS0tDRkZGUhPT0dGRgYyMjLw7Ywfwfl5wM9J//p4cH4OEDhwAg8IdY8ZZ36TJgpDnWh1iGBOBjhFSbDWPWZOBjhEjL19NMrLy3Hs2DEcO3YMpaWlKC0thSAIYd0vLS0tRIi2atUKOTk5yM3NRZs2bZCRkaGkFhMEQRBEMCQ6CYIgmjlerxcFBQU4dOgQDh06hIMHD+Lw4cM4dOgQCgoKUFJSYqkdh8OBzMxMtGzZEllZWVi36Hdwvjrh6OWlx14enM8B+DhwIJESaxjqIqouEXCJqn8Z4BIx8tphKCoqwtGjR1FUVITa2lpL7SYnJyM3N1cRocH/Zmdn0/5TgiCIZgyJToIgiGZAeXk58vPzsX//fuzfv18RmIcOHUJRUZFplNLtdiMnJwetW7dGTk4OvvlwFTivA6jlwdU6wHnrxCUJySaDIlDdIuAWwNwimFvERfedg6KiIhQWFqKgoADFxcWmbbndbrRr1w7t27dHhw4d0KFDB7Rv3x7t27dH69at4XA4YvCKCIIgiMaCRCdBEEQTwev14uDBg8jPz0d+fj727duH/fv3Iz8/3zRamZycjDZt2qBt27ZYM28jUOMAV+OQBGWtQ0p3JUFJaMB4BuYWgCQBzCOAeUSM/sdwHD58GAUFBThy5IhhSq/T6US7du0UIZqXl4dOnTqhc+fOyMzMjN0LIQiCIKIGiU6CIIgEo7a2Fvv27cPu3buVnz179uDw4cMQRVH3ea1atULHjh3Rvn17LHnre0lU1glLSnclogUDAzwCWLIAliTgkofPxf79+3HgwAEcPHgQPp9P97ktWrRAp06dFBEq/5uTk0N7SAmCIBIIEp0EQRBxit/vR35+foC43L17Nw4cOKArLlNSUpCXl4cOHTrguw9Xg6t2gquuE5cC7akj4gtJkIpgSX6wZAGXPnIe9u7di7179+Lw4cO6ad8pKSno1KkTunbtiu7du6Nbt27o1q0b0tPTY/wKCIIgCCuQ6CQIgogDqqqqsHPnTmzbtg3bt2/H9u3bsXv3bt2jMTIyMtClSxdsWrINfJVTEpdVDtpXSTQZGM/Akv1gKZIgPXXcYOzduxf79+/XTdfNzc1Ft27d0L17d0WMtm/fnooYEQRBNDIkOgmCIGLMsWPHAsTl9u3bsX//fs2oTnJyMrp27Yot3+wCV+UAX+kEV+UkcUk0WxjHwJIESYym+nHSVQOxa9cuHD58WNM+KSkJ3bp1Q+/evdGrVy/07t0bHTt2pOJFBEEQMYREJ0EQRBSprq7G1q1bsWXLFmzZsgV//vknCgsLNW1btWqFHj16YO2c38FVOsFXuKTqsCQuCcIU5hDBUiUhes7EEdi5cyd27doFr9cbYpucnIyePXuid+/eihht37497RMlCIKIEiQ6CYIgbEIQBOzduxd//vmnIjJ3796tmQrYoUMH9OjRAys++gV8hRNcpUs6x5IgCNtgYFIBozQfLn70HGzduhXbtm1DTU1NiG1aWhp69+6Nfv36oX///ujbty/tESUIgrAJEp0EQRANpKqqCn/88Qd+//13bNq0CX/99Reqq6tD7Fq1aoU+ffrgpxkbwVe4wFU4qagPQTQSDAwsRRKif/vXmdi6dSt27NihWUW3S5cu6N+/v/LToUMHioYSBEE0ABKdBEEQFjl69Cg2bdqE33//Hb///jt27NgRUkU2OTkZvXr1wqYvt4Erd4Evd4Hz0t4xgohnGMekPaLpPoy6/RT88ccfOHDgQIhdixYtlEjowIED0bt3b7hcrkboMUEQRGJBopMgCEKHgwcPYuPGjdi0aRN+++03zUlomzZtcNxxx+Hbd1aDK3OBq3LSHkyCaAIwlwgx3YvLnz4Pmzdvxl9//RWyP9Tj8WDAgAE4/vjjccIJJ5AIJQiC0IFEJ0EQRB1Hjx7Fhg0bsGHDBqxfvz6kGibHcejatSt2rzwIvswNvoyimATRXGAcA0v1Q8zwYvj1g/Hrr7+itLQ0wIZEKEEQhDYkOgmCaLaUl5fj119/VUTmnj17Aq47HA706dMHW5bsAieLTNqLSRAEVHtDW3gx/MbB2Lhxo6YIPe644zB06FAMHToUXbt2pT2hBEE0S0h0EgTRbPD7/diyZQt+/vln/PLLL9i2bVvAnkyO49C9e3fs+u4AuFISmQRBWMeKCM3OzsaQIUNw4oknYsiQIcjKymqk3hIEQcQWEp0EQTRpioqKsHbtWqxZswa//PILKioqAq537NgRB9YWgT/mBl/qBucnkUkQROTIIlTMrMWQq/vh119/RW1tbYBNjx49lCjogAED4Ha7G6m3BEEQ0YVEJ0EQTQq/348//vgDa9aswZo1a7Bjx46A6+np6TjxxBPxw7u/gD/mpj2ZBEHEBMYxsAwfLntuDNatW4ft27cHXE9OTsaQIUNw6qmn4uSTT6YoKEEQTQoSnQRBJDwVFRVYs2YNVq5cibVr14ZEM3v37o3t/8sHX+IGV+6i6rIEQTQ6zCVAzPRi1MST8csvv6C4uFi5xnEc+vTpg1NOOQWnnHIKunXrRntBCYJIaEh0EgSRkBQWFuLHH3/EqlWrsHHjRvj9fuVaixYtMHToUHz/9lrwxzzgfJQySxBE/MLAwNL8uOb1C/DTTz9h27ZtAddzc3Nx8skn45RTTsGgQYMoDZcgiISDRCdBEAkBYwy7d+/GypUr8eOPP+Kvv/4KuJ6Xl4cDPxaBL/ZQNJMgiISGuQWIWbU4ccIArF+/PmAvaGpqKk4++WSMHDkSJ510EpKSkhqxpwRBENYg0UkQRNzCGMOOHTvw3Xff4bvvvsOBAweUaxzHoV+/ftiyaA/4Yg/4amcj9pQgCCI6MJ5BbOHFeQ+NwE8//YSioiLlWlJSEoYNG4aRI0fi5JNPRkpKSiP2lCAIQh8SnQRBxBWMMezatUsRmvn5+co1t9uNIUOGYO30TVJE00dFgAiCaD4wMLB0Hy5+9iysWLEChw8fVq653W4MHToUI0eOxKmnnor09PRG7ClBEEQgJDoJgogL9uzZg2+//Rbffvst9u3bp/ze7XZj2LBh+On938AXu8GJtD+TIAiCgYGl+nHFK+fihx9+wP79+5VrLpcLw4YNw+jRo3HKKafA4/E0Yk8JgiBIdBIE0YgUFBRg2bJlWLZsGXbv3q383u1246STTsLqD34DX+IBJ5DQJAiiCcNxgJXpmFzBNshWOhPUj2umXIDvv/8ee/bsUa6lpKRgxIgRGD16NAYNGgSnk7YiEAQRe0h0EgQRUyorK/HDDz9g6dKl+PXXXyEPQU6nEyeeeCLWfvSHlDpLQpMgiOZC8HEoRlMzC7Ziig9XvHouli9fjoKCAuX3LVu2xBlnnIGzzjoLffr0oWNYCIKIGSQ6CYKIOn6/H+vWrcPSpUuxatWqgEqMJ5xwAjZ9thP80SRwfpoAEQTRTNETgMHTNCOhGBwB5QCW7sPYx0fgu+++Q2lpqXKtffv2GDNmDMaMGYPc3NyG9pogCMISJDoJgogaO3fuxJIlS7B8+fKAg8/z8vJwYGUxHEeSwdWqigHRcEQQRHPGLPIoj5FWIpSMBdgxjkHMrMXpE4dg1apVqKmpqWuKw5AhQ3Deeedh+PDhtP+TIIioQKKTIAhbqaqqwrfffotFixZhy5Ytyu9btGiBii0+8EeSwVU4tc/RpOGIIIjmTgxSXhkvQsyuxYAru2Ljxo3K79PT03HWWWfhvPPOQ8+ePaPeD4Igmg8kOgmCiBjGGLZu3YpFixZh+fLlqK6uBgA4HA6ceuqp+Om938Ef84BjFlfxgwlnvxNBEES8olMISNcuBrAkP6564zwsWbIER44cUX7fvXt3nHfeeTjnnHPo+BWCICKGRCdBEA2moqICy5Ytw5dffont27crv2/fvj0O/1gKR2Gy9bM0re5boiGLIIhERWtc0xrTGqHADwMDy/TitDtPwMqVK+Hz+QAAHo8Ho0ePxkUXXYRevXrFvF8EQTQNSHQSBBE2O3fuxPz587Fs2TKlKJDb7caIESPww+T14Mrc2umzRljZq0TDFUEQiY7VMa4RK8syp4hbP7kaixYtwq5du5Tf9+nTBxdddBHOPPNM2vtJEERYkOgkCMISfr8fq1atwvz58/Hbb78pv+/SpQv2fVMkFQXyR/mYExquCIJoCjSgEFBjwMDA0n0Yec8gfP/99/D7/QCAjIwMnHvuubjwwgvRoUOHRu0jQRCJAYlOgiAMOXbsGBYtWoSFCxcq+30cDgdGjBiBVW/8Bq7cFX5UsyFY2QNFwxlBEIlCgp2RyVwCrvvPxfjiiy9w+PBh5fcnnXQSLr/8cgwdOpTO/SQIQhcSnQRBaLJt2zbMnz8f33zzDbxeLwAgMzMT5Zt8cBxOAee1uFfTDqwUGKKhjCCIRCMBRRoDg5hVi8HX98LatWshTyO7dOmCK664AqNHj6bUW4IgQiDRSRCEAmMMv/zyCz755BNs2LBB+X3v3r2x44tD4IuSzCvQRqdj9Y+tFuIgCIKIdxJQdKphSX5c8PzpWLx4sVK1PCsrCxdffDEuuugiZGZmNm4HCYKIG0h0EgQBv9+Pb7/9FrNnz8bOnTsBSCm0Z5xxBn54dQO4ihil0GpBBYYIgmjKJLjwBADmEHHj9Esxb948ZRuG2+3GOeecg8svvxydO3du3A4SBNHokOgkiGZMVVUVvvzyS8ydOxcFBQUAgOTkZHh3cHAcTI1tCm1DoSGMIIhEpwkITwBgHIOYXYPuF7bFX3/9pfz+lFNOwfjx49G3b99G7B1BEI0JiU6CaIYcO3YMc+fOxcKFC1FeXg4AaNmyJUo3eKX9mkKUq9DaCQ1hBEHEM7KgtFIMrYkgV70ddns/rFq1Stn3OWjQIFx77bUYNGgQFR0iiGYGiU6CaEYUFxdj9uzZ+Pzzz1FTUwMA6NixIw59Vwq+MLlx9mtGCg1hBEHEO1aKnjVRESYm+3HWoydi6dKlEAQBANC3b1+MGzcOp5xyCng+gRY5CYJoMCQ6CaIZUFRUpIhNuRJt7969sWPBYfDFnsbbrxkpNHwRBJEoWCmC1kSFJwAwt4DzXxiBRYsWKX6oa9euuO666zBixAgSnwTRxCHRSRBNmMLCQnzyySf48ssvFSffr18/bPvsILhj7sQVmwAJToIgEg89UWlWobsJwVwCLn/jbCxYsABVVVUAgG7duuGGG27A8OHDKe2WIJooJDoJoglSUlKCmTNn4vPPP4fP5wMADBgwAH/N3g+uNMHFpgwNXQRBJBokqBSYQ8Tf3zsPc+fORWVlJQCgZ8+euPHGGzFs2DASnwTRxCDRSRBNiPLycsyZMwdz585VzkwbOHAg/vx4n7bY5OrSmZho3DDHm9vEEqNhy2rRDoIgiMagKYopKz5Cx4Y5RVz51jmYN2+e4rf69OmDG2+8EUOHDiXxSRBNBBKdBNEEqKmpwfz58/HJJ58o1Wh79+6NnfOPgDvm1BebgP5EIRybWAtSrWHLSqEOgiCIeKApCqkIfQZzirj09VFYsGCBUuhu8ODBuOWWW9CrVy+7e0sQRIwh0UkQCYzf78fixYvx0Ucfobi4GADQuXNn7P+6FHxxEriQIhUahRqCnX9DbGIpOq3sfaJhjSCIeKepCU+bfAdzM1z40ggsXLhQ2R4yevRo3HTTTWjXrp1dvSUIIsaQ6CSIBIQxhp9//hnvvvsu9uzZAwBo06YNilbWgD+SXB/ZlB261mRAaUzl9PXsjNppDMFpNFmjIY0giESgOYhOIDwfo7JhHj9Of+h4LFu2DIwxOJ1OXHjhhZgwYQIyMzPt6TNBEDGDRCdBJBg7d+7E22+/jXXr1gEAWrRogYqNDI6C1Iads8lEc1FqVbQ2NjScEQSRSDQX4QmY+xIdGzHFhxNu7oK1a9cCAFJSUjB+/HhcdtllcLvdkfaYIIgYQaKTIBKEoqIifPjhh1iyZAlEUYTL5YK4xw3H/nRwQiOdbxZPghMg0UkQRHzBcebjUlMSnmaiMgLEFrXocnE2tm3bBgBo3749brvtNjpmhSASBBKdBBHn+Hw+zJs3D9OmTVMq+51xxhn48ZXN4Gqdjdw7xE+RIRrKCIKIR8wqaseLYLJagRawVoAuCjAw3L/4Brz33ns4evQoAGDIkCG444470LVr16jemyCIyCDRSRBxzPr16zF58mTs27cPgFRGfsdnR8CXx1FKkVGhiMYqMEQQBBEvBItKs+rbjUm4olLLLsrCEwAYL+LKt8/CnDlz4PV64XA4cMEFF+DGG29ERkZG1O9PEET4kOgkiDikoKAA77zzDr777jsAQGZmJirWAXxhcujxJ42JWYEIinISBEFoi8qQ6uJxMLY3VFRaKRYUBZjHj2H/7I0VK1YAkHzlbbfdhnPOOYdSbgkiziDRSRBxhM/nw5w5czBjxgzU1NSA53lwB5Lh2NeI+zaNiIeqtjSEEQSRCJhV3Y4XkRSJqLRSLCgKiBm1aP+3dKWa+/HHH4977rkHnTt3jnlfCILQhkQnQcQJmzdvxksvvYTdu3cDAI477jhsmXEIfJWrkXsWAbEQnjSEEQSRCMSLqDTD6FiTRhCUVmEcw/XTLsC0adNQW1sLp9OJq666CuPHj0dSUlJjd48gmj0kOgmikamqqsL777+PBQsWgDGGFi1aoHIdF3jeZh0cL/2fidpfW7PrVm1swUhwWilYYekeJoU5aHgjCCKeSHThGdMucKa+TOs68/gx5M7u+OmnnwBIZ1jfd999OPHEE6PWV4IgzCHRSRCNyI8//ojXXnsNR44cAQDwR5Lh2tsC8AY6fFkoygQ7WrPrwXaRiFbLGO0FsisCarQnioY2giDikUQQnnEiOmW0fJLZdTG7BlmnOVFYWAgAOO+883D77bcjPT09Cr0lCMIMEp0E0QgcO3YMkydPVgoFtWvXDke+qYWjVEoBkh1osJiUUTtYLZtwRamZ824Q0a5qqx66rFSHJAiCiAdIdFrsQniLrcE2HM+B8SLOf+lUzJ8/H4wxZGdn495778Xw4cOj02mCIHQh0UkQMWblypV45ZVXUFJSAofDAeQnw7k/HZwoOXkzwSnbmF03asPouu1RTivVEBt0D4PCGzSsEQQRz5DwtHD78P2X+rraRkyrRe65ycjPzwcAjB49GhMnTkRmZqaNPSYIwggSnQQRI8rLyzFlyhQsXboUANClSxcc+KICfKX9Z25aEaVWHHYEHTAuRhFNaEgjCCIRiHfhGaeiUyZcP8c4hkvfOB2ffvopRFFEZmYm7r//fpx22ml2dZkgCANIdBJEDFi7di1efPFFHDlyRDoGZX8KnPkZ4Fh8TTqiXlyo/kZRbp+GNYIg4pzGFp1mBd3iMMXWDsRUL9pfkKZUiv/b3/6GO+64AykpKbbfiyCIekh0EkQUqa2txTvvvIMFCxYAANq3b48jS2vBV3hCjc2K7Fi5boOYMyoyFLUCQ3ZCQxpBEIlCPAhPwNzvRO321orbRXAD1N0g4NeMY7h48gjMmTMHjDG0b98ejz76KPr16xfZ/QiC0IVEJ0FEid27d2PSpEnKaqrjcBqc+S3ACRrGZkV2rF6PkuiMelVbO6EhjSCIRCFeRCdg7nuicnvrFWobeIP6xxqvT2jhRdZIDoWFhXA4HLj22msxfvx4OJ3OyO5LEEQIJDoJwmYYY/jiiy/w5ptvwuv1IisrCxWrHXCUJtcZGBTZifS6zaLT6lEsYTQe2fNN26fhjCCIBCOehCdgXHnc9lubV6CN8Aahvwvyocwh4rQH+2D58uUAgH79+mHSpEnIzc2N7N4EQQRAopMgbKSsrAwvvvgiVq5cCQA48cQT8du7+8H5HfVGssMzK7TTkOsRirqYVrWNBjScEQSRiDSm8GyoL7Lt9vr+JiqiU7pByPV/Lb4er732GioqKpCRkYGHH34Yp5xySmT3JwhCgUQnQdjEli1b8Pjjj6OgoEBKzdmZBsfhNHAIPkPSoLJrJNgU5Yx6VdtoQUMZQRCJSjyKzpjdvuHHg1loXP+ahi8WPX50vaoF/vrrLwDAVVddhZtvvpnSbQnCBkh0EkSEyOm0U6ZMgc/nk4oFfe0HX6VxFArPAdGsENvQIkSWm4+g7xTlJAiC0CbeUmxtbdq4CJ2pqIy0SJ7Ra9PwyYxj+NuLJ2H+/PkAKN2WIOyCRCdBREBNTQ1ee+01fP311wAAvjgZrl0twQlBTk52qnqO10yMWhWrRntxGlNwGt3fpqq7JDoJgkhomnC006gYnSXRKT05sut66PhnIasKnkG1qKioQIsWLTBp0iQMHjzYuC2CIHQh0UkQDeTAgQN47LHHsGPHDvA8D35vBhwHg9Jp1c5US7RZvR6p4NS6Hia2i04bBTEJToIgEp5mIDqBCIWn1EBk17XQ8cWix48uV2Zg69atcDgcuPXWW3H55ZeDa+zINEEkICQ6CaIBrFu3Do8//jgqKirqqtO64ChVnb2p5UDVjjbc6+GITrPCCQ3EVtFpp+AESHQSBJH4NBPRKRNWlVq7K70HY+CTGSfi9Mf6Y+nSpQCAc845B/fddx88Ho3ztgmC0IVEJ0GEyYIFCzBlyhQIgoB+/fphx8cl4GrrqtPqOU7ZuTbkulXBaVYwIQJsE5xRqLgrtUHDGEEQCU5jR88aQXgCYRQLikbFdzUG/pmB4eZZF+Odd96BIAjo1asXnnnmGdrnSRBhQKKTICzi9/sxZcoULFy4EADAF6XAtScbHIvBRKGRz8e0RXRGKQIrtUHDGEEQCU4zFZ2AReEZ7Sq7FoSvkF6DlJNqUVpaiqysLDz//PPo27dvdPtFEE2Exq2TTRAJQnl5Oe6//34sXLgQHMfBmd8C7j2twJt8hTiOi+7eD56z5Ch1iVWp/EYuyU8QBEFEl0iONuF4LnI/YXZ/k+tWfLWzIhnVK1LRvXt3lJSU4K677sKKFSvC6SVBNFso0kkQJhw6dAj3338/9u3bh+TkZPh/T4WzNFW5rvUVUjsvva8Yx3G61wKuN6QAUTARFvGx5YxO/cZtaIOGMYIgEpwEj3RGvVhQsI0WVirFG1znHFL7Rn4bAEROwPG3tceaNWvAcRxuu+02XHHFFVRgiCAMoPADQRiwfft23Hrrrdi3bx9ycnIgrssMEJzBWIlsmtkYXm9IZDOaVWMJgiAIIgizwkGaBBf+iUQEm/lKk+tmfppnDvz29iFcdNFFYIzh7bffxuTJk+H3+xveZ4Jo4pDoJAgd1q9fjzvvvBPFxcXo0qULype7wVe7A2zk1VA9B6VeLY1IbAKRpdECDXbiUY1yEgRBEE2CYF/B8VxEKbd1jUT2/DDFJxMCF2KD/XKATweHrx/dgNtvvx0cx2HhwoV47LHHUFtbG1mfCaKJQum1BKHBN998g2effRZ+vx98uQfuHa3BCQ0QbIwZCkm1aNW8JjJzsRmJKGzs1FqLfTBvg4YxgiASmHhIy7Rh771RhVqj65b6YFalXaahVeTrbOQUW80u6Ph0IbMK6FsKr9eLE044Ac899xxSU/WzogiiOUKikyCC+O9//4vXX38dAOAoToFrd6vQCrV8nVMSo5eeavmrSaKTRCdBEIlNExedtvWB58x9XoR9MN2XyfOavl9Iq4FzUDmqqqrQq1cvvPzyy8jMzIyoLwTRlKD0WoJQMXv27HrBWZAO164GCE6er//Rw+haHZYKEhg530idfyIRDxM2giAIIrpYyf4xwXwri4n/FkXN646KJAjrMpCZmYmtW7fijjvuQEFBQUR9JYimBIlOgqhj+vTpePfddwEAzkMt4MrPAgeVY+J5wOHQFzjBjspIlEaTSI9RIQiCIIh4xgY/pyc8mSDU3cPC4nHQdb7Kg+qVKWjdujX27duHO+64AwcPHoyonwTRVCDRSTR7GGP44IMP8OGHHwIAnAcz4TqQWS84zcSmbGOG2kFFKy033KNUCIIgCCJeCHe7RQOEZzgF/qR7mKX8BopPvtaF0uUu5OXloaCgABMnTiThSRAg0Uk0cxhjePfddzFz5kwAgPNAS7gOZ0kXrYrNMB1SVKDoJkEQBNEcsSnqGVHKbZAN73WicDGQl5eHwsJC3HXXXSQ8iWYPiU6iWTN16lR8+umnAABXfjZchZnSBZ7XF5vyKmk8iE2AxCZBEEQiQ3vS7SGW4tMoW6nO73P+euFZUFBAwpNo9pDoJJots2bNwvTp0wFIgtNZ1EK6wHHGkwCzCYLZ8wFLYtSoeq3iFElwEgRBEER4mPlgKz7cgjiVhWfHjh1RUFCAu+++G4cPHw6/vwTRBCDRSTRL5s2bh/fffx+AlFLrLGphPX1GD46T0nEB4yM8IkzhibiqLSDtm7HjqBI7sKFMv9QOCXCCIAjChr2agmBtAdnCPTjRjSNfcejYsSMOHz6Me++9F8eOHTN+HkE0QUh0Es2OxYsXY8qUKQAA56FMuIpaRpYqK4tNKyunVivfaj7dghMVmTXBSRAEQRBNHFv2alrJftK6LlfBBSThudSB3Nxc5Ofn4/7770dVVZVJ7wmiaUGik2hW/PTTT3j55ZcBAM6CFnAWZgcaBO/TMHNIHBe5w7JDbAKJFd0kCIIg4idDw66MkzjFUtQz0pRbE1/P+Zw49r0HLVq0wNatW/Hwww+jtrbWuE2CaEI07VGGIFRs2bIFkyZNgiiKcBSnw3m4VeA5nMFYSaWNxEnZmUobxegmR/tGCYIgCBNs8RVRFL+2HI8SYcot73Wj5pd0JCcnY8OGDXj66achqCKiBNGUIdFJNAsOHjyIBx98EDU1NeDLUuDKb60tOGUhGOaB0CFYcUwm2BLdBBIjukn7OgmCIIgY0NhRT746CcKmLLhcLqxYsQLvvPOOcVsE0UQg0Uk0eY4dO4b77rsPJSUl4Ko8cO9tEyI4OY4D5+ANnZG8ShrxSqnUWORtNCXsEsZGBZwIgiDiCVokiwqWFmytYJaJ5HCAk4sHGvRFqz+OyhRw26XtPXPnzsXnn3/e8H4SRILQzGa2RHPD7/fjsccew/79+5GbmwvP7rbgxMCPPccZn+2lOA2TM8As770kAiHBSRAEQcQjVrbBGInPunmDpvAsTcNNN90EAHj99dexbt26iLtLEPEMiU6iSTNlyhT89ttvSElJQekKDzi/U7kmRzfNhCSJzShhZ2EjEpwEQRANo4kXEbIFi+JT//namVKz7vwOZ599NgRBwOOPP469e/fa0VuCiEtopCGaLF9++SUWLlwIjuPg35IJvtYDwLrYNIuAynaNhZX+2XYvu+9j5z5TEpwEQSQaTWyhMmYF5xq7sJ1NUU957sCBw8rJuzBgwABUVFTgwQcfRHl5ud29Joi4gEQn0STZtGkTXnvtNQCA83BLOMvTAFgTapFGNzkrx6g0Z+yMbpLgJAiCIOwm0srzJlFPdcotx3js+KwSbdq0wYEDB/D888+DkW8jmiA0MyaaHEePHsVjjz0Gv98PR2kanEdaSulDLqd0zIkeHF93DIpZkR/zlVbTw6htwLJTsiF1ilmpkhtLyCETBJGoxFOUM55Sa2PZFzuK+ZktYDscxq+J58C5XYDDAU5womSVGy6XC6tWrcLs2bPN708QCUYcjTYEETmiKOKZZ55BcXExunTpAveBNuA4EyFpVWxyfOROUXZkPN/giQdjjFZBCYIgCKIhyIvPdoh/k6wo6T4W5g4OBxw1SZg4cSIA4P3338fGjRsj7x9BxBEkOokmxSeffIL169cjKSkJh/4HcJzLXHBa2SNih9gMN8KpYd9YYjNm+3WsEk+RAoIgiGZMPPmHsOss2HCmNgB75hEOB965aTHOOecciKKIJ598EkVFRZH3jSDiBBKdRJNh06ZN+PDDDwEA4q4s8P4kfWO96CbPBToGO6ObEWAY3Ywjh2+JeErnIgiCiCXxtGCWaGNxNH1dNKKeWtt5TOYUHDiseGMPunbtiuLiYrz44ouU2UQ0GRJsxCEIbcrLy/HUU09BEAQ4SjPgKG2hbxxpdNPq8xsS3dTAFoeTaJMLK8TT5I0gCIJoOPHgo8KIenIO472a5g0YCE/G4+AywO12Y82aNViwYIGlPhFEvBMH33KCiJzXX38dBQUFaN++PdyH24CDxqDPcYDJUSmQK9eaOUCz6zqHQQfaNHxfZwBWivzYeURJvECrvwRBJBJNcKEsnlJrLWFUTLAOzuk0tbEyB4CRMJXb4LX7w3s9uOWWWwAA77zzDp3fSTQJSHQSCc/KlSuxbNky8DyPolUucKJWSgtn7mw4C2LTrGiAlaIC4cDzFsRr9J1+3FWvBZrkBI4gCCImxENkMRwirRofJkbHotUbWSkQZKUKrvbc5INb/4ehQ4fC6/XimWeegc/nM2+LIOKYBBt1CCKQsrIyvPrqqwAAvqglHN60QAOOA5xmR6Vw1gVnJNcbkwZOMJjI4lNwEgRBJBJNcJHMtihnHAtgS0LWivA0E5+8I0R8cuCwaU45MjIysHXrVsyaNcu8LwQRx8TvN50gLPDmm2+iuLgYnNcDV3Fu4EWt6KbDEej8ZbEZUDwoKFqpFb3kVW3bHd2ME6IqNu2aZDTBiRxBEERUiWORF48ERz0102+D5xFaNsHCU8smSHjyggs1W6UaFbNmzaI0WyKhoZGHSFhWr16NpUuXgud5uAs6gGN1H+dIo5vq30US3bRrX6ddKbZhTDQoukkQBGETtDimjxW/ZFdqrZX9nAY2jRX1dFS0wLBhw+Dz+fDqq69SNVsiYSHRSSQktbW1eOONNwAA/NGWcNSkSBd4jehmMPKKpJFzCI52RgvRQoEfKzYEQRBE/BFvgpOinBFhi/AEwtrryYHDr7NLkJSUhF9//RVfffWV+XMJIg6h0YdISD799FMcPHgQOTk5cB1tLaW/OJ3Sj45T4DgOHM+Dc2qcz6lGFq7RnizYKTgTrYKtXX2hFV+CIIiYk3BVa+3EbEuN2yXNIYyipi4XOKdDmo/o2bhdyryG97txww03AJCq2ZaUlDS4+wTRWJDoJBKOQ4cOYebMmQCA0t+TwCMolVZDLHJWz98Kx5FaOVpFL8W2AYJTd4U1CoIzqhMKEpwEQTQHKMppTAKl1iq4VPswrfhJS0e0WDvG5aN/rkCPHj1QXl6OqVOnmt+bIOKMOBuBCMKct956C16vF3xVKpw12cariXXRTfN9kzFMp9USnOr+6dmEtMXMBScT4yfCaVdfGCPBSRAE0Ug06yhnMFbmDiZRTwCmUU8A4J0u5P8gPV60aBF2794dTk8JotEh0UkkFL/++itWrlwJh8MBT3FHcNAf7I2imxzP1zsKPYdhJcU2nGinDem0yopuDNJpbZ1YUHSTIIjmBEU5jUn0KGcwcl/dLtN+cC59GzPh6ahNw8iRIyGKIt555x1DW4KIN+JsFCIIfRhj+Pe//w0A4EqywPuStQ2dTmlQN3JGPB8oPPWIM0fNmIXoJmCLyKMKtgRBEA0g3gSnjVCU0wCr6bZaR6Wo4JwOcKk68xsAa2cdgdPpxJo1a7BmzZpwe0kQjUZ8zagJwoCffvoJmzdvhsfjgetYG20jK0LSSrotLK6gWkFk1kqcc5zUN7M+2Xw8CkEQBNGEiTd/EGdRTstYqA0RfKanLibCE4BuZJX3e3DJJZcAAN59912IVOGeSBDibCQiCG1EUcQHH3wgPS5qCZ55Qo1kwclxdWdhaTgbteB0OKRopwaK0+C5kMOaQ9s0SLGtixZyFgRlvMBEFr9RziYcQSAIgrAdGwVnU41yhp1aq7dtR5U2q1tFX51aqyc8PW7t+6r48vUdSE1Nxa5du7BixQrtdggizkiMWTDR7Pnmm2+wa9cupKWlwVXeNnAVlOcB+RgUeaAPHvB53tIezeBVyoiinVESbtGMdkZNbMbbSjtBEEQ0oIUxY2IZ5bST4Ps1NOoZ/H+n0zzq6XKGiE+OOXHZZZcBAKZPn07RTiIhoJkgEfcwxjBr1iwAQO3BFuCYumS5Krqp5wCM0mlV0U5dJxZutFOnqqylaGcjRkSjHt20S3jSpI4giHgk3sam5h7ljEUBobq/uWFxIAs2DUm3nfv8JqSkpGDnzp348ccfzZ9PEI0MiU4i7lmzZg12796N5ORkuCpyAQDM5ZRSUHgDsengpYE8wv2bYa2oxjIt1cZJQNym0xIEQRCNim2C0yYRbMkn27l4a3Y/q3MMMzunMzC1VguXEywtRWqTOXHppZcCAKZNm2atdgRBNCIkOom4Z/bs2QAAX6EU5WR1+zWZkeDkuLqzsWyKLFqNdpqdxWV2PwtOI2EdCx2bQhBEUyaexiYbo5wxXZS09agu435bjnKatSNXyzcTlQ7edE7C3C4wo2NXAIDnwJIkcTr/pT+QnJyM7du3Y926dcbPI4hGhkQnEdf8+eef2LhxIxwOB1wVbRTBCUASnlpnWqkHf95gkA+wsSAWo43asekI0xDBadORL1FPnSLBSRBEcyAexqgo7KGPuMBcY0U57fp7MGatLb3+JamKH+rMSVhyvY2e8AywSXKDE10477zzAADz5s0z7x9BNCIkOom4Zu7cudKDiixwjhTzPRpaq41aTqAhItKmaKdkF+QU4yDCGRXhyUQSnARBNC+a8FjVIOFpVXBGa/FTw8c2eC9ncDta+zQtHeVi/p6YRjwhCc/F/9kDjuOwevVq5Ofnm9+bIBoJEp1E3FJSUoIffvgBAOCqaa89kMvRTjltVctGHe3US4GJYbSTU0dYjSYndcKUMZNzPm2KdtqOXWITaNKTOIIgmiCNNWbFYLxvrBoAEe/lrPubWBKcRoQb8UzSOOINCEi3ldNlQ26lSrdVRznV8GIyhg0bBgD473//a943gmgkSHQSccuSJUvg9/vB+9LA+9P0Da3spbBiY0F4GhYuUtuYCEGO44BYljiPlzTbhkCCkyCIRCTWY1c8Hk3V2FHOhmJUsRYAGDOuRgtIc4XkJPN7OQwq7Mu3M4l6blhaBgBYunQpamtrze9JEI1AHI5QBAGIoohFixYBABy+dvqGDh7M45aq2erAeE6Khmrt/wwDS+mt8nEpHG/oRBljxke5qLAlwmpn1DGW9yPBSRBEohJvR6jYRFQWJ+2InloqCsib+3IzwRkOFooVstRkU1EppidBTNGvbMv7MpGbm4uKigqsWrWqQV0liGhDopOISzZt2oQDBw4AzAGHv3WogYMHcznBzAZzszM8g9GJdgY4KYdDuz0LTtM0VTagvXrhFpHwJMFJEAQRW2ItOBM5yilj4kONt5mEd6+wfLEGnNvkaBMgMK3WoH+s7rNiKDzr5jFiiltTfHLgUHRAOkpl8eLF5n0jiEYgDkcpggCWL18OAHAIrQFXUCTTwYeITeZyBtgwnpMq3aocP3PwDYp2ajqmYOGp5SyDop2a7WhFO0Ux/NRbvZXnBgjAiFaxSXASBEHElhgKzqhvwYhEeJphtqAMWIpyWhKcQKhv5/kQ8clSkwP/r3FkipiuStFVic8AmxQ3HEJbAMD69etRWFhorY8EEUNIdBJxh9/vx/fffw8A4MXcuvSUuosagjMY3fM7Oc6a8KyLdlpeCbUY4TS8n9xfA7EZdrQzAgEY9sSCqtQSBEFIxDLKGa+CM5J+hSs8rUQ5Deo1RKUyvF7xIKC+SGBqshLlDOmTWnjqzGcChCfHgWfJOO6448AYU4owEkQ8QaKTiDvWrVuH0tJSgLnAi1kAAOZygCW5DAUncznBPC5jh291MsBx4MwcmV6abUA7YXzFIi0spJ4QxDql1i5IcBIEkcjQPk57hLAF4anURrABxpi1KKdZ8SBAEpwWChfqCU6lT25XYJQzpDOh6bZ/rq8BAGXhniDiCRKdRNyxcuVKAFJqLQcezMlDSHaBuU0cAg/JxsRxMFWZcm2DMAoGmdkyEeA54yilLDYjdZ42lrFvrJL4TXXCRhBEMyCB93FyPGdf6my8LXpaOCKFczqt+1Azv2/hcyCmJwNO47+fPysZgkHxIPlevhZJ8GVIkVWHkANAqotx5MgR034QRCwh0UnEFYwxrF69GgDAizlgTh5i3cAseBxgSRqCkoc0eFusBgvOoJqt2pnwvHa0U3ZMTKxL/dW4p9V0U3V000KVO/12gpxgBJORqB7+baktEp4EQSQYCS44tR4b/c6USIWnhXtaOm8z3DM55QVlrfupo5x6wtMorVa+RXpy/efFQHgyBwfm4CAkuyAka0dYfRkeMB5gvPSYQxL69+8PAFTFlog7SHQSccW2bdtQVFQEMAc4PlsRnDJCkjNQePII3ZjvcpinyWhNEIKdSJ0IDBCeasEZYGee2hoQ7WxIsaDgNoL7FGIc/tc7oghnPFZPJAiCaGpEeaw1E6GWaajwtEtwWoRzaswXgnyhZlpt8JzBSlotEGrj5EPEpz+rvsCQWnyqkQWnYlcnPP/aWA0AWLt2rXlfCCKG0CyRiCt+/vlnAADPssG0HAFQP2BrCE75uhXhqaTZMoM0Wa0KtUaOVO9anRPlOM5YbFqIdnJafdI1tvYVZyKzJ6XWrskQRTsJgkgUEni80hOVtqXbhltkzs7quFbTavWw4hPVcwerabV61AlPf1YymCO0rWDhyTTcLeMBMbkNAGDDhg3w+XymfSKIWEGik4grNmzYID3gW+naCB4HWLLLWJyFk2ZrtL8TkKKdcnt6zlMvzTagHS46VfLiiXjby0MQBBFNmkhabSJhKcpp199FZObFgxizllabkWLeLyevKTiVW9UJT3kPp7ZNBjIzM1FdXY0//vjDtF8EEStIdBJxg9frxebNmwEAPLI0bZiTh+h2wJ+mv8dBsTWLdjIGzmwlkzEpMmlFVALGE4JwVk1tqsgXUxFo572aujgnCCLxIcFpL1bSas2yhSQj6V8TO87Bm/stp9N8sVgWnCZ2jOMMK9YyjkNt6xQIScaiurKdB9U5LtRka8+BOI7DkCFDAAAbN240bIsgYgmJTiJu2LJlC7xeLxjvgT81M+Q6c/LSGZyQBmeY+SejNFu14HToRDtlwWkFRSxy2hMDUXXmp56gtCC0Qs4OtWniEPEEhAQnQRDNiQQWnDHHSt+tCk4Zq3URdGw4tc/X819Op9IvQ+Gp7peOnZiRUm+i8dlhHAdvTjJEBwfGwVB4yoWDGA9d4bl0bQEAUKSTiCsSeBQjmhqbNm0CADB3NvzpUjRTRi04ZUSPwzTaqVcwKCTCGSw8NQQnx/Ohe0SM9oMqHWWhDitYeGq1EVwgKVwxFqYQbLDwJMFJEERzIsEFZ0yjnDYJTl2CRaVmsb0gX665yKzhx4L6FbLoC2in1QbZiBkpIUJTS3iKqrRaWXgGi8/q1oFHqGgJT2+mE6InGwDw559/QhCE0D4SRCNAopOIG7Zu3QoAYO4sMJ6DL42HP82lKTgBadAWk8yFZ0C00yilVhaeBhHOAOGpJ5DU0U4twanY8cbtqGwMBafekS0NIOzJCAlOgiCIhCHuBKfVpqycdW3BRlNwyqj9mUGBIcUfG1WrrbPREpyKCVefueXNCS0wxDgERD2rW7shap30phKe3kynNF9yZiAlJQVVVVXYvXu37mshiFhCopOIG7Zt2wYAYK4W0r88B9HJaQpOGVl4ilrnd8pwHFjdOZ6mezgB830gVle5jQRnNInVPk4SnARBNDcSNMppWzVa6ze0ZhduWq2+kbmNlXRcJkqLz2b9crnM78mY4R5OoG4fZ25KQJQz1AYo6eXRFJyKTZ3wVOZLHIdevXoBALZv327cT4KIESQ6ibigvLwchw4dAgAwVyYAQHQCNS0d8GUYb6o325wv7f0A4HRI1Wp1G1Lt8TSwMRWSIpMcF89ZF6i6bcW2GqzlY1OoSi1BEM2NBBWccYtdgtMinMNhXtBPjnBaSUk18c9iajI4E5uaNilgDpjOxgU3h5osY6PyjjzKO9bbrNtWCgDYuXOnceMEESOa+IhGJAryoMgcKQDvgugEBBcHxgO1GebCUzfaKQtO1KWyuJzawlOdUuvQ2LtZZ8MYk5wWx+vsHWGBgsxIeJqlBKmclXFqUZATbeBEpdEEJ0U5CYKIdxJYcMa8Um00CgcZtmV+v4BjVvR8XXBKrY7w5Nzu+nZ0RKWYmgzURS/1hGdtbkrgLFznZZR1kvrFHNAVnpXteDCHtFgvC0/mzAAA7Nq1S7thgogxJDqJuGD//v0AAOZKgy+Zg+Cqr05rRXgyjoOQ7AwUnirBqbYLmTxo7eEMFp5qwSkTLDyDBacRZsUPNJyUpgO2KhRNIMFJEAShAwnOcG5obmNnn3idBWAVmud6WvV5QcJTEZzqdoL8tVpwKs/T8OlMa0oT9PaVdXJCdKkKDGkIz8p2PET11KdOeFZ2kLYqkegk4gUSnURckJ+fDwAQ3KmS2AzWhTwM93YCQcJTQ3AqyGm2jEkORS/9RRaeWoJTRhaeRoJTHe00KvNu4WwxLljk6hpa/2qT4CQIgtCBBGc4NzS3sdgnS1HOhgpOGVHl1w0KB8nCM0RwBrQj+Uctwan0RRQV8Vmbm6JpA0CZmQcLTplg4SlqJXk5AX9aGgCguLgYNTU1+vcjiBhBopOIC5RIpztN18abxlva3ym6HFLFWgMbOMydlWRsIDgbk3jrT7iQ4CQIIt4hwRnODe1ryibBaRkjYVoHZ5bCKwtPg4JAMt7sJO0op4qSXi5NwSkjC8/Kdvr9Yk430uqE5+HDh037RRDRhkQnERcUFhYCAGqyU3VtGA/Uphun2fKCKFWoNXBGnCgCgihFO81WQWHBATIWeEyKRjtK8SEjx2VBiNW3Y9Yna1FJy1FOoOkXtSAIgpAhwRnODa3Z2bWP08pxY3V2poX/zI5AA8C5XNI9TYoCsSQPOJ9xASJvqxQwBwfOpE6R6AYEjSNA1Rzr70d5d7+hTZs2bQBAKdRIEI0JzSKJuODo0aMAgJrcJFS30jv3ylh48oIIzl93NpbbAeYJteFEEfDXj/a6wlO9T8Ph0D/bSzTzHBrVbrWEp9pGR5haPn4lGoJTxq6JUawndARBEM2AJi84gzE7BxsGvtPhCOyXhbb0hCdLSZLaYkxXeHpbpUB0ysUqmK7wLOlRd/Y4ry88S/v4AbcIuERUdtYWnrXZDJsqKgDUL+wTRGNCopNodERRRElJCQDAn+IOTTthdT/yfzWEp1pwAgA4DqLHGSA8gwWn0l6w8NSqSKclPIMFZ3C00+icTrUT07IJEp6a7Wg58WgKTrsh4UkQRDySoFHOmAtOq0S7Uq2Fhd0QHxosOHXa4lyuUJug+YEiOFVtBAvPAMGptguaRpT0cEFUbx3VEJ6K4JSpE57B4pM5GASP9ORjx46Fvg6CiDEkOolGp6ysDELdRn3R40FtNquPdupoI7XwDBGcMirhqSc4QzAogR4gPPUinLLwNBKcii1vnB5U5zgN2wlwdDESnHam2ZLwJAginkhQwdkoxNPRKBa2sCi+VE9wBrWlpNVqUTdPCBGcqjbUwjNEcKrt6sxCBKeMSniW9RYCBaeMKzDqWZstZ31Jorm0tFT7/gQRQxJ4tCOaChV16R+i0yntwXAw1LRm+mm2dTAe8Cfx8CcZ7MvkODALRYOY01FXhdaCcLOriquVexEEQRCxIYEFZ1ym1dp9NIoNNkyuwWCGw2HenstpKl45nwBvK4NKtXV2ZXlObcEpwwNVp1aAeUwWz10iWo06COaQRafUaFlZmfHzCCIGkOgkGp3q6moAAFOluIpOhupchuoc/QHd4WPgBJOiQYIIThClarYug5LosgA0cjKiKDms4PM5A2zqjk5RH5PSUKyI0uBzQxMNqmJLEEQ8QIJTbsy8b41xNIp5Q9bu5+DNq787nVK/BAOB53FLx7iZZFD5M5PBe419eWkXqVItX2vcrbSUWqRlVxna9Ol2EK1TytHl+AMA6kWnvLhPEI1JAs5SiaaGfH6UWHdOFpMzax36wtPhY+B9DBwD/Ck8/KmhgpITRCm9RZSOSdEVnqIkTKWGeW0HJ4pgijDltIVn8FmdRsJTbsvsOgycst65oSZEPEGxK9JLgpMgiHiABKfcmPZjPRs9Yh3h5DhLdpxDJaj1hKcsOGW0hKcsOAHJj+kIT39WimTHGJxV2jalXVwQ3VJbHIOu8PQOlkSjyyHoCs8+3Q4izSU1kOWpkoRn3fvi9Xq1GyaIGEKik2h0ZNHJHA5FcMpoCU+14ASkNFtfmiNAeKoFp9KWlvCUBadaAAULT7XglNEoGqQpxrSEZ3BbZtehITyNVmqjKTxJcBIE0ZQgwSk3Zv47mwWnaZQzWoJTJtiPBgtOmSDhyYJfo4bwVASnyiZYeKoFp9JPDeHpHVyB1OT6X2oJT7XglMnyVCGn6zGpP37jo1UIIhaQ6CQaHWVzv44DUvZ45nAhglOxUQlPLcGp2KmFp5bglJGFp5bgVMNx+oJTRi089doyu44wy8lHQ3iS4CQIoilBgtPKjQL/NSKRBKeMLDz1BKeMLDw9OhsvVcIzRHCqbGThqSU4lf6qhGew4JRRC89eXQ+FCE4Z9z7pZIBff/1Vu98EEUNIdBKNTv1Ary9GRCeDL4PBl8qFCE4ZxgOii5MGewN9xDgOTL6nmQCyWjnWCjYUDop4n2hDsUtwEgRBxAMkOOXGYrqHE7DRj1kRnBxn4fVZrMHA89piUoYxMI/L1KY2y6krOJUuMaCyb62m4JRxOQQ8c9oCZLhrDBoyvA1BxBQSnUSjw9c5Ds6pL2wcNRz4Wg41LTnUZGp/bB21DHytCCHJCTFJv2gQJwjgBAFwOKSqtVoIoiQSHQ7jPZVyJTwjpyYfn2JW7t2CKDU9hkUxtNBWOEenJGKRIoIgCC1IcMqN2dNOmH2ydJyYGRaqzXMcJ/XNyB/WRUGZYOIzXS4pa8mnn6bKUpPAOA6Oap+uTWX7JIgOwHPM+D0oPaEWTo8fldUeXZtHei9BN1chJrT5Ub/bnaXKue3atTO8H0HEAppJEo2OLDqTHbVwtg/dIO+o4eCs5MCJUjSzJjtUeDpqGRzVghQF5QAhWVt4coJQl3pbf15XiPCUBafSuI7wDCoapOnAg8/r1DvYOp4Fp4xdExQ6m5MgiMaCBKfcmD3tNLBPuv4s3Eq1Or5TEZzKDTXsgtJudYVnneA0gqUmgcl9F6EpPCvbJ0Gsm5ZwAtMVnqUn1MKV5K/rNqcpPB/pvQTtnVLqbDZfqSs8U51SpDQ3N9ew/wQRC0h0Eo1OSkrdGVa1Ik7K2xMgPNWCUyZYeAYIThkN4RkiOJWbqIRnsOBU2QQITznKqUajuJCmY1U71YYKTj0HGC3BKUPCkyCIRIUEp9yYPe1E2KdQv9bAo1GCfGiI4FRuqF5M1k4rDhGeGoIzONoZIDiVPgUKT7XgVNrREJ5qwVnf7UDhqRacMlrCM8tdBdRKr0eZZxFEI0Kik2h05MFQrBGR5vQqwlNLcMqohScnhhYWAgBwgJjkgJjk1BecMg6HebqOLDxFBog6Z3PJwlNPcCp28opoBBHOkAp6Mdp3ScKTIIhEgwSn3Jg97dhdyCjSszjrfKmu4JRhoq7gVExk4WkQ4ZSFp6bgVPokCc+qdqGCU2lHJTy1BGd9t6V+aAlOGbXwzHJXwcExiLVS2yQ6iXiARCfR6KSlpQEAxFoGJjKkOb1om1UGfyrTFJwyjAcEDwfRpe9gGK9yQEYRPrGuiq0Vx2enuLNyP8Pnh7mXJpIoZ30jkbdBEAQRK0hwyo3Z0068CU7FxERwAnULzFYr45q3pSs46/BlJsFVobNILd9KYKhpxXQFp8yN3X/SFZwy2Xwl3sj7HI66lXiBIp1EHKFfbYUgYoQsOgFAqBKxHzkorkqGq00VasQUJBVqD+quSsBVweBL4QEGzYGdrxXA1/qlY1LE0LQYBTma6DCIQAqCtALK8QB0jlpRHZ/CcZx+lFJUPb/uaBbtbpmIxDBFJMdzkQlPOwUnHZ1CEESkmFUiJ8EpN2ZPOzb2KeAoMSPxZrGyrNQW0++jo24bjSgAvE4RQQCc0yG15xcAnWKDrO7oFL7WB9Hj0rTxtUwCc3DgBJOiQd15iE4GcX8K+A6hdS0A4LbjfkB7VwkKhXS0dpTDdURA6znlaLGmGo5KBiGVQ+mwZLS+NhWe1mmY1OYbTDo8CkK5NC/Kysoy7ANBxAISnUSj43K5kJmZiWPHjsFfKsCX7oAo8nC5BKBdFWpbO8AKPQHi01UJuEsZeIFJZ3SmStfUwpOvFeCo8SuTEeaRnEeI8BRFcOqDnbWEpyw4ZbSEpyw4VaJOU3iKGoJVQ3iGLTg53pIojFh42gEJToIgIkUtRjgudFwhwSk3Zk870RCcMnrC06LgDKm5ENxXR5B41BGeiuCU0RCezOOu75cgagpPWXAC0vEnSSUCarJC71fanYfgkT63vA+awvO2435AZ3eR9J8aoN3Tpcj7bzH4oFpFmatqwN4oAa7MQOunW0n9KJPmNtnZ2SH3JohYQ+m1RFyQk5MDADhwOBmF5fWRT5dLQFKyF852VahpLQkqteCUkYWnL00a1IMFp2LncYC5VGstoqgd/XTw9Y4nWHDKcHyoQ9QQc1xwpT0LVfssV6rV6pMlswZMHuyKcpLgJAgiUrTESLAIjSUkOC2jfwxZA3xMsOBU2lL5mWDBqdgEZkeFCE4NAgSnTJ3wlFELTqWbfoakksD7qQWnYlcnPGXUgpOvEXHqDTvReU6o4FRegw/gZpWB+/tBPJaxDP5SEp1E/ECik4gLZNFZXOCEIIZ+LF0uAc52VfCnshDBKaMWnhyDrrhRhKee4JSpi3gant8lC09VWq2mmVykyILgsiQ4jSKV0RCetI+TIIh4wUhQchwJzvrG7GknFoJTRi08zWz1BKfSFtMXnIqNJMoMBWddJpSm4JSpE55aglPprkp4aglOxa5OUAZEOAEMfPoActZWwmyGwABwq2vQ7qlqpFRKi/itWrUyeRZBRB8SnURc0LZtWwAAV1Kja+M95gHv5eBLNSocVFc8yAwe1iJuVooJACFptQ3GzIkSBEE0VxpDUJpBgtMylnybLPwiFZyA9b7znHkxIwufPTHZpSs4lWYEBtHF6QpOmfS06gDB6TniQ6f5xVIbxj1VrlfOq0RxsfSc9u3bmzyLIKIPiU4iLsjLywMApJcf0zcSOHAM8GYCtRk6xYWqGFzlfohuHqJHe8sy5xPA1foBnpcinnrORhABQQDH88bnYsrFhQwcnBK9NHNc6rLvujYm4tZiVNLyvk6KchIE0djEm9gESHCGQViCEzBeFK6zMz6WrP74Ml2cTukHAASDCrMuJ8BxhplRYpoH4Hm4yrya1xkHVOa6UNXaBcYBafsMbterDA6e4d19pyu/6zz3KHh/eAvbB5zJAKQiQunp6WE9lyCiAYlOIi7o1KkTAMBTXIELumxC55bFAdcrj6TAc0RyDsyhLTxdVQyuMj84EWAcB9Hj0BaeIuodGseBaaXVCCLgr3cwmsJTFpz1RppOmjEWulfF6gHXITb27IdsNMFJ+zkJgggXEpzhNGZPO40pOMOw0xSesuCU0fJ3zsC5ga6ArROcdUaawlMWnIAUyQwWnowDqlq7IDqhnNfpqNW5Xa8ypCZJzy+pSVaEZ6s1ldpPMGBfsiQ6O3bsGPZzCSIakOgk4gI50llVJCIbpTil5S5FeFYeSYHnsAu8aqwPFp7O6nrBqdhoCE/OJ2g6jQDhGSQ4leeqhWew4Kw3su6sgwsMaZoEVeQzw4JIJMFJEETCQIIznMbsaSdeBKdWlXdNM5VdsOCUUfs9p87BDcHRTrXgVPVJPYdQC04ZtfBUC85ggqOdasEpIwtPZ6XxWZ9a7K47m1Ne1CeIxoZEJxEXZGdnS+dIMaB0P0OKoxantNwFACGCU0YtPHmBBQhOxUYlPJW0Wr0CQ3JZdA3BKWOYaltvpNhoRjmDMblueY9nPKfBkuAkCCJcSHCG05g97cSL4JRRn2dt2paO4JQRmb7gRJ2/loWnluAM6pOW4JThBAZnuU9XcAJStFMWnlqCU6akJhn+VJOCSBpsrUup7dmzZ9jPJYhoQKKTiAs4jkPv3r0BACV7pAE9xVGLlqlVEJL0BQurG4c5gyK0THYcHFd/BqcePG/NudlVhdaCU27w8SlabTX2+ZwEQRBWIMFptaGmKzilhqzd0ExwAub+H5Cq3VopWGWh+JCQ7NQVnDK1WRwctZyu4JTZcHyecUNBMABb06TKtfLciiAaGxKdRNwgD4zH9koRu2+LemN/QRb8LQT40rTFkvsYkFQiQvBwEJK0P86OWgF8taRKmZMPOehZhvML0iqngfBkolRcyLCqbXAlWyPHxJjhdcuCM56jnEB8TiAJgohP4nG8iFfBaRcW+8RxnPJjZGN+P4uC08JCMCeLSSM/KNsYLLxyTlV006+fzsrcLgAAX6UvFH3pbjAeSC3QXxGvasOBOQFOBI5t0j/SpF/2Yfxwfi8ITuufm0NJSShzueByudClSxfLzyOIaEKik4gb+vTpAwAo3ini26Le+GNvO7BaB+BgmsLTfQxILhLB+xkYD/iTeXgznaHiU2Tg5BRWjtMUnorgFFWpPMEFC2TBqTypTnjqFQ9So+U0mbEwDW0jsolK2FFOOyc0QHxOJAmCiC/icZwgwSnd0sLfxnbBaWYWHL3UEp5qG53jzQIEJ6CZzcTcLklwyu+XKGoKT1lwAgDvFTWFpyw4ZZyVoe9bv+zD6Jd9GKkOL8paJWP1+d2kfoS+wsB+Avg9IwMA0KNHD7jdbpNnEERsINFJxA0DBgyAw+FA5RFgy+YsSXDKaAhPTkBACXHGA6JDEp+y8HTUCuBrggb8IOEZIjhlrKTaymk46gJDeuLOrBy81T0rWlV0TWhwWq2dqVtAfE4oCYKID+JxfCDBKd1S42+j/p1Z9LP+fvYITsv300qpDfLTIYJTRhXtVMRm8PsVVJNBLThleK+I1ML6eUiw4JRRRztlsZnqqBe1c+8djG2DWls6p/On7lJbxx9/vIk1QcQOEp1E3JCamopevXoBADx7S0IN6oRndVs/OEFKq9VCjnqCA/gqX32UU01wxNNIKDrqbIzO8ZIdlsjMU2IjPX8MCBS5Jtiyj5OEJ0EQ0SQexwUSnNItTVJpLRe7s1Fw6mUZAaj3i0Z7OOuEp67gBCRf7RcCo5sa8FVe+NLdmoJTsamV+qQnOAEp2nlsUytFcAbjS3Li7SlnYMNleRBd2m0ITg7br8zBX+36AgAGDRqk22+CiDUmW5wJIrYMHjwYf/75J5IKilDZXeNsKQeDq9gJTwnTHdyBuqink5OWVfR0mSIUTYQbY1JqLcfrizzGrO2r5Hlj8WoVWUga9QmyCRe58Iz3PaMEQSQuJDitNmRPO4AlwWlZTFq6n42C07Qdi0eX8RYKBjl4cD4/mEdH5QFgLgecFV74MozTWF1VDMxkXybjoSk4ZXxJTjx8x0VoO/4Y7vruG+SuLYerUoAv1YGCE9Ox6/IcFDI3Dj9YAIfDgf79+xu/PoKIISQ6ibhi0KBBmDlzJpIPHAF4QcqXDYL3ceD9DP4kafB2eEMFlatShLPSD+aSU2hDRRPnEwCvT3I6TockHLXO3lRuzAGijshT9oJy4ESDSKWF41PCrlYbbeFJ53USBBEtmrDgjMsjUYDYCk4rYlO6ofSvKOofQxKu4GRM//PlcEjt+f36x6g46yrZGvgs5nGBcRw4n76f9GVI7fMCQ8ZuEWVdtF+fL42BORgWbzgOYwf9rmmzqyIbtYITe1Jb4c9b2+HPW0Nt/vNxP6RgBwYMGICUurM6CSIeoPRaIq4YOHAg0tLS4Kj2Iqm4GHAGDuSuIieSC+v+wwP+JA6CJ9CpuCpFuMp84AQGxnFgLumcTuYMLjjAwImsfl+m1pEqogimPrdTqyx7cJST10k3EkV7BJeWeLQwIbF1AtRQSHASBCFDgtNqY/a0Y5SSqr5dYwlOGY3F2ZA+6flBs9fncNQLThmts7llwSk3XesLMZEFp4yrTCMlNsMJxkPJzHLWhPbbl8YkwemUrjkqHFi88bgQO1lwyswrHBxi8/yWMeC3StuTTj311NDXRRCNCIlOIq5wOp0YNmwYACBlbyF4l6gIT9cRJ1L3c4GRTR7wezh403lFfHKidDCzDOM4MAcP5nIowpPzCYAvtMBQgPAMFpzKPVXCU32YdJBNyF4XM8FlJcppFK20KDzDmgxRWi1BENGABKfVxuxpx8YKtdbuZzGdVu9+KuGp2ye1P9QTnGqfWic2DV+j0xEiOOV21MIzWHACAOcTA4SnLDiDSd9T3ydZbMqCU+lqeX2W166K7BDBCQAltSkBwvP5LWNQVexA6uFjAIBTTjlF/3USRCNAopOIO0477TQAQNLuAnBg4F0i+CQ/OFE7lRY8wByS+OQFwFkRuiIJQIl6AgC8PinKGYxexDPknhYOolavKpul1SKMMzmNsPuYEzuhKCdBEAAJTuuN2dNOvApOUxOLRYrMIpyMhUY3g/H768WmQWEh5nFpCk6lK3VptnqCEwBc1SLS9wRGN7VYvPE4RWwGC06ZktoUPL9lDJ7fMgaVlUlI3nsEgiAgLy8PHTtq1MUgiEYkjmeoRHPlpJNOgsfjgau0Cq4jZZIPKPQg6ShnWDzIXcngKtM/iBmQhKeps5P3cJgV/DE6HkUmjH2UthZtIAiCiEficZxr5oIzrAq0pvezR3BaTs0FzF+jldfncBjXdADAnA5wtT5dwak0VSMYzlUAgBONBScAuI468dfveYY2u3a0QXl+BiorkwAAKdsOAgDOPPNM4w4QRCNAopOIO1JSUjB8+HDp8bYDAOqKB3kB0aEvPHk/Ay8wMCcP5tB2CrzXL6XI8DyYXjRTEKTzuTgOHM+bOyuzyYEc5TRqp87G8F5WBGysjlBpCFYEP0EQTZd4/P4nsuA026MZrxVqLbRj2i/5tXO8ybYTyYYZCUqHhYJBchTUoB0xyQkxyQlOZEgq0s64AqSsLMZzaLHN4BgWLwcw6RgVPXbtaAO+mgfnl2z4qlqkHpT2c5511lm6zyOIxoJEJxGXnH322QCAlO2HwQ65kFxQN/By2sLTXc7gLhMUG+bkIXocAeKT9/rBV3klB1UngJjTAablmNXpsFqrpCILdFBakwStMzv1CgwFmDRw1dn2KrO0n5MgCJsgwWmlofAEp9Zjo98F3y6RBafZe6UUCKy30RSejqD9m/7QDCcWtMeTrwktGCQmOQEO0g8A3hvajt/DKYITAJxVCBGevJdTBKfM7s3tQtqSBady/2I3kncehiAI6NOnD6XWEnEJiU4iLhk6dCiysrLgqPEiZX8hePUYXyc8BVe9+OT9DLy6ZHnd4K+OenICCyo8wCnnginCU45yBqMWgiIDRCF0dVVTeGo4OYsRvwDHa1N00nKUM5qCMx4nnwRBRI94/M7Ho+C0ipnIjHWF2sYQnMGE+HYTUVpXxVarYFDAf7WKCgligPBUBGcQ6minLDaDF7mdVfWPFbEZ5KbV0c5dO9qECE4A4HxA6pb9AOoX7Qki3iDRScQlTqcTY8aMAQBkbNsdalAnKkUHB1elKsqpYcecPDhB1Cx5LtkECU+9oj+y8DTay6lydJYKA1koMJTwabVaxOMklCAI+4m373o40UTTpuJEcIZzHXFUoTaorQYLThkli0nfhglivdjUu59fkLKgtASnTF3UVE9wAvXRTnV0U4sW20Kjm8Hs3txOEZvBghMA3MUlcB8th8fjIdFJxC0kOom45YILLgDHcXCVFYKvrdA24gAwgPMb7emwcDOOk6rZiszQkSpC0rBSnoUCQ3X3JAiCaLLE2xhnY3XvmAtOK2dsxqPgtNKOHYIzLBvze3F1dR10cTqko9eMpgIOHp4Sv6HgBKTtQUaCEwDS9mqLTeX6LmlxftSoUUhPTzdujCAaCRKdRNzSvn17nHjiiQAAz5FdmjbuMgbPMaHu8GVOs6ocXyOAr5GKB8GhU1pdqDu3kzEl8mmKgSOpF6cG7TBjgRtwHzuLVFghno9eIQgi/iHBaaUha3Y23C/eK9TqZgap/Z9eRk/A8WQGVefrzs+G1vnbMqpzunWpi4ByRoWHHDzAA7xfRGqBdpYVL0jFDwEgY6d2O0lFHJKKODi8QMoB7fedr61F1uFCANJiPUHEKzSzJOKaSy65BADgKtkLR5UXfFBEU72Xk3GQxGfwgc2CKO3nBOoFZZAT50IKA4UKTyaK9ceoyPcIngxoRTm1HLT6XjoOPMQJ6008opVaS8KTIIiGQILTSkPW7GwSnLYRyyNRrLx2qzZ8kOjWEp5BFe05n4ZNUMqto6I2xEQWnIpNbagQlsWmjKs61EfLYtNRt33UWRPanYydPLJ/2Q2v14vevXujT58+oUYEESfQrJKIa0466SR07twZnOiHu3g3OD8U4SlHOYNRC08lyhmMWnjKUc5gzCKeauGpcnyaK7ZmxRasFmNoKhFPK/tdCYJIPJqo4OR4rnkLTpsLBmkR4DutLLLq2aijnXVi0/B9cPAhglNqR3UvpyNEcAKoX9CWuxckOGXU0c5gwSmjjnbKgjMYdbQzYycPZ7kPOVXS2Zx///vf6bxvIq4h0UnENTzP45prrgEAuI7tBOcXFOEZUrFWhZxuC4Q6BVXj9Y5GTwRxnFR0gLH6KGfw9XCrzBoJLt5CESK1o41FASG7hScJToJomsTbhDfeCgZJjVmzizfBaX4zC3slbVxctWhj+B74/dpiUwXn89eLTZ22HBW1YA5eV3ACUrRTnU6rhauaBaTTaiFHOzN28nBWMjhL96C8vBwdOnTAaaedZvhaCKKxIdFJxD2jRo1CmzZtwAm1cJbtBScCnmMMyUf94Iy0Wa0AR5VXc5+ngnKWl4kDi/R6tLAwgbF1wkQQBKEFCU6zhqz1yaY9/PG8f1O/GQvthPF3NW3P6ntkZidCmk0bdc1CoXpXlYiMfYKu4ASAlEIRrTZycFYygInowBUAkKKcDofD/CYE0YiQ6CTiHqfTiauuugoA4CrZDogCHD4G3iuCE5mu8OREBtStKuoKT59fWsk0qmgnCGB+wdjZCaISdYyoYIMoWjtqRU2iCc94m5wSBBEZ8fadjkfBaYaNBeMs+x8r2z7Mb2btPqbN2CQ4VYvITNA//kzpt9a53EDge1OrrwLluYWjzEAp1nUjRaegECAJTs4POGr0/X9KoQiHV4Sn7og4Z+leHDlyBNnZ2XRMCpEQkOgkEoKxY8ciOzsbvL8aztI99ReYJC55QV98KqacRnVbpiogxHNSqo1hZNTkjDC1aXA7omhPaqlWumw0haeFFN6wibdJKkEQDSPevsuJKjjtuFU4C55qIaglChtTcFrxcZo2nHlEWcsvBxPUZ05DvAbPJzifhngV637q5hm8N7QdV5WoCE49UgpFRXDWt+1HWyEfADBu3Di43W79BggiTiDRSSQEHo8H119/PQDAXbwVztLq+osMiviUhaejRoCjSntVUXEUcpQzGHXUU45yqgl2aqooZzAx3dSfiBHPeJuwEgRhnXj7/jZzwWkJO4ra2bh/094Ip4V+a6H28Xp9VkU79TKnAqKdKrGpRh3tlMVmsOBMPVzfH1lsOoIEa1LBDhQXF6Nt27Z0TAqRMJDoJBKG8847D3l5eeBEL+DVOLdTJTw5kQF+/Qgd4zhNh6Bg5QBp2cHxnGEBIcWpmkU5G5Jaq9cnQ5MwJjnRiHIGE28TV4IgzIm37y0JTgv3s6GCuo3RTcN+i8w8aikyVV0GnYq4gmgukkXR9PVzgqidLaW28QmB0c2QztRHO42im3KKbUh0U+mvFxlMinLeeOONcLlcun0iiHiCRCeRMDidTtx8880AAMZ2gzGNQ6sY4Kjyw1FpsL9CxnSl1uTIFCBQeEZ8v9h9HeMq4kkQRGLRRAWnbSSa4LR+M1vuY6nPVivYmglTS+3YJLYB48VsALxPME2ndVX4kbnDpy04AXBV21FZWYnu3btj9OjR1vpFEHFAnI3UBGHMaaedhn79+gEQIQpbNW04QQTnF8EZDPycXmqtGkEE8/uNnRYT66OcRnbyvhGT1VZTZxzp8Sd1WD5GJRaTOTpChSCIhmLjGGXLYhwJTpNmwhCcRpk2so2oUwhIBdPat6m0U1fHQa+gEKC8ds6goBAAcIzBWaFvw/ul+ULSEX0bV4UfvE+Eq1yn6JC/HE7fXgDA//3f/4GP4WI1QUQKfVqJhILjONx5553gOA4MB4HaI+AM0mg5xrTFp7waaeQALR1UzUIPqw6yDUmZNUn1iaj6bTSItygCQRCNR7yMTVaPILHcXISvy0p/bDwOJWaC06b9m5b6bOX9Cec9NLKT+2y0/SXotWsVFFKu1T1fq6AQ7xcVwaln46rwK4JTD3eRF45jv0MQBAwfPhwnnXSSri1BxCM0myQSjr59+yob5wV+Czi/31B4AjCMelouaBPs7NRRTi1bGb1VVs7YxlJFv2As7MG0HOUM6Iy9E7z6zlCUkyAShngSnLY1xdkjOM2It4JB1m5m7T6mzUSQThu8qKtFcLRTa/FX7WNlsRncL3W0U6fPwdFO3YVt+Vay2DTwu7LYNBKcnqM+QDgAhmK43W7ceeedurYEEa+Q6CQSkptvvhmZmZlgXCUEbp+0klgrwFnpA1+jnZYiOwfd1Fq1k5FTa7XgVSujJuk/poWBTJxxXEU8AYp6EkRzJV7GoniKbkqNmNtQOq1JOzbZWLFTRzeDkf21USaSKtqpJzadFd6Q6GYwnhKvaXTTXeqH56gPnqM+cL5atGh9CABw7bXXom3btrp9JIh4hWaQREKSnp6OW2+9FQAg8LvAUC0JSq9f+7wsNaJoHH2UK9saYaW6LewRjXEnPAmCaF7EyxiUiILTJuJOcNqF2d+B4y3YcNbaMhKcwW0ZmZhEN7lan2l001FRaxrddJXUgPcJ4H0C/Px2HD16FO3bt8fVV19t2keCiEdIdBIJy5gxYzBw4ECAE+DjN4OhboAXmZQmY1Q8ADCtMmcJk3LuppFOxkz7qbRBFWcJgmiu2CzwGrTNQI3V/ti0h9PavWKwf9Oue1lBfo+N/lbKnkwLx3sJ5kWHYFZg0MLRZ0b95Wv94Gv9gGAgSCu9UgX+um1DIncUIr8fAHDffffB7XYb94Eg4hQSnUTCwnEcHnzwQSQlJYHxJRA56dwqRUyKGoJOK7U22In4BXPnJAiAnGZjKDxtPufSqIhCtPZzEgTRvGnsvdfxltYfI8FpuWBQrPZv2nUvNXo+yew9Dkcg12HpHGwjG/maVhVbOYOq7vVoHdumiE1B30YRm3WCk8EPH/8nAOCiiy7C4MGDzV8DQcQpcTaSE0R4tG/fXkmz9fPbwfzl9Rdl4amOeupFN9W/ZxYilMFEq9COHo0V9bSymmy5LRLABJEwNNb3NYrjaoOLqlnBBsFp7T4xTKdtwL2i4ktjne4dNG8IqWIrahQLUhUl0o1uqgogBkc3ZQTxL4CrQdu2bXHLLbdE/loIohEh0UkkPBdeeCGGDBkCcCK8advq02wB46inFtFMt20Ahg47zEkNRTkJgkgoYrCQF9aZxVaLBiWK4IyXdFr5b2CyXUWyMeivlfTZcDHywUHRTS2Co5taBEc3ZQTnUQhuqXjQQw89hJSUlPD6ThBxBolOIuHheR4PPPAAUlNTIbrK4UvNDzWqE56cYOwgbKHOcYa9wqvVlJVzzay2RXtCCYJIFGKUOWJpXGyq+zet3ifa+zd5ztp7bEeEU68qvRqf37zmg1Z0U40gmO7d5Gq1o5sAwLhaJLeX5jKXXnopjj/+ePN+E0ScQ6KTaBLk5ubinnvuAQD4U/ZDcB0LNZKdCDNwFFYQWf1+TiMbwJrDtsuhW3DacSU846UiJkEQ5sTy+5qIgjNCLO/fBGInOCPE0mtSjiCzuf5BJBhlRdXNIbgajX2dMoIATjSObnK1XmkRXEtwgsGbugWlpaXo0aMHpdUSTQYSnUST4ayzzsL5558PcIA3YzsYavSNWZ1wDBafRudzKs9tgHOMlvAM7r+FFDASngRBhAUJzqgSlthMIMFpSri+KNr7is2imwEL1xrzAEGoF5yQhGUwXK23XnDq4HfuhOgsRXJyMiZNmgSPxxP2SyGIeIREJ9GkmDhxIrp27Qrm8KG2xXYplcZs1VIt3KLp1MwmDBrXGpyia0F4hi0+o7US3YAqhARBxAgSnNZpQAZNXO7fVNOACuyWopsNWfy08v42NIvJqtjUo05scqr7BwtLWWzqCU6uphaiWAgh/SAA6XiUjh07Wn8NBBHnkOgkmhQejwdPPfUUkpOTIXrK4UvPr9vHaSI8Y7HXU0aePGg5MDv3z1C6LUEQkUCCM6o063TaaGFlcVSdzRROdFOLoOimFlaim1xNLRiqkdTlIBhjGDt2LM466yyzV0IQCQWJTqLJkZeXh/vuuw8A4Es/BH/yUWl10eszPvhZTpmJhyqvsTh4uw4SngRBhECCM6rE3fmbEWJLOm0M9nUy9ZFoUYhuBuDzm0Y3+YoqcDW1gOhDbcvtKC0tRc+ePXHXXXdZfEUEkTiQ6CSaJGeddRauvvpqAEBt1m4IrkopmikI1g5/jkR4MtGWyrWWiKVgjPVZpARBNA9iIDbiZXEtrIJBkd8s8jZiuAAaU8wq08oVbLUQREAQDaOb8vONopvw+aUfQUBt5m6I7ipkZWXh2WefRVJSkrXXQRAJRBMdTQgCuPnmmzFs2DCAE1GbvQ2iw1cfzTQSn/IEyKgcOhP1J0qxjJQ2RlSWhCdBNG2aUMZB2PvXGyqALexTjJnYlG4W2fNjcVRKQ4jmgq6o2oqjtyVHEI0joLKQNOqnbFN3D1/aIQgpxXA6nXj66aeRm5sbwYsgiPglDkcUgrAHh8OBxx9/HJ06dZIKC+XsBONUDsNIfKpFpZGwi6cy77EkWsIzVhFigiC0aSzBGYWxNCbRTYtFcRokOBtQxKfuZg17nkwDxGbMsnuisdAqmtR9AJTopqmYtCJIVffzp5TAn3kAAPDPf/4Txx13XENeAUEkBCQ6iSZNWloann/+eaSnp0P0VKI2dx8YVPs5ZPEZrahnAsAa6sQp3ZYgmhZNLMLZYKyO5xbvkXARzmgRD/USgglHbEYa3QwSt0JSBVhHqXDQJZdcIh35RhBNGJoxEk2eDh064Nlnn4Xb7YaQVgZvzoF64QkERD01V2uDo55GAtUu8SnGcF8oQRBEPGDT+Nls929Gcq94TadtCJaOVrEY3bQqNq1EN9W3d1WjJncXvF4vTjvtNNx5553mfSaIBKeJjDAEYczxxx+Pxx57DBzHwd+iGL6swkADJeoZI1EZK2IRibTzHk0o0kIQCUU8fPfiJXPCSj9ikrpr8f2Ih79dvMAYIArGNiailIkimFEGFFC/NUfPxu+vPyc8WHA6vKhpsxPgBfTv3x+PP/44HA6HcZ8JogkQJyM8QUSfkSNH4u677wYA+LIL4Es/qm/cVKKMiSaSAZpAEURj0NhjXqIIzmju4Qy4T5y8H7EmEp9l9hmWt8kY3IPJx6bpCdO6czkNM5H8/sCjWdTt837U5O4Ec/qQl5eH559/Hh6Px7jfBNFEaKajGtFcufjii3HttdcCALytD8CXWqJvbHZGFxE9SHgSRPPBZsEZ0T51I2K1hzNcwWmHn2po0aKAbjSSv7Tiq2WxqSM4leim0WenTmzqvs666KbedcYJqMndAeapQcuWLfHyyy+jRYsWxv0miCYEiU6i2XHTTTdJG/Y5wNsmH77kEsVJcA4e4IPSXEh8Ng6R7lEiCCI8GmOci4cIp5WiaLEQnE1pX2UssCo2DaKbAWKzodFNldhU23Cqv6Uo1KImdwfEpGq0aNECr732Gtq2bWvcd4JoYtDoRjQ7OI7DvffeizFjxkjCs10+/MmlYIJJ8R6rEzI+hsUjmgP0XhJE0ySKgtNytNOm/ZsRFw0isRke4YhNA8GpJzY5pyNAbBoJTt3rPA/m90MUvKhtuxdichXS0tLw6quvomvXrmavkCCaHDTKEc0SnufxwAMPYNSoUZLwbJ8PIaW83knpHo/CjFdE7esgCVc19F4QRNMiXiKcZtD+zfiCmRT4ASR/YVT4jzHzVNo6IakrNgXBMJUWfj+Y3w/GBNS22QsxtRIpKSl45ZVX0LNnT+P+E0QThUY6otnicDjwyCOPYMSIEQDHUNthH4TU8rqUHQOHJBeSMBOfVkqyxwEcz8XNEQOGkPAkCMIiCTGmEaEYCkETf2rmk9XpuCbnbhuKTUEAON443VZkkuBsvxdiWgWSkpLw0ksvoW/fvsavgSCaMCQ6iWaN0+nEE088geHDh0vCs/1e+NPLpIvMYJ+HeoWcxGfsohYkPAkiusRqX2eUKmtbHsesjlnRzmoBEsI/RB0jP2p2XJmV7COzz7V8D719orLYlK9rfcaUY1IYGC+gtsMeiKmVSE5OxosvvojjjjvOuA8E0cQh0Uk0e1wuF5566ilVqu0B+FuWSxdlR2TFqZlebwTx2QAxSMKTIIhExPLYFQ+pvXaTyMXu1L4z+G9oJbpphJaIVBcLNBObQBhnckrzBOYQUNs5H2KKtIfztddewwknnGDcT4JoBnCs0WpcE0R8IQgCXn31VXz55ZcAANfB1nAVZwYaqScrgvEB1IwxfZHJ89I1o6+faFLYCLC2Ch9BRKHBRw/E6nxQGr4IIjrEanHHJgEYVcGZKPs646APpu+D+r3U8i+OOkFo5EMcDmPf5+CNfQOvuodmASCH1E/Zx2vZOJ2S0AQC+sIcftR0zgdLqkWLFi3wyiuvoFevXvp9IYhmBIlOglDBGMNbb72FuXPnAgBcBdlwHmkJDkGOlOON933CRHTWG+lfsyI6AQsrvY0gOiO8b3j3oSGMIGwngUSnrem0WpDoDKMLFkWnUc0EI8wEp5U25D7q+Q6z67wDEIWQfohuL2o75YO5fWjZsiUmT56MLl26GPeFIJoRTTDHhCAaDsdxuOOOOzBhwgQAgC/3KLztCsAQ5HzqBGdEazayKG2q+3msnH1HEETzpYkIzmZBhH5KqQQbSfV300JBJns/g/dl6tmYXdcQnEJyNWq67AVz+9C2bVu8+eabJDgJIgiKdBKEDgsXLsTrr78OURTBl6fAk98OnBhYQCjgIOigFV7LkU7ZJniVue73EafYNlak04b7W2ufhjCCsJVYRDljJTgjuV8Y7TfpSKeej9LsQmgfjPxkaB80rqv9kMMRel32MSKTrmu1IafKcrzxdb17yNfle6gvpVWgtuMBgGfo1asXXnzxRbRs2TK0DYJo5pDoJAgDVq1ahSeffBK1tbXgqjxI2tcenN9Zb6AR7ZSdqiI6GdOfDGgJU7Vjt2NfZ4SiL2LhSaKTIBKHpig4G3LPMNu35VzlSIWn3aLTyDfpdqG+D1q+K2zRGex/ggVh8DYXlzPwenDtheDnB18PFqVqsanxfH+LYvjziiCKIk466SQ8+eSTSElJAUEQoZDoJAgT/vzzTzzwwAMoLS0F53XCs7sdeF+SdNEgxZbjOOma2qkFO1wLxYYStpiQDfe21j4NYQRhCwkgOGNSXbsB92hSotPIJxne3kbBqed3ggsNBdvJolOv0J/8fKvXdUQvE/zwtS2CP+cYAOC8887DfffdB6czSPQSBKFAopMgLLB//37cf//9OHDgACDwcOfnwlmRbm1fp1aVWrXztZCGm9AptiQ6CSL+acqC0+q9I2i/yYhOI19kQXQa+SpLotPI31ipfGvkb+QCgFauG4hexryozTsMMaMKAHDdddfh+uuvt+czQBBNGBKdBGGR0tJSPP7449i4cSMAwHU4G87CLATXGArB6GgUjot70Sk9nYQnQTRpoj1hboyU2nDvH2HRoEbf12l0f6NtHlYx6p8oml7ntPZK1sEYs1eUNhQTXye6vajtfBAsyQePx4OHHnoIZ555ZuT3JYhmAIlOgggDv9+Pt956C//9738BAI5jaXDtaw1OztTRcrpm53HKNgaQ6LRyDxrKCKLBkOhsuqJTHhsjFaUNLTRUd11PdMr+Te/9s3zdoX1/JojWrpu0L6ZVo7bTIcApIicnB8899xydwUkQYUCikyAawBdffIHJkydDEARwVR64d7cG73XVGwQVA4q66ASad4ptwL1oSCOIBhHnwjPq+zmbmug02tYRbGel70aFhvQWXFXXNSu819lpCVKzqrch14P+frKYtHxdp30mCvDnloF1PAZBENCnTx88++yzaNWqVchzCILQh0QnQTSQ3377Df/f3p1HR1El+gP/VnVn6SxkIYEEieybCrIrIoiCgIgiCCjqcUGf43sqjI7vp5MRcdQRlccIbzw6DjPoMIrwXIBRR3BQFoWwySpLCJAgW0L2he6k0131+6O6K91Jp7d09Zbv55ycdGq593aJ1fnm3rp3wYIFqKqqUp7zLMqErjrB+cPbcWIG9na27Xyf6uJtjchn0Rg6NZ5AyKmqcAqd3gROx2N87eX0MOt6i6Y5hErHsGk/15dJiFzud+jFdAyTXu93Vb4kQdZZYe5WBinlMgBg0qRJeO655xAXF9eiDCJyj6GTqA1KSkrw8ssv48iRIwAAfXEK9BfSIEDw/Ffn5rTu7WxPoRNg8CTyh5bBM9ihU+NlUlpUF8rQaa/b3fwBjrztBbXzdmbbVvbbQ6fL9asdQqe7wOlupniIgssw6fV+tAzDkqEB5h4lkOMsiImJwbx583DnnXdywiAiPzF0ErVRY2Mj3nvvPXz22WcAALE2HrGFmU3rebr767MjDrHVBm9xRN6Lht5Of+sIZegMRC+nu3udr6HUF77MettKL6inWW+1+lXVqWyHtlnSa9GYUwaIMrKysvDKK6+gf//+mrSBqL1g6CQKkM2bN+PNN9+E0WgEGnWILcqArtZhkWjHmWo9TcjQCg6x9bde3uaIvBLGoVPTwAmEdsmUtswM6w13obQtbfd2AiJ/l2IJxHtvjdWqLLPi0DZZlNCYUwZreh0A4LrrrsOLL76IlJQUbdpA1I4wdBIF0NmzZ7FgwQKcPn0aAKAr6YCYC+kQZMf1xdzM9MfQqR3e6ojci/TA2cY6wi50ejMrbCACmb+z3gZiVlxZVoJfc95OUuTvjLpW25TzDm2TEuph7n4JcpwFOp0OjzzyCB544AGIWoVeonaGoZMowBoaGvDuu+9i7dq1AADBGIvYokyI9bHKAe4+TCXJ7fTwHGLblrp5qyNqVRgHTuV0H9oX5ODpLnB6tf4k4NvMsO4m8Wl+nDeBydfnPb2dgMibwCkIrt+fvY7WAmlb9tsDp639MmRYOldBzqmB1WpFVlYWFixYgIEDB7bediLyGUMnkUZ27NiBRYsWobq6GpAExJxLh64sGYKr4OYwCYO7aeJDHTqV0xk8iaJKNAXOANTna/B09wdCnwOnp0DpTeD01MvXnLvnPT3NSeDPrLiO+x1Dob3dWu13DJv2U2KtaOx2CVJyPQBgwoQJePbZZ5GUlNSy3UTUJgydRBoqLy/HokWLsHv3bgCAWG1AbFE6hEZ9y4Ntz734M3ufE4ZOD/XzlkekirbAGYh6fajT0x8GPYZOb2eFbe0YX9fObM7bCYa8eR7Un9BqD4WtLSsWqP3NAqcMGdaOdWjsWgHoJBgMBjzzzDOYNGkSZ6cl0ghDJ5HGJEnCZ599hvfffx+NjY2ARUTM2TToyhOVpVWacTctfJuf6QRCHzoD0Ia21c1bHhGA6A2cgajfi7p9WVvSvza0IZAG6llPT/fLQIVWrfa7IMdYYL6yDFKKCQBw9dVX43e/+x26du3qdRlE5DuGTqIgKSoqwuuvv47jx48DAMQqA2LPtOz1bPP/kpEQPNnbSRR60Rw6gzDE1tMfAgPyrKc7Ws4Kq+WssYHi43uQIcOabuvd1EuIjY3Fo48+itmzZ0Pn6tlPIgoohk6iILJYLFi9ejU++OCDpl7PX9Kgq2jq9WwXoTMAbWh7/bz1UTvH0OlaW3tY0Xrg9OlZz7byNEO6P/sdjwvVfm9nrnU4Ro6xwJxTDinVCADo378/cnNz0b1799bbQEQBxdBJFAKFhYV4/fXXkZ+fDwAQq+MRcyYdojmm/YTOpsICV5bPdfP2R+1YmIdOpQg/2hjkiYRaVO9h5vGQBM5ATFDU/Li2hkJf9/syiZKNLAqwZtSi8YoKQCdDr9fjkUcewZw5c6DXu5hbgYg0w9BJFCIWiwWffPIJ/v73v8NsNgOSAP2FFOhLOgBtyWFBCJ1KEQG+dYQifPL2R+1ZMMJPlM9c67IJHiZ+C2roDNQERc2Pa+t+V8e42++pjS72SwnKs5tyUgMA4KqrrsJ///d/o1evXi3LIiLNMXQShdjZs2fxP//zP9i/fz8AQDDGIKYoHeLlOP8K9DYMhlNvp3PB2pTban28BVI7Fm29nSEeVutJ0AKnN896evs8qB+Br8377cd4aqOL/bIgwdKlGpasGkAAEhIS8Pjjj2PatGl8dpMohBg6icKALMvYsGED3n33XWVdTxnQlSZBfy4FgtXHD8kghU6lCA1vH8EMn7wNUnsVTb2dYR44gSCFzkDwM/D5tB9wf4wfrClGNOZUQo63AADGjBmD+fPno1OnTgGth4h8x9BJFEaqqqrw7rvvYsOGDcqGRhH68ynQlSY5L69iD3ut/aIUqUNsW1agbflqPbwNUjsVTT2dWoROT/daH7RlciFPxwR1giKNeZrZ19V7leIa0ZhTCSlVWQYlIyMDv/71rzF27FhtG0tEXmPoJApD+/btw7Jly1BYWAgAEC7HIOaXdIh1DkNuHQNf81+IGDr9rI+3Q2pntAwpkTy01t391U/+rOvpaQIiXyYo8ibMtSX4trUMX96r/RhZlGDJsg2lFQG9Xo9Zs2bhoYceQkJCQqvtIKLgY+gkClMWiwXr1q3DihUrUFdXBwAQyxIQcy5VWdvTVeCz/3IULUNslQq0Ld9lnbwtUjuiRfCMpJlrRRejSFztc+RjKPU0uZDjMa6Oax7CvA2tjsd62q9lGe72e3ovLq+ZAFjTjLB0rYQcZwUAjBgxAvPnz8eVV17pso1EFFoMnURhrrKyEsuXL8fXX3+tfPhaBegvdoDuYhIEycUvWKLA0Bmwunl7pHYgkKEzAGFTKcbPNvlav6f7padRJF4GTk+/ank6xp8ZcX0NrsEuw9/3KyU2wHJlFSTbrLRZWVl4+umnceONN0bF8GKiaMXQSRQhjh07hmXLluHo0aPKBrMO+nMdoCtNdH7e0xeREDqVSrSvw2MbeKukKBWoX9RD1bupQTtU7kaPBHHyIW9CK+BdKA3EMW0pw5PW3q8UZ4GlaxWkdCMAID4+HnPmzMF9992HuDg/Z3snoqBh6CSKIJIkYfPmzXj//fdRXFwMQFliRf9LCnTVBv8KZfD0DW+ZFG2iLXQqBQWmHHfctVWSgxZKvRGI3tZA1eOWi+sm66ywdKmBtVMtICp1TJkyBY8++igyMjLa1F4iCh6GTqIIZDab8cUXX2DlypVNz3tWx0H/SypEY6xvhUVK6FQqCk49btvAWyZFkTAbWhvxoVODCYiihrsg7uK6yaIEa6c6WLJrAL1y7x8xYgT+67/+C7169dK6tUQUYAydRBGspqYGK1euxNq1a9HY2AgAECsM0J9LgWiK8a6QAAU59nYSRRCtnn1rL8HT3eRDzfc3F8BlWMKCp15dH2dal3WANbMOluxqIFa55/fo0QNPPvkkRo4cGYgWE1EIMHQSRYELFy7gb3/7GzZt2qQMbZKVmW7151MgNujdnxxJoVOpKDj1eMJbJ0WqMF8mRSkmjIOnp1nCPfWAtnZMpPGmV7e19+0qbEKGNcMIa9dqdUbarKwszJ07F7feeit0Ol0gWk1EIcLQSRRFTp8+jRUrVmDbtm3KBhnQXUqE/kIHCOZWwmekhU6lsuDV5QlvoRQpgjWzZzj1diqFBa4sT7xZMznSA6c376m1Y1oJm1K6CZau1ZANFgBAx44d8eCDD2Lq1KmIifFy1A4RhTWGTqIolJ+fj7/+9a/YtWuXskECdKVuwmekBc9wCp0AgydFhggKnUoxYdzb2Rpfl2AJJW8mO3I8xtP78vH+L0OG1NEIyxU1atjs0KED7r//fkyfPh3x8fE+lUdE4Y2hkyiKHTp0CH/9619x4MABZYOshE/dhWSIDba/HgcwwLG3kyiMBSN0BjDgabp8iuP9I5Q9oXa+DlUN5jGBIEvqdZYFGdaMy7B2qYUcr4TNpKQkzJw5E7Nnz0ZSUlJg6yaisMDQSdQOHDhwACtXrsTevXuVDTIglidAf6GDMuEQg2fb8VZK4S4CnuVsKk6DwOnqfhHMwAn4N/w21Me0hf2aC6ISNjMvw9KlBrA9s5mSkoLZs2dj+vTpDJtEUY6hk6gdOXLkCFauXIm8vDxlgwyIlQboLyRBrPNxqZVWBDV0KhUGtz53eDulcBbGM9Y2FaXBkNrW7hGhCpzeDL8N1DHujvPmGH85XHNZlGDtbIIluxaIVcJmeno67r33Xtx5551ISEgIbN1EFJYYOonaofz8fKxcuRI//PCDuk2oiYX+YhLEyngIaNsvfu22txNg8KTwFujgGa6B09N9IRSB09N9MVDHhJJj2IyxwpJdB2uny4BeaXNmZibuu+8+TJ06FXFxcaFqJRGFAEMnUTtWWFiINWvW4Ntvv4XFojxbI5h00F1Mhq40AYLs3y+B7bq30463VgpHgQyd4Rg4va+w9X0Ozx+SlxzuwVJCIyzZtZAyTLD//TInJwf33nsvJk2ahNjYwIyqIaLIwtBJRCgrK8MXX3yBdevWoa6uTtnYKEJfnAhdSSIEi+/rozF4gsGTwocWQ2sjNXR6mlyIgdM9F/daGTKklAZYs+sgpTao26+99lrcc889uOGGGyCKvK5E7RlDJxGpjEYjvv76a3z66acoLi5WNkoCdGUG6IoTIRq9/ws1Q6cNb7EUahEygVBQgqenyYU8vR9vekHDtafUm1Dt7hhXYVOUYM0wwdq5DnKiMlpGFEWMGzcO99xzDwYMGNDWVhNRlGDoJKIWLBYLtm7ditWrVyM/P1/dLtTGQl+cCLHC4HHobdBDp1Jp8Ov0Bm+zFAoRti6nUlQQArKvEwt5E0xDtQSLJ96GanfHubheUrwF1s51sGYa1ec1DQYDpk6dipkzZyI7O7strSaiKMTQSUStkmUZP//8M9auXYstW7aoz33CLEJ3KRH6kkQIja0PvWXwdMBbLQVLsMKmWl+EhE73FTv/7G0w9bWnNFi8ab+7Y1obQptWD2vny05DaK+44gpMmzYNt99+O5KTk9vSaiKKYgydROSV8vJyfPXVV1i/fj3KysqUjTIgVsRDV5IEsSa2xay3IQmdSsWhqdcbvOWS1iI4dCrFhSB4ejPjrTfHeXMtvB1+6+m45r2rgWi/q2r0Vlg7GWHpfFldX1MQBFx//fWYPn06Ro4cyec1icgjhk4i8onFYsEPP/yAtWvX4sCBA+p2oV4H3aVEZdZbh97PkAXPpgaEtn53ePslLUR46FSKDFGPZ1u1ZYiut8cF4Z6mTgzUyQgpzQTYmtGhQwfcfvvtmDZtGrp06aJ5O4goejB0EpHfTp06hbVr12LTpk0wGo3KRhkQK+OhK02AWBkPhFPmYwCl9iACn+V0XXyEBc9ADdF1dVyQ7l1yrAWWTkblWU1bryYA9O/fH9OnT8ctt9zC9TWJyC8MnUTUZiaTCVu2bMHXX3+NQ4cONe0wi9CVJkBXkgChXh+6BrrCAErRKhihMwjPLkZk6PR0X/E0mZEvZQWILMiQ0k2wZhohpTSoa2smJSVh4sSJuP3229GnT5+gtIWIohdDJxEF1JkzZ/D1119jw4YNqKqqUrcL1bHQlRoglhsgWMPk+Z9wDp52vEWTP7QKnkGeKCfigmeEkCFDTmyENcMIa4YRiGm6zwwdOhRTp07FmDFj2KtJRAHD0ElEmmhsbMSOHTvw1VdfYffu3VBvNZIy/FYsNUCsjPe49EpQhHv45G2afMHASa2Q4iyQMoywZpggGyzq9szMTNx2222YMmUKn9UkIk0wdBKR5i5duoRNmzZh48aNKCwsbNrRKEAsN0BXaoBQ23L226AK9+AJMHySe1oPqw1i6GwtcDpOTMZQ6p4syRBEQZl9tqMJ1gwj5ORGdX9cXBzGjBmDiRMnYsSIEdDpWl/+ioiorRg6iSioTp48iW+//RabNm1qWnoFAOp10JUZIJYZIBj1oQmgDJ4UiYI5W20InuVsbQZshs6W7NdKFiXIHRtgzTAqa2raLpUoihg2bBgmTpyIMWPGICEhIYStJaL2hKGTiELCarXiwIED2LhxI7Zu3QqTyaTuE0w6iOUhCqAMnhQpgr00ilqvNsHTVYhk4PRMDZo6CVJaPaSO9ZDS6tVlTgCgX79+uPXWWzF+/Hh07NgxRC0lovaMoZOIQq6+vh7bt2/H999/j127dsFsNqv71ABaboBwOUgBNBKCJ8Dw2Z6FKnACmoZOb9b19SZw2oeWhjtf2ul4bIugmVEPKdU5aF5xxRUYP348br31VnTr1i3gbSci8gVDJxGFFaPRiB07dmDz5s0tAihMOujKDRAr4iHUxWgbQCMleAIMn+1RFIZOz9W2/p4j6VnP5sHa2/elbtPbezRNytBZh/8cV155JcaNG4dx48ahV69eEEL574SIyAFDJxGFLaPRiLy8PGzevBk7d+50DqBmEWJFvDITbnUcBEmDX64iKXgCDJ/tSajDRAiCp2M4a8uwW/u5gTzWU+j1tr2tHSfFW5SgmV4PuYMZjn9v6969uxo0e/TowaBJRGGJoZOIIoI9gG7btg27du2C0Whs2mkVIFbFKQG0Mg5CY4BmYYy00AkweLYX4RAsghQ8mw8p9XRcc67O0/pYX4YJu+zNhAw52QwpvQFSWj3kBIvT/p49e6pBs3v37h7rIiIKNYZOIoo4ZrMZBw4cwPbt27F9+3ZcunSpaacMCLUxtgAaH5iJiBg+KRyFOniGaJhtawIV+NpybFvIOglSSgOk9HpIaQ1ATNN9R6fTYciQIRg9ejRuuOEGZGdna9oWIqJAY+gkoogmyzJOnjyJH3/8Edu3b8eJEyecDzCLTb2g1XEQLH7+ohyJwdOOt/noEuqwCYRd4IxEMmTIiY2QUhsgpTVATnYeNpuUlIRRo0Zh9OjRGDlyJJKSkkLXWCKiNmLoJKKoUlJSgh07dmDXrl3Yt28f6uvrm3bKgFAXo4ZQnycjYvCkUAqHsAkwcLaBHGNVQqbty7E3EwBycnLUoDlw4EDo9foQtZSIKLAYOokoapnNZhw+fBi7du3Crl27UFhY6HxAowCxOk7pAa2JhWDyYihuJAdPR7z1R4ZwCZoAw6YfZFGC3MEMKcUMKbUecqLzs5kJCQkYNmwYRo4ciREjRqBLly4haikRkbYYOomo3bh06RL27NmD3bt3Y8+ePairq3M+wCzaQmgsxOo4oEHnOoRGS/Bsjh8H4SGcgibAsOkDWbRNANShAVJKA+SkRqclTQCgX79+asi85ppr2JtJRO0CQycRtUsWiwXHjh3Dvn37sG/fPhw5csR5SRYAqNdBrIlt6g01u5gVN1oDqB0/IoKPoTNiyIItZKY0QOpgVp7LbHa5OnfujCFDhmD48OEYMWIE0tLSQtNYIqIQYugkIgLQ0NCAI0eOYN++fdi/fz+OHj0Kq9Xa7CBbCK2NVYbjupoZN1pDKD8qtBduYdOOoVMl6yVIyUq4lJLNkJPMQLO/RWVmZmLIkCHqV3Z2NtfOJKJ2j6GTiMgFo9GIn3/+We0JLSgoaBlCLQKEWiWEijWxysREkotf0KMpiPIjI7AiJYy0w+ApQwbirZDsAbODucV6mQCQnp7uFDK7du3KkElE1AxDJxGRF4xGI44dO4ZDhw7h8OHDOHLkCEwmk/NBEiBcjoFQFwuxLgZCbSyEeofnQhk+CYicoOlKFIdPWScpS5gkmSEnN0JKNgOxLf+fzcnJwcCBA9WvnJwchkwiIg8YOomI/GCxWHD69GkcPnwYhw8fxqFDh1BWVubiQEFZpqUuFkKt7bs5yn5B5ceIdyI5mERZ2JQFZY1MOckWMpMaIRssaD5aPiYmBv369cPAgQNxzTXXYODAgUhNTQ1Jm4mIIhlDJxFRAMiyjOLiYhw5cgTHjh3D8ePHkZ+f33JyIgBoEJXwWaeHcFkP8XIMYBZ9WzM0HPHjxL1IDJ1REDZlQYac0Ag50dIUMBNazioLKJP+9O/fHwMGDMDAgQPRt29fxMXFBb/RRERRhqGTiEgjFosFhYWFOHbsmPpVVFQESXIxzLZRgHA5RhmWe1mvDNM1tbJkSyTgR0tLkRI6IzhoynqrEi4TG21B09aD6eItpaSkqAFzwIAB6NevH9LT04PfaCKidoChk4goiEwmE06cOIFjx46hoKAAJ0+exC+//NJykiIAsAKC0RZCjXqIRj0Ekz7yekX5MRN9gdP+fHKIAqosyJANFuXLFi6lxEYgzvVz0x06dEDv3r3Rt29f9O/fH/379+esskREQcTQSUQUYg0NDSgsLMTJkydRUFCAgoICnDp1quVERXYWQVmuxegQRo16oDECwqi7j5zmASAaPp4iKdQ0D5DuJr4KUtiUBRlyvDJrrPJlVUJmvLXF85d2V1xxBXr37o3evXujT58+6NWrFzp16sSASUQUQgydRERhSJIknD9/HidPnsTJkydRVFSEoqIinD9/3vXwXEAZomtSekOFep3ttU557Wopl1Bz/PjxFAgi5aMqmoONr72gXp4nQwZiJSVcxluV3st4qxIy3YTLpKQkdOvWDT169FADZs+ePZGYmOhdO4mIKGgYOomIIkhDQwPOnj2LoqIiFBYWqt8vXLjQehgFgAYRQr0thKqhVAehIUwDqSfNA2uoPsqiOWQ25xgefVz+RxYEIEZSAmVcI2SDFXK8Rf0OXevnJicno0ePHujWrRu6d++OHj16oHv37ujYsSN7L4mIIgRDJxFRFLCH0TNnzuDcuXPq19mzZ1FTU+P+ZLOohM8GW69ogw6wfVdCaQT+Yu/po80xrPjzMciw40SGrITKeCvkONuX7TVsP7sLljqdDllZWejatav61b17d3Tv3h3p6ekMl0REEY6hk4goylVXVzuFUPv3ixcvoq6uznMB9lBqFgGzDkKDCMHc7Odw7y0N9FDedhSC1OGvsRLkWKvttVX5ipOaQqWHfwKiKKJz585OwdL+lZ2dDb1eH5w3REREQcfQSUTUjtXW1qK4uBjFxcW4ePEiLl686PSz0Wj0riCL0BRCzSKERhFodHzt8F2O0MBm/7iMgsApQwZ0MuRYSemh1EtKmIxRvhBrdQqZ3sxPJYoiOnXqhKysLJdfnTp1YrAkImqnGDqJiMglWZZRW1uLixcv4tKlSygrK0NpaSlKS0vV12VlZd4HUzuLoARQswjBIgIWEYJFsH0Xlf22707bwn1m3hCwh0foZCU46u3fJch6Wfmuk5uCZYzSYwm95LFn0pEoikhPT0dGRgYyMzORkZGhftlDZWZmJkMlERG5xNBJRERtYjQa1TBaWlqKyspKVFRUoKqqCpWVler3yspK1+uRessqAFYBgu278lpUXksutksAJAGQBUCC8myqrBxr3yfY9kEWAPunodNr5ZunwCs3HejwXVa+CwBEGRBlyIKshD1RBmyvZVF2PsYWIpXXUlOoFGXn13rbvjaMbE5MTERqairS0tKQlpaG1NRUpKamOoXKzMxMpKWlQadz81AmERGRGwydREQUFLIso66uTg2glZWVqK6uRm1tLWpra1FTU6O+dvzyuSdVk8bDOYg6hssw6IDV6/VITk5Wv5KSkpy+JycnO4VK++vY2NhQN52IiNoBhk4iIgprFosFdXV1qK2thclkgslkgtFo9PjabDbDbDajsbGxxWvHbWazWfP3oNfrERMTg9jYWMTGxiImJkb92f46JiYG8fHxMBgMXn/ZA2V8fDxneCUiorDF0ElERO2aLMuQJMmnL1EUnb4EQVC/63Q6p5/1ej1EMcxn9yUiItIQQycRERERERFphn96JSIiIiIiIs0wdBIREREREZFmGDqJiIiIiIhIMwydREREREREpBmGTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPQSURERERERJph6CQiIiIiIiLNMHQSERERERGRZhg6iYiIiIiISDMMnURERERERKQZhk4iIiIiIiLSDEMnERERERERaYahk4iIiIiIiDTD0ElERERERESaYegkIiIiIiIizTB0EhERERERkWYYOomIiIiIiEgzDJ1ERERERESkGYZOIiIiIiIi0gxDJxEREREREWmGoZOIiIiIiIg0w9BJREREREREmmHoJCIiIiIiIs3oQ90AIiItyLKM+vr6UDeDiMgn8fHxEAQh1M0gIgoohk4iikr19fWYNGlSqJtBROSTjRs3wmAwhLoZREQBxeG1REREREREpBn2dBJR1Ivd3QmCLAKCCEG0DVsTREAUAEGAIIqAICjbAOW1KEBwOMZxu3Ks0PSzfZ/j8YIAwLbPtk0WBOVPfYJzmc23y/Z9on2/rShBgKz+qdC+XQAEOJ0jq9sczoetDFGwldW0H4Bah3qO/XhAqbN5efZ9TufBqS7ndrRyjsPPTefZvsPNeS7qa9EOF2U6cXuO3LIep7rkZu+16Tw4nAdBVquThab9guM+tWz7PlmtS2h2vCDITv8c7XUItmMFW5nKPylZ3ab8U5XVMpV9yjZBkJ33CTIEOG8Xba9F27nKazjvU8+Rms6D/XgJOqHptXoemo6377fv08G+XXLYLill2ct0KE893vZdhHKu0g6lfmWfBJ3tZ+XyS9DZttnP0dn+m4mwHWt7b/bXTW2UbW1A03bA9rMAEYBOECDa/oMq2wTbNhECBOgEEfUNAu7+jywQEUUrhk4iin5WQfn1T1B+yQNgC5i20Alb6BTtiU5JEYKS4OCcXmznuUw9onMiEhz3tUgtbl47pqPm++0v7eHR4bt6uOBQlNCseME5BDqd5+J8wBZ+W9knuPhy2Q4P5/hyqdpYpndBNYCh07Fep/2uQ6fjOS2Od7FPUMuRm5UpO5/jeJxTXbLzPofQ2RRiHQJsa/scwqhT6HTYJsI5rNoDW1PotAdSW0AT7KFNoRMEiIIAHeD0HXA4HoKtLEBnr8v2WqeW3co+9XVT+3VqO5tCpmP7XYXO5uWp7XfaZm9j0x8miIiiFYfXEhERERERkWYYOomIiIiIiEgzDJ1ERERERESkGYZOIiIiIiIi0gxDJxEREREREWmGoZOIiIiIiIg0w9BJREREREREmuE6nUQU/XQyZFlS1iW0LxJofy3YFtFzWs9SaLYOpuCwXXbY72Ffs4Ui5VYWn2y+veln+34Xr2X7a+VY9Ry56bXc4nw4LCjZVGZLgnKy0Oyw5mtvOm1v8bbg1Tqd8HOfuzI91Ke+LbfnNF9vs3l5csvyXZ7ncPUdzhPcrNMpOJQtNDteWRPTvq9ZHc3X6YT/63TKtnNl23bZ9lq27ZMd1il13C4JMiBIDu/bXpdkW9fTtt+hHbIgKfXY67WVCVs9zbeLtp8dvys1NW2TbP9bSw5rcUoCIEH5315y2CfA1Tqdgu08QVn303a97a8Bh/U+HV7b61LXGYV9nVGlPGWboG4TbK/rG1z9f0hEFD0YOoko6plHXgp1E7Rh+x3eX80zJZGd/Z+WFOqG+M2eyDmgi4goHPBuTERERERERJoRZFluw9/JiYjCkyzLqK+vD3UzIkZ9fT2mTZsGAFi/fj3i4+ND3KLwxuvlO14z78THx0MQOPaAiKILh9cSUVQSBAEGgyHUzYhI8fHxvHY+4PXyHa8ZEVH7wuG1REREREREpBmGTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPZa4mIiIiIiEgz7OkkIiIiIiIizTB0EhERERERkWYYOomIiIiIiEgzDJ1ERERERESkGYZOIiIiIiIi0gxDJxEREREREWmGoZOIiIiIiIg0w9BJREREREREmtGHugFEROTMaDRi9erV2Lp1K4qLiyGKInJycnDLLbfg7rvvRkxMjN9lV1RUYNWqVcjLy0NJSQni4uLQo0cPTJ48GbfffjsEQXB7/vnz57Fq1Srs2bMHFRUVMBgM6Nu3L+644w6MGzeu1fNOnTqF7du34+DBgygsLERVVRViYmKQlZWFoUOHYsaMGcjJyfHrPUXj9XLFYrHgsccew+nTpwEAkydPRm5url/vK9qv2YkTJ/Dll19i3759KCsrgyAISE9PR9++fXHjjTdiwoQJfr8/IiLynSDLshzqRhARkaK4uBjz5s1DcXExACA+Ph6SJMFsNgMA+vTpg6VLlyI5OdnnsvPz8/Hcc8+huroaAGAwGGA2m2G1WgEAI0eOxKJFi1oNHHl5eVi4cCHq6+sBAImJiTCZTJAkCQAwZcoUPP/88y1CxbfffovXXnvNaVtSUhJMJpNad0xMDObNm4dp06b59J6i8Xq1ZsWKFfjwww/Vn/0NndF8zWRZxp///GesWbNGPSchIQFWqxUNDQ0AgN69e2PFihU+vzciIvIfQycRUZhw7Mnq2LEjfve732H48OGQJAmbN2/G4sWLYTQacf311+Ott97yqey6ujo88MADqKiowJVXXokXX3wR/fv3R2NjI7788ku88847sFgsuOuuu/Dss8+2OP/ChQt45JFHYDKZMHDgQLzwwgvIyclRe8zsYeiJJ57Afffd53TuN998gyVLlmDcuHEYP348Bg0ahMTERDQ2NuLQoUP43//9XxQWFkIQBCxZsgTDhw9v19fLlVOnTuE//uM/0KlTJ9TX16OiosKv0Bnt12zZsmX4/PPPYTAY8PDDD2PixIno2LEjAKCqqkrtaX/44Yd9em9ERNQ2fKaTiChMbNiwQR06+eqrr6rhSxRFjB8/Hs899xwAYOfOnfjpp598Knv16tWoqKhAXFwc3nrrLfTv3x+A0sM4Y8YMzJ07FwDw5Zdf4uzZsy3OX7FiBUwmE9LT0/HGG2+oQ2ETEhIwd+5c3HHHHQCAf/zjH6itrXU69+qrr8bq1avx4osvYtSoUUhMTFTrHjZsGN555x2kp6dDlmV8/PHHXr+naL1ezVmtVrz55puwWCz4zW9+g9jYWJ/ei6Novma7du3C559/Dr1ejz/+8Y+YM2eOGjgBIDU1FTfddBMDJxFRCDB0EhGFiQ0bNgAAhgwZgmuuuabF/vHjxyM7O9vpWG9t3LhRLaNLly4t9s+YMQMGgwFWqxX//ve/nfaZTCZs3boVAHDXXXe5HHb5wAMPAAAuX76MH374wWnflVdeiYyMjFbblpycjLFjxwIAjh8/7vV7itbr1dyaNWtw/PhxTJo0CSNGjPDpfTQXzdfM3hM6ffp0XH311T61nYiItMXQSUQUBurr6/Hzzz8DAK6//nqXxwiCgOuuuw4AsGfPHq/L/uWXX1BSUgIA6vnNJSQkYNCgQS7LPnz4sPo8XGvnZ2dno1u3bj63zc7ee2d/Ds+T9nK9zp49ixUrViA1NRVPPfWU1+/BlWi+ZmfPnsWRI0cAABMnTvS63UREFBwMnUREYeDMmTNq4OrRo0erx9n3VVRUoKamxquy7cMpPZXds2dPAEBRUVGr59uPcXd+YWGhV+1ydODAAY/lO2oP10uWZbz55pswm8146qmnkJKS4rHt7kTzNTt8+DAAQK/Xo1evXti+fTueeeYZTJkyBRMmTMB9992HpUuX4uLFi169HyIiCiyGTiKiMFBWVqa+zszMbPU4x2Gqjue4U15e7lPZly9fhtFobFFPcnIy4uLiPJ7vWJ83vvvuO5w4cQIAMHXqVK/OaQ/X64svvsChQ4cwcuTIgPTeRfM1sz8jmpycjOXLl+O3v/0tfvrpJ8iyDEEQcO7cOXzxxRd4+OGHsWvXLq/eExERBQ5DJxFRGHD8BdzdL93x8fEuz9GybJPJ1GK/u/O9bReghIUlS5YAAAYNGoTbbrvNq/Oi/XpdvHgRf/nLXxAfH+9ypld/RPM1s08sVF1djU8++QRDhw7FypUr8c0332Djxo1YsmQJOnfuDJPJhIULF6rLxRARUXAwdBIRUUiUl5fj//2//4e6ujpkZGTgpZdegijyYwkAFi9eDJPJhLlz57qclIec2Vd/kyQJGRkZeOONN9C9e3cAysy8I0aMwCuvvAJBEGA0GrFmzZoQtpaIqP3hpzsRURhISEhQX9snVHGlvr7e5Tlalm0wGFrsd3e+N+2qrKzEM888g/PnzyM9PR1vv/02OnXq5PE8V+2Ltuv11VdfYe/evejbty9mzZrlVZu9Ec3XzH4+oMx+66rHdMCAARg6dCgA/ya7IiIi/zF0EhGFAcfn6EpLS1s9zvEZO3fLkDhyXKvQm7ITExOdfqm311NbW+s2UNjPd6zPlcrKSvz6179GUVER0tLSsHTpUnVWUm9F6/Wqq6vDu+++C1EU8fTTT6OhoQFGo9Hpy96rZ7Va1W3ezPobrdcMcH6O1N2/JXvvp32mXSIiCg6GTiKiMNCtWzd1aKm72V/t+9LT09GhQwevynacDdRd2fYZRO2/mLs633GW0dbOdzd7aWVlJebPn4/CwkI1cDavzxvRer1qa2tRV1cHSZLw9NNPY/LkyS2+7IHp3//+t7rt1KlTHt9XtF4zAOjVq5dX7bQHdkEQvDqeiIgCg6GTiCgMxMfH45prrgGAVmfXlGUZu3fvBgCMGDHC67JzcnLQuXNnt2WbTCYcOnTIZdkDBw5UJ4ex199ccXExzpw547ZtFRUVmD9/vlMPp7uA6k57uF6BFs3XbODAgeoQW/sxrtiXasnOznb3doiIKMAYOomIwsTkyZMBAPv378fRo0db7N+8eTMuXLjgdKw3BEHApEmTAADff/+9y7UK165dC5PJBJ1Oh1tvvdVpn8FgwE033QQAWLduHerq6lqcv2rVKgDKs3Zjxoxpsd9xSG16ejqWLVvmd+C0i8brlZ2djW3btrn9ysrKUt+TfVufPn28em/ReM0AZcbcm2++WT3f1bOhx44dw/79+wEAN9xwg9fvjYiI2o6hk4goTEyePBk9e/aELMtYsGABfvrpJwDKjJybN2/G4sWLAQDXXXcdhg0b5nTuihUrMHbsWIwdO9blL/z33nsv0tPTUV9fj+effx75+fkAgMbGRqxbtw5/+9vfAAB33HEHcnJyWpw/d+5cGAwGlJeX44UXXlDXRTSZTPjwww+xfv16AMCDDz6I5ORkp3OrqqqcAqe/Q2qbi9brpaVovmaPPvookpKSUFZWht/+9rdqr6YkSdi7dy9eeuklyLKMtLQ03HPPPf5cPiIi8pMg2x9wICKikLt48SLmz5+vriMYHx8PSZJgNpsBAH369MHSpUtb/NK9YsUKfPjhhwCANWvWuBw+mJ+fj+eeew7V1dUAlB4js9kMi8UCQBmyuGjRIsTGxrpsW15eHhYuXKj2IiUlJcFkMsFqtQIApkyZgueff77F83IffvghVqxYAUDp0XKcadSV999/Xx2q6Uk0Xi9PZs+ejeLiYkyePBm5ubk+nQtE9zU7ePAgfvvb36o9pUlJSWhsbFQnJ0pLS8OiRYtw1VVXeXexiIgoIPShbgARETXJzs7Ghx9+iNWrV2Pr1q0oLi6GXq9Hjx49MH78eNx9992IiYnxq+x+/frh73//O1atWoUdO3bg0qVLiI+PR8+ePTF58mRMmTLF7TqZo0aNwgcffIBVq1Zhz549qKioQFJSEvr06YM777wT48aNc3me48yqJpMJJpPJbTu9mYnVLhqvl9ai+Zpde+21WLlyJVavXo2dO3fi0qVLEAQBPXv2xOjRozFr1iykpqb69d6IiMh/7OkkIiIiIiIizfCZTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPQSURERERERJph6CQiIiIiIiLNMHQSERERERGRZhg6iYiIiIiISDMMnURERERERKQZhk4iIiIiIiLSDEMnERERERERaYahk4iIiIiIiDTD0ElERERERESaYegkIiIiIiIizTB0EhFRyC1btgxjx47F008/HeqmUIjV1dXh9ttvx9ixY7Ft27ZQN4eIiAJAH+oGEBGR/y5fvoyCggIcP34c+fn5yM/Px/nz5yHLMgBgzZo1yM7O1qRuWZYxc+ZMlJaW4v7778evfvUrv8opKCjAunXrAACPP/54AFsYWqdPn8bu3btx+PBhnD59GuXl5bBarUhOTkavXr0watQoTJ48GUlJSaFualhJSkrCvffei+XLl+NPf/oTrrvuOsTFxYW6WURE1AYMnUREEWzevHkoKCgISd3Hjx9HaWkpAGDMmDF+l/Pee+/BarXiuuuuw8CBAwPVvJCaN28eDhw44HJfRUUFKioqsGfPHnz00UfIzc3FyJEjg9vAMDdz5kx8+umnKCkpwWeffYb7778/1E0iIqI24PBaIqIIZu/RBJQeoiFDhiA9PT0odf/www8AgMzMTAwYMMCvMg4dOoS9e/cCQFQFC3sYT05OxpQpU5Cbm4t33nkHy5cvxyuvvIJRo0YBUAJobm4uDh48GMrmhh2DwYC7774bALBq1SoYjcYQt4iIiNqCPZ1ERBFsypQpSE1NRb9+/dC1a1cIgoB58+ahoqJC87rtoXP06NEQBMGvMj755BMAQHZ2Nq699tqAtS3UunbtigcffBDjx49HbGys075+/fph3Lhx+Pjjj/H+++/DbDZjyZIlWLlyZYhaG54mTpyIFStWoLa2Fl9//TVmzZoV6iYREZGf2NNJRBTBZs6ciQkTJiAnJ8fv4OePs2fP4syZMwD8H1pbWlqKvLw8AMCkSZOC2n6tLV68GLfddluLwOno/vvvR58+fQAARUVFOHXqVLCaFxGys7MxaNAgAMA///nPELeGiIjagj2dRETkM/usovYhvf7YtGkTJEkCANxyyy1enWOxWPD999/jxx9/xPHjx1FVVQWr1YrU1FT07NkTw4cPx4QJE9CxY0en88aOHQsAmDx5MnJzc/HLL7/gs88+w549e1BWVobExET07dsX9913HwYPHqye19DQgG+++QYbN27EuXPnUF9fjy5duuDWW2/FrFmz2jzBzdChQ9Vncs+ePYtevXr5XVZRURHWr1+PgwcP4uLFi6ivr0dSUhKSk5ORnZ2NYcOG4cYbb8SVV17pV/kWiwXffvstNm/ejNOnT6O6uhqCIKBDhw5ITU3FgAEDMHz4cIwePRoxMTFO5za//kVFRVi7di327t2LsrIymEwm/OEPf2jxB4xbbrkFBw8exJkzZ3D8+HH079/fv4tDREQhxdBJREQ+sw+tHTVqFPR6/z5KduzYAUB57rFbt24ejz958iReeuklnDt3rsW+0tJSlJaWYteuXTh16hRyc3NbLWfLli14/fXXUV9fr25raGjAzp07sWvXLjz33HO44447UFZWhtzcXBw/ftzp/MLCQvzlL3/Bzp07sWTJkjYFT4vFor4WRf8HH61fvx5Lly6F1Wp12l5dXY3q6mqcO3cOe/bswalTp7BgwQKfy6+qqsJvfvMbl5NW2a99QUEB/vnPf2LVqlXo2rVrq2V98803WLJkCcxms8d6HSeW2rFjB0MnEVGEYugkIiKflJWV4dixYwD8H1prNptx5MgRAMCAAQM8Dq0tKCjAU089BZPJBAAYMmQIJk6ciG7duiEmJgbl5eU4evSox3UdT506he+//x5paWl4/PHH1bp/+ukn/OMf/0B9fT3efvttDB48GK+99hpOnjyJu+66CzfeeCNSU1Nx/vx5rFy5EqdOncKhQ4ewatUqPPLII35dAwDYt2+f+rpHjx5+lXH69Gk1cHbo0AF33HEHBg8ejNTUVFitVpSXlyM/Px87d+70ewjz0qVL1cA5bNgwTJw4EdnZ2UhMTMTly5dx5swZHDx4UB0u3Zr8/Hxs2rQJHTp0wKxZszBw4EDExMSgqKgIWVlZLY7v0aMHDAYDTCYT9u3bh7lz5/rVfiIiCi2GTiIi8smPP/4IWZYRGxuL6667zq8yTp06pfby9evXz+2xFosFL730kho458+fr85s6uiGG27AY489hpKSklbLKigoQJ8+fbB06VIkJyer26+66ip07doVCxcuhMViwVNPPYWamhosXrwYw4cPV4/r27cvRowYgQcffBBlZWVYt24dHnzwQeh0Op/eP6AMUS4sLASgBO+cnByfywCAzZs3qz2cb7/9tvqcqKMxY8bgscceQ3V1tc/lNzQ0qGF+zJgxeO2111qE18GDB2PatGkwmUxue2wLCwvRtWtXvPPOO06zLLc2+7FOp0Pfvn1x8OBBnDhxApIktalHmIiIQoN3biIi8ol9aO3w4cNhMBj8KsNxiKynJV42bdqE8+fPA1Bm63UVOB117tzZ7f4XXnjBKXDajRs3DpmZmQCAyspKzJgxwylw2iUlJeG2225TjysqKnJbnytlZWX44x//CAAQBAH/+Z//6XMZdvaZipOSklwGTkcpKSk+l19bW6v+gWDw4MFue0sNBoPH4cbPPvusT8v62I+tr69HWVmZ1+cREVH4YOgkIiKv1dXVYf/+/QD8H1oLAOXl5errDh06uD3WHnIBYM6cOX7XCSjDNVsLZoIgOO2bOHFiq+U4HnfhwgWf2lBfX4/c3Fw1LDafvMhX9qBcV1eHzZs3+11Oa1JSUtRZeL/77rs2rZmZmZnpMsi74/jvw/HfDRERRQ6GTiIi8lpeXh4sFgt0Oh1Gjx7tdzkNDQ3qa1e9jo5OnDgBQOnx8mbCIXc8ne/YFnezvDoe50sIa2xsxIsvvqhOTnTjjTfiscce8/p8VyZOnKj2Li5cuBBPPvkkPv74Yxw6dEgdktwWMTExmDx5MgDg6NGjmD17NhYvXozvvvvO58Dtz+y8jqHTcfInIiKKHHymk4iIvGbvdbzmmmuQmprqdzmOz0B6msW0qqoKQFOPXlvEx8e73e84dNTd0GHH5wrty754YrFYsGDBAuzevRsAMHLkSLz88st+PQ/qqEuXLnjjjTfw+uuvo7S0FIcPH8bhw4cBKNe5f//+GDt2LKZOneox4Lfm6aefhtlsxsaNG1FTU4Mvv/wSX375JQDljwEjR47ElClTPPbYeurVdsXxDxT+zpRMREShxZ5OIiLyitlsxq5duwC0bWgtoDx/aFdTU9OmsiKBxWLBwoUL1WVihg8fjj/84Q/qsNW2GjZsGD755BP8/ve/x5QpU9QlS6xWK44cOYL33nsPc+bMUQOvr+Li4pCbm4uPPvoIjz76KIYOHaqG8oqKCmzYsAHz5s3Diy++6BQSm/NnEiDHyY8c/90QEVHk4J8MiYjIK3v37lWHa7Y1dDouj+EpdKampqKkpCRiJ5GxB057L/HQoUOxaNGiNq3v6UpsbCxuvvlm3HzzzQCUHuKffvoJGzduxM6dO1FTU4MFCxZg1apV6Nixo1915OTk4KGHHsJDDz0Eq9WKgoIC7NixA+vXr0dlZSW2bduG5cuX46mnngrY+6qtrVVfe5okioiIwhN7OomIyCv20NSnTx9kZ2e3qSzHNSl/+eUXt8fal1QpLy/3eGy4aR44hwwZgjfeeCPggdOV1NRUjB8/Hm+99RbuuusuAIDJZMKPP/4YkPLtQ3fnzp2LP//5z+rQ5U2bNgWkfLszZ84AALKzs5GQkBDQsomIKDgYOomIyCNJkrB9+3YAyuQ3bdW5c2dkZGQAAI4dO+b22LFjx6qvV61a1ea6g8ViseDll19WA+fgwYPx5ptvenyuVAsjR45UX9ufkQ2k7OxsdZ1Rf9YCbU1VVZW6XM7VV18dsHKJiCi4GDqJiMijw4cPq2HFMQS2hT0InTlzBpcvX271uFtuuUUNNP/617/w+eefuy23pKQkIO1rC4vFgldeeQXbtm0DoG3g3Lp1q8cgaX8WFwCuuOIKn8q/cOEC9u7d6/aYixcvqj2SXbp08al8d44ePaq+vv766wNWLhERBRef6SQiimDnzp1TZyq1s6//CABbtmxxmmXWYDBg3LhxPtdj763r0qWLX8teuHLzzTfjX//6FyRJwt69e3HTTTe5PE6v1+P3v/89nnzySZhMJixbtgzbtm3DpEmT0K1bN8TExKC8vBzHjx/Hli1b0K9fP+Tm5gakjf569dVXsWXLFgBKyHviiSdw8eJFt+ekpaUhLS3N57o+//xzvPrqqxg2bBiGDRuG7t27IyUlBY2NjSgpKcGmTZvUXuqsrCyfl7opKSnBs88+iy5dumD06NEYMGAAOnfujLi4OFRXV+Po0aNYt26dOgvx3Xff7fN7aM2ePXsAKM+rjho1KmDlEhFRcDF0EhFFsMOHD2PRokWt7n/vvfecfs7KympT6AzE0Fq74cOHIzMzE6Wlpdi4cWOroRMAevfujT/96U946aWXcOHCBezfvx/79+93eaz9GdBQ2rx5s/r6/PnzeOKJJzye8/DDD2Pu3Ll+1Wc2m5GXl4e8vLxWj7niiiuwaNEit0vBuHPhwgV8+umnre4XRRFz5szB9OnT/Sq/OYvFgu+++w6A0rvu73IvREQUegydRETk1smTJ9VeurbOWutIp9NhxowZeP/997Fz505UVVW5Xfuzb9+++Oijj7Bx40b88MMPKCgoUJ8fTEtLQ69evTBixAhMmDAhYG2MBAsXLsTu3btx8OBBnD59GhUVFepw25SUFPTu3RtjxozBxIkT/VqiZdCgQXjnnXewd+9eHD16FCUlJaisrMTly5cRHx+PLl26YNCgQZg6dWrAesEBqP8mAGDmzJkBK5eIiIJPkGVZDnUjiIgofH3wwQf44IMPkJaWhrVr1/q11mJr6urqcO+996Kmpga/+tWvcP/99wesbIpszz//PPLy8jBs2DC8/fbboW4OERG1AScSIiIit+xDa2+44YaABk4ASEpKUoPm6tWrYTQaA1o+RaajR48iLy8PgiDg8ccfD3VziIiojRg6iYioVY2NjRgzZgwefvhhzJgxQ5M67r77bnTt2hXV1dX4v//7P03qoMiyfPlyAMCkSZMwYMCAELeGiIjaisNriYgo5I4dO4a8vDwkJSVh9uzZoW4OhVBdXR0+/fRTyLKMGTNmuH3Ol4iIIgNDJxEREREREWmGw2uJiIiIiIhIMwydREREREREpBmGTiIiIiIiItIMQycRERERERFphqGTiIiIiIiINMPQSURERERERJph6CQiIiIiIiLNMHQSERERERGRZhg6iYiIiIiISDMMnURERERERKQZhk4iIiIiIiLSDEMnERERERERaYahk4iIiIiIiDTD0ElERERERESaYegkIiIiIiIizfx/F3Koj/CiuZIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA50AAAHiCAYAAABrx6h3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADkDklEQVR4nOydd5gUxdbG3+6esHmXZYlLzkkRFAETCBgx60WvARCv+XJVDB9mTBivKOaEiHoRIwZEkoigEhQVJEhmESRujhO6vj9mu7dnptPM9Mz07J7f8+zDsl1dVRO6Tr11Tp3iGGMMBEEQBEEQBEEQBBEH+GR3gCAIgiAIgiAIgmi8kOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4gaJToIgCIIgCIIgCCJukOgkCIIgCIIgCIIg4oYlonPXrl3gOA4cx2H8+PFWVNkkGT58uPw+EgRBaDF+/Hh5rNi1a1eyuyMzc+ZMuV8zZ85MdncIixFFEcceeyw4jsPEiROT3R0ijnz33XfyszxlypRkd4cgbEFj1jt+vx89e/YEx3G4++6749JGwjydM2fOxJQpU5rU4DV37lz5NZeWlia7O0Q9Pp8PixcvxuTJkzFixAi0adMGbrcbWVlZ6Nq1Ky677DLMnTsXfr8/onr/+OMPTJw4Eb169UJWVhZyc3Nx1FFHYfLkydi9e3ecXg1BEE2JTp06yZMeo5/hw4db2vbrr7+OtWvXIi0tTXdSsmvXLnzyySe4++67cfrpp6N58+Yx98nK8XX37t2YPHkyjjrqKOTm5iIrKwu9evXCxIkTsWHDhojqOnToEB555BEce+yxyM/PR0ZGBrp27YoJEyZg5cqVEdVllqZia84991z5e/PWW29FfH9RUREEQQDHccjPz0dtbW3EdRw5cgQLFy7E1KlTcfHFF6Njx45Bz5hZlGLFzI+ZuTJjDPPmzcPll1+O7t27IysrC06nEwUFBTjhhBNwzz33YPv27RG/ZomSkhK0bt06qF9WLnJWV1fjjTfewOjRo9GuXTukpaUhLS0Nbdu2xemnn47nn3/e9Ny5trYWr7zyCs4880y0bt0abrcbLVq0wODBgzF16lQcOXLEsn4nm4kTJ8qfx/333x/x/dXV1cjNzQXHcXA4HNi3bx8AQBAE3HfffQCAZ599Ftu2bbO03wAAZgE7d+5kABgANm7cONUyw4YNk8s0FcaNGye/5p07dxqWb4rvUaL59ttvWX5+vvw+6/0MGjSIbdu2zVS9Tz/9NHM6nZp1ZWdns9mzZ8f51RFNhUjHlkTx9ttvy/16++23k92dRknHjh1NjV8A2LBhwyxrt6qqirVu3ZoBYP/5z380y02fPt3yPlk5vr733nssKytLsy6Xy8WeffZZU3UtWrSItWzZUrMujuPYHXfcEfHr1SNRtmbp0qVynQ8++GDsHY+CTz75RO7DSSedFPH9Dz/8sHz/TTfdFPH969atM3zGzKKcJ5v5MXrPDx06xIYPH25Yj8vlYk8++WTEr50xxsaPHx9Wn1X2Zs2aNaxz586G/W/ZsiVbsGCBbl0///wz69Spk2E933zzTcz9NqN34s0vv/wi96FDhw5MFMWI7p81a5Z8/9lnnx10zefzsR49ejAA7LLLLrOy24wxxhywgE6dOoExZkVVTZrvvvsu2V1o9OzduxfFxcUAgPz8fIwaNQpDhgxBmzZt4PV6sXr1asyaNQvl5eVYs2YNTj31VKxevRqtW7fWrPPVV1/FnXfeCQBwOp246qqrMGzYMHi9XixYsAAff/wxKioqcNVVVyEvLw9nnnlmQl4r0XiZOXMmha82cVq0aIHXX39dt0xBQYFl7b388svYv38/BEHAXXfdpVkuNEIkPT0d3bt3x7p166Jq18rxdd68eRg3bhz8fj84jsMll1yCM844A06nE8uWLcO7774Lj8eDSZMmITs7G//617806/rll19w/vnno7q6GgBw2mmn4eKLL0ZWVhZWr16Nt956C1VVVXjmmWfgdrvx6KOPRvX64/VepALnnnsuCgoKcPjwYaxYsQLbt29H165dTd//zjvvyL9fffXVEbcf+l0WBAG9evXCjh07UFNTE3F9Eqeeeir+85//6Jbp1auX5jWfz4ezzjoLP//8MwAgLS0NY8eORf/+/dGsWTPs2bMHX375JVasWAGPx4P/+7//Q1ZWFm666SbTfVy0aBFmzpwJnufhcrmi8hJrsXv3bowaNQplZWUAgNatW2P8+PHo3r07HA4HduzYgVmzZmHnzp04ePAgzj33XKxatQrHHHNMWF0bNmzAiBEjUF5eDgDo27cvrrrqKnTu3BmlpaWYP38+Pv/8cxw8eBAXXnghFi9ejBNOOMGy15IMBg4ciKOPPhrr1q1DUVERvv32W4wcOdL0/cq5Q+hzIY3v//rXv/Dhhx/i/vvvR58+fazqeuJcak3Ri2dXb0RT5t1332VHHXUU+9///sdqa2tVy/z111+sb9++8mc3duxYzfr27dvHMjIyGADmcDjYokWLwsoovT/t27dnNTU1lr0egrAT5OmMP5Kns2PHjglr0+v1svbt2zMA7PTTT9ct+9lnn7Gbb76ZzZgxg/3+++/M5/MFeQci8XRaOb5WVVWxtm3bymVnzpwZVmbhwoXM4XAwACwrK4vt379ftS5RFNnAgQPluqZMmRJW5rfffmM5OTkMAON5nq1bt87061Yj0bbGDp5Oxhi75ZZb5H7cf//9pu/7/vvv5fv69esXVdvbtm1jY8eOZc8//zz74YcfWFVVFWMsONrALFZ6yJSeqvbt27Ndu3aplnv99dflcgUFBczr9Zqqv6qqSvZCTpw4Mej1WjGXnTBhglzfGWecwaqrq8PKeL1eNnbsWLnc+eefr1rX4MGD5TJXXnml6mv8+OOPGc/zDADr2bOn6fdBDTt4OhljbNq0aXI/rrrqKtP37d69m3EcxwCw5s2bs7q6urAyZWVlLC0tjQFg1157rZXdZiQ64wiJTvtRUlJiKhRh/fr18meXnp4uG5tQbr31VrncnXfeqVnfP/7xD7nciy++GHX/CcLOkOiMP8kQnZ999pn8uc6aNSvi+6MVnVaOr88995xc5h//+IdmXXfeeadcTis0du7cuXKZwYMHa9qUl156SS53ySWX6LxSYxJta+wiOn/77Te5Hx07djQdSqgUNv/9738t7VOyRecVV1wh1/XSSy/plj322GPlsmYXPm677TYGgBUWFrLy8nLLRWdhYaFc34YNGzTLlZSUyItA+fn5YddXrlwp11NYWKi7yHLTTTfJZd98882o+24X0Xnw4EE5zD4zM5NVVFSYuk8Zcj5x4kTNctI4kp6ezsrLy63qtjWiU+9DUIpNvR+tQc3v97M5c+awMWPGsE6dOrH09HSWlZXFevbsyW644QbDh+jBBx+U21i6dCljjLHFixezyy67jHXq1Im53e6wB8nr9bJvvvmGTZo0iZ144omsRYsWzOl0sqysLNa9e3c2btw4tmzZMs02lWJT70fvvTJi5cqV7Nprr2U9evRgWVlZLCMjg3Xp0oWNHTuWLVmyxPD+0AlAZWUle/rpp9mxxx7L8vLyWEZGBuvTpw+bPHkyKy4uNqyvMdKrVy/5ffr999/DrouiKA+eHMexoqIizbqWL18u13XyySfHs9th/Pjjj+yGG25gvXv3Zrm5ucztdrP27duzMWPGsK+++kr3XrWJx+7du9mkSZNYz549WUZGBsvNzWVDhw5lL730kukVxIqKCjZt2jQ2atQo1qZNG+ZyuVizZs3Ycccdx+6//3528OBB3ftDnxWfz8fefvttNmrUKNa2bVsmCILqpHz//v3szjvvZL1792YZGRmsWbNmbNCgQeyZZ54JW8UOvX/+/PmmBmslEydOlO/5+uuvTd1jBqMFrXh9bl9++SU755xzWKtWrZjb7WYdO3Zkl19+Ofvxxx8ZY5GJzrq6Ovbmm2+yc889l7Vr14653W6Wm5vLjjrqKDZp0iTNyc3mzZtlj09OTg7bsWOHZhvFxcWyh47ned1xO1VIhui86KKL5AmI2cmNkmhEp9Xj69ChQ+UyK1as0KyrqKhI9gR06NBBtcw///lPua733ntPs66qqirZ25mens4qKys1y+qRDFtjVnRu27aNdenSRe6b1n7Y+fPns3HjxrFu3bqxrKwslp6ezrp06cLGjRvHli9frtuXAQMGyH0xM7+pqqpi2dnZDAh4hQ8cOGB4TyQkW3Sedtppcl0LFy7ULav8rv7000+Gda9atUr2Cn766aeMMWa56FTuSfZ4PLpl27RpwwAwt9sddm3q1KlyPbfeeqtuPUqBOmLEiKj7bvZzPHjwIDvuuOPksrfddpvqgkks87MLL7xQrv+tt94y1f+uXbvK96xdu1aznHJhbcaMGabqNoOtRee2bdvYMccco3sfz/O6IRdK0fntt9+ym2++WbUe5YNkZnO29FrVXNPxFJ1er5dde+21hnWPGTNGNWRBQjkB2L59O+vTp49mXR07dmySntpBgwbJ78HKlSvDriu9oUbhO36/PyjUysqVIy0qKyvZpZdeavhdGT16tGZ/Qice8+fPZ3l5eZp1nXbaaZphyxJff/21bvINIJAM4/PPP9esQ/msHDlyhJ100kmq31sl3377LWvWrJlmm0cddRQrKirSnNT7/X455KhZs2aGoWs1NTVyex06dGB+v1+3fCREKjpj/dx8Pp/uuMbzPHvyySdNi04zSSRcLhd79dVXVe9Xho0NHTqU+Xw+1XKXXHKJXO7ee+/VfU9ThUSLztraWlnkn3LKKVHVEY3otHJ8LSsrk4Vkbm6u4bOo3F6h5olp3ry5fP3QoUO6dY0ePVouO2/ePN2yWiTD1pgRnWvXrmWtWrViQEDcvfvuu2FlDh48yEaMGGFoh6655hpNAaJMTqW33UVCGX6qFZYZC8kWnVdeeaVcl5GnUxI+giCwI0eO6Jb1eDzsqKOOCnvfrBad7dq1032+JJSezmOOOSbsutJ7+corr+i2WVxcLJcVBEEzes0IM5/jzp075WQ8ANjjjz8eVsaK+dkXX3whlzMzNitDzvv3769btrS0VB4zrXyG4i46ly9fzj777LOgQfyzzz4L+9m0aVPQfdu2bWMFBQXyPSeddBJ74okn2OzZs9l7773HbrvttqAJpNagqBSdZ511FgPAWrduzSZPnszee+89NnPmTHbTTTexffv2yfcMHjyYZWVlsfPPP589/PDDbNasWezDDz9kzz//PLvuuutYZmamXOctt9wS1uYvv/zCPvvsM3bqqafK5V577bWw1/zLL78E3WdGdF522WVymbS0NHb99dezd955h7333nvs1ltvlVf3gECsvFYoilRmwIABrFevXozjOHb++eezV155hc2ZM4c9/vjjrEOHDnK5RHvnkk1dXV3QJP3vv/8OKzN79uyIjIjy8121alUcet1AbW0tGzJkiNxe165d2T333MPeffdd9sEHH7BHH300aFAcMWKE6kRMOfE4//zzWUZGBktPT2fXX389mzlzJps9eza7/fbbg54JvUWgjz/+mAmCwAAwp9PJLr74YvbCCy+wDz/8kL355pvsiiuukFdBeZ7XXNVWvpfSc92/f3/2xBNPsA8++IC9/vrr7N///rdcfsOGDfLEWfre//e//2Vz5sxh06dPZyeeeKIsYCSPgtqkXrmyqufhYCywf1gq+9BDD+mWjZRIRKcVn5vSuLtcLnbttdeyd955h7377rts4sSJ8nt7wQUXyOW0ROePP/4ol+c4jp155pns2WefZXPmzGEzZ85k119/fdBnpVXPxRdfrNv3N998U74+ZMiQmPbx2AlpApiVlcVGjhwpR+IUFBSwQYMGsbvuust01m0zLFmyRH4fo83EGo3otHJ8/emnnyJqX/l8zZkzJ+ja33//LV8zI/yVc5Bos4gmw9YYic5vv/1WFrcZGRmqkRxHjhwJ8qz079+fPfTQQ+z9999ns2fPZvfee29QqKXWazt8+DBzuVwMMBdKqBS5c+fOjebl6xKr6OzSpQs77rjjWG5uLnO5XKxNmzbstNNOY08//TQrLS01rOujjz6S6zK7p3P8+PGG9Uqhl9nZ2WzPnj2qr9cK0al0/ujt6VQ+h2p7sG+88Ub5eiSiEwBbs2ZNVH03Ep3r1q2T944LgqDqgbRqfub1euVFH47j2Pbt23X7rgw5f+655wxfa+/evWVbo7WwGym2PDLF7/fLm/Tdbjf78MMPVcvt379f9oTyPM/++OOPsDLKAR8IiNeysjLd9hcvXqzrJTx8+LDsWeF5XjO8y+ojUz744AP5eqtWrVRXiHbt2hXkQdDa06F8T1wuF/vyyy9VX6eyrliEUlVVlepiQzQ/oWI9HigFw8CBA1XLPPTQQ7pGORTlpni1FWErCd3/ozbh9ng8QX1SG7SVEw8g4LHbsmVLWLlVq1bJK5LNmjVT9ZoVFRXJk5QOHTpohsavWrWK5ebmMgCsXbt2qqvfoREUt956q673QukJvemmm1TLho4VWuG5kig2mryecsopsuFRGnAriER0xvq5KVdH8/Ly2M8//xxWZvPmzfJxGnpisby8XA53zcvLY999953q69u6dau86JWZmanqTSouLpZXzAVBCArR+/PPP2VBnZOTY2iMjdi0aZNl45eRZ8wIM0emCILAJk+ebMlEQbnQ8tFHH0VVRzSi08rx9Z133olItD3wwANy+UceeSTo2rJlyyJ6LTNmzJDLX3PNNYbl1UiGrdETnR9//LG8NSk/P18Orw9FWoTiOE5zkltRUcFOP/10ua358+erllNGLeiF++3atUv20LRs2TIui02xik69n9zc3LCFjlBEUQwKrUxLS2PXXXcde/nll9ns2bPZU089FWTzLrzwQkOhvnHjRvkzff755zVfrxWi89ChQ6xbt25yna1bt2Z33303mzFjBps1axZ78MEH5bknz/Nhz6CE8rm47bbbdNtUhtcCxovGWhg52SRnRVpamuaCh1XzM8YYu+OOO+QyDzzwgGa/lSHnTqfTlB1SHpmjtsUsGmwpOpVnM02fPl237J9//il7TtSyLCknkpmZmWzv3r2mXpMR27dv1zRKElaLTuW+Br39YatWrZIH3Y4dO6pOPJQP38MPP6xZ1xtvvGGqnBGRnlGl9xPvzdvFxcXyPgK9iZa02R4Ae+GFFwzrjbR8tOzbt09eFb7ooot0y3o8Hnk/Tvfu3cOuh4qX77//XrMuZXIDtXLS/kZBENivv/6q26+33npLruv9998Pu658Vo499lhdwblmzRq5bL9+/XQn4sp6tbwYykQdakKOscC4JJUZPXq07muNhkhFZyyf2/nnny9fV1ttlvjqq6+C2lQTnf/973/l61988YXua1R62B577DHVMt999528/6hjx46spKSEeTyeoOQZVizwhC5IxPIj5RaIlo4dO7K2bduyCRMmsOnTp7M5c+awd999lz344INyaJyVY+Xll18u1xdtBtZoRKeV4+vzzz8vX7v99tsN69Ir//nnn8vXLr74YsO6Ii2vRjJsjZbofPXVV+VnrrCwUDM8UnmW4KRJk3TbKi4ulhcaTzvtNNUy8+bNk+vTCyVUChGjdqMlFtHZr18/duutt7I33niDffTRR2zGjBnslltukT1W0o/RPjqfz8fuueeeoOi20J+BAweyr776yjD5kt/vZyeccAIDwI477rgwe2q16GQs4AW/5JJL5Pm72s+YMWN05wqLFy+WyxYWFupuEQndWhdtki0tvfP555+z9PR0BgQWDrTyB1g5P2MsEMUl9adTp06an7Vy4c2oXYknn3zSUjvKGGM8bMi7774LAMjJycG1116rW7ZHjx44/vjjAQALFy7ULXvxxRejbdu2lvSxS5cu8tmNq1atsqROPXbt2oVff/0VAHDUUUfhrLPO0ix7/PHHY8SIEQAC5yH98ssvmmUFQcC///1vzetSPQCwcePGSLudcvj9flx22WX4+++/AQCjR4/GJZdcolq2srJS/j0tLc2w7vT0dPn3ioqKGHuqzYcffgiPxwMAuOOOO3TLOp1OXHrppQCArVu3YteuXZplBwwYgJNPPlnzut53hTGG999/HwAwcuRI1fO2lFx66aVwOALHCBs91zfffDN4Xnso+/zzz4PKCoKgWfaWW27RbQsAbrjhBvn3N998U7WM8u/XXXedYZ3xJJbPra6uDvPnzwcAtGrVCldeeaVmPaNHj0bv3r11+yKN7T169MC5556rW3bEiBHyeK31HRg2bBgmT54MIDDW3XDDDbjvvvvkMe+KK67Q7XMq8t5772HPnj146623MHHiRIwZMwZXXnklpkyZgnXr1uHll1+Wn4d33nlHfu6iZffu3fLv+fn5MdUVCVaOr3atyyx2sTUPP/wwbrjhBoiiiJ49e+LHH3/UPMNPetY5jsPtt9+uW2+zZs1w9tlnAwC+//571NXVhZU544wz5PFg+fLl2LlzZ1gZxhhmzZol/z+asznjRfPmzbF27VqsX78e06ZNw7/+9S9ccskluPrqq/Hcc89h586dQf294YYbVF+jhCAIuPPOO/HAAw/A7Xarllm7di2eeOIJ/PTTT7p9e/nll/Hjjz9CEAS8/vrruvbUKvLz8/Hkk0/qfkZz587F448/Ls/HQhk+fDi6desGIHAG+/XXXx92tioQmAO8+uqrQX+TzvW0ghkzZuCiiy5CTU0NWrdujWXLluGUU05RLWv1/KxPnz6yBtq1axeWLVumWpfe2ZxaNGvWTP5daQdiwWFJLRazfPlyAECbNm3wzTffGJaXJpG7d+9GTU1N0ICrRG/iFUp5eTnef/99fP3111i/fj0OHz6Mqqoq1bJ//fWX6XqjZfXq1fLvp59+umH5008/HUuWLAEQEMXSlzKUHj16BH2xQiksLJR/LykpMdvdMDp16gTGWNT3J4pbbrlFnuB26NAh6EFNFaTnBwh8N+fOnatbXvm5btq0CZ06dVItN2TIEN169L4rGzZsQHFxMQAgOzvbsE8AkJWVhdLSUmzatEm3nNFzLR2gDQQO5dZj+PDhhv069dRT0aNHD2zZsgXvvPMOHn30UTidTvm61+uVDyVv27YtRo8ebVhnPInlc/v9999lAzls2DBdwQ4EFhS0Pq+ysjKsW7cOQEDAmv0OAND9Djz00ENYsmQJVq1ahTlz5sh/79y5M15++WXDNswwZcoUTJkyxZK6YuWkk07SvX7jjTeipKQE9957LwDg0UcfxRVXXBF1e9JzCyRWdBL2QRRF/Pvf/8ZLL70EABg0aBC+/vprFBQUaN4j2aG8vLyg+YsWktCsq6vDjh07whawBEHA2LFj8cQTT4AxhnfeeSfsmVy+fDm2b98OADjuuOPQr18/068x3mRnZ2PAgAGa19PT0/HWW29h3759WLBgATweD5566im88sorquW/+eYbXHbZZSgrK8Pw4cNx9913Y/DgwUhPT0dRURE++ugjPPbYY1ixYgVGjhyJDz74AOeff35YPUVFRbj77rsBALfeeqtuH63k8ccfx3333QdRFPGvf/0LN9xwg7yAsXHjRrz66qt488038eGHH2LlypVYtGgRevToEVSHIAh45ZVXcOaZZ8Lv9+Odd97BL7/8gquuugqdO3dGaWkpvvnmG3z22WfgOA6dOnWShZtVwvrJJ5+UFz67du2KhQsXokuXLprl4zE/mzBhgvyMzZw5M2wes3v3bnz33XcAgNatW+PMM8/UbVOiefPmqv2IBduJzsrKShw5cgQA8Oeff+LCCy+M6P6SkhJN0amcXOmxdOlSXH755di/f7+p8laumGihXOkJffDUUJbRWiUCoGs0AAStoNXW1hq2m8rce++9slFt1aoVFi1apPv+SBNiwNx7U1NTI/+enZ0dQ0/1Ua6GjRkzJqJ79QaWWL4ryj598skn+OSTTyzpE2D8XO/bt0/+Xc8YAIGVvby8PJSWlmqW4TgO1113He644w4cOHAAX375JS666CL5+hdffIGDBw8CCKwoGgm1eBPL56Z876QVZT30yuzZsweiKAIIGF6l8TVC7zvgcDjwv//9D8ccc4zs1ZH+lpOTY7qNxsSkSZPw1FNPoaysDJs3b8aOHTsMv/taSGJAEARN2xoPrBxf7VqXWZJta6ZPn46ysjIAwKhRo/DZZ58F9UkNacwvKSmJah6nxvjx4/HEE08AAGbNmoUHH3wQHMfJ15WLxBMmTAi7f+HChaiurtZs94ILLoion1bDcRymTJmCBQsWAADmzZunWu6bb77B6NGjIYoiLrnkEsyZMydIRHXr1g133303Ro4ciVNOOQW1tbW46qqrsGXLFjlCT+LGG29EZWUlOnbsiIceeih+L07Bvffei6lTpwIIfLcmTpwYdP3YY4/FG2+8gaOOOgq33HILioqKcMUVV2DNmjVhdY0aNQpz5szB+PHjUVlZiT/++AP/93//F1TG5XLhhRdewDfffCN/L/WcLWaZO3euvMDcv39/LFiwAK1atdK9Jx7zs8suuwy33XYbampq8PHHH+PFF18Mej7feecd2ekzduxYOYrMCKX9VI4psWC78FppYIsWaVVeDTMGc+vWrRg9erQsOHv27Ilbb70VL730EmbPno3PPvtM/mnRogUAqLrzrUYZIpOZmWlYXvmF0wuvSUQYRSrw6KOPyoNgQUEBFi9ebCju8/Ly5N8PHz5s2Ia0mBJ6r9XE8gzpPT+xfFfi1SfA+LmWIhQcDkeQR1ILM8/X+PHjZbH2xhtvBF2T/s9xHK655hrDuuJNLJ+bMqwvIyPDsLzeexfLd8Dr9epeLygoCPLCdenSBccee2zU7aU6aWlpQR7uzZs3R12X9D33+/26E3arsXJ8tWtdZkm2rfH5fPLvVVVVpqKW4jHm9+zZEyeccAIAYOfOnfj+++/la9XV1fj4448BBL7///znP8Puv+6663DhhRdq/tiB448/XrZpe/bsUX3mbr/9doiiCJ7n8fzzz2uO8ccffzzGjx8PIDAPDI3ckqL5gECIrRnbFyt79+7F008/DQDo3bu37vauiRMnyh7vn3/+GStXrlQtd/HFF2Pbtm24//77cdxxxyEvLw8ulwsdO3bEhAkT8PPPP+O6664Lei5CxXc0KJ+LmpoaU1ogHs9Fbm6u/P2tqqoKWtSPJeRc2VerFhxt5+lUiqVTTjlFMz45Xjz++OOyor/33nvxyCOPBK2kKTHab2olytVKrTBfJcrJYjy9amaprq423Jtnlg4dOmDgwIGW1AUATz31FO6//34AgdWvRYsWmQrLUYpSvb2QEsqYeDPe6miRniGO4+Dz+WyxsKB8rh944IGEragCDULI5/PB6/UaCk8zz1fz5s1xySWX4P3338fChQtRVFSEDh06YPfu3Vi0aBGAwAps586dY38BSUT5uZkRHHrvnbKusWPHyivEVnDTTTcFPV9btmzBfffdhyeffNKS+jdv3hyTcFNy0kknGXqfrUAZGqXnuTdCKeaLi4tNLT5YgZXjq13rMkuybc0tt9yCTZs24bPPPsNPP/2EM844AwsWLNCdW0jbI6Rx0Squvvpq/PjjjwACns1hw4YBAD7++GN5gf2CCy6I68JuPOF5Hs2aNZPnoaWlpUHP3M6dO+W993369DHMUzJq1Ci89tprABAW5izlHmjdujXWrl2LtWvXqtahFB8vvvii/N5ee+21hp69UBYuXCgvIo4cOVJzfg0E5jAjRoyQt1esXr1ac7tIq1at8PDDD+Phhx/WrE+Zs2DQoEER9VuNSy65BDk5OXjhhRewZcsWnHrqqVi6dKnuZxKv+dnVV1+N//3vfwACz8W4ceMABIecDxkyBL169TJdZzy2VthOdObm5iIrKwuVlZUJ2SsZyuLFiwEALVu2xMMPP6z5QFRUVAR9IPGmTZs28u9bt241LK8sY1XypFg4ePCgZSuJ48aNs2yv5bRp0+RQjNzcXCxYsMAwyY2EUpjqJWsCAntipERQPM8bJlyJhcLCQvz2229gjGHv3r1o37593NqKpE8SiX6u27ZtK+8l3LFjB3r27KlZtqSkxPQE/YYbbsD7778PURQxY8YMTJkyBTNmzJBDSJOdQMgKlGPHtm3bDMvrlYnXd+D999+Xk+Uce+yxOHz4MHbv3o1nnnkGZ5xxRlCipGj54IMPLFsoWbp0qam9w7FilberU6dO+OGHHwAEJiHt2rWLtWumsHJ87dOnD3iehyiK+O2332QvkRbKfeChC5CtW7dG8+bNceTIERQVFeHw4cO6iwh6dZkl2bbG6XRizpw5uOyyy/Dpp5+aEp6FhYUoLS3FwYMHTS32mWXMmDG45ZZbZM/miy++iMzMTLz99ttyGS1vjhnBnmxEUQwKowx9dpVbHsxsH8jNzZV/D10UlDzW+/fvlxfejfjvf/8r/37OOedELDqt7H8kbNy4UY4S6Nq1a9CcOhamT58OjuMwffp0U8IzXvOzESNGoEOHDigqKsKyZcuwa9cudOrUydRzoYVS43Ts2NGSfibMBaIc4I1CM6SsTzt27DA10bGSAwcOAAgkodAzSosXL5Ynl1pE8pqNUCYCkjwpeii9ilpJhJo6L730EiZNmgQg4A2eP39+RKtfffv2lSdgGzZs0J1I//jjj/Le3xNPPDGu3mdp5RcwzvyaKAYMGCAbmCVLlhg+O1Zy3HHHyb8vXbpUt6y02d4MJ510Evr27QsgkL3O6/VixowZAAKLVmpJG1KN/v37w+VyAQCWLVtmGD4kJS9To6CgQE4UsXLlSkv2wu/cuRM33XQTgIBHe/bs2XjvvfcgCAJEUcTYsWODxFdToa6uLigULRZvl1Lw/PnnnzH1KxKsHF9zcnJkD0lZWZlmmB4QCGmUPCIdOnRQzc56xhlnAAjYdb0xtrq6Wt67nJ6eHjQ2R4IdbI0kPC+++GIAkIWn1nMsvdba2tqgMNhYycnJkftQWVmJTz75JChrZ7t27TBq1CjL2ks0a9askb2chYWFYZEFSqG2Z88ew/qUXmZl9EOySFb/leLL6m0vzz//vJz5fsuWLRg+fHiQuFYSr/kZz/Oyd1MKqa2qqpJDztPT0+VMuGZRJvA7+uijremnJbWYQBlaZbRaIb1xQCAUL5FID/iOHTs0haLf75f3/+kRyWs2olOnTnJI6e+//64rPH/++Wd8++23AAKrE3bY2yRlr7Xixwov5xtvvCFvXs/MzMTXX3+NoUOHRlQHx3H4xz/+ASDwkL/wwguaZadPny7/HumDHymXXXaZLBSefPLJmL97ViAIgpxBc/fu3ZpHjcQDpfh76aWXdIXT888/H1Hd119/PYCA8bz11lvlyeC4ceMsW9lPJm63Wz7K4MCBA3L4jhrz5883zDQsje3V1dVyQpBo8fv9uOKKK+RJ7/Tp09G9e3ecdNJJuOeeewAE9g/961//iqkdIJC91qrxKxFezmeffVYOievevbupJFBaDB48WP49EceDSVg9vir/rvecv/DCC7Lt10r0oaxr+vTpmnOFmTNnyt/P0aNHR71nzi62xuFw4IMPPpCPEfvpp59w5plnqgrPsWPHyr8/9NBDlua+UHpsZs6cGZQoZdy4cbbYUhINjDE8+OCD8v+lsVdJt27d5GNz9uzZI4caa/HBBx/IvysXYIHAIquZMUvp5dq5c6f8d7NRYUqUi1jz5s3TzTlSXl4uH9ml1n+zbN68WX5m8vLyLLEJoTz33HO49dZbAQQiDbWEZzznZ+PHj5ejM2fNmoWPPvpI3mp30UUXBXmNzSCN99nZ2ZpHI0VMTKd81qN1WKqS//znP3IZrUNTJfx+Pxs0aJBc/pZbbmF1dXWa5aurq9nbb7/NZs+eHXZNeai3mUO5TzvtNLn8s88+G3bd4/Gwq6++OuiQWa1D5J999lm5zDvvvGPYtvJgejXmzJkjX2/Tpg3btGlTWJndu3ezrl27Gh6AK103c1B3JGVTgXfeeYdxHMcAsIyMjJgOa9+7dy/LyMhgAJjD4WCLFy8OK/P222/L72H79u1ZTU1NDL03x+233y63eeqpp7K///5bs6zf72eLFi1ijzzySNg1rQPC1TAqu2fPHpaXl8cAMLfbbfhMHDhwgD388MPs999/D7tm9KyEctJJJ8nlb7rpprDDrxkLHiv0nmslpaWl8uev/NmyZYupfkXLuHHjdA/rtvJzW758uXy9WbNmqod1b9myhbVp0yboPXj77bfDylVWVsoHjXMcx5566inVz0KitLSUPf/882zRokVh1+6//365rUsuuSTomtfrZUOHDpWvv/baa7rvQarw6KOPso0bN+qWeeWVV4IOXJ85c2ZMbdbW1rLMzEwGgJ188slR1aGcI0RiR6wcX6uqqljbtm1135dFixYxh8PBALCsrCy2f/9+1bpEUWQDBw6U63rooYfCyvz+++8sNzeXAWA8z7N169Zpvk7lc6P2PFv9XphBb1zwer3skksuka8PGTKElZWVhdVx8cUXy2UuvfRS1TLKOj/55BPNOYsSURRZp06d5HGkVatWcjtbt26N+LVGijSGmbU/FRUV7N5772WHDh3SLFNTU8MmTJgg1+t0OjVfy6WXXiqX69atG9u9e7dquccee0wu53a72Z49e0z1NxTl69X6fqqVVZtbeTwe1q5dO7nM+eefz6qrq8PKVVdXs/POO08u169fPyaKYli5AwcO6I6Jv/zyC2vfvr1l46GR3rn11lvl6927d2d//fVXWBmr5mdqKOdGSpusNl7oUVpaKs+TL7jggoju1SNhezpHjhwpr8Bdc801uO2229CxY0f5OIFu3brJq7E8z+OTTz7B0KFDsXfvXjz//PP48MMP8Y9//AP9+/dHbm4uKisrUVRUhJ9//hlLlixBVVUVHnnkkZj7OXHiRNmLOGnSJHz33Xc444wz0Lx5c2zduhWzZs3C1q1bceqpp2Lr1q26YS4jR46Uf7/rrrtw6NAh9OzZU05XXFhYiKOOOsp038aMGYPPPvsMH3zwAf7++28MHDgQ48ePx9ChQyEIAn7++We89dZb8qrj6aefLoeeEQHmz5+PCRMmyKuiEyZMQGlpqeFZSQMHDkSHDh3C/t62bVv897//xY033gifz4ezzjoLY8eOxbBhw+Dz+TB//nw5vMHhcOD111/XPdxbuYd4586dmmdmGvH444/jt99+w5IlS7B06VJ06dIFF198MYYOHYoWLVrA4/Fg//79std8//79GDlyJO67776o2jNDu3bt8MEHH+C8885DXV0dxo0bh2effRbnnXceunfvjvT0dJSVlWHLli1YuXIlfvjhB/j9fsOzNc3w2muvYdCgQaiursbLL7+Mn376CVdeeSXatWuHAwcOYM6cOfjhhx8wdOhQFBUVYe/evaZWy3Nzc3HppZcGhe4MHz4c3bt3j7nPduGkk07CTTfdhJdffhklJSUYMmQIxo0bh5NOOgk8z2P16tV46623UFVVhQsuuED3WcrMzMTcuXMxbNgwlJeX46677sJrr72Giy++GH369EFWVhbKy8uxY8cOrF69Gt999x08Ho980LzEihUr5GiTdu3a4fXXXw+67nA48P777+OYY45BeXk5brvtNgwbNkx3P28q8NFHH+G+++7DgAEDMGzYMPTu3RvNmjWDx+PBtm3b8Omnn8r7lwHgyiuvDIociga3240zzzwTn3zyCX7++WdUVlYaHpcROo4oE5Hs3Lkz7PrAgQODjh2SsHJ8zcjIwOuvv47zzz8ffr8fV199NebNm4ezzjoLDocDy5Ytw6xZs+SMlNOmTdPcr8ZxHF5//XWccsopqK6uxoMPPogffvgBl1xyCTIzM7F69Wq8+eabshfj7rvvjsjWq2G1rYkFh8OB2bNng+M4fPTRR1i5cqW8x1MZPjljxgxs2bIF69evx5w5c7BgwQKMGTMGxx13nJwsZ+/evfj111+xaNEilJSUmAp95DgO48ePlyMQpG1RJ598ckxefTXeeust7Ny5M+hvyn3/od/lZs2a4fbbbw/6m8/nw2OPPYYnn3wSw4cPx5AhQ9ClSxfk5OSgoqICv//+Oz744IOgY/pefvllzdcydepULFq0CMXFxdi2bRv69euHK6+8EkOGDAk6p1MZmfDggw8mbD+2Hk6nE9OnT8fFF18Mxhg+//xz9O7dG2PHjpX3H2/atAmzZs2SQ2udTidefPFF1RwrRUVFGDRoEI4//niMHDkSvXr1Qnp6Ovbv34/Fixdj3rx5spf9rrvuink8NGLatGngOA7Tpk2TtcLSpUuDchrEc3529dVXy6Hm0nGJHTt2jDi3geQFByw+SsgK5WrG0+nz+YK8DaE/aivs+/btYyNHjtS8R/kjCAJ74403wuqI1NPJGGN33323blsnnngiO3jwoLyio+cR+ec//6lZT+h7ZcZ74/V62b/+9S/D9+OSSy5RXT2SkMo1NU9nqDfL7I+a10bJ008/zZxOp+b92dnZqp74UJT3GK0oGlFXV8f+/e9/B3k99H7Gjh0bVoeVHjOJn376iXXp0sVUn7KyslQ9BJF6Ohlj7Ntvv5U9rWo//fr1Y0VFRaywsJABYEcffbSpeletWhVUz/vvv2+6T9GSSE8nY4Hx+6qrrtJ873ieZ0899VSQp0Xvmdm8eTMbMGCAqe+A2+1m8+fPl+8tKSmRx16e53XH9ffee0+uZ8CAAboRM6lA//79Tb1nDoeD3Xfffczr9VrS7ty5c+W6Z82aZVg+0vFVa94gYdX4yljgO5GVlaVZl8vlUo1yUmPRokWsRYsWmnVxHMduv/12VQ+N1vtlNO5b+V7oYWZc8Hq9bMyYMXK5wYMHh3kzy8rKgjxzRj/333+/qf7t3LlT9sRIPzNmzIj1ZYehtDVmftTmgyUlJabvb968Ofvoo48M+/XLL7+w7t27mxoLHn300ZjeAys9nRLvvfcey8nJMex/QUEBmzdvnmY9a9asMawjOzubTZ8+PcpXH4wZvcMYY5MmTZLLdevWLczjacX8TI3Kysqw8e2BBx6I+HVKz3V6ejorLy+P+H4tEiY6GQuEDzzxxBNs6NChrFmzZkFvtt7E6LvvvmPXX38969u3L8vLy2OCILCcnBzWp08fdumll7JXXnmF7du3T/XeaEQnY4zNnz+fjR49mhUUFDCn08natGnDRowYwd544w3ZkJsRnT6fj73yyits+PDhrKCgQA7dUXuvIplI//TTT+yaa65h3bp1Y5mZmSw9PZ117tyZXXnllWzJkiWG90vtkOg092MkOhljbP369ezmm29mPXr0YJmZmSw7O5v169eP/d///R/btWuX4f1VVVVBE58jR45Y8IoZ27p1K5s8eTIbPHgwa9GiBXM4HCwjI4N17tyZnX322Wzq1KmaoV/xEJ2MBSYr7733HhszZgzr3Lkzy8rKYg6Hg+Xn57PjjjuOXXvttWzOnDmssrJS9f5oRCdjjO3fv5/dcccdrGfPniw9PZ3l5eWx4447jj3zzDOsqqqKiaLI0tPTGQA2fPhwU3WKoiiH0eXn57Pa2tqI+hQNiRadEl9++SUbPXo0a9GiBXO73axDhw7sn//8J/vxxx8ZY8y06GQs8L59/vnnbNy4caxHjx4sJyeHCYLA8vLyWP/+/dnYsWPZzJkzWXFxcdB9ygns5MmTddtgjLErrrhCLn/77bcblrcz69atYy+++CK74oor2DHHHMPatWvH0tPTmdvtZm3atGEjR45kDz/8sGpIVyz4fD7WoUMHBoCddtpphuUjHV+NRCdjsY+vSnbt2sXuuusu1rdvX5adnc0yMzNZjx492M0338z++OOPiOo6ePAge+ihh9jAgQNZXl4eS0tLY126dGHjx4+XnwsjlO+FmcVGK98LLcyOCz6fL+iZVBOejDG2du1aduutt7IBAwaw5s2bM4fDwbKyslj37t3ZBRdcwJ599lm2ffv2iPo4YsQIud3MzExWUVER6cs0xArR6ff72dKlS9nUqVPZeeedx/r27ctatWrFnE4ny8rKYp06dWIXXnghe/XVVzVtnho1NTXsnXfeYRdeeCHr1KkTy8jIYA6HgzVv3pwNGTKETZ48OeL3VI14iE7GAqGxTz75JBs5ciRr3bo1c7vd8lh2+umns2nTprGSkhLdOiorK9nMmTPZuHHjWL9+/eQ5e+vWrdmJJ57InnjiCd3w1Ugxq3cYCw6jVROejMU2P9NCGabNcRzbsWNHRPeXlZXJ86Brr702onuN4BjT2AFPEERCWbBgAc4880wAwH/+85+Ik9oQsbN+/Xo5S5vZz2Dx4sU47bTTAATOs3vuuefi2UWCSArTpk3DpEmTIAgCdu3aZYtQPYIgCMJaZsyYgWuuuQYcx+GPP/6wLokQEpi9liAIfaQzYrOzs+O6t5LQ5sUXX5R/N7uX9JVXXpF/bwxncxKEGjfccANat24Nv9+Pp556KtndIQiCICxGOb5feumllgpOgEQnQdgGSXROmjQJLVq0SHJvGh/Lly/XPR/0pZdekhPSFBYW4pxzzjGs87fffpMT54waNcryAZog7EJ6ejqmTJkCAHj99dc1z6EjCIIgUpPZs2fjzz//hMvlsiQ5aygUXksQNuDw4cNo2bIlCgoKsH37dssO9CYa6NatG2pra3HWWWdhwIABaNGiBbxeL7Zv347PPvsMv/76q1z2yy+/1BSd33zzDURRxJYtW/DUU0/JGeJWrFiBE088MSGvhSCSgSiKGDRoENauXYt///vfuudFEgRBEKmD3+9H37598eeff2Ly5Ml4/PHHLW+DRCdBEE2Cbt26Yfv27bpl0tPT8cYbb+CKK67QLKOWtt3s/s+FCxeiurrauLMqFBQU4KSTTorqXoIgCIIgiGRCopMgiCbBypUr8cknn2DlypXYu3cvjhw5gurqajRr1gw9evTAqFGjcOONN2qezSchic6srCz06NEDN954IyZMmGDqXM9OnTrJZ49FyrBhw/Ddd99FdS9BEARBEEQycSS7AwRBEIlgyJAhGDJkSMz10DodQRAEQRBEZJCnkyAIgiAIgiAIgogblL2WIAiCIAiCIAiCiBskOgmCIAiCIAiCIIi4QaKTIAiCIAiCIAiCiBuUSIggCIJIGTweD6qrqzV/ampqUFdXB4/HI/+r/An9m8/ng9/vh9/vhyiKqv9Kv0spEDiOk7MV8zwPjuPCfniehyAIcLlccDgccDqdcDgcQf+XfhwOB9xuN9LS0pCeno60tDTV36X/Z2RkICsrC2lpaapH+BAEQRCE3SDRSRAEQSQUj8eD8vJy+aeiokL1d+n/FRUVsqj0+XzJ7r5tEAQBWVlZyMrKQnZ2tvy78ic7Oxu5ubnIy8tDXl4ecnNzkZubC4eDzD9BEASROCh7LUEQBBEzdXV1KC4uRklJSdi/oX+rrKyMuT23242MjAzVH7fbjW/eXAqOcYDIASIAkQOn+F364RgAxgEMgR+E/J8FPImc9P96xyJDw++Qf2eK3+v/5RnAMTC+vpKQf+W/CwzgGZjAcNr4U1BbW4va2lrU1NSE/VtTUwO/3x/T+5ednS0LUeVP8+bN0bx5cxQUFKCgoAD5+flwOp0xtUUQBEEQJDoJgiAIXWpqanD48GEcPHgQBw8exKFDh4J+Dh48iLKysojqFAQB2dnZyMnJkf/NycnB4hnLAR8HzscDPg7w8eCkf/0cUP/DoemGlTIEBCocDMzBAIcIJgT+hYOBCYF/z7phBMrLy1FaWorS0lKUlZWhvLw84rNm8/LyUFBQECRGCwoK0LJlS7Rq1QqtW7dGRkZGnF4tQRAE0Rgg0UkQBNHEqampwd9//636c/DgQVRUVJiqx+VyoVmzZmjWrBny8/Ox8tO14LwC4OHBeQM/0u/wNW3hmCwY6sWqUwScYtC/zCnipMsG4ciRIzhy5AgOHz5sOpw5OzsbrVu3RqtWrWQhKv3epk0b5Obm0v5TgiCIJgyJToIgiEYOYwwlJSXYs2cP9uzZg7179wYJy9LSUsM60tPT0bJlS7Ro0QItW7bEgleXgavjAY8Aro4H5xFISDYyZIHq8gMuEcwtgrn8OPeW02QP9/79+00tSmRkZKCwsBDt2rVDYWFh0O/NmzcnQUoQBNHIIdFJEATRSKipqZGF5V9//YWioiL5d6N9lNnZ2WjTpg3atGmDFe+vAVcrAHUCuLp6UemnE7YIdZhQL0jdfsDtB0vzY9jYIThw4AD279+PI0eO6N6flpYmC9HCwkJ06tQJHTt2RMeOHZGZmZmgV0EQBEHEExKdBEEQKUZVVRV27dqFnTt3YseOHdi1axd2796NQ4cOad7DcRxat26N9u3bo7CwEF88uwhcrdDwQ6KSiBOMY2BpfrB0P1iaD+dOGoW9e/di79692L9/P0RR1Ly3RYsWsgCVxGinTp2Ql5eXuBdAEARBxAyJToIgCJtSW1uL3bt3Y+fOnUEC88CBA5r35OXloX379mjfvj0WvPR9QFDWOMDVCIFsrgRhIxjHwNySIPXjvDtGoaioCLt27dL1kObm5qJTp07o2rUrunXrhq5du6Jz585IS0tLYO8JgiAIs5DoJAiCsAGlpaXYunVr0M+ePXs0M40WFBSgc+fOWDt3A7hqB7jqenHpI48l0ThgggiW4QPL8IOl+zDokqOxe/du7N+/X/W54Hke7dq1CxKiXbt2RcuWLWnPKEEQRJIh0UkQBJFAGGM4ePAgtmzZEiQwDx48qFo+NzcXXbp0we/zNoOvdgQEZpWDwmGJJgvjGVi6LyBIM30YcEEfbN++HSUlJarls7Oz0b17d/Ts2RO9e/dGz5490bp1axKiBEEQCYREJ0EQRBwpLy/Hpk2bsHHjRmzatAmbNm3SPNOysLAQPXr0wPdvrwFfWS8uvUKCe0wQqQlz+sEyfRAzfTj12iHYvn07ioqK4Pf7w8rm5uaiV69e6NmzJ3r16oVevXqhoKAgCb0mCIJoGpDoJAiCsAiPx4Nt27bJInPjxo3Yu3dvWDlBENCpUyd0794di17+oUFgkveSICyFcSzgEc3y4qxJw/Hnn39i+/btqkK0oKAAPXv2RN++fXHUUUehV69ecLvdSeg1QRBE44NEJ0EQRJSUlJRg/fr1WLduHdavX49t27bB6/WGlSssLESfPn2w9NWV4CqcAYFJSX0IIikwjoFlBoToaRNPwubNm7F79+6wLLqCIKBHjx7o16+f/NOiRYsk9ZogCCK1IdFJEARhAsYY9u3bh3Xr1skis6ioKKycFLb384d/gK9wgqt0UnIfgrA5jGdgWV6I2V6cNP5YrF+/HsXFxWHlWrVqJQvQ/v37o0uXLuB5er4JgiCMINFJEAShgiiK2LlzJ3777TdZaKod4dC5c2ccddRR+Prp78BXOIFaARzIi0kQCUeZGMjs1Ea6J6Q8AwPcIsQcD86dPBJ//PEHtm/fHuYNzc7OxjHHHINjjjkGAwYMIBFKEAShAYlOgiAIBDyZe/fuxdq1a/HLL7/g119/RWlpaVAZh8OBnj17YvOCXeDKneDLyYtJELZDKyut1nTHZHnGi2DZPog5Xhz7jz5Yv349ampqgsqQCCUIglCHRCdBEE2Ww4cPY+3atbLQPHDgQND1tLQ0HHXUUVj78Sbw5a5AqKzImfeiEASRHMwch6J8jqMoH9gb6oWY68Fxl/bFunXrwkRoTk4OBgwYgEGDBmHQoEFo06aNyRdAEATRuCDRSRBEk6Gurg6//vorVq1ahTVr1oTtyXQ4HOjTpw82fLUDfJkrkPQnNOEPDZkEkRok+BxOMyK0Xbt2OP744zFo0CAMGDAAGRkZCe0jQRBEsiDRSRBEo4Uxhr/++gsrV67EqlWr8Ntvv8Hj8cjXOY5Djx49sG3JXwGRWe4EJxqEwtGQSRDJJdK9mwkWnxKyCM3zoO+5XbBhw4ago1oEQUC/fv1kL2jPnj0pFJcgiEYLiU6CIBoVNTU1+PXXX7Fy5UqsXr0a+/btC7reokULDBkyBPOfWh4ImY1kTyYNlwRhH9TEZKT7NhMIE0SIuR6cc/dwrFmzJuwM37y8PAwdOhRDhw7F8ccfT15QgiAaFSQ6CYJIeQ4fPowffvgBK1aswK+//hrkzXQ4HDj66KPx+ydbwZe4wNU4ossuS0MlQdiPSPZi2kB4KmFpPoh5Hgwd3x9r165FVVWVfM3pdOKYY47BCSecgBNOOIH2ghIEkfKQ6CQIIuVgjGH37t1YsWIFVqxYgY0bNwZdb9WqFQYPHoyvn/w+EDbrjzFkjYZJgrA3NhOUkcI4BpbjwYUPn4YffvghzAvauXNnWYD27duXwnAJgkg5SHQSBJES+P1+bNy4EcuXL8eKFSvw119/BV3v06cP/vy6CHyxO3pvphpGQ6TGOX8EQSSYFBeeEgwMLN0PsVkd+l3QBX/88UfQXtD8/HyccsopGDZsGPr37w+Hw5HE3hIEQZiDRCdBELbF7/dj3bp1WLp0KZYtW4aSkhL5mtPpxMCBA/HL+5vAl7jBeQTrO6A2PEayj4wgiMTSSISnEuYQIebVYfjNg7By5UpUVlbK13Jzc3HyySdj2LBhGDhwIJxOZxJ7ShAEoQ2JToIgbIUoili/fj2WLl2K7777DsXFxfK1rKwsDB06FEtfWAO+1IKwWSPM7AWjIZQg7EUjFJ4SjGMQcz04464TsGLFCpSVlcnXsrKycOKJJ2LYsGEYNGgQ3G53EntKEAQRDIlOgiCSjiiK2LBhA7799lssW7YMhw8flq9lZ2fj5JNPxqKnfwJX5go/NzOZ0PBJEPalEYtPoD4MN9eD0fcNw/fffx+0QJeZmYlhw4Zh1KhRGDBgAAQhDpEgBEEQEUCikyCIpLF9+3YsWLAAS5YswaFDh+S/Z2VlBYTmMysDiYDsJDSV0PBJEPamkQtPCQYGluPF+Q+NwLJly4LG0/z8fIwcORKjRo1Cr169wDWR94QgCHtBopMgiIRy+PBhLF68GAsXLsS2bdvkv2dkZODkk0/GkmmrwJe67Ss0JWjoJIjUoImJLEmAnnXvSfjuu+9QXl4uX2vXrh1GjRqF0047De3bt09iLwmCaGqQ6CQIIu7U1NRg+fLlWLhwIX7++WeIogggcIbmCSecgB9fWxdIBmR3oSlBwyZBpBZNTHhKMI5BzKvDsInHYsWKFairq5Ov9erVC2eddRZGjRqF7OzsJPaSIIimAIlOgiDiAmMMv/32G+bPn49ly5ahpqZGvtavXz9s/rwI/OE0cL4UO2+OhkyCSF2aqPgEACaIEPPrcOxVvfDzzz/Lx7C4XC6ccsopOOuss3DsscfSGaAEQcQFEp0EQVhKcXEx5s+fj6+++irogPM2bdrg4KpyCIfSwdWm6LlyNFwSRGrThEWnEub0w19Qi46jWmDHjh3y31u1aoWzzjoLZ555Jtq2bZvEHhIE0dgg0UkQRMyIooiff/4ZX375JVasWCGvoKenp2PUqFH45rEfwFU4wSGFJ3xGQyXHkSgliGSjFJVazyMJTxkGBpblw+gHT8bixYuDzgAdMGAARo8ejWHDhtHxKwRBxAyJToIgoubQoUP4+uuvMW/ePOzfv1/+e58+fbDl878C4bNiIwjVMjN5paGUIOyBmqgMfT5JeIbBeAaxeR2OubwbfvnlF0jTw9zcXJx99tk4//zzyftJEETUkOgkCCIiGGNYu3YtPv30U/zwww9yUqCsrCycccYZ+OK+78BXO5PcS4tRDpNmJrQEQSQXPVEpPa8kPMPhAouEzO3DFS+Oxrx583Dw4MHAJY7D4MGDceGFF+L444+nsz8JgogIEp0EQZiipqYGCxcuxKeffoqdO3fKf+/fvz82fLQL/JE0cGIjnMQxZm4CSxCEvSBRGR1cQ3QKA4PYrBYDxnbDmjVr5L+3bt0a5513Hs455xzk5eUloZMEQaQaJDoJgtBl7969+Oyzz/D111/L+33S09NxxhlnYN4DK8DXqCQFkiYtTNSu2EyZVICGUIKwL6kuPDne3BhpZTlOfUuEmObDRU+eiq+//hoVFRUAAKfTiVNPPRVjxoxBjx49jNsnCKLJQqKTIIgwGGNYs2YNPvnkE6xcuVLe21NYWIj9KyogHEgD5w+ZmIROVLQmNpGWs7MopeGTIFKDVBafyjHTzEKeXrlIy6gQ2PtZg27ntsbmzZvlvw8YMACXXnophgwZQseuEAQRBolOgiBkfD4flixZgtmzZwel0R88eDB+eXsr+FJ3IAOtcrKiNUGJtIxWWRKdBEFYQWMRnhKhY6OZMrHUpYKY5cGwScdg6dKlctby9u3bY8yYMTjjjDOQlpZmqh6CIBo/JDoJgkB1dTW++uorfPjhh3LSiPT0dJx99tn44t7l4JXnakqTE6NJCRPNldGriwQnQRBWkqrCU28sNbPApywXaxm121x+XPzfEfjyyy/lbRg5OTk4//zzceGFF6KgoCCi+giCaHyQ6CSIJsyRI0fwySefYO7cufJEIT8/H2W/eiHszwwPobWSSESp3aBhkyBSl8YoPCPBzNgbbdW8CLFlNVqelIV9+/YBABwOB84880xcfvnlaNeuXVzaJQjC/pDoJIgmyJ49e/DBBx/gm2++gdfrBQB06NAB+74tA38oAxyzyaTMjqKThkyCSH2auvCMMwwMYn4tev+jHdavXw8A4HkeI0aMwBVXXIGuXbsmuYcEQSQaEp0E0YTYvXs33n33XSxevFg+X7Nfv37Y/NFe8CVpgf2adsGOmW9puCSI1EASlXrPbCoKzxQRnUrE7Doce213rFy5Uv7biSeeiKuuugp9+vRJYs8IgkgkJDoJogmwc+dOzJo1C99++62cifaEE07Amtf+BF/hTnLvNDBKbEGCkyAIPZSiUuv5JeGZMMQML066rR++++472Q4de+yxuPrqq3H00UcnuXcEQcQbEp0E0YjZvn07Zs2aFWTkTz75ZKx8cRP4KleSe6eDUWIMEpwEQZhBTVSGPs8kPBOKmObDafcdhwULFsgZbwcNGoQJEyagb9++Se4dQRDxgkQnQTRCioqK8NZbb2Hp0qXy34YNG4Yfn98IvtqZxJ5ZSCKFJw2TBJG66IlK6dlONeGZwqJTgrl9OPOhIZg3b54sPocMGYIJEyagV69eSe4dQRBWQ6KTIBoRBw4cwMyZM/HNN9/A7/eD4zgMHz4cK6b9oSo2OT4w0WKi/jDA8ZxhmYRCgpMgiEhIRVFpNM4lUHga2QAzNkKrDHP7MOr+YM/niSeeiGuuuQbdunWLreMEQdgGEp0E0QgoKSnBu+++i88//1zORnviiSdizStbwVU6wspLYhPQFpyRlEm4IE2U6KThkSAaD6koPAHt8S7BolMiXjaDpflw6t0DsGjRIoiiCI7jcPrpp+Oaa65B69atY+k+QRA2gEQnQaQw1dXVmD17Nj788EPU1NQAAAYMGIAN7+4BX+kOM+zKSYGEFWUSKjpJcBIEES2pJDzN7GdPkPBMpO1gGT6cNKkfvv32WwCA0+nERRddhCuvvBK5ubkR950gCHtAopMgUhC/34/58+fjzTffRHFxMQCgV69e2P7pIfDlbvnoE8mgq00GJJRGX6ucXj0kOAmCSBlSSXQC2qLSKNlaXLoSuX1QXo+0jJjpQb9x7bF27VoAQFZWFq644gpccsklcLttmnWdIAhNSHQSRIqxevVqvPzyy9ixYwcAoLCwEAeX1oAvju6cTSYyQ1FqVrTGHRKdBEHESmMRnkBgTEyy6GzoSmy2RK0MA4OYW4cO5+Rh+/btAIAWLVrghhtuwKhRo8Cl2mdJEE0YEp0EkSLs3LkTL7/8MlatWgUAyM7ORs16HsKBTHAseYbXKLmEUZkIG9NqSP96RG0YHCZPQyZBpD6pJFYSKCrNJANKBgwMYkEN8k904cCBAwCAfv36YeLEiejdu3dS+kQQRGSQ6CQIm1NRUYEZM2Zg7ty58Pv9cDgcuPDCC/HFXSvA+ZOfNl9tkmJ2z2dEWXHVBKVyMhZPwSlNUGm4JIjGAwnPkCYiSxaUDBjHMO6tc/Duu+/KeQzOOussXHvttSgoKEhq3wiC0IdEJ0HYFFEUsWDBArz66qsoKSkBAJx88slY9cJW8LVCknvXgNF+HSNRGpXoNJNgIxqUw2HohJSGSoJofKSK8ExSCK2ZZEHJgLkYht99FBYsWAAASE9Px1VXXYUxY8bA5XIluXcEQahBopMgbMiff/6J5557Dhs2bAAAdOjQAX8vqIFQnhYokMhzKnWINVFRxILTTFKNaNE7JJ6GSYJovJDwVDQRfTKghFL/XoiZdeg2pgAbN24EELCVkyZNwsCBA5PZO4IgVCDRSRA2oqKiAm+88QY+//xzMMaQnp4O758uCPuzG/Zt2kRwAuaTDJmZyMTQCQvqYPoTTxomCaJxQ8JT0UR0WWoTTv17EdjvWY3sQZCzuZ9++um46aabkJ+fn8weEgShgEQnQdgAxhiWLVuG5557Tjaao0aNwvKnNoDzOkIK20d0xkLckwtZBQ2RBNH4IdGpaCI13wsmiDj7seMxd+5cMMaQlZWF66+/Hueeey54Pvn5DwiiqUOikyCSzMGDBzFt2jT88MMPAID27dtj/8LahlBaNaLN4mom8Y6VmWANiFl4JkKA0xBJEI2fVBGdQMzC00xW8ZiFJ8frj89m7IzZOkIQM+vQ6aI8bNmyBQDQu3dv3HXXXejatatRrwmCiCMkOgkiSfj9fsydOxdvvPEGqqur4XA4wHZlwLEvx/gIlFBDHGp8o8n0GkkdFog924TW6tZPwyNBNBlSRXha4O00SuZmiehsaEC/TLSLpDrvAwODv1UlXH08sn296qqrcOWVV8LpdBp0niCIeECikyCSQFFRER5//HE5UVDfvn2xdfYR8DUmjWEkmVxjvR5axiKhR15OgiBsRxMRngnJUmu0kGn1dRWY049B/+mCFStWAAC6du2KyZMno2fPnob3EgRhLSQ6CSKBiKKIjz/+GK+//jo8Hg8yMjLg2eiCcCALHCIw8kzUN7hWXAfidjQJeTkJgrAtqSA8LfZ2SliapdYo23i8rocWB4OYX4OM43woKyuDIAj45z//iXHjxsHtdpuqgyCI2CHRSRAJYt++fXj88cfx+++/AwCOO+44rH9jLziPw+DOJKAnSu0gOklwEgQRL1JBdAKWezuVGGUmN9mA9rVYF0bNllEWd/hx4p298O233wIAOnbsiPvuu4+8ngSRIEh0EkScYYzhiy++wMsvv4yamprAMSgb0yAczIzMu2kH7B5aa5R4wnT9NCwSRJPGDsIzykQ65qtPwGtMQLbdSPE3q0b2EIbi4mIIgoBrrrkG//znPyEIQrK7RhCNGhKdBBFHSkpKMHXqVKxatQoAcPTRR2PzrEPg60K8m0rjrybIjK4ry+hdj2dYq0nBpyU4OZ4zJ0bjnOCIBCdBELYQnUBkyXaiqt4ib2ac+mfKrkVxnTn8GHxbN3z//fcAArb5nnvuQdu2bWPrL0EQmpDoJIg4sXr1akydOhXFxcVwuVwQt2VAOJANLtQ2hxr9UONpdD20jN71eInOCESfXqbEiEWnmYy7kUJDIkE0bewiOAFLkunoVx/nLLVWiU4gNtuncp2Bwd+iGs6+NaipqUFGRgZuueUWnHnmmeDs9B0giEYCiU6CsBiv14s333wTs2fPBgB07twZe7+sAV/jChSQDJ+WsTd7XauM3nWrRWeEWW31MiSS4CQIwhbYTXDYWXhGkx09EiK1cVFcF90+9LyiOdavXw8AGDlyJO68805kZGRE2WmCINSwX7A9QaQwe/bswc033ywLzgsuuAD7PvI2CE4JIyNvZhIQaR1WCk6Oj2kywfFc9BOdGNvWhAQnQRB2E5xqxGsMjAYt76aVWx5CidV+hlzn6xzYMqMU1157LQRBwJIlS/Cvf/0L27Zti7GjBEEoIU8nQVjEd999h8cffxw1NTXIzs5G7Vo3hNIEr5SKzJyHNFrilNXWFtlsaSgkiKaNnQVnrJledatOYpZaM8Qr4ZGKvRSz6pB7iohDhw7B5XJh4sSJOO+88yjcliAsgEQnQcSIz+fDa6+9hjlz5gAIJCT4893DYUehSEYrqY9ctMkYjIhR9CX93E4aBgmCsLOwiLNn0/IQ20gwSnIXxyy7HMeF2WQm+DHw5g746aefAACjRo3CHXfcQeG2BBEjJDoJIgaOHDmCKVOmyGdvCn9nw/FXXtBRKMoVUrXHzei6VEbvUTW6DiD6rLhmSaanM8b2SXQSBEGiM6YKYrtfb+HToG9GC7rRXGdg8LeuAOtUAb/fjw4dOmDq1Kno0KGDbl8IgtCGRCdBRMnvv/+OBx98EMXFxcjIyIBvXSb4knT5emg4TuijZnQ9tIzedVOPcTRZcSMhlcNraRgkCMLOohOIq/C0jegEYhKeQGy2NPS6Mtw2MzMTDzzwAIYOHarbF4Ig1CHRSRBR8Pnnn+O5556D3+9H586dse+LOnC1gXBarb0f0qNmdF2tTDSCNYxIsuJGQ5TCL+leToBEJ0EQJDpjqyC2+6PJQqtsXuWz07OpkVxnDj96jmuOdevWgeM4TJgwAVdddRV43ibJnAgiRSDRSRAR4PP58NJLL+GTTz4BEEit/sPTWwA/p5togDFmeB2ITrCaFpx6RjuVvZwxth+4n4ZBgmjyNGHRGajehsITMF4wlZqPccFX7zrjGM569FjMnTsXAHDKKafgnnvuoX2eBBEBJDoJwiQVFRWYMmUK1qxZAwBw/JUHx/6coP2bySLmx5hEZ+x9IAgitSHRGWsFsd0fY/uJyDDrK6gAulfA6/WiS5cuePLJJ9GqVau4t0sQjQGKDSAIE+zZswc33ngj1qxZg7S0NLi2tYDzYDNwvKB/I88HfozKxAlK804QBGECGivjT7JFpQW22FGcC35dc+Tn52PHjh248cYbsWXLltj6RRBNBBKdBGHA+vXrceONN6KoqAgtWrQA+6UZhPIs/ZuUYlPU8MJJZfSum0ArKULsBpqLa6p6giAIookRg12RtqmYyYugiijqLwQbXa+Hr0lH1Xfp6Ny5Mw4fPoyJEyfixx9/NPMSCKJJQ6KTIHRYvnw5brvtNpSXl6N3796oWJIGvi5N+waznk29Mmbq0CAqsRlFpsBGB3k5CIIg4otRYqAItlrEvLAaox3mfS78/ZmI4447DjU1Nbjnnnvw6aefRt8fgmgCkOgkCA0+//xz3H///fB4PDjhhBOwc3Y1OJ8juJDkpdQyUEovZhzFJhBDkqGgPoSsQlux35IgCIJo/ES6t96CaBpLQm6Vdjc08kjnOify+OP1wxg9ejREUcRzzz2HV199NfYcCwTRSKFEQgQRAmMMb7/9NmbOnAkAEA5nwVlUEF3CIClcR+86YCxYoyTmo1TMis5UTyQEUDIhgmjKpEK0g90TCQUq0b9ulEU9ygy1gHEW2oY+GNjkCK8zMPhalcFXWAIAOPfcczFp0iQIgkHOB4JoYpDoJAgFoihi2rRp+PzzzwEAjr/z4Pg7L1xwSkYt3o+PnvDU2w+qIKZH3IwgtEDwxSQ8rRCcAIlOgmjKkOhMvug0U70Vn1Osyfs4TtVe+JpXwN+5GKIo4tRTT8W9994Ll8sVW1sE0Ygg0UkQ9fj9fjz55JP45ptvwHEcHLvz4TicE17QSHAqjaJeGVNeSJ0kQyY9oXYXneTpJAjCFthZeMZZcAaaSL7olESlnt0y5cnUs4+SB9LIhuvZBA0b7s+rAutZAq/Xi0GDBuHRRx9Fenq6fn8JoolAopMgAPh8Pjz66KP49ttvIQgC+O3N4SjODC7EccEZaUMfnVBDGItBk1DbX6J1TYOoHvFIhGBjEJ00DBIEAdhXeDYx0SmhlZ1dvw0DO6kMe4128Vjnuj+7BsLRZaipqUHfvn3xzDPPIDMzZD5BEE0QSiRENHk8Hg8efPBBfPvtt3A4HBC2FgQLTo4LGCm9kBwzExWOiy0sN4qQoLgLToIgiMYELUAllVCbZXmiIADw+5UNGNtvM9cVZYSKdIi/5iE7OxsbNmzAHXfcgaqqqgg7ThCNDxKdRJPG4/Hgvvvuw/Lly+FyucBvaQGhrF5wmhWbERqkiIkxq61pRNZ0BaddvRsEQSQeEp62wppzpw1sqJGdjtDW89Vp8PySKwvPO++8E9XV1RF2miAaFyQ6iSaLz+fDQw89hJUrV8LtdgObCiBUKASn3gHSUhk9YhWbQGqIzQSEfREEQSQUEp62Iy5ez/BGzIlPo/2eAPiagPDMysrCH3/8gTvuuIOEJ9Gkodki0STx+/2YOnWq7OFkG5tDqMwIXDRznqYeZg1brCRCkBIEQTRVSHjaDk5vQdgsZu43YcM5vSNR6r2zfE0avGvzZOF55513oqamJrL+EkQjgWatRJNDFEU888wzWLx4ceAcrc0BwWkmhEf3ulJsGh11ot1Akwv1jDl5BWWuJQiiMUPRJOEYnaUZqy2VzuM0EJ+6whOBOYNQmy4Lz/Xr1+P++++H1+uNvm8EkaLQSEY0KRhjeOGFFzBv3jzwPA9hews4KrNMiU3NMmb3XOqVa4Ji0xJIcBIEES9oTLY3VoTLWtAOJwiq4lOZFEmoTYf3tzykpaVh9erVmDp1KkSTGegJorFAopNoUvzvf//DJ598AgAQdhXAUZ4ddF0tc56hd9MII8NIE5voIMFJEARhCZYcl5IsbLKlJUx8hohKoTodbGM+HA4HlixZgueffz62c7QJIsUg0Uk0GRYuXIjXXnsNAODc2wLO0lzd8qZDafVIcihtzIkX7AgTrTmXk4w9QRBaNMaxM95YEAYck82ygdcT0A+5FSozwW8vAMdx+OyzzzBz5szY+kMQKQSJTqJJ8Msvv+CJJ54AADgO5cF5JE+1nOTZ1DN8poxirMecNLEJj+lVdvJuEgTRlKD9nJFhV6+nAkdZNhx/FQAA3n77bcyfPz/2/hBECkCjGdHo2b59O+677z74fD4IpVlw/l0QXoiXzuQ0MEYG102v0poRpE1IeLJEng/ahN5XgiCIJodFC8OG9pznjOcMghD4CcF5JA+OA/kAgKeffhq//fabfj0E0Qgg0Uk0akpKSjB58mRUVVXh6KOPhmtPK3AIMRI8Z7yabGBclN7RlAtpTfJenogEJ636EwQRb1JtDE8V7Lhv1ITwtEx8huA8kI9TTz0VPp8P9913H/766y+j3hJESsMx2sVMNFJ8Ph9uu+02/P7772jXrh2OLHKD8yoMjJrYZCIQKoJCjYnI5M3/WsbI1GNlJnOdUT0m6jDXlxiHgSjCXqP2blKILUEQ8cQuojNBi2yWJREys3hrVIVZL6V+JdHVEWJPjTLScoJaHSG2RS3E1u9vqI8T0fEfTmzevBkdOnTAK6+8guzs7PB7CKIRQG4DotHywgsv4Pfff0dGRgYOL3WC89cP/lIorQXezaQT6yHZSSKh4bRq2OGzIwjCftDYEB2JikKJp81LQsgtx3js/tyHFi1aoKioCA899BD8ClFKEI2J1JyxEoQBX331FT777DMAgG9zM/Aed+CCmVBaqZzONTPnejYpIphwxCw4KcSWIAiCiBc8r5uB1nTIrRGS8PQ5ULEyE263G6tXr8Y777wTSW8JImWg2RvR6Ni4cSOmTZsGAHAeLICjIjtgABwO9VAXJRyvbyxiFaxE7FgRXksQBBGKnRYLUy201gISuVhriccyxmgpAIDLCQg8+No0sO2BxELvvPMOVq1apX8fQaQgJDqJRkVFRQWmTJkCr9eLk08+GY5Dzeu9mzEaGI63THDKq6R2Co2NZeJhxbmZBEEQROMlkeLW5Dma5vaPmhCeVohPgYejLBfnn38+GGN45JFHsH//fuP+EUQKYaNZL0HEBmMMzzzzDPbv3482bdrg5zcPBIxLrGEwZsWmieNUIl7JtdPKuxrJEJsUXksQhNXYaaxNtTHOTv2VPkeTZ2Vblp3WikVpgcfCp/5Er169UF5ejgceeAAej8e4XoJIEWw0UhBEbHz55ZdYunQpBEFA8U9ucMyhf4OaIVHu+bTYu9noiFJw2iacqzF+JgRBECaxzVhsFjPRQaFlTEYUxcXrqbadxyhBIeOxa54POTk52Lx5M2bMmGHcL4JIEUh0Eo2CHTt2YPr06QAA/u/mEGoz9G+IZdVS2vcZL+9mpMSabS9S7BBOa6eVdYIgUhs7LUA1xrEt2QuzEQhP015PvfwQMS5W814XajfmAABmz56N3377zbg+gkgBGuHoRjQ1fD4fHn30UXg8Hhx//PFwFDdXL8jxAC8Y7N00EUYj1aWH2Qy3VuzrNHPeZ2Mj2aKXIAiCsJ9I1rKH9eG2ellpJTiHQZQUAKid0RlUSf18Qw8d8eqozMHZZ58NxhimTp2KyspK4z4RhM2x2WhBEJHz3nvvYdu2bcjJycH690vBQUXsGWWlBUweKG1SlFqJ4cqr/mOsPMxak2SfmxkJVglOM+8LQRCNGzt5ORNIowytlT5LKxZizWyvEXhj8WkkPAFN4bn0ue1o27Yt9u/fj+eff964HoKwOSQ6iZRm27Zt8plWtX/mghNdwQU4PjCgG3k3JWOlZ2RSzEgzxowFp8giF5zJXNkmwUkQhFXYTXDazWtohJ1zHlgVAWTmNZoRnkbiUxDCxCcnCjiyKg08z2PBggVYvny5cV8Iwsak2AhHEA34fD48/vjj8Pv9ECpz4KjKCy6g5t3kueDBXyk25QRCId5Mo4RDNsTu3s2oVtmtEJyMkeAkCMJ+JNCepJyXM1pEMT5eTzXPZKjXUy1EN1R4qpUJqdtRlwXhSGDL0HPPPYfq6mqzvSYI22HfWTNBGDB79mxs3boVOTk5cB0qbAirjdW7qfx/LMbZ7ApvJGFDmm011GF3wRkxViUuIrFJEISE3bycTRRzWWNjtJH1wtNUW2YSBOnVEwevp7O4FQoLC3Ho0CG88cYb+vcShI0h0UmkJPv378esWbMAAHVbcsH7nYELkey51NuzYTahkBEGdZgSiIGC+tfrjWqjE5wEQRCNnVT0cloUWptyWBFuC0S015NjPI6sDmwd+vTTT7Fp0ybjewnChpDoJFKSF198EXV1dTjmmGMgVOYFRKIggHM4wGmsikrp0DmB11/NBOoFaXwNpmnBaUSis9da4HVkJHwJgiCIVMQgyRDncIAT+MBcQ7NM/XxFJ1Mu53DIXk+hJhunn346GGN4+umn4fP5YnoJBJEMSHQSKcfq1avx/fffQxAE/PlFNTiON3dWpfJHD7Pe0hj2dYYJTqPwIa0+hwhOSw641iMZgtMqLwCF0xEEAdhrLGjCXs6EhNbW1xFzaK2EUiSaeB80hafidWkKT+WcRRCw4tW/kJOTg23btmHevHnGfSUIm0Gik0gpvF4vpk+fDgDgjjQD78/UNUryYc9mJxnxCAdS1Gkqo6wZrEqQYBYL9lUykZGHkyCI5GInwUmkPiaOVjHyegIw9HqC48BxbtTuyAEAvPXWW6iqqoq4uwSRTEh0EinF3LlzUVRUhPz8fLhK2+qW5XQ8mxwfktlWzbtpJsQ2Am+nodg06+00EJuWezvtEE5L3k6CIBob5OU0qMfGXs6wfgT6qhsuK0hltNsyEp6Oyhbo0KEDSktL8d577+n3lyBsBolOImWorq7Gu+++CwCo3JIJjmkM3PV7O42MkWyItAykzY9FSQhWnYtJEASRbOy06NTUbUuiSGREkNlwWz1hiXqvZ3qa+jVwOLAmcP9HH32Ev//+O/J+EkSSoFGPSBk++ugjlJaWorCwEI6K5uqFOC6QOc7sESOpkl1Peb6kmdVfq7DLxIjEL0EQsdJEj02ym5cTsGiriYlFBM6MB9NKzG7nMRPZpOERFWpyMXDgQHg8Hrz55ptRdJIgkoNNZpQEoU9ZWRk++OADAMDhdW5waunGJcEJ1B/UrGFspMFeEIzDbnjOOLW5GY8oz5kL8VGjiU6UZKwUnE39vSSIpo4dxoBUDKuNE7rCM1G5C2INra0nKGxWy947nQ2/awlPp6OhDhXhyYHDxvm1AIAlS5Zgz549hn0jCDtAopNICf73v/+hqqoK3bt3h1Ab4uWUBmbDQ5mNs9zaDi2DbCZbrxGRnGcaI1FNfCxIXhRcnw0mmwRBJB8aCyInjudyGno81YSnnUKltTCVLV9lXqK8R5rfhIhPwZeFE044AaIoymeWE4TdSbEZONEUqaiowNy5cwEARSsDq3wySu+mHloizW7eTqmfynDaRkJEwtNqsdnI3kuCIGIkWWNCKno5E9DnqISnAaZCa+Ph5Qy7WP85KL2coegtJEviNaSNtXNLAQCLFy/GX3/9ZdhHgkg2JDoJ2/P555+jpqYGnTt3hlCbF/ij0wG4nPqCUwqxjfYMzGTBm9iTallbifN2JgUSmwRB2IVUHUfNkIgw3kiEp92imszu83TqZ6+FQwDLTAcACN4sDBkyBH6/X06ySBB2xmZPJUEEU1dXh48//hgAsPcXLuDl5Dgwo2RBHGdOvEVyfqcV3k6YCH21YA+LqQQNIgv8JAg6o5MgCNtgt8VGi0klL6eE6cRCJj87w/qs8nK6nOa276iEyYbCXE4wI+HJc2CugNf0ty/KAQALFy7EoUOHDPtKEMmERCdhaxYuXIji4mK0bNkSjpr8IMHJBI1BXrmPwqHj6ZTKCELg3M5EYDQRUApOs6G4IZgWnGaxYG9lxIKTzuUkCCJeJGNcSMWw2kiwYBHT9PYTIxTlYs6QGylafUxzN/yuITxZmqvhdw3hKYlNSXgK3iwcffTR8Pv98jYkgrArJDoJ28IYw5w5cwAApVvTAIcz2MOptklf7W9qBjiaSUc8vZ0WZemLi+CMASay5Hs4SXgSBJFMUjWsNpp+x3u8j2I8Vz2exUovZyhmxLGa8Ax5barCUzmfqReem5fXAQC++OIL1NXVGbdNEEkiRUdCoinw+++/o6ioCOnp6RDqWqkKStnbqRdOqwx70comlwRvpyw89cSmyZVf02eeJVhwxkSqTtQIgrAviV6ESvA4Zouw2ijG/nh4OUORbWQizu5U9sPtUi+jCLdVejmVMKdDFp9MVeByEHwFaNWqFcrKyrB48eKYuk0Q8YRmdYRt+eKLLwAAniPZ4KCR9c3M/k6g3gNpUMaM8DRTj8lMtgAsO4Ms6jNAtbAye6wdIG8nQRCNHFudyRmB8DRtvywYx02H20br5VTC80B6mnG/HYJhGeZ0aG7P4cCheEcgudBXX32l3xZBJBESnYQtKS0txbJlywAATl+hdkGOA1xOMIPN+RBMnONpFiNBacbYSmVi9a4m4uDsKLAkpJbO6CQIwkoauZfTMqzodzwEsNE4bsKecgJvbFvMzhVMnMPJ+PqFcb0yGWn6WWsBiJlpEDW8oQDgqGsJQRCwYcMG7Nq1S7cugkgWKToiEo2dJUuWwOv1gvNngfdnhxeQzqwSFGGzWij3gBoRq7dTKbbUDHc0yRY02xJDiplJyR7/SRcJToIgmjxNMaw2mubMHiUioTWeR7qAq5cgz0xeBqWXU+s1KMJq9YQn4zgwjtMXnnzgR0xzqYpPjrnA6poBAObPn6/bd4JIFiQ6CVsi7Utw+FqDOYXgwZjjwlciHUK4tzN0FZLnrfN2CirhMEZiS+U6J+1FjZRYPJxmJidRTjxsJTgZI8FJEESARhxib6uwWsD04mbU20KiHNc5Nfsfam9MzBE4l1M9iWFo1SHvAxP4MPHJMtIafpeEZ4j4FDMbyijFZ1A9bicc3tYAgAULFsDv9xu+DoJINCQ6Cduxb98+bNiwATzPQ/C1DL6oJjiV19R+V2ImzNZsUiGlMNMSW1IZHTFmSngqkw7pCE5L93ZGKDxtJzgJgiCARh1Wa6ngtGNYrZZtVC4qmg2r1UJpd8y8B1rfJ+VCt1byIDR4PVlGWkBoKq+peT3VuqQiPHl/c2RnZ6O4uBjr1683fBkEkWhIdBK249tvvw384skFxwJnWzGnEMjcpmc4HEJgs73RBMPqMNtEHglixrgmYUU/6ceiEARBqNGIBaelWNVvk7Yg4rDaeMNE815OI9yuMC9nWHMCHyY4g67XC88gL2co9cKTuQN94sCjujgTALB06VLjfhJEgknR0ZFozCxfvhwAZC8nc/AQ0xyBMFs9uMCZVVqHKsvwvObhzDJGnrJI92bqGCBT2fQi8Nwl/DBsq2hsGXMJgkgujVxw2nIfp4k+Wb4warDdxFR7JrLVyhjYWCPBCQAsMw1w6L/vvrx0+DONMuQC3rw0ePMC4lSaNy1btoxCbAnbQaKTsBXFxcXYtGkTAEDwNw8ITqcAxnEQ0xwQ3SoDMMeB8fqrhmHoCU9FyI6qtzM0WZDZsB3VphR16YURKYll9TeaREYmiHnyQ4KTIIhUJlUFp5VY2SdTW1wU7WkIz8D2lQj6pZNgiFPOGbSEpwlPKMtUHKOiIzxZfTSVP90Jf7p6vb5sN8AB4ALik/c3Q1ZWFoqLi7Fx40bDvhBEIiHRSdiKn376CQDA+bMBIR1iiHczTHhK+x8UKA9TjhgVgRckPNUEm5rwVDNcCsPHGIvNw6ljkDVXdaMRmxFMpKKaBOllEIyFRpw0hCAIEzTiMcB2+zgjac6qsFq1etSEp5n3Ss3LGWKXOIcQ3q9Q++xymvJyhvXdwYeJT39uWnD5evGpRBaccjnAl5eBmpIMAMCaNWuM+0IQCYREJ2ErJNEpiAVhgjMMFcEpYUp4Kr2dZjKdmhVteiKK5/TFppnU8CYIM+wJ2nMZ0WQo3t7NRjzpJAhCh0YeVmsZdgyrtfDs6pjDapU2ykQkkumwWs2+BNrw56ap1xUqPNWa4wDmDoTYrl692rA/BJFIUnSkJBojoijit99+C/yHb6FZjrkFiOlO43BaMwLIzDEqPG9svDg+0J6RkDIj/ixKniD3OVbBmaoTKoCEJ0E0NRq54KR9nDD+jEUx8rBaLZgYHFarWoaZC6vNSjfuu4PXF6/1wtOX7dYuwhcAADZt2oSysjLDfhFEokjh2STR2Ni5cyfKy8uRnp4ODjnqhXgOolOAP90JprHHQYIJgrG304w3URQDhkLPEEhi08yh0iYMZn1B477pIHtUE7j3x3ZZbFM1qRJBEJFDgjPxJHMfp1YRoV4kGtkjQTC0EZyZBEP1gpMzaI/pRGdJ1BWkw5+uL3JrWrlRW+BEbXP1ORDHpaNTp05gjOH333/XrYsgEgmJTsI2SF7Oal8WxAyVM654LrACyAMQODC9sbv+AGXdMFvlGV9aK5kGWfEC9YiKujjtiYjCIGnvuzTRnsFZnYBKBttoJwYR7LmMWHDGe8JGgpMgmg4kOCOpzJp6TPYprvs4jTA6QxvQtBWy4GRM3+Yq+qUlPFlWesPvGq+jriAdrH5uoyc8mRCYCzGe0xSeO/8O9HfDhg3a/SaIBEOik7AN69atAwAwZ3N4swX4M5SHIysEZz2i2xHu7awXm8H/Vxng1TLChgrPECPD8XxwXZIgMyPwVAxR+L5LFaNmpkwImntGI520RLDnMmoPZ7wmbiQ4CaLpQIIzksqsq8tMcwk+j1P2cioJtU8cH24PjWyGJDxDbbBKWG2o8GRZ6eEJD1XeFyYokg3WC89Q8VnTMnhBXk14enIcYK7mAIA//vhD4wURROIh0UnYhi1btgAAmLMZGMc1CE8VwQkA4AF/mkJ4au3zDw2z1csIKwlPrfTrkvCUxKZWXUrDriPIGvZdmlhFjUVwRkoiBKeE1ZMgEpwEQRDhNOZ9nNAQnBKSnVITnBIK26EaVivZfMkWu5ya/ZKEp5rglKtT/L2uIF3lOoK8njUtXUHCVC6nEJ6eHEfAC+psBgD4888/4fF4VNsniERDopOwBRUVFdi7d2/gP45cAIEBWXRoCE6JUOGpUQYOAcxhvH8jcI6liYOmjYy3ZNSM9ngYhe1EgCnBaeGKOROZ/fZwEgTRtCAvp9mKrKkHsOU+TlP1iMy474wF9noalXEIhv3iRGa4h5NxHGpbZ6qKyYYyQEnPNP0y9cJTTkLEZyI7Oxsejwe7d+/W7QNBJAoSnYQt2LZtGwCA8RkAHwgfER1AXTMHvDlGR59Af3+npOkcBomFWL1B0jM4Zs/XFJn+iqoSI2Np0nNnalXZjEg06eW0bDJk5dEp5OUkiKYDCc7EY+U+TsB40TWCz9jQNguCsQ3kBXN1cZxh38WsNHC6R6QBda0ywHjoCkoAEJ1AbTP9MpVtBVS0F+T+ldcG5lI7duzQvY8gEgWJTsIWbN++PfCLI5C1VnQAopODKAB1OQK8WfrCU3Q7wNwq3k4RgUFfGvglj2coyjICry48lYKT52TjFN6mwsjoCM8go2biDDAzK7m6ht5CwSm3F+ukiAQnQRDRQIIzksqsqSdeIlhLvJn9jBW2UVMsKm26li3khaDXqFmXW7GvUqPvYlZaoP+MqQtPHqhrERCccnsawrOiQ2Buw3ht4VnVmg/MmxxARbt64SxkAyDRSdgHEp2ELdizZw8AQHRmwZfGQXQ2ZKdlvAnhKYXZKoVnqOCUCDVkamVChaeah1NNeJoMN1U1ZqGi0kwZs8RBcMYMCU6CIKKBBGcklVlXl9kmo8oyG6U9ULGJYfbVTHIhQFVUh9Xldhkm+JMFZ0MlqsKTqXw0ocKzooMTojIlhYrwlASn3L4zIDxrW+QBINFJ2AcSnYQt+OuvvwAAojsrEGoSqgt56B+YDAQLTy3BCQTv7xRVss9KSMJTL6RWKTz1UrPX950ZhedKBtRMGQ3Cs+LGV3BGNUEiwUkQRDSQ4IykMuvqsjqsVg2leItxH6dsZ42SC0n2UStySVmXmuCU6wr0PUxwNlQCThKf9V5OzfbqhWeo4JSv80BtXkMbamVEJ+DLzAIA7Nu3T7MtgkgkJDoJWyCLTmemZhlPFm8YZgseEF0CmNMgaRDPm/Mamt3DaRV6Ijiq+hLj4YxookSCkyCIaCDBGUll1tWVCMEZKSbst2nbzXHGr9HhMP7+iaJ+mfqFcG9emqqXU0lJD5eqmJSrEgLCs6q1dkWiOyBsDxw4ANGihIUEEQskOomkI4oiDh48CACobZGtWc5UmK2fGQut+oGfae3dlDsWqMdwnyQT9Y2WQmSZMspmDJsOwXtFzbQX+zBgOout1SG8iZ6EEgSRHEhwRlKZdXUlK5lRDNE+EpzAG9scob4uv1+7Hun4FJ92GQBg6W5wPv32PAUZEB0cOL++zRRdgD9N/70v6ctQ3k27T6IrHYIgwOPxoLi4WLcugkgEJDqJpFNeXg5//YBf3daF2uY6ITN6wtPP5IGcuQWIaomFGAP89UaB47SFp/LoFEFQF4uS4NRDuq4QZZrC00xoUSSCUyLOwjNpglOChCdBNG7oGTdPEgVnzFFBZvIamIQTFHVp2R4hpD0t4an8/mkIT5bubkgcpCE8JcEpV6shPEu7NiQO0hKepb0YmEsEczJUdlLvU11zDnWuQNKjAwcOqJYhiERCopNIOkeOHAEA+F0uMCcPZnRElprwVAhOIHD2VZjwVApOCTXhqXZWZ6jwVBOcod5OFcHZUFQ/EYFcn1EZBfp7ReMjPJMuOCVoUkoQjZNkPNup6uW0gYczauFpJoO7XjkFXKiYBMJtkFoZIEx4yl5OJSHCUxac8h/ChWeo4JTrDxGepV2dEBXJcdWEpyQ45TL1wjNUfDIBEF1uAEBZWVn46yCIBEOik0g6UtiHNDjWNme63k4gRHiGCE65jFJ4qglOiVAxqSXuJOGp5+GUhKeO4GwoWt+unpg0UwYmDb3FwtM2glOChCdBELGSqoLTSmLsU8TC0+xZ1dEKTrkeKXrJoJ564cnp7eOsF55hglNuK1h4qglOuc/185dQwSlXpRCeZT2DBadcxsmCvJ51+YE6xXpPJ4lOwg6Q6CSSTlVVFYCGwZEJQE0rhpoCY+HpzeAhunWyznEcIHCGxooJvKnDniMSNgaijDEdgUsQBNHUoX2ckVRmTT2JFsHRHgOmgqmcCSYXQTmOM/z+MYdgmDiI84nwFGhnqpWoaO9QFZxyVTxQflItRLfBArSTIWPUQTliTHSS6CTsA4lOIunU1NQAAJgU4soBognhyfsA3q99oHKgjAj4WSCbrUMnbtfMSqqUWZbntA08q09kpDgmJSZM9Mv0qrKFmWxNezmBxE3kKJMtQTQeUlhwmhGTjVlwWp7F1kTET0PkkIEdEAwy20Ph4dRJLsTS6o9P8fp06/LlpoH36NvV8k5OiE4OvEe3GNIz6pBWUKNbpmPXgyjIqELLAYE9nMwZ2GJUWVmpXzlBJAASnUTSaRCdDoADGBD4V0d48j5A8DKAAb50Hv6M8H0XvE8EfKJ8KDNzOdSFpyiC8yvCbtQEXr3glAWemvCUBKeEjvBkZkSuib0sthecEvEWniQ4CaLxkMKCs6FKnXBKEpz1bZrou4ncBqbPplbmbtCwGWEhtSrCUxacEhrC05eXHjhfnDE4qtUFrCQ4AYBj0BSeNcdWAwAcDr+m8OzY9SCyXHUAgLy0GrQccACs/vxRr9erXjFBJBASnUTSqasLDJLMIciCU0JNeCoFJwAwnoM3SwgSnqGCU64vVHhKglNZLlR4hgpONUIFp4SK8AyrR83warWlKJsygjPekOAkiMZDigtOpaBUE5e2FJwWEXfBKaEQntrZ4EPsglqW+hDbobmHM1R4qpUJEZ6y4FS0FSo8lYJTrlpFeNYcW4209IY/qglPpeCUyEurQUabQDkSnYQdsNeIRTRJJPHEwAUJTvm6QniGCk65jEJ4aglOuawkPNUEp4QkPPUEp+Tt1BKcEgrhqSkUlQbYhIhKScEZjwkSCU6CaDw0IsGp9jfbCk4L+pUwwSkhisZtSjZL7zzuehuimzQIkIUnS9PZeFkvPMMEp6ItSXiWdwwXnBJK4VkdIjgllMJTTXBK8Gv+BgB8/PHH2v0miARBopNIOpLh4EKVpAImAN4cwJvJhQlOuQzPwe/iITp4TcHZULb+q2/imJGYzx6LBCvbslBw2hISnATReGiEglN5jQSn1J4FgjMSzLxXHG+uTcG4HHM51AWnXIChLs8B0aVfD8eAij4epKsITgmHw4/7hn+hKTgJwm6Q6CSSjmSwWIb2pn2hlgPvBeqacajNU//aCnUihDoRoluAmKZytpaETwTn9wOCEMg+p4Z0xArPg9MyktLRKaHnc4bVJcoC0NA4mzS2poy8xUekxDxpSmWBSxBE/EhhwWm5oDRu0Lq6TPab4zhNm5M0wWmmLsnDqbcAywsAz4EZZZJ3BRLycDqJg1iGG4zjINRoh7JWt3GD8YC7VL+90mM8ENJ9qK3R9qxO7rMA3d378a/C5ZplnMflAwBGjBih2x5BJAISnUTS4euNR7O0SrB2tWHXhVoOjhqAEwMez7r8cOEp1IkQautDajnAn+ZQF56S4FSE3YQJT0lwKpL9aApPCS3hqRCcDUVVyikNnp7RNbOXRYndhKeV0LmcBJH6pLjgTChJEpxqv6v9X789awWnYduhIbVqwrNecEpoCs96wRkopLFtJ8PdEEElQlV4Vrdxy+d1cn5t4Vl6jAdCRkDcMkBVeE7uswDtnUcAAPlCpabwdNcfsdK8eXPV6wSRSEh0EkknIyNwhpXg9eGYDnuChKdScEqECs8gwSmhJjxDBafciEJ4hgpOiVDhKXk5lYQKTxXB2VBUUU7N0BkJU7V6tLCD8IyXl5OEJ0GkLiQ4I2nQurqiEJyhf0spwSmhtMchglMiTHgqBWc9od7OIMEptxUsPJWCU65HRXgqBadcP4KFp1JwSqgJzzxXDbi6QF2ZmZlhr4MgEg2JTiLpSIOhWCsi21knC081wSkRJDwZ1PdwKoWnluCUEOoPedZKLAQ0CE81wSm3WS88dQRnEHohPUbCVC6WeOEZEfEOqyXhSRCpBwnOSBq0rq4YBKeZa+Ht2URwSohMU3BKyMJTRXAGCjBZeKoKTrmtgPBUE5wSSuGpJjjlJuv/VROcEvlCJa5u+wOAgOB08n6IdYE709PT1ftIEAmERCeRdCTRyWoDA2+2sw4t8svhyxJVBacEEwDRBTCNwRwAwAUSDIGHvgiUjIwdBYzRXhM7k6h9nHb83AiCUIcEZyQNWleXib7r7d+MvL0EC04zn42gfX52aHu6MAbwvLbgrMebmwZXhb4d5PxAbXNoCk6J63r8oCk4JVo4yvFyl4/g5Ouz7dYF2pYiyggimehkWyGIxJCdnQ0A8NenEi+qbIayqnSgTS1qxHSkH1I3EI5KwFnF4M3kAeaAsyp8wOY9IniPH0wQAKdOEgDGAj+CtCdDxUiIYmAFlOcAkVcXVMrjU3jO2NspHcui1ScTmMqua6ejU+IBZbIliNSABKeywsC/mpEziRec1rVnfdIgxph2H6XXx0Tt902y7/WJBDW75aifGvvFhntCYO5AuCtf64GocYyKt1kaGA9wPhGAdntlXXmIDgauKB2sQ41qmZuO/h6tnKUo9mehVXEp2swpR96qGghVIvyZPEqHpOPvMTnoXyjCzWXgkbbzcf++s+CvDMx5mjVrptk+QSQKEp1E0mnRogUAwF/hB/MzeP0C/H4egiDCX1iDqpY8+IPuIPHpqATc5QFPKOMBbxYPIFh48h4RfJ2vfkUSYM7AoB8mPKXzOiXUhKckOOXKVYSnUnBy9dc0hGeQUFQTnkbX1erRIlmCM1FeThKcBJEakOBUVhj8e1iOABKcanWpCs/Q16cmPEPFo4bwlAVnoDFV4cncrob+i0xVeEqCUyKtxI/aZuHtlXXl4XcHbBjvBUQV4XnT0d+jnesIhFoR/R/9C50/OQLeF2z38lfUoPPzxRAvzYb4cHO0SQt4Nn1lgcV8SiRE2AEKryWSTrNmzSAIAiACRQeycLiiYcO7IIhwpvmAwhrUtAgMskrBKSEJT29mwGAECU6JeuHJnAqjIorgfP5w4SLwDcYuVHDK9XH6EwPpWohBVBWKSsNqdD0SknVWJwlOgiCUkOBUVhjb9UhoRIJTvYxGXUxlITkUf/AxbUGCU64n2MYECU6JeuEp4ctzBwlOIODtTCsJbk8pOCV4L8AVNey/vP7o5bLgHHbNVnSdczhMcMpteAHhvQoIV+wHakQ81Ho+/BWBRfaCggLVewgikZDoJJKOIAjIzw+cJXV4rxN+f/jXUhBEoLAG3sxwwSkRJDylcNlQlMJTS3DKjQYOgtY9v0sSnkovp5IQ4anrmTQysCorvrpYHAZr2stJ53ESBKGEBKeyQv2/k+A0rEu2fUavj2mHx8rUC09VwSmXCdg0VcEpUS88fXluiIJG0iCF8FQTnBJ8fdLb649ejo6uwwCAgY/uQcvVlTCywgwA/1Mt+AePIL0qC/AHPmNpjkUQyYREJ2EL2rRpAwDgSsLP6ZTwl7rAewBPlk7WOT6QYEgX6VuvJUyVWJFUgWvYjxIzvIV1RQDt4yQIIipIcEqVWefhNJUIJ0UFJ89HH9kTilEm23oM3wfGAn03KCemuTQFp9yWT4To5DQFp0RmRp0sONMOedHpk0ACIaN3ULrOz6nAX5sC/2vVqhWcTo1MvASRQEh0EragY8eOAIDmtdqZ2TgfB44BnjwOdTkayYVqGJyVfoguAaJLfeWS8/oD+zp5HszlbDijMxTGAnspBUHbKOkdnyLXEzg+xTAroKhzXIuyDEwYyWR6JeN19ApBEKkFCU6pMuvqauyC0wRc6JnYagiKs7f1ykjlQkJtg3A6AgvQWokIAYgZbkDg4Cz3aJapaelETUsnGAdkF2k3x/eqhMCLeGX3cABAl48OQ9AIqdWC8wJ7vwq8pvbt20d0L0HEC5odErZAEp35FYdxXvf16FBQEnTdU5wG9+GAcWC8uvB01DC4yn3gRAZwgOjWEJ4iwhL1hAlPxgCfwgipCU9JcJoN9alH1dhHIDh164mEeGarjbfwJC8nQdgbEpxSZdbVpeyXVh9JcIZ7ONXsRb1NN3wv6gWnVI+a8JQEJwBwIlMVnjUtnfA7OfidgXK8hjble1Ui3R24WFaThld2D0fL1RX6fdRg89aAd7NDhw5R3U8QVkOik7AF0qBYu9+Hlq5ynFCwQxaenuI0pP3tAK8Y60OFZ5DglFARnrKXMxSl8AwVnBJK4RkqOOV6VLLoqYi2IEMXheBUrUcua5PjUeIlPElwEoS9IcEpVWZdXWr9Cv0bCU7tkFql3dCKXgr1dioFp6Ie5RxCKTjlfoYIT0lwhhLq7eR6NghOibKaNBwpzlJ5Qcb85UsDQKKTsA8kOglb0K1bNwBA5X4GXx1DllCLEwp2gOdZmOCUUApPTmTBglNCITw5rx9caEZbJXwgcZCq4JRQGivNehTnhemINsN6TBIsYG0iOCWsFp4kOAnC3pDglCqzri69fknXSHAa7+FkTH+7DNAgPNUEp7IeqAtOub/1wlNLcAIBb6ckPLmelchIU3d/lrvTtPurAQOwwxE4NqVnz54R308Q8YBEJ2ELCgoKAud1MqC8KCCKsoRa5GVVw5+uLTSktORaKcQBNOys5zjjTHYmkgUEGrZwL6SlEwETdSVyz6XVe0YTPaElCMI8JDilyqyphzchtKRyBlgmOM0m+rFIcMohsEav0cx7zhsITiAgXM3OAwySBvkztAWnRF0zDkIdpyk4AeCXfpF7Kg+6XCjnHBAEAV27do34foKIByQ6CdvQq1cvAEDp7oBQWXqoJ/bvz4M31w9vtrqodJUBaSUMfjcPX5r6Kidf54dQE8hBzhw8oJU4SBTrEwfx2gbH7wfz1x88bSa5kI6hZFKiIkDfwOkd2SLVo8Qi4Wn5UQFWQcKTIOwHCU5zGWrNYuH4a6ngNNegJXWZjuKR3nPdMoG6mF/HnkqCEwB0kgZJZ33z1dpC0ZflAhM4ZB7QrqemFQfRAXAiULVe+0iTDZcVwueI7Hu1MS8HANClSxe43e6I7iWIeEGik7ANvXv3BgCUbBex5GAvbNrVBqgTAB6qwtNVBqQfFsH7GBgH+NN5eHId4eKToSEsk+PUhWfomZ1qwlMSnBIcD/CCsYFVmTwECU65Po0EQ9FgB+EZz/M6SXgShH0gwZn4DLUmaRSCU7dgSF2q22y4oHKqwlMwtuXM6QgITqmcX1QVnr4sFxjPAQzgvaKq8JQEp4SjKrztPgUH0KfgAHytBPx4TpdAH3R72HB96YC2ABrmVQRhB0h0Erahf//+AID9fwJ/7moVEJwSKsKT97GgsFrGAaLAwZ/e4PVUejllQoVnqOCU0PN4BtWnKKd1hIpiEqEqOBV9iwTd8zotFJ4RT8ziKTglSHgSRPIhwUmCM9BY/AVnUKJAk17lEMEpESQ8tQSnIr+DLDbDFqODbZ0sOOUbw4VnqOCUUHo7+xQcQKajDpmOOgDAB7cPwp8DW5k6p3P/8dlYlx/wdA4YMMDgDoJIHCQ6CdvQu3dvpKenA9V+OA9UhReoF541bfzgRMBdqi64JK8n4zgI1V715DMK4cmJTDtBjdCwf0U3LEcyanpiSzJERt5LzmQ5qzA5YTI9QUuE4CQIIvmQ4LSl4DR1FIhZrNq/abIuU2dQG73nYkNkk15Z5hf1PZz1meyZXlIhBMJsfVmucMEp1xMQnoC24AQC3s6q9fmy4FTiTXPg+edHYNmF3eF3qPfF7+Cw5dKWmDe9F0r2Bl73Mccco9lvgkg0Gl99gkg8DocD/fv3x8qVK5F28BC8zXLDC/GAs5iHu4SBCQA0tkswDmAODkzgwGklGTKbPZaxQEY7ntPeMyJlquV4Y9HF85YISl0vZxwwnc3WzHtAEERqk8KC0zJsKjgtw0rBaQJTfee5gH3Re++l99Lg8+HMRDMJPDhJeGrAnAIclR54c/T3TjqrRVRp5ZSQ6hIQJjglvGkOvHfPELx05TCc9806jNi4Gc4qEd5MHgeOz8G2f7REbYETe3/hwBhDx44d0bx5c/3XRxAJhEQnYSuOPfZYrFy5Eun7DqKibxfAF240eG9ASPrSAsZCqAsXQ45qEY4qH5gzMMBzvnARxHn9gMdbn9VWMDwvk+O4QLZcI/GlJbpE1iAU9YSnmTJWYkIgRnx8CglPgmi8pLjgtMTLSYIzsu+BQX2mBaeZMvKCsrY45aRM9n6/9lErii04WrA0J8BxqnOMQEOAN6t+u48fyNkloryTep+8OQyMBxauPQqnD1yvWmZ3ZT7qch1449KTwTqovx9fLWuPNOzHoEGDNPtNEMnAhkuHRFPmhBNOAACk/V0MXqwDHMEDueuwgPSDAQHEOMCXxsHvDh54HdUiXOXegMjjODCnANHtCITThhB0tievsurpF4MOjFZN3c5UxKpKcoPwLLMmUs9rXDfl5bTwzM6oiLdngs7sJIjEQ4KTBGegQfN1xUNwauVOMKiLE/gGwQk0RDKFEuKR5FSy2UqCU8JZHuKhrBecTAhEXQGAozbcbnlzmCw4AcBRLmDh2qPCyu2uzEedv8FX9MmBgWFlnvjjdDi3FwMATjzxxPDXRRBJhEQnYSvat2+PTp06gRMZ0v86BM4pysLTdVhA5t7AgcoSkvD0ZPOy+OREFiS4GMeBCTyYU5CFp+zlDEUpPCXBGSJugoSnJDhVM+aZTHTAhxhAveuwUHCaJGIvp5J4CU8SnASReEhwkuAMNGhJXab3nmq9T0rhqSU4FWU4rXO6lfbEIagfqyaKQcIzVHACgYgqWXgqBGcoObsa+iSJTRbSNUd5Qx92V+aHCU4AKKnLCBKeT2w8A97ttRBqPcjKypKTMxKEXSDRSdiOk08+GQCQsfMAwAGcUwSXFkgexKscixXIWhsQn5wIOCvVN3pKXk8AgMcb7OVUohSeGuKG47j6/SC8KYFnSijqZqKNw6Maj7BaNawWniQ4CSLxkOAkwRlo0JK6TIvNSENq1WCituCU8Pu1z/CWEEWwNKeq4JTgfKKu4AQC3s6cXWKQd1ONhWuPksVmqOCUKKnLwBMbz8ATG89AVUUaMnYdAAAMHjwYDgftoCPsBYlOwnaccsopAID0ooPgPF6AA/hDLriPcIHkQRo4qxhc5T4wPdsjpTw3Y/AMxA1j9cejGBlFkVk7MSAIgkgkJDitw6yQMoGlGWoTnKXWuI4IXptRv8xGHPlUwmwVMIcArtZr2J5Q49MUnA2VhXs3Q3EdEbD19/a6ZXZta4WqPdmoqkgDRIaMbfsAACNGjNCvnCCSAIlOwnb06NEDHTp0AOcXkbFjPwCA9wKCJ5CxVkt48j4GTmRgDl5zwOc9PnAeH8DzYForn6LYYHxMHBgNtX2eEsrQHjP1mMBUSJJVkxor6rF63ygJeIJIHCksOKM6Y1i7stjraOxncJqszxL7pdy+ordAzJk48kxKJKRTD3PUzwV0kgqJLgGiK3AMW9ohlbCsenxuDuCA3C3aXeK9AFjgGBUtdm1rBaGaB+8NlHH/XQxHdR2ys7MxePBg7coJIkmQ6CRsB8dxOOOMMwAAmdv2gT/oQvrBhoFXTXi6KhlcZfVhtRwCwtMVLD55jw98jbfhMGeeB3MI6uJTaXxUEgyx0OQDWsJTVNkPGlZGVBYIvx5aRq8uJUaG2+rzORMJCU+CiD8pLjgtrCz2OlJZcFpYn2WCU4nJnAqq21xCM9eqeDtlwSlVXRMuKEWXEOTF5r3h9fjcnCw4AcBZzZC7NbgM720QnBJFf7QJq0sSnDKlTmTWezmHDx8Ol8sVdg9BJBsSnYQtOe200wAA7n3FcJZWhx2LwgRAdDaIT97HwPsVZTiA8VyQ15PzswbBKZfjgr2eSi+nEoXwDBOcQXUpDKaGhy/IU6m2ahrBqnIihWdUk7i4Zscl4UkQcYMEp1RZ7HWQ4KyvLg6CU0IpKLXKKMWpIKgflRIiTEMFZ6AeMUh4yoIzBKW3UxabIcWcVQ3tyWIzRBsrvZ27trUKF5wAhGofMrb/DQA4/fTTw18XQdgAEp2ELWndujWOO+44cAByN+9SL8QFRKezWuHlVCvj4MH5xUBYrRZK4akVYqN2pEpYewrhGWsSHj1hGlQsMcIzUDSCSUgizumMJOyLIAhzkOCUKou9Dgv3b9pScJrcDxpXwQkE7C1jhp8ZY0z7XE4Jnz8QBaUmOOX2AvZNS3ACDd5OpXdTjdyt4d7NUIo2tMGu7QGxGSo4ASBjz1/gfX507NgRRx99tHZFBJFESHQStuXCCy8EALgO7QZE7Q3+HAM4PX1j1k4zyWgZJwYyrstEgiE7Ee8zNQmCSA1SWHBais0Ep2UkIWGQJf1P5PeE48D5/Prvg0MIHL2m8xkzgYe7xGs4B3FWMl3BCQBZu3gIVdpe3syduwAA559/PiUuJGyLTUd7ggCGDh2Kli1bgvd74CzZq1rGVc7gKvM3hNOqDLZ8rR+8lHHOIQBqezj9/sAZXCLT955JXlCzBlDDIMV8hEokdSXrzM5ETRLoCBWCsIZGIDgtOeYpUFFs99tNcNoxQ60Src/NzHnX0l5KjtP/3Ph6b7Ha9hi5DB+oS8+uSEer6EQhMYEH4wDOKyLjgMqZ4AgslnNiYOE8Z4d6PWmHOaQd5sB7gYx96u+D60gxXOXlcLvdcj4MgrAjJDoJ2+JwOHDeeecBAFxHtkOoZeBCbAXvB3ivCMYFzusEhzDhyfnFwH5O+Q9cmPDkRBZs9NSEpygGZ8BTM4Ra+z2DijC5PkMMypgSr2aIVyhsvIUnCU6CsIZGIDgtJ9px0Y6C07ixuAnOqO2UqaNOOOO+14vSoPdTzU5LglNq3quyJSfkLE++MjypkCQ45TJ14W2FRmc5q8Pfo7QjXENiIQBCbXh3snfwaPb7NgCBvZzZ2dnhhQjCJqTAqE80Zc4//3ykp6dDqCuDUHkQvBey8HRV1Hs5FYQKT9nLGYpSePr92omBlEZKzXBGsgqrnIgYCU6rxJTZUGATRO1BMPMeEQSRPBqZ4LTM2xkNqSo4raxPBVPCM2jhNwLBGdaYGFTGcD+s5AUO/eyUfXYIYYITALiQuUOo4JRQeju1tgMpvZ1pRzjwKqeuKL2d2Tt4uIrL4CzfD47jcNlll6lXTBA2gWaChK3Jzc3FueeeCwBwlmwBxyALT94X8HKGIgtPXpG1Vg0p3JbjdEJ7ONnI6hpNjjfl5YyIRHk5E4XVE81Ue/0EYUcameC0HLPeztCFxRiwpeA0G55rBbEIzpAyuu+l398gNjU+O87rUxWbQc1UegJiU0NwAvXeTpXMtEqc1QxpRzhNwQk0eDuzd/BwVjE4SwNnrpxyyilo3769bj8JItmk2OhPNEUuvfRSOBwOCLVHwNccAceAtFKGtGKf5ooh4wKDvFDjVd3nGYTWGZuhGK2e0+Z9giAIbVJNcALmBZBVzdlVcMaIqddl9n00IzjNtGnW9hu1w1jDFh/dcoEfLRw1IrKL/JqCEwAyDvrR/DcOzioGzlsNd3XgbM7LL788ip4TRGJJQQtANDVatGiBM888EwDgLPkTQP25nB4RHGOawjOwT1ME+PB9njK++gRCesZHFOtXRHUsChMDZ4DqhZKKrME7qbdqbKZMgrEkXM3qfaN0XApBpA4JFJyWHZuSQMEZ0ZEoRrahsQtO3cYabDALPZe7oUMNr1/tXO6QMlydeiKgQH8CbTkq6rS7VC820w9q1+OoEcH5EXYmuZKMg34IHgZ3eaDPjpIt8Pv9GDhwIHr37q3dR4KwCfaY0RKEAZdffjkEQYBQfRB8zeGGCyywysj7tcUnAFl4holP6ZgUoEF4qhi1BrFocmXUdHZbM5OaKB9TC/dzxkw82yHhSRDRk4gwdRKc+k1ZKTaN7EUcEwapNxeF4NSyF8pyWjkWjDsU/H+1bSxmyoS815wvvEyoZ1NQSSjkqBFlwalFxkG/LDjluj2VSKvaAwCYMGGC9s0EYSNIdBIpQbt27eS9na6Df8BRplgxrN8nofR6CrV+CNUhq4o8gr2ekpdTiWSQJeMmeTlDCTJ+9V7OUJQGUOnlDKsrcuGZyP2cSU3KYRYSngRhT0hw6jcViwBU/s0mCYMamjLpubXSw2ncKfW/K72dGmWCvJ0a743S26kVRqv0dkpiM1RwZu5v+IMkNpWCEwDcBzbC7/dj6NChOProo9UbIwibQaKTSBnGjRuH9PR08N5ScN6/wwsohKccWquGJDyVXs5QJOHJcTpi0YTXUwr1MSonGTE9MRnJJMBOXs5EQcKTIKIjXotYJDj1m7LC4xiP8zctEJzG7RjYz5AMtOplmGF2dOYXjb27oskyBu8N5xMN921K3k4976YUYptxSAwTmwAAXyn4un3gOA7XXXeddmMEYTNIdBIpQ/PmzXHppZcCAERxC5iaaGKAUOuDUOUBDMJtDY2wWSOdiskxCIIg4kljFZwWYU6YWbSv3+7htKoV6WeVtRSrvcR61fiNw2mdlT7kbfdCqFOb4zBwVZsABM7l7Nq1qyX9IohEQLNlIqW47LLLkJeXB6AazL9LtQznExv2V2jlEfCqhNaG4g+E1uoaUZEBookkQyKzLishTBh2C/edWjahIwjCnlgdJdCYBacV2U7NCk4riOSzNTo/2rApCwUnYE3EDs+B6b0u6X3WSigENLyHdTppZQGAMQiVOgmFvH5wfoa0w9r1OCt94L0inBUaSYc8f4PzHYbL5aK9nETKQaKTSCkyMjLkcBIR28B5qlQ38AOBUNv6guHiUy/8VkIRfmtqf4qJVVnNekQx4hA34wOvIwj/NWqL56Kf3DW2MF6CINQxOZ5Y01QMY1JwRQkTnOb3OVrk3UzQlgOr7GNU3x/dLSl69jHEi6yamCj4PeS0suEq7ldNKOT1B36kfISecIHrrPTJglML15Ea8JV/AAgkV2zTpo12fwjChpDoJFKOs88+G3379gXghx9/gvMzXeEZJD5jJMiwSl7OUEKTDKms1kbl9dQQyeT1rCeByZUIotFglTBp7N5NCwSnubYSGE6rRoTeTsu9m2H9icLbqfJ5BXk7td5jEwmFwryderkhEBCqRvs8JbGpJzjdxV4wcRuAOrRp0wZXXHGFdoUEYVNIdBIpB8/zuP3228HzPET+ABgOg/Mz8B4/HFVe8HXhYbNK4RlJaK0apld1DZDriMLLqVlXDP2Ji/AkLydB2BcSnMYkKpwWSL7gjLipOAtOsyjtp9mkfXr16LyuIG+nmt2uD7Hl/GL9j7ptd5d4DL2brjIf3MVeuIu9gLcMcAaOSLnlllvgdru1XwdB2BQSnURK0q1bN1x88cUAAB+/CWA+cCKTw1jUkL2eftHcam6snjOzwpPnEzNRsLOXkiCI1IQEp35TdkwYZNQXU03ZaMFC6kssgjO0Lj2MvJseXyACS0NwAoBQWWfo3XSW1oKvXyT3CZvg9/tx4okn4oQTTjDuI0HYEBKdRMoyYcIEtGjRAoyrgZ/f1nBBEpXJDrcUmWFoEGOKvaVG6dqt6E+iSeAeL4IgIsAK0dCYBScQ85iZUvs3TQrfiM7fNPOZxRoNI/XFTD0a0UtB6CUUMgPTt/ucxwfO4wP0BGmVJ5CBv37bkJ8rAuNKkZ6ejltuuSW2/hFEEqHZIJGyZGZm4q677gIA+PkiiChuuCjWezRDhafPZGitT78MYyw+oaMJTP6QUBIxOW2s7x1BWA0JzriTUMEZK1Z7N62OqlETcVGM95pnbge1ZcKue1Qyy0rez/q+8tXhGWplsVkvOIWq8DKy2KwXnCKq4BcCi+r//ve/0bp1a+P+EYRNIdFJpDSDBw/GueeeCwDw8RsAT21wgVCvp0FYjIxRGdFkPdFitXiyIvW8XCzK152oCR8JT4LQhgRnZEQ43pnb89+Iw2mj+bwiXcBN8hgflsVWEpvK74rCY6rp3VQkQAz1bgIAA4OPWw9AxKBBg3DOOedY+TIIIuGQ6CRSnptvvhmtW7cG42vhTd8RXkDL62l3lImGDDC1gmsHEhVuS8KTIMIhwRlXbHv+phbJCKeNFb2+mAmftZIQ76Yaod5NNUK9mxI+9x4woUKO6rLyrG+CSAYkOomUJyMjA5MnTwYA+NIPwOc6ol7Q7F5PKwScaBx+G7SfM94kIoOg3SADTRANpNjz0CgFp3WNxV6HVeIXiF1smv2MrHjdZoSp0RYcQN27GdKO0d5NzuMN827KtwtlYFlFAICJEyeiVatWxn0iCJvTyGaZRFNl4MCB+Oc//wkA8GRvhcjXqpbjJCMRg7A0vZ8zGYl7tLAwvNbWZ3USBBGOlYIoAccg2WqMieT4K8O6YpxyWbVvPdEZanUbMdEXC78PpqKC9MrUeze52vD9mDJ+f2CuYSA4IYZ7NwGAcV54MwPZakeNGoWzzjrLuM8EkQKQ6CQaDddeey369u0L8H54sjeDiTqrlVohtzrncwbdm8hwVoMJQjJCa2OaFNLZnQSROOIhHOL4DFvq4YzVy2k3wWkFqSQ4Q0N2k72NRAqn1YpS8vsbBCcArk4tmZC3QXCqNQEGr3sTGF+HwsJC3H777RRWSzQaSHQSjQaHw4EpU6YgJycHoqsK3szdASOgF8IaKiDNJhpKBEEHXluUeMJCbOWNUMMunyNBJIsUm6zaKqTWoC/m9zpaMHZb5d20cg+nkkijeswsCET7XYhHhJFSbGpRLzY5RfuhCYdksakxJ+HqPPDzRfCnlcDpdGLKlCnIzMy05CUQhB2w1yyWIGKkVatWuOeeewAAvqz98LsOBwZ+I+GZ4ERDUe/njJfwjNJzwfGc/cUnQTRF4i04LfZ2pprgNFcPhdOGNxLncFqrzuuU6zMQnCHeTTWMvJtAQHCKQinEZnsAADfddBN69uxpvp8EkQKQ6CQaHSeccIK8v7Ou2Q74nVXg/GJg0NdLEFDv9bR9JthIV84TsLeUhCdB2AjycEaHiQysFE4bAwnev6mF6X2dUXg3w64beDf5qhpwdR4w1KC22Vb4/X6MHDkSF110kYlXQhCpBYlOolFy3XXXYfDgwQAnoi5/CxivGPhNGJyYhKeJzLWmMHPWm1XEOFmL6OxOOq+TIFKfxpbt2sr9m7GSwHDaQHM0VgYhioEFak3vpgj4RV3vZmBrj35EE+f1BdoRvajL3wIIPvTo0QP/93//R58J0ShpZFaDIAIIgoAHHngAHTp0ABM8qM3fAgaF6DQhPlksXs9EZK61+riVRE4iSXgSRPyId7QGCc74YbfjUOxGPL/bSo+kln31G9jd+nBb3bM7vb6A4PSLYGCoy9sB0VmNZs2a4bHHHkNaWlqUL4Ag7E0jHpmIpk52djYef/xxZGVlQXRVwpO/Gwws2ONpUnzaFcv7ZkXGR7u1ZdW+KIJIJeI1btlZcEYTYWIXwZng/ZtKLLEjdjoiLFJ0wl9l6r2b+mUk76b6e6EUm1Jd3ry/4U8vhsPhwCOPPELncRKNGhtbD4KInfbt22PKlCngeR6+zCPwNjvQcFEpPuPp9UxFyOtJEEQocXpWIwrPtxKrMtSqEUkkSoLDaZOGHY/LskpsmvBuhtblzToMb95+AMCkSZNw9NFHm+42QaQiNh+hCCJ2jj/+eEyaNAkA4M0/AG/O4eACSq+ngQFKqPBMtshNtNczIe2Q8CSaEFaOIXb2cCoxK2ysShgUKxROaz1mFjHMejd1r/sj824q8KWXwtO8CAAwfvx4nHPOOcZ9JogUh0Yqoklw3nnnYfz48QAAT8Fe+DLLggsEhdxqGxAA9lyt1YMyyxIE0VSwizgmIRg5ZmyrGUFpVI9RHWbO6zYQm/D5Aj8qnlK/qwp1LXYBHHD22Wfj6quv1m+LIBoJNCoSTYarr74a5557LsABda12w++uDCvDWH3mWSbqGyYjYZogzB9QHqXwTDWBbQbydhJNBSu/63EcCxJ6ZIqJY1GAGKNaSHBGjvT90rKrZm2unmA0U0f9VhrNz1/ybup9P3w+zX6IzlrUttoG8CIGDx6MO+64gzLVEk0GGhmJJgPHcbjttttw4oknAhxDbdud8LuqtG+QhKeR+LQBpoUneT0DUHIhorGTIt/vhAvOeBOp4Ez2Nop6kpZMSFrkVf4/2nr1XoNJ76bu+yCJTa0ykndT47roqEVtqy2A4EevXr3w0EMPweFw6PeLIBoRJDqJJoXD4cCDDz6I/v37A7wYEJ7OatlIcDwPCELDDUqvZ6wrsHEm7l7PxkiKTMwJIiLi9b222Ntpd8EZkRBLZiIfq4/PShRmwmDj7d1UiM2ovZtKsakso5hLiKhGbautYA4fOnfujKeeegoZGRkGL4wgGhckOokmR1paGp588kn07dsXEPyoLdwBv7NG33BFGnKbRGFnSnzazeuZzDBeEp5EYyJFvs+WCE6zyc7iPdZROG1khHo3Q7FBKC3ncASLTT3BqXWd4wCfDyKrQW3bHWBOLzp06IBp06YhLy9Pv28E0QihkZJokmRkZODpp59Gr1696oXnTvgdNQHjY5REyCbhUAnBLkk54k2KTNQJQpdEfI9TbZ93DIKT9trFAau+P3p22Ohzq7fjup5sg+PUmF/UDaVl9d5PkfegtnAHmMuDtm3bYtq0acjPz9fvH0E0UprIjJIgwsnKysIzzzyD7t27Aw4fatvthOiqNRaWkkGL9+QrhSY8MXstEnk8i2YfUuf9JoikYcFzapmXM44kRHDS3vLoMFr41fpuSB5WPcEpeUh1xCbzi4HFDD3ByRj8Qh1q2+0Ac9WhZcuWeO6559CiRQv9vhNEI4ZEJ9GkycnJwX//+1906dKlXnjugOiuaTA6WoaJVwjPVFv5jxOpMJHUpSl5sAkiGix6Plmse+Abi+AkEgfT91w2iE11my6Lzfrrat8R5vPJglN0elDXLuDhbN26NZ5//nm0bt3a6ldFECkFiU6iyZOXl4fp06ejd+/egVDbDrvhz6oNXvE0EiQRCk+O4xrlPiCO56zxehIEERnxFjF2eS5JcKqTqsmEQrH681V4N2V4RbJAA7EJIEhsql5XiE0wBtFVh7qOu8GcXhQWFuKFF15AYWGhla+KIFISm1gRgkguOTk5mDZtGo455hhAEFHXfjf8mfXHqZgVn0qjxPFJT9STzP1IjSLcliBShRQUnFF5O6PpRwTtxH3MpHDaxKEUm6F2W7JPWmKzPutskHdTrYkQsQkAorsWtR13gzl96NSpE1544QW0atXK0pdGEKkKzeoIop6MjAw89dRTGDx4MMAz1HX8C76c8oYCoXs9jPaNxBube0rJ60kQCSAFBWdUxLEfpo+b0sKMl5HEpjWYsSmRhNJqXNf1bgpCmNgEAH9GFWo77gYcfnTv3h3Tp09HQUGBiRdFEE0Dm1gTgrAHaWlpmDp1KoYPHw5wDJ52++BtXhxcyOzKuWiQHc8I2mOYWGhSSBAJI6IFqVgEZyIiTmy+AGgLrDjP2uy5nlHu2wQAGITSwi+qntnpyylDXYc9gCDi6KOPxnPPPUfHohBECByLaVZMEI0Tv9+PF154AZ9++ikAwHGkGZz7W4KDYgKjPLdTbWITIjpDV9IDx7MYGFGjx9PgfsPH29RZaLF5bWNOGmJBHyJvj4ZFIkVIQU9nxBEQ0fYhgnai8nRGIjYTsagVo/jVew8YY+beIw1bqHtdWU4Qwv+uHP/Vrkv1M1H9urIMrxHi7Fe2ofI+StdD2mBg8OUXw9vqIABg+PDhuPfee+F2u9X7QRBNGBKdBKEBYwwffPABXnnlFQCAUJYF19624JjCICmFJxBuUFW8nUrDbSg87SA6gZhEX0qKToCEJ5E6pJDwjDrkPtI+RNhOxKIzUoGXwqJTsiMRi061sd9IlIaKRo39lkH36onS0D6ECkp/SP2holQpNkPqZ2DwtjwAX/MSAMDFF1+Mf//73xC0hC9BNHFIdBKEAUuWLMHUqVPh9XrBV6XBXdQWnOgKXAwVnRKKRAVajxjHcckXnUDcvZ0pKzoBEp5EapAiojOmPd5m+xBlGxGJzmjFXbw/J4tFp96CqXr7EQrO0DI81/A5a435kqBTejf1rofdX19/qNjUuq6VZAg+eAr/hj+nEgBw00034dJLL01qAj+CsDskOgnCBL/++ivuvfdeVFZWgvM44C5qC74uQ1t0hqD7mDXyENuUFp0ACU8iNbC58ExIUrEY2jDnxYtRfKeI6NRbKNVvn9O3J0aiVBD0x3ouJMpI7X6j9s1e1xG9olCHug5/gaV54HK5cPfdd2PkyJHa9RIEAYBEJ0GYpqioCHfffTf27NkDiBxcf7WGozybRKcJYhaeyRSdch9oqCRsDInO1BadjMX+Ger1TxQN+y9H3+hc18JozydjDJzAmxelqh3gzYvSaDGwNf7MWtS13ws4/GjevDkee+wx9OnTJ/Z2CaIJQCnXCMIkHTp0wKuvvorjjz8e4Bk8Hf6Gp+VhMARCaLWMtRxCaxRGayRMde7Xa79RYIdjGyhsirArNhecKd9+vIn32G3mSBeY3I4RxX3ydR3Bqb8wa3zEia6YNTrGzO/XL1Nfv69ZKeo6FQEOP3r27InXX3+dBCdBRAB5OgkiQnw+H1577TXMmTMHACCUZcJZ1BKc2JA8wDBTbeiKsygGTzyU98sGW+P++r9rZcq1w77OwO0pHmYr94GGTMJGpIDgTMheTiD++zmt9nSGjiVWezpDxWYc93yqvYdG15XlOI7T3/NpJitu6HdFshciM3ddo34RfngLD8PfPHBu94gRIzB58mSkpaVpviaCIMIh0UkQUTJ//nw888wz8Hq94OqccO1qDb42OE160B4ZtdVmaRIQKjobKkB9BYb3qz3KRnt0ZFJFdDZUZl1dUfeBhk4iyZDgDCaKthKSQKihsYbf9cb7aFFZjFS9FgWRJBnSs0VadXDKrLJGSYi09oPKFYvh5Yyuq9TPGIPo8sLTaT9Yeh04jsM111yDq666ihIGEUQUkOgkiBjYvHkzHnjgAezfvx8QOTj3toBQnB18nidMZKrleW3hqSSK/ZtG+3QC9aaY6AxUaG19UfWBhk8iSZDgDMdO53KqNxr4V2vciOUzVS5g6l2PErNJhswkIVK1U5LoNMgGr4rkxVQTk2avK/4u9c+fUwVPhwOAICI3NxcPPPAABg0apN4HgiAMIdFJEDFSXl6Oxx57DD/99BMAQCjOhvOvFsHnef5/e3ceHkWVqI//rV6SdDaSQAhBFhFZBS47IgYREDDooCCjjF50lJ/jnXHAcbxXv8wgoo44Olxx9Bmuy7igoo4joMyMAyoggmGHALKFJWEJhOxrJ71U/f6o7kp30nt39Zb38zx5urpO1anTRdLdL6fqHEeRniLFbd0xMIqt64rVqdfn4/MtlCJAzdAZycAZzLF9PGbAvVTBhk5PQtHL6enzQcW2+zMAka+9oE58HRXXUyh1V+5Qt71tEiRYulXBkiPPvzl48GAsW7YMOTk5nttJRB4xdBKFgCiKWLNmDd5++22IogjBmICEczntLrcNeqRaL3VEc+iUd4/D4Mm3UAq3KO/lDHsPp50Pxw3qsshIhU61R7YNRoRHxQ2GvW7Htol6M8y9yyCmNAMA5syZg1/+8pfQ6/WqtIGoI2HoJAqhAwcOYNmyZaiqqpIvty3tDG1lp9bLbe2X0Lr7EA0ydMpVBPgnHcuhU65cvbq9HptvoxRGDJ3tqd3LCbgOV/b3YzWmU7G/r4Ti3zuQtgdbbt/Gh1Dalv1zzN2/V0jK27TNklEPc49yQCsiOTkZ//3f/835N4lCiKGTKMSqqqqwfPly7Nq1CwCgqUtGwvmuECw65/s2PX3J8ISX2LqrXL26fTo+30opjKL48tqwzMnZVrjv5/Q0GnkgPI1sG+5Rbf0pDzJwAqEfFddx/ATBcQAhF+XQaCBpRJivKoc1qx4AcN1112HJkiXo3r2717YTke8YOolUIEkS1q5di1WrVsFkMgFmLRLOd4W21uD5y0Sch055dwZPoqCxt7OVn8fyO3R6GhW2bXkgPI1qG8peTm9tD7bc1XZeelj9ud/T53KH4zuGTlflYooJpt5lkBLNEAQB//mf/4kHHngAOp2ufbuJKCgMnUQqOn36NJ599lmcPXsWAKAtT4f+YiYEsc0HsbdRDR0xdHqqXL26fTo+304pTOI5dPpzfLXn5gQ8D9ITzSPaAr6PahtsubttvEzjEqpRcd2NDm8PnW3LJUGCpVs1LDk1gABkZ2djyZIlGD58uMvjEFHwGDqJVNbS0oJVq1Zh7dq1AAChRQd9SRdoGwzOGwpChwidchUMnkRBYegMOHAqh4jWwXns1P439mXEW2+D3wUTWkN5/vw4vmhogal3OSSDCQAwefJkPP7440hPTw9de4ioHYZOojDZt28fXnzxRZSVlQEAtFfSoS910evpibcvADbRHjzjOnTa8a2V1BKOiekZOn04fvD3M3rkbcA5tUe8VVuw58+X0eAdL7+FBEtODSy51YAAdOrUCY8//jhuvvlmPxpNRIFi6CQKo6amJvzlL3/Bl19+CcBNr6e3D1sfgmeHDp3yAdSt36c28K2VVBLvodOfYwdxHNVGsnVX7i9v9/wHM+Ktt1CqdjngeVRcSQJcDAKklHviYtwE0dACU69ySMly72ZeXh5++9vfIisry3NdRBQyDJ1EEbBnzx788Y9/xJUrVwAA2oo0+V5Pq+1D1tNQ9HEQOuUqGDyJ/MbA6SxSvZ1e7lV0y9ceUE+DC7Utd7VNoL2kvpYHW4cguB8V175/29DZttzbCPCCAEkQYcmthqVrLSAAaWlpeOyxxzB16lTV5v8kItcYOokipLGxEX/5y1+wYcMGeYVZA/2FztBWp0BwDGTehrN3Ieg/a/Z2hg7fYilUovw+TrmK6J2j0+1hAx3N1p/BhfztBfV2j7+nAYh8mY4rmF7UUJW3PY9t2+AYOh2nG3N1DBfnwZpuhLlnBaRECwDgpptuwqJFi9ClS5f2bSMi1TF0EkVYYWEh/vSnP6GkpAQAoKk1QF+SCY1J77yhty86DmIhdMpVMHgS+YSB071whk5fBt+xU2vwHF8DKRBYL6m/dfhbbi+zn0t3r0WrdR9I7fW4WC/prDD3qIQ1qxGAPDLtb37zG9x4442uj0NEYcHQSRQFTCYTPv74Y3zwwQfyvJ6iAF1pJ+jK0iFI/n+hCkvoBKK/t1M+iPrH8AXfaikQMXA5rVxFhAInEHToBEIwqJCdmtOr+CqYXlJ/6gi2PNg2tCFBgrVLPczdqwGdCEEQMGfOHCxYsADJyck+10NE6mDoJIoi58+fx5/+9CccOHAAACA066A/nwVtrcHLnu3FSm+nXA1HsyVqpyMEzhC1IeIj2fpC7dFuOzBrSjPMPSuVgYKuvfZaPPHEExg8eHCEW0ZEdgydRFFGkiRs2rQJq1atQlVVFQBAU2OA/nwmNC16L3u31hG0MIbO1upUejuK5uDpy//4U8cUroFOIj09SrBtUDFwSpIU2l5QR2oMQBQPfBnB3VYu6SwwX1UNa+cGAEBqaioeeughzJo1CzqdLhytJSIfMXQSRanGxka8//77+Oyzz2C1WgER0JWlQ3epk9e5PcMWOgFVAl3Iw2e0hE7A78EwqAOLkdApVxGh3k6VAqf9PVSVwOnPvZ6eRjKPN94GW3Iol7QCLNl18pybWvk/BvLz8/Hwww8jMzMzDI0lIn8xdBJFuZKSErz22mvYvXu3vMKkhb60E7QVqRDg+QtTUCIYOp2rD9FbVDQGT18G9KCOraNcYhtIO1QInG3fO0MSOoMd7dbdNvHCWwh3DJuQIGYYYe5RDSlJHpV24MCBeOyxx3gpLVGUY+gkigGSJGHHjh14/fXXUVpaCgAQmvTQX8iEts71/Z6xeomt60PEYfB0h2/J5Ii9na6FMHC6e68M2zyOgYTSeODL63XYRkxpgblHNcS0FgBAVlYWFixYgPz8fGji9RwRxRGGTqIYYjKZsHbtWqxevRoNDfI9LJraJOgvZEJjTHDa1uc/bVFy/wXOn7CnYqAL6eW2sRA8AYZPkjF0thei0Wo9vUd6C5whvdfTm2AvvfXlHklv9fhyT6mvx/GmzQjAYoIZlh41sGY1AQASExMxb9483HPPPRyVliiGMHQSxaC6ujqsXr0a69atg9lsBiRAW5kCXWkGNCZ58AS/Qqdd2y9zgYQ9lUIdgyd1SDESOsN+T2coLuf1wNult2ENpYEOQOTHPZI+bROq43jgeN4knRXm3FpYs+sBjXzOb731Vjz00EPIzs72uU4iig4MnUQxrLS0FG+++SY2b94srxABbXka9JfTAZPWt0rahrlQBE8guke2jZXQCTB4dnQxEDojMoiQiqGzbVj05z7PsA9A5Ms23kJrqLYJInA6nWOdBEtOLSw59YBWXj969Gj88pe/xLXXXutTfUQUfRg6ieLA0aNH8eabb2L//v3yClGA7koatKVpEKxewqe7MGf/Uhds2AthwGPwpA4nXKETCCj8RXSOThWCp9LL5sd9nqoMPgS0u8zU7TaA5+1CsU0owq8LjudO0oiw5jTA0q0O0Mn7Dxw4EAsWLMCYMWPCdzkzEamCoZMojuzbtw9vv/02fvzxR3mFVYD2chp0l9M9T7Oi1vyYjkIU8hg8qUOJ0tAZ8bk57UIYPP29z9PVtmENRr6G0nBt4wensCmIsGY3wtK9FtDLx+jTpw8eeugh5OXlMWwSxQmGTqI4I0kSdu7cibfffhtFRUXySosGurI0aMvSIFhdXQIVO6FTrorBkzqIKAydURM4AdXv7XQU7OBD8cqX+1ft27Tr2exq69m0hc3u3bvjwQcfxJQpU6DV+niLCBHFBIZOojgliiK2bduGv/71rygpKZFXWgVoy9KgK0uDYHH4QA9H6ATY2xkKfMvuOKIwcMqbhqhdMRg8PXEXvHwZgMifQYpCxVNYDFWbXX3FlC+jrZfv2bSFzZycHNx3333Iz8+HXq/3+TUQUexg6CSKc1arFdu2bcPq1atx+vRp20oB2vJU+bJbsy18srczdvBtO75Fadh03o3Bs61ABiAK9SBFodjGW5j05bJil2FTa4Ulpx7WnAblns2rrroK9957L6ZPn86wSRTnGDqJOghRFLFjxw6sXr0aJ06csK0UoK1IgfZyGjRGXXgawuAZOnz7ji/hvjwzkiPWhqAN7UQwePozAJE/gxS13d7XHsVAAq63MBnoa5P0trDZtXU02l69emH+/PmYPHkydLowffYQUUQxdBJ1MJIkYffu3Xj//fdx5MgR20pAU22A7lIaNA2JKjcgSkOnXGFo6wsHvoXHhxjo3XSuIoTtjaPeTle8BdK223naNpDwGmjPpD/tdrWNaDDBmlMPa+dGwPZP3LdvX8yfPx8TJ07kPZtEHQxDJ1EHJUkSCgsL8fHHH6OgoEBZL9QnyOGz2gABKn2JY/AMPb6Vx64YC5ytVUVZb6e39tjfK6I4nAYa8PzdRi0SJIjpLbDm1EHMaFbWDxkyBPPmzcOECROgcTWfJxHFPYZOIkJxcTE+/fRTbNq0CWazGQAgNOugvZQGbUWy5+lWAhHiYBfy4NlasTr1qoVv57Gpo4dOubLg63DVnrbvDVEaOGOdJEgQs5pg6VYHKVn+DNFoNMjLy8Pdd9+NIUOGRLiFRBRpDJ1EpKisrMTatWuxfv161NfXyyvNGmjLU6AtS4XGFMJ7b2IleLYeQN36Q4Vv6bEnhu7ldK4mikKnY1vcvRf40hPKUOqdQ4+xpLPCmt0AS9cGIMEKAEhKSsLMmTMxd+5cdO/ePYINJaJowtBJRO00NTXhq6++wt/+9jdcunRJXikBmpokaMvSoKlNDP7S21gLna0HCs9xgsG39dgSo6FTrioKgqdG8D76trt2Ou7HwOmZ7VxJkCClmmDJaYCY1aTcr5mVlYU5c+Zg1qxZSE9Pj2BDiSgaMXQSkVtWqxUFBQVYu3Yt9u7dq6wXjDpoy1KhrUiBYA3iC2ysBk/5YOE7VqD49h4bwh06gfgLnt546wll4HTPHjY1Iqydm2DNaYCUYlaKBw4ciDvvvBNTpkxBQkJCpFpJRFGOoZOIfHLu3DmsW7cOX331FZqamuSVVgHaimT50ltjAF82VAhuDJ5t8C0+usV44JSri+LQaW9boD2hdr5cehvNl+f62jb7dg7nS0y0wJrTAGt2ozK/ZkJCAiZPnow777wTgwYNUqvVRBRHGDqJyC9NTU3YtGkT1q5di+LiYmW90JAA7ZUUaKuS/e/9jOUeT/mA4T2evzy9zdtDDz8Kwi/GA2dIw6ZzxerU644vl9662y7Sl+d6CpO+DqLk4v3SPjCQNbsRYqcWZX23bt1wxx13ID8/HxkZGQE2mog6IoZOIgqIJEk4ePAg1q1bh+3bt8NiscgFVgHaKgO0V1IhNCT4du9nrPd4ygcM7/EC0fbtvm3o4cdBeMR42JSrU/k1hCt4tn0dvgxCFMhARb5O1xKK7Xy9fNjFdmKyCdbsRli7NCm9moIgYOzYsbjzzjsxbtw4zq9JRAFh6CSioNXU1GDjxo34xz/+gZKSEmW9YNTJvZ8VKRAsXr6oxHpvp3zQ8B/TX45v+a7CDz8S1MOw6e/B1K3flwGIfN0uxOHP7+lffG2fq15Nre1eza7O92p27doV+fn5uPXWW5Gbm+u5fiIiLxg6iShkJEnCkSNH8M9//hObN29Gc7NtcnAJ0FQboK1IhqbGAEFyFXbioLdTPmj4j+kvSfIegPjREDqRCJtAbAdO+YDhPV4w/L13NFTbBUiCBLFTC6xdGiFmGQGNfBydToe8vDzMnDkTo0aNYq8mEYUMQycRqaKxsRGbN2/GP/7xDxw7dqy1wCJAW5UMbUUyhPo2U68weEYXfjwEL04Cp1wlQ2cskyBBSjHD2rkR1s5NQELr+1SfPn0wc+ZMTJs2jfdqEpEqGDqJSHVnz57Fpk2b8PXXX+PKlSutBS1aaCuToa1IgcaoVy2sRSR4ygeOzHFDjR8T/otU2HRqQwz3dDJwhoyYaIHYWb5PUzJYlPWdOnXCzTffjBkzZmDQoEEQouF3lojiFkMnEYWNKIooLCzEpk2bsHXrVjQ2NiplQqMe2spkaCqToGnRhfzYDJ4hwI8L76Lpi3us9nZ6arfj3xODqVuSzgprVpMcNNNMyvqEhATceOONmDZtGsaMGQO9Xh/BVhJRR8LQSUQR0dLSgh9++AGbNm3Czp07YbValTKhQQ9tpQGaKkPIAmjEQmdrAyJ7/FDix0Z70RQ2HcVS8HTXVld/Owyc7Uh6K6yZTRCzjBDTW2C/c0Gj0WDkyJG45ZZbMHHiRKSkpES2oUTUITF0ElHE1dTUYOvWrdiyZQsKCwshiq1fMoUGPbRVBmgqQxNAIxo+GTzjT7SGTbtYDJ2e/k4YNp1IeluPZpYRUlpr0ASAgQMHYsqUKZgyZQq6dOkSuUYSEYGhk4iiTFVVFbZt2+Y5gFYlQWjW+TYHqAccZChEOuLHSLSHTUC1gBb2AYVaD+y+zP53FW+h1MXlxFKCBdZMI6xZtktnHf45Bg8ejJtuugmTJk3iNCdEFFUYOokoalVVVeH777/Hli1bcPDgQecAatTK07BUJ0GoT4i9ANqRwqc9oEX7x40/7Yzm0BmG4BWR4On4utz9/cRC6PQUkF28LmXU2cwWiJlGp7k0AWDIkCGYNGkSbrrpJuTk5KjRYiKioDF0ElFMqK6uxrZt2/D9999j//79sFhaR2GEWQNNTSK01QZoahIhiMF/8WQIDYLjx4qrcBatHzv+tDUaQ2eYA1fYgqcvl906bheNPN2X6ipoCvI8mmKmEdaMZiCxdRuNRqMEzYkTJ6Jr165qtZqIKGQYOoko5jQ2NmL37t3YsWMHCgoKUF9f31ooApraRGhqkuSfIO8D5ai3Koq2jx9PQbJtW6MpdEYobEXsMlt3oil0BvD3K+mtsGY0Q8xshtipBdC2/s4ZDAaMGTMGEyZMwPjx4zmXJhHFHIZOIoppFosFR44cwfbt27Fjxw5cvHjRqVwwauXwWZsETV1CQL2gHPk2TCL9cRRNQdJXDJyyUN3v6c+ULEH+XUqCBDHNBDFDDpltL5vNzs7GhAkTMGHCBAwfPhyJiYlBHY+IKJIYOokobkiShJKSEmzfvh27du3CkSNHnKZigQho6hKVnlDB6PtgRBEPnnIjIt2C8PD0seQYDP259zLW79N0JwKhM6oCZ9vX7+/It/5sH4K/PzHRIofMjBZ5WhOt8+/lgAEDcMMNN2DChAno168fhFj8nSQicoGhk4jiVmNjI/bv349du3Zh165dKCsrc96gRQNtbZIcROsSIZi0Hutj8AwzVx9Pobjv0td6Y0WYgmdUhU1Aft2+/j34el+ov9t6IemsENNNENNbIGY0Q0qyOpVnZWVhzJgxGDt2LMaMGcPLZokobjF0ElGHIEkSzp07h127dmH37t04ePAgTCaT0zaCUasEUE1dIgRz+xAaFcHTriMFUF95G8TI1baxHDgB1UNn1IXNKCZpRTlg2n6kFItTuU6nw9ChQzFmzBiMGzcOffv2hUYTRfeiEhGphKGTiDqklpYWFBYWYt++fThw4ABOnjzpNCULAAhNOvlS3LpEaOoTIFjkEMrgSVGFoTNiJK0o35ephEwz2l6x36dPH4wYMQKjR4/GyJEjkZycHJnGEhFFEEMnERGA+vp6FBYW4sCBAzhw4ABOnTrVbhuhSQdNfYIcQOsTAaMm6PlBQ4bhs+PpqJfVRpCUYIWY1gIx1QQxzeQyZPbq1QsjRoxQfjIzMyPTWCKiKMLQSUTkQk1NDQ4ePIj9+/fjwIEDKCkpab+RSSMH0DpbEG3UQ5Ai/AWd4TO+RXBakI4WPiVIkJItcshMk0MmEq3ttrvqqqucQmaXLl0i0FoioujG0ElE5IOamhocOXIEhw8fxuHDh3H8+HFYLM73a8EqQGjQQ9OQAKFefoQpgr2hDKDxIYrmn4zn4CnprBBTzRBTTZBSTRBTTYDO+SuSRqNB3759MWzYMAwZMgRDhw5F165dI9RiIqLYwdBJRBSAlpYWnDhxAocOHcLhw4dx5MgR1NfXt9/QpHEIoXoIDQkQrGEMEQyesS1KAme8hU1JI0JMNUNKkcOlmGp22YuZnJyMwYMHY+jQoRg6dCgGDx7MezKJiALA0ElEFAKiKKKkpAQ//vgjjh07huPHj+PMmTPO84TaCEatHD4b9NA06iE06SFYGETJhQiHTn/Cpn2ArWgLqCKskFLMkFIsENPkoCkZLO3uxRQEAT179sSgQYMwaNAgDB06FNdccw20Ws9TKRERkXcMnUREKmlubkZRUZESQo8dO4aLFy+63rhFC02jTr4vtFEOo2jRhu/SXAbR6BXm4GkPjZIouQyQ7kZvjnTYlCDJl8immG0h0wwp2QzJ0P4/fgAgJycHAwcOxMCBAzFo0CAMGDAAKSkpYW41EVHHwNBJRBRGtbW1OHHiBI4dO4aioiKcOnUKpaWlrje2CHIAbdJDaNLJP0b2inY4EQydvm6rJsd2KG3TiBCTzJAMFkgpZojJcsiE3nWbs7Oz0bdvXyVkDhw4EFlZWaq3nYiIZAydREQR1tDQgNOnT+PUqVMoKipCUVERiouLYTabXe9g0sjTtzTpIRhtYbRJr/69ogyg4RUl93N6EsrQ6SrkSlpRDpbJFkgGszyabLLF5f2XAKDVatGrVy/069cP1157Lfr164e+ffsiIyMjZO0kIiL/MXQSEUUhs9mMc+fO4eTJkzhz5gyKi4tRXFyMsrIy9zuZNHIINeogNNsftfJyqKdyYQANvRgImXbuwqYvl9623UaCBCRa5XCZZIFksEJMskBKNgOJ7n/PsrKy0Lt3b/Tp00cJmVdffTUSExMDeEVERKQmhk4iohjS1NSkBNCzZ88qj1euXHG/kwT5/lCjDppmnTyQUbMOaNZBaNEGH0gZQAMXg0HTl8tu21KCpS1USkn2gGmBlGgFPJyGzp07o0+fPujduzeuvvpq5adTp06BvhQiIgozhk4iojjQ2NiIkpISnDt3DhcuXMD58+dx4cIFXLhwAUaj0f2OEuQe0hZbAG3Wyo8tci8pTAGEUoZQ72IobPpCCZWOP0kWZRkJnoNlQkICrrrqKvTo0QM9evRAz549lZCZlpYWvhdCRESqYOgkIopjkiShsrJSCaD2MHr+/HlcunQJLS0tXiqAHDxbNBBMWggmWxBt0UIwaVqfuwumDKDuxUjwlAQJSLBCShAhJVghJVidnyda5XssvfzfhF6vR25urlOwtC9nZ2dDo4mN80FERP5j6CQi6qAkSUJNTQ0uXbqEy5cvK4+OyyaTybfKzBrnEGrWyOvMGghmrbIMs0aeBoZhNKKhU4IE6ERIehHQOz5a5WVbuJQSRCDBt38rvV6PnJwcdOvWDbm5uejWrRtycnKU5c6dOzNYEhF1UAydRETkkiiKqK6uxuXLl1FeXo4rV66goqICFRUVKC8vVx59DqaA3HNq0TiFUlg08si7FkGeDsaigWARbI/yc1ik8M1ZqqYQB00JEqC1BUidCGgl+VEnQtI5rG8bMHWi155JR3q9Hp07d0aXLl2QnZ2NLl26KD/2kJmVlcVQSURELjF0EhFRwCRJQn19PcrLy5UgWlVVherqatTU1KC6ulpZrq2thSgG2MMpAbAKgFWQA6poXxYAqwawwrYsPxdEARAhbycKgCRAsD+XWssEUZDrlmyPaLsMn8KuZN/Bvql9tFYBgEYCBAmSpnUZGtgeJUgaqXU7jQRJKwFa0WHZvl4OldDa9rGFzGCyeHp6OjIyMpCZmYnMzExkZGQgIyPDKVhmZ2cjPT2dgZKIiALG0ElERGFhtVpRX1+P6upqJZjW1dWhvr6+3U9dXR0aGhpQX1+P5ubmSDfdFkzRGkYFh8co6IBNSEhAWlqa8pOamur0PC0trV2w7NSpE3Q6XaSbTkREHQBDJxERRTWTyYT6+no0NDSgubkZTU1NMBqNMBqNHpdNJhPMZrPTo6t1ZrNZ9deQkJAAvV6v/Dg+d1xOSkpCcnIyDAZDu5+kpCQYDAalPDk5WQmYnJuSiIiiGUMnERF1aJIkwWq1QpIkiKLoctlqtUIURUiSBEmSoNFooNFoIAiC8qjVap2e27fR6XQQhCjoDiUiIooQhk4iIiIiIiJSDUcFICIiIiIiItUwdBIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIiIiIiIVMPQSURERERERKph6CQiIiIiIiLVMHQSERERERGRahg6iYiIiIiISDUMnURERERERKQahk4iIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESqYegkIiIiIiIi1TB0EhERERERkWoYOomIiIiIiEg1DJ1ERERERESkGoZOIiIiIiIiUg1DJxEREREREamGoZOIiIiIiIhUw9BJREREREREqmHoJCIiIiIiItXoIt0AIiI1SJKE5ubmSDeDiMgvSUlJEAQh0s0gIgophk4iikvNzc2YPn16pJtBROSXjRs3wmAwRLoZREQhxctriYiIiIiISDXs6SSiuJewuysESQMIGggaARBs/9+mEQBBgKDRAIJtvf2yNo0AQdAo20AQ5GWg9bl9nX2fttvDeR9JEOT/6nPcH2i3Xnmu7CdXBUGApIHtCWzrBUCA0z6Ssq7N/sprRvtytFlnf65xUea4v1OZ46PQrszlPnAud3xub4O7Yzktu2lH2zoVHveR2rWrbX0QJBdtklrrdlWXbT8ovx6Sc52wlzk82uqzby8IkuOvjnIM+Z+mtRwANJCc1mlsy61lreucygQJAlrXaxzWawQJGtjXw7lM2UdUntuPpRFEaJV9xdb9HJ5rHeoGAC3s60WH7URbma1O5VFU2mHfTwP7vrZ9lDJ5e60gQVDK5HX2fbRA636QjyPY9tc6tVGyPbe1yfbPIj8XoAGgFQRoIEBr+4fWQLCt00CAAK2ggalFizv/v64gIopXDJ1EFP+sgvz1T5C/5Cmh0/ZtXi4TAI0GjilFgKZN8nDYz2XqabO94Fjmatnxuav1rvaDQ8iFEjqVRziua7NsK3MKUE77udin3UsW2jdTcPUjuC9zu4+PpyrIOr0H1RCHTqF96HQsaxs6W9e3rU9yWdYaTh3KnZ5Lzvu3O5bkXOYQOu0/AFqfuytrE0aV0NlmnWNY1To8l0OnqPw/jRaCHN4Eh/Bm+73SAtAIgsOjYDuWvJ9cF6AVWn+FtYJ9P/nRZZmy3Np+OaxKtkAr+RQ629ansbUZTuvsbWw9FhFRvOLltURERERERKQahk4iIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESqYegkIiIiIiIi1TB0EhERERERkWo4TycRxT+tBEkSbfNOOsxLqRHk+SQ1cJ7vEm2eKz+SQ1mbH8A216HjOucJISU3k0+2Xd/63L5fm2XJvp99H1sdtg0lOJc7zQAoOdbdun+7dVKbIsf5N32aH1NwXwYP+/ta5qlOL8cT4G0fV/Nttq1PclGHm3k60X4/wWk+TlsZ7GUOj7Z97dvLc2O2nl7nY7SZpxOBz9Mp2faVbD8AlGUJ9vVwLoMEUZAAQbTV5Xgs0fZ6HMvlMkkQ5Xoc6m4tc15vnx9Tss2V6fgIQFkWbX/W9kfYlkXIf/ai7bn9VLWfp1OAxlaqhTwfqCC0LrfOJeo896f9WBqlDvs8ow5ziUJQ1gm2ZVOLq79DIqL4wdBJRHHPNPZKpJugDsfv9QEQ2jwS2dl/tcRINyRg9jTPC7qIiKIB342JiIiIiIhINYIkSUH8PzkRUXSSJAnNzc2RbkbcaW5uxqxZswAAX3zxBZKSkiLcovjA86qOWDyvSUlJEARef0BE8YWX1xJRXBIEAQaDIdLNiGtJSUk8xyrgeVUHzysRUeTw8loiIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESq4ei1REREREREpBr2dBIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIiIiIiIVMPQSURERERERKph6CQiIiIiIiLV6CLdACIi8l9TUxM++eQTfPfdd7h8+TI0Gg169uyJyZMnY86cOdDr9QHXXVVVhTVr1qCgoABlZWVITExEnz59MGPGDMycOROCIHjc/+LFi1izZg327NmDqqoqGAwG9O/fH7fffjsmTZrkdr9Lly7h8OHDOHHiBE6ePImioiI0NTUBAD799FPk5uYG/Jr8EY/n9vTp09ixYwcKCwtx9uxZ1NTUQK/Xo1u3bhg5ciRmz56Nnj17Bvy6fBGP53XTpk04duwYTp48ifLyctTU1EAURWRkZGDAgAG45ZZbPO5PRNRRCJIkSZFuBBER+e7y5ctYuHAhLl++DABISkqCKIowmUwAgH79+mHlypVIS0vzu+4TJ07giSeeQG1tLQDAYDDAZDLBarUCAMaOHYvly5e7DQgFBQVYunQpmpubAQApKSkwGo0QRREAkJ+fjyeffNJlCHjhhRfw73//22W94Qqd8XhuN23ahOeff95pXWpqKoxGo3JsvV6PhQsXYtasWX6/Ll/E43kFgOnTp8NoNCrPU1NT0dLSArPZrKwbM2YMnn/+eRgMBr9fGxFRvGDoJCKKIRaLBQsWLMCZM2fQuXNn/O53v8Po0aMhiiK2bNmCl19+GU1NTbj++uvx0ksv+VV3Q0MD7rvvPlRVVaFXr174/e9/j4EDB8JsNmPDhg14/fXXYbFYcMcdd+Dxxx9vt39paSl+/vOfw2g0YujQoXjqqafQs2dPpYfrvffeAwA88sgj+NnPftZu/xdffBGFhYXo378/+vfvD0mS8OabbwIIT+iM13P71VdfYcWKFZg0aRKmTJmCYcOGISUlBWazGYcOHcKf//xnnD17FoIgYMWKFRg9enTA59CVeD2vAPDnP/8Z/fv3x5AhQ9C1a1ckJCRAkiRcunQJn332GT7//HMAwE9+8hM88cQT/p88IqJ4IRERUczYsGGDlJeXJ+Xl5UmHDx9uV/71118r5Xv37vWr7rfeekvKy8uTpk6dKl28eLFd+QcffCDl5eVJkyZNks6dO9eu/LnnnpPy8vKkWbNmSXV1de3KX3rpJSkvL0+aMWOGy3KLxeL0fP/+/cprKS0t9eu1BCJez21JSYlUXl7utm11dXXSrFmzpLy8POmxxx7z63X5Il7Pqy+WLVumtM9sNvu9PxFRvOBAQkREMcR++emIESMwZMiQduVTpkxRegTdXarqzsaNG5U6unfv3q589uzZMBgMsFqt+Prrr53KjEYjvvvuOwDAHXfc4fIyyfvuuw8A0NjYiO+//75duVar9au9oRav57ZXr17o0qWL27alpaVh4sSJAIDjx4/78ap8E6/n1ReDBw8GALS0tKCurs7v/YmI4gVDJxFRjGhubsaRI0cAANdff73LbQRBwLhx4wAAe/bs8bnuc+fOoaysDACU/dtKTk7GsGHDXNZ9+PBhtLS0eNw/NzcXvXv39rtt4dDRz21CQgIAKPcxhkpHP6+HDh0CIN9nmpmZ6ff+RETxgqGTiChGlJSUKKGgT58+brezl1VVVfncu3LmzJl2+7tyzTXXAACKi4vd7m/fxtP+Z8+e9ald4dLRz+3Bgwe91h+IjnheGxoacPz4cbz44ovYunUrAODuu+/2OoIuEVE845QpREQxoqKiQlnOzs52u53jpZQVFRVIT0/3WndlZaVfdTc2NqKpqQnJyclObUtLS0NiYqLX/R2PFw068rn99ttvcfLkSQDAbbfd5te+3nSU8/rtt99i2bJl7dYnJCRg7ty5uP/++z28EiKi+MeeTiKiGGGfsxKAxy/JSUlJLvdRs277tBGO5Z7297Vd4dJRz+358+exYsUKAMCwYcNw6623+ryvLzrKeU1ISEBWVhaysrKUe5O1Wi3mzZuHu+++O+L3KxMRRRp7OomIiDqgyspK/M///A8aGhrQpUsXPP3009Bo+H/RgcjLy0NeXh4AeYqYkpISfPTRR3j//fexYcMGPP/88y4HUSIi6ij46UJEFCPslwUCUAZAccU+yX3bfdSs2z7xvWO5p/19bVe4dLRzW11djd/85je4ePEisrKy8Morr6Br165e9/NXRzuvAKDT6dC3b188/fTTmDNnDqqqqvDMM894bCMRUbxj6CQiihGO972Vl5e73c7xPjpPU2U46ty5s191p6SkOH0Jtx+nvr7e45dr+/6Ox4sGHencVldX47HHHkNxcTEyMzOxcuVKZYTWUOtI59WVuXPnAgCuXLmCnTt3+r0/EVG8YOgkIooRvXv3Vi5/9DSSpr0sKyvLpwFZAOfROz3VbR/x8+qrr3a7v+OooO729zTaaCR0lHNbXV2NRYsW4ezZs0rgbHu8UOoo59UdxwGOLl686Pf+RETxgqGTiChGJCUlKfeF7dq1y+U2kiRh9+7dAIAxY8b4XHfPnj2Rk5PjsW6j0ajMO9i27qFDhyqDudiP39bly5dRUlLid9vCoSOc26qqKixatMiph1Pt8N8RzqsnpaWlynK0XVJORBRODJ1ERDFkxowZAIADBw7g6NGj7cq3bNmifNG1b+sLQRAwffp0AMDmzZtx6dKldtusW7cORqMRWq0Wt9xyi1OZwWDATTfdBABYv349Ghoa2u2/Zs0aAPKXb/ugK9Ekns+t4yW1WVlZePXVV8PW2xyv59VisXht44cffqgsDx8+3Ov2RETxiqGTiCiGzJgxA9dccw0kScKSJUuwb98+AIAoitiyZQtefvllAMC4ceMwatQop33feecdTJw4ERMnTnT5Bf2ee+5BVlYWmpub8eSTT+LEiRMAALPZjPXr1+Ovf/0rAOD2229Hz5492+3/4IMPwmAwoLKyEk899RTOnz8PQO5teu+99/DFF18AAObPn4+0tLR2+1ssFtTU1Cg/jiGgvr7eqcyXL/z+itdzW1NT4xQ41b6ktq14Pa8fffQRnnvuOezcuRP19fXKeovFgqNHj+J3v/sdNm7cCACYOnVqWM85EVG0ESRJkiLdCCIi8t2lS5ewaNEiXL58GYB8CaMoijCZTACAfv36YeXKle2+JL/zzjt47733AACffvopcnNz29V94sQJPPHEE6itrQUg9/CYTCYl5I0ZMwbLly9HQkKCy7YVFBRg6dKlyoifqampMBqNsFqtAID8/Hw8+eSTEASh3b4HDhzAokWLfDoHr776KkaMGOHTtv6Ix3P73nvv4Z133gEg9+7ZR21154033lAuWw2VeDyvjm0D5HObkJCAhoYGZV8AmDx5Mv7f//t/HucSJSKKd5ynk4goxuTm5uK9997DJ598gu+++w6XL1+GTqdDnz59MGXKFMyZMwd6vT6gugcMGID3338fa9aswQ8//IArV64gKSkJ11xzDWbMmIH8/HyPczmOHz8e7777LtasWYM9e/agqqoKqamp6NevH37yk59g0qRJAb7q8IjHcyuKorJsNBphNBo9ttNx+1CJx/M6c+ZMdOrUCQcPHsTZs2eV3nmDwYCuXbviuuuuw/Tp0zFs2LCAXhcRUTxhTycRERERERGphvd0EhERERERkWoYOomIiIiIiEg1DJ1ERERERESkGoZOIiIiIiIiUg1DJxEREREREamGoZOIiIiIiIhUw9BJREREREREqmHoJCIiIiIiItUwdBIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIgi7tVXX8XEiRPx61//OtJNoQhraGjAzJkzMXHiRGzbti3SzSEiohDQRboBREQUuMbGRhQVFeH48eM4ceIETpw4gYsXL0KSJADAp59+itzcXFWOLUkS7rrrLpSXl+Pee+/FL37xi4DqKSoqwvr16wEADz/8cAhbGFlnzpzB7t27cfjwYZw5cwaVlZWwWq1IS0tD3759MX78eMyYMQOpqamRbmpUSU1NxT333IO33noLr732GsaNG4fExMRIN4uIiILA0ElEFMMWLlyIoqKiiBz7+PHjKC8vBwDk5eUFXM+qVatgtVoxbtw4DB06NFTNi6iFCxfi4MGDLsuqqqpQVVWFPXv24MMPP8TixYsxduzY8DYwyt1111347LPPUFZWhr///e+49957I90kIiIKAi+vJSKKYfYeTUDuIRoxYgSysrLCcuzvv/8eAJCdnY1BgwYFVMehQ4ewd+9eAIirYGEP42lpacjPz8fixYvx+uuv46233sKzzz6L8ePHA5AD6OLFi1FYWBjJ5kYdg8GAOXPmAADWrFmDpqamCLeIiIiCwZ5OIqIYlp+fj4yMDAwYMAA9evSAIAhYuHAhqqqqVD+2PXROmDABgiAEVMfHH38MAMjNzcV//Md/hKxtkdajRw/Mnz8fU6ZMQUJCglPZgAEDMGnSJHz00Ud44403YDKZsGLFCqxevTpCrY1O06ZNwzvvvIP6+nr885//xNy5cyPdJCIiChB7OomIYthdd92FqVOnomfPngEHv0CcP38eJSUlAAK/tLa8vBwFBQUAgOnTp4e1/Wp7+eWXceutt7YLnI7uvfde9OvXDwBQXFyM06dPh6t5MSE3NxfDhg0DAHz55ZcRbg0REQWDPZ1EROQ3+6ii9kt6A/HNN99AFEUAwOTJk33ax2KxYPPmzdi+fTuOHz+OmpoaWK1WZGRk4JprrsHo0aMxdepUdO7c2Wm/iRMnAgBmzJiBxYsX49y5c/j73/+OPXv2oKKiAikpKejfvz9+9rOfYfjw4cp+LS0t+Oqrr7Bx40ZcuHABzc3N6N69O2655RbMnTs36AFuRo4cqdyTe/78efTt2zfguoqLi/HFF1+gsLAQly5dQnNzM1JTU5GWlobc3FyMGjUKN954I3r16hVQ/RaLBZs2bcKWLVtw5swZ1NbWQhAEpKenIyMjA4MGDcLo0aMxYcIE6PV6p33bnv/i4mKsW7cOe/fuRUVFBYxGI/7whz+0+w+MyZMno7CwECUlJTh+/DgGDhwY2MkhIqKIYugkIiK/2S+tHT9+PHS6wD5KfvjhBwDyfY+9e/f2uv2pU6fw9NNP48KFC+3KysvLUV5ejl27duH06dNYvHix23q2bt2KF154Ac3Nzcq6lpYW7Ny5E7t27cITTzyB22+/HRUVFVi8eDGOHz/utP/Zs2fx5ptvYufOnVixYkVQwdNisSjLGk3gFx998cUXWLlyJaxWq9P62tpa1NbW4sKFC9izZw9Onz6NJUuW+F1/TU0Nfvvb37octMp+7ouKivDll19izZo16NGjh9u6vvrqK6xYsQImk8nrcR0Hlvrhhx8YOomIYhRDJxER+aWiogLHjh0DEPiltSaTCT/++CMAYNCgQV4vrS0qKsKjjz4Ko9EIABgxYgSmTZuG3r17Q6/Xo7KyEkePHvU6r+Pp06exefNmZGZm4uGHH1aOvW/fPnzwwQdobm7GK6+8guHDh+P555/HqVOncMcdd+DGG29ERkYGLl68iNWrV+P06dM4dOgQ1qxZg5///OcBnQMA2L9/v7Lcp0+fgOo4c+aMEjjT09Nx++23Y/jw4cjIyIDVakVlZSVOnDiBnTt3BnwJ88qVK5XAOWrUKEybNg25ublISUlBY2MjSkpKUFhYqFwu7c6JEyfwzTffID09HXPnzsXQoUOh1+tRXFyMbt26tdu+T58+MBgMMBqN2L9/Px588MGA2k9ERJHF0ElERH7Zvn07JElCQkICxo0bF1Adp0+fVnr5BgwY4HFbi8WCp59+WgmcixYtUkY2dXTDDTdgwYIFKCsrc1tXUVER+vXrh5UrVyItLU1ZP3jwYPTo0QNLly6FxWLBo48+irq6Orz88ssYPXq0sl3//v0xZswYzJ8/HxUVFVi/fj3mz58PrVbr1+sH5EuUz549C0AO3j179vS7DgDYsmWL0sP5yiuvKPeJOsrLy8OCBQtQW1vrd/0tLS1KmM/Ly8Pzzz/fLrwOHz4cs2bNgtFo9Nhje/bsWfTo0QOvv/660yjL7kY/1mq16N+/PwoLC3Hy5EmIohhUjzAREUUG37mJiMgv9ktrR48eDYPBEFAdjpfIepvi5ZtvvsHFixcByKP1ugqcjnJycjyWP/XUU06B027SpEnIzs4GAFRXV2P27NlOgdMuNTUVt956q7JdcXGxx+O5UlFRgf/93/8FAAiCgP/6r//yuw47+0jFqampLgOno06dOvldf319vfIfBMOHD/fYW2owGLxebvz444/7Na2Pfdvm5mZUVFT4vB8REUUPhk4iIvJZQ0MDDhw4ACDwS2sBoLKyUllOT0/3uK095ALAvHnzAj4mIF+u6S6YCYLgVDZt2jS39ThuV1pa6lcbmpubsXjxYiUsth28yF/2oNzQ0IAtW7YEXI87nTp1Ukbh/fbbb4OaMzM7O9tlkPfE8ffD8feGiIhiB0MnERH5rKCgABaLBVqtFhMmTAi4npaWFmXZVa+jo5MnTwKQe7x8GXDIE2/7O7bF0yivjtv5E8LMZjN+//vfK4MT3XjjjViwYIHP+7sybdo0pXdx6dKl+NWvfoWPPvoIhw4dUi5JDoZer8eMGTMAAEePHsVPf/pTvPzyy/j222/9DtyBjM7rGDodB38iIqLYwXs6iYjIZ/ZexyFDhiAjIyPgehzvgfQ2imlNTQ2A1h69YCQlJXksd7x01NOlw473FdqnffHGYrFgyZIl2L17NwBg7NixeOaZZwK6H9RR9+7d8eKLL+KFF15AeXk5Dh8+jMOHDwOQz/PAgQMxceJE3HbbbV4Dvju//vWvYTKZsHHjRtTV1WHDhg3YsGEDAPk/A8aOHYv8/HyvPbbeerVdcfwPikBHSiYioshiTycREfnEZDJh165dAIK7tBaQ7z+0q6urC6quWGCxWLB06VJlmpjRo0fjD3/4g3LZarBGjRqFjz/+GMuWLUN+fr4yZYnVasWPP/6IVatWYd68eUrg9VdiYiIWL16MDz/8EA899BBGjhyphPKqqir8+9//xsKFC/H73//eKSS2FcggQI6DHzn+3hARUezgfxkSEZFP9u7dq1yuGWzodJwew1vozMjIQFlZWcwOImMPnPZe4pEjR2L58uVBze/pSkJCAm6++WbcfPPNAOQe4n379mHjxo3YuXMn6urqsGTJEqxZswadO3cO6Bg9e/bE/fffj/vvvx9WqxVFRUX44Ycf8MUXX6C6uhrbtm3DW2+9hUcffTRkr6u+vl5Z9jZIFBERRSf2dBIRkU/soalfv37Izc0Nqi7HOSnPnTvncVv7lCqVlZVet402bQPniBEj8OKLL4Y8cLqSkZGBKVOm4KWXXsIdd9wBADAajdi+fXtI6rdfuvvggw/i//7v/5RLl7/55puQ1G9XUlICAMjNzUVycnJI6yYiovBg6CQiIq9EUcSOHTsAyIPfBCsnJwddunQBABw7dszjthMnTlSW16xZE/Sxw8ViseCZZ55RAufw4cPxxz/+0et9pWoYO3assmy/RzaUcnNzlXlGA5kL1J2amhplupzrrrsuZPUSEVF4MXQSEZFXhw8fVsKKYwgMhj0IlZSUoLGx0e12kydPVgLNv/71L3z++ece6y0rKwtJ+4JhsVjw7LPPYtu2bQDUDZzfffed1yBpvxcXAK666iq/6i8tLcXevXs9bnPp0iWlR7J79+5+1e/J0aNHleXrr78+ZPUSEVF48Z5OIqIYduHCBWWkUjv7/I8AsHXrVqdRZg0GAyZNmuT3cey9dd27dw9o2gtXbr75ZvzrX/+CKIrYu3cvbrrpJpfb6XQ6LFu2DL/61a9gNBrx6quvYtu2bZg+fTp69+4NvV6PyspKHD9+HFu3bsWAAQOwePHikLQxUM899xy2bt0KQA55jzzyCC5duuRxn8zMTGRmZvp9rM8//xzPPfccRo0ahVGjRuHqq69Gp06dYDabUVZWhm+++Ubppe7WrZvfU92UlZXh8ccfR/fu3TFhwgQMGjQIOTk5SExMRG1tLY4ePYr169croxDPmTPH79fgzp49ewDI96uOHz8+ZPUSEVF4MXQSEcWww4cPY/ny5W7LV61a5fS8W7duQYXOUFxaazd69GhkZ2ejvLwcGzdudBs6AeDaa6/Fa6+9hqeffhqlpaU4cOAADhw44HJb+z2gkbRlyxZl+eLFi3jkkUe87vPAAw/gwQcfDOh4JpMJBQUFKCgocLvNVVddheXLl3ucCsaT0tJSfPbZZ27LNRoN5s2bhzvvvDOg+tuyWCz49ttvAci964FO90JERJHH0ElERB6dOnVK6aULdtRaR1qtFrNnz8Ybb7yBnTt3oqamxuPcn/3798eHH36IjRs34vvvv0dRUZFy/2BmZib69u2LMWPGYOrUqSFrYyxYunQpdu/ejcLCQpw5cwZVVVXK5badOnXCtddei7y8PEybNi2gKVqGDRuG119/HXv37sXRo0dRVlaG6upqNDY2IikpCd27d8ewYcNw2223hawXHIDyOwEAd911V8jqJSKi8BMkSZIi3QgiIope7777Lt59911kZmZi3bp1Ac216E5DQwPuuece1NXV4Re/+AXuvffekNVNse3JJ59EQUEBRo0ahVdeeSXSzSEioiBwICEiIvLIfmntDTfcENLACQCpqalK0Pzkk0/Q1NQU0vopNh09ehQFBQUQBAEPP/xwpJtDRERBYugkIiK3zGYz8vLy8MADD2D27NmqHGPOnDno0aMHamtr8be//U2VY1BseeuttwAA06dPx6BBgyLcGiIiChYvryUioog7duwYCgoKkJqaip/+9KeRbg5FUENDAz777DNIkoTZs2d7vM+XiIhiA0MnERERERERqYaX1xIREREREZFqGDqJiIiIiIhINQydREREREREpBqGTiIiIiIiIlINQycRERERERGphqGTiIiIiIiIVMPQSURERERERKph6CQiIiIiIiLVMHQSERERERGRahg6iYiIiIiISDUMnURERERERKQahk4iIiIiIiJSDUMnERERERERqYahk4iIiIiIiFTD0ElERERERESq+f8BYoE08cIv3wkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADycElEQVR4nOydd5gUxdbG3+6esHkX2CWzgGREERQR5YpEvXIVE2IEc/rMOeecMFzFfEFFwARGJEgQFRAM5Jxz3GXzTuj6/pjt3p6eTjPTM9uze37PMw/L9Omq6pnprnrrnDrFMcYYCIIgCIIgCIIgCMLh8HXdAIIgCIIgCIIgCIKwAglYgiAIgiAIgiAIIiUgAUsQBEEQBEEQBEGkBCRgCYIgCIIgCIIgiJSABCxBEARBEARBEASREpCAJQiCIAiCIAiCIFICErAEQRAEQRAEQRBESkACliAIgiAIgiAIgkgJSMASBEEQBEEQBEEQKQEJWIIgCIIgCIIgCCIlIAFLEARBEARBEARBpAQkYAmCIAiCIAiCIIiUgAQsQRAEQRAEQRAEkRKQgCUIgiAIgiAIgiBSAlsE7NatW8FxHDiOwxVXXGFHkQ2S0047Tf4cCYIg9LjiiivkZ8XWrVvrujky48ePl9s1fvz4um4OYTOiKOL4448Hx3G45ZZb6ro5RIpAzwWCiKQ+a6dgMIguXbqA4zg88MADCakjaR7Y8ePH4/HHH8fjjz+erCrrnGnTpsnXXFxcXNfNIWoIBAKYPXs27r//fgwaNAgtWrSA1+tFVlYWOnTogIsuugjTpk1DMBiMqtyVK1filltuQdeuXZGVlYXc3Fwcc8wxuP/++7Ft27YEXQ1BEA2Z6dOn46qrrkLXrl2Rm5uLzMxMHHXUURg0aBCefPJJ/PPPP7bV9d577+Gvv/5CWlqa4aBk69at+Oqrr/DAAw9g2LBhaNKkiTxQO+200yzXpxQ+Vl7z5s0zLbOiogLvv/8+hg8fjtatWyMtLQ1paWlo2bIlhg0bhtdffz2u/vrXX38Fz/Nym9q1axdzWVrs3r0bTz75JP71r3+hoKAAbrdb7rtGjhyJKVOmWO679u7di8ceewwnnXQSmjRpAq/Xi9atW+P000/HRx99hEAgYGvb65JjjjlG/k5+/vnnqM//9ddf5fO7d+8e9fmMMfz222944okncMYZZ6BNmzZIS0tDRkYG2rZti3PPPReffPIJqqurTcuaN29eVPeF2aRBSUkJ5s2bh1deeQUXX3wxOnfuHPYbjmaStKKiAgsXLsSbb76JK664Aj169IDL5YrqHo0FO+/rqqoqjBs3DmeccQaaN28Or9eLgoIC9O3bF88++ywOHTqUkGuoC2655Rb5u3nkkUeiPr+iogK5ubngOA4ulwu7d+8GAAiCgIcffhgA8Oqrr2Ljxo22thsAwGxgy5YtDAADwMaMGaNpM2DAANmmoTBmzBj5mrds2WJq3xA/o2QzZ84c1rhxY/lzNnr16dOHbdy40VK5L730EnO73bplZWdns0mTJiX46oiGQrTPlmTxv//9T27X//73v7puTr1m8+bNbODAgabPsREjRthSX3l5OWvevDkDwG699VZduzfeeMOwPQMGDLBcp/L3ZOU1d+5cw/KWLFnC2rdvb1pO06ZN2YwZMyy3U6Kqqop17do1rKy2bdtGXY4e48ePZ1lZWabt79mzp+lz4eOPP2YZGRmG5fTq1Ytt2rQp7nY74bnwyiuvyG247LLLoj7/qquuks9/8cUXozp39erVrGXLlpZ+w507d2ZLly41LG/u3LlR3RdGn3lxcTHjOM7w/Gj6GLPxldk9Ggt23tdLly5l7dq1My3np59+irvdVrRTovnzzz/lNhQWFjJRFKM6/+OPP5bPP/PMM8OOBQIB1rlzZwaAXXTRRXY2mzHGmAs20K5dOzDG7CiqQZOomSmill27duHw4cMAgMaNG2PIkCE46aST0KJFC/j9fvzxxx/4+OOPUVJSgiVLlmDgwIH4448/0Lx5c90y33nnHdxzzz0AALfbjcsvvxwDBgyA3+/HjBkz8OWXX6K0tBSXX3458vLycMYZZyTlWon6y/jx4ykUrwGzbt06DBo0SJ7tPuGEE3DWWWehffv2SEtLw/79+7Fs2TL88MMPttX59ttvY+/evRAEAffee6+undr7l56ejk6dOmH58uVx1X/LLbdg0KBBhjY9evTQPbZt2zYMGTIER44cAQA0b94cV1xxBTp16gSXy4XNmzfj448/xpYtW7B//36cddZZWLx4MY477jjLbXzqqaewdu1aZGZmory83PJ5Vpg6dSquvPJKeax13HHH4cILL0RhYSHKy8uxatUqjB8/HiUlJVi2bBkGDRqE5cuXIysrK6KsTz75BKNHj5b/P2zYMIwYMQIFBQXYsWMHJk2ahKVLl+Lvv//GsGHDsHDhQhQUFNh6Pcnmsssuw3333YdAIICvv/4ab7/9NrKzsy2dW1FRgS+++AJAyLN0+eWXR1X3oUOH5Hs1MzMTQ4YMwcknn4zWrVsDAJYvX47x48dj3759WL9+PQYPHozffvsNRx99tGnZo0aNwkUXXWRo07t3b91jjLGw8TvHcejYsSMOHjyIoqIiK5cXhvr+LywshM/nw969e6Muywp23terVq3CoEGDUFJSAgA4+uijcfnll6N9+/YoLi7G9OnT8c0332D//v0499xzMXv2bJx88skJua5k0bt3bxx77LFYvnw5tm/fjjlz5mDw4MGWz1eOQ6688sqwY1Jfcc011+Dzzz/HI488ElP0gi62S2IdGqJ30alekobMJ598wo455hj22WefsaqqKk2bnTt3sqOPPlr+7kaPHq1b3u7du+VZbJfLxWbNmhVho5x9btOmDausrLTtegjCSTjB01LfqaioYJ06dWIAWEZGBvv88891bUVRZDt27Ii7Tr/fz9q0acMAsGHDhhnaTp06lf3f//0f++ijj9iyZctYIBAI8zTE6oGN9/ek9KCdfvrprKKiIsLG7/ez0aNHy3bReK+XLVsmR+EovX12eWCPOuooucxHH31U01Ny8OBBduyxx8p2Y8eOjbDZv39/mBd33LhxETaiKLLbb79dtrnyyivjartTngsjRoyQ2/Hhhx9aPk/pZfrPf/4Tdb0LFixg7dq1Y++88w4rKSnRtCkqKgobJ5966qm65Sk9sI899ljU7VFSWlrKLrroIvbSSy+xOXPmsOLiYsZY+Jg9mvHr6NGj2TPPPMN++uknduDAAcZY+FjYbg+snfd13759w7z0fr8/wubLL79kPM8zAKxLly6aNlZxggeWMcbGjh0rt+Pyyy+3fN62bdtk732TJk1YdXV1hM2RI0dYWloaA8CuvfZaO5vNSMAmEBKwzqOoqMhSiMSKFSvk7y49PZ2Vl5dr2ik7+XvuuUe3vJEjR8p2//3vf2NuP0E4GacMVOsz9913n/wZT506NSl1Tp06Va7z448/jvp8JwjYVq1ayWWtWrVK166oqIi5XC4GgDVu3NhS2YFAgJ1wwgkMADvrrLPCrtcOAbthwwa5vGbNmrFgMKhr+91338m25513XsTx559/Xj5+/vnn65YTDAbZMcccwwAwnufZ+vXrY26/U54L06ZNk9vxr3/9y/J5gwYNks/76quvoq63tLSU+Xw+U7t9+/aFhXVv3rxZ085OAatHrAJWi0QKWLvu60WLFsnltGrVytDRcNNNN8m2H3zwQcxtd4qA3b9/vzz5lpmZyUpLSy2d9+STT8rtv+WWW3TtpPFvenq67gROLCQ8C7GUWXf+/Pnye1qLzPWSO4miiM8//xyjRo1C+/btkZGRgezsbHTt2hU33ngjVqxYYdi2xx9/PGLx+M8//4yLL75YDrdSL1IPBAKYMWMG7rrrLvTv3x9NmzaFx+NBdnY2OnfujCuuuAK//PKLbp1ShtAJEybI77Vv3z7imvU+KytZiBcvXozrrrsOXbp0QXZ2NjIzM9GhQweMGTMGc+bMMT1fnVCjvLwcL7/8Mk444QQ0atQImZmZOProo/HAAw/EFEbiVPLy8ix9vj169EDXrl0BAJWVlZoL0BljcliRWVbOW2+9Vf57ypQp0TY7LhYuXIgbb7wR3bt3R15eHtLS0lBYWIhRo0aZhhgqk0VI9+j27dtx1113oWvXrsjMzEReXh5OPvlkvP3225aTfpSVleG1117D0KFD0bJlS3i9XjRu3Bh9+vTBo48+igMHDhier75XgsEgxo8fj6FDh6JVq1ZwuVyayVP27duHe++9F927d0dmZiYaN26ME088Ea+88goqKioAhJZEaCVf+emnn+Q6ld+nEbfeeqt8zvTp0y2dYwWzLMSJ+t6+//57nHXWWWjevDnS0tLQrl07XHrppVi4cGHU1+Dz+fDhhx/i7LPPlhOa5OXl4dhjj8Vdd92lmzhk3bp1yMzMBMdxyM3NxZYtW3TrKCoqQmFhITiOgyAIhs/tVKC8vBzjxo0DAAwcOBDnnHNOUur95JNPAITCgc8999yk1Gk3+/fvl//u1KmTrl1eXp4cLms1DPi1117D0qVLkZWVhbfeeiu+hmqgbHuHDh3A8/pDt86dO8t/a7VfOT4wCoXleR6XXnopgNA4bPLkyVG1ORaWLFmCgoICcBwHr9eLzz//PMImnjHh8OHD0bRpUwChpEybN282bdP27dsxd+5cAEB+fj7OOuusqK8rKysLbrfb1K5p06Y49dRT5f+bjW8J++5r5X0xcuRIpKWl6ZalDL//7LPPompvLBw4cAB9+vSR+/Q777xTc9lmrGO9goIC/Oc//wEQ+my07jstlBpHHT6sRHqOVFZW4ssvv7RUtiXsUMFGswjKWRyjl9Ys0saNG9lxxx1neB7P8+yRRx7Rbdtjjz0m286ZM4f93//9n2Y5yhmm0047zVKbx4wZo+kyV842mZ2v91np4ff72bXXXmta9oUXXqgZSiEh2Q0YMIBt2rSJde/eXbestm3bNkgPcp8+feTPYNGiRRHHlV7aHj16GJYVDAZZTk6O/Ju1cxZKj7KyMjZq1CjT38rw4cN126Oe6Z0+fTrLy8vTLWvo0KG6odkSP/74I2vatKlhm7Kzs9k333yjW4byXjl06BDr37+/5u9WyZw5c1ijRo106zzmmGPY9u3bWdu2bTXPDwaDcqKIRo0amYaCV1ZWyvUVFhYaek2ixSy6w+7vLRAIGD7XeJ5nL7zwgmVPi5WkGx6Ph73zzjua57/33nuyXb9+/VggENC0u+CCC2S7hx56yPAzTQUmTJggX080IZDxUFVVJXuFjMIajXCCB7Z169ZyWVY9Nccdd5xpuZs2bZI/Hylk124P7MaNG+Xymjdvbvgs+f7772Xb22+/PeK4sq9fs2aNYb1ff/21bHvSSSfF3H4r3+OMGTPk0OasrCzN5Th2jAnvvPNO2fbRRx81bbvSy3TbbbdZveSYUUZrTZ48WdOGPLC12HVfK72qWmH1Sg4fPizbCoKgG6FnhhUP7JYtW+RESADYc889F2Fjx1jv22+/le2sPOd/+eUX2b5nz56GtspEYXYlFWTMphBioy9hwYIFbOrUqWFrCqdOnRrxUj9IN27cyPLz8+Vz+vfvz55//nk2adIk9umnn7I77rgjbDCqdxMrBey///1vuQO4//772aeffsrGjx/PbrrpJrZ79275nL59+7KsrCw2YsQI9uSTT7KPP/6Yff755+z1119n1113HcvMzDR8oP35559s6tSpYRki33333Yhr/vPPP8POsyJgL7roItkmLS2NXX/99WzChAns008/ZbfffjvLzs6Wj59++um64bKSTa9evVjXrl0Zx3FsxIgRbNy4cWzKlCnsueeeY4WFhbJdNOE29YHq6uqwAf+ePXsibCZNmmT68FGi/H4XL16cgFbXUlVVxU466SS5vg4dOrAHH3yQffLJJ2zy5Mns6aefDnsoDho0SHNQpOwoR4wYwTIyMlh6ejq7/vrr2fjx49mkSZPYXXfdFXZPGA0evvzySyYIAgPA3G43O//889mbb77JPv/8c/bBBx+wSy+9VA5l4Xme/fzzz5rlKD9L6b7u2bMne/7559nkyZPZe++9x26++WbZftWqVWGhWb169WKvvPIKmzJlCnvjjTfYKaecIoshKSRJa+D57LPPymV8+umnht/BJ598Its+8cQThrbREo2AteN7U3buHo+HXXvttWzChAnsk08+Ybfccov82Z5zzjmmA9Xff/9dtuc4jp1xxhns1VdfZVOmTGHjx49n119/fdh3pVfO+eefb9j2Dz74IGzwHc9aJadw9dVXy9e0YsUKVlVVxV577TV24oknstzcXJaRkcE6dOjArrzyStueMT///LNc59133x1TGXYI2D59+rAuXbqwjIwMlpGRwdq2bcsuuOAC9umnn1r6bpWT10Zr5ZT31vjx403LHTx4MAPAjj/+eHkixW4ByxhjPXr0CBvvmK2B9Xq9bO3atRE23bp1k8uJRsBmZ2dHnaFUwkzAfvbZZ/Jzv6CggC1ZsiTCxq4xoXLiuV27dqbX1KFDB9n+n3/+ieXyo0I5wbBw4UJNG+XzvUePHuyYY45hWVlZLC0tjbVu3Zr95z//YePGjTN0YpiRKgLWrvv6xhtvlI9HI2ABaP5erWAmYJcvXy5nrxYEQXPS0q6xnt/vZ82aNZP7ZbPs48q1x6+99prptUrPnaysLN0J52hx5DY6wWCQ9e7dW34I6yWp2Lt3rzwbx/M8W7lyZYSNUsBKD70jR44Y1j979mzDG//gwYOyx4fned11CnZvozN58mT5eLNmzTRnm7Zu3Rrm2dBbb6n8TDweD/vuu+80r1NZVjwDovLycs2Ji1heauGfCJTio3fv3po2TzzxhGlnqUSZROCTTz6xucXhqNfmag3wfD5fWJu0HtrqdP2FhYWaa6EWL14sz242atRI05u3fft22QtdWFjIli9frtn2xYsXs9zcXAaAtW7dWnPtkDqy4/bbbzf0Sig9tDfddJOmrfpZoTXw3Lt3rzzQMhuIn3rqqXLHY0ciHSXRCNh4vzflTGteXp7mFg9r166Vt1gxGqiWlJTIyYDy8vLYvHnzNK9vw4YN8gRaZmamnAxEyeHDh+XZd0EQ2IIFC+Rj69atk8V5Tk5O3FuBrFmzxrbnl9a1WKVnz55hg2nlxLDW6+abb457sKCctPniiy9iKsMOAWv06tKlC1u2bJlhWQcOHGAdO3aUz2nevDl74IEH2EcffcQ+/vhj9thjj8n9Hc/z7KmnnjJt34cffij//pT9UiIE7K+//ho24XTcccexZ599lk2cOJG999577LbbbpOfr7m5ueyHH37QLEc5sW4U5cJY+HpZAGznzp0xtd1IwL7xxhuyd6Zt27Zs3bp1EefbOSZkjMnrlYFQZJ4e8+fPl+169epl/YJjZMGCBXJ9BQUFuveu1W10WrRoYXh9RqSKgLXrvlaO5+644w7DOpXrZQHzyWw9zJx/khMlLS2NTZs2TbMMu8Z6jDF29913yzZG0Qnl5eWys8ztdlvq06644gq5bLNntVUcKWC/+uor2faNN94wtF23bp3s0dHKcKUclGZmZrJdu3ZZuiYzNm3aJJerd0PYLWB79eolH//xxx91y1m8eHFYh6D1EFTefE8++aRuWe+//74lOzOUv5F4X4le7H748GHWokUL00HbHXfcIdu8+eabpuVGax8ru3fvZh6PhwHaSTyU+Hw+Obtlp06dIo6rO8pffvlFt6xLL73U0O6WW26RB3t///23YbukgSEANnHixIjjynvl+OOPNxSvS5YskW179OhhOKBXlqs38FSGeOklNlm3bp1sM3z4cMNrjYVoBWw835syc6eRR0oZuqg1UGUsfC/Gb7/91vAalZ6/Z555RtNm3rx5ckbItm3bsqKiIubz+djxxx8vn2vHZJF6ciOeVzwDOGmGHIA8q96yZUv2yCOPsEmTJrEPPviAjRw5MmxfR6PkGla45JJL5LL0Jp3MiEfAulwuNmDAAPbII4+wCRMmsC+++IK9/fbb7LLLLpOzWwIhD6HZwOjQoUPsggsukMcMWq8LL7zQ9PnEGGN79uyRPX7qAW8iBCxjjP3zzz9hS1vUL5fLxR566CHDcc7DDz8s219wwQW6dsokTtJLTxCaoSdgH3roIfn9o48+Wlcg2zkmZIyxt956Sy7PaJeBK6+80nK98VJdXR2WQfqll17StZ07dy7jOI6deOKJ7L777mMfffQR++KLL9j777/PrrvuOnkCWPpNzJw5M+r2pIqAZcye+3r27NmybatWrQyX1KiXIsaamFNPO33zzTcsPT2dAaHJqPnz52ueb+dYj7FQpJrUHqPoBOVSFrN6JV544QVb+2TGHCpgpTC0nJwcS1uO9OvXT7ejUA48jB5UsSB5HPTSqtspYJWf8THHHGNalhTWBGh7TqVjgiCww4cP65ajFOrxbEScKgI2EAiwYcOGyXUZiQ/lWuT333/ftOwHH3xQtn/22WftbHYYr732mlzP77//bmr/wAMP6P5OlULIbAZaKTrVaxdFUZQ3ODfbhoOx0JoOyTOo9X0r75WPPvrIsCzlgM0sNEgZMqc38FQKq3vvvVfT5p577pFtzLwcsRCNgI3ne6uqqpI7yGbNmpl685ThiVoCVvKOdO7c2fQaGWNy+JSR6FHeV6NGjWL33nuv/P9LL73UUj1mOEXAer3esLL69u0rb3uh5LvvvpPvH0A/FNEKUng9ELsHLlYBu2HDBkMxtn379jBB17VrV9Pf6KZNm9g111yj+/14PB524YUXhi0r0kIKYS8sLGRlZWW612ungGUsFIKvteZfejVu3Jjde++9ullvN23aFPbb0Ou7lN6YaPoTLdQCNhAIhH0HJ598suE4xM4xIWOhSWpp8kMv66rSy+TxeNjBgwctX28sKJcH9OrVSzO/isTu3bsNs0IfPnyYnXnmmXJ5TZo0MY08VJNKApax+O/rQCAQ5skdM2aM5rNk2rRpEUI51vGclnb68MMP5fKbN29uGLZu51hP4sQTTzT9rpRRHFrRm1oo81Y8/fTTls4xwwUHsmDBAgBAixYt8NNPP5naC4IAILShcWVlJdLT0zXt/vWvf1luQ0lJCSZOnIgff/wRK1aswMGDB3UzEu7cudNyubHyxx9/yH8PGzbM1H7YsGH4+eefAYQyFp944omadp07d0ajRo10y2nVqpX8dzzZiNu1a6eZNc1p3HbbbZg5cyaA0Abcyk2aUwXp/gFCv81p06YZ2iu/1zVr1mhm7wWAk046ybAco9/KqlWrcPjwYQBAdna2aZuAUObG4uJirFmzxtDO7L5eunSp/PfAgQMNbaWs3EYMHDgQnTt3xvr16zFhwgQ8/fTTYRkm/X6/nJ2vZcuWGD58uGmZiSSe723ZsmXw+XwAgAEDBsjPWj0GDx6s+30dOXIEy5cvBwA0a9bM8m8AgOFv4IknnsDPP/+MxYsXh2X4bt++Pd5++23TOqzw+OOP62bKTyaiKMp/u91uTJ48Gbm5uRF2//nPf3DbbbfhlVdeAQC88cYbpr8DPaT7FgAaN24cUxmx0rFjR8Pjbdq0wfTp09GjRw/s3bsXa9euxZdffolRo0Zp2j/33HN4+OGHIYoirrnmGtxwww3o3r07AGD16tV455138MEHH+Dzzz/HokWLMGvWrLCsvhJTp07FV199BQB46623kJmZGeeVmlNeXo7Ro0fj66+/RmZmJp577jlccMEFKCwsREVFBRYvXoznnnsO8+fPx4svvog///wT3377LTIyMsLKOeqoo/DQQw/hiSeeAABce+21+Oqrr3D22WcjPz8fu3btwqRJk/DHH3+goKAAVVVVKC0tBQDD7MdWqaqqwsiRIzF16lQAwJlnnokvvvgiop1K7B4TNmrUCOeccw4mT56M8vJyfPnllxG7Qnz55ZfydZ999tlo0qSJ5WuMlpdeegkffvghACA3NxdTpkyBx+PRtW/RooVheY0aNcJXX32FE088EStWrMChQ4cwbtw43Hfffba22ynYcV8LgoBx48bhjDPOQDAYxIQJE/Dnn3/i8ssvR/v27VFcXIyffvoJU6dOlXcpkDLl23FfAMALL7yA+++/H0Ao2/jMmTNx1FFH6donYqx31VVXyXpj/PjxEWOibdu2yTu6NG/eHGeccYZhnRLK+8e2nU3sUMF2emBLS0vjmt1Wz9YqZ86Nwm6VzJkzJ2I9l9HrqKOO0izHTg+scqbl3XffNS1LuW/fAw88EHFcOmYlOZNkG83MeSqi9OQ0a9ZMcy2OEqeGECvDJ6N9qcN1lZ48oyQ/alv1mmDl3oTRvrTCXZT3ilmiCmVYlpW9+KR1J0aek5dfflkuU70v4JdffikfS1Tm22g8sPF8b8rnyIMPPmjaLuVzSu2BVSZPifbldrsN6920aVNYAjuXyxWX19GpSFEMANiZZ55paKsMY2/WrFnMdUphZ4IgxFxGrB5Yqzz33HNy+ZdffrmmjfL5bhQO+vrrr8t2J5xwQsTxoqIieYmJXgiu3R7YQCDA/vWvfzEgtAb0jz/+0LQLBoNhyc30km6JosgeeOCBsFBz9atZs2Zs0aJFYYmRzPpEPZQeWGV462WXXWaagMvuMaHEjBkzDH+TSi+T1tjRaJ37jBkzLH827777rlxPZmYm++233yyfa4Yy0WS0iThTxQNr130t8eWXX8rZsLVeHo+Hvfvuu+zcc8+V37MyJtdC+ZxQ3hc9e/Zke/fuNT3fzrGeRHFxsRy+rBWdoFwrrBeBpsWsWbPk82666SbL5xlhz7SBjRw5ciSu8yVvgRZ6nlklGzZswPDhw7F3714AQJcuXXD77bfjrbfewqRJkzB16lT5Je0pFQwG42qzFaSZQACWZnslz4X6XDV2zRylOk8//TSeffZZAKG93mbPnq05864kLy9P/vvgwYOmdRw6dEjzXLuJ5x4yun/i+a0kqk2A+X0tRU64XC5Le/FZub+uuOIKeL1eAMD7778fdkz6P8dxuPrqq03LSjTxfG9lZWXy30YeEgmjzy6e34Df7zc8np+fH+YdPOqoo3D88cfHXJ9TUT43zK6vc+fOcj+wb9++sO8yGqTfeTAYlPdKdhpKL8HatWsjju/atQsvvfQSAKBbt264+eabdcu65ZZb0K1bNwCh6I1FixaFHb/nnnuwZ88e5Obm4o033rCh9eZ89dVXsrflyiuvRJ8+fTTteJ7HG2+8Id/z7777rua9w3Ecnn32Wfz999+4/vrr0aVLF2RmZiIjIwPdu3fHgw8+iJUrV+L4449HSUmJfE6zZs3ivhblntPl5eWmkVmJGhMOGTIErVu3BgD88ssvYftOK71MLVu21Ix6O/fcc3Vf1113naW2ffzxx7jhhhsAhPqx7777DieffHIUV2eM2X2R6th5X0ucf/752LhxIx555BGccMIJyMvLg8fjQdu2bXHVVVdh6dKluO6668LGc82bN4/7WpT3RWVlpSVdkYhxVW5urrzXd3l5uRxpAgCMMXz88cfy/432flWjbKsVLWYFx4UQK4XXqaeeivnz5ye1/ueeew6VlZUAgIceeghPPfUUOI7TtL322muT1q7s7Gz5byubqysHK8pz64qKigo5NDdeCgsL0bt3b1vKAoAXX3wRjzzyCIBQ6M2sWbPQo0cP0/OUAlfZ+emxbds2zXPtRrqHOI5DIBBwxCSF8r5+9NFH5fC1ZCCJqkAgAL/fbypirdxfTZo0wQUXXICJEydi5syZ2L59OwoLC7Ft2zbMmjULQGiA1L59+/gvoA5Rfm9WxIvRZ6csa/To0WGboMfLTTfdFHZ/rV+/Hg8//DBeeOEFW8pfu3atbQPA/v37Iz8/P6Zzu3Tpgs2bNwOAZuiwmtzcXLkvOHLkSNh3YBXlxMDhw4ctTWQkG2V4WnFxccTxmTNnykJu8ODBun06EHpuDho0SA5b/+OPP8LCrz/44AMAQPfu3eWwTzXKNhw5cgRPP/00ACAtLQ133323tYtS8MMPP8h/DxkyxNC2ZcuW6NatG1atWoXS0lKsWbMGxx57rKZtz5498c477+iWtWrVKnkg3alTJ0u/OTOee+45TJ48Gb///jumTp2KUaNGYcqUKbrP5USNCXmex5gxY/DMM8+AMYYJEybgscceAwBMmDBBFtajR482XToRC5MmTcKVV14Jxhi8Xi+mTZtmusQlWszui1THzvtaSbNmzfDkk0/iySef1C1v9erV8t96E0rRcMEFFyAnJwdvvvkm1q9fj4EDB2Lu3Llo2bKl7jmJGutdeeWV+OyzzwCEwojHjBkDIBSyvGnTJgChpUldu3a1XGYilqI4TsDm5uYiKysLZWVlSVlbqmb27NkAgKZNm+LJJ5/UvSFKS0vDvpBEo1zzsGHDBlN7pY3RDZAs9u/fL8/qxMuYMWNsW5s6duxYeV1Ibm4uZsyYgeOOO87SuUqR++effxraiqKIv//+G0Co45RmAhNBq1at8M8//4Axhl27dqFNmzYJqyuaNkkk+75u2bKlvPZy8+bN6NKli65tUVGR5Y7+hhtuwMSJEyGKIj766CM8/vjj+Oijj+R1ilZn4Z2M8tmxceNGU3sjm0T9BiZOnIiJEycCCHklDx48iG3btuHll1/G6aefjkGDBsVdx+TJk22bdJk7d66ltdZaHHvssZg+fToAa7PvkvcMsCZ4tWjXrh1+++03AKFBiOS1chJm0S27d++W/87JyTEtT/lZ6U3KLFy4EAsXLjQtq7i4WJ4gzc3NjUnAJqL9VlCKxWhyiBiRnZ2Nn376CWeccYYlEZvIMeEVV1yBZ555BkDIG/roo48CQNjkmnptrISZ59iIL774ApdffjlEUYTH48GXX35pKbdJtCQr6quuqKv7YvXq1XLUXYcOHUzXJFvljTfeAMdxeOONNyyJ2ESN9QYNGoTCwkJs374d8+fPx9atW9GuXTv873//k22i8b4C4QK2bdu2trQzaa4Z5cyA2Y1/6qmnAggNNq0Mmuxk3759AEIJQIxmM2bPnh2WUEOLaK7ZDGUSJsnDY4TS26mXwKmh89Zbb+HOO+8EEOpUp0+fHtVM2tFHHy0P5latWmXYuf7+++/yYPKUU05JqFd8wIAB8t92eb3jpVevXnIH8/PPP5veO3ZywgknyH/PnTvX0FYKG7NC//79cfTRRwMAPvroI/j9fnz00UcAQhNgI0aMiL6xDqNnz55yMpH58+ebhjVJieO0yM/PlxNrLFq0KExcxcqWLVtw0003AQh52idNmoRPP/0UgiBAFEWMHj06bBCX6vz73/+W/zabNFu/fr28fKRFixYxeV+B8Im6devWxVRGolEKLa3oFuXgdseOHablKb35iUzeY5Vo2799+3b573jar5wotnM5hCRiTznlFAChpFgXXnih7lKBRI0JO3bsKAvzzZs3Y8GCBfjll1/kKIeTTz7ZcMIzFqZNm4ZLLrkEwWAQLpcLU6ZMwX/+8x9b65Awuy9Snbq6r5VCzu5lQq+//jpuu+02AKFn+GmnnRYm1JUkaqwnRScAtWHDUrIzIBQCrJcoTw9lIka9iJCo22lLKRZQdp5mMx/SBwdAnhFLFlJ41ObNm3VFZzAYlNdLGhHNNZvRrl07OWx22bJlhiJ26dKlmDNnDoDQTIcT1oJJWYjteNnhfX3//fdxyy23AAgNfH/88Uf069cvqjI4jsPIkSMBhG7yN998U9dWuVYq2hs/Wi666CJZdLzwwgtx//bsQBAEXHrppQBCnYgUhpcMlELyrbfeMhRhr7/+elRlX3/99QBCneftt98uT2KMGTPG0npbp+P1enHmmWcCCE3uSWFFWkyfPt00Y7T0bK+oqMDzzz8fV9uCwSAuvfRSWQi/8cYb6NSpE/r3748HH3wQQGiN1DXXXBNXPUAoC7Fdz69Yva9AyAsmTZrNmjXLcOnCe++9J/9tNVOkFn379pX/Xrx4cczlJIrDhw+H3bfS71WJUoT/8MMPhnkhSkpKZC83ED4BBsDSd7xlyxbZvm3btvL7sYZxKts/efJkQ9tff/1Vfg41atQIHTp0iKnO//3vf1iyZAmA0KRrtP2jGZKI7d+/P4CQsNMTsYkcEyo9SePHjw8bX0TrZTLjxx9/xKhRoxAIBCAIAj777DOcc845ttYhUV1dHTZO1bovUh0772urrF27Vh7r5eXl2dK/qHnttddw++23AwhFU+qJ2ESO9a644go5AvXjjz/GF198IS9HOe+886KO6JH6juzsbHkiO27syARlJQvxrbfeKtvobcorEQwGw/Z2u+222wz3xKqoqGD/+9//2KRJkyKOKbMQW8l+NnToUNn+1VdfjTju8/nCNreGQZbBV199VbaZMGGCad1mmZqnTJkiH2/RogVbs2ZNhM22bdtYhw4dZDu9DZal41YyQkZjmwpMmDBBzr6YkZERV1a8Xbt2sYyMDAaEMp/Onj07wkaZgbFNmzaW9rGLl7vuukuuc+DAgWzPnj26tsFgkM2aNYs99dRTEceMMtRGa7tjxw45w6/X6zW9J/bt28eefPJJtmzZsohj0ewrzRgL2zfxpptuYsFgMMJGvdenleyhxcXF8vevfBnt0WcH0WQhjvd7W7BggXy8UaNGmpvBr1+/Xs7MKr209oEtKytjbdu2ZQAYx3HsxRdf1PwuJIqLi9nrr7/OZs2aFXHskUceketSZ4P1+/3yXpCII0ukE1Hu23vSSSeZ7gPL8zxbsWJFzPVVVVWxzMxMhhgymUrEkoX4999/Z++//z6rqqrStdmxY0fYvoWdOnXSzGrr8/lY69atZbsRI0ZoZi+vqKhgZ599tmzXo0cPJoqi5euUiCYLsXqPdC1WrlzJeJ6XbfT2ndy2bVvYXpZ62T5XrVrF9u/fr9umTz/9VN7/OS0tja1du9bwGsxQ7wOrpLS0NOz5PGLEiIhs8XaOCdWUlpbKv++srCw5A21GRkbUe6caMWvWLHnvWUEQ2GeffRZTORs2bGAvvfQSKykp0bVR7wPbqFEjVlRUFFU9TshCLPUVeufZfV/v27ePrV69Wrc9f/75J2vTpo1czvjx4y1fixZm2un2228Pe7Zp7cNt11hPC+VvQNm/a41zjSguLpbH3Oecc05U5xqRtDWwgwcPlr1QV199Ne644w60bdtWXhzfsWNHec83nufx1VdfoV+/fti1axdef/11fP755xg5ciR69uwpJ6bYvn07li5dip9//hnl5eV46qmn4m7nLbfcIns377zzTsybNw+nn346mjRpgg0bNuDjjz/Ghg0bMHDgQGzYsMEwbHTw4MHy3/feey8OHDiALl26wOUKfeytWrXCMcccY7ltF154IaZOnYrJkydjz5496N27N6644gr069cPgiBg6dKl+PDDD2WPxLBhw+TwOiLE9OnTcdVVV8ne9auuugrFxcWm+2f17t0bhYWFEe+3bNkSr7zyCm688UYEAgH8+9//xujRozFgwAAEAgFMnz5dDrtwuVx47733kJaWpluPcs31li1bdPdkNeO5557DP//8g59//hlz587FUUcdhfPPPx/9+vVDQUEBfD4f9u7dK3vz9+7di8GDB+Phhx+OqT4rtG7dGpMnT8bZZ5+N6upqjBkzBq+++irOPvtsdOrUCenp6Thy5AjWr1+PRYsW4bfffkMwGLQlscW7776LPn36oKKiAm+//TYWLlyIyy67DK1bt8a+ffswZcoU/Pbbb+jXrx+2b9+OXbt2WUqIkJubi1GjRoWFFJ122mno1KlT3G12Cv3798dNN92Et99+G0VFRTjppJMwZswY9O/fHzzP448//sCHH36I8vJynHPOOYb3UmZmJqZNm4YBAwagpKQE9957L959912cf/756N69O7KyslBSUoLNmzfjjz/+wLx58+Dz+fDJJ5+ElfPrr7/K3oXWrVuHeRuB0L02ceJEHHfccSgpKcEdd9yBAQMG2B4OWBdcccUVmDp1Kr7//nssWrQI3bt3xzXXXIPu3bujvLwcM2bMwBdffCE/45566ilLSen08Hq9OOOMM/DVV19h6dKlKCsrMw1HVj9HlOt1t2zZEnG8d+/eOO+888Le27dvH6699lrcddddOP3003H88cejVatWSEtLw6FDh/Dbb7/hyy+/lJMuZmdnY8qUKXL/qsTtduONN97A+eefD8YYvvnmG3Tr1g2jR4+W8xGsWbMGH3/8sRxm6Ha78d///tcwMUyyOProo3HrrbfitddeAwA8+OCD+Pbbb+V9YCsrK7Fo0SJ8+umnsheqTZs2clIiNT/++CMeeughDBkyBP3795f7ma1bt2LatGnyPpAejweTJk1K6H2TlZWF6dOn48wzz8SCBQvwzTffYOTIkfjiiy/kKJZEjgmzsrIwcuRIjB8/Piz55fnnn29pXaUV/vnnH4wYMQJVVVVy2enp6abjjq5du0YkyikrK8M999yDRx55BEOHDkWfPn3Qtm1bZGZmori4GEuWLMHkyZPle87lcuGzzz4zXAP79ddf46+//gp7TxlF8Morr0R43KTEZGrmzJkjRwBKSPk/AODDDz+Uc81I3H333TGt0bX7vt6+fTv69OmDE088EYMHD0bXrl2Rnp6OvXv3Yvbs2fjhhx/kCK577703LDIgEYwdOxYcx2Hs2LGy7pg7d25YPolEjvWuvPJKOQx9z549AEIRJdHmlZg3b57cH9kacWCHCrbigQ0EAmGzbOqX1sz/7t272eDBg3XPUb4EQWDvv/9+RBnRemAZY+yBBx4wrOuUU05h+/fvl2eHjGZYL774Yt1y1J+VFa+S3+9n11xzjennccEFFxjujynZNTQPrNrLZvWl5U1S8tJLLzG32617fnZ2tqXZYOU58c56VldXs5tvvpkJgmDpGkePHh1Rhp2ePImFCxfKe0uavbKystjy5csjyojWA8tYaH9nyQOs9erRowfbvn07a9WqFQPAjj32WEvlLl68OKwcvf3V7CSZHljGQs/vyy+/XPez43mevfjii4aeFiVr165lvXr1svQb8Hq9bPr06fK5RUVF8rOX53nD5/qnn34ql9OrVy9Dr00qUVFRwUaOHGnaJ+p56qJl2rRpcrkff/yxqX20z1etcYNyD2KzV48ePTQjNdR8+umnLCcnx7S8/Px89sMPP8TyUTHG7PfAMhbyntx1111hnli9V8+ePQ33bH3ppZdMyzjqqKPYzz//HOtHEIaV50JZWRk79dRTZbuzzz47whNrx5hQi/nz50ecP2fOnHgvW0Z5/dG8tJ7Hf//9t+XzCwsLLY17lf2J1ZcesYyx9MY6Zh5YCbvu6yVLlpiWkZ2dbbjfbDRY0U6MMXbnnXfKdh07dozwxNox1tOirKwsYk/cRx99NOrrvPDCCxkAlp6ebhg5EC1JE7CMMVZZWcmef/551q9fP9aoUaOwD9tokDVv3jx2/fXXs6OPPprl5eUxQRBYTk4O6969Oxs1ahQbN24c2717t+a5sQhYxhibPn06Gz58OMvPz2dut5u1aNGCDRo0iL3//vtyiJIVARsIBNi4cePYaaedxvLz8+WwLq3PKppB+cKFC9nVV1/NOnbsyDIzM1l6ejpr3749u+yyyyx1OlI9JGCtvcwELGOMrVixgv3f//0f69y5M8vMzGTZ2dmsR48e7L777mNbt241Pb+8vFyuz+PxsEOHDtlwxaGQo/vvv5/17duXFRQUMJfLxTIyMlj79u3ZmWeeyZ599llNkchYYgQsY6GJmE8//ZRdeOGFrH379iwrK4u5XC7WuHFjdsIJJ7Brr72WTZkyhZWVlWmeH4uAZYyxvXv3srvvvpt16dKFpaens7y8PHbCCSewl19+mZWXlzNRFOVNvE877TRLZYqiKG9C3rhxY8OQR7tItoCV+O6779jw4cNZQUEB83q9rLCwkF188cXs999/Z4xZG6hKiKLIvvnmGzZmzBjWuXNnlpOTwwRBYHl5eaxnz55s9OjRbPz48ezw4cNh540aNUqu4/777zesgzHGLr30Utn+rrvuMrVPJX766Sd28cUXs3bt2rG0tDSWnZ3Njj76aHbrrbfaGsYeCARYYWEhA8CGDh1qah/t81Vr3FBaWsq++eYbdv/997NBgwaxzp07s8aNGzOXy8Xy8vJYt27d2JgxY9i3335rGIauZt++feyFF15ggwcPZs2bN2der5d5vV7WokULNmzYMDZ27Niowy3VJELASqxatYrddddd7MQTT5Q/D+l5PnLkSDZlyhTNMGolO3bsYK+99hobMWIE69y5M8vNzWVpaWmssLCQDR8+nH344Ye2LnWx+lzQErFak07xjAm1EEUxbOlVu3btYgod18NOAVtVVcV++ukn9thjj7HTTz+dde3aVR5b5uTksI4dO7KLLrqITZw40fKEXaoLWMbsua/LysrY+PHj2ZgxY1iPHj3k8X/z5s3ZKaecwp5//nnDEN1osaqdGAsPFdYSsYzFN9bT46qrrpLr5TiObd68Oarzjxw5Io+prr322qjONYNjrMavSxBEnTJjxgw52cqtt94adUIhIn5WrFghZ8iz+h3Mnj0bQ4cOBQDcdtttcpgfQdQnxo4dizvvvBOCIGDr1q2O3E6HIAiCcA4fffQRrr76anAch5UrV9qXwAlJzEJMEIQx0rqQ7OzshK5FJfT573//K/9tde3tuHHj5L/rw96vBKHFDTfcgObNmyMYDOLFF1+s6+YQBEEQDkbZV4waNcpW8QqQgCUIxyAJ2DvvvBMFBQV13Jr6x4IFCwz3n33rrbfkZECtWrWytDffP//8IyfiGDJkiO0PaIJwCunp6Xj88ccBhLbo0dubkCAIgiAmTZqEdevWwePx2JJkVw2FEBOEAzh48CCaNm2K/Px8bNq0CdnZ2XXdpHpHx44dUVVVhX//+9/o1asXCgoK4Pf7sWnTJkydOjUsU+J3332nK2B/+ukniKKI9evX48UXX5Sz8/3666845ZRTknItBFEXiKKIPn364K+//sLNN99suPc1QRAE0TAJBoM4+uijsW7dOtx///147rnnbK+DBCxBEA2Cjh07YtOmTYY26enpeP/993HppZfq2mil37e6XnbmzJmoqKgwb6wG+fn56N+/f0znEgRBEARB1BdIwBIE0SBYtGgRvvrqKyxatAi7du3CoUOHUFFRgUaNGqFz584YMmQIbrzxRjRr1sywHEnAZmVloXPnzrjxxhtx1VVXWdo3tl27dvJ+dNEyYMAAzJs3L6ZzCYIgCIIg6guRO34TBEHUQ0466SScdNJJcZdDc34EQRAEQRB1B3lgCYIgCIIgCIIgiJSAshATBEEQBEEQBEEQKQEJWIIgCIIgCIIgCCIlIAFLEARBEARBEARBpASUxIkgCIKoV4iiiMrKSlRUVOi+qqqq4PP54PP5UF1dLf+t9X+fz4dgMAhRFMP+1XpPFEUAoWzVei8pYzXHcRAEAW63W365XC7Nv6VXWloa0tPTkZaWpvt3eno60tPTkZmZiczMTLhc1NUTBEEQ9Qfq1QiCIAjHwRhDWVkZSkpKUFJSgtLSUs2/le+VlZWhsrISlZWVdd18R5Geno6srCxkZWUhOztb/lv5ysnJQV5eXtgrPT1dc99jgiAIgqhLKAsxQRAEkRQYYzhy5AgOHz6MoqKisH+Li4sj/u/3++OqTxAEpKenIyMjI+KVnp6OWeN/AccAiJziBXBa/2cAUPMvA8Ck9xR/M4TKU5hKfyPsb1b7HofQSXzoX1bzr/I98ADja94TAPAMZ1w3EFVVVaisrERVVZXu3/Hg8XiQm5uLvLw8+d+8vDw0btwY+fn5aNKkCfLz85Gfn4+srCwSuwRBEERSIAFLEARBxI0oiigqKsL+/ftx4MABHDhwIOzvAwcO4ODBg/D5fFGVm56ejpycHOTk5CA7Oxs5OTn4ZdJicAEOCPCKf3kgwIELckCQA4J8SHyi4YoqxjFAYIBLBHMxQKj518XAXCIgMIy4/XTZo11cXCy/qquro6rL4/HIYlYpbPPz89G8eXM0bdoU+fn5EAQhQVdLEARBNBRIwBIEQRCmiKKIQ4cOYc+ePdi9ezf27Nkjv/bt24cDBw4gGAxaKisnJweNGjVC48aNsWzmanB+HvAJNf/y4Px87d+s4QrQuoTxDHCLYDUv6W+4RAy99lQcPHgQhw4dwqFDh1BSUmKpTEEQUFBQgObNm6NZs2YR/zZr1gwejyfBV0YQBEGkOiRgCYIgCACAz+fD7t27sWPHDuzcuTNMqO7bt8/Ue8rzPJo0aYKCggIUFBTg18+WhERotQCu5l8SpfUPWex6gmAeEcwr4sKH/oODBw/iwIED2Lt3r6UJDo7j0KxZM7Rq1Up+tW7dGq1bt0bLli3h9XqTdEUEQRCEkyEBSxAE0YAQRREHDhzAjh07sGPHDmzfvh07d+7Ejh07sHfvXjmLrhaCIKBp06Zo0aIF/vlxNbgqIfSqFmrFaQMO2SX0YWCARwRLC4J5g2BeEcNvHYR9+/Zh79692Ldvn+ma3YKCArRu3RqtWrVCmzZt0K5dO7Rt2xbNmzeXMzsTBEEQ9R8SsARBEPUQURSxZ88ebNmyRX5t3boVO3bsMFzfmJGRgcLCQrRu3RpzP1oYEqc1QhXVJFCJxMDAADcDSwuApQdxydPnYNeuXdi1axd27tyJsrIy3XM9Hg/atm0b9mrXrh1at25NWwgRBEHUQ0jAEgRBpDCMMezfvz9CqG7dulXXo+VyudCyZUu0adMGi6b8Da5SAFfpAlcpAH4SqUQcKDMRRzO8UGcwVpzLUJN4Kj0AlhbEZc+dh+3bt2Pbtm3YsWOHbmi7IAho1aoVOnTogKOOOgodO3ZEx44d0bRpU8qYTBAEkcKQgCUIgkgRAoEAtm/fjg0bNoS99LxTkmdq0287wJW7wFW4wFcKQJVAIpVIPEYiUW/oYSYsVecxMCAtCDEjCJYRwNAb+mPbtm3YunWr7n7A2dnZ6NChg/zq2LEj2rdvT2tsCYIgUgQSsARBEA6kuroamzZtwoYNG7B+/Xps2LABmzdv1vQ2CYKANm3aYPvSvbJQ5SpcodBfesITdU203k7GYjtHUZ+85jYjADEjgMHX98PGjRuxbds2zWRSPM+jTZs26NKlC7p27YouXbqgU6dOSEtLi64dBEEQRMIhAUsQBFHHBINBbN26FWvWrMGaNWuwevVqbN26VXOgnZ6ejk6dOmHVTxtDYrXcHRKrepl96RFPOIk6Dt1lXE0ocmYA5z18OjZt2oSNGzfiyJEjEbaCIKBdu3bo0qULunXrhi5duuCoo46irX4IgiDqGBKwBEEQSebAgQNYvXq1LFjXrl2rGe6Yl5eHTp064a+pq8GV1YhVq+G/9GgnnIyD1qBK3lox04/RL5+HtWvXYu3atTh8+HCErdvtRocOHdC1a1ccc8wx6NGjB5o3b05ragmCIJIICViCIIgEEggEsGnTJixbtgwrVqzA6tWrceDAgQi79PR0dO3aFcu/Ww+u1A2+zB37tjT0WCdSBYcKP1nUZvlx8bNnYe3atVi3bh1KSkoibJs0aYIePXrIr06dOpGXliAIIoGQgCUIgrCRqqoqrF69GitWrMCyZcuwatWqCO8qz/No3749tvy2G3yZG1xpTRhwvImV6HFOpCoOFbJKGBjgDULM9uPch4dh5cqVWL9+fUSov8fjQZcuXWRB27NnT+Tk5NRRqwmCIOofJGAJgiDioLS0FMuWLcPy5cuxfPlyrFu3LmJAm5mZiR49emDplFXgSz2hcGCRt7ch9CgnnEYsW+qkgJBVwngGluXHVf8diZUrV2LlypUR62k5jkPHjh1x3HHH4bjjjiNBSxAEESckYAmCIKKgqqoKK1aswF9//YU///wT69evhyiKYTb5+fk4vKYMfIkbXInHHu+qHvQIJ5yOnig1+u2mmJCVYGBgaUGwbD/+fdepWLZsGbZv3x5moxa0xx13HLKzs+uoxQRBEKkHCViCIAgDAoEA1qxZIwvWVatWwe/3h9m0bt0au5ceAl/iAV/iBqqTtM8qPb6JVMKKKFVth1MfYO4gxFwfht97Gv7++29dQXvCCSfgxBNPRI8ePWhPWoIgCANIwBIEQajYsWMH/vjjDyxevBjLli2LWMNaUFCAQ6tKwRd7wR/xgPMJyW8kPbqJVKWeCNNYMRO0Xq8Xxx13HPr06YMTTzwRbdu2pSzHBEEQCkjAEgTR4KmqqsLff/+NxYsXY/Hixdi1a1fY8dzcXJRuqgJ/xAuu2GN9K5tEYPbIjmXdIUHUBSTKANQI2jwfhtzaD0uWLMGhQ4fCjhcUFKBPnz7o06cPjj/+eOTl5dVNQwmCIBwCCViCIBocjDHs2LEDixYtkr2sPp9PPu5yuXDMMcdg+dQN4Iu94MoTuIY1GrQe11oigB7rRCpBQlaGgYFlBHDt+6OwZMmSiGcTx3Ho3r07TjnlFJx88slo3749eWcJgmhwkIAlCKJBEAgEsHLlSixYsAC//fYbdu/eHXa8adOmOLi8FHxRTVhw0OYswfHCWPRrCAkilSAhFgHjGVi2D+c/fTr++OMPbN68Oex48+bNcfLJJ+Pkk0/GcccdR/vPEgTRICABSxBEvaWyshJLlizBggULsHDhQpSUlMjHXC4XevbsiX++XA++yAuusg7Dgu2AHuVEfYBErCHME8Qtk0fjt99+w19//RXmnU1PT0efPn1kQUuhxgRB1FdIwBIEUa8oKirCb7/9hl9//RVLly4NG+Dl5OSgbKMP/KE08MUe+/dirUvoUU7UF+q7iOVqnjtMNLYzsWW8CDHPh3/f+y/8/vvvYWtneZ5Hz549ceqpp2LAgAHIz8+3o+UEQRCOgAQsQRApz6FDhzB//nzMnTsXy5cvh/Kx1qJFC+z/8wj4Q2ngStyp7WXVgx7jRH2kPgtZTmPyTEvQWrRjYGBZQVw69j/4/fffsX79+rDjPXr0wIABAzBgwAA0b9481lYTBEE4AhKwBEGkJEVFRfjll18wZ84c/PPPP2GitUuXLtg4cxf4w15wFQ5JwJQo6BFO1Gfqq4jVEqZKlCI1BlvmDeDaj0Zi3rx5WLVqVZh5165dceqpp+K0005D69ato2k1QRCEIyABSxBEylBcXIxffvkFc+fOxd9//w1RrB24de/eHet+2AHhYFrd7MuabOjRTTQk6qOQNROmEky0bqt1uieIGz+5CPPnz8fy5cvDnptdu3bFkCFDMGjQIAozJggiZSABSxCEo6msrMSCBQswc+ZM/PnnnwgGg/Kxrl27YsP0XRAOecFVu8JPVA74rK41s2LnBOixTTQkUlG8WlnnGocojRXmDuKWyZdh/vz5+Pvvv+XnKcdx6N27N4YMGYIBAwYgKysr6W0jCIKwCglYgiAcRzAYxN9//40ZM2bgl19+QWVlpXysc+fO2DRrD4QDJqJVIpoBZCoIWHpkEw2NVBSwgLXnSx2IWAnmCuKmzy7G7NmzsXLlSvl9j8eDk046CUOGDEG/fv3g9XrrrI0EQRBakIAlCMIxbN68GTNmzMDs2bNx4MAB+f1WrVph78IS8AfTwVe5Yl8fZmRP4pUgnEeqilcJK8+bOhSxEswbwJh3RmDWrFnYunWr/H5mZiYGDhyIM888E0cffTS4VP8+CIKoF5CAJQiiTikuLsbMmTMxY8YMbNiwQX4/Ozsb5RuCEPZngCuLMXuwNEiMVuQ6DXpMEw2R+iKWrDx/HCBigZpsxhkBXPDCkIiJxMLCQgwfPhzDhg1DkyZN6rCVBEE0dEjAEgSRdERRxF9//YXvvvsOCxYsQCAQAAC4XC6I+1zgD6SDL0oDx5IwgCXxShDOpaGIWAfCwMByfBh01wmYN28eqqurAQCCIKBv374YPnw4+vXrB5fLZVISQRCEvZCAJQgiaRw8eBDTp0/HDz/8gN27d8vvd+nSBZum7wV/MB1cIIkDPavrY+tK5NLjmSCcL2KtJGxS2qUgTBBx+1ej8cMPP4Rty9OoUSMMHToUZ511Ftq2bVuHLSQIoiFBApYgiIQSDAbxxx9/4LvvvsPChQvlrJeZmZmo3MQg7MsEX+6um8Y5eX0sPZoJopZUEbESes+MFBaxEmK6Hxe8OAQzZszA4cOH5fd79eqFc889F/379yevLEEQCYUELEEQCaG4uBjff/89pk2bhv3798vv9+jRA2un7gR/KA2cWIeDOSevj6XHMkFo42QhmyIJm+yCcQxPzLsV33//PRYuXCjvL9ukSROcddZZOOuss1BQUFDHrSQIoj5CApYgCFtZt24dvv76a/z888/w+XwAgJycHJSvDYLflwG+so68rbFA4pUgnEcqilgJByVsshPmCWDU66fj+++/R1FREYDQWtlTTjkF5557Lnr37k0ZjAmCsA0SsARBxE0gEMD8+fPx9ddfY8WKFfL7Xbt2xcbvata2aiRk4ngOTHToI4jEK0E4E6cLoSQLVKvPUTvt9GwYx/DAT9dh2rRpWLZsmfx+YWEhzj//fJxxxhlIT083bQNBEIQRJGAJgoiZoqIifPvtt/jmm29w8OBBAKFZd7bPA2F3pub2Nxxf+3+jQZJkF69NTFhJ7mS3wKVHMUFYw+kCFqgTESth5ZlpZGdXWWKGH8MfPwUzZ85ERUUFgFA0zogRI3DuueciPz9ft2yCIAgjSMASBBE1O3bswJQpU/DTTz/JYcKNGzfGkeV+uPZlgvMLEQMa5WBHwszGygDLyC5mzJI7kXgliLohFcQrUCdhwrE8Y7Vs7CyL4zkwXsQNEy/EF198IWefd7lcGDx4MC688EJ06tRJ42oIgiD0IQFLEIRlVq9ejUmTJuGXX36B9Ojo1q0bNn67F/zh2jBh5SBGa5AjIdnp2VgpJ2HiNVkZiekRTBDWSBXxKlGHXlg1dj2To7VR2jEwPDL7Jnz++edYvny5fLx3794YNWoU+vbtC56vf+uDCYKwHxKwBEEYIooiFi9ejM8++yxsTRNflAbX7ixwpZ6IMGErMJHFPUhS2tmCWYIVEq8EUXekmoAFHCVio8Hs+WzVRg8x04dT7+iJuXPnylurtW3bFpdddhkGDx5M2/AQBGEICViCIDQJBAKYNWsWJk+ejC1btgAIhX2x3R4Ie7Ick0046Umg7BKx9OgliOhwooDlePNngo0i1mqCpVSBeQI498WB+O6771BeXg4AaN68OS655BL8+9//htfrreMWEgThREjAEgQRht/vx4wZM/DJJ59gz549AICMjAxUb+Th2pMFzi/UcQtrSXqCp0SLV2mATo9lgtDGqSJWQu8ZYZOIjTYJU6rABBFj3j8Ln3/+OYqLiwGE8iqMGjUKI0aMQEZGRt02kCAIR0ECliAIAIDP58P06dPx6aefYt++fQCARo0aofSfIIT9meCCzlubFGsSqBgrs6kcVZvUA3J6JBOEMU4XsRJmyeBiriq2BEupgJTwadKkSdi/fz8AIDs7GxdeeCEuuOACZGZm1nELCYJwAiRgCaKBU11djR9++AETJ07EgQMHAIRmvkv+CkLYnwFOdJ5wBcyTkjhevGoNwulxTBDWcZqQtZL4LYEiNlSVtWRNTodxDHdMHY2JEydix44dAEJb8Fx00UU477zzyCNLEA0cErAE0UAJBAL48ccfMWHCBFm45ufno3iJP+RxZak7+AEcKmAN66BHMUFETaqIWNurcdh1JwgGhvunX4v//e9/2L59OwAgNzcXl1xyCc4991ykpaXVcQsJgqgLSMASRANDFEXMmTMHH374IXbt2gUAaNq0KQ4vrtYWrtKAzEjEmdlYKcNmbBOwSWwziViCiAEnidgkZh22TcRaTUQVr00cZTAw3PP9Vfjf//4n91uNGzfGJZdcghEjRlCyJ4JoYJCAJYgGAmMMv//+Oz744ANs2rQJAJCXl4eyfwBhX4a+cAW0Bx3qgVqsNko7G8WiUYITy+KWxCtBpAYkYuMppPZvK0mokmWjI2Tv/GYMxo8fLycZbN68Oa6++moMHTqU9pEliAYCCViCaACsWLECb7/9NlatWgUAyMrKQtUaAcLeLHBBlbFZMpJ41nkZJTVJoHiNKbkTiVeCSC0aoIi11QurJJYJyVgTWZnZaAlZnsMtn18UtgSmY8eOuOGGG9CnTx9wTvotEARhOyRgCaIes2vXLrzzzjuYP38+AMDr9SKwxQPX7mxwwZrtcKTBgdGAy6qNlTL0yrFJMNqW3ClZApYewQRhH04SLqkkYu2amDSzsbkexou44oP/YOLEiSgrKwMA9O7dGzfeeCO6dOmiXQ5BECkPCViCqIeUlpZiwoQJ+PrrrxEIBMDzPLi96XDtzK27fVyNBK7N3lcrGTpNCrGtPcb10OOXIGyHRGyshegfs2MS04pNjGUwVxAjXuiPqVOnwu/3AwCGDh2K66+/Hk2bNjUujyCIlIMELEHUI/x+P6ZNm4YJEyagpKQEAMAXp8G1PRd8pSfyBJ4D7MzWGw/xJImKqhqT6403CYnlhjjkcyeI+ohTRGx9EbB2Yke/o1OG6Alg4P3HYubMmWCMIS0tDZdeeikuuugiSvREEPUIErAEUU9YsmQJXn/9dXmrgfbt22Pn9FIIR9IjjaXBjtEgwsxGOWAysonH62nzGtmY177anWSKHrsEkTicIl4lSMSGY7XvMDpuYvPm8kfx5ptvYvny5QBCiZ5uvPFGnHbaabQ+liDqASRgCSLF2bdvH/773//K61xDmYV5CAcywWnpLbPBg3oQpLYxO26lDjWxJPqIgagFrNUsylE3hB67BJEQnCpOkiAMU0bAAknpZxgP3P/9VRg3bhz2798PADj22GNx2223oVOnTrG0miAIh0ACliBSFJ/Ph8mTJ+OTTz5BdXU1BEEAdmXAtTsXXLBmEKLs1LUGN9Ecj6WMaL2vCVwjG5V4TWCSKRKvBJFAnCpgARKxShLR3+gcZ7yIS/47FJ999hmqq6vB8zzOP/98XH311cjIyIih8QRB1DUkYAkiBfnjjz8wduxYeUN3rtQL97ZG4etcpY7caEAjMvPj8ZRhVTRaSdoRB5aTNyWo/tpy6HFLEAnDyeIVSJ1Q4roSsBIJ6ruYJ4CTb++CuXPnAgDy8/Nx6623YsCAARRWTBApBglYgkghioqK8Oabb2L27NkAgCZNmqDkD4A/nAEODu2AHSAe4xawdrSDHrUEkVhSQYSQF7YWu/awjZKn598aNgHct29f3H777WjVqlWdtIcgiOghAUsQKQBjDD/99BPeeustlJSUhLbF2Z0J165ccGLkQIPjOBjd2vEet0w8CTok9ISjxYzAjhevHEfiliDiJRXEq0QqiFgrbTRL0mfleJzE2pcxjuHi/w7GxIkT4ff74fF4MGbMGFx88cVwuVxxt4sgiMRCApYgHM7OnTvxyiuv4M8//wQAcBVueLY2AVceuS2OMgxK69Y2Oy7ZmA0IjM4PI5bEHEpsyEzsiPBhrc9K+i7oEUwQ8ZNKAhZIuIhNihc2moSAVhIGxkC8fR5LC+CYK1ti6dKlAIBOnTrh/vvvpyRPBOFwSMAShEMJBoP4/PPP8eGHH8Ln88Hj8UDcnAHXvhxwLFxkaq3fUd/aahuj47GK3zDMkm2obbSIMyOwI72vyu+BHr8EET+pJl6B+uGFjSURk5VETVEQTb+mZcNxHBgY7p42Gm+88QZKSkogCAIuu+wyXH755fB4NPZPJwiiziEBSxAOZOfOnXjuueewYsUKAABfkgb3tsbgq90AIjtgLSSbWI5HK441MUvEYVW8xpGZuM69r8rPSf050qOXIOwhFQUsUP+8sBLRTF7aLGAlrPZ/ShvmCqLvbR3kLenat2+P++67D927d4+rjQRB2A8JWIJwEKIoYurUqXj33XdRVVWF9PR0BNakQziYFZakiTFmmDXR7LiZTTSdf8zEIy5TQbwCIZGq9z3Qo5cg4idVxauE00VsLAJWwkqm4AQJWIlY+soHfrwaY8eORVFREXiexyWXXIIrr7wSbrc7rrYSBGEfJGAJwiHs3bsXzz//PP766y8AAF/ihXtrPnif8xJKJDzBUzzJneTDOmt8eS66PWETBT16CSJ+nC5gzZLNxSlgzZ5npgI23vbVUSZhJYnYAoe5guh/d1c543/nzp3x8MMPo127drbXRRBE9JCAJQgHMHPmTLz66quoqKiA1+uFuD4DwoHsyK1x+JrBhKgz4LDjuN4xBXGvkTVK6JEg8SoN5Ei8EkQ9IxVELGCcUT2u4o2fbZZEbKgA/WNG2ORFNUosaOW4LnH0iw/8eDVefvlllJSUwOPx4MYbb8R5551H+8YSRB1DApYg6pCKigqMHTsWM2bMAADwZV64txWArxQijXnFQEKrI7breAwC1iyRRgRGiTxsFrDqwVudC1h65BKE/ThdUBhlT7dJwNYWzwyPaxSgPNn4uBY2hgHHMjlqWcACMfWNzCvimKuaY8mSJQBC+8bed999yM/PN66XIIiEQQKWIOqItWvX4oknnsCuXbvA8zz4XTlw7ckLeV2VnSivMXhI5PEoBGxMa2SNEnzUd/EKkIAliEThZBGrJQKNsqxHXbyNIjZUgP4xLeIQsfEmEoxKwEpE2UcyMFw/YQTGjRsHn8+H3NxcPPTQQzjppJOM6yYIIiGQgCWIJCOKIqZMmYL3338fgUAATZs2RfECAUJ5mtIo9K9Wx5rI4xbFq1lSDEOMEnfYJGD1BmumApbEK0GkLk4WsIB5RvU4RKzZMy9qAVtbgPFxiTrIJmw2kVrbNvv6yXdXPoGnnnoKGzZsAABceumluPrqq+FyOS9XBUHUZ0jAEkQSKSkpwdNPP41FixYBAPiiDHi254MLqkKGRVG/U40Xo7ItCFgz4nqkJFBg1rn3lR61BJF4nCxi6zDjsNHEnqKA2CtPYDbhuLPux9OXavSXjBNxxhO9MG3aNADAsccei0cffRRNmzaNvR6CIKKCBCxBJIn169fj4Ycfxt69e+HxeMA2ZkM4qErUJHXCibotOc687FgTQNUQ8yMlwQKzTgUsPWYJInk0UBGb8C1zzDCon+M4w77BkhfVqO+xcjxWdPrN+74dgxdffBEVFRXIzc3Fww8/jL59+8ZeD0EQliEBSxBJ4IcffsDYsWPh8/nAVbvg2dwUfKW31oDjajtgrVvSynEJvVvaSBwrO2j1IMAsAYZkI4qGCTYsPWrq0gNL3leCSH2cLF6BBitggQRnEzabYBVqopxi6R8NjotePwrPSZdDiq+66iqMHj0afKIiqAiCAEACliASSnV1NV5//XV8//33AAD+SAY8WxUhw5IwBbTFqZXjQHziVtkxG4lXqQ1qFO0zSqxRlwKWwocJooHQgAVsqPg4rj9JAhaom2zCsogNNUCrgTEdV4cU/+tf/8JDDz2EjIyMyDIIgrAFErAEkSAOHjyIhx56CGvWrAHHcRB25cG1NzcUMqwUphJKAWrlOBDZYStvZ63BgNFxpYC1skZWo31WEm4YYiQ0UzV8GCABSxDJggRsvAXEfm4UAlYiqdmEBY3t6eLpM1XHb/t8FF555RX4/X60a9cOzzzzDNq0aRN5DkEQcUMxDgSRANatW4frr78ea9asQU5ODtwbmsG9Nw8cx4c6UT1xynHmxyVxqyVepeNGHa3WcemYulx1G/RsasQrx3GJEa8EQRCEszF5hut5XS0vM9HzupqFFkvHg8HI48r+UM/ravH46xdOwZtvvon8/Hxs3boV119/PRYuXGh8TQRBxAR5YAnCZubNm4dnnnkG1dXV4Krc8GxpAd7nib/gRGYPtiQwY6/f8etf4yzfvGx6zBJEUiAPbLwFxHd+DF5YCdNswkD82fkT/fvgeTBXAB1HZWHlypXgOA7/93//h5EjR5pfG0EQliEBSxA2wRjDhAkT8NFHHwEA+JIMeLY1AydqhC2pMMvQaIk4swfHJbJIwJqUTY9Zgkg4qSAQSMCanG+STVgQjJ+nZpn2BSGubMacIIBpeXJVNiJEDH2oO7777jsAwHnnnYebb76Z9oslCJsgAUsQNuD3+/Hiiy9ixowZAADhQC7cu/PB1wwGzLIuGh0323qAaSVfAqxlD1ZiluDJCBKwBuXSI5YgkoLTBWyCxWuoinogYCW0kgrGm3EfqF0LG+OkL1dzvp6QlY6LTMSV7wzDuHHjAAD9+vXDY489RsmdCMIGSMASRJxUVFTgkUcewZIlSyAIAvitjeEuyguzUd9mZhl6o8nWGCFgzRJZKLGSvdhqeLEBDVbA0uOVIJIHCdjUF7BAdCIW0M/Or3dcncwpyuz7nOp8tZBVH79/2uV4+umn4fP50KlTJ7zwwgvIz88HQRCxQ0mcCCIODh8+jFtvvRVLlixBWloaXBubGYpXrSRHZseVmB23vD7IKFmTXhIoPeJdf1tfIfFKEMnD6eKVAGBxMlOJUV8lYfbdW/H6GtWhOq4lWJWiVX38+XM+weuvv468vDxs2LABN9xwA7Zv327cJoIgDCEPLEHEyI4dO3DPPfdg9+7dQECAd0tLCJVpEXZmiSmMjpttMSB7X806eJPtb+QMxtqNsF62DinhgY2zjtoy6JFKEEknFQQseWBDVcSbqMnofKO+TDoOaG+pA5hvJVdjo/ayhlURDGoeF91+ND1dxPbt25Gbm4uXX34ZXbp00a+HIAhdyANLEDGwceNG/N///R92794NrtqNtI2tI8UrzwG8iccUxp255HFNitc1QTSoObKGdK0EQRBq6no7NK091NXHzfpTsz7V5DgnCJpCnve7cWC6gC5duuDIkSO47bbb8M8//xjXRRCEJiRgCSJK1qxZg1tvvRXFxcXgKr1I29Q6cpscqfPS68x5ab9XnY60Rvzasp4IiH/rgRQnbq8EQRDOJRW8r0mAnnM1WIhKMp1YFnhwglFYsUn/LDLN41zQhe1f+dGrVy9UVFTg7rvvxm+//WbYFoIgImnYo1qCiJIVK1bgjjvuQFlZGfiKNKRtagUuoEiLLwlTvTAs5XEmagtcK4MQk87T1GtLJAb6zAmC0CIJ4cOEChNvqpV+Uk/EsqAUamwiZDWOc6KAtR+X4JRTToHP58PDDz+Mn3/+2bAdBEGEQ09UgrDIX3/9hbvvvhsVFRXgy9Ph3dyqdo9XM+Eq2ZgdV3eEaoFrp1cWoARMBEGkNjRp1PCIJRGUAZrJFYO1faOpNxYwn3hW9d0c4/HXuH04/fTTEQwG8dRTT5GIJYgoIAFLEBZYsmQJ7r33XlRWVoIvy4R3aytwIm9duJp5Za16XQ0grytBEARBaGBhbWvCw4pVNhw4/PLqVpx55pkQRRFPP/005syZY3w+QRAASMAShCnLli3Dgw8+CJ/PB740E97trcAx3tijKmWzNRKuHN8gwoWd3LYIKMyPIAgidpy+DtemsGJLQtYooZVCxM59aRP+/e9/y57YuXPnGtZPEAQJWIIwZPXq1bjvvvtQXV0dEq87WoPjBOvrXGOF480FroVsjyklHp2AHdvo0GdOEIQSmhhLOmZ9n1l2fI4zWfIDmB+XxgKGx3lw4DDv5c0444wzEAwG8eSTT2LevHnGZRNEA4eeqgShw8aNG2vXvJZlwLurNTheMEnBb5KiX7IB9MWS1cGOE2a6k7mGNo5BoOV9YAmCSC1o6yoANmUgrmdC23y/WQshv0afCRNrJ5uNMBKxQEjECgLmv7IlTMQuXbrU+DyCaMDUr6cVQdjE9u3bceedd9ZkG06Hd1chONR0QoxpJ1cSeHNxa9RZWukInYIopkwCKBKvBFHPIRFL6GBpiU08fbN0rln/LQjaQjYsWZSA+a9tw8CBAxEIBPDQQw9h9erVxm0niAZKioyWCSJ5HDp0CHfffXfNPq9p8O4sDK151cKKcJXs9Egl4QokTrgmwKMctXi163ugMGKCSC5OFbGp9Gyvx1gWsoaFWBSyRqiFrCoSiwOHRe/swQknnIDKykrcd9992Lp1q3GZBNEAoScrQSioqKjAfffdh71794LzeZC2s7B2qxw1VsOFzcRrXWKSlTGCFPK6kueVIBoYThWxhIwteRniKCPhYcVWvLGAYVgxx3ismliGbt264ciRI7jrrruwb98+4/IIooFBApYgaggEAnjsscewfv16ICDAu6MQXNAVachZ8LpyFjY3r2vxGg1OCRm28JmRcCWIBkwDFLG0/jU6HOuNVRbPeGz9NojCwkIcOHAA9957L8rLy43LI4gGRMN5YhGEAYwxvPLKK1i8eDEgcvDuLATv94Qbcbx5dmErM6+ciefW6gyw1W144sGmwaClWff6JDwb4CCaIAgVDUgUAnBGYkGrWNkpwFJfbNaXC6GXWVs0hCwXdGH/HC+aNGmCLVu24IknnkAwGDQuiyAaCA3s6UoQ2kyaNAk//PADeJ6HZ3drCFXp4QZmYlEtXLU6RjPhCsQ362snjIWLsGhDjeuQuLwRdmyjQ+KVIOoOWn+e2iS7r7HSp1oRsaZ9u0Uhqz4t4Mazzz4Lj8eDRYsW4e233zYugyAaCKkzKiWIBLF48WK8++67AABhTzO4yrJrD0pe13jWsVoVrvGsu7GTuhJgdTl7z0QSrwRB2EeSnte2hA8T9nljrQhZIzS8sXcMeB0PPfQQAOCLL77AN998Y1wGQTQASMASDZodO3bgiSeeAGMMwpFGcBU3Dh2wKlytiFcjogkXjhHLSTPUXlenYvfA0C7hmgqfHUHUZ8j7GhvJEttJ+n44s31XdU+06I2NJ6wYiCms+IVLvsQ111wDAHjttdfwzz//GJ9PEPUcjjEadRENk/Lyctxwww3Ytm0b+MoMeHe1Bxes6XiMOiirazWtCCOj289KPUy0ZGd4m4uiNfFlQxIn08eN1Wu2UpeNZRmXQY9QgnAEThGwSVz76pgEThbaYUnAWgkhNinHkoA1s2GiuY2V6zH7bMUg4NJIFqkkGAQEAQwM/W9qgVmzZqFx48b44IMPkJ+fb94GgqiHkAeWaJAwxvDss89i27Zt4AIuePcUgocAzuMGJ+jfFhzHGR4HEN+m6OpybMBUvAJJGfglc66MMhETRAPDKeKVSCzJ+p45C/u7W+jLzccLAjgT0c653eBcLnDg8Ou43TjqqKNw+PBhPP744wgEAsblE0Q9hQQs0SD5+uuvsWDBArjdbnh2twUvempnWzU6LY7jQp2MScZBTuCNZ5mjnelO5PqmaD2qMSbXYIxZE6/J8pjaDQ2cCaJuacD3YL3a89pJyQIl4WllxwALItZMyHI8ry9ka97nXC5wjMdTTz2FjIwMLF++HO+9955huQRRX3HQ04IgksP69evlTH7c7gK4gjnGm4pbTMJkKlwTEVYW61Y6SdrT1bLX1WwAFmWSJcthdQ1tmwuCIBJLHT1TYhaxTgofThbRrpG1svWdHd5YwNwb63LhupNfxgMPPAAAmDx5Mn755RfTcgmivkFrYIkGRUVFBa655hrs3LkTQnkuvPvbg4OqYxJFMFE0Fq6MgQVFXeHKGAutWwH0OzVmde2pBXFnYiPf5kbC1eZ1sHXtdbU8oLPLq0uPUoJIPk4SRkCdT4pFvSbWSQLWKetfgVoPrBrlc15r7arIwvoUTmd9KwuKNcf128JEyUa7jP/c3xlTpkxBdnY2xo8fj4KCAt2yCKK+Qe4HokExduxY7Ny5E1zADe/BwkjxWkO8XleO46xtlJ5MzMSnTQNBp4QMkxeWIIik4oBnScqGE9sgXpNCFN5YPeEJ2OON/e75dejSpQtKS0vx3HPPQUxSZBVBOIG6f9oSRJKYO3cuZsyYAZ7n4d3fDpyo0bnIwtOogwqthY07JMpKkgggefujJtODmIT1rkn3wDphcEUQDQm65+qeVAsftoIFcWmYOVheG2vmLeZNvcEcz+uKew4cHn74YXi9XixduhRff/21abMJor5AApZoEBQXF2Ps2LEAAOFwAYTqrEgjS15Xm2+ZeGfsJfFlMIiQvaHxtj3Zs7txfDZJF68EQSQXJ4qiKNfqJ4KoQ4jr0TPQtvBhK3XVTGIbinMp8aPZb9VKm3T67xv6v4qbbroJAPDOO+9g69at5mURRD2ABCzRIHjttddQXFwMzpcOd3GL8IMcV9vR6GEwC1pnWBh42LLEXRSjEq91PdtO4pUgiDol1Z4tCWxvsta+1iWmItZsfAGERKyZkNUZh7x75y/o27cvfD4fnnnmGdpah2gQOGxEThD2M2/ePMyZMwdggPdwO3DKn73W7KgURiyh1bla6JA4zmQ/2FixMMtveR2qEq3rSZTXNUHrU+tcvDp4kEUQ9YZUuM/qQMRG7X1VEkt7k7W8JQVQe2Mj1q9qeWO1wpDVIlbLRlU2Bw7Lv65EVlYW1q1bR6HERIOABCxRryktLZVDh90lLSD4M0MHnOR1jWYdrNEgo8bGULhGcz0plBAiqr0QU807QhBELakgXiVS7VnjgBBoTSx85wnPPmyxHFnE6k18J8gby4se3HjjjQCADz/8EPv27TM+nyBSHBKwRL3mgw8+QFFRETh/GtwlNaHDVtakWCGZIcWq1Px6NqZeV6uiNBnitS5m7504OCMIgkg1GrD31Sws2jRs2oqIBaJeG/vWrXNw7LHHorKyEmPHjrVnCRFBOBQSsES9ZcOGDfjmm28AAN6iQnBczaym26U/y8pzoWMuQV+gSgJYHWqsYVPX60GjwqbOznKnmYRMxARB1CNS6XkKOGJbHcfjtNwSdmE2Ue5xh8YaRh5ftys0FjHYKzY0ngmNbThwuPvuu+FyufD7779j/vz5sbefIBxOPX1yEA0dxhjGjh0LURQhlDeG4Ms17ygtpL23NIBS2nCc+X5vVrbTkfaWM7GxNPOrhVp0xjioqCvx6pg9X2nGmyASA4lXk+ps+nystDuKuuL2AtqVBMpKm63szWq0fY6E0saSp9XCZLmOiGU8J78gCLhx4Bu49NJLAQBvv/02qqurzesniBSEBCxRL5kxYwZWrlwJiDw8pYXGHZzkdTXqaKyEHdsVmpxMGLNFdFlOGiUyc/Hq1HVYRtj0ORIEQdQ3dPsGm7yvliKd6tIbbmkrHRNvrCRiDbyxkoj94vlVKCgowN69e/Hll1/G2GiCcDYkYIl6R1VVFd577z0AgLusFXjRq29s5HUVLCRckMKITWwc6YU1E1wWBxdOCRmuMy8sCVeCSCypNjFI3tcIbMuMH9EeB3tfIwqoaYdRSLDUDrdGOSbeWKBGxHIuXH/99QCATz75BEVFRWatJoiUgwQsUe/4+uuvcfDgQXABD9xlzTVtmKtmLayZOG3AiSpshda7EgQRC04Tr2Yij9a9GiKL2IbifVVjMaSYaQlYZRkuASwjTdfklZtnoWvXrqioqMBHH30UQ0MJwtk46K4miPgpLS3FxIkTAQDu0tbhe77WwPjQFjrMSJxKnUy8YcV2IolAvc7YSniuKNbN9jhWJgLiHGRY3kaHIIjUwGniVcJBgiip3lc7qpG+Uzv6IZ439+zynPmyFCtb51jFyrjAbIu+mvOZkadWmmDXEbocONx0000AgO+++w7btm0zbhNBpBjOeQoThA1MnjwZpaWl4AIZEHxNI45L4hWAfieiSsKk2bkpbazsF2vFm2sURmwqTK2sP1V14E4dHMZA1OLVzsFaPfocCYIwQPnc0HqG1OfQYcD+iCSjCdUon6uWwpPjWaJiJXzY7VacoNN+KfKL43THH8xTW46eiGVeRV06Ivb+Sz/HKaecAlEU8cknn5g2nyBSCRKwRL2hqKhITljgriwEp+iUGc+FOgJVhxHmhdWbOVUL2hgFS8xb6sQgXiPqinW220KYl+XrSoAXlonMGZ5XErEEYS9Ou6fMBKuDvLJORbeviKV/0uibIkSsVp+TzKUqWuMF9XjCwgQ4cwnG3lggJGI1hOwVV1wBAJg9ezZ27NhhpdUEkRLQE5eoN3z11VeorKwEH8iC4Gsivx/mddXDNFGTSZKlRHhhjUKCOd5ayDBgPDhI9iDRRhEbt3ClASdBOBOniVcj6ug5kvLeVzXKfiqO79+yJ1YSsnYlb1J6XyMKqLkeo8RMNQkjld5XNaYiVqOO286bgH79+pEXlqh30AiOqBdUVFRg6tSpAABXZWtwCK0NYWkeky10eGudQrIHVFbEmcmAImaPb0Q9NnphneAtTRSpNOgmCKfixPvIYYmbbBOvVklWfVY9sWYeS8astTmZn6NZ9JbF6C7mEsLDh7Vwu8Cy0uX/jhkzBgAwa9Ys7Nq1y1JzCcLpkIAl6gU//PBDaO1rMC3kfeV5MMHCvq127P8qYeaFZSwk9JLUsVqbiY4/6VNM2yMYFpikEC8766F9YAmiflKfIzWsXpsNE49RTagm81lqVpdgxetpIigRWrPKeM48eaTJXq8AwDwuMI+xV5hxnCx07xz5Kfr27YtgMIgpU6aYtpUgUoF6/GQmGgqBQACff/45AMBd2RocL4TEK8eBuXjtzkApJPXWl6gTNcWaqdCquDHLlKiG43WFbpig1BPVVsSrCVHtAWvzVjpxeSHsFq8EQdQ/HChe6yzrcDKiZ5R9ld5z1UpEkJW+WilMDZ7htkUyKdATsSzNU/sfveRN6R55Yl1PxErCVSliL7roIgDAjBkzUFpaGmvTCcIxOO/pTBBRMn/+fOzbtw8Q3eDFFrJ4BaCflMl0LWqMnZbaC6vRMWp6YdWCKo49aG3zvNpRD2B94JOqnleCIOzBieHDDiLpocNqrE5EqrAkArWEabI9ser6bPS+Rrxn5bs0m1jXEbFMYSOJ2Aeu/Qbt27dHZWUlfvjhB/O6CcLhkIAlUp5vv/0WAODytwTHCRGDINkLK4UMa3UckhfWKGQ4Wi+s1c5XT1BZTfpUY2MYyisNDqx4g5MtXqP1PCuIekBH4pUgnInTxKsDva+2Ee+1JTOXgZVoIgVRe1/16hOEhHhfw6pS9F9h3lclipBilq5hUyNiJSGrKZY5DuB4jBw5EgDw9ddfIxgMxtl6gqhb6vETmmgIbN++HX///TfAAMHfQttIzvJng9fViojV298tzISr3WDdBmxdg2oXNocMOwonft4EkaqQeDWlzkKH9bAoYmP2viqx+Ly1TXBK+SrMiNH7Gnac5yBmpJnX5YqcnJdRhBQzg3a//thiZGdnY+/evfjzzz/N6yQIB+O8pzRBRIHkfeXFfPBMpxPgOIhpLjC3STiQlb3WzLDY0cqCM97BRI0ATPRMsRprgxL7931VU2d7wDptwE0QqYyTJoTqs3i1EwttskW8KrGSpdisT7Dy/bpc5pPCVrbWAawlguRrIsUMCGZ5IXqMxyfBLC/EDH3BzEHA0KFDAQA//vijcZsIwuE470lNEBYJBAKYOXMmAEAQW0Ua1CRxMs1GXGNrGT0vrLLD4zjdMCXLa1QlO72BgtJ7yXPWBgt2DyjsIMYBY52JVwkSsQRhH04SsQ7CVvFqlzhPtqBWPmt1RGxY/2e0f3oUbTfNsG+yJCfM+6rTX7A0b+3fRiKWD0VtGYlYxoVeYoZbV8h++9UeAMCCBQtQUlKiXx9BOBwSsETK8tdff6G4uBhgbkAoCPewclyEcGVuIdILq54djdULq9WJaYjYiM6Q5yIHFWYDuVjXjEYjTO3a+zVBA52YxasDvSsEQdRQ1yK2Pj8fkr1XrV2TpVrlxOqJtZQ4SSMpkvp3qbbR+N0yrzuy7VrXou7+XXyEkA1meRX2IRGrFrLBzNr1sUohq0RMd4FHDjp16gS/34+ff/45sj0EkSLU46c1Ud+ZPXs2AIBH8/DkTRriVRO9DtaKiJW8sFHs/xlXdmCp4zUSrnZ6YS1SF6HEcXte7RzIkReWIOylrkSsA8Wr49a9AnUTOqyFQsTq1qfMmmwxdFgP0/5bfdxkvSoQ7n2NKK5GxAazvJGfuYY3lmlUFyFia+qVwojnzZunWz9BOB3nPbEJwgLV1dVYsGABAIBHKHmT6OYhel2G4lX2wtohPKSsxmY2HGfc+Ule2GQM3KRBg03Cy5HJo5INiViCsI+6uJ/qs3i1E7vEq1XMyhJFi5O20YUO68EYM177WtMfmiVuAgCW4TUdgTOXSbtrRKzS+xpRhhRSnF7b7vffWgkAWLZsGQ4fPmzaVoJwIs57ahOEBf7++2+Ul5cDzAsOeWAuDkEriZpq9kQztRN4Yy+s5S1yohB4VjtiPax4Jq2EXtmN07IRp2rmY4Ig7CfZobU8ZypO6/2611hDh+PBrB/iBVMbzuWysMSHhf+rW5h5cqdgdhpEk+ROvsZp8GebZDrmAF+eB77ckB2HdHTr1g2iKOKXX34xbidBOBQSsERK8vvvvwMAeDQFXDxEgQc4IOgVIHo1ZkilrW0UYcaG1HhXNUWsel86PS+snISJB6fXYVvdGF5pozUgURzXD6eyKNxE0b69YG0Wr3GHD5N4JQjnUs+jGZTCNCke1lRd92oVK2Up81Do9R+8BRslRkuHPO5wO63Tlfu56nxmwew0OSzYSMRK610DWW4EsrSFrD/HDcZzYDwni9jTTjsNAEjAEikLCVgi5WCMyQKWE5rK4jX0BhBMc4WLWI2ZTs2ETmq0OhatDklLxEYka9IQseqOkuMj67QicDWORwwktARprMkxQOI1gno+8CaIhNMAQ4e1RGy9XvdqFYtC2LROrZ0ArE4Yq+w4rdBhdT/oCQlFIxuW7rGU3Em9plV08RFC1pfnDbOXhKwSSbzKdjUi9oO3lwMAli9fjqqqqoj6CcLpkIAlUo7Nmzdj//79AHgwIb9WvEpwCPe06qWv91gIOZa8sFEka7JkZ5TmX2qvUUcrDU7iDRu2sD2BEtNtBeSy7BOvTGTOFq8EQcRHAxCvesJUGVJc79e92hU6bEW8GqHsT3iDMUCNnaZ4lVD0hxHiVcPGSnKnYLbOnvao9cb68ry6iZuUIlarTYzn4M/JQ9OmTeHz+bBs2TLd+gjCqZCAJVKOv//+O/QH1wScTucT9AoQ0zTS2KuxGkpslqxJCk82TNZU0+lGGzIcI1F18HaujbVZvKYM5IUliNTAIeI1WpsoKrSnnGSve7WIpb5NZx92GZFZe2ZbDSn2mCRuYiw8dFiHQE6apjANa5KLN7SRRKw/R79NTOBx4oknAgAWL15s2i6CcBokYImUQxKwHN9Y8zjjANHNIZDpQjDNYOYUNXuuGXlhGTPv6BgLCUCeM+6kRbFmLa4NW89YEIBRZQi2c12SFZI5gCTvK0E4l2RP/DhQvNpcYXKrq4PQYdO+jefMn/vSpLSJHecSzCd43RaSO3k9gAggaGInmCd3qmrqRSDD+HuuaOpCZb4LVY31xzd9+vQBoHAKEEQKQQKWSClEUcTy5aG1G2JGfsRxxkHeRodxMP+Fc5z+elhJvAKhTlPLC2s1tFi9Z51uqJEot8vUBtC0iQjzNRKnVu0gNcsG8S0XZqG+eAd/Sc1unELeYoJwAiRe7a7QvrLsXvdqR5SPoo/SFbHKdjPRWh+gY8Mpkzjqtd/tkn/HXFC/Lqb8rHREbCC7Zk0rD917o6qpF4wHwMFQxIpC7UtPxN7/biiXyJYtW0K7OhBECkEClkgptm/fjiNHjoBxAny5jRHICN/IW70HbCBNMPXC6iZrUocOCUK4iNUSr2ovrFZGX47T7vjVnaiWiDXpjKPyuuolpDIhZUQsiVeCICRIvFonUUmbjDLcm5Wn0TdZ7u/UfYHmZHS4Dae1A4GFZIhcUIwUsl6N0GGViA1ke0PeVwkdEcuUTa8RsWohW1kQPubRErG+bB7MnYYWLVpAFEWsWbMmso0E4WBIwBIpxfr16wEAzJMLJvDwZfEIZAia4lUikGEuYsO8sFriVUISsUaeV0nEms04q2eKtVCKWD0bPmRj2JmrO/84BZetYWNW6ot2MJgs8RpNci+CIGqhNePOJBnCW2NSN1bCo42MlvrU1GmUz6LGRlO8Sijb7tYfV8gi1usJ974qqRGxEeJVQiViq5p6I204hHljKwtcELW0t0LE+rJ5WQj36NEDALBixQrdayEIJ0IClkgpJAErevIAhGYjRRenK14lgukCgl6DTonjQuthed560gYzjLyZSi9sHCFOUSG1x3T9UIo/FmjNK0E4GwodtrtCe8qx2G5bJjBFxXIZM0z6JMueWCvXZ6X/EEXAJZi33e3SF68SQaYtXiVqRGxlc2+491UNBxR1cWuKVwlJxCrL6datGwBgw4YNxu0kCIeR4iNVoqFRK2BzQ/+6OFQ14uHPNs44yJRb62ghiqEECy4ezGBWFawmoVO8Ik9ap8pzxoMPqWM2G6CIzHxQYXXAYHE7HbP22ElU2YiTNVglzytBRA+J12gKM2+/1evjLSYQNGuSXd+f1QlVC0TVJrP6BMHcRtpWx0JfyZnYBLO94ALG9VU090AUOIgmE/WiB6hubGxT1opDWZva38zLU5YCCG1PSBCpBAlYImVgjGHTpk2hvz25EF0cRFfIC1udYy5idb2wjIXEK2oSLeiJWEW4KBN4fREriS09oRuRZElHxFqxUdZnhNWQrWSLVyvZlGMRw4ketJJ4JYjoIfEaa8HRva9G2S69NiZq3asVoln+oiKsTUZ9hXJbHb36BEERGaVj43KFf1Y6fSaTttVhTFfEBrO9cll6IraywBO2l6ueiC1tE7o+JuiL2IrmXChqTYAsYkV3DgBg9+7dqKio0DyPIJwICVgiZThy5AhKS0sBAP6sLIguhNZ/wJqIZRwQzHCFi1jGIpIpaIb8qNc6cpy2iBXDbSJErFq86jZWK8GShohVddiaAwyr2R/ri3iVSNTglcQrQUQPiddoC4zu/3potUv9XrLFq87EriU7M7T6DK09YdX1KcWrYZvM+1jmcatyXESKWKV4ldASsVqCVf1eaRsBomLLVy0RK4nX2jJCIrasXTqaNGkCANi6dWtEXQThVEjAEinDzp07AQCiKx0QXLJ4lWA8wmYqtQgTsRriVUbywkp7vGp1ZGoRq9VxKkWskXiVxKlZUiCliNURd+Ez0gYi0apdDSklXhMFiVeCiB4Sr9EWaPx+POJVfcwJ4lXCrm3dlH2HlnhV16clXpU2kp3LYHlRTR8aIV4V5UgiVku8SnABJgvZygKN7MVSdTUiVi1e5epUIlZr/ay0zU6bNm0AhLywBJEqmOwvQhDOQRawnkxdG18WB04U4C4N6towDhC9ArggAx8M6Nhw4AQulLEwoF+WPDAzElvRdP4cZ3Ff2RjChuOwi2p7HtPCKMkSQTQYSLxGU5g9NlZxkniVYMxYdNZgnvPBWjlgFvJHAKGyzCbIXSY2koi18LlXN3Kbrnkt6iSANxieSCI2qK+DAQDNmzcHAOzdu9e0XQThFMgDS6QM+/btAwAEsvUFLOOA6mzjUGIuyMCJLMKDG2YjikCQgQlCKNugboU1ws6k05KSPxnOGFvKflhjZ2XQZDZYkNtuw2PAqrfUonh1pPcVoK0/CCIaSLxGU5h9ZQHJ2Q4nGqz2MxxnOqlqWXAC5n0TL5hP0Eplqfd3VSDnzTCa8AYgZnjA+Y1tqgpCSZt4k+ROogcIauyso6S0qx8VHXyGNpKA3bNnj3FhBOEgSMASKcOhQ4cAAL48L6rytUJ0av7h9UVsyOsaMhQ9AkSN/WEl8SoXqydiGavd643ndcOG5DBkPdTi1arI1RmgxLTGNppEGVrtskIUnldbBoaJ8vSSiCUIc+q5eLUVh4pX2zMOm1dY+7dOnxlTm/T6KL5W5Or2m4Jquxw9Eau00RGxYqY3NJHNoCtiJfEqN1FHxB45KvSZMl5fxJZ18oPzBMG5RVS21xaxvsYiXl35D4BaJwFBpAIp/MQnGhqHDx8GAATTVfuhMcjiVX5LQ8QqxWvojVAosVLEqsWrXJ5axCrFq4RaxGqJV7UXVs/zqu6k9exUA5WITthqsgw927AmaSWvsF+8yvXFMwhLdJgyiViC0KcBiFfbvK/1XbxarzDyPZWItdwmrdBhdV/FCxHHI/pPtXiVUPX9mrsWqESsJF4ltESsWrzKTVWJ2CNH8RAVYcFaIlYSr3J9NSJWLWSZAAS9oZOPHDkSeR0E4VBIwBIpgyxg09JQ3UREVRMuQrgqUYrYCPEqoRCxeuI1smAN8SohiVgjz6skYs3ChpXra43sagYs+gmiwrMgG2LXlgVK4hCTMQ0Sk7XGlkQsQUTSAO4LEq9RYMX7arZHO+IUr3JZ0rIZHRuliNUTrxI1YwDmdunb1YhYMcOjaaMWsUZrXiURqxavEkoRqxavcn1uMcwb62scugbREyqQBCyRSpCAJVKG8vJyAIDocYMJQFVTEVUFJkkVeMCfziOYZtCpcQATODCX8e3ABAHgeX3xKpcnCU+bhJSVjL2xbs2TaJKdsIkSRBFEwyJV173anYypPorXqOuzUJaF5E+sJmeFeX28qR1zC4afgyRiqwwyDkuUtdYWr3JdPIB+xZriNaxOt4hWg3aASRHUJGCJFIQELJEyVFZWAggJScYBoguoNBGxfAAhz6tRwqYAAxdkYG4BzGuQ/KlGADKzpE5S52cwE8wY097XVbNiExvRJIuiJKStdMgmojtMKFsaLMT3iHFsMieAttQhCDX1PHTY9u1y7MDGNjlZvJpO0kqfg9EkpsCb2wDgeB4IGotAaUkRZ5C0iXlDwpDzae92IOHP84KvNr6+krah7XJ443xMyEmvQpMmZYY2x7bbhWbppejSczuAkFMACI2xAgHjthKEUyABS6QMkoAVFetNmKAvYvkAIPgZwAB/Bo9AhkZSpwADF6gJBeI4XRHLKcOBeV5bxMphwzUdkY6IZUqRaCRilR22no1C4GmvUVV11FaErg6aA4gEitiYxGuyBrQkXgkiHBKv0RRmTzkNQbwqyjLcR12JlkAVeHMbAJyyb9cTsa7w8GItEcu8ntoRNmO6ItbXyAvGhxI7uSq021TSVpA9rxzTF7HuXkUAAI8roCtij223C1nuagBAY28FuvTcHoouq4EELJEqkIAlUobq6tBDV1SJRy0RqxSvQCi0xpclhIlYpXiVy9IQsbJ4VQoqtYhVi1cdmJZI1BKxWp5OtY1GXeFrVC1kSzSzlZtjcF0JELFxeV4TPbAl8UoQ4ZB4jaYwe8ppYOJVIjJRoU5ZSoGqFq9aNlCJVwm1iHVpr42NELHqKjVErCRe5TI0RKxSvCrt1CLW3asI2WnV8v+1RKxSvEo09lagU8+d8v/9fr/60gjCkZCAJVKG2o4rsvNQili1eJVtFCI2FDasLdqUIlZTvEpIItZIvCq8sJriVS5LIWKNPJ2SjYHAszQYsSJ0ITXHgmCzUcTaEjacqAEuiVeCCIfEazSF2VNOAxWvEnKfZPY5MFFfvCptoCNeJSQRqyNeJSQRK4UOR9ZVK2J9uZ4w8SqXoRCxWuJVaSeJWLV4lVCKWC3xKtE4o1L+m/aCJVIFErBEylDb0WqLCCYAvhwGf6Z+duJQpj4ezGWSwZjjQgJVyhZshl1rNa14Op28LpQgiIZDCotXM2HK8ZwzxauNpKJ4TQhWkz9ZTexk1HzGIHoEw6SRHAOqc4wTNkl2gS4VmuJVwuMK4Pl+X+mKVyD8d0AhxESq4LwnKkHoID9k9fYbr+Ig+DhUNwaqGmn/tAU/A+9jCKQJEA0yE/MBEQiIgIsP3/9VieR55XmDECUmi1LjREs1W+VYsTHpbO3MSGypLMCaqLaSTdm2iYAEZSNuAFuEEIQl6oF41ROotidrsjvjsA2ksnjlOItZlwXBvK+T1n8a2blq8m6YRSvV5OdQ7++qJJjlBeMAV7m+UCxv7gITAG+RcdurjqmEx+tHSWWars19HX5CB/cBjG76m367FdfetGlTwzoJwimQgCVSBqGmo0kriExOIFRxcFWGvKpMgKaIFfwMQhULhQXz0BWxkniVsw67hUgRWxNazMn7yhmIWOm4tP+rGvU+r1ZsdDrvmMSrzoAh2eLVNhJdF4lYoqFTD8RrrMdjqNC+ski8RideJfT6MoUNU0w2h+GqTRoJUWdvd6j2g9XpE4NZ3tA4gIXapCViy5u7INZUyQX1RWzVMZXwpoViiEWR0xSx93X4Ca1cxQCAJkK5rojNRYX8d1qavhgmCCdBApZIGdLT0wEAxzbagbRWtSJWKV4l1CI2TLxKaIhYtXiVy1OKWLV4lU9WiVh1h6glYtXCVMKKjaoTj0xuoXF762Zx5FVmyRevtnhfkyWUScQSDZV6Jl6V75F4jZJUEK8S6j5Na4cAdZ+tFK8SGiI2TLxKbVV5YSXxKh/XELFK8SrbaYhYpXiVm6USsUrxKqElYvPclYCvtq0ZGRkgiFSABCyRMmRmZgIAvP5q9Gu9FWmtyjTFq0SYiGWIEKUAwkSsnniVy3MLIYGqJV7l8mpErN5srlLE6glTCTlk2iT5E4y2F1AJaiOiXXfkNPGabEjEEg2NeiZelcdIvEZJKolXCakPNNujnTFt8SqhELFa4lWykUSsWrxKKEWslniV7RQiVku8ylWKoTq0xKuEUsTmuSvBcyKCNXvQpqeng0/2+mOCiBH6pRIpgyRgg1UMma5qtGlUjEB20DgZkwCIXkB0G3R8PMB4DozTEbkSoli75tUIs0472g4i3oFQIjokJwrOZIYpE0RDo56K14RA4rVuxKuVz92SjYW6RGae2Elk8qS1Eb5cNzylxv0XFwSq85iueJUY03aRrniVaCKU46XW34PnQnWKVaF/pSg3gkgFSMASKUN2djYAIFAuYmdFHg5XZiCzeTmqm+onTHBVAK4KBl8mB3+m9qwr72fgfSJEjwDRYzB7K/UvgmoPWCXStjtGHZsohmZ5tfZ/jSirRijq2VnKkGxR2CnsTAc7VgYTUQjKpA8w7YC21CEaCiReo6nQvrJIvNa23ayvs7DFHHjB1Ibj+VC7zPpNaQyg3idWAUtzg3Ec+CrtvVUZB/jyPGAugA8aX19p+5rtAndm69rc1O0XNHWVYG8wJ9TEA0G0+O8RdL58P7qduxedL9+PFm8dQY8jIlq4svBws3kAgECNeG7UqJFhGwjCSRjESBCEsygoKAAABI4E4RNdCIocPK4A0KIMgQIevgMZ8O6vFZauCsBTwsCJAHigOpsDIMBdXtvh8H4GoTIoixFJwPI+VackiuCUHZrAg0G1eTmrDSsCz9UKXqXQEcXw/WB5DhD5SLGnta8sp7JTHOc4TjuMWKrLTGxpdNa6ZYa1XW+/oui9oRzPxR5KnGzvK4lXoqFA4jWaCu0ri8RrZNtFpv25qD93LTteMLWRxatsI2q3U7EfLCcyMAQjwpJZmhtMOlcE+Co/xDR37XGFeJVIKxI1d1AobQ8Ea7bU4X0cKndmI711aZjNTd1+QSt3EQAgWMmj6VOlaPN1EXiVds5dUAX22hFgVA6aPpUPAPCXhMYxTZo0ibxWgnAo5IElUgZJwBYfFLCvrHYW0uMKICPNh4wWZbI3Nky8StSIWMkTqxavEhGeWFEEFxA1kkDwYFLSJqV4levjIj2xmutiVZ5YLfEqYTDLrDtQiUG8mpYpYfMAMaYBJ4lXgkgMJF6jqdC+ski86rdda2LXtD6diCnlJLBavMo2qv5FIV7lc1VtChOvcjmQPbFa4hUIeWHTisLrU4pX2a5GxErc0PVXWbzyVSJOuWoT2k6JFK9ye/0A92kJuEt24+GcufAfCY2b8vPztU8gCAdCApZIGaSHa/lhIChGdm4eVwAZLcoQyGSR4lVCKWJFnURLUIhYPfEq4RLAeE5fBCpFrBQ6rGvHG4tXC4RnOLYg7KyGFxuhHmzFKSijGniSeCWIxEDiNZoK7SuLxKt5282W1iht9MSrwk5XvMo2Nf2MhniVqQkl1hSvcjkhEaslXiWUIlZLvMp2Pg4cFxKvbTyH5Pd7PrULBX+UG6UGCbUTALewCs2eqMBJ7oEAyANLpBYkYImUoUWLFgAArqhK16aiJA1cEPBnGSdtEgWYDxSk41ay9xp1uFbLsYrJYIkz8/hGW100AyEbBGVKZiQmCCJ2SLyGIPFqre1WPycLZXGCiXhV1mlQHlcTkqwrXmsQ09y64lWuKsjABH3xKpHu8YeJV+8BP9p+dTjUHuNTa49PKcGOTZsAAK1btzY5iyCcAwlYImVo27YtAEAorgQCOpuJB0Jb6lTnMfhytB/hrgoGd6UI0c1B9OokdgqI4KqDAM+DeVxgemn3g2JoHayRiA2KodlZ9R6wSqQtdaRsi0YdNBMNjzNlOLMNAxnTPWGVgtPOwZwVkl5fCiabIohoSebv3MnileON20fi1bniVV7eY7BERrIxSMQEpXfWKGGTO6RK+WqduF0AYoYbjOfgORLQtaloIqCiSWi8kbVD/1rTOx6BwIsYt/00+b12XxwCH4huApjzAzs2bgQAtGnTJqpzCaIuIQFLpAxNmjQJbaXDgGEZ/+CoRofCjhcfzoLrUChJAhO0RayrgsFTLoILhrbOCabxuiIWABhXM6Pq4iNFrCReJbRErCReJYxErMJGFrIRDVIlgFIf1lqLa5AN2YyoxKtcX+yPlZi8ryRiCcI+SLxKBWr/bfRerJB4jU286olTgTe149Q2WuKU580nlFEjXhWRVloiVhKvAMAFmKaIrWgigLkge2iFau3+ML3jEWR6Q9vpHKlOk0Vs/uJyw3ZqUcnzOFAVimorLCyM+nyCqCtIwBIpA8dx8gPWdaAMJzfaLIvY4sNZEPZ5wCmTAqtErFK8yjYaIlb2vipgHBcuYtXiVT5ZIWKDOmtn1SJW8r5q2IV1nFo2iuOa4lVZVpTEJF7l+qJ/tMQVOkwiliDih8SrVKDxeyRe6168Rmun6D8jxKtEUDUhrVWWSuiGiVf5zXARqxSvchtUIlYSr2rUXlileJU4Up2Gd3YMgKvcwJOsw5aMDABAXl4ecnJyoj6fIOoKErBEStGxY0cAwOFtQJZQhZMbbQaACPEqoRSxnAhtmxoRG0wTNMWrbFcjYsFx2uJVQiliDQQlx3H64lVhF6rcwCaW9UAm3ldT8WqpPuuPF1vWvZKIJYjYIfEqFRjf8Wgg8Rq/eFVHJZmUpyteJYJBffGqtIGOeJXbVbM1n4Z4ldtSI2L1xCsQ8sJKIlZLvEoUV6UjoLPXvRHrs0PZjLt06RL1uQRRl5CAJVKKbt26AQAObQ39P0uoQkFmOYLp+oKMCaG09ZpZiSWbmg6G8TUiVc+uJqSYmXWCdpLspCRJhpI2EUQDwqni1Wy9q2RjF/VZvJpl9ZWLssnzKoX52vFZCIJ5nVIklokdx5iueJUIpOmLVwlfNuCqhK54lVjas61xQRqszcoCQAKWSD1IwBIpRdeuXQGEPLBMZJhzuCu2HGgM5AQQyNJWqJ4jHLxFDEEvh0CadmciVIsQqkKJlkQ3rytiuWAQXM0Mra6IFcVQ+DCg34kzVuvlNBoUSdvqmGwXIJdlNGhQelWtDFSMsCI6k77FDW2pQxAxk4zfs5PFa7KwsKbSKpbFqyQojZ77dopXC9gmXpW5KYx+w1zIq2oYXaRYImSpPr9+MibmCalSoUJfdPqzXAAPZOzXr68ynwNzA5zI4dCKAl27jnkHMeesrgi6ovttrSUPLJGikIAlUop27dohLS0N/kpg5tr2+GtHawT9AjhB1BSxniMc0g4y8EGA8UAgnUd1Lh8pZEUGTurXdEQsFwyC8wcV+8tpiFileJWSMQmCzgbpJtl71XvCatkoxauEVXFqYGc4uHCix5TEK0E4GyeKVyteVzuxUXRHJV6N/q/3XmSF0delW1QCxKthheEhwZoiVi2EtUSsqj5Ooy9kHldIvNZcIxdkmiJWEq8AIPhETREriVcJV2XkZ9Ix7yA65h1EpqsaJfnp+O0/HULtiGx9eDsBlLpc2JKZCaA2uo0gUgUSsERK4XK50KNHDwDA5qUeBP21HYqWiOUDAB+WtAkQXRwC6bUiVva+KlGJ2AjxKldgEk4siViOq+3cmYboBMIHUmrxqmVjhHq2XU9wRStirYpXi4KSwocJwkEkamLGqeI1mThBvMZqY5N45axk4QfiE69MNemrEq+Wy1KLWL36FF5YWbiqrpELht9XSvEqF68SsWrxKnFoZa0XVhKuma5q+b3Jd/XBut7NLO0DO++EZmAIZR/Oz883OYMgnAUJWCLl6N27NwDAvaMo4pgkYv3N/OCCgKdYe0AmeWMZDwgVgVrva1hhChErQl+88TyYyyT0SNGpMT1xCtQOqqxk+NXyvmoRx6A0pvVVyRav5H0lCPuw+/dN4tV54tVKSHFthfHVJRcTZxZhJWaeV8ZqhatOeXLfaVSWJGINbDiRAf5AmNdVs8kVPvizXJriVbbxhfoyPfEKAK4KDodWFsjiVY0/zYXXXx+EpRe0hahTRtDFYcOoAmy58C4AQK9evXTbTRBOxWTpOEE4j+OPPx4AkLbncEjoqdPTCyK4w154izkwgQE6CYMlbywEDtDb/FsKAzIb1DEWevGcvviUbGyE40zW9ISMjOvlecOsxJbqIAiCUNPQxavNCfhs9bxaqzB5dQHWPi8r35+Fdlv+LC1+Bpw/KK971YK5BbhL/fDn6qjKGtxlDBUtzOvUEq8S/jQXHvy/c9Di8mLcMW82mv1RCnd5EP5MAftOzMbmkQWoynfjr2eWASABS6QmJGCJlKNz587IyspCWVkZvAeLUN20cYQN7+fABYBgGgeAQdDIo+CuYHCXiwi6eQgQwWmIWN4XBOcLhLbQcbvAKde4KpHEKceFZlcNvIscx4EZ2ZgKYTHsWNwiNpotdaQBhpmH2IJXlOO51AwhNpsQIIhUxq6stg1BvBo9D6NsM6eM0DE4bt4m54lX07Zb3gpOEaGkd07Y1nPantPwfdhF/euQttMJBnW9sMwlhOo0SPwkprnAOC4ilFiJv2YLHD4IZG9lKG2nfX2BDAYmMMz8uweG9VqpabOtrDH8ooDtWU2w+saWWH1jpM3YP/sjffNS8DwvR7URRCpBIcREyiEIAvr16wcAyNi6D5yg6hQOeJF2sGYwwIVEbNATbuKuYPCUBMEFQp2O6ArtA8vUGfwYAxSdDuN5QCNxE6fsvDiNsCVRDNsAndOyAQBRuZG69WyV2utVRbWRuY0KXWFs1i6LA0VbBqbJDgcE7BvkE4STIPFqHWW71G2Mos3qdaFaz/KkileNNZzx1GW7eJXQzBERmZzRtD1afZwcYq2wDUaGcsniVSrbF5mVWBKvEu4j/ggbf6YAxoeiwgDAVRXZpkAGk8UrAAhlAmb+0yPCThKvEl/uPz7C5tWNQ+BbWQoA6NGjB/Ly8iJsCMLpkIAlUpL+/fsDANI27wfPBWtF7AEvMvbw4BUeV0nE+rNqhSwXZLJ4lWwYBwTdvCxieV9N4iYVYSJWFMEFgpGdoFKgqsRrrQkX2lRdstPzWio7UZX3VV2ejJ4wtWJjFRKxya+TIBIFiVfraLVLei9K8WqHTahem8SrjXXZIl6NMkWHZenXKEsjWkm7HEVfKAlXg7YxlxAhXgEAQTFMxKrFKxAaeyhFrCRe1WRvrW23JFyZarJeKK0VqtvKGkeIVwAoqs4IE7GvbhyCI2XpGFwR2j7nlFNO0b1OgnAyFEJMpCR9+/aF2+0GjlTCXVQOf+MsoGYpJ68RLsw4gAkAS+PgrhDhLtcXb0E3D5c/EOqIdEJ+GM+HsvwFNcSrBFezvtYk3JTjODCYrI+VQopNQm5tWRNrJ8kMJ7ZYl61QODFRHyDxah2jdtkkXqXnOIlXG9a71oQSG7aHsdDgweUyblcwCOb1GNcZFCGmhYbWavEqN7lmXKEnXoGQFzZ7K1DUHRHCVcnMf3qgS8fdEcJVSVF1Bl7dOAQAcKQsHVyVH//88w8AErBE6kIeWCIlycjIQJ8+fQAA6ev3guOAwMF0eA/xhr9qdxmDp8xc5DArnStjmvvAqW3ktbG6JizUydq1vUC8ntUaUjJxU114YgkilSHxah2b2pWynlfLxSUpOsXOJFnqkGEdGy6gkxVSwiWAr/TrilcJoVLUFa8SnGgsXgHAfdiF9SvaGNps3twMB7Y3wpGydABA+sZ9CAQC6NixIwoLC40bQRAOhUZ7RMoydOhQAEDauj0hMenjwPtr1pHo/LK5IMAFQtmHmUvbKLQvbKAmVFhnBlUUgUAwJHR5Xn8AIAlcI5uwgg3KkbyLRqFNjJlvj8AUbUo0tKUOQTgXEq/WSaJ4tYTVbXDMiEYoJ6PPkDD7/uSlNwbPYEGQky8ZTsgKJtvgAdau3SWEhKtBsibm4sFcPDiRIe1g5HpYiaCHA+OAnI363w/v5wARcJXr22ze3AxcFQ/OX2vzr0OhTMjSGIogUhESsETK0r9/f2RmZsJVWgV+dSXSDoR+zozTFrGeUgZvSW0HJbo4iF4+TMhK4jWUCTgUKszcQqSQVWyJw3gOTNAQqFJYkoSGiNXcE1YrEYVamFlJ8KTV4ao7cZ1O2ZL31dT7nGwxmeT6CCKVIfFqHSeKVztIkJc37v7DqnitrTDSxmyvWMlGaSft+xpRHx9mw/kjkzXJ4lUquiJyLRNz1USI8QDHGHiNnQ+CHk4WrwDgqogUsbyfk8WrxJZVLSPK2rwlJF4lfIfTIJRUYvny5eA4DkOGDIm8DoJIEUjAEimL1+vFgAEDAACZm3aAV0xmSiKWuSD/yrkgwPvDOwzGceHe2AjRCVnISiJW8r6qCROxjGnaaHpitYSX5UyQtTaagwYrAw+VjS3iNQps8b7WhXgl7yuRqpB4tY6TxKudXtAEhyjH3I9EK1610NvyRtkmPYEbtm2cxc9bJV4BAEEWJmJl8apC6YWVhCtTFeWqUDRJEq6qLk/phd28pVlIvFaGV8j5OaSv3g0gtPdrQUGB+bURhEMhAUukNMOHDwcAZO7YCS4QPuMpdQSMB9zl4d5XNaKLAx9kEKp11rcoRazC+6pGFrFGokwpYq2INwvizHCwwCvEuZlNkknJfWABEq9E6kLi1TpOEq92kuw9Za0Sj3iVnskmZTDGzL2zQYO9YaW6gkHAJWiLV7mcmigtHfGq9MIqva5a5GyM9Lqq2bK6hSxc1eIVACCKaLf5CADgrLPO0i+IIFIAErBEStOjRw907NgRnCjCe2Cbpg3jQskQtMJ1wu1MMsryqPHQGidlkjGxsZwkKRUTE1E4L0E4D6cJKThUvEaxB7cZjvK8Wo3skeqMq6oor9sOzytnnojJUrvMbKTP0R8wTtYkcOB9Ad2RNuM4MJ6DtzhoKF4BwF0GQ/EKAJnbBW3hWkP67r04dOgQGjVqhFNPPdW4MIJwOCk4MiaIWjiOwznnnAMASNu7RVOAeo8weI+EMv4xAYBGRyFUBSFUBgyTMnH+ILjqQG1WYb2OS9kGSzZ6vZtifWw8gzMrWYkVNqYdvI1eU1sGr3Uhlh0oBAjCEDt/szaJRceKV5uwTbzaQTRtSZZ4tfpZm+45ruiPDfZJl9tl1CdK126wlzoTLEQ1CaE2cXpb8dWIVwDgfSIy9musq0Vo8p0TQ97anC3aVXkPc/AeDiWxzNil710+ozrUluHDh4e2ISSIFIYELJHyDB06FFlZWRCqy5G2b0/YWligZu2rwvvKeESIWE4EuJrkDaGwYw2BKiJSnEZsUi7WJoGQjkWUI9Z6X6WOWT0A00zupLGhe41NWOesRZQhr8kMeeN4zr6BbDIhEUukCiRerdHQxasNnt6YxaveRKQl8arRNxq1SS9fhPLaRRYpYpXiVXrLp5FJWAgfGwjl4TZK8Srb+CKvXxKuXE17XZUaE/Q1wlUa9whVkc3J2iogd1UJ/vzzTwiCgLPPPjvSiCBSDBKwRMqTnp6OESNGAADS9q2HUC3KD3NPScj7qkYpYiXva6RNbSfE+YPamQfVIlbdMSpFrDLBkxKliLW0cXsUHXWU3lfDsgDb1uxq1hfL4LGuQ5VJxBJOh8SrNUi8xlmNySRqWF16kUka2faNK9X+DSj6Kd02qXcI0LSRIqA4MJcQIV4BhPfnAhchXgGAC9TWpSVeQwcQ5oWVxKua7K21f0viVY3SC5u1VYCrguGcpqE6Bw8ejObNm0eeRBApBglYol4wcuRIeDweCJVFEMoOQvCx0KxkQH/tqxRSzLFa72ukjSKkWM+LyYVsOFEnBX9YeJOoky1YtebKTChyvGGoVPhFxB7yGx52lfjERVENbOtavEpEs66MIJIJiVdr2LjetSGKV8tEs7Y4VvEaZmIhKsns2kVRW7gq6/H5a4WrTp1CuR+iwGuLV8nGJ4aFDGvhrmDwFnHwFmmLV6DWCyuJV766DPPnzwcAXHzxxYbXQhCpAglYol7QuHFjOSOx98B6gAFpRQzph4LgdBILA4BQJWp6X5UwDvaIlBqha4jVzt1EvIV13LbtPegwkZaKya0IogFT38Vr3KTQNjnhVVmoy2oSJiu2ZuLVzr7KatInMzudtbBhsPCQYS1cVQzZO0TwkdvMyqQfFNF4GQ9XRaici7umQxRF9OvXDx06dDBvB0GkADQCJOoNF110EQRBgKv8AISKw+D9DLyPgROZrojlA6HjRh0e5xfB+QIhG6NwJFE07jhFEQgGjTt7sWaLHqOZaiZG7w2NY3AV5jGOZhASS11RXxc9wghCE7ujAuKMeHCkeAVsiSxxnNc1mvZYWWZiWJ3N4tW8wvjrEoTarXT0rl/gQy8AnNae7lJbpGVGPv2JcClTsavMQHUiJF7TD+rPuLuqQmMZoVr/N5t+UITgq902kPOV46effgIAXHLJJYb1E0QqQaM/ot7QokULDBs2DADg3be6NkSIAZzIwPv1hSwAXdHIKfd9lUSseo2LqLKxkMpfs+OPdg2QDoxpJ6CIIJbBS4JEbMx7wlpdO5xIaF9Ywkk4LKTdseJVIg4R6zjxmkQSJl71vo+wfBMafZeqLs3lOmZ7wAKycFUUpN0W5VhAY/kQ47iwbXY4v35/K3ldtfaid1UxWbzqkX5QlMWrkgva8/D7/Tj++OPRs2dP/QIIIsUgAUvUK6666ip4PB64yg/CU7y39gCDLGSlTkA3fJgP73AiZlYlgapMya8lBMPWtIa8r2rCBgBKEaxXTrxEOcDR3avWylqmZAvLuhKxJF4JJ5FIERODF9bx4lUiBhFbb8RrlBOZltb62t1H2OV5NbXRbk+YF1bHy60cK+jtD6v2wmqFDCu9sJJwVYvXzH2iwj4kXNXiNe3gEcycORMAcN1112m2hyBSFRKwRL2iWbNmOO+88wAAXMWaSHGhELFy+LAWNZ1hmPdVy0Yvs7DSxo6N1ZXlmAy0NL2v4RXWlOOQJEgEQdhDMjxwUYjYlBGvMVBvxGvUVSUpZFjZz+nupy6a9rGMsfCQYc26xLCQYZ2CIr2uaoJihNdVjdILq7fWVfLCGnldpTBiLa+rxGlHVYMxhtNOOw3dunXTbRNBpCLO6xUIIk4uu+wyZGVlAWIpENgZacAAV0UQQkXAWAxa6YStDtBMOv2oBkN2CGIrCaVsaEuorgbghSWIhkKy7zEH3tMkXg2wa9JCZ7lOtFjuD63Y2JRx3ixRE+cXTUOG3eVB5G0O6IpXrvoQfv/9dwiCgGuvvTbeJhOE43Bez0AQcZKTk4PLLrss9J/qtQCLDBPmRAY+IIJj0N+OpjpomJgBABAIhrbgMerUgtrhw0oYY6HZZNMETzWzt2YzzmaDI6tbCJiRwH1hY6IuttZx2HpDogGT6HD2KMSkLd7XZIrXKNqru7TCcl0OE68W2mOLaJcLs5iN3+xzNthODlC02aj/NVjDqrbR3AteCc+Br9bZ20aBq0zfhvOHxiVph/Rt3OVB8H4R7jKd9jARnfP2AACGDx+ONm3amLaJIFINErBEveT8889Hq1atAFYNrmIteIMU9qF9YFlER2gYPiyhtDGbnTUTp0q7aMOKNY9b3JJBxy7uQVoUxJzAySnQXrAEIRO3eE3m+vlo9iaNuy6btsmx63ljoT1R7W0bb0RONN+FQTmW2qz+DI0SNRnZKNHLY6EmECmWOb8oi1cA4H2RNu7yoCxe9fAWBeA5uAmbN29GTk4OrrnmGvP2EEQKQgKWqJd4vV7cfvvtAAAmbgNXXWwoYgEYemOjQtnhqb2vGgMP2ftqVI6oYwOEdfiaolM9QNFdrxvl44C8r5GQiCXqmkRNPFkUlLaI12QRR1ujnuCrz15XOxI26W4bp/qctcpR9EW6bVb3w5o2oqmNqRcWsOSFDS8zJFw5g5+UJFzNxCvvq0CGdzuAUOKmvLy8qNpCEKkCCVii3tK3b1+cdtppABjE4Cpw1UG4qoJwlwUgVGl3QpI3NqrwYc2CovDGGglBu2a+rQ6eauzI+0oQKYzd9y+JV00sPyfru3g1LcxiyHCc5cS93lUZTWVmo4dFL6yrzB/hdVXjLfabel09JUF4iwLwFgUg+EUMGuJBeXk5unbtiuHDh5u2gyBSFRKwRL3m5ptvRnp6OhiKAXFHzX6wQXB+4zWpnCgar4mRMF2jY0HEms5c2xTiFsUgypb1Tk7wiNYF5IUl6ppkrleUzRqWeAWsJjVKPfFqvawkJvGLV7xaCbu2KzTbwqQsV+039bq6Sn2mXldPUTUEvwjBL0JkBzFz5kxwHIc777wTgpVtgwgiRSEBS9RrmjZtiquuugoAEGRrwVglgBovqz+ov5WMJEzFyLWxdhLa8sbCOlszGyttjGGvP0OshIxZqYfnUi/hC0E4lToQr46qxzQ3QAMVr1Gsv7U1YVOSMPSGR5PMyUo/aZKU0QzO5Hy+OgC+OmA4QS5UBiBUBuStABnzo3GTbQCA8847D127do2rjQThdGjER9R7LrjgAvTo0QNAEEFxJRiYnHwplLwpvMPitDy0aoEYCIZvbK5FULTWGVr1VJoM8iyFs5mGP6k+CztEbLI8OFJ9dU0Sw68JIow6FK8xLwWwW7xq/W30XgwkTbzamazJUnVRJGwCEjq5G4aVZ6pWW2LxulrxnlqIztJaB8sFg2Hila+ItJGFa801C+WRNkJlAFxABKdIBhVka3HgwAG0atUK1113nWn7CCLVccBojyASiyAIeOCBB+D1esFwCGJwe+3BGhEb5o0VRe1OTO2NtdSp2hxGm8zsnFKVZoMaqwk8rNRVX0QsQSQbB3heoxaxiRKvsRy3SFLFqx3UtdfVygRtIhIC2rX/a6yoRK6W1zVMzPqC4H3BiHGFUizLXldVFmNWtReM7QLHcXjggQeQnp5uxxUQhKOhkR7RIGjTpg1uuOEGAEDAsxEiV1F70MAbq4kTkg4pB352hQ+b2CQzpDhu6krEkveVqAscIF7rtB69Z4b0vg3PFEveSTu3ybGDuhavdmLh2cqsJGGSRGOSrlntddWC99VMoBv0wVpeVwBg8CG3+Q4AwMiRI3HsscfG32iCSAFIwBINhnPPPRe9evUCOBG+9DVgUHUWkjc2GOX+r7FiZW0roG8jDQB5zjx82Op+sImmIYhYgiCSRxI8rym33hVwlni1I6Gf1Xba4Xm1MOFrZTsdM+HK+YO14lUHvkrb6woADAy9BwZw6NAhFBYW4tprrzVtE0HUF2iERzQYeJ7Hgw8+iJycHDChFH7vpkgjSZhaFah6NlbXvwLGQss0y3HoXMuDECM7u8OdGyKp4Mkg6hcO+s3ZMvEUDUmoL6neySQna4q/riR9NtLnYiSE7WyLpZBmA5sabypXrS9yQ8uWjKO++KrQelgt8QoAQWE7Fi5cCI/Hg8cffxxer9e83QRRTyABSzQomjVrhgcffBAAEPTsQpA/oG0oCVhRjOyogqoETnpiNxpBaIO30DDETdkWuxKDJJCU3hvW4Z8tUY9w0G8tavEar1fOSeI1XsGY5GRN8ddj09ZuSnQjjSx42BVtYXU9EausX6MtcpLImuvlKzUSOVUFZPGqB/MdAkvbAgC45ZZb0LFjxzgbThCpBQlYosFx8skn4+KLLwYA+DLWggXLgaBGR2HkjdXqWOINKY4lQROLTDhlizc2FhKRiCMe6nIf2hSYJCBSnLpMuqOiQXte7RCvdlAfva7x5l3QIxEi12QNK6D0uir6SlWyJ1m46own+Eo/uKoKNOq8F8FgEAMHDsTZZ58dd/MJItUgAUs0SK699locffTRABdEddZqIOjTFrGAsTdWzzYeok3QpFWE1e0Qohg8WdqmhwiHRCyRCBL9u4pCxMYlXmOZZCLxGtmGONoR1XM9Wd+1pTXHcbTFhqSG0diqva6aNtVBU68rX+kHE4M49nQRe/fuRYsWLXDPPfekRhIugrAZjtGolGig7Nu3D9dccw2OHDkCoTofnrIu4ESYbnbOBYJAIGjcgQZF883OGQMz2k+OiRGzs5o2JiKXSeLboB0ATDthS48Km7ywtoQQ16UHVg09Zgk7ScaA1YkJ10i82tuGGqwlqUrC98xbjFwRBJNqLHwuLpfxccYAt7ENcxm3I1SPYNwvBoNgaV5wRv1vIBhqiyjCl7EFgfRd8Hq9eOutt9C5c2fzNhBEPYQ8sESDpVmzZnjqqacgCAKC3oMIpO0MJV4IiuD0OhylEIlHZJmJ1/qKk0QlQaQi9c3b4qBs4ZazDScrXDfBWI7UibsiC8tjkh2GboTFBI5GmYi5YGgsYSZeOZEZi1efPzRpLooIePYjkL4LAHD//feTeCUaNPXjKUwQMXLcccfh9ttvBwD4M7Yh4D2s2BfWQMhKqNezKDEIJ05W4EN04WFxDsxsTLxU77bRqW+ig6gbkvU7SsW9YOPAspBz0lY5cbYlaWGnVr5ju8VrrP2rlSVAFnYq4IKicVnBoCxedfH5Q+K1xiYolAJNtgIALrvsMgwePNjsagiiXuOM3oMg6pARI0bgnHPOATjAl7sRorsirIOyLGT1qOvw0WgTVjjEu8DxXPxCNpbEWImCRCwRD04SHApiDveP5b5MQHbypIUMhypLXfEay2dvxeuaAM9rTBPENglXWbzqIXtddWwUwlWyEflqZHfcBZ/Ph5NPPhnXXHONlSsiiHqNQ0Z2BFG33HrrrejVqxfABVGVvx6iUB06oBSyCfLGOhKVN7Yul8rXK28sZScmYsGh4lUiahHrkPsx6eI1XmwIX3Z8yHCy+5pova4ahAnXOL2uanHLuACanVSMgwcPol27dnj44YfBO2SSmSDqEkriRBA1lJaW4uabb8aWLVvA+dOQvr8bOKZI4iB1/KJ54iSIxkmcQomVzDpNkyROdiRwChkZHxdFexI4xbn+lRI7EQ0Sh4vX2tOtbt9lw+DbhkmtlBSvcTcjznZY+dztWOtq1k6TJE6hZpi1gzevR0rSZPSsFgTj/VqFUDuMhCur+UzUNgwiqpqshegtRUFBAd5++200a9bMuM0E0UCgaRyCqCE7OxsvvvgiCgoKwNxVqMrfAAaF4JG307G4pY4ZTHSGoLIwqLFl1t4JXhcntEGCPLGEU3DSfZEESLw2cBiztEuAsUe1ZoLZaBwQMAkXVnhlI8UrQ3WjTRC9pcjMzMSLL75I4pUgFDSsXosgTGjWrBlefvllZGVlQfSWobrxJjAkOCy4rkWsxWuoFyK2rj9rNTSoJMxIAU+9LWH+VnFStloieuyIpIlzBwDT42Y2ZjsISFvtGZYR1F12xMDgy9qCYPphuFwuPPPMM+jQoYNxeQTRwCABSxAq2rdvj+eeew4ejwfBjGJUN9psLGJ1vLGMMetrR53ijTVBV8RGM6CoaxHrNEjEEnVJskKHJeJ5ziUzdBiIPgGeFnZMQNjQDltWiyUgiVZMxPIbsrrW1YigybIewJpwlcSrVhPA4M/chkDOAQDAgw8+iN69exuXSRANEBpJEoQGPXv2xGOPPRbaIzbzMHx5W8CkTlPQWDtjImQtkwJC1pa9A52UHdgJkIgljEiUFzbZ4jUeki1eifpBNEma9LAqXI3Eq1K4KsWrS7Ge1x+AP2MH/Ln7AAB33XUXhgwZYlwvQTRQaARJEDr861//wqOPPgqe5xHIOgRf3nawYDDU0ekNhHQ6QrU3luM448Gjw0UsUE9Cip0EZSgmjLBbxNaleI32+UbilYiFRIcLu4S4w4XBcYA/APgD8GXvgT9vDwDg5ptvxogRI4zLJYgGDI0eCcKAgQMH4sEHHwTHcQhkH4Cv0Q4wUazJRKzTsRlk/g0TsmaDMrOOleOtDewSmHJfHhTGM8AkERsODbSJRJNK91yc4tWWiBEidZCEomn/afKbCAbNva6mXtmAYbgwAiHhCsbgz9oHf+PdAIDrrrsOF154oXHZBNHASaFejCDqhmHDhuHee+8FAARyJBEbNBSqQI2401vnYmUbHRuoFZhx3OpWz02F5CqpMnCnATehxs7fRF1HeKTKfeiULMSAPetxdZAmVm1ZJ2v220rkb89Cnypfp953K4X6GmFmEwiEXoJgLF5rPMC+nL3wNdkJALjiiitw2WWXmV4HQTR0XOYmBEEMHz4cgUAAr7zySk1yhSDc+1qCBx/qyDguvEPk+doOTjTwuEoDhmQIFql9CRwIydfolGQfWnB83Q/grcBxKZGBlkgCDpzQYCKLLYw4yeKVMRabBzZe8erE70zjs7BFtFpugMlzV+o3hCg/O4vC1RQrwjVUmPbxQCD8/1q/AcmGsVDCprzd8OftBQCMHj0aV155pXk7CYIgAUsQVhkxYgQ8Hg/+v707D4+qPNQA/p6ZyTLZQwiQCLIomxoWQRARiqCACC5grUprLddb7VXxuZZee6kKLlVb6/bUVlta9VpFqFpBtBWKLG4goAhRBMIW2RKy75PJzDn3jzPnzJnJLGf2OZP39zx5MjnLd76ZSWbmzbf95je/gSOvHpIgIr2qPwQIEADfQVZLlPy3UvoKsoIg95GIdhg0mTxDbCyCksl/63NSUD5EJ3uQZYilWAUhSYx/S2g41wv0uhkrKRhefYlbeNUbXPXS/h5FI7z6Cq5mc/f9Add8dfjfp93vKkOCBHtxNRz5ZwDI3YbZ8kqkHwMsUQiuvPJKWK1WPPzww3DkNsIuOJFedTYgyW+oHkHWF+2HMZMAwAyImjfPeLXIsjVWZoTWWIbYnivWrwMRhtiQWmET2G1YdytsMnUZjqGkbHUNhc5/kIYVXBXK86hM3OjN4vr4HGJwBZTwegqO/DoAwOLFi3H99dcHLoeIPAhSXF/JiFLD9u3bcf/998Nut8PUno2M0wMhiO7/2CoflgKOdVXehEU/b6JKcAn0Ri2JQd/Ig/6J+1n+p9sxYZcfwlq4AXfH8KUq2UOsgi/XPUs8wlA8ZiOONLzGYxZiI4TXGE7Ipwj+OOl8vgO9pgYaGwrIS9UFKz8QHXUMej+V/f5ec4Odbzb7DL+SIKKzz3E4c5sgCAJ+8YtfYO7cuUHrS0SeDDKTAlFyufjii/Hkk08iKysLYlYbbP0PQ7TY1f26/i8kSoHf5JXwGo21YWPY0hqVDzx6rhPLboRGmVTGAK07ZCBG+b2PEGchjhMllMai1VURdGkcHdcOcH3JKUJyigGX2An4/i5J8koFvsKryQFb6VE4c5tgsVjw4IMPMrwShYktsEQRqKiowP/8z/+grq4OQpcFGacGwWS3ug/wDqneHxglPa2fmjJ8na8c44fkPVuy93/xI2yBVa8RTLAPLSGE9Ji0xhqlFRZgS2xPEOvQFYXwGtI/lcK9XhSW0dF/LQOMfY1xK2zY/5AMNFlht4sEuQ++WmC1r3kms4/9mtdvs4/92nBtNvu8n5JrWRzBTwuw+j4nShAsZu+dnvu9yhAtdthKjkLK6ER2djYeffRRjBs3zud1iCi4nvHvV6IYGTp0KF588UUMGjQIUpoDtv5H4LS2ug8wCZ5v1t4hSdkXSjfbQIFYj1iOe42TqLfGGim8AmyJTXUGeH5j2iNCEcE1uP5rnARp0ewm1PesAC2h7mN0tLpq3ju7zcSstLr6rYLkHg7kHU5dLa7a/d6/t05LO7LH10LK6ETv3r3x/PPPM7wSRYgBlihCffv2xR/+8AeMHj0aMIvoPOsYHDn1/k9Q3kjVVlXNZEfhBtlQiWL3mYgjkIgPioJJiM+H6GQlCIYIOhSiVBn36i3U16sIwyvFWKjBVS/t8+4ruGqf22Dvg0od/RwTanD1qIOv4KruFtTyuzIbIYw8idraWgwaNAgvvPACzjnnHP91JiJd2IWYKErsdjsee+wxbNq0CQBgqS9CWl0JBBE6Fnf38WFA+0YebLyscozf4qXgLa+x7kYcxS7E3U+N8GXMaC2w3vgynjqSvOtwRP800nvtRIVXTuSkrwtxoNfbYM+dnu7DgV7PTObAr9eBejwBwSeQ8n7f9S7ebPLoKuyzCmYTRKcTjsIaOPrWQJIkjB07Fo8++ihyc3P9X5uIdGOAJYoiURTxyiuv4JVXXgEAmNpykHFqAARnkDd1PbMVM8AGOb2Hh1iAQdboUjm86r1+PMe8drt2jAOsJEX+HAeqoyhGfB8CPX66liOKJMC6xqf6JUr6ZijWG3B90RPQg6wMIJkAe9+TcOY3AZDXkL/nnntgsXDlSqJoYYAlioEtW7bgscceg81mg2BPR8bx/jDZ0l1jYn28wQdbLgeQZzUMMIFGoA8XDLC6C4m8jETjS7oxxavba6JCbBxaX4EodB+O1URO0Vrj21/9lNfnGAVY5fU9ZgFWee31F2CV13d/ATbY46vs9zUBFCAvZycI/uunZz8AyeJAZ/8TEK0dMJvNWLx4Ma677jrf5xBR2BhgiWKkoqICS5cuRXV1NeA0If1UKSzNOfJO7yCrXTIn0Bt8oJkeRSngh4yIQ2ySzUTc/dQovZSlaohV1hWm5BPPMZuJCLChXDMVA6z27y7a9fN+XY5ygNW+rkcUXpXJjfzNpA/I+7zL0L6u+/oHsLY7b7DZi30FUO1KAP72K+X42q+s4y5KcOZ0IOfCVtTV1SE3NxcPP/wwJ2siihEGWKIYamhowAMPPIC9e/cCACy1RUir7g0Brjdh7RuyM8gMw9oAq/Aar+P956z9wMFW2JALi15ZieD9XCi/C3zJTz7xnnQoniE21GulUoANNglROLT18/V6HMUAG+j9xCc//1hV9+kZn+p9nsd+z9l/ux3na79H/TTl+1rCznu/dzna/ZrgKkGCo7gRYkktnE4nBg0ahF//+tcYMGBA9zoQUVQwwBLFmMPhwIsvvoi///3vAABTmxUZJ86C4NCMh1He+H2NdfV+0/f1xq4539eftDorYrAQywDrXWB0y0sEX13r+LKfPBIxY268AmwC1n5NmgDr728sWvWLYXj19zoecoDt1nrqqp+/11UlwPp7HVcCqq8hN9p9viitp76CaSj7NcEVACSTE/azTsOZJy+fd/nll2PJkiXIysryXQ8iigoGWKI42bJlC5544gm0t7cDXWZknCiFuT3b86BAEzYpb65BQlqgDx8J70ZstAArFxr9MuPN1+QxfOlPvEQu9xJBiNUVYCMJyUYPsIH+tmL5nEchwAZ6DdcdYAP9k9Vv4TomV1L4a53V87gH+8dCsOEXmmuLGTZ0DjgJKaMLFosFd999N6699lou40QUBwywRHF0/PhxPPjggzh8+DAgAWk1vWGpKXJ3KVZEMOMwECRIpnA34pgEWHfhsSs7GfCtIP4S9UE3Hi2wPTXABpKoJXaiMMFT5I9rFGYnjmT5nnA5nd2uLUGCo1cjhIENsNvt6NOnDx5++GGcd955sakDEXXDAEsUZzabDc888wz+9a9/AZC7FKefLIGpK10+QGllDTYhRgCGDrBqQeEFxpiFWAZYiqZUbn2N8BrhhpGkDq9A/Gco1r5Wx3B5HV2CvZ/5m31Yed0NpYVWW26gawfb73R2u7ZkdsBeWqV2GZ44cSJ+9atfoaCgIHD9iCiqGGCJEmTDhg14+umn5S7FThPST/WDpTlP92zDwdbrCyiZx8F2KzC04MhW2Ajw7SB+DNj6GtPJmxSJan2NdXgFAnfjj3T92HAnd9LZOhvR8jrRmJ3Y58UDLL2jHYoTzn4lvGqu78xuQ864dtTV1SEtLQ0/+9nPsGDBAnYZJkoABliiBDp16hQeeeQRfPPNNwAAc2Me0k8VQ3B4vWH7mW042IcKv4zSCutRqP7wyBAbAb4lxIfBJm+K+fI5QOp2HQYCT6IWjZbZUCd3CqF11u+ybAH2e14/QOso4Bkg/c3/0K0CmuN8zV4c7n5tcFUuZQK6+tTCWdwASZIwcOBALFu2DOeee273ehFRXDDAEiWYw+HAq6++ildffRWiKEKwW5B+vC/MbV6zGAaYaTjQ2n0+GTHAArrDIwNshPi2EHsGWjonrPAa6jVTObwCgSd3CrdlVmEyBX5NjnDt2EBL63jv9339YBMwuQKkv9dWvcvv+JsAUe9+H+FVzLShs381pMxOAMA111yDO++8E5mZmb7rSkRxwQBLlCTKy8vxyCOPoKqqCgBgqc1HWlVvCGL3DxdBl8oJJFh4lQuJqAxdLysMscmNbw2xFc8Am4jwGsp1Uz28BpLk68ZGHF6BwLMTa/f7rUSQ5Xci3e+DJEjoKq6DVNIEp9OJgoIC/OIXv8CUKVN0l0FEscMAS5RE2tvb8cILL2Dt2rUAAKHTgvQT3VtjI/6zTXQLLBB+gAV0fRCJaYDVWQfD49tDbBgkvMqnxzjARjh7bEwDrCjGp2txuMvu6B0bG0rrbLfLh7+0TrC5GuTr6xgfG+7+MMsQMzrR2b8KklVudZ02bRruvfdeTtRElEQYYImS0K5du/Cb3/wG1dXVAFytsad7Q5DkDxv6AmKAD1+RBlgdZcSsG7F6gQSH2J4QYAGG2GgzUNdh+fQI6xvO7LGhXiIWITYKS89Eha/7FqtZixWJHh8LRD6DsM79kiRBMLveVwUJjt71kM5qgsPhQF5eHv77v/8b06dP50RNREmGAZYoSbW1teGPf/wj1q1bBwDy2NiTfWBuydYfYBXBxkB5i0eABdgKaxR8m4icAWcdlk+PcYAFkrMVNopL0IQt0NhYX/tDFeHYWLkKgedfCDnAer9mR3u/6xiPiRBNApzWDtjPqoaUaQcATJ48GUuWLEFRUVHg+hNRQjDAEiW5HTt24He/+506NtbcmIP0U8VAl5918xSBPoykQoAFGGLjiW8V4TPomq/y6ckfYIEoh9gwxopGXaLHxnof40Ncx8fqGT/r6xgf+z3qmiahq28tHEVNAICCggLcdddduOKKK9jqSpTEGGCJDKCjowMvvfQS3nrrLTidTsBpQtrpIpjr8iDAXxepAB9KojGRU6BrqEWkeDdinXVIGXy7CE0yfACOMMDKRSR/iI1K2Aj02piIAKt31uJwBFp2R7s/gEjGx8rXEAK/BwQLr3rL8BFcJUgQ89vQdVYNpDR59uE5c+bgZz/7GfLz8wPXm4gSjgGWyEAOHjyI3/3ud9i/fz8AwNSWibQTxTDZMrofrCekBhKF2YzZCpuC+JahHwOs/jokQytsMIkeD6uIx+9VFO5rsrRger8Piel2dJ1VCzGvHQDQv39/LFmyBBdeeGEiqkdEYWCAJTIYp9OJd955BytWrEBHRwcgAea6PKRVFUFwKuvd6QxUgWaxjEILrFxM4lth5cMYYqOGbxv6JMMH+EQH2DgspaNeKlEBVs+ET9Gc0TjYa3asZ2YOdgwim53YY3xqhGV4bDOJcPRpgNC/FV1dXbBYLLj55pvxox/9CBkZPv4JTERJiwGWyKDOnDmDP/zhD9i8ebO8wWFCWpWmW3Go3YR9TRgS7MOKgVph3YdyZuKo4FtHcMkQYIHEjYMN9brJHmIDTXoUbCIof8doj9UTcAPNSuxvv/Y4XeNSI5jUynWcYO4+R0Ow2Yn1TAClHiOKga+heTzV7sKltZDSHQCAiy66CIsXL8bAgQP93xciSloMsEQGt3v3bjz77LM4evQoAEDoSEfayWKYW3T8RznQ5CDaDwKKUGczRvIFWPcpMXjp60kBFmCIDSZFAqxcRIj3JZxrJnOADTTpkZ7XxUhab7UCTe6kpzdNqAE2zPsS6gRPwY6RfLwfaQOsr/0wmSBmdMrdhXM7AAD9+vXD3XffjUsvvTRpujgTUegYYIlSgMPhwNq1a/HXv/4Vra2tAABzQzYsp3rBZE/zf2KgP39lEpFwPqx1u0xyhlj3qVF8GexpIRZgkPUnWT4gxzvARnK9ZAyxwSa+C2dCpHCW6Qk0sZOyXyucZXcivS9wB0s9Ezz5O6bbfh/18biO137J4kBXaSOk4laIooj09HQsXLgQN998M7sLE6UABliiFNLY2IgVK1bgvffek9/UJcBck4+0qgL3+FitSMa5Bvug43GZ5A6w7iKi9HLIEEtAzwywkV4rCgEWSJ4JhKKxXI0uwZbd8T4mXFFafkf3R08919AcI5lEOIqbkHaOTZ4jAsD3vvc9/Nd//RdKSkr0XZOIkh4DLFEKOnToEF544QXs3LlT3uAwwVJdAEtNHgRJ88Yf6YcIneISYIGIgyNbYiPUk95OgrWGKcckAyMFWCA5W2HDpbf11p9QxsaG0jrrLZTxsbG8P8r+YO85XsdIkODs1YquknogXV4W57zzzsOdd96JsrKywGURkeEwwBKlsB07duCPf/wjjhw5AgAQOi2wnO4Fc0O2PNFTMgVYgCE2FfSUt5R4tXhFQzwncUqSAAv4D7F6ZrmNm2iNjQ0m0pmLI5kACgh9wiuddZEgQcxrR1dpAySrHYA8zvX222/H9OnTk+M5JqKoY4AlSnFOpxPr16/HX/7yF9TW1gIAhI40pJ3uBVOjVQ6ywUS6piyM0worF8EQG5Ge8LYSbDZYf8fEUyJmH07yABtsJty4C3fCpFAF+4dLLCaAAvTNxCyK+oK0V12cOR1wlNRDzOkEAOTk5OCWW27B/PnzkZ6eHryuRGRYDLBEPYTNZsObb76JN954Q53oSWhLR9qpQphaggTZeAVYIClCbNRnKO6JIRZI7SAbrQ/8sZKopXOicG0AMQmxembDjatwJkwKh/fM8v72a0UyARQQ2tjVYH8zXnURszvRVdIAMU8e45qRkYEFCxbg5ptvRl5eXvB6EpHhMcAS9TAtLS1YtWoV3nrrLXWSC1NLBiynC2Futfo+yWgBFmBLbLJI1beYaHW5jLZEBtco1QFA1AIsEHzSoKRoifUWzfAayljtSLrD6xm7qhUsJHsHV2snukoaIRa0AwAsFguuvvpq/PCHP0Tv3r31X5eIDI8BlqiHamhowOuvv441a9bAbpfHDplaMmE5XQBTa6Zni6zODyWSJAUdd6ZLErTCuotJnkBtWKn4NpOMoScR6736LyjyMqIYYoMJFmIDvbbFRLQCrB7xmABKOUZPmPYOrlmd6OrnDq4mkwmzZs3CrbfeypmFiXooBliiHq6mpgavvvoq3n//fTgcDgCAqTUDlqoCmJpdXYtDCLCKYOPPAkqi0MhW2Cgx0luNkWYYVkQjMCLJAiwQlxCr559uCQ+vesaSxkok3eVD+sel5wzFzmwbHP0aIeZ3uC4h4LLLLsOtt96KQYMG6S+XiFIOAywRAQCqq6uxcuVKvP/++2qLrNCWjrSqApiasiDoDHLeLynBxqD5lYqtsHJh0SvLiPxNIJNMb0XBxgxqj0kWqRpggZiGWO9gGuo42ZjMaBzJxE7Rnr0YCNq1V/cx/mjqLEGCmGODo6QRYq4NAGA2m3H55ZfjRz/6Ec4+++wQKk5EqYoBlog81NbWYtWqVXj33Xdhs8kfIISONFhO58nL70jBu9r5onzAM2IrrFwMQ2zUBBr7lgxvSeF8YE+0KAbGpAuxMQqwev65FvfW2XDXWQ22TE24Qh0fG05whWs5nIJOucXVNauwxWLBlVdeiYULF6K0tDSUWhNRimOAJSKfGhsbsXr1avzjH/9QJ3uC3QxLdS4stbkQnL4/JEX1JYUhNrX5GzuX6LelZJ9h2B+2wuoWbGIn5RitpJjFONSZfuMh1B4U2uAqSHAWtcLRtxmSVR7Ckp6ejrlz5+Kmm25C3759o11bIkoBDLBEFFBLSwvWrFmDt99+G/X19fJGpwBLTS7M1bkwdVm6nRO1l5UkC7ByUVxiJ26i/fZkxLGtoUjlAAvEdVInIElnLw63hTZUXuNRwz7G+3gXyeKEo7gFjj4tQJq8PTs7G/PmzcMNN9zAWYWJKCAGWCLSxW6349///jdWrVqFyspKeaMEmOuzYanKg6nDvXB80gVYIDlbYT0Ljk25qUDP71Mo4dRIY1tDkWwBVi4semXFOcAGE6x7ccICri96uxjrGUOrpyw/IVvM6IKjbzOcvdsAk/w49e3bF9dffz3mzp2L7Oxs/9clInJhgCWikIiiiM8//xyrVq3C7t271e2m5gxYzuTC1JgFAcG75+m/YA8Kse4LxLZ8o9ITPEMJp0YY2xqKVB4Hq0iSEBuse7GeZXn0HBcSPbMX+zpO70RRemZC9lGWBAlirg2OPi2QetnU+z5s2DDceOONmDZtGiyW7j15iIj8YYAlorDt378fq1evxpYtW+B0OgEAgt0Mc00OzGdyIDjMkV8kCQOsXFScXjoZZj3pDZ2BJooKdCwDrKuoJG2FBRIeYvVMSKdnGbGot9AqgVJvF2M9Y2gjKEsyi/L41uIWdXwrAFxyySX4wQ9+gDFjxiSmlZqIDI8BlogiVl1djXfffRfr1q1DY2OjvFEETA1ZsFTnQmhLl9eTDVdPD7HuC8b3esks1DUo9XxQ9jeplJH0hBCbJK2w/iTl5E+hCDbONgjRaoejuAXOojbALN93q9WK2bNn47rrruMarkQUMQZYIooau92OLVu24J133sE333yjbhfa0mE+kwNzfRYEMYwPskk+cRKDLCWFZA2vcoHRLS+JQ2w0Jn+SJCm5Q64XSZDgLGiHs08LxNxOdfugQYNw3XXXYdasWcjKykpgDYkolTDAElFM7N+/H++88w4+/PBD2O12eaNTgLkuG+aabAjtIbbKJmkrrLtIhlhKkGiHQ8QgwMqFRre8JA6xgcR9bdkYEjO74OzdCkdRqzqbsNlsxpQpU3DdddexmzARxQQDLBHFVGNjI/75z39i3bp1OHnypLpdaE+Tx8rWZUFw6hwrm8QtsXEPsPJF439NSh4xCK5ysTEKHLGob6h1Vf5OExR+o9G9OJoTQOkNzR71NEtwFrbDWdwKMcfd2tqrVy9cffXVmDdvHoqLiyOuGxGRPwywRBQXoihiz549eO+997B161Z3q6wowNRghbkmB6aWjMCtskkcYOXiGGIpDowWXD0vEt3y9NTZ++8ygS23wboXK8d4i/Y4Wr0TSinHSZAgZdvhLG6Ds5d7bKvZbMbEiRNx1VVXYdKkSZxNmIjiggGWiOKupaUFGzZswPvvv49Dhw6p2wWbGaa6bJjrsmHqTPN9MkOsvwsn5roUX0bpLuz/YtEv01f9/f0dGqDbsZ5ZjrXH6aV3XK72OCnNAWdRO5y92yBZu9TtZ511Fq666irMnj0bvXv3DqkeRESRYoAlooSRJAkHDx7Ee++9h40bN6KtrU3dJ7Smy+Nl67M8l+OJRUBMlRArXzxx16bYMnp4dV80/tc0QHANhe7uvmGQzCKche0Qi9rkCZlcl8rIyMC0adNw1VVXYfTo0RzbSkQJwwBLREnBZrPhk08+wYYNG7Bz5051XVlIgKkpU26VbbTKsxgzxAa7eOKuTbHDABu+FAqwersYh0ISJIj5HXAWtUMsaAc0T9GoUaNwxRVXYMaMGcjJyYnoOkRE0cAAS0RJp76+Hps2bcKGDRuwf/9+9w6nAFNDFsy1VpiaMyFIUf5QyhBLyS7K4S8hAVa+cPyu5e8+av8+DRJw/XX1DYcECVJOp9xFuFc7YHG/ZgwcOBAzZ87E5ZdfjpKSkoiuQ0QUbQywRJTUKisr8e9//xsbNmxAVVWVe4fDNflTfRZMTVEKs6mwvI7nxRN3bYoNtsKGxvu++fp7NFB4jUZoFXM7IRa2w1nYDqS7XyOKioowY8YMzJw5E0OHDmUXYSJKWgywRGQIkiTh66+/xsaNG7F161bU19e7d0YzzMYo9DHIUsSMPPuw7wvHtnyTEHy4gUHCayTU0NrLFVrT3K8HOTk5mDJlCq644gqMHTsWZrPOJc2IiBKIAZaIDMfpdKK8vBxbtmzB1q1bUVdX596phNkGqxxmxTA+JMc48CU0zMoVSOz1KTypFGATMQ5WSwm3KdS9WEsSJIi5NoiFHd1Ca25uLqZMmYJp06Zh3LhxSEvzM+M7EVGSYoAlIkNzOp34+uuvsXnz5u5hVhRgasqQA22jFUJXGK0LcQh7DLQUUBzCnuGX0gmVnq7Fvo5LRq66S2muiZgKOiDmdwAW933Kz89XQ+uFF17I9VqJyNAYYIkoZYiiqLbMfvrpp55jZuFamqfBClODFUKHBQJC/HAap6DHQEsA4hr04hJgkyG4Avq6FivHJSNN3cUMB8TCDvlLs+QNABQWFuLSSy/FZZddhjFjxjC0ElHKYIAlopQkSRKOHDmCTz75BJ9++qnnbMYABJsZpgYrTE1WmJozwhs3m+pdjeVKJLoGPUsCQ17MQmyyBNdQJTrAars4K62skCDl2OEs7IBY0AEpy+FxyuDBgzF58mRMnjwZI0eOhMlk0MeeiCgABlgi6hFqa2vx2Wef4dNPP8UXX3wBu93u3ukUYGrJgKkxUx43awuxdTaGIS8pQizAIBtrSRDyYtoKmwT3LySBHotQxseGe6yGlO6AM98GscAGMc/m0TXYbDZj9OjRamgtLS0NfA0iohTAAEtEPU57ezt27dqFzz77DDt27EBtba3HfsFmhqkpU26dbcrQNxEUW2MpEqnY8tr9QvG5TiR8PRaB/vb0jqUNoWxJECHmdUJ0hVbJ6tnKmpeXhwkTJmDy5MmYMGECcnNz/V+TiCgFMcASUY8mSRKOHj2Kzz//HDt27MDevXvR1dXlPkAEhNYMmJsz5NbZtvTA3Y3ZGkvhinPA65GzDwfi1V03ascGOV6CBCmrC2Keq5U1txPQPEwmkwnnnXceJkyYgAkTJmD48OFc7oaIejQGWCIijfb2dnz11VdqoD158qTnAUp342b5S2hL797duCe0xioYZqMnTuEuYeu+uiuQ2OsnmDuwdsqhNbfTo1swABQXF2PixImYMGECxo0bx1ZWIiINBlgiogBOnDiBXbt2Yffu3fjyyy/R1NTkeYBDCbSZcqBtT5MDbU9Yfscbw2zoUm2m4eCVSHQN4k6CBMnqkMNqXqccWNM8/1aysrIwevRojBs3DhMmTMDAgQMhCEnwfBERJSEGWCIinURRxNGjR9Uw+9VXX6G1tdXzIIcAU2sGTC3pEFrSYWpN0zeGNgKGCbLa8NKTw26CQlxCA6ze+6z8Xhg46EqCBCnbDjGnE2Ku3WdgtVqtKCsrw9ixYzF27FgMGzaMy9wQEenEAEtEFCan04lDhw7hyy+/xO7du7F37160t7d7HiQCQnsaTC3pckttSzqErtiOX0uaQKsNqYECSU8Is0kSyOIeYkN93pPkcQqFZHFCzJGDqpjTCSnH7jGGFQAyMjJQVlaGMWPGYOzYsRg5ciQDKxFRmBhgiYiixOl04siRI9i7dy/Ky8tRXl6OmpqabscJNrPcOtuWDlNrOoS2tPDWoQ1B0oTaQFItyCZhGItrgA2lxT0JHytfJEGCZO2CmG2H5Aqt3rMEA0B+fj7KyspQVlaGCy64AMOHD0d6enoCakxElHoYYImIYkSSJFRXV6thtry8HEeOHEG3l12lldYVZk2t6RA6QlyLNpz6pUqoFUyxD7/hXCMJQ1lSjIPVSsLHSCFBgpThkINqth1ijh1Sdhdg6v53c/bZZ6uBtaysDP379+cYViKiGGGAJSKKo5aWFuzbtw/ffvut+tXY2Nj9QKcgj59tS4epLU2eHCoGodYQIRYIHB69Q1Aswmw410iScJZ0oRVImsdGIUlOSBlOSNldELO71NDqPTswAGRnZ2PEiBEYMWIEzj//fFxwwQUoKCiIf6WJiHooBlgiogRSWmm1gfbgwYPo6OjofrDSUusKtGqwjdIkUYYMs8GCULTCbDjXSWBIS8rQCrhbshP42EhwysvYZHXJgTWrC1JWl8+wmp6ejqFDh2LEiBEYOXIkRowYgf79+8NkSq4ATkTUkzDAEhElGafTicrKSuzbtw8HDx7EoUOHcPjwYd+hVgIEm0UOtO0Wd0utLbLWWsOE2XCFEmzDCVsJCGlJG1q19Dwm4cxE7OOfGhIkSOldkKwO17hVOahKVgd8/Wmkp6dj8ODBOPfcc9WwOmTIEE62RESUZBhgiYgMQBRFnDx5EocOHcKhQ4dQUVGBiooK1NXV+TkBcpDtSIOpI7Jgm/JhFtC39E+SS9oA6+sxDLcLto/z5LGqTkjWLkhZDohWJbQ6ALPv3938/HwMHToU5557Ls4991wMHToUAwYMYFglIjIABlgiIgOrr69XQ+3Ro0dx7NgxVFZWwmaz+T5BCbY295fJ9TMcJoZbILQuykkmaUNsKPxMmCWZRUiZDvVLzHRAypJv+wuqFosFAwYMwKBBgzzCalFRESdZIiIyKAZYIqIUI4oiqqqqcOzYMTXUKl+dnZ3+T3QIPoOt0GlmuDUQI4dYySzKM/9aNSE10ymH1DT/rbbp6ek4++yzMWjQIAwcOBCDBg3C4MGDUVpaylZVIqIUwwBLRNRDKMG2srISx48fx4kTJ3DixAkcP34cZ86c6b68j5ZTgNBpdn1Z3N9t8nc4haABl4E2PpI5wMoB1SmHVI/v8m1fEylpFRUVoX///uqXElpLSkoYVImIeggGWCIiQmdnJ06ePKkGWuX7yZMn/Y+z1XIIEOxm9Qua24LdJG/TtOIyzMZePIOsBAkwS5DSneoX0p2Q0kVIafoDKgAUFhZ6hFTl66yzzkJWVlYc7g0RESUzBlgiIgqos7MTZ86cwenTp1FVVaV+V27X19frK0iEO9x2uYKtwwR0moAuk7ytS74NMXiLLgUWjQArmURIaSJgcQXRNBFIEyFZRM+gmib6HYfqraCgAP369UNJSQn69evn8dW3b1+GVCIiCogBloiIImKz2VBdXY3q6mrU1NSgtrbW43tNTQ0aGxtDK9QpyC22SsjtMkFwmgCHa7vD5Pqu+dlpgiAaP/R6B089rdXBwqokSHIINbvCqMX7ZzmAqiHVIoYUShV5eXno3bs3iouLUVRUhOLiYvTu3Rt9+vRBSUkJ+vbtC6vVGlKZREREWgywREQUc3a7HXV1dR7htrGxEQ0NDWhoaFBvNzY2+l7vVi8nANEkj8l1CoDTdVsU5FDsNLm2C+7tkgCI8pcgwuNnSJCPcd2G5AqKEgAo2+RNQccAuw+Uv5kEQJDkn13fJZMk3zZJgEneLpkk+VxBgmB2HWOWj5HMonysWYJklgCTKH/X3raIcllhSk9PR0FBAQoLC1FQUKB+aQOqElgzMjLCvxAREZEODLBERJRUOjo6PMJtQ0MDWlpa0NraipaWFjQ3N6OlpcXjq7W1FaKoY23RWNKEWUiucAqogTXRPaIFQUBOTg5ycnKQm5vr8aVs0wbUwsJCFBYWwmq1cskZIiJKGgywRERkeKIoor29HS0tLWhvb0d7ezs6OjrUL+3Pyu329nZ0dnaiq6sLdrtd/a58dXV1eWyLdUA2m81IS0tTv9LT0/1+t1qtur+UcJqdnQ2TyVjr2hIREXljgCUiItLB6XRCkiT1uyiKPm87nU6IogiTyQSTyQRBEALeFgQBFosFZrM50XeRiIgo6THAEhERERERkSGwLxEREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZgiXRFSAiShRJkmCz2RJdDSKikGRmZkIQhERXg4goIRhgiajHstlsmDVrVqKrQUQUkvXr18NqtSa6GkRECcEuxERERERERGQIbIElIgKQvqMPBMn1Pz3BBMEkAIIJMAmAIEAwKftc2wUBMAkQlGPUfYJ6DgTNdnWbu0x1H9z7JUFw/2tRcJejbtecp90muYpR95kAQNkuqPuUcyTXNkl7jlKGyXW8eo7nfrVMABJc20w+9nkcD486urd518PHOfA8x2M/ApynKdPXuf7K9BDwHMnjfO/y1P2asiTXdnidB0HSnC/vF7T71GMl9RxBPU5zvKscQZDcv4Ku7e6nWlL3myCpP8v7AJPrZ3mf/LNynrpPkCDAfZ7JtU39gnY7PLa7zxHVbSZIMAkizMo+18/qftdtADCr2ySYIW83C6LXeSLMrtsA1Nvq8XCXZ4J8vgny9eV9ynnyNgEizMr5UOohwgzI50G+nnLflJ/la0mu23DXBfKfmRmC+uduFgSYILi2Ca6fTa5fHQFddjMW/Gc/EBH1dAywREQA4BTcHyUFEwS4wqYrGbj3CYDJndYEOQ26ClHSjgle6USTbEzd05U7ZWi2w2ub9hrwsc37PLiDqybAdtvWbTt8BGLv/dAEaffd8rvP393wWQ895+h4qKJQZvDQG+UA62s/vH+WfGyXPK7pa58SrNz7tPslzXmabZB8lOn+0gZYdyh2fcH/djU4CtAEVHfQBZQgCjUAavfJAVZ0B0BBDn/yea4gKAhyuHRtV26rx0PQhGXALLi/mwFN2PSxz/Uwyj9LrgAsqYFVPk8KGmB9lWeCe5v8s7aOmueQiKgHYxdiIiIiIiIiMgQGWCIiIiIiIjIEBlgiIiIiIiIyBAZYIiIiIiIiMgQGWCIiIiIiIjIEBlgiIiIiIiIyBAZYIiIiIiIiMgSuA0tEBABmCZIkyrcFyAtBqt8F97/7PNZR1dyGdpvkvu2x3c8+zaKgkp/FTd3b3d8lj9vwOE8CAEldjVPdI0EAJKjnSt7nuM7rznubsvCpR5W8Hg8/X97HRrLWa6B9gcrUcT3B136Pbb7Wc/Wxv1sd/awDC8/9gnafeqy7TEG7xqtyvMe6rNpfLz/rwCL8dWAluM+TBMnzC9rt8NguquWJ7utAAgRRs16t5LFfEkRImnpIkFw/u74r9XD9bHIdY9Js126T6yEXZwIgCu7vItzrwIqubQL8rQMrwAR5fVkz3M+Z8rPJdY732rImdZ+gKc9dlgmC+rP8tAjosvv6uyQi6nkYYImIANgnnEl0FWJDyQcR8I7ORIDnr5aYyIqETfubzQ5pRERGwVdsIiIiIiIiMgRBkqQI/zdPRGRMkiTBZrMluhqkk81mwzXXXAMAWLt2LTIzMxNcIwqEz1fsZGZmQhDYJ4KIeiZ2ISaiHksQBFit1kRXg8KQmZnJ585A+HwREVG0sAsxERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQJnISYiIiIiIiJDYAssERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERmCJdEVICKi5NPe3o5Vq1Zh69atqKqqgslkwoABAzB9+nQsWLAAaWlpYZddX1+PlStXYtu2baiurkZGRgYGDx6M2bNn46qrroIgCAHPP3nyJFauXImdO3eivr4eVqsVw4YNw7x58zBt2rSg1z9w4AD+/ve/46uvvkJjYyNyc3Nx/vnnY/78+Rg3bpzf82644QZUVVUFLLusrAx/+MMfgtYh2lLx+Tp9+jTKy8tx4MABHDx4EBUVFWhvbwcArF69GiUlJbrq/+WXX+Ltt9/GN998g5aWFhQUFGDMmDG44YYbMHz4cN2PAxERJQdBkiQp0ZUgIqLkUVVVhcWLF6thLTMzE6Iowm63AwCGDh2KZ599Frm5uSGXfeDAASxZsgRNTU0AAKvVCrvdDqfTCQCYMGECHn/8cb+Ba9u2bVi2bBlsNhsAIDs7Gx0dHRBFEQAwZ84c3HfffX5D1XvvvYennnpKvV5OTg7a2tqgvBXeeuutWLRokc9zlQCbnZ2NjIwMn8eMHDkSjz/+uJ6HImpS9fl67LHH8MEHH/gsV2+Afemll/DKK68AAARBQHZ2NlpbWwEAZrMZP//5zzF37tyg5RARUfJggCUiIpXD4cBtt92GI0eOoKioCL/61a8wfvx4iKKIzZs348knn0R7ezsuvvhi/Pa3vw2p7NbWVvzwhz9EfX09zj77bNx///0YMWIEurq6sG7dOjz//PNwOBy49tprce+993Y7/9SpU/jJT36Cjo4OlJWV4Ze//CUGDBigtj4qQeWOO+7AzTff3O38r7/+GnfffTecTiemTJmCe+65B3369EFTUxNWrFiBd999FwCwfPlyTJ8+vdv5SoD93//9X1x55ZUh3fdYSeXn64knnsCePXswbNgwDBs2DJIk4c9//jMAfQF206ZNWL58OQDg6quvxn/+538iPz8fZ86cwXPPPYePP/4YZrMZv//973HBBReE9NgQEVHicAwsERGpPvjgAxw5cgQA8Mgjj2D8+PEAAJPJhBkzZmDJkiUAgO3bt+OLL74IqexVq1ahvr4eGRkZ+O1vf4sRI0YAANLS0jB//ny15XPdunU4fvx4t/NfeukldHR0oFevXnjiiScwYMAAAEBWVhYWLVqEefPmAQD+9re/oaWlpdv5L774IpxOJ4YMGYKHHnoIffr0AQDk5+djyZIlmDBhgsdxRpDKz9cvfvELvPHGG3jooYewcOFCnH/++brr7nQ68eKLLwIAJk6ciCVLliA/Px8A0KdPHyxfvhyDBw/2OI6IiIyBAZaIiFRKl82xY8f6bJWaMWOG2vLlr3unP+vXr1fLKC0t7bZ//vz5sFqtcDqd+Pe//+2xr6OjA1u3bgUAXHvttT67w/7whz8EALS1teHjjz/22Hfq1Cns3bsXAHDjjTfCYuk+BYRyflVVFfbs2RPSfUuUVH2+ALmLb7i++uortUv1woULu+1PS0vDjTfeCADYu3cvTp06Ffa1iIgovhhgiYgIAGCz2fD1118DAC6++GKfxwiCgIkTJwIAdu7cqbvs7777DtXV1QCgnu8tKysLo0aN8ll2eXk5Ojs7A55fUlKCgQMH+jxf+7O/88vKypCVleXz/GSUys9XpHbt2qXWsayszOcx2sfMCM83ERHJGGCJiAgAUFlZqU6uM3jwYL/HKfvq6+vR3Nysq2ylm2uwsocMGQIAOHbsmN/zlWMCnX/06FGP7crPhYWFKCws9Hmu2WzG2Wef7fN8rVWrVmH+/PmYPn06rrrqKtx555147bXXfHaDjaVUfr4ipZQ3cOBAvy25hYWFKCgoANC9/kRElLwYYImICABQW1ur3i4uLvZ7XO/evX2eE0hdXV1IZbe1talLpmivk5ub63cGYO352utpz9fW3Relbt7nax09ehTNzc3IzMxES0sLysvL8ec//xk/+tGPUF5eHrD8aErl5ytSoT7feh8XIiJKPK4DS0REAOARQAKFjszMTJ/nxKJspUtvR0dHt/2Bzveul/JzsPOVuvm6X5MnT8aoUaMwduxYteWusbERGzZswF//+lfU19fjvvvuw1/+8hefY0ajLZWfr0hF4/kmIqLkxBZYIiIiHe655x5cdtllangFgIKCAtxwww145plnYDab0draipdffjlxlSQiIkpxDLBERAQAausZAHUCHl9sNpvPc2JZttVq7bY/0Pne9VJ+Dna+Uje990tx3nnnqWvHfvrpp4jHEuup/HxFKtbPNxERJQ4DLBERAfAcL1hTU+P3OO14wWBjDBVFRUUhlZ2dne0RKpTrtLS0BAxUyvna62nPDzbWUamb9/l6KOuUtra2oqmpKeTzQ5XKz1ekQn2+9T4uRESUeAywREQEQJ6x1WSS3xYCzQqr7OvVqxfy8vJ0la2diTZQ2crstYMGDfJ7vnaGW3/ne8+cq/zc0NCAxsZGn+c6nU589913Ps9PRqn8fEVKKa+yshJOp9PnMdrfBe/6ExFR8mKAJSIiAPKENxdccAEA4PPPP/d5jCRJ2LFjBwDgoosu0l32gAED0Ldv34Bld3R0YO/evT7LLisrUyfcUa7vraqqCpWVlT7P1/7s7/rl5eXqZD6h3DfFvn37AMitkfn5+SGfH6pUfr4iNX78eADy5EzKWrnetPcr2tcnIqLYYYAlIiLV7NmzAQC7d+9WA5nW5s2bcerUKY9j9RAEAbNmzQIAbNq0CadPn+52zDvvvIOOjg6YzWZcccUVHvusViu+973vAQDWrFmD1tbWbuevXLkSgDyeccqUKR77SktLMWrUKADA6tWr4XA4up3/+uuvAwD69euH0aNHe+wLNqb122+/xaZNmwAAl1xyCQRBCHh8tKTq8xWpMWPGoF+/fgDcz6uWw+HA6tWrAQCjRo2Ky6zRREQUHQywRESkmj17NoYMGQJJkvDAAw/giy++AACIoojNmzfjySefBABMnDgR48aN8zj3pZdewtSpUzF16lSfgefGG29Er169YLPZcN999+HAgQMAgK6uLqxZswZ//etfAQDz5s3DgAEDup2/aNEiWK1W1NXV4Ze//CWOHz8OQG4JfOWVV7B27VoAwC233ILc3Nxu599+++0wm804dOgQli9fro5/bG5uxtNPP622yN1xxx0wm80e5z733HN45plnsHv3bo8lV5qamvDWW2/h3nvvhcPhQFZWFn7yk58Ee5ijJpWfL4fDgcbGRvVLG4JbWlo89nn/Q8JsNuOOO+4AAGzfvh1PP/00mpubAcjjXpcvX47Dhw97HEdERMYgSPGYKpGIiAzj9OnTuOeee1BVVQVA7qoqiiLsdjsAYOjQoXj22We7hY6XXnoJr7zyCgC5lbOkpKRb2QcOHMCSJUvUSY6ysrJgt9vVAHLRRRfh8ccfR3p6us+6bdu2DcuWLVNnl83JyUFHR4c6znHOnDm47777/LaAvvfee3jqqafU43NyctDW1qa2sN56661YtGhRt/Mee+wxfPDBBwDk1sns7GwIgoCWlhb1mKKiIjz00ENqS2+8pOrztXv3btxzzz26HoPnnnsOY8eO7bZdex+V500JwmazGT//+c8xd+5cXdcgIqLkYEl0BYiIKLmUlJTglVdewapVq7B161ZUVVXBYrFg8ODBmDFjBhYsWIC0tLSwyh4+fDj+7//+DytXrsRnn32GM2fOIDMzE0OGDMHs2bMxZ84cdWIiXyZNmoSXX34ZK1euxM6dO1FfX4+cnBwMHToUV199NaZNmxbw+nPnzsXQoUOxevVq7NmzB42NjSgsLMT555+P+fPnd2ulVFxzzTXo1asX9u3bh9OnT6O5uRldXV0oLCzEkCFDMGnSJMyZMwc5OTlhPS6RSOXnK1KLFi3C6NGj8Y9//APffPMNWlpaUFxcjNGjR+MHP/gBhg8fHtPrExFR9LEFloiIiIiIiAyBY2CJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYjIEJ577jlMnToVd999d6KrQgnW2tqKq666ClOnTsVHH32U6OoQEVEcWRJdASIiiq22tjZUVFRg//79OHDgAA4cOICTJ09CkiQAwOrVq1FSUhKTa0uShOuvvx41NTVYuHAhbr/99rDKqaiowJo1awAAP/3pT6NYw8Q6cuQIduzYgfLychw5cgR1dXVwOp3Izc3FOeecg0mTJmH27NnIyclJdFWTSk5ODm688UasWLECv//97zFx4kRkZGQkulpERBQHDLBERClu8eLFqKioSMi19+/fj5qaGgDAlClTwi7nhRdegNPpxMSJE1FWVhat6iXU4sWL8dVXX/ncV19fj/r6euzcuROvvfYali5digkTJsS3gknu+uuvx5tvvonq6mq89dZbWLhwYaKrREREccAuxEREKU5paQXklquxY8eiV69ecbn2xx9/DAAoLi7GyJEjwypj79692LVrFwCkVEhRgn1ubi7mzJmDpUuX4vnnn8eKFSvw8MMPY9KkSQDkMLt06VLs2bMnkdVNOlarFQsWLAAArFy5Eu3t7QmuERERxQNbYImIUtycOXNQUFCA4cOHo3///hAEAYsXL0Z9fX3Mr60E2MmTJ0MQhLDKeOONNwAAJSUlGD16dNTqlmj9+/fHLbfcghkzZiA9Pd1j3/DhwzFt2jS8/vrr+NOf/gS73Y6nnnoKr776aoJqm5xmzpyJl156CS0tLXj//ffx/e9/P9FVIiKiGGMLLBFRirv++utx+eWXY8CAAWGHyHAcP34clZWVAMLvPlxTU4Nt27YBAGbNmhXX+sfak08+iSuvvLJbeNVauHAhhg4dCgA4duwYDh8+HK/qGUJJSQlGjRoFAHj33XcTXBsiIooHtsASEVFMKLPDKt2Ww7Fx40aIoggAmD59uq5zHA4HNm3ahE8++QT79+9HY2MjnE4nCgoKMGTIEIwfPx6XX345ioqKPM6bOnUqAGD27NlYunQpvvvuO7z11lvYuXMnamtrkZ2djWHDhuHmm2/GmDFj1PM6Ozvxr3/9C+vXr8eJEydgs9lQWlqKK664At///vcjnlzowgsvVMcwHz9+HOecc07YZR07dgxr167Fnj17cPr0adhsNuTk5CA3NxclJSUYN24cLr30Upx99tlhle9wOLBhwwZs3rwZR44cQVNTEwRBQF5eHgoKCjBy5EiMHz8ekydPRlpamse53o//sWPH8M4772DXrl2ora1FR0cHfv3rX3f7Z8j06dOxZ88eVFZWYv/+/RgxYkR4Dw4RERkCAywREcWE0n140qRJsFjCe7v57LPPAMjjRAcOHBj0+EOHDuHBBx/EiRMnuu2rqalBTU0NPv/8cxw+fBhLly71W86WLVvw2GOPwWazqds6Ozuxfft2fP7551iyZAnmzZuH2tpaLF26FPv37/c4/+jRo/jzn/+M7du346mnnoooxDocDvW2yRR+x6m1a9fi2WefhdPp9Nje1NSEpqYmnDhxAjt37sThw4fxwAMPhFx+Y2Mjfv7zn/ucMEx57CsqKvDuu+9i5cqV6N+/v9+y/vWvf+Gpp56C3W4Pel3tpF6fffYZAywRUYpjgCUioqirra3Ft99+CyD87sN2ux3ffPMNAGDkyJFBuw9XVFTgrrvuQkdHBwBg7NixmDlzJgYOHIi0tDTU1dVh3759QdcNPXz4MDZt2oTCwkL89Kc/Va/9xRdf4G9/+xtsNhueeeYZjBkzBo8++igOHTqEa6+9FpdeeikKCgpw8uRJvPrqqzh8+DD27t2LlStX4ic/+UlYjwEAfPnll+rtwYMHh1XGkSNH1PCal5eHefPmYcyYMSgoKIDT6URdXR0OHDiA7du3h91N+9lnn1XD67hx4zBz5kyUlJQgOzsbbW1tqKysxJ49e9Qu4f4cOHAAGzduRF5eHr7//e+jrKwMaWlpOHbsGPr169ft+MGDB8NqtaKjowNffvklFi1aFFb9iYjIGBhgiYgo6j755BNIkoT09HRMnDgxrDIOHz6stj4OHz484LEOhwMPPvigGl7vuecedYZarUsuuQS33XYbqqur/ZZVUVGBoUOH4tlnn0Vubq66/bzzzkP//v2xbNkyOBwO3HXXXWhubsaTTz6J8ePHq8cNGzYMF110EW655RbU1tZizZo1uOWWW2A2m0O6/4DcDfvo0aMA5BA/YMCAkMsAgM2bN6str88884w6rlZrypQpuO2229DU1BRy+Z2dneo/BqZMmYJHH320WxAeM2YMrrnmGnR0dARsST569Cj69++P559/3mO2bH+zWJvNZgwbNgx79uzBwYMHIYpiRC3VRESU3PgKT0REUad0Hx4/fjysVmtYZWi7AQdb9mfjxo04efIkAHnWZV/hVatv374B9//yl7/0CK+KadOmobi4GADQ0NCA+fPne4RXRU5ODq688kr1uGPHjgW8ni+1tbV4+umnAQCCIOBnP/tZyGUolBmnc3JyfIZXrfz8/JDLb2lpUf/ZMGbMmICtuFarNWiX6nvvvTekpZ6UY202G2pra3WfR0RExsMAS0REUdXa2ordu3cDCL/7MADU1dWpt/Py8gIeqwRmALjpppvCviYgd0n1F/IEQfDYN3PmTL/laI87depUSHWw2WxYunSpGjy9J44KlRK6W1tbsXnz5rDL8Sc/P1+dTfnDDz+MaE3W4uJin/8UCET7+6H9vSEiotTDAEtERFG1bds2OBwOmM1mTJ48OexyOjs71du+WkO1Dh48CEBuidMz2VMgwc7X1iXQbL3a40IJdF1dXbj//vvViaEuvfRS3HbbbbrP92XmzJlqq+eyZctw55134vXXX8fevXvVbteRSEtLw+zZswEA+/btww033IAnn3wSH374YcjhPZxZlrUBVjvxFhERpR6OgSUioqhSWkMvuOACFBQUhF2OdsxosNloGxsbAbhbGiORmZkZcL+2e2yg7tHacZjKUkDBOBwOPPDAA9ixYwcAYMKECVi+fHlY42e1SktL8cQTT+Cxxx5DTU0NysvLUV5eDkB+nEeMGIGpU6di7ty5Qf9Z4M/dd98Nu92O9evXo7m5GevWrcO6desAyP9YmDBhAubMmRO0JTlYa7sv2n92hDvjNRERGQNbYImIKGrsdjs+//xzAJF1Hwbk8ZqK5ubmiMoyAofDgWXLlqlLB40fPx6//vWv1a65kRo3bhzeeOMNPPTQQ5gzZ466jI3T6cQ333yDF154ATfddJMankOVkZGBpUuX4rXXXsN//Md/4MILL1QDfn19PT744AMsXrwY999/v0fg9BbOBEzaiae0vzdERJR6+G9KIiKKml27dqldUiMNsNolU4IF2IKCAlRXVxt2Ah8lvCqt1xdeeCEef/zxiNaP9SU9PR2XXXYZLrvsMgByy/UXX3yB9evXY/v27WhubsYDDzyAlStXoqioKKxrDBgwAD/+8Y/x4x//GE6nExUVFfjss8+wdu1aNDQ04KOPPsKKFStw1113Re1+tbS0qLeDTdBFRETGxhZYIiKKGiWADR06FCUlJRGVpV3z9Lvvvgt4rLLMTl1dXdBjk413eB07diyeeOKJqIdXXwoKCjBjxgz89re/xbXXXgsA6OjowCeffBKV8pXuyYsWLcKLL76ods/euHFjVMpXVFZWAgBKSkqQlZUV1bKJiCi5MMASEVFUiKKITz/9FIA88VCk+vbti969ewMAvv3224DHTp06Vb29cuXKiK8dLw6HA8uXL1fD65gxY/Cb3/wm6DjcWJgwYYJ6WxlTHE0lJSXqOrbhrDXrT2Njo7qE0vnnnx+1comIKDkxwBIRUVSUl5erwUcbKCOhhKrKykq0tbX5PW769OlqOPrnP/+Jt99+O2C51dXVUalfJBwOBx5++GF89NFHAGIbXrdu3Ro0lCpjlwHgrLPOCqn8U6dOYdeuXQGPOX36tNpSWlpaGlL5gezbt0+9ffHFF0etXCIiSk4cA0tElOJOnDihzjirUNYXBYAtW7Z4zBZstVoxbdq0kK+jtCKWlpaGtRSKL5dddhn++c9/QhRF7Nq1C9/73vd8HmexWPDQQw/hzjvvREdHB5577jl89NFHmDVrFgYOHIi0tDTU1dVh//792LJlC4YPH46lS5dGpY7heuSRR7BlyxYAcmC84447cPr06YDnFBYWorCwMORrvf3223jkkUcwbtw4jBs3DoMGDUJ+fj66urpQXV2NjRs3qq3n/fr1C3n5o+rqatx7770oLS3F5MmTMXLkSPTt2xcZGRloamrCvn37sGbNGnU26QULFoR8H/zZuXMnAHl876RJk6JWLhERJScGWCKiFFdeXo7HH3/c7/4XXnjB4+d+/fpFFGCj0X1YMX78eBQXF6Ompgbr16/3G2AB4Nxzz8Xvf/97PPjggzh16hR2796N3bt3+zxWGTObSJs3b1Zvnzx5EnfccUfQc2699VYsWrQorOvZ7XZs27YN27Zt83vMWWedhccffzzg8kCBnDp1Cm+++abf/SaTCTfddBOuu+66sMr35nA48OGHHwKQW/3DXQKIiIiMgwGWiIgidujQIbX1MNLZh7XMZjPmz5+PP/3pT9i+fTsaGxsDri07bNgwvPbaa1i/fj0+/vhjVFRUqOMtCwsLcc455+Ciiy7C5ZdfHrU6GsGyZcuwY8cO7NmzB0eOHEF9fb3apTg/Px/nnnsupkyZgpkzZ4a1bM+oUaPw/PPPY9euXdi3bx+qq6vR0NCAtrY2ZGZmorS0FKNGjcLcuXOj1joPQP2dAIDrr78+auUSEVHyEiRJkhJdCSIiMraXX34ZL7/8MgoLC/HOO++EtZanP62trbjxxhvR3NyM22+/HQsXLoxa2WRs9913H7Zt24Zx48bhmWeeSXR1iIgoDjiJExERRUzpPnzJJZdENbwCQE5OjhpaV61ahfb29qiWT8a0b98+bNu2DYIg4Kc//Wmiq0NERHHCAEtERBHp6urClClTcOutt2L+/PkxucaCBQvQv39/NDU14e9//3tMrkHGsmLFCgDArFmzMHLkyATXhoiI4oVdiImIyBC+/fZbbNu2DTk5ObjhhhsSXR1KoNbWVrz55puQJAnz588POC6aiIhSCwMsERERERERGQK7EBMREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSEwwBIREREREZEhMMASERERERGRITDAEhERERERkSH8P7NdrpgaaJENAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAD29ElEQVR4nOydd5gTVffHvzOTsn2XsvQOAgIKqKgoP0BBLKigoNjBLioq6GuviK9gF/XFgkpRAUXFBigdQakqHekdlrbL9pLM/f2RzOwkmZZkkp3sns/z7MOyc3LvTZtzv/ecey7HGGMgCIIgCIIgCIIgCJvDV/UACIIgCIIgCIIgCMIMJGAJgiAIgiAIgiCIhIAELEEQBEEQBEEQBJEQkIAlCIIgCIIgCIIgEgISsARBEARBEARBEERCQAKWIAiCIAiCIAiCSAhIwBIEQRAEQRAEQRAJAQlYgiAIgiAIgiAIIiEgAUsQBEEQBEEQBEEkBCRgCYIgCIIgCIIgiISABCxBEARBEARBEASREJCAJQiCIAiCIAiCIBICErAEQRAEQRAEQRBEQkACliAIgiAIgiAIgkgILBGwe/bsAcdx4DgOw4YNs6LJGknv3r3l15EgCEKLYcOGyfeKPXv2VPVwZCZNmiSPa9KkSVU9HCIGDBw4EBzH4aqrrqrqoRAJAs0RCUKd6jzvHzNmDDiOQ6tWrVBaWmp5+3GLwE6aNAkvvvgiXnzxxXh1WeXMmjVLfs55eXlVPRzCj8fjwfz58/Hkk0/i4osvRsOGDeF2u5GWlobWrVvjhhtuwKxZs+D1esNqd+PGjRgxYgTat2+PtLQ0ZGZm4owzzsCTTz6JvXv3xujZEARRU1AuXITzY5Xf/fXXX/HDDz8AgGabjDEsX74cL730Ei677DI0bdoUSUlJSElJQfPmzXHNNddg6tSpKCsrM+xv8eLFYT1Po0WT/Px8LF68GG+++SZuvPFGtG3bFjzPR7QYVFxcjD///BPvvfcehg0bhk6dOsHhcMhtLV682HRb4VBcXIxPPvkE/fv3R5MmTZCUlISkpCQ0atQI/fr1w7vvvmt6vlFaWooJEybgsssuQ4MGDeB2u5GdnY3zzjsP//3vf3HixImYPIeqYMSIEfJ789xzz4X9+OLiYmRmZoLjODgcDhw6dCisx+fm5uKHH37As88+i8suuwwdOnRAvXr14HQ6kZmZiY4dO2LYsGGYO3duWO3+/PPPuOGGG9CiRQskJycjMzMTHTp0wMiRI7F58+aw2lq6dCnuvPNOdOzYERkZGXA6nahduzbOOeccPPLII1i/fr1hG+Xl5Vi7di0+/vhj3HPPPTj77LPhcrnisrB57NgxvPzyyzj77LNRu3ZtpKSkoHXr1rjjjjuwYsUKw8crxaSV9x07s3btWvl5NG/eHIyxsNu466675DbGjRsn//2hhx5CrVq1sHv3brz++utWDtsHs4Ddu3czAAwAGzp0qKpNr169ZJuawtChQ+XnvHv3bkP7mvgaxZuFCxey2rVry6+z3k+3bt3Yjh07TLX7+uuvM6fTqdlWeno6mzZtWoyfHVFTCPfeEi8+//xzeVyff/55VQ+n2qF838P5mTx5ctR9i6LIOnfuzACwq6++WtVm8+bNrFGjRqbG1LZtW7ZmzRrdPhctWhTW89T7zOXl5TGO43QfH853yciPLFq0yHRbZlm9ejVr2bKl4etQr1499uuvv+q2tWbNGtaiRQvDdubOnRv1uM3MEWPN2rVr5TE0a9aMiaIY1uOnTJkiP/6KK64Iu/8JEyaY/hz37NmTHT58WLe9nJwcdvHFF+u243Q62bhx4wzHVlxczK6//nrDcfE8zx5++GHm9Xo12zrrrLMi/o5Gw7x581i9evU0++U4jj322GO6bSjn4OH8LFmyJOJx22Hef8YZZ8hjmD9/fliPLSoqYunp6QwAEwSBHTp0KOD66NGjGeCbAx87dszKYTMHLKBFixYRqXYikFit2BKVHDx4ECdPngQA1K5dG3379sX555+Phg0boqKiAqtWrcKUKVOQn5+P1atX46KLLsKqVavQoEEDzTY//PBD/Oc//wEAOJ1O3HrrrejVqxcqKirw66+/YubMmSgoKMCtt96KrKwsXHbZZXF5rkT1ZdKkSQm96ktExkMPPYSBAwca2m3fvh2PP/44ACA9PR2DBw+Ouu9vv/0W69atAwA8/fTTqjYnTpyQI1Opqano27cvLrjgAjRp0gQAsH79ekyaNAk5OTnYtm0b+vTpg+XLl6Njx46G/Q8ZMgQ33HCDrs1ZZ52leY0xFjBP4TgObdq0wfHjx5Gbm2vYfzDBGTrNmjVDeXk5jhw5EnZbZti7dy/69u2LU6dOAQAaNGiAYcOG4bTTToPD4cCuXbswZcoU7N69G0ePHsVVV12FlStXokuXLiFtbdq0CRdffDHy8/MBAB07dsStt96Kli1bIi8vD3PmzMEPP/yAo0eP4pprrsH8+fNxwQUXxOR5xYuzzjoLZ555JtavX499+/Zh4cKF6NOnj+nHK++3t99+e0Rj4HkenTt3Rrdu3dCuXTs0aNAALpcLx48fx6pVqzBjxgwUFxdj6dKluOiii7B27VqkpKSEtFNYWIh+/frJ38e6devizjvvROfOneHxePDnn39i0qRJKCkpwRNPPAGn04mRI0dqjuumm27CrFmzAACCIGDIkCE477zzUK9ePRw6dAgLFizA7NmzIYoi3n33XbhcLrz22muqbQV/L6TIfiyz0NauXYsBAwaguLgYAHDJJZdg0KBBSEtLw6pVq/Dpp5+iqKgIb7zxBtxuN8aMGaPazpgxY3D8+HHD/pYvX4433ngDANC6dWv83//9n3VPpgq4/fbbMWrUKAC+z3k434tvv/0WBQUFAIDLLrsMDRs2DLj+8MMPY9y4cSgoKMAbb7yBsWPHWjdwS+WwDnZYZYg3do2S1GSmTp3KzjjjDPbVV1+x0tJSVZsDBw6wjh07yu/dbbfdptneoUOHWEpKCgPAHA4HmzdvXoiNMirVtGlTVlJSYtnzIQg7QRFYe/DEE0/I78Ndd91lSZvnn38+A8DatWunafP777+zFi1asA8//JDl5+er2uTm5gbMB3r27KnZnjIC+8ILL0Q1/oKCAnbDDTew119/nS1cuJDl5eUxxgLnJuH46dtuu4298sorbO7cuXJkQenzrY7A3nHHHXLbl156KSsuLg6xqaioYLfddptsN2DAANW2zjvvPNnmlltuYRUVFSE2M2fOZDzPy++5mo1Z7BCBZYyxt99+Wx7Hrbfeavpxe/fulaP3derUYWVlZWH3ffDgQXbixAnDftq0aSOPcezYsap2jz/+uGxz5plnsqNHj4bYbNmyhdWvX58BYC6Xi23fvl21raVLl8ptZWRksL///lvVbs6cOUwQBHmuoxVNGzlyJHv++efZDz/8wA4ePMgYY+yFF16ImV8QRTEg6vviiy+G2Pzzzz8sIyNDjiKvX78+qj6HDBki9zdmzJio2rKDNjp69KicQZiSkqJ571ZDmQUwc+ZMVZubbrqJAWC1atVihYWFVg2bkYCNISRg7Udubq6p1KENGzbI711ycjIrKipStXvkkUdku//85z+a7V133XWy3fvvvx/x+AnCzpCArXo8Hg9r2LCh/D4sX7486jb//vtvub3Ro0dr2hUUFLDy8nLD9nJycuSFPwBs165dqnZWClgtIhWwasRSwDZu3Fhue9OmTZp2ubm5zOFwMACsdu3aIddXrFght9O4cWPdBdX7779ftp04cWLEY7eLgFVO1FNTU1lBQYGpx0lpkADYiBEjYjrG7777Tu7r//7v/0Kul5eXyymbHMfpirGvv/46YKFCjWeeecbUHIYxxgYNGiTb/vjjj6afUywF7KxZs+S2zzvvPM353QcffCDbDR48OOL+Tp48ydxutyyG9+/fH3FbjNlHGw0cOFAex6effmrqMWYXdn755Re57U8++cSyMce8CrG0KXrJkiXy38IpMiGKIr7++msMGTIELVu2REpKCtLT09G+fXsMHz4cGzZs0B3biy++GFJUYcGCBbjxxhvRsmVLJCUlhRRv8Hg8+PXXX/Hoo4+iR48eqFevHlwuF9LT09G2bVsMGzYMS5cu1exTKrQxefJk+W8tW7YMec5ar5WZamQrV67EPffcg3bt2iE9PR2pqalo3bo1hg4dioULFxo+Xuqnd+/eACCnV5xzzjmoVasWUlNT0bFjRzz11FMRpVfZlaysLFOvb6dOndC+fXsAQElJCXbs2BFiwxjDN998A8D3eo4YMUKzvYceekj+fcaMGeEOOyr+/PNPDB8+HB06dEBWVhaSkpLQrFkzDBkyBL/88ovuY5VFVKTv6L59+/Doo4+iffv2SE1NRVZWFi644AL873//g8fjMTWmwsJCvPPOO7jkkkvQqFEjuN1u1K5dG926dcPzzz+PY8eO6T4++Lvi9XoxadIkXHLJJWjcuDEcDgdatGgR8ricnBw8/vjj6NChA1JTU1G7dm2ce+65ePPNN+X0oxYtWoDjuJDHz507V+5T+X7q8dBDD8mPmTNnjqnHmMGoCnGs3reff/4ZV111FRo0aICkpCS0aNECN998M/7888+wn0N5eTk+/fRTXH311XKhn6ysLJx55pl49NFHNQvq/Pvvv0hNTQXHccjMzMTu3bs1+8jNzUWzZs3AcRwEQdC9b1cX5s6di8OHDwMA2rdvb0nq59SpU+Xfb775Zk27tLQ0OJ1Ow/bq1auHnj17yv838uMEcPToUfn30047TdMuKysL2dnZAHx+PRjl/OC6665DUlKSZlu33Xab/PtXX30V1ngj4dixY+jWrZt87xo1apTq9rRIfVp2djauvPJKAL7X5uuvvzY1LuVcLtL0YbN06NBB/l0tHX3NmjVyymbnzp1xxhlnaLZ17bXXIi0tDYCvqGhJSUmIjdnPFQC0bdtW/l3ts1UVKOdTUqEuNYYNG4aMjAwAwC+//BLx+L/66iu5AN0ll1wib4+INUot06lTJxw8eDDE5vjx43jllVfwf//3f3J6enZ2Nv7v//4Pr732GgoLCzXbV36uzW5Pmjx5svz9vPnmm+FyuVTt+vXrJ9+TlL4kaqxQwXqra2Y3Rautru7YsYN16dJF93E8z7PnnntOc2zKlZ+FCxeyBx54QLUd5cpr7969TY156NChqisOZgtt6L1WWlRUVLC7777bsO3rr79eNcVIQrLr1asX27lzJ+vQoYNmW82bN6+REeRu3brJr8GKFStCriujtJ06ddJty+v1BqSwhJOiESmFhYUBqS5aP/3799ccT3AEZM6cOSwrK0uzrUsuuUQzNVti9uzZusUWAN+G/x9++EGzDeV35cSJE6xHjx6qn1slCxcuZLVq1dLs84wzzmD79u1jzZs3V3281+uVC6jUqlXLMBW8pKRE7q9Zs2a6hS/CxSi7w+r3zePx6N7XeJ5n48aNMx2BNVOMxuVysQ8//FD18R9//LFs1717d+bxeFTtBg8eLNs988wzuq9pdeHaa6+Vn7OZAi5maN26tfw5tgplVsr06dNVbSgCW0mTJk3kts1GYLt06RJyXRlVnTBhgm6fJ0+elG0FQdDMRDLCTAR29+7drG3btrLdq6++GmJjhU/78ccfZTu99HUJZYpt586dw3naEaGMVqlFYJVR1SFDhhi2d+aZZ8r2agW5nn32Wfm6UQRWeT/9559/TD+nWEZg69SpI7dtVCSof//+su0vv/wSUX/KdOUZM2ZE1IYSo3m/1+tl9913n2xzwQUXsJMnT4bYff7553JkXuunfv367I8//lDtp6KiQk455ziO7dy503Dskl8AoJl6LnHNNdfIc4Xjx48btm2GmAvY33//nX3//fcBewq///77kJ8tW7YEPG7Hjh2sbt268mN69OjBxo4dy6ZNm8a++OILNnLkyIDJqJZzU35xLr/8cgaANWjQgD355JPsiy++YJMmTWL3339/QOWs8847j6WlpbEBAwaw0aNHsylTprCvv/6avfvuu+yee+5hqampcpsPP/xwSJ9r165l33//Pbvoootku48++ijkOa9duzbgcWYE7A033CDbJCUlsXvvvZdNnjyZffHFF+yRRx4J+ABfeumlmukUkk3Xrl1Z+/btGcdxbMCAAWzChAlsxowZ7NVXX2XNmjXTvZFWZ8rKygIm/GoVAadNm2bolJUo39+VK1fGYNSVlJaWynvWALDWrVuzp59+mk2dOpVNnz6djRkzJmCycPHFF6sKLOUEcsCAASwlJYUlJyeze++9l02aNIlNmzaNPfroowHfCb0FpZkzZ8r7aJxOJxs0aBB777332Ndff80mTpzIbr75ZjnFi+d5tmDBAtV2lK+l9L3u3LkzGzt2LJs+fTr7+OOP2YMPPijbb9q0KSBlsWvXruzNN99kM2bMYOPHj2cXXnihLIakVL1gAcsYY//973/lNr744gvd92Dq1Kmy7UsvvaRrGy7hCFgr3jflpNflcrG7776bTZ48mU2dOpWNGDFCfm2VaUhaE5U//vhDtuc4jl122WXsrbfeYjNmzGCTJk1i9957b8B7pdWOMp1NbewTJ06Ur59//vlR7eFLFI4dOyZ/fxwOh2ElUzPs3LlTfh2jSb0LRrlo+ueff6raKD/HnTp1YmeccQZLS0tjSUlJrEmTJuzKK69kEyZM0F2sNSJRBKxy8V1vD6xyDJMmTQqxGT58uHw9HAELgK1evTqisRsJ2PXr18vVqwVBUE1htMqnhTtRV+49fueddyJ6/mY5evRoQEXYt99+O8RmxowZ8vVwBezrr78ecn316tXydbN7YHv37h3W84qVgD18+LDcrpq/1htHJIt769atkx9fu3Ztw8V6M+jN+0tLSwP83BVXXKG6iPTOO+/INikpKey2225jH374Ifvmm2/YhAkT2IABA+RU35SUFM0FsEcffVRu5/nnn9cdt3JhR22hLJhx48bJ9loLluFiy2N0vF6vvMrhdrvZ119/rWp35MgROULL8zzbuHFjiI3yAwv4hPCpU6d0+58/f76uQzx+/Lgc8eF5XnP/jtXH6EyfPl2+Xr9+fdUP4Z49ewIiG1r7LZWvicvlYj/99JPq81S2FY3oKioqUl24iOQnWPjHAqX4OOuss1RtXnrpJdnGTHRAWVxj6tSpFo84kOC9uWqT9/Ly8oAxqU1mgo+xaNasGdu2bVuI3cqVK+VV/1q1aqne2Pft2ydHoZs1a6a5d2flypUsMzOTAWBNmjRR3VMXnNnxyCOP6EY4lRHa+++/X9U2+F6h5hCPHDkiC4RevXpp9scYYz179pQnZNHukwkmHAEb7fumdFRZWVmqR59s3bqVNWjQIKBPtYlKfn4+a9q0qdzW4sWLVZ/f9u3b5QW01NRU1ZX1kydPylEpQRDY77//Ll/7999/ZXGekZFhajVZjy1btlh2/7L6KAElyiI1V111lSVtfvXVV7oT4Ej4/fff5Tazs7M1I+hmj9Fp2LAhW7hwYURjSRQBe+zYsYACPw0aNGBPPfUU++yzz9iUKVPYCy+8IPtrnufZyy+/rNqO0m+NHDlSt0/lflnAeNFOC6Mgh7RYnJSUxGbNmqXahlU+jTHGHnvsMVMTdeURIU6n07Lvbk5Ojnw/+Pbbb9nEiRPZ8OHDAxbN+/Xrp+r7lixZItt07dpVtx+Px8PS0tJke62CbsrXVhAEdtNNN7Hx48ez6dOns7feeisgctmjRw+Wk5MT1vONlYBVvhZG/pgxxj777DPZ/s477wy7v4cfflh+vFV7obXm/adOnQoIgt16662qn/nVq1cHZFzs3btXtZ+ffvpJnrucd955qjYbN26U+2vRooVuvZjbb79dtn333XcNn+fixYtN33fMYksB++2338q248eP17X9999/5VWhu+++O+S68ouTmpoqV0WLFuWqtJajsFrAdu3aVb4+e/ZszXZWrlwpr7Y0b95cdXKgdEp6RTk++eQTU3ZGKD8j0f7EugjEyZMnA4qgfPPNN6p2I0eOlG3ee+89w3bDtY+UQ4cOMZfLxQCwa6+9Vte2vLyctWrVigFgp512Wsj14Ank0qVLNdu6+eabde1GjBghO0ijdJNPP/1UbuvLL78Mua78rpx99tm64lW5wtypUyfNyXJwu1orusrURzVRyJjvviTZ9O/fX/e5RkK4Ajaa923AgAHydbWIjsTPP/8c0KfaROXNN9+UrxsVAVmwYIFs+8orr6jaLF68WK6U2rx5c5abm8vKy8vZ2WefLT/WisWi4MWNaH5icT6ohDLa8v3331vS5tNPP236PTNDWVmZYVRIYtGiRYzjOHbuueeyJ554gn322Wfsm2++YZ988gm755575IUuwBdx/u2338IeT6IIWMYYO3HiBBs8eLA851H7uf7663Xvr/Pnz5dtGzdurBtFCt5yFWkBQq054g8//MCSk5MZAJaZmal5nqaVPo0xX0aONB69ifrkyZNlO6N+w2HOnDma71/jxo3Z6NGjNf1UUVGR/FpwHMc2bNig2c8333wT0LZeBsU777zDsrOzNcfVqlUrNm3aNFNF2oKJlYD94Ycf5HYHDRpkub2S8vLygKxQozmMWdTm/Tk5OQHz/VGjRml+Rq+66ioG+LZdHThwQLev5557Tm5Tq7ifcuuc1qKgcmHH5XKZSgnOycmR2+3Tp4+hvRksKeJkNdIm34yMDNx99926tm3btsW5554LAPjtt990bQcNGoRGjRpZMsZWrVrJZ4OuXLnSkjb12LNnD/7++28AwBlnnIHLL79c0/bcc8/FxRdfDMB3dtzatWs1bQVBwIMPPqh5XWoHADZv3hzusBMOr9eLG264QS6C0r9/f80zFJUb4vUKYUgkJyfLv0tFGGLB119/jfLycgDAY489pmvrdDoxZMgQAL6zI7UK5wBA165ddc870/usMMbw5ZdfAgD69OmjejahkiFDhsDh8B1TbfS9fuCBB8Dz2reyH374IcBWEARN24cffli3LwC477775N8nTpyoaqP8+z333GPYZiyJ5n0rKyuTi0/Vr18ft9xyi2Y7/fv3x+mnn647Fune3rZtW1x11VW6thdffLF8v9b6DPTq1QtPPvkkAN+97r777sOzzz4r3/Nuvvlm3TFXJ9auXYv169cD8BVJkorVRIvy/MbatWtH3d79998vj7Nr1666BdHatWuHf//9FytXrsTYsWNx++23Y/Dgwbjrrrvw0UcfYffu3bjiiisA+Iov3njjjfLZptWR2rVrY9y4cbqFhGbNmoVXX31V9mHB9O7dG23atAHgOxf93nvvDTm7E/DdNz/88MOAv1n52n722We49tprUVJSggYNGmDJkiUBhb2UWO3TOnToIM8b9+zZE1BkVIkVZ7+Gg1RYs0ePHpp+KiUlRS6kxhjDrbfeqnp26bZt20K+W3rv3913341XX30VWVlZqtd37dqFsWPHYu7cuSafTeyJ5xzsxx9/lF/nrl27Gs5hImXXrl248MIL5fn+q6++ijfffFO1OFVubq5ctOzGG29E48aNddtW+kItn6r8nCuLlymZOXOm/PpdddVVqFOnjm6/AFCrVi35d6vOBHZY0orF/P777wCAhg0bmvqySF/0vXv3oqSkJOBDqiScw4bz8/Px5ZdfYvbs2diwYQOOHz+uWbXswIEDptuNlFWrVsm/9+vXz9C+X79+WLBgAQCfwJZu1sG0bds24IMVjPILEU014hYtWqhWE7QbDz/8sPzFbtasmelqbHZC+v4Avs+mdEC5Fsr3dcuWLarVewHg/PPP121H77OyadMmnDx5EgCQnp5uOCbAV9E0Ly8PW7Zs0bUz+l6vWbNG/v2iiy7StZWqcutx0UUXoW3btti2bRsmT56MMWPGBFReraiokG/8jRo1Qv/+/Q3bjCXRvG/r1q2TJ469evXSFf+Ab3FC6/06deqULFzq169v+jMAQPcz8NJLL2HBggVYuXJlQEXKli1b4n//+59hH2Z48cUXNSvl24XPP/9c/v3WW2+VF4CiRfreAtEL2Ndffx2ffvopACAzMxMzZszQrFwJ+OYAetSqVQvffvstzj33XGzYsAEnTpzAhAkT8MQTT0Q1Trvy6quv4tlnn4Uoirjrrrtw3333yVVrN2/ejA8//BATJ07E119/jRUrVmDevHkBlWMB33xpwoQJuOyyy+D1ejF58mSsXbsWt956K1q2bIm8vDzMnTsX33//vVyNXRKBeguF4TBu3Dh54al169b47bff0KpVK037WPi0O+64Q55XTZo0KeTev3fvXvnkigYNGuCyyy7T7TMcLrvsMnk+5PF4cPToUSxbtgxvvfUWvvzyS3z55Zd48MEH8fbbb6t+j1955RW52vg///yDDh064M4770Tnzp3h8XiwYsUKfP755yguLkarVq2wa9cuANrv35o1azBw4EAcPHgQXbp0wfPPP4//+7//Q2ZmJg4fPoyff/4ZL774ItatW4eBAwfi/fffx/Dhwy17PRIB5f31jjvuiEkf69atw2WXXYYjR45AEAR8/PHHun0tX74coigC8H2vjb4XFRUV8u9aPvXGG2/EqFGjUFpaipkzZ+L999+X/bBEJAs7TqcT6enpKCgosOxkE9sJ2MLCQpw4cQKA77iEa665JqzH5+bmagpYo9UJiUWLFuGmm25SLWGuRjxWfJWrqcEOSQ2ljdZKLADUrVtXtx232y3/XlpaathvIvPMM8/ggw8+AOCbYM+bN0/39VF+qc28NsoS9unp6VGMVB/livP1118f1mP1bizRfFaUY/r222/x7bffWjImwPh7fejQIfl3vUkS4JsQZ2VlIS8vT9OG4zjcc889eOyxx5CTk4OffvoJ1157rXz9xx9/lI8muP322w1FX6yJ5n1TvnZS1EYPPZv9+/fLzvb3338PmJQaofcZcDgc+Oqrr9ClSxd5VVj6m3RsQnWnrKws4JgTKydY0pERQHT3rY8//hiPP/44ACA1NRWzZ882PLbDDElJSXj66adx4403AvAdkVEdBewzzzyD//73vwCA8ePHhxzbdvbZZ+OTTz7BGWecgYcffhj79u3DzTffjNWrV4e01bdvX8yYMQPDhg1DYWEhNm7cGPKauVwuvPfee5g7d658/9Zb7DbLrFmz5AW+zp0749dff0X9+vV1HxMLn3bDDTdg5MiRKCkpUZ2oK48Iue2220KE5LJly1QjnxL9+vVDSkqK4fgcDgcaNWqE66+/HoMHD8btt9+OKVOm4P3330dycjJee+21kMc0bNgQ8+bNw8CBA7Fjxw4cO3YMY8eODbG7/fbbceaZZ2LkyJEA1N+/9evXo2fPnigpKcEFF1yABQsWBEQzmzVrhvvvvx+XXXYZzj33XJw4cQIjRozABRdcgM6dOxs+v1gSrznY4cOH5WCa2+3WPUosGnr16oVTp07B7XZjxowZGDBggK698nsxYcIETJgwwXRfWt+LrKwsXHPNNZg2bRqKioowc+bMgCM/lQs7DRs2DGthJyMjAwUFBarHOUWC7VKIT506FdXjpWiBGlrCVsn27dvRv39/Wby2a9cOjzzyCD744ANMmzYN33//vfwjnWukln5jNcp0h9TUVEN75RdbL1XCqhXVRGfMmDHy5KBu3bqYP3++4UKBMtVGz5FJSAszwY+1mmi+Q3rfn2g+K7EaE2D8vZYyJxwOh6kzKs18v4YNGyYLv08++STgmvR/juNw5513GrYVa6J535QpWmYmY3qvXTSfAeXKsRp169YNiA62atUKZ599dsT9JRqzZs2SJyTnnXdewFmS0aJc4Ih0sXbKlCly6n1ycjJ++uknS86nlVBGz7Zu3WpZu3bh4MGDeP311wEAp59+uu62nxEjRsip/GvWrMGKFStU7QYNGoQdO3bgueeewznnnIOsrCy4XC40b94cd9xxB9asWYN77rknwG9J26aiQXnmdElJian5Uyz8R2ZmphwgKSoqClhUZYxhypQp8v/VokzPPvssrrnmGs0f5fmqZuF5Hh988AEyMzMB+BYqtIRGx44dsWHDBvzvf/9Dnz59kJ2dDafTifr16+PKK6/Ezz//jM8++yzg8Wrv35NPPikLirfeekszFbdVq1Zy+rbX6w1LLMWKeM3BpkyZIn9OBw4caMlCjhrSd8Pj8ZgS5LGaV+mlEQcv7ISzQC+N14wWM4PtIrBK4dWzZ0/NvQmx4tVXX5W/zM888wxefvllzYORjfbnWolytcjMAczKiWcso31mKS4uNtzLaJZmzZrhrLPOsqQtAHjttdfw3HPPAfCtUM6bNw+dOnUyfJxS4OrtHZVQ5v2biaJHivQd4jgOHo/HFosUyu/1888/j5deeilufUuiyuPxoKKiwlDEmvl+1alTB4MHD8aXX36J3377Dfv27UOzZs2wd+9ezJs3D4AvytGyZcvon0AVonzfiouLDe31XjtlW7fddpvm/ppIuP/++wO+X9u2bcOzzz6LcePGWdL+1q1bLRNGPXr0MIyKh8tnn30m/251eptyYUCZTmyWadOm4fbbbwdjDG63G7NmzTJM5Q8X5R4sveyJROW3336TF3H69OmjOScBfPf9iy++WE4RXLVqleY2gvr162P06NEYPXq0ZnvKffHdunWLZPgBDB48GBkZGXjvvfewbds2XHTRRVi0aJFufZJY+bTbb79dzlyYNGkShg4dCsCXIbJz504Avi0Y7du3t6Q/M6SlpaFHjx745ZdfUFZWhhUrVmjWPElKSsLw4cN103n13r+ysjLMnz8fgG+eqLXVTKJv37546qmnAARua6sq4jUHi0f6MODLHunfvz+KiorkKK+0n1sNpU/97LPPLNun3adPHzRt2hT79+/HkiVLsGfPHnkboNJvKyOzRlRUVMi6xIpaCoANBWxmZibS0tJQWFgYl72lwUhf5nr16mH06NGajqKgoCAiZx4pyr1A27dvN7RX2lhVuCoajh49GnY6uBZDhw61bG/q22+/LadOZWZm4tdffzW9OV8pcvUKZQGAKIrypnye5w2L3URD48aN8c8//4AxhoMHD6Jp06Yx6yucMUnE+3vdqFEjee/lrl270K5dO03b3Nxc0xPg++67D19++SVEUcRnn32GF198EZ999pmcJlvVxZusQHnv2LFjh6G9nk2sPgPSnjHAl0Z5/Phx7N27F2+88QYuvfTSgCJVkTJ9+nTLFl0WLVpkaq+1WQ4cOCD7rZSUFNxwww2WtQ0gYP9guD7vm2++wa233gpRFOFyuTBz5kxTNRzCJV7ZLVWFMpXfTFq8FMEDzC3IabF582Y5stW6dWvDPclmGT9+PDiOw/jx402J2Fj5tIsvvhjNmjXDvn37AibqSsGiJQqkNMpYoAw6RLMgI4oili1bBsAn/i+88MKA68ePH5cXRtLT03UXRgDrPldW0aBBA9SpUwcnTpzAvn37cPz4cd3FQWU9DDNBCgD4448/8O+//wLwBU/69u0b3aB16NWrF2bPno0rrrhCFrGMMc17eqx8Ks/zGDp0KMaMGSOL1hdeeAFLly6V91N37949rIUdpe9o3ry5NeO0pBUzHSlWzIyK+UiV6Hbt2mVq0mQlOTk5AHwFQPRW+ebPny9PVLUI5zkboVwZkyI8eiijnUarajWVDz74AKNGjQLgu3nPmTMnrBXmjh07okmTJgB8RYr0biB//PGHnH534YUXxjQq3qtXL/l3q6Le0dK1a1d54rVgwQLD746VnHPOOfLvixYt0rUNZ1LSo0cPdOzYEYBv9bOiokKOhNWrV89w/0oi0LlzZ7nIzpIlSwzT/aTCcWrUrVtXTm1dsWKFJbUDdu/ejfvvvx+AL9I+bdo0fPHFFxAEAaIo4rbbbgsQN9WRSZMmyd+nQYMGWb7vVznRkyZyZpg1axZuuukmeL1eOBwOzJgxw7LKyMEoM7Vimd1SVSjf0/379xvaKyNNZiqEaqEUclZvh3j33Xflqu/btm1D7969A4S6klj5NGmiDlSmDUv7/gBfqqNeBCxWKOe90WRrzJkzR94Od8kll6BZs2YB15Wfq+PHjxumrVr1ubKSSy+9FIDv/dP7bBQXF8t1F5KTkwM+U3oos1uGDh0a84y2nj17Ys6cOUhLS4PX68Utt9yC6dOna9pKiw5Wz/WU0dUpU6aAMRZVVW5l0agzzzwz2uEBiKOAVYa6jVZupBsK4Es3jCfSPq9du3Zpik6v1yvvl9QjnOdsRIsWLeS02XXr1umK2DVr1mDhwoUAfCsddtgLJqUfWPFjRfT1k08+kYtgSAVFunfvHlYbHMfhuuuuA+C7eb733nuatuPHj5d/j7VDvOGGG2TRMW7cOFuslAqCIKfE7N27V/P4mVigFJIffPCBrgh79913w2r73nvvBeCbVD7yyCPyIsbQoUNN7be1O263Wz6mJCcnJ6BQUDBz5swxrBgt3duLi4tVi46Eg9frxc033ywL4fHjx+O0005Djx498PTTTwPw7R286667ouoH8FUhtur+ZWX0FQisCBmL9LbzzjtP/t3skXGzZ8/GkCFD4PF4IAgCvvrqKwwcONDysQG+NEilP5Y+r9UJ5SLCL7/8olvXIj8/Xz76CghcwAuHrVu3yj4tKyvLku9RMO+88w4eeeQRAL6sMS0RG0ufNmzYMFkETJkyBd98842c6njttdcGRB3jwV9//SVndDmdzojTtouLi/Gf//xH/r/yd4n09HRZ1JaXl+O7777TbVMppCL9XFmNcj41fvx4zXn7pEmTZF/Rv39/U7UuiouL8fXXXwPwzfficZQS4DtZYfbs2QEidtq0aSF29erVk4soLVu2zFIR27p164Bg4ty5c6Na2FH6DqVPiQorDpPVOqRayUMPPSTbaB1WLeH1egMO03344YdZWVmZpn1xcTH7/PPP2bRp00KuKQ9QNnOw+CWXXCLbv/XWWyHXy8vL2e233x5wwHPz5s1V23rrrbdkm8mTJxv2rXagsZIZM2bI1xs2bMi2bNkSYrN3717WunVrw4PHpeu9evUyHFc4tonA5MmTGcdxDABLSUmJ6sD5gwcPspSUFAaAORwONn/+/BCbzz//XH4NmzZtykpKSqIYvTkeffRRuc+LLrqIHT58WNPW6/WyefPmsZdffjnk2qJFi+R2XnjhBd0+jWz379/PsrKyGADmdrsNvxM5OTls9OjRbN26dSHXjL4rwfTo0UO2v//++5nX6w2xUd4r9L7XSvLy8uT3X/mzbds2U+OKlKFDh8p97d69O+S6le/b77//Ll+vVauW6gHu27ZtYw0bNgx4DdQOrC8sLGTNmzdnABjHcey1115TfS8k8vLy2LvvvsvmzZsXck15KPvgwYMDrlVUVLDu3bvL1z/66CPd1yBRWbx4sfwcW7durXnYfbRIPqVp06aGtvPmzWNJSUkMABMEgX311VcR9bl9+3b2+uuvs/z8fE2bkydPsiuuuCLg85mbmxtWP8p7idp3KRyU38tw/Ir0ndB6XHl5OWvSpIlsM2DAAFZcXBxiV1xczK6++mrZrlOnTqqfiZycHLZ582bN8axdu5Y1bdpUbmfSpEmmn4saRnPERx55RL5+2mmnsQMHDoTYWOXT1FB+BpT3MTV/HgkFBQXsqaeeYkePHtW1W7t2LWvWrJnhfJoxpjuPPnLkCLv44ovldoYNG6Zp+8QTT8h2devWVfW3jDE2depUed4EgK1atUr3uShR+lY1v6CF8n3Repwoiuyss86S7V566aUQm3Xr1rHMzEwGgPE8z9avX2+q/0mTJgV85mKB3lzm999/Z2lpabr30rVr1zKn0ynf/+bMmaPb3549e9ijjz7KcnJyDMemnLsqvxe33HKL+Sfo55prrpFf/xMnToT9eDXitge2T58+chTqzjvvxMiRI9G8eXO5glWbNm3kIxh4nse3336L7t274+DBg3j33Xfx9ddf47rrrkPnzp2RmZmJwsJC7Nu3D2vWrMGCBQtQVFSEl19+OepxjhgxQo5ujho1CosXL8all16KOnXqYPv27ZgyZQq2b9+Oiy66CNu3b9dNG+3Tp4/8++OPP45jx46hXbt2cjn2xo0b44wzzjA9tuuvvx7ff/89pk+fjsOHD+Oss87CsGHD0L17dwiCgDVr1uDTTz+VV5n69esnp9cRPubMmYM77rhDXqW74447kJeXZ3h+1llnnRWSfgP49gi++eabGD58ODweDy6//HLcdttt6NWrFzweD+bMmSOvWjkcDnz88ce6B24r96Ds3r1b80xWI1599VX8888/WLBgARYtWoRWrVph0KBB6N69O7Kzs1FeXo4jR47I0fwjR46gT58+ePbZZyPqzwxNmjTB9OnTcfXVV6OsrAxDhw7FW2+9hauvvhqnnXYakpOTcerUKWzbtg0rVqzA8uXL4fV6LSn48tFHH6Fbt24oLi7G//73P/z555+45ZZb0KRJE+Tk5GDGjBlYvnw5unfvjn379uHgwYOmUoUyMzMxZMiQgFS73r17W3I8iF3o0aMH7r//fvzvf/9Dbm4uzj//fAwdOhQ9evQAz/NYtWoVPv30UxQVFWHgwIG636XU1FTMmjULvXr1Qn5+Ph5//HF89NFHGDRoEDp06IC0tDTk5+dj165dWLVqFRYvXozy8nJMnTo1oJ1ly5bJUbcmTZrg448/DrjucDjw5ZdfokuXLsjPz8fIkSPRq1cv3f3PiYjyc6eMJFnNwIED8eabb2L//v3YtWuX5nFU//zzDwYMGCCnIg4aNAjJycmG99f27duH7KcqLCzEf/7zHzz33HO45JJL0K1bNzRv3hypqanIy8vD6tWrMX36dLmypXR0kt4e2O+++w5//fVXwN92794t//7mm2+GRNzGjBmj2tbChQvlTCcJqc4BAHz66afy3mSJxx57LKI9uk6nE+PHj8egQYPAGMMPP/yA008/HbfddptcT2HLli2YMmWKnObpdDrx/vvvq34m9u3bh27duuHcc89Fnz590L59eyQnJ+PIkSOYP38+fvnlFzlT5fHHHw/IiosFb7/9NjiOw9tvvy3PrxYtWhSwxy+WPu3222+X09ClYwebN29uyf55wFdA8NVXX8Xrr7+Onj174rzzzkObNm2QkZGBsrIy7Nu3D4sXLw7Ymta+fXu88cYbmm1eccUVqF+/Pq644gqceeaZqFWrFnJzc7Fy5Up888038jzwoosuwvvvv6/ZzhNPPIGvv/4au3fvxvHjx3HuuediyJAh6NWrFzIyMuRzYJXRvXvuuUczMvz333+HHJO3dOlS+ffvvvsuZGvgnXfeGXHBQ47j8PHHH6Nnz54oLi7GCy+8gOXLl2Pw4MFITU3FqlWrMHHiRDlq/9RTT5med8ereJMWPXr0wNy5c3HZZZehsLAQt956KwDIR4YBvrnphAkTcPfddyM3NxeXX345LrzwQlx++eVo2bIlnE4nTp48ia1bt2LZsmXyPmAp80GP6667DiNGjEBhYWHAcZzhRqI9Ho+8F7tnz56WFXGKWwTW4/EEREGCf9RW/g8dOsT69Omj+RjljyAI7JNPPglpI9wILGOMPfXUU7p9XXjhhezo0aPyqqlepObGG2/UbCf4tTITVaqoqGB33XWX4esxePBg1RVaCcmupkVgg6NsZn+MVg1ff/11eRVM7Sc9PV01QyAY5WOijQaUlZWxBx98kAmCYOo53nbbbSFtWBnJk/jzzz9Zq1atTI0pLS1NdbU03AgsY4wtXLhQjgCr/XTq1Int27ePNW7cmAFgZ555pql2V65cGdDOl19+aXpMkRLPCCxjvvv3rbfeqvna8TzPXnvttYAVW73vzNatW1nXrl1NfQbcbnfAqnJubq587+V5Xve+/sUXX8jtdO3aVTeTJ9HIz89nqamp8uuwf//+mPX1zz//yK/j6NGjNe2U7384P2qfu7///tv045s1a2bKvyu/N2Z/tIjEl2jd040isBJffPEFy8jIMOynbt267JdfftFsZ/Xq1YZtpKens/Hjxxu+pmYwM0dkjLFRo0bJdm3atAmJxFrh09QoLCyUI13Sz/PPPx/NUw4gNzc3rM/JoEGDDCNk0ndf755833336c4DJXbt2sXOOeccU2N78MEHWUVFhWZbkdwDtD7zZiKwEvPmzWPZ2dmafXAcxx599FHTWSo7duyQI86ZmZmmXsdIMDOXWbZsGUtPT2eAT+uozTF+/PFHVr9+fVOvd506ddixY8dMjS8447RFixZhZ/rMnj1bfvzEiRPDeqwecROwjDFWUlLCxo4dy7p3785q1aoVcBPSm2QtXryY3Xvvvaxjx44sKyuLCYLAMjIyWIcOHdiQIUPYhAkT2KFDh1QfG4mAZYyxOXPmsP79+7O6desyp9PJGjZsyC6++GL2ySefyF9eMwLW4/GwCRMmsN69e7O6desyh8Oh+VqFMyn/888/2Z133snatGnDUlNTWXJyMmvZsiW75ZZb2IIFCwwfL/VDAtbcj5m0lw0bNrAHHniAtW3blqWmprL09HTWqVMn9sQTT7A9e/YYPr6oqEjuz+VyWZZmsX37dvbkk0+y8847j2VnZzOHw8FSUlJYy5Yt2RVXXMH++9//aqbUxELAMuZbiPniiy/Y9ddfz1q2bMnS0tKYw+FgtWvXZueccw67++672YwZM1hhYaHq4yMRsIz5Uqsee+wx1q5dO5acnMyysrLYOeecw9544w1WVFTERFFkycnJDADr3bu3qTZFUZTTk2rXrs1KS0vDGlMkxFvASvz000+sf//+LDs7m7ndbtasWTN24403sj/++IMxxkwLWMZ8r9sPP/zAhg4dytq2bcsyMjKYIAgsKyuLde7cmd12221s0qRJ7OTJkwGPGzJkiNzHk08+qdsHY4zdfPPNsv2jjz5qaJ8oTJw4UX5el156acz7u+CCCxgA1rZtW00bKwVsaWkpmzt3LnvhhRfYpZdeytq3by/70IyMDNamTRt2ww03sC+//NL0wkSiC1jGfOm/48aNY3369GENGjRgbrebud1u1rBhQ9avXz/29ttvG6ZRFxYWskmTJrGhQ4eyTp06yfOcBg0asAsvvJCNHTtWN0U3XMzOERkLTBVWE7GMRefTtLjjjjsCxM6uXbvCerwRmzdvZu+88w674YYb2BlnnCHPZZOSkliDBg1Yr1692BNPPKGZwhvMzz//zB5++GHWrVs31qhRI+ZyuVjt2rXZmWeeyR599FHT7Uh4PB723XffsRtuuIG1adOGpaWlyffjs846iz300EOm2qwqAcsYY0ePHmUvvfQSO+uss1hWVhZLSkpirVq1YsOGDZN9lFmeffZZue977703rMeGg9m5zPLlyw1FbHFxMfvwww/Z1VdfzZo2bcqSk5OZy+Vi2dnZrHv37mzEiBHsp59+Cmshd+nSpYb3aiNuuukmBvhSnLXmdJHAMRZleVyCICzh119/lTfkP/TQQ2EXFCKiZ8OGDXKFPLPvwfz583HJJZcAAB5++GG88847sRwiQVQJ33//Pa699loAvqrq4Ra9IwiCIGoW+fn5aNSoEYqKivDEE09EXbxRSdyqEBMEoY/yQPFY7kUltFHuFTK793bChAny79Xh7FeCUGPgwIHyGdmvvvpq1Q6GIAiCsD3jx49HUVER0tPT8dhjj1naNglYgrAJkoAdNWoUsrOzq3g01Y/ff/9d9/zZDz74QC4G1LhxY1NnVv7zzz9ygZq+ffvK55wSRHWD4zh59fynn36Sj/ogCIIgiGDy8/Px9ttvA/Ad4xTNmcZqUAoxQdiA48ePo169eqhbty527tyJ9PT0qh5StaNNmzYoLS3F5Zdfjq5duyI7OxsVFRXYuXMnvv/++4AKoj/99JOmgJ07dy5EUcS2bdvw2muvydX5li1bhgsvvDAuz4UgqoqBAwfihx9+wJVXXomffvqpqodDEARB2JAxY8bgueeeQ8uWLbF582bdEzgigQQsQRA1gjZt2mDnzp26NsnJyfjkk09w8803a9qoHUthdr/sb7/9huLiYuPBqlC3bl306NEjoscSBEEQBEFUF0jAEgRRI1ixYgW+/fZbrFixAgcPHsSJEydQXFyMWrVqoW3btujbty+GDx+O+vXr67YjCdi0tDS0bdsWw4cPxx133GHq3NgWLVrI5zSGS69evbB48eKIHksQBEEQBFFdcFT1AAiCIOLB+eefj/PPPz/qdmjNjyAIgiAIouqgCCxBEARBEARBEASREFAVYoIgCIIgCIIgCCIhIAFLEARBEARBEARBJAQkYAmCIAiCIAiCIIiEgIo4EQRBENUKxhhKS0tRVFSEkpISFBcXh/yUlJSgvLxc/ikrK9P9v9frhSiK8Hq98o/0/+B/JXieB8dxuj88z8PpdMo/DodD9/9utxvJyclITk5GUlISkpKSNH9PS0tDWloanE5nFb4bBEEQBGEtJGAJgiAI28EYQ0lJCU6dOoX8/HwUFBQE/Kv2e2FhoSxORVGs6qdgG9xutyxmpZ/09PSQ/2dlZQX8pKWlqZ57TBAEQRBVCVUhJgiCIOICYwyFhYXIzc3FyZMnA/5V+1tZWVlU/XEch+TkZKSmpiI5ORkpKSnyT3JyMhZMXQaIACdygPyj/D8A5vudY/7fGfw//t8R+HcO/ut+3cdQ+Tvk35nidwC8/4E8A+MC/w+OATzA/P+CZ4DAcMV9fVBSUoLS0lKUlpaG/C79RIMgCMjMzJQFrfR77dq1UadOHdStW1f+NzMz09RZyARBEAQRLSRgCYIgiKhhjCE/Px/Hjh3DsWPHcPToURw9elT+v/QTrqhyuVzIyMhAeno6MjIykJGRgeXfrAbn4QEPD87DARX+f7084OHAeTnA6xeeqLkRRAaf2IWDgTlE37+CGPD/a0ZdjoKCAhQUFCAvL0/+KS4uDqsvQRBCRK30U79+fTRo0ADZ2dmUzkwQBEFEDQlYgiAIwhDGGE6dOoVDhw7h8OHDAT9HjhzB0aNHUV5ebqqt1NRU1KpVC7Vr18bGhf8C5Ty4Ct+P/Hs5D1QIvmgoEXcYxwCnCOYU5X+ZkwEOEZcN740TJ07gxIkTOH78OPLy8mBmKsFxHOrWrYt69eqhQYMGsrCV/m3QoAGSk5Pj8OwIgiCIRIYELEEQBAEA8Hq9OHLkCPbv34/9+/cHiNUjR46Yip7WqlUL2dnZyM7Oxp/f/AWuXABXxoMrFwD/vyRKExjlnlj/9EEWuy4RzOUFXCJufGkgTpw4gaNHjyInJwc5OTmmFjhq166NJk2aoHHjxvK/0u+pqamxelYEQRBEAkECliAIogbBGENeXh727dsnC1WlYK2oqNB8rBRBa9iwITbO3wauVKj8KRN80VNG4rTGYKbAkyRy4Re5bhHM7QVL8mLAo/1w5MgRWeAWFhbqNpWVlSWL2SZNmqB58+Zo0aIFGjduTKnJBEEQNQgSsARBENUQxhhOnDiBXbt2Yffu3di9ezf27NmDffv26QoFl8slC4TlX62RBSr8IpUEKqFKJNWKg6YfTBDBkn3idujrg3Hw4EEcPHgQBw4cQG5urmYzgiCgcePGaNGiBZo3by4L22bNmiEpKSn8cREEQRC2hgQsQRBEgpOXl4fdu3fLYnXPnj3YtWuXplDlOA4NGjRA06ZNsXbWBnAlDnAlArgShy/NtwYXPiKixKpjd9TEbZJP3N7x9hDs27cPe/fuxZ49ezRT26XPecuWLdG6dWu0bt0abdq0QePGjSEIgjXjJAiCIOIOCViCIIgEgTGGQ4cOYfv27di+fTu2bduG7du34+TJk6r2UmTqwF854Iod4IoclWKVIqlErInFGbLBwhYMcIlgKR6IKV70f+Qi7NmzB3v37sWpU6dUm0hKSkLLli3Rpk0btGrVCm3atEHr1q2RlpZm/XgJgiAIyyEBSxAEYUM8Hg/27t0ri9Tt27djx44dKCoqUrVv1KgRjmw4Aa5YCBSrJFSJqiYWQjYY5VTG3x9z+IQtS6nA5Y/0xo4dO7Br1y7N84UbNGiAtm3bon379mjfvj3atWuH9PT02I+dIAiCCAsSsARBEFUMYwyHDx/G5s2bsXnzZmzZsgXbt29XrdrqdDrRqlUrbF+yD3yhX6gWOcCJfKWRSqVYgrAF8RCzOjAw3z7blArc+MrV2LlzJ3bs2IGjR4+q2jdu3DhA0LZt2xYpKSlxHjVBEAShhAQsQRBEnMnPz8fWrVsDBKtaumNKSgratGmDTXO3gyt0gitUiapqCQK6tRN2poqFbDDMIYKlVuCuD27A1q1b8e+//+LQoUMhdhzHoXnz5jj99NPRqVMndOrUCc2bNwfP8yqtEgRBELGABCxBEEQMYYxh37592LBhA9atW4dNmzbhwIEDIXYOhwNt2rTBtoX7wBc6wRU4fRWAlXdos5N+uq0TiYLNhKwS5hDB0iow9O1B+Pfff7F161YcO3YsxC4tLQ0dO3aUBe3pp59OUVqCIIgYQgKWIAjCQjweD7Zt24YNGzZg/fr1WL9+vWp0tXHjxjj8zwlwBU7wBU5wRc7o96vS7ZxIVGwsZJUwpxdiWgVufPUqbNy4EVu2bEFpaWmADc/zaN26tSxqu3Tpgnr16lXRiAmCIKofJGAJgiCioKysDBs3bsS6deuwYcMGbNq0KWRC63K5cPrpp2PjzzvAFbh8gtVjccoh3coJuxHJXuwEEbISDAws1YP7P78FmzZtwsaNG3HkyJEQu8aNG6Nr167o0qULunbtiuzs7CoYLUEQRPWABCxBEEQYeDwe/Pvvv1i7di3++usvbNy4MaTYUlpaGor3VYDLd4LPd/n2r8aqGjDdwgm7E8k+7QQTskqYywsxvQLXPt8P69evx7Zt2yCKYoANCVqCIIjIIQFLEAShgyiK2L17tyxY//nnHxQXFwfY1KlTB7lbi3xiNd/pO8YGcT46hCDsjhlRqnIcTqLDBBFiRjkGj74M//zzj6ag7datG7p164auXbvSmbQEQRA6kIAlCIII4sSJE1i1ahVWrlyJv/76C3l5eQHX09PTUbS7HPwpF7hTbnAlQnwEqxK6dROJSjURppFiJGgFQUCHDh3QrVs3nHvuuWjXrh0EQajCERMEQdgLErAEQdR4PB4PNm3ahJUrV2LlypXYvn17wPWkpCSUHRbBn3KDz3P5zl2Nt2CVoFs2UV2o4UJWggkixMxyXP3MxVi9ejX2798fcD0tLQ3nnHOOHKFt0KBBFY2UIAjCHpCAJQiiRnLs2DE5yrpmzRoUFhYGXG/Xrh12zD8APs/tO9ImVntYw4Fu10R1hIRsAMztwUPTh2H16tVYu3ZtyL2pZcuWuOCCC3DBBRegQ4cOFJ0lCKLGQQKWIIgaAWMM27dvx7Jly7B8+fKQKGtGRgYKd5aDz/VHWStsNimkWzVR3SEhGwIDA0urwK3vDsTq1auxefNmeL1e+XpmZibOP/98XHDBBTj33HORmppahaMlCIKIDyRgCYKotng8Hqxbtw7Lli3DsmXLkJOTI1/jOA7t2rXD9t/2g891+yoFV1VasB50iyZqEiRidWEOEU/8fC/+/PNPrFixIiA663A40LlzZ1xwwQW48MIL0ahRoyocKUEQROwgAUsQRLWiuLgYq1atwrJly/DHH38ETPDcbjcqDgH8STf4k0nWn8VqNWZuzxxHIpeofiSakOX89xIm6ttZaMs4BpZegWvHXII//vgjZO/saaedhl69eqFXr15o3ry5cV8EQRAJAglYgiASnqKiIixfvhyLFi3C6tWrA85lzczMRMG2cp9ozXODExNkYqx1aw6e2NMtnKjOJJKQ5VQWxLREqlnbMNoUk0Xc8+l1+OOPP7B+/fqAVOMWLVqgd+/e6NWrF1q1agUukV5XgiCIIEjAEgSRkBQXF+PPP//EwoULsXLlygDR2rhxYxxZlQv+RJKvAJMdU4P1MHsWJt2+iZpAIoktNcEpoRSeenYW2DKHF4/MHIolS5Zg7dq18Hg8skmTJk3kyGy7du1IzBIEkXCQgCUIImEoKSnBihUrsHDhQvz5558BorVp06Y49MdJ8MeTwBVX4TE38YBu20RNJFGElpHgDBcmRtUmE0T858c7sWTJEqxatSpksa9v377o27cvpRkTBJEwkIAlCMLWeDwerF69Gr/99huWL1+O0tJS+Vrjxo1xZEWeumhVTvjM7DVLFOiWTdRE7CBeze5dtVrAWgjjRTw1514sXboUf/75Z8D9tG3btujbty/69OmD7OzsKhwlQRCEPiRgCYKwHYwxbNu2Db/++isWLFiA3Nxc+VqjRo2Qsyof/HE3uCId0So3pjPZTDSRS7droqZiBwErEXyfMbt31WYwXsQTv9yN+fPnY9WqVfKeWY7j0KVLF1xyySXo1asX0tPTq3ikBEEQgZCAJQjCNuTk5GDevHn47bffsGfPHvnvWVlZKNhcAf54su+4m4A9omHsD9OyJ/FKEPbFTuJVQuu+E87eVRvBHF48OP1mzJ8/H+vXr5f/7nQ60b17d/Tv3x/dunWDw+GowlESBEH4IAFLEESVUlpaikWLFuHXX3/F33//DemW5HK54DnEgz+W4qsezCKYxEqTSbOFVewI3aKJmowdxauEmcWzBBKxEsztwbCPBmLevHnYvXu3/Pc6derg0ksvxRVXXIFmzZpV4QgJgqjpkIAlCKJK2LZtG37++WfMmzcPRUVF8t+5Uy4Ix5LBn0gG543x5I/EK0HYGzsLWCAhBWo4iCkVuOa/F+HXX3/FqVOn5L+fccYZuOKKK3DRRRchJSWlCkdIEERNhAQsQRBxo6ioCPPnz8fPP/+Mf//9V/57w4YNcXRlIYRjyeDK4piiZqYYS1WKXLo9EwSJWBvAOIbn5t+P2bNnY+XKlRBF330xOTkZvXv3xpVXXolOnTrRkTwEQcQFErAEQcQUxhi2bNmCH3/8EYsWLUJJSQkAwOFwQDzigJCTCu6Uq2qOvTFTfKWqBCzdmgmiErsLoxogYiWY04vbJw7E7NmzsX//fvnvrVu3xsCBA3HJJZdQVJYgiJhCApYgiJhQWlqKefPm4bvvvsPOnTvlvzdr1gwHl+ZBOJoMziNU3QDNFFsh8UoQ9sLOQrYGiVgAYGB4++9n8csvv2DBggUoKysDAKSkpODSSy/FwIED0bJlyyoeJUEQ1RESsARBWMrhw4cxa9Ys/PzzzygoKADgL8h0QICQkwKuoIqirUrMFFch8UoQ9oRErO1ggoh7pg7GrFmzcODAAfnvXbp0wYABA9CzZ084nc4qHCFBENUJErAEQUQNYwx//fUXvv32W/zxxx/y/qiGDRvi6J9FPuEa64JMVlMVApZuxwRhjhoiYjmeAxP17wtmbKy207JhYBi74j+YNWsWli9fLp8tW7t2bQwYMAADBw5ErVq1DMdAEAShBwlYgiAipqSkBL/99hu+/fbbgHNb+Tw3+MOp4HPdIdFWjvf938wEyYxdTCDxShCJgV2FrMUiVkLrfmjGJt5tMZcXN71/OX788UecPHkSgC8bp1+/frj++uvRokULzbYJgiD0IAFLEETY5Obm4rvvvsP333+P/Px8AL5qlOW7eQhHUsGXOkMmNMrJDqA+4TFjExfiLWDpNkwQkWNHERsjASth5v6pZhfvtjieA+MYnpx9N2bMmIGtW7fK18477zxcf/31OOecc6h6MUEQYUECliAI0xw4cABff/01Zs+ejfLycgBA48aNkbO8EMKxyjRh5SRGbZITiU3cIPFKEImHHQVQjEWshHSfNGNjZVvh9sfA8NbaZzBjxgz8/vvvkKafrVq1wpAhQ9CnTx+4XC7NNgmCICRIwBIEYciWLVswbdo0LF26VN7fyhU64TiUDv5kUthFmcKdAMUNEq8EkbjUYBEL+O6ZRjZmMdNWNP2Jbg+uGtMDs2fPlo9Wq127NoYMGYIBAwbQMTwEQehCApYgCFUYY1i1ahW++uor/P333/Lf+Vw3HIfS41JN2Mz+K8uErp54VU5CrRK5dOslCGuxo4AF4ipiEw0miLjjs4GYOXMmjh07BgBIT0/HoEGDMHjwYGRkZFTxCAmCsCMkYAmCCIAxhj/++AOTJ0+W9ysJggB2xA3HoTTwJfE5CiHaPbJhC1w1YRo88STxShD2xK7iVcIiEVvdBKwE4xhGfn8bvvzyS+zfvx+Ar67CgAEDcP3116Nu3bpVPEKCIOwECViCIAAAoihi+fLlmDRpErZv3w4ASEpKQsUuBxxH0sCVC3EdTyR7ZCMuAqUUploTTRKvBGFf7C5gARKxJmBgePrXe/HFF1/IfsjlcuGKK67Arbfeiuzs7CoeIUEQdoAELEHUcERRxNKlSzF58mTs3LkTgL+i8A4BjsNp4DzxFa6ANUVJwhavepNLEq8EYV8SQbxKkIg1BQPD6CUPY+rUqdi4cSMAn5C96qqrcMstt6BOnTpVPEKCIKoSErAEUUNhjOHPP//EJ598IgvXlJQUlG0T4DiSWiXC1UosLQJlhYClWy1BWE8iiVeABGyYMDC8tvIJfPrpp1i/fj0AwO12Y+DAgbjppptQq1atKh4hQRBVAQlYgqiB/P333/j444+xadMmAEBqaipK/+V9EVdv0ARLmnCZKXJkZBPHKr9xKe4UVjs64+E4ErgEESl2ErFG9zk7FnQyc2+2wiaKNhgYxv75H0ycOFH2W0lJSbj22mtx0003UbEngqhhkIAliBrEli1b8Mknn2DNmjUAfCvZnt0uOA7qCFcgugJHZir4mhHAYWKJgI21eJUm3nQbJojosJuIlTBz74yqKwuedzj36HjaaAjZMb+PxKeffioXGUxLS8PNN9+MwYMHw+12q7dJEES1ggQsQdQA9u/fj48++ghLly4FADgcDrADSXAcygBXHjQBUptcRVLkyKidYJuaIl6DJ9p0CyYIa7CriAXM3R8j6sbCKKySSBYtw73nm7VRE7Ich5cWPRiwBSY7Oxt33nknLr30UghCYm+BIQhCHxKwBFGNOXXqFCZNmoRZs2bB6/WC4zhwR5PhOJgJvszhMwqniFE0NkYi2CLBaKvUYeXtVW1yTbdfgrAWO4tYCTP307C6sTgKqyTcxctIn3OE/TAwPPbjUEycOBE5OTkAgJYtW+Lee+9F9+7dwdnp80AQhGWQgCWIakh5eTm+++47TJkyBYWFhQAAPjcJjv1ZsTnHlYnGkzE9m+oYfWVMfzJNt16CiA12Ei0WpgvrdxNDEQuYX8SMxg9E0QbjGO6cdDWmTp2KgoICAEDXrl0xYsQItGnTRr89giASDhKwBFGNYIxhyZIl+PDDD3Ho0CEAAFfkhGNfFoT8pCoenQHRFomCvniVJniGAjcehabotksQscUuIra6CFgr4Tkg2oVGjTaYIGLQW70wc+ZMlJeXg+d5XHnllbjrrruQlZUVXZ8EQdgGErAEUU3YtWsX3nnnHfzzzz8AgDp16uDUahHCsVRwCJrcmJlAGNlIEyYjm3DPY1US5h5ZNXGqnNiZis7qFRah82AJwv7YRbxK1DQRa+QblOM0sonQB03d9xY+/PBDLFiwAICv0NOwYcNwzTXXwOmMQRYSQRBxhQQsQSQ4hYWF+Oyzz/D999/D6/X6KgvvcsNxJAOcR2VCE+3kIpzJh56NkkgKfag2U9mX2mQuouhrLApN0W2XIGKD3cSrRBxErCkBG49jfoLHYeRH1GzCbUPj+usr/oPx48dj+/btAICmTZtixIgROP/88zUGTxBEIkACliASFFEU8dtvv+HDDz/EyZMnAQD8yWQ499cCV+4v0KR06lZPGCJtQ41wCnxoNsH8TahP4sIWr2aPCQoXuuUSROywq4AF7CFiI6k2HAlq49DzR8HXrWhD2jYChoe/uRGffPIJcnNzAQA9e/bEQw89hHr16mk9A4IgbAwJWIJIQHbu3Ik333wTGzduBABwJQ449tWCkJ9caSQ5cq0JjdnrVrWhhdmiHVFgOnU41kWm6HZLELHDzuIVsE8qcaRHpYWD3hhEZnw9Bm0wXsTA1y7EzJkz4fV6kZycjDvuuAODBg2Cw+HQbosgCNtBApYgEoiysjJMmjQJ06dPlx1wxTY3hJx0cMymk7doi3VYIB6jrkxs9ZE6BEFYj90FLGDPKKwSMwuKZrDqfNoYMGHjS3jrrbewYcMGAECbNm0watQodOrUqYpHRhCEWUjAEkSCsHbtWrzxxhs4ePAgAH+68L5a4CqsXznmOA6W3BqiLdAhMv2iSkDUlYmjKuxkFrrNEkRsSQTxKmF3EWsWs4X+IkQ6w1XPFxn5Kq3rUlrxhx9+iPz8fADAVVddheHDhyMtLS2qcRMEEXtIwBKEzTl16hQmTJiA2bNn+/5QLsC5txaEvJQQWyOHb9WEwHQb0eyz1RKvYe5N1atMHBfxCpCAJYhYk0gCFoi5iI2bgJUwUzMheAgmfYmeDad439VsjK7DKeLip8+U/Wt2djYee+wxdO/eXXfsBEFULSRgCcLGLF68GG+99Rby8vLAcRz4nFQ4D9QCvIETAy5o8haJI496IoCgyUY4e2jV7IIFbASViYMFathH6pjow/jxdIsliJiSaOIVqB5R2EgLMSmHEIbfUbMJ93qwjXR93B+PYty4cXKG06WXXooRI0YgIyNDd/wEQVQNJGAJwobk5+fjnXfewfz58wEAXIkTzj21IRQlReygY3VdzSZAwEZSJEopXo32a+mgV5mYUocJopqQiAIWqH5RWAkzi5fSECLwP0qbaK8rbRgvYsC4C/DNN99AFEXUrl0bI0eORK9evXSfA0EQ8YcELEHYjD/++AOvvfYaTp48CZ7nwR9Ig+NwllykKVrHbUUb4UwONNGrImmBuGQii/xIHRPtm4JurwQRWxJVvEokuoiNplIwovdjetfN2Khdf2v1kxg7diz27t0LAOjTpw9GjRqF9PR03b4IgogfJGAJwiYUFhbi/fffl/ficCUOuPbUBV/kruKRhYdlt5Rwz20NA4q+EkQ1oYYLWL1CdIbi1YL+rag2bCRCqwLGMVz3Ti989dVX8Hq9yM7OxtNPP42zzz67qodGEARIwBKELdiwYQNGjx6NnJwccBwH4XAaHAezwLGgyQXPA6KOsKrq63709siajs7qdpCg4pXjSNgShNXYUACFhQUiFtAvWBfL/qMt1hS1gOX949fyTVFcf3vNUxgzZgwOHDgAALj++utx9913w+1OrIVlgqhukIAliCrE6/Vi6tSpmDRpEkRRBFfmgHN3HQiFSaHGMXTSllxXoFeMo9oLWLXnJ03Q6HZLELEhkUWsRQJWQnmPs5OABcwVagq/f8X41fxTlNeZA+j3fGf8+OOPAICWLVvi+eefR+vWrSMdMUEQUUICliCqiJycHIwZMwbr1q0DAAgnUuHcXxecJ8iQD5pcBDvYqr6uglYRjmovXoFAkRo8MaPbLUHEDhKxMnYSsZEWajLft8rYlX7KouvP/3oPxo0bh7y8PDidTjzwwAO45pprbJkCTRDVHRKwBFEFLFmyBK+99hoKCgqQnJwMz5ZUOE76C0TEwPGavh7OYzXQK75hewFrlXhVm9DQrZYgYkuiC4koRKRewbqqFrBAdMWajPvWGLvkryy8Pn3/Oxg3bhz++OMPAEDv3r3x+OOPIy0tLdxREwQRBSRgCSKOVFRU4H//+x++/fZbAABX5IJrTz3wZc5KIyOnGg1WOXQd9Ko+Ri1g7R591WyXbrMEERcSWcRaHIWNa/8RCljAXDVh4/5jVM1ZFEPaZmC467MrMWHCBHi9XjRq1AgvvfQS2rVrF5sxEAQRAglYgogTx44dwwsvvICNGzcCABw5mXAcqiUfjyNj90I/entkdQRuVUdffQ+PcQRWs10bv58EUd2ooSK2SgUsEHYaceBjoywgKAixu89q+OS3Vz2BF198EUeOHIHT6cSDDz6IgQMHUkoxQcQBErAEEQf++usvvPTSS8jNzQW8PFx76kI4lRpoZFTox8x1va+z3nWzolmvAEYU1Ykr249QYHK8KfGpK2CjbFu/Y7rNEkRcSHTxUE0FLGBSxAKRFRIUBN+/0fjPCK4zwYtzHmiGZcuWAQD69u2Lxx9/HElJKoUYCYKwDBKwBBFDGGOYNm0aPv74Y1+V4RIXXLuCUoaVTl2vgq3R9Vg5bsmGMf0CT1UhYJUTLgORGVH0VWqfBCxBJAY1WMD6Hh7F87eLgAXCrxbM89b50jCvB6cUn3baaXjllVfQoEGD0DYIgrAEErAEESNKS0vx6quvYtGiRQAA4UQanPvq+M521XLkehVsja4Hf5WjvR5spxSwURZ40iScCGkY4tVnEjtxbNw53WYJIi6QgK26/q0UsBLhFBaUorBKovGpYV4f+/sjeP7553Hq1ClkZmZi9OjR6Nq1a+hjCIKIGhKwBBEDjh07hmeeeQZbt26Fw+EAtysLwvE0cHqTA70KtkbXrXTSanaSeI2yuJMuZgWm2mtopYCNsH39tuk2SxBxgQRslfYfExELmCswGByFVRKNfw3j+pSdr+Hpp5/G9u3bIQgCHnjgAQwaNIj2xRKExZCAJQiL2bp1K5566imcOHEC8PBw7aoPoSi5qoelTyQCV0m8BKzW5MoqARtF+/pt022WIOJCogsFErDa1/QWUSs70L8eBxgnoufjbfHbb78BAK666iqMHDkSDoejikdGENWHGNUdJ4iayYIFC/Dggw/ixIkT4EqccG9vCqEkVf9BPK/vlI2uSzbRIDl9LecfzaTDKqKdWEXafqwqExMEYS02EC9VjanjwhIVvQir0qYqrwPgeSeWjtuOBx54ADzP46effsITTzyBoqIiw8cSBGEOisAShAUwxvDll1/i448/BgDwp5Lh2tcQPBN8kUeNghQcx+lel4mkKqN03ehoAr3HK4kyCht1BFa3cQsisBG2q/94ur0SRNyoDgLWooW6iCOxdo7A+hqo/F3r/irthY3Gb0ZxnfP3z7xePDfnLowePRqlpaVo1aoVxo0bh/r166u3SxCEaUjAEkSUeL1ejB8/Ht9//z0AQDiWCdfhbHDwOdoQgeoXrhJq10PQq/5rdD1Scawk0iN2AppIMAFL4pUgEotEF7AxyDIJW8hWtYAFwk8TDr7XBhdzisZ/RnCdC+r/3ZWP44knnsDJkydRp04djB07Fu3atQNBEJFDApYgoqCsrAxjxozBkiVLwHEcHAfrwHm8lnw9QJwGCVe165qYKWAhEa1zVsMOe2B1G7dQwFqRMky3VYKIL4kuXoGYbZMIS8TGWMACFkdhJZT3XLVqxEaLxEqbSPxs0PVgETv53//i8ccfx+7du5GcnIwxY8agW7du6v0QBGEICViCiJCCggI8/fTTWLduHcA4uPbVh+NUeoCN9PXSctimvn5mnaoVTlmLmiJgKepKEIkJCViDpk2+PokqYCUYUxewEtH6S8nG4HqwgAUAxnvRcVhtrFmzBg6HA88//zx69+6t3Q5BEJqQgCWICDh58iRGjRqFXbt2AV4e7j0NIRSlRNRWlX8F7bD/FSABSxBE5JCANdmFwetkxRjiuQ82ksfHAU7gVX0a40Sc/1AzLFq0CDzP47HHHsOVV15ZBSMkiMSm6r/lBJFgHDt2DA899BB27doFrkJA0s4m6uLVaKKgc53jOHBCaMpxiI0VkzYbOPt4EPXxEgRB2JPqIF4J6zCxKGvkOzmB94nQCK8zr6jq4znGY8W7+3HVVVdBFEW89tprmDZtmuF4CYIIpGbMXAnCIo4cOYIRI0Zg37594ModcO9sAr7UHWjEc/riVbouMtXIJMfpP96McLVM3BLhQa85QRBElWPG/5nypRoilXlF+bqekFWbD3DgMP+VLbjpppsAABMmTMDEiROrPhuLIBIIErAEYZIDBw7gwQcfxKFDh8CVO33itdxVaWAkXCUbDaSoq2wTJHDNitKwhauZFGKCIAg7QotGNQ+TQi8cnxlSYNGrLMhkIFKhLXRlguYHHDjMenI17rvvPgDAlClT8Omnn5KIJQiTkIAlCBPs378fI0aMwNGjR8GVOeHe1QR8hdN30axw1bAJEa4aNkbU6KhrHPaOEQRBxAw77H+tppj1i7FOKwYQMheY8uBCPPjgg77fp0zBZ599RiKWIExAsz6CMODw4cN45JFHcOLECXClLiTtagreoxCvWohMX9zy5oRrdUgXtvv4ZEgIEwRBRI5NRXI00dgQG7NCVq9woOJ1+uy+32QRO3nyZHz++eeG4ySImg7N1ghCh2PHjmHkyJE4duyYT7zubgJOdPmEjpaj5nj960obPSyYCFgiHC04QifmWHF2K0EQiUWiLIwRtiGsrThGPlrvuB7A58P1bBTXP7vvNzzwwAMAgEmTJpGIJQgDSMAShAa5ubkYOXJk5Z7XvU3BwW0sTI2uSw5NT3TpOU4pqmvTle64YzfxSpNqgiDCwU6ZH0y03z1VDZ6PvoK+GT+q9954vT5/biRkzVwXBHw+fB7uv/9+AMDnn3+OmTNn6j+OIGowNrprEoR9KCgowKhRoyqrDe9rBl70F2wSWaiDl4SpXlRW77rSTsthkmgNJFEmWgRBWA8tFMWWRLm3xkPImsmYMhKyWte93gCbSSMW4c477wQAjB8/Hr/99pt+vwRRQyEBSxBBlJeX4+mnn8bOnTuBCgHufc3BV7jUjc0IU6OorGRjFHWt7oTzHGM5ubJTNIQgCMICIirglCgiFrDmPPNo/TRgOtqqx1ePLcegQYMAAK+++ipWrFih3yZB1EBopkYQCkRRxH//+1+sW7cO8PJI2t9MX7yaSReOJkUpHlHXqFev43wbSYRJFUWHCCJ20Pcrflic6WJJXQYtAWiHtGIg6rRiDhxmj9mESy65BF6vF8899xw2bNig3x5B1DBIwBKEgg8//BALFy4EGAf3gSbgy5JCjaTCC3pOzqwT1HOE8YoE2qEIU5yI2zESdAwCQRBmSJSMj0RYOJSoBtFYDhyWjd+P888/H2VlZXjqqadw4MAB/fYIogaRIHdOgog93377LaZPnw4AcB1qCKE4NdCA4wBe0F/9N2MDmDs31ggzqck2oqqP0mEiA9M71qDSMPaDIQgiMij6al8SyB9BEEwIUN73o4ehrxd8P3o4HL6f4KbBYd2kXJx++unIz8/Hk08+iYKCAv22CKKGQAKWIACsWLEC48ePBwA4j2bDkZ8ZaMAZRF1l4WrC2UUrbs2s/FoBY9UmkmhKuPoMLeiserxmBEHEmDhFX+OWeWIF8d6SYiqSapApZcqvmxSywc0zHq+88gqys7Oxb98+vPDCC/B4PPrtEEQNgAQsUePZv38/Ro8eDcYYhLxacJyoU3lREqZ6qUBmzoszK1yj3XtjFVUlwmIw0TIddSXxShD2hqKvVUeipDpHSjTRWEkEmxWyeqhEY285/RmMHTsWycnJWLNmDd555x0w8jVEDaea35EIQp+ioiI8/fTTKCwsBF+SAldOQ3DgAoWrFVFXPazYL6vbfTjVfSOMusZz1dzk6xDXlOFqFK0mCIKIBfHaRhJxP2ajsWaErB4RpBWP6PkOnnvuOXAchx9//BHff/+9/uMJoppDApaosYiiiJdffhl79+4FV+GA+3AzcOCN04UB46ir0Wosx/mcoNm9rvEgDgKsqvfBhkBRV4JIDOx274iW6pY+nEhpykaYeW8MhawF0VggQMSOuW4a7rvvPgDA+++/j82bNxs/niCqKSRgiRrL5MmT8ccffwCMg+twc/CiC5xDAKeyD0WCk8RtNEffmI2m8iZSk01gp1QjS8ZCRZYIomZR3cRromGn9GGOs6ZyvlVVhjUztHyP54yKQPECOIMMJs7lkm0mjfodvXr1gsfjwfPPP4+8vDz99gmimmKjuxJBxI+//voLkyZNAgC4chrDUZ6qO0niOM7nQDhOO4rIc+AEXj/KGO5EINar2lZMBEQxvkfx2GkyBdDkmiCI8LDbPcwuhLMVxSoRq+VjpYVss4vNOnCCsZDleN5YyPI8OHB48skn0bRpUxw9ehQvv/wyvF6v8RgJoppBd1GixpGXl4cxY8aAMQZHfi04i+oYilcz+1gNhWssJi3RHKVjlXgNA9ulENNEkiDsjd3uGQmEndKHY3Lvj9SHBRdltCIaa6KWhWE0FjAlYge3fRKjR4+G2+3G6tWrMXnyZMN2CaK6QbM3okYhiiL++9//4vjx4+DK3XAdb6xpq4y6Bl2odESxiLpaTMjYrIqYxirqatGkK65HR9AkmyCspzp+rxJt0czu4w3yZ6aEsppvsKoeRZjRWM4Rug/WTDT2wZ7v4D//+Q8AYMqUKdiwYYPx2AiiGmHzOxNBWMs333yDFStWAIxDUk5zcEy9iEK0UVdTe2WrAj3RaXayGO+UYTWsfF3t9h4RBEFESUKd/QqYSx/W81GxTimWx2A+GqsXcbUiGvv27T/h0ksvhSiKGDNmDIqKigzbJIjqAs3ciBrDrl278NFHHwEAXMcbgS9PDjUS/Efn6DlKo72wfgxXgjneXBVCqyYiRg7eRsWeDLGykBMVhSIIIh7QYpk28cwKMjpeTaeQowTndBr3o3d+PPwi1qAvjte3efjhh9GgQQMcPnwY7733nvGYCKKaQHdTokbg8XgwduxYeDweCEXpcOTXCTWShKsJ8aq7WmwyemuJMJXEl05bcuXfeJ7VqjEOwyrEIjOeXJgUnHE7AxZILPFPEIkCfa8iwrLoq1nBbeK+baoCfZQiljMQjAAqRaUZ/2DUn1Gqr5SJZTQuI8HMc5o217V7Cs888ww4jsPs2bOxZMkSg1ETRPWABCxRI5g+fTq2bt0KiAJcJ5uDg8LBC4LPORgJV6PILGAuDdeqyYUJ8RXWsTVmU4gjEMLmJi/WCc64iVfGaJJNELGkuny/akL01YSINV7E1NiiEpMiUNZ8tgxFrCRk9XA49IWsJGJVbJ68ehJuuukmAMAbb7xBR+sQNYIacEclajp79uzB559/DgBw5TYF73VVXlQTpcHORqOQU8Df1KKuXNAeGCujrgbiy9REIU7YTryaeP3MdWSP15cgqj30XTNN3KOvwZi4l8cjGmsaM1k/JgiOxoacJ68WjVVLQw5+nPL/0hwi2Ibn8P3YLWjVqhVOnTqF//3vfxE+C4JIHEjAEtUaURQxduxYVFRUQCjJhKPYnzpsRdRVclbRRF15Lrx9sHrCy2+jOzkwip5auMptacqwmWizyMyJVyugCTVBxJdE/s7VhOirEqtTik34pbDSh1X7krbaGLejVjlYvqY3L4gkGqtVMTkoGsuBx+OPPw6O4zB37lysXbvW6GkQREJTw+6qRE1j9uzZ2Lx5sy91ONefOmxmj6oZG8nOCCtWxEVmLL5Ek+lZethpZZwgCEJJIovYOFDl0dcwsVUkFohPSjFgTsQCxinFQdHYR/tPxMCBAwEAb775JsrKykyMliASExKwRLUlPz+/surwqUbgRbfPaTgdgFYJe54DHILvR8uG43zXHAbFGaq4aFLYWDiZsEv6MkEQ1YhEPBe2pkVfq4i4+hyzR/7ofV6djsq5hp6NURGoIJt77rkHdevWxYEDBzB16lTjcRJEgkJ3VqLaMnHiRJw6dQpceTIcRfWNnQ5vUF0Y8FcgNhN19bcjCMbH6ZhJI+Y5U2fPGfel0UZViVerDo83i1VtJeJEmiASmUT8zsVRvNou+mpiPIb+CjAnFv02ur4n2oinHzl9WG9cDkdlhFTrOSr/ridiJTTGz3hO/oEgYHCn5/Dwww8D8BWvPHz4sHHbBJGAkIAlqiXbtm3Djz/+CABw57cApycQpairYTl83tgp83xiRV7NVNHVqgoZ0lTVFo6ybAJHEARB2IMwFy5i7oOU/l3L1yt9kSRijZ6HUTQWMIzGSiL21Tt/wtlnn43y8nJ8/PHH+m0SRIKSQDNtgjAHYwwffPABRFGEUFwHQnmGtrFe1JXnfaJVL+oq8JUORasdu0Zh7ZIyTFFYgiD0SMTvGkVf9buyOPqqJGQx1eroa3D/yjGotRMcjdUTqtI1p854jEQsz+OBBx4Ax3FYsGABNm7cqN0WQSQoJGCJasfq1avx999/A4yDq6Cpqg1zOsDcTuOoK28i6gokVtTVYmi/K0EQMYPEa80lyvfect+k5+ela3rzhTCisUxPwAKAIIClJGlefvCKj3H55ZcDAD744APy00S1g+6yRLWCMYZPPvkEAOAoqg/e6w61EXj1s12VcP49JWaIdoIlHTlgosqwrz+Nr62ZI2mU6cAWrYCbWknXHZN1Z8Cawsq2CIKIHYkoXuNMtY6+Gm1xMRWh5YyPYhN4c8e1GW2nkeYVusfzcWAC75uHGGAoYjlON1J71113ITk5GZs2bcKSJUsM+yOIRIIELFGtWLJkCf7991+ACXCWhEZfZfEKALyGE1GI1wB7LUwWf1J12krxxumIakNharPjCMxg9gB5k4LT8AzYMNoyDU2wCYJQUpNTh2OFVdFDM/d/DZuA9GEtX6q00fANSlGqJWKZy6lqH2Djdlb2o2FzS6+3MGTIEADApEmTINptDkAQUWDzuxZBmMfr9WLixIkAAEdJI3BM4QQE3ucIgoWm0slw/pXRWBQDUhO4Zs+ci0C8hohlLcdVVVFYs2LTxISDiaxqxKsEiViCsJ5E/F7ZXQjGmljufQ0WsWb8kppAjELEBqDmU4Ofm4l0YTPRWOZ0hArZoLkLnA5VIXvdddchJSUFu3btwrJly3T7IYhEoobfbYnqxO+//459+/YBogPO0sby301FUXVShi2PwupFHpVRWCM7sxFMu626VkXUldKGCSJxSETxGmdsF32NRxV4KyOxkk/QEo8KG9XiTUBgSrFeYSb/51kvJVgSscroa4iNXkqxJJaDbK47/1UMGjQIADB58mTaC0tUG0jAEtUCxhi++uorAICjtCE45gBzOcGS3YaFF5hDiE3UVaUv05gRZgZjjnpvapjEu78qjboGQxNugrCGRP0uJWLqcJyxpPKwSQFmri8TNmajsUb9mRiP2X2xcvqwVj9OB8T0FPlP119/PZKTk7F9+3aKwhLVBhKwRLVg3bp12Lp1K8B4OEsbggkC4ODBDIopmDr/1UzVQKk9PTvJyZmqahz9BMWyldZ4HKUTK+IxqTRzli5BEImL0X0kUVOH7Va4KRysyiwyuHdzDofx/d3lNLRhLqepc+JV04WDEJNcEI1ELO+zA4AhF4zDtddeCwCYNm2abtsEkSgk6F2XIAKRo69l9QA+GXD4P9oOXj21R5ny69A4HFzhcJnyvNdwCapcqOnIw0115bSP+AkQkyZSmzWpKvFqYmJlOgoRy8klCVeCsA47Rl+l+4dNRKrtUoetxEyWkvIzouGfOOU2HC2U/tzMfdzMQqXZxUyN58mSKk9N0BKxYkqljZaIlf+uELGDBg2Cw+HAxo0bfYv9BJHg2PAORhDhsWfPHqxYsQJggOBtXile/YREYU3uV40IgTd2sGpR2GDhajZSq4LtI68Jmv4WAolXgrAOO4tXrf9r/S1G2DJ1OJaFm8xg5KfMFktUEZ+cQ0VEBt/31fasBtmo7ms18XwNj9GBhojlA38Xk1y46dL3cfHFFwMAZs6cadguQdgdErBEwvPTTz8BAHhvXfAsJdRAisLqpQxLUViddOGwo7A6jjXAoWtFXc2IWEUUljGmLSbDFeyxjryamYjZOQpL4pUgrMOO4lULjrddVDZsEqlwkxLNY+Yqs5wMj6sD9P24/96uKl6DbHQJJxLLcQHR14BmFCnFLNmlaiO6nbKQ1RS0PDB48GAAwMKFC3HixAnj8RGEjUnQuy9B+CgrK8PcuXMBAI6KRpp2TDARdTXhjM1WNDZEEqcWFRmyNIU3kfe86pGok02CqM7YVbzabN9roqYOWxZ9NdGObl9mq/YD5gWqTsVgycYwisrzYCnq4jWgKadDv6YH/OJV56V86Nbp6NixIzweD3799VfDPgnCztCMjkhoFi9ejIKCAoAlgffWVrVhAgfmdoI5tVddGcf5Cz+ZiLCaFaianflSlTiOi34ywXRWncNqJ85i1KIKwqYqEUtt0VE6BEEYoYyw2gRKHbYQ6Qg6PXjBeIHW6TQnis3OFxz6r4M33Q0xSV8Me9Nc8KaoR2kl+vfvDwCYPXt24i1CE4QCe92lCSJM5syZAwAQvI3AIdBRMIGD6BJ8B4VzKnthJTt/xT7wMF/qXsvpSs6M04j4hhzGrlXQSbEfR9NGIch4zniyoDXmCA6Ij4qqEK9WY9eoEUEkEvQ9MsRS8VrdUoeVJma29yht9PyHmW05SjTa0jvTVbZRpgXriVjO96MrYv3zGG+KtpB967W/kJSUhH379mHjxo2G4yMIu0IClkhYjh8/jr///hsAwDkaQ3RVOicmcCFnqjEnHxCF9UVduYBvAeM1qhYHY2afTXDJfC1HGDypMKx0aGE0MdI9s4gw6lsdxKsETb4JInLs+P2xWeTVUqpx6nDEqEVQ+VD/HyJinSrCNKgd5nJGlq3l4EOErDddkWLsF7HBQtabphCsCiEbYJPsBMc5cNFFFwGAvP2KIBKRany3Jqo7CxcuBGMMHLLAcany39XEq3zN7yzkqGswPEylEjNlJWO9NCLJOWkIRS64UJOmoJTa0RFk4UZhLUgfMi1ize4/ShTxShBE5JB4NYUt973aMHU47OhrMJJP4QVzR9MZtQOYy+bSKMoEQBax3nQ3ENyUWjRWYz4TIGL9Y+rXrx8AYOnSpfB4PIbjJAg7Yr87NkGYZMGCBQAADg0BAKJLgDfZqSleAV8UVnQ59D/5Zr4VnF8kGzkprVTiEDs+fvtQzU4c4r03yUrBGS/xaseJOEHYGTt+Z6qzeLWSRE0dNjNukRnaMcbUo69B7ZhOHTZ6fg4+VLwq8YvYgOhrMFJKcXLlmP4zcg4yMzNx6tQp/PPPP4ZjJQg7Yr+7NkGY4NixY9iyZQsAgEcDMAcHb4oDzGVcaVhMcugWdIJoIgrLGDijSKC0j9VkVd+oJ3ZmIpOK4wasIJr9QYENmax8bDb6asMJKUHUeEi8mqJG7Hu1yA+Z3qdq5GME4+JOnMNhftxGYzLxXfCku8Gc+u9feS0XKtKNKh377MqznP6uefTs2RMAsGjRIsNxEIQdsd+dmyBMsGLFCgAAh0zAmQSvy1eoyesWILpVbua8L2LKeM6ffqN1nlzlr5oiVileed7n+FRs5H959UgtYwzMK5oUnlJxKIPiUdBJ37JQuJqmKsSrRDwmplTFkSAIu1JF4tx0dVs9nxRmGrL2GegmzlyXfDgz64+1F4KZ21m5eK0xJt3UYT+edLc8Q9cTsYznwHgOFakOVKSqC9nyDCcYDzAesojt3bs3AGDZsmUQq2JuQBBRQgKWSEiWL18OAOD4+vAqoq6MA7zJQSLWf4NXpuKITiEwCisiQLxqohZ5DRaxSvGqtFE4ZMZU9oRyKkJXbe9o8KRExeGGiFg1BxVlNMRwklKV4lUilhM4Eq8EYR6KvpoiUfe9BmOJiNVDZYtLSJ9q4zbyOZKIDfI5nENFHAaNnbmDUodVRKyp1GEgZHbuK0IZ+MfyrEohrBSyATZ+8Vpp5xOxTzz6K5KTk5Gbm4sdO3YYj4cgbIb97t4EYUBZWRnWrl0LABDd9UOuMw6Vn2xJvAbDAaLLn0qs48/kKCxj4LyiubRh5b+qJnpFnxQiNpzIrK5NFKvcGvtg4yVemcgiF6+xQmdlnSAIFUi8mqK67XsNS8Qq/VSkR8KZ7VPpe1QzqMSAaKyqeJUwEuDB/sJk6rBmc34RW57lUp3bBItYpvb0eKCilhtdu3YFAKxatcpwTARhN+x3BycIA7Zs2YKysjKAcwNcuqqN1y1ATHaoi1cJvVRiJcHH4Wja6FccDqhabITh4egm9utYNWkMStOKZ+TVEmw4USWIGgOJV1NU132vpkWshAWfF8aMCzIBMLYJI6U4JPoaOCCAMXOpw5luw5k5c/K6cxtJxJZnaI+J8cC5554LgAQskZjY7y5OEAbIVfP42qoijfEcvC4eFWkOePUO/Wb+VGK3drEmzky0TSrUxHEmqxJb5FjNVEy0gnBTvMw8v3hOIK0Wy3ackBOEHbHjd4XEa1wJeyHVyG9ZdUa50YKz1JbAA16vfltOBzivvp9hbpepoo6M5+Tj/rQoyXbBk6xvU1TfgeJsASV1tOc33bp1AwBs2rTJFxQgiATCXnc6gjCBJGDF5Loh1xjPgQmKs1617vEKnyW6HKoiNkC8OgQwjYJOptNJ/Y4r5OzXgPb8zs2MjQYhUVI9h28YTQ3sy/RkxCIRG/XEjs6CJYiqgcRr/Knifa/BhCVezZxRbla8hjt2rXPalanDWiLW6ZA/67oiVjl0DRHryfSnDnPQFLEl2S6Igm9rlJ6IZQLkwk1aIvbaZ75GrVq1UFFRgW3btmmPnSBsSDW/mxPVDY/Hg02bNgEAyjOz4UmtvDErxauEN4kPjMIyBIhXLVQjr8EiVs1GUEk3Vtnfo+rYg8WWmiMOtgm6HlbUNUzxWjms+EYLIhaxsRSvdpycE4RdsOP3w6bitboUbYquP51K/no2qm2ZGLva2bFB/anue1UTsUGfdc4rhghZlqSypzXIv3oy3YFpwRoiVlTMcSQRGyxki7MDn5+aiC3LEMAEDp06dQIAbNy4MXSMBGFj7HlHJwgN9u3bh7KyMjDOAdGdjvJUHp5UQVW8Aj4H4E32i1gdvaaMwuqmDUsiVs9GKWL10oXMlPdXilgtG/91XfEa7PwjFK+Vw7IgDToMwp7kxSPyasdJOkFUNfS9ME11K9qkxHy2ThQZQpH0qSZeg/rTLdqkFLFObTtJxLIknT2tfj8bIl7lRgJFbEl26B5aqfqwJGKLswUwNX2uELFlGYJc3IkELJGokIAlEgopzUV0ZwIcB8YDokNdvErIIjZZ/7BvJvCAwJlzmob7dIz3wsrO1ozYslKQVfcKupQ2TBBVg13Fqw2jr7bc92qHyGsw0lnqBphKHTbzOpnxj16v5vnuATgdxrNsUTQsNsk4DkUN3AHR12AYz+Fke4eqeK20AUpqCwGViU8//XQAwPbt2w0GShD2wn53dYLQoVLAZvn+dQCltTiUp+t/lHX3w8IXdeUYwKSjdTQb8js3o1VjE8ftyJUS9Zyq1Fa0E5RwjigwUbTJVKqyhcff2O4oHaD6LwQQRHWgCsSrkTi1pXi1EGu3mXDmM4KsqPDPC8b+TYrQegyKOwHgPPpj96YngfPo91dc3+Xb06ozNQEA0QmU1jEo7tSYQ2GTSpu73poLADhy5AiKior0OyAIG2G/Ox9B6LBz504AgOjKhOgARJf/YO4MYxHrTVKPwnKMgfNWOhBNEcsYIKUFOQTtfTuSg+Q4TZvAIksaIjbYiWpNVKSz6rQmDWrOPxzbkGFZKF5NngUbFvGY0JF4JYhA7Bh9rULxqiVSbSte7ZQ6XNlY5e9mazLonbFuZMMLxltyHI7AcWmIWObyH2HDmKaI9aYn+c6tZ0xTxBbXcwUIVy0RW9DM9/wYry1iixtwPiHsQKWIFVzIzs4GAOzatUu9cYKwISRgiYTiwIEDAABPehpExXYQMyJWLZU4WLxWXggunlQpXuU/BYvY4MirdKxOkI25g9b9NsGONnjCEnQ91JmHkU5bHcSrRCwnriReCSIQEq/+Lrmw/h9lZ9a1ZcfUYbXPlFl/ZuQ31WwU4lVC1d+pjStIxDKXM6jGRaiIlcVrgE1of6r7WYP+VtCMh6isVakiYiXxKtv4RWxhEw6tWrUCQAKWSCxIwBIJQ2lpKY4dOwYAEN1pIdelkvF6KEWspngFwJyCLworCVeN8viyiNVKG1aKWD3xKkVhlcWhjFaSNa5XplMZOHsTq9tKEka8xhISrwQRCIlXf5dxiLhWNmpdW1YW2zNV3C9C8Sqh8FW6/cmZUDr9STYq4lUi4Fg6veJOfhEbIl4rG5JFbIh4DbCpFLLF9UKLNsmmfjEaLF7l6zxQVpsLsQ+wcfh+mjZtCgA4dOiQZn8EYTf0q9oQhI04ePAgAIAJTjCH+o29Io0DJ/JwFWgLJMZxEF08xAoBgtejbefgwXl4QMdGRk9shTvBM9w/K1q6v7TaileOp4JOBBFLSLyaEqg1IfJqmXg1gyha2BYDHCarFxs8Rybw+q+pX8SqileFDQCU1nYZ7nnNa8uD05meiIJPxHq1dTAAoEGDBgB8+2AJIlGgCCyRMOTk5AAAPMmpmjZmUok5LwNnJJBEEZyXgTl4wGGiqJNgUIjJ69U+/xXwOVEmqp/9Giay2DRy8GbtrCSegpLEK0HULGwoXi3u0Lq27CperWrL7PMTePXzXZVDMnEsHnP797waFHYSU1zgy/VtSuq7wQQOvMHaudfF4E3Wn8sUnl6G0jZlujYNGzYEABw+fFi/Q4KwESRgiYThxIkTAABPuhultbWdk56I5bwMvD9t2Ovm4XWriFO/eJUEHnMK6iKWscoDyzlOXcRK4lUPSbzKg9QRsZKdTrqTKcI8JN5wgmJxum/UE8NYiVc7RpwIoiqw23fBhtV4bUs1Ea/m6kno+AKlz9bw0xzPB47fKGOJMU0RK6ZWnveqJWIl8SqhJWLz2viLNnHQFLHFbcsguETwThFlLdVFbFltEXcs/Q0AcPToUfXOCMKG0B2fSBhOnjwJAPAmu8EMkt/VRKxSvAIAeA7eJCFQxAaJV7m9YBGrFK9A5V5XpUNUE6/BUdhg8apsL3iSEWxnpuCEVqVkNSIVsRamDgf0F+kkK9aRV7tN3Aki3tjtO2CjPa8x7NCaduItXs03Zmyj4qPU/Z6B7wTUF5yD/HWIeJUIErFy9LVyUCEiVile5WEGidhg8SrbBYnYvDY8RKfi5AQVESuJV7kNv4gNEbICg+j25RifOnXK/CI4QVQxJGCJhEGKwHqT3CirLepGYYFAEauZNqwUsRriVUZysMHiVXldErF6kVdJxGqJV2V7ksPTsjMq+Q+EVkrWI1wRGyPxKvcX7mQrXmnDdpvAE0S8oM9+4opXC4nZcTkRtBNyLJ2qkcI36G358fttTfEqIYlYp8ZqukLEqolXebgKEasmXmU7v4g91TpQvMqPVYjYYPEqt+EMjMaW1fYXlfILWK/Xi8LCQs0xEISdsN9dkSA0kA7ZFl0uQGAore81PLSb8YAn2Vd5mNPSWjwH5uR9BRh0BB5z8IDAq4tXiVhM7qwSZVavrMZYvBIEYTPsJl45nva9hoPdz3qNoh3GmPHzY6K510Bk5sYu8JrC1D8o34kGBn3y5V6U1nMbdpffnIfXpTNH4YGkC46riteA/pwiWvbeAwhSDQ8BouDLMMvPzzccB0HYARKwRMJQUlICwH90DQdAAErr6YtYvgLgvNCt+ieVrWdOAcylk5vsTz9mRgWbGPNHYjWKP0ll+aWjc/TaEpmpCYz+cQKKfbpGGOzvMbXSbSFhVSMmoUwQsSWe6YVG4pTShsMjUcWrSTg9vywh+WTDTCTOuHaFf0sRp1O0iSX5RClfpl+Nqbx2Evhy/TGdasWDOQC+Qv81q51SgkZ183RtujTbj/rJBTjzjD3y30SXLw2aIrBEokAClkgYSktLAQCiMmVHR8TyFX4By4CKFB4VqaGCkvMw8BWiT1RygOjSELFeBk4Sdw5BXcQyVikAeU5dxAafBaslYoPPldWayChsVCcWwYLU5Pl6apjaa6RGhJMwW4tX2idE1FTi8dlX3jPU7h8kXsMjkcWribbCEq8SWp9jQah8nloi1hF4pI6aiGVJ7soZNmOaIra8dhIYD3Aig6NY3Y+dasVD9G+z5ZiGiOWAzK7HAQBuh0dTxHZpth/pTl8KcS13sSxipTlNeXm56uMIwm6QgCUSBknAsmBHpCJileIVAMAB5WmBIlYpXiVURawkXpUOL1jEKsWrPIjgQhJMWwRywW2p2AVPaFRsAgtEaYg6M0I3CP09ttaLWBKvBGFjYvkdMBKsJF7DI95jTwTxKhH8OVaKV4lgEetQPw82RMQGD0tFxEriVW5DRcQqxatsFyxi/eI1M6lU/pOaiFWKVwlZxPpfa4/HxLn3BGEDSMASCYMsotR8n0LEhohXCQ6oSOVQkSqoile5H6WIVROvEpKIVROvcp/+KKyWeJWQRKyWeJXbk86j07YxtUpuRuj6MVWV0EIRS+KVIBKAWHwXjFKGSbyGhx2Py7GLeJWQz3JXEa8SkojVEK/yePwiVkodVutLErHB4lVuQyFi1cSrbCeJWA7I6HIiQLxKKEWsmniVqOUuhjPflzq8bNkyradHELaCBCyRMMjORWveJAAVGQwVqZxmwSbGcxCdHJiD0y/YxPkrAvLQn6gZOeNYTH6sPHPV6Ew7ohISrwQRO+xYaZfEKwCbildLj/DhjduTThkwguf1Z9aM+RbI9dZqRIbSLE5TvMp2DHB2yEdWcommjdvhwVvnztAUr8FUVFSYsiOIqsZ+HoMgNOBlp6YuJPhSDnw5UF4LKMtSdzRCOQNfweB18/Amaa/Mcl4GziP6Cjs5NexEX+SVCTrl9r2iXNRJv9CS/0gdtfNflZioosj0IsKVRr5/DSYKps+EMyOqTURLw4q+AvGd9NqtAitBVCUWC4h4wvGc/KNnY2GH8S1KVVPEq5G/4HhjG97n33V9ncO/pUjvBAIAzOX0+Xqdok3e9CSA4+As0rYpbOwAEwBXnm534LqcQlpSGQrLXZo2T7aYjdbOE7i93u+6bQmpvte9W7du+p0ShE0gAUskDJKAdWeGrjbypRyEEg5ggCgwlNUOFbFCOYNQxsAxBiYA3mRBVcRyXga+wiuLPFURKwae86orYn2D1xaxwefBaolYpY3GBMWU4Ay20Rh3vMVrxJCIJYj4kuDi1QqbMDrU/7/W3yKlpohXCS3/o3xNtWx4IcBG1ec5FPUwGNMUsZJ41cObnlR5pI4IVRFb2NgB0d8l72GaIpbrcgrpyWX+YXGqIvbJFrPRQPClBtfhSzRFbLqjFA6/gE1PT9d9DgRhF0jAEglDSkoKAKBNSg5SGlaWeleKV4lgEasUrxJqIjZYvMq2ShEbJF4r2wsSsd6gvbNqIjZYvMoDCRKxajZBExXZ+epFX7VEadDEoSrEa9jRVyUkYgkiPlQz8Rr8t5iKV7W/k3g13ZbmmIJ9h9prGmzDq2RWBYtYh8qJBCoiVk28BkdhA8Sr3F+giFWKV3mYKiJWKV4rhxUoYpXiVUJNxKY7SsFzDN5S33OS5lkEYXdIwBIJg3RjdVSUo3vjPUhpWKgqXiUCRCxDgHiVUIpYLfEq2zoFn5PVOR9OFrHB4lVCKWK1xKuEJGL1bPwOMSrxqhxbONhFvFYFJGKJmkgCi1c9JNEaF/Earo1Zaqp4lZB8iN5rKtmoiVeFDWNMXbxKKESsXuRVErGq4lXuD3AUe1XFq4RSxKqJ18ph+fpQE68SShEriVcAEMt8/5KAJRIF+3gQgjAgLS0NAOAtYUh1lKFJVh68qaJ2USf4RKzXDd1iCEwAmIP3VTfWEXmcRzrjNcqvTbSP1yKeBZkSTXASBBEdCbxoY7TfVbKxsENrbMxiR/FqIdYWbDKRQm6mP39tC6P2mCBoi1c/5VkOuPL1fSrnBUrripriVeKBZos0xatEHb4ELzeaI4tXJjKI5SRgicSCBCyRMEh7M7zFIvYV1cLJkhSk1S9EeV3tiKiziIOjGKhI4VCRov5x58sYhDIvmJOH6NJZdQV8TsshaDpwziv6hKTAazs2UfSt8Aaf/6rWl8gMV5SZmYJMZlKCFQLY0IGbmTDF+4ibeEIViYmahNXiNY7R14SuJGwGu4pXi6KvpsWrmddBOnZHxzdxku/WybQCADh9cwWuQrsYE0v2pfQKJdqVfcvqOCEKHHiP3qkIHApai4CDIedALU27UW3mIVvIR4Ho69dxzIvs9wrQ4pbjaD3wKFrcchzZ7xegVS7QUEjBE9mLAQCeQl8ggOM4ZGRkaLZPEHbCYLZOEPahbt26AICKPC+8ogMeLw+n4EVag0J46gooPZ4M1/HK1CBnEQdngW9fK+OB8jQOAA+n4qBwvozBUeoFmM9JwMVDhAN8eaBT4jxiZQQW8IlYDwJFnyReJQSVVGJRBFPa8Bwg8qEONfg8WE7FRq3oBM+HRmLDFK9ylxxnfHatViQ2TPHK8Vx0acTxFMskXomaBInXcDqMb38kXv3tBNWLUHsfgs+MVbHjgheevV71c2SdgYWduAoPmDNwOs2SXb45BQB4GYSSCniTA1PBJPEqkXSSobR2UG0Lv3gVk3x+h6vgkXOgFuo3yQ2wG9VmHho7fH9jpQzZL+Wj3rcF4IO0c/rvZWDv5EMcko56o+sAACryfWK9Vq1acOilThOEjaAILJEwZGdnAwAKT3I4WpQm/90peJHsLkdag8porFK8SkgiVorEKsWrbMNxYK7ASKx0pE6IcFFEYkPEq0SwQ1TdFxsUiQ0Wr/JAAqsqaorLsPey6qxGx/Gc24gnmyReCSI2kHgNp8P49kfi1d+OQcV+IFS8qtiFiFeJ4EisU6Owk/K/Sc5K8Sq3wwIiscHiFfDtdU06qZizBIlXeax+ESuhFK98qYiOw46gwfRQ8Vr5eED4ogDCzUfwn7RFqDjlex3q1Kmj/gCCsCEkYImEQRKwnjwPPN7Qj64UjfUmsxDxKqEUsRyD6v5ZpYjlvAycTmEnOASf09Pbfyo5Ril1WA1JxGqJVwn/JMmwSrA0OTCys2LfbPAEIgpBGfakk8QrQcQGEq/hdBjf/ki8+tsJI21YCyZqi1cJScSqiVc/UioxS3KCaZ4L7xOxauJVQhKxWuK1sj9fH0rxCgCtXjqBrJWleqVBfOMEwP9Zikaji3Ft+jAAlVluBJEIkIAlEoaGDRsCALiiCqBcfX9KUX4SOA8HT6p2O4wHRIED0/FXjOMqizoZCReOM+fgLRRAlha1sJLqvO+VIGoKJF7D6TB+ffEaZ4RHSJUUbLKiPbOvgymBK5j7vBvZ+OtaaIpXP95kbfEqwXsYmAOa4lUiK6kkQLw6j3lQ/9sC33D1Rytf52cUYP+//wIAGjdubPAogrAPJGCJhCEjIwNZWVkAAP5ksaoN8/DgAJRnMlRkqN/CHSWAs1iE6OLgdWsUdqoQwZd7wRw8RLfTV6VYDSl1WE/ESvtgg8+AVaI8UkfPOStTnvQcqhRZNWMTLcF7daMg4Y7TIYjqho3Fa1wrCZvB6krCevd+i59bTMRrhPUWQpsxqL1gBMdX2um15d/fynQzqITKfbA6dszl29/Kl2kXbPKmucAEDu487cJPRfUFFNUXwDggda/2cT+NWh+Dgxcx4cjF8t8azNBOG9aCqwAOrFwJAGjWrFl4DyaIKoQELJFQNG/eHABwDrcNLbJOBlzLy02FcNLnRJigLmIdJYCrUAQnAozn4E3i1UWsMvLK+86ADRGxXlFOLWI8py5iJfGqEJS6EwdlWX6t1FyFyFNtK9jJRjEhNUxVNtqrG05fkYjXeEY/7Br1JgirSADxqiVSE168hvP/KKnyo3IiFbHhitfKxkLtgoozqYpYKTorvV4aPoq5nAGCWU3ESuIV8G1vUhOxRfUFMAfAHADHAF7jxJxGrY8hK6kEAJBXniyL2MyVpeoPMGDf8eMAgKZNm0b0eIKoCkjAEgmFtELIjpbgnKx9sojNy00Ff9QNXpFZHCxileJVtlERsVL0NZgAEasQr8q2AkRssHiVCBaxyuirwsY3GMkphorXSlNlWxoTg+AJS7Sr4BpjqewvvFtLVJFXErEEET0JIF7N/j/mxOMMV57Tvx4hMRevZrfKhOuDIhWvauNSqyyMIBGrlVocNO4A8aroSylileJVHmqQiJXEazDBUVileJXIK0/GRzm9IRSFn1VVyvM47H9OUoCAIBIBErBEQnHaaacBAPL2MqQLpTiv1h4ACBGvEkoRy4kIEK+yjULE8hUi+DKPphNmTkH3jLgQEasjKDmOUxevCpsAdESeqUmJvIpsgXg1Q1yFJYlYgoiYBBKvwX+vluLV7PUwiVvk1eqCd9GKVyUa4lWCiaL+vlixclFaVbzKDfleAzXxKg/ZL2K1xKsUhZVErJp4lThZlgpvavjv3Y7UVHg5DrVr16YiTkRCQQKWSCjat28PAMjd6ztGJoUvR53UYohunb0pfn/Fq1Qllm38wpNx0N7vKrfH6U74mJWTDs7aoh0AYpsaFgGW7XslEUsQVQ/teTVHHIsxcUZbVySs8g1W3x+NfISlnzmDisSA73Uy6Zu1xKuEJ0VdvCopz2Tgi3lN8SrxT9fwU4D/TU8HUDm3IohEwV4zWYIwoHXr1nA6nSgvAoqOA0tOnoa9R2sDGR54UtRFrPMUB1ceg9fFwetWdyZCqQhHiS+dR3TwvkirCpxH9J0Jq+PkOK8IeLz6hZ2Y4hxXPeerPFZHx1nKbelNQALSsbTtTEVfzYjOeFckpiN1CCJ8rBYbFn0P4ypOOb7yR8/GCuJcSdj8kTRxFq8m+jOXWRR4PrpOYz5bvUwmo8wpoPLoPACo0C7GxNy+ehyOwnJNm4p0B5gApB5R749xQGk9BtHhyx7bvFG7yFKb9GNYPqANvI7wPltbMzIAAO3atQvrcQRR1ZCAJRIKp9OJNm3aAACWr6+H9Qcaw1MhADxTFbHOUxySTjDwHt/xOZ4kDmUZfIiQ5UQGKCK0aiKW84iVZ8LynKqIlcWrBM/70pHUnLVR9V6leJWuq0x8QgSn2YlIpBMWCysFWxZ9JfFKEOETq0yCKL+PcROvaqJV7V5spXi1EKXAUxN71Uq8RlMwUBKvOm1xyjGJorqIdQSmFnMq7TC30/cj2XmZqoiVxCsACOViiIhVilcJoSj0+bZJP4Y26ceQwpejsG4S1lzt28dq5hxYAFjfqBEAoEOHDgaPIAh7QQKWSDi6dOkCAMjZAJ94lZBEbGqlI+C9AK9YJGW8L6XYk1QZjRVKRThKQ/e0KkVsgHiVG1cRsWriRorESg5SGX0NsFN8HZXiNfi6qfPv+MBJgpboCppIRFW4KaAhE/ts6cgcgqg6Yp0GH6GIjat4NXMtAcSr2t9sKV6D/ZJmUzr7T2UjjXYCbLhQ8arWn+oCc5CIdWjsi1VEYSXhyoLtgrYvKcWrhFLEMg4ozQ4UrxLKKKwkXFP4SoH80+OdsevsuqbOgd1wbm0crqiAIAg444wzDB5BEPaCBCyRcJx11lkAAPeBk6EXeQake1CRXQHOA7jyNIox+aOxAOAs9oQ4GAlZxCqP1Qnoj6uMsgK+ysNa+J0kUxOnEpKjNbrunwyZSvc1GTG0pHATEH/xStFXggiPeO3hDvO7aQvxGomdEXEsxhTWftd4i1dTTRm0JTLj90VklcLVQOiqilfZxi9itcQr/FHYCk9g1FUFR2E5KtIdquJVQigXK8WrU8OmiMfmjc1k8RqMJ0nAZx9ciA3XNdJsw+vgsH1INg488zkA3/7XlJQUzbEThB0x2DpOEPbjzDPPhCAIQEEJhPxieDOCbrw8A3/SCVceB8brFW4CRIev6BKnU+DJV3VQZ0A8B3hFX/owz2mLT6vED8dbK9p43lRlYivheI4isARR3TEpAOO+39VKOyPiuN/VNFYW8ouneAVMZiBZZAPo1ruQEQRw5R5536saolOAs8CD8iz9abergKG4kfGw1MSrhCdJwAsPX43soQUYvmAx6q8qgLPIi4pUATnnpmPXddkorevE7q83AAC6du1q3CFB2AwSsETCkZycjI4dO2L9+vVIOXgUBRktQmz4Cg68F/40YQZB5V7vLGZwFokQnTx4AFxFqIjjPf4zYXmA8YJP6KqJPbkgE+fLa1ATZ/4oLsdxYJo2YuUeW00hLFauHnOcceSU4/TFs//5mGpLb1xyf+YEtmUi1mpBr9uXwWtJEIkAY7GPwsazKnhwn5pHk8V5TCRerSvWBASei671Xso2DJp5tMr3Re+74PBPkb1e7bNjnQ5fezp+QUzy2fAqcwyJ8jTf8+G8QMYuIL+Vup03VQTjGaZvOAc3nLFG1WZbYT2Uep3Yn14bm4c3wubhoTZvbeuDhitWAAC6deumOS6CsCuUQkwkJBdeeCEAIGVPDnhHoFPgTriQdMLvkHifiPW6Ah/vLGZw5XvBeRkYB4hOHt4kAcwZ9JUQWaWD4zhfSfxgh+wVwUmFm6Q9NyoHmyuFL6dqI6rssTV27Nr7hUSlkbGNXltKzJ7JZwLLIi/xPkKHjtEhEp1YLsSE8X2M2z2AxGv1EK8SaosUEdioLto6HJXiFfDNA1TOfpfFq9R0WUWIjSReJVx5oZWLy9N4iAIHUZDqcoQOyZsiyuIVAFihAzM2nh1iJ4lXiZ9PdA6xeWtHXxTvKMOpU6eQnp5O+1+JhIQELJGQ9OjRAwDgOpgLh6dMFrHccRdSDvPglX7EL2Ir0iqFLCciIG2Ycb7z2kQnL4tYOfqqJFjEekVwwaX0g0Us8zu/IEfJcRw4wcTh6wGrxaJqBDS0YqOK4zZjI43L8By8Gi5iARKxROITCxFrB/FqprJwLCHxap141VvIVQpUNRvGjG0kOwmHRmKiwu8ypyNEvErtKEVssHgFAL5CDBCxkngNJmNX5e/eVBFMYCFbosSCSqG6rbBeiHgFgLzyZPx4vIv8/7d29MWpwmSMcJ0GADj//PPh0HrOBGFjSMASCUnTpk3RokULcCKDe89xCIIIh8sDTkSgeJXwVx/2ujnwHsBZGLqaCkCOxgIAX+rRrCosi1itCaAkYgXeMO1UduJ6k0nJCeqdYSe1o7efNYzoIYlYM/2RiCUIGTuIV+Xfjc52jQUkXq0Vr2Zs9OzkM9K1bZhUpNFIyHm9lcJVRwyLSQ5V8SoP2Z9KrCVeAV8UNmMXAqKuaszYeLYsXIPFq0R+RRLe2tFXFq9gDEuXLgUAXHDBBZptE4SdIQFLJCw9e/YEACT/ewQA4DmRDPdJ3re/VANnEYOrUH+/JOPgE6l6DlYSpXqiU2mj05acwhS3yqBxrkpcnaHXiCB8xFu8VoU4NcIi8Wq6krAZrKw0bDfxauX7b/a5qaQSK2GCAKGkwnD8jmJRU7zKQ/JCV7wCAI65sXaTxoZZP5t2NcaxA1k+8QrAmZOPgwcPIikpCd27d9dvnyBsis3u/gRhnn79+gEA3PtOgC8uA1fOga/wn/WqVd/B40sdZoI/iqqCUCaCL/MAAgem4Yw5jyif/8akKKsWjJmrZAjo7FX1p0KZPQNWbyxm7KzCZHElyyoS05E6BGEeq0RSVYhXu2GheLWMRDrjNaCtMMSrnu/gBd+PgR0njV0ve8nhPxNe56g8Jgj+Io7aNqKLh+jiwXkZUo6G7oeV7Zy+eUzGNu2oMF/KgxMBoVD7dd+0qzFQygPeytf0XrEpAOD//u//6PgcImGxoRcgCHM0a9YM7du3B8cYnH+fRNKxyo+zmoh1FjC4CsTK6wIH0cUHCFmhTIRQXOE72w3wiVgHHypklVFTjgPjVVanRTHwXFgVERtwJqzkkEPaUdnHo+LgWbA4NTN50bAxFX01Ep3xFJNV0R9BJDJxFq8cz5F4NSChxauppmIUeVXzRbzGYasBzfCV4lVuS8WPOILaCq57AYV49SMUhR59ILp4MN4/X4Dv3NcQG2eleAUARzELEbF8KS+LV4lNW5uGtLVpdyOfePVTnucGRBELFy4EAFxyySUhjyGIRMGGnoAgzHPppZcCANJ27QdfHujEKs959f2f9wC8hwVcl4SsJGI5xirFqwTHBURjldFXpU2AiJXEa7AQNIrEKkWsFXtQlY5ZS5QGTT4sEa9hYEn0Ne5imaKvRAJTBeI1nv3FFRKvJpoxmRJtVdqwlnhV+BpZuOqN3yGEileERmGDxauvLzFAxEriNRhlFFYSrsGL747iynFLwpULcnnKKOym3Y184rUkaOxeDu7dx5Gbm4tatWrhnHPOCRkPQSQKNvQGBGGevn37wuVywZV3Co7CXFUbxgOOosroq9p1JnDgPQx8iXZKjyxidQo3BYhYPcEo6KQ1Be/t0hNnfoeoKzqjiMTGGstShwmCMAeJV+uwm3g1m3ljBrtUGg5oTKc/yZcYRV5FFhp1DbERVYVrABUeMEFQF6/KdqAtXoHKKKwy6qpGxjZHSNQ1mE1bm1YK12Dx6qffUV+hpyuuuIKqDxMJjQ09AkGYJzMzExdffDEAIOnILk07TgR4r7ZYYry/eJMBnCjqF2WSCjeJ+oWbIIrGkU45Ghvfr6klkylK5yUI+1EFe14Tsj8z2FG8WoWFacOWYLZgl2mxbNCWyXoVXIVHdxbNBAF8mUdTvPpsOCSf8OqKVwBw5TNd8QoAKXsdmsIVABwFRVizZg04jsNVV12l3xhB2BwbegWCCI+BAwcCAFwnDoKrKAu57ixgcOczMDlCGtqGUCrCUeIFeGnPa6gR5xHBVXgrxamRk4s2DVh55ms0Ezi9whQaNrqTKgujppZEZ6pCLNPxOUSiUUXiNeosC7uJV7PRQhPYTrxaWGnY15wFacOmUoYV74mWP/DbcBynX0lYeg10/CZzCJWL1Vo2UmRW14YD43zH6qQdVh+Tb+uT7/f03eqvhfsED/cJHrwHSD6oHVUdlZINADj33HPRqFEjTTuCSARs5hkIInw6dOjgL+YkIvngLnBBfkDe+8oB4OA7HifIZ3JeX9SUScfnKAotyDAWWJRJxdlzXjHQ8alNCEQRTGmjegB7UAEoQH0VWmTm9qxGsGcz4slVmILSsuIu8YZELJEoVHHkNWIRa0fxahG2FK9m+rKjeDUS3n7hqjsmLqgdkamKWFm8Sg8rMy7o5CgILegkiVd5iCoFnfigph0lod8jSbhKtkJoV0jb7UD6dhE//vgjAODaa68NNSKIBMNm3oEgImPIkCEAAPfRneBLPbKIlaKvAQSJWDn6qiBYxMrR12CCHaeyqrDSxqh4Uzir+uFM6iKIvgZ0pVYROUZEJGKrOlWZRCxhdyht2BpIvIbRXJzFazBBVftVx6OMwgaLVwmFv2MOIUS8+i4obDT2xIYWfeJUtywpo7DB4lVCGYWVxGswyihs2m4HHCXAE10aoaSkBC1btsT555+v3jhBJBA28xAEERm9e/dG48aNwXsr4D6+G3wFwHlDKw/L+EUs4zlwDKrCTBaxDv/XROv8N0mgMvUV2wA7IDD6GgzPqUdfQ9riYxp9DehKuSJt2Fd0gjIsEVvV4lXCbNodQcQbG4nXsKKw1VS8mq7GawYbildLqg2b3e+qJV6DbAzHY3T/FsVK4aphx5V5KoWrxtAdBeXyiQda9Tb4cjEgmqraTgkLSBlWQ4rCSuIVohczZ84EANx8883WVrwmiCrCZl6CICJDEATcfPPNAAD3sR3gvF64cxmST4qhx+JIcL7oq1Cs7S2klGJJzFqBsUPljfsKR7xZNmEyU9gizoU9CIJQx8pJajwXi+z2vbbbflfAtuLVFNH6NilbycRxdIZjEkVralkAhrNpTmRgnH6xSM5ojYcBzmKG9P2irshNPsZQe53gE68AXurbBrm5uWjQoIFc9JIgEh2beQqCiJx+/fqhbt264CtK4Tq5z7eSWcHAeaEpYjnRf+6rXnZvhdeXPqwnYkXRlyakZ6OI0GquVIus0oGbSCs2veIdxeQpIMobYxEb9l45u012CcIOxCLCEo/sCrt9n+0mXuN9TE4YmMoGiharPkMBe101PtcC7/sBfNWG9drhOfClOorS35czv0LbxJ8Jlpqj0Q4DnCW+SsRq+1wlko8xCOUMrgL/+yF68eWXXwLwbbWio3OI6oLNvAVBRI7L5cKNN94IAHDnbAXESkfAef1iVk8g+Ys8heBlvuNzAJ8jElQipIxVpupq2Uh2yi5V9+8EjTGkLzEknVddDAcXgbJ3JDaqQi92m/gSRFVhw/RAEq8WEO9KwxH0aUrERroVRc3nBhP0GWJqW3FUiiqGIAQ9b9W+uMBFZrV2gl5rXqWOBscQsI2JLwtqxx91lcSrFsnHmCxelTzTsxlycnKQnZ2NK6+8UrsBgkgwbOYxCCI6BgwYgAYNGoCvKIX7+M6Q68porFAiwlGkstqprAwoRV9DbAIdV3CRhhAbxjRL9wfsMdU7AsCAiCKxBkWeNCckZopOxVtYVuUEOB7RB4IwItbiNYIoLIlXC4h31NXKSK8VWBl5NSJYvEoPVUZhNTKtAqKwGn0po7CycA0S9XIUVhF1DRavKUcqHyMJ12Dx6sorx9SpUwEAt99+O9xut+qYCCIRsdEdiiCix+Vy4a677gIA8MXbATH0XFhJxMrpw2pIvkcZfQ2x4SqdnZaAMWMDxURHTwiFI2JNFJOyBLsdf1MVE2ESr4QdoMirNZB4jaobS6OwRguljBkulDJpa49BoSZlyrB2X5ymeJXbMeiLr/CGRF1DbMrEAPGqhqPM91i1qKvEvT3r4NSpU2jWrBkuu+wyzTERRCJiM89BENHTt29fnHbaaQDzAKXbVW0cxSKchR5Az49y8H1DzBR5MMJM2paZqoomiPWe2LCx2wSVIKobJF6NMRpPOEeZGVBTxauvKzMFj+IYUTXVl0kbKz4j0lF7OiKe9xinDDsLvcja6dUUr/CU4OuvvwYA3H333bT3lah20MySqHbwPI97770XAMCV7QG8BSE2nJeB84rgGNMUsXyFCK7Mn/ar5eC8IjiPV98BesXKiKiGHVOeH6vXlrLAk5YJY8YTEWmVPNoJSxyO1gmLqjhax4bigahB2HAxKqIznWOJNB6tcdX0M14t6s9y8apbs0LKWjI4lg7Qz5IRBN+/ekfXSQvQWsWclF2WaBdqksbhLNS24T0MHGNIOq5t4yz0gvMyOIrUtyWBAf07iCgtLUXHjh3Rs2dPw3ETRKJBApaolnTr1g3du3cHwMAVbgBXoe2cZBEb7ONEv8CVDVUipMHFm7QcuDKlV8uOGdgEO3Oj1WCz+5g07OJSVVLqK9ICTnaBzoIlqjtWi9d4RF8N75HWRl0tEa9W7T+NYbGm0K5MPHer6iaYzWZS9KXqywShUrz6jLT78venWwRSQm37jnKeAKjW1eA9TBavACCozFmchV5ZvKrCAHeuF+7jOZg/fz44jsMjjzxC574S1RISsES1hOM4PPzww3C5XIB4AlzZQXAenT2ojOlGY4MaN39dGX3VsAuIvuq1ZaLAk6qjDp6caBZmCvN2QNHXUGiiQMQTm33eTKcNx0u86v2doq6WiOWYpwyLQYvIaijv/XrH2EkohasSr8oicnCf4UZhTSwES8KV07GVhKuueM3zgi/zoEX9IwB8RS3btWtn2D9BJCIkYIlqS6NGjXDbbbcBAFjFFnDlZRDKfHtfhRJ1JySJWL7cW5k+rGrIVaYPa10Pp6CSnvjiOGOxaLi/y+RX3W9H0dcosJmoIKopNksdttWeVzP7XS0iocVr1F0lzn5X2adpiVefUWVfGv2ZjsIGRV2DcRZWhERdg3GfrDCMurpPeX1R1zwvhHIR993VCnv27EFmZqZc0JIgqiMkYIlqzQ033ICmTZsCKAMqtvlWMCtEcB6DlGK96sMSBg4KgD+VSf9rxnGcsQO3YsIVxoSFUo6ihF4/orpglXi1gjgWYjIDiVejfqzwWyZShjmNc9eVJhynL159RnHbDsKXekxEXSv0o64AXHkVEMpFCOUiGCvG559/DgAYPnw4MjIyLB83QdgFErBEtcblcmHUqFEAACbuBRNP+ErYe/0i1mg11YxINYPWhIGxysPWtSaKUopxtNELI0EehKk9TYaNmJv8WjIBjve5s0bovX60Z5aIhnh9duz0fYpjISYzmBavRmm68RavUXdj0V5fwPiebaYIk4SOL5fHq3EWu9/I344JP2kijVgPzqs/r+DLvODLvLrPyVnogbPQI59BzxjDmR3yUFJSgi5dutCxOUS1x0beiSBiw9lnn40BAwYAAMSK9WCQDgn3VSIOdhJchRd8eZCDCnY2Hq92+rCEKAbuqTGz38jIoWtdF5m5tN8wxXi8RKzPzMJJkV2w4ggmglBiM/Ea1vc20n3qwX0Y/T/GhCVeo7lubjDhfybCXMys7Mrs8zZZsMmoDVOD0m4nRGzrFWqSMJEirJtG7D8ihy8NFblyNFUq1FRYHmIjC1d/H86C0GrEknDlFPML5t2Lf/75B8nJyXjyySfBW7UwQhA2hT7hRI1g+PDhaNiwIYASiOLWgGucyAKjsSLUHZ0yGms2MmumqJIahpUYY/TVVZnYGK64WzFZkc1qgIg1+j9BaJHI4lUiXBEbx/2sZohYvCr/b2Wl4TgRlng1bMwg6qrWhqr41BevxuOw8PULPts1yJfKwlVZjVixlYkrF1Wjrkqb4KirBF+aD5djJwDfXKdRo0ZRPx2CsDs2muURROxISUnBU089BY7j4BUOwsufqLzodyqcweHiAfbRYlU01iwRrrgHdBdtNNZkiq+lKcV2wShKQiKWMKI6iNdwidMROGYIK3U2EVKGTfqE8J53lD4gnKirRiYSYOCrvAZnu0eCXvpyUNRVDb7Mq5oNpkQt6goADCLanZGHsrIynH322bj66qvDHz9BJCA2muERRGzp0qULBg8eDACocG0GQ1mggV/Ecl6vNSLVCFE0TvtlBvt0zYo0SieyB7QvloiEmihebUS13O9qpU+wScowYFHkVW+vrESFJzTqqkRkqlHXgGF4RHDl+j6eL/fCURQadZUYcnsjbNy4ESkpKXjiiScodZioMdAnnahR3HPPPWjdujXAVaDCtQks+OBXydGIURZvYixw/6uWjYVHyMQ9ZYqIDfQeEUpsJl7j1o9NRLJl+13Nd6h/zW7i1SqMfKEVz9tsG3pjkTK29Py7ZFMWun9VHopHNGyHL/cCoghe49QEkTuBL774AgDw+OOPo0GDBtpjIohqhg3vYgQRO9xuN1566SUkJydDFPLgFXZrG4t+ERpJASerqheHiWa6lzJdTGsSZEGasVVUu7Nhw4VELAHYVrxG/P0k8WrUYeC/ateixY7i1Qwm/alqVpNVwj/cuhcq4pTziLJ4BQC+NFTk8uVeWbxqwZUWIq3ubjDGcPXVV+Piiy82HhtBVCMS9E5GEJHTrFkzPProowAAj3MPRPG47jlrqtHYKhCnqmikGFM0FpFXPLUL1f39IfSxqXiNeT81UbzGa498BGM1Vd3eVO2ION2Pg8dixWKtmQVpEzaycNUo5ARURl21xsiXVIArKUeHnmXIzc1Fq1atMGLECHPPgyCqESRgiRpJv379cOWVVwIcUJ68BaK32FjEqkVjYwmLrj9TxTfCmBgZTmTsNImpLpCIJWJJFOI1rCgsiVe9zqK7bgarqh7HGiszb/QWBcwIWGkfrAXH0wVHXdUwE3XlSyoAL8M19zTCX3/9haSkJLz00ktwu93GYySIagbHTC2vEUT1o6ysDMOHD8eOHTvAedLgLuwCnvGAUXqw159CrDexEEVT7TDdfTSiiX20BkWe4Beeeg5b3ver31c8V+ItSSGuTmKZbtM1i3gsXFgQeTVVzInEq15n0bdhhAXjNPWaWPVZ0GtHTrE2KOTkEIz7cTj0rzMGOPVtmMF1AL429O7fHi9Yils/XdjLwBw84GXwOHNQkeo7CvCFF15Anz59jMdAENWQBFiSI4jY4Ha78corryAzMxPMUYiKlH/BRK9v5TXaVVcjAWamAnG8MZjomJ7YWUC1O0YnWigSS9iM6liJ2JxQS6AzXOMlXq3CjHg1erwVn0uT/p+r8Ghfl9KADcQrDBaYuTKPr+Kxl0EUCsDV2gUAuOWWW0i8EjWaajTDI4jwadiwIcaMGQNBEOB1HYMneb/vgpHzkf4eabEmiysQa3djEH0NxmBylpAitroIWTpmp+YQj8WtKDIUTH83E+S7Z/qsUzsdg6OHRSLbsvNfo2nD7H1P8XgWaUHCcPe6atmKou9IPi0f7/FWilcNuDKPT7z6bRhXjoxW+1FeXo7u3bvjzjvvNHo2BFGtSQzvQhAxpHPnzhg1ahQAoCJlHzzuk74LkvjTErJmHFmiEomINSvIwxCVHM9RNDYYErE1A5uK2JiJ1yqqPG6rYk1WYJFwNZ02HM79WevzpidezRCPqKsZceufL2gKV6BSuGqdDfv/7d15lBTVoT/wb/U207MPMMIAw6bIJgRkExEEUSC4A+bpM1FcfmqecXnRPA1RQY1CVBSjJyYxQY9RhGgiuKAQFBQVZBGBiBB2gWHGWZi9p7eq3x81VVPd0129L9Xz/ZwzZ7q7qu6trunp6m/fW/dqg6sSXuHFgAn1qKqqQp8+ffDwww/DbA6jmzRRBsugT3VE0bv88ssxZ84cAICr6CC81sb2hUqQTVRrbLrS+RY/7A84eiL4gMsQ64chltJZtP9rSQ6xvN61o6S3ugYqJ5JW11j3I9xWVz2a4Bprq6v//kiQMOoqM/bu3Yv8/HwsWrQIeXl5+vtD1AlwECeiNh6PBw899BC+/PJLQDQju2YYTN4c35UEQZ543BtkgCblpOsNPgy+vDzEAE5AeIM4BdsPpYhwuhCHc3IOVQcQ/YfPCFqBOLhTAHwLz1xpNpVOXAdtCiZJ19ZmVHiNU9fmpIRX5fURy/WuginkPgihjonJFLqeMAaDkixm3RZXSSlD731a2Ve/dSRIcOcfhsdeCZvNhueeew7Dhw8PuU9EnUEGNUkQxcZisWDhwoUYNmwYYPLC2WUfRJPTdyXl29FgJyxleaTXnkYjXkEsxg9X6oeeaD/UZNJ1qqmQjGk4iDJIRoVXIPHnGkWsLZ5K8Iz1S4p4tLqG+PI35BeDXvkLZt3uwkrPrWDdhT1tMxoEWceTcwIeeyUEQcAjjzzC8EqkwU+NRBrZ2dlYvHgx+vTpA8nsgrN4HyTBb6TBSFocdSYkj1m8Ql+MLXg+nTgycGRSQ2CIpWjFs/U1HhLcjTipo+ry/66d8jqLx983VPjUE49rXUP1jApjBGK94AoAHms53HnyoJL33HMPJk+erF8nUSfDAEvkp7CwEM888wy6du0KyeqAs/i7jiFWIYY5mnCyviFPB9F8w55p3XpTIdCHZe1j/DBtLGk0F2xE4TWN/5cjDq/Rvm9n6ojh0YTPdOlhE49rXb1hXNYTSatrsGosFXB3OQYAuP766zF79mz9Ook6oTR4VyFKPz169MAzzzyDgoICiLZmOIv2AVJbiDWZALPfv044QTaRrbHpiK2xyceW2Mxg1PAaLwlohU1ayyv/x9oZKbjqrRNucNVpdQ3WXVjSXGcruD3wmn+Ap+QYJEnCVVddhdtuu02/XqJOKg3eXYjS05lnnoklS5YgLy8PYlYTWov3A6Jbf6NwW2OFeIyeaIAwHK+J5cEBnMKmtP4E+yDND9jpLRPCaxr9n8VlxPTwK0tOPYHE4cvRuI3pmU6trqGWx9Jd2GL2Da464TXocpMJgtsDwe2BJ+s0PGccgdfrxaxZs3Dvvfcmt8s7kYGkwTsMUfoaNGgQnnnmGdjtdojZjXB2OQBJ7DjUvQ9RCuvEGJdpaDKllTNZH3bS4UNVOsjULo5GlwnhtbPi/5MsHd5jxTCCaai/lxhGq6sU4lzvFfW7C3u8ENzy5wmPrQ5i6VF4vV5cfPHF+NWvfgVTnEaXJspE/O8gCmHo0KF4+umnkZ2dDW92A5zdDkCS9AdgUAOCzjqSJKVVS0VQIU6iyfqGWDAJnA823vihO31k0t/CIFPphMQAEblUn9NC9NSRJEk+9wb724YxAFPIdZQux2aTbnhVPh94susg9jwCt9uNyZMnY/78+TCbQ0/hQ9SZ8d2ZKAwjRozA4sWL1RDbesYBSJK7fboc/5OUIPieIPXCriSm/qRvIHELsQyyskwKTqQvgtd81F320yy8Rt0tluHVWEKMQ6EGV90y9LsCq8E12HgWSnBVygj03urxtodXAB57DTzdD6vhdcGCBbBYLPr7SUQMsEThOvfcc7FkyRLk5uZCzG5Ca6/DkOBqP+mF+tYW0F/uH2ST1UXYgAEmbt0bGWJlBnwNZJQ06jqc0jrY8krh8H+dhdHqqitQi6o2RIYKroBvcA1EG1zb1nEXnIa7RO42fMkll2DhwoWwWq36+0pEABhgiSIyfPhwLF26FIWFhRCzWuDoeQiS2e17AgwVZNtOYIIgAIG6CfmE2DT5QJeG2KU4zvhaS400Dq8RtcKmcXgNuxXWZGJ4NQLltRJrq6veAEzK/2Ww4KoEXG2rayABgisAuPOr4Op6FKIo4rLLLsP8+fPZ8koUAUGK27BzRJ3H0aNH8b//+7+oqamB4LIh+9QAmDxZ7SsoH4JChFlJkvQnZZdCTM8jieF9+xxqhMpwvqEOVYfu9mG8zcTQjZojFMcZTwvJkcbhtX3zMPYxjcOrIuS1+vEIrunwJVCMzyP0cYrD6yFUGSGnAwsxLoPZFPKcJJh0rk8F2r9cDnbuU5YHK8NiDhhsJUhwF1XAXVwBAJg7dy7uuusujjZMFCF+1UgUhX79+uHFF19Ejx49INlcaO19EN6slvYVlJNeyG+AO0lQSPAHVLbExpnehyl+0IqPZB1HI3wxk+D3QYaDNBFqvIdw5lMPeZmOGPqcqzNKsdpqq9ddOOTow96g4dXV7Xs1vN54440Mr0RR4ic2oij16tULL730Es4++2xIZg9aex6CJ6ehfQXl5CdKkLw6J1W9k22o+WIzbSqdVIfIVNefThhiCWH2bkjjkMxwkGTB3kNDvUbCCa6RjCERqHyljiDnTKmtx1PQ10zbPgQ9l3u9gNfbNsOAX3gVvHCecQie/FqYTCbcd999uOWWW/j6JIoSP60RxaBr1674/e9/j/HjxwMmEc4eR+AuqGlfQRtAAwVZkwCYzOGdnNNYXE/CqQ6Rqa4/nTDEJkayj12av38kgiAIkb0vhbrMgvQFC6CBBif03073Mpkw5nSNMBz7vy7aW10lZYWA+6CsJ/h309YE10DLJbSibIYT3txGZGVl4YknnsCVV16pv89EpIvXwBLFgcfjwTPPPIM1a9YAAKynS2CtLYUAeS5YKdCE6Cb5A5bkFQHR7zpY7QnU/zpZ/w8AIa6DDesaWKUePcm4DrZDoeF/qIzLdbAx1J/RpCAf7LTLKDypCv6d6FrYqL9Qi/U62HT4UifZ18CKfl/Ial8Dgd4/tQMXBnrPNgntxzHQe4ugqSPY+7N6/Wrg9ybBbGorXgq4nmDxvb7V/9wmqAM4eUMu99ocKBzbgMrKShQWFuJ3v/sdhg4dGni/iShsDLBEcSJJEl599VW88sorAABTcz6yK/tCEE2BA6w//xALyCdr5V/Uf7An/w8KsYbYdAywQNghMiEBNoL6M16weQ2VZRSeVIacGAKmUQJsTL1BMmEgp2QF2KDh06T/nmk2658LzCEGVzKZ9cuPZACpAPuhhFsg8DlNO/hTsHOeYLEAXi/cOXUwn1kFh8OBXr164amnnkJZWZn+/hFRWBhgieJs/fr1WLx4MVwuFwRnFrJO9YXJaQu9YaAAqxVstGLlA0O6B1ggoSE2YQE2zPo7PZ5K9KU62AAMsCHrT3CA1fsSKF70noMohnyOYQVYvffakCMMxzBCsSjJATfW8nX2P9QIxoIghD7XCYC76Ae4u1UCAMaMGYOFCxeioKBAfzsiChsDLFEC7Nu3D7/5zW9QVVUFeM3IKi+DuTlHXhjoBCu1zSUX7OQtSiFDlOQVg374SJsACyS0KzFbYdMATymBpTrAJqMLcaz1xBhgUx5e5Z0I/LheN3ztOrG+ToI9D+X9O8oAq7y/xzzNTrQBVnlvDxZgleNrCjC3OtD+BXGw5cp7fKC52YH2L5BDLJcsAlzdT8CbXw8AmDNnDu68807O8UoUZwywRAlSXV2Nhx9+GN9++y0gAdaq7rDUFENQTuAdBrPw6o+SGCrEipLuh4y0CrFAZEGW18IaC08rvjpLeI21rhgCbFqEV3lHOj6m/X+IJeCGw/+5+L9nRxhgte/pKQmvHa6xDTDAUvsOBj6vqtsHCJ/Ke7skycv998F//Amd5aLNjd7TJRw8eBBmsxn33nsvB2siShAGWKIEcjqdWLJkCT766CMAgLkxH7byUgiiuf1ErB2Qwv9aWf/rdcJohdXSfuBIuwALJCzEyqvH8a2NATZyPLW0M+h1r/LmUex7tHVGGWDTJrwCHQfg01seaL14BtgIw6tcvd85I8iywHVHEWCV91b/cBjo/Vvb+uo/AJMyor+6fYBLbrTLtcFVoW0lDXTJjrb11W+5J78JtkG1aGpqQlFRER599FGMGjWqYxlEFBcMsEQJJkkSVq9ejRdeeAFutxuCy4qsE71hcmbLK/h/4Ak2OAYQUSuslvLBI2SITXaAVcsNY7soQmTcQiwDbHR4ejF062tU4TXGOiMNsSkbcTgYvRF0tcuDrROPABvsfTrM1teggxPFM8D6v6dqA2yw920lwPqfJ5WWWcEUfCwJJbwGCq7KcpOgP9ZEgOUSJLhLfoCnqzx93jnnnINHH30UJSUlgcshorhggCVKku+++w6PPPIIKisrAVGAraIHLPVF7StoP/jozosXeYCVixfSsxVWLTfGuf50N43D2xxDbHQ68ymmM4bXGOuNJMCmXXgFfEeOD7YcCC/gRkovvCrLdYQaoCimABtOeA13cCj/9ZTWV72BEGM57kFGVpbMHjh7nYCY0wIAuOaaa/Dzn/+c17sSJQEDLFES1dfX44knnsCWLVsAAOa6Qtgqu8tdirViCLBAiBCZrgEWYIjNVJ31NMMAG7kw6o2pyzCQ2AAbi1QN8ASEHKE4pvAqSnL322inv5HE0NPvxPR61dnWKwYcOMqb24icEU04ffo07HY7HnzwQUydOjX6fSCiiDDAEiWZKIpYvnw5/vKXv0AURQguK2wne8Hcam9boa2bcLATunbKnCCDXmRsgAWiDpEMsCmm1/KRqaehznbtazzqD7PetLruNV6SPcATEPPoxO1lhxg9ONoBnrTXyEZaf6i6Q41srIwpoZ0bVhDlLsNdagEAAwYMwGOPPYY+ffro7x8RxRUDLFGK7N69G48//rjcpVgCrFUlsNR0hSBC/6TtP+er/8k5VIAFEnodrFxEel0L274pQ2xK6V3zl4mnos7aAhtt3cnoPqzWlYYhNtQIu4GE2zIb59GJO5bf8TwUdFmHwnUGdwq2XLtOoKltQtWvXR4owGoHRGxbLtqc6D1dwMGDBwHIU+TccccdyMrKCrx/RJQwDLBEKdTY2Ihnn30WH3/8MQDA1JwD28lSmFx+J2T/64dCDPQUU4AF2AqboPoJ+h/KM+10ZOAAK2+exG7EUdSVUa2weoM7xRpegZhGJw7rOOsNwBTL4E7+ywOtpw2woeoPNbqx/0wAACSzAE9RHUx9a+F0OlFUVIRf//rXmDBhQseyiCgpGGCJUkySJKxduxbPPfccHA4H4DXBdqoE5roCCNCceLXT7QQLYm0DYTDA6m3KVtiU0+sSmUmnpM4cYCOpPxXT5wDpE2IjHWAo0ml3lOcZ4+jEwcsPMXpwuAE22PtqqICrBNhQ9Yca3ThAeBUtbrh6VUDMawYAjB07Fr/+9a/RrVu3wGURUVIwwBKliZMnT+K3v/0tvv32WwCAqSEXtvLuMHkCjGgYIoQZOsACDLGdgV7rUaaclhhgQ68TYx0ZE2KDiaZlNhLxaH0NWUecXkfhBNw4kSDBW1QP26AmNDU1wWaz4bbbbsPcuXNhSvfXDFEnwABLlEY8Hg9WrlyJZcuWwe12t7XGngFzXX57a2ys4RVIeIANez+Cls8A2+llwqnJ4AFWLiLB3YjTOcCGGJk3KcKdlidaMQRYSZJiH504luVA6NeY3oCIQZZLFg+cPU9BzJdbXYcOHYpf//rX6Nu3r35dRJQ0DLBEaejIkSNYtGgR9u3bBwAwt7XGCh6L2kU41AcLXbEG2DDK6BStsHHYDwpDup6mEh0u4iHdr4ONtXUOCQqx2ve3aEJsMsJvolufRRFCgAGStO/tCRudOJzRi5XpeQIJNQiUslxThgQJ3sIGZA1pQmNjI6xWK2666SZce+21nNuVKM0wwBKlKY/HgxUrVmDZsmXweDyA1wRrRTdYThdCENs/RAT6AMEAG564hli5wPiWR+3S8VQV6bWLqZCqABtJvenYChvhQEcdtktGy22s0+4E20fNc9AeW//39GDH3efcpDc6MRD5cv/1/AOsNpgGWq6sow3IggmizQVXaQXEvBYAwNlnn4358+djwIABgesnopRigCVKc4cPH8bixYvV1lhTSzZsx8+A0GpT1/H/IJEOATas/QhZh4FaYX0LTky5nV26na5CjaLcWQNsEkYg7lBlPENsoPe2MForw143HkINgBZNePV73trW10Dv5XpfnqrLwh2dONwBoPzX0wbUQAMc+i/3K0Mym+DpVguhrB4ulws2mw3z5s1jqytRmmOAJTIAr9eLVatW4c9//rM8UrEEWH4ohqWyGILU/kFE+dAQc4CVCwm9DlthQxWeuLI7q3Q6ZcUaIpIhmdfBxlJXqlthATnU6b2nhdNSG2y9eApn+qlIAmyQ5yAIgu57eMjW2bZR8YPvQxjL1X0MNoKwOWAwDWe5N8cBV+8qSNlOAMDo0aNx3333oXfv3sH3iYjSAgMskYH88MMPeP7557Fp0yYAgOC0wHqyBObG3MgKSlKAlYthiKU4S5fTVjoE1FCSFWBjrScdWmHDEWpKGu06iRKPruvRhPUO1QQOuHH7O4Sa/kZZJ8LlktkLd48aeLs1QJIkFBYW4s4778SMGTOS8xoiopgxwBIZ0KZNm7B06VJUVVUBAEz1ObCWl8DksravFOpaLHYj1mye4LdBhtjESPXpywgfdhlgk0vv/TbUiMd620ciDaYWinn04hDCHcjQp5UYEjxd6mEf6kRDQwMAYMaMGbjzzjtRVFQU0/4QUXIxwBIZVEtLC5YtW4Z//OMf8Hq9gCjAUlUEyw/FEMQArQT+H0pEUX+wj3QJsABDLAWXylNYOgSmcCTjOtg0CLCA/sBCCQ+4gd5j9Zb7r5Po8Ko397JWHKYWCjW4YKThM9wygg005c1xwNWrCpJd7i48YMAA3HvvvRg5cqTOsyCidMUAS2RwR48exe9//3ts375dfsBlhvVUN5jr8iAEHDhDE25DDToTj2tpYYxWWLkIhlhDStVprJMEWLmIGOfjDEeCWmH1AlHchLqmNNQ6iQyvsQ7uBEQUtMMZVDDScBqqjGDLJYsHrh7V8HZpBADk5eXhlltuwZVXXslBmogMjAGWKANIkoTPP/8cL7zwAioqKgAApuZsWE90gaklu+MGyvVPoa6h6mStsHIRDLGGlczTmVHCK9CpuhEDYQwuFG/hXheb6Otm4zEqdjStyB12Q38wwUhaTsMZRCrQOpJJhLekDpb+DjgcDgiCgEsvvRS33XYbuwsTZQAGWKIM4nQ6sWLFCrz++utwOuWuUubTubCUd/G9PlYr5tZRBtgoKkl8HZ1Vsk5pDLAJqSeeITahAwzFU7zDa7SDO0XaihylUC2n4ZYRMLhCgrdLIwpGelFTUwMAGDZsGO666y4MHTo0uh0morTDAEuUgX744Qf89a9/xUcffSSf5CXAXFUIa0URBK//xO+JD7ByNUkKsUD6Xw8rV5L4OjqrUK81QYhtnXQMQXriESxhrFbYUNIqyMbhmtOQr+l4jEysrBNMBNfHBj0fhFNGkHW8eS1w96yGZHcBAHr27Inbb78dU6ZMSa+/NxHFjAGWKIMdPHgQL730ErZt2yY/4DHBUlkES1VB+/yxcQmWadQK61Np9CGRITYDhDM/ZjTd6I32YdhIARboXCE21DWn8ZqSJ25T2yRoIKpwygiyjmhvhbu0BmK+AwCQn5+PG2+8EVdddRVsNlt0+0NEaY0BlqgT2Lp1K/7whz/g8OHD8gNuM6wVRTDXFECIR4ZKx1ZYn4ojf5JJCbByRcmpp7MK5zrASNdJh+ATCQbYoCIJsQkZDCpUt91kjEwcap1g+xLJ9bF6gTxUOUGOi5jlhLtHLcSiZgCAxWLB7NmzccMNN6CgoCD4vhCR4THAEnUSXq8Xa9euxSuvvILKykoAgOC0wFJRDHNNLgTE8KEs3QOsz06EHxgZYjNIOB/UQ60TyYf9dBKnACsX1flCbLjTv0Qs1OBPiQqv0QzupN2fSPZXL5yGKifIctHmhqe0DmLXJnV6pOnTp+Omm25Cz549dZ4AEWUKBliiTsblcuH999/Ha6+9htraWgCA0GqFpbwI5roog2wyAyzAEEuJE+5cmUbDVlhd0U79kjCJ6DocyzXdkV4fG6w1OZwyggVXqwee7qeBHi3y3OcAJk+ejFtuuQX9+/fXL5eIMgoDLFEn1drainfeeQfLly9HfX09AEBwWGGpKIL5dIAgG2pwDSO1wgIMsdS5JDPAxqu+FITYcKZtCUZpDYyLeAbYWAZ3iuQLnXACahR1iTY3PN3rIPRwwOPxAADGjRuHW2+9FYMHD46+PiIyLAZYok6uubkZb7/9NlauXImmpiYAbS2yFYUw1+a1B9lQg2wYrRUWCDswMsCSoSU7vMaxzmSHWD2h5i9NeHiNx2BJ/kJ1l9dbR7tuLOsEqUvMcsHTvQ44w6G2uI4aNQo33XQTRo4cqV8fEWU0BlgiAgA0Njbin//8J9566y00NDQAUK6RLYS5Nh+CJER3PVMAbIXVrSg59VDmS0VwTUD9QUOsKKVsxGL/9zC98Brx4E+xDJYUiVivj431uvIgI3yL2S54epyG2KVFPXbjxo3DDTfcgBEjRgSvi4g6DQZYIvLR0tKCVatWYeXKlTh9+jQAQHCZYf6hEJYfciGIAT48hRrcw48RW2HlVRliyQCSPWhTovfDfx/8/w8THGKV4BnsfStYMI2qdTYZAzspor0+NtaRvYPUJeY64e5eB7GoRX1s4sSJ+NnPfoahQ4cG3j8i6pQYYIkooNbWVrz33nt48803UV1dLT/oFWCpyoelMh+C2xJT+WnTCgswxFLmSHWrq28hsZehUPYn0P9fCrsZx3Xwp0gHSkq0cOZMjmRe5QDLJEgQC1vgOaMeYr6zbVUBF154IX72s59h4MCB0ew5EWU4Blgi0uV0OvGvf/0LK1aswPfffy8/KAHmmlxYKgtgckQ3UXxatcICDLFkfOkUXtsLi19ZelIUYmMd+ClioQbSi3cLbaj3aeX5Rfh+LgkivF2b4DmjAVK2G4A8j+u0adNw/fXXo1+/flHsMBF1FgywRBQWURSxZcsWvPnmm9i1a5f6uKk+Ww6yDdkRT8Fj5BDbvkmC30IZYilc6dJ12Leg+JQTrjQf9CkmoQZ3SmbrbJQkixeekgZ4ujUAVnm/8/LycOWVV2L27NkoKSlJ8R4SkREwwBJRxPbu3YuVK1fi008/hdj24UloscLyQz7MtUGukw0grm8/KQyx7Zsm8O2UQZZCSccAKxcWv7LCkQYhNpwpd8JZTxVqYKdA6wRaP1kh168+0e6Ep6QB5p4uuFwuAECPHj3wk5/8BLNmzUJOTk5y9ouIMgIDLBFFrby8HG+99RY++OADtLa2yg96BZir82D5IR8mp1V3+0wLsO1FJOhtlSGWQmGITdsAG8nIxT7CGe09nKl39NaLF019kiDB28UBb0kDxDyn+vjgwYNx3XXXYdKkSbBYYhtLgYg6JwZYIopZY2MjPvzwQ7zzzjs4efKk+ripPlsOsvX2oN2LMzXEysUk4O2VIZb0MMDKMmVgp3CE0zobaL140tQpWj3wljTCU9KkdhM2m8248MILMXv2bAwfPjz+3auJqFNhgCWiuBFFEdu3b8c///lPbN68ub2bnNMM8w/5sNTkQfCYfbaJ+1tQZwixcsGJKZeMjQG2Xaj9T9A8sikZ2CkeoxeHOwiUsp62tRUSxPxWeM5ohNDNBa/XCwDo1q0brrjiClx22WXo1q1b6LKJiMLAAEtECVFeXo5Vq1bhgw8+QGNjo/ygCJjqcmCpzvMZ9CktW2GBuIZEtsZSUqRrgJULjG95wejtt/b/MAWttClreYy1i3GQgCxZPfB0bYa3WxOkbI/6+KhRo3D11VfjggsuYDdhIoo7BlgiSqjW1lZ8/PHHWL16Nfbt26c+LjjNMNfkwVydB8Fp1ikhCgyx1FnFOSQarhU20P6m0dyxegE24oGdIhHtIFAB1pMECWKhA55uTRC6tre22u12zJgxA1dffTX69+8fj70mIgqIAZaIkubQoUN4//33sW7duvZWWQkwNWTDXJUHU50dghSnD28MsdRZddZWWO2+6v2fpVF4jXpgp0gowTTcbsZB1hOz3PB2a4KnazNg86qPn3POObj00ksxdepUjiZMREnBAEtESed0OrFp0ya8//77+Prrr9sXuE0w1+bAXJMLodkW8byyPtI0wMrFMcRSAnX2VthQUhxgk3p9bIwkswhvcTO8XZsh5rePJFxcXIwZM2Zg1qxZ6NevX+p2kIg6JQZYIkqp8vJyfPDBB/jwww9RXV2tPi60WmCuyYWpJifkdDxBdbYQKxecmHLJGBIQEA3VChtKONfHplELrVZCuxhr61G6CHdphljkAExyvSaTCePHj8ell16K888/n9e2ElHKMMASUVrweDzYsWMH1q1bh02bNrXPKwtAaLLBXJ0L8+mcDqMYhyVNgyxDLMVNgkJh3MNre8GJKTeYcK6NTfH8sfHqYixJUtghV1lXggQxzwlv12Z4i1sAS/t7SL9+/TB9+nTMmDEDJSUlYZVLRJRIDLBElHZaWlqwadMmrFu3Djt27ICoXJMlAaY6O8y1OfL1smIUH4LjERoZYildGC24+laS+DqA8K6NTaPwGuxjWTgDQEWyrgQJyPHA26UZ3i7NkLLar2vt1q0bLr74YlxyySU466yz0q5rMxF1bgywRJTWqqur8fHHH2PdunU4cOBA+wIRMNWnMMwaoUsxQ2zmMnJwba8seXXpSYPwGs5HMf8QGUnQ1YZWye6Gt0sLxOIWSPb2qW9yc3Nx4YUX4pJLLsHIkSNhNsd5dHgiojhhgCUiwzhy5AjWr1+PjRs34vjx4+0LlDB7Ogem00kMs0YIsXLBiSmXki8TgqtvxampVyvFATZckQZdn9CaowmtmvlabTYbxo0bh0suuQTnn38+srKyErPzRERxxABLRIYjSRIOHz6MDRs2YOPGjfj+++/bF6ph1g5TvT2ya2bTIMTKRSbwbZlh1rgSGPZSFmDlylNXd7Dnrf0fNEjA1ZIgQcp1wVvcArHY0SG0jh8/HlOnTsWECROQm5ubwj0lIoocAywRGZpumJUAoSlLDrN19vBGM06TbsUJDbG+FSWnHopeEgJeSgOsvAPJrc//+abptbGRkAQRYoETYpED3iKHz1ytWVlZmDBhAqZMmYLzzjuP87USkaExwBJRxlDC7MaNG/H555/j0KFDPssFhwWmuhyY6+wQmnTmmU2TgZ6SFmJ9K01+nRRYkkNdpwmxJiG8//FUH48wSBYvvEUOiEUOiAWtgLn9edntdpx33nmYOnUqxo8fD7vdnsI9JSKKHwZYIspYp06dwpdffokvvvgCO3fuhNfb3iIBtwnmOrmbsakhG4JX8+E5jQZUSkmIba88dXV3VinsTttpAmy4Un08AlAGYVJaWaVcF7Tfw51xxhmYOHEiJk6ciJEjR8Jms6VuZ4mIEoQBlog6haamJnz11Vf44osvsGXLFjQ1NbUvVLoa12fDVJ8NocUGIVHZLYZQyDCbwdIgvDHAaugdiyRfHyuZvRALWyEWtMJb2OrTNRgABg8ejIkTJ+L888/nlDdE1CkwwBJRp+PxeLBr1y588cUX2Lp1q+91swDgNsHUkA1zXTZMddmRDQQVDiNeKytXlry6Ohu2vKaHQMci0P9YuMdM2Tac9dvWlUyAlOeCt8ABsbC1QytrVlYWRo0apYbWkpKS8PaFiChDMMASUad36tQpbN26FVu3bsWOHTvQ0tLis1xotsJUnw1TQxZMjVnRTdMTiNFGMG6vJPF1dEa85jW1lOMR6n8o3NbZMNeXIEHK9sgDMLW1tMLiW07//v0xfvx4jBs3DsOHD+d0N0TUqTHAEhFpeDwe/Pvf/8bWrVvx1Vdf4cCBA74riIDQbIOpQQm0NghSjB/EExQIEx5mGWTjK0mBjsE1RtrjF+lgUEpgzfJCLGiVQ2uBs0O34Pz8fIwZMwbjx4/H2LFj2cpKRKTBAEtEpKOmpgY7duzA119/ja+//hoVFRW+K4iAqSlLDrMN2fLoxlIUASGBYZBT8hhAZ5gqR6H3XLWvIaMHXQ3JJrewettCK7J8A6vVasWwYcMwatQojB8/HoMGDYLZHOdLF4iIMgQDLBFRBMrLy7Fz507s3LkTX3/9Naqrq31XEAGhySaH2sa2FlpvBB9EMz3IKqGEYZddhsN5nRiQOlJwvgtivhNSnhNStm9gNZvNGDp0KEaNGoVRo0bhnHPOYbdgIqIwMcASEUVJkiScOHFCbZ395ptvcPr06Q7rCS0WNdAKjVkQnObgc9AmONildNCnYKGkM4XZFAezlIRYwRT+39iAwVUyiRDzXJDynHJozXN2uIbVbDZj0KBBamAdPnw452UlIooSAywRUZwogXbPnj3qT4cRjgHAZZIDbZNNvp622eY7D61aYOKDXUqn5vGXqUE2jUJZylthg0mjY6RHGXBJynVBzJPDqpTrhv/3UXa7HcOGDcM555yD4cOHY9iwYcjJyUnNThMRZRgGWCKiBKqrq/MJtPv374fH4/FdSQKEVktb1+O2QNvSdi1tZwux/sJ5/pG08EUrmjrSMJSlXYBVjmsaHisAkKweOajmuiC1/fZvXQWAkpISDB8+XP0ZMGAALBZLCvaYiCjzMcASESWR0+nEvn37sHfvXuzbtw/fffddx4GhAPla2hZbWyutBaYWK4QWa3QDREUoLQNtJNdLJiLMRlNHmoSytAutWqGOkXKcE3wsJUiAVYSY44KU64aY55TDqq3j39lms2HgwIEYPHgwhg0bhuHDh6N79+4J3T8iImrHAEtElGKnT59Ww+x3332Hffv2ob6+vuOKEiA4LPK8tM1WOeC2WCB4Ej9aaVqF2khGqo1XmI2mnhQG2LQOrUDgY5OkYygPsuSBlOOCmOOWuwPnuAFrx/rNZjP69euHIUOGYPDgwRg8eDBbV4mIUowBlogozUiShFOnTqlh9uDBgzh48GDgUAsATrMcaB1tLbUO+XYyWmuBNAu34Yok2EYTolLQLTbtQyuQuAGdAnypobaq2t2Q7G5IOW65hTXHDQQo2mQyoU+fPjjrrLMwePBgDBkyBAMHDkR2dnb4+0FERAnHAEtEZACSJKGqqgoHDx7EgQMH1N/l5eVBNmi7rtZhgdBihclhSUqwNWSYBYKHqjTpBhwOQwTYcIQ7T6zykNr91y23rNo96m1YAv9d7XY7zjrrLJx11lkYOHAgzjrrLPTv359T2RARGQADLBGRgTU1NeHQoUM4ePAgDh8+jKNHj+LIkSNoamoKvIE22La2/5haLYDLFHx6nygYPswaKLwqDB1itcc7UFA1iZCyvfIowG0/ot0Dye4OOLASAAiCgJ49e6Jfv34488wz1cBaWloKk8l4f18iImKAJSLKOJIkoaamRg2zR48eDR1sAcArQGg1dwi2QqsFcMcebg0baA3GyCFWEiSfgKoG1WwPkBW867HZbEavXr3Qt29f9OvXD/369UP//v1RVlbGVlUiogzDAEtE1Elog+2JEydw/Phx9fepU6fg9XqDbywCgtMMwWnx+y3fjjTgMswmTjoHWMkkQrJ55ZbULA+kLG/bjweSzRtw1F+tgoIC9O7dW/0pKytDv379UFZWBpvNlqRnQUREqcQAS0RE8Hg8OHXqlE+wVX6qqqr0wy3QFnAtEFxmuSuyy9zhJ1jIZZhNjGQHWTWc2kTA5pVvW9t+twXVQCP9+svLy/MJqdqfgoKCJDwTIiJKZwywRESky+PxoKqqChUVFaioqMCpU6dw6tQp9XZ1dTVEMYyRZSUALjMEJeC6zYDHBMFtApxtv91mmLxmwCsACZjO1WgEkxB1wI9HgJUEeYAkyeKFZBXl21b5tmSVW0yVoBrsOlR/ubm5KC0tRY8ePTr8lJaWIi8vD4KQvq3IRESUWgywREQUE7fbjaqqKjXMVlVVdfhdW1sbXshViGgLt2Y52HpMEDxtv72Cel/wmACvCYJHgOQSAFGI+VpdbfBLRetwoOAZaj9ChVVJkACzCMkiAhYJklkELG33zVLb4/J9ySoCSmANM5QqcnJy0K1bN5SUlKBbt27qzxlnnKGG1Pz8/IjKJCIi0mKAJSKihPN4PDh9+rQaaqurq1FXV4fa2lqcPn0adXV16m/dgaZCEQF4TXKQ9QrywFRt9+EVAI8AQTTJt70CBFEOvfIPIMAESAIEEfJjUlsoFgW5BbltCiLJKwFQHpOrDhWcJWhOt0Jb6BTUjQGTBMkkyY+Z0PZbksOn9r5J/g1z222z6HvbJEEyK8vbQqg5+lO92WxGUVERiouLUVRUpN4uLi5Wg6ryOycnJ+p6iIiIwsEAS0REacXlcvkE2traWjQ2Nvr8NDQ0oKmpyed+yOt0k0ETaFWC3+8UysnJQX5+vvqTl5fn81sJqNqQyi69RESUThhgiYjI8CRJgsPhQGNjI1paWuBwONTfyk+wx91uN9xuN1wul/qj3Nc+nuiAbDKZYLVaYbVaYbPZ1Nv+9202G3JycmC3231+srOz1dvK8uzsbDWc5ubmwmKxJPQ5EBERJRoDLBERURhEUYzoRxAECIIAk8mk/ij3tY8LggCz2cxwSUREFAYGWCIiIiIiIjIEU6p3gIiIiIiIiCgcDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIDLBERERERERkCAywREREREREZAgMsERERERERGQIllTvABFRqkiShNbW1lTvBhFRRLKzsyEIQqp3g4goJRhgiajTam1txYwZM1K9G0REEVm7di3sdnuqd4OIKCXYhZiIiIiIiIgMgS2wREQAbFvPALwCBJMACCb1N0wC0NZVTzCZ5NtC22+TAEFo+x5QWa/tcWWbDo8pZWqXoX25pGxn0ixXHle+cvR/TBAgKb0Jhbb7JvlO++MCIEDdRmq7D0BeRylDUJ5Le3n+y7VlSso6pgDLtOv7LNM+5r8fQbYJshyAug/B6vJZP8h+dNgGAbbvsI3ksx/+5anL4b9cal8H7eu2P0dJXSZ0WF9StxHaHm//rZQnQRAkn5eXUr78p2xfboJ8G+rjgKltubxMLlJ9TPNbLq/9vvYHkMuW76N9GdrrMgmi+pi8rggAMAvt902C7zKTIGmWSzBDVOszC6JmOxHmtrqU2/JvUd1OKc8EqW1bEWafZfL6ZkGCABHmtvvKc5PvQ94O7fUJbWWY1X1s2z/Ix8IMCSag7bbQVh5gFgSYIMCMtt+CsswEAQLcLjPm/L8eICLq7BhgiYgAObyK8gdFCO2/tclAgBJc29OaoKRKnyTUtrxtK99kY+qYrgTNtoHSk+7jCLIcamj1ue3/W91c0BTrH4j9l/uXibYgHWRZsN0NuB/hbBPGoYq2TM3hCx164xxg/Zf7LfMPsO2P+5cndVimhNTAyyXN49rHpABlSj7bKAHW/yfoMjVUaoKtJuiqy9C+XAl+yjI5wIpqAFSWyQGw7bcgwAxlG/m2/FvwCY5yWYBZgPq7fTv5dsBl6n0lAEuawCzfDhVgA5VnAtpCsXxfXqasr/kbEhF1YuxCTERERERERIbAAEtERERERESGwABLREREREREhsAAS0RERERERIbAAEtERERERESGwABLREREREREhsAAS0RERERERIbAeWCJiADALEGCKE/+KMDvtzoho988qv7zrCo/Uvs2Po8HWaaZiFQKMrlpoMfbH1Nm14TvfUn7uLyuBAGQ4FOepN2mbbuOgjwmaRb5zEUqaHdfZ/5VIcjjftsEWx5qmV6Zeo8rv3S3CTSfa4DlHfYxyDyw6Lid0GH99vUE7Ryvmpcp1HlXtS+vIPPAIrZ5YKW27SW/H2WZ1DYXrrqsbf9FQQIEsb0etN1H2/OB73KpbZnUVrdSNtBen/Zxk6Yu5bb/b3k/5H9r7W+x7Smb2m6LbS/RwPPACjBBnl9WWSa0PW5G+1yyAHzum9Tbgqa89rJMEGAWlGUCBAhwuwL9DxIRdT4MsEREAFzjfkj1LiSG5Pc7Cn65jkilxE8x1IppS0n47JBGRGQUfMcmIiIiIiIiQxAkSYrhe3kiIuOSJAmtra2p3o2M0traiiuvvBIAsHr1amRnZ6d4jzIDj2v8GfmYZmdnQxDYJ4KIOid2ISaiTksQBNjt9lTvRsbKzs7m8U0AHtf44zElIjIOdiEmIiIiIiIiQ2CAJSIiIiIiIkNggCUiIiIiIiJDYIAlIiIiIiIiQ+AoxERERERERGQIbIElIiIiIiIiQ2CAJSIiIiIiIkNggCUiIiIiIiJDYIAlIiIiIiIiQ2CAJSIiIiIiIkNggCUiIiIiIiJDYIAlIiIiIiIiQ2CAJSIiIiIiIkOwpHoHiIgoOi0tLVixYgU+/fRTVFRUwGQyoaysDBdddBHmzJkDq9Uaddm1tbVYvnw5Nm/ejMrKSmRlZaF///6YOXMmLr30UgiCoLv9yZMnsXz5cmzbtg21tbWw2+04++yzcfnll2PKlCkh69+/fz/+/ve/45tvvkFdXR3y8/MxbNgwzJ49G6NHjw64jSRJ+Pbbb7F582bs2bMHx44dQ0NDA7Kzs9GrVy+MHTsWs2fPRklJSdB6eUzD09jYiBtuuAE1NTUAgHnz5uHmm28Ouj6Pq76dO3dizZo12L17N2pra2G1WtG1a1cMGTIE06ZNw/jx48Mqh4ioMxAkSZJSvRNERBSZiooK3H333aioqAAAZGdnQxRFuFwuAMDAgQOxdOlS5OfnR1z2/v37cf/996O+vh4AYLfb4XK54PV6AQDjxo3DokWLgoaOzZs3Y8GCBWhtbQUA5ObmwuFwQBRFAMCsWbPwwAMPBA0W77//PpYsWaLWl5eXh+bmZiinq2Bh6bXXXsNf/vIX9b4gCMjNzfXZNjc3F7/5zW9wwQUXdNiexzR4APX35JNP4qOPPlLv623P4xr8uLrdbjz11FNYu3at+lheXh6cTifcbjcA4IILLsCTTz4Z9jEhIsp07EJMRGQwHo8HDz74ICoqKtC1a1c8++yzWLduHdatW4cFCxYgJycHBw4cwOOPPx5x2U1NTXjggQdQX1+PPn364M9//jPWrl2LdevW4d5774XFYsHWrVvxwgsvBNy+vLwcCxcuRGtrK4YPH4433ngDH374IdasWYN58+YBANasWYM333wz4Pb//ve/1UAwadIkvP3221izZg3effddXHHFFQCAV199FZ988knA45Kbm4srr7wSS5cuxbp167BmzRqsW7cOjz/+OLp3747m5mYsWLAAR48e5TEN45gGsnXrVnz00Uc455xzQq7L4xr8uEqShEceeQRr165FUVER7r//fnzwwQdYs2YN1q9fj3/+85946KGHcO6550Z8bIiIMhkDLBGRwXz00Uc4fPgwAODxxx/HmDFjAAAmkwnTpk3D/fffDwDYsmULduzYEVHZK1asQG1tLbKysvDUU09h8ODBAACr1YrZs2errUnvvfcejh8/3mH7ZcuWweFwoEuXLli8eDHKysoAADk5Obj55ptx+eWXAwD+9re/obGxscP2f/zjH+H1ejFgwAA8+uijOOOMMwAAhYWFuP/++zFu3Dif9bQmTZqEv//977jvvvtw7rnnIisrCwCQlZWFCy+8EM8//zyysrLgdruxcuVKHtMwjqm/lpYWPP3007Barfi///u/kM+dxzX4cX333XfxxRdfID8/H3/4wx9wxRVXqK3QgiCgW7dumD59OubOnRvRcSEiynQMsEREBqN03Rw1alTAVrBp06ahtLTUZ91wKV0Zp02bhp49e3ZYPnv2bNjtdni9XvzrX//yWeZwOPDpp58CAK666qqAXUJ/+tOfAgCam5uxadMmn2Xl5eXYvXs3AODaa6+FxdJxmAZl+4qKCuzatctn2cCBA3W7ofbs2ROjRo0CAOzbt89nGY9p4GPq749//CMqKytx/fXXo1+/frrrAjyuQODj6vV68dprrwGQuxn37t079BMmIiIADLBERIbS2tqKf//73wCA8847L+A6giCog75s27Yt7LK///57VFZWAkDQQWNycnIwYsSIgGXv2bMHTqdTd/vS0lL07ds34Pba+8G2Hz58OHJycgJuHw6bzQYA6jWOAI9puMf0m2++werVq9GnTx81nOnhcQ1+XL/++mtUVVUBAKZPnx5weyIiCowBlojIQI4dO6aGr/79+wddT1lWW1uLhoaGsMpWunqGKnvAgAEA0OE6Uu32yjp62x85csTnceV+cXExiouLA25rNpvRp0+fgNuH4vF41ECl3T8e09DH1Ol04ne/+x0A4Fe/+pX6RYAeHtfgx3XPnj0AgB49eqCwsBAffvghfv7zn2PmzJmYMWMGbrzxRvzpT39CXV1d0H0jIuqsGGCJiAykurpava03HUy3bt0CbqNHmRIl3LKbm5vR0tLSoZ78/Hz1+lO97bX1abfX7nsgyr75bx/KypUrUVtbCwC47LLLOtSrLTuQznxMX375ZZw8eRKXXXYZfvSjH+mW5V+3tvxAOuNxVa7JLSoqwsKFC7Fo0SJ8++23MJlM8Hg8OHLkCN544w3MmzcP+/fv162DiKizYYAlIjIQ7YdwvQ/e2dnZAbdJZNkOh6PDcr3t/fdLuR9qe2Xfwn1eALB7924sW7YMAHDxxRf7zM/JY6p/TPfu3Yu3334bXbt2xR133KFbTqC6teUH0hmPqzIo1H/+8x988sknuOiii/DWW29hzZo1WLt2LR599FHk5+ejtrYW8+fPj+i1TkSU6RhgiYgoox07dgwPPfQQ3G43+vfvr458S6G53W4sXrwYoijinnvuiWquVupI6VotiiIGDhyIRx55BN27dwcAWCwWTJ06Fb/61a8AAFVVVXj//fdTtq9EROmGAZaIyECUQWEAqIPQBNLa2hpwm0SWbbfbOyzX295/v5T7obZX9i2c53X8+HHce++9qKurQ58+ffDss88GrVdbtt5+h1t3PMpO9TF99dVXcfToUVxwwQWYMmWKbhn+eFyDH1ft/f/6r/+CydTx49iUKVPQq1cvANENWEZElKkYYImIDER7zZ0yimkg2msJQ12np+jatWtEZefm5vp8EFfqaWxs1A0Vyvba+rTbh7oOUtk3/+39HT9+HPfccw9qampQVlaGpUuXBtyGxzTwMT1x4gSWL18Ou92OO+64Ay0tLR1+FB6Pp8NjPK7BX6va63aVkY4DUZZVVFTo1kNE1JkwwBIRGUjfvn3V1hq9UXiVZV26dEFBQUFYZWtHY9UrWxnB1X8eUO322lFeg23vP3qscv/06dNBR1/1er34/vvvA26vpYTX6upq9O7dG88//3zQcMRjGviYVlVVwev1wuFw4Kc//SlmzpzZ4Ufx+uuvq48p13fyuAZ/rZ555plB6wxEEISI1iciymQMsEREBpKdnY1zzjkHAPDVV18FXEeSJGzduhUAMHbs2LDLLisrU6/DC1a2w+HA7t27A5Y9fPhwddAapX5/FRUVOHbsWMDttfeD1b9nzx61lS/Yczt+/DjuvvtuVFdXo6ysDL///e91W/Z4TEMf02jwuAY/rmPGjFFvK3UEoiwrLS0Nug4RUWfDAEtEZDBKy9fOnTuxd+/eDss3bNiA8vJyn3XDIQgCZsyYAQD45JNPcOrUqQ7rvPPOO3A4HDCbzbjkkkt8ltntdlx44YUAgFWrVqGpqanD9suXLwcgXwM4adIkn2U9e/bEiBEjAMhT3ng8ng7bv/HGGwDk+TMDTeeihFel27Bey6sWj2nHYzpq1Ch89tlnuj+KefPmqY9pB3ricQ38Wu3RowfOPfdcdXtJkjpsv3HjRpw8eRIAcP7553dYTkTUWTHAEhEZzMyZMzFgwABIkoSHH34YO3bsACCPaLphwwY8/fTTAIDx48f7TBcDAMuWLcPkyZMxefLkgB/6r732WnTp0gWtra144IEH1Dko3W43Vq1ahb/+9a8AgMsvvxxlZWUdtr/55ptht9tRU1ODBx98UJ3v0uFw4NVXX8Xq1asBADfccEPAEW1vv/12mM1mHDx4EAsXLlSvIWxoaMCzzz6rtnbdcccdMJvNPtueOHFCvea1T58+YYdXHtPgxzRWPK7Bj+v//M//wGq14sCBA3jsscdQWVkJQL6eeOPGjeqx6dOnD3784x/rHmcios5EkAJ97UdERGnt1KlTuOeee9TBXbKzsyGKIlwuFwBg4MCBWLp0aYcP3suWLcOrr74KQG75CdQ1cf/+/bj//vtRX18PQG6BcrlcaivT2LFjsWjRIthstoD7tnnzZixYsEAdoTUvLw8OhwNerxcAMGvWLDzwwANBr+t7//33sWTJEnX9vLw8NDc3q61U8+bNw80339xhu8WLF2PNmjUA5EF79OYHBeSWNy0e047HNJTJkyeH3J7HNfhx3bBhA5544gn1WOTn58PpdKr3e/Xqhaeffhq9e/cOWgYRUWfDAEtEZFAtLS1YsWIFPv30U1RUVEAQBJSVlWHatGmYM2cOrFZrh23CCQUAUFtbi+XLl+PLL7/EDz/8AJvNhgEDBmDmzJmYNWtWwGk/tE6ePInly5dj27ZtqK2thd1ux8CBA3HFFVeENR3L/v37sXLlSuzatQt1dXXIz8/HsGHDMHv27A4tdYonn3wSH330UciyFdousAoe08iEE2ABHlc9x48fx8qVK7Ft2zbU1NTAYrGgT58+uPDCC3H11VeHPbUQEVFnwQBLREREREREhsBrYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiMgQnn/+eUyePBl33XVXqneFUqypqQmXXnopJk+ejM8++yzVu0NERElkSfUOEBFRYjU3N+PAgQPYt28f9u/fj/379+PkyZOQJAkAsHLlSpSWliakbkmSMHfuXFRVVeH666/H7bffHlU5Bw4cwKpVqwAAt912Wxz3MLUOHz6MrVu3Ys+ePTh8+DBqamrg9XqRn5+PM888ExMmTMDMmTORl5eX6l1NK3l5ebj22mvx8ssv44UXXsD48eORlZWV6t0iIqIkYIAlIspwd999Nw4cOJCSuvft24eqqioAwKRJk6Iu56WXXoLX68X48eMxfPjweO1eSt1999345ptvAi6rra1FbW0ttm3bhtdffx3z58/HuHHjkruDaW7u3Ll46623UFlZibfffhvXX399qneJiIiSgF2IiYgynNLSCsgtV6NGjUKXLl2SUvemTZsAACUlJRgyZEhUZezevRvbt28HgIwKKUqwz8/Px6xZszB//ny8+OKLePnll/HYY49hwoQJAOQwO3/+fOzatSuVu5t27HY75syZAwBYvnw5WlpaUrxHRESUDGyBJSLKcLNmzUJRUREGDRqE3r17QxAE3H333aitrU143UqAnThxIgRBiKqMN998EwBQWlqKH/3oR3Hbt1Tr3bs3brjhBkybNg02m81n2aBBgzBlyhS88cYb+NOf/gSXy4UlS5bgtddeS9Hepqfp06dj2bJlaGxsxAcffIBrrrkm1btEREQJxhZYIqIMN3fuXFx88cUoKyuLOkRG4/jx4zh27BiA6LsPV1VVYfPmzQCAGTNmJHX/E+3pp5/Gj3/84w7hVev666/HwIEDAQBHjx7FoUOHkrV7hlBaWooRI0YAAN59990U7w0RESUDW2CJiCghlNFhlW7L0Vi/fj1EUQQAXHTRRWFt4/F48Mknn+Dzzz/Hvn37UFdXB6/Xi6KiIgwYMABjxozBxRdfjK5du/psN3nyZADAzJkzMX/+fHz//fd4++23sW3bNlRXVyM3Nxdnn302/vu//xsjR45Ut3M6nfjwww+xdu1anDhxAq2trejZsycuueQSXHPNNTEPLnTuueeq1zAfP34cZ555ZtRlHT16FKtXr8auXbtw6tQptLa2Ii8vD/n5+SgtLcXo0aNxwQUXoE+fPlGV7/F4sG7dOmzYsAGHDx9GfX09BEFAQUEBioqKMGTIEIwZMwYTJ06E1Wr12db/+B89ehTvvPMOtm/fjurqajgcDjzxxBMdvgy56KKLsGvXLhw7dgz79u3D4MGDozs4RERkCAywRESUEEr34QkTJsBiie508+WXXwKQrxPt27dvyPUPHjyIRx55BCdOnOiwrKqqClVVVfjqq69w6NAhzJ8/P2g5GzduxJNPPonW1lb1MafTiS1btuCrr77C/fffj8svvxzV1dWYP38+9u3b57P9kSNH8Oc//xlbtmzBkiVLYgqxHo9HvW0yRd9xavXq1Vi6dCm8Xq/P4/X19aivr8eJEyewbds2HDp0CA8//HDE5dfV1eG+++4LOGCYcuwPHDiAd999F8uXL0fv3r2DlvXhhx9iyZIlcLlcIevVDur15ZdfMsASEWU4BlgiIoq76upqfPfddwCi7z7scrnw7bffAgCGDBkSsvvwgQMH8Itf/AIOhwMAMGrUKEyfPh19+/aF1WpFTU0N9u7dG3Le0EOHDuGTTz5BcXExbrvtNrXuHTt24G9/+xtaW1vx3HPPYeTIkfjtb3+LgwcP4qqrrsIFF1yAoqIinDx5Eq+99hoOHTqE3bt3Y/ny5bjpppuiOgYA8PXXX6u3+/fvH1UZhw8fVsNrQUEBLr/8cowcORJFRUXwer2oqanB/v37sWXLlqi7aS9dulQNr6NHj8b06dNRWlqK3NxcNDc349ixY9i1a5faJTyY/fv3Y/369SgoKMA111yD4cOHw2q14ujRo+jRo0eH9fv37w+73Q6Hw4Gvv/4aN998c1T7T0RExsAAS0REcff5559DkiTYbDaMHz8+qjIOHTqktj4OGjRId12Px4NHHnlEDa/33HOPOkKt1vnnn49bb70VlZWVQcs6cOAABg4ciKVLlyI/P199fOjQoejduzcWLFgAj8eDX/ziF2hoaMDTTz+NMWPGqOudffbZGDt2LG644QZUV1dj1apVuOGGG2A2myN6/oDcDfvIkSMA5BBfVlYWcRkAsGHDBrXl9bnnnlOvq9WaNGkSbr31VtTX10dcvtPpVL8YmDRpEn772992CMIjR47ElVdeCYfDoduSfOTIEfTu3Rsvvviiz2jZwUaxNpvNOPvss7Fr1y785z//gSiKMbVUExFReuM7PBERxZ3SfXjMmDGw2+1RlaHtBhxq2p/169fj5MmTAORRlwOFV63u3bvrLn/wwQd9wqtiypQpKCkpAQCcPn0as2fP9gmviry8PPz4xz9W1zt69KhufYFUV1fj2WefBQAIgoCf//znEZehUEaczsvLCxhetQoLCyMuv7GxUf2yYeTIkbqtuHa7PWSX6l/+8pcRTfWkrNva2orq6uqwtyMiIuNhgCUiorhqamrCzp07AUTffRgAampq1NsFBQW66yqBGQCuu+66qOsE5C6pwUKeIAg+y6ZPnx60HO165eXlEe1Da2sr5s+frwZP/4GjIqWE7qamJmzYsCHqcoIpLCxUR1P++OOPY5qTtaSkJOCXAnq0rw/t64aIiDIPAywREcXV5s2b4fF4YDabMXHixKjLcTqd6u1AraFa//nPfwDILXHhDPakJ9T22n3RG61Xu14kgc7tduOhhx5SB4a64IILcOutt4a9fSDTp09XWz0XLFiAO++8E2+88QZ2796tdruOhdVqxcyZMwEAe/fuxU9+8hM8/fTT+PjjjyMO79GMsqwNsNqBt4iIKPPwGlgiIoorpTX0nHPOQVFRUdTlaK8ZDTUabV1dHYD2lsZYZGdn6y7Xdo/V6x6tvQ5TmQooFI/Hg4cffhhbt24FAIwbNw4LFy6M6vpZrZ49e2Lx4sV48sknUVVVhT179mDPnj0A5OM8ePBgTJ48GZdddlnILwuCueuuu+ByubB27Vo0NDTgvffew3vvvQdA/mJh3LhxmDVrVsiW5FCt7YFov+yIdsRrIiIyBrbAEhFR3LhcLnz11VcAYus+DMjXayoaGhpiKssIPB4PFixYoE4dNGbMGDzxxBNq19xYjR49Gm+++SYeffRRzJo1S53Gxuv14ttvv8VLL72E6667Tg3PkcrKysL8+fPx+uuv45ZbbsG5556rBvza2lp89NFHuPvuu/HQQw/5BE5/0QzApB14Svu6ISKizMOvKYmIKG62b9+udkmNNcBqp0wJFWCLiopQWVlp2AF8lPCqtF6fe+65WLRoUUzzxwZis9kwdepUTJ06FYDccr1jxw6sXbsWW7ZsQUNDAx5++GEsX74cXbt2jaqOsrIy3Hjjjbjxxhvh9Xpx4MABfPnll1i9ejVOnz6Nzz77DC+//DJ+8YtfxO15NTY2qrdDDdBFRETGxhZYIiKKGyWADRw4EKWlpTGVpZ3z9Pvvv9ddV5lmp6amJuS66cY/vI4aNQqLFy+Oe3gNpKioCNOmTcNTTz2Fq666CgDgcDjw+eefx6V8pXvyzTffjD/+8Y9q9+z169fHpXzFsWPHAAClpaXIycmJa9lERJReGGCJiCguRFHEF198AUAeeChW3bt3R7du3QAA3333ne66kydPVm8vX7485rqTxePxYOHChWp4HTlyJH73u9+FvA43EcaNG6feVq4pjqfS0lJ1Htto5poNpq6uTp1CadiwYXErl4iI0hMDLBERxcWePXvU4KMNlLFQQtWxY8fQ3NwcdL2LLrpIDUdr1qzBP/7xD91yKysr47J/sfB4PHjsscfw2WefAUhseP30009DhlLl2mUA6NWrV0Tll5eXY/v27brrnDp1Sm0p7dmzZ0Tl69m7d696+7zzzotbuURElJ54DSwRUYY7ceKEOuKsQplfFAA2btzoM1qw3W7HlClTIq5HaUXs2bNnVFOhBDJ16lSsWbMGoihi+/btuPDCCwOuZ7FY8Oijj+LOO++Ew+HA888/j88++wwzZsxA3759YbVaUVNTg3379mHjxo0YNGgQ5s+fH5d9jNbjjz+OjRs3ApAD4x133IFTp07pblNcXIzi4uKI6/rHP/6Bxx9/HKNHj8bo0aPRr18/FBYWwu12o7KyEuvXr1dbz3v06BHx9EeVlZX45S9/iZ49e2LixIkYMmQIunfvjqysLNTX12Pv3r1YtWqVOpr0nDlzIn4OwWzbtg2AfH3vhAkT4lYuERGlJwZYIqIMt2fPHixatCjo8pdeesnnfo8ePWIKsPHoPqwYM2YMSkpKUFVVhbVr1wYNsABw1lln4YUXXsAjjzyC8vJy7Ny5Ezt37gy4rnLNbCpt2LBBvX3y5EnccccdIbeZN28ebr755qjqc7lc2Lx5MzZv3hx0nV69emHRokW60wPpKS8vx1tvvRV0uclkwnXXXYerr746qvL9eTwefPzxxwDkVv9opwAiIiLjYIAlIqKYHTx4UG09jHX0YS2z2YzZs2fjT3/6E7Zs2YK6ujrduWXPPvtsvP7661i7di02bdqEAwcOqNdbFhcX48wzz8TYsWNx8cUXx20fjWDBggXYunUrdu3ahcOHD6O2tlbtUlxYWIizzjoLkyZNwvTp06OatmfEiBF48cUXsX37duzduxeVlZU4ffo0mpubkZ2djZ49e2LEiBG47LLL4tY6D0B9TQDA3Llz41YuERGlL0GSJCnVO0FERMb2yiuv4JVXXkFxcTHeeeedqObyDKapqQnXXnstGhoacPvtt+P666+PW9lkbA888AA2b96M0aNH47nnnkv17hARURJwECciIoqZ0n34/PPPj2t4BYC8vDw1tK5YsQItLS1xLZ+Mae/evdi8eTMEQcBtt92W6t0hIqIkYYAlIqKYuN1uTJo0CfPmzcPs2bMTUsecOXPQu3dv1NfX4+9//3tC6iBjefnllwEAM2bMwJAhQ1K8N0RElCzsQkxERIbw3XffYfPmzcjLy8NPfvKTVO8OpVBTUxPeeustSJKE2bNn614XTUREmYUBloiIiIiIiAyBXYiJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQGGCJiIiIiIjIEBhgiYiIiIiIyBAYYImIiIiIiMgQ/j9D9cx6wr00pgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5gURfrHv909M5t3YWHJGQREPEVBQVFQwazgoaJi9tQzIIY7451nFhOGM2MAE2CCn3ogKigIkgUEBEFyjhvYPDNdvz96urenp0PNTM/szO77eZ55WKbfrqpJVfWt9623BMYYA0EQBEEQBEEQBEGkOGJ9N4AgCIIgCIIgCIIgeCABSxAEQRAEQRAEQaQFJGAJgiAIgiAIgiCItIAELEEQBEEQBEEQBJEWkIAlCIIgCIIgCIIg0gISsARBEARBEARBEERaQAKWIAiCIAiCIAiCSAtIwBIEQRAEQRAEQRBpAQlYgiAIgiAIgiAIIi0gAUsQBEEQBEEQBEGkBSRgCYIgCIIgCIIgiLSABCxBEARBEARBEASRFpCAJQiCIAiCIAiCINICErAEQRAEQRAEQRBEWuCKgN2yZQsEQYAgCLj22mvdKLJRMnjwYO19JAiCsOLaa6/V+ootW7bUd3M0JkyYoLVrwoQJ9d0cwmXKy8vRrl07CIKAF154ob6bQ6QJP/30k9YvPPLII/XdHIJIGRryvP+JJ56AIAjo0qULqqurXS8/aR7YCRMm4JFHHmlUnde0adO011xSUlLfzSFCBAIB/PDDD7j//vtx+umno3Xr1sjIyEBubi66du2Kyy67DNOmTUMwGIyq3NWrV2P06NHo2bMncnNzUVBQgKOPPhr3338/tm7dmqBXQxBEY2Tu3Lm44YYbcNRRRyE/Px9erxeFhYXo27cv7rzzTvz222+u1/nEE09g586daNmyJW655RZTm19//RWvv/46rr/+evTr1w+dOnVCbm4uMjMz0bp1a5xxxhkYO3Ys9uzZw13vnj178J///Af9+/dHs2bNkJGRgXbt2uGss87Ce++9h0AgwF1WcXExxo0bhyFDhqBVq1bIyMhAdnY2OnTogAsuuADvvvsu12Rr9+7d+Prrr/HII4/g/PPPR+vWrbWJaKdOnbjbEwvffvstRo4ciY4dOyIzMxMtWrTAySefjBdffBEVFRW29+rFZDSPRL+mRHPBBRdor+Xdd9+N+v5t27ZBkiQIgoDCwsK4J+SlpaV47bXXcOaZZ6JDhw7IzMxEs2bN0KtXL1x++eUYP348Dh06ZHpvcXEx/u///g//+te/cPbZZ6NXr15o0aIFvF4vCgoKcNRRR+Haa6/Ft99+G1WbKioqMG7cOJx88slo0aIFMjMz0bFjR4wcORIzZ86Mqqyff/4Z1157LY444gjk5uYiNzcX3bt3x0033YRFixZFVZYdegcaz8NOg+jFZDSPdF6sXbZsmfY6OnbsCMZY1GX87W9/08p45plntOfvuOMONG3aFJs3b8Zzzz3nZrMVmAts3ryZAWAA2DXXXGNqM2jQIM2msXDNNddor3nz5s2O9o3xPUo2s2fPZoWFhdr7bPfo168f+/PPP7nKfe6555jX67UsKy8vj02aNCnBr45oLETbtySL999/X2vX+++/X9/NaZBUVlaySy+91LH/EkWRjRkzhgWDQVfq3bFjB8vMzGQA2Lhx4yztWrZsydW/5ubmsrfeesux3g8++IBlZ2fbltWnTx+2ceNGx7JmzJjBioqKHNvWuXNntmzZMstyvvrqK9v7O3bs6NiWWKiurmaXXXaZbd1du3ZlK1eutCzjxx9/5Pp8jI/TTjst5nbr6/zPf/4Tcznx8MUXX2htGDhwYNT3P/bYY9r9t956a1xtmTx5MtfvZOrUqab3v/HGG9yf26mnnsp2797t2KZff/2VdenSxbasUaNGsZqaGttyysvLHb+jgiC41jfp9QfPw+77p5+DR/OYM2dOzO1PhXn/0UcfrbXhhx9+iOreiooKlpeXxwAwSZLYrl27wq6rv5u8vDy2f/9+N5vNPHCBTp06xaTaiXB++umn+m5Cg2fnzp3aqmZhYSGGDBmC/v37o3Xr1vD7/Vi8eDE++OADlJWVYcmSJTjttNOwePFitGrVyrLMN998E//85z8BAF6vF1dddRUGDRoEv9+PmTNn4vPPP8fhw4dx1VVXoUmTJjj77LOT8lqJhsuECRPSetWXiJ0rrrgC06ZNAwBIkoSRI0fixBNPRIsWLbBr1y7MmjUL06dPhyzLePnll+Hz+fDss8/GXe/TTz+N6upqNG3aFH//+99tbZs3b47+/fvjmGOOQefOnVFQUIDa2lr8+eefmDZtGpYvX47y8nLcfPPN8Hg8uP76603L+fDDD3H11Vdr/z/zzDMxbNgwFBUVYfv27Zg0aRKWLl2K5cuX48wzz8SCBQtQVFRkWtbixYsxbNgw1NbWAgC6du2Kq666Cp07d0YgEMCGDRvw3nvvYd++fdi8eTOGDBmCVatWoW3bthFlGaNzvF4vevfujeXLl9u+L/FyzTXXYMqUKQCAZs2a4aabbsLRRx+NAwcO4KOPPsLixYuxceNGnH322Vi0aBHat28fUUbv3r0xdepUrvpGjx6NHTt2AACuu+46915IPXDBBRegefPmOHDgAObNm4eNGzeia9eu3PdPnDhR+zue9+K///0v7rjjDgCAz+fD8OHDMXDgQLRs2RKBQABbtmzB/PnzMWvWLNtyRFHEMcccg379+qFHjx5o1aoVfD4fDhw4gMWLF2PKlCmorKzE3Llzcdppp2HZsmXIzs42LWvr1q0455xzsHfvXgDACSecgCuvvBLNmzfHqlWr8Pbbb+PgwYP4+OOPIQgCPvzwQ9NygsEgRowYoXlrc3JycN111+HEE0+EKIpYvnw53n33XRQXF+Pll18GYwwvv/xyrG9lBKeddpr23lrRs2dPy2tPPPEEDhw44FjP/Pnz8fzzzwNQ+pFTTjkluoamGNdddx3uvvtuAMrc4owzzuC+94svvsDhw4cBAGeffTZat24ddn3MmDF45plncPjwYTz//PMYO3asew13VQ7bkAqrDMkmVb0kjZkPP/yQHX300eyTTz5h1dXVpjY7duxgRx11lPbZXX311Zbl7dq1S/MOeDwe9v3330fY6L1S7du3Z1VVVa69HoJIJcgDm1jmzp2rvb/5+fls+fLlpnYzZsxgkiRp/VK8K98HDx7U+rmbbrrJ1nb16tVMlmVbm6eeekp7HU2aNDHti/ft28dyc3M1uzfeeCPCRpZlduedd2o21113nWWdp59+epid3++PsKmoqGBDhgzR7MaMGWNa1vz589mNN97I3nzzTbZkyRLNK6XelwgP7LRp07TyO3TowLZu3Rp2PRgMsuuuu06zufjii+Oqb+3atWHftYqKipjLSgUPLGOMjRkzRmvHv//9b+779L+73r17x1z/999/r5XTt29f23nh4cOH2aFDh0yv7dy5kx08eNC2rq1bt7Ju3bpp9Y0dO9bSdvjw4Zrd9ddfH+EZ3bJlC+vQoYNm880335iW8/rrr2s27dq1Yxs2bIiw2bVrF+vZs6cr3kvG+CJA3WbkyJFanU888URcZaWCNtq3b58WQZidnc3Kysq479X3q59//rmpzRVXXMEAsKZNm7Ly8nK3ms1IwCYQErCpR3FxsePkijHGVq1apX12WVlZloO3fvL0z3/+07K8Sy65RLN79dVXY24/QaQyJGATy0MPPcTV3zDG2IgRIzTbr776Kq56X3zxRa2suXPnxlWWyl/+8hetzFmzZkVcHzt2rHZ9xIgRluUEg0EtBE4URbZ+/foIm+rq6jBBX1JSYlmevu8/7rjjonpNiRSwxx57rFb+//73P1ObysrKMKGxatWqmOv75z//qZVz4403xlwOY6kjYFesWBH2GfHMBRhj7Prrr9fue+GFF2Kqu7q6mnXs2FFbgCgtLY2pnGj48ssvtXafcsoppjb696RDhw6WC+z/+9//wsS3GXph+vXXX1u2a9GiRZpdLOHcepItYA8dOsQyMjK0/mb79u1xlZcq2ki/iPHuu+9y3bN161YmCAIDwJo1a2YZXq7/7owfP961Nic8C7G6KXrOnDnac9FsrJZlGZ9++ilGjhyJzp07Izs7G3l5eejZsyduueUWrFq1yrZtjzzyiFaHGqI7a9YsXH755ejcuTMyMzMjMnkGAgHMnDkT99xzDwYOHIgWLVrA5/MhLy8P3bt3x7XXXou5c+da1qlmCNWHnHTu3DniNVu9VzzZyBYtWoSbbroJPXr0QF5eHnJyctC1a1dcc801mD17tuP9aj2DBw8GoGzef/7559G3b180bdoUOTk5OOqoo/DAAw+guLjYsbx0oUmTJlzvb+/evbVQk6qqKvz5558RNowxfPbZZwCU93P06NGW5enDWtQQsGSxYMEC3HLLLejVqxeaNGmCzMxMdOjQASNHjsT//vc/23vNskdu27YN99xzD3r27ImcnBw0adIEJ510El5//XXuZCrl5eV46aWXMHToULRp0wYZGRkoLCxEv3798PDDD2P//v229xt/K8FgEBMmTMDQoUPRtm1beDwe06Qje/fuxb333otevXohJycHhYWFOOGEE/DCCy+gsrISgLIlwixpybfffqvV6RSmpHLHHXdo98yYMYPrHh6cshAn6nP75ptvcMEFF6BVq1bIzMxEp06dMGrUKCxYsCDq11BbW4t3330XF154Idq3b4/MzEw0adIEf/nLX3DPPfdYZlf+448/kJOTA0EQUFBQgM2bN1vWUVxcjA4dOkAQBEiSZNtvpwP79u3T/j7iiCNsbbt376797ZTYxwk1ZLBDhw4YOHBgXGWp9OrVS/vbLKGTfhy76qqrLMsRRRGjRo0CoMwXJk+eHGFz8OBBLey3RYsWKCgosCzPzffNLTZs2IAVK1YAUD73c88919QuKysLN954o/b/Tz/9NKb6gsFgWJioVYi326hhvYIgQBRFvPjii6Z23377rZYgKC8vD9nZ2ejatSuuvfZazJs3z7L8Y445Bn369AGghM3++OOPjm2qrKzUxnmPx4Mrr7wyhlemfBZqMsfHH38c+fn5MZUTDU6/MSB8PnLTTTchMzPT1O6cc85Bt27dAABLly7Fpk2bwq7v3r0b69atA6BszzrvvPMs23XCCSdo86v58+dj27ZtHK8mNfjkk09QU1MDABg6dCjatWuXlHr1WqZ3797YuXNnhM2BAwfw5JNP4pRTTtFCyouKinDKKafg2WefRXl5uWX5+rB43u1JEydO1LaPjho1Cj6fz9TuzDPP1LZ2WIWfx4QbKthuBYR3U7TZqtyff/4Ztupo9hBF0TYU5D//+Y9mO3v2bHbbbbeZlqP3kA4ePJirzddcc43pioPe8+p0v9V7ZYXf72c33nijY9mXXnopq6ystCxHtRs0aBDbuHEj69Wrl2VZHTt2bJQe5H79+mnvwcKFCyOu61fqncKKgsEgy8/P176z0YRoxEp5eXlYqIvV47zzzrNsj3HlfMaMGaxJkyaWZQ0dOtQyNFtl+vTprEWLFrZtysvLY//3f/9nWYb+t3Lw4EE2cOBA0++tntmzZ7OmTZta1nn00Uezbdu2aavkxvuDwSDr3LkzA5RQGKdQ8KqqKq2+Dh06uJZMhzHn6A63P7dAIGDbr4miyJ555hluD+ySJUu099Lq4fP52Jtvvml6/9tvv63ZDRgwgAUCAVO7iy++WLN76KGHbN/TdOBf//qX9nqcPLD6175ixYqY69y2bZtWjt12imjR969mHlj9mLR27VrbsvSepv79+0dcr6qqYh6PhwFgXq/X1gO7evVqrazhw4dH9Zqs+p54+e9//6uVffvtt9vaLlmyRLPt169fTPXpk1T16tUrpjL08Hhgf/31Vy2xkcfjYR9++GGEzb59+8JCFq0eN9xwA6utrTWt55VXXonq+/zBBx9o9sOGDYvmZYdx2mmnMQAsIyPDdm7mJnrPl5UH9vjjj9dsli5daluefv782muvhV1bvHixdu3EE090bNuFF16o2Vv18zwk2wN73HHHafVNmTIl7vKc5v3BYJD9/e9/12xOOukk09Dy999/X0umZPVo2bIl++WXX0zr8fv92u9PEASupHhdu3bVyrbazqJy0UUXaXOFAwcOOJbNQ8IF7M8//8ymTp0atqdw6tSpEQ/jAPXnn3+y5s2ba/cMHDiQjR07lk2aNIl99NFH7K677gqbjFp1inoBe8455zAArFWrVuz+++9nH330EZswYQK79dZbwzJnnXjiiSw3N5cNGzaMPfbYY+yDDz5gn376KXv55ZfZTTfdxHJycrQyzfbILFu2jE2dOlXrsACwt956K+I1G7Mc8ghYfXa3zMxMdvPNN7OJEyeyjz76iN15551hX+CzzjrLMkRGtenTpw/r2bMnEwSBDRs2jL3xxhtsypQp7Omnnw4LRbLq/BoqNTU1YRN+syx+kyZNiqrj1H++ixYtSkCr66iurmb9+/fX6uvatSt78MEH2YcffsgmT57MnnjiCda9e3ft+umnn24qsPQTj2HDhrHs7GyWlZXFbr75ZjZhwgQ2adIkds8994T9JuwWlD7//HMtlM/r9bIRI0aw//73v+zTTz9l77zzDhs1apS2F0MURdOJLWPh76X6uz7mmGPY2LFj2eTJk9nbb78dNtFbs2ZNWCbTPn36sBdeeIFNmTKFvfLKK+zkk0/WxFDbtm0tJ6H6vXsfffSR7Wfw4YcfaraPPvqorW20RCNg3fjcbr31Vs3O5/OxG2+8kU2cOJF9+OGHbPTo0dp7qw9DshKwv/zyi2YvCAI7++yz2bhx49iUKVPYhAkT2M033xz2WVmVow+RNWv7O++8EyZqzPY8pht6ccK7B3bw4MFx1fnuu+9qdbq1/UGfRbVly5amiydHHnmkZhONgM3LyzMd98477zzN5vrrr7fcAzt06FDtu/njjz9G9brU8t0WsDfffLPj70HF7/drn31OTg53mKwedbIJgD333HMxtroOJwE7e/ZsbYE3OzubTZ8+PcLm4MGDYRPmY445hj366KPs448/ZpMmTWIPPfSQ1nfbjckHDhxgPp9Pe38OHz5s23a9YJ42bVosL5/V1tayrKwsBoAdf/zxjDHG/vjjD3brrbeyrl27soyMDFZYWMhOOOEE9sgjjzjub+Vh3759YdllX3zxxQibYDCotcvj8Tj2kfoFyltuuSXsmj4sOFoBe9ttt0X12vTo9UeXLl1Y3759WUFBAfP5fKx169Zs6NCh7LnnnrNdtOJl5cqVWl2FhYWOi/U82M37q6urw8a5c88913Q720svvaTZZGdns6uvvpq9+eab7LPPPmNvvPEGGzZsmBbqm52dzdasWWPalnvuuUcr5+GHH7Ztt35f+LHHHuv4Op955hnNfvLkyY72PKTkMTrBYFBb5cjIyGCffvqpqd2ePXs0D60oimz16tURNnoBCyhC2GnvwQ8//GC7QnbgwAHN4yOKItu0aZOpndvH6EyePDls0Df7Em7ZsiXMs2E14dC/Jz6fz3S/woEDB8LKikd0VVRUmC5cxPKwO97ALfTiw2of1KOPPmo7KBu5+uqrNXuz1WU3Me7NNRuYamtrw9pkliTFeORChw4dTPeYLVq0SPNwNG3a1LRj37ZtmzZJ6dChA/vtt99M275o0SJWUFDAACURhNlKujGy484777T1cOo9tLfeequprbGvMJuE7tmzRxPYgwYNsqyPMcZOPfVUBiip5ePdJ2MkGgEb7+emH6iaNGliukq/bt061qpVq7A6zSbaZWVlrH379lpZP/30k+nr27Bhg7aAlpOTY5qE6NChQ6xdu3bae/zzzz9r1/744w9NnOfn53OtJtuxdu1a1/qveBMq6X/bkiSxK664gr3yyits8uTJbNy4cWFCbeDAgWzv3r1x1XfTTTdp5S1ZsiSqe+fMmaO97smTJ7OxY8eG/RazsrJMxQpjLGwB2C4ag7Hw/bIA2I4dOyJs1q9fHxb50bVrV/bII4+wDz74gL333nvs/vvv1zwQGRkZ7L333ovqtTKWOAGrfy94RLV+8Tnavkef0MXj8bA9e/bE2Oo67ATs559/ru0pLCwstPQQqYtjgiCwl156ydTm8OHD7Mwzz9TqmjFjhqmdPjrB7nPesmWLNvFv0aJFzItgy5cv1+obPnw4++CDDzThaPZo0qQJmzlzJlfZe/fu1X5jX3zxBXvnnXfYLbfcErYAf+aZZ5qOo1u3bo3qOzt79mzN/owzzrAsq7Cw0HHhRL9fdsiQIVyv1QzeY3QKCgri9pjqk4CNHj06rrJUrOb9paWlYb/7q666yvT7t2TJEm0MP/bYYyOSu6l8/fXX2u/aaoFBH33SqVMn289QnzDu5ZdfdnydP/30k2Z/1113OdrzkJICVn9e1yuvvGJr+8cff2irjWaJBvST0pycHLZz506u1+TExo0btXIff/xxUxu3BWyfPn2061aDPmPKpFTtdDt27GgaXqf/YT/22GOWZY0fP57Lzoloz+qyeyQ6TOTQoUOsdevWWn2fffaZqd1dd92l2fz3v/91LDda+1jZtWuXtsL817/+1da2trZWO/vtiCOOiLhuFEJ2CVxGjRplazd69Ght0u0UbqL3+nz88ccR1/W/leOPP95WvOq9Vr1797YMNzWWazWg6xNymYlCxpR+SbU577zzbF9rLEQrYOP53IYNG6ZdnzBhgmU533zzTVidZgL2hRde0K47JRaaNWuWZvvkk0+a2vz0009MFEXt8youLma1tbVhYXFuLBYZFzfieUTr1TPjpZdesj3PtEuXLmzSpEmWYZTRcNJJJ2nlRrv14cQTTzRtnyRJ7KyzzmK//vqr5b36cGm7jLr6JE7qw2wxmzFFkAwZMkQbH80et9xyi2n2VB6c+o5Y0Y/9PImZorXXM27cOO3eeEJm9VgJ2DfffFP7/bZt29bSM7Rs2TLt/rvvvtu2rkOHDmkLoEOHDjW10YfWnnrqqZZl6Repneq1Y8aMGVo5Xbt2DYuOePXVV9mUKVPYM888Exap6PV6Tbcu2ZVtfLRt25Y99thjlmOe3qOoeobtcLJXFxQB60zFjIWPyYB1Uige1Lll79692Z133snGjx/PPvvsM/bee++xMWPGRJy3G8vCFGPKXEkfFeo0h+HFbN6/d+/esN/w3XffbSkmL7jgAgYokSdmC3d6/v3vf2tlzp8/39RGv7Vj9uzZpjb6s199Ph9XSPDevXu1co2LH7GSkgJWXWnLz8/nOnJkwIABloOGfuLh5v4dxpjmcTj//PNNr7spYPXv8dFHH+1Y1hlnnKHZm3lO9RMJq1TtjIUL9csuu8yxXivSRcAGAoGwFVw78aHfi8yTWe3BBx/U7J966ik3mx2GPpzEajVbzwMPPGD5PdVPPPr06WNbjl50Gve0yLLMCgsLGaCsBjtRXl6urSqafd7634rTgKSfCJt5mfXoQxGtJqF6YXXvvfea2ugzeDp5j2IhGgEbz+dWXV2tLYa0bNnSVvwzFh72aSZg1YiZ7t27O75Gxhhr06YNA+y93frf1ciRI9m9996r/X/UqFFc9TiRagK2oqKCvfPOO7b7mo855pi4sw8zxrSwTK/XG/W9VgK2S5cu7IUXXrCd+GzcuFHrA+z62H/84x8R5dv1e7/99lvYoozxkZOTw2688caY8hQ49R2xcsQRR2hl84hr/aIDzxigR78Y4FbfZSZg9eKwR48elp4jxuqiDgRB4HJCXH755QxQPOlmUSWBQEDrWwRBMI2ik2U5LGQ5nozO+u1G6sPsWBu/3x+2oHjkkUc6ejKtBKwgCGzUqFGWIoQx5Tgo1f7kk092fB3r16/X7M36cP1n2r59e9PIlz179kTkXOEdD8woKyuzXQirrKwM8xb6fD7LqEk7Pv/8c+4xNRqM8/6NGzeGHX/09NNPW9576NAhbQHI6XgzxsIX1q2iBvVHIVnNtSdOnKjZ2GWI11NbW6vd061bN657nPAgBfn5558BAK1bt8a3337raC9JEgAlq1xVVRWysrJM7aI5bLisrAwff/wxpk+fjlWrVuHAgQOWGQnVg74TyeLFi7W/zzzzTEf7M888UzsIe9GiRTjhhBNM7bp3746mTZtalqM/xD2ebMSdOnXSspWlMmPGjMF3330HQMm4yZuNLZVQfz+A8t2cNm2arb3+c127dq1p9l4A6N+/v205dt+VNWvW4NChQwCAvLw8xzYBQG5uLkpKSrB27VpbO6ff9dKlS7W/TzvtNFtbNSu3Haeddhq6d++O9evXY+LEiXjiiSfg9Xq1636/X8tA3qZNG9tsjMkgns9t5cqVqK2tBQAMGjRI62utOOOMMyw/r9LSUvz2228AgJYtW3J/BwDYfgceffRRzJo1C4sWLQrLqNm5c2e8/vrrjnXw8Mgjj1hmyk82S5cuxfDhw7Fz504ce+yxePjhh3HKKaegoKAAu3fvxjfffINHHnkEK1euxPDhw/Hqq6/illtuibk+9XdrN05YsXDhQu3viooK/PHHH/jss8/w8ssv45577sGLL76IadOm4fjjj4+4t0uXLnjooYfw6KOPAgBuvPFGfPHFF7jwwgvRvHlz7Ny5E5MmTcLixYtRVFSE6upqHD58GICSmdhIIBDAnXfeiddeew0ejwf33nsvrr76anTr1g1+vx8rVqzAuHHjMHXqVIwfPx6LFy/Gd999hxYtWkT9utOVpUuXaic7tGrVyjLbcTzIsozbb78dr732GgCgX79+mD59Opo3b255jzqmNWnSJGwuZIWaJbampgabNm3CkUceGXZdkiRcffXVGDt2LBhjmDhxYsTv++eff8bGjRsBAH379kXv3r25X6MRWZbD/j9kyBDcd999EXYejwfjx4/HnDlzsGPHDqxduxbff/+97Zzv7LPP1uZWgUAA+/btw7x58zBu3Dh8/PHH+Pjjj3H77bfjxRdfhMeT2Cn/3XffjU8//RRr1qzB9u3bceyxx+K6667DCSecAFEUsWLFCrzzzjs4dOgQunTpomUyNvu98pKXl6dlljYjKysL7777Lnbt2oWZM2eitrYWzz77LN54442o6nn//fe1vxOVlXvlypU4++yzsWfPHkiShLffftu2rvnz52vfLUmSHMdUv9+v/W01pl5++eW4++67UV1djc8//xyvvvqqNg6r6OfF+uzFdni9XuTl5eHw4cPunWzihgp20wN7+PDhuFa3jatz+pVzu7BbPbNnz47Yz2X36NKli2k5bnpg9V61t956y7GsqVOnavYPPPBAxHX1Gk9yJtXWac9fuqP35LRs2ZL98ccftvapGkKsD5+M9mEM19WvnDsd/G63z+nrr7+OuU1moc3634pTRkf9eZM8IZWqV8vOi/L8889rZX7xxRdh1/QrtYnKfBuNBzaez03fjzz44IOO7dL3U0YPrD5rd7QPJ+/fxo0bwxLYeTwetmDBAsf2phsrV67U9s6ddNJJlhFKGzduZM2aNWOAEmUTTxZidYW/a9euMZdh5Ndff9U+ryZNmlh61WRZZg888IBtyG/Lli3ZwoULw5I6mvXdV1xxhXbdzrOo76ftQpfNUO9L1xDiW265RbvPKct1NOj7GDW8F1D2PjolUWKMad/lWB5WoZLr1q3TbDp37hzh6dR77V5//fWI+2fOnGm7112PPqszAMu8Lir6qCirKB8ngsFgWI4Ls8/T7RBixhjbvn0769u3r+1ncvbZZ4fldBkwYEBMrzEaFixYoNXXvn37qO7dtWuXFvadkZFhG7UYLfq5jPrbyMjI4EoYps9OHu3DKryesboIBrNxXL8vvHXr1o5RWXrUaJ7s7Gzue+xw5RxYNyktLY3rftVbYIaVZ1bPhg0bcN5552lnZvXo0UNbtZ00aRKmTp2qPdRzjdTz5RKJurIMADk5OY72+hUT/b1G4ln5akg88cQTeOqppwAAzZs3xw8//BB2HqAZTZo00f4+cOCAYx0HDx40vddt4vkN2f1+4vmuJKpNgPPvWo2c8Hg8YZ5SK3h+X9deey0yMjIAAOPHjw+7pv5fEATccMMNjmUlmng+N/25cdnZ2Y72du9dPN8B/cqxGc2bN0dhYaH2/y5duph69dKd+++/H1VVVQCAcePGWZ7Z2KVLF/zjH/8AoIxP0Xob9Kjf87KyspjLMNKnTx/ce++9AICSkhK8/PLLpnaCIOCpp57C8uXLcfPNN6NHjx7IyclBdnY2evXqhQcffBCrV6/G8ccfr7VPEAS0bNkyrJzFixfjk08+AaB4rC688ELLtj355JOat/mLL77Arl274n698ZKMsaa6uhqTJk3S/p8oL5P+zOmKigquyKxEjB89evTASSedBADYvHlz2BnRlZWV+PzzzwEAmZmZuPzyyyPuv+mmm3DRRRdZPvQYPwOnvkl/XfUCR4soinjttde0M49feeWVCM9XIr5X7dq1w8KFC/HRRx/h/PPP184jbdasGU4//XR89NFHmD59unbuOqB4+xPNCSecoM0Vtm/fHla/Ex988IE2zx8+fHhM0Sg8qL+NQCCA6upqR/tEzav0XlU1mkz/f/U3e/XVVztGZelR28ujxXhIuRBivfA69dRTMWfOnKTW//TTT2sThIceegiPP/44BEEwtdUfGJ5o8vLytL95DlfXTzz199YXlZWVWmhuvHTo0AHHHXecK2UBwLPPPot///vfAJQwue+//54rXEgvcLds2eJorx5ibrzXbdTfkCAICAQCKbFIof9dP/zww1pYYDJQRVUgEIDf73cUsTy/r2bNmuHiiy/Gxx9/jO+++w7btm1Dhw4dsHXrVnz//fcAlDCxzp07x/8C6hH958Yz4Nu9d/qyrr766oiBMR5uvfXWsN/X+vXr8a9//QvPPPOMK+WvW7cO69atc6WsgQMH2oZLWlFTU4MffvgBgNKnW20LURkyZAgeeOABAOAKu7SisLAQO3fudC/sK8TZZ5+t9bs//fSTre0xxxyDN9980/L6mjVrtAnmEUccoU3aVf73v/9pfw8ZMsS2rqysLJx00kn43//+B8YYli5dait4k0H37t3x448/AnAeawKBAHbu3AlA6fv0WwTsmDp1KkpKSgAAAwYMQM+ePWNurx1jxozB2rVrMXXqVCxYsABnnXUWZs6caTtPUbeTqH2sW1x33XX45ZdfAChhkYMGDQIAfP7559rC//Dhw+NecO7Ro0fY/43fTyP66/GIlNzcXAwcOBD/+9//UFNTg4ULF+Kcc87Rrrdr1w5ZWVmoqqrCzp07EQgEbMOMeecwkiRh1KhRGDVqlKXN77//rv3dr18/3pcUM6IoomnTptr8vqSkhGtRFkhO+DCg9FPnnXceKioqtPdu5MiRlvb6MfW9997jDud14owzzkD79u2xfft2zJkzB1u2bNG2AerH7WuvvZa7TL/fr+kS/WJzPKScgC0oKEBubi7Ky8uTsrfUiDpBaNGiBR577DFL8Xr48GFtb1AyaN26tfb3hg0bHO31Nm3atElIm6Jh3759EauSsXLNNde4tjf1xRdf1PaiFBQUYObMmTj22GO57tWL3GXLltnayrKM5cuXA1A6UuOeHDdp27YtVqxYAcYYdu7cifbt2yesrmjapJLs33WbNm20vZebNm2KmEzoKS4u1iZxTvz973/Hxx9/DFmW8d577+GRRx7Be++9p+1Juemmm+Jue32j7zv+/PNPR3s7m0R9B9R9XoDiuThw4AC2bt2K559/HmeddRZOP/30uOuYPHmya4suP/74I9deayMHDhzQPNF5eXmWY5OKfhLMsyhjRadOnbTJbVlZGfLz82MuS49esPD+5qzQL3Sb7YnXe1F52u/We+cWxrHGbuK4YsUKTcz36tXL8XuikqxJutfrxZQpU3DZZZfhyy+/5BKxbdu2RUlJCfbt28e1CMnLpZdeijFjxmge11dffRU5OTlh74WVKOBZtFZp0aIFWrZsib179wJQRGmzZs0s7fWi1UnsOmH3OxNFEb169cKyZcsQCASwcuVKW++wPp9EPHuCAeffrNvIshy2CMe7KPHLL7/gjz/+AKA4T5wWwOJh0KBBmD59Os4991xNxDLGcNlll5naJ2pMFUUR11xzDZ544glNtP7nP//B3LlztX3L0S5y6fVSx44d3WmnK6XwVKTzAjmFjJx66qkAlMkmz6TJTdQOpnPnzraeqx9++CFiY76RaF6zE/rVdtXDY4fe2+m0Ut9Yee2113D33XcDUDr5GTNmRLUSeNRRR6Fdu3YAFA+AXQfyyy+/aCFuJ598ckK94uoqMgDXvN7x0qdPH23iOGvWLMffjpv07dtX+1v1Yljh5AnSM3DgQBx11FEAlNVPv9+P9957D4AyYRk2bFj0jU0xjjnmGPh8PgDKhMNpu4SaOM6M5s2bo1evXgCU5D5uhKRu3rwZt956KwDF2zRp0iR89NFHkCQJsizj6quvDgt7S2f0wuvAgQOOIWZ6b4ndZNkJ/URVnci5gX5sj8UjrUe/oGkWtq9/77Zv3+5YnlvvnVucddZZ2t8zZ860tdUnvjz77LO5yt+2bZv2283JybH1+riBKmJHjBgBAJqIteoT1DGturo6LNQ3XvLz87U2lJeX44svvsCWLVs0cdWuXTvXBIve8+m04K2/Hm+0ltPvjPe7xRgLu8773TJjzZo1WLJkCQDFOz1w4MCYy+JlyZIlmve1bdu23N5XdUwHFOdJoiPaTj31VMyYMQO5ubkIBoO48sorMXnyZEtbdYHK7bmefpHsgw8+AGMspuRNKvqkUX/5y1/ibR6AJApYvavbaUXzmmuu0f5++OGHE9YmM9Qv9aZNmyxFZzAY1PZL2hHNa3aiU6dOWtjsypUrbUXs0qVLMXv2bADKSkcq7AVTww/ceLjhfR0/fjxGjx4NQBmwp0+fjgEDBkRVhiAIuOSSSwAonft///tfS9tXXnlF+zvRk4PLLrtMEx3PPPNMSngQ1JAiQJkcvvPOO0mrWy8kX3vtNVsRZrUXz4qbb74ZgDIpvvPOO7VFjGuuucY1L0F9kpGRoWUi3bt3r7aP0IwZM2Y4ZoxW+/bKykqMHTs2rrYFg0GMGjVKm/S+8sorOOKIIzBw4EA8+OCDAICdO3fib3/7W1z1AEoWYrf6r1i8r4CyyNahQwcAyv6lL7/80tZeP+nRL+JEy4knnqj9vWjRopjLMfL2229rf6t7EWPh/fff1ybDJ598smk/rhfhn332mW0fsGXLFu11iqLo6naVWDniiCO0TKsbNmzAjBkzTO2qq6vD9uRfeumlXOVPnDhRW1S8+OKLk7LtyOPxYPLkybj44osBKCL27LPPNhWxV199tfb3o48+6mreEf1EfMKECWF7/NwULPp9tPrvvpGqqip8+OGH2v/jEYq//vqrJoa9Xq/pAr3+O/LWW29ZLozNmDFDE8N9+/ZFly5dYmpTMBjEHXfcof1f3aufSBhj+M9//qP9nze7dmVlJT799FMAynzPrRBdJ0455RRMnz49TMTq96ertGjRQvt+zJs3z1UR27Vr1zBn4rfffqvtC8/Kyop6HqsfO/RjSly4kQmKJwvxHXfcodnMmTPHtrxgMBh2mO6YMWNYTU2NpX1lZSV7//332aRJkyKu6bMQ85y/N3ToUM1+3LhxEddra2vDstPBJuOg/kDwiRMnOtbtlKl5ypQp2vXWrVuztWvXRths3bo17OyyV1991bQs9TpPZuFobNOBiRMnalnUsrOz4zqXcefOnSw7O5shlPn0hx9+iLB5//33w7Lf8ZxtHC/33HOPVudpp53Gdu/ebWkbDAbZ999/zx5//PGIa3YZaqO13b59u5bhNyMjw/E3sXfvXvbYY4+xlStXRlyL5lxpxhgbOHCgZn/rrbeyYDAYYWM865Mnk2hJSYn2+esf69ev52pXrESThTjez+3nn3/Wrjdt2tT0APf169ez1q1bh70HZufAlpeXs44dOzJAOafw2WefNf0sVEpKStjLL7/Mvv/++4hr+kPZjdli/X6/dj44wJe5PR247777tNfUvHlz098GY4x9+OGHYZl7Fy9eHHOd27dv18q56qqrbG3ff/99NnPmTNuzK2tqasL6J5/Px9atW2dqu2bNGrZv3z7Lsj766CPtnOLMzEzLcvbv389ycnK0Om+55RbT7JkHDx4MO7v23HPPtX29RqLpO1T0vz+7+6ZNmxZmZzw3NRgMsuuvv97yN2GFLMusS5cu3POzWLDrY/x+P7v44ou16/3792elpaURZYwYMUKzGTlypKmNvswvvvjCcv6jR5Zl1qlTJ61PatmypVYPz5m70XDKKadoZZudAxsIBNiVV16p2ZxwwgkRNocPH2YPPPCA7e+CMcaWLVvGOnTo4Dg3Z4yx4cOHa3Y33HBDRJ+8devWsLK++eYby7J+/vlny8y0paWl7LLLLgubm9j1Ffpx3mw8OXz4MHvooYfY/v37LcuoqqoK+114vV7uz3XChAlhbU0EdnOZn3/+meXm5jJAySb/ySefRNgsW7aMeb1ebXyeMWOGbX1btmxh99xzD9u7d69j2/RzV/34fuWVV/K/wBAXXXQRA8BEUWQHDx6M+n4zkrYH9owzztC8UDfccAPuuusudOzYUctg1a1bN3Tr1g2Asur5xRdfYMCAAdi5cydefvllfPrpp7jkkktwzDHHoKCgAOXl5di2bRuWLl2KWbNmoaKiAo8//njc7Rw9erTm3bz77rvx008/4ayzzkKzZs2wYcMGfPDBB9iwYQNOO+00bNiwwTZs9IwzztD+vvfee7F//3706NFD2yTftm1bHH300dxtu/TSSzF16lRMnjwZu3fvxnHHHYdrr70WAwYMgCRJWLp0Kd59911tBfPMM8/UwusIhRkzZuD666/XVlivv/56lJSUOJ6fddxxx2neDz1t2rTBCy+8gFtuuQWBQADnnHMOrr76agwaNAiBQAAzZszQVq08Hg/efvtty8yhAML2K23evNnyTFYnnn76aaxYsQKzZs3Cjz/+iC5dumDEiBEYMGAAioqKUFtbiz179mje/D179uCMM87Av/71r5jq46Fdu3aYPHkyLrzwQtTU1OCaa67BuHHjcOGFF+KII45AVlYWSktLsX79eixcuBDz589HMBh0PLuVh7feegv9+vVDZWUlXn/9dSxYsABXXnkl2rVrh71792LKlCmYP38+BgwYgG3btmHnzp1cK+8FBQUYOXJk2J6pwYMH44gjjoi7zanCwIEDceutt+L1119HcXEx+vfvj2uuuQYDBw6EKIpYvHgx3n33XVRUVGD48OG2v6WcnBxMmzYNgwYNQllZGe6991689dZbGDFiBHr16oXc3FyUlZVh06ZNWLx4MX766SfU1taGeSQAZbVZjYJp165dhEfD4/Hg448/xrHHHouysjLcddddGDRokO3+53Tgvvvuw6efforNmzfjwIEDOOGEEzBy5EgMGjQI+fn52jmw+pX4m266Ka4kKe3atcPxxx+PZcuWYc6cOWCMWe6rXLFiBa677jq0a9cOQ4cOxV/+8he0aNECPp8Phw4dwm+//YapU6eG7Ul9/vnnLT+X6dOn46GHHsKQIUMwcOBArT/csmULpk2bpiWn8vl8mDRpkmU5zZs3x5NPPok777wTAPDGG29g7ty5uOKKK8LOgZ04cSL2798PQPltv/DCC5bvywsvvGCZ2KqkpCSiL+3cuXNcWcmHDRuGkSNHYsqUKdi6dSuOO+443HzzzTj66KNx8OBBfPDBB9r70bp1a4wbN46r3Dlz5mj72rp166Z5XZKFx+PBpEmTIAgCPvvsMyxcuFDbE6sP/X7vvfewfv16rFq1ClOmTMHMmTNx6aWXom/fvlpynp07d2L58uX4/vvvUVxczPV+C4KAa6+9VouyULeRnXLKKdqc1C3efvttnHzyyTh06BDuv/9+fPvtt7jkkktQVFSErVu3YuLEiVi9ejUAJeLCLNFdIBDA008/jeeeew6nnnoqTjzxRHTr1g35+fmoqanBtm3b8NNPP4Vtc+vZsyeef/55y3a99NJLWLBgAfbu3Yt3330Xq1evxlVXXYVmzZph1apVeOutt7StGKNGjbI92/zvf/87Dh06hPPOOw/HHXccioqKUFZWhhUrVmDKlCnYt28fACUqYvLkydx7tM0IBAJ48skn8cwzz2Dw4MHo378/unTpgvz8fBw+fBgrV67E5MmTtVNFAOD111/n/lyTtS/cioEDB+Lbb7/F2WefjfLyclx11VUAwr35xx13HN544w3ceOONKC4uxjnnnIOTTz4Z55xzDjp37gyv14tDhw5h3bp1mDdvnraPWe0L7bjkkkswevRolJeXY/fu3drz0XqiA4EA5s2bB0AJe3YriVPSPLCBQCDMC2J8mK3879q1i51xxhmW9+gfkiSx8ePHR5QRrQeWsfAzuMweJ598Mtu3b5/mSbBbNdWfp2R8GN8rHq+S3+9nf/vb3xzfj4svvtj2fEzVrrF5YI1eNt6H2eqfnueee05bBTN75OXlmUYIGNHfw3N2sB01NTXs9ttv184vc3pcffXVEWW46clTWbBgQdiKv90jNzeX/fbbbxFlROuBZUw531n1AJs9evfuzbZt26adVfaXv/yFq9xFixaFlWM8SzcRJNMDy5jSf1911VWW750oiuzZZ58NW7G1+82sW7cu7KxKu0dGRkbYqnJxcbHW94qiaNuvf/TRR1o5ffr0sY3kSRc2bdrkeM6i+rj99tuZ3++Pu079+b5z5861tBszZgx3n9qiRQvHPvG5555zLKdLly5s1qxZXK/j+eef1zy2do9OnTqxhQsX2palfgd5H1bjJ68HljHGqqurwzxYZo+uXbtaeubN0P+un3zySe77ooGnj/H7/ezSSy/V7E488cQIL2tpaSkbOXIk93vudAa2yubNmyPOGn7vvffifdmmLF68mHXu3Nm23e3bt2dLly41vb+4uDiq792IESO4vG2//vqr47h8xRVXOPahRx11FFeb7LymKk4e2Gjei2bNmrHPPvvMsU6VP//8U/tOFBQUOJ43Hys8c5l58+Zp52ZLkmQ6x/jqq6/Cogec3gue958xFhFx2qlTJ1uvuRnTp0/X7n/nnXeiuteOpAlYxhRX/tixY9mAAQNY06ZNwybWdpOsn376id18883sqKOOYk2aNGGSJLH8/HzWq1cvNnLkSPbGG2+wXbt2md4bi4BljLEZM2aw8847jzVv3px5vV7WunVrdvrpp7Px48drEwIeARsIBNgbb7zBBg8ezJo3b848Ho/lexXNpHzBggXshhtuYN26dWM5OTksKyuLde7cmV155ZVcg7nToBqrbaqTKAHLGGOrVq1it912G+vevTvLyclheXl5rHfv3uy+++5jW7Zscby/oqJCq8/n87kWZrFhwwZ2//33sxNPPJEVFRUxj8fDsrOzWefOndm5557LnnrqKVORyFhiBCxjymTlo48+Ypdeeinr3Lkzy83NZR6PhxUWFrK+ffuyG2+8kU2ZMoWVl5eb3h+LgGWMsT179rB//OMfrEePHiwrK4s1adKE9e3blz3//POsoqKCybLMsrKyGAA2ePBgrjJlWdYOIC8sLGTV1dVRtSkWki1gVb7++mt23nnnsaKiIpaRkcE6dOjALr/8cvbLL78wxhi3gGVMed/+7//+j11zzTWse/fuLD8/n0mSxJo0acKOOeYYdvXVV7MJEyZEHBqvn8Def//9tnUwxtioUaM0+3vuucfRPh0IBALsyy+/ZJdddhnr1q0by83N1d674447jt1xxx1RiRgniouLtRDcG2+80dKuvLycffXVV+zuu+9mgwcPZu3atWOZmZlMkiRWUFDAevbsyS677DI2ceJEy9+2nu3bt7OXXnqJDRs2jHXv3p0VFBSwzMxM1qFDB3beeeexd999N+otGVu2bGEPP/wwGzhwICsqKmJer5dlZmaydu3asQsuuICNHz+ea7JaHwJWZcaMGeySSy5h7du3ZxkZGax58+ZswIABbNy4cVzvq0pZWZm2BUIURbZjxw7ue6OBt48JBAJhv28zEcuYIrbuvPNO1qdPH9asWTPm8XhYbm4uO+KII9jw4cPZuHHj2MaNG6Nq4+mnn67Vm5OTww4fPhzty+SmvLycvfTSS+yUU05hLVu2ZF6vlzVv3pyddtpp7OWXX3b8/v3+++/spZdeYpdddhk7+uijtXlxZmYma9WqFRs0aBC77777ou4DysvL2QsvvMAGDBjAmjdvzjIyMlj79u3ZJZdc4hiaqjJnzhx23333sZNPPln7fhYUFLAjjzyS3XLLLWzevHnc7XESsMFgkP3444/sqaeeYhdeeCE76qijtPczNzeXderUiV100UXszTffjOp3wRhj//rXv7S6b7755qjujQbeucz8+fMdRWxlZSV788032YUXXsjat2/PsrKymM/nY0VFRWzAgAFs9OjR7Ouvv45qIXfu3Llh/ZjTHMGMK664ggFKiHO0n4MdAmNxpsclCMIVZs6cqW3Iv+OOO6JOKETEz6pVq7QMebyfwQ8//IChQ4cCUM44fOmllxLZRIKoF8aMGYNXXnkFTZo0wa5du1w7jJ4gCIJomJSVlaFNmzaoqKjAfffdF3fyRj1Jy0JMEIQ96hnEeXl5Cd2LSljz6quvan/z7r194403tL8bwtmvBGHGfffdh6ysLJSUlIR95wmCIAjCjFdeeQUVFRXIy8tzPeM0CViCSBFUAXv33XejqKionlvT8Pj5559tz5997bXXtGRAbdu2xfnnn+9Y5ooVK7SkRUOGDNHOOSWIhkabNm0wZswYAMCzzz6LysrKem4RQRAEkaqUlZXhxRdfBAD885//jPu8byMUQkwQKcCBAwfQokULNG/eHBs3bkzKOXyNjW7duqG6uhrnnHMO+vTpg6KiIvj9fmzcuBFTp07F8uXLNduvv/7aUsB+++23kGUZ69evx7PPPqtl55s3bx5OPvnkpLwWgqgPKioq0KNHD+zcuRPPP/887rnnnvpuEkEQBJGCPPHEE/j3v/+Nzp074/fff7c9gSMWSMASBNEo6NatGzZu3Ghrk5WVhfHjx2PUqFGWNmZp/3n3y3733Xcxe66aN2+OgQMHxnQvQRAEQRBEQ4EELEEQjYKFCxfiiy++wMKFC7Fz504cPHgQlZWVaNq0Kbp3744hQ4bglltuQcuWLW3LUQVsbm4uunfvjltuuQXXX38917mxnTp1wtatW2Nq/6BBg/DTTz/FdC9BEARBEERDwVPfDSAIgkgG/fv3R//+/eMuh9b8CIIgCIIg6g/ywBIEQRAEQRAEQRBpAWUhJgiCIAiCIAiCINICErAEQRAEQRAEQRBEWkACliAIgiAIgiAIgkgLKIkTQRAE0aBgjKG6uhoVFRWoqqpCZWVlxKOqqgq1tbXao6amxvb/wWAQsiwjGAxqD/X/xn9VRFGEIAi2D1EU4fV6tYfH47H9f0ZGBrKyspCVlYXMzExkZmZa/p2bm4vc3Fx4vd56/DQIgiAIwl1IwBIEQRApB2MMVVVVKC0tRVlZGQ4fPhz2r9nf5eXlmjiVZbm+X0LKkJGRoYlZ9ZGXlxfx/yZNmoQ9cnNzTc89JgiCIIj6hLIQEwRBEEmBMYby8nIUFxfj0KFDYf+aPVdTUxNXfYIgICsrCzk5OcjKykJ2drb2yMrKwqyP5gOyAEEGIAOQhdD/hbD/QxYgqCMlEwCG0CMk7ljd84L6f90l6DWgoBty1efF0I0CA1P/DvuXgYmheyUAEsO5N5+OqqoqVFdXo7q6OuJv9REPkiShoKBAE7Tq34WFhWjWrBmaN2+u/VtQUMB1FjJBEARBxAsJWIIgCCJuGGMoKyvD/v37sX//fuzbtw/79u3T/q8+ohVVPp8P+fn5yMvLQ35+PvLz8zH/82UQAgIQECEERN2/APyAEBSAYEh4IkoPYjQex3iHTzfrMimLgQESAzwymFcAJBnMIwMSU/71yLjorrNx+PBhHD58GCUlJdqjsrIyqpciSVKEqFUfLVu2RKtWrVBUVEThzARBEETckIAlCIIgHGGMobS0FLt27cLu3bvDHnv27MG+fftQW1vLVVZOTg6aNm2KwsJCrJ79B+CXIPhFCLUi4Bch+D0Q/CJQGxKjycYoBpM9TLpVfxzhv0wUAK8M5pUBTwDMGxK/Xhln/30wDh48iIMHD+LAgQMoKSkBz1RCEAQ0b94cLVq0QKtWrTRhq/7bqlUrZGVlxdxmgiAIonFAApYgCIIAAASDQezZswfbt2/H9u3bw8Tqnj17uLynTZs2RVFREYqKirDg8+UQakQItZIiTmsk5W85JKyEUMgpk2MTafUtNJOB/jW68R7Fi6ALE2bKPmMmMEXs+oJgPhnwybj8kWE4ePAg9u3bh71792Lv3r1cCxyFhYVo164d2rZtq/2r/p2Tk+PuayEIgiDSEhKwBEEQjQjGGEpKSrBt2zZNqOoFq9/vt7xX9aC1bt0aq39YD6FaglAjQaj2QKgRgVoJAjOIU8uGOIhWHuHV0Icvp/cghrBiV3H6jIE6kYuQyM0IgmUo/w67Zyj27NmjCdzy8nLbopo0aaKJ2Xbt2qFjx47o1KkT2rZtS6HJBEEQjQgSsARBEA0QxhgOHjyITZs2YfPmzdi8eTO2bNmCbdu22QoFn8+nCYT5nywLCVQJUMUq04kiHgET1iidaI1FXDWm4Sqe96c+MgdH+10ANHGr3sskGSwzAJYZxDXP/hU7d+7Ezp07sWPHDhQXF1sWI0kS2rZti06dOqFjx46asO3QoQMyMzNjeTUEQRBECkMCliAIIs0pKSnB5s2bNbG6ZcsWbNq0yVKoCoKAVq1aoX379lg2bTWEKglClQdCtQeoEa0TH0UjUphLx9jQEFU/gjRWYhGyHCjiNgiWGcD1L1yCbdu2YevWrdiyZYtlaLv6Pe/cuTO6du2Krl27olu3bmjbti0kSUpIOwmCIIjEQwKWIAgiTWCMYdeuXdiwYQM2bNiA9evXY8OGDTh06JCpveqZ2vHrPkWgVnggVIZCflkUoshKlLglUiPKpWHJEhKzYTAwwCeDZfkhZwdw3pjB2LJlC7Zu3YrS0lLTezIzM9G5c2d069YNXbp0Qbdu3dC1a1fk5uYmvL0EQRBE/JCAJQiCSEECgQC2bt2qidQNGzbgzz//REVFhal9mzZtsGf1IQiVntDDq4hWJsQuNAUxcSLVCA1FsZEOgjYJQtYM5gmCZQfAsgM4Z8yp+PPPP7Fp0ybL84VbtWqF7t27o2fPnujZsyd69OiBvLy8JLeaIAiCcIIELEEQRD3DGMPu3bvx+++/4/fff8fatWuxYcMG06ytXq8XXbp0wYa52yFWeCGUexXBKifZS+oWNAS5RzLFrD6DdCz31RMMTAlFzvHj8ifOx8aNG/Hnn39i3759pvZt27YNE7Tdu3dHdnZ2kltNEARB6CEBSxAEkWTKysqwbt26MMFqFu6YnZ2Nbt26Yc23GyFUeJVHFWf4byoLVxp2Ek99iFk9Tt+/ehayRphHBsv242+vXYp169bhjz/+wK5duyLsBEFAx44dceSRR6J3797o3bs3OnbsCFFMrddDEATRkCEBSxAEkUAYY9i2bRtWrVqFlStXYs2aNdixY0eEncfjQbdu3bD+x+0QD3shlPuUY2qsEirZVpqi4pWGm/ohWWI2imN1orqnnmAeGSynFte8+Ff88ccfWLduHfbv3x9hl5ubi6OOOkoTtEceeSR5aQmCIBIICViCIAgXCQQCWL9+PVatWoXffvsNv/32m6l3tW3btti94hCEw16I5T7FuxpNYiUzSLgSTiRDzMZyvFIKC1k9zBuEnOvH5U+dh9WrV2Pt2rWorq4OsxFFEV27dtVE7bHHHosWLVrUU4sJgiAaHiRgCYIg4qCmpgarV6/GypUrsWrVKqxZsyZiQuvz+XDkkUdi9f82QijzKYI14PKEPRXFKw0vqU2ixWwSRKkg1r0GJjt/36K1199jZs/AwHL8uPW9UVizZg1Wr16NPXv2RNi1bdsWffr0wbHHHos+ffqgqKiIq26CIAgiEhKwBEEQURAIBPDHH39g2bJl+PXXX7F69eqIZEu5ubmo3OaHcNgHsSxDSbQUr3fVChKuRLw0MCGrx0qkJtKe+YJg+X5c9K8h+O2337B+/XrIcvjvlAQtQRBE7JCAJQiCsEGWZWzevFkTrCtWrEBlZWWYTbNmzVC8rhJimQ/CYZ+SFTiWvavRkmrilYaT9CeRYjbBQtZKZOrRC85k2TNJhpxXixGPDMWKFSssBW2/fv3Qr18/9OnTh86kJQiCsIEELEEQhIGDBw9i8eLFWLRoEX799VeUlJSEXc/Ly0PFFj/E0gwIpT4lM3AyBKueVBKvNIw0PBq4kK1PnAStJEno1asX+vXrhxNOOAE9evSAJEn12GKCIIjUggQsQRCNnkAggDVr1mDRokVYtGgRNmzYEHY9MzMTNbsZxNIMiKWhhEsGwWq3T85VeIRrrGd0Rt0WGj4aJKmUtTjmolNbxOphkgw5vwYXPDAYS5Yswfbt28Ou5+bmom/fvpqHtlWrVvXUUoIgiNSABCxBEI2S/fv3a17WpUuXory8POx6jx498OesXZBKM4CyyD2sZhPkehOvRiFAwpWIlWSeH6vVSUJWj5wRwB0fX4UlS5Zg2bJlEX1T586dcdJJJ+Gkk05Cr169yDtLEESjgwQsQRCNAsYYNmzYgHnz5mH+/PkRXtb8/HyUb/JDKslUQoP9yqSQdw9c0sSr02Q/keKVhouGT30IWK3uxAjZdBSxKgwMLNePK8ddgCVLluD3339HMBjUrhcUFKB///446aSTcMIJJyAnJ6ceW0sQBJEcSMASBNFgCQQCWLlyJebNm4d58+Zh79692jVBENCjRw9s+GEnpJJMJVNwjPtYEy5e+RqR4PJT4DUSiaU+xavWBvLG2sEkGfd+9TcsWLAACxcuDPPOejweHHPMMTjppJNw8skno02bNvXYUoIgiMRBApYgiAZFZWUlFi9ejHnz5uGXX34Jm+BlZGTAv1uAWJwJqTgTQsCd0Dve8ycTKnQTJWBpiGh8NGAhmzARG82+c5dsmcDAcmtx0WNn4JdffonYO3vEEUdg0KBBGDRoEDp27OhcF0EQRJpAApYgiLSnoqIC8+fPx48//oglS5aEnctaUFCA8g1+iMWh0GDZ3Ykx77mRaSdeaWggGqiQTbiI1cO7b93KNooy5awgbnx7BH755Rf89ttvYaHGnTp1wuDBgzFo0CB06dIFQip8tgRBEDFCApYgiLSksrISCxYswOzZs7Fo0aIw0dq2bVvsWVKqeFkP+xJ6xA3PHlkSr0RaU99iJ91FrIr+txrNXvYYbJkniDFTrsScOXOwbNkyBAIBzaRdu3aaZ7ZHjx4kZgmCSDtIwBIEkTZUVVVh4cKFmD17NhYsWBAmWtu3b49dC0ogHcyqn3NZLUiYeCXhSiSb+hY66SJk3W4nk+Mqk0ky/jH1WsyZMweLFy+OWOwbMmQIhgwZQmHGBEGkDSRgCYJIaQKBAJYsWYLvvvsO8+fPR3V1tXatbdu22LOoDNKhLAiVBtGqn/AlOsGRDQkRsCReifqgvgUsUL8iNpa9qykGE2Xc/83fMHfuXCxYsCCsP+3evTuGDBmCM844A0VFRfXYSoIgCHtIwBIEkXIwxrB+/XrMnDkTs2bNQnFxsXatTZs22Lv0MKQDmRAqvdaiVSvMZrKZYJGbFuKVhgCCl1QQsCouC8SoPLG85y67LWL1bXShb2GijHu/uh4//PADFi9erO2ZFQQBxx57LIYOHYpBgwYhLy8v7roIgiDchAQsQRApw969e/H999/ju+++w5YtW7TnmzRpgsNrA5AOZkOo8EHQd1vRnosarciNERKvRIMilcSrSiqJWBWe/iYezNrohpj1BHHbx5fhhx9+wG+//aY97/V6MWDAAJx33nno168fPB5P3HURBEHECwlYgiDqlerqavz444+YOXMmli9fDrVL8vl8COyWIB3IgViaCYHFMIFWJ5O8iVVcwnXxSiHDRH2TigIWSI2QYit4+p9YsGufC32P7Avg2jcuwPfff4/Nmzdrzzdr1gxnnXUWzj33XHTo0CHuegiCIGKFBCxBEPXC+vXr8c033+D7779HRUWF9rxQlgHpQDakQ9kQgknYR+ayOEx58UpdPhEtqSpeVVLRE5toeNsYZ38kZ9Vi+BODMHPmTJSWlmrPH3300Tj33HNx2mmnITs7O646CIIgooUELEEQSaOiogI//PADvvnmG/zxxx/a861bt8b+xRUQD+RArDUJUVMna06TMV47FZf3x9qJV3VSHJXAJfFKpAKpLmCBqISkXqDynuPsVt1c8PRjsWRP5i3PxI4JDP+aeTOmT5+ORYsWQZaVvikrKwuDBw/G+eefj969e9ORPARBJAUSsARBJBTGGNauXYuvvvoKP/74I6qqqgAAHo8H8j4fpH25EEtNzmo1TtCsJl+8dqaN49yvxiEkzSbCxkkwiVci7UgnQRKjiFUx/j7rTcTy7HON9/gfs76Ic38tywji2jcuwPTp07F9+3bt+a5du2L48OEYOnQoeWUJgkgoJGAJgkgI1dXV+P777/Hll19i48aN2vMdOnTArnllkA7mQAhIypP6SZLVxIxnAheLQIw2CZSlGQsVZ95+Eq9EWpJOAhaIW8SqOP2e463bEZ59rm6cYcvT91rYMTCMW3w//ve//2HWrFmoqakBAGRnZ+Oss87C8OHD0blz5/jbSBAEYYAELEEQrrJ7925MmzYN33zzDQ4fPgwglJBplwee/bkQyjPCva0yc56I8U7YUnT/ab2JV+reiXhIN/Gqh1NMRiVQXayXC7fb5gRPX2xhxyQZN743HNOmTcOOHTu054899lgMGzYMp556Krxer9stJgiikUICliCIuGGM4ddff8UXX3yBX375Rdsf1bp1a+xfVAXpQK5pQiZBEOBqF+TmHlknIalOVGMML46pzmigrp2Il3QWsEBqi1hR4O+vnKrj7EfdtLOyYWB4+ue7MG3aNMyfP187W7awsBDDhg3D8OHD0bRpU8c2EARB2EECliCImKmqqsJ3332HL774IuzcVrE0E9LeXIilWRF7W/VJPuy6H9WOu4uKd4+sXtxaCUnjxJTEK9GQSWcBG4Mn1FUhyytiVXj7L6vqouxX7ezcKot5A7j8pTPx1Vdf4dChQwCUaJwzzzwTl156KTp16mRZNkEQhB0kYAmCiJri4mJ8+eWXmDp1KsrKygAo2Shrt3rg2ZcHsdobMaExy07pZBNV9xTLPlozW6OAjSOxk2Lmgrc3GqhLJ9ygkYnXultdet28bXDayx9Fe2LpY81s3CxLEAQwgeG+r67DlClTsG7dOu3aiSeeiEsvvRR9+/al7MUEQUQFCViCILjZsWMHPv30U0yfPh21tbUAgLZt22LfgkpIB+vChPXdit3ERLWzsona+xrvXlpVvLqc2MmNsvgqpO6ccIl0FhRx7kNNCRGrwrsvFXx9La+dWzZ6OwaGFxbdhylTpuDnn3/WbLp06YKRI0fijDPOgM/nsyyTIAhChQQsQRCOrF27FpMmTcLcuXO1/a1ChQ/e3fkQS7Ijj8DhgDHGPQFyBaeJoMuhviReibSlEYvXumJSSMRGU51Ln51T/8xrY4Wc4cf5jwzA9OnTtaPVCgsLMXLkSAwbNoyO4SEIwhYSsARBmMIYw+LFi/HJJ59g+fLl2vNiSRY8e/IhGrMJA4AoArKDKBNDEzonO7izR5Y7UZSLAjap4pW6cCIaBMH+O5PO4hVwNQtwUkWsiwmbuEQlb1/tVn9uURaTZFz39vn4/PPPsX//fgBAXl4eRowYgYsvvhj5+fn25RIE0SghAUsQRBiMMfzyyy+YOHGitl9JkiRgXxY8u/MgVpuEeIm6CZrVRCYaG1nm2pcVb7KSMFwSnXGJ1ygyGyt21H0TUaL/DZl9f9JdwAINWsRGm4TJvj6X++04bJjAcOdnV+Djjz/G9u3bASh5FYYNG4ZLL70UzZs3Ny+XIIhGCQlYgiAAALIsY/78+ZgwYQI2bNgAAMjMzERgqw+efQUQ/J7IiYdoMilzw8YgYHn3yPImKIlsj42NetxFosRrDJmNFTvquokoMfsd6b9HDUG86knHcOIoRawKT18YWVeC+u84bBgYHvj6Onz00UfaOOTz+XDuuefiqquuQlFRUWQ5BEE0OkjAEkQjR5ZlzJ07FxMnTsTGjRsBKCvf/s0h4RqQVMO6m8wmI27Z6MRrvElJYhavxuMtEiFezSazJF6JRGInahhreAIWaFQiFuBP1lRXVwL78jhsGBge/f4WfPjhh1i9ejUARchecMEFuPLKK9GsWTPzsgiCaBSQgCWIRgpjDAsWLMD48eM14ZqdnY3ajV5FuAal8Btk2XoC4qYNx95YXqIWsFZHWrghYJ2yG5N4JRJNQxSoPKSKiHUxoZNrx84ko0+Pw4aB4Zmf78K7776L3377DQCQkZGB4cOH44orrkDTpk3tyyQIokFCApYgGiHLly/H22+/jTVr1gAAcnJyUPOnF559+ZHCVZ0o8SR+sbLhKUPFTsBGkTCEBYOWl3kTQAEAbMqBIAJMthWvgijweWcBPhFLXTZhhlNyJtWmseKCiOUSsKE+Ie52uCVieRIxSRLfdydemzjKYGB4es4YvPPOO9q4lZmZib/+9a+44oorKNkTQTQySMASRCNi7dq1GD9+PJYuXQpAWckObsuEZ4+Jx1UQ6iY/Vsle9IKSJyEMj8A1m2yJorONaqdWZSI8o07sZCZe9RNQC/Gqn+i6Kl41W+q2CR1OiZmMNo2VZIpYFbPfdTJFLE+CJUnX9/N8f5JlYyFkH591G959910tyWBubi5GjRqFiy++GBkZGeZlEgTRoCABSxCNgO3bt+Ott97C3LlzAQAejwdsTw68uwsg+C2Eq4pRnBqvW9mYYexujJMZs8QfTjaqnb4anfCMeX+sUbyaJFsyilPj5DYh4lW7h7puIoRTciYrm8ZIfYhYwDl5mxUOdcW0z9WsD5UM40AsC5Kxfg+dbMyErAA8MvPmsC0wRUVFuOGGG3DWWWcpmfMJgmiwkIAliAZMaWkpJkyYgGnTpiEYDEIQBIgHc+HZWwix1hsuPM2EKRCdjVOSGBWrSYw6sTIKVysbs2pCwpM3AZQlwaD1JFMnXq0mswkVr9q91H0T4FswIgFbR32JWBX1N5/ghE7h5TgkULISfNEuTDrZuFGGzoaB4Z7Pr8A777yDvXv3AgA6d+6Mm2++GQMGDHBvrzBBECkFCViCaIDU1tbiyy+/xAcffIDy8nIAgFiWDe+uZhBrdCFWDmKQy4Y36ZKdwFWFqZVwNdrY4dAeV86EdRCdSRGvAAlYQsFpkt5QMwzHQ32L2GhwO5TYDFm2FrGAswBVbeL9LsZYBhNkXP/2ufjwww9x+PBhAECfPn0wevRodOvWzb48giDSDhKwBNGAYIxhzpw5ePPNN7Fr1y4AgFDlg3dXc0jl2RH2giDwCTon4s0czJNoBHAWbE4JoAzny5qXEcNZrqYm8YlgLqj7bvjwJMYhoidZmYldqichocSRhfCVEWd/L0iSbZK9eMpgUhB/HXsyPv/8c9TW1kIURZx//vn429/+hiZNmsRVJ0EQqQMJWIJoIGzatAkvvfQSVqxYAQBo1qwZylZIkA7lQUD4xIQnC6+TTdh1i32pmkDmSLpka2OVJEppSN3fZpMiXaIpp9ertDV+4UnilXAN3gzfBD9uiUqtuCSI2GR4YZVC+Mtw6tctrgs6T6+VkFVtbLPJ29h88OczePPNNzFr1iwASqKna6+9FhdddBG8Xq9lmQRBpAckYAkizSkvL8d7772HqVOnIhgMhjIL58C7vykQjJyMOGXiNU6CjDYR95skXuKxCcMpMRNPkijjJMakDufXEr/3lSt8mEKHCV7sEtqQeI2NZAtYt+pMJS+snhj6d8EQrmwUoU7XjTYR10Pj0DNz7sArr7yCDRs2AADat2+P0aNHo3///hHlEQSRPpCAJYg0RZZlfPfdd3jzzTdx6NAhAIBUmgPvriKIfmWFWf/zNpvcRHPdzCZMnBqEq9l1mxdT97ddhmO7yZU6gbFIMmX3WtNKvAIkYBsTdllbScBGj8vita7YNBGxbnth9dj144brRoEKOItYo43tdd14xMAw+qO/Yvz48SguLgYAnHrqqbjjjjvQokUL89dCEERKQwKWINKQjRs34oUXXsDq1asBAEKNF76dRZDKczQb9aftlI2XJ1uv01E0ttedEi+5kSQqGLS9n6+dFDpMpCB2Sc1IwEZPggSsUnQDCSV2I6uxQ59vJj5VtEzyDjaOZRijgcQgLny8Hz7//HMEg0FkZWXh+uuvx4gRI+DxeKzbSxBEykECliDSiJqaGkyYMAGTJ0/WBuDApmx4DjSFwFJzMht3F5Pg5E5J876SeCVigUSqeyRQvCrFkxc2GurriJvXlj2IcePGYdWqVQCAbt264e6770bv3r3rpT0EQUQPCViCSBOWLVuG559/Hjt37gQQGS6soU5urAQVz3VBVARXrGWEbFjQIolHNEmkrJJ4OCV3UuEQwKbt1L9GEq9EInBK0KS3IdwhTgGpilSr37wrIpa3D7eroj69sLo22Pbxkug4hgBwtrG7Lkmmyf3UsOI333wTZWVlAIALLrgAt9xyC3Jzc63LIwgiJSABSxApTmlpKd544w1Mnz4dACD4PfDuagFPaU64oSo8AXPx6XRdb+N03amMEEZhKAhC2KTEKYmUqXg1TprMbPTCwOlcWKN41U8O7cRr6H2ipE1EzOhFgtlnTOI1MbgkYoFIIcslYHnaYOyH7K6bFZ8EL6yWBdghU72VjSDpE/XFseBqV4YaZmwxXjEfw2l3d9fG16KiIvzjH//AgAEDzOsjCCIlIAFLECnMTz/9hHHjxqGkpASCIEA6WADv3iIIQd2qs15UqhgHa6ON29dVG30TdMIwTLiqmAjYiORKenFqNuEyilejIIhGvJpNCI0C1uR9Trj3lbrohotdhmGz64Q7uBDGaxSq+n7AVS+sHoc+N6KKBHthIzIFx5LVXjK0wek1RnvduE/WOHaFro+ddSueeeYZLcLprLPOwujRo5Gfnw+CIFIPErAEkYKUlZXhpZdewg8//AAAEKp98O1qBakqO3wANhOvQJ1Noq+rbTBBFYc84tU0A7JdVmEV1cYqUyuPgLWaBOrFq8V7QKHDRFzYJWiyu07ETwJELFAnZBMmYgHHvlcrPoleWBWnRUmjXYSAVXF6jbzXzRI9WYhYJsi48NE++OyzzyDLMgoLC3HXXXdh0KBB5nUQBFFvkIAliBTjl19+wbPPPotDhw5BFEWIe5vCu78ZBKYL3QWsJz9O190oQy9wrbC7HhKwPBmQLQkG7QWAk3i1K18Vrzavn0KHibixEweUZTjxuBhKnLA2xNrHqsUn2Qurwp0F30rAAvGNMXobq2zF6jhmuP7C3DEYO3Ystm7dCgA444wzcPfddyMvL8++LoIgkgYJWIJIEcrLy/Hqq6/W7XWt8cG3szWkqqx6bpkJbngW7fY0WeyPDb/foQ0OyZ+cy7e5Ho+AVfcYO95LXXODhwRq/VPfIjYeActTfD0JWG7cWARwIobPmAkyLn76RHzyyScIBoMoKirCgw8+iOOPPz4BDSQIIlpIwBJECrBq1So89thj2Lt3r7LXdX8TePcV1XldgVA4rxDyLlolWIrzuopTwgzTxEliXUZIh8RHtvXbiFctq6WVeNVnJjbaqBO1BIpXQRTqrhnfA0E0f94O6p4bByRk6weXjtUhEesgYu0SMRkTA5qhlm+1KMl7PYZEUeN+vhNPPPEEduzYAQC49NJLceONNyIjI8O8LIIgkgIJWIKoR4LBID788ENMmDABsixDqPXCt6sNpAqD11UVn4C5AE30ddWmruHh11TxClgLWKcMySoO2YlNBax+AibL4e0zTs4SIGAjjtawSvwUi+eauujGAYnY5OLymbBxidjGImAB++z4gHkfqS/fTKRGcz2GxVvmAYb+szu++uorAEDnzp3x8MMPo2vXrpFlEQSRFEjAEkQ9sXfvXjzxxBNYuXIlAEAqLYBvbysIQd3ZeHphqaIXmG5cB0yy9xoyEBvRkieJkdftMveaZTc23GuXBIRLvOptEixeTTOROiR+ihrqohsPJGKTRyoJWKUA++vpLGLtMirbJQpUMStbL1Rjue40xoUleVLa9++pV+GZZ55BSUkJvF4vbrvtNlx00UXO7y1BEK5DApYg6oE5c+bg2WefxeHDh5GVlYXgxqbwlDVRLqoC0kx8Jvq6mbg1EgyaC1eAK3MvT3InwCIzsZ04Beq8r1aTMScByyle7bKP2t0fM9RNNy5oQpxYXBavdcWmrohNKS+sHrts90Bdv2knUq3qdrrOncm4rm2T/ngazzzzDH755RcAwODBg3HvvfciNzfXvAyCIBICCViCSCJ+vx+vv/46vvjiCwCAWJUJ3652EP2+OqNEHqGh/7k7iVsrHASobfZewFnIWQhBTbzaiFNboRev9xWwbbutgKVsxES0kIhNHAkSsErRDTSUOFECVivAYcywKz8YtL8eDzILE7AAwMBww6tn4I033kAwGESbNm3w6KOPokePHolpA0EQEZCAJYgksX//fvznP//B6tWrAQCeg83g3d8CAnQDeyyJfnjhKVsQAdkiEYZ+j6wd8Qg5BwFp7z11ELDQnS0bS/2xileHe7mhrrpxQQI2MSRQvCrFJ9ALm85hxJJk3w9Kkn3/6/FYj00AIEr21+PB4zHdWzvupzvwyCOPYM+ePfB6vbj99tsxfPhwCikmiCRAApYgksCvv/6KRx99FMXFxUBQhG93W3jKdWfKOWXwTcZ1wHwCIAh12YOtugu77MZAfNmJdSRCwNZlNk6Q99XhXm6oq04vnBZ8eK8T7pLOAhZI7zBi9bpTtmGr/tTjCV03GadEyfqa/t5AIPrrgmCZ6ZiJQRx/fRHmzZsHABgyZAjuvfdeZGZmmtdDEIQrkIAliATCGMOkSZPw9ttvK1mGqzORsVMXMuyUvTfR11UbFePgr4pXwFrAOmU31sq2aJ9KggWslXjVyiUBS0SDnQA121sez3XCPUjA2pSdJAELmPeJqoi06o/V64C9iLW6rr/fKFT1IpXnum48MYYUH3HEEXjyySfRqlWryDYQBOEKJGAJIkFUV1fj6aefxo8//ggAkEqbwLenlXK2q1P23kRfV22MqIO+XriqGAWsXQIoIPr6HQSs297XyOzGJGAJToxZu+2um9mQgK0/GrGABep5H6zZdX3fqBeY6m9C37fqr6vohapolm1Yd93sfr1QjeW6blx5eubNePjhh1FaWoqCggI89thj6NOnT+Q9BEHEDQlYgkgA+/fvx0MPPYR169bB4/FA2NECnpICCIJkn73XKbtvvNcB6wmSHDQXrkC4eLVL/gTEl53YBrcErHV2YxKwBCd2AtRqku+UnC2RyduIOkjAOpSfRC+sHrWPNIpEo5A1E5FAnVA1E7H661b3BwKRXtZorofGl4mrHsWDDz6IDRs2QJIk3HbbbRgxYgTtiyUIlyEBSxAus27dOjzwwAM4ePAgEJSQsasjpOqc+m4Wn0CzO8qAMfvJdzzZiZMkYK0mESRgCW5oIprekIB1KL+eBCyg9JNWAlPto62u8xLv58MBE2SccmtbfPfddwCACy64AHfddRc88badIAiNxPbkBNHImDVrFm6//XYcPHgQQk0GsrZ3g6c2z/YeQRBsJxXxXldtLBEF+3P4AOWaXRmCYD8xcCo/CdiKVycSkRWaSD9IvKY39dwHuYLTYlk6YzsGCXVjlV0Rkk0ZogDBQaDHe12pxoOfX9uF2267DaIo4uuvv8Z9992HiooKx3sJguCDPLAE4QKMMXz88cd4++23AQBiRR4y93SAIPqU80flSAEkCIKWvdfsZxjvdc0GFh5GUbC/HrIB4JwAyi5DsYrTETUJ9sDC5DMIKzNVj9ChLjq1IBGbvqS691UphM8uxroS6oEVRefyHT20DvXr77foe1URy4KGvjf0nqki1Gxcdvv6vz67HI899hiqq6vRpUsXPPPMM2jZsqXpfQRB8EMCliDiJBgM4pVXXsHUqVMBAJ6S5vAVt6s739UgYDXhCSiThWAwTEiFXQciBKrTdc1GR9hALoZ7bOMWr0BaCtiI8mIQoiReGykkYtOTVBew0bYvhvpSXsAC0YlYIKLvNnphI8Y/w2s0ClG3r780+3bcd999OHToEJo1a4axY8eiR48eIAgidhpAPA1B1B81NTV45JFHMHXqVAiCAN/Btsgobm8qXgUhNHAKgjJJEEXlekikhF03wem63s4S0Tnc2DFMSxCjF68pBLPxWEdVDolXgiDqE5lj736qYXKcWdzEE1YMRXDahQYbr5sJVrvrd57+Kt566y107twZBw8exB133IElS5bYtokgCHvIA0sQMXL48GE8+OCDWLlyJcAEZOzvCE9F03Aj1TOo97jqCeqOrTEjJLYivK6G60oR1oO4VobFNa4ETIBzhmI7UsAD69jdcYQRU8ImAgB5YdORhuaB1cNZd717YAF3w4iNyMxWsGrjpcXr1Bacbd4HJssxXWdiEL0uycTSpUvh8Xjw8MMPY/DgwZblEARhDQlYgoiBQ4cO4e6778amTZsAWUTm3i6Qqg3JmtSBPBi0nhRY7KGJCrufsNoGpwy98Qq7eO5Xy0jSMTq2OLxOEq+NiND+ckcbIj1IQgKnehWwKk7eyARnIQbizEQMxCdgAQgej7OnN9G/XY8n/AzZEAwyTvxbc/z4448QRRH/+Mc/cP755ye2LQTRAKEQYoKIkv379+OOO+7Apk2bIAQ8yNrV3Vq8MmY+IVDDiK0GYvWa3WRCDUO2gke8NqIJuOPELcYkTkQaYhXREG0ZBJFKJOGImKRg3KZivOyQeZ8FAhwi2eG6x2N/ZI/Tddn8SCABIha9cxAXXHABZFnGs88+i0mTJtm3hSCICEjAEkQU7NmzB6NHj8a2bdsgBHzI3N0doj+rzkAVplaDq/46Y+arxE77XFVxa1eHk/h1YwLfGGBydOK1IRzT0Ziw+w3xXCfSg3TwvhKROHxujkfISZK9UHW6DliLVDV6ykrI2lwXIGDWS1txxRVXAADeeOMNvPPOO67kZiCIxgLNtgiCkx07duD222/Hrl27IPh9yNx9BMRAhnLRSbiqNtEIU8bCQ4ydhKu+HXY4ZDAmQtSX15XEUWJxen+N153+TxBE4jDxxjJDaG78R/eYCFl9HWYi1bj9x84ba1KGAAH/9+Ra/P3vfwcAfPDBB3j33XdpPCYITkjAEgQH27dvx+jRo7Fv3z4I/gxk7ukOMeDjF652NjzClKeOxux15cjOHBUW4pW8LGmO2XdE/1xD/X00ZtIlKiIZXuJ0/n4n2hur2tgRb1ix0UaW8eEDS3D77bcDUETse++9RyKWIDhIk56dIOqP3bt3484778TBgwch1GYia08PiEGfvSBUByCncGIe4epk4yRc1brqk3QQfmobab9rwySe6AinkGKCIABwJHCKq3D7vbEApzfWjbBiHiFrl6RRd//7/1ygidiJEyfi/ffft6+fIAgSsARhx/79+3HXXXdh//79EPyZyNrbHYKQAXhsRKUk2l8HOM5a5fDs8qzSuu2ZTFXcyObsFm54UhrDZ5ZM3Hg/6TMhEgktnPHDI2Kdfq9O46ckOWdD9jgIXVG0t/F4tOvv/3MBbrvtNgDAhAkTSMQShAMkYAnCguLiYtx11111e17394AgZjp4Q50SMAl1g2LQYsIiOIhb1SbavXyJwGnS5WLYsuXKOo94Vc/2s2uL0xE5ajvSwZtM1EHCs/GSxPBhxyO2+AqJ/V43+iWnSJ50w9EbK9qLVEGwvx4IKgLUScjyXPdImHDvQtx6660AgPfffx+ff/65/X0E0YhpYL0VQbjD4cOHcffdd9dlGz54JESWUZc92Lh66+R1VYWr4z5W0dkzyyNcEz1p58nOm+g2yHJU4tX6OuMWr0SaQeKVSCL1LmKJSHjGQzshq47LPN5YW2+rxfVAMMxm4kNLccMNNwAAXnnlFXz33Xf29RJEI4UELEEYqK2txYMPPoiNGzdCCHqReaAnRNngeVUnKrzhwvEKV9XO6Xq6el0Fjtevx0qUGuvlEa9mbYkXCiOuf+j9a9zUU/KmVBWxriRwSuffFK+QtbuXV8g6XXewmfTYbxgxYgQA4Omnn8bChQvtyySIRggJWILQIcsynnrqKaxcuRKQJWQe6AFRzjI35g0XdsxQXI/hwk6ZG41YTaySmeSG1+sai3glCIKIEyaz+IVstGdQpwsuJHkSnESk7c1xemOdwoqBuMOKBQiY8co2DB06FMFgEP/+97+xatUq+/IIopFBApYgdLz55puYPXs2wARkHjoCYjAn0kgQnL2uPFlNnbyuPJ7bZHhdZZYaIcM8GM/OtSJdxGsqvKfpCL1vjZsUOTonad5Y2pcfHfF4Y9X7E+yNFSBg/oRi9O/fHzU1NXjggQewY8cO+/IIohGRGr08QaQAX3zxBSZPngwAyCjpAqm2IOw6EwUwjwTmMLAxN8QtT/ZgJ4GbDDiONVDsODzNDrhxNp4rZaSL+G2s1PdvgiBCuJLwLUXEOBei6NzH8iyGJsPz7DROA2CSaD3eh8Zx5iBSmdcD5rU/G9bKRoCI377048gjj0RZWRnuv/9+HD582LYsgmgspFHPSBCJY+HChXjllVcAAN6ydvBUNQ+7zkTBPkOjwCduHYUpz8qw0xE8biMK5pOoZGb4dJwU6RJrWXxOJF4bASReiXQSfEmCe5uIS8eRMcb4hKwZ6hiarBBqjjGXZ9HaLSEbUTyT8OSTT6KoqAjbtm3Df/7zHwQCAdtyCKIxQD090ejZvn07HnvsMTDGIFW2gLe8jXZN9bo6ilc3hCuv17W+4fW6xlKu4fXxTYScRWVEGTG8j1GLV7feIxJlfND7RKQQSTtuy+16rPIHxPD7ShtvLOCaN5ZHyDpdN9pcdeJYjB07FllZWVi6dCleeuklVxZkCSKdIQFLNGoqKirw4IMPory8HGJtHnxlnSBA4BeuPF5Xt4RrLBMVwcFzHHV5VgO4+12J5QCtfz0OgziXADbD8HrI85rikHglgIbnfa3P1+OiN1bDagzjEbHRCFmPvUi0hNMbWx9hxaMveBf//ve/IQgCvvrqK0ydOtX2foJo6DSw3p4g+JFlGY8//ji2bt0KIehDRlkPCBCdw4UBR6+rVobVYCgISjZGnol3KnhdgfgnU1Hsg40qZNgMnr1YPO2IN5soeWETS7KOjiKIKEia95WDuI7PiUbE2oyZcYUUR2vjBhzvGZNEa6HqkjfWaPPE377B3//+dwDAq6++it9//93xfoJoqJCAJRotEydOxC+//AIwAb7SHhCETCDDB9gNKiHhGY/XlYmK+GU8k5xET4R4RB6PgOOafDD7spjMVxfvMTrxEHo9cU9EG+IxGMnEKXqBIFQao/eVo39yLdQ0GSGrTHauRxSSEz7LszjmkZyP3OHZ9+pkk52p2Ux4dAUGDRqEQCCAhx9+GCUlJfZtJIgGSgPr8QmCj19//RUTJkwAAPgOd4XEChzDhW0HK9VG9bpaDHwsmszBifYuuSFeufYwMSDoIE6jFa9W7wvv+a9ObXEDt8VrYxNsJF4JXhqaeHWZmLdSRBYUfxl2qGfExpLXwGU0zydPX+N0nI6DSGWq0LWwYYKg2QgQcP/996N9+/bYt28fHn/8cQSDQec2EkQDg3p9otFRUlKCJ554QknaVN0SnmAbZ/HqNEBxel1dn3jHepSO0+DvJPIAd7yuajlONlzCNPy6aeicG6/JiURmz2wswk3/Oo2vubG8B0RaksrJmxImYjnyLAhOY6hZPRw5DmLC6XxWI7znxvIIWQv0ItXOBl4PRvR/Go899hgyMjKwZMkSTJw40b5egmiAkIAlGhWyLOOpp57CgQMHIASz4KvqZm1s5XWVxLoBmyMJU1Re10SgT+TEMSlIashwMGhqEyY+3QoZjlG8RjUhpZDh+DH7rajPkXgljDRE72sCX1NUos9KmPKMI24RbaK+WBM48ZAIb6xBsPJ6Y28b/j7++c9/AgA++OADrFq1yrltBNGAaIA9P0FY89lnn2HhwoUAE5FRcSQEWCdhiMvrqs9QnCqTbpuJgCYY3RCviQgZNkNrs7WNIAjueZOdSKEEI2kLhQ0TaUwqe1/1pOS+WMnGK6rWY2OTtGNlovHG2u1tDV1jJmXxemNf+MfPOOussyDLMp544glUVFRwvQSCaAiQgCUaDZs2bcJbb70FAPBWdoEYzI2wYZIAJnHsdfU4ZBDm8bo6nR+r1hXvxJ0xRw8l9+CfTA+jk1fVrdfV0Lym6ZiZNx3bTCQWJy9kos6jjhHXxGuSXhNX3+jSUTpxZUKOAuaSZ5gnOzAyfM7leJy9scxrI8pDIpZlWNuMGTMGrVq1wu7du/Hf//7XsU0E0VBInd6fIBJIIBDA2LFjEQgEINYWwlPbOsKGSaFQW7tfhSAodlaIIc8th3h1bcJuJ5b1g7lVYinVxq09r05lOJSjhYTZ7atS63E4ukGxidNbkYpnwNodz+Rko15LFcGYKu0gUo8knjtt3wxBezQUuEQlzxnivOeMx9uPcghTQQ0ftrPl2f+q9o+O57OLjq+feURHIesoYgFLETvipGfw0EMPQRAETJ8+HXPmzLFvM0E0EEjAEo2CyZMnY926dQDzwFfbAwLqBiYmCcoA4pDIiXlEZ/HKMylI1oQ97AD5yNcWsXfI7pB5nrBhp7I4BDCfx9TFDJVOYjqaSVd9e4OiyW6dKqRSW4jUQf9bqufflVG0monYdPO+JpPwfAYW2zm4jgyKMvGSWyHFLgl9HhFrJ2QBRcSaCdl/Xj8VV1xxBQDg+eefp6N1iEZBw+stCcLAli1b8P777wMAvLVHQGAZ2jXN66pHNKyYmnhdmSTUreRaeV0lw+pssrxebmZvdMPralWOYdJn2ibjZ8NhY15OdIKaySw1Pa96eLytThl86zu5GEEYMRMzKSRolSbU43fXhbpd877G+hs29q2JOhPdrWRTMXhjmS8yDNnojZXNbAwi1kywmj33+ds70aVLF5SWluL111+3bytBNADqfyQgiAQiyzLGjh0Lv98PMdAMYqAVgBTyuoqiO/tg1XY4DdaCwyHw+klCskOGneqJNhtljG2KS7gme3LN891wyuBbH0KSxCthht3vpx72vNoJVfVaUr2vqRbCzBs+bEY0/SyH91Wwyz6sjgsc4cO2+1/VfsvntbapJ2+sABH33nsvBEHAt99+i2XLljm2gyDSGRKwRINm+vTp+P333wEmwVvbEwIEMI59K457XXV2tiTrCB2Zc6WZ9widaEOG04WGlrCJl1QSjKnUFoKIg3QMHU6m99WxLpm599p5kv655I01yxwchgsiFrDfG6vZ6ETsnVd9iuHDhwMAXnjhBdTU1DjeTxDpCglYosFSVlamZR321HaBIGVpq5ZWgweTQl5Xr6RkIzYjdK4q84iKGLYiWRN13uNo3Dj/FeCbBMjMWSzGe4xOVDZpKLaTSbLC20m8ElakQGiwnpRM2JRq/ZhLWYr5xgKXxgu38iw49GVOyZvkDI/lnlbNJssDOUN52JUjZykPALjpppvQvHlz7NixAx9++KHDqyCI9CW1RgyCcJF33nkHpaWlEOQcSGjv6FFlEmc4pj4k0+oXpNqIovN5svGEEesHdUubcPFquipunBxYTSZ5xatdGWb1mdroJiNWn4vOxnK1P+w9cu7y4pq4pruHN5ECk8QrYUVjFq/RvvY4RGxCvK8WopGrLv0isdXrMiaBMjPRt9lKxOptLMaxsPBhq7FOZ2MlYuVMnY2ViNV9x+xErFamjYjVbLI8uOjU5zBmzBgASvLK3bt3O95HEOlIao0aBOES69evx1dffQUA8LCe9gegh7yujseOiEk+HscOq2yOYTYyEAzai06ecgC+8CuuNkXaREx0ZNl5JZ3LhvO1uQFPpubGDIlXgnCPZPZtPPD0x1zlmLwuo8DnHfuM7TEuSvCMaSY2RtHKOEKKuY7ScfDGAnD0xgKKiH3sobk4/vjjUVtbi7ffftvWniDSFRKwRIODMYbXXnsNsixDlFtCZIXWtnZeV0lQwojtRKmoCyO2sXHVC2s3eGs29iHDglM5QN3EIRqvq1UZdjZh5dhMgtT318ZGE8O275HLXtiGJlzdFpskXgk7yPsaO1GI2KTsfQ31zVF7XyPKUaN47OpSbAS7NqtjBceZ4rbJm9Qx0MZGFbFmmYU1m5CItROhqohVQ4LNcBKxAgTcdtttEAQBs2bNwurVq23tCSIdSa2RgyBcYMmSJVi+fDkAAR75CFMb2SchmOV19rryhBWLSK1JulvH6DCOfbNA8vYvMeZow1iKeSbSFTe+z8mKRiDSl4YqXnlel2vJi1Ksv3NzX6zTe8Q7rjh9rpz7Yh09rXbbilQbj+jYHpYhQebwxvoLMi2v//3ayTjnnHMAAK+99hr/0XkEkSak1uhBEHHCGMP48eMBAJLcHgKyIm1EgcvbyZOF2DEbIQ/RhjJZDX56G5t2MadygDqvIk8WSTs4vJN8YjqaIxecJiscbUq1SWF94LS443SdIOyohyNx0sq7Cih9mVObOV5TUs995SmH53OQRMetGYIkOo+fkgQEZeVhZ8MxDguMQeA4qs7pfWISR8QV4ChiIQDBTGtv7N/+9jdkZWVhzZo1mDNnjmN9BJFOkIAlGhRz5szBH3/8AUCCIHaNuK4Xr8wjQjZLU68Tr3Z7VzTxKjqcFRuyMQ0j1g+GVgMfr8ALE7kWbeb1vPJgJ/LcOv9VMaz722ZyFFaWpchPgHhNMS9SwuE9d5YgUhArEZsQ76tV3xBtn2HVtmSKV0646ov29btxJjlgK2IFmUGwO45Od/arlYhlejFpmeDJCyZAeViI2KAufNhKxGo2NiL20pHjMXLkSADAhAkTILvlHSeIFKCRzbyIhkwwGMQ777wDABDEzhCEDO0aEwXIHodVTyF0hI5TtmJD0oaYvbAmgyAzSzTBU46ZnTHZhJlNRH0mA1xEkiWHMF2zMkSethg+G85z+/iFcAI9rw1VxBo/+2j/TxBm1IP3NZr/x1GR83O8r93Ypvo+1ifZ3lcjhv5bcFoQBsz32dp5YgF7Eau34xlzTBalmRD+N483VnYKKQ6JWKOQZYKASy65BNnZ2di0aRPmzZvn3GaCSBMa6KyLaIz8/PPP2LZtGwAvBKmz9rzmdXUIebQSrnovrKVYjcYLayfM1AHPyUbU2VjZ6SYTrnle4wkZDk1cbNuitpnHxrEs/UzBwRssMwobtkJ/bFQs1wlCTz2LV+PzSQkrdus160OKUzB0OCHeVz1uemJVIWsicjURq5al876G2elCiplNKK/6/smZkeUYvbFB2+RN9iLWzBt74UWvYcSIEQCAiRMn0l5YosFAApZoEDDG8MknnwAABLEjBMGLYIaIQLbXdnWTSQJknxT3fldX9sJGiyp0HWySJl6TjOPrkhlXKDPBAYUNE26QIuKV93qUlTlf53n9Lu17TTZ8YjlG76sexpmUKU5h7hhSrLfl9MYym2bbhRTrkTMk232vqoitKayLQLv00kuRlZWFDRs2kBeWaDCQgCUaBCtXrsS6desAiBCkjmAeAbJXVFYlrRAB5hUjw3YNMN5sqk5eWMagnSdrV5/oUB/vCqpb+11463MSim5kIua1UUnWhJlEMkGkFGmXsMllku19dVxQVD8Pp74yiq0jHEb213kWgb0eRxvZTlCG0E49sF0IB4I+EUGf/ecSyJEQyLb3xjJJsQOA4SPewF//+lcAwKRJkxzbShDpQOr1ugQRA3Xe13aANxNySEgGfSJks8FArNtvyrwiZIdETbJHBJwOIrcamDgHZK4swsZERVYTEJ3IiyusiycxEmA/KeE5eB4IF6ZWbeZ9Xfr63D731QiJV4JwJokiL6ni1U1candSxauOuPMRhG37sChHF/JrWZc+LNjKxsNhA9S9B07bepwQdQ8L+0CORxO5ViLWn1Mnlq1ErPo8E+tE7IgRI+DxeLB69erQYj9BpDckYIm0Z8uWLVi4cCEAgGV11cSrJTrxakdMYcFGL6zZgCeJ5gmL9P81emF5RTAQ6aF0PMeWQyzb2TqJVwMRkytZdtfzGmOoc0yTXhKvBJFSJF28urm/NR0xEcIRwpJn3DC1SaAn1jgOmYyxLMNk76vBhtv7qsdKxOqfsxKxhtsCWZEilonhfwdyJFx0w/s4/fTTAQCff/65Y5sJItUhAUukPV9//bXyh6clIOZEXNe8sCLAPIKpeNV7YY1ZhlWi9sJyh95apORXE085JSpSJxA2QjBqL6wbYcM2QlJrj50o1dvwvi6rOhPh/SHxShB8pGCIrSukoHhNlTNfXcu9oC/HLKswDJ5fC5swgeqxCb9VkzJlePkioXi9r2bP6e4N5JgI4ZCIVYWs39RGEbGqkDXzyjJReVx88cUAgNmzZ+PgwYPO7SaIFKaBjipEY6Gmpgbffvut8h9vB0s7JpkL1zAshKseHhELUXT23vKIU14Yc/ZORuOFdWsvU7Jx8ry6GUqcaq+dIFKVhho6nIKiPNlnvjrBGONIuMSZlInn/eZ5/WouChdsuLyvdjYiAEmAP99GLOtDiq2aFMpAHMiSwryvRv72wNc46qijEAgEMHPmTMe2E0Qqk3o9MEFEwU8//YTDhw+DiVmA1MLUhkkCAlkigjYp6JmgJH1iTuLUAYEn1JcxJYW/Q0InQRVkPHs9nSYljPHvGbWDez+rvQ3jEd0cNtxHAnBmI+Y+SicFJ68E0Zihfa9uZlR2RwibntVqxMpjaoYbiQA9kvO44vUAgaC9jc8DyACCHIminIaeUNIlO2oLPPBn27+fNQUianPtbc477zwAwPTp0+lIHSKtoVkYkdbMmDEDAMCyOkQeGC4JkH2C48CgZBmG8uD4RVh5YcPEqySAmQ3wzFkACjKDEJSdhbA+xb+dGOYpR6vc5rxcXuHqlnh1ICrxymUW5WBOIpYgnElCtALte+WtL/GhwwlB1A3iFv20oG+T1fiiDx3myakQCFoK2bAoKwsRG+Z9tahOHxZsN1dRj+CxE7FMVCLNanOthezjH69GZmYmtm3bhtWrV1tXSBApDs3AiLTlwIEDWL58OQDAn98ewcy6rzOTIoVrMEMI88IyIRRWrBuHZE9sXlhTz6tRxJqJV4PwND13zph6XxWJZnZGDDZce0bNRKyVnZNNRHOiEK82dqbiNdoEU5oJi168EgTBTwJFbNqKVxepr6zDtkW55X0VTWzcPJLNYMe8JiG/BhHLfCY2BhEbzPSYjKMmbTDmkpIihWxtfvgT/mwxQsjW5OvmPzohqyeQJQKiF6eddhoA1G2/Iog0JPV6YoLgZPbs2WCMQfYVAp4cbSAwE69GNK+rCbLPWcSqXliBMf6wYQ7Pq22afkGoE65WduokhadN0YQNW6FO5ji8rgkVryphe3ldDBm2IgUnswSRknCG8ac0bv7eU+3IHF7qI3TYDF3fLdgdJ6eOJXaJm0I2puJVRSdiLXNc6EWsZSQTNCFrmpRJrSPU3Np8SfO+GtGLWNPklAYRq5Zz5plnAgDmzp2LQCBg2QaCSGVo9kWkLbNmzQIABLPbAgACGQIC2aKteA1mCAhkStbJEFQ4fhmKUHZIxCTphKcVqjh162B2B7gzEju1W4VbCMcvXrlJ5kSZRCxB8OHybyVtkzZxtJunn07Jfa9utsnM+6pHZtbiVQ9PmzhDik29r3qCzD5xUwh/jsdxHsIkWIpXrUlZYpj3NaKMkIgNZNXZ3PrCbBQUFKC0tBQrVqxwbCtBpCI08yLSkv3792Pt2rUAADm7DWSPgECmANlr39szUUAwU0Qww8HDKtl7YQXVo8qTzdAJNW0/z6q1C/VxH2/gUgbJmM/pi6UsLfFVEru2dPcqEUQySFXxKoh1j3gRBec+Mwrx6ooYrI99ry5khHcUryo80UY8i7ESR3Inn5dL6ApMl4TR0sj+MhMEVDeVEPTZGApAVTMBNQUOx/uJAqqaiaguDNkJIk499VQAwI8//mjfEIJIUUjAEmnJwoULAQCyrynkjCzIXgAC4M8SwlYaVZgY8paqyZqcxmsBllmJBV04MBMFa6EbZIAcCjcyE6dqSG00Ak8UrCcbmo11IiZHAaiG+UV7hp/FpCysvliTTJmVZUbE/mIXj82xgsQrQSSdhHlerfoMLsElmP9tZcPbJIu+PCX3vRpzNZga8W074apPP65ajQ+ScwIoSFJdCK6dQFX1XzAIIWie3EnOqvO+WolYf569h5YJAmqaiFqODjsRq9rU5gmozTO3qy0QtL21qogdPHgwAGDevHmQ3Yh6IogkQwKWSEvmz58PAAjmtFLEq4qJiDUmagKgHA7u4IU1y0qsF69a+WbeWkNCByaK4SLWbNVYECK9sEY7wWKF31iWiYiNEIDGclTh6mSn2jpgnmjJ5PU52IQdUm+F02TJhpgnwyReCYIPF72vropXs3YZn4tWvFo9x9luM2FqfC4l972atclJpFpd5/C+mu6zjUikKHElJIzYP2qW3MnnhRGjiJWzIhM3GUWsP885dDiiTSERGyZkBaC6afj/VSGrp7ZACDsbVhWxt7/4E7KyslBcXIw///zTuUEEkWKQgCXSjpqaGixbtgwA4M9vFWkg1O0bMROvqk0wgz+UWGCho20shZJzSn0Nu5AnvYi1E236+uIJG1YHSSeva5idhXDTDbj2iZY4Xl/Ihiv82I2V/GgmxQ0hGQ1BJIt0Eq/Ga7GKV+O1OMSr8Vra7Xs1HtNmdx2IXbyqGBd8ndpkl0xKTe7k81rOlsNErJW3POw9sK4OqPO+RhaCOm9sSLyaJW4yilhmpvMloLqZB3369AEALF682L5RBJGCkIAl0o61a9eipqYGspQB5ss3tQlkCkqGPrvBgjOUmHlMPKMGlLT1oq14ZaKoTGQcRJltNmIg3AvrJAIFwdU9qDw4e0s5Q5TdgpIsEUT9kI7iNRobHlwQr9HYKHWm2HmvMrN/P9Wj4dwU505ZjmUGiKK5CAyzkx1nykIwGBY6bGojM8fQYQB1ocOWBQFBr4V41dnU5gmoLbAJPZaAE044AQAJWCI9oZkdkXaoWfPk7OamAx4TAdkL+HMF+LPsByfHUOKQzrLLBKglbJAEwCnxk+Hc18j61CRENhXqE0i5lnXYaRDnF5zu1Mfp4eRpl9vH6ZAgJggFHi9mqpGuR+HwUp/7Xq2I5sgch/6a64genvcgVI4QdBgfvB4IAYfkThleR5tAjgeCDAjmW2fryuL4TlW2FBDItrepaglUFQHVzaxt+vXrBwBYs2YNampqHOsliFQiRUcYgrBGFbC1TZpHXGNi6Pw0IfS302BgF0rMQqKTAcwjgnkjB2GBgcubGHZWrCSaD7CM1YUaWYlTjvNkAYTv4REE60mGPmsvT7iV1eRPDm+XdX26QZ7Dhjs0zYpknAVLEI0RuzDbVM447BbJPMKHl1TY92qEV7yG5Ygw77e5z5dV2+WwXUf700rEqufCMmYpUFmGV1vgFvzW6lQ/F7ESsdVNnd+rqiJBmbkLsBWxTGLaw0rEnvnmZ2jatCn8fj/Wr1/vWDdBpBIkYIm0IhAIYM2aNQCAqpbN4c8N3+thPAM2kAVHL6xpGLFOvKrI3nARayZemUcM88IKjEHgCZnVi1ftZoOINROvZkI3Vu+lmYg1E3fGSWA858BytD2m5CBAYsVrqnqXCCIZ2CU6IvEaFa55X3nFayqe92qakCm8/+YSr4D1wq9DfREi1msI97UQscboLMEfjBCygZzI0GGjiK1uKnF5X8PmOCERaxSyVS2M90SKWH8uwCQBvXv3BgCsXr3asW6CSCVoFkakFdu2bQvtf/UgmJOH2jwlVNhMvAIABMCfwxFKrPfCmohXFVXE2nleVREr2K3+6r2wZuJVa39IoNp5XvUi1kq8Gr2wXF5cu324zkchhNfHIaptbKJuezI8ryRiicaI3VEzqSpe3SQVxSt/hc42bnpxebyvtgmZokyWZ1efPgLKKtmSKmKN4lVXhl7EsozIzMRaWSERG8jxWApTVcTyiteqIvOkTXpvbFULRbBGNF0nYv25dcmdSMAS6QrNwIi0Qg1zCeQWhIQbIHssxKuKAASyHUSsAMg+AbJHsBSvYTh4VJkgKOe/2hEasBwPPOcNG+ZBdihL9cI6tskmI7Nqop5zG6d4DbdLEfFKEI2RJC3aCKKQ/KRNPCRbvPKKySQnbeJrO094MWd90YYO27XJwcZxT6wqYkXRNjcGAMg+5yRRQpB/36vTPKe0R9BUvKqoIlafmfjII48EAGzYsMGxDQSRSpCAJdIKTcDmNQGgJGuqacpQm28/ADCHjMNK5l9lwAn67BMxMQGR576GVcYUEWz369IlYrLNcKwKZbsBzs7Tq7NhjDlPKtTjdGzri+IMWKcJEWc2Yq5MysmGjtIhGhNJFK8uF+hueTxVOomkaDyvTn1oKiZtEgVXFw0c+3/V88p17JpDQiaPBDiIWOZTPLSC33kMEGvtbWoKJIgB+3ZXthIgewDZwaHNvAz+pg71tfajqr1f+//lU2YCAPbs2YOKigr7CggihSABS6QVGzduBKB4YGUvIHsZmATUFtiI2NDYEMgy98Kq4lUI9fuyRWZigTFAtfGI5iKWMQjBOvHGLJI1QX9UjpWIZeE2pqIyGvGqYjVBNJ4Fa1qfbH8dJmLTaoIVVpd1V8TVdj0cE6e4J8kkXonGBInXqI/DsRJ6MR2FY9U/uile3dr3yiteeb2qISxFrDFs2G7bjoqFiGUenRfXQsTqw4YFxixFbDDbq9lYidiaAknxhjJYitjKlkKYcLUSsRXtlXhkJlqL2NoWAUBigIdpIpZ5fSgqKgIAbNq0ybxwgkhBSMASacWOHTsAALVNciF76zp8JlqIWN2YwExCiY3ite5CeDmaeNUNjhEiVi9eVTwGEWsUr1aYCVOjiDWzMU5CjOLVsj6LRFNh9ZkMioZJHben1LSuyO7ItLz6FrEkXonGBInXmM9ydfq/dX0mbTc+l4riFUiIeFWJeXwxq88gYsPEq4pTODHMRWww2xsW8WUmYjXxqjXAXMTKJttxjSK2on0QzKOfD0WKWE28qoREbFV7P7p06QKABCyRXpCAJdKG6upq7N+/HwDgz82NuK4cm6N/IrIMvYi1FK8AZK+AYIaSiEkIRopXzU4VsWbiVUUVsXbiVfXCqqLULvW/KNjb6JJDWQ74RmFqNzEQBXvRFirLdnJhFPEcdvbl1ZOIJfFKNCZIvMYsXp2et67Ppu3qtVQ8Lgdwb9+rTTKmsHGBN2mTFSERaypeVYKyJmStkjbpRaxRvOptVBEbIV61NisiVhWylS2t309ZUuYzRvGqFWUUsWZ7Yz2KN7Z9+/YAgF27dlnWRxCpBglYIm3YuXMnAED2esF8PlMbf17IC2ujfZgABDMEBDJEU/Gq2XkEyHpRaYOleFURUZdN2LYgDhuAe++oczkcR/y4lfAoiklXSu55JYjGRCpm2eZpU5LFq2B3znYUNkp9HG1P1eNyeEKHXVqoYIzxvT4eG96yON4r5hHtc22ERKypeNUKUR7VhYKp91VPReeAqXjVigqJ2NoWAdtyWrVqBUDZB0sQ6UIKjlAEYc7evXsBAP4869O7mQjU5tsndRJkKIOEU1InWdkPK/usV3mF0NjhlNQJMpRB0mo1OCSSmSjYD5S65E+W6M6dtZx8yKzOm2hbls7OxoZLcPKch5vkbMRRk4qTeoJIBEmKNuD2vjr99tw+xodTvLpXXxTC1KneZB+Xw/MZqjaOi7g8kTPqMW52kUHOR71pdk7jjtejnCpgcg4sADBBgJypqE2npE3+fAlSrUPSphYimAhItfbNgk9WHja07rofbTsctLdp3RoAsHv3bocKCSJ1oNkYkTYcPBjqhAu88BcGTW0EBsBqPywU8SoEFbtAhoBAlkmyppB4VcWplYgVGBTxJghgNkmdEPLOMquJh8HDayli9cfpWJXFJRJNRKlpWTyi1H3x6liei+I1puN0SMQSjYUEi9iYxKvZ78/t32Syz5+NxatqJVLr87gcq++L8f203CIjOr73grHtXMe02SeAUsZ8i3JU8apiIWK1BXGbpE21BcqZsAKDpYitbCHWHZfDrEVsZcdAXb0WIrZN5wPI9vqR5fWjbdtDpjbZTapw+7ovAQD79u0zr4wgUhCaiRFpw6FDSgfMcr2AGN75C6xOcAIwFbF68ao8AfizwkWsUbyqGEWsKl5VTEWsTrzW3WjwwlqEJ0eIWLOzYI0i1kIkhk1C7DyqRjvAfgLbGMWrColYorGQIBEbl+fVSdDGQ5x7XqOvL472G9uQCme98n5fIpIUxiBeVYzi08zO2N8b9s+ailijeFXRiVi997XuyUgRq4pXrT4TERsmXrWyIkVsZcdAuGg1EbGqeFVRRaxRyEqSDDlb2ZJVWlpK23eItIFmYUTaoHpgWY4XWYVVmhfWKDY1dCI2Qryq6ESslXjV22r1mYifMBFrJl5DNhBFRcQ67K3VRKyZeNXaFBKxDiJREAS+cGDVDiDx6gSJWKKx4LKIdSVsOBG/v1QWr04e1/o469UKjuPWFDs1oigO8aqiik87O7Xft0j+FCZircSrSkCuE69mZjoRW5sfLl61+gwiNkK8ahfqRGyEeNUKg/a8UbyqZBm8sdlNqpTisxQBHgwGUV5ebtEIgkgtaAZGpA3qIdss0wuPJ4jsogrLUGINEQhkA8FMwVaYBn1K5mFLGwCyNyRObcSPZZiwmQ1vggkXxFbUxw+4MWHlEa9atUlKJAWXxCtBNCZcFIuu7XnltQGchakopK54dWvPK2edcYtXFSbzZ4t3Eq/cR/jEn9hJFbG24lVFEmxzaYAxBH0imGSTkyMkYitbOHw2DKhq5bDnVQD6Hb3RVLzqyfL6cXGfZZCkUFkeSYseKysrs28HQaQIJGCJtKGqKrRa6FWWKSVJRnZRBWqbWYtYISBACMI2658QBMQAEMgQEcy0S/6kJFmyHYyCsjL4eURlcDMtJ5SW32FiIqhH7jitYDOmTEwsymJhe2c5EkQ5ITskiNLjZBNa7XYsi3fClEzoSB2iMZCq4pUXtU6ruqPY7xrVOa5uJElKcpIo18QrYH/EjVZWyMaNRUW1PrvFUHX7jtOCqSRBCNovjrMMpT7Rbz0OBHK9gCBAqrIfK6qbiJBq7NtU0UEG88pAjf3n2NRXiQ45xbY2A5tvRGtfKS7stFp7joXCoMkDS6QLJGCJtKG6uhpAnYAF7EWsEBAg1iornP4cwJ9rEsITBCS/Ku6sRawgMwihs9mY13xFVQjKioANYSZiNfGqYiE8w0KZ1LNfjRhDkE3KYmai1GxyaLSzmkAayrLOcqzfn8NhY1eWCm/Img2ueV9JvBKNgYYiXnn/b0NU4tXsbysb6wr56uMhlcWrikXfrLXLVpgayjKz5cg9AQDM69HaYyViWYbu3FjGTEVsINerhQ0LDJYitqqpsu9VkAFPpXmbKjrIkFXPK4OliD2xxyYAgEcMWorYgc03Ik9S5lKFngpNxKoe2Npap9THBJEakIAl0oY6ARv+tTUTsXrxqjwB1OaFi9gw8Yo6O6OI1YtXILTX1SBijeLVjAjxqmIQnqbJJIwi1moA1pVlKl618hwSRBltAOcJhmZntj+Hw4aHOJKGkHgliChoaOLV6XkbYhKvVs+lq3jlJRbxquK0QGoqTC3K0tuaHV9nMoZq4lXXHqOIDROvurKMIta459VMxKriVbMxEbFh4lUrHBEi9sQem1DgrdL+byZi9eJVRROxoe9JIGB/ZixBpAokYIm0QdsnaTLY6kVshHhV0YlYU/Gqs1NFrFG8am3RiVg78ap6YS3Fq0pIeNqm81dFrEPyJ+7z7wSHBFGqDUdZ2kTDTphy2Lh2bIMBEq8EEQUNVbzqr7u959VOKKrX0lm88rxf8YhXFactKmHC1KEsxqzPXlevMzWyymNuoxOxpuJVV5YqYgO5XlMTvYg1ilfNRidiTcWrVh80EWsUryp6EWsmXlUKPRWQDlUCAObNm2deH0GkGCRgibTBKZRIkmRIeX4Es5h9wqYMQLYYq/R2siSYZg5UYYJguc/V0HBnm2js3IJXjHGIP8Xb61Aej00CoKRNBFE/cItXN3GxTr4FNc79riRe3Xt9at4Hl8qyG+cBKGOgCOf2MwYmibblCQwIegXrjMNQRKw/H9biVasP6NZxr6l4VfGIQTzS+f8sxasRv98+ARRBpAokYIm0QVQHLAs9Ul3tRbBWRKBJALUF5kaiHxBrgUCWgIBNwiYxwCAGGGSvANln/jMRgzKEAFOOzrFY5RWCoYyG6tE5VujFnd3Ks5aMyWYg1Y4TcNgzqi4EONk5DO6aZ9yFSRzf0Twce3WhN3FxUkhH5xANHZe+41H97tzMJuwS3OLVvQr57HgEc7LFK1fGaIHPThSc28aTsAmoO67OBuZRE0lZi0XVOyv47RM7BUOJkKRqa7vafAkQAF+5dbsqWwlgIoOv2H5RoEv3PcjzVuNgTY6lzU1Fc9BGqsSQ3N9ty8rIVf7t16+frR1BpAo0GyPSBlXAtsqOTPNeXe2Fv8oLyAIgMQSaRopY0Q9I1crqJgTAn20uYsUAg+hnih1gKmJV8QoAUM9/tRKoau4FKxGrE69MFMyzE6viVT8Ymw3yoaNrmJ041YtX7QU57C21mMRECE6riZMx2VSs8OzVNYFELEFwkA7i1cW9rVaktHh1qr8+xKuTXSLEq4qVQDUmbTJBE6+qjYmIZV5P3UyZMUsRG8z0aJ+jYHIGPKCIV/VEBEE2F7GVrQQwTyiMOghLEdul+x4U+BTPq8wEUxF7U9EcFIpKUqY8IWApYnOlavhCt+fl5ZnaEESqQTMxIm3Izs4GABzh3Y1uhQe058PEq4pBxIaJVxUTEWsUryp6ERsmXrWyIkWs6n3VEyFiTQbNCBFrJl519dY10iBetRdl2DNqNeA77S01TFIsvaXGCZRVsikYzRxW03n26tpAIpYgbEgH8cr7/zhwNaERX4V8di4liGpQ4lXFOHZYLRTr/+sxKcswHoeJV52NUcTqxavWBIMXVi9eVYwiVi9eNRsTEasXrypGEasXrypmIjY3FFocCEUYq/Msgkh1aBZGpA1qxypUB3Bqsw3oVnjAXLyq6ESsICNClCqF1YlYK/GqInsFMBGmSZ2UsupErCZeTcrSRKzNnlBNxALW4lVXr6V4VREFe/Gqt+O47ig2tXBvjmRTPOW5tI+VRCxBJI6khg2riZjqQ7y65X1NcoKoBileVdQxxGmrDizEq95Gls3Fq85GFbFm4hVQFrBVEVubJ1qeRa+KWDPxWlcW4C1R2mwmXlVkprTDTLyq6EVsrm5frJ8ELJFm0AyMSBtyc5VNGv4qIFusReecg8jK9JuLVxWJQc5g9kmbBECWACZYiFzVLKgOfjb16Y+7ccpX5LQ3Ry9incqxE6/RIDN3Mu3KHGI5hCvtJggidlxYjHFdvLooTnmEW1qK1yhs6kW8ctbn2DY3EyHy1OWRnGfHjJlv99EXFWRgIkzPjddTUyDAF7kzKgwxAIj5fkvxqnJh4XJL8aqSJwRwXcFq7f9MZgiEbiEBS6QLJGCJtEHdm1FTAWyraYa9Nfno3PQQcgsrLe8RKiVIlQIC2UDAIs+BVMsg1QJBn4Bghl1CIyWDoOwRLUWsEJQhBGRlwLIYtLQjdZwGP9Xz6iRkZaUs20mAepZdvOFxModQ5hWvIe+z4+TFxSzCrmYkpiN1iIZAqopXl1D7F7t+xnXx6tC3uypeobTfndfnYsImFbt+kieih+eINoDv+LiQjWB5PnpIvAIQAvb1sQwvmACINomdAjnKyrm33Lqs6qYCmCRAdDh+tbZDLQSRYe3eVpY2V7degCZiJfbLGQAAaX8QTf5bjtajDqHt8INoPeoQmrxajnbFPjSVsjEyb6PShnIo8xtBQH5+vn1DCCJFcDpMhCBShubNmwMAqooBP5MQYCIyPX50LTyI2iYl2F7SBOWH6lYPhUoJnsMiBBlgEoM/RxkIPRV1ZUq1TNkbyxiU818VG6nGuA8l/KBy2SNCRPheWFW81oUpiRAgA7qEDmHnwYYN8ob61PNg9cmY5Eg76A9ZFwQIMJkMGA5ihyCYC0wn7yuPeOXFMBkRBMG8bF7BySEmSbwShIFGIl71/zf2MwkRr/q/jf1aAsSr/u/YX1+U4lVm5vfEWB9jLLKtxv/LMt9eYLO26W2YslUo7LgbnXjVbAKycpa7AVW8qnWJ/iBkb3hYciDHo0vYxOAtl+HPDS9LFa8qGYcE1BRGjlO1HWoh+pRx3O+XsHZvKxzZck+YzdWtF6BIUty4wSoBuY+Vo8Xn5RAMp+Jk/1wL9mI5MDIfBY+H5lQlyrWmTZvC4yFZQKQH5IEl0oaioiIAQOkhCTurmmjPZ3r8yPdVo2vhQc0bqxevKoqIrfPEholXFSHSEysEGcRaOeJsWb0n1ihetTo9ov1ZsepKvX4SYhSvKkZPrFGYhsrjmrBETAxcEq883leLlfSIdpN4JYjE0cjEq9nzCRWvZs8lULyaPZdwz6uxX7U8As7QZ/Jktbcqyzh+xJoxmrE6T6xRvOptDJ7YMPGqtSn8fdCLV62ZIRGrYhSvgBImnHEo/Dm9eFVRRayKXryK1TKOunYPWk6KFK9aW/yA8FEZhCt2YaTnT03ANmvWzPwGgkhBSMASaYMqYCuKgYBJRgTVGytlBiPEq0qYiGUG8araiHUi1kq8qsgeUdk7ayJetfJCIlZgrM77qkcnYi3Fq4oqYs3Eq648beLiYKe8COd9r66JVweizgBK4pUgoifZCchSRLzqrydFvOqvJUG86q8lLWyY52xyoK7v5DlX3HFbiS6KyVLocpxPropYh6ROqog1Fa8h1FBiM/GqoopYM/GqlaMTsWbiVcXvV9qsF68A0OXRg2iyqBpOox4DICyoRpNHytHXdw+Auig3gkgHSMASaUPr1q0BAPLhIOQacyGxpyIPckBAMMu6+2YSsxxgNBtRSeqk7nu1RRLCQ5HMsArb1V8HtIRMjvBMcpyEm3o8DweuHS3htI8pAbiaeZgg0p1kH5eTYuI1Knj62WjEqQv1RSVOHetLwJ7XOOE+g5fnfecoy/L89jAjRVRbiVcAobBlOM4tAtmiY1InMaCUYyVeVTKlQJh49e4PoOUXhwEATq9cuz6lDNv/+AMA0LZtW4e7CCJ1IAFLpA35+flo0qQJACC4v8bUxh9UlKecH0Agx1yceSoEeCpCXlafeTcv1SohxkwSEMwUIXvNfypCkEEIMDBJtBwIhSADAqGkTVYTBlmGoHpn1cHZ1E4ncK0mO/qMxDwr55x2thML/Yq4k40NYZ5eNye1JGIJIu3Fq3vJitzJ7OumcHM1kzBXfS6JVx4BqJblUGdU4hVwOKbN2UY7TscsMkq18XnAfMq+ULHWWlDKGYqNp8raxp+rnAWbUWKT1Km58gAAYXuWpV2vtnsgCgyTDg7Qnms15TBEi7BhKwQ/sGPRIgBAhw4doruZIOoRErBEWtGxY0cAQK+qTeiSfSDs2taypigpUTa4ChIzFbGeCgHecijhxQIQyLQQsaEkDxCURA+yR4gQsVpip1ACKDMRq4pXQS867QZx/Z5Y032qhnAt46RHFa9O4tRsUOfY42Q6wYhlT5IJpmHKjp5t/i7MFRFLZ78S6Uqahw077e2MWrzynK1q3yC++ngg8Rr++iy30Ngs7obZGcZPs61ChoRNZiJWFa5O7ZIz6s6MFWRmKmJV8QqEwoRNRGx1c0D2MMih82CtxGivtnuQ71UObi3xZ2kitmBRtfkNDmw7oMyl2rdvH9P9BFEf0GyMSCvUFcLqPX78JXu7JmK3ljXFvgP5YMG6r7RRxIaJV80oUsSq3tcwBISJ2DDxqrPRi9gI8apiFLF676tWlkHE6sWr3kYtDzAXr5qtSZZGM4xZJs1MhPC2WxgZ6otjjy2JWIKIDxe/s1y/oQSKV7PnYva88mS0NW8QX308kHg1f31m4yaXnUVosc6OWSRs0otY5jXfF2v0wurFq4pRxOrFq1aOQcRWN4MmXMPKMnhh9eJVRRWxUkX0W3SqRRG7Q+Oz6iAgiHSAZmJEWnHEEUcAAPZtkZApKiK2NihFiFcVvYgVGEwTO+lFrFQLSDWypZ3sEUJnv1kkLDKKWLuVZFEwF69aWbqB2Koco4i129OqTkpswqU0HPbGRpXp2I19ry6KWFcgEUukCw1QvEZzva5Oi3bpnyfxmhriVUUfucRl57wv1lS86ssJyop4tcyozDQRayZeVdQMx2biVUUVsdXNANlrPuaKfkXECjAXryol/iwEc6L/rf+Zk4OgIKCwsJCSOBFpBc3CiLSiZ8+eAIC9myUwBmSKfhRllsNjk+xAkJiSjMnuoHBVJwqwT7AQum6bzEG9xpmR1zYBFG+iClnmyxTMLM7uixLF0+tOQibXzpZNNiRiiVQnjcUrT7Ii7j2TTkKRx0ap0NlGLc8FG77XZ5NbQX89mZ+fILq355UHtRwXkjrBYyNeQ2jeWae3i9kndWICEMgSLMWrSiAviEClx1K8qqw5ro1DgyL5Iy8PQN3ciiDSBZqBEWlF165d4fV6UV0hoGy/gAXl3fBHSUvk51TDm2WxYaTUC1+JCNkLBDPMTaRqBk+VMogoocLmA5gQYBD9DMwjWgpPISBD8CtJmyzFsCzXeUIFmyzG6tE0TqvP6iHwdhMGWSfynSYhNte5BadTsqlocMyoXA/H29CROkQqk+bilQseYeoWbrbJTfHKc10VlLYVcn5+jiLReRsKEEUUj9N7xbN3FgjbamOJV9nzajz7VQ/zebQFbLHGeuE8kKWUpT/7NawcAfDnCmAikLXX+r2oLQwCEgOCAn75s4ulXdec/VhyUScEPdEtCqzLzwcA9OjRI6r7CKK+IQFLpBVerxfdunUDAMxd0waL9ndCdcADSZTNRWypFxkHRQjB0PmuGUBtfqSQFeS68GImmItYIcCU8GI1aZOJiFXFqz5pE/NK5kLWcGh7hIhVxavdOXuMhZ31ailizcSWk53J9fAswXZLyyb7l0zNeM6XdU+8unYmLIlXIpVpTOKVJzQ4XmIRr7Hur0WM4tXq//rPxupzSoR4tTOLRbyabtkxjpk2W3bUW8zySQCaeFXrMhOxevFqVV8gy4NAVp2dEGQRIlYvXgEl54aZiNXEq3pfVWT4c9ec/eiasx8ZQgAVzTOxclg7xTbyFYa3IfTvb20Ur22vXr0c7iCI1IIELJF2HHvssQCAjb9loDpQN+iYiVgxAAi6RVIm1glZVcRK1Qye6vDu3ihiw8SriomIFZjFvldRd/ab3vuqRy9ijeJVZxOGSRivJmL1ExrLvbh6G3uRa54lOIouxGDriniNAtfEK0GkMo1JvPL+Px7i8bxGu78WcXpe1efNxKtWgTHjUILFq67f5T7D1srzalj0NcW4yGpSjmAcC7yeCBujiI0Qr2oVOi+sKlyNdkJQJ0IN4lXFKGKN4lVlwcbO2t+dsg8iQwggQ7c/6rv7j8LWvoVc58D+fmIT7Pb7IUkSjj76aIc7CCK1IAFLpB3HHXccAEDeXBZxTRWxTQrLwWpFeEstPH8hEQsGeCuZadImvYi1FKaqiFWP2LEJPdIG0qBFAiggPGmTZaZgnY1FOWETBdn+MHSlLLt2O4Wpic4r5XpbJH/fq6vilbyvRKrSGMWr8flUEa/6a8kQr8brdp+NGlKcLM+rzPg/X6ewYactNaqH1ek9V8cgM/GqsxECsqV4VesTa4JhXlczvOUyavMEU/Gqop5+YCVeAUCu9GDBxs7olH0Q2WJtxPVApoRJb5yA3y9tBdlr0WQvsO2yptj64EQAyv7X7Oxs68YTRApi88sliNTkL3/5CyRJAkprIBRXgzXNDLsuiTIOleRBKg1lCLTQb0wEmKT8a5p1GIqIFWTzcCINAUAgZGNTH2TZtcRHWnk2aCJRELgTSiULQRCcRWwqekxJvBKpDJNdEbEpKV5dSozkmNndaBdvfZy4Il4B/s9fFJz7WB7xylkXYxwiNto9r3Y2TkKX87NjHtE+aSMA2SNCqg4ikGWd4Vj2CvCVMdQ0sS/MWy6gtsh57DMTryqBTAmv3DsERTeW4cpvF6JwUQU8FTICOSIOnZiD7Zc2RW1zD5ZPWgUA6NOnj2N9BJFqkIAl0o6srCwcddRR+O233+DZfAj+ppGZ91hAhBQEghkMEgQIJvmdvJWAt4JB9ggAGESTLMVSLYNUrWTulUUBQpBFhh9BDR2GEioMOSxkKLJQ0doLq3pVBUERw2YTDL3n1UmcqoIrHhErMw6xqW4g5rQDp4jlQRAdhaUgCu54YdXJIQlZIlWJU8SmrXjlqyz8b6dImCS0id/z7LJ4Vf+13DfKKV6d6jRsQzF9vcazxa3eW/3ig1Xb1CN+bGzCjtIJypbHAqnZhgW/XBdlZUD2KVmL7cb8YKYIJgJigAEWwb3+nNB2pSCQtc2Lqg7mSSnF7AAEiWHypuNwWZdfTW121DRFTdCDHfmF2HhrETbeWhRh89aOUyAvXAgA6Nevn2XbCSJVoRBiIi05+eSTAQDiH4cgieFiYv+hPIgHQrEzgiJimSGUxlsJeMtCocOhUOFghgDZsKQjhMSiuq+FSZHJlgS/DMGvz/ArRiZtkuVwL64kRg6ujClnwurFqWRxFIHe+2oySDOe/bNAKNzKRozxiNe6Su2vW+3XtSKa4344Jm5cE3MX6yOIdKPRiNdonzPSEMSr3fUEiFfrMhzGNys7s/HGKERNbCLOgTWz8Up1R+UAEOTQyQLGZvrCj9zxVEWGX6niVSWjJLI+f46gRIOFqpRMnKtidkATrwBQWZmByZuOi7BTxavK96VHRdi8vetUFP/JUFpairy8PNr/SqQlNAsj0pKBAwcCAIStZZBq/JqI3X8oD8KeDIgB/Uq7ImIDOXVCVggCon6sEZRQYtlTJ2I176sOo4gV/DLE2qDifdVjSNokBEw8rlJob1RoALTMjqjPLGy171U3iGri1UyYhq10O4hXXnjCom1sHEUsr/AkEUsQCjH8rhudeI3VrqGJV/1zqnBNoHgNWxDlDQfmSdhk5kU1jJcR4lVFl1RRL1zDmqEbw2SfFCFeASVZk17EGsUroHhh9SJWFa9GsrbVrbqrwlUw7IutrKw7TmFHTdMI8QoAJf7sMBH79q5Tcag6B5fXHAMA6N+/PzweCsYk0g+agRFpSfv27dGpUyclgcKfxZAEBp8UBAsK4eJVRQAghkKK/YCnwip0TBGxgszgqTIP89WLWC102IzQETq2oWqiEB7yZEVYcieLyWnYeXh2e3YFZxu1GLe8rw44TuZIxBJEdEQhYhu1eFWvN0bxqr8WzX7XOD2vzGl/KqCMczztkUTLEOBQZco/VuJVtQnKluJVRfDLdcLVom1CkCGYKZqKVxUllNhavAKKFzZrmzfM62rG5E3HacLVKF5VSvzZeHvXqZp4BWOYO3cuAOCkk06yLJsgUhmafRFpy6mnnqr8seogRIFhz6F8CMU+24QLnnIB3sPMWnQCitgVBNty1OROjkkwZBkIOgzWQVkJHXaCV3jx7vV0M3NkY4X2whKNBafverLFK4+nsB48r06vjztZk5uLCrGG8sZap2NVnO+308KoxGEDRJ6xblWWo40AsdY+q7/sE+GpDFqKVxVPJSzFq4ogw1a8AkB5STZ+2Njd1mbx7g5Yu7eVIl4BYGcFdu7ciczMTAwYMMC+EQSRopCAJdKWM888U/ljYwlQ7kcwIELwC0o4sMV4JQaV8GHZA8sBxlOtnPkK0XrgE/0MYq0yoZM9JnteVdTcRrpQYUucQqWCoRVpq4kUC+1XFQXYHpGg3x/L47G0PbJAlyQqDlw7VieZgpLEK5HKJDM6gEMgcJ8BGk0m4XhteEm2eOWqzD2PuLvvFed7wHHcmi16wWkZ4aQ7wshuq0vIO2t32oAaTWW3+C37lIzFtgmdfAKCPiXKK2u/tZ06R5E2ZVnb1EpgDPBXWZyXA0W81lR7EQzUvV8jSnsCAE455RQ6PodIW0jAEmlLhw4d0LNnT4ABpUsqgIPKfhAmwFTEeg4L8OqOjpU9ynloeiHrqVZCh4UgwEKZgJnHJHGTli1YrUswT9wUrFutNRWxQcPROmYiVhWvehunswW1kDATm4jkTs42phMv44TAahLkxtFBPF5lTkHp6pmwBJGKRCleuX8TMS7axH3Ga3hh9v+3ei5WYhCvZq/X1WNy6lO8Wn0HODy9Ee+BmfA0vt88yZpM2yOCiZFjdxgeSROval1mIlbbCqQWXRN5ZIEqXlW8FZHlBH3KGbDqnEP0R7422RO+wC5VCREiVq6VNPGq8vOWLhFlqeJVZV9ZLiAzzJ49GwAwdOjQiHsIIl0gAUukNWeddRYAIGvtbgi6zH2aiBXrhKwYrNt7orcL88YyxUNbd12oE7KhgVDvfdUwilg5lJnYYGYmYiOO5VEFqt3EQhW66mDPLLIFG0Ws5bEROhuLySzXBMwowDnEqyvnwSZbvJL3lUhVYvS8xixioxUtVsTjeTUej+MWcXhenQRtZF1J2u8aVp5L7xXHdyAu77tTsiajTUi8RqAfj6z2xOqTPqnZiI1jtuGnYhSvgOLN1YtYVbwa0Xth1bmI0U6qqitcFa7GYVPvhV28u0OEeAWAgF8C1hejuLgYTZs2Rd++fSMbRBBpAglYIq0ZMmQIfD4ffAfK4CsuDrumHn0DIbT3tcy8DEAZOEQ/g6faXJjoRaxgNnoA4SJWRoR41criDWtSB027/bEhG1sRqBexdpPUaMKJ3fCqwsXQYYIg4g4bjnqBJxXEq/66a4LMIcIlrFrrOvmFW5L3uwLxvVf6RYx4vwOM8b/fUXheLZFla/EaQgjIdcLVov1iTQCyTzQVr/pyAGvxCtR5Ye22NQFKKLHsF20jr3/e0gVL9rRHTbU3Qryq9N1UAAA499xzKfswkdaQgCXSmoKCApx++ukAgJzNm01tlIRLgGizL0VFsNFlTBAgBhmEgE1SptD+F4Ex+1+XMSw4GZBYJIiGixvJdVzM0J1U8cpbluPWC37hqjTLhfcrmRmgo8m4zIMb35d4j9Ix2DkmbOL4fJnkXB+TRIg1Qftkjx4RnmrZVpgySUDGIeac9KlCAJPt2xTclY3qKp/ldamkEkuXLoUgCLjgggvsKySIFIcELJH2DB8+HACQvWsnxJqaiOu+MgG+spBHVoSyb9WApxrwVimDCJPMbUS/DKlGiS9WPLt2I1dI5Fr9wrQ9tDYDrs7Gth7G7Ff69ee92q3Q622c4J3kxXvshIvhw4CLE3Q6PodIJZIpXt3abgAkX7za2UbZVzVq8coT0cNVDkdEj168WtWns7HM6K9fnLBZPGYeZfuO4LfONix7RGWx2ub1M0/IM2u3KB7aciT5gex9Fr8luW5hPWNbhqmNWOxVHn4Bwb3WSZ/uCLQFAJxwwglo06aNdcMIIg2gWRiR9vTq1Qs9e/aEIMvI+3MzRMO4IwSheE1DqGHF4TZMGYx0e2fNbLTBSD1mx7g3JiCHD3wmIlaQ5YikTBEiVj3vVcsWzLcCbTmpMnpfHVepza8zwz4jvrrM7eorfJhELNGg+P/27jxOiurQF/ivqnt6dmbYIsMmoAiCGBAEUcEdvLgGjU+f9xq3q/FjXF70PQ03isZ45cYlGPN53iT3qs8oajRXTYwKV+MaQVwRRQiLILI5+97T3VXn/VFdNdXdtXV39Tbz+34+85mZrlOnqme6u+pX59Q5hQqvOi8DvlnJVXjNJJym2epasuE1W1YDSLmEWNvPeb9aXvUyTuU8DAwlgrIRXvUyViFWD6+6QDi1jBFe48o7LAaGShr0MZB67T2lR1ggnFpGD65yVKtP7kv9O4ivq4BtQfzpT38CACxdujS1IqISwzMwGhD+x//4HwCA6l3bEeiJGSG2rFNrfU1mDrF662uCpBArR1UEoqmj7iaHWEkg9eAoSUDAFGSt7qGVJIiA6d4d81Q3yXUZT0IASurBM+Hkytz6msx84mNVJunEyHqQqDRaYk1lPYVXn1tfzRhiaUAodHhNLlLo8Gr1mN229Mfz3WUYKN3w6hevo9pblhOuZRJaYe3+v6YyRnB1GCVZDcop4RVIbIXVQ3DqgE5Jg0faTLtnboW1u53J3Aqrh9dk5lZY8XUVAmEJy8ePQW9vLyZOnIhjjjnGunKiEsKzLxoQTjzxRIwZMwZyNIrKb3ZCjuijDqcePHR6l2JJFdZdgeLLjcnGrQ4o8RArZG1eN6duR9occi73vnqZIy/dlli3AZ6ceBkUxBxO/WpVzWF41THEUknL5+uulMKreZnPLa9Z8zrIUqmFV6+tsG4tparqrUXVS12A8/83vk8Jra5Wm4kq/cHVplggrBjB1e6e2PIOFSJgMd2euZ6+xC7D1ttK7DJsRW+F1cMrFAXPPfccAODiiy/270IMUQHxzIsGhEAggIsvvhgAUL1rG6CoCLVqgyM4HQyCvUAwufXVTD9oeZnSJt+8jgSc7b55CZNe98Vzi61PJ3lEA5UPUzl5uojj5/vMr/Ca5mBL2ch7l+FSC6+A/6NRO3YH9nAvbzrP3W2wJkmyDa6J5Vw24+mirHuRYA9QvUe2Da8AUNEsIfhFtRZeAfxi5qFobW3FqFGjjEEviUodzwBpwFi0aBFGjBiBQF8YlXu/hhwD5Gj8Hlibcz0voxPLEaEN3uTwbtHvfRVOYVYR7leY9XtfAfur9eYuyJ6uVDtfYTbK+MFtO/Hnlvd5ES34NicsUQnyLbzG63G9LcDP8JonRdll2K2udC6ougVmP8Orl9ZS1zLegrvrSMQB2ZiSR5/qJpmQZW3KOwByxLpnlZDj25IkBHsdel/JWhAOdTqN6KR9q7QZzAnQwqusAHLEtggqmiXIfUBZZ/wBRcGTTz4JQLvVilPn0EDBAEsDRigUwkUXXQQAqNmxGVBixjJJ706cQaOF1qUnflCRYfmukUT/AE9CkrQDX/IAT+b7Wm1CrGQ1aJPbhOx6eRORfA+tXYhNLuOw3H6UY+d9sSvnOcS6nrB5bLXIFR9awogykst7wDMIL7YhluHVZWMFaHV1C66FDK+W4y3Y359q2mBieLXqGRRIut/VakCn5NeZxUVuPbj2j35stc8wzhckIYw5XxMrQkLLa8AinAZ7+sOrnYpmyQivZj+fNh4HDhzAyJEjceaZZ9pXQFRiGGBpQDnnnHMwatQoBPrCqP56e+JCkdgaG+wFynqcTwCN1teUBf0/pow8rG/OfJBUhPXBNPlAahcG/Th58aEl1vNJXRqjJheiNda31leGVyq0NF+DuQqvxu54HIU8cXsMr9nXk0Wrq/l3H1qCEz7X3UYHzrTl1WogRC8tr25dhm1eZ+ZWWCO8JklohbX5Mya0wtochsytsEarq3lyAwFUftu/fT24JofXUGsUv//97wEAl112GcrLrafhISpFDLA0oIRCIVx55ZXaz01/B2KpY9PrIdZL9+GE1tdk5tZYm3NIozUW8DSHne1yoP8g7mWAJ9ttma4+O5ax/2hI654wY3+cT7I5qARR7uU6vKaWY3h13lgBwqvTMj//927HNVl2LiOEew8cfZ50p/Cqqv1dhm22JcXUhC7DlhSR0GXYsh5F2PbSAkytsEmtrsn0VlinVle9G7FVq6vuxmnD0N7ejvHjx+P000+33yBRCWKApQHn1FNPxeTJkyGpMYRa/m5ZpqxbINSleho0wZUE93eS23IvITafg3J4qaYYQ2e+uxJzICkabIowvHr5LPKrjKtiHGnYr9ssPOyP5HV0YC+jDLtvrD9UOtXjx/Ez4KEeLy95DyP1B6LCtctwqFNgyI7UVldjO5Fe/OEPfwAA/PM//zPvfaUBh2dfNODIsoyrr74aAFDWugNSX2dqGQWQo/ERiu0aWO26D5tIMQFZnx/W7qqrqmoDRTgdZFVVm7vO6eCoqP2tr3YndUJoXfgcr1qr/Ve3ncq48DSXq87lJDStuhwr8tad0rcpdIgKzdf5Od2mnfExBPocXp22m04Z931yCKjGCLku+53v8OqHdP73jlO3eZhyLY3XhuQ2LZ0kATHn6e2EJEGymFPdEJ/6Ru6L2ZeJP61Ar8sxSADlnfbbCsTPSyqb7Osp6xKQYwJl3fZ/w/MPiiEcDmP69OlYuHCh8z4RlSAGWBqQjj76aMyfPx8SBCr3bUAgYvNBL+LdhBWkBFnH7sPG+kn3rVp1HzKPGux08uNlZGHzQd9tKglPc7i6lPFyEuVhrj2jXB67ArrxdR5YtsRSCXC899uH17ARYJze515b6Fw+K7zcyuBXmf79cgiuyeHV6u/p5bPCr5GG/Wx19TBYk+vf0Mvnf/Lzsnq9plOPh15NwrjNxaJMQDLCK2BzPpB0zJedArV+GmBxPhKICiO8ar+nrl7WJYzwaqeiRaBqz7d47bXXIEkSbrzxxuLsLUWUJZ510YAkSRJuuOEGhEIhyH1NCLZ/Y3lAAGDcj+LUGps2/RxGb31NWW4+SKvWV5GTR2V0G+FTb3112pZQretJLpO8zG200XTCaVI5T62vnubQS39AJUmW/A2yRPmUz9ec1xFn3cKr63Yy7zJsfjybMqn7ZBHi9N/NwTXHU9Jo9RRpq2uy5IuXbmWyeG0kBEu78GpuhY0HV5FUJqEVNmC9PwmtsDZPK6UV1u2e13hwdZolQQ+ujuG1VSAQUTClYg8AbVDLKVOm2FdKVMJ4xkUD1ujRo3HJJZcAAIJtn0Pui6CsVyDUJRAMWxwpTK2xcl+a3Yet6O8u2+CZFFAtN6JfHXYIsID7SZ+nllQPrbWudZj2I5v9zTOGWCo5Gb7WLFths+w6XAzh1bw8L62u5mV2fz891A628JpQT5b3QhtT2Hno6eOpZTo1uPZvK/7dJrwCSJxSz0ZCK6zNYbC8U0lpdU0p06a6trqGOgQqWkU8vArceM447Ny5E3V1dcaAlkQDEc+2aEC78MILMW7cOEhqH4JtX0JSgWCfatmFB4BxpVRWRPrdh+04Dvrg7YDruZwTWfJ2oupUJtsuxZmU82vKm3xhiKVcy/I1Jtzmf85EEYRXX/k5GJOXbblupwTDq3sl3vYlF12GLbcFx/Bq1OPlz+zW6tqrura6hjpV11bXylYFgYgWXhHrxqOPPgoAuOaaazBkyBAPO0pUmnimRQNaKBTCj3/8YwBAoPsrSOFGAICkaAcFx5CqwnZ6nLTZXvGNh2Cng6oQ/SHOth6ta7DjSYUqtG62RXY/jGtriOdpG/hxRoOAH/eqOt0ykMxr66t9Afcd8jO85qu3CeC9ZTXbcQbyFV79ut/VY0uop/2RJG8DPnmaXs79gG41p3tyPbJL7yy38wZJEZCcwm2fikCf6hhcQ10qQl2qNi0PAAiBuaOa0Nvbi5kzZ3LaHBrweMZHA97s2bNxzjnnAACCrZ8AahSS0LoCSRYtrXJU1boP6/edWt2e6tZ9GPGDlPn+V6uDujBt3+6gn3z/q8vJgecTDCvGvvjw0eB2EpN0MuEaYvPVGuKHYtkPGlj8Dq9u0gmvVuGgUOHVS2B0G0nYdad86BZcbIM1ufD0f/CrTJq9jiwvRnsZFMrYXvy7VRBOqkdymj8+/jYI9qaGXEkRCeG1rCu1jB5c9fAa6kp9X+nB1QivAOSuHfj0009RWVmJW2+9FXKR3aZD5De+wmlQuOaaa9DQ0ABJ6YXcscl4XBKprbGSAGA+QOkh1nwc8dJ92G7gJT+uTHsol/VVcquTIi/deZP/Lmm0+LqPZJmbEOs4OmumGGLJT7kMr1atsJm0vKpJF+zc5LLl1Wr/3crkMryaf/c60rAf++FFvsKrl0Cu/20sLvamVY/n1w2cz4S91pN0jiAltZ7qwdXc8mpuYbVrdTWH1JRW17hgVweqw1sBaOc6o0eP9rbPRCWMZ1g0KFRVVeEnP/mJdhCOfQ2hfGssc2qNNTi0xmbE4/06nupRbUYWhumkQ+8+bFeHXiZlWerV/YzmbC3iEJuT8JrBfhDZykfLq/nzgd2G7WXb8lpMXYaB3HcZ1i9quN0mo++Ll2OjHQ/bShhp2C24phNebbcnPHUZdrvX1arVFQAgVBw5thF9fX2YPXs2zj77bG/7TFTieHZFg8bMmTNx/vnnAwBE3wYIEU5YbrTGRlX7g008xLoO8OSFonobBMptWx7mS3QdnEkvY7s8vm42o/WaTwhcnnc+Q6xvIxA77QeDLGUq36+dbMOrp234FF693F/qtYzjzngYTdjrttwU0f2unvg1poIfAxWmsz9Oh0On+2D11fsU13EyrFpdE+qIut/rGghbt7rq/umc4fj8889RVVWFW265hV2HadDgK50GlauuugqHHHIIgAhE36cprYmSPnKg6nDFVF/H7cBlNf+rVXVOJxFepwfw3O04y7e8KrxdkXeT7UHW51bTnIfYDOaoJfIrvHp6ffsSivrnpM6G5/CaD35NgQP4FNDyNOoxfGhp9zI/eDotnQ6vK8fjaMp+Zb4dndN9sJKq9eYK9tgHYTmqQlKdW10DYTV+Ud2mTLQRTzzxBADg//yf/4NRo0a57jfRQMEAS4NKeXk57rzzTlRWVgJqM9D3d/vC8YNQcpCVFNF/hdbuCqzd/a82PB98MwixwjyKMWDdkmDuwuWRLyHW5uQmo27KWcp5iCVKR6HCq8vFIdv3ZvJ72Wu55F0ZjOG1yAZr0nYpy/1Nd/5XLxclLV5TQpYSj59OvXvy8Lox986y6qklR1UjvALadDrJAmHVCK92At3dGFr+dwghcPbZZ+Pkk0/2Ye+JSgcDLA0648ePx0033QQAEOo2IPxtyoALBovWWMnqXlgfGthSDsR2zAf95MGk0rmabXcylMsQa3VSm6suTxm0euYkxLL1lQok45bXdHs4+DT386AIr8nPsYjudzU2l21vn3TDa4Ysj5eWx5jE7tJee0elQ291daIHV3M5WUncFz242oXXYI+CQHcM3z2yHa2trZg0aRKuu+667J8AUYlhgKVBadGiRTjzzDMBAKq6AVKs2z7EAratsYll4FuQ1X5waMXNdZfi5PujhGp7UpvQpdjLPb2W20vjoyiXgy6BLbFUBPI1XU6G20lohXV673othwEaXv34nM7j/a6ut4dk02XYy+0wuei15DXkJvFyH6xR1kNwNbe6WvHS6hrsUSDFBC74/lB8/PHHqKiowJ133ony8nLP+0o0UEiiEH31iIpAX18frrnmGmzbtg3AEATleZBU2XmONwByTIUUVSBcRjp0vcqrqIBif5CUFBWIuRxEhXCsAwCEah8+4wWcD+j6ug4hVtsVD1MLaQUdtqX21+XEU3ez7K4m+Do6MVthyatiCq8O9RhBx8s9jgMpvPp1v6tX2b4e8nm/q+u+ePjbetgPEXCpJxBwfd6iLOBcBwBRXua4XA2516GGZMfgKkVVKJVBx/MOOapq9cQEVLEXCj4DACxfvhynnHKK6z4QDURsgaVBq7y8HHfffTfq6uoAdEBRNwKKCjmqaOHRTrxlVHILWU4tqC7h1eDDSVv296pK1j9bbcdt0A6P18t8Gek0S762xHIUYvKimF4nXsKrG4/liuY6uh/hNZ3bOLLdHy88XIjL+eet1/lfvdTjRT4udqgq5IjzBWhJcW51lSKqMYWfHblPgRxR4uG1HYHQZgDAP/7jPzK80qBWREdLovxraGjAz3/+cwQCAQjshyp9pYVTVTgHWT3Eqqq3IGvxmOepeLKZ7kAI7eTQrykT9P2x3JT37oK+7IPXqS8y5Pv8sMUUTqj45HPQJjd+h9dMby0wy/V8zX6F1xLkywUEu/9x8pgNVlw/yz1eFNDLufVccuP0clVN09/ZPGdJifdWsrvtJqpqXw5/d7lP0b5ieq+kPgwbuQ2RSATz58/HFVdc4empEA1UPKOiQe+73/0ufvzjHwMAFHkbFPlbU0B1CLJ6C2sWrbFeBn4w5PjENO163OpKN8QmnQx4mq4nX9OD+KWY9oWKRyHCq1239nTDq9VJfAZBrmCtsH7e7+q3Yrr1IJP/j5fPby/h1Y9teeE0joU5uNrtQrzV1elii2QxkJOZObga4RUKDpt2AI2NjRg/fjxuu+02BALu3ZeJBjKeTREBOOuss3DeeecBAKKhTVDlNm2BKcj61hqbTZD1oyU13fVVkdHJrrbcwzyALlyDbCmG2GLaHyqsYnotZPrZkjwSulsZG77c+56OYg6vfsrxwHcpsuky7HXu8+TtZcut1dVp8+bg6tbq6vC/SA6uACCgYvZJfdi0aRNqa2txzz33oKamxnF/iAaDIjpyEhXWtddei2OPPRaQVERCn0GVuvsXmlpjYXW/irk1VlUzHo047dbYTFst8tClOIXbvmYTdH3uUux792ErxRRcqORl1HXYfGHKZX1PXYfdyvjRldgvfoRXP+93HSjy3eqa4d/fGGTRh1ZXr8HVS6urmYBALLgF7733HkKhEFasWIFx48Y57g/RYMEzKKK4YDCIO+64A9OnTwekGCKhTyEQ7i9gbmlVLOaCNZcR9gc0o5wNz62xXkf9dSJL+QtSWZ7s5XNgp7xNpcMQSz4omqmfimUwJide73ctmr9pfkJ/1l24cz3uQTKn44GXlnzF+UKz22wExlytWXQXlvoUSBatrjol8BWUwB5IkoTbb78dM2bMcNwnosGEZ09EJhUVFVixYgXGjx8PyH2IhDZAIJpa0AipNhXpLbJO98P4cbKX7UmD3j042y66bsz7WcgWizROBiVZyk8wYIgdvHz632fcY8C8/Wx6HfgUXnI/Gq5PXYYBtrya5Xkeb9sLvE4j/3vcvuRhTAtJEY7b8jJIk9SnaBfDbS5CK2I3YsEdAIAbbrgBCxcudNwnosGGZ05ESerq6nDfffdh+PDhEIHueIiNpRaMH+hsW2NN5Yo6xOoybSFVRfpX73Nx8pejbr8MsZQTPv/P0w6xVtu3aylyvMCVVI9rgLAZuTXXc8EyvOZGuscfP455NiP7O3Lo5qvzElyN8GpXJh5c7erSW13tgisAKGIPYpV/BwBcfPHFWLp0qeN+EQ1GPGsisjBq1Cjcd999GDJkCESgA9GyDYCitcQKWYYIxt86pi7DjkHWqTXWy1VjNz4MlmTI18lZcmAupvvjkuQtxDLIDg6F/j+nsf20wmuGGF5d+NGN2I8LfMlTpeW727AVt+Onx+Dq2FpqDq4Ztrqag6s5vIqy/tGEpagCVd0HtfrvEELg3HPPxVVXXeW470SDVRF8+hAVp0MOOQT3338/ampqoAbbEanYCMSi2gEq+SQm4d5Xh0r1ICtJEMFA6rJiCbL5HJzE43YKNs1GHO+LJV/k8P/ry+BjpjoyDq9ptMKWTHjlgE39SiG4AjnvLizKAgnB1TG82nUXliRIUQVSVIEiN0Kp2QxFUbBkyRLceOONeR37gaiUFMGnEFHxmjJlCu677z5UVlZCDbYhUvk5hBrTRjC06cYkCecrta709dwGgnI6ocpna6zsYb5WL7Ld5zwETIZYKnkeX1v5OHHOeXj1YiBMk+MTTxcJiyW8OpA8tLoi4PI89MEanbalCOfgGnXuLizFVEhRBVBVKFITRN0WKIqCU089Ff/7f/9vyMXwtyYqUnx3ELmYNm0a7r33XlRUVEANtiJS9TmEiMUHQLLpEqyHS9Um6OrlnJbp7A7G+omX3VD/fh78PHRvdTwZ9do9ONcH7FIKhqW0r1QUfLnA4kcdrlOp5Gvk8wH0HsrTaMRZy2VPGQ8Xhl1H8NfrcJqvWD9e2QXTmKp9OQRXxFSIgOQYXvVtKcEmiPrNiEajWLhwIZYtW4ZAIGC5HhFpBtCnO1HuHHnkkVixYoURYvtqP9dGJ9aH47c6kOkHSH26m0yCrJnbgdnDnHVZcwmykuRDa2yu760qpZPaUtpX8iZHQcTv8OraGpfpZ43pvV3o2wKKZqoccuchuDqGV3PPKLu63OZ8jQdXuzr0rsDGfPAWx0Kjjvi2YsFvodT2h9fly5cjGAw67gcRMcASeXbUUUfh/vvvR3V1NdSyDvQN3QSBSH9XX7sgq3MLqsnLJYu5CL10jUrnxDLTeWCzaY31Kt0Qm879fxkOmOTLPYbpYogdeHwOsZ7Dq9Nrya8w5/egT9m85+z+zunO81rooO2XQnx+ZcvquJn0OvLc6uoUXJOOm8LUAuoWXAEALssTgmt8W9GKRig1Wrfh0047DXfccQfKysqcnwsRAWCAJUrLjBkzsHLlStTV1UENdiE89AsIKdJ/4HILsubWWEmyPqFLDrFW3ILsQGqNzaVSCYccoXjgyXeX0AzCa9qtsBmE17y3wrLVtXTYvDZE/H+YVqurFafjZCC+DZtgasxEEFOBmP18rlbBFQCi5fsQrd4CVVVx5plnYtmyZWx5JUqDJAreh4eo9OzcuRP/63/9LzQ3N0OKVaC8fRpkpaK/QHL3YRvaYBMOJ7JuAzkJASiK884Kl3laVeF8Mu26DzbTAxmruzxH83Zs91H1cDKdg5aalGJF8HFZKvfCkTsfLkp4an3NouXV9SKUHkyzaHl130aWoVN//lmNZlwEwdePi1jZ/r+93JvpWofL88jyHmpjhH+nY0byLAB227AN0dpyu+AqgnJ8ar2kll0IRCu/RqxqNwDg/PPPx3XXXcfRhonSxEv6RBmYMGECfv3rX2PUqFEQwTDCQzdCCXb2FzCNJOzpCrETr4M9FSnJrqU5k3qcpNstMKFyjyOzFkPrDVtiB4Zi+T/6cVEmy5PvnF6cGijh1U0xXNiyue/T+/oebpFxYx7F326548jCan8vKrtyimo/LQ4AxBSb8KoiUr3VCK8/+MEPGF6JMlQkR1Ci0jNmzBg8/PDDOOywwwA5ir6hX0AJtfQXMHVfkhQ1syBrnirHbvkgGmrfU7fkHIdMSZYKH2Ttwg+7GpPPHMOlSyuVIde3M9gxvxcyDUbFFC7sQqr+eCFDrNdeNrbdeT3+f7wEU7vZAfTH7Y6ZenC1ayE2h1srMUX7suh1JKCgr2YTlIpvIcsybrrpJlxxxRUMr0QZ4pkOURaGDx+OX/3qV5g3bx4gqeir24xoxf7+ArKcEEBTgmzyXK6WA1ZIiQdmq3tk3a4q+3Fl244k5/2+skKHWKAIWmOTg6r5dwbZ4ubj/8ZTt3a3YJPJZ0O+L5zlYZC21HqKPFwItfAtr17HW7ALj16PTdn0REpenhxQk4Np8v89uVU2eX1zcBUi5TkKtRfjj22BWt6G8vJy3H333TjnnHOc95mIHPEeWCIfxGIx3HfffXj55ZcBAMGuBpR1HwxJkuMTolsc4CUJQpa0ZXYnAFI8vMaUxMfMP6tq4n2wyQdfISDM27cKXsVwH6zLPbCOdTvxfGU/sxPBorkv1u6EvdAnuJQoBxcWsr4PFkjv3ki78JrFvYueWqJyfL9v0g55L5tP+vOze1/7+X+2ot8Dazv4UdK9pcmfz+Z7T+3mN0++qJuwPPGisBXXe2DL4oMl6cfF5HJuy/X69eOyw3I12I26aQdw4MAB1NXV4d/+7d8wbdo06/0iIs8YYIl8IoTAY489hkcffRQAIIfrUd4xGZIasA6wiSt7aEF1GPHTajCnpOUieR/MJzIlHGCN+p340UrluGqRf4wyxBaPHLWM5zrEGsHGqeU1y8F3su5ZkWV4i++Ee5lCkmTn93M+AqzT57E5wFp9LgcDzp/H5tZNq/UDAcdjhXAbIEp2qd+8f5bbl+2DrbmOmIJYqBmB0bvR29uLMWPG4Be/+AXGjRvnvH9E5AkDLJHPXnvtNaxYsQKRSARSrBLlrVMQiIScV8okwOr0Vlq70Yjjy1MCrE6W4vUr9idvhQ6wQO5DrA8hr6iDLENsYeW4S3deWmHdRqAt9gDrqQ6H5fr0Z4Va7kU2/2NVQHIIgEIISE7/QyGAYND5s9x1fYeAqgrX0YM9BVi3/Uu3S3LSMiEBsao9iNZqgzXNmTMHd9xxB4YMGeJcLxF5xgBLlAObN2/Gv/zLv6CxsRFQA6hoORSB3trUe151avweG8lmJF0l3k3Y7uCvzy1rQ7gFUEALsID1/jHAela0IZYBtvByGGKLogVWK+hQfx6m08m2FdbpIl4hl+tl3P5GTs9fqPbT4MQ/t+wCrP75ahtg9f13usihqlrAdVzf7hgXX24XYOPrC5vlei+ojJbHx68A7AOyFO9OrAaASN12KJXNAIDzzjsP1157Led4JfIZR/kgyoGpU6fiN7/5DaZPnw7ICsLDtyBaewBCqNZhUw+2QmhhNTkE6aMN2w2YET+psAtxkl0wTt6GVol7mExZ13kgJ09T6RR71z2PCj64ExWvHF1EyPVrzreRUgs1GnG2smmR82O51zKO69v87V0GURKifx5xy9eB+XjhFl6tlpvXt7y4a9o/q/BoGu3fan1JiY9BIYRl+ExYnvw+EgJSTLFfDi24SvEBnNRgH8Yc3wKlshmBQAA33XQTbrjhBoZXohxgCyxRDvX19eH+++/Hq6++CgAI9NajvHECJCl+QDO3yOqtsGbm4Km3wpqZQ6GqQphOEJNPNtJqhU3eB62CgX0fbA7CRVG1xrIFtjj43AqbdnhNs4XSMrTkqBW26FpgrT5T8rncqky6LbDm933yhcbkzyc5cZqy5M/UlNbXlNF9LQKq+XPbHOTs7i+12zcgsfXVPDK//lBZf/2SxX2qnpebWlwTlpu2LyUN4BSrakPZ+H3o6upCfX097rzzTsyaNSv1ORCRLxhgiXJMCIEXX3wRDz30EKLRKKRoOcobJyEQreo/mZBMIdXppMalBRaKknrSkXxC4hSqrAKsvv1CB1gguxBbgACrVVskH7EMsMXDpxCbUctrGgHPNlBm25vCZn1fRiL2K8DafZbka7ldGae/kVN4BUwjCNv01Am49ORxm/c3OcAmf14H+wOi9fqy4/7BPLqwxejEIiBbBk8gHj4lyX55QPa2PCm4CghE675BtFabPu+II47AnXfeiZEjR1o/ByLyBQMsUZ58+eWXuP3223HgwAFASAg1j0dZ9whtYcqIwDZvS7cQaOrulUySJPcAK5zvpfUUAm3KFDzAAoM7xDLAFhcfQmzGXYc9hDzHMJmjAKutWuCRiPWLdbla7sYp4HptfbV7rwecRwCWArLjZ2hWU+xkOwCYy+jEoixodPW15Ba+Hf7udsFYlaPoG74danknAOD73/8+rrnmGnYZJsoDBliiPGpvb8fdd9+NdevWAQCCXcMQahkPScQP7saIwKr9YEpAxiFWWzeLAOtl/VLuRgwM3K7EDLDFJcsAm9V9r9kGWCBn0+kUPMAWM7cBnuSA8/s80wGe4OH/4jXcWm5b+DM6sZdW7XTFFMu6YxVtqJrchNbWVlRWVuLWW2/FSSedlPl2iCgtDLBEeaaqKlatWoX/+I//gKqqkKIhlDdNQiBSrRVwG9Qii1ZYbQeEdrJidTLjpQXWbl19/WLuRgwwxJqZ/48MuPlTAl2IswqwWgVpr5d1F2Kvf9dSDbFOFzUzHZ1Yf9/bDcTnMjqx476Z2QVYff9dRze2WK5/pso2o/u71a0fS+yWxwdnMt97K6AiUvcNYrUHAACTJk3Cz372M4wfP966DiLKCQZYogL57LPPcNddd8W7FANlbaNR1jEKkkBiiLMa1ENxnvLGU4AF7O+ZynZ9p27ERj02gakYAqxRmb+hruAhlgHWX5Kc/t/Nx0GccjmAU04CbC7DK1C8AVYVrvOvehugymGAp2wGdwIs7l9NGksh0+l1AO3/7rbvbsuT/z7m/bMbndhp6h1VdV6uh1fTcjXYizHHh7Ft2zYA2hQ5P/zhD1FeXp66PhHlFAMsUQF1dnbigQcewOuvvw4AkMM1KG+cADlWllrYfI+OeTRiiwO/5wBr1JEUZLJd360VNqE+iwBQTCEW8C3cFTzAajuhfbdrgSfv3O45tCrr6+bTCGIZdK31tRtxsYRXr/X5wfx+d2jdTDu8pjsyMeB8scrc+mr1GWXRpdz8GesYXoHEcGz12WxeP5PRia3ujzWXMwdU1eIiq3l50iBNACCCMmLVjZBG7UdfXx/q6+vxk5/8BPPnz0/dFyLKCwZYogITQmD16tX45S9/id7eXkANINQ8BsGuYZCQdGJizBXrPN1N2gEWSDwZz3b9dAKsUa9qLmS//eSy6WzDWD/Djz0fAl7RhFi3LoXkzq1Vy66cb5v3GMIyvC/Ut1bYYguvXurMhsX0NGktT5bOyMWWyz0M7mS1X/rqpoBo9dnqOcBmOsCS2+jEAdP6TtPvqDbHJn25udU1Tg1EEBn5NZSKDgDA0UcfjZ/85CcYMWKE9b4QUV4wwBIViT179uDnP/85vvjiCwBAoGcIQk3jIStJrbGqQ8CMB9yMAqxZtuu7hDSG2CL/2GWI9catFTtHwbW/+tzOi+pLgC3G8Oq17nTZtF56Xp6JbAYoAtIa0Cuj8ApkP2q114G97D5X3ZbrzK2uEIjVtCA0oRldXV0IhUK46qqrcP7550P28pyJKKcYYImKSCwWwzPPPINHHnkE0WgUUAIItYxFsGtof2usU4CN8xTenEJKtuvrZWyr9xBOizXAAgyxpMlxQHXffO5H5M16Oh2XMjkfddhNNvem6sud3stelmezfbvBlbId3Elf7Da1jtvowU6vAVW1vj82eX275fr6TvQ67FiM+K8GoogM3wWlSmt1nTZtGn7yk5/g4IMPdt4WEeUNAyxREfrqq69wzz33YPPmzQCAQPcQhJrjrbH5CLBaJdmt73U0YqsTEC8BVi/ngCHWBwyy9oo9wGqFnJe71JH1fbC5DrBAbkKs2/2ryWVysW237VqNvpvOwE5AVlPrQBWQrAZAMu+D3fr6Z7fT6MSqCtjNqeo2grDb38G4F7b/OQoIxKpbUD6pBZ2dnSgrK8Nll12GCy+8kHO7EhUZBliiIhWLxfD000/jkUceQSwW0+6NbRmNYOdwSKpwD7H6xOt2J0jF0I3YHEDNJyL648XcCgtkHe5KIsACDLF2GGCzDrDetlGAVth072P1Y7teB33SWQ1eZObUsglo88ZaLncJl+apdZwCtFUdyZ/ZycuT5zpPDo7J6ye/vkTSsdHuAqk5AEsS1GAYfcN3Q63sBAAcdthhWLZsGSZNmpS6PhEVHAMsUZHbsWMHVqxYYbTGyuFqlDeOgdxX4bieEWB1yfdiZRNgvdaR7pywySGWrbDFgyE2VYEDrLYLue1GnOv7YL1tI8+tsJncy5rp9tzu23TaH31QPytO86Lqy7OdWifoMrqw+X9v9Tlt7j6cHFx1eoC1+5y3uvDpttxUTgRkROsOQDqoCZFIBKFQCJdeeilbXYmKHAMsUQlQFAUvvPACfvvb32ojFQsJZa0jUNZ6ECRhMz9fcoAFEk+aijHA6mQ5f62wAEOsVwyxiQZBgAUGSSusvo1s7mf1Szrh1o7TtDtAYuur1fvaJbwC8QDr9PkaCDh/PgcC9sFVXy5JznXIcn8ddlP0WARXAFDKu9H3nW8gQmEAwOzZs3HTTTdh7Nix9tsjoqLAAEtUQr799ls8+OCDeOeddwAAUjSEUONoBHuGJJQTdtMJJBTyEEby3Y043X0wtlPaXYm1Kkrko5ghtt9ACLAAW2FLjdcA69Q6K8nO72WXqXWs5oa13I4Tc7i0W+7G6XnqkrYh5Bgiw/ZDqW+BEAJ1dXW49tprsXjxYm8jYxNRwTHAEpWgd955BytXrkRjYyMAINBdi1DjaMixcgAeAyzgPhKx0yiYev25aoVN3hfHbRS4FRYYPCGWAbZfEQSmkrgP1q2Ml20A2bXC6q9bt/mPM/mfelnXae7ldLfvZXAnJ1mOTAwkzg1rpn/Wehqd2Gk54DyAlKK4LwcStiMgEBvSjIpDOtHRoY0wvHjxYlx77bWor6+3r4uIig4DLFGJ6unpwSOPPII//vGPUBQl3q14JMpavwOoXue98xBgdZkOBsVW2DSqKJGPY4ZYTSkM4qQVdF6ebYAFrAOqeb18dCMGMpubN/n17PX/6rael3rTmTfYblRgLyMmG9vw54KH1f/K/BlrGWDjy4UQrssBQLK6BzUeTIUQ7stNU/Ao5d2IjNwDtbwXADBp0iTceOONmDlzpvVzJKKixgBLVOJ27tyJX/3qV/jwww8BAFKsDKGmBsidQyC55Qwv98E6nRzlK8Dq++K4Hfc6GGJ9xBA7aAIskEErrFX5QrTCWr1OMwma6dRp995wKuPWMqyXcRrcKd17Y9320a5IUutr8ueqOTjGC6SUSwmwQqQuN5cxBVOjjDnAWi2XZaiBKKLD9yFW2woAqKmpwRVXXIFzzjmHgzQRlTAGWKIBQAiBd999Fw899BD2798PAJB7q1D27SgEwlUOK6YZYHXJg4wMlFZYgCE2HYM9xA6ULsSAv92I7crmuxU2kyBpVcapnJft6WW81GG3PT28ug0y5cTn1le7z1MjnFoE14TlTmX0cGkRTK3KJC8XkorYsCYEx3Sgt7cXkiThjDPOwFVXXcXuwkQDAAMs0QDS19eHp59+Gk888QT6+voAAIGOIShrGgU5GkpdIdMAq9NPqNgKm7SRQRRigcEZZIsgvAJFFGCBxGlRnMpkvR0fBtpxC5Rey/ghk0CdLI+tr26foZ4Crk1wzbYOAQFlSCtqp4XR3NwMAJg+fTquu+46TJs2zXG/iah0MMASDUDffvst/vM//xOvvvqqdnAXEoKtw1DWPBKSauo25XUk4mxHNM5XgAUGTCusVk0JfTwPthA7yAIs4LEVNtsRiz1tx2W50+BzfvGyDa/7kW7rrBWn7ej74TZwkuwwKJK+f04DJ3n8mziG4CzqUKo6ERmxH6JcmxZn9OjRuPrqq3HiiSdydGGiAYYBlmgA27ZtGx5++GF88MEH2gOKjLLm7yDYNkybP1ao/aHQ7gDvx4jGQGm1wgIMsZkYTCG2VO5/7V/BeXm+AqxeLpvtAO4j8Xopk+7fMJ26vdSfTsBNljxqsd0gezqbUYMTPv+9DDLltB27QabMZbyMau9WR1IZpbwH0eEHoFZ3AQBqa2vxgx/8AOeeey5CIYueR0RU8hhgiQaB9evX4//+3/+LHTt2AACkWBDB5pEIttZDSv4ESD55LLUACwyorsRaNSX0MT1YQmwBA2za4VVbyb2MH/fB+hBgPW0LsB5Uzmm51zKZrJNOvekE6ExCpdW+WAyqlFgmKTRavY+Tg2XyGAhOIyTr0wh5Gc3ebTvxMmoojOjwA1BqtClxgsEgli5diksuuQRDhiTOjU5EAwsDLNEgoSgKVq9ejUcffRQHDhwAAEiRMpQ1j0SgbQgkJJ1Y6Cc8fgVYoKhCbF5aYYHBdz8sMDhCbAECbEbBtX9l9zKl3Apr9x5Jt0y+6stkBGmnUOm0L+bPcsttmFpfne7BdRu8zxw8rcrYjaJsV4/NcjUUQ3TEt1Dr2o3pchYtWoTLLrsMo0ePtt5/IhpQGGCJBplIJIKXXnoJjz/+OFpaWgAAUl8IZY0jEeisTQ2yusHYCgswxGZjIAfZPAfYrMKrVoF7mSIKsJ62BbiPzJtOGcDbKL/pjATsNIq7m3RGU7YTkN0/L+WA+3s1EHAfdd6pjNUoynaB3C64BqOIDW+CGNGhzX0OYOHChbjiiiswceJE5/0nogGFAZZokAqHw3j++eexatUqtLe3AwCkcDnKmocj0GHRIpuHAAsM0BA7GLsS6wZqiM1jgM06vPZX5LzcjwAL5LcVtthkO9WNVz5dkNDqchncSW+hzWbUZn2QKKc6bMqoZRFEhzdBGtGFWCwGAJg7dy6uvPJKTJ061XmfiGhAYoAlGuS6u7vx3HPP4ZlnnkFXlzYIhtQX0oJse11/kB2A3YiN7bnWUxytsFo1JfiRXWoh1uvJep7kLcAC/s0Hm4dWWP29W1JB14/Bn4Ds/pfpDO4EOA/wl8MyaqgP0eFNwLAuo8V11qxZuOyyyzBz5kzruohoUGCAJSIAQGdnJ/7rv/4Lzz77LDo6tEExtHtk40FW8XBS5UOABRhi3aspwY/tUgqxbl03zWXyoCQCrFUYzVGItXq/2u1XNiHXy7pp15/JwFPJnP6P+mBJXrdlNWhfwrYs9idXZeLl1PIwosOboNZ1Gn/fuXPn4pJLLsGRRx6Zug4RDToMsESUoKenBy+88AKeeeYZtLa2AgCkaBDBlmEIttRBUh3mAQSKrxUWYIgtJqUQZJMDgtU+D9IAC1iENbsQmoMAa/c+tQqQyWW9hEyv65jLpR1e0xn8KZnd/9BuWh2nzwlz66vTAE95KqNUhhEb3gSlttN47LjjjsM//dM/Ydq0adb1EtGgxABLRJbC4TD+/Oc/46mnnkJTU5P2oCIj2FqPYPNQyLEy6xUHcisswBDrh2IPsW4hwalMDvgWYLXK3Mt4bYV1C5+eg523EOv2HtX3y6mcl0BqVzadlt+0+TUqsdVgSZluT5LcP1/dRjh2qUtAQKnpQmx4M9Sq3nhRCSeccAL+6Z/+CZMnT3bfTyIadBhgichRX18f/vu//xtPP/00vv76a+1BAQTah6CsaRjkvorEFfIdYLXCHrZZRK2wgO8hbtCH2WwHmTGXKUK+hFivz81rK6yH4OlXK6xfvLTmmstmEoYzkk6AzbZru9e5b93KeSljQ0gqYnXtiA1rgSiPANDmcT3llFNw8cUXY8KECRnVS0SDAwMsEXmiqirWrVuHp556Chs2bDAel7uqtSDbXaUN+OQ1kHgNsdrG3Qp63CZDbFHyekLupZxfZYpMMQVYzy2wWmGP23SoS3/f5jHoeuHrfbfF8v/1MphUFmVEIIbo0FbEhrYCQW1gppqaGpxzzjlYunQpRo4c6bb3REQMsESUvk2bNuGZZ57BW2+9BTV+cimFyxFsqUewvQ6S4qGSdAJswnoO0zS4btNbYGSILRAv95p6vR/Vz7qKQDHMA2sZyHLZCpv8fi2iAOvWvdi38JpOK6fb4E56mUznqk2enzVgMR5Ccpn49tTyMKJDWxE4qAeRiNbiOmrUKFxwwQVYsmQJqqqq7PediCgJAywRZWzv3r149tln8Ze//AXhcFh7UJERbB2CYEs95EjIfmWPQcv2Iyr55DbfrbAAQ2wueL3P1Es5P+sqsIwDrN+trinreaw/3RBr9z4tghCbzb22KZyColOZlA16eA8AiaHTy3y15jJe6jKVEZKAUt+N2NBW4/5WAJg6dSouuugiLFiwAMFg0H4fiIhsMMASUdY6Ozvxyiuv4Pnnn8eePXuMx+XOKpS11EPurO6fT9Ys01bYlHpUvbC3HWaILX7m6UCyLednXQWSUYDN57yvrvuSRldit/dnEYRYJxmFVz9HJrb7LEnnYoZFIPW6TbUsitjQdsSGtRvdhAOBAE444QQsXboUM2bMKK25e4mo6DDAEpFvVFXFhx9+iP/6r//C2rVr++8FiwS17sWtQyAppivu2bbCJm5cL+y9rB/bNeosntGJ+6vjx/tAkVaAzdV0ObZ1+Rxi/dymE1X1PQy7/c2EEPEBsHwaKRjwb3Ay8wWcNAdEExBQq3sRG9YGDOuFomjBdcSIETj77LNx5plnYsSIEe77QETkAQMsEeXE3r178cILL+Avf/kLOjvj8/oJINBRg2BrHeSuKkhp5LWSCLFG3Vl8rOZgihkG2dLnOcD6ONIw4DHE+hFg9fdZWveOZhA+ze/7HLTkus1Hm/eBnQDt88jqflUg688bEYwhVt+B2NB2iPKo8fisWbPwve99D8cffzy7CROR7xhgiSinwuEwXn/9dbz44ovYvHmz8bgUCSLQNgTB5iGQIv0nOOnM05gi3fticxlijW1ksC5DLCUpRAsskKdW2OT3l98h1up97rZeBiMfe5miJ6t7YwFvIwAnl5Ul+y6/XuszlRMyoNR2QxnaDgwNG62tlZWVWLx4Mb73ve9h4sSJzvtGRJQFBlgiypvt27fjpZdewpo1axJaZeWuKgSbh0DuqIYktJMot5YMW+mMUpyPAJuwvTTqYYilJEXdCgukPyKx3fvKjwDr9N72uk6a4dXLvLKeeBnYyWs5c3g1f6Z4HSjKVE4NRRAb3oFYfQdQ1j/U/BFHHIEzzjgDJ510EkcTJqK8YIAlorzr6+vDO++8g5deegkff/xx/4KYjEBbLYKttZB6yo2Bn7yM+pkgnXljiznEArwvlgwDIsBqFbr3jkg3xHp8HxvldXka7TijrsNe75H1MppwhuWErECp60JsaAfUmrDx+NChQ7F48WIsWbIEEyZMcN5PIiKfMcASUUHt3bsXf/nLX/DKK6+gqanJeFzqK0OgtRaB1lrIkbL0K/ZyQpv88ZfPMMvWWEqD712IgbTusfQ9xHrbqH91paMAAzt5KZcvQlKh1PZAqe+EMqQbkLX9k2UZ8+bNwxlnnIFjjz2W97YSUcEwwBJRUYjFYvjoo4+wZs0avPPOO/3zygKQuyu0MNtWA0mxGYzESiYhNp11kef7Y/PUGquHJYbcwsr53K9A4VphvSpEqPNyf2yG98bqkj83vPx9jRGMfSpnLquNIhyGUt+BWF0XEOz/rJkwYQIWLVqExYsXY+TIkZ7qJSLKJQZYIio6PT09eOedd7BmzRp89NFHUI3RhQG5owqBtloEOqohqR4HYnFTyMGeiizEJocmhtj8yzi4JlbirVyxt8JqG/a3PjtO+53h6MXZDuzkdQTjdAKxXlZAAJVRxOo7odR3QoRiRpkRI0bg1FNPxWmnnYZDDz20aFqHiYgABlgiKnJNTU14/fXXsWbNGmzdurV/gSpB7qxCoK3GOcz6FWLTrC+nc8jmsEuxXXhikM09X4Jrf2Xey/rdCguUXohN3t9MRi5OkunATl6DbjqB2BxaRUUESn0XlLouiIr+qW+qq6txwgkn4LTTTsPMmTMRsJt6h4iowBhgiahkfPXVV3jttdfw5ptvYvfu3f0LnMJsOoO7FDLEAgW/L9Z9kzxc5IKvwbW/Uu9lB3uA1fc1k5GLs5TOAHVeArFVnQICorIPSl0XlPruhPlaQ6EQ5s6di9NOOw3HHnssysvLM3kaRER5xQBLRCVHCIEdO3bgjTfewJtvvomvv/66f6EqQe6sRKA9HmaVQG5CLDBgW2O9bZaHDr/4HmBzEF6BIg6w5vdXLoJujsJrLhmhVW9pLe/vHhwKhTBv3jycdNJJmD9/Pqqrqwu4p0RE6WOAJaKS5hhmhTYAlNxehUB7NeQ+j6MZ+9wSq++nZ5mEQwbZklMqwTVhE/kOsVbbs3ov5aOF1o7+OeBn0E1noKj49kUAUGt6odR1a6MHm+ZqLS8vx/z583HiiSfimGOO4XytRFTSGGCJaMDQw+ybb76Jd999F9u3b09YLoXLEGivgtxeDbm7f55Zm8q8bbSYQmzCxvIXaBlivSuV7sKOm8tXiNW34+ecsemy2n8f7o+1lFyvXZ2mciIYgzKkB0p9L9TaHmPKGwCorKzEMcccg5NOOgnz5s1DZWVl9vtIRFQEGGCJaMDat28f3nvvPfztb3/DJ598AkXpb5FAVEago0oLtF2VqdPz5KArsVZtDu+Ltd1ofsIsg6y9gra2Ar4EV2PT6QbGXHbBLfS9scll05FOvXorKwRERVRrZa3rgajqg/k63He+8x0cd9xxOO644zBz5kyEQqH094uIqMgxwBLRoNDV1YX3338ff/vb37Bu3Tp0dXX1LxSA3F2uTdHTUQWpN6S1zhZLiAX8CbIJO5H7UDvYA21OWlu1itMrX8jwCuQmwBbTtC4eWkqzIQIKlNpeqEN6oNT2AiElYfnUqVNx3HHH4dhjj+WUN0Q0KDDAEtGgE4vFsGHDBvztb3/D+vXrE++bBbTW2c4qyB2VCHRUQoqlMZ1Emietee1WnLLxwoZYc8ArlbCbzj7nLMBqlXsvm+9uwynbL0CAFSI/IVfOcMRzBwICanUf1NoeKEN6U1pZy8vLMWvWLCO0jhw50pftEhGVCgZYIhr09u3bh/Xr12P9+vX46KOP0NPTk7Bc6gkh0FkJubMCcleF/ZyzulIKsUBBgmypzjdrtd92+1w0ARbIz6BNjtv3KcTa7U+uRyJOJsu+BlZRHoVaE9ZaWmt7gWBi3RMnTsS8efMwd+5czJgxg9PdENGgxgBLRGQSi8Xw+eefY/369Xj//fexdevWxAJ6d+POCshdlZC7yiEJjwO9OCjIvbEpO5GfIOsl2BVjkE13v0s5wOakG2q2Ida8T3bvlxLoPisgIEIxqLW9WmitSe0WXFtbizlz5mDevHk4+uij2cpKRGTCAEtE5KC5uRkfffQRPv74Y3z88cfYv39/YgE1PlVPZwXkzkrIPeWQRPwkOosWmoIG2gJNyePES6DVA6PX8JtuF+acBlKv0g2uukIH2HzMpVrE4VUt0wNrL9TaMEQolrC8rKwM06dPx6xZszBv3jxMmTIFgUAaty4QEQ0iDLBERGnYu3cvPvnkE3zyySf4+OOP0dTUlFhAlSD3hCB3ad2N5e5ybYTjLLsbFizQllCYTad7r135dOvPi0xDK5DV/a++hNh8BFcgd+E1nXtp4+9RAQFRGYVa0we1Ogy1OgxRnhhYA4EApk2bhlmzZmHWrFk44ogj2C2YiMgjBlgiogwJIfDNN98YrbOffvopWltbU8pJvWVaK21XuXYPbSQIyYeAmddQW+RBNlfde/PWJThZgUJrwi4U28BNVvwOrsnvKQ+DRQlZhVrVB7UmrA2+VBMGAon1BAIBTJkyxQisM2bM4LysREQZYoAlIvKJHmg3btxofKWMcAwA0YB2H63+1VOuDQxVKl2OizDMDhh56iLsVdFMm2MnndbR5LJe3zOSlNi6Wh7TAmu11sIqqiIJowQDQGVlJaZPn44jjjgCM2bMwPTp01FVVeVte0RE5IgBlogoh9ra2hIC7ZYtWxCLJXYnhACkcBnkHlOg7Q1BUtL/eGZX4xJWROE149bXYmh59fG0RpSZwmpVH9SqSMoIwQAwcuRIzJgxw/iaNGkSgsGgb/tBRET9GGCJiPKor68PmzdvxqZNm7B582Z8+eWXqQNDAYAKSL3lkLtDkHvKIPeEtFArPHZ9zeajfYAPCFVUsukqrPMxwBZ9cAW8jUacJgEBlClQKyNQqyLxsNqXMjowAIRCIUyePBlTp07F9OnTMWPGDBx00EG+7AcREbljgCUiKrDW1lYjzH755ZfYvHkz2tvbUwuK+P20vSFIPaZgq9iPVurbRzxDrT/8CKxWCjlYUz7Dqw8EBERFFGplBKIqArWyD2plBChLfV0GAgFMmDABhx9+OKZOnYqpU6eydZWIqMAYYImIiowQAvv27TPC7LZt27Bt2zbrUAtA6gtA6g1B7i3r/x4uS2mtzcnHfbbBNt9hVpLzu81cBVZdoYKrl9Cq39NdoIArIICgArUyClER0VpXKyMQlVFATn3dyrKM8ePH49BDD8XUqVNx+OGHY/LkyaioqCjA3hMRkR0GWCKiEiCEQGNjI7Zt24atW7ca3/fu3WuzAiD1BeMttmWQwnkKtvkKtHowTCeM2oVJtzrM6/mxvWwUeoTh5DDqNPBYnoKrgAAC0XhQjUKtjEFURqBWRC3vVwW0QZYOPfRQHHrooZg8eTIOPfRQTJw4kVPZEBGVAAZYIqIS1tXVhe3bt2Pbtm3YsWMHdu7cia+++gpdXV3WK+jBNlwGOax9l/qCkMNlQDQAyTScataHh1yEWadQ6BQuvYbJQmzTTaFDazpyGFqFpEKEIhDlUagVMYjyKERlDGpFBAjazN0rSRg9ejQmTJiAQw45xAisDQ0NkEus6zMREWkYYImIBhghBJqbm40wu3PnTvdgCwCK1B9u+0zhti8IRAOAH0cLP++ldWMOl7nuyuv3Nn0IrXkJrLpMwqBFF2MhqRDlMYhQBGp5FCIeVNWKmOWASrpAIIAxY8bg4IMPxoQJEzBhwgRMnDgR48aNY6sqEdEAwwBLRDRImIPtN998g927dxvf9+3bB0WxDwhQASkS1AJuXxBSJND/c18QiMkJrbee5DPMlppSCLCy7H6fa1IXYyGrECEFIhSLB1Xtuxr/bjWQktmQIUMwduxY42vcuHGYMGECxo0bh1Ao5MezIiKiIscAS0REiMVi2LdvX0Kw1b8aGxudwy0AqJI2mFQkAETjATcaSPie3EU5cX0eilIUQYg1nyK41SVkFaIsHk7LFC2olpl+9hBQAaCmpiYhpJq/hgwZktXzISKi0scAS0REjmKxGBobG7F//37s378f+/btw759+4yfm5qaoDoN5qMT0EJsJP4VCwBROR5wZe13RQu8UCQt7BYi2MoF2q55+3GSJGV1L7JT6LSr17yOkAREIAZRpgJlKkRQ0X4OKlDLFKAsFm9RVYCAt/2srq5GQ0MDRo0alfLV0NCAmpqa/HZ/JiKiksIAS0REWYlGo2hsbDTCbGNjY8r3lpYWbyFXpwKIBSBF48E2JkOKyYCS+F1SZG1Z/DtiSL8rs5lVq2euwqxNC2tyeMv2MC1JEoQkgIAKEVCBoPbd/LPxWFDpD6pBxXZwJDtVVVUYMWIERo4ciREjRhhf3/nOd4yQWltbm9XzISKiwY0BloiIci4Wi6G1tdUItU1NTWhra0NLSwtaW1vR1tZmfHccaMqNCkCRtS7NSd+hWDymypBUAIoEQNIeExKk+Hftd/T/LqT+wawUoa0T/z0hOFuEU2EeBUsCpPgmtd8FIAsIqf9nSAJC/64/JuvLVYiA+Xs8oMoWywKq59ZRK4FAAPX19Rg6dCjq6+uNn4cOHWoEVf17VVVVxtshIiLyggGWiIiKSiQSSQi0LS0t6OzsTPjq6OhAV1dXwu+u9+nmg4h/GclUmEJqQfYoQVVVFWpra42vmpqahO96QDWHVHbpJSKiYsIAS0REJU8Igd7eXnR2dqKnpwe9vb3Gd/3L7vFoNIpoNIpIJGJ86b+bH891QJZlGWVlZSgrK0MoFDJ+Tv49FAqhqqoKlZWVCV8VFRXGz/ryiooKI5xWV1cjGAzm9DkQERHlGgMsERGRB6qqpvUlSRIkSYIsy8aX/rv5cUmSEAgEGC6JiIg8YIAlIiIiIiKikmAz8zgRERERERFRcWGAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkMMASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkMMASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkMMASERERERFRSQgWegeIiApFCIFwOFzo3SAiSktFRQUkSSr0bhARFQQDLBENWuFwGIsXLy70bhARpWX16tWorKws9G4QERUEuxATERERERFRSWALLBERgND67wCKBEmWAEk2vkOWgHhXPUmWtZ+l+HdZgiTFrwPq5eKP6+ukPKbXaV6G/uVCX082Ldcf1y85Jj8mSRB6b0Ip/rus/dL/uARIMNYR8d8BaGX0OiT9ufTXl7zcXKfQy8gWy8zlE5aZH0veD5t1bJYDMPbBblsJ5W32I2UdWKyfso5I2I/k+ozlSF4u+sugv2z/cxTGMimlvDDWkeKP93/X6xOQJJHw8tLr1/6V/ctlaD/DeByQ48u1ZVqVxmOm71p9/b+bvwCtbu139C9D/7ZkSTUe08qqAICA1P+7LCUukyVhWi4QgGpsLyCppvVUBOLb0n/WvqvGenp9MkR8XRWBhGVa+YAkIEFFIP67/ty036Gth/7tSfE6AsY+xvcP2t8iAAEZiP8sxesDApIEGRICiH+X9GUyJEiIRgI4759HgYhosGOAJSICtPCqaieKkPq/m5OBBD249qc1SU+VCUkovjy+VmKykVPTlWRa1yo9OT4Om+UwQmvCz8nfjdUlU7XJgTh5eXKdiAdpm2V2u2u5H17W8fCnyrRO05/PPfT6HGCTlyctSw6w/Y8n1ydSlukh1Xq5MD1ufkxY1CkS1tEDbPKX7TIjVJqCrSnoGsvQv1wPfvoyLcCqRgDUl2kBMP5dkhCAvo72s/ZdSgiOWl1AQILxvX897WfLZcbvegAWpsCs/ewWYK3qk4F4KNZ+15bp5U3/QyKiQYxdiImIiIiIiKgkMMASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCZwHlogIAAICAqo2+aOEpO/GhIxJ86gmz7Oqf4n+dRIet1lmmohU2ExuavV4/2P67JpI/F2YH9fKCkiAQEJ9wrxOfL1UNo8J06KEuUgl8+47zL8q2TyetI7dcrdlTnU6Pa5/c1zHaj5Xi+Up+2gzDyxS15NSyveXk8xzvJpepjDmXTW/vGzmgUV288CK+Poi6UtfJuJz4RrL4vuvSgKQ1P7tIP474s8HictFfJmIb1uvG+jfnvlx2bQt/efk79p+aG9r83c1/pTl+M9q/CVqPQ+sBBna/LL6Min+eAD9c8kCSPhdNn6WTPX11yVDQkDSl0mQICEasXoPEhENPgywREQAInO/LfQu5IZI+p6BpFxHZNDjp+pWsGjpCZ8d0oiISgU/sYmIiIiIiKgkSEKILK7LExGVLiEEwuFwoXeDCiwcDuOcc84BALz44ouoqKgo8B5RIZXC66GiogKSxD4RRDQ4sQsxEQ1akiShsrKy0LtBRaSiooKvCTLw9UBEVHzYhZiIiIiIiIhKAgMsERERERERlQQGWCIiIiIiIioJDLBERERERERUEjgKMREREREREZUEtsASERERERFRSWCAJSIiIiIiopLAAEtEREREREQlgQGWiIiIiIiISgIDLBEREREREZUEBlgiIiIiIiIqCQywREREREREVBIYYImIiIiIiKgkBAu9A0RENHj09PTg6aefxltvvYX9+/dDlmWMGzcOJ598Ms477zyUlZVlXHdLSwtWrVqFtWvX4sCBAygvL8fEiRNx+umn44wzzoAkSY7r79mzB6tWrcIHH3yAlpYWVFZW4rDDDsNZZ52FE0880XX7W7ZswR/+8Ad8+umnaGtrQ21tLaZPn46lS5di9uzZtuvt2rULn3/+ObZs2YKtW7di27Zt6OvrAwC8/fbbaf0NSg1fD4mEEPjiiy+wdu1abNy4Ebt27UJHRwcqKiowZswYHH300Vi6dClGjhyZyZ+EiGhAkIQQotA7QUREA9/+/ftx/fXXY//+/QCAiooKqKqKSCQCAJg8eTJWrlyJ2tratOvesmULbr75ZrS3twMAKisrEYlEoCgKAGDu3Lm45557bAPR2rVrsXz5coTDYQBAdXU1ent7oaoqAGDJkiW45ZZbbEPPSy+9hPvvv9/YXk1NDbq7u6EfYi+99FJcfvnllutef/31+PTTTy2XDeQAy9dD6uvh8ccfx3/8x38Yv0uShOrq6oR1q6ur8S//8i84/vjj0/67EBENBOxCTEREOReLxXDrrbdi//79GD58OB544AGsWbMGa9aswfLly1FVVYWtW7firrvuSrvurq4u3HLLLWhvb8f48ePx29/+FqtXr8aaNWtw4403IhgMYv369XjooYcs19+7dy/uuOMOhMNhzJgxA08++SReeeUVvPzyy7j00ksBAC+//DKeeuopy/U///xzI6wsWLAAzz33HF5++WX86U9/wtlnnw0AeOyxx/DXv/7Vcv1AIIAJEyZg0aJF+NGPfoQLLrgg7b9BqeHrwfr1EIvFUF1djXPOOQcrV67EmjVr8PLLL2PNmjW46667cNBBB6G7uxvLly/Hzp070/7bEBENBAywRESUc6+++ip27NgBALjrrrswZ84cAIAsyzjllFNw8803AwDWrVuHjz76KK26n376abS0tKC8vBy/+MUvMHXqVABAWVkZli5darR0/fnPf8bu3btT1n/kkUfQ29uLYcOGYcWKFRg3bhwAoKqqCpdffjnOOussAMDvf/97dHZ2pqz/7//+71AUBZMmTcKdd96J73znOwCAuro63HzzzZg7d25CuWT33XcfHn/8cfz0pz/FBRdcgEMOOSSt51+K+Hqwfj0sWLAAf/jDH3DTTTfhqKOOQnl5OQCgvLwcJ5xwAh588EGUl5cjGo3imWeeSevvQkQ0UDDAEhFRzr366qsAgFmzZuGII45IWX7KKaegoaEhoaxXq1evNuoYPXp0yvKlS5eisrISiqLgv//7vxOW9fb24q233gIAnHvuuZbdVf/xH/8RANDd3Y133nknYdnevXvx2WefAQAuvPBCBIOpQ0vo6+/fvx8bNmxIWR4IBFyf40DD14P162Hy5MmOXaZHjx6NWbNmAQA2b95sW46IaCBjgCUiopwKh8P4/PPPAQDHHHOMZRlJkjBv3jwAwAcffOC57q+//hoHDhwAAGP9ZFVVVTjyyCMt6964caMxYJLd+g0NDTj44IMt1zf/brf+jBkzUFVVZbn+YMTXQ3avh1AoBADG/bhERIMNAywREeXUrl27jJPtiRMn2pbTl7W0tKCjo8NT3Xo3VLe6J02aBAAp9w2a19fLOK3/1VdfJTyu/z506FAMHTrUct1AIIDx48dbrj8Y8fWQ+eshFosZ4d9p/4iIBjIGWCIiyqmmpibjZ6fpP0aMGGG5jpPm5ua06u7u7kZPT0/Kdmpra437DZ3WN2/PvL55363o+5a8/mDE10Pmr4dnnnkGLS0tAIAzzzwzrXWJiAYKBlgiIsopc0BwCgUVFRWW6+Sy7t7e3pTlTusn75f+u9v6+r55fV4DGV8Pmb0ePvvsMzzyyCMAgFNPPdVxbmEiooGMAZaIiIioiO3atQs//elPEY1GMXHiRGOUZiKiwYgBloiIckofsAaAMUCOlXA4bLlOLuuurKxMWe60fvJ+6b+7ra/vm9fnNZDx9ZDe62H37t248cYb0dbWhvHjx+OBBx7g64iIBjUGWCIiyinz/YCNjY225cz3ObrdQ6gbPnx4WnVXV1cnnPzr2+ns7HQMPPr65u2Z13e7R1Pft+T1ByO+Hry/Hnbv3o0bbrgBzc3NGDduHFauXMnXEBENegywRESUUwcffDBkWTvcOI26qi8bNmwYhgwZ4qlu80isTnXro8tOmDDBdn3zCLR26yePbKv/3traira2Nst1FUXB119/bbn+YMTXg7fXgx5em5qaMHbsWDz44IOegzwR0UDGAEtERDlVUVGBI444AgDw/vvvW5YRQmD9+vUAgKOPPtpz3ePGjcNBBx3kWHdvby8+h+0OMgAAE4dJREFU++wzy7pnzJhhDKijbz/Z/v37sWvXLsv1zb/bbX/jxo3GYD3pPLeBiq8H99fD7t27cf3116OpqQnjxo3Dr371K4ZXIqI4BlgiIsq5008/HQDwySefYNOmTSnL33jjDezduzehrBeSJGHx4sUAgL/+9a/Yt29fSpnnn38evb29CAQCOO200xKWVVZW4oQTTgAAvPDCC+jq6kpZf9WqVQC0+xUXLFiQsGz06NE48sgjAWhTnMRisZT1n3zySQDAqFGj8N3vftfzcxvI+Hqwfz3o4VXvNsyWVyKiRAywRESUc6effjomTZoEIQRuu+02fPTRRwAAVVXxxhtv4N577wUAzJs3L2V6kEceeQQLFy7EwoULLQPJhRdeiGHDhiEcDuOWW27Bli1bAADRaBQvvPAC/vM//xMAcNZZZ2HcuHEp619++eWorKxEc3Mzbr31VuzevRuA1lL32GOP4cUXXwQAXHLJJaitrU1Z/+qrr0YgEMC2bdtwxx13GPc3dnR04IEHHjBa4n74wx8iEAikrB+JRNDW1mZ8madWMT/e1tYGVVWd/swlg68H69fDN998Y9zzOn78eIZXIiILkhBCFHoniIho4Nu3bx9uuOEG7N+/H4DWlVRVVUQiEQDA5MmTsXLlypRQ8Mgjj+Cxxx4DoLVqNTQ0pNS9ZcsW3HzzzWhvbwegtY5FIhGjBezoo4/GPffcg1AoZLlva9euxfLly43RY2tqatDb2wtFUQAAS5YswS233AJJkizXf+mll3D//fcb5WtqatDd3Q39EHvppZfi8ssvt1z3lVdewT333GO5LJnd8y9FfD2kvh5WrFiBl19+GYA2wJTTXLaA1kpMRDTYBAu9A0RENDg0NDTgsccew9NPP4233noL+/fvRzAYxMSJE3HKKafgvPPOQ1lZWUZ1T5kyBf/v//0/rFq1Cu+99x6+/fZbVFRUYNKkSTj99NOxZMkSY+AgK/Pnz8ejjz6KVatW4YMPPkBLSwtqamowefJknH322TjxxBMdt3/mmWdi8uTJeOaZZ7Bhwwa0tbVh6NChmD59OpYuXZrSikh8PVgxt7B3d3eju7s7o+dPRDSQsQWWiIiIiIiISgLvgSUiIiIiIqKSwABLREREREREJYEBloiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsERERERERFQSGGCJiIiIiIioJDDAEhERERERUUlggCUiIiIiIqKSwABLREREREREJYEBloiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsEREVBIefPBBLFy4ENddd12hd4UKrKurC2eccQYWLlyIt99+u9C7Q0REeRQs9A4QEVFudXd3Y+vWrdi8eTO2bNmCLVu2YM+ePRBCAACeeeYZNDQ05GTbQgicf/75aGxsxMUXX4yrr746o3q2bt2KF154AQBw1VVX+biHhbVjxw6sX78eGzduxI4dO9Dc3AxFUVBbW4tDDjkE8+fPx+mnn46amppC72pRqampwYUXXojf/e53eOihhzBv3jyUl5cXereIiCgPGGCJiAa466+/Hlu3bi3Itjdv3ozGxkYAwIIFCzKu5+GHH4aiKJg3bx5mzJjh1+4V1PXXX49PP/3UcllLSwtaWlrwwQcf4IknnsCyZcswd+7c/O5gkTv//PPx7LPP4sCBA3juuedw8cUXF3qXiIgoD9iFmIhogNNbWgGt5WrWrFkYNmxYXrb9zjvvAABGjhyJww8/PKM6PvvsM3z44YcAMKBCih7sa2trsWTJEixbtgy//vWv8bvf/Q4/+9nPMH/+fABamF22bBk2bNhQyN0tOpWVlTjvvPMAAKtWrUJPT0+B94iIiPKBLbBERAPckiVLUF9fjylTpmDs2LGQJAnXX389Wlpacr5tPcAed9xxkCQpozqeeuopAEBDQwO++93v+rZvhTZ27FhccsklOOWUUxAKhRKWTZkyBSeeeCKefPJJ/OY3v0EkEsH999+Pxx9/vEB7W5wWLVqERx55BJ2dnfjLX/6C73//+4XeJSIiyjG2wBIRDXDnn38+Tj31VIwbNy7jEJmJ3bt3Y9euXQAy7z7c2NiItWvXAgAWL16c1/3PtXvvvRf/8A//kBJezS6++GJMnjwZALBz505s3749X7tXEhoaGnDkkUcCAP70pz8VeG+IiCgf2AJLREQ5oY8Oq3dbzsRrr70GVVUBACeffLKndWKxGP7617/i3XffxebNm9HW1gZFUVBfX49JkyZhzpw5OPXUUzF8+PCE9RYuXAgAOP3007Fs2TJ8/fXXeO655/DBBx+gqakJ1dXVOOyww/A//+f/xMyZM431+vr68Morr2D16tX45ptvEA6HMXr0aJx22mn4/ve/n/XgQkcddZRxD/Pu3btxyCGHZFzXzp078eKLL2LDhg3Yt28fwuEwampqUFtbi4aGBsyePRvHH388xo8fn1H9sVgMa9aswRtvvIEdO3agvb0dkiRhyJAhqK+vx+GHH445c+bguOOOQ1lZWcK6yX//nTt34vnnn8eHH36IpqYm9Pb24u677065GHLyySdjw4YN2LVrFzZv3oypU6dm9schIqKSwABLREQ5oXcfnj9/PoLBzA437733HgDtPtGDDz7Ytfy2bdtw++2345tvvklZ1tjYiMbGRrz//vvYvn07li1bZlvPm2++iX/9139FOBw2Huvr68O6devw/vvv4+abb8ZZZ52FpqYmLFu2DJs3b05Y/6uvvsJvf/tbrFu3Dvfff39WITYWixk/y3LmHadefPFFrFy5EoqiJDze3t6O9vZ2fPPNN/jggw+wfft23HbbbWnX39bWhptuuslywDD9b79161b86U9/wqpVqzB27Fjbul555RXcf//9iEQirts1D+r13nvvMcASEQ1wDLBEROS7pqYmfPnllwAy7z4ciUTwxRdfAAAOP/xw1+7DW7duxY9+9CP09vYCAGbNmoVFixbh4IMPRllZGZqbm7Fp0ybXeUO3b9+Ov/71rxg6dCiuuuoqY9sfffQRfv/73yMcDuOXv/wlZs6ciZ///OfYtm0bzj33XBx//PGor6/Hnj178Pjjj2P79u347LPPsGrVKlx22WUZ/Q0A4OOPPzZ+njhxYkZ17NixwwivQ4YMwVlnnYWZM2eivr4eiqKgubkZW7Zswbp16zLupr1y5UojvM6ePRuLFi1CQ0MDqqur0d3djV27dmHDhg1Gl3A7W7ZswWuvvYYhQ4bg+9//PmbMmIGysjLs3LkTo0aNSik/ceJEVFZWore3Fx9//DEuv/zyjPafiIhKAwMsERH57t1334UQAqFQCPPmzcuoju3btxutj1OmTHEsG4vFcPvttxvh9YYbbjBGqDU79thjceWVV+LAgQO2dW3duhWTJ0/GypUrUVtbazw+bdo0jB07FsuXL0csFsOPfvQjdHR04N5778WcOXOMcocddhiOPvpoXHLJJWhqasILL7yASy65BIFAIK3nD2jdsL/66isAWogfN25c2nUAwBtvvGG0vP7yl7807qs1W7BgAa688kq0t7enXX9fX59xYWDBggX4+c9/nhKEZ86ciXPOOQe9vb2OLclfffUVxo4di1//+tcJo2XbjWIdCARw2GGHYcOGDfj73/8OVVWzaqkmIqLixk94IiLynd59eM6cOaisrMyoDnM3YLdpf1577TXs2bMHgDbqslV4NTvooIMcl996660J4VV34oknYuTIkQCA1tZWLF26NCG86mpqavAP//APRrmdO3c6bs9KU1MTHnjgAQCAJEm45ppr0q5Dp484XVNTYxlezerq6tKuv7Oz07jYMHPmTMdW3MrKStcu1T/+8Y/TmupJLxsOh9HU1OR5PSIiKj0MsERE5Kuuri588sknADLvPgwAzc3Nxs9DhgxxLKsHZgC46KKLMt4moHVJtQt5kiQlLFu0aJFtPeZye/fuTWsfwuEwli1bZgTP5IGj0qWH7q6uLrzxxhsZ12Onrq7OGE359ddfz2pO1pEjR1peFHBifn2YXzdERDTwMMASEZGv1q5di1gshkAggOOOOy7jevr6+oyfrVpDzf7+978D0FrivAz25MRtffO+OI3Way6XTqCLRqP46U9/agwMdfzxx+PKK6/0vL6VRYsWGa2ey5cvx7XXXosnn3wSn332mdHtOhtlZWU4/fTTAQCbNm3CBRdcgHvvvRevv/562uE9k1GWzQHWPPAWERENPLwHloiIfKW3hh5xxBGor6/PuB7zPaNuo9G2tbUB6G9pzEZFRYXjcnP3WKfu0eb7MPWpgNzEYjHcdtttWL9+PQBg7ty5uOOOOzK6f9Zs9OjRWLFiBf71X/8VjY2N2LhxIzZu3AhA+ztPnToVCxcuxJlnnul6scDOddddh0gkgtWrV6OjowN//vOf8ec//xmAdmFh7ty5WLJkiWtLsltruxXzxY5MR7wmIqLSwBZYIiLyTSQSwfvvvw8gu+7DgHa/pq6joyOrukpBLBbD8uXLjamD5syZg7vvvtvomput2bNn46mnnsKdd96JJUuWGNPYKIqCL774Ag8//DAuuugiIzynq7y8HMuWLcMTTzyBK664AkcddZQR8FtaWvDqq6/i+uuvx09/+tOEwJkskwGYzANPmV83REQ08PAyJRER+ebDDz80uqRmG2DNU6a4Bdj6+nocOHCgZAfw0cOr3np91FFH4Z577slq/lgroVAIJ510Ek466SQAWsv1Rx99hNWrV2PdunXo6OjAbbfdhlWrVmH48OEZbWPcuHH4wQ9+gB/84AdQFAVbt27Fe++9hxdffBGtra14++238bvf/Q4/+tGPfHtenZ2dxs9uA3QREVFpYwssERH5Rg9gkydPRkNDQ1Z1mec8/frrrx3L6tPsNDc3u5YtNsnhddasWVixYoXv4dVKfX09TjnlFPziF7/AueeeCwDo7e3Fu+++60v9evfkyy+/HP/+7/9udM9+7bXXfKlft2vXLgBAQ0MDqqqqfK2biIiKCwMsERH5QlVV/O1vfwOgDTyUrYMOOggjRowAAHz55ZeOZRcuXGj8vGrVqqy3nS+xWAx33HGHEV5nzpyJf/u3f3O9DzcX5s6da/ys31Psp4aGBmMe20zmmrXT1tZmTKE0ffp03+olIqLixABLRES+2LhxoxF8zIEyG3qo2rVrF7q7u23LnXzyyUY4evnll/HHP/7Rsd4DBw74sn/ZiMVi+NnPfoa3334bQG7D61tvveUaSvV7lwFgzJgxadW/d+9efPjhh45l9u3bZ7SUjh49Oq36nWzatMn4+ZhjjvGtXiIiKk68B5aIaID75ptvjBFndfr8ogDw5ptvJowWXFlZiRNPPDHt7eitiKNHj85oKhQrJ510El5++WWoqooPP/wQJ5xwgmW5YDCIO++8E9deey16e3vx4IMP4u2338bixYtx8MEHo6ysDM3Nzdi8eTPefPNNTJkyBcuWLfNlHzN111134c033wSgBcYf/vCH2Ldvn+M6Q4cOxdChQ9Pe1h//+EfcddddmD17NmbPno0JEyagrq4O0WgUBw4cwGuvvWa0no8aNSrt6Y8OHDiAH//4xxg9ejSOO+44HH744TjooINQXl6O9vZ2bNq0CS+88IIxmvR5552X9nOw88EHHwDQ7u+dP3++b/USEVFxYoAlIhrgNm7ciHvuucd2+cMPP5zw+6hRo7IKsH50H9bNmTMHI0eORGNjI1avXm0bYAHg0EMPxUMPPYTbb78de/fuxSeffIJPPvnEsqx+z2whvfHGG8bPe/bswQ9/+EPXdS699FJcfvnlGW0vEolg7dq1WLt2rW2ZMWPG4J577nGcHsjJ3r178eyzz9oul2UZF110Eb73ve9lVH+yWCyG119/HYDW6p/pFEBERFQ6GGCJiChr27ZtM1oPsx192CwQCGDp0qX4zW9+g3Xr1qGtrc1xbtnDDjsMTzzxBFavXo133nkHW7duNe63HDp0KA455BAcffTROPXUU33bx1KwfPlyrF+/Hhs2bMCOHTvQ0tJidCmuq6vDoYceigULFmDRokUZTdtz5JFH4te//jU+/PBDbNq0CQcOHEBrayu6u7tRUVGB0aNH48gjj8SZZ57pW+s8AOM1AQDnn3++b/USEVHxkoQQotA7QUREpe3RRx/Fo48+iqFDh+L555/PaC5PO11dXbjwwgvR0dGBq6++GhdffLFvdVNpu+WWW7B27VrMnj0bv/zlLwu9O0RElAccxImIiLKmdx8+9thjfQ2vAFBTU2OE1qeffho9PT2+1k+ladOmTVi7di0kScJVV11V6N0hIqI8YYAlIqKsRKNRLFiwAJdeeimWLl2ak22cd955GDt2LNrb2/GHP/whJ9ug0vK73/0OALB48WIcfvjhBd4bIiLKF3YhJiKikvDll19i7dq1qKmpwQUXXFDo3aEC6urqwrPPPgshBJYuXep4XzQREQ0sDLBERERERERUEtiFmIiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsERERERERFQSGGCJiIiIiIioJDDAEhERERERUUlggCUiIiIiIqKSwABLREREREREJYEBloiIiIiIiEoCAywRERERERGVBAZYIiIiIiIiKgkMsERERERERFQSGGCJiIiIiIioJDDAEhERERERUUlggCUiIiIiIqKS8P8BIexEJ19vkaEAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7AAAAHiCAYAAADRZCAXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOydd5gV1fnHv2fm3u10liZVFBExVixRg10jarBrVGzRaGI3tojGlvxsCdHYYkXArlFjF6yoNEWjgggqIII06VvvnXl/f8yd2Zm5p92yyy6c7/Psw7LnnfecO/femfOZ9z3vYUREMDIyMjIyMjIyMjIyMjJq5bI29gCMjIyMjIyMjIyMjIyMjHRkANbIyMjIyMjIyMjIyMioTcgArJGRkZGRkZGRkZGRkVGbkAFYIyMjIyMjIyMjIyMjozYhA7BGRkZGRkZGRkZGRkZGbUIGYI2MjIyMjIyMjIyMjIzahAzAGhkZGRkZGRkZGRkZGbUJGYA1MjIyMjIyMjIyMjIyahMyAGtkZGRkZGRkZGRkZGTUJmQA1sjIyMjIyMjIyMjIyKhNyACskZGRkZGRkZGRkZGRUZuQAVgjIyMjIyMjIyMjIyOjNiEDsEZGRkZGRkZGRkZGRkZtQgZgjYyMjIyMjIyMjIyMjNqEigKwCxYsAGMMjDGcfvrpxXC5WWrfffcNzqORkZGRSKeffnpwrViwYMHGHk6gsWPHBuMaO3bsxh6OUZHlui522WUXMMZwwQUXbOzhGLUh+deFfffdd2MPxcio1ai13suLoQkTJoAxho4dO2L58uVF999iEdixY8fi+uuvx/XXX99SXW50vfjii8FrXrNmzcYejlFG6XQakyZNwlVXXYX9998fPXv2RGlpKaqqqjBw4ECceOKJePHFF+E4Tk5+v/rqK1xwwQUYPHgwqqqq0KFDB2y//fa46qqrsHDhwmZ6NUZGRpujJk+ejNNPPx1bb701qqqqUFVVhUGDBuGcc87BtGnTmqXPBx54ADNnzkRZWRmuvvpqrWO+++47XH/99dh9993Ro0cPlJaWomfPnth5551x3nnn4dlnnxVeaxcsWIAJEybgoosuwq9+9StsvfXW6NSpE5LJJLp06YLddtsNl156Kb744oucXsfChQtx1VVXYfvtt0eHDh1QVVWFwYMH44ILLsCsWbO0/TiOg8cffxwjR45E7969UVpais6dO2PHHXfE6NGj8cMPP+Q0LpnCD4d0ft577z2hr1z8hH/a8gT773//e/A6Tj311Lx8bL311oGPfL5jtbW1mDJlCv71r3/h9NNPx9ChQ5FIJLTeM5FSqRQefPBBHHDAAcFcpnfv3jjiiCPw9NNPg4i0fRERnn76aRx++OHB57lnz5444IAD8NBDDyGdTuc0tjfeeAMnnHAC+vXrh7KyMnTr1g177bUXxowZg5qampx8TZkyBWeeeSYGDhyIiooKdO7cGbvssgtuvvlmrFy5MidfOir2uWitWrZsGZLJJBhjqKysxPr163P2cfPNNwef4fPOOy/4+0knnYRBgwZh7dq12veLnERF0Pz58wkAAaDTTjuNazN8+PDAZnPRaaedFrzm+fPnK+03x3PU0nrnnXeoc+fOwXmW/QwbNoy+/fZbLb+33347JZNJoa927drRk08+2cyvzmhzUa7XlpbSo48+Gozr0Ucf3djD2SS1YcMGOvHEE6XXLsYYXXTRReQ4TtH6rampoR49ehAAuvDCC5X26XSaRo8eTSUlJcpr7erVq7k+TjjhBK1rNWOMzjvvPEqlUspxTZgwgaqqqoS+SkpK6B//+IfSz7fffks77LCDdFxVVVU0btw4pS8dhb9bOj/vvvuu0FcufsKvpaamJu/x+36GDx+et49CtHTpUkokEgSAKioqaN26dTkd/8EHHwSvYciQIXmNQTX3kL1nPM2fP5922mknqc8DDzxQ+P0Ka9WqVbT//vtLfe288860cOFCpa/6+nrlNWrgwIH0v//9T+nLdV265JJLiDEm9NW9e3d6++23dU6Zlop5LlRqDffyI444IhjDQw89lPPxAwcODI6fPn16pG3cuHEEgCzLotmzZxdryERElEAR1L9//5ye8hjxlc/TN6PctHjxYqxatQoA0LlzZxx44IHYY4890LNnT6RSKUyfPh3jxo3DunXrMGPGDOy3336YPn06evToIfR5//334/LLLwcAJJNJnHrqqRg+fDhSqRTefPNNPPfcc1i/fj1OPfVUdOzYEYceemiLvFajTVdjx441KbqboRzHwTHHHIM333wTAFBZWYkzzjgDu+++OyzLwmeffYaHH34Yq1evxp133gkiwp133lmUvu+9914sXboUtm3jiiuukNqm02mccsopePrppwEA1dXVOOaYY7DzzjujU6dO2LBhA+bNm4dJkyZhxowZUl8VFRXYddddscsuu2DrrbdG586dwRjD4sWLMWnSJLz++usgItx3333YsGEDxo0bJ/T16quv4rTTToPjOGCM4dhjj8UhhxyCZDKJ999/H+PHj0djYyMuvfRStGvXDr/73e+4fn766Sfsu++++PHHHwEAffv2xZlnnonBgwejtrYW7777Lp588kls2LABp59+OioqKnDMMcdIX2cuuuCCC7D//vtLbYYOHSpse+GFF7T6+fe//4033ngDAHD88cejoqJCf5CtTN27d8dhhx2G//73v6itrcUzzzyDs846S/v48PX2jDPOyGsM8UyDvn37orGxEUuXLs3Z15o1a/DrX/8ac+bMAQBsu+22OPPMM9G7d298++23eOCBB7Bo0SJMmjQJRx99NN566y0kEvwpf2NjI37zm99g8uTJAIA+ffrgnHPOwVZbbYUff/wRjzzyCL7++mvMnDkTv/71rzFlyhS0b99eOLbTTjst+O536dIF55xzDrbffnusXLkSEyZMwPTp0/Hdd9/h0EMPxbRp09CnTx+hr6uvvhpjxowB4F3vzjrrLOy2227YsGEDnn/+eUycOBHLli0Lxr/jjjvmfC6b81y0BZ1xxhl4+eWXAXif81y+F5MnT8Z3330HANhuu+0wbNiwSPtvf/tbXHvttVi4cCFuuOEGPPXUU8UbeFFxWKLNMbrYGp6sGEU1fvx42n777emJJ56g+vp6rs2PP/5I2223XfDejRo1SuhvyZIlVFFRQQAokUjQxIkTs2zCT8779OlDdXV1RXs9RkatSSYC27y69957g/Pbu3dvmjdvXpbNkiVLaPDgwYHd+++/X3C/qVSK+vTpQwDo4IMPVtpfc801Qf9nnHEGrV+/Xmi7ZMkSYeR07ty5wuu0r7fffptKS0uD/qZOncq1q6mpoV69egV2Y8eOzbJ56623gihdVVUVLV26lOvr+OOPD/wccMABtGHDhiybDz/8MLg3dOnSRSsKJlNLf7fS6XTkfH344YcF+fP9bKwILBHRCy+8EIxjn3320T6upqaG2rVrF9znRZ8LlUaNGkV//etf6Y033qAVK1YQUXSemEsE9uKLLw6OO/TQQ7PmFT///HMkOnv33XcLff3zn/+MRBZXrVoVaa+rq6NDDjkksPnTn/4k9PXiiy8Gdn379s2KUjqOQ2eccUZgc+yxxwp9zZw5M4i8dujQgRux/ctf/hL4GjZsGLmuK/Sno2KeCx21Bk5obGykrl27BuPQzTwkIjrzzDOD4+644w6uzZ///GcCQLZtFyVq7csAbDOqNXwwjaJavXq11gXuyy+/DN678vJyYepU+CZy+eWXC/0dd9xxWjcSI6O2LAOwzaswmL788stCu2nTpgV2e++9d8H9hif+qpTYL7/8MoDAkSNHFty3ji688MJgfNdeey3XJjwxPe6444S+Lr/8cunkdMmSJcGkury8nJYtWyb0ddtttwW+Ro8enfsLC6mlv1uvvvpq0N+gQYMK9tcaALaxsZGqq6sJ8NLOv/vuO63j/DRIAHTEEUcUdUz5AOyyZcuC1PzKykrhZ/DLL78MPqs9evSgdDqdZZNKpSLn5KuvvhL2WVlZSQCotLSUVq5cybXbcccdg9fz6quvcm1qa2upb9++gd2XX37JtRs5cmRgc88993BtXNel3XbbLbB75ZVXuHY6Kva50FFr4YTwXFZ0DY1L98HOrFmzAt/XXHNN0cbc7Gtgw+Aq+/nLX/7C9e04Dj399NN0/PHHU//+/am8vJyqqqpom222oXPPPZe++OIL6djCT2f8i8OkSZPoxBNPpP79+wdPbsMfnFQqRW+88QZdeumltNdee1F1dTUlk0mqqqqirbfemk477TTpU+3wB1L2IztXKk2dOpXOPvtsGjRoEFVVVVFFRQVtueWWNGrUKK21APGbyYYNG+j222+nXXbZhTp27EgVFRU0ZMgQuuqqq7KeQG0uCk8WeU/+XNelLbbYIrjY/fDDD0JfkydPzuvJbzH08ccf07nnnkvbbrstdejQgUpLS6lPnz50/PHHKy/27777btZ3dOHChXTppZfSNttsQxUVFdShQwfac8896Z577tFag0ZEtH79ehozZgwdeOCB1LNnTyopKaFOnTrRrrvuStdeey0tX75cenz8u5JOp+nRRx+lAw88kHr16kW2bVO/fv2yjlu6dCldfvnltO2221JFRQV16tSJhg0bRnfccUfwkKJfv34EIOv4119/Pejzggsu0HqdF1xwQXDMa6+9pnWMjlQ3veZ6315++WU6/PDDqXv37lRaWkr9+vWj3/72t/Txxx8TUW6T7IaGBnrooYfoiCOOoN69e1NpaSl16NCBtt9+e7r00kuFN/M5c+YEka327dvT999/L+xj1apVQeTQsqyiRCM3lpYsWRKc286dOysfxPnXL8ZYwU+9jz766ADYZNFUoqYn8oyxFpuQ3X///cG5Ofvss7k2e+65Z2Ajiyb+8MMPwaS/b9++We1PPPFE4EcF6EuXLg1sBw4cmNuLiqmlAfbYY48N+vu///u/gv3pAGxNTQ0ddthhge3xxx9PDQ0NWXZfffUVXXLJJbTDDjtQp06dqKSkhHr16kVHHHEETZgwQbr2+5JLLsl5oh5eD/mf//xH6xhd5QOw//73v4Njfve730ltDzjggMCWNzd88803g/YDDzxQ6uuss84KbB9++OGs9rlz5wbtW2+9tdTXTTfdJH0f1q1bF8zP27dvL11/PX78+MDXqaeeKu1XpmKeC13pAuyDDz5Itm0TANpiiy24cF3IvOp///tfMI5+/fppBXrCD3aOPPJIqa3/YEPXt45aNcB+++23kac5vB/LsqQXoTDAvvPOO/THP/6R6yf8wdl33321AZR3cW1OgE2lUnT22WcrfR9//PFUW1sr9BO+mXz33Xc0ZMgQoa9+/fptlhHkYcOGBeeAl5YWjtIOHTpU6stxHGrfvn3wmc21gEQ+2rBhg1YRlBEjRgjHEweh119/nTp27Cj0ddBBBylT/l577TXq1q2bdEzt2rWjl156Segj/F35+eefae+99+Z+bsN65513qFOnTsI+t99+e/rhhx+EAOs4Dg0YMIAAUKdOnZSp4HV1dUF/ffv2LWpBnVwBttD3LZ1OS69rlmXRrbfeqj3JnjFjRnAuRT8lJSV0//33c49/4IEHArs999yTG1kgik7Ci/nkd2No+vTpwWvZfffdlfZHHnlkYC86jzqqr68PHhj86le/ktrW1tYGti35oC4cNeXNB9auXRtJRVR9F8NLSGbNmhVpC0dVr7zySuXY/Os+AJozZ05uLyyklgTYlStXBhE+27ZpyZIlBfsMzzl4+vnnn2mPPfYI7P74xz9mvU+pVIouvPBCsixLeu3Yfffd6aeffuL288UXXwR2/fv3V06mFy5cGHx2unbtSo2NjXm9fpHyAdhjjjkmOOa5556T2t5+++2BLS9L7LLLLgvaRSmgvp599tnAlpfF8K9//StoP//886W+ZsyYEdgOGzYsq/3ll18O2g8//HCpr+XLlwe21dXVUluZinkudKUDsH/9618Dm2222Yb7QLIY86qdd945sH3nnXeUYw8/2HnhhRektuEHR5999pnSt46KUsRJJr/E9ejRo4Py9LwCAoMHD478/7vvvsMee+wRlMfee++9cfjhh6Nfv35wHAeffvopxo4di9WrV+Omm26CZVnKLXpuv/12vP766+jRo0dQwjydTmP69OkoLS0N7Orq6lBVVYUDDjgAu+yyC/r374+ysjL89NNPmDVrFh5//HHU1NTgscceQ8eOHfHPf/4z0s+FF16IkSNH4q677sK7774LwCuG0K1bt4hd3759tc5hWKeeemqwCLqsrAynnXYafvnLX8K2bXzyySd4+OGHsX79ejzzzDNYu3YtXn/9dem+suvWrcOIESPwzTff4De/+Q0OPfRQdO7cGd9//z3uu+8+/PDDD1i4cCFGjRqFDz74IOfxtlU1NjZi3rx5wf/79euXZfPVV18Fv++yyy5Sf5ZlYaeddsL7778P13Xx9ddfY7fddivegGNqaGjAgQceiKlTpwIABg4ciBNOOAHbbrstkskkvv32W4wbNw5z587Fq6++ipEjR2LixImwLPHOWp9//jluv/12EBF+//vfY88990RpaSk++eQT3H///aipqcHEiRPx17/+FTfeeCPXx/PPP48TTjgBjuMgmUziyCOPxL777ovu3btj3bp1ePfdd/HMM89g/fr1OOqoozBx4kRlsZJTTjkFH374IXbYYQecdNJJ6N+/P9atWxfZWmP27Nk4/PDDUVtbCwDYaaedcMopp6B3795YtmwZnn76aXz00Uc44YQThOXxLcvC2WefjT//+c9YvXo1nn/+eZx88snCcT333HNYvXo1AOCss86SntvmVDHetwsvvBCPPfYYAKCkpASnnXYa9t57b1iWhenTp+Phhx/GlVdeiZEjRyrHM2XKFBx44IGora0FYwyHHHIIDj74YGyxxRaoq6vDlClTMH78eNTW1uLcc89FaWlp1v7iZ599Nt588008//zzmDJlCm644YassT/88MN47rnnAAB77LFHm9/CjQoolPjll1/mfexHH30UfG9U16xPP/00y/add97BvffeiylTpmDlypXo1KkTdthhBxx33HE47bTTkEwm8x4bAHzyySe47777AHjbwxx11FFZNrNnzw7O34477qj8Lu66667BfOWrr77CkCFDgrZC34dtttkm7+N93XvvvbjllluwaNEiAF6RrGHDhmHkyJE44YQThMV6dPX444+jsbERAHDooYeiZ8+eBY9ZpkWLFuGQQw7B119/DQD4y1/+kvV9JSIcf/zxwfyxZ8+eOPHEE7HDDjugoqICCxcuxFNPPYVPP/0U06ZNwwEHHIAZM2ZkFZ7afvvtscsuu+DTTz/FggUL8N5772G//fYTju2xxx4L3vNTTjml4M9rMZTL3GPXXXflHrexfe24446wbRuO4wTfz/BcNRdf1dXV6NevHxYuXIgVK1Zg+fLlWfNtHRXzXBRDRISLL74Yd911FwBg2LBheO2119C1a9eIXbHmVWeccQZmzpwJwCvmJPteLFy4MOCb6upqjBgxQvpa9thjj+D3N998s+BiWwDQKrfRcRwneBJQWlpKzzzzDNdu6dKlQYTWsixuSD0cgQW89UBr166V9j9p0iRp9HLlypVBxMeyLGEKW7G30XnqqaeC9u7du2c9GSYiWrBgQSSyIVpvGT4nJSUl3PVUK1eujPiaNm2a8jWIVFNTQy+88EJRfj799NO8x6GrcErKzjvvzLW54YYbAhtRCnxYo0aNCuzHjx9f5BFHFV+by0sRbWxsjIzpvvvuy7IJR/IAL5I4d+7cLLtp06YF6946derEjeb98MMPQTSib9++wvT/adOmUYcOHQjwCtXwnnjHMzsuvvhiaVQlHKH9wx/+wLWNXytEKcj+dkmqtVy/+tWvggjGokWLpLa5KpcIbKHvW3j7iI4dO9Inn3ySZTNnzpxgixX/hxclWrduXZDS27FjR3rvvfe4r2/evHnBGqnKysqg4ElYq1atot69ewfnePLkyUHbN998E6xRat++vfZaN5G+/vrrol2/eK9FRwsXLgzObS4pxIA6HU6mv/3tb4GfZ599Vmo7ZsyYwHbMmDF0/vnnSyMC2223nTQFPKxZs2YF5/DZZ5+lf/3rX3TccccFn18AdP3113OPfeyxx5RzlLCuu+66wP6mm24S+jrqqKOkfsIpxADo5ptv1nqtPOluo7PNNttobU8iUzjz7fnnny/Ily/fX/y6OXv27Eia/7333ss9PryG+ZRTTuGmlLquGxSMAcQR8rvvvjuwkRVpdF03skVIoeeVp1wjsI7jBJ9527aVyz++//77wD8vjT08x1PNU1OpVJDGmkgksq5B++23X06vJbwONn6PDBd60sk48O+3ACL3glxUzHOhK9G9vLGxkU466aSg7aCDDuIu3yjmvOrnn38O0rYrKyuly0XC899LLrlE+ToXLFigfd3UVasE2Oeffz6wveuuu6S233zzTfAh4q19CU9KKysrafHixVqvSaXvvvtOeIPzVWyADVeUk62nmzZtWpDy0q9fP256XfiGd+ONNwp9Pfjgg1p2KoU/I4X+6ExACtGqVauoZ8+eyklbOCXiX//6l9Jvrvb5asmSJUH619FHHy21bWxspC233JIA/pqVOAh98MEHQl8nn3yy1M5fD2rbtjKF5OGHHw58Pf7441nt4e/KLrvsIoXXcKrS0KFDhemmcb88gCWKFuTiQSGRd13ybUaMGCF9rfkoV4At5H37zW9+E7TzKrf6euWVVyJ98iYdf//734P2//73v9LX+Pbbbwe2f/3rX7k27733XpBO2K9fP1q9ejU1NjbSLrvsEhxbjIdF8YcbhfzkutdjWD6wA/JiJeHPPADadddd8+7zt7/9beBHVXPiyiuvDGwHDRoUfN9POeUUeuSRR+iJJ56gq6++OlLxsl+/flp1FsK+4z877LADPf3008Jj77zzzsD2sssuU/Yls//222+DtoqKCum6snD6JlBYxdJHH32UEokEDR8+nK699lp67LHH6Nlnn6V7772XTjnlFCorKwv6adeuXd6wNXPmzMBPdXV10VJmfZ9hgJ0yZUqwN2pJSYkwWFFXVxekRw4bNkyZAr7PPvsQ4D284i31WLVqldZE/f333w/GLXqQXahyBdi1a9cG9l26dCnYPrysRrW+XWUfnqOKCjPp2h911FFBm6xgXb72PBXzXOiKdy/fsGEDHXzwwcHfTzjhBO5yRaLizquIovObRx55hGsTf7Cjui/4Ki8vJ6DwegC+Nk5Om0Ljx48HALRv3x5nn3221HbQoEFBqtJbb70ltT3mmGPQq1evooxxyy23DPYGnTZtWlF8yrRgwQJ89tlnALwUmF//+tdC29122y1ID1i4cCE+/fRToa1t2zj//POF7eE0g9mzZ+c67DYnx3Fw4okn4qeffgIAjBgxAsceeyzXdsOGDcHvZWVlSt/l5eXB7+vXry9wpGI988wzQfrXn/70J6ltMpnECSecAACYN28eFixYILTdaaedsM8++wjbZZ8VIsLjjz8OADjggAOU6SPhNDjV9/qPf/yjNCXwpZdeitjati20veiii6R9AcC5554b/P7QQw9xbcJ/P+ecc5Q+m1OFvG8NDQ14/fXXAXj7KJ5yyilCPyNGjMC2224rHYt/bR80aBCOOOIIqe3+++8fXK9Fn4Hhw4fjqquuAuBd684991yMHj06uOadfPLJ0jG3NYXvh+eddx6+//77LJtly5bhtNNOi/xt3bp1efe5cOHC4PfOnTtLbdesWRP8PnfuXJSVlWHSpEkYP348zjjjDJx00kn429/+htmzZ2P77bcP/P/5z3/Oe3zt2rXDwQcfjB122EFoU8xr9cCBA4PUutraWpx88slB2nRYU6dOzUqDLeR92HvvvbFw4UK89957uPHGGzFq1Cgce+yxOO+88zB+/HjMnTs32INx/fr1QUphrnrkkUeC35szZfaNN97AAQccgFWrVqGqqgqvvvoqjjvuOK7tm2++ieXLlwMALrnkEmUKuP+dX7duXbCMJqxOnTrhN7/5DQCgpqYmWGoQVzH2fi22ij3vKKa/1upLV61hTrdy5Ursv//+wT3vj3/8I5544gmUlJRk2TbHvCr8OfeXDcUV3vt1l112Ca7lKnXq1AmAt2SACliK4avZ18DmI38D4Z49ewabaMvkT0gXLlyIurq6yIcqLNkkLq5169bh8ccfx2uvvYYvv/wSK1euRE1NDdfW38y8OTV9+vTg94MPPlhpf/DBB+Ptt98G4AG2aO3SoEGDgg8VT1tssUXwu7+eLx/179+/KB/Y5tZFF10UfLH79u0buYG1FfnfH8D7bL744otS+/D7+vXXX6N///5cu/AaBp5kn5VZs2Zh1apVALwJp2pMAFBVVYU1a9YE66JEUn2vP/nkk+B32ZoOANh3332V49pvv/0waNAgzJ07F4899hhuvvnmyCQvlUoFF/5evXop14Y0twp53/73v/8FD0OGDx8uhX/Au4mK3q+1a9cG65K7d++u/RkAIP0M3HDDDXj77bcxbdo0PP3008HfBwwYgHvvvVfZh46uv/76VrGG9tJLL8UzzzyDWbNmYdGiRdhxxx1xxhlnYLfddoNlWfj888/x0EMPYdWqVdhyyy0DwC1k/bX/vQXUAOu6buT/o0eP5n6nqqur8fjjj2OHHXYAEeHRRx/Frbfeivbt2wt933LLLbjlllsAeA9WfvjhB7z55pu49dZbcfvtt+Ouu+7Cv//97yx4bw7ddddd2GOPPYL149tttx3OPPNMbLPNNqitrcV7772HJ554AqlUqmjvw1ZbbSVt79OnD15//XUMHToUS5cuxZw5c/Dcc88FDyh11NDQgCeeeCL4/5lnnpn3eGWaMGECzjzzTKRSKVRXV+O1116LrCmMK3xPW716tfLasXjx4uD3r7/+mvsZPPPMM/HMM88A8EA1vs6+trY2ANvS0lL89re/VbwqI6PC9MMPP+Ccc87BN998A4C/Fjys5phX+fUoFi9ejA8++ADz58/HgAEDIjb5Ptjp0qULlixZgsbGRtTU1AT393zV6gB2w4YN+PnnnwEA33zzDbcgg0yrV68WAmx4oibTu+++i9/+9rdYunSpln0hT1V15UcEAQ86VQrbhI+NK74YPK5wcav6+nplv21Z11xzDe655x4A3gR74sSJ0vMT/vLpnJu6urrg93bt2hUwUrnCUdTjjz8+p2NlDykK+ayEx/T888/j+eefL8qYAPX3esmSJcHvW265pdS2U6dO6NixYySSFBdjDOeccw7+9Kc/YdmyZXj55Zdx9NFHB+3//e9/g2jBGWecoYS+5lYh71v43Kkm0CqbRYsWBYAzefLkyKRUJdlnIJFI4IknnsCOO+4YPAX3/yYDoraoqqoqvPHGGzjqqKPwySefYP369UGBj7AOPfRQnH766TjxxBMBQPqQUqWGhgYA3oNi0b3VV/y6Jsug2n777bHHHntgypQpaGhowEcffSTNLAqrtLQUW2+9NbbeemucfPLJGD58OL788kucfvrpqK6uxmGHHRaxL/a1eujQoXj99ddx7LHHYvny5ViwYAGuu+66iA1jDNdddx3Wr1+PMWPGACjsfdBRly5dcNFFF+Hqq68GALz66qs5AexLL70UTIiHDRuGoUOHFn2MM2fOxKhRo0BE6Nu3LyZOnKic04TvH3/84x9z6k907TjooIPQu3dv/Pjjj9yJ+nPPPRdcT37zm99kPbyZOXMmfvjhB2G/e++9t/Lam4+K/VmuqqoKzlF9fb0SKmT+ijm2jTG/Kua5yEdHHnkk1q5dC8YY7rnnHpx33nlS++aYV9m2jVGjRuH//u//QER47LHHIhBdyIOd8P3YL5ZbiFpdCvHatWsLOt6PFvCkuvkCXhrliBEjAnjdZpttcPHFF+Oee+7Bk08+iRdeeCH4qa6uBoC80nRyVTg9obKyUmkf/mDIUhs2VmXU1qabb74Zf/vb3wB4E/5JkyYpb6odO3YMfverZcvkP5iJH1tsFfIdkn1/CvmsNNeYAPX32s+cSCQSWulwOt+v008/PQC/Bx98MNLm/58xhrPOOkvpq7lVyPsWTqmKV/PkSXbuCvkMpFIpaXvXrl0jE8wtt9xSWUWyrap3796YOnUqJkyYgMMPPxw9evRASUkJunTpgv333x8TJkzAa6+9Fklr9Ze75CP/c+44DjdVNqzwda1Pnz7KSqDh98hPSctVnTp1ikTab7jhBum4inWt3meffTB37lzceuut2HvvvdG5c2ckk0n06tULJ5xwAiZPnowbbrgh4quQ90FX4WjjnDlzcjr20UcfDX5vruir4zhBNlZ9fb2w6ntYzXH/sCwLo0aNAuClYo4bNy7Srooy3XXXXTjqqKOEP81VmbaqqipIA12zZo3y/Kk+y7l8N9LpdBCwSSaTWdf7Yn7PNsb8qpjnIh/57yURCTM+w2queVU4G2HcuHGR7Mnwg52RI0fm9FAuPF4dHlOp1UVgw+D1q1/9Cu+//36L9v9///d/wVOVa665BjfddJNwGxrV+txiKvx0R+eDHZ54Nme0T1e1tbXKtYy66tu3L3beeeei+AKA2267Dddeey0AbzI0ceJErSfPYcCVrR31FV5LphNFz1f+d4gxhnQ63SoeUoS/19dddx13ktlc8m8s6XQaqVRKCbE6368uXbrg2GOPxeOPP4633noLP/zwA/r27YuFCxdi4sSJAIADDzwwK/WmrSn8vqngBZCfu7CvUaNGCdfX5KM//OEPke/X3LlzMXr0aNx6661F8T9nzpycYUCkYkRmbNvGySefLN3GKbye2V8bmY/CDwZWrVolfZAR3iKmQ4cOSt9hm0ImY3vttRfatWuH9evXY8aMGaipqYlMKJvrWt2hQwdcccUVuOKKK4Q2xXofdNWlS5fgd1kmSVyLFy8O7tHl5eU46aSTij00AN45OPzww3H55Zdj+fLl2G+//fDuu+9GtiqKK3zt+P7774t2XT399NODB9fjxo3DddddB8ZYsL0O4GX4HHTQQUXprxiyLAsDBw7EN998A8dx8OOPPwqX/QDqz/KgQYMwf/58AN53Q+brxx9/DAI2W221VdbceNCgQcHWKqrvWTqdDlK9KysrszKpNsb8qpjnIh8988wzOOOMM7B8+XJcfvnlAOR1TJprXjVo0CDstdde+OijjzB//nx88MEHGD58OIDC1oX72R0lJSVFAf5WB7AdOnRAVVUVNmzY0CJrS+OaNGkSAKBbt2648cYbhR/K9evXR9YGNbfC+7CF9ycVKWxTrMJVhWj58uU5p4OLdNpppxVtbeqYMWNw5ZVXAvA+e7nsTxWGXFmhLMBbG+YX4bIsS1nsphBtscUW+Pzzz0FEWLx4Mfr06dNsfeUyJl8t/b3u1atXsPby+++/l+7DuHr1au1J37nnnovHH38cruvikUcewfXXX49HHnkkSJPd2MWbiqHwtePbb79V2stsmusz8PjjjweFLHbZZResXLkSCxcuxB133IFDDjlEuY+wjp566qmiTQ7effddrbXWhSr88DeX+g9x9e/fHx999BEAbwLSu3dvoe0vfvGL4HcdIA3b6ACvSIwxVFZWYv369SAirFu3LjJBGjJkCCzLguu6+Pzzz+G6rvTBXnjdfCFptKtXrw6uPZWVldhpp53y9qWrfCNRjz32WHDtOvroowt6P1T605/+BMYY/vSnPwUQ+84772C77bbj2sevHcUC2K233hp77703PvzwQ3z//ffBRD289+uoUaO4y0DGjh270WpkDB06NFgn+emnn0pBS/VZHjp0KN58883Al+zapOPL16effpq1rjiszz//PADAIUOGZM21c5lfrVixIgDY6urqvPaA9fss1rnIR0OGDMG7776L/fffH8uWLVNCbHPOq84444zguj927FgMHz488mCnd+/eOT/Y8Zmpb9++RQH+FgvNhG8WqmI+v/rVrwB4k02dSVMxtWzZMgBeARDZDW7SpElZBSviyuU1qxQuwuRHeGQKRztVm89vrrrnnntw6aWXAvCi1K+//npOT8i32267YDI3a9Ys6QXk448/DtJN/GhBc8l/UgaoK/i2lHbaaadg/cPbb7+t/O4UU+HiIP7TYZH8i7OO9t5772DC9cgjjyCVSgUVPLt16xZUuWzL2mGHHYLqh++//75yuYRfOI6nrl27BlGWqVOnFqV2wPz58/GHP/wBgAcITz75JCZMmADbtuG6LkaNGhWZ0G8umjVrFmbMmAHAi4ruvffeefsKT878SbNIgwcPDuBi0aJFwVpwkcIT00KyUtauXYsVK1YA8GA2HIUEvLVXfjGztWvXcivT+lq0aFEQNe3bt680MqjSE088EaTqnXzyyVqVTQtV+MFFLuc0DGPNlT4c1mWXXYa///3vALwH3Pvvvz9mzZrFtW3Oe1q86mo8nVgGYRtLhxxySPC7D1wihQuhHnrooW3G17777hssX/jggw8i603jCvfF86WrYo4/X/kQ2717dwDA5Zdfjttvv51r25zzquOPPz7ItnnuuedQU1OT9WAnl+y+BQsWBGuZww86C1Ix9uLR2Qf2iCOO0N4v6emnnw5sTzrppILGFt6/T2ePrY4dOwb7n4k2Jk6n07TrrrtG9rHjyd+fCZp7Yqn2gd15552D9rfeekvoZ8aMGZG9EWX7wMY3FecpF9u2ogceeCDYK7eysjLvja/De7teccUVQrvw3lp33313vsPW0g8//BDsA7v11lvThg0b8vYV3k/0L3/5S0G25513XtD+73//O+8xEeW2r3Sx94EN66677grs//CHPwS/X3755bm8nJyVyz6whb5vI0eODNrHjRsn9PPaa68FdgB/H9hbb701aL/66qsVr1KudDpNe+65Z+Dv4YcfDtquvfba4O8jR44sqJ+2pnQ6Tfvvv3/w+h988MGC/L3zzjuBL509VK+++urA/uabbxbaffHFF8E1uKqqimpqavIe4z/+8Y+gT9Get+G9XY8//nihr8svvzywK2Tf1mXLllF1dTUBoGQySbNnz87bl65+/vnnyB7mor0e4/rggw+CYwYMGCCc+xQi0Twi/N5169aNvvrqq6xjN2zYEOwd3LlzZ1qyZEnRxrV+/XqqrKwkwNs/N3wd22uvvYrWj0i57gNLRLR8+fLgHl9VVUXLli3j2n355ZfBd6xHjx7ce18qlQo+p4wx7vkn8j7P/nkqKyujlStXcu3Ce7u+9tprXJu6ujrq27evcn4c3tv13nvv5dq4rku77757YCfbH1ulYp8LHYnu5bNnz6YePXoEbbfddhv3+GLOq+IaNWpU4Hvs2LG05ZZbBv+fO3duTr6eeuqp4Nhbb721KONrMYC98MILA5v3339f6s9xHBo2bFhgf9FFFwk38SUiqq2tpUcffZSefPLJrLZcAfaggw4K7P/xj39ktTc2NtIZZ5wRmaiJJrrhC/Njjz2m7Fs1KQ+Dfc+ePenrr7/Oslm4cGFkg2ERLG3OAPvYY48FF/WKigrtmwZPixcvpoqKCgJAiUSCJk2alGXz6KOPBuewT58+3I3Vi63LLrss6HO//fajn376SWjrOA5NnDiRbrrppqy2YoLQokWLggdEpaWlyu/EsmXL6MYbb6T//e9/WW25ACwR0d577x0BTcdxsmzC1wpdgF2zZk3w/od/cr2456qWBNjJkycH7Z06deJulj537tzIxFkEsBs2bKB+/foFE4TbbruN+174WrNmDd155500ceLErLYwpB577LGRtlQqFYHbYt/YN6YmT54sfAizdu1aOvHEEyPf/UJhpL6+Ppis7bPPPkr7lStXBt/zsrIy7vV1+fLltP322wfj5D38++ijj+iBBx5QXi8ff/xxKi0tlX7uiIhqamqoV69ekQlZXBMnTqREIhGAwdKlS7m+amtradq0acIxffvtt/SLX/wi6Ov666+Xvobw94b3ff7444/pwQcfpPr6eqGPRYsW0W677Rb42XrrrSmVSkn79XX66acHx91www1ax+Qq2TxizJgxQXt1dTUXHP71r38FNr/4xS+U19ipU6dqP0gMX0/D17GHHnpI6/hClA/AEhFdfPHFwXG//vWvs74nq1atisCk7MH5P//5z8Bu5513plWrVkXa6+rq6NBDDw1sZA92Xnzxxcg9dOHChZF2x3HozDPPFF67w5o5c2YwV+vQoQN3LnD99dcHvoYNGyb0FZ6HyeayxTwXOpLdy7/++usIxPLAr5jzqrjCc4Pw92LvvffO6TUSRYM9n3/+ec7H89RiAPvSSy8FNltttRXdc8899Morr9Drr79Or7/+Os2bNy9i/8MPP9AWW2wROXkXXnghPfzww/Tcc8/R2LFj6cYbb6QjjzwyuLnyJuC5Aux///vfyM3kyCOPpHvuuYeeeuopuummm2jrrbcOJga9e/eWTnT/97//BX66d+9Od9xxB7388svBa/7iiy8i9jqT8vDkpLy8nM477zwaN24cPf7443TJJZdQ+/btg/aDDz5YOHnZXAH2tddeI9u2g9d0/vnn0wsvvKD8iV+Ew7rvvvsCf8lkks466ywaN24cPfLII3TccccFF+BEIkGvv/66dHyqiYyuGhsb6YADDoh8Vk455RS655576JlnnqEJEybQHXfcQaeeempwgTzggAOy/BQThIiI3njjjeDJMQDaYYcd6Nprr6Vx48bRs88+Sw899BBdccUV9Ktf/Sp4n3jR8VwBdtasWRHQ3Gmnnejvf/87Pf3003TXXXfRXnvtRQBozz33DK47AwYM0PIdf6C17777ah1XiFoSYIkoEl0uLS2lc845h8aNG0cTJkygCy+8MLgGh6O1IpD47LPPItepgQMH0hVXXEFjx46l5557jh555BEaPXo0HXzwwcFnZfz48REfkydPDj4fvXv3zppkEBF9//33QT8VFRU0Z84c6XloK9puu+2oZ8+e9Lvf/Y7uvfdeevbZZ+nhhx+mCy64gLp16xac16FDhwojM7nqmGOOCa4jqgwqIqInn3wyuO7Ztk2nnnpq8JD5z3/+cxDl8K8BtbW1WT5eeOEFAryo2DHHHEN//etf6bHHHgvu/3/+859phx12iHz3jj32WCmwv/LKK8HnhjFGxx13HD3yyCM0btw4OuussyiZTAa+ZJHrFStWEADabrvt6LLLLqNHHnmEnn32WbrvvvvopJNOorKyssDPSSedJM36IFJf9/1z0b59ezruuOPolltuofHjx9Ozzz5L999/P5166qlUXl4e+GjXrh3NnDlT2qevcATSsizpva4QqeYRYXCorq7mRuXCEaFEIkFHH300/fOf/6Snn36annjiCbrzzjvpd7/7HQ0YMCC4tujovffei7wH/jVj3bp1hbzkLL399tt0zTXXRH7CDzpOOeWUrPbVq1dzfa1evZoGDx4cHLvtttvS3//+d3rqqafo5ptvpj59+kTuSY2NjcJxNTQ00D777BPY9+nTh26++WZ66qmn6I477qBtt902aBsyZAitWbNG+jpPOOGEwL5Lly705z//mZ588km6++67Iw9ZevbsST/88IPU15VXXhnYV1ZW0kUXXUSPP/44/fvf/6aDDz44aKuqquI+XPWlC7DFPhcqqe7lc+bMicAjD2KLNa+Ky3Xd4LsU/glnO+lqxx13JADUv3//nI8VqcUANp1OR6Ig8R/exGnJkiWRSbjsx7Zt7g0nV4AliqZA8X722msvWr58eRBJkEVqTjrpJKGf+LnSmZSnUin63e9+pzwfxx57LHdS4Evni5yPbWtXPMqm+yOajPu6/fbbI5Of+E+7du24GQJxqSYyuaihoYHOP//8CLDLfkaNGpXlo9ggREQ0ZcqUSCqK7KeqqirrQQ9R7gBL5KVC+k8qeT9Dhw6NPDj7xS9+oeV32rRpET+6aXuFqKUBNp1O06mnnio8d5Zl0W233RaZJMi+M3PmzIlEB2Q/paWlkQc/q1evDq69lmVJr+sTJkwI/Oy0007STJ62ou222055zo455hhasWJF0foMR1VkaeRhPfroowEYiX6GDx8uHKcPbTo/JSUldM0112hFHCdMmEBVVVVSX7zsq7B8gFWNafTo0dIMA1+q634u52Lo0KFa0RVfDz/8cHDsQQcdpH1crgq/5yKF07x5EOu6Lt10002RiLvq86Uj13Wz7km8+2Ghymf+IZsHzJ8/X3kdPfDAA4UQHNaqVasiSw94PzvvvLPWA476+vpIsIX3M3DgQK3Pqeu6dPHFFwcPxHg/3bp1o7ffflvqRxdgi30uVFLdy4myIfaWW27JsinGvIqnG264IXJsZWWl1kPMsGbPnh0cP3r06JyOlanFAJbIC73fcssttOeee1KnTp0iE2vZJOu9996j3//+97TddttRx44dybZtat++PQ0ZMoROOOEEuu+++4RrIvIBWCKi119/nUaMGEFdu3alZDJJPXv2pP33358efPDB4CapA7DpdJruu+8+2nfffalr165BehLvXOUyKZ8yZQqdddZZtNVWW1FlZSWVl5fTgAED6JRTTlF+kYkMwOb6owJYIm+9yR//+EcaNGgQVVZWUrt27Wjo0KF05ZVX0oIFC5TH19TURCY/P//8cxFeMdG8efPoqquuot13352qq6spkUhQRUUFDRgwgA477DD629/+JryYNQfAEnkPYiZMmEDHH388DRgwgKqqqiiRSFDnzp1p1113pbPPPpuefvpp4frdfACWiGjp0qX0pz/9ibbZZhsqLy+njh070q677kp33HEH1dTUkOu6QSRDN5Lqui516NCBAG99lizNr1hqaYD19fLLL9OIESOourqaSktLqW/fvnTSSSfRxx9/TESkDbBE3nl76aWX6LTTTqNBgwZR+/btybZt6tixI+2www40atQoGjt2bFZ0Nfx0/6qrrpL2QUR08sknB/Y6azhbu95//3268soraa+99qI+ffpQaWkpdejQgbbddls677zz6MMPPyx6n+l0OlizlgvkLFiwgK6++mr6xS9+QR07dqSSkhLaYost6Oijj6b//Oc/0mhpOp2mDz/8kG644QYaMWIEbbXVVlRVVUWWZVFVVRX169ePRowYQbfffjstXrw4p9ezYMECuuKKK2i77bajdu3aUWVlJQ0aNIj++Mc/Cte9xcf29NNP0+9//3vacccdqXv37pRMJqm6upp23XVXuvbaa+nbb7/VHo8KWNavX08vvfQSXXXVVbT//vvToEGDqHPnzpRIJKhjx4607bbb0mmnnUb//e9/tYA5rHBgQecha77SnUeE6wqIIrFLliyhG2+8kYYPH049evSgkpISKisro969e9OBBx5I1157LU2ZMiWn8d14442R96GQpUUiFRtgibxsqwceeID2339/6t69O5WUlFCvXr1oxIgR9NRTT+W0hMB1XXrqqadoxIgR1KtXLyopKaHu3bvT/vvvTw888IB2Srqv119/nY477rjgOtW1a1fac8896R//+EfOtTk+/vhjOv3002nLLbeksrIy6tixI+2888504403aj2sywVgiYp/LkTSAVgiom+++SayBIIHsYXOq3hasGBBUFNHxXgi/fnPfybACzQWM8ODERVYHtfIyKgoevPNN4NqdhdeeCHuvPPOjTyizU9ffvllUCFP9z2YNGlSUE7+oosuwj//+c/mHKKR0UbRmDFjcOmll8K2bSxYsEC6nY6RkZGRkZHjONhqq62wYMECnHDCCXjqqaeK5rvFttExMjKSy9+DuF27dhg9evRGHs3mqbvvvjv4fb/99tM65r777gt+3xT2fjUy4uncc89Fjx494DgObrvtto09HCMjIyOjVq4nn3wSCxYsgGVZ+Mtf/lJU3wZgjYxaiXyAvfTSS1FdXb2RR7PpafLkydJ90u655x488MADALwNwg8//HClz88//xwvvvgiAODAAw8saM9II6PWrPLyclx//fUAgAceeABLlizZuAMyMjIyMmq1chwHN998MwBvP+Vtt922qP5NCrGRUSvQypUr0a1bN3Tt2hXfffcd2rVrt7GHtMlpq622Qn19PX79619jp512QnV1NVKpFL777ju88MIL+OyzzwLbl19+WQiwb7zxBlzXxdy5c3Hbbbfhp59+AgB8+OGH2GuvvVrktRgZbQy5rothw4Zh5syZOP/88/Gvf/1rYw/JyMjIyKgVasKECTj11FPRoUMHzJ07F926dSuqfwOwRkZGm4W22morfPfdd1Kb8vJyPPjggzj55JOFNoyxrL/prpd96623UFtbqx4sR127dsXee++d17FGRkZGRkZGRpuKDMAaGRltFpo6dSqef/55TJ06FYsXL8bPP/+M2tpadOrUCYMGDcKBBx6I8847D927d5f68QG2qqoKgwYNwnnnnYczzzwTlqVekdG/f38sXLgwr/EPHz4c7733Xl7HGhkZGRkZGRltKkps7AEYGRkZtYT22GMP7LHHHgX7Mc/8jIyMjIyMjIw2nkwE1sjIyMjIyMjIyMjIyKhNyFQhNjIyMjIyMjIyMjIyMmoTMgBrZGRkZGRkZGRkZGRk1CZkANbIyMjIyMjIyMjIyMioTcgUcTIyMjIy2qRERKivr0dtbW3wU1dXl/X/xsZGNDQ0oLGxMfiJ/9//SafTcF0XjuMEP67rBn8Lt/myLAuMMemPZVlIJpNIJBJIJpPBTyKRQElJSfB3//+lpaUoKytDeXl55F/e75WVlaiqqkJJSclGfDeMjIyMjIyKKwOwRkZGRkatUnV1dVi3bh3Wrl2L9evXY926dVi3bp3w9w0bNgSg6rruxh5+q1FJSQmqqqpQVVWFdu3aBb+Hf9q1a4eOHTtGfqqqqrS2hzIyMjIyMmpJmSrERkZGRkYtppqaGqxatQqrVq3C6tWrs/4N/15fX19wfxUVFZGf8vLy4N/3/jMTIAZGFsgBGFkAMYAsMGKAa2XaGQCWafP2Afb/bWqD96/fxghwQ7dXFrvVMiBzEIiR1575IebG/p/53SLABshy8etT9kB9fT3q6+tRV1eX9bsP8oXItm20b98+ArUdOnRAp06d0LVrV3Tt2hVdunRB165d0bFjRwO7RkZGRkYtIgOwRkZGRkYFi4iwYcMGLF++HMuXL8eKFSuCn/D/c4WqZDKJ9u3bo3379mjXrh3at2+Pqa/NAtwEmGODuTaYkwBzbcCxgNoU4FhgrgW4DMyHyswYEUrxzRJjYFWVegNzHLjrN+T0WqJdMbB27fSMyQXV1sn9JbITqggEWC4oSUBVCWA5oMyP//vIc/bBhg0bsHbtWqxduxZr1qzBmjVrUFNTk9PrsW0bnTt3jkBtly5dUF1dje7du6N79+7o1q2bSWc2MjIyMipYBmCNjIyMjJQiIqxbtw4//fQT92fFihXaEdPy8nJ07twZnTp1wtcfLwBLJ4C0DZZOgLkJWCj3oDRtg2oaIhCay3ilsCpSHGILAVVXcXu1sl9XFthqwKtIPKjVksWAynKQnQaxFMipA9kOKJEGJRz8+sxf4ueff8bKlSuxcuVKrF69GrpTiS5duqBHjx7o1q0bevToge7duwf/9uzZExUVFfmN2cjIyMhos5EBWCMjIyMjAIDjOFi+fDkWLVqERYsWYcmSJRFI1YmedujQAd26dUN1dTWmvzIbLJUASyU9OE0lwNJJLzpqMbBMNI5cF6jLI13Ytpt+JxfkhNa95gGvPvAREaixMffxyKSCWV8xqGXhiGU+QJ45R4wxIBkCWjcPwLcYWHl58F+qb/D+BWXgNg1Kev/+9upDsXLlSqxYsQJLly7FsmXL0NDQoOyiU6dO2GKLLbDFFlugd+/e6N27d/D/droRayMjIyOjTVoGYI2MjIw2M61ZsyaA1PDP4sWL0agAty5duqBnz574+uNFYA0JWI1JsMZkE6RSFE5FUkJrGE75DqLAypMC0GQRymaBWJ5EYKtxDpUAKjmHWUArGpuojxjMihSGXNgO3GQKlEyBStM48g/7YNmyZVi2bBmWLl2K9evXS3116NAhArf9+vVD//790bt3b5OabGRkZLQZyQCskZGR0SYoIsKqVauwYMECfP/998G/ixYtwrp164THJZPJIPI15b9fg6VKYKVKMoBaAuYwIJ3WA6z4mMLQqgLU7IPVwCpSBsJyTaltMYgNy6W8zi2AJtjM9dxCE2jj8gFXE2bjovoGL+LsR74tB5RshJtswGnXHYrFixfjxx9/xOLFi/Hzzz8L/di2jV69eqFfv34B1Pbr1w99+/Y1KclGRkZGm6AMwBoZGRm1ca1bty4CqQsWLMD8+fOxdu1a4THdu3dHnz598Pmk78EaS2GlSsEaS70U39CaU8ZCKa0sh7WoRE3ASS6QD3wWAq1AE9AxBqYJdQVDqyhimQdU+soJZsP959lnXjDrK/SQgBVQlZhi2yARy8BtSSPOuP7XWLRoERYuXIiFCxdiwwbxGuXu3bujf//+2GqrrbDVVlth4MCB6N27NxL5rg82MjIyMtroMgBrZGRk1EZERFi6dCnmzZsX+VmxYgXX3rIs9OrVCz/NWQfWUAarsRRWYylYqtRL9Q2JyeBU1BaG1Ky2jQCtqgrDAqArCFrzWZcK5A+XMpgtIKVY2F+RYDbLb55wmwW2IK/YVEkDqLQBh529GxYuXIgFCxZg9erVXB8lJSUYMGAABg4ciIEDBwZwa9bYGhkZGbUNGYA1MjIyaoVyHAeLFi3C3LlzMXfuXMybNw/ffvutcJ1gjx49sOK7GliNZWCNZbAaymClSgE3VhQolygqY3JI5SkfcG0uaA0rBLAbBVhVKgbQ5jK2loTZHKOd+cBtGGz9zzhZabglDXBL6vHrs3fFt99+i++//x51dfyqzt26dcOgQYOwzTbbYNttt8U222yDDh065DwWIyMjI6PmlQFYIyMjo40sIsKyZcswe/ZsfP311/j666/xzTffcKu2JhIJDBgwAPM/XQmroTzzUwZG+aeoxseiXTE3OKiFo615QiTlc1y+fWXOIeNslaOlfAAz3zTlfPryoTTX15dH6m5e0Vr/mNj7R6BMKnI9Trp6P3z77bf49ttvsXTpUq6bnj17YvDgwdhmm20wePBgDBo0CFVVVbmPx8jIyMioaDIAa2RkZNTC2rBhA+bMmYPZs2dj9uzZmDNnDlatWpVlV15ejoEDB2LOhz81wWpjKRjyX1voi3vpbwlw3UShlTTPXV5AqwLMeN+W/prfnPviiFscS/U6Wxpkw+K8v2Q5cEvq8LtbDsOcOXMwZ84c/Pjjj1yXffv2xeDBgzF06FAMHToUAwYMgF3AGmcjIyMjo9xkANbIyMioGUVEWLx4Mb744gt88cUX+Oqrr/DDDz9k2dm2jYEDB+L7GT/DaqiAXV8B1lgSKahUyBik2sTANWdobUZgVakoQCsbS74wWyyQ5YwnopYAWR37+GeAMQ9qS2tx2g0HYc6cOfjmm2+4kdqKigoMGTIkANohQ4aYKK2RkZFRM8oArJGRkVER5TgOvv32W3z55ZcBtPKiqz169MCKefWwGypgNVTAaijPKqyEPC7POV/ScwGxlgLX5oZWl7zXkmsfRYJWkfKCWZYDzLUQzOa6XVF4Kx3tPooVjZXJzf6MkJWGU1aLk64ejq+++gqzZ89GbW1tdGyMYcCAAQHQ7rjjjujRo0fu4zUyMjIy4soArJGRkVEBamxsxOzZs/G///0PX3zxBWbNmpU1oU0kEhg8eDC+mbwMVn0l7IYKMCeZ7cyyvEmzzmU5VowpXp012zxm3xoLM+UEoW5+sJ4juEbAWAWLMt+5gCbygFld/yG/OcNsawTZsL3iOwAg+hp0Pz/+d4eXegwCldTjvDGH46uvvsJXX32FJUuWZNn16NEDO+20E3bccUfstNNOBmiNjIyMCpABWCMjI6Mc5DgO5s2bh08//RQzZ87EF198kVVsqbKyEvUrLFj1VbDrvAhrVnSVFw0SwaukcjAPXGWVhjc7cC0UWsPiQWIekdyNBrMCP5scyIYlglrRaxB9tkTfKc5nxbVTcMvrcNRFu+OLL77AN998AydmZ4DWyMjIKH8ZgDUyMjKSiIiwcOHCAFg/++wzbNiwIWLTqVMnrFtEsBuqYNVXwmos99auhifPqvTFMLxqbnXjw6vu1jjNCq+5gKtulDlkv9GgNSwfDPOBVpVPbfMCYFbj2OaE2ZxAtpgQG1b4O6kz9vDnTud7Fv4cZb7zxBw4ZTU49rI98Pnnn2POnDlcoN11110xbNgw7LLLLmjfvr26LyMjI6PNVAZgjYyMjGJas2YNpk+fjunTp+OTTz7JWsNaWVmJ+uUJ2PVVsOvagaXKCi+2pJP+CAi3B5Gp1YAr0HairRtDOcBsziCba9S0tYAsAJRw0u2L5d+y8lprri2ObxXQWpaFwYMHY9iwYRg2bBiGDBmCRB7FroyMjIw2VRmANTIy2uzlOA7mzJmDadOmYerUqfjmm28i4FRSUoL02lLYdR6wWo0VUWBlrCk6Q6Q3IfZBlEgOdZYV9a0VKWyyzwku02m1jQ9ObnQsyltJc4Frc0NrLhE42Zg1o+RN9kWG2RwjscFhbRRkc09bDp0f1WfPDtnqfL/C9mnOOlrmwCnbgCMv2AUzZszAggULIu2VlZXYeeedA6DdYost1H0aGRkZbcIyAGtkZLRZatWqVZg+fTqmTZuGGTNmYN26dZH2rbbaCgs/XQ+7rj2s+tga1jCwhiWDV14KMQ9Iw8Cqsg2PJ2arDa4W8yCQB6880HHF4+DeTloJuOYcadVdC5nPLTQXmC1GinGOa2K5flsLyDZ3NJYn3ntsC2xF3zuRPQdo3WQaF909AjNmzMAnn3yCtWvXRtr79OmDX/7yl9hrr70wdOhQE501MjLa7GQA1sjIaLMQEWH+/Pn48MMP8eGHH2LOnDmR9qqqKtQtS8Cu6wC7vj0spyQKpCJobeogOtGVrXkNw6gIWEX2GrZSeA1DSxxcZUAjAddo96FzoAuNrQVcc6n+XIxbZ0tFZVXHNRfINmexp+aKxupstRN+70Vg6iv8XVTZpjnrZ0FwS2px6nX7YMaMGfjyyy8j6cZVVVXYY489sOeee2KPPfZAu3bt1OM3MjIyauMyAGtkZLTJynEcfPXVV5g8eTI++ugjLF68ONK+9dZbY8En62HXdYDVUFn4OlZd5XLZ1QUwH1z9iKovEZy4BLi6gKmZuowMwG6K4NrcaqaobE7A2QpAttVHY7m2zXTd4Ow7TMzBlY8ehY8//hhTp06NRGdt28b222+PPffcE3vvvTf69OnTPOMyMjIy2sgyAGtkZLRJqb6+HjNmzMBHH32Ejz76KDLBKykpgbOmDHZdR9h1HWHF92K1WFNRF1UKbr62nJTBiBiTp/VG/Gait0SgdNo7RmcyrbPWFWg+cEUOgJkruPqTfp1jWtPtr7kA1v886ByTC8D6480F9DRBljGWW/Q2DKaK15ATxCYyY+CAZET+9xvQK8aWjy1v7SwIbmkNjrlsV3z88ceYP39+pH3AgAEYPnw4hg8fji233FK7WrmRkZFRa5cBWCMjozavuro6TJ06Fe+88w6mTp0a2Ze1Xbt2qF1agkR9R9g17cAoNjEOTz598aBU105my4NXH1jDEq5J5aQb+/CqKx3btgyu0T9y/tZKb3nNALDNth6WN9aNDbI8MBXte5sPxIbF+6zxvvOAGFJ1bXl2godgbkkK59yyHz766CN8/vnnSIe+671798a+++6L4cOHY9CgQQZmjYyM2rQMwBoZGbVJ1dfXY+rUqXj33XcxZcoU1NfXB209evTAynkuEvWdYDVUgcFqAk3RRNNXGEqLZRuGVx6whhWGV9X62FzgdSNHXVsUXJsaQ7+38ludLlAUqzpx3I8mwCrBRxdkWyIaG1foNRYMsWH5n0HV9SLXfaF1bcNAa/t7z6Zx8T2/xvvvv48ZM2agsbExMOnRo0cQmR0yZAisXB4+GBkZGbUCGYA1MjJqM2poaMD06dPx7rvv4qOPPkJdXV3Q1qtXL6yY48Ku6wwrxdnmRkd+IaZiTuh8yNWNcOlUD25DUdeNAq5NRq0fXH21NMCG/RUafeVpY4KsLpxaTB9kVRAb8VtkIHRdfZ+CfWcvf+AIvP/++5g6dWrkYV/37t1xwAEH4KCDDsLAgQOLNWIjIyOjZpUBWCMjo1Ytx3Ewc+ZMvPXWW5g8eTJqa2uDth49euDneYBdy4FWywLZ3rpTpoJCxkC2BaaxPpUStudTZpvxByKwlAIeWWh9rMrW9iLJlEopXHrnQWUX9K/TNzLg6keGdG4dukWacli3qgWuYV9t4RbXUunDMp8a9jmlneoCl+Za2qDvXKKxJUmt9avaEJvM2Ol8pvxxKmwpA8bKa0/GVtcOAPfaQ8zB1Y8chffffx8ff/xx5Ho6YMAAHHTQQTjwwAPRo0cPZT9GRkZGG0sGYI2MjFqlvvvuO7z11luYOHEiVq5cGfy9W7duWDXfRmJDR1ipSj60+pLBqw+jYVvBGlVtu3jfPChksTRDFTyGfToukE5nQSGLb/FDJIbXmJ0OuHqmlL1GT3T7iNkJbzNxuNCMwGqnDXuda/ncqNqYAJtDKnFe6yZlYBr3J7HN6lsXZOOVigXrV3NKKU7GbEWfsfgYBXYUi+6KIFXXjmvLhVnCVQ8fiYkTJ2Lq1KlIha4Z22+/PQ466CDsu+++6Nixo7AfIyMjo40hA7BGRkatRj///DMmTZqEt956C/PmzQv+3q5dO9Qtq4BdXw2rsRJWOro+jET7K8YBNg6jYbvwZDAXO17fcXiNQ2vILgsgRa8lBq9Z0BrymQWvAruco648H2FJqqpm3WpEEJpvFFZ0XFu4xW2s9GGZz9jxBRf94X3+RT5jtsK+84VYX7HtpgqCWF/xz5tojDE77vUG0LvexO0k/gBkXZsoYYNYGhfcsR8mTpyIzz//PPi+2raN3XffHYcddhj23HNPJJO5bV1kZGRk1BwyAGtkZLRR1dDQgMmTJ+PNN9/EjBkz4GYgKJFIgDa0h13fFXZDJ68QE+DBoUtiaPXlw6sIRsN2aSc3O1nfPryKoDVkFwCkzF8GXAGoQceHVw27guE17AtQ2gW3GlVKZ65R2La2XQ5PRQbYguE1rIyvolStDX8fNItBKfstFGLDymxDlXNKsUj+5041xoyd9PoD6F1/0ASzKn++bdzOtRpw5l/2wKRJkzB37tzg7x07dsTBBx+Mww47DFtuuaXSt5GRkVFzyQCskZHRRtH8+fPx8ssv46233sK6deuCv1uNVbDrq5Go7wJGeT7tb44tIjQvlcr1tr4vnT0gdfaCzfjTKurkF1/SWEeqVXxJ93XAh2HNwks6/nIp+rSxbnP++mKVLFvrtTDb1loDzGw9f9pArHpYlIt8iNX5jlqWHjhbTB/GNeG0aBAb9K13DpUP5lpYrl2Loy/cDm+88QZWrVoV/H3w4ME47LDDcMABB6Bdu3YbcYRGRkabowzAGhkZtZjq6urw7rvv4uWXX8asWbOCv3fr1g2rvk8iUV8NyymPHmRZTRVAXVe4ByIsC5SZTDKZnW2BbBtMY+0p2bbnS2ZnWV4ElQisQVw0ifwtNlxXXdgpY4dGSREmf0Lsqos6eQOIVQ6WgFCzwKuiT8+wGaKv3gD07Iqt+HpjkazwGmvxa2KZSJ4KYllQQEhxfmxb66FC0QA2DnEyOA3ZakNsONIpel0bEWIpmQgySIQ24deh+n75/cquJ+GxyezCUVjOtZNA+MujI/Hqq6/i448/hpO5RpSUlOBXv/oVRowYgZ133tnsL2tkZNQiMgBrZGTU7Jo7dy5eeeUVTJw4ETU1NQC8tVWo64hEXTdY9R2yijFlbVvBg9IQtPriwmsGRiN2gvWnWXY8gPWh1ZcAXim+L6QIXuMTexG8cuzygldAOMFXwms+4Krqt5DiTa05hVi09jgui7feOvt1sdhnUwSycTvuOYrbCH01Q/Q1qxPOedJdBxs5RrDVTvy1bWyIDf6TDbMkfA2c95DXJ+/6omvHSznmwWzSwVnX7YZXX30V8+fPD/7et29fjBw5EocccoiJyhoZGTWrDMAaGRk1ixobG/HOO+/gP//5D+bMmRP8vVevXljxbQkSDd3BqMRb4+lPznjg6isMphxwBWLwyoHRwC62/lRoF4bXOLSGFQLYLGgNjT8Cr6LJfBxeJXZ5w2vgo+ny32xRV0W/BW+d05qjsDLoCo+HB7CBnff6sqA0YtLkS2YXOVciu9i5brboa1ws9gBLaKZaO6vYL9Z/fRsJYnnXLa+hCWaFEOsr/B2U9Rm+3ojswjayNbNhkM3YEQj/fG4UXn31VUycODHYl7usrAwHHnggRo4ciUGDBol9GhkZGeUpA7BGRkZF1YoVK/DSSy/hv//9L9asWQMASCaTcDd0QKKhB6x0x6Zoq79eVFVsxHUBl8STv4yY63rrQSWTP5aBMJlN4Mtx5QWWgKaCSLIJug+vqkm8D68adkp4lYFrxBcVFV61930txpY5noGWn1YHsL6I5AALAOTKwTQwIy07kKsuLORSy0Rfw1IVPgvMCojGxtWaIDYw0Cz+BHjfSZW/VFovQpxKq6/FgAezMTtCGuf99Zd44YUXIlHZ7bbbDiNHjsS+++6L0tJStW8jIyMjDRmANTIyKlhEhC+//BLPP/88Pvjgg2B9VHV1NdYsrECioYcXbQ0fY1mAzcDSYgAhOzOhldgAAGwGsiywlALEdOxsb3sa1ihfp0qWBVgAq5eAZGaizWRrWcNS2WWKAlFDg8TG8gBFp6jTxoJXoPDIa9RQw6ZItzrdwkyMNb0XKlON4kzNUVlY6Uqz0BIA+edDs4BRplOlvfY6y7YMsWFfssJwFgMlbel1tKlPW32N9O1k1z/GQAn+dZRAuO2JE/Hiiy/i/fffRzpzHerQoQOOOOIIHH300ejatatyDEZGRkYyGYA1MjLKWw0NDZg0aRL+85//RPZttdIdkKjrCTvVNbK2lSwLlPQmlMx1hZMuslmTnUN8gA3ZwCHxxEzHLtxf2vVsOJdGsiwg0TRh58IrY03RibQjhVe/4ihzJAWb/Mm6DFzD0KIDr7rgmunXOyaHPV4l/TYd1IoANnSOlTa52MXfF9EhIcgSrmtt7QALiD8jugCrmUbcZC4rAhVq091qRwNQNxrE+uLBrBW6xgHyh4JhO8E1M2IjAlkW6pP411VijTjlyh3w0ksvYfny5QC87dEOOOAAHH/88dh6662F4zQyMjKSyQCskZFRzlq/fj1efPFFPP/888HWCqWlpUhv6IxEqjesdEVkEhUGV19xgA1DayCXM8ni2cXBVMdGYMfSbmTSFoHWYFwceA2Dqy8OwMa3yeDCa3xizoNXHqg0F7wGx2ZPjHOKukYOLFIKcQ6+sl4P5zxzpVOMiWcjeo/CJhy44r1mLYDV3BZHB2D1o5z89d7Sdn6Her6zDuMdx/lbS0NsPkWdcvEVB1mLc81DNsxybXjwybMLwyzj9McBWSpJgEAYfedBeOaZZ/DFF18EbTvttBNOOOEE7LHHHrByidIbGRlt9jIAa2RkpK1ly5bhmWeewSuvvBIU7OjevTt+/qEKiVRPMCQ9uMtMmnjg6ssHWC64+jZ+9FViEwFTHTtZf5noKzGWDa2+wvDKg1ZfIXgV7e0YgVcRMIThVQYoxYRX0W0hBrB5w2vgYCNFYSXnOiKdIkwyG9X7hRyKMxULYJsr+hqX6+aeOpxPP+CMVfQaNzWI9eW4QoD1FXlYKLPLXEulNo1pPsAGHURBlkqaxv7PJ07Cs88+i3fffTdYatKnTx8cf/zxOOSQQ1BWVibs18jIyMiXAVgjIyOlvvvuOzz55JN4++23g0kHc6qQSPWFna4GQ3SCSYrJb1BsSTJJguvZSW105ZDSF0u7HiyLwBXw4LVBo9CJau9YhOBVAUmks362JeA18OPmlzLM7auFo7BEhUNpLtIASh0wJZdaFGALir7mo0JhGaExq17fpgqxgPqa6kvjfLOUo/SlYyOSy+px9NkD8PLLL2PDhg0AvHWyxx57LI4++mizDY+RkZFUBmCNjIy4IiJ89tlneOKJJzB9+vTg71a6ExKpvrCcTtH1rTYD2RZYSgISCQtuiQ3muNJiImRboIQFq1Fik7BAFivcxmKAxWDViwGQGAMlLTDHVdoxIqChUWjjFwFi9WobkvmxmAeIPrgqAI7C2xUJjdTw6pkVCWCB4kVhddOIiyGN4kx+ZFVZnMm21WO3bXXlZmY1fSak/VnK96/g6GuuKlJ/jDE1wPqQb1vqz7sOxCaTaj8662FLkplfFOurkwllf1SSUH7XqSShLOikU/QpqB2Qpy9CGudcszOeffZZ/PTTTwCAiooKHHXUUTjuuOPQuXNnqV8jI6PNUwZgjYyMIiIifPLJJ3jssceC9UqWZQGpaiQb+sByo0/GyWZwMyliHphyJk4ZcAUAuASLUySJ7CYb5hIXOilhwQ2KO7mwUi6/2FLcjufLCheK4oOpD64qG9iZasNplw+v4cqqjuPtGctLV/Un347Lh1eLBXBBTizqKoEbCq+XE01sNeG1ybzA9OHAUQsArA8thUKuTlGmjE08YioszhSOCIp82k3fHa6ND6++JOcrvDWO6D1sUYAtJrwG9ppp3eHUftHnWRdiVX5ygViZHw2bcMqutPhayE6roFMz2hBcXHH7vhg/fnywDU9JSQkOP/xwnHTSSejevbvwdRgZGW1+MgBrZGQEwJvMTp8+HWPHjsWsWbMAeBOIdF03JJx+sNyyrKJLbkl0UpYFsGFw9eUSrHCRJDvbJg6wYSAN95WzDWedWBxMw9Aqs/GhNbCJwytvO5A4vPIiRjx4DYErwIHXoCEGmbyKpbwJbY7w6h1SJIAFmg9i4ym1+QKsRjGmuI0o5Tf+OrhrYOO+4zZxkI0DbNgu0lf264i/j206+pp1XOxvvPcxfk54n+tcIVbkK1eI5fnxo7CKvqiEYxN/CMWxySrCpFH0qWg2mYJP1//jQIwfPx6zZ88GANi2jUMOOQSjRo1Cr169svwYGRltfjIAa2S0mYuIMGXKFIwdOxZz5swB4IGrU9cdttMfDKVgLjUVZuKAKxCDVx64ApHoKw9cgSi88qDU78uPvkptfD+iCp0hMOWBK88mDq5ADF5F+1iG4VWU6hiG1xi0+hLCa2DgNtmJ5E9k8wDXSFetNQorWguaK8BqFGES2ajWrPqvR1bEKehDZOODrAhgw3bgA2zQVea9bPPR16zjM22y91J0XsKf73whNu4nX4gN+xFBbKwvLsQCke+1yCZShElU9K45bDLjIRBuufdwTJgwAZ9++ikAD2QPO+wwjBo1ykRkjYw2cxmANTLaTEVE+PTTT/HAAw8E4FpaWop0bXfYTj8wlAa2zCWAiAuugY3jghH44OrLJTDHldowl8Bc4kJpTiICU13diKR7JgbjUazv8iocS6DSh1cZZDguKJWSTsaV8AoA5MrhNTQmpdoiwOpAp45UBZEUfWkXZ1IVFSJXXnjIPy+q/lySAizgvZ+tCmALhVdfOoWbFOcGRIVBrC9VAThIADYsBQhLK6mH7RQ2xSrmpG3Ducf84+Gj8eijj2LGjBkAgGQyicMPPxynnHIKqqurpT6NjIw2TRmANTLaDDVr1iw88MAD+OyzzwAA5eXlaNzQLQOuJRFbSlhecSYJ6JHNvKJLggJOlGBwbY2iTDaD1SjpJ8Hg2gx2g2IsFoPdoCrcBFh1Ehi0GIgx2LWKYksAWJ3ExjetbxA0MO/HFayfDYlSKTUQOo4aLF3+2uEsG4VaEmA9syLcrnTWyirELCYdC7OY3rrbIhdeKrg4k2Wp33cdeM0UIVPaqFQsgA2/H1IbRfX0DMBK1w7rViZWFmJSQyyVJL2icaJ2xkCltrcdmURuWUL5IM8tsaXXbzAGNym/xit9+DaC+8gdD47EI488gpkzZwLwMoWOPPJInHLKKabYk5HRZiYDsEZGm5G+++47PPTQQ/joo48AeE+yncaeSKSiEVcgk75b4k1+eJMbshncUr8IEnEnHZRgcHybtLgwk1PqTS6tNHEBNurH5QIs2azJT4q4AEtWZpLluHx4tRjchF+0ifjwylgQtWBpVwyvfkTHcfnwykITZhm8+hWJU6HtdETAE4qqCi/tYUDR3O9VpNYCsH60s6A9Y5mlB6aSsbA4KPn2BRZf8iOnOkWXhDZBISjJuQ4Do8hOF2C9wahtdMYidKEJr8EBxYNYgH+uc4LYJkecjpjW1jo+6PJA1gfYwKUAZN2yUDEnAciGs2a4EMpYkw3xr/VaNqG+RCB76/1H4OGHHw6KDJaXl+PEE0/ECSecgIqKCu4xRkZGm5YMwBoZbQZaunQpHnzwQUyaNAlEBMuyQG5PJGggrFR2xDU8WYkDbBhcwzbhyUYYOAObdHZhJh84AT68xv3w4JUSDE5J1I9dHy3c5MbWtmYBbAhc/deTBa8hcPXHwoXXcCpiHF4ZZ4LMg9ewTRxeg+Nil25OSnDW5T0OJbzLvya8CvvgqRn3g1VBpbK/DLiqfKiqCmfBK5ANp7zCT/HUX95rjKW36hReyrIJp9HqwinPTgWWPADkVdxWqRgAy0urLjLE+gqf77wg1nMS60gNsbxIbRhm4xAL8EE2DLEAH2TjSz8iABqG06DzbEh1S7Nfs9Am8zp4IOuUWLh1zKGRJTCdOnXC6aefjiOOOAIJnfNvZGTUZmUA1shoE9aGDRswYcIEPPfcc2hs9CCJoQdsbAXGqiLrO+Pg6isMsDx49W2slMsFVyAKr3Fw9RUGWLEfD2Dj0Br24cMrD1yBGLzGwDX8euzaxixoDY8jAq+89XNheOWBK5ANr4LJPxdggSbYEaxnjVzedbbPyRFes/oQqRnWwfLWmOYMsDF41e0nbMMFV1+iysDhAlCitauKwktZwKSy4a0Djb/fImj07XKJvmYPRm2jGkekmxyjr5GDJf41ABbgQywQK4aVD8Q2OfL+0Uwl5o7R98GB2MAmA7NxgA3aQyArql0QACgPYoEIpGYBbKyda8MBWb8fAmH0jXvhgQcewOLFiwEAvXv3xjnnnIPhw4frfU6MjIzanAzAGhltgkqn03j55ZfxyCOPYO3atQAAhs6wsQ0Y6xDYNRVnkhRVcjI2kgkQI+ICZ2CT9goz8cAVaIJXEbh6PlxYDnHBNfCT8kCaB65ABl4bHC60hl+PXZeSFjcJAFZU+MVxwRoa5RNhH15lNjJ4BTzIURRjIiI1mOrYqPqQqchpxLpb1MgkK7IUgVO5E3m7RmVglU0xCi8RSYpF6cKp6xYGsN5AihJ9LQheAyfNB7ERqWx00oQLqVzst0uuz4B33RNBLNAEsrJ7hZWSF+gDkdjGh9RGhw+5YRuOD4KL8y8dirFjx2L16tUAgO222w4XXHABhgwZIh6TkZFRm5QBWCOjTUhEhKlTp+Lee+/FwoULM3+t9MAV1ZGJn5u0QAl50SSwTMEjgdykBbI9cJSOSzanTTC4CQa7QVKMxPbGIRsrIw+UZf0AgF0rLtwU338228DzYdU2itf3+YWdauvFfojkBZsyE3iql/gAPHiVQFtLwGvQj46KlEqskgpktcBUNRYNeNUprCTtwt+SqcD3B7atV1Sp0OlAMaJdzR19DZxoPHywbGURLtUDBiST6vNaorZRphKXJQHZx8SCsgqwW5rwHmrKbJI2mKrKueL9cUss8bVc8yGHU2rz6xwgjZPP6IOnn34adXV1AIBDDjkEv//979G1a1elXyMjo7YhA7BGRpuIFi1ahLvuugvTpk0DAHTo0AHr1/aChT5gocmam7TgllgZWBMU7EgwuKUW4AI2x8ZNWnBKMzCXJi7AujaDU2YFUdG4vGhrqGASB2DJBpzSjA/BWMlicEuZV7ipjt+Pm2BeerEIXu1MlWTHhV3DiXgyL9XYSrtCeCXLAmyWic428Nez2ZY3+asTgKllBSBBjZlxuAKgDkdeBZPO4PLeTOnD3L5kKiQSqwOVgQv5WlmpVNWDbVv9OjJ9+aAlOzd+ZJQ4kfQAYAH5++MDqsjGj77qFFVSPJgpqDCTjjZ29DXsg2lUk2YWWEJxfv2tdWTnrkRuQ4p2IAOxgBBkqSy6tpQnP/opAlm31A78i0DWz9YR3l/CNQsENk6pDUbi675vA4ALsk+98Hs89NBDeO211wB4hZ5OOeUUHH/88SgtLc2yNzIyalsyAGtk1MZVV1eH8ePH4+mnn0YqlUIikUAafWGxgbDT0SfuPrwSAywne3IQgCu8dVPMoQjAhsEV4MOrD64Rm5CPMLgCfHj1wTXwEQNYH1rD7Xa9C4Tc+OAaHkcEYDPQ6g0CsNIceGWhNbLMS12zapqKMvnQGpjz4DUDrk2vNwawPrQGTkPw6isOsXHY4Uw2cy7g1JqjsGHgyGPPWC14jUMNr59IISTO64j1E4ctaWElZENsBGCDfmPjCvsQQWw8fVhVVElQFTcnH/mouQo3ZTnJIfU7DLG+4kXA4nu78s5ffH/YuE08BZj3kExhEwCsr/hHwUL2PqsxH/H0XR7IBstJBCAbX27Cg1A3thQkbhMp3icA2bBNHGKJeeO4967f4K677sKsWbMAAD169MAf/vAHsz7WyKiNywCskVEbFRHhvffew913340VK1Z4f7SqwUqGgFlVXuGkTOTTB1egKZ03DLBxcAWghFcgCrBxcA3aI4WZBAWTMgAbB9egvT7jIwauQT+h6GscXP1xBPDqgysLt8fgNQauXh9N0dc4uAIceI2Bq/daQvAaB1eAD6+AGmCBCFBxL+tF3D5HpGapSKwDllkuNNewivqI9yNcPxp6LZy+VNWBRetSfZDlAiwQfZ94PuIgK7JpGqi8XcdmU4u+RjuWf0Z4EAtkn8M4xMZteOtY45CqsMmCWCACsiRa5xrywVuDGgbZrHoIHJDl1UwIQ2gcYOPtALIr2cdAllcvwQdZH2AB7zt3zZW74v777w/ulbvvvjsuvvhibLHFFlk+jIyMWr8MwBoZtUH98MMPGDNmDD799FPvD6wcLDkEsLuDMRbAKw9cfVkOAS5lgasvH2B54Br4SBNA2dAZbm8qziSGVx64Bj5SBJYmLrj67Xa961VITnDg1odXDrg22biwa9PR4k5hwM3AKzGWBa6BeQZg49Da9Foz8MoDV0AMr758iBUVbcpMMKWXdNeVpzG2BoAFPDAQgYYmwBYEr+F+RPAKeK9F0o8MuKSFleBBrBBggab3SuQjDLEyG2+gwnEo1yTq+NBRa4y+RjuXf1ZEEBvYEB9gw+0AH2JDNtJiTX7VYR7EAh5o8qKwMR/CIkpoAlluUT+3CWJFRf8AD1R5ABtuB/iACjSBrKxwoN3gRCAWAIjSOPWknnjiiSeQSqVQUlKCU089FSeddBJKSkqEvoyMjFqfDMAaGbUhpVIpPPHEExg3blxwA250+4ElB4Kx0I2aIZhQCgsoMe8nDq5hkazmh+LYSD/5ihDZ05Dr3gF3X8Og3Q092eeMhTmZwk0kHitLu7AaxMWf4JBXdVg4RhdIpeXwqAJYcoG0ZAwASFVcRQWwvk2eKloasbKjAosa5ROFy6ebImwXo9FJ4T5ag1pD9FV2vAxgQ8cz1XvaAlWJSQKggAJgM5JWEwZAgkrvASQX4fujdX9RieNi3CMnY8yYMfjkk08AAH379sWll16KnXfeufD+jIyMWkQGYI2M2oi++uor3H777Zg/f773B6sarGQomFURsXMTDGQzYUXeoKiRoHKwm2RwSpiXYiyyyfQhbgfIZrAbxce7NpAQVB52bXhjSAOJBkEhEJsBDEjUCoo7ZSKliVrBHqmZiK3V6CLBK+7EvH1krZQLe0NDdnvGBgBYjaAok9/OK+rkt9sW4LhAKiUH0HRaDm7FiMD6NgWqoG11LFZ4sSdVu6oPxeRbVZwpp+JLniNZZ+J2nSrFOu2qcbZUHxIVHH0txkMLy26yEX1+LOZtryN7rSVJ+edPBag6kFsgxAZRWGnBJ1tatdgptbkF/MLtvAJMgAevflaOLbgHeD4seXsZv52IMPqqYbj77ruxatUqAMDBBx+M888/Hx07dhT6MzIyah0yAGtk1MpVU1ODBx54AC+++CKICMRKwMq2A0PP6LY4oTRdK01ZAEsJhnRZpnKwA1gcuHSTDE4pE1cWTrAgnZg5yAJUN4FQdWJeO0M6VL04DrA+uPpjTNRzin/YDG4y5CMGsGSzwIfdSFkAG0415sJrBlwBiOGVMVDC8tKGa/kVh4M9Yh03e0udWDsye716297w1q9mXoNLfDBTrX8N7DQA1reLSwdCdMYASCf/SpugkxzXyvrgqvDvb4sihVO/i3hRJp2U37DiBZhE7aL3Ld6f7H1rrvawjapdpw+ONnr0FfDg1XdlW6EK37H3xQdYX6Jz4qcCiz7nBUJsUaKwYR+cz184PZcHsuEUXx7IyoowAXoQG156wrMJ12XgtadLXRx9QHlwf+3YsSMuueQS7Lffftz+jIyMWocMwBoZtWJNnToVt99+e1B4gkr7gCqGwHKTTcWTwutLg4JDUYANwyuQDbB+1DU4PgawYXAFsuE1DK7e8fH2JnBtsokCbBhefR/h6GsYXIPj65oqD4fBFciG1/ga2Sx4DYFrYBMG2Ay0hsXSbjT6GgZTxoC0k1XYCeE1siF4BQQAGy/gxIPY2DFFj8LqQExMOUNsHCByAVhVEaY4vHL8x/fz5I1fVlVYCq9Bn5IKwp5DeXv8vdOpUtzS7XEbVbvIJqRmj77qpLtasYJC8QcdsYJeLJ4qHH/NvLWsYR+tIJU4ay1sVsXi7DTjOMjG16nGQTbeHgbZMMA2tcePV7SXZb/3YZt0udf/v28ZgVtvvTXIcBo+fDguvvhidOnSJet4IyOjjS8DsEZGrVA1NTW455578MorrwAAyKoAVf0CSFZHK//68Bov0JQB2Di4Bu0ZgI2Da9Ce6SMOrr58gI2Da9PxTQCrgtc4uPrj86OvcXCN+Kh1s8DVlw+wwuJOPsBywBUIwSsHXAFEo69xcAWi8BoHVyALXn1FIJY4sBkHWJ0tdCLH5xiF1QEQjrQBVgQPugCrKsLEg9dYH3F4BThwyuuCSA9cs/rVLK7Ea/ffP91ob6GAqeqjudozam3R14jb0OcmC2R5EAtEz62oIJPvo7VFYYMDQw8eFRArKrTkg6yo3SvCxC/+57X7xyvaOQAbbicGOGV+Kr+DM47qhvHjx8NxHLRv3x4XXnghDjroILPljpFRK5MBWCOjVqZPP/0Ut9xyC5YtWwYAoLIBoIrBAPMmElmVfznwCnhgKSrgZDnI+FBVFxZU3HW8SYr4eK94klPCL8RhpQlWmrjg6R9vpYkLrv7xdoP4eLuRYDe4XHAFMvBa53DBFfCrDqcUFYcboxPf+Ov0AVZQlVgEsEAIYuPRV18+xEogryhR2FzSYXPpH4Cqgm/BhZ58KfrgwSvQNP5mK8TkuvIKx0SS7Xs04E/2/um0F8NHEcaw0aOvAngFNB58qAo2ua686rBLGx1iZRWJvYrFkvPjkrRSsJWSVxL2Kg2L3z+7Qd4e2Agg1m/3o7C+Hvn7SNxyyy2YN28eAOCXv/wlrrzySnTq1Enal5GRUcvJAKyRUStRXV0d/v3vf+M///kPAD/qugOQ7Bo19Kv/CuZdxACS3dMZk7ZTpjpxvu2ejbyyMVkI9n7NbvfGl6gXF3gCxO1kAYwkxZ0sBkaERI0ADhkAAhIb+FWFyWJgLsGqaRBXgCXy4FWmenE7EckrDrsk3k4n7EN4vGYUVqZiQKyyD8VaWZ21tAJpganqNRZaRbglqhS3YbXm6GvgXvIAhDHmVR2WfQ9kW+8A8occ0ADYZAKQXe9VAFtiSz+nsu1wAhtRxWJ/DIr3QFhJX1eq+xWvf3JxzvG9MHbsWKRSKXTs2BFXXnkl9tprrwIHY2RkVAwZgDUyagX65ptvcOONN2LRokUAACrtB6ocEkRdgaZ1qn50Mi4/VdePbvLanVLmpf9yCzQhc7yoncEp5RdvirSnAZvDfmR7EdkgvZji7aypvYHA4pmztteHlSYuvJLV1J6s4VSdtLxUZLvR5cMr8yZaVqOLRE0qa9JJFgPZFqyUA6tWBLcWmOOI4dWHIn/LHc7llygEp7zLcziFWABwSnhtMhTb6UgBeLJCSHnvGasqxFQseAX0ihLJO/L+Fb1W25afQwOweobNBbF+/4rjRRAbyI/Eij4HLQGxgBBkpRAbXmIheD9UEOtk2uPX9Hg7774FAE4ZA4hfeBBAsEe4JXgo6kdghYWgMu08/2PHHI2bbroJ33//PQDgiCOOwPnnn4/y8nL+izEyMmoRGYA1MtqIcl0XzzzzDB544AGk02mQVQa3w45gVnXULtm0zpMHsJHqvpztb7KqB2e1I1QdmNfuwSmx7AJN4XaAD7A+vAb+YxMNH1799jigujaaKg+nogDrg6uvOMD64OorC2BZNEJgNbqR6KsPrkE7B2ApAxpCeA0DUSothMgIvHLai1LASeQ7H+UBsKotaKL+cyz0VEx4BfivLxeoDPelqjKsGstmqJzWHRYbYuN9FwtigezPQksBrK94wW6dKKwvznuiC7AAH2LD7TyIdfw6DgKIdcMFBOMQy3KrVMzz75S6+O3wSjzzzDMAgN69e2P06NEYMmRI9osxMjJqERmANTLaSFq1ahX+9re/Yfr06QAAt6wn0p12hEWhCsPJ7AJFYYDlFkhy4kWeou1hgA2Da9i/HTne+7ufxhUv0OS3B/5DABsG18ixfo2iELgG7aHoqx91DVdXLhq8xsAVQCT6GgdXz7/rpQ4H/mNVieMAy6vg2hCn++IBbE7wyvOfq3JMI5ZV8RX3ISn2FKv8qlLO61lzrJbL6TD7b+HXHAaTQmF5E1NeRXMKgdiWBFhf4c9Ca4ZYXqG72PmRQazDaQuDLK89DLJOvBBhDGRdXiFBH2QZv9BTGGR5a2TD/v3+/3Xlfvjb3/6GFStWwLZt/O53v8NJJ50EazP+nhoZbSwZgDUy2giaPn06/vrXv2L16tUoKSlBbcVguBX9AcYCAOXBKxAqcMSBV6AJYKUVhFPEh9egunA2uPp9x9sjvjPwGgfXyPENlAWu4fZEPWWBa9CeAdg4uDYd7wFsHFx9BQArgVdiyAJXz3cTvMbBFYjBq6iyazz66ouID6+hduEesEAAci0OsDK/gXtxMSRtgFUVeyoUXguslCvplP93VZVh1bg2A7U4wIaPF/XdHBALNH0eCoDYnAHWV2bIOUVhw8qcq1yisJHDSd7ug6wMYnkAC2QgVgCwgLpSse8/3PebD/8ef//73/HOO+8AAHbffXdcc8016NixI9eHkZFR88gArJFRC8pxHDzyyCMYP348AMBNtIPTeVdQsn1gYzmZm6agwq5XpEkyUZMUcWIOwIi44AtkqgcTgnRhbrsLLrwCHsBaDh9egcxkRXLFYa43Rl7RDStFATzzx05I1IkrF9uNLuw6FySpTGzXprjw6vl3wer4VYO9sbtg9fy1sVJ4BTyAlRVtclwxvAKAS/nBa6j/giTxHxSzEbQ1twqqIqxTqVfeubit0CrDm7AK2rKkGBAr678QiFVVJVYBcLGjsGFZcogVAqzfLqkmDIgBFcjccyTtVpqyAdZXBmRFEAvIiwp6AxA3WY2cvolw9ajBuPPOO9HY2Ijq6mpcf/312H777eX9GBkZFU2b593RyGgjaM2aNbj88ssDeHUq+yPdbXgEXt0k0FhpNQu8ukkgVZkddQ18J4BUFRPCq5tgSFXyI69+u1POj6wCmvDqgjuZIMsDehG8+hFZEbx6EVcmhFcgU/24OeDVl0a6rVDKSqmFlumUqMD9D5lk0s0Ya7b9FRlj0r4BKIEASckWJ4VKERFWjV0GSt5rb77bu+o9K6Td21e3GT/PsvNisbyrDgfHy9432UMqwHtQJZGqWm9BciF9kGU1yqueW435j12UMRMMLcHEgMu8CGxaslUOUz0okz37K2FIlWenT//f+G9w//33o0+fPlixYgUuvPBCPPHEE3ALuc4bGRlpy0RgjYxaQLNnz8Z1112H5cuXg5gNp+OOcCt6B+1uUl4B2El64GilAYvDUW4SGu0MLE1Z7ZRAUJ04XvwJyIBhUF1Y0J7MpCZzqkBSpgCT6PigerBDsDn1j8jyfDBOcaemdpa1PjZQBuqtNHG31iGLwUq5sOvS/IkMA6yUAmAdB6xB0E7k/cTXvsZspBFYWXoxswByQYLJb1DxV7TGUraljqqKri9VEaICqhVL2zNVfIXFomw7k37N6d8HDVmFYIB/3jNwLEz7DsEzCd63oF342ixpZN0Hqfj7HgZA3mciDI95n/dC2yWvLQKwom2SbBvcfZB9gJSl2/tRUN73JQywguP9vV253zeLNe39Kvq++g9FVBWJee2MgTLtjHNuCorAAiA/iiqsNqyIspZ5/kXAmC4Tjx2MIZ0BRd59CADSFZlqwhxY9gE2Uc9/39JBJWKB73KWOZ5zXhmQyvSdrIvXIEjj0F80YtKkSQCAvfbaC6NHj0ZlZSW3HyMjo+LIRGCNjJpRRIQXXngB559/PpYvXw43UYl09a8CeHWTQGMVE8Krk2RorBLDq5sEUlUItrfhtlcyJbyK5MOrtL0E/Kip7a0dCp6sx7OwwlFVQdTVTXp+ePLaGcgWR139PWdl8Nr0H76PgtSczweZJU1nVEY3fbi0LP6ENfy3vNYjFnZ7UUbxFJFdZf+WJX7tYd/xfkJwGkCyoF00zkg7p/8gymfx30Pd6KrKrjkjqcp2zmvLir7yonb+uWOWOFLrg6ws3de25NHYQte7qqL7yrRW3kUxXMCO87lIKSK8uvIfuuV7OGP8tF2GzANF+WuXRWMBfrqxD67pMosbjbUbCMS8+x3vnpeo89rTZQzpWMowIyCZuX+kyq1oRNZK4I0vy3H55ZejpKQEH330Ec4999xgSzwjI6PmkQFYI6NmUiqVwm233YYxY8YgnU7DqeiJdLWXMhwGV57C4MpTGFx9has6hsGVC4cJIF3Jv5EDmerGlWJ4dRMM6fIMvHLkR11FCoowZSY0vPYwuLI0kGigWHvTgVl7w0pSqZt85L8uSqkCJ4BKqSbXhaz79BzkNp64P9X/s7rjgIzs/2E4sKxIewCvwR6eHJiNHV9omnRLKg5O4f/z0m+z2uP+cj33xfy/ANAjki6ZkECsf6xqzasKYmUPiWxLDrK2LQdZxuSfPcW5yTWlWAW4rEFSAT0PCdeeZiBWNn43KU8rdkos6brZOMj6UWFikIKs3x4H2fj2PxGQZQx/m/AN7rrrLlRXV2PhwoX4/e9/jylTpgjHZ2RkVJhMCrGRUTNozZo1GD16NL744gtYloWGDoNB5VvBLRFUDs5EX52kB4XxNah+9NVPFY6LOV71XzeZKf4UO96Pvooirn76sCjiykLVh90kOP796sJ8cPXTiyPVg8Pz2LSXPhwH17B/v/owL+IapA8LwDUcgeVNmqyUC7s2nTWucLt2CjHvklrMFGLehDqUQiys9isrDBROI1ZVzhVJVXiogGrFkXZB5d6gWBQPSMOv37b52+XIKgMD3vkXrKsNUokl6279VGJhe/D6eO8PydvhpbTK1o8G7QJpn/9C2yWvT7r+1ZW8P346sWgNajilWFRIyXHla2AzxzPB8ZQ5XtQefH9F66pVlYh9ABOkAftpuUVLI87qwHtfpGnEjMERHO8DZLo81u5fdlyKpBHH5acV+2nEcflpxaK1sIl6F8T40VWgKbU4VcFvT9RTJJU4rmSdC2LAK/eegeuuuw5ffvklGGM466yzcOqppzbbWn8jo81VBmCNjIqs77//HldddRWWLl0KshJo6D4MTrvu3MJIgfzUKpGNIqJITBzN9NrFbYAHmCAII64sU31YFHFl/tY+gifmYUDmAqIP2KK5UwagRenCVoqQyAAytz0DsKIn/gHAijISdQFWdDktFsCKokEZgJXCg05F3Y1YrVhLOmnJhUafpa6beRLanEV6APGa0paUDFALqSBMoQcUIv/kyisBE8mLOJErBlR43zNZOxxHXhiMSL6VDpEUQJkrbwcKAFgAYEx7HSz3cKJsgA069mBRBLCAd50XAWzgRpV5IwoKZ74arugeFLQrouI2AHJx0lCGl156CQBwwAEH4KqrrkJpqWQ9jpGRUU4yKcRGRkXUlClT8Ic//AFLly6Fm6hAbf9fIdVZDq9+1FRk41VglKRaSdaheu1eH+LjgXSFGF5dG3DKxfBKltcmgld/LasIXsG8NuFaV5ZZyyqZOJBVQMowkRcFELknSMGLEWW2uSkADnhrKXNph3xNntaa0EKkSoVUyV+Pmm+7zhgUPgpd79km1NyAXEj/hY6NWfLviMXU29goKhArv4Oqz4hfVEzsQH684jtAFlNeh5QVeWXPmPxrZZ7+iTHx8Ux9HXeTDK7iLZTdK2XtQWqxql3BoMzx9pV9chbD5ZdfDtu28fbbb+Oyyy7DmjVr5AcbGRlpywCskVGR9MILL+Cqq65CbW0tnLIuqB2wL9LtOgjt3SSQrvDWAfmbtUfaE8xrt6HRzvGfANLl3oSAcQpiBuAqAFPXBtJlYvj1ijB5fnjwnVWESQCv8siy5hP1fOe+RFlrm6LtAJNsbcH8yKZtiSMbfnqqaPKsWi+rbN/I2zYUCnbhSTlvgt6CUdeNCqktBZcbG2LbuIgkey4z5n3fRQ+8dKt6F6rmhFhAC2KlfZDchxJkExCCbKKe4JSIH/omGhTtquPrCE6pGmSdUuCGF+bhjjvuQFVVFb744gucd955priTkVGRZADWyKhAEREefPBBjBkzBkSEVId+2LDV3nAq+Hc4H1zdJD8i6YOpECyV7R64BuDJogUo4uDKnGwAdu2m4y1OdWNvLSu/f79dFFH1x+RXCOYez7wxKOG2kLm4JrwyAmBZWal1AbzKVGhKrgpcWxpe44Cn+n9cORZ3Kgq8aiirCJSkvVnU0lC5MSB2EwNn5eqrfL77xdy7V/HgSwmZLhTRWBQUjQ18xJQIbVPDu/6Hi/XJQBaAFESL0q4AWacU+N1D7+Pee+9Fjx49sHjxYvzhD3/AF198IT7IyMhISwZgjYwKUDqdxi233ILx48cDAOq7b4vafjsFExHmUBD9zAJX1rR2FCgcXD0bdbqw9Pgcoq6+wtv3qLa+UYErkEPUNV8RgbkSeCWApd0meOWoVcBrjtKCsFzSjIsZeeX9vVgpzzlWQM613aiFpKomvBEAuVkgtthqiWisLCs6Bsp2Q8xhrtFYjm0x0opzAdlEXWy7uxjIJuqixx91639w//33Y/DgwVi7di0uueQSfPDBB/JBGxkZSWWKOBkZ5am6ujpcd911mDZtGggMdb13RKpL/4iNlfYqF4r2QmWZyKewOJKTKY6U4IOrHz2VgStz4RVokvQBEh/vR2BFUVe/ArIs6uqPUwSmfpEncRGmTB+iIksOcTegbzqeYNeTNOpqpVxY9Y4YXF0XVn1aPCl1XG+bClG7S4BfqIlz2Q0q2Qram/rh5IPH+xFI63KvM+lWQV1L3VYKTB1WVeVtEXjdmJHJlirqVIzXWCjAKvdd1XhgIugj+Jyo1mCrtsyRbunDQDoRWtFn3u9bUiSKGAMlZeuIAbdEQosMcCVFoPxtdZxS0Ri9f2SFnJgLpMvF59FKI6vScFh2Y6aasWALuaBd4UM2BrvBy3LKkpvGYV3XYvLkybAsC1dccQUOO+wwoR8jIyOxDMAaGeWh9evX4/LLL8fs2bNBzEZt/2FIt+8ZsXGTHrBZKeRdHVhnjajseDeRGYOCeWQRTaZ6wu5mIFnWruifuQDjrPP1ZTmAJSniqwOw/jY6QpuUC7smJY7Mpl1Y9ZJBpB2wRnGlYjhuE8AKRERKm0IANuhDpUKrBbfEbaUZ4dU7njU/4LWGtNqWgNhiFGgqtI9CAVbhn+kUMlMWalMUaZJVKPYl+9wzJq9yDAWgAnAlVYabbOR9pGXtTA6wAH8ruKh/xq0LEZYqi0eZBaR4K9IVLNiaJ3qgixP6p/Haa68BAM4//3wcf/zxcmdGRkZZMinERkY5as2aNbj44os9eLVLUDNwbzG8piFY56oooJRZx+oUmC4sg1eyvLQnYfoVAyihuJEXWIQpqDCs6kM1/1Vl41pM/NTfJW+bnLQsrZjAZFDnKgotyfawRKgwjAomigAbBUcVC1mX6k/ylTChiFQ1N7zqSFVR1//J5/iWVHOPoxj+VT5a4FwyxoSfG+ZXCdeplN2cUkV5NR4sqdbGehkqua9tjfahbpfZqOofJOpJmVYsW0rjt8tsnFImBWmv2BOnnVl4ekESJ554IgDg7rvvxoMPPqj3YNHIyCiQAVgjoxz0888/48ILL8S8efPgJkqxYeA+cCo7B+3eOlcFmGbaGac4km/jJiGMrLqJzDpVUdHbeBGnmAJwlcCvv1ZV2m6JJxE+mMquMMTk7X4/hcqPDnMh2SVYjqICcNoFZDZuZj2saKsbBdzmNHGx2MZdC1jIulTdybssHdPfDki2JU4x1s7651B0LmXt8b/p2GxsbczxMKs4EVZpH4rvDbPUDxwCV3k+PPGrkDcnxOqkMuu6UjyQ04JY6dpYPZCVdqEAWVmRJ2JySPV9i9r9dbBCkCVktt3htDOGB7+owznnnAMAGD9+PO68804DsUZGOcgArJGRppYvX44LL7wQCxYsgJssQ83AfeCWtwcQA1cJeLol4ptuBDyZB17hNKgIuApSh1VRWb/Iki/mxNJ7/airCl5lD/kVYKoDt34/hUiV2qwFrypwTTuRdNusvWZzhVeLqfeiLILymoSrtrvJ7oT/e65/C7epqhhrjEsrdbiQ/6vU2uDVV3OMKxefIsAM/z3fhwG+D1EfYR8cf/E9lvOG2CYHzR+NLUIfSojdSNHY+HIRVYaODGJFIJuob7Lhgm5sTKJobNP+sTGQZQx3fLwcl112GRhj+M9//mMg1sgoBxmANTLS0LJly3DBBRdg0aJFcErKsX6bfeCWtdMGV99GB1wDP7Gtb1TguklFXXOcd7kJFinKoQTXlJszvJJlgfz1YX7UVdIHHLd4kddcVWwYacnIK+9vPHiNqzngVVeFRGxbk1p6fHGg5AFmoQ8MsrZ6Kk60VwtidVOKNda/5q3wOHXW0MYPV263s2lEY7OircRvzzetmAeyjIBrJn+PK664IoDYu+66y0CskZGGDMAaGSn0888/45JLLsFPP/0Ep7QS67f9FdzSKrhJMbiyzNrXMLjGb65CcI3bhKOuMZEtB1cgO+qaPVh51NVfx5pv1JVsby1vS0RdgfyjrpRgcEpt/ZRhWbtoApJJMy5ogqKTRlwMqbazKcYerTopjyp41YTrguBVB0BbwTrNoqhY48zXT/izrRMxzcVf+G/hnzz7CNbFyoozFWldrFYBJ1kfBUZkdaOxVCJ7gqnqQ3791gFdnWhsMdKKdUA2WcupNh8CWV9XvjsXV1xxBQDg+eefNxBrZKQhA7BGRhKtWbMGl156KX788Uc4JRVYP3hvpKsq5OtcQ1ApeipMthxcyQYcRbqwsoCSDbilpIRbVTVFFVSShYKirsE5KmDe7E98pJMfB4qoK8Ak7YwILOXI4RVQR1JUx1stkF4IDaADCo966sClbPKv60NiwxjLSgHNS6pxqh4q6Kz1bIkHEzpqCdhWrUn116WKZBUpaqnooyifnYSiolAbEZNsQxZIa99Yxd60imJ1hUZjAQirFEchVR5NVRWCckrE+7Y3RWO9/8ch9u677zYQa2QkUSu5WxoZtT6tX78el112GebPnw83WYa12++Nxk4V8sq/dlNUVgSuThmaKhRz5EUsSQG3BDcpSU+1AUqQON3XAtwESeFVZxIgg05i3vkoZBugwM4STxY8eJWDqZXy9/YThZm9bXREYpliTmRZQFL0+N6LQkiltYVNkSYtBUCIrOKqfv+KCK6qTacd8rEyxvTSe5VbsGiCp846TpXaAsS2RLRZ14es4nUx1pO3xHrVlnjAoiFKWN41SgWYqkiqQ9KHgV5naoiVXdeLEY0lW555BIghFgDsOlJGYyEBXb8Pp9T7ueq9eQHEPvvssxg3bpz8BRgZbcZqJXdKI6PWpbq6OlxxxRVeteFkCVbvuDfS7SoB5kfyovZB1FWQUhxEVGXR0AyYOiWCFNcwuIrANBN1pYTAhw+ulmKvUB1wVcCr1vY6uvNCXpo2eRFVLXgVbo8DsJSrBa/iPggs7ejDq2WB8cDM1dhGx1eR0oh54JczuKoKPukcl6eP8Fjj447Aq3AMfgqzJDqqk9Iqstf5f779tIRkRZMKqgpchNenKhKmo5xSkQUgWwRwbJXSgFgdkFX2UYRobL5b7hBj3o8EZAEPYmUg69lIQFaSdpyobfrdKQUunzIPF110EQDg4Ycfxosvvijt18hoc1UruUsaGbUepdNpXH/99Zg1axbcRBKrd9gbTlU78RrVMLjK0oUFCoOr8EZrowlcRX1IwBXIpAtrgOvGiLpSwku30hUv6kpWzEco8sofiBd1jUx+LAYqbZrJaMFrHFwZyy6Wooq8xidpzCpO1CdHyOBCYM59asBoMxdkEsIrr9qsKpVV9bd8YEzHR2uGWFlbS0Zfw4oDbTEe8PA+h8V4wJOjClr/6isfH7HrFiWzfbSGaKzOOHRBViZdkOUPEFKQDWv0zB9w+umnAwDGjBmDd955R36AkdFmqFZyhzQyah0iIowZMwZTpkwBWTbWbP9LOO06cG0j+7UWEnVVgKtO1FUFrqKoK1lNacRKcAWEa3FdWx11DfoocH4rTBn2JygZcNWBV/4YWdN611zhlWPDnZyFo7D5pgwXOQpbUMqwTrpw3LYAH9KUYWX/TAyvuudTN2VYB45bC6jKlMu+tyoVO/qq83eeCt1XFth0o69hFSGlGGiKxrqiIk8ayyv86366TPD9LzCtWCcaC8jTir12PZCV6fZv12DkyJEgItx8882YPn26/AAjo81MbeDOaWTUcho/fjxefvllEBjWDtkV6Y6ds2zcZKx6MEek2o81QdJ0YQBwbSo46uoVelJEXS0xQPs+lFvbFDtlmOfD8n6k66Jcecow2QxOiSVPGXZcKbiSZQEJu/nXu7ZgFFYZzdTqRyOqqrBhGkCgGo9W6jAgh89iFFzKJ904Hx8tJVUkVmctcaH96Kg5o6/xfooh1fpXnX6Ktf5VaqABsaooqaO412imFDNHatL6o7GAOhrLGB5cCey///5Ip9O49tpr8d1338kHZWS0GakV3R2NjDau3njjDTz00EMAgA1b/wKN1b0i7W6SkK4guJICS26CkFaAKSUoqFDMbbcBtxQgGSBbHiC7ogIUViYqWmCFYZX8KsbKyKssjdqvICxjORfqSYsLWGkZ3BLsekcemc2kqvFS5QBkIrNpb49XmYjksObK94j1fKjKefqDav7LeMEFnYrQh3ZhKZ2CTMU4Zzrra4sBdK0JYgtVUc67rfajOPfMtorz0EZll7A1Po+CtbWZNmqu/WGbQZS01QCqkVKsutbr2KiisU4pk97/iDHpljuBH0UkVepDlVbMGJ5uaIeddtoJdXV1uOqqq7Bq1Sp5h0ZGm4nazpXRyKgZ9cUXX+C2224DANT03Rp1vbeMtLtJkkZcfXAV7dcKNEVdZTdELx1Y0p4BV2n1YKvwIkwRf4zfnx8R1YreCp1rrKHy4VW0taoL2I1eVWevWnF2h8wlWI0eEAr3M3QJliTy6q2HzcyaGBOvS5PuEesCjhNM8oRbdOjAay6px0UAqZaAWFE/wd9UUFhoNWFd6VQ21h2TjjYFiNV5DYXu7wpEo5EKfwV9pv1+dKoUi8YRvoY05/erGGtoNRTcC3QiqQKI9VOMmaMBqTo2omGw0L+KU68DsSKQDbbc0YBhLsRaFm666Sb07t0by5YtwzXXXIOGhga5IyOjzUCbwF3RyKgwLVu2DNdeey3S6TTqum+Bmi23C9qCqKsCXmX7tUbAVZoOrIZXFbj6a1GlaqGoq7KfGLx6Udqmg7x0YDW8WmlEJkzx1x+GVwBwbRZdh+USrEbHg1fBpCsCrzKF4dVi0SisTtQVyIZX3sSWV/SpBdRcECsrHhWBV5laYu9SXj+q/4v+lqs2BYiVSeccxbfFyQOK4w+NuJ/pfD7n8WPi0KiV1p5Hvy20DleUlSI/qG1EYz0jebNuNFYHZKX9cKKxu9/6MG699Va0a9cOs2bNwi233GL2iDXa7LWJ3xGNjORqaGjA6NGjsXr1aqTatce67XYGGMsGV0m6sCrqWgxwzTfqSizmuxjwyusrvgZWFXXVTRkmRODVK0jFApsAXrk+MinDjbKIKDWBa9iPzYIJmxa8uq468ioaZ3hCrYq85rLVTlwtBXg5SiuVMx9ozHLWjGnDLXVu2yrENue4w75FMKcRic2pmJmoH51IrE5KcebflkofVq5/BfKPEIeue04pvx8diNWJxvpKl/LHqgWxRQJZkXKJxoZBdv/xz+Kmm26Cbdt4++23MX78eLkDI6NNXG30bmhkVLiICLfffju++eYbb6/XnXYH2YlounC+UVe/erAAbr1UVzm4+nbSdawsh6hrkeCV2+b7l/TjwWfhKcOgppRhHhSS5Z1XKbgCUXjljcNf7yqCV8vy0ohl4Gpl0gvzibxGBsPU4NoGo7B5wauvXAoHtcSaV5VNsSC3rUKsTPlEX8PSjMQKU/Z9NzrpwCrxttHijEVqU8xMhxZKH3ZLZE9Y808pjtqo25kL6b2uGNFYoGkLPZGKEY0FohB7whvv4dJLLwUAPPLII/jkk0/UDoyMNlFtgndCIyM9Pffcc3jrrbdAjGH1jsOQal+JVDsXThnE4KoAUwAgO1MZWAi31LQ1jkCUqUAsjbrGo575yB9CgdvfsFikVNSXdALiVxAOjyvejwvYjSSdEFkOYDVqRilFkyoiD0xlkz8iMGVkVj1xIyL1BL5Y6WItkIarU2xJqyCTVrRKo4pvMdZeFgqvudhsatJJcZV9FhiTw2ux+vElK75mWUAiofaj04/ChhK2+ry0ZPqwsuiczjY4inZHvd+rm2CwZLCrus+E7OSD0StOqCqUSLLdCPxorKToIwA0dqQAZC/9ch5GjBgB13Vxww03YPny5fIBGBltojIAa7RZas6cObjvvvsAAOu2GYr67tXBTYQXzfTBlaTb2vhgKo6Iki0v4uTb+DdGsjkRRpb5u2J7HKVCT6J19oDl2bBMOrB0MkDeWlYrLbHxwVQiH17DacRhWQ6QqCMPXgWuLEcjrdjfA1Y22fLhlTHxhFcXXnVU6NYwYRUhDVZnH9aC92pVDkJzL1bdvloqPXhzWg/rA5bsNftR0YL2IWbKhyLBtjiyfmxb/p2OOCwAYsMFoArtp0BppQ8Hxhpb3Ki20nHFIBsUcNJYJiGFWKjTjhlR1hKVsJwy71/l9nBMD2JFIOvfV90SEoNsYOP9e/HFF2PrrbfG2rVr8Ze//AWpVEo+ACOjTVBt5C5oZFQ81dTU4IYbbvCKNvXohXXbDpA+AXVteOAqkRcxlbc7paoKxN4NLHwzjEMjMUTB1ZJHacWdaaRRKZQVdWUcyKUYuDLO1j8KeGUukGggqY0fdWXk/cAC3KQVs/GKOQWv22Jw44VJcoFXkVzyttnxJ3uCSEkWvKqiKboQm4/yqJorK7yke4xyLEJHVm7/z7evljjf+aqtQKwv3muOp/TGPx+ae7rGH5woP2e8djsU8eRBLG8fY56feGXh5ojW6kJ2c6QPcyA2fq3lAWg8xZgLsSzcroZhFcQCfIh1SjNt/v2C4yZ8L5Mtn/FtC43G+lJFY90SYMi/7sFNN92EqqoqzJo1K3gYb2S0OamN3QGNjAoTEeHvf/87Fi9ejHR5OX7edQfhBCISdQ37CEVGw1FXYZ85RF2lNnF41VTkCbFGASUd6aYMq6KuVkM2vPprWIFwyrDYTRhexTakXhPLgVcKr2fLrInNgtfwZFIj6uq5asYKkrlGYYtQNbeQiGzO/aoiroXAa0um+G7qEMt7IJNLJV5NeBX5jHz2eLDHg8L4/4sRiY3b8M5LDHS5W3S10DZWcXGrD+usadWIoqpSinX8WA5FQNbhFHDSjsYq1BzRWKeCB/uSaGxG+zzxFK655hoA3nKoqVOnyjs2MtrE1IrvfkZGxddrr72GSZMmgRjDz7vtCirhV1lQRl2ZPOpKNuCU5hd1zbJphpThLDHSuhoUO2VYBp1MEpn104il8GoBZDN5yrDFQBYDa0zLI6+FrncNRWGl8NrSUdgCfRVtvavuWHTWvOpIp9hSW1mv2hohVvY59s+rrKBSDrCmVQhM1o9sLakPsbzoa9wOKLwwk+54ixR9zSl9mOugeCnFka3NOH4APpz68iFWthymkJRiX7lEY/00ZK5dEaKxo6ZMwzHHHAMAuOWWW7BmzRq1UyOjTUSt8M5nZNQ8WrJkCe666y4AwNohg9HYpXOWDSUJbrkrhVdKENxSedQVNgEJRdpxUv2UlTTSl1Vi0Ii6EpOnzWZ86NhYqkqRrgJu4U00VCnDyTpXGnllDmA3uPLX7RJYyvVel0Y0oNmV7xY5cRWrcNHG2luVp5Z8Tc21Z2c+/eioJSFW1hez9AoL6WwPo+FHVVUYAFhCo9SrCk513uukuh8qko3O55yKBcwKxdOHedICZcWlj7mkLM5kOQQrrbE2VnCt9+8lMvD0la4UtwVVhlVLj5I62+nI5wnnnnsu+vfvj1WrVuH22283+8MabTYyAGu0Wch1Xdx6662oq6tDfZcuWD9o6ywbSmanC2fZJEIVhnmyCVTqejYiWQRKul5UVeDHqzCsGXWVrINlAOBCXrGYmLo6pKTwRmAjmRj47Xa9F52V2STqPMAlm39yrAzcEmPCbYiYAy/qygDiFHwC4G2j0ygnaa09YP2KxbJ2x5HbZMbjdSp7vJ+xaamtY1pCxYbXQosx+cCiqgCr60eltgSxuaZpy/wU+EBCB16bikhJbH3AlRZdsjSrYqvfcyrWwxHp9lLe65VBbJAaLLJhrPAIbeAL0mybQDopxZLLsVPivRYZxAbrX1X3M506ERbks2jmb7knz+ZSLjFi4mjskH/dg9GjRyORSGDy5Ml4/fXXFYM2Mto01EZmOEZGhenll1/GZ599BrJtrNotuu5VO+papgBTf/scmSxqAlcJvMKSQLKmfHgVihiYE4JXTn9+tNS34a19ZY4HpZEob3w5mW8jmRR4UVfZK2qCV9F4g74a3WDCxJ3EheHVAsCZqEXglTFQfMIcB1OLM3mNw60onTYeeeVN7jfWk/XmjMI2V+RV9X9hXznChWTyn5PPtgCxOoWzct3PVTTecPS1WOcm3/Ws8e89bzzxdF2On/C6VsosXZDZCD83CfW5CV/zCorE6jzMUShcvCkompRlEzrHgmwYJ2QjWtMaTh8WQmz4q6kDzDqXXQXE+iArs3ETcpD1IZYHsge//V+cddZZAIA777wTy5Yt0xi0kVHblgFYo01eP/30E+69914AwOodBiPdripoC6KuoZtaEGUV/B/IrEn1/yaIukZsih11lchPGVbCaxGjriow9eE1PMjwBI4Hr95aoiYbi5NWTIzBTUb9hOE16MuPwroEqz6VFXklmwUQyzLFmrIir+FJnCrqqmuTGZNS3DW+LRiFbQ6Ibcm0YR3xJumqQj/52vDUmiFWp3BWrvAq8q1R/Cmn6GvET+w4Xnpx0dZrq22U0dg4PPLWtYYjw6Hoa6Sf2Fi4hZliD12yoq+c1xOvLMwV7+tA8es457gCo7GAB7HKlGKd+1we0VinPP5QMjsamy6P3qd40dh0ZWguwsCNxhIj/HntYgwdOhR1dXW48847FYM1Mmr7MgBrtEmLiHD77bd7qcPVnbF+mwHe31tJ1JUybbKoK+lslZOxkUVdg+ITMnjN9J8rvIra/ZRhmU2iThB59edkDpCsE2yj44/XAew6NxteMyLGlCnDxJg8ZdiPwsrA1I/CymzCUVgZvPoTe1nkta1CbEvAay5reHXShYtlI1Nrhtjm7Mv3oVH8KW94DfxkjpetjfXfK1lf/nulUbiJW1U4Ix9iZTa5fHZEEVdiGutiw8Cc74MYTeWSUuzICjw5vo14bD7E+unDXD+ud46ccolNZsgym2BWzRtOPBorsAlHY3lwz43GWgyXX345EokEPvzwQ3zwwQeSQRoZtX0ZgDXapPX+++/jk08+AVkWft59h8yT5eyoa1y8qGuWjQa8UhheebKKWGHYgfSpNXMRTRkW2sjhlbmclOG4/NRjWWTWJXUxJ5fAVHv9UcZOkJ4GZKKqjpzImcbWENoTuOaMvLZ1tVTkVVfFKHaja6OjloRYnarOxXoveNHXXMai24+OirU9TrEisTqFm3QKQGkUvuJGX3OxyUCuTvSVFAWeGJG4RoEvF+pKxoptcgAPYnWKQOlEY5VSfbw0UopVa2N50dh933wOJ510EgAvlbimpkZjsEZGbVMGYI02WdXV1eHuu+8GAKwdshXSnSqBMtf7sQU3D5uAUsf7kdmUuN6PyMYiIOHK17LqzMV0bpYEMFfuzI+oym6+ftqxvFqxFxGVplS58kJNAMAc0rDR82M3kBQGmUtgij1gmUNAWmOfWFVBp4yd1gS5uYu5RPy0kihsW4TXYkq3v5aAWFVBpmJsSRTY6FUUVm7JZFnqc5hIaNjY6nEnbPn3mDFQMpG9Nj4mStit7yFJC4kYU29Lw9SACujZKB+IEsAUNv5e6YXK30pHpHQlwU2StFJxup0DKnFBJeIBuVXppvkIgFGjRmGLLbbAihUr8OCDD+Y9fiOj1i4DsEabrCZMmIDly5cjXVmOddsP9C7wMvKyPegMsqh4dhkbqR9/HSvL2POiq+F5iB+FjSv0J2EacRheBfvTBenAxLx0JF5mWA7wKlUIXkWVj8PwKrbx94mFN1EU+LEbvKgp2Qwup2qxD6+MSLg+zIdXRuS98bwJaRheZfsw+lFemU0mqsp093RtSxCbb5uvTRlec+23OSFWpyCTjooIr8HvgvPDwt8nYYGjhIaNRoGoiA3v/LFoUSYBxGoVZbI1bDT86ERfecXqsvxoRGi1ts4J2wjuK2E/IkANR2hFNuH0YRHE+nvIyiA2Xc6C8YogNl3B/3vEJrxuVXQ6WdOPEGJDb7UQYkN+UOJi0KN34U9/+hMA4MUXX8T8+fPVAzYyaoMyAGu0SWrRokV46qmnAACr9hgCqpBMtPyoawZehTYlrgevIvGirnF/AoCMiKCOvBIy6cBiZ5EKwoLd3ZmbuZnL4DWTniyFVxewGuQRU+YQ7PpY5DU2LCtNSGTWu4bHEx4+cwiJWjeA16aDoxMdq95pgleBH9bgNMErT5mCTsrIq+M2watIOinKcbWVrXCAaCEZUZuRpzYWSWtpMVG17qiR+jzq2OislbYsZVYF2ZYyGlu0MRdYGbgllLXelnNfi9+WmEtZkBp/eMmzictKy6OxPsRKo7EUevhboFTRWB9ilfvGKqKxPsQe/b9JGD58OFzXDQpYGhltampDsyMjI33df//9SKVSqOtdjbp+3cSG8agrpw02eT88wvPbw1FXnh/Vtjh+FFZy/wqisLKU4UwUNhx1jc8S/ChsOOoqg1c/ZVgoScqwH2GVpQw32UC81U4mChuOusZhkBjg2iwSdc0CU8srxBSOumbZ+FFYWcpwOMIqAtewjWht7qYQhVUBgHYhpc0g+pqrmiMKq1NRWEfNEH3Nasu8T0yRygtAryiTrFCSTlGmTAqztChT5vVoFWWSRU11xuwXiWrN0desRrUfH1Bl62N9G3nxJu9fP/oaOZ6i0dh0GcdPBrp9iM01+prlzvb9CLKyQtHYdJX4oakSYhlw7rnnIpFIYNq0aZg2bZp64EZGbUwGYI02Oc2ePRuTJ08GMWD1boO5k1WrLA2rMiWNuloJF5a/FlZGcCpAZSjeN01nvat/wxVEXX0/xU4ZFo5HtZaVIZoyLDJzkR115djEo67ZNiSPuvoqRgGlYoBSABatEGJF/fltrQ1eW1PkamOkEusUbdJRC8BrYCMDU19aNhqQp1MoScemJCk3YEyrLy2b1vJ5DklZ7ZjktyfAu07zlo7EbVRS3cMCiJWNR3NdrOo1ARmIldn5ECuDVHgQy7o0CNt/+dYEHH300QCAe++9F+m0avGvkVHbkgFYo01ODzzwAACgZqstkOrULqvdSriwk443nxPcSJjtwvLXpQqoilkEK+mCKeFVAcA6Igbm+E/bRQuKEFRZFN34GYXSikVjzqQMK2/YrrpohuV4acGyGzbL2MgmK8whWI0aNilXOrlmDoGlXfmVT7aVTthGp9KwI/dDOpBMRchha81qSXgtlnSr8xZDOtWqW1K2RiGlIsFrEKFUFUXTLYDUksWUdMZchOwLSlgAZ/1/0zi8yKoMKomxjI18KAVHX30/Caa8JVKCKasLu0kGyyFYkkr1TpIpU4qdUrWN/9BXtT+tagUQAepdDvxMrqSi+KBFsMvEJ+i0005D+/btMX/+fLzxxhtSX0ZGbU0GYI02KX3yySeYOXMmyGJYt9tWWe0+vAKAZTtgnDWtYXi1bILFs7EILGPDEm7we9QITeDqpyPLZAHgFmqSb30DoCmaKrl7MpJPBry+ouAq2mDeapTf7C0HSNQTrJQkEuogWO8qU5A2DIAsBuIVa3IIdoMbsuEXa2KpzAmwLK6fCLwyvp8seBVNDMPwyrEhwfrdqFHsjW9tUdhC1Vbhlfd7rtLaB7OF4VUVNQ9/H4RP/5opIigCQh9yZf0WqZiSdlGmYD04vwBUcB5lEKtTuCkRepjAu55Z0fRiHsQSY0DCCq71UojVeAigjL4CwWuWLV8J+1HetwAxxIZXO4juWQzBvVNkky4PjZdzPyYGOKHUYN5oCIBT2XSwCGLdqnTTuAQQa7XLpDUxMcTu9NqdGDVqFABg3LhxJgprtEmplcxijIwKFxE1RV+H9obTrmm3cSvhIlmWDuDVV/hey2wXVonTFHnlKIi6xm3Cd+ECoq4UPyZXePUPi1U25sIri0VqddKkeFHX2HzFcpAFrvHqx37KcMTGAtzwnM0hJOrcAF558go6OQG8yuwCeA3+GBt4vpFXizOp40VeQzbcyGt8IiuKvG4qENvW4VX2N5VaK7zyfpeJd241zkdO0dew4kBox7ao4Y2Hlzoct+P1FbPhrmnl+YkXM4tXT45HsAuJxGb1r/ZDjGVBZhxaOaUTotFXAcjqRl/jyrrt8Wxil1Q3mW0Th1je+lhV1pAQYsNvmQhiOf/P+hbHzzUvGstivyfdLJBl4d0NMhCbBbKMcOSRR6JTp05YunQp3nrrrexBGxm1URmANdpkNHPmTMyZMweUsLBh1wHB361kJuoqAUo/6sq7/ftR2HDUNfv4TFs46hpXLlHYTMowDygDOM2kDMfhNWtseUReI03+SdFNGeZFXVkTxPLgNegrA7FNxZp4Nl4UNhx15dt4xZqs+nQ2vAKZCCvzYCKV5sNrOAorSxsOT0BbIm24rUPspgKvOm1xtUZ45Sl+/kXQGT7HxU4d5o7LarJRQV2xCinJFHn98ad5Aojl+bA0xh0CRxIVZbKZ9xOLvsYVgKykuJN/7XeTgrTx8EO5pJVT9DXLVfgBrGgrpVwjsYLhhNOFRcWbIjbl2SYBxLrZ0VeOu6zoa5ZNBmLdSt59CNJobDAgTjR26H9vx4knnggAGD9+vInCGm0yMgBrtMnoiSeeAADUbLsF3IpSlJalUN6uAXZCfNezbAe2IuoKePNTEbw2OSvCWldAu2CEb1sQvGb6Kni9K/N8yFKGwTw/qpRhy4E06gogU9BJMWiXE3XlSQsoNda8MqaEV60tPTZ1bWrwmotNa5WqGJfO9jAqeLUYmKqQEmN6BZksxTrcIq93lVYU9v2IYDEMsbLzmInOUqlOkaiEeuyan3/VulfvwaP6XOvAKy/6GnFF8srDgHc/4y7/CMlyBPumZ40HQsiNpBQLbIJKxo583WvTAfJmShC4+8aHj0+6TenDgkHZZQ7ad6kJ/jRy5Eh06NABixcvxsSJE3VGamTU6tWG77hGRk2aN28eZsyYAWIMNTv1QzLpoDSZBpMAZSLhoqwshURSDB3McpFIOrAsMbx4u6V4UVreetmILHiRWJEIXrRSlsbsAtCuRCwx0gBXlqkyLKvkyDLAaaVJOhliDmCnvOioSH7RJ9nkwy/WJJvEMJdgpeU2cF2voJNMRGCq/V0BL2JGJI/m+P60Js0teGlubX21JLyqijE1R7GmYkXPiyGdStG6n1fFVkrBVjjFAMuErR53QhChDYkStvR65NtICzL5FYVlcGoxUDIBsm2QqrgT1IAW9CvzkbQ1ijsp3jffj0I6xZ3chGaqNKCuEA+9h7xMUtzJl5WW26TL1ZlHTgUpx+NUuU2RVIlYwuXW5mgyAErLUigpkW90a1suKssbAQDbv3xHEIV96qmn9LKAjIxauQzAGm0SevLJJwEAdVt1h9WlBCWZqGtJwkGSA6iJhItExiaZTHMhllkubJvAGMFOuLBtTjEnhgCSpfcl3qKiSDsyKcMKMM3AKyPA3/M1y8aPupK3dyq3cm8IXuPrU8N9sXDmNc/GUU8AmAPY9YDdKDXzIq+NXtqwlwLM80WwG92QDWetlEuwGhXFmsLwGi6qElYYXsN7umb5InUUl7NvrdCXL+WWJ0UEoZaA2GLCqyzClgu88n6X/S0Xn1K7VgCxxdp/OOyroLWzsSimqO9wNLSgAkh2U/RQ4IeSoUinBnjqRn5FEBtOCxZBbAQoRa8tbCMs7mQp3zcdeM1JLknT48MRWhHEhte+iqDRX/vq3Qv5fpzSzC+kuIf5p0hSpdi/tUuzmZjg97CqmjoQQWxZ+wYw5s1LRBBbWeFtr8MYBRD7m9/8BuXl5Zg/fz4+/fRTwQCMjNqODMAatXktX74c7777LgAgvccWAbyKFIZXkcLwCmQgNRbNDcOrL27V4ji42hSNwhKywdWOFWFyAZZmTfAqGncIXoXSjLxG4DVoCP3Kg9cYp/t7wEb8sGgU1nKApF+NOGYXcR2CV6FNGF5F4kVe4xDLi7zyIJYHr/EoLGcixo3CNte6x9YAscWGV97vvP/nMp5iVRcu5nlsLogtpt/46+WsA2Wiarzh3zUKKXHXhsb70ym2xOlfFYn1+oq9Dsa0+uOtRY1DLG9NaxxiuUCp85nnQmz2+5SPtKOvkT9kX+vcBMu+nvMgNuuaL+9bBLGRW2QGYuP3s3RFtr84xKYrOdf32JicKs4geac7PsfgQGw4G0wEsXbMprK8EXu9eyt+/etfAwCee+45TudGRm1LBmCN2rxeffVVOI6DdO8OoB5VWe1+FDZIGebAqx+F9VOGw/Dqy7YpiMLy4JUr5QIjDrwGHXoQG466ZnWZibAG+7ty4DWIwroAS/Nv+OEorBBeQ9KNvGbBa9DoQWw46hpPdybmRWG9asRONrwGNpmn7SJ4DUdhC00bDkOsLPLqT1glUdcAYmVRiWJEYYGNC7HNBa/xvxUCr+G2YpwDrTWzRX7vdFXIuc6yEaSghiJ7XHgN9yFbPxoeh2wdao7RZFFF4TDECte9WlbTGlyNIlHSQkqZcyMsyITc04mFUVPfjx995SmUUl6s1GHxwdkPP3kKQyyv8jAQjXzyKg/7EOuDbBB9DStY8+rZpCvEYwpDrOgWH7nPit7C8N+r+NHUcEpxWfuG7PYMxPog60df4zaMEY455hgAwJQpU/Djjz8KBmVk1DZkANaoTSudTuOVV14BADTu0FNol7DVUVfbboq68uCUMUKyJI1kiXxtbVCRWAavtlesQZUyDMox6qoCZmlfTRAs7c9Vp1z5a2dlfiyHE3WNu3LQBK4yu7Qrj7xaXoVMKbxmJtPKNa9E+mnDxVCxILaY0k6VbWZ41WnLdTzFUktDbFGjqgXAa2g8Unj1pVo3rjseSwGUGT8kWxubqToutfGV1Cg2VUA6ccTGZmqgZBo2NoNbklB/Vor4WZIWbspArLq4E4FkBZd8d7K6CEHBJXmthgBiVacozY++Rvp0AbdMcR9gANopbpbwQFZUiyOcUmxL6nUc8b9/Y/fddwcR4bXXXpOPy8iolcsArFGb1rRp07BixQpQeQKpQdVcm9JkGh3K61GWFBc9SFguyktSSEpsGCNYFmnWIFEUakr7T+cldv5TZVlVwkyhJu46V38sOhHV0BNsoZ0LWI2eL1nFSeZ4kV6ZvEJM8omEn9KlLNbU6MiLfrguWGMazHXlk8VMpWFpKqG/llU1wSNSTl61C2mottQptpTA3MLwqltRthjjKaZa+n0DigMmWimp6iJKWvDq96dTtEllI9pWJyRlQSa/L1sB58hkfyh8KQspAd42Nhp+VJFYSnoFqZSp0ExeSA8A3ISlfBbqba2jsFEVbrJYE7zqXA5VNoyfYRQczrwIraooU7qMwVLUbEiXAVaKwW5UfU4AqIrhhzKgRKrqUIcEpw5HWF3b1aB9WXYENqwRI0YAAN544w2zpY5Rm5YBWKM2rddffx0A4P6iOms/u9JkGu3KGlBiO7Bk1YgtFwnb9Z5iCmx8eAUykVpBNDeod2QTvwgDAXBUd32Apbx9YJV2fheMD8M+vAIZyOVlYPp+MkFjUdEn1U3fL9akirwyP/Lqj5vTn5X2ABfkQS53Y/tQynA4lTg67kzKsKqIElHTPrCi9XDxrXREaXh+P5KtPiLwKprgkasHQc2xr6gI9nTXiRYTXouh1gyvxYjChttkW+IUYyw6EVNd5Vq0SWSj4ScSVdXZgodJ4Cs0JmFBJlUhJQBIWE37sWr4kUFsGDhFgOqGfYlsElbw+kUQG4FX2UcmXCRK5/MnuEz5qcOMxBk7jqK4kw+v4aJMQvk2jRCDbOjtEkFssDcsMTHEVoW2xJF9LDP/yiDWtrx5TPuyBiHI3ph6ER06dMDKlSsxY8YMcYdGRq1cBmCN2qw2bNiAqVOnAgCSO3VGWUnTjaA0mQ7A1YfXskQ6EoVNWC5KE07khlCScCKpxj64WqEoqJeukz2erOWp8XL4PHi1KAqeLjxwDaXMkoVsm9haVt5EIwyvIoXhNewrApU8eGXRKGx4vWu4anF8XBF4FYw7DK+RMYUrVMbXuzIOxIbhNXAem3D64JpWnCidfWB9u8iLyYZYbuQ1PrnTBaDmgFdfcejTrdRr4DX3YwqBWJ2/tTC8aqcOq4pw6RRk0in+xPsbzybeHw9iE3ZWBkrkmiJK5eXAZ9iPDGIjx9jZD+t4/cUB1U3aWYCUZZOIXa9EEBv/G+/ZIS8tOPaghWsTu1zF170KITb+9vK+hvGvBaeycLo8e0xxiE2XZbuOQ6xTEcswEkEs71zG/lbVoS7y/4TtZoFsl6raJheZlOI4xHaqqANLWDj44IMBeFFYI6O2KgOwRm1WkydPRmNjI1BdBqtHWQCqYXgNK/z/cNQ1LMbIg9qEE0oZzr5bhqOwsuWZwbG6kVcfXmMKIFZRpt8v+hQUdOL4iRRr0tgrVvikOgONymJNzAPXRH0UXiM2mSsRD16zzEXFmsIQy4NXXz7E+vDKrXQZisLK4DVWuVgladpw0F8rgFdfPvzpRFt1CyAZeOUrH4jVicq25PlGAfAaH4tGgST5QEJwKPIV9iNKUw5DLAdegz60Xne4P07V4RjEyta0+hBLSVsYKfWvYTx4jdsAEL7+sH9h4aYQeElThzPRWOm6V9Wy0RjEOnkWdwqGlLnHpcuZ8DxFIFZwCsIQy31PfIj1b1/h6GtcmeOrOtQJA7NhiOWtfY1DrD8H8gF2ypQpqKuryzrOyKgtyACsUZvVpEmTAADW9p3BGENZwlvrKksZLkukUVnaKE3DYYxgs2jUlWeTSLiwFGtSmE1gFsnh1SIQIyG8BnKZcn1PQNOybFmfNyTw6t98VWnDlkPqlGEfggXARcw73m5wpfAajElWrIkBcEkMr2HpwJ1O5JUxeV+ZKGxRN49vCXj1pVWMSPNWsinDazGUC8QWq7CTbp8a0VcteE0k1H2qijEBUFYvztgoCzIx5hVkUthQaUK69h/wIFZWURiAB7GZ1GGujwzEUmlS7geAW5ZQF7q3xFAWtnFl48480HNKxSAcjKlEvX5YSySuOgw0QayTVL8+3hY9cVlpqG0a+dHXsOxG1pQ6zFOm2CKVOcr+oB42ErYbib5muWCEqtJGdKpoAtXzFt+Pnj17or6+HtOmTVP0YGTUOtUG7/BGRl768MyZMwEA1tDOKE+k0KWsBhXJRul616TtoENpPcoSYjKzGKGsJIWkLQYlyswaZMWayGVw0xZIVWnYZWAuA8mAOSjoJHbDHMBSRHmD6Kwi8hqkH8vmdA55xZqkNoCdIkU1Yg9eAcFT61B/liMvssTczBY4sommCzBHnTIcVCNWTbY1CjZ5blSfgxyAU7cqa2uS7niKCfptUUUDeKYZqdSInBcTXnWkMXZK2MpiRJRMqNNyfXhVnSvGlDMmr5CSRkEmBeQGUVWVr0zVZPWYVOfJUhab8iOvKojXkQ5QupKIaViMJFlJYTvFJd8p9TKJpDZlahsAYCkGS1HcCRaBFPfrdu3rpPMZAOjZfh3al9ZLbWzLRffy9agu2+CNjzHsu+++AIB3331XPk4jo1YqA7BGbVIzZsyA4zhA1zJUdLdRkfDAtX1JPSqS2VUXbMtFWSKFpBVdFxuXFdpCpzSZ5kIshSgrkXCDvWEjNi7zbk4EMNsFEpz+XAaWspTFmpgLsLTniwDutzYCr/6+rzw/oaJPXD8uYDc2RV6Fe9xlIq++Dbe/DLz6xaF4E8QwvKpg2U65XtVlQZEl5hJYKpPWbTP+5C8Mr5bAJr4PrGzCpmPnNkWDhRAbhtdiRg5bC8TmOo5CIXZjRV+L1W+hkBBbx6hnJ8qLLBK86kqjaBMl1MWIKLzNjfY2S6L+rKZ2Ue22ZJEKO6HpuiuD2GhxJ7FN4Et4nkLHar6NIojV2Rc2Aq8FfMyJsUiEVgSxfupwsN0cz6Y085pIDqhBFlCD98NTupyCWhAiiKXQnq8iiG3Xvi4oyqQqQgkAlclGVHLmPgDQs2IdEpaDhOUEEOsD7NSpU5FKaVC5kVErkwFYozapjz/+GABQsm07VCSiF+04xNqWmwWuZYlUJAprMQpuFmHF/08coksmnQjEBvAa9hOHWJdlFWtCrFgTc70boA+vInEjrzGIjcCrP04LkStAkOobcY6sSUYYXmVj8uE16C8GsRF4DfUXnmh5a2edJngV9ReC16C/OMTyIq9xiI3Da9ABZ5Kh2i8WiMBrk6uYL17ktaX3EG1O5dt/vhC7sVOHWwvEqnwx1nKRV0Av+qpRtIm3njUOZ8Tbo5V3DjTsiFPYKD5z4hdRynFNrK9YdJYHsR6YxsZp82ziY9LJ3EDW6+OBabx/HXgFkA2tnCGpoq/EGFzeWxe7JMfXvYogNvJaMhAbv8c5nNThOMSmyynyengQS1VpxLfG40FseE2rD7FxkO3Zfl3WcXGI9eHVlw+xf1zyADp37oy6ujp8+eWX2S/OyKiVywCsUZuT67pB9eGqIRVcG/9CH4bXeHtFshFliXQk6hpXScJB0nZAxLjw6ss/ngev2S+Aide7ZiA2HHWN24WjsLppw6Kn0z7EcuE1bMMyUdAGPryGo7A8eA3bgTE+vAIBMJPFolHXuGkoCsuD16b+MudGljbsQ6wIXjP9BZNYl8TwGp4IceC1ySzkS6RiQuzGUqHwnCvEbmx49bUxIVZVHMn/XVVBujXAa9CRN3ZhMSZowln4HPDgNas/wVZYIYiVFlrSKchksyaQFey/GoZYHrwGdiGIVRV28nxJ3r9MkwxM/XHowquwcFPoQak2vArOgSqdOA6xTimvE0SisU6Z+HxGIJb3UYlDrGCpEDlNc4d27bMLK/mVhf25TM/264Loa1xhiA3Da/hv3SpqMOz/2fvzONmO8r4f/1Sd7p7lrtLVRbrakNAuIYtNMpYIGIIwDiZgY7PYGIzjOIafbezETr7GyzcOXr7ek7AFJ/Er3mKwY/zCxDYOJCYYhBEWwqwSSCCh7S7S3e8s3X2qfn+cU3Xq1Hlq6ZmeudP3Pp/Xa14z0/Wcquqenj7nfZ6nPnXzzQCAO++8k+yHxdrK2iJnexYrX1/72tdw7NgxiIFE/8kLZMz2/ip2zq2Q8GoUyrr6MhAbU1EoSBFf0yIKVYNgKqOazrpC11sARM2h6v5SicKMPV6hq4xp1BxKVO0heDWqQDiWTq1P+qWOZl3NBUwIXt24ida8xqTiDslN3JRMpHK0VdfDbvaYWwVejaYJsessge30lXKVnuZer+uF11pkVtWPkSIdZ0ybUn0N0sZOqXWj1ZxkFHKNUoZMWlSAmjSSKtLjVa9TRrnvIGNbn8z35rTWvYoMzwGh4q7DBmJ1kZh/DbEpoyy5WmdfI+PJoWiVDoe0sG2VdBS2fdUQG4JX209vhH2L3QytUU+WDLCsmdYWO+OzWGndfffdAID+ZQsQxAXEQI6xo7eK8+dPYOcgbG4ghca2OgubUgxylRIoSwkhNSS11rWWLmW1HjRi1oSydhqOXTdpVOZJiJ9YRVmdyFMxssyIGaVhS9aZ12hfSkOOdfSiQZSAHKo4BCsNuTqu3IZjfWkNlDpuhmKgNMesSU4AE9Gu9PQAbyuaHk3ruWWD2xY8la1nSx1KOXCa7CPDsCnzbzc106Ycx2E7aAIo+73k/HU/7SacNR7qrGoCYnVfJrPDZpubHEOm5PPrydae2bE5xeal6+1zKH8DV6of2CvWi8lZ75rzdwltmdOOqc4R0TkNqvOeHMfjssydFtLLasrtJTCSwGr8/S6lxqiMxzx59xHMF/EBr9u5HxctHMX5cyeCMQZg77vvPhw/HoZdFmsrague9VmsuD7zmc8AAHZe2d1mYCDHmJMlpFD1Vzj7ar7HINaUDfcKRWZhDbza8uLAeLqUgMmqSt1a62pVinq7mRpyqQq/Gl6j29aUld2/cDKm1AWGKJ3Mq4zE1PCqnTIvV7IEeiu6gdzARY8sq31gDaBTFysWXk0/xMVhp2Q4VEpWamBs3I1FwNRJ22ypjsFpaisdIwOTMlB6CLS300nBQgo2JoHXzcqIMrxOH16NcsqDg8dOaY9ebD686pSxkxDtvmLGTvWyiRgstTKYof/jDEMm3a+3lEnAomtqlDJkqsqJA+P1ZHPeiJpEieYr1JdzfAhiKzCtvkIQG9sKh4qL/V3KfuQz2sbAvp5C6SDIuvMNQWw5j6YiKMCL5YK21UeS9lCqJ+P8HIDYxZ3NDfcQxF6666gtC45BbE8qu242BLG/8vUfwCWXXAIA+MIXvhCZPIu19bQFz/wsVlhaa2s4cME1wK5+s1bEhVejHb1VbO+3N/J24dV/rD2WaB3X90qJDby6KgrVysLqUkKvFg28GvnnYAde7bEexJLwKtoZT1E64JqCXJ/ZPYilMq9mPaw9pI4xroshVfvF6nY5swexLXhF3eZBLGnWJNC5qHHhtdVfy9RJd0p9SYj14TUEuj5MEhBL7gW7FojVmaXMk461XjG8bhy8GvmvzbTgNXf4aW6XkyFy3au/npeKoYyd3KnLBuTacRlGUlRM4cfI9hwCEKv8vgiI9Q2ZKIhtwWtgTnZe7u8ExCpiLa4PscqHyQjEplRlcR1gJt7TOfBazYN4yINYat2rD7EGXm0fAYhtPecaYn2QHe8glrB4ELu4c6Wz9zwFsf6a1vli1AHZa3YcaP1OQezF80chhcaNN94IAPj85z/fnSOLtYW1Bc/+LFZYhw4dwpEjRwAJ7Ly0wJ7+KezqL5PwCgBSKOzqr2B7fzUKrAueKzFl2ORCLAWvRkWvhOzpdtbVZw3hZGEJeLXzqCE2mnmtIbYFr4RskpiCV9uXExMoGzYQ68Ir1Y+54CHh1Q/34LWZcwOxUbMmByopeO2IgFeqr2Dm1Y3JhEkSXt3+YnIBZL0lwxsFsQyvGw+vRuY1mia8Zvz9pgqvOeteU8ZOIXg1agEk1Y5WNja6djQnxgVG6vWsIdYAoykd7o7VQCzlJgwQEBv607iZ1D69htZAbGWQRBtJAR7EBjLh7rE52VcfXt05+X2nVHaLsprDa4ittsyhYwzE+vBq+/AgtqTWvRoDqGE1znhHGS6friGWglcjF2Iv3XU00FGTjb1mxwFyfawLsQZeAeCpT30qAAZY1uxperdJWaxN0Je//GUAwOK+ArJf1e0sFCMoLTvwaiSFwjmDJfSEwskxZTlYfbgv9EbQWmBlHP63kEJD6TC8WhmqSxgxibGIQieAykE3VTasq7ho1rU++UZNnUwpVGrNq65O9tE5KdQlwxF4FdW8KXi1QwkBqVSW6ZEYq2rNa6QvIQSgyjQI5oBiKkZKQCno3BLkWdWswqsU0zPT2mxtIryKHCMpKeNrzd2xUnFCVPAa+/8y8Jr8HxTQKVMqCaiiV62ZD0gLAfQzxisS5cIuvEafH6DmetEYLQCRKk+u56R6Mnp+0EJA99P/D1rSSzuaeQto6OQ6XCAMr+6cAJBb5vhyS4eD4/XC8Gokxxpl1FehOo/GQBgAoFHdpE69DKtFEF6NRmWBS3YfJR2FXd18zoNYUoNgu4FY9wb+ddddBwD4yle+Aq11eK9yFmuLaQvewmaxwjIAu/3i6oy2KIe4dO4w9g7CRgWF0CgSm4Gr+kzk7w/rq1SycgDshU8kqpRQ45TzReU0nDLJEDmmTkpkAW6u8ZMcx0+6ogSK2FofE+OsiQ3G1aZOsRhZKohRHACF0hW8AtFPtcrUKW78BCB9kZpr/FRneZMXBSmIcjN7673A2MrAtpmGVOaif5oZ6c3KChszppSbcE5XhYy+P4UQlStxLqDGZOA1YcZkM6+5rsqxvga9DKOlosrEpuIEsgyZUmZMJsuZBE+J5NzVIG3a1IwXH06L9GugMkypdK9ZYxsfLwNyI1vmGMUyr+3xQO4D2+prTthzZXBONSMWq6n3JyBX4i96sXOI1dU4oV+y+ygGssRYxW/ELBarOLd3Khpzw+IjuHK+KTH+z8d+AkVR4OTJkzh48GD0WBZrK4kBljVTuv/++wEA2y7uYVEOsVisQgqF8/onsbvf3TutMGXD0NjZX8H23monRmlhv4AwxJZKolRVzKBXkhCrSolyXN3pFoUCKFdiJSBGwpJkdUe7GybKKjsrNFolua2YGl6hzVpQIsYvPxY0xNqy4VhfDrwal0oyxtlKRwtBPz9VGz8pHTGIcuDVL5lz+rHwai5oSQMsDYzLJi5wMS5Kp7SYunDyt9KJGT85cUFImAReU2OmtJXh1Sgr8z3ljPbp2GZorZrmelYHtKj3p4VXV9T/TQ7c+vAaKkH1S4JTpk0hiBVicjMm0ACnhQB6zh6rgfeLLQkWYThTvfbrFDRRcteqRkyiUmZMfklwCGJdCA5BrLvfa7DM2NuaJvg65JQXTwqvkY8Od1udEMSWcwLGtCkEsa3Mqw5DbLnYVGGFILbYOaxurGsRhFgDr0YhiH3arocBVBVnIYi9buFR9EWJvigtxMqewKWXXgoA+OpXv0oex2JtRTHAsmZKDz9cfUiff+EIi4VrzqRwfv94C2JdeDXfdw+WWxDrw2tIBl7dtbE+xLrwaiR6HsR68BpSC17tg+2LDxdejXwQzHEtrsZr4DXYF5F5rdZNeTGJfWCruTfwGhqPyrzq2tHT7Uf4610JiG3BqxvnXXS34NWNMwrtA0sZPxFxHUhYC7yGxkxpI+F12n1vNMQG1idORRuZhaX6zn3MDyGyhO77k4RXSmuB12aQ1s/BNa+UaZP/mN/XWs2Y0AY4A69dU6P2A531rATE+vAa6ovco5UwifJBMceMqRrP+73XvRnpQ6wi5kSvzQ3cAGj1lc7O5sArKeKjoxx0n58PsQZebXsAYjvPmYDYclG3X2MCYi28Oh1TEDsgyoZ9iH3arocx5yzOpSDWwKuRgdgr5w/giiuuAMAAy5otMcCyZkZKKTzyyCMAgB3nd9ulUPYD2odXG+NAbAxeTRa2VBLDcdGBVyMDsRS8GlmIjcCrycKKUkAOCXi1nVWxFLzavmoQjBs/NdOg4LXTV6Rs2EBsDF7dLCwFr/54sbJhA7EkvNrn11zQkvDqxtUX3yS8unEhePUVgNemq/qFXw+8TqrNyLzOCsRmrE9ctzYCYnPLhdcIr7bNrBOPwasB1vXAazNgHF69uA68+u0heHXjMqQLEYRXG5NjxpQ7Xt0XCa9GRRMTM2Nqfo+NV38n4NXGFOb5hefUyu5GXna7nnWK8BosHXY+Oih4NTI858OrbTfn0LGJC49nILYDr06MgdgOvNqYCmINyF6y+2hgwAZifXg18iG2T6SdTTb24osvBgA8+uijwfFYrK0mNnFizYwOHTqE4XAIIYGFc+mYc3unoLTA0fFiB16NJDS29YYYqgInR6EzElBIhUIqjMv4v4lSYXh1JVQ88yoUktvRAHV2NgCvVhphCHbGq0yd4hnTrDWvtalTyiRE6DC8unOPGTE1cZnAFIJXRyIXTqOdCKx5e5v1jrlVpPR0y3Fz1hlPopy5TcvYScjp3YTIAeLMfV6zTFqmmXnN6StHKcfhOkbnGC0JUW07k5CeK5LvhZTRkoHY5HpXAGquCO5bCtT9zKXNmCDDpcmuyjkZHQ+o1timzm2VI3Ia1nPgFUDW/3zS2EnH4dUOVYK++WDa6+euikThlK7Lp2Nvqxpi5a7oHxAAsHNhhcy+urpx56MkvBoZiD2/fyzaz759+wAA+/fvj8axWFtJnIFlzYwOHKjWbOw4T0MG1uj0RYknDY7j3H7YyGBUn2Fipk6lliiVxKAoMdcPOzqMygJKCcgictExlsBIVlviBOLkGBAjUTnwR02dwut3bIyqtrgBwidcdyud2AWFNHGxpFWpUQw1zNqvYNy4MmyKmkgpQE5g2BS9GNIaQqk4tGjdbJUT66vMiDF9pYxLzMVudF6Z4JOVEd5EwJ32WtKkic+Ep7Dc12IrrYmdxEk4kV2eqsNor0hnszPhVfd78b+1END9XtoUqF/UsBj7EK2NnVIxpq9ItloNiiwzJt2XGWZM1XgqMF61xY2oMsOJt0Q5kFApY6e+rCt6Uv9jSF4p6l4a0HPhNcdxOMdNuBwIW4kU7WuQPqeada/B7edQr3kVaWMnta3EaDnuOrVn90kIAEdXF6Jx87LagSGmZy1+FZf1H4/GXHDBBQCAxx57LBrHYm0lMcCyZkZPPPEEAGD37hH29rquwwW0LSM+r38Cu/tLnZiRlvYDf0dvFdv7XVOnUku795oUOgixo7LAaFTHFdXer74MvMbuYBt4tccIGmJFiWrbHY0gLFp4TWRUW/vOBi5iqn1eq7iwyZJubblj9ojtxI01hNkoXgjSJMTCa8RAycKrhcAAxCrVNnaiLq5q4LQZiNDFVUmssQ30FY2BA68xMbxWmja8Gm3ma7JZrsSt/UCpf8AJ4DUHOt1MaGg98STwahQ0Y2piQhBkgNP+TgGqX14cgFjd89aXJlyFq/FC82qMlkIQqwbt1yoEsa5zdohbVN8ppY6ZMZmmCMS23I0zzJ9CNzBzDJuAvNLhHHj1z48hiFWD+v2kwxBbzrXPxyGItTHEmlg73ra6LEojCLF7dp+0S6DGSgYh9qbdDzf9Bt4Mz1h4APNihL4Y46LeETLmgt5RPDB+DQDg4MGDeecoFmsLiAGWNTM6fPgwAGDHrhJ9x12hgLbwakRBrAuvQAWnu/orLYh14dWN8yHWhVegZiQPYil41UU7C+vDq43zILYFr/ZBtE/SFLx6VcsdeHXjnIsYF17dObVNlip49S8O/IsLA6/tubcvrjrwasdzYzx4tQN4F7UuvDrjtS60fXh141z58ErF+fAa6Iu8MPAvHBleK20UvBrlvDZbYT1sZllw9LGNhNfAeGuCV6OOGVM3xodYH17t4y6ghtbGehAb7MuDSh86q/H8eXWNlnyIpfoB2hBrsq/teXch1sKrEQGxLXi1ccTcqQwuYf7U0Rr/baYGrwBKApj985SFVyMCYn14NfIh1joOO335EKu2lYDZ71WDhFgXXo0oiL1p98NYlO11PT7EGng1MhDrg2xflNi2szrvDIdDLC93d3NgsbaiGGBZMyMDsNt2KTypOIG9vRMWXF14NXIh1odXIxdiKXh144xGZYExsc+rC7GxzKuBWFHS8Grjaogl4dUOWn1FM681xAbh1Y2TgoRXd06VyRINr+6cgAC82rjq4oqC1/Z4Igyvvih4dcaDFGF4NTHmoiYEr25sCF7dGCQyr+bCkeG10kbDq9FWh9i1wqvbthnw6o23Lng1cg2bQsf7YBiKqw2kosZONcSG4NX2VUNlCDqr8er/+YjRkoHYWD9ABbEWXgM3KsxprQOvRj7Ehp6eA7HRfWUd86eg3PuJU9ouJxte69JhclpmPasPr0YOxIbg1chAbMy0yUBsC16ddh9ifXg1ciGWglcjc43jw6tRX4xb2dgLekerxwcavX419rFjx8i+WaytJgZY1szo5MmTAICFbRWwXtQ7gvP7R6PH9EWJXb0lbC+6pcJGUmgMZImCgGBXg6KEEBrjsSQdiYGGaVCKaBlvdaJMn42j8GpicsqGVX1iTnmbKJ2ME0pXmeOYD4UEhI7Aq+lLI8tASZSJmPqTLAivrcnppHFJngNuHiROtSRrq8Hr6Rhv2nvApjRNiM0F2fXCq+km1zAnBZ05BkqZ0pLOqrYkBfRcxprXFJjWSoGiFpUZU9Yazbn0Ik01lwBhIVDO572e5ZxM3qgo5yIuz4CF2JibcBVXmzYlpAY576vNh9cK4uMxuhe/4WEgNrXO2PaVMG3She7Cq9NuIHbP7pPRscZK4vyF40F4Nbp54WskvLrqizFunX/QOhMLASxsrz5Xjx8/Hj2WxdoqYoBlzYxMactgrjoZ9MUYF/SOYW8v/IG7qvoYqV7UsGm57GOoCiz2hpjvhT/4h2WBUknI0MkIQDkuoIZFVSYciBPjaqucyro32FVtoJQ4G9dgGlqjCqBl2BR1Wyx1MPNqY2rnYiB+QWG35omo2k6nhpHAWi2hATEqa5fLyIulACgVN2/R2mZVg4YjrotwyvwpE3KTEGHX4E7h43izYXIjxt3oPWBd5cx72q9p6u88TXh1KwrooApeY3FCAEUCkIyKImrmo02GNmY4JR0oTZkHzRXBdZ5uDGR4PagWVeY1uFbejR3Iqp/ImMaMKWmOFFnHavuqs6qxvqrsbBq4VF+mX6vaICo5nsgYr5eGydztcnLhVQtEz1+qX1cjJVyj1SBu2ATUW+oIVOfygMa1sZNYid+smNu+ipMr4R0RAOCa3QfRFwqPDXdF4xblKorEneon95awTQo8pddA88Ji9ZlqEgUs1lYXAyxrZrSysgIAGMxrFKg+bAuoIMSuqj5WVFWes6u3jJ297tqO5bKPlXqbHCl0EGJXxj2sjqq4Xq9EUXQvoMtxgXK1aE6gvS7EWng1S2EkDbFVGW99YhSBE7hqn2QpiPXhNQS6Fl5NHOV/olC5Ddux6C0Kqm136tdH0nO38GpeB2JtmIHX1vOjAFUBoiyb8agYA6+OQVTnIs1AqXtxEzJ/asWE3E2amCDEdtbgJgA8ptMFrxsx/laB2I16TUN/5ynBa9WXoH92H8vJvLrwGoMNB14pAGrBq5EfJ4mMaujfa84B71iM+7v3GWPh1ZsD2deALgl25Wd6QyBo17PmmDFF+mpBYgQq3fWzQcMmx904BLETjefE0THIgtcsV+K+dy4i/m0NvJp2EmKFKS+uYkIQW86hqfrRNMSOF53zvw5ArADmdqyiKBSUEji2PE+Od83ug1goqhP0WBVBiP3GxfsBAFKoIMQ+ubeEQf26D0QDsaaEeDhM7JnHYm0RMcCyZkYGYOcG7QtXCmJdeAUACY1z+kstiHXh1cYREGvgVdVnP4EuxHbg1ci9hvTg1ciH2Ba8mj58iFX0ydUF1Ba8On35ENuCV6ePlomUA6/tuPaFQwte7RNqz92HV0o+vLbGdIHRhVd3PDfGh1c7iAOxFLza/pzJB2N8d5NuTPZaRApitjq8Gp1JELvRr6n/d54ivJLvNR9oKXjtxBCZV6pvIvPq/k7Cq5HrrBsqB/b/vQy8unOiYgilspCtOZljBms3Y/Jfl8561hwzJqIvMsNJQCW1nU7nb0VszUNCbO54RFw7Btnwmsq+duDVSLsxRD8+xLrw6sR0DJsceLWHUhBLrHltQawDr3aeBMS68GpEQew3Lt6PRdkslaIg1oVXIwOxRX0pNB4nUs8s1hYRAyxrZmTWEpLXTw7E+vBq5EIsBa82zoHY1bJowauRC7FBeAVsKXEIXu1zqyG2A6/ugAY+A/Bq+xJ1qW8oxoFYH17dPszFCQWv7TjRmESFyoalmVcYXs1FYQheW2NKScOrO56UYXg1MhCbKgl2QTcYI5MxLbCIAZLwADymrQKvRmcCxG7Wa2r+ztOG11g5cCrzamMiZcPu45GyYS1FHF6NYvBqY+o+fXh15+TGRKQLQWdfvTkB4czrJGZM5vVZlxmT01e0PNeBythesDZbHtlX1oXYYF/+eJF5VTHYeHg10gF4ddqF1jS8OjHWsImAVyMXYse+K7E73kpBwqt9Tg7EUvBq5EKsD69GLsRS8Go0EAIP3TcAAHzwgx+k585ibTFlFGewWFtD5uI/dE1bQGGnXMGiXCUBFqggtidp1+JWnNDQWmBcFh14tfMBoLWAGofBtJqwgEjFAHY9a1AGEhObrmfJgHCkLy3MOtz4xLUApKriYmuLhEa1F2ysO4U8eNDxsarxdNXXtAyZMhyQc42dks/RQNms7smn9PTMj3KkVR4EpnQ6bgZME15ja8CN1us2bAcT0DlxKcOmXAkBnTI+EgJqvkh+NmghoOeKqJmbFqjGi3SlhYCal0icTgBRmTHFDO0gBcp+3LDP7S89nkieT9QgfV7SElA9mV43mmPYNMF+sOuG11rJGJ0xngZ0gWTKR+ga5iM+GdCAKDQJr0ZKCSz0R0F4NRqrAhcPDpPwaiSFwnX9MVZzXixwCTFrdsQZWNbMSJqtDgLnhlNqDiu6j3N7J7Grt0TGnCzncGo8h4VihPkinMY8OZrDqdEAvaJEr6CvAoajHkbDHoTUEEVgUiMJMTTGGOHnJsYiaY4kygTgunGJKqBWtjQwniyBIhFTxWnbV3CNmNkqRxBlaXZOGsJsXRO5YBcaQNmsZQ31Zbe3iTpO1mOmLvzLvL5S0gaqo0HOhU1O2fG0QHHa7r5nujvxZmkrwiswVXjVg178vW7chhOmVGpQRD9jgBpee7Ku0ghkjgXsNjhpAyWR3FJG9WWTjY72FT9PmLjkWlxjtBR6+UXTT8psSsu6r9jrbjLaka5i2eB23PTgVfWRvCFgHJVjNyHK2l8pYe6L8XyVzZUr4T+i3ladxJdPhU2bnrTzJCQ0Hjh1bnS8Z+34GvpijEfH5wRjrumPMS962C7om/pG+y6owPX5z39+NI7F2ipigGXNjAzALqgunZ1Sc1jScyi1RAGNvb3jHYg9Wc7h+HgBCgKF0NjWWyUh9uRoDieHc9CoMrGDXhdiDbyaa2ZRqDDEalOqRV+cGHi1J1qhOydnA6VNDD2UMHu4Ig7CrT1cRbc/WTplw+bChKp8M/vBmpM/daGjvHWxiQtM2wcRIzSAsWqyAcQFrYVXFY4BgM52OiEA8PeDpfoKlTK3hpsQXmPj+VovxNqM7xaE2Emy0GcaxJ4t8GoU2se0T6x59ZRjoOTCKwDyCsiF11hffjkwCbEGXoXT9zTMkSJA6ZfxdiBWdGEyVgKeNGMijLHIOWVo2vBq/SACHyFq4PSlaYg1bsOmnxDEjucbL4vQeHpbCWGys0qQEPuknScxqEujRmURhNhn7fiazbwOdUFCrIFXACiECEJsHwLbt1VPfseOHfTkWawtJgZY1sxocXERAFAMBc6VK/ZxF16NfIh14dXGEBDrwquRD7E+vBp1ILbOvrryIbYDr7ahgdgOvNoY71cHXu14ZAyxN6sDqC14ddp9iO3Aayu2DvTh1Y1xLppa2Ve3DzfGh1fb0ABqB16JGAANvPp9+SDgw6vbn43ZQHilxgtprRDrj8sQuzW02fCaqQ2DVyMPVDvwSsTlGCh14JWM6cIrFQeA/Pu0INaD19YYazVjEl6MN8/QGlQLsQS82hjKhKszd2+8yNZErTllaKPg1cg/57Xg1ciDWBde3X58iHXh1cjPwrbg1U6iDbEuvBpREOvCq5EPsS68GlEQ26+f4HI9323btoHFmgUxwLJmRgZgV5Yl9hYa58oVEl6NXIgtIVvwamMciKXg1chArNKChFcjC7EGXomzrYHYILzaznS1LpaCVxtTf6Mch814bgwFr25fAuE1UQ7EBuHV7UsH4NXtT4ouvLbGqyA2CK821gAzAa9ujBBhePX7CsGrG6fSsLRuePXnFdOkEBsadytC7CSadYg9HfCaAaZJeBViffDq9hODVycux0ApBK8AbClxDF7dvoCEOVINkRS8+prIjImKcyA2te+q7qVhsrUNUmq81J6yEVj2tdHwamTOfSS8GtUQS8Gr24+BWApeTYyBWBJe7YQriKXg1ciFWApejYa6+l+g4NXIhdi+8wSXl6u5mussFmuriwGWNTPavn07AGBpSaKAwLxQGIiShFejAs2escEYoTHWEqtlL+pnsTrqYTQqIjRZSZfGtCl8thW1gVKWYUdC1nE45rFhTZYy+ipjHVXjiJIut2r60RBltxS6E+eX8VLjAYCKwCtQr2XVeZBXx0e11Zx9py2t0pCXE7OZmlVDq0m1nq1yfG02vOaaP8XgtY5Rc/F1sVoA5VzYAbndVxG/2pGAmiuSa0uByowp9Tcq5+LwqgVQDmQUOAHAmDFF4zL7UhG34VZcAoRjWVy/nxzgLGMuwaavKcCrkc6Ylxqk+xEaUAUNr24MJMLwWmt+cYjDp+LgOCoLzMlR1LAJAPbI1SC8GhVCYI9caD22vFI9YQZY1qyIAZY1MzJrM06cKHBKKyzpArvlMnYXp4LHHC0XcXi8HYtyiG0F/cF/dLiA48N5DGSJvgxfsJdKQmsBKcPrXdWoAIb1xUTgpCXH1VY5migTcyVKYbOq0fWsCcMmWaJy/430Y/vKWD9rjJ104FpVKA1hYFmGLxaE0hAjZbfiCfel6jllwmkR2hMi39gJUqRh2JQOxy6yDXTFLnhzITEH4DYCvDdyr9VJlPv3N9pK8G00JcOt6FY5RtOG19T2PKmYOi5pxmSyqlIE92zVwhg2pcdTg7SBUtmX0e1kjHL6sgAY6UsXwlagRMczZkyRP1G17U68L1WPl4S7AmT5citGInnucgE3ds4p475CVV9ThFfTV+zmq5pDMgYAxgu1YVPE2KlcVNBCQ6+E/4Dz21chpUap4m++q3YeAgB8dunSYMyNg8cgARwq62udQyV6/+EYBq8+gLmXPobBqw+g9x+PYe5xgUJI7JTVdj3DocDSUjXHc845JzoPFmuriAGWNTM677zzAACHj/SgAJQQkEJjj1zCZf3HOyB7tFzEgdGu2rRJYXux2oHYo8MFHB0u2JPHXDEmIXZ52MfqsLqrKQRIiFWjAliVgAa0qO/MehArx2jtBxtyJxZl7UrsHE6uZ3Uzr8TJ28Cra9hEXQwYeG3MkejxipFu5i5EGGLbi4i7fdXw2npuvhmTgVcLgQGI1Q3k2j58iHXhFaZEjujLLQmOQay/7pVaM9dZX0vN/TTA61rA7nRD7KTwarSVINb8/RP7oaZ02uC1mYA/oQZeQzH1Y0kzJgde7fiESZCFV/MY9boZeDXbrwUcd8u+bP1tggZKgwnNmADaJKpox4TAs2PGRPyp/G1pyDl1xiOH6/RPxRl4jcXklg2fLng1ogDVwCuAznpYVwZeTRwFseWiqvZ3BwAFEmINvBrtP0EbKF218xDm6kGWyz4JsTcOHsN8PeHxskb5Ewcx/6yH0f+Voyg+ugJ51xDFR1fQ//+OQjzzAYifPAhzOXTkaDW3wWBgK91YrK0uBljWzGjv3r0AgENPFDihmpOBFBp9obBHLlmIdeHVyIdYH16NfIhdHvaxtDKAds5+PsS68GpEQqxGp9TXh1gKXps+TUygbJi6jiNiWidyH16JOB9em/m0IdZkXztyINaH19ZzM2ZMPrzafjyIdeHVTsKDWA9e7aE+oFKQSEFsyLTJvaAOAedaMnCnG16ncayrSSF2rfBqtBUgNsMAaCbgtZlI8z0VU/+cNGMi4NXOozAQ2oVX279sj+fCq+3Hi2vBqxEBsS68hhQsvXX68uHVPu7NIVnGiy68Un358AqAzLCGbkS6cT68UjFBgyj/I/Q0w6uRC6gteDUiILYFr06cqxa82gHaEOvDK1BVefkQ68KrkQ+xLryKFY19rzuM7f99OeiYLEaA+IPjEN/9KHauDnD4SHVzfs+ePXlLE1isLSAGWNbMyADs4SM9jImzkcnGlhAdeDVyIVZBBMt2DMRS8GpkIFYr0YFXIxdiTekwJQOxMXi146bWvJpkglM6TMVoEYFXJ04oGl7t3GuIbZUOU5KiuiAg4LXpC83FaRACa4il4NXO28l2RYyWWhAbg05r7JTpOByTucDMAautAq/T7AM4u0ydQmDqPj5L8NpMKAyvbswkZkyx/VtNJjZSemz+nyl4tf3UcSS8GjkQG4JXNwubBE4ZhlfbX0ZfBjRD8Or2RcKrkQOxsfLkpr94KbCWGQZR5iN0i8CrkVABeDVyIJaE11qGMUl4tZOpIJaCVyMXYil4NVquX0gXXgHgvP/3OBb+bhT186ifFsQnVtD7fw9jVf92dWxd5cZizYIYYFkzoyc96UkoigKjocTxo/RZ9wm1iCU1h/nIwpRCKKyqHlbG8TPpallgZdgn4dVICCC1tkgLDVEKiJFIgqlImDFV/cXbm77ipk1CVQCbUmqD+iqo6is6XqkhS5W+CDeGTCmlYrSunIRz7ijngOJmmwhtVdOizYbBrfg65GTSpUjH5cQgE15zHImB8BpxR0l4BSq34VSMMWyKmjEJqPle1uugFtLmT+V82oypnCsqV+KYpEA5Px0zJtUX3f1YqXll9FUOMl6nXnj9sJVIg7DtK/WRnYBzo2nBq+5VX8nXPcewKcNECrpySo6OpwEtdRhejQYqCK9Gpap2TQjBq9FI91rwWhwsseN/LAOJqbba33scD99zDwDgoosuShzFYm0dMcCyZkb9fh/79u0DAOx/hD4TjnQPpZbYXqxgUQ7JmMdH23FwdQd6skS/oAnu5GiAU6sDSKnR65XBE854VECv1s7Egf8mMZLVulcgHFPW2VmBzl6xrbg6++rvydrpK5R5bY1XA6dA8ILPuBfHjD2EqrbUiYGuKDWkyZZKBC9oXdOm4AW5AkRZhtfEkh2Hx0tuheNuuZOAhGT21fQHACLx8Zvz3E6XW/I0IHaSua8XYlOv9SSa0lrWXGXDa5YrcTpuInjNMGzSQsSzoXPxGCPjEhwDs3IubcZkMqpZzrdSxM2YeqL+vA53VgFZBijmmDEZU6dMA6WY7NZBCfOnVIw2MYkbuRYAYzE1UMduhOqec1M1Emdeq1hfJoMbu5GrBrUrMcIVVEC97Q66+7+2NK8gpMbyqUEw5NxtSzh32xKUFvjS8QuCcdcs7kepBT69eqF9bMd7w2XDIYkR8NDf/i0A4NJLwwZRLNZWEwMsa6b05Cc/GQBw7LECfW97nEPlNuwf7wIAFFAkxD4+2o79KzuhdGUANV+MSIhVWkDV5cVCAEXRvWs6HhVQy726FgckxIqRRLEqbIwGgnvGtU7GxEWKXzpMXTCYvV5bMZS0d2InIFYotPeNJeek2+NFXIdbIiDWwGvbAMpfjFbDq9MPeXGoVLOPq7tezxuvBa9kPzW8ugAVgti1lPtOA2JzNU2IA2YHYjcCXkO/hx5bo7YkvFYTo392HjPwavum1qPOxWOM/C1uKIhtbW8TMGPyy4GDBkoOdFZ7UXdjdK8ZQ0u6L7+fULlulhlTz48h+unEBG4cOJ/TQUMq3zwrsDa59XoG3jqd7CX1Ueu9BhR46oz9Yqvx2hlhqi+3/FhoGmLVwKtACnwEVXvGVo1CBSC2hlcA0KUkIfbcbUvoF82N9dWSTttfs7gf86K6tjmlBhZiF/6Ovmmf0tcfewwAcMkll6zpeBbrdIgBljVTMncIH3t0gHmhLMQeKrfhodGe1p6wPsQ+PtqOgys7oJwzIAWxJvvqy4XYFrwaeRDbglcnxodYm3315QBjaN2rC7GhzGvQvZgaz5ooefBKzqkNr3Y8D2JFGSgJdiCWhFcbZxajefDq9NO68HXh1U6iDbHBzGurHwJe/TkZaZ3OvoZgba0Qu5bs61aE2InGm9QAagPhlXp8s+G1CkzHTBNe+8RFNWHYRMFoC+YC+676j4X2Z3Uhltyb1YNYai0rBW9UxtSHWBde7WMexIb68SE2y4wpZI6UY6DkPT/qJqP/OvjwSvXlw6uV91iw9Nb9qA28Bu75IAivvldSYA2x2xe1dtaHWAOvvvxztQuvti8fYh14tdP2INbAqy8/C+vCq5GBWHlq8nNCCeDB+lxoEgQs1iyIAZY1U7rqqqsAAA98bQ6FAOaFwlE134FXIxdix6rAmIhxIfbkaIATK3M2+9rpr1AoS9mFVyMHYjtZVSfGQKwogcLZVofsD3HTJgOxwfHQnIhbpcOh8XQAXt35y+okHRyvvkgy8Bo0iapfpyC82rjUerX6IpOCVztvD3JDSjkT+3NaD7zaMSeE2PWUDm81iJ30uZyONbE5a1mnqGx4zVn3Om14jZgoxeDVjhWBVzcGCMOrKxJejaSA7omoi3DLjCmj3JeCV9tWQ2ysHxdic9egRueTY6BUP79YhYx5PASvbl9BeEVzPgIy1o0i/RoInZF51WY8Gl7b44XnZCA2BK9mLAOxFLzavszHIgGvtqsaYkPwClRZWAOxFLwanVIDqG2Tfw49tLCAZSGwsLDAGVjWTIkBljVTuvbaawEAX39wDuMxkPKpACqIPVHO4/h4LhgjhcZq2cPyMMNlIiWByrSJynI6MVCALKd04auQND7KMW0SStPZWaqvDPBIxpS6ApgUAGgNkVir2uxhm7ggmrKx07rhFZgMAk/XuteN1CTPKXvd85ROb7lwOiWIzd7GIqd0OANes82fMiA3Ba+QgJrvRddUAgAEUM734n0JYLwYdy4GKkDKccgt58LOxVWMgJqLr6+146UgUIikGZMWQJlyGxa1UVFqTkXVV6r8NjVeyqPBjtfLhNeM9bo5Jkuql3BdrqWLjDnljNfXzc3qiIQWQXg1KvphLw6j3YNlHB8vBOHV6NFbdkbbKd27o3Y8vuoqFLku5izWFhADLGumdNFFF2HHjh0YjSQefmgO+8s5HBrvRF+UKAK7jj822o1HV3ehLxR6gZgjq4s4vLQArQUKoSElHTdc7aFcLQCpw3dxRxJi1aQ8AzFO5lXLeFyWaVPCuKHaUgeOaVMg0KyNFeGLHVNeXP0SitGtmNiFoQHPoDmL2S4nlpVSqLKqKgGxLmzGYlL9ADaLK4RY3955k26ns15Q2oiy3/X2mfucJnmdp/E8p5xZTan1PsrM/gdVZMRI2cBkLM7AayQmC14HveYzIxQq6syrFGHQFbWTcCwGjhFTQmpQmzFFrt9NVjXH0CgmM46//3crRtR9RZ6fjYl9nqOCV2OeFANPA3fB16A+PjWePT4FgRnAqXJci10Ijpo61dOKfCyUxqwpchNXDbR9HWKmTmquPq8th99UvfkRpNQ4cHxHMOb8hROYK8YYa4k7T1wRjNtdLOGr37Un6zVzdc/OCnqvueaayQ5ksU6zGGBZMyUhhM3C3nXvdjw02oORLlBAkRD72Gg3Hlo5B2NVnUQWihG29YYdkB0r2SobpiB2uNrDaKUHqPqkRUCsgVfTvZYauiDivHJfCmLtWtWkaZObfURQXdMmr93PvhIQKxQgh7o9HjGm0GiXDVMQS6yN7UCsv9crBbFmbWzHIInoKyOm5TpMxQAVvHoX8yTEpjKLa90LNnP7lTWNt1atte+NhMT1PN/TCa9GmeuvO/K3ygn0kwN3ncwr0dfE8BqSgVfXsMmfo4FXw92CiEEXXqkbZGogoAYOSAUAzjgEm7gsQyPK+KloA6AmoNIF09Dz82NC4yk/4xiAWP85d14DB17dx1L9hDQpvIYSnZ0MbjCuHUNBbDlox1AQa+A1Np6a0xW8Wq8IQUKsgVcAGI8lCbEGXo1OlV1vjt3FEnYXS9X2gHv7eOg7zglNrSXT/tnLLgMAXH/99YkjWKytJQZY1szpaU97GgDg81/YiZFzxqQgdqQLC69GEhoLxchC7JHVRRxf6ZYXuxDbgVfbmQengZOjduJCpk0uxPrwamM8YOyAItCBSpN97ci5kKoypsSFggOxHXh1x3PnrjQEtY2PC7GRtbH2QtOHV2dO7gW1cDOmVKzpq+xCpx/TgVc/xk4ysO7JN4GKaa3w6moSyNoMw6VJx5hk/mvNcm+20dQaNFHZMCX3fRLa59Vz0ibh1X+/hcqGnbh1wasHREHDJjNXD15tuwd5ncyr+Rd3INaCqz+cB7EWXv2+MgyNXNgx8NqJEe2fqb7c5xePceYdKpf1jwtAp5tJ7cCrmbcg4iNSRV6pL5VF9M9NwfJj16ypqF+HSAzgwasT40JsB15ruedyC64dt/72XF14NfIh1odXIzcLa8DVveb5/M/tw+PfuJi1D+xjz17AfcOqLPmmm25KHMFibS0xwLJmTs94xjMAAA9/qehcmxqInZcjPD7egf2r4TUhC8UIJ0dzOLy0EDZtqiFWa9GFVyOpgUIDpYAYhk8bWlbGSDHTJmOOlGXaFAJTI1H1ZUuHAzGVKUUspr5YomDZH88aQIWAEna9bqyv2F6PZk72wjq1jysQhldXIXh1x8wYTwhxZq5TzdVGAON6txPaSLBep5LwmrkHMYAwvLpKZV7NeNNa85rKvNafZ0nDpgC82rmIGpBCZcMOxLayrhF14NXvK2FoVMWE4bUVEwBTGyPS4xmIDcKrP6cUdAbg1R0vWnbsyILrGuDVTsc1awqprm5yS6fJvuqPBBJenb7kOAyvNmYkWllXMmy5QG9+RMKr0XhcdRCCV6DKwt554goLr77UvMQnf+cyPPKaXdCB11L1gce/exvu+4UPQGuNSy+9FOedd1548izWFhS9yRSLtYV1zTXXYHFxEUtLS3j8IYG9T26fDAooPDo6B4+s7oZKuU1kaDjsoRwmztAjCbkaH0uMRdYm4zn73AlVZVZTMSnTplwJjbQhkwKdMfVlsrWx7pSuDJ5S8yp1fZEdon2dBbjZIkqHu0NuQXidgSzkhmrazsubrRS8TtO1GEjDa4bbcH7ZsEA5l/h8FcA4FQNAzVWDBT/3RON6G/08E0A5J+IePaKCpNiaSqBdURKMERk37VCXwqY+hjPWehoAlInP2KzxChG/sYkEcPrjRaRzYDkXqDOvflWPLrtuzasA5FBAzcfWpGuMlvuY2xY3YjqxOodLtx+Jxkgv6+pLzUv835+/GrvevISn/+lD2P53qyhOapTbBU4+ew6HX7UN470FPv1nnwfQJAVYrFkSAyxr5tTr9fC0pz0Nd9xxB7722R72PrlLhSuqj7EuIIUCIFt7vxo9sboNx1bnUUgNQJFZ2JVhH8PlfnXtIXV9BiUmZda0iiaL6kugAkEtdVVSRFWqlhWYxrapaZUEC0AjcAGh0Zg2gc6wVtlenYjRdn9Zk9noXPwpQI5Uck5uebGWgr6IVHW5rwS0Cj03r7y4kOHtc+xYoC8i3b1eY0Y1Zg9aEb4gtfAqE1nYaZQPA1sz0zsJLOY4UAPVa7HWLOyk8LqVsq9VULrdVgdEXk/HYVQoHc7Cmn1eQ6/5RsCriaPezqLeKsfEBP511FyzdY0IUJdynXhDnz9ogEuLMAia0tTQ5z3QzqgK0J8tBlx1XcESvBdXZ3EF4jEpuQ7JqhBBiLVxIgz7Wor4OQiZTsPmSjSWWBXmNYhn6c1rIHT4ZrC7lY5QYUA1cXIkKudhal5mix8VvpGq+6q6fojsOrAwV13HlErgy0f34urdh8i4bcUQUmh84uRV+KbtXyFjTpQLKCFx+NztOPjDO3Hwh7sxn125CHfccQcA4Oabbw7Oi8Xaqprx29Kss1XPec5zAAAP3F1g6J21Hx2dg/3DqnS4EBpSKEiPzJ5Y3YZDy9swKqtjC6nR75Ud4yalBLRbOix09yQ7khBD519JdE+IfvZVUwZQvmmTWUvjj2fAtB6LMkjqZF9F92TuugnbUrBOTA2vzpzMXoch6eCcanh118/5/Rh4Nar3d+1ctFAmS5RxjZN9rS62iH78NbTUBVJJpHSS25OE6u42GV43M/u6lkxn9vPYBFjfivAay5qSpmbUXa9uHySU+NtodNa7byC8At1jfHit+/flwitAg5zytpEJmj95wBU2R2pee9oYqTteKMY1bAqZI+XEpOedAZNFdxsg0rRKimYexOc9MAG8Bp6THWtCeG0OJMbz9oGlbtqqfhdySd8Kb39auULEGHittXqqW7O8MDeClMpef6yMurmlbcUQ24ohenXp1clyDp84eVUnzsCr0VdH3dLgz61ehEcfHuCxxx7DYDDAs571rE4Mi7XVxQDLmkndeuutEELg8IPA4Sf6FmIfHZ2DB1b2YOyaO9UQ25OlBdmxlhZeXRWyMW5aGfYr4yZfLsSOJMSq7N6BdyBWjAW5xrTjUEzcfbfGHHWMLInyOA8Yg+tenQul1lY4zlidNU+BjEALYt3sq9+XnVMXXpu+UiAIC7LVAV334g7EBkqHWxBLwavfX0ruRXPILbg1gSnBa65mpXR4oyB2EqA+E+CVUmS/2BbEFoE9VZ3qhA2FV9vWfO/AqzOOkQ+vQH3TyzNiShkoAWHg6pojuQTUhdjgOtUWZOfNiVo/m2ug1J43/dz8jGyOWvBq5EHsRPAaGkfUJbxrgVd0M9o+vNo4RcQQN3ztvHpdeK0OFi2I9eEVAFCKFsQaePX15aN77c8GXHveuqGTZWM+eaJc6MArAJxScy2I/dzqRTil5nDRI/8cAPDMZz4TCwsLnfFZrK0uBljWTOrcc8/FDTfcAAB4+B+AFT3AKTWHE+V8C16NCqEtyB4ZLuDISvgDu5Aaq6MeVpf67eyrKwOxOlw+1oLYWDWp1Mk1raZMLWjI5AKjjownECyXAtBkAwQAraNrpEw/Pry6fbUuamJrwOqSWxEpA7bbEoTW2ZpxpIiue21BbHQdXB1DZV/9PqN7bZrnP821uBkgt9nwut51ptOG2DMZXk1MSKmKAl8heHW0KfBqYyLw6o5HwKudrxBQPRGEVxtXP+8s4PLh1c63gdj1GjFV/dXxEfMn7cTEVJk6xZ8blXXt9iOa76FQ87E6BXgFGnCNve90L/4aWOOnALyaGKHiMUCVhTXgGvz7KQHdVzS8GtWlxCF4Baos7JeP7m1lXSl94uRVFlx9eDU6pebwudWLLLwCwEc/+lEAVTKAxZpFMcCyZlbPfe5zAQAPfLL6/eHhuXh0dRdGpG9+pSdWt+Hx5e0oA67DE2kk2qXDhORYVGtaYzePSxF3E7aB6XahddJURKg68xKbU4ZJlFWqnBhIGzLZ9brhvkRJZ1XbQaL9PTpmDgTqfOObkCZZp3o2rHsNaZP3XT0dmsqa19wYIO+9K2X8ta8zrynpfgJK675S8KoFUM7H4VULgfG8jIOSqDKvqZiyL1AO4q+TruOSxlaFoLdtcfsq4jcRgQruFJXh8+P6CegUaTAFTEVNOkb1IvBq5pR9IyAjJqGcNb9+FVMwLitGJ8/Vuq+r64IQvNYaDXtBeHUVg1cAODpaxF2nLovG3LdyPr68coGF1+P7Ne69914URYHnPe95yTmwWFtRDLCsmdULX/hCSCnx+P3AiYMaI11gqHpVeXDg7DdWBUotUMjuulij5WEfw9V+BYShk9CwLh2uTZKC0rCmI8GLEe20h+4QG+OmyJ1fUWq7b11o6wNr2qTj45l5aRG+YBF1ObMWCF4AC6e8WMvA9hYakCarmiqLVIlSMqUaM6dY2aQB4diFuwvLOftvprSZTrizUjq8FmUB3oSv9SbcFJgYXkM3azIqGuCXygekjdtwZB/lLHidK+JLAYRAOd+rtsFJbMtSzhfhzwpU///lXAKkRAVS7vY0ZEy9tUssS2nXysaybgh/5rZiCq/KJRgj4plONJne2OtkoCxadWPALfHcmiqfcIx9vWMfqwZeI2/fHMC18BoytBJN+TEEoo78ZrwYnKpeddM3doNY93X13CNmTaKvIPoKWgkcO7EYjJvvjyEAfOHovmDMWBVQEDhVdvexN7pv5Xysql7rmmjPfa8HANxyyy3YvXt38FgWayuLAZY1szrvvPOs/fvn7pjHoeF220ZB7MGV7Ti80pwwCqk6ILs87GN5aQ5aAaIuExaF7oKsFu3NyYnzlRyJ1kbo9WEtibJaH9tq78R4+7SKwMWSv16VupDwYqjxZAnrOlzFdC+khInRjgmUdyFl4ZUwgomKgFg/+0pCrIFXyuDJzkl3t8KRIi/7F8lmBeHEB4MYWE0r+zprpcNAfvZ1I+DVaAMhdsMyr6F11/7/ELX23N8qp/NeFdA9d2EnvXdzFrwacHW7859KDa+ttZ1evxS8drJwDrya3zufgw68dh7z5tQ1K+o+Rf/zmDZ18mKoflJrPVGDq1OCTEGsC6923tScvKxjTgxpIEWAK/X8OmBKGSh5MeR7LmHWZLfbSYC5KtrjCU1DrIFXI0lsh2fh1cx7pXvjR/RVa05q3H3B5/tjC68AsDzqdyB2rAoLr0afOXVppy8Dr0aPDM+B1hof/vCHAQC3335794mwWDMiBljWTOtbvuVbAAD7PznE6rh9whhridWyufNosq+upNAtiC1L2br+F0I3IGsgdighhvQdfdvvqAZTgiV04gTulzyJ0JpW54JBlJou+XVjFL3vnwuxFl47FwSie1HhXVhYiDVb7RAxzXjm6svJvrbm3VyAW3j1wrSfrfLh1e2rdWAAVKTXHxnTvqBvD+ONE8xqUVeJXDqcHmsD4dVoA17jdcGrUukY/2ZMqIrBdf8O7fNqnr+BV+J/xwWKSeCVnLoDYT682hiz9jKSebVA48NrK0Y0MT682vm25xY2K3LnF4Zad360qZMf0wXRdozogKKZq3sMWQ7rQeyaY/zxMjLPPijG4kiTJfc9lyrRduHV78c5R6oA4LrnWtXTHXgFullYH14BAKVoQayFV09uFtaAqx+2POrbnw24Ki/KzcLet3J+B14BYKQKHLwXeOSRR7CwsIDbbrutOyEWa0bEAMuaaT33uc/F9u3bsfK4wvKXlzrtCgJjLbF/eUcr++qrkAoro15VOkyoBbF+9rUVWH93SocpadHNvpIxir4j3BpPtbffoWK0QDdD643VmjsZI+x+qqFyLHNxVd3JjpQuGmAOGTIBzcUzAa/unJpfMgyZUmtoc2MCY2XBCtAGrVl1Hd7MkujNgNcN0FQyr7nvxxi8uqEheG3FhJ2LDcQm4RWIwqvtLgKvNkamy4Z1EYZX8xmoeiIMr7WMoVGOWVEK3ipTp3CMNbqLZF4NxKaMn7Q080bWvGMxNlseixEZz1+EQbEJygfcKLzqOLzaqZfpscTYyboG4uSoBlcKXo3qUuIQvAJNFtbNulL6wtF9nayrr8+cuhRfW92LVdXrwKsd79PPBwC86EUvYvdh1kxr653xWawJtLCwgBe/+MUAgBN3HAvGDVUPo4Rxk9Yiev0vhIYeSYhR/EJCjLulw75kAl4nUs41cswt2UgDQunoBadQxBY2fkxZx6Q+XUTCiXMSKR2/KNcJh2MnLtsgJ6BsiGXlZ1+zDLfO4HW/uUqWn0bA1MYkUlxCQA3S62JVymm4VhpegfF8Al4FUA4EAtfslURjjhSTu24yGZcBXMnsZC/usmtjMoyfUvPWMu20C+Q9/5znltsPEI/Thci7Wo2B8gRzIvdfJ2LkMHEO62lgFDckk4XGiVPzyeGWRv0ovALAg0vnYqns7jNrNDyurPvwy172ssSILNbWFgMsa+b18pe/HACw9KUljA53qfDI6iKOrixAa4FSSSjijHNyZQ4ry4PoCVCtFlVJkAYgwndd7d5zsXNNJBtqVJXzolOy1hqrLvmNOS0Kk6FFoCTOxpjyQWRlTZIXwkIAAWMUoWGBMmxuVYOw6YeYk3D3e42UTooyEdPpeO0QGt1SxwZ5paFZ+3lusSzkeoFxUtfhzYDYKTohZ9/ISD2vHCdhA6YxwyZ3j+RQTL/X/J8FyvHVoNlyRwRKrpWTnY1tIVbOF1FXXi0rMI2bOjX7vEbNg8y2LSYrSMUUTZ+hOZlsYSwGcLKqCTBLmem1jJ8yYmKvZVaMbH4OjuesL47NKaU8CE7/H+miGS90o7YVE9uyrp6THIfH1b369B37uOlpaNFdjuNKFtX6IKUkDh3bTsa4lwr3HnsSGfP46jY8vroNYyXxwNKe4Hg3ffXlKMsSN9xwA6688srI5FmsrS8GWNbM69JLL8WznvUsQAOH/u9JrJbtW+xDVWDsZF+1Fh2IVVpAa9GwBHXuUqJ9wiIgVoy8zCrRT072VdbGTfbMFSvXSpgydY2buhdVnXW2xEWOUBpy5EAuAbHVWlzPAMq7AHHhFXZ9G/Hc/DW0InAX3t/zcg0mUQAa92I3rjNWYJ2tnbLuzqkTlHCXjelMgdi1guJGQuzpgFej4LrsjFJzH0xJ0xsn8xpam+7CKyUPXu3D3ntdEaXFFMQaeLXje2O78AoY8Gr368JrqB+AAFbqX9uLCZoQeQobNpl50xDrGzGF1va25pERk2UyFYhJidxuJzCnZF/+c6P8IIhzR3KsnJjQfNw5KRpiLbzWKlaJF8DAqzlmqZv2N/BqVJbdP4D/VFbG3X4MuJprnJWyG3Pfqb34ytE9+NM//VMAwHd8x3d058xizZgYYFlnhF796lcDAFbvPIKTx6SF2COrizi+Ot+JdyHWZl8d+RCrVgt6z1cPYoUHi9WD7b5ysq/BGAf0hOcWbA91xgvt5+peVFVrWqlsS3Ox0oJXfy4doxdirCKcjXWNn+xrqQOlyg7EtrKvfoxzsU6WDvsQGyov9o2iNtps6WyC2DWPtwEQezrh1ch/XlTm1Y8pfOrrQixZNuxBbBBeTUwAXn1R8ErJh1c7nJP9c+HVtjsQS8FrE+PMKVAy6sJoKCPb6SehBoL8eXu/E+tZfYilspM5Mf68s0ymIhnZVEwr3slyJuNSN2MzM6+U3CwsFVPdRO3OpzMnt59eF179GPR0B147MejCq9Hjx7c143WnDaCdhTXw6svNwt53ai9Wyj5ee/hbcfToUVxwwQV4/vOfH+idxZodMcCyzgjdfPPNuPrqq4GRwsonnsDSeIDVstfJvroyJcWlktDE2dRCrEB9tRQYvIZYMabt9Zu4vOyrW/Ib6qcBPTrEXuhEjZsqiA26HJuxssw8BISmXY7NWOYiLrgW1Vysag0xjsBiy9wpHhNd9zpJOXEuvE5DZzrEThEWo8qd01aAVyPzHouVDZsYH179dq3ja15riE1mXoFqL9jY66TT8Go+Y0LwarsKwKttrz9vKHh1Y5LGQG5MaC4ZMWbOdv/W0Ost0NkCJ9hfyvgpI8bdlzUVE51LRowxokqpk+UkY0QUXs37KGXolIxx5xSZjxwLC66hM0CxKiy4duDVjLPUgyx0EF4BYDwukve3V8a9VskwGVPfwP/q0nlYKfvQpcZ73vMeAMCrXvUq9HqJheAs1gyIAZZ1RkgIgde+9rUAgOEnHke5qnBgeQcOndqOMmLetDTsY3WFdh6u+jUgm4AXYSwQExPNyL6mhgIiWVNvLKEQXadk5hM1pTJ3qyMXglVMzsQThiXGSTWlLEOPzL5yM6apNb/TAtzNAuVpags6AGfPaUpb52yqeVfW/0je2llqn01Xrb1gQzGDvNdazck4VAignJNpd+NB/DMLdXY2bvwkoHo5Wb44UBkw9feQ9VU5IMfnbUymksZP/XRM1vrSzLLhqcRkreXN+HtkQneWEuc+IPO0LhAE15aid4vztDLq4evHzwnCKwA8vrwdnzr8ZCyNq8qyHx+/HI899hh27dqFl7zkJesan8XaKtqCVx0s1tr0j/7RP8Ill1wCrJQYfvIJjMoCw3GBcSmDEKuUhFIiygzlagGxGnfKlP7aVypmLOJb4gDtbXO8cjE3xpQOR7Oj5i50oB/AOZ/GHIEt5EYuCOsXMBZTuROrJi4QA6XqfsKZI2vuFLrQzTR3cksks/bZnEZ2dBqwlwNdm1XaO+nzWS8wbgQornNOU4NXIdLgmWrP6QMAzHY6oXJ91JnXREzLsCnyOpbz0m7DRc8bKAcyCRQpU6fKbbj6PAsBqrtXagxik9nSOhs8FZh0jaFCH0WmRDfymQ5ZfWmB+BWeNPOPzCnX0Ck2H+Q+//gNBzNWFpSnbgA4xmGhaqfmtdZ5MSuRF6luKk+Fb5YD1bSfcMqIfa2MetBaYDgO3wV6fHk7hmWBE6vVvrBaafze7/0eAOA7v/M7MT/fXVLFYs2iGGBZZ4yKomiysB89CCxXZx2lBcalxOqoF83GBrxNqtJhc9EVOlGryIWZHQDJGPIGrT+el8WlANVf+0rH6LYbIwGxLXdi0IDacTCmYkrXCdjpy4tx93ytLjIDJZAueBYyCI2tC13SlMlf1+vFUOtsiX462de1Quy01thuVXg1mlLWc6pa45ymCq9AfN9XF0yp+XrwKlTgQy1nL9h+OoY0bCLmZeC1ifHnnQ+v9rOlhke/HwOvAEiIdeHVPcaXb7LUyQ6Kas/YlIHU1IyYfHClXivHaTjUjwHc6HyILCf53HxYzHhulNYEr5RZkz8f4l+pUw4eMn1yTsbUeTsnpvNal+EnaVpKAk5XRj0LryE9vrzdwqur/9+pf4IHHngAO3fuxCte8Yrg8SzWrIkBlnVG6UUvehEuv/xy6OUSo4/ut4+r2rTJzcaGyofd6z2bffXlnEc2JPsaGY9SB1CJUmU/hoZl0b1IIEyZWtvx+BfIgojx5UBsC2SpC4WOKVPowr2J8SGgA7HBuxVOTExOTLB0eFKInTV4Xa/WAoy5sLhJYD11eLXzIP6GVFbVd+AmYjoQS8Gr939FwqsXk2/YlCgJXgu8Osc2/9tteLXTdgC1A69OPy7EhkyWLMTW8EqpZXy0DiMmP4b8LHUfC2UnZeDn0JwncSOO/M0mWu86KbwGYih3fVe5RlxUma+bhQ3GuFnYwOvoZ2GJe8utLKwBVx9eHz25y/5swNWH18Mn5vE7v/M7AIDv+Z7vwfbt9FY9LNYsigGWdUapKAr80A/9EABgcNejEMdXWu0uxJryYUr2es/NvvoyZ56MzOqas6/eeH5GtDWEqE7ilZlSYBr1nIXW4b3wDHzq8FhVX5GYepyocZN75lZEptMfC3WWNsfcierDvYjWOg4rZk/NWDZsq5QTny5tVim0HW+D4XVCbRi8GrnvvVhJTgtu3AAAijFJREFUsHkNIzEWYmOZ1xpQo5nX+v8madhUzykGr2Z9/prh1XaEILzaadubakjfVMssG05pGkZMJib13IPwavrxM4FEPxMZOlHU5faVu9411o8zXmx5SxKmVdqIS47RKgemJFReTPK1drKwoSmbLGws62rKiKmsq9GPHn8mDh48iL179/LWOawzTjN89cRi0Xr2s5+Nm266CaJUWPj4A512pQVOLs9heWlAlg8ZbVkvnXXOK3WxOJESFylNuVs8A5PnqpsJjJE4nWsSxWIlNBXTrgmz/aTMezq2P7Gks7P+OLonwzfsTEw/I42FtBmTlkAZcRKuxgPKuXiGTgtgPJdeh1oOkMz0lYN4P1pkzjllMoU8IybVRzo7uYlmTSngNP2k55OfdU2eX1JzyvgXqwA4fgc5JyZnLBMWC1WlSJYML68O8JUn9gbhFctj/MEf/AEA4Pu///sxNzeXNzkWa0bEAMs64ySEwBvf+EYAwOAL+1E8drwTo5SALgW0EkEgVMNA+bAjORSQw/hZK7t8uEycrE2JcYwF636qXxIxkYsDoTRkqaN3toUpKYyYmFTrbOu9ckPGTco1ZQqPlWPuZPdzjYwFpRA1gDJ9AVnbmUQzcakMo1vuO7WM3iZ8rE9rjNwtbCZ5bdZTQj3hljrrgtgkmDrrv2Nl6l6JfWeOBl6FqN6PVF8GXk0/gTJ9NagzrwpRw6bxfFFXjASqRWR8q5xqvAYoo9vl9FFlIGPb4fSqGBXZPcRm+2L9FIkY0WzdEzU+6tXtsZicfgzkpbKrqX7M2ydnrFTGNBdeYzeP6z5SFUkAopVN5vwVjan/lmIcv9kCUS0XSs0nauZUaxwxc1JlVS587MRiMGZ5dQClBIbD8Bv61V/bh+PHj+Oyyy7Dt3zLtyTnxGLNmhhgWWekrr/+etx+++0QABY+dB/GkROPVgGQjZUP24PjJ8fcGOGsNQ1dJFQ3fxuzJAoshT8WESe0bi4MRGA8dz4SdBmbezNaRvY3tA7FaF9sEzGVKVMAZHPMnUwf5ns08yuiBlD2WCmT2SshxHRKSlNzlgnwtv3IzQHZ9Wgj4PVM1pTWbCf3Tk5lcm0/dMx4voiutRzPizi81lnXKgbk51yVCfUylFRcUcMrIjFemWrIQMnNdHZiRL0Fjvs5SfXTq78yxlpXaa0ZXyTGSmU4635yS4vjcJvwRXDnk/G8moPC87GQGzBqcm9EkEZNfj/Ue96bT3BpjivCzEmVwsIrAKhx90VfXh1YeA3p2KkFnPrqCO9///sBAD/2Yz/G+76yzkht8SscFmvtetOb3oTt27ejf/A4Bv/wGMZl7PYyotnYtWqS7GtnSu45KmTw5J44A/24cWSMd6Fjsq+d+bQuCAJmSk42VigN4a2PbS5QRBMTNGVqxqLWovrmTii9bKYLsnCyr+RYzgvpb5vjgiwV0+oqAxRsH+tYX5sNfxvwEb/VwRhYWxZ2wuyrHWotWdhJsq/BmMTNIDjZ10iMzb76KtsxatBNO/oZVgpeTYybdY3Caw2uHRdcB8RM1tUHHRdIdK/bDrSzsKGsYqufwHpOGyMccPVj3I+MXgAYPdMnsh/34yk0Z/f1CtyYbM0n8CfwDZ1C4JuaT7tPQd90dd4+Fly9mBZ8ht42zr97aI1uKyaQQXezsKF+WlnYwHxysrCuDLimSoaVElF4Pb40j3IM/KPPnoTWGi984QvxjGc8Y6K5sFizohm4EmGx1qY9e/bgB37gBwAAOz5xH9TxEqvDHpaXBxgP6TOYycaqlemUD0+afe0c7txBDmZG3Jjo+jUv+0q0awFQzsN2PuakHlsK5JYUB+bcKimOZZbMJ1TgeUVLik0f7vdYXLSckYDYmDZjm5jTAbFbuXTY1yQQu0Z4tUNNArHrgVdb2i7i2Xqt26XDvkwpsV86bKZoxqlL+23pcKefBlBjmVfoCUqGqT7MR4VMrAsVRNaViFG9eMZQm34SJku68LKukfms26wJGVlXM2ZqrIy3e7YbceoUmLPelYJbX7F2p1oovOSljomc1s35M9qPu6VeqJ+MLOz4VL+TdfV1/ORCMut6fGnefo3HEv9+2zPwxS9+EYuLi3jTm96UngiLNaNigGWd0XrZy16Gq6++GnJ1jB1/ey+UEhiPCqhRbKETqhKf1Ekop3w4U7G1PlmmS4E77t2+chw2kb5Y0PGxKpjOuKjP2hZmnf2kQDlXmTAlUjA85fFmTmdz6fA0n1POTZnUXq+RGAOxqpfYBkcBqi+jVxPlXPp5l/0AvNoJ5RkxqfDyQgB1BjcClLafnJiUyVLuWBlmTTn95Bg6ZW8lk4qZArzaPmIxGXCbta2PSD+vnH6AjPaMU40YymTWtVzqJbOuKyfnMB5LjMcS8tQq3vWudwGojJvOO++89ERYrBkVAyzrjFZRFPhX/+pfQUqJxS/vx/xXD1Ynl7GAHhbQ0bJiAcTKiqdg5+vu/RqCWFGiNngKj5dnzOSU80VipBkrAaidPWMpFfEsEWAuchIdhdbFtiaVkY1dV0bPKUGOOR27WbKYUtnMadlgz8q+sL7WfcNhgtPbOjPmWeufs1y0M+ac4zpc1P1EY+qMabBKQkD30/Mp5+Lb4IznZTKbZzOvkT9DOXAAIxTTr7K8ZZ+ekM2sShEFXWuglDCGikKRyDR0qucTi1GFiH7+A3UfKbf3FAzW7ZOsrQ3OJfH5l5XhNV3EbvCapSYxo6Z6ztHMaD2WjJg5mb6iZk458EqsgW11MZLQo/gdgtFyH6PlPrTpS2t8x71jnDhxAldffTVvm8M648UAyzrjdd111+E1r3kNAGDX33wJcmVYNRiQ9SBWDwuIobdYyDspyaGAHMXHleN0jO/KT7n0tw2eQjCItDGT6StWRqZ1e6zknejY3ov1BZUEUaLYztCSLsX+OlvCpdiuj3XNjch+HPAMgayZTy7onu59YLOy11OE12mUD0+amd7MvazWCLEbAq+h5+2DKeU6XDglwSE47fea/yWqjxpeDQiT+zijhtdC1DHddh9eqaqMTtkwMWUDr9XcaPgp+87nlUAHYi281q9NCGJbpbyhz7aEEVNrXWysH3c+xHtEywpem9+pGA8WA/Px+6ViWueNQD9Z610Tmghec/uhjJrMXM2pgfp38IE8BcKhGG/pjVzuPklRiha86qVurbseyerGeZ11HZ4adGIMuGqnr4V7H8Mdd9yBXq+Ht7zlLWzcxDrjxQDLOiv0hje8AZdffjmK5SHO+egX2hdtfjZWwZ48rPxsrBJZ7sNrNYWKlxSn78Yn75I7F1+N6VKVfe2M5ZSBVZlen7BrYxZ7cm+DJwmxWneAIQSx/ljRT60QxPp9+JBKXaB35huIceLItZBrgdgUuG3GGltXpwNejdZkkrTG+U74um5q5rXwYlLwGohrwSsR48Nr9WAXYl14NX24EBvKvLoQG1zz6kzZhddmju3fW/BqB2rHu7BIxQAg16H6GVZqPWsrxodXE+OZNVHz6Roo0cBK/WwfSzxH8jHiXEE5LWeVDEfbA/DqmTnRN1cz+nHDDbjGppQB5NE5EXOzXZf+790OWjBrsq7+tYcT08m6mmOfKHHJ3z0IoCodfspTnhKZLIt1ZogBlnVWaDAY4C1veQuKosC2B/dj8YFH2wGBbGxHRDZ2o5TaM91cqKTch7UIgSfa2Vgn+0qOJYCoeVOdjSW3LDDgGSsphsmumIxO3Nwp5E7cglg3+0r1kyjFzC45znGMjRrYZGTfJtW0sq9bwXV4IpOkdc43E2I3HF7d5+zDKxFHwqtpNzEUvDoxJLzamAZiO/DqzWWisuFoTBhUzOMkvNZSTpkvCYOiycIGTZTM8d4WOO1+qrjOVjpeP2ac0E3IJjtMz7cVmzDEan0nj29iojc6UzdD67kE5+MaLCW0XnMpcx6MrZt190nPGi8FromPCz/rSnbjZV0pUVnX6mCN7/jqKZw8eRLXXnstXv3qV8cnxGKdIdoCVyYs1ubommuuwete9zoAwJ6/+xx6J051g8YCYizj2VUtos7BuZIl0lvslBE4RX2RkwDdaPmU045EyXBWSTHoMkFzvL0oS712GQY10Qu8nEysac+J2QxtBVDcKE3D1GqLaU3b5/jKybzG3n/u/snJdeRxoyVoDRSChldHQXit56FSZkxoXICDEpWxUXTtqKjNoRJgVc6l14bGHICrbXtEMgtXDkQ046fNa5P4O6le3nrXaHvW8g+kwTQnQzmlf+2pOSOnsq5A8nnLUfrvndyBAHTWtdU+EnTW1Y1ZlWTW1ej/W3gyPvnJT9qb9Fw6zDpbdAZfMbFYXX3v934vbrjhBsjRGOd99NNASW3AWoPjOra/kWMBOUxMxrgYx2C4XitabX+z9gvm1MVBa01q6NpUaQilo+6T7jrc5EVE1kVY6Gqwfj1SF+31diLh7IBjuJSCrAzYiGblcveFnRYwTwOIz2SoDmmrwHbuzRXzvoxtR5WAUgDQ/SI5nhoU0QoMVa879ZcitPqoY4KfrwZeE089CcoiD5SrtbD0YFX2VtSQG56Q7tV71wZiTAVKEsBSDrgyI8aCafp9nJxPDgSn2nPOBUjchDUxiW3iUnPK3kYotkV3fcM4dmNZKAGhBORyBExH1c3nFLxCIQivg4NH8Nu//dsAgB/90R/FZZddFp4Ui3WG6Sy8OmGdzer1evi3//bfYufOnZh74hjO+ft7grGiBOS4e9Ks9n+tYwx8+ifftVRv5pzA1wCx1drWFDxVX1EDDxNXtyfNm2L9mLhCdoBBaNjS4BTEVgdE2t21fSmIBWh4abVLGmSdmKzS0pTWA8KtftbxEb/Ze77GNMlrup7S6WnDa+z/NXZDxH/fU39zF15j/TilxaGyfAuvoZJ7Aai5AhDVjSw57q5NV31h14IKpUmINZlMIPBZ5sFrCGqUUzYcMiSypbwC9L6wwvvy5MKrjSekeyIKRhZeTRs1X+k9Hopx505JZMTkKgOSk8dnwiuAvIqmiAmT/ZW6J53KImcqeL53Y4xXhqYzsGIkGngFICizp1Vp4TUkebzE0/7+fpRliRe84AV46UtfOtFzYbFmXQywrLNO559/Pt7ylrcAAHbe+zUsfvVAyyihJSIbKzTx+xRKis14yTU1zoWfLHX0TrDpc5L9alsQm7iIaV0UaMK8yT+k7F4gVxd4Xqzy2lPZKL9NaRIeWhCr6ZjOXMiY+EenEKINsrnZ13Yn8WNyJeTkMDqr8Gq0SVsHZZURr+H9Q8p9DxHwKvz3vAevZi4+xPqZV6G8/1FRZV5bnwVuFx68kjFow6tpb30uUZlXYnmE8te8ej9T61ApQyL/s63l9uvDq3ncy7C68OrHVDfoPHil5pLzVghAevR35GVhScVAmOiyczOCeH1zMqwTi5qL969PgatMLN3p9JlxjjdZ12iMAVf339S79rDgGrJuWCkgliW+++ApHDhwABdddBF+8id/cjo3TlmsGRIDLOus1K233mrNDvZ88m70j5wKQyzC2dhWTMbd2WwZcA7AqS0pTq1/XevwLpyKarxO1qVuMyXF1AnersUKXfy6cRHYsVldmyUKZKTc7UNCW4i4JcUhAMkBr1TpJqaQjaXAfM19nWUf95NC7Bphe2KIzcmapm7WBPqwEEvBqzMX8/8TKht2lwJ04BXO50EIXk1M/fnVgVdnvkKBhlc73+bHDryakLqs1s26tgdysrChG3PS7LdKw6s91oxJwCtgPjsbcCWfk/S+xxSKybnRmPOW9mE1lXlN9TVJ1tU/fJKPt8QY0axrxjhFvcZ10qwr2e5lXcmYjKyrWCmAscAv7NyHv/3bv7UVZdu2bUs9HRbrjNNZdkXDYjX6wR/8Qdx4442QozH2/u2dkEtjyFMFuX8bgDZUBs6MKefgSSQUgoZI01SsxNjPhoQ7ySgpFoh+4liIjQCBC7HhuSQAwHa2xuzZZss8l2m8F3Igdtazr2vROue65kwspVT5eE4/Gf8D0TWvdSkxBa9NTH3zioBXNya2VzRQgW5qzavQYXitAhqIDU7FtMdeFrOONfYn6IsgvLb6ic0l8Vlo+kjGTPPfIwdOU+3rgFcAWWBpbnhEu5nGR0+5cVlXKw3IVVHtOx/JuhZHexZeFx7dj//8n/8zAODNb34zrrnmmsxnxGKdWWKAZZ216vV6+Hf/7t9h79696J84ifM+cRfECJCjbllPS6b0LXKWNGXGIZiV42qcdLlwOmbdGd/EGMl1sUZJQyUApc67wEntZiQD2SUboKPtjWFVpI9cJ+McTQPmprU+Mwao08zSTgO4N+sGwmbsq5u77U503Wz8Bo6W4eysO4buxTM9Jia4ZlYIqEF8HC2E3cYmPE6V9YxuA1ZU8Bmrfsla46gTsG36id1kk4ia2JkYlRgHqXFynk/dT1Q6s4w4FpL7rxGLm1ZlUmoKua9bQva8HYVXQK6GY5qb3YEOdOWnITSAyDKgYkVCjgQwFugdP4En3/05aK3x8pe/HC972cuSz4XFOlPFAMs6q7Vnzx780i/9Eubm5rCw/yB2feEL1mFQjiL7txlALQNnTJ2AWLctdZc3pzQ5dBJVoEt/16rAyyEUIMYqeQde1BmZ6kI8No4gP52Eu6dlKMvkmjvFQNcaTQXa/TWHsbnmXCQGTaQmKHXNcUvO0WaVE59OiJ30Oa5jrhOVilN7F1edND+H1mZH3msWXt0yemIM3atihNbVDSUiRvVl1R+1jryGVwNg1FZgBl7NXEhX4hpeIUB/fvmQF/jzZFWJaCLW68NuvxKKccE1EpMs6Z0ge7hmGMsFxtS5ZYJ/iaDBoPsxut6Pg1RWu9aka1xt9xkVVFVlVDWgCDgIG98M8qZLnXW18BpQsSJRrDRb+onhELd84ctYWlrCTTfdhB/5kR/Jek4s1pkqBljWWa9rrrkGP/VTPwUA2HH/fVh4+MEGPmMgW5/4k9lYFc/GtgwicmJCotqnWNLcTCbwsE7HtA9oQ6zw17YaiPU/pSiDp+Q4XozvYByLcftJjeOpU1q6FvjMMZpai3zA2yioPR0Qu9bnsoa5ZsFrZy2zircD7edMwWsAUJsxvHJjB17tQ8R73MKreci5AebDK1BVM7gQ68Mr+bnlwmsd04KOQIbSz9RmAZ43tt8vBa4dY6aUEZPpV3i/u8qY6zSyhxuWMV3Lv/E0+gCS4N953dYwziTgGlxCVKJj+ujPy4BraDwXXG0/SuHlDx/Eww8/jPPPPx9vfetb0e/3c54Wi3XGigGWxQLwghe8AK9//esBALs+/xnMHToAAC2QXXM21u0nF2QDWk82dq2qsqv+g0hfkK0BYkloDGRj7SFCtEuKQ1uOmAtqv90Fg0kglcqk5WZirYnUad7y5UzMxK73OU0w1zXBqx0nc9/fWObVVCOESocdUycfXq3MTSMCXs0YLYilwFI1VREuvLaehoFPD16bPmqIDcFrbVpn5xF62XTgZ+I4C6+dwZyYUMmwcNqp9bci8LM7F+d5rhleMzLQnTLijT5/5GaACXXgLwGu64X+3KxrLriuN+va6UNrvH60jLvuugsLCwv4pV/6JezevTvxrFisM18MsCxWrTe84Q24/fbbIbTGOXffif6xI7bNlhWPA+u1nGxsBbL0GKm1sSYmJxsbcyme5poj63hMNqYOrr6E1lWJMRkj0jCWgFjAuUgLzrW6yA/uB+tCbAxiMiE3y9hnvZoWxG4GyG7GOlNgfTcFjDLmui54nUQ5VQaxUnmlw/AKA4aahlcjrZPrXsUYQXgVzucjBa/NODS8tvoqM6Al8flnoTTRT2y9q10vG+knZSxl+5kku0gGYbKS4Vj7eqSm0IfRpFnXCSXHE2ZdQzExcEUbXHOyrr523PNFfOhDH0JRFHjrW9+Kq666Kj5pFussEQMsi1VLSon/5//5f/CsZz0Loixxzt9/AsWpk7bdQmwpwlvqtMqKI4MlYvKs+6usRhKGN1prKOMjQ3Kdg2OfWqmLfa3jzs6b5Xqbq63ggryVlPt6bALEbsoNimqgeLNMvOcLSa91dRW7sWMUyIzaeRSBta5eHymn4Nj6RT8LS8dkfu6lMnsJs6Z1O+5mKvlcFMI3GE0fKv66+Xubr2keSM8j+28Xe111Gl6zwDTxXrW7DQQGk6P01npylADXVYFiVQQBeNvX7seO+78CAPjX//pf45ZbbolPmsU6i8QAy2I56vf7+IVf+AVcffXVKIZDnPupOyBXV9pBBlJja11QtwUg1c1IZF1YhGJ0E7cWmS101gW6xsApOlD1LXnXPAag7hDJ7SUSF/W52bOoS/EUPj7Ptr1ZNysLu0lKQmzUUTi9j7DNsKeMn0LtdYzQGgj8j+qehBaAjPwP676s1+/RMXaLm2AJawOEIVM5C8exzGnMFArOZ+U6Klx0zmfVOjPArbjQENqZa0gJeK322Y1/vmf7L6SUmd0NnTOzx0Dk759bDhxrT7kHw9lBIJR1HYkKXiNjFat1NVcgZvHBR7D7i58HAPzzf/7P8a3f+q3xibNYZ5nOsqsnFiutxcVF/Mqv/Ar27duH3vISzr3zDojhkIytyorjJ+UkpKqMmNjFgQOxIcfj2LHW5XCtEJx7gWOGpC7+6n0nm04z4NP3INK6upB315hOCrGOy3HWXCiI3SzDIWA2gXA9c54kQ75JpcRrglj/fZMyZKIkRJM1Ne99X0UzDgU6uudkXpUmIVb3pQVH6v/c3Z9VaN0BVLfUNvQ51sp2ajoL26rQoJaf+75YkRuHIU1r65qsPieBSio2B14Tn81ZngutPgOBKXDV3u+JcZJ9UH//nKxrBrzGzpc5298ZcA2NZbOukQzw4kP7seeLn4bWGi972cvw2te+Nj5xFussFAMsi0Voz549+I3f+A3s2bMH/ZPHsefOj0OuVBCr+hq65wTrDJCNZGNtHwmQjcKwc9KNgmxCk8LoWtWpzKLGzYXY0KdYLsR2HGInhAkCYpNQ0zGSItahnsnlw2uB2LWUd28ViHUVytx7jsGd9c2qfYOHMltqqSDWvTqA2oJXO4YHnw68Vg+0M6guvLox9kd3nagj6ZlCpVxkqeUFbhYuuJzDEQlr3lyjyikZzn0brAMqUZ9LcuC106/z86TwGlRG1jU2Rha8rqOPXHCNZV3luL6pEjk/p7KuLrgaeNUCUHNNh8WKwMIjB7H3i3ehLEu88IUvxI/92I9Ntk0Xi3WWiAGWxQro4osvxm/91m/hnHPOQf/EMZx71ydQLI0hFOi1YDXIJrOx9fGqRwTlZGwnANlYe0ybsnYWE5QUaw1BbT0SyMZa+RAbM3hKKdaHlJtfUjyL2VdXZ5ipU3wOExwfMzUzjsKhdvM/QsErmioFEl5rmSxsB15NH/V6WhJe0WRhQ/DqglNwnamThQ2ujTeVI7HqaZ0Ha1nwmlLOnzgHGhPwGjLVE/X6/vWUDLder5Ric804z0ycdSWOn2q5cARezU0DX2rQBtcYvIZMF3VRgWuxIjB4/BDO/8LfYzQa4XnPex7e8pa3oCiK+JNgsc5SMcCyWBFddtll+M3f/E3s3LkT/eNHsPvuOyBXSshRBFTL2lwpsk6n+iE8bnUy1MH1Meb4oKlKrPTMPJ5RXrZZ2dh1maEY19/Qha6MAIHfzxr2emWtQ7lguN7XfSuYOuVCbOy9qnXcbMnf35hSDIAB+zyjpmoa8f9ZTcNraxoqDY4pY7eY4ZMZI+lIvN5/6ZybgrkwlgGvwT5U/DPbut8nspUx2fZ1ZV0zPBfWCb85WVctEQfX0oHXxDjBrXOGiJYLF6sVvIoSGDzxBC689y4Mh0Pceuut+Lmf+zn0etRdbhaLBTDAslhJXXHFFfiN3/gNbN++HYPjh7H7Hz4OORxFS4a1rO6sinEEZFWdzQhdcJi74SGjB5NcDG3Loye4WFjnBUXqWBEwbmmFTQFic8qOY1uFVC7HmcAbnU4aEFgTKAZ/m+lMvB7l3hxJuGS31or7yqkCEAJiFDFs6sX7UL3KWVWOwvPUMmy0k3XDyhRWRD43TMYx3I6NrzbJyQLmtEfmarOqseea4bOQNGrK6QOJPjQSf5Pw+c72PY2sa6yP2PZzqMHVnHNDJk3jyJKhGlzlqKqyCo0lh81c+kcO4cJ7PoXl5WU861nPws///M+j3++HJ8lisRhgWawcXXPNNfj1X//1CmKPHcbOz38MYrhqTR38E5lZ42nv0AZA1pzwgyDrZkqDpcnmAicGspklW6n2NVzsmX0mc7RmiHVLjDOydVoGslDuPFPtCQkh1rd2Kbn35xmQDZ7kOWwFiF1rFrZlQJRKDSX68A3PjNy9YANjGDgNZfLMfrEVoHb7qMqGzRj0NM0+rxTIGHjVQrTKhFtyADeYTUxtG+N8Vq3ncy96rPOZGjKMylpnGoVGnYDbCeA1NM9ck8GI/PW13XYdh9eMc0sa9OPPxcBibB/2ScC185o44GrbiStsOWzgFQAGT+zH+V+8E8vLy7j55pvxS7/0S5ibm6MnwGKxrBhgWaxMXX/99fj3//7fY9euXeifPIod9/wtxOpKtRVNAGQBwDVoCkIsAbKqEI1ZVCobi+budmztq9/WWYu70dnYDEW23gvLf00ywTG592XKKCdDE0GsD1g5EHsmgGyu/Nff/X2LZGKzDJ2o9dytdh1v9yW9Na9Kd8YwcGq7HMXb/ddT99ol9lQW1sCrnZYDqC14dfpoicjOSm8PWx9eSfdhN2SNn1ci1kfihmD21jQ58BpsT4xBAZ3/tsotGQ6152REDbjG4DVnDBMnquqmzjxjr0WJKIi3sq61lJMAjYJr/Rxa4EqN4YCruQ7oHXsE533xUxgOh7jtttvwy7/8y5ifn6c7YLFYLTHAslgT6Oqrr8bb3vY2nHfeeegtn8DOL30UcnXJQmoWyNbZWF3UGY1arRIsDXTWuDoQGgJZC7GZ2djqopLKNCZeiDVmYyfRutem5axpRSbE5kBiJLO27kzsmZiNXeucDcBQoLgZzs2TloAHTYgiFQNaN+ME2pPbTjnz7MAp6qxYDbF0e5OFVf1AxYJ7we/BK9BkYSl4rRocyA2UFrufpaR5kfM8Q1A4aZlvNKOYC6+p9iB46nx4TbXHAHoK8Bpv37isqzkvTpJ1pRQrFzZjhMBV9dHJupJjEOAKAINDX8e5X74L4/EYL3jBC/DWt74Vg8GA7oTFYnXEAMtiTajLLrsMb3/727Fv3z4Uq6ew40sfRbF0vGp0QBaifRfXbY9tq+NmY4PbQ3gg2j6+uXDQQnTdjv3jQxf9iQstG7OBshCbBLhImxBkRqo1jsyD3fgcZBSghJlHTDEX4jMRYteq9ZYTb1Yp8XpMwTJMoYTS8XWvteNwaByhdbQdWncyr+3jqywsBa9G5rMwZMgk6pt1UcOngPOubS8T4JhzQw6JjKLzuRmeZ3ysDS8Z1on2rDnE4fW0ZF1DcwzEqH4i66rXuc4VzXk+NEY5qMHWX3OrNeYf/Qp23F9tlfOt3/qt+Nmf/Vk2bGKxJhQDLIu1Bl144YV4+9vfjksvvRTFcBk7v/RR9I4fagIMqIbu/lqQpe9QuyfwaDY1ckFjLviCFxwtkI1cHCbu5tu+Qk1CJI1hYsqG2Jhy9oRNtedALpf8zo42w9QpBqGJGx5J5RqXleExdCEgxuHXQWhkGbClTJlSbsIxU52s9pQ5UIZyHNljcDvJWlSyPWLoB9TAFYO6xF6m2etlY0qBp6o/r2OZ3wTAJyE+43Wwf49Ae2wpTrJcGAEwdduH9U4E/hpvrbH44Oew7eufBwC84hWvwL/5N/+Gt8phsdYgBlgWa43au3cv3vnOd+LGG2+EKEfYce8dGDzxcBNgIbbaFzF5QiVOyFpWXyGIbbUTFydNSXFif0Adz3LY40gQ1uE2IJldmUixctpUqa1pz4mJtfvrDV2ZtlC2yRg7xSB2kr1gO+PPECBvBTfmtULsNF/jDNMmss1shxOqLCiMIRPdvy4EjGFTcGq98PGAU2YZcCQ2N5+CbsKGwUN/hlTWM6dKxAyVmYWdeIwE3KbKdUVZV9tkwGtwjDIxh9z1siFpBCuGOmOE2nOzz5H+s8qFA6+3W07sr6E1MuAabB9llgsrAl5ViR33fgoL++8HALzxjW/Ej/7oj0JOY/9wFussFP/nsFjr0M6dO/Gbv/mbeN7zngehFbbf/ynMP/Jle9Gpe9VFIDQNstoYNekAyDrrYK0RlNOuBZq1aYksgC1NTlyohUC2BbHuHKSoniPRtmHK2C4n2k5Bplv2GYNUtw9KUiaP31CIBc5uiJ00U78BmdjWmue1ZFlj7w8XXk3/PsQW3vuPyrK6rsajbipJ90TjFkw4Erv7vFKZKHd9PXnBn/oz6fbPnTH8m3Wp99Ja3moZ0LuukuIaXGOuuNI9J/jP2YG24BjrXC+bA67J847p3/d1QHNzda3lwkAGwHvlxP4c/HLhTrsDrkJ1lwa1wJVo7y0N8YLVBzE4+gh6vR5+9md/Fq95zWvW543AYp3lEjrLMpHFYsWklMI73vEO/Mmf/AkAYPW8y7F06TdA92R98vOvPGrwk1V2Qg5BtFffxRgoRu3mxhSlvsih+q9jRAkUXru5uNSiOunLce2A3OmjysCIcTuL0pT11t9KTc7B/qh0dO9JoXS8lDHWXm/T05m/71BLbT3ibPFDbk3ibgFEXSCntghSKtquXbMeMsB3FlnDx/VWyHSmNE3gXutFYe5Ng8Rcgxel7uNU1sUtCabGcG68kIZKbhlir5tC0v3mMZN9dftWA6fdwKttB8o5p92BVyPVE9aUjjKHU0UVY/rzpQq0XNc7Eo5jeuAtrYv438YHE2qMJjjd3nF1d1+yTHgNHS8jVTnV8TSwuTc8zTxb7UWkXTjZx8D8zd8o1L/rudB5DYTzHgCRdRX1TV03M+/Pv9d+Dew4jsqB1+59jJb1LjXGQCzYPkq0D+PtxRCQKydww4l78dBDD2Hbtm34hV/4BTzzmc8Ei8VanxhgWawp6o//+I/xjne8A1prjLefh5NX3ALIuWCJnYFEWepuyZF7MWTuxHuyJXqlptfjOBkSfzsKd22pUASA+sdTEGzCQsfXfWwowAKAUl2AtRPVYYB12kmAdY8PgWAOxJo48vAIIANtiF3rx/XZArHrcnvOANi1wmsTEDddEqLKngbHl9ChdtO3n32tpYUAerILr6ZdCuh+0YVX014IqL4k4dX0X86LoLO5FkA5EMHMqxaAGiAMfQZgY/d7pgWwkTm4hk/xwSLDREqGzU3JIKTLeNbVLCkJQ36k3QBsBL51L96/6qFdreP1r3qiyZYH2wPHo3qPhMDVjG//RsRHuuo3jwfbA+Br2wPga1TOVfDaP3oA5x/8LE6ePIknPelJ+JVf+RVcccUV9EEsFmsicQkxizVFvfKVr8Qv/uIvYmFhAb2Tj2Pnlz5SORSHrqs0wqVvGtELCSBeNtXqg0ro1MdWJVygAVg7c/T3X3TGjhpBmT4SF3zJC8K1ar3GS7nrZkNrEWtgCd0rTENP/TGdgtdZgNSYZn3+09B6XYsD8ApU/58heK3aicyr2650EF7tFALw2nQSbqo6WF97cK1tfWzMDKoyrIqPIcbxz1xrxBRoN5UuwePHcXhNlQxb08DQ+In2lEFS8nizxCXQRzW/8Gtky3iD7TpZLmy9JyLuwdH2xJ6xImHwJBRQrGrM7b8fOx74O5w8eRI33HADfvu3f5vhlcWaohhgWawp6znPeQ7+03/6T7jwwgshh0vY/pX/i/7Rx6pyosAFVFXmG2lXVQY0lGWsLP0jRlExR2QAdu1r4gKPgiihUcFHDGLd2LW2x/oWIg14qeOnochWPdUUYhfYU1iLuZEQuBmuvbH55zy39Wyvo1X6OeZun7PmOazzPRyqIkCVIQ1WKaCCz1iVBJAARDh7ulLT02GzJ8B8hkU6T7Snt5fRwZuF1WdY/PNLjnWniqXVR+Tz1xwfdJRHA0Zh+EX8+Ax4XQ+cJl2Qc42iYv1Hn398vbAY6+jfQI6qKqGwAZOGHK69vVjVKFY1oBQWH/wMFh79LJRSePGLX4z/8B/+A84991z6QBaLtSYxwLJYG6DLL78c7373u/GMZzwDQo2x8NAn0Tt8D8RIV2tiPVC0bsIBkNWyKu0y6139C9Hq+KoUmQLZxq1YkyCrZV26pbW9y91uF1CFsBlb/0JaF6LK7pgLRf9CsF7zCwTungsBVW+1E7+7nnGBn4KYjV41MasQmwNwsfac43O0Voi1ZYlEjI60dWJCpeT186PmoLT9Cv197eNl4C6RWS8dgdDgeyvmWAw0WdXA8fZ/M/T6mvXwAYA1/acAN+o2nGhP7guagtfQsQZeI++t2M1BAGkX4dTxkf1GjcFQMisbOt43gvKPV/F29/jOnuJog6mOtAtFH2/7J8yPgPrGQQ2vZb97o9EFV6qE3AVXst0B01i7LEGuPTfgKkoA5TJuVfdhcPgBCCHwpje9CT/1Uz+FwWDQfWIsFmtd4jWwLNYGajwe4+1vfzve9773Vb9vexKGT3omdG+uKseTlXkJUBlG9Farf0ctBIyRk2kvRkAxbP5dtTBgW188jnTTLky7aLa6GPvtzRhADc+ryrabeRhTDznWkKZdds1axFi1L2AFWuWIQmnIoVlc5BzvtnsZIGvmoVGtc3XXwfpZ07GCUIF2pYCxBw6eU6zw21sTSYCF1jSYmPWOSkET8GDKh7V/vL8eU8fNoKoxvHb3Yisre+m+dsS9zfW2T6rY/Km1qCaG2vO3c0OFWsSpmzbq9bfHyu747vyk6JSFu6dZIUTbcAlog6WUpAmT295aB+s/F+/4VkmwrI939mVuXZTLyiDKNXTy/4+1Y9bU6R+A6rfbfakC7Xb3TyMaAx633cChFl3IceG1am/37cKr396BV89kyHyeuXDYOr4k2hPHu+twqbWU7hYuFLi67RS4upDog6ku2p+5frvqtefXaSde+1S7Oz/3b2tv0rrtc8Rrp+l2Qby2reNHRPu80z7Ma3dvJo+d9qI+V9v1sqsHceGRL+DYsWPYvn07fvZnfxbf9E3fBBaLtTFigGWxNkEf/OAH8Ru/8RtYXV2F6i1geMHNUPPnWgiFrC4siqHv9ttAphaVm7BfRmfaIGq7/w5E1hepor4b7bfXkNsC2NbxFcS2ANZINqYtHYD1+mgBLNC68NaCBli/vbPdhw+hxHYgtry4VN0MlLuVyEYALFABRQBgqymILsDaRrP+dQ0Aa8cXkwOsOzbVNmn7WmXgipp/DuDGSstDgGvdgCPPz4XYwNxciO0ALNCGWB9gJzFz8gFWCKBfUQy5nlUCelC3UzcCpEA5b6xm6T7KBRnuXwDjhfDctXBAg0qWF2234Y5Tr2zaqW3FVL+pBAHodgOuVR/tz0MDoKGsqQFYUQbaE8fbG4aBrGtzwxDB16cav3u8AVQLXd7xndfNazeAGTy+3xyf095x53X7J567eV+YjGuonSoVVv3a1Z8AV9te1O060k6AK1Blf3XRBVdojf4T92L+8L3QWuOqq67CW9/6Vlx44YXdJ8BisaYmBlgWa5N0//334+d+7ufw0EMPQUNgdN5TMd71FJjtbGymtOyW4hmQFaUOrpM1EBqCSFVUEOlmcU2buRAl3YTda1SFLmQ6F8GijKzT1QEnYtGAgIw5DYcA1fSRaqeysH7/MSfitQKsCUmUFgePF3J9AJujUNmsC9Drad9IhQBdijyApdpdiF3rc6shljrFtiCWel+ksrAAdL9HZ5Kd40MACynbWVZv3loKqLnA8agANtSWDbCht6vJwhLwamRBjAK8+oYe2SaqDHKwZLgG2FjJr+qLILxWc4sfjwDctaYRKJe2DsOB41UvXg6cai8HCQdkd4udSHtobvZvQt4YcJ4bBa/9xr2Y6r+cE9E1rsZdOdjunH+psW1G2G0vh5h/7C70Th0AALzkJS/Bj/3Yj2Fubo4ehMViTU0MsCzWJurUqVP41V/9VfzN3/wNAGC8bR+GT3o6UFS3pqtMYw2h1PWh7mYduu2Bk7jpe6Tp7SREfVc/NLYADbBGsrqwk2NFXtwKrYEybKQC1HMPGaX4JcS+dGKrHa3XB7A5W+lEIHVLAywQBrX16HQD7HqUY+yVAbHh7kUcQGNZWCEqgA13Dj0gFhQaFQJqLny8LiTKhXB7VSYcfu6pMuLxXPy1LQfxzzhqrWWrPc7+rTJaX0KB/vwzx8owBLX6oB6PwGH0uPpzvboJGTpWWx8CSrLUNQSGjzfZazog/rrFXjNR1lskRdbpBv/mujq+nAu/PnJcH7/Gj7Do+uVhPbb38VwsHcKlK1/GoUOHMBgM8C//5b/EP/kn/2RtE2CxWBOLAZbF2mRprfG+970P73jHOzAej6GKeQzPfybU4l4ATRY1tGWFzbIKQYJoBZEgLzjstjn1ydg/3o4tAmPXABu6kDHtVUk0AbFlDZnB4x0I9Y+3ABy5Skm2E2XETv9iXIahwgXg0BrKWBZWhw1+ANROzokrMM7CdpVbZjypNhBgbQaWzJA6fYaysDX8aqrdrKsOAaysYoIAK6utdGIAW2VZI5SYysJK2pAHqG50aSlIwx+g+owxpnYd1W/BEOCaNZuhvk3ZbvB487kZeuqBrHFTbhoY1/RLfeaacmhNl3y763epz1zjnKwDn8mmXRX0+cS0h/5eZu7Bv1dd6txZ2+wcL1QFiR3V8Co0fbxZTmNMCkPtwb/3qD4+1D4k5q4VBo/fg7kjX4HWGhdffDF+/ud/HldddRXdCYvF2hCxCzGLtckSQuAVr3gF3vWud+GSSy6BLFcw/+jH0X/8Cy0IiO63p1EBV/COvabXj5mLnLpEjVxDJc1FU3d8LQBt3IhD5XumRE8TbsQ2MPzcmhiNztrE1CdWsj2WJhAVPMQg0WTEQm7GMjIB0TX36cyNAiIhm8entd0PpRSMrbd9I+QZEAXbtpCC7wEp4+8fX7HSZwCCNBVzQqlKio1+zer/m+jnFhCu0tDe94CC24HVx1FlotJZk0od7+6RGtoz2/9MNA7BwX1NIw7BQlfwaPdNJW8oamuU5MOpLOttf+qxk+3eW89vD809tD2R644ccx8m2zWqNcKx4539WEPwGtuvVY4S7cNumxiewi29+zA4/GVorfGSl7wE/+W//BeGVxbrNIgzsCzWadTy8jLe9ra34X/+z/8JACjndmO091kQYlsTZDKpJmlTVmZOgHPH3snGilI77aLdB0yW1AXD6pvrRtw2kmrHCQXIoWof61wb2SyskWE+UW3TI8ZEKa57/FgF1qeJjc/CAlUZsWmnssDUelh3PeW018L6ZkKbWUq8FdyIY8pxI16rppyBJcHVPBYCVz/D6rsbu2XEhJlTq90fws/COnOtjNtEeJ1svVY0WEZs2505EVtvlS1HYK/dz8J6gNjJwvo34zzo6Tjmeu3F0DlWEMf75nlU/+bnzIyrbXc/n03GtdPuvFbeWtDKvKlpt+CJvHbVc9zqS2/sTnt7Dn67deV1Xg/KfbjtHmwmShwvvOMJ5+aJ2kfdduW2D4nj+xq94w/j3ONfwtLSErZv346f+ImfwAte8AKwWKzTIwZYFmsL6CMf+Qh+7dd+DSdOnIAWBca7boDaflnrotSUFLsAa9sELMS6ANu0C3uR1AFYI4GoEZSB6BbAuse2AJnK7tQQWwbWqtrjI2tZazOmDV8Lm9hyJ3V8dC/YSUqJQ9u5bBbEhgBtve3TUghSld5SABvMupqsf0guwBJ9WEANwLFtJ9e8OwBLvFZTLSMOZIvNWthQpUY5MDeGutnNFmRS/25OWSlZzSKcLcw8R2DzWec6/lLHu6ZGws3M5oKr+dVWvXThsWqvX6eAiZF1PibgM6fdvM4+2HbbQd5cNO2h/Whd92HagAkWXjvtDsD6f6dO/6n2Ed1uAJbKuqJcRf/wZ9A7+RgA4Bu+4RvwMz/zM7jgggu6HbFYrE0TAyyLtUV08OBB/OIv/iLuvvtuAICaOw+jc58O9BabIAOQQcCsjZQIIyTXaThYYifi7c12NzQA2/4pJ2SgupBW9UVQzMypDGRhjWJZVq3rMaaUhW01iHAWtjOHdUJs8NhNhNgYoK23fRrayJLXKQCsiG2FA3T3g/VlADYwl6gTsQHY0BQMwAZew6kBbMQFejwnwssMUINRYLkCgGYLscgcIBAuOa7byO1snKqX6PFi7eBq+giBqztHIDBP6bw+xPG6cI4j2lXP+RuQx3czv/7xsfmZOcTaVaI9dXzrRgXVLuLtRn67PPUInrT6ZRw7dgxFUeD7vu/78D3f8z3o9WIuYiwWazPEAMtibSEppfBnf/ZnePe7342VlRVo0cN49/VQ2y6zF6qyrLKsYSOkeDuAeg9CTZuCaF3fCafboXW9TYQObqUhSwWUOnhxXUEy7VYM1ABbqvDFeamrNX5rbldVqW7EsGld+8KamFmH2Ji2AsACpxdiY89PJtY8A3kAG+kj6jQsBHTEaRhSQs2H26dRRqyLsPkPUJcJR54C0GQPySEUUAaON+v4QwY+0FXGLuZYLMrI8YiDozHSC7Wbz1mzvQvVtxk/uE7TzC8Czql2s2VRaPxyTgRvJspx5Sgdnp+O//0S7anj5TjeDlTVRrGYYki0l6voP/FZ9E49AgC44oor8NM//dO48soro2OxWKzNEwMsi7UF9cgjj+CXf/mX8dnPfhZAOxtr9on116Za1RdurjulL3e7HBJiS125DReCvIAWY2W3+iHdhpVuuxV7MUI5e7bWrqft8VVlMiPp46stbxxAXEM7EmtdqyxxIosb+/g062EjkLxugDXjxLSREBvTZgLuRpUSbxDAaq2rthTAxrbKQQJggWov2B5lDFbNS/ckdL87B3ftfBmB3GQWFsB4IXCTqn5bjuepm2Swe6GWgS13KnfaamsZHzINfAldZecokyBTbhpyNLaOxNTxZhxqpYRdg9m9AWigtTUV3wneLUV2lma0xnBci2nn4Mx22WQ/qfGF0uTr764zpbZEMqXIlXtw6O+na4ff0E3QRPs40T5qzn+q6MaY/dBl6TwHrSGXHsUFo/tw5MgRFEWB1772tXjd616Hfj/xv8ZisTZVDLAs1haVUgrve9/78O53vxurq6vQokC561qobU+BLJu73tSWN+46V3sB48RYgHUedy+2DMACsADQajcA6x7vmYy462BNeXPzQAWYrX1XHZAVZh2rKYWmQLZ0ITjUPm4DTKtdEYZJ/hwTkJoLsX7fTvuaINbfsuZ0QGwOoALhmGmvk/VB1X3OGwWxEwKs+7eeBsBCSnornWaQbhZWtP8f/Cxs62bSOgBW6KpCgwJYA6eAyeK6E2i366KbhTXwaubrmvRYeA2YALnwakRlgQ3g6NpboAPJfrmpA65m3NbnmWdO5G/94oOjLkQHXl0DJS26r4tvsORnv/12Fz798YFqP193jr5BUtnv3gCVY90q+fYB0+zzbfsY+HNMtI8T7aMGTP3naFQMdWv7H1UIiPES+k98FsXSfgDAZZddhre85S249tprO8ezWKzTLwZYFmuL66GHHsKv/uqv4h/+4R8AAKq/C2rXTRByt40hnYJ9IydnX9kWwKJ9rJaiDbBGLsiaMmJ3ra0HsrJUrTH8bGwrC+uMYS/6TBa21e70YbKsrmET2d5kepu5im4WtvVaNHfkp1JK7IIyke0NfgxT4Entt5rzMT5NiJ3EiTgU58dMA2Tdv7H/fDfC1GkCgPX/xlMBWExYRkw4FbsA26mmSAEsKsjxy4hduNQ9eG7DaJesCicLq4l2tLOwLrzaOdRZ2A681v23AFS3HYeBbhZWjh0QBQHJqh1bPdb+LLSu64TrLoDWfJt+tdPePGfS+bdIOAOn2nsCqqDB1ch93SmDJBcO3ayr+xytAZUHpmYOvvuxP4Y1kBrH24HqnOdvkeTO0c262vYBUBz/KnYt34fl5WX0ej1893d/N773e78Xc3PU5rQsFmsriAGWxZoBKaXwl3/5l3jXu96FEydOABBQC5dDb7sWkO4FaPVdaNpp2DW7CBot1Rld4QOqkQEBpUkzKXfdF+VG3NouwgdYt3+gnYVtxdTfVagPt93b/8IHmRxDp2llYVsdt7O9WRBLgaE7TkrTgtgUfIbmaeJS7euVFPRznTbEZgBs6O+aBbBSNnsPB5QFsBGjJwOwofXo0XWwQCsLSxkyuVlYCk6BGqZ64XaThaXg1Yyh+gS8OnM0az1DTrUGYn14Nf0bCDbHkuDqjBcCVzOW3XOWON5kXynwBBo4DbUD1U2DaPtABMEVaLKv1LY0RuM5EQTPZox4e+x4A7imXJhSORCdrKs/RwpcAQCjYyiOfQZyeBQA8NSnPhU/+ZM/icsvv5wejMVibRkxwLJYM6TDhw/j7W9/Oz784Q8DALSch9r+VGBunwdEtFOxKxHYMqFqNJAbATsNGnDdmLEKOohWc1BhqKozwYhtiQNUbsOReVTt1GK1BsRTe7dGIVbreuubGOSW4fY6G5xVShwDWDOXmKYBsGuF01xtdeOnVolt/j6w3W4yABZY3zpYIaDn42v3dE9CDeJlwjllxCE3YZOFdd1qyTEGkXZ4brnkQN1yVrd/LauYqBOtCACpGUI2cwwaG5Ww25WRQ2jTHvtgbKpUgvOItJuY4PEi3g7Aug/HnH1bDseEVKI9dXzKXdisUabA1Z1np12NIE/ci8HKAyjLEtu2bcMP/dAP4aUvfSlkbFsrFou1ZcQAy2LNoO6880785m/+Jh599FEAgO6fB7XjRqC3A0AFlpXRk4C/PtbIbJcT2obCbpcj6Bizb2HMjbi1zpWKURqyBtTQGFAKooyMUe8LG2xP7dsKM4YKXgALF3IDa1lhTJ+C7YlMLbplps38MrOwZqyYNhJip6HNAFhgetnYRBY2fPgUANbd6zWkXkEaNbl9lAsxCE6XEeuegAq5Deuqj/F8+HUSml6raNqM2VLMEViOwoY+QHNDj3KkFVrbTGNsjJBbrxyj8SII3Y8bV+taQ/+frrFSSNa1ONIOhGNMe/R1LBPOz/XNQvLvrZtS4Jj7tHVHDrVn/C3kSLe2+KHaAbRjtIZYfghPkg/i8OHDAIDnPe95ePOb34zzzjsvPBiLxdpyYoBlsWZUKysr+IM/+AO85z3vwXA4RFNWfA0g+narGwAkyFZwadIJlGGIt58rAbLVWtvGLbjrJqybLK5AF+5qsyahtG3rjlGvlbXt3hg1HJrnQroil2XC1be71rVlWmUyrG6pMeVs7IOyVyacgljy4zh3Haw/l5A2qox4WtosgDVaK8jmlBMn+hY5+0muF2BTWdgUwCJeRmzMmsoFai108+OYakeTXaO23DHwat7PIUfitmNwN0aOtc2MdkyFanh1zZVIcPL+bQy4Vs+hchzufIY6n5+hLX3cMl9VUJ/T7bmSAO6bP/nOxu4YvW67P49y0A1wS4FVD114NPBaP2XqZoIsUX3W6kC7eT3rbeDIGKdcONRuqoNUTzTzHB5FceyzkKMjAIBLLrkEb37zm3HLLbd0+mCxWFtfDLAs1ozr0Ucfxdvf/nZ87GMfAwBoMYDefj3Qv7hTOuWCbAtgjRyQFbouAfYNUdwKSgOwRh7IVm7CuoEmc6x78a80pLuO1QNZm4UdK6/dBUzVKXfuwnRZlRKH1gPWWVhfrXI9CkAdwyebhfXVipkQYtcCsGaskLYyxG42wAJrg9gcU6czBGBDWdiWE7APqN5bTBeiC4+q3Ye7pY4Pr6YPHwINvBpRrrXu56DyXI2F1h1Tp5ZrsfdcfHAF0IFXynBIF+3PTn99qg+vnfWpddlvy7nYi/HhlVrj2nX99ebREx1Hev+5tG4kOFnXxjlatLbnccE1OI8xnBuq9Tpftw9inatv4FT14zzXOQmUq5An7kFv+UForbGwsIDXv/71+K7v+i7eGofFmmExwLJYZ4g++clP4m1vexu+/vWvAwB0sQti/jqg1y6NMhBLAqyRMCYimjZ7qkHW3Onu9OOAbCsL6xxvxmllYb05VH04WVii3crJwnaeL+oLZdfQiSxppiEWcNaMJdbLBiHWjBkydXLHMh/LuXvBhjsKt22UK/F6dToAFpgMYnP3h00B7GZtpbMB62Dd9ajVOlenjDjw1jJZWGtg5PdRZ2EpeDXynXE7oOxkYX14rcZpwMfPvrb7ML+0obWaf3tQs89oyCnXwKs7l04f9ZxJYyUHXkOuxUBT1hsyZ7KmSJE+TPY1ZL5ks68EuDZ91K8HAa7uPAAv6+o8X9tHxKDJjel4PugSevQAdqoHcerUKQDAC1/4QrzxjW/E3r17u52xWKyZEgMsi3UGaTQa4X/8j/+B3/3d38XS0lL1YO98YP5aoNjRPUB1L2BcVVnYyEdEveaLchsGUIFsFJTr7xrtLGwrpoY+TYCwFxMznQJQgSUFqLnb5pg+ctaZRpyNs9fDpiBzvethga21JvZ0waurXJDNgdiMvpJZ2JwMaypLmwDYScqIY2ZN5YIMwqvtI2LGpIVAOSeC8Gr6MDfPQmP528f4UgUcx+FwH6oAilH1e+hzUiinWoRyHHaMikJ9qEIkY1LGTQYqkzGxefTcPsiQlnNw8PWv1/qGDPzKgaDB1cip9An+DXuNw3ELXrUGho/iwu2PYv/+ak/Xq666Cj/yIz+Cpz3taXRnLBZr5sQAy2KdgTp8+DD+23/7b/jABz6AsiwBCGBwKTB3NSCdve1UdRc9aORkMqwxoyZVg2Pogl7Xa3FjHJwDnzkxpa5chyNzyTJ0SkFdCkBTAJvTBzIgdr1ZWDuXLQKxWwFggTyInQLAJjOwQgCx7GodkwJYFHJ9Rk611Hx8LqoQUMT6SQD2/18F1rHaMNkuP3VlMrMxgyDzmRUz+KkG0vG/Yd0edBse65YrcShG9cN9iDGge3WlSigmYdxkxikHMjpX1euur/XnYm8eBPrQss7yUsxZv+6pcexcAzc1zVxj7vVyqFHOiW7WdfQExKkvQpRHAQB79+7FD/7gD+L2229nd2EW6wwTAyyLdQbrwQcfxLvf/W67PhYogLkrgLmnAKJnAdaIdAIutRfTNUGpSmvNrXvCZERVbsQhCAZQuRHH4BOoADax52oLcimjJa3pLKyrFMS6IExBijF9SmZqtwjEbqU1sbMCsSmABZLlwRsOsM4ck2XE/QIqALnGqCkKsBpw94T126qMqY46FpvSV3ctbDMH2H1gVZ3JpWKMeV21hpIex8RQZkXVfOnsoQ9M1OdZJ4Z4OYSzhjb1WoT6cMcx5dfBGA2ogEOzmYsuQLqwu33oXlMubY/X7XLjsNGWbuZKmUiNm2xqOUf/XWS9n6sodfv5jI9DLN0DMToAAFhYWMBrX/tafNd3fRfm5+fJvlgs1myLAZbFOgv0mc98Bu985ztxzz33VA+IATB3JdB7MuTY1Go5F7stMxFnfZGptPUhVlHrXF2jD2233KGOr8bx1p8GtqOxa2FDAGGysJG5ILavqxknBrkhEHYvAKcEsVMpJa46Cow/5VPAmVBOPI0MLLB+gAUAKYEitrdKAGC9+a2ljLi7RlVA9yNuwxTAOvBqx/EA1cKaYaVeO8vqwquRD7EuvJr5UnDYipEBEPb+J+zaVmebGv8zrFn/2vTtQqUg1tAGTZd0U7HiPwf7WawAuzbWe8ld6LTjhOZiHJ49mPf7ANpw2gLXusincv2l5yLGVQztPtxew+oDrAuuRmoggPIUxNK9kKNHobVGURT4tm/7NrzhDW/Aueee2xmHxWKdOWKAZbHOEiml8Dd/8zf4r//1v+Lhhx+uHhRzQP8qCHExBGE8o4UHsECrPMwaJFEAa+OdGA/4uheBqlt668NyRgwJsW7sNEqJY9lc8xpudYidNrxOMpccbWVDp80C2FQW1gfYwLwmBVhqnSqZhfXfUr26jNiAK9B537lZWFF2+6j2jTVGS114NRrXoOPDq52Ll4WlYjoQW2dfW1vgeNlQ87nV3ibHgX0HKsW4217108CrfX7eU3T7aYGrHbQB3PY6UG8cfy7ea+k6D1PgCjTZ1w64OnNpG2w54OrGDLoxftbaACwFrgCgxQqw+mX0xo/US2SA5z//+fj+7/9+PPnJTwaLxTrzxQDLYp1lGo/H+OAHP4jf/d3fxYEDVckVxAJE7ypAXlRdVAMtCBOU2ZN7nWwuaiIfJ9WFT8Dh10Cun4VtdeAYLcUMn0xMcr1sjhnTOiCWikuMtekQu1EAa8eaUZCdNYAtZJWpjc2pV0D34pnccqEfNFgCCIClQgUwni/aWVdqrHlBw6vpumeMemh4BRpApcB0khgDsULpTra1FVfDq59t9ftqbbtDxRQZMdIzu/L/lYQXEyqwGIgguBqVAxkE11Y/FLg683HXpbbAtW43r7FRZw0rKiAXIYMntQIM78dAPFLvfQ48+9nPxg/8wA/g6quvpifOYrHOSDHAslhnqYbDIT7wgQ/g93//93H48OHqQbEIUVwJFBe2MrLRLXcAQJgsbNwQCkpHL5CB+qIlYYCUHZP6eNtMiM0wddJKNTcQOsOYDMyUIHaj4dWONYMQO0sAW8foQSLDKgV0dKscAd2TUci1ZcQxEAas23A0RobXqBqpftix2O0nZbqWFSOqsUg4A1rGUMG+VPXcpzEfCHSh1W0z31MfBz4IB2JC/ZjnrYsAuLoxPQJcnRg1IIyX3JixhuoTBk9quQbXRy243nTTTfjBH/xB3HjjjdHnxmKxzkwxwLJYZ7lWVlbwZ3/2Z/jv//2/49ixY9WDYgGiuAIoLoIQRatsLKTKSdgpo6MMoUypcQwQiFLjbgwgkvuxIlxGbCfplBLHXJTdcuPA2txkSXIqC1tnYN2PZB9mz2qInTWAnYYLsRknkYEFsH6ArftS8/EYLQTUXHg+BpbGEcMn81lSxmKUbpXIdidSO+OKCpxCMvuIxvoJOe92PvNIkzunKxGIcfqnDIz8sSgzpaofJyYA/62xqJfXe76hGw2NMVMFlWuNcbPVQcMq18DJXYurloDhfejpRzEeV2R8ww034A1veANuvvnm4M0+Fot15osBlsViAQCWlpbw/ve/H+9973ubjCzmIXpPAYpLUKj4Ho8A7JY7rlqGUCYLawA1dKGWchvGGjK1IfD0t7wJOBd3oNo3hppGKTEBsc1wNahMC2I3s5TYjrkOkD3DANZefK8VYP2bG6cZYDvrKgvZARbz/2/76skOQJktt8z6WV148KkDRkbEtOVI2yymyRC2n0wXXl2QNG1aogOmjfGUrmNEN8bb21XLrgOvhUDzfKXo3Pwzx7di/H68sVQhqn24jdznauZciA4su1C6nhi/zLozH7TBFXDW4qqTwOp9KPRjdo3r0572NLz+9a/HM57xDAZXFovFAMtisdpaXV3FBz7wAfzRH/0RDh06VD86gCgug8QlEGIQPNbPwroyF2Wk4ZN/oT+tLCwI0KUANbRvq7OmNupMbIyhNhhiq6HE9DOxOX1NS2uB2FlcAxsA2M7F96QAGyoxTwEskLUONlVGDAC6kK2MW6hE1c3Chio4Si/G375GC2fvWAOvxHpQd1sVMa7n5MW1INaDV3crmNYxDry2Smhdh2YHXlt9+sZO1rTJgWTn+brw6h7biTH9BMaysOgDun+Twf0belC61pjQ+mD3JoQPrkZlcRIY3gep9kPVn8c333wzXve61+Gmm24Ci8ViGTHAslgsUsPhEH/1V3+FP/zDP8T+/fvrRwsIcTGkvAxCLHaOiQFsSyFAbRlHJUAPeVnYKOi6gBorAXYANQnWmwCx7diMmNxs7GZBLDAZyJ4BABvMGk0CsJExdSEztuSZbhY2tbbSAKyfeW31VWdhKXi1MUWVnSPhFWhlYd2sKxWnBsKCHZVtbY0r4wBYxYjWvMPGTjSQujFadLOtviojpPBYfkzocybLSCozRsvm7xecU1+Q4Kq1BvTjUOOvAvoJ+/itt96K173udbj++uvJ/lgs1tktBlgWixXVeDzG//k//wd/9Ed/hPvvv98+LsQFkPJyCLG7eUzragub1KdKhktwddGbAacJ914gE3RzDJ2A9nrYkKYIsVXoFEB2K0IskAeyW618GMgG2GS5Yw7AGpfhRBy5H6yrKQEsUAGzzjBqUn2ZfE+pvkx/ZoBeVz+x6swkQEMrUC1h0IVoblz57RqNcVGWQVQYSCtju2YtaiguZzxR6qqfwLxbc0rM26xHjcaMNMo5GQVXAIDS1gnajq9LaPUYdPlVQJ8EABRFgec973n4nu/5Hlx11VXR+bNYrLNbDLAsFitLWmv8/d//Pd7znvfgU5/6lNNyDqR8CoTYCyEEuQ6W6KzKgiQgb6pZWD0liM3JwtZx04TY5pD4hWJ8vC1m7mTHjMxrmvAqRfq55QKsrMEzNHchIYqMuccA1oXfFJymAFaKOibDECpVRqw0IONmTiYLavb07AylYUFSS0THE6p6T4aMggBAltqCUtAEKfKn92+oUSZJrpmdFgiv4TcxIZdlRZRKh0yZJhlPhPtx4THmEG3ion2NzB2AWEzzerp/D62H0OXXocsHAawCABYWFvBt3/Zt+M7v/E7s27cvODcWi8UyYoBlsVgT67777sN73/tefPjDH7YmG8A2SHkpJC6EUL0GYqPuvpuXhc1dMzt1iE0B4RogtjmUeHyj18U6Zd5TFzW3aQMsEJ/7pABr5M99PQBL/c+sFWC956OLAqCgwxuTzML6Bm09CU1BpUJTPUAZNdXwakqQtRBQg24/tpy2BjRr8uPJwKsdnpgTBa/u5481SPKgrOPArut1sQFjIzPvzjZBLrS6z53YTmjS8cyNAMrl19/fVcsudLpwa17zkvh7GHC1xkxkTPWamnJhXf/NtDoBXX4dc4MDWFlZAQDs3bsXr3jFK/DSl74UO3bs6PTFYrFYITHAslisNevgwYP40z/9U/z5n/85Tp06VT9aQOJCSHUJJLY3wYR5UgpggdOQhQ0ZOvnKhVi/Lwqe1gGxTRdO+zQg1szL7Ysw25q63LlNu3Q4Z/65619DczPzzwVYIdrlwaEbPjkA65caU8/Fz8KGTKH8LGzgtWplYQPrLl2I9eHVHurtLysUvfe0D7E+vALoZGFba1QJaLXH1fBKQav90YFJH1qbfkRTXm3AlXjOLryGxgPQKtW2cX6MA6YtcyQvzoXcoOFS0czLZlupOAdgfXAFAK0VVO8QVPn11vrWK6+8Eq961avwghe8AP1+hvkYi8VieWKAZbFY69bS0hL+1//6X3jf+96HBx54wD4u9Dko9KUQ2Ath9lBwjJNMaWBMU8/CTquUGMiD2Bicus89B2JNXHS4SPa0FTghxIbAbqPKjbXamOwrpRikk30l1q3WygJYoMrCptbKpgAWaLKwsedgADZjKxI130tmqy3AOllXakw1aLbhCpk/GYgNwStQQabq1zEaYXMos15Ux6HV9Nlpo+KkB8Ohsd3XnwDXTkxgPGrMnHnl9hWafzmQnWxrp6+ivYa2Da6rUHgICg/BlAlLKXHbbbfhO77jO3grHBaLtW4xwLJYrKlJa43PfOYzeN/73oePfexjTXmxnkOhL4HERRCYcw5Ir4MF8rKwE0FsVtwUM7EpODXj5cQByYxsNsQCk5UUJ+e1hU8nk5gzpZ7vNAFWiLXvBetJFzILdHVRAImtcgBADTLG7Mlq3NRrFlmb2nRWZfVC8NoKzflz1mueybWvNVhq0WyBEwI/UxIMEQY6e7yoMrBBh2aNZtudSFfumMk4zy241V7fKKy234kbN4lxnjGVGCvovvSgVUPjKBQeRNF7HOPxGACwe/duvPSlL8U//af/FOeff374ibBYLNYEYoBlsVgbogMHDuDP//zP8YEPfABHjx6tHxUQ+jwU+iIInAcBmZWFBSaA2NQ6V5OFdfuKZUhzIdY8h+CF62mCWNNvTJNkY5Pz2qKnlEndhSPZxNzM8FQA1swnBrDGfEmK/Extyo0YdRYz4znEQNeFR2rNZDNYDZQyDrrV5wAAUe93GhkvNEbroUAmsANwoSn541Fxut2eNWZuHIhsLhpwBQAoBB2j/W3PgmZS/nIP857TQyg8AoVHAJy0zTfccAO+/du/Hd/8zd+MwSC8dziLxWKtRQywLBZrQzUcDvGRj3wE73//+/G5z32uadBzkLgQhboIspxP9pNdSpy1zpWAWDsvf9FYBlTqgPOyf8wmQ2w1JGdjs+EVINdqd9qnAbDuODlGToXsPub9rmW9njY0rhOfA7BAZha2kEHXXn9+JEh5YElBbHODyH2wDbGxTKv/c7XvamAMOHFuhtbp08aVGpBEnBvjPDfl/W3IMVNzc1yO22t9vc+hUtdro7vPQRDrX0nzqxpc3ay4KgQ0HofCwyh6T9hs69zcHF74whfi27/923H11Vd3+mKxWKxpiQGWxWJtmh588EH8xV/8BT74wQ86WVlAqHNQqAsh1ZMgEMnm5GZhcyE2FWPG8kuEA+DLEOtpq0DsNPZ2Nc95vQBLjVGkTZUANFnYSAyZhSXitZRZZcS5WVgXYmNZ0FYW1rykxPtJeYZOoRJZcv/UALTaZgcQKYC0cQZK/XsYbomzpOPIda+iW55LPvf69aagtRXXlzS02oPa8CoIt2E7N9dQyl0z7PSnsYRSPgolHgWwYh+/9tpr8ZKXvAT/+B//Y2zf7hj3sVgs1gaJAZbFYm26RqMRPv7xj+Mv/uIvcOeddzaApXuQ6nwUah+E3gXhpQ2ysrBA9pY5osyARGNiFCsNdn6Or5Fzyow3GWKrYfX0ILbqMC/udIPsNAC2FbcGgI31nWPiBFQAm4hrAWwqdopZWBMXLeGFk4UlwLITZ2Av1qdAd81mqm/Rzlqm4oJrcqUXl7qRNGlcai2weXuF4iJZ3O6YTlwLWsdQ4iCUeBRaHLaP79y5E7fffju+7du+DVdccUV8niwWizVlMcCyWKzTqgMHDuCv/uqv8Jd/+ZfYv39/06DnUagLIMt9kNhmH54oC+sCY0BTgVg3LgWxTlwWAOY6Ik/bpdgeMMWM7CTj5qg26cmKy1EuwJqMacpBmyr7pdTLAEmZYfaEKhOaA7qd7XSifeZnYZOvdb3OldyL1sg4GhfdUlpfZt1s9H9OoYG9mAy4FaLZEoiSduJiMn2kxs4c1zxHLeNGY25c6oYClO5kjzUUNJ6AEo9BiUOAaG4GPutZz8JLXvISPOc5z8Hc3Fy3PxaLxdoEMcCyWKwtIaUU7r77bnzoQx/CRz7yESwtLdk2oXZAqn0o1PmQei4vC4sAnFIfebE1se5xpwtirRlL5r6z08jGunA4bYgFwmO7AJSa36T9pTQpwMbGlgJCJsjFtIfi3Ln7+8V6smshTVwOcOaWEQsBTayPBNqlu1ogDsW6zqaKap7ketgaXk2/bmlrd+xQXTHxGDV9KnMZeg9Qa6GpPt2xtQ7HuXvI6joDSozdzixX/VEOzH4GGoH+qjm6pcmqKv+GhsaxGlr3A2JkYy6++GLcfvvtePGLX4x9+/bRfbJYLNYmigGWxWJtOa2srODjH/84PvShD+GTn/xksx0PAKH2oCifhGJ8HgT68Y5S61xbTr3eBXHI4Ol0QSzQHTt4Ab9OiA1B5EZnYyfZazYndiPgFQhnQr2xgwDrP975PTAX2c3otsDVVfa+sWvPwnZMmgQASWRrnfWozcFoQ7Gzjyxp/uRBbAdezVtTt7fNqYytnDgPHFtx1Jy9WAuabp8+tNqDMsf2YLMDrU5/rVJfH1pdRW7wuNt+KbmEUu6HEo8BYtk+fs455+AFL3gBXvSiF+Haa6/lfVtZLNaWEgMsi8Xa0jp69Cj+9//+3/jQhz6EL37xi02DFpDqXMjySSjKMMxmlQgD1YVvaC2ZD43ThFgnNjsbG4LrVtwEEGv6BdJgOO31sTljTxpnYjcbYL2xOwCbAtrUfJ0sbBBcjXIBVoiJs7CxslQtnFJiClzt2GiysF7WleyzZ8Y271c3gD6WKrUNxtX9hOJCGVL/uKaDGl4D0Or3G4RWb55RaLUD1eOHoBUnoeRBKHkAWp6yj8/Pz+O5z30ubr/9djzzmc9EL6e0ncVisU6DGGBZLNbM6KGHHsKHP/xhfOQjH8HXvva1psHC7F4U5d4uzOY4DgNAqZMGK611tb47cSh+EpDNKhPOBGhg8mxsDKImzca689jKMs7COc8pYx2q7TZVImwkM9aOAjXwpZ2IbZ+Z+9BmZ2F7eWt6LXDm/OlllVXMMX9qfgnDrj+P+L6w7ZLcFJgn9wh2+sjpszOXYJvpHMnXVGjtmECp+nANLU5ByQNQ8iC0aKC11+vhmc98Jm6//XY85znPweLiYuaEWSwW6/SJAZbFYs2kHnjgAXzkIx/B3/zN3xAwe46TmR0A8Bw9k2tdqx+jMGsyphmZEz+7mnQqzikTBvJB1ofimPPqpM7CMehzoTDVr2gDSjIuZ56T9Ok6C4eek5AtZ+HUayVyM1hCxGHTPA8XYHP6jMXWfWqTKYytr3Vfx4xsLVCXHGfArjFhmigD3hnMK9tdb5x/WCox7r4NzLrX1PgJdba5icxXEDfSKmg96UBr4ynQ7/dx880345u/+Ztx2223YceOHdnzYrFYrK0gBlgWizXzevDBBy3MfvWrX20aNCD0ThTleZCjvRB6EQKiC6bU7941IQmzPmzGYNbN3HrqAG0MYDulwpkAbeMJOPOOm+i0oDQNfP5WMzGQnbQ0MxUT65cy4wlti+M/Lw9g290Sf9cUwLrzi+0Z68aJhCNwCzYJgHXB1RUBpiQ0FfmwGYNYam/WbKjs/E8Adset2E0L82tOttscS5gmdYC11Rh5f7qhKSMmp1zefw19YLWuw0JDySMo5SEoeQgQqzZmMBjglltuwTd/8zfj1ltv5f1aWSzWTIsBlsVinVEyMPuxj30M9957b6tNqAXI8rzKAErtgoC3rg5oLjgTezAmt+mhoDRn7SoQ3yqIhO0JYoF0mXIdt+ZsbGyfVB9kc6AlJzYFEqFjYgDbilVRgG26dDLtFMCG5mX69WCVHCMCpp0+PQgOZvKcLGwyc7pOiKVuBlWZ4MwbGf7hofJe6u2bOwZg4TUKrF58cq42lrhxRfwfm5sVLrS6x2mMoOTjKIvHoeQTcLe8mZubwy233ILnP//5+KZv+iZs29ZsR8ZisVizLAZYFot1xurgwYP4xCc+gY997GP49Kc/jdGo2RoCugdZ7kExPg+yPNeumxUulCYg1sbnGDApp99UabLpe5K1rjGQ9frNBlknNutUMcker7lraCdVrIQzpByANaE560qN3PWyqTnlrm0F8tfBAtbMKaecN3ctLIDsUmIAUL4BU2j8IFwmBnAPi8VmrmNt4gkgpeRmgFOV8vUaVZH6fwWa7XXgZFmhocWShVYtjrae/549e3DrrbfitttuwzOf+Uzeq5XFYp2RYoBlsVhnhZaWlnDnnXfi4x//OD7xiU/g+PHjTaMGhNoJWZ6LotxT/azRhb7Ycs/ctau5W+HUbTnupK32UElzKhaIA63WWRArhOg6G4dkgCVUhmw7DZQj58TnxLrziMl3Fk5l41KGT6ly30B81jpY03chq/1eU5LVMVmxwGRZWIGsst0UZLsAnAPkzYFoQyY5uBOb0gRXTa1yX3dvZSrWbzI3jzCCkkeg5BMoiydapcEAcOWVV+K2227Dbbfdhquvvhoy92/IYrFYMyoGWBaLddZpPB7jC1/4Aj7+8Y/jk5/8ZNsECqizs+dClueiNz4XQs9lw2wrg9vqM1AumIpzHiPNn3LW5vpjUseT8bT5U+i04e8VGdxnFqhg0ACZC7yh9bTU3rQhOHXBMRZb99uZh3ucP2e3LFgl1vWGANa8Tu5zCkEHAWraLQ3O6FunQNpl8glclqcFsbnrZI1Ldq45lO3bD09laTsTDM8ruT7VvP1Cfy6iPLnKsh6vgfUwtDjeChwMBrjppptw22234dZbb8UFF1wQeUIsFot15okBlsVinfU6ePAgPvWpT+HOO+/Epz71KZw8ebLVLsptkOU5KMpzIMvdENq7yPeANmj4RP2eKhP2ADO5HY8PpLG+/exuVpmwIkHWh9emWyIb60BjMNZfT0vBDwWnPuz6sW58jimTY6YjpKRB0wV9d71uqISYmp/wYDACaVqK9jwy+iYzq9RTnyQLC6wLYl34I/9nfCfeSPl2xxTKrv1FfsY0UAYcXLOLMLC2YyPtWtfAulxnWQ9DycOAGLfCLr30Utxyyy245ZZb8LSnPQ3z8/M5z4jFYrHOSDHAslgslqPxeIwvfelLuPPOO3HnnXfinnvuaWfmNCDUDguzFdB6ZaUqvd6vk9HN3VO2/p69ryyQv7es/TlzfWosA9mZShp2W7Ee8MbnMUGsGx8A6c5cUM85JzvpvnZutjZnXpnZTy29ueSU57biE8GbCLFWsfez7BpQJdfTTlBi7O6dmuzbm2dyn1d/TbbNsq5UjsHFESh5BBArrcO2bduGZz7zmRZaOcvKYrFYjRhgWSwWK6KjR4/irrvuwqc//Wl8+tOfxiOPPNIO0AJS7axh9hzIcmcFtDlZWVc+NMaAlsjmJveW9Y/LuUjPjp/yXq+EctffThSfu57VyAXSrPgJ1qoC0b1Y7bBmuxkZyDQH+tdSpsHVnY/IK9UFkNxH1ii1nyrQBkJdTGjGZcfJLEmuY6cOrNTDWK0zrNWXlsut9qIocP311+PpT386brnlFlx//fXo5e4jzGKxWGeZGGBZLBZrAh04cAB333037r77bnz605/GgQMH2gFa1BnaXZDlTshyF4Tq5+0rC4RLf6cNtDllzkB4rS71WGpNqAs5VNktdQwRE1yDGwDSYDy1njU0n1gGNjT/EMBSgOWXELvdu6DqbosTKqkN9B8EwuC4meZPpo9QPznrP22wht17dcLMe852Pcls/XqB1ZYEL0EVx6DkMWhxlATWa665Bk9/+tPx9Kc/HTfeeCMWFhYSg7FYLBYLYIBlsVisNUtrjccee8xmZ++++2488cQTnTihFiDHuyDLXTXQzkOo7sVz0AAq9FgIagPHrwtqJzGQckHWmgpFYIgC34w9XztlyaFjCJgNrmd15+Mem1tC7D6H3gTb6HjzJ6HVl5uFzei/2mvVGzPnmM644Xj3e3TtJ9B9/xhwBbpwGTEDiyp2HNEWBdbA+12jhJbHoeQx++WvYZVS4qqrrrLA+g3f8A28LyuLxWKtUQywLBaLNSUZoP3c5z6Hz372s/j85z/fdTgGANWvsrNqJ2S5A7LcAaF73Sxtai0q5dKayux6P08MtTFn4cg4Wcpde+v2bzK7uceaOeW67Zp+J3HnNcopITaqAVbnAqmJmXAMPcF6VXuMvQmReQx1YyCzvFwX8a1mumMR7tRU9+beUAqqXQWzq8vQ8gSUOA5VHIMWJzqdzc3N4frrr8dTn/pU3HjjjbjhhhuwY8eOjCfEYrFYrJQYYFksFmsDdfz4cXzhC1/AZz/7WXzuc5/DPffcg+Fw2IkTaqGG2QpqRbkdQsluGWTqI5vKysagNlRem9pyh4LnkHIcke3AHlyVZTzeZFLdMVIw68No7nrWSfbkjZX4+nHOzzGn3c4xOWO4WV2TgZ0EYLGG9bPRzrwsuxAVGAYyqSlX39xjkvLfM2ZeWIWSJ6Dk8TrLeryTXQWAPXv24MYbb7TAetVVV/EaVhaLxdogMcCyWCzWJmo4HOLee+/Fl770Jdxzzz340pe+1DWGAuq1tNsqqB1vhyy3V9v56AmzW6GMaSpTSjwmYuZOoTlQ0Bdb8+pDkImlQFbK+DEUzFKlwzk3CfxMp/+aEuWwJFz6c/X3zk0d4x8viefvQ6uvSSGWKj8Ozc8OHHo/tMd3wTVaZtx6Ts7QqdJkam7EDQ5RamgxrGC1OAlVVBlWyNVObL/fxxVXXIHrrrsO119/PW688Ubs27cv6WjNYrFYrOmIAZbFYrFOs44dO4Z77rnHAu0Xv/hFHD16tBuoAaEWa5jdDllugyy3Q6o+EbsGqAXi2csQ1EYyuUFjKBcyvbWTyX7KMgyvoeMMzBZF/jHuz6lSXer1LGQSWDtDG4DNeU2ABmBT0No5LqNvV3Zdq5PFjbr3JsbMhV4T575PUsek2ktVmyydhJYnoeovSKIyQghcdtlluPbaa3Hdddfh2muvxVOe8hQMBoP4uCwWi8XaMDHAslgs1haT1hoHDhywWdr77rsPX/nKV2ioBQA1qEC23FZladUi5HgBAhOWyvpga4xuMtbiikkyrVTbJOse7drXNayXNOXGOfvuumMZsJzklCkJgA0N4659zd2DVTaxk+x72hyP9WdiIy+j3V/VdyrOXA/byr4mS+fd9607v1UoeQpanoKSp6DkCWh5ChBEFlYIXHLJJbjyyitxzTXX4LrrrsPVV1+NxcXF+NgsFovF2lQxwLJYLNYMSGuNJ554Avfdd58F2q985St45JFH6G1iNGq3422Q5SJEuQ1FuQhRrhFsKYXg1jj9Trj1T6vfkHyTowmO0/1qTaLwza5iQEuV6Ibm7Sti/BRa8xkFWNlta22NM6EHVtWnM25oPmYsIia0HVQHXCP9dg+OvKZlt01DQ+gVqGLZgmr1fQkQI7Kb+fl5XHHFFbjyyitx5ZVX4qqrrsLll1/OW9mwWCzWDIgBlsVisWZYS0tLuP/++/GVr3wFDzzwAL72ta/hgQcewLFjx+gDDNiWi5BqoTaPqr4LNQcBByxytrUJZWeVbq1b7ZhCRctPnT79jPAk4OMe2yuCBknCL2l2YTbHVCk0Bwdgg8DamYxXEuxBa3AvV2BtAGuUKu8NyXuPtOaXm0mm+iJBtQRwClouQ8nl2g14Cao4RRorVVMS2LdvH5785CdbYL3qqqtw4YUXoliLszSLxWKxTrsYYFksFusMk9YaR44caQGt+X78+PHIgRJCzVugtWBbzkNoB26Vylt/6oOo1hDjhKtw9QTonyeVe6yUWQ6/HZhdh/QkW9y0JiGAQbOuOQqtRqrZdklPCo5AHGBTGVEJ6H79XHPH1hpiVL0X3PlqlNBiBcCpClLlErRcrr7EKhBMFAtceOGFuOyyy3D55Zfjsssuw5Of/GRceumlnFVlsVisM0wMsCwWi3WWyAXbhx56CA899BAefvhhPPzww3j00UcxHtNZrOpgUWVo1TxEOQdZfze/Cz1oADcEt252Mxdm/eNjv6eU4/jrhpdq7RCbuyWOf5iqt5Tp9xoopOQAq5V5betxkyDrN1N/MyITao7VRVHNQQh6rg6k2odQQotVaLkCjeXqe7EKJVcqcCWMlFxt374dF198sf265JJLcPnll+OSSy7B3Nxc9FgWi8VinRligGWxWCwWxuMxDhw4gIcfftiC7UMPPYRHHnkEBw4cQJnaj1WLGmgHFehq83P9u/nZTaE52/JMDLP1cdHfU4oA7brgte47O+NLqAOxMWANqZBtiPWnk1Fy7I8Zg+oGTlehxRBargJ6BVpWPyu5Akh6TaqrxcVFXHzxxbjooos6sLpr1y7erobFYrHOcjHAslgsFiuq8XiMJ554Ao899hj2799vv5ufDx06lAZcoF5/O2i+9ABQfYiyDzEuIFS/yuTKOUD3IBQgRpGscKf/dZYe15ljPddvZ4onmYPTVwuIM92StfTKh3sSYlzPJdc52chfP+uBXweI3XnUoKp1CZSrgBxBixFUfwwtRoAYQaOGUwOrMu8mxMLCAvbt24cLLrjAfj///PPtzzt37mRIZbFYLFZQDLAsFovFWpfG4zEOHTqE/fv349ChQ3j88cdx6NCh1s+HDx/Og1wjLSB0vwJc1YfQPQjdA1Sv+Vn3IJTzc1lADHWT5V1DhlbPDaDnes0DChBDImuYA7aREl4fVFttg17rdzEqgVSGmjKJciBQ9QUgxtAYV9/rL4hR/b1qq+B0CF0Da8gcKaSFhQWcd955OO+887B3717s2bMHe/fuxd69ey2w7tixgwGVxWKxWGsWAyyLxWKxNlxlWeLIkSMWaB9//HEcOXIER48exZEjR1pfJ0+eXPtAWgC6gNBF+3u1aBNCuY9L+x1aAJBAr4/KKUhCaFk9pmV1PEQdJwAlarCtfwfa5dHu3rFmatDt3waF/blOT0ND2Z+B+nehIMYltNTQQtVtJbQoAVFW7rxCVT+LsmlD3S7GgFhDiXatoiiwa9cunHPOOdi9e3fruwFV831xcZHhlMVisVgbKgZYFovFYm0pjUYjC7ZHjx7F4cOHcfz4cZw8eRInTpzAiRMncPz4cfvzyZMncfz48bgJ1WZJAy7UwkKrDjrobqYWFhawY8eO1tf27dvtzzt37uyA6o4dOyDX4mzMYrFYLNYGiAGWxWKxWDMvrTVWVlZw4sQJLC0tYWlpCcvLy/a7+7P72PLyMkajEUajEYbDIYbDof3Zf2yjAVkIgX6/j8FggMFggH6/b7/c3weDARYWFrK+5ufnLaBu374dvV4vPREWi8VisbawGGBZLBaLxcqQUmqiLyEEhBCQUkIIgaIoWr9LKVttpp3FYrFYLFZYDLAsFovFYrFYLBaLxZoJ8aIWFovFYrFYLBaLxWLNhBhgWSwWi8VisVgsFos1E2KAZbFYLBaLxWKxWCzWTIgBlsVisVgsFovFYrFYMyEGWBaLxWKxWCwWi8VizYQYYFksFovFYrFYLBaLNRNigGWxWCwWi8VisVgs1kyIAZbFYrFYLBaLxWKxWDMhBlgWi8VisVgsFovFYs2EGGBZLBaLxWKxWCwWizUTYoBlsVgsFovFYrFYLNZMiAGWxWKxWCwWi8VisVgzIQZYFovFYrFYLBaLxWLNhBhgWSwWi8VisVgsFos1E2KAZbFYLBaLxWKxWCzWTIgBlsVisVgsFovFYrFYMyEGWBaLxWKxWCwWi8VizYQYYFksFovFYrFYLBaLNRNigGWxWCwWi8VisVgs1kyIAZbFYrFYLBaLxWKxWDMhBlgWi8VisVgsFovFYs2EGGBZLBaLxWKxWCwWizUTYoBlsVgsFovFYrFYLNZMiAGWxWKxWCwWi8VisVgzIQZYFovFYrFYLBaLxWLNhHqnewIsFot1uqS1xsrKyumeBovFYk2k+fl5CCFO9zRYLBbrtIgBlsVinbVaWVnBt3zLt5zuabBYLNZE+uu//mssLCyc7mmwWCzWaRGXELNYLBaLxWKxWCwWaybEGVgWi8UCMLjzSUApIKQAhLTfIesyPSEgpARE/bgQtk2YOCGax0VzXOsxr88qrmnX5jjptAce10I0vwPQdVcQAloCgKges2PBHqPr35vjRHO8bNqqY9rtbp/axEgE+7P9OnNsvvvz8NubvxHVDsDOITRW6/HAPNrPqxmTamuO0a3xOuOYdvjtunWMiW3mpW2bcOOFfbZ1m/a+mz41hNCtt5fps/rTNO2y7q/1WP1z0+Y85nyv+mt+d7+Aqu/qdzRtznhSKPtYFasAAIVofnePMb837RoFVN2mUQjlHKdQOMcV9eMFVOc4CXOsQtFqq+ILoSGgUJj5QdljCqA6Dqatej0KmDG1nUf1e/0dqH8W9WsFFEJAQqBA/V2YNgkBgdGwwCv++QVgsViss10MsCwWiwVU8KqqC0WI5rslDSEgYMC1frymE1ERIRracY7rEJT0SKlFGc5x8B4LPY7wdwcO7c/+d9udcLoVnSm22/0+UYN0qL/uy9Hpl2yLHZfxUq21v/p7CG43DGBFF2DdNh9gm8e1N3/daROmT6qdPEYTY3lfgAVY/yvYZqHSAVsHdG0bmvYGROEArGoDoDAAWH8XAgVMf9XP1XfROq7qCygE7PfmuOpntw1ADa0m1gCwC6nVnFMA2xrLHQft8aSNd/6GLBaLdRaLS4hZLBaLxWKxWCwWizUTYoBlsVgsFovFYrFYLNZMiAGWxWKxWCwWi8VisVgzIQZYFovFYrFYLBaLxWLNhBhgWSwWi8VisVgsFos1E2KAZbFYLBaLxWKxWCzWTIgBlsVisVgsFovFYrFYMyHeB5bFYrEAoNDQUNXmjwLt70C1X6mEt4+qaXN+F6LeJ9M5LtXmbESqA5ubUo83j1XftdOuAUCL1mNVjAA0Wv1p95j6uK4Cj2mnqbW3qXCnH9l/Vax9r9dYW6q/VJv5Fj3O33810N6ZY2AfWHR/Fp1x3DbtfTd9mn1X3bdXYB9Y29/a9oHVqH7W3pdp0/VeuLat7lMJDQjljFP/jvr5wG8HtFBV33U/utXWflw6Y5mf/e/VPKp/a/e7ql8mWf+s6rcovQ+sgIRo9pVF9ZoXMHvPNnu9ur9L+3N1nN2/tu5LQqAQpk1AQGA0pP4HWSwW6+wTAyyLxWIBGN5y8HRPYWOkve9rkM+nLJaRQUiVCtyyMoTPBWksFos1K+JPbBaLxWKxWCwWi8VizYSE1nod9+VZLBZrdqW1xsrKyumexlS1srKCl73sZQCA97///Zifnz/NM5p98Ws6ffFruj7Nz89DCK6JYLFYZ6e4hJjFYp21EkJgYWHhdE9jwzQ/P39GP7/TIX5Npy9+TVksFos1ibiEmMVisVgsFovFYrFYMyEGWBaLxWKxWCwWi8VizYQYYFksFovFYrFYLBaLNRNigGWxWCwWi8VisVgs1kyIXYhZLBaLxWKxWCwWizUT4gwsi8VisVgsFovFYrFmQgywLBaLxWKxWCwWi8WaCTHAslgsFovFYrFYLBZrJsQAy2KxWCwWi8VisVismRADLIvFYrFYLBaLxWKxZkIMsCwWi8VisVgsFovFmgkxwLJYLBaLxWKxWCwWaybEAMtisVgsFovFYrFYrJlQ73RPgMVisVjr08rKCj7zmc/g3nvvxZe//GV8+ctfxoEDBwAA3/d934fv//7vP80znD0dO3YMH//4x3HXXXfZ17MsS+zevRvXXHMNXvziF+O5z33u6Z7mTOnee+/FHXfcgXvvvRcPP/wwjh49ilOnTmHbtm249NJL8exnPxsvf/nLsXPnztM9VRaLxWJtYQmttT7dk2CxWCzW2nX33XfjzW9+M9nGALs2Pf/5z0dZlvb3wWCAoiiwvLxsH/vGb/xGvPWtb8X8/PzpmOLM6bd+67fwZ3/2Z/b3wWCAXq+HpaUl+9iuXbvwy7/8y3jqU596OqbIYrFYrBkQZ2BZLBbrDNCOHTtw9dVX26+3ve1tOHz48Ome1syqLEtcd911+NZv/VbccsstuPDCCwEAjz32GH7v934Pf/EXf4FPfvKT+PVf/3X8zM/8zGme7WzouuuuwwUXXIBv+IZvwKWXXoodO3YAAJaWlvDRj34U73znO3H06FH89E//NP7wD/8Q27dvP80zZrFYLNZWFGdgWSwWa8ZVliWKomg99spXvhL79+/nDOwa9elPfxrPeMYzgu2//uu/jj//8z8HAPzJn/wJzj///M2a2hmrO++8Ez/xEz8BAPiZn/kZvOhFLzrNM2KxWCzWVhSbOLFYLNaMy4dX1voVg1cAeMlLXmJ/vvfeezd6OmeFbrjhBvvzoUOHTuNMWCwWi7WVxQDLYrFYLNaEGgwG9mel1GmcyZmjz372s/bniy666DTOhMVisVhbWbwGlsVisVisCfWZz3zG/vyUpzzl9E1kxjUcDvHEE0/gjjvuwO/8zu8AqOD11ltvPc0zY7FYLNZWFQMsi8VisVgT6MSJE/iDP/gDALCGRKzJ9MIXvhDD4bDz+I033oif+7mfa2W4WSwWi8VyxQDLYrFYLFamlFL4xV/8RTzxxBMYDAb48R//8dM9pZnUueeei+FwiOXlZbs10dOf/nS88Y1vZEMsFovFYkXFAMtisVgsVqb+43/8j7jjjjsAAD/+4z+OK6644jTPaDb1x3/8x/bnI0eO4K//+q/x+7//+/gX/+Jf4HWvex3+2T/7Z6dxdiwWi8XaymITJxaLxWKxMvSOd7wD73vf+wAAP/zDP9xyImatXeeccw5e/epX49d+7dcghMDv/u7v2psELBaLxWL5YoBlsVgsFiuhd73rXXjve98LAHjTm96EV77ylad5Rmeerr/+etx4440AYPfYZbFYLBbLF5cQs1gsFosV0Tvf+U685z3vAQC88Y1vxKtf/erTPKMzV3v37gUAPPLII6d5JiwWi8XaqmKAZbFYLBYroHe84x028/rGN74Rr3nNa07zjM5sPfroowCAxcXF0zwTFovFYm1VcQkxi8VisViEXHh905vexPC6DpVlCa11NOauu+7Cl770JQDA0572tE2YFYvFYrFmUZyBZbFYrDNAJ06cQFmW9nelFABgdXUVR48etY8PBgPObmXIXfP6wz/8w7zmdZ06ePAgfvqnfxove9nLcPPNN2Pfvn0QQgAADhw4gA996EP4/d//fWitsXPnTn69WSwWixWU0KlboiwWi8Xa8nrlK1+J/fv3J+Ne/OIX4y1vecsmzGh2deDAAXzXd30XAEBKid27d0fjX/WqV3F2NqHHHnsMr3rVq+zv/X4fi4uLdi9Yo3379uGtb30rrr766tMxTRaLxWLNgDgDy2KxWKz/f3t3HhT1ff9x/AkISgSBGoog1qYGkKQaFDRVxKAYPJqM1is11iPWGhuPzthObZl6NGpMxhpNk9Sq42QmRtJUrZpYDR08gkZAUKKMHCIIClLKISgIwgK/P+hul8ghyyquv9fjr3X38/183yw7Dq/9XGLGOHptfFxWVtZme/MAJi178sknefPNN0lJSSE9PZ2SkhIqKiqwt7fHy8uLAQMGMGrUKF588UW6d+/e1eWKiMgjTCOwIiIiIiIiYhO0iZOIiIiIiIjYBAVYERERERERsQkKsCIiIiIiImITFGBFRERERETEJijAioiIiIiIiE1QgBURERERERGboAArIiIiIiIiNkEBVkRERERERGyCAqyIiIiIiIjYBAVYERERERERsQkKsCIiIiIiImITunV1ASIiIiL3o6amhm+++YbMzEwuX77M5cuXKSoqAmD+/PksWLCgiyu8f4WFhbzyyivttpszZw6/+MUvHkJFIiK2QQFWREREbEJ6ejq//e1vu7oMq3Nzc8PBwaHF15544omHXI2IyKNNAVZERGzCe++9x/79+3nuued4//33u7oc6SKurq4MGDCAS5cuUVdXh4uLC5WVlV1dVqfs2LEDb2/vri5DRMQmKMCKiDzmqqqqyMrKIiMjg8zMTDIzMykoKKCxsRGAzz777IH98dzY2Mj06dMpLi5m9uzZvP766xb1k5WVxcGDBwFYtGiRFSvsWjk5OZw9e5bU1FRycnIoLS2lvr7eFNJGjBjBhAkTcHFx6epSHwmDBw/mn//8JwC7d+9m586d3Llzp4urEhGRh0kBVkTkMbd8+XKysrK65N4ZGRkUFxcDEBYWZnE/27Zto76+nueff55BgwZZq7wutXz5cr755psWXysrK6OsrIykpCQ++eQToqKiGD58+MMt8BFkPs12+vTp7N27l/Ly8g71kZOTw/79+zl//jwlJSXY29vj7e1NaGgoM2bMwN3d3bpFi4iIVSnAiog85owjrQAuLi74+fmRl5dHWVnZA7/3qVOnAPD09CQwMNCiPi5evEhycjIAs2fPtlptXc0Y7F1dXQkLCyMoKAgfHx+6d+9OYWEhR48eJT4+nrKyMqKioti8eTPPPfdcF1f96HB2dmbatGns2rULgLq6unaviY6OZseOHTQ0NADQo0cPDAYDOTk55OTkcOTIEd555x38/f0faO0iImI5BVgRkcfcpEmTcHd3JyAgAF9fX+zs7Fi+fPlDDbChoaHY2dlZ1Menn34KgLe392MV4Hx9fZk7dy4RERE4OTk1ey0gIIDw8HD27NnD9u3bqa2tZfPmzXz88cddVO2jKTIy0hRg25tlcPjwYf7617/i7OzMz372MyZNmkTv3r2pr6/nypUrbNu2jfPnz/P73/+e3bt3P9TNk9auXUt+fj7V1dX06tULf39/IiIiiIiIoFs3/akmImJO58CKiDzmpk+fzrhx4+jXr5/FIdIS169fJy8vD7B8+nBxcTHx8fEAjB8//qHW/6Bt2rSJiRMn3hNezc2ePRs/Pz8AcnNzyc7Ofljl2QRvb28cHR0ByMzMbLXdnTt3+Mtf/gLAunXrmDNnDr179waapiUHBATwpz/9iYCAAIqLizl8+PCDL95Meno69fX1dOvWjbKyMhISEtiwYQNLliyhpKTkodYiIvKo09d6IiLyQMTFxQFN05aHDBliUR+xsbGm6Z5jx469r2sMBgPHjx/n9OnTZGRkUF5eTn19Pe7u7vzgBz8gJCSEcePGmQKM0ejRowGYMGECUVFRXLt2jX379pGUlERJSQk9e/bE39+fV199laCgINN1d+/e5ejRo8TExJCfn09NTQ0+Pj68+OKLzJgxg+7du1v0sxsNHTrUNLp4/fp1BgwYYHFfubm5HDp0iAsXLlBYWEhNTQ0uLi64urri7e1NcHAwo0aN4nvf+55F/RsMBv71r39x4sQJcnJyqKiowM7Ojl69euHu7k5gYCAhISGEhoaagqfRt9//3NxcDhw4QHJyMiUlJVRXV7Nhw4Z7vgxxdnamrq6OiooKMjIyGDhw4D11ffXVV1RWVuLn59fqWuJu3boRERFBZmYmSUlJzJw506L34H45OTkxZcoUxo4di7+/v2nE9/r16+zdu5dDhw6Rnp7OypUr2b59u0ZiRUT+S/8biojIA2GcPjxixAiL//g+c+YM0LROtH///u22v3LlCqtXryY/P/+e14qLiykuLiYxMZHs7GyioqJa7efkyZO89dZb1NTUmJ67e/cuCQkJJCYm8pvf/IaXX36ZkpISoqKiyMjIaHb91atX2bFjBwkJCWzevLlTIdZgMJge29tbPnHq0KFDbN26lfr6+mbPV1RUUFFRQX5+PklJSWRnZ7Nq1aoO919eXs6vf/3rFqfyGt/7rKwsPv/8c6Kjo/H19W21r6NHj7J582Zqa2vbva95ED5z5kyLATY1NRWAvLw8pkyZ0mpfd+/eBeDf//53s+cLCwt55ZVX2q2lNa+++iqLFy9u9lzv3r1ZsWLFPW379evHihUr6Nu3Lx9++CFZWVnExMTw4x//2OL7i4g8ThRgRUTE6kpKSkhPTwcsnz5cW1vLpUuXAAgMDGx3+nBWVhZLly6luroagCFDhhAZGUn//v1xdHSktLSUtLQ008hwa7Kzszl+/DgeHh4sWrTIdO9z586xe/duampq2LJlC0FBQaxfv54rV64wZcoURo0ahbu7OwUFBXz88cdkZ2dz8eJFoqOjee211yx6DwDOnz9vevzUU09Z1EdOTo4pvPbq1YuXX36ZoKAg3N3dqa+vp7S0lMzMTBISEiyepr1161ZTeA0ODiYyMhJvb2969uxJVVUVeXl5XLhwwTQlvDWZmZnExsbSq1cvZsyYwaBBg3B0dCQ3N5c+ffrc0978y5Hz58+zYMGCe9oYp+HW1tbe19pvY5DtSjNmzGDfvn0UFRVx6tQpBVgRkf9SgBUREas7ffo0jY2NODk58fzzz1vUR3Z2tmn0MSAgoM22BoOB1atXm8Lrr371K6ZNm3ZPu5EjR7Jw4UKKiopa7SsrKws/Pz+2bt2Kq6ur6flnnnkGX19f1qxZg8FgYOnSpdy6dYtNmzYREhJiaufv78+wYcOYO3cuJSUlHDx4kLlz5zY7AuZ+xcXFcfXqVaApxPfr16/DfQCcOHHCNPK6ZcsW07pac2FhYSxcuJCKiooO93/37l3TFwNhYWGsX7/+niAcFBTE5MmTqa6ubnMk+erVq/j6+vLBBx/wne98x/R8a7tYm9/n8uXLNDQ03NO/+TT0tWvXduhnA/Dy8uLzzz/v8HVGPXr06PA19vb2BAYGUlRURGFhocX3FhF53CjAioiI1RmnD4eEhODs7GxRH+bTgM2DTEtiY2MpKCgAmnZdbim8mvPy8mrz9d/97nfNwqtReHg4np6eFBcXc/PmTWbMmNEsvBq5uLgwceJEdu/ezc2bN8nNze3w2tWSkhLeffddoCmk/fKXv+zQ9eaMo47GY5Ta4ubm1uH+b9++bfqyISgoqM1R3Pv5PKxYsaLd33lLampqKCkp4bvf/W6z5419tfXFRVvs7e11PqyIyCNCuxCLiIhVVVZWkpKSAlg+fRigtLTU9LhXr15ttjUGZoBZs2ZZfE9omqbbWsizs7Nr9lpkZGSr/Zi3u3HjRodqqKmpISoqyhQ8v71xVEd5enoCTb+bEydOWNxPa9zc3Ey7KR87dow7d+5Y3Jenp2eLXwrcL/PPjdGgQYOApunJtrKrb0NDg2kavre3dxdXIyLy6FCAFRERq4qPj8dgMODg4EBoaKjF/ZivQ2xpNNTc5cuXgaaRtvvZ7Kkt7V1vXktbu/Wat+tIoKurq+MPf/iDaWOoUaNGsXDhwvu+viWRkZGmjaTWrFnDkiVL2LNnDxcvXjRNu+4MR0dHJkyYAEBaWhozZ85k06ZNHDt2rMPhvTO7LAPNNt4yCg8Px8XFBYPBwIcffkhjY2Or1zc0NHD79u1O1XA/2qoBMK1/habPgIiINNEUYhERsSrjaOgPf/jDTk27NF8z2t5utOXl5cD/Rho7o731iubTY9uaDmu+DtO4BrM9BoOBVatWcfbsWQCGDx/O2rVrLVo/a87Hx4e3336bt956i+LiYlJTU0078zo4ODBw4EBGjx7NSy+91O6XBa1ZtmwZtbW1xMTEcOvWLb744gu++OILoOmLheHDhzNp0qR2R5LbG22/fft2s52Uv/3e1tTUUF5ejpOTk+loGldXV5YtW8bGjRs5duwYlZWVvPbaawwcOBB7e3saGhq4du0aCQkJHD58mLlz57Y5um4Ny5YtY9iwYYwcOZKnnnrKtBlVQUEB+/bt4x//+AfQFOiNXw6IiIgCrIiIWFFtbS2JiYlA56YPQ9N6TaNbt251qi9bYDAYWLNmjenooJCQEDZs2GCamttZwcHBfPrpp3z99dckJiZy8eJF8vPzqa+v59KlS1y6dIk9e/awevXqVs9KbUv37t2Jiopizpw5HD9+nJSUFNLT06murqasrIwvv/ySL7/8ktGjR7Nq1apWjxZq76ign//85/ccc2Nu5cqVwP/OkzWaOHEitbW1/PnPfyYxMZHExEScnJxwdnamqqqq2XFFD8N//vMfdu3axa5du3BwcKBnz57U1dU1GxF/5plnWL9+vc6AFRExo/8RRUTEapKTk01/gHc2wJofmdJegHV3d6eoqMhm1jd+mzG8Gkevhw4dysaNGzt1fmxLnJycGDNmDGPGjAGaRq7PnTtHTEwMCQkJ3Lp1i1WrVhEdHU3v3r0tuke/fv2YN28e8+bNo76+nqysLM6cOcOhQ4e4efMmcXFx7Ny5k6VLl1rzR7svkydPZvjw4Rw4cIDk5GQKCwuprKzkiSeeoG/fvjz77LOEhoYydOjQB17LG2+8wblz58jIyKC0tNT0Gffy8sLf35+xY8cSHh7e6dF3EZHHjQKsiIhYjTGA+fn5dXrjGfMzT69du9Zm24CAAIqKiigtLeXatWttrk191Hw7vA4ZMoS3337b6uG1Je7u7kRERBAREcG7777LwYMHqa6u5vTp00yePLnT/RunJw8cOJCJEycyb948ampqiI2NtTjA/v3vf7/nuVmzZlFQUIC3tzefffZZm9d7e3vzxhtvWHRvawoPDyc8PLyryxARsTnaxElERKyioaGBr7/+GrDOpjNeXl48+eSTAKbdWFszevRo0+Po6OhO3/thMRgMrF271hReg4KCeOeddyw6N7SzzKcNG9cUW5O3t7fpHFtLzpptTXl5uekIpWeffdZq/YqIyKNJAVZERKwiNTXVFHzMA2VnGENVXl4eVVVVrbYbO3asKRwdOXKE/fv3t9mvpeeBWpPBYODNN98kLi4OeLDh9auvvmo3lBrXLgP07du3Q/3fuHGD5OTkNtsUFhaSl5cHNG0qZS1paWmmxz/60Y+s1q+IiDyaNIVYROQxl5+fb9px1sh4vijAyZMnm+0W7OzsbNHURuMooo+PT6ePQjEaM2YMR44coaGhgeTkZF544YUW23Xr1o0//vGPLFmyhOrqat577z3i4uIYP348/fv3x9HRkdLSUjIyMjh58iQBAQHNNvjpCuvWrePkyZNAU2BcvHgxhYWFbV7j4eGBh4dHh++1f/9+1q1bR3BwMMHBwXz/+9/Hzc2Nuro6ioqKiI2NNY2e9+nTp8PHHxUVFbFixQp8fHwIDQ0lMDAQLy8vunfvTkVFBWlpaRw8eNC0m/S0adM6/DO0JikpCWha3ztixAir9SsiIo8mBVgRkcdcamoqGzdubPX1bdu2Nft3nz59OhVgrXlmZUhICJ6enhQXFxMTE9NqgAV4+umnef/991m9ejU3btwgJSWFlJSUFtsGBARYrUZLnThxwvS4oKCAxYsXt3vN/PnzWbBggUX3q62tJT4+nvj4+Fbb9O3bl40bN7Z5PFBbbty4wd69e1t93d7enlmzZvGTn/zEov6/zWAwcOzYMaBp1N/SI4BERMR2KMCKiEinXblyxTR62Nndh805ODgwdepUtm/fTkJCAuXl5W2eLevv788nn3xCTEwMp06dIisry7Te0sPDgwEDBjBs2DDGjRtntRptwZo1azh79iwXLlwgJyeHsrIy05RiNzc3nn76acLCwoiMjLTo2J7BgwfzwQcfkJycTFpaGkVFRdy8eZOqqip69OiBj48PgwcP5qWXXrLa6Dxg+kwATJ8+3Wr9iojIo8uusbGxsauLEBER2/bRRx/x0Ucf4eHhwYEDB9o9y7MjKisr+elPf8qtW7d4/fXXmT17ttX6Ftu2cuVK4uPjCQ4OZsuWLV1djoiIPATaxElERDrNOH145MiRVg2vAC4uLqbQ+re//Y07d+5YtX+xTWlpacTHx2NnZ8eiRYu6uhwREXlIFGBFRKRT6urqCAsLY/78+UydOvWB3GPatGn4+vpSUVHR4jmg8v/Pzp07ARg/fjyBgYFdXI2IiDwsmkIsIiI2IT09nfj4eFxcXJg5c2ZXlyNdqLKykr1799LY2MjUqVPbXBctIiKPFwVYERERERERsQmaQiwiIiIiIiI2QQFWREREREREbIICrIiIiIiIiNgEBVgRERERERGxCQqwIiIiIiIiYhMUYEVERERERMQmKMCKiIiIiIiITVCAFREREREREZugACsiIiIiIiI2QQFWREREREREbIICrIiIiIiIiNgEBVgRERERERGxCQqwIiIiIiIiYhMUYEVERERERMQmKMCKiIiIiIiITfg/Q3mPA5PrNLUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration], source_position = (source_position['l'] * u.deg, source_position['b'] * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "cdd4d9e0", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at 20th iteration. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixel at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "c5d1fe59", + "metadata": {}, + "outputs": [], + "source": [ + "energy_truth = []\n", + "flux_truth = []\n", + "\n", + "with open(\"crab_spec.dat\", \"r\") as f:\n", + " for line in f:\n", + " data = line.split('\\t')\n", + " if data[0] == 'DP':\n", + " energy_truth.append(float(data[1]))# * u.keV)\n", + " flux_truth.append(float(data[2]))# / u.cm**2 / u.s / u.keV)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "4e252b9b", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "a126d61b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACKIElEQVR4nOzdd1gUxx8G8Pfu6EUQVFBQqiIYFY0ajYqoWDH2Eo0t9hJ7TTeJiRpjN9FookRNFKNGjWLF3mIJxkJRAbFSlXK0g7v9/YHcLwSkHAvHwfvJ4xNvdnbme4cLX2ZmZyWCIAggIiIiohKTajsAIiIiIl3FRIqIiIhIQ0ykiIiIiDTERIqIiIhIQ0ykiIiIiDTERIqIiIhIQ0ykiIiIiDTERIqIiIhIQ0ykiIiIiDTERIqIqAqQSCTw9vbWdhhElQ4TKaIyoFQqsXnzZnTo0AFWVlbQ19dHrVq10KRJE4wbNw4HDx7UdoiFOnPmDCQSCRYtWqTtUMqVt7c3JBIJzpw5k6fc0dERjo6OWompuHQhxvKSmpqKX3/9FcOGDUPDhg1hamoKc3NztGjRAitWrIBCoXjtucHBwRg8eDBq1aoFIyMjuLm54fPPP0d6eno5vgPSJXraDoCoslEqlejVqxeOHj0KS0tL+Pr6wt7eHgqFAnfv3sVvv/2G0NBQ9O7dW9uhUhUSEhICExMTbYdRLs6fP4/hw4fDysoKHTt2RN++ffHy5UscPHgQc+fOxb59+xAYGAgjI6M85/3111/o1KkTsrKyMHDgQNStWxenTp3Cl19+icDAQAQGBsLQ0FBL74oqKiZSRCLbuXMnjh49iqZNm+Ls2bOwsLDIczwtLQ1//fWXlqKjqqphw4baDqHc2NraYseOHRg0aBAMDAzU5d999x28vb1x6dIlfP/995gzZ476mFKpxPvvv4+0tDQcOHBA/YuOSqXC4MGDsXfvXqxatQoLFy4s9/dDFZxARKKaPHmyAEBYtWpVsc/ZunWrAEDYunWrcOjQIaFNmzaCiYmJYGlpKQwYMEC4d+9egeelpqYK33zzjdC0aVPBxMREMDU1FVq3bi389ttvr+3r2LFjQq9evYSaNWsKBgYGgr29vdC7d2/hxIkTgiAIwqhRowQABf45ffp0vniPHDkidOjQQahWrZqQ+y0lMjJSACCMGjWqwBg6dOgg/Pfbz+nTpwUAwueffy5cu3ZN6Natm1CtWjXB0tJS6N+/v/Do0SNBEAQhPDxcGDJkiFCjRg3ByMhI8Pb2Fm7evFnsz7owuXHlvs/cmAr689/3FhISIowaNUqwt7cX9PX1hVq1aglDhw4VQkND8/WT+xmHh4cLa9euFRo3biwYGRkJHTp0EARBEDIzM4V169YJPXr0EOrVqycYGBgI1atXFzp37iwEBAQU+LkVFSMAdfv/lpiYKCxcuFBo0KCBYGhoKFhaWgpdu3ZV/3soqK/PP/9cCAoKEnr27ClYWFgIxsbGgpeXl3Dx4sUSfd7a8OuvvwoAhF69euUpDwwMFAAIXl5e+c4JDw8XAAgODg6CSqUqr1BJR3BEikhk1tbWAIB79+6V+Nx9+/bhyJEj6NevH7y9vXHz5k3s3bsXp0+fxqVLl+Dm5qaum5iYiE6dOiEoKAjNmzfHmDFjoFKpcOzYMQwbNgx3797F4sWL87T/+eef48svv4SZmRn69u2LunXr4tmzZ7h06RJ27NgBHx8f9O3bFwDwyy+/oEOHDnkWKP93Dc6ePXtw9OhR9OjRA5MmTUJUVFSJ3/N/Xbt2DcuWLUOHDh0wfvx43L59G/v27cOdO3dw4MABtGvXDg0bNsTIkSMRFRWFffv2oUuXLoiIiICZmVmp+/83R0dHfP7551i9ejUAYObMmepjnp6e6r8fPXoU/fv3R1ZWFt555x24urriyZMn2LdvHw4fPozTp0+jefPm+dqfMWMGzp8/D19fX/Ts2RMymQwA8OLFC8yYMQNvv/02unTpgpo1a+L58+f4888/0bNnT2zevBnjxo0rUYwFSUxMRNu2bREcHIyWLVti5syZiI+Px+7du9G1a1ds2LABEydOzHfe9evX8e2336JNmzYYN24cHj16hL1796Jz5864efNmnn+nFY2+vj4AQE8v74+/U6dOAQC6d++e7xxnZ2c0aNAA9+7dQ0REBFxcXMo+UNId2s7kiCqbv//+W9DX1xckEokwfPhwYe/evcLDhw8LPSd3hAeA8Oeff+Y5tnr1agGA0KlTpzzluaMay5Yty1Oenp4udOvWTZBIJEJQUJC6/NixYwIAwcnJSXjy5Em+GB4/fqz++79HHgqLVyKRCEeOHMl3vDQjUgCEHTt25Dk2ZswYAYBQvXp1YfHixXmOffnllwIAYfXq1QX2VRL/HZHK5eDgIDg4OBR4zosXLwRLS0vB2tpauHv3bp5jt2/fFkxNTYVmzZrlKc/92tWpU0eIiIjI12ZGRkaer0euxMREoVGjRkL16tWFtLS0YscoCAWPSE2YMEEAIEyYMCHPSMu9e/eEatWqCQYGBkJkZKS6/N9fo61bt+Zpa+PGjQIAYfLkya+N4b9WrVolfP7558X+88cffxS77dfp3r27AEDYuHFjnvKBAwcKAIQ9e/YUeJ6vr68AIN+IIBETKaIy4O/vL9ja2uaZZrGyshL69u0rHDx4MF/93MTkv8mSIAhCdna24OLiIgBQJ2Tx8fGCTCYTWrRoUWD/N2/eFAAI8+bNU5f16tVLACDs27evyPiLm0j17du3wOOlSaTatWuXr/7Zs2cFAIKjo6OQnZ2d59jDhw8FAMLo0aOLfF9F0SSRyk10169fX+DxmTNnCgDyJFm5iZQmyd+KFSsEAMLZs2eLHaMg5E+kMjMzBRMTE8HMzExISEjIV/+TTz4RAAhffPGFuiz3a9S2bdt89RUKhaCnpye8+eabxX4vDg4Or52WLOjP6/49Fde6desEAIKnp6egUCjyHOvSpYsAoMApTUEQhGHDhgkACp02p6qJU3tEZWDw4MHo168fTp8+jQsXLiAoKAgXLlzA/v37sX//fowcORJ+fn6QSCR5zuvQoUO+tmQyGdq1a4fw8HAEBQXBwcEB165dg1KpfO0WBVlZWQBy7tTKdeXKFUgkkgKnLjTVqlUr0drK1aJFi3xlderUAZAzVZU7/ZXLzs4OAPDkyRPRYymOy5cvAwD++eefAr8WuVO8ISEh8PDwyHOssM/v7t27WL58Oc6dO4fnz58jIyMjz/GnT5+WKu6wsDCkpaWhbdu2sLKyyne8U6dOWLx4MYKCgvIdK+hrpK+vDxsbG7x8+bLYMTx8+LBEMZfGvn37MHPmTNja2mLv3r3qKT6i0mIiRVRG9PX10bVrV3Tt2hVAzl1Be/fuxZgxY7Bt2zb069dPvR4pl42NTYFt2draAgCSkpIAAAkJCQBy1hNdu3bttTHI5XL13xMTE1G9enUYGxtr/J5eF5eY/nuXI/D/9SyFHctNHstb7tdi8+bNhdb799ci1+s+vytXrqBTp07Izs5G586d0bt3b1SrVg1SqRQ3b97EgQMHkJmZWaq4c/8t1a5du8DjueWJiYn5jllaWhZ4jp6eHpRKZaniKgv79+/Hu+++i1q1auH06dNwdnbOVyf331bu5/JfueWve+9UdTGRIionMpkMgwcPxu3bt7F48WKcOnUqXyIVExNT4LnR0dEA/v/NPvf/s2bNwsqVK4vVv6WlJRISEpCeni5aMvXfEbVcUmnOXr/Z2dkFHi/oh7Ouyv1a/PPPP2jSpEmJzn3d57d48WKkp6fj9OnT+XYjX7JkCQ4cOKBRrP+WG3fuv63/ev78eZ56ZWH16tUl+rfg6emZ75opyu+//45hw4bB1tYWp06dQv369Qusl7tA/nU3idy/fx8A0KBBgxL1T5UfEymicmZubg4AEAQh37GzZ8/mK1Mqlbhw4QIAoFmzZgBypoSkUinOnz9f7H5bt26NQ4cO4ejRo+jXr1+hdXOnzzQdXahevToA4PHjx/mOJScna3RHozbJZLLX7obdunVr7N27F+fPny9xIvU6Dx48gJWVVYGPdCno30hRMRbEzc0NJiYm+Oeff5CYmJhvpOX06dMAUODdhmJZvXp1ie70HDVqVIkSqV9//RWjRo2CnZ3da0eicnXq1Alff/01jh49ig8//DDPsYiICNy7dw8ODg6FtkFVEx8RQySynTt34sSJE1CpVPmORUdHq6eAvLy88h0/deoUDh06lKds/fr1CA8PR8eOHeHg4AAAqFWrFt577z1cv34dX331VYEJT3h4OCIjI9Wvp02bBgCYM2dOgetr/l2Wu4XDo0ePiny/BTE3N0fDhg1x8eJFBAcHq8uVSiVmz55dLo/bePjwISQSiSiPTbG2tkZcXFyBcb///vuwtLTEF198gatXr+Y7rlKp8j1ypiiOjo548eIFbt26laf8559/xrFjx0ocY0EMDAzw3nvvISUlBZ9++mmeY+Hh4Vi7di309fUxYsSIEsVeEg8fPoSQc9NTsf74+fkVu+1ffvkFI0eORL169XDu3LkiE6AOHTrA3d0d586dy/MIJ5VKhQULFgAAJk2a9NpRRKq6OCJFJLK//voLa9asga2tLdq1awcnJycAQGRkJA4fPoz09HT06dMHAwcOzHfuO++8g379+qFfv35wdXXFzZs3ceTIEVhZWeGHH37IU3f9+vW4f/8+PvvsM2zfvh3t2rWDjY0Nnj17hpCQEFy7dg07d+5U99+1a1d88sknWLx4Mdzd3dX7SMXExODChQto3bq1+geVm5sb7OzssGvXLujr68PBwQESiQQjRoxQJ3NFmTdvHsaOHYu2bdti0KBBMDIywunTp5GVlYWmTZvin3/+KcWnXLTcRPa/+wVponPnzrh27Rq6d+8OLy8vGBoaomnTpnjnnXdgbW2NPXv2oF+/fmjdujU6d+6MRo0aQSKR4PHjx7h8+TISEhLyLRYvzMyZM3Hs2DG0a9cOgwcPhoWFBa5fv44LFy5g4MCB2LNnT4lifJ2lS5fi/PnzWL9+Pa5du4aOHTuq95FKSUnB+vXr1f9+dMnp06fV+6p17NgRW7duzVfH0tIyz55bMpkMW7duRadOnTBw4EAMHDgQ9erVQ2BgIK5fv462bdti1qxZ5fguSGdo52ZBosrr0aNHwvr164W+ffsKDRo0EMzNzQV9fX3B1tZW6NGjh7B9+3ZBqVTmOeffO4X/+eefQuvWrQUTExPBwsJC6N+/vxAWFlZgX7k7YLdp00a970/dunWFTp06CatWrRLi4+PznXP48GGhW7duQvXq1dU7m/ft21cIDAzMU+/q1atCp06dhGrVqgkSieS1O5sX5qeffhI8PDwEAwMDwcbGRpgwYYIQHx9f5M7m/1XUdgooYI+k/fv3CwCEjz/+uNAY/+112x/I5XJh0qRJgp2dnSCTyQqMJTIyUpg6darg6uoqGBoaCubm5oKbm5swfPjwfPsf5W5/8O89mv7rzz//FN566y3BzMxMsLCwELp06SKcPXv2tZ99UTEW9BkJgiC8fPlSmD9/vuDq6ioYGBgIFhYWgo+Pj3Ds2LF8dYvaFqOoLRjKy7/3ZXvdn9fFeffuXWHgwIGCtbW1YGBgINSvX1/47LPP8u3bRZRLIggFLNQgonLl5+eH999/H1u3bsXo0aO1HU6lMHv2bPz444+IiopCjRo1tB0OEVVSnNorhuXLl+PixYvIyMiAjY0NJkyYgLZt22o7LCIqxNmzZzF+/HgmUURUpphIFcPgwYMxY8YMGBgYICQkBLNnz8auXbvK9LZgIiqdGzduaDsEIqoCeNdeMTg4OMDAwABAzr4vWVlZiI+P13JUREREpG06s0YqLS0Nu3btQnBwMEJCQpCSkoIPP/wQPXr0yFdXoVDg559/xvHjx5GSkgIXFxeMGzcOLVu21Lj/lStXIiAgAAqFAq1bt8ayZct4GywREVEVpzMjUklJSfDz80NUVBRcXV0LrbtkyRLs3r0bXbp0wfTp0yGVSjF//vx8e7KUxOzZs3Hs2DGsWrUKLVu2ZBJFREREurNGytraGn/88Qesra0RGhqKCRMmFFgvODgYgYGBmDx5MoYOHQoA6NatG0aPHo0NGzZgw4YN6rpTp07F7du3C2xnxIgRGD9+fJ4ymUyGN998E7///jvs7e3Rpk0bkd4dERER6SKdSaQMDAzUuy0X5uzZs5DJZOjdu7e6zNDQEL6+vti0aRNiYmLUD4b9/vvvNYpFqVQW+8nrGRkZiIqKgoODA4yMjDTqj4iIiComnZnaK6779+/D3t4epqamecrd3d0B5DzDqiTkcjlOnDiBtLQ0ZGdn4/Tp0wgKCkLTpk2LdX5UVBTGjx9foudJFVd4eLjobRJRyfA6JNIubV+DOjMiVVwJCQkFjlzllpX0bjuJRIJDhw5h1apVEAQBdnZ2+PTTT1/7BPH4+HgkJCSoX5dFApUrMzOzzNomouLhdUikXdq+BitdIpWZmQl9ff185bnbF5T0Azc1NcWaNWuKXf/gwYMFPlgzMjKywAfLloZcLs/zQFgiKn+8Dom0qyyvQQ8PjyLrVLpEytDQEFlZWfnKFQqF+nhZ6t27d55dz6OiorB48WI4OTnBzc1N1L6Cg4OL9UUmorLD65BIu7R9DVa6RMra2hpxcXH5ynOn28r6cRE1atTgIymIiIiqiEqXSLm6uiIoKAipqal5FpznDvsVtQeVWE6ePImTJ09CLpeXS39ERFR+lEplgbMfVP5UKhUyMjI0Pl9fXx8ymUzj8ytdIuXt7Y1du3bh4MGD6n2kFAoFAgIC4OHhod76oKz5+PjAx8cHYWFh+fajIiIi3SWXy/HkyRPoyINBKj2VSoXIyEiNz5dIJLC3t4eZmZlG5+tUIrV3717I5XL1NN3FixcRGxsLABgwYADMzMzg4eGBjh07YtOmTUhMTISdnR2OHj2K6OhoLFiwQJvhExGRjlMqlXjy5AlMTExQs2ZNPuWiAsjIyNB4n0ZBEBAXF4cnT56gfv36Go1M6VQi5e/vj+joaPXrc+fO4dy5cwCArl27qrPJjz76CDY2Njh27BjkcjmcnZ2xbNkyeHp6aiNsIiKqJLKysiAIAmrWrAljY2Nth0PISYZKs+F1zZo18fDhQ2RlZVX+RGr37t3FqmdoaIgpU6ZgypQpZRzR63GNFBFR5cWRqMqjtF/LSrezeUXh4+ODpUuXYtq0adoOhYiIKrlFixZpvOB69erVeWZ7Fi1ahJkzZ4oUWeXHRIqIiEjHffHFFwUmUtnZ2UWe+99EikpGp6b2iIiIKK9JkyYBANq3bw+ZTIY6derA1tYWDx48QGxsLEJDQyGRSPDy5UtYWloCyNnz8Pr169i2bRuePXuGIUOGwNjYWP1kjufPn+Odd95BeHg4bG1tsWfPHlhZWWnpHVZsTKTKCNdIERFVfkNDViI+K6XM2q+hb46d7rMLrbNx40b8+OOPOH/+PCwtLTF69GjcuHEDFy5cgLm5eaHnfvbZZ9iyZQv8/f3VN2Tt378ff/31F27cuAFra2u8++67+PHHH/Hhhx+K9bYqFSZSZaQ89pFSCqoyaZeIiIonPisFsVlJ2g4jn0GDBhWZRBWme/fusLa2BgC0adMGt2/fFiu0SoeJlI66kBSCbzL3YUWaJdxN7LUdDhFRlVRDX/NkpSzb/+/mkjKZDEqlUv26qIXp/95OQCaTFWutVVXFREoHvciS47OHu5AgpGB46BpMrdMdo2w6QibhvQNEROWpqGm38mJubo6kpCT1Gqj/cnV1xV9//YWePXti3759SE1NVR+rVq0akpIq3qiaruBPXh2UpspELQMLAEC2oMSap4cx4d4GPFe81HJkRESkDXPmzEGXLl3g6empfuLHv61atQozZsxA8+bNERQUpJ62A4Dp06dj/Pjx8PT0xM2bN8sx6spBIvBhQWXi34vNb926hc2bN8PNzU209rNU2fjy9q/4M/sWBOR8Cc1lRvi43iD0sGomWj9EVLjg4GB4eHhoOwwqJxkZGYiMjISTk1OpdtMm8aSnp5dql/nSfk05IlVGynpDTn2pHobqt8RPDSajtkF1AECKMgMLI7fjw8gdSFGml0m/RERE9H9MpHRcC3NX7Hafi55WzdVlAS/+xqDg73AjJVyLkREREVV+TKQqgWp6xljiNBxLnN6DuSxnWPK54iXG3vsBa58eRpaKd1sQERGVBSZSlUhPqzex230u3jRzBgAIEPBzdCBGhq3Fw4z8iw+JiIiodJhIVTJ1DK2wucEUzLDzhZ5EBgAITnuCISErsTfuMnhvARERkXi4j1QZ0eYjYmQSKcbYdkabam74MHIHIjNikaFS4MtHv+N8cgg+dxiM6npmRTdEREREheKIVBkp67v2isPdxB473WdjUI231WWnE+9gUPB3uJJ8T2txERFVNSqVgGfBCQi/9AzPghOgUnF2oLJgIlXJGUsN8InDQKx2GQNLmSkAIC4rGRPvb8SKJweh4EJ0IqIyFXk1Gv7TzyBg8VWcXv8PAhZfhf/0M4i8Gq3t0MrMokWLinwMjSb8/PwQGhqq0bnr16/H6NGjxQ0ITKSqjI6Wb2BPo3loU+3/m4JuizmD4aFrEJEeo8XIiIgqr8ir0QhcHYTUF3mTitQXGQhcHSR6MlVRnon3xRdfvDaRKk2MpUmkygoTqSqkpn41/OA6HvPs+0D/1UL0sPSneDdkBXbHXYQgCBx+JiISiUol4Mq2kELrXNkeUurvsxKJBJ9//jlatmyJDz/8ECkpKRg/fjxatWqFJk2aYMKECVAoFACAp0+fYuDAgWjcuDGaNGmCTz/9FAAQGxuL/v37o3HjxnjjjTfw448/qtt3dHTEZ599hjZt2sDJyQmLFy9WH1u8eDHc3d3h6ekJT09PREVFYdKkSQCA9u3bqx9ZM3r0aIwZMwZeXl5444031HEnJiaq26pRowYePnwIAAgJCUG3bt3QpEkTNGnSBBs3bsRPP/2E69evY9asWfD09ERAQAAAYPXq1WjVqhWaN2+O7t27IyoqCgCQkpKCIUOGwM3NDe3atcPt27dL9Tm/DhebVzFSiRTDbTqgpbkrFkbuQERGDDKFbHz9aC9uX36Ihsdtkf5Coa5vamWE1iPd4dTKVotRExHpnst+d/ONRP1XakIGfp0cCM/eLmjs66RxXzKZDNeuXQMATJgwAe3bt8fmzZshCALGjx+PNWvWYN68eRg+fDi6du2KPXv2AADi4uIAANOmTYObmxv27duH2NhYvPnmm2jatClat24NAEhMTMTly5cRHx8PFxcXvP/++zAxMcF3332H58+fw9jYGGlpaZBKpdi4cSN+/PFHnD9/Ps9DlG/cuIELFy7A3Ny80PeSnZ2NPn364IsvvsDQoUMBAPHx8ahRowZ27NiBmTNnom/fvgCA3377Dffu3cPly5chk8mwfft2TJkyBYcPH8aXX34JQ0NDhIaGIjk5Ga1bt8Zbb72l8Wf8Okykqig3EzvsdJ+FVU8OYVfcBbjcr4V6B6sjDZmQQKKulzv83HlmMyZTREQlkJakKLoSgMyULCjSSzclN2bMGPXf9+/fj8uXL2PlypUAcp5FJ5PJIJfLceHCBRw7dkxdt2bNmgBy7jS/ceMGAKBWrVro378/Tp48qU6khg0bBiBn1MjZ2RmRkZFo06YN6tevr07OfH19YW9v/9oYBw0aVGQSBQBhYWHIyMhQJ1G5/RZk//79uHr1Kt58800AgFKpVB8LDAzEqlWrIJFIYGFhgWHDhiE8XPwnfjCRKiPa3P6guIykBviwXn+0MWuAfzY9AIA8SdS/XdkeAocWNpBKCz5ORER5mVgYFKueobk+DIxL9+PYzOz/W9oIgoC9e/eiQYMGeeqU5OeRRJL3e/2/H+Yrk8mQnZ0NmUyGK1eu4NKlSzhz5gxat26NnTt3on379kXGmNvOvxMfTRanC4KAuXPn4oMPPiiy7n/fk1iYSJURHx8f+Pj4ICwsDOPHjy+TPp5dScbNH06Vuh1llgqmKYaF1skdfpbpl35ZXeMeTqUawiYi0gVtRjfCo7/jCp3eM7U2wpA13qL+ktq3b18sW7YMP/74I/T09PDy5UskJCTA1dUVXl5eWLFiBT788EMAOVN7NWvWhI+PDzZv3oyvv/4acXFx2LdvH37//fdC+0lJSUFKSgrat2+P9u3b4+7duwgKCkL79u1hbm6OpKSkPFN7/+Xq6oq//voLPXv2xL59+5CamgoAcHNzg4mJCXbu3Jlvaq9atWpISkrK816XL1+OYcOGwcrKCllZWbhz5w6aNWsGHx8fbN26FV5eXkhJScHOnTvRsmXLUn66+XGxuQ7LzlQh7UVmqf9kpmQVq7/MlCxR+ivtEDYRkS6QSiVoPdK90DqtR7iLPtK/atUqGBsbw9PTE02aNEHnzp3Vi7i3b9+O69evo1GjRvD09MT69esBAGvXrkVISAgaN26Mjh074uOPPy5yPVFSUpJ6gXqTJk2QlZWFUaNGAQDmzJmDLl26qBebvy7OGTNmoHnz5ggKCoK1tTUAQE9PDwcOHMDWrVvRuHFjNG3aFHv37gWQs/7rm2++US82f++99zBixAh07NgRTZs2haenJ06dyhlg+PTTT5Geno6GDRuiZ8+eaNeuXak/24JIBD4zpEzljkht3rwZbm5uRZ9QAie3XEHs32mlbkeZpSpWMiWpDhhLCh+5Kg6OSFFlEhwcDA8PD22HQeUkIyMDkZGRcHJyyjPdVZjIq9G4si0kz8iUqbURWo/gjTxiSE9Ph7Gxscbna/I1/TdO7emwOq2rwWdM61K3o1IJ8J9+5rXDzwIEyM0zcHT8HSxxGY7m5s6l7pOIqKpwamULhxY2iA59gfTETBhbGsK2oRXXnFYSnNqjYg0/n+94D9HKRIy99z02PjuGbEFZaH0iIvo/qVSCOh7WcHm7Dup4WDOJqkSYSBGAnN+YOs9sBlOrvMOaptZGaPGBG6o3y7llVQUBG54fw/h7GxCteKmNUImIiCoMTu2RWmHDz5uEyfg5OhAbnx2DEir8LY/AoODv8LnDEPhUb6Lt0ImIyhWXF1cepf1aMpGiPHKHn/9LJpFiQu0uaGnuig8jd+C54iWSlemYE+GHgTXaYG7dPjCWFm/PFCIiXaWvrw+JRKLeNqCs9iai4svMzNT46yAIAuLi4iCRSKCvr69RG0ykyogubMipiWZmTtjtPhdfPdqN4y//AQDsib+MIHkkljmPQH3j2lqOkIio7MhkMtjb2+PJkyfqLQVIu7KysjROgoCcjTrt7e0hk8k0O5/bH5Ststz+QJu3XQuCgD8S/sKyR38gQ8jZOsFQooc59n0wuObb/C2Nqgxuf1A1KZVKZGUVbw8+KlsPHjyAq6urxufr6+trnEQBHJEiDUkkEvSv0Rqepk5YELkN99KfI1PIxjeP9+JyShi+cBgCCz1TbYdJRFQmZDJZqX74knikUqlG+z+JRZRE6u+//8aNGzdw584dxMbGIikpCUZGRrC0tISzszM8PT3Rpk0b9a6lVHk4G9tgR8OZWPXkT+yMuwAAOJ14ByGpT7DUeQSamXHjTSIiqrw0TqTS09Oxd+9e/Pnnn4iJiVGvejcwMEC1atWQmZmJyMhIhIeH48SJE9DT08Pbb7+NwYMHo3HjxqK9AdI+Q6k+Ftbrj9bV3PDZw51IUqYhOisRY8O+x+Q63TDGtjNkEu60QURElY9GiVTuM3BevnwJFxcXjB07Fo0aNULDhg1hYmKiricIAp48eYLg4GBcu3YNFy5cwPnz59G2bVtMnToVderUEe2NkPZ5WzbC7x5z8WHkDtyQR0AJFdY/O4KrKQ/wjdN7qKlfTdshEhERiUqjRGr16tXw8fHB0KFD4ez8+seFSCQS1K1bF3Xr1kW3bt2QmZmJEydOYMeOHTh+/DhGjx6tadxUQdkYWGJzgynY9Pw4Nj0/ARUEXE25j0HB32Gx41C0syh8B3UiIiJdolEitW3bNtStW7fE5xkaGqJXr17o0aMHYmJiNOmadIBMIsXkOt3R4tWeU3FZyXiZLcfUB5sxysYb0+r0hL6U9zkQEZHu02jhiiZJ1L/JZDJO61UBLc1d8bvHXLS3+P+t4b/EnMGosHV4kpmgxciIiIjEwRXAVKaq65lhnctYzLPvAz1Jzq3Cd9MeY0jwCpx4taEnERGRrmIiRWVOIpFguE0HbHebjrqGOVtgyFUZmBvxC75+tAeZKm5qR0REuknURColJQVHjx4Vs0mqRDxM62KX+xz0qN5MXbY77hJGhK7Bw4xYLUZGRESkGVETqZiYGCxdulTMJqmSMZMZYYnTcHzuMBiGkpwF52Hpz/BuyEocTrih5eiIiIhKpkS3ThV1p118fHypgqlMKutDi8WQ+3iZxqb1MC9iGyIzYpGuUuCjh7/iWsoDLKjXD8ZSA22HSUREVKQSJVKDBw8u9GG0giDwYbWv+Pj4wMfHR/3QYsqvvnEd/NZwFpY83oeDCdcAAH8k/IVbqVFY7jwSLsa2Wo6QiIiocCVKpMzNzTF27Fh4enoWeDwqKgqLFi0SISyqKkxkhvjKcShambti8aO9yFApEJ4RjWEhq/BhvQHoY92SyTkREVVYJUqkGjRogJSUFDg5FfwgWqVSqX7mHlFJvGPdEm+8muq7n/4cGUIWPo/ahWspD/BxvQEwkRlqO0QiIqJ8SrTYvG/fvrC1ff10i42NDRYuXFjqoKhqcjKywY6GMzCgRmt12aEX1zEsdBXupz/XYmREREQFK1Ei5eXlha5du772uLm5OXr06FHqoKjqMpIa4DOHwVjqNBwm0pxRqMiMWAwPWY198Vc44klERBUKN+SkCqmHVXPsdJ8FN+OcRwllCFn4Imo3Pn74G9KUmVqOjoiIKEepEylvb288fvxYjFiI8nA0qoXtDWdgcM231WWHX9zA0JBVuJ/+TF2mUgl4FpyA8EvP8Cw4ASoVR62IiKh8lGixeUE41UJlyVCqj4/rDUQLM1d8EeWPVFUmHmbG4r2Q1VhYrz+aRTjgyrZQpL7IUJ9jamWE1iPd4dSK2ycQEVHZ4tQe6YRuVp7Y5T4bDY3tAACZQjZ2nDyDk6uD8iRRAJD6IgOBq4MQeTVaG6ESEVEVwkSKdEY9o5rY1nA6htRsC4kKaH/KrdD6V7aHcJqPiIjKVKmn9ohK6vbhSNw+Eqnx+Y6ojkHWrWAuNyq0XmpCBn6dHAiZful/X2jcwwmNfQveP42IiKouJlJU7hTp2Uh7Ubo772xeWBSrXmZKVqn6yaVIzxalHSIiqlyYSBXTnTt3MHXqVIwZMwajRo3Sdjg6zcBYDyZWpdupXJmlKlaSZGiuL8qIlIExLxUiIsqPPx2KQaVSYf369WjYsKG2Q6kUGvuWfppMpRLgP/1MvoXmuQQIkFpKMWxdJ8hkXApIRERlo9Q/YYYNG4Zq1aqJEUuF9eeff8Ld3R0ODg7aDoVekUolaD3SvcBjAnIWmB/2uomFUTsgVxacbBEREZVWqROpiRMnwsKieOtVNJWWloYtW7Zg7ty58PX1hZeXF44cOVJgXYVCgQ0bNqBfv37w8fHBxIkTce3aNY37TkpKwu+//44xY8Zo3AaVDadWtug8sxlMrfIuOldZAEd630J4/Vgcf3kT74asQEjaEy1FSURElZnGU3sKhQIGBgZixvJaSUlJ8PPzg42NDVxdXREUFPTaukuWLMGZM2cwaNAg2Nvb48iRI5g/fz7WrFmDJk2alLjvzZs3Y9CgQTA3Ny/NW6Ay4tTKFg4tbBAd+gLpiZkwtjSEbUMruCTZY1HULqQoM/A4MwEjQtdgrn2fnK0TJBJth01ERJWExolU7ohPz5494eZW+H4+pWVtbY0//vgD1tbWCA0NxYQJEwqsFxwcjMDAQEyePBlDhw4FAHTr1g2jR4/Ghg0bsGHDBnXdqVOn4vbt2wW2M2LECIwfPx737t1DaGgoZs2aJf6bItFIpRLU8bDOU+ZTvQkamthhfsQ23E17jCxBiSWP9+F6Sjg+dxwMc5mxlqIlIqLKpFQjUvv378eBAwfg4uICX19fdOnSpUxGbgwMDGBtbV1kvbNnz0Imk6F3797qMkNDQ/j6+mLTpk2IiYmBjY0NAOD7778vsr2bN2/i8ePHGDBgAABALpdDJpPh2bNn+PDDDzV8N1Re7A2t8YvbNKx+egg7Ys8BAE4k/oOQ4CdY7jwSHqZ1tRwhERHpOo0TqQMHDuDEiRMICAhAaGgo1q5diw0bNqB9+/bw9fXFm2++KWacxXL//n3Y29vD1NQ0T7m7e86i5AcPHqgTqeLo3bs3OnfurH69du1a1K5dG++99544AVOZ05fqYV7dvnjT3AWfPdyFFGU6nigSMDJsLebY98a7Ndtxqo+IiDSmcSJlYmKCPn36oE+fPnj48CEOHz6MEydOIDAwEKdOnUKtWrXg6+uL7t27lyh5KY2EhIQCR65yy+Lj40vUnpGREYyM/r+Q2dDQEMbGxoWOusXHxyMhIUH9OioqqkR9UtnoZNkYbu45U3130h4hS1Bi6eM/cC3lARY5vItqepzqIyKikhNlHylHR0dMnToVkyZNwqVLl3D48GFcvXoVW7ZsgZ+fH1q0aAFfX1+0a9cOenplt3VVZmYm9PX185XnLorPzCzdbtofffRRkXUOHjwIPz+/fOWRkZFQKpWl6v+/5HI5goODRW2zslsgdMZOvWsIyL4DAAhMvI3bSQ8x3aATXKQ1tRwd6SJeh0TaVZbXoIeHR5F1RM1qZDIZ2rdvj/bt2+PFixc4duwYAgICcPXqVVy7dg3VqlXDwYMHxewyD0NDQ2Rl5d/tWqFQqI+Xtd69e6Nt27bq11FRUVi8eDGcnJxEX5QfHBxcrC8y5dUEjdEt8Q4+fbgTycp0xAopWKQ4hNn272BYzfac6qMS4XVIpF3avgbLbMtnKysrDB06FIsWLULjxo0hCAKSk5PLqjsAOVN4/55Wy5VbVqNGjTLtP7cPNzc39R9u4lkxeVu+AX/3OWhimvP1yRaU+PbxfsyO8ENydrqWoyMiIl1RJvNsaWlpOHHiBA4fPox79+5BEAQYGRmhY8eOZdGdWu4eU6mpqXkWnOcO+bm6upZp//928uRJnDx5EnK5vNz6pJKpY2iFLW4fYN3Tw/gl5gwA4FTibYSmPcW3ziPQ2JRJMBERFU7UROrvv/9GQEAAzp8/j8zMTAiCAA8PD/j6+qJTp04wMTERs7t8vL29sWvXLhw8eFC9j5RCoUBAQAA8PDzKbdE7APj4+MDHxwdhYWEYP358ufVLJaMvkWG2fW+8aeaCTx/uRJIyDc8ULzA6bD1m2fXCe7W8ONVHRESvVepEKjY2FkeOHMGRI0cQHR0NQRBgaWmJ3r17w9fXF46OjiKECezduxdyuVw9TXfx4kXExsYCAAYMGAAzMzN4eHigY8eO2LRpExITE2FnZ4ejR48iOjoaCxYsECUOqpw6WDaCv8ccLIjYjn9SHyJbUGL5kwO4nhKOLx3fRTW9sv0lgIiIdJPGiVRgYCACAgLw999/Q6VSQSqVomXLlmV2d56/vz+io6PVr8+dO4dz53I2WezatSvMzMwA5NxZZ2Njg2PHjkEul8PZ2RnLli2Dp6enqPFQ5VPboDp+dpuK9U8D4BdzGgBwOukOhoSswDLnker1VERERLkkgiAImpzYoUMHAEDt2rXRo0cP9OjRA7Vq1RI1OF327zVSt27dwubNm3nXng45lxSMTyJ/Q5IyDQCgBylm2PfCiFodONVHefA6JNIubV+DGg8bde7cWWs7mOsCrpHSbV4WHtj9aqrvZupDZEOFFU8O4sarqT4LPdOiGyEiokpP4+0PPvvsMyZRVKnZGlTHT25T8b5NJ3XZmaS7GBKyErfkD7UXGBERVRii7SOVnZ2N3bt3Y8KECejevXuerQ7u37+PlStX4vHjx2J1R1Qu9CUyzLTvhfWu42ApyxmFeq54iffD1uOXmDPQcGaciIgqCVFWhGdmZmLOnDm4c+cOLCwsYGpqioyMDPXx2rVrIyAgAObm5lVmmov7SFUu7V9N9c2P2I6bqZHIhgornxzE9ZQH+MpxKCw51UdEVCWJMiK1fft23L59GxMmTMD+/fvh6+ub57iZmRk8PT1x7do1MbrTCT4+Pli6dCmmTZum7VBIJDYGlvjZbQrG2nZWl51LCsaQ4BW4KY/UYmRERKQtoiRSp06dQrNmzTBs2DBIJJIC72qqU6cOYmJixOiOSGv0JDJMt/PFD67jUf3VKFR0ViLGhH0Pv+hTUAkqLUdIRETlSZREKjY2tshb+42NjZGamipGd0Ra19bCHf7uc9DczBkAoIQKq54ewvQHP+NlNqdziYiqClESKWNjYyQmJhZa59mzZ7CwsBCjO6IKwcbAEpsbTMY4Wx912fnkEAwJXokgTvUREVUJoiw2b9SoES5duoSUlBSYm5vnOx4TE4MrV66gffv2YnSnE7jYvGrQk8gwza4nmps54+OHv+FlthwxWYkYG/Y9PrDrgdE2HSGV5P99RaUSEB36AumJmTC2NIRtQytIpdzok4hI14iSSL377ruYOXMmZs2ahRkzZkCpVAIAMjIycPfuXaxevRpKpRJDhgwRozudwA05q5a2Fg2x230OPozcgevycCihwpqnh3EjJRyLnYahup6Zum7k1Whc2RaC1Bf/v7PV1MoIrUe6w6mVrTbCJyIiDYkytefp6YmZM2ciIiIC06ZNw44dOwAA3bt3x5w5c/D06VPMnj1b9EekEFUktQws8GODSRhv2wUS5IwuXUgOxeDgFfg7JQJAThIVuDooTxIFAKkvMhC4OgiRV6PztUtERBWXaE8W7tu3Lzw9PXHgwAGEhIQgOTkZpqamcHd3R79+/eDk5CRWV0QVlp5Ehg/seuBNc2d8GPkrXmbLEZuVhHH3fsAU224w2SYr9Pwr20Pg0MKG03xERDpCtEQKABwdHTFjxozXHlcqlZDJCv9BQlQR3T4cidtHSraAfJhxa/zZIQiPaidACRX2XbuC/i9aFHpOakIGfp0cCJl+6QeLG/dwQmNf/gJDRFSWREmk9u3bh/79+xdaR6lU4osvvsCXX34pRpcVHhebVy6K9Gykvcgs0TlSSPDOzma41joCV9tEwERuWKzzMlOyNAkxH0V6tijtEBHR64mSSK1duxZWVlbw9vYu8LhKpcIXX3yBc+fOidGdTuBi88rFwFgPJlbFS4T+q2OYB5ySa+G6S0Sx6hua64syImVgLOqAMxERFUCU77SNGzfG4sWLUa1aNTRv3jzPsdwk6uzZs0WOWhFVVI19Sz9NFpeZhN1nzsEgWaZejP5fptZGGLLGm2ukiIh0hCh37S1duhR169bFJ598gvv376vLVSoVvvrqK5w5cwZ9+/YtdP0UUWVX09AC3ce0ACCBAKHAOq1HuDOJIiLSIaIkUqampvjuu+9gZmaGefPm4dmzZxAEAV9++SVOnTqFPn36YNasWWJ0RaTTXFrVhs/MZjConncwOMU8A8pRUtRrWUtLkRERkSZEW0RhbW2NFStWYOrUqZgzZw7q16+Ps2fPolevXpg9e7ZY3RDpPKdWtnBoYYN7d57gl/un8Y8sCs/sXkKQAn/fj8Q3Tu/BWj//EwKIiKjiEWVEKlfdunXx7bff4uXLlzh37hx69eqFefPmidkFUaUglUrQsEldLO4/HH3eeguSV9N5V1LuYXDwd/gr+X4RLRARUUWg0YiUn59focfd3d3x4MEDWFtb56krkUgwatQoTbokqpRkEikm1u6K5mbOWBixHfHZKYjPTsHE+xsxqXZXjK/dBbICntVHREQVg0aJ1NatW4tV75dffsnzuiolUtxHikqipbkrdnvMxUeRv+JKyj0IELDh+THckEdgidN7qKFfTdshEhFRATRKpNasWSN2HJUO95GikrLWN8eG+hPwc3Qgfnh2FCoIuJpyH4ODV2CJ03t4q1oDbYdIRET/oVEi5enpKXIYRAQAUokU42t3QTMzJyyM3IG4rGQkZKdg4v0fMaF2F0ys3ZVTfUREFQi/IxNVQC3MXbHbfS7eruYGABAg4MfnxzHx/kbEZSVrOToiIsrFRIqogrLSN8P3ruMxvU5PSF/thH4t5QEGB3+HK8n3tBwdEREBTKSIKjSpRIqxtX3wc4OpqKVvAQB4kS3HpPs/Yv3TI8gWlFqOkIioamMiRaQDmps7Y7fHHLSr1hBAzlTf5ugTmHhvI2IVSVqOjoio6mIiRaQjquuZYZ3rOMyw84Xs1aV7XR6OwSErcCk5TMvRERFVTUykiHSIVCLFGNvO+NltKmz0LQEAL7PlmHJ/E9Y/DeBUHxFRORPtWXuUFzfkpLLUzMwJuz3m4JPI33A+OeTVVN9J3JBHYKnTcNgYWGo7RCKiKqHEI1IqlQoRERGIj4/Pdyw7Oxs3b94UIy6d5+Pjg6VLl2LatGnaDoUqKUs9U6x1HYtZdr3UU31/yyMwJGQFLiaFajk6IqKqoUSJVHR0NEaPHo33338fAwcOxMKFC5GU9P+FrsnJyZg5c6bYMRLRa0glUoy27YQtblNhq57qS8WUB5uwjlN9RERlrkSJ1IYNG1CjRg3s2rULmzdvRmZmJqZOnZpndEoQBNGDJKLCeZo5wd9jDtpbeKjLfoo+ifH3NiBGkai9wIiIKrkSJVL//PMPpkyZgtq1a6N+/fpYsWIFmjRpgg8++AAxMTEAch5MTETlz1LPFGtdxmC23TvQyzfVF6Ll6IiIKqcSJVIZGRnQ19f//8lSKebPn4+WLVti2rRpePr0qegBElHxSSVSjLLtiC1uH/xnqm8z1jw9xKk+IiKRlSiRqlevHsLC8u9XM2fOHLRu3RoLFy4ULTAi0lxTM0fs9piDDhaN1GVbok9hbNgPiFa81GJkRESVS4kSKS8vL5w4caLAY7Nnz0bnzp25RoqogrDQM8UalzGYY99bPdV3MzUSQ4JX4nxSsJajIyKqHEqUSA0fPhzLly9/7fHZs2fj7NmzpQ6KiMQhkUgw0sYbW90+QB2D6gCARGUqPnjwE1Y9+RNZnOojIioV7mxOVAU0MXOEv/scdLR4Q13mF3MaY8O+x3NO9RERaYyJFFEVUU3PBKtc3sc8+z7Qk8gAAP+kPsSQ4BU4m3hXy9EREemmUidS3t7eePz4sRixEFEZk0gkGG7TAX5uH6COgRUAIEmZhunhP2PFk4OFTvWpVAKeBScg/NIzPAtOgErF9ZBERKV+1h4XlxeMz9qjiqyxqQP83Wfjs6hdOJ14BwCwLeYMbsojscxpBOoYWuWpH3k1Gle2hSD1RYa6zNTKCK1HusOplW25xk5EVJFwaq+M8Fl7VNFV0zPBKuf3Md++r3qq71ZqFIaErMCZV8kVkJNEBa4OypNEAUDqiwwErg5C5NXoco2biKgiYSJFVIVJJBK8Z+OFX9ymqaf6kpXpmBG+Bd89PoDM7Cxc2Vb4ruhXtodwmo+IqqxST+0RUcV0+3Akbh+JLHb9QQYtcaTtP7jnmDPCtD32LP4JjECHFw0LPS81IQO/Tg6ETL/0v5c17uGExr5OpW6HiKi8MJEiqqQU6dlIe5FZonO67n0Dtp4WuNDhHlR6AtL1sop1XmZK8eoVRZGeLUo7RETlhYkUUSVlYKwHEyvDEp/X5lF9OAXUxAHvv5FmVrxEzNBcX5QRKQNjfksiIt3C71pElVRj39JNk41X9sAXEbuRYpYBM7khJJAUWM/U2ghD1nhDKi34OBFRZVbqXyGHDRuGatWqiRELEVUg5jJjLHcdiZqDch4tI6DgBeWtR7gziSKiKqvUidTEiRNhYWEhRixEVMFIJBIM7+IN98kOyDDPuw5KaSGgw4wm3EeKiKo0Tu0RUZHatW+EJq2d8d3Z/QiOfow0s0w8s3uJM2ahWJ45CvaG1toOkYhIK0RNpJRKJeLi4hAfH4/s7ILvvvH09BSzSyIqJ9X0jfFF53fxe/xlLH+8H4IABKc9wZDgFfjCcQh8qjfVdohEROVOlERKpVJh+/bt2LNnD1JSUgqte+bMGTG6JCItkEgkGFzzbTQ2rYf5EdvwKDMeclUG5kT8gndrtsMc+94wkHKgm4iqDlG+4/3444/YtWsXqlevjh49esDa2hoymUyMpomoAnI3scdO99n4Kup3HH0ZBADYFXcB/6Q+xHLnkahrWEPLERIRlQ9REqljx46hbt262LRpE0xMTMRokogqODOZEZY6DUdLc1cse/wHFEI2QtKe4N3glfjccTC6VvfUdohERGVOlEQqPT0dXbp0qbRJ1PTp0xEcHKweZWvSpAmWL1+u5aiItE8ikWBgzTZobFoP8yK2ISozDnJVBuZFbMP1muGYY98bhlJ9bYdJRFRmREmknJ2dkZCQIEZTFdb8+fPRtWtXbYdBVCG5mdhhp/ssfBX1O468murzj7uIf+Q5U331jGpqOUIiorJR+mc6ABg5ciTOnz+PsLAwMZojIh1kKjPCEqfh+KzeIBhKcn5HC01/indDVuLoiyAtR0dEVDZEGZFq06YNPvzwQ8yfPx9t27aFi4sLTE1NC6zbvXt3jfpIS0vDrl27EBwcjJCQEKSkpODDDz9Ejx498tVVKBT4+eefcfz4caSkpMDFxQXjxo1Dy5YtNeobANatW4d169ahfv36mDp1KlxcXDRui6iykkgkGFCzDRqbOmBuxC+IyoxDqioTCyK344Y8HHPt+3Cqj4gqFVESKYVCgUuXLiEpKQmHDx8GkPMN9d8EQYBEItE4kUpKSoKfnx9sbGzg6uqKoKDX/4a7ZMkSnDlzBoMGDYK9vT2OHDmC+fPnY82aNWjSpEmJ+540aRIcHR0hk8mwd+9ezJs3Dzt27Ki0a8KISquBSR3sdJ+FxY/2IODF3wCA3XGX8I88CsudR8KBU31EVEmIkkitX78eJ06cgIuLCzp06FAm2x9YW1vjjz/+gLW1NUJDQzFhwoQC6wUHByMwMBCTJ0/G0KFDAQDdunXD6NGjsWHDBmzYsEFdd+rUqbh9+3aB7YwYMQLjx48HAHh4eKjLhw0bhoCAANy9e7dUI1xElZ2pzAjfOL6HluauWPpoHzKFbIS9mur7zGEwelg103aIRESlJkoidebMGbi5ueGHH36Anl7ZbMZnYGAAa+uiH0Nx9uxZyGQy9O7dW11maGgIX19fbNq0CTExMbCxsQEAfP/99xrFIpFIIAgFP8CViP5PIpGgf43W6rv6IjNikabKxMLI7bie8gDz6vaBkdRA22ESEWlMlMXmCoUCzZo1K7MkqiTu378Pe3v7fGu03N3dAQAPHjwoUXspKSm4du0aFAoFsrKysHv3bqSkpOQZpfq3+Ph4hIWFqf9ERUVp9kaIKpH6xnXwW8NZ6GXVQl22J/4yRoauxcOMWC1GRkRUOqJkPm5ubnjy5IkYTZVaQkJCgSNXuWXx8fElak+pVGLTpk149OgR9PT04OrqimXLlsHMzKzA+gcPHoSfn1++8sjISCiVyhL1XRS5XI7g4GBR2yQqS8OEprDTN8HWrItQQImw9GcYcncFxum3Q1s93byBg9chkXaV5TX4ukGTfxMlkRo/fjxmzZqFS5cu4e233xajSY1lZmZCXz//XUEGBgbq4yVhaWmJzZs3F7t+79690bZtW/XrqKgoLF68GE5OTnBzcytR30UJDg4u1heZqCJphEbomt4a8yJ+QURGDDKQhfVZp/HcIh3z6/bVuak+XodE2qXta1CUROr69evw9PTERx99hObNm792+wOJRIJRo0aJ0eVrGRoaIisrK1+5QqFQHy9LNWrUQI0afM4YUWFcjW3xa8OZWPJ4Hw4mXAMA7I2/gtupUVjuPAqORrW0HCERUfGIkkht3bpV/fcbN27gxo0bBdYrj0TK2toacXFx+cpzd15nkkNUMZjIDPGV41C0MHPBN4/2IkPIwr3053g3ZCU+rTcIvtZvajtEIqIiiZJIrVmzRoxmRJG7x1RqamqeUbHc+VNXV9dyiePkyZM4efIk5HJ5ufRHpKv61GiFRqb11FN96SoFPnr4K66lPMCCev1grGNTfURUtYiSSHl6eorRjCi8vb2xa9cuHDx4UL2PlEKhQEBAADw8PNRbH5Q1Hx8f+Pj4ICwsTL0fFREVLHeqb+njP3Ag4SoA4I+Ev3A7NQrfuYyCk1H5XLdERCWl/f0KSmDv3r2Qy+XqabqLFy8iNjbn1ukBAwbAzMwMHh4e6NixIzZt2oTExETY2dnh6NGjiI6OxoIFC7QZPhEVwkRmiC8d30VLcxcsfrQXGSoFHmREY2jIKnxcbyDesW5RdCNEROVMlETq9u3bOHv2LIYOHVrg1gPx8fHYtWsXOnbsiEaNGmncj7+/P6Kjo9Wvz507h3PnzgEAunbtqt6S4KOPPoKNjQ2OHTsGuVwOZ2dnLFu2rFxHzji1R6SZd6xbopFJzlTfg4xopKsU+OThb7iW8gAf1uvPqT4iqlAkgghbdH/yyScIDw/Hzp07X1tn2LBhqF+/Pr744ovSdqdTcqf2Nm/ezO0PiEogXaXAskd/4I+Ev9RlLka2WO48Ei7GtlqMLC9eh0Tape1rUJSdzUNDQ4t8GHDTpk25aR0RFZux1ACLHIfga8dh6lGo8IxoDAtdrd4ygYhI20RJpBITE4vcVsDKygovX74UozsiqkJ6WbfATvdZcDXKGYXKUCnw6cOd+PThTqQpS7bBLhGR2ERJpMzMzNSLvl8nJiYGxsbGYnRHRFWMk5ENdrjPRP8ab6nLDiZcw3uhq3E//bkWIyOiqk6URMrDwwPnzp1DTExMgcdjYmJw/vx5vPHGG2J0pxNOnjyJhQsXYt26ddoOhahSMJYa4HOHIfjG8T31VF9ERgyGh6zG/virEGG5JxFRiYmSSA0ePBiZmZmYOnUqjh49qn4wcHx8PI4cOYIpU6ZAoVBgyJAhYnSnE3x8fLB06VJMmzZN26EQVSq+1m9il/ts1DeuDQDIELLwedQufFLAVJ9KJeBZcALCLz3Ds+AEqFRMtohIXKJtyDl16lT88MMPWLp0KYCcx8Hk/oYokUgwbdq0CrVxJxHpLkejWtjRcAaWPz6APfGXAQCHXlzH3bRHWO48CvWNayPyajSubAtB6osM9XmmVkZoPdIdTq0qzl1/RKTbRNuQc9CgQWjevDkOHDiA0NBQyOVymJmZwd3dHX369IGzs7NYXRERwUhqgE8dBqGFuQu+jPodaapMRGbEYnjIasx66Qv5z6n5zkl9kYHA1UHoPLMZkykiEoWoO5u7uLhg9uzZYjaps7ghJ1H56GHVHO4m9pgfsQ1h6c+QqczCc/8EmMEQEkgKPOfK9hA4tLCBVFrwcSKi4tKpR8ToEj5rj6jkbh+OxO0jkRqd20vWFMat9BFnmgxzuVGhdVMTMvDr5EDI9Eu/TLRWcxNwP06iqouJFBFVGIr0bKS90HxvqPaHG+C5bWKx6mamZGncz79lZxaetBFR5cZEiogqDANjPZhYGZaqDcfUmshE0UmSobm+KCNSeoai3PxMRDqKiRQRVRiNfZ3Q2NepVG2oVAL8p5/Jc7fef5laG2HIGm9R1kjx0VdEVRt/lSKiSkUqlaD1SPcCjwm5//WRQsJ15kQkAo5IlRHetUekPU6tbNF5ZrN8+0jJzTNwvuM9hFePxT+Rj/CpwyCYybjGiYg0x0SqjPCuPSLtcmplC4cWNogOfYH0xEzoV9PDr2YXEJ6Q81zQoy+DEJz2BMudR6KhiZ2WoyUiXSXq1F5KSgqOHj0qZpNERBqTSiWo42ENl7froN4btfChY3985zwKZtKcUahHmXEYEboGu+Mu8ll9RKQRUROpmJgY9SNiiIgqoi7Vm2KXx2x4mNgDABRCNr5+tBfzI7dDrnz9AnUiooKUaGovJiam0OO5DysmIqrI6hrWwC9u07HyyUHsjLsAADj+8iZC0h5jufMouL9KsoiIilKiRGrw4MGQFHKriyAIhR4nIqooDKR6WFivP1qYu2JR1C6kKDPwODMBI0LXYJ59Xwyu+Ta/nxFRkUqUSJmbm2Ps2LHw9PQs8HhUVBQWLVokQlhEROXDp3oTNDSxw/yIbbib9hhZghLfPN6LaykP8LnjYJjLjLUdIhFVYCVKpBo0aICUlBQ4ORW8YZ5SqeSCzVe4/QGR7rA3tMYvbtOw+ukh7Ig9BwA4kfgPQoJz7urzMK2r5QiJqKIq0WLzvn37wtbW9rXHbWxssHDhwlIHVRn4+Phg6dKlmDZtmrZDIaJi0JfqYV7dvljl8r56FOqJIgEjw9ZiZ+x5/pJIRAUqUSLl5eWFrl27vva4ubk5evToUeqgiIi0pZNlY/i7z8EbJvUAAFmCEksf/4G5Eb8gRZmu5eiIqKLhI2KIiP7DztAKfm4fYHitDuqyk4m3MCR4Be6mPtZiZERU0TCRIiIqQM5UXx+scRmDaq+m+p4qXmBk2Fr8GnuOU31EBECERMrb2xuPH/M3NCKqnLwt34C/+xw0MXUAAGQLSnz7eD9mR/ghOZtTfURVXakTKf5WRkSVXR1DK2xpMBUjbbzVZacSb2NIyAo8UMVqLzAi0jpO7RERFYO+VA9z7HtjjctYWMhMAADPFC+wKPMQfo3hVB9RVcVEioioBLwtG8HfYw6amjoCAJRQ4dsn+zErYiuSs9O0GxwRlbsSbchJxccNOYkqr9oG1fGz21SsfxoAv5jTAIDTiXcwJG0FvnUeicav1lMRUeXHEakywg05iSo3fYkMs+zfwTyDrv+a6nuJ0aHrsD3mLKf6iKoIJlJERKXQXFYPuz3mwPPVVF82VPjuyQHMDN+CpOxU7QZHRGWOiRQRUSnZGlTHT25T8b5NJ3XZmaS7GBKyErfkD7UXGBGVuVInUsOGDUO1atXEiIWISGfpS2SYad8L613HwVJmCgB4rniJ98PW45eYM5zqI6qkSp1ITZw4ERYWFmLEQkSk89pbeLya6nMCkDPVt/LJQUwP/xmJnOojqnTKdGpPEAQ8fvwYMTExZdkNEVGFYmNgiZ/dpmCsbWd12bmkYAwJXoGb8kgtRkZEYhMlkTp79iy+/vprpKSkqMueP3+O0aNHY8SIERgyZAgWLVoEpVIpRndERBWenkSG6Xa++MF1PKrr5Uz1RWclYkzY9/CLPgWVoNJyhEQkBlESqQMHDuD+/fswNzdXl61fvx4PHz5Es2bN4OLigjNnziAgIECM7oiIdEZbC3f4u89BczNnADkbeK56egjTH/yMl9ncZ45I14mSSD18+BDu7u7q12lpabh8+TI6deqEVatW4ccff4SDgwMTKSKqkmwMLLG5wWSMt/WBBBIAwPnkEAwJXokgTvUR6TRREqnk5GRYWVmpX9+6dQtKpRKdO+esD9DT00OLFi3w9OlTMbojItI5ehIZPrDriR/qT0B1PTMAQExWIsaGfY+fowM51Ueko0RJpExNTZGcnKx+HRQUBKlUiqZNm6rL9PT0kJGRIUZ3REQ66+1qbtjtPgctzFwA5Ez1rX16GB88+AkvsuRQqQQ8C05A+KVneBacAJWK2yYQVWSiPGuvXr16uHTpEsaNGwepVIqTJ0+iQYMGedZMRUdHo3r16mJ0R0Sk02oZWODHBpOw8dlx/BR9EgIEXEwOxez9W9DxjDuyXmar65paGaH1SHc4tbLVYsRE9DqiJFIDBgzA559/jgEDBqhHnsaNG5enTnBwMBo0aCBGdzqBDy0mosLkTPX1QAtzF3wYuQPVQ0zQ9qArFMhSr6MCgNQXGQhcHYTOM5sxmSKqgESZ2vP29sasWbPg5OSEunXrYuLEiejRo4f6+M2bN5GamopWrVqJ0Z1O4EOLiag4WldrAP+Gc9D5TCMAyJNE/duV7SGc5iOqgEQZkQKAvn37om/fvgUe8/T05B17RFQpPbuSjJs/nCpVG8osFQxTCv92nJqQgV8nB0KmX/rffxv3cEJjX6dSt0NEIiZSRERVUXamCmkvMsulr8yULFHaUaRnF12JiIqFiRQRUSnoGUphYmVYqjaUWapiJUmCNWAqlK4vADAw5rd+IrFodDXNnTsXY8eOzbMJZ3Glp6dj7969MDExQf/+/TXpnoiowqjTuhp8xrQuVRsqlQD/6WeQ+qLgLWIECJCbZyBg7C184zIcLc1dS9UfEYlHo8n2xMRETJ48GTNmzEBAQECx7ky7e/cuVq1ahcGDB2Pbtm15NvAkIqrKpFIJWo8s/BfT8x3vIVaZjAn3NuDH58eh5AaeRBWCRiNSP/30E44cOQI/Pz8sW7YMy5cvR926deHm5obq1avDzMwMCoUCycnJePz4McLCwpCWlgapVIrOnTtj3LhxsLGxEfu9EBHpLKdWtug8sxmubAvJMzJlam2ERsMccd36EcJTYqGCgB+eHcXfKRH4xuk9WOubF9IqEZU1jSfKe/Toge7du+PKlSsICAjAzZs3cfz48Xz1pFIpnJ2d4eXlBV9fX9SoUaNUARMRVVZOrWzh0MIG0aEvkJ6YCWNLQ9g2tIJUKsEPwgT8FH0SG58dgwoCrqTcw+Dg77DEeThamdfXduhEVVapVhxKJBK0adMGbdq0AZDz8OK4uDgkJyfDwMAAlpaWcHJygpmZmSjBEhFVdlKpBHU8rPOVyyRSTKzdFc3NnLEwYjvis1MQn52Cifc2YmLtrhhfuwtkElG2BiSiEhD11g1HR0c4OjqK2SQREf1LS3NX7PaYi48if8WVlHtQQcCG58dwQx6BJU7voYZ+NW2HSFSl8NcXIiIdY61vjg31J2BqnR6QvtoJ/WrKfQwOXoG/ku9rOTqiqoWJFBGRDpJKpJhQuws2N5iMmq9GoRKyUzDx/kb88Owo7+ojKidMpIrpt99+w4ABA9CtWzeMHTsWaWlp2g6JiAgtzF3h7z4Hbaq5AcjZc+rH58cx8f5GxGUlazk6osqPiVQx7Nu3D3/99Rd++OEHHD16FB999BH09LgzMBFVDNb65vjBdTym1empnuq7lvIAg4O/w5Xke1qOjqhyYyJVBKVSie3bt2P+/PmwsbGBRCKBi4sLDAwMtB0aEZGaVCLFuNo++LnBVNTStwAAvMiWY9L9H/H9syOc6iMqIzqTSKWlpWHLli2YO3cufH194eXlhSNHjhRYV6FQYMOGDejXrx98fHwwceJEXLt2TaN+4+LikJmZiTNnzqBPnz5477338Oeff5bmrRARlZnm5s7wd5+DttUaAsiZ6tv0/AQm3NuAWEWSlqMjqnxESaROnz5dZB2lUokNGzZo3EdSUhL8/PwQFRUFV9fCnzO1ZMkS7N69G126dMH06dMhlUoxf/583Lp1q8T9xsXFQS6X4/Hjx9i9eze+/PJLbNq0Cf/884+mb4WIqExZ6Zthves4zLDzhezVt/nr8nAMDlmBS8lhWo6OqHIRJZFatGgRli1bhoyMgh+4+eTJE0yePBn+/v4a92FtbY0//vgDv//+OyZPnvzaesHBwQgMDMSECRMwZcoU9O7dG6tXr4atrW2+RG7q1Knw8vIq8M/mzZsBAIaGOU9aHz16NAwNDeHi4oLOnTvjypUrGr8XIqKyJpVIMca2M352mwobfUsAwMtsOabc34T1TwOQLSi1GyBRJSHKiulWrVohICAAt2/fxueff4769f//uIIjR45gzZo1yMzMxPDhwzXuw8DAANbW+Xf7/a+zZ89CJpOhd+/e6jJDQ0P4+vpi06ZNiImJUT/n7/vvvy+yvbp160JfXx8SiURd9u+/ExFVZM3MnODvMRufRu7E+eQQCBCwOfok/pZHYKnTCNQysNB2iEQ6TZQRqeXLl2Pq1KmIjo7G5MmTsWvXLqSkpOCLL77AsmXLYG5ujtWrV2PcuHFidFeo+/fvw97eHqampnnK3d1znqz+4MGDErVnbGyMDh06YNu2bVAoFHj48CFOnTqF1q1bixYzEVFZqq5nhrWuYzHLrpd6qu+GPAKDQ1bgYlKolqMj0m2i3cM/ePBgNGvWDF9++SU2btyILVu2QKFQwMvLC/PmzYO5efk8oTwhIaHAkavcsvj4+BK3OWvWLCxbtgzvvPMOLCwsMHbsWDRt2rTAuvHx8UhISFC/joqKKnF/RERik0qkGG3bCZ5mTlgQsR3RWYk5U30PNmGcrQ8m1+kGPYlM22ES6RxRN0NydXXF22+/jV27diEzMxMWFhYYM2ZMuSVRAJCZmQl9ff185bnbFWRmZpa4TXNzcyxevLhYdQ8ePAg/P7985ZGRkVAqxV2TIJfLERwcLGqbRFQyunYdGgD4UtYLG5RnEaR6DAD4KfokLsTewQcGHWEtMS28AaIKpiyvQQ8PjyLriJZIxcTE4KuvvsKdO3fg6uqK1q1bY+fOnZgwYQKmTp2KPn36iNVVoQwNDZGVlZWvXKFQqI+Xpd69e6Nt27bq11FRUVi8eDGcnJzg5uYmal/BwcHF+iITUdnR1euwpeCJ7TFnsfbpYWRDhVBVND7JOoivnYahnYW7tsMjKjZtX4OiJFKnT5/Gd999h9TUVAwcOBATJ06Evr4+2rZtiy+//BKrVq3C1atXsWDBAlSrVrZPJre2tkZcXFy+8tzptho1apRp/zVq1CjzPoiISksqkWKUbUd4mjlhfsQ2RGclIlGZiqkPNmOMbSdMrdODU31ExSDa9gf6+vr49ttv8cEHH6in1jw8PLBlyxb4+PjgwoULeP/998XorlCurq548uQJUlNT85TnDvsVtQeVWE6ePImFCxdi3bp15dIfEZEmmpo5YrfHHHSwaKQu2xJ9CmPDfkC04qUWIyPSDaIkUm+99Ra2bt2KVq1a5TtmYmKCTz75BB9//DHS09PF6K5Q3t7eUCqVOHjwoLpMoVAgICAAHh4e6q0PypqPjw+WLl2KadOmlUt/RESastAzxRqXMZhr3wd6r34s3EyNxODgFTiXpDvrv4i0QZSpvW+//bbIOl27dkXjxo1L1c/evXshl8vV03QXL15EbGwsAGDAgAEwMzODh4cHOnbsiE2bNiExMRF2dnY4evQooqOjsWDBglL1T0RUWUkkEoyw6YCmZo5YELENzxQvkaRMw7QHP2G0TUd8YNcT+pzqI8pH1Lv2ilK7du1Sne/v74/o6Gj163PnzuHcuXMAchI1MzMzAMBHH30EGxsbHDt2DHK5HM7Ozli2bBk8PT1L1T8RUWXXxNQB/u5z8NnDXTiddAcA4BdzGkHySCxzHoHaBtW1HCFRxSIRBEHQdhCV0cmTJ3Hy5EnI5XLcunULmzdv5l17RJVQZb0OBUHAb7HnsfLpn+rHyVjITPCl41B4WzYq4myi8qPta1CUEamC9k0qiEQiwahRo8TossLz8fGBj48PwsLCMH78eG2HQ0RUIhKJBO/ZeKGpmSPmRWzDM8ULJCnTMCP8Z4y08cZ0O19O9RFBpERq69athR6XSCQQBKFKJVJERJXBG6b14O8+B59H7cKpxNsAgG0xZ3BTHollTiNQx9BKyxESaZcoidSaNWsKLJfL5bh37x727t2LFi1aoF+/fmJ0R0RE5aianjFWOo/GzrgLWPHkILIFJW6lRmFIyAp85TgU3pZvaDtEIq0RJZEqbBF3u3bt0KVLF4wbNw5eXl5idKcT/r1GiohI10kkEgyr1R5NTB0wP2IbnipeIFmZjhnhWzCiVgdMq90TCfeSkZ6YCWNLQ9g2tIJUKtF22ERlrlzu2qtbty68vLzw22+/oXPnzuXRpdZxjRQRVUZvmNbDLvc5WBS1C4GvpvouXQyB0RkJjJL//5xTUysjtB7pDqdWttoKlahciLIhZ3FYWlri0aNH5dUdERGVkWp6xljhPBoL6/ZDg/u26HGwCQyT8/5envoiA4GrgxB5Nfo1rRBVDuWSSCkUCly9elW9zxMREek2iUSCITXa4Z3zzXJeo+BpvCvbQ6BScZcdqrxEmdo7evRogeVKpRLx8fEIDAzEo0ePMGDAADG6IyKiUrh9OBK3j0SWuh1llgqKlOzXJlEAkJqQgV8nB0KmX7rf2xv3cEJjX6dStUFUFkRJpJYsWQKJJP+FlLvXp0QiQefOnTFx4kQxutMJXGxORBWVIj0baS8yy62/zJSsUrehSM8WIRIi8YmSSC1cuLDAcqlUCnNzczRo0AA1atQQoyudwcXmRFRRGRjrwcTKsNTtKLNUxUqS7rR8ijcjHSFTaT4qZWBcrk80Iyo2Uf5l9ujRQ4xmiIioHDT2FWeaTKUS4D/9DFJfZBR4XIAAuXkGzrQLRmz3FHzrPBL2htal7peoIim3u/aIiKhykUolaD3S/bXHJZDgcscHEKTA3bTHGBK8Aidf/lOOERKVPY1GpJYuXapxh6+bBiQiIt3j1MoWnWc2w5VtIXlGpkytjdB6hDvavtEY8yO24VFmPOSqDMyJ+AXv1myHOfa9YSDldB3pPo3+FR85ckSjziQSCRMpIqJKxqmVLRxa2CA69EWBO5vvdJ+NL6N249jLmwCAXXEX8E/qQyx3Hom6hlVr/SxVPholUv7+/mLHUenwrj0iqkqkUgnqeBS8/slMZoRlTiPQ0twV3z7eD4WQjZC0J3g3eCU+dxyMrtU9yzdYIhFplEjZ2nLL/6Lwrj0iov+TSCQYVPNtNDZ1wLyIbXiUGQe5KgPzIrbhes1wzLHvDUOpftENEVUwGi82T01NRVZW6fcGISKiqqOhiR12uc9Cj+rN1GX+cRcxMnQtHmXEaTEyIs1onEj5+vrit99+y1MWHByMPXv2lDooIiKqvExlRljiNByf1RsEQ0nOxEho+lO8G7ISR18EaTk6opLROJESBEG9c3muv/76C+vXry91UEREVLlJJBIMqNkGOxrOhINhTQBAqioTCyK34+tHe5Cp4owH6QbuI0VERFrTwKQOdrrPQk+r5uqy3XGXMCJ0LaI41Uc6gIkUERFplanMCN84vofPHQarp/rCXk31HeFUH1Vw3A2tjHD7AyKi4pNIJOhfozUam9bDvIhtiMyIRZoqEwsjt+N6ygPMq9sHRlIDbYdJlA9HpMqIj48Pli5dimnTpmk7FCIinVHfuA5+azgLvaxaqMv2xF/GiNA1eJgRq8XIiApWqhGp48eP4+7du+rXT58+BQDMmzevwPoSiQTffvttabokIqJKzkRmiMWOQ9HS3BVLHu1FhpCFe+nPMTRkFT51GIieVm9qO0QitVIlUk+fPlUnT/929erVAutLJJLSdEdERFWERCJB3xqt8IZpPcyL+AURGTFIU2Xiw8hfcS3lARbU7cepPqoQNE6k+JgYIiIqa67Gtvi14UwsebwPBxOuAQD2xf+F26mPsNx5JJyMbLQcIVV1GidSfEwMERGVBxOZIb5yHIoWZi745vE+ZKgUuP9qqu+TegPRy7pF0Y0QlREuNiciIp3Qp0Yr/NZwJpxfjUKlqxT4+OFv+PzhLqSrFFqOjqoqJlJERKQzXF5N9fWxbqUu259wFcNDViMiPUaLkVFVxUSKiIh0ionMEF86vovFjkPVC84fZERjaOgq/PlqHRVReeGGnGWEG3ISEZWtd6xbopFJPcyN+AXhGdHIUCnwycOduJYSjg/r9Ycx7+qjcsARqTLCDTmJiMqes7ENfnWfiX7Wb6nLDiRcxXshqxGeHq3FyKiqYCJFREQ6zVhqgEWOQ/C14zD1KFR4RjSGha5Wb5lAVFaYSBERUaXQy7oFdrrPQn3j2gCADJUCnz7ciU8f7kSaMlPL0VFlxUSKiIgqDScjG+xoOAMDarRWlx1MuIb3QlfjAaf6qAyIttg8KysL58+fR2hoKORyOVQqVYH1Fi5cKFaXRERE+RhJDfCZw2C0MHfBV1F7kKbKRERGDN4LWYWP6g1Anxqtim6EqJhESaSio6Mxe/ZsPHv2DIIgvLaeRCJhIkVEROWip9Wb8DCpi3kRv+Be+nNkCFn4LGoXrqU8wEf1BsBEZqjtEKkSECWRWrduHZ4+fYquXbvC19cXNWvWhEwmE6NpIiIijTka1cL2hjOw/PEB7Im/DAD488V13E17jG+dR6rXUxFpSpREKigoCG+++SY+/vhjMZojIiISjZHUAJ86DEILcxd8GfW7eqpveMhqLKjXD/2s34JEItF2mKSjRFlsrlKpUL9+fTGaIiIiKhM9rJpjp/ssuBnXAQBkKrPw04UT+ObAHkTeiYZK9fqlKUSvI8qIlIeHB6KiosRoioiIqMzkTvWtPXIIegcAc7kRACAQQTCoro/2o96AUytbLUdJukSUEamJEyfi77//xpkzZ8RojoiIqMw8u56A6r8aqZOoXJkvFQhcHYTIq8+1FBnpIlFGpC5fvoxmzZph0aJFaNq0KRo0aABTU9N89SQSCUaNGiVGl0RERCWmUgm4si2kwGMSSCBAwNGtNzC8WWeY6xuXc3Ski0RJpLZu3ar++82bN3Hz5s0C61WlRIoPLSYiEs/tw5G4fSSy1O0os1TITMl67XEJJNBPkmGc/3q0CauPWi+radxX4x5OaOzrpPH5pBtESaTWrFkjRjOVio+PD3x8fBAWFobx48drOxwiIp2mSM9G2ovye8yLEgK29boAr1NuaHTbDhKU/K4+RXp2GURGFY0oiZSnp6cYzRARERXIwFgPJlal30CzqBGpXGlmmVDqqXC6awiiXZPQ7VJjGGbpl6gvA2PRHh5CFRi/ykREVOE19hVnmkylEuA//QxSX2S8to6JlSHaezbCroQLAIAQ52dIdVfgW+eRcDexL3UMVLmImkjdvn0bR44cwYMHD5CamgpTU1PUr18f3bp1Q5MmTcTsioiIqMSkUglaj3RH4Oqg19ZpM9IDwxxt0cLCBYse+kOuysCjzHiMDF2LeXX7YFCNt7mBJ6mJlkitW7cOe/fuVT9rTyKRQBAEhIWF4fDhwxg4cCA++OADsbojIiLSiFMrW3Se2QxXtoXkGZkytTZC6xHu6n2kulRvioYmdpgfsQ3BaU+gELLx9aO9uJYSjs8dBsNMZvS6LqgKESWROnLkCPbs2YO6deti9OjRaNasGaysrPDy5UsEBQVh69at2LNnD1xdXdG9e3cxuiQiItKYUytbOLSwQXToC6QnZsLY0hC2Da0gleYdaaprWAO/uE3HyicHsTMuZ6rv+MubCEl7jOXOozjVR+JsyHngwAHUrFkTGzduhI+PD6ytrSGRSGBlZYXOnTtj48aNqFGjBvbv3y9Gd0RERKUmlUpQx8MaLm/XQR0P63xJVC4DqR4W1uuPFc6jYf5qFOpxZgJGhK6Bf+xF9UwMVU2iJFKRkZHo0KEDzMzMCjxuZmaGDh06IDKy9HuAEBERaYNP9SbY5T4HjUzqAgCyBCW+ebwX8yK2IUWZruXoSFtESaSKgwvziIhI19kbWuMXt2kYXstLXXYi8R+8G7wSwamPtRgZaYsoiZSTkxPOnj2LtLS0Ao+npaXh7NmzcHLiDq9ERKTb9KV6mFe3L1a5vA9zWc5jZJ4oEjAybC12xp7nVF8VI0oi1bt3b8TFxWHy5Mk4c+YMEhMTAQCJiYk4c+YMJk+ejLi4OPTp00eM7oiIiLSuk2Vj+LvPwRsm9QDkTPUtffwH5kT4ITmbU31VhSh37fXs2RP379/Hvn37sGjRIgD/3/4AAARBQP/+/dGjRw8xuiMiIqoQ7Ayt4Of2AdY8PYztsWcBAIGJtxGa9hTLnUehkWldLUdIZU20faRmzJgBb2/vAjfk7N69O5o2bSpWV+WuW7dueV5nZGRg8uTJePfdd7UUERERVRT6Uj3MrdsHLcxd8OnDnUhWpuOp4gVGhq3FbPt3MKxme64TrsRESaRiYmJgZmaGpk2bvjZhSktLQ0pKCmxsbMToslwdO3ZM/ff4+HgMGjQIXl5ehZxBRERVjbflG/B3n4MFkdtxKzUK2YIS3z7ej+sp4fjCYQiq6ZloO0QqA6KskRoyZAh+//33Quvs2bMHQ4YMEaM7rTpx4gQaNWqEOnXqaDsUIiKqYOoYWmGL2wcYZeOtLjuVeBtDQlbidmqU9gKjMiNKIlWcOxRKexdDWloatmzZgrlz58LX1xdeXl44cuRIgXUVCgU2bNiAfv36wcfHBxMnTsS1a9dK1X+u48eP55vqIyIiyqUvkWG2fW+sdRkLC1nOKNQzxQuMDluPHTFneVdfJVNu+0jFxcXBxETzYc2kpCT4+fkhKioKrq6uhdZdsmQJdu/ejS5dumD69OmQSqWYP38+bt26pXH/ABAeHo7Hjx/D29u7VO0QEVHl18GyEfw95qCpqSMAIFtQYvmTA5gVvhXJ2QVvF0S6R+M1Un5+fnleBwUV/CRtlUqF2NhYBAYGwsPDQ9PuYG1tjT/++APW1tYIDQ3FhAkTCqwXHByMwMBATJ48GUOHDgWQs1h89OjR2LBhAzZs2KCuO3XqVNy+fbvAdkaMGIHx48fnKTt27Bjatm0Lc3Nzjd8HERFVHbUNquNnt6lY/zQAfjGnAQCnk+5gSMgKLHMagSZmjtoNkEpN40Rq69at6r9LJBLcvHkTN2/efG39GjVqYNKkSZp2BwMDA1hbWxdZ7+zZs5DJZOjdu7e6zNDQEL6+vti0aRNiYmLUC96///77YvevUqlw8uRJzJkzp+TBExFRlaUvkWGW/Tt409wFn0T+hiRlGp4pXuL9sPWYYd8LI2p14F19OkzjRGrNmjUActY+zZw5Ez169ED37t3z1ZNKpahWrRrq1asHqbTsZxLv378Pe3t7mJqa5il3d3cHADx48ECjOwdv3LiB7OxsvPXWW6LESUREVYuXhQd2e8zBgogduJkaiWyosOLJQVxPCcdXju/CQs+06EaowtE4kfL09FT/ffTo0WjWrFmeMm1JSEgocOQqtyw+Pl6jdo8fP47OnTtDT6/wjyw+Ph4JCQnq11FRvEuDiIhy2BpUx09uU/D90yPYGnMKAHA26S6GhKzEMqcRaMqpPp0jyj5S77//vhjNiCIzMxP6+vr5yg0MDNTHNfHxxx8Xq97BgwfzrR8DgMjISCiVSo36fh25XI7g4GBR2ySikuF1SJroCmfUNNDHD4ozkCMTzxUv8X7YOryr1xI99RpDyqm+YivLa7A4a7tF29kcAG7fvl3gzubdunVDkyZNxOzqtQwNDZGVlZWvXKFQqI+Xpd69e6Nt27bq11FRUVi8eDGcnJzg5uYmal/BwcGlWsBPRKXH65A05QEP+CjewoLI7QiSR0IJAb9mX8VjUzm+chwKS071FYu2r0HREql169Zh79696v0xcp+1FxYWhsOHD2PgwIH44IMPxOrutaytrREXF5evPHe6rUaNGmXaf40aNcq8DyIiqhxsDCzxU4Mp+OHZUfwcHQgAOJcUjCHBK/Ct80hO9ekAURKpI0eOYM+ePahbt656vZSVlRVevnyJoKAgbN26FXv27IGrq2uBC9LF5OrqiqCgIPWIWK7cYb+i9qASy8mTJ3Hy5EnI5fJy6Y+IiHSTnkSG6Xa+eNPMGR8//A0vs1MRnZWI98PWY7pdT4y08YZUUm7bPlIJifKVOXDgAGrWrImNGzfCx8cH1tbWkEgksLKyQufOnbFx40bUqFED+/fvF6O7Qnl7e0OpVOLgwYPqMoVCgYCAAHh4eJTbs/58fHywdOlSTJs2rVz6IyIi3dbWwh3+7nPQ3MwZAKCECqueHsL08C14mc1fyisqUUakIiMj0atXL5iZmRV43MzMDB06dMChQ4dK1c/evXshl8vV03QXL15EbGwsAGDAgAEwMzODh4cHOnbsiE2bNiExMRF2dnY4evQooqOjsWDBglL1T0REVJZsDCyxucFkbHx2DD9FB0KAgPNJwRgSvBLLnEegmZmTtkOk/xB1sXlhxNhszN/fH9HR0erX586dw7lz5wAAXbt2VSdyH330EWxsbHDs2DHI5XI4Oztj2bJlFWJ7BiIiosLoSWT4wK4nmpu74KPIX/EyW46YrESMDfseH9j1wGibjpzqq0BESaScnJxw9uxZjB07tsDn6aWlpeHs2bNwcipdJr179+5i1TM0NMSUKVMwZcqUUvVXGlwjRUREpfF2NTfsdp+DDyN34Lo8HEqosObpYdxICcdip2GorlfwLBCVL1FS2t69eyMuLg6TJ0/GmTNnkJiYCABITEzEmTNnMHnyZMTFxaFPnz5idKcTuEaKiIhKq5aBBX5sMAnjbbtAAgkkKiDybgzm7tmKszfuQKUStB1ilSfKiFTPnj1x//597Nu3D4sWLQLw/+0PgJzHyPTv3x89evQQozsiIqIqI2eqrwfqP7BB6G+PYJqSsx/ifTzGfYvH6PS+J5xb1dZylFWXaGukZsyYAW9v7wI35OzevTuaNm0qVldERERVSuTVaDz+MQamyLuptJAkIHB1EFKnZaJxG0ftBFfFibrYvGnTpkyYXuEaKSIiEoNKJeDKtpACj0kggQABp/xuItMjGy0symevRPq/crtrr6rx8fGBj48PwsLCMH78eG2HQ0RE5ez24UjcPhJZ6naUWSpkpuR/9FkuCSQwTTHE54E74RRfC21uuUICze6Ub9zDCY19ucVCSTCRIiIiKgOK9Gykvcgst/6M0wxx/s0wRFnHo0vAGzBJNyhxG4r07DKIrHITLZHKysrC+fPnERoaCrlcDpVKVWC9hQsXitUlERFRhWVgrAcTK8OiKxahqBGpXGmmOUnbI8cE+I++gnfONkO96JI9+9XAmOMrJSXKJxYdHY3Zs2fj2bNn6jv1CiKRSJhIERFRldDYV5xpMpVKgP/0M0h9kfHaOqbWRvis4xB8FPUrErJTIDfJhH+PvzCpTjeMs/WBjBt4lhlREql169bh6dOn6Nq1K3x9fVGzZk3IZDIxmtZZXGxORERikEolaD3SHYGrg15bp/UIdzhZ2mK36Rx8FPkr/kq5DxUE/PDsKP5OicA3Tu/BWt+8HKOuOiRCYUNIxdSzZ080bNgQK1euFCOmSiV3sfnmzZvh5uYmatvBwcHw8PAQtU0iKhleh1ReIq9G48q2kDwjU6bWRjlJVCtbdZlSUOGn6JPY+OwYVMj5EV9DzxxLnIejlXn9co+7rGn7GhRlREqlUqF+/cr3xSEiIqoonFrZwqGFDaJDXyA9MRPGloawbWgFqTTvHXoyiRQTa3dFczNnLIzYjvjsFMRnp2DivY2YWLsrxtfuwqk+EYnySXp4eCAqKkqMpoiIiOg1pFIJ6nhYw+XtOqjjYZ0vifq3luau2O0xF63NGwAAVBCw4fkxTLr/I+Kzkssr5EpPlERq4sSJ+Pvvv3HmzBkxmiMiIiIRWOubY0P9CfigTg9IX+0tdTXlPgYHr8Bfyfe0HF3loNHUnp+fX76yZs2aYdGiRWjatCkaNGgAU1PTfHUkEglGjRqlSZdERESkAalEivG1u6CZmRMWRu5AXFYyErJTMPH+j5hQuwsm1u7Kqb5S0CiR2rp162uP3bx5Ezdv3izwWFVKpHjXHhERVSQtzF3h7z4HHz/8DZeTwyBAwI/Pj+NveQSWOA1HTf1q2g5RJ2mUSK1Zs0bsOCodPiKGiIgqGmt9c/zgOh5bo09h/bMjUEHAtZQHGBz8HZY4DUfrag20HaLO0SiR8vT0FDkMIiIiKg9SiRRja/ugmZkzFkRuR2xWEl5kyzHp/o8YX9sHk2p341RfCZTqk7pz5w5mzJiBbt26oXv37pg9ezaCg4PFio2IiIjKSHNzZ/i7z0Hbag0BAAIEbHp+AhPubUCsIknL0ekOjROp8PBwzJw5Ezdv3kRGRgbS09Nx48YNzJw5E5GRpX/aNREREZUtK30zrHcdhxl2vpC9Sgmuy8MxOGQFLiWHaTk63aBxIvXrr78iKysLI0aMwP79+7F//36MGjUKmZmZ+O2338SMkYiIiMqIVCLFGNvO+NltKmz0LQEAL7PlmHJ/E9Y/DUC2oCxV+yqVgGfBCQi/9AzPghOgUpX6gSoVisY7m9+6dQuNGzfGuHHj1GVjxoxBUFDQa+/aIyIiooqpmZkT/D1m49PInTifHAIBAjZHn8QNeQSWOg2HjYFlidss8LE2VkZoPTLvY210mcYjUi9fvkSjRo3ylXt4eODly5elCqoyOHnyJBYuXIh169ZpOxQiIqJiqa5nhrWuYzHLrpd6qu9veQSGhKzAxaTQErUVeTUagauD8iRRAJD6IgOBq4MQeTVatLi1SeNEKjs7G8bGxvnKjYyMkJ2dXaqgKgMfHx8sXboU06ZN03YoRERExSaVSDHathO2uE2FrXqqLxVTHmzC2qeHizXVp1IJuLItpNA6V7aHVIppPlEeWkxERES67/bhSNw+8v8bxgYbtsLh9jcRXjcWAPBzdCCO3QzCO2eboVpa/sGUXMosFTJTsgrtKzUhA79ODoRMv3RbLdRqbgIPj1I1USqlSqSOHz+Ou3fv5il7+vQpAGDevHn56kskEnz77bel6ZKIiIjKiCI9G2kvMvOU9djdBEEtonC53QOoZAKe2L7A1t7n0CXgDTg+rFGq/opKtoojO9Oo1G2URqkSqadPn6oTp/+6evVqvjKJ5PVPqSYiIiLtMjDWg4mVYb7ydhFucEqphQPeN5BiloEM4yz8OSAIrW+5oP3fbpAKeUeVijMiBQCG5vqlHpHSM9Tu5qEaJ1L+/v5ixkFERERa1tjXCY19nV57fEJ2d3z6cBfOJuXMRl1pEo6MNioscx4OW4Pq6noqlQD/6WfyLTT/N1NrIwxZ4w2ptHSDLNreCFzjRMrWtnLctkhERETFY6FnijUuY7A99izWPDmEbKhwMzUSQ4JXYrHTULS3yFmsJJVK0HqkOwJXB722rdYj3EudRFUEfJgOERERFZtEIsFIG29sdfsAdV6NQiUqU/HBg5+w6smfyHp1V59TK1t0ntkMplZ51zCZWhuh88xmlWYfKd61R0RERCXWxMwR/u5z8NnDXTiddAcA4BdzGkHySCxzHoHaBtXh1MoWDi1sEB36AumJmTC2NIRtQ6tKMRKVi4lUGTl58iROnjwJuVyu7VCIiIjKRDU9E6xyeR+/xp7DqqeHkC0o8U/qQwwJXoGvHIeig2UjSKUS1PGw1naoZYZTe2WEG3ISEVFVIJFIMNymA/zcPkAdAysAQJIyDdPDf8bKJwfVU32VFRMpIiIiKrXGpg7wd5+NTpaN1WW/xJzBmLD1eJb5QouRlS0mUkRERCSKanomWOk8GvPr9oWeRAYAuJUahSEhK3Am8W4RZ+smJlJEREQkGolEgvdqeeEXt2mwezXVl6xMx4zwn/Hd4wPIUlWu5/EykSIiIiLRvWFaD7vc56Dzv6b6tseexfv3KtdUHxMpIiIiKhPV9Iyxwnk0FtbtB/1XU323Ux9hcMgKnE68o+XoxMFEioiIiMqMRCLB0Frtsc1tOuwNcrZBSFGmY2b4Fix/vF/np/qYSBEREVGZ8zCti10es9HFsqm6bEfsOYwKW4cnmQlajKx0mEgRERFRuTCXGWO580h8WLe/eqrvbtpjvBuyAoEvb2k5Os0wkSIiIqJyI5FI8G6tdtjecAbqGuZO9WVgdoQflj3+Awodm+pjIkVERETlzt3EHrvc56BrdU912W+x5zEqbK1OTfUxkSIiIiKtMJMZ4VunEfi43kAYSHIe/xuc9gRDglfg5Mt/tBxd8fChxWWEDy0mIiIqmkQiweCab6OxaT3Mj9iGR5nxkKsyMCfiF7xbsx3m2PeGgbTipisckSojfGgxERFR8bmb2GOn+2x0+9dU3664CxgZthaPM+O1F1gRmEgRERFRhWAmM8IypxH45F9TfSFpT/Bu8Eocf3lTu8G9BhMpIiIiqjAkEgkG1XwbOxrOQD3DmgAAuSoD8yK24ZtHe5GpytJyhHkxkSIiIqIKx83EDrvcZ6FH9WbqMv+4ixgZuhaPMuK0GFleTKSIiIioQjKVGWGJ03B8Vm8QDF9N9YWmP8W7IStx9EWQlqPLwUSKiIiIKiyJRIIBNdtgR8OZcHg11ZeqysSCyO34+tEeKATtbuDJRIqIiIgqvAYmdbDTfRZ6WjVXl+2Ou4TPMv9ElBan+phIERERkU4wlRnhG8f38LnDYPVUX5SQgHdDVuJp5gutxMREioiIiHSGRCJB/xqt8av7TDgZ1QIA+FRvAjtDK63Ew0SKiIiIdE594zr4reEs9NFrig/r9tdaHEykiIiISCeZyAzxrn5LmMgMtRYDEykiIiIiDVXcpwBWIPfv38eqVasQEREBCwsLjBgxAr169dJ2WERERKRlHJEqhsWLF6NVq1YICAjAl19+iXXr1uHhw4faDouIiIi0jIlUMURHR6Nz586QSqVwc3ODg4MDHj16pO2wiIiISMt0JpFKS0vDli1bMHfuXPj6+sLLywtHjhwpsK5CocCGDRvQr18/+Pj4YOLEibh27ZrGfQ8YMAAnTpxAdnY2goODERsbCw8PD43bIyIiospBZxKppKQk+Pn5ISoqCq6uroXWXbJkCXbv3o0uXbpg+vTpkEqlmD9/Pm7duqVR32+99RaOHj2KLl26YOrUqZg4cSJq1KihUVtERERUeejMYnNra2v88ccfsLa2RmhoKCZMmFBgveDgYAQGBmLy5MkYOnQoAKBbt24YPXo0NmzYgA0bNqjrTp06Fbdv3y6wnREjRmD8+PFITk7GggULsHDhQrRv3x4PHz7E3Llz4ezsDDc3N/HfKBEREekMnUmkDAwMYG1tXWS9s2fPQiaToXfv3uoyQ0ND+Pr6YtOmTYiJiYGNjQ0A4Pvvvy+yvadPn8LIyAje3t4AABcXF7zxxhv4559/mEgRERFVcToztVdc9+/fh729PUxNTfOUu7u7AwAePHhQovbq1q2LzMxMnD9/HoIg4OHDh7h16xacnZ0LrB8fH4+wsDD1n6ioKM3eCBEREVV4OjMiVVwJCQkFjlzllsXHx5eoPTMzM3zxxRfYuHEjFi9ejGrVqmHw4MFo0aJFgfUPHjwIPz+/fOWRkZFQKpUl6rsocrkcwcHBorZJRCXD65BIu8ryGizOjWWVLpHKzMyEvr5+vnIDAwP18ZJq1aoVWrVqVay6vXv3Rtu2bdWvo6KisHjxYjg5OYk+FRgcHMy7B4m0jNchkXZp+xqsdImUoaEhsrKy8pUrFAr18bJUo0YN3tFHRERURVS6NVLW1tZISEjIV55bxiSHiIiIxFLpRqRcXV0RFBSE1NTUPAvOc+dPi9qDSiwnT57EyZMnkZycDABlsuj80aNHkMlkordLRMXH65BIu8r6GnRwcICRkdFrj1e6RMrb2xu7du3CwYMH1ftIKRQKBAQEwMPDQ731QVnz8fGBj48Pjh8/jjt37mDx4sXl0i8RERGJZ/PmzYWucdapRGrv3r2Qy+XqabqLFy8iNjYWQM5jXMzMzODh4YGOHTti06ZNSExMhJ2dHY4ePYro6GgsWLCg3GNu1aoVPvnkE+zfvx8zZswo1jnr1q3DtGnTCq2Tu4j9k08+gYODgxih6rzifG7aVN7xlVV/YrVbmnY0Obek5/A61Ayvw/LpT4x2y/saLOl5FeUaLKpdnUqk/P39ER0drX597tw5nDt3DgDQtWtXmJmZAQA++ugj2NjY4NixY5DL5XB2dsayZcvg6elZ7jFbWlqia9euOHXqVLHv2jMzMyt2XQcHB24M+kpJPjdtKO/4yqo/sdotTTuanFvSc3gdaobXYfn0J0a75X0NlvQ8XbkGdSqR2r17d7HqGRoaYsqUKZgyZUoZR1R8Pj4+ZVKX/q+if27lHV9Z9SdWu6VpR5NzS3pORf/3VFFV9M+N16E4bWh6bmX8WSgRBEHQdhBUcmFhYRg/fnyRc7dEVHZ4HRJpV0W4Bivd9gdVhbW1NUaPHl2s5w8SUdngdUikXRXhGuSIFBEREZGGOCJFREREpCEmUkREREQaYiJViSkUCixduhQDBw5E9+7dMWnSJNy5c0fbYRFVKcuXL0ffvn3RvXt3jBo1ChcvXtR2SERV0p07d9ChQwf88ssvorbLNVKVWHp6Ovz9/dGjRw/UrFkTp0+fxurVq+Hv7w8TExNth0dUJURFRaF27dowMDBASEgIZs+ejV27dsHCwkLboRFVGSqVClOmTIEgCHj77bcxatQo0drmiFQlZmxsjNGjR8PGxgZSqRSdO3eGnp4eHj9+rO3QiKoMBwcHGBgYAAAkEgmysrIQHx+v5aiIqpY///wT7u7uZbL7uU5tyFnZpaWlYdeuXQgODkZISAhSUlLw4YcfokePHvnqKhQK/Pzzzzh+/DhSUlLg4uKCcePGoWXLlq9t//Hjx0hJSYGdnV1Zvg0inVVW1+DKlSsREBAAhUKB1q1bw9nZuTzeDpHOKYtrMCkpCb///js2bNiAdevWiR4zR6QqkKSkJPj5+SEqKgqurq6F1l2yZAl2796NLl26YPr06ZBKpZg/fz5u3bpVYP3MzEwsXrwY7733nvpROkSUV1ldg7Nnz8axY8ewatUqtGzZEhKJpKzeApFOK4trcPPmzRg0aBDMzc3LJmiBKozMzEwhPj5eEARBCAkJEdq3by8EBATkq3f37l2hffv2wm+//aYuy8jIEN59911h0qRJ+epnZWUJ8+fPF7744gtBpVKV3Rsg0nFldQ3+24IFC4RLly6JGzhRJSH2NRgWFiaMHTtWyM7OFgRBEL7++mvBz89P1Jg5IlWBGBgYFGt31rNnz0Imk6F3797qMkNDQ/j6+uLu3buIiYlRl6tUKixevBgSiQQfffQRfxMmKkRZXIP/pVQq8fTpU1HiJapsxL4Gb968icePH2PAgAHo27cvTp06hd9++w1LliwRLWaukdJB9+/fh729PUxNTfOUu7u7AwAePHgAGxsbAMB3332HhIQEfPfdd9DT45ebSAzFvQblcjkuX76Mtm3bwsDAAOfPn0dQUBAmTJigjbCJKo3iXoO9e/dG586d1cfXrl2L2rVr47333hMtFv5k1UEJCQkFZuy5Zbl3BEVHR+PQoUMwMDDIk7V/++23aNq0afkES1QJFfcalEgkOHToEFatWgVBEGBnZ4dPP/0U9evXL9d4iSqb4l6DRkZGMDIyUh83NDSEsbGxqOulmEjpoMzMTOjr6+crz73FOjMzEwBga2uLc+fOlWtsRFVBca9BU1NTrFmzplxjI6oKinsN/tdHH30keixcI6WDDA0NkZWVla9coVCojxNR2eE1SKRdFekaZCKlg6ytrZGQkJCvPLesRo0a5R0SUZXCa5BIuyrSNchESge5urriyZMnSE1NzVMeHBysPk5EZYfXIJF2VaRrkImUDvL29oZSqcTBgwfVZQqFAgEBAfDw8FDfsUdEZYPXIJF2VaRrkIvNK5i9e/dCLperhycvXryI2NhYAMCAAQNgZmYGDw8PdOzYEZs2bUJiYiLs7Oxw9OhRREdHY8GCBdoMn0jn8Rok0i5duwYlgiAI5dojFWrw4MGIjo4u8Ji/vz9q164NIOeOhNxnDMnlcjg7O2PcuHFo1apVeYZLVOnwGiTSLl27BplIEREREWmIa6SIiIiINMREioiIiEhDTKSIiIiINMREioiIiEhDTKSIiIiINMREioiIiEhDTKSIiIiINMREioiIiEhDTKSIiIiINMREiohIS3bv3o1OnTrh+fPn6rIjR47Ay8sLR44c0WJk/3fo0CF4e3sjPDxc26EQVUhMpIhIFM+fP4eXl1ehfwYPHqztMCuMlJQUbNu2DT179lQ/O6ysXL16FV5eXpgzZ06Rdb/88kt4eXnhxIkTAIDu3bvDxsYGGzZsKNMYiXSVnrYDIKLKxc7ODl26dCnwmJmZWTlHU3Ht3r0bycnJGDp0aJn31aJFC9jY2ODGjRuIiYmBjY1NgfXkcjnOnz8PMzMzeHl5AQD09PQwePBgrFmzBrdv30bjxo3LPF4iXcJEiohEZWdnhzFjxmg7jAotOzsbhw4dQuPGjWFnZ1fm/UmlUvTo0QN+fn44evQoRo0aVWC9kydPIjMzEz179oShoaG6vHPnzli/fj0OHDjARIroPzi1R0Ra4+XlhenTp+PFixf4+uuv8c4778DHxweTJk1CUFBQgeekpaVhy5YtGDlyJHx8fNCzZ0/MmTMHt27dyld3+vTp8PLyQmZmJjZv3ox3330XHTt2xJYtW9R1zp49i/Hjx8PHxwd9+vTBt99+i5SUFAwePDjPVORXX30FLy8vBAcHFxjXzz//DC8vL5w8ebLI93316lUkJCTA29u7yLq5YmNjMWrUKPj4+ODMmTPq8pcvX2LdunUYOnQoOnfujHfeeQeffPIJIiIi8pzfs2dPSCQSHDlyBIIgFNhHQEAAAMDX1zdPuaWlJZo1a4YzZ84gLS2t2DETVQVMpIhIq+RyOaZOnYqHDx+ia9eu8PLyQlhYGObOnZsvGUhOTsbkyZPh5+cHc3Nz9OnTB15eXrh37x5mzJiB8+fPF9jHp59+iqNHj6JZs2YYOHCgek3S4cOH8emnn+LJkyfo1q0bunfvjrt372L27NnIzs7O00bv3r3V5/yXUqlEQEAALCws1FNihblx4wYAoFGjRkV/QAAePnyIKVOmIDY2FsuXL1cnYE+fPsW4cePw+++/o06dOujfvz9at26Nq1evYvLkyXmSPltbW7z55pt49uxZgUlqREQEQkNDUb9+fTRo0CDf8UaNGkGhUODOnTvFipmoquDUHhGJ6unTp3lGfP6tUaNGeOutt/KUPXjwAH379sXMmTMhleb8bte8eXN8++232LdvH+bOnauuu3r1akRGRmL+/Pno1auXuvzly5cYP348li9fjlatWuWZlgKAhIQEbN26FdWqVVOXpaSkYO3atTA2NsamTZtQt25dAMD48eMxd+5chIWFwdbWVl2/adOmcHR0RGBgID744AMYGxurj129ehVxcXEYNGgQDAwMivyMbt++DalUCldX1yLr3r17FwsWLICenh7WrVuX55yvv/4aL168wHfffYdWrVqpy0eOHInx48fj22+/hZ+fn7rc19cX169fR0BAAJo3b56nn9eNRuVyc3MDANy5cydPX0RVHUekiEhUT58+hZ+fX4F//vrrr3z1jY2NMWnSJHUSBeTcKSaTyRAaGqouS0xMxOnTp9G8efM8SRQAVK9eHUOHDkViYqJ6tOff3n///TxJFABcuHAB6enp6NmzpzqJAnIWV48bN67A99a7d2+kpaUhMDAwT/mhQ4cAAO+8887rPpY84uLiYGZmVmTSdfnyZcyaNQvm5ub44Ycf8iRR9+7dw507d9CtW7d8iU3dunXRq1cvRERE5BnVa9++PSwsLHD27Fmkpqaqy7Ozs3H8+HEYGBi89kYBKysrADlTjET0fxyRIiJRtWrVCt99912x69vb28PExCRPmZ6eHqysrCCXy9VloaGhUCqVyMrKKnDE68mTJwCAqKgovP3223mOubu756ufuy9SkyZN8h3z8PCATCbLV96tWzf8+OOPOHTokDqZe/HiBS5duoQ33ngDjo6ORbzbHMnJyahZs2ahdU6fPo1r167BxcUFy5cvR/Xq1fMcz522e/nyZYGfx6NHj9T/d3Z2BgB1orRnzx6cPHkSffr0AQBcvHgRiYmJ8PHxgbm5eYHx5JYnJSUV6z0SVRVMpIhIq0xNTQssl8lkUKlU6tfJyckAcqbFbt++/dr2MjIy8pXljqb8W+6IzH8TFCDnLjcLC4t85ebm5ujYsSOOHj2KiIgIODs748iRI1AqlcUejQIAQ0NDKBSKQuvcvXsXSqUSTZo0KTDG3M/j8uXLuHz58mvbSU9Pz/Pa19cXe/bsQUBAgDqRKmpaD4A6XiMjo0LjJqpqmEgRkU7ITbiGDBmCqVOnluhciUTy2vZevnyZ75hKpUJSUlKBo0Z9+vTB0aNH8eeff2LGjBk4fPgwTE1N0bFjx2LHY2Fhgbi4uELrTJgwARcuXMCePXsgk8nyvefc+GfMmIEBAwYUu28XFxc0bNgQISEhiIyMhLm5Oa5evYratWvnWzf1b7mJm6WlZbH7IqoKuEaKiHRCw4YNIZFIcPfuXVHac3FxAYACR7dCQkKgVCoLPK9Ro0ZwcXHBiRMncPXqVTx58gRdunQp0UiNs7MzFAoFYmJiXlvHwMAAX3/9Ndq0aQN/f3+sX78+z/Hc6UpNPo/ckafDhw/j2LFjUCqV6u0RXid3qjB3mpCIcjCRIiKdYG1tjY4dO+LOnTvYuXNngXshBQcHFzi1V5B27drB2NgYhw8fxtOnT9Xl2dnZ+Pnnnws9t3fv/7V3/yCp9XEYwJ9XyIKTDRVBRbQUgQ1FIUIl0UEkiF5oMCIhWwKH0moOQ2woGqM/i0sNUYk1RHWsJGgxyDAQamvQwY4NWlNL5x3iBuGf7j33Xu7l9fmsHvV3toff73ue8y+en5+xuLgIAFnD719pb2//WG8hWq0WCwsL6Orqwu7uLlZWVj4+0+v10Ov1OD8/zxp+B9531aLRaM7fNZvNKCsrQzAYxNHRETQaDfr7+wuu5e7u7tPaiegdj/aI6JcqVH8AADabLaue4HvNzs4iHo9jfX0dkiShtbUV5eXlSKVSuL+/RyKRwP7+/nftDul0OkxOTmJ5eRkTExMQRRGCICAcDkOr1aK6ujrvDo3FYsHGxgaenp7Q0tKSs3epkJ6eHqyuruL6+vrLI8GSkhJ4vV643W7s7e1BURQ4nU4AgNvtxvT0NDweD/x+P5qbm1FaWgpZlhGLxZDJZHIWhAqCgN7eXkiShHQ6DaPRmPe1MQCgKAoikQgaGxs/PeFIRAxSRPSLfas/yMdqtaoOUhUVFVhbW0MgEEAoFMLZ2Rne3t5QWVmJpqYm2O32nEPi+QwODkKn02FrawsnJycQBAHd3d1wOBywWq15X98iCAJMJhOCweAP70YBQG1tLQwGAy4uLuByub6sQfgWpubn5+H3+6EoClwuF+rq6uDz+bCzs4PLy0scHx9Do9GgqqoKbW1tBZvTBwYGIEkSgPfW80Jub2/x+PiIqampH75Xov+7f5R87wogIipSiUQCo6Oj6Ovrg8fjyXmN3W5HMplEIBDI++RhIZFIBDMzM5ibm4PFYvnZJf9WXq8XV1dX2N7ezluPQFSsOCNFREXr5eUlq4bg9fX1Y7DbZDLl/F44HMbDwwPMZrOqEAUAnZ2dMBqN2Nzc/FTz8LeJx+MIhUIYGxtjiCLKgUd7RFS0otEolpaWYDAYUFNTg0wmg5ubGySTSXR0dEAUxU/XHxwcQJZlHB4eQqvVwmaz/dT/O51OnJ6eIpVKFZxR+pNkWcb4+DiGhob+9FKI/ko82iOiohWPx+Hz+RCLxZBOpwEA9fX1EEURIyMjWbNcw8PDSKVSaGhogMPhyGpQJ6LiwyBFREREpBJnpIiIiIhUYpAiIiIiUolBioiIiEglBikiIiIilRikiIiIiFRikCIiIiJSiUGKiIiISCUGKSIiIiKVGKSIiIiIVPoPe+IBPjsCkBwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "5a6e2660-d0df-4dc4-8d8e-dbc13d62f306", + "metadata": {}, + "source": [ + "## check the discrepancy between the model and reconstructed spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "6bac3746-0895-476f-8014-b720ae91d40e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Energy Center: 125.8924143862528 keV, Truth: 0.00037509332308051504, Reconstructed: 0.000372443360635917 1 / (cm2 keV s)\n", + "diff: -0.71 %\n", + "Energy Center: 199.52617227070743 keV, Truth: 0.00013100640643159297, Reconstructed: 0.00013752711756448815 1 / (cm2 keV s)\n", + "diff: 4.98 %\n", + "Energy Center: 316.2279229021369 keV, Truth: 4.5008043531443166e-05, Reconstructed: 5.046801422979159e-05 1 / (cm2 keV s)\n", + "diff: 12.13 %\n", + "Energy Center: 501.1869894550339 keV, Truth: 1.5462910559040303e-05, Reconstructed: 1.7623484148658698e-05 1 / (cm2 keV s)\n", + "diff: 13.97 %\n", + "Energy Center: 794.3280178868179 keV, Truth: 5.312405290582567e-06, Reconstructed: 5.767412265132285e-06 1 / (cm2 keV s)\n", + "diff: 8.56 %\n", + "Energy Center: 1258.924143862529 keV, Truth: 1.825139915500053e-06, Reconstructed: 1.8325489081869999e-06 1 / (cm2 keV s)\n", + "diff: 0.41 %\n", + "Energy Center: 1995.2617227070734 keV, Truth: 6.270348197761169e-07, Reconstructed: 5.962884413278615e-07 1 / (cm2 keV s)\n", + "diff: -4.90 %\n", + "Energy Center: 3162.279229021372 keV, Truth: 2.1542244490397355e-07, Reconstructed: 1.9482232171230163e-07 1 / (cm2 keV s)\n", + "diff: -9.56 %\n", + "Energy Center: 5011.8698945503365 keV, Truth: 7.401022931546242e-08, Reconstructed: 6.505555070939067e-08 1 / (cm2 keV s)\n", + "diff: -12.10 %\n", + "Energy Center: 7943.2801788681745 keV, Truth: 2.5426787880752837e-08, Reconstructed: 3.552391422512448e-08 1 / (cm2 keV s)\n", + "diff: 39.71 %\n" + ] + } + ], + "source": [ + "import scipy.interpolate as interpolate\n", + "\n", + "f = interpolate.interp1d(np.log(np.array(energy_truth)), np.log(np.array(flux_truth))) # log-linear interpolation\n", + "\n", + "for idx, e_center in enumerate(energy_band):\n", + " truth_value_interpolated = np.exp(f(np.log(e_center.value)))\n", + " print(f\"Energy Center: {e_center}, Truth: {truth_value_interpolated}, Reconstructed: {differential_flux[idx]}\")\n", + " print(f\"diff: {(differential_flux[idx].value / truth_value_interpolated - 1)*1e2:.2f} %\")" + ] + }, + { + "cell_type": "markdown", + "id": "68fbca47", + "metadata": {}, + "source": [ + "## Plot All" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "0e82c2c1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACSkAAATBCAYAAADddYOPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iUVfrw8e8zfSbJpPdKekIVkN5BUcSCK2tX7A2xd117111dfd1VWRF7F0SqSJHepBN6Cum9T2YmM+f948kMDAmQZFH3t3s+15Xr2nnqmWfGnZv7nHMfRQghkCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ+o1o/ugGSJIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZL0300OUpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk6TclBylJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvSbkoOUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TclBSpIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk/abkICVJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkn5TcpCSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEm/KTlISZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZKk35QcpCRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJ0m9KDlKSJOm/2lNPPYWiKKxYseKPbookSZIkSZLUDR9++CGKovDhhx/+0U2RJEmSJEn6r5eXl4eiKEybNu2PbookSZIkSdJ/PUVRGDNmzB/dDEn6XclBStJ/jW+++YY777yTkSNHYrVaURSFq6666pTnrV27lkmTJhESEoLZbKZPnz688cYbuFyuE57z448/MmbMGAIDA/H392fw4MHMnj27y212Op28+eabXHfddfTr1w+DwYCiKMycOfOE53g6aU70989//rPD83bu3MmVV15JamoqZrOZ2NhYxo4dy5dffonb7e5y2z3279+Pn5/fSZ+3y+Xi008/ZeTIkURFRWGxWEhPT+e6665j9+7dHZ5TVlbGnXfeSY8ePTAajYSHhzNlyhR+/fXXbrf1dBo+fDiKorBgwYJTHpuRkYGiKGzduvV3aJkkSZIkHdXV+MjTIXGiv8suu6zD88rLy3nwwQfp1asXAQEBhIaGMmDAAF599VUaGhq63X673U6vXr1QFIW4uLgTHrd69WouvPBCkpKSMJlMJCQkMGnSJBYtWtTh8Q6Hg1deeYW+fftisViwWq2MGDGCr776qsttPHDgAC+//DLjxo0jPj4eg8FAZGQkF154IcuXL+/wnO7Ecxs3buSRRx7h3HPPJSoq6pTP5GS6e6358+dz9tlnExcXh9lsJjk5malTp7Ju3boOj29oaOCxxx4jMzMTk8lEcHAwEydO5Oeff+5Wu0+3K6+8EkVReOedd0557Nlnn42iKHz//fe/Q8skSZKk/4uqqqqYOXMmU6ZM8eZeAgMDGTFiBP/61786zL10J/YqLCzk+eefZ+rUqaSmpqLRaFAUhYMHD3a5zd29VldzTEII3n//fQYPHoy/vz9+fn4MHDiQf/7zn13OSdXX13P33XczcuRIYmJiMJlMREREMGjQIN544w2ampo6PK87eabTlUvrbuxVWFjI9ddfT0xMDEajkaSkJO6++25qamraHeuZpHeyv5SUlE63+bfw/vvvoygKf/7zn0957AsvvICiKNx1112/Q8skSZKk/4seeughxo8fT3x8PGazmZCQEM444wyefvppqqqqOjynO3mK3Nxcbr31VjIzM7FYLERGRjJ06FDee+89HA5Hp9ubk5PDk08+yYUXXkhCQoL397m1tfWk51VXV3P33XeTlJSE0WgkJiaG66+/nsLCwnbHnirfpCgKWq22020+1s8//8yUKVOIiorytmPixInt+siOHDnC7bffzuDBg32OHTlyJLNmzcLpdJ7wHrNnz2bQoEH4+/sTGBjImDFj+PHHH7vc1q7GfdOmTTvpM9u7d6/P8b/lcz5dfvrpJxRFYdCgQac89rPPPkNRFC688MLfoWWSpNL90Q2QpNPlueeeY/v27fj7+xMXF9fuR6Mjc+fO5U9/+hMmk4lLL72UkJAQ5s2bxz333MOaNWv4+uuv253z9ttvc+eddxIaGspVV12FwWDgm2++Ydq0aezcuZPXXnut021uamri7rvvBiAyMpKoqCiOHDnSqXMvvPBC+vXr1277wIED222bN28eF198MRqNhgsuuIBLLrmEyspKvv/+ey677DKWLl3K+++/3+l2e7S2tnL11Vej0Zx8vOMVV1zBV199RVxcHBdffDEBAQHs3LmT2bNn89lnn7Fw4ULGjRvnPT4vL49hw4ZRUlLCoEGDuPjii6moqOC7775j/vz5zJs3j4kTJ3a5vafTTTfdxNq1a5k5cyaTJk064XErV65k//79DBw4kDPOOON3bKEkSZIkdS8+Aujbty8XXXRRu+29evVqty0vL4/BgwdTXl7OmDFjOPfcc2lpaWHJkiU8+OCDfPLJJ6xfvx6z2dzl9j/66KPk5+ef9Jh//OMf3H777fj5+TFlyhTi4uIoLCzku+++Y+HChTz33HM89thj3uMdDgcTJ05kxYoVJCUlcd111+F2u1mwYAGXXnopu3bt4plnnul0G5944gm+/PJLsrOzvQPf9+3bxw8//MAPP/zAm2++yYwZMzo8tyvx3Geffcabb76JXq8nOzubsrKyTrfxdFzroYce4pVXXiE0NJSLLrqIsLAwDh48yNy5c/n222/56KOPfAbA1dTUMGLECPbs2UPPnj259dZbaWxsZO7cuUyYMIGZM2dyww03dPs9nA433XQTn332GTNnzuT2228/4XF5eXksXbqU6Ohozj///N+xhZIkSdL/JV9//TW33XYb0dHRjB07loSEBMrKyvjuu++48cYbWbhwIV9//TWKorQ7tyux1+bNm3n88cdRFIUePXoQGBhIbW1tt9rcnWt1J8d01VVX8dlnnxEREcHll1+OxWLhp59+4rbbbmPt2rV89NFHnW5zdXU17733HoMGDeK8884jPDycuro6li1bxj333MP777/PunXrsFqt3nO6k2c6nbm07sRehw4dYtiwYZSXl3PhhReSmZnJxo0befPNN1m0aBFr1qwhNDTUe/zJZt/PmzePX3/9lXPPPbdT7f2tXH755dx7773MnTuXyspKwsLCOjxOCMG//vUvAG6++ebfs4mSJEnS/yF/+9vf6N+/P2eddRYRERE0NTWxfv16nnrqKd577z3Wr19PfHy89/ju5Ck2bdrE2LFjsdlsnHPOOVx44YXU19czb948brnlFr799lsWLVrUYXx3vMWLF/PMM8+g1WpJS0vDZDLR0tJy0nOqqqoYNmwY+/fvZ9y4cVx22WXs3buXWbNmMX/+fNatW0dycrL3+H79+vHkk092eK1Vq1axbNmybsUDDz74IK+++ipxcXFccMEFhIWFUVFRwZYtW1ixYoVPH9mhQ4f49NNPGTx4MBdddBEhISFUVVWxcOFCrr/+ej7++GOWLFmCTuc7ROH+++/n9ddfJy4ujptuugmHw8EXX3zB+eefz1tvvcX06dM71dZ/p3/xrrvuIigoqN3242OW3+o5n04TJkygR48ebNq0iZ07d9K7d+8THuuJaWXcJf2uhCT9l1i2bJnYv3+/cLvdYvny5QIQV1555QmPr6urE+Hh4cJgMIhNmzZ5t9tsNjF06FABiM8//9znnNzcXGE0GkVISIjIzc31bq+urhYpKSkCEGvXru10m+12u1iwYIEoLi4WQgjx5JNPCkC8//77Jzxn1qxZAhCzZs3q9H2ys7MFIFasWOGzvaSkRERERAhA5Ofnd/p6Hk8//bQwGAzizTffPOHz3rhxowBEz549RVNTk8++Dz74QABi7NixPtsvuOACAYgZM2YIt9vt3b5v3z4REBAgoqOjRWNjY6fa6Hmmy5cv7/L7O5nm5mYRGBgo9Hq9KC0tPeFxV111lQDEe++9d1rvL0mSJEmd0dX4KDc3VwDi2muv7fQ9br/9dgGIp556ymd7a2urGDdunADE7Nmzu9z25cuXC0VRxD/+8Q8BiNjY2HbHOBwOERgYKEwmk9i7d6/Pvj179gij0SjMZrNoaWnxbv/rX/8qADF06FCfeKKhoUEMGDBAKIriExueyqxZs8Svv/7abvuKFSuEXq8XBoPBG+sde05X47mtW7eKX3/9VdjtdiGEOOEz+S2uVVJSIjQajYiMjBRlZWU++5YtWyYA0aNHD5/tM2bMEIC4+OKLhdPp9G4vKysT8fHxwmw2iyNHjnSqvd15Xp2Vnp4uALFly5YTHvP4448LQDz66KOn/f6SJEnSf4+ff/5Z/PDDD8LlcvlsLykpEfHx8QIQ33zzjc++7sReR44cEb/88ouoq6sTQggxevRoAYgDBw50uc3duVZXc0zfffedN1aoqKjwbrfb7WLy5MkCEN9++22n29za2iocDkeH+6688koBiJdfftlne3fyTKczl9adOO7ss88WgPj73//us/2ee+4RgLjllls6de/W1lYRFxcnALF9+/ZOndOd72Vn3XTTTQIQr7/++gmPWbp0qQDEsGHDTvv9JUmSpP8eNputw+2PPvqoAMRtt93ms707eYpJkyYJQHz44Yc+2xsbG72xwsqVKzvV3r1794r169eL5uZmIYQQiYmJAvBpy/FuvvlmAYh7773XZ7unT27ixImdurcQQgwZMkQAYu7cuZ0+Rwgh3nvvPW9c4IlljnV8XGa329vFw57jxowZIwDx5Zdf+uxbs2aNAERKSoqorq72bs/NzRUhISHCaDT69MmeTHfivmuvvVYAnb7HyXTnOQNi9OjR//a9j/f8888LQNx5550nPObAgQNCURQRHx/f4ecmSb8Vudyb9F9j7NixpKWldWrEMqjLn1RUVHDZZZf5zFY3mUw899xzgDoz/1gffPABdrud6dOnk5SU5N0eHBzMo48+CnDC5dY6YjAYOPfcc4mOju70Od1x+PBhrFYro0eP9tkeFRXF4MGDAaioqOjSNTdv3syzzz7LE088QZ8+fU56b4Dx48djsVh89nlKBx5775aWFhYuXIhGo+G5557z+TzT09O5/vrrKSkp4dtvv+1Se49XUFBAz549MRgMfPzxx97tzc3NvPjii/Tr1w8/Pz/8/f0ZOnQon3/+uc/5ZrOZq666CqfTyYcfftjhPWpra/nmm2/w9/fn8ssv/7faK0mSJEnd0dX4qDs8v/UXXHCBz3atVst5550HdD3OqK+vZ9q0aYwfP55bb731hMdVV1dTV1dHeno6GRkZPvuysrJIT0/HZrPR2Njo3e5Zruuxxx7Dz8/Pu93f35/HH38cIUSnlv/ymDZtWofVEkePHs2YMWNwOBysXbu209c7kX79+nHGGWdgMBh+92vl5+fjdrsZPHgwERERPvvGjh1LQEBAu8/Y85yfeeYZn9lxERER3HvvvdhsNj744IN/633U1NQwatQoNBoNL774ond7a2sr77zzDkOGDMFqtWKxWDjjjDN4++232y3NctNNNwGcsBKCy+Vi1qxZKIrCjTfe+G+1V5IkSfrvNm7cOM4///x21aajoqK88cyKFSv+7fvExcV5l/L9I67V1RyTJya47777fGahGwwGnn32WUCtWt5ZWq0WvV7f4b6pU6cC6nK8Ht3NM53OXFpXY69Dhw6xZMkSkpKSuOOOO3z2Pf300/j5+fHxxx+fcGm7Yy1YsIDCwkKGDBly0vxdZ7jdbu666y4UReHiiy/GZrN59y1evJhJkyYRFhaG0WgkJSWFBx54oF1lLs8M/ZkzZ57wPnI2vyRJktQZJpOpw+2eZUWPjQege3mKE+W8/Pz8GD9+PND5eCAjI4PBgwd3utJ4Y2MjH3/8MX5+fjz11FM++6ZPn05iYiKLFy/2tvFkdu7cyfr164mNjfXm6jrDbrfz2GOPkZCQwHvvvddhLHN8XGYwGDpcfUWv13srhx7/2Xj6VR977DGCg4O92z2xkN1uZ9asWads7+/Vv3gi3X3OJ/Lqq6+i0WgYPnw41dXV3u0bNmzgkksuISoqCoPBQHx8PLfccgvFxcU+519//fXodDo++eSTE1btmjlzJkIIbrjhhlOumiNJp5P8tkn/s5YtWwbAOeec027fqFGjsFgsrF27Frvd3qlzPKX7PMf81rZt28Ybb7zBSy+9xMcff9zh+rMePXv2pL6+ntWrV/tsLy8vZ+PGjURHR5Odnd3pe9tsNq6++mr69evHww8/fNJje/bsCajP5djkBeBdS3bChAnebdXV1TidTsLCwggICGh3PU/pypOtEXwq27dvZ+jQoRw5coQFCxZw9dVXA+qgohEjRvDoo4+i1Wq5/vrrufbaa6moqOCKK67g8ccf97mOp1PLU4L6eJ4f/ssvvxx/f/9ut1eSJEmSfm/FxcW8++67vPDCC7z77rvs2LHjhMd6fuvnz5/vs93tdnsTA8cu69oZM2bMoKam5oS/sR4RERGEh4ezf//+dgkOz7Z+/fr5LIVRWloK4FMO2+N0xBnH8iRqji9h7dGVeO6PlJaWhsFgYOPGjVRWVvrs++WXX2hoaPCJ5+C3f84FBQUMHz6c9evX89FHH/HII48A4HQ6mTx5MnfccQe1tbVcccUV3Hzzzbjdbu68806uvfZan+tce+21GAwGPv/8c5qbm9vdZ+HChRQVFXnLZEuSJElSd5wqJuhK7PVH62qOqTMxwapVq3A4HP922+bNmwfgMxinu3mm051L64rly5cDcPbZZ7frLAoICGD48OE0Nzezfv36U17rvffeA/79AT8tLS1MnTqVv//979xxxx1888033k7Wp59+mnPOOYcNGzZw3nnnMWPGDFJTU3nttdcYPnw49fX13usMHDiQfv36kZOTw5o1a9rdp6qqijlz5hAYGOjtZJYkSZKkrugoHoDu5SlOlPNqbm5m2bJlWCwWhg4denoafpz169djs9kYPnx4uxhGo9F4lyzzxA0n44kHbrjhBrRabafb8NNPP1FRUeFdAnf+/Pm8/PLLvPnmm6xbt64L70adBLZgwQKg/Wdzuvpe/93+xYULF/Lyyy/z2muvMWfOHJ8YpjO6+5yP53a7mTFjBg8++CBTpkzh559/JiQkBFCLaQwfPpyFCxcyduxY7r77bgYOHMjMmTMZOHAgBQUF3utERUUxefJkampqOhyY1drayuzZs739oZL0u/qjSzlJ0m+hM8uZDBw4UABi8+bNHe7v2bOnAMSePXu828LCwgQgKisrOzzHz89PAO2WNeusriz3dvyfVqsVt9xyS4clLn/55RdhtVqF0WgUf/7zn8XDDz8sbrzxRhEWFiZSU1PFxo0bu9TOGTNmCKPRKHbv3i2EOPXz9pSiTkhIELfffrt46KGHxOTJk4VOpxOXXXaZT2nF5uZmodVqhUajEQ0NDe2udddddwlADB48uFNtPX65t59++klYrVYRHR0ttm3b5nOsp6Tj8WXBbTabmDhxolAURWzdutVn36BBg064nFzfvn0F0KUlYyRJkiTpt9KV5d46+hszZkyHS1qUlZWJjIwMAYhx48aJ+++/X8yYMUNkZmaKoKAg8cEHH3SpnZ4lQWbOnOndxkmWxPjqq6+EwWAQAQEB4pprrhEPP/ywuPrqq4W/v78YMGBAu+VKPMv6zp8/v921vv/+e+/79ZTf7q68vDxhNBqFxWLxKVUtRPfiueOd7Jl0VWeu9be//U0oiiLCw8PFTTfdJB5++GExdepUYTQaxVlnndVuGbjo6GgBeOPF468FiMjIyE617/jl3rZt2yaio6OF1WoVP/30k8+xnthv+vTporW11bu9tbVVXH/99QIQc+bM8Tnnz3/+8wmXk/OUCf/666871VZJkiRJOp7T6RS9evUSgFi0aJHPvu7EXsf7d5Z76861uppjuvzyywUg/t//+3/trrV161bv+83JyelSW51Op3jyySfFk08+Ke68807Rr18/AYixY8f6xFLdzTOd7lzasU4Ve91///0CEK+99lqH+++44w4BiHfeeeek9zly5IjQarUiMDCwS7nK45d7q6qqEsOHDxeKooiXXnrJ51jP0r9Dhw4VNTU1Pvs8Mdzdd9/ts/2dd9454XJynqWZ77jjjk63V5IkSfrf9uqrr4onn3xS3H333WLEiBECEH369BHl5eU+x3UnT5GTkyOio6OFVqsV559/vnjooYfEbbfdJuLj40V0dLRYsGBBt9t9quXe3n77bW9+oyOvvvqqAMSDDz540vs0NzeLoKAgodVqRUFBQZfa+Je//EUA4uGHH/bGs8f+jRo1qt1z9qioqBBPPvmk+Mtf/iJuu+02kZqaKgBxxRVX+BzX2NgoAOHv73/C6wAiIiLilO3tbtzn6Rs8/i8gIEC8/fbbp7yv597dfc4cs9ybzWYTF198sfezP3YJtn379gm9Xi9SUlJEYWGhzzWWLl0qNBqNuOiii3y2L1iw4ITLyXlysOedd16X2itJp4McpCT9V+pMJ1xaWtpJEy/Dhg0TgFi7dq13m16vP2nQEBMTIwBRXFzcrXZ3ZpDSihUrxFtvvSX27dsnmpqaRHFxsfjqq69ESkqKAMTll1/e4Xm7d+/2Drw69gf2+eef71RHmMfSpUuFoig+A3k687z/+c9/CrPZ7HP/AQMGiIULF7Y7dsKECQIQ99xzj8/2AwcOiICAAAGI9PT0TrX32EFKH3/8sdDr9SIrK6tdoq+yslJotVoxcODADq+zbds2AYgHHnjAZ/vMmTM7fO8bN24UgDjjjDM61U5JkiRJ+q115ve6rKxMPPHEE2LLli2ipqZG1NTUiJUrV4qxY8cKQKSmprZbt10IIWpqasSUKVN8fucVRRE333xzl/5hXlpaKsLCwsS5557rs/1UHTmrV68W8fHxPvePjIwUb7/9drv11J977jkBiGHDhvkMRGpsbBRnnnmm9/zuxnNCCNHS0iKGDx8uAPHKK6+029/deO5Yv/cgJSHUQVzBwcE+zzk1NVV8+umn7Y698cYbBSAuueQSn8FC5eXlIiEhQQDCYDB0qn3HDlJasmSJCAgIEDExMe0GnLtcLhESEiKioqI6jNdramqEoihi6tSpPtuXLl0qADF8+HCf7cXFxUKn04mIiAjhcDg61VZJkiRJOt59990nADFp0qR2+7obex3r9x6kJETXckyffPKJAERKSoqoqqrybnc4HN7BwMfn3zrDZrO160i6+uqrO+yQ6m6e6XTl0o53qtjrpptuOml+8NFHHxWAeOGFF056n6eeeqpbA36OHaSUl5cnMjMzhV6vF5988km7Yy+66CIBiF27dnV4rX79+onw8HCfbXV1dcLPz09YLBZRV1fnsy87O1sAYvv27V1qsyRJkvS/KzIy0ue3+pxzzhGlpaXtjutunqKwsFCMHDnS5x56vV488MAD7SaldcWpBik9//zzAhCPPfZYh/vfe+89AYibb775pPf58MMPuz0Q5dZbbxWgTqrr3bu3WLVqlWhoaBA7duwQZ5999gkHvwihDvA6Pk94//33t8uvFBUVnTQ2cjgcXcohdSfu+9e//iW+/PJLkZ+fL2w2mzh06JB47bXXvMe/++67p7zvv/OcPc/x2IHhxxdTEEKIu+++WwDixx9/7PA6F110kdBqtaK+vt67zeVyeb9r+/fv9zl+0qRJAhBz587tcpsl6d/VcY1hSZJOixUrVrBixQqfbUlJSUybNq3b1xw9ejSjR4/2vrZYLEydOpUhQ4bQt29fPv/8cx566CH69u3rPeann37isssuY+DAgXz00UdkZmZSWlrK22+/zWOPPcb8+fNZuXLlCcuOe9TW1jJt2jQGDx7Mfffd16n2CiG46667eOedd3juuee46qqrCAoKYtu2bdxzzz2ce+65vP3229xxxx3ec9544w2GDx/O3/72N9atW8fw4cOpqKjg22+/JS0tjW3btnV5bdQ333yTuXPnMnz4cH744QefdW0BNm3ahMvlQlGUduv7grp0CEBOTo7P9ssuu4x77rmHb7/9lrfeest73ffffx84uiScJEmSJP1fEBERwTPPPOOzbdSoUSxZsoQRI0awYcMGZs6cyV133eXdn5eXxwUXXIDNZmPBggXe5Sfmzp3Lfffdx9y5c1m3bl2nlsq66aabaG1tZebMmZ1u8yeffMJNN93ExRdfzBNPPEFiYiL5+fk8++yzTJ8+nZUrV/LVV195j7/rrrv4+uuvWbt2LT179mTSpEkIIZg/fz6KohAYGEhdXZ031uhqPOdyubj66qtZs2YNl156Kffff3+7Y7oTz/3RXnnlFR599FFmzJjB9OnTiYqKYu/evTzyyCNceeWVbNu2jVdeecV7/DPPPMPixYv55ptv6NevH+PHj6epqYm5c+cSGxtLQUFBl+O5b775hiVLlpCWlsbChQtJSEjw2b9//36qq6tJS0vjueee6/AaZrO5XTw3btw4UlJSWLNmDTk5OWRlZQEwa9YsWltbmTZtmneZHkmSJEnqir///e+8/vrrZGZm8vHHH7fb353Y64/W1RzTZZddxscff8zixYvJzs7mwgsvxGQysXTpUkpKSkhISPCJC7Zt28acOXN87hkUFMTdd9/ts81kMiHUCbgUFxezdOlSHnnkEQYOHMiiRYtISkryHtudPNPpyqX9Udxut3fp5FtuuaVb19i3bx9Dhw6lqamJhQsXMn78+HbHrFu3Dr1ez9dff83XX3/dbr/D4aCiooKqqirvEsxWq5VLL72UDz74gE8//ZTbbrsNgLVr17Jnzx4GDRrUbhkYSZIkSToRzzJuZWVlrF27locffpgzzjiDH3/8kf79+3uP606eYuvWrVx00UVERESwatUq+vXrR21tLZ988gmPP/44c+bMYdOmTQQGBv6u77krPEuQdRQP5OXl8eGHH7bb7ukjc7vdgLpk8Q8//OCNr3r37s33339PRkYGK1euZN26de2WvcvMzEQIgcvloqioiO+//56//OUvrF69mvnz53uXLzvduhP3Hb/UWXJyMvfddx8ZGRmcf/75PPbYY6dcwu1kz7kzysrKGD58OIcPH+aTTz7hiiuuaHeMZ4m9lStXsmnTpnb7y8vLcblc7N+/nwEDBgDq0oA33HADf/nLX5g5cyYvv/wyAIWFhSxatIiYmBjOO++8brVZkv4tf+gQKUn6jfynLPfmqeJz7N+JRhUfe/zJKimdzJVXXikA8fe//927raqqSgQHB4vY2NgOSzt7Zjx1tLzF8a677jphNpvF3r17fbaf7Hl7Zr4fP2pZCCFKSkqE2WwW/v7+7Wa6HTx4UFxzzTUiOjpa6PV6kZiYKB5//HGxatUqQVsZyc7wPNOQkBABiCeffLLD4zwz+071N2bMmHbn3nLLLT7PvbGxUQQEBAg/P792M8IkSZIk6Y/SmfjoZN5//30BiIsvvthnu2fGfUeznd944w3vLOxTmT17tgDE7Nmz2+3jBDOqPGWOBwwY0K5iksvlEgMGDPBWVDxWQ0ODeOSRR0RaWpowGAwiNDRUXH311aKwsFD4+/sLnU7nndnVlXiutbVVXHbZZQIQf/7zn084G+5kOornOnKiZ9Idp7qW57szZcqUdvuamppEbGys0Gg04tChQz77SktLxR133CESExOFXq8X0dHRYvr06eLAgQMC1KWAO8MTT3riueuuu0643e52x61evbpT8VxSUlK7c1988UUBiHvvvVcIIYTb7RbJyclCUZTTUplCkiRJ+t/z1ltvCUBkZ2eLkpKSLp9/otjreL9nJaXu5pgcDod46aWXRK9evYTRaBSBgYHiwgsvFDk5Od782+HDh4UQHS+Lm5iY2Kn2r1u37oQz2LuSZzqdubSOnCr2Oh3Lvf34448CEEOGDOly+zyVlDyxV79+/U5YKUKn03Uq/srLy/M5z/NZ9e/f37vtuuuuE+C77LMkSZIkdVVeXp4wGAyiZ8+e7fZ1JU/hdDpFamqqMJvNHcZynqo2J+pzOpXfY7m3Xbt2CUDExcX5VI/y8OR7jv/zePDBB08aT9xwww0CEG+88cbJ3qrX559/LsC3yuPpXO7N43T1LwohRGxsrADEjh07TnjMqZ7zqQAiKChIaDQakZCQcMIlnz1L5p3qb8WKFT7nFRYWCq1WKyIjI735zqeffloA4vHHH+9yeyXpdOja1FVJ+i+SkZEBqDOuj9fa2kpubi46nY7k5OROnVNSUkJTUxNxcXFYLBZAHW0s2mZ1ef6On4l/OoWHhwPQ1NTk3bZ27VpqamoYPHiwt13HGjt2LABbtmw55fV//fVXbDYbmZmZKIri/fNc49NPP0VRFPr16+c958cff/S5z7GioqLIzMyksbGRffv2+exLSUlh9uzZFBcX43A4yMvL49lnn/U++zPPPPOU7T3Wv/71LwYPHszTTz/NX/7yl3b7PSPd77nnnnaf2bF/y5cvb3fuzTffDOCt+vDFF1/Q0NDApZdeitVq7VI7JUmSJOk/VUdxRkNDAytXriQkJKTD2c5djTMArr32Wp84Q1EUAIqKiryva2trAViyZAlOp5PRo0e3mwWl0WgYNWpUh/f39/fnhRdeYP/+/djtdiorK/noo4+w2+00NjbSt29fb+WczsZzTqeTyy+/nC+++IIrrriCzz77rFsz6zt6zn+0k8VzFouFQYMG4Xa72bp1q8++yMhI3n77bfLy8nA4HBQXF/PWW29RUFAAdD2ee+GFF7jggguYNWsW119/vXdGn4cnnpsyZcpJ47nc3Nx2177uuuvQ6/V89NFHOBwOli1bxuHDhxk7diypqaldaqckSZIkvfHGG9x555306tWL5cuXExUV1eVr/CfGBN3NMen1eh566CF27txJS0sLtbW1zJkzh6SkJA4cOEBYWJi36ua0adPa/Xbn5eV1qn1DhgwhKCiow1itK3mm05lL646T5R8BDhw4AEB6evoJr/HvzuYHOP/883nhhRfYtm0b48ePp6qqqt0xgYGBBAcHnzT2EkKQmJjoc96QIUPo06cPv/76K7/++isNDQ189dVXWK1WLrvssm63WZIkSZISExPJzs5m9+7dVFZW+uzrSp5i7969HDx4kKysrA5juf9L8cCJqgCNGTOmw9/t49sQFBTU4fU9K4vYbLZTvBvVueeeC+ATq/n5+REbG0tjYyMlJSXtzunM+zze6exf7ExMfqrn3Bl9+/Zl9uzZFBUVMWrUKA4fPtzuGE/eq66u7qRx17HV2wFiY2OZNGkSZWVlzJs3D7fbzQcffIBGo+HGG2/sVnsl6d/1n1mPVpJ+B+PGjePTTz9l0aJFXH755T77fvnlF5qbmxk1ahRGo9HnnDVr1rBo0aJ2pQsXLlzoPeaPsmHDBgCfgVV2ux2AioqKDs/xbDcYDKe8/sUXX8zAgQPbbS8pKWHBggWkpKQwZswYn6U3Tuf9AW959I5KHZ5MUFAQP/30E+eddx7PPvssLS0tPkuSDBo0CI1Gw6pVq7p0XYD+/fszYMAAtmzZwsaNG72DlTyDlyRJkiTpv8H69esB3zjD4XAAUF9fj8PhaPd73pXf+aFDh9LY2Njhvn/9619YLBZvzOaJz053nPHRRx8BXY8zHA4Hf/7zn5k7dy7XXHMNs2bN6vJSZh4dxXN/tP+U52w0Gvnmm2+48sor+fDDD7Hb7Xz00UfewWCZmZkEBQWxfv16nE5nl5Zoi4yM5IILLuDbb79lzpw5fP/994CM5yRJkqSue/nll3n44Yfp168fP/30E2FhYd26Tkex1x/tdMcEX3zxBQ6Ho11errsaGhqor68nICCg0+d0lGc63e+zqzydnkuWLMHtdvvElQ0NDaxZswaLxcKQIUM6PL+4uJj58+cTGBjIpZde+m+15ZFHHsFsNnPPPfcwZswYli5dSmRkpHf/kCFDmD9/Prt376Znz55duvZNN93EnXfeycyZM+nbty9NTU3ceuut+Pn5/VttliRJkqTi4mKATg8Y6ShP4YkHjh/o5PFbxwNDhgzBbDazZs0aGhoafOIbt9vNkiVLgI4nlAG0tLTw8ccfo9VqueGGG7rVhvHjx6MoCnv27GkXkwDs2rULwDvY/FSKiooA2k3qGzduHB9//DGLFi3iuuuu89l3Ovteu9q/WFdXx969e1EU5YTv8XQ8Z4+rrroKk8nEFVdcwahRo1i2bJnP4KwhQ4awZcsWVq1a1eUl2m6++WbmzZvHzJkz8fPzIz8/n3POOafdQHJJ+t38FuWZJOmP1pnlTOrq6kRYWJgwGAxi06ZN3u02m00MHTpUAOLzzz/3Oefw4cPCaDSKkJAQkZub691eXV0tUlJSBCDWrl3b7XZ3Zrm3Y9vq4XK5xAsvvCAAERYW5rPEWFFRkdDpdEKj0YjFixf7nFdQUCDCw8MFIObPn++z7+DBgyInJ8db+u9kTva8X375ZQGInj17itraWp99//jHPwQgoqKifEogtrS0iJaWFp9j3W63eO655wQgLr300lO2ycPzTD3LvDQ1NYnx48cLQMyYMcPn2KuvvloA4plnnumwJOPBgwe95ceP989//lMAYuTIkQIQffr06XQbJUmSJOn30Jn4aMuWLe2WTRNCiKVLlwqj0SgAsWbNGp99WVlZHZYHttlsYsyYMQIQDzzwgM++4uJikZOT0y42OBFOsCTGhg0bBCDMZnO75ea2bt0qTCaTUBRF7Nq1y2dfR8uxLlmyRJhMJpGSkiIaGxs71S4h1Lhl0qRJAhA33HBDh8/veF2N5zpyomdyrM7Gc6e61pdffikAERkZKQoLC332LViwQCiKIkwmk8+SyC6Xq91yvkII8dFHHwlFUcSwYcM69ayEOLrsi2dJldbWVnHVVVd5l8A59v098cQTAhC33nqraG5ubnet4uJisXv37g7vs2jRIgGIQYMGCaPRKMLCwoTdbu9UGyVJkiRJCCGeeeYZAYgBAwaIqqqqUx7fndjreJ1Z7q2zsdeprtXdHFNHcc3WrVtFWFiYCA4OFkVFRSdt17F27NghbDZbu+12u11cc801AhBXXHGFz76u5pl+61xaZ+K4s88+u8MlgO+55x4BiFtuueWE53q+hydaHuZUPMu9Hbtk8z/+8Q+hKIrIyMjw+byWLl0qADF06NAOP8fGxkaxbt26Du9TU1MjzGazCAwMFH369BGA2LJlS7faLEmSJP1v2bdvX4dxjcvlEo8++qgAxLBhw9rt60qeoqWlRQQFBXXYZ1dTUyMyMzMFIP7f//t/Pvvy8/NFTk5Oh0vGHutUy70JIcTNN9/sszS9x5tvvikAMXHixBOe+9FHHwlATJ48+aTtOJULLrhAAOKvf/2rz/bFixcLRVFEUFCQz2exZcuWDvvXGhoaxIQJEwQgHn30UZ99a9asEYBISUnxWWI2NzdXhISECKPR6NMnK4S6DFxOTo6oqKjw2d7VuK+kpEQcOXKkw/Z6lvg966yzOngyqtPxnAExevRo7+u5c+cKo9EooqKifHKaOTk5Qq/Xi7S0NLFv375217Hb7eKXX37p8B6tra0iLi5OaDQaMWzYMAGIb7/9ttttlqR/lyLEMXXbJOn/sDlz5jBnzhwASktLWbx4McnJyYwcORKAsLAwXnvttXbnXHLJJZhMJi677DJCQkL44Ycf2LdvH5dccglfffWVd4kRj7feeosZM2YQGhrKpZdeisFg4JtvvqGwsJD77ruv3T1O5aWXXmLv3r0AbNu2je3btzNs2DDS0tIAGDFihE+5PUVR6NWrF3379iU2Npa6ujrWrFnDrl27sFgsfP/995x99tk+93jmmWd48skn0Wg0TJ48mczMTEpLS/nuu+9obGxkypQpfPfddz7nJCUlkZ+fT25uLklJSSd9DytWrGDs2LFceeWVfPLJJz77GhsbGT58ODt27CAiIoILLriAoKAgfv31V5YtW4ZWq+Wrr77i4osv9p6za9cuRo4cyVlnnUVSUhJOp5Off/6ZnTt3MmLECObPn9/pZdSeeuopnn76aZYvX86YMWMAdWTzn/70JxYsWMDNN9/MP//5TxRFob6+nokTJ7J+/XrS0tIYMWIEkZGRFBcXk5OTw6ZNm/j88887LDvd0NBATEyMtwLEW2+9xfTp0zvVRkmSJEn6rXQ1PhozZgwHDhxg2LBhxMXFAbBjxw6WLVsGwLPPPsvjjz/uc4+lS5dy3nnn4XA4GDx4MMOGDcNms7Fw4ULy8/NJTU1l/fr1hIaGes+ZNm0as2fPZtasWUybNu2U70NRFGJjYyksLGy37/rrr2fWrFkYDAamTJlCYmIieXl5zJkzB4fDwd13383f/vY3n3NiYmLo06cPmZmZmEwmfv31V5YuXUpUVBQ//fRTl2aBX3fddXz44YeEhYVx++23t4sdQX2unjjE8366Gs/t3buXl156yft69uzZWCwWpk6d6t322muv+VRrOFE819Vrud1uJk6cyNKlSwkICGDKlClERUWRk5PDjz/+iBCCN954g7vuust7fmNjI5GRkZx11lmkpKSg0WhYs2YN69atIysri6VLlxITE9OpZ/zhhx9y3XXX+Xxf3G43t9xyCzNnzmTy5Ml88803GI1GnE4nl1xyCT/88AOxsbGMGzeO2NhYysvLOXDgAGvWrOH555/n4YcfbncfIQTJycneJWW6E9tLkiRJ/7tmz57NtGnT0Gq13Hnnnd7lGI6VlJTkE/t0J/YCfK6xaNEiysrKuPjii70z7G+88UZGjBjhc/yJYq+uXqs7OabBgwdjNpvp1asXAQEB5OTkMH/+fMxmM/PmzWu3JMXJ3H333cyaNYvhw4eTmJhIUFAQxcXFLFmyhNLSUjIyMli+fDnR0dHec7qTZzqdubTuxHGHDh1i2LBhlJeXc+GFF5KVlcWGDRtYvnw56enprF271ie+9nC73SQnJ5Ofn8+OHTvo3bt3p5+tR15eHj169ODaa6/lww8/9G7/8MMPueGGG+jRowfLli3zVlJ/+eWXvRWXJk2aRI8ePWhsbCQ/P5+VK1cyYsQIFi1a1OG9rr32Wm/1igEDBrB58+Yut1eSJEn63/PGG2/wyCOPMGLECHr06EFoaChlZWWsXLmSw4cPExUVxc8//0x2drb3nO7kKWbPns11112HEILx48dzxhlnUFNTww8//EBFRQVDhgxhxYoVPiuyjBkzhpUrV/r0SYFaken+++/3vv7mm29oamrimmuu8eaSHn74YTIzM73HVFVVMWzYMPbv38+4ceMYNGgQOTk5zJ07l4iICNauXUtKSkqHz2jkyJGsXr2aH374gfPPP7/bz7qwsJBhw4Zx5MgR7zPIzc1lzpw5KIrCF198wZ/+9Cfv8RdddBFr1qxh2LBhJCQkYLFYOHLkCAsXLqS2tpZhw4axePFi/P39fe5z33338de//pW4uDguueQSHA4HX375JVVVVR32t3n6/p588kmeeuop7/auxn0rVqxgwoQJDB06lPT0dCIiIigqKuKnn36itLSU5ORkli9f7rOCzOl+zoqiMHr0aJ9l8BYvXsyUKVPw8/Nj6dKl9O3bF4BPPvmE66+/HiEE55xzDunp6TidTgoKCli1ahXh4eHePufjPfnkkzzzzDMAREVFceTIkXZVrSTpd/NHjpCSpNPJUzHnRH+JiYkdnrd69Wpx7rnniqCgIGEymUSvXr3EX//61w5H+nr88MMPYtSoUcLf319YLBYxcOBA8eGHH3ar3Z5Zaif6O3bWkhBC3H///WLUqFEiOjpaGI1GYTabRUZGhrjjjjvEoUOHTnifOXPmiHPOOUeEhYUJrVYrAgICxNChQ8U777zT4Xv1jOI+fnRyR05VmaGhoUE8/fTTom/fvsJisQidTieio6PF1KlTxYYNG9odX15eLq644grRo0cPYTKZREBAgBg8eLB4++23TzqqvCPHV1LysNvtYsqUKd5n7Bkhb7fbxVtvvSWGDh0qrFarMBgMIj4+XowbN0787W9/86kQcLwbb7zRW82hpqamS+2UJEmSpN9CV+OjmTNnivPOO08kJiYKPz8/7+/gn//85xPOxBFCiO3bt4urrrpKxMfHC71eL0wmk8jOzhaPPPJIh7+J1157rU9lnFPhJLPN3W63mDVrlhg9erQICgoSWq1WBAcHi3HjxrWriulx//33i169eomAgABhMplERkaGeOihhzpV8eB4p4rlAPHkk0+2u39X4zlPvHWyv+PjthPFc925lsPhEH/729/E4MGDRUBAgNBqtSI8PFycd9557SoMeI6//vrrRXp6urBYLMJisYi+ffuK559//pSzCY93fCUlD7fbLaZPny4AcfbZZ3srJ7ndbvHRRx+JcePGieDgYKHX60VMTIwYPny4eP7550VBQcEJ7+WZWQeIvXv3dqmdkiRJ0v+2U8VdHDdDWojux16nus/xv5kni726ei0hup5jeuWVV0T//v1FYGCgMBgMokePHuL222/vcNb6qaxevVrccMMNIjs72yf2Gz58uHj11Vc7jDO6m2c6Xbm07sReQqhVm6ZNmyaioqKEXq8XCQkJ4q677vKpMHC8BQsWCEAMGTLkxA/xFDqqpOTx2WefCZ1OJxITE33i1lWrVompU6eK6OhoodfrRVhYmOjbt6+45557Oqwi6rF69WrvM3j33Xe73WZJkiTpf8vOnTvFHXfcIfr27StCQ0OFVqsVVqtVDBw4UDz55JMd5ne6m6dYuXKlmDJlioiKihI6nU74+fmJ/v37ixdffLHD6o6ePNHxfVKe39eT/R1/jhBCVFVViRkzZoiEhASh1+tFVFSUuO66604aR+3Zs0cAIi4u7qR9nZ1VXl4upk+f7m1DaGiouOiiizrs3/vxxx/FlVdeKdLS0oTVahU6nU6Eh4eL8ePHi3ffffeksdesWbPEwIEDhcViEf7+/mLUqFFi3rx5HR7rib2Pz7l1Ne4rKCgQN998szjjjDNEWFiY0Ol0wmq1ijPPPFM899xzor6+/oTtPV3PuaN/JwihxpD+/v4iODhYbNy40bt9x44d4tprrxUJCQnCYDCI4OBg0bNnT3HzzTeLn3/++YT3KSgoEBqNRgDikUce6XZ7Jel0kJWUJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEn6TWn+6AZIkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkvTfTQ5SkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiTpNyUHKUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmS9JuSg5QkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIkSfpNyUFKkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT9puQgJUmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSflO6P7oBkiT952hububJJ59k48aNREVFkZ6ezrPPPvtHN0uSJEmSJOm/0pNPPsnBgwcpLS2lf//+PPPMM5jN5j+6WZIkSZIkSf91WlpaePbZZ9m6dSsREREkJiby9NNP/9HNkiRJkiRJ+q/07rvvsn37dkpKSsjOzuYvf/kLRqPxj26WJEn/IRQhhPijGyFJkq/m5mb++c9/8uOPP3Lw4EFqa2sxGAwEBASQn5+PEILU1FQcDgcFBQUYDAbi4+OprKykrq6OsLAwjEYjRUVFAISHh+Nyuaiurkar1WI2m3G5XNhsNvR6PW63G5fLdcL2aDQatFotTqcTAH9/fxRFoaGhAX9/f8xmM83NzTQ1NREZGYler6ewsBCA1NRUXC4Xubm5BAUFkZqaSkFBAeXl5WRkZBAUFMSOHTvw9/cnNTWVpKQk7r//fvr37//bP2hJkiRJkiRg06ZNzJo1iy1btlBUVER9fT0hISE0NjZSXV2N1WolJiaG3NxcWlpaiIuLQ6vVkp+fD0BsbCwOh4OKigr8/f0xmUw0NTVhs9kICAjA7XbT1NQEgF6vx+Vy4Xa7T9genU6Hoig4nU4sFgtarZaGhgYAQkND0Wg0VFRUoCiK997l5eVEREQQHBzMwYMHcblc9OzZE71ez7Zt29BoNAwePJiKigqqq6uJiIggJSWF8ePHc+utt8rBUZIkSZIk/S5aWlr47rvvmDdvHjk5OZSVlSGEwN/fn/z8fFwuF8nJybhcLvLy8tBoNCQnJ1NVVUVNTQ2hoaGYTCaKi4sRQhAWFobb7aa6uhqAgIAAWltbvTkvIQStra0nbM/xOS8/Pz80Gg0NDQ34+flhNptxOBzU19e3y3mlpKQghODw4cMEBASQkZFBcXExpaWlpKamEhwczIEDBwgMDCQhIYH09HRuv/12+vXr95s/Z0mSJEmSJIBDhw7xxRdfsGHDBvLy8qiursZgMGCz2aiqqsJsNhMbG0tBQQFNTU3Exsai0+l8cl5Op5Py8nIsFgsWiwWbzUZTUxMBAQEIIWhsbAQ6l/PSarVoNBqcTidmsxmdTkdzczMul4uQkBC0Wi0VFRXee7e2tlJWVkZYWBihoaEUFBRgs9nIysrCZDKxY8cOdDod/fr1o66uDrvd7h2QPnHiRK688ko5OEqS/gPJQUqS9DtYuHAhr7/+Ojt37qS1tZW6ujpcLhd+fn4YDAZqamoAsFgsOByOkyZPPCwWC3q9nrq6OvR6PXFxcQghyMvLIyMjA5PJxK6du3C5XZx55ploNBo2bNgAwKhRo3C5XKxZs4Zhw4YREBDAzp07KS4uZtKk8ygrKyUwMJB9e/dRVFzExIkTEUKwZMkSNIqGUaNH4XA4WLt2Lf369cNoNFJcVMyRwiP07dsXIQQ7duwA1EFKLS0tFBYWegc3eQKOk1EUBT8/P1qdrbTYWwgLCyMwMJBDhw4B0KdPHwBaW1sZP34806ZNkwObJEmSJEnCZrPx4osvMm/ePIqKinA4HNTV1QHqAJ+mpiZaWlrQ6/To9DpsNtspr6nT6TCbzd4Or7i4OEwmEwcPHgSOxiU7duwguUcy4RHhNDU1sWvXLoYNG4Zer2flypUAnHXWWSiKwpIlS8jIyCAmJobGxkbCw8NZsGABPbN7Ep8QT11dHevWrWPkyJFoNBrv+UOGDMHlcrFp0yZCgkNISEzAZrOxb98+kpOTATh8+DAAgYGBOJ1OmpubT/kejUYjRqOR+vp6AHr06IHNZqO0tJTQ0FDS0tIoKSmhf//+XHbZZUyYMIGQkJCufDSSJEmSJP0X2rhxI2+99RYbN26krq6O2tpaHA4HZrMZk8nkHTxkMVtwtjq9g4FO5ticF6hxCUBubi5paWlYLBby8/Opra3tMOcl3IJVq1cxZMgQAgMDKSosYtfuXZx77iQqKsqxWq0UFxezd+9en5wXwJgxY3A6naxZs4bevXtjsVioqqri4MGDHea87HY7R44c8Q5ustlsp8zreXNera20tLQQEhJCcHAwhw4dQlEUevXq5Y0/x40bx5VXXklmZmb3PiBJkiRJkv5r2O12PvjgA+bNm8e+fftoaGigurraO8DHZrNhs9nQ6XTo9fpO5by0Wi0Wi8U7wS42Nhaz2eyT81IUhe3btxMXF0dsbCw2m40dO3YwdOhQDAYDq35ZhVu4mTBhAhqNhp+W/ERUVBRZ2Vnegd4L5i+gR3IP0tPTaWxoZPWa1YwYMQKtVuuT83K73WzcuBGdVkev3r1oaWlh79699OjRA0VRKCwsxOFwEBQUhMPh6FTOy2AwYDKZvDmvxMREnE4npaWlBAcHk5qaSnNzM0OGDOH8889n9OjRWK3Wf+OTkiTpVORyb5LUTc3Nzbz88svMnj2bkpISHA4HoP7Y6fV672x5rVZ7wgE5Go2GgIAA7yClnj17YjKZWLVqFaGhoUycOBGn08mCrxdz9a1XEBgYyJ6Fh7DthKH3ZaEoCmuf3QMGGHZ1Nm63m/XP7+XMKWnoDXpGDxrHnplHGHqOemzAxngAho5WX5vXRmM5oKHfbZn06tGb7e/m4VgI5z1xHo4GJ5rlIYwZHEjKoFhstS24f7KSNS2e4PgAGiubsKyLYcjkTDQaDVv/sYcMZTDDLswGIGJnOoTBsCuOtmvQjHT0ej2VJZVsfS+X0Y/0xeFw8P7rH2KnmUuvmUptbS0//PADffr0wWq1cvjwYYqKivDz8/MJNjwJIYA9e/bwzjvvoCgKra2tBAcHExgYSF5eHgAZGRkoikJiYiJvvPGGTOxIkiRJ0v9BBw8e5N5772XNmjXU19d7O3/8/f2x2+04nU40Gg1CCE40D0Ov1xMaGkpRURFRUVEkJiVSUVbBvgP7uOCCCwgMDOSbj7/DTADX3XclOp2O1S/vYvDtGQQEB+BwONj00gGGTFPjn7XP7gFg2EXZCCGI2JmO2c/MGRN74Gp1EbU7k74DeuAXbCYjtDeHvy+lX1YKpgADwSUxVO1q5Mzz0tH761j77B4mKJfQd3QSfmEW1r6uvh42Vr22/pdw9V5nq68DNyfS9yr12nabnS2vHWLIFce16y712HXP5RAzNYDoHhFUV1fzxfvfMPnyc1AUhS8+/wK3cDNkyBBsNhsbN25EURTcbrc39qqqqqKqqgqA/Px8vv/+ewwGgzf+TUhIoKWlhfLycgIDA+nRowctLS3ceuut3HXXXb/dl0KSJEmSpN/M+++/zz//+U8OHjxIU1MTbrcbnU6H0Wj0zpY/Vc7L39+fmpoahBD07HU056VVtFx6+aW4XC4Wf7mMqTddREhICIX7Symb0+Sb88I359V/cgqmACN15U3sfjefoROzUDTH5bxQMK6JhO0w6L5sGuKaiNqTiXMRTHpiEvY6J1uWH6B31mAy+sfTUu/A/ZOVHudFEN0/jMZKG+a10QyenIFWr+XXLw+TpPRj6AVquyJ2pqvtOibndeaMNAwGA/VV9Wx6+wAjHu6F0+nko9e/pJl6/nTNRdTX1zNnzhwyMzMJCwujoKCA/Px8AgICvJ2IQgh27tzpfY5r167lhRde8FZ7CgoKIjg4mNzcXBRFISUlBYvFQnZ2Ni+++CJJSUm/1VdCkiRJkqTfSGFhIS+88AJLly6lpKQEm83mLXTgdDpxOBwoigJwwpyXQW/AYrFQWFhIWFgYqampVFdXk7Mnh/MmTyY4OIi5H8/Hgj9X3jcVvV7Pmpd2k31pAlFpYTidTja+uJ8h17Xlll7ZA3Y15wUQviMNYwMMmJiNy+kiYmc6mamxhPQIJDOkN4fmlJIdl4A1ykJgYQw1OY30Pb8HflFm1j63h/HKn8gYHEdwcgBb385hgnIJQ8dkg3JczsstsG5KIO3P0YSnBWO3OYjbd5AhVx6T81Jg2IyjOS+/LMg8P4Xa2lq+efcHJlw6Cq1Wy9KfllJRUcGQIUOw2+3eQe2g9vG63W6fnNfOnTt5//33fXJe8fHx3urpVquVpKQkzGYzN9xwA1dddZWs0iRJ3SQHKUnSCRQUFDB9+nRWrVpFfX09iqJ4Ey86nQ6Xy9VhMKDX6wkJCfEOUhoyZAgWi4WlP/1MWFAYV067Ar1ez9bXchk8IwOdTsfBlQWUrWzwDiYyro6EanVGltvtpkYRBPoFYTIZSR4Sz+6dR3xv2qwGJp4gJffnYtLPTcTsb1J3V7XgF2YmclAgZRvraCprwRCoIzDNQt2BZrb9Yy/9bstk0P0ZbHxtn/eygWkWUibG4mhwsvVtdUa+waLF5XCz4x9qqUcF9Z62SsCinucp5ZhxdiwALXV29VhFQQjBvvfLsCjqrDi9Xs8gZSzmOEhKSsLlctE8z8Cg89LR6XSkBWdTUFzF0GuOJqiaRTPDH+hJWVkZn370KQMGDiAoJIhdu3ZRXFxMQEAAdrvd+z727VPf0969e8nKysLf3x+n04ndbicyMpLQ0FAOHz5McnIy1157LQ8++GA3vjGSJEmSJP07Pv74Y15//XUOHDjg00mj0WjQaDQnnJHu5+dHgH8AJaUlREdHk53dk9KSEnJ27eXq664iNDSUda/lYFbMDLv5aAIjY0IsoQmBOB1ONr18gD591GTHcOVc73UBzIqZHTMLGHZ/NhpFA4CjqRVTgIH48aEc+bkK4RIo2raYaLcNpoDiVl9vfzuXQQ9mYAlWkxZb3zrEmfekkzElga2Vh33ey6D7M9CZtax9bQ/YICTLgqPJSXO5mhiJGxUGQF1h29JxRvWfc3u+UZf49cRax/K8Do9Ul0YJMAQyWBlPamoqiqIwjovV5M5o9dlYNyWQ8udIojKPJqj6P5BMS0sL7/79fZzYOfucs2lsbGT16tVoNBoURfF+ZnV1dWzbtg2Au+++m/vvvx8/Pz9vJYSsrCwaGxtxOp0MHz6cl156idTU1M5+TSRJkiRJOg1qa2t58MEHWbJkCaWlpbhcLm+sdbKcl06nIzg4mKamJoQQDBo0iIAAKz8v+RkDJm6+6waMRiO/vnqYQXemozfoKd5dQe635b45L9SclxCCKsWFn9aKyWQiIjKMMpoQ7qOxFfjmvPZ8W0T/ackYzXoAqnMbCE2xEjM0hOJ11dQcaMQv2khQmpnaAzbWvb6HYQ9kc+Y96Wz6237vNU0RJrKmJmKvc7LtHTUms4SacDa3suMfuepBLkALLftbADXWcrvU5xI3Vq0o2VKrxmkaoQ6W3/mvI5gUEwaDAYPBQF9lCKDmvNxuN41zdZw5OQ29WU/FoVoOFBT75LxaRAtDH8iisrKST2d9Rna/LCIjI9mbs5f8AnVAU0tLi/e5eKoc7Nixgy+++AI/Pz/cbjc2m42wsDAiIyMpLCwkOzubq6++mttuu+3f+epIkiRJktQNixcv5s0332Tr1q1UV1fT2tqK2+1GURS0Wu1Jc15arZaSkhLCw8Pp27cvVVVV7Pl1L3++5hIiIyNZ/+pejIqRYbcczXlFZQaRPCoGp72VmJxs+vbJQKvTMjJiHPaKozkvo2Lk0OdlRD4RiuJSY62GkmYCY/1JHBtJ/qIyXHY3WqMGjGCvB3erUGMkYO8nRQyYYcHgp8Zle2YX0PfGHmT9KYEdHx7yeS9n3J6COcTIlr/vxV4P/nFGWmpaaK5UY6nQnlYQUJvbAIAl0AzA4XnqMruK6CDn1baqXHy/GEwmE366AM5QhpOWloZGo6H8c4ea8xqjPpuAjfGEDPQja1ISrc5WNry4jzPu74HT6eTLD76msr6S8eeMpampiVWrVgHqoHybzYbb7aa2ttab81q3bh233nqrT84rIyMDu92O0Whk5MiRPPzww6SkpHT9CyNJ/wPkICXpf9ratWu55ZZb2Ldv3ynLTXvWUgV1zXmr1cqmTZuwaC3cNP0mzGYzm18+yKC71GpBuauOULy8nqHj1ESDWBoIdWC1Wr2DeFoaHPgH6wjPCKZsZUOH9/UkYfYtL6bP5CTvwCNbrR1LsAlrtoX6Pc24nG60erXjrHJzEylnuTBY1P/Et/8jl6GPZZE8IYayjXXseD+XYU9kk/3nRNY9n0NzpZuaw41U7q7xuXfdgWYaS2wcXFACQNrFsfiH+XmDhJQLo1E0CmU71FHGaeeog5KKN5YD4B9lQQjBtg9yve/l+CDC3ao+i8QxcQA0V6uJFo1GfS8F86ranRvWNwyLxUJ8XDxjlSkMPjsDnV5HSH00lSVNDL3Wd0DTiAd7UVBQwJdffElWZhbWICu7d+/GbrfT0NBAeXk5Qgj27NnDQw89xOOPP47T6cSgN6gVFioq0Gg0TJ06leeee46wsLCTflckSZIkSWrPZrPx+OOP8+mnn1JRUeGzPv3xMYKiKOj1ehwOBxazhazsLCrKKyjIP8LlV15GTEwMW19T44tjkzCJg8KI6xOJw+YgcncGsTGxaLQazBYz2I5eG2DfV0UMuz8QrUartq/ejl+QmYSJ4RQsrsDtEmg8nWM2386xnC8K6XdjD0IzrRz5uYrS7VVEnxFGwoQICpaWU7anmsieIcSNDadweQXN5Xas8X7e/bu+OkLy+AhspS0+zyh/RRnWRD9vWzMvTgIFNn9yAID4EeG4HW72fFgAqIOUXHYXtryj13G2qImtyKFBgJpcAjWWFUJwYG7BCT8j0dbp5h9p8TnXaDRiMpkYqZwHwKBB6jM3rYkidWokkZlhOGwONr16gAEPpmCz2fjH39/FiZ3BgwdTW1tLXV0diqJw6NAh72y0b7/9lu+//977XYiMjMTf35/i4mL69OnD448/zuTJk0/YXkmSJEmSTmzbtm3cd999bN68mYaGhhPOugd18JFHcnIyQUFBbNq4CQNmbplxIxaLhc0vH2Tg9DSMFgMlOys4/H05Qyeo+Rf3TwGAutSscKv3aShuJiQpEGu4Gle4WwVavdL+5sDBuUfof1MmerMBgLojTQQnBRA+wErFlnocTa3eHFfLkRZaW1wYTOrrfZ8VMviBDBJGR1C8rpq9Xx5h2GPZZF2SxLoXc6AFyrbXUJvX6HPPlvIWag42kLu8AoC40WEEJQVQc0jNecWMCEVr0lKyXc1LxY8NAwHFm9XjQzMCEUKw99M8ABSNor73Y8I7l1ONceLGqXmk5mo1yFN0as7rwHfF6mvl6HMxmU2YzWZio2MZpZzPwLPUZx6tT6LwSBVDp/lWmTrj/h6Ulpby2cdfkJqWTEhYCHtz9mKz2WhubmbPnj1qrLxuHevWrWPGjBm0trai0+lISkqipqYGPz8/LrnkEh544AGioqJO+D2RJEmSJOnE3n77bd555x3y8vJ8llnrqF/MU6nHZDLRq1cvqqqqOHK4kIsvnUJCQsLRgUe3Hs15BUWb6DksBYfNQcjWZGKj4jCY9Vh7WLHn2X3yVqUra0keFeN9XVfQSEhyINGDI8j7sRxnSyt609H4z+0SoFGP3f1pAUMfyCIo0UI+kLeyhOTxMSQMD6dgWQVFG8qJHxZJ3OgwCldWUpfbSOQZISSMU/fvnVNM0thwGgvtPu/58JISQjOs2OvV+Kjn5UloDVq2tg0WTzknGpfdRc5n6qAkY4AeZ5OLmn1HgytHo9qP699DnQhYX9TYdqxRzXktVfsyEQocF/p6BpqHpwUB0FimfkYGvRGz2UzPhqGgHM15GVdHEj7Qj/RJSThanGx6RZ3EZ7fbmf32R9S76jnzzDNpaGjwDlLKy8vzFlDYt28fH3zwgbfie0R4BAFWdWWdwYMHc9999zF+/PiTfKMk6b+bHKQk/dcrKCjgqquuYtOmTd6ZRtA+MNBoNJjNZm8FpNGjR+NwOPh13Tam3XQNkdGR5G0oo3hJFUP/rCYEAjcngltNwngHHtXY0YXrCE4JoXh5vU9gcOy9AQ6tLqPP5CRMfuoPqr3OgSnISGCmibq9LWpHkZq3oHFrM0zGO5OsaHUFaefHE9kzmPo9zTQV2whM8sc/2ULj4WZam1wY/DXee9rrHBwbB+WvKKO58miglPNpxx1WO2bmev/3ge+KQAsHvlZn69fnNxKeHcShn8oAMAboQEDBmmoAtBqNWmmpbZU2jaLB5VCfU8QQdaR2Y4n6mVhC1Gdw6Af1Wp4KTcfydJwl9AlFCEFjVduFFbXjsHJD09Fj295sQt8QTCYTyUnJjFf+xKCL1QpN4VVx2BrVZfNcLhf/74X3aaSaiZMmkpeXx549ezAajZSUlHjLmL/77rvMmjXL27GWmppKa2srDoeDp556iptuuqnDZyhJkiRJ/0v+9a9/8dxzz1FYWOgzE+z42MtkMuF2u3E4HKSlppHUI4llS5YTSBi3PHIdWq1Wnf01IIjkMTE4ba1sem0/SYlJaHVaCAGqfctc58+pJLZ3hHewc3NtC/6hFpLGRZI3v6zdwCO1YW3nLi4l+9IeBCX5UUAFzWUt+MeYMaeYsR2y4XYePddW2oIiFHQa9Z9TucvKiT4jDHOw2rFWvKKcsLQgGtuSJbs+zCPlomgKlqoDuW1FNnZ/lN/u2ZVtrqVsc6339b65BWgMR+O5lloHLrvb55yWWjVBE5JlQVEUag6q9wyK9wcg72e1I03RqgkaW5Hb+3l44rKo4cEANFaocZneoEMIQd4Phe3a6OGJyyyhfgghvIkhvV6P0WhktHI+AMPGq8md6D1ZpFweTWRqMAX5BXw5+2uGjh0MCixbtgwAp9NJXl4eLpeLDRs2cMEFF3gHqwUFBREXF0d+fj4jRozgk08+ISQk5ITtkyRJkqT/BbW1tdx2220sWbKE2tpan0Hgx1IUBT8/P2/Oa9SoUbjdbrau3sHUqy4mITmB0r2VHP66nKGXqjkv66YEAIKCgrzXrc1rICIrBL8wdWa72yXQ6o7L37S9zP2hkOA7rehM6sz6htJmguL9CR8URMXGWlptLnQmdbB4S6kb3KBpy5flL68g+LoAghL8qdhST83BBqL6hnirI9kq7fhFmry3bCqzozUdjZn2zTuC23H0WRz6oaTD55Lz+dFK5YUrK9H7a8mdr+almkqaaG1xUfKLGkuZAg0IAQW/VAKgVbTgVmipbbuPwBun+aeaQEBjsRpwBiepObD8Jeq1NUpbx1kHA5oSRqsDmpraBjR5ljMunF/lPdYb/waB2WwmPjaBscqFDLwwHYNFR7KSTdm6Oobel4Xb7eb95z+ilgomTBpHQUEBu3btwmQyUVpaSmNjI1VVVfz1r3/l7bff9ua8UlJSvBMHHn/8ca644ooOn6EkSZIk/S+ZP38+zz33HLt27fIuFwYd57yEENjtdpKTk0lJSeGXJasJIoLrHrkcnU7HuudyMIbCgHOzcTS3svn1/STFqdUiw1MCqT/c4nPN2h0tiAuFt8p3XVEjYSlBxPYK4nBeGa12l8/AI+E+2heZu6SSkFsCCYhQY7jag02E9wwktKeJqt0tOBta0bcNCMcOwnn0PmXb6ugxNgajVY3pyjdXEdkvlIYitX/u4LwSHC2tFCxTYyZ7pZ19X7fPJ9UdbKbuYLP3dc5XeRiDjo3nbPh0pQq1vxXAHG0EFOoOqbFsSKpadamwLU5TDBqEC2z7jw6McjarOUlrknqPxrK2iXgBBrUa5crj4rJjuNqKKwSlqIPSGwrVcw06AyaTiYHu8WqFprPUnFfU7kzCR1hJGxtHcUEx33w4h76je6LT6fj5558BaHW1enNeCxcuZNGiRd6cl9VqJS4ujtraWs466yxeffVVwsPD2z1DSfpvIgcpSf81mpubufLKK1m9ejWNjY0+A5I8FEVBp9PhdDoJDgqmT98+FB8ppvpQIzc/PA2dTsfuL/KoO9DsXfLCb0cspla10yciK5DiJVXegUfBWRZqcpqPDkSywMEFR+h3bSaWtk4qe70Dc5CJmAlWipfW424VKFowhx0deKQ1qkmZ8l11JIyIIHF0FDv25uFodGIMNBA+0I+KzU24nQK9Wf3PtmJbAynnCsLSrRygiN0fFzDwvjSy/xTPxlf3se/HYqIHWOk/PYVf3z5EyeZq3G43fW7swYE5uej9ddjzIW1qLOEZgVTur2H/V0eTNhr90eTOoIcy0Gg0rH8xh6INNSSdG4lfmJHC9ZXk/lxM9BnB4FLPKd5SRWCshYA4C1qjhtJdVWCBrCkJoEB1Xj0AicPUqktlOWoQYQxQn1dzbVsJbY3i7fwK7K3OumtpUBMlllD1WG8A0kH1BU/Vq/C+oQA0VarBiSewsh08eqxWq+VMZTQREwJIOzOBPr36EpOTzeAZagnMH17/iT1NWxlz9ihqqmvYtHmTev/CQu/37Oabb+bee++lpaWF1tZWUlNTiYqK4umnn2bcuHGn/P5KkiRJ0v81CxYs4K677qKqqora2lpvPHTsb7Jer6e1tRUhBL179SYkNITtG3YyIGEgwy8bgtPRysaX9nHmxekYTHqiW+MpWl7nnc1vjjVTuqqW5DEx3oqRTRV2rNEWMs6LZd/HRQiXQKPT4Jdopinfpt5fDa3IW1RGryt7EJziTx5l2Krs+EWYCB1ooWpzs3quVgNmqN2vdgRZQtSEzaGlpfS9pgfZk2PZ8uZBjqwvJWlUDClTojn0fQl5q4pJHBFNeH8rFb/WU/BLOWG9Awjt5U9zcSMlW6rR+StkTI2jYlc1tio1jhnycBatjlZyl5RQtevojH5zCNiqIW5CGAlDIijaWEn+knKih4YQOcSfsPRQts46RMLwCMwhGjIv7cHBxYUYrWqyJfW8eJqrW6g7rF4zNM2Ky+HCbRdgBr1Z5+38CusTgKIoOO1tA5ySrQDUHFBnfnkGedmqj37ennPDzwwCoLlGjYGM/m1VDL5X48gOl5zzVGgKM6EoCqbmAIYr5zJ0hNoJqlmuDjYaNj0bp9PJzBdnE5qpJmh2bN9BeUU5TqeTPXv24Ha7WbhwIREREfj5+VFfX49er+fMM88kKiqKTz75BLPZ3IlvsCRJkiT939HS0sK9997L3Llzqa2tpbm5ud0xngElTqeTQGsg/c7oR0VZBdV7G7nu4SvR6/Xs/uwwdYdavEtemLZEYajzUyfixfgD5bgcbnRGrXdAkCfGMwXBwR9LicgKwRik5mWaipuxJviTeE4Y+YsqabW1ojVpMQVp1ME7AnV5EKB0YzVB8f5E9VYHKdmq7Vjj/IgeaqVkXT0OmxODvx5M0FzYgrO5lbDsIA58X8zheaUExltIuyCeTa/v58DCUiL7BdD3ph5sfz+Xsh1qZfCsy+PJXViEOdhI9aFG4seGETc0goq9NRz87tic19EesAH3pqHTa9nw8l5KNtURNzoMc6iBip01HJxfRGBqIOZGBwarnvyVZQTGmtD56TEE6ijZWgkm6DEmEo1eQ+U+tR0p42NAgcp9amxlCVXjNXvV0erhntn8pij1+bTUq7GiNV4d0FS8Rh3crmhpn/PyVCUf2jagqW0SoqZtwFjZujrvsVqtlj7KYExJJgacmUKfnn2J2p3JwNvUCk0rPl7L5sMbGHbWYOrq6ti4caN6/+JibxWIK6+8kptvvhmHw4HT6SQlJYW4uDieeOIJWQFAkiRJ+q+0bds27rjjDg4cOEB1dTUul6tdvkOnUyftu4Wbntk9CQsPY8/6fSSQyqQHx9Jqd7HxlX2ccW4yllAzMdoeFC6qQqfRoSgK5mgjtqK2fqu22KT+cCPhvYOJHRFG/eFCWm1u9BYt/nFGGgvt6pK4OgWMkL+kirDbgrAmqLFDfV4zoZlWwoZYqVxfT6utFZ1Zpy7TVqHexxKu5ksKfi4hvFcgCWNiqdp9iNzlRWRelETyBVEc/qGUA/PzSD0vifC+gVRsr+PwT+rxoT2tVB2sp3hdJW7FRer50ZTvqMZRpw4IGnhPOu5WN4cWFqsDkhRAAaNVg73eTegZVtLOiaV4QyUFyyoItRoJ6eNHeEYwuz8pIGZoCMYwI2nnRrJ/SQmWtpxT1sXxNFXYqDrYVvGyfyjOllbsjW0T6IKMtNrVNvjHGdFoFex2tY8wrGcQAHW56gAnrVEDAuyH1GciAJdDPdY/US2mYGuL2fyC1Rgu95ej1S/brRbjVF+HJKu5Nl2zhYHKGIYMz0Sj06AsUycGDpueTWtrK5+88DWa+FbSMlPZtWsXJSUltLa2snfvXtxuN7Nnz+aTTz7x5rx0Oh1nnnkmqampvP/++xiNxi59lyXpP5UcpCT9n/TSSy/xwgsv0NDQ8RJpno6VsLAwMjMzqamu4cieEu589DZ0Oh17v88jJDOI8MxAANY+uwdNW8mijAvj2fjaPu91YgeEkru2in7xAVjaOoEcjU5MViPpFyawIUf94dDpdPQYG0nu/DKEEN4Ry6W/1tBjXDSJg2LVQUpuN3q9jvjxsez/sgghhLfTrXB5JQkjIvBrCxTK9laROCSGhJExVGw+0Pbjpw6GollNPnh+EIOzLBj9DN6R25nnx2JoG9nsn2yhx1nRagCjUeh5dRrGAAPBPfxpqXOCAuGZIey3lHirHnlms4G6lIjnuunnRuEXaVYHcEWZ0Ro0KBoFd6tAo1PwjzYTnhWIrdqBolGI7hNGY4ENW7WdoB5+hGcEcYBiDi8vImNyIj1GxlGxYR/CrXYSxg0Ow9mkdph5qkaljI4GwOSvJsGM/gYURSEsI5i6vSUoiuIdER7aWw3IPIOR/KLUAWatLWqQoWg6Li0OEJWpdpC5W4XPsWHNsYxSYhkyRE3iBW5JpMdF4cT0iaCoqIgPZ37EwCH9cbvcbNykJnMOHjzIwYMHvcma2NhYnE4n1dXV9OrVi88//5zMzMwTtkWSJEmS/lNUV1czefJktmzZ4p1ZfTxP7NW7V2+CQ4JZt3IDV1x1GQnJCbhdgvUv5DD0oiw0Gg19Ewew+6N8hBDo9Gq8UV/cTGgPKwnDYihaXte2HIiG9HOj2T5TLfus1WvBDMVrS7H+KZnQpECgiKbKFqzRfqSfH8PWt9X17nU6HeZYM/WH1Y4Vc6D6D/jSLdWknBtD2lkJVG3ei6NZjelih4RStLxKjUfaOnea8j2dPep7C4j0V5MNFrXNCcOiULQKIanqIKWE0REApJwTS2VOPdEDQnA5Q9HoFAKT/NCZtBSvUge7G/z0pJ4XR9WuvSgGNY6JHRPDwe+Kie4bAgro2xIxPSZEeTsHE4aHED8snMAeFsxhRlLOiUWj0VC4vAKdUYvOrCVtchyVO3JwtrRi8NOTcm4Uu77Iw+V0qc8QCE6zqh2TbdU8/aPVwUNhmcEUraxBZ9KqsZUZ/CLMagdXW8IsNEN9Dp5YV9GpSRprtPq8j60gGjkkyOd7YvZX79dQrCaGjq82CqDVaumrDOPMC9MwmAxkxmSz9+Niht6bhRCCt5/7J/VUM2LECI4cOUJ9fT2tra2sXbsWAIvFgp+fH2FhYRQUFBASEsK9997Lo48+2uF3V5IkSZL+03z22Wc88MADlJaWdlgZyRN3hYSEkJWVRX1dPUW7yrnt0RvR6XQcXFCM1k8haZS6bNfaZ/cgnIAe0i9IYNPf9oNQrxM/NIzi1WVEnRGKuS3n1VJtxz/aQvqUBDa+sg+3y41OryN6+NGcl6GtOlLRhiqsCf5E9w9XBynZXegtepLOj2Hvx4UIBDqDGn9U72mEP4F/dFvn2LpSek1NIWZQBCXr6tt1+OjNOkTbtHZTkAZLmNl7TPrkaAJiLAghCEozk3puDCgKihYsV6dgCjYQmmmlobgZRQORvUIo3lhDc2Fb1UjL0ZS40U/vvW7S2HBCM9Q4KSjRH41eg1avwdncit5fR2CiH/Y6J/VHmtDoNcSeGY6jthVbrVNdxqNnMAe/L+HwsmJ6X5ZMwrAIyjbU4nYLdIpC5JkR1B6uBw1o2nJOyRPi1PfYNnnPEqLGZUHJQVTtsqHRarwxkynK8x1QXwenqJ1hngFP2mMmHHp43lt820Bz1PQY2rZqnfrcQIYqZzN0aDYA1k0JmNJNDLgshYryCj74x2z6DOqJoihs2qRO2jt06BCHDh1i5cqVAMTExOByuaivr2fIkCF88MEHJCUltWuLJEmSJP2nsdvtXHPNNSxevJiGhoaTxl49e/YkLCyMTSt+5cJLzic1OwWXw82Gl/cy5KJMtDotfeP6s7tt1RK9SR0gVJ1bjznERPyACAoXVeG0t2L0M5B6TjQ7Z+Wpxxp0GMONHFhWQnjvYIIT1Mlk9UcaCc0IJPX8WLb947AaU+i1BMZbvFWJPIOhSzZXEpppJWVMDJXr62mpt2P115M4LoL8heW0Olzo2gomeJZc8xQr8AvzQ9EoGPzUGClpQjxag4agZH8qtteRek4MaMAcYkTvp6XHWdE4bU50Rh3WRD9MQQZKN9aAAFOQgfQL49n0+j40BjWOSRgXxYE5xcSfGYZGp6Azq+1ImxyLolHzQ+H9rfQ4K5rAtHqsCf5kxljQGDQUr6tG76fFFGwg44I41ufspaXWgV+kmdSJkez+ugB7oxOT1YDRCiFZVoT7aGGE4GR1WeLgHgEULq/CHGhE0Sj4xxlx1tvRaBU0WrU94b2C1M/DrMa6hkB1QJklwIKdRm+fJYC1bUCTZzWcgDC12IK9rfrTscd6aDVa0pW+nHFBCpYwE9kJvdn9QQFD71NzXjOfm00V5QwfMZTCokLq6+txuVzeZXs//vhjLBYLERERFBYWEh8fz/3338/tt99+0u+5JP0nkoOUpP94Dz/8MH//+9991nA9ltFoxGAw0NDQQFhIGFP+NIVAv0C2vZnH4Bsz0Ro07JuTT7TShFarxe12U3WoiapDTYRlWGltGyFrq7HjF26mfJ9aPlm41aXWirZUeQfueGaBl+2oJWF4BE016o6WWieWEA2lG44uVeZJApSsUQcpeXIth1cUknZWAoqhbWT0kUZMEQbvwCOX0427bUZU4eoaEgZHY2irnnR4cRGpk+MYelcW617MoXhzFW7RSs+rE9j9bQHlObWUbFFnbeUuKyYkLYjaw/U0Hm6mcG0FbrdAtAqKtlSRdl4s5dtqqDvQTGCahYh+wd73CXifC0B5Ti2Vu9TrHvyplOgBwdgq7RQuryR2ZChas5aCJeUEZ1kIywqm+kAtVTubsCRYiB0cjN3ZSnCgnrzlpRitBpInRxF1RghNlS0Ur6sgeXIUGp2Gljo7VTsrCe8bjhCC8rYZaE2VNrQmLQW/lHnb5LA5KVlTRni/tkoALeoo6Yje6kCjirbZarjB7XZzZHnl0ffWtvRMRH810LM3qx2uep2amCpYcfQ+xyfJPBWazMFquU6Tw48xygUMnZCFolGwblbLofe6K479+/ezYMECzGaz+r2rrMLldrFt2zb69OmD06kOxkpLSyM8PJy5c+cSFhaGJEmSJP1RioqKmDx5Mjt37vT+5h1LURQCAgJobGjELdxMnHgO2dlZHPyiAltpC8OmZON2CfS/hBNAEAD1peqAFLfTjWJQyFtZ7r2eJ/lTtrGKsORA7E3qb3JLgx1LsImStvjD5XSpg4VsUL2nBTFFeGdI1exrJCDKgq2tso+jwYnRaqBtJTZamhwY2zrSyjbXkjA6goZytdpQwZpKUs+OPiYebFFnt40MpXhVFU3lNvwizMSNCqPgl0o1oWPWYo41k7u0FFOIgfwl6vsp2aLOrCtYXIE5RIOih+JfygjuGYyzyekdhL7h5b0kTYzEVtU2Y8shEAZB0Vq1bFHuTyUExPmRu6BU/Uw2VNLS4oBmKNtdi97fSPGmWizBagIlqIeabFn7/B7ixobjanGRfVUiuz7fT8ygaEq31jL0niyEgLKd6vMMy1BjoLy22Mptd+NUWsn9qQRziIbmKhtuN2CD+CFhCLegaIdawTIw1h8hBIcWqMv/6jQ63C439SU2MKuxU0ud+t5CM9VOvsLNnthKjZHLttYf/Q60xdexY9uqX5a3xfwuBbfbTf78o7PVAAYqYzCHaDhjdCbOFiebXj1A79sSaXDUMefbOVTWVBIUGOSt7lVVVcVjjz3Gs88+S0tLC2azmZ49ezJ+/Hheeumldt9xSZIkSfo9vfPOOzz99NNUVFS0yz8AGAwGTEYT9Q31WP2s/PnyP+NvDGDXO0cYMC0Vo7+BfT/mE6k0oVHUZcHKdtVACySOjPTGOPWFzYSlB3qrW7fa1aXWKrZW0lKLWgXApcZlR9aWkXlxkje2qj/STFCSPyU71DyLcEHbvDBq9ja1bVPbvn9RLr2nZiDawsjKPXVY4y2YgqClVs3l0Nb3V5fbgnALbyfQoR+LyJyaxJC7M1n/0l7yfi5FGCDz0nj2fnmE4i2VVO5S25D7UwlhvQKpPdRI7QEbucvL0CjgtLmo2FtHj/GRVO+to+5QC6Vba4nsG+gdoAR4c0gAJZuqqDmkPpe8lRXYGx3Y6p2UrqomvH8gxgA9hSsrCUozE9TDSl1BIzV7mziypproMwNpqGgmqncIB38sxhSsJ2ZoCEkToqgvbqJkUzVRQ0LQW3Q0V7dQtqmSgOQA3K2C8j1qXGarbsEUauDIyqPVwu2NDorW12CJUwcsOdom80X3iwSgIqdWbbzQ4Ha5yV2knosbXG2jkAIS26o3tVUlNwWor/PXtN1HKGru8xieKgIxGerSJjqbgRHKuQwal4HOoCVgYzwo0PvueA4dOsQPP/yAwaB2AFZVVdHa2sry5ctJT0/35rySk5OJj4/niy++ICoqCkmSJEn6o9TX13PFFVewYsUK7xK4x7NarTQ3NeNyuRg/YQK9evXk0FcV2ErsDLs4G5fThW5lGKZ6Na/SWK52qjmbXGisGvLblhBTcx1usEPpxgZiB0Rgb6ua2Fxux5Ckp7KtmrWj0YnerPNWO3I53bS2xSrlO+sIzQj05pCayluwxlgQWjWgaqpsxhyo/sbX57bQUuPwtil/WRnZl1qwVav3rT/STEhqALEjQilaXUXN4XqCe1iJHRFK+a9VKHrQmTT4xxk5vLgES6iRotVqf2n+yjK1v/SXKoxWOBKoo2xrPYGJZhwNTgJi1AE6m9/YT8zwEOz1avvdDrfa57ZGvU7uslICE/y8S8Pl/VyKy+0GJ1TsrcccWk7FrnqK/aoQThdB6epz3vDKPqIGBuEWkHp+NDmf5xE5OJTqnHrOnJ6BRqtwZF059nqI7KP2EeYtVatoOpqcaAwK+T+XgBHqixvVZXkr7CSMCsfldFOyXW2Pp9L4oQVtuSih4G51U9NWtdzd6sZWoz7PsN5BCCHUypoAQs15lW9U36uCgqtt+eGgTLW4QkPp0U5Yt9vNwXmF3nM1ikIvZTAYYdjobJy2Vja9tp+0K6JptbSw8MdFFJYcIShIzXm1traSm5vLHXfcwX333UdLSwsmk4m+ffsyefJkHn/88Q6/45L0n0IOUpL+ozz55JO88sorHS7V5hEUFERWVhZb120ni0FMfnAkAOueywE7REdHe//x7mhyYDGa1ZKGqAkXjVbjMxjHM4G7al8DfuFmzAHmtnNbMQboMVvA1gytjlaUtixM0fIqEkdEQqt6cnOFHf8wM3FjYznwdRF1RxoJTPD3DjyqP9KMy6X+KFduaCL9LAW9tm3Ztp11pJ4Xx4AbUtny1kE2/H0vg6dnkjA+nIKfK8j5Jo+aHLXBFdsaiB/h9C63kbewjEEPZKAzabEEmTjwtdpZNOSRLBpLbexqG4UNagKmZE2N9/WBr4sITLMQOzKUolVV1B3wLRXutrt9jrWEaehxnjpr7sBh32ML2jrnanKacdqh9+WJ5PmVUrK+hgMFzQx5JAuNTmHfD4XQDOH9AojoHcz22YehWX1fdfkNVO1UA8PoAaEUbaxSr2uB0LQgXA43ZRvrsISpI69tlQ6aK90EJKsdaft/VIM/a5wfwiU4+I0aRBgseoRb0Fzcon4eAuzV6mcRnBmgdrK1BSuexFjlVrVCl0aj8VZVChugdgA2lqrfTXOwOkp677dFbd8j31HRVquVvtn9cCy00PuqJAKiLRRvqWDe/B/JGpNCQ30DW37doj7fAwc4cOAA4eHhaDVaEpMSqa2tJSoqipUrV8qBS5IkSdJvorq6mvHjx7Njx44OZ4p5ZGVlYTFZKNtaw+SLzyOiZzCVB+rY/0UR/fumozfpsJUe8R7v+UUsXFtMcLIVfVt1xqbqFgIiLbhRB6EIl/DORqvdry4lotWpx5ZuqaTHuFgsoepvs73WiTnEeMw9FPRtA48Kf6kkfkQ4ARHqP/gPLSwifnQkpgAtTYCr3g0mwAzY1MpIIUlBQDEVm2qxBBtIGBJB2Zpatr2TS0iWheq22Gv/17n0uSmTxtImbKUtFP9Sxhl3ZBIY6+etvBkzMpTEkRFs+yAXW1ucYKt201hiw1btxrZKTU5UUE/SxEjKNpWRt/jogGgPz7mVOxqo3NFA3KgwavKbvIOgQH0PjYU2bEU2bGoIQszgcAbdn8HG1/ZRuLwCa7KZHhOi6Dk1jc1vHgCgucoOAg7NUWOedS/kEJRupna/jaSJkSgahY0vq+9n4J1pGIL07Po0FwCdRYuCQsE8NelSX9gILoXa/TbMUSbQQOXeerBB1mXxaDQaqnLU5I1Go0ERCoU/eWJQgbPZBTZ1KT+Allo10RYY5w9A8Tr1eWl0CgjfJefcbTFwaN9QFEXxLudrtBgICIuhX+0YUGDoDeoMtAXPreWQbisDR/dn9+7dlJaW0tLSwubNm9m8eTMvv/wyISEhBAUFUVFRwbPPPstdd93V7rORJEmSpNPh/fff5+GHH6ampqbDAUmg5hJ69uzJ3k37SWk9g3MeGIKiKKx7Pgea1Yo19sa2Dq4qO6YAI0Y/E9BEq8OF3qgDT0rNDUpbiFexvZaw9ED0BjV+stU5CDCZwWQCWnA0tXqXGanZY4OLFFwOtY2NRTZCkq0kDgpl35EiKnJqiewV7F3SrWpPnTfD3HjADUJB2xbjlW6pJrxnENmXp/LrPw6y+bUDDJiRRsK4cAqWVbD7c3X5OYDaAzaaSmzeYLJ4XTX970jFFGIgINFE7nw1fjrznnSaq+zs/ijf+9xcLS5Kt9V5X+fOL8MSZyJmaAjF66rJLfTNM7rtR59/7qIyTEF425Q73/fYwpWV3va11An6XZ9E3opyStdXkzu/hTPvSUfvr+PI8lIqtrkJTDHR2uLi4Lf56gAwoKXKRu0BNQbuNSqCovUV3sl00QPCaLW5qNhWByY1T9lS6aSlvIXgTD/qCpsobBtYHpJuxe10e5euMwcZwQ0tbXGkcAtsbR2cwen+CLegcI16rinQgBCCio1qoxSNxptfNMerA83ri9UY2L+to/HICjW3plHUuMwjICCArJSeNCsG0s6PJrxnMKXbqln8wxISR0Vhs9m8VZcOHz7M4cOHiY6ORlEUkpKSaGxsJDU1lQULFhAUFIQkSZIknW6eAUnLli07YQEEgIz0DPwD/Knc0siQwUPJmJhA5b469n9VRL/0FCxWI7YSdSCJcAkUoQYqBb9UEDck3Fuxuv5II+HZwWj8DICd1haXNx9mr7SDGzRtOa+CtWVY4/0wBahxWVOJHWuCFoyAHXALDBZ1X01OI63NLvwj1d/mQwtK6DEhAm3bzDxbuROz1YTRCvZ6dXWQsPQg9huLqT/cQt7PpcQPDqd8Qy17Pz+CtYeJ+lw1bsj5ppCBd6TTWGrDXu+m4JcKhj2QTUhKIJvf2E8NjYT2tJJ6XjQ7Ps7DVqLGGPZ6sJU7sFfaKW/Ly9TubyJmeAhVO2spXnNMIkeof54BWHUHm6k72EzEgCCay2xq9aVjNJXasZXY8XxikQMMDLw7nc1v7Kd0cy3GMCOp58ZgTfDj1/93EICGomZ0Bg0FP6kDjTa9vg9ropH6fDtRA4Mw+OnZ9PZ+sEPvaxMJiPVj9+d5YG9btQWFgoVqLqo2vwFNoVatUmVUP7OKnBqwQ8JZ6uddc6it/9CkRbigYJEa0ykasDc4sdeDUR3rhK2tqlJIWzWnss216rl6DcIN9oqj+VjPajChqVYURaG5Qn0KfgFmLBHBZNYMJlMZzNBpWaDA4uc3cEjZTr9xvdi7dy9FRUU47A42bNjAhg0beOKJJwgOCiYkNITm5maeffZZbrjhho7+M5CkP0T7GrCS9DspKCggJSXFu1SXoig888wz3gFKnpk4iqJw1VVXcf9dDzJBuYRpU2/grLPO4uIRlxGqhHkHkQBHlyozti21tq0SIQShGeqybrZqu+867ijo9OqxhW3JAc+I3+LNlbhaXfinqj8euBSfssnCLbBGq51hB74uor60CU1b+b7aw00IlyAwVr2W0aojOMnqXYpsx2d5mEPU91f+az11eY1s+Zf6g2qxaNAaNYRlqb9iNTnNDHogg0EPZADw69sH2f7uYW87Nv6/fRSurVAH4QBYQKNVMAb4jkHsMS6aIY9k+WxLmxRL4phILGGn/r+CvjdnEN0/1GdbwvhwEsdE0vv6JO82vVENhAIS/bzb1r+ZQ8Hqcu/nU7GtgfUvqgm26OHBDHsi2xvMWRIsaI0aQtt+tGmGkl+rOLxY7YnrcW4cNYcbvAOwks+KwRJqprlAvXirrdU7OhmL2vF1aIV6bq+piSgahfLtauDjF6IuX1K3Qz3X5XRha5v5b4lRR583t609G5mtrhtbtVtNemkURZ0p6BmvpRytPhU7Uu0484xQ17eVyMxbUEFvZTAjR45k0nmTmKBcwgS/S5g+fTqDzxystsnfj8rKSqqrq9mzZw9RUVFERESoJSUtFu65555TflaSJEmS1JGXXnqJgIAAb9wVGhrKtm3bvMvWattKGw88YyB33nmn+julXMIll1zCpEmTyFT6U7SirUMkUI1jHDWtKIpCSJYa87Q6XN7lUhty3Qi38P7G1x5sVpc1GxADQFNli9oJpY5VoaXeTqtT/S0t3VavViiMUuOJyn0NKFqF1IvVcw8tL6S52u59b612F44mdRBy7X4bAVEW0s5Tl87YPvMwtYcbyZisvs77uZSC1RXec0NSA9BbdJjViVbo/QwMezybsD4B2KrVyke1+9XEgK3aTcHKcu8AJQBrjEV9z8eUce57czIpZ8cQ3la10SNmUCh9bjr1cq9+iWYSx0SSdm60z/ah92SRcm6Mzzajv867XAdA/WEbBasrvAOUALa/e5jt76nx46AHMhh4V5r3PQWn+qtLy7V9DptnHqB6f8PRpfKCDGz9UB2wFDkwiOBkK4ZANVlmCdMhXIKafWr1AbdbUJ1XT8HScu+z8VRKAtBoNbjb4rTgVCMup4sjv6jH+keaQEDVLnWAk1avPdoZ1lahqb5txllQDz+1QtNa9XPUGdrPvXG1uAlRQpgy/lKGDx/OxaMvZYJyCfdMv5err776aJs0GvLz82loaODuu+8mMDCQoKAgtFot/fr14+DBgx19RJIkSZJ0UrW1tQwfPhy9Xu+NvW6++Waqq6vV5dLacl6gcNlll3HP7fcyQbmEKyZcy1lnncX5o/5EkBJEq+24ypYCbx6rZIOa8wpMUuOw+qJmNedlajvULdC25cdq9jYh3OoSrwCFv5TjsrsISlYHgbtaji4LC+oscc8A4iPLK6k8UIe7repOzf4G3K1uTOHquYZAPaHpgYT3U3NvW2cd9k7sashvoXJ3Hb/Oavs9NYHRqic4Tc351B1qof8dqZx5bzoAO2flsfODPG87fv1/B8lbXkZD/tGBQ1qjBmNbp55H2uRYhjzsG2OlnhNNj7OiscSZTvg5efS5MYO44eE+28L7BZJ2Xiy9r0vybtMY1HjGGmP2btv0t/3kLS2lpdbtfU8bX91HSy2EZPsz9LFs9H7q520K0mDw1xOSdjRGzFteRu5StYJm2jkx1BxoYNdH6jNIvyCewDg/70AuR4PT24EF0FRh4+BSdbJA8vlRaPQaKvepHWfWaHWJ3vK22MrV6sJW3fYcTWpHWlOF+jq6X5SaH8tVYy2tVp2015DfthSMVkOrXb1vUJqaS3PUqBNETSHq8y1eVUqa0odRI0ZxzsRzvP+WmDFjBsOGDgPAz8+P6upqKioqWLduHWFhYd6cV0hICI888sgpPytJkiRJ6sinn35KbGwsWq26fH1gYCDz58/HZrOh1WrRtRUN6Nu7L9OnT2eCyZPzmso5Z59LmtKbqu1qhR1PnNFc3qLmz3qrv9uOJufRJbzsag5Mo1NfV+9rAgUi0tX4SV1yVsFoVfM19SVN3t/SxkN2NIrirbhdvrsWrUFD6tlqDmjfgkIaStRBMgBOWyuOtipMthI7QQkBpE+OBWD/t0WU76olfrR67qFFxeQtL1UHOwGhaQEYrXqMbXGbRq9lyCNZ6nuyw+a/7vcuG4cdDi4sZvM/9nufq3+cCY1Og97g3UTG1DjSLoglamCQz2eQNCaKPjemnvKzMlo1pE6KIXmib35r4L3pZFwY57PNFKRXl6hrexb2SjuHFxXz68yjuZq9XxxhV9vg9f53pNL/jlTq89UHEJZlVd9/2/k7v8hXV5hpe89+4Ua1mAJg7WEisk8IpmD18/cPN+JyuKhrK9qg0Wqo2FvjHQwVlhqIaD06yEhr0OJuUV/7J/nhtLVyZH1bVfIEtbhCxXa1f1Fv0sIx+TLhFtQXqUUcglL9EG5B2Ta1H1Pnp1MrkbZ9pkIBh60Vq2JlXJ9zGT58OBcO/5Mad91wN9dccw06RX0PWp2W/Px8SkpKuPHGG7FarYSEhGA0Ghk5ciTbt28/5eclSb8VOUhJ+t08++yzmEwmb3ImMTGRw4fV//NXFIWw0DBMBhN+WHnkwUd4+OGHmaBcwnj+RHJyMiY/9VekaLNaAju0h5r8aG1WO8dQczK4W4V3sFDJ6nqES3jXN7XVOFEUhR7nqeWRGyuPztACaLW5aK5RO2Tq9tah1WlJGKQee2hxIcItiBurVrWpL2ii/sjRkpABERZCU9VgpWhVFS3VDlLbOpFyPjtM1YF6b6WgpJHh6P103mvt/raAwdMzCe3tR3Olm7Wv7+HXtw+d8FmG9vZj2BPZJE+OgmYo+PloRxvNsPa5PWz5u2+HSsXuOoo3Vvps2/P1EaoO1NNceeLqCR4Fq8rVgUbHbvu5AluFnZ1f5Hm31eQ0s/bZPez/stCnTZ5BYEMfy6L/9KOBiilIjW4aK9WOxeaCZta+voet/1Tf/6D7M1AUhYptbUmWBD/vGrIAe77Kp6Jt4FBobz/0/nr2zVUTNL2mJmIKMmIyqd+d8p01OJtaKVmv/rgbAvQ0lR8d3KU369C1jWb3jzXgsrup2FELgF+kWQ0MNrYFERa9z3dHuAVNxZ7OPrVCU8lO9Xl5Rr17jxXCm1SKPiOYkJAQhvQexgTlEm67/nbuvvtuUpVsFDRkpGd4z7PZbLzxxhuYzWpCyGq1MmzYMAoKCpAkSZKkY1VXV9OvXz+1kk1b7PXII4/Q2Kh2UhiNRiIiItCipbdlII8++ih333wfE5RLGDlwNMHBwUcHHtldCEX9h7Onqo1nXfeKvWrnWHgvdYRPY2mLd6kQUAeEm/zVYwuXVyBcAmvbgPDKnHqcza2EtC1FodVqMVnbsh42tYS1KfTouc7GVqrblrawBFmwhBpJ+5OalDkw7wimYIO3Ok/Zzhq2f3J0dn1wagDBqUdnLRn9dQy8Kw2Are8cYu1re7zvzV6v/qvfFHS0clP/6anewd6Fv/jGU3u/PMLa5/ZgKzo6M2//N4dpLLZR8Wu9z7EFqyvI+7m0g0/MV1O+jcqcOvZ9leezvWhjFcVtZaM9Nr95gHUv5PhsK1yuxoYp50cz7PFsrMlHO9JQ8A4kA9j6/9T3jw3C+1sZdEcGe39QY6nEsyPQ++uIG6J+vmWba6naV8/2j9QYvsfYaBpKbFTuUOO00HQrwfFH47S6gibvDLPEsyMQbsGB+erg8dj+EWj1WqoOqd/J5poWHHVqZ5dnwFRdW4Im9dwYdRZZ26w9jV7B5XRTv0995hqt4k32mWPbOs4a1djSGm1BCMGRX9Tn5me10COph7fj7Pbbb+e+GffjTxCREZFERUXR1NSE2+1m+/btZGdne/8bysjI4KmnnjrBpyZJkiT9L/vwww8JDQ31/mYEBwezdu1aWlvVnFVoSCh+Zj8CCeWBGQ96c14TlD+RnpqOxarGR4Vr1CpL1mj1taPeiaJRMEWp8ZKzpVVdAheo3WfD5XChNaqvbaV2FI1C8lnqklo1BY1q2qJtjI692uEd5F2T14TWqCV2QAQABxcUIVxu4tvyVNUH6qk93OB9fyFJAYRlB6n79jRSX9hM8gQ1Dtv5WR4Vu2rVSkBA7KBgjEF677X2LyjizNvSCe0TAC2w9rU9PpPvFI3ik18JSDQx9LFsepyj5uOKV/vGPutf2uudOe9RtKGSwnW+Mdr+b/Ip31Hjs8zbieQuLSVvuW+ly4ptddTnN3Pg+zzvtubCFtY+v4f93xX5HFu8Tg0kBz+USb9bU7zbTZ6B/Q3qc2+pdavvv23weP87UjFYdN5nF5JhJSQz0Hv+9o/yKPlVff+WOBPmMCMH5qlxWsoF0fhHmrEEqYFT9d467LVO7/MyRxhoKGr2VtYyBRm9VUuD4kw4GpxU7lFjVWusH26n8J5rCjT6VAx3udzUF6oddOE9g9WKTHvajm3ryPVUjUIBZ7MahwWlmQkKCuLMrCFMUC7hpstv5a677qKfeQh69GSkZ6Bpq1pfU1PDSy+95JPzGj16NHl5R5+/JEmSJAHY7XYmT57s09941VVXUVxcjNvtxmg0EhkRiQETWcoAHnv0MWZcfzcTlEsYlj6KkJAQQtuWEXPUOVE8Y0XstA1SaiswsLsS4RaEtOWT6g43+ea8hPqbCVC1ux5Xiwv/aPV3uXJnPfY6J6a2gc16gw5LiNE72Kb6UAOm0LZzd9bTXN5CZdsEMJNJjzXOj7S2/sUDPxRiDDVi7dE22HxdhVoJqE1E72BC24oe1O5vQlEUzmiLR3Z/WsDa1/Z4KxnZG9TfaKP16GSvXtckMvhBtR+qfEutdzAMQP7icta9kOMd9AOw74dCag40UtpWFcjj4KJi8n5uXzn8ePZ6N8Wbqtg3t9hne+Ev5d7JaB47P8hj/cs5Pm0q3ay2MXZEKEMeyfI+F8AnpgTY9XHb+69XByENuDmNg0vUCZgRA4Kw/H/23ju8sfJO+/8c9WZ1ufduT/X0mdBDJwRCJyEEAgQIkAAhtCS7v2STLAkpmwALG9IgDdIJJaGHNo0ZT3fv3ZaLLNsqtiX9/nikI8mSBrLvvu9usrqvi2uwjs45Tzt6vuf73M995+oo3irEGby9AUb2TdHxW7HeVnFmAfPDfplYlL/ejr0yHqdNtc0y1eaVrxUJhemOii0Ubc5FrVfh6xPx08KUn0BU1AAAhYSnX+TDCj9gR6FKED0wKFkOhJg8JI6r1Iq4VbEWFApJzp/Zyo2EQxHGDkbjP4uOstJyTuECkfO66dPccfOdOCnAYXNQWFDI/Pw8i4uLvP3222zevFl+hurr63nwwQczdVsWWfyXI2v3lsX/Ndx1111873vfY3l5Oe3xgoIC8l35LByO0LRmHXUXljE94KXtiSGWfWHUOjA4FfgmwywGllFGF1NmDvqQzpcwOsXEM9YyRdn2AspPzqPvz+P4p4NoElSEJKWEKVcEAh1PD2G5q1Y+1z+xiNGuw1Cok5WIzIXCps03Gabr1SHMuYL5PNW9IBSCogtrE0dmqDm/hNrLi+l4eoj2Z/qZ6o6TlrQ2DdH3bHyTYUKBMFs+X8feB9s5+kQ/pkoD81EGrqPKiFKroGhbLlNHesEHuRvM5G9wcPiHvex9ML5bHyC4EIEIsmIAgN4JTTc1MnHUQ9cfkyd3gM4VCRQA30iA9qeGUj5Ph+G3ptJ+HiMTpcAA229vYGEiwOEf9sY/DyPLSYOQ4I5JdltqDFScls/BWLLKACq9EketmR7Egt6ur7ViKBV9UHNpEbYyk6xmkLfOITPXAY4+0U/uBjMT0QXC6vOKCc7GAwGFUkIVVR5w1eYwvHccd4xIdkoBSq1CJjQtB5aRlHGyUXg5wmSbSEI1fKwUhVLB4oJYHAstLxNejjC1T/SvpBBsdxBjWqFQsBQUf+cU6QiHw/S+Kto3Rmgqp5FyqZEdlzQSWgzz+jeamSzrxlXslNnNc3Nz7Nq1i7KyMnFOeTkul4sXXnghaxGXRRZZZPG/DNPT02zfvp2Ojo60xzVqDfV19cwMz1I6s5pT7mhCoZQEuSXKrdGaxRw0uGeC+g+XYa4QtmeRQASFTiHbpS35llFqxALHyNteSj4QJhyOzoF+sQu/8rwCep4fZaJtCnuVVS5HOBQhFN1VNLJvivJT8qg6p5Tptg6OPj2Ic5VBtiFTaRQoVQkqlssR6i8qZ+fXWuh9YYy5oQWZHKPUKFFqFBRttdH1ez/dL46y+dO1uI/O0vfiOId+1stCf5xEZK8R6kmxOuGHdTdW0vHcKJ4OPzu/2pLUfuFloQqViHU3VqK3atj9jbaU9vZPw+Ef9aZ8HiMPvR+0/yY1RospFKVD9UWF5DZY2fmdFrlPl/whiMCSL172vd+Mx5Vrrqtg8K0xWVWpcJMTlV6JMVfPQr+f/pcmmGyfk9tuy+frGD80I19fnaNCoY/30c5vt2AtEXF348dKsZQaOfpL0Q7GXD2SQsI7Kk6e7ppjdmReWL/ZwVxoZNEjkizmAkEOnx8W8bnWpGZxfkm2vjO5EkhXiB1kMWuTwg1WiMDwAdHWRrtIWsbs9MKhMMs+MV5j5K1Fb4ht0uk0nFuCrTSHA4/30D56jPyTcpiYmKCtTfRxR0cHX/7yl/nyl7+MTqejsbGRM844gwceeCBjv2SRRRZZZPGPie9///t84QtfkAngK5GXm0dRQRH+Qwqq8uvZcEMlU91e2n85RNCzjN4qyDhz/QEC3iDKqB1IILpj3+gUc9TIwUlq80spWG+h9y8B5of9GPPjCzEKlZKcqPLkwGtuHKssaE3R3f+jAWylJnLydLISkbXMhM4qCCVtzw5giZ47Nx5AUiowRvNnY83TrLmqkrqLi2j/3TCtv+3DMxiPpYx5urjaeAACnkU231HLu9/toPtPo4w2x8lBBqcOtUlF4UYHU4fnIACWKh3FH8jj2JP97H8orv4IsOQHwhERx8Sgg+13NDJ+dJqeZ1MJ3/0vp8ZIAU+YzjT5sXRwJ1jFJSKmaJQOWz9fh28yyJGfxL8TCUUILcbLPbJrWiYw6fJ11JyTH/++TmzcczaY6XtJ5MX2fKNNJqSVnuYid62VfY+J9slvsqLSKVFEFa+6/zTKTNcc0y1iDDZcWkFwJp7zUqoUqKLjylKlo/+tMabaRJ6q6pwSNDlqxg6KsoX8IcKmBLuRpWUm2zwAlJ+Zh0qjJBTdbBeKhFgOhBh7NxqHaxUszi/JdVIoFYQC4m9LhYlwKMzQbtE/eqsWIuAMFHOyVMy2CxsILYd468HDjOS3UlhdwJHDRwgEAszNzfHmm29SUVEBQFlZGUVFRfzud78jPz8/Y79kkUUWWWTxjwev18sFF1zA22+/nXa9UaVSUV9bj98dpNBdz44bV6M2qtj9gNjQFQ5H0EY3xQ28NY2jxoKxSMvUEVheWEZv16I1Kwh6w/hmAnIs5WkLsji/TDgk5sDFhWVUWhWV5+bT88IYI/umyFtrl8uxHAyzHF0Hmjrmpe4jxVR9sIDmti5afjuEo86ApcTAbJcPtVYhr00BhJbD1F9cyu5/bWVsn4eAdwlPR3y9UWNQ4Vplw9s7ysBrbppurmKqy8vAy24O/KhHJiEBuBot6GKEqKD4r/HKUgbeGmd+KChcThKwvBhOdqwB6i4rxlJqZO9D7UkEIRDXa30qdeP8xH5Pmt5Lj76/pJKZVpKeElFyiouibU4O/Hsrweh+wCV/CMKwFIiXvfnhOJG97tJixg5My6pJBZudaC1qzIXC8m5iv4e5Eb9sY7fxthomjngIekVMZHBoCSWoHe3+bivmqANL2Vm5OBsttPxabJA05euQVAq80XXmme55BvZMiGtpwVlnxT8l7qN1agkvhfFNiL+NLh2+mSD9L4p4yVpqSlJrD8wvEZgSMV7hBjuRcISxoyKGM+caUSgkvJ3iWuFwhIAnmkszK0CCxdll1ksfoPKkPPLXOjj6s246+3qwnaRmamqKY8eOAdDe3s7dd9/N3XffjUajYdWqVVx44YX80z/9U8Z+ySKL/xNkSUpZ/Jfhhhtu4Kc//WlGUpLD5uD0M09n6rkF8OnYdm0DkUiEPUfahMLQheIHFWDk8CTlJ+ZjqjHim5xDgSQvhoFQPIolcIZ3zlC6NV8mBIUCITR5eopPdTL0+iQDOyewJFiPqfUqpFzxA9/5+2Gc95up+3ARBx7rZmT/lGBFR9UNK04oRKlV0PXSiFAo+pcWqi8U7GX3wTmqz40QDooJa6p7gR13NhLwBGl+uDtloreUGFDplDLxar7HR9NNVbT/tpepIwvs7G6JW4cBFWcWioSPgfjnBjA4Bblp5eKZqThHTDi+5PZfd2MlxlwdBx5twZ+wqaxgm43y0/LpemFIVil6L2y6XSgO7Pu35ATSps/WoMlRJ5fJB0jIO/pi2JXQLo41RlldCqDughJUeiWGUoOwb/OJxa5Y/dfeUEHPq+MyuctaYpRVsgBafh4PjPROaLq5kdm+eUFSMghyVIyNnLfFIohl0ftXnl2EUq2g/y1Rh+Hdk7gao6xog9hxNtkpop+iEwUZSpKivr/TQTzqiEwEs5UlW7uElyIsz4tANn9bLkRg4F0RhFlLzSgUCtmuLrQckhfODKUG0acLSxgkA6d/4Cyc1VZcY1XML/iouM5Gd083r732GiAsFPv6+nC5XKhUKmpqalhaWuLVV1+ltLSULLLIIoss/nHQ1dXF6aefTn9/f8bvbN26lbUNa+l9YgZnYw61Hy5hpHmSvhcmWJxfQm/XorcLQk3Auxi3re3yo1AosFda6WOSoYNuKk8qpHCTg5G3plhaCMVtuAClWoGr3kYno7T/egjl1Qo5HlGpNKi0Spxrc5g8PMds34K8Aw0/LIwHGDsUlTDy+ynZWsHSmmXe/XYH+x/qwrk2B8dqE1NH5/HPLqJIiCvyNzio/XAJO7/dwtTReXYeTY6N1AYVtmoTfS+Os9Dvx1qrp2hbLsee7Ofd73TECUqAtVaPMVdHw0eKkhIa9gZB1Dr4WA8roVBKIEkpn+/4YiP+qSAHHk0mcm++o5blYIgD/55ZLTMReZusVJxeQMcz/Uy3xoNEY5medR+vwNO3QEuCWlSM/GUu0MtWbQOvTMSt1yr1giAUrbPeDjmFemo/XCoTvg/9oEduF2OZnorT8mSLXWOZHpVOiaUkHlcnKjhtuLUanUXDzq+Jflj0C9J2rCzB2UV2flWUV5+vI2+9DXt1DpP75/D7YX7ELwhQQNVZhURCEbnsxlydkPeOYnZ0gekOEb9WnJuP1qjG0ysW6MKhCJFwhMm94rhCo2Bxbkk+V6lRxtuqXEdoOcTIPnGfnFxBhPePBSiVqti6vY5IGPa2t6PKA9upat568y2GhocIhUI0NzfT3NzMN77xDfLz87HZbJxzzjl8+9vffu8OziKLLLLI4u8KX/nKV/jGN76Bz+dLe9xqsXLGmWcw90aEZTdsvqoWSSmx93A7gShR1pwv5pmRA25yCvTkFGuY6w8goUCti6doAzOLMrlkcv881WeEZfvUxYVl7Dkays7Ipf/lCXpeG8VeZZLP1eVoUEVJ3oOvT1K4yUHlmQUceryXwV1u8tbaCESVdSpOLEBrVTPaPEtgIsCur7XI6kVz/QFCS2GWooQbT6ef7fc14J9Z5OBj3bz77WRivKXEhNqowlCswzcUwDcUYNXVZXS/NC7Uhx5skRV9AGo/XIrapJIJU6LwyISqXStyajl5OpDi8U4M9ZeXYKvO4cCPeuR2BqHgU/eRMnpeGs1IQFqJdZ+qRKVVppCm1t1QgSFXz66vJceaSBIKdXLOK9ES2Fqjx9MZJ3bVX1iEwaXFUqUT9m2BaM4rWuyGK0sY2euWrd1sNTloTPHNcj3PjsUJWjrY8blGPH3zMklp2b+M3yMWqOyNJjr+NCQfqzlfkJKmDoo6DLwzQf46m3xvU5GBqbZZ+Vy1XiXbCi76lpnqnKXzD4LwlddohwRVzmV/3HY5f72dSAhGDogEpK3SjEKpYLZX3Ci0GGLJH7WJswp1TP/MMjpJx6lNZ1K40UXhTDXTLfNUXGOjd7CXV155BYDBwUH6+/spKChAqVRSW1uLUqnk2Wefpby8nCyyyCKLLP5x4Ha7Oe+882hubiYUCqX9zsaNG1nX0MTALzyYCrSs+Uglo/sn6XvRTWAmiNYqLM6C7iALE3451gq6gyjUChzlZgZwM/Cum4YCA861NobfnmJxZhmlMp5/UOmUuBptdP9pjIHX3GisagJRUrCEhMakwrXOgvvQLFMdXvLX22VykKd7HneLmF+Dc0HKT60iOLfE/u91cuSJfswVOmwNJmZa5/G7g2jMavlcV6OFhktKaX64lfmhYMp6oM6mwV6RwwBugu4g+gItpSe6aP/1EAd/0BMnKAFalxZrlQmtRZ0kOmCuEGSdtqcGU9pXpVGINdcVBKVt9zTgmwykbMxbf30lESIc+mHqhr10sFQbqLughO6/jDJ1LK5CrjVD0y0NeHrnk8q15FsGCXS5BoJeEY9P7PfIxCitSyuU0WPl1YKjzoypSM/+6Hpm+6+H5HbRmhVUnVdMy68GovdVoMlRYyk1ELvrngTxiNVXl2EqNLD7u1HiWzBCaDEsE6CWFkLsjuXItFBygovg7BL7j3ZCEKY6vMxElcSrzhDx9sBrYnNdTpEBTYKV8XTvHJ5esW6Zv8mK0aFjIaberhAbKd2HRJspjUr80/FO0prUBGbEe4O5QsdyIMTIYZF3tUaVz739QfKkIjZurEFCoqClAbRB8i+x8Pbbb9PX10ckEuHAgQMcOHCAf/7nfyY3N5fc3FwuvfTSLGkpi/8yZElKWfyn8dRTT3HttdcSCAQyfueyyy6jqqiad/+tg9KNLopqnHStHcK9e47wUjiJYOKfCRCOKuzMdQdRnqKkeGMeE7vm6HtriIpTSrA1GJiJLdLE8hI+IAL5a+30Pj9O9/P91F9SxdQR8ULsrDZjzNNT8AEbo+/MsPNfWlj18QTChgREizH0+iRFW51suLWa5oe76PrzIMZcg0yS2fiZarQWDbN9c7gPzrHr663onfFyhEMRFufjQVPDx0rJKdCz91vt7H8oWYo6d4MZvUtLw0crhTVbAhEJH+z5fhuOKmMScWn77Q1ISomd/7IiMYIgTbkPpn6+7BMLRP5k1WtyyoxISgm/N32Qlw4qffqfjODcEsqEvoxh19da03xbYONt1WitGjqVgzJJau+32sndYJYJO4Bcf4NTgSlfT+PFJbKy1Lvf6ZBt/opPdVK0xcmeh9rABxqbgUg4wnRUnlxvgD0PxJUOKs8oRFJI7Dwi2uzwD9soPqkIfOJeZSfnMbJfqBu5asXkvegViRSNWUXns/FyF250JMlIjh2cFj6xQPk5eSi1CqaiBKfY5+6o8kMkHGFuLF5flU4lTGUBY77EUnCZoXfEwpmtRJCfYiQtp9WFa2MuitftGAp1VF3m4s/P/5m2jjY0ag0dHR2EQiHKysqw2Wy4XC6cTifvvPNOxn7JIossssjifyb8fj9nn302b731FpFIJO13Kioqufiiizj4aB/4YctJdYQWQ/Qyw+ThOWovAFedlb4XJhja5abs1DzUeXr8035UamU8LvPD3KhPTuDMHvPAyYWyFdvswAIFG+3kbbLK9l/+hF3b1jITlmIjQ6+7aXt6ENcGMzqHDpiTrR/MlYJI4x3yUXV6IeOHPfinhU1b94uj8rVqLyghvBRh6mgrx6L+8jFilXfIhylfj96uxz/sR2+HtTfU0/fqGOP7PLKFmXytC0sF0SVBPSkGT4efjmcGZWUmgLytVqrOLGRhNMChH6aSlNKSjfTJpOhEKLVKJFUqqSkTQoshFGoJS4U5iaS00O8nvBwhFEyO4XpfGKP3hQxWcnpY/bEKQoth9kSVn/zT0P6HAaaOzsvfSWyXhguL0ZjVsrLVQr8/qU0331nLdM8c3X8U/bW4sJwU2w//dYSu30cXs7ZayVtvw1So59B/9OAfCzC0a1K2kdlwXTUqnZLx2K45iSQC2Pyon5ZfiMRR2Zm5WItMRIIw+tY0Y7snMBcb6PqzuFf+epu8kBtDbEega4OZ5UCIzteESlXeKgdKlZLpTtG+Ae8iEW9Ebg+lViknH521VioqC6BDj3vEy/qbKhicGODpp58GxM7OsbExWltb+e53v0tlZSWLi4s89thjnHvuuen7JYssssgii/+xePXVV7nsssuYnp7O+J2LLrqE8vxyDj/ah6M8h5rqInqHRhl3z7LkD2FwaYXVWgC8wwvEEgeeLj9KrZLcNS5G3vHS+cogdeeU4libw9ThOSIr57FQhIKNdvpfnqD7pVEMDi3j70ZJIKUm7JVmik92MvTGJLu+3kL9ZcXxk6U4qdp9cJbyU/NYf00VBx/rpuNPg1jKTQQmRF5vzSfLySkyMD8RwN08y55vtqGzxi+1vBiKK+YAFefl4ag2s+97nUJxKFpXEMo9ljIjjRcXC2u2WOow+p13v9uBrd4YJygBW26tQ6VTpizCgSBN7fp66uehYIjwUjiJoARgKc9BqVEkqRq9FzQmlWyll4jA9CJaiyapfgB7vpmqphnDmk+Uk1NqoPP5YdzNYnHy4GPd2BtNMglJXDz6r07YE5uK9Lz7LUEAO/QfPfI9XestVJyez+EfthPwgM6qE9a3UQs2nVW0aQw1HypGqVWws0W02b7HOqn4YJ5obx1Un1XIyD6R88op00WVN6MK4C4d7c8MCtUroPQEV1K7DO50o7WIhTTXegsas1pegNWZ1SDBbJTwJEkwO7gg11Nr0bAUteRVu3QE5xYZ2iUW6Jy1ViQFMrHKarCzea0LXrWCDtbfXM4Lf3mBlpYWNJp4zquiogKr1UpeXh5lZWU888wz6HQJti9ZZJFFFln8XeCaa67hV7/6FYuLqfkUgLLCMi669CI6fjlBcDJI07YqIpEIA3iYHxKWt45aK30vuhnaPYnWosHglAi6QaVWorNq5GtNdc6ij9q0zXaLuVRlFPmM6e45KqtM5G+xMbZ3htEDUywvxOMJZ50FaiyM7Jpm4DU3swMLGPPEvBOz4IqpJXn65qk6uxBv7xxBb5ihnW7G98UVtld/tJLQYog9re10PStyK1ozBIPg6V0QKuDmKPlGCxtvrGHwHTcT+z3s+nayBVrDxSXorBpZESrxWNAdpOXX/UnKTJZqA6uuKGducIEjT6RugDz281SlJBDWwwFPah+pcv42usHiQgiVTompWJdEUgp6RXy3vJAsxjC2d4axvTMZr7fhhkpCwTB7vx0lFgXh6C96ZGWjRFUpgNpLSskpNGCtNeLpWCDoDSfFmk03VTE7uEDP8yLPFpxbRhcMyedPNLsZ/KvoS0u1gZITXVgrjRz5cR8EoecvI/imojH2J8rQ2DSCJAVIyuQ9j96BBbn/XessuOqtKBVKJt71MNPhYabGzMBrIudVtM1FJBSvB2HktXJzmZbg/BL9bwoxhbx1LlQ6Jb5hMS79M0EC8/G+05rU+CfFhSxVNsqKSsClo7rfw/prKhlZGOJXv3yKCGEWFhY4evQoR48e5Z//+Z+prKxEkiQeeeQRzjrrrIz9kkUWx0OWpJTF+8bAwABbt25lbCzD4gdw5qlnsu3EbTKJpqaqVt657D7kpniHi9Itebh3zzGyfwrXWgt6J/gnQZujla26fCMBprs8qDTipTc4FUGpVpDf5GCm1cfg2xOUfzAfS42B2U4fi/NL8mKEfxJ0Dg3rP9XArq+3cvBnPZSfnMfoO2ICW/PJcszFRsrPEfZwu77WSt6WuI+oQiGhjMosTh1ZwHG5jaZbqjjwSDctv+yi5IPFMjmlYJuNijMKmO2b59jPBlLUk3IK9EmLNYBc5olmL5JqmPG98R1d1RcWkrvGytCeSQZemkhSGQIY3jOJudSY9BkG2H5HA6PN0/T9OVUi8djP0gcTHU8Pkd4QJjNW1i+GIz/uy3ySAbbeVs/8iC+pLK3PjNBwYWGKilPMmm37FxogHFde8k2Gk4hBsgpTdM0ud5UFpUaBwaDA5wsz2+lLIkk13dzIsj8k72o78qt+8tZY5GtVnVXM3n8Xx+xr7CCBPxpEKDSKpCRZwQYHbHDIpLCDj7WJcxCkpPwmu5zsWZoXJLGBaNLFWmLEPxOUy602qpCiyhWONUZ8kwE6XhIBR8VJxai0ShaGxDjwji2g0avldlUbVLJ9nSlfg8loYnPuiRR3rmbLrXX4l3x8/9++TwgRRHd0dNDR0YEkSZSXl7O0tMR1113Hl7/85cz9l0UWWWSRxX8bvvKVr/C1r30tY4JGhYY7PvdZpEUlzQ93UVqdi16nx1oiSCXhpbBYUIliYTSAf068fPqmltAY1FSdVsiB1m7anh2g4pQCjGXC5ktv16KKWkn4p8E/FcRebaIHGNs9Qe4aK+GweAte8oUo3u4kOLfI+B4PA29MMHU0zo6uObcYIsLqrPvZUbqfHcW5VhCAl+bFTqi8VYLwNPLmOJtvqqXl94Ms9PsZPzjDyLvxJMSWu+KLV4kqQQDo9Sg1CnLX2QTZJUqmiakh7X2oHXu5IYmctP3+BiJh2P1AaxJBCWB8j4fCTQ46ft+X9Pnqa8oxOLVJO+Vl+JFJQCsRkxl/v5g8PMfk4dTFuPe6VsW5+eSttSV/xy9IXe4WT9J3YwSlinPzKdhoZ2jXpNym+77XiWuDWVjB6ZEt4ADQizjEmqCqdDTB6mT1teWYiw20/baP6VYf43s8WEtNtD8nEjJNN1cxO+CTVZaUaoUcDwEMvj0h90fV+QXYqnKou6yY9l8PyZZvsX/X3yTUjmL9GvAsytZ8zrU5SJJE/1/F+4ur0YZKp2TRHX1v8CwxO7Qgn2vK1bMctTLR5+nwTfkZjSbBije4kJQS7misKoUVVJVWc7p0CeiFmsGbr77FX3e+jtFgZGRkBL/fz3nnnUdOTg6FhYWEQiH27NmD3R6Xg88iiyyyyOJ/BjweDyeddBJHjx7NQAiXOGnrKZxyxomy+k1dea2sIDN1eI66CxQUbXQxvnuW4d2TFGy1obMqCIyF0du0wmoWIABjB6bQmESctjglcgOuBitTh+foe32M2g+XYKs3MtO2QGA6iKSMW6sZXDrW31TL7gfaaHt6kJJTBUEJoPaiIhz1FirOXqL3L+Ps+WYb9sa40pKkiue85voDOOosrLuhgkOP93Lkl33UnF0ok2qsNXoar6jA0ztPy88HUtSTbKVRpZ8YeSeAUFKaDDDbHUgiugAUn+yk9KRcht5xM/Cam5m25JxX72tjcUXrBGy9u57RfVPybvNECDu3VEu3/pcn0lrAHQ/vfid9lqz9d8PHPW/zHbUsTARkQjVA5zMD1F1eLrdlDDECzta765EUsDu2mS4ALU/1ypZ6sgpTdF0td62wekMnGjswFkgiSW24pZEl37JMVDr00z4KNoi2NBTraLiohGNPCoK9q94CCilOFjKq2PWv8ZizZIcLFBK7DifkvBpE7JK3yUbpSbmM7JmSv78cCMmkOXtNDr4Jv0w+01k1qAxKuRxzwz563xRxWeVphWhzNPinRd54dnge/axWvq7eoSUQJf5binTotDq25J5EYWsj66+pAl2Yh777MEH8SJJER0cH7e3t6PV6ysrKALj55pu55557jtd9WWSRRRZZ/Dfhpz/9Kbfffjuzs+kVD3UYuPHWT6EJaTnwWDcOpxmDzoDeriI4GWQ5ECKn0CCTT6a75liO2o0GJgLobBrKTy5iprWblmeGqDw1T1YOMrr0ceWaIMwNLWCvyqGfCcYOzVB8gotQ1EFlybtM+QfziYQijOyapuelUWY746SahkvFnDPyzrRs82prELFX0LsMSrDUmJnY72HgHTdN11bR/eIw3t4Ag++4mWyPX6vp5ip0Ni27vt6C+9As7kPxttFqFWhz1OQ2imvFSCqxOjU/3IWl2iBblYHYXKZQSez5ZnsSQQlgtsvH3IiPjueT13trLizEXGpk/390ptq8Afu/15n6IbDvu3/baqN/NCgrca9EppgMoHC7nZITXOz5frIN3VS7F29/ch29USXH/C02Ks8sYPDtOLHoyI/7sDWY5HYxFWuZH0pQJLJpsCQQiTr/EI8Hay4sxLXaSvsfhpg65mW2y8fw3knGdonYc9VVpcy7A7J9nVKrRKmME75H9k8z0zov1yevyY5Co6Djd8O4D82iNigZaRYbJdbdUIekQLa480/4kaLkcVOxFpVOQddrYl3YudqG1qQmOCPGQNC7xMiBKYJRIpKtMkdWvte6wDuywER0jJVuy0WpUTLTIcq8FFimJLeMD0oXAbDt9gZ2v7GX195+Bb1Rx9jYGD6fj7PPPhuTyURhYSEGg4GXXnoJl8uVsf+yyCIRqdtDssgiAXfddRcKhQJJkigrK0shKOkxcf999/P5W+7hdOkSqlwNREIRDFFfzvBiGL1dvGD6J4XNg/vYbPRvP3qzlvrLqwDoeXGYgXcmZGUcW4VFJuTMdvpo/W0fy1GlpcWFRSSFhGuVFYD250ZQG1SYKsXJwdkl2d8TH+SusrLtvgZATD6jzVMyoaf0zFyqzipi9SdEMLHr661Jk6C9MiepDh1PD8n1G909QygYZrI9HiyUnpnLhltFnfZ+qz1Z9cgAq64oZ+vd9QBJBCWAscMewssRJpuTZY8qzssDAwy86k5aAALIW21BSiBWJaLppirKz8lL+TxWlv800pxrcCrY+JlqYVGWCJ9YeIq1ofzxgE8oSAFVFxSkXG/Ru4RvOjkKSiSH1V1YRtNNVfKx5oe72fntFnyTYRxrjGy+vTblejE1I0OhjvkeH93PCHZy6Yn5qPRKTFHp9aHXJ9n5Ly1y/1SdVSSPH4CDP+qh/6/jctnX31yPfzJqZTKzSHg5Qt8b4nh+k02oOUVJSUqtQk5MmioNTHV6ZWWospPzMTh1KCKiL3tfGWG0eQrfpBj3trIcdAmLzUHPIuNHPOLck/KRFJJMxlsOLGPQGjlV+ginS5dw2223ceEZHwEkTEYTU1NTDA8P85WvfAWj0Uh1dTWlpaUZpeuzyCKLLLL4v4/p6WnKy8uRJAlJkvjnf/7nJIKShIJLz7ucf/riP3G6dAmnSB9GrdKw7BekCnfzBJJSovw0YU07cWwWnzsgFHIQJG5nrVisWOj3M7J3ioHofKVWKzHm6qg8PR+Avd9sZ6rTi94u5iR1jkpWVPRPh/H0zlO8Vbx0ju4aJbQYJhQtR3B+kaZPN1J8kpCb7HtjnAOPxhdRtt/fQO2HSwAYenOSnV9tkRV09Hk61CYVFaeK+KX72VH8YwH0+SL2mu6ZS5IxBmE7a64Uako7v9XCkQTJ6aZPV1F/STmO1Sbwk6RIJOoSlHcNydBD+Vni/gce6cY/nWwrordpkqzHYrA3GGj6dBX6dPwTfZrP3i8ynFt+Vh5rrqtI+VylV6JQS9gbkmOyoz/pY3yPB/RQenpu0rGxQ7OEFsO4j3qTPo8RcrZ+pp51V1fEy+KHnV9tkZVCmz5dRcH2eMXdLR6WFpbl9tbn62j/zVDcas6hxdkYt8d997sdMrlrzXUV1F5QQt4mKyDGwMi+KXnH2bZ7G3DVxRcwfVNBeUzYG4S9cvsfxWKlrcaMQi3hmxFjc9G3xKEne/FH1Ras5UYc0WdCb4f+N8foek4Ie9efV4TBocc7Kq49cWw2aazoHVqW/FFlsAI94eUIVTkNnC5dws2fuIU7PnsHBkQdtVotnZ2ddHV14XA4KCkpoaSkhAceeIAsssgiiyz++/D9738fnU6HJEnYbDaOHDmSRFDKwcp9d9/P5z71eU6XLqbaVE9oKSysxxA2WLGd8wALY34mjnoAmBsLYso1UHdBOQCdfxqk59VRWZnI2WCVLXADEwGOPNnDoi+6y9kTQqlRYK8V80jHs2Oo9UqsNWIi9rkDLEzE1Xhc9VY5z9Tx+2GGdrnp/YuI8VzrLdRfXMqqq0XOa++D7ez/fnxxybXagjE3OsEHBOlHlyvq5On0s+hdklVyQJBU1t0g4o/mR7vE4lKCGtD6ayrZcmsdQBJBCWCydZ7lQIiJluTPi092gg7czbO0rNi1b60RJHS1KXWf7aqryyg9LcMiyP+JkE6ac3VWYQdnqUo9qNIpU3JeAU9YKCGBKOOK03zjyX0IyKQkW72Rxisq5HYGOPZkPzu/1UJgLEBOmY4Nt1QnnbvgDjDVJeI2Xa6OwERAHgPlJ+eitajRuUQZ3Qdn2fW1FkZ2icWv+o+Usu3eevlaBx5tp/dVkf8t3G6n6ZZGggtibC75llj2hxjbK65duNnOTNccAY+Il9VGlbzoq7MqmGyblcltFaflkVNkQK0ScfTAG+MMvj2Bb0i0Q26jDX20jOhgfsTHWNQKuPy0AhRqBZOHRL405A+hVqo5UTqP06VLuPWW27j47MtQoMKgNzAzM0N/fz/33nsvBoOBmpoa6urq8Hg8Kf2XRRZZZJHF/xsEg0G2b9+OUqlEkiSuvfbaJIKSChUfPvEjfPH+L3G6dAknSOeiU+hZis5BU0e8KNVKyk4S+YzxQx7mBuOkFKNLR+5qkZcIesP0vT5Gzyti/UetAFuFidITxLnND3cxdmAafYGYd7RWDZqoAwZBcB/zkL/RBsBI8zSL88uCcAQEpgM03VIn4heg+4URDjweV9/edGctDRcJJ5epY152f71VtiTT27XonVpKdohyDP7VjX80iNYZnaNbZlkYT9hZh7BRM1foCHrD7PxWC0cThABWfayU1R+rxLFKxIwx67EY5kb8+MZTnXBiZT/y4z6ZwBKDwRkl1q9IlWldWtZ8shytOQ2tQJv60ftGhnMLt9tpuKI05XOlVolSo8RWaUr6vON3w4IUpIXCDyQn5mbaZln0LScRwgCZKLTxthrWXlOVVJbd/9rKgUcFwXv1x0vJ32KTj022ewnOLskKUFqnlv4XJ2QiUU6JEVejVf7+wR/0yApPNRcW0nBJ/Hoju6bpe22MjigpftOdteSts8ntPzfsZyHah/oCLRqLhq6/iHFtqzaj1ChZmhdfXl4McfRn3TLZytloIbc+Wg4tdL04TNdz4j7VZ5ViLjISmBbXdh/2MDfik+tgKTPJeV6tU0s4GKbUUMlp0ke4/iM38plPfxY7eYCETquju7ubgwcPkpubS1FRERUVFXznO99Z2X1ZZJGErJJSFknw+XysWrWKvr4+dDqdbOWmUqkoKChgZHCEay+/loLaApZ9Id79TgdKpRKVQ0XNRUUMvz6Kq97C+usq2fkvLcwO+7BXm9hyVx17v9WOUqukeIcLY56O1l8OsnzOMnqbVia9lH4gl+LtTnZ/rY2W3/Sz6vJyVn28lGM/G6D+4jIkSWK4cIqpIwssnbGMo95MFyNojRIqnZLGS4rZ+80OPH3z5K+3k7fDyvhODwqtlCSfl7fOhmuNhT3/Gt8BP9ktXnw33laNxqImML3IgX/vRpKQFz4KPmCj4jRBqJk44iGnSI9CJclklm33NUSl+iRyN5ipPreYob1CFWndjZUYnFr87iDDe91svbeekD/Evu91Un9lIfYqK2MHp9n9r62s+WQ5pgI9u74m7OQKNjjIb7Kz66utGAp1rP9kJe72WTp/MyzkJSPIhJstn6+DiCBI6V1a8Z9dS+svBmj4aAm2yhx2fqeFHZ9rJBwOE16MyCSZHV9sxBsN7JRaJTu+2MjBJ/vwDfgE61qtQKlREJxdRJOjZmE8wOEf9lJxXh4FTcLyrPrMPNQGJWqjWlZeioQjMvO89IMuire76H5JqEhtvKMGrUmNtczI/u93sf2+BoJzi+x/qIuCbTZ2fLERvyfAgYd7aPp0FTqrhl1fb6VwiwOtTcPGz1Sz//tdONYYqbugjJH9UzhqclDnqNj+hQZZTUmpV2KvyKGbUdZfVyn3YdcfR1jyhdDZIsz3+DA4Fay7qY7wUoQ932iT7fyCUeWJjZ+tRmvWyOSz2C6/mOpVxRkFeHrnwQe1lxejtWhQRhcyt9wlrhtr7zUfFWPa1mDAUWdFZ9XS//Y48z0+Nt1egyZHTWgxTO/z42z/QgPLgWWGd09Rfk4ehZsc0ftOsvEz1agMSnmRevv9whbQNxGg6EQHZSfnEYlEyDeVcPdtd6O1aoiE4KGvP0Z+nZ35uXn6+/tZXl7GYrFQXCyk4e+//35uuOGGv+UnJIssssgii78RP/rRj/j0pz9NOBwmEokQConfcpvNhl6rZ3Esws1fuB5JKdH+hwHsegsRKcLWe+rZ8402Fr1LmAr1rPtUJYd+0MNyMITBqSVvqxV36xzF251s/1wDu77ayvCuSUpOcNF0cxUHHu0mf4ONwi0OBuwTDL05ie/kAMboopRrgxlHnRlbtYndX2+j448DNF5aQfm5efS9MI69JgdJIYIr/zREQhEqzi5g8vAc89OLIIFztZmhNyexlhopPzmPgXfcDL3uFgpM4WhgFlWgiRBh17dbca22QxiOPt0HiJ3pKqMSKSKx82st5DZY8fRFPdwvLCBvlQ0UUHF6AWq9EoVaISscbb+/gbkJP0wFySkyUndBKS2/6cXT4WfrvfUQiasebbuvAd9EgMM/6mXzrbWodSrC4TADL7tpurkKjVktf1epVcqSzXlbrVSdXkjva2PkrrGid2hZf5NQ8wTYek89i3NLKNUKNGY1hBGKma9MsOa6Ckx5Onn+3nJ3HSF/iP0PdWEs07PuqgpCyyGUGiWevgUsJQb5ulvuqkOpExsJ9HYFTTfXM9Hqoev3IyhVCgjHCVmb76yFSNwCZMddjQAMvDNBzblFuOotHHi0hT3faGPzHbVIaomx5hkGXplg+/0NzA746Ht1jJKTXOy4s5FDP+9lod/PpttqUOgU7H24Hb1DS/kH83DUmzn6kz60ORrUehX2BgOORhuuRgvh5YgcG4aXIwSjMuib7qxBY1TT/ecRxvd5UGokIpGITFzb/sUG2XLNtUGQjmJvses+XYnBqpXbpe6iMjEulYKk5aq3MLxnEv+wn9XXlGMuMeCoMbPnG21s+Xwdi94lWv84hL5IT9MnxULg0V/00nhVGTqLhtn+BfzDfjZ/rha1QcWidwm9XSh0hpbCeHoXqLusGEedGcLQ/9YEm++oRWlQEFmGHdKZ7PhCIxEpQs+hQd4++DpKlZKZ6RlmPDPcd999fOMb3yA3NxeNRsPevXvR6/9PGG1ZZJFFFlkcD4FAgNNOO43du3ej1WrlnJdSqaSwsJCxwXEuPftKqjaXsji7zP6HOpGQMObpqbmwkM6/jFC8w8Waj1ey81steHrm0Ts1bLq9hn3/1olSo6T0pFyMTi3tvxsm4FnEYNeiy9URWoxQ+cECIqfks+vrrRz9VT9rryqn4coSWn81yKqPlqNQKcQCQX8A32QQR63IYSg0oDGrqb2ghL3f6mCqc46yk/IoOtHB8FtTqC1KWZkcIH+DnfyNNvY80C62p0ZgqscDCHVxU6Ee33iAQ4/3IiklFtyiHWz1RpF7U8D4oRmhgqNXympAm++qRaUVC4s5NTpWX1LByL4p+l+eoOHKEixlRmYHFpg47GHzHbWEFsM0P9JF6RlOija7GDs0zd4H26m7uAh7rVkoZ+ug9KRcSk50seur4u/tdzQw2TZL5x9GcDRYiYQidL8kcl4bb6tBUsK+f+vEUmrEUmbE4NLR9vQgFWcLZesDP+llww2VhENhQoGwvBFx2731eAdFfKTQSmy/r4HW3/bh6fSz7sZKtDlqVHolgelF1EYVvvEAR57oI3+bnYpT85BUEqUn5SOdKqGzaeTcTng5zFKUYOZab6H6nEJ6Xx9nbPc0a2+swJSrx9lgofmRLrbcVUdwbolD/9GDtUbP9vsaWJgOcvg/emi8qhRzsYHdD7SxMB5AY1az4eZqmh/twlCsY93HKxjdP01OkR6dXcO2+xrk2EpjVGErzwHGaLq+Ekkp+rD7T6Ms+0NEliOCBKWD7Xc1sBwM8e6D8Q2agahK9+rryjHnG2h+RMS9RSc4kRQw1SGIZbUXluDpmSfggfIz8zDm62Xl1qZPVxEOxdu76ZY6JIXEdPccepsWc5GB/rfGmGlbYN2nKjFG4+DB1yfZenc9wflFRndPk7fJRtXZBSBBx/NjrL2uHL1TR3B2iYBH5D1VOiXzIz4ca3OoPa+YSCSCQ5PLZz5xOznFesJLYX70zZ9hqdUzvzBPX18fy8vLuFwuioqKUCqVfOlLX+Kaa675P/5dySKLLLLIIjOef/55Pv7xj+P1CuZDLOdltVoxGAyERzR88u6PodQo6fjTEAaVFkmBvJ7ocwex1ZhY84kyjjzRT2BuCYNLR/4WGzNtM1SfWyhyXl9vZeDNCSrPzmftdRUc/lEvhZudaHJU9L8+zvDbU8wOzGEqEAuR5jIthZsd5K23seeBNo49NUjTdRWUneOi/89u8tfbUGqim9OCEF4KU3FWHlPHvHhHAihUEo66HIbemCSnSE/1eYUM7Jpg+PUpIMLSYtyqbNu9DaCAAw+342owE14K0/WiIPuu/1Ql+lwtkZAgxRRtdeDpFetMhR+wU3pCLgq1grJT8uFU0Jo17Ps3Mc9uuauOuTE/cyM+1HoF2+6pp/1PQ8y0zrPpjhqQJPZF5+TNd9bidwc4+rMB1n+6CoNDi1KnoP/FCVZ9rBRjvl4m0ahz1DJRylJtoOHiUgbenCCn2EBOkYH1N9XKao4bP1vD8sIy4XCEnEID4aUww3umGPyrm5qLirBXm2RVxI231RBeCnPgsW60ZgVNN9eyvBRCY1AzfnAG1yoLu6N5tw23VKO1qpGiVsnb7qnHfWyW7udGUeoUhJfD+IZFbrDppioUagX7HxIk/O2fb0CSJKaOTJO7wUXRVgeHnuxl33c6WH99JUqTkrF90wy/PcXWz9fh6V+g+8URyk/PY9vt9bT8ug9vb0AQsiwa9n23g5wSEzllRuxVObT8agC1QYXaoMSxyozBpaXkRBehxbCcN1wOhgjMiPXEtTdUYMrT0/XnESb2e1CbVIRDEdm6btv9DfgmAwy/PYW5QofGqCIYEmupDR8vwVxoiG/qu7oclUaJWicRdmkp2upgaJcbb3+Qmo8U4VptoWC9nT0PtrPh1moCM4t0PjuE1gwbbmtEUkDL0/1UnpdPTpGBqQ4v3t6A2HCZoGC57Z56loMhpnvnKDsrl8JNTiLhCON7plj/qUq0dg2RpQgbpBPZencdkkrBYPMofz30CkqtAs+sh5GRET73uc/x5S9/mcLCQmw2G6+//jpa7f8Joy2LfzRklZSyYOfOnej1eiRJwmg00tfXB4BarcZisVAklXPfffdx7bXXcqr0Ecxmm9jhH12YmndHmb1KYcmVuOtsaNc0kiSJxQRgbiz63ShjSFJKROcZJpq9YoEu0S5eAmOBWCybH/dBguK2Uq9AqY7bshGBwIxICiiNCpCg7ESxCz7kT72uUqXEUmNAoZQgAmFf/BgQl+GWBOlI7wSFQgERCC2FGXl7DEmKlt8gFHUkSSj2HExQC1AoJZpuqULvFC/tBx7rFlZvkiTbWtirrSAhe7xLSqGgAEK9KRKKk3wSr7vxtmrU1mSuoVwmYOejLRABhUI+KP41CBWeSAj5PvELS0ntIF9XIfo8OLuIuy25/LFr9L89xuEf9spjI7G9UcKm22vQ2kVwp4gVKhQhEonIqkqx9gZxDhIY7HpWf0IkymLl2v/9LiSEFdv2+xtQW6JtpxDHfDMiyWZwKig/J09cM3pL35RfrpPeKc6J3dO5wZnaJhEIROWnZRnQ2KEQct9YaqJBbon4VxkdW0eeEgGeQiuh1Cpk4pOERHB+kZlWn2gzCQrW2+WyRcIRRg9My+2i0qmYbp0S7YAIdvyTyHWTlSUkiEQiBOeWkFTR8RCGrpdG5LpJCtgsncxll1zGJ6/7JJecdik2s43iomKmp6fp6+vjU5/6FCaTicbGRs444wyyyCKLLLL4r8FFF10kqyVdf/31LC4uEgqFcDldqFDz8bM/ya233sqV51/FeukD8rwqKSSGXhc7XmILUYtzy0QiEfk7ywFhn6ZQKPAP+wUhKBo/TXUvICklNBYRO3gGxAs90flcZ9XI13U3ewmHIiwvRHfN2FSgANcqQc6dG/PLnucASp0CtVYlFI8CQBjmo2o1RGOToi2CYBtZFmqbiZAkScyBiVOwHjGnhWGmO2HHvUKi/Kw8OQ5pf36EQz/oEW2gAH2RXhB2JQlCCNJ59LsKpcSa6ypS7MUkCfnv0WaRKJBVOaNxgmO1iaZbqpJilVg8I6kkDv2gJ0UFMhYzu1tnCc4tRvsxVg0p7XcBlNFcmH9mEZ87iCIhNoyVadkXSlLslMsU7cPik5ysv6lSbhcZYUSyxC9sjldCpVVSvM2ZUCYY3+dhpkeMl8ZLSlh9bTmSKlpePxx4vAcpIqFQSFSeVyDH/pJSwdDuaRHjRy3Y9PZo7BUtk5z4S6hHJJrPi9m1acyqeHuHYWy/6CODXSv6LcrrEeSnRfzDflCLdsprskXLIol46HmhyKTUCuJYOBhBoQIisORbFhZ00fEQex+QFBLhcBhPbJemQrTz2O4xuQ3Dy2GhFBUdL7N98R2dkiRhN9o4d8uFXHXVVdx0/c24KKS8rBy9Xk93dzdHjx7FYDBQVlZGXV0dR44cSembLLLIIoss/na0tbXhcDhEXkevZ9euXUQiEVRKFXarnXxKue+e+7j2mms5WfowNpM1mu8Q53v65kV8IgEB5PkMYPzdCSRJQqkXX47FVjELBqVGId7JEdZq4VCYUFQhPLwICrWCnGKRP5ju9hIJI+YkQOdQCxVLHfiGAoSXwvinRCyhUIvyFUXn68DMEuHFeLkUKgmlWom90YRCoSAShkggljMR5dGYRG4jlkPSWaPHIsLeYXjvTDxW0QlCioRE0LNE8w96YBGIxrONV5ViKTMiSRLHnuzHfXBWzIfR2Kp4Sy6SUkKhjMVNinh+KgChxRBLvvhiHpKIKdZeV44xVxv/LrEYQvy986stItcXO6xE/u78qJ/QYjgpP5WUx4Kk6yqiOZmF8QDuFo+IU6JjQCGJ7w68PcaRn/Ql5exiX5CUCrE5sUCUV77tcoRIKELzj7piVYvnZZQKUEiYcnU0XlUaz5OBiG0lCUkryFU6u0a0twKO/KQPz9A8EhI6a1SpKTZGgenu2WguUAJdtJrRe+attsnvITFEIhCIji1Trj4pbgwHI6JvAkKhSaGUsJYb5b6IhKD1mX4AtFY1aoNKVuKKhCIEPEGmDs+JflNJFKx3RM+ViIQijO4XtnEKtYTWpGG614ekkohEx2FgLCDykUoIepbkfoyEIyzOLUfbUfw9/OYokgo5v7pa2sLFF17CJz/5SS4/5SrsJgfFRcV4PB56enq49tprMRgMNDQ0cPHFF5NFFllkkcV/DW6//XY0Gg2SJPGhD32ImZkZwuEwTqcTLTou3X4lt912G5edcSWrpU1iXkXMW4O73GIOi677Bb2LIucVzTEEvYtIKgmFUiLoFbmlWGzm7Z1FqVGKORNwt3qIhOPxiCHXIG8m9/YHWfIvsxidW1QGsc6U2yjyB9Pd84SX4rGV1qJGY1RjKhYEi/BShPmRWM5L3KOwScxx4WCEcCBhIVMSdbPVW0Q9orGX1hzNNSyFme6I2spHY5XC7XZURhEvdb4wzJGf9KFUKEABWrOCLXfVidgKoYaEQpLn+poLhZ1qovNKbG0PYPAtN5Ew+CfjOSpJIazD1l1fkfTdaKFAAe2/GcIzOE/iIm3su+6jsyxM+uVYBYjmsRKCCgXJuSlJwjcZZG5wQeSxkuI9iaB3iZ3fapG/GzusiNbVXG9mzSfKxDUTihtZBt9kkKAXJDVJ10UBGpOKspPzEvpGgadjAffhWZAkqs4tYtVVpSgU8Xs2P9xGOBhGoRIqVApt/LoTzVOEl8JEQqJdtGaR74u1odqoEvdJWHaNRN8HTMVaFEopSZEzvBSRc17mQiNKjUJWrwoHI/jdQdnGTqFRyIpfSOLcjqhSktqoQu+MXzcSihD0LuHpWEChkFBoFLJ6WCwui20KlVQKFBoF4we9cswYWQ4T9IbFuFNJco5QkiQUkoQpx8RpdefwsY9+jBs+cSMVUi3lZeWYTCY6OzvZtWsXOp2OkpISVq1axcGDB8kiCymS3mg9i39wPP7443z6059meXk55ZiEgrM2XsTaHdU0Pyxeond8qZHg7KJMJFl/YyXTXXMMvOpmw63V6Gwadn67BXxCbaigyU7zw0IKb8cXG/EO+Tj60z4A1t1YyUzvPAMvTbD2+goMLp288ydvi4XibS75Plvvrsfd4qHnuTH5vv7ZRdqfGqL0zFzsFSYORuWTXetzqDyriD0PtYEPGj5WSv+LQ7JVVmxXVGx3va3BwEx0h7nBqWD9TfXM9s9zLEEuMYaGj5Zgq8qh/6/jDL81lXJ86731KNUKDjzagn8y5TBb761HoZRkVZ+VKDrRweywn/meZDnG2suL6Xh6KO05GITywLI/JNdp5XH+k85dO77UyOLcEvv+Lb2/7Hsizb1tDQYaLinHPx3kwCPdaU8r/aCL2YEFZjuTT665qIjO3w+nPSfWN53PDsp2cInYek89So2Cg4+2yWMhEdu/IGzc0vaNAXbc2Yinbz5JctyxxsjUkQUKPmCj7KR8Dv+iH9+AKHPdFcUM7pzGN+Cj6ZYqlnwh2aKv+FQnuass8rOx5a46ul8cEiQ7A2y5pY6pDi/dz4xSc2kRuhy1CDKB1Z8oI6fQIHYaAhs/U83Am+O4D86hd0LTTY14h30c/UkflR/Kx5irk8/d+JlqtJa4+tPGz1QztNvN+N5ZTJUG1n6snLlhH0d+3EfVBQUYXTp+8PgPmGcWm82Gx+ORyYfV1dW4XC527tyZtj+yyCKLLLJIj02bNrF///60x2y4uOb6a5jtX2DglQl5Z/GBR9rwT4fJ22qloMnBwcfisdWCOyBbSKy+thxP3wJDr7tZe10FxjydrCzj2mCmeKtLlijedl8DM91zsnXW6mvLWRgP0PvCGNUXFWIrM/HuYx3gB8dqE5VnFMoKPE03VzHSPCUsw6LnKhQSh3/Ui7VWj6POSvezYpe7uVJP42XldD43yNTReRyrTUwdnZfr3HhVGdYyY0b/+R1faCQcjivvJMJYpmfd1RUsLSyn9anP22Sl6pxCxg/OyOVZiarzC1KO2RsMaK06RqPWFyvRdEsVeruWAz/uFSSYROiRrcz+Vmy+oxa1SZVsEfy3IMO9t9xVh0qvFEmdDGWrurCA7j+mtoPaqJGVjFZi+/3R3fffTm37mCJRpr4pPV2opmbqm9XXlpNToGfXd1vlMtsbDEmqUL7JIMeeFIth+nwdpSc6af/NEHo7rLmujo5nBvB0iJPX3VjJxGEPo7umqb+8BJVeKb+TVJ1fgL02R67Hxtuq6Xt9TIxTvbC48/Yv0PrUIOVn5WEq0Mvnrr6mHHORQR6/TTdXMbTHjbvZK5SWPt3I3KifIz/qpezMXHKKDHI8uOm2GjQWNTu/Gj3301UceL2d11qeRa1RoVKrWFgQBCeTyURVVRV33HEHn/jEJ9L2RxZZZJFFFqn485//zKWXXir/niZCiZpT685j3Sm1HPqBiKW2f6GR4PQizY+KXFTjVaV4B30MvTHJ6qvLySkxcOCRFgIecKzNoXirk0OPC3vZ7fc1MDuwQMsvRM6g8WOlzI34GHx9kvrLijGXGdn7ULts41V+ar4cl22+o5bJ1lnZlqvxY6Us+0N0/H6YvE02ctda5Pd6S5WO2gtKOfLjDgIesQA1uHOaQNQyrOHKEoy5OvZ9T+RxrDV6oZwDoINttwsVoVg5E1Fxdh4Fmx0MvDnB0BupSa1Nn61BY1bT/HgPgRgJPQGb76hFqVWw+4G2lGMg1IWWFhbj5Ynd97w8ep8fT3sOOqH+uLSwLMeiK4+TWpT3BZHjXEqyvfubkObeunwdG26oZGEiHqOvRN4mG8HZQGo7nJ0nj4GVqDg7j4JNDjqfGxbkrxWI9c3Bn/TItmmJ2HZvPZIkybmkldh+XwMzPfO0PT0ofxYbO/ZGEzUfKqbl6T7m+gNyeSZbZ5nrD7D66nLC4bCcL3NtsFC40S4/Gxs/U0PPSyPMtC2ADjZ+qoaZ3jl6nh2j7IxcjHk6+dyajxRirzHLygzrbqhgaM+ksAyMjt+5ET/Hnuyn8AQH1nKjfK5QozewKxqXrb2+gtHmadzNs+isCjbcWs/coI8jT/RRfLITS5mRXzzxSyYZxWazMTs7KzZ2AJWVlRQXF/Piiy+i0/2feAZmkUUWWfzvwkc+8hH+9Kc/yb+niXBSwOWXXc7CRIChNyapvbgIZ72FAz/uxj8axNZgoniLgyNPiPf8bfc1sDDm50j0Hbr24iLmx/yMvDNNzUVFOGpyOPBoG0GvUPopPSlXjpc2f64OT/ccnVEL+NqLiwh4Fxl42U3JKS5cqyw0/7ALgmCu0FF1ThEH/j1u6TXR4pWt2WouKkJjUHLs5wNoXVoKNlrpi87XWpeWNR8vo/flMaaOeDFX6GTiCEDVhwpwrbay+7utKbZpAFs/XwcS7Plm6rqe1qxg42fqRazyUGqsYqk2sOrycsYOTNPzwlja/ig9zcXAa+6kz0zFWkz5emGJlgarrirFUm7i6M+68fav9HojbT3eD9ZdX4ExXy/nQP5mZLh306dFjm7ngy0Zy1Z2Vi79L04kfWYq1qJ36HAfSo2rQPTN8lKY/WnWRrVm2PiZRoLe9HGka52FmvOLGGtO3zfV5xfgbLRw4NEOgl7xrJjLtHJ7N91Uhd+zSNtTg9H7KSg6MZee58dACxtvrKHrhWHZ1q/hilJmeuYY2ztD+dl56K1aWp8S8VHRCcKdJzaG1l5XweBOt2xxt+mOWuaGfLT/Zoj8LTaslSb5vjUfKcJRZ2b3AyJ+XP3xUkYPepg64gUtbLuzgfmhBY7+bID8TVZs1Wb5vms+WY4pXy/npVdfXUbb3n5ea32OsHIZnV7H/Lwog8FgoLa2lnvvvZfLL788bX9k8Y+NrN3b/yLce++9fPOb3yQdL02Lnot3XE7EL+E+OMf6k4TVlN4plHx2/ksLpWfmyt835OrQ5KgZeNVN88NdGJwKDE4DvgEfxVtdUZZm9NyvtmAojL/YGXN1aHPUDLw0weEf9kYvCPigaIsTrUWDpcbAbKdPfjlNvK8uyiodeGmCAeITjKnIgFKjoPK0fHqeG6N1ReJFZ9HIu7oBmaAEcQWoGEN7JfpfGsZ8XS0z3akJLoAjP+yg4AN5KQSlvC0WxvfOsidNosbgVLDmulr2PNSWlvhU8AEbzlozxluq0pN6fAjijS818HOsMVJ3YRme3mRyTQwNHy1BoZTSErLeCyuJZCux40uNhILhlL6bafVx+Bd9KUQsGQYo3uGicIszZUEyRlBa88lyJIUUHzdA6y/jiRS9EzQ2QxLJ6fCP2ig+qSgtQQlgYSKQpNCVCFO+2NG4OJ9M5otZuznrLILl7YsHoO1PxUllepsWnSVBWez1SYZeF4Ok/Jw8VHol9nqruJ4PWSocwFFtTpJrP/qbfpn45VhjRGvRULwtF/fBOSSNLinIc62yJjHlB9+eYKJZsPFNlQa0Fg1FW5yM751Fb1Zy7Kk+uc2cDRaUagXbJKGcVHtWMS8+/SLdtKJSqejr66OrqwtJkrBYLNTX1/PrX/+a0tJUf+Asssgii//N8Pv9NDQ00N/fn/b4amkDJ1x0Al2/F4mTnEI9OouagVcmOPSDHqy1erROLf5pP0WbnehsGvR2Bf7pMDu/2oJzbY58LXOxAb1Nw9Drbg7/SMyRse8Wb3Ohd2jRF+nxD/vFHJvgJmUuNmBwaul9YUwuSwy5q22oTSrytloZ3+ORF9RiyCmIX8jT4ZeJIQBLQbEjOne1jamj80kEJYAlv5hb9fk6/GkWuxbGAywFQimfAyz0+xk/MkP3i8kkF2utHs+gn/F9nrQEm3XXV7I4v0TrU4NpCTK1F5ShUEsZSUoHHunGWKZPJSghCC1KtSJj0qXplioG3hhPaYf3g8aPlxGcW0whE8WOWcuNaYlTR37cjt9PRoJSjHTl6ZpLKpcgBPlk0s+RH7XjT2iSWKIBBAnOHY0xAPzDfsYPzjDyTnpymLt1jvwmG92vpD8uKzsllHk6IWZX61UYHPFj/rEA7b8RsVfhSQWodEr0Dj2e6AUSFwmtFaak2Kr72VG6EeVwrDahtWoo2OyU2yImpw2Qu8aKSh9XfOr+y5g8bvVFevROLcVbXbibvShy9Bz49xa5zfLW2pLOHTvqYeh1d/xch5b1J9dBqwrXGjPL4SWePfA7AviIRCIcOnSIa665hmuuuYb6+no+9KEP8eCDD6ZtvyyyyCKL/814/PHHufXWW1lcXEw5ZiCHc9dcgFKhZurwHGtPEqRuXb6OwFiAXV9rofCE+ARjrTBhdOkYemOSo0/2obOCwqQDT4Diba7kc/+1VVaOAbBWmjDm6hh8fZK2KCmc6OHCLU70Ti22eiMzbQsp5BtLuYlwdGf1+L4ZxvfNyMd0Nj1qo4qCDwhiT2zxTa6jU4faGFd+TiLCREOtmJLRSvT+dRxno4XJ9vRxytEnOinYlpdCUHKszWHq8FxaEpHOCms+WcuRH3ekJdfYG00UbHBgLjamJ/UEYOe3WkjHE4kRgqY75+TFlERUnJeHNkeT9th7wVZvpPTkvIxEo+1faCQUTN0sGBgLZCQKxVB1TkHafFmMoFR3cREak5ojT/QlHZMJTDqwFOmY7Y7fY99/dFLxwbyM9/X0LqDWKdMei43bWFwunxMdO64GC0qNgqWEhb9EMpWpMLlz3M2zsjVg3iYbWosaV6NVkJQCJC3m5a6xxhXsgc4/j8AfxJjW5esw5usp3uZi6vAcOl0yAa5wo13YKEcxvHuS6RYxdnVWBaYCPYWbHbibZ9E6NBz7VY/cZvlNNjQ5atZLHwCg8sR8dj+7myPsR6FQMDAwQE9PD3q9npycHNasWcPvfvc78vPz07ZhFllkkcX/VgSDQU477bS0G5kllNRL69lx1laZIOKoNWMq1DP0xiQdvxtmpHgSjVGJHyjaZCenxIi+QIt/NMjuf23FWmuUr+dssJBTZGDknWk6fz9MJ6B1CuZK8VYnOYUGmejx7rfbBaklCkedmaVAiIGX3Qz+VfwXg7U6B71dS+F2OyO7pjm6Yq3MlpBDCLqDMkFJfLCERq/CUZvD1BFvEkEJoutJEdDbRZ1WwtOffp0RIOgNM7TTzfi+VJLRkjfIbJcv7Ya/ukuLiYQjdPxuOIWgBFB/aRkao4qxI560pJ5jPx+Q+2AlNn6qBnWOit1fb009EbFuN7RrUibA/C2oPr+A5aVwcvtGUfWhAvLW29ISpw78qBvtcchTq64qxVJhYn4kIMg1UcwPBZkfCsqkn6M/7ZYJQwB7EtbobA2mpDoFvTDw1gTuA+nzht7hAEHvEsNvT6Q9rtAohANKwv0S66W1qGUVVnG/sCAoAUWbHWjNaowunUxSihGDQDwn6oTc0/DbUwy/LdadTcVaTAV6ijbZRX20sC8hfi/c7EBn08h/D7w1SecfxJqs1gzmMhMqrYqpI160Zi0HHmmX61CwyZGk2OQ+OiuTBrVmMJcaaVRXsNz2ISyVBhS6CC8f+TMeJpEkiYMHD3LFFVdwxRVXUFtby+WXX85XvvKVtO2XxT8eskpK/+B45JFHuO2229ISk0xY2WY8XRAfoqo8sZdlvRP8Yn0CiO/EjqnRxEhEMSQSU2JWVjHCTtNNVehdWpmgknLuFxsJh6I75Q1gMChkQknpB10U73AxtGeSgZcmMBTq8I3EJ/yNt1WjtcYVYlYq+Gy/v4HlQCjtTm5bg4GGi8vFItczqQslpWfmUrzVmVGhp+FjpdgqTRmPx+rd+9ooo+/MZDx/4O0JmbiyEnVXFCeRXmJwrc/B7w1lJPxYagzUXVhC+x8HU1SJQKgHSQop44794ykprb2hAlO+nvY/9stknURs/Ew1vslgEnloJcrPyaPvz6lBR/WFhQy/PZJWjSpWbsigesR712vbfQ1Iisznb7uvgfBSOL0yVfT6/smgrN6VCEuNgVVXlDPaPJW8EzA6JmO+rolqW4njeccXG1kOhpKISoZSQfyLPQfjh+Nj1VCow+cJgE+Mc0mZXO/YcxYjrPndQQ5EFTgMToUgt/lEnRWq5HNNlQbme3yy+pWsomYAn2WavWNvshxeRqVSJamxbdy4kX379qVtuyyyyCKL/w3w+/1s2LCBtrZUcrKEgjVsJddQBP74rucDj/fgHwtgLNOz0B9fTNrxpUaWA2Je0Nuj14++A8fmlENP9rLQ78dcqRcWVbFzv9hIaCnqha4HvV4QlgBqLi7C1Wih8/kh3M3elPtuuasOlVYpJzxiZCcQhKKm6yuZHVgQSjYrFHwqzysgv8nGgR/2pCUerb+pEr1dm0RyScSWu8ROssS5MBE7vhCdKzPM0zu+1Eh4Ob36Uuz8TOpMsfrlb7DSm2a3U+npuQy8kj7JANBwRQlaq0ZWu0pE3lYrVWcWMtM5R2uaxbL3UlLa8cVovR5ILbdzbQ4VHyzg6K8H05KnQJC3FEopiewDgB6qzylMIafFUHZmLkVbM6sexVSRZvsXZGWjRMQUrSaOedLeI2+TlaqzC+l9dSwtMaz6okJyG6wc+nlv0hiNYfOdtSjUiiQyUeKY3PHFRqFm8IN43BYjxVWdLxJd3X8ekQltiYS57fdHY86EsRp7zhyrTdR9pBRP3wItP4sqOtkV+P3C7i2m4pnYn7FzYypgicqiejsymSzlXD105jTTP96DQlIQjoSFxUkkgtVq5e677+a+++5LaZssssgii/8teOaZZ7j88ssJBlNXJ6y42KQ/WSbo7PhSghK1DnQ6CHjEsXU3VmLM1ckkk5wynawcA9H39UDiuQoCHhEfNVxZgq06h9bf9DPTtpBy7rZ76wFkkoUuVyerH7nWW6j5UBEje6foe2k86RjAmmvLMRXGFWJWKvhsuauO8FJYVk9KhKFYx7qPVzJ+dJqeZ1Njm7xNNirPKqDr+fQKPZXn55O/zp5RwSdW777Xxxl5O3XjXcV5eRRscDD49gSDGXJelefn0/PyWIoqkbVGTyQcSSLjJEKXr2PVZSX0vjIqk1MSsfXuKHk8k2LncZSU6i4uwtFoofP5YZlwk4h1N1QQmF6k/Xfp1b5B2ICkU6QqOyOX8UPepD5OKvc99SgUmVWPtt5zfFL85jtqUemUGc/ffGctREivTIUYqwsTAXlhKRG6XB1NN1Qy+q4Yq/EDQECogFnKTRx4vEeun84af0623xfNzybc21CswzcUEM/B+UWMHYyPVZ1VQSAQhkDq+wkgP2eGYh3rr61kYTwe8+ms4jsBD2z+XC1qQ3KcHbuvLlfHhhsrCUwv0vxIF+ggaPWyd/wNguFgSs5r8+bN/OlPf8oSlrLIIov/1TjrrLN46aWXUj5XoWI123Hq8iAoSCs5RQaOPinIJSvJLzu+2Miib5l93+kALWi1Cpn00HhlKdZqE0d/3oO3N4CpWCtIJVFsu6+B8GKYvVFCkjZHS3BSHC8+2Unpibn0/GWEsX2elPtuuKUaTY5azq9onfFztWZouqWBuYEFjv1iIEXBp/ADdkpPzuPokz1J5Ymh4YpSzKX6tOpIIBSYlTplEjkkEVs/X0doOZLx+Lb7GoiEwhmvv/XuOiC9OlOsfrkbXElErRjyt9gY25u6hhlD5bn5GPN1aWMEc4WO1VdVMtXmlTeRJeK9lJS23ddAZDmcRA6Sr12mpfpDJXQ8M5i2zQH0BVo0RqVM3ElE+dl5aclPALkbrVSfUygUqZ5PjZUda8zUXVCMp3uell+lij3IilYH059vqTbQcGkZfa+OpW3b4pOdFG930fKrnlTlKmD9pypRm1TJa9sJY3LbfQ0sjPhkBTKIj+fC7XbKP5gvPwcgVJmCwTAERUyoVCvYnZBPiz1n+gItTddVMdM1L5OgtGbxnaAXNt5WgzZBHTzx3JgKmH8yvhYpnu8V58bUr7QwaGmhfbxFznXFYLPZ+Kd/+iduv/32lLbJ4h8HWSWlf0D84Q9/4LLLLktr5eakkPXSDgA23FqFzqaVbdomjngYflssIPgnRaCw5BNWDd0vDuFcZZPJQ446M6suL2fnd8S586N+3Ec98rlrb6hAqVRw4LFu+t4YpfqsYkJeMUnMdvpYf2MlHc+O4BsJEPAsxpVqfODzhWUSy8AuN0VbnYT8Yid9jNBhcAoiU8CziNqkjpOTVsxD4XCE8HJ6BZ2ZfvHlxJ3NiZgbnIctTlTG9I/J5LEZrGVGFobSs57bfttN45XVaQlKAK2/GJDrsRKlZ+Yy8NJEWoISQPV5xccl48x2+jIu8IEg6RhW7Hh6vzj8i6iKUQZBpEwKSzHEFmVn++aS1KwAuqI7AR1rjCwHIikEq4P/0ZqRwAQw2jyN1qLOeDwwHUSVYQcZCF/WTOMlRr5bzqDqYMjVQgQ8PSsIa9EqLC0so7Vo4gQlpyKJcLccCOGfFhGGY42R8HJEbh//VIDQYpjul8UC4epryxnd58YXXe+b6p5DF91FZqo0sOqSUtr+MBA9toB/Kkj7C+LczXfWIikkeYG3/Y/95Ef9kg2lBtZ/opypTi/tPT5mWn2MNk8xfkAk5mIqEYZ/sYMEU9pJpgt66R8UgdD+/fvR6/UEAgE2bNiQ0dYoiyyyyOIfDTt27GDXrl0pnytQsoWTMUmCZbTjS9HY6tsdtP5xCFulSSZFlG53Yrs6hwOPCAWWqXYvo/vEgo9/WiTYQ8EwzQ930fvKCKUn5rMwIdgYCpVI3h/5cSf+6TALYwHmRqNMDT8Ya4xUnGun5ef9DL0+iq3SxNL8EiBUiRyrTSz5Qnh7/ARmFtEk7Gr2T4dlopJ/LEB4ORKfC1fwRuZGF8hfb8OYq05LUloOholEyGhPFglFknzkV2LJt4xvKrO+9HTHHN6RzF63O7/WkqQiFYO9wcByMIK3x5+WoOTaYKZ4uxN7tYmDj6XfVZ+OfBTD+B4P3k6PIKL8J5CJ9AUweXiOycOpZPlENF5eQWgxzJ7WFeQ5PzJ5qPhUl6zuE0P/SxNM7JuUSWorMfDKBI7aHI79Jr1amHc0SHgpwuTR9LGw2qCCCHhH0jeMWiNitnQEJYDIUoSIYsVGjOhX9XYIL4WZjz4jiWMYIDi7RHgxLBOUVpLQ5kb9KKNqE+ZKPaUn5clWb77JZRa9S/S+LBJd62+qZHEhJBOWBt6cwFadI9+36eZ6Bna68fb4Wej3M9XuZWiPeLY33xldTIySoQ4/3kH+NqFeq88Xi4FrRio4ElVIm1s7RPOx/SyFlvB4PHzpS1/i/vvvR6PR8Ktf/YqLLroobVtlkUUWWfwj4e233+bss89Oa+WWRwlrpK0ArL66HHOZgeb/EKSJ4d2TjL8bfSEPwPrb61n2h9j3vU56/jJC/ga7rEZjKTex+qMVHHi0nYAnzHTXHDNd8/K55RcWoTEqOfyjPnpfd4td8tMiPprrD9D4sVL63pjANxRgYTRAKBSfSwMTAZnE4j44S+UZ+SzOLcnHIE7uWJgMYHBq0VmjhKoV4UAkFCG8mH7vqahLRJ5PV2JuzA8RknZcJ2KqxYOrwcrcSPrYq/UPg6y7ujItQQmg9/lxRt9xyySVRBSe4GDk7am05CmA2gtLUemUGXNegbHAca3a9nyzLUnd6m9B+/PD6F4dlglsKxGzMsuEtdcJYpl/JiisyhLQ/7KINXLKdCg1Uort257vtR3Xwq7/jQnMhWmC2SgWJgLo7dqMxyOhCJH0YR3oIBKB0GL6LxicKgiDd2UONFreJd8y4aVwWoISQNCzxOKCyP3mlOlQ6ZVCYQlYnAuytLDMyFuifeovL2HiyAyBKAFt4rBHVnDVWRWsubaajj+JnJdvMoC338fgO2Isrb+pCpVOIW+6bPvtAPkb7NFzYcOtjUy1ztI+NExgIkDf6+N4+kQ5Nt1Ug8akRvtVM0iwsOxhvKyHnn4R/7/77ruUl5ezuLjIiSeeyBtvvJGxrbPIIoss/pFw5ZVX8utf/zrFyk2NliZOxiwJBsO2+xtYWlhm//c66fjTKI46o0y+KGiykf9JO/v/o5vgZJCx5mkmj0VzBUFo/GQFkVCEgz/oofuVcaoV4E0SK6jh6FMDBN1BZrrnCMwuyudqCyVKTyqi8/fDDO2eJG+dDb9HHPePBjGXaUEh4e0NMD/mxxiKx07BSUGsCHrDBL2wHAzJ89VKhZ75oQUIg9amTUuYWQ4I9SStWRAyViK8FEahSq9qCRCYWWRxPv3aE8DYgWkWZ5cyHt/zzXaZTJIIU7EWhVrUPx1ByVympfLMAlyrLWlJSEBGWzkAb2+And/8T1q5AQce75GJYinX7g8KIvFx0PTJqowbGmMEpXQkrIn9HmY7vUmqRomYOuJlbsMCLb9P70YTmBAK8FPtaTobUOlFzss3nj5PqdIrIRLBO5a+7qHlMMrQijg/9lWtWE/0TYlxLo/haDsu+UIs+UNCNQtktbAYPL0LaE3iHUDr1FJ5ep5MSAovBPGNBRh8O2pHfWUpoVCY9qhCbN9r4zgbzXI5tt1ez+A7buaHggS9YUb2TTHdLtYT13+qEp1NI5Ohjj7RiavJKZ7bqHWet7+Ukp81AuCvn2B/z7sEFv3MzMzwuc99jjvuuAOz2czTTz/N2Wefnbatsvj7RVZJ6R8EAwMD1NfX40+z+mHBxWbpZECwK5fml9j/UBdFJzoo3Ozg6JMd+CehYJuN0pPyZNnhrXfXE5hdlCWOHWuMWMpy6HluTFZ26X15lNHd4sc9URXmeIo3uRvMVJ9XnLSDOBGb76xFbVRltAbb/oUGJElKy7zVO6HppkZx7X9Pvbah1MC6q8roe2MsPXnIAFtuqePoL/qTCCSJ2PiZalp/2ZPRPqzplirGDk5nJCetvaECvU2bIu8cQ0zBaX7Mz+EMyQ9bg4Hcdfa0JCZTpYHGi0po+f1gZmu198DxlJTeD1ZfU45ClWzLFoOh1ED5Sc60NnSJ948sRzLu/qq+sBDXKktGRSQQ4+jYk12Z++nTVQztnEirggWin6c659IqPoF4lryDC2nrYXAqWH9zPbN982kt9WIqWkM73Qy8mhoYplNGil88WfVsJRqvKsVaYZKVrmJqTDFsvbseFAgLQgM0XlQq18G1Pofqc4vp/sswE81e1t1YSSQckcdhw0dL0Nu1ND/cJT9rMSWyScMYihofh48cZjkkAnmr1YrH4+H666/n8ccfT9uOWWSRRRZ/r7jxxhv5wQ9+kPK5hIImTsEu2WUlmJ3faQG/iBG8wz7Ztmvd9ZUsL4Y49mQ/BdvtlJ2cR9vv+2TbtIYrSmTyy9Z76gkvhZN20MQs3N5LsSadskv8IrDjrkZBYvlG6rxSflYehVscjDXP0PN8qprOqqvLsJQaBek9DZek8aoyTAW6jOTpyvMKMJfoM5J/8jZZyV1nk0kaKcUv0rPqomL2PZQhZtHD9jsaGNk3Rf9L6ZWQjjvvJtSj94X+JNuzGNZeV8Hi/DJtT//tliLw3kpK7wVzpZ66C0o4+kRXWkJR3aXFjO6fSlLbSkRMPSJRVWgltt5Tz9ywn5afpyckFZ/kxF6TI9sNroS+SE/9hwtTLANjMJbpaby4JK36aez6xTtcHPpBe9o6Nt1Shd6qlZ+1lTieGlVMGSnTu0nMFq/l6d4kS0P52l9oJLScqFwWVz0rPNFB+cl5dL4glMsqzytgutMjX2fdpyrRxHbG6cV7SM9LI0wenkOfr2P1laX0vjrK5OE5Ntxajdqokp9T7/phRtyDDA2J9wG1Wo3JZCISidDd3Y3dbk/blllkkUUWf4/weDzU19czPp76fu4gnybpBECQthfnlzn4WDf2RhMVHyzg2NODBCYC2BtNVJ1VyLuPdkBAbKAKepc48pM+ACxVOmxVFvpeGsexNofa80vofXWMsd3iR11nhUAACIid7gqVIm3OwlKlY9VHK4WaXxoV5ti82/JUbwpJBcQ7u0KlYNfX08QFOhHX+KaDaa+tsypY96laBt+aSFqISMSmz9bQ8rvBjPZg626ooP3Z0RRrtxhWX13OdKc34/XrLy/BXGLIqHwZU82ZG/ZlXAjLKdOR32RPsbQDUcdVV1fR8cxgkmLV34LjKSm9H9ReVITapEqrJKmzQvlZJceNC0VcEk6yMEtEyalOirY62f1vmUlLG26upuUPQxn7adXVZYwdnE4hSsWw9voKZvsXZOLUSmy+s5a5YX/6euhg++ca8fTM0fqrNHZ7Z+dRsNnB0DvutHYzMbX+nQ+2pK1fkurZClSen0/+ejvtzwwKK7io7WIMmz5bg0KjkN896i4uklWvLFU66i8up++1ccb3zdBwZQkqjVK216s4Ly9uP6iD7Xc2Mn5EqDt5dB5CdVMcO3aMxSWxIGi1WpmdneXWW2/l+9//ftp2zCKLLLL4e8U3v/lN7r//fkKhZNKMCjUbOBGzZJeVYA78eytBL6y+ugzfZFAmtNRdJjbatz01iLXWSO2Hi4XzR1TxpupDBWJTdhA23l4DIdifkNvRurQE3UGh1POxSqHy/FxqXipFnWUFEsUYViJ/k5XKswsZa55OS8SpPr8A1xorzQ+3piUeVX2oAFt1Dvv+LX0uo3C7HUe9WY43V8JSbaBoszOtUg8I8knDFeUc/EH6nBmIuHTk3em0BCSIrrcaVBmVjGL1GNo9nZYsVHdpMeHliGz/9bfivZSU3gv6Ai31FxTT9sxQWiu68rPzmG71pFUjAjEOHXVmel4czagWtfG2GubH/TIRZyUca8zkr7NyLMOaptappfbDBRljW61Ty6rLS2j+YVfaMepYY6bqzAIOPdlH0J36hVVXlZJTbGT3d1vTnr/tnnoikUhaFa2YMpJvIpB2HK26Sqhhtvy6H09H6iaQrZ+PKnRFY6sYIQrAscpMzYeL6Ht5lLF9HopOcDA3vCDbH9ZfUYLRpZOf64231dD32jhTx7xozdBwRSXDe6ZwH5plzSfK0Dq0Ql0NmFs1wph3mP4BEW+rVCrMZjM6nY6DBw/icrlSGyKLvztklZT+ztHQ0JDWUsSIme3SmRhKDTRcWCir20gS8g714bemGH5rCluDAf+kD1OJAaVWQfGpToZen0whQNRdUAYS9Dw3xsCryeQK1/ocas4vkYk1u77bmqS003hVKdZyEzu/2sJEsxelJk5uAqj8UD7GXCEX2PrHIUq2OZIINqZKA+Fl8A34mB/1i532aeCfhHAowpIvA+N4OYyklHBUm9OSiAqabKh0SirPzJd3Sycib4sFrUVD3eUVaRcxMAif2dIP5GUkKeksGhTqzDIBAy9NYC01piX4xDDT6ktRIYqh/EQXKr0SrVEinQNs0YkOyk7Jo/+v4wy/lX7H23th6731REKRjAuOOUV6JCl9HX0DvuMSlABmuucYeTdz2TQmFZJCSrEOjKHgAzbURhXVHylLS/TSO0Hv0FJxRiHug2nqYACtRUPeGltakpLeCQqVhM6aXrVJYdYRCUfk3VgrMdY8SU6hXn6GCj5gSxovR57qp2iLWFgyFOpovLSEfY93ymphh3/RRzhK6N/4mWrURrVsXdPy84Ek28P1nyhPSu4kPtfrPl6JKU8vP/Pug3O4D8aTrAZn8g68iSPTssWftdoGEgSmRXLmxI9sYWlhGfuhSoboQdkQZHRcvDT88Ic/5LnnnkOr1fLjH/+Y0047LW27ZJFFFln8T8err77K2WefnaJWKSGxhm3kSkVUXViApJDo+v0IS1GlSEeViamj8xx4pBt7g0E+z5inIxyNaUZ3TSdZXlWcm4+91kzjx0pp+cVACoFITu7/Swvj+zyMH/MkkTO23dtAwBPk4GM9HH2qn3AwIXbSw6brazj2i06h2tTmZWBn8rybt9XK+B4PfS+O41plYTyqmLkScyN+zMUG9HZ9WrsxnVWNSqPMqJ7kWm1Bqc68k6zstDxU2szn151fgMaqxrk2J62ikKPKhKSQUJsyv/a0/6Efe4M143EgIzkHwJSvl/sxHbbcJV7oMy3WvRdKT8+leJuTjj8Npq2jMU+P2qSi+NQCOtNYj6ST207EoSd7aLykLCNBCUCpUmSMewCKtjtRajL3Y/2FhejtWqy1+rREn8rT81EbVRn70VppQqGSgPTk8yVfCLUxlHaMAMwOLBCOKgMYy/SEl5HH69TReaZXzdH/smi71deW4x30ycpKBx7pJm+TVZRbDzvubGSiNU4ITFToWv+JSgwunWzFOPLWFCMJ8XZ+k4389TbZriTRiq7sxFxUeiWGXD0wh96mSLJEUSiTY+uTd5xE2++HqZcCdLjeRWfV0tXVRTgcJj8/n9LSUpxOJ7t3707fKFlkkUUWfwc444wzeOWVV1I+z8HOVuk0dLk66i4sjP+eSvHfy+mWeaZbOrHW6AlMiLhLbVJRst3J4OuTKRZpjZdVICkk+l4aZ+rwHLsOJ1tLrbm6UibW7HmoPYlcUXl+Pnlr7Oz6Tguz3QE6n022SCs+2Ym5xEDLzwdof7qP0tMKkghKunwdCpVQP/J0z6HINKcGYHkpJMeYqQijVCuwVprSkojsjSY0ZjUVp+WlJdhYqnQY8/XUXVCYlgQFYC41YMjVZiQp6WwalOrMCtbug7M46s20/TEziWeuP8Bcf3o72qKT8tBa1Ogc2rQkJXujIB8Pvj2R1nLt/WDzHbVAZls0W00OCmX6Pgp4eE/i+vjhGaZaPRmPq00qFEoFtnKjrDaUCHujCZ1TQ825+ekXw3RgKTViyNVmJCkZ8/TorJr0JCUdqHQqtBliP51VRyQUZi6DGub40VkcdWaZoOTaYEmyzjv8835KttkhIEhdjVdW0/yTLvmZav6PHhQa8f9rrytH79DJuayeZ8eSLAI3XF/J0sKy3FeJz3X9ZcU46i34ZxYZeM3NbHcgKSdmLjEm9eNMh5fe50UO0FZuBJCftY1nNhAOhXEcqmKSMRYbp5mYmCASifDQQw/x61//GqPRyA9+8AM++MEPpm2XLLLIIov/6Th48CCnnHIKs7PJdqcKlKxhGy6pgJJTXKiNSnqeHyPoWQIJTCVmgse8HH2yH3NFXMnQWm6EaKrE07GQlBPJ32Qlf4MdtUlF21OD7F+xWb7p02Kz0M6vtgilnhUEpE131BKcXeTIj/s4+tQAChVJKjNrr6qg/ZkRgpNBRvZNMX7Ik3R9xxozU0e8jO3zULjVGVd1WoHZAR+OejMKoxa8qewQvU0t1uIyqCcVbHKgyVGnWMfFUHV2ITqrJuP5FecWYcjVyeVdCVOxFkmtQHOcnFfrr/vJXWvLeBxIS/6KwVZp4nhaJxtuqUZSSyl9+H6Ru9FK5ZkFdL8wgvtQqtWuxqhE79RStMlO17Op5cxk5xZD+6+HqLu0+Lh2diq9AsNx1CjLT8lDa87cj9Vn55FTaMDWYGKmNXVVtvREJzqbBkdt+n60V5lQapXy87ISiwshlhdDae8NQo1fir4DaV1aFCpkQpd/VCiXjR4Q9a+9uIiF8QDDUTXUYz8fwLHKLBOUtt3TwMTRGdnCbs+DwlYRooSvWjPHnupjtsvH1DEvU8fi9Sk5MRciyBsE2xJU53M3WtFa1BgLtUwdE4pkSaQppZS0prxjyw46nhulRtpMr/0wKqdEV1cX09PTFBYWUlZWRklJCa+//nr6Rsni7wJZJaW/Q9x22208/PDDKZ+r0LCF0zFIBlnVKKaqMrRnkoE0u8d3fFHIqMks1gRyg63BQMPF5bhbZun8/TBFJzqY6ffLqiyWGgPV58QJUJvvrKX/r2NMNMd/lGIqLtUXFpK72sqxp/vSkkq2f6HhuPZlO74U3f2cZpdazKLK0zufkfyy+fZaOp4fSntvEMSdGGEnUREqHRxrjDJRIx1MlYb/tILRStWbdNde+7Fy3G2zdP4mM3NZ7ySjLVrpmbkUb3HS+ru+jESn91JS2vL5OiKhSMbd7se7fwzbv9BAKBg+7oKdwanA5wtntJY7HjIRmGJ4r35MtOIr/aArreJRDBs/U83g2xNJYz9+IaF8lGmXYEyVLJNy1vobKzHk6uh6fijt9TfdXoNKr5KfjZVjaMOtVUx3z9P353FqLipCpVfS+ov4c1J1QQHdz4jgbscXG5P9YqPlxycW7MzFhozktpW/JbHnqC1yAJ91BhQwPS2SmFarlYqKCt5++20MBkPKtbLIIoss/ifB7/dTXl7OxERqHFVBI1VSo6xoBOL3MBKOyPZNiSg7M5eirc64T/sK4s36m6rQ2zXyuRXn5ifZjzV+rBT/zCK9L4xRcW4+5mJDEskhsRzb7m0g6F1MqyxZsN1Oxen5ePoWZIuqRMR2+Hc+L9RfVmLtdRWY8vUy0WIl8jZZKdzsyKiaA0JhZuStqRTlmXTIRGyJwVypz6gSdFzE3DKOc+qWu+pQahRp+zPpUvbMdXivha73UlJybTBTfXYRfa+PJxHZ3u/9Ib5z7MAjbRnt2yB5DP2teK9z7Q0GpjPEniDszfxjAdBD3lpBkksHx2oTpSfnpd8wgFD0NBcZOPBo+rpuu7cBhfo47x3vpbp0Qal4t3plIqXOeZuslGx3ycpeTbdU0fHciGxZZ67Uo7drGd/nof7yEuzVORz4aW/8Ggm/Ccf7Lak8r4D8DTaxk/TZUbkc/oifvbxCbpGT8fFxmVDZ0NDA6aefnt3ln0UWWfxd4Pvf/z533HFHiqWIBj1b+CA6SSerp1Scl0fBBgcje6boeyl1gWLbvfVISgW7YjGLDpncoMvX0XRtJZNtHjr/MIJrvYXATFAmvhiKddScFyfrbLi5msFd7iTyUawcxSc7KflALq2/yayOpFQrMsZOO74YVbVMo5assypo+nQ9nt70qjUgYsj+v46lJbRAlCTSMitIIbk62ZIrHaw1+rR1kMuzQrnmb8F7navL1bHhU5W4j4k+yfg9Kxnt2PI22ag4PY/OF4YzEnTeS0lp42dqADIeP979Y9h2bz3LgdDxFcpj67j/iebMKdMdV0nKUqVjtvs4bW2NK4Plb7PLimHpsO6GCkbenU4a+4nYfn8jc0M+jj7Zl3LMsTaHugtKMubE6q8owV6TQ/efRxnfl7p4uO5TleisGvnZWDmG1lxbjnfIR//LE5SdkYvOrJaVkwDKzsiViVjb7q3HNxlM3hQa/U2oubAQ1xorg29PMPh6akJz5W9JrBx9kXYmzYMo1UqmpkSuzGKxUFNTw1tvvYVO95+zHcwiiyyy+H+FYDDI5s2bOXLkyIojElWsokKqR+vUygo72+5pAIm078uudUItMbaeuJLQ0XhlKeZSg2z9FLO/jaHyvHyW/SEGXnNTuN2OvdrE0QSXipiyEsCmO2tZ8i5xKM1Gf2utkcbLypjpmpctrBIRy490vTDCxH5PyvHai4uw15rZ/Z30qjXWWiMlJ7gyquaAIGGNRTeCJSrPpIO5Qicrz6SDqTi9vdx7QgtabXryUwxNN1ehyVGlVeBJulQGEhUISy+FWpHRlu29lJTMZVoar6ig7/XxjESi490foPQMF8VbXBz4cXdatSX5Oglj6G+FvkB73Gu/Vz/Kz5EWXPWWtIQsEP1dfXYRB3+YfsNA9fkFOFdbOfDDnrR12XRnLZrjKGdtu6+ByHJYVkZaee/VV1UyvHuSwb+6U9rLWmuk/JQ8mVy05tpyel8elcen1qXFXKjDfWiW0jNcFG50cvTnPfHxm/CbsO2+BghH5N+DRORvsVF5VgHjB4R6WqwcwUiQZt7EWmhiwj3B0pKwP6ytreXDH/4wDz74YNo6Z/E/F1klpb8TTE5OUlZWhs+Xmthfzwk4pXz570SyQMvPB5LIGLYGA/UfKWN4zyQDr7qZ6vKm+NfXXl5Mx9NDMoFFpRO7SlYSEyrPLEBr0cjXX0lYSbTO6PrjCF0rZJq3fL4O32SQoz/p49DP+vFNJtet+FQnQ3smwQfeQR/jB9Mr6/gGfETCETLR7WwNBtQ5KqrPLmR/Z+pEaSjUUXZKHkXbnOx9sD0tQWn7FxogDLv+tTUtsaX8nDwKNzo4+GR6izoQSalQMJSyWy8GS42BVVeUE5gJ0vxw+kUXg1VFJBxh8mhm1i8cnyA08NJEWsLa34JMCkrv5/4xhBbDx9n9J4hO62+uzyjxDEKBqOLUgrTkt9jfGz9TjUqvSlGgiPVjzUVFuFZZGHh7gqGERESMoORan0PxDheuVRaZkJcIQ6EOrUVD2Sn5aUlEBqtQVfJHFYdWYuBVN456M4d/IQLq8nPyktSbDv5HT5xwZYDttzcwuMstlzUx4bX2+gpMBXq6XxxmfK8IchLHkrPeLDOqY4gRlDBAJBxhKShUyAo+YCO8FJav0/fGBHXnFcq/A9vua2Bh3C8H4zu/2oItqg7S8NESbFU5DO10w6tNEI233uEv+JknEAhw4MABjEaxM+3qq6/miSeeSNs+WWSRRRb/Xbjnnnv45je/mfJ5Dja2SvHdsSvt0Fp+nWwJtfa6CnQODXu/2U7/SxPYq3MYeCs63/iFYlF4KYy72UtoKUwkIW/Ru0Jq2lppImcxTO8LYynHCk90UH5KHjOdc7Q+NZiSMCo9PZfCTQ52P9DK6K5pFsb9KcSe4lNdDL3upuM3PdReVJmWoAQQ9C5hyNVlJMaUnpSL2qjKeDxGypkf9uHt8bPSrbj09FyKtzsZ3jNJ/0sTaQlKW++pJzi7yMHHetISlGJkks4/pydaAWy+WVgM7/xWeoswgMX5JdT6935lOh5BKBM56f3C3ezNWIf3c3+A6S4vtqoc9Hk6/NPpY9WYrdmBx3sEWSgNNn22BkkppSWq+4f9mCv1rL6ygt7XxlIIVTGC0vb7GwiHIimxWeyeW26rQ6VVMn7Yk7Zfyk/NR2vVZCRFhZfChMORjGSs7peGcdZaANDbFZhrzEmEqJ3fbkFvEQtKa66rQGdWy304dXSenUfjiZ6maysILcWtEsf3eWRFqrytVvR2LRWn5XE0Ku3u7Yk/dwqVRCQSketQc3FRkhLWRIuHSFi84FScm0/eWhuHftaHf9hPz/OjzPbPMXV0Xi5HjNB0MufDCLgioxxiJ1qdlra2NlpbW3nooYcoKipiz549FBUVpW2fLLLIIov/DgQCASorKxkdTd4dLSGxjg8k5by23VuPpBB2aL3Pj+PpnpfJOYZiHWs+Ws7YgWn6X55g/MgMkiLhHTgAVR8uoPtPws4sEgnLio4rCRjlp+RizNXhWm/BfXCW5keT8wFbPl+HSqNk59daGHpjMkW1Z+NtNQRmFzn2ZD+HftpHwJs8t7o2WJjrmSPgCTPVOou7Nf1CRcATJhwKZ1QU1+XrMLi0lJ+az0xbmlySDmrOK6L81Dze/XZHWoLSls/XoVBK7H6gLS1BKW+TjcozCzj6i56MxJhNn60hvBzJuECly9Wx4YbMNngAOotEaCnMdHd6clEMxyMIje+bSUt2+VvwXjZw70VQAqHyuLSwlPkLOmG5vDi3lDFP6FibQ+2HSmj7fX8KAS3WD2uvK0dn06bkzWIEpZJTnZSckMvAm8nKUrE65JTpqDwjn6LNjiSLHbmYVjDm6yk7OTctSUlnhXAojN+TftFu6vAcc00+Op/pA6DwBAcjb8fzu21PDSYRrrbeXc/wnvjzlLgho+7iIhyNFnpejtswJtrn5K23CQVW4vFUolJUJCxykSDaVqFSyApPgzunMeTqZILS5s/V4ncvysSr3Q+0YakS8WH5mXkUbhV2drwG5XNCNXU/bzCDm8XFRfbt24deL1Tmb775Zh555JG07ZNFFllk8d+FRx99lNtuuy3Fzs1KLpukk+S/V9qhtTzVk2SrVXdpMTnFBvZ9twP3oVny11sZ2hWdb4JgazChUCmYOuJlKRgSKtRRosLK2ClvnY1QMMzAa25Gdk0nqTbaGkw0XFzKVLvY9LdvRU4id6OV8lPy2PtwO56OBQ7/tDuF2FO43c7Irmnanxli1SWlaQlKAP6pRSLLYbQ5WoLBNPZip+RhyNUlkbcSseaT5eQUGvB7Fpnt8qUQlHI3Wqk+p5ChncIWNR2xZeNnalicX+LIj/vSEpTMZVoar6yk8/nhtMo8AE3XVqF3atn//ZaMBJ+gZyk5Vs6A4xGEjmdF937g7Q+mJaq83/sDeDq8FKy3o81RZSQSrf54KeYyU9qxEcPa6ypQG1RpYyL/aBCtS0vTJysYeDPVWjnWj5vvrEWhlFJIQLGxsuGGanRWDd7hQNrxU/HBfAz5Osxl2rQWduFwhMhyOCPZqvNPQ+SuiSpnaSF3tTVprO/+Titas5BGqrmoiJwCvRy/zw8Fk/LJTddXEl6KC014OhY42CH621yhI6fIQNkpebINXtAdxB0tl0qthEhEbuuys3LpfzEel43smZTVY/M3WSk9JY+23/Th7Q8ytncGn9svt2nTJytE2b/RxnbOgFEoikzTzJsotUo6Ozv51re+xbe+9S0qKip48803KS4uTts+WfzPQpak9D8c1157LT/96U9TPi+gjFXSZiBKPLqwjJ5XRxjfO4t3yEd4OT7xTR1ZkJWCZvp9SEoJc7EgE7Q/lWz/sPlTtahzVIxE1YBWsi23fL4OhUrB7n9t5cAj3SlqNaVn5hKYDDDR7MXTv4BSlXmCU2mVGBzix3ClepCp0kDpCbkUbnSw91vtKdZrhlID6z5exvihGXqeG2PX11KZ2+Xn5DH+7jgzrT4O/yIzecg3EsA76KPnpVTP2RgWvUvHtfHQWtTCRm85MyNaUkoojmNnMjvsY2lumd5XM0srTjR706v1RFF3RTGOGjO9Lyfb6SXC1mBgpt/3n1InSoRrfQ7ug5kTR9vvF6z6dH0D74/oFJxdZGR/Ztu35YVlkISMdSbVJKVGedxAa+LIDM56M9NH0q/uuQ/OUbDJT+cf09vv+UYCSeOr+sLCJEKebySQ1Abbv9Agdpg9EVeuiCkBmCoNFG5ykLvKmpRgitWtaKMDSSmhNqSXTh/eM0HlGUUysajxqtIkdbFdX2+ViUSlZ+ZSvNUZV2jykbRTv/zkfCSlJF9rvsfH/oeiyUaDkNBXG8QUYqkxsBREJjZOHJnGlB+3s9t6dz0L7gD85GzRJgEfna59uN0iKPn5z3/Ob3/7W5RKJWNjY1l1pSyyyOK/DdPT01RVVeHxeJI+V6JkG2ejl4T0zupry9HbNLz7nQ76XhzHWW9mMmrZ4OkQRI1QCBb6/aj0SvFiFsVKZaOqMwsJLQqS0pEfJc81eVutVJ1RSPfLI4zv8dDydG8KYaf+8hLanh5k5K0pijY5GN6bnimsNilRqCVcG8y4m70pxJ7NnxMe9VOHpvBPhzm0YsfOqqvLyCk0sPuB1oz2YZXnFdDz/CjvfqdDEEgyEGeOPtFFxXklGdWP3K1zFG5yMHEsc5whKaQU4m0icoqMIImESyaM7pvGtcpyXCWlg48dP9my4wuNhJbDKYQbGXqwlx9fQej9QG8HrTOzolTxSU5KT85lZO8UfS+mKkm8H6LT0C43xdtdGQlKgIhlM4ezhEKAJOyPMyHgWUzZJJGIY08PULrdmbFf9j/UhbFMEJT0+ToctSaG3oyP+5YExcjqiwpx1Vs4+Fi7TFpKbIs1n6xBpVfi7Q/E6+0Hv1/8v86qRq3L/Mo8O7BAcF6MsbytVpQapWzvNr7HQ3AmKPfZtnvqCS2GZcJTYjkdq024Gi2YcnWyAlnMTg7AmKtDoZJkQlPBdnsSCczTO094WbRp8UlOirY7OfqUHmd/AQTBt3acnYfeAmB4eJi6ujoWFha48847+fa3v52xfllkkUUW/7fxla98hf/v//v/UiwkiqmiXmoCBPFo9ZVlDL0tFqymO+aiFqACM20L5G2yMb5vBt9QAIVagTFXkAli1k0xrPtUJcY8HdMdXmbaFtj9QPL8vfG2GlQ6BXsebKfl5wMpajT52+yEAiHcB2eZbJtFa8pshSps6sX/ryQG6XJ11JxXxNK8sKlqX2HXqrMqWH9TLeNHZuh9fjxtnFG43c50t4/AWICDP+nBN5Rh/g7AVMssg3sy51b8E0EU2swTvN6uASk6z2eApJY43hpXYCLAwkSAwbcyb5rzdPozx1QIVZyibU76XhnLaDdnqdIRnAq8LyLR8WCt0eMZ9GdUOdpyVx1KtZJd/5p+l/p7DmvPdAABAABJREFUEZ0IwMK4n/Ej6clpAMsLURudAn1GlSxJpThuTOxunadws5PJ9lTrERBkp+nOOfr+kl6tPeCB5sd7ZPWi8jPzklTLAh6S+mzr3fV4BxeSVL+OPNEHiHFdfmoehZvsSRvuYgQlx9oclBoFalP6nNfIvimM+XqZoFR7UREdv4+Xe++D7TKRyLXBQvU5RXT9eVgmIiUqlVWdVYhKp5SPBSYCSYQolUaJKpp7MxSLa8Z+C6baZ7HX5Mh2dps+W4NvKgg/P1lcyx+gO7eZ0YkRIpEIjz32GE888QR6vZ7Ozk6sVmva+mWRRRZZ/N9GMBiksbGRnp7kPIcGLVs5E60UJy6Yiwzsf6iTsX0e8jfY5ZyXt18QNdRaQWhQ65WCIBolHh1JWPMAaLiolOVAiKkjXqGulABbg4m6C0voe3WMsb0zHPtFTwopo+pDBXQ/N8pM6zy+iQCj+9LnvFQ6BSqdUlaoWUlCabpJEHZm+hbwjwY59otkhaWaCwux1+Sw58F2Bv/qZvCvqa4aJae4GPyrm4M/6EFfkJ6gBNDx2z7Kzypmtit9Hmi208vSKXlMd2TO0ShUEipNZvtcQ54BJFj2ZxYBGHjHTeFm+3EJPi2/Su9ME8PWu+sIh+Ddb2dey7NUGzLW9X1DC+b89KQcAMcqM3UfKWZk31RaezdvfzCtMlAiBt4cp/IMFfPHUVJSqhVI6uMEtBFAIaGxZH4H8I0Hkt5VVuLYU4OUnujMOH6OPNEvqzZpzeBYZU+Ke3ueH5Ot2IpOcFC8w8nBn/TJpKXZLp/cHzGi2tyIP07eCiJ/15SrE3aEGTDVOktoSeTSrLVGdFaNrHbl7Q0kEb423VFLeDEsE556XhijJ7rBVl+gpWizE1uJSVaIisVRADnFBpQaBd4xcS3XumSlKfexWXlt3bHKTOVZ+bT/rh9z/4WwCMF6N2+1vgFAb28vdXV1BAIBvvCFL/CVr3wlY/2y+O9H1u7tfyB8Ph8ulytFNUmJkq2chUGKkgyiFlQGp4L1N9cz2zfPsZ+lTiqb7xS7xA8+0ZfWSmzjZ6oB2P/9LgyFOvI3WOl5Lk7YMRTqiCwG8E+Ka0lKKSPB5D1t2a6O28elQ8EHbIy+I37kVn28lJ4/D6RX5YlaaHkHFpLIHvLhaJuEgunlskEkFIDj2o01fLSE1l8e30v+/xUaPlaKWq9MliVegeJTnRRtcR43qbPjS40QIaPcX+w7x7N7a/hoCfZqM4O73RlVmZpuqgIlGa04APK2WCg9IS+jbdz/a+RuMKM2qtPamUFcuSmTVZ5rfQ4155cQnF1Mr7rkVLD+pnq8Q74U4l0MDR8rpf/1CXwjgaTnIR22f6GBuWF/2msVn+qk9IRc/O4V9m1RxCwYd36nBXxR8lpCnQxOBfnbcul5bkxWYOt4diCtkti2+xpQqI5v1xgbT5YaAwpVnNA0Xd3PHB46O8VY0+v1FBQUcOmll/LAAw9krHsWWWSRxX8lMqkmlVBNnbQeECQC30wI/7BfKAEZVOktO/RiV/RyIJQ2XnJtMFN1VhGHnhSKKBXn5jO2eyyJ0BOzN9PboenmRobfFYpCK9H06Sr0Di0dzwwymcbOYvU15eQU6o9rVZa3VdhqGcv0FG6yJym5JGLNdRXk5OvFvJGGPLLpszVozGqO/qL3uMpGHc+mLysIcsX82MJxrd3+X2LzHbX0vDwiq9WkQ9PNVSwFQrJSzkpUnV9AfpOd0f3T9Dyfnoj+XnZvIMhQQEabGPRCgaj/jfGMNmkg+tE/E0wiwPx3ou7S4oykNxDxeigYihOlV2DrPfUoNYqMalgx67dM41ZvV1B2RhFtT4t4P2+TVVZCSinrZcXYq3OSCE+JeC8buS131bHkX+bAI93o7QognPTcV55XQM9ro+AXz9NyMJSWJGet1dN4eQX+6WDaOHvV1WVYyoxymxSf5JRJXP6IH/+6Ubp6u/B6RaayqKgIlUpFa2srer0+5XpZZJFFFv/VCAQCVFRUMDaWvFFMjYatnIlOEoSA2G73mOLMTHd6u7OYTe2xX/aktbdae105Kp1KJMx1UH5SMslCZwVQEPCEWXdjJRqDKqMK4nvZsq2/qZapdm9Gq7KYKhMIgsXAa6MEPGk2u+lg+52NzPbPJ5FaE4/v+HzjcZWnm26uQqVTHlfRsebCQjr/+D8jJqg8Px+9TcuxJ1NzfDG4NliEItQjHRnJQ9vvawBJYtfXj5/zOp7dW/mZQm19ePdkWhtBEJvC1Holhx7PnKOz1RupPKMw7W78/w5Ya/QYnPqMBC97o4m6C0vTKjeBUF1ac3UlgenFtIpZOis03dzA7OBC0oa5RFR9uIDRZkEodG2wyCShdNh2bz3eQd//z957xjd23Of+3wOARCGI3gmCJBrLdnILuUXSVm1VsWxLtpqr5CYXSS6y7Hvv5zrNjkuua+zYSdwSOXbiKhcVq2/vfZfLuuy9A2DD/8UAILHEAahE18k/l8+rXXI4Z85z5szM+c0zzy/jO2Cp0lNxl4/xrkjGZ1C81Ya31s6pb10iOrQw/Z3GBM51IhWcxqVh1YOlXPtd5hSBycMcB//6YsZ+V/dEFZNjU5z4Wj0alwatSZnib6ykkyF1P5evJNLVaTR4PB7uvffepU2zJSxhCX8yfO973+Phhx9e4JpUSgVBaTkgnHlmZ4TwaNV7ytDaNRn3+ECshyYnphe4GYFwV6l4UwmXfyYcUYo2W+k7O5jmJpRyiFFD7UcraD/Sn1EUVPU2H6agnvpftWdMjRW6swhLSJ81VZl1hYH+cyOobWqKNphT4o5MdVnLDZz65pWMqdmS7kgXnmrOKMhJORv9up3+C5lVQfZVRqYi0wxdzSw8/lNj9UN+Wl7pYfCSfMxr2X0+4jPyYibXejOB3R46j/enBCk3Ile6NxCHulBIsn0OoOYjIa6/2ivrgAUixjQ1Pi3blj81/HtdWduy5v0BiJNx/w7EAQq1MY8TX72csV+G7vBgrTTKpiZUG6D4ZjfXfi3ikcn3IRN82+x41lk59fdN/640ctUfDDIbm+X0dxtRGwDS0xwWbbbSd3mMWF+Mle8uIx6PZ0yZqLarqXk4wERPNKNLV/CAG8dKMye+JjiZn1oxFo8xtrqdpqZGhobFzzweDwUFBZw7dw61Wv5A5RL+c5DlHOwS/tT4u7/7O/R6PQUFBSmBkl6nJ1ywnB3Sm7kjfC8VO0oAcTLFu9GOvbaQib5ZDn7pIqPdUXQ28UjXPR5m7eMih3rjs+1MDETQ2+ZOAZfsd6DziMBPvj4vpZac6Igy3hPBuV6kQEAHq9/tZ8W7hKDnws/a6DozJ5pwbjSy/uPl6P1CODXaGeH8r0RAQefR4NvlSJXV21QggdogruXbbscYEn+nsymoeHsRZdvc1Hw4iH11IQONoymBkm+7HXOljvWPl1O0zYxvs4ODX7rI+e+3YF1RQNEWa+o63q02tG4t/fUjnP2ny/h2OdDaxO/MlTq8W8V/JIVwNrKuKEjdq2+XI8Vh9SMBzIFCfNvtgBCo2FcXppWte6KSuk9XCueneffqrjXjqDaIZ/WpCmoeDab41vnSyzrXG6l7spJ1j4bFve5yoPPpFpQ1+grQu7W4a82pv/XtcqS413k0KPIUKYGSfXUh7k3zyib47r08TF/DsKg3YVhzI4dA6iSW1saCsrGxGKMdE/SdH6Foi3UBh1qbmFib/9iZ4jsTh8VbRDoYc6UOY0iX4jpZ1lFtwLvVxsbPVlH1Dl+Kwxv5Dtzhou7JyhTnmTisfHsxGz9bhf8O91z/voHD4F4vJbc4U79zVBvS+LZVmkASSnadTZHGi311IaoCFYONY5z47rUF/du3y8HExCwH/+winSd6KdpiZf3j5TjXG/FutaUcjpr/0IptuQFjSEHZNjfrP1mexmGSb51HgyRJ5BUqU/17PodtL/Qx0jlO22GxqV39oaDgMNG/ey8M0XZUpFO0riig8s2l1HwsOHev1Ta6Tg6JZ7FBODjFxhMn9Leb0jgcahlhpFMsrm1rCql7sjLFm3O9kaZnO1OCt8o3l1D55lLQiT672r+Okmur2MhezAYzdrudpqYmPv/5z6PX67n55ptZwhKWsIT/WwiFQqjV6pRASalQYjc72MQ+dkhvZvu2nRj8WrQWKL/Tx4r7fKAV6buu/LIV5wYTIFKt1X26EtMKLUSEu8pA4xAk9vstlTp8O8U8Ozs5i0IlUXKLBYCmF7qwrrKjFf+l5iNBqu4uE04xA9D0xy5GrycCBlqofNDHqvf5AWh4oYOh9rGU6Me5wYR1uT5VNs8gTl1pLVBQosW7dW6eda41seFTFQR2eUALZr+etteESDdZ1rnBxNqPhLBXG+g61S8EMhGRFk5bJG5OWyTKHv9OPf2XR8jXq3CuNaWu491qp6BEKyx8JbCvnptXrcv1KQ4BfDc7xByBEI94t9pTHFqX6wm91cPGz1YROODGs8WKKaxN3V+yrHODibpPV1K2f96aos6CJTHPooWqd/jY+Jkq7NUGTGEtnnlrIHedRbjaVBvI06vwbXUkBCVg8Gvx3jQ3Jzs3mGh9pTslUPJutaN1adI47Do7xPD1caJjEWwrC9N4SXJ44xeZvdqAPbGmSZYdaB6h6/QgWpcm7TnaVhYKviNw9AtXyNPlUVCS5GUhh4UeLZagaIf3JhsG/8Ky6x4NU/fpStx1ltR1buS75mPBlOA/E4eWSh11n65k/SfKxb0mqjKF5zgs2+vCVmlk1cNlqWcjys7xrchToFCJ/zvXmhZwWP/rZrrPDVLgWNi/7dUGzv9jMwf//CLeWjtlex3UPBJM9VmAyMAs/fXDONeKvh7Y4yFwp3OOw3l85+lUSJKEwZ/+bJIcXvjJFYauj4FW3Ofaj4XS+nfH0X6anhUbwSveE2LNB6vSxojIQCwlpMorUKE25Cd+Cd5dcxyKdke5+htR19pHQ9R8NJjicPj6BKe+cRkiYK8pxHezg3UfE98ZpbVuQrMrWT+6izKpnLKyMkZGRmhpaUGn0xEKhfjiF7/IEpawhCX838Avf/lLDAYDOp0uJVAq0BZQrl3FDunN7C99K/4tIhVlzSMhSne4cNcWQlQcshq+PoEm4ZC05oOB1NhX/3QHo10TqArmTgF7tlrRlIqyGrOa/EQciiiMdk1gXz33PVv9SBUr3y3iZ1d+3kH7sblDS5YqPWs/Gkq5sww0jXDp182iXpMCz2YriF+hdWmRlIqU47Cr1pL6O40JyvY7CB0oovqDQUwhLcOtEymBkqvWgimkZc37A7i2WPCstXLqmxe5+GPh5uSqnZsEnGvNmIq1dJ7s5+xPWvBstqIxibmysESDJzF/K/IUKPIVmCsS8RqNSLWV5HDZO3w4VprxbRPznH21EUuVfo7DzVbWPRam9lMVaFwaca8JWFcWYk3Myes+Fqb6wwE0iTWQxpFe1lKlp/ZTldR8OJSqN+lMkyqrAWu5AaOvAHv13LPx1FkoLElyKLhNCpRMIS3OtXPryiTfnScG6Lk0kPZsTCFtGocAUtKcIMmLSfzXGNAwNTXFYOMoPReHsVcbF3JoUnDxR600PtOZ4jsThyVbHahNeVhXFqLzpvNiX23EurIQ+2ojG5+souI+7xyHN/DtvcVK7ROVKW4ycVi228nGz1RRut+R1r89m60pDivuKqV0hyvFi7kinW/7SiOSBIp8BRoTCzjU2bX0nhvi5PeuLejfyfYe+stLtB/qwVVrofqDQezVRtFnQ2LR0/BMJ6bSAjQuBaF9Rax/vDydwwTfyeeRb1Sl9+/EdQYujjFQP8L1o2JTe8W7Sim/15vq3/31Y7S80kN0SDghLXu7n+oPB1LXsSy30p3YpPNuNKPMVzCTcKPwbDKkcdhXP8RgyyhEQVOsofaJylTfs1TpufaH9pQQbcX9PirfUoLGJPpsuHg53tblbGY/1kI7DoeDpqYmPve5z6HVarnllltYwhKWsIT/W7j55ptRq9W85z3vYWZmJhHzcrKFA+yQ3szmdZsxlKhBDcvvD1B5Twmo4cx3m7j4VBP2VWIstC4zsOGTFak9oJ4Lg/RdGU4IEYRAx7NFjItT0TgqrRLXBvHd336sH3OFEbVBjOUr3lPK8gcCGMo0EIP633Yw0pYQ7agheKeL5e8Ue6BNL3Yz0DCSEihZlxkwhQtS96c2qZAUCtQ2NWq7Gtf6uXWBuVLP2kfDlN/uRW1QYPbraE84wCTLmiv1rHlfAFO4gIGroxz+q0tC9LDejNYtxAxqmyh77sfNdJ0SIl/rirmYgGutCb1XDQoJFGBbVihcpRAOQ0kOAYL7PVTc5RP1GoTAJ1nWUKah5FYHG5+swr/XhX2VUXCU4MW13ozaINxsNnyyAt/OufiHfZURY1CXxmHdpytx1Ii2uebF6KwrBIeGEjU6h4aSWxyobaIRWnc6h9ZlBtqP9qcESq71ZtR2dRqHg40T9F0aZqIvgrlybg00n0NUiCw0CZjCBViXGdLK9lwcouN4H2qDIo0XY1CX4vvE/6lHISH4hgVlDWUaLOFCLBWivKPGJPr3DXyvfsjPhk9W4KiZ4+VGvlc9XEbNR8Xa1VCykENjUOxVr300nHg2on/rvXMcutaacNVYWPme0rR7nc+3qkCZ5hB0I4eXf9NKx/F+UOct6N/WZQbqf9HB4b+8hGuVGfcmM6sf8qf6LIg0eX1XRrAuM4i10u1eSnY7M3KoNuaDQkLvmhPyuNbOcXjuh1fpvzoMatH21R/0Y18717/bDvfR+Kw4+Lrs/iA1H65AneimhhI1U5GZlHuUxpI/58CuBveWOQ7z1DDSPk5jIn626uEyqj8UTJUd646mBEraEjX+PR5qHkl8Zyy3E4isYO3IDspZQ1lpGePj49TX16PRaAgEAksxr/9iWBIp/RfAmjVrkCSJhx56iPHxcYwGI0qU3LvlnTz28cfYedsOAKruLsG7UbzVzS8K5WNwm8ir6FxupLjWjn+/mORUGiX5WhGE6T83js6iJbBHBHscdSa81XZWPCgm+8mxKRTKua4Q2FVE4Nai1P8lSWJmSqisyw+4Ka61p0QRgW1FqDRKgjtdABS6tVTsEH8b3CfKbvxsFUVbrKnrJ11fvBvtlN9ejDGko2yPF2vQRHR0kov/dI3gHi9l29ypNng32gntL0alVeJd76S41o5vsxCphPb7UsKSuk9X4tvsILivmCtPteFe7aK41o73JnHt8AFf6u+OfOEyCpVEKMFZUY2V4lo7JbcKTlVqEVhKpqwq2+YmuFf8zh4upLjWziyzTI5NUXmbF++GuU2rsp3u1P0qVQo0ejXlt4n/V97uobh2bhER2FWEpJCYjgqOi2vtVN7uEXzvFRzqPEK5Hp+NU7ZzHi8bbFQk6g3eJsq6N4tJOLh3IYfltxdT/9N2lAolxbV2imqsCzhMQqUVERvvTUUU19op2+pMPNdiXKtsnP1uExMdUUpucRLcVwxA6c3i2Xi3ijaV3zHHd4rDPYJD90oz6oJ8hq+PMXhpgvLbi1P9O1k2sKeI/nN9xGfjmH2FBPeK+6k4UJTGt3OFBUkhYQoZ0NkUFNfaKd+fKHub4Lvn6gDxmTiu5WYCu+b6tygr+I6MxJAkKSVaCuwpSuO70K1lanya/nPjBO7wUVxrx1GRzvelH7fChOB72T2l+HY5KNklOPTV2dP4VmmVFK0XfTl8QPRDzybxHG1VTkZax1FIEr7NjpTgqeQWJ6H9PiY6orQd6kVn1uDb4aXuyUoq3+pL49DgLhB9Vgcacz5mX2FqjAgfmOuzSXekfJ0YM6reUUxxrZ3QAcGL1qBGkiSR0k4Hvo2euTFCB9agifxEKpTSHS4xnuSLYGtgVxFlO+Y4VKgkkY5yQqiei2vtlN/jRifp+NCHP8Q73vEOXHHRxtnZWV5++WUUCgV5eXmcPHmSJSxhCUv4j+LcuXPk5eUhSRLXrl1DkiRUShXFBPn0E5/m/R96H1pJS+mtTnyb7YRv8xIZgKmJKfLUKuyVYtwP7S8msNOTqldSSoT3ivFrcmwa5zJxeheg/K4SvLVO0JJy5TF4xIdn6U1OSrY4CN8jguZKtZh/x1uEWqFsh4vQbYk5Yq0VS0khBXbx4Vy+uxhT0dwHbGCnh/AdxdR+qhJbqBCdScPw9QkiA1B5hxffZtEeg19LYLcHhUKi/8oIWouWki0OQvvEeB3e56Fki4OidTbyDXmE9ngJJeZvtFCyxUH5AQ+ltzpZ864ySrY40GoVXPlpG6H9XgK753jxbbZTcUeRSDHXNoGltDAlGAodSOcQYHpSrIdKdhZRssWBc6UJgOA+L/ZyE7NTcbrODlF6i5PQAbH+8NzkpmSLA98mB6YSPZJSwr1m3ppih4tgomzJFgdmXyHxeJzeSyOEDhRTOm8NVLbDRXCfl96TIzS93IHOrKVkZ2Jdc3sxvpvniaR3eQjfLuq1VOoo2eLAv0vUVXFbEb7NdsZbIpz/h2ZKt3gI7Rccal0a8cwTfCs1CiRJSglW0vhOtFlrVNP4dCehfeJekwKn+Xxri7T4NtupvFP8bdm+Ykq2OLAG9ImyxRAXYiYQorDyRPt928Uz96y1Mh2ZAYXgIonSW5yEE/3QXedGU6hGmUgLE77dt4DD0G0+pkanmY5Ni750iyfVhiSHTb/tIh6PozUn0nJUGijZ4qAsce/hA14UKinlABHYPcehwS/6rGeDi4ZfdBLe78G32c6GT1aIsrd6UhxqLYJD5xoLalM+5QcSHFrm+A7c6uHCDxsYaZvAudxKeL9HvCd7XJRscWDwazn/j83E43ECuz2U7HKw8TNVYow4IK5TvNGL2VeIvdJA2XYP+fq8tP7tu9khngEQGYwiSZIYI7RQfmdJGt+SUkqlPlr/nnJKah14tibez9t8aC2a1BiRX5BHfiLdkGetVbwL28V1S28Sf9Pwe+FWFdglxgiADSs38sADD3DfgXeiRElBQQENDQ186lOfQpIktm7dyhKWsIQlvBG4/fbbkSSJO+64g9HRUQyFBlTkcXvoPh7/xOPsvH0bAMvuK6U0EXdo+H0bxKHkFjEH67wayra5COwWv9eY89EYRGB7oi2K3q4jvE+MxxqXgrItLla/rRSAyEAMZZ4iJXQI7/MS2l+UEl8AKWcB/04HZdtcKfFF+DYv+YV5lCTGYIvfQGhHYk2x3U3ZNhcbH6vCe7ON8AEvkjSXztO/00XoQLEQVmxx4am2ExmMcfHHjYRv9xHYPfed7N/pInRbMVqrmuINNsq2uXDXOhNt8OFPxNzWf7ycwB434Tt8ND3djdGppWybi+Kt4vfh24uFCAWRbkypUqTWKubSAsq2uShLHGxSa/OJx+OpVAvBfUWEb0tw6BB8SwqJyeFpyg+Ie00ivK+YcCIOpFQr0Jo0lB8Q9xPa46JsmyslFgnf5kWRJ6XSkZRudVKRmDvLttsp2+bCXFrAsS9eZWZqltCeuXhN6Q5Xqv2+naLe4k0ijhW+YyGH4dt8ND/TzWwkLsrWiZhH6LbiFIdJ5BWIGIY3wbdni/h9aH8xJZtdXPxRKxNtUUJ7i1Jzvb3CSNk2FyXbE/Gmt/pSfN/IoTGgocCuY6h5jP6zo4T3F6X6d6rsPi+9l4eZnYlj9RsJ7U08x33iXpN9tLjOgUIlYSoRG7Nl21yE9om5PrDbSdk2F8PdMWYmZ3EttxLcN4/Drc7U+mm0axxJkrCGCxPPpjiNb2vIyOTYFP1nRylO9G/PGrFgSvbZ+l90QFTwveztfnzb7DjXiffGuc6RqFf0WY0ln6L1NgK73YRvT3zPrLGIZ1Provf8ELOzs5TucKWEVKE9RYRvKyY6BFd/1UaBTUvprUVs+EQFy+4tTePQHDAQTqz3Cj06bAFjaowI7fOk+uxEWxTioNYLAXjZAcFZOBE31JpEzCvaGxNua9u8hA7M8eJeZUOtE39bsd+NMk+B1pGXuFcvwXkc5mlUzEzNEB2Ckp2Cw4o7vGgkDe97/0O848F3UBavBEChUPDSSy+hVCrRaDScPn2aJSxhCUv4j6KtrQ2TyYQkSbz88stIkoQ6X00pFXzi0U/xvg88jFpS46mz4N/jEbGSGIz3R8nX5eFaJcQN4dt9Yr2EiNEr8xUEdov/R3onKaqx4agWa4pl9/opvcUNakRKqTgYisSc5VhuIrDbQ8U9Yi9SldhDGGkS1nThA0WpuISxWIdzhRWDtwDUUL6vCMu8Q0Kh24qofIuPDR8vR21XYyzWM9w8TqwvRni/OxUb0XvVlN9ejCpfSe/5IWKxWQK7PYQT82xwl5PAbg9FtVa0NjXldxQTum1uLPfvchPe58G13kzN+wMEdnsweDQ0Pt0lys6bI/y7PYRu8zLSFKX37BC2ChPWcCJueJs3bU6WJImpxHrIucFOYLcHz1oxz4ZuL6ZonY3p6Ax9l4YI7S8ilODFU20hsNuDc4MdY1kBynwF3g1zMa/gviJCifWHNWzAucJKHBiuHyK034t/XowudKCI8tu9jLTEuPSvjRTYtZQmDmaF93nw3zq3tgrf4aXiLtEGtUFBYLeHYCLmFdrjIrDbQ2w0xpWftlG61Z16jiDiN8HEOk1tyBf9MCFwKr/Du4Bvg1tH67O9+HaI55hc85TfXkw4wbfaJgQpoURMo2izg8BukS1EtNeHhJRy+Aru8aTiqY5qwXfROitT49Mo8iSCe+bxsr+I8B2irGuVGb1Tlzp4ENxfnMZh+EAR4duLiQzEmBqfIrDbgy+x5gjuLcK/S9x31/Eh4rOgNYv71nvVBHZ7KE0cEAjucZOvy0sJncO3FVGeeI5qg+CwbLOT5t93E7xV9NnkYcHy29LXKv5b3ZRsdqJzaCi7VfCSFCKV3y74vvqzZgaujVK01kpwbxF6rxrfNvEcrUED9T9vZ2ZylvABL44aE7WfrsS/20MwEcdyVTuwVZhwrTJTdosTnUVDaJ6OILjHQyix3htun0BSSDiWiXutvKcsjW9VvpLZGRHzWvPuAP6tHny7Emvx27wYigpSY0SBQ4vaJNZdxmKd4Dux31ieiNc2Pif0EuV3eql8q2hD0FHFAw8+wNtufQANOnQ6HU1NTamY1+23384S/vOhyl1kCf83MDExgcPhYHw83dpv3fJ1VBSupvPwICOXRxmpHON6wp6fOMxMi43/7qPD6OwaokOT4ndqiMfjKNRCknrtN22YQnMTeMfxfsyBhNL5zBD+W1z0XBTK4eYXOrFWzakwR7siGDw6lr+jlPP/2EzvlWF6zwqVcOMznXi32Fj13koO/59LtB3qJd+k4Nq/Cvvjvqsj9CfqbXy+G+9GC5ZScRK99eUe8vRzXa73wjCzxFl2TykTg1F6rwxz9ddtMAHNL3ehMYkPwNI9Tvobhxm8NMpY6xjk5+PdYqP3pHCIaXmhC51TfMxOR2dABW0viyBL1+EeVAUq2l8Wg9TMzAxKFDiqDfScHKHr1ACRQaHeHLjUT4FHS4FdTeXbi2n+YyfG0rnT2p0n+5kcEYuIsb5Req8M03FsgLHGCawrCrBUmNL4ToqODv7ZRcJ3e+k+meDwuQ7sK+dOCbUdEm1NiqHS+H6+E2f1XNnrB3tTylqA3svDDFweItVBgNlZ0QdaX+kh35DO91R0ivWPl3P9SA8z07O0nxAnBFte7kpNlkkk299+uB8pT6L7SKKdL3ajc2pY9bCfmclZus8OMtEtJozuY93kG/JoTzgxzBe/AWl8d54dpLCkgLZDA2ht0PRcByZ/ep+dGpsm0geHvnKJ8AEvHccEL01/7Ejrs21H+pidmqXthb4Uh0m+m54XfPcfH+fQ8Uv4ttuRtHPS7d4rw3N99neC79mRKBs+UcH1Y72olHO5f3svDzNUL05a6Z1a4vE4PZdHMvI93DaGwVNA3/kR+oCZmTi9ZwSHLS90obWp6Trcw0TfLIHb3ehcor93vtaNUqOk87VuJvpmca43ovfqWHZPKdPRGcFhQnHce6YXjU1N2yt9mMsKmYpMM9I6l8uk82S/GCMm4NQ/XKR4s5e2gwPUPBJkanKaoetz48/8PmsqLmR2dpbmP4rTrTeOEdOTM4x1JTbPtzoZahul45Dgvv4X7TirLXS+nLBglUjlrYX0MWKscwy9Q8t47xQA/fUjTI5Os0xaxzLW4dpq4OjVV7l67SrT09Ns3rwZi8XCww8/zGc/+1mWsIQlLOH14H//7//N//yf/zPtZ5p8DW/Z9nY6XxqBCLS80kOhR8yHSYFAX2LcP/9UG0UbzPReEv+PEwdJzCcdr/SjMeQzknA8anutn/xCJcrEfDPYOEphkS7lktJ5YoCxLuGa2X2sF/c6CwVWcd2m5zopdM+dDOs42o+5XM+qh/xc/VkjBS41bcn58PlOjCVzIqX2o33YlhtRKhX01Y9iOj9I54nBVFlTsJD1nyhHpVbSdqSP6cgMHYkUp93nB+k5LcpGR2OMdkW49m8daC0KrKuskPh4JCLK9p0fZHYa3DUWBq+PpNJftbzSk3K+SSI/4WzQ9EI37hozA83i3lte7EZtUbH+8XKOfuMK3acHGWoSrlAtr/YxPTVD99khAFoPd6HWqGn+g1hzdp0cZDTh4tdxeBBJIdF7sofIgHDR0Tnmdh47Twww0SPWKj3H+8jTq2g/OAARaH6hawHfkdEYaKHz6BAFVh3tRxLrhGc7MJXNrQ3nY6B5gu75fD/XgbncyPJ3lhKfidP6Wq8Q6QKRrmga3zOxWRRaRap/tL6Sntqv+/wg0ZFJ1n0sTPNr3UwMxoi0R1J8qxLCNmtYjyRJRIbEvba83MPk+BT9DaJftrzUTX6hWKtoXRq6Tw8y3DKWuGYfMzOzDF7op+OVfpwbTGhNc2vD+Xx3HupGoZZof1GsE5qe70Tv0qVz2B+j+/gQWgsU3eKhO7G2bXquE0PxvD57pI/o8CRV9/pQqBV0nx9M8Z3ssyDcmZAgNi7WDCOdkTS+W/7YSfBAMVPjYq3eerA31WcjA3N9NtYXQ21T495gxbzMSuSVfsG3UiIyMMv5f2gm+CYPBq+O5feW0fRCF9HhSUY60/lW5isgDt0XBhmqF3226cVeJiPT9F4aoffkCKW7rcRnlWgtCla+N0x//RD9F0XZa7/upmjjFP1neln59jIkpcRw29y6bP4Y0XW2H9cqKx0viL4fG4vRd2nOervjaD+RIfF/e6WReDzOUOtwikNjiZ6BRJrdmalZFAoxLvXVj+K6PkrHwUG2Sndi9esZcHXw8ssvMTMzw4svvojb7WZycpK2tralVHBLWMISXhei0SiBQICOjvRUYqvDNSwzVtN9fJDxtiiDTSM0v5RI7zEjpcRCQ/URWl/pYTom5s68wvSY16WfNGOpmDu52/JyN/bEiexo1yyTkSl6LwwB0Px8F/aVppRr0UDDCNZyI8vfWsr5HzTTdXqAgcti3Gx+qYfp6RnK7yzh7HfraXquG50zj6anxdzceayfoebEvPpaP1NTMziXCReWxue70Bjn3Jw6jvQzPT3Nigf8jHVH6DzVT8crXUSHoOm5LnSJjRpXrYXeC4MMNU4w2izmCc8WB52HBS+Nz3dSmJhnJ0enmZ2ZpeVF0Z7u84MUuNV0HBP3OjM9A+ThXGum+/gg1w/2MDkqOB1sHqfzVD86u5qKt3ppfK4dc3guBtPyUjez04n13mSUzlP99J4dYrQlijGgwVplmiv74lzaisN/dRn/ARf9FxN8v5jgO7H2an6xB5VaQdtLImbQebKfwatiPd3ySi+xsSki4zOJZ9VNfuFcDKbzWD/DrWJ+TLp9J1pI0/NdaBNxwyTfUxMxah4Jcf1QB52nJHoTjgfNz3en+E5iOiKu2Xemj3yDio5EutzGZzsxeAuofFsxklLi+ms9RIfF+qP38jCFxdoU30qVcq5BwPVXe5hK3Mtwu+Cw69QQaKD5lQ4s/nl99qVusVaJwuG/uoT/gIvexLq35cUuwXc0yXc3KCU6XhXr9s5T/ak+2/pSN5HBGAOXhjhyaghXrQVV4dxavPNkP0OJtWDD73vwrJukv3WUdR8L03Kwm7y8zHxbgmJNMXApuYbrQmuZ47v3wiDWchODDaNMDU+i1CjoPiaecePzneidWrqP9REdmsW3zY7eK9YRA5cG0Njy6TgyRLQniqVKj7GkgBX3+5mKTqf12YHGMfHeHBtixdu1TI/PpN6/JN/JMeLg1y8SuMVFz6khVryzlPjsLJ2n5lzRml/sTq0N3aus4j16oTPRP9LHiNjoJGO9gnzvzTYGm0bpPCLu7eqvO3GtMdH8R/EOKlSK1CGLJIfJNo52jWMtNzLeL+rqOj/IbHQWv1SFnyqcGwo43nGYK1euEIvFqK2txW6386EPfYhPfvKTLGEJS1jC68GPf/xjHnzwwbSUbmqlljfV3k3vkTGQxN6eqUysKaYnZyGOcEYBLv+0HVeNkcHLySwq8ZT7zeClMVpf7mE8Mbf3nR1E51SDUoybnaf6sJWbUtdteak7NXcO1w8xM+WiwC7mgaZnOjF4dWllreUGVjxYwrmnWmg72kt//TDEoOnFLoxlc/Ga1he7sa80kadTEeuN0Xakl/4Lov0tf+zEXGGk+kNBNKZ8Gv/YAZOk0kC1HellMDF3TkamaDvSS8sfelAbFBhDBhTKuf2itiO9DF0bJTYWZyY2y2DTKCMd4t6bnu0iTz83dwKpLDVtRwaYnpqhP7HOaXq2C401j5pHQpz/fj3XX+1lrFvEFrpPjSApJPrPifa1vNKNRp+fWi+1vtpDpE/s/fZfGCDPoKL71AixvhgjrRPonXPf560vz/Hdf3WEtiO9dJ0cJjYixBtG3zwOX+hmamIGtQEGG6O0Heml5+xc/CAZgwFgNk6yE8RGZtP4bn2pC3O3kfD+IhR5Cpqf7xJuUvM4TPE9OoVKrUylEGt6vhtVviKt7OTYFGveF6D1SC+T41MMtYj1SNNzc3zrnUJUHBsWvLQfHWRmZpbh+qFU2eRaXG1Tp/Hdc7IfhVqi7+wg7a/2Y67UUzAvbtjyUjfRQcHh4OVB2sx5dJ0Q7W98tpNCT3qfjY1Mi7Rpaii5xUFf4j1q+mN6n235YxfTk7P49wrx9ny+W17oSq3FTeECJJVEbGAywXc6h9df6UZjVTMTSa6Z0/luP9rH4NURYv2TKArymBqfwlBawFhbjMZnusjTKYmNwOWnruPbacdYrGPlOwI0Pt/B5JFp+q+JPtv4TCdqg0o8n5k47Sf7GG5MxKYSfAxeHqTr6CDuTWYUkgLUsPb9YbrPDzJwRXzLtP2xi+nIND0n+wndWYRKrWSwaS7N3Pwxou14L6VbXLS+JNZt0ZFJ+i/PlW3+YxdTY+K+HavNxONxRhPxsuQYkUxZGBubTAkhY70x+q4M03VogM3SXgwONROBIV4++AITkQl+9atf4XQ6yc/P59q1a0up4P6TIMWTOzBL+JPg5MmTrFu3jtnZ9PyRK6nDIRWl/SxwuxvnSjODDaNc+qfrC+rS+XSU73Wn8lWuf7yc5j920nNyYU7J5e8oxegroOvMAA2/7Fzwe/vqQsp2eFK57Ev3OGn+Xea866V7nHjWWuk6NUDjbxbm0/RuteHb7ODKL1pSDi3ZsPajIS7+WzsTrQtzuaKDjY9VMTsdl81Hal9diGeDnTPfXpifMlN9y+8uTaXlyISNn6kiPhvn0F9kvp7WBmveX8XU+DTHMuTdTWLdo2EmeqNc+GHmfK0gnrGlrJBj37kKGW4/1abPVjEdmUk9HzmYK3UMXpKvKHy3F1vYQMuL3bS/0i9bbuNnq5gcnUql6MpY5jNVxONxDv25fJ5YY0jHcH2WG0OkGiu/o4TxnmjWZxi43Y0lUJiVc2NIR+WbSzj745bM/QmRwi24z8tYZ4Sz312Ytx4geIcHxwoTPeeGuPaLjoxlHNUGDD697O/nw1ypo/Rmt2xu2eQ7E+mNyZZZ84EAXWcG6HxtMOPv56P2iUpmIjMc+5vMXG38TBWzM/LvlLlSh0Il0X9unKr7fKg0SlmuNn62CuLI56L9UJCh5jEaf9OFf78LZb6S+n9rl60rPpP53av3HkdSQnNzMwAmk4n169fzhz/8IWNdS1jCEpaQxO7duxeMFToK2SjduqBs3acrkRSS7JgWfJOH6OAUbS/0ErjDjd6h5UyG/NggxlriiBRpGbDy3WVMDMa49m8d2FYWEhmeTjmjZGoXILs2WfexMJJSyrlOAJGeyuzXc+57mcf1NR8IoLWqqX+6jd4Ma0qAVQ/7ufb7Ttn2zkfwTR4GLg2lRBI3InRXEfYqI22H+mh9ridjmVUP+Slwajj/4yZGGjNf0xTWig3FH7WkBDyZsO5jYbrPDcleC2D1+wLo7GpO/X1T1rpApHXLxkOuZ5dsU55excHPZe4rAKW3OvGst9JxtD8l1MoEg18ry1ES6x8vR6VVZr0eWlj7UIius0O0vdArW6zq/hK0pjxOfO2abJl1j4bJ06k4+KWLKSHWjaj7dCWSJMm+L0DqAMVisOohPy0vdjJ0NfMFa5+oRKGSZDkw+LUE9xZx8uvy95WEvdpAaK+Xht930J0IgM5H4A43zhVmGp7poPvIwt8D+HY4Un1y3cfC1D99PWPbQ3cV4VhmoufCEPX/unA95VxrwrfFkXKfEuLG5pSIcD6q7i/BVFpA60s9tCUPxSTQE29nqmKI1uutqUM1y5cv56tf/eqSw9ISlrCErGhubqaqqopIJH0MW8lGHFK6e6KnzkLpDhcDV0e5/JOFMS+NSUHoTh/nEvGbmkdCtL7SQ+/p4QVlA7e5ca220HV6gIZfLYx5GQMagvuKOfFVEePw3mxLbQLdCOdaM4E9bjpP9tP09MI5177aSHBfEVd/fZ3+RMrdbFj9vgANv2tntCWa8fcbP1PFzOQsR75wOePvjQENvs0uzn2/Oee1AKru9aXcnDKh7olK4vE4h/8q8/XQwMbHEzGh/yMfE1rz/gCRwUkuP7Xw2SXh2WzFtcrMye9dSwluMmHjZxIxtq/Ix3tApPuS4xHAt82Od5Odttd6Uw5RGa/32Spiw1Op/pAJtZ8S7oyyPCEcvibastwYInVb9Xv9jHVMcPZ7zbLlvDfbcK40p07Ty9W18r4Srvy8heGGzNc1BkRqs9G2idS7k+lavpscdJ8ZzPi+gEjvZqkw0vjrhXHfG6HzagjscnHu7zNfz7qykPLbixnvjsp+Oy17oITBxrGUECsb1n0szOxMXPb55Xp2Oq8GjUHFwMUx/Adc6Mwazv8gc9vrPl0FEhySWaOueGcpYz0Rmp7uFqkAzXmynNU9WUV8ZjZju67YjqMqkGhqFt9oBoOBLVu28Jvf/CZjXUtYwhKWkMQHPvABvvWtb6X9rBAzG6TtC8pu+Hg5ijwlh/4i85jm22ZnZnKW9lf78d5sw1RSwPkftGQsW/upSpCQ3V8of4uXqYlpGp/uEmm0ZuOMtMQyll37aBhVnoLDn888bq9+jx+VXsVxmb2O+bCvMuJYbuSCzFqo6m0+TEE9137bQc+JIdkybQe7Zds7H75tdkbaJhi6mnkftPgWO8Wb7Vx/tZfrL2Zem5S/xYu13MDFf2mRrUfrVrPsnhIu/7SFsTb5dq1+yE/flRHZdS5AxT3FWIKFnP9xY8qtRg56rzrr9TZ8vBxJoeDw5+VjXqveU0aBSysbawWRmi24x0P7sT5a/iAfrzOUqHM+lzXvF3HNbNdDDavv99NXn52r4AE3ereW0zLrFxCc6+waTnztIrHMYVTWP1aOIk/B4b+S5yl8VxFXf9MOubsdFfcU03m8n+FrmWOtax8Nk69TcfCvL2asT21XU3G7hzMye37zYSjTUHVPGY3PdGZ8Z4o2Wym5xUnjM510Hc28d+mps9BxSAjf17wvQONznRnb7r3ZRsnNTnrODVH/84UxL1O4gLLtLk59S+yhVr3NR8Nz3SkB3Hz497pw1VhofblnwTMeiQ8wWtFJW3sbo6Pie66qqopvfetb3HTTTdkJWcIbiiUnpT8RvvzlL/PYY4+l/UxCQR270UlzKsz5QoyGX3ZiLNbR/EzmD/7KOzyojflYVxTQf258wcaUf78La9jAsS9f5fw/NhO8w5NRoATgXmdDpVWmHIZuFCiV7nHiXmPh0F9covl33TS/1C0rqhlPqBgLHDr6WTipJkUpw81jXPhhq7wQRgdMQPfZQTpfk9+M8e8qEvbSNojIzCfrP15O18kBWp/vzSpQAjj45SyTF+Ia05EZus8PZS2XV6CiQJn9xLElUCgsprPreIgOxhhsGsteCLIKlACu/qSN3Eu5xSHrJJ9ALoESiFRjUzun6TmTXXyT4irRLzJBXahCoZIo2Wzl0j9lLtRzcoSyHbN0nZQPfFz7RQcdr3Yx0bdwQ2d+PUlB4IZPVND0XEdGgSBAaJ9IVajzaJjoWLjwa3uhjwKnhitPiVQcme7x1DcbUr/b+FgVsaHJrBuC2XDwzy6KayAWBXl6Vdr4Mb8fGX0FqROLmXD2x80YEyln5o85Sczf3HOuNCMppXSRkiRBQivbe2GY2ZlEmrjb3ZjL9Bz/Tj1MQKhtLQATTNNDG+Pj4zz77LNIkoTb7V5wQncJS1jCEoqLi2lra0v7mRc/FVL13A9uEGL0nBtK2c1mgmOZiZnJWdpe6KXhFzesqbSw7n1hOk8M0PZyH80vdTNYLy/W1ru1aG1qrtFBX4YNrnUfCzPRH+PCD1o49JVLsuKOxaDmkSBqYz4H/+wibS/0ZhadaIGImG+Cb/LICpQKSrQUODRU3uGV3bhybjDh2+zg2Jeucu3fso/P9f/aTtsLnRlFFEl0nRnAt8mRVXzjWe9Ama8gTy1PldaiIE+vwhoqzCpS6j4ziGetJadACcgp1MomTno9aP5Dd1ZxUhK5BEoAfZdGKCzK7YqTb8jDXmXIKlLSuzWo8pSyvwfouzyCNVCYtQ8f+kpunpICpZJdDhzLTLIbmVqXhgKnhtC+Yo5dzVzmzD804ViZcI9I9P35GGmMpNYwy99RisGr48wPmzI+b51NnL4b6cwcSWr4RScNf+hMXaP2U5W0HexNEwYl+6O7zkKeXoW72sbQ1YXfgPX/2s5MdJbGp8X4c6Porvv4UEoo5VxrosCpIfymUs58d2FArenp65S/tTTVjvl1OaQiuFKEJe7nEL8nX53H+fPn2bVrF9PT0/zgBz/g/vvvz3i/S1jCEv7fxM9+9jPuvvvutAN5SlTUsRuNNHdKeb4Qo+PQALYqA81/yHyIJXSnj0KvDvtqI72nhxeIN7w323CuMnPiq/U0/KqTmegszc9knitdq62ojXMOQzcGqj11Foq3ODjyhct0Hx+k+/ygrKhmtEuM9zqrmn4WruF0Xg2rH/Qz2DjKpX++zmmZg0hogCi0Heyl57y82Cm4rxi1MQ+NQ5NyJ7oRNY+E6Dk/yPUX+rIKlGARc24Uov2TqRPVctCY1ai02dcA9mVGNPPcd+Qw2j7B6CLWXdkESgCtf8wuTno9yCZOSiKXQAkg2hUl0hej+8xCcd18WMsNqE15aEyKlKPPjchTg0qrxF1jY7ihLWOZ4YYokyNTdJ2Sj7G1vdRH35kB2euAcDMbqhfPZO1HQ7S83EPvycz3UHG7F40lX1a01X92lK6SgTnxTqLvz8eFeZvgdU9WEemPyb87OXD4ry6nUuVVvq1YbBzOEzRNtEVTITdbuTHlSpoJp77biMkvAmieOgvutVZO/F19qv3zhWDeOhsqtVJWpNRxtC/l1HGjgK+8by30wSxqWrhMNBLl6aefRpIkAoEA1679++J/S1jCEv77oq6ujsOHD6f9rIQwIWnl3A/UsOr+MvrrR2l7qY/2o/1pjkE3wltnZzo2Q/ur/bS91Ecb6eul1Q/56b04TPur/TT8roMxmXUJgDlYyMzkLI1Pd2UUwqx5X4Do0BSXnmrl+DeuLkqYIYcVD5ZQUKTj8Jcu0XtmmN5Mc64aiMHFf26ldLdTVqCktqkxBfSozXlz+zE3wBQuIHCrhxNfq8+57rj+Yi89J/uJjcjPud1nBtG7tLICJQD3GjP5BSqUmixrLzXo7Bpss2QV3vSeG0ZjyMspUAKyCpQAjvx17sOSi0HPiSHZZzIfixGOdZ8dxOLXZy8UA51Tg02RnSuDr4B8Q57s7wG6Tg/irrbICpQAjn49N09XEwfRXGtNeDbYOPmNzHO/2gCWYCEFdo2suP3cd69hX2MR71Wi789HrDeWEigFD7hxrDRz/p8yi9Z0VrGomujOvFZvf7Wf9mP9qWuse6yc9oO9KVESkPq3KVyA1qbGVW3JKFJqe6kPSZJSgr75Yw7A0NVxTl0V76WhTIMpoCesUWQU5re/2oXOOudONl/AZ5AsGK5YsMWDHOVZUMe5ePEi27dvJx6P8/3vf59777034/0u4Y3FkpPS/2U8/vjjfOlLX0r7mRotW6R96QUT6ULWfSREXmHipHEGjUX1hwKoNHOCAvvqQnpPZw5mrPtoOGtdlW8vprBIx9HERCInoEiWNQcKqf/19YzXc6434t/p4cw/NMnWMR91n66k89SArFtT3ZOVEM+xsTNPyJEUamUs5tGw+t1+JkfkT4HpfDpWP1BK26HeVNq1TMgmhPp3I4voZtFV+HSsfrCU3svD1P80c4Dv9WAxTkqLRd2TlUxHZrI6IC0Ki+Xp9fC5iLK1T1QSG56UXZQmRXcTPVFOZ3GCSr2rOa6ZdHHqON6f+f3QQe1HKum7NLwoF6f1j5czHZ2RdQLY8IkKFHlSVkes5NgQuN2NrdzIka9fzngP6x4Nk1cgP+YAKSFk0RYrvi0Ozj3VwlhTJCVUmt9ulVbJwT9LtOuG34+7e7k0foah4SFRr8OBWq2mtTV7QHYJS1jCf29EIhGKiooYHEwPyi9nAy6peOEfaMVJ8ejgZMZx0hTWUvnmUup/00bf2VFsKwszCorm1xUZiHHqGwvnDK0FVrynnI5jA7S90IvWpSHSJb9m2vhkFVMT8ifK13wwgEIhLUqwWv4WL8bSgtSa70aU7XXhrrFkdTMSNwFEyM4Dc05EZ36QWdQBwrEpT6/i6BeyfKgndTSLFWhlEJv8u8osAus+FkapVmY9BfV66srlpLRYlL/VizVsyOpatGi8QVylVWkR6dfkULLLQdE6G6e+dVlWuJbi64vy92hdrqf/fELgn+M+6j5dSXwW2WdZtteFY4WJIzKnOuejoETLyntLufqr63PXnwfnWhOBPR66Tg6mhEY3Yv7YsP7xcvqvjSwURSbKrXmvn0hfLHWK7EbMf1fXPRYmNjTF2Qwuaoupq2dZPWfPnwFApVJRXFzMQw89xKc+9amM5ZewhCX8v4FvfvObfOhDH2J+aFGLnk3S7ozlk+6IJ7/dmFFws/yBUjSWvFQswlKlZ+Bi5gNbqx7yU+DQcPI7mesq2+fEFjam1lLZRD5lu52411qp/017Rqcmc0UB5XcUc/ZHzYsSpqz/eDndpwdpeTbzumrDJyqQFDmEMPOEHOaKAgYvy2xcJZyPYsNTshsVGpOCNe+voO1wD9dfkA9qaUwQHZJv0r8LGQQpr7sKE1R/sIrei0PU//w/fkBpMU5Ki8WGT1QwHZ15Q+paFFevh8+kPjBL+XWPhZkcnZZ1ONJ5Nax+h5+xLnk3cpj3ruZoX/FWG8WbHbQf7pN9P9Y9Gmbg2qisy9N8rHl/gNnZuKwze82HQ+QX5HHoL+XX2cmxwbPZStEGK+e+dzXje7DqYTHmHPzri7L3mOTBUqUnfJuXSz9tzuh6lfxekqtrTNPDFc251Het3W5Hr9dz8eJFNBrNwj9YwhKW8P8MwuEw9fXpc84K6nDekKUliY1PVjHRG83oBKN1q1nx9lKanuui98wwpnCBvFBGLdYbcnWhhpqHQnSfFWJwtU1NrC+LA88nypmOzMquXZY/UEKeTiWbdWI+im+x41xt5vi3MoudPHUWSre7sroZJe+BGBiDOlmHGoDKe3yYg/qsTkTL7vWhdWo4nmtPLIOA5D9c9vXUKYPVD/lRG/PeEBHSYpyUFgvfTjtF62yc/LvGjO45rwtvAE8LqjSQVazkWmuidIebU9+Tb//Kd5ehd2k58e0G2XfIUKaZ63s57mP9Y+VISjgiE3/11FkoqrMtav9WbVOz+p2lXP1NeyrF2nwYgzqW3V0qsjD9NrNoe/7YUP2hIEONYxnLqg1Q80gVE91RTmc4eJe8XvJdXfOBAJMjU1z4UYb9weT4laWu/qomTl04AYBSqaS4uJhHHnmERx99NGP5JbwxWHJS+r+E+++/nx/96EdpP7PiZo20Kb2gJFH36Qpmp+Mc+fzlnGm/VFoVynn5Om8UDK17NIykEOk+jv3N1ayCiAK7BpVGmSpzo7iobJ8TxwozR/7qcsZ0c2ntUquQFBK25QZaZURKGz5ZQe+FIRp/05XzVHl0aJKZSXl1sX+/C9caS0rIkS2t3ERHNKtoAqDQlQcSzM7Ka/aSYpSxrghn/07+w3zZ/T4ig5MZU+HNR9k+p7AOzyaSSQhSWl7uyprmS29TEZ+NM9aRXXGz4ZMVSApJ1obz9SApXDv9vcaswrTZqTjTsRnZ3yex9iMhoiNT8k5XiVtzVBuIjU7LuzRNCDHZsvtC2UVWCUeiXGn0JAUoVPInDPrPjXOwIXv/grl3deOj2VOt9V4YwlZpFG5lmTCRbqNa+0QlbYd7aZMJNCrzFUgK+fbPt5Svus+H3qVdwEfy+ZpKClCqFcjh2JfnxhzneiOBXUXU/yZd2Jh0mzIHCpGUEjMjE4CUEmoCEI+LNuiAODjXmwjc6qH73GBqk66g085adjDBBH3ha3R1ddHT04MkSQSDQZ5//nl8Pp9sW5ewhCX890IkEsFmszExMTcYS0hsZC9aKd0xJvgmD45lJi7+pImhq5GsQofYSBxJKWGtMNJ3dnSBMMe5VoxPl/+tmYFLE5z6xkVZAUYkAiq1Emu4kLYXejMKlNY9GmagcZSGX3RmTXsFkK/PfpLHt8OBu8bCkc9f5spPM5+0TqLrcA+OFSZ6L8kLj2o/VYmkEALybAIlQJx6ziEMUeYpUEjy8xPA+g+Wo9IocwYyah4JcuK717Jez1IpTkDLpZ1LYvk7S8nTKmXFyUlMR2cge/OxVOqouKtUpNL4de5Nllyo/VQlM5PZhd/jvTHMgTimYq1sqjMAzxYr3jpbdpFY4s9LdjloeSaLeA0IHHCj0iq58i/yfS25sZMtbV98FpBA59ERGci8KX3sK1dz9q+kQMi/z42r2pwxpVkSE32xrA5qTb/toikRMAnc4cYaNMiuHR3LjEhKSXbtNd/pCMTavP1QX1rbkmOD1qJApVFS6MrsehXpiqaNX5mE6fPfVZVaCYbM93hjXRs+WYEkSWnCLceFEDukEKfir2H0aWlqauKJJ57gf/2v/8Xdd9/N97///cyVL2EJS/hvif/xP/4Hn/vc59J+ZsfLKql2QdkNn6ggPiu+8c58pzGriEFtzBNxqgRuFCitfl+APK2SY1+5mrOuQreOPJ0q5Uxzo0DJU2fBu8nO0S9eoen33TT9Xt6xUJGvQKFSYK800CIjUlr3sTB9V4dperpbVhiexFhXJKuTQTIVXseRfpqf6ZYXKAFEEWN4FmGI1qUFRWKelUFhiYYVD/gZbZ+QTdsFELrTw3RkJitfIMQo11/oyymoWfd4mOuv9tF1WF7FrLZqmJmeZTzHZtTaj4RQqpWyqfNeD8p2O3HXWLn4L00pR6FMmJmcYToynbO+VQ/5mZqY5mKmjZMkoiLNGiB/zSiggTXvDMgKi5PY+Fj2Qw8ACqUCZZ58nGeiLZqzf8Hcu1r70Qris8g+g95LY7hrrHQfkxfLzV/rrn+8nI5j/bIuB3l6FWQ5fj1fPFa2z4k1aFhwgDU5NljDheRpVURl7vXMtxvRmEg9p8o3l3Ltdx1pwsYkD9ZyAwqVgpjMZ9Ppv21IjV/JFH1dp+fcpvRRBzXR7USJ0hO+Sk9PD01NTWi1WgKBAK+++ioul0v+xpewhCX8t0IsFiMQCNDePnc4XYGSWrajk9I/8rw32/BtcXDpX1sZvDQmxnCZ6XN2PIZSrcTk19N7ZniBQMkY1FF5l48rv2rLWRdAfqEKs19P20t9GcUVa94XYPj6OI1Pd8kKJpJQG/PT9kFvhGutCe8WB8e/cpXrL2YXH3WcHMBTa2Mwi0vk2o+FUeWLlHPZBEoAl55qzSkMUagVKLOs9UDwobWqc/K66j1lXP6XpqziF71XjUqnEs8wS12hNxWhNednPLw0H1MT0yizOA2CEJtUPxSg+7S8IOX1YO2jYeLT8ulcAca7YsxOzaI1q7KKlKwrDJRtd8kK14DUzz2bLHS8luU0HSKlmdacz7Ussb3kocFs4rXZOCLmZcuTbf/Z7zXl7F/J+pMCvJYXu1NuQzdi+Po4qizvUsehgZTTUdFmK65qi+wzsIYKUOYrUagy1zd8bSItnl3zkRCdx/vT+E2NDWrIL8xD784c84qNkPZurPlAgPh0PE0kOf9dzS9Qye+DxhDtUifa9eEQKo0ibRyyXixjh1TG1fgZ8kpnaWpq4rHHHuOJJ57gwQcf5Dvf+U7mupfwH8KSSOkNxm233cavf/3rtJ+5KWOZYm2aE4h3m422I/0wITY5picSIo4b578bhBS5Ah0KlQLmjw831FfzSBClWsnRL17JmlsewOgtQJmnQO/XMda4cGLW2RQsf2eIo9+4Qvsr/bS/Ip8+S2sTYglzFps99yYznhorJ756LaMDwXx0nRzCscJMTxa75DUfDKC1qDn9rctZ03YBdB8dpvtoduvl/oZxpqMztLyYPRBjLNVjLCGrSMm+uhB3tRVLoJATX5V3QPBtdqBQSWhM2e2x56cey4aZ6AyKLMGH14PI4CSmmTh5BdnrW2xwKN+Ql3Phgw6C+7zMxGaz1lu6q5j8wjz8+13yz2ECpkan6b2S/blncxiaXxeIgFi+IS+rKC42MklsVD6ANVw/kRIhzX8nMsG6ogCFSsJUol9gv5pq/zxB4Jr3BRjrj8q6beld2qx27fPb4d5kpvQWFxf/pSVdMJb4p6FEDxKM90xlrCuZsgXAGNKx7J4SRlrHOf+D1rkUcPOqjc/E6Tw2CJKEb6ed1sRmqU7S4bu2CttsiIP8FoVC4tq1a1RWVjI5Ocnw8DA6nY4lLGEJ/z0xMDCA2+1mcnIy9TMFCurYs0Cc5L3JRtvLfXSeGMQWNqLMT4x3N8T/l79TpHY69XeNYuM+i7vNWG8MJDCWGRi4NLFAoGRdrid8W3HKVSWXU06eToW5RH6tVP4WL3kFKs7/Y3NOVxdjSQHKfAUFJVpZN6O1j4RofqmLvrOjOeub6I2iyJMPsGgtsOYDVUz0RTn9t405HXhyrUMBei8OZ107ghCdqU35+Le5ZZ1pAEK3+VDmK3I+gwKHBqXMx/Z85NoUApCUCman40xkOT34eiA2wbILv2XT+d0AnV2NSq3EucFE95Eh2XLJtU3fldGsqe2cq8xZN4gA2l7rwb/Lw0infD2tz/Vkd/NKIgLaIi1r3lXGSNuErMi9+/wQ9uVG+s/Lb4TNdw6Y/05kgrlYLzbPZURS8wVNWgssf0eYY9+6mrGspVKHMl+BwVcAGdZxkYHZNIHe+sfLiY1OpTsFzKtXUkpZNxnnrwnXPRYmT6tKFwDOqys2PJUS6WstYAjN9ZM10iZogmh8lg6amZ6e5sc//jE//OEPuf/++5fESktYwn9zfPjDH+ZrX/ta2s+8BKiQ1qT9zLnWzPC1QaJDEBuZYnZ6Xkzmhph93ZNVTI0LJ2e50/RJKPMVSPMPEd1Q14p3laIx5nPsK1ezur4AGEoKUGmUmELajIIQjQmWPxji/Pfr6T87ysGzWdYQGlDpVJh8eiBzzMhSpaf0Zhcnv3UtLbVVJgxcGsK72U7PRfl4RdV9Pkylek5+t5FoFndOgMHL4xzKIYAf7RZpwtoOZl9H2CqMIElZRUo6r4bizQ7sVSbZVBUA9mojeVoVWmt28f1wQ3RRjoZTE7nFQovFRN8kM1OzSMrs68LFOpDrrGpmcqQLAai6pyznYbrSm5xobWr8B1yyqcUAJvpjDDZkP1ywqJhdonutfE8ZeqeWk9+4KOu4NdEbZTZzGEhU1RVN3Zt1ZSElm5yc/FbmPqLzisO1xpIC2ZjX/Dh51b0+psanqZdxHTeXFpKX5aDHfHFe0gnp8r+2pI0Pyfs2lhYiKSTGZdb59T/vSLl+aRwaqh/2M9Q4lp6OMcGrIk/JTGyWrlOick+dJbVZqJE0+OpX4ohHOcQfmJWmaWhoIBAIEI/H6ejowGQyyd7TEpawhP9/IxaL4fV66eubGwNV5FHHbtSSOq2sa62JruND9F4YxbPWOq+S9DpDd3iwLzdx6nsNRDpjHPoL+fVBdGgGlBKFXq1wTbmhLkOJmsq3lnLt9530nxvJaUygNudjzDKt+nba0du0XPzn1pxrwkJfAfk6VbqjzA1Y8a5SOo4N0H9uhONZBLsAI63jqI1Z5mk11D5ayXh3RMwXOcI82QTfSXSfGcSxzJS1rqLNVgpcWoo2u7IKgcrv9KE25gmHviz1GYp0QuCbAxndaG5AngZmYjNEBydzll0MZiZmmJ7MHvPqPzdC/7nc+6Bqg4p8vQrXKjNdR+XNH1a8s5RCr47x7mhWcVrxJjtIUlaRUvvBXgocGkayGDosNq0dMVAbFFR/qJyR1nHZ59FfP46nbpq+y5kP+QFphwlXvruM9qP9shxaQoXk61WyjlDzBU2oofo9QS78sDFjOkOtW41an4ehuIAOMojAYulmDGs+EGB6fJpz329JK5OEIl8BWbaP57t+rXlfALU5n8NfvpT+PiT+HemNkV+oSt2HY7kp9VzC0ipoBOJaGjjPzMwM3/ve9/je977Hww8/zDe/+U35RizhdWMp3dsbhEzOSaVUElQsX1DWvlpPaH8xseFJTnwtscFxw2OYn75s/ePljHZGuCSTV37jZ6qYHFtcaq71Hy9HmaeQXTAUbbHiWWedO7WSxYkpmZYqW4qxsn1OJnqjOQVAMJfeKZuoKHiHh+HmUdkUdzeWtVUas7oGrXyvsM47/f1mJlqzKKRfZ0o2Y0gn7/STQOXbi2l5sXdR6fFywb/fRdfJoTekLnhj070B+LbbGW4dz8nJYrBY3rKlAPz3YO1HQ+Tr87K6OYTv9mIu0S9amLXiXaVZF6zJd+LUty4uKs1grvo2fraK+Ex8UWkUS/c4sYbkRXRV9/kwlelzOmkB6P06Vt5bSt/VEa7+ZKHDgt6vY/ndJVz5ZSuDlyawr9bTe3rewioeTzktaW2w5n2VQqiWQbQ5MTvBxOp2zpw5QzweR6vVUl5ezmuvvbYkVlrCEv4bIRKJYLVaiUTmAsZKVNRy6wJxEghXEGW+IqtrkqVSx8ClCWwrC/Hv9nDuBy0Z3Y4q7i7GEirk1Hcbs6ZrA5H6adX9ZfRcHOLav2UOlq99JETH6QE6XulfVFoqSZKyuixV3V/CxR9m3/iCOYHH5NAUx7MEfxZbHwiee84NpUQaCy8qxPeRfvmUUslyryfNWPLZZYO2SIu31kL9v/7H0+Kawlp0Tp14Zm8A3sh0byBSdzlWGnK6Hy0GBSVa3DVm2f6bhMGvlXVHyogcz9jg17L87WUMNd2wmXMDNnyygs4TA4sSNtmrDRTYtTT/IfOmavKdiA1NLiqNorvOgjJPIevQVP5WL9ZyQ/Y0ivN4WPexMM0vddErc/Cg7tOJFMo5gqvJulRapeyar+peHzqbOiUWNIXlnbeSQjW59I0ToR6uDV2mp0fcY1lZGVu2bFkSKy1hCf/NkMk5yU8VfqlqQVmdV8Pqd/qJDkzKClSMAU0qBVL1B4NM9Ea5LOPGV/upCqYmFpdOq+aREHkFStk0avbVRnxbHHMbX1mcmLw32/Dd5KD3vHyKMU+dhZmpON3H5Tc/kljz/gBam5qTfycvKvJtszPeF6U/h2slCKci91pr1sOMFW/1YgkZOPejRkZbsqxbX2dKtsISTfb6AP8BF12nhhaVHi8Xirfa6L0wJpuu7/XijUz3BuCqtRDpnciY1uv1InCbm/ajgzmFZ3LiOlnkeMar3luGzqHl0JfkXZNKdjpwrjJnFVDNR8U9xVx+St6Zv/r9QTS2/KzvxOupr+6JKuLx2UWlUXTVWvCsscgKpAK3uXGuMHP6+405+7DGoaH6vX76Lg1z9d8WfmtoHBpWPOCj4bcdDFwcy/7sNLDx4/Ku79F4lMjqTk6dPcXs7CxqtZqKigoOHz68lAZuCUv4b4RYLEZZWRmdnXOCiHzUbGDXAnESiPWP2pjHia9elHXbSaZFMpSoCb+phAtPtRDpXKhmKbnVgafGxul/aMj4+/kQTjp+es4O0fCbzOKNFe8qpf/SiBA2LCItlSJfkXU/L3xXEVcXEddJpoqKDGSPPy22PhA8910dpuUP8vGH2k9VEumLciaHWP71IJsQKwm1TU3RevMb4mik96rRu7R0zXOB/o/gjUz3BuJebRV6Weeg11vXYnjTe9WMtb2OA4g5+rrarmbNe/0MXhvN6ki+9qNhuk4NyDpKzocxqMPgLZB1FVMbFNR8uCJ3TDYBc6UerSVf1mXKt9OOd4M9exrFeTysfshP+5F+emWMR9Y/Vs50LN0dXA6r3lOG1qrmsMwhBv8+F8biglS6yFxixkKPTtYBa7Kkl2uxejo6xfdgSUkJu3fv5m//9m9ztnMJufHGWKr8P4xHHnkESZLSBEpBVrJD8ZY0gZLOo2btR4IA9J4eY+T6BCe+l3kgcFQbKL+jhDUfCIAkUrfJCZQAZqZmmcpyqnrtR0LUfFhc++hfX8kqUPDUWMkrUKHzJD5sMuz3lN/jBeDaLzo4/a3LsgIlAHe1Ff9Oj+zvgdS1jn7xihALZXE9cqwwEdznzVqffXVhqn250ppFhibFCfcsAiVHtYGNj1VR+fbirHXpfDqc640AixLjXPqn69nFHbo5bnLBtcbC8reX5Czn3WoTIpQ3CPbVhRhD2SvUeTR4N9oJ7sneD5LIVV9O3hJICpR8uxw5y278bBXrP16etUykP8bMVHZHrqs/aUsJlBzVMvk0Egjc7qawSMfyB+WfW/KdiPQJ57Jc9Rm8BSy7Xz7F2cEvXeTQ31xKlc9YZzKt3nITamO+bH+5+KNWDn7uIhMdUcyVOuqerMS6oiBjWXWBRHw2zuDVzAuQsUbhHjV4aQJ0ENpfzIb5z2NeOqBIH/ReHqbxWTHuVN1XTOjOub6lU+iwnQ2xXXozChTotDpOnz5NQUEBen12N44lLGEJ//URiUQwGAzodLqUQElFHjukN7NVuiNNoBS6q4jQXUUAND/fReeJAVlRxIZPVlDx5lJApEc6+oUrsgKkwYZR4rNx8nSZXYVsKwup+3Ql2iLhYHTwzy7KCjy0FgX5pjw81ZbEDWYoU6SlJDGXnf7bS1kFSsvfWYqptADvTTbZMmiFM0qkPcKpv2/KKlBa8e6y3PUh7hngyOcvywuUEpiZmmW0O/uGyvoPlbPxyYWbnjfCt0PwkkugBOJ+cwmUDP7MFsM3IrjHS+ktTiEwyQJTWJtKM/eGQCuEMbmw4r4SijZkf2apKouy38R4SySnQAlICZScG0xoLdnXLFX3+tj4eBWmsPy1RxojzE7HieQ4kXfk85dTAqBcXIf2ePGss8r+PvlOJAVKWlf2dXjpVie+m+TXmVf+pY1T35hrX/BNGdbCiVfB4NeSp1fh3WCXre/QX1xKCZTWfiTEmvcHZMtOjk9nTbd88cetKYHSmg8GqLq7TPZ5XPhhPUONYymBUs0jwbRnrKt3sLL3JoKswOFw0NbWxg9+8AMkSeKTn/ykbBuWsIQl/P8DX/3qV5EkKU2gFGYVO6Q3pwmUNCZFalyaaIsycGWEiz+WFygte7ufVQ/7ATj5jWuyAiUQ7uOTo/LWLKveW0b1B0XM68TX6rMKFDzrLKhNeRSWJMb4DMs9/wGRQqntpT5Ofu2yrEAJoHSbi7IdTtnfgxAogHBhzCXG8NbZCe0tylpfMh3Y9Rf6crqtRwaFG1A2QZExoGHjx6uoeGv2WJvGpMBeLWJeuQRKAI2/7sot7sgx1yZRvNnBintzp3N3rjULEcobBFNIizGQo0IN+He6COzOzl8Sqb4ng4ZfdS5KsJMUuXhvzr3mq/t0Fes+EM5aZrQrwkyWtQNAy7M9KeGMpSp7fMVTZ8ESKmTZA/Ixr5PfupZ6JzQmsj67ZH1V98n3g0N/eZHTfyve/+Kttsz9K0Gtp8aCxpovrpsBDb8S6bcn2qJoXBpqP1Uhe895WpidmWWwMbOLQbQnyrEvXk2lgqu6u4x1j8s8jyi0H+6j4Rkx7gRucxO4zZ36tUbSYD5Txrb4m8hHS6G+kDNnzqDVajGbzXR1/cc3p5ewhCX858Lv96PRaFICJTUadkhv5ibpwJxASZLwbbMT2C/Gh2u/a6ftYK+sQKnmkRDL7ikFNYy0xDj+lauyAqShhjFmp2fI02SOeRnKNGz4eDl6r5pYX4xDf3FJVqCEWqTfdSVjXhkuqTYoUnPZ0a9fEc4nMgjd4cG+zJRz7lMbFMRG4MR3GrKKMUJ3FmGrMuaszxQWex4nvlafVaAEwtVxvDv7PF79wSC1T1RmLQPgWm8GyClQApFCazFCm8WgbJcb/x4PakP22I7eq8YYfANjXmpw1JhyFlt2dzElt2Rff6eqtKlTKb4yYTG8ASmBkrlSj9qenUf/XhcbP16V6jcZr9sbYzo6Q2Qwu/Dp+N9cTQmUcnFdcWexcHySu+bILCe+PfdOqG3Z7yO8v4jSW+RTy7Y+28uJr15OCZRKd2d4JsnMbjY1OocGzzr5mObRL11JCZRWvKuUFe8qlb+XsemsmojGp7tSAqVl9/pYfq9f9nmc+3EzvReGU+/ZqveUpXGT32KnqmsjK6jDZrPR2dnJt7/9bSRJ4n/9r/8l24YlLA5L6d7+nfjyl7/MY489lvYzH+WEFSszlvfvcJJfmCfSFD3by/nvLzyRHr7by9WftNFzcoTizZNceTrz4Kjz6Vj9YCnjPVHOfLsxp+Vxnk6VNfuCzqcjuMvJ2e82cexvrqKzKWSFQr7tdqwhA6se9nPm240506i1vtrDwDn5fJ43ujFldTMCmv7YyXBTlo0tHYQOFOPfPcuRbCdnEqj/aTv1ZN+wmhiaZnY6TksOZe6Ke3wo1Qq6zw9ndV1a99HEafkcyuEV95RSWKTj2tNtOVO5dRzvZyLHhp/Op6NkixN7pZFT38ytlF0MQgeKmY7OZA2MTXRE6bs6QtsrudW+dU9WIimknE4Cqx/2o3Nocpbb8IkKlGoFra/2ZH0mU+PTjOc4kXfhh7ktLpMo2mKl5BYn7nXR9JQc89Dwy05mp2dpejp7+sDkO7H6/RVZXZAaftlJfCaeNc1gigMdOFeasVeZZIV8R//6ihAxTYBzvRFLyCgrlrQtN8vne0UIxg6dE9fR2iXWvK9SKLYz9cMJGO2IMFAv+rxvp52BhvG0lJP1P5sLEpsSaZEyBY63Ke5iYmCC0+oXmYiNMz4+jtPpRKFQpJ1EWcISlvD/DzidzpRTB4ACJXXszuicBGCvNBKfjVNPO90ZTv/Md8NpP9qPwSMvmFjzAZFC9uCXLtJ9fChjfUlIKglJKeFcbqC5PfPcXHWvj66TfQxcmuDUNy4TGZBfT61+sBRJKdHyTM+CdHI34vw/NFN6q1PW2QWg7mNzbkwRmfYlce57TZTscmStb/X7AujsauC6bIqsFCIsKlXHWGcUjSl7OgytS4O3zoZzhSmns8zGz1Qx3DqeM7XK8reXMTsd5/BfZRe5X/hZG551ppxuT+E7fKjUyjfMIWnNu0Q/7DwtL7gDsV5WG3MHn9x1Fsp2uOi/MpL15BZa2Pho7hOIWpeGwC4PUxsdWZ9Jx7FeCr06YiPZDX1zPYf5SLmlZeH61D82oXdm71fJd2IxLkinv9+MIUeQL/luJ9+T0daJjOPHSGMkbSxY8e4yrv28RXZsUGlVKNTy48b8FHar3xdAZ1Nz6puZx5qrv+kgtMeTclIKvsmTJkyLDJBysyrb60JtyqfoFtcC8VqpVA695XTaG7jQcwoQ38w/+clP+NznPsf9998v294lLGEJ//Xwy1/+kjvvvJP55uulVBCUFrqFA3i2ONDa1JTsdNDybE9G0VEyNdVwQ5SxzgjXfp/5m0xjUlD9wQrGuiOc/W5TTofnfGMeCoX8JorGpCBwWzEXftDCmb9rQmNSEB3KPIbaVxtxrbagd2o5+90m2XJJ1P+undEO+c2FG92YcolPrvz6umzK9CSq7i5jOpY9DpNEy7M9tDybfTMtNgrTkRk6T2SP2Sx7IIDamMdoWyyro9Gqh/zobBoOfVnekQcg/KYibMuMNPyuM6cTVfML3cRGcqQS0UBgjxtXjVk2DvN6UXVPGVMT0xz7Upa1ZhS6Tg/QcWwoZ30bPlGBIk+RM/Ve5duKMfsLsx5OgHlpeS9ld5mKDMRypmJp/HVX1tRx82Gp0lNxl4+xjRHZtIodhwZQahRcfyF7v0q+E2s+UEV8Vt4FqePQACqtktY/Zk9HmEzHVrzJQdEGm2x9J79xLTEWCDGaa41VVizpXGFAoboh1eQ8jLZE566jgY2PV4mY/Xcy98OBqyOMdIh1VyYXrvnvrL3KiKRU0PCrhePlTdI+GICjmmcZiQ4zNDTEihUrKCwspLHxjXkHlrCEJfzpsGbNGk6fPp36fx751HLrQuekxGFez3obxKHhN50MX5tYkKpK61ZjLNbRdXSQ1pd7MAf1ss4uy+7zYSzRc/CLFxm+NsGRL2RfYyjzlVgqDYy1ZR6T/ftcDDaOMXhpjBNfu5wxFVQSK98TJE+nou1wX84UavW/6GCiL5bVQWfdY+UoE25Msd7sFdb/vJ3xnoisUwwIFz9LsJD6X7fLOsDMx2JcGodbxinMEoMEQA3+XW6KNthypr6r/XQlw43jXHoq+/7V8vv9xKczZ6eYj6u/6sRVY8z63ADCdxSjMeW/YQ5Jy97iw+QvZLglQkwmnSpA47Od6Ky5Y16mcAFVby0RToc5Di3WfrKCaP8kp7+bZf5UQ+VdPuHGmeWZtB8bxFJuIDaaPQ3x8S9nj2XOR81HQ6j12dP5nf6HZvTu7Lwk34nFuCCd/nY9xlB2I4ZkH6m8x4c5pCfaF8vowBXri3Hiq3NjQflbvDS/0Cv7nNXGfJDfbkxz1qy8x4fJr+fk3zVkfOevPdNNeK/E0FVhalFyqyNdbBgTYwEIYWCBS0txnWVBaj+nVISzv4hBSycn+l8D4M/+7M/4x3/8R/78z/+ce++9V77BS5DFkkjpdeLkyZPU1NSk/cxNGcsUaxeUrXx7MQavjiNfuML5H7RirtQJp5AbEY+z/MESjCV6Zu6YoeGXXXNp4DJgonWCmalZxrrkdydqPhxkOjbLmW83ciiHm9Dytxaj0irR+XRMtE5kFB5pbcLBpPX5XrR2NVeekt/I2PCJxCbBn12kLcfH6LVnOrCECql/Oosb0yYzpTe7OP2dS3S+lsNCewJG2yfoOZ+9XO0TlUgKOPTnuTc/ki4vuXDuR82UbHXkTAs3GZlGoc5tYtZ1sp98vSqnQAmg+XfZhS4AE30TDDaO0n3mjUlNAjDYOMZQjvz2QMYUX5kw1DSWVeySxMTQJBqLOqugDqDxmXaMpYU5n8mx17EgWP6OUgzFOi79rDnz+wy0v9KPa7WZq/+aPSiQFCitfthPfmFeVsvs8Z4oEwPZF9ZJgdKKdwmBm2wbJ6DtSB/DTeIUV/L9XlAswW3Zdg8KlSSb9nC+2E9nU7DqveVc/FmLrKPYzNQs/VdH5hySbkh3OT9lnXeDDe96Gwdl3tWDf34ppSIPv7UIc6meI1+/kmqnTqFj49ReJphgpKqFppYmxsfHkSSJTZs28eqrr2asdwlLWMJ/HdTW1nLkyJHU/yUUbGTPAnGS1gIr3zuXbuz8PzVlTT9V9dYyiEPHK/20vZA92D3YMEaeTn7ZbKnUEb7Nx+GvXqb35Ai9J+U/0LUWMPn16N1ajl66IitC0FqEOODKz1tQm+SPFdtWFhK+vZjB+lEuPXVdNpVVEgPXRlGqsyTxBtY9Gma8N8bFH7bkTBl25V+aKH9rWVaBUrKN/ZdHuPLT3GuCiz/KnV4u0hWl58IQPaezr/m0RVpmp+M5T7KBWIdMRrIHEUAIWRpyCLwAWl7qxuCVPzn1etH6Uje2KlNOcZRcurAb0XloAHeNhd4sBwoAiMDM9CyxsezcRLqiDNaP0vyMfBoOgKGrkUWJ1ZLY+GSV2IzNsk5qfbkHsz/7if5Ie4RIewStRcGqh8u59nSbbL9tfa4Dg1eXNY1csr5kGsOp8WlZcdbpv20gdFdRSqCUfL/T6kuMBaawlkKPlqp7/bJp5+YLuJJOJHIbsqNdE+TrVbJjzXhLhNOJE2ahu4pwLDMhSVJG57Gm33YxeG04JWja8MkK+utH0gRL7t4AbilAq+0S04URGhsbeeCBB/jgBz/Ic889x/r16zO2YwlLWMJ/DTQ3NxMMBpmZmTuZ6iVAhbRmQVn/ARe2ciNHv3iFxl930X9xSDbdVeA2N67VFiRJouFXnbLCBoDo0CxTE9OMdsp/yCdP1p77+2aOfTH793zV2/xobPmpFHOZhEcakxA39J4exuDTZRQEJFHziBCGHPrSRXpPZt+sanupD9dqM9dfkBd/WKr0hA54OfPtq4tK8zZwdYTBxuyp7UXaTxWH/iL3plG0J7qo9F0XflCPb1tRzpRrk6NTqA15OdPH9ZwbQOfQLCpVXsdi0nlEoff8EH2Xcm8gLhbdZwYZacvt2LlYcU/vpSHytblD8ePdUQzFBWhcmqzCtiu/uI59pSnnM0nO84tB6A4P9hUmLv9ra8r550YMXBxjbGOEqz/LvmZPCpQq31ZMgUOTcnHMhMHG0ZxOTkmBUvldRVgrjVz+N/k2Nj7XRbRfrFeS7/eNSI4Fof3F5OlVsuXSxH4a2PBIOVd+0Sqbsm1qfJrBa/Lv8nwxVNk2F0jICtcO/9XllPtWMt3e2e9eSWvn+thOokQZWt5MS0sLfX19SJLETTfdxEsvvSTbjiUsYQn/NfC2t72Np556KvV/FSrq2ItaoZ6LmUsSqKHmoSB9V4ZpeaaX8z9qzJp+atWDfpCg6+ggvWeGswps+i+PoLGpUashlqFKvVdN5VtLOPvda4w0RbOLaNUi64clZOD4pauyQhe1AWIjcOlfWtB7dLLCC0OJmuX3Bei7LIQmuVJ8dZ8dQGfN7lq45n0BIkOTXH7qelaBEkDTb6+Td2dJVv6Sbey9MET9L3I7Ucs6T81HDK6/2stIW/Y1n9qgYDo6w8Rg7phX77kh4rPZD4uBEJTkcowCaHmhB2PpG+ekdP21HqJDU8RGs++BDV0dZ4jsvCTLjXZM0H0m91pzKjJDdCz7QQFi0HVqgPYj2euL9Qq3ssViwyfKmZmKZ/2bxj90Yq8yZhXyxfpixPpiqA2w6r3lNPy+k/4LmeODrS/3YgsbuX5IPh4eG5ml58QQINIYTo5NyaZiu/RUK6W7nSmBUvL9vrE+EKnurOUGcZhO5iDkfC4q7ikmT6vk3D80Zyw72jmBzqmWFSXGemOcS5jGeG+24d1gJ1+ryviudh0dZKJ7gpEWUVfNh0MMNozSOM9QxjzgZofiLfSom5goGqKhoYH77ruP97///fzmN7/hpptuytiOJWTGkkhpkZiYmMBoNDI9PRect+CiWrFF9m90lnyU+YqUAGCBWEAHy+7yceEHLZz/fguV9/po+OUNH7aJhYij2kBwn5fBhlEu/dP1nC5BakM+eTPZJ5yiLVbaX+nn6Dev4F5plnUxMoZ0LLunlOhgjJNfb8gqUAIY746gs2dfCKx62E//1RHaFmFPbS4rRFJKaOw6In3ywYHye7xceaotTeAgh4m+KHna7Bt0WhuseX8Vg41jWdPtpersiC6q3GJPdPWeHqX3dO4A1dqPhIjH45z4ao5cnRMiRdcbicXcL4iUa0VrrZz+zqWMYphUff+UfVMricWKnhbLIQC6hEtAXyxlBZgJ3af70bu1xIazK8mTm0ruWjMzkzNZxWZqYz6KvOzirPn9Zt2jYc7/4Kosl4NNYxQ4tbIiKoDWxKZz0pktNjQpvxH2l5dwbzLDhCifp5ZPaeje5ERSSRh9BRnLRPrgyOfn3vmNn6lkcnRKnI6Nx9NSuwHU/+Y6arNQgBdtsSCpJNpeSP8YSZ4UKXRqUOYrMgqpdAodusuVGGZLOMjTKJVKDh06hNFo5IEHHuBrX/uaDFNLWMIS/rPwwQ9+kG9+85tpP9vEPlnnpEgElHkKjD7xgZxJoOTdaic2HKP35Aitr/Uy1p45qA1icyevQDgfNv+hO6v4x+ArRJGvwFtrlxU8WSp1RLqjRAZmaXimg+4jQ7L11TwSRG3K59Q3LidSmcmP531nRwnsmWUgSyBca1Gw7N4Ax79Wn90xJ4E8rYqCHJkjnBtMTI9P039+LOfGR2R4mpnJWTpPZA8mrflAAI0pP2tq4vlYTBqySHtk0Y48Fxexriko0bLibaW0vNRN56HswazuI0NZn/PrRf/5MfrPy/fZ+Vj7kRAzk7M588wvJtc7LM4BC+DSU4tby4FwFDOV6Tn4pYtZhVeTY1NMDGQ//d95aCD1PEJ3FWVN7VfgLUChkjAFC2VFSpGB2ZSIvWSXA71LK+/EFRGW7kOt2YNkyTZVfyiIxpzPqb9rzJhWcuhqJG2McG4wZe1HWrMaKcv5h4ZfdNKACIJW3V+CqbSAiz9pSgmNbmyjQjknUKq617fgvUj+ndalQZmnQGfOfFLP11cJfTDEBAN0MTo6yvbt25mammJwcBCtdnHpFZewhCX8aRCNRnE6nYyMzH232vCwWtoo+zc6swaVWonGoSHaE80oUKp4q5fL/9JGw686USglWfGPMaBh2dv8DNSPcvkn13O6JBY4NMRzxLzs1UZ6Tw5z8lvXsFcbZQVUGoeG6of8TPTFOP23DVkFSgAj18cxlhRkFeFUvq2Ysa4I11/oyyrMADAHC8V46tERHZKf5wO3uWn4VWfW1HhJjHZGcp8w10DdY1UM1o8sqs7oEFz9t+yn0AEu/fPi1gJD9RFO1+cWz6x6yI9SqeDkt3KvWbKl5vv3IFdfSMK51kzpNidnftCcVVS0WDFT6x97czoGgXDwGW1ZfHqv2k9VEBmYlHX4AbH5Zg4VEh3JLk5PCg3NFQWodKqsgj2dXZP1wAekn4ivfn+Qi//cKOtkNtAwhtGvlxUoAXQdFutCjUlB9YcqhJu3zLr42FeuYq82Eh0S5TV2tawAybPWilKjxFCsz1wmStr4VfdkFZMj8o4LF3/SSIFbHGqwrixEbchfIMpLplc0+nSo1EqiGbqYRtLgulCBKV7KazyNQqnglVdewWQy8a53vYsvf/nLGa+/hCUs4T8PX//613nkkUdS/5eQ2MwBIU7KhBjkFagwFImYVyaBkqPGRHw6Tu+ZYRqf7SQ2LP8dveo9ZWgdGg7/xSW6jg9ldD9JQu/SkqdTYV9jSaWeWlDGq2YqJgQBV37ZRv85+b2QFQ+WUFhcwIlvNzDWFssqthppiTE5Mc1Qs/z3ttoAlff4Of2dRlqfzT1/5htUKPKymwiYwgUo85T0XxhJCRzkEBuHyYlpus9kjxFVvc2Hwafj8N9czukaBcg63KRde2R20Y48ixFHJQUura/00HU0uxin/8KIrAjm34ORpigjTYtbe614VymSJHH2e/IHH4BF7RXD4hywgDSxSi7497lwrDRz6huXZFMxAkz0xZjMcShw8JJwJgORVq359/IxarVVg0qjxFRWIP98YsJVEsS4YQkVpq3FFhQfmsxqmgKk2rT8gRIMvgLO/mNDxnc71hvjys/b6L8m2mZfZcwqAtS7tKiymH60vdSXGpf8+1y4Vlu4+NOWlHPSjWXz9arUcwwecHPtmc609zEpUFIbxJgr903liJVBI8TicJ1rjI6OsnfvXpRKJT09PajVi0uv+P86lkRKi8CN6UXUaNmi2J+x7PrHwkgqiSOfv8KJryc+fiQFsPDDqubdAdTGfOxrCuk9PZZVoNFzcgT/rdlPgZff4yUeFwKOg1++mNU9pubDQdTGfCZHJ+k9PUrnYfkJZ7h+gunoDJ2n5CdZrQ2q3h7kxFevZUxldyMKHBq0FnV2p6WEa8tihDWVby/GEjTAPeQUUQGc/bvskxeAxq6DOIx2ZD81ZV9dSOhAMf31IzmvveYDAXrODdH+SvZNOt8uB66VZs7/Y33OlHqqHB/6SYTeVISptOB1uQblQvk9XgwuHcf+JnudeVolklLCVG4m0pd9cbP8wRI0pvycgTx0UP2uIE3Pd2QV44BI85LTDn0C4rNxZqaz8y2ET4tPP1K20w1x6MniqnHkC/M2/mTcipLw7XKQV6AisL+U8//YnLFM2wt9qXcrcLub/AKV7Pgy0Sre745j2ftk0sVs1X0lSEr5lHwNv+yk4bkuGI+DDtY9FObYd67O3dN8IZIOZmKzDLdPLBAnJdF7egwQCzDfFgeSYqFICQBJkeZA59tuw1tn59pv29MEYjqFjh28hQnXID2aZq41XOPrX/86P//5z/nLv/zLpVQkS1jCfwH89re/Zd++fWk/W80mbJJ7QVnnBhOBnR4aft9B9/GhnBbDvs12Zidn6T05ktM9abQjkt1+WQtr3xPi+NfqhYjp5e6sQouKN5cyMznLkc9fzilc6T4zhLvGkjUNXOU9xYx2R2l7oTengCR4Zwn5prycYge0QIScqSUAAjs8IMHB87nLjrcszjlndjLObI4NR4D1nyhHlafM2U7bykKK6uyc+UFjTvehtR8JMdoZySniMvv1KPIk2XQPN9Y52DhGw68XF2RZDNZ9LEzflRGafps9MJIrHVgS2iIty+8upu1QX07RlfcmG5ZQYc4gUOU9xZhDhZz5QRPjLfLEj/dGMZYUUODQZi2Xc004D1X3lWD265mOzMhy1Hd2lL6z8/pOot/LwV1tFY6SWTB/fV39oSAnv3dNts6uM4MUrbVmFCglMV+gFNjlwbXKIruhePivLol7QKSpm47MyPa5sU4xrmUSKCWRfAecG0yY/PpUmu8bEemKpo25Gz5ZwUx0ZsHzqpY2AzCytpVz588Ri8UoLCxk/fr1HDx4ULYdS1jCEv50WLlyJefOnUv9X4ueTdLujGWrPxhEpVVy9ItXOP+D5uz1vrsUvUeXEgtlE5AMN0SZjs5kDX6X7Xai0iqp/3mH2NzJIhJa8c5SCr1iE6/35HBWAUW0J0psZIqubO6MGlj9jgCn/7ZhUSfkzf5CDMUF2VNdaYCoEMLkEsOU7HTgWm0hT6vi8k9yi4CybTIkobNpiM/MMt6b/eS9zqth9Tv99F8c5kqOVBnLHyhloH6EjhxrCudaM8WbbJz/yfWcKfDyC1UolLndyEt2OrBVGHOmRHk9KNvtxBwoTG3iyEGZJ6HMV2AJFtCR435Cd3oo9Ohy1okGVry9lPbDfVnFOAB1T1QyPTWT01VsdjrObCz7+nC0JbqoVIJJVNxVAnGyvmNpG3+Jfi8He7URjS0/laIxE3pPD9N7WlzPe7ONAptatm9Gh2aJjUzReSp7LDLZ/pXvDYl0zTLflR2v9tNxvD91D9XvD3LyH67J3tPk6FRWF4zhhjmBZ3B3EUq1QtY57Oz3mlP/tq82EtxXxLXftadxr5E0bOcupvL76Cru5MrVK3zlK1/hn//5n/nCF76wFPNawhL+C+D06dPU1NQwOzs3Hq9mCzaFa0FZU7meijcV0/xcF13Hh2RTWCYR3O1hZnKG3jPDKQeUNEhSyhRhsGUMlVYFajILZtSw+n4/p7/bKERM54ayCmtWPhhIOSBnEygBdBwfpESflzUdm3+vi8nxadpe6svpSuPbXoTOocG13pxdWJO411zp7AAq7ixGUkocWoQIJ9a3OOecmZlZZqbjOQVKNY+EyCtQ5TxwZyhR47vZxfmftOSsc+W7y4j0x3KuY/UlBpRqpTgIngOr3+NnqG08q2Dm9WL1Q34Gro3mFGurTfmLqk9tUFB1Xxmdxwdyiq7sq4w4lhu5kOMAY+luJ561Vi481bwgzeJ8jHVFcSyPozariY3IP6DFCqmS1y5aL06VyvG+wO1M7h1PwHeTg/wce8zzTR1WvKuUqz9rlhVedZ4aJL8wL6v4MCmeMgZ1hA4U4aoxy/Jw/G+uintApGqTJEn23ie6o0xGpjMKlJJICpSMQR2OVWa0dnXGa8dGpbQMSzUfCTE7Ncupbzak7XGWK9ZQzhpGV7dy/sp5RkZG0Ol01NbW8tprr8m2YwkCuUea/4dx//33I0kSPT09SJKEhILbHG/lgf3vFkIChEDFu3XeUXMlJJMlau0KyvY50VpnE2X1lB6wUXVfMQC9l4cZbBoRm/A6KNvrRGcTf2tdXkDVg8Vs/GwVpXuceLfaaPxDO63P94qy+5zoPMKtyFypo3SPE2vIgDVYSNEWK87lxlSTyvY50SVcBYwhHWX7nFz6p0bGe6KoClS4a81pZfV+UXbtx0JUfyQIID5QZ0TqtflljSFRtvxuP2pjPkVbrAA41xtT/wYo3ePEXCnK6jwaeq8Ocvj/iBfcUW1I49C3y4G5UsfGR6vY8KkKyvY50/j2bbenlbWuKODSP11noHGEydEptImqrCsK8O1yzJXdbqfuyUpqn6ic49CmSOMwCe9WG3la4Z7QdqQvje8kh0kYAwXEZ+JcPziwgG+9f15ZHWitarwb59o/n2+db66sNVSISqvEWJX+HJN86zyaFC+H//ISTc93yPNtE/3QVFJAXoEqI9/WFeLUjtZG2r0t4Hu7HfvqwlRZU6mevEJVRr69W204qkXO0oZnO+k82c/wleGMfBdtseJcL+61wKUl35Any7d7kxl3rRm9S4fGnE9gvzcz3wgXI/cmM1MT00z0xWT5BtFnW1/pSZ0Gk+MbRJ9d+XAZGz9bhXO9MSPfybL9DcP0XJgLMGTiO9lnK+4tYuNjVQRudy/gO9ln+072celnzXSe6JXle/4Y4VhuwhwolOUboPfiEMMdMbQ2kQoxdPecECDJdxLDbWOMdI5n5ZtxMUlXvztAXqGKwE53Ot/xOM51RopqLBz56yvU/6yD0t0ONj5ZyfrHwug8asr2pvPt3Wrl9Hcu03aoF99OO8U7bYTe7EFnk0RZ7SxIikSftZFfmAdx0LjUWJcXgKQQY/Jewbeu00xNwWY2rroZdb6ajo4OHnroIUwmExMTue3cl7CEJbzxiEQiqNXqNIFSKRXcW/selq2rTP2sZJcDbZHYkZ+OiFNhGov4OHWuNeHcYEorW/VAMQUlWrRFWobaxzj8VRHUsVcbcNdZ0squ+3iYuk9XonVpiAzGOPa3IshgW1mIZ94869vhoPItxeSb8gi8yU3JvPHYulyP96a5eda71Y6lUsdQ4xgNz7aK9icua6nU4d0q5llTWEvtE5VYq/W0vdzHsb+9miirSP3et2PuOuZQIcV1ietoE7y4xNxp8GvT2tR3cZi2o70p4cN8DgtKRNngmzxsfLyK0N0enGvTOSwoEWW1RXP1Xv63ZnrrhxfwbfDPla160MfGz1ZRssuxgG/fDgemcKKsS0PJLgdnftzIkc9fXsB3kkMQrlAzkzNERyYz832TDetykfbLd7ODAocGg1uxgG8AzxYrtpVins0vzMPk18vy7a6zYK820PZCLwe/eJE8rVKWb+cGE861JvINeZhL9Rn5TpVda0oTPMnxnSybp1dhKi1YyHeCw6RYpeGZdq6/MhfUSePbopgrG4mQV6DCvXZurk/nm1Sf9ay3ovdoZflO9sO++n5mJmcxlsrznWzn6b8XQiY5vufzUvupSjZ8skKWbxCpAsf7InQlTmFl4nt+n639dCUbH63KyHeyzx7+P5c49Q9NWflO9lnfDgcacz7V7w5k5huIDcboPCG+G5Y9UELNY8GMfANMjUwSG53kzA8bZfnWWhQQEX3WGjbgXGnOyHfJLge950c48vnLGPza1Fo2eZ838j3SFqPjaD/Xft8pxtJ7fWgt6XwnyxaUaInH48zG47J8G477eHPt2ylQ69FoNBw6dAiNRsMHPvABlrCEJfzn4H/8j/+BJEmcO3cOSZJQomKHdj/3bLsPjUmUMYW0eObN3wq1lAx5gQaKt9rQmBSpskXbrVS81QtAz4UR+i4nBELJso7Ed35AQ+jNHjZ+porSXU6ca800PNOROgVbvNWGJjHPFpZoKN5qw1VtxVZhwl5txF4x9z1bvNWGzivK6ryi7Ll/bma0dQJmhehhftlk6qSV7/NT/aEAIEQUUxNTOOfPhzfbMAZE2cq3FKOzq1OxFEuVHlftHC+ezVZMITHQa0wKOs72ceQ7Ys1prihI49BTZ8EU0lL3sUrWP16e4HAe35vn1kCuWgvmigJanu2h5/wg4z2RFN/GgAbvzba0shs+WcGGT1Qs4DvJYRLOtWa0ljwO/9Vlrr/Ql8Z3ksMkbBV6ZiZn6Trdv4BvjSu9rKFEh3fL3Nw/n2+NI1FWA9aKQvINeZiCcwcC5vOtMSlSZY996Sr1v2nLwre4jimgR23Ky8i3uSKRfjfBSxKZ+LZU6VNlrcsMqe+MG/l2rjVjTcyzHacGuP5aDwOJDZEb+bZXG7GvFv3Q6CtAY86X5du+2iiEOhoFhUU6/LvdsnxbVxbiXGsmOjTJeFdUlm8Qfbb11V7Ofb85K98g+mzFfV42fqYKV60lI9/JPtt1pp/us3Mxr0x8J/ts6V4HGz9ehf+AKyPfxVttjLbFuPBPjbS91i3LN8yNEUW1NqwVRlm+AXrOJdL2aWD9x8sJ3jknBEjyncTAtWEGW0az8p0UJC17p08Iqna5M/LtqrVw4qv11P+8A89mK7VPVLL2I6GMfHvqLBz56mWaX+jGU2fBucFE6A7PAr6TfVZjFjGvfKMyI995URvLZ9exY+Uu8lR59PT08N73vheLxUI0kxXTEpawhD8JHA4Ha9asSQmU/Czn7hXvonxVOFXGs9GC1i125CMT00hAnl7sv5gr9NhXGVNCI88mC8E73BjKNKjtGvrqhzn9fRHHMoULcNSYRKWShGejhTUf8lP7yQqRImxihhPfqYeY2Kx3zfvGc603E9jjRufSULbfiWeThaQpiKFMiIFSZdeaMAZ1dJ0eoP6ZdlHWIMZ9Q4k6NSdr3WrWf7wc03Lh7nLyu9dEWZuoWO9V49k0N387V5spqp0bgz2bLKjt6lRd88sOXBul5eXulAjFs2mOQ7VdlPXebGPjx6sI3ObCusKQVq/em14W4PyPm+g+OyD4Tpats2AoSZS1qQm+yc3GJ6sovsWezneCQ0OZGOjVBgWeTRau/LKNY1+6spDvBIeiLExPThMdjGXk21FjwhQW437xzU4MJQUYfZoFfIMQ3ZgrxTyrc2gwBfWyfFtXGLAuM9B/boRDf3GReDwuy7d1mSirc2ow+/UZ+Z5fVjkvo00a37ZE2UTfMlfq0Tk0WPyFC/lOcJgse+037bS+NGcsks53or8YIBabRWtR46pZ2GdFYVJ91rvJhrFMj6suM9/JsgMNY0xOTKOx5snyDaDSKDj1902MtMRk+Z7Py9pHw6x/vDwz34k+2/z7boavj9F9Zigj3+ZKfVqfXfd4mNpHKzPyneyzx79ylVN/35CV72Sfta8yUujRUfG2sox8A0yNTaYMEYIH3FR/KJCRb4D41AzjfVGu/qxVlm+1TQ0x0Wfdayy41lgy8u3ZZGGwJcLxL19F61ZT8bYiNj5ZhX2VMSPfk+MzNL/QzdVnu/BsshLY70ZtUMzxnRAieTZZRZ+dhXjib1N8V8zxXXjax12r78VUYEar1XLw4EG0Wi2PPvooS5DHkkgpAw4ePIgkSfzoRz8CoKamho898ijbFXdRssuLp8aKd4MNJAWB3UX4NtlZ/5hYSKjylTAbB0lB0SYXnmor7lrx8ePfVYRnlR1TqR6dTcK7wY6xWAy4vk12Ue82DwCB3UWYivXEZ+NMR2fwbXYQ2F0EgHulGU+NDf9OJ9YVBYQOFKeUm4f+/BIltzjx7xT1GEM6PDU2grc6Cb2liGX3lOKutjLRN8uZbzdSttVN2Q4hSNDawFNjI7RH/D9fn4fWqE4JKMp2uCnbOide8NTYCO4R15mdjCNJUurUm3+nh5Jb5sQLnrVWyu8QG1WBvS4c5ZaUkCqwuwjf5nliiw02QvuLmRqbZnZqBk+NLfX7wB5vmsjHu8FG+DYfALGhKTw1Noo2izYF9xSL55Qsu9EOEkyOTuLdYMNTY6Nkl+A0tE9wmIRvs4PAXvE7R4VB8H2reI7hA17c1XNlHVUWkIQjjc4n+A7vEWXL93vw1CTaMAHERSoaAHSCw/BeT6KsG0+NDZ1NwalvNBCfjVN28zyxSLWV0D7RpuBeUdYaKJDlO7RPiOFKd3vx1NhoO9rLwc9dxH/rQr4Du0UQ0bu1aK69gH93UTrfG+34E/3QtcGJKl9J7+XhjHz7Njvw35ros2tEny1NXOdGvktuceLfIXi49tvrSJJEYLcrUbYoje+ybW5Kt7sYa5yg4dk21No8yvcLnsr3JfhOzHnJPnvsy1c5/w/NeGpslO8X1wnvcQm+EwKnJIc6n47aJypxV1sJ7xPt9d8qytrD4n0N7C5C79ASn4kzHZlO47vkVsF3kgtziQHHcit6v45l9/vwbrAR3CPKFm0W7U2OEUavqL/v4nCK78Aeb4pPT40N73YPg5cmCOz24t1go+7JytTvM40Rh75yialEG5O8yI0Rrg1OFCoJe3ieGPGGMcJcaiBPLT6MVry9BE+NLfMYEY+jNWuYHJ+i4VddBG914qmxpYRf/p1uSm5O77Nx4kwMTOLf4cRTY8W5LDFG3OrBt8lBpA9an+/Du8GGd70Ne4WR4h0ePDVWfJvsqWfjrbNz7RedHPzzS3irbYT2FbPxyXLK31yKp8Y6b4zwsuP2m9kycwc1q2rQarUMDw/jcrnYvHkzS1jCEv50WLFiBTqdjsnJSbRaLffddx87pDcTlJYT2OkhcKt4b7UWkVJtzbvKMPi1FG90IykkWl4RH6aBWz3C4ScBb60dU0khVXcVE9ztwuwtpMAhAuzB3UWUbZ8LUBdtsKFUKZiOzFC2w4m31o4tJMbl4F4vpYkxK/gmD946G3qblos/aUKlVOKtteNdJwbD4D4vvpvFPFv36Up8m+0E9xVz8cetFLoMeGvtuBLjfnBfMb7NYvyyLTejUEmEbhVzhHedTdSbGFdD+4vx1tlSQgfiEE8cvLNXinrLdog2hg94KdpgY+OTVax+X4Cy7S6KEvN7QYkWb62dYGKeDe/34K21M3h1hJnJWexBU4pvtILD5NowvN+Nt9aOpULDwKUJ7EEjgZ1zfBdtsBFMrJ8CO52YSwqJz8TpOd63gG9vnS01d5a/SdTrWW8SvOwponTeusa3eW4+LLrFhcagpu/SyAK+QQiTkmu4/iujSJKEfZlzAd8Apbc4CewRZZue70KVr8SX6D+hfQm+Eyjb7iKQWDdaA3q8tXb8uxJ87xN8JxHY6cG/y83Bz13kwk+v4621E05yuFfwnSp7qweVZi5g4621p9aG4T2Cl6QYyr9LuDOe+mZDiu/UWmWX6LPWgD5Rrzzfvh2iDe7VFiIDMDM5i8Y0Z0Oc7LMAnk2iDY61Ds79qIXp2MwCvoOJNvg2OfDW2jGWmDjy+csUrbUu4DuY4Nu5zIS31k7pLXYq7ymm4i0lC/gOJtY1prDos3FmiQ1PEdxbtIDv+WNEgU1LeL+bqvtKCO1L8K2d43v+GKFUKZiJzwAQ3O3CW2tPicRSfTYi0gYWbbCx/N4ygm/yyI4Rrc/1cOXnrWjMakL7i0ELvu0e2TFC79ai1uWn+HbVuhaMEerCfIgIcZDvZgehA/JjBBKc+VFTiu/QfvFsMo0ReoeW2ek4vZdG0vieP0Y0/6E7NUaY/HqWPxgmsMOTcYw4+oUrzMRm8dbaWf+JcmqfqBR8zxsjyrYU8cGHPsSK8Q34y/zMzMzwrW99i8rKSl555RWWsIQl/Glw+fJlFAoFn/vc5wBYtWoVH/3go2yV7qD0phJ8W5w4qsX4HTpQTOkOF+s+JmJe+TqxMQ7iG863xUnRTYl5dq+Xko1OLOUGNC4N/u0uzGVinLSGC/FtcVJ6ixgLA7u92CtNzEzNMh2bwX+rm1Bi/i4s0eDb4sS/w0FhiYbwnV6KNzs484NGDn3lIsHdRalYlMYEvi1Ogre6KNnpYPU7/fi2ONFo4Nz3mwnu8aTGN4DizQ78u8Xf6m0atBZNStQR2luE/9a5GIzvJkdq/RGPiZhXpF9sGIX2e/HvmJtnS7c6Cb/JR92TVZTsdlO0xo5nuTVVtnTenFy6w0XoQDET/TGmJ2fwbXHiWu9MlC2mdOvcGsi/w0X5nWLcH+2I4tvipPiWeevIm+bmZP92FwqVRHR4EotfL/jelniOewWHSQT2uAkfEPemcQm+g7sSMZi9Hnxb5h1yWu9AoZCE24smwffuxNyzxyX4ToihZqdmUebNrWuKNztSa8Oy7XZ8W5yYirVc/FErM5OzaTEv300OgnsTa5VtbnxbnNgTB/eC+4oW8J1cf7g3OfFtcTJwZYSDn7tIcH8RpTvS+Q7uF23wbrCl3Vtwn3cB38FE3M1eZURdkE/fhUTMa+8NfN/qTq1rTMVa0Wd3OhJli9L4Du4pIpDg7Pz3G5AUEqFE3DC4W9xrUrCS7LPRoVnO/aARtT6fUGJtGNyV4NuV3mdPfauBiz9qpXizIzX3l24TfFv8Ym0Y2u/Fv92FxqRg/ePlgu/E+qP4FlGva7UlVdZSamBmcpbJkUlKtzrFOgNwrXemjRG2sBHXGisah4aKu4sp3e5KteHGMcIWFs9zIBFH9M8rO3+MGG6IEtjtxXeTg7onKlN8Zxojjvyfy0wMxgTfSQ5lxgjXagsqjRLnCmtK9HPjGOFYbhHjHLD6XWX4tjhlxwijV090dJKGX3VSeovoW9ZE3DDTGIEiTnRwiqKbBIfJuGhqjIgKp6bSHS78O93YV5hwb3ZkHCOuv9DHob+4SMkmF6EDQlC2/G0lC8aIjXfUcvPM7axduQ69Xs/g4CA2m42bb76ZJSxhCX863H777UiSRG9vL2q1mre97W3s0L4Fv6KS0D5PapwH8S285t1+jEEtZZvtKPIU9F0R4snwfg+BPXPjUOlWF44VZkIHivFttmKvMKGziv2i8AEvgVvdKbeP0m0u8rUqpiZmcG+0U7bdjWuFCYDQAS/+xDeeb6cd/y43pmI953/YwNToDGXb3djXiDVcaH+xiE0A6x4N49/jIXTAS+PTXajzVZRtd1OUmAOD+4tTayBruBCVRkl5Yu4xlRRQtt2Nb0viO3lvEaVbXSlRRBzEPitCJFO23U3Z9kS9e9yUbXez4ePlrHx3GaF9RRTXJWIPaijb7iawMzEW3uqkbLub8S4hLLFVGAntnxv3S7e5UvdeeovgxbbGwFhbDHulicC8Z1O63ZVaGxbXWXAutzAzNUvPhRFC+4vmvpMR8ZvkWqVsf5G4182Je91flLomgH+3J7X+sK6woHfqGKgfXcA3CLes5Lqm58wwkiRhDYvnGNibvuYM7vOk9hMv/bSFfF0eJTcn1+IewXcCof1FBPeJ66htgu9AIn4Q3OWibLs7rWxofxEH//wip77ZQNl2d2odGdgh+E4KnIL73GiMc65HpVvnYg++m2yUbXdjLBb7RaG9RcRn45z+buMc33sTscAtDtEPEwcVgvuLCO5O5zu5VnGuTTzHlVaIQWx0Cp1VM1f2Vk9q/eFaZRbvQp2Niz9qIjo0iX/evQZu9aT6izVooGy7G0eFgeNfvopnjS2N78BeD+FEWUOJ4LB0qx3/Xhcr7vdTui2d71Bin1JtEH1WoZSIDMRSHCbfhdD+uecIYCzWE9zjJnjATWCvKJsUiYX3F6X12TytKiVq9G0RfJsTa8PUGAFEOmOUbnex/IEAgf1u2TGi98wwF55qpsCuFXyrwb7GJjtGGAN6ER9LfHe4VpgWjBEFNg2xkVlM4QKCez2Uv0l+jFCoFJxPHOIL7vOkvmcyjRHWkEk4y10eJrRvju/5Y0THa/0Eb3FStt2Fc7WZ5Q8GCO5z3zBGOPHf6uHE1+qJ9MYo2+6m+pEgGz5evnBM3ubivQ88RPX4doKBIDMzM3zlK1+hvLyc559/niUsxFK6txug0+mIRObspX1Usta3ic5XhQq35aUepqMztB0Vp19bXuym5BYHU+PTICnoOj3IWKf4+47XupAkGLrWTehOD80vdKH3apnoiTHRF6fz5AATCVvl3lO9qPV5jPePsfHJSrrODyLFReokAJVGSWxQnBjvPDuI3qOj/fggqx8sBaDn3BDD9cL9o+1IH1PjUwAMt0/Qc36IztOD5KnBFjYw0Dznw9Z2qJfZxGQf6YOe80NMRsV1LvyiGUfITCThTt36Wg8KxdxJ7/6mYSylBlY/7Ofas124V5tF2iag9eWeNIVsz7kh8o0KjN5CGl7uoWi5me7z4qO0+Y9dqM1zE9Xw9VF6Tg/Re3oUnUdDUa2V3pNi87Hp+Q509rkJZXZ6FoVKgc6joetwD8p8JR2vCru2puc60Ht0qbKdJ/uJ9k/SeXgQrQ20ZjXth/tTZQ0lYnBOCi6mIiIPaM/lEYylQ7QfF32g8dl2LCETINLmTU5M0ZnoDxOtc3yLsh3YKhOCD53gMIUJwXfPuWTZThwrzExMzM5xOM9WsffCMAP1Q6LsH7txrzZTcrOL8jvUtBzqRKnIS+N7uHk0wW8PUxMzKWvjlhfS+e4+O8jodXHaq/2FTpgBe0Ic0vzHzjS+u04NMN4j+nfXkW5UahXtL3emOCwsLkiV7TjeP9dnTw1SeosLU5k+VdZYOncCan6f7W8YFxxeEe1ter4jxTdA28FeZiYFR92HRzB4hui5muDwuQTfCSOc+Xy7a83Mzs7SfFBYWib77ETrDX12IopCJTE1MU3j88IuuvH5HorWmum9muD0pS7Uhnyaf/f/sffe8Y1d1dr/V5JtFcuyLFnuvdsz4zo9jfSQSSCBJCQkIaSHhACBUEPe9/O5cOHSQs2Fy4ULFwiEGloI6X36jKe4e9xtWZYlWZZlFRfp98eRZGvG0tnOTd7fDfj5azxaOtpa2medtdd+9rMkWcGpihk8I96If+0s+ZcZP+CI+VtjTmPTdSWoUpXYjrvwjkufaX3NhkKpwLZfGufwi5Ok52iZ7fehr9Bh63IyPxaJEUftqPWpK3P2WStlF+ejSlGd6e9VMQIfDD49gXlzJrs/0YDfGUwYI7yDPtzWObLLs2I+WytGROfswvwSqjRlwhhh73Dj6HEDEJ2eWdUZzPb7GH3VjmrVpqy9w83MKQ/Ojnl0JTqabtJRsNXM1KFZhl+0xUl4Tp2U/K21aHF0eggrw6iNKRAOMfS8DV2OOtJmE0myX6Ugd1Mm4/vtZJUbsL5uA4WSoRds6POljUjjyUredWELf9z3G5ZCSzGy6g9/+EPuvPNONrCBDbw1+P73vx+noqFEyZ6Sa0j3GAHp+TL6ip1QZEHld4VwDcxiLM1AmQKDz1ixbDLG2ioNvzKFUqGg8qp8rK9MYmt3oUwN0/8HG+mlWvIajbG2UsMvTqHSqGj5kKT6Zjs6g3twFle3D22hluDsAo5IUWDoxUnUGWlUXplP7uYs/DMBRl6cwt3nJ+hxsBRYxtkhBcPBZ63osqVn5+LcEqTB8LNSbmLbb0epWon7g89YsTQZATj1ByuLgSV8kRYRzg4H6sxUrIdmYrbllxWw+xMNtP97F+P7HQTnpLg/3e3BUOjCetQdsZ3AWCHJFC/6lhh93cNyQCJizI/4sbW7sJ2QbK1HHGSUpOPs8OLs6KHo3OyYv/FLz/7pTsl2/ICN2ivLqNxTgqunL+bvKKaOzeDsdUd8NkVeo5GB5ybBD4PPT5KqW8lVbEdnmI2cUg6FIRwOYz0Zee/z8XF/8oiLufF5tHkasqsNzAx7Yrnhan8DWA86mZ/2gxbsh+2kqFVYX5+K+VCfv5IbThxwEHAtgBYmj7nQZatX/P2slczSlVxl9PVpFn2L7H64gSX/Mrb2Vf5+boKsqpWTSqOv2FlelHIVvy0Q5++h562Ya40x2+FXpijalU2KWnom2tpdMR+eenaSvEZjrC3Y8ItTK2T3iL9nTkn59ODzdgpaF3AOeCPXsVOwLZfNt5bR8ZPhOH+PvuJgyb/M5DEpfx1+3hZTCVjtbyDmO/thO34XDD03SXruiurBxAEHPsdKrpKqVcV8uLy8THhV157xfQ6CbmnOTnW60edrsR51s+k9RSgj66jT/Q3gHluZs1HVpdU+PD1G2NpdzE0HqLo4n4X5RWztrjNiRBSr/e0a9OCzB86IETF/d8yQ25DFoneJiQMza8YIAGeHl8kSF1nVenZ/ooGePwwmjBEHvtJD2Ttz8U74sLQa1owR0Tnrnw4SDoWZOGiPfM6ZMcJQoo9rnaeI5GWJYsTgk1KcnRnxklWqx1gjtYKLm7PPSnPW717AethJ0bZssmr0aE3gd8XHiKFnJ7FsMpJRqCNVq2L0sHPNGKFXmMgNF1LRVs2JwXZ6e3t5xzvegcFgYGYmuQT7Bjawgf8Z8vPzsdlW2mGWUkdb9m4mIi21bQenUSjBflT6e/C5SSouySc4J8Xksdft+CJEHVeHE7U+heneWcr35DLwtBVDeTrBmSUCtgCjr9kJzkbW+X1zWA868DoC7PpsPbaTLsL9MPyM9JwJLYdZDkjPzrmpANaDDqY6Zmm6uQKFEiYPOfGNS8+bkRdt0T0rAm6wHnTg6J5leRny28w4+90E3NLrQy9OsWqJyuQhJ4sLUq3n2K8Gya3OZG5Kuu7Qc1OoNCvPWdsJJ3mbzTTeUU7fXycJehZxRmoCg89Mos5cyWsm9jtIy0ghuzaTiQNOFtxLuDokHw48Y0VnXiEDO3rcOHvncJ6YQ2NUkr/Tgu2gpH448LQVfd7Kc3YhsEiaNhVdkQbbMRdaYyqTkdZOg89YMayqwYy+Zic4txhTrrIedDAZaYk1+NwEWZWR08MaIASLPskPAduKvwGGn7diqpbymqY7ywl6g1ij7TECK/4GqZ6XXZ9JwC4RmIaem0KVuuLwyUNOZgakGuTIq9MEZhZwj0nPqcFnJ0ld1VrCesDJ7Kg38l2cLPqWyNlipHpPIaOv2SC08ttM7HcwF6k/Tr4+Dcsw3e6I/Tbpq3LD8denmY/kKo7jDlK1KvK3mWO2GYUrueHoqytzdrprFn2OZsXfz1rJLFk5rT3y8lTMh+4xP0sLy3E1r5i/gZEXbCwvSpM24A5JPhyQrjv07CTZ9ZkxdZ6hF1faV8yNSL+NayQyhhds5G7OjLXIWz1nTQ16Qsthxg9I9/fwS9ME3Qu4BiWfDj43iTojlUAgJNWYPQsMPiPlAWN7XSwFlrFFcsOh52xoslJj7QrH86Zjh1LXihHp2Rq23FhCqj6F8cN25ifiY0TUhwN/l+asu9+PJkeD9aiD+UnJNhojYnP2mQkqLiuMkflHXp5aM0YQgKGnJzA3SDWvebs/YYyYGwkw7/SRXZlJwC2pKK0VI1z90hh8zgDqjNSEMcJ6wIl7KFJjj4QDQ4kO54m5NWOEZ2yemZ55NDkashsysTQYsL7mPCNGROes2pCGq2NGUrrTS4M8PUaMvW5HoVJQsNXM+CE785OBNWOE4XgxV57Xwp/bf8tiaIFXXnllo+a1gQ38P8DTTz/NZZddFvs7hRQuMr4LrT0LgtKzf/B5W9yaabLdiaXeCMDIy9P4poL4I7Fy8NkpVGkKit9hwd7uZOz1aVRqJcNP21Fb1ARnF5kZ9IJCwcCzNtR6FQ03lKDLVTP6mp25cR+zp3yos9WEFkLM9LkBKT5rTWkU7DJRvCuHebuf4Rem8IwECc4solQpmG6XnhEDT1tJj5CTA+4FlpeWGXle+i4zfW7GDKlMnfDEbKM1r/GXHYQIEXRFnp0j84y9Zmcq0hpu8FkrVXuK2PWJBo7+cIDh52wsR1qU+ieDjL1mZzpyWG3k+UmMlQZymrJYnF9m+PhkLO4ThLHX7Lj6JFvrYTv+2SAzvQEO9/ZhacqMy1XGX5/GHclVRg9OY64zUHpeLo52D6f+Pknqqj3OsdemYy08x/a7WJhfYvT1aQjC4NM21IaVvGb0VXtsn5hwmHAojKtX8uHg05NoV9VgRl6awucMojZIh9Gme2aZOuyM+TC6fwEw/JKNoHsJ1FKnHq05LebvwWcnMRSt5IZDz9lY9C+DGmbHfHH+Hnp+EmP5Ss1r+NlJlhfD7PpcPYu+5Tgfjrxkw7gqrxl8Lr5N8dhr9pgPh16awjvlj7XyG3zaRvF5FjQG6fuO753GPRSpTb0q1Yhmx6ScbuCZxP6eODDDkn85Jpgw/LKNmsuL2HxzCR0/H2XkpSnm7dLzOuo7R0TpcfCZSek5G2l7NvySDb9Lqk3N9Mwwpk9h6oSHoCfE4DOT6AtX/D3yoo2gR5qzzlOeOB8uLSwRnFuZS8PPR/wNeGwrc7bqkjxQwMShFbXz4WdX5mzQszJnveOS6pJpwh9r0Tb4nC0uVxl7zc78tI/ad5cS8Cww9pp9JUY8Y0OlXslVxl6djtUCPWNegrMLUoyI+FutXzVn99spbMtmwbuEvcOzZowAmD3lY+SlKUw1enY/2EDnbwYZe23tGHHkW/0UvMNEcHqJrHr9mjEimov7Z5ZYXggxHlkXrRUjMksz4trIKSPK9IliRLRt4NRJF7mNJjKrdMye8sXP7xenmJvw43ct4BmaxVCeSfamDNQGJUFPiPHXHbgHPaBQMPq6A79zAX2BBkLS+iZuzr4uzVm1Uk2tdydVTbUcHT1Ef38/l1xyCTk5OUxOJm/z/c8GRTgc3YX458bNN98cU04C0JDO2aor1rTVZUPz3bUEZxc58r1B6Ri7IoEoVTjEzs/UoUxRsPeR7hh5IhH0FToa31/KdOcs/X9I3Otdl63E5whRdH42wZkg08fmEtpuf7CWjt+MxcgYybDzs/XSWL/RJTvWqL31oENqQ5cA5i3pOE8m7gG5GtXXFmKpy2RmYI7uX44Jvafo/GzGIwvnZOMMLYXW1VddBLseqiccIq435VooudBC0W4L9pNuTsn0fW25rxKtSc2xHw/isyaX4C25JIfczUYOPSLf83bXQ/UsL4j5YPfDDSzMLXL4W/1J7aLfa/yAg9Fn7Elt628sQWNMpf3RgaR2sGoefmHtHvBxY/18A6HlsOxvUHiOmdJ35GJrdzH4V1tS2/Wg7J3S6afeP44knee6bCUZFRlMHZxNaLMaux9uIBwKs+9fk3+vKCzNGUnjAIjdr1Fsf7CWFK2KE48N4x2UDwZtH6li6qQ7/l5ctcACqL+hiO5fjQOgMyvwORM/fnZ9ro6FuUWOfFd+vmx/sIYUjYpjPxvBN5bgnonEaV1BKs23VuC1+Tnx4wT9hfNneGnyBZaWl0hJSWHLli0cPXpUdhwb2MAGxOH3+zEajSwsLMT+r5ULMClMa9o33VFBer6G9ke78LuSX9tYo6XhfeUseBY5/O3kzzGArR+tJkWbvNe71qTE75KKI7XXFdH7m/GEtiUX5WCqyuDYD+Tjl6leR901ZQRmFjj6vVOy9mWX5pLTaJR9lps363F2eGWvB7D7oQZQwN4vyj9zQVJzmTrhjpE+1rTZaqTysgKGX57C+qozseE6UXllPrnNWfQ+MSr7/XZ9Tjp1ve9L8s/RKPHo4Nflc6Tmeyrx2v2c+kPyfK5iTz55LVkM/N3K1GF3UtttD9SQqk8Rynu2f6oWpULB/q/0yNpue6CGicNO2d8ges94xnx0/HQ4qW31ewuxNGTS/+Q400cTNKCPYOdnpN8g2b31RrD9wVpQwsGvJv+9is7NZvyV5GuEKBpuKsVYns7EAQcjMjltFKZ6Ha7uxDlS6SU55DZlCeXeWhO03Cc+Dw0VWmrfXcyhbyZeA+RuNYIKpg6442LYWqh+byGW+kza/70nqd0bGevWj1aTlpEqrS8TxI2+/EOMWkcAKCgo4IILLuDnP/+57LU3sIENiONf/uVf+L//9//G/tai5yzFZWsba2DXJxoIuhY4+n35/CT6HDv63a4YOSgRNDkaWu6swH5yhoE/Jy7QaoxKAu6Q1IYpBNPHEq+j2+6vpu/PY8yNyLcwWs9YQVIIsLW7YmSNtWCs1uLuT5IYrULJBRaKzrLg6puj59diNa+CXSas+5InwNserIFlkj4X3gh2fKoOgANfTZ53mBszqH13MVPHk/+uAA03lmCs0NP5y0FJnSkJ8naaKNxm5sh35XP6HZ+qI7Qc4tA35H2w++EGqab7neTXtTRnUr2nkImDDkaeTZ4fVFyZhz5Xy4kfDcl+/rYHakhNTxHKv3d+RvoN9v9b8t/A1KCn7r0lTB5yMvT3qaS260HeThMVF+bR+5cxnCeS1Jw0kvrU9FGxmteuhxogFGafTC0viqy6dGZ6kteWt328hqljM7ENqWRovqcSnUVN1+NDQvdv4x3luPrnYi0p10L11QX0PyGtEaIxLBF2fKqOxbkloRjbel8VGlMaJ382KBvnNEZo/XADc2O+WGu/07GocbN/+VWCC0FUKhWNjY387W9/Iy8vb037DWxgA28M2dnZOJ0ra/GtvAOj0rKmbe01hZhrDBz54SBBR3BNmyjU2Wm03V0p1ZH+/bS6U3Srd1VNfssHS9FZ1BxIsn6ObsYDVOzJY/DJxHsnOW1GcpuMnPyv4aTjBEndpOX2SvyOIO0CNbK87VkU7bZw+FvJn+VRooEIdnyyFmWqUqg2BFK7LN+EL+aPtWAo17DphnJGXpySzdHWg8Kzpf2r3j+N4zyZvN6y7eM1qNJUQvWWXZ+rZ8G3xBGZvT6ATTeV4HctMPi35PtneduzKL8on6FnrNhkal5Nd5STnqcVyntaP1xFqlbFAYE6SvNdFdiOzcTa/CWCOltN2z2VzA556XwswX5QBMXvsFB8toVTT1mxH3Entd36QA2qFIXQWNeD1vuqUKqVHJbZ881pM8qOMYqKy/PIazUxfmCa0Wfl8ySQ5rlnKHHekbfVSNHZObL3KwBq2P3JBhbmlzgssF5RW9Q0XFsUU5JfC5lVOtSZadiPuONi2FooucBCwc5sjv9kMEboisPqfUw17H6wfmWsp+1xxhBpB7flg6Wk52tpf7SHYILbdiSvg36rdK/m5eVx+eWX8+Mf/zjheP+Z8E/f7s3hcMS1dgPYzZVxBCWFMn4S+hywHAzhnQ5IryUgKBWeI6mRdP9ulJGXp+JJP6vfo5MelvoKHd5BH3u/2J2YoKRQsPOz9TR/SFqkjr/oSEpMyN+ZRYpWRdUluQltVmPw6Qk8o/NJCUqZ1ToqrpAWLvu/3J2c8KCD2qtK2RFZVMuh/7cTBN0LsgSlsnfmUvluSUZNjqAEkuLScnBZ1q7+xhLK94j5CmDfv3bLkmMA/M4Ay8EQp55JvqEF4OyfY3F+SZagBDD6jF2IoATSnF3yy/tgPZi3+wgvh1kWuG73Y6NCBCWA2dF5/K7kCXkUAXdwhZWeBBOvOtn7hS5hgpI2WyLeyMHROyf1gTekJbXzOUISQUkHLfdUyl7XPeRl9BWxTbLCc8xUX1lM090VSe1i96sOaq8vSmrb8Zsx5u0BIYIS6QrUmWlxLfyAlYVRBFGCUvPd5TR/qI6cVgOJsO/LfTGC0raPVVN++ar78rSYe/Drfdg73BIRUwf5u41nXlChjMXy0FI41rd35eXVR+eyeAfvxYAZU5aJ9vZ2FApF3MmXDWxgA28cl112Way1G4CZfC5SXJOQoAQw3TsbUdFLnLrmR/qAu/v8TB2bSUpQqrwyn5b7pFh8+Nv9SRf1+btMtNxXR8PNpQBJCUoAea1Z6CzqpDZRuLp9zE8G6P7lYFK72uukmD389JQs4aH5nkpqry4huzEjqV0Uo3unme6W30xouqsCtBLhIRlBCZBOxYdhpl+epN5yb+VKCzsZDPxlkr1f6BIiYM1Z/fjsYrmEbzqIazA50TeKYz8YkCUoASz4lggthfFOi41BFIvzSywFxPK5Q9/sEyKJufv8LHqXcA3I+2D8dSdL/mUWvYuytvv/rXtdBKXyy/Ooek+BrF1oMUR4Uf6cTZSgVHlVPgXnmJPadv1+BL8jKExQ2vHpOuquKUtqM/KMPXa/VuzJR1uYeKL7XeAenqfvz8kLZlGUX5RPqj4F82Z9Qpupw27pfgVa7q1j+ydrE9r2/36CvV/swu8KYarXSUSwJGMdfW2ak7+QSEXR2JsIXltAUppIEjdqJrdxFnsoyCvA6XTy2GOPoVQqcbnevILvBjbwzwq3201qamocQelsrkhMUAIIwKJ3Ee9U8gd+7lap5nXyV6MMvziVmPSjkUgZxmotAXuAff/alZTIsu3jNbTeJ9WQpo/OJiUoZdWlozamxrVPSIa+P4/i6p9LSlDS5Gkoi9TQDj3Sl5SgBNDwvvKkMXY1Rl+YZt7mp+dPyWteeTtNsdqUyOZXaCEcU5xOhoorpbZ4ojjw1R5ZghLA0vyipDS4X14NzzXgJehelCUoAdj2u4QISiDlSAveJSFbUcw7giwvhmKn4pNh8C82IYISSCfxo8pEsmOYDOAZk6/LuLq87P1ClzhBSRPJ72XgHvQRDoVRp6cmNwwQU/HacmuZ7HUdne5Yy245mBr01F9bSuMd5UntDj3SFyMoVV+dPKfseXyIuVGfMMFQn6clf2vynCdKUKq7vpjW++skkmUCHPhqT4yg1HR3BeWXJa5FH330FJOHnDGCUjT2rg0lS4Fl7J2J42ZqwMg5i1eSRwnZ2dm0t7eTn5/Pu9/97iTX3cAGNiCK+++/H4VCESMo5VLERcprExKUAOwdsyz4kj/DzFsMoIagY4Gx16fPJCiBtJmuUFB4tpnmSMw8+dMRDnwt8f6RsVZP20fqqLtearGUjKAEUiv5jHxdrBVVMvgng7hOzdH1++R1tLLLckENtoMzsoSH+utL2HR9GZamxDF2NYZemMIeUQlOhoYbSkANM93epGQHgFR9GuHlMDPD8jWvLbeWoU68BRKHidec7P1ilyxBCcA9NI93QkwYwjM6z0y/WM2r8xejsgQliOw1BpfxOeXzufVgwbMonM8d++GgLEEJIOgI4rMHcAr4wH50muDsIsHZBVnbw9/sWxdBqeAsExWXy69ZFv1LhATy+ihBqei8bApk6jKDf7MxNzYvTFBq+2g1m2+sSHqf2w67Y/dr4dlm9EVJjIMw3eHm1JOJhVlWo+x8C1qTGvOmxDfP7ClfzAct99Wy9eM1CW1HX5hm/5d78E8G0earabu/OvF3C0L/X630/HYUFIrEsSZCXpqz+VmcW0pIUAIotW3mHN5Ffm4+brebn/zkJ6SmpjI9LfZ7/CPjn1pJqa6ujt7elSBSTA21qpY4m+jGtbZIS/PNxcxZ/Zz8yWjca+HQmS7c+emaxOpJ0Q32sBRocrdlUnlpAZ4JPx0/GY68tsbPolBAOEzt9UXoTOrkLMJqndR6zQe6El1SFaXMah0N15Zy/Ie9+BzywW/X5+pRqMRUbgAa7yxn6rgrqYKMNhssrTmyajyxMTxUj0IpPgZR7P58AyCmJlD9nsKkalf/L9D64UomDjqE1XlEIaqktF403lGOe3Re+Hd+K5BZrSOjSCdLbtt8SymGknSsh52xtm5vBlo/XIkmS83Qs5NMChTw0EH5+bkMPZl8DG0fqaLrl6dirdeSYdvHpVN73b8bZiaJAsDqa4cWwklPPOgKNfisQQiHz1RPO41tbGnWU35hAQeTnXCMxkltiN0fr2cpsMzBr/fFvxY+M15t/0SNpAD1yzG8Q/Hf7YyYrYPdD9QyPx3gxI9G41+LwLfs42DKUywtLaFQKKitreWxxx6jtbU18dg3sIENrImJiQmKilYIkgqUXKh4T0L7prsrSLdokqpvRLFeRaLtn6wlRa0SVg/a9vEa+v86hrsv8UBWq6rIqZa0fKiScDjMsR8kJycBWFoNVO8pwu8MJs39otDmaai7upD27ye3Lbs0l+GnxZ5vRedmU3JeDp5x30qu+iYgqoxk73TLEn+Kzs3GOTCPf0JsI+GtQOklOaTnaun6+cibet31KCmtB7lbjeS1mjj+Q/l59lai8qp8Bv4oL2e8+/MRFUnBE46i2P1wA6HFsDBhqvSSHGnTLMlUy99lIqsqQ2wuaGH3gw0sL4Q4IKCApS3U0nRzGcd/Ppx0vmsLtdLrWkjP0ca1eTsdLR+qxD0yz5BAsbHx9nL0BVp6fjecVCkKVqkqBZaFFKOa7qggPU+TVLFpUHuCQZ+U82VmZtLU1MTLL78se+0NbGADZ+Liiy/mueeei/1dSh3Vis1r2mqMSlruq8M7nlh9YzWia8q9X+uKtalKBGO1lobry5kdmafzZ/Jxs/TiHIxl6Rz/z8SED12RRmo3GpBIRdH2V2tBk6eh6QNlHP/ZcFK7KKKqwiLfDSRCwswpL1OHk6zvNVC8K1uW8BTFjk/XoUpVCueqotj12XpQKtj3r/LXLd8jX4d4q7Hl1jJs7TNJiWpvBKJKSutF3fXFzE/5hX/ntwK6Ig3GYp0sua3iyjzymk1YDzhjbRffDGz6QCmZpekMP2cTVpcoucAiq37UdGc5vX+alFoLyqDp7grSczT0/klG/SmCxtvLUCgVSWPOamUkOfW0zEoN1VcUC6n6gqQqteRbElJCW5cCVEQVzzvpS6p48qriLwRDQRQKBdXV1fz617+mublZaOwb2MAGVuDxeDCbzSwtSQQLFSns5nLUyrV3wuuuLyKrXM++R3pibZ0SQZuvpuW2CqkuJFBHar23EnVmGvse6V65dpL9xpZ7Kxl8ZjKpOtFqVRV1tjqp4lPDDSWotEohtSVDqZrNN1fiswc4JlC7UBug5poy2WsXnGXCetgl61sA8yYDtVcX4Rnx0vFzsYNDIijYZaLsojzsx2Y49ZfkNZGcNiO+KX9cK6v/18jbnkVmaTq9v01OKlsv1qOktB5k1esp3Gp6U3+zNwKRPAbeOrXxXZ+TugglU0tbjbztWdiOzyS9N8ybDGRvMsge1I1i90ORutA35MegNihpurOarl8PJ53vaotaahuoBr1FndR2000lzDuCDCcj60f2KKuvLsDSkEn370eZ6fbGvXbmIFapKgnslde8txBTTQbtPxqKtTw8HePqAXr8UteWjIwMtm/fHrdm/2fDP6WS0tGjR1EoFDGCkooULk69Po6gpFAq4pQ1fKM+wkthgt6lM15bDV2BdLJk6Hkbjr65M9WTVimA1F5fCDqYOjRL+w+61970ibCfK6/Kj0n89j4+nnyTSgebri9j50frY2NPhuyGTBQqBaYtydmWURz/6RDjB+QX3FtuKwPgxH8OyZJoGm+ro2hHNrpssSm575vdnHpSPkBu+1gN2z6WmEF5OvY+0kXvn+SLZptvKSVnszGm5pQM5Xty2fqxatDJmpLTaqDtI1VCftBX6NBkqSlozZa/MFJbPJExrBeW5gyy6sUurM/XkteU7MTPCmqvL6LxzuSnpKKovraQrR+tFrLddH0ZJWfJnxzs+O8RTj05LkxQKrnQwq6H6tHK/BxHvzcgTlACdnykjvxWs+xvd+Q7EkEpf2eW7Lw89Egf9pNuIYISQFpGKuosGaUoq/TQLbnIQu1VpWxOcnJu+pg3RlCqv6GIHclOnfqV7P1mb4ygVH9D0YovToupAB0/O8Wc1R8jKEVj8mpEY7hOB+HlMLMjvjNei0Kn0nG+4hoqaaSkuISenh7a2tpoampKPOYNbGADZ6ClpSWOoFRHW1KCEoDX6md5MYQ2icqONk/qce3q9uEZ89H9y8QEJa2JmErLwa/1SuSnJNj+qVoqr5Ti6aFH+pISlJruqKDumjJydxgBZNslqY1paDKTx9Uopo96mDo2I0tQqrwyH/NmPX5bQJagpM3TULDdzLZPiOVI4684GHjGKktQ0uZp2PW5ellllSgG/jJJ35/GhJSJSs7NoeWDYnnB1vurKRc4nQQSIaPyKvl8DiC3OQtjWbqQraleh0kwP1oPtCZkVYGiKNhuJj1Xg1bg59AWamm5rxJjjbysldYktfAqOlc+B61+byF5jSaq31soa9vz++F1EZS2PVATU0RLhv4nx4WLQOmlWgp3ZLPtnuT3xuQ+V4ygtPmDZckv6oeJAw5O/KeY+mnOpgyUqQos9cnV0KIEpp0frafp5uT3Rvv3B2IEpR2frqPo/MSneE/8eIj2R7twdfvQmpRJ7w+/C5y9Hk79VVIEicbkRAh4FlheDCWNkRX+Ri5SXENJYQmhUIhXXnkFhULBqVPyBNQNbGADEmw2G0qlMlbsTCWNixTXJCQoAQTckvp0wJP81LAmR7rP+/8yxnSHOymJp3xPLhqjEne/n6Pf7UpKUCo6LzumRjTyrD0pWQCg+ZYKdnxEqpHJEY+ya/Wo1Eos9YnV51bjxI/6JVVjGS5Ew40lAPQ8PpacoAS03VlN8dk56IqSx8koDnylh94/y7eDa7q7QjoJLIh9X+6m+zfyaj+V78qnoC2bynfJ50gFu0xSOyqj/OdnVmpoursCjczzAqS2VRlFOgq2ieWVeTtNQmNYL4zVWozVYrKfpuoM8trExlu+J5fNHygTsi29OIfWD8krfQM0faCCUgFlscG/2Oj5/agwQSl3axY7P1MXiwGJ0PmzEfr/MiFMUNr6sWqKzrLIXvf4fw4RsAfIqktPqjoEcPw/Bpk85BQiKAFoTWo0puSSIFGCkqU1k4bry5P+drMDgRhBqfyyXNk1175vdMUIShVX5iWdxz2PD+Ae9MYISsn8ptHA8sIyXmtyMtM54SvZzE5KS0rp6+ujpaWFHTt2JH3PBjawgXhcc801ZGZmxghKDWzjfOXVCQlKAJ5RH0vBEGp1gs1xJDIQSIpEjh4PXb9M8gxXQ9ll0p7H0X8fiCcorUZkv7Ht/moq3inF0/Z/H0hKUKp5byGbb6wgb6sRQLYlnS5fg84spjDuGQky9tq0LEGp6LxszJsMBD3Ik5/UUHZ+Hm0fEsuRnJ0eep8YlyW7qA2w41O1MT/IwbrPRdevR2QJSgAVF+ez+WZ5hUOQ6lglFyRe069G7XVFklKVAAq2mzHXisk+GUrVZFa9BZuNaomwJYL8ZhOGMj3afPm5pjYo2XJbGcYagZqeWiJWFZwln9MVnZdN8dk5VF8lrwre9esh9n9TvObVfEcFzXfIz4nu341y4NtiBCW1QUnFJfm03pk8r3R2emIEpRqBet7gs5McFzjoApBVYyBFq8JYmbzmFSX5bL23hsZbKpOqOnX+YjRGUNr6QA2FZyeum/Y/YeXId7slgpKa5PdHECYOORj4u3QPR2NyQvO5BZYDoYQEJYCiYCUXKa+lOKcEpVLJ888/j0qlYmBArAvRPxr+6UhKZWVltLW1xf5u4iwuSL0m9vfqDWp9uY5dn6mh+qpIa7Ov9dP/+/gHymrVjR0PVtN8a4VEPDrsoe834yub6KdtpGdWajBXGdj+IWmhEqd+EulluJq9l5GnRZmiQFciEPh9MG8PMPJK8pOy0WsN/ElqnZFUWUYHOz9bj6U5A581IKuE03JPJRmFOgoFN1FO/FcPMwNzskpO5Xtyyd+ZBT6wH5WXPVRpVai0KqExmLekg494BZgE6PjvEVwDcwz8ST7ByK7OJC0jNWkLvSgKt1tQZ6ZBmvzGpXfQx7Hv99DzO/ngZWnOoPScXLZcXyY/iHWi+spiat5dImTb+fiw0ClrAFNFBvo8sUJQVqmeNIOM9HQEk0eddP9+WMg2OscszWItcxRKBaZ6+TkfJShFiXzJ0PmbUaY7Z4XmD0jtP3Ib5Ylgp/4obQhvf7CWKpkkanVbw4QxKHIaY/R5Bwtzi3T8ZmQljiUR7NPnaVGplWeSsFarJPkAhRJ9hZ6sygy233NaErUqzvqmQzG1u60fqaT51orYmE9XSfK7FOz/aj/DT0tM912fqWHLrcWRS8aTlSpSG6iZ3IUmVZqTJ06coL6+ntdeey3hd9vABjYAJ0+eRKFQcOzYMQBSUXOR4hqKFGtvqDfdUcGuz0kk64G/THLgKz34E9S3jTVaWu6soDnSQrPjp8MJbQG23FZLziYjWlMkJ0tWq9VCSpoKg0jeBfT9YRi/KxhrrZQI6aVSDNn/5W72yyiqVL93hYA7IFDQyG3OouZdxULj9dsC2DvddMj0YgfpNDQg+90ALJsNKFQKQovyypzRdnQOwc2Dnt8PM7pXQAZXC2nGVMzVYs9ufb6W7FoxmfCDX+2l4zGxNh7V7yqRbQf2RlBzTQXl5+fJkkFA2sRof7Qr6X0RhTpd2qAp2CFP5Pb7Ic2QimWzvN/6fz+Bo2eW/t/Lq49GVXuStTBbDVWaklRtiqzddCSfKzjHnJScAzA/4sfZ6+HQD8QIRSUX5WAo1sXuk0QYecaO3xUid6uRHZ9O3gZ75Bk7e7/Qxehz0npL7rce3zvN7KiYzLuhQosqTYmhKHlsi86ZzR+sIndLVtIx9P5mPEJogpY7K9j2QOKNuN7fjMfUpGqvK2L3Qw0Jr11j3U758gqhorW1lbPPPjvpuDewgQ3AWWedRX5+PlHR9EZ2c57iXWvaanI07PpcQ6wt0sGv98baFa2Fto9U03pXBRojuPv9SW01ORryW81svkXK05K1VwPIKNCSolaRUSpG4pkZnGNMplVUdPN+/GUHe7/QJatus/3BWsyNGQTcIcZfTm5bf0Mxxgo9ReeJHRo78p/9THe48Y0nZz4VnG0mb6e0ISJCsEjTpZCiESvtZtVJmzIi7a0G/jyJ/eRM0rZ8UVi2GNGY0ggIqE4VbLeQnqNBLbA/FHDD0e920ftb+dxLk6Oh8pJ8qq8uk7/wOtHwvnJqrhKreZ382SCHvi6WQ1jqjRiKxdYa5hoDmuw0ELg9Rl6ZEiKigdQiDqR2anIILYVQpigxCWzuRZWv6m+QX5t0/HIM2zGXkEISQO1VxeRvla+7Rdvetd5XJUu2O/C13lh+Ikegmz46i286yCnBFr2G0nRSNCnJf7vIV9cYleQ1m9hya+JcKuCGrsgarvGOclrvriCzcu2LB9zS4ZyoL3Z9tp4tt5StaZunKKJqdCsZKim/P3jwILW1tbz00ktJBr6BDWxgenqalJQUfv/73wOgIZ2LlNdSoCxb0772mkJ2fkpaD1r3ujj0SB9Bz9p1c7VFTdvdFTTdLl2r7/cTCW0BWm6roKDNjNoS2URfvUd++n6jGlL1KbLrwij6/jrBvM2P7bA7qV2ULHL4Efk2WMXvsNByr5Qnjr0kX+spOstC9RXyRBAAgtI6uevX8rE6SsBwdsrvNRrKM1GmqFijsc4ZiBJ43H1ia/WuXw0y+ooYcVifp8VcJ0YmyqrMIGeTUcj26PdOceKnYkSJ6quktntvNmrfVUT1nkIM5fJJz8CToxz5ttTCSxZpqWQU6CQxADkEIT1PS069UdZ0/GUHk0ec9P9R/vClZygAQYS+G0BKRgopevmal7tvHoJSS0g5YlXQE8J21EXnz8QOgVmaMsluyJTaISaB7eAMQUeQzCodWx+okW0Tt/eLXbH1VixmJcDQczac/R4hVTS1RU2qVoWhaI18ddUeZdADKBS03FpJwVYz+sLE+/Ejz0wz0yMRmtruqqDtw4kJXiPPTMeI5yUXWdj56bqEJLpaxw5qFySuSigUoqmpiXe84x3yX/IfDP807d56enqor6+P/Z2CmvNTr07+Jh3s+kgNM0Neen69dpBZvelddqkFc1UGRx4djL54BjkJHdKGezhE1VX5nJJpfVB9TQH9v4t8tsxPVf/+YvR5Wg49IrYg3v1wA8uLIQ78m3zbgdztmVReWsjssJdOQfk8EWnoovOzWZhdECIcQaQdm4I3vR1G2/1VqI1p9P5xRIiktG5Ef3cR02ylUNu99X5+/dUlWA86mO2XH8h62r3VXl+EZ2yeydfFlIFEsS4/rMO/68V62xuKovHOcvR5WsYPOITb39XfWEK3zIayeUs6oaWwmEqSDnZ/ooHF+SWhuFFyoYWi3RY8o/N0/Pcap2BPk0XMPyuLkrNzpBiTSDJxFQrPMeFzBFbGfnr8BCr25DD4oh18UpvIM9rbrYq7+TsyKdqZzaFvryTXiVTwNNnQfHs17uH5hPE+CuviEHPFk4yORQpDjY0cP35c9vttYAP/bGhpaYmRkwCaOYtsRfICccNNpWSW6Nj3zW7ZFm8gqbkMv2hLSnTRmqQNd60p0lr2ucQx17xZjzJNGSM1yGHHp+sYeGpCiGiz+dYyDEU6Bp6xChF+tn28hlRdirAcsnmznkXfMp7B5I6re18xPb+WP5kPULEnn/w2E64+D92Pi71HFLsfFm9/9YagRWgOgXx7vjeC/F0mdLlqoTZn62n3ZqrXYdliovcv48LfTxTr8sM6/Lse5G41UvnOArxWPyd+LLbBJordn2+AMOwVaHEDxJTR5O7X0ktyGBHM5aItUHqfGMXZ4ZW13/npOpTraPez7YEaXKfmhIiNINCKTwvl5+ettImT+d1b7qvEdnSGSQH1hPrrpQ1+EfWsk1mv4V/y4fFIsXl8fJzCQvnTfBvYwD8TbDYbBQUFMXKSGi3nKPbIvm/nZ+qY6Z+jV4BMmrs1i7y2LI7/R5KT7hpiG+6lF0faZ8qoLYm2FCu/LBdTjUG4RdeuhxoILSzLbpKBROCpv6aUmYE5un8llvMUny/fvs3SmgkhhNuV7fpsPQqlQvhZJYrNHyjDUKqj/y8Tb3rrNCDud5c1XdU26838/Op3FmA/4WJ2QH4g62n3Vr4nF9/Ugqxa1nqxLj+sw7/rxXrbYIui9r2FZG8yMr5vmpFnxfKkmvcU0veH5LEoo1RDilbFTI9Y7XbXQw0seheFWq9ZWjOp3lOIe8hL1y/ka9/mxgwqLyng4NfFDmOaGzMILYSSjr3ovGwcxx0E3JKaWDKCp6lBT9n5eRx9VGCjUQM7P1aHe2hedi3oDjuYLhlidGyUcDjM9u3bOXDggPxnbGAD/2S45pprYuQkgGbOIVuZXMmu4vI8LJsyOfYfvdImuQya7yhnbJ8DZ2fimpPaENlwV0PhNjMTrzkT2hpK1aiNGqaPR3IBmf3Gto9VM/z8FM6T8oOtvqoAy2Yjg3+3ypKZQBI50JjS2PeNBIpPa4wdpSLWci4RKvbkMfikfJtzkNpeVVyaj7PXI9zWShS7PtfA8sKy8DNi3VAj5DeQ1HOCnjc39zJvMZBRqE3eXiuC9bR70xepyWnKYvA5m/D3E8W6/LAO/64HhnINm2+sYG5snpNr7a/9D7Dzs/UQFm8nZ6xJJy0jFfsRd1K7grNMWF8XU8isujKfnKas+FZqSdD2sWrSdKns+5JYHtp8VwWecR+DfxO7x0sutjD67CoS5Bp7lMXvyGbspciaTuZ33/KBUpz9Hqz75NcFFe/MJWeLkf3f7pWdSx26vQRS5nG73QCcOnWKykp55fh/BPxTkJS2b9/OoUOHYn+3cCHZqatO0aoiSjvLy6CD7fdWYz3oYPyVGem15eW1L6xQsummAgyFOvZ+qXfVf0sT/XTVDnSw+4FaloOhtYskCmWcesimm0swlumxd7ilE2oyP9X2T9aSolEJkyla7qvE2T8nTJAQIYJUv6cQdUbK2gSGNbBe0pGuQENmiVa2VVb5nlyMpXrZ1iix65boqL0yn/ZH5e13fKoOZYpCrB3FW0ie2f5gLYoUhRDJbL1YD0lpPai9vghztUFqsfNW+EXQ35tuLiGzTC80jsp356NMU9L/W/miLUjEnII2M0e+I18kKHtnrnA7uea7K9DlaBjfO83o8/KnC3QlOja9p4hD35IhH61zjm5/sJaO/+7H5wgn7mUdQcs9FWiz1XQ+PpJUMjaK3Z+vj2werrq31iAqAeTvNlJ+fi6zI/N0/iJ+EbFWDG6+uxStSc3+7w3AfIJkdFUM3v5gNfYON8N/n45/RqzC6/wZ36L0vRoaGnjqqacoKRE7YbmBDfwjw+/3k56eHtskS0PDuYorEtpX7Mknu94gtnDXwq4H6pkd88VaLSVDlBDQ96cxISLR7s83AAgtnE31OuquKZPiUJL2JbGhF2rZfF1x7ESFEASIIFs/Wk3nzweEyCXll+dRsNXMzKCXrl+I5WqiBIy2+6sYfd0uTPCqvbYI/8xCUtIYSCoyLXdWMN0lpsbzVpFntIVaWm4tx9Y+w+CTYgQQUayHpLRe7Ph0HcuBZaGNmTcEQX/v+lw9S/5lofnffE8FvX+04pdp37NiX4m904311cTFWJBIR55+jzARa/fDDYSXw8It6DZ/sAzvpJ/hp2Vyu3XM0bJLc8ko0nFShLClXUU+F/Bz7XVFZNdlYjvhEiLT7fh0HSpRwpQWdn+8AWe/WLG39JIcchuzOPhob0LfOLSTHPO9DoBer+fss8/mqaeekh/LBjbwT4AbbriBxx9/PPZ3M2eTrUiwSaaBbR+qwXbMJUuwAai+uoDsOiP7vtklRJLY9VADS8ElITWZiivzyG8xYz85k1SVKYq2+6tJM6Sy7xtiY9n0gVLmxn2MviCgxAhCRJCSCyzo87UxJRM57PxMHcoUcbKpxqgkoyKD6aPJiUQFu0xkb8rkxI/ECL2aHA01V+Zx4sfDsrZtH6kmVadiv0it6S0kz7TeV0WKVvWWbO6th6S0HpRdkkv+NjPtPx6UbUP4hiDo78p3SQrbR384KKtQVHReNtqsNCEFAJCINiVn5ci2lwYxIl8Ude8rxlxrECY1aXI0NFxbJE/QWeccbbu/ms5fjwkpO9XfUExWZQZdvx4SUijb9ZC01twnQEI0Neipe28JM6fEiJN11xdjLEtn/7d6hL7vtgdqmO6cTdru75DqeWaXpPp7XV0dTz31FGVlZfIX38AG/sERDAYxGAwsLEgtcrXoOUv5znijaD07HKJgt4n8raaVvYLT9gDjoFGy48NVeMb98QfFVl1vNaquzCen0UjvnyeEiEQ7P10HStj/5cgzPln3gyI1jbdU4h700vUr+bxHbVDScGO50PNh5U3Ibt4331FB958mkrZPiiJvq5GKdxYw0++l+3GxXK1gl0moRemW28qwHnIJ+RkkckRoISyrzokadn2iHvsJNwN/Fag1vUXkGdSw8+P12NpdQsSj9WA9JKX1ou2j1YQWQuubd+uBoL+3faKW5eAyR78nvye46aYSTj09JTSnATbdWMLMsFeWKGTeZMA7FZRtxxjFeklN1VcVEPQsyq+t1jFH87ZnYa7OoFN0bfXZehbmFoX8XHKBheKzc5hqd8W3XEwgptD24SrSMlLY90iP0Ph3fqoWZ99c8hw6Eu9z2jIpPtvCkR+ckq69Rkz3qD0c9D8NgE6n4/zzz+evf/2r/EDe5viHbvfm8/lQKpUxgpKKVC5OvT4xQQnQ6UCVqiC73rDy2lqITKLlRelBrjtN4fkMghKgCChY8C5J0mQJrrcanT8fxTUwJ1usibYyOvi1Xol0kcw2W0njnVKLlfZHB2QJSls/Wi1t2AkSGbLrDBhKBHSbIzjxy2FGX5NffOaflUVmtQ6fNSBLUALI2ZSF1qw+s4VUAvhGfUIEJYClwBLLC2KbGzvur2P3ww1Ctvk7s9j9cAMVV8j3jo9BkPhb+e58tj9YK37ddaD+xpJYOxo5LAdCEIbMQrEfZtdD9ez4VPKWGFG0faSK3Z9oEPrNZ8d9hJfDZJXKGw/8aVKYoARQtENq2afLlg+vUYKSXLs1gGP/Mch056wQQQmg9vJ8UjNSyN0u04olcl833V3B7ocb0Mqo1R/8ei8+R5icVgP1708u3d3+g0H2PtLN7Ckfumx5JaWRl6cYeEasMDZ5zM3yQpihV85MztaMv1EFpUjruIRQKNGX61ClKsgsjrQbjJKTTnsmnMW7qGcHhQWFdHV1UVZWxq233io0/g1s4B8Vt9xyCzqdblWLkV1JCUoAmSU6UjSqlTZsyRCp/SpT5GMKwNhrdpb8yzj6xVqKDT1vo/9vMhvqWkmVydXtY+/Xu2QJSvXXF2Oq1+Gf8MsSB7R5GnZ/voGGmyKto2Rq3QXnmEkzpFK+R6zN29DfbNhOuIQIShV7JNUrEYJSeqkWtTGNop3JW2mtRu9vx2UJSgC67BTCy2HcQ/K/odYEux9soOku+Z7tIJEudn6mXt4QSDenQBiWggkOL5yGrfdXUy3Qt33d0EqbCiUXybdlAwiHw2s+F9dC5VX57H64AWONWLvd3Q83sO2exO0oVmMpuMyif0nI9tgPBoUJSmhBZ1FTKND2Y+qAG78rJKlRtcpLo4++Ns2x/x4WGwdgKNKR2yzfchc/Eonn8w2xdpWJMPz0VIyg1Hh7uURwSnLdvd/oisUZbWHy37H3N+M4ez1CBCUAZ78Hv0us0qQ1SZ+95Be7X0xVGaRokrfozvbnc5HiGjK1RsLhMM888wwpKSn4/W8BK3EDG3ibIBAIoFarYwSltEhb3YQEJUCjgdT0FEzVYi0ilhak+1hjFGtL4HMEcPaKbd4M/sXGdPRQXhJE2y8d+W6/PEFJI6kGAXT+bES2iN54R7lEHBAkMuS1mTCWibUlBTj202GGX5Lf6DE3ZpBZqSHgDskSlADyt5nR52uF2n8BBOwBIYISwOL8IksBwXzn7uoYyV8OmZVSnlu+J1fIPhwKE0Yshyk6L5u2+6uF/bEeVL4rn9YPJW7rsBpLwWUIhdGZ5FtzgHQIUrRWt+XWMnZ/sgGNUd7WPewltBRCa0r+bAWpTYkoQQmgaKcFbbYaXZG8s6MEpbJL5H/znl+PYT3iEFZdKr/QgsaUFmuPmBCR+7rufcXsfqgh1gYyEY58t5+APYCxWkutTC7f/asx9n69C3e/X/pdZFzS95cxBp8Wy7tcg14WvUuMi7S7ZtX6WCCOaYxKUnUpZMrURLctX0gzZ1NYWEhPTw+VlZXcddddQuPZwAb+UfGlL30JjUYTIyht4aykBCUAY6ketT5VavkjU5OObowrVWvUvNYgNo3tdxH0LOLsE8u9+v86Qf9f5WO+2qDEOx5k79e7ZAlKFZfnYaxJJ+iRJ4qoDbDzc/XUXR+pYcksL7Pq9ejyNFReJJY72A67GX99WoigVPwOqX4lQlBSG5RkFOgo3iHW5hdg9NlpeYISYMhTs7wQYm5SYF2rht2fbGDLrWVCY2i7v5odnxTLM/QWNYTC0v6dABpvL6dizzr2MdeBlnsqhVsqE4Lwsli+WHi2md0PNWDeJLYO2vW5etruEtv3XPIvsTgvVvPq/MWoMEEJNWSW6clrkcl3kFoWBh1B9EVqoe84+Mwkx/87iULuaTDXZ5LXKj8Ogkikt8/US3WsJLAdnIkRlGqvK0ItM+z9j3THCEpybeJGX5hm8ogznqCUBPYONz57QKytnEGK0UI8AYUSS30m6vRU1OpIbI/G81XPBEPQwEXKa8lSZaNUKnnqqadQq9UEg28FK/F/D/5hlZQ+85nP8JWvfCX2dzWtlGnq45UwVm04b765gMlDTpydvjPJSavfo1Ciy1fScG0ph78zRHjVa6vbCK3eDGi8vYRUTQpHvy8VmMOnXW81tOYQLXfXMzs6H99WLcHPVHVVATlbjEz3zAoRKbZ+VDp5JtrWbPMHy0jP1ayrFYe+Qod3MDmjqfLd+Uy2z+IbFZNweSNt3nQlOqHr7/58A35HkPYfvPls25r3FaG3aISYnflnZVF2Xh5dvx0Rasm2HrR9pAp1Zpqw/9ajpLTjU3Wo1Mq35PT/to/XsLywzNHvyf82JRdayNlipPMX/We2APsfIrNax6bry3D0eej7tczmtQ50OvFWdS33VKK1qBl9zc644AmzhptKhKSnM6t1wnOp4oo8crdkse/b3UKExFgbvC9GmNbRGJWAibz78/WSGsGX5WOJNhta7q5nZnCO7sflF05ZdTpq313E8R/3xX77RPFYoVJR895cVGlKun81Gb/AO32hGHmt+e5Sep4YJxAVaFjjOXJA9Rc889KCcKP92wb+WaHVagkEpKqoEhUXKBK31dXmaai5ooDjPxJbDDXcXIrfGVxpOZRsHCYljXfW0PH4CPMj8ov8+uulE7B7H+kSVoRRKATbcGgl0oxoWzOtCZruqmf8gIPxF8UK0oYKrWyLN5AWe6Ly1WWX5lK4I5uZIa+QYhVIv6kIsSTq7/Yfr4OIIgitScmmmysZe32aKRF58XsrUaoUHPmuWC/29WD3ww0sesUUbdarpLT74Qbm7YHk7XbeALIbM6h8Z6FwC8OW+yrxjPqEW4utB833VKI1pQmpGGkLtfgnxIkq61VIMlRoyarKkCXspZdqhWJOFDs+XYd7yCt0X0bb4PmmgxwTWLPUXlcUUSNwCJEBN3+wjIwCrXCrzdYPVxGYWRBWEpEU3/rxCyiEZzdmkLMlK+m1Z4smOTQmqSplZmbyoQ99iC9/+ctCY9nABv5R8NOf/jTugEQNTZQoEhfR664rwt7hxtUlL7uvMULDjVViLYQi19aY1ELxKdpyyDPmE4ohRedlU3JujhCZCSTSkT5fK9zWrPrqArIqM9al1qMr0uAbT57DFJ+fjXvQy9yIWK6zXsUlkMhbImo9Oz9Th88RFFZdWg/KL8vFUJoulJOYGvRU7Snk1JMTQvNwPdhyWxkZhbp15VKiSkptH6lGbUh9S07/t3yoktBymOM/lPefpTWT4l0Wuh4bfNPb5WlyNLTcUYGrd1ao9aMmRyOkNASSwo+5xsDoq1PCqkrVVxcI3e8ZpRrhe6zgbDPFuy0c/2FP0hZqUWx/sJYUrYq9XxNUkftcA+FQSFiBbNcD9bj6PEL+1hVp2HxDKSf+s1/oty+9OAetWU2PYLvuLbeU0f+ULelvelT/Aq45KZHbqHlt4J8VBQUFTE5Ka98UUnmH6j3SC2vUltUGqLqiaEUdJEHNOfpa5RW5LAVDjDw7nbhWHfl/tQG23FZN3xOjeEbkN68r3plLTmMW7d/viW8xl2C/cfsnalGmKdn/ZbH18u6HGlgKLHPwGwK5lBq2fbgW6wFH0rZ0q6EvUuMdl/+elVfkiykRATltRqouX5/iktqgJBgMyRIYSi/NIb/VTMfPB4XGvR6oDVB3XTlTx2aEWuptvrmEFG0KxwTyjPVi1+fqWZhb4sh35XOp9Sop7f58A3NWHyf/a/h/OMp46IvU1L+vjMG/T+LslCf2bbmlFI/Nz8jTgp2I1oGGG0owlOjYL1ArVlvU4qQm1q+QpLaosTRkyJLqtPlq/JPi42j7aDWekXkhMny0DZ530s8JASXxkostFO2wMPbaNGMvydfPq68qwFxrkOLgnPzB5y0fKGXBt0Tv78TEK5rvLKf7CeuZKlZrxH5DmYa8NjN9f5iM+//V75k3z7DP/gwgKYnff//9fOlLXxIay9sNYkc73mbIzs7G6Yw+5BRcrHl/vMFpJCRdNmTka9Feko+zZ3jti66aTFXvLCBVpyJ/lwHrazNxm+Hxb5H+P92iAUXcC2t/RjiE3yedeE6wz38GTj1jxVSdQf+TYjfL4W/3U3iOWZagFCX4dPx0WOi6Wz9WzcyQl4E/TcoSlAByG7PI2Wxk37+KBcreP42QWZohZFv9nkL6/zAhRFDSZksEBtGT3a0frmTsNTvTx8QUGWQJLasw+foMk68L9rjXSWpEogQUkdZjbxQHvrrOdnM60OfJE9kADj0i3hJn9HmxNmir0XR3BfYOeb/P9vsgDKq1TjGcDh/4fCH0FTqMpTpZ4lH7DwbYdHOJMEGp8t35ZFVksPmDZbL352y/D3Sw48N1dP5uNKnPB/9qY/Cv0ua/CMHv2A+70RevuiejQSscXpOoND8dwOcUS2IUaRILemkxJD2gk50yAQq2mlCmKDBWZuJ3nFmIPr39m6lSvxK3E8jlRl/LadahNalpeG8JR38YWbSs0f5tx/KVdLCPBdMsJ06cICUlhYMHD9La2ir0nTewgbczDh06xPbt22N/F1NFraI56Xs2XVtMmjFVmGBjLE3HUKgTIillbcpClaakYKuJ/hH5/CgUiQ1aLYgIcrj651DJKH7E4If+J8eZ7pZf/EaJFiKLSGONlpp3lXDw0V4h/zXeXo6+QEvRudmMvyL/vBl+egptVlq8vHgCFJ2bjXNgXpgkolApCIfDQgSlgnPMZJXrhdrpAfhdoXW1NRNtCwwRMtikX7hN11tB3n6j1zbWaHH3yQ/ccWIOxwnxvE5UhTQKS6uBgq3ZQhtxS8Fl6dEs0BotOvcqr8oXUgWyHZ3B0e2WH3AEm28oB6W8qliUoFR5VT6GQp2sf1YTF+WIVlOH3ShTlUwKnPIEGH3OiqFIJ0RQioPg/NZkppGaLlZKKDrfIim+vbNEiJBQcVkBKWpV0t8+c1xSVdqv/Ts+n49vfvOb/OpXv2J4eFjsC2xgA29zNDY2cvLkSQAUKLhQ8d7kb9CAqdZARrEOV5f8GrvskiI0pjQKzjZjFdhAMpSko0oVzI3WyU8ef9lBXnMWYy+KKb2c+NEQeTtNsgSlKMFHhAgBUu3AMz7P0JNTsgQlgOKzcijaaWGf4AZf56+GMdfKqCBHUL4nl6Enp8TaiWmkpa6oMtKWW8uwHnHiFCArAwytox2Iq8vLwS5xMlhmpYbZAbEJ82ZvYq3GulvCaSAjV4w8s57WJNNHZ4VUtlaj/oZiZobmse1Pnj8E7AHCoRAKkZpXxF6Tp8FUrpNVoOh5fIy664qECUoFu0xYNhtRZ6TR8bPhpLZzI4FYC8u+P48mnS/W15yxeCZC8Dv4vV7MNRnCMWtmcI5lwftME1FcCgkqP+S3ZpGiUWGsM8r+lgB5LSZUqWLNMzJKNWSU6Gh4bxFHv5+4dtzqvYBBuvCY7Zw4cQK1Ws2rr74aVwfYwAb+UTE+Pk5x8Yp6dSn1VKsa441Oq13XXFVCRpEWY0164naQq95j2ZRJeCkskZTWuN5q6IszSEtPIafRhGdEfv0r1deBNLEeTLYTLnRmcWnCrt+O4LfJiyFEiRaHBMhM2nw1DdeUcOSH/UJEn+qrC8nZYiQ4tyikXmQ/4sZQoBVSWMlpMzJn9QuTM1QqJYTCQuM2bzFg2ZQpTCoNeuD4OkjnHT8XI2BBhIDiCgq36RI99PVGsF5iuCiRzTsuNv+iOPnfYrXIKDKrdBTtzKZTQFxg0b9EaCmM2kA8eXANRAlKJRdYhNpYj71qZ25C/p6MovmDZajSVLL3TvQeKDovG3N1huxcPLKqPitHtPIMBaRDJsfFct3RV6bJrslkbJ/4fnA4HCYYJOH+5WrocjVolsTyNEtTJrocDWUXWOQPISqUVO0pRGNMY8QwufLbn7ZHme7M4iLV+9in+huLiwt84xvf4IknnqC7+6277/7/wj+UkpLP5yM9faXVmJEctmkuTmivL9MS8vrxOSBvWwa2QwkW4ZHNq5yWdOzt0s1tqNThGfAl7h8L5O3IxHbgzJtqrZYLuhIdWSVpTLy6xmJjjZ+o5n1F+OwBYWLDjk/XMTfhE1JfQQe7PxFhQH9NIGiv1x7I3Z5JaCEkS/bRFWgILwSElXG23FaGoSgd6xEHQ0++ub1TddlKmj9Ux4JnUWgDbPMHy1CmKjjxn2KJQ/2NJYy86hAiV1VckUd+qxl7t3tdrchEsR4lpTdy7XAoLExQq3x3Pt5JH1MHBSTPz8qieFeO2CnIyLxdnFvi0LfEyVCiiLb5W89GYla9jplu+d8/SsQTQe72TCovLcQzJkY6zN+ZRfnF+Xhtfvm5q1Cgy1bQdFctA3+3Yj8qJi3bel8FRx8VZ/BXXJHH4JMym2zRlpQ6MJfrcHUnWQDqQGdW4xsLYt6kkxT0kiBvhyH2fMht0zN1JPGpT1/AR2fmi7hn3SgUCi655BL+/ve/Jx/7BjbwNsbll1/OU089Ffv7LPagVSRuMWRpNTAdiRWr/70mtGAslsgVIgol5s16nAPeWCsluc328svzhEhPUTTfU8GxH4jFrtwdRsovyGf/t8RUSZrvqUBn0dD7xCjODvmT5ZtvLcNQpKPnd8O4BJ4bAJVX5gsp3ogSWqLY/fkGCCOmLLVOrFdhaNsDNQy/bEs+ryLI3WpEa1Yz/LRYvrj7oYiq51twin6933M9qHtfMeZaA4PPTgoRXNJLtRRtN9P7WzGifdMdFQTnFun5tXxRLfY9vy6mWrYeVL2ngNzNWTh6ZoUVw6ItJv2u5CfSLa0Glv1Lwvfa9k/VkpKmEp4r2z9VS4paJeyXhptLSc9Rc+gbYvlryUU5pKhVDD4pdqq06NxsnB0uWb9EkbvVKKtctpqQmt2YIavUFX0+RFvWJSNweZonONi+T7p2djbHjh2jsPAtaLW4gQ38L0AgECA9PZ1QSLo/TeTQqjg3oX20TVrAFsDcmCFLPDE16GMKNyIKJZbmTCG1IpDaC4lusIPUHmopuCy00QTSwTmvLSC2yaORlC4XfUvCB6N2PdTAUmBJOPZm1aWjTFPK+lxjlJ5Foso41VcXkLMl6y2peaGRWogE3YtCp+Jr3lOIOiOVk4KtUauvKmDisEuI5JW300TlJflMd7jpE6x9rAfrUVJaL3Y91EB4WVBRB2nDye9aELqXzI0ZlL0jT3jcb+n3/JyUG+9bxxpAlHhWflmuMAHOWK2l4fpy3ENeoZp3Vl069deWMjchptCgMULT3XUMPjspTBJrvL1MuL0iSMpHsm3uoi0pNZBVls5Mj8zh44jiW2alhtmJQFKy1erng9yzIhAO0GPej8MpxebLL7+cJ598MvnYN7CBtzE+/vGP881vfjP29zlchVqVuMVQVt3K/Wlu0OOUUQ40lKnxDAeFlFIMpWl4JgOxVkpyZJLCs82J1YrW2G/cfHOJMKnFWJNO7buLOPYf/QQ98jlM3fXFmKoy6H1iXEjBpvrqQiybMun+/Sgz3WLqi6IEDkOpWkiBKoqdn60HEFaWWg+a76pAl6ORVPsEhtTyoUpGX5vGeVLeh1n1etJzNMK59I5P1qJMVb4l5KP1KimtByUXWyjelcPwCzYhdS61RU3h9iwGnxSrB9deV0RoMUz/E/L5aOPtkqLrke/0CN0X60HBWSbKL8zH3uEW3hdUG4A09ZnqPqchs0qHMlUpfK+13leFOjOVfd/oFpq3rfdVoTGmSTUvAfvKK/IxVuiF89ecNiPa7DRhxStLUyaeyaCwOpV5UwbOzuRrOn2hGu+EdD1jTTruvkieloBwGn0+qA2g1Knx2xKPZa5hggMnXwPAZDJx/PhxioqKhMb+doAYrf5tgC984QtxBKVWLo0jKClSzjzpueW6AhpvqUCRkrImQUmhUsUISqUXm6m8NJ/NNxeiUCmZGw6sTVCKKGy0fbiC8gtyyaqL9HdWKEGhXJOgBNB0YxGl54n1VgXIrjFQvNsiZqwDVZoSXXbyHo0x+CA4u4D1sJjkIj7Y+40uIYJS0fnZoIOpg7NCakSNt5TT8iGx/vYgnZ5yDcwJFWuKzs+m+e4K4Wv7HCGO/XiQzsfEgmNGgRZ9buKN2tXQlejIqtBTf1WBkL29y8P8lJ+JF8U2G3Z8pi6WUL3ZqL2+iN0PN5BZnbyXeRTuIS/2Drfw9XMbsyg9T6y/rbk6kxStipxWgb6yPuj948i6CEqF55hpubdSyNZ62En374aFr932kSrqrykT8mM0ESnfIx8zpg7O0v79LmFVtMn9Myz5lxl8XqwgpM3ToVAqMNeK9fKtvb4QTZaamuvW2DyKxMnVaLu/krzmLHJa11ZSUygVkipSZN9w10dqqL2qWIq1ayUB4RAEFPgmpN7hNVcWsPPBld9UoTrzPbYDHhQqFeWXZlNxYS6bb4q/TxWr1Pl0Gh3bgntQkUpaWhovvvgier1+zbFvYANvd+h0uhhBKQ0NFymuiSconXYqofH2cqr3FFFwrhkUirWJJKves+uBehquk3pXz48GEp9yUChAC7VXl7DjI3XS//kj/5/gPbk7jOS3mWgSzAPqry9GZ9FQfrng86jKgDJFgSFfLA8YfmGSBc+iEEEJoOMnw7Q/2iVEmii5KAdAiKBk3qyn4X3lNN0lnh/1/nGU0VfFFoLN91SQu9UofO1D3+yjR/BZWnCOmVR9CsZyMeXN0vNzKdhuFh6L7dgMzl4xMm52Ywa7H26gYk++8PXXg52fqWf7g7VCtmP7HXgmfLiHxAg29VcVYa4zSEQ/AaTnacgsS5c3BDp+NUr7oz3rIig13S02Z079wYqz1yNMUAJoua+OLXckbo0UxfRRD65uH1oT5O8yydof/G4ve78hXnyzHZ1h3h4Q9kt6tppUjbggctGObPJasoTtS87LoekusfllaTVQ+c4Cmu9Jnh9HCUpbbi+n5t3Fsn6MPh+abymj5dbyMw1WxXbDsUJauYC01DQcDgdNTU18//vfFxr/BjbwdsIvf/lLtFptjKC0lXfEE5TWyHlab6+g+YNloFCsvem86j25W7Ooe28Jmz5QCgoFc6MJCqWR9zTeUU71lYWYGzNW/j/JidSmu2qouFgsjwLI32am+KwcYftUbaqkYi6CAMxZfUweESNMAez7RheHHpWvHeRuzUJjhJmeeSE1oi23V9H64TrhcfQ/YWW6wy1U87I0Z7LltjLhaxOAo9/tofPnYuo+xko9+iKxOhAasGwxUvdusYK6e9CHe9jL6F6xuuS2B2rY8SlxP64HZZfksvvzDZgaxNb1jk43tqOCKulA0VkWyi4Qqwcby/SoM1PJ2ymfjwB0PT60LoKSpTmTxtvLhGxHXpmi5/fiCgNbbi1j0/sryKqTzxujBKWi87Jlbd39fo5+t0vsUC7SvRlwLTD6stjmZGqmBlWqEnOV4Brj4hz0BTpq3ytGmN5yWxmFO7OxtMooqUVIRts/XEv9taUSaSkJomTATddXsPNjye+NaKzK22mi9t3F0nNgNVbFdo1CQ7PrHWjRo9FoePbZZzGZxObjBjbwdkNhYWGMoKRFz0Wq98URlE7vrlJ9VR717y2i8GwTCqViTYLS6vds/VgVm28oA2DBuZCwWwsA4RCb31/OtvtqpL+DrFlHj8JYk07peTlsubV0zddPR+mlORjK9JS9U+x5ZKrKQJWmQm1OE7IfedmO3xEUIigB9D8xwZHvdAmRJgrOkmKQCEFJX6Rm882V68qPun45yOhLYvskm24swdIkpowJcOyHg3Q8NihE3DDWpKM1qzFViuUj5RfkUXKOeC49cdDJ1HGx/EVfpGbX5xoou0x8P3s92PrxGto+Kl+rAZg64MTVN4drQKyeWnNlPnmtJtSCe+VZFRlkVYj5vPe3Ixz5wcC6CEr115eQ02aUtbO+7mLyiFOYoATQ+uEGtpz+TF8Ds6d80r2mRmgsRx89JUxQAhjf72BufF7YXp+nIVWXIpExBVB+YS4FbQnqu2usUauvKKT5FrHYaChVU3tVEY0yMcNrXQSFkuqrCmi4toSCXZEaXAKRm+jzoen2KlpuPfPaq58HGV2FbOedpKak4nK5/uFqXv8QJKW6ujr+z//5PwCkpqRyseZGzJps9GVaFCkpKFJSUGdJyklR6IrT8Ez6GXndSXhpSXotsrbWWFToK1bZ5iuZbncSnF2k84+TpJdpCKdF2oPpQF8eeaNKhS5PgS4bun8/it8ZZDFI7LpxtoCuIBVdQSoAp/42jqPfHW9bsco2W4muYGUFMvSKjeOPDyW2LVn5W5+no/37XZIqjoxt6WVmtNlSe7DxFx1xttps4mx1JTp2fKaOwnPM4ItcV7diG/c5JTp02UpKzs5h18fq42zPGFOBBl22NDWtBx34XIHktlG/RF7rfmJU3hYoaDOjy9FI15bxd3S8PmsAv0/G3xU6tNmS5OHeH3TJ+lCbDb5RHyMvTTF2yJHUNuoX76CPU8/a8PlCSf0dxXJwmeWFZVl/x75r7MXkPtRX6PDPLRBeDoNGzIddvxhl4NlJWVttpBZhPeKk629j8bZr+Bug46fDnHhsOKbok8jfUQTnV0iDcj7UV+go2mVBa1afabuGD4dfnpJUkQRs0cHgs1aC7oXVHcTW9Hf0Xqh4Vx4FbdlsjjzEEvkbiM3Z7Z+spXxPblIfooOuP4zhHfShr9Bh3pKe3Ie+MHu/2E33r8Zl/a2v0NH75wmGXrQx9sLEGv6Ot0UHR348wOzYPL6ZFcfoClLjbctXvuvgazbm7L5Vtino8lPibdWRa+kVzNn9jB+UCp+6fCW6PImopFAp464bTl1iun+egHuRjl9Y0WWDLm8lWdBXaFFkqGI+fFfdLbRW7yQ1NZX5+XlSUlIYHRWXWN3ABv43w+VyoVAo8Pv9KBQKKtnMuYor0JqUaPM0sQVAeql2heighYHXbPimA1hfdaHNUsQUMgDSy3RozYqYbXqplomDTpx9HrRmpWQbOemlLdSijdZBo5/jB/fwPEMvjMddN84WYmOaOuDGPeLl1N8nT7NVnmEL0P2nMSYO22PKS9o8TUJbtDDy2jR7v9CFZ9Av2eZp1rRNr9WS3ZKBu8/P4W/3J7VFCzXXF7LtgUhRCmVS2/RSLY23l1O0K5vii83x/i5d5ZeILYCzw0tgJsjYgZXizpo+jL0GvpnlWAu5ZD7UFoLOookVSZLZrh6Tq9sn6+/0Ui3WV53s/XoX4687Zf0CcPLHvUwcnhayBZjcN8Xoq44427V8CKDShQkthiWp7NNtT/ehibgVWVJ/m6S/l4PLLM4vJfd3xHZ+xM/JSD93EX/3/WWc0dcn0WrlbQHafzHIiVUKCslsWViAtDQhW61JiWmTjvQcDYU7s5P6W2uSYkRUzUlbmdyH0XvBa/UzdcK5ZoxY7cMomu+pp/yivDVt48bkB22mhpLLsmNksmTfdbrDQ9+fpHZDuVuNyf2Sp6HjV6Mx5TI5H2rzNBz/xRDHfz4kbxvxi+3oDIMv2ZL4e8WH00c9+FwBep9a2dBOZAsw/JoN/0wwpuqVzN/aQi3jh+w4+zxrf9cyXazYVJhfwKWGq2hqbMLpdHLvvfdutNzdwD8ULr30Um688UYA0pRpXKS4BqMiG12RBrRS3qUxSsoZUWhyNDhOzTL0/BSEw9Jr0Ze1CnTF2jjb2VOzzE8FGPjLqGSrjqyVNauuq1CgyVGjydHQ97sh5iZ8+F2LK9fVnDYGoxJNjvR316+HsXfOJLdd9Uzu/ZuVjt8PCtlq8jS0f78rpv4Tb0ucbeF5Eono5H8NM/6yI84vZ/gwT8O2j9dQsMsEAdBlaxKPP0eDxqik8rJ8mu+pi/f3WrYRv4y+PI1nyidkG32t728Tsv4GKDo7m4xCnaTWJONDXZEGjVFSdAoEQkl9qMmTbA9+rZd93+gSsFVCAPr/MsHoAUdSf8eUpewBhl6YIuAOJPV3FAuB5ZWWdsl8SPxrcj7UFWnwzy+wvBAinBKWtdUYof+PVoZfmRLyN8Dwi1P0PDm6ynZtfwMM/HmSY78cjCmSJfMhwII/nNjfp/lQV6Sh5FyJYIOArfWwU1ILWcv2dH9roP8pG/P2AEHvSm1nLR9Gx5u320TJuTls/kCZrA8DAenvtvurKb8sd80YEbUF6PnTOLMDATQ5GjJqNUltl5dh79e76PnNuKy/dUUaRl610//kBL1PTsj6EE3ksG2/h3l7MN42gV/6nx1ndswbIy0ls0UDrmEP4/scsv5GA55xH16rj87fjJzp72ItmixFzPbi4qvYXrAdrUbLzMwMKpWKnp4eNrCBfwQEg0FUKhVWqzVS82riLNUe1AZJhSV6YFabp5aUSgDUMN4+g2fUh3XvDGn6MGrLyg67JleDxrhSR9bmqRl9ZZrpzlk0RgVqizombqC2rLpuxBY1THe6GXzBijZ/5bqS7arr5ku27r557J1uTr2wQshUZ69tCzDy8jTDL9sY/rt9xXYViWO1LWqYbJ9h77924RkKJLVVF6kxbjHgnwzS/oMB1AZl0uuWXZpD631Vkf9QxvlQmx/vb22+mur3FFJ+YT5FF5jjbM/wYcRn3vEgcxPzWFcR1SVbZbxtdPwWWFwg1to0mS1qyCzXU3Juzip/J7aNjknOh1Fbd988e7/YxegLNllbgKM/OsXoq2fanu7DKKbbXUwcnFnblnhbhVbabwy4Flb5ZW1btQFIWZl3Sf1tkP5e8i6xMLco5MOgJ0T346OEFhHy96mnJhk+TfghkS1A+497Ob6q5pXMVnJO/HUT+VttUKIuUpNVpadwm1nWh2qLOqb+pC5aw/Y0HwK4TnmwHXUJ+QVgx0dqqbqsQMhWnaGm4Ows2j5SLWs7O+KnLzJ28yZD8usalPT80cr+f5NIUHK2aouaY/81TOdjgzL+JhYjRl6eYuC5SVl/A3hGgsyOzzP8/GS87en+jpCRRo/M4LX5se6bWdsveas+JzuV4VdtMUGPaKyP2uoKNDGykiXXzCXm99Hc3IzL5eLee+/l7LPP5h8B4kcw/5ciNTWVpSWJMHTjjTdSVlLBwW8OUnaJmYKWLBx9c/T/xcmWG4pJ0ShZ9C2jTFWiSlUQXg7T+XMr+TsNlJ+Xg3t0nu7f2NlyfQkpWiX7/u0U2z9RKdmGwhz4xhDGGh31V+UzN+nj5E/GaLutgrSMFPZ9dQB00PSBCsKhMPu/0k/fE2M031mNzxng2A/HaLm5BK1JzeuP9IAPmj9YAQo49vMxpo95qbmyhIzbdRz57gDNN5eTnqPl+GPDeAfmabq7FoVSGsfJX41Qfm4ei/OSNPXm68rILEmn/69j2I96aLqrFoVKweRRJ/mtEoNwyb/Mwa/3Un9VMaYqAyOvTjH+ooPGO2tRpijY+4Uuqq4qIGeLkYK2HPb9azdVVxWQ25iF7biLgT9N0nhbHSq1MtaKovmWMgCyqjJQpSkpPisHR98svY+Ps+XWWlI0qjjb8HIY62EnqfoUmm4qZ3bES8d/j7DtnhpS01daXDTfXhFrBzY7Ok/xWTk03VzB8f8YpO2OKjRGNa//S6dke5t00n/vF7vY/YkGadPUFeDo9wZoubUSnVnD0X/vxO+ItwVI0aoIehfBB413lpORr6PjV0PM9vti/o6OqfFG6bva2l1os9Iwlmcw+IyVyf0zNN1ZiyIl3jba+q7mwiIstZmM7Z9m9Bk7TXfWx/wd9cvyQogDX+lBnZlKWWsehlwdp/5oXdPfoaUw+7/cTesDVWgz1LgG5uh+bJQtH6wlRXumv/d9qRtLcwbqjDRmxySJuW131ZCasba/dSU6mm4qJ9oFMpm/AZpuKicwE2Tfl7ppuacSXY6G9h8N4LMG1vThwtwio69MUXFZAaoUFT1PDOM8OR+bs3E+jMxZnUlN09Zshk02Jl51xs3ZqO1yMMSBr/ZQ/Z5CcjYbY9LnjXfUoUqN9+HyYogD/9ZD2TtzKdyWTSgUIrwMoaXQGXM26u/8s7KouLAA97iXzsdH2H7vaf5e5cOseh0N15YzZ/Ux9voU9ddIc2dNf2crabqpHJ8jQPu/DxC+UPLp61/vlGLEWv52BznynVMY8iX2zPDL0uJhLX+fHiPC4TDmKgN5TaaE/l4dI0rOziEcDqNQnDZnI/6uuiqf3C1Z2E64GPiTjea76yTbL3ZLth8olXz4bz2UXJhN8e4cHP2z9D4+wfYHa0jRqKQxfrOf5g+USnP23/rI3Wak6rICZkfm6fjZCDqzmsb3FxOcXWTRv4Q+Tyv58Mt9GCq0bL6+GK/dz4kfjVLUnI3GKG2AbvtYBSkaJYRh31dOgTZE4w3F+F1B2v9zjOb3F6Mzqzn1F6sUv2+R/L3/a1IxfMv7CgjOLXL00REary9Cn6ul8w82FCoVjbeWolAo6Pz9JJ4BH1uuKWDJH+Lwv49S/+4cjCXp6F9IQdlhYqTwEOMT4+zatYt7772Xhx56iA1s4O2Kb3/723zsYx8DJInR++67j2M/GcY/4af5nkgcirTzbLq5jAXvImm6VHyzAdJNWnqeGIFwmKa76qRYvsp20bvE5BEXxedYUKqUDL1ko/e3E+z4VC2qtJVY3nJbuRSzvtFH872VpJvVTBxw0PXzEbZ/MpJ/ROJQy60rz9mi8y2UnpPDon+Jg1/rJT1bQ9MHyuOuG1oIsf8rPeRuNVJ1eSHLi8sE3YukaFSk6lMYeUoq8LbcEYnlX+rGUKFly00VzI7No8/VokghLm623B6J5f/ahdYEzbdU4J3yc/w/Bmm6rhyFQoGjpxP88bYg2fqcAdofHWDL+8sxFOqkwpWWFX9HnxEfKI+1pG14TwlZlRn0/XUMy0IWhW05FO+It40+I6ovLyRnk5GRl6YYf8VBanoqde8qZu/xVf6O5DXll+dRsNXM5BEXGfla0vOlwvVqH0b9XXCOmfLz83B0z9L723E2XyeRqzr++1TktymPPCO6yW7MoPaqEmYGvXT9YoStd1WTZkiN5TKr/Z1eqqX5lgrmJnyc+PGQlO9la6RcxQ8tH1/lQ63kw3l7gGM/GKDp5gr0eVqOfq8bvytEQUs2hW2WOL8EZhY4+r1TbH6f9OzsfHyQ0BJsen8ZCk7zoXeJQ9/so+5dUku1U09PMHXATdl5RShTFTEiRtMHyqWWMt/oo/KqfPIaTYztnWb0OTtb7pBafUXRcls5S8FlDn61l9JLcijaacHW7mLgL5NsuS0+/9j9cEPM37k7jFRdWoiz10PPr8fYfMtKC7lNHyglszQ9lteY6nXUX1uOe9hL589GaLujCrUxLUas2/z+cop35rHvS91o8zTSnLX6Of6jQVo+WInOouH1r0X8feMaczaS1zS+v5yMQh1Hfzy4EiNU0gK7709j1Ly7mAX3Ioe/20/DNaVklevp+cMIzg4vTXdJ+V7HY0N4Bv3sfrgh5u/aK4vIrstk6EUb1ledNN5ZE4sR0ZZy0bymYk8++W0mJg44GH56ii23r6xRTvx4iN0PN5DXlB0XI6Y6Zjj1ByubPxi/RlGoFISWpRw5GiNmBuboemxUWs+satnXckcFYaQcKne3iaqL8pkdm6fjJ8O03FaJ1qQ+I0bMjs2TWZqOQqGIxYjmWypIz9Gu+HtVjIiON+hd4PAj/bEYcfIXg3gG/WfEiGgr4p7fDZPXmh2LEdOR9aMyRbIdfHJS8vfZFlQqJa6hOSx1KzGi8c66uJisM2nYcl0tIy9OUX5xPqpUJZNHXAw+eeac3XKdFCMAmu8tJz1btxIjbjnNh2vEiKXgEge+0svWO6tIM6RKsV6hiMUI/5dCFGQ68Sy76ejoYPPmzXR0dLCBDbydkZmZiccjkfWuu+46qsuqOfC1XiwtmdRcWYSja5be30+w6aYq1MZU5qcCqDNTUaWpCC+H6Pv1BJmVGjbfWCnFrF+O0XxLBTqLeiVupqdI99tXetAYFbTcWoFnbJ6TPxmm8aZyMgp0vP61LghA610VhENSi6eTPxnhrIcbpJj1wyE2XVuCsUxP+38N4BsP0HxPDcpUJSd/NsjcSIAtH8jCkJ/O0UdPUfdu6dnZ/bsRXF1emu6qQZUqqY93/WaIuisKpDZVvf1UX1ZATmMWQ89OYt3novGOalI0Kgafs1FxUR4oiD0jSi/OoWiXhfF904w8a2fLrSuxpeBsM6Xn5lK8O4/9X+6mYJeJ8ovzsR1zMfDnSTbfIuUf0TjUensFKMFcYyA4v0jdVSWx52zr7VVoTGkrMevOCsLLIYaft5GWqaLltsrYc7bplgr0udpYXaXljgoIh9n35W6mOmaouryAxhul9lBb3l+GoSidI9/pJOCGltvLQaFg35ekmhdK8E0HOfaDARquKSGrIoOOxwaYHZD8rVApY+23tFlqgp5FAu4Qte8tJHuTkb4/jzN9bJamO6tRqVdakzbfKj1fJo86USgV5LeYGXrBhvU1J413RPPriF/urIjlNSW7LRSfnYP1oIOhv0/F+Rug9Y4KKa/5Wi/KFCVVlxeQVayj/wkrmz5QjToz3t/Li1KtYcsdZRgK0nH2eeh5fIzWW6vQZJ/p7/3/1oMmT4PeosEzItW8mm4uR5+vW/F35Nm578vRfLUyVvPa8r4yDKXpHPnBAAH7mT5svrUCvyPIga/2UH9DMaZqA52/GsTd76fp7hpUKcqVHOjWCoKziww8NU7te0pJUas49TcrU4dnaLyzWmrtusrf0Tmr1qdQfkElo69OMfaigy2315Cqi/fhYmCJQ1/vo+i8bErPy43VvDZ/sJq0jNQ42+XgshQjmjOpeVcRoeUQocUwS/5l1MbUNX0YjRHu4Tk6f9ZP8/WVsRhxhr+NSlpuq8QzNk//UzZa76xAoVDw+lc7IRA/Z6P+juY1S/5lWm6rjIsRp/s74Frg6KOnMBZLOZH1sLT+isaI0/195DsrMSIcCmOqNmDZbDxzzq4RIwq2Z4MivubVekeFtPb5eu8ZMaLlw/XxtqvmrLkxIz5G3CfFiOgYV/tQV6SJixHqzDRabqtkbmKecAj0+bpYjEBD7LUTPx6mqM2CoSgdjRE23VyN2pBKOEzM3823VpwRIyb3S+TAlg/Xxq1nmm+tiLV3rN2zEiMIQNNHpfy66/Eh3P1+mj9YzsLcIoe/fYqKi3MjMSKd0KCBkeLjjI2Ncf755/PAAw/wqU99Su7RtoEN/K/Fk08+yRVXXAFApiGTD9//YXp+KxEbm+6oRpWmYP9XJVJ08wdLCcwukJaeitfuJ7MonVN/myQcCrPltkrStCns+4qkwth6eynB2UWGX5mm+p15qNJUjLxk59Rfp2i9twK1IYW9X+oFoO2OMhbmlzj8nQHqbijAXGlg/MA0/X+apPW+SqltUsS29fYyloLLHHqkj6w6PQ3XlrAwv8ihR/rR52houakiVndruaOc8FKIA1/vQ1+kpum2KhYDSwRdC4RCYTIKdVhfnYnYSrnK/q/0oDZA651VuAfn0Fo0pGpVKFOUHP5WJ0HPStzf/2/Rz6mMtdRs+UAFqhQlx2dO4R0P0nx3NYoUZax1WsvtlfjsAY79cJDqd0Zi+XIY1ESenSvtx1pur5TqNY+eouz8XAq3ZzPwdysKBeQ1mSnZlRt7RrTdXUnQI8XfwrPNlF2Qx+grdsZemiZNn0btlUWxmlfbXZUs+JY4/M0+ctqMVO8pZPKwE5VGhWVTJoSJe54sB0Mc/EYvxpp0Nl1fFmu/1RzZV+j4lUQ8jsb9A1/tRW1R03pnFa6+ObofH5XyveJ0lgJLHPhqb5y/UUv+nh320vGzETZdU4KxMoPD3+om6AnRfE81CtUqH95Ryfykn+M/GqL2XUVk12dy8ucDeIYCFGyzUHRWLvtX+dDvkAhjlRdLikI9T4zhnQzSeneF9Iz4164Vf7ul+li0pVo0F6/ZU0KKRoUtQmpqu7uSoHeRI9/qj7UlG9tnZ/TZaTZ9oApNVhpEzj+03lnJYmCJw4/0Yd5ioO7qYmxHXQz8dZKG91eizVbH/L3zc/WEFkIc/HovhnINW26uZLrTTd/vJ2i6eaWFXPXVhVgaMlleXJb8nS352z0wR+djo2x+XymZZXpe/0on/skgTR8op+TslTnbemdVbO1Tf3UJppoMDn//FMHpIM23nubv2yvx2QIc+9Eg1XukvciOXw4xe8on5dcaJQqFglNPWal6Z4G0D/XvA1RcmEf+VjP9T05gP+Jmy+1VpOlSOPHTAbzjQXZ/PtKi97v9FL/DQsm5Ky3sNn9Qet7v/WKX1DovX8vC3BKHv9VH3vYsKi8rYPzANCNP29l0s+TvvV/sovc34+z6XAP5bWYOfaOXrHo9DdeWYj8xQ/8frdKaMEcT87cyVcnyslSvicYIR88svb8ZZ8uNZWQU6uJqXgqVAoUCTJt11L+nHPfgHJ2/GGXzdSVklmecESOmO9zkRlS+ozGi9t1Sfe/4f50ZIyxNmVS/q5Dg3AJHvnUqFiO6fjvCTLc3LkYEHbD78w2ECdP9m1GMFXopRjw9ie3gDFturyFNl8LeL3Uz8ZpT8rd3CaVSgb3DRdHOHEZftTP2koPNH5Da2UVjZ2ZhOtqrSzj1Nys17yokVZvC5GEng09N0XBjJVpTWsy29aZSloMhUCipe18B5moD9s5Z+p+YpPnmMnQ56lj8brm9nPBymANf75dixB1S/f3A1/vZfF0xhmIde7/Ui0KpoOW2cghD8GuLFKjceNNd7N+//x+i5vW2JSk5HA4slpV2Z/XKXVg0BUx3e1CkpDDdO4ehUIv1hFTMsXd6MBRoUGemolDA7JifgHsRAM/QPN76AJPtksSW7YQbY5kORYZEZgothXD2Sa+5x3147QFs7W5QqbC2z2Cplyh3OTWSZO2ifwkUSnwO8NoDMZm8iYNO8lqzYm2J/LNBtEY1OfXpDI948dr92CO21kNO8reZ8dokY0e3B0OJFnVGGjpjCl6bH2eP9N0mj0yjUiuZG41+VzfqjFR80wHCoTDz037cA/Ox66ZlpOLqlb7P1AkXOlOERfpHK+b6DCaPzMT8kJ6rYbJd6rk9dXImrn2ZZ3Se+ZkAQ3+eQlegIasqA1uEhWw76iKzdEXC12Obx29fYPipKUltxaRm8qgjNiZz3QptcWZgjvQcNbsfbqD3qRG8U36skRP91iNOcjavtCtwnvJImwU6WJxfIqyEiYPR6zrIazHjjxx6n+6dRRnZGNFlK5m3B7B3SN918pADxQ4LsxOSv6c7Z0lNX7k9/LMBNHo1k/ttaCw6UnQpuE9J77V3Sf6OYm7Chz5fy+7PN9D562G0xjQcHZ6Yv9OzV06ieMZ8eKf8bP9kLctLIbxTfmwn3NKYjrkwFK4ozcwOe/HPSOxkTXoaoVAIW9SHR5xkla/IDrqHvATnpPntHZ/D7wlg717x4en+XgpIDx+fQxpPeuRkjfWgk5ymFX87+uMlOb1T0pzN3Z6JvcdBdtiML3LSzdHtkQgiEUT9bSjRo1QpCcwHcUbm5XRXvL+9k35cA5Lc8IJvgVAoxOKSdKrIfnIGbdbKKXzPuA9P5HebPDZDVk06+a1mbAemmDq+xpx1SOOzd86RWZJOilbFkn+ZmSFvQn/P9s7i3ZyFdd80+GCq20lm/orU88ygl8V5iSw5MyL5cPKwg5luH6GlMIvBxZits98T2+DyOSK/ebuk5DNxcJryi/PZ9UA9+/61O6G/QZrf+duy8dp8ZNXrzvD3WjGi72+D+Meg8t35Z8zZ2ZEzY4ShUIciFVhaGcNqf9tOzEZihPQ5y4uhOJVZyd/S7+bonpNixOFIfGl3UbgzG1VkY9Y97CU4J32QZ9iD157F5FEnKJRYD7sw1xrQ52hITU9hZsDLUlA6fTdr9eG1+5mMqCFNtruwbMpEoVeQolESWgrhiswz/Mq4mDzZPkNuo5GAE3KapfsnOLcQG//8dBBHtweFSsnkETf5WxV4bH4AAp4FtJlqlv1BFCoV3qkA7uHIPGz3kqJR4R72kZ6ewRU7r+GE9SD7D+zn85//PH/4wx84cuQIG9jA2w3bt2/n0KFDAChRclEd95QAAQAASURBVEnJVXhtAfwzAVAosJ+cjYtDngk/XtscBa05+KcDLAfC+KzS/Th1ciYuDs2O+pgZmiOzMB2FUoF32sdMp3SvTh13S3E/opjhHvHhiRBvU7VKwuEwUwNzoFBga59Bn7cS992DXuanpbjv7J6j+KxsVKnSGCcPu+LaVLn65mLPTs+gG89EFumRuDN+wIGpciXuO/s8LM5Lccgz6ccz4WPykIPyC/NBBcHZlcA53TNLKLLI87vAM+GLxX179wxZZRmxNk9TnTMoVat96IvlKtYD07DDwsknhsAv+SVVt0Ju8Yz7YnHfdtRBqkGFd9jD9FEP5Zfnxft7ZJ7Z4chv0e5CY0yj5Jwc8ttM2Npdce1S3EPzeCOxz3Z8Fn2+lqkON8uLy6jNqXitgZjtTP8cvoh60Ez/POYaH5NHIvG500VmXjp+l+QLV/+Kv+fH5yS/HJFylYmDTkrOtRCclV539npip+Pn7Sv+BilXyd2axe6HG5jpn8Pe7Y6NB3/Eh9Fn52EpNzRUGGi+Jx+P1cvC3Ir07pzVv5IbHnagUClwj/mpvDQfhUKBb9q/4u8xXyxXsbU7SNWn4Ik8tx39bnTmldMx7uF5POORZ2e7G51Zw3S39N6pYzPkt5lQpijP8Le9cw5DcXosN7QecWEo0qHN02Ao0jDTPxfLVTz9Hjybs7C1S36ZOOyMzdnMYomobI9cxzUsPcttR6XfZvygIy6/Xl5cjt1v/tlAvL8PRXLDiCvs3W5yNhnZ/slaDn6tN97fhxzkk43fFfk+J92kGlMw5Etku7g5e3gaVZoSnzW6RpFiRLRNmGdiHld/5LVjUq4SixHHVnLDmREv2bWG2MnIqQ436XkapiK5+OkxwjvlQ5+ro2JPPpNHZsiq0GM/Fp0DiWOE3x+M+PBMf8NKjBh8QTptlVOfueLDw/HrmWiMGHh6kuZbKlheDK/KDaU5u1aMmBn0UnxWNs5T0lyKxgjPpGR8eozwuwJoTRoyivXYjjpQaaQYsdrfUcyOzKNIVWAo0BEKLuGZ8MXWw4lihGWzEWWKFL+nIifBonM2itUxIlWdSjgcXokRR07z92kxIhQKxfK/iYNOzPUrMvpSjAiBQkHD0i5yr0jjhVdeoLOzE4VCgdPp3GhFsoG3HQKBAFrtSryqow1LuIDJozNSO7bhOdwjXmzHIvHisBNThZ5UfQoKFDi6Zln0SfnIrDWIe8Qrra+AiUNOcjZngkJBijaFpYVlpjuluk/AHZau2y59zsRBJ3ktIQhAZqV07wfnFlblZd7Y82XysHR9X2TNPWfzkVmsx1ybydxIAPeQF2dP5Nl51IFKvRL3be0ujJXppJu1pGWomTk1F8tVbO0u0gypuAYi660jTtItGoLuIKGlELPWeWYHI7Wcbo+Uq5yMrIWPumJx3/qak6Kd2UxGYqxrwEdWtXfluXXQGReHHN2zBP2LjDxlR2OU1qyxuH/AibluJe67Bj0szCxKJ+01kJ6jw3pw1bNzszFma++YIT1Pze7PN9D75zHpusek55b1sJPQUpiA5FJsJ1yxuB9wLaBUK2I1r8nDEqFodiIQ8ekMqelS3NcYlbgHvbHWF7ZjTlLSU5gbjvj/WHzcn7POo8vWMHlollStRHBy9c3H+Tv2XfvmyCzTsetzDbT/1yAZRTqmOmZjc2t13Hd2z+KfWaDt/mrC4TDuYS/2E9J3nTjojGtZ4uiejcX99GwN4VAY2xFH7Lqr/e3odMdyw4A7gHfah6PXGfG3i5zGlfxuqiO+rZ972BurV04cchAKhwl4JB9OHZshRbPy7HQPeZnumsXUoGdm2IMyVYl7LPKcbV/xNxDzty5XhypNSWA2yOwpyS+2I664Oparfy6WGy74FyUiUWg58ru64nIVV58ntp5xdHvJbzOR32pm6vgs1sOuNf0NSDFi2EtquorlQIjpbk+8v7vcsfXM7EQA97AX60EnATfYOhyYK4wxW/vJmdh6JuAOxeZswBZg0b8k/RaBqL/jW8VIv7k78t2cZBRoabq5XCLpreHvtWJEZqUGW7srbs6uFSMGXpwiMBag+PzsM+ZstI61OkakpaegVCtQrJI1Xe3v02PEwtwiKata7q6es/Ojc2fEiPJL8mLfb/Wc9Tmi/o6PERkFWsIhKUZE/U2AtWNEANIMqSwtLePsXqkdzo7Mx07kr44RmYUaFAoFgdmVmleyGOGdkggXC36pfjkz4I35e/rELFqTGlf/PBqllouqr2CgpJPX97/Opz/9af70pz/x+uuvs4ENvN1w00038dhjjwGQQioX5V7F7JCfoDOIQqlg8oiLtFVxyNErxYviXRYCMwss+UPMDkbXtzNoTCtx39HjYW4iQEaBFqVKyez4PI7+SF5z2IV+lbrGdOdsrJ6uyUglHArjPOWVauQHXRhWdTGwn5yJxSGf1cvS4jKqVCnuTBxwYapeifv2E+5Ybuh1LODs92Ao1JGqT2XohSks/uWYgrntmCsWh4IeaX07dXyGol3ZLC+o8DsXCEZCj/WoM66O5eqfi+WVE/unsWzJwjstfR/rIVfcs9PZ58HVG6mNHHeh0qgYen4MglIMWx33Hd2zMUKyo8NNep6amUEftoMzFJxliov7052zzEfqKo5eLxlFHgq2m7FsymTigIOMVc9O+4mZlT2gET/OPg/2E1LdwFieHot9UR/GagK2eckvkbzSdsJJZkkGwchvZz8+E4v7QU8QZ5+kagNgPehCbUwj6JY+N5qbSsaSX6ZPruRWy4Rp+0gdju5ZJttdCf1ta3dJB8PSYMenanEPe2PPepDWzTODUtyfPukiVZ+Cd8SLeYtRqsVOrdS8prtmmYvkKtMdHnRmDc5T8xE/uMgoXMmZV/vb2TePodjDdKQGYz3opOTcnNjzcPrkir+9I97Id3XFvmtWhR61QYm+WI/9+MxK7dUaiM1DgPEDTolEBpiq9ISR9oUAgnPx/p48MsPSQijWbmxpYRnlKnWn1f6ePOokTJigRzKePOyicJeFrQ/UcPibffFztt0p5XyRrh7Ww07UplSySjNY9C3FzVn7iRnSDKnMRuqGk4ecaLPS8I5Ln+Psn2V2KMIF6PWQnqfBEdnDnzzkJD2SG7pOeVEb07BG8o2ZQR/OPg/OyBywHnBgWLUv7xqcxVSZScXleUy8Zov4MOLvA05MNSv59dQqf5NK/Jw95MLiW5lL0Rgx+sq0NGc3r/w2E4ddLC2Gz4gRw3+fQpuVytJieGXOHnVF9gHOjBGeiQDh5XCsbhiNEb6JiF9OixGzY14MRXoyCnQ4OtxojGnMRNaI1oNO0qNqawoF052zKNPAXJ0JSmnP1hH5XScOOuNjxEk3/pkFLPUGUtJUzI6vym0POeP8be+YJeiR4qxaL8Xvqa7o/HZhqomPyatjxNLissQtifhhMbDK3+2SbxVKBZvYSe5FWl46+Gys5mW32+P4Mm8nKMLR4yNvIzz++OPccMMNsb/PVl6LTpe4D7o6C6ouzaXz8akzX1zj66tNYCzVMXUkQR/L1FTCCytJPTrQaCHgBDThGAnpjI+K9nHSsWIT/XeC3oRrjU8Iqz9DACUXWhh9Xr5vaxQ7PlVH319GpXZWAtj9cENMPUYEVVcVYGnIjDGl32zsfrghpqjzVqDxjnJSdSqOfOeUkP2uz9azvBTi4Nd635Lx7H64IaaCIGq/MLcotQiUgTYbWu/dFFN6eLORuz2TyksLsR52MvzUGvfwaSg8x0zhzmw6fj2Gb3QdN4Egis7PpuTsHGYG5uj+5Zj8G9aJlnsrSdWlcPDrYr9VzfuKyK4xMHVihoE/Tcq/AWj7SBWzoz5O/dEqNigdFLaZmXjVGf//p/VzjXtLtgKf4w3ErwS9tBVKBeHV8XVVjEvYs1sH+KXr6YrV+MZW5LMVKiWJHn8KhYKiszMZf232zBeVZ47PVK8ju1ZH3x8dZ9pLFwTgNe8T+PCgUqloaWmJkT02sIG3A1af4s/EzDblBUnta68tYvKwE8+QP6ldFAXnmLC+6kpsoFDG5UraQi3+ici1tcQ28M9A9D4/3UaheOM51hrQmpQx8o0ICs4xYz3sTDzu01B7bREaUxrH/2NQyL76vdIposkjrliLOjls+0QNfucCHT8dFhvUOtBwcynGsnT6nxxn+qhH/g3rhKFCS917Shh8xorjxJysfcWefPJasuj45VCMBPNmovXDkZNLkRNGcoiq/4jaxxTDBO3Xi+0PSopHB74ilie3friKwOwiXT8feUvGs+PTEWXML74133fnZ+uZPOJk5Bm7kP3uhyRFougJQzmYN+upuLSAQ9/oEx5T0fkWxl8UX5tpTRIJ8k1HsviaxF5rUuL3h4Tfm7vVyFSnW9h+0wdK6fztCAQS56L+kJ/X+SsAeXl5/Mu//At33nmn2AdsYAP/P+O1117jnHPOif19NleiUWoSv0ED9VcX0/0rwfWpBix1BqaPCT6TNaDRKAi4I62jAgns1sqtktn/DyC1JhO3LzjbjPU1p7xhBFs/Vs3A361SOysB7Ppcw4ryiQCKz8+mYHu28LN2vdj1UAPLC+I1oPWi7vpiNMY0jv1ArAa0/cFawsthDn1T/Fm4HqxWXBS1jyrciNrP2wPCufh6kFGqYctNFVgPORl+Rr7mZWrQU3lpAT1/GGVu5M2/ucyNGdS+uxhX31ysle6biYabStBlq4XqjQClF+dQuDObqeMzDPxZrOa15bYyAq4F+kVrXhrIazbF2ugJvcWoJOAWX/+tGyKxc5WNJk9DwCY+H/J2in/fjFINea0m+v+Y3P9HQ6/gYgqlUklra+tGzWsDbyvU1dXR2ys9M7PIZWvq+UntSy+2MNPvwTMcTGoXRU6zAbtM3hVt9wZSq6FgZNMeNTFyxRpvkrdZDxLUydQGJUGPeMyzNGUy3TMrPKaSCyxklqZz8ifDQvZF52VTck4OE4ccjDwtto5vubeS4MwiXb8alTdeJyouzyOv1cSpp6zYj7jf9OurLWo2va+YkZftOE/K5+8Fu0yUnJ9L7xNjzHQn2OP+H2DzzfFKOXJoumNF9UgErfetqAG9FWi9rwqVWsmhR8Tyxi23lrHgXaL3t+NvyXjaPlpNWnpqTBXxzcb2T9QyecTF2EtiNaYdn6yNUzyTg6FUTfW7SmKtt0WQt9WI7bBb2P5/FOOS7GHGXVfkMyI2agMEg6fZJ9jXBMiqS8dnnRe6XwCqr8pj9AUbC97EYw8uBnmFJwDIycnhy1/+MrfddpvYB/wvwttOSemGG27g8ccfj/yl4FLTHQDxpKHoq2kSW3nL9bmkaJWkl6YyP7KIIjUl8p7FM9+TkkLzLYUolIozSUqpqWt+1q77KgHY/8gwYd8Sctj10Rqp/dC/9SUnKEWw87P1KJQIE3x2fCq+TZgctn5UkrSet/twnpQvwBSdn41KrSS/LZuZbrGH+szAHKGQ+GbgqT9ahQkUtdcXYSzRc+B7PcLELP90EK9TbPGWvzOL/K1mjv7XKeHrn/jRkJhhBKKFrDeKmUEv7mH5Tbs3Ar8DZkfnmTwivpGyHkwdnGXq4BpkkQSYeNV5JplGBlVXFZCeqxEqOI2/6KCgzYyjyy18/YabSsgo0HHgq/IFyPZ/Xx/Rq+/X42R+rAbr62LFGgB1ZhrmmhROIXaP7XqgHoVScaZfw+E1H/JtH65EbUzjxC9H8A7K3zT17y8mq0LPwNNWpg6vPU/DoTCKgAKUUHV1HpY6A+P7HIy+kOS39gEKaLixgMxiHROHXIw+LxVhwsshFJFTB6eTlVo/VEKaPgXfzDKuztOeA6FQ7FlAhHhafYkFRYoChcENPggvnfYcCIdRpKVyTta19M4eYN40xZEjR1AqlYRCb2FRawMbeJOgUqlic7WKRsqUtYmNFUrQgrk2g8wyHQe/1rfy/7BmzpO71UjZebnkNGRy7D9Oe36u8b7yy3PJbzUx3T1L/++tspvapZfkULgjG+tBJ8NREkISglL+LhPlF+UxdXKGAZlCLEhExbprypifDHD8R2IbF2XvyKV4t0V4YyqzPJ2UNJW8YQTjL06SWaATJigB6yJQbP9kLTODXvp/PyFkP905Q3q2Wpig1HRXBbMj8ww/Lb9RA+AZ9AuTewEGn5xk8Enx5+Z6MfrKFDlbsuQN3yDG9ztiqpdvBdbjS4Cj3xMj5UehNSmpu76c0VemcHbIF8zcg15S9eLLVq0Jttxey3TnrNA9IFp4icJ1ao7FoPyaL4q8VjOpuhQsrQaheyB3q5GSsy1k12Zw7AcCMUULLfetc3P2oQaWFqW2gkkRia+7PldPOERMDl3OvuXeuliLRlloofKdBZRdmJc4JkbzzXAY82Y9maXptN5exdEkByS0Si0XcS3jVSfpH+jn3nvvpaOjg29/+9vyY9rABv5/xP/5P/+HL3zhCwAoUHCh8hrZ90Tbt2XV6ZjpkV9/bf+w1Hp7uscjRCDa+dFaqSXTl7qF7Hd8qg6FEvb/W4+Q/bYHa0hJVQnXRdo+Eml58PUuoes33l6GvkDHoneJ6WPytQVzYwZpGankNpuESUq2405S1eLPqrEXHYy9mOCQy2kouyQXy+ZMTv5XnzAxa3bEy6JX7FmVVZdOybm59P5mWJh00fP4+sgr680t1oup4zPM29+M3dm14er1xNRp3mzMjQSEic8Ari4vrq71kb1KLrCQWZzOyf8elrV1npgjeN4i06vVSWVQ+a58TFUZQpt9Xb9Y3+bwyLN2zFUGJl4RWxeA1C5ttYKJHLbfLx0AECXtbLmljIwSHZ2/HGR2QD4Ile/JJb/VzMBTk0wdnpG1jxKzxl6zJ48TkY+ufFc+uU1ZTOx3MPKs/GZ9NCYuB5eZbl8jJq7KuwDqrikhVZdC/98nk8bcVuW5jIcGmbGMc+TIEVJSUlg6vT62gQ38L4Rer2d+Xnre19JKSVqd9MJae3YKJaihoC0LS72Bw98ZWPn/BO8xlGupvCyPvGYjJ366dgxcTVDK226k4qJc7B2zDPx1inAw+Z5a3lYjFZfmM37Awehz8vszWXV66t9TjO3YDIMC62VtvpqW2yuZG5vn5H+LHUyqvqKQ8ovzhJ//lk1G0jLE86jpdgfZ1QZhghKsb8+l7f5q3ENeBv4qVjdy9nnILEkXJijVXV/MvC0gTBoJTgfXVXex7nNJ6p5vEUZfs5PrXRYmXKwXI6/YySxJLEryP8XRR9dXwxIlz8Wghs3vK2XyyAzOTnknTXe50WdrZe1WX7/trmocfbNC98DBb6wvD5866UaZSBRgDVi2mFBnppLTZhS6BwzlGiouKyCnKYsTPxbbR9/1iXoW5paEiVA7PlnL8nKYw3K5aWT5sP3jNSiUcODrAvYKJS331ABh9q+uqYVDCYlK9VcXSS2wH1l77kVFGMKhMNo8NZaGTPQ5Go79KHHMVadpuZj3M1p2hIHBAe655x46Ojp45JFHkn+H/2V4W5GUKisrGRyUCrVpaDnfdBOQnKAUXljg8PfHKDrHwPzImaSkuPekSO4YfnWGzMLTFjOpqWu8Q8LsmE+S0UuCmIoSEHAvxCUecgi4gqjUiVl4p8PRO4txlcSYHA7/Zz+b31cmRFACiaThOunC5xDfXF+P4szOz9ZjPeJkVPA0sz5HI/lnHaI57YKnvQAKtptRZ6ah1YFf4DOirbREF97abGIt6URQeI6Z0nfkSomnoI+6H3vzGeKrsV7VhV2fqye0FBYi7UShK9Dgs4oRy3JaDRRutwj/ztn1mXESj3JYb4FNa0qT5qiowpkOtt9by+z4PL2PyzO0D31rfQWqY9/vWdf9O/qKnTSD+ONi/ICD0nNzhQhKIEmEGkvSmRvyAPK/w+TRWcxVGThOSASlcCicWE0JGH7ayqabKmIEpdOhUCjiiEqdvx6h5soiXN0+STlJhkh04D9HyN+sJ+xZQpGSgiIl5QyiUnhhEUVaKrWZO5hWjDMdfhoAg8FAR0cHJSUlst97Axv4fw2Xy4XZbI79vZML0SuTtMuJJuK+EMMvT2E9LLAgViiZOuIhp8nIyV8Or3290zD04hTZNQbGX5QhWkbua/sJD3ktJqaOixFe3UM+QgshqbWvAFzdPhbnlxh7XZwQZDs6w9ykWN4FcPCrvWhN4rmg3xXisODCrf76YvT5WmFyg9akJEWtimtnJofpo551KSil52pQG1KFSUpNd1UwvtcuRHgB0OZp8K/jpPH2T9WiUIgrCzlOzAkpOr1RWNdJxi6/PI/8VhO9fxwV9hFa0GrF1XkabizBOxVg9DmB3FSrRmtWU7QzR2g86z2t5ndBika1rqJW6SU55DZnyZN2YN2qAp0/G1mX2trUYTfZDZmSUpAI/LDgXsTeLU7qD3oWCMwmXxvHfYQryFJQPHf0jPsIeM5co699cakNi/2E2Lx2dngZNdkZfyWygEp2Kg4oOrUFu3Ya17yT73znOxw6dIi9e/eKjW0DG/h/jAsvvJAXXngBADU6zlHuEXrfsf8YpGCXSYigBND3xzFyGrOEFY7snW40BpkN/1XrqTmrj5R11LDmJwOoDYlrbqdj6vgMOQ1G4fGfeGyY+quLhQhKIJE0jo72rEslZehJcQLFtgdrsB1xCZOUDMVaUnUp61KOWg8RpGiXhfRcDWjSEHFqtJVWz2/Ens8aIwQCQpcGJNJU/XtLmTgoRrgAhBV23ihEv2sU2x+sJRwOr+sQgCZHQ8Au5qSsunSKdlmEN81ym7JITRev6aznJDyALltNqjZlXepCbfdX47X66BU49HD0++vbTGx/dH3378DTVjLyxPPGsb1TVBmLhAhKAFPHZ8nZlMXsqJhk5NRxD7nNWUyffmguASZemcRYpmfkVbH75cRjw2x6X6mkpiegMHzo0T7ymk3gX/ug4moUKSvImjJhVzzH8vIyer2ejo4OysrKhMa2gQ38v0QwGESn08UO5e3gnRjSIoeNEhGUAAIhTj01yXSPwJpfocQzHMR1ysvwM2KHhW0H3eS3ZTEuR86MjHGmb5aFcyxMHRerufis8yz6l3F0ypMmAfyTQfyuIOMHxesQwy/ZWPQuyxtGcOS7/agN4rlj0APHRA8JXpZLVoWe9h8PiCmxqCFVn4IuR7zmNXvKR/sp8f3GrIoM9PlaYZJSww0lWI84cfeJ1RHV2epY2zkRtN1fjTJNySFBMotnKIBnSOzQ4huB86RHSDEqirztWZRflMepJ61MC9Z+IaKGI/gxlVfkE5xbZPxl+fxdrQZDSToKBUIkpdFn1yn+EIS0jBQMheK5S972LIrOsnBYoPY7/HfxdQ3AwF8nGX9lSlhtzTMUYLprlv4nxeeQ1+ZnZkBcFcznCLLkF88F56z+de0PO3s96xJlsR79/9h77+jGruve/4PeSAAE2AsAggQL2IbTh9Ko9zqakaaqWrKKFclNcpOVt9Z7v7y8OI7t2FYky3G34m7ZseUed2l678Mhh70XsKGwAL8/LhpJkDyX8chKwu9aWjbnnoN7777n7rPvPt/z3UOMtIp9qwd6QjT/qoeeQ9JYXnDdM0qKcrSsYdgwRt9YF5/+9Kc5ePAgf/rTn4Sv7a+N/zLl3sxmM2Nj0sRvVxWy1nJr/FiMpBQjJgHk1htxXmGh7/Qozb8cjqsnJSOmpKRQqzFmQ9V9BZz+TicTXUkJ1TnkpGRCVO3DhZz8RuJDODK18O6AyMwMhdfY6Ph9ikz/AkpKllIjI43iC1hpbqMwKQAkcozZbZGlUrPm2VLOfr9DmCyy4cMVKNUKYRWo7NVmSm8vvGyltDDCxvdW0vrHHrrfFAvEAIwOo3DpsE0frUShVoiX7HiuHLVBvGRHwWY7js3ZXPxZB/3Hlg6G09xGvFuLuPSbLqH2IK/cG0D90yVMTcwIk5XWP1fOzOSMcDk8uWVN1jxbis6iFSbjyCFAxbDufWWEJqY48UV5qlmiaHjRy9TEtLDsZPUjLsyFRlkEpJp3uRhqHJOlPFV4bSYdycnUJRIUllIjIxfF/ZLFk7Zg+1QTcmaNkYnOCQJDi1xHEtHBdbOdqYlpOqOl3BSq2R9AyVOiQqVi1aMFTPmnOf2t3gRZKRVpNUpE3fgBF1OBMEe+mPjwjBGWFNpEP7/fzyHljwgEAuTm5vK73/2OioqKhe9hBSt4m3Hw4EHWr18f//sK7sCgTLGrI+n9Wve+EtR6FXv//ty8Y3HEYh6Fkpp3OVAqFRz/19bZsdDcftFjhddkQjhCxx/FfJYhX4/OBL7GFP59gfDX5DQw0Spe28jsNsgqF5a/2S6LYOK4IRtTpo6zgrvVTU4DdQ8WyyrPsO79ZWhM6ssmo1z3uBulRiG7JKwoqcPsNlC9p1iWklXDi14mR6c49M9icc6aZ0pRKBXC7asfdqFUKYR3BMkt95az1opjczanvtUmRLbK2WCl+Lo8Lr7RIUyeanjRS8g3yeHPicVqDS96mZkMCxO5ZpVsFED+Zrss9TG5iJUkPPOdS/guiF1XwwtepgLisZqhwEDFXfkcfVn8XcjZYKX3hE9WybV3mh+rfsTFKcFFVEOuntqHXJz44rnZBLlU8WYkQunWfLKrrFEC3uLfzUfDbxIw+pieniYnJ4e2tsu7iWMFK5CL0tJSmpok/5BJHquUVy7aPqPCSOU2Jz3Hh2j+6dKJZL0Vah8t48Q3WgkKKs5473eIk10iEVnlg0AqISSnXJWxUI+/Q8Z3ux6yvBb6j4jnvOreXcz5n3QLl01a+14PGqOGvX8vNodbSvRU7XIz1Hh5SmmBlD9p+1O/vNJVMkpFyc1hrX6qFH2meBlcmzcNz52FNP+6W+jZ6bP1VO0sou2PfcJENLnl3moecjE9OSNcUnHNMx7C02HhOX/106XobeI2qnnERXqhkZNfbxZ6h5ZTmqzuCTfhybB89QBBbHpByjuKPoOyrQVkVlk49pVmYT9Qsb2Q8d6g0IJiDO80P2Yp0ROaQPj9zN9kA5VCrLylQkHNQy7CkTCnv96W+EZeIO4C2PiRSqb800LfCH9W/4TQVIisrCx++ctfsmrVKqF7WMEK3g50dHRQVFQU//sqtqHTJpFSknJXMdQ96kBv0bD/nxrnHUvVz3NXDtp0Fadf61q0kkpMzCCrzow2XU3XW8PzjqWCzq5Bb1UyclH8Wy6tQMd45yJx4JxcWVqhjvEOcbKLqJJKcnury8QFQZVuXaaONU+USASH18X6rHrcjSFTJ6byuwyUby/EYNYKk6ZiECUS6cxK1jxbwVinX3hObvi4l+DwpLBiUM27XKj1KmG1Kc89BWhNKk4LfifILfdmKTXiviGPcz/uINC9tI0spUbKtxRx6dc9wiSlho97CQyGhGM1ufmfWSUbBWCvMVN8Yy6HXrrwlyndOAexkoRnvtsqTHbb8KFypoNh4VhNl6mj7M48WbFjRmUa/s5xWapchjyd0LiIIa1Qv7jfm4PsNRb6Di8xjpL8f/l9+ZxP3tCwSNk3nRlqHinh5GtthAamkrrMj70i4QiFV9lxNGRy/qddDJ1JQdJKOteFyaMMmNqYnJykqKgonlt4p+O/hJKSRqOJy4OW6tdRYlw1r00yQQlgtN1PJGxmoi+UkqAU7xdVT8qtt6JUK8iqNTPRNRA78YL9KrfnYcrW4bkzk8afLP2x4749m9xVGVidJk59bemP2oxKKeEUGpkUJnLU7nERmRGU1Qdq3yWVhRttHhFS8snbmIHOoqXsznyOCdZhD/om0crYrdN3ZJS+I+KLZKVb8rn4qy5hFSXX1Tko1Qo0enlDX5SgBFLpNnuNuJJV32kfGcVpwu3lljPLqkxHbVBhdqYJk5TkwmDToTOL8x3lKhH1n/FhKRS36dl/awatVpisI5egBBKjXqkVZ/gDuG7Noe/4iND5RJNTMfSfHiYt1wBGPUIvhBHSC4wYM/XC4ylWSlJUSa10Sx7Z1Vb6z43Q+P2ld4sYHUaqdhQx5Z/m4KcFg+I7ConMRNj3CbFgKa8+AyLESUpzMVdVSW/RoIvJzS6mqqRSwcwMM9MRQqOzlQlSKSsZjUauYjcdrn2cPnuayspKvvWtb7Fz506h+1jBCi4nvvOd78waizco70vdcE7QHRydQq9IfSxVv7RU5aoW6edoyAIFwiSlVQ+5UCgVvCVIlF73AYmsc/SlM0LqMRU7irCVpUulJwXUYwwFBlzX5FCw1i6sWpS3xoZKxlyjUkF4MiysSAIIXwtI5IcMpymhYCIAfYYW5RKKo6kgqjoz2hzg6JcvQUA8MTfRHWTwgvgXsChRJ4a0PIMsaWS5sBanoUlTY3aKKUL17vfRu98n6xz+/iADZ8RtdO77LZICoSDkEJQAdOkaVFoleZtsdIvKlhug+NpcoZJvZ74hqFqUhCn/NP5B8URHxV35GDJ12CqNQrYyFBgouSkfxxXZwomwTR+TSvSKJv9iZb+PfvmS0DOpebSY9HwDSoVCyA9U7CjCXGik5M48mn6ytMpF/roMVFolWauzl/arCgUT3UEiFRH8XUsn2eqVVxAoGuBo+37a29sxGo34/TKkeFewgssIm83G8LC0ILVkad0oAj1+wtNhJnrE/FBmrR21QUVevZVLAkqFxTfnYHWZKNuaz4UfLv0tl7/JhuuGXOxl6Zz++tI+VZ+rp+ZBN8Eh8QWUuofcRGbCUhk5Aax9QvJxY10hoQV+q8eAKddA+Z15HBfcjDTRF8SYKdQUgJGmoCxiuPPGbEkdRTBlkbM2A7VelfiGFYQoAQKkfI7VI16SoufYEJles3D7oTPj7D8jTkq2OAzoLBqsLpMwSUku0vKNskq1y1Ui6jkyhL1M3EaNr7eAXpxYJpegBGDI0BKelrevOX+TDV+7X4iEs1dGiTuAvpNDZJSkoRKvgI2tzIzZYRImKa151oPOosHX4heybeHVmTiuymbg9AgXfrj0YrneCqseccvaLFG1001Yht9zXpcLEcRISoApN4mUsZiqUvTYdHCa4IiYWuaV03fSV3WeE6dOUF9fz2uvvcbu3buF+q5gBZcTyZvyFKi4QbsjdcM5+Sn/YCiRnxHIeVmcRlQa8XxOyU25oGIWSWkx1D3olDZ1C64Frnq8GGOWnsOvNguRJ5w3Z1OwLpP2P/cLKf7ozEpKb82nqCFLeB4sashCZ9FwQdcpRsxQwGRgmoFz4vP9sVfFyUO6TB12j0lWqbS0HEnxUi5ElY5Co2EOv9IEk+JKyMMXxxlpF1edOfnlFuG2AJZiE2qdjAlZJsyFJgyZOjJcJiEyyshFv+z1xpFL4ww2iq+Vnvq3ZkYvicfLcghKABqdEq1RTf5qm/j400HRpiyh97P5Zz1C5R2TEfJNERwVH3fuG3JILzBirzILKUjpzFC5zSFtHBD0Ges/WI5Sp2SfoN+reZeL9Hwjp77ZzGjr0s/EsyWfrGoLGoOaToFYynF9JvaydNy359H8xtI5L3t1BlqTmiyvecn1DYVSQWAgxMxUmImOpd/nMm09BRkuTgz/iebmZqxWKz6fb8l+f22845WUlEplfMF4jf5mMo2zS+IodFoioURwXLjJRMA3w+DZoHQsuIDj0OkgEJxdfin6/xc1SVLZNsc1Ftp+n5gQl1JSqn/SxdFXWlIcTP2xuOaZEi7+vIuRRrHkafVDTkJj0zQKfBiBRAgovjqT098Q30VqrzEJl4WTC/cduYx1TAgTaQyZUP+Ul+ngDAf+8fLUt1/3vjI06eI7298OZK1KJzA6I0s1Sy7kKinJhhEKN8xR5Pkr43I/a4vHSNVOl2y7Vj/skl1OTxRy32d7jYnsGltC5WwJFSWA9R8s4+TXLgiXNFzzTCktv+th8PT88Z2KUVyxI5/BsyP0n1jkPpI+HLPrTYwPTONvl4KSuUpKs6BUppwjFFoNkZnUfluh1UB0LijfYuf8j5KCDZ0OpuYnc341/BUihMnIyGDHjh28/PLLC1/TClZwmfG3f/u3/J//838AUKLiOuXW+Y3mJGPK7yvg/Pc6o4cUC+70ih8zIEsVJBYnmZwGdAYFQ4KlTHLWWkgrMNL04xQfCSlivaxoqdBjgqVCDTYlVQ+UCCeYQSqt1rZ3QJbKiSihYTnw3u/kzDfFyRkxxZ+jX2yWVS5NDhpejO5mEtzB9XYgb5ON7mND8satDMhVUloOzG4Dap3iso0l2TBAw3NeAgPiO9fkYv2HylHrVLz1yTPCzy5rtRljpp5WwZLKciH3ffbe7+TSb3qF37fy+wpBwexdXIvAXp2GY3OO+DMwQO3uYmGVMIDCa7Po+J0M+fJUc4RAzJmz1gIqxWxCnkI571u7L9zJCaRyb9XV1Zw8eVL82lawgssAnU7HZFSxu5YGspUFsxvMGcdZqy0QjkTL9Mwf4wv1A0CPMNkFIP8KO11vChKfIxGqH3Rx6ustwr9f97ib1t9142sUc9Kee/IhAo0/EiuXos/W47o2S5ZikdVjEL4euSi6NhP/YIhB0ZKwemh43itt4pFRNkwO6t5djCnHIM2Vlye0k42MChPTgRlZ6jRyIVdJSTb0kFOdQe8hcQX3y426x92YsvWXTT1Vn61n9RNuQj7xhSaQCM2XS1VM7vtsLNRTuN4uRDiKYfXTpZx5rVmYCFb7WDEdb/Wn3g2fAu47cxlrDwgT8KweA5OBiJha09z4SuYc4dmSL+SP/xD+MVNMYrFY2LNnDy+99JL4SVawgr8wXnvtNe6//34A1Gi5Vnvv/EZKBSTltdy3ZdH8s/6Ux1L205Eg3MT+/yJKSjHosnQYrMpZfmsxJSVLiQ67x0zzz8VKM5ldepzX5HDyq4vkgJJyZTozVO50yyL5uG/LZeD0sBAZIH5dxXpZ5A858NxTIKy4BAnFnxNfbZKlICUHmz7mJdAXlK28dDmRvcZK3ynfZVHwAflKSsuBIU+H1qSSVdHjcuNyP+vVT5eiz9By+LNnhJWILKVG0nINQgSc5UDu+1x6Zx7t+4aESV2OG7PQmTTC34NphTqKb8rj5FfEc9/eXQ7OfGsJzkTS2kjueis9B3zCv59qjliwpFvsXJEwFrcefYaO3mSVJ5Vq3pw0OuljPz8DwOv1cvr0afFr+ytAngzI24xkRYvN+m2zCEoKnXYeQQmgYI2Z0usyUhOUdLrEfwHp2IbHCln3dAFoNTCtkf537nWolPH/6h7OZ9W7pKRR2+9HpIA+9t9cKBXYq0yU3ZsLkJqglAKF19oBOPy5JiGCksUj1Z489bVWMYKSMVG+TJSgVLajEIwIExoKr81k08cqMTpk1MWst+G5s2jphlEEBqBj/wBNvxBLwhvz9aS5xa8HYLwvwHRAvH5u3RNuGj7ulcgMQhclkWOyV4vvmCq9vZDaPS7h9u9E1O4pxrk5R5bi1Kon3NI4FMSaZ0vZ9EKlcPuRbr/0rOUNEXLWW8R+v9HPYOMoh16VQVB6xIXFYcJ1a45wn/onS1j/3NI7byHxPpduyceYufR0MHhyIk5QyqgUM9SBf5IISpZSsfaHP9/M4Gk/xnwNWXVLj49z3+mi/8QExnw1VfcXpt7JolTE/+s7OoG/PURWrZENz5VAmlIiIylT9FOpIKQClQr3LTY2PuXCeb2VyOTUrHkhGZHJKdCoKbsnkwyXEc9dtsTBUAg0Wum/JNyU8QhrV69lYmKCV199laeeekrIVitYwV8aTz/9dJygpEU/n6CkUM57x7y7CsksT6fkjpyUBCWFUhH/LxKO4L4th4YPlFN4jV3omgw2SV7WWiaVLxo6509cxwI717wPODHYoPfQSGqC0hxkrTZjsEH/kVFhgpLZbSAwFBYmKFnLpN3mZ7/dLkRQMjkNOG/KBhAmNKx/rpzqR1xCbQFK7swjw51G+XbxufXgKxfoO+0TJkxkyYhvADDA1MQ0vhZxAm3DC15WPekWbl9+XyHVD7uE2+dtsuG+MY/Ku8Vj1HciqncXU7bFKdw+Z62Vtc94hNsbbEoaPu7Fe7/gOQLSsx7rlbcQbHYbMNjEPmGbf9FFy+97ZZHLPLcVUrBOXBLD7Daw8SOVwmN96KwfDFCyJU+o/ZlvthLoCWJ2iylWnP9eR5ygJNJn8NR4nKCUv1nALweIE5QqdhRhci59jhhBqf7pEqoeXGJ8KBQQlL6tN36kkk0fi8byAvuqSm7Kp+SGOXaNhOfNF9nKAjZyPU6nk1OnTqFMFQOuYAVvE9RqdZygtJYbZxOUYmN3zqJW6S35lN5akJqElBwjRY9t/HA5G54vl/4ttED8lNSvclcRdY8XAwgRlIyFesq25gPMJygtkCvL3Sh9Ix1/tVmIQJDulNQ3G1/vEk5Ipzv1BPuCwuSH4ttzQI8woSFrlYUNH6qIX5sICjdmUyYj50UQmn/dQ9PPBUlZVqWs6wEY6wkwOTYlTEyo2FHEphe86K3ivnP1U6VkrRLLmwCU3V1Ezf3isd07EeW3F1B6Wz45azOE+3j3OPBsyRduX/uoi00fFc95+S6NS89a3hDBXpsu1C7YF6Tn2BCHvyie8/Lck4+93EzxLeI5L+/9Dta9v0yobex9Lro2E2Ph0jfu7wjGCUqWEjFDHXnpIkFfWPjdO/Gvlxg6M47eKmbb5p/00H9sBL0VKnYu7T98jQH8HUEsJXrWP1+O3ip0WeRfYafhuUpc0W/QpeC6KZvsGisV9xUs2fZq5d2sW72OUDDEF77wBZ599lmxi1rBCv7CePnll+MEJSPp8wlKsfxxUl7LeYOd3DorxTdnpSYoJeWcCUfI32Rl0/tKKbwyQ/q3qeixuYjFXnola54tweLWE+oPCcUhnrty0Zlh5GJAiKBkKTWgy9Qx2hJcnKCUhLRCHaFRcRUis1NSZWv+WY8QQUlnVlJ0TRaAMKFh9dOleHc5lm4YRf4mG9k1Vjxbl/ZTMRz/xiW6Dg0KE5QyKsWrowCgg+BwiGEZKkcbPlROzbtcwu2dN2dTuVPcTpZSI57bCyi/Szw3+E5E3cNuKraKx9nWMhOrHnNLJBER6KSSpyJzcQzB4RCjXfJIU4Y8HbpMsYu6+LMOmn/VLatUWuV9Too2i831IJEn132wnOw1VqH2o5eCoJPGoQgu/qSbUH8IQ55O6Fm0/bo//j2YVrh0h/GOUJyglL1G7HskRlBy3ZId922LIUZQqr6/CO+uxd8jhVKBYkpaJ1n7vhI2PivFtIsRUmN5rYp7iii+fk7MPDOTmIOiMGutXMU23MVuzpw5g0qODOlfAe/YjJwiKZGxWb8Ho1FKYsTISSn76LS0Hx7n/H+IswBDY9MEhsRkSgH0Vg06i4B8X3RQlN6ai700TZj4UPMuF44rsnHcmCXU3pippGqnS5iUALD+6XJWPeTCIJh/N+brySwzs/494ufIKE5DoVLgHxB3wse+1kLr78WY3zG0/apPmDhVtd1B7R7x+wY4+2/tsqQCZ0JhyaEI3nbBGjuadDX2CvGETefBQfpO+oTb1z5WTMOLXuH2y8H658plEYJaf9/LcPMYg03ii5DGbD02t1hyBGLPQrg5F77TIT1rGXHDxo9WUnKzeKB7/tsdsn7/1Fda6D4ySIvgjggATboalU7ctae5jWTXWKl6sFS4z/rny6m8V/xdylqVRtVOJ6ufFk80rnrYjecO8eC4aocLc5ERY97CxIVkZJSlo1QryKsW+5joOTpEZDpC/ymfUPsLP/UxcHGCxp8vECXOISvZL9WhnNIRDod55ZVXuPfeFDt5VrCCy4hHH32Uf/mXfwEgjQyuUt6ZOLgIIejsdzrpPemj+WdiqiO9p0aZmYwwKFiOzF5rR6VVYvOIzZPmYgNWp5GqB8R9mue2QlY9KT6Hrf6bUqr3FAuTBgy5erw7iln7XnHCh3dbEQUbMoXJGABqnQq9eeFSxXPR9JNuug4NCiuuABCAiwIlX2Lw3F4oK0YlAAc/dUGoPFcM4ekwkxPihPKMknTMheKMZN95H0MXRmn5k7j6Y8MLXtY8Iz4G5cKQq6fh414qZSRHek8N0/ZncXUge6UFrVWDXXCeDAxJMXB4Sjz4OvipC7LGk6HAQPWeYip2Fgu1HzgxRpeMEskALX/o5ejL4iVmpnwhlBoFmWXisfz6p8vJqcnAYFu6LUjPu3qPPB+y/rlyqvcUS6pEAnDfnofrmhxh0qLBpsRWlk7VfeLJT4NVR1qeeHmgwEAIv6AEPsCFn3bQ+LNFNuwkzWVpShuFrTWApKKckSG+iLyCFfyloFKpmIkqdV/JnViVVunAInEXCiUXftLJudfF1bAn+kL4+8TfpfR8A0abaLYequ4tItNrmU1aWWgjH1C2tQD3jbm4bhIkJeih5kG3MCkBpEWsmgfd6FOVFk51Civkrbaz7inxc9hK0lBplUwJlj0COPryOS79h7wyCz37hoQVV8q3u6T7zhVnoTT/pEeWKmh4KkxkJiysGpNRYUKfqcVeIU5cb/9jH93HxOfv8m0FsolTclH/VIksQlDrm4MMnPYxclG8HI3FlYZNRsm3Kf8M4WnxuKv1133Ss5YhVrHu/WWUyyDqN/+kR9bvN77eRcfefi79QjznpbdoUevFF1v0ViVFV2bj3SZ+H2ue8VC1W9yHpDul8pWrniwRPkf9U5WySIvePaXYPOnCZKiMEgtqvQpbtdjmoKHTQ0wHZ+gTLPfc8qs+ug4Pcu57YgollmMuDCELMzMzfO5zn2P79u1C/Vawgr8UPvGJT/Ce97wHADOZXKFNynkpFyASAa2/HaJj/xCXfi2WDxi8MMqUf4b+s2L+P6s8Da1RhbVEbM1Dl6khq9pC1R6xb2KAynud1D8q3r76AQe1D5cIbzjWmaH6gRJWPy2eA6nc6aLoyiyJmCAIjUmF3pZ6XTgVuvYO0fLbHuGqMwCEoEXGnFS5zcFaGTEqITj6chOtvxTPzcxMRZjyi+e8srxWrG5x8tRIu5+eI0N07hVXP97wfDn1Mua85WDjxyop2ya+7ta5d4DW34vb1eZJx5irJ0t0XTYkxcEzIfHY6+jLTbJKrOnMUP9oCZVbxO579FKQngPyVDubftbF0S+KKzuFRkOodSqsLnGxifpHSyhYlylMtord9+rHxH1I/XtKqH24BJ1ZLP7PXZ9B6a354mNKB/lr7Hi2iMdqphw9JhnfYWMdASb6xAPns9/voPHn3QvnCpLmMp1WR+GlegDC4TBWq5XRURlstrcR78hyb7MISuaHMao1KYlJMRWlvPVpFK1N49i3h5hK4jxEgkFJNSkFnJu0tP45NTM5EppcsARQZHJKIhwF5gcukVhd0OSgxgiFa6y0/3aRQCaZSWGE+gfdHH0l6igEHk/90yX0HB6ie5+YQ8pebaZgUxZHXxIvreC6NYe+4yP4u94Z+s/lOwuxe8yc/X4Lw4IKA1mr0slbl8mJL4qVJ3DclI25wMipr7T8J65UAMnlpC4DKncXYXWlsVewTifIL/dW/3QJWpOG/Z8QX9SRC0MmwiXDlou8KzLIrs7g+BfEJmrXrTkYMrSJ8mcCWP98OSqtkr1/J/48Ljc8WwtkBex5V2SQU53BsVfFS31I5Su7l5bcjE6ypXfnEhyZpOP3Q0mHFpE9NCkpWG2h889JH4Ex35qKLRyOgBEUUwuQTsNh0KRe7Le6dah0KoYuzPeHkZmwVPItCTU77GiNKg6/Gl2ITTUvTU2CTsef+r7FjMaPVqvlxhtv5Ac/+EHq61vBCv6C2LlzJ9/5zncAMGNnveqGhPrEAlj3vhL8g5OceW02wSUSjqR8VzNrTPiHZ5hoW0b5DH1YUkJJdT0p2KiFV9mXrOucHF85bshGoUS4vJOt0ojz2jxZ5cjqnnDTubefAdHyHgYouSGPpp8srQT1dmHTxyqZmpiWtZBVsaOI0S6/MFGk9tFieo8P03vIt8yrFIPBBgHBEu/LwfoPlRMYnOSkYEks2eXeDLDp/ZX0nfRdvjEityzjMlH1oJOhxjG694o9kNpHi+l4q1dYYSxrtRnPbYV0HxmSRX67nDC7DZgLTXT8UTywXfVkCW1/6Ba+7/zNdjLLzLLKstU95ua4DBnywqsyZd2D0JhagNTgvDGL1l+LJU0NNgV1j5dz8WedCZ+7wPwRCIc4bvot4xPjFBcX09z8zpHcX8F/byiVyrhq+JXcjV6pXTTOsVWl47k9n+NfbCTom3N8gXit6Gob7X9YwLcuFudFwvLLwm2y0fXW4MKlGefktWoecnHyay3Cv1/9oIuBC6P07BObK6weA46rcznxr+I+MH+TjbEu/2UtMSYHzhuzKVifybnX24RJSlaPgYJN2Zz+uphKQs7aDGyeNM5+6/KU2poFmWNKDopvzyGnJoN9nzknfA655d6qH3RhyNJetrJ7IJHlZr3flwFZqyzk1GYIl2XM3WjDnG+QVf5szTMeNCYV+/7f5csPykXxLTlc+n2v8PiwedMo2JjJyS+3CJ9DbvnKomsziYSh4w/isVTuRpuwHwSWfu8W8NnGQj16s1rY91TuKsKUpePQZy8u3lCh5MjMH5nQDaHRaLjppptWcl4reFvwv//3/+Z//a//BUAGOazV3yDlhVPlmaNqFqsecxIcneLc97vnH0/Rz+zUwUyE0Y4FyMszMwvHXtrwgmW2UqlrZNWZ6T83CkExskTuWiuaNDXtvxfwN5FIojySDB9YudNB32kfgyfFF8Ed12XR9lsZZcEvMzY8X86Uf4YjLy3hy5Lgvi2X4PAkXYL5jIqdRfSfHpFlp+VAZ0aWuo5crHnGQ3A4xOlvim2cWE65t/XPlTNwZkQWyUc2kstuXSZ4thYw1uEXJhOVby+k58iQcNk6s1NH1R433UeGZBHsLid0mTrsHpPwewFQdb+DzgOD+C6IiVrYq8zk1lvFxmA03hEq45aE7DUW+g4vQDhN5c8FxtNC65t5G6107/Mt1jFxGjPUPuKm6de9DJ2O5rwWWv9UKnhT+Tp+vx+n08n58+fRLcCZ+WvhHaeklExQujn3PRiNxgWVk0BST7IW6VAoFaTlJv59MYJS5V0W8motuK9PzVCeS1AyZsGGZwrw3JkhDegUBCVgFlOt+sECHNdlgB86/uRb8PqTUbDZBn4SBKUlEFMxOfpSkzBBCSP0HRkVJijFyqO1/LxXmKBU94QbY74MyetrM2l40UvJ3WJlDwDCMxEi4YgwQQmg/9iYMEEJIG+VTdZOe4zIKssVh0yC0vrny3FcL6a0BZIalByC0nJw9KUm2QSlde8ro3ynuFLOcghKFo+RvCvEd0YXbcrGJLhTCqT3Qg5BCWA6MMPMpAyJJ6Dh4142yti1B5IEtmgZwRhBKVY6cil0vznMsRiRS/AVOfy5JkYu+oXVly7+uEciKBkhr8G6dAc/EkHJCGufKZaua7FdyMpoOREjbPyAi9qH5vifRUp/VNyVjeem1LvRFCplgrAahc6sRqVTgGYRFb6oqtLm7F3UVtfh9/v54Q9/yAMPPLBwnxWs4C+Ahx56KE5QspItEZRgUYKSQqlAY1BjtM+OzxYiKAF4bi+gbo+44kb9E8Vs+kiZtKgdFFBIM8DaqHLNkgSlKPI2STImbb/pEyYoGWxSuSZhglJUNOT4F5qFCUpmtwECCJNPcjZYKb9Pnizzxo8mlVESxMxkmCkZikUA577TLq5kY4C0fANFm8RjnLxNNqFyU3Mhh6BUsaOI+qfl7RA78InzwgSlZSEAe//vWVkEJedN2az7gIwdfsskKDlvyhZW7wGwOE0UbhSXOT3xpUvCRB2QyjguKpucAqVb82l40UumYHkTiKo8CZYRHG0OxMk9ouP32CtN8VJxIuj602CcoCSq2BQjKAmVfYP4PbhuzsEr4t+jY6pyZxENH/cKX1f5vQUUbsyi9B6xb0VTYRpKtYIMzxLPT6HEoDJQN3EdRYVFXLp0aVYuYgUruFyYR1BS6RePcxRKMkrSUGmUGPOTdrAuQjRy356DY3M2nrtzUx6f209vhU0fLadsa/Q9E0j9VGwvxHGdNGd37R1amKCUhFiZN1GCUqxM0amvt4gvzEdLtokSlGIloLr2DgkTlLx7HLLUiuy16TS86MV95wLPYwGEZ8LCJAGQ7luUoARQ2JBJRqn4XIdeIlYsCzIISmvf65F1nktv9EqEmMvILzv19RbZBKW6J9yUySgxsxyCkrFQL6ukXNGmLMxOo3DJt559Q7IISgCTo1OyVAYANn6kgg0fqpDVx7Mln6zVYuoHl34hEZREVYiGzownFucFbRUrXylaXq39dwNxgpLoM4z5wdVPlYpdVxDQS/atfUxcRaXugWLKZSgHGDN1aIwCVSeA1aqrWOVZRTAY5Ic//CEPP/yw8HlWsILl4BOf+EScoGQjXyIowYLKSbFj2nQVxsw5a5ILEZuAyq0FVO5YJC8zJ/aq2J7Hhg+UiJMkdLDqMRfooP/4qFCfrDoL6KDnkE+MoIS0+D3eERInKEWXX89+u02YeBMr0SRKULKWmSi5Q3zdEGDtB8rY+GF588qUf0YqiyoDzT/rkUXEsJWm47hSPOdlrzELlbSaCzkEJdctOVLZMxk4/LlGYYLScnHgk+dlEZRy11plqXkByyIo5W+yiZeIA7K8Fgo2iMe157/bIUxQAhhtDRGeChOWsd5YeHUmDR/3Sj5CELpMnXCpu9BAKP5eiKqlnf5mm0RQErTt4OnR+BjUCQqRxghKovcdIyjlrs8QU2CKjifXzVls/HAZukyxagdFV9spvi6HkjsW4RYkbdLW2XSodUoy3KbF8wjR+eqK8D24nC5aW1vR62XWfX4bIBZBvk2YS1BSGKIGC6bwFgY9iqgCzbmfzln00esWVCBSaDScfX2Iqm0ZNP/H/MUihVpNZHp61r+p0tQQgcDwAgszKRaz03P1pGXpaPutGHlo/QfLUBtUjHQGGW9e2gkZM5WseqpCltpN3RNuTNl6Tn+7hZFGMUdXu8dFZCYiTHKxeIyYsvVU3lvI4aV2UEQxOTJJeDpC06/FF1oav9dJI+IfynVPuNGZNRz4R/HSbfs/cQ57jbiMXeU9Dmwl6SiUUpJEBBs/WklkJiJM8LF4jKj1KixOEyAWyKW5jahUCD/zZcEI2RVm+o6IR0CadDUWtbh93Xfkkltv4+IbHcLnqdrpgohEqhHBqX9rJTIpL7NVtqMQmzudfX8v9o4c+bw4Gz+G0OikLFlPY6YSa3EaaXkGYVt57isgq8JC74lhmn4s9i6uf64MtV7FW/+f2L1nVBqp3OYkMBTi6L+IkTE3PlOGUq2g+y2fUPuSa7PQmFRU3pXH2W8L3IdfIlaEp+fPGQqFglRigz0nRwn6piSG8sz856JQKUGthuhccuiLSf7AokYR1swjMgEo9FIUZutci4EWxunjBz/4ASqViq9+9atL38sKViATH/zgB/n6178OSLvJ1qiuiZOMUi3qK1SquKrR3n+Yk6RXKFEoF/ggUii59LteVJrUgbNCqZh3vpnpGcIzGhQhBRGWJhh473WitWgovCaTDpHkiwGKb8ilaHMWBz4hFhvUP12Cwabj6JcvEegUY3A0fNDL1MQ0Bz8ttqjh2VZAltdC5/4BYeKU86ocqeSBDOWbQH8IhcyvADnlbwE2friCvlMjNL8hGN8F4OhL8gjPxdfnQgTe+jux3Vj5m+24rs6h7Y99wgow5iKjrJISAJm16Qw0jl1WJSKz28BUCOGxaHWloTGpZalIrf+QVKpP9B0p3ZpPTnUGKo1K+Lmf+36LLNIRSDvqxnuDnPmG2EKsXLJ+51tD2D1mwlPisVf19iI0aWoMuXoCPWKx5KaPVaJQKITHr706jfJ7HPguTXDmm2L3Hlfp+uQZofFoqzTiuiaHnFqr8KaWvDW2xdUu5yAwPIk1HAGDmNM6//1O1A+qufj6EmNKoYRImIETYwycSHrmBhZcuFYoFRiVRsq7G2hHIuxWVlZy9uw7R/F0Bf+9oFar5xOUFoBCqSCiVUIQmn7SS9NPemcfCy8cVzW/0YsuXU3jj+cn9lPFXej1RGYiBIYW2P0fS34mJUczStOxFpuWXmCK3u+qJ0swZukIDgbElEb0sPpvomo3nxPLeVXsKMJWls7Z77UyfE5sF27dg24i4bCw6os+W4/VnYbXqhXeaT8TmGY6MEPXfp9Qe5BKc7X+WrxkRcXOItLzDMIxJ8DhzzZi9Ygzi11X5VCwMRNNmloq6yWAdc9JBOmDnxS7Lr0VtGYNVkca7YjFavpcPRodl1cFSw82d5os0pgpU49WkLgB0qKX67pcmv+jR5iUV/egtKjYe0gs53XmW9E8jAxTuW7KIafOyn7BfKoclbQY/P1BwnLWhfWQVWPFWpxG/xGxkkpF12ZSdGU2vceHafp3sTh1zTMedGaNcKymz9Wz+t1uJvqCwgrt6z5YhsaopvfUsNBzyb/Sjj5TS8WWIs59W2DTZFDa6BueFCftt/6xj5mQeBx8+HNJvlAPhJQpFY9jSD/rwj7TQy+tfOc730GlUvGlL31J+HwrWIEovvSlL/HhD38YADuFrNZfHV9/TJXvVahURHQzEIID/3xp/jFSvxcKhYLGX/SgN4uXIpuZCjMzvbCC0ly4r8/BmK2jcIOAcngUnjvycV6XzaFPi8VRVXscWFwmTn2jidFWsQvb+IFKJsemhNc7Cq/OxLE5m463+oVJSu4b89BnaOn4Y7cw+Was3Y82TV7SS46CEkhEqP7TPlml2w5/9gxoxRkuntvyQakQXneylpmovNdB2x/76Pyz2DjJKE7DIKPUc+w8vtaJy6pClFaoY2YGAt1iJzE7TegztKQV6hjvEOuz5hkPCo2CQ58Si1Pzr7BRfL00HkUJVKdea2b0krwYdfXTpUz0Bzn/3Y6lG4NwjBZDx74BcuttTAWml24cRdldeaTnG2XZd8Pz5SjUSuHxm1aoo/ahEoaaxsRiHBIqXYc/e47Q6NJELUOeDs8d+RRutHNUMFZzXJmFSieu9xMcnIQwaHRKoVek/Q+D6G0amn7aG89rpYRSAeEIoy0h9n4iOfZSwgJxdGzO8/ReQQstAJSVlXHhwuVTh5WLdwxJKZmgdFXOkwsTlGL/boD12+zMTEU4/NXox5t+YWeq0GhwXaFDrVfS+EaQ0z9IfMAp1IubYawtwv6XF3A6C6htHP1S06KE7Lk49bVGSu5yChGUAPwDYaYDM3QfFmfqjrRNoLdoZZFVfJfGpYBJ9ByNfolEck6crNJ3ZFQWucWztQBUElFJFLp0DWqdvAUmgMGTYoktgJZftqG4xSFMUAKpjml4Sp59hUuBRFG9w4lSrZDdTw7WPFaK3qqj78hp4T5yr2eiL0AkHEGlFX+OPUeHCAyIR0vLKWeoT9egVCsw5uuF+1s8Rtw35Qkv/ogS/mLwD4S59NtuYXIWSO+T9QMmug+K9xnvCWC0iwexw2f9TAdm6Dki7rdaf99LmgxFs6Y3+uk/N8Fok7if2/+ZhRf6kuem2Adsy39ISTCdXYN3Sy7HvtGfkqxEbG6JkpUKN5koqE9nuH2Sxl9L15dMVor4gyiMehR6HVcW7aFV/Sua2y/y3e9+l9raWj7wgQ8I39MKVrAUPvnJT/KpT30KgHRsrNVcGz82d+FKEZUMrdiRR0axiebf9NB7MDpvL7Hzf9XjDo59o43uvb45hxYPkk5+RZ5K3ZlvtGIuNjB6SZSlA4PnRhk461uyaQw9R4Yp3JgpTAoBmBybwtcuHkt07BvCUmgUJigBHPjH8+RssMoixMgp6QSw6kk3jT/vZqJVkBBTZkCpVaJLl/epERiSt+u66ddd6NLFE4Egje/xHvFnIpecZcjVU77FQUFPgOOvXr7SUdV7ipkOzQgTiJZzLWGZu+Av/rwLlUpJ917xjQdyCUoAap0Ko03ec/dsK2A6MCNU8i3QE2T/P8gjzJ362kUMOeIEJYDhpnFZKk+Dp8aZvm2G0Tbx8dt70kdWpVnYPwyd9TPa7qfp31uEz3Hsy5cIjIjfd8sve2n5pTwZ8pgySMWOQsa7Awsn5ucQKTZ8qByVWslbf5/6PYkpACqUCq6cuZsO13HOnTuHTqcjFLrMuu8r+B8HnU7HTPSbYTGCUnKMtOl95cxMznDgUxfnHUvVL2+jlbRcAxd+2MXZb3fOOrYYgj1B9n1igUTlArHe3k+dRW9e5FtwzuLfuW834b7dIVwKiSAEBkP0nxEjIACMtk2QXmgQJigBDJzxySJaBvuCnPn2JYL94oGXrzEgK55w3piN2qASJlIAGO061Ab5KV7h5wH0HOhFY1TR/GvxXe0zAXmxRNAnP1dUs8eBxiijbO4yULPLhbnIxOFXmgj2ic15osSWGCb6/IRn5Nmr/c0+QjJUH4I+eb8PoEtXo9KpsJToGWkSu3djoZ7Sm3M58aUWofai7eIIQuMbncIEJZCUi7K8VjoFy60A+FrHsRSJb64M9gQJ+aboOSx+jotvdJJZYREmjnX9eZCx9glZpDw5G3YBut6Mxll6SVXpuGBVgqzVFjy35TN4bpTzP4j6r+SFtiQFwBrVRuz56VwaaOLf/u3fqKys5LnnnpN1nStYwWJ4/fXXeeyxxwCwksMawzXxY3MJSrGcl/PaDPLqLTT/po/eo2OzjqWCQqGgalceF9+IleUW/7ZtfF3e91Dzz3rpO+5jvFP8G6Vj/wAT3eK+oufYMFqzWpigBBDoDzIu4xu4//QYmeVmWWXejrx0EXuNWZY60PnviZE7Yqi630Hr73uFyRe6TB0avUoWMQ1iCkfi9m38aRf6DDE1FgCVRkV4Kox/UPwcR18WVIpPQtVOF6PtE5z8SovsvqKofaiEycC0MIHowg86uSBD1AJgOjCNclqcfNL15hCGDB2dfxaPheUSlAC0aWoiYXnEMceNWTAjqFAWgkOfkUdSOflaC1anSfgdASkfpVKL23e8I0RodIrRVvFvua6DQxRssAsRlEAivQ2cG6X1113C5zj+r40gsIE6hp5DI/QcEo9RARpfl8aU83o7U/4Zuvb6UpOVYt+t0Vzi6iddaNJU7H+pOaVriUQiKBQKFAoFNxnupylvL42NjRiNRvz+yyhqIgOKSCra8NsMlUpFOCwZ/KqcJzEakxakk0lKhtlJnFVbDUz0T9H4q/F5BKVIIPHyKzSSI1/3kBmFUsH+l5N2oKUgKEWCUt+Ke+xYCvU0/95H/5lg9FjS9cwhKEUmJ1n9pIP2NwfoPzn7AUemFmAlGiHDoV+4bNlf//EIw5ipxD8g74O39rFi1HolRz4vPhlueqEShfLykm7q31OCwa67rOd4u+C4KRtTpk5WWbKGF72yVLpy1lvI8mZw6qsty7zKdw7WPFuKzqyVVSNXLuqfLMGQpaPxJ+30HxMr/1N4bSYF6zJll9WTQ56SjctREmMRwkPOmnT6ji6wczFFvzVPu2j+TR/DiyRekz821z3rRKVWsO9TLdKxVPNDkk+uezAPg01N675Reo74ZxOV5pYbnZ4GI6zbk8P5340wlvStlExUUhhnz3PHg9+lu0cKsL/0pS/xrne9a8F7WcEKRPH666+zdetWAAykc6Xm9lnHkxfNk98RW4WBklvzOPjyRWnBe+57lxw8K5QUXp1B0SY7Ix1+Tn+tPenQfN8RO2fDR8uZCk5z6J+b5x1LhcwaE0VXZgmrs0FU5eb45a3//nZBjmpLDOufL6f1j730Cu7mz9tko/iGXHwtE8LKNctBw8e9+AdCHHtFfoLkHQWDpOzVe3SQwVNiu+3jajcy4s6KHUVRssYy6uG+g2CwQf17vIx2+C9rHNnwopfwVIR9/09cIaf+PSWERqeFVYtiMNiUsgl370TYKo2ySGQ5a63kr7MLJzlzNlgpuSmfvtM+Lv4wmiBaIrZs+Hil9BxTkchSzEmVO4vQZ2g4+krLgr+ZPCcFpgLsU73B9Mw0Wq12hai0gr8Y0tPTGR+X5gRRghJA7bucBIdDnP9B97xjs+K16LH1H/Sg0ih46/+en3csVV/37TnkrrLS+PNu+mMbx+bEc3M6UvdYMV2HBuk/tkgsNSePZfUYZJFh3qnQW5WySR4VO4rQWTSyyMIbPlSBSqu8rDkJ7x4HFlcaR186s6wyY+8k5G+yYcrV0/i6+GJDw4tRla7PiuW8MipM5Kyyce5H7Ze1rNzbgdrHijHlGNgrk0QlBxU7i7B50mn6ebewylPWaguua3I4KLgYGYM+Wy9MHHunw+aVp9ZV94Sbtj/0ChMz177Pg8aoYe//jT77JeKuyl1FZJSk0fK7vgRxaTHoYd3THhr/vRPfxaRnssi8ct52gPZ+iQT15S9/mUceeUToXlawgsVw7Ngx6uvrAUgng02GOTmvSOqclylPR9mdWRz5ciuE5hOUIkl5X4VCgd1rxHNbLr6WAGe/t8QcFI29NnyghKnQDEdeakn64UWUxwq1uG7I5cSXU3yTLtDPWmaSyiYtF++g9Uhdpo6QjA3oIKnjtL/VT99hn1B7S6mRqp0uhi+Oc/bbl6+E2caPVDLRFxAvpfcOhueeAgbOjTB8VmzOiqndyIlt3bfl4h8I0SODXPxOxcaPVjLWNsHp1y7j+PpoJZHpsCxVpeoHHEwFw7JJfTqzUpgU9I7AAvGO2aljtCckzBu0lpkouiKTk19pXXzTdry9Ee+2InpP+iSVJJbePLThQx4i0xEOfDr67Zjs5+eSZsMRnDfYsRQaOfH1hZ9hsghDKBTiTeXrTE9PYzAY3hFEJXEa22VCenp6nKC09Yq/wZIpEZQ0RrCXRBsZ9BhdetLzpT9zq8Duhgu/GKbxj1NobLpEW8CYC+kOiZyk0Giwl4IxAw5+b5Tzb45gL5cYrgq1GmMOWJLKMmeUgDFHBSoVvq5JIjMR+lukwNqYJw0slEpQKrGVGzFmx04KeVcY0Zk1OK/OxpirwF6ZIFtlVBgxOhJ/Z9WZwAjrnyqlcpuT3CvTEm0rk9oqFGStSofon8ZMJQ0velnzrFRf0+IxkuZO+t1V6RiiJS4NmdLfWavSaXjRS/Hd2Uu2jaHuyWIaPu7FmKmMt439f4yz26a5jWRUGql9dzkNL3oXbWt0SG1jMGXr0Vt1s9vG7jVfP6vcmr3GhNFhZO/fneX8G62Ltk22ocVjJGvdbBsmX1NG5XwbTgWmCU9H5rVdzN4bP1pJ9aOOWXaxeBa2d+6V6eRtzFiwbSobrv6bEhpe9M6yob3GhDFfv6C9x9rH4wSllG0XsKFCpUiMwyXaTo5N0fzbhOrD3DGbyoZr3+eRap8m2WUpexdel0HeVZa4DeeOw3k2dCjZ8JEKyncXLt02au+p4AzhmUQwPnfMLmTD2PgUaXv06000/bpj1i65We99ChvaKtJQ6ZRkrzYv2TYxXkpZ9aibzHrTrLYLvfcWj5E17y1l0wuVS7ZNKzFhKZVOuuH5ctY/X44xU5F0rwmfFvMRMRTfmUPDxyvx3JM/u61CKdmwIsmGVUaM+Ro2POeh5JZ8staZEveap8ZeNadtkeRPMmqMaNPVFF8n1Xme55PLjBiLErsdMquMBH2ThManMWZKf8dgLdVhckjjQ6FQkOk1ghFOfHuA1oM+piaiH6kqFeklakxFiYnfXqZCawLUarQaNc1/9DHWIc0nmTWQXggKrQaFVoO9XI0metrYHFin344KHQqFghdffJEjR46wghX8Z3Dx4sU4Qcmis3JXzb3xY1aPAUOBVPJBoVKRWZMGBrCWGrBVSu/AwU9dhKASq8eEoSBBxrN7DVJJHYUSg12J3Wug4w/DNL7RRfufhzE5or+rlBI5epvUz2ADu9cYV7KYDEzjH5lM+l0jhuS2Se+myWHAdV0OBpsOQ4EBe7UJgy36/hnAXp3wfSanAXOxAUOujrK7Cln3XBkGmzKpbcJnGQoMWMsSpS+q3+Wg4eNe6d9ibQ2JtrYk32KrNGLI1bPug2Wse3/Z7La5+lltrWUJewM0vOCl7nF39F6Vs65pblt7dRrmSgP173ZT++7iWW3NbgMm5+y2MRvmX2dDrVeRlmdI2MWduq3BJv3dvXeIc99vofWPfSnaprZh7hXWWTZcrG3M3jNTYSbHpuI2nNU2hQ0rdhSx/kPlCbss0jZmw8LrMuK/PavtHHsn27Dh417WvK80yS4LtwWwl6Rx6Y1WBk+Nx20YQ2p7K2f9LdTWAP2nh+MEpbljNqUNbdK91D5ZvHTbJBsW35ETv/dU43Cuvcu3F7L+Q+WLt02yYWAoWnaV8Ky2S9rbIP3/VGM2lQ3Pv95G40/bFxyHqe2tIy1fv6SPSLZhw4teah/zLOkjYteQf5WVhhe8lN9XuKSPiNmw8KpMGj7upeBq25JtYzZc98EyGl7wzrZhSntH/y4wUHGvi7Uf8CzpI2JwXJuNIVMXP77Uex+aCDEzGWakZTxFW9OstjF7n/t+Kxd+3IYhVze7bXwcarBVRP9QKOk+MsS5qBJJToNFmkNStUWaA20uGxtnbkWtVjM9Pc369etZwQr+s3C5XHGC0p2lO7DaJR+gt0JGeSI+MhUZSHNIx7Lq08koM3D++y1ceL0HhVFBRpLf0efqsbj18fjJWqpHn6XmwD81cvbHbdLv6qXfjbWNwVqqR58tbeQb6ZxgZjJMf7NEONJna7B6jFLSVaHE4tajz030tdcbMeXqcV6Vjd6qmPXdZinRo8/RxRe2MipMUsm2p0vx7iwmd5Ml3jbdqcdYmPjdjAoTeitxu2x6wcvqp0uF2mZUmDAW6tn0ghfXLVmkO+e2jfoWffSaoijfWcCmj3nj97dYW32uHkuJnppHSqWY0GNAn62f3Tb2Z7Z+Vgk1s8OIMUusraVEsvf+T5zj7PdbZ7e1KmddU7Jd0p16MmrF2sbudXpyOq7qndzWWKhf0IbrPlhG1YMOobbowV5vImu1ZZYNY0hpQ6DqQScNL3ixVC7RNsmG/oFAnKAUs6GIvRUqZo3vxew9HZih7c/9cYLS7HGY2t51j7vZ9II35ZhdyIa5G9LJ3WgWahuz97r3l1F2X0HKMZvKhpNjU4SnZxL3KvJs9Il/TzVm59rw3LfbufDTFibHJ5dsG7NhZmU6GpOanLUZQu89QPWDLlY/4cZWb12ybcyGtY8Xs+mjlbNsOOteU9hwzbMe1n2wTKgtQO6VGTS84MWzJX/JcWj1GNDn6lnzrIeKbQ5yN6Qv6SNi5zRl6ym+Pi9uw6Xe+/G+IKGRyfltHXPbGtFb4ey32mn8eTuBwQTJ1FioJ90xt630Da7XS8pQvotB9NkastZZpLbROSX2u3EblhsoH1qPATNKpZKPfexjHDt2jBWs4D+D0dHROEHJYsjg5oqt8WPpRTp0WVIMpFCpsJQYQQf6bC2WEi0qHRx5uRXFtIq0QiP67ETe2OzSoTNLeWG9RYG5WMfgGT/nftRJ+1tDGHIS+TGLW2oLoDNLf8cQGAkRHA6lbIuOWTGbIVdH8c25pOXqMTt0WEr0s9uWJvyDLkuH2akDHXjvc7DmfR50mbrZbWN/ZuowuxLn8dyTR8PHKrGWmaJtjbPbFifamp06dFk66p8sYc0zntltzcr4WkGsrSEvce8bPlxB9cPOlG3TCme3tZQaSXPqWPNkCdWPOGe1NeTpSCuc3TZmF3utCZ1FgznfsEhbZZJdjIxc9HPiq000/7lXsmFy21k2TFxDZr15VltzsX5+2zk2nApOMzk2HbfhYm0BXLfksPb9ZejmXP9C9k4r1JHbkBH/7WS7LGbvjR+ppP7pktljdgl7t/1HN8Nnx4Xaxu2tmN02PmYXsOHghVF6jg8LtY3ZZePHKql+xJlyzKa0YaaOwmvs8WtctG3Uhs6bs1n7/rKUY3YhG4anwkwnkRwXaxu3oU56TqnGbHLbmF3Ofq+Vc6+3L9g2lQ3TCkykFxmXfu+T7L3pY5XUPV66pI+IIbPOyMYPV+C5p2BJHxG7BnuNmY0frSSvwRo/tpS9Vz1VwsZofDdrHCoUWEoNc+xtQGdWUH2/m9WPl5BWkPy70rGEDRN+1nV9Dun5Cb9gKdGjy9Qk2ibFgrosHeHgDJOBGXytfmkOSW7r1idsaFdjdkWf43c6OPeTzoQN9UosJUn+26ZIPEelguHGCc6/Ia3L26tM0nwTH7Oz5x9Tvg6Lw8wV4XtQqVQEg0HWrVvHXxt/VZJSSUlJPFnTUHwvNTfYqbxReugVNxoovSIdTTSBU32jicrrTJRfr8VRb6KkwYTnZisAZdfqKb0infQC6XerrjfhvSUzcZ7NFipvTwc/5JUY8VxvI3e19DJU3W6j/AZ7vK3nOjuVW7LBCOlZGpRqJUXRBf6qO3OouCMr3rbsVjtV9xUCUNxgofjKfIYujXLo8y1U7yim7M68eNvKbUXU7pLaFl5jo+zOIiq3FNL4RhfhcBj3NUVJbZ3U7ZE+/LNWpVF2l4PqHS7pGh6QEjWBIelDr2qni5pd0uRudBgpu8tB+TZpgcu7u5SyuxykFUj3mleTSe1u6XcwQtldDry7pN+ruLeEsrsccUKFMVMPCuLKSJ47i/DeLzHBana6KLvLESep1Ox0Unmvi8HzowT6Q3juLKL6YY90DVsdlN3lIO8KiYxTu0dqG4NCpWBmMnqOWwoou8tB8bU50u8+6KJ8izPetnyLk5rdkl3ScyS7eG6XHnr1HuestpX3uqjdI/3t3e6k7FYH3q1S3+qHPXjuLJrVNmbDjErJhkqVVCvTu6dkVttZ9s5UUnaXg4rtJRgyQalWYClIkEVqd7uo2pG417K7HHh3S/Yu3+am5DoH7pvyyVlvoWaXk6qdibaeO4uoelBqW71dsnf2ajOhkSkikcgsG5ZvcVK9W7qmyi1FlN3loPDazFn2rnrAkbDh/VLf0pvyKbvLQcmN0jiteWC2vTVGddyGjk1Z0ti6q3BBe9c96CSj0kjOeos0Zu+Tjlc9WJrShqHRKWamw5Td5aAsOmYrd7spuyuR9Kra4Zo1Zp1X5lN8tfTMK3ZIYzZGoplrb8+dRVRucaPSKLE6TZTd5YgTk1LZOzZmw6EwKo0yTiCrmzNmy7c4qY7apezOQsrucrD2KQ/lW5zzxnf5Fic1D0h/u6/LpewuB6U35YMfXFflLzhmC6/NpOwuB5X3JMZsWqaRt/7PGfqOjEr2vl9qm7UqfbaPuD9h784Dkryj5zbpdxbyEcn21pm1knph5uI+omang6qd0etXgFqnxLsnyUfc6YgvMNXscFC5LXGveXU2IpEI06EZvFuLKLszyUfsKqRyW2K8lG8poma3i7Y/9THln8ZzYyGuqyQ/XL2nmLLomJSeRz7V26W/zbkGFAoFY1GFkartrlk+uWJLHrVR/523Pg3PrTlMB2Y4+moH3u0OSm/Jjrctvz2LqrulvtZSHZ6bM6nZIh3P85opvT6DNY9mY3Wr8N6WQ9VdUltjJniutVFxh3RvlXdm4LnBBkaovtWKe52Vypus8fN4rrPhvUUao+XXGyi90owxF250vYfrr7ue7u5u1qxZ845gOK/gvyYCgQAej+TrlCh5+r1PU35P8nxYRM3OAhQqFfkNFsrvLqTs1hwqtxZQfreb8i0F8Z0CldsKqN0pvUOZNUbK7y7Ee4/0t/d+F2V3Sb564KSf6h0F1O4ukhbgHAbKtxThuVs6b8V9Lsq3FMUXjbUGNZac6ERqkHxAedSvlm1zUnGPI74AXru7CK1Jw/FvtBDoDFC+xUHlLsm/VW93UnGPM76wXbvbSfVuF4GeEKOdATQGNdUPSf6t8u4iKrY6pZJpQO39Trw7Egx2c0EaESL4LgQouTmPiq1OHFdIPqBmj4OKJL9fca+LmgedKBQKlDolFVudlNwQnWfvd85q691RTG3Ul+ddY0OhUqCJlkerfqiU8nsS/tm7vZi6B6W+tkojFVudFG3MZtI3hcakntW2encxtXuktoZcPRVbnZRtleySU56BQqGg6UfSon3d/cVU70rca8VWJxU7JV/uuaeYiq1ODAUGhs76qd3jonp3om35PQ6qon7fe6+Tiq1O7NVpZK02U3J9wSwblt/jiNu7/M5CKrY6ydtkm2Xv/f9wjjOvtUk2jNrFfZ1kb9dV0djwgYQNDZla1DpV3IaFG7Oo2Oqk9Nb8qB0c8+ztuCKPVe8qJmetlYqtTiqj43CuvZNtODMVRm/WUXK39HfFruLZbXcVU3e/dK8Gm2TDuqcqMDkNlG93U7HVGR/fKe095+8YISSlvR+I2nurg4qtTuqflp5r3QMuvNuTfudeF9XRmNlzWwEVW50UVmcyMxXGZNPPejbJ9i6+NpeKrU7c10ljtvZhF/mrM3FcXxi3Ycze+ZvtVGx1Un5HNDbcJdnbYNOi1qqkMRuNgTJr06nY6sQbjQWqHiiZZUOFUoElX4oZTE4DFVudeO4pjtu7YmsihojZu+E5L97tLukatkt2KbtXsneM7JJsw8FT45Tf46Byd9RH7JD6xn1ECntPTUxz4BPnl/QRFfe6qI5+u00Fp1Hr1Uv6CADn5myKrykgQgSlSrG4j9hkk8bLXUX4+/2gAOdVuYm2KXxEVTQW9+5xozGqmQ5JSbHFfETFjhIqtjoJdAaY6A2iNWiEfASAWqOCiEQ8i9kwlY+A6JjdIr33/UdGZ/uIOwqpuMdJ3qbY96MD73bpeofO+am410ntQy5WP12C+7pcKu5J8hF7XFRsS/adDmr3OKjYUUDJtblU3OOg9GZpfFfvcsxqW3lvEbU7CzFoTFy3/g5yc3M5fPjwClFpBf8p3HjjjbS2SjvfV3M19bvLKb/PBYD79kK89zmxRhOfNbuKqN7lwHVjFqW35FGxrYiqPdK7WXZbHpX3OsiskzaN1O4qTHyLAZX3OaiO+guby4z3PicFa6V5tmZnAd7tjllta3Y7QQ+mDD1qnYriDVnRa3Dg3ZH43aqdTmr3SHNlzloLFXe4GLw4yqHPXqTqgRIq701quyPhhzIqTJKP3lLEuR93EJ4K476hIN62+n43tdG8hD5Xj3e7C090ni3f7kapUhAYkhbwqne7qXvAHe/r3e6i/D7JL3nuduHd7sJeIfmW3FWZVN+faFt5n5PKqA+rvKcI73ZXfMHf5jajUEnlmWJtqx6Mzie3FeDd7iJnbdQPPeCkapeb3uPDjHf78e4spibq94uvycG73UXRJikxUfOAA+/OhN9U61RMh6Llvzdk4t3uovj6nOi9Fc1qW7XLTd0Dkk3VRrV0r9GcV9UDJVTelzQfJtnQu9OFd4sLb9SnVewsXrCt3qrEu92FLk3L/k+co+zeYsnHRnPqdQ8UU71njr2juQaNUY3VlR4nM9Te75pnb2+0b8XdRVTc6aLsjkLyr7RT96CLqp1Jv7uzmKqd0tjy3JKPd7uL3I02gr5JIooIVdtmt43Z27k5G+92F87NiXnWu7OYih1FcRvGY5V6G97tLkpuivn92fbWpmniY9Zemy6N2Wh+wbvHPc+GdQ8Xx0lx3u0uSu6SjpfvcMXnKYDqPW7qHigm5JtkOjSNd7uLsm3Scc9WqW2MqDHX3u6binDfKF2D+w5p/osteKSyd9UDJaiNaqyuNLzbXWStskR/VxqzyTas3iXZaNI/jVqnJn+tPfq789vW3C/Z29GQhXe7i9XvLpVs+6Bz3pitjY7ZnLUZ0rscjcWdmwtm2bBqpzuljwDw7nKT4Tbz1j+eoffQ8JI+Imbv9jel0hjl0XNCah8RI13V3u8iLdtAOBwB/eI+ou4hF97omFUopPG/lI+IP8dr84goIkz5Z5b0Ed4dkr2bf9VFYDhEyc0OIR+Rni9tZpvokQhEi/kIS4lkQ6VCwZGXLqbwEYnYUG9V4L3Phece6e+8VZl473Ox5plSbN406u53Ub0n6frvc1EefR4ldznw3ufCWKCn/lE3npty4/lTgMp7nXij9q64Kx/vfU5sXhNXqG7lhhtuoLe3l9WrVxMM/vdQxlrBXwcWi+QH1Wh4/NEn8d6XiD+89xVQs0PKeVlLdFTdm4/nhkxqd+RRuSUf77a8uHpS1Y48arZL31u6LBVV9+ZTHJ1PyrYWxNcEfRdDVG3Pp3ZX9Dw6qLqviNLbJb9UckseVfcVoYsuKerNWtLzE4v03u1FlEfn77Lb86ja6YwvVtfsKsJg13H0yy2MtoWo2uHEu8sl/e6NOVTvKsZeI62819zvoGq3G0LQf3YUnUlN1Q7pGh2bs6jeVUz+aslnVe8pmvXtm+W1ElFE8F2YIH+NjerdxThiufddjlnzVNWeEmoecIISlFoF1buL42tL3t3Fs9ZbvHvc1ER9i7lcijl1Fon4VbF99tpM9QNuaqP5A12mjurdxTivymG8O4BKq5SuN7rWXvdg8az5sHp3cXyezfbaUSgVtO+TPkprH3BRnRRHVu10URn1WZ7bC6jeXYyl1Mh4R4i6Ha547B1r642uM7hvyKV6dzHZa6yYnTrK7iik+sGEakb1HjfVu6TnWLQpi+rdxRSss0evT7Lh4c80cv57HVTfX0JN1Dfm1mVI93qNFNdU7SiK2zstS4c2TU1tNA6zV5mp3l0cn2crd7rm2dB9fR717yomrVCyoesW6frL7nVQtSup7f1u6h6UxsCUfxqjXU9pdI3Ic7eD6t3FcVJHKnvXP1WG2anDdUsh1buL44SQ2vtT2Dv5GncXk1Epxe21D862d/UeN1XReM51bQ7Vu4upe0S6xpr7nVTfP8fe0ZxXwTo71buLKdqUxXRgBmO2ftaYrb6/JJ7zyl5jpXp3Me7rc6PHHDivysURzdtW7UnEKtYyk2TvaCwes7cxQy/llJPHbJZkb3d0Da5s2+z8klKtJMMZ3fyvk+zgia4Llt4Zs3c0jxUdsxs/UEnVLhdVu1xUbI/GnHdJ9o6Rgmrvd8Vj75GLfmnMRs9bcmMe1buTfMQDznh+JmbDyfEpDn3qAo6rpDGbv9oWt0v17tnPpjoaGwZHJtEYNUv7CCSyUfndxaBSgGIJH1Gsl97lOwrwD4RQqhUUX5+I71L5iNI7o/a+x4kpS8/UxDToUozZXcWURfOK7tuKpByXTstw0zgavZrqB5JirR1zfMSu4jhRSWtQEwlH4upuVTuceO+N+ojrc6je5SI7ukGjZk8h1XtcHPrMRQZPjlG920V1dHwXbbRTtdNJwZqM6O8k1llH20JUbS2idk8+de9ykFtroWqHA+dmyd7ebUVUbU+sh3p3FFKzKx/HNTbKbs+V5p8bJH9Ssa0I77ZE26qd+dTsyEOn03F92VaKioo4cuQIV155JX9NyC9Y/hfCPffcQ3OzJFnlsWzGjIOxvin6o/Wtuy9CtnOaqehabF9TEKVKQfOfp6m5W8nMZISBaNuuM0HyymFsGCI6LX0tU2iid2bMSDqpVkPn2SmUSgVDTRLJp/dcEF2aEqJlfUa7pzBlqtjwcC6n3uhBa1QxeH4CFAp6Tk9gtCYktUbaAoz1hSAcxuoyMt4foH2fVGuw68gQ6fn6uJTjcNM4E9FaoEOnhrC60ug+M4TvnJ/2Pw+Q4UrsYBi4MMrUuJTE6L8wTk77BJ37JDZcx95+7BUWznxTkobrPzfCTEBKOPsH/Iy0T9B7VJJg7djXT1ZVBpfe6OXSG72Ubkm81PhhpH2CvuND0bZ95NTb42Wh+k76UGoTHLbRDj+DZ0ei19BHwcZsBpsk2cie40No0jQ0/lAqSVT9kJPBi9JOvM79Ayg1SnznJdZrz7EhDBlSMJKz3sJIyzgjHdJD7jw0jM6iofeodJ7ug4OYchNMxeHmcTLcaax/vpxTr7WSlmugO1rnu+vQIJbCRIA32DhKaEQqodR3dhi720znfmm3efvePuyl5nhbyd5S2+FWP2O9fqanpuLXb69M7PjrPz0SV7/xD4Tj9g4MwMU3Osius8XLD/ed8s2Sbxtpn6D/tHS97W/1UtCQTXg6Qu+BEUzZBlSGxNgabfczeG4keg19oMim79wofUdGKb49B216ohbtaNsEw80S2a993yAqnYqhk9Jz7To8SOGGTMzRGuq+S+OMdkoX2HXEhz5DS3fM3ocG48oKAOHpMF2Hpd8ZOD6I2WGi84D0d+e+AaxJYzbgC2Gw6rCXW+n8cxcj7RlxgkzH/n7sniQbRsds8097JLLGDhfdh6Jto2M23vbMSELG3g/BsUn8Q9IHeOfefrLrbASiVU56Tw6jVM0es/2nh+k9MIK9xkTe2ixGovfee3wYtSnh/kbb/Qw2jkSfTT/qdCX6HGmcdh8bQmdJ2HukZRxfizT2uw4OoTWqGbwwRE51JsOd4xgtCcas79I4493S9fYc8WHM0tN1xCeds9dPhiMN9x25NP+0h+GmMSaiE9zQSclHdB0YiI6BATLcUgCX5jYy1DJKaEgao/0Xxmb7iH2SjwDoPTCC2Zm2pI+Ioe+UdG0XfyTtQlzUR5xK+Ij9nzhP9SMuBs9K/eM+ojnmI4bRpCXZu22CwaYxut8cxlJqRKlRRX2Ekp5jw3EfATDSOsFIh5+eg6OM9k7hvjaT0TbpPeo+PEhaTmLM+lomGO+Vrq//1DDp+Xq6j42x6tEiRjonUGsT79jgxXFCo1OgUDB0cQJ7aRqdh6XSe5FojVljtgL/AAw1+5mckHyyryvEWHeQ7mPjoFDQfXyCLK8Oo1WLY30GAxf9hKciKJRKAkMw1jtJT1Suu+v4GNnlJphSM9Q2idYUIZhUnnasd4r+9mkiWg2dpwLkVYA/WkWhNHs1h62HGR4exmazrSRtVrAsJJfTvV6znc79g6QXJM2dF8bxRxeEhs+NYC020XloFP/gJBangXBiIyz950aZjMYq490BfG1+ug5K72bMb5scBiY6gvSdGWUmILWd6A/ga52g5/AgKJR0HBgku87KpveVMdEXpO/USEJ6OwC+1gl6oztnOt7qJ6feTmAI8jZZmfRP4WvyM9Eq+Vlfqz/uh7r29xMOg69dOtZ1aAidTfIBp77Sgnd3USJWOTCAQqNktFHq2314tt8fbhyLzx89R33o0rX0n5L6du0bxJS0I3jw/CgTPUE6/jggqdDcmBP3+x37BzAnJaMGz40SGJaM6jvhY7gonY43JV/e9tbsWKXvjC8eGw61+Bm+NE7X/j58FwLkrLXOilV6Tw0TnpRsGOgJMnxpnN6jgxgKDPSfHcI8nvjdnmOzZZOHL43HY5XO/f0U3yglOC78uJ3uw0OoDIl51ndpIh6rdO2XrnuwaRyDQUlwLMR4UtkFX/N4PFbpPiTFKr7zvqj9B8n0muOlpYYujDHaJdm7+5gPvU1L7/HYeRL2PvpSE+XbC5nol8bs4NkxzIXGeGzYsXcAqzMRq/SfGUFn1TDa6me02cfwJQud0Xm27a2+WbFK3xkf01GVvP2fPYf3Xic9sVhl7+y5s/fEcFyBMTAEofFJtCYNabk6Ot6SYhUCCXsnKwLH7O26Ojf+92g0bkhp72is0nWwH0uxCYNVskXXocF5Y9YXreHedWgIjVHN4KkhOv44QOG1WZgyEztphi6MJWKV4yMY7Dq6j0nPpn1vP/lrbLS9JcUNg+dG47HK8OlhrK40Og7EYgopVjkTla/2bCtgckyKVSY6xqQxe0AaJ+1vJmIVkMasKceAwaZkoi/A8KXxRe0dCYPeqmG8N0haniERq7zVF/UR4bi9lapELB4JR9BbpRija38f4ZmsJB8xOCtW8TWPx33E+GAAxSUxH3Hmu+04r8pe0kcA9J0YxZRj4NJv+wh0BsjfbF/YR5z3MVyaTtfBAUabAzT9qkvIR0g2lL5nYuUaF/IR0rPpk8YscPzVZty356FIXP48HyHZe/aYtZYZcF2Xv6CPAOg+krB3jHga2z7VfWgQlX62j5g1ZhvHMDuN0nfML7rQ23T0Hpfadh0cxJQUGw5eGGeiP0jnH4eoe8LB5FiY7phP3jco+YjoS9l/dpSQTxqzuiY96+uv5Edd3+XgwYNs376d7373u6xgBXLwsY99jN/85jcAlFCDTZXL0MVx+k8n8h2RmQgj0e+r7kNDqA0qWn7dT1q+ganxaYaape+TrkPDKNUKxlvHQKGk8+AwOkvUZ8XfUem97jkxijZdzVCj1LfzwBCmpN2sA2dGMTsNNHygnBPfasaYraP7uNS2fd8g5iRVtv7TI0wMSH4oZ5UVX8c4XdE5oWPvABnFiXm258RQ3A8Nt0wweGGU/rMD+DuCNP2iG3t5cvwxyExA8tVBX5DBC6P0Hot9d/aT5bVy7tuSGnT34dklhgYvjNJ3IjrX7+8nJzRD+58HaP/NAM4bs1FqE35/qHGMwXNRf3ygn0gkERt27O2f5feHzo8yeHEsfk6lVsnIxagPOzCIIUNL22/7aaOfsq0FjHZFfd+xEXRWLf2nJf/W+dZA3O/ba9PpP+2L+/2Bs+Ok5RnicU3HvkEsSfbuPTFMdk0G695fxsmvXGDwgpmuQ9L9t73Zh700Paltwt6dhwfIqc6gK5qD6dw3gL0iyd6HB+OxStAXZrh5NP53x1v9ZNdmxBWCug8PzYpVBi+M0n/GB8CZb18id00m/oFg3C7JscrQhTEGz0v27j7Uj1KvIDwZpuvQICqNYlYea/DMCL7WWC5wSPL753z07AsTGJqc5fcHTo/E7d17chSDXUfvydH4vbquz8UaHYv9p3yJvMpZH2anie4j0TzcmwNYnYl5dmZqhs79kn0n2sYYvDBK9+FY3rAfuydhw5H2MazOdDIrLDT+okva3R9t27FXGrNxex8ZJBKGll9JZR0qdhbFx2znvgGmamfiJfa6Dg3OilX8A0ECUYWNrv39hKcjjHQm7K02JXIasTHbf2SEdKeegk1ZjLVE84gHZseGyfbuOerDmKVDZ5XGf8e+gVk+ov9UYsz2nRrDmK2n56SPorV2htpGMWUYZreN2nvk4giDF9LoOSK9y8MtY+TW2Si5K4+mf+9O6SO6D/Yn7F1uhqBESuo/P8zkkNR2IR8BMNIUpGv/0j4iOBr1s4eHUGoVXHpDejaL+YiuAwNxH3Honxup2F64pI+IITZme/YNoc/VL+gjgLiPGD43QWCoE9d1WYy0jEbvdb6PiOW6x5pH4j7Cu8eBr2MMTa86qW3C3iOdwVljVqGW3n99rp5gT5Cew0PxKhdBX4TBxjF6jyV8fd4GG5YCE4WbMuk+MiSVDYk6isHGMfpP+6L31s/MZAT/YJDuQ0MYc7QEBqfi1zTUOMZg4zgKpYLuQ0OgUODvkr5ZCmZKsWccYWBoAIvFslJydwXLgkYT83sKrjPsoHP/EJakSgQ9J0alRWzA1xFi4OwYPcfHGG71Yys3EU5KtfYcHYlv8giNhRk4O07vCR8gfVdGIhGpVFD7FN1HR4jEqiWEoP/sGP1nRlAoFHQeGmZ6JszqR0oZ7w7SdXD2N+rAuTEGz0u+pefIEJFwhNHuEBkVRib9UwxdnCDQI70P/adGGLokvTO9R30oNUrGW2PfnQPosyQ/1PjDTiJ3huN5ld7jo+jMWgYbo/PumwMYsxN+qOfoMP5o/mbwwgSmHB+90bK+7W/1x1WJAHqPDREcnqRr7xA6MzhuKIj757Y3+7GVJNRzuw8Pxv3QaEuQvlM+euNz5yC28kRc03VoIP6NGhoI0XfKR9+JYUYu+rGWmciqtsZLMnXO8ft9p3wMnB1Bl6ljqGmU6ckZQqNS4463BmbFKv2nRxi6INm79/AAxmwdVTtdNP6kk459/bNilf5TPnxRe/cdH0alUzHSOAqEmegPEBhM+KneY8OMRfMqfadH0du0DJyL+f1+MmstcdWmnmND+PsTude+QiN9J6LrUn/uj4/ZU99ow3VLDpNRvz/ePkrfKR/d0diwfe8AtqTYsPvIIAa7lrG2AOP9kg3ja0B7B8hMyht2HRiIx4KHP9uIZ2sB/dF1oY79g4QmZgiNJuydHBtO9AcwZupJyzfRfXCA8HSE8ej9dOxNYe+LYxRusMeflb8zYRdtUqzSd3yYkbbYmPWRu9qGIUMapx1v9mNMilV6jw3HSboD58YxZvvoOz1K++/7yV5jJT1pjbPn6BD+WKzSOErfKRPdR6U4oe13fRRdlUXH3oGoDYfieSxf68SsMdv+5gC2snQaX5fWwB03ZsW/Z0Kjc+y9b4DMkcT813VggPRCA7osHaHos0nYe4DJwEy8fFrnfik21BjVBH2TGLP1DEV9RPch6bmNRr8f29+a/T0zHZpBF41Heo8NodQm+Yi9A+iTYpW+48Px+Do0OknfKR+DjdJ47/xzP8acZB8xhD+65nbmOx04rspc0kcAjLdGx+yBAcY7QthrzAv7iK6Ejwh0hzj/ww4hHwHSu5A1Nh3nJ8zzEadHGDgzEv+d6ckwodEQZ7/dTsGVdtTpc8ZsY8JHAIzEvh/3DaA1qzHk6Si9OY/+U4n4uu+4D5UuERt2vDWI0R61tw7pUz0axvedGUefoWEg+lw79w9iSrJ378kRrCVGjJla/N0j9J/V0xeNIzv2DWEuSti7+6iPybFpeg6OkpanZ2piJr7e33FgCJvbJFUGIzqvBaNzVbeO9euvor39Nd58800eeOABvvGNb/DXgCISefuLjL7++uvxUiNZ+hLW5N0dPxYxGWa1VfilwZ+eDxlOHa3H5h8DiZw0q99EkhRpBvgnEg4Pf+JYjJyUDPdmDdYCPYe/0jevXmEklLRCFw3gbRVGym7LIuSb4sirbdFj882aXLd2zd+40Vk0HPtKM/6uqUVrz8bkstc/V87M5AyHP3tx4bZzsObZUnpP+uj43YBwn7Xv9dD2p176jowK99n0sUr6z4zEyQ1LwZAJ9U95mRqb5uBnLgifZ/1z5fgHQ5z6SotwH7lY9YQbU46Bxp+2y7LB24G8KzIY6w4x3nx5lVQaXvQyOTbFoc80Xr6TGKWdhEMnh+KKXe8UNHzcCwp46/+I18mVDSNsfG8lHfv6hd9PY6aSVU9VyHs2RtjwbAXjnX5Of6NN+PLqny5h8Nwobf/Rv3RjhQKMsO5xD82/6WLwlFjd67wrMnBdncPxV8/jH4gsWss1Rvhb9/4S1HoVe//+QvLBBfsZM6HusVKmA2EOfb4FmFN7fO4cEIlQeJWF3BoLh7/YPf8Hk327NjGvGO0R/EmPUaGdPSdFwokxrjAkrfYZoXSdlou/kd7piFE/q59icmrW33uHv8zIyAg1NTWcOHFi/vWtYAULQK/XxxN9N2p2zj6YoqYxQNnWHC78si9OsEg+BsDcOspJxww2CPiSjifFQPPeWQOse7yY1j/103d4/rwbSRFTrf9gKWq9irf+6ezs61sIBmj4YCVT49McjPnPJUJgk9NA7R4XF3/RSb9gPJCz1kr+BjtHv9wkdl2A86ZsLEUmTnzpklgHpFIYphw9B2TUGl/3/jI0aWre+uQZ4Wtz3JBN3hob+//hnPB5loOGF71EZiLs/b9nL+t55MKQq8dabKR779BlPU/82VzOuAOpzJchS0fvft9lPY9cFF6VifOaHIabxznzzdbLdp6aR4vRGdUc+px4fLuc96Z0az6ZZRb2/T/x8Rz3HS81CfcpvDaLrAozR18W77PmmVIUSgWH/lnMBma3geo9xUz0Bjn+arNQn7XPeNBaNRz/+qU4iXQprHt/GX2nfbT+WiDujMJgS6g2AUJxJID7tmy6jo4S6JSuTTF3Dkz6Lj869SdGtf2kp6fz6quvxnMYK1jBUjh27Fi81EgWhdSprogfU8yNn6LQ5+rJqUqn9bdJSdXkPNHcMZ50TG8lTnoQQdHVdrKqzBz+vNh7bSzQs+phJ4GBEEdfWaRPUmxV8y4X6QVGTn69mbFWsQ0Wq58uJRKOyPJrdY+76T8zQtefB5duHOvzhJuu/YP0HxtZunEUGz5UQf9ZH80/6RHroIeG572ERqY4/FnxeWf1U6WEJqY4/fXLNx9W7CzCXmam6Vfd9Oy7vDGOXGStthAcDAmPmeWi4UX5z2Y5yFmbwUhbgGDf5b0fudj4kQqUaiVv/X+XN/Zc/1w5XQcH6fiDYE469t74pjgsJ177QBnj3QHOfqtduE/1gy5G2sdpF82X66HuIXm+w16bjue2Ak58swV/h9gYWPOMB51FI8WeIl2iNpsan+bgp8Xy61mrLLiuzeHgK41i50BSWAr6kr6fF5mTZh3Tg+fmXBp/3BM9NGedZc63/gHjzxkdG6W6upqTJ0+KXdwKVgDk5+fT3S3lcW8y3D/74Lx4Xxp3zmszaN3ri5Nfko8B89YFk/NaOjOExhNjPXndTzG3H7DqsSK6Dg3TmyLnlWpdcNUTLgwZWg5//nycLJISSX03fbSS0OgkRwS/KXWZOlY94uLiL7oZPJl0kkVyZeZiPe7r8zn2jebZdlsEuWut2CvMnP6m+LpE6Z15WErSOPxyo/B56h4rxpRr4PBnzyxusyRkr7HiuDqbQy9dED7PcrDxo5UQjrDvMufW5EJnVmLxmKWN65fx/mPP5nLHHYY8HcZM3ezx/A6AtcxE1U4XQxfGOPtt8fdALsq2FWDK0nP0FfFvqVWPuTHm6mW9N0XXZJG31saBT4rnpK1lJhybs2XlvrPXWMmps3Lyyy3CfWoecaHWqxLfkyn8cTJ0mTrWPOFmrMvPya+IfX/VPOgkvcjIqX9rYbRF7MWpf9zFYOMY7X9Y4tsrKYbSmZn9TBbII8DseSd/gwVfW4CJLuna5uW8ktYpG0PH6dY2otfr+dKXvvRXyXm97eXe/H5//Ea1qrRFCUrJKL/aSG5JauGnuQSlGNY+YMZeoZlNUAIwLnCeKLG66VejKQlKs5D0IIfO+bnws/4EQUkAvad8TPmnJYKSIFQaJWq9uPiVIRN0Fi159balG0eRUWlEa9ZQsDFr6cZR2GtMKFRSWRNRBAZgrNNP21u9wn0ADnzyvCyCUv17SljzTKmscxz7RjN9Z33ySFovVErEFhlY82wp1Q+7ZPUpvi6PmiT59f/KcGzKwrk5B+fNhUs3jiKj0sj658vJWpW+dOMoqh920fCilzS3cenGUbS92UfjT8STGwCOm7LjdU+F4Id9f39WFoHQPxDG3xek9feCidHoeVQa5Sym9JIwgsGmI1fUd0QipOUa0aSpcV6dI3ya8GQYhVJBZn3m0o2jGG4aj7OxReAfgAs/7YkTlCD1x2LSQTr+OMKhl6L+fKFho509r/gHFaBQsPrhbDy3WeY1VyhT+8fVdxqxObQYs1MeJjLnPLUZD2O32zl58iRVVVUL38cKVpCEmpqaOEHpSuYEm3MD1SispQbsZemseXiBOSdFYFy5I4/6xx2gVMwmKC1yHgxAAA5+piklQWkhHPini5z7QZswaYAABIZC9J70CZ8ju8oilaWNqkCJIH+DHYNNh8EgHhPl1GaQlr9wDJwKBot2ljqcCFr+0MNoh1/cZkDbb/rkEZQMsOHDFfFSbqK48ON2mv8jBTF0AWStNtPwopfy+8RjiJy1VtZ9oAyTU9zW7ptycN+YR2ateNzxTkbVThclN+Yv3TAJ1Q+7WPVkydINk9DwcS8bP1wh3L7jjwP0nBjizA/kLciu/ptSqh9xCbc/+aVLsghKIO2U8l2akPXeaA1qlGqFrLEW9x0F4n3y6jMwZOri5QRFoDaqUenFfcdoc4Cp8em4KoIIDn2ukTPfEScoARz89AVaf9Un3B4kglJWvZn1z5cJ99HbIKfOSs3OgoUbJSWF6jWbqa+rZ2hoiG3bthEIyBgIK/gfi2AwGCco6TAKEZQAqncUkL8+I14GahYWIOGtfV8J9mqTLIISQNvvBoQJSgD+ziCnv9W6OEFpDnqODBPyTckim6gNKjQmGYLvejBl68lfIx536HP1Up/1duE+xkI9So0SrUHGtQUlZaGOt8S/9wGOvHxRFkGp6kGn7Hn63I/a6To8IIugtOFDFWz6mLycV927i/HucSzdMAmltxbMKkfyXxk2bxqlt+Xjuk48v2os1LP2vZ542TYReLbk0/CiF5s3benGUTT9qptzP5S3SJazNoP1z5UnqbctjQOfPC9OUAIISmraLX+QkfMC1Do1Bqtu6YZJMDuN5K6S4Tv0Ssl3bBD3HTOBaZRqJVmV5qUbR9F7YpiJ/qAweYigpHImSlAC6D82IrUPIvw8YwSluseLKd+WIo5aYJ5a/UgxWdUWLO7UJ5o7L9aNXUd2djanTp1i1apVYhe3gv/xuPfee+MEpas122YfXCAXpctSkVdvoW7XAt/HKXLHzuvs1D5UCErlLIISpFgEjp9I+p+jX2hNTVBaAMe+0MLpb7cKkwYAxjom4oqdIrB7jCjVSsJT4pvHHVdmY8zVozOL+9y8tXYsrrS4LURgyNShMahlEWdaft/L8MVxWTbrO+zj0KfkEZTWvr+M3PUZSzdMwtnvtdL0C/GclyFPR8PHvXjuWeS7dQ4spUZWP12K2Slu6ILN2XhuLyC3xirc552M6t0uyu4UzxMCeO4poOZdLll9Nn64gg3Plwu3912YoH1vH2dflxd71TzkpEpGLH3hB52yCEoArW/2MXB2RNZ7o9IrUWmV8bJzIihYZyctzyBrfOavsZGeb4yXHhSBNk2D2iCe8woNhPD3B+NKeSI4+fVWWQQlgKOvttD2u+immoVMMCeWCo2Cxa1jzd+4hM+DDhyb7VTck7dwm6R1So+ujtqqVYyMjLBt27a/ipLl217uzWRKyEFfW/4MkQUWbmOIGKQndvxXM+TNyT8uRE4CyF+rQalWkFGoZrA5xeJSCgWltdvMKFUK9r+yyJdAePakXbUzh4u/7GXonB+FWk1kUox01PH7ITp+L2/H0t6/l7e7PDAAR18+Q0CG6M7wWT/HvtQcL+kkgsGTE7x1Uj4LVg4DEiRll57DQ3TvG166cRQ6i3axTbWp4YfG73XK6jLeHUClkXcinUWL2ijvFew9MRyXwBNFw8e9+PuDHPuCeEJxOWh40ctYp1/4ubbt7Sctz0Drn8QTFtp0DWq9ioxyC/3HxoT69J8ZxpipIyzDbHKIQzGYMnUo1Qpy1lvoPSD4QWCEugfc9J0apvtNsXG9nOcoW5nBDydea5Gl2DXeNCH5jm7xiaz34Ai9B8U/ngAu/rs8YqNCpWTorHQf5dty6D42xmiTf0miEkD1jkxM2TpO/aiLifboLpJFFhYANEYl5nwdqVYzUxGVjvzEj6tWjX9YDZp5h4HZRCWjWkXGeC2D/I6zZ8/y5JNP8sorryx6TSv4n42//du/5dSpUwBUsAGDXmA1W6nA1xyk56iPS3N3pS/yDqTlG1BrF5kL50zItgoD5VsKGL40wblvi8279ioj1hIzTf/ew9C5gPSbi6lRJuHov8jzn5d+1sOln8lLkB99qQlDrj5ebkoEBz55XhaZAZBNtADoPzIqrAgFkL/Zjq00XRY5PH+tHZVWJjEWGDghNqfHEPJNMTU+Tf8p8VjaVpqOxqRekC+XCi1/6KMoFGagUfz6ah8tJi3XwFt/d3l3iK160o3Rrpd1nva9A6g0i89jc2HK0aNSy4txJ/qDsuPVph+JJ+xi0Fu0qI3yyHp5m2xkV1k5/q9i/qB775BsJa1YyTs5OPrlJgwGpSzfcfDl6GKUDN7MclTR5Cx6xeC7EMBgU1J8a6EsezS8UMlUYJqDnxLzcZnlFtQ6FTlrLfQeXvo9DQ5J5Qwu/aF/UbJI8nxlPllKJLIfgKKiIgYG5H8nrOB/FhI5LwVXae5aukN0vB169RLOBvtswtEiyYzMunQ0BhX2MrOwku2avylGY9Kw9+/Fd71W3JtPy2+6GGkOyoq7+o+NyFIqAmTtxgUgiKQ2IqdLT5AjnztHMCjub/0dQfYuY14/9x15G59qHnLRd3qE3kPiOS9jlk42cZ0g8XJXohhpGZ9VTkIExkwDM9MzSzdMQufefqYn5Sltb/poJRN9AU58qUVWP7nY9DEvYx1+Tn1d7DxDzeP0n/LFS+OKQKUCrVmDrSRN+P3pPz2MucgUL2Ek1OeIvHcTwGDTojaoyF1lk0Vw897vYOjiuHCf5aiI7f17+e/nsa80C6sbgVQq8cgXmmWpYvkaA7JVIzr+MCCP2BU9D0Dx7Tn4msYZPic2J5RvK8Beaeb0ty4x0iR2X8ZMPdqFyKQp5qwjX7mE88osaQ5ZAMkxmV6pJ6+vnD76OHHiBE888QRf+MIXhK5tBf8z8dprr/GDH/wAgCrNleh0AoRNhYLQQJi2t4bpOjY679hCyHBLm/sX/tnZffU5OlY9UMDghXEuvC6WWzIV6MiuMXPpF/2MtoRQKBUp1cVT4ZSMCgoAXXuH6dqbIuZQKBZUUzr1jTZ0mTpCAzIW519pwpCnk0UEOrmMKiojF/2MXBS3gb3GTFaVhXOvtwtfW0ZlGlqTGmOmPGLsyEV5VVHC0xAYCDFwTny+zihNR5+hRWXUIHpDnQeGUSgU9MjY0Fm2rQBbmZl9Mteq5aJypwOLyyRLobr9D72o5Wx4QCIta+RsRABGWv3MTMmLcdtkqEbHYMzRMzMtrxCWvcpMbr1VWLls+Ow4w2fHZZ2j5Re9tPxC3rfE6dfk+45jX4vm7WT4DjlKnPHzvCqu7gSAQsloS0gqeXldLo0/El872PBBD1PBGY68JJaTtBZLPid7VTp9JwSeUwja3hxi8LRv8fXPpHVK6/lylJHDzDBFXl4eQ0Nvr9Lu21ruLS0tjYkJKVC+2ftR6R8XISnNmLSUV4UYHYC+OQTAsFGLcmyRAHdqWlLASOH/I2rVrFJxMXhvN6FNU3L0aws7jEgg0c/qMVJxZxZT/hkOv9IBkQiRqQU+CiNhIuEIxbdlkVdvo+mX3fQeGp11fCEUbLaRWWnhuAxygsVjZGYGWSQDo8NIxO8nIONbKM1txFZsEisJlXRt3u1OWv6jR5hwFCsPNzk6JVyeYDkwZMKqJyrpOTYkO2nzTsWmj1Uy1hXg1FdbhPssp9zbphcqGWmd4IwM6c53MjZ8uILJkSnZ7GNZMELDB+WXPVz3gTLC02FZpR8NmZC7IUf2uM5alS5MCANAoaDwWjsdvxNPxOWss5C/1s7RV1oW/tk5C0nrP1CKUqVg3z82Ll7eQyUdM+ZC7QNupoNhDn0u6TyLrFZn15txbbZy+ntds0q5AaDRpvbb0XlHoVn4ozWSZpTmqDmoucvA8d8qUIQWUYpSS9f75sWvEooMYLPZaG5uxmgUVwpbwf8cDA0NYbdLOz1t5LFGf92SfRQqFdV7cjn59fmkIYVKNUvCOiWiykjz+ioURGZmvzOGAh01Owo4+6MexpoWDrSTEzLxMm+fOp84zxKLZRs/UsFMcCZR5g2WLPVW94Sbjjf7GDwl/qGWv9lO15/EfR+AvTpN1jkAXDfn0PLHXlnEhJiq5OHPic8bb1cJslVPlqAxqTj4T/KJEO9EeB9wYi40ykrYLMfW1Y+4SMsxyErYvJPhvj2PnDrrZS/5t5zybfmb7Tg3Z3PslfOySESF12YxeHaMQI/4YpbBpgStVlYfa5mBqRCylIvqHnfTua9fmCCYt8lG8Q25XPpNjzBpK2bro19sFr6fte/1MNEX4uy3UyzsL0SOiM07i8aDqnl98zZZMGToaP7lYMpS7XFEY9ATlt/Q19dHVVXVSvmRFSwIl8tFa6u0wD6vvG4qqFS4rrcRGJqcT7RTKhYfm5GwpICR6vVa4H0p25qHKVvHkX8RS8Tqc/WsftQplcX6fPPSBKVIhJy1GZTckkfTL7qFyTY2bxoF6zI5+bUWofYgKc5odAgvrAPos/UwOUnQJ+7L9dl6bGUmWeXk9Nl6Vr3LRcvv+8TJHMssc7UcbPxIBT1Hhmn51X+PnNeGD1Uw1umXR4pdRrm3DR+uYKRlQjb57J2Kte/zMDk+zYl/lbkwIxPLsXX9U5I6mJzSj3orZK/Oou238hYBMypMwqSeGHI3yiNqZVSYKGzIkrVZd82zHtR6Ffs/IUgwX0bZN0upgfItDk681kZQNPaMzTtLlNlNRaqofrCI09/sEDrNiam9+HQ9pKenc/LkSXJzc8WubwX/oxAKhdDrJSWPTGUhq43XL9lHoVJRdpeN86/P9xVL5rwiEUkBY6EF8zniBjozVO1xcvEXPYxcXORbLSm+qn/ChT5Dy5EvNhManF6aoBQJs/b9HiJTEQ5/XjzfU7XHQdfhIYbPLZCPSpEzy15jpe+wT/gcIKn7yCXo5F9hY/DkkCxll5p3uVCplRwTLFEOiTJXb/3jmcta6sy7y4EhS3fZS8y+XSi5I4/MSjP7/1F8c8Fyyr157ikgoyRN/iaGdyjyr7BRdEUW+//5/GUdb7WPFpOWJ6/sob3KTOlteZz+VgvjHeIXl7vWykhngIAM0QKdGdDpCPWL90krlEiBcq6tYmcR/WdGhUv/ZVSkUXFPIa2/701N3kxGNAZa9agTY46eE19rYbxT7Nrq3uUk4JtMTWxaKLaKzTuLlXtTqebNQRlletLzDbT9aXTxdZAomemE6Zf09PZQU1PDiRMnlriTvxzetnJvDzzwQJygtNn1bmbS9dJ/pvk7rWdM2ui/R7AXqilelWAyho1awsaFd2drM9Ss3apB79TPIyhF1Coi6gUWpBUKzvzMz7HvLjIxRyIo9AmWrK/RT8f+YQ5/rX3hhxwJzwo0FAopUO89M5elvfCjKNiQiSlbj0G8IhKV9zqp3eMS7wDU7HJQ/5Q8+ebKLYUUNmRhzBeXdsv0WlAoFQRHxJ1KTBXq9GsyJvNlrNlbSzNQKBUoZewYt9eYqH13saznsxwYM5Wsf76cgs3i0sIAe//vWVkEpeVi79+dlU1QWvteD1UPyJP/Xg7cd+RSKVNmXKlWyN6dD8gbd344/e0WWQQlALVeJav0I8CqxyvJWy1v7Kz7QBmeO4vE70mhYP0Hy3BckY0xX3xHgfPqHAx23YLnSbXTfTo4w4wMOVp/D3QdHhImKAH0n/Jz8OUUBKXEhc333X5QGAxUbzNTtWVhLcqIRk1Ek3iGnmu0GCwqPOsllcBUSoFhsyE+B15R+jAej4fe3t5ZCoUrWEEyYgQlJSrW6K9DoVLF/5uL2L+Xb80iLVdP8Y32eccWQu1DhVTtyZfazMm7KBSKBZn7ge5JDnzmEmMtiy+sJ/uAA/90kbY/9csi6MxMzjAVSEo0LUFQMtgkKX+3jLJYZrcB1zU5skrMGnL1lN/joP5peSU68tfb2fCseCktkEo8yVVvPPjpC5x6TeaihTxBKAA0BhUqmQoAlTuLcN60QJ3MvyC8Dzipf4+853PmG62XfUcZwKmvtMgmKBVelcm6D4qXxlouDDYlNY8WY3aLDwiVXolCqcBWuYwAXsa4O/W1i7IISgAzgRkUKgVZq8WDfWuZAceVWVSkKoexEAxQ/3QF1btlxKwG8O4opuo+8T6GXD2mHD2ua8UXe3znh4jMRGSVijv1tQs0/apLFuHq0GcvpiYoxZAq9gqAuTSN9c95UJiWUEdK6uu6KoecWqv0h1KRMuGjUCnj85i7dzUGg4FTp07x3ve+V/ieVvA/B//wD/8QJyit45bEmEuV61Gp4t8iufUZFF+XVDJ7gfEYhx7WPltMmsM4n6C00PmiuPDD7kU3hsxFsCdI48+7Of2Ni8IKSiq9kvB0mJGL4mpArmtzSXcYJRKRIKruc1C12y2r9FT1riJWP1Mhq0/5Pfm4rs3BUiIj51WZhlKtZCYoY4d1EN76xzOc/oaMTVIy7iMGq8eAQqVEqRNXVkx36ql60IneeplTyHqJOJMvs2zw/k+cW5aKoVzs/4dzsglKdY+7qdhRdJmuKIGiazNTl+BaBGq9Co3M7wNA9rg7+fVm2QuzGpNaXulHoPaxcgqvEC+tB9LGlMr7nLJ8T/1TJbhvzCXdKd7HfWM+6QVGWe/QlH+amZA8H9Lym57ZBCWFIvFfCow0BTnwTxfECUrR86BQ4t1dSM1DC8efCqVi1ne884YszEVGPFsWKT+SNG/WajZRXlbOwMAAeXmL9FnB/2jE8qFqNKw2Xi+U83JsNpNRbMR5bca8YwvBc2cW5fdkS7GbDHJBaBSOvNzK6KUlOiXFbke/0MKl/+gj2D8lrKA0E5hhckKsugsAOrC4TBRfn7N021iXTB2lt+ZTL6fErE4qOb/qcbd4H6S4sPbd4qW0QCrxpElfeMNwKhz712ZOfLVJHmFEnoASANp0NWq9vBjKfXsuBVfKW8dZDkrvzKP20WJZfZp+2i2LoLRcNL7eKZuglFVnYfXflMoqD7Yc6MxQvr1QVrkzpVqJQq0kwy1enjdxQvGm5793SRZBCWDKP4lKq8Jaki5+SVk63LfkU36nvPhzzbNeqnfKW6etfbiEivuc4tdmltT0nZvF48LhS+OEp8NxwQMRHPtmKxd/0SNMUAI48dU2WcpLAIRAn6tj9VNO9JYl1JGSS7ndmkfe6uhct1A8qFLF+5UPXUNaWhonT57kAx/4gLxr/E/gbSn31tbWxje/+U0ActOr0eUsXBdyNmlJwck/TBMlRC9KTgKI6NQ4qkGlVmDLitCVpBA7l5wUMerjakqrd6ej0ig4+PUFdpKmWMzK35RO194xOv48W3JPoVEvrKYENL/RR/MbfYvex1wc+OQF7NUmWQpH53/USt4aeayZjrf6sVfI8+AHX7lA+V2FssrDNf24m6Yfyy/pIOf+ATY8U4FKq5S1K71737CscnIAjs25GDP1qMxGGBBjhpftKCSzzMzFNzroEyy9ku5OR61XYXaY6ER8F5/FY2Sk059SVewvCWO+tCvRPyBOHNGaNah08hYmN360EoUCWTvtc+oyFi/pkAJ7/07+AuOaZ0vRWbSyxtxIo/wHsxyVgZY/yJz8gI79/WR5rbLGTtMvO8muteHvEp+cT37tIgqtRtZ5RHb/zg0q2n7rAyB/k5muveKRWuU2O+Z8PUe/3snkCJKK0qwTzd+pbLSqiUQiUmnR6YXnhIhGjWJqmsbfT1JYP01bYyK4jei0C6oqhY1aivx3cwZprFVXV8dLeq1gBZAgKAFcr9+5aMIl+dj5H/aTvzFA55sj844t1NeYmTo+m0tOUqiURGbCGHKUrHrYzWDjOBd+JL6DO1ZOs+OPc3atLlF6ZFbZIAEB0cBQmKNfvkRgSJzFMNocYLhxjM4D4sFKYCTIRHeQzgPydvu2/L6XKTkJKJZX4gmk+xKGARqe8zLRG+S4jN1ryyklleFJxzJpovVX4jH1po9VMjMd5sAnxJMcaXl62SVUlqOEsywYwJxnkPWMLC4TGqMas1u8X/5mO65rcug6MEjLL8XeV1OhCXOBkaIrszndLFayo/EHnTQir9wySLvzpyamOfgpsXEkRwkpht5DPnoP+WT18V0IMHhulPM/FdstDkAAxrsC9J6S8S0SAF/zOB17xf1IoCfIue+3xMvhCvUZkh9/BoYgsN8HQM4GK73R/y+CTR+tYHJsisOfjy7WzyVdzPH7GSUm1DolxVdncekX/Ysn9KN9G3/WyUTfnHh1EeWadIOddH8Wflp59dVXeeaZZygtFSemruC/N3w+Hx/5yEcAyMGJVbsIyWJObHXsK82JkhEC36zOBjsaowprsYHxtqT3eJH3pP4JF9p0Dfs/KU4UyFptlkrFytwx3/XnQVmqQwBHXrqI1WOQVUbp3A/bKNiQmVpJagG0/qmPnOoMWX2Of60Zzy35shSbllOuCYAgssrQrX3CgzZdI2tXuq8xILt0XdGV2VhdaRjzjQR9YgqgjuuyKGzIovk3PcKKM+k5erTpGsxOE10ySq2mO/WM9QZlPdflYDlKXMYsPVqzvNT7ug+WodIo2ff/xOP3/LX2aG5NPJaS8/sx1DziIr3QKKlOCNp7rFX+g1mOakLTr7rQGOUtULf/qY+CdZkER8Wv8eLPOslfa5d1X4e/2Ijeqpc1dpajcBV7b7JWW+aX9FukfJPn7jyyqqwc+ddmgnNjowVgLhTbWBBTVWr9TT9TE9N0i8aDCiU557yAtJPf6/Vy5szlVfhdwX8t1NXVMRNVPboubbdwzqvtT6MEfJP0HZuYdywllEosRXqUIusKSiWEw+jMkkrPwLkxmn4m/p2WVZdO//ExuvfLW5s6+op4/gWAEBz+QjNMiufuQwMheo4OMXDGJ+s8gxdGGTgrgy0BnP+xjG/oKJarUiRHmQUkxbqxTr+scnRy1J1iyKnLIDwVplNGTL3+g+WEwxEOycixWVxpaNLlxSk6sxK0Glllu5YFHaRl6WQ9o/RCA3qrFmNBGqFRsZjVWmbCe5+TzkMDtP5SLMeoNOnIrLCg1ig5fUmMKL/c74NNH6tkcnxaeIzLISfFMHopyFsyvw9C/SG6Dg3S8jt5yqxDF8cYlOkTeo8N039S/NsgNAqnXrvEaIuMGDQE+/9R4N1J/uYOQV803sqqM9N/XPy+1r+/lMmJaY692jL/d1PAkq9Dl6YmZ42Ntt8NsWiBtOhcdO5HXYT8c2LPReJBncFAbqCMixzhpZde4rHHHsPrlSdqsxy8LSQlp1NiuSkVGqq996VsM1dRqbw+QmcbjA3qGPdHFlXyiOgSt9F4ABqNYfBLMlELKifFoFAwPRmBpDhDYTAQCQQWXsgygmOTjcJ1GRz45wUS7ykWyzY8X0b3sSHafr2AM0qxyJa92kzfkVEGT8mTnh0+62f4rLydRJ1/GqRTZpkS/HD+2+KBgzFTiSHPwOBJeffT8KKXwGCIo/8ivqvM1zqOKVPeFh9jplIWyQbg6L80Ya8xySqtFxyeJDwdYbxNvMRL74EReg/IqxtvrzFRcY+LsS7/ZZdwXvWom5nJsKyF0OWUkJG7MAtw8lutjPcsg6UV8zuCXfvPjZJdaVmw1GQqxEoZ+vuCHJNR0hEj5FRbhMdE95vyPnBifYT7RckIg6cmZPsriYA4hTFfA2oN/qRk+6LkMiOse6KUocYxmt4Q++jL25CO48pMsrxmjn91YbKkIknlaLQzRHquDp1NzeTIAoSjWCAR9eEHvjeaGAPq6G8tQFaKKSq1NUrzYPXVcOoP0WNRRaVUZKWwUcvqyndxqed1Ll26xPvf/34+/elPL3hPK/ifgw9/+MPx+sGblVsWTLrM+ncDVN6Rzdnv9dG1b1yInBTD/s+0zlIyWbTmMWDI0BMJR/C1JvkKlQoWkdWuf6oYg03L9MQUg6fFHGzpPXlkONOkMm+C1Y1NTgPhsRCBThnknCgWVf9IhQAc/1f5yQq5JeVii4xysOrJEoyZOt76J3HFGYNByaRvij4Ztezj40amud/65BkMNnmyTVNj00xNyqsZL4fQFEPtu8tkk+SXg7oH3aTlGDjy+bPCxJvTXxcjDCVjpM3PzGSY0Kh4/DVwYozw1CVZJJgYDDalLCJRYCjEaJu889Q/VYLBrpO1qAvR8oxN48Lj9fz35CdXT3xJfry+HPWI2LPJrE0XLvkGUrnJ7BqrrMXDjR+uQKlVLk1SSpo7ZqbCTE8uMQ6SYq+23wzQ9uZA/NnE4scFyUoKJQOnAqBUYC0xYK9IS8SSsdgzRd86w2bOZ0Jreys33XQTzc3yffgK/nvCZpNISSrU1GqvSN1oTmxVfFMmQxfGGWkJEhwMChGUAFp/O0jrW4MJgsASCU2AqcDMrM1BC5XiSYbn1jzc1+awX8b7vu79ZfQeH5ZVbsnmTWPozDi+RnnBwFhrkHOt8vxs/5GR+Qv3SyEIjT/qEm+vhwyX/PJRm17w4u8LcPyL4vPA4PlRzA55qrp6q1IWUQKkecbqMch6RqHRaaZDM4x2iM/RY61B2fGT3qqk9qESRtsnZC0YLgerH3czHZrhgAz1ALmEMJDyhRqdvHT9yW+14h9YBksrljIV7Np3cgSNXo1erxQn1Olh0we9TPQGZOcl7bXpDArGKaLtkjF0ZpyhM/JKb4+1BjnfKpNYH5SU6fRWJco0Lf4O8dJqa97tYbhljOafiG08zKgw4bm9gPx1do6/OsfesVgrEpkVd/laJ7BXmNGblQQF94Ds++wF4XETi8tiBKWKe/M499PupfsrlGzmbs7Y/0xzc/NKzmsFcXz3u9+Nl6LZpL9bLOcFlN5q4+LPh+g/GRQiJ8Vw6JVOWUom6jQd4ekwY0l5pdimvYXg3VWAxWViZjrC4Ekxf1Z4lZ0sr5mjXxZXA9Jl6SDC0gSTFAvZzW/I3wB9/rvyv4lFyzPFkFGZxnDzuCxFpMqdDqxuE0c+f1ac1KGD8e4A/adlxJKxcSOTz7P3n85isMmTbQoMh2BGLPcZw3JKDFc/XILOLI8kvxyU31VIZqWFk1+7yGirmAGb3+iRPU4DPQEmA9OEhsVzXoHuECe/0cToJfmxl86sJDQqHouPdfgZl7GRA6RyjmanSfZGM3OxntDgpPD1tfxCfunoc3Jz50jqXXIRIyhZy0z4Loh/l+Wuz6Bgg53DnxMvn7n22RK0aWr6z40u+q4nr3NOBaaZmlhY2GAu+o6P03cu4ediay8LkpWUSkbbp0ChQJ+tIacqjdbfDcc6E+08r5vbUMdk1hDt3a3cfvvtXLp0eTkF8DaUe0uW5Lxu/cfnHZ8ya1OUfItgz4bq1TCdtrB60lRW2iyC0tpbiJMDIhoVMxmLfKwnyVud+MEER/4t6aMkWtotJcIRFNNaBi+M0/ZmikWicDglQcleZUSlVWBZbKdBCoJS6W0F1D/pFl5cwygReqofEpc/A0mdpuZdLll91j9fzoYPyys3UrGzmPItTiwe8VIOhkwkQk+/PGd8/tsdHJFRixdg1VMVbPiIvHsCZJOu2n7Vx76/PyubECUX/u4JxnsDdO6Xp961HIy2++k9IZ8IIxeHP3uRw5+V91zHm+UrSeVtzKDhg16qtonLD7b9qo9D/9wo61yBAWl8h8bkka82vb+SkpvlySmW7Sik4UWvrNKEFo+RTS9U4pBTVscIDS9USr5LBlY94qZmx8JKe/MQUKLWK7G6Uvv6VJN09/4xJvpCHP+ueHDTuW+cAy91MXYpGjgsVv/VZJSOR8dA+U0Gym+KLqSr1USsC8tmRnQqiupUpNmU1F4/95iWsH7+rkC7qYgqTw2BQIDPfOYzwve0gv++CAQCfOITnwAgV1GMwTBfIVGhVs9LyNTtLMDiMJKzOh2FeuGkuEKrjfetuDebktujik0BQKFYtC8ASgVDFwLs+6dm+o6KJ4TPfa+F0Q6/MEEJIMOZJrtMQPVOJ/VPy4sD6p8qoeEFeTsL3LfnsfEjlRgKxIk2hgIDDR/3UnybeIkmAM/thWyUGa+FfJNMT87IIg8FhsIc+lwj3TJ2vlfvdNHwnBdrmcw6cQFkE8kOfa6R43LIwMtE77FhhhvlL5LIRefefkbaJwgELm8sOdEaYP8/nJP1XIFlEZQ2friC+vfIG6tHX2qi6SfyEhb+wZA0vmUMu6zVZiq2Oqne6ZJ1rg0frmDd++WV2Kt9tJj1H5Inb1/9sIuGj8vzQ/XvKaHs7iJZ75+lyITaoJLlu9re6qf7sLzxc+CTF+YvrC2A+HwWAIMN1j6TiD8VSsXiu6oVCiq25JFdlUJNWKlIWRq4fGAz2VnZXLp0ifJyec9pBf89sWHDhvh3x3Xa7fOOK1TKlGMpt85CxT35i5K75yrDrn7Sid6KtLC7wBhNhVNfb+fQZ2WUEQO6DgzS+mfxPII+V4/GpMZcJE6asZToqdjmoO7d8spMbHrBi1dmOfd1z5VR/aBLVp81z3hY/5y897xquxPvdhf2WvFyCehhOjiNv1/eCtalX/TKUq8EWP10Beufl++75JLIeg8Nc+Afz4uTMZaJYDDMcPMYnfuXoVwlE4NnR+g+JHNj5zJw8sstHHlZXs7L3yFfScpSoqfheS/ee8Xfpd5Dwxx5+aI8olsQpkPThIZTq0QvhA3Pl1N+l7xSec4bs9n0ghd9rviGVX2ung0fqsB1k3jZI4BNH62U7btW/00F1Ttl5OuDoDNrsDrES8MMn5vA1zzO+e80L7yWMGfe6T82yr5/OI/vosB7HiPGRseb+/YcKu7NTzq8eOndzFVmMjzp1KQq9ZKir15rorKwhsnJST7zmc8QDF5mybQV/JfAjh07AMhXl2DWpSiJpZmf8yq72469zEh2nWnR+EmhUccJSsXXZ1B8fbRUTkj6dlg05xV9tya6Qhz8bAt9xxM5r0VVLyJhzvywk8ELY8IEJQBbaRp6q1YWAaZ6ZxFrnhDI1yddr3eXg40frpRF1Mpdn8GG58tJKxTvpDNLa5TOm2WsQQAV9xSx4Vl5sU1odJKpwIw81ZmQtKmo54D4+pfn1nwanvdiT/W9ucS5At3y4sKTX27h5Nfkb0yTi+6Dg/KIWstEz9EhBi+MEhq+vIpNodEwhz51QdZzBZZFUFrzPg9rnpGX8zr19VbZZKCxvgBT/hlZZe/MTh3V97vx3C1jbQ5Y86yH1U/LU5gu21bAWpl5Ms+WfDZ+VJ4f8u5y4L3PgbVM/Ps0vdCIzqzB7BKPJS/9ppeO/YOyfPHRV1o4/VoSiXOx9cZYTiAE6KDukaK4HZaalxQqFdXbcslbZZ5vO4UiZXm7ivFryc3NpaWlherqasE7Wj4uq5LS66+/Tk+PxFysr3ps3vEpszb+v5rR5I8VBY0nIixG+5jRz7708g2g1ilxlYa5dHZp9SSA0uv0WPM1HPrhWIJUEJ2A42pKC6DxJyk+gMMLf6QNnvaz99KFhckLKYhNfUdGKdiYyfkfi+/QsBQYiYQj+AdlvBFGUKoU8muRRxbZnboAmn7ZjfOaHFklrgIDsO/v5bE+HddnYS83c/SrTbIIIxN9QdmJoU0fqyQ0OsmRz4sn/Qo225mamBIu9QZQ/2QJhiydrJ1lgQHelgU5gFNfbZHdZ/1z5aj1KlnMa0Mm5F+R9/+z998BjlxV2j/+KaWqUm5J3VLnHCf29GRn44BtgrHXCdsYsI1tbAM2tgm297fvl3fDywK7Cy+7Cyyw7C4sSzBmyTYmGDPjCZ6cY3dPT0/n3Ardaun3R0lqSa1W15XxrOGd5w8Yt6pUpVO3zj33nOc+h5MvntP9bItarbTeXEP//lHdrQbPvTpK+QYfgwfHdN8bQO0NftyVdnb/s/7xIDq+Afr3jmIwifFMgwNhaHTiqHISGtI39sbPBpEMEs5SgUpeUPMNS+6Ah4ydv1N9Ifp2iwWEWz9/Iu84iMfjCxL/+79xdukFaQ60vMuLwy+z4+vDeduBAKnPXWXmhX7SZIRobjWP7iMgzcXozurcNufSAqOYYsYQziS0qbEriMdfBqCyspIzZ8QZ6RfwpwOnM7kCkVhpvWTB58nAVTKZiKepe+39+lkqLnYysC9PYjLrvXFXaoTjkz8Zzt3XOAfWf6SOsc7p3G3e8qgphUfgwDfExvaOvz8uREIA6HypD2+rS+icuZkYc1ExoojqtWAwSUJEG2eFtuNtskeMGN2/Z5TZkJiCkLAqFLDqgTqGj03S82v96gmD+8cwW42MHdNvh8abyylucbH7q6f0t1RToeZSP50v9wsRrzY/3UZ4fEaI9K63JdrrxdC+SSEFHNAIHO0fbGO8e1pIVal4jRODWYcSThraH67HYjcLKWwOHZ9Atou16UDVVKUG9o3pJlIVsptzcNcEgfYgJ18Qe77xuTgxQf9gVAyYzGJtBkNjEeylKmpA0f1enPx5L7VXlgq9f2+Y+luOOUT1SKy8r4n+vWN0vqDPr5Rd5MdsN1F/g5+TP9H3rI78sC9nES+V6MkxN1UNrmCAlzh58iTPPfccN910k65rXcCfHvbs2cP27dsB6ODKBZ8nk36SJC0oTh367tm88VP2Gqb2ah+y20zphmJOL6bOnYWqy73424vY//UThMeyvn8JNaVOgZaqoKmEbBFsmT5+Msxkd5DO3+jf8ayUKMSiMUJjYnkbk9mIURVbP8ejceImwZzXC/3UXyOo6hKGHZ8Va3/rX1tEyUoX+7/VKUROGT01SWRKbIPU+iebiYzPChGiite4iEVjQnZovaOSojoHu754aMF4XRRhOPQf4oqCheDo98Xb0rY/VI9SJLP1r/TnvBQ3lKwppnvLoO5nq5QotN9by8DBMU7+t76c1/jJMNMDYQYPiBUayy724m1ysP9rnbrP2fEZ8fbOZ7cPY1bF4qGp/hDEwFEmE9YZD4X7whjMBlTv4pukc2EuGmMuIuYfRk5MMnxETCFky2f1t9ZLohCVTdDavhU1ONgu4I/8y91C1xjaO4XFOkjvlqzcXzLXkCPXph4uQ4obiDNHQ0MDPT3isfwF/OkgqV4pYWCF7bKFByRzumYTzM7nvI79cBj/aisDB/LED1lFYl+TFclo4PRLo0sqhidjuvYHqxjvCnLqZ/OxWioGzJdLjsDR7wooNwL7vtYFFrG15slfnMO/0i10TnRmTst5CYRejjIVg9nAlECdTQ3YIBYnNCRGau3ZMiS85j710z5O/VRMcaftjirGuqfo/b3+DTiDh8ZRvTLDB/X7/orLfFRs9HHo26d1KwghQ8VGH4O7h4SIVxs/1kJkfFaojiXSkvf1YPxEkPET4pvfNn2ylbFT0xz+tv650N1kw6yaGNyrPyZafncVaonKjs/qV9gc3DeGtUSs8w8yLPuzKoaPTtC3c0zXKd0vDtL9ov7cLMBEV4ThoxOc3SJ2XnwuTlxQwctiM2GyGDXSjM4hHhyK4InG9LUATPjjky/20/BWv5CS0vHnznJcPivk74YPTTG8hDJnThK3DB0fqGPo0ARdvxldut4IlK12oXrN1FzipfOXabm2PG3cDv6gD7NiWPCbkjXQXEp/dSObOcf3OXz4MN/4xje455578t7X68EbSlJKJusUtRivfX73Q5KclAtVzXH6RuHcZG5KXDY5KepUME2EOboNbL4YU+N5FjBZwYStyIjBlFC8WEqpKDE41j4QwGiSePVznWmfZT7A7MJf5RUewsMRBvct8jLkICglsfuLYrvdxo8H2SqYGCJIQfJ8hfQIHz8eZN9xMYmwtruq6N87LKRW5F9VpKknCM5jBRF6pNT/6Eb1ZdoOnYFd+u0enphBLhJbNHtX2Ki5opSjP+4VakdXCJa/r4Z4NMbBf9cfAEQmZ0VNR911VbhrHYRHZnS3JxztCoIERkUswbHzH8QlL0uWFWGUxUXqWt9dycD+Ed3j/NSPxSVWe349RM+vBXcYBnW05cuxUNv61/qLkkns+2rm2Mm7AyuJxLBuuTXAke+k2STt3ORiMH1BufzOAHa/zL5/6yKo0ySK04TBLM2388vTDiR5Dwd+MkEwEdvF7WlsiWQr0hxkpa7jWpBWv2yOU7sWfm1SUSmdrLR+07N0nvwSg4OD3HrrrXznO9/R96Mu4E8Kd955J9FE/HGN870ZRdV8rPrqK910vzzF2VcXmSeySX2Jgu2rf9eJWmbUTVBSPWA0S8hO/eGnrUpl5Z2VjJ2e5tC38iQjs1rmNt9SobVaEmwj1r9zjH6di74kCmnPVEjbrf5tY0IkkSREVWZ8Kx0UNTo5LliIsZUoWKwmIZJSIfY2mgwgoZ+ghEZQKt/gw6gaOPm8fntEZ+YIj4sV8truqiYejRVE9BKBu0ml9uoyjv24l+kufQM9NKKpN4YnxJJ+jddXEI/FhcffkoncLJx4Tiwpm4StRCHQXiSk9uRdbsfX5hYiLO0v4F0vZL0kuv4DOPn8OaGxDTBxKsTeAtuVFa9xYpJNQjbf/Ewbs8EoOz6nr/AVCsUxmg24KvUr8J78UT99eyeY7k71fVvynPGT2rFWr0RRi5Ozv8+RmEzOg4l51aOWUuWooWeom49+9KMXSEr/D6O9vR0AKw48lnmlw1w7EpMoXe9k7PjkokWHbN+ZTBqefnGI/kNTBAV2VTurrJgsBkSEJ9Y+WofZZmarwEYa/1o30cic0O7/JPZ/o1Po+PBAWIgAm4TI70lCVM0GNMKDaJzX+K4yhg6PC7WIC6wpwuYXLHIAh/9TPD6RJEk4b1N/TSmS0cDWfWI5r7nZmH6CEmCtUGi8oYzOX/YyfvKNVVhpubUCJIkj/6XfhuGxGUyCRJuySwKUtnuJx+Oc0Zm/CQ9oLSONghvZCsmBlnV4sDgFSeVA/TtKGT0xqbu9Ws9vxdWxhvdNCo25JAppyyfS9i+JQlqcJAlKje8q4/gP9MfKLbdW4Gl2sufrpzSlLR1xueKWMcpGFLdEeExfwXH3N7pShDBdOTygd+s4SAaqLiui+zc58ro5cm1XqXew3/0SAwMD3HzzzXz/+9/Xda0L+NPCpz/9aUZHNYLbZba7Mj9cZMMpQPlGO2d3hOjfv0gMZcgde+34p7PIxUusa9M/k8GsGlHdmo/Mq54EEI8hO2HNB5sYPjbJ0e/pf8frrivRSDaCIjNjx6bzF+xz3POxAki6x5/vFWuXi3ZvrxYQ4535jRipwlmr4Gt1C5OU3PV2VJ8sRFLS7C2WRzCpRjBITPTpf7jFLS6qL/OjOM2cEMgBzkxHCY2J5Yca3l6KZDZw/DnxcSECtVSm4bpSun7dJ6RaNBueIyKY82q5SVP3EyEpIUnpXSF1QaQldgoRcNVqnQL0kpRAG+fFy4qEWqUVsqFv1xfF10sHCsiJn31lmLOviCmaRoYiHCxkM0MEXA0qqlvOtPkS+aWNTzYxG4ry2v/VGV9HtPfdUaoCCfL2EvXG3m3jjHSGCfcn/EN6zWaRNm7hwRhhYshuI0W1Kn05Olsk8xdJspJNdlJja+LM+En+/M///I+TpFRSMi/Lt3Hz4zClOYZ8BCWIU1ED5dXwuy0LP80mKCXRuhkOb0GIoASw52dzSEEdSYC0AREencViFzNbxQYfSDC4Lyshm4ectPZDDZisJiGFlfJLvHibncI9vhtuLOOEYNDQeEs5A3tGhRSRmm+vwF1jZ9vnjwiRh9y1duwBleH9+heAOz53DGuZWMKm8aZy7CWKEHMYECeFAad/fQ6zTWxRf/hb4otZ37IiFLeMp9b2hpOUnBVWYWWtQhIip18aoHzjHGdfE5iU9BBtcqDqmhKKm51CPUj3f+2YcBs/q89AUb0DW7HC8H79xKgV76/B6lPY9mmxAL71zio6f9FNSCDnU9RqRXHJnHs1a7dTnoVa6UVFlCx3s/dL+n3SsrsqcFXZ2PJX+t/31R+oQvVYCGxw0rdN33aBoaOTWL0WkA2Avue15xv9IOcg0OZhOQeHJSBO1QYzU1MwnB2DLaKqVLMM/DVGrM45Dvwm9/2kqypZrVaam9v5/e9f5Lvf/a6u33MBf3r41re+BUCteVXG3/MRlFbcVYrNLzMzHaPvtRzzRA7VseLlKmabgd4tE4TO6fd3oRF49TOnlk7UZGFuJkb/Hv1JgIrLffhanJjvqeaAXqljFTZ/tI3Bw+NC5JxV99XRu2uIQQFlRP8GN6HBCBOn9DOo1HKVio0eYeLQ+qeamTobEtpNW/uWUsx2E8d/elaI5LXlU4dQPUK3R/vD9fTvG9OntJKASGEoif4d/RhVA70vi6ngFFJ8cFfrlxF+PfA0urF6FYpbnLpJSgCv/o143Nrz6hARwcRVIUQb0BS5xjun9StShWD3VwRUtRKof2u5cNFQ9RhYeX8TgwfGOfUT/Yked5OKt9ktTBisu6FU6DqgtYo7t3tYyCdt/Hgr4bEZ9gisgRpvqCA+FxciKc1OR5kWUawNoamy6CAapWO6OwQqNN9QxtHv6088r3xvLZJRyk1SSiJNVaklfAVzpS/Q2dlJXV0dpwokfF3AHy86OjpS/75YfWcqoZePoARQc1kxsYt8bP/7hWukxYpgje/0c/wX/UIEJYAD/342b94pF6b6w9iKhU6h9i1+DCYDW/brn2NW3leL6pGF1rLelQ5KV3s58G+dQvdXc42fTkElvNq3+hk5Pi5EfKm5xk/JSjf7/uW4UDus4uVu3DV2dhzRr16y98unUEoUIYWVqiuLcdXYhBRwAOF8A8DJn59DdonlvE7/pJ/TOlXwkihudWL3qxTVu95wklJRvUP35owkCiGF9f5ugHgszuBuMZJOIUSbwEYP/lVuodzcgW8cFyKSAaBom0nd1XZGDunPebXcWoGj0iqsNFb/jlLObh/VraYE4KhWULwyg7v0Fyi9Kx2UtXuFyJaNN5bhW+Zmq4BCUtudVRTVO5gejNCrs0DXt3sYZ1XauiQeX3L8ipJGgZSNyzYVMTM9y/ABfWRLf4eD8k1enJVWDvz7Iu9JVq6t2b2MgYFf89xzzxEOh1EUcaLmBfxx42Mf+xgAdXI7sizPb8zLQ1BqvN6Dt8lGbE7i3K4cOa8c5DpntYzVbeDcrmlmhnQSlAAisP3z3YsqhGcgGZ/JMjPTUYaO6Cd6e9tslHZ4UD0WoQL8xo+1MHRofHESS45cXcvtlQweHGd4v/71pXeZk9mpiH4VILRWb+WXBDj1EzHiUMejjUz2BoWIVDVXlmIvUzn7ygCRCf3x2pb/fQjZKbY2XXFPNYOHJ4RaiXX+vF+4vdfgkXFUr4X+fWJqfSKq4Ul4W51IBgPHeWNJSq5KK84KG55mlxBJaafOTVHp6PxVn7ACfSFEG9AUuSbPhYTIda/980kiQ2LrwPq3lqN6ZSGSEjJ0PNTI8JEJoTFor5DxtDqF1ZsqLy8WJhk231LByLFJIULZ2scaiYzNsP/r+p9Z2y3VxOfiQsSw8EiEkOBG122fPp6740ueemOSoFR3rY9Tv8zhWxZRVVr57jKMsiEnSSl1apqqUjOXESsP093dTUtLC0eOiK8J9eANISnt2rWLwUFtcK3f9FEAonYL8Tw+PGrXyEvdZyLMZj3HUMCKZZHEeGlFFFexkdVXwe7f5jhgkQB89Q1G9vx6DqbzFMpyDIID39EWA5Is520Hl4693zqDr3F+B6hkkIgvEayIFvAAyjf4tGR7UuVDB+rfWYp/ZREWu0lIIrm4xYW3wSlEorJ6ZYxmg7C60dHnu4iGxe0R7BVLUHgaHRgtYoGG6oNQEOHfdO73Yi2tAErWOJmbnRNSlDr67R6Ocn5kcAshAak+8K7wCan7BHvDBTO1rVVWgt36H1ZJmwuLQyyxJkpQSp7Ts2WQ7pfEJmXFbREes+WXePHUO7DcXCeUiGr9sxrisfhCklIeVG0uya8qlaPoNJMICB31NqZO53lWaefu+Y9u6q8oXpKglFJUMpno2zlN306xlklJ1L/FjmSAEy+mTej5dozZJQKtKrG5OMNd0YWfm4zMuVSk2fl5ofMg2Bxw8FVj3l67McXMnKwFMkbL5cRivwAgEAik2q1ewP8bSCboJAw0qmu0PxqNeXd8SSYTB749SPON3gUEJUmWM1Qh01F7uReDSaJ3q/4kSsPbi5kNztH1kpgs8HR3iO2f1RbNS7UlSaLnN0PIdnPmQiyP7CmAp8YKcZiZFFhMqGArVai5LCBECKi/qgwkMRXL5reXYS2WGTk6zvABfbuPAUwWI7JbbB7b8XfHKLvEK6xCBRoRTS9UD6gemZJlbiGSklquCrXJS96XqMoMKpSt9dK7c1iMrFVAgagQnPrJOWECC2gKQoDQOOr+pVjLnyRUD4RCCNnPVqJgsZmE2uaJEpQAjv23+G6q0EgMo8WALSBWEGm5uQaDSRIiKS1/Xw2uShszk7P0vKwvTlY9BuxlKlXWEiGfBMI1V3q2DjG4S6x4uuPvxJOFoI2jlltr2f3P+knva95bi+w242lRGTmSewBKZlOGIvKZLcPE5ha2CV4Ao5HklsnSgbWc5SxdXV3s37+fFStW6L7HC/jjxtjYGLt2aZKn66XrgKXJScmxdeqlhT5VMhoXKHQn4a5X8LU6sBZb2Ps1/Wv7le+v5NhzZwgLph6OfCexgS1LpTIf9nzpGL6VaUzlJeKu5CGiqLqoBNUno7gNuklAZZs8lG/0YS2WhUjbpWu9lKwqElJtsgUUTIpRiKAEcPBbhZEcwwNi81/JCrewAo7iTlxrTOg0BveItRADKGrRCBUiilJdLw7Q9WJhcYooClHjQoHAag99e0Z0E1LCYzFhslbqcgFFiJhTstyFrURBcet/xsIEJYAwdP6yT7hFjFxkwbTIhuXF4GmzE1jtwVaiCG3iXXFXnUYOEyAp1Vwe0Mh4Cvqf7/gMxMBdqTJ2XF+QfOib3dS+1a+boAQwdjy0UNEz6ZeXcMBVVxZjths5+d/6c0o1V5YwF44xfGCRgrfRmFFn6X9tEne1jaPP9eUnpBuk1Pxp6QwQT6TNqqur6e8/P222L+DNgYqKCiCR87Kt1f5oNObPxxqNHP/FOHMxFhKULGZYJOdVf2URFpuRvkPB3EpFOd6hqsvcxGNw5ndj+et6WbFVZDDCa1/Q4oAlc16Jc4cPTtLl66fnVYE8SqkM8Tgzody/ebG4zdOQ3FStf33ZcH0pRotRKDdSe30l3iYnkz0hIfKB2WbC6s2TOM+BfV89TWCtW4iglIToOY5KG5LJIERSkotlIiKbewAihan0lHS4GT8+JtQibtunxTfzFYK+7aNCdkvCWasgGQ1CreIKuQ4AsrafXcR+7jpNkUuEnCNKUAI4/qMerSOICCJgsZqw+cTeqZZbq7FYTUIkpYa3l+Jv9xCPx/WrZ8rgbXZi9cmL+4lcMY44tYDTL/UzKij6seerhRHXkGH5n5Vz4JtZNe8881vbbaU4q1TGekKMHMkRhEpSIuc1/+NP/XoYk2rUcg95IBkNqdisbngT3XRz7NgxXn75ZS699FL9v0snpHghbJilvjQxEMxmOxdd+jSRIm1BYRlfOAnOJlp+uGemCQYhvRobtc4bKxdJKWbRPm+pDnNyX9aHaVprhonMoL/xYvCUWRjsmuH0r3IsCNIIRPGw5gCspbD8xgAnfzOWsSsgPrPwvlImzUFEygg08iV8Cnws3hU2IRILaO3URHu4e1fYMBgNDO4Rl/N+o1G82kHj2yvp2z0i3BJL9SGkLtPxoQZkl0XrEa7TZ6k+WHlfC2e3ibXe2vxMG1BYaz5RbH62jZnJWXb+vXi7MxEsf28Nriobx398hgGBYsq6x5sIjc5w4Oudus/Z+IlWDCZJjEwlQPhLx6ZPtjI3Eyuoxcf5QO0NfuGkV8ONZQweHMtUT1sisWGtshIPBnO/U0vsis8rE73Ujvo852YryrTfV05sLsber2uFQynP7hsAZJkNH/ARj8XZ/i+Zi0FJTStaZvnwmk1mTu9PJIRzFCDmXPOt4NLJSgDWIhhD+25TDlZ/xKORfE3TcwSDQU4c/SKRSIS/+Iu/4Iknnsj/ey7gTwJf/epXue+++wC4xHw7qqoiWRLjbTZHAiIxzlVvlFD2NJkWqOYiKUmShMUF/pV2un+TJ3GQFQNt/GgdSHmUlHLER6s/oJEj9/5LZpCfM2mjVyXgDxz2qh7AogiRJDytVpxVDiESBkD1NSV0vXB+ijCiWP9EM5JRKqj9CipCJJbNz7YRDc0JzbHL31eDbDcJKSNWXOqj+nI/AwfHhBWsRLHusSbMdlNBhG9RbH6mjXgszta/0l9oq7qqhMCaIrYLJKPUgEL7/XVMD4SFSNGqR4zsBlB/Yyn+FUXs/tppYQLb+YBvpYOZqaiQehoqNL8t0bZSAJ5WKyOH31j11NeD4jVO6q8uY+9Xjsw/5yXiyeZbKvA2Ozi3a5TTP8v0gYvGiyrUXOyj81eJZGOOeSMj5suKzdQSCI9p8VWuzUWSJfFZNMo+48/pGz1HS0sLhw8XUMC+gD9KGI1GYrEYFlQuV29e0BIw62AAlKI5wtnrovQeAYuQlAAqL3XTvW108SJ41hivvtJL2foiBg9OcGKJInMyrlLcsOreRk784lwmkVVQiekPHWtlw92ov7CfROONZRz/ea+Q6pCjWsFsM+luTXU+oQQU1txXx7ndw8LrehEyCsDKe2uwl1nZ9YUjQuSrdU80cW7HiFDLro0fb9FaxJ0HwvfmZ9uIjM/y2uff2JxX441llKws4vSL54QIOu0P1ROZnBXK1RYUTwqQa9Kx/slm4tF4wQTkNxqVV/h0t8pLourKYsa7JoUUuZQSBWbChRG3zhNW3luDZDSw98uJeFwHQ3TTJ1ohDluzFVjz5OIqL/cytG9kcVukF8Sy5iwlIBMZ1DYL5coVpIppiXnyNevPCAaDPPPMM3zyk5/M+1su4E8Dr7zyCpdccgkAl9veo6koJfO7sRyxl0EbM7IrSiSbx5NOKs9FUpIMIEPZcpXe7YvHANlrhHUPVyKZDGz/+84lxQmS8eKyOyuQDNICNTE9RKU3BDneP9kJyGKkGXuFTFGDU1ghpfxir3A7p/OF9g/WY1ZNbP9sAbUeGaG2fJufbmMmGGWnwBzbeFM5Np/Mni/rz70Utdppu6Wagf1jHP/BG5vzWnVfLbaAel7qmhs/3grxuFDrwJION5WXFHPga8f1E45k2PxkG5O9QSGVUtkpRmoC7d2ourSEQ9/pEiJfnS+4GqzE52JCilcAdTeIq6c5a5XFr1PILhi90Knw7apXaHp7Bfu+eSblN5dqh1t5uZeKTV56Xxuj66WsemOe31S+2c3ZbYvzMzJzXpn+XXZDZDrxea45y5zoiBaNcpBfcna0k8bGRo4e/cPXuwW7Ji6Nd73rXal/pxOUciFJUALoWA2XXqT/OjGLEZs1AkQ40pV/N2vMqWb89/FX4NTOGU5t03+9stUuJKMEc/kTLunBdPFKG5s+0UTTzaXaZzpbYa28vxZ7nXXpA3NAlKAECBOUktcRIihZNXKOKDZ+opW1H24UOsekmIjH4kz1ijtsEYISQP/+MULDESEii6PKidFsSPSa1I/e14a13VcCaLurSiM3FTachLDu8SY2fqJV6JzOlwcYOTnJwBGxmdlsM2EVZPQOHhpj8qzgmChwzp+bjTEXEZOILL2oiM3PtFF6UZHw9axVYg+4kF15J57vFWrvCBDsXoSgpANtd5bjX+sQOmfTxxpY/1i90DkWuxFZUC3r+EvD+QlKOZAkKFl9INKwePlmWLVJojygBTXRPK1pojYjVquV1tZlBINBnnzySd3XuYA/biQJSh6pLJOglAuJALVsnZWVt1XQ+Db9/bkkSUINwMw4nPndEgWbLFb+q589xdH/FlN9kZ1mFFe+NsEJpCVpNjzVzKZPtAhdx7/BTfMtFULnJBEaEVdxGTkcFCYoAcIEJVu1WJwBUHFFMZufbsO3Usz/RsNzxGYKTJYJckomeoL07RHb5WT1ysh5W04vxPCBEYaPTtDzqljstfHjrbQ/LDYXFQK1XGXz02003FQmdF7f7lHOvCKWLLQHVEyyUWhMhfrCBAfDwrGrKEEJINgfIRaNYy0Sa9+29sONrH+yWfh6qgeNXKcTQ/smxQhKACGECUpAwQQlZ53K8vfWCJ3Tclslm59tExoXBrMBg8WAf51f9zlHv9fLsR+d1U9QAgiRIiip5Zb8O6yzsPGJOlbeVTt/nTy7zCSTiZVzbyXgD3DkyBEeeOAB3de5gD9e/Pmf/zmxRKE0g6CUC2mfrbirlg0frRO6lhLQYrozL4/lJxJkjfGuXw1z9IdnOfEj/bFDSbsPo6K9o3phrVDY/EwrTcm5SCdBqe3OKhzVhbXpESUoARx/XoygBDDZFRYjKCnzqkMiWPd4E2sebhA6x+oxMTcbI9gv1ooVxFVwzu0eZao3KERQslYomFUT9oBYLNr92wF6t4slEOreHmDTJ9tQBFUOC8GqB+rY8JTYOuPMqyMMHhhj5PCY0HlKkYytWOw39e0ZYey0IKmuwA55c5EYM8FF1DgWgafNzqZPtFJ2sVf4eqLPV5SgBJoChWjLwPBA4QSlxhvLKF7jEjpn48dbWP+EWOyqehUUt9g66PB3O4UISgA9L2sEJdFn1fhOP+3vrSSwzqldJl+BMZFLa61uIxwO8/TTTwtd6wL+eHHZZZcB4DVVZBKUciFBUPLUy6y+o5SGa9z6LyQZkL1ABHpfyx9vZK8Rdvzfbo78QCznpXhl4fpGxyMNbPyY2FxU1GKn4e2lQuckEZlAWNVnqiciTFAChAlKcrGY7QC8K5xs/Fgr3hVOofOi01GiYbFaTwqCIjhDR8bp2yWWGHGUqiiCilLBs1Oce22YnlfF5sy1jzex+gNia5qCIGv5tfq3iY3dM68M0PlrsZyr3a8g282oAdvSBycRgfHTU/TvHRO6lihBCWB6IExsNoZJFlOXXHlvLWsfaxK+nkZO1H/8+ImgMEEJECYoAQVdBzQ1ueZbxXL/1dcUs/npVpw1YrGN2WrEL5BXP/PbUQ5/v4euFzPfxaVUvpMEJblYjOaz7oMVrLijfP4P+fIZJhPLuIrS0lKOHTvGBz/4QaFr6cEfnKT0/PPPYzAYuPHP7iRSZKLYGuSKlmkqXFrCdEVrhM3rIymC0iVN06yvnWZwEqam4aKNEcprI0StRpbXBrlk5Xyidd2mKKvXR4lZjFitETra4ZLN2meNq2H9NWgBq8HAmsvirL44mSCJs/YmM9VrwFMJNWuherWW7InbVFbcZGfln9k1xtjcHB33FFF7ueaQKi93sfaBAN2/H2fbP/RQ1mFn9fsDqXta+2gNjTeWEI/HKb/YxfrH6rBWasF/+cU+Ta5sxxjxWJz1jzfQerv28Es3uNjwVDOuBo1csPx9Nax7rBFrmYzdr7D8jiqW3V0FaMpAG55qoXi1NrCX3V2VsShZ93gTm55pZdMnW3E1WtnwVAulGzWiQ+u7KzOS72s/3MjK+7Wka/O7y9n8bBuNN2u/p+m2ioxjOz7UwOoHtAlH9cGGp1qouqaETU+3sv6p5ozF+ZpHGjIKMhueaqHubdr31t7gZ9PjrbQ/1Ia1ykr7B+vpeLQh49jGmzS7VL2lmA1PtWD1aUNTMoLJPv+SrH+ymebbNWdSfomXDU+1pAhdK++rZe1HGjn36ihb//IwNVeW0nqnZkP/ehcbnmrBu0J7rsvfW8O6x+cd9Ponmtn8bBsNN5bhXWFjw1MtlKzRgpW2u7Ls/ZEmVry/BoCxriAWuzlFLGm+faENVyVsaC1T2PBUC0qRzJZPHSI6G8uwYceHGmh/MGFDq2aX2hu0BH79O7Ud4kllqDWP1LPmkUx7179Tm7BrrvNr32tN5Agl6Lgvy963aPauuMKn2btMc7Qr76+l40Pzx65/spnWd1cCGolmw1MtuBKtC1e8v4Z1H5m3oVE1pNasJWucGWN2+T3VC8bs8vfWMHUqSN+uITY80oJ/vbY4b70z095rP9LIyvu0MWuv08Z312/62f63R3OO2ZS9fYbUmAUwGA1YffMTSsejDbR/MLe9694WSD2bTU+3svHpFtY8kmnDhhu1RGzVNSVseKolRcJb/UAdc5G5lFrD+iebabqtItPeCVLRyvtrUyS8yXMRkKC0Q0vYlG7MtPfy9y0cs8vurmLTJ1pZfU/Nkj5i+ftqAHA1Wtn48RY2P9tG/TtL8/oIa5Vm74ortB+34eMtbHpmnojW8Wg9qx/QjtV8RDNVVxcD0HBjKRue0sbP5mda6fhwPe0fnA9gNzzZSN0N2rOpvb6YDU82psh07Q9pCltVF2ufr3+8gcYbNX9SeYWH9Y/Xa2QfYOW9laz5YDUAs6E5JHOcppu051i+WfPJ9hotObrinnLWPDAfjKz9YCXj3SG2f74bf7uVdY9W4WnSxkjbn/lYc+98ENxxXymtt5TMn/s+L1WXaPNYyw1O1tw6TxRrv8VK2/UqSBLWAHTcYSfQBNWrYMWlRta9U0rNVauvN7Diai3gsFpjbLgiRmWrRNxspLEdrHaYmYVzfbBhTYS1qyNEVSMxNcrGy6LUNWmJwZbKIJetDBK1RZC8b8ftdgPwlre8hQv408ZVV10FQFlpGRdVvw3JYmb5LV5WvnueGdzxYBl1by0Cs4nSDpWOe/0Eh4LMTscwW42sfl9AC0iNRtbc66fhOs0fl6xSWftQOY5qC5IkseYDAVbeVkHpOm0u7fhABc3v0t553zKVtQ9X4mnR3reWm4vpeEh7N4uaVNY8WEXpGjcA7gYr6z5cS0m7HWJxmm/ys/bR+YLwmg/WsuzuCrZ95jj7vt3DusfqKd2k3VPDOwKsS5IR4zHaH6ph5b01gEYcMBglogk1srobAqx/Yt5vrn6gLjVHoGp+tOZaP9WX+PG2ODVfmKilrHqgjvaH5ufZ9U80U59I6lRcUcyGjyX86NtLWXlvbUYMtO6jTSniSOkmD+ufaEYt1744Oaekjn2sKbVIKl7jZP0TzbibtGPb7qpm7Ycbaby5nM1Pt7Hu8SbaEnGNd7md9U80p8hErbdXsi5t4bn20UZWvaeW9U8146xTWf9EM/4Nmv2bb6nImE/WPNKQmiNUvwUMIJdosWz9jaUZ80n7B+tZdV+mDauuKmHX/z3B0NGJjGNXP1jH6gfn/f76J5qpvV7z5dXXlLDpmVZthxOw6r489r7Up9kwkfCWDBLe5vnF3rrHm2i8WYtr/BvcrH+iOUWaWPaeatY+2sj2zxxly18eYt1jTbTcVplhb0+r5r/b7qzKsOGyu+sxmA2EzobwtFpZ/0QzxYnYsOW2THt3PNrAsvdo4x1Ja8eatHfjzeUZ9m5/uJ4V9ybmTo9BU6GyaPNA/duz7P1QPas+kGnv6kRcU7reBYb5TRCrHqhj9YOZNqy7QbNh1VUlmg09Wps4b5NzPgZK2vtG7diyS7wZ9l7+vhoUt5ktnzrEdFeIdY83pUh9/rWavZ11iTF7d3XG5gKzasJTqz0r30oH659oTrWby7b32g830nZ3tTben2lj/ZPN+NdqNmy+tWKBvZOEGrVcpfKiYrp+08/wgSkabipj3Ucz7b0yZW/tt1Zcofkto2rMaEu7+sH6nD4CoOZav3b/a+y0P9zGhg815/URmr217155by0bPtmcGu/5fMTy99ak1km+lQ42P9vG6oe0+1/MRySx7jHNR2z6ZCsbP9G6pI9Ijllnncqyd9fgrLRqCk75fERAYf0TzZRd4mVgn9YebdltVfP2XsRHANReH6D6Ej9bPnWIzl/05/ARTdRer9m7+uoSzX9bNRuWr/fS/kBtao5Z/3gD9Ym4vfySItY9Vo/qNyVsWEn7A9r9bni8jtV3VtLwjhIwSPjXO1n3kTpsVQkb3uZnzQcqUnFZx0PVRMNRBo9M41uu0vFgGUUNKpLRSMvNJXR8YD6ObL+nhJZ3FiGZTJSrjRgMBr72ta9xAX/6+NSnPoUkSbzt6pvAaETxG+h4sIKSdi0+qr3Wx5qHqlLJvpXvKaXt1hIGD04y0Rui4+Fqyja5wGCg5soiOh6sTH33iveUs+zdCcKPAqvvrmTD45oPqLqsiLWP1JAQWGX5XeWseE/a2ubRWmqu9uJuUCjb7KbuqoBGmpEMLLurglX3VqeO7XiklrrrtHczsN7Fuo/UM3B4ii1/eZTiFmdqjQeaz21MrH2LVztZ91gjrnrtJuqu1nJhA/tGIR6n49FGmhNzclGLjXWPNeFp0/x+883ldDzaCIrW5mDZXTW03K79dke1wrrHmihercV7jTeWZfi31Q/WazHUx1tQAtqxgY0a0b72Bj9rPzJ/7KoP1LH8PTUAVLzFq+V5bkrkSq7xZ/jClffVpnI7oPnRqiu1nNTaxxu1YxP2XvG+GlbdX5txbO1bNT9UtsnDxsdaWfNoG+5GlWXvqZ6fT9DmuPp3aPfgX1vEuseasFZoX2xUjFhcaRs4P9RI47s0e3tXOlj3WBPuxkR8fVslax5uYOTQFNv+zxEqNvloScSR7kY1w95NN5XT8aF5u6x5pEGLXd9RirUiYe8EQaL+HaUZ9l71QF1qjpjsiSA7LZRtmrd3ug1XfaCOFfckbKhodvE22tnyqUOERiKZ9r53Pm5P2rD6am0cVlzmo3yjj67facS6FffUzMdASXsn/H5go4d1jzWhlCjEY3EkA7S8az7RvvbDjfNjdo2LdY81pUhxrXdUsuah+dxOx4fmx6ynzc66x5pSbedabq3QxmwCqteCwaTFbK56zYbexDzb+K6yDHu3P1RP251VhPvCdG8ZZsX7GvCv1fKGdW8PZI7ZB+bHrOI2sO6xJrpe7mfH3x2j9q1Z9r6/lhXvy7R31ZVaXCNJkkZsSo7Z99ekcmlJG9ZckxizF3s1G7q1/NbGT7RkjtmPNFL3di1uT47ZJPmk7c4q5mZiKaXM9DFbvFqzd9JHtNxemSLhBXunkEwSJavcQB4fkcCahxtoub2S9U80s+a+uiV9RNtdWjyiBBTWfbSJTU9r4z2fj1Dcml0qLtPWzmsfb8zIeS3mI0BTa1r3WBO1b/Oz+dk2Vj1Ul9dHaPbW4ppl91RTvMJN9aXa+M/nI9rurErFnOGxWQxmaUkfkUTHo42Md06x7dNHNB/xeLqPKMvIza95qJ7WOzSfPBOOs+6xRqqv1X5r/TsCrP3Q/PhYdX8Ny+7WjlVKzKz7SD2lG90E1rlof18V65+c/96V769meeJYFFj7SA0Vl3rAIFF9pRdXtZXIWJTR4xMsv6uM5XeVIUlai7e1j9RQfbnme8o3O+l4qBKsBqxHa/EWabnTK6+8kgv408bjjz9OLBajpKSEixreDiYTjW91svwmd+qYVe/2UX2ZEwxGjZx0p4fwTITgSBRMsOJ2n6agZDSw8nYvtVdqvttVK7P6vQGcNSpIBpbf4WX1HaWUrknUPu7003CdNgYd5TKr3x/A06RV7muudLPqvWUQj+OssrDizlL8q7R8gRKwsObBaopXaO9b9RVe2u+fXzOtuKeKltvKeO3zJ9n71ROs+WAtgXXa76m8zEvHI/Pv2/K7K1l2ZyLek8FkNRINa7ng8ou92nucIBMsu7OKFe9Jj/caqLqimJrLSyhZ5abj0QZkpzaPtd5eyYr3zR+75uF6qq/VfFLxKhdrP9LI5mfaqLshQPMtFaxKm0/aP1hP3Q3aHFHUaqfj0Uac1dpNbPh4Cxs/Pp/zan+wPjUnuxqsdDzaiLtJm2cb3l5K+0P1VFzmY+PHW1n9wTqaEnOyvUKm49HGFJmo7vpAhn9beW8tHQ/Us+7xJmSfdmxJh2bDqquLM+aTFe+roe2OxBzhM2OwSNgSOa+Ky3wZxy6/u4rld88/q45HG6m4zMf+b3TRt2dEOzZh77Y7qubn5MSxybpIYK2bTZ9sZUOi5tJye2XGfLLm4QZqEnOEd4WTjkcbtZZ8Cfga50lU7Q/Vp4g67iabZu9abY5ovLGM9gfr2fXFE7z614dZ/YE6GhMxkbNWoePRRopatXFYd0MgI4fRcmstZquJ0LkIaqlmw+JV2jxb81Z/hr1XvH8+bo/H4yg+mUAiX1N1ZZa976lmWSJ3iazZxWTT1kXamJ0/dtldVSxPH7OPNlJ5uWbDsjUerV2ZUct5td6eae81jzSk7F3S4abj0UbkYpmzrwzjqrGl8kBJe9cl8pHeZZq97RWavRtvKsdZYWXL/z7E2LFp2h+sT5H6kvZO1vAb3l46X79FE1JwVWvj2VmdGLPLnPP2Tsu7rby3luZbKqi6sphNn2yl4yPz9q6+tiSj9rji/TW03q7ZUHZC/bVldP12gOGDE1Renmnv5e+pZtldmfYuTxDCLXYTZpsx00fck2nvZFwTWF+kja06hY4PtbH2kabMMftIQ4aPSNobtBzShqdaUuM9n49ofFd5iuTmrJbZ/ExbKuZfzEcksfo+zUdseFLjJizwEen2fn9NKt8u+2RWv7cWb5MD2SdTdVUxHen2fm91ykdoNmygbFMRfbsniM7O0XTj/Hp9+V2VLL9r/r87Hqmj4lLN3mWbi2i4rowtnz1K90tDtN1RwYp75v3JmodqqbpSO9bf4WLNB2uRfdo60L+qiBXvqcBZZYFYnPb7q6hOHOtts9L+QBWKP2HDd5Sw8h7tt3U8UEH73ZXUXa3NVe56mfb7ynFWacfWXe1m5bv92qYmg8SKO/3MBKMMHJ7GWWFm9d3FuOtkMBqpeYublXfNbyhcfrObxmsdYDJRbVyN0WjkK1/5Cn9o/EFJSmVl2oSzbNkyWpu1F8VpBZMB3LY4My4TdhuY04hZshlsCuw7Y+PMmITRqJ2TPDd57IzbgqyAVZ0/D2BWUwPF6pEwmuaZZRYFlMT3KFYwmiQcPgONmyyU1Jq1Y5OfOwzItnlTGM0S9mJtcDiKzRjNEs7qhAS2y4zFNv8DTIoBe4n2wB2lCkazhM2daG9ntSAhMd2pEa1MqhG7X5tA7GUqRosBe6n231avBbPNRLA3wuHvd2EwGLD5tR9rK7VilA3YSrUbtvlVTGlqGmabiXg8TnhsBntAxSgbsJdpx9pLVExKWts8hxk1wapNqoeYFG1SdviVBccqHu1Yyardg7PcCnGQTGQk9WVXmtqBVfvMUa7dg6PMiiRJRCZmCHYHUVwWLM55lQejbMCRIMk4K7TrmIu0/47PgSFtt4ZJMWIvSdiwXPutNp/2XapHxmI3U/WWYqxlSoa9HWU2jLIB1afZ1FosY7bNJ4JMqpF4PE5oOIKt1JZpw0CWve2mFNml+cYy7f4rbAkbZtpbdlpQiiwJGxm0700oKDn8aoYNLQ4zcuJYq1vRjk2MAWdiDCTJLrLTkqEIYJQNOBPjw1Gqfa/VrXD4m93EonEsjkx7OxM72pzl2vfKLu0+1CylAZNiTO3eclRodkn2+bX6FMyOeRsaDAbmItruOnuZ9r1qSdLeyoIxay2WUX3Q9M6qxBjQbGj3Zx5rsZtRE+PQ5jNrdilP2lBZYO/kseYiJWGXxLHl2n8nyWcWpzm1m0hNjtnEM3ck7IIVYrNxJEnS+syn2dBRlrBh4rdKVu1cxSNjcaSNQ8WIIzUOE++yx5iyd/LZTCV6nBoTO4OSNkzuPrT6Fo5Zm19l6MQEkcmZJX1EcmeGPaBiMBtS35HPR9g8xgy7SMY0Bq8kaT6iKM1HWAw4k+9Cwsf1bh9mbiaGxZbmI2wGjBYDjuRzLNPOVZM+2WkhHouz4+9PpuxtTyTEnOVWjBYJk0s7WC2ypHzZzs+fxmAwYE9M2LZAwid7E/b2yFismf7blvDfpR0ujGYJ1ZNog+UxY7am+R7VkFJosBWrGM0Spa1umq93YvOYMKW9y2bFgOrSjnV4JIxmCUcRdO2FWCyGIU1aWLYake0JH2EDownsiXWI3aXNa1t3ysSQkS2QFGxSrFrdw5YQwXHZMhWL77jjThRF4fjxN1a+/gL+5/HSSy9hMBi47fbbMCY2fKhFJhRHYqybtfGZfC/sJRZMsoQkmdn1jQGsHguyfd63mFUD9sQiw1GmYpINWL3a51JiPj63Q1NtNNuMqWOtxRZMsgFbifY+2nwyZpuRtjtKaX5nKRa7CdWb8Lme7HtStEVTArLDnJorbR6D5kdTc7KC2WpKqScpLkvKZxkcKpJRYvqctk3JUZ7p31SPBbVoftFvUo3Yy1S2f+YooZFw5rFFcmr+Tj8WwJnwb3ORGL2/70f1yaju+e81W00ptURnhVXz1wkbImnzZepY2/yxjlIbJtWI1Z/w5SXaHGE0GVLfa0vEQGqx5udtiTnCXqpmzBEWl5n4XJyhgxOoxbJ2/4nr2ANKxrGKy4I18RyH92rKIw6vdg/OUmvGfKK4LSjJ5+jS5mtntZWyS7w4y7KOLZJRknZRNRumfmsiNpxLEMoUr2WBvefjSO23yk4J/wY39lIl0942U2qOcJRr92D1JsZhiZIRc6Yfaw8kji22po7NsKHDjLM6Gcdox9oDaeMw7VjZaUk9m5O/OItkkFLzYfaxqnt+t6Ts056NIaGA4ShXs2xoQU3YRVUNml2S74JHTVxP262pFsmonmwbzo8Pk2oEVaX51gqsATljR7VJNWbEkSbViFpkSPx2OUPRLMOGFYljE+MnOWZTx9pNuOo0O9gCyTG7uL1txTKR8VnisbgWg/rnY2azPdPeyTFr85owqUZcDTYqLvXhCKiaj0ja0GVB9c37CJNq1NYzQHh0JmNn0mI+ArS1m0k1Mnx4itBIBMlgyOsjTKoRg0P7LtUnYzQaUwoj+XyEtXg+Fh86ru2KsiT+ezEfkf5sbCUK4dEZZqZnlvQR8/5ERpIkhk+OQyi/j1CLtHHoLNPaykVGZzDJ+X1E0vek+whnnYrqyfIRSrqP0Py3mlj7K0UyitdMy01V8/YuVTKOlRPvutU7P77HurT5yhFIzGsBVYv/Eokgq0/Gkj4H2ozEohKnfzmGrcSMSTag+pLxnzavJVu9WexGrD7t3yub19De3s7c3BwXX3wxF/Cni4su0uS/GxsaWbFKK2Rb3RbM1kRMZDTiKJWxZPh9C1afTOevRjmzZUI7NuFHbQF5PgYyGFA9ltS4khNx/2yi3bO9VMWctpax+mSs3nT/rH1vy00VVF3sxWwzYrAl8k3FmXGNxT4faznKNP9QVJe4pxIlNfeApmyZfDftfu1YJZGvUZwWiEuMJRR3LU4z9vL5NanZbsKWyoFZtTk5DPv/7RQS82s8xStjtqfNL6Vqhn9Ti2TiMQgORVDdRsx2E46ED3CWWbHY0471WLAmYsxkbsCkJvJ75ZnzidUnz29kUrR5y1Gh7fYymgyY7SYUZf5YNW2HutluSlvPqhhMEqGRCGPHQ9hKFKye+WMtabGtvUzBbDeherR7ngvNIaWlZmWHeX6uT9hQ8c7HcLJbIwwpAS3GsaXyBWrChvN+P10xWHZZtJzXyIwWp2fcvzXD3laPjDWxTm56R0D73lS8as2woeqxoCaOVRRDxj0sONaroKZtHDPbTTjL5uM9s91E8zu1wppakhnXmG3zxzoTxyouidM/6Wc2HEVNi2ssDnPa/KfZO5m3sAdU5LTvlR3mjNyf2W5K3aMtoGbEkZJkYHZaKwyrxdpvcwTm857p9laKZG2eVWD5HVWaXcrm80LpYzbd3maXJWGX+fgj04Yy1kSOTkmM2WT84ajU7ilJ5LH6lAyFjvRn7izXjjXYFeYic0gGKeO9t9jNOBKxobMiYRd3Yj70K6gemcBGbRzKTnPKDvZA0t5Jn6GNWdBUvOIxMCYSF4v6iOSzcVuwBxQG9o0xPRRa0kckv0d1GzFbTUgSGE2GvD4CRckY3yaLMSM2XNRHJJ6j2W5i6NA4s8EoitOS10eY7SbMiZjaVqwQn4Odf6/la/L5CFuJkhq/e/75JAaDYUkfkXqOaT6i4pKSRBy/iI9wW1I5dJtPq1GUr/PRekcljtIcYzYRG8p2Y+p7+3aME5uLpdavKXv7kj5CUxdIxnD2UgWz1cjur3QTGdPGd4YNrcZU7tUR0I5VEjmPd99+J1ar9Q1pO3IBby783d/9HZIkcfvtt6dyV3afGbUoMSYNRhSnCUcqF2VEthtRVJn93xnF5rOguNP8s9OEI0FQsfosyHYj1sTmkuTYPbdLi2sUtxmbP1nXkZDtJmy+5LpCRnWbqbvGS9uflaL6LNgTaw7ZZkJ2pOUpyhSUtLqC6rXgTPgSg1VOxFpy6lg5zRfaSpTUug3AaDYw1a8pidjLVGSnGTnx2lj9Smo+0e7ZjKNcZfc/n2KsexrZacbsSPihgJKh2Ke4LKl1sq1UwWI3a4XsvaPYA2rG/K2454+1+1WtLpiouRmMEoY0HyAXWVL+TfXIyGnrUEe5FaXIklojKi455d9kV+LYhE3tpWpGDsPqk5mLxujfP4rs0Oo2yXjVVWbNsKG1WMaa8DtD+6cgTmod6iyzZtR8rH4Va8m8EqTsMuOoshJY69ZiCJcZOVEDsJYqKV+YPDaZV7EFtPxkdDaW297pNixTkF1mrB4Zd5MNT5MTJW3+VoosKV9oK0kc652vMctp87filVPHKh4lw97OhL2TUIsVPI0OZKc21mWXGVvaGjvd3rZiJTV/HP1uNwaDNL/OL1czbViiYE3MJ7Ks2cVoSdRJKhL2Tvw8m19Nzd8pG5Yna+IqxKFni5antJVl2ltxWXCl5Yq1+rSR6mtL8DQ4MsQKZFeaDf3a2JKL5nPf6SpUsseSykdaixPjMFUftWbYWy2W8TRppEfZnbB3IsZwllrn8x1o9VF7qUpoeIZYNI5sN8/HZWXWjLyb1SennoXBpt2Dq1Ybh9n2tvmVVO4sacNkrDJ5LoSENO8jAirWkkx7p+bZMu17YzNxJs8GMSTJ72n2TvcRssuMmuiilaw3JkV18/mIdHtPdGmiDckNG4v5iNQ9FGs+YupciPBYZEkfkYw3ZLuEZJAYPjZOZCiSw0coWJP+26H5ZHuZlchghKkz4Yy1vbVEzvSzTnOK22BPxMWyDGpAxl6+0Eck/ZTNnzjWlpi7/DL2MoVltyZI4C4zznJl/liHCWuipmwPKCiJOHHo2DTESc0/Vp+M7DChJnIKdr+M7E7L7xWZIQ7dv59CdhmQ7cZUrdrht6A4TalWb2qROcW9qCprZO3atUSj0VT71T8UpHiuZr8FIBgMYrNpkeKqyz+K1RdYcEzEZUDJkgjuqJ6myA5bzxgZnbOijOaWzYtZJCxji0jJJtYP5olFpI4TP9EwGab5UomZUJzTOxKfJfrtSdO5JRzjsRgbPuCDOGz7/ELJ/fjcHPEc/Wtb/iyA6jGz+5+7F+9Du1QP2T/Mo/mjhavRysyoeLuozc+2MTcbY9vfHHljbiz7WpEY2z6t/1odjzYguy1ifeIT14qG5tj+GYEFWFLcRbDzw+Zn25iZnE0tmPVC9Ym1zLP6DKx+qIWpvhD7vnJa93nrn2jGpBqFbOhqtLL8jlome4Ps+xf91yoEJWucNL6tsqBrlaxxMrCrAN3H84nX099VR//WRdt3LHWuQaLqyiL8y9zs+MJCu0tGY857b72lBHeVlf5Dk5z+5Xju7072YU27t9XvLuLYC6OEpvNLPsbsCZLXIj496laR5nLPB5FE0LZpWQjZAi+/mqm1GSo2Y5nKfe7w8a9z+PBhSkpK6O8Xby11AW9++P1+Bga03cbX+j6Q8xjJYiE+kxkfrX/AT2hijgPf08Z7PLJI/GQ0aFJeuZB4F+Kz+WX+Vb+Bpuv87P1qrhgq99htusmPr9lJ//4xTv5o4diNx+I5Y6h1H2mkZ9sQ57bmaQX2/3hstRR8Kx0M7RNo54u2+9vuV9nzjVNMd+WXRH+9WPVAHbYShd1fPCTUFmzzM21ExmdSKoci1xKN11SPgdCIWOu7dY81YbabhK+VajkmYPb1TzRjUoxs+d8C11Jh8xNtTPWG2PdV/XHNho+1YLQYxH9XAdj4sRYMBVxL9RgwOOQ3fOz+KaP9g/VM9AY5+fw53edsfqYN4rDlrw4vfXAi/qt/RwCDSeL4c+fyt3qD/HLVaG3aFpsPJFnGXmlg2Tv8DB6d4tQvxjIPUJWcc+OIOsLB0Z8xOzvLzMwi8+oF/NEjWbxeb7oWt7Iw5yUZjQvyP7VXFVGy3MnB7/czdXYmlYPK8eWLf5YgOC+aW0oiFqfu+mLic3D6F1ltNvLknzY+1QQSbP3rRXINOc6tvd6Ps9zK3q+cvhBfFQhrhUJsakaolRpoPnQuMse2v33ji/Obn2kjGhbLQy1/Tw3OKitbPnNIqJ3Y5qfbmJkWzEMll+KCnR82P9tGZHyW1z4vlvNS3Abx5/VsG5Nng+z/Wqfuc9ofqkf1yGz5S/1xjeKGNY+2MdkTZP/X9V+rEFgrFNrfX8/EmWnha3na7GKtFC8gA/61RVRs9gmN3bq3Byht9zKwb5TjP9Qfr626v5ajPzpHeInWkq8nLku2zFp+ZylWr4Xtf5+51pAslpx1F4Deml0cOHgAv99PX594y5gLePNj06ZNvPrqq0gYuKbkgZzHSBYz8azYfO37fITGohz6by2/vtgYQjLAYp8lsUjslSypys45Gq8r5cC3Fr5bi8VtFZvdVF3io3/fGCd/nDtfm1RMTkf7AzWc2z1G3/axpeuKheD/gXjO3WRj7Ni00DnNt1Tga3Vx8NudwueKInmtvV87wVSP/j5xGz/RSmR0ht3/fFL/tW6twNvk5LXPHxJqQSY7xVuWrbqvFltAFctDwXzLMYGWee0P1qN6xWIo0OLQiTPTHPi3Lt3ndDzaiOwyi/+uArD2I01Y7Cbha8lOMDtlofH0R4fXU6tc8rsNLL+7kuBQhFM/099KfeNTTWCAbZ/OE69l1TorLi7C4jBx6meDSMYl6qBL5bzMeVoDmi3IHlh5UzFDJ4Kc/lXmC63FXgvnr0hkgp1zPyQSiTA5Oam1X/0DQKyJYR74fIm2IpJhAUEp4po3aNi9kKgUj8Mi3CRAIygBzLhNWMaitLVE8HrgtT0QDC5hiKzJ9ejL+ifbeEy7z+MvDWN1LzRVvgSRs0JT+8jz5Qv+VHV1MRUbfPRsHaT7l/r7trZ/sJ7x7ulUKzA9sNdZcZTKnPt9nkJeDlS9pZjBvYNCRBRXo5Xmd1Zy/CdnGD2sny3T+mfVGEyScLGhb/cIoVExp1u82sH0yBzBbjE2z5ZPHZonAunE1GA4tZNP+FqCWP9wohB1HopDhRCHgkOxgu4tOBQR7tk8fjzI7z9zUJiwhRXKO7yc/Z3+vsgDuybwtU3S+bIYw27dR5owO0wMHDkkdJ8r768lPhcXSnpBYe+z6oPiNcV0v6jfR1nLZFpvruDEz84xfnLp7KEm2S6x8alGiMOrf6s/+eJtcGiqRwGJYF8Ofx+PLwhcDn93gKabihcnKC2CPd/S/KekLnFgFlZdAxbVwI4fxoi6tZPjRsOiRCWAuVhyOouQjNBDxRqTecauzbHZZKV4y41w+HCKxHIBf3pIPtvLvPcv+Cyp9JD8d4qopGpjaW6pXurJYNhihplZ1j1cTnB4hoPfFusrH+qdzUlQyodjz/XDTSxOUMoBZ622i9TX5lqcpJQj4bLxE63EY3G2/R/9ZGPvcjtVl/k58p+nhcgoVVeV0P37ASFCiRpQKGq00SswBwGsuLeWuZkYh/5d/+Ja9RhoemcllRdF2P1P+hMbJ35+jooNXmGSR+kmD+e2CjCNQGsroSJkQ4DZUJTpAbHYMNnCQhTtD7cwMzHLzn9445XsNj/RxuxUlB1/d0z3OUJk9yRCEI3MMT0gVgHc9vkjws8KwFatIlslRgTWDd1bBjMUffSi/eEW4U0A3uV26q4u48A3Tgj5ANVjoGhZkfD7XLrJw1h3iNBZ/casu6EUe0ARIpXVXOunbL2Xkz/rpX/nmO7zVK+MSTFyEv1Fr55Xhxg7JVagPPnfhRWfHDUqy24upX/fOKdfHNYISqDFg4sk4qfOxIjH4qm2PikkJS0tiV13aQURT8hDKBgmTgyv18vwsNhzvoA3P2pqagCQMCwgKElpScJsopLBZCA+F9cISoshuT4xGmFujqrLigi0u9n/nXOEesV876mfisVqAIe/1429VCyx4W1wZCiZ6EHxaheNby+n5/eDdP9K/30uf08NU30hOl/Qv/FCCSi4KlT6d4rlvAIbPYwdGRMioiglCstur+TUC72MHtFfvFp2S1VBJOXu3w0QjYgVJ4tabESm5gj2iI2nLf/70DwRSCemB0KoJRZh4pBoMQmg4/5G5ERb2jcaax5uQPGIbzgs5N6m+8MZyut6EB6DLX8rRgxLwr+2SOhdCfaEGdg/ytkdYrH8qvu1IuWu3iNC71jL7ZUYLQYOChQOIfE+nwoSFolhFbTc/G/1J8oUt4Hm22ro/m2/kA9Y/0QzklESWov62pzaTvxqhckufb/r1I/6MBoNQgQlQCOhgq7NhulYdlcFthKF7Z87sWQRLYm5SIz4XFzzN4mflcxpJGO3bKKJ99Qq4AD9/f2Ew2EURdBZXcCbHq+++ioAFxW/Z8FnksWc8e90olJsLs7c7BI+JjmuTSaIRlnzfj+h0VkO/2Bpv5au+RAZJSdBaVHE4vS8MopRMdAlkFuXfVrnA1+zQyMp6cTaxxoxSBLbP7dEziDtN9krZGqvKeXYf58jMqQ/jxJYX8TokVFhwktRk5s+gfUnQNPN5UhGiaPfEcg3ytB2azXTfSH2Cmwq7/zNINHQnDBBqXiVi8Ej40IEm6Pf7eGo3CN0DkBkfCalsKX7WiK2S0PHh9oIjUTY/Y/684aFYvOTbYTHZtj1f/VvOBQhaqUjMjHLlGDO67UvHxd+VgBysYziMjJ+Qn/O6/RLfRmKbHrR8WgbM8EoOwXyhs5qmfrrKjjywx5C5/T/wELfZ+8KJ8GhiNC1yi/24q62cfCb3brPCax1U3dtKade7KNvu/6415FSr9JfY+v8VT+hEbHB0fOK2Lo1CbkIVr67koFDU3T9ejQ/QSmByEjuGst87KXFb+lkJVl2MjMUYzY2S1VV1R9MFOEPQlIKBoOEQlrStOW2/wVpMWM6QSkXtg45IC3uDxcZU2pKsUVIPhaLlsMJhkipKAHMOi3zakpZCcfKZqios3Bi+wzDnSxgQcdtakpNKUlOSmLkZJwR5gOdbHKSZDJlBsqxONs/dzJFXlmwm24RpnMsGiMejdO9RSyppHq1NmciJKXWd1RgdpgYPzpOcEj/wrBiczFl6328+tc6dr0mEOjwYFKNKC4ZEeZF7/ahlNycCETskETj2ypBKix5IEp6OfrtwgKAQjB4aCzVbuSNxsDBMdxV5+daB/61s7ATRQlKwMp31+IoszIzOcPgHv3qEof+Q/8EmUT3ln6K24qEz7P7VURF8Squ8FF5UQnOKhsHBHa+rb6/FckkCZGUVI8J2WWh6tIS9p/UZ5d4LM7MVHRRQsICJHZu7f6P7pzPOb1wkJofEsUAyWzi+I/yBAHmebIHyftJXG/N3R4MJonXvp17oZJUUQKIJ69niOfM8cQTpJAkWSmSJjW6/XBCNpfF/fWM3ZBBVLIW+TCZzESjs2zYsIFt27Yteu4F/PHB49F6/UkYUFWVeHh+IZVOUFqAEOz8embSRZIt82pKuZj6qva6SIn+xRnnmk2LqimtfbiSufAcu798JufnktGwqJrSsef6taRRImZa4AvSPgOYOB1iy//OE5ss4iMjEzPEl+BrZaNiY4nWPkSVEWFgVGzyUdrhEUpCN72tDHuZSmQ0wvAB/QV9R0B8XgiFYox1TtO/W6ywPt0V4miXWGxTdomX2isCuKpsHPmv3ONjURRAetnxWf2L8deL6f4wg4fFSK8FX+tcmOGTYspXhWL7pwsjNxWCVXfXEo/F2XpY/3pDlPiTxNjpaUYFbWgLaO09AhtLOP1T/euO1Q9qhSiRe3XWqdReFSA0JEYeLF7uwmgRKyj17xgksFo8Dt3ymUPCz7r7JYH1btLXSwb8HU7qrynl5C/7GHhtkex3VjFssjOEZJAyZMJTSBJDEv5SStsJtv2fdDzbBJE3iUu997J18hsAjIyMpObqC/jTQFeXVhy/VL0j4+/SEgXYky+McvKFtLVGgoiknZw756UUWZCMEqG+mZSKUvJai22W862w0XBNgOM/62X4QK4FkWHRXNT4qTDjp/Ik5XOcu/PzJ+bJK3lIf9mYC88xsEvMZzurrFhLZCGSUvM7yrD5FYKDId2FfIC6qwLELi/hVQFlbv8qjTSg+hRG0V/A6v7dIEX1dt3HJyFCnkii+cZKDEZDQUQgUdLL6Z/3c/rn50fJ99zuEbz1jvNyrb5dI3hbnOflWseeO1vYiQUQlJpvLse3zI1kkuh7VT/p6PgPeoWv1f27AfyrPYTDYiQ7d40tow2bHhS12Ki/ppTxzmkO/Fun7vPWP6JtwBR6zxSt9XPFhmIhklJ4bAbJKPa7RIlaAEiSMEEpidUP1GG2mdjxd7kLxLlUlCSDtLS6Epnz5+HvJXxGnqGRXX9RFAV5ViUSDXHJJZewY8eOxU++gD86tLe3A2DAhF12ZpCQ0glKubD7m5k53oyxswjpTmtTlmPcpsVt2TmW9veXMheJse/fcvvDjLgtK6fV9cvhvLGZZJAy8mCRoVm2/NXReWWZPOemIzwUQcr1u9KR9bvKNvi0NqY2iAi4wrprSpm9uJgdSxGi0lB1VTkly93MzcYZ3Ks/j1JUZ9flZ7IxeHCcoSNi+ZrIYISTPxbzoe4mG03vrMDT5ODodwVrgQWQXs4HYSiJsZNTjHWeH0XEkROTTJx5Y9WrknjtCwVsNCxQnKj9vjqIxXlVID88vL+wzisD+0aZOieWsDHbZVSfjH+Vm85z+mP6Ffc1YVFNQiQl2Wmg+Z0VBPvC7PkX/ZtFA+0erWWbQHzYt3+MyktKiOURCshAYr7Y+nfHhJ91/1KdchaZi1x1Mi03VtD52yEGFqtFZ+UfIqMgGSUsNh3E8LQ6586vLe3gJZMxg6h0kfdufj/+dSKRCIODgxQXFy99zaWu8Ydo92a1WjWSksHImvd+OvHNix+vjMWYsRl4S+Ukp0eNnJrK3LFlmc4/SCzji8swmsdzj5amNeD1w7Yfh2EyTzVqct7pWX2w4iYfI10Rjv9iEkLhvOpJyWDJWmogeC5L0WJuLn/g8Dofg9VnECIbWausVF/s5fC3xApDNdf5mZ2KCqnKaBekIIKIKNruqsJeqrJdUPa65jo/JtnIief1L7IbbyqneJmLo893Mbxf/2RZ9ZZiwqMRoZZe3hU2mm+sZvDIOMe/W2CyQgCFtnsrBJuebmUuEhPawa76oOyiUnp/f05IBWj9k4ldSgIJR1ejlYqNPk79rFvoWq13VuEoEx+LBaHA92v5PdWc+skZ/b5Dkii/xINRMQqRlEBTUwqeW6RtlJ5LL7X7Kmthkq6klPdcSUqxizc8Us5McI7dX0srSpnzkD0MEh3v9WAwSOz8z6VJStmYc+Xf5TXjzl50h9i4DPqGobtLTikp5UJU0ewRDA7S+9N/JB6PMzHxJm8jeAG6EQqFsFq1sXWZ935UNUHojS3+LsdnZqi6xImrwpJq85bx+VIS13k+X4yktP7RKqLhOXb9c35yYjpRae0jNZhUI6/+bWKBHY/lJysmYivVIxEaWUQ97Q2AGlAI9YlVAaquKiEyNiOmUBJQqLm8mMPfFiTyQEGKQ4Vg/RPNjJya5MRz+mMo1WOg9roKTv9mUEgdZsPHWojNxISUg1SPAf+6Yjpf7heyx7rHmzApRrbqaUf1OlFwu7cC0HJbJZ4mB7u/ckpoDBevcWK2mYUINv61burfWkbPq0N0/1L/jqP6G0uJjMzSI6hIuf6JZkZPT3H8+298rFwIKi71gVGi59diMVTzrRV0vzwk9LwKaTv4eiHkFyWJltsq8DQ62PLZw7rfTdVroP3BZgb2j3PyJ4sky/K1FDHl36OVTfItXWulpNXG3n8f1IoT6uKxW/K7z3l+y959eykrK+Ps2TfnWLwAcVRVVXHmzBkMGLm66L3aH/PEJ/G5OTAYWHmXn4GDU/Ttzlor5InZtC9Y4rtzoPZqL/5VbvZ8+QThsXzfnXZtBTZ9pImhI5Mcf/7c0htEEucqJTLhbIXCN7hFiGibLaVEofIijzCRouxiL8zF6RVUezxfqH9HKZ56h1AsBFC2yYPsMXN6Md+ZAxWX+ai8uIRjPzrDsEA74MBGD7PBWaFzlBKFNR+oY/DgWEHkF1EU2u6tEGz8uKbaKKSyqUDV5mIGdg0LjfuORxsxygah/JoSUKi51EfnC71C16p7ewBvg1N4LBaENHUdETTfXE7X74aFlJSKV7uQXWZhMqBSoogpNr1OCPnERAFv48eamZ2e4zUBRYo1D9djUk1s/2zu8ZuXJLBUK5Icny+/s5SxziA9vxvNv/kqcd1wOMw+5afMzMwwNDR0QU3pTwhJYuIVxe9FlpcmiMZnZvGvUPHWyxx+YWJBQXmxDXIp5Mt5LfJZ+31lxGZi7P16/pg/PWe28r2VqB4L2z43n/PKe24iNpN9ZiJDs9kf5j13SeSJ3WSfLKSiBJqS0lwkJkQ2kp0Gqq6nvEpdAAEAAElEQVQMcFygJjd/MgWTRESw5pEGxk5Pceon+jcoyU6ovKyUvt0jQm22Oj7cSDwaZ9cX9ftp2QnF7T4Gdw8JqVi1P1iPxWliWyEb0gRRcLu3AlB1dTHl63wc/OYpJrr0297dZENxmoUINs5ahbbbazm7dYgzv9Gf56m8vJjZYFRIzQc0Vc/xrmlh0lxBKOD9KulwY7IYhNdRddcHOLtjlMigiGqTgchE7A1v9ZZxzVx+eNFTJaqvLqasvYhd/3ws893Mp1Apw4YP1dO/Z4KuXy2Sf82X81pKRSmr1ulpkilboXLg+2MQm1si9tLuu8/7O/bs3U1FRQVnzhRQr8jCH0RJKaWidOtf6Dp+ospIxeQ0shEqXXOIKL131EzT3wsDg2Ktno7tAml2Dml6cZKRNBslfWpWPUbisTiTyd7LZtOifWjTseqeOuJz8fkCGwn2c55TS9Y4KV3nY++/nyqIbCBCUAIIdgc5/C3xC3X+rMDdUIKX8q93UX1ZgEPfP8PUKf0n23wKJkW81UMhvysei0McgufE2LwVm4uJx+JCJKVYNE58Lk5kJH8f8Gw03lSO4jYLtwErBOWXePGvKhKSXwSIzcaZnVqiOJ59rYvL8K/UdnqfFNgNFJ8TT5yOHw8yflxcFcnmkwsaiyvvr8VoNogx4AskAB74hvgOrLO/KyxZWyhBqepqH84ylYP/kWexkpUUqb/OR8kKF/37xjj18/zF1PSkSCwaJ7pUC6x0xOLs+vZ0wcHQynVRThyEYFD/VKzKUF4MB+MWTKGlx7PVWszE5BTEYwQCAfr6CmuVcgFvLtTW1gLzKkp6IDns+BoUzKqYsoa9EipWuznyA/Ed29u/sLTvzObKzwTnlu67nIXGm8sobnXR/fIAPS/rJ1Ase081o6enClJgESUoAUIkjfTrFERQAmGC0uoH65mZjgq1iEMFk2rEXiKWDA6NxDgkIMmbRFyPbHsWqt5Shq/VRTQ0J0R6mQ0KSmwlsPrBes7tHBYioxWK5e+rYbo/LKTmEx6bITYbB8Fd243XVQBiikWhkQjEhTtEcPL5whIuJtWI3S82Ft1NKo1vq+Tkz3qE2ssVAlHSVRKFyLAXTFBSNRXR7t/1MXZMvxPZ9MlWJEnSp9CRiJuCQxHcNXacAZWJ0/quFRqOsfVvCiuG+pZb8bW4OPq8/uShv82O7DSieiA845xvnZoH7rPrgb309r7xRfYLOH9IJt8uUW/XdbykyMjWWaw+CyXL7AtJSnnQeIOX4eNTjBwVizVOvzjM6ReH86pQZMNeojA3GycokBAGaL+3jngsxqv/J62osYSakqteofKiAAe+01kQ2UCEPAEQHggXRHbpfeX8tGp0N6o0XF/B8R+f0dUSPQl7QMVsE0/lFkK6kgxALE5oRGwtX3tlAOJxtu4TIHobYG4mRmRc7FrVV5dg8ysFKVmLoni1i9K1HvYJtIgBiIbmmJkS+11la71UXlyC7DQLFW5j0VhuJZA8CPeFOVJArGH3J8aiIIGo5fZKLHaTmB0L5P4cLYC4PrinMEXUQglKgY0eimptHP5P/Wu+sk0eaq4K0L93lJP/vUTcnJavmovEmJkWy7/u+kex8Z6OlpsDdG8dIyjQttQekDFbjZzdGdZVg1EUhYnRKeaYpba2lnPnzkPh9gLecFx00UWApqKkh6AEIFkVSloUrB6xOVJ2QtUGB8d/Jt5mZ/e/6PDPWcT0mWAUkzWtXqBDEaniUi9VF/vofmVIKOfVeGMZk70hYSIEIExQAgq7zkSsMIISCBMolt1ZRXQ2Jry+lp1mbIJ5hsgEnPiRuD+KR+PEBHNexe0+qi/zI0mSEFEmMj6LwSyYrAGWv6ea/r1jQmS0QtF0cznh0RmhNtEzo7PMCbZFBmh+ZwWSySBEUooMh/NuXFkMIs8pHbLLjCMg1nlILZVpvamS07/qY/SwABGjAALgwGtj4icBpwRymkkUTFCSoeVdFfTtGs3fwjErkbnusQaMFgOv/p+l81FJAvfUuRBzy13IHpnIhE6DRmD75wqLvZw1Mr5WB6d/Oab7HH+Lgs1nRimGyKQ1L2E3iaLe9cBuenr+MB2jXjdJqaysTPuHZMBqtRL2zg8MJWtH+4xz/rOhGSu/6Qxm1NbnEryjkGxAzUqsxg0AQYps4KyHgVzvcRxmnTLmrAdetxxCE3P0nYS4TUGaXhgcSwlGs6TIxMPa+cPH5hg+Nrz0g0kEzcm2JZN9IaLJwoZORnPlxSXILgtWq4FgUL8T3fxsG7PTUSEZxZrr/JSu9nDoe12MH9efjF/3kSZisRivfV6MhLL52TamB8Ls/ZJ+uTZfswuTYtTbujqFHX8vnrS2VllZflslXb/to3+7/sn1xPO9QspLSXS/MkA8KjZ5jR4OCrW8SMLX7Fxa0vMPhEB7EYpbjDwIsO3T+lWNkjj7Si+SQaL392LBnsh7ko6ORxuITEWF2qIJ7ZJLg02w0JuEthNwRuj9rLjCR+WmYvZ++ejSRMe0Sb/jkXqMspHtetvnSAa8y6w031jJeNc0B/9D/wRWtkZrp0Y8prvKefK3Q3gaHIyeCi2twASpYHLHP2e9z/lUlNAWwACocVovVTj8i8y5J5+Kkq/NhMMBzStg1w4JKSugDZXMv0vGmeSzUdl2JEQwqIIfoqr2TLLJSsGSeTtZJuK03Pgxjvzgr1OE4gv440ey5++l3nsBiKvz4yXZujYFeX4c7/6PUdTszjOJd0QyGolHFgbMdRd7Ud0mXPUWxk/mLs7mavnWdksJh348oBFl0tuapCFFUDJIqfdw39cSyVm9O8IkAyNHx3FVWIWSNQCuahu2gCJEulj+vhqcFVZ2f+20kALQusebmJmOCsVCzjqVtltrOP3rc/RvG9N93tpHG7G4zMI7lKxeWby/eaiwVrnL31eD0WIQsgcgtCs8ie6XeomG5+jZIUYQ2VNAH3u1XMVWohBY7TkvJCVnhRVrsSxEUur8RT+dvxAn53e+3C8cv06cChXUVsa/wU3VxSUc+PoxQgI11ULGouyUMdtMeFrdQiSlVQ/UYStRhK/Z8WgDsVic3V/UP748rVaa3lkt7AvWPdaE2WYS8gW2EhV7mUr1FaWMHdP/fo6dmkIyiSU4u18aFGv7xjy5vHSTC5Ns4sxvsvx3nriv/uoABrM03zorq2AgpaskJXZa7/luglwaAsk+r7S0gKzksKU2O2kpQwmIs2nTJrZu3arvx13AmxaXXnpp4l+SptCQvkbIjp3Sdi6Gx+DVf84sOqeI2EbDokqU3mY77horI0dzky5ytXwrv8hNNDRH/67JjLgq9xfMF8OmusNs/+xx3QpKSYyenBTeAFR1WQBHuRWrTyHYo79gvelpTeVZRPHGv7aImiv9HP1BF2PH9cdrqx6ow2CQhNprAmx+po3J3qDQ5jBPiwuL04zFISPCwNj7ZbHYCUBxw/L3NtL18gCDu/TnvM78eogzvxYn2J564ZxwHircFy4oN1Syyo1Z/YPsv10SgVVFOMqswoo5heSGencOI9tNnHtVbJ4UHbtJrHh/DXMzMSGylyhZKwlXlQ2DIFkeNF8QGZlh1z/pz3kVr3FRd1Up+7/VKeR3Vry/BtlhFnp2SkBhzX11jHVOCdmx8iIfZqvYGO7dOkJgjYeRY2Jq2TtE1fKTOTgFWt5ZzpH/Opv18eLP0VVvo6jehsVhYt+/LswBZuzUT5vT9vxrJ+HhRAveZFyXnUtIa8/L7AwXq7fy29A3mZ4+Py2BLuCNx5YtWwDYXHyX9of09m4zWaRP03z8f+C5cWQnmcX1RD47u2VNErWXOnFVyLjqVcZP5o4ZslsNAjRe5+X4r4a1ay2S80quN5I1Q4Aj39FXy0iPzSY6pwi1OOjZNpz8UNd3FLe5cNXaFicP5SCYN95YRvFyNwe+eYqJ0/r9ZvuD9URDUfYLbIiWnQZW3d9I52/6hcgNK95Xg71UFVa9tperIM4nKUhdu/GmchSHScgegJCCUhKDu4cwGCUGdonFDIf+szCCt6vGjmSUzgtJydfiYiYUFSIp9e0cEyIaJXHqhT7h+DUygVDLtiSKWu3UXhng4HfOCKkHFTIWzRatlbin3iFEUmq5vRJPg0M4t7zi/TUYDQah1m32CpnWW6s588qgfrKjJLH6A7WoXpmtf63/GciyhKfegVk15icpZWH46CQmRSznNXxgiuEDWe/0EvXNZL7A22ZFdlno3TqWeUCenFfDNcVYbEZOv5SID7PmCilNbTI5Jx3+xTgWA8yEQFKApPp4NidGmY+9ZMAkyUTjEdavX8/27dvz/qal8LpXckmGesvbH88gKOWDlSAKcYLMF3DndHEbrLzWFWTBY8yaXLKJSv7KGCDRdzL3LCTlSA7ZyqF2vYsDvxiHfDF/VgAiGQ0c+NfcOzVyJZOSeO0LJ/EutwkrIkVDc0wL7tawlyhIJonxs2K7hU2qkThirCGrz8DcTIypPrHi+MF/f+N3QSXhX+HApBixlaiA/snVWmUlHgwKtQAD6CkgyaP6wFnnEiJRAWz968OoPuHLFYTX/kU8iAKw11mRbZJQy7zQEBx/rrD2CUWtVkYFd8rLLgtmu2DhtkBs/cvC2srMRWIEh8WUtsxWI5JRoqi1iKBAkd6kmoR35w0fDBJ7W5zgiBgN++D3zjLVn3heyYk1fTLPlRQJwo4vnNZHUMpC+UY7thILx/5bf1V0+VtUbB4zgWUR+g5qf8tHUALoO2fGZJ6lp3vpcTVnMaSISsGg1r/JbzHSP5P/GqCRg634aG1t5ciRI1x99dW8+OKLS553AW9eXHHFFal/q6qaQVDKB2cFTJwgs+Cv4x3Z95/DBNpVxrvyxyfpRKXKS524qqy03lDC4e/lVg/K1W24+ZYAY53T9O/Q3xoCYPhgaGHQn7qxxXf1b/nMocTcrx/T/WGsxbIQQQnQlPUEkyFFDQ4MZgmDQWwRFByJIFnEE/+FkEkKhd2vFlSccNapTJwSs31oJMbJAnaweZfbCY7OCT3r0NkQv//bg+elzR7A7i8eEiLxJFG8xslU54TQuYUojgEaMVJVhezoKLditppwN3sIvcHtdvp3jhVEKJseDCM7zMJtFc02c07/lw+h0RgGs4S7yi5EUpoejGATuhJMd4U48r1OYVWpghXfVFh+ew0nf3aOUJ/+GLHmcj/xuXgmSWmJOe3oT4eYmdS5bjYaNKJS4tmqXggb0PWs46rMeu/tHAj98EK7tz8R/O53vwNgg3r9kpsYUlBAsUM4zYXpVYrc840uLPb8G1eyc0sV67WNHf27BNprFZuou9rPoefO5lfmzVEIW1R1JU/ctf9rnbgbVSGiAMDMxKxwzstZoWK0GAgLKkTJDnP+1kW5oMDsdJSpfrHJ/9SP+jj1o/OjcutqKMLiMOMoV4VISkpAgXA4f/vAHOjfKa6koLjBVuUQahEHsOMzx1DcwpcrCPu/0VlQ2zFrhYJsNzJ6RIBAEYbTPy9Myd5RrTDZJZgn9qvEClAeLwSFkNEAZqdnmR4Qe88MBgNGiwFvo13I91jsZkyqWD4p3BdmNhRlul/M9gf/q5vgkLgKUyGFbNCIW0U1No4JtOpueUcZ3kYHFZd46UmsCZbyleOdYU79ckDfvJRG8AgnQjtnpYmJMzpUn8wWFGBZ3TIOHjzIVVddxS9/+culz7uANy0ef/zxxL8k7LIzk6CUB/YSmDpDVkudpef0Iz+ewNciM96VX/EunajkbVXwtdgwWCSO/nCROk+O1r611/qY7o8wsCf/e5FNHp/ojrD7y515z8mFLZ89jOoR21A+PRjGNRUVIigBmG0mYVUeV6MTk2IULvxPD4SxFFCnOR9tzZJwVdswyeJ1CWe1LNSiDLQxL0LiSV2rVmE2HCd0Tux6v/8/B4WvVShe+8IhoRZ2SRS12gmenRI6t1DSlewEZFmIbGT1yihFFrxNNnoF1yuimOiKFNRmb+pcCFuJguxEyI6yyyIscDQ1GMGsmoSV0Sd7Q8LdGCITcQ588zQTnXl8XA4i0amfFthhSoamG0o5s2VEKOdV/1Y/xMgkKS2V8/rZEHNRffySFHk2AjNo41hSdD5ri5lLfO9lZ/hbf5CclxQXzZKm4ZZbbuF73/seAG1Pfi7nMcpIPENBCeAG2wSyAX7TaWRSXrzIqo7EEgpKSQQhjdgkj0YXLfgkSUrS7BxWK7groDdN9EOaDuckJwHEwxFW3V6E4jRy9OeDjJ3Ksfs/HMnJkO54uJqJs0GOfW/xYshiRCXtw/OzKPxTxeZn2wgNRthdwO53UWx6uhXJIAnvoN7wsRaGjowLtSlbeX8tjlIrh757WphgUwg2P6vtVtwpusumABRqx/VPNjN+Zpqj39avyrP6gTpsfpW9/3FaqI1goShE3ehNidfT21W0x8uC0xe5tmTITVBKwFppYdm7yunZNkLfzoUsccmUm6O7/tFyJIPEti+czVuESKkoAVihrMlA7555mcl8JKVoUTYpYhbQFldSLJ6hopQN40yMS9pDmCT48Vkj6XOiKRTPUFHKuObB33HkxR8AuckhF/DHAykxxlb734Xf2ZD7mOlQhoISwPq77cyGY+z+99G8QW0uNaUM5FGXTFcEqLjISc+uicyC7tzc4uMvFmfTxxuIzcbZ9pncc0+uXf5lFxdR3uHhwL+dIDSSZ2xfGPdvCApRaikU/rVuGq4vZ/TUFIf+Q/9utJbbKnGUqez4OzE1xc3PtBGLxnn1bwojD4tg3WNNmO2mgpSAROHf4Kbh2nKGj05w5L/0E0vqbyzF2+AUVrPa/GwbsdnzY8f2h+pRffJ5seMFLETzrRXYSpTFWz/niCf9a100XFfORG+Q/V/tzPv96eTzss1uRo6MZRBA8s1tGbv1sxGLZaooZUF1x1h5Rymh8Tn2/yCzwByfmQFHbirYtsGvMDY2xoc+9CH+4R/+YfHrX8CbGp/5zGd48sknAbi25KHcB0UiGQpKAMtv9WLzmdnzb2eIjC++HlpMTWn+gMXjl/S8kuIGd4OTvp1pWcV86kjxGG13VuCutnHk+R6GDyyyqzYHQWn1A3VM94fzt+a4EHe9Ydj8bBvTfSH2fqXwFkx6seGpFoxmgzCRfd1jTQwdG+f0T/Qn85tvLse3zM2xH/cIEakKhZarEVPoKhSF2rHjQ41M9gQ5JrBBr+W2SrzNTo483y1M+CoEm59uIzw2UzBh5gIKh+I2sOzues7uGKbv1Ryk/kXyeBuebMZoMbBlqQ2S6bk8Bco6PPT+fiTt4zx5wiWKaHnjsrk51jxQicVuZNv/PbfgswwVpTSMKX1sP/M88Xj8Qs7rjxzJnNdK3w2UOVtyHzQzm6GgBLD+bgeR6Th7/3Mkbx47l5pSBvLlvNI+K1luZeB4MFO1aW4uJzkJNNWKjU82EJuNsf3vF1EYiccW5L28bXaqLi3m0Pd7iQgSNXXjwjuzKFa8vwZHqfW8bOqzV8isen8Dw8cmOCKwCajmrX48DY7F1+GLYOMnWonPxc4LeWvVfbXYAup5yR06axVW3F3P0OFxjn5Xf92w4jIf/lVFwrHhxk+0Eo/G2Pa3b7wd2+6owl1vPy92fFPj9dQql/zuxdfu1VcXU1RlZc9Xc+ekc8VGziqZZXdWM9Ed5OA3e/J+fzrhyrfcxmT3dCZpqNCcVzyWoaKUDbMlRvs9xQRH5jjw31mbKqLRDBWldGwf+1dGRoZ56KGH+Md//MfFr78EXlf1OElQ8my+NufnM+6FBCWAo9MmJudgoCL/3s6gb/72KlxBrm6N0xbQjCTFyLsjfU4xIc1qQUcwmElQAhYkkdIhGQzs+844XVsmchKUmI0u2hfZbDXiqlha3SIdy99Xw+ZnWrGWiTGbl91dRcUV4jI5Vl8Bj13sJ6VQc52f0ouKhM/b/Gwb659oFjpH9UE0PMfYGYHemq8DgwfHGT0leC0rGC0G4d6hZ17pZ7x7mtEuMWLN+iea2fDUIgH9HxiNN5Wz+Zk2rFVig6V/7ygD+8eEr2dSjNgFW6Od3TbIVH+IuYk3nqAEmtLZpOAuquLVDjY/20bruyuFzrOWKbTeWSV0zvzJBZ7m0xEQpCW2VR+svK8aa9nSux0kg5Sa2Nd9pJ6NH2tc9Htznj8zh0kx4GuxL32PaTj2syG2faN/Xtow13dnT8xBNIISQDxO3Kb//b7oslk2XZL2VaX554HxajM9UwbGcvBIoqrErCP3eaZl8xd56aWXdN/fBby58Morr6T+vRhBKW6VFxCUACYHovQfDRNfQuVLSkv6rbu/hPUfKNF9f+kF5J7fTwiryez+8gmO/jD3AnKxNiTFrU7MdhOhkFhSZfPTbaz9cOPSB6bBWaey/L01yV4+uqF6Cgy3Ba+TPKf51grha7bdVc3mZ9uwVYtddOJskNlpHTtc/wCYODXBxNkgvdtzq3MtBntAwWwTF4/tPzBK704x9SBPq5XNT7dRfY3+9+b1YP1TzXQ8mtsXLIaJ42OMnpqiV7D9nbPUKryjHGD0+CR9u99YNaQkJnoKG4/rHm9i89NtwueVXeKl4tICJUsLeL8L8SUVl/povrVC6Bx3k8rmZ9qEz3NV2VDcOlVmEujfOc6Jn51dkqCUncjp3ZJFUFqKFJ8oFtS/tYiNH6nEVTu/hpCs+efFEG6CY3OcO7BQAUOyWIjbcq9HimgF4POf/3z+e7uANzU+9rGPAVCtrMr5uWQx58wt9e6ZZmpwlsj0Eu2j0851VitsfLya2qv05U+ktORseIxMgpIOHPpmD8d+dFaIoATazl9XtdgCsvFdZWx+ug1Xvdj6vfFdZZRtyu5VvDQUdwGxV2Fd1ynb5CGwUfweN31SPBYFTVlqXDAvVCjO7Rxm+Ig4YchsM+EoFRsjvTuHGT46weAhseuteaiBdR9tEjqnUFRe4WPTJ1qFx/HZbUOc2yOuSCk7zNhLxQKGczsHGeucYrr7/LS9ikzMMtkrNh6tFQqbn2mj5TaxnJfiNtD4rrLC3tUC329RX6K4oe3OKhzVYhdc83ADmz7RKnROOBxDdpspbnUKnXfkuS52fVGAoAQQRj9BKQvrP1LH+g/Vzp+br4gGSDYb5/ZOMt6dI5dqNC7MxyXgDgdS5KQf/OAHuu/vAt5c6OmZzwctRlCKW8wLCEoAw52zDBwLQ57NB5CI3RJov9vL2venreeWyjWnFZAHDmQRlCB/4dwgsfsrJzmyGPE0B0EJwNfmRPVYFrYYXgIbnmym/aE6oXNkn0zzrRWaMozIec4Cc15ipdAU6m4IIPvETq67PqDFog1i8cnE2SCh0TdW6SaJ2YkIw8cmOCeYh3KUqSgusXU4wNmtQ/RsEcsLycUyGz/WQtWVxcLXKwQdjzbS/mC90DkTvWEG9o9xbruYupSj1IrsNAuPy4F9o/TuOD85r/Ez04RHZ4Tf0fYH69koGGcAFK9yFbQWAwp6v3X5kiw/W9LhouHtpWLX8cls/EQLjTeVC53nqbNhFaxHT3RHOPKDHg5+qzd/3iortho6oJ+glI7y9TY2PFyKu37+AeQjKAHMmmyM90Y5uz9HTG8yEbfmPr/KcDEAX/rSl3Td22IouN3b0NC8AwtctJCkNOPWJtWwL44ylGngE1g5slTL+xzPKxaHztGlA2HDjEYgijpkLro8QjQCr70w/7k0oy953bcnx0NZYqfb1r9ZnLGaCjQkQ0bQMxuaJT6nEOwVm/BcNXYcFTah9mGlG4uovbqUsdNiPbLXfqARi8MsvDO5rMMLwLnfi8k9R8NzBIfF7BEagu0FMFbXP9GMSTEKM1BP5Ns5uBiCFLS7e/RwkNHDneLXg9dJRRRAwk8aBL3KqR8XJnFeiB0H90wyuISkai6sfqAOa4kifE1RtQGAwWOT1EfjhEbFWrfVXRvAVWmj9KIiofdtw1MtGGVD/t8Wjy8IADY/05pQmNAv1e1ucuMIqNRdU8qBf9Xvf2ZDUZCyBtYSE3NwCF79bKfuayQxdiKiT0o4Fs8IHgLLoKrDQe/xOc7sBykeJ66D1T07C9GsRx03gpRnY8+eGTumiYWT6HSZdr1ZB5hzDHNPVRUj3d08+eST7Nq1a8l7u4A3H5Kt3uxqWc7P41YtAI05rRiyyJiHfxEmniORkw+h8ShGva0dEzFO3bVeStrsHPvZACNH0lhK+VQkEwiPQHh4IbNpMYISwN6vdOVPJC2yIywamSM8kV/OOxs1VwRwlFvx1FiFWiGt+kAzBpMkHGdsfqKN2amokAJQ9SUl+FpcEEdox1BoJIKjXGW6S4xZdnSxdi/5oGq/baxzmkP/rl8RKTQSY/9XxVUDdv5DYTvkTz4v3iIumbSU3shdPenXkyThtjShEYSUqJLY/U+FqZQW2gZs89NtzEzNCj2/kz86x0nEn1todEa4HSNAzWV+4rE4PS/rX4upHmh/uI3gYIQ9Asqvy95TjavaxqH/Os3YMf3vacVFxcIteseOhYjNxYmGlvbb6Sgk7gWNqKQH8Vg8Y7yvfbQOo2Jk22cSdsyKzXJh6GgIT50NY3ZLzKz1eTb2/2wGKcfSNObR2OFxm4I0nVlMayq+mEnTcSKRCGfPnqW8XCwBdgH/8wiHw8QSBLcW5+YFnyeLXJKiEA9nPv+RY2FGjovlMwxmiIZjDB/X8Y4n7kuSJNZ9uJZoaI5dX0rz7flUlNIwuFd8bbzlr/IUtxeLu0JzzEVjjJ8U3MCzzI2nKUavQOtPV73CsnfXMXpiksP/qX8OWnlXLfZSlV1fOCTU3qzqshIkoyG3kkkezEzOFlT0KiSuWfNwA7LLwta/EotFC2kdAhS0u3uyK8yRrgJiBsP5jbuQJAxmsTVVz2/FCoBJFKLaMH4yzPhJ8Tiv5fZKPA0OtnzmkFA7u9e+ID4egz1hopE5QiNi47/y8gAlK4oIjcwI2bTjQ43ILvF89qan24jNxoTa0ynFKkX1DgxGAwf+rVP3eeHxGYwWweRtuLC8qKgfTqKoWaXlpir6d49y+gX9viEyMcPcjFig3bd/lr7dC+dCya5tdpcUWetwkYUKfzM9/Uf5i7/4C971rncJXfMC3hxob28HwKEEcn4eT8RecUVGyhoDJ38XBsMS71HW59PDs8hWnT49sVYoXWunalMRx18YYORo2j0soqCUjsgERHLtOs2zDjn6vQLqT8BsMEpkTEcNNC12q7rUh6/FxdDhCSL79ZPfV9zbgFk1CccZm59oIzIxKzSXeFc4Ke3wYrQYOf4D/UqD4fEZZkJRxk+IEWu7fjFAF2Ib5UDLZ4ycnBRSRIpMIHR8Evu/1il8DsCZ34jHeQYTWo1IfP9aYTAgXtuMIDQ2kjj8bf21qnSc+klhtc2NH2shMjnL7n/Unxc6+8owZ18RJ75PDYSRjOLxcv11ZRBHaC0GmjL91LkQ+wRyuPVvK8XfXsTR53oYPqjf/1RdWoJFNXHiR/pzgZGhCHORGLPBrLrAEpvfdn+pU/c10jF6JKir20w8Hs9Y16y8pwLZZWLHF/X7haGj0/iXi4k2ABz99QzMLozX4k4t9opbFaRgZgwZcDZQYihhamqKkydPUl8vRihMomCSUm1tggUvy0Q8ceSReeMlCUq5cJ1tglgcfhLX6H6hYgl1cP74bHJSyGNAHYnRM26lZ1xTUEpeacat3b4lbcJNEpQ0RInNwWyiAJxNTlpg2BltULa9w4m9xMSB50eY7k2rHqcRlJLM//jM/OfxubSAIivRuaDAlvb50W+fLUhWcc8/HcFcJNincSBCZHyGbkGW7PDxCbwNghRN4PD3O7H6xLcKF0I2Kr2oCFuxKkwempmcnR9UAuj4UAPDxyfp/FmB/SgF0HBjGe5qm3BCqtBiQSE4/t2zHEc8AGi8pRxnqXreWqJ1fKiBwSMTdL+gP8CcHomgeGRNcUgglvWusFGywsPhbwkEmEF49a/FW6Kc+lE3vjU+YULgyOlJHH4d72gWUWl6MExwQGdSKeHrzm0ZIzYTo3+JXb7ZBdc9X8pKsi0lHZ1P+jCPQhIAFjMd7y3GKEts/9JA8obmz0/ftZX06waJvtNQ2R7HlLZxIZuotLDNG2zfMk+ICvnnT44nfkI6WWmqdP53NRUFaVTn+HWvkWAOKaxsolLIH6fooQ8T/ev/xZEj+pNsF/DmQjQhLb1p2f3EAMP4vENKEpSyoXpg+VttdO4JM5DgusRVGSm0+PsryTLxSIQD38mxCEm+Q+kS2GkxjmTUYp4UQSmLnCRJUqb8euLcTU81EJmcZdc/deWPn7JRAEEJCpsf9331NMVrnEIEJYChY+MoTvFdTaHhCGOdYrugu14YIB6DwV1iSZTTP+3j9E/FF9bNt1bQv2dYiDShqgbmZmIEB8QS5DXX+imqsxdMlhHFmkcaGDs9zamf6F/oDh+YYsuB8ye7vO3/FObP1364kcHD43QJxEKFotDnFo3MER4XIxKC1pZuqidE/84x3ecc+Hqn8HUAOn/bz9RZMX8QGoGZsVmGjoopnpzbMYjFbiKSg6ScD0e+30lkSLwtQCGx6KJYonjsblJpu6WG4aMTHP1ejrVEWhyWnBMkg8RsaA4pm4CVRVTKiPtiMcZPBtnxj/PkyowdZcnrpM8r7vn176pb7MRm4+x/PrdfziYqxVxWyq3l7N27l3Xr1tHbW1iB4QL+57BqlaaeZJRkJKtCPC13JOXZ1LD8Vi8Go8S+bycSyCZT3tYhktlEfDbK2IkwO09krRuT709G7JQZ+8SiMWaDie/XGTc1vMOPr9XF4e92M3ZiER+R653I+92LX/v0z/s5/XPxvMmu/3sI2SuW84pMwnR/mHM7xXJeQ0cmMJmNQgQlgIP/2YlNUDUICiN3FK92YS9XhNqoAYTHCiBAAKvur2X05FTBZCURVF7ho7jNLdw27Hy2Gev+1WBBtqi5xo+7zi5ETn49WHV/LSMnJjkjsKE1NBwhWmFFUQyEwzrfeTRSYMlKD8d/IDbHFZLzPfObXkKjYgQlgOEjE7hq8ndyyIXxzinCE2KbB8eOhwpqtSeyiXhJ6CDttT9Yh+K2sDXXpsNFimijR0PE5+L5i8U5cnF7v5YWdy2lopQWl/lW2qndZGf/f/Xl9MvZRCXJqrCc65ly93PsmFib7wt48yApirC54V7ikFG3iy8We8nQcaOdM3tDDBxLxCKKDOkkpixykmQxE5+Z5dhPE2uy9FgnqZaUXudL+9xoMRCLxhjpTHx/NjnJaMzIgyXzX+s/XMvM5Bx7vtadGa+lfXcyH75oHmyJjRXp2PVFHXNOVux2/LmzDB0eZ/SwWOeQgb2jwuoiABNnppk4J7aeHt4/wUm1l1FBpcfe349kKMLpRd31AYYOjzFxWiB/JcNMMEpwWCznFVhfRPFyV8GkI1GseH8N42em6X5Rf2wTOhfh1b/5A+YKlsBrBW46XHmvFsMWQsQSRdkmD95Wp/Bzm5mKEh4Rz3lVXl5McDjCsACR8LhA6+B0nPxZL5ExcXLz1LkQQ4LvaP+eEawlMsF8JPYcMc6R73QzOym+8WPH57JiBR0kosWw1OZR2Wdi9ftrGTk6xfH/zrGOSzs/OWdIkkRkKorRmv++smOryDjs+tr8NaQc3TYyYJ2vV7beYMMgwcEfL5LzyuLTxK0K5Y5Kdu99jcsvv5wzZwrbpFowSWlqSpusSp96JuPv+QhKALIEcQlIq1llE5WyUWoPUlsSZ9cJiUievkSZBCUAE1t/Z8KkZ5DOzDuEaESTVwymr3uWUFCKz8XY9PEGouEYO5J9ZXUEDtYymYqLfRz7UY8Q+QEgOBSDIbGTpk4FCyKDnP5JP6cRTyqNHg4yKvjDilqtuOscwomXqov9GC0GYZLSni8t0gd4CcguC74mpxBJqfGmcoqXuTj9q3NCZJKiOntBrUr+GFBUY8ekiNOvN32ylXhcvIgiuyyUtLqESEqFErDqr60oqDWKd4UNZ5Vd6B0IDsWEflMSx78r8LvSiEp7vySuZgEsSVBaDIENLpQiC50/zx9cphOUAmvt1FzmY/T0NEef0x+UzoZjSOmKM/HY0oFKELY/v9Df61FUqm+axWaHbWcXDxrSCUqg8SolCarscY4ssnbMpag0MaHZ/9FHH+ULX/hC3vu6gDcXHnjggUU/W4ygBFBcb0IySsSyQqSliEptN7qZ6J+hZ+sSc3hW8uTUL8Y49Yux/OfkODc6G2Mmq03TUgSltrsqcVdbOfK9LkaO6I81aq71Mz0YYnCXuD8q5JwTzxVWmBbZTZOO7l+KzwU11/oZOz0hRDYC8DY7sZUo7DqmP7YMjcQKItcUt7kw28VjoY2faCUeiwtfUymy4DFKFBYlvrlhcZrxNDqESEoVVxRTdXEx3a8M0vNr/XNqoc+tUKK9f0URnjqHEEkJtHdg8MiEkJpY7+/Ed7AB7CygMD1yOMjIYXGfIPpOp6BC4/Xl9Pz6LCGBXO76p5oxWcQUaseOhYjH4kRn9RdFAfb+S1fu+GwJRSXZGaP5HaWcfnmUqXyvgDtzg45FkYjJ+WO6bKKSI3otsJdz58QVvi7gfx7JIucl/ndn/D0fQQlAtpswZC8BlyAq2SsUai51c/wnfUTy5XNz7NJ/7YtdmQTwxZCWm5qbiRGfizN+SizpvOmTrUTDUXZ8Tr8fU9xQfmkpJ184J6TQAlobu7BgYjw8EGbvl8Vn795XhuktYGfyZFeYyS6xe7RWKPiaHMKEl+rLSrA4zcK5skPfLIwAYQuomBST0H2WXeyl5nI/nb/pF7Knp8mJ4hEn9f8xwNPoKOi3rX+iGckoCcewyecmQlLqenGArhfF1xC1V5djLZaFSUquegVXtdg7EB4rTJWq84XCNpYW+t6IEpSS8K50YPMpQjZxN6q03V7LyHFBtY6pKCabeK5y22cKKxaXX+TGWa5y5PnFfcKCViRzYDBL+Fpt9GzNXSzLpag0NjYOxLn33nv56le/WtD9XsD/DP71X/818a+F8faiBCWgpMaoqaRmLwuyiUpZaLjaQXB4lt7XlsglZdX2zm6b4uy2qYza5qKnpsVn0VCMmaksQsISdcO66/0EVrs5+vxZhg8lkr866o1lmz1ExmcZPpjHHy0SO4oSlKBw5cUD/yau/AfQt11sgzZA2UUepnqDYmQjILDGg6vKxm4RonEEdgoooidRssIt3OYVYO3jTUiSxI7PiuVQHKVWzKpJiKT0xwJ7qYrBKAmRlLwrnDS/o4Izvx8UOs/X5irouRVKtK+8uJjIxKwQSQkS70DPNBNd+gk9g3vF2z4DQgpKSUz1RPITvRapr02dLbAdowzVlxXTt2uCyJD+71jzwVpkp5mtf6P/HY8Mx4jNxIlGxNTKj36/T3ebtwzI0HKdh97d00z25ckTWDPHrWI3LFkCzSYquYJXAK9ltGsVRUGsh/Q2MVarRhqKeOJIi8yPYV+cqDWOMmjge3O51XhytXdLoqY0js0EshUiOeKGOcWAOUfLjua2KP19MBk2YpjOPdDiVgVpLHPCPvaL+clYsliIT+cJVgwG4gkCU2RiltBI5i6LvAU2yUDdNVqLpsmeaSHSytqPNGJSTcIEjfaH65k8GxIm8qx5pIGeLQMMCBTnSi8qouayACd+2iPUYqvu6jJkl4XTv+4XIm7t/89uPPXiO9iqrilh6MAEwV6xIKUQWd3QaIRYNM7kOTHnuYDZqRObn20jHouz9S/feIZz020VFDe7OLtjSIi4VcgOKkAL7AtozVHIcwMov8TL+NkQU6f0D8qjPzyD1SvegLXxbVUYTJJw8nHdR5qIx+PCilsr3l/DVH9I3/USRCVrmUzrzVrgptsvxGMsu7sKV5WNLX+V+7kvxjyuvcIPEnS+qL9S1rdzispNXibPJd7tpSb1xKI3tes5694ldZGAMxYnbtc+a9wIZ49AcGz+YykeZzaHilISgdJEnJWDLxZf5JYPhmwcTNQdp5vimKZy223WAVHr/ItiXbuW4M6d/PjHP75AUvojw1e+8hUAqv0Xp/4Wc1mRZnMHuDGnlbjFRNfuabpySKUvBUepjNVnWZykJBkWqCRZyw0EljvnSUqLtHiTJClTfRLY8XdpxSTJQDxfe7hEQmaiawpbsWUhQWmJQl3ZOi/xWFyMcKTC5o+2MXh4nOPf10/u9G9wU7bWy5H/PClU6K+9PoDqkYXbcq39cCNz0Ri79eyaS0PZei8lq9xs/7TYnHzyhV6m+sRiGmedis2vck5QLlik7V06IhMzxMXWgUBh8UL9jaUEVnroeXXwvKgUbX66DRBvB1LIbwv2TTM34yUyLhjDFvjc1HIVb71NqJUaQOdv+hk9LqZApparlG/w4aq2CRW2/Wvd1F5VyvEfn2H4gP5kbvEaJ2XrfOwV3ChRf2Mpdp/K3n8RO2/jx1uJTMwIER+rLymhZJkbg0ESah05dTaE7EwrIuhswbP1rxcpwC6SIYnH4khGI54WlaI6Oyd/mpVEjMUXJZJYi1WsPgtVF3k49IMx3dfc/p1EPCmbmQ24Ft0IFbcpxE3ad6iqiizLzM3NsX//flasWJHznAt482FsbCz1b0VxA5pKA9FFYhtF0XJDoRCvfV3c/1ducmEPyMhuhcj4InmJHASlmqu8jJ2eZvREKL+KUlYx6/TPBzmd2PwhGaSllSsTCA6EiYxn96rOf27lFWWUrChiZnJWiDSx6gOa0odIqyWAFffUMDWkc22bhpX31nB2x7AQwaCoxUbTOyo59cI5BvfoT+LXXxPAWWFj4MAkYQFlyQP/eQZ3nXjOq2yTh5HTQcJ9b3zOa3YqSjQ8R7BfbLOi6JyYxKZPaLHQ1r9+45UsK6/wUXWJn97tQ0LKYIUWocJjMwW15ig05+VfW0RwMCREujv247PYSsRzXk3vqtIKo4KF7VUP1GE0GYRt2nJbJaGRiBARS3FD82119O4YZnCX/ve78cYyfMvcbP2sWOu8xuvLkYwGIZuMHQ8xMznLRFci9tUZdy2q3JSnMpXM1dW+tZj+/ZMEz2b9uDz5trKOIkyyAdBPXBw6GmboaOIaJd4FLUZS96XIGeT0NvcVHBr7Fb/85S91X+sC3hx46KGHAKgq6kj9LZ4n9oorMpiMDBwPM7DY+i9P+zdPrYK7XF6cpGSQFuS0ZBf4Vzvp/m0il7RYizejkXgWOX3Xl9NyOzm+Ox3J2GzybIiiWts8QUknqi4tgRgMH8wRQ+WJ2zZ+vJWhg2NCbZOKWu1UbPJx7L/PCRX6yy7yYA+oHBPIr4GmkGOQJPYIrolrLg8wE4qyU7DGdvQHPcI5ELVUxl6iCBM8CiF2AESGI1BIvFBAW9myTR5qry6lZ9sgXb9443NeG55qRjIahGvghbQeDg5FmAlGCY+KqSgW+txkn0xRnVWYdHfiZ72Mdwvm+WWouTLA5NmgkOKTq8FK0zu1tY4IKcrdZKNio0+YiFh5eTHOCpWDggqTax9rZHZilr1f7dR9TnGLi4oNxVjsFo7/QL/PG+sMZsS+S6koJWOrHf+wiM9a5Px4XMt52UplvE0q3b8dW/jV5tz0HtkOrgoZJImjP9W/tt39XGJcmU3MeR0Ygrnfhbh1nlguyzKyLBONRnn55Ze59NJLdV8viYJIShdfrBXIDHYHALO++UnXMrDwK5MF0kqCaLz+tEV14hmEfRLK0MJJ0hCF3/Q7KDYFmQwulA00JmRoZ53mLKJSlGI/eH2wbRE+jhROGDmNWW31Q6DNxqlfT8+3cjObciopLQg2/jHtpUskgfLKNMZjHPhOF/VXBYRbNBVCzgBQPTIWm5kT6CcpFa92oHpkAmu8QiQlu9+aUG8Q2xV7+PleytcWiStLdQcJdgueBFRs8BFYWXReWqP1/HqIHoHE3OvFRE+QmOCu5EIxuG8Eh19h6Ghhu4ZEcb7awwFghZorAoTHIkLXHT8eZPy4+Jjs+nUfxgIUmAo5B8BRbsVaolM2PpH0MChGZJeFQLtHv1+QDERnY8TjcaxlZoK9s1kfLz6pd/9+gMlz0UV3x6f6tSYXiImF6I4vZAZD2b1dUzCb5hdqkkRxm4zVZ6brZW0hKClKxue5UFIXw1tuQbFH2Z+WD0kRlLJa5iWx/YzEeBCQQMrh2yfL55+rIYuPW0qQE6E4Ubs1J1EpVDE/T5lHjJTefAeT3d1MT4sVcC/gfx7JHVhNlW8BYNY1HxNZhhY+z7hFi8fsfpjKfrUT4zBXP2EAYjG2/8sIavEiN5Oc17NkrBveUoxaZGbg4DSTXYskkpLvkUFKFdNqr/Ux3jWttYhLi58Wi52S6Hl5mJ6XcyQ6c7VGScOh75xGLhJLpjtLVYjDnED7A4DAag+qRyYkuH4sWeEuqC2HSTFiyMf8XwTdvx0gMiW2EAfo3zYmfE7T2yuwOM3CJKVCIUrYej0YPTqOs9x63mKhsa7pglpGF4KRw0G2HT5/7UJX3FGFSTUKk5QKUTcKnQ3Rt3uE3h2C6zGjtsPbXmYVIimVrfNhK1FQAwohgYKxr9lVkF8gHhdeO3a9MIAkSXT+4vyodaBCw1tLOfvbPkIjyXhr6d/aeEMZBrO0gKSUT+lm9HiIgz8eZCof98rjmv93VgHBVQZDMYg65JxEpXBgvqWMPBRixYoV7Ny5kzvuuIMDBw7k/0EX8KbB6tWrAbAYtOcZT2v5LE3lWN8l1h7OCgMTPVmxQnIsmy0wm2OujcU58twQtnIzU905fEIqdjIsKIYFVrsobnOw/R+WSI6n7bpX3FC2qYRTvx4gHhRrq7v3X9Kuo3P+Of6DXiLjYgSl+UuIz3GOSitKsUWIpKQEFOxlVso6xFRQ7KWq5pcFXfPxH/dRusYlRFACTSWqT/AcgJqrApRNzrLz7wtTQRHB4J5xIcLW68XoyQndxIzXi+HjU3ianIwcPz+/b9+/FFb0KhT115USHpkRIgAFe8IEe8TH5KkXziHb8qvS5YLFYcJQwPP2NDqIRqzCalG2EoXA6iIhktJscA5icRx+RYjwdfKFc8wIFsKBgt9rd4OKq9ZOV1JBQ0fc5apTCLQX4Si1su/rabm2JTYEHvjBWcJ5XLLBPh87xbMIKbZSmI4unruIFdnnv2d8mir3KkbVw6kOIBfwx4NwWHu+reXXAjBnm1egM47nSKgkFPDtJSyujmoxZ3RPSSEWY8fXRpCLFjkvGX9k5byqL/XgqbUy0R1i9MQi72vieEmSUnFM+WY30wNhxk6E50nlOhSRBvdOMLg3Leeus9XbgX8/jerL0X4tT1wl+2TisZiwum3JCjeOcmsuAay8KF3rRXaYOSbYucLiMAvHXQAnft4rnM8DGD4orqbecF0pzgobg0fGoUCRFxHs/0ZhilSFYLRzGm/PtHC7vUIxfHgCyVx4Gy4RhM5FClLAKhRtf1aB6pOFSUoDr42JXywCPb8fpF9QfSk+F8MkG7EVywI0Y/CvKsJVY8dZqwipl5WscCO7csSHS8V+cfHU6ODecWS3iZ5tYvY/9VOBHFlWbFV1mYf+Q9NEBhOOYSmCE9D8jmIsVuMCklKKoJSjA0xkGA78cJhgnrA37pyPn6Ss2Mvph9EoxKyWnESldDEG82iIVcvXsP21rTz88MPs379/yd+UDSlewKo/WeAtffZTmKsyJWuzSUrpCg7vGZ0iFidTTSnrOaQTlQxZvCBlLHMiMWZNLNlqSgFPFMkAA4kEZLaaUoqkBCmS0oo/c2EtMnH8lyMMH82aRdKIStkEpeZ3+YjNxTn2/cQgzQoa4ov0mp3/2/kpMAAaR0yQN2H1GQgGY8LnnU9seKqF4FBYuP9n4y3ljJ+cFCJgVV1TQsUGH6dfPMe5V/U7MlejFVeVje6XxHYLrX+iGaPFwNa/Oj89Xzc/28bMeUpiLb+nGmeVjS2fPSQ0voparTjKxG254eMtxOfiwgpOre+upG/3MKOH9d+ktcrKyjur6d83IryT83zCXmfVpxCVHRCI+pIlkh55mce5zk07fgHxKFEocDdaqbm0iD3/2pf5denH52Adb3goABJs+yftuWVIT2ddK6miBFC7Fk7vyrzXBSpKWecHA5nzaDpRKZ2gBJkkpdXWKWrUGN0Gid+pWmCRTVRKJymBRlQ6+7+eJhwO8//9f/8fzz77LBfw5sef//mf86lPfQqAq9f+/zIISrCQpJQkKLV0QFFJjO69Ic6lbyLJGoMZyb6s4ld8Niuhk008zireVl3qoOvXY4t+nhF2JmKjTR9vID4X59VPL5xzFo2fVFj9nlpOvdDHxOlFGEDnM7bKBxUooOOSrVoVaj11vlF3QynFy13s+8oRIZUo73I7nmaXkCIVwPonmyEu3gas4opiJrqmmDil35ZqQKH9vjqGj04IqcgUinWPNWG2mwre+S6KTZ9sZXYyKtx2rOKKYkZPTQmNy4pLfVRdWsLJF3uFSG3Fa5w4y22cFNjFCbDi3loUt5kdnz1/ySVRqB7t/0XeG+1ECvIl5xvNt1QwNxfjhMButLJLPNReHmC0c5pD/55IsubbzZ8ohhWvtjEXjmkk1/TPl2jHJVnzKJGkE5QgYx5bf5uCJEm88pv52C2bqJROUgKInRnhlYOfBgojXFzA/wySa4XLA+9DdvszP8smKaXt0l/3HifxWJwdX0nLCGaP5XSiUhYhe4GSZPaYyYrTXHUyRsXA8MFgzu/L/C7t3JZby/A0ODjx83P078xTYMjKW9W9zY/RaOD4D8/lvrc3ExSEW8slBLMIj/2B7+UPiLUfaSQ0MsNBwV3JtW/1M9EbFCJgFa9x0XBdOV2/6qNXgFjuqFZwVNqEW+eteagBi8vEq39zfgjRm59tIzI+y2uff+NzXkllnd1fOSVETCvUluseawJJXJG9/h2ljBybYPSI/g1NihtW3t/MwN6xgtuqnQ9YK5SCyFSF+JLzDUe1Qu1VAfZ9q0voXjd+rBmDycCWpPK+DhUlgKrLvXT/JmtMLkFSkiyLtztMJyhBJknJv0Kh5iIHw2dmObFVm3OyiUrpJCXQiEovD3yZYHCaxx57jM997nN57+0C3hz4yU9+wtve9jZA4trln8wgKEEOklKCoFS1AkobjfTsDdO7P498cjpRaamcV3Z8kxWbla23cXZr2nyaraaUdnwy9t/w0Tri0Tjb0xXEUwctTpxZdmcF3b8dYKI7suSxuvBGxW4yBZFx1FKZkGC3kfOJsos8lG3wsf/fu+ZJBTrgrJbxLSvi1E/7lj44DWseaUAySrwm2CEjsNZNcDAk1MYLGTY+3srw4XGOC3bcKQSr7qvFFlALUjgqBOs/2szsdFSsTR+aLaf6Qkz16Leld4WTxreV0/lSnxDhyN1kw1ltFW6313RzOY4yK68J5vPOK2SQZQORCUGflcuXvJGbEXQQtHOh+upijCaJ07/I8+yyvttVJ7PstipGT01x+L8S6+k8tdBkzstdLxObg4muTLLQAhWlrOtJ8uKxVzpBCTJJSh1/pmIwS7z6QppoQhZRKbvWGesb47cnPks8Hi8o51XQU5AkCY/HkyIo3dIb4h19WrDgnA1y6+wkK2PTRK1xLp2c4o5xjb1+1ghRI1wnTYAEVinITYYJ1qB9vo4pri+ZBIIYonC5f5K3BiZ5W/kk5dZJLm+bZlm5tlhq9k1z6eoQVoN23fVtIdZu1oqxxnCUTZdEcZdoBKWKRlh/NVgT7OjlV0q0Xz9v5DW3qjRdZwdFZuBokFg0xkxEM/yymz2seV9J6tiOD5TRcpOWWS5ZZWXdh6rxLbNSVGvH2+hg3YdrUwHD2g/XsfyeSgA8bTY2PNlI6QaNoNX67krWf7SJTZ9sofWOCtZ+pJGV99UCGrFhw1MtlF/i/f+z999xshzl2Tf+7Z7Q3ZNndjbnHE7OQQlJgBBCQiCEJFAAkQRIgEAi8/78+n0MBj9OGBv7AQwGg0HYgIUxGYQEOtKRTpJOznnP5jxhJ/Tvj+6JOzM7NUKL8LPX5wPaM13Vobq66q77vuq6ASON1uaHezP38L4u1j3QAYAWNMg5La807rHr5ga2fLgv82z3d7HuvZ3GPxxG2Y5r6gDoeE2dUdb00a57byfr7+9K193y4T66bm4AILg+yJb7+3AEjS6z9l0dbHhfpuzmh3vpua0JMNJibflwH44W48Sr397Oxg90Z8o+1Ev/m1sAqN/qZ8uH+/D3G2VXvqWNrZ/oY9W9bemyK+9pBQxFpy0f7qNmvdGGK+5qYfNDmXaxKDLOOiNw6+022rB+qz/T3lltuPH93ax+h9HeF343RvvLG2i6OggYpKXsNtzwvi7W3deZ096eFgd6Usff58pr707W39+Z04adr60HoP2GWgZua6VpuyFNse49nWx4ILe9u1/fCEDLtdVGG5rtLdnJ+Vo3P9xL7+1Ge9dfZrShy5T9XnVvG5s+0JNuoy0f7WPgTqO9azd72fLhPqpWOdPtnd2Gmx/qZeVbjLaXLBJbPtxH7WbDUT9wZ257b/pAT/o9uTocbPlIH+sf7MLf76D39oV9ds27jD7rCMpGn73WaAe7z5YzeG14oIt178nts+03GI7hztfWp9u758YWmrZXF+2zbdfXsuXDfWjGa2XdfZ1seJ8RCEc32/tWo72brg4a7d1g9J/V72hn4/uz+qz5LBOHQuk+6+02++xb29j0wZ6cNlxxl9HevjYrslXC3WIM3Cvvac1tww/2sPKtRhv6+zN91tvtYNsn+tny0UzfEh0j1r6r/DGi+/r6nPbueE2BMUKSWPeeDta/N6t/v7eXrpuNui2vqGbLh3txBI3Jde272tnwQKbs5od66LnVeDeN1/jZ8uHuzBjxthY2vj9TdtODnfTfbrybui1eNn+oC3+vg60PdbLxA61sfJ/RDiR1Nj3Qzoo3mePUSgebPtBOzVoHJJP0v7GGnhuCaH47TdvcbHhnAytvM9rB3WZj43saqVtv3EPPa3xseFtmrI/PJwlPx5BUFWeTyoY7PTSsMyb/zpcpbHizO1127fUyq68zPtALB2HjTTItq4x5oG27jW1XxgFjftq4Jc7GzakFcIytV8ZYWTfHtb1zvKJ3jmt65lAlI8iwvWOO65wZ8uRN7mk2uGZI2mBAm6PJmWRWhqPIvDo8w83hGeIunbhL53VMcwXGonnVVIg3D4aoD4WIBRJs3LYdgD/90z9lGX8c+MxnPgPAlVe8kphXpb4uyvYtUXwew3IfuAzWv8IgJ+l2Kxuvgd4NcOEURMMyDQNOAq2AJNF7tZX1r80YqutustP7KmNO8DQlWX+Xn033+ll3p4/ul7tY/5aMnNLaNwcZMG0gRyNseEcddRsNw7bjOh/r31mfJiitvbeBFXcYY7cWgI3va6PxCmM+6Xx1kE0PtBvGuCwRnY4RTRm8mjEGtLzcGLzbXlnN5g91pW2rNe9sZ+27Omi/uhZnjcbAba103GCMWU0vC7L5oZ40AWD129szNhCw6UM9bHywmy0f6aPhiio2P9SL1miOz29ty5lPNj3YQ++txjxbu9HH5g/34uk3yg7c1ZozR2x6sIf+2w17r2qli80P9VK10miX/tub2XRfZo7Y+P5uBu4y7BpPh8bmh3qp3egDjMB+9nzSe2Njeo7QGo2yDea43/X6BjZ9KFN23Xs7Wf229nR7b36ol6arjXfXcUN9ztyz9r7O9JwMBnl368f60Ro1Wl9ZY5Q11xtr3tnBundnj+W9dN5ojPveDoep6mKMf6veltfeH+yh+xZjLK/fFmDzQ704WzXG9s+iuG05NtCmB3vofaPR3tXrPWx+qJeAaRsO3Gm0tx7X0RM6mx7sYcC0IwP9DjY/1EtwtTEm993WbARmUu39QDctl1fT+9pmnK1me28x2rv7lsac9l733k5Wpdqw2oaOjtVjrBc6b85tw3Xv6WTN28021Ix2aX1lDVUrXWz4YHfOnLz2vg7W3pdp780P9dL+aqPPtry8Jue8a97ekbGBUu1tzrPpPmvauivf2sbGh7vT7bbpg1l9douPzQ/14ukwXuSKu1vZ+ECmzyKDrBrvLbjandNnB97cktuG7+9m4E6jz7ZcXs3qu9qoNm3x3jc25ZTd8EBX2o5MtbdWZ0dP6tSs8hZv74Cc02c7b6yn/Zr6NEFp3bs7WfPOhe0N0HZdbU4bOusUbI7MYn3zQ7103GC0YdPV1cY9pcaIrD676m3tbP1EH12vb8ht73LHiKz2XmyMWHVvL46GrDEiv72LjRGvyR0j1t/fVfYYseH9Xem1T7ljRP/tzWz9aD+bH+ql7TpjPC9njKjq8xjS2VdWmWOyZLZxG+vek/kWNn2wm+5bjPbW4zqJWJIzO4dBkln5llY2vDer7Ps76TXt9uq1bjZ9oINAn8bI3jnq1vnZ8N62TBve307fLcaz+bs1Nr63meAK44Z7bw6y4b5malarbLmvmg33VtF/kzE3Oephw1uD1JivrnMbrH+t1Qi8WSysudFOLG5heEhG0+JsvSJOU2ucuFuhfZOFjdenb4HNqyJsWGEE0WzNDgKBAHKJdBPLeOlBkiT8fn+aoLTylRYGrjV9SCqsu8NL4wYFZJmmDXbW3WbMQyPH54nHkqx4Q8BwFEoy6++uomW7Mac1bFRZ/7Z67G4gqTNwazVr31HHlvc1EVylsuG+Jtpfbvgw6jY42fDuZlTjs6b/DbWsudcYd3RdZ/27Wgj2eRg7ECK4ysnG+9twNRtzRN8b61n3rtb086y/r5WeWxpAkhk+NEl8PsH8jGF79b2hIed7W/+edvpuM743b6fKpge7qV7roWaFn+qVPmP+Ntfv697dmZ6T1TqVTQ/2ULvRuP+OG+vY+IFutny4j95bGlnzrg5W3t1mlPUZY2PD5cbDtb2yNmcsXP32dta8uyPd3pse7KHlGuO7brmm2ihrcvZX3dvGGnN8A6Ns+8uM99ZweRWbHuxB9Rnf38q723JsoI0f6KbjRmNO9nb5WfXWHlRznh14c0vO+Lbhfd10v84Ys6pWu9n0YA/eTrO9b2tm/Xszc8SGB7rpM+dnf5+TTQ/2EBgwxv3eWxrZ+ok+VtxtvJ/17+6i/w5jjnC3Gm1Yvd4Yl7pvbsiZT+xuG+4GYzxTa4yydVuNSa39htw2XPPODlbdY7T3qceG6Li2nqarDPu69RU1ue39tjZWv60tpw2r+tzoiSTuVi23ve8p0N6vMtt7W4CVd7bTdrXx7xV3t+a29/u76bzJmJOr13vZ9GAPjibjxFaXBcmacdRveF83PaZ/LNXevm7j2fve2MQG067pfl0Dmx7uoe82ow193cb9Vpm2Yc/rG9nwvkwbrnt3Z7q9JZmc9u68qT6nvde8qyP9nlSfzKYP9rDuPR34ujXaX5XX3u9oZ5U5J6f6bLPpY1SqbMZOJHMaWHVvW9q3k2rDtlcabdZ0VdDss9Dz2mbarq7N2ECp9jb9Y3VbA0bZGrPP3tnC2vs6ScZ1knGdje/vptv0j1WvNdrb3Wr22dsX9lmrTWbi8ByBARebHuzB3+dc0N4A69/bRZ9p1yhVKlbVgrfdkX4f+e1daIxQ61S2fqyfTQ9ntaHgGJHyR5YzRqR9XuT12cXGiPsyY0TtRr9RtpwxYqObTR8SHyM2P9zLhgd7ctt7kTGi/7ZW3I1OWq+oZu27OtL+X7VGYdOD3dSZfvH2V9eyKcs3Hw3HmRuNGB+CJrPpA500mXZk68ur2fSBzLOteksLq95inPfsY2NsfF8Hrdca/bvpqiAb729Lt/fKNzWy+p6mTBve30bby7ysf0c9mx9oYsM7G1BNW7z/lmpWvj6zkX3tHT46rnYjWS0EB1QaN7oITScYPKbTe6XMmuut6A4V3aGy5g0uOq8yxoSqJtjwKglfDSS9Tq7cYqhPf+ELX2AZfxx4y1veAsCWTVeQcNrxVetsuFLHW2XYGx1bJFZfZzXISVYLq66V6NwIw2dgdiJBdbeCz/hMaNtqZ/VNmQDqildrdF1jjFGKN8ma231suMfP2tt9tGzVWPPmYKbs6/303OAzynpg7V3V1K4zxsKmrS7W3lObJiituLWG/teb/jIF1r29kYbNxtzTsM3Hune1IKkSkiQxNxIhOpshQ61/dxvNV5n23iYf69/TjmJ+Cn23NbDq7mZqN3jxtjrpe2Mzra+oBj1J9RovGx7oQqk2FD5739DImqz5e927O1n7ng5jHlzhZsMDXXhaFdB1ul/XwNqs+WTdfZ10pXw7XQ42fKAb30rjWbturE/HwgDWvrMjHbNyNSlseKCbqhXGDXe8uo71b8+Mb6vf1p72USjVRtmaDUabtrwiN47T9ap6+m9vSbf3hge6adhmDBDNL6vOGQtX3t3KCnN8A6NsozlHNFwWMMqawqcr3tzCqnsydvCmD/aw+cO9uJoU6jb62PBAN4rHGPf7bm/OzCcYc1ybOUf4O93YnVZs5rvpuaWRNVnz97p3d6b9kf5+Fxse6DaUY85EsSiWBe2dmpM97SobHujG12O0d+dr6ln37k7D5xXXWfv2DnpMX5pWb7b3KuMm2l5VmzOfrLq3jY7rG+i+qQUlaJSt25hp7+w2XPXWNgbuMNtQAckCdq/hO2m6Kpjb3ne1sPKu3PZuuiqIp1VhzX0dxlxvtvfAHS0ZG8gs2/IK49uo2WC0dyqfU+8bm9K+y1R7d5j+sapVHjY80I2rSUm394YPdKX76bp3Z/qsr8fJhge68XaZ9sfNDTl91qLIWB3G2s3TarSLv9/0X99Ql+N3W/P29rRvp+NVDay6u4PqNcY823pdTU6fXXVvW1afldnwQDfuFg09kcTf48pt73uy+qyS22cbL6+i87oGzj5ukFxW3NnCyrszfXbDA900v8xow7rNfrPPGsd8na4ctaH193fRep3hHzPGiO7MGHFrU7rP9tzSyNaP96X7bNUKo709rUbZ7tc3lh4jsvrsomPEO7txNZvt/eq6nD5bcoy4MneMWPXWtrQvzRgjumjYZoydzS8L5viVV72jNR2TNdqwKzNGbA8YZbPHiLtb6bi+hi0f6mbDeztoudooW7fRy4b7O7LG5Ma0DQTGWrlhY4CaVT6q17hZ/552tDqzDV9Xx+q3ZsqufUcLHdcb71G2y8QicS7sHgdZovu1tax5a3Om7L0tdN1gvEdPq8K6dzTh61SYPBEl2ONizVsa0mvw1Xc10H290Q5qtcTat9QR6LWZbehmzd01eJpkNr+tirVv9tF9nSvdhmtu91NjNlvLGlh7gx3dakG3Wuh/pcJ83MLQeRkUnfVX6TS06yQddhpW2Vj7qoxPa9XaOKvWGvFOuc5FMBhEkiRGRsRId1ABSWnz5s3ous6KFSvSvzl08JhkK6c3gRUImiziqiSkPplfelxYAYecubhVgirMsiSxShkFJacFLLLR9hdCRlmPaigoeZ2Gv1A2jWBNBcVuEJQALFYImBve3H7j30rA6Cyax4LdkXl0q13GETDTogQtSBYJZ8AwZrSADZuWkue2YtVknKZcoqNawWKTcNbZeeqvThOPJrFmpVuyOaxoASMQ6KxRsNhlnHXGeV21KlbNgiRLWGwydpcNrUox78GKRZHxNBuDrLvWWPSloHjtOPwabdfXYvE4jLINZtlGDYsiZ5W1oXqNe1j31k4sioyr3ryH+tyyqteeM8BZFBm36fBu3FSFRZGRPcazqwEFxZO1g1S14K41jnmajXtae08b2z7ej1alYHdlzmvVLLjMss46zSQXOdJtKssymvmurJoFR7VZtt44r9O8f2etltPeALrZdxw1ivGsZhs6a3Lb0O422rt6rZtVd7UZbdholPXU5baL3W1D8RvPKjmMeyABO/7sEIrDntveHnumXRxmG5rv3F3vQJIkxk5Opdvb7slrb9Ph5G4w7kExn13SZaQs2TGrasFVk2pvp9EuQeNcjqCKzWX0Z2+bC4tNxmmWdaXasCbT3tltaLS30faSVTL7S1YbZvdvlxWH+S04gzYsdhnNrVC/IYgrr70Vjz39TpVqNedZSZg7Vc3Nn3ZPps86HLJR1rwHd+rdOOD0Y4Pour6wz5rndZllUzulFb8du9vGzr84ws7/fcR45+a78TQa7aJVGfesVSmGfGhWe3vbnax5Vwcus387zNyjzmoVmzMTDLNqFpy1xnkVt/Hf6dNhs73z2tBpxRE0z1Nnvps6DdlKemxIoZwxouvmBrZ/agDFa0c127usMcJvZ/unBtJ9VmSMqFnpM9qwwQhWyx7TaerPGiMkOWeMaN1Wg8Um4wqa7R1QsWe3oWrBWWs+a61qjJ21diSLhMVuwebI7rMyDrNdnLXGmJweM4IqskVm3yNnOb9jBpvDghY0x+SgDYtNwmUS05xVdqxK7rygaMY9KR6w2CTcNUZdV5UVi81Ml+XSsDtkVHNOaVoFFquEu1qCZBK3O3dTmaIZ/0sZFVbZmNeiMeMnq2wIDOoSaPbMfAnGHOi3GvX8NmOu3Y2FIc2BB8jef2aXwGuWrYkZ87DXHB+vuOpKPB4PjY2NLOOPA/F4HFVV2WoSzLxusFpBM4dRh8+aY9fYFHB7YWYcxofAagPNa/RZp8+SsWsAuybjCFggmcQRULAqRpq1+bkkzqA1UzaRRHFb0KrM8dmnYVUknLV29EQCT5OCTbPQsMVwyqgem/FtWixYPRrWrPnQsIGy7sFpxa4a51U1YwzwmMQAd5NmzCfms2p+BS1g59R/D7H366cMImhjZiw3ypo2XJWSnk/AsMssmozFKuOuN2wIh9/4QB3VeWVd1sz91mtYFQsrbzEWds6a3DnC5rSmx01nncOYB0y7xt/tTs/JYNgUqdzVKTsmVdddp2FzWtHqVLZ/cgDVZ0/PyQ6/BatmwZ1dNouIoXrtOGtVtn9qgLrLarBqFjxNmXE/e+7RAna0VLo7DSw2GdkqQTiKu9G4fy3d3nZUf5a9p1nS7R0dN5xsNp95j0EFzZdJh2NzWnGZTnxXg9neVTbWvLMDd6OWY0fanNbMs9U7sWoW1KCW097P/PVRnvnro9ic1rRd46hzmm1oPmuDljMn2z02kvEkp345iMu0edymveeuzy2r+ZR0/05G40iSRGI2aba3I6cNVZ8d1SyreY253VWnUb8xiOqy59hAqk9BzUovaNUsmTnZbJeUiadW2VF9ue3tMZ/N02Dcg+IxCjuqFeyqjaoeT7oNneY8m36Ppi3grFGxZ83fEhJ63JgjXPVm2WotXTanDbP67OxQCEmScNc7C7ah4rGn7RpHlc14toTEjk8fwqpYF7R3qqzNp5jtYvYBs89u+lAPng4N1Z+xIzWN3PfYZL6blB86IRmE9Kw2zBkjtKwxIpj57jW/HVnOttvLGyO2fbyfzlc15Nh/5YwRPTc1s/GBblx5bVhyjDDLpohJqre8MaLz5npUr4KzOrVw1soaIyyaBdkqGedNl118jAhNRNnxmcN4mowx2Waq/zmq8sYIhzW9JnQ1aMhWCYcjtZ5RUDy5beg2HT+eZgdWVUY119nuZhW725pV1oIzZV/X2LAqcrpNXTUqNk1m+FgEPaEbfoAq4zqugIpVkXCbhBB3wIot2w52WpBlOHrIasxVVnCbjiu3B6w2Ka2ipKrgMNvIrsGatWtJJpNcf30Wk2kZL1m85z3vQdd1ensz5D3NLeNwG/1B8TiwaRIuc/3tqrZi0yRQ4fSTEaxWGYcvq086ZFy1Rll3jR2bQ0ZWjHHKUWXHplhIxnVGj0WwOSzG3KnrRn91WFB9Kf+TMUekNvjYPVaq+rPGY4cFrdq4jrNayVm32T02XDWp8UI1fQTmOr9OzfFLKF47LnMtpvrV9Lz71GcPE5mez/k2Vb+SnnscASs2lxVPU8b/YXfZkG0yFs2C5ren19Cyy/BZeNJjuZZjLzlrVFzVWppIYHNZcaXW+Q25ZR1BNb1OXnF3a05Zj1lWdpn2a42CI5AZh+wuG+4GB+vf3UX7K+oMH4fpG3TWqjnzt+I2yoJhF9hcVgZu72DrR/tw1akoWfO33WNL+/400z/jTI93DmQ5s4ZVAnZcZlm1SjHuvz7lv9Fy5hM9rpOIm2n7vJLRhulndeTOswE7Wo2Cu1Vl43u6zfNmlc1qQy2oolWZc4RqtLfVaqgaWSwWbC4rqklu1mqUdHun3k16jmjQkGSJMTMdmrNGzW1vty0zpzUa70YL2NLPRjLj81KyyrpqNdP/lJpLtXSfrR7wYVMzNqcjaJR11WbseMWd22dT7S1ZzDY07z+/vR0BJW1zKlV2039j2Hup+0+3YVXGrlFV2WgXs78QM4LUkcmIeY9qumy6DRsz92tzWUFVOfWLQZJxPe1XBmM+TNuR9UbfUlPrvFoVza+w6++Osevzx3La29Volk35lAr0WX+Pm1VvbcNZm+qzC9sbQPHZ0/O3au6knjplOPTcdY7yxojIPLJVwqZmtWEZY0TD5VVs/9SA0beyUhktNkY4qlW2fWIAtUYVGyPcNurWGgFzj3kP5YwRvdc1GzGBakfR9i40RlisMjZNzmnDxcYIq93Cnq+e5MzPR9D89rQvTfXIZn8pPEYomi39bagem2Gvmv4xT2PGPpVkCa0q893Xbfca521L+a/NuUpNtbc9t886LLjqVaJTCfSkjs1hwe4y/XA1Cpo3yw52yjirjX+7a23YFIkLBxPMjRp+DMWZ5ct0yjhrDPvV6QGbIqGadtmajasJBALU1uYqIS7jpYvR0VFsNhvbtl4BgMNl+E5N0XhcVQqKO8sud8u4qiQi0zB8GhRNwpmK7VVZUFyZsppHxlltg2QS1SOjOGWSCZ3ITAJXjRXVba6DdB1HwI7T9BtLCiguC85qu0HabVJQPFbq1xu2lyNow1ltB1lGUUBxW3GZ6xVXvYKStT7RPEpOikvFY8VtfsfuBg3FY0N2pNaAKlpQYWjXFLu+dBqrzYKnIVVWRfHYUL2yeR0tJ62b6rOjuIwYjbPGKKt4jfO667X0HABGnCQ1fzurVRS3jf6bjOC6u9GBkvUdq1VKOt6i+A0bMzXW1K0PpNdlRruo6blH9VpQvLb0HO1tcBhragW2fqwfZ52K03w2FPO8KVulUcuxZZ21Rmre7Z8coPnaahSvLcv+cKB4bSjm2s1Rq+KoyZojHFasiiXdZorXhs0cZ111WmadbLZh6lnnhiOgg81U6XU3OHLb229Pz1POGhXFa8NRpdJ3ezOBXveC9k7NPY4qo2zKxnA3GD6PPf94gt1/fxw1qKTnE0fAaBdXQ1bZrPnEWa0SjyQ4+YtBFKcR50nbe/WOnDZ0VCs4zH6nYMQaY7NGUN+dX7ZGw1GbIfspXhueBgfVqwK4aow+q7jNtUW9mvZLACgeG96GjN9N8drSinyuBi3HBlJ99ixfifGs6T7b4EBx26lZ7U+3d8oP5DDXOik/kateS8dvwYixJKKmzRw07iFlG3oaHTltqAXV9Dw7emQKSZZw1quZst7c9k4dk502oy/ZLDz9uSPISHltqKbbUFHMd5PyeTUZ7b3+HV14uxw4a7W0vZRu75RfvNEoKzuNZ03GdBLzGeUb1WvPifsZfIBMf0/1WWetESdL+RidtWZ7m2vNYmPE5g/1MnBrq9G/zfdczhjReYNBZHI3aChegTHCb0+TuxxZ7Y1i+IicKR9pY8bmbNjmx1PnTLcvitEP3al1qTnOKoqUeTc1xppYskpme6fWA8bYaXNnYpM5Y4TXztxIhKf/9zEc5jir+izpNtSqlLSqkeqzp310zqCK1W5B82TOqway5gV/xr7TgiqK25pu72C/M71mQtdR/Rm/ocNnR3FZcFUroCdx19pR3RamzydJzOvYFAtO0+dlc4DiknEGjPtzVllRnJn1l8MnY7XBqYMSCsY87DSFxl1+Y66N+U2fnQucWYJM69atR9d17rzzTkQhnO4tJXvtuf0mfNdetuC4zW3sxkoM5ko+3Tw1SwJ4NGDcuTZUmB8lx3NTvmXDGs78rkwtlHC0hozfrLPzbH6lsen+mV9kndvcpS+Fi8i1RaJsutfP6PEwJ3+xMPWXPh9bIPGYPpaVCq6Q9GI6XUkxWUaB1+DtdtB+TR17v3FSKNXS6re346hWeeozh8qvhME2lu0yTwvKLq+7r5P4fEI4/dpSovv1jVSv8HL2t8Oc//Vo2fW0IEjIhEZfoMxmmXC0OCCeJHRRTGfY0eKAUET4PitN9+bqcDB7KSSWAswB/laHUBq1FwQHOIIOQmfFrrf9kwPoSX3JUu5VAn+/g+4bmjnx0/OMPV++RHfPbU0Euz3s/frpwu1SRFZx1b1thsN6sbEhT26w59YGEtEEJx4dKp3irUDdBYctJY7bSqf6gNLpQDa9s5bwVIIDjxZuS91hGihZ99A4AE0DNs4diHF20DBudMvCZ4zUZIy+ZBFl7NlGCxSZGmbbjG961WSYVST4IRZCWlbqkjbjnmOTBXKQA4k//VuGh4eZn1+YV3YZLy2Ew2EcJtnyZdd+pmCZhEn4UYfC6d80J6zcBqcPw0gq7e1U4XFPiifSaW/zkS23Tl6qW+PixvGmy5w0bvBz/GfDjB4ILzhezNxcfU8jis/OM391vPD1k3rlkta/RynrzhvrwQInfjAoVG/rR/uZOj3LoW+fK7tOoN9B3+vbuPjsGKd/OlR2veBqN+3X1rP/kXOEL4QXr/AHwraP9wMIz6dao7Z0z6WBr1lj8qjg9TRw1oin6as03ZsWkMFuJ3xJzD5MqQMtVXtqAZlwOCmUqqztuloaNldxfscoZ39RIpH6HxgpwtD+r54WqrflI33Mz8bY8/di8uNbP9rP9Lk5Dn7zbNl1tIBM1+taOf6TS0s7NgjKcnff0kCwx8OOPy+eniZtN2bZh5se7IAkPPO3JzOS1wWuLWnZqXuL2I/5qd6yEGn1AbBxIIKuw95dufLa06aSlmMoll+V+bnf8tQT/0UgEGBsTCxtzzKWHna7nVgsRkfgMrprrlhwXFeMdy9PzOb83vcqB5Iscei/DTtcL2JbkUxArIBNRZ69VMj3ZG4G1HWdje9pAxme/cLprOOL2D56ki0PdTN8YIqTxdKRl2N3vcip3tQ6lc5X1nLi0XNEJsu3A/ve2IS3zcXTnxPzXa15VweK2yacUjalWHLwX8sfk5caTVcZaVfP/26Es78S2NmqGmQbkfZ/IVDrVEgilA4NDEUp5ueF77PSdG+OJpXQaEQ4BZi3U2Xqgni9SqHWqUQE7cOtppL3UqXcqwRqncqKW5s59ctBxg/OLl7BRMs11TRuCXLo308zeax8W6j3lkZ8nW7hMaX9hlpIwKmflL+WqwgvMAXKpge7iYzHeP7rpcewbL9doN9Bz01NnPvtKBeenDR+LODXk6xZdlIRNcn8VG/ZSNYYQemqmhht62wc/E0sJx1ntMmw2ewjhf11B8e+xuDgILOzs6hqYb/YMl46SMUbX77l/y14PGk3HKe2iazvV4G1V8ucPZBk3HS35KcDzJwgmZvyLQt6drq2Ej6vqj6FjmuCnPzVaK7PK1W/SMyw5+ZaXPUqu75wqvC9lbC79Gy77oWkeivDbmu6KohFlTnzU7G198YP9jB9Zo6j/3Gh7DpKtcK6e9sZ3DsudD1Pu0rndY2c+PF5sdRmS4xNH+rFYpV46rNic4dSrRCdjlaUOq8SeFoVpi8JXk8BLSCepq/SdG+KRwbFJpRuD0AJKiAhXK9SGMpcSaILKQVFUbPBR9f1DZz77QjnHhNXn1kq9NzSiMVm4dC3xdY7G97fTSKcYO//KZDmsgQ2frCHmXMhjvx7+WMKCvS/rplzTwwze0HgnVeQ7m3RWGaJ8zZf5ad+vZ+df1tkPiCT5i0b697eBBbY80/nM/ZVoftQMvFGqYiNmJ/qLRuxWjOD1coYsgQHn8k9x5xJDFULfFfR6DGefObr+Hw+xsfLTxUOL4CktPrRTzI55M45liIowUKS0p1myrdvlCApyVl2gEFUCrE5kGD/uIX5cO75SpGUwCAq5Zw7K29eQZJSJIq/E7qvDjB+KsyxH0/lHNazDZk8o2PgjTV4mhzs+cpxIqOUJimRddyBQeZ4kR08/zeg87X11K72GwG9H7/Ii0CMVAZWzSIcTFp1bxt2l5Vdny8cjC2G7Z8cAFiyvK2VkpQqwcCdLfg73Jz+9SUuPFG+0779hlpqVviFnQVbPtyHRZGF312l+GMgN5XEC837uhjJSJSklBo3WYSgBGmS0vp3NGDTZJ7+/PncU5cgKAFseXcd0bkE+x6ZKdgOaZIS5BCVAOK+DGFoMZISGESlrmCIWBzOTDoMglL6BAvvLUVSunx6lo4kHEBmr5bl4GnLOGryiUq++mmeu/nPIKlz44038uijjy68wDJeMnjVq17FT3/6U5CtbLj7s7jP5do3iSxFomySUls/1LfB2WNwwZxyCpGUsvMOE4lSt9bom5f2RnMJSlDSYQOg5ztlso8VsnWSOhve24bNYeGpzy2cb0o5ZLZ9rI/I5Dx7vlhisVPomhpCRIllFEelZKNKsf1TA8Rm4zzz18UJDAugweb39nJx1zjnf13+or/tuloatwQZ3DXOyR+JEdMqQaUkpUpRqW2y4YEuwuPzQgQZMN5deDwqTMipBJ031lO71s/px4a4KGBXLqMEBMdNrVFj3VvaGTs6LeRY6r+9GX+niz3/crYomSrHbsyzEdMEJVicpARoVTKNG90c/5mRsqEUQQkyJKUrNhs7ap/8TWGSEiwkKs3V2dj1tQ8BxUm7y3jpIOXzuvqaT2O/mOtpThGUYCFJaeOb3SDBs/9q9KmCJKVklq1kEpU6Xunj4s5JwhN5faMESQkK9KUyCEpqncrae1oYPzrNkf8oMb/l2V3dr60nOOBjz1dPGcSHcvuxypKRMv6no2FbgLaX1zH4zNiLT3zASP3pqFaEbZO+NzahVSns+aLYnL/tY/0gS+z4s6XzeVVCUqoE7a+qpWFzkHO/HRYiijVcXkXjpiqe+eJRoe9o4/u7sXtsS2ZX/jGQm/6oIDJumvPVmne0owXsPPVZMaLl1o/0Mj8TZ/c/nBD33WWXX4ykBCDL1K1zktR1hveGShKUIENSquuEthUSFw7Nc/75zPEUSQkWEpViVQ4e/83/RyIR5uUvfzk///nPS15rGX9YfPrTn+YTn/gEksXG9hv/DG0wdx2QIihBLkmppgPa11o4fyjBBXNZW5CklE1Cmo8R6LRhtcsMH4rmEpSgDJ9XXvns+gXsNl3XWXVXI44qhaf/qsC8WIJ4tOn9nUSnYuz75zOLls2BwkLSyfL6oyJs/lAvcgVko0qx/ZOmbfJ3YrbJhge6Gdw9xsXflU8MqNngo/uGRgZ3jXHyR5dEb1UYlZKUKsXWj/SBJPHUn4v5vFbd20Z0KiZEugPj3YVHo+z5xxff59WwLUDbtXWcfWKY878pX3TjjwovNB4pdC258LhZtLhkpAN9ZzdjR6Y5/sOh/AJF67a+vIq6dT4O/fuFokTLQiSl9LEcAnhpkhKAXZNo2ODgzO+MeFApghJkSEpbL48h6bDzl4VJSrCQqBStsvO7H3zYuI7gnGNdvEh5yCYoAVjqDaMhMaihW0xyUigTHAvXJnOISnKeDRAJSqwIQa0D7CR4Km9ciHotaaJSNjkJwOGYZz5JOpCdTVAC0DUznVU4mqMcMHECdp5YOJjr+UxriyWjDBCLo2M0fCQ1Jkhy2nDQSziKtr6vD9kqCS8c1723k/npGAe+IRYgqN/qZ/L4BGHBscvV4WD2pKDKjQNW3d7G2SeGmTpWft3GK6pofVktw89PcvwHF8uuN3NujqoeDxPHZ8Tus0Jc3DWWTq8hAkeNId8ripEjU4sXKoCtH+snOjXPnn948SdIV4eDVXe0cmnvOKeK7cosgAtPj2LVLEwcmhC6nrfJSHOnBRHq00PPT6Rl9pYCkcko8aj4boftnxwgEU8KK5j13NZEZGKesz8TVB1wGOn1RFW3qte6mBuOEbpYYGItMin7+xx0v7qB4z8ZZOJwkfGhQN1172pB9dvZ8fnji6t1Zako6Ql9wVpuMYKSpKrs/Opk5ofU5CpJueSkFBLJHKKSw5MgNG0YFZKZdiZFVsonKAHICegI6iR1OODMM0YkcohKKYISwG+tMr8FcDiwRMkhJ6Vg80UWEJXcm3qYefoIu3fvXvgsy3hJ4Ze//CUAwd7tC45lE5QAIqaMrDoU5vQhOJ23Fkt6HTlEJSmfhKQqNK9zIFkkBp8t8JFZrRmnTZ4DRquDULatlnc8FfDTdT0niLbr70+bBeQcp8sC+ynveDKhk0wUsbGKGMNao8a6e9uZPh8SUj0JrnbTdnUdh35wXkghR2vUcPgtjO0vf5cvVKY6A9D6yhqsDouw2tOWj/QhWyRhwkpoeGl3rk2fDzF5QqwtPfW5aa3KxdD+aVwNGoN7J4Xqdd5YT80qH3v/8Qjh8RdfeWDduzuxOa3Cyg/DByfRY+KOSsVrR7aL27FzgxGGD0wK16sEk6dmCHS7iYyKfUC9tzZR1efhyPfPCn2zvh6Nxq01HPj6GdFbxdkqrrqlBcDV5mFkt8AWPWDgzlZsqoV9Xxbbxbb9UwPEowl2fq78PpYiGCWTujEel+lgOvSd4o7AgqR2PZmxFzVQ3BBNLSey7DZYSFAC6Lzah6vGzlj7HBNT7gXHs5EiKAE8sRNANdIkh+I55KQUQrW2BUQlRVFI5gdClvFHhWyCEkDSbzj5UmSlZ7+Z64uQVCWXqJTMs7tsVnxNVmoG3KheGwceyVu/ZfmdyOs7ig8iYTKB7FIEpSz7KXIpwlOfLYPsm2936cb3nFZmkaSyAl6b7u/BplqFAxKr7mkjFklw+DvlK1ECVK12M3d2Jkdtoxw4mlRC58XZVP13NHNx5whTJ8qv6+9z0n9rKyPPT3JMwOcVGg0zPx1j8rSYLVQpBp8dp3qgNHmzENyNDqwOcVfzpT3jSDbxgMSmB3uYn42x70vFdyT/vqD6ZNbe18PQ3gkhotjg3im0oMLwQTF/pafJYaa5E+ufF3eO4essHYT4fWJuMFJR/HvrR/tIJnR2/oWYHdt+Qy3xUIJzAmr4QMXqYP4+J+HJhJAylaNJpe+1TZz+9SUhxacVd7fibXWy+59OLq4qlmVfJeMl1sYlkENqSo35Rfx4elLPscccjSqhC+Y9puYg8/gCghJAMknblQEScZ3R46W/9RRBCeDSCbh0QgdsSMRyyEkpzFc7FxCV2tpfzonjP+TQoT/SDaP/F+Ev//IvAQg2rltwLJugBBAzU0zaJsIMn4Thk7m2le5Qc4lK+ba33UbbVhdWVWLoQIF1WAmflxKESPbQn3/uVGA5kcgJ0D7/DXONI0u59toiCkoLfF55tllBKLD9oX6mz8yxP1vlMTVeFBmsPa0Kndc3CSsUKUEF1Wdh6rhY3FDxyESjSWHFoLrNfhS/TVjtacMHurEpVp76rNh4MHVuLif994uN0UNTzF4U8w8oHiM1mLfZxUXKJylNHZtm9LCL4X1i8bjGy6to2hbkuX89LaymVAlW3NmCFlR59m8ENisCF3dXtmHNWZOb+rdcjB+fYfzY0sSlp8/NEZmYZ3ZQrK80v6ya5surOfbDC4zsKz/W7GpSaNgS5Oh/XRD+ZrV6cdUtxSvhanYzdkCsPbturEfx2jggqHC77aM9xCJJnv2bxUVFUnZQdNoYpxcMqYsQvs/8apwzvyr8nZYiJwGggN0B86lmybO98glKAK2XO6nq0JgZijM2bF9wPBspghLAU78FsIEKlkg8h5yUQqRaWUBUstvtFfm8hFaOd911l/GH+eC+WqNF5kILGyAFPbttHbkPE65N4rxQ/MUddEg4xiXOjBU2XvPJSSmsWgV2OzzxBNiHS6Syyd/Zlq3QYbeTnC2RLsliSTucDn6zsGOhKEHJ7KwTp2ZyclqWCy2goHjE67W/op74FTVCC0AtCGvubCc8HmX3F8pX/2ncUIWnyUnT1iBTx8ofGOZn5klEk0ydFhuEhndPMyzorAfY8L4uFK9dmCh2/tejQunhUhAlnKRw7Lti7N0UJBkstqUxpiwWY6AWdUhNHQvx3DFxh9LefxILsqRQqdJWpX1l9xcqI4jNz8SYDxVOA1AKwR4PybguTFLa/qEB4uFEJtBZRkDJEZToubGF8HiE3X+f9z5KTMrOOhWrZiE44ClOUiqA4QNT1K7yobpkoqXsm7xJfc8/5wbsyyEopZE1LwClnfGJJPEqF9uuTiBb4He/yD0sLeI0Oj0icUEtYpCYr2O2NW+iz5pXE4pOMXPG5ovg1DLzYfsnbuXEHX+9LHv9R4C46SBp3fJaAGaajfnfMSo+PoBBVLKMFZ9jD/06hMtdqp8Xtr1W39ZEPJpk1z9eRC+VRjDfNspW6JDkhWpM2chyyjxdKGC+mHc8HCU8HmVon5jsaPWAD7vHhuq2UH4iTeh/XSOq386T+0VVF7srUmus31CFbJGESUqRsXlku3hQSJTskML2Tw4wNxJhn+A8LppOC2D6ZLiiXeThC+GKrmfVLOVJ//6eYFUtyBWQ349/r/ygaDYq3fX2QvpKaDTC3n8sv/7Y/lnG9os5sAAmz87ibXUSK7K+LIamy2rxNjsJ9DsYF0hdvP7+LmN8EFVlfXsvVsXCyG6xet4WR1G551KYG4owOywuP/dkthJGOUSlbLtRRLlJT+Kos7PmrW2ERud57l/y+naJeeHEr8YJdDmECEoGMrZTosS6J1RrQ8967N7eXp577jne/e5388UvfrHkNZfxh8OXvvQl8y/j5c03GM4621hlqcklVUEPFa87eT7Omd+OM16MhFvEydd9YyOuOoW9XzpJeKyEIzA/mJWl0CHJUslNddl214lHL3HiUfFd1qOHpnDViG8QcjU6SOarFZSB3tc2E5uL88xfic0Da9/aQWgkyl6B3c++bo1AtwdJlpg6Ub7PKx5OEJuNM3lWxKqEyWNhnv1bcdWf1W9rw1XnyB2Xy8DQsxMMPSsWuALEFC+zUKk6lGyTsdgXcer/HiFZZKya2PUilyIVpQQ8LJAuOhsXd4xzcYfYegcM9QB3vXhfef5fTgtfCyA8Pk+ygg199WurSMSTwiSl7Q9XoMqqQv+trcwNi61dFJcFNWAn2OcVIild2jtu9K9S62lYYFc9X8G6JY185aZsEnge9KSOZLGw8f52bC4LO/48L06wiKLf6cfHmJspn6C04PpqcV/efLUTKev6LS3bGBn+DTabeLB5GUuLVFqY1hU3AhA2NxYrY4t8B0WgO1Sk2eK21+HHZnGW2ndexCe19vZG5ucS7PnqJfQiaXuhgIJEtkKHLBU9f7q+2Y+f/bx4PEFRYOZCiKHnxTa7+/u8aEEFxaeCAEmp+/pavO1unv2bQ0Snyx/PB+5sRwsowv6FpsursWtWYZLS7MUwSgXEkyOPnF+8UAFs/Vg/c0Nhnv/n00L1RNV7wCBLVOKniU4nK3o+iyYjWeX80MuLBqtqwVIBif3szytLnyaqvJRCpTZbJX1l9nyU3X8vlqUHYOZiiOhUjPm5wqkvi6FuXYDqFT7Gjs4w9nz58feVd7fibXPx7N8cKD8NniSx4q5OVJ+dJw+IvQtflwurIt4xJ0/NEZ5cfNzL9/Xu/Kvj+QVKnyC7voByE4DktLLlvibmhubZ/+288a+E7XX26VlmLsUYGy+foGQgM14m1OI+r0i1kmN7DQysYO/ePdxzzz38y7/8S8lrZkOITfDII48A4Fhp5F1v9k0CcDhUW7SOvX6OGw/ouIB/UeWcgKolWnqAscw62AOoFJ7kYi4rttmFRsHFi1BTA9aZRYJVih2iGYNn8x0BAHZ+ZRx9fh7JbluoopS+eAzJIqMnklSvdjDynKDTSk9y5NuVTXSVSvZOnJxlUpD8Ew7B3FCYwT1i7NMLT4wRm4sxc1aMODSyd4aRveJEntrNXjytLmEyT3Q6XtEur/43NWNVLcLGRqVY864O5mfjHBJMr7Hjz5Zux8jUsVBFfdPb7aD71Y2c+NkFJgSCO5Wi/jI/DRuqhFPuVdpXajd78ba7Ofodse+9EgckwPEfnWf2rPjuyrnhiLASWWhUZ+p8iMFn8gy/RSblC49PcOHxEg7PIvUv/HaKC7+dWjzNWwE4Wy3EpxLMz1qNybtIEFmy2YwFo8VC36udeOpsnHhikjHzdaSU+IpBjiUYHgJnEeXqaLB4/T02NySgKNMI0C06UiL33m+bnEUB/mvTPFOzxUlHvUHDiDkyWgMY5JcTJ158lbVl/H4R9Rnv31HCJxuuc3DNuhDzEdj169xjUqy0Q2T2XJySI0j2rv4szAxGmb4QQS8kj10EDdu9tF5ZzcihaY7/53BpghKkA2VaQAJNLZoOqBjC48mK0k0dqnCxeeaxS9SurRKud2nvhLDyD8C+fzqCo6GCehUSSLpvaWTi2DSjz4nNHYlYksiEmMNRC0DfHZ2c3zEirCBTCYKr3bRcWcuhfz9PWGDXdKVOrEpRaSCw//ZmZLtckfpPJVj51jYiU/PC5KhELEl4XNw5XUnfHHp6kqGnJ4WvdeI/z+JoECMoAVx4ZpTalcWDMMVwfscozhpxgnGlaRn3/Z/KxgcgQ9wqhxxlBsS2f7zXSEX455m+vRjxLzSSIDQ6z6UiuwGlAjvKAMLjcOGoFUgsILjn3Jos5TheNHuEzetgZg5+rntQx4r7HKY7jf96TsC46Qz85je/uUxSegnjU5/6FAAuVxMA8x5j/Wcr4Q5J+l2s2KbjrrGw59vTxLKnjcV2EiYSDO4OoRczgWS54Dku7Z2kbo13YYq4RbDl/m4ki8RTnz1amqAEOQQnX5fG5HFxwqKIwnI2dny6Mp/X0L4J5kSVHlWYPhNiaL8YIWfyWJiDj5wmfEmsXWbORCqavwMDLvxdbk48KkhGn4ih+sUIuAAdN9aheu0VkWsqwcCbW0hEEhwRDNA9/bmlSzEWmUxWlI5OrVPpu7mRs48PCRFWKkXVajdN26o58p2TQqpikYl5tEBpf0chVNo3K7UxDv3HGeHvDmDy5CzT5wV9jhEYPzojvMll4vBcRf7RsedmGBNcW6Wg1qkQiRKZLH9e6LypjtrVfk7+4hKXnjLHwMWCbMCl5ybxNBYmoOak383D0BEd0JHk4tfQZRkpb95bew2oLomfHvWgjRYPrk52Gf3Xd9yYB+bn5zl9+nTR8st4aUExbfaY0+gfSgnbK+bXuOyqeSJzSZ77eV6fz1cMz0NoMEGo1HCVraaUhfETIULjsYUp3/IgSVKaqOTtUBh4QxMjB2Y4/qNhwx+9iCKSJEvYXTqyQyF8ScymiU7D818TX+Of+emwMPEH4Oxvh6mdSwgRlAAGd47h6yq9UaQQnv/ycbQ6cfJ7pX6a1utqmD4bYuKQ2NwdC8WJTIgRQVBg1ZvbuPjMuBARpFJ42lXarqnn5E8vMnu+/H529ucjFROAKsG+L1emlNlxQx12t61i8pAoem5pJB5OcPK/xTZ1VNRXgJZXVDNzPizUNyePzrHrqHi88dxvBhk9Ms3kUbENFheeGSMxr5cWGsiG6Tc68/gI3mZx3/azf11ZLDXt8y/D/smHt0Nl6qS5+C9B8s6OQ255sAM9qbPzbzN9e7ENhXpEZ+pshNEjRd53EUGG6DRcOm0FkoZfodj5LVKeuEKMy6+C6Wn4zZwbrUSmgKl2w+7znooTivsAePTRR0s9zgIIRdznTSZ/w8dvSROUAPoahjh8MZeoJFsyNz5mAXuCggSlSNB4eHU08yKsZltf758mocPjEwtlau0zxvkLEZUGD+oMmmuBpGZDDud+6Dmyj1lEpemhGLIs5SgAFCQqxTL/liwyXa9uoP1anZ1/bQa+TEOj6M408/j6+zu5sHOUoZ2VpfIShSjBBYBQ5Yo1lSgbVa9142l1ceI/xRa3rVfWYdUsHEPMobH/a6eFyqfga3dVtFN+28f7SSZ1YUUlZ42Ko+p/Zv7gQI8bu8dGcKVfiKTU8Zo66tYFOPPYEBeeKJ9EV7cqgOpTcLQ4CJ0t/3qV9pW2l9VjUWRE3ZCVfguVfHdA7q4wgZ32C5QmRPPYLyxQ8vCqtzYxcyHMmV8WcSKngkzJzOTrabez4uY65kbnef7fTGZHAaKSlL3DKpFg5NgcistN2Byi0wSllMMkb3JPeoyF0ql95g959kGKoCTHdJIFdgH02+bocST43ZSVURw5SoQzHVk50POIShMS+Mzhwesy5rd8stL65syCrDc4zJHRGqJlW4nL+EMhHM51vqYISgATXTb8x3PtEz397YaJRWFmMvd8KYJS0mPYY/J01hgYixNoh84rPJzeOcvwPhYi5agpQFQ68K2ssapAQK2QI2fm4jzRyRhD+2bKJigB9L2xHUe1yu6/P0g45S8uI8dA23W1OGpUDn5jaYgZhqKLeCDi7C/EnUNgkLDC4+LX67ihnsmTU8Iki+oBL74WpzBJ6enPigeTnE1uHFUq1Sv8QiSllpfX0LQtyOnHhrgoYCtUD/hQ/XY8raoQSemPBb6OyuzYLR/pA8TfoafJgatG5ThiJKVK+goYfdPb4BDum5V8C5V+d5WSokT68e8DtRt91K0PCAcSt3ykD4td5sn/JUCO0pNMXwgRj2TG+0X7qWn37ftnw7GUL5GdJijlpeVNYe1NxvG9j0ZzzgcQbs+QyLKJSuF5lXg8wuws4IRIlXGP+WSlqa7M39Od4Jl6PZz4M2ZmlkYGfhmVYWTEcLr39LwuTVACmGv34DxVfP6ZHY2juuWCBKWUSqseyTpo2j2r31wDEuz7lwIO7ZRtVMCuGnlulpHnzLEnP30IFA1+jR+fxarKQgQlgIHb2wzV3b80V7Vl5nZa9dY2Lu2ZYGTv0vi8REkSAERg/9dPV3S9icNiznowFJh87R5O/0yMwNV2VR1q0C78jEe/V5kqd3WfF0sFu5E3P9QLEsIpvLxtrkUDv3+scDcoOKoVqvvFVHXqtgboeHkdZ58Y5vxvylcNqh7w4arVcDS4iEyWf71j369MabP92noUn024b1b6LVTy3QEcrMQnDsJpJ18o+m5vJjQc4eyvigSBC/jrVB9seEcHs4NhoYDu8N5J3PUO5lLphRbz55l20vnHJ4CFPrk0QamIimawV6F9u4tjv55k8nQih6yUqMts7sknKs1MgGTRgQjhoDGn5pOVpjoyKgGTXQq+41Ei5rw7OTmJz+cr+WzLeGkgRVACmG1RcZ0tvhaPzCaZySdrmwQlXTVsfCk7i0o8gVIFK6/zcmZXiJEDBTbYpWyvAkSlo/+VtQ4rRCLP8mmliEqRGZ3ZwQgjh6ZybbVFiEqdr2nC3+Fi95dPZYhKi6V6Axq2+XE1OBYq8lSSk7MMTJ+KMH1K3M649Owkl56dFK4XnU4SnRafA5quCjJzISSclq5xU5Cq7nkmDoltdN9VwcZzxaPgaXISDyWFSErVa7x03WAQoS/8tnxfga/LjatBw9PsFCIp/bEg2OdFriBV34b3d2Oxyuz8SzE7NtDjQY8nhUlKlfQVgKYt1YS7osIEukq+heg0FX13E4dmhe8PYOz56SUh6qXg73PRuKmK/f9a3N4r5Jda/+52FK8tZ4NdQaJSXt3xE3PoWYSgNEGpSLwx5aM69L2R3PIppAhKicKb71a8wo5skXj+J9EF559vyKTQzSUq2YhEY0xPAVYIB4w6+WSl6dbM9abarXii18D+XzM9Lfb+xGVBAIfDAeTuas0mKmUTlACe7JOYH8zISiymoJSCTQKLBBG/jDqROWeKoJRCNlHJOhNl/dUwNgRnShCVcmASlQ7/10zpFCWQQ1BKYeZCmMkz5oeaZzDkEJWyjnm7HGgBlfr1VUIkpZZrq2naXs35J0c4+8vyWav1W/00X17D/kfOCREz6i/z07C+il1fOZ6b8mgR9L+5BV+rU3jXbvvLG7BqFmFixv5HzhHoFGdYVq1yIltkRvaKOYsrVSiKRxIkY+KOl0rVs7Z/aoB4JCHsIKoE3m4HK25vY3YwzHMCi+JTPxqqaIdleDRKMq4TE5Qo3CMg4Z4NR1AmsCognObv6A/PonrFd6N1vLIRiyILfwvr3tOJ3WUT3lHYc1sTqtvGc185LVRv9dvakK0Se/9JjNm+9eFukgk9VxpxUYeIjKtWRfMrhUlK+ROxSVSaPjXP7HCUoQN5g1gJRSWAscMJxsx8wospKKUISimsfxmMDCY4c9K4p3wFpXyi0kyjBYtk3E6tXWd0kakom6j0M6+LQHfuzj6vK5ImKmUTlLLR0tLC2bNnefOb38w3v/nN0hdcxh8E9913n/GHXNhcyyYq6TlGqsYTB0G7lOnziykoAbhqFCSLcR5JsaNnqU0u2EmWRVRqusxJoMPFvq9mOSeK7PzPxszpMLv/8YwQQQng4rNjVK/wCRGUAGrX+rHYxReplRIz1ryrg9hcgoP/KkaKWvW2dkLDEU78UGz83/zhXkIjUeE0ZXXr/VT1uBk/JEanPfGzi4RHxJ0ZDVdUMXFgLPP+ysDoczOMPndA+FrRmXkS80miE2L3Wal61pp3duCsVdmTTaB7EbH5w0bqL1E7sVJVndhcZWkmK7Vjg6vdxCNxJo+K7ZY/+5thxo6KO0Pq1vvxtTsZF3FCarD1/f2MHJ4USrWoBWT6bmvn/NNi6mCeDo3e1zZz8ucXhUiQbdfV0rCpimP/fV7oeg2bqnBUq2gBhPr0hR2juBvEd7nu/9qZtD1YLkEJoO3lAbwtTvb987l0AG2BglI+UcnnwaZIlOuyzyYq/W6XytiKXMnsSJWUJiplE5RS0LwBnE4nHk+p/BLL+EMjadouXl8d+eZ4KaLSmWM2zu3M8ikspqBkwuawIElSWqU7jXzbKMuu0nWdVXc3MXVmjrO/MddEhYhKBXDsB4PCBCWAsUPTzKSC2GXaXaoPPM1OJIskRFKqWu2m98Zmzu8YKR6kL4DAgIv2a+s5+ug5Zs6UTzCuWu2maUuQI989Q2SyfF9N+w211Kzw8/TnD+emSloEbdc24KhWhIkZB//jfEU+L2+nikWxCiv4PF2hD2m+gNp9OahEoQiM1LCxcJxn/rIydUkRqD5Y/8AAM+dDQum1RnZPMbJbnKgXnYwSjyaIzoj5vCpVDVB94OsLcOkpMSP26KPnUKvEfV6d1zeheG3C38LAnS0461Se+d9i77z9VcaGFVEl0b7bmrE5xZX0Nz/UC8DO/y0Y6Oxy42lyFB7/imwojEzCxIkZRg6K9bOZs5HMxuQyCUoprH5LM2PHZrnwO2MeWqCglEdUklxGXEi2Srhq7EyeLm3fZxOVTuyBqT5vzvFw0JYmKmUTlLLR2trOmTOnuPvuu4V39S9jafC1r30NAMlSWAWiFFFp1y4V20RWP1pEQQnAW2PHYpeQrRKS1ZqrBJ5ve2URlapXqlT3ujjwn8NZqdtK+7wkSSI6Ms/z37hQlo2WjcFd4yQTuhBBCaB+QxWK18ZRwU38Gx7oRrZJwuly+29vIZlIcuS7YkpFvbc2EZmeF1Zv2vBAN5HxKAcESactV9QQnYqx6+/ECCFHvn+e2Ky4z6tmg4+pY9NCClPRkSi/+1Nxn1csHCcWEVfjqVQRqffWJqp6PTz3tRNLQm5af38XqtcunIpWlGSUwvzkfEUk/ac+U5mPzdvlQE8kmT4ltjny+I8vMnVWXFWy5YoawqNR9hwXi49u/lAvo4enOPkjARKWAqtub+Xi7onFSUdZ9oJSrTBwSyNnnxhh7ED5Mfu6jT7aX1HHqZ9fEiJB1q3z421z4mpUmL2wsE8X80ud3zGGt6WAz6uUohJw7NGM3buYglK2z6t+vZNAl5MDjwxn6uUrKOUTldxO7E65VPgz99aziErPPmVjoidXBCEckNNEpWyCUgqKouB2u03+UPmoiKSUraKUj3yCEsDLTuic8sxyLO4qSlCKBHXUUSmtogTw6HjGgZciKuUTlFKIuaxogwZRSNEgWJ8hKYFBVLKMFe/UjirovNrDqSfHmDmdazhI5svW5wqzdA58a9BwKBUxGCRZWhCAmzoeYs8XDxEKmUZ7mY6exHwSPaETHhMbuKp6PVg1C5pXEuEaUb8ugOoXX2zaXdZ0oFMER/7zHIEecbnH0NmQEPkqhZ6bWpBkiZG9lTlERCFq7L1QRKfmmRlaGgWA+YkQsbk4Y0eWhuk6+NQEg08VIKq8SOh9QzuOGtWQdxXoa4Y6lHjfPPmzC2hV4uk8rKoFuYJcvVWd7oq+WWetmpkYBVSUErEkifnyjfVUirfnv3uRudMF+nSxNB0mUWn/d4rsJkjqSErxvKy91zmIRXVOPF3gXs3FaNK3MLebokF1PZw7kiBcX3hiThGVZhqNe98/72R/VjRESoBuyVVRykaKqBRoHGfjYRj0woX6zPFsotKC5woOc7axnrNnz7Jz586CZZbxh8f3v/99ANSa5hwVpXzoeUZtXSCM36VzCAntkl6UoJT0OAw1pZjheDn7dJSzT2cM8jRRqVgKN4sFPRqluteN3V3ApJRl9FjxQEXXTTXIFokj/15i124B22ro2SmGnk1JnJXv7Hn6s4dxtooHzRMh8RQZAM6gStIvvmPN3aDhCCrCJCWrzYLNIb6YPvvbEUKXxHfFVKICE1ztpv3qOnxtriVRtKpUraZSjB2exqZZloSgBDB1ag6tgqBQpdj9BfG89y8EPa9tJjmf5ClBguD5x8UI5Slc3DnGyGFBOzZsBFsUd+kc7/mw+RQc1Sq1awJCpCGtWsHmshLo9QqRlMKTBrlfj4uNSYe/YzivRPv0+cdHhZQ5Uwj0OWi5qpa93ziTCQAUQp7dF+z1YHMav+mJBHIxp0iKqOQz/AzPfDfPpjSdOtkqStlIEZW0FQk22Wd5Zj5X8TmbqJSP6U7wer3Mzr74qX6W8cKRraJUDjrWwviQi+mDs0UDVpKqGmpKWb6hXV/KzPVpolIx8rYsp/1KrjoFm2bJkJTAICqVIn6rsOq2Fs4+McTk8SI+giI+rXQKLgG7KzIJuz4vHmzR43pF6T79XW4Unw21ShEiKdWtDeCqdyC77DBZfj3Fbcdik4UISgBH/+sCwQp8XpHhCBeHxX07fa9vxaJYePLg0vi89la4KaxSzF4KEx5dGgWAyCRExucZE7UVKsTE4Tl2Hn7xNxym0PaqZqp6PEQno0JqRTNnIkLfXAonfnweR6048c7mtGK1ia95qlf6sKri9bytTmSr+EaXeDixOCm0APZ+7SSh8wXacxG76uC3KiOndb+2nkQiyckfFQ9W5xOUAJx1ChZF5sLvJoqneDOJSimC0uiRKKNHMt+rnkwiyXKOilJOdZOoNNWnMFAdYiIkMziX8XFlE5XyMdmlUDXfxpkzpzh0qLLg8TJefHzuc58DQPPV56goLQafP44/AKdO2LBNxIoSlHRVMdSUzOPDh+YZPpSVQSVFVCpmP1mt6NF5avpcuOqVhesTWS4oaJBCy1V+rJqFk/9diHRoPm8B22vyWJjJY+Gix4th1xeOo9Vn+QfKtNvm52JY7ZWMj46KxrlAt5t4NClMUrJqMjaneDj75E8uEp4UTyM/dkB8vleqFbpvaGT8qIdD337xU+ZOHp3j2SWMN44fnUHz25mtYMNiJRg7No2nQdxWqBTP/8vSKO+n0H9rK3o8Kbw5YHjXZEXXO/3rS0yfEff/ynYZu7swmbQUPK0u9KRemqSUZ98oTgmtSiHQ5RIiKYUnoySiSRIxgTFJkjn0/QsoiqEYtfBwcdtreO80w3uLPJeeLBqrdDYotF4R4MSPB5kv9HgpX4Itt72r+104gobfUddLxDNTRCW3YXvt+UGeTWnGSrNVlHJu3SQqWVZJrFRC7J/O/f6yiUr5mGq34vV6mZycLHxvRSDpevlehlQg+obH7y943GGdZ++FxtwfQzp3nIKIDN9pNxrOcmmhM902bZxbKeIAVaaSOf/Nh33KMAgsocITjjwbRYoWn4ya1sg0rnEydirEsf/O3Xmgp6QhCxgsNWsdNG+v5uAPLhIqwl5cXCHgJZ7Gy0ElHIslxfr7O7HYLcIkoJZrq7G7bRz/gZis8ZaP9KEndOEdMTXrPURn4kwdE2vQbR/vZ342xq7PL01waPunBpififHs31QmOSiClALTyIEpjolIkTugfp2fySMThAViUS3XVtO0rZoTP7sgpGLm73dQtz7Ioe+fFfoeOl5TR80qP/u+dEjoPpccTumFfeclCEovNMWbVCA9Rw6KEZRS9W1WVtwaRJIl9j9SgKxkElELsZc3v6PKyBP7neJON92loRdxWkVNolmyiHrLbL1x7wmlcBvNtplEKNvCeaK+x1jkzk9bec0BKxFLkl+sz50jX9O8n0OzdQXPbfvd7/jWwweQJCm9a3wZLy1YLBaSySTVn3wPtbMFZBkAJPAdzyUCXb4yhN0Gv9ojYQ0btpd9dOEHLoUNuygnDW4W0kpKRUhK6V1niQRoQJ4ZpCcSJXeMbX24E0mWePLTBebSEo6YVW9rIz6XMNRuXuo2VKUo0J4vJWiNGqvvbOXCzjHO/1pg95UGvTc2MfjsGNMny3/AhiuqaLuylhM/vciQwI4YLQCebp8wUSm1O2zPPxwmXCL39u8Lmx7sweayVqw4JIqND3RjdViEyT++Hg2rahVOo7bpQz0AwioHnTfWE56cF05xtunBHuZn4uz7cmUpq5cML/Hv/IXA0+Gg5zWNnPz5RcYPl29gDry5BX+Hi6P/dYHR50qQeSQ5Vw0zqy0luzHvSdbCDuxUoExXCjvZ5psNglKiwA7KkbVGnZss0ygyfG92oSrS3MYw1hOFSeLHPvUh49r/U+eu/wFIrQcuu/lzhY8nwXFmoTNy62tlouEke39o2EbS7MJ+r8+bQaxYYb9UWkmpmP8oS0kJAJVcgkxSL2k/BVe56LmxkbGj0xx+JM//UaKer0uj4xUNHPvRBWbO/A8dtPLb8iWIVfe0YffYhFUA6rYG0Hw2Tv1ETK1m4we6AYR9QoEBF4lonKkTYg265eFeYrMJdn9x6Xxe0akYuz7/4vu8VJ/Muvf2MXpgkmOCvsfq9V5mTk4RmRSr0/WqRk796pKQKpK7VaVufYBjP74o9D00XF5F07Ygz33jDJGXcprkP4LvvCjKIH733tKI1WnhwNfFguLbPt6PntB56nPF7XRJlhb67cz2TPvr8tOTpOpqpk1UxC7TqwPGfwsQz8bXGHaWNRzmup444Rg8fiqXID68GXyHC7fPmGOKs3/zp8iyTGKx2Mwy/iBwu93Mzs4SvONOOuS1hQvp4DqX+/Gu2xjH6Ybf/jqTsUWeXmijSCnba74wkSjHp1UI5nE9kQSFhSSlZAlyObDx/jYsdpmn/qLA3FbC9up5fT3JeJJjP7gkRFLKPf9LfL1RqD1fQlA8sOrtPQzuHBNKo4YCHS+vY3T/BNNnyn9Af7+L3tc2c/oXg0IqMIoHXK0exo5OC7VnyzXVNGwJsv8bJ5dEEWnN29tx1mk8+b+Wxue16t42tIAiHLt1NSlYHVYmj4oReda9uxPZKgvb6c0vqyY2GxNOf7j2nR3Ew3H2f+PFJ8K9ICz2nVewse33hkXikZlihe9RqVbou7GWM0+MZEilhc6fV7/9FUHq1/s49athLj1bwrdqseTaVlltmRLVKdZ+ktMgFulFSOTxGsO+ShYgp46tMOy2a9zTeGzww4t28+JZZTYk8BwtfO79f/Mh0HUhn1fZFOVf/epXJY87rIajZW3jQpLBnir4baC860TNcr1KiJurptnsmilKTEohRVAqBtmU5dOLsMv0cIRzT4V47j9GOPZYCdJCgUB4sN+LzWnB6bcU7NjFCEoDdzaz7eN9BgFIAI4WB9VrxXddvSAsIUFp3Xs62fj+buF6NqcNq1aBesAvR4QJSgBl5wXIQ9cNTQy8oVX8cjoVMdMH7myh8YrCO1JeDKx8S5tw/0wkAB2SCTGju2VbNR3XNtDy8iahekmzHeUiC+himDgU4tA3xQhKAJrfbsjICsrctd9Qy9aP9QuPERVBevEISsXgCELtxsX7Sj5Bad27mtn8YHv5t2ZOxs4aO87qAnNAvixiHvb/ZI5nvhVCKtI/dZehyiLFS/dfeRHVKEvU6Jev801zk9cIfKQISovB7olzMhjnyY6FBCWAfldhKc51rzZIxYtKSy7jD4YUeUzrbClcwHx1k125huGuExInL2YISotBdxgG6Ka7PWx+i8Gk10sQu4FcWWwoTFCC4ikV9SRPfe4Ye78qTiJw12l420wFM4H+u+Ujfay9r0P4etXrPWgB8XHuBWGJYoBancqWj/TRdGVQqJ7Db8Fil1H9gjtpwnDkkfNCBCUA2XzPooTK9le30nVdI8HVorZJ0rT1xK4XXO1m4E5xO69SNFxRRe+tYnYQQCKZrMiU7X9DGz03NYtX1KnIdj7xw0FhghKAVbNgF1RBAdj4/m5WvrVNuF7FWOJYf9VKF1qjmJqcVqey/RMDdL2+ofxKkoSrScPutRHoL7w7qxgOfu8su//hMCN7Z4qvfVJ2Z/bxAm25YJ7KP000Rs+VVrbcoeE3u3WKoLQYdiZs7Jq1Lbjw3Ebj3/HO0lHQZRXLlyYiEfO9FXP2mVNCqHUhOe3YriQnd5aZ5spm2Ge+TpUtDzTSdZ0vN9VbIRSa//IJSlB0XaYndUb2zbDrC4c5/KiY/6NqwItaZcdRowrZXR031rHtY/2oNWLqwGqdir9voVLti4olJC6suLuV9e8tsvmgBBS/La0YJ4JLT40LE5SAiufu3te10H9rm/jldMM+EUX3zQ3UbS3T4fx7QN9tzQQGXIsXzEESkrphXwqgarWbntc00fZKQZ9XPAm6XnZqhxRmzkQ49n0xghKAFrBjVSxoPrH+2bAtwOaHeoXHiIqxxAQl1SdTJbgGAVj9tjY2P9wrXM/f5cLTJD527vnKycUJSrCQKJHfnot9v6ZdtvntQTa91fBTpwhKiyGuaRwetrLzVK59P7zZ+O9kX+HBSvX5jOu81Mka/xcjHDZsZ8/adYULmK9utjl3nDj4PBw/QtGMLQtg+n7X3e5l4z0+49SLrBUWbNYrRFCCohtndV3nmb87xZ6vi6uc+dtdBLrM8UPA577xA92sequ4P8Lf70LxLLHPa6kISgps/EAPDZeJ2QqyU8GuWdH8YorJROHkjy4JEZTAjFPpumhmQOq319L3umbqVvmE6iUTummbiF3P2+Wg+3WNixf8PaF6jZfO19QvXjAPelxPxwBF0H9bG/1vKOKDL3lB8SoA5x4bESYoASheG0oF2Y9Wv62dgTsqeL5KscQEJW+XhlJdRrtIueSfLQ910/Hq2oJFi/mlVLeEo1Yl2LfQN1Bq3D71+Ci7v3xicYIS5NpWhdpyEftGisVpWSez5Q6NoBlOTRGUFsPuGYVnxxaOf2MbjEFjuqfIHGqS0r/3ve+VdR0QSPf2J3/yJ0YFVeJlVUd5bKwnfSxFUEphbeOFtKLSvGznOV/uuRJ10bSaUkpBKRvRAEyPw7wDhiZyj0e9xgtOEZfyCUrdmySC1fD8Tp3Z0QxBKQVdsecoKunhjFUdGgWjSUyWdKTAm7dYchjSB/41j5QlyWnDvZSCkmyRDUN/TmwEW/nGZqyaRTg92aYP9mDVLOz4MzGJ040f6MaqWYXzam77eL+hjiDIjlW89kr4DjwtuBM8hfX3dzI/m2D/106LXe9zlV1v5MAU0SlxeclK85r62l246jUuVBDgEYWjQcXb4sTmsDCyt/wd9rMnQxWxqEf3jeGq1zj3pFj+ifO/HuX8r8UljapWOem8rokTPz3P2PPls6kPVMhodgZVI1d7nYPZk+UziNa8qwNnjcreLx4mNFqGE8w0CFbe3YKn2cmTgmPE2vvacQRVnvyzwsz0YmzjlXd3YVFkhnaJMdMli0T6jGUoKKWw8+8vpm4oUyCPoJRyXKRJO5pqzgtm1UQSPYs0lSIopY/Hk2lFpU2vMMjOjz+bOS7PJ9OKSikFpWxYojqzCYgkFxKU5JgZoDcVlVIqSikc7zYNg7jxzCmCUgr9rks5ikqbvacB8Pl8+EzHzTJe2pheM49nX5ZxmPdpTXZZ04pKsXE75/OGxvmgI62mlFJQyobuUJkZTmBRpIUEpdSux9Qusjxnzeb3t5KIJNn1T4bzZYH9I0u5weQsB2d4KG6kxU0dL2OX2IJxqsy0uZIsLa7sVgDdNzQRm43zzF+LqcBs/+QAk2fmxNKaabD9gwOMHZ3myHfPl13N16MxcFs7kydnOfjN8ucdZ40Ni11GK2cRl4Wx/bM8uV987q5e76HtqjoOfu8ccwJqDOcfH60ohdf5J4dJxpKMHhNT/jn+vYscR5zE3nxFDY4KUrVWiqZtQawF1F4Ww56/rywVy4WdY1iKKAOWQqXpjle+pQ2LVRZWRNrx6crsZrvLhmwTf77tnxwgEUsKr0e2frSf6NQ8e74o9j62f2KA8GRU+D32vq6F6OQ8u/6ufJWK8FQEJLCUm+bEtKEuPjHOxScqyHsYkclanqMn9dxxO3+hmNRBlqga0Oi5oYFL+6c5/cvMpiM9Hk8rKqUUlLIxcTqMK2AhGl5IULJEjbkspaiUUlECuISW3kxmMV0GKYJSCvHOSI6iUrQpxtq1a9m7dy+f+cxn0ildl/HSwac//WnjD6uVkbVWqvdm7B0pzzwJtXrSikpSNM543ueouxxpNSW90O59m53oXJTodILx/LVeao2TsqfyAr+tLwtQv9HPkUcvMHE0slC1MssnBbmO1QVqLGXYXScevcSJR7M2PZRpd1mshuJZZFqMGTDwuibUoF1YXXDNuzpwBFR2fEaw3js7UH12YR/P5od6sSgWdvyZ2PUcVUpFKacqVbledU8biXhSyD4EePZvK7vexZ2jQmndUxDd6Z5C9Sofvo64kGLQC0FVrwfFa2P8YPmpOyOTsKMCn97Y0RlG9k8yuEvMnzf23Aw7nhO/nqNJpf/1zZx+7BJjAqqZJx4d5MSjYmmqAZy1KlbVghawEBHI+NP3xiYCvR4OfOukkGJX980NBAd87Pirg0KEpb7bmwl0unlS8FtfcXcnitfGk8+J1ZNS8QIQCuA99dkKviFJJjJcfOP3grWznkzbYuvva8Oqyjzzd6czx80UIpCloJSNeJzZ0RiJaHIBQSmVoj6lqJRSUUrhRFQDDaxhY/5JEZRSmOzTcxSV5hqMv6uqqnA6l5j4uoyyka1wNbpaIvhctt8ot+xss5pWVIpPS4zkCVsmPVpaTUkqZHvZbUxenEdxWRYSlPJtr7zj69/RQDKms/dr5liXT8rLixdmE+OiI/O5PrEybK+n/iJv/Zxn2xWDJEnIcnl2Wjb6b2kx1AUFVWC2fryfyZOzHP62GBFr60f7GTs8JaQuqHhkNryvz/CVPVK+r0wLKNidVpzVYn6a8GBUeNwH8LSrdL6qkRM/ucD0qfInm7ED0xWllxvcNYnFKjNxdFKo3vnfjHL+N+I+tqYtQXydbs7+cpDo9IuvOt58eTWq386J/xKzM/Z/vbK0bed+M4TdI57WbE+F6Y67X9eI4rIIKyKJpodLQauyE3eLv7etH+0nEUvyzF+KXXfjB3uYn4rx3FdO5R5YxL7Z8nAv0cl59n7pVMly+VhxWxvh8Sh7vijgQ4wa8UaLtfg9LfBLAVMnI+z4TAFfZyGfFaQ3cUvzEtFSy5b8eKdpWznr7Kx4Qy1DB2Y5+7usdYiZWhcyCko593l2Hl+DjejsQoKSPG/MWylFpZSKEsAkCpMSoIIlYjxDiqCUwnRPPEdRKVSns27NGvY8+yxf+cpXeP3rX1/iQTMom6R00Mxf7jHz3qWISvkEpRRSRKXNg/P0hOCntTDiKp95ejrgYPyUuIJS0tgwQjK0kKCUQoqolE1QWvE6L84qKzu/XMbizzQ8Su12WyzF2/5/OVOR7OK53w7j7xLfiRGbi1fkdK9EvQdg5mK4ol1elZJxKoXqU1DcFTxjhSnwhNKZZUELQjgkfs3jPzrP7GiZOzpfIEIXIxz/yXmmT5afQi0FLYhwKrTQaJKD/1qhpGEF78/b6saqWfC2uoVISpVif4U5cCeOz6C4bYRC5ROUoEIVWElmfjaB5i9cuRQZ4MIzo7gXySlcKM3b7n94gTKWKafKIgpKKay6SUV1yjzzbya5wyQq5ROUUkgRlZI6BQU4solKhfCrUTdTveIv44pnbFh0iZ+tTy4gKKWQIiqlCEoA8XickRGBVE3L+IMiTVQq8mmliEpbN0WZn4fd+8SIJ4ceT8BE6UVxod1myQQk4osQtFNOmSzHypaHu5kbibD/a+I7yypBpTbG+NEZJk6LkVzQIBnXmZ8rrfa5oJpmjA+iO36io1Fis3HGjos5NUafm2FU0HH+QuBtc2FzWfE0aEIkJaCi1FjTJ8NMn6ysf2kBCAvGuw7/2ylcbaK76yvH8988i8Mvbm+jgaaJP9/ZXwhEkApcU/T9uRu0JVX7q8QJCRAeixIeF9+EYEggi1dLxJPE5sRTVkyenGXk0KRYpTBLJsmewraP9jB5eo5D3zbWTWmHULGdLEmd+ZBRLhlf2KDZRKV8jB6D0WOzRLtqhO6xjjDbrDEOxa0cw7GAoJRCiqgUbTLmgsmoUS7lW1nGSws//elPAbA4jXE8RVTKJyilkCIq1fZA84CNoztiTAsI1oTHbOz550WCMwWUKZIJHT2hE52leFpdM5iV7c/pvaUef6e7pGLG7xPHvn/RUGURxJnfDVHdJ6bCBhCbjZNwi4+NelKvaDE8eXIWrUpwdz0Ik95fKFwNWmUqIhWmxjrz88psBdUHkYj4NQ999wzhyaVL43T4B2eZOyvuD1J9BUiCiyECRyv0IVby/jxNDhSvDW+rU4ikVCmO/eCicPo7gLHjMzhrNaJjYrZX0vzWVVUmEik/QDc/FyMREw/onf3tMP4K1gX7/s/SpitecVczrjqVp/8il5xQ1J9n+tQS8QRyskCZLKJSIRz89zH0ejG7C2B7zQyqBR4/6VpAUEohRVRKEZQAYrEYo6Pigfhl/GGQJioVmbZSRKU1l+kk4rD/abG14qmn4uihRca3Qj6vuE4yZt5UMdWwVLwwa87d+N42QqNRDn6nfIJFpbE4MG2MCub8S7vHmbkgLvObiCaJzVYQd9ILr9tKIRpNEh6NMnWyfJIwVE42qhTuRidalYKrwSFEUgIqSoEXHYkKE3jSl/NAVJAXdfyHZ3E0upaEoARw4JFzqN4KfF4KKIr481WiapR9TdH352t3YimQcuvFwtOfq4zcNHN+jvkKfFDolakZxiMJojPiY8vQvgkmTy1ipxfwKz312cXXZ4WISuWcuxA2va+NydMhjj2at24qJsiQTBIPzaMn9cJzRBZRKR/Tl+D5H8wRaxRTk/MQ5TJ/lGMhG6ci6gKCUvr8JlEpVGfc15R5e8ePl785UtLL7CUOh4NwOEz3dh/v/JJhDXotIX4+PlCw/FDIINL07nRTPw//nUdSksaNv5XRwi+udypEsz3OzksyhfIdqeMJbCUmQet0BClSYjfAXBg9ljm+6g0+HH4rT39pFKJmerhY8fPr8Tgkddbd14LqtbPjs5lG1xOJ8vLFLsuN/t6w/ZMDJBP6kpGctn9qgGRc/Hob3tdFaDTKoW+JBcy2f2qARDRZsYKTKLZ/aoD5mVjFu/VE4GhxsO4t7cwNhdn7T+Uvxh0NKivf1Mq5HcMM/m6i7HqNV1TRdnUd4ydmjPRtLzI6XlNH3boA558e5ezPXkBw7/eNFxr0W2TSfaGTdiGCUhqLKChBrooSwOq7atC8Np7+wgUjxUKJ+5NUk9ghy6y5WcXukHnmWxlWW9KpQQlFgZhfJVGCiBSqtREvsoGjxxHC6U3wmKewM8vbY0SUVVvu/HTtUwqyDtW3/RaA0VhhMut17ud5MpRJqfnwip8By/LXL1WkgvMtX/3zzG/WJO7dhTuQfdp4j69umCERhx3P5JKUbNOGI1eeKszS7N4qMXUhyvBzRRbSsfnS6UhisdJ9KY+ktPXD3YTGojz3lbNCSkrbP9HPzKUwz3/ldObH5T68pOi4oZ669X5OPzZUUTouUay4uxVfm4tD3z3F+KHyWcZNVwap3xDgmX88KkSQWXtfJ84ald/9xYElScm16cEebC6rsGpEpdjykT4sdln4ev23N6P47OwV3CW29WP9yBZxhdVKsfWj/Uhy5YpKy6gQebbl9o/3MzccYd+Xy9j9lmUXbv9YL5PnQhz818x6SSpHPbNEGcmhIdkLkwm6r9UYGVMYmi18fGS1MecmsvjpjYTZbotxJiZz8EpjTBqdKGx7vabvef5z31oABj/zj8SOnsbv9zM+vjSqH8soH62trZw9exalpY3We98HgC5D7bOF/UIpf1RP/TS1nXaOPDHPZFaMQDKVufVQYbvK1yIT7FQ59uMifSGRKJk+Z9EUcXkkpb7bGvG3u9jx50dyyiyGVfe04WrQcpVglu2uJcfWj/ahJytX9RbF9k8MkIiLqwSueUc7kfF5jvyHGLlm+ycHiEcSFSsqiWL7pwYM1YjPv/g+L1S47MMrmLkY4rly5sSsehve0c2FZ8aElKJ83Ror7uhg/Ng0h/7txd8MUrc1QMcr6rj49Binf1ZBasFlLEQF/roVd7fgaXKWZ/9m2V2r3tKCs0bNIbAu6s+zWEpuJJDsdrAVJogHB1S8LQ6O7yt8fGqFD4C4lnv+a+tnsFngW/3mhsNLhTdkda49z9nHM6lsjv7JB4Fln9dLFal+1PHZv8z6EYJ7C78v+6xht1y5IkQiAbsfy+0ncsjweUlFbK+WdRbmRmKMHi3CJIjHKZX/Sk8kS6c2zCMpbX5/O6GRKPu/dbEsJaWU3bb14R5mLoY48M3z2QeLXzfnJMt9/feBus1+Ol5Zz5nHhrjw2xff59X5mnrq1gc4+p/nGdlXvgBA1SoPLZdVc/Bbp4SIQ/23txDocfPsF48THXnxc++teXs7zjptyXxCGx7oNtQMBa/X8eo6nHUqz//zaaF6Gz/Yg12zLhkhbuMHe7BYpYpJR38wLOEmxMLXf2FpLfPtoy0f6mb2UtgYqxc7d0pJSZLY/P52Js+FOPq9LLv5hfq87Paiogxt2xTGJ+yMzRQ+Pt5v8G8Saub5PES5OhDlbMTCjs3G2BIZKSzasGbFGQ7s6ABg9Mf/xfRjv6a6uprh4fJi4WW/lZhJ6Glb7wMMghLAKwILP7wUQQngyOYZ/qXTXpCgBBANLhw8lXHo88SpckDUuzBQq44bxkLMZSXmyjVqPfEInrhhiOhq4UaX5kzpR1vm+PP/PplDUDKOLzSY9Xg8oyIgSyRixi629PGUISPJJTvm1o/2sf1ThQlepbDirhbWvbdTuJ6324G3u7RqSUFUUAUMYkb7DYXzOJbCtk/0s/Vj/cL1otPzRMaXKpktzA6GGTsiLsGoeO0V5QifG44wfKB8Ik4KWz/Wz8p7xHMRV4ptH++n57YmoTqh0RChsQiDe8QMPq3KglWzUNVVXh7NFCZOzBEejzL83ItvYILBNE5Ek4SHxaKcXTc3sP1TA9Rf5l+8cBZcHQ5W3NWCFhSqBlB+neyxzQE16915hxcnKLVcG2DT+9sLHy5BUFr3zha2fait+Klt1oJjd3I+aSwUbeb8k9QL7jxOE5QAkkn2/SCykKAEEC9s+Mf8RiDLMh/Br+QuikO1NkK1xrxjLbBenm2Fbm+CZsASWdiGKYISQCSW+4y/3BpNE5QAgraFO4Oucz8PwHZHxhHrdrtR1aVLTbSMFwbJavS7mfULO1CKoATw3xfdRQlKAEnvwsldCkUItNpp3uBCUgoEamOms8ciL/hG3Y1WMO3Eos7K1PeWNX489bljuQSlvOPFoCd1EuEsx1EZThgtIHPZ/7OCNW/vWLRsbkWDQFK/TWzHAUBwtdtQjxFFBXW0gEz/7c1ojWKVW15ew/ZPDdB0dbVQvbmhMPFwgtkLFchKVoChvePMDUcID4ldz9/txuayonnFxrnBPWPMDoWFCUq9b2xi60f6xCq9AKy4u5XNH+4Vrjf8/CTT58TfnafViSMonvd+7Og0k2defBXKFMLjUcIVrAu2frSfLRW8v/ZX19H6SvEd4UBF37unQ8PZKl5x7X2d9L5RzE4HI5C7+eES/UySCjqbkgmdWLQcZc/ccf/JzxwRJygBmjeB5s0NKkgODclhtJU+v1BxIVHnI9Ci0NQF1tmFG5xSBCUAS9Z4cAGN78Y8aYISQNC/0PZ6TZ9he712zV4AfA31AMu210sUMzPGO7QFDT+GbnbNoY0L1xbZG+aODnp4+pHCBCUAyVHgfcfmadrkJtjnQnIWsH1SfiVZXqBIobiTKIvJ9JuBrOx12eHvXMglKBkFSp8HiEUTJLPXPmUGvzZ9qIftnxT3eXW/roHVby+8TiwFR5OKu7WCb6vCz7H56iAt14jZT2CkL9jyYfG5JjQSITRSgbRRhRg/McPIwUnheo4aDW+7uHrM5KlZhvaJ+7w2PdRD/x3NwvUqxZaHe+l+XYNYpQhMn59jcLcYOVX1qCg+G4EusfaMjISZuRiqqD0rwdxgiNhsnJlLYrZl01VBYx1ylZjzSq1T6b2lEdVXQaCpku9dhcCAeJ+u3ehnwwPdwtdc9ZZ2LvvUAKpPLJCXCJfO+JBG3rj//NfOChOUwCD9OJty1wWS3Z4hhRfY+C15PbRs8RLssCMXIJGkCEqQSeuWwi8H3RmCEkDdQlu/c61B6Gi5MrMh1ePxYC9CVF/GSxBm9xtdu7AfpghKAI8fcBQlKAHoBW2vOHUDKi2bXTkxwTRS8T6LZUEg2FFtRTf9cUWVwkzbLdsntvNvT+USlKCg7ZWvjpGMJ4lnr6PKJChd9qkBVt3TVlbZbKy7r5O6zWLxBwBfjzOdAlsEilgoJ12n68Z6tHqxC1at8rD9kwM0v0zMZguPR4lOxZi9tAS71oCRAxNMnZ5l+oKYrRfodKEFFRRBdc9L+8aZPDlDdFrMb9J6XQ2bPyTug6oU3Tc3sPHBHuF6g7vHGD8urgrp73TjqhMPiA8/P8HYUfFYcaWYuxghVAG5bOMHe9j8kPj7a7gsQOPlVcL1gMwYIUBQcjUquBrFB5cVd7bQdWN94YMl1r3bPtrLxg90FT0uyVJB+ygRSxKfTy6+ps6qq+s6O//2lDhBCVCcCRRnns8r2/YqkOo06XdT022nuRcsoYXHUwQlyKR1A5hG4T/HPWmCEoBavXA8XLPCyAa0YpshPqK0Gut4W6F5tgjKTveWyhG7+hV1aYJSCq8IHEwrKmUTlMpFNJhMKyop5prt8QkrjQXG1hRBqRhWvAwsVomnHjUaVFdtOYpKKYJS+t82W46iUj4km7WkotJzX8k4UBdL8ZaN8ZMzOPziRrK7yYlcIj9iMQy8sRVJloR3TG//oPFeRVmndWuNYN6pH4ntopmfiVUka7nr8+XLh2Vj2yf6SUSTwru1hHY/ZaHSHfL7BBSGsiFbJezusj/zFwzJIqE4Ba8Xgj1/L563dez5OZ58Xrw9Qxcj7P6CeH+pv8xP+zX1DO4eE+rXI3tnGNkrvttxbiRMIuYRJt+1bA/ia3cT6K/iQjF1iwJGwcp7WvG2ODn+kwsMPVM+Y3/1m1px12lEp88ydTxUtoJSoNOJVbOgBiGSpbxcUkEJGDk6Q3Wf+Dyz/zvmRWzFx90cglIBpAlKKcSTOYpKKYISwLatYLXCYzuLn88aYYGi0hNY0j4sS0QioRrjYTZBqVwEbTNpRaUUQSmF7Y5jPBnqpqamZjnd2x8JUgSlFGbWR9KKStkEpXKR9DrSikqpXWYnnpiioPJ1rLSU/opb65mfibP7Hw1noCRJuTsV8+d1MwVJUSxyfMdnssbUMgNl4XCS0FiE4QOTZZVPwVOvYXNZCXS7GdxR/ndYu9FH16sbqT46zaFvl7+DuenqalqvqGH4wCTHBHag126qJtDjYX4uzgkBme7QcJh4NEF4RMzxMvTsJEMVyCB33lxP7Uo/h//jtJAikpGWTtzB8Hx+3vMyMfT0JENPTwrXUz32itIrVwq724rVJi4Nfeq/L1V0PVE1hRRE+nI2Nj/Ui2yReErwupWmyYhOz5e9QTUb9esD6EmdM4KKmds/OYCe1IUVn1a+qd1QdP1zsXqOagW7R3xdMDcUYXZQ3Dlb1ntbVFmzPGcNwJq3thGbTbDry8VTx+jz83mKShKnDutMmp+EdTZG3GU4U7IJSuUi6J9JKyqlCEopvHbNXp7o72LksR1UVVXo4FvGi4pw2Ojnan1zmqCUwtBGa1pRqZSidzFIDjWjqGTaVcd/MoKnWVuYkmkRv9LA7a0oPhs7/rzImjZvIJNkqbSPZRG763C2HSOwO3/0wBSuenFCpa/DhU0VH6tWvakNi00W3sG89QN9SBaZHYL1GrcEkSwyZ38ltpYKT8wvvmYugOeyFUQFsOXhXpJxXTjN3GEB+zUbou2YwsEKVa6tdit2T/lO8BcK2W5B9Yj7ckV35ANEhiMV+RAjk5X5LH3dGgNvbGdw1xinflK+z2vmTKSiNIahkQixcFyYfFe/1ktwhY/QeJRzvy4/jVfnTfXUrQ1w6ueDXBRY1/Xd1ERVn5fDPzgrlAavqteN4rPhrlWZOVP+Mw4fmERWJCIRsTX+4e+WYW+/UEX0LLts3TtaUP02nvqLEnZ3LL5AUenQb8Jo5t5dORQhaZJJsglKZaMumlZUShGUUmi58ixnH2+hrq6O8+fPF6q9jJca8rrf6FopraiUTVAqF7pDzSgqmbG9wz+fIl7IvVUgxVs2Vt1WS3gixr6vm4sGWc5VVMqz3Rb4xPKxiO2186+zbDyBBer0+TlGDpbv0weD/KMFFaq63VzaWT651dWksOL2NkYPT3HkkfK/MX+/i4FbWxl+bkIo5aen3UvtugDJpM7JH5Xvz4hNR4nOxoQJHVPHQ+z6O3G1xYbLArReVcvR/7zA2IHySSvTpyLsP3VG+HqVpk6dODTLxCGx1HkAisuGRVk6n5fitmJVxX1eF383zkXEYymVvHOAsz+vLLay7j2d2BxW4dj0oW9XZjdHRiJIFfgsWy6vAUkSVhXb+tF+0HVhn97Ku9rR40me/t9i9qW7yYFWXWAtvYj9M3l6lpBgGmGAZz9/YvHzC9hWhZDt81p7dyOR6Tj7vlnC/p2PLVBUOrYbZs0qllCMhMM4nk1QKhdqdTitqJQiKKWwYttJds80IkkSPp+v7HOWne5N0zQikQh/+lcPFi0zMb/QAeGISFiwMKPGiUVKBIcTxv+KQV7kuJQAKZnAageLDaL5m3X1BJSo7wgYUqVzI0U6Y7FmkgAZdME8qmWd+/cIu9uKZJGIThYnZBWC6jc6bGRCrJ7FlAZLCC6qKoXNZUFP6sRDYkaro0ZB13XCxd57EagBG8m4zvx0BXl3K4BaZSMxnyQ2U0HuzwrgqtNIJpIVMXKFIYMWsDM/FycRfvHz2UoWUP125mdjQv3TokqoXoXoXIz4rMB7kEHx2AwC3lK8Phmsqkw8nCycw7sIa9migN1lIzIREwrQWRQJm8NCZDKev56sAC/gDIuxsSWQrDJ6oU9WKn5pzScjyzJzk6UJFXoeucpqNf4XiYAuQbKUn12GZAl+lA5YlOJjVECJoE87ABnJs3CBoVG87mf+v28yPT1NfJEF+TL+MLBYLLjdbu74cHHby1ZgzetXDH/JVAyspeLK8Xko9b3remkpa934Py1oJRZOEJ8rNOgUH2c9jQ7i83HmhsXmYMmG8S1XQGpeMsjgCNgJz8TQo+Xfp2SXcPjshKbmheohgc0hEwsnS7/T3xMki4TisRKZigldz+6xoLjtzI5E0OfLfz6rJqG47cyNRpfk+WxOGbvTxtzw0qh0uupVZIvM9PmlUaZSvFYsNpnQqPgivBKofhuSRSIseD1nrYIkS8wOigWvbC4ZJGnJ7GaLJoEuvu7RquygQ3hcrF00v51EIsH89NI8X1EsYntJVmMJXmIaKAhPo0YymWTu0mLfX+71tSorsUiS+FzSOFYiNS9IUGJXvS5DrIS/xuKYxxe3kiDBjLbwAV22wmvn6eFpvvDn/4TX62VycrLE/S3jDwGPx8PMzAy3vuM+Ao2Fd2Aq4wXet8uw+ycnQQqX+J6Ti6QIScLiH4yO3S1j06xF7Kfi9d1NDmSLxORpQWU7yfyeBebtPwQUrxWL1UJoTGzudgQVkBD2fVg0YxG5FD4MwCCZ6jrzgnObp8mBntSZuShGNnXUKOgJnXAFDvtK4KxVScwnhH2PlcLX7iIZSy6Z7eWq14jOzBMT8SVVChlctRqRqaiQj1RSJDx1DiKTUaJTAv4B2bBNIlOxF+YbF7iezWEhNpcQsjEkVcLpV5kbj4itz1QJh1dhbiTy4q9DXkgaFMlcJwt+su56FatqZfL0YsHqXLvK5pKwO63MDZnfbKl7l6XSQTiLTNxZnGw4H9Spjho77QcL+M60Ev6yb336/zA+Pp7efL+MlxYsFgtOp5M3PPRw0TJqAdur2quTSML4jIRlrvj7lxKFVfRT0EmW9ivpOiTBVWcjFooTXbBBUKfUQBTochKPJJg+V2wO1guGBWVFIjmvC6+jck/9Io/HsjF3R6fmxeYam4SrViM8HhGL40lgd1mZD8VLxnh/X5CsoPkVQuNRoespPhuOoMrMxTmh57M6ZLSAyuylUOHYxe8ZNpcF1acwczG0JD42b6sTq2qpKDNNJVD9NmyazXi+pbhelR2r3SK8ucvT5ES2SUyeEiOM2d1WZItERDDWXymsDsMGEI29O2sNIrKob9URtJNM6kTGl+b5imHRcKNdMuMTRUsU/DXQ7SQRTzJ1ehFfZx7ByVljIx5JGKkdJQmpmLIfGPHKIql3AXSrzLyreP1kTZLGOYgCowUSQzntxfv659//WSGfV9kkpbq6OoaGhviTP/n/FS2z+IlKvNXfy7z50naaLGMZy1jGMv4n4veQT3fRUxSf317I1b/1rX/j3LlzhEJLY7QvQwyqqtLW1sbtd9xRvNALMn2W7aZlLGMZy1jG/614IYHAyubP+fl5PvPpz9DW1sapU5UpvS3jxUNjYyMXL17kQw89hMtVJLXPoq9+2bZaxjKWsYxlLEMMi286LI3ic+93H/kux48fJxpdms0nyxCDw+GgoaGBO++6q3ihZdtrGctYxjKWsYzfM1482+tP/98/pbm5mTNnylOHK1tDOZUOZvuVP+ZAdOGusuF5w4lzaLZuwbHRqdzUPPrUQoaWbcb4zWoqEq73xVEt8OSYFXUuQ1e1hBY+fEYlQKKhMYHmhJNZ6upSOIvVFV/IvtPjWYy1QszYrCp63s63+rUO7G4bZ34zXph5XUSSZOCNLUiyxIFvny54vBh6X9eMxSpz8Lti8n+t19Zgscqc/KlYeoemy6uQrTJnHxOTrOu+qQmAY4+KSaquuL0NPalz8BGx5wuucBOfTzJ5TGxXoKNeIxlPEBFUUpJcpoqD2MZu+m9pJTobFX4PqOLXAqM9Y6E4Ryt4D8L1FFjxujYik1FO/GRQ7EYreD41YKXj5Y1Mnp7mooAcKYDNKxGbEl/EeNqdTF80KaRlQnJBba+PoSOT6AKk6IbNAQKdXsZPTAo9X/VKN9X9Ac4+OcLshWziSemZxdPhoLrPw8nHLxW+zyKyhcEBB4FOH0d/NQhFCbQL67Ze5cNV4+Dgjy9CuPy8rZ3XBlA9dg7+9BJ66vEWm8ksMlXtKp4GjVO/y21LyZq1i74A+1hXslJ9yAt3fiUdmYvrWfdRX2fsqj44nLn3eAE51EhV5njSrrOFBBrwGMa19BpjUtK0hXPX9mBuigfVsrDMVs2Q/B5JLFQL8MrzfPnLoZx86ct4aSEajXL8+HEsW57nv0+uWnBcHjc6nbPAUK1N5G69sRbYrJKSvpaixn8HrvMSmU5wcscsemwR2yjr9J3XBpg+P8vIoUwdPbHI7orkIluRSki6tV9Xy/jxGaZOlD/nOxs0Oq6pZ3YkxCmBOVir0+i8po6J09NceLJ8WVvFb6X1yjqG9k8I3afit9K0tZpL+yaZE9jx7ml30rS5msE9o0wcLX+yabo8iL/Nw9C+UYafL39Hk80jEejyMnRgUmhORAF3nZOZM4IqDuY1Y4KpDRu2VeFvdXPg+6fF7hOMvOmCdbpe04jqtbP/m2Lkg97XN2PTrEtWL50TXvD5Oq+vx+a0cfjfBaWlFVOFQ/C1qzXGHBwZFjMS/T0ukGHisNhutJV3tIME+78l1p49NzeRjOsc/y+xtHYt19QQDye4uENMMrvz+nrm5+Kce1xsfbbi9jZikThHfyC2Llj55nYSsSSHctZni9sOrdfWEBmPMLQnb2xZRGo7d7fYwrI5qYGzztVxrZ+54TBDh7P6S6F0iA5P+k/dobJyM4Tn4MQB47dQk1EnWmBXWaw/ZWsZ9+h0LOyb72p+DIBfT/cvOJY4aPSRZdvrpYmJCWOdsE87SIjLFxy3m5+c98JC34ElT3VECi0c8PSI2V9MG6n9Kh9Ov8L+Hwzl2FWFdr7rWXZT7SoHzlqNkz/LlnlfzO5aZP4sYXdVr/agVamc/XX56Z8A+m9rxWq38Pw3xFJwdt/chF2zceDfxMbipsursbusnBT0RdRvqcKqWTj3mFjKzs4bGpFtEsdEx9Q7O0CH/d8UaxdfjwuSMHlcbG5Tqo25NCqYUktymD4vQVWWvje0MD8bE34PpJargtdbdVcH83MxjnxPLD3dqrs7mJ+trN7cWJSTPxJMZWtH+Nmww4pb2hg/OcPg02K2gs0tEZsR93m5mh3MDoXE7tUONQM+Jk5MCV0zOOChYVM1o0cnhWwhX5eLho1Bzu0YEVpTOBs0alf7OL9jhHkBpShPu5Pa1X7OPHZJqF7D1iqqurwc+/lFIkPZRndByfP0X22vqMHT4OL4zy4SElAT9bQ7CXS5OP3zvLF6MbsrGwVTksgFjwf7VTzNLk79IsvHZllYX8pO36lotG9ScHgtHPiF4dCL1xrxpIhvoWNvYm3u3CQrC+eq9w/8AoBHhjYuOOazhwl9bdnn9VJGOBzm9OnTXNp0kT272xYct08b785zeuG3ZwulbCOjjDy90CcqzZvfXsw4tuJ6L6HpOKd+N4c+nzXQFbKDsi7Z/jIv0xfDjB3JqpMdIyxQf1GfWLbtlmentV5TzcTpOaZPhspO9yZpsPqOTqYvznFKYA62uST6Xt/O+PFpLjxZfgpNSYPOVzQyenCayePlp8KUNGi7oo7hA1PMXSjf56XVKLRfU8/FXWNMHiv/ejXrfNSvCzK4Z5ThPZNC91nV5WPs+CS6iDiODZw1mtCzpau6JGKzYnN3zTof1f0+jv7wPLEZQQkmGzlx73LQ/so63A1OnvvmCaG6XTc24giqPPfVE0LX67qpEUdA5bmvidUDKnq+1pfXovlVDgvG3rGZPi/B127z2ZFtElFBRVd3qwOLzSL07QGseFM7slXi+a+LrUM6b2wE4MQPRexficbtVSTjSQYFY7etL68hEU1y/okSY1K2fWOOkwO3txKPJjj6/fNC9s+qu1pJxnQOZKfRWzQ9t0zTdh/zM3GGn89bny1SV8qOMRayUbLrZz1G2+VeQuPzDB/J9BepgFKl7sySPrIrrLwc5mbg1D7jp0itoV4Z9i2sO7M6dxFgL5C9/aHenwDwb8MbFhyrmjc+OrmUylMeyiYppQSXxicOc+Oms/wq1JU+dipaDRjGZT8n+d1IR/pYcBC6p+E3rZlLJWNZQV9AHcq6YS/Yp+Ank5mfHKHcQJYtLw+tMpF5Kb0rE1htEtPDxv3KM/kjg83Iy5d6LtNR1LjZga9J4cAjuc5efT53JNPz5EGnj+YOBHq+86eIIbHva4bDJXRBzFGQiCRAgaljYqoXzls1JIskXG/FbW0gwdQxsYHZajc6uOj1Lj47Rmw2LlxPtHwKK25vQ4/r7PjMoYrqi+KpP1+a66QQDyeYPDtXUfvoCV24Xvz6BBMnZyt+HyKYAoaeXhqJSICmq4O0bK1h/Pg0h74l5sia3CPeHrGJCPGrdS78epDQaPlSijWr/EgWidj0fOY9lLEgb7myBs2rYkNmJN/xWWJSb7u6GpvDQnIWZk8Vec4C9SOr3TiDOtMnI6npozDyJto9ly7iqVONeuTmZS0Im+HtnDkToRATTsqRik5CXtq2xs3gCcLBxwAS6Fn3k/AoC4hZScU43tc3j80Ko6FMrpC4nnvu2cbc9xK363w/6996RwhIXU/D7cq9mKU145BL7KsjPi/h2ZYx2l/vyow3XcCZeMaqqLWkzmUVMhqWsfRIJBJoLTPc0vIkX9j9svTv8pACqVfaDf6s6WWFe47YPFwYybxzdTy3/8tT2R+eihSKsPOrmdz1ev7nkpcSUI9l/q36bMgWNyd/bCw6FnPGpGypFXc1M358hsEdk3kFStff90Vx9Ynpk2HmLoaZHgyXIFQuRCyko79MJzIeZ/pk+RWDq93YXTbcNQ7O/bx8R0/DFVU4qjQ8DfMM/rb8/OmuRgeyVYKkJHSfp0IjRLfGufjEEGHBdO1je8XntoG7WvG3uzg8coax/WJBtkowfVIscPhCMXlijqoeWegdAGkioGi96TMh3HWa+PUqxJ6/F3NkvFCsuL0NSZZ48n8dFKpXaXucfnwI2Sr+/qx2K0lrUrie501Okgmdw98U66eaX8XuEr9eIpYkHkoI19vzJeO9hy+ZE0OZgZ7nv1xk/biIs2jlPam5YWpBeclSoK5px2j+Wqw2Cyd+njU22fOcLj4PZA09SY/Ejp9k/j3V7czMEWEIVedeLxow576wzvYhuOSA8WDm+Of7/y3995sY5Fvj29L/blHGeXaHYbvZbMVTmizjD4dUEHN0Zoz+207y7M8H0se0rJjveKNKVRYx2+OZp6YFTu7NlJEzJhUAeijbsJIhNs/+b2Xsg2y7yvgh16+U7Yfqub4GxWdj9px5zkXsppSPqnajl6oeNwe/dT6/QMn6M2cqG1Of+5oxBogSTeOzcSwW2Vy/lQ/3Gx1Y7BbheivucCNZZA6eESPg2hwWZFn8Ps/8ZohkXBeuJ1o+hZV3dqAnkjz154crqi+KZ/7y6JJcJ4XI2Dwzg6GK2kdPiLdrdCrG5LGZit+HKJbqvQEEBlx0XFPP2NFpDn9bzOc1c0xwIyYQm4qALDH4zJTQOOHrcGGxySRCSaH3ULc+gKvWgdVuY+xM+euQxi1BVK8dPS7WXyI9MZIJ4x4j+WlOssf4PLvq+W+exV2jMnNWcIw4G+HCbwqQvRaxu2o3egl0uTj0bZNInR0YK1TXPN79qhpUv43Z85n7lKy5/jnJkRfZcsD+H2XaItoagJRbdxpCNbmb6y6pmfmpdyaCW4c9tRkb6p+2fj3997ubf8znTl+f/ne1NksEI5617PN6aSORSBCrjrLyuiM89tjq9O/qSKYvjrcpBI5kbKWW6ihJYPhSps/Z8tKFSuHs786IBz7z9SyfV85nKS/cSJdlm7lqVCw2C2d/cyl10wsfJIu0lPKJdd9Uy/SFMEO78uIXebZXfjzxwDfEbLUU9v3zCWZHoyCShlyBZCxJeGKe2fPlEyW0egVHQMVZM8/5x8r3eXm7HHiaXESn4gw9PVl2PavDisVuQZYkofuMTY8QjyQZenrMSJEkgJljYgR9gI5X11G/sYpjP7rA8K5J4fqimD0/xMkfit9npRg7MoNNszF7SoxUo8eM9IUi7w5g/NgMUqfYO38hOPA1wQ15LxCb3tiKVbWy49NiPq9K2+PkTwexOSzC9W2qFSTB60oS/k4PekLn2PfF7ER3vZNkLMnshRKkqHwbRU8SjySIheLMXhRjp+3+shFniI7GzFMvpjJkXPvIvxf59hap33NTLVPnwwzvM2N7WbZgIdJR6nzuOhWbw8rpJ7JISnmhUd3tzAmB6g54+keZf8+1ujIbVocgFMy93pgzcy9bRqJc1GDEk/ntnzZ8I/33ext+yl+duy7972p1ltnzUXRdx2otm3pUfro3m81GPB7n3rerfPz/8QHwq1CXSVBaiBRRaeMON+4E/HszhLMUJ5LDBlEph6CUBfsUOEaK77K3zSZzyEkZGJONHE4UIChlYT6W2ckGbLi3Gqsi8/QXh9KBuHyCUjb0RAISCbpuqsVVr7L3nzJOWD2pl2c8vNi5YX8fSMXXX+KZgDa+v5tENMmefxRj1fa/qZnwxDynfyw2mW/9WD+x2Ri7/u744oWz4O12EJtLEroottjc9vF+IpPz7PmHCljDFWD7pwaYn4nx7N8ce9Gv5QjKrL2vj9Fj0xz9jliQpmqVk7ETc0L909/voO/1rVzaO86pH5X/3h1BmY4bWzj9m2FmT5Z/wZr1Htpf2cCpn11kePfSkarSENgx5AhKhEbzxqUSDo1yJ+yihwsFmrJRKmc95ROUAFqvdOJrUtj3LSMKLykLlYUy1zXuS3eobHitBatN5ul/zyK3WiwGQakIkoqFcNCG0TEdC47HNXkBQSnnuEs3CUoLkSIq3dK6L+f3xPfWgy4RuO0JIJeglI0zcS2LoARdLYaRWKYpsIwlRipY9hcHXpn+7Qu7X2YQlAogRVR6TeMMiQQ8vi/XKaiazt9cglLW9UKRHNtoAeLxhUE0MMhSYSCRKJugBLD9E73GXPP5LOLDYvaTrrPuvZ2MPD/F+cfLd4T8MUELIEwYWmrUbvHRelUtR39wlsmj5QcvfT0aDVtqOPWjM0LP2HFDPbVrfOz951MZokQ50CDQ5mD8kJgh2/vGJqq6PTz5VweFSG2VYtODPdhcVp78/8QcE5Vi3bs7sXtsPP1ZscCX1qghW2FOMGC9/v4urJqFnX9xRKhe23W1WJ0Wjn/volC9tfd1IMnSktnNFSM1RC8Nx+z3AwG7cu272pk8HeL0T017u4ydbJIsse1jPczPxNj1hVPZB0rbjbKMpBS3zbDbDIJSESQ9mkFQKoAUUSl6WWZzUnBC55UXYdQOO9cZY1I2QSkb3xrfRotiDHjf+dTzPPu9QTRNW061+xJEVVUV4+PjtFzXwWV/cg0Az/58IIeglFPeJCqt6Qvhrbaw57EEkcnMcXnKcDrmEpSyEJsvbFeloOsLNsnloAy/U3bQa/172lH9dp78syPZBUrWR9dpuaYaX7uT575yunTZP1ak9lAuDeekYqx5p0E2En0PHTfWEZ9LcPZXYup7mz7YQyyUYK+gj83dqhKLQkTEXgM2P9xLdHKefV9amlSY2z81QHQqxq7Pv/g+L1TY9mA/o4enOPZ9MZvG160xeS4s1D/VGpW197ZxafcEp39Wvs9L9UHbq5oZfGaEqRPlX9DbqdJzcwunfz3EyO6pxSv8AaH6yBmnX3SUspt0XciuWgwN2wJUr/Ky7/+Y31CZCgIb3tuB4rPlzA2SLJWuL0tGEK2IKr5ktS4kKGXDoRkEpQJIEZUGX5Y7P91xKYQCfKPHICllE5Sy8bnT11OtZUho/7bty8Cyz+ulipTP696d96R/e+yx1TkEpWykiEpXrwkRi8HO3+X6hW0TxsIql6CUhfkYerSEVFwykUNOSsNUWdZ1vTBBKV0/meMT2/aRLiKTMfZkxQ1L2V4pu23lXc2Mn5jl4pMT2QeLXzfnJC/9vq54ZGHC0FLD1+Ok8/oGjv/oAlPHy1+3afUKTduCnP3FoNAzNlwWoPmyag595zTTZwSIIAp4GlSmT4nZXa3X1VC/NsCeLx5dknex5u3tOOs04Q1olWLFm1tw1mns/EsxH5QSVLCp4iSgVfe0ovgVnv0bMbJ+w7YAqt/Oyf8WI/EM3NGC1WHhua+8BFPIZ9s2Faq4lz5/CftET4opSBY8ffnxzoHb65kZjHDuN+ZYvaj6kkFC2vrBNiITMfZ+NYuEJUmFCUopyFJOrHPBea0Wg6BUBLpDMQhKBZAiKo1dnpkflWiUNw3CoB0e6zGeK5uglI2/Oncd1aphe534+Ul+84kncLvdTE+XFwsv+43Z7UYD7N2bCdQ224rLsV5WfRJZ0tkRhP3uhb5XKSYhxYq/tKu807yybw5HEfaBNVLMIJABGWl+EXm7PEWAQ4+OsN9kneqJZBmSjAb8nS60QAmHaBGsfkc72z62UAJ+MWhBg+iyZAixpASldfd1sv7+TuF6NpcVxV+CdFAEh751TpigBMZYKxWQsV0MK25vY/U97cL1WGR9WAzdtzZSu9krXrFC9L+pGX+/YP80xxbRtXn9Vj99r2tj5a2tQvWsigVJloTlfkOjSfZ/9bQQQQnAWa9hscmoQXXxwllovKKKzQ/34mgQq5eDUs9YoEPlEJQk+YURlBYhGKk1Ms62Es9WpP6qO+vY8v6W0pM2QB5bN9iponqMOpK99O513W5DN8s8//MEB3+bp6inla4fc6auXfhbmPcUb7tbLNO8ab64VOfq6kFWVxeQ7V1zErou8Arn4aIEJYCt6iLttoyXPDobiwcYJvohocCJ87C/UDxB10s6LDa/xcvGe2uKHi9qG4VTpxdLJXLwkbM8ayp0oCfLdrpoAYW6df6yymZj68f6GbhTbM4A8HRoaIV9qC8KlpKg5OnQ2PShHqrXFw/eF4IzqGFVLGhVJZzPBTB5NMzBb4gRlABkRUKSJWRFbO5e9aZ2+m9tx9Mhdp9yGQvLQgj0O+i9tamiupWgdqOPzhsXpuFeFHJl6abW3NXGmrvE7ViLTV7cbiiA0z8dEiYoAaheO6pPfF2w7j2drHxrm3C9ihFmSQlKlY5lWz9qjp2CfcZRrRLsNdO+L0Zcl6V0H9n/7XMcyE+59wLtTqmIcpG3Hra80U7nFcXnr1CDTqgh9/ioCvv98GwNPNz1s6IEJYC/qX82/fdFMwWhw7GE6/lllA2/37AtZs5kguyxjuIf6Vi/Sly1cPIAnDmQEA58d7+miq0fbMXTWmRNlFyMQFQ+QQng4LdO8fw3zmTqlml3Bfu9uBrE+2zfbc1s+XCfcD3VZxBdlgyFBXdfNAzc2cKad3YsXjAPWsBeke/x5A8vCROUwPB3WWziTqhVd3aw5u428etJUlmO/Xy0v6qW6rVL5/PqvrkBX7eYXQmAJAnbl+5WlRV3dDDwhhaherLd2BAmCYr2RSbh8LfPCRGUAFS/hs1hxSno86pa7WbjB7qX9HtfSoKS6pdwt5R4tiJ2Vd8bm9jycK/w9erW+XGaqZJFHMi7vnKSA/8mlj0hvY4o1lVK2GXr7wqw6U2Fg2QAcw0ycw0L7/83XpmdDpkPr/9pUYISwE/7/6vosWX8ccDSXlzpbLzXSlyTOXYYDh8QP/fGu7ysv6eqeIFi6XFTAfZFbLN8n9hz3zjHwX8Tt708zQ5qV/vKKpt1cTY92F2RP0KrV1DEXEIvCEtJUFKqFdbf30X1GjFbQfXZUdw2nNVic1R4MMqx710QfkZJksy5W8xv3319A6vu6sTfX3xcLXY9JMnYzCMAT6tCx6vrhOq8EPj7XbS8orBISiksEtYqilV3tbL6HvHYtGyTkSuIFV/cMS5MUAJw1KpoVeI+r5V3tTBwh5hdKYR82ybK0hGUAFeTVtFYtukDXfS+oUFYkMHb6qSq17zgYinepEw8eu+/XuTQf+SpRC2m+igYC01B0WDLbQodVxavH6qTCNXl3n8U2OGFZ/zwsVU/LkpQAvhB90/Tfw89Y3AtnM7ihKkFt15uQY/HQygU4vw5Y4A9FjMcOFe6DvP47ELHw45Rw4E95LMy5Cv7ftKYCMm4XKUH84RmxRLOJRv1rEkSrIHnfwwhbEjRAmpIIZNVbbWim2SlkMBm/PRuNouFZ/66yK4iSS5peFjtUkUkl9X39mFRZOGd1hve14XdbWPHn4mlG9vwvi5sThtPCaZD2/qxfmSLeHoGNWDPTsVdNkSfK4XVb28nGdfZ/7XTYtf7dGXXmzg5S3hcfGSu9Pmq+7z421wM7XzxdzM5gjKBLg+qz87EofJ324UuRipiUU8en2B6wMuFnWIOt5G9M4zsFb9e9Vo3bS+r59Cj54WISqd+NCSk2JSCt9WJVbWgVVkICcTnVr61DU+Tg+e+dWbx+8wap1bc1YKn2cGOTy+uqpA9Ya95RwuOKpUdf57FFE9NmrJUcIEnWWRW3dGGVZN56i8KpI4pMela7GUEOgtMyru+apBq0wSlMnetzYeM/6WQdBmLEzmWJFnAaRs1HcdXd88hy/DLI7kTcqi2tEExYQOlgk0vls7J9N8zuoRbyjpJKETd+mmk5xrACu02F6dixqK/pqZGSH5xGX9Y/HhoBQDt689zavdCx4PH/JzODlfgOAci0wmicyV2hYFhNOc5Zjbd30IimmDXF88U/e5TY40kS+mg2eSxCqLzklSx2owsS1gV8VXqyje3Ex6PsufvxXaSb//kAFNn5zjw9fKdvloA1t7Xz+iRaY7lL1hKILjaTc9rmxk7Ms2RR8pXJdSqFWwOK54WJyMCan8nfzTIyR8VIEwugkC/g46XN3L0R+eFUk4d/97FisgqF58eIbm+ykjzJ4BDgikuUmi9ph5HlcoRlibNXOs1tVgVCyd+KPYuRPtyCoO7x1C94o6QZ/66stQvK+5uRdfh4DfEAidPCSpEpaD5FexucYfp9k8MEI8l2Pk5sV16Wz/SR3hynn3/JJZGb/snBgiNRdj7j2L1Vr65ndhcnGf+Sux9yFYJqyo+dj75v8z1i6B3cOZU3vdq2oW6rhcm19lsuFvsrHhdLZf2z3LmN7lkb8lZnFwxH4VYTGZmWOgWQZN4LmuqPRerymzgCodZv2WY3U/XsNlUb/pg4CR/Nd5Bk6efi+yko0OcoLCMFx9NTf9/9v47TLKrOvuGf6dyruru6pxznjyaoIgiymkkjQICLMDYZBuTDN/7Pe/jgB+T7AcwNgaTbHKUSBISktBETc7TM9PT0zl3dXV3ha5wvj/OqVzVXbtAg/iuua9Ll6br7H3COvusvfZa916rhgsXLuCfUYz/PRcUn5Z3mx/HnkzbynlR8TUFPDDqEb/e/KUlbKV6lgO5d/RLkpQR8Kq/oZjKjUWc+M4giznKAaUTlGL3GfAIsnEkiUNfEMseHYPOqEVTAMml582tGBx6YXtvzVMNWMvM7BH0XfX+WQOWEiP7BLP9bf7rNnRG8fIMtkozWp24XAot+9WxsxZJgtPfFrNtRLMfxjB10kNgfoUsFTmw7/8U9nyVm0sILYWZOnJ5MviUrSnCUm7Cc05gDg4gPE4AFiYCzJ7zMnZALHusbzjAnr8Xv5693kTrHTX0/2ZEaJ02cWCOiQNzqzdMg6PWgsGux1RiFCqj1np/FaU9Ls78cJDZU/mXbWu+p5LSLidHvnRGiKzU+Wgtria7mEwliY5HmrCUGhP2UJ7QmbRoCtARh2IZREWjsgGY708q2Rbzt+XIRhDLbLnuz6rRmbUc+EJqaZwVM1sCC7NRjNYoILamGDWbGDXDvcCF5XKaDUl+1kCAa64bwvhqFWDiWw0v8sTADQBUVlYSXY30ewWvG/zukmIjh65aQL/fnnHcMai8y+QybyJYmg4TCqwyHrTajGxJ65+qJBKMcvTro4ovOcsGvXi8MMkntjSafwwo2Xbb/Q+FzcFavQa9WXxz6vqnmvFPB4UrlGz9SCfzA0uc/o5YiawtH2pn5rSX8wJ+DHOlkfVPNTN1ap5zP8rfV2a0SZhcBhy1FqaO5m8rjO+fY3y/+NxmrjTSfmc1/c+PCmU3GnllhpFXcicEyYWJwzNIWgnfSP7zIcDAryYY+JV4vKr22nJcTXZGXpm8LGSzxhsrMBUZGHxOLP534puFlW0b3TutxKcFcfQ/C8to1Hp/NRqdxNnvi/kQRTM2xWCtNCOv4vbPhq0f7iAcinJA0Je06f2tBGeXOS7gFwfY8jft+KYDHP+vpH552Ddr3txA0Bvi4OfFfGV56c4s19/zT+o6WXAjQmAyba20qs9Lh9EBa3aWMnFqicHdqTFfyZTb9pKjEFjSsDAmGHA0GjmTdNqBZTcNhqQ1STDIlptHMb5SBRj5cu0u3j50NcUeN9BHXV3+ZLi8Z/StW7fyk5/8hNkZOU5QiiGdqBQjKAH0MMuaPiunbVoOVymXk0cSDp5gsSIc42xC+JYJmVNYObUA2MGwkFB45ulU0lE6UUlaDgJ6JX3+EsjGNKKSL3WhFSMq1V1rpaLLyumnJ/HGdEosUJ5kmGSk204zXFKcQSsQlQ59Qf1Qchg2uTB2ZBZHpXjwMbos550VMhkKw0+8n286gL6AjB2Fkn8Kha3CfFlTvp7+78tb13TwlUkWhi9PKizfdJShXZNMn86dBeYPCf80HP/qwGW5FkBxhxO9XUdxo1U4m1IhOPWtwsaKd8SHtdTE4niOe0yfUFU9Jek0iUlQIINSZFlO1XvpBKM0wkLMoTF6cJbiliws/xUISpJWy9GvJxnQsfMm31My4SbNqZKRQSmNqCSb0yb0cISN9yuG6cGnI3GCUgzpRKVg0s5WOUoG4TKZoGRQP5PlpDW3ry7MM7HsSx7QuxKL2asbU42rc74yWi2JiJr0016s9nm4/xCQSlSq6PWiXYZo1ygMtAAJopLH48Fuz1z4X8HrDzGCUgzpRCVH0hBZ2+vHooU9RxL2gmkiYf9EHcrvGm/iN2lhiWPfV/+t1yOHkkocpqfDzkJUStED6USlNAMkRlTa/L5m5IjMAcHSqaK2Uwy7C3DWA3iHfUwd9wj3k6MykaCY8eWfVeQjGrxaGl4i7I/gHRKbnyb2eZjY5xHq8/vA1eTE4NJT3OoQIikVipkTi8ycEHPW/D4485NRSprz3y3y+6LvJ4PC2ax+H1x6VpTJ8fvBWWu9rHZ6oTrC7wkS9K6SxTcLJK14VgWAaEQmvJpzPQs8A0t4BgS/B0lid4GbJZT+q2dQSoa710rL7VUMvjLF6G5Phl2Y4bRRMyTpDFqQM9fqyQQlaUnRObI18c14zE727Ff+bSGEryJhK06vTbN5L9riO7s3DMt0LS5Te/0r8eMxotKmDZPo/HDVxkm4kNjG91fF/fzzRcUxvnbt2txCuYI/Gh5//HFeeuklgp5gnKAUQzpRKUZQApCb9WzukBm/EGZY5VnESr0BSBZlDZFS9i0YZPIoTB71k7FoSB/HaUQlORIFGXQ5/OfZCEoAFVtcNFxfRt/Tw0KB/ULtrhPfGBDuAzC8bwZXg/hcGg5EiUbE71OjLWwD4cKIH6NTMFUNhZN/CkVRo9jO+t8X534iTir/fXDhl2ME5i5fWsKLz40xe/EypZsPiJPLfh8UNdsxuQ04G+yFbSYRRKEb+hbGArgawvhGxd6DVqeUjhXNphQJ5l9tAYj7mEb2TVPa4xK7GHBCMJCXem1xctOGdzYi6SQOfr4/c0Nguk8tqfSuHJUhTeUmE5RiPgTJmJis5BIXfXuVfxtYYrksoeun1qX62xx9OrxtCfv6Ke8UWktiHk0mKl2/ZRDDgkx03QicUTJgxIhKc3NzVzJY/okgRlCKIZ2oFCMoAbRsjGI3RTmcVO5NnzQXxPy7KWXfgsuc/oU6Lg165OWkeGFaxZWMeJ+c5vtOs40y4oWqT2zd25Qg7ZEvD2R54gRy2W5JDVY4luhb6Gad6dPzzJ0X95tEw1HCy+KMB0mjQRIksvtngwTnQ8JxLu/FwjbHFwpntRlLhYmiNodwCbZC4L0UxHspf9LW74vzv5qgqMF72bJh9f10CEv55fN5je65jKntgeJWG9JqGXT+gNgnuLEuhqVxP8v+Fb71HAQCjUZC0omvsyKhKJFAGs8iD0ydmGdBsOS0pJHY9+lVyj+vUgJ3xa5psrFW6OnaUcnwvjnGXl3Iw+elznN6FLsrzSZNJijF5rzkGKfPbuOganuZCBIoTRyb7kmlB5nPG/G3KOfomAtyTcCP+5rD8ePJRKWtV49gmokS3TwCx5T5+8u1u6i5qPhBGhvzz8IvyXl6fgcHB6mvV0pk/PJC9jJlLy92pBCUAByTsO6sjTl7iJ9XKcZnMkkphhhJyTIRux0fm4oijPi1jAUscaJSOkkphhhRSTuffSElBUMZBKVk1F9jorzTysUXZ5g4kjbZqYZGhsEBNL2xhPI1Lvp+Nsz08aWM40rH1dJ0v/5rxb7eseUjHWi0UsEZh0Sx/RNdyFFZ+Hrr39lMwLvM6f8RczRs/0QXkVCUfQXunhPF9k90sbwQ4sDnVlHQfwCUrrPTdk8d3uElIdKRpc5C1wPVXHpxnKkj+ROjWh+qprTDyeiBmYJK/Ymi5y0NOGotHPlKP77Ry5BHfjVWYa5JNaanfp8Sb5CdZKQutpIdGnn3Tb5+ruOx+8qVEUjSsOkpN7Isc+hbWTKFqDLLICkBm3cYkYH9v8nN6Y3qNSkEpWSEzcq5c2VQipGUfHXKHHbLtI9+I1ywK06UGFEpnaQExElKO5yH+O5X347e4OeBJ76V0sYuyVTVjiOh2DHyWEv82Mn5SdZ0KPK4nEHgK8gfMaP0n0/emkFSiuHioZoUghLA7cUL6DXws2k7jkFlbCWTlGKIkZSkBcV+KWnV4Kwx0/9b5e8YUSmDpBSDSlSS0x068ePyijbQVX/dghyR2f9psZ0YV32wDTkiC2cDuYI/HIo7LXTsaGDmjFd4x08haL6vkvLeIob3TDP4m/yJMqUbHNRdXcap/+7HP5u/E2Xt25qwVZk59B8X8AsucAvB5g+0obfpCs4SJootH+5AaxDPzNq5sxatWcuJ/xoQ6rf9b7uAwklAotj+t12EAmFeFdQtV5AFhexWAco3OWm+tYrBXVMMv5zb0ZduW1Ztd1F/XRmXXp5kdF9u+16SpDhBKeOYag/myqAUIykFq52UlQYpdsGZcwCKLRcjKqWTlCBRfuLPJiYJTpfQePvzmItT59cdrYey2l0A2kqFlOvz+TCbL5+z9QryQyAQUN6LBA3f/PusbRx7zCkEJQAdAa7dJDPjgXMvKTZRMkkphjhJKZgImDXe7MIzGGCuL5DwN2XxO0GSvZ7jOKwc5KrY4qLxxnIuvjDO+N78d4ZXXV1C/XVlnP/FyGXLVnMFmdj0/lb0Zp1wpqhCse2jit9X9HrdT9YTXgpzViAjKCgZSMPByGUjcW3/RBfB+RAH//W193mZykxsfGcz3ktLHP/6QP79XBo6H21kcNckM8fy93nVXO+m7royxl6d4WIBWRJE0Xp/FaXdLk599+JlITe9rlGg3fSHwKb3tiBpNbz6ObENQJvf14yklXj1cytkUJE0uf15anA1VwalGElJLnEB0LgBPBMwp6qIGFEpnaQExElKH73hGSa+ex2SMUzZfbtT2jQbJri56WxW2+uJgRv49rb/RJKkK9mUXqfQ6/WEw2Ee/91O9o9njzfq99tTCEoA2xsWsRjgN302LKqvXZ+FsBonKak+LUcNFNWauLRH6RMnKuXyaa0QE1QOyLmPARveqcRS48kKsp0ii+224S8bkSSJg1/ovxJX/CPBWGpk4zvUzE0/fu1JQFXbimm4uYLhvVNCWYOcLRYabijnzE9HCU7ln7mr7cFqSrtdnPifi8yff+3J12vf1oi1wnzZCGMb39+K0aYXvl7TnRWYHAZOfVs8O5ik1QhXIyoUWz7UTjgY5eC/vPZ2bF54re2fQmr35X3qwmKpjgYjnTtqGN47y8huT+7uabIpajPRelcVw3tnGX01B58k1k+fIx6pUeKMuTIoxWKcYbcNZ3GEohIYOAeg9IsRldJJSkCcpPQuzuO/VEXFTXswlqaSWBsM01zfeD6r7aWv7ye6HOXkyZN0dXXlfL5k5J1JKZ/0TJ5QpiPQWwYvlykPER5wop3L7kwMFstYh1NfWIUFnIYIYwFYtmuwTuTeoRox6zCMq4s2i5I0NLlEj2zUI61AUhr4jYeLv87hQM2SUSmG8LKyi01rWOFDyZJRqe3hatxtDob3TDH4/HTeBkXZBgd115Vz6ntDwoSHok4Lc6cvz46fkl4rJV1F9H1XLHC1+a/a0Ft0whPIsjek7KC9TFgc8xMJijPFzaVGjEXiKQP9M0EWCwiSXfU37fimgsLl7AqB2Q1r397JxLFZod1QS8NLBDxBJk+IpdB0t1ox2PUUdziFSEqzZzw4qy1Mn708GZ980wFslWZ8gqn117+rGXOxUSyAKElUbnVhdpvofyatnu1qk7ngTvcYLHVm8Pnxza3w/WmkjAm5501VRMMyp76tpnbNk6C05X01yFGZ/f83aYEQlVesoSzptCs67LORk2J49QdBZKtJYSvnQDaCkt3iY8EHOr8Fb0PuqTZslVkuUXWJz0d1GNxhuKCSl5x2Pz3u7Olvz/nKuK3oBACP/NmXEwemfbRtyBFAqEw4rL76Z+2A90ompdcxtFotkUiEr/1AR/m12dtIWYb2L2cT71QKyxhnsuufqMOMdiahC+u2ONCbNHGSkqTXI/tXcDRrNMjLirPHXG3AP5KecUmCFabKff98bnWHSzbIZOzazAeFEiW6n6xHjsicEsyGaC7WgMFwWUguAE13VrIwtiRUtg2UII132CdEPPHPRYksR1ma/kMWF8+NmVMenDVWPP1ic3dpVxFGlwFrjRX/bP59x4/PUmUswT8v9u6a7qyktMfJvgJ3MIqi5y0NmIsMwuXUZs55MRetXIohG5yNNjQFZJvwDOZeeL8WCPnC+D3ipWa2f7wL/5x4acfWB6uZOj6Lp+/yBOYcTWbhTGTWejMd91Rz8TejzMbWg6tlR5Ekmu6soGJ9ESP7Zrj0nEAmLXWchALZJ4FcduXobo+SQUnSrLwjLY2gZHSqsQe/QpzVOB3Z+wGyXhcPiDU2gNEQIykpCJkl5tuy941ctFG5bpzmdXsSP876eXDr6ezzUszukoAT1ZSUlDA/P3+FoPQ6hcmkBkhXsjGyLJnCmPjtAeXflogXaTG7z0WymJAXU/VhWbcNR7WJub5xJK02N/EbNaNS7LgJTCaEMoKM751lfK/47uCQP6zoCkHfcO0b3NReU8bI3mkh/eFqNdN4cxVnnx7BNyw2D9vrTUJlo34fOJtNuLuLuPAzsZKra/+8CYvbJFyOyzcdxOS8fIHIuYuFZaJ01FqJhsXt+/nBJfxz4nblxve24p8JCtvpheKqD7YzeczDwLP5+7wC3gCLE37Gj4v5vCxVFsxuI6WdLiGS0vzAIr5OJ7PnLg+pcGkqSFEgQmBebHx2P1mPs84q7P8tWWPHXmERege/D0xlJlheVp5vFbspGR0PVSPpNMLZsLZ9RKlUsUdkk6qkUZMeieuIV//lwqoBumwEJVOFnsB4CKJRpJXsGp0O2ZnI6FbWoMVVEWVuRLnXsEnLXEd2h5ujT4dvszKnlj/ycuKAJ8A7tu+HLBnMqUrYXo/9O3wbrvi8Xsew2Wx4PB5++aVpSu7L3kbO4i7ePZAYU1JURpdj3S6bjfFsqgD1mx2YizRxkpJk0CMHV5h7tNq4z8tYqiE4lTa/rRKYP/TFgYJ8XnIUZFbe9Kc0TP3mt/yNSpT4pBhRovX+aiQN9AkSjI0ODRj1QuSY3wfV15QQmAsxc1LM57XtY514B5c4KVC1IugNsrwUxjd1eezKuYElSsf8eM6L+byKWuxYK80U1ZsZF3gPU6fmMTr1BCbFnq/q6mKqrnJz/Ct9BMVeQ0Fovb8ae7WZQ58XI+BOHfNgL6AaUXG7o6DqQLN9CwWVuS4UwdkQy0vi2by3fqSTwGyQI/8hVg6t/rYy5vq8mdnBXiNykqPeiPdSUIicZHTr6binikuvTOHpy48DIWkkyjc6abq1nJF9Mwy+MJPeIGdfjUEDUYgsZ9fTWcu2AXN9AfZ/pl+Jha6URSuNoGSwwHIECALRCNJKWSJ1WsIuZfzXN4HdGSMpKYgYNcy1Zr+2+bwRacM8Zd0nYdvJxAFvkDdtO4wUIdP2qo6VvYOSolJmZmbyJiiBAEkpGa36uYySbzF0Oic4PV+e8Xv/KQdYIFIUykpUihGUlu0ShgUZsNDvXWJgQfk9RlAKW7TofJnOTv1cIF7abcsdekKBKIeeSbSTFv0JZ2YoezYmSavJnsJVbZ+eZhtg8IU5Bp9TUlzFypdkIItBMXV8DmeVhflLPiHGc1GbQyFmtNuESEpr3t6IvdLCmR8PMJMr41MWbHh3M+ZiE7s+dRIE+E1NN1Wjt+sQ3b8c8CwXVHv78BfFggkxXPXBdjR6cZbrsQLrjBa6Q77Q59OZtJhd4qSoQiBZLGh0ElZ35u6XleCbjnLwXwVL/QCDz08x+LxYPVqAmeNLzBwXZxl3PVGHq9HGkX87g286/wVG/zPjmYShPBDwhDA6BN6dOvHVXV+OVq9JvWYeE/q2j7QhaSV2/33mzsWVHBZrHq1B0kjs+T+5x2i2SdlWbkro01VKvCVjaWqZaChN/isRlFS9f+ibnuwTv9GApOp9OYvjRbbmHs/LTuX9aAMRIikGrI/N7RBYhufHtegXZEL2TBn4KpTnN8xo40SlV80wrz6Ou9YDwInpyqxEpRhB6ZXZGq4pThBCrc9EkCDOZk5G8u+7TygBvPb29pzPeAV/XLjdbiYmJpj92vN8+NEZvja8PWu7hUawZ5mWnP0LgIlgiSkrUSlOUDIZIRDkwsseDEk1mGMEpZXsI0mS2PDOOgx2XaYeWGFHWRwrlMbNhf2f7itot5h3xFdQGZBCS06t/8sOomFZ2EG0/RNdRJajwkSXig1FlPjswiSlyHKUwLwYocM/HiiIiONoMtPzWCMTJ+a48JP8g3qePj+H+sRthVPfKqxcQqFl8CylRmXjghm4DHwVc5EBvUV8OXf+R4WVYil0V9ipbxb2HrZ+pJPwUpgD/1fMbhMlbcUQDkYIerKvE3PCDGXdLmxlJg735W+vW+vNrHtzE/NDS0IEwfItLlpuq2a2z8vp7+Qf9CrrdmJ0GXDU2RWS0krOpKRj85cWKG62Md0n5iyNf0M5bNDYmjmrjblSVs/kzUNJNmLPo1XoTVr2fm4IyWRCDi6nlBeJIepSglSGSaXEyLETUFoCsSxK841KH2cfWYlKlesU+/pfTt3E+7qeB6D2NwtI8ip2lwy/+7EOk8mEdhVi/hW8PvDkmn1849iWrMfmm/U4L2TqCsugmqHUZslKVIoTlPQ6CCn+rUu75vCcVzNYxghIWcrqglrmTbWbtn2gjeWFEAc/nzAAVy0VEoMJEIhHTB2aZ+qgJ/8OKmbOLVLa5cI7JEZUdTbYVWKGg0sCJKX2B6txd7voe2aYqUP5kzO6n6zH1WDj8FcvCJGiGm6qwlZh5sKzY0LyDM4tY7CKz92FloPf8Bct6O069v0fMbvtjMAckwxR8lUMJwsscWWwiZfcKxgmxcdmKRUkegfg6L+LBYMAZk8tsvuUuDwXLgU48iVxH2LjneVUrCvhxLf6hch+o6/MMPrKzOoN0+CfC2ItF/MfAjTdVInephMmKV31wXZ0Jq0wKWrtWxvQ6jTs/ofTuQneWewqV5M9v2zkaZgbWFoxZpV5baXxwRUytazcfYV7VG2WjNIjwLo31RLwhDjytXHkcDieyTLl3GpWS2l+MU5UOrc/QliNo/vqFJ9U0ZlQVqJSjKD0z3tu5G+2vRD/veF3c0jRhI2Vck058fv/+ZoSu2pubs79jFfwR0V3dze7du1Cu2c3T31My1dOZfd5zTdqcF7MtI2sw4uAlrDTlJWoFCcoqbbXhVe8GG1JPq8YQUmrySihA6ptptHQ80gZtkojez+TNldFIvFvI6fPKIfPayW77fCXLubnJ0vTSbPnF9HoxfVOSZsd5csRIymtf1c7ciQqXEJq28c6CQejvPppsX71N5QTXBQnKYV8EfxzgpuYgnDgc+J+BaNDw/p3tTN13MOFZ/L3efnHghwtIN448KsJBgrImjh3epG50+KEdGupCYNFB0YjClvitYW1xIjBLm7rDb4gHjMEOFBgxv5Cyx1v+qs2Ir4IhwXttiP/WdicH1oK45sRf2/Vm90U1dpSr7saQckIV3+oi/mLi5wQWMc4Gkz0vqmJ6TNezv4gf7kWNViwVppwNVpXJSkl2z7+qQC+iQCe9JKXq5R485wPsO9z2d9DLoJSHCvGQtXrpvm82u8uwVKiZ98Xx5V4ZyiUNbu4rFZn0Xn8hF1mzh6H4lKIZVFaqlHIS0XnolmJSpKa+OCfDt3Ghzf8Ov571b4FNOEctlfMJosqG7+KirJzh3KhIJJSNvxsbkP83+lEpat/5+A64GsquSsXUSkdpxaUHY7pGZTSiUr6uYQRIhv1+LxhZocTkpIWV44SyAGl/5b3VBMJybz6hdzZf7IRlbCAxanDNxbOJCrlMCjmTvt49fQ54SDb2e8UVlJjZO8k1VvL8I2JOYgmT85T3itu3PT9fBhnnXX1hmkQKfeVDFuTBXe7Xbh8V2Q5UtCisfneSrQmrXCmqELR+XgdoaUw5wUnvMtVNgTAN+gr6HqWKhNtd1dx/rlxFvtf+0xfJb1WqreUcex/LgoR7yLhKHJUxucTC6aX9Foxu80M/3ZaqN9pkZ2ASRNf38+GsFaIM8VnLixiKc7Uy6t9H9NnFtCtwDDPNSnv/ZQ6iQsGak78T9Iu3BXISZAgKAHYa2Ehfa2VJXiVDEu9id5tsDgPJ16OIOtz32s6UWnRD0O+xN/pRKUYQSkGhahk4ST5IUZQApj87Ta+O+/iqut+TWPLIEtvsbP8fAjDS4rRGbtqPAUjsPAGHa+++CoA999/f55XvYLLjfe///189KMfZWIw+wJi4GBN/N/JRKV6vZ91zjDTWjihxvZzEZWS4R2EWOqj9AxKGUSlJML3+BEPxa22lParEZTkqMzat9djLTOx+zNnQVC3FpJJpNCsgoWWqJo9t0CggGwuSxMBFsfEGS6DL03iHRbPWFNo1p+a69wsji8JZY8J+WTkqIwsygMp1tB8Tx3DuycuS7YaV5uZumsrOPfji/gFkk5cjsyVySiUjNN8dyU6k/aylOoDaH+ohqA3xMCvxez0aDRKOJ2YnAfqby1j8uQC/hGxsVJQiRk/XHpxgrlLYt9edMGPbybA1HGPUD/vpQDeER8j+8Xsyou/GOfiL1QCe7Jttko2pZkTS8ycECcImiuM+OeDQoF7UMqAag0a9nzyvJIpcyU7NMlpM3liAUe1GcmUCHamE5ViBKUYDJNL+MusDOb5GcQISgA3HTZz5OidrHv05ww9XEbli17qnlOc5dnsLvlOM5cermDk4/swGC7PBpIr+MPDsS+xxkonKl3bu4h2o5b9P1btqBxEpXSMH0gjKMWQRlRKscEkDfODPjwXE3pnVYKS6pfa/redajlMwU07JjA5TEK7rX3DAQ59QVx/XHpuUixzm4rRAzPorDoWhsUc75PHPOjMWqKLYgrr3C9GcdVahPXcme8VNveaKkyUdtoYEvQrRMIRtFHxjYB1N5ZidOgLDrqIovW+KsKBiHB5sj3/cPl8XgQoqEyJyQUt9zQwtGuc+QuvfUYGZ7OJ6q1l9P98UCjbmhxSdE1I0NR2NpuwllkY3SOWqa3/6XH6nxbf0HfmR4PYq1bYPZ4DUyc82ArIqjB2YBaTawXfUy6fV4FrLCGCYFIAzV5nYmFQbHxJFoltH2hjYcTPiW+sfN10opJ3yM9s0no8naiUXnY3RlSazVMFxghKANdOwdh3bsSx8TjW1ikG7q4kvGcE3Y+UNtlsr0N3V7PnuYNK/2tzpKW+gj86PvnJT3LttdcyO5xd8egOJuz3ZKKS0xhkS0OIKRf0qe7RXESlZPimwDel2mrpGZTSiErJttnYMS/ugFXZ1xDrttqmvKhM2/0VlLTbOPK1IfyCPh5btZHFkTxsmth3KcsFlyUrVF9NHp0jlCWZxGrw9C/hmxOfD8//cpTAtLg/qBCyEUDZRheB2UBm9pgVEAxGkSNRwiFBuRih/Z4axg5MC12vUNhqjNReU07/byYICmRIP/eT0ctmG0LhZJzaG0rRW7X0/1zczigE9beVEQlEGX5JzE6XQzLhZfFvqGpbMXMDS/jHxNY9BwU3AMbQ/6tRFsfFvz3v0BKTp8UyewZnA0yf9TJ2QIwAP35gnvED4llEvYNBjn41KQ67WrIH1UdlLJYILskZXL3VCErr31GH0a5j7+cuKev9lZjpST6v8ROLFDWYU+Kd6USlGEEpBp3HT9BlZixP20tKqszyQB+cPncbnY8oRKXRW9yE3zSO7psKmSub7fXqo9UMfXsIfRby1EooiKTUd9ZHWzvxbErJBKUYOp3KwvL0fDlzWjCm+ZdjRKX0Em+gZFMCuMnoxWqA301kLiJiRCV9lgnt2EvKY0mEshOUkjIqxQhKAIH5MIsTwdRAXJasSylEpUiEbe9rIxKS2f8p5SOPE5VWYTx3PlZLwBMUKo1VKJTsMeJs3OHfTguTKwDmz/mYPydOODG7oXRtqXCGnK4HatGZtcIkpUIy+ACU9biQNJJwpqgtH+oASTwgWNRkQ47IwiSlPwWUr3diLTdTubGIcwIkpeZ7KylfU8TZn1wSyg5Wu70ca7kZW4VFiBRVKEGw5fZatEaN8HdUtsGBHJVXL2WXNvHNnfYlyjoKpETs+37m2FqVwKfVcv6Z3N/qipNynuXdUmCB3gfKGNg1l0k4Su+fNBmWdmhouraIhckQp55WWdFZCEpSJBrPpiRbTcjLsByAKdVOkUIKUSmWQSnjkVSikr/EzktZxBIjKqUTlGK4bcpHWQR+2b0MaT63E9OVAPS4x1IISgDGkjlCizbKqwZp1KnBuW9XsfyqD8O9mTqx/+cO6LUg1ymG+sc+9rGs93MFf3x85CMf4aMf/ShRdb3ylprd8WxKyQSlGBYalf9fugg9YfCmqY8YUSm5xFscJiOYYdO9FuYuLXP+F5n2U9w+SrONRvd6Gd3rTdhHeRCUACZPzFOxToPZDH5//hmV1j7ViK3KzKGv9AuREIo7LdReXcHRAhe5ojjz3cJ2oB8VTLsbw/DL4vYaQEmPQjCbOSG2i6ru+jJCi2Fe7cvfGvKPB9jzD+LZeGwNNpx1VqLhMjx9+e+0L9/kovmNVQzummL4t/nblpUb3NirLThaXfgLyKj0ekdZr6sgkv6WD3cQXY4Kk6NKOhxEQ7IwSWm/4I7MGKq3uHG3Ozj4fwXsfDNUbSph9MCMcBasQr49/yzCZeVA+YaOf6WwjK45d7rFiEpZjjfeUY7OrOXcD8XWIGufbERjkNj9d6dXtEflqJwYi5KG2fOLWNxJdpZKVMpqF0LcaTN8IAQHMtftMaJSOkEphqu3BvF64RV/5nGnOszn21IJSgA+Q4SAQZmz7rLOwNeLCBwxYbojk1ghP1/Nf9fWcOagErwN5cjqfAWvD+h0OsLhMKdfGOHJGxPZlJIJSjHMNyvrDeeFEAszUYxpe7RiRKX0Em9APH17220O7NUmDnwhywYVlaiULZvlqf9JfJP5EpQAFkb9LE0JKjlZZvsHuwgHI8JkzuZ7Kgn7IwWRjkSxcClQUDaeqSPzTB0Rd2j7hgPC5ehAIay4OooZPzIrRHDqur8Gk9sgTFI6+uXC5ozKTSVoDRrhQNSm97Wi0WvY/ymxseLudiFHosIkpT8F2JucOBusLC+WMH8h/wBy1TUl1F9fzvmfjwiN0cpNpRQ127HW2Ql48s+EOPDsREEl1FrurMXo1AuTlIo6FKU5d0aM6L1wKVBQWceCxpYkZWZjSCZ4vwZlTnrf3MDQrgk851fR1Un2lanCxJonG/AO+Tj+9fw2PEoaCZMJfJNBpk6lja8cdlecqKTXc+qHmbooRlRKJyjF0LQJiis0vHxMh5LWL4GiM4p9NNehTyEoAUyboCwARdVTPOVQfbOfryD8FwF0t2TqqM/95Do8TS7CT/8MgH/6p3/Kej9X8MfHNddcA0BkWfmmnuraHc+mlExQimG+UR33FyHohwVP6vEYUSm5xFscqu21/kErnuFl+p/PEtxXiUrp5PGZ0wFmTgdQat9Gs/q8UjIqqbbZ1Ol5TA490VAoJaPSarZb2wOVlHY5OfHti8yvpgsSN4CjzkD1tnJO/3jwciS5of8XhRFATn+nsOyQkwVk9gRwtliQNBKePrH5puX2KoLzITFiRxDhzFIA5mIj7k4nklbCezF/X6Kj0UTXzkaGd08JEWSKOx0Ut9mZv7TIqABJ6U8FlZuK0Ro0wiSlje9tBVmczFO5oQQ5LE5SKpQ01HBTBeUzQQ7/m5hPqWKTi7k+j3CpvvEDnsQf+do+QTj+NfG1WXBBw9kscco/BLL5Qau2F2Fy6un/5WTeBCWA7kfqMNp07PnnxDvIJ4PSdN8S9oqkrKwqUSlbaV0g7vOa7osynU2HqUSldIJSDJuuibAwD4fmbBnHis4pc9JcqyaFoAQwZ4Jl1Rx83K6u5f+pjPBTTnQ3ZK5nvvTLbYy6jPDtEaJZskKvBCGSks1mY3Fxkb98xwK/eclCq371etr9A2X0V2U/FikKwXDunYR6HehWeK/ZCEoANR1QVguHntOvmEUpmaAEcPQbiQWLpNUgB3IraEmS4gbLwqifxQnxBVJRkw05bBUmKW37205Ci2EO/IuYEtv43hY8l5a48NP8Uw1igbVvamLy6Bxje/Ovn17Sa6X1rjouvTzO2K78+7Xe14i9ysLSpE+IeDLwwhiOuswPbVVYECarABz/9iWi4mU/80/BnoYjXx8An/gY2/6JLsL+iLCDqBAUdVro3NHA/MAiJ7+Zv7F58ecTTJ1eYHFc7B3IESUbQ3BJTKZHvtlPSbNV+J1b3MpEIVLqDaD/2RGcDeL1z5tvr0bSSEwdWWGnXpaJ76q/biO4GOLov4s5I9e+o57p015Gfqd8r/kGLze9u4Hxox6Gf+dJu7Xc/S01etY8WsvM+SXO/Sx/4616rQ2r20j1RhdnRjyrto9haSrK0myIkWNepWa9OXdKcSkSJepQJnWfFw49l3Z8lZ0Q/hItm0oWsOjh5fHM965fkKEie19bBLREMwhKyUgnKAFUbj0DW89whhq6SchT+6aJjBKxElD/qJdLJyy43e4rgbI/QbylZjcA/9+DD+ds4+zX8UoOEy9YYsKSjaQE4AeNVsK40nSaY8z0vrmapckg/b+czih3k4zkeXBsj4exPZ7EwXxKv8kyw3snqdpSCn6xIFvVljJsVWZKemxChJyOR2opbrWz+9OnhMgLNW8opbzHKUaUQMlQ5GqyCWflWfuOJvRmrbB92H5fHdGwzMwJMfLQxJE55s6LB/XMxcp86p/Nfz6dOuQl4r/I7IDY3B0OhJUxJ1jm7/RPh7CWmVm6JDbGet7SgKPWwuEvnBF6vkJx1Qfb0Rm1wtm+jnzpLJgFS5Wg2l5hcVv28FcLC5AWkjENYPzQHJ5+sbFZua6YxjdU4KiyCBEMa95QSvVVJZz4ziWh8VJ1bQnFLXahUm8AzfdVYq8wc+RLYmTGTe9rRWfW5d4lm8Nuq1hbhKSROIeYk2j86ByWEnWdL0dXJyqpwbDzP8tCZIjKsczUWSGZTKx/vISxkz7Gj2S+AzmYO6OdVhtFa9OsqNvTCUoAezYp5zx88Sbu6vkeAPo3TWW1u3wPj8OeGp77rGIXXik58vpGU1MTfX19PPepU3TeWM2Ta/YB8JN9N+TsYxn00pdj+SvbLJCNpKRC79ApZUJzIGu5XaB8o52qjcUc/o9LxLJgZj9Bav/jgjonFoif7fPiKyCAUd5bRDQSFSYpbflQB6GlsHAm1A40eQABAABJREFUpjVPNbAw4hcmI3Q9UcfMmQUmDuTvu7LUmOjZWc/wrikhckbdjdWU9riILEeEytL1/2YEV6Mj7/bJsNebhEkdR78xUNC1osuykvNfEIe/0q/USxfEto91EfaHC84uKQKTS8OG93Tg6V/klEDm66lD8yxNBvFNC/r0IrKSjSEg5nw889MhXLVmPOfEbCiTS9FFAY/Y+7vwy2GKmsXHZtu9tUoZNUE7dsO7Wgj5wsL6rOvxOjz9i8JkqvXvbGLi+Dyju5J29K8WhDLBtr/qZObMPH0CZZaLu2w46ixULrvxnBfY8BII4Lm0xGiemTZj/r6AB45+RTCAqNfTcIMTa7mRk9/NQs4OhzPsoRhMRhmNYeUNi+kEJYDTpTpOlwJnb+VdFV+N/y49OZ7V9nrzO/fxL8/eRnl5OT6fD5Mptw/wCl5/eKpL8Xl9/eBtOdtYh6McGM4+lsJOE/psJCUVWqOE0Z77G87Ibqmi4/5SfLPLDL40v/LGvCSf19wZP3Nnkr5lSYO8WgYmOcr4gWm0eo1QBkuA0jXFFLfZKetxCRF66m8ro3JDCYe/3C+UVadso4uqjcUcEdxoV7bRRXGrXbi0bMfOWsxFBmFiRudD9QWVpRt6ZaqgbOVGhzKfBr35z6f+sSDHv3kB76jYO4+GFFshGhabuwdfnmLqhFc4E0/L3ZWUrS3i2NcusCiYvbQQrP+LZowuA3v/UcxfefQ/zoFRvExcNBxVYkeCOPyf/WgKSAdjrjTinw0KkwqHXpliYVTMP+poNNF8RzVT9Vb6fpg/ab6k10HjzRX0/WRQKMtXSa+D0m4HZ348LPR8NdeVUNRozZt0HcOaP6vHXGRgn2DG4KpNxejNWvp/JUYwGz80j7U84VfNt8TbUFoMFVCISrlISijJGLrvczLVF2DyVBZhrhDf02uj6O1aWGGZm05QAvhtq/L/XSdv4/Gt30y0fWt222vHXx5hR8saQNznJfTpfPKTn+Td7343AxeVyfZ73vUA1JpmGQoUZ+1jdAQJjsvc5oVhI5wsShiG5osGQmogTJ8lVvTKOWVXhT6HZoialNvXpC3YSqvAYAJN2BevOZsVOh0kGR6lPRaqNtg5+o0J5FA4sXMgi/EgR6LxYNqJr+eYUFcJtp39ySAzF8Rrf8pRpfSUKIxOAyWtWi4gQFLygbXMRNVVJUIkJY1Wg0YnYauysOIXkIZLL01QtbmEmQuCZekOeZk8JEgBBTa/ow29XSdcpqzQsmSFkoV8g4VdL+yP4Jt67VNEAgTno0SCURZGxYNJhciz/5lx+p8pgLHvQ4gAF0Pv29rQ6jXCY2XqyMLq2ZCyYGTvNDrzShGZ7BOfzqRVZoZVmL/ppSmtpSYMVh0jv5tL3a2eTYepxy0VEnqLFnebPYWktFoGJYPNhByVWV7MPoFKel3Koi6GkT2LeKeDLEzKSg7BLNdJTi8dg28GTvxQ1Q9GQ85UirIasI1lTGrdrNgHZ/Yl2oRtuYm1yy4dhqUo7lrQZhFBwB37MXuA94e1yvzoJlOXrXErjq3n5rq5pSi1KNzAz7fhaL3Ipp5jKLt6FGi9iav51muxHI4gqb/7fD48Hh+1tbU5n+cKXl/w+/2YzWb+n4N3Kz/U+JGGs6er97t11MuLVJXCkTOpDjnz8AKyRflNykJ+3felVYI6sW8njRVvLTNitOu5EJnMj2ykonNnNUFvmP5fTORFUAIl449o1h+ACz8bQGMXJ54sLypEF3OxWShzU2mnA6PLAGaEyE2Vm4rRW8VXt0aHfsVAZy6MH54j4BUPCl14WsCeTML6d3UQ8oV59dNiwaTZ0+K2wsyJRfYIkq8A8CM8TgAWRn1Y3Eb8/teeoASwNBnAnCO730pQCFTiz1eoHStadg0AM/Q+0YRvKiDshOz/ufjY9JydZbrGwuBusZTStjITWoNGePNC9aYS9Dbx77ykxZHdPkxK85/tWGQ5isYgPi73fO4MxfXiJVVSsmatYJPGSfEqkWnt22oZemWa2TOJMZNzRxkgGfSYS5Yx2DWUNBszSEqSOt/lota9vEudRxszjy00qP/fX0H5VYk1R90AuBZ1HGsOs6VuIP67dkaOX2t5ux7D7hASYJlRfAmjIxNIksQHP/jBnM9zBX98fPOb32TLli14VL31zeeuUw40RLEPZB+LIbcF/bSP5s2wMAOTSXEaaXYe1BJ/8nLmXHvim4XNpaWdDkzFekzlBgLjgbw3Q7lazNRdX86xrwys3jhJnxRaouzU9y7iGRKfA6LhKJECSh/YqiwYHQZhkpKr0YbJaRAiKUXDytpbtHzU4O4Z5KjMgiCZ1nPOL0w6AYXEbqsws+v/zbewuILAeGF+pEP/Vli28kKvF5xfVoI7lwGBQJTQYlg4KAQUlHVrdM+sMKEGgAAFjZWetzRjsOuFfV6Fjs1LL01icogHEA32lcmdueBqsmFxG/OTacyuMoHZbaS0y5FKUloFJpcJORJleVHMQJw9tchhb//K5Sez2FUBD5z85urB/vTNiA23lGKw6+j70Vhyo9z9tVqIRChptaK3ZtqjkmHl93lqlwSEoC6T1OatV+xi+8s6Fq5LHU83DIa5aAfXmlQfsHZMzUoDXLihmOYXZ5GAonFFJ3g8HsrLy1e8pyv440Oj0RCNRvFOBXGUGvniyzcpB+rDWC/l2HxXbKQ06qOyBs6eSB2LuulFZHUsSsuZfudXv7JyIDolI1ISXLUmLCV6Bl+YzSjLuxKabi8lHIgy+NsZkKPx7zCn7SZp8F4K4r0kmJlblrnw7BgTh2eFySMhbxg5rGQFDQrE6Us7HFjKTBjdRiFyU9XGYixl4uRBS4kRQwFr6KHfTRIJiNuVQy+KVXqJYeN7Owguhjj4OTGyRCFl3haHgwVlbiKIMEEJYHHMj7PBRujyhBtZHPPnXsyvAIUgJv58h78onu0aIDhVmC26/qlmfOMB4bJ2hYxN72iAsQMzTB5bia2S6VeyVZkwWHRIOo1QBsmqTUXYqy35vwbV/ijtcmAuFvNzShqJSDCyImciV0KGA/9+AUfVKuu5LH1Hk7LurxgLjcVR1OzlXQ+VM3rIg+dCQjA5M4cD6HTI2jDWUh3RiDGTpGRaeQPqnpdU2yyzIAfeOuXeNHucRLcl1qa1M1C+CAcqYGNj6lykvaiWTAXO3VlM688V28t90c9AVIlfPv744yveUzokOX3GXa2DKvDzgxVxklIMyUSl31xsSxzwyTx6URmP31aDsOaLmQMtmahkG41NHD4sQMiXOnEZZzJHdzJZSeNNWzQmEZXkbDvvw2F6dpZiLTXQ94spZs+k9U8iKqXvZqu4yk7tNjevfk5RYlmNjJUCb2Kv4LLD2WopqHTb5UTZBgeNN1dx/pdDQgSU6mtLcHc5OfrvYhNBz1sbsFeaxUuWWMDiMuETZEVf9cF25KjMq5957XeHgZKBaXkhxAFBY6oQ1N1USvVWN30/GxQjD1nAYtEIZzZa++dNmIuNwgzsxjvLsZaahTNbbHxvCyF/hGMFplnPipUmvjzISemQozJmt8Jt8s9p0w8m/r1KiTbl1n6PEm/6LAuNZH2afjzpWtnISbHjXfcqDpBTv0r77pKISnKWjBJX3a9FkmDv09nJSRFT4nmWXanX11kD6uyVTE5KIFiUqveXK0JYfAF8ajDNXZEgKsUISsmIEZV80xZGnr0eg3mJNzzyg/jx9QYN2o6LaBbgwmkHWCzg89Hc6SVqhzW1Gk6fjGIymfALZqO5gssLi8WC3++n9xo7f/PVrgRJSUUyUankaGJcvaFuEZMOXtwPsVTq5uFMwmQyUUleUAwxgw2WF0khcgPIWRw8cceMGeTFNH2cpD9yOWC2f6ydaERm7ydXKYOaZiv1PtVIJBAR2sX8pwIl01AUfwExicuJtW9rQtJJHPmS2CK++8l65od8QuXXALZ+uAPvqJ9T3xTb7WuuMOGfDwhxcso3uWi6tZL+58eYuAzl3jZ/oA29TZw0//tcT47Kwlm3CpElwNaPduLpXxQugdj7VCOTR+eYSE4tvQpKNzhovLGSvp8N4ul7fc9vhWaKykC67ZWsL1+DMiSrwVwMPU+2cvGFcaZXsO3TbdLyzQ6ab6lktn+RM98dy05OSrLdMgJhDkN8bMbIScmI2lNrcWnrdWpCPsUGnG9M2HoxglLK/alEpev2mtBHJRZvPa2QUFX8080/QOORCfaV8Uy0Bvx+Hlh/mqBLyw/3bOLJNoX1Luh+uYI/AmLrmf/PsXsSJCUVyUQl9/Hk7zfENddBKBjh0M8V+0eazSShJBOVkjN3G50Q9KSODTnXZjtQTLs0QmyKrZXD/9TxUDUlHU76fj6ychaftHFa3GWj8aZKTn7zHAFP7m5/qigk09DlhrPZRNs9dfQ/P8bMsfw3QZWuc1K2xiVcCq/tgWqKWu3sy5WBLxdMYHKYhLM/bHhXC5JW4uC/vvY+KFB8XsH50GW5XukGJ823VnLhV2NipQULlGXno7U4aizsEyzPWHVNCc5aC6e/LWavrXlbI3JI5vjXB4T6XW6YXACalTNF/RHspryxgq+vY0cVWrN2RaJSNl/gVX/dilYnseef+rKfP6lPRgDNqo2XrMxGTpLMqQE/2WnDYIJltY8viagUIyglI0ZUMgXC7LgUZdkY4ey1CaLYd5ueRdo0gGY6yhf2bQOTCQIB/uKqvXhLDNy0pZQjPx3GYrGwtCS+UfUKLh8aGxsZGBigaYuLd3x1S4KkpCKZqFRyMmEbbWzz4bTCgVcgGFTGp246czNbMlFJ9isDMD4W0xMTZPF5xW13I+BLa59EVMqV/XLLB5uRIzL7P5NJ4l2JZN72QCWyDOd+lGfGkz+hNYaSaSgqXHLqcqP94RoMVp1w5r7W+6tZGvcLE403faCNxTG/cIYpo0NDMBgV4uQ4Wyx03F/Lpd9OpJbyeo2w9m2NWCvM7P67y+PzWveOJiSNxGFBf6XRbSS4IJ7ZaPNft+PpX+Tcj/PPUARKdrCZ016mjuZvHzoaTbTeVcv5X44wf/4PGLN/DfxKtmojiyOrCHO1EmurIFesc6XjeV8/V18jrHu8jsE908ydWcGnl5YkwVFvpGtHJbPnffT9bCo7OSn5mmnxTsmqS4zNLOQkOc0Ppi03EAxCLDX5Uk3CNosRlJIRIyq98TQ4QjIX3jAcc5cB8F91LyJdewnNWISv7d0IRiMEgzyx5RDzFSbKLiqyEPV5FZCETEE6QQlWyKhkkThcInPGAazgZwnZFKJSgqAEt3bIRGR4/qwGvS8/MkIGQQlWzqgEoNNx4mdTWCywNJalnbpbIJvBUdRsQ2fWUrHFyfi+/BVK644qStud7P7saRAsWVV5dZFQGbXfB5eboHTVB9uZPb/A+Z/knxLX5DahNWpw1tuFiC4jv5th5HdiO6YB9GYtUrZUKatg6/s60egk4SCUpJOQouLXq7u1jKAnyMR+8XIswrBAy61VjO6fFSJh6cxaJI2EVr86ASYZG9/WgsllFN4RqDNq0BTw7kTLMsZgdBjQW8UXClf9TTszfd7M8oy/h9NkpUnZP52DtSuQEWXVtIYqijssBOZ8+JI32WcjKCVDr2PDW8vQ6CQOfFntqDKQV4O1RJv92dWMStkISgD7ngGre+XsSZBJUAIIL5nAmqVxtv4VITo8AbYuwJg3wK8rTEyPO3BXeLMSlJLRUzVA0bUhjMZMgy9yppGL4SRDyWLhwiWFODW2JgB4+NjHPpbfTV7BHw1/8Rd/wWc+8xlO7/VnEJQA5BwZlQ6NadFqwe82Y57Obf/IFhOSLxAnKHXe68JRZeTkMxMsDukyiEo5z5NOUIK89MeJbw/ivbhKkD6LcWuvNBMtoOzUVR9qJ7QU5vAXxBaq5mozRiuXhfRwOcqEJaP57kqKW+zCZTLMbmNBa0nRIFkMGp0GQ5YduyvBXKxhwzuaWZzwCxHSNXoNkkZCbxRbKpmrzVSuc9H/wlghiYqEUb7Jhd6iY/hlsbTEGoMGWbAEHsD6tzcRDkTYLxj00mgldBaxdwdw/CviBG9ng7IuMzqMiLyElgeqcNVahYlbvw9eE4JS7Lc0vVm+xSVMuDNXGFn/Z02MHZnl4i/yt4NL1rjR23Q46205SUrZ7LKJV714h3z4vdEVsydBjp363mXQ57fjbrnMyjXrgmg08PIu5TfnxWXmGw1ZCUrJCN58huCQM4WgBBA6XgfAM0slyg9mMz86swEAE6H4LvEr+NNBOkEJYCFnRiU9Z8+GmJrQ5swEDiAZDMjLyykEpS3vrycalnn184P5B5iyZOxLz5SbDWeeHsH00jSByRWcxVnuwdloxejSU9xTwugr+ftP6m8po2pTCYe/clG8ZMkGp1A5tN8Hl5ugtPE9rcwNLND/dP6ZoQ12I3qbDketRYikNHVkXowYo0Jn0aLRiRt6m/+yDb1VnHitNWgK8rFVbSsm5I8U9IzCMEHDdeWMH5sXyvykN2qRtBphefY+1oCjxsrBfz0pRA7UW7RoBP1rAKOvzDCKuH/U4jbm6zJKwcb3tjLb5xXOfFYoFBlennnY2WwiuCSeIWztOxox2HS8+hkxe9TZaF1xfOXyBe7/9DlsdabVNztm8xUuRfLayAgKQclaAj3Xa/GMRzi7WymV6qtzZCUoJaO9dZxzRSQnDU+c90ADX5ivT/xgMvFvx24AYPR6xVf85je/Oa97vII/Hj7/+c9z1113MXzYl0FQAljKkVHpxCUtRsBrNWIM5rZrZIMeaTkUJyg1XmelrMPM2efm8Vxk5dJtyUgnKEFeGZVO/M8wS6PZ728l26242Y6cr3JNst02vqeVSDAiXILN6DZitEsFZfMRhUgZtD8Eaq53U9bjEi4jbK+2oCsgc58oUSUGnUGDvgC/yab3d+IdXuL4Vwfy7iNpJCSdBq1J7HpGt5GyHgdDe6YKSVQkjKJOG0a7nvH9YnFwrVG7Ysn4XNj4580s+8IcEPSPag0aDAW8O1FCGoC92orRqcdcbGSe/OP2tTeU4u50ZM9UnqdfSRSrEpT+gCjpsWVUXViVoGTSsOVdzYwd9ijZ7vJEcZMFc4meonprbpJSliou3ktBDv/XJYK+VbInQQZBCUBeCmdP1JAFYZeZ9VdF0Otg92+V36zDfpZqzFkJSsmYumaIpUljCkEpfg+/q+drCxWJH4xGvnVkGwDarn1E8p1TkyCsZTWqcJ/5UELZLvc7WR5UAp/l0VlGDtVj8SkD2L4k0zwhc6ZCAotE83KApouxgJePZnxY1I/Jho86mw/Uv90WH74gzCwobUvLAzijfowzQcyWKGVVUWILDKc7irNWEycobd5pZvNO1XNogdIWVKJSCGsNuJoSj17SbsDiBpZ1LM2HKVtrQU2AgaVaQ3GH+odWS+kaC5ZaY/y8ZeutnP7pGHs+eZ75kWXcvYl0+CXdFix16t9WDWUbHInzVhkx2pSBWFRvoaTXhq0p0Te1rUn5W8XG97fQdFMVFrcm3tbsVtu6NSltizotOFuVE61/ZzPbP9EVb2t2k9LW2WqhqDP1HixuDRvf28LWj3amtLU1ZWlbZUrIZYOD7R/vYutHO7E1WSjpTUTrS9fZM9rGn7XOgs6sxanKrXSdPSHDLG1L19kBGHx2krM/ucT4MW/2tlWmeNuYXGxNimw2vreF+ttKE21XkGHsWc987wK7//epjLbO1sy2sfdkdsPC6CLeId+K8s72bk5+b5C+pwdT26bLMOndxORds8VN081VK8o7+d2U9FoT8pZWlmFJrzVlzLbeVU35miIabizLGLMxeSfff2wcju+d5PzPh+Pl+rLJO9v4Hj04g38usKK8s43vg/96nt1/dyqlbTYZJr+b0nV21v5FE+07a1aVYfqYPf+LYfb+y+l423QZZh3fFiV1vKsp9d3YmhN/p+uTso1Oat7gZvvfttP1pipsjclysWMuk1QZQtl6W+LddFjo/bNatn20DZNb0WkmVd6xv5E0oNXiaLZQ1JY478Z317Ptb5qRtFpMbomydYlj1gYTrlhbrZayDXYsapbl1je6WfN4wpFga9JT3JZg+pZ0WrCUxg5KlK61gUW5DUmC4tZEYKqkzYC1WheXYWmHNiGXMpmSTj2v/vcS+3+4SFGj8vzxtq0glyj63OKCkrr4aXFVgs0ZYT5gAMKUV4ZBp8xdFovyd9SgYdmlo9Tiw21RvuvuiiVu6Vyi0bWEYSmKxu2nkcS8Vo6PcnwY5yTkkI8G0wJFvgDzeiWUOicDamabzYEZzIOJCJjlvAXUOPRz57qRz7rw+aC6eYRQSMdQX0Km/7W/l70XlfEyPW3h1NFOfKrdOtBfjdPpxOVy8YlPfIIreH3j05/+NKCw0IuXlDFo9odpmgmDX/m7yLlAa1JwpcLsJxyC2YBSZ6yoNhTPomQuhuKkFJ9FlWCqUb8/MyzO+gl6I0SCatsOC3IkirwcoqjNjKUmEQB2d5vBqkGORKm/zcW2j7RQfa0LUMqJWOvMIGmQozLuNTbMKo/dXAzuNYoe8l7042o14mhMjHX3GntSWwn3moTedDSZcTSZ2f3pU+z95Gm1rSbpvIm21nozrrbU82okCa1OA+bMtsVJer+kx4a5IiGX9X/WSPv9yjdmrs7Sttocb+teY48Hr7f/bRcb3puoxVzcacnZ1lxhip9r28c66XqyFmt96v0nt02+f1ebma4na9n+iS7ca+xpMtRklWEMRa22eNmpdBk6mjJlGJP30f84zblnEuVfssk7WYax87Y/XMOaP29YUd4pz6rKe/ffn+LIl/pXlHdMhjGYy00sTvsZPziblwxj8h7bM0vfz4aYOTGdVYautlQZxuTdfGs5lRuLqbuuNH4sXd4rjdmV5J1tfDfdWknddWUryjtZhjGc//kwx791Kae8k2WYPGbnB5eYH1nMKe/iTkvWMbv7705x4ZfjOeWdLEPlWTXU31HG+nc1Y64255R3rG3yeSePzHHivy/Gsy/lqyNctVYMDn1OGebSEVs/0sm2j3VmHbMpbdPG7JYPd7Dunc0ryjvb+N7+8S563tIAkkRxpzW3jqg04V6r2LbFHRZabq1izZ835JBhmp5tNONoNGOrNIIEBocWc7GUVYaOxswxO3N8lt1/f5bR3RNxXQ9grTPjajXHHUXuXivmcl3iWXut+MfDSMsaLLUmipLOW9xpxlwGSBKSU09Jpzn+rFf9ZRWb/rxK+SO0TEmXCbPKE8IMJU3K/zULS1gcMo5O5Zozs7DkA4s55jgL4q7xY1YJ3sVhP41JZG/tbidbQhPKdWvn4YIdYptjZyX+/IV74wSl2YulzF5S/u33w399wEY0GqWnp4creP3DalVsaPnb34n/VhkIUB5QbK2FCh9N3kVMJmW3vckUosQdYmoCQI+5WY/NkCBMFDVp1AweoDdBcUdi3WOrMbE0HWD2vELoK+4wY7RHlCxKJmXsx2CpNuFsNMUJ4Js/0MyWD7YqB02K/pAsyvdlqjDhakma6zssmCpMEICAN0hxly2WaBNThYmijoTOcrWalbax83bZuPj8BLv/9ylm+5Yo6rCmtLXUJJ4n5bxlJgwuHWgkrBV6nM2mjLYxuZhcGqWvijXvaKDtrhpcreYsbUlpa6834WxWztv1eB3b/7YLk0uTta2lJtE2ft4yE2ve1shVf9Oe0TZ2fUWGVkxlqXLZ+pEOtnyoQ5F3ets0GSbL2+jS46qz5ZR3sgxj8p46Ms/J/+lnImmndUrbNBk6m03Y602YKkys/fMmam9x55S3vV5pm3ze/meG2fP3p1aUd1yGSfL2DC0yd35hRXmnPKuKk98fpO+nCZ9XNnknyzAm74YbK2h+Y2VeMozJe6Uxmy7D5LY120uo3uqm6aaynPJOlYvy79nTHs7+eDBeTjCbvLON2fFDcyxO+DCWZG+bLsOYvI99ZYA9/3AqbxnG5N31ljpa76/K2jZdhsny7vvZMPv+9YywvI1OPa623PLOpiOKu2xs/0QXHY/V5JR3tjHb/kg1Wz+ifKu55I0kZYzZ9e9uYttHO3PKO0PPlin+pfb769jwtsZUeWfTycnnNYFWr0Gj0aTq5BYzpkpLUltr0pjVU9RuZt8/n2PPZ8/ibDJhqU6WizUxL7hIsU+dTSZsdSYWh5QMf8Wd5lQZqvOPpNViqzFhU99NxWY7W/+qgerr7BCJYCzSU9SSuKa1SsJRo1WqWMgyri4bJpPCA/F7oywmZU7R1Idxx9IxAdX6AHb179KXJa6VJpV5yw1EwTqaCOjd9cvH+dz5dkAhoAUulBBQzbbAuAmbzYbdbueLX/wiV/D6xp133glAOBzGqZKNjMEgtb5gnHykq1iifiYxVly2IFrAGzQCQWwNoFM33hkd4EiKnzrKwFiW8CP7PEGWpsMEFkMYHeBsMkIkCssh7NVGTKWJmKGzyYjRIUEkQtk6M1s+0ED1dicA9hoj1kqjsvlVlnG1mjCqoQWjA1ytynexNBrEWqXHWp2I9rpazfG2JpeU8J+jbBRx1BnZ+6997PvUeVxtVoxuta8RXG0JHWuuNOJoSJzX2WJRNrrrpETbWNdSI45GU0pbY2nivBv/vJmOB+vjbZ0tiXtyNJpS2iafd+uHO1j7F00pbc2VSc+afA8OjfI8DtjyoXbaH67OaJuQoSblWW01RprvrmD7x7so2+hS22oS8k5r66hPnLekw46pyADGzLbmytS2yfI+8MU+zvx4KLVtugzT340RGt5YTucTtSvKO0UubkXee//pDMe/OrCyDN3GlPt31BvxDC4y+ursqjJ01Bux1Sgn8vQtceaHg0wfm8kp71jbxHk11G4rpu66Muqud6e0zZBhjneTLu+sMlRhLDXSemc1TbdUri7DtDF77pkhTsQy7+eQd1wuSfKeOjXP3MXFFeWdbczu/cfTnH96OKe8k9vG5F25tYjeP2uIyzqbvLPJcPbCIie+eSFO3FpVR6jj0NVkxVxizGxrkuIydDQkj1kzxjITmz7QxtYPd2SRd8KucTRk6ohN72+l9631qrxT28ZlKGkU/RfXEbDtw210PaoELhx1RswVyXKxpOjOonblPRpLdLTfU03PW2vV0yrHUnVy4h6s1UYc9WYc5QmfV4b+Vv1W5nIjjtqke2gx4Zv0s/dT/fS/OI2rJXHMVK6Ob5VD42gwYiwiIZdmI8ElGSmsxehWni8ul3ojRrciE6w6nA0JktDGt5Sy8S2Kn1kOh5XzJuUKctYo55d8AYx2GXuzEruZGoeFBbA4YsShCNa6EEaVYWgiSGUS27Bsj4nt+nEwgq8siGnUCDG7zQsPPL+D/5xWJlj/mAP/mCK0YBCe/T9GIpEI3d3diEKYpPSOd7wDgOhs4kPmUBu82gXA/mPrWT+q51o1ZnHTIFw1Dc0TMo+elLl2Aq5VA702YLM2zPVqeqXrCbNZGyZsVm5rQ52MxQhHRpUPq7dGprsHokYt7WuhtQcs6uDpWged60BWs3FIWglZUohSXdcaaNpqpbROMby77yyj/bZE8KDlxiI671H+vurttTTfXEbNeuXEPQ/W0HZHYgC03FFFzw7lI2m5uZSWN1bRpCrl3kdqaL0rEflrv6+WNeoHVXe1m9Y7a2i/p1o572P1OGps7P7708yd9tF+Xx29OxVDoPwqJ6131dLzkPJ39846Wu5MnNdoNxCNRvH5ojhbLbTeVUvr/Y0AdD7WlNK288EGuh9pAGA5EEKSJDp3KsGyzp3NtN5VGyeAdD/SQOeDDQm53FlD52NKajxJC6131cYJIb2P1tO5I7Vt904lwt/zUD2td9Wy7A/hmwrQu7Oe9vsSwfPWu2vpUQkK7ffU0HpXLXXXKAGWGHHh4L+ej7ftfVQ5b9ONFbTeVUvLrYoTundnHa131ybJuz7ev2aLm9a7aum8rzYu7+S2nTsa6N1Zj7PRhtFpoGZLGT2qnLqfaEmV4Y4Guh5WzmupU+Td/mBTXN6tdyXO2/1IQt5YFJl17FTadjzcjKveQf+zym65roczZdj1hPJuWu5poPWu2jj5pXdnZtuex5R76nqgjta7aqm8WtF4PY8k5D28bxpJK8Xl3XpnNa131dL4BoUt0vtYXcq7ab+vnt7HFHlrDBplbN2pjtnH6zPk3fOI0rfy6iLKOlwE5oMMvDBJz2P1GTKMje+SXqty3vuUMdv1RHNuebuVe+h4WJFLx05V3hYY2zWHyWlMyBtF3p2PKfJuf1BpGyMBZZN395MtqswUeceISunybr27FqvbRHGTnc77amm9q5aaLcqHs+bxzPHdq34LLbdW0XpXLU03Ksq799HcY7bumjJlbN1TAz4IByIYkzL4tN9XT+8jynnLNztpvbOGnh3K390762i5vYrgXJBIMIqrzk7vTkWmzhYLrXdU03av0rbj4Uaa31gVP2/HfTXYKy3xLEgtb6yi80GlbeeDdbS8sQpTqXKs+4FKOu6rjPc1WHTIamHgtruqab61EkezIu+eByvpuFddFWo0NN1USuf9yj0FFxVdVL7egqTX0X13Ja23lcTP23JzEZ0PKNdpvamY5jcUUbveysGvTCq/3ZLU9qYium5XZuWGTRaariuicYvy3XTeXkzz1WogzQet19joulU5VtUm0bTNTts6xcnfea1Ey6aEw6N9m5ae6/QUu8OUV0JbJ6xZqxzrWQ+tHcq/db4o6+pl1tUpctCgEKkqiiDg0nCdMcxGayITzTWWMNdYwgRKZEzA1Qtw4yyMWU0sa6A7DG7AWuyn7HgFpScTc5X7nJvqI8r3WHXGzfmD2/nd997Eb7/7IMdevoVTu2+It504so6XX7wLgEN73sCRg9fRd3IdAC//5lbGxsbQ5rnr7QpeH9BoNFw3pATDtkzBNdPQpW6ivm0IthQn0lKvr4ywrSHCDbWLvLExwrqqCLUbFadM99UaWq9KvPu2bVq6r9Yg6fVU91qo7i1iYSKIfxI67y2l9RbVmtZqab+7nB712yxbZ6X19grab1fGaGmbK+V+Ox+spveRKuRIBFermfZ7ami+R9UtjzbRdrcylkvX2el6uIGexxoAJQDefm8tbTuUOaL9oQba76uLB6N7Hm2k59HGeIKU9vvq6HhUadtyfyPt99XFg/ZrHm+g6+HGxLPeW0s4EOHAv5yj68F62u+rozSm9x9toCPJBmq/v44edT5svaMaSZLwDisBxDVP1NOxI7VtzFZpfEMF7ffV0fgGRf/JkozJmVh0dOxoYM0Tqq2y2U37fXW0q7Zjz2N1tN9fh3/Ej6SRcNXb6X1UuY57jZ32++roUp1G3Y/U0nZvYj7pergRZ42NsD+C1q6j/b46WlTbsONRRS4xxGUIYAajzYBPrZ/e9lAT7ffVxUkd3TszZRibZ5vvUd5NjKCQTd49qlw6762l/b46yje5KG6xYyuzZMiw53F17ry9ivb76qi7WrENex+vy5S32rb+2jLa76uj+WZlXPY+UU/7/Yln7djRgMluYOKAh8ptxYq871bl/Whdhgx71XFY0mOj/b46mu5Sba3HmzLadu9U2porTLTfV0fbA01ceHaCoH+Z2i1l2eWNOmYfUf5ue0CRd2xFlk3e3Y8rNlDjncqYjRFaeh9tQNJIDL48mSHv9rtraL+vjsptyvyYdcyq47D55kra76uj4bryuLzTZRgbs/ODPtwtLlpuV+yI2JhNbhtfz2xy0X5fHZ2q3LLJe83jyj252szKe7xX+bvzsSaqN7oxFxuxlevpejghQ3OxIsO2h1R77+EcOiJZ3nnoiFgGpe5HlHvMV0f4pgJEwlHa76ujZrM7t7zTdIRGJyFpFNswq7wlKauOQIKQSljteLA+Lm/3Gjvt99bS9YBqGz5cS9s9Sj//pA9ZlrEWKw4na72Z9ntrablfuceOnY20J72bnkcb6Hm0ganDXnZ/5jTuVhftD6ljdofSNkZa6t5ZT9dDiWdtu6eGzkdVHXG3YtfGnEFrHqul66HEs7beVU33w6p9ek8VbXfXsOkDSt+eByppvzdhc7bdVUmXujZuusZJ6y0l1MRI9xrQGtQdcnoDLdfZ6bpFOVbbraPlWgcN6w3INgtd12noUm2402eNWC2wXrXvKlq0bJfDbEZx4FxPmG1JaaBvIIz11XpsP+2Ek27sJ2oxHVfXLK820XjexdfHtgMwvnsL47u2ABDx2JhVdezNN9/MFbz+8fnPfx6AkqTfbgyFuUnNzN10NMrahiht6ljq6ISubnC54OprQ6xZC113JLyGbTcV0fwGRZc032yn7aYiLNWKXdZ1fxlWt4kLv1ICBG13ltP5UB1oJDruqqTjvpp4oLjn4Wq6Hkqsm3UmLWiVNUjLreV03F9Lea8SOFvzeB1dSevkzh319O5UvvPN72ql88E66q9VbLjeR2vp3KGuZ2WZrkca43q/an0xnTvqab5V+R57Hq2l86HE2jdl7lxjp3NHPR2q7ul6qIbSDhd7/v4UM8cW6NrZxJonlLb2epNy3ntUv9AjDYl7AKylFuSoTGDKDybl/ttUHdz6gNI2FkzveayRrkcU3RFaCoMG2tU5uumuOjp31MfJDGueaKBrZyKQ1vFgHd2P1CqZnQ0aOnfUU7pOkWHvYw10PZKYTzofqqfnUUWGTbdU0LmjnlAgzNJ4gDVP1Ge0jflV6raX0rmjPjHPqvNBbDd/1yONrHmT8uwV6xR5t6rzbPfOVHl372yKy7uow6rIW/V5dT3aRMeDCR3btbOJ7kcbsFcYsZaZqNtWTss9St/2h1Pl3fN4Ez2qfReTd7t63db7VXmrZJfuRzNl2KnOs42311LWWcTYAYXk3ft4dnkDtN1Rrch7gyLvnkezyFC19xpvKqdzRz2121Tf6+N1dO1U2g68NIFGr6H3CaVtzRY3nTvqabxJkXfPY2lj9pFGeh5V/tboJWVs3aGsS7ofqc2QYWzMulrN1F9TgW8uQP/zk3TsbMwqb1AINZ076mlV59m2HfWKvNW4T89jjfQ8npBL54562h9W2rbco8jbUmNi6sg85iJjhgy71L4d9yrfbow40/tYA91JbTsfqqdb/e5b31hF5456KtYlbMN0ebtqbZS0O2i4TpF3/bWqLf5YXYYM/xA6IjC7jDlpnZSPjogEw4QWwxQ1Ouh5TL3/PHRESasTSashMB6g48E62lX9mNARMdswVS5mlxE0ip7tuLuazgfrKF0Xsw3rM/RsTEf4pgJIkkTVxhL1vFl0stq2bnspnQ/W0XBdGYe+cIFoOJryfXY90sCax5W2FWtddD5QS+sbFXl3P1xLp+oXJADdj9TT+5jStqjdTOcDtXTco+iTzkcaaL8vMYd0PaSsqUp6LJgqjHTcV0Oz6v9te6CWDrWtHInQvaOC7h2qf0+rBP+KG+2g1dJyWzHttxXF5d11Vxkdd5UimZQB37ZFS9s1EgEPBH0yte06XOXKDv9rikNsL034MTa5QmwtUf7uLI7QcKaI7ldKaXulmKbjpTSdSszMW4ckZl7aBEDobAu+A92Ezyhym3hhI2NjY+jyzDZwBa8PSJLE9dPqBtCAzM0LEdrV2OkbJyNsrkyUzF3fGmFDa4SNbT6uXxthXUuE2jWKD73jGj2d1yd0S+cNRrqvMyDpdBQ3G2ncVsTSbIjAFLTfWkTHbS6loVZLx/2l9DyojHVLhZ7Oe8qov14Zd2VdLiQNREOqH/lB5buQIxGMDujaUUvzncr31nJXFV07asGoBKHXPFlPb9Jm3a6H6mhT5++G26rofrgOm0piWvN4HV2P1sez1HQ9VEfnA8p5W99YSfcj9RR1KHq/59F6upPWvt07G4guRzn8xQs0vKGc7p0NVPQqz9f7RH1irlfb9qjxi5qtbiSthHdU8Xn17KyL+zsAeh5rivsPynpcdO9soOkmRU6STsLqThAbuh9N6H1Xm5XunQ20qvNs504l5hP0gqTRUNzqjOt9c6VROe8dyj217Ui7hyeaKO0uIjgfIuhfVs6ryrDlbqVtjNTR/VgDXUnPai0zszjmhyA03FZD986GOFFmzROpbbserqcrFvu9tZLunQ2U9DrUZ6un+9FUGcbm2brrSune2UDVhmLKul0UNdoz5a3ahlWbiune2UDd1aXqe8yUd7dqq5SuddK9s4FmlajTtaMmHjcDxVdldZuYOe7F0Wiie2cD9bco8u54uD617WNNdKvvxuhW5N18pyrv+2tT7+HxJnqeSL3/tgfrGNozy9KMn9qt5XFSSrq8ux6up1O1a+purqZ7ZwMao/Jueh9roPvx1PPG1jdNN1fQvbOB0rWqLf6menRGLf3PjSVkqI7Z2m2KvKs3l+SUYeybq1hbpMjlBsWu6X4k9Vm7H22K24azfQtUrCmi5dYc8n4sYavYahQZNrxRuf+2HXV0PZLU9tEmeh5Xvk+jQ7n/FtUv3npvDU23VmGvtmCrstDzeGOmvNX5vfEO5X5jJKZsY7bzAeWdt95eRffOBoo6VR3xWENcR8QybcVs8Qwd8XhdwrZCiXP37KxlYdhHyB+i+5GELd6zszYlJtvzWGPcbi/rcdL9SD1aowaNRqLroZqUtt2PNtD7aH2coNT9cB2ttyv6pPPhBiSdxPJiSJVhPWvU85orjHQ/XEeTqk/a7kv4l4KLYaIRGWuM2G9UdGeL6v9tvrOarofq4kSk7kdq6Xy4Bu9gkH2fvkBpp4P2+xW51N9UQdeO2jgxqfeRKjofro7ff+f91XSo/rOmG910PlBDSZcSD+1+sIKuHYm2XQ9U0nm/8nfd1iI6769iw1vVtfK9lXTel4j7dd5bSpfqA6vsMNF5hxIPBcXfpVM5M5JeT8fNNrpvUo6VNEPHjXYaNhiRzUbat2rpWqecc+CcFpsdetW/LbUarrEEWa9X5Hu1cZmrzQmS0rXWIFUHy2h6tgbTJSM1x8qoPKO886qTpWy8YOYbA9cAMP27jUz/blO872if4iu5+uqrEYWwtfZv//ZvfOlLX+LIkSPcJ11PVNZA+QwYlJvwOGDGFOJ8GVjNcKrYQL0XxuzANCwAE0iErTKeoMxUGPrV2ziDjmY1K0DYrGHUAxJwTdMSk17weGBSzQI7OARVFeBTmVwTo6CLKIxqWa/DOxViblAR9sipZao6ZaYGFYfjxOkABmuCnzU/GsRzcQk5uEwkKCNJUWbPKicePzqPyZVgW3sGllgYU64zetiLyWlg/Mgsm9/fiEYPcxcTKe3nLiyypKa0nj40haPSzIjKcBzZN42zXhlIzhYL031elr3K/Xr755kfLGJo9xQAw7unKGlPZHmZOjNP2BcGH8yP+JgfXGLsoNp27xSlXUXxtpMnPPEagCe/NkjPWxqYOKI4wIZemaR8XQl+NTPHxPG5lHJN3iEfU6fmmNg/T0mvlcqNpcyPKMbi+JFZdJbE8PEOLjGjymxo9xRIEheeGcA/DQ23l2NwJMnw4iLzlxQ5jeyfRW/SMX1IuYnR/dNYyxOGzVz/Iguj6jUPebC4TYwe8ih9X53GXpVEloN4Cv3Z47O46m0M7VWfdc8kxU2JXb8xeQ8+O8ngK5P0PNzAyL7JuAxT5H1ynsiyMnZ804q8NQaZ7Z/oYvKkh6A34bxOljc+Zcf55LFZ9T1OUnNdKZ07ajj4r+eZODqH1pAIFMfkDTC8Z5LqLWXMXFDHU1pmuvmBRWb7lej0yL5pNDoNnrNK39GDM5iLFcN88NlJbGWmhLz3zWG06pk4rOy+G3t1JlXeFxZYmghQs72UaCjK/MQSI/vUMbs3MWYBZs558c8qCwTP2TnmW50M7ZrENxrIkHd8zAIzF5aYH1yKyztGcrG4Nfimo2nyjjI/uBQfs8O7JylbU6wQTh6qZjkQxnM+kcYvWd5Duyeo3FiKT13gxOS9/eNdyLKcMmZH9k6CXMbkGeXvscOzKWM2Ju+xw3PYKixoDVpmj89myBtSx6zn0gJlvS7MZcrxkf2pYzYmb4DpQ9M4qiyM7J9Nlbf6TaboiIvzzA+6GNo9DZKG4d3TlLQ5mDq6xNTRc7Q+WElY1aXecT/eoSXGDs3G76G0UzH2kDRMnZ5HjsCFnys6xDvsY+JobBxOU76uiICa7XDyxHxKCvaFUT/TZ9RxeGCeynVRvGOqvI/No7fpQa/I0TsSYPaC8q76X5ij9ionHnXH1viJBYz2hD6ZH/LjHQ+BVsvosXn0Jg2ewSUsbhg7voilRDmnpNczP7zMwpQil8lTPswuHROnlsBoYOy0j4oOI1e9ycaJXy4yN7SMf0GRy9ywAWflMiNnlWuOnJVxlSfSEQYDGowm8IyiZLmqhBGVgH9pAkpd8aaMzyubbgCOj0sYLTL9S8q3fX5BS7U1cd5LQYmIGkgNAJPAORs8NBxgBgjowF+sfBMXnVBmSIzvgD2AtmaaStM8cnOYYF85Op8FjSZKReM5QkET42Hl3ZpLprCWK99YS+dxohEdNY3n+NHCWr7z/W+zvLxMIJDYhXQFr2/YbDYWFxf54Q++j+l/Pc4pJ+hkGFbV7Hm/Dps2SlDdETqxBHM+LbXOCNEozM/AxCBErAaGBmQc1oQjcGYkgn9cMUjnLoWwlweIyhHWPFrC6JFFHGWJb3Pq7CLLC0rf+UtLeC4tMaKWDxrcPUNJi42R3yl/T570ElL1kGfYz9zFRcYPqnPyrilKu50gR5k6M0/rHVUsTivj0T+r6NGJo6m2SoyUNHZ4FkmSlMxBDzcSXFhmeI+iv0Z2TxDZWMrSpNJ49MAMOmNinvX0LzJz1ou5wsTwQeX7WBzwxtsaHIlnne1bYH5wST02i96sY+CXShbRkT2ptsrMWS8LY8o1xw95MBcbGVd3uV96aRJ7ZWK3xtSp+fjcOXNiFkedleH96hy3ZxqXOs/u/rtTtDxQxbJqY0yfW6Csf5Hh3ZNxGSbbKhNH54gsRxn4tZLlo6TRwbhqGw79Tp07VYwfmUvYKn5F3nFbZZdqG6ol58YOzqJNSm/tubgUt1U0RiXDl2c6Sd5J6Y3nzi0we1GdI/ZPI+k0ePs97Pmsh5qtpSlzZ7K8xw7OYbDomTqhvpu9iq2y/W+V+XvmjJeFceWak8e8WMvMcdtwaNcUzrqErTJ1ah57jYmmOysZ2zPGXLOd4X2KvAd3TyrO9ZgMT8wRVlO4R6QIsiyjNStz3uCuyRT7OiZvAP94QBmzR2bwj/gZ+PV4irxjYzYulyR5D+0ap2JjKVbVuZNN3jNnlLE0um8SZJhR59LRAzPobdp4qbdkeQ/vm0Fr0OI561Hln2qrgOJMBBg95MHoNMQzMwzvmU4ZszNnvHFbpazHweKUj7GDCTshWd6TJz3xMevt9zDX7yS8HGL7J7rwDi2yNJm4frK8PUN+5voXE2N2tyLvU2q2J0f1HFG1PF1cRxzJriMikaiSLS1J3rExm6+OAOLf2mo6YmzPLNZ6M/XXljFzQrW18tARF387iX/ET9W1Jbl1xMksOqLBxtkfKLpo8pQni46IyXCKkjZHXGYTRzxEVIf60mRM3tOqDKco602M7/Gjio5wNJrxXlTaTh6fi8ulfG0J/lnlfYwdmkOrV+UtafAMLOGqt7LpvU2c/+UY0atkPMOqvA/NoTcn6Yj+Reb6lfE8sn8OV72VsD+KLMuMHJrF7Eq2r5eYH1HG4dgxLwarjpmzSt/h/fNYSk3xUm8z/QGW5pWxNd0fxlK0zPiw8u5GzkRxuKM0N4LTBZNTSqajgFvPhCdMiQ1O25V7PIWOKiKEihW5XZiTKA5pcQHUTLPstxCsn+LsQjkl1X6Kkqou2uqG0Kobsz556UYuHflHJEnis5/9LFfw+sdb3vIW3vrWt3Li+HHKn3oYrU9Dn1ZDWF2UB0Iw6YHRWQ3BIj1DQyHKyhR/FXKUJc8y3nEZTIpun70UYPq88h2MHV0gsmTC74kiabWMHZ5Ha9DQ81gF84N+Zs8tMaNmoRlT57ZZtSzuyP5ZjPbENzRzdkHZ6QuMHpxHZ9DE9f7wvlnMxYn17NSJ+fjcGfJF0Oq1TBxV/Td7prFXJOmhE5643p897cFRZ2Xs0Bwb39OK3qZn+mQik8/4sdm4HloaXGDmrJeRfapu2TVFSZsyz9rrTYwfmYnr/YWJADNnvYyrfqDhPVOUdrri5x17dQZZluMlrmbOepk4GvOrTFG+NhI/NnpgJj7PnvvJKFqjlqnTysHRfVNEQzIL6vOM7JtOsVVmz3qZ6Vtg6sg89noT1VtLWRiYj7dN1vvTJ+eZH1R9U4c9GCx6Bn49QsATpWpbcYrenzrhifsNJ08sYCk1MX5sPiHvykTbiWNzCb/KGQ8z9VZG1N3wg69MUtyYyNyCRLz0y9yA4s8YO6Dq/T0JeQOMH5whshxVyr2dmafj3tq4vIdemUzR+2MHZhK2YUCRNxrF5zVxfI6QLxIv1ze6fybFVpntW0jIe/8UOpuW+hsr8ZzrZ3R/qrxnTs0zq47ZsYMzaPQaFvoVuaRXm0qW99jBeYw2A1Mn1Tljd2KeHX1lBqvbmPCrnF7EVmFm7KAq71em45nak+Xd8IZyoiFZkaG6RhnclSrv5DHrGfLH5R0YDyi2StKYjckbIOCJpoxZWZKRZRlntYn5C4GUMQuKvOPz7J4JwkE3vukADbeWE/KFme1LlPeLjVnlvSnvfjY2l6pjdutHOpAkTYq8Rw7MojVq8ZxR3tXw3ukU2zA2ZsePzGJymTAVGRI6YnfqmE3RERc9NMgVmN2KvhnalSrvfHVEurxz6Yj5CwFe/WwfDbeWZ4zZrDpCkhg9qMh74NlJkKTUMRvTEZMxHTGTqSPOLcSPIUksqLZhho44lRiz/c9PUrc9yuzJ2D1NYy1LkCaSdfLkCS8Wt5HxPi+mMiNDe5N0sqRh4rgH/6yyBvec9TBTb2HkVWW8DO6epnabm+0fbefkdy8xfixhG3qGAsz2eRk7pLQd2qus12NYnApgKzUxc04ZI7PnFhk/oo7DvTOUdTuT3s18XN7jexdwVpiZOqv6mQ/ME+6xxXXy2LFFtKbE/DM3uMz0uJbem2BxDmZHwkxHleOjgxApT8h7NKBhVK8jWCxxHh26ELg1ErIUZrJmAYNfx7kZJaBXZJeZtkI1oK8fJhrQo6uZ4FMv3o7+V9/D7/dfISn9CaG1tZVz587xo+//AN1HnuJCUMIalRhQP5vzcwacpgiBImW8jE5pWPBLlBdHkMMRpkZhchBks4Hh8+BwJnxeY+eWCXkU3bI4HmHqvJ/lQJjue50MH/bhqkmMwYljC4TU+IVvLsTU6UUmVb/EyKuzlLTaGXtV0QmjBxLfRdALU6e8TKo20vDeGZYXIxCI4r3kR47ILEwmMrROnfAwrery0X3TRIIRFqcVv9zQnmmlfLlbz4a3NRKYX2Zol6ILxw7MgiThG1V1+54p9HZdvCzTxJE5vEM+jA4N0+c86M065vrU9e3vJrGUJXT5+OFZFtWSlFMnFzAXGxl8RdXPu6ewVSTajh6cIaDaKvPnvEwetzJ2WNEXfT8boajBmtI2FNNDl5aYPO5hImZ/7JqmuFXRQ3s/eZq6G0sTfpXZoNI2vs6forQ78R5H9k4jyzLDLynnmjzuYeqkR3m2fdMs+yLxMnLDu6dTbJWpE/NMq36Vsf1TRMMyXtUPOrR7KkXvTx6dY25A0W9ai5IlK+hV2g6/MoUpae6MyVv5txejzcDMuSVGD81S0etKlfehWXzqXDNzdglrmYeJ48q7GXx5EkethS0fakdS562YvL0X55k8bmPiiGob7ppKlfer0xQ326m7pZTBl6dS5D24awp3R0KXj+6bjsub5ZDi81Jj5EN7pilNinEO751KsVVi8g5OB+n/xSjl60oScsmQt4dZdW6ZODgNMljcBrXtFPqkuTNZ3mOHlNidN+bXUuUdyxiUPGYnT3oxFRmYPqNcZ2hX6piFxEamuTPzTFZbmIzZ4q9M4ahN2CqjB6fjY7ZqazHzw4uMH1bl/bup+JgFGD0wHbdVFqeUMeufC7D94114BhaYOpFYJ8XGLCg6YvK4J27vDe2ZJrgYiZcG1Jm1GfKejvsCp4gEoyyqG5/C4QiGpJhysrzHDii2im8kZjOnyjs+ZiVJid2Zdcz1zcflbSlN2Crjh+dYnPAzeXAeo9tI3TUlTJ5U3s3Q7ils5Yn14+ihGQKqrRLTEcP7ZvCPBSnpdWTqiAVlHHou+Zg84WEiZqvsnqa4xcb5pxUSyOj+GSLLqi9wLsjkCQ+TxzxIGkkZs52qXzwII3tnEuUzg4pcpk7HbLYZQkthggsakJQYuVYvYa0ysjQaZPrUAtOqrhw/5EGOynjV8ujD++YSBCFJYvKkl5J2G+uequXcLyfRaCUWhxU9MLJ/DqMzYQNNnljAO6ro/olTXsrX2gmpPq/hVz1YShL6ZPzkIv5pRYazF3xYSg1M9infRv/v5rFXmpDUOOv4ST8Bv/Ks3mGY6l9mQo1bDp+J4CyNUFljxF0Go0MQDsGyy0B0Icj4tMR5i3KeM0ED1bowy0XKuc4s63ADJVEIlAbxLi4yX+njwrybebdMpTZBFra1DSBHlTH7yd23MXXgk0iSxL//+78jCkmWxQsLxj6Yv/z+Ruq63ApRScX3BtZntF/yK4M7et6WcUy3lPj47EOZt6LzL3Jrh8xyGPbv1mcc1wQTwV/tXGoNxqoukOQwo8cAn590yOGE4pWDyxnHk2vKJrdNHFfuV45EWP/OBvQWHfs/cz6zHZCrQPe2j3UgaSTheu3r/7KZaETm6L/3C/VztlrQmSRmji+t3jgZMb2df5lLLHUWGq93c/Kbg6s3TsJVf9OO1qBhz9+fFu7nmw5y4r8GhPoVgrINDupvqOD0T4ZZ7M9fKBvf24LRaRB+391vqsNg1XP4S1lqhq5yveiyLNxv+ye6WF4IceBz+ddBL9vgoPHmKvqfHWHqyMLqHVTU3VRK+doiXv2MWK3XrR/tRKMT/3bWvK0RJDj25YtC/QqBrclCzyP1jB6cYfDZydU7qFjztkZslWYO/9sp/DOr1E5N8uY13lFKJCQz+Ny0eii/vpZKDb6xLDpqlf71NxUz+OJ86o8xvanP1NdEoxR3WGi6qYSLL84x27cCSSYty0/vIyVYSvSc/dUU80N5JAE0KpN88/UGimsMvPrfi3HCl2w2ZrZPqhMbsRoyDkeTjL+QI/PZwhYN4GNdo8yxOS0+EsbusjMhx0BJ5jznsi1w5wzMa+DZ3szjW6ouxf9daZrPOH6P8xBAnKCUjG5DYtz9aEFJFfClO88yODjIc889x4033pjR5wpef/jFL34RT4Hd9oP/BUAolBiT9l2WjD5Gj/ItOs9lzvfapYTNI81mjqk1DzkwOXUc/uYEwZks9lFSfWE5lLCPTMVQf2MFZ3+gZAyUV6tDnMM2Shxf2UTd+pFOJo7NcfEX4yufJwnlm1y03FHN3IUFTv13/vZJ6QYHDW+o4MR3hvCPZNqUK6HmOnecSCICc4UJ/7gYmbDuZmVn0OBv8p9zHE1meh5vZLZvgTPfzb8eesNt5ZSvK+LYl/vipKbXEmueaiQcjMaJK/li+ye6CAci7P/ns/l3MsOmd7QytHeKCZWIlw/KN7mof0M5fT8dxNOX/zjZ/IE29DadsE2z7p1NgMQRQTtv3Tub8M8sc/b7w6s3VmGuMLHhHc0sjvo5+p/5rz9cbWZabq+h/9kRZk8LLCQKRM9bGzC7DLz6WTG7cvvfdhHyhcX6mZUsYQMvTol9qzFfTrYhImWxvVRdWNJjI7AYZemSmA5a+7ZGZFnm2FcGhPpt/3gn0ZDM3n86k18H1a686q9a8M0uc+Jrg0mHVrFJs2R3THbSZT2u11F1lZVwRMvksVT5S5aEg1K2Zc6RG+7Wo9fDy7sg4M70UUz3Jq4dIykl48Ft+wE4u1CecezNlbvj//740Xth/0UufPqb2O125ubmMtpfwesTGrV0R+l73o65qxWtL7FWqHolc0wY5xSHomFwNvNkgcTuRHkpUw/KkQhb/6qe5cUwB7+YZY6LJtlDabZT6Xo7OqOWsb2ehFM25eQC8/MqdlfXE3VYS03C+nXLhzrQ6jXs/nuxOa7nyQYkCY5/fUCon73ehM6sZe6MoM8rpjYE1LmpzET9tSWc/fmIUL+N72nFYNOz5x/FZLLxva34Z4Oc+paYj60QuFrNNN1azYVfDTN/If+H631rA45aKwe/dCFObMoHrfdVYS4xCM9Va97WiByV47vD88X2T3QRnA9x8F/z93k5m0203VvHwAsTTB3JXEPlQukGJ7XbSjn0lfNC42TzX7eht4jbhx2P1KIzajnxjQGhfoXA5NKw5m2tjB+aZfCFqbz7tT9YTUmnk+Pf7GfhUv5CqVErGcSC1KtCtSVMZUYCarApRddls7uSULWtmNE9WfT6CjBVmOh5pIaLL0wwczx/32jHwzWUtDvoe3qYqaOLq3dQ0XBLKeVrXez7VGIsr2p3ZUMyUzBLf0m1xVruLGVo9yzBpLJtkiHhI4tlUEqGvsLO+ju0+OYjHD5ozjg+3Zv4LVicee3O25V5J0ZQSsY72l6J//tTL96uXO/T/0H/hQt873vfY8eOHRl9ruD1hwsXLtDSolQ7qPuvTyo/BhJjsmxP5lrANKf4myxDmd+Z5E/yeS1lrp3ab7PgrDZw5PvTBCdCGcdTfF7JMUEjNF1fQv+zCpEmq89rBbstHVltt6S+mz/QxsTxOQZ/k79+ddQZ6HmymdlzC5z5Tv7+HUejiZY7ajj/zBDeS8HVOyShYpOLcbXcugiMbiPBacFrXVWERi8xuit/3Wx0aNjw7g5mz3mFfCAVVxVRs72Uk9+9hH9M7D4LQfvDNSAjdI+g+DKW/WEOCMbW1r2jifFDs0LvztlioeX2ai78ehRPX/629tq3NWKtMLP778Rsmq5H69CaNcJ2XvfjdQS9Ic4/PSbUb/snulgY9nFcIL5srjTSfnc1Ay9OCMmkULQ9WI2twhzPypovtnyondBSROm3iv2TjJa7KxnaO0twSuAbiIXesnVJ35mQBEeDkWgIFkeyXyuXfdP+UBVancSpb4+sfF9p197yN83IYZn9n+1fNQ4KCR/V2qdqCc6HOfODpPGlWSVeWYDPC62G0i4jsqRjpi8tPmNMxC+zxTp732jEYoNdz8OyK9P2mulK2G4xklIyttx4EoAL8+6MY29vSNhe/2v3PQSHZ5n735/DYrEU5PMqiFJeW1vL0NAQ//HEIf7u0K1oJGXC/c7FjVnbW81BhagU9LEZmbNIeI2KszBsVQRQlMP3GTbbePGSD92l7C85atSiCUYyCEoAtT0G5Kie0WPZHbmSyqiPpjmKHI0GLMU6xg8qv8vLWQJ0oAxc1Zg4/KWB7G1WMUam+7zoDFkG4CowFRlAmF6mpn0My8wcz58AVNRpoXNHA0uTASFSVNONZTjrrFRuLWJsb/6Dc9kbwmDPQnBYBULBpyRs+9tOlhdC8RJz+WDykJfJQ97VG6ZB5BrJECV6xWCw64X8kr8PbFUWtEYN5hITSs60/DD4/BSDz+dvbMew9x9PQ2bMYVUc+09xcpKlysS6p5qYOjPPue+vMtklYbHfp9ynIAILISylppUJSlkm9Eo1dffgc9N5E5QA1r65iUhQZv9nk4KcK/SXtFrK11uo3lSMo8bMiW8lEQQ0muyTqnrM3WVFZ9QgaVeYuLP0Hz++RNUG2+oEJWMqwejCS8tcIKHDsxKUAKJRIvaYM0WmoQMGzkAsjZlmOULQnelsSUZrrUSZWWYNEZJVnmFeZtkpZSUoAXgW7fywNbc+2Tdaz31NxzIP7K+GphFwZicoAZxcLuNssDLlt6mpKSorK68QlP6EcMcdd2T8ptcrzhDTi/aMYwBBlwajJ4rZLFNWB5fOJr7pGBFPN5Rd9x57xgt+iC7msH+0WohEUghKAM13VOOstVC51cfY3lXmyLTJqf6WMi49l0SsyYNDv/eT4vp14oCHyk0l8V25+cJoM6C36Khc56JfgKS09s+bsJWbmbu0JEQs2PLhDrQGjXBQomarGzkqC5GUvP1+oiGZ4EIW59wKGPj1hJK5SRAdj9RS3Gpn96dPZSdp5MCxrxRGLt79KbHrAOBPlP8SgbXcjM6kxVJuESIpFQqTy7jS+j4njnxJbJMDKBmjdv2/J4X7efr8HOgTl+XG97Sgt+qFv/NCNyuEAmH8czl0Xg7UXV1GcZuDcCjKuR/mbx+ue3MzllIjh79wJpXgl8tRpP7eelctGr3E7r8Tk4ml1JiPSs3A3PnF/PRC2iBM37Szok2q2nzlm+x4x4L4R5JsNlmOr9dzoWaTE0kjZZCUZF8AyWLKSlACOPR0iOVuEwF3prMGwH1cZuz6VKGV+P3UheCwQ+mTjaAE8PWx7ZybTATRAt/9LZFIhO7u7hWf5QpeX7jpppv4zW9+w9S/f426f/l7IhblW619Nnv7YJE+TlSq6JHwDCeyAMUyKskz2X0iklbL0a8P45vI4fiN+Z2yLOxbbq0kGpEZ2+vJ7AeJ7zOtr6XGhLXMyNQhlWiRh5IolBgzcWQuJWtuvrBWmkT853H0vqmJSDDCvjP5+4dMLg0b3tPB4qhPiCRTu70Yd7eLhYkAo6/M5N3PPxtEKqDytgihJhlbPtTB8kKIw/+WP6nZc87PoXPi/iuRoE4yzv1ktKB+Frfxsvm8zKUW9FYd1jITU+RPUpo6NJ/41gTw6qf7EuQ5AYhsOojDBNv+uouZ0/P0/Sh/mybgibL/U+K+2OBCmMhyVIigBFCzzY2k1eRHUkpSIBve3qRsWvh0XzzjyGoKxlJjovHmCko6HELjumKNA4Ndj94qpvfGD81gsOuECEoAA89NMfBcYl2fL0Gp5voShl9K0ltyNLcvT0XZRjulnTZ0Jg1nfpJ4B/JyCMmgz0pQAgiNL7DrhWLQZ1+4uI/7Gbk+02brwUe/Whc7G0EJ4D/6rsE7muoTmZqcpLy8/ApB6U8Izc3N8X8Hg0GMRiOYFOVe9tvsMaJAkRbTXASjEUrqYDRpipTNis9LM51d95590Qf4kOdyrHViPq+0pAVNN5RQ3usg4Akxuj+Hzyv2DaYRmCqvcjG235O4x5UISipEieEA3sFlvAOLjB8SI1hq9FpMRQaKO114L+Xv52l/uAZ3h5OANyRE0Nj4nlaMTr0waaXhxgqQZSGSUtAbJRQIE/CKrffH98/Fs/iIoP62Mio3lHD4y/1CJKyz3xMjJ8Ww+1OnspNBVsGR/xD3C5mLjRideqxlpstCyLFUmtDqxBcEJwU2pSZD1AcL4B8LFiTL3rc2YHEb2ScY0+4T8D0lY3kxTGAuJERQKum2U76uCEkrCdnqHffXUNxi58Q3+1NJj6s4MNvuqcFg07H7HzJlspJ946i2rO4bzdJg6oSXcCC6KkFJSpPZ0a+k2dorEZRU26q43UhwXmZpXMznVb/VidYgMdOXpvOCy2A05Ix1Hv9VkEiHmWVX9uMlp0KMXZ16betykDpkTqvx0GwEJYAvD1zD6GiigoDhaz9keXmZTZs2ZW2/GgoiKZ05cwar1Uo4mJhMvzewMZmzk4L5PuWGm3U+2sNRKoCn09qEVTtWl2V9Io3riRhBGwwAWbIpLS4j63VIacGy0bPLzAwByyHQ6SBLNiQ5EEDSapAjiVVt173lyFFZISmFQkiSRM6EU3IUSSMhR2Uqt7vQW3XxLCb54NwPRvNyCKVDNMtQDDPnvHgHxCaQudM+gvPLjB/O3+kC0P/MIEWdYgQlgCOC2aFisDVZcLfbGfilWMBMjhIvISGCnjfXK+meBZ+vEFReXURxk12YrFToOCkE/c+M0/9M/tksYqh5gxt7lYXThRgPBWzI73lrA5NHZ4VIZnqrBjkqE10W836V9Foxu80M/1YsGN73PTHWbwwnvzeEpUS/slMiS9+lyQBeNegeIw/l0nmx3VMTZ30UtywxmLTAAlZ0akhaDeeengNyfDOxSTnLtadOBZg+t0JWlmyZmyzQvt3E2d0B5EhmdqRkRE0GpFAUWa+hdQ2UVYHBBH1HlOMRqx6dP0LYnPl8y2rZheMLEqDhwkKq/Jcd0oqk0rB2kcU5G5bqTGeUzZRjleED/Ugx8lgR33AqzpxbXcczmj3r6QWg3qyMwc/e/wpLS0sEg6/9DpAr+MNCp9MRDoe59L++Rv3/8xYADK/YiepAkyXZo/uE8k2vuVr5LC+dlcmoHRrb8bic5pjxKzv9V7J/5EiEdMOv/xcjuNcUKwSlJPsos3OqLu16rJaiZjuRUJThF1V9GXMerwQzdNxTK+yIF806AzD88nRB2ZAu/XaM8nUl8fJS+WLqxDzmkpX1VjZceG6UxXHx77sQwhcoWaIWx5eECDnhUAQ5KmN2mvD78w9MlG9yUdLuEMqABYgTlFR07qxl9uKCUCal/p+P0f9zsZ1avw8KfW9dT9QzdWqOqQII96Ko3FaMs84q/J1GI3Lu9dcKqL+1jMmTC8IZz179tLgDePA3k4SDEeZOrrJGijk01OcZOzBD5aZEWcV8nUQXXxzHXpWdVLMS9vxjnpmQ0nD6O0OK3Shpsm+8yWJT1t/iJjC7zMRBb36E+agMGommG8pAgj3/nNDPkiQpzv0cWZQAjv90mqK6TJlIJmN2x4SKiNWAdiAKDZnHlq2x+07tf/1CFDswFg7w4xe2ANC1eSCj/4kT9QAYy5SFyuAlJTPOc889l/N+ruD1h+eee04Zg0k2UtWLGiIG0GZZE9rU0uumSgN16/SUNkY5/nSaHlLHLaFMw80/ubyq3ykbBl6aZG4gsOpO/HSsfbIRonKCOJGP3QWUrnNiKtIzJLC+HXhWnNAMsC/fLG5pGD86y4LgHBDwRFkc88fLmeaLoRdHWRgPML5XLBAobMuoMFWYKO20CckflEBoIT6vtgeqmR/0MXHgtfd5layxU9rpErYX9n6ysHFSCMb3zgq/a1AyKRU32jhbSFCpgArtHQ/XxMsY5guTw4QciRIOrZIJNw3OZhPWMotwtqGBZycK0g3HvjWglE1Ls61SkMWumutfxDcdWLFNOnzTAbU0i+izTSql5bIhB3EUwHPej+eCuG5oe6CSvl+MIS3nH3Ss2l5E3dVuLCUG+n40lrg31S7LuG3VFps84kNvnGX6dKrvStLpVrS7MOjRjy4QqirKOBTOSeYK0KUN0yLD0z9pU65zbaYuCh0swgz4K5W5deq/voPf6yUQKODjuYI/KtxuN9PT08x+7utUfvgdym+v6InqQZOFS+RSs4Z33aDFaIwyei7LGNSp64hwmm4LKjHBnMFMVJ9Xmn3U/+IMgTmVoBSN5rbdonLKGqr+JjfVW0rQW7QMvjizOkEppiOM0HRTBf3Pj+dPQpFlThSw2d3TtyRMGAKlHFbYF8FzSSzeOHZoBnu1+O7zc0+PEJwX93mJZhmKoWyji8BsAO/F/HVKJBBFjkTRm8S4Q642K6U9Ls4JkIWBgghKAM13VbIw5mfyoCfvPoUStwpFoe+t5e5KpTTy8dfe51XS7aC41SZMuI+GokQKsM+rthUzN7AknN3r8L+Jx9xnTi7QpxvBe3EVOabZNxNHPOhN2gRBKc/dlRd/M4G9Not/ZxXf0qufW2FjxQrX7v9l0ubtPEneFZvshHwRZk75Vs+eJElK1RmNhuYb3Wh0Gvb938RaR9Kq80S2e1TjpCd+OoezLgvRyKBfcf0uG/VoLoahKrOvUhEmE1sJUYGMN2rkwC96ACi6OjPeP3WkHD0QKlMm56ELih/vhRdeyHk/K6EgkpLFkphALh6apnFDglG1wtzOBYuF+oVF9sqpjkb7wGpXDHD9FsU/tH9P7lbpRKWho9lTOmZDMlFp+uwi3uHUj3xFhxHKh9L4hnKQSZCU8tzOs+HdLSwvhDjxdbHyFYXg7HcKY+QWkgHINx3F9zsxYlMMdbeWMX1mEd9g/iyUrgdr0Zm0wiSlQjLdADjqrJhLjEIkpcqri2h8QyWDuyaFiCu128rQZSFH/P8Dqje70RrF0wBs/WgnkWBEuEyco8aC0a4TIinNn/MVRPhqfmMNOpNWjKQkSdTdUsrshaXspQRXmFjnz/vw9ouzy499VdELK2Y3IuGYAMAHp7+f5nhZZdfViliJNWyBjY+VMXxggcmTWdgYyUhyqrRtM+KqNtCwIcrFV1foYkolApw7D8Y0glI+MCyYOZ5GAll2rPw+DNpFHvfJzPiXeKE6d7vfjLZzc1USi9wCS/UzhI255REjKCXDN6a84+9973sr3tcVvP7w1a9+lSeffJLg8cxsMrmISgD9/ah7D1PHom7Cs+L1eh4rw1pqYN9/DCP7Vlg0JRl+/lkYenFWrLQIcPFXQ0RvqWF4X5quXCVg1n6XkhK/6c5KIWJI+RYXddeUFURKEIWnz4+nT9z2KpToIkKoSYajyYyj3sbwb8UyG9ZdX8ayNySUKef8j0Y5j/hu+bpry9DbxJcumz/QhqSVhHd5F7XasVWaC5bp6xmuRivmIr0QSan+1jKqN7vpe3qI6WP5Z8ys2eYW3kkOcPiL4mRCgOotbko7nUKZsKz1ZoqaxMc/wKjIWkfVaRMHPEzEUqoL7GKb2OdhAo/Q/RWK7ifr0Zk0HP2y2Pq0enMJyDB5eJUxkmbPnn9uHHtlwhmVvlMtF/wjy/jTzFHJlCNrpooNd+rRG2V2/3rlc5cc0DCzKTGf/dKu4apFmUlzbqJYjKAUx+8SwXPzCv2u4PWJmA9o8cgJbOt64r9HDJqsRCUA/xxMDoQYOJC6U1v2rq43t/x1E8sLYQ79e/7fXc4yb6v1OzDDwliarywPolLLHcqCRZQk0/vWBsKBCKe/XUCGF0H0Py2+cQoKy7gc8FAQaQWg6poSPANL+IbzD3p1P1SL0SVGEgMKynQD4O524qi1CJGUirtstN9Xx/CeSaH7rLu6DLN7Zf39p4q6a8owOvUgSFLa/FdtRMOycAat4nYHllKTEEkpMBkoiPDVcocyJkVJSlXXlLAwtCScSck3HMCXowTISihI9wQKz/CVFasE6Da9r4VLr0wL2ecNt5RS2uVEjsqc/1n+vvDRQ3NYy0wMvZhEUMoHkQgj+7IQlFaCQ89VO6wsTEU4lrmvLo7yA8tMbEr2zZk46Fu5iEToYCbpydjXjx/4/Oc/v/J9XcHrDs899xzr168ndCYzkJ6LqATQfwb0eg2QSkTSeFbOStZ6u4viBhOHvz7O8uIKIy3ZPgoSJyjlBZWodOmVaYWgtEcsTla7zU3lxmKQZfoF4l1FnTYab6rg0JfPF0xgyRf+sSAXnhH3XymZkMRtqJmThZFOzJVGnLUWYYJNy+1VBOaWhUprDb80nX9Z0iTUXlOKvdoiTFJa944mdBYdBz4n5uMsX1eEq9EmRFL6U0HZ2iLs1RYhklLZRhdNt1Ry7ucjQv1qr3ZjKTMJ2wwnC8xS23BTBRWCY9JYZqKoUXz8A0wdFcgGquq8uTOLzJ1ZTPyWJ2ZOLTJzKs3OKKSEbfL95EDLXWUYnTpO/vfq702W5biPqu5qN2hh5swqa/Y0n9a5X09jr0ysdVaLw8YQmI0Q9KYpcsPKscreW/RYHLD3mZXPXXo4ytT6xH28gp410Sjj5F6TTR1JzSge7B+L+02MxsLWcgUUCFDQ3t4OwH+85SDfG0gt87bSuHnBbsPnSDjo0glKYVMiqxKAdTwEmAiHwbsAEaOWiFEJhOtm/OhmUh0rsj7VON70Jgfrd6ppP3W6lEC4nMaql7RKCaLzv5xj8riSRSnlePLAikQy0jYO7ZriyLfUhY9AgM5UZMBWZRFyUoNSI3Pje1uE+pT0Wtny4Q5K12UvD5MLdbeWsen9rUJ9QFlUi/Yr6rRQu7WU1tsrhPpdemmc8cOFOYicreLM7Qu/HuHEN8Qm/2hIGRcaQeV64n8ucfYn4iS2rR/tZNvHOoX7FYL2nTVs/0QXJb1WoX7Hv9rHuafFHQayLEMBab3P/uQSp38gFjC2uDWYs2e3WxEXfjXM1EmRiVwZFzVb3HTvqM1yPLfKrrraxbaPtFG23pbj3Jqs/dt2lLPu7bUZE6MkSSk6T0ojIG38i1p6Hle/Ua121QxKsfNveU81ax4vS22Q7tRIvq5eT/1mJzqDBkuurCLpWZRUR33f80EmLgRSCUqRqPJfrGkaQUkKRcEncWK/RMRqyCAo6fwJvb9s18azKLktPm5rW6Tbltg5kk5QMk1LmKaV38L2KGF7FCsQAgYNEr6RxLuzmYIZWZR+M9oe/7cnZMHX62G5LfuiO52gdMnvZu6Mj2g0Sm1tLffff3/Wflfw+sWb3vSm+L/9fj+GV1Ln8WgO3+DEmJ6xMT1Rc6JBBkHJoE8xcOUlH55LfkKBKGZzqj6Ql5czy+AmzWmNt7nZ9pE2zGrWT0kjpS4osthH/lk4893h7BlvVrCNzj4zzPDeKWFCj6PGit6io3yLS6jf+r9oZvsnuoT6APQ+1cj6dzWv3jAN697ZRPN9las3TEL5FhfbPtZJSU+OuSAHOh+qp+6a7Cn0V8LE8TnO/1KchGUu1mAuFluGnPjeEGd+MCB8rULR99MhTnxdjKRfvsXF9k900XiHmA1bKLZ9rJOrPtS+esM0nP3xIKe+L/beYjogHFiFLJyGE1/ro++n4naeo6kwQsfYwVkuPi+mE1pvr6L+2jLhMbn5A21sePcKazFJyqrDNr2vlcptxUJrv/ItLq76YBuORjG5bHpfC9v/VnAtIGmwV5ixJpe5Tbchc9ikR781yMDLqzjQ0/tGZaaOLtH/q+kM+xNIWXNLel08i9KGpyrZ+I6q1FOnEZQk7xKSV7HNFLvOwMI8hIIAErakDMPLVikpi5KCkgOJew1i4Xe23OucdIJScNKC8YUTAFx33XU5+13B6xcPPvggALP/+S2qXkwdtxFDbn1x8QDIJNYYGQQlvS6RVQnidtWyN8ziWCD1O8jid0rH5vc1s/HdTdkP5srA9OwkM8ezEKdW0Uv9z45x9Bviu3BtlRYcNeI+l+0f72LDu8R8XvZ6E5s/0EbphuzlsHOhYmux8LUA1r2zmY3vEfN5mVwaGm+soOU2MXuh/7lRRvaKB71AkYsozvxwkBNfFyPIRIJhkPMnm8Zw+ocjnP6+uM9r81+3sfUjHcL9CkHDreVs/3iX8Ng6+Y0LnPlhAYEomZUZGjlw6jsXOfVDMTvP5NJgcomHCM7/YoixV8U3pzbcUE7nQ/WrN0xCUaeVrR/pSJV/8jjLYXc13lHOmj9rEL7Hte9opPvJOuF+2z/eydq3Nab+uJIdJWko31yEwa7HUS1m5w08N8XgrmnOi2alCsC5n4wRmM/iJ0wivkpabdwXaHLBlg80UHt1wg+RTlCSfX5kn7qoV30MJj0s+6LMjy6jH00ER8NWXUYWpfIkgq82CAOYuJSj5mE6Qck8piMwPo8sy1RVVfH2t799ZRlcwesO69ati/876PXifiXVHxvNEZOdm9QwOaIhak40yCAo6bSJrEooMcG5AT/BhQiSGcWnpVnB55WkWyo22LjqA41Y1ewUGeuXdPK4pIFlDeefnlAyOK2W/TLJdht6cZpLL0/kT1BSyVTWMhMml4GqDcWrdEhF16N1bP+4uM+r7cFq1r0thy26yvUa3pi9hHYuuNqsXPXBdkp6HWLXeqiOplvF/GsAw7unOP8LcZ+X0QFGh9i82vezMU58q4AKM1GQCzAYTn5ngBNfF9sc5mg0sf1vu4TfW6G46q/b2fSBNuF+J/67n1OC8T+NBMgy0bBYwPH0d/o5XYCdZ6spjNBx6cUJ+p8T8HlJEo03ldJ8WyWOerFrrn2qgXXvaMzdIEe8ce1TDVRscgkRlJzNJja+uxlHg6pb0+MJOdD7ZC3bPpxljKxybWeDBVvSRrkVM0KSqDpz9H+GGVhtI0a6PRqN4ukPMrTLmxInTZw8acwlcVh6Hypi/ZtKUtumEZQkXwDJp/BcZKMe2ahnfhb8qqvLPJrweYUtmowsSqWHE9cOR00cIveaPZ2gpJ/UU/7My8iy/Hv5vArKpARKyTdJkpBz+EtiG+tjpd7i8Pl4PBxlCfiZMTdRJmxKLf2262D+C+pYRiUli5I+o7pJrtJvydj059VEI1EO/Vuqglkpo9Lwy4Wlutv9d4Vl8gkHIixMiO060Wg1aA0aitqdTB3Jfxe0u02pqW12g1/AJ6I1aoVLNcyd9jF73sulV8QWuhP750GgLnwMWz7UgdaoEa45qlxPDBP75wvq5xsN4CtgA09oMZQ5/l8j+GeXiYZl/PNi79s3HcU3nf9YjGFfgWm9Z46L18vteUsrOrNWeIzMHF8q6Hpjh2YJzKYxZFeZWG3lZiStRMgvZkgVNdjQrFLbN52gBKA3a9HoNULZkyxuCC9HmR9J0lur7boCBnf7GNydJatUthJvSZCNBqEMSgAlldC6QWbgLAyvoOti5KQYitQpamEe0K6eQSmGKYuF/0mb+3OWeFPhmbRQuquZQOkCC1sS6QOe9fRyq+t41gxKAJ95fBehQJSGhoa87u0KXn/4/7H31+GRXGfaP/6pagY1iZmpJQ2jzBzz2B7bY4/DjhO/2Q1tHPbvpeXdbGCTN8lumLNO4pAdtGPHMMykIUkjZrVaUoMa6vdHVZPU3eqSPfNNvHNf11zXtOqcgqdOnfOc59znfpxOJ9PT0ww+/jnsj/7dkuMxRaVYqrcYWttC5OfDy38C0Z+lbep18bQmA6/MMvCKir5Zcfx8k/L3bau34Z9K7DzJmPpNQdlVLqqvLOLwty8sTdOUaWe/Hy5kktLPgrM/GeTsCtItzPT5ZFVDE6pSiJkLDIga9YOxudCI3qrjPComnxHZ1tYyM5PHs+8cTEbvCyMY8laQXu5nK1N8WvveFnk32hdyJwH5B/34V5AlY99nVqaYpUYtKIbgdJDIQpTA9MLyhV8HhObDhALq0nIAqtpGDL2/HaX3t+rTcvinwD+l3pbtO2sJzYVVv7+eZ9UraJz99RBlG1yJ9Gs5QtSLCMv4UIthqTGjt+koaLOrUmN11ljRGjWEVDat2aEAtnL1/c/uf0lj9xwCTL6BQHZVkDTnWP/eGgAOfCn74rSgy+AzhhZAp19WQSmGrkNL7bGYnLQY943NYwR+oNVAkiLSyX01uDf2LlVQUnDixAnMZjMvvvhiTvd2GX9eeOqpp5S0g+n7hpiiUizVWzI23KUl6Bc5/sss34NOm5L67dB/qg9uS1FpxfP9dY/XgwgHv7hocSKLotJK037t+nv16UMAgt4Qs0PqcryHgqCzanHWWBPp7HJAQZMNo0uPucKoSt1IZ9YgqPTzAp4oI4enGD6ozp7TXfNMd6mPL2x4fyN6m051PGPqpHp/YeZ8gF3/oP59B8YCBNS79QSmF9AZVhzaVgX/1ALhQIQFlWlmAp4ogWUUPdJhpT6s56z6XMetD9ViKjCobiMz5wPMnFefVqvvpTGCsxlkUTLAWmJG1IhpCADZVeAKmmwrUvU0OQ2qFyoxwoI3xExf0neag/80un+G0f3qY8WCKDDworrYubncSMdDlVx4cYyR/Zl99MVxwLwqOXDln5Kd0WUVlBQEZuHwT1PbZOYUbzI0wQD3mBcYDInsDSU230gvORGumk6roAQw8e//j+jMDKWl6okIl/HngTVr1nD48GHGPvV5yh/430uOxxSVYqneYqhqilJWCbtf1iB6ssyPtZp46reJU0EmTqlQ0lX6Gt+4PAZYivTMDwWTDmfPwuJyW2m4pYRTP+nD25v7OJLzN5507ZUq+Xj65jC69BhsEFQhWJRXbkZnVt/P2mstmIuN9P4m9zhDNBhGo9dgKTSgpvfrfW4Ug0P9PfY9r15tGWD9+9z4J4Ic+nLuJKDgRJDgCrjoh7+6AmITckYOtQjOSSz4wgSmLk3Myz8dhBWkRFOTni+Gkf0eRmKK1yoQ9ELQq97PW/W2eoIzIQ78u7oNAYMq18wBep4bZ2EmlEi/liO0Fq1qJSODXcRSYqIgJDFyIPeOxFGXh8GmRdDkRk6KwTvoX5qBKAff68AXepf+MUPa22QEJyOMTWaZj6UhzHc8UoqoETjynWXilUuEHOR/UjiCoNUsq6AUw4XjsDi6linFWww3BeawI/E0BkhSUpp+pQTnFSNLCEoxHDt8GJPJ9JpiXoKklkGSBFEUkSQJy+pqmv9+Z9oyU2dcCIuusNM7xxzw/IQNMZT58tahSIqM9qqWABoNHDohrwbrJ/0IwfSOhzindLKLc84qkPz+jDvSpIUQm99fTVSCfZ9NL/ksRaJpd6Vt+nAjkUBEVYqB1BOv+HVcXJgB9ePWpYUZNv9VC1PnZlXJIlbdXISt3Mzxb/SqutyGDzQiakX10tkxQoIKe9bfXUpRm4Mj/3Ea38QK5INUovNJNwuzIfZ/doXtWAXWv68BjV6j2o5qCXMANbcWU7rWxcmnLjBzNvcXUHFdAa6GPI7+pzoJ+M0faWH6whxnfrQMc3u5XYZZBtZlB22NJisTWNCI2b9vjSZzv7QMQWlZ2cIsQY1lAx7LEJSsNTrc15oY6grSfyT1mKTXIenS33vDGiisEDh+GKbn0i/YhyxaQpb0zxZSFrmCjvTvJWyGQLE89hT6fFznk/ijWWBcSaMq6SSKqzIrwgVDWq6dH8NxuoT56kl8HZ74saNTZaxyZWYzfmnD9wCYn59PSdt6GX858Pv98XfX/oF/y1iu4FgQMWlBrbY+RHkZnDgB80fmsu7Il7yJ4+ZykeZbijnxk2EWlJiptLCQOfCyzE5/KSpl3NFfuNZG4+3lDOyaoO+5DEGANNetuaWYsg35HPpSl2qCwZ89VJKh/r9A8wMV2CrMqlOvdryzlrHj06pSqeW3W2m8s5K+l8fUpdgCTC6ZLKMGGz/URMgX4bCKoNJKsfGDTeisWtULQyuBpdpEx0M1DOyZUJfebIXtceOHmggHIqrTt7W/rYap87Oq3nXjfeU4a60rTmuTM2J+W6a+UKV6xJ8NVOxyS4eN769H0Ajs+2yGd53h/Js+VIckwb7P9WRW3tBoMpOUFJ9RyJROTaclXCBvjmrfJBEMwNmjietE9Ro8jZmVC8QwXFU3iwn4QV6qSp1lUGS2If3YN/SZLxE6241GoyG8zAapy/jzhclkIhAIYCmspeP696YtYz8xvSTtx/q7tCz4oxz7wRREs/hd/kBK3bo3FaDP09L1lBzAzBR3gmV24ssFsh7e+DeNCAjszZT+NkMft/GDSgoqlQH1P3sYAfXrGZccGz/YxNT5Wc7/IneieNlWF446Kye/p44It/qxOnQmzcrimyrtWXFNAeWbCzj2/V5VJLGVovNJt7wwpDKV2kqw6tFa9BatajsaHXJKQTUo2eKi+poizvy8XxWhrXCdnaJ2Bye+rU7NasMHGpm5MM/Zp1/HtGiL8Xr4VRfr+1bSmmQ9fpFgKtax5u11DO2dpO+F3P3l8itcVF1VwJlnhpg8niEQKAppNysC8ThgxpidVotglWMWOiO03mLizMt+AsotSjotgZr0JCMAISwhrJW4wrzA2YCW49FE7Mo6EMXTlNmmp//PhwCYnp7G4XBkLHcZf74IBoMYjfK637p3fjpjOWeXDyHJDyoqj1LXAl1HYO7kMjEvXyDumxnyoemGfM48N0kw1kYXQpnTuS0X88pAbAewlOno2FnNwK4J+rMRjxb1KSWbnNRcV8zx7/Ywly3d5Z/rmmI2GLjo6eheK6pvKaKgya7a721+oILp83OqUqlZKwy4d9Qw8Mq46jSqaollAGvfU094IcKxr/eqq7gCrH60FkuJiVf/9uLHvAw2kdWPNTK0b1IdWS/Gy1DZJte+p55oOMoRlamjG+8tZ3bApyoFW9X1hRS2OTjwH2eXv8+LGZfKxb9Z4ff9mtK7ySdYed1lrr3qrRVozRoO/Ueatd4s9l77aDmiVuTgfw5lvoZGA2J63yu+xmrIsLlYoyFqk/2lxnUQCUP30cRhSadhrjrzWqAQgdXtPmxI/IxUlTrzkIQ3g2jw+DO/wPunF9HpdCwsViBUgdfkLX/lK18BYP7IBeYDSw00pagoSYL8L4bv2aw8PyE/bFQnENUtfTHWIXnQj+jFuJS2wwY2JS6oV9K8SYZlVDy0GsxFUHNlgv0l+ZUIe5YURXs+d4F9n78AYqqJpEg04XCkafCCgKxKkkHqLBM6P9XKpg+rlK4zQ8c7alSnblsRXitBSeV6ePtbq9n0hMr0FT7QGESspepkrPt+N6aaoASySpSoU/8Jdf6Nm42PqXvXeovMIhVt6p4tv8NC6ZbMk7/XE+YqM1U3qE8VozVq0azAjmsfd7Ph/epk1Q12HYJGWG5OsQQDf5xQTVACpT0WLrOre9EA1vpQBZuT236uBKV031isf0sz+KVIC6b7vpP7x3SDbI7p3ZLR/mABJWvNS1JvLqmfdMxcBpvelU/LnUkDZBaCUkzW0K5klPMtctAlhXEshCIIodSGEDVpOXNayyvPaZiZXPp8MjlJvjfdfGLSaDf5aC+ajxOUMiGsvCPjqHzutQEJE+CUZHKSpJMnlKN9S+V4gyEtwZB87RcsRYzfcT5OUDo6VcbRqbL4/xfj+QuN7HmiD0EQcLlclwlKf8EwJS3ADv3mKXRzS4MQBcfkGUBUIxJVvsOe8zpefkknE5Qgo/8jeVOP28tM6PM0VHbK40hM8jqX9A31txfHU75B0kJaBv9o/JCXV//2VHqCkiRlDLj4PUEQwNaoTuq5/e01dD7pTrnHXFC61YX7zepSE6wYr4WgpDZTlgk2fbiZ+jvV7Tq1FBlXtGPu2Nd6VBGUYhA1AkabOsWnjR9sYu171UuWa40adObc1QJjqLi6AFOJ+pQqK0HxZgeOJnUv22TXImoFDFZ1723je5pWlO5Qo9egNaq34/Fv9qomo1lLjEt3UOWATR9upvmBitwKx/o/E+n9oz8jglLxBrvcX+XSRJL65U0fbqTzE7nPw+Iy3ALZn19KQ7YQBfZ+tod9n8vgZyeNV1KS4kzN9TZM+SyvyKkQm7SKaqvNCfnKBrCoXkNUL5/bkUZ1QgzL/wBe6s5LIShZBkUsg7LN8s4tbXOugyJlCxG0Wi1PPfVU9nu8jD9rxHYEzo/3oJtfOom0n1CCyqKYEjs68IuwTFACOdiYJuAo+QNL6uY352FX1CqyxZ0Ww1iko+ampLn4MgQlgH2fPpueoJTF75LvhxWpN239pJuNf6My5mWElh2V5K+6BDGv10pgUDn0N95TxsYVpK/QWbSpqQlywNCuKdUEJZDVkzXLxVzToPNJN+sfUxer0Zk0aHQiBqu669nrjarTr60UxiIjZVtVTh6Q43maFfhC6/7arT6VoE2HRqs+vjZ+cEY1QQlAb9FhKVbXHmtvL5bbfi7fTLJf8Vrc69eboJQ8p03qo1t2VFIcS2+S45qA0QGdn2zGvTM3XzTmd+VVmEAA/4yKRSFBZPBVD7v+6Vx6glJyyqukwKnRATXXO5dXUlf8MknZOF6+WocxTySvQCYnSYpfZuxduiArhCWEsDz2SIcEnvbZ4gQl60AU64A8rjnOLB3fig6GyPvDHxBFEZfLdZmg9BcMg8GATon59v/xKXS+pf6Is0tuX5IoICntdWxQZPdzokxQgswxL1/M95J9M2OeAXOBjrLVcjxJUpTFF68HpkN5pwNDYSI+nY2gBDA/GGT3P59h4KWp7Ivwi/oO/1QABLKP/Wn8tsZtZXR+yo2pVF16p/w2G8335zg3fq14LQSlFWTKWv/XjdTdpi7Vbl6xCYMtN/WSZJz+rwFVBCWQOXAavYjeru56qx+tZf37VxDzMmvQW9Q/W8kGB4bl1rteJ+S32bDVqnMARItOtqNKFcU1b66j84kVxLxMGrQriIue/emgKoISQF6Z0h5VEpTWvbeexrtVqgxmesW5ch4uAUHJXmek8Z4S+V5V+F5r313NlifqU/+Y5dqxtJ6iRkx/j1niYIJGw+FvjMgEpXRIHq+SNjeVbzBhcOUgAqHUFb3y2OgshnxleVDSaeJCDdYLS/0+ISL/Azhy3JxCUDIPSZiH5LHFloajWXBYIr+/D1EU+cY3vpH9HpfBa9LEfde73sVjjz0GwMSzu+G2LViMuTnHpfioywvzymyCrJRNVQngwHGYT+NDx4hKMVWluIqSgrZbbQiiQO/LGb4MjSY9E9oMFetsDPzJk/mmFu2a2P1PK5PjXZgNMT+u7ss1O4zklZvRW7WqUrd1vKOGvHIzh7/Vi68vd/bR5o+2IGoEdv197unp8jssNG+rZm7Yz1EVbFJTvmFFCxor2YFuLhBpfVjefaIm7cKef1pZujH/VJDJLnXU5lPf71/RtZrurELQCKqea6VouasUk8vI+JFxVQpHe/555XYcP6lODvn0D9XnEAZY91cNeAd8nPuZut1hy7bHNAOYucCAxrA02LGk6qIBcev7m4gEo+z9NyV1Tg5p2JrvK8ZZZ+HMr0aYOpXUFyxTd/MHqxEEgd2fU9cuLUUGDDYdI8cyKzcs3o2l0cop4sa75pZVT0rGwBEYOOJPmVhKy0gimvMi5FlhdDg9QSkT1pZGMWhhIOhjXGEiGTxSXE0pnIET9DuXhUKfT1FRyjz+xchJALVDUDQHOMiJ/Pn8BTmo2X3oGBqNhre+9a3LV7qMP2v8wz/8Ax//+MeZ6tpF9ZXb0c1JhKy5OPEhGq/RMdkbYioWf87k/ygY3jePp38efxo10hhRKa6qlHSegg4LRavsWEuNHPlqhmB3hl2nxRvseLu9+Kdy2wU2usezIrLL+EkPJqdeSduTOxuo8orCFZEgOj/lJhKKqvIdijc4qL+1jJGD03Q/k/tu+U0faUZrUJmi1A9ak4a8cnWLDGrStSWjflsp1mITR76Suyz15PE5Xj2u3s8bPjxNfqP6xU01/m4MjiYT1dcW46i3rogArxb1N5cRWVDXriaOzjJxVL0dR495cNZYly+4CLv/Ub0dy67Kp3iVg0NfP6+KrHdoccqiHKE1ajAX5BBkS/LbVr+5FkuRkUP/2Y1/JLDkeCZs/XgL4WCEff+W+05MV4uZlu3VTJ2dpWs5dc4kVHYWos8loLrI35wb9GNwqA9W7v+8epn58ivsDB6cSf+es/ijxW15FDZb2fefidxAkt+fUFPKoLr06m/BlAOnVUwSPtpUNMe5WQ2TOa6Oug6KDB9+nrH+fmpra7nnnntyqncZf57YtGlTPH1H39kXqGq8lpAlNz/AUgrlq/M48xslViNqsqoqARz70QCBkTQpkGLfqeI7LVZRWvXmGrRGkd7fq0xJYYSytS5Vu7XVqifG4JsIEJhQH612NeZhdhqYVJGGtenecgra7Jz8YY+q1Fcb3i+ned+tIrW8scjIunfXMTvoU7UT3bxCoveKdqAbYfVb6xg94mFkd+7veqUK8bN9PqZ71aW96PnNKD0q0r3E0HxPNVqjRlVqv5Wi7uYinHV5zA75mL2QO+tlxXYc8DF5Vl3K3N7fjdL7O/V27HhHDXOjfnqeUVf31b9T3x7zSkxy+rXlTLjIr+r8m1ZCgTD7Pp27PWtuLqJsYz5nnxlk/HDucdhNH25Co9eong+4GqzklRgZVZHeBKORBW+I8VPq4sTjh2YZP6SufRgdYK22MnEkzfeZZXGu4fZSrCUGvMMLTJ2RX5wUDifidxlI4717QoycDsmKYFlcyxg5CcDlDFJUCONI5MJMKzooj5ndXbsRBIGHHnpo2TqX8eeNp59+mjvuuIPx7t3Ubd6OzicRMucS84pStV6LdyyMJxauXibmNdMb5PCPRuIqSimIxZNjqkpJ57GUGai8woWr3sKx76jLSe9oNOH3RAmMLpMiW/H5Zs75s/slGYjl4ydnyCtXv0m16ppCTC71BJQtH20lGo6y99O5qxrbao20PVTH6OEpulWkbV//140Y7DrVPpE+T4dF5Yay4ysg8AJUXluIvcqsqr5/OLiiONTwoWkKAyp35LMyn95gg/rbyvF0z3Liu+oJ8GrRdHe5vN6lol2t1I4jh6fIb1G3ARZg/wrS8+Z32Cjb6OLMj/sIenPPCpCTzdPEpfR5OiyF6tp+853l5DfbOP69Hry9sZjX8iSgzX/TSDgY5cAXco/PGQoNrH9XDROnvZx9Ove+oPKKQvIqTPQ9P0ZQBWd7ps+HtVixhwpi1JFvKINLMpF1mThgYbuJ8bP+9KStLDGvivVWSjssHPh20twtuJBQU8pQd++v5e90OQhJXUZbuZ+BCZHJHJVmCg5LeIbP0N/fT1VVFTt3ps+ylitec+Lu2267jWeffZbJr/2Ggtu2xBWVgn1Lg9gxNSVBgvXOMFoBZAkP+eFjikq2C0vl0CN6EW/YjIYojqg/rfCHZNCgmVzqoPcdnCesNNK4itJiKE5LnDENbH6sGkEjMPCyMlHIJPWofJyxXQbmKjMFzWb6fj+xJJiUCStJq+UbCnDumQHGDqqbyIwdn16RsxGaD6PRq9uRM3lsntBNYcaPe1TVW2nga0XQ6zHY9RStdl4SMs9KF1BWgv5d46pZwytFz3PDlKzNV52CbaW4lHY0OvUrWpTOigwD2IF/P78s8zcdY9c/FWRuWHEY0g1SSp1kBZTQfBgpIuVGUBKE+AA8P7qQIFIlF1mG2XvsqdGso046uejZPjj4rellCUqSIXHcXAAF1dB3AIhGkYzZ+7uoSb5u25oIej3MzkTw+TSIwQhRgyYjQUk3HyVkEfn9qIZ1jmicoBSDwSMxX5b+PZePBhnMizBmN5GOoDTa58JRurRvbxsV0EoC40E4GliqmgSymtLErCX+e/J3+/B4PAD8279lThF2GX8Z+NjHPsbHP/5xAKYunMRV7Y4rKtl7lnrkMTUlix6cFTqs+RqmkoPqMYWK6TSBfY0G/zhABKNjAf/Y0iKCICAtSmMzcWwee80M538pB7kzpiNZRFRyNJmof1MZ/sl8Dn1J3WJ3zS3FjO4bzTml10rJTSee6iM6q36BzTcRIOhJs+iYBaMnPNTeWEo4Q2rjTJg6N4vFpX6r8aVINRZDfpMN7Qp25q8EA38cV5fW7DXA0+9n4tQMwwfU54hfCYYPTBGYXrmkrhr0/WGMPtJ0AhcBRW0Oea5yidId5hTcXOS3jR3zULbehX80mPZ4JoT9ERZ86lJ/hYMSobkwI4fUtav9nz9Hwaq87HZM42+e/EFuRKhkf7Ty2nwmTs3gH83x2ZS6VVcUUL4xn72flft8SZJkXzWDPyqFwgg6LedfTL8YLfn9CLb0pMS86CyzYh7zAQ2kEWRznPXjrU0laprwU2CWyDOEOQtx9aQl5z6nQedNjHUj+58B4Jprrklb/jL+svCpT32K//t//y8XTv+aqsZr44pK5t40cZikBa3GG/IxWEX05lkWYtMtRVFJmk+ThkkUCYwp6UcKdQRG0vgbgpiibhHD+d8mkZlzUFGKYdN7m9CaNKpTShiLjBS0WlWlUFBDTI4jAF0/6WPqpDrCy9ixKfIqzEQW1KU+CXpDqrOlBMYC+CeCjB1VR5JZkT1eAyxFRora7apISivFsW/1XvRrxHDhhTGMTvXE2pWg/6UxQnNhZrMtLL+OOHYJCO8x5JWZMTr0qklKK8HRr/UuXyiNXzU74GduXJ1zGA5EiCxEGVe5UXSmZx5DOiWLTHE6ZV578IunES3q5mGBkQD7/335/iDZ7zI6oGhNfu5p3pT7brq3EkuRgZB3gJmepHacYYFOikQQNBqO/3CM2hsccYJS/Hg4jGBM/7wGrY9g2Ix/XpuWoGTsnSZY4Vjy94Z6MBrA6APtQPrxzHEmin4uMRZ6pi4wNSX3bV/4whfS1rmMvxzcfvvt8f+P9x6isGZtXFHJ2re0D4ipKQk6KGnR46zQ4elPKheLec2m8700BKcBIujNofSL3KIIodRYzvxQkMG90/S/KK8jLaeiFPPNDPlaWrdX4hsNcOTrfcqhLPGypLplW51MnvURzJHw7Tkzz8Ez6jeVnXxqINs+2oyYHZhnwa8uduXtCRAJRliYVzc/HjvmwVahVj4cdv39pYt5FbbZMTrVqYCvFGMHPKpVm1aKoBeG908yceLir6EC9P1pjJDKdrVSjOz3MLLfc0muVdTmWBGJcFlkiEup2YARw8TpWUxOvSqCEsjzqbAK0lxMIdI/ucCESsL28e/042gyq0512P1rJUa8DEEpeR21ZEMe0xcCBMeVlKDLiDzE0ubWXZ9PVWeUA/+hiF9EJfm6mepHIyBq6PrNNBpDmjXJ4AKY0/d/Jnz4MRPwa9L6XtYLPuYrFre7IKXOKA5rlG6Iqycthu0s6OcTx06/+FWQoq9LzEuQpNeesDT2sir/9u2YW+UUGOlISjHk9YgURn2IwFgadlY6klIMG1t85JkkTuwFb5p4SDqSUjKkeX/W3WtxyW2g4mo7Wr1I7x9iDkdEbkSZ6irBoq0fb0IQBV79uySG53KBIkmi/e01LPjCnFGxQ/YyUrHxA03o8rSXZKGt/W012CrNnPhhLzNnc1ekat5Rgc6g4fi3cmdSl17hpPb6UqbPz65YVUkNOp90szAbWhF5biXXUqsCULTORkVnIV0/7ME3kXsQdusnWxEE4ZLkv934oSZ0lgxtMdtCVg4Dflbpw+UGyGzXXk59KYvcraDVZu/nlknHkTafvRnW3OOk59VpZgayBB512vikFGD1nXpMeVrO7vYx2U1WkpJk1MZTfZjzItQ1wfEDCTsEsxA6I0aBoC37+8pEUrofL6IGvlma2SFNR1LCB82TsDfPTEVJ5glBMknJ/8Gv09fXxw033MAf/vCHrPd7GX8ZuO6663jhhRcQBIE17/zX+N/TkZRiMPRNUdIiMZqh+0tLUlKw+b2lREMSezOk41lMUlpyPIvvpBSI/9e9s4qeX/cnlJRycFNLt7qou6mUmf55Veo1+e1Waq4r4cC/r0wN6DJkdD7pxj8VvCTk4c5PuYmGJVXqPKYSI83byuh9fhjPmdwXNjZ/tAWNTrw0PsMHm9BZL43/6n6kGketha4f96aSlJer9+ZqgrMLnP9Z7qpeMTWwyS4vp5+6+PObzifd+CeDHPp/F6Et/hmlcYsjgyKdquOL0Ly9DI1OXJaotETR8+NNRMMSe/4lh7mDIMaDQbU35ROYCTG8N+HzpPUJY8c0GlhGGTMdSSm/Fuo7zUxPi5w4nPn8i0lKAMUmP3N+iHj0eBoy142TlPpPcuy5bxGJRIhm2uR0GX9xiM2hWje8jYKSViADSSmGiWmMNgmjTcTTt7QdpCUpKWjeVoiz3sLpnw8ydSrNYtxyuctVkJSKNzgwOnVciCkw5RgeXOkY2fJABZGFKGdVKhRfRgKrH6vDUmS8JP5J47YyCjscnP3lIOOHcydh1d5ejCFPT9cPc49dORpNuHfUMnVmlq4fXZqYV3AmxIHPX/yY19ZPuokEI+z919xVAByNJqquLubML0cIjOVOitr8kRZEnciuFSgcqcXqd9dhKbxIbfHP1e+6CFj77lp6Xxhh+nTmecpiv8v9cDmOGivnfzfM6P5lVuaS7ttYKFJzTTFdP07y55dJb7LchsFMJKUN7yhAoxPY81+ZCRXpSEoQpLQEJs6Atz7z2lIySWngxJfp6enh+uuv57nnnst6v5fxl4EPfehDfOYzn0EURTY++M/xv6cjKcWgHfNSUCsxmWEqmJakpGDjo4VEw1H2fzmDKlIo+4azXElKAA13FtP/6iTBybByaPl4mb3BRPtDtcz0zHF8sZJKFt/NVmuk9oZSjqjIbnIZS7H1E278EwEO/8fFJ5hv+WgLUlRiz7/k7jMYbCKNd1cwsGcSz5nM7Xwx1r+/EZ1Fy+4VqA6pxepHa7GUmC6J/1p3Wwkl61yc/vkAk8dyZ680bisjFIjQq0LZ01ZtoP3N9YyfmOHs0+pU1VaCzk+68Y0GOPzVNG3xYvpOF8kHkk/9Gu57BfdVfUM++jwtZ382urwPlITNH6ojGo6y7/O98h+yraOKYrx+6QYLkZDE2JGk+GsG5W/lwlljYkBakpK1CNw3mZkaFzl9IPNzLSUpgc0g+2qBcQ0zNZnJlTGSUtA7ysnff45QKPS6xLxel9bV3NwMQP+n5NxzoXN5iAsC4kJmY4yLZkZFM7KSUmqAXNLK/9Kh7yQsBAVCwQwsf60GSbu0gdRfrWPTm61YyonvXltSdyGU0rgG/jQTJyjFkanhStE4669/10TqTrbloDgTtgoz+fXq0lFY68x0Pumm7c1VquqVbnGy/n0NquoAVN1QSMV1BarqFK2zsfEDTaqv1fmkm01PNKuq4x3xEb5E7NrJrhlC82FCKgUVXPV52KosyxdMwkyPn7A/gqdb3Q7C1p1VbPiAuhz2K0XjveVs+rC69wUQnFlgbij3RTKAkvX5mFxGdE51O5Rmh/zMj1+aXW9zo4H0bTGLw2CuttL5yWba31qZ9nisj1mMtkcqaHtzZdbBUdBo5IWdJKJR6wMlGPKVHzmwfwVBoOkuF20PFKYeiw2cmRwDrZbNjxezemf+kkOCVptx4K3ZZEFvFnFWZ/hedNq0g/qR5xaY7A8yOaADvQ4hw2ApGVPr+mY1KQSliFGL1pe+P4kY5fdwa9kst5YtJcdGDPK/tNfVwLBGINMeViEiIETSpAL0wcyCmb15mYlN/QP59A/k45+Rv43p3x1ldHSU6urqywSlNxD++Mc/ArLixFS/PHF1dfnRBCNosqjujHQJSKKALh3hXiPK/9JgbjTAeNdsZqJiBvW3zX/TyMYPLuNrLFpIO/m9vpxTvcUwvGuKiVMzHP9hr6p6Ba0ODA49FVer82vWvreezk+qz1Pe/rYa6u9UlwPc5BJpeTD9mJAN7jdX0/xAhao6He+spfNJN6jckBaaDzM7fGkkb+ZHAsyoTB9iqzBiKTJRuk7de54d9OObUO8zbPxQEzW3FKuutxJseH8jjfeVq6rjuTBHaC7MVK8638tRbaGwxaGqjn8qyII3xMQpj6p6K4JJbovefnXPtemJZjo/leV7FoSlvpsJNvx1A64WdTvfKq7Op+wql6o6AOveWy8rIqXcV/bUwO1vq6bzE82YXGn8ziyKna4GK46azPOUTL7o+d+N0PdyDkpbi67b8/vJVIKSIGRMySBoNDgbTGx+vJiqK5feYzafcn5ew4IvSv/+9H2VEJUQFi0QmPADfmaG9UQ8mQM19u4w9u4w5gn5vqdPP0ckEuHaa6/NWOcy/vJw1113AXBq/zcBMJ+bhnBE/pcBAa+AZ0BpV4unren6FgW9L4wSmA7hU5kareq6Ajo/0YyjIfeBfHS/J0FQUoHe50Y5+yv1gXhng011GgWjQ2TrJ924d6qLebncVta8p15VHYCSLS7Ktqrrqx2NJtY93pBLZqIUbP2km40fUhcr8/bNszAbUn2tlWCia4bA1AKBaXVtsajNiUtlbNPT7yc4E8JzIffFNYD6u0pZ9171sc2VoOr6Qja8X318bX7Ep9o/KVmbT165BUuJOpWomd455gbUXWulmB3yyW1RDYxyrLftLdXpj2foG5vuLaNlh/o5UdO9ZRgdOS5+Kf5R7S3FuB+uXHpsGWz9WDOr31Wj6v7KtjoxFegpaLFnuKX0ftfJnw4ydtyjiqAEEBiPqiMoAesfK2Pj40vnG4IgZN4EKQqMnfbjHc2wiUqS0hIrjMYgOq9MUMqEvJ558nrmMSixXY9nkJGRESoqKi4TlN5AiKnAR6NRJvtPAJDXPY8QjiKEMy+ITvQoMa908VhRyNjmPRf8jHfNZ2nTYtp42NrHq1j3+DL+yaKY17lfjsYJSssiKeXb8P5Jjj+VJtVTFp/SVmXFUmKi4hp1sZD2N1ex5eOtquqAvDZU8yZ1sRCDDervUBcnA5lQ0rgtfYaBjHXuLafzU24MheoyzASmg3gHL83Y6rkwz9R5dTEvnU2HvTaP4jVOVfVmuueYX0Esb+3j9VRdX7h8wdcBqx+tpe72ElV1Zi74lIwj6vzX/FY7xR0OVXWCPvCNBZjouvhphwH800E8A2l85SzrjeveW8/Wj7eovtaaR2txNFtVEYGK1tkp2ZDep0mHmI/T8ZZKXO7MxOR0qL+zhM1P1GMqUfc9F7XZcTVaM44HmfybM78a4sKLE4nxIBNBdNFYMbx/PpWgJGaOeSEIGAth0zvzqdySZk6v0WRcw13wi8xPRRk8nKGvSut7BYEggXENgfHMa8O2/hC2/hDGKXns8px4ioWFhddNOfx1yQPV1dUVf3FzR89jMK+JHxMXBKL69C/MjI9bXGF8Efid8h3nDSYGaUkLwqIxe2ZCYP8L8v+FRdqD4kziBUhaDUJSwGiqP4SrUo/ZpmN+MCQTlTIpKsVedCRC7c1OijvsHP1uL/OxzV6ikFVRafBP08uzoNPg8Ld68fWpG/Dmun1IUYlwSB1jrWSNC4Ndj73RrEoFqKKzECkqMfDH3GW9C9wOdHlaSq9wMvxK7lKAodkwc2PqBsrTP1zZLu2NH5Jlznf9Xe7M4eHd0ytKD3f4K6dUp0TzDQVU7bqKIa/MhNZ4adKp2CvNK0qJduDz6hUsjv5nD+YCUZWKEqBKYSOG9rfXYKswc+hLJ1W9t1PfyzBxWAZhf4TJNFLU2VjFtjQM2JS6iwcvUaTuZieOGgs11xZz+mfZHyy5vrPGnHIvyzJ7tVowQzQsEZxTRyDsfWWBsTML+NTGzX1wdk92B2oxQWnz1fK97fmThogx+zPFCEog+xTSokslk5OMkxKB/KXv7iViQdvUQS6ZnDQzYMdeIQ+OZi/cfE5kVlzgpxkYzf0DS0lgY1/5KQBVVeqC+pfx548rrriCV155hQu//Q9cj3465ZgmGCGSIZXWmrsMGCwie3/qi6cAkrxJRDuNCIt2gR3/XuZ80Ck7xhapdkQWIoQX1DPqN/1NE1JEYp8KNb+VqLScfmoAU4kR/4g6IsrCbBi9VX1aCVulGUuxkfO/zJ3IXndHJY4aKxVXFzDwp9wHIUe1RbUvOnnGi9Gmw2QS8ftzf28rSdFrKjex9u21TJ7xcvq/cn93R9LtFloGo/s9eLs9OacCjOHkd3NXvEyGzqLFUauOjL5S6G067Mv4AIsx9NIkQy+pT0f36t+exKSSX+Pt9rP/c+oVCrZ+opWgN8TBL6jwEf0ra4uz/T6M+RkIKBn8tqrOQvR2Hc4GO1Nduc+jqq4sAgGGXsq9MRautWF06ila7WLiqNJXLxckEkTCgSjRsIR/WkCNXv+ufzyDqVy9dP7YgRx2KCbdd16Nifb7y+jfM8nAnzzZlT5J+KK6PJAiEhPdqYG5FH/U51+ys8w/BYd+qSykFi06d1JfaT/vY6Ze/qY6K8MYNPD84QiZ2Jv27lQ/burCSS709mIwGHj++eezPtNl/GXh5z//ebydjg8dp5qkBdtwBNJslAPACJvfUkjQG+Xw9+W+V/Il9RuCsCRYGBiPcugr6cegbCpKE2fmKNvoRGfToyZfZtkV+VRfU8Tx7/YweyG3eqP7V5bi4dDXuwmo9LsCnijRUFT1ZrSiVU7MhQZcbquqdHG1N5RAVFKVAs/ZZMNYoKdic4GqFHi+iQABlWS0nt+M0qNih3cMa95Tj9GhU5XuYbprnuku9fGaI//RRcCjslKAFaka2SstlyydiqPOit6mfg6QU3qzRej6rwGMjgHVduxS4VfH0HhPGQVuB4e+pu777P7lCN1kniemg9FmJDgTYvJMmiwIWXwBV2MeQoYNNZlQttVFYZsDUa9ZXtUryUcpbLenxlFzXJyLLERUk7aGdk0z1eNX3S8SgHO/WKYfWHTf6x6vRtSI7P9Cj6r0JiFfGI1Ok/E4wSAYli4Q9u1Sxjr7IsJi0phn6J8mWCkvqgsE2bQe/HNw+KX095XXs3Rh9tjL/w5I1NTUZH6gy/iLxOOPP86XvvQlzr38TfIf+peUY0I4iqRN/2223qDHVqThyM98BJUmI80vWiBeFCs5+6ss8+Nk30sU5TQ/sUO+lSlIrH13DQhw6Mu9Odfp/rX6sX/gxQnGT84SHFfnawQ8IYwFETAgr2HniPxmG9GFqColmvKrZNWb4GxIlQ+V32wHJM6Suzrn1OlZrCXqWd6HvqReqdlgg7XvbWXytJezP82d2K9GhTKGuYEg+z97iqBXXXs8pyI2mQxTvgFHrZU+1G90UAtzkQlNhvh2Jkye8DJ5QmX+L2D3P5zCoG4vBcHx4IoUtjY/0UxwJqS6blrV8GViKZ7uOWwqU8sVrrZjLjaS35SH50zuMa/a64oQdSIj+5cnbcXWFy3lBqxlJoo6IrnP2QSRcCBCdEHCny5Fehbs+0IPhkL1c4fpM4GsWWaAlOMGB6zaWcHgPg9De+eW9b1i79GYZyASlphZrByYvL4bXABD6jMEfXD8dwo53LHo3Em+l6V/nvlKOWa9sS6M3Qx7DoQJBtOTvWz9qb6t3ztOb28vOp0uvon+teJ1SfcG0NbWxsmTslxb3T99Om2ZqF4iryf1Rd5m83IhoOFkQDZMMkkp5UbDYIwTViQ23wChBTj4koCgLJAlk5RS68rOhDSfJuCiEJWkhfQTiaJ2A3U3FtH38gSDr6b5uKJSWjlt985y7FUWOeVbDqneLjnMYDKjmixTdUMhE0cmVZNDiIlmXQI0bCtjwRem73c57OZVsO6v6tFZdKpSjgG4H6libthP33MXf1Bu3lGBt39eFdFrpbiU6d7a31rN4N5xplWkHFkpVr+7joFXR5k8lvvuvNadVThqLKoIbCCTm7qfG0sQD19Dirdc0ruZC8CX5nteQlCKIRql5pZ8el/1ZPw2M9U1lUn4BrMQlKToytK7xbCMnHQmSURJFFh3jwGtTmDvz5YGsSVRXEJOimHTTXJX/Ore9ANy2CzbIpmgFEMs5Vsm5aQYSUnSQD4+biJMFxoOI497gdJwWuUkIE5SCg1puXMUjufBiYKEE1JRMp2WnARg/91ejv1QJim9TkP9ZfyZIRYcbGt+iJLCtrRlIgYNhr7EIktZOxTVGTj8myBCQG4XKSSllMpRpKDs7Fdf76B0tYPdX+6V172UwExGWWvF98lKlMngH8VJSp9RRzjY8vFWgt6FS5J2bCUwlZvwD6ojX5tckL+6kIE/qvMzTC4R/9SlSTNkqTZRfXURJ7+jjtSz9ROtjHfNcO6nuQeVClblUbI+f0WkY7XIb7dS1O7k1AqCRGpxKdO9lW51YS42qErbtlJU3ViEyalXTSLc/NEW/BNBjn4td1n6qhuLEDUCvb9VH7xNi+WI5SbUcADkKiUGnI0WVSQlkPsBv1+5XiafUYpmP0aWujkgoy9qgq3vb2Ly7CxnfpKhTaW5bsU1Tiq35HPqp0PMdGdYmFP80LT+qJLyLaM/qZCUJK2GNXfoEDVw8OeJ+X6oKG+JclIMMZJSm3GOIpfErpOpAT1Pg3YJOSmGEy/8PR6Ph6uvvpoXX3wx/b1dxl8s7r//fn784x8DcEvLx9IX0mpgInW+vuoBJxPn/AwpSl4pJKVkSBJSKNG21r+3hkgwyuGvJja/vJ6p3mKw1xtxP1jLhRdHGXo5dxJr47YyCtoc7Pr0Sbg0YsXqYASjEdUkj5ItLjzdPlUptmLXu1R2qLq+kGhEUrWY1/HWGkyFBtWb3xq3leGfXlB1rZWi9vZifKMLKybBqcGlTPfWfF85Yyc8THepU4laCdyPVDG8f1LVteruLKGozaGKwAbQsqOSvpfH8Q28Dg0/hw19RodAwKMurlF2RT5TJyYz9wMZfCNjsV4mDl3E9CbZkC0GuOZdNehtOvZ+OkPbzXDP6/5HDaIosP//9Wa/drp3ocToMpLKYyQlUQAjbNpZwNCxeQb2Ks6yPS/j2keMpKTzBllzNYz2w3DSFMBbb01LTgII0s3Le7+NJEmXY15vUMTanLv2HsqK1qQtI2lFtGMJQoKrGsrdBo49H0TwKzGv+Qy+V1SSiXZA8RozVZ1Ojn53kKA3KY6ayfdaLiYGGf2yte+uQRAFDnwxC0EhTd2NH2wiNB/i8H9kmSf/f/gtGAoNqglRGKBsg4uhV9TNkQ02UTUpZ6UwFBqouqpAFdkIZCLK+MkZup/JndBrqzVStrlwRWQltbBVGyhem39J0jBfynRv+R028spNqshyK0XJBgeWEhPnf6Uuvrb+fY0Ep4Mc/04akYNM19rkRGfW0v9CUnz4YqV4E0TVJEWQyXnOJntWklI6H8dgU7ri5a73WvwyFQTtxdj0wVomuubo/m2aubIgpCUvFbSZqLuugDO/HmemN4OyZCzWleba8VhXprVdhaQkaUTcN+jQm0UO/zJhwKjDknE8iJGUqs3zlJXAgcOpi5ozNfol5KQYju37F6amJrn22mtfN5LS6+ZtnzhxIv5/08svUuCXB3+T30ej34fZ70NcEHCG56lKWhE/4tUyuiAgiSCJPkodPvTKcbNZ/g2yqpKzRMKaLwECoga0ejCZJSSNiClPoDBJydlRAXmKUqCk1VBYE0ZvBfc2Oy132yhsVRbBRQ15tRpstYlF36IOM2ZFBXFmIEj370fiBCVrjQlnUyJQWbTOirlUaTBmKFory5IFZ0JIUYmK6xNbjgvXWDGXGRJl19lk8g5grjKT32Fh88da6HzSTeGaPMxV5oxlC9ckdiLkd1hofUsFpVc4l5YtMy4pa60zg08mKC0uW7QuQRd1tprlsvFntTF+ZBzfRBRzgZhS1t5oxt6YWtZcIDcvUwEUtaSWdbZmKauc11QAa95bR9n1+ally4ypdlFgrZNtWNThoHxDvmzDxWUX2TuG/pfHOPaDvvRl09gw9m4ctVbKNhWosqH7LVV0fsq9xIbO1qU2NCnt0Fwgkt9oo7KzKDd7r1Nv75gNl5TNYO/FNlzO3ulsaC4zYq+2UndL2fJtNumeNn6oiS0fb83J3jEbFm21Yi02Ub65KCd7x8576nt9nPyvCznb21pnpun+UuyVFmquLqBovR1zeZY2256QMlz9nipqb89PKpuHYBUUG5rIb0vcQ+EqC+YaU7ystcKSsGGlnsIOc3xRx9VqxlyhSZx3tRnsOnr/4MGcBwVJ53W1mLFU6+J1CzvMifMWyb/94zoErRZHvRZLkgp2YbsJvQ3QajEXQKFb7u/a7nVStAbyahKpOApbNJiVR9VZoLBFuT+tlrwK6LjXzKa32TCXQmETmJ2AVoPOrqUwSc3dXAz22D1oNEiClBh/zVBYmyhrqdCSn6QQWlgGZsX8u3dB9wWIeUMWc5DCgsTAXlTgx+KKrUb6KLPNc23TPC6zD3twnjJzYlwrE3zkx8c5H3UaHyaN/LteUU6aR36vFWEfpbPKeX0+muZ8mJWFC4fPR3G3lhmPGZ9Zz24neGL8Ld8CLd0RJs/I36DTF6DJEwCfHCCsmA0QOHAMjUbD9ddfz2W8MXHLLbcAcOrsjygsDhNT5rK5wjhd8v81wQgF1VFMSlsfOg/9R4OwIBP7TEUC9uqEO+hq0CfUUqwiBW0mOY2SLwIC1FzlkI+JIi63BVO54teYoKDDHBebMFWYcLWasNWa2Pj+elwtpoQ6hwkKVlkTZUsM5LcnxpNzzwxw8qeJCXnBqrykssaUtEeOJhOWamUxOioh6oT4/Ztc4pKytjpTynmLNlrpfNKN+y1VKWVtdSYcTallTS6l33dBxXUu3I/IaQos1WnKxnZnmYif1z/ox1JtwpU0zua3W5eWjT1ruQlTsTlOUMpvty6yYWrZ5PHEVGzMXLbEmFI22YYV1xWy6l3VibI52LD2hmKctVbKrrIvseHissk2PPurgThBaTl7x85b0VmIvdJCwXpzatk09gbi9t780RbWvrd+WXsnv5uaG0pwNdlysqGr1Ry3Yeyecmmz8bLkbu9M7Xs5e8fKVl5VSHGHM6O909mwYL2Zzk+6qd9WqsqGZRvzE2l9lmmzrlZzvM3u+XwXQ/smVNm7fFM+ZRvzc7J3zIbFW6ys+R+18evE7a0ECFLtnWoXW0m6NiukLRvrI/yjIYZemlLabFLfubjNtiT3ERbQGyAggllM7TvLTbhalB+CSH6bbMOyK53U3VmcKCuImCosKX5kuj658xPNbPxgPaYSXbysIAo4m81YqpKetcMSv4dCtwkkmFcW8x2NJvJqk+1ixZhsww75vAMvTnP8qSGi0UQwpqDdFLe3wQUFHda4P2qt0uF+qICmu+UC+Y06zEXyHFxnhvzGRODGVAK2ykQKeI0eNFoh/qz5VVGEqDxGWh0RXAWJhYf8ogjO4BxGT4S+EegeEoix0awmP2WSL05QKrD6sZpivqEfZl/C5/NRXl5+maD0BsVTTz0V//8oezAlZVRwViCTVMIRjHkRnPUJAl3vK9NMDwbiaUZczUYMigq+0QGuZqVPFQTsdSaslfJvUSeitYgYHUll3Ql/Ka/KSF5VYje4y23B6BBovq+c1ocqUiTzzRVG7PXJZa0Yi+R+aGYwwOmn++IEJXOFEUdj4jt2tlgwFil1jXJdjDA/EYSoROlmZ2rZkqVlAYwlRpwtFjZ8oJHOT7pxNJoyly2Sy8bgaDTRcG8pJVtc8fuPl3WIKc9qrzdirjBCQCYoudzWJBumls2rNpJXnWoXT5eHwFhAsXdq2SU2dIiJd1O3nL0XPavy//Z3VFN2bSJumMneMRs6Gk1UbC2kYmtBdnsvsmH/q6Mc/2GCUL64bFobAoXtDsq3FGS0ob1+qQ3rtxWz9RNuHDXL2zvZhqXr8qm6pjA3e2dp32ltSKoNU8ou02ZjUNtmYzYsaHNQc1NJTvaOPeuax+vY9ERzTvaOvRtHgxFnXR4VnQkbZrN37Lzdvxzh6Hd7c2uzyPauvLGA/CYb1VcV5tRmY2h7exXVbypMLWsSkuyd8FUcDan2NpdZkmxoWFJ2sQ0xiQy9MgkI6e2tLHTJfSdJdrEQGF0AQczQz6aWBWh5oIyC9TbsdcuXBTCXG3G/uYLOTzbjbDbJZYt0cno3s5DiT5vLjTgakpQ/NBJSTMnFKPvFcbuUmlLKOpuMGBWf8+DXe+l+fjRRtkDA2ZRUtsGEOUlN09ViZO1jVVgrjRgdEVzNiWO2KgOmkkQMwdmoQ2+R32NxiwFBhJBCDrGVSVgKEotkzkrQx+7BAsXmIDqvHHs7dxRmkziKBdY5CodlVQWjUcJVLBFTCM1zSIx5dgNwww03cBlvTHzkIx8B4GTP0zgKE+/fZJOwueT/C+Eo9qJoXAFlagT6jgRBkmNeeoeArSwx57BVajDEXBeTIPd9BgjORRBEgWIlbi8IAvZqI4ZCZZ5hAEe9QV64Bwz5IrZaPaYSA2sercLWaEhJO+RoNCaV1ab0hed/PczJnyQIL44mc/z+DTb5dwzWcgNWJe4WjUSRNGCwCUllLSllbTXGpPNasDca6fyUm5aHKlLKmkoN2KoNKWUNBbEbhuKNdhrvLU+UrU2c195gTinraLLINhwPYihMU7ZwaVmQyT/2SnOcoGSrNaakYkspW2DA3pCwi8Gpw1S66P7jNhRTntVWbcBaIZctWu/A/eaqjGWtFYmysfNWXumiqN1ByRWOJWWX2FDZyGywwemfD8QJSsvZO3be0o3y+Fq0OZEyK5O94zZsMLPhA02sebQu1YaLyy6yYfWNJRStcsbPvbjsYhuuxN7x84q52zvZhsu2WVvsxImy1dcUUbYhP6c2G7OhrdbIlo+1Und7yfJtNsmGFVcXJdLsLWNvW60xbsMDnz/LwJ5JVfauvKqIyisKZRs2W+Nxq+Q+ImEX+ZijxUD72xLt3VqezoaL+hPFPzI5DdiqksuaMRTokp418WymEgO2GgMLcwIj+2ew1xuXljXI8SVDoVw2/m7qjDLZOaiUbTSl2jvmWwkithoDhkJ5DaHquvxF/ayIvS5xXtlXSZCoHQ1GNn+ojnWPV8vPqvhLgiBgqzJiKUt61gZD3GaOZhOSJBGcleNAllIDluR302BKfAt54FDuYeKEnxM/GSWaxE+y1ybOq7eCvdaYUFAqhKZb86i/US5gq9BgcCbGH3tSkhRDPuSViUiKyqjeJKCNrRnqwF6aSO1myAN7UsZPmwtswXn03jDDI9DTK6tZAhgMQQo0gThByW4LYjXG1keDRIPH8fnmKSkped0ISvA6kpQAtm3bBoD/xHFuRA72uZHYQoQNRMi7AFe4Iqx3JHaHbXKEudIe5h6Hl9W+MG1V0K4sKm+oAbey+GwcC9K6GjrWy7+7DstE/sbV8m/3hjB1mxKDffNVJtzXyr/1Zqi72knLHS7ySvTYSvTUX+uML7y731SI++5EvtT6GwtovltmODXdXkz9zaU0P1BEzU35tG8vpWVbIk9q/c0luB+QW0j7fRU03FpO8YY8zv9qDCSo2loY/7Ab76ik/WF5Qav5rnIab6+gaqvcQlbtrKZ5WzXzIwGCngUa76ykY4d83vqbSmm8o5L6m+TrduyoovHOBDOgeVs1zmobVVcWU7W1kMY7KmndJh9v31m9pGzHDvke1vx1HY13VNLxUA0AbTuqaLi9Il62dXsNHQ/JZa11ZhrvqKTpvjq2fLyVjscaabwjcd62B2toe1A+D2b5WVt21AHQ8mA9jXdU0vmkW7b3A9W0bq+J1224vQL3Tplh1ritlsY7KnG2mjGXWrDkm6i5ojilbMyGbfdV0XhHJaVb5IGg40HZhj3PD3P4P07ReGcl7Tvlsk13VtB4RyU118jn6ni4iuZtiRzojXdWsurhasxlRmqvK6bxjkoa3yQ7Yh2P1Cyx4SrlvOOnPWh0Iq33KG3g4eqlNlTsXbgmj8Y7KrEok3f3W+qXlHU/IJc1lxllG26X7dL6UB2CIHD8R/1L7Y1s79aHFHtvl+1trjKz6l21tO2oWWLvtkdklkf9nTU03lEZJwV17Fj6bmL2br1Htnf5VTKzJNZmk224+h3yx9v4pnIa76ik7vqSuL3T2dA3FGCq14vRZqDpTtkWadvsg/J1Src4abyjEo1RzGxvpc06W+U223iPfE9Vm0qRJImzP+uJl43Z0FSgtNkHZXu37JDbIWYovcKZ3t4Py/Zuuk/+jmLkqI6HqilocdL93BA9v+mj4bZy2pRvuf3+ahpvr6B4o+xodjxYRfO2xLNa8k2UrJbt23xnGY23lVO52aWUraDprsSzNtxeTvv2Cjb8VQ1b/6qehltKqVdyTLdvr6Dh1kQ/1XRbEe33yXUrNtipv6mYLY9VUneLE/d9lTTcUphUtpD2e0pBFCjsMFN/Qz7u25Xz7iinLka8FAWaby2k7U75HVsqof46J813yH1e060F1F/rJL9Zj7VYT+3WYtyxvNRKn9xwo0O29+0O6q52Yi6Ug/kt1+dhsmmJhCR8w1DbaaPpJjmo1HS1nrotljgxqe16E81Xm5EUdSW9QUM0Ig/CLeuhfr2OkkaQ9Fra10dpWht/VBpWQ9sWWHM1NDdDcyPUKePPmlXQ2iz/P2IQaa+U2FCpnLcY2itAp4F8C2ytjbLOmVjg2pgfoTNf/t1kFNgkhdmokEdib/CsMgBdKYa5aUY+b30UOn0S1/nk3zfPSWz1wEPdC+zoXuDaKbheIWwXAFuIcIuyofX6KbgiScm0Zs8Zzp07R3FxMc899xyX8cbEb37zGwCi0Sh5riGsyhy2fRW418j/1w1NU99poeUG2Ulu2aqlsdPMhu1G1t5toP16Iy23JvqAxpuctN4l/264wkLjrSWUrc5jaPcskZBESVJ+7qbbi2nfLo+VddcV0HRHObVXK/3FA+U0b6ukoNWGzqql5b4qVj2s9EMbXTTfVUHjbXL++PaHqmjelvC2W+6rpuOhGlY/WkfhOhvN26pw3ysfb3uwkqa7E/2m+4FaVu2sAeDUUxcw2gw0KP1+y0O1Ked1319L+0PKR26C5m1VlK0vIuyPYMrX07ytKr5A3v5QLe77EyzHprsraVHq1t9dQ/VVpThqLViqTazaWYP7gdSy7Q/J13XfKz9b8QbZbqvfUktL0jjbfE8V7Q/LZRtuLaN5WxUVW2T7r3qkmpbtNdRvK6Xzk26a76miQylbc3UxzduqqLte8Q0fqqL5niQbbq9h7TtqWfveeso25NO8rYrm2Di7qKz7gdq4L1ixpYC8Uivu7YqvtbN+ib3bdshlTeUmmrdVIWoEzj07SHFHQYq92x9aau+WB+XfTdvr5Ge9Xvbh2nYstaF7pzzO1t1RTfO2KlytZk7/Vy/RcJSmW2tSysbs3XJXpWzvzbK923dUL7F3h0Iuq7+llOZtVVRfJZOXO3ZWpZQ12PSEF+S+vOqKIpq3VVF/i2zv9p1L7d2u+Hudn3LLz3pXZdzemdqsq9VM87YqNCbZr2l9uC6zvV0izduqaNou26X5Abl9u99cvdTeKPbeofhl98hlLdUmjn2vDykiLbF325tlH8h9n2zvGHGm46GahL0jSptV7N18R4X8HW1QfMNHUu0tagXCQdmGddfL9q69LuEbLrbhqkeqMZWbaLxN/hYab5P7l/bFZe+ribfZWB8xMzDP+d8MZe0jbHVym431ETXXl2MpMGOyK7754j7i7kqa74+12Vqa767E5ILOT7XSvrMGd9KzNt1VEbd3/d01NN9diU0h66x6uBr3AzVs+nBjvGy74hu676mk+e5KuY8QRDp2VNOyPUGAbN5Wxeq3yddpuKWU5rsqqNis2PvhClruS9ileVslHTsqqNxaSMkqB813VVB3nTL3ebA8xeeU+2T5d9l6J813VRAJRZgdCtC+yD9tva+S9gfl/iPfbabpzgrc98q/q7aUgAiDL03Hy7bdLx8zVZhouqOcRsV/bd5eJY8TtxRQdUM+7dvLaLuvNG7vxtvKaNoml226s5zGmwviGwjcdxWRV2TEqWwUabjRRdPNcv9Rf4ONhuucOJTX0X6bi5arEkEjrU4kEpJ9q6YNIo2dZsoc8o789jXQujpelJaOKBvrIly/xseaJon2WokG5RbXNUi0rAXTsExMWl0nsb5O8eFKYKT3JOFwmKuuuorLeOPiySefBGBi7ixt18iRwIIaaL7CQMNaASanabm9gKYbHPE6LbcW0H5HPpseLSC/IUrzHSXU3SiPPU13ldJ0u/ydSuEwrdvL49/bsW92ozfraFC+oca7K2i9tzK+wNz+UHV8rg7Qem8lzQ/U4GrMw1FrpfW+qvji+qqd1bgfTPT7LfdW4la+1ZY7y2ndXk3TA2VU31REx8OpY3Lr/dW0PyT3CfU3l9K6vZqytS6GXp4kEopSe1VpStkOZYyovqqI1u3V1Fyt9EMPVdF6fzXePh/zEwHcD9ayShmTS9a4aN1eTeObZN+wbUclrfcnns39QC1FbU6qrirE5bbSur2aFqWvd++sS+kL3TvqWPVIjfxsj1TQur2ahvvl380P1tC6PXHe9p11tD+sPKsR2Q7bq9n44SbWPN5C6/bqOKmj7aEa3EqMC+R+NNbv191eRev2ajo/Jce8Vj2ytGzbg/L9Nt8u27twnR2jw4it3ELNVYmdNK33V9Ou9M+1NxTTur2ais1yZ9jxSBXuB2s5+8wgh798Rrb3TvnZK7cW0Lq9mtprFXvvrEq14YO1dOyswVhipHiDU35WZZxt21G5xIYdytjZ+/IIWoOG2lvle2p9qHZJ2TZlTDYWGWndXo2jJg8kqL6tNtXeD9fRvjNhl9bt1TQ/INdtvLsGQRA4+5vhjPZ2KzGvmjdV0rq9GmeLhZYHK1nz9jraksq23l9N2w75fhtvLaN1ezXFG+QxY9WbU7+F5DZbe61s7yqF5NPx8CIb7qhl3bvk65RtyKd1ezV1N8nvrv2hyqX2VmJTQwcnMDuNNN+u2PvBpfaOtVl7vWxDQ57cvzQ/WJNa9sFEmzU6ZBs23ivXrbpGvpezz/Yp9q5dam8lrlV/VzWt26vJqzZSuM6ets3G+4i75O8oP+YbPlxD5eYizvxigJ5fD2bsI0D2DZPtba+wUrZBbs+JPkLxxR+qTGkv7gdrWLWzitWP1dL5oVZa76uiUfHF2x5cVPaBRCzQ5Zb7v84PNVN7WzHuh+touTfJN3ww4Ruay4203ltJg+K3r328Se5nFbQ/XE27cl6Mcj/bdK/8u3FbFa33VuJ0G3E15tF4SwnuBxP31HJPRXzuU3eb3H/HFtpW7azCUWEhNB9m+rSflnsqaLtfvm7TbaW03FNJ4VrZ3u0PVNC6PdEGTE4D0ZBMUqq9tpCWeyopXy/bu/3BMlrvS8QNW+6toP2BMtofKafySictd5dTq8R02x+opmVbInVpyz1ltN8nt6GitVaa7yrHYNeS32im9d4Kmm5NrHC13l1I+73yu3DUGmm+0UntdfL9FjeZQYDRYzKBveW2QtzXyH6Z0QHNV5pouEJu3w1X6GhZJ7HuWthwPbRvlv/F0HS1heZV8kJZ42poXQtGhdtvK+7l7NmzFBUV8Yc//IHLeGPin/7pnxAVhYq8wgs4lNBVxwZoU9YIteNeWm6w0Kz4/9UdGlqvNbP2NgOrbzfQdp2B1tsTG+Bb3+Sk9U3yN1PepqP1zkLK11rxnAuy4AtTuiqxubj17kLa7pN9k6JWK633lFHdKY8nrdvKcd9Xgb3SiClfj/ueStoekMs6W0y4t1fScLM8JrfcU07rfUnzqx1VrNpZRdvDFVjLDbQ9UEXtrfL32HRvFW0PJMVVHqmlXemzDnzlHNYCE41Kn9VwVxVtD1bHF73bd9bg3pHoc90PVlN1VQnBmRCGPB1tO2riBIVVj9TgfjjR77sfqMa9Xe4/Gm4upeHWCgrb7NgbzLQ/VE3bQ4mybTtq4n5N9bVFtO2ooWS1bJd1766j/ZHUsrH4QfnGfNp21FB1hfwi23dU0bajhoprCtjysVbaH66jQ4lvFK6207ajhrob5X7JfX9FPDYC0LazjrWP1rPmsTrsDWb5vDfKNmx9ILHGBuB+uI62h+W6VVcV4azNo/52+Z6a7qtKOW/7I6m+StuOGkwOPV1P9+OqstG2oyZOdml7eKkNW5TrVt9ULj+bIr7QsbMmHuOK21sZZ+tvKqVtRw2Fq+30/maA0HyIhhsT/XOyDauuKKRtRw1lG5R+/+Gk+xdjvpZctmydS7bL1YXKeSpTntVaYiHkDxOcCJLfIT9bw81y3+7eXrHEhjFfZfNHW2jbUUPNLco8//7qlPEv2d4Gm0jbjhqMTtlmjduUe1Cm6+07a5e0lyZlzKu7TX4291vktpauzbYqz9N4m2xvR5OFEz/qJxKM0pYUH5NjjvL91t1QQtuOGoraHfK7eaSa9ofrZFKHpNh7R8y/lu1dsSW2NpbaXvQmLSG/vOZT0uGQ7aLEYNoeTLV320O1tD8st5+K6+RvofFWuc9ovbc8o72tFQbadtQwO+zj9C8GaNouf/cxJPcRGKDtwep4H9F4WxX2SmucyL2kj3igiibFz6x5UwVtD1ZjqzKw9WNNrHlbNe6Hku5peyVuhbjYcHMxbQ9Uka+QwNt3VNK+s4b176tXnr2aNsXe1VcX0vZAFaUKmat9R3n8/g02cD9Yxeq3yvdbvt6J+/4qqrbK303b9jKZe6HwK9oeqKR9RxnVVxdSvtmJe3slddcXKjaswH1/sr9XQfuD5SAK2OsMuO+rILIQZXbAT8u9lbTem/jGWreX4d4ut31DoY7WeyuovbkURJHyDS60ek1cxKbt/hLa7lfmboJA693FNNwi+7K1NxbSencxlVdZqei04d5WSMvdiTWXljsKaLxN/l19lYvW25zYKuQ1zfY7i3DWmHEpccSWNzloUghLNRtMtNzkJL9JLtt2s53WaxMkPINVJKyQoSpbBVqvNVNeKse82jaAe0O8KG2boqxxR7hyS5C2Fuhog1plyFndBu7NoB9XYl6tEh1tcsyryAXjI/sJBoNcd911vJ7Ino9HJZ5++mkEQaC7u5uf/PznaO96M+cEgXzgNDLr67xPQ74+ghiWiGoFhhYE9BGJAhNIAkzNwYUxAUkQ6BmBIkfi/OOjEA7JMo7TYxFmpsBoBswSgydDFFSLcWmtiQvB+EL1gg+8IwuMnZrDPx3F6BApbrXIKY6CQca6ZhEEIS7p5R30M3FGfomDe6YoXWfHVZOHVCkxcmQGnSnB7fL2+5g8K6dJ6ds1RRUw0yv/Hj40TaHbRvEGG6P7vXh655i5oJx37zQ6g5aJI5MgCAztm8BSZOTU92USSuvOKmaHZDWN4X3TmJwGhg/JH8LgvgnyyhJMxcmzXrQmDSe+cQFzgYit0kL/bnkle3D3BI6aBAtz4oyXBa/s4I+emKZmq4EJ5f4HXh0nvznhiI2fmCGiLM7MjfiY6Ztn+MA4TXdWEQ5GmR9KyK2OHfckZDB9MNM3z9hRmQU98MoYNTeUoNFrwQyjR6bR6BO7Xb39PsZPyoHt/ldGKd9cxPQFH/hges0MoUBix8VM7xxT3cr97p5A0Ih4zsl1Bw9MYnLp4+nQPD0Jew/tm0Jv0jJ2ZEax6SSW4sSHPH1hFleNjZZ7K+j66QCWQhODisT0wK5x7NUJG06e9eKfkr/6geeHMJj19O+SmQL9u8Zw1SV2Q493zRD2yQPV+JlZivvmGdwzxvQpH8Wb7BS6E7sOk+3tGwow0zfP6OFJxS5jFK1yxVOHjR6bTpGgS7Z33ysjlK4vxDfhIzgbwlJkZOJUgr3g7fcx2aW0pd1jIBUxfibWZqfQWbUUttiX2Lt/1wQancj0KdkuQ4q9Y4gsROLMz8H90xhsOkYOeuTfe1Lb7PT5WeZH5QnrhWcH0dyhYWjflHJPEyn2Tm6znnPTzLTY6X9ljJmzPkq3OFPbbJK9py8k2mzs3RS6nfEUh+MnZogqkqz+CVLt/fIYxWvywQe115cSDUdTbDjTNx9vswOvjlK6vpC5EfndjByeQmvQMvyqBxDw9s0zecarvEf5Xrw9MyCIDB+aRm9LpDbz9M3jn/YjiAJD+2fQGzVMHpPtMrR/Mk5wQ6PB0zvP7HAAZ50FUSfiG/czfNyLoNEwfHAaa1L7njo/R8Aj23Dq9ByuJgtmu54Ff5ShQx7sFfLgJ+i0THX74szg8R4/hYN++hWJxgVfFF1SurOJsz4iC7IN52e0eIeDjByX28vggVkKm81Mnl5AZ5zFXKJDivF4lD451s8OHZ2jqMmMT9kxNX4uiKgT6H5RZurOjoWYVGQRB44HKXNLzChknbFzAbRKKraON4nMTYWYHFTa4RkQdRJT4/JQN9wLhkTTwjMJogZsDgiFwTMNI4oS6OAQWPJkghLApAe8ijhSnwesRrgwCSNBCyHJh8OekJgdDsJcRIMkCvQvQNECnDJouRkvk4AGOYUpQD8CQUVVaViEERFORzVovSLH0VBDBAcgAL1GCAmgGTYw7Y8wSoRzyth6zAr1PjCOawE9P/nJTwD4X//rf3EZb2x89rOf5QMf+ADf/e53uKrlCTQsMDwoIiapgXqGQkz3LyBEYLhLUY9waRFEGDo2h8GSKDzdF8DTL39vgwe9aA0i02cSfo2z3kzr/UWcemqMqXNzzA7JjuvwkVmMdj0jh5W+fM8k1hIT3c+OMnxwiqorC+NKG5PHJrFVmBmKjbO7J7BXJT7OsZMebJUmLKVGDPk6prvnGNil9OWvpPoqo8enCfvkzsU77Mc7PIdGL3+3A7vGU8bZkcPTCV/FD9Pdc4wenmTy+Bz57VaK1+TjVxSmhw9NpYyznp5Evz+0ewxJKmT0+BTzF/wM7Z+M90Mg5/uePO2N3wOCgLfbA0AoGIYkxdSpM7PM9Ml94fCBafRmHZNHFB9u1wSWYiPRBfmevYPzTJ2Vd5KOHpnBXGhk+LB83oE9E+SVJsj64ydncDXmEZwJM31iGke1Vd6lA/S9OoarNuGrjJ30sOCV28XJn/VSuamIoT1yytz+XYvsfWQ63u/7p/xMd88xcmCcqVM+IgsRilYllADS2TvuG746RtNdlVRdUcrA89MMH5iKv7fF9h7cPYYUhaleH/hZYu/ps7NM9chtdGjfBKJOxHtWtsvgXtlXOavsUmx5sDJu76F9HgxWPWNHvcp7TfUNJ7u8cV9l/LgXa4mJoX2KvV9NbbPjJ2fivmE4GAFJkpWA0tg7uc1O9fqY7p7DUmJANIn0vzqW0mZT7R2Nt1mAocNj1N9YQUC57uI2m2rvUUrWFzI/5gc/S+2d1GaH9srvPjY/GNo/id6mjate6S3auL0H9k6iMWiYPjGdYu+4DU97mVUIHcOHPRid+rhvOLA7tc3G7O2+txyDQ890zxxD+5X737W0j4i12bler9xHvDqOt1u+VrY+ItZmAbp/M0zpRhf+kQAIAiNH0vQRyvc48OoYxavzAYHIQhS/J8jcYCBhw555xk/Kzza0a4zo+gK8I/L9DB2YoniNU3aTBVG2t+IbDuyeAlHA26PYf/8Uepvcvg0mASkiMa747cMHPegtGiaPKn3EniTfEJg8M8fssI+hl6epusmJtcjC8BFv/F3llSZ88fFTifnM9MlpHNUWLrw0yXyfn+JNdlz11rgM9/hJL0HFF5/s8eFR3k3pVjuhYBhfT2Jr2NixGSKhKAgi/qkgnt55Rg7F5lQTFLU7KF5lRxAFRo/NIEUS9vZcmGf81BxoNAzun6G4PYpvNIKg0TByfBaNVmTkyAyIAjP9ASZ7ZT9x6IgXKZqHR/HhRk760ZpETBaBxmu0TA+H8AxHIRplqCuKqAFPP5AHg31yCnSNT36+6RE5JuEqhuEpCEdg0APGUT9DFtk3jD+rB+YCApYLc7yw70f0DZ5Ho9Hwgx/8gMt44+L//J//w9/+7d8yMDDAj596mtrITXhHDEwNLjB8Vm7PAwfmcNYY5PQgGg1jp31o9BL5tRa0Bg1T5+YZPabMmfZNU9CUaFgjhzzydyHKaY2mzs5hLNRhdMjxmuJVDoQFAUS5b0lWhp8842X8pJf5sSDGPJGSdfnMKr7X4J7UsXPqtDcexxrcMwGCQEGjg2gkysCuCfS2RKhw4sQMM0ocYvjgNDqTlqlTHvlZXxmnZIOL4g1ORvdPM37cw+ywfM3RI15MLgMjR+U+rH/XBHmlRs4+LY8n9XeVxvshT5eHyWoLg0q/3/fyGK7ahPLJyNEpdGYNp380CEZ5fBnen+QbJtvwwGR87Bw9Oo2jMo/JM8o9vDRGUUdinB3eP5no9wPyeceOTdNwWzlhfwRP9zwBj3yuob2TKWPn1JlZxhU7DO4ew+jUoTVqMTpEBvdMpNh78uQMUz2yDze0fxJBKzLbPUPAA2PHpxPz5MX2PjCDwapn4pRcd/AV2TccPyw/z/gxT8JXOTGHpcjEsHKs76Vx7FWJfn/02DTFq5y0bCun64fnmTxtZfjAZHp7H56Mj51Du6ewFVvi9u57ZYzCVkdaewfGAkye9jJ6ZIrprnlcbmuKvYf2T6T4KjF7g6z0VBIowHN+Nr29T3uZjM1J9o2DBNO989irrETDEuOnEvIryfYe3DeFRq9h5pxsl4FdE5hceoqVxdTkNjt8eAaDXc+YEtPof1VuszEEZ0Pxe5o6Po2t3MzIIY9c9pWJFHuPHJmK+yrDL49isOgZ2q/Y+6Wx1DabZO+ZQdmGIwcn8Jz1k78qL8XeyW024CFub/kexileHSEworTZ/ZNL7B1vs7vGiASjzI4G6HhLHeFghPFjk2ntHesj5vsSv/U2bbwdLtdHJPvXE10eFmZDIAiMHo31EUq8bNcEeSUJ33D02DT+yRC2chN6q47ZAR+DB+T33PfK+JI+ImbvqR4fnoE5bKUWIgGJ/lfHyW9U7C2IjBycIqLMr3yTASbPeBk5KNtwfjyAyZkgOg8fmEoodQfkfnbseKwtjVO82sn0yQBdDGCvMUEkYe+ps7OMn5SfbXD3BNFwlJkhpU/eO4nWpKHn12PKu5llOt5HTCOKMBvzt/dMYnTK/rV7ZwXTF+aYPiOXHT48i8GqjfuVg7tTfcPxE15Eg0B+Qx5R5DFlWBl/+ndPYqtIsvdxLwGP3CfP9Mwxdc7CxLlZJo8H8E0tpKwtjJ6YJeSX26xnOMDUuXlGunw035rH7ESQgFcjp9ECRk/6ZN8QLQEPTA0uMH46gLAAQ8dCFNQZMRcYQJBjdoIAmin5+ab6dUz0hAA9/eehpALCAzNoA/CjIz9EkiQ+8YlPcBlvbDz77LO86U1v4vvf/z7XdDyBGISB81p0SQJj4+dDzIzIMa/Rc6DVL5BXKMe8Bg/PYbAlxuTRLj/zE3J/MXF2DmOejonT8yAKDO6dIb/JRONtLs4+O8XIUS++SeW76J5j/KSR0RNyPGFg3zR5pQZGDniZ7pmlZLWThVllXWdwnvHjHoaVuW//q5O46hPf0NC+KWzVJuy1FuwDPsaOexg9HIuPTVLQnJhfDe6ZSPgqQZg6J68DymXHWZgLE1SWLAb2TCCQ6IfGj88w0TXD9Kk5bLVGitfk4x0JKvc0nuKrjB/3xONNI4emEA0i0z2zzJzzMbhrAl2Sbzh6eBpvv9zvjx2dQW/WMa3MWYPeUEzwKn6uuRG575vomsNc6GH0mDd+D9YSI+F5ZS2ne5bp8/I9eHtmGTvmYfig0u+/PI4zqR8aOjBJUYcD//QCM/0+xo55GD0YW5+bwNWYGCOG9kzEfZUTT1+gcmMBIwdia27jFLYlgnSDuydS0keOHfMwfsKD58w8YX+YUCBCcEK24cCrEym+yvgJ2d4AI/sncNRZqeosZuD5SQZ2pdp77Mg0073zij2n5DhWzwxBr+zDGZPiKsn2Hj3mxWDXM3laWWN+ZRxzkZHuZ2XFprrbSvDFYq9n57GUeBg9rNj7pXFslQlfZfjAZDyeNHfBy9gxDyOHYuuLi+y9fyLuq4Tmw4SDEYb3jsffY0FLQvkp2d5Bb5SxYx6sZUZMTgMDuyfkdSdFnGVgd6pvGLM3wOCeMey1FnzjyprQrkX2TmqzsXfvuTAPQXltL7nNJtt7+NA0GoOGmbNKrOQV2d7x9HAC8TY7dsKL0aln/ETMN5TbbAwjh6bi9p4+42Ws0sLoEfn++19OtffQgUlC3jCNt5Vgr7EyfsrD8P5YO1zUZpPsPTcelNv34Um8vUGiYYmClqQ2u6iPGDvmYey4/N2c+cUA5VsKmD4p3+PAnlR7y32EbIfhfZNEQ1G8niAhXwT/dJDZoUBK2alzSh9x0IOgEZgbUPzt3ZOUbXHJHAtRYPSoB2+/HA8bPzGLwaJh+rRsl4FXJzEXyu1bm2cgshBlvEs+NnF6FnOBntET8nkHdk9hTfLFhw5OE5wJM7JvhpIteeQVmRk+FPMjJ1N8leGDMywofcvMYJDxk15GD8/g7Q/iajXjqrPGbTF80BP3DYPeEOMnvYydmMPZaCAaCTN+cjbpPc7I9lbqjp+aS6xxHvIS9kcoabOj0Yv07/Gg0Sba7MRpH5PdAdkfPTpHNCrhHVkARAYPzaIzioye9IMgMnbWj3dYvv+xM35ELXj75PX3gaN+jDZRJqVdrWPsfIjZCTkWPdYjobcsMDWIvKHwPJjzQAjI5xrpkTlfhVUw5ZFjXkOjoJsKMNAFeYmwPoPDAv4gGIbmOHLiN5wZ6EKr1fL973+f1xOC9Don7f3Wt77F2972NgAqnvhbzGYzYbMixXlhafmoIr2eNxBZckxIujXj2NKEhNW1ESrqYHYiyMnnoqkHo4nfwtzSvLPlG40M7PbF884mI8UkIfmDL9mYx8i+2aXHM+WlBUwuiTXvbibsj7D3384pJ49mLK+cnOJNdmquLWXPF7pg6a1fxjIo3mSn7qYyel8YiROWckH722riBKJc0fbmKmxVFnb93Sl1Nxkbn1S83/Xva0AQBfZ/NkPe8dcRnU+6WZgNXfRrVd1QSPmmAk7++AIzZ3M3hrnMiC9pkMwF6/6qHn2ent3/oO5dNe+owNs/r6otbf5YC6G5MAe/eD59gSz5U7Plngcy5yGN1c92PN2x5L5Sl4a3qgQWyHYMQJvmuNLfCemOJWPR8Y57rURDEid+5QNtmntOcqZiCkqWQmi/TiZeHXpWvq6kX3pdKckxiCpkybKqCEN9ABoixkSdGEEpGWGLSH2+jzNegcSHLCPoSLqvJe/Rx7aCMBHgx2EbixEoS4wlWm+a65bJY5Vm2LD0WKE8ThkvyA5e3jPf58D+/eTn5zMxMbGk/GW88SCKIpIkodWYuH7VEwBELHJ70A0t7bticqB4vEuOpZTz+Zf8bdMHqhFFgV3/dC573cX+kQlK1zgY3uXJyRcCKN7gYHS/J3vZRdj4wSZ0Vi2HvtiFf2qZ6yRh1TtrkYBjX+tRdb3LkLH2vfXoTFr2/uvpnOuUbnVhKTXGyS+5YvNHW/BPBDmq8l2ZSowyGSVHFKzKo+HWcnqeG1HdDtUi1m5f/b8nL+p1ADa8v5HIQpRDX8rgo6RDbP1iaZeQFVs/0crU2VlOPzWQc538divFq12c/F5fznWqbiyifFM+p5++wJQKPz6OLLnnXzPS+XzJfWC241n8xdcTJhd0vL2R878ZZPKEb3lfVMHGD9SjNWnY9dkzibax3D2LApigsMnC+BE5kJMcJEvnqwoaDaUbLQwfWPpuBaNxyd9icG+zYS3U0bM/yNjZpeNBuCjhj8VISsnwVcpBQuPo0obvVwh2lgtz+P1+zkx/G4/HwzPPPHM55ch/A+zdu5fNm2Wph2tLHsdoNCIZFR99Ms2cUWnX0tz80mNJkMLhJX8r6JBVLWf6fJz8XmpfKkWzh/JKNtsZ2Z3DHFbxu/JX5cmkBDXTbCN0PuEmNBdm32fO5FzN2WKh4bZyjn39DAGPiutdBiCnQWi5r5qBXRMMvJj7fK/lgQpGj04z3ZW9LSajcVsZ+S02dv9jl7qbjHXPKtrT6nfVotFrOPjF7POM1wOdT7oJzoQ48PmLG/MqXGen7oYSzj4zyNTJuZzrGYuMBMbUxbza31KDudjA3n/J3R8HqLuzhPnhIKP7c495bfxgEwu+MEe+0q3qWsCfn9/1/wHa3lyJIMDxb/fn7HcZHbLSU9AT4uCXssyD0jxjwWorE0eU9rfM9QRBoGitlbHTviXf73Kxvc3vqyAaltj3tTT9kiNBzBMWlvpdkUJ5gTtGUEpGuECuqx31ADDleoW9B/dSUFDA+Ph41nu6jDcGLBYLPp8PvcbCte4PAhA1y5t+teNL41rxmNfsMuNdmnXBde8sRWcU2f2Z3qxVl8S8DFDUbGXs8OyyMa+YD5ffkcfksdl0BTLWXfWOGqylJg78RzfB8aX3T4al3ub7K9DqRU6omGdfRgLtb6nG4NRz4HO5+w35HTbyyk0J8kuO2PCBJvwTAU58V927MhQY4gSqXGCrNtB8XzX9fxpj5CLHvFY/WoulxMSrf3vxY16rH60lGpU49vXe3CvFlltyNx8Am59oZrLLy7lfDudcJ0YYPPv04PKFFRSutlN3SwlnfjnEdFfu/mTOeA3+UTo/Jnmemqufk+HkK6+bfF0DrHt7NT1/HGP6tD81BpW2rnzd1W8rx+TSceirvXEyaFo/VkzcZ+zcjgYDnnPBpfeS7pk0IkXtBsZOLPWPBL0u6UfqteuuNlFQr6fnQICxM0v7/qgjQdqKkZSSsVAsH9dNLZ1zLBTKMS/DkNzejk9+nYmJCX74wx9yzz33LH2G14DX3Tt/61vfilZxWgf+9f8HgNYnoPWlf/FiWEIMywZsKPZxTWvCeZAEWVEpEy70aDhzgqUEJZAbhiimJShVbDFRsdZK233OpfUgoaoUSjSKGEHJXJJ0PAtBSYpK+Cbg/G+HEwQlkBthto9LEDAXmtAYxHhqslyx+aMtbP1kq6o65jIj69/XgLlAXVOw1pkpvSK9/TIhv8NC68OVyxdMQuP95XQ+6VZ1f/MTIQRRwFJoWr5wEo5/s1cVQQlA1IlyR2tevmwyOv/GzfpHG1TV0Vl0aE0qxc/MxNPhXWzkd1iwN6ozhLHAgKAVEFU+1pp31rHxQ02q6ohacUXj2ukfDqgiKCEIiKKQwuxOPZ7+75s/3MjmJ5Z5pkULNyUb82hU0jIJGk3OBKXaGxPsdkQRQadNT1CKQael/X4X1VdbU/8uCjLBKEOgovFWG5sfL6awJcN9ZahrzBMxuzTpCUoAkoSk08YJSgDz43D6lQVOPBeGSDQtQQnkXOVRvYaoXoPZHAEiDPVpQFEk0gTCRAxiWoISQETnp65I4ub6peOOwSMhiUIaghKAmV+GtbwQzmxnrVdMIShdFZjjnsAsBHxohg1pCUogk5NiBCXvmRMcOngQu93Oyy+/nPFal/HGQn+/rMIYjviZmpUnOZr5BTTzC2nLC5EogqIkt/bNBVRdaUlbLh2O/3iY3V/qzVpmSbAG2Pr+Jmqvz8GvSQqoxIghppLMi9BL7u9b5zjy7R5VBCUAS7ExZddpLije7KDzSTc1t6jz12pvK4mn6FJbTy3qt5XG03blis0fbWHjB9WNsVq9BkGjbuI5vGtKNUEJQNQIaDL00Zmw8UNNrH1X3fIFk6DRaxD1ImaV7cLRZMLRpM4HXRFMMpEPlZfSmrToLOocr43vaaLzw25VdUwlRgRRQFTZLiaPz6kiKAEY7DoEUcA/mrsfb6sz0fkpNzVvUvddNd9fkfv7VXy+0q0OTOWm1L8vMye0VFtY81hNPAVlrtj6sSY2frBeVZ3SLcVojSIGh15VAGnfZ89z7tdDuRGURAFEAVORAH7iBCVQNgBpNBmJ+O07i6jqdFLUsdTuUiDzAu7Jn3k5+6o/LUEpBo0vlEJQWn8LlClTNOOoPy1BCWRykuWCHKx5qetfGR0dpaWl5TJB6b8JNm3ahMslf5wvjHwZACEQRAhkiGpHIvHYUcl6K+seK09fLg0mjs3T9bPBJQQlkAO+mb7ZwtV51N1YQsfba7JfIMnvmjwqE5SMasa9AJz+eb8qghKA3qpHZ9FSskmdD7Xh/Y1s+ViLqjpGh8iqR2vjaQ5yrqekRVMDe72RxnvKVNWpur6QrZ90q7q/wLgfQSNisOuWL5yErv8aUEVQAtnvEjSiunaBTF5b9051MS99nk61j4IRCtfYE6Soiwh7vRF7vboLmfMNaAyaFDX5XLDu3XVseH+jqjoao6ja7wLo/uWIKoISgKAV0BrUPdP69zWy6cPNquq43FZqb8uxn0jyQ6pvLEz9+3KxeKDlwfLUejmg6roCOj/RTOG6pRvRssFaYsRaYlLldwU8cOTbfZz8wTIbNZLIDcZCJdvEkaQFzWUIrogidTcUsemxpfPVdGTaZOz51jjHf5WZOCkshFIIShXrdKy6R45FaKbm0hKUQCYnxQhKnsAE+w/vJy8vj5deein7s1zGGwZTU7K6y0JknkmvrIIg+kKIaTYaQGrMq/0eB1Vbcp80n/j5MIe+lZ08kC7mteFdNdTfUrwsETB58T5GUDIU6JILZK1/+se9HP+uOoISgL3agrVcXfDA0WSh85NuqpVURrmi7AoXzfdXLF9wEcqvzF++0CJUXV+Is9W6fMEkrH9fI+v/Wt0YqzVq0OjUxaEmj3lVE5QANDoBrVHdGLvmsTrWv0ddHABAa9RiyNcvXzAJ1goDttpL4HgB+W22BIEoR+hsOgx2dc/UsbOGzo+oi3lhAEErImZaA8wAb09AFUEJwOjSI2hFfJPp+7y0t2cT2PKxFqqW820W+Ud1txZhq8nN6DE/Jr/diqnEkPL3bHNV+f6g/c2VGPLT+P5Z/LZNH6hj3f+oyXxTSuwpGaWr7RjytJidhuwEJVFMIRwd+eYgp385nJ2gBBCNxjkjBof8pzhBCWTfK8szNb7JTu1VDoo7ltpdWpAVSNNdu/tPfk694E9LUIpBCIRTCEqrb4ISpavQTQXSEpRAJifFCErPn/gXhoaGaG5uft0JSvA6p3uLIRQKyS9bijL2pz9QdPWNWPtlQ0Uy9F9CVKLYLqHTgNnsw+dLkB3SqSjFMD6iQasRqV4LF/anGcRjwc4k52Fgtx97qZ6Tv5tJezyOWINUlEZaHyjBXm2m7+UJBl/2JBpVFudhdL/cgs0F4Iv56cs4Gz3PjNDzxxHVKkqh+XBmYkQG2GtNGOx6am+t4MR3cl8QWLWzBikqqSJvNNxaqXpRKTi1gBSVsFZZ8U1kV3yIYa7bt6Kd6PV3l5LfZFO160gVIzcJgekgYydmVNVRqwAE0HZfFQ4lxchwLrsoXwOa75YnsGoY0Wd+NIC6cKYM/3iQ8dPq7LcSVaj2t9VgtOvYnytLXhksdv2Dyl2GKJMUIcOAkmHRpqqzEI1B4NwzU5lPvKhu010u8uutaI0azv3ak/2mNJoYdwdLoR6TU8eFPyUFDcTMDrOg1RAOCkhRifGuNP1rlh1Y+743rxD/0g/8klYj98uxPtoM+MAzqCgrZYjVxlSUxIUIUb2GtVvl+durzyvHs0024ofM9E3PsxBZdG9Z/JsacZ5AEC5gSdut6+ZBd1aDvzj1/ZcgoY+CwS8QyDCPNA/LF15QeGcjP/gaAKWlpbS0qAvgX8ZfLsrLy2lpaaGrq4v9577GzWtlkrg4ofSTmUiIRgm9VUN+rYm+l1MXLCS/nP5ocZDDNyATn1wtcqOc6spNWiWWhnZZxJxu5bqdn3QjSRK7/j63MdA/FYUpv2rll12fOaVaJWb0qIfa60oJL6gjRBWvciJq1S0gtO6oxNVkQ4pI9P42xyCHCYo7nLhq85g4mmZ3XgZIEQkprE5oVe3iZAwb3t/I3EiArh/151wn17aQjNGjHhzVuZPxQCbJrURByf1ALVI09za7UlRfVUTFlkKsFSbO/yz3XVu7/1H9fQ0fmCK/Rd3ii38ksKJdcps+3Mzo0Wku/G4s5zpnfzLIWdQFeUyFBpCQU+DlXAnym/OwlZvYd1ZRoko3r1sUeKi9thgEePXvc5xjCCK11xVgLjRgKjLhn8r9HsP+SFzSOld0PztKz4tjqvpAkwv8UzB+eC633W1Riaob8inf6GTshJfzz8i73pfdwQYc/9k47tvyGTu26AazXLdii5H+XX6m0ig5AwihMLrBKaLOBIkzLx90enAVhRk+HAJX+mC3dkLuT6M2M2cHXyCWz+Dw4cPLPstlvHEwORlLoyRxdnIXjflbkbzKPEmTuW3mN1jQW7VYK4zMDSQCgtkWfqfPyOUqrsln4MXc/KnxI7MUts1z8qfLKNkt8rtqby+mdF0+/S+P0f/H3BR6JhUfw+gQ46nRlsPo/mlGj0+rU20Cgp5QtvW3tDCVmLCWmqi5pkgVCXbtO+tAQhV5o+H2Sgx2HWd/PZTzs81PBCAqYSky4BvIrVLAA7v+Tv0YW3ldASVrXKr8ttM/GQSVYyzA7ICPya7cYngx7Ps39f5k3U0llK7Nx2DXqVKVWgla769B0IiqbH/h92Nc+H3uPk0Ms30+pnvV7ZQ/8h/qVY2a7i3HWmpSrV6lVq0JQApLSBp1H3Dt9SUYHDp6/jguf1M5+F1V1xVQsSUfo13L6Z/k7iM766zYq6Jc+EPuyjzhhSiRUDSe1i31tuT+NZ3q3d5Pn1NHrFPK+gaX6SMW2WL1W2oRRIHd/6Lu/fa9kuPcXYFDWaz2DEn4091iNCLnFLGmzsdc1XqMeSJSNICgST9XkxQlHMEsX2PP6HeRJInKysrLMa//RjAYDGzbto2f/exnHLjwHW7u+BQA4ozST2ba5BqVMLu0aPQCfbsXzSXSqCgBBJWhxFJmRGOQCQW5oO+lyQSxJIc1wxg2f7gRQRDY/S9ncqob9ELQq9y7gVTllzQxvBj2/vtp1SoxnjPzhAMRwvOZhRrSoWxzAXqVG+2rbymiYnMhWouGC7/Nfdys6CyUlRFP5b7uI0WkRNrxHHF4BWMsyKrt/qkFVaSUPSsYY0cOTuFqVBez8V4Isuvv1fuT7Y/IPvLuf7q4Ma/8Dhst91QyemhKlVLR/hX4k6NHPERVxnYJrmy9dv1fNzJ6dDp3v1UQ6H9hgv4X1Pm5phIzUkRiwZOB2JQhnlKy1omzzsqBL2Zu84vJR/U3lyBqBXb/cw7foXLdiqsLyaswYS01EpycW3I8E4LeMOFghrlzBlLU8N4ZOb1wtj5QTL2uwSb3t9Nng9lVQJV6kiRR1GGm7oZ8Ro/N0fu8J8vFUu/37AuzNAKjx3LvpEs79AwfDeLN8GkI4QiaCS9Ra4JnY8gDk0UkvzTC6IkFJF16wRHNjOx7Rc1GRjynCEfl+9q3b1/O96cGF4WkBHDbbbfx7LPP4vnjsxRdfWP875pAZqLSq12gB4KiOjWWNbeKGCwafDMhxjPtlNRoUohIJ56eQQouxBe3s0IUIRql+7kROh6qwXNW3UR704ca0Jo0vPqZ07kTj3yyypEpX8Pksdx2Oh38gnpJ5OFXpvGNBVWl2gIYPTqN94K6CfO5X+e+ABVD33Pj9D23MulWe6NZ1XPZys1ojRpMBeBXG9vIpR0l4eAXVKTYeA248MoEgijgOXdxCUoAI4enVKsorBSHvrwC+6l8RwCWImPuxDplsDJXmfFN+DJfS4ouGWwFUWDfZ9U/097/7KZ6a5Yt9mnITWf+MEWrTuTsr6YQsgTQF9fd880RzEkCTMsRlAB6X/LR+1IaQ2QhKJWu1TB8DNl+i5qTlGHSuf4WLVqdyO6n1TmT05OJx8hKUIrDj8ELJ1m0aJXNTwlJrC6KIAhwIepjseyaLkv3/ot5G2ZidZZOnmIEpRjyf/djRFHEbDZz6tTFnShcxp8fTp06FV/s3XXqq2xtfTRxMBROT1Tyw55vjMgL05kc7gxBjuZt5URDEnu6cuu7Bl5QAp1SVCYQLbcYrlzXO+gjOJv7ThEAk0tk7XtbWPCGcieZKvdTutXF8K4sxM9FdVZC+Dj2g17mL6hjRJ36eT8td1XmTlAC8EPfy+MM/FGdH6UmZVsKTGBymfAP5v5s+jwdeSuR/s2lDSWh7w9jXCpR85FD00RC6oJ4K8HYUS+WQiND+zwX/VoDf5pg4E8qnWOV7wjAUm1Ca9JgLVG3w9NWZ8Lbre5io3tnGN2rjvCOH07/rI9QNn8yTUDlzDODqp/p+Lf6sdWa8Paoe659n1PnT+a3mfGN+gnk2O2BTFBa824l3ciXM7CA0mD8xDRFrTbOP587QQkTSN4wJ3+yaLEsS+CquMNAWYcFe5mB479LI5cdSh/Qmp2EPT/zZ223MYJSDFHTBTQaDW9961szV7qMNyw+/vGP8w//8A+cn91NY/7WxIFINCNR6cSPRuXFZpXknPa3VJJXbiI0H4pvhFsOJ78/IPtduVxP8bt6nhvFVW9j/IS6WM+a99RjLjRw8N9P5p6+LSATm0wlppzVfY59q1fVfQFMd81z7NvdzF5QZ/TBXePMjajrg8/8vB+tSaPq/U4enWXX0ZXN3fKqjaqeK6/MjM6qxVxhzJkQFYfKdnvsG73qzr9CDO3zoDdpmTh1EVJfLMLgngk0OnXKBivFStr6SvqWvAozhjx1ilzGEiMBT0DdtQSBg2pSDSs48IVzlF1ZkPlaafyBvj9OYHTqOPNs7guaALv+4TTmcnXKEEOvTDH0ylInKptyQMkmu9yPq7Df2rfVYHTqOfQldSkyx0951b1fI0iBCEN7ct/gAtB4az6iTmDPl9PMO6OZ50VHvjeZaLdpblNalKrLW7wfsV/EZDJx4sQJVfd4GX/5ePrpp9FoNESjUXaf/QZbGt+eOBiOZCQq7f32uLwwrTLu0PFgCZFQlH1f7M+qUBTD2BHlu4lKS8lDWTB1bpaoyk1iGKDzb1rxTy8sTeO+iIAeh3I/havtjB/JfR6899Pq40PHvnMhQaTKERd+O4ZOr+HCC+qIvd2/G2bkiLp1rxWnlTWAwWZIr2KVAeYiIzrzCpbgVbQhgJH9nouesi2GgV3jqkleK8HcBS9jR6cZ3K8iWLFCjB3wMHbAo66SyncEMvHFYNdhrzCzzFYSGcr3bC03MDeo7mKeM/MrIrwd/34vZFliS+fjnP7ZAHnlOXA6kvy288+MM3LIw3zyc+WwAe7I1zNEdzP08bZqAwtzCwQzNSMxzTUNsPbRGvyTIY58O/cMAN4+P/7JkLo4rQHwRzj729x9L3ulROUGE45KHSefTxPzCqf3vYKzsOdpf9Z2GyMoxTCnO4Qoirz1rW/FYFApa5YjBElSuw9Jxcljg6KoYd3b/nnJ8WSyknUoYbgSu4/qIth9XmbRm0Yze+7aaR96M9RtgK4/xU6c+IqE+TRBBYWs1HGfDZNLx7EfDeMbTz0GGXazKapKUiTNl6ownBfvkqi6Pp9Ct50DX+hOKZcWSa+j80m3vBP773IPWDhbzTTeXrmyBaYVkDguCcxQd30J3b8aybnK+vc1YLDrefXTJy/6M3U+6SYciKjaSdR4bzkml56jX11GpjcJ8WdagUqUWnQ+6WZhNrQi9SE12PREM1qjRtUzlV+VT/FqBwe/fj7nd2suM7LmnXX4x4MrIzgth6RFli0fa0HUCrz6t8t8t8qgK4gCxRvyWJiLMN216IGypG/Lmtptmbpy/dwJSil9QxZyEiQISu67bEQWJE7/ZjbRry2Tv77magPFDSY8gwucfk4ZLRXbpiUoKU5E1XotrlI49NtFxxXlpJiCUjKiitx6OnJSKHnykHT46jV+NCL85pwImNOSkwLORAUxJD93ieij3BrlgNeKv1CulI6cFFNSapv0U6sL8/tQYgdEoCAxNiwmJwF4ZroZ+c6XMRqNfP7zn+ftb3/7kjKX8cbH008/zb333gvAhpZHKZhPsxsxiawkeRMOcPsD+Qzu9zLdI/s+UrotkMq3LIXCNNxVxPDhWeb7lvpZ6aSvY+j8RDOh+TD71IwvK3BV1763nvFjM6qIFW1vqcZRY+XCC6Oq6rl3ViFFJE79UCUZewUkjkuF/HYrgiioUmDqfNJNOBhh7z+vkOSUI9Y+Xo+pwMCr/3oyZ/uZXND8QD3D+ydVqSN1PukmNBdesVJUrtj4wSZ0Vu0l8/HmRwOqdtuvemcts8N+ep7N3RdfiY+3EpjKTax9Ry3zwwGOfDXHZxIEam4pVkf6g8wBk9jcbiV5hdNhhX3DxvfXc/oXQ6qITZ0fbwYBdv2jijZugrVvrWFw/zRjB1QsYilBo7TkpDR+q7lCx6oHyvAO+Dn1tBJRSmNjwZCQco+FNlrusNH1nFe2Y548FqYjJ8WUlDquitB/ZIGZpPhTJElJaTE5CeC35z+DRAS32315oey/MQwGAwsLC4houcmVxv9OmnMl+1a2aiOVnXZO/EDuh7Km0IlEwAjNt5emVQVJp9IRQ+uOcpz1Vg5/syd3UsoK/K7CNXbKNudz5Fvdqhbet37SDVGJXSp2IedVG2m6q5ID/76CWMUKSByXClXXF9L3fO7E8o631pBXZebgf3YTGLm4D9X5KTchX1iV0lH1TUVYS02c+HbuZNaOd9SQV26+ZP5QcCbEgc9f3JjX+r9uxGDXqVKXLFxjp3SDizM/7smdkGKUU+zNj/g58p+5xxlXgo0fbkJnUuG3CgIut5XoQgTPORUOzqXyu2BFfUPzfaUAKf1yuoW75D66rNNJ7fXFTJ2fpetHuS96lW5xUNRm58jXMklEqrRFhoW89e+pRmfVsuczvRmrCmnieqYSkZJ2Gz1/8EBsASsNOUlQlJTsBQuUrc/j5NMJooSQl4hdLCYnAcyJAfZMfAe9Xs+nP/1p3vOe92S8x8t44+LkyZO0tbUBsKX2nTgiaVLbJ8WPpblEnL3pNhtjpwJ4LigLuhmUlECOeVVe5cDT42d2QCmX5B9li3lt/lAdofkIB7/Um3TCaNJ/VfpZGdYRO95WzeRpL0O7shB0Fvl0dbeXULo+nwsvjqpSH6y7vQSNXqM6RdVKSByXCrZaIxqjlmkVJOfOT7pZ8IdXpNSjBu6HqnA0WDnwuS6C3hw3ZBug/YEqRo/OqCKhbf1EK0FvaEXiF2qw+tFaLCWmFaltq0Xnp9zMDvpUEeabH6jAPxFU5Yuve28DRqf+4j2TEjcx2GD9+1qZHfBx7Ju5+9XlV+YzuG9y6Tf4GvwnNWlq01RO/D/WN6j06dY8WkX370bx9iU91DL3tOn9tWh0Irs/nSZemI6gpKDtoVLGu2YZO5xhM02aulk34iXHvMTEu12zswRPf5DTz2beiJQc84orIF9pomefTDiSTLLvlY6cFFNSatkiMXx6IUV5KZqXIJYtJicBPN/7JRYi8zQ3N9PVpT5zUK54HT36pZifVx4sGqFv18+XHNcoE4BkghJAcyVYTSgKEstjwZcgKFkKySqvLV9YbhBjp3xEQlKqQIVyLFuQaO27KtnykTQ5PjN8TH3PTyYISiow3T1H9+9zn7QAFK12oTVpqLpZXa7YzifdbHqvutzg69/XwOaPqZNWXfWuWjo/pS6/5/pHGyhZ68JclvuOloHd48yPXZrok38qyMQpdTux85ttWEvV7aie6fMR9qvbmW+uMrPxQ00Ub7IvX/g1Yt1fNdC6s0pVnblhPwsqFTJK1joxOg3qyGcLCwQ9C4wcvgjM60WDz9hxD94cVSRiA3vt9SW03LMoV/MyJKO176pg8weX5ojPVrfhVieb31eBtSbLuRfVtVTA5reV4L7XmTNBCcBaqMVWpmKngFZD76th5qdDCYKSgkwKSjFcOJqGoBSvu7RfbtsMV9wQwWxO/z3pfEr/v6iqdx6CC5CJoJQMMSRhxocZHyNRMwe8iYWubOpJAG2GMHZt6hhonFCUutIQlAAGvvEFwuEwTqfzMkHpvzHuueceKirkvmR/11fTF1IWaZMJSqZisBToqLnSkf0CSf3duV+MMd/nx1QsJlKr5YCFuRDeAXXsYUu1ic5Pumm8rzznOoe+eF618suJpy7gHfSprueoseKoS58WKBM63llL54fdmFy5u+KuVjOdn3RTdaM6H2/rJ1pZ/e46VXWa76mi/tbc7Q0wc2GekYOXQrlxGv+E2kiXiKXISMm6LOqDabDgVd9e3TurWP2YOnuvBMWbHWx4f6OqNoQJQnNhPCrTh1jLTBS2qfMlJ056mR++BL6438/8cICB3TnuuBQEHE0myjfls/qxWlWX6vxEM+5HKjOcN/172PxEE2seq1F1nU3/o5HOT6ibl9XdVozOqsXVmHtfJIgC3c+PpE1RkhV+OPSVPlUEpS1P1LPqbRWZC6QJ9EvBEOFglOFDs7EbznoNSZIwy+uFdP3Km0L0yqSeBGDKA4tDQ/2m1F1hmin5O0lHUDo++nsk5Hvev39/1vu6jDc2ZmbkOECUMCfmXl5aQNnctpj8XX9jPnmlRoz5OV4okFgIV6P0MbxvgpAvTHRB3YJYx9tr2KIi1jN+eIYjX1FHUAIYOzbNuV+ri3k56/MwOHTU3Fysqt7WT7rZ+HiTqjqrHq1l0xPq+uOWHZUy+UrNdd5ZQ+WVRdjrVcS89owz2+eDwMUfa2f7fYwfVxfzKupwYFeZatfTM0dwJqQqDZbRIbLuvQ0Urrv4Ma+Od9TQ8kCWsSwNvP3zBKYXVNUpWeskr8yM2pD9/IifkUMeVXVWguF9U0yfy9EHUOaPDbeW4d5Ro+o6HW+rYstHMnyzGXyCiqvy2frRZhwNuTciowM6/6aZtjdn8PEywFmfl1NqnVjcTxAFhnd78FyYp+vn6vq94d0eVQSlutsK2fJEQ+bxIgNJYqbfL3+DucIo288/EpUJSvHzZ49dV1/pIK9Yj7Eg8bcYMSkdQQnglZFvEA6HKSgouExQ+m8Mt9vN1VdfDcDunq+lL6Qs0iYTlPQmcFYaqN6c+1yp/yUPswNBDDbkBfVcVGAB/8QCM/2LYgjKd5qJoGQo0LHliSYa7ypZejBDf3fsmxeyE5RgyT13PzPC1JlZ1elRi9od5DelIYRlQeM95XQ+4cZUmrvyhqnUwOaPNFN1faGqa21+opmOt9eoqtP+cB2Nt6mLeY2fmmF4r7p0mCvB6FEPs33zZJWzWYwg2GqslKxzqrqWbyzATG9uiqYx1N1eQvtbMqxJvY5wtlpZ81gdhkJ16i3+qSCeHnXPlN9oo2i1OtuNHplmRmVsLWckfbvBoKy4NrA797ZnKDBQfW0RHQ8vek/LxFS2fKSJ5vvL0t9SBjLQur+qo+Mty/hQi6679q3VbHmiIad7iqF0kwNTvh5nk4qYlyBw7jcjjKQj7mUhKAGc+OGIKoLSxsfLcd+fpe+KxbwW2TE4F2H8dI5xZ0nCoMQPel5OVUTKpJ4EMn/cUaKhbkOqXyjOytdNR1Dq8xxhISL/fe/evbnd3wpx0dK9AZjNZrZv386Pf/xjJk79iYLVN2E2p8p+aQIgLkhE9YmXs+s4WMzgj5oQ0qS4iUE7nfry1t+pQWsQOfZcCN+0iDCb5eVqNIwc8TNyKE2ZWGq4dDvIRJFIOJou844MQUQQo2mdji0fbSI0F+JAjqm+Tn1PfWKK0z8ckNNN9albUFmYDTGrUspaFEXEHB20GCKBCJIkqUqp1v37IQpanfiGcg++rCiFA7D1k60gwa6/z30n36Evqlfm2f25U6oVns79TN0kFsBeZkBn0eJqtK/IHmpgdOrRWdV1KSe/q76NH/j8OUwFy5dLhm8iyoF/V8cIr7ujhJK1LgZezZJyME37V6P4FcP53wzhqEty9pcZnAWNhmgkCtE05J0s5CZ9ng5BFJjvz9CBabVp+73wQpSRLJL/QhoS0d6vTWGOxY2zKSgtqnv8l6nfeTaCkjlPoONWHSPdUXqPLDqoEdISlEA2ryTBfIbYiyQIaeOBh88qTIws8U/zWCSupnRtUQStAH8Y9eHDjNYPeX0Sgfz0/aZhUv77z9FSDfiSUsOZxiXEUPp6ll0/AsBoNNLXd6kSGl3Gnyv6+/vjzP3n+7/K9ZWPLi0UCst+jtJf+Efh7O+mmTq3PPFDSlroNblgzdvlXWL7/13esZttRxnA/s+p350z3yf3C5oM33Qm1N1eSskaJ6/+W46KO3449jX1O48PfbNHVYozgJFDkxjtJaDXk+uK3lSvDwQwOfXLF06CFEW1fPjosWmmT6vzG9TslI+h9rYSSte76H1hlKGXcptwD++ayj0lnwL/VJSDXziBXyVXOed0gUmwVZgRc0oh+tpQ0GxHb9OhcxjwT+XY/vysSBXq1f97UhUZEaD7GXUpNkAm1ElRdWkU/VOoUlAC8JzxM3p8muGDnpyvY6qwIEUlFubSkF2y+G2CiOp0yN4BHyaXuu+8+9lRho94432RIAoZg+DJwaXRfV5GyZ2ktO7xWjQmDfs+o2IDjkn2u8LBaG4p3hT4x2H/F2WFOkGf2R5SIAAGA+ZS6LizgKA3yuEfKh97JAIerxxcSANhzk9gDrpeJEVFST7mQ5vGhn6/n0jeGNqAlsceewyTSeXHcRlvKBiNRv73//7f/M//+T8ZWDhFfWADRuOiReFIVP4Iktr/oa8NYqs2Elhu6FvkV615Vw2mAj1Hvt2HbzCw7G58zzk/+/5N5VgmCIT8EXljq0p1kY0faiLki3A4R/Xi879QP1b0PT/O2MlZ1epBvokAfhXpOUDuv9XuGF6YDyFFonJKrBzv8dxvRyhZ62DmfO7PNN01n3OavGRs/kgLggi7/zH33bArST227/+dUU1a6//jBP1/VLdwqrPrMbr05DfZGD94cWNe1lIzkQV1GwfPriCOd+wbvRgdqErrRQDVCkolW1zU3VTC4O4JLvw+9/Q6OS9uJ/V5Z37ej7NpeUJPoq5INCKl7+Oy+F0mlw5E8KhJZ6jXseANMXJI3WaL3f98BmOJUbml7P1E8vGT38spwYsMI2x5XxMjh6bp/X2auGQGW2j0IkjgG1T3EZ57Rm4H2ZTbpXA4rqa05uFSDHkajnxrgIBHiQX4fAjG9AvKkk++nyPfD+Co1RJIbkrBYMalFm/tYYRxAaPRyIUL6uecl/HGwosvvhhP+/biwNe4puKdSwuFI3IgRPlGFvxw6tfTePuyKFcqSI55YYC176wmOBvm0FcHQRCyq18CR7+ZQWE7y5phcCIkK8JmmjcKYlpFpbJOF1VXFXHoS6cJejN8QUpK3xhO/VB93PjQ13tUpTgDGD08SV65unmSfziIoBEx2NSlIY1EJKIhFYQe5JRlM33q/KizP1WpJAWUbHJSd3MpF14YZfDl3GJekye8TJ5QuZEIOPC5kwRVVjuiIstLDM7GPPQrSWGn9jp1VsxFRqxF6lLsHfp/6tdqX/27kzIZUQUGX57M+Z3GsPFvmhFFsqdhWxwzCULXD1X4DkBwIsjAKxN4upMaxDLrjQYbSBEprUhGNj9HFAVEbRY/KM11p7rnsFeYVak6De/1MNXjT7SFLPeUHHeaPhNg+swifyibgtKOUgwOLQe/ksHmGepKUTnmlRGisJSg5IXD3xmXyeNZ1k+l4AKCXofBBqvvcuD3RDn2tPJuIxGEOR9k8L2EQJCFABz7PfgWLe8K/iCadGNSMMisqQuNRsPjjz+OzabCh18BLmq6txh0Oh1hZQDfvONfCZlTX4ZlJDG4J5OVzGYf7UVwdK/iHC9qd4tJSkUNUNYocvjXcmNIISmleUxJ2XG06qECjHYNe/+fTC6QFhbtcllUN2UBLt2EKYOE49aPNRGaD7P/8zks0CnXrL+7lOJVTk79uJfpUypYLWawlpiZ6/5zzN92adD0YAW2UpOqlGXr39dAdEFSlRKsaJ2NyiuLOJDLe30NMBVAzc2V9O+evOjv9VKle2u8t5y5UR/Dr1xc5YXWnVWIIpz4Tu6OeOkWJ1XXFnPs273pCXJpFlkatpXirLWy7ytnM5PQkgbftAN88uC86HjWFG/LpXdLHugWT2xSjkmZj6Xp79IRlJz1MH1+mXtaVG/jwxaiUTjwQ2X3VPLxxbZWjpU0Q3WHjp4jUUZja2VJEzpJt/T6UpJNo6bUwV9adJ2wRa6/rsmP3Qp7usDnMxG0Lz1vLLUbJFK+NZl9VJgi/GkgdbfJYpKSwaPINJp9uPKivJwkV2waT5w36Fg8dkbpOfALJrtfwWaz8Ytf/IIrr7xyyb1dxn8/HDt2jFWrVgFQb9pIQ96GVGlQQJpL8kyTvtWm2x2MHZ1h+oxCelj0XUgLqey+NY9WMbh/knFld8FyJCWkqJye6a01TJ7xcvrHOU7yV+CuVlxdQNXVRZz5Rb+qtGWbP9qCJEmq05a5Ws1MqfHV3mgwwYbHGhk7MUPfH3Jb6LDVmWjZXkX3b4ZUvSP3I9Us+EKc+6n6hR81KN3qwuQyrIhwowaXKt2brc5E6fp8Tv9q4OKmGjTB2nfU0/fiKJPHc99ZtuY9sgLV4S/nToDZ8P5GprvnOP/LLO9I5aaK1LoXn3D2WmGrNeEd8YN/qW+ZPBdNPla4xkrDrWUM7Jqk/4XcA2vr/6oWjUHL3n9TEfhLuu6yJCVlPNrygWpmRwPxVFhpSUrJ/qySWmT1g0769niYPp+6eCAsIilJATmw1XaPne7dYfxJzVRI2nWNOTWwLs3O8/uJrxCNRlm1ahVHjixmyV/Gf1c4HI64qtLNtrcvSYcjJacUSfoOjA6ovbGIk99X/KHF88NFfpWjwUj1NcVxRY1lU4Yo30nbW6qwlZnZlSsxZYVhwk1PNBP2RTj4xdxjIxXXFFB1VRFdP+1j6qSK3chGyCs2MnvhzzR/2yVA7ZuKcdbnqbL3qnfWAHD0a70513G2WKi6plh1Oj/VMELjm8oYOTR10d/rpUr3VnNzMf6pBUb3X9yYV92dJejNOrp+lHv6aZfbSv2tZXT9uC9ne1deV0Ch28HBr53L3Bbe4H4XyH2x51xAFYlx4wfkjAz7Ppu7D+VqNdN0VwW9z48ysi8NCe+12ku5/4bbiyhoyePw9/oJjCxkjz2SiC+6WoyUrbNx7DupfvgSkpJC+nDUGinosHLut0nzvuTx0ZBaTwoE6At0cTayF4vFwve//31uv/12NU94GW9QjI+PU1QkK0zXmzfRaN8IulRii+RPllVNfCvVV1mY6Z3Hcy79Qre0SIHVfX8xo8e9TJ6Sz7ccSYmoJKfwebSeqXNznP2FkmJ8USz+9Uj7lt+WR+Od5Zx9ZojJYxnYKWl8uvV/3cj/n733jo7sqtK+fxVvZVWVVFIp59jqbuUOzmAbBwy2wQnnbONsbEzyu75v3m8GZgYYGIZhYIjGDCYYGwwm2MbYhs45d6uDWjlnVZBUVd8ft7KqSuc2tMfvO3rW8gL1PTfUvuees8/ez3m2SqdSXLbMVm5g+tT/XL8LCZpur2D06LQwYVfKkWi8pYSu14YUEY+qrsonGAhx8lXlm+GVIHu1DbNLUlTm7EzwbpV7M+ZL5Dc76PvzoGLCllKsvquMnj+PMHlMnOzWcFMJGoM6fSm6FD7U2rvLmOyZ4/Qf/op3dIb+wt+svNtfCaNbwjvhl5WDBMlJ1mKJVdcX0rN5nL5Nk0sbpyEbrb45H8muY8e/p/Gpl1FgWhLzSn7esI/Vdk8es0N+jvwyvEbIJPIAqPTyHFd/hYWBg3NMnkyai5J9L7kcDNWXWDh9IJDwPai88b5XUqzN4+X3A98gRJDGxkb279+f8bn+FnhXvP+FhVhCa+fL/y86T/pJWB0nQ91WDlYbmGzhwMwyc/fwcaIEJX3yZsnkJFucJHJwMTzJp95gmXaB1XRPMU33JZW3SlMnFmDz54+IEZTi7jl6aIpQMIQhSxmVc+MnGlh9ozLZverrCul4SpmUNSaovVGZ3DEmWHWrsrJgNTcUySpHCmAvNqO3KmNe7/zX44oISiCX2JOy9LiaxGUv889xsPHZBkreLy5faa9y4KyyUXa+sjIv72W4VmVRen4KKdMM2PDpetofVybTbi8zk1WmrBTPwJYJtn7hiDBBCcBeakZn1ipSyWp5sJz2J8LlIzPtxI8LEpRd7CCvOd2AleJcrZbC9WZcjSl2MCRPgHG/rfJSG623OmNjYzJpKgVBqfQcI9UXOam5XJm9A4shufwmy5R3izs2eBS2/nwhRlBKgmohMahvdMD6i0Nk5aQgrWYIpEU2nXjC71WaSrxuPEFJhgfwcMxjWkJQSkaEoARQ6wzg1odQhTtQPEEpGebBIB7PKMOdbxMIBDj33HNXCEoriGL16tVcfvnlAJzwbsfr9RLyZygzEE6A6S3gKDVQeUnc3LRMkmrPt7tlgpLIBqmwjxRR+tDolbmh9hoj656pEy5v1fv2KJv+v0OKyC8gqz4Gvcp2YTXcUkrdR8soOE+0bgtglMkpZR9QVq4kr81O/gZlZcvy1tkpukiZZHbH07XKypZ5QW/TkV0t7g9Nn/Sy7Z+OKn5H9jIzOTXKynq0P1HDumeUlSkuvSBPsVz2exllF7nJqc/CpqDkcPkVbjZ+toHsRvF5vaAtG6NTIqferuj59vzHSUUEJZD7nEOhj7fh03VUXCngf8b5ZQ03FSlWk6r9aGqZ7Exof7ySiiuUjQmrbihm4xO1igJIOpOWUCCkuGT1zn87xbYviSd0m+4rofEWZTL6kl0u3Ra/g2/pJqLEMTqy9t/7k4klBKVkRAhKWSVgcemofV9snZ1AUEo+b2aON4efIxiU771CUFpBPCYnJ6P//63pn2ZOYMX5VrVXF5BVYiSrPKy+tKwyki9KUDLYl3mouO9kcU5WtF72nCQ03KKshOm2fz6qiDADMHp4luBiEL1NmYLchk80sOqmMkXnlF2aR9tj1YrOAai+WuF4bkBxWbCyS/MUldgDcJRbMShU2Nz3nS5FBCWAnPosuWxuk7j/6agzs+EzDZReIh6/suYZyF3joPQCZTGi9zIKOrIpe5+yeb3jqVpaH1HWT10NdhxVykrxjB+aZfuXjikihDmrrBicekVktdV3ltH+hMDvifO7Cs5x4mpRtms7ry0L11plNii5KIfWhysUlRh0r7PTcEMp9dcrGxcWvQEW/cqUuMYPe9jyj8dSE5RgiT9ksEP74+WxOUUQGr2aUDCEb1D2t5bdeARggPEjviUEpSWII3xUXOwgu9wQy9n40ytjhHw+fD4fR+Y3EwgEOO+881YISiuIwuVy8clPfhKAE55t+P1+WMhQqjDyrUjgbjBRfmHcfLaM73XoZ0MyQUlieaWV8LX804SVkdI3TbV2sxRKtD1eubS8VZp849jBGbZ84Uh6glIaLHgWCXiUjUcVV7hpvKWCgnMUxKIkaH6gUnH5NnuNmdxWu6JzHPUWZc8GtDxcpaxsmR9MuQZFMS//qJ+dX+lUrIyU02jH1ags5tV0TwVtTyrLmZVf7KZog7L3815G0YYc8tuyMRWKx4jcbXbWf7qe7FXifoe9xoy10ISr0a7o+Q79uFsRQQnAnGfEWanMv1n3VA2ll4bfqyBZqOqqPMVqUqWXuFKfk+GeTfeWUHKRgtg50HhDIesfrcpIUEqGzqIhsBBk7ISyHZr7fzTAjq9nELoIJo7H9de6qL8mzTeU7nklIAiB+JLsyxBgdWE7H351dilBKRnhHJDkAEeJntpz42Je3gyqZB4vW0ZeJBQuNfluEJTgLJd7i8cbb7zB+9//fhZ9M/QefIOiVe8HQD+9dEKMEJXePgjlEnim42b0yHvL0B+bLlcjmTUceAU88aTWyIeelHA78LNI7QcVaZlQ4XPjg02GrDABJtLZUqmMhI9F2dEm6Hiwhs5Xe5dXRlKpmDruZfPfi5c8iGC618N0n7Ld/FmFJrRGjUxIEDy15a4qDA6ZoDOyRyzBtObmcqz5JoouyqFXUMpZo1WjUqvIqjYx1Sn2cNu+qEwBIYL6jxUzeXKWgS1iO50O/KRL/j8KzO0b90MI1AoStANbJtCZtYzsVcaa3fhsAzN9HvZ/t0vReUqx8dkGvCN+RSSvE7/vY9G7vNRqPEIQTQ6IYvPfH8ZUoGyR3nhnGQM7RhjbH8eGXmZHWMYyRikm51AwhEZSo9GpU0/ewRCoVUt2MbnXZIEKhnZ3ZVQrit/BW9hiRaVWMXLAG5OJzViGTUtWoQGtUb2kb6ciJ0XQv9uLvVjPsT+ncQDSnLvrpx6ZnJTqeKQ8Qtyx5is1jPYG6InkhzKUUomoJ5VWhlBrQB8Zur2LBEzLExl3Hk2dlVxKTpJxhSuAVg2vdnlIx36NJydF8LteDcU5KgwjRlLNRdJkCK0v9u8Lx16W/12S+NWvfpX5R6zgfxxeffVVDAYDfr+ft2e+zweMD8aISgspCEuBAPNTcOrPUwxtTZr/In5TujHQCBseq2JhdpHtXxWbAzYpKKsaub/kkNDo1RSck5dZNSUJpZfm4qy2CpdnPZMSX4dePE3zXZX071Ag9esFnUWLo8pC1++HhE+rvLyA4EJIUcmzyksKCAVD9L4p7kNodGp0xsy7aJNxJkpA2Y0W8pqyOfS8uHT/7m+fxKuwzEsoGCIUULZbsfPXPYp3DjU9UIkpW5Llos8i1t5TgdltULQTrfOlU2SvdTF9UnyRHtkF5OkXd3T73xlj4uAYXgWxgPwNTiwFRjpfVCahnrHPpRizshvNqNSq5RV94vyysktdOCot1H+4kMMviD1f/gY7OXU29Hdp2f9dMSVPoxN0Zi22ImVsqP6d45hy0keTUvXh/k2T9KfaTZYGriYLJee62PmdU2IqXOF7GrJ0BOPig6FQaFnb+ydh61fT2CxFgN5UqGL1tTnMjS7EretTnOpLDMZMdcOpzTMMd2nTk5M8XkKBMMG24ATa2RDqoIG33347429Ywf9MHD58mPr6evzM0V1w0C0AAQAASURBVOndTbWxWT6QKtkb9m32fr+fnFUSU/G70iOxowzzT+NtxVgLjez5/mmhcj5HlYytcfEyS74RtcKSlRig5e4qut4cFFJG8g37FJUei2Cic5q5EWW+QFapCb1Vh8GuxjcpFlNYdVsp9jILk91zwuXE6j5URHZdFiXv8wvvTJfLg6px1JmFy7jt+saZqXlXfiif2X6fsLpP52/76fxtvyJiinfQCyEBBb04zJz2ceqPg4wfUFY6Y8NnG5jp8XDguS5F5ynFhk83MDfiZZ+C0ihHftGtWC0jFAgRUliqees/HsGQqyzmVXdDMUN7xxWVDcxYUi7Nu9YZNctvTkmKh5We60KlhpFd4kndsoty0ejUjOwVjwU7qixyWSEFfXtw7yTuNXaO/FqZ0urub3Ypar/27lLGjs/S+5b495C/zoXWoEFnU5buOfqSMqWOpjvdSFYtW75xGtLxHBaWxnp3/ecAOc1ZzE+kSZD5/cQX/Bit2guHwGKx8Otf/1rRM67g/3784z/+I88//zz9/f28NfldLs17MEpUSkkWDwXBB52vTzN+KGlsEfC91j1QyvzMIru+JRa32CZQHjs5b6gxqNCbtBS2ZXHyt+JlON0dDnIbs9iXnPtJs+lw33eUl/g6+cYgZreBsf3icSj8YMyWcFZZFSn11H+0lOBigOGdk8Ln1F5dDCHo/4v482kNGsUxojNRArKVG8hrzlZULm73f57EP6qsxF4gGESrLGXGsZe70RiUzRkNN5VgKzOz5fPKc9ZKUPORQpw1NkX36X69j5nuOSYOi6uzqiU1BEP4p8TtPXlsjk3/pKwvZK+ykVVqWqqOtYyvrCh+jkx2VGnVaHRaYYJSbksWeWsdaAwajv6sXygOmlVhoLDdiSVX4mB8KdtM95TAaNdjLw3Rjbh/07Mpc/nIVOuN8cMexg93pb9oMJigimQtkqi4OIe9P+6TFZsEYc5NqlwRCqHSLGN3b4gd3xb3vSQbNN1kZ2Z4gcO/yuAbJ21Q909A559mGB/Upicn+eej8QpPVh+LM7NICxKvv/668PP9tXhXyr1FsH79erZu3QrA6g9+CpMlJyVJKR76yXkgQOtG2LkJ4inI2snUwUR3DRTWatj1X+lJM6EUUfNVH3VidOjY/rX0geQEJycVmSfDboNQIEBWlYlVN5biHfWzW3SncChE/ceKMbsMZ5Q4O5sw5ahxr8/l5K8VLGhMUHZBHl2/FU/IvZvY+GwDi97AGZOc3mvY8Nl6JrvmOPwj8VJnZ1LubcNn6pnp83DgB//n1wc35ahperAO/9R8Yhm/M5WtXsYhyCSlrNItdRRNeeCsttG7OXMwKZ6kZHKBq8HK6bfC42KmyTL+eVKMc6pMsoYKSrwB5K+G/AYT+1/xMD+f4dw4O+hN0HyFjgVfkF2/DhDSp3emg1LysRDxLNdMJKXK+nnc2bD9qFzmLR4LpvQ2aHTP4bTAH9OoKIWSfmaLcxb/ooqD0+ZlFQMjJKVtP/0UoeAiFRUVnDihvNbyCv7nIOKoa9Bxce498j+mIinFITS/QNnFsnpM1+uJyYtk6esIWh8qY/jAFN1/zEA+TkouG90Sa28vp3frKL1/ynRe3IdhRHGZqvYna9CZtWz64iHhc41ONY13VnHqtQHFKj+KcAa/p+wDeQxtH8E7Lh59KDo/h7ED44rOebfQ9lg1eptO0ft5L6PxjjLMeQa2/qN4wvVMyr013FKKrcjEli+c3cDQu4WOp2rRGjV/u5J3f+NSI2WXuuhSKK9dcUUeJ98cOuv9WimRrvXhciZPezjxivharOneMow5evZ89yTeocXMvm3y8ySNc5kS1u2PlTMz4OXIi0ttnconjqDl3nxOvTXBRLodZUn+6errHOz/2cSyzwMQCgSZ8Y6zefanaDQaLrnkEl599dWM56zgfy7uvvtuvvvd7wLQob8Gu8GeMUYEYd/KAGtuLGbf95Nk5dPsnHfUGKm41M2Of80QU0pxbt11hdhKzGz7UobyHvF+lwHF5b0MuQZa7q9gbtCbmdCQhPIr83CUKStd9q7AAGXn59H1B2Xxq5L3uc566YwzxcZnG+TNBf+irMzLexXrPlnH1Ok5RaXOzqTcW8fTtcz0ejj8Y/H7vGdhgI1PN+AbnT9jslsC/sZ+l8EOznoH/ZvFy+QZ7JDbnEO34GbY2IkoGueU+l3ZjWbKLszl4POn8E2KP9OGx2uYn11g578tM44m20/B7yk4x07Rumz2PX8K32hiMCpTnLJwow1XnZU930tdejv53OLz5NhYzzvLr6sjaao/Tb/APF5KS0vp6upa9rwV/M9FxJfXqYy8330XIFCSbX4Bd7MZvUVD9zuJCd90SmKrP5bP+IlZev+SYVxKIqVKNlh9ezmDuyfpfSd9Qj6BzCqxNEGeoXILQPP9FRizJXb+2+HEElcZ0r6SDRpuqaT3L6OM7FWmrqsIqX7PMig4x8nY0TlFJJ3cVjtTp72KiT3vBlbfWYa1yMTOrx7BP/3ei8kpRfXVBTgqrWz7knju9EzKvVV+MJ+cehtb//n/jhxty0Oy2McSG/w1PlQmKCy3VrDeQf/uCVQL4s9TuNHB6IGJ2Lhztsr2CpZ4i2D1rYXMDPjoen0ZIlRcjrPu2jzsZUb2PN+Pb3g+83tJzo0mjXOZSErNd7qZHZyn83eTSw9mEJRYc6OT3l0eJk6kyekkPW/dlVaOvD4TLpG3zHsJBPD7/fxp4juo1Wouu+yyd5Uc/q6SlACMRiO+cKm1dTd+EdNwzKiLhqUOsGHUR+P6EFY79HfDqWPLk5QAVLNyJNRkD+FJ4TtEy73F/fym21xIFg1bvtUjJ+VTqbWEHZV4s9Xf4CYwH+LYz1M759F7hh0OU3YIz6gCs4dCdDxdi9agLHBfdnkeBW3ZHHyhS1h9CCB/vYOp41N4Rt97k2bhedn0ZXDqkrH+0/WoNSpFE2D+OQ4GMjmcKbDuk3WgQlFCCpOsXqXk3XQ8XcvCzKLiknRKcSYkJaWwVJhYfUMpfdtG6X5DMHhnAlOOCU+3uM0qPujG3ezkxO/7GNom7nRnrzbjHQsklnvLMDmtvqsMa4GRgy+cZup43PNlmJzz2mxM98zhSxFDSZjMUk0kggpKS89bZlIKX7donYnerYl2Xo6c1HarjWAgtJQgGn/PJBuuudqIwaph90se5n0p7Bu5Z/JzmwBveMeJLoUt4u4T1Ktpvwi2bwU8ifdIRVJShcf35o4FzAZ4cxdEaryowjsa521L72nCw7w3BJjwOZYel2bk+cNnTzx2ZbFsrzf2m/BlpbjuSGxxPW/V0Lft2/SelMea06dPU1KirHzmCv5n4fjx41RXy/L6Tm0R7c6rCHli33aqpG/I52f9UxWEgiG2fiWReJqOpASxYI7RCd5Um5eSSUpOaH6wnuneZQiuSa6q0alm1a2V4sTtCMdQAVHA6DbQfG8Fs/1eRbvM2j9Rg0qlUkx0Ljo/h963FQbU3wUYnWAqsDB2QGwXkqvFRvWVRYwfmxFOFJlLjegkmDwm/oIKzsuWCe9vDdGvwC80lxqZG/YK94XSS3PJb8lm77cOp+7TfyOcCUnpTND0QAU6o1ZRUtJWYVSkvASw7pk6ggtBtn9ZQfLTCHlr7AxtnRQ+ZePnGlj0pdhYkMFfy9/gYCBdwutsBVSWgUqtwlhoxORQM7pvdskxIKUKg2utheorCzn99rC4KpJRTnotzC6y42vKSusljO3L2Kr2o/L6+Pivl+4ATkcKkpzQfFcFc6N+9v8wbgNMeA5Q6Zf6bEYneEbkuUUlpSh5NB8u+2CMqUuUX2Amt9bI+EkPnb+ZQGVYqjwR8sT1eUnijfH/ZHFxEZvNxtTUWQzir+D/CuTn5zM4KPfhS213JpQrTJX0DS0sUv3hPHLqrQzsnKDrtbh5LUNSKjIuGOykTnynOHf1nWVY8o3s/vfD6ZPlKUKEFVe50WjVdL6UOeYVgRKloghaH6lGsunY9KVDwgl293on5e93c/SlbiHVpgicDRY844v4FKoyvhvIa3MIKxyB7ENoTVo2K1BwdLVkMXJoShExo+2xatQ6tWIf11pqUFROrPWRahY8C4pL0inFmZCUlMJgV7P2vhr6t4/SI0qcMYApx4CnV9xmke/g1BuDDG4Rd1izKg0s+BG+V821heSsyuLoL3sYi9/EkcHvctSZ8A56lifnvIs+WMS3yl9nX0KCyuR3qdQq2h6pIBQKLU8cisOqW4qwFZvY/e2T+EYUKMlH3BOR16NS03x/KYd/clqcCAXU31iAvcTE7m+fWHJeqvlKsoM/suklVUwyHA9Q6RN9svaPF6LSqNj6L10p45UJZX11OroNOzgyLJcYOXz4MHV1ykphruB/Fqanp8nKksti5ejKaMu5MqYiDinj4CH/PB0PFwOw/eu9icciBKcUY1vkmGQjkQwUQfLYIcG6RyuZ7vZkVORNHnMkG9RfX8aeb3ctS1CK3AdIQW7KTFJqfbSB6e45DjwnvuG8+YFK1AY1OxXmjNxtdgZ3TCo6592AZAOj28zkMTFVQUuRxJo7Khk9PMUxQaVSySUhWVRMnxKf2x31FmqvLqb77SFF6lCSS8I/7Rcmhrnb7BSfn8uBH5/GO3D2CF5nQlI6EzTcVILBqVe06cFSJDE7Im4zgNZHqyEEO7+m7DvIXm1bWp4xgx+1/pk6Fn0BRcIlrrVZMvHwDHwrpUTsuBOXbSLZwFxkZvyQuIKnuchA442FdP95jIEMed3kGFPHk+XMTy+y59vLxKWTcp0JY/sy5LGSixxotWpOvrF03ZaSpBQMgQTtdxfhGZ/n4M9SxLJT+EiSDfyTYf9KtzQmFpmX4o+5V0uUrDMzdtzL8demUUlLldej/JjwuW+MfouFhQWys7MZHX138xPveiTWG6dgtPWFpxKOaX2pmcoHtqg4dTiRoCSCug8Yabw6i4KWxJcb/wLisee5Ebb++2BMNSRDQj6+49tLzTgrzcLPFSEorbm3XPicbV8/qjhxMXF8BkJgLUpdbigVsqpNlF+ST8MtlcLnGHPkBX7zx8XPcTVZ2fhsA9XXFgqfs+becsoucpO/3iF8ztyQF/9UZsWIZCglKMGZlRDZ+GQDq24sU3SOVtKgsyqTYDSVmDCViPeBM0X2avFvAMCaK6HSqtBbly+3FcHqG8tovqOcXIW16QnBzEllShhj++cSCUqQ0bmf6fcQ8AeFCUoAlZfm03xPlaLnWv9kGc33FqU9vmTBb4J1D+fTeEPO8hcPBxlMOVC41kTrHbFazqLqSSJrp3js+5WfbS95WEjFO0txz+oNkF2KovKK1U2g00O1gKlVce942yFjAkEpHskqgFpviHPrQlzUlPq6EYJSKmzeD3vT5AlNSUGs2RNvMD3aj8Fg4O/+7u9WCEorWBZVVVU8++yzAIwv9tLjSSTTpiMdHf3VAFu/oVwCeuOna2m6L0UN9BSDg3ccNv39YcUKfCUXF6C36Si9NFfsBK/8n6vFRuVV+WKnDPrY9MVDymWwg6mD2pnQ8XQtJRfkphpq0mLtfRVs/FyDovu0PVLNhs/UKzqn+eMN1HyoWLj9yK5pFn0BphWUBps77VVEUALwDHkIBUOoteJLmaLzc2i6vYLaq9LPocnQW3WodSqMeQr8KCM468++32UsNGJ0Kyvrobfo5NLOCtD4sXLF/Sa4GCSUpiRqWnhRRFAC8E3OMzuQ1HcyBBKKLsyh4uJ86m8U79O11xWy8TO12MrFP9DmB8rZ+JlaoW86EgRadW0+NVcVYnQuPZbuPGO2AUIwcUI8MY8XNn/+GDu+LU5QarxdtpcSop6j3IyrPrWiZDr4x2HLv5xOJCjFIRQhHIVRfK6FNTcXUnl5mrVhUvsITr01x6k/jdP5m9RrvgSCEtCT8xaLi4tYrdYVgtIKhDAwMIA6vI75w/T3E46l253f+cshOn87mEhQEkDFlXm0PFRL8YXZiQfSLMr2f6+Lzf+QgaCUBnlrnGTXiq/BIwSlhlvE1yo7/7NTLpWqgDgzedIDITC5xOdDg11N3UdKWHWd+FyAQS4ptva+CuFTrKUGNny2geprCoTPqbu+iKorCig4N3v5xmHM9HnwjCojW43sUkZQAgjOhwguKFvsr/9UHY23iNsMQGfWINlSkE4zwOA2YFDoE50J7NXGGHFEAAaXXKpaScyr5opCmu+qpGCDc/nGYai1KkKBIN4RBUESYOqETxEZarrfy8LcojBBCaD2w8W0fFyZH7n+kzU03y8eLwd5Dbr6juXHm6hvZYCy9+XS/njV0mMZzguFQopjXgef72XzvxwTJiiVX+Yiu9Esf6OCr6fofAcGh47iC/IUPdvhnw6w+YtLCUqQYr4KBll7WynrnkzzTWdQDdz2rdMc/VU6/y4xZj/k62ZooRdJknj22WdXCEorWBY2m42f/OQnAIwudNEzm5Q/C6T+aA+/NMzeH2RIYKfJAXQ8Vs7aO1OMUaniQH7Y+s8nOPwTZeUh81qzMeVKlLxfIJYfvg9+yKoyUnqpS+yUadj0z4cUEZQgHO9SOA62PFRFxWUFSArSObXXF7HhM8piXqvvLGP9M8rGjOaH6qm7RtwnnO31459aYLZfPIblH/ErIigBePo8EFy+VHo87DVm2h6souaD4vlWnUWH1qDF5ExfPj4VbOVn3++SXBKSS9lzGZx69BZludPGWytY/7iyfhNcCCr2i4GlBCXImG+cG/Ay3Svu32WvslLzoUJqry8STtKVXJTN+mdqsFeJx7wabipk3SerlX3T1xZT+6F8jG7Bd6pWYXbJa4JpBf4qwLYvn2LPD8WVT2s+LI+bKcmnaZBXbyGnwSLWODI/+GH7NwdSE5QAklQAXfVamm5yUX5RmmotaVQDB/f76XxtkuOvpf5ByfyYPufbLCwsYLPZ3nWCEoCyL/ZvhLm5OcxmmdDw9lv/m/MveDb2QGGiUrKq0uBpFWoCtL8fTh+Hwb7lA+zd27zUXa6h/2hAXjil+uAjA33csarLHWRXmtn6b72xJHkKVaXIJHHwxQGmT2QeLBISVio11de4sbqN1H+smMP/JfDBhC9f8n4XGoOaU79ZXmp6qtOjmJ061elhusfDiV93CZ/jHYXgYgj/dOpAcCqM7Jmh6kplyYvjvxmg8jI3A/vESUT7k2vxCiD/HAflF+Vz6s0BYcLSmZSGGzk6pZideiZs46bbywguhs5qndiii3IoPS+P8TUzwmXlBrZMMLBFGSGsf/sIWoOGYQV16U/+elBZOUJkBa5Fz2JqlnIolDIQ0/W7Ybp+F7dbPANBKbIjqXfbGAa7PulYZjJQMBBiwZN68Z9qR5IpC0KBEDPD8+lVlJJ2QHlGYbzLz3iXJzM5KencHT9Mei+ZfotaTeMVeg68Or+UcJThns5CHY6CEGPdMRuoFgIxNaUU76Zzj4rhnBBToxmCTnFzQOOaBaxWeHvvAskKSqmg9crHJmaW/uRM5KRLC2bo7IcBTHiSSOTJ5CSAqdFuDm7/LWq1mo0bN0aJJytYwXL4u7/7O371q1+xd+9eDs2+SZbmKqxxmfAIUSleVWkiTBrJazVR2O5k17cSd5elw+ywF/+Ugh2iAEboeLiGiZOzdL64/A79oz/tPSN1l+rLi0AFJ14RDBCFL7/67nL2C5KVzqRsxqk3BrDmmxUpPc0OezE49BidauESbgveAGqjsv0JY0enFS2IAbadgRSz0t35k8e8bFZYl713+yjZNTaG9ogngDtf7KNTcHdcBKuuK8VeZuHIL04LK1CdCZpuL0OlVqYWeib+6tjR6bR+Rzpsz1RGKAWKLnJRstHFsVd6FJVX3PVvSbvjlgng9W4dxV5u4fAvk9ZeGXy2YCBIKBhi+pSCIOTMAjqLNuM3nbwGOPijk5RdUoh3fPnda5HjPX8ao+dP4v25/DIXvql5BjZPCY83DbcUYS0wUnxhduK9QsGMdtvypZOYi8WDXB2PlzN8YIquN+NIQBmCdaFAkJH907jqLZz4U9J6Ig05yb3GQP4qI7u/P0h4c37iNT1LjfLG1PMsTs2Tn5/P9u3bhX7LClYAcszLaDQCIf7k+zkXGj4aPRZJ/CarVIzuleeM5vtK6d85ztDO5cfDk28M4aw0M6JgbgMovcSFe62TrYLzwt4fnFREZgAouiAHe7mFuhuLOfKCQMwrfPm8NjnZfvq1pUpsS04Z9rH5H5TFSHyTQcaPTtP1BzFVqMizLfoW8U+Jx7xmTvsIBYIEFWxmO/KrXhr0avp3iL/PIz8V89Hj4WywUPvhYk6/M0z/n8XudSYlwQZ3TaAzKSNHb/mCAnXyMFruriCwGFSmbK4QjjozDdeXMd45LVzubbLTqziGN7R3DMmqo3+3ODO4/89jwu8xgvYnagjMBxUpDQxuGU9UahJInJ56YwhLgbJEZmAxyGKaTcypYLDDoj/A7FD6MWqJb+WD/m3jzAx4hf0uQJGCEkDDzUUc+lGvIlJg3loHeasdjB0Q96d7355g8pSX2R6xG1Vc4cJZZWHHt7vEni2cExk7NotkS4o7ZiAnrb0tj74dE4zsW2TyROKNkslJAD7fLHtDb6BaUHHuuefyd3/3dwIPt4IVwPXXX89Pf/pTXnzxRQ7OvInNbMcmxRF8IkSluKDtTJ8sm+Ko0lOywcG+51Pk2iLrkbjxbqLLc0bkhJYHy5nq8XDi18vn9LrfHGP82CyzfcqUbequLkat03BatEx5+PLCvhqw51vK1HgBTvy+H3ulRREBYKbPg7XIJCsDjYjZwT+9gGRXRnQe2DWGf0yZwIFS9RyANXeXo7fq2PEVsbHdPx1ki0K/ZvLYHJMnZhjcJe4T9PxphJ4/KStPXPnBfNwtTo79sveslgpcfWspeqNW3sQgiDMpGz2wa0zxZtPd31BW5SZ7tY3qKwrpfLUvPVEphV+1XyGJcOz4DCOHpjj9VphoskzcBmSOQygQYuqkuLPim1rEmBPAP6MGwfT20V/0UHJhHt5Bge857HsN751heK94jLBgXRaL/iDDe2aElbHKL84mu9pC8XkL9LwzGTuQ5p1EsP0/+jC7lxlv4vpVy70FjBycpWeroJJUMMDI8QAFTYv0J8UF0pGT7GUailvM7PvJGOMpPoVU4j1/Hv85c6Pj5ObmcuDAAbFn+xvjv0XT3mQy8eqrrwIQCHjZtvWrwDwbN8xTVSlPCnWFXs5v9gLyi2w6L0TLBaDVQVEZrL8wQOU6+XrFa6Htai2msJDL6ktVrL3OjGcCdv3XLK3XWKn7oAFUKvKbNLTdk4s5vIm68aMOWm53yR1OpaL17lzsZQZUWhXFF5pof6gIe5VBTqjf5Kbt4bLo72h7uIyGm/KZOenFtdrMuqerabhV3qHfcHMh7Y/HlIXaH69k9Z3yro6sKhPOKhsT3TMc/nEf9TcV0fFUTHWg7dEq1oZ3jZgKJNY9U0fJ+2U2X9FGF/ktsV1VrY9WxRSMTHJ5hbLL5Z0TVVcXsO6ZOsqvzKPtsWpaHq6i5eHYM617po7KD8vPW35lHuueqQMTHPh+F3XXV9L6aGxHybpP1lF9nczCLXm/i3XP1GEKLzSb7q9g0bPIoedlckrH07XUf0xmIOef42DdM3VYKuQd5WvuKaf9Sfm3bv77wzgqLNHddXkdWax7pi6qyNN4RxkdT9VGn6HxY6UyAdQjq/ase6aOvA5ZzrPhlpKEtu2P17DmHtmGNTcWsOGz9RSeJ9ut9sYiOp6OtW17rJqm++WdIKYcNSXn5YEKjA6J6usK5VJu8fZ+KNHe5VfK9m64vYh1n4q1bXm4kpaH42z4TB1VV8u76Mouz8NZYaXnDTmg1PzAUnvX3CB30qKLcmR7h9WQ1t5fQdvj1dG2HU/XUn9zSYK9s6rltqvvKiO4GGRwjxxI6HiqllW3ym1zW2yse6YOV5PMxGy8vTTBhlqzhsY7ywBw1JtY90xdVMWq/uaSBBu6mx0s+Bfo3zaKqURuW3SRvBiouaFoqQ0fkG1ozEnss9XXFsr9MNL2kUR7V11RzFS3PJBXfNAd7bMAzQ9V0vpIUp+9tpCii3Io+UCubMMcechrur9iib1rb5TtXXheNioNoJEnoTX3lNP+eOz7TOjf6+2s+2QtFR/KpfnjFTTeXUbHJ2qik3/Hk1U03iq3da01s+7pGvLaZIpxw80FuNfY6XxJXpy0PVrO6jvkZ7BVmmh/vJz8dfK7qb3GRdsj8nvb9m+96K1aVt8s28yUC+0PFVF8nvwtVF9hp+1+d/R5az6Qi286wOm3Z8EEbffkUnKe/I1VXJxF2z0xJZK1NzpYe6P8jjv/MEPFOXbKLpANXHqOkbbbHVF7r74ui7U3yvcsWa+n/Q4blRfJY0JRu462W22YwuvBxquMNH00PECr1bTcYKLpWi1mp46GKzS03WDElCcfa/yAjpYPx3Yatl6jo+5CNQSC5FapCC6G6D8uB0EaLoDWD4anMZWKtg+oWHWu/KezANovh+ZLAEIUlkHH+2KOQftFIdasD6EKhbBZ59lwzgJFxXLQ2WaVuVeqRZmctLHRS1ujPImbTD7Oa/NRUeRD6w2xNm+OC9Z6AA+7j5vQ62BdvQdpJoB1ZoYLV3moLZAT/PWFHi5c5cEwOUPh/Aw6DdRGN9bKx1rNM5hGFqkqkudAk1pOmLVUTzF46mcASJLEO++8wwpWoAR79uzBZJI/4M2BV/B6vdR9xEXr/TFVmeY78qi/RiYvWcuMtD1aRtH6bPRWLbXXuWh9MLa7qOXBUhpvl881Fkq0P1FBwbkO9n2nm8BiiI4nq3DWyQnq5gfLWRuek41O6HiqJurXVFzppuOhGrR6DZY8A033V9AUt3O246kayq+Qx7TSS3PluccI0ye9rL2/gnWfro1rW0vl1bJfU3SRi46nazE65TFizd3l+Ofm2f09ObDc/okaqj8i+zX5G5x0PF2LuVR+3sY7ymh7RJ5n628sxlZooiU8v7habHQ8XRtVymm4pZT2J2JzRPsTNTTcWkrbI9VUfNhNx9O1uMLqf3U3FCe0bXusmsY7yhjZNc3o4Uk6nq4lb50dgNrrimj/RKxty8NVrL47bEO3gexqG32bR/GOB6m8Oj9h/m7+eGVsp79RnrdKL81l77dPMnJgKmH+bnqggqYHYr5hx9O1VFwp27Dk4lyyyswMhH2ItfdVxObksL2rrpUHsaLzc2R7uw0YnbDumVranoj5Ku1P1lB7ndxf8tbZ6Xi6FluFbO9Vt5WitWiiq5L2J2qiSjc5a6x0PF1LdqO8O6Xh5pKYDcO/reHWUgDsNUbZhm32mL2fjLP3PdUEFoNMHvNiLpXb5od3qVd/pDDRhg9VsiZib6eajqdrKbpI7rOVVyXZ+8FK1t4fs7fFbcQ37cfTP0vZB/KifRZkH675wdT2jvwd4Q+uvSe9vQvOyyYUCjFxWl6oNt5ZluADtT9ZI++cAvLaZHvba+SHaLi1lLbH4t7NEzU0hP3I7EYLHU/XkrPGGrW3rcjEyd/IxL62x6pZdZtsb1tFor1rry+i/ckabBVGnPUmWh+J67OFctuCsC9edW1Bgg3z2x2ghrneGXmMeLqWkotl/6TiyvykPltJ0wMVrL67nJKL5TGh/Ao3qFSUXpIrr6ki9r6vnOYHY7u9Ox6qwTvuB6+sqtTxVA3G7MgYUULzg7Gxp/2JSqqvzafzFwN0vTVMxyeqMZeEx4jbi2l7OHbd9scqqbtBHk9cTVYsbiPHf90btmER7Y9VJrRddbP8bpx1RtqfqMLVZME7DsFgKGH92PpwOatujfmGHZ+oxr0uK9wfqmj/RKxty4PlNN4hfzfGPC3tT1RReJ7s01VelUf745W41zoouyCPpvvKWHN3WG3ACO1PVFFysey0lV/mov2JWF/SGTTMzy1ECUrtT1RRcYX8boovdNL+REXU3mvuKqLtiXKKLpDv23C1m6oPym0Lz8mi/bFyjLlh5ahbCmi+T37erEojap0KZ7UZQiHymk20PVSMNTwmN9yQR8t9sh1CgSAtd7lpuDEH7zicfnuCtjuKcNYaYX6B2itstNwd+6Za7s6n/iM54PdTsMaI3qohv0O+bs0HHbTck0/I4yXk8dJ8Vz4N18l2MBWqMVw4wSJybOKnP/0phYXiO1JXsAKDwcDu3bsBWMDPZp8c/2p7uIzyS+SxML/DQuuDxRjs8jmrbi5k7b3FGBw6CtqdtD5URkU41pDXZqPt0UpMhfJ6q/7GQloeKAcf7PjXkzTeWkH9LeFxaK2V9ieqyaqU29bdWExrXFyi9eEqsuuz0EhqCs530v5ENc7wLtDajxTK5QvCaHmoivqbivH0+rCWGuj4ZC0N4fVt9dUFCfNJ0wOV0TnCkGsgv9XJ2IkpjrzQQ/mVeQk+0Nr7K1gdjjVgkOet4nD8oPKyfArXxxKLa+4pZ83dZdG/25+sofSS8Dh0UQ7tT9ZQ8L5sWh6sYvWdZQlqR+1P1ETjNQUbnLQ/WYMh18CRn/ZS+aHiBB+o7fFqqsPxGldLFu1P1mAtDdv7pmICvmC0lG3ro9XUhFXBs9dYaX+yRlbZQfY/WsN+5JYvHMFeaqHuBtlm9moj7U/WkB2eZ2uuTbL3nVVyCNQHpiID7U/WkNcWHss/lJ8QB1p7fwWNt8l2Kbkkh/Wfro8qMC2x930VrL4rZu/KywpQqVVIWVpKL8lN8JfW3F3G2jjV9/Ynayi7NBxj/LCb9k/URPvs6tvLYj5Q2N4VV8l+u3u9E1djFj1hUsuq20oTfKC2x6qjKlOupqX2bnkors8+Wk1d2K9x1Jlpf7IGR50cX6i7vojFxQAD2+V5quWhKupujMwvsg1dTeFYyTWJfVZn0UTjkQa33Na9XnbEKq5yJ9iw5KI8FryL9G8bwWCX7VJ0gdxPyy7NS7Dh2nvj+my4f5e8T/YjS97nktuGeTur70q0d82HSpgd8oIPCs7NlvusXfZVGm9LtHfb49VUfiifvDYHeRsctD9Zg6lIvnDDzSW0PBizYdtjsT7raspCa9ag0stzct2NsT4Lcsm9ZHsXX5LDmrvLqL0h3GfDSZuWj1dSf5Nsb2uJgfYnqnG1hO394XyKz8nhRFhBp+n+ClbdFrZ3rkT7E9VRxajyy11Rf2n7l4+j1qtjykgGaH+8KqoYV3aJK0EBqebaUnwTC5z6rUxsbH+8itKLZXsXX5Qjtw3bu/G2YtbcJY9Tp98YpeL9eZRfJrfNX2+n7dFKDC4tKrWKVbcWRxWd8tpsrHumiqoPyd+Cq9lK26OVWErC4+wNBTQ/UBZ9ppaHyll7fyn2UjONtxXS9milnFsA6j6aT0ucz9nyYDl1H5V9F3uVgYAvQP9euT9XX51Py0Oxts33l1F/o/weTYUG2h6tpPlB+ffkrrbS+lDsGdbeXcyqm+W2BrsccyzYaJffa7VZJhCGc1Vr7iiiMTyHYJDnqqJzHRAMUnJeFm2PyPc48eoIaq2K1bcVyuSkQIDWh0opfZ/8Hgs3ZtH6UCl6yyJS1iIGh47yi2LjeesDxZRdZCM0P4+7zUrrQ6UY3HL8r/raHI7nbwPAYrHw9ttvs4IVKMHPf/5zysrKANg89xJ+v5/SC62svTWmLNT4USc1l8ljlOSC5rsLKDnXjtGpo+IDWTTdGYunN34sn7pr5W9esoZovreQ/I4sOn85xPzMIi0PlGIrlRVBVt1UwKqPxZQTWz4e/oaAgg12Wj5ehs6ixZJnoOGmwmiuQG5bHlVMcnfYaX24EskGs31+6m8sZF3curnloUrKLpN9INfaLFofqcKYLz9D7UcLmfcssuf7Momo+cEKKj8ojy2Oegutj1ZH1W+qrymM5mZKLnGRXWOjKbxutpUbaH20Gke97BtWfjA/oXpK030V1F5XxJq7yym9NJfWR6vJXi3HvCqucCfkwtbcXU79jSVMHfcwuHmU1kercYfjByWXuBLmntV3lrEqHJdAgvzWbPq3juIf8VN0QU6Cv9R4awmNYZ8TZD+h+EIXx17so3+LfJ+Iwsuqm0tiPhDyHFf6AdmGua12cmqzmOiSY+91NxZHY5eyvauoCMcjs1fbaH20GkuRBBK0PVETjRPK9q6kKqzcbq8x0/poNVlVctyw+uoCTLlSNObVdF9FtLqMrVSSbbgqbMMr3TEfSIKWR6uisR1jvtzWtVbuw2WX5SXa8K4yggGYPuVDsqlle3fI/bDkfUn2vr2UVbfE7N36aDWFYT+y8Nxs2d5hwZtVt5Sw+vaYve1VFuZGvEz3+XB3OBLs3XDTUnuXXRZW+VPJ94moI9VeX7TU3leG7b3KhkoNY50yCar62kKa4nz85gcqo357VpWJ1kersdfIvmHVVfkJPmfTfRXUhOO/liJpSZ/NrrLR/ZpM1Fp7T3nUj5RcctvcVjsApR/IpfWRaoz5EllVJlbfVUbDTbIN5fKJMb+m+EJXQp8tvdCFWqdiNkzQaX20OupHFpzjTLT3zSWsvqOU2o8Wyu/ikSpKwn6Nu8NB6yNVSDbZD6u/sZg1cfZuuaeS+bkF/KP+2BjhjowRBTTdE2vb/EA5lR900/2nMTpf7afl4xXYyuS21R/Ko+ne2DtvureU6rAPZCuTsJeZOfn6UNiGLprui7Vde1cJNdfI79Holmj5eBnZjWb80zKpvPn+WNs1txdTd31+1IYtHy8jr1V+N60fL4n6HwCNNxfSEG6LBC0PlFIQjqEXbrTT/EAJReudlL/PRcMN+TTcGIsLNT9QEh2T89ttND9QIvfZYBBDlhbvhD9KUGq+p4iSC+W2uWvMNN9biBQW76652kXzvQUUdMhruerLnZRdJD9Ddr2B5rsLZOJSMET1ZY5o/lbKAZ1JjbNWHhOyyiWabs+NziEVl2Sx5mPhuSoYYPV1dmo/nAV+OPnHCeo/7MJZLRFaXKT0XCNrb4rxQ1Zf56T68ixCCwsUNhsxOrUUtMnXLTnXTNPNOYR8PkI+H6s+4qTmSnvU3rYLJ/GE5E1/L774Ii6XmBLf3xr/LSQlgMsvv5xnnnkGgLm5ITqP/QqNBqxh5SprOEls0MrJaIMR9AbY+w7sekuFRgvm8ELNYgeNVoUqnDw3mDXo43aKa3QqbDl61n7UjDVXj0anwmSTX5TBrkNnirXVSmpCARVbvtKD3iCh0amwuGSH2eDUoY27rtaoxpQtX8eUq0etVZFVJP8As8uQUE5BZ9ImtNXoVSzMyaxra7EJbZxylN6qi6qrGJ1aNHo1lnw54DHvSdy5pbfqkLLktia7QW7rltta3UY0ejWuejt6mw7JpovJJptAo1djDbe15MltTWFbGJx6+bphm2okNda88HUL5LZSltxWcujRW3WUXJpL66NVaA0aTDnyb7UWmdHo1ZhzdOHfI6EzxXZdaI2aaDk6c658XXOu/LcpR0qwodaowZQnseGz9eS1ZIftEjk3yd4WLcawTGF2RRYqtQpzQfi35hqW2jvcVucwoNGpmeqa5eSvB7HmGdBI6sS2YRuaTGrZhvkmjDlgL7Gh0amjNpNseiRbjGyRYO/wu2m8vQZHvSlqw2hbSY011xC2twmNXo0xS0X74zWYcw3oLbG2WoMGc3hyt4TbmnLlv43ZEmqtmq7fDkVtaA6/R3N+2N5hG5qS+qxarY6+R1NOuG3k+V1JNjTpUKFmqtODJUcbtku4v6SwoeTQ0/FULc0PNsjvMS9iF7kPR9vadBiyYoxUjV5NToM8UVnCz2+MfPc2PXpbog0t+QZKzs2loNWJRq9GbZNtanBKS+xtCdvbVmxCpVLR/Sc5kGJ0SvJu+Dh7R9qaw+8xuyYLo1PC5NAv7bPhd2PMNaLRqzBF7lNkTBojNBgdcltzjkYee8KS5eZcA1q9mqY78pHsoDdpMNjD31S2SW6bpw+fK49xAKUXWNGb1Rhs4TJuJnk8tIalEi0uXbQtgGRRI1nVrLsvB5VZhVqnwpKjDV9XLnljMgJqNQaLGn14vMgul1CpVJiztaBSYcnRodaq0EXejTVxTNbq1YSCGvoOzDE/q0KtVWHJirxHDTpDYltTloaCBrDkyFLmhDdqGW1qtFL8+A3GsMqiyQYaLUgGqF4DZqtMco3aWw/GMG/KbJbnG0t4/olVv5LtL+nBFA5qGTTyxhtb+LfZTPLf560O21AHxnCX1erCbcPJO6sxtmlnzGMiFEoUjdKowRq+bpZZ/lsdvu9rf3iZ4eFhcnNz8XiUqZqsYAURzM3NRcuPvBP4KeZsKWF3s96ixZitJxQKYcrWoJXUTJycY+8PTmKy6+W2YblYyarD6AzPh1nyt2gNzyfWPHk+qftICRjBkKXDEG6L0SiPowXhtoXy35v+/jC7//0kBocegz28MjOGx9zIfFIg+0vG8HhiypHQaDXREm5aoyY6z1rz5HlKF76WMUdCMuvx9nkxFhrRmbTRMdZSID+DKVsXvW5kPjn8Qg+hUAh1eBeHxS0/g8kV8T8kdObYHKEzazG7JPR2Hc5qa3iOjs1x8W31Fl10njU6JbQGDaUXRgioif6SIUuPMVu2oWRToTVosBYZaX6oEkeFJWE+Mdj1GBxhP9Kolm0YsUvY3rG2UoKin9agic7flny57do7Kuh4qlZ+N3FzstaoifqGkbZGhxqMRjR6TYKvojNrMecZEtuGfS9zrgE1arb909Fo28g7N7vDbcM2NOfGbNjxUG2CD2TKk9+NOc6niLeh3qbDUmBkzd3lGLO04X4Ya5tgwyw9xvC7aX6oDq1Bgy3StiBx/jY49BgjfrtR9in8U4t4x+WSy/H2Njqk6LuJ2rvQmPC32ir/bchOYe84H1+tVTO8W15MmnKkhNIoOpN26bvJNrLx2QZsJcYEH0hn1mKO+jVhG7ojvqJB9qnDz6i36mJ+jUtK+D4tefK7qf1wMXUfLUOyxfqsyaFJ6FvWvEQbarUaAvNBuZxYZIzIT9Nnw2OEtcCIu9mRNEaEf6tR/l6Ncf275P2u6HcTsaHWoEGXJf9tdErR9xixobPSTNmlrrAN1Ziccn8yZUtLbGgJ+97lF+fJbXPDNnQtHSNiNjSgNaipuryAVbcWYclL/O71Zl10/Wh06tAawusOJ2h0arT6mF0kmy76TUm2cNuC2LvRGjXs/s9jHP9dPwa7DmNkbDSC1qCOjYf58jMBlF2Sg8GhRyvF+8GxttZCA1pJjdEWXj/aJXSShuL1csBEa1RjyQuvUdzhtnZD+PfokcI2nDohB4VDYf/Okhdu64iN9XqLNrqLX2fWYHMbMRVpMLl0aCUVpjAh1ezSozPH+ddmDUaHfJ+B8A48KTw2mXOkBJ9Tb9ZE+2zn7C7eeOM1bDYbX/nKVzj33HNZwQqUoqmpie9973sAzDLBft8mdCZNdD60uo3oTBq01vBYmaPHYNOz+7sn2f0fp9FbYr6KOc+IzqzBEP7ezLlSwk5xvUWHo9RCywPl0bkyMndacqWEdbLepkMVkkvuElDJY5g7NmfEj29Slj56zOCQ0Eoa7KXhmJc7sa3RoY+Ob4Ys+bqhcALcWWNNGAuNjtg8a7AZEp5hbixxh6fRKcnlLcPQmbVRn9PiNqIza8mrt2PI0WPKkaL+6ZK2+XJbKRJzLDTJz2uI2dAUeTeFcluDQ4reR8rS417vpOmBSiSrLuar5MjPbwqXhjXnGRLsLdl0ZJXLC09DtnxdS9wcLcXb26HH7Daw7pN1FK53ym0LYv5TvG9lckrRuI97TTZqrQprfN+Ki2EYnfrofGIwyHaZ7Jrl1G+GonaJ2MGYbYjGx6I2DPsBuWuc8jxlCI/lLgmjI8neEV8lX7bLqhuLcDZYMLkSfU69VRfrd2Ef2ZAtsfbechxV1sT+bdXF4lh5xrBfGftbo9XQ/Uc5uSTZ9VjCdjA4wvaOzFtuU4IN1Rp11Acy2jXh5w+3zTcl9tksPYTkEmkYEvtspL9E22bLfbblwSo2PtUgXzcc97QUhPtW2N6mbAljdpy9LVpyVsnBEVu4rS4S881NtLfeIvfDysvzKb8wT75uWOXGnGtAStE2ckylUtG3WSbCWJL6rN6mi/qCxnD/zm2wYykwYckzLR0jIvZ26hPsnbMqa+kYEf3u1WGfP9Hea+8uw2APjxGRPmvToTNrYu+xwBid6ws2ODDnSRhz4vuhBmvku3FL8thpjflwplw965+pCbeNG//c8nWlSNu4Pute60CtVieO32YNhrCPYck1JPjikkWHWq3i1B+HmO72oTNror6hKZW98wy4mq3YSoxoTRpUgcjaU4r6LRF7R9Y+RodGfga7RPXVeVjdhoQSN0aHhClsF63VgM4Us+H8ZOIOfKNDjyk8dhoMcnzSGn435gJ5Xd36cTlRaMxOXM/EX1def2lQGTT4xmDRF4SQKrFtXmxc1Zk0GKzyu3x77xv09/eTn5/P9LQCuZUVrCAOp06dwmKRA8N/mnsOa64U/f4BjHYdZpcOgkEko4Rk0TDdM8/uH/RgsOqREuZOHabccF/XgBTnl1ncBiSbllXXFyE5VZhyJEw54YFdAsmqxRzx4dwSklXLnm92svc7pzG5DNGxEGQ/wRZdU0tINi2SPZJXM6IxqKNEGUOWPrqmNuXJeSdDVngcchuRrHq8A36kHPk7jawHTdkSkk2HKTu25ovMEd2vjRBcDEYrxpiyDeG24WcoMCbM3wanhMVtxJJvJLvOhmTTRX0Vs9uQEMMw5UiYwgQJyaFDytJREo552dzGhLyZKUfCGB5jJUktX9dtpPG2UnIa5PtESBymXGNCqV/JpovFsYqMSFk6sITHyrwU9o7zPySbjuoP5dH6WDXmPEPCnCxl6eNiU7INJYeEJMnxU0P8uO/QYy2M5NikhPW5fA0VO74sqygZsqXo80r2sL3DY7st3yQ/P9B8VyWGLH3Ub5SsWvm3FkZ8raU2tJUZWXVzCWqznAuO9AFrgTF6XdmGhmiOauNTDUhZulh8rCDpunnGaFuQ57iF6UX8o375ujYdanM4Ludeau/Ib438bXTI35klz5jg40tZOmz5MRvqDFrGj85Gf6sh/t04YmsUo1OK2nDj5xrIacxK8CMN2VL0PUoOua053C9tZSYMTr1MPkOe4yJzvWRRhfthOJcX7rPVVxSw6qaycP+OLCTC181P/W60kpZFb0BWBZNkO0RjaeHrSlI4jpUrYcqRyK6xkd/mTOyzeYZwPwznAeP6t2ttFgaHnqwyc/i9hccIuzZ6riFunWSw63BUmSi+IBuTUx57Iu/DnG9MsKFk10d/W+UV+Ug2LSZnxIczYsiKi187dDHf0K5GsmqpuTKf+hvy5WeI64fG7Nj6UXIYkKxh31CSfVedMXZdU05c2+g4G/nGDEgWLdu+d4rO3w5ickmJ/TB5/LZoQSuTSE0ufcJ9JGtsPWB2SUgWLZI1HL92yXGsojAZzWDVYXVLcW01GCJxrFx9NH/rH5XjXaEFWUDB5NAgWTTRmJclV4+UpY2qU5qcOuyFRmxFOiS7NqGt1aWL+qqR92gO5zN6tsml0HWm8Lzg0iNZ4mPSOsxh37Br9iC//8PvMJvNfOlLX/pvjXmpQqEMOurvAi6++GLeeOMNACqKL6W0+sKE47rxmOx6SB8zfvP5IXT6ADt+Htbt0iZKCKtm4pK4KhVrP2qm8605PCMQ8mbWtw/55R2T+e1mSjc62ffzHjyRSg8L6eWdc1YZGDnukUsXJdV8TCcZt+qWIuxlFoYPT9L582XkpuNelavJyvxcgKlOgWR1OOm9pKRSBpRfmUfeGif7fnAKT7+Y1FvHU7VojRo2femQ8L02fk6uLSsqgWzKUdP0YB0TJ2bEyuQBphITnm7lSf2S97vofkNc7rDx9lL6to0wcVjsXvnrHZRfkq/ot1RfV4ij1KKoXEfDLSXozFr2flNcjnPjsw3Mzyyw4yti8pWF52WT3+Jkx392Cr/7+o8VY3Eb2f5lcQnjjc82KC5dV3tjEZMnZxjaJiY/mdeRxfTJKbypym9mkPizVFiYPZX+x0closMqSxueqWJ+dpGdX++KShjKt0i6R7gMQP11uWQVG+ndOknvZjnJklAaLlm6Ua2i9a5ctAY1W7+RJCWbVFogHo3XZCFladj1g4mlvze5DFvccZNThSdSbSOVXHakrVpNSZuK7h2x8SwU3z5Nqbd1N8gT/tYXU8sZxs8P8j/I18+vgr6exGOquPE4YI45Rus3LhAIwI4/y/ZZiAuoRaCNkx2fDx9fV+/h9ACM9cWct/msxHvqw+WvKivmyc+HLSfB45EHZ2ksNq8sWBPPk8b9vL75fwFQUFBAX5+yskMrWEEqxI8zlxpvWTImxMuGRtoaC3SsvSlcFmLTZPhg4vcaipN6z2u1kddkZ993wiVABWthtz0m7xja8dU4XdIMrmreOjtDWyeFrh2BUt8jgpKLc+l+ffnSI4CiMmwRdDxVy+ygj0PPC8r5GuVgwvzkAjsE5abLr3CT3+pk+OAkx38hVuak/YkatEaNovJq5lIjc6cz+9vJMDrVmIvMwuW+8tbZsRaahH8HwPpP1aPWKiuR1v5EDeOnZjjx8oBQe6PbQP1Hi+jZNMyIYHna9idq0Fm0bPrf4s+19p4KPBN+ReXo2p+oYfToNKdeFSuD23BLKfZyMwd+dEq4vGJ2o4XcRgeHBeXiQVaG6n9HWZkSjGDMMuAdDK9Tlik50vCxYuzlFjZ9+fDSUmdp5K83fqYWQrDp82J+tylHRdP9NfjG59n1jcRyIOlKiRgLjay5sYjuTcNyGTZRROJ8Aq/FWWckGJDLzoii7oYCnJVWhvZPcuKVodSNUtjN4JSDxuPHktaPcb5XxH/NqjRSf3U+x38/wMh+T/hYCh81vuy6Toe1RE/5BU72/XAwocRIctnjyFzW/kgp3vF5Dv4s5tyH4krCJZ93fGonJ9iLWq3mqquu4uWXX07x41ewAnF8/OMf5xvf+AYAVayl3NCY2CC+VE7cd9XwsULMLj3bvnw8fChxHEmOMa25q5RTrw8x0+0T9rucDRZqP1TEoZ91yeQLyOh32auN+Ea8+CaFLg/IsaWC1hxGDkxy7Bfic1ZWpQGVWiU2dkXyGwpKKrnXOyk5z8W+H57GNyh24tr7KzDnGtj1tSP4JsVsvOHT9aBWsVm0VIUBNn6igfHOaeFSboZcA75pn6LfD7INEsp3LYPajxQyfHCSiSNiZQqspQZW31bB+LGZqArVcii9JJec+ix2/qt4KZXKD+Vjckjs/0GX8Dkbn23AP7UgfJ/sNVaKN+Zy5IVTwu++/Mo8nBU2RWVhNny2geBCkK3/JF7ipeIqNzN9XkZ2ifkRzgYLnn6P8O+IwFRkiJV9FCj1tv6ZWhbmAuxMLs+bjPC4V3FlHu4mO72bxuh+M1VAbilaHijHkK1n05eOJvT/TCXc6j6ajyXfyI6vKStZZLAjPPYVnuOk7y/i3xYQJU5t+UdlZZNdzVZG9iR9k/FzQNy80vyATDTa/R/h9WYqO6Xw2RpuzGdo3ySjB2Mxz+TYZSS95G6zUXa+i70/6cE3KM9v8XGCJecFgrw+/2NChMjLy2NwUGydsoIVZIJWqyUQCKBCxaVZdy6NecWXGwzHoSU7rLmpkN6tEwxsTx2TiO/LWRUShe1ODv0kHCdYrlxU+LtcfVsxGqOGPd/sijuU/tzsRkvq8lAZsP6Tdag0sPnz4blEMP1bsMFJ/2axsUuyqfFPK5tHWh6qYm7Yx9GfiZeq3fi5BrxjfuHyWu42OxWXFzC8Z4Ljr4jFcNbeU44xW1JUXs2YL+Ed8Au3B1m5xFRoYeLwrFB7R72FrFIzXb9Lsx5PgbYnatApjN813VfBdK+Hk4JxIiRYc0s5AzvGhcu9rb2nHLPbqCgWV3djMQuzi5z4tdh7BFlhaezEdFQZaTlUXOHG3eLk6Eu9jB0U+85spRJ5zdl0viwei3S32RncMZn6YAafSsqR8I+K9bOKy/PIa3Ky6+tH8E+Hli3zBrD+6RpQwdYvCvqqEmx4ogbvmJ893xbz7aVsNY03lTCwc5L+zZNLG6Tz2SIcI4Gfbyk0oJFg+pT4N1lyoYPCDidD+6c5+fs08chU70YCW77EdHd6nkjE15FyYM31hZx4c5SxQ7Kjmhx/AhLjATotUjZUXuDk0C/GE48lnxuOeTXd4cY/s8jhX04uOQYsmQMHZo+zz/dHVCoV11xzDS+++GLa3/Ju4L+dpARQWlpKd7ecxKorv5r88o7osXiSEsQS0W3vC6HVBtj207iOF0dUSiApQbRDZZWCXhdieH/61XsCSekcZwIpIBNJKRSub+teZ8NZaebQj2IBmEzORuOtRRx4rjvt8cSbyNc5E7JGbosNS4GJk78+Sw7/GZChslebGdsvWIfxXUTj7aVklVro+cuwIqLSexEbPlOPSqNSlPhSSlJqur8CU66BPd84gmdUeV3m9xIyJq8zBWIyTPxLAiTxbZOOJSzYkyaQnEYLo4ciSZxkwlDqa5pywDOW/ppp7x37x7jrLiUp1V9h4vCrnqR2yb839ndRs5qCRhOeiUUOvDqfSFBKdY8w3DWgMWjoS9ON40lKJhtUt4TY+6b8dzBOAUCVNBbHSEoLbDxXXjNueSs1SSmeoAQLVDTAkR554NPNJZKn4klKEYISQOOqeRwO2HxCJinFE5Tke8Yxt8f9DM3+jP379wOyCk6kXNcKVvDXwOv1RvuSChWXGG9OGBuSaxurVCpMxQbW3FDAyKFpjv8qzo+IG3viAzbxKL88V5gUse6TtYRCIbb9c1xwVsBVbXqggqM/PSkrsSyDootc+MZ8wmQY+fqVmFwSnb/pFSaegFxa69APldUQVwKjO46kIYjsRgtjB8SCIu8mNn6uQSaEKKg3/16Es95E3UfLmOyaE373Z0JS2vi5BgILQbYqCKS9F1FxZT75rU6GDkwoIpwtgUCyLP25aXw4I9iLjEIJ8qivFyYPheZCS4/9DVBxRS6TJ2cYPyJOOFr3dDVqrYrNn1eW9Kq/sZDDL2QgFMSTKW4uYHjfJKNhslGCL5jke0V82OIL7BS2O+n87QCjB9KQlOIISnmtFmbGF/H0hueapDknPtgTP4+te7wU/+wie5+TSabxBKXk86acPRwc3cLMzAyNjY1RH2wFK/hrceGFF/LWW28BUE8HRYaY/H9yX458W2vvKsbg0LPln47FHYp9W+liTKZCA+ZcnRBhwdlgoe7qYrr/PEzv2+HgrIDf5WywkLvGwRFBQmrd9UXChJsIzmSes1cbsZfb6PqDeDJHEc6ADJVVaWCqTzmB6Gyj8kP5uJuc9G4e4fRrYiT89yo6nq5Fq9co8iGVkpTqbizGWW3l0AunFJF+34tQTJxLhb/G70q4TqIP5qg1MnFUmX0NuTp8w3Hk47+h3wVQd30BR34q7qPmrLVSfUU+swM+9n9fMNaPvIYwOCT6N00s29Zgh+qrS2LXj7djMkk17ljbo+Wggh1fDZPpk22VNK+Uvi+b7rfk50lOH8XHD+OPVXzARe5qG/te6Mc7ML8kRpBwXiDIcP1B9u7dC8hxCkNEZmwFK/gr4Pf7o31JhYZLs25PjHnFk5QA1GokO6y9tZjRQzOc/EPqhHW6mFfROQ5631kmGBX+NlseLEelU7PzX0/EHcrge4XPW3VzCcd/PyREWMhtzSLgCzJ2MC7mtYx/F5nnTv62Pz2ZIgWqrymk86Wzt6FWCUkjgqwqE1PH33tVCNZ/qh6ALV8Qz+e+FyHlSLQ+WMlE5yyHXxCb586EpLT+0/UE54Ns+5K4WMN7Ee42O5VXFDK8byI1selv5VMlXFO8gFZWhYHpLgXfWIQ8NP83KtKV5IsUbrQzN+xj8rj44qntoTJ0Jg1bvqiMgF55hYsTv8uwYTLu3VRels1E1xzjR8LPlSaHKZ8mn+dqNFJ+YTbHXx9h7HAaklLcvGKvkgjMw8xA6phXAkkpLubVdl8B/tlF9v90fMkxIGH+80u97J79C1NTU7S1tbF9+/a0v+PdwnuCpASQk5PD2JjcIZqqbyMnp4pAWGYrmagEckJaPSmTW/QmmI+fd7SapSSlMDrulGVzlyiLxF/bP5/2mAhJaf3Tlag0KjZ/4XjUkRBxNkoucQmzPOtvKqJnyxizJ8Un3I2fawAVihIgLQ9XoVLBzq8ts/MlDlnVJhbmgsIKTADGHFIr16RB9mozGp2GYdEd6k/WoDOLJ39MOWoqPljCiV93CT9X0UU5FK13seWrhxURtRTBBPXXlDC4a1RYselMoJSkdCZQqnB0JpDrIIfY9W9ibHuAkktz0Rk1nPhlHEs7g7PQ+nAVkl3Hpn85uuS9pwuOVH0oj+OvjKRkCkcX7HGTh+QA/wTRyW8JQUm+mfy/4Wu6W0wM7kpUlMtEUDIXqlh1mZPjb40zEW8ulSrtpLvqwxYsOTr6DszRuz1p8lOr0tqt4XIDB19LM5Ym3augAfq7kG2rTf/8UZJSKETzxSCZVBzfFWK0N0ZSSiYogUxSUi0sAJFrB6L/f8GqSyImxbC2eQGbDfr74fgJ/ZLj81naBHKSyTSPXKVNz3zWPNLYUpWmCEFJGpcdw9c3/z+oVCGKiorYtWsXOTk5aX//ClagFOPj42RnyyV5VKi5xPgx+UB4nEgmKoE8PkX+3eAEX3wMRqVOGbCpujqfvMYsxo5Nc+QnypJTUSzjqua12am8vIC5IR97vyW+IDE6wVYtqMRkhIaPlIqrHBEjX4wfmxZWlclZY6XqiiL2fv+UIvLRmShKGZ0IkboiKL/CLUw2M7oNNN9bwWy/l33fObX8CUDlVfl4J+cVKeo0f7yS4GJI0XtXijNRbFKKMyEpKYWz3oSr0alo16JSGAuNrL65hNN/HGJIMLBpdKqp+GAxB392WkgVCMK7KSf87P56kn+Xxu/Ia8vCPz3P5LE0N0gRwFHyfajUKswl4TJF3XEqwMFQxkRZ8/1lBBaDMcU5AWz4VA2EYLOCXfb2aiM59VmJBNMMKLrASe9bAj8+zm4bPlVFYD7Eti+H30nkd6fwvVQa9ZJEV+yYJlE5KQ7rn6qAEGz5l67U52q1CXNX1H8GVHrdEnJS5ByQExVD3h6OGbexsLDAmjVr2LlzZ8r7rGAFZ4o1a9ZEiW9rOZ9cfVHsW0mV9IrzrZIVPFRqVdoY04ZP1aJSwSYFO6gTIBAi7Hi6Fq2kUaxKWXBuNv1/FpvnK65yM3ZoMqbwJIANn65HpVYpIqusvrMMtV6tSHnaVCQnPqOqMgJQosICMrlJb5UY2SO4Q/3+Csw5BvHfboD6a4o59ds+YUUdV1MWZRfnsf/5bmH1KcUwQPVlBYwcnDirZCClJKUzgVKFozPB6jvLUOvUinxh93onRruOU4LKDI23lWErMbHr35IUxDLEyUovcXF6ufh2nB+h9PsAcLXYlmweyeR3GVxa1txaRuev+5hI5xMmofYj+WTX2ujfPk6XYLweZLWmI78eECInupqtzJyaUfT7G28rxlpopPPVAUb3zsRsmUpFL1OiUq1Kq/5SfXUernobg3umOPn7pb9dpVIl+HPx71Cl0aSMDUTinZH8yR/nf0ZQtUhBQQE7duzA7Xanf9YVrEAh4olKGnRcnHWrfCAS80omKoEckw73XckG/qS0U6p+XbjRTul5OYwemeHYSxnWWxlULpfLG2ZVGVl1QxkzfR72f1/BJjgJXHVZiWo36fw8CaqvLKRTgeqlu8NB5WUFjB6Z4qggGd1WbqD2mhIO/Pi0IiWi7NU2xYpSqd5hJhRf6KLnT4JjvQQbPlHPTK+HA8+JvZPiC10seBYZ3LY8GTWCxltLQKUSvseZIHuVDWuxUZFik1KcCUlJKWylEjmNDk6+PiikvnNGkKDtwRq63xlmeOek2Ck2KHl/Id1vDCSqj2Xwo9Z/qg7fmJ89/ykWT7XXmAnOB5ju8gkTlCLfhyi5W8rWojVomOuLM+4y92q8uZAQIQ7+KEU8Nc19131Cjvts/bKC+H6ehHuNla7XxdaZ7jYrgzvCJM4MZKP4d7T+8VIW54Ps+PeeZc9L9pESjmm1qdf+QPtDRQBs/0aacVirTSAg6S0wP5v6WBSRfPDCItP+MfaqX8Pv99Pc3PyeICgBpNCW+u/B6OgoVquV2dlZ9nQ+R5P6bnKcpWnbq+YXUS0GKGrTUFBnYLxvns53wh/5YkCecFN86L175gjMK5S0zYE1txQzNzzP/h8sP+HueyGuTfRDTd3xIm3KL3eR3+LEVmTmwPe6lr3H4R/3QiiEpcJEYNojRKQ59eYAUz1KZQh1oIDGZsyBVTeWsegLsO2fxViujXeWYSsycfjnXcLEm9qrSwkFQsIkJc+ID7PGuHzDSPvRIAe+3yXcHuR632qtisLWbPoEE2wdT9WikdRs/nuxAKLFbcJZaUWyaJk4fPYScu8Gsqtt2EsswiSlNfeWY3EbFZUTjK/9KoruPyjbRegZ86M1aYSfqeT92eQ22jHmSOz/QYoJR61eMnY13V6CSqVi67/2ppdAhOgxe4WG0vU23I1m9jw3AmpN2vMiQYLCRgsqTQoFpAwT7sFXPJRt1AsTlLIrYewEaQlKqmCIUNLtildLFK0KJarmpULcxL/7dXBXygSlyHXTwaxboPl8mJoIcGCXhhhZKVk5KQbN3AJ79sLqxtQEJe1M8kJ3ntYW2f/Y9ns/qsWl50CMnATwxpb/FwiiUql5+eWXVwhKK/ibw+l00tnZSXV1NSGCvO59gYuNN6Z1lCG2Q7LjE9VodCo2fyFe7Si1b3X85QF0BrWi3acAq24rJavYxO5vHMa7zJQaIUOIkiIiaHpAVhoUIvd4iRKURJWITv5mgOBikK7fiy/0VVoVap2K/FYHJ38jJmnc9lg1epuO6V4/3j6xgLtSdYK191VgcRvxDPuE7Owd9LHoDzA3Jp7AOiEoxR0Pg11PMCDuqBrdBprvqWDy1CyHfiRGDCm70I1Grz6rJKV3A6UX5mNyGThq7BUnA322Ad/UPLuWK9MRRu4qK1pJgy5FudR08I4HOagk4GaEBe8iswqSoxWX5Muqov+fmL+d12qj8rJ8xo7NcvRnmYO0kYBOw0cL0UpqNn/lWNS+ywV7pCydov4LcOAnPRiy0pO242F0Ajotk51e4UTvmrtKMOcZCC4EY6U9RZ7rhT4Wp+PukcH3Wn17IeYcic1fP7G0L6YhKIVCIbreGSW4kPq6yQmDuo/mYi81cerNEQa3T0OaPUiR5MS4d4C9vAVeubzuCkFpBWcD+/bto6ysjNOnT7OXt2mdfx9OfYaEbNi3crXYqL48n/GjMxz5eX/4UEg+niIwfPwPA6iVKokYYMMT9cwOetn/3eWD4fv+sxNdVuo1TTq41zspuygPZ4WVA891Ldv+5Ctyos+Qa4D5eSEizbHf9OIdT7+xMBWM2XIcRxgGaLqzgoW5ReHS9dXXFOBqtHP0lz2MCSp5rrqpguBiUJikNDvgRWfUyGpPIlOkDw7/WLw0K4DOokVn1JJTa6FXcB5ueqASo0Ni8+fFk1K5axyYXBKTnWKJmfcq3E1OcmoDwiSluhuKcVRZ2f2fJ/ENi9nXmCOhTo7jLAMlJf4A5sa8GF16BWQ2G0XrXdiKzOxPFd9OMW6tubsajV7NZsESuwa3gerL8ylen82ufz8VvmxmO7ibHGgkNWq9+M7/oy8OUHLhPN1/EovxOmqMTBzzcuTn4uuaqg/kE1x0i5daAQ4810POWqtMUIKM5AeDHZruq2Ly9BxHfpL0XOn8tVCQzl8No1KrUhKUCAQIJW2CbLqnksB8kO3/cjxtGiFCTgL40/yLBFhAhYrnn39+haC0gr85JElieHiY3NxcAizwxtTzvD/rlowxL4JBCAZpfqAEnUnLtq90LXufvk2TGOw6TryqrBJH5QfzyGmwsec7p/CNZPZdpo57Ofpyb6IykgA6HqpBa9AkkpRUqtREJT9RgpKoEtHgtgk0ejV9ggT0CHQmLXlr7XQNiMXKVt9VhrXAxIHpE0yfFsttrn+mjmAgxLYvis0rtdcVkVOfJU4i8sP8zCIeBSpPwgSoOJhyxfOZAEiw/hP1TByfESaOlb0vDylLd1ZJSu8Gijbm4ai2MrBrQpgAt+6TtfgnF9gjSPZ21WWht2iRFMS8/NMoVhubn15QFPOq/mAhOqOGTf8g1t9tZRKNHytj5PA0x38ptpmt4boiDHY9u/79mEz+EyBDGZz61JVbMvhse57rxZIrZl/JBkh6vEN+ul7PIDwTh+qrcsmus6DWqOnfKr6RYPePxNdN1VdlYy8xsve5nqVEyTRzUCgU4sTro2ik1HYNBYKoiOVgSy/Mwt1ooevPEwxunyatRRfkc6b902z2/RKAsrKy9wxBCd5DJCWAmZkZDAYDfr+fPUe/E1VUUs0vJpTyiUfvwQB5VSH6Dic65CGTAZXHtyRR3r9bfil6KzR+xMWu7y+/G8AzKgeBFryBWMI+TQAVwBMmAlnKTdRdlceOfz2VcacbwKlXh7AWmoQISlGYYM3NZXKS6QvLJ5kG/iJPsKYSEzoJpjqXdzaU1C8FWQ1pps9D9zviRI+ut4ZpuLYY/5Q4eWzk4BQDe8RZxwd/KL5DOYKyy/PIb3YK26DzF32K2OYA8zMLSGrx4N7sSQ89fxlmZK+4U7P2/grMLsNZZSq3PlqF3qoTJlsBHP9NLwveFOzONFjwBAgthhSpVCntv62PVKFSq9jxVfHgQMYyGCnQ/ccJzLkGDqcou7ikxEUY030+dCaxhBTA5MkAcyPznPxz5uBTvJPQ+YdZYDb+YKYTyW/SMLA3SNemZInc1Oflr4biJgvuukUO/F48cDx0wo9vOS5AeLyuagWDCQ68A4MnQLUYVrLTLbWdaiHiEGgIhWAmyWFQ+xcJ6JZ+m6tWLxD0w6HjevYfWPoo2pl5Fq3J5+nx++eZGU8/B2invARN8nkjnhdRqUJoNFreeustWlpa0p63ghX8NaiqquKdd97hvPPOI8gir3t/zMXGm+SDwVDa73nq9BwG+9IFQzpfJzJO1t1QxIIvkKhUlwaeUR+2QvHFeIQ4s/rucqZ75jgtQDjt+fMIKAzqNz1Qgcll4Ji6R6hcXISglL/BycDm5RMCI7umGdmlbL4+/tteCjpyhQlKAHPDPnyTYgs4gGM/76LoonxFRLBt/6RckrntsWoWfAFhNQPFfuqgj+BiCP+c+DzU+avu1AqGGbDxsw3MjfoUqTIoxcbPNTB5Wryk3JGfnCC7MUeYoASwuBBgflbcVzv9h2Ghby8KI6x/rJ7eTSP0vi0oXeqF7V9KkRTO4LccfOE0OQ1ZqQ+mCKzMjiywMLdI9xviPl7nK30UdGQrsu+WfxL3N511RrwTC8yc8iIaml5zZzVqvbIyb/u+282qW4uECUqtD5Vx6OUBZrrCPzySJMsQsFr0BQguhlIQlEIpx+SWB0rY+f3TDG5P7RCGAoElPnTf9hksboNMUEqD0MIiKo2aIW8Pg3lHUA2rsFgs9PWdvXIFK1hBV1cXeXl5DA8Ps5M/snZeVlTKpLw2smuasvNd9G1L8iNU6pREpaiyiAFa7q5kV7LqXCr4ILAQYGFObMz3TQbxTfowuA00fKSIXV9fnsw6uGUcZ6VFmCQcQct9FSz6xTbBRQhAhlwDhiyVEEFTNHkVhQ/GO2cY2C4ek+l5c5CsErMiAlX/tjHGjooHzk/8SjnZu2CDk+Lzctn6r0eEiE39fx4TVsKKYH5mAZ1ZPJaBD069NsD4YXEiTd2NxTgqrX9d+bJlsPquMix5RjZ/Xtz3PPyz0wmkjOXgn50nuBAUJigBwptDI1h9Vxk6o1bom43g1G+GOPWbpMRlBr9rZM80tpJx+t5OkexM4x9MnJhNub5MB9+gT/4Od4j3k67XRhSpIeW12RjaMS1MUHLWm6i9ukhxmbfTb49kVlGJQ9EF2diKjBz6UW+MoCSAUCCEdyRp7ZeG6Fr+ARdag5rOV4Y59nKKdxgIpFRpnxvy4ZvIsL4MBKL3G6o7QPDgIlqVljfffJNzzz1X+LesYAVK4HK5OH78OFVVVSwyHyMqQVqBA4CxIzPYikxL/j2dSliEoFT6/mzUWhWnfr/82tYz7CdUE4omkJdDhKBUfW0h/ol5ut9cfjw78doghixlG7hrry8iu8ZG5yt9ieSmNIgQlFxrs4TaT5/yKc5RHXtlgLILXcIEJYCp0x4WFMR9jv6qV7HK0c6vKVdjXHN3OaHFIPt/IBbHUVzqzA8BX4AFBXGczl91o5aU0QTWPV2LZ9Sfmoz8N8L6T9Uz2TUrXF76xG+6cdTYFSl0LXqD+KfFbTWyd0qon8ej/RO19G0aoV8gJhzBrn8XrwoDcODHPbjqLcLt/bNBvOPz9G0V7+/HXhmgoMOhSJ1sx9fENxzYiiX8vhD+kXn8yT5LGqy6uRTJomXzv55IuzEtGZ2vDKPSqoQJSmtuyefYH0ZjpYUzqQ6HOSMLcwGCi8GltgoGU/pQq2/O4+gvBxnvTN13Q4Hgkrj04IEpHGVGBvctF/PSMO0f47RzO6oBFQ6Hg1On3lsbQf5GhQP/dvD5fFEpxj2dzzE4ImeBVfOLqOYTB4ygzQRe2PmCB+9gAGcplLUnXTAUiv0Xh8r3O9AZ1ZScZ075HCqVKvofwNZ/7eXIS7KDYcpBJitlkgIDqi7JRmfSkNss30OlVqXf2aFSs+/b8uRUdlkuLPWDlsIjJ5m6/qgsGNF0exkN16dXqUqFxjvKyG2xCbXd/90uIQJUBLMnPWz74lFF5eE6f9GnqNQdgKvJSusjVcLtdUYtKo2KvI40SY2/AfZ88yRb/0lMxSCC7jdGFJXGC8wH08rL/a0QXAxl2riTEsO7phWVrDv8o25FAaEzgc6iQ2cWd8qqP1pA/ceKxG8QXpAffmFgaWm4+Akq6X0d+cUY+58PJ/2SgxcqdSywEHfswM/G8QxpZBWlVI8StxBbfZ1dHtdiBzP8BhXlFxgobrZQ+4EkAkEGFvTAfvDPBTj25tLvXBUMLVE7KmuT/7dre4jBw+l2dyWO7dkFYHHIzxAhKC2510IgSlAymcDj0bDpjxpOH9eg9i9G/0uGZm4BzdwCDgdkJ23w0s7MR/9LxDyNq+bRTvvZ9UaIzt0QMCUSmLRTXrRTseD565v/H/bu3Utubi4//OEP2bhxY+rfvoIV/I1w7rnn8s477wAQJMBr3v+KHQyGlo45Gg1Hf97P3rDPUndDgfC9nFVWctMRBZJw6tUhNn/+CN5xuRyUKKwFRtzNTqG2vW+P0hsO7JR9IE/onKMv9+Md9QsRlCJYdVsp5Re7Kbk4V/gcc6mRNXeXC7WdPOZVVIYOYO+3TgrvqgJZ7abzReWJ+4abS6i4Ml+4vc6sbEfSmWDLFw5z4mVx33n8sEdIOSsewUBIJmGcRYSCIYIK1GG944gTgcLY9k9HFSuLKkFBWzZqnUrRjvbmj1dir0nyPzL5LcD0KS8nf5Nid1iaRNlct5ftXzkhVO4tklSa7PRy6Edi31Reu43a68THToDaDxfTdGeFonO63h5iqkfM1zY6ofA8BwAHfyj2O/LX29BbtVRcFHYil1kMGMND86EXBtj6lTCBLzLPpEjOhUIhyj+Qjd6qpeqSxPEzFAhE/4tH+SVOrKVGpk/Osv2rYWWFpCBQaGGRUDgZMOA9zV7eYmRkhNbWVqanlZUQWMEKzgRDQ0Pk5cl+x17epn++C5DHk+REdSR+tP0rJ5jp9mEtMVB2iSvxgqFg7L84VH8gH4NDT9mlYv7Hti8e40jYNzDYxcblivfnYnDqyWtzCLWPEJQKNjiF7zFxYoZTb4jt8I2g+d4K6j9apuicmmsLcbWI+alHXuhRVIbONxlkx1c7FZWH6/rDEDOnlZVUy6o0sPY+8blCrVej0atxN4n5zmeCQz/qTk0uzoD+zeOKSl8F54OKyEBnguBiSLH64cSROUUl6079ZkhxfFApDFl69FbxmFfZpXnUXZ8U81rG7wI48atBfJMpYldp0PnygCJiD8CRn/YzdVLsG1l1SxGmQoPwtQvPcVJxiVvRWnf8sIe5QT+dvxFTXy25UC693r9pgoEtk0Ln5DfbySoWSRjIiJRg2/qlE5z+41ja+QKI/ntuo43sWmvisUAg9l8Saq7Og0CA/d/vpvOXg0uTb0nn/XH+Z+zbtw+n08lzzz23QlBawVlHZWUlx4/LxMxF5nl96oexgylyhmg0dP9pggPP90EwSMWl2SCJ3cvdZCd3lZgvMbBtkm1fPo5/OqwGIojsWit5zWJ+19j+6SiJqPDcbKFzun7Xy0y/RxERo/KD+VR/qJDiC13LNw5DypFouKlEqK1/xK+4bP3hF7o5rkSt20/qmMEyqLjSTUmyb54BBrseySnYoc4Q2798jJOviv+W6dN+Jo/NKbpHIKAsHnUmCAWCiioi+adhUKHC/s6vdXL4BeXiFqJw1FvQGTRojeKE/dW3lZJVpUBBS6XGO+in+03xjQT+0QX2fKsL76A4oWuuz0/nS4OJucg0sFcbqP6QWJw9grprC2i5vVjROaf+OMz48Tmx8n4S5LfLg+2xl8RUw+yVEiaXnvJwrCwtQSmswhcZy0+9McGO/+hLOJZK9CYUCuFuNmHK0VG0IXE9FgoEo//Fo6DdjK1YwjewyO7/7AU/qHSJvn18zGvCP8xm3y8ZGBigpaWFsTFlG07eDahCZ5u9cIYwmUx4vfJiriH3Copz1iYcjygrqadjgdf2j5lQqVVsfUFepKg8SYuVuIVUyOfDWgYzXSluPp/Iso03UftDRWh0KrZ8KXxiXOdKtSi2lJuYPeVJuQBItVPCVGKi6dZiFr0Bti23kI9/dSYwmdR4RpcfuOs/VszYkSnhUmmmHDVND9YpKuFWc0MROTU2RSXcOp6qZWF2kd3/IcYUbX2kCr1NXL2n+YFKjC6Joy+fZmy/solXFG2PV6O36tj0v8UZ4fnnOPCN+4Xt1PZ4NSpUbP+KskCPEmx8toH5mQV2fEU5I1wERRflULzBxbFXuoXfRfmVeQxtHRHq4wAdT9eiNWgUvYuMSBGI2fCZOlRqFZv+Pv13ESUmqtSsuasIs8vA7u8cxzdKlNSTUkFJpUJyyKXeerdN0r81zk5x10xGx8fdhIKw/dtJicg4AlE8QSm7Wk3lhQ78swH2/nhy6e+MJ2PGE5uusbD/5RTPlKKttRBm4nLbIW3s9yaTk0JaDdZ8aDhfYsEXZNfLccSfyISbYtqKzAmmbPAOJfaRoDGW8I4QlJreDwaziqP71YwOy8+TTE4KWGKEIk1k94UJTGqYVsWOJZOTIkpKHe3zSFKIE/tgOLyWipCU4olJEfTMv8jhw/J4tnPnzhUFpRW8q9i+fTsdHR0AqFBzsf7GpY0i33k4yJi/IYuyC/OYG/Kx77vyoi7TLlBjgYR33KtIacTVbKP6ykJm+r3s/87yTH9zqZG50wpuALQ/WYPOrGX3d08pUiOyVRiZPinQ3ghrb65g77fFVXUiJdz2PndK+Pes/1Q9oVBIuIRb0UUuitblsOWrh4XeidFtoPnuCia7xEulbXy2geB8kC2Cz3Qm2PhsA/PTC8IqiEanGldLDt2viyn+uFpsVF5ayKnXBxSXFBRF+xM16Czav53PkuYei/4AuwV3ZDnrTejMekW/eeOzDXhH/ez+hrJdX6LIW2en8tICJrviFKSWSZRt/Ey9rGr1raTxI01Qpem+MrSSmh1fE5T7brJSfWUBg7snOPU7sd357U9WLSkNtxxyW23YCk0c/9XywUZjnhbv9KKisbb9iUq0Bg27v3kMn+gGP5Uac4mRuW7v0rVusn2NsOGxKha9QbbH76ZLJmTE7Q6LrMGtZUZmurwJ/nIyOSlybP0nygguhtj65ZNLjoWSdin7y4bY1v0XfD4fTqfzPRmsWcH/3SguLqa3V14k1NFGkaYy4XhkHRnvW617Si6JFJXyz/TthYJYSwzMdCsjurQ/Xo3OrGXTFw8JqeuYigyKyDcGO7Q80sDC7CLb/0VBTMMABptBSGWm4io3Mz1e4VJpGGDj0w0seBaFCTWll+RSuC6Ho78SL+HW8lAVi/4A+74ttnt19Z1lWNzi6j11NxbjrLbK6geiv10h1t5bjtltVOSzuJqyWJibFybsrL2vAq2kOSOFAlFsfLYB/9QCO//17NzD1ZRFxaX5HP9dn3D/KLogh9G948Jl1VoeqsLg1J9V/3Hd07VoJE1M9WIZv6vuukIclTZ2f/ckvuG4jFG6ZJYB1j1STc+mMfr/IuaAdDwpK6Anl0dLtynYVGhg7W0l+Mbn2f3NLqF7ADTeWsyBH4qpN1hKDMwqGGsNbgPNd5bgn15g19eV7WY3FRrw9C1/r4abi8gqMXHs1/2MHQjHm5eZM+SHA4PdkFh+KpmcFPatGm8uxFpo4ORrgwztmE44lorQ1F+zn4MHDwKwdevWaPxhBSt4N9Db20txsZwAV6PhYvPNSxupEmNe9iqJumsKmen3c/DHMuEllZJSBJJDhX82mDphnmZDh61MYtWNpUz3eFKPOUnnSS4J/4g4sQCg6d5yTLkG9n3/JLN9/sxKIHGwFEnM9ordq+GmEg79WJzssfrOMqyFJg6+0CVUWg6g7YkaVGoV2wXVhVxrsyi/xM3ebx0VUn+RbND8YB0Tp2aFN/Wt/3Q9ocUgWxUqGyrBxs824J3wC8dyJJua7NV24XnVVm6g9tpSTv9piOGdk3/Fk6bH2nvC/uNZrPTSdE8FIULsFfSzbaUSOpvE2H7xjUobP9fA3KBX+B7LIsmvspUZaLy5nIkTsxwWUZBSqVn3VDWeYT/7nxP7/hpuKkLK0rHnW11C7W0lEqtuKqVv+xjdb4opLzXfX4rBrmPXN46n/vZS+Gz2KgOOcgunXlt+c6VkA7+fhLE2ZVm5ODTdXYzBoWP3D3rwx/s4mYRoVCoMuTpZRSkFoTWKMEdk3WOlzHsX2f3tgSXHopeMj2uFr2l265kbnE+MhwWSz5OPrXuokMBCkO1fj/WPCElpSczLOcr20TfxeDzk5+fT3y9GpH+38Z5TUorA4/FgtcrM/UPDr3Ko/7WE4xFlpaAttoPg4BseevbOoVoMoFoMEDIl7ZKIU1VSGQxRglL7vbm03pGe8RqvqjR2bAbfZFInzqCqNHvKAyZY93Q17nWJTOpUykqebg8Tp+bY9h/i0rsAGz/RwNr7aoXaHv6vHpmgZJIJSMvBMxrkxO/7FMkI928fJxQIoZXEWaIaSY1OwY6eBV8AQoipTgG7nzvBnh90KSYoZVWL71KZODXLwsyi8DMBlL8vn+orxVmiWqMWjQL2LYClQsEDnQFMJSZFv9mcZ0ClUeGfE+RImiC/JZuGmyuXbxvGZPcc89Pisp5nYqPN/3CEwy8uo14Rxy4OhnfH+sJzrUqjSVviTaXR4G52oFKrCGZST0rCvCfIgjeNilCcOlwEY51BTr0zyd4XptIHnFSq6DFreBPd/pfCqhJqVUYFpbL1WurfZ6HmfYkKQqnUkyKY6Q8x0T/PgT8ky1Gn2OECtF2tpbIpiGoxuISgBDH1pFiJN+g9CosLIcZ7QsuqJxW6FthwObjLAI9MUEqnnrRo1aOd9kfVk0b6EglKycpJEWw59a8cPnwYl8vF4cOHVwhKK3jX0d7ezr59+wAIEeS1+f9a2iiidhEetwY2TzG0dzJKUIL0wWEAb78fvFBwnpONn60nZ401bdsIRnZPszC3SM87YruAIoSeqmsLaP9EjdA5B75/nOGDk4oISg23lNJ4czlF5+cs39hLlKBkqxDbDbPjq50cfalbEeFqYW5B0byn1qhQ61TkC+6e9w76FCszHvrJqTMiKJlLxXcNzU8vMHFSXOmo8fYqijYIvLcwQosh1DoV5jwFO5mMMqnrrMEIRgXlEAE0kgadSdzPrryiiMrLFaj9GOV3MdYprjIm+j1EMLR1kr3PneLQz8UISkanrGqVIHW+zK4vvVWHVoGdQFZXGNwtLpO9/cvHOf7bfjFyYJ4WjDC8c1qIoASw9vZyNjwmNv5FcOAHJxg5PC1EUCrYaKfjE1VgCDJ3em5ZBSUAvOAbn2dw7+Sy6kmhUIjWh0ppf0RWk4sQlNKpJ8Uf6/7LKPueP5V4LG4XWQRH5newe2Abi4uL5OfnrxCUVvDfgp6eHsrL5X5+hB0cDexOOB5RVor3rfY+10XXm3Ek2+TxLF4lQ6WOEpTaH6+m7TExVemBXePMjfiECEqATFAyyJvO3OuX9yl8kzCyf5L931MW89rwiQaa7ioTanvylUGZpGOQS78t/1Bw9Jc9ihR/hvZOE1hQtoNcb9Ui2cQVIxfmFgkGQhjsYu2PvNzDnu+dVExQspaK+yxjx2bwjc+DAjen+qpCqq4QV6DWm7WKdpyDTPpQ8kxKYchVdn1zrgGNXk1IgbJmyfm5rLpVPOY1cWIG36h4+WZTkXIDbf3noxz8cZj4K6CgBBAKBWMEpWX8rrzGLDQ6NeoMa8hk+KcWmZ8RL83i6fNx5MUeYYKSpUS2kyhBKX+9ndU3l1D7EXH1WN+gj6F9Uxz6kViSs/Xhcioul1XxRAhKAH2bR2XffP/ssupJzjoD65+pwd2eBT5kglI69SSNJvrvB57rZmDHRCJBKY3i0l80v+LQoUPk5OSwe/fuFYLSCt51FBUVMTws+1BBAvxh7odLG0XizuGY1+RxP72bJzj4o76oEka6OD6AfyIEfnA2mFn3VCXOhtQVXOIx3eXHOz5PzyaxDS8RglLxhTnCFUMO/+QUg7vGZYKSICqucLPmjkphBaYIQclSJKYStP97XRz66WlhghKAf3Ie34T4bwgG5dyko05Meco/LccPQgqUEw/918kzIigZ88XVlGYHvYyfEI+z1F5XStn73MIKYAs+2U4mlwKFJ0kmzJ1NKLERgNamRWcR97MrLy+i9sMKKqRI4Bn0KYp5iX4PEUx3+dj5rZMcfmkZHyTiX0lyn533ivlFKrUKg0OH3iIe81JpVSz6g4woqIiz+5unOfLLPmFyIBJMHvcJEZQA1txezvqHxX1mgD3P9zC0bzqRoJQGzjojrQ8Ugz6Eb2g+NbEzhULSzICP4f0zy6onhUIh1tySR8u9csw1QlBKp56k0qijca3jr4+w/2ex2KBKp00Z8+rxH2X35Dv4/X7Ky8vfswQleA8rKUWQn5/P4KBsdIexnI7ypTv7VTOemMIGgBHarzUx2bvAsd9Oo9Km/uhCPh+oVLTdk0twIcSuH8jOQMgvL/JSse9Ci7GXXXuti6O/iDkQ0YBpUsDVVmli1XUFzAx4OfD9pQNMOtWB/I12dCYN3ZlqZodf35p7y5nu9dD1WzGpMgjvbl8MsUVBCa3KD+dz4rWlpar+b0Xj7aXYSsyc+H0fQ9vOzk60+o8V0799TFGJPKXXd1bZOP3OEL1vig30SpWUNn6uAeCssqGrri5gqmuGkT3ijoASZPwNGcufpQ+4ZFq4qDQZSkaqVOnPVavS31OtSlveLXrPOJRdaKZr25z8PWf6jeFnKVmvx11vZKp/gaO/D/dXTYpnCYZi/26Clg+a2PVrj3yfuMXeEoRC1F+m59DrSwMaqkCQkLTU0TSZYfXlOvxzAfb8PulgeHIOGWMEqcoWGDgO3lH5WDCp/BqA2iPPAUGz7Ei6y6C8Ho7vhbHj8ynPAVDP+Qnm6Fl/AYwNQmdcnkE97U14jgg8Hg9/7vwyAFarlW3btlFXV5fy+itYwbuBvr4+iopii7RzuQajfimRIBQIJCTNaj9agKPCzJavdRLKREANBclry6Ly0gKO/qqbsQMCxOHIzoJSI646G12/X97XaXukGn2Wjk1fOqRITaTh1tKYQksmGKHtvmph9R6Qy75llZo59fogA6K1yI1Qdn6e0G/+vwUbP9dAKBhi8z+cnRKvOWusWIvMnFIgf60UGz/XACHY9PdifpFSJaXyK9wUtGXTv2PsrP0Oe42RnEYHx39xdhayRRe5KDnXxcihqTMqJQgIJ8sSz/nb79FJR85MJhcYnJDbkkP366NLjqU7b/0nq1GpVWz+wrGU10x1TvllLozZUrT8XKZ7lbw/G8+wj1EFmzjW3FWCOc/Anud60pM74+xcc20ex34xFEuOpXoHkWNhH7Ht42Wghh3/1iUnutL5joEAdTcWYi8xseVLJ5ccS3WvnfN/ZBz5u2lra2P79u3pfuoKVvCuoLW1lV27dgGQTQHNmvOEzlv/yRrGj89wTGAMbXusilAQdn5NgBgUFyKsvrqAzpeXnwcMbgMt91Qw0+Nh/w+6lr9HGM4GC+Y8Az0CcYq6G4vxjvk5/ZqYEiLAhs82EAoE2fIFccJ08UU5jOweVVRu7P9kVH4on7y1DrpeH6Rf1D9ViIqr3IwdmlRUIk8Jyi7No3B9Dr2bR4T7h1IlpQ2frgeVis3/cPZiXqWX5DLT52H8kLIyw6JY/6k6VBo1mwX90yV4j/hdmW+X+IwlF2bTvWWMkEfM78prs1FxiZuJk7Mc+Um/kN8F0PxgGbu/1wW+zH5XKBii/sZCjvx06bia9jwDrH+sBt/E/BLVg0g+If68kguzGe2cY67Hu+RYOjhqjNReXczx3w8wujd9zDUUDKEyqVj3cDXjnTNyebflnh94beEFACwWC++88w5NTU3LPtMKVnC2MD09TVZWTEjgAu0NSNJSIkEoEEjIDZZc6CBvTRbbv9lFyBNMv2E3ECCr0kjdNUV0/naQ8UPhdVaGjR2Rb1nK0ZG7ykbPWyk2UCSdv/q2UiyFRnZ9/Sj+afH0bvXVBXS+JLD+lqD5zkp2f++EWCkl5LJveU0Out5Q4FNIULQ+h963lJWm/z8Z6z9VD6HQWVMcz6oyYSsy0/MnMeLbmWD9M3WgUrHlC2JxO6VKSu42O5VXFDKwY0xR6TolsBRJ5DTa6frd2Ym3Zq+yUXttESP7J1Ovp87Er4qee2b+lYhP8FfdT4Kidge9fxbYxBd+lraHytAaNGz5krgie35HFrZCI0dfiiPrpLFnXquVRW+AsUNpcu8p8rPVH3KRXWlm/wsDzA0kDYDBxNgVQNn7nHT9cTy2jk71LJFj4fPW3JyHxqBh93f6l415lb7PSW6Dhe3f7kkcj9Ocd9i7jZ6A/G12dHSwdevW1Nd+j+A9q6QUwcDAQNR5nfCe4p3Ob6ZuGMcUM+nlTqnRh+WxFzMwCUMhdnx7OEpQKmg3xR1KP8EXnWvDUW5m7R0pdhgnfezTJzxs/vyxlASlTCi/KI+idcvs9A53+H3/eSpKUHI1La9MAOAZ9tG/U3zXqKvJSt4aB633iLG0AVbdWsK6TylLuK+9v0K8sQmaH6oUVjvKX+9g47MN1N4oxpI9+eYIvol5ZgSlLQEqPuim8c4y4faH/6vnrBGUAPq3jzE35GX8xNm7x9jxaUY7xaURzwTHX+4XJijldWTRdH+FInWn0c5pJrvEg0EbP1dPh6BKB8Dae4rJa7Ms3zD8Tdd82El2fdIPyOBIVH/QTvu9ecK/WWeG3GoDrdeLKWgAdO+bZ9Ef5Og7GfpSHOnSVQ14YNdP4whK6RAK0fABCWuOjtK2xEOqFKU0I/BMBdj6gi8tQSkZriIVqzPE/SMEJYBsN5hMMNgFm38rE5TSnjcnjxEm5Feoi+MjqadTJ/A8nlH6Fl+K/j04OLhCUFrBfzsKCwvxeGLf+J95Ce986j4cT7LWGtXLSqtGMLRjik3/cJixA3MYC43YysXUVFbfVEZBh9gurh1f65QXvwoISpVX5+Mot1B7vYCP4CVKUBJRhAI4+evTzE8viBOUgHWP1sm/WVBwxuiEdc/UUX6FW/gerhYbVdeKK+bkrbMr8nM6nqqNEoFFMHlqluH9k8LtjU65LEh2o8AcC4zumzmrBCWAsaPTDB0UV9ZRiuGDU8z2exnce3YI9ACTx7yKCEqNd5RRcnGucPuxY7N4x/z0vilGUGq4pZSNzzbgTPaN0iBnjZU1d5cJPw9GaLyjRLw9slJu9bWpd82n2oTSeHMFhe3OtEoGEdWUeAzunmC6z5PyWPK9shtk25z63UgCQSkdQsEQhe3ZVF9RmLZNKuz7bjebP39MSH2u6b4SsmusuNZmeG9xAff8DhsAO/69K0ZQSofwMY1enn8MzqXHkjHR2InHMIlarebCCy9cISit4D2BnTt3cu211wIwRj+bAr9b9hyDXY55aQ1iajM7vno8SlDKa7MLnZO9xoprtZ2195Yv29Y36GPT/3dIEUEJoPbDJRRtFJs7jrzQEyWgOOqWVyYAmOqapX+beMzLVGSg+NxcVt1aLXxO5Yfy6XhKTNU8goZbShSp8jTeVib8m+3VRjY+20DdDWJq3X1vDzA35GP8lHi8qOiCHBpuFp8zT74yeNYISgCD+6aYPj3HyOGzF5MaOjDB6KHJs3Z9gNOvDQsTlBx1ZlbfWSassgUwtGeCCQVxuw2fbaD9CfGYV8MtJbhaspZvGEbFlXnC/jtA6cUuOj5RJf6bDVC4IZv2B1LvtE/lWw3tmMY3Oc+p3/Yt63cBUb909ze6ogSldAgFQ1RfnY+zykr5Za4lx9Ke5wmx+fNH0xKUklG4PptGwZh3VoUBg9vAxDEvW/7p2LIEpQhUalWC2lm6Z/Et+DhVsiP698jIyApBaQX/7bDZbIRCIdThxPRbiz/B70899sbnBnUmLSqNiiifKcN3O3XCy9YvnWD80BySTS7pJoLVt5RSfE5OagWcJJLA/udOs/nzRxQRlAo2Osldbaf6WoH1nx92/4dMULLXiPkgJ14bkPONu8RjXq33VVNyXq6spiICCVofq6bssjzhe2RVmahQECNz1Fuov1Hcz2n+eCUbPlMv3H7kwCQDexQQwyWov7EER73YnDl13HNWCUoAA3vGGVTyGxRi4rSX8WMzDO87e3G12V6/IoJS9bWFwspiALNDfqZPz9H9F7G1SMXleWz8bD3Zq8RizLYSiVU3FwkrZgHUXqdALR1oebiCiivEv7XVNxRRfG42WRXiD9W7dZzJ02LrkMh1B7ZNJRCU0iEUClF6fg6VHxD/DQCdLw+x5Usn0xOU4lB3bS7uJiu5azLFvGLjdM4qOcC/70dDMYJSOoSPaSV14vwTdywZU9XHGJNOo1arufzyy9/zBCUAZVr2/03YvXs31113HT//+c/xLIzz2qF/5tKKxwgZklQpwklpzyhsez62G7TsfDNdb8f+XqKsFO4klZdmkVNlxOrWc+Tnw+FD4V0J4cSbSqsltLhI75+nMTr0dL4SY/lGpOaBGJkgyWFpf6ISjU7Nln9afrfOid8PMDcmIN0bSQqGQmz4TD0qjYqRPcuzUvd8M7bb1FRgwNOfOWgwsmeGnFWzHP6ReH1ZKUuPRqeWM/cCY03lh/Ox5BlpuKWEQ88vf5+sQhNGp0TlB/LZ1bk823JgywQlF+QxNyQWIPF0e9j1b8pkyHNXO1BrxVmpJe93UdCRw5avHhayUfW1hbhWZdG7aYTuN5Z3OKY6PezpPLlsu78GR18Qq9MbgVKVhNZHZWLczn8VexdF61xIdj1GE3gFY23HfpLmN6RJui/MLjKbph8tUUEygSlHouTcXIZ3xz1QMJjI1o27l6PMhL3EyNhhT0ZyUuSYOVuPWqcSVjlbmIPho17GusROMOWDZwB2/VeaoEXSWLf2WiOSWcPi4iwTJzOTkyI49Hs/pRsWOR2OYaQlJy0GqDpHRXaxROfmAOPxoidJ5KR49SLV/CIDnTAaHlriFZHiyUkgqyjVNMuPt+0XqcfhCDEJwOoGowUG+2HzqzIxKR0LWD3jpXtyP4fG/wDAqlWrOHDgQJrWK1jBuw+j0RgN2oRCIf7MS6ye34hbV7IkMBIJSB74QU9sB2pHFtN980IJ7Obby0AFm/4+w3ygUkEoxP4fd+EoFQuOROBqsVF9RRH928eWVSM68fIAAW9QkWpRXpudyssLKFzvY++3Ms+13vEYsclcahQq5db5q25MbrMw2co7DhqdGluxOEu3+vIiUCFMSCk9P084KQowO+BFsotLLh9S4GcCYDRizjNQuM7F2AGxxE7Lw1UEFoLs/aaYfxQJOIn6LUd/pswvUoq5095oCUERVFyZj7vFQe/mUbpfX15hwFhoZM0tpXT9aZChrZNC97AVmzDlSkLXB/D2edn97+I7pab7PFjcBsYFJaZLzsvF4NBjdEt4B+MCC+ESSMlovL4YW6GRovOd9L69fLDN6Nah0akxJPXtTEmm7d86Qe2VBcx1L/2gk88zFhrx9nk59fv0vn7COUao+XARgcuDbPvS8WWTZBEc+UU3aq3YvqX1n6xm0Rtgx9eW6Xtx9t3zzS4qr8pjZM/skmPJu4Ebbikmq9iIzqyl+/U0vzsuEFN2SQ5dr41y8Ef9S44tQSjIGws/I7grgM1m4+qrr+bHP/5x5t+xghW8i3jxxRf5zGc+w+c//3k8TPFm4BdcpLk2bXvfJGz+x1hpiZL3uej+4/KxgeILcyg+14WjysqRF9Jsogv7XWP7ZhgoHuPUb5TtLm59pBqdWSOkXnTkpdNL5OyXQ8dTtWgNGjZ98dCyJenifQqD24BvMPMJnl6fvNv5d+IkXaNdQiNpMOQa8A0vH2cq2ODEXm6h4SMlQj6PIdeArdSE1uRm4sjy8+Zkp5eF2UWm+8TmS98ky/qwychvc6IzioeTXS1ZlL/Pzb7nTy/7DkAmQZWcn0vfllEhZSTfoE8xQU4pTr6ijOC+4dP1hEIhYRWvNXeXodZp2PMfYr5RYYcLa5EJDAZEazOeUqgU4B3z4xsX37BpLzNjdkmM7Ioj0afxuwDca+zkNdrZfECsTI6tyIhWrxFWOQt5QnT9aQTP0NJvIZWfZCo0MNfjZdfXU5dgSz6n8bZirIVGOvUDjOxOT/6KP6/z5QHmpxfo/tNY2ueI/HvJRTkUrc/m6Ct9CWuc5HPiVRFCwRBdbw4z2S2molR/XQkEYcs/py51GX8vg9uAtUDP6J4ZtvzTsWV9zdHAAHt4G05AfX09hw6dPRWyFazgTBAIBDAajfh8Pt5a/AVrgufhlkqXqGpEcoPHfzPMiVdlX8tRZ2R+Oshcf9wYmfy9hdc6a++uQq1Vs+Wfj6dVU1KpVYSCIfY/f5rsKkt65aLIeBp3HVuZgVU3ldG3fSz9GiqM/k3jqNQq+t4RVy2ylRtouL6UmX4P+7/blbmxH/aEfQpjvoQ3OcGfAkdf6iarzCJUFipyD51JizVfvHR83TXFaPQaYUWe8ve5MTj0MvlDYBqcOj1HaF6cLHbi1wPCbQEkCRxVFrSSionDYjGv1XeWQTDE/h8IKMUDHZ+oRa1TCysjnf69uLLpmcA/4ufwC+KxQXebnYrLCuR8qcCaSLLB6ntq6H17mMEdk0L3yKnLYqHMTN+fxUhH/lE/B55LY/8U+cbZYR/+6QXGDgqINISClFyQi63YhCVHEirlWHVVHtnVVorOc9L7jgDBTAKdUYPRIR7P3f9cLxWXu5g6ufzzSE4V/vEQgzumGdwhNgA0XFvEoj/I9q9lLpcbTzA98EIfklUg5hUM0vZwGYu+AHu+3bPkWALicr9HXhyi5AIHw3vD/JP4d5sk2FB+aQ55qy0Y7VP0vJ2GgBcX1ypYb6N/yzQnfjfGid+NLUtoetv7Er7dc1gsFm666Saef/759O3fQ/g/gqQE8LOf/Yz//b//N//rf/0vgizyu5Nf4rKKTxAy6AlZTXLJt3gsLIJOy+rr7ZjsWhb9IXq3Zl6kn/jDFOZsHUdfmVxyLBQKLVEIiBCUaq91Yc03suPrGQZOlRpCQRa9GTpSEoZ2TEMoiKXCRN1VBez46jIEDZWKgd3jGB2pSxGlg5JSXRGCUv56BwNblmeyKiX4nPjlAAuzi0LkG5AJOEdfPs2YghIFWxVKKbqarFReXsThn58WUjw68JPTzJ4U34UmZelRa1XkNzsY+MvyNh3eP4GjwsLcsPg9Wh+pYuTQlLBdlaL10SpGjkzT/QfBxNSon8V58W9Bb9aBAjXCnV87jqPehFfQ525/sgbvxDwHvteVeCCDKsj2r4on1vDA3m8fRyVlmBCT7rXvJz0Ys9IkmVMEevb8MPxuM5R7i8C9Vs/g3nm63hbrQ7UfMJFVoGPwsJfuLQLESaDzbS9V5xiFCEpl6zWY7FoO/c5PV3hDeyb1JADfrFy/dXwE0Gd2lorqoaACtr8E3XuXHk8mKEUwNgSzQ2K/t+FcHaBisD+1clKELKWe8TJu38KJPpmJpdfrVwhKK3jPIhgMYjAY8Pv97GcTowsDNOrWgUqdSMwOIyLxXnmJm1AgFC1PlAndfx5Gson5LXOnvVFiz7pn6oQIFLNds4SCIbyTYgH2CEFp9d3lTHTO0Pt25olkaMck+W3ZHPt5l9D1IUYYGdo/wYmXMwcnxg97oqSMvDY7QwKLZ6WlV4+90sPc8PI1uSPY/1/d4BWXqFJMOgIa7yxDb9YK+ZHePi+HfnKKyWPizyTZdAQD4kGkmQEFklxA6aW5OCos7PmPs0MSl69vFU5kTffMkl1jZeSA2MI/u8aCRq9GZxIPRmz64iGMTrFAYc4aKxWXFXDk591MnxSzbe+bI/S+Ke7H7vr6CZx1pkSCUgYc+EGPMEEJwDu4wKZ/kJNqkQRQpmRNbrOVoZ3THP156vIeyWi6tVgm9AuMo/IDweSpOSZPzwoRlNoeruDgz3sYP+IVlvwOLATxz4qNFe2PVTDeOcOJ3wxx4pUUSdEUAfpDP+5nzR1FywbXQSYoFbRnY8o1cOiFgdTBmrggfk/FHoJH5TZf+MIXePDBB4V+xwpW8G7iH/7hH2hpaeG6664jwAKvB37CxZoblj2v7sZisqvlHbfLBeV7/jSKvdySnqCUhAhBqfyyPHLqs9j+L8uPSf6pBeFNWxNH5DiOwW2g4Zoidn1j+Xn/9J+GcVSYRXkZgLIyV5FyDK6mLEb2LK9YeOC5LvEHgWj5E9EyKL5hH4deOMVkp7gvIvKe4pFVaaDm6hJO/LZfSMln/4+68U2KvwCdSYvWoMFZZaZfgKQ0enSWvLUOZgSJVgBr7iln4sSMUOnAM4HS60/1iMcoAQwOSdFmxwPPdZFVuTzxLoKmByqZn10Q2gwagaifGcGufzscJk0Jtv/OSUw54vHr/d8Xf/ac1RZG9s7Q/5el31kqP6n8MhfuZgf928bpek3M3zz+qx6qry4RIigVnOPEUWHm4A97liUoReCdmicYCDHXO7usr+ZqtlJ2YS7bvnSc/s3iqhNDuyfwTojFvJpuK0GtUTG6Zybls8f7wzPVfRw9vRO8YDKZVghKK3jPwuv1UlBQwMDAAPuC7zDuH6JB6gB1mphXOD9Yc1UBBGGrQHmiE38YxOIWWyf7RxfoH5W/4bZHK+ndNMrgjsy+yPSAj+BiiPlJsXVahGBR85FC5oZ8yxIupk/5mD49S+dvxYmuBRuclL3fzdCeiWUJObO9fmbDFUyyV9sY2798zGLL58WINBEceakH35R4HurgT3pgfkG4zN3J3yhX6q75SCGmbClK6soE/zQc+OEJpk+LE4eNTiljlaBkTHbNotWLb0Z0dzhw1duESVBKofT6njEf3lE/48fEYl6WUht6oxadRTzmtflLhzA6xRSCLEUSdR8tpfPXvUwdT/Jn0+Qbh3dOMbxTXC39wA97sJWJEZQAjr8yxOyAj6FdgoxAP2z957DQikC5N2eDmfFDc5z8rZgf1XSbrNa79SvicdOh/VN4JzKPdZF+v+a2Ijp/P8Jcvx+PYOWHRW+A+bmwAEKKMnDxWHtHAVPdXrreGKf7rRS+V4rv79QbExhs2vQEpTjkNlkoOceJtcDA0ZdGUse8ImSpQICesp34Dsvrj6985Svcfffdy97jvYL/Y0hKAM8++yxXXnklra2tAPzu5Jc43/0gJpMJdNql5X0WFjnw0iL1V5gSCErR8m9aLSSVgtv3Y3nBWfXBbOyFBnZ8M1aCIKqqFFZTisCab0RrCKsFJRMd4xcSAdj9H13RP93rshjcOhVlS6dDzeX56K06shvNjB3IvNDt+l2MJFL54XxO/HJ5Zu50r4cFX4aSeEnIbbFRfkk+Be3ZUcnw5VD54XyMTmkpCSQFIkQaR72JCYHd0hGCUla1SbhsWvPHK5mfWeDgD5df5AYDQdRaFe5Wp9D1lRCUADp/0UfnL8RKXYBMzNr2RbGdRhFIdj25q+1njaQkZenJrc8SJintVhjs2KzQ+QSE+k4EOpN26S7ydJOXCTo+XsOp1wcY2Zv4PS5RUAq3N5nAOyFGUJIc8vzi6QviHfalV1EK/7spB2qvzGX3z4ZlFaVgICNRSWeGkg4rhc0hdn5fLDDas9PD/8/ee0e3dV3rvj/0RgIgCsEKkiDBJvYmiZZ7b3G3lLjbsuXe4hKn3PvGy83JuefkpB7HyUl1qh2nJ7bjFicu6r1LFIsoilXsBQBJYL8/NhpJAHszJ3n3JuE3hsewiLk3FuZee6255vrWN0329KUEJZVyiYKSPaykPdwpsP/XSZ7BoknaWaRDoVIAgaTkJEGngfkgzmIY6oaefdCzLxyEKZKPX4rZeexZSpQqFSYnTIdfgZBRm5CclFcFWSVqdv5mlhMfJG57vIJSBD2H50AIokwQ5ynmgygmxaTyu13fRFDPolar8Xg8tLcv711YwQr+/4bf78fj8dDZ2UkfnYzPDXOW5gqAhPGLEBLo2TKML9mp2zBpO4Ke92IJkZanSzn53mBi4lH4VD+AtdSASqvEUWaRJCn5RkIx9RsD2AqN0kosBkjPMWCwayVJShBL4DsbzATG5iRJFx2v9mEvTaf3Pfmnp1Y/W45Kq2Tg0Jg8VSUDNG30cujHbfgkhvoz+8Xg1ZBrwDfik7x/RCHLkKXHN+6X1R5ng5nC87LY8UV5m2amTD0qmeouwLIISiBfESkCOfFrPDJXWdGk/e2WWcu9/5n9k9HnLAfLJQQB4EOWehqAs9KKWqdiTmaOrfK2AlRaJQe+s+i0lCAkjNfMRQYmOn2MHJUXC1q9BsbafLIJSlV35DPZ6+PkW+L4ILXJ1PhgEVqLBt/IHBOdMR+lum60Y4pQQt7N0nG36PJMOl8f5PBPkit4xV/jajSjtWjwXpnN/u9Ir4UyG80M7ppgx5dkxiz6EGq9EkvBIrL9ovE/gqbHPAwemqD77TPs/06SJOSihEzXW2cwOnQc/mmKNZQQwjc3zXbNG8wemyUvL493332XkhL5pctXsIL/v3HjjTfS19dHdrZYSvLt4Mus4yPoVck3t46+fJrym3JknRoGOBCe09wXOMmstiQ+DBcXdwFkFKWjNqrFEmUSnIh40o5cok/JJVnoHVpZ9gM7RxnYKSZ2Cy7OlKW0M3xsQnZZYoD0Aj3eq3PJX+uURZwCyD/fQXqOURY5O0JQshTrZZVBixCU0gv0TJ6UR0pZdXsBwdmQLEJaYFrMiTgrLLJISnKJMRH0fjBMr8xT55H77/qqtPp8PNKyDWgM6r8ZSWm5918OGQhYdo4PWFYJPUOGFu0yYsemx7x0vtvPcHz8mCTuQg96sw7/YABZ7EE96K0iwcov46CE3gqVG4rY/f1OWbcXtALeq3IoujDI9i/G3t9UcVfv5kEyPGlLCEqJ4q50tx6tWc3wwSn2fzdx3LL4mtzVNjR6FehB8CduR+S7MsoMjJ70MbR7gqHoRmJqArrdm45ap8Li0TPe4Y/eLxGc9ekUnJPJzq+00/nm0nkjmZ/a3+hDZ9ZKlsHbFnyb2c4pFArFioLSCv4u0Nvby4UXXsgf//hHekLHGfcNsdZwJSBWVllM9BAEgc63h5YqQUbejUVrnuGDU1E1tIYHizi9bYSBBESE+PHGkKVDa1Jj86YnJinFEwYCIbb9e3gO0YG1wMTYcWmirL3MjLlAnirMwfD+maVEXN8tIV0sQu+WEVy1GfRsXUbZt0e86Cwadp08LE9VSQe1txVx9Ne9BM6kTixE2qszK4GQ5P0j99OZlQQCIVlkJUuJkeLLctj9rROy7NNzjGhM8ufl5RCUALb/x/LiiuO/kL83CZBZbSVtGWpWy4WrxopJJrkPRDLdcvYbhw9MsPnAMuenALLUwQAcVVa0aWqEuUVJnSTrEe812WjTNBySecgzLVckJ010yWuP2a1jojtA/85xWYfUvNdm4RuejSkupVDGBKi6JZf0PAOH/adkqSgB9B8YF2MjGcg7K4OeD0fpeCN5HB4/VpsLdJhcOjwX2Dn00xQKuUolhELYKsS9gr3fiVs3JSjtFoVWQGfWYFlcFXLRGjqC2rtyGTkxzan3xzjy8ySkxkU5r8G9U5hz9Jz4fYq1bjBIIBBgs+rXzB2ZIycnh7feeovKysrk1/xfCIWwHErl/yWYmZnBZIqV+/Baz6HY1ryUpBQHYW6OmvUZ6NOVbP923OQbCCyQ54qg8e5M1HolW//rVOLySUmktYwumO5NwsyNl6e/zEl2fQaTvT4OvngqdXJbCMkm7ERQ/6AHg01H5x/7ZKnzRCD3e+o2eTj2iw7ZSjVrP1WBQqlg82flDf4tT5WhNqjY88JhWd+x+plyVDql7Pu3fqaS0LywbOa1XKx+phylWrHsTTC5KLk2B0EQZJHQANnl9iJo/Uwls5Nz7Pzy8hJDspqSo6f4siza/9AvWWLwL0Hp+jwcpWbafneKob3yN+SWIEnQUHJtNplVVnq2D9P9Vly5R6Ui4WTd9GgRGqOK/d/rYGZxX44wcuO+q/lhNyqtgq3/dQpFIMUGbXjcql5vx2jX0Pn+OIMHwhtfSUhKCpV4v/KrzQwdnWK4TZxsBUFAkYQdbCkUGD+VJGhO4KOWO8yggO0/SOL7YEgklS6C0QUzg8mDJCHc9tUb9AhBge2vxAU8SZ6V0aFkZpmli2svU6JPU3Hgz/NLnpdixo9giDHmy88BS6aGba/NwUTyExmKefGznRMvcuaMeNNrrrmGX//618tr3ApW8H8QGzZs4OWXXwZAgZKLNDcDqZO9BhvUbypj8MgEJ+IVgxJsUltLDVTeXMhkn48D3+lKfMMkIashS49PxmZJpCSunFjB7DHIVniJoPUzlaKC1DLmfmupQRbBxtVkxVqUJruMWM7ZdgrPczHWOc3hH0mfPDLYlNQ/VM7c1Lys0/eGXAP1dxfhGw7IKtlVfHU2rroMuj/4C8gvMuBabaX4khxObzvDSZmE6eXAkGug+GIX7b/tkiR9/SVofqIUTZpadhwrNgrZZQCLr84mFBTolClvvlys/WQF8/6gbBLacrHmuQqUSgWbFytgJJr/DdD68QqxL6eKY8MxmyFLQ/09HmbH59j5n/JOcLV+skxcR/ybvN9ryNJQckU2B74rnXCylRsYOSp/7HFf4CBvrZ2JnhkOvihPGQVixCypBFXN3W5MLj1dfxqgb4s00cDgUuMbkH/4BQOsfayUwMQcu7++VLI7otAXsV3ziJfJPh+Hfig9FvpKBvjgyLsAmM1mOjs7sdls8tu2ghX8H4ZKpSIUTo4WU02RSiLZKISo/Fg+5nwjW79yTHIzv/5+MWe0+YtHEtsmibvkljVzNWVQfHk2EydnZKkNySXsRFB5ixurJ43u9wbp+bN8Ykpk/JPCqtsLaP/DgKzfCuGclEa5dK5KgoYHStA7tOz+Zoes72h8VNy82/zv0mXuQCw3FgoJy1YSl4umx7yoDfLK+v0lKLg4E6VKIb9EmfyqZ4AYtwfG55ZNhpLVFCt4rnTT8c7gsgldcuC+wEleq5O2104vLK32V0LOOjuF57vo3TZM15tx/k+Sd6m9rwhTpp7d3+5M/nvjcmWND3vQWTTsfv6YrNJt5TfnYPOm0/H2AP0yyxB7r81mrHOKoX3SOcF4Yo8crHmmFKVaEVXUlIt0t57JbunvWU6cqc/UJCV6JYvxKm/Jw5Jv5PDPupf87sVre8+VLlzVVvZ8Q96z2p/xLoNnxLXYtddey69+9Svpi1awgv9L8D/+x//gs5/9LABKVFxk+ChAajUajcDqh4oZOjpBx2txeY4EOS+dU0fD3QVM9Mxw6MeJ1zLJ8ms6h4bAmSSkzrjvan6iFI1BxWYZOSlDllY24SKCtZ+sQAgKbF1GbGEu0Mki2FhKjGRWWaOKllLIqEij4gY3Iycm5SmE6qD16fDc/zXpuV9nVtL4aDkzg35ZakcR9aju95cXl8qFpcRI5c0F9O4a/puUWtM5dBSc6+Dkn89Ikr7+EtRuLMKUZVie8rvMcnsA+ec5ATj1p7+NQEPLx8sIzoZk9Z2USBJLNT3hRa2TH1e3fqpC7MvPS/dNnRkaHy7DNzLLnm90yiIprX7aizAvsP1LcYc1EpGUwuQlnRmKLsvm6M+k96ojhKmkwgyLYF9lovTKLMZPznD4ZfmHfc35OiZOBSQPqnivzsRensbJP52hb4c0Q1JnVxJYzn6jDloeKCQwNse+7y8lAwrB4ALhi6aH3Ez1BTj6y4HURClgwjHEtp43EQSB9PR02tvbcTqdy2jc/x2Qf0T5/yIYjUYEQUCrFWVh28be473u79JwSzqrrjbB/Dz2Emi6zYxrlfgTK642ozfHLYput1F9oxWAdLeC5vtc5K4W2cBlV1tRqBRRglLj/bnU3pElfncmtDycR8H5FgiF8H7EQctjBeJneSpqbi1k9VNF4YbC6ic9FF/uAKDkIy5WP+0FoOsPQwSDwQUnWdY8W4r3BvHEXNEVTtY8W4pBvJSiC7JoeryEtc+VU/GxfFY/W0bFR/MAcF/oYM0nyjG6xfbX3+9BrVMx0T1N34ejrH6mnFW3ibS+7LMyWPNcBRkVom3NvUW0PFUGiKf0K24spGpjIQCuFgtrnqsgs8EMiKU3Wp4Wbfd+s4PqO8uoe1j8rfZqE2ueqyD7rAwAVt3mZvUz5dHfFgyEmDkjLn6MbiNrnqvAfaH4wlR8LJ/Vn4jZNj9eSjAUZHrQjwIla56roOhKFwDem3JZ81xF7Dk+WkLjIyUMHhplasDHmucqKLk2BxDVm9Y8VyESdBBLnjU+Kp6c3fwf4oRYul70YeHlLtY8V4HRIfaR+oeKaX68NPo9q58tp/J2NwYH5J3vYM1zFaR5xBvXbfJEfQhicgqVQHA2RPYa0d/2apFUV7OxaIFty9NlVN1VyOpny2n9TCVrnqvA1WIR/X1nzN8gErdq7hX9nVltxVWTQe7ZdgAqb13o7+YnS6m/vzjm78cqcF+SCUDZhrwF/m563EvDw6KtwcEC/3qvT+DvR2Onj9c8V4H3+lwAPFdlLfB3w8MlND3mjfnlE+WUbcgj/xwH5jwTtXcWYcwRpaDrHyym+ck4fz9TTsUtYp9t+riX1s9UYq0Xb1y7yN8tT5dRdYf4DrpaLNiL0xFCAkN7J6m+e5EPny6jZqPoQ2dduti3rhL9UnVHwQIftny8lNpNoq2lxMiaT5STd76dE7/uY7Rrmuy62CZH8+PF1G0KjwPZSlY/VUzBxXZQKghMzyIIQpTw0vCAm7p780WCkhFaHivAc6n43hRfZkOpAt/IHMxA3R0u6u5yxb7ngRxKLrcCUHBOGs33uTj22jCHXxsgu9ZE/R2ZMdt7HJReIb67eWuMNG90kNMo9m+NXol7tQVBEEumNd1lp/xKsURAVo2GpjszsBQKNNxqpewiOw0fS4/et+GWdCqvNEEwSGY5NN2ajjP86CqvMBKcDzF4THzXG9abWHWlyHrPKAjR9LE0surEMa/8Ei3NtxgpXKuC+SDl5xioulIc040OaNpgIK8OCAYpPU9N840iOWi8f475oEDNFRoUc/OYjPM036ilQBTYo6QVmm/UYsubp/pCDU3XKam7XPzdCsUszdep8TSIE3xREzRfpwYFZBXOUneZEoUCtr0uEpSar1XhXSOSkwpWzdH0MRPGMD+25lIlaTYxgDDN+2m6UUfZueK/c6uh+UYdJosfxYwfz4VwQvkbzpw5g1ar5fvf//4KQWkFf3d46aWX+MEPfgCAQIi35l4i+zwzq5/2YsgIgRCi7r5CGh/yRK+pudsLSgjNBsk7zy7a5opjQu3GIpoei80npR/JZ6R9kgPf6SJ7bQZrPlGOtVS0rbqrkObHY/NJ88dLqbxVHHObnvRSf6+HnHOsgKi4Ej+fND9RStWdhQAMHhlFCAq4mkTbig35C+aT5idKqblHHPeDQXHur763iLWfrKBsfd6C+aTpES+1m8TfarApWf1sOZP9Mxz5eRcl1+ew+tnYfFL/UDH1D4Rl5gzifYuuyMLsMVC5voi1n64QCSdA/QPF1D9UHL129bPlFF+bzcDOMfzjs6x+thzXmjTRh5s8ND0S80vLM2WU3STGNUqFguBsiJPvi8mLmnuKaH4i5peWp8qo2JAPiASfmntL8Y0F6Hynj6o7CxfYNj9ZSuVtor8dNemsfracNJcG33CAYDC41N93if62lhpY/Ww52WtttP+uj9GOSXIaY3Nn02NeajeGfZgr2uadIwa+ZTfl0fJMGWaP6JjGR0qouz/ib9EvBeG4pvjqbArPE0sMCqGwvx9c6EPPlZH4OovVz5ZjKjPQ+plKVn+ijIaHSxbYllwvxpHuizJZ/Ww5hiw9Oc1WLG4T1RsXxhRlN4v+zjnbzupny6PtrU7g78pwXONqsrL62XLsVeJzrLqzEJUxtkZpfrKUVbeL/rZXpbH62XKc4Vi88hZ3rM/6RH9Xh/us2RPzN0DZzXlRW1dNBtmNNmrvC/swSy/6+3wxFvfekEvLM7Hf1vqZStZ8KtyHw3228FJX1N8L+veDxQgKISqJvPrZcoqvFv1deKlL9GH4sdfd76HxsZLov1ueKcN7gxhH5p3vFG2jY4QnGkdu/fwR5meDlK8X+2z2Whurn00yRvhEFdT5WbE9znozq58pw14lTuDiGBF7b6rWuwnOBul8tx9buYHVT3txNYr+rtiQS8uTsf7R/FgxNfe42fylY5x48zSrn/aSd07Y3zfl0vLx2H2bHvZQe28BVq8BZucw2nW4LwivCa/Njq4JAeofKKJ+UxEGG5Tf4GbtJ0spulzs354rwuvHyBixqYj6B4qi12Y3ZhCYnOPgi6couNghjrNh/9beW0DTw7Exee0nSln7nNgv07LF32pyh/vsXfk0PSLaCiGB5seLKV+fw/6fduOfnCW/1UlGqR4hJLDqtryoLYhKSBUfE/9Wd7eHlo+X4KwT+3fFR3NpeswTKzP3iIeqO/LR2yBrXQYtD5bQ+cEAu7/eSfn6HJofL462ofHhImo3iu+CIddAy4MloACFSkHp9dk0xz2bhgdFWyEkoLcKKC+YYF/PTtRqNWlpaYyPj68QlFbwd4dgMBjtt+0cYGvwDRof8lB1Wz4IIYy5elqeLCFrtRUA77U5mN3hxYofGh4opjo8J+szdbR8vJS8c8T8gecqFxqTOkpQqn/YQ829oi16cS1ccLE4DhVe4orOJ3qrkoZNHtZ8Mm7d/FRZNF+Tf76DlqfK0FtFxaNgIIgmLZZ0bf54Kd5wviZnrU20zRJzAu51WTQ8VMLqZ8opX59P8xOllIXnCGeDhZanyrAUi7aVt7ox2HWMHJug589naHrMS3k4rrFVptHyVBm2SnEcKt+QH51Pmh7zUrmhiFV3iHOy1Wug5akynA1iDqbshtzo/H3oByepvCmP6vvCPszS0/JUGTnhedZ7bQ7NH4/N9bPTc0z2z4T9JPol/3xx3C+60rUg5qzd5EFQCUyensE/4aflqTIKLxF9WHBxpmgbrppVe28RtZs89O0YZuLkDC0Pl+G5WsxP5p0b8bcYR1TfXUjDA+LYuOVLRwjNhfBeJ/o7a43ob2OeeOOq2wtpjIsjm58opXxDHnqrEmed6G+rV5wjKm9x0/ho3Bz3mBelVsm8L0hGuYmWp8qw14g5g/L1+TTFxe2Nj3ipvNVN02NeWj9dSctTZbiaxPxH6fW5C+KlhodKqL5D9HdOs4PsZjs568Q+W/yRbJqfitnWP1BMzT2FMX8/XIb7AjGuKbpsqb8jMRCw4DP3Bc4F/q7ZWETd/bE4svmpUoo/IsY1Oevsor8zRePquwppeCguTniilNLrc3E1Z5JRnE7tnYWkF4i2q24vWODvpse90bimdlMRrZ+pJLtV9EvFR/MX5NIaH/VG40ir10B2s51QUGDo8DjlN+ct8GHjI16qbhf9YswT+2zhZeF477qcBXF7wwMlVN8d9mGmaJt3roPeD4bp3zdCZo11gQ8j/o6NEeJ9/RMBhJAQJSjV3ltE7X2xWKXl47G4Jv88Oyq9isleH/4xqLmrgPpNMdvmJ0rwXiP275y1GbQ8WULXeyMc+OFJnOVmGh6Ms32smLJwDt3ZYKblyRJyzhZ9qDGpcJ8d26RpetRD+XpxPLFVmmh5sgRbpYm6TUWs+mgBTY/H+kfjwx4qbxFjfGuJOM5GYvGyG7IJzgXp3SGeWmh4sIiq28XnqM8SbXPWim3wXpu1IKYruTyb6jvF56i3QsuTJeSfJ/bvosszozHnwIEx5vxz1Mb7+8kSCsP+LrjIScuTJRiL9TTc62HNs15qI+M3oq0nPCbnnmWj+fFi9FaxBF7V7fnoTGq2fPk44x1+mh4txntNFkJIwNVsEe+bGxkj8rGXh3OBej3NjxVTfqM4njhr02l5sgRrsQ6EEN6bXJwq2cvgmUG0Wi3f+973VghKK/i7w//7//6/vP/++wCECPKm70ekVUPjgwXo7FoICVTclE3tXfnRaxruKUShFnMvzpo0Gh8uxOwW89dlN2ZTF44hACpvyObMsXEO/vAU1lIjzY8XR+dZ77VZ1N8fs62/v4iy8PtWs9FN4yYPeedZQQhRcrVrQd6tfpMnmtvp2SbuN2aFc16ey100PhKbp+o2FrHqVnEcCk3P0fREqbgv90wZBZdl0hS3F1Z9dyHV4f0WdND0RCnjp6Y48otu8s9z0vREqUgiAarvKIjOJwBNj5fivtiJzqGj6rZi1n6qIqxiBKtudVO3MW7MfcyL54osxk/MMNkzQ9MTpWQ2i+2v2OCO7m+BOMeVhHMNSrWS2Zl5ereJpJSym/IW5IEaHiqJ7llZS000PVjK1ICPjrf78F6XuyAPVP9AcTS3Yy7Q0fREKeaidCZPTROYmV8wf9fd56Hyo6IPdU7RNqslg94tI/TvHcFVnxG1rd1YRFV4T1ZnFn2Yc5YYR7ovEH2YlqeL+fuuOB8+URol3uSus+O9Oo/QXIigP0TV7QXR3GXE3wWXinNNzlobTU+UYnLraP10Jc1PlVEXFwM1PurFc6U4z2Y2WqNtsHtNOFdZqYk887C/I3G7fZWZpidKo2papTfkLoiBGh4qoTQct1tKjDQ9UYp9lTh3eq/NwZgZKwdbf39xNG5PyxN9mNloBcBzZVYs5gyI/l4VjoF0jpi/AQouzaQxHHPmrraTv85J1e0L+2xuOI6M9tkwWj9dyZpPxvY8m54ojcaRuevsND1Rik5sPlW3uVFqFMxOiUTBxse9FF4mzrNZLRmirVN8jpUfdVN3vyfa3xsf8VJ8VThWqbXQ9LgXc0F4jLg5j/oHxGez80ttzE7ORf2dUZ5G0+NerKXi2s57fS4NkVyxQklwLsT8rHgo3lyoo+mxYuzhtc/iMaJyQyGzvnm6PzyDIUtH4yMeXI3i2qfoMicND8Zsa+92U/nRXLZ9tY2jvzlF4yMecsLxacGFdhofLozaVt+WS9Wt+ZgLdQQCYMrUkbdOtM0/N0O0DY8RVbfkUn17Huhg1UfzWfNsMe7zxHchZ7WVxgcL0aUJEBKoXJ9N7Z2xcbbgHAe+kQCHf9qLqz6dxgcLMbjEG5ffmE3d3TE5o+bHi1j9cQ/oQGNW0/hgYdTf3mtd1N4j3lcQBOo25uO9OpO2NweZHvKT3ZSBtVSPIAiUXOWkbmOsDbV351N6rYuaO/Kov6uQxvvzcVSJ74LnYhv1G/OihKKa23Mov94FOnBU62m4M5/uzUPs+/5pCi+0Ub9JHGuEYJDqW7JZtUHsHzozNNyfj0IFSpVA/jozDQ/E3seqW3JY9bGc6H6u9oJxjoxvRalUkpGRwcTExN8lQQn+TklKEQQCAerq6gCYmR/lj396G12a+JN0aWqUagUGq1hXUm9Ro1Ao2P7NQQgGUeuV4mCh06E3aVGqFRgz1BAMYrBqUGkUKObFazV6JXqruLGujtjaxc5ttIv/JhRipicoKpII4TJMRsQ2OMK2Tr1oGyZxKAUlWpOagosd1N9fiFKtwBSux22yi7YKo2isSdOgMapRKBXo0tWoNEoMtrBtpmhrMIvfq03XoDaoOBiu2anSKdHbw7ZOA0q1Ar1FbJPeqkUdllXr2SxO6gazaGsIt0HvECcRQ0bMFkCtV2HMMND8ZClas+gHk1MMrgw2HSqdcoGtLl1L9lkZFF1gF9sbHrwNNh0qTZytSYVaq2bfNzvAqA/7RWyDybawTrs2TYMmTUPnqwPs/1Gn+Gwi/raLtoawvzVpGrSROqMz4rNJCyfETA7RVmnWx3xoiv1WlVaJtSCNyo+VYAz72xjuE1qzZoFfVDolQV+I7V84htEV9qFVv8TfUR/adUyeFkvuKdUKDPawv21LbfVW8dkMHBAXxEZnzHaBvw0qtGbxt+pM4m/NabJFf2u8vzUmNdp08b4KrX6Bf43Opf7WmmK1WpVqBekFBlo/XYnFYxT9Et5o06ZrFshWqjRKjHYdx17qYXJwGoVKgc6ijN5XbVjoQ2O4z877xQlXpwn/nkX+VutVGDJi75hCpeBUpC/bdAttdTEf6jLE35Zd76D5yVL0GdoEfTbyneJ4YnYbxPJtGVpUWtEvCqVC9HeaeF91uM8aw++ySqVawNjVGFRRcmJkjDDaIuQcsezZvrDsn9akQhvnF6VagSFDbJPRpkGpVqBOg8kuAa1BhcYQ+x6lRoEh3EeNNrH9eQ0Z1N+SgdakRK2L2ao0CnTpYUUBm/gu69O1dG4eJRQKoY74JRhErVVGbfUWsQ06i5pVVxnRmZWoNEq6ts2F/a0Ux+RgCJ1JKbbfIrbJYBb9og73RbVWiS78zhnSgihVCgzmsK1VFe2Hx94KoFYr0IX7mWDSoFQpMKYrUczNY0hXoVQpGO2E+UAIpVKJVq9E4Z8FBaKtRfweo1mBUqWguClEQZMJrUmJ1qCMqo4pVQoMaeHx3KpGqVKgMELdZUp0BiVKpYLtP5hkekaDSq3AYFaimPFjTBd/q8kMR8Y38/0fv8CJEycoLS2lra2NO+64gxWs4O8Rt912GzMzMVm+l997kbHJUdCKY7DOokGbHjfu65TMDPnpeLVfnHu0SnRGxFMWVjGuiUCtU2HIEMfC3BYxTnA1iPOWYZGtxqCOzhGTp8X2KMMVjE0O3UJbozp635n+WRQqBcZMPc1PlGJ0LZwjNEY1unDcaLCoUWmVaNPE2MuYucg2XY3OItoq08XfNj8ZZOy4D5NLj0obm0906dronGwwiDGF0aFjosNHcC64YI7QmjXownMyiLZpDjG2MjnF+xZf7MaQpUdn0aBJX+TDcHxqcIpt0qerqL6nCH2GdqG/9apYfGoX79u7fZgz+ycxLLLVGNXReUoftjXY9Oz5ejtavSapv3VmXfS3QiwGMhWIv0djivO3WYFKq8TkCsc1di1qnYqqW8TEizZdg84S9otBLPdnCsdApkyxTVv+5Qjdbw+K/g7P30T8nRn2i11sU2gowNz0PAqFMmYb9nck5jSGbTVGBe1v9DHvDy4oQafWqaK/zWDXRvsLgMGhRZOmjhLi1HpVNG6PtEEXjl0MGVqUcWqGYv8Ov1MZER+G2xSOa1qeKqP546VojGr04X6os2pE2/Bi3eiI9dk9LxxFCArRPquL+NsZZ6uL9e/49YzBoAz7MPxswu9yhDSjS9dAUCHG7bDA1hjus2jFf+ss4rOpf6gSDKIPI20whfusLry/rrOKcaQjvOmp1qkwOCLxknhfXWTNsmiMUCqVqNThmMKmi/ZZAJNdi8awsM+GZgWGD83E/B35rfZF771JLcaRPiAk+lBvC/vQphXLf0ds09QYnToqb3ZjzAn32XA/NDm0C8cIswatWYNvBPGQhiJuPeNcaCuOERpMbgOVt+SJY89MMHzfsL8Nhqi/48sCKlSK6Km5yHPUh+McvUV87yNkIrVBJa6TfDDaNi2+CxF/Z8RshZAg9lmbhp7tw8z658X7WnUIIQGjbam/9RYNdRu9FK1zin6xhP0dHiMibdAY1ejMGgovdlCwzoJKq2SkbYoD3+0W10nh+FQICWjTYmPyG2O/5q23/sD8/DznnXcek5P/DWXVFazg/zCGh4e5/vrrAZhijLfffxN9eD2oNyvFfEJkvHDoUSoVbP3forqHzqrBGB5jNXrFAluT0yCOb2ERDYNVhyk89un14XkrkvOKxEB68I+FxHc0FItd1HoVJnssVhFtxXuFQqIUftYaGzX3FKIxqKPxh8kl2urTw+OQTYs2XVxzadNUqI1q9BFbh2irtcRyPdo0DUd/JioRaNM10bleH54ro+OzXYcmnAfqeKsPBKL5ME16ODYJz7N6h04saxeGzqwh3WWk6TEvBqtK9Eskj+XQLRjfdOka9Bla7DXp5F+ULd43EqvYDQvmE71FHBsPfLcr6kOjc+H8HXYhOosWvUVL75YRDv6ga0F7TWFbZTgXoc/Qog2vt/GLMUVamPxrdIq/VR9eY+ttmgWHJtVGNTavmcpbPNFclM4Smw+juTTE3FrQH2LnV9owZOiieS0QYxVNXM5Im6bBaNcx2jlFYHI23A/D84lzYdyuTVejD8dLXe+Lzyo+VtHo4/xt0aAPx1Jo9agNKnJWi6QwY6Z+ob/Nmmi8FPF3BBFbfXgO11u10fkEQKNXY3YbWPvJShzl6eE8EVHb+LWPxqjG4NRx8q1Bho+Po1Ir0YbvtbjcmsakwRjuo4EZMX8SzSU79NE+G/GhIWyrtxtQaZT0bjsD/nCsEu/DNDV6W2SMUKPWq8hpdtL4qFf0YVyf1VrU6MNxu8Yg+iUtX4/eKuako35SKNBbtNFcWmyMEPuHSi3m24n2WQ16S2w9I74LkXdZh1qrpO118SCFLkOz0N+G2NhjytShNqjQp8Fktx+9VbOgH6qN6uh7bgrHbIXnZNL4sAejTbuwz5o00fWjPtxn9Rk62l/vIxQMoTEs8nfEL+bwGGHXUb4+F4NTh1qvjpaF06Vro7YGiyK8xgrHq5k6FAoFmnBOT2fRRPs3en34XQ63P0cXzYm2/24AtTa2Tor4MDZGiG0KDfvxj8wSCoF+kW3U3+H1rmu1De9VOZhcenFd6o/zt23R2GNRUXtPIXqrBrVaxZZ/PYa/34/aqBafjRCKjRFWHadC7fzgd9/h2LFjeDwejh07xp133skKVvD3iHXr1uH3+1GFVS1+t+dlxmdG0YXXvgabFp05bhw1qZnu83Py7eHoOK9OU4NC3APRmePGlnQNRrsehVJB7hobaoMKV4MVISRgcuoW5CV0Zk00ZhvtCJduC0XmCJ24xgsrKOks2qjtzKDYdp1NQ929RaTlGRaMhTqrJrpHqDRp0BrVaM1qFColaTkGtHH7OIYMHTp7rJqA1qhmfibE+IkZTNm6BbY6uy66NxPxS5rDQOBMgNnpeRQoQBeemxw6dBlxfjFpomOW3qFDm6am5NIcDNk6jE7dwjkiTR1bq9u0aA1qdGYdZTfnibbm2NyjNWuiY6zeqkVrVHPm4DijR6aW+tuijcZsmjQdWqMag13LgRdPotYqF8z1OqsmGsvq0hRojepYLJ6hRWvURIlH+gwt+vBciVa8byyPZUCbpqbmzmLQiXOTLjyfoBP9HYltjZl6tEY1e7/ZRs+fz6C366Lzd9TfzriYzahGEQLfcAAQFswn2jR1LOa3iX1Ak66hd/cI/onZBTkvTVrst+kzRNtIXi4tz4Depo0S4rTpmuhv01lEf0fWLJH9rpi/NdG4UZMu3jcSu5gy9WjT1DQ8VCKqiFo16CO2+rBfwv0lzalHF44597xwlOBsMGqr0ynDPgznpjJFv0RIM6GQAHEiNVqjGlNmJGYW/R3JdevtYlWPSMlsrVFDWlx8qjWqxVw34vrAYNfR+Gg5OrPYd2L5SNEvmnDcbnLo0KVro0Qk0YeRPGHYL+HYKy3SZxWRg/gKlOGqIzpLuM/GcRDi80A6ixZhVmD4wCRakyJ837C/HfoF8anephVzigGYmxH9YojuW4rtRxAPKuszdKTl6lm1Ph+DK9wGZzgmsoX9HWmDLRxHBmCkfRoFithvtWvQGlWg00XboLOo0dkUeK/JFMee6RAoFeJ60ahCG84bGheNyWqNuF8HYn5Ja1RF31+jXYsuXR1Vx9Nbw+9qAAYPTKI1qqLxq9GuQxu2FQQBnVnch+jecgb/xJwYP2VoIBQS/RLvb7Mag01D0z1uSi7KEu+bHuOS6IxqhHDFLb1Vg96mI6shjew1VrQGFSPHpzn0Ul+4H4pzkSCI73Hkub03+0te/8NrBGYDXHzxxYyM/A0k//9/xN9lubfFeP7553n44Yej/15rWY/F6FhopFYj+GMypqsfcIEA274VljcJJNCOU6kQZucou8bO9OAsPVsWJTjnEsgsKpUIwSBGB6z6WBE7vrpItj5BmbjVT3tFqdjPJZGKTSARCaJCzkx3ihpegoDFa2TVhkLmfcFl1TjPPdvO6fela9LWP1RM2+t9THXIqyXW+ulKUCC7nEVExUdOWTaDA+o2VTDV54sme1Kh8ZESdFYth17qYrxNuv0ND5dwevsQA9vlySlnr8nA6NLLL8n2N8TqZ8oRQoLsPrCccm/uSzLJa3HQ9vv/Znm1vwKMOXoKzs/kyK+65ZW3M0LtbR4GD44mLou4SA5w7XPlYqmg8Lu6RB4xInuoFMmIax8qZuzkNEd+1h/bhE5UVk2hoOACC9l1Vrq3jtK7dSr2kSoxl7RqgxOTU0vvvklOfbio1nSScm81H7XRtXWMiZNLh32FUhmV9M8ohsA4ovqTOjzJJipxqVZDKER6HlRcYmXeH2L3TyYgvDHI4vrcABo1RgfM9Ce4nybxd9Veb0SXpuLYn6cYX1QpRdCKk7MiXO6z/CIxmDj69iyCXiuSkxZB0IdJeXGf1VyjZ/9vxHJuipmlEtyRMm8V68CcpWGw3U/Xh3PRNiS6ZsD+PsfajjEzM4PRaGR6Wrom+ApW8PeC9PR0pqbEsUqHgbOVVy01UiijMYz3hhycFRYGD41x4tfhsgFJ4hsMUHe7h73fTCBbmyJsXXV7AbPT87RJ1FJ31KRTek0+031+9n1bXnknEJU8fKd9knbNT5aiManZ860OWWXoAEwFBlQqJEvM2SqM5LW62P+dpWWREsFzZTbZjTaGj01w9GVpCWz3RZnkrXXQ+XY/fVukFzmVt7ixFqbJLm3S+plKgrMhWaVH8s5xYPWkcfD7XbLujQHKP5LPybdO/U1Ksi0HrtVWii/Kof3tXgZklKVYbrm35idLQUBWab6/NTxXZjPZN83QbmlZZBCVpLIabVFSUypE3tWpXl+sz6eQaq7dWITBrmPrV49Kl8JTKFnzbCmh+RDb/+OEhLGI1k+WgQCbPy8vnrZ6DRScm8m+b0uXXMxZl0HvB/I1o5ufKEZjVLPnOx34+pNI/4eRauyKxLILSgsYoPXJMnH9+MWlvllwjQGaNxWz45vt4BM/S1SmYPH3uC9woElT0/7bfslr1n6idInfE10zEhxhoriTE+1im1966SXWr1+f2CkrWMHfGV5//XWuuOKK6L+buBir0rrQKC7uAlj7iQpQIqsMbdEVLuam5ul5b1EOKFW6UA9Nm7zs/GabZJmt5ifE2GjzF+SVKot+RZZeslyWPlNPwyYPsxNz7PyK/BIMWWts9G+VDhiq7yik+4N+2aXo1j5XgSJRidIkaH6yFKVGKa8smx5WP1rOzICfAy92SZpX3V6IucDI0V90M3J4StK++u5C+nePMrRXXs7LXpNOepZxYUmw/0NofNSLQoHsPrCccm/OBgsll+Zw4o3ev0l5teVAbwX3Bbkcf+207Hep8hY3Yx1T9MqI7VueLkOtU8XKsUiUyFj7iXJG2yc5+krq9RcKJa4mC8WXZNH9/hl6ZOSby27IxlFh4fS24SgpSApVt+fTs3mIsROpnZPu1hMMwsxpeU7UZ2pouNcj5km/Kh3Dyhm74lF9h5v0PANHf9XDyOHUeaPiq11oTWqOvJTc54niu5q7C9j/k5MoZhPHXRF4rnSRVWdlYP8Y7b+Le7cTrN2Hqzpo6zjG1NQUFouFsbGxlG1fwQr+nlBUVERXVxcARsycpU2Q81IqIPw+5a3LIH+dncGDE7T/PlyOK0nOSwgJVN2Wz8EfxnI0CddlCy/Ce41Yxr399/2RixJ+j7lAR9WtHiZPzXDgB0nWogliPJ1DJ6vUV/39xRgcOvZ/v52pHnn1uHQOHbp0BROdqcfGtDwdBee5OPQj6VLpICrZeC7NZvjoBMdekS4JntlopeSyHLr+2C9rXvRcmUVmVQZbv3xEVumxtZ+sJBgIsv0/pHMG9mozzlUWjv7qlLyyZjrwXJTF6W2jf5OSbMuBtdRE+XX5dL07QP926TzGcsu91d9fjEKtYPd/ysvV/C2Rd64D35lZhg/Jy3llVKSR22znYLJ3Ly62SsvVUXOnh4nuaQ7+UKLPK5SU3ZiDtcDE3m+1EZDRnKbHS0AQ2PmV9kW3ShzfrX7aK3ImvpAgPl601gQwZOkousDJ4Z9Kl2l01qQxtD+8Hol8f6LxLjyu1m10Y7Br2f/DU0z3pi4Pp3NqCQwt3QMEonuyi2kwaz5ezJwvyK6vd0leU7/RzeGfdROYQCzNlqgMW2TPN/xZZm0aRqeOrreHo5yRJd8TJsS2PFoACtj2xViMqVAolrQ5EJihv+QQx9vEXPDLL7/MzTffnPB3/z1BLW3yfz8eeugh1q9fH5Wz2jL+MvYZN82Oq2NG8/Mo1GqEeXEj+8ArAyj0QBBsXjUjifI2wSAKlZJjvwkvnoywemMeZ45P0/6HUdBolhKVQiEUCgWFF2eh1itxX5BB9x/jBmqVaskG/LZ/b8MYltrHiCxyRdOjJWjNGvb/5GRKgtB42wwn/zQgi3AUQc3GItKyDWjNajpfTZ1s2PO8OMCleYyE/CFmelMHGide62GqWzo5EsHc9JysOpkAvjDfLF4lKGVb/tBL4QVZsghKwLInxaKLskGBbJJSxS1u5meDtEkt7gH3hU5y1zg4+suTjB6Rbv+2f5NfK3i56H5zkO435dfCbXm6DGFOYMeXpTfWDA6o2FDM8dfkEeG8V+eQ5jLgqrLII5PNIGuTLIJTW4ew5puS90khJL7jQEaeSKEOTITHiETkpAiUSoLz4kKkd7+89+PgKyPkrTXRs0Wa+JJZpWXw4Cz7X04SNAaDCwIk7wWiFOb2bw0nJidFEJ50J3uge+ck/fvDtonISWE0rjei0ijY/rOJhWPd/PzSYCM8Hu77lQ9jFsz0L7qZQhElJ0VgzoqcDphNSFCCMDnJCM0fMzJ2eo62P8+x/zd+EISEZCMAm8vPaCccfRNclX4GIjH1fBDF/EIfzczM8N7It6EHrFYra9as4Z133knqkxWs4O8Rk5OTXHTRRbzzzjsE8PF26BXO4ioMSkPMKG7x0vaLXiaaphnYKY7NtnIjI0eTjOs+ogSlyo/lY843xUgHCkXSDTNLvglBEGgj9Tx6Zv8kvvFOpk+GN+0NSBIaDDaov7uIual5SWLIji8ex9VklU1QAqi9rUjchJfY0Bo5MsPIEZGs4WwwSxJDOl7tY3Zyjp73zshqx9DuQXJb7PIaDcz6xDHYVGCI+TMFxrqmGT4ub3On570zstsNkLfGib3MjFJTwOEfSZNCrKUGCi/IYe832iVtgWgpDTnEoIFtY7LISX8pdnxRPjnJ1WTFc0k2He/0yWqT94ZcBEHgxC+lkwwAWQ0ZuIJW2SSlgZ1jDOyUbgfAmbZJcgf8tL3aJ7lJBqBQAQqkCUphBP1B5nwp4pxF2PNiN0ardDsMuQYIzjPW5mOsTbovFn8kC1e1BXOukaMvS68DAHZ8qR1Xi0WSoGQrN1B+g5uZoQB7/6tryedLkuDh8XDP97uTEpviryk6LxONSU3Jpdmc+HVf0qS6EBLwXp+NozSdLf96nO4/nlnwWSJYivWMtfk4/Eo3geGFbVl8zZ7g+wzTi6JDQVlZGXv27MFgMLCCFfyj4PLLL8fn82E0GhEEgZ28hSOUTZ1yXcxoUdJ4zzeOoAuf3rYU61OSbDpfi+V91jxbxtCRcdp/258y7vJcnIXWrKHg7ExOvpU6H7DjS8fFsm5+RLUVGSFSJC91+KVOxtqSD+z+QT9tr55eFnmk9PpcHKssGKwaOv+QOucVIQPpM/WgRJJ4cPRX3fjG5M8tgYm5Beo2KeFHLHsp0/zEH/rxXpnFSIe8HIOcw37x8F6Ri1KllE1S8lydhUKhoP230jkyZ4OF4kuyaf9DnyzSlByy0V+Kod3jy+pfkbIwu74mr001G4s4+W6fLCJc4aX52MvMTA366f1AXp738I/lbfQCdL7Tj91rlhV3iaUDFdH1gByE5gXOHJDX7mO/6GNyrZ/eLdKbn/aqNIYPTnHwB9KHMgCqPlqAQimfeO4fnKPt970M7ZM+mNn0iAdtuobdXz+Gf0zCODweHnixG2OuXhZpyllhkcyTCyFBJDU+7GWsc4pjv+hj/3fFmFQg8ZhuLdEzdsJPx6sDTPbMxH5rApKFP+TnA34H+8FsNnPxxRfz5ptvSrZ9BSv4e0JnZyePPPII//mf/8kME7w1+xPO4QZ02phiUPwGe88Ho8yMzEaJhuZCHROdyQ+KRAhKhZc6yVxlYfvzJ1ITVRRK7GVi/akoSSkJCWriZIA93+3A1xe+oY6l914c4+mgcVMxgYk5yflrzzfasVebZROUAOrvFUtKSQkRTPUEogSljIo0Ro+kjmH6t49CSKBfZo5h8OAYRRe4CM0l37uIR2B8DhRgztIxcVL69545PMb4KXl7jcMHJhg+IC+PAmAvMZPdaEebruHoS9LznSFbR/FFLtp+0y2L0FK30YNSp2T389J7oGPHp9kqh2D/F2KPzDwdgLlIT8VNBZz844CsfuC+2Ilaq6Lj1cUbTYmR1+qEkCCbpDR6ZEqy30YwdTrASPskPe9LkLHDhESVRgkKZD1PgLmJOVE1Sib2frMNgytJHiVuvNHZ1aBU4esPJCcoCaFou3PWWik414G1eJK2Xw0kJidFEP5s77e7sVeZRIJSChhcOupuz2Oq38+BHy7Kp4UEhMVbsuHxcM8PTiUlNsWTg7KazOgzNOS2Ouh8YzgxQQkgFCJvXQbZDRZ2fLOLwX1TwJR4ryT7q+k5aiZOBdj/k9OE5ha2ZTFB6VhgF93CUWiD0tJSduzYgdlsTtyWvzP8Q5CUABwOB4IgkJGRwdjYGMNz3bzR9wKXZj+w0DAYApVSVAgBMIL3IjuhcwV2fP10YkZeKARKJWaXFoVSES3zlAqHf9qHMV/LzCmxc6UVGpjqSp5Ymen2YczRUHeXB//oLLu/HndCPgFLsfuDQQrOdckibkQISmUb8rDkm9j+76kXYfu/3UndJo8kQSkeNbcUIswLbJEINAbDGxgZFUasnnTJ79j11eURg7Z8TvqUYATjbTPsa5NPUAGideHlnM7qfLuPcYlBNB4ZnjSEkPTmKkBwNoRCqcCUZZRFUgJRZUiKRPYXISxnKEu5CLFmcAh5gWDeObkYbHoyK82y+vq+b3ZQdKVLFkHJXm2i9Go3J17rSawAlSAp0/PuMD0Mg0KZOCmgiM16o8dn2PLvcQFVeBxJhp4PJun5YGE7FEkSQ2XX2Dj2+/HEBKVFKkrudUayq0w4SgIc/m2C3xkMolAvnAp6982g1isQgiEU6qWqTEJ4Mi5oNZBZqmfnD8bjCErBmPrSYszPM3Dch92tW0pQ0moWmKbnQsWF6UwPz3PoNf9SgtIipOfAZC/s+eU0c7NzgGapkT8A+vBiUiBcPlMZ+0ynXXKJ4POT22wgrz6N6cp5Dr3qixKUhBk/ikXtHkvfT8dsjGTw6quv0tramrrxK1jB3ynefvttPvjgA84++2wAPuT3lIRqKFSWJbSPEJRq7yvClKkXN5T2JFlZCQIoFNGyH3JIB3teOIwvbGf2GFKqEkUINbWbPJgy9ez5bmdKlSTfCPhGAvTvlqd0MrBzDAziaffu9wYlVYkG9o0yNSiTWQFU31NEeo4BtU5a8ShC9Clfny+ppuQbkae4EMGJX/ZyAnlkFoDDP5QmbMTD1WSl6OJsDvykS5IE1fPuECqNgpMyidPOahumTD3uizLpflv6GoVKIRJg5CKyrpf/WOXfOksvmwSnt4nrl6BMMo6zXKxNL/e57vtBJ0Z7gjk3AZoe8xKcDbHnBZkJJx/s+6+4WF1iw2zvN+UpjEWw4yvy2lF0eSaDhyaZ7vbhk8EhqrstX1TR+Bd5G1/tv+3H5NTKIii1fLyE4WOTtP9+QFa8O3LUx9zUPF3vSq/rGh7yoLdo2PONY5KqceYiAxOdPjpfH6R//2Ry+7jElEanQqFUxJSd4j5bfM3qZ8pQaZVs/tyxheSEBNecqT7G2IEBCEJOTg5Hj/7tkqUrWMH/Sej1ekKhEGVlZRw/fpwz9PHH0C+4QHlDQnv/GPjHxLli1YYi5gNBtn8hCck1HHfps/QoVErUmsTKvPHo+F0/vTvGoqSd9AI9kyeTz03+fj96KzQ8VMnMcECSJHzy3T5KrshPSVCKIEIgKbrMhaPCIkkoPv7L02jTpAlK8Wi410MoGGLrv6YeY0aPimt0Y54eZ4VZksC1/9vLm7tkKS6F4R/0R0tTyEXtvUWotCpZG1Rtr53GN5KaLBsPV7UNBEEWSSnoFw+N6jPkxRggEsn8g3+DnFe4Uotc5SKlRkESHsgS5J3rID3HiGNVBuPt0n45+vIp8s93yCIoGfP0VN9SSMcb8ohesIiQJRF3zfT42fKv8tcNAzvHo+tBKZRen83xX/bJIii5miwUX5rFeP0Mh34oj6R04q2+aKkWqXsXnOtk+/MnZBGUAE5tGSarPkOSoKTP0tNwdwGTvT4OfL9bkqCU7tYz2e1n61ePo9eFgMQxVDRO8oNSFSuPnCruslenU3ZNHpOnxbakIiiN5wzREzwG4e766quvsm7duiV2K1jBPwK+9rWv8fjjj1NSUgLAe/wC72w9hdqKhYbh9ytCUCq9Lgt7aRrtf+hncG9qNoEhQ4tSnXy/IB5bv9qGTiu+l2m5OqZOJ993ihCUym7Ow16Szv4XO5baxxOVAjDZM83QEXnshwi5punxUno2D0mq6Zx6f5CgXz6J23tdLs5VFrrekVY8ihBTPFdmSRNPArBNYm80Hqc/GOa0TFIwQNuv5efHQFQkKr06j6O/PCmpMjV8aIJOax+9H8qTDreXpmMpSsfV5KT7j9KKhEqdEqVWXl8EoqXTZKlALRNyVb0A9DZx/RKckxd8ZdfZUKiVsklKe77dQVqmdMwAUHNPEUBy9fsEsdXRl6QVwCI4/FP5tgD7visvB5vTmsFUzwwT3QECE9Jrr+pbCtAYVGz538nWlgtjjt4tY5jzDSJBSQL1mwoYaZ/i5NvDDB+UFmfw9fmZGZrl1JZF72lIWML1WPXRHNJzDez5TkdSglIEBpcO30CA/p0TjJ70ExgIJKx4IwRD0b+rtEoUagUmu47p3gBCMJSEbyLQ8FAhOpOaLV9rxzcQWPDZ4muGy47Qe+gEzBMtrfuPhGWMOn8fGB0djZZ+Ewjxh77nOTOz6NRIMBRT+piB6aFZTu8aE/+djMUXCjHR7mfrl09x/LfiRFB7e1bKtkQISi2Peai+OSdG5kgCX/88wTmBkXZppuXg7gl2fEkkyqy6zY2zLm2p0aJBz5xjFGuKS7QDYgoGFbe4sXilL5jomaHrXXkDO0DFDYVkN8g/qb/6mXIaHymRZZvmMdLydJms3wmw9pMVNDws795qo3pBvfdU6Ns6mroc3yIceqlLNsnq9PvDbP7sYXrelacwsPqZcuru8chuy3LQ8mAZrR+vlG2/9fNHJIlyEbT98jT7ftRJx+/l9y255DrHqgwUKgW+iQQB8qJ3x+CA1k9X4L0uJ/GiHmJ/DwnU3ZNP6fWuuNtFJAwXLfAVCox5KtY8lk/e2vRFHyWWPay5LROr20BWQ1wHDwZj/8UjFKT7vUkCk0EOv70ooZLAftV1FjDCqS3TdL47tYSgJIRCUYKSQq3GkqtFqVZgdMTdLxFBaX6e6uvTwKKhZ8c8+34xHf0784lP3U12zhGaFxg5tShAn5uP/RdGw00GKi4wYTTPMTc2t5Qw5w+I/wFFrWpyagEfbP/RNAd/PhH9bDEEn/jdp3f4mJ0JcfxdMUgTZvwICRSX3up5ge3H3mNsbIzS0lIEQVghKK3gHx7r1q1DEAS0WjH5eYL9/Dn025TXHP9tL76RQHKCUgSCwN5vdLA5TJopuDiTgoszk5r7RgCfSFCquqVI1tw+fHyS+UBQVhm3Pc+3i4QgA9RulJ5TTZkGVFol9nLpkw3tvwur3Big8rYCSfsDP+nEdyYgqyQbiGXc7GVmqu4slG3f+qlKDDZZ5pTdnEfVXfLuXXZTnlj+V4bIybx/HqVagavKKuvecglKIG6s7f5OhyyCEsD2LxyTHb8AtD5VSdNGr2z75aD+Xk9U2UkKJ98cZPP/OsyZ/fI2VjZ/7jAHfyp/w3T6pE+2ipLaoEaTLi+Obni4hNXPlsuyNdig+Qkvhix5iaPGh4tpfrxYli1AdkMGNR/Ll23f9edBxjqlkym2cgMl12YDsP870ioHBhuodSrM+dKLHGddOmU35gAiGUvOJv9Y5zTz/qBkuUSDDao+5qb5MdGHCcdPIRTd2KrdKI5ph3/aw+Z/OYavZzp5uc/w3/t2jTDWMb3w74uuGQz28HbwZfbu3UtmZiaf+MQn6OlZXtJuBSv4e8SxY8d4/vnnAQgR4u3QKwyGUpMcR45P0LtdYoNFEPD3+djyL0c4Fi6dW31HYcpLIgSlxke9VN/uQW9NnWL0j8HczDxjMpR9xtv90ZP83mtzsNekS1wB5gITaqMavVXSlIM/6AJEdR+rVzooGWmboPPtZRzku7WQ3NUO2fZNj3mpf0De3KTP1NP0mFfW7wRRzbrufnn31lo0aEzy5urh/ZPM9MgnBR38cYfkwcYIRg5PseVzhzklM+fV+IiXhk1/m5xXwz0ltD4tP+e144vHZZfk7fnzGfZ8t532N+UpsAOyfZJZaUGlUTI3nXoTBgA9rP1UJd5rc2Tdu/JWt2xbvVXB2mdLyTtbXg648pY8nJUW2fYDO8eZ7g9w6BVpglLFhlzQw9DuCTrfkN6wtZelo9apMNr1krbVd7hBL7Zn37e6JO39/X7m/EGG2xaNh5GYJy7uqdtURPVtBaTna8EXWkqAirPPP88e9d2W/32M/d/tlIy7hg9MMj0YoO21viX3i8f7oVfZ1fseQ0ND0ZzXCkFpBf/oKC4uRhCEaAWXNvbw3uyvlxrGvTcn3+lnuj8gSVACOPLSabb+23EIQFaThfxzU4x9AQhMKtE5xRJR9TLmvZFjk8zOzCcnNCkU0X2QAy+eFMlGOlh1i1vy3jqHDo1Rjb1UOkY7/cGwSCbSiTkhKbS9dprJ0zOySrKBWDotq8HGqlul2w1i2bc1z5ajk0FYBSi8zEXlR+Xd232BkzXPVaCTIXISmJxHrVeRUSpPEUUuQQnEGGP3t07IIigB7H7+BDtlxi8ArU9XUn+P/LzKctB4f7Hs/drBXWNs/fwRhvbJI0Jv+/djHPyhfOGKwFBAtoqS1qxBa0lCsF+031h1m5uWJ+Xl9dCGaHigSHbOq/oON40PJR8fFitTu9c5qLhJXv8G6Hh7gDPHJpbuky6KH0w5OjyXi2Pn0Z/JiHV1oE1XYy0wLfx7AqKPpVBL8RVOUCrY9/1TsVK/ISEpx2OkbZrZqXkCo4s+j1wTuU4Hdbfl0XBfAYQEAgNLx08hGBJJSEDFTWJe7+Qfh9n+xU6mTvminy1B+Dt6PhxmuH0qRvJL0O6JwBhv+X/M7n27sdvt/M//+T9pb5evMvb3gn84khKILOehodjgu3P8d/y5/4dLDcMd5eDPR+ndNi2Wc3ssj5pbM1OSlQiF8F5lw2DTUHaDK7FdHE5tO4NvZFaW0sy2fztOV3ih1Phw3ECSjBhhBEuBieLLpCf3HV88zubPHhbbIYPAY3CI6j7l10sPUAe/10Xf1lEMDrEUmRQ63+7j2K/ln6ZXqhWodNKn+QAcZemo9Sq8V+bKu7l8xTu2fv6IpCxlPJofL2XtJyukDUF22bl4GB3yXuHBQ6NM9f8NjvID/ftHmZF7Ws2IbPJYBHIUlEBMkrR+uhKjW94XHHuph82fPbz0/gkYzeYiCwgwFfc7F0zmi95Pg12LrdAUvl3q02eOknRQwOxU7ARiqmv2/2SYMydm6N8xuZBopNGK/wGEghAK4j5bJC/u/elobPxZRE6KqCi5VmkxOdTUXG0N/z32vsWTkwAUZvGaA7+YZPu3hpkZSED0ihCQ5ufJadJjsKiousi48LMIImpEs3OUnKujqFX8HTu/P0rfgbDNImJSPE5unyAwFYwp5EUQR06KwOnRkbvKmPCz6O/1+bFk+Vl9n4OyK8RFwt6fTzM3Q0Jyks94iqPq3xJkjlAoxJo1a/7hGM0rWIEUAoEAF154IQBzBHg79AojocSLZ19/gD1fD5dzu62A1k9ViOWRkkEQQBDIbbbLKkU20eHDNxKg401pVZKed4fY/m/i+1pyfQ5FV6QmoAPU3VGMKVuPsyF1EmH6pI/Nnz3MwcgJdhmknMaNJVgLTdgqpJjtRNVoCi5JTtyKoPvtQfr3jHDw+13SjQDmpudFSWuvVZa9rSQdc468+dc3OgsC2Aql7YcPTrH5s4fpeFXexo211EDrpyspDhM/UjckCbkiFZZRPWp6wE/vXvkJpOVgqtdH3y559zbYlr/cS6VCFo+1n6yg/iH5Samt/3ok+r5JYbG0cfiPCW0LLs5DY1JjLpD3gJRaJUrNUqXaZDj+u9O0vSZ9IjLvPDsYoG/LmKwTbt6r88lcZZbXrwwiEXPzvxxjzwvSJLLiS7Kxl0kniwHqHxBP+3W8NsD2L0orZ/hGwHdmls5E6kyLklKVt7gxufQUXOxIuuEVua7+/kJaw+um7neGYj5McM1U3UmOancAoFKp2LFjB5///Ocl276CFfyj4MEHH8Tn86EMK/XuZzMfhl5Pan/0ldP0vCeSlNZ+soLae4uS3zwcd7kvcJKeb6B8vTRJs/PtPqb7ffjHpMfVHV86Hi0PViuTVOKsslJymXR+Z983O9jyucPiBr40pwD0kFVno/Ra6ZzX0Z/1MLBzFPSQs046Hj3+2x6O/lJ+mS2lRolKJ2/OtrgNaM0a8s+XRxJBSDKvJsCOLxxn27/JV2uq3eRhzSfkkYpTKW0lgxTxLYK+PSNMnFx+Tk0OeneNMNmzjHvL6XtxmOnxy1JpKrrSxdpPVWIplvcFXW8OsPl/HZZFVLbmGyAE0/GqBSn6jCXPJDvOsJSI5cnmZuSpbh3+cQ+9O4bpeV9auSL/PPFd3PedLkkfWkv0ZBSnUX9HivEvAn2sLZv/5ZikypG9Ko30PAM1H5M+bFJwkRPPleJewo4vnohtOKeIkzrfOs30oJ/J7kXtSHBN3loH+a3ScZfepWXtJyso3yCO8fu+1YV/cC7hNdP6MTqLdhNghlAoxLnnnruS81rBPx0GBwejwggBZnhr9idMzCYgjQohAhOw/0WROOm5PJM1z3gxu6XJBQXnZZK3VjrGCJyZY/K0j453pA91D+0bZ+eXRdJ3/nkO3Bcl2beLIyuVX5ePpSiNzEarRDsCbPmXw9HybMjgT1StL8BeZiajIoHgwoKbE1WDzFkrfXpu+MAEPR8OxdoigdnJORQqBRkycwjOVVbMhSZpQ2B6KAACGHMlfiOi4tXmzx3m5BvyDs/pnDrWfKICz5XSucvI/ZcFHbKeI8DoiSn6pA5B/IUYPj5Bv8yclxwy2GLILVXY8vEy6mQcUo1g55eOs/OLCYheCfb6FApFqlBrAdxnO9FnaLG45fVXtX55qliHf9ZN2+vSeVdXowWdWTxM0PabuD67OOYI75WWXZuNq8Yi7xmFy7Bt+0I7+5Id4osjE5VcmS3m03SLPotAGROAqL41F0ICfdvH2P31rqX3W4xAWJTlvaUEv3hyEkDRpQ4shQbc52Us+Wxx2yvXZ7P6qWLQweDeSY5HlKUStGGisoO92rcBUKvV7Ny5k//n//l/Et/77xwKQe5K9e8UhYWFnDwZI8Ocrb8Fo3HRpkhEpks9R8vduQyfmKH9D2GJQqUCIcnGeN5ZFnreEwdLR5WRMwcXLloTubbxwQJCcyH2fKMr4T0jxIfKW/KwFpoYODBG+28HIh8mvMbVbGHg0HhiElSCNmRUGKm4sZCZQX9UMSkZ8s53yFbrATHhpVApRDKUDBgdSnLWZXFimVKIkvf9W5U2C8NzVZYsdZ/GR0rQpGnkEZuM0PpkJVMDPvZ/S3rzYe2nKlAoFGz+X/J8vRy0fqaS2cm5aBD710LVXYWY84yceLUnWvpPqh1TfT5ZEuiVt7qxFJhkqVG5Wiz4R+eWEsNSEYoSEAWjJd8SfGbMVOAbTnI/pTLxdymVSQlK2gwF+a0ZtL85kbiOaTxBCWi4KxONQcnh1waY7FElvCZCUIpMnvmtRk5tngl/JpKUhEXqT0YHVF/vIDAVZN9Px5a2Q61OqI6U3aCj70AosXJSHEmpZaMNBNj+nXAgqtMmJCc5y6BwrYVDvx1nZnHMGrlfhIRkhHQ7TJ6CzBodoycCzCUaL3XaqHoSQMtGO0Mn/HRtFb8/EUHp/eGXmFNOMT8/T1ZWFlu3bsXtls88X8EK/tFw4sQJvN6YeowZGy3KC5PaF1+TjbPcsrSWeYL4xWBTYsw1MnxgCmupgbFTPslSWqYCAzW3FHLsVycZkSiP2vop8YT05s9Jz6vZa22yVYxAPB2vNWvY8/xhSZWSvHMc0RJtUrBXpVF2nRvfSIA9z8s7TVFyfQ4nXu/9q5YhM9iU+EbkET7+EtgqjChUSoYPSisvtH6qksEjY5z4pXRsWbvRg8mll/XMc862U3iei+GjExx75a+r1tL8RCmaNLXs+Hk5aP10JaF5ga0yynHUbvJgcsjzB8DqZ8vxj84uLMmWBIWXuuh6Q74CRVIkiZMMWTp8/X+BzniygyBA8Uey6P2gX/KdFRsArU+WEZwNse3fZcbPBsius9K3ZSylWd19hRidOvZ8v1s2sc5gA2O2keFDqcc97/XZOCvMDBwYp/23qdc2DQ95EOYF9qQqqxder9qrTFFp7pyz7fQm22iMK2tedlMe1iIT2752DPzKBfeLwBfy8SG/R6FQYDabyc/P58CBA4vvuoIV/FPhnHPO4f3334/+ex1Xo1cmITHooeWhUkbbpxaWo0iSFsxaa6M/HO9klJuipcxSofbeIhQqpWQ5t6IrXWQ32BnYNypZ/stWmcZM75Rk+aQIjHl66u70MNUvnUtwNWUwcHBUdimvlqfKUBtUbP73w7Ku0Vsh+yyXbMVnufiblTYLw32BvNIg1XcVYnDoZKtNrn2ukqmBGQ58t0vSdvWz5SjVSrbIjEuWg9bPVBIYn2PXV/+6OS/vtTk4q610vNVP/1bpAGLtJyuZ7JmJKnulQvFHsslcZZWlRpVRbkIIhmQRlFIiRY5Mb1XgH1vmlkKKuAs9eC500SHzXam9txBTpo4jP+9m9Ji835mzNkOyhJzeCg0PluEfnWW3DGJ4BK4mi6xydms/IZZG3/Kvce9Mgny/tcRA+Q0F7H2xK6paF4ViUZykB0uunvF2PxnlJnz9M4mfjWIhSX/102UMHhqj8/WhpO3YHXqPCfUwwWCQrKws/vjHP1JeLo+YuIIV/CNiaGiIrKwsQuF8eQZZNGnOW2oYfk/z1lnJbrSx48sLD4MsVjIBkWxhyDIydnxGLOd2JiBZSkvn0FB3RwHHfnuaseOp47Q1z5SBUiFZuhZBwFlrka1MA1B9dyHp2UZ2fbNdskxXVkuGZHm4CNLydNTcWSzuY8rIO4AYwwzsHCIgT/xGFnRmJYGJv13OKy1PhyZdw+gR6ZzX6mfKOHN4gvbfS5NKym7KI6MkXdbepLXUROX6AoYOjtP2Kxl17peB2o1FmLIMf5N9zDWfqEAIhdgm40Bc+YZ8rIVpbP3SEVll6poeLyUwGuDAi9JiG7nr7IlLA0oIGMiFzqEjMCy/zLIcuM93MLhnWPa7svYTpcz5guz8SvuSmCKKRbFeZl06g3tTK7uX35xNRqGJQy+dYqI7wYNRKpYSeXSQUWRg9Lg/MdEovG+b12olf52dgX3jdETinUT3A1bdkoNKo2L/95eqc0ZKukX2US0eHeMdYltdDWYGku11x32X+3w7mVVmdv5XJ8wlrqITmA3wHr9EqVRgMpmoqKhg27Ztie/9D4J/SCWleHR1dfHaa69F//2+/8dsG1tUhiRS/m0Gtv/n6ShBqeXhXLxXZaBQJVbw6flQnKirbsuh5PIs8s6xSrZHY1ChTU9eUz1Cejj84x5OvN4bJSgZHSRdzA3sEAlKeefbaf10Be4L4ySlEwyCo0dmCM6GGNgnHQxECEqFl7vEEmoSOPFaD/175G/a1dxbRma1Vba6TvPjpVTfXShpN9PrB6NYrk4O0jxGmh6TV5Kj6TEvWfU2MqRUDoBdXzshX3lpRgxQQ7PyAp7xk9NMnJJOEgJYvEYaHy2RVbpvuajZWETpemklL4ChQ6PMTszJIigZHCAEBeZmEpMEF+Pwj7pll8vzXJzDqg2FC/+YJGCo+Fg+3hsTn9oUQsKC9zJ7rTk6DixR9YlHKBRWbnOTWWtc+PckqL45G0eJEaMrAUFJpYqqJ0Ww++VBxnv8TJ4kMakpzOwtWGeg8S7xlEaEoEQouEQ9KQLfsIL52RDD7UkiuTgSUvM9NhruEFnEfXtmExKUhPkgzM5hTBeDrIOvjbDnp+ExRKlMqp5kyNChUCqwebQL7xcILFFJavmojYpLbQizswzuT0xQEkIhDCY/LRvtuFvFZ7L928N0/mk6YXm3mZkztKW9wUxwlLm5OUpKSujt7V0hKK3gnx4lJSUIgkBenjgvTDDCO8LP8YUSJ47bf9MXJSgVX5XNmmfKxRJjCcZk30iI4QPigr3y5iLWPiGtVOgoS0ehUqCzSp843vPCUfZ8X0xES6nPRAhKLc+UySpJdeboBHNT87LIDhGCUvPHS8k7J3WZkOGDU4y2TbLnu/IIStZSA5mrrLLLkLmarOLvkzisEyEo5Z3vxCGjHAuIyRLvDfJUL8tvLKTkSnmxxubPHZZFUAKY880TCgqylGx6dw7jGwlw5siYrHuX3ZRH5a3Sp6mXC1uFkfoHilOrj8Vh7OQ0w23yMg7zvqDoD5nY9r+PyiIoORvM5LTYqbtf3gm0hodLkv++RRvp5eEYVA5BqeaeQuofXNSGJIdADDZwVVuovktmyT4fDOwb48jPUxDYwt/V8mQJOesywEeMoJRC1Wnw8DjzPumylIWXOGn9VBmuRjO+4VBygpIQipZybPtlH8d/d1qSoASgNanRmhOUAFpUlqToChdl17qjzyYpQQkovzmH1c+Ia8xjr/SIiUUfJDr9P1Z7kp26twDxJNl3v/vdFYLSClYAvPfee+zZsyf67w/4HbtCf05s7Ift/3E8SlBqeaqU0utzkq6FIwSl0utzqbipIGXZ3Qh0Fi06c/KcVwSdrw5w9BfdUYJSKsWckcMiQclZZ6H105W4L0it3j3T42duep7Bg9KbawM7RYJS1hqbrFKqR145Sd+OYdmkpuq7S8lusMsuzVa7yUPV7YWSdv5BP+jFZyMH+iy97JJvNfcUkneWU1aJvQPf61pWOdxQMMS8L0F+IgHOHBlntF1euVp9lp7ae4tkle5bLso35MsubXbm6DjTg3765ahp6iE0H2LeLy/n1f7bPtnl8rxX51G5QYZiECL5KenvWxR32SrTyDlLzB9JEpT04hjjrIs7Pp8i3mm4s4isOisWjzylqH0/7GL46ERyglL4u3LWZtD0qBj/RQlKKdrhH4PAxBxDR6Tj55aPe2l+ogSEUHKCUvi7ImPAnu+fZM83jsU+S9IWnVWHUq3AWZ5AiWPRdWseK6Nyvfi8R49OJ302ekuI1U+VURhW4t3278fofG0gYTv8IT8ni/cywgDz8/OUlZXR29u7QlBawT89nE4nwWCQ1tZWAEbp54+hVwjMLRqLwu9Vz/sjUYJSTmsGzY+XoDPHHXyOQ2ACxo6La7iqWwtY82iCuGTRu5pRaESllVeWcs83jrHvRTHnpTOnOqitYGi/OAY2PFxCy1PSe4JD+8fwj89KEpSAKEGp/sFics5KrZI01RNgYO8oe1+UR1DSOXXktTqpvFVezGMtNdH8ZKmkelCEoJTZaMW+Sp50T8GlmbIVj2ruKKb0Knkx3bZ/OyaLoASiSnpoNiRLyWbs+DRTvT7OHJVHTiu4NJNSmTm95SAtTyeS4LPlSToNHx3nzGF5Oa+gP0hoPiSLoASw88vHZRGUzAU6Cs5zUXPPotgryRqr5m75v89zRRboROUyKTXw0uuzqbtHZh5SB3lr7VTdKV8dvfu9Idp+FyawpWhL/aYCslusADGCUqqc18EJAlPziQlKECXyuBrNrH26hMy6dPCHGD3qS1oRS5cmqiT1fDDKkV/0xAhKcfdbDH1G8nVsvEqSq9FM5c35eK9ziTFgir3uggtsND0q9ovud4fZ+bVOsf8lKu9WdpIdhtcAAYVCwYsvvvgPT1ACkFdo/O8cl19+OYIgYDQa8fl8jIUGeGPkW0tUlQRBiKqYGHNAoVKgNUiXGDv4i17qb82n570xSdut/xGbUCs+mkv/nlFGjyZOIA/uFl/g5ieK0RjV7P3mMWbOJC9N4BvyI4QExhdLHCsUSxaW28IbggYHuC/K49hLqU+EO0rNqPUqjA4lM2eSDyhDeycZCg889fcXs0fi9NzBl09iKzLJKoUHoElTy5aqa76vFE26GovXKFlKrfBsJ1qzBveFTrrfSX1a7PCvTpO31saohCJDBMYcPfnnOCR9DLDlX+SXkjssU74SwFKUht6qw9Vg+4vKyqVCWrYBU6a8JMLA9nEGtssLdHxn5Psje00GGrOG7jflSWMe/tlJMqszYn9IwWjOKBITAm0sDf4WLygK1jlRqBSyxoKCNRYUKgUGu3QCF2DXj/soPtvKzOJ915AAccNU8SVmfKPz9O6Y4eivhkVlo8UIhqJ/txXqUeuUaNNgdgqR6JTgGqMLsleZ6Hh3ht0vLiU4CvPzUWWm6NfMC8z7kyeuhPkgCrWKhlutqPVK9vxkJPr7hPkgigTvetV1aRx4eZTurdC9VV5EOdI9S3AuRTv8AdBqmJkRn6nZFfdMAoGYSlUYH5x5mXnNNIGOADabjeeff54NGzbIassKVvDPglOnTvHyyy+zYcMGBEHgQ36PJWSnWXnBQkNBiI7BaTl6lBoFPhkHYQcPjxH0S5N6T745yMnI3GCAqg2FsfJriyASbXwYsvTU3+shMDbLrq+lLn00Nz2PSi0dl3S9MRBVkSm5PofTf+pPqTxkyNKjMapxVlskVZWOvCSe8Mg734laq0ypVjN23MfA3lHafycvoWFyGVBpleQ0pVBCiTYa3OucBGdDnNkvXSbEXmZGCAm0IX1Ca/DQGH275J20A7EE3nS/jzP7U29sHf6x/FgKH7LVqgBs3vSEicf/LrIaHBidetJcGlmqOod/KL+88qEfyLctuymP7nd6ZSloDe2ewFYyQffb0uSxwktd6DO05K7O4MQvU/8+R006Nm869Q942POCdNLSYNehVMl7Jr4R6NkyzNDhBHGrEFpAUq/dWMC+b5+k/fcDSz5bfI3JbUBtUJFZaaH3g9GE94ug7KZcjv3uFL0fjMZsU7Rj8vQ0QkMGU0MpTtcJIUwFJmpvc+MbmWXPC52c2T+VtB32VUZsZRbafnGarf+WQLY8ATpfG8BaaOLob6XXPrp0DSqNEoONpCTOiHqScp8SvV5PRkYGIyN/m1KKK1jB3yvq6uoQBIHc3Fx6e3sZZZC3Q6+kVFXSW0GlVaFL1yb8PB7HXzuNwanj5FvS6+3tX4gRVrzX5nDm6HhSBaaRw+L4U7vJgylTz97vdYilr5LAPxogNB9islc6p7HjS+ExSw/ey3No+1XqOShzlRmNSY0xT5+yDZMn/dGyZdV3FUZLkSTDgR9146hIk60CZcjQEkqXRxiuvV1UhDxzdDzqy2TIbcnA6NTJUkg6/otu8s/PYlgijopAb1WSf17WQnWuJFhOKTkpha14mDI1pGUbcdXYGGv7657+zyhORwiGaEP6940enWb0qLyNVPzy/WGrTMPk0nNKptL9wZ+eJKveKsvWWWlBoVLKen4lV+Sg1qvo3SVN1Muqy0CtV2HK1DOE9Obh7m90UnSpk/GOBCXN4uIT9/kO5mdD9H44wrGfn04ZdwE4qyxo0zToMzWxcmYJrtFbIecsJx2vDrHrPxM8wwTXzfvmU+aaItfUbyrC4NCy+1sdMVWkJLn9ylvdHP55NwM7xxjYOZb83nHo2z0iq1yk3y+WPU7PTX2AdU/ofaa0owTaAtjtdr7xjW9w4403ymrLClbwz4IPP/yQDz74gLPPPptgMMh7/IaMuSSqSmGk5+hRahUEZKSzT28dRqGWXrv27xynP44kWbEhP5ojWozABDARQGeGxofLRUXub6Ses2bHZxFC0nsX/TvH6A+PWe6LnQzsnSAwlPyH6sygt+rIXGWNlb1MggghJ7PRit6iSRnHBIYC9GweovtDaTVIAKNdh8aoJqfBRq8MtfSSy3KY9wcZPiQ9r2XX20EQ6HhV+kBQz5YhRo7Ll37Kaslgblq6HR2v9dPxmvT3R7D/O/IVBDOrMlDrlCAjp7cc2FdZMOebsOQaZJWrkxO//CW2hZe56Ns5Jot4N3EywOkdZ+jfLb3vmdVkJS3bQF6LjbbfpI51zQU6suozMOcY2Cuj0kx6tgGNSSblIwAdbw0wkaCkrRASFuQzKzbkcuSl05zeLJGXVSjFd9uiwVmRTt/2scgNE8ZeBRfZ6d82xMjhaUYOJ1gvLrrONxQgOB/CPzabshk6MzTcX8LM8Cz7vtPNWFvyoNXs1uGoMtPx2hC7/rMr9e8LY2DXBJmVZtpeS6H+GW67Nl2NSqdE59TFxsRFvyswG+B9fonysBKtVovL5aK/X/57+/eOf/hyb4vx/PPPR+vHAqQp7JyVcT0gbrJHsLjkUuOmHPr3jdPzYYKBP06lpPymLKyFRk683s+ZgzPJ674bYe3DxQjzAlsTlASIl3zMO89Gdl0GO77cvtgo6e9M8xhxt9o5/KMEQUlcm1qeLkOtV7H3xS5muiUSPUZkk4kqb3VjLUpj8MCYvFJuRqhan3zj8C+CEQrPddH1ujyp4IwKo2zi0XIQ8fHm/zgsy3+Fl7sYPDQp+TyMDiXlGzyc3j4kj/izjOe37HJvMu9d/2AxYyenZEmdF1+TTd+HAylJcRGsea4CpVp+mcEFkCG5aCkxMt6+cDJbsPEYnlT0DsistdH9bmzCTla+DRAVkBI1Ke7veevE04s9m+OSjvEsW83CwGP1g1kgwLb/PL2QbLS4Hmr8Z/rgwue34DpxfGu+NxOlWsH2Hw9HbReMmeFrjC5wt5g58uuxuM8W/k5hPrjgs7xmPU6vnj0/GYt+ptAuXAAJs3PktxrJqTExfWaeQ7+N+UOIW90pNOJ1jXdkoFTB9m/E+ppCu0h1yR8AIzTe4uLUzkkGD8Vt6sWvGMMkpQnjGfqEHXSd7AKgvLycI0fkEwtXsIJ/VthsNkZHY+PiWVyFQRk+5RwfJ8WNl9lrM8hb7YhtMKVA66cqmZuZl7SNbIC1v94rmfBtfqKU7s2DDGxLbRePytsK6Hz1lCT5qP5eD/O+4IJNvMTGLKskW+unK0GQV64ORCKPf3x2Wb9RCu6LMun+cFBWu80eAxMdf8WacxEYoPWpSnk+RnwmrlqLrFJkRVdkkZ5tkJe4WcbzW3a5N5n3dq22kl1vE08dStibPQbMBWn0vCudzIv049mJOXZ+5a9bJgVExa+x4xINDo8XhZe66Hpv4L9fvjAuQbDqtnwO/XDRGip+3RVnW3ZjDvaydLFE92/6FiZeFq/VIp8ZgJkkn4Wvs5YaqLy5kLmpeXZ8pX3BZ4uvqbwlj853BhYm8BYngBZd1/xYMd0fDDGwayL2WYJr1j5XLpby/tyxJZ/Fw9VkofiynJgfUsB9oRNXtZUdMtYZkw2n2L1vF3Nzc+j1ev7H//gfPPfcc5LXrWAF/8z4zW9+w7XXXhv9txk7LYtJ4gnQ+HAJA/tH6flzahJE0ZUusuvttP3+NEN7U+chWj9dSXAuFD0klwzOOgvuszPZ9TX5c4o+U0/h+U6Ovpx4Iy6Cxke86KwaDv2kY8mafulNka2QFClXN3RgTPaGR8VH8zny09TtXRb04G6VV5YNwFKsl/bBX4CGh0rQ27Ts/maHrBJ0OevsTJ6ajpK9kkIPNbcU0rdnlCEZmz7LeX7LLvcm895Vtxcy2Tcji9DnvsDJ4MFJWT6LxooyywwuF+kF+tTPI7JO00Nei52e9yQOL0ghLuZwNpjRmzWc+lPcPZPEXRAul6YIH2qUE3cB6EIL/ZbguuYnvGhMapFINDiXtB16KxRemsvReBKARNzlbDDjXutg1/MdKXP5zjoz3qtymTztkyRANj5SgtakYYuMks6Nj5TQs+WM5BrYH/LTV3yY9nYx9iwrK+PoUfnEwhWs4J8VFRUVC96Vs7gCoya1dE1GuZHCczNllZVc/ZSXeV9QHEMg+dr0phzspel0vNkvWU6tbmMR/XtHo8SipIjL2XmvzaH7w+GU5CN00Pp0JbPT8+yUyufpkK1oA7Dm2QpQIrtqSVaTFUD6Ny4DWS0ZjB4dlVUeKy1Px1TPX1CSXgZaP13J7NQ8O78snTPVmZU4622SMT5Azlk2MgrTOCTnQN8ynt+yy73JvHdGRRq5zXbafn1KshyfzqnDXmKSRUaL9GP/6Cy7n099eFUSCfYGzQU6Jk7Kc17O2gx6d48u9Eeq8rky4L0umxO/WUiCiecjxO97us+zk7s2XC4tFSknvl06YPHB4kWxl86po+GeAvxjc+z55skFny2+pviqTHp3juPr8y35LBlq73bTu3OEof2pD3I0PVKExqhiy5dPpOxzFo+OyhvyGTi4yA8JYsDMOjM5q23s/a/uJZ8tvm666hS7Dm4nMBtAq9Xy2c9+lmeeeSZlm//R8A9f7m0xHnroIQRBIC1NVEeZEoZ5Y+RbnFlUm0kQhCjByJgDar0SZ4W01LFvJIAQFDhzUIKxMQPtf+hl//fEBXFmfQL51jB6/jQSJSjV319I48PhMgUKZdKXcdWNYn1NQ6IqIQpFdHDc/vwx+nYPSxOUwm02uo20fqaSuk2pyzUc/lE33R8MyiMoAQ13F2POM5K9JkPaGKjb5JEu+zZDlKCU2SCtaTh6ZAaMkH2WdBsMDjEYqJXwA0Db70/R+VafLBJPRoWR3GYH5R+RISWt1aLP0JLTkLoUTBR/ff7Vsu9tsOtwVlpl2bpqMqi+W1puHWDrV47Qt1tekqT1M5WxvpOKQGSE7DVWAMZPzCyYRJYoIxhCZJQZ8Y8oFhCUEkFnh+bHizCmUPsU4oiPOfVmchstMQnARASlYDD638Ff93L41YEY0ShSzjL+p+WpWX2/k+qbrKJyUiKCUuSeYex7aZDefTNiWcL5+QUEpXhUXG7DnKURS1Qu/l3zwSgJKbNKS8u9DjDCqS3T7P7B8ALyUvSa2TlsReJvPrV5hp5d01GCkhAILCAoxSMwMU8wkJgkKvgDIkEJMJpArVOSXR0egwMBEh1peXfw++zp/x0nu0+Snp7OT3/60xWC0gpWIBMjIyO89NJL0X9/yO/5MPTaUkNBiCZAsuoz0KSpoyWJUmHON8+0jJMt+77ZQdefBqLJWXtV8thrx5eOi+Qdg1jfPJUtgCHXgLXQRNUdJSntfP1+eracYfvzMspihNdedfd7aP10pWQJuqO/6GLPd2Se3AZyVzsouiBblq2pwEDLM2WSZdG63xYJSlL+AqIEpey1Mh4yUHNPkUjEkoIPTm+T6WOg5o5Cclrssmydqyyk5cgsI/I34F8t9945DXaMTnlql94rc3Gvc2LIkrb39fvpfLufI7+WVsqpu99D66cqZZXUi/QFSYIS4AjP211vSBOUau4ppOoOCcnrcJyXd44Ni9tI1Z3uJWXMgNjaK/z3Y6/00PXngYUEpQQlM+o2eWj9ZBmGDCE5QSnuurHjPnp3jMQISknKgUTHnvVJys3GXdf0SAmrbhf9sOPLbeJYmGijTAhhXyU+sL0/OMnRny9KGCW4ZuDQOKE5Ad+I9FicWWmRHN9HQiO8HXqFHbu3o9FosNvt+Hy+FYLSClYgA9dccw2CIJCfnw/ABMO8HXqFsVByIoveCjqLhkwZa3Xf8BzB2RBDMkpBHH65k30vdgGQUW5Kaje0dzxKUKr4aD4ND6SOpwBWbcjHVpqOXmLe2vW1Nno+HJJHzvGLqkBrP1VJzcbUpbI6Xx2g461+2QSlylvdZJSkkyMz7qm8xS1d9s1PlKBkq5SOvSI+cDXJyLvpYe1zldTcI9EG4Ohvemh/vU8W2UYkl7kovlxeeZC0HCM5jfJ89rcg7yz33ma3kcxqqyzbvLOc1NwuryTHjheOc+qDQVntWPupyuh8L4VIX5AkjAkCGeVG8CNNUNJD85NejHkp3s24WMJzoYv8VoesuAshxJ7vdHDkZ10p4y59hpLW58qojsRziQhKi67b8UIb3e+diaktJSETrbrVg60kLfHYE3ddRrmR1U+XgR6Gdo2x6z9PJL1nRrmobDS0d4KOt/slCUoA00MB5mZSqGeGobeCzqwhqyH1e78t9BY79W/R3t6O2WzmlVdeWSEorWAFMnHkyBHef//96L8/5DW2zr2R8pqcRptYWsghrVI0OzHHzHCSdVbcuHPslV5OvN4bJShZSpIvwvd+u1Mk7+hEImxGotKScdCZlTirrFRtSLLujCAAHW/2ceA7MlR4wz+pfEM+az9Zic6ZuvzVwR93sO/78nNeRZdkU3CBS5atzqGj8TGvZFm0/u0iQclcoJMsERchKNmrzZK2AKU35LLmuQpZ7e16t5+dL8hTOq66oxj32dIlmwGy6mxYiqRjSmBZBLNlQ+a9s+tsmAtMoJV+j7yXZ1F0cTZpeTIeRgCO/aqHE7+XPlxQviGfNZ+oSN534oh+kb4gh6BkLRXXTr1bRiX9UXp9NhUb5MXW9so0nJVmVt2ShxASov9FsHjfs/tPw7S/3i9JUKrYkMuap0vEMS0ZQSluvAoMBTj53lCMoJQk9tKZRcXbiuukSydW35ZHxXoxz73vu90pCUpWrxjHHXixkyO/7JH08XhHgLlAEF+y/Ye49mdWWzBkaGNjWoLfNjM7wVuzP2Hbvs0oVUpyc3MJBAL/dAQl+Ccp95YIk5OTvPjii9x5550A7PL/CpVfy4XmWxbYCYLATK+CPd87SSDMPWi4L48zxybp/vPSpMzJd0Y5+Y5oWHixjaxaK4d+2cdE+1IWx+Ae8SUxZqspviyHgvOC7PhS6jISOot2KS8p/iUPY9u/HSPvfDu+MyRXuVEowEdU1WbNcxXM++ZTqufMdM8QmhcY70ks1x2PnrAMcdPjXib6fBx/OflGxu7/bKfoShd9W+WV8jA69QsGz1RY/YlyVBolg0ellYzWPl6BQqWg78PU7fCdEdmlwYC0yo+oziSPxTN6ZIYzx8fpflt602em18/eF47KUhoCWPvJCman5tj11f8m+zcORreRujsKGTo0TtsvpaUdN3/2cGLiXAL0bB7CPyozIplBljqT0W1ECApiYC+hoNS0sQStWYN/fHaBwlai0i3Nm4pR61Xs+0EHM/2p+6V7nROVRoGj0kr3n6Xl0w/+rBezO8GiIp6gZITm23M4+sYgk53zsZF9sXoSgFrNTD8IQYGxxTL28QQlILNaT9E6Cyc3TzJwaJZTmxO3V6FWI+hCMAM7f3qGnEoDEd6nQq1KSD6y5OlQqBS4CjX071/6OYQJSiVKSs7PIL8pyN4fj3B6xwwKrSYhOanuNgcavZId/zXAgZcTJ86i6kkfc3H0jQGmT8GeH/Qx69ckJCeNOU7SNXGAWXzgh6qqKg4cOJDw3itYwQqSY/369axfv57MzEyGhobwMc3boVeopJkcxaIkuiCw5+sdGDIEfCNgqzBSfFleUqWkHV+M/X31s+UExufYm6TcbKRkWdNjXrRmDfsmO5k+mZzhkNNkR6lRYHanMXww+eLGd9pH158GYiXRUijddL8tnqzOOdtO4bkujv26O+W9x7tn0Fm0kmW1RsJzla3CSMnV+Wz/t9Qkna4/DTB6SB7BN3OVBbVOReE5LknFIbPHQNl1bmbPn2OnhCKCs8FM0UVZZNZY2ffN1Mkm39gsRqceg00p6YuTMsu/AnS9049KRnlngAPfOZa0JNVilN2Uh73MLCpp/hUJS42PlKA2qiVVKQD2vNAukttkfP/hH3eQe14Wvn55u3B9ck6fAfP+EMH5kKw2FF2UhfucTMnfZrBB6TX5eC4Jsv0/pBNzcssSA/S8N4Jar0rcz+PWXOXr8zBkaNnzjQ563x9JuB6Lv26ix4fOosE3Iiz5LP665se9KDQKtv/7cbreHEp+2l4hlgD39UzT9ecBsQ2LPlsMbboGpS556fBIO1qeKhVVYNuP4DvtEx9dgnvayo2UX19A1/vi929N8dwKLs7EVpLGnhc62Pm1EynHyJG6dvbt2wdBMBgM/Md//AebNm1K3uYVrGAFCdHd3c0777zDRRddBMBO/oQmpONc5UeW2PrHYPMXYgottfd5GGmbSFhaqn/rCP1bxTEna42NoguyOPJKJ2NtS1/q6N/0UHFTgagOJ3GqPi3LgFovPS/v+mobWWtssdJJKRAh8jR/vJTQrJBSsck/FiIYCDIh4yBfxA+193nwnQlwPEVO5PCPunFf4JR3ehsw56cuxxSPiMrO7t7DkmXlIkrfAzslcm9+CM4HmZdRXnmmx5+yRN6C2w766d87Qu/7MmI1P+z+2lH8Y/JyXi1PlzE3Nc+eF+SX55WEHtZ+vJIzh+QpZm3+X4fRW+XduuOtfoL+xLmQJfAjq9Sb3qokNCddBgNEEndajpH52XnJ0n4ND5Sgd2g58INOJrtTP2t3q1MsW12RzkkZ/WLft9qwllmWfrA4RnrSS9tvexg74cM/lDru8o/BfCDIxOLc9aJ7ZoRjmc4/9tO/bZye95KQORXKqBrTrq+dIGtNRmzsSRJ3WdxpqHRKsmot9KfIdRvz9FTcWIB/ZJbdX29PaVtzTyH6DC3bv3B8oZJTAjQ+UkL766cZO+Fj9/NHko4NftconYojTPaOgR9WrVrFwYMHU957BStYwVKsW7cOQRCora1l//79TDLKW3MvUcUasjWFS+wP/bgHbZpAYAIMWTrKr81hz/c6E26U7/mvruj/Nz1aTGBilgPfW1SqPVw+aHCXuF9ZfWcB6blGDv64k4mu5GOxvSQdjVGFpdDI6NEEeSmFAgSBwESItt+djpHUUyjdREhS9lVmvB/J5divTzF6JHnOa6xjirQcQ2qFJmKkn7Q8HWU3utn1QltKYsHx351mSka5MIAMjxFdugbXaifdb6VWqNQ5dFTdViyWy/t66pjDXKCj7Jo8JntnOPDdrpS2vuFZQnOhhWWhkkCqRF482t/oRW+WJvEAHPrhCVkqUSAqQuasdrDn2x2S7V0Oqu8qxGDTsf0/pA8eHv5pNzqzUlJFCaDt1yfJbnXJVreSU9IPIBgIEZwLyfJb2dW5zAeypPNYOqi8yU1gao5dX5Hey7UWmFCq5enRDB+e4qRtiNMfLO1D8fueBRc6sLiN7P9eN4N7JX6cQsl4tw9jZoK+uyj2qrnLjSZdza6vdtC7ZTx1zksbIjAO7X/oX9iGJMItBodWzD9KoO6+AgwZGna/IPb3wETiMdKUo6Pqo3l0vz9M37YRdn4lyfsuhMhqtpK5ysz+73dz8Ien0JkhMJk4Rhyv7mD3/t0wD1qtli984Qs8+OCDku3+R8U/LUkJ4I477uCOO+7A7XZz6tQpgszy5sT3KFRXU2psitoJgkBgXAmEwAjaNBWZq8wJSUrx0Jk1oIDZsdTJjZm+eWbO+OnZHF5wGkExo0hIwtn6v4+LpCPAe10W4yenGdwdXkwueuF73hU3ntY+Xg4CbPl8ksRxONgQr03ZVLENcZKK3ptyaXslNTlFm64hQyudZIqQTJoe89L22mnG25L7bfMX5ZVOA+h+fwCbJ12W/emdw6g00uW/ICwtLBPF12Tjqslg/4+7mOpI3ZBjL0kTlCKQS1ACQEi9J/GXQGcS7xuclZlYQSR4yUH3O/Iky9c8V4EQFNj2b9KbdTPdM2FJaOlnfPgn7ZRcUyBJUAI48us+PBc6ExKUIopskbJvbb8Zos04JPZHZfidTdCeuruyOLV1guEjM8wMLOwzQjC4oC25NWkoNQqyqtKZbB9JTE4KBjG5ldhLDHS/P8X2bw4s+XxxO4Rg+PcoQkmVk1AoKb7QhN2jp2fXNKd3zNC7M5agXkxQqroxg4M/H6Xt96NgVid+L+fnEYzALIycCOFvCdL25gjMiYk2IUlHVioVSR+tMDsXVaGyF+hR65V4znJw4KUzzI6HWLyqmZmZ4f3AS2im1AiCgNFo5P3336ehoSHxF6xgBSuQhcHBQXbs2EFLSwsAh9nBEWEXFyquX2goCFEyiPvcLDRpalnlwRSK5ONAPI78uoeSy7JjBKUkG+a97w/Tu3M4+lnVXclL00YISgWXZJK72kHv9uGUhB5luKFSc2jna/10hmvIF17qYmDfeEoiSVaDA7VOhavJmlLSP9JeZ4OZ3BYHe7+RnCTU+Vo/ne/2yyKaTHT4mOr10fYH6frZQ7sncNXOcPClLknbtl+cpm0Zte5bnikDAbb/e+rEhlTZg3jIJSgBzM8FQQCDzYDv9F+PpRSSSdKPQIrQFW934pfSm2/2qjTKrnXTs/VMlHCXCge/3yXr+wH6d4/in5DeVPONwFjXNAN75ZHstnz+qKSSk63cSMH5Wex5oSP5exsXf1gKTKjik0BJYpOS67I58as+Ol4V/0t1z9jfUt8TYO0nShFCsPV/H11IUFp0navJgjFTT+drA2z+0pHU77BeJJN1vtOPqyZjoW2CtvgGfaAAgyXJSURBiMaWrhor6ngyYIJ2HAvtpUdxAmG3gMViITs7e0W1cgUr+G/iwgsvRBAEVq9ezfbt25kjwNuhVyigHK+yeqFxQEFkADJl6tGa1JKkCINdzHn5pTYm/OIG1MCB8OZ7itJZO750XPwckeA4MxRIWlYuQhJa/Uw5CiVs/VeJnIDMKTS+XKzn6iw6fpc6pjExeJI1AAEAAElEQVQ69WL+TwIRslTtfR5OvtuXkNgVwdYvH5Wt3nPi9dO46mySBCWA7veHZG9UScVQ8cg714F7XSZHfnGS0aOpDzVK+TMecglKAAjLj5OkoLfqISSIcZ1MyHkOEOu/Umh+shSUsOML0sRs/1hIVm4M4PgvuvBc5ZYkKAEc/lUPJZdmSRKUQOzn3ZuHJPtvzV1uTu8YZvjAZGJiTlzs4awzozGqyaq3MXbidNIYSZ+pI7PKTPcfhxJvAC66LjQn/lupUKSMu9zn28lrdXDqgyFO/enMwvYuuq7yVjeHf9RN15uDdL2XQv0qPA7O9PiZPO2j/S3p90KhVERzi6mQ7tajs2jIP9vF2ImupH3yj6FfoTqjIBgMkpaWxjvvvBNdp69gBSv4y7Bv3z56enooLCwkGAxykK0cmdvJWVyNTrNw3TQ7JcZeBec6MNi0WPJklGVVKlCpkpAR4saj47/vx3u5K0ZQSkIqGj40yeYTR6Kfld2cx7GfLdqbCu8dDu0T47HMRisll+fQs20oNaEnslUZTD03928fjRKbctbaGO2aXljKfBEcVVZ0aRoyq6wM7hpLajd8QCQ1WEqMuM/OTKlS1799lP590oo1AIEzAUZOTHLyz9L5kImTAYaPTdD1hnSu5dSfhjj1J3n7YSCWNFaoFZJl9caOS4tNRCCXoAQQnA1BSEBn/OuKKglBgZAgP56TQ1AS7aDrD9IiB2l5Oqpv93DqwyFZJfLafiU/T9n1pwFC8zJ+WwAG948x2pGE3Bd518N8gO1fOiGp1pWWq8NzaRb7v3syIUFpMeyl6WjS1eGvE5Lui7ovsNP9x2F6N4/QuznBfRfHV0KKz+LQ9GgRSqWC7V86kZKgZPXqMecY6f7zCNufPwGzKcZHvTKs9tZPTotN7O+LfBmP+akAKECfkYLbEL4+q8GKwaqNjrXiu7Tw9/XMtXOEHbAbzGYzJSUl7Nq1K/m9/0mgEIRlvPH/wOju7qagYOFJ/nXq9RiNcaeXwpv4ugyiqkq1d2Uz1een/dXEA1bEva7GNIrOy+TgL/qY6opLRAQXLnSNDqi9txTfSIC9YamzZIpBrZ8qQwgJbPn8oolo0ctd/6AHQrAnxeYTi7pBZFGVCs1PlqIxqTny864FRI4lSKbklAAZFUYqbiwkMD4rS/Gn4mP5mJx6dn5FXh15o9sor7QdyGp39lkZ5DTaJdtqrzZR+hE3XX/ql1RpctalU3JlHt3vDXL6/dSbLzX3FpGWZWDzZ2XWc5WJ1s9UMjs5l1JVa7lofrwUtUnFls9Jbzasfrac2ck5STY6QMtTZQjzAjskavCWXJtDmkvP3m92SJOUEj378ES1eEI2ZquZ6QsTeFTJJ6ysxjTc52Sy4786Y/dOQlIyuqDmlgLmfSF2/VcsiI2UgVNoEvBL9YJ430RtCF/X8kguCqWCbV/vX/JZVEUJKL7YTN+eCVENKUJ4SrQACoZArcaYBVVXOzj4qzPiNRFCk3phO72XpmMr0jN60sfx1xMEWeHrTAVqqq52MjMyz4Gfxb0vc7NL7ll7ix21RhnzUwLfCLNzGB1QeVMuB14eYHZCHGtnzoAwO7vEn5MlRzh0/BDj4+Li68ILL+Ttt99e2t4VrGAF/y2cf/75/OlPf4r+24KdZsX5CW0j6jmGLD1VH3Vz8MXjkoSR5idLCYzPsf87nSnt6u4vxujUsef5oykJHZW3FmAtMkmSj0wFBqo3FLDvW8dlE0RMBQYyV1miZKSEMEDrU5UEZ0PSKjopVEoWIxLP7Xn+sKRPDTao3ljG8V93yyrJZchdBkFHZptr7/Mw1jUlqZbU/EQpQkiQFSPWP1CMxqResCmZDK2fqsQ3Kn1ibjmIKCD81eO5T1cy1jXN4R+dTGnnviiTnGY7R3/RJflcc862U3iOiz3f75R8to2PlND94SBDuyUyXcvor0v6VIqYrunREkZPToul2CTQ9EgJWouGPd/r+qv1WWe9Ge+VufiGA+x5IcU6zABlV+Vx7BX5BxXq7/cwPxfiwHe6Utq1frICFLBZIv6uf9CDIUPH5i+mJjJZSw1U3FDAsV91M3I0xUJJECi5PgejTcf+73TFSGI+FpCXAHwhH+NVXdFT+zabjW3btlFSIl3uaQUrWIF8jI2N4XA4CMbloNZxNXplnNpcJC8U+ZMfqm4vZGbUL0kssXoNlN9QwJFXulJvsOnFeGZ6yC+porj2U5Xigbt/ST0/rrq9AJVWyf5vp4754uG9Loe213tTEilq7/Ngcuk59ptTqYkcKUhXS0yz9DTc68F/ZpbdL0jnvIqudJFRmM7u5+UpYuuz9LLUpURjJNttr0nHfVampDqRPktP/V1FdL47IEm+sRTrKb+xkNNbz0hu/pSvzyejJJ0tn/vr57wC43Ps+upfL+dVu8mD0aZjy+elc17NT5QyOzXHvm9J99mGh0pQKBUpFcAA8s93YC1Mk1UqbLl9NqYalDzuspYY8H4kjwPfbZMkaumt0PBwhZh3lKEQIF6EZJujapBfOJLStuBiJ0NHJmUrgOmtCmo3lrLvRydTvl8FFzvJXe1g5PgkRxdv8sffL1NHw70epvp9YpyUAlW3F6C3atgpkXfWW2HVbSUcevkU/sEAeqsC/5iwJO4CmK7r5WjnYUZHxXzbpZdeyh/+8IeU91/BClawfDz44IO88MIL0X/byaFBc84Cm8i+n84sbmrrzLDqliIO/bgzOWEkvPdXv8nD3PQ8ByX28Co25JPhSWPP9zpSkn88l7vIarRxevsZTr65iCwTt3eoc+iovr2AAz88KVtBR+fQ4aoxRwnbydD6qUrm/UFpFZ0USk6LUX9/MQaHjl3faCeQrFRT3H0b7/PS/kavLHKPzqGTvmfcveW0uWKDm6l+nyRhqW6jB4VGIUtBctUtbvR2nay4Z/XTZQRG59j7bfml9aRQu7EIU5aBzf/rrxvPrXmugtH2yaXEukVw1lrwXJLF0V+dYvxE6g1fe7WZksuzOfLKSSY6U8cJNfcUcXr7cJQQlxQ6YFaeMIYcJa3475/q89HxujRhrvoON+m5Bg7+qIuJ7qX3T0RCEjQCBJILN5jdOlZ9rICZQT/7vpt6HPJcnimrnRFUbMhFoYDDP11EAltEJmp5woNSrWDrv7UlVlgKj5eVH8vDkm9k9zcWqYWFVegiMGTpqFqfy4k3+hg9knoMyD/XTnqOPtrGyDi+mNQVmAswVtPOgQMHEASBjIwMduzYQXFxsQxP/ONDngbYPwHcbjeCIHDjjTdG//bB/Mu8M/FjGu7NoeRysXZzZo2B6g35mArEk0eGDC2OivToNfWb8vFeK9b4tFUYaX6kiIxSI7aSNBQqBaVXOKO2Dfe5KV+fA4C5xEjz48WY3CaCcwKhYIjGhz2AOAg0PFjEqlvzADDmaGh5soT+/SMc/VUPxR9x0fxErEPX3++h6g6RcGVwgMagZvDQGACrny1j9bNlUdvaTUVU310oLlgUClqeKqP8ljysRWk0P11Ky1Mx25qNRdRu8kT/rVAq8I0GGD0yQ+7ZdlqeKouW8qq6s5D6+8NtmhEJKo2Pl9D6mUqKr82i5akyjDli5mvVbW4aHhZtR4/MMDs9z0SPmB3PbDDT8lQZFq9IFqu4xU3jI7GEtdWThjZ8CiyjwkjLU2XYq8V6naXr82h8NGa79tMV1N1RCEZI84i2mQ1isVDv9bk0Pe6N2rZ+ppK1T4g1YI0OJS1PlZF9ltgHiq/JFk8yATmNdnQWLTX3FokXGkXSTN75oiMKL3fR8lQZwwem2fK5IzgrrdRsLIp+T8tTZbgvEfuL+0InLU+VMT05h0KpIGe1nbo4fzc/WYrnKrH2ZvZZGbQ8Vcb8bBAhKFB1TyH1D8b6QNPjXkquFfuWq8Ui+tttxJijp/LWmL8BGh8twXuTWLPUWZe+4JlXfCx/gQ8bHy2h4mP5AFi8og+da9IT+rvh4WIqbxXrFBvdRlQmZZQ/V3JtzgJ/1z9YHO2zRocSpUaBxiQSRzxXZUX9DVC3ySP22bC/geiJTPclmUv6bOTZ2MvMGDP1FF7uAkEg73w7LR8vjd6j6q5C6jYV4Wq20PpkBaufLYvzt42WJ0swOsRJZtWtedRtKqDxEQ+1d3pofNSD91rRNrPORPMjRaQVirsxFTdnUX+fm6y6DFQaBQ13usUxQqnEVmGk6UE31nCN6NJrHNRvzMV3RsXh3w4QnAtR+hEbQjBIeoGGpgfycdSIfbbkcistD+fQ8lAOhARqb3RRfoNddIsTGu9xkVWrg2CQokssNNybw6HfD9B3YIqaDQ4qr8uAYBCtBRo3ZpPTLDqi8II0HCUGKq/NhGCI6o86WHWzPdYH7nSS12JAawrR8mAWjXfZmemH7d86g+ccC9U3WmO2d9gpOMeEvUxNTr0Wc5aWvsOTHP/dGJXXWqi5WXynmJ+n4XY7RReKvy3drkcQBKaGAzA3S/lV6dR+NCPWX253UnyxGWbn0BpVqPQK0os0oFFTdrWVutucCLNzCLNz1N3moPQjNmzlFtQ6JbW3uLB5tUz3zlJymZn6e2P1eu2XzPPB7Ets2bmFubk51Go109PTKwSlFazgb4R3332XmZkZtFotAOMM87bwczQtQZoei80R1fcU4blKnHs8l7rQpKnJv0h8d/POd9L8RGyOqLqzkKq7CgFQ61UYs3S4LxLn2Zyz7aJteLO88rYCajd6GO+eZt4XZNVtxRRdIY7lriYrzU+UYsgSY5WKDfloTCq6Pxii640BGh4uofI2sU2OmnSanyjFVCDeOG+1ncDEHL6REI6adNZ+uoKS68U52VZhpPmJUmwV4pjrvSGX+oeKqdpQQHajjfoHiim7WYz3TAUGmp8oxVEjzrPFF2Uz559n/4tdgLgRUrFBbIMhS0/zE6W4mqwAFJ2fRdNjXlo/VUnzk6XUbvRQeWuYjG8QN0ZyzhbH9sGDY8xNz0cJSlV3FVJ1Z2HUp81PlJJ3vhi/5p2bhVqnInet6NNVtxdQfU8srml6zEtBOK7xXJ1J/d1F1IXjk8pbC6i9LxbXND3ixXOlWCu89oEiWp+qxLVWbH/5+nzq7o/Z1j9UTPG1oq3JpSe72YbZI/q77KY86h+Ii4MfLMZ7Qy47vnScE6/3LPB3yfU51D8Us627v5jy9fmo9SpUWiXNT5TiDMeGniuzF8Sctfd5qLzFTXBelHJufqIU12qxvYWXuhb02Zp7iqi8rUDsa7aF/nZflLmwz95ViMoQW5I1P1Gass/W3LfQ34WXugBwrQ73WZt4r1V3FCAgEBgXlYkaHymJ+tvZYBZtc8UbZ1ZbUKoVjJ3yRf29uM9aS0VbU6Ye32ggSuSpf6CYspvEPmv2iH3WXpWGtdSAzqrFc2l2nL89lK8P99lcQ9Tfqx8tp/XTlTQ9EvNh7X2xPmuI+PB8G/V3F9HybNmiMaKQVbfH9e/HveSdY0ebrsFelk5zXMxZdUdBdIwA0dZ9oZOdXzvBwN4zVN2Ut2iMiPP3k15aP11ByXXZuJosNG/yYsgSj6tVbMinNu7ZNDxUjDnXxOChMU59OETz497oGFF2Ux71cf17zRNl2MvSsZUbsZUbaX7ci608MkbkiAdOwv+/5pNllN2Ux55vdNDx9gDNj3tjY8RV2TSE+7et3EjtfUVMDkyz70ddGLJ0ND/uxdUkllMpusJFU1zcrtSGVXx9MR/mnG0DRCWTeB8qVAo8l+cs8GHeeQ4xvj7bLtoawFFqIS3bQPU9heJ9ZwSaHi2JjhHZazMYretgi/I1Dh48iNPp5MEHH2R4eHiFoLSCFfwNYLVamZ+f57nnnov+7QN+x3uh31F7XxGeq8T5xOo10HivF0uuGAOZ3UZRXS2M2nuL8F4njgHpBXoaH/Fiq0zDXmFFqVHiuTwvaltzTyFlN4gxmz5TtHWWW5ibnmc+EKThgdi7Xn1HYXSO0FvF0+Gntw9w9JcnyT/fQWPcOLTq9gIqb3FH/623aDlzVMw2Nz3lFdUUw6j4aH5sjkC8b8l1WTirrDQ94KXxEW+0PFf5+nyq7yiM2qpUSqYGfAzvn8RZZxFtwyVEy27IpeaesK1fjClq7vfQ+ulKCi530viIl/QC0dZ7bQ614byEv9/PzHCA8dNi0ttSLPrF6hXnCM/VWQvybq7aDPQZYqxszIv5G6DoMteCGGjNJ8tpuNeD3iqW/Wp8xIuzQRz33Rc4aXgo5u/WT1ey5smKsANFv2StEcf9vHMdNIbn5JwmOwaHjuqNC32Ys06Ma3LW2mh8xIt/zM+Wzx8ho8hE1e0xHzY8VIL7AjGOdDaIPgxMz6JSK8mstVIdNyfXP1BM4SViP7TXpNP4iJdgcJ7QfIiyj8b5GzEOLrpStM0oN0X9rc/Ui/6Oizlr7/PgvXZhn42g6ErXAn/X3FNI6fXhPpsl2tqbxHm28JKF/q6+q5DycNyutyox2LRRJafF/q66vZCKj+ZH/a02qdBaxVxmzjr7gjZV3uKO5tJAzL0O7BdzXllrRH9HiITlG/Kj/nbVZJCeZ6Tg4swF/tZbxdiw/OY8qu8uxOo10Pp0JS3PlFF0mehDW2UajY94MeaF++x1OWI+bWMRDfd6qHuwGM/V4jrJWmKg8eESLMWibfFHsqi9t4jsZgcao5ryj8X5262n8eGSWJ+9wkXdJg/+Mdj7/U5mJ+fjxggdjQ+X4KwTY/GCi52s+WQZaz9RLvp7fby/ofHhkujaJ/88B40Pl7D/Byfp2XyGVTe7qQznLkG0zTkr3GfPsZO72kHVBtHH4hjhXmCbf54D9NDytJjLBoFtXzhG4TmOBWNEwwPFFFzsJKPciLPOjKPMQs/2IY7+rEccI+6O2dZt8lB0hehvo0ODgIBvRNz89F6TvSDmrL23iOKPiP7W27Vo0tXRvKHnKteCmLPmnkK81+Zgyk9HZ9FQe3chtso0/KMhii7NXNBns641sN30Blv3bMbv92M0GvH5fCsEpRWs4G+Er3/969EN6f+PvfeOb/Qq0/6/qo8e9WrLTZLl7mku0zzpjUAKSQgppBLSJqQXSCCwv89n96V3SOg1tLDUJQRCCiEhmV4zM57iscf2jHtvKrYl/f44kiyNVQxk991919c/yUjHT7l1nnPu5z7XuS6AEXp5ae5ZojVTNNy5MK/WvLeY8nfFa1xnF6Kza/G+Q4wBrjVmGu/yJVVSqq50U3+DGLM0RjUmj57Sc8T45lhhovFuP5JTNK68vIgVN3mY6JomPD1H1buK8MRrO9ZqA413+5GLRFv/JW4MLh0dL/bT9eIQq27zUn1NfN3SK9G4uQJzuRj33c0WwuOzhIfCmL0SLR+twx8fs+Qi0dZaLdbnPOe7WH17OStv9FC6ycWKWzxUXi5qBJJTtHWsEON+6TlOwtOzHPhZJwD17/NQFZ+TkQTZqKDZCkBxk53GzRVs+HANzQ9WUXNtabIuAaKte72Ie9+uEYJjYcJTgphRfXUJtdcvzBENd/kpPkPkQCUb7UhWDUXrREyrriphRUrO2XCHn7JzRQzd6y0031PBmvi7fcVlRay8eaHtqg/48Fwk2tZcV8qmD9fjbrEl473q1oU+sOo2H774nGyrMFJ6hjMZb+/FBQtrYQjyasVlRez7bgetvzpF4+YKbHVini0715U2n6y40UPVlcVoZDVqnVLEe5WId8mZDhpS8qW660W852ejzM3Op8e7xb6w1otQ3Kq5tlT0y/hvU9wiYljQbBVtE332PSVIdm1avEvieaRjlZnGzRVIZpGrVF1ZzIqUuKy5ozyZR9rqjKKtSxy44ooiFAqYm55Pxtt7sciBzOU60We9Uvy3sqHSqQgNinl31a1e/PH6r7FU9ENLpajBGNwSgeFwkqC08uaUPuta6LOSU8JYLFN56UJtZMWNHqquEn1WMou4uNZYaL6ripaP1NKQMn/XXl9K9dUp/ftuP+4NVprv9LPu0SoaU/LTmveWUHt9Sv++20/xJjt6l4SjzrR4jHjfQtuGO3yUnu3gwI+66XxtkIp3FiE5RQ5aeXkhK24sTRJq1tzlpeWJavyXFGCplGm81ZesefnfVcDKmxaem1W3lGGrMdO7c5QTLw/QcKcXs0+09V7gZNUtC23XP1JBYYMVW60e2S3RcKc3+e7jOdfB6vd7kv+/4dFKKi4r5PCzPbS/KI6byCNLz7Kz5gOirdknUXddEVO9AVqf7QYJGu7wUNAg8vaidWYa7li4BpVOQSQaJRwGYlEa7ijDvVY8C4XNZhru8IAE0fkoallJ+fkFyb9dc4eX4k3i2XWtMdFwpxfJDAWrLVg8BurfJ37H0HiMNbd5KIuPybZaPVMNnbyh/A/eeustHA4HDz/8MKOjo8sEpRQsk5ROwy9/+UtisRhWqxWACLP86GffpyckdiBby/WoZSWWIgliMSJzsaTU6poPlCKZNVji3vFWryzaemUO/6KfSDiGZNRg9MlsfNSPZNVgLhMTtqVMh1pWYfWZ2PH5NiSjFq1JTctHqll9uwedTYupRBzXVCyjllXozBJjRwLYy41o9Go2Pi4WPGSnhKlYPORaqx61rMJeZQY9qDRKVJqFn93g1GGML8DJTlDLKmSTxOCBceZnIuLfceKRoVCHwbWwy04tq5JWJWVnu1DLKrS2hWuUnQsacxqTGqVGSSwSQ2fVopZVmErF96ZSAzrbQlutQY3NLyYd/8XFqGUVFo+Ik7lUj2RdmNQUCgWRsGC+WP0mEUO/GFysHgOSJb1tLCbUZqxeERdbtWhr8xvRmk6TvI6THQ2lBtSyCkdlvK3PmCTQ7P7ucYiRjIveGY93pRgM7RWmNGsDo1vGEI83ehFDR1W8bWW87cQsW/6tFbWkQp8Sb008LgCOagtqWUXfjmG2fvIwpkIZ2ZESQ5Mm2dZeJdquuclLw+1+zGXp8ZYsWmxeYzyG5rTrNZemx1CyaDGXit/CFr/eqovKMsZbZ5NS+reEUqlkoms6Y7xlh4SpWPQdyaVDoVAQiLPQbf6FeIOQUjcWif7deFtFWryd1fEYxolHhkIdhngRMaE6Ya9I/230znifdevQO3WExuaIzsdQaZTY/UZQKHHE2xpKxP2YimRku8SprUPMTs+jNaix+gwQiWD1G8VzXyxiYSrRo7Nq2Pe9k2x7ugOtQZ0yRuhQy0qs8YTJ6tUjmdXonTB1Yg7JrMZcKu7VXKJFLSux+cRxLaUyCoWC+VAsHm8NpnjfMrql+HFlChr0FNSZ0OiVzJyC7r9OINvVGAvFcSS7WhzXI0EkijVOHtz1Y7FTVm/XYHBqIBJFaxCTtL1cxuKRUSgVqCUlWiMwP4/eqUHviP+uanFcR4VE5Xk2ihoNqGUlY3G7Q2OBBtmuTqonafRKCuoMVF9uxVouoVAomOmdjf82EjqLOqmipDUosftFzMa7gygUimQR3eSWkEyiD7ub9UgmEe+ebTMMHZ9GqVJiKdXE+6WMZFITCAToLd3Br3/3LIFAAJVKxac//Wnm5ubS1fSWsYxlvO2QZZlwOMxvfvOb5Gd/3vkfvLb9rwRjggRhcsuYS8Wz2PHcSfF3ZglkKDvDicaoTpIKTMUy5vh8svWTh1EqldgrTTTdV0nZJtHWUJAYV/UYCnWc+GM/Oz5/FK1ZQ8FqK5uerMdeb463FeOF2WvA4NJx6lWxk0ln02L1mShca8VaaUJjVGPxiPNafIbknOxucqBQKLBViHnW7BFtzR4xF1l9BmS7xFvfOcKprcPIDgmLLz53evRojGqslQt5gkanJtgfwrHSiKFAh6VcHNdQoEFjVKfkH4LEPReYJzAcxlCoS8bQUCCLtinzocagRnbraPloHeZifTKPRBaFr0Suonek/w7mUj0m94KPltasSV6DbBOfDx2eSLZNzMkAWqsGe6W4/rmQUHWQDMpkDPXOhbayXcJeLo47fHwCpVKJOZ67WLyGtJxTdkjY4nFxrbKIGPrFAp3NZ0S2L7TVO0W8d37pGJ2vDsTjYo7H25iWcxoKRAy3f+YIp94YiMclftzKBdI8iHzPUqbnjA+toOH6CtG2euG4GuNCXmMqktN22IjfMZHviX4oW0QsLGV6jIVykpCtNWuwJdpWiXuVCxPzoYwCBe3PCRUhyapNHtdeIY5rjufiKq1KSC4n3A/tEjZfIje0JPts6dlOHDXmtJxTdkpYvPE83WtM9tnxY0HmZuZRqRfySr1Tl+zf5iIpfq9mpnqCRGPR5GJdarwBNFbRZ21lJoIjYaJz0YV4x2KYCmXMccKVLCuS8d7yxcOEx+cWjxFFC31WY1RTtFYUG2SHPn2MKJbT+6xeWMCOtU1ir0yMEaKPmD365PvAuoeq0NlEvI//tg9rhTE+RojjWnz6tBgqlUoic1FGjwQwe+NjhDc+RngNyT5r8xlRKpVYfPGxxiPiYo2PL/ZKIzqblo2P11L7Xi8Glw69Q2amK4ihQJuMN4A9vtFj00fFArWk1yY3EyTHCH88v64T1yS7JaG0FQWNLt6HTxsjSjY5RFtZyf7vHCEWEb9PYudtYoyYXNHFX7v/xO49u4nFYlRUVDA4OMjTTz/NMpaxjP9cfPKTnyQWiyXJgLOE+PFvfshATCjTWnwmUavyxOfomflkzav+Jg8Gt4w1Ps+aivVIVg3WCiPtv+8jPDGHbNOiK9Cx4cO1GN36hVzFrUGyijrFzi8dQ5I16JxaWj5az6rbfBhL9cn5RGPRIVk1GJx6xo7MYK80IZk0bPiwICuYS/SY4+/UOitIVk1yHNLKGtSSKkk8sngNmEsW3unEcWV6tg0z0x9CsmrQJOZZrwFj6UJbnVOLOq5U7L+4SPytO/4uWW7E4F5oq3dJaGUVkbkoGr0KyapJ1jisfiOGwoW5R2+XsFeYqL/RQ/V7PEhWDRZfPC/zm9LqbkqFkrmQeGc2uWURw0S+V2VOy4GUCiWxaIzQOMjxto5E22ozupQFIkiWvNBZRbyTeUKV6AMAB77fSXQuisEZv35dPN7VC9cgWTXozOKareVGTGUpMbRrscV/G0e1aCsZtGz5RCsaSYWxeKGt7JSwVy3kp5JVw3hHgO2fOYKlJD3eBpcumbNZfUYkq4a667w03e3HWm5Mm78NBbqFPltmSN6bOI85Ld4Gtx6rP9G/JSSrhtpLPKATcUmNt7F4oc9KDi1KtZKJLkE+s1WZ0uJtKlloq9MpUSgUBAdm43GJxzt+GeYyPZZ4LW3FLV7x2yTrhuJeddaFPmuK99mEeqgtnuM7KsVx5XiubvYaMBbpCU3FmAvOo5bitWJEfU+yapJ5vbXCiLFQ5uQbg4RGZ0Wf9ZsgFsNSbozXs+P9xW/CUKDj8M9PsuXzh9HbJKzlhuR9S1YNVr8hea96l4SuQCJwKoTBLSdzQ0OhNjlGiOs3o1QqmZ0R/d9YIi+MEWZdMi62Wj1lZ7qQrBpCg2G6/zKEuTjDGBHvs454fA48K9TYLR598v0RiD8LJiwlOtSSCsmoQWNOGSNKFp5lnUOLq95C3Xu9eM8vRLJqmImrlFh8Bgwp70l6l0RRk53aa0ux+g2i5tUv+oAYI1L6YaGOgpVWAAb2jomaV3kij18YI+z1RoxFMtYKAyMHpuh+ox+VWpl890yMEaFoiMGVR/nVH/+dqWmhCve5z32OmZkZdLoUNb1lLGMZ/ykYHR1lx44dKOOOCq+2/onXdr3KXFxWx+ozYI2vfbX/YQBi4v0MwP/OQmSXhBxfy7H5jcnxbccXjqFQKHBUmlh1i5fyd7iRnZKotwPWSiOmUj29W8fY/dXjGItkCputbHyiFkedMb6GKMYAW6URY4mctF0zFetx1lhwr7ViKou3ja+LOKrMmIrENRQ2OlCoFMk5ObEmaClPjPtmjEUyu7/ZRtdfBzCVGLDG5zTZrkZ2StgSc0SVCcmkJdgXxlgqYa00LtSX7FK87UKuIjslwuNzBAbC2MqNybkHSeQUqbmKbJMwu5Ssf7QGW6UJa3w+AdAX6JL1GoNThhj0vCHU061+IyZPSlu3LnlcvUuM8WMdgihvqzJhLFtoayrW44jPs7MBMd5r4/ZZtgoTxpLMbU9tGxTjvjcxny/EG8BUqk/mgo4aPbJroQbmqDalzT0mjwGr38i+73Zw+JddItdK5oYm9Cn5ksVnwF5hZPdX2jj+x4H0vKzSmJYDWX0GrD4Dmz5cz5qby+PHTf9tJLNob68wotam1IUKdNirF+qcslNCcmiT8bZ4DKx9SKxzG9xy8rexlYtrMBcv5JwAHXFFelORPrl+a/GK4xrj65hanQaiC9ZwxhJDMl8yuhf6rGuNBXeDLZnDAxhLDcm6rLFA9ENruYHwcJjAQAiVemGtPRFvAI053mcrjYyfmCYWiaWt9Vo9BmzxPivF+6zdbxYbaQPzIt7xkFvLF8YIiPfvShPbPn2Eye6geO4zjBEA+kKJknWCQKa3a+NjhMiFrRWmtLxdb5eIEWP0+HSy1pqMt9+IMf7/q2/zYCyRsVcY6HplGFOpPm19115lTK7fAijVSubDEcaOBDC5JVH7jt+PvcqUXC+3V5lQapXJGMp2jajxxscIe6UJvUtL830+VlxbhrlUj9GtZ7I7jGyTkB1aMQ7EotirRH/Z8CGxEUBv00EECEXFGOGQsFcaQKHEWW9CdmqxlGkID4WJhKILNS9E7dgez608ZxeIPmuVOPijDuZCEUyl+qQqnr5Qh6PKxFTFKbZPvsK2nduIxWLU1NQwNDTEF7/4RZaRjmW7txzo7u7G5/ORGqIaxXq8+trFjaNRNjxSDgrY/oXFcr2px6i6ogBnjYn2F/sZ3DezyPItAb0TVt9exUjbFG2/WSytnWoDt/LmMiZ7AnT/ZWTBqiqTp2OKjVX9TWW0/uZkuq3Vad2h6j0luFZYOPFSH32ZPMLj2PiROmKR2JK9z4vOsBEaDee0idvweC1KtWJJ9mCedxRQss7B1i8dXpK1nN6pJDD8d3jb5zueR49Ggom23LZ3mx6NS1Z+Lr+diGOVgUDfDME81qdGvx6DU8PAjomc7SquKELvkDjw/c68516q3VvpeU5cdZb8lid6KN3g5NSr+X1cizbacva1BBLWgKGxMHueyn3+krMcma3z8tm+ZZIIJC5xmMsOMMVyreGOMjSymp1fE+OCIoclXN01hVg8Msf+OJTRQiPxt5WX2jj+fP4YAZSeaaKk2ULXG2P0781wwWo1RKKs2+xGoYQdX1881qSi+nIrp7aOC1u3bDFQq0E7n/yu4f0FtP5mkNk8ypfrP+hmrDtM23NZbA7jY976+0sgBjueSpF71KiJzc6lNa+6zI6j0kD3tjF6t2Q++cvTPyGKGIOLi4tpaGjg+eefz32hy1jGMv7TcMkll/CnP/0p+W81Ws5VvDtj29LzXHjOdNGzfTiv9dfGJ+qIxWJ5bdLqri/D6jey9ZO5cw/ZrqT2+vKF+S+X7VP8O7lEpmSDjeO/ye1F3/LROiKz0ZzWY6VnO/GcXUD7S70MbB/PebwEKq4sov132W2vnKtNVF9RxuCh8bzXCLDu0WqCI7Mc/GFn3raynbxWcn8vilrs9G3NfdCm+yrR2bTs/X5+azIQCkN5rckQ8T/1ev6cpmGzn769o3l/o7/H7m3lbT4mTwbofjl3n3c1mZkemMt737JdieSUlmTft/7DNaglVd7rtNfpCY5FCS7VbmYJSFg+ZkUip5Oh5aFaOv86QN/W/LnSpo/WMRecZ+eXsue8jpUGlBoVQ3vz9w2ADR8Wltw7Pp/dirj4LDu+cwrp2T5C10vZf0vZDp7zSzj6q3jOs4SxxntRATqrNq99XO11pVh9RrZ99UhOi7fCDVYqLiqib88oJ/54mtXlae+Om56sJzKf3ZKyK9ZGG/sB0Ol0OJ1O9u/fj91uz3mty1jGMv5zMD4+TkFBAXNzC+9RNTRQpsisZrb+sRpUGmVeOyvvRQWUbHDS9scehvbkqFPoYMMDtYwdn+LYb3qyt0Mou4TGZzn56nBu26eU76quKubkq705rafKznNSdkYBHS/357QpW/dwNQqVYknWsCCUgKKzUcaOZLcJWPtgFRq9ekn2YIVrbZRfWMi2Lx9Zkk2XzqokNP721bx0BTp0FgXjbbnzhU0frxfzao45MAFLhY7wyGze69S5dRgKNLkt9xC/palET2se25vEdS7F7s3VZKGo0ZbXkguEykBvntwURN/Idy+wYA0YGAqz75u5a16Fa20M7FpajWip0FnJ/uyk1NLqb/Kgd2iXZNvmv6wQ9xo7R357ktHW6aztyi8pXJxzZIGryULVO4vp+Es//TlqieseqkIlKdn2mdzPsP+yQnp3TQhbtyWONWvuLOfoLzuFvVoObHy8hrHj0xz9de7xbv2j1SiUCrbnqR17zndRuslJ56uD9L6R+d3kb7HnCccTPbfbzaZNm/j1r3+d87jLWMYy/vPw0EMP8ZWvfCX5bwmZs1SZa16uNWaqLi3i1PYRul/J8IynrP2tfbgKpULBji/mnn997yygcJWV7Z/L3U4yQ/XVXg78oCtxocKqLNNScvw7yayk5MyCJGkkG9Y/WkM0EmPXl7Nfg2OVmerLSzjxYh/9u8ZzHi8Bz0Uuul/KbpFmLtex8gY/A/vHaP9Dfkv4xs0VzE7Ncein+fOKhM3T2wnXGgtD+3Ov9628xYvZY+Dgj9uZ7MpvEeZYYWbkUP4LLWi2MnhwPK893YobPQwdmWRw93jOdn+P3Vv11SXMDIToeSPL+lActjojofG5nBaGIH4byaHLa90G8RqiVcuWz7XmvHdjqcRcmCXbsiWRYy1SMisITy6BqiHBhvur6Xp9KEkqzLaGCbDh0Srmw1F251g/NXskNBYtIwfS89NsNm9N95SjUCvY/bXsloD2eiM1lxfTs32E7r/m+C0l8F9QSEci78tmi6hQgjYKYShstmAq1nH8udy5ovcCJ4Wrrez/fgfhiezvG9Yqmbr3lNGzc0TwK3Jg/SOVROdj7Ppqexo/I4GhSC/7+Zu4FUmisLCQXbt24XK5FrVdhsAySWkJ+Ld/+zf+5V/+Je2zjYpLMOudaZ/FIhHQgyKoYOXNxRicEtu/dQICEItEIcNDrXNAw21+eneN0v1K7gdg4+NVzAyGOPCDkwvnzPAgbHqyhvlghB1fyD7RWyr1rLjem71dvFsUnWHDd657yeQfEGSY9v/IPdFv+ng9xHjbfEhrri/FUWWm7bmTDO3L/bK/9qEqtCYN+75xJCdRSe/R03CLj7GOKQ7/7GTWdiDuJxaJ5V3ULFxvyUsmAmFzV3VZGdMDQfZ/K7f/69sdy8Qxl0JSWipqri/FWW2hf//okvpGZC7K9k/nJ7zZ6vSMdQVy9k3fuwopXutg8lSAgz/oXPgiQ1Kw6ck60e5H8QQ8ywS//tFK1DoVW79yLP3cifYpz/r6B/0oNbDt8wu/4yKiUoLskylRicVQqBeYu9VX2LGXGxhpn+HY74YyHw/wnm+mc+sEinDme4hFomnHbbilAIVKwd4fDBCbn0/7LgFDGay8ooj5YJTd38ucBMTm5ylpMVO2wcJYV5Bjz42nfZd6XJNPSf2lhfQdmKLrL+Pxe1l8vbG5edbd7yE8PseBny1eyIvNzyeJYfXXuDAVSWz/6imYmxOxDS+Ozx7ln1DrlfT3ixcns9nMxET+Z3MZy1jGfw3sdjtjYwtFZiNWNiouXNwwZcG+5aN1jB7P70W+5m4/WqOanTnyJBB2X4VrrOz7UWdOokf9TV6s5QaO/cdJhnMsOKx/rAa1rGLv00dyki3WPVzN7Mw8+7+9NP932Q6ONa6kylPGa7zRg63CRN/uUTqez1+MWQo2PVnPXGCenV/KHUfZrqTx3lpmJ+eSO7yzYeVtPkxFct58as0dfgxFOtpfzE3Sku1KNFaJyY78BJwNj9ei0irzEnCqri6hYIWVnu3DdP55aYsn+fD3kJSWik1P1gOw5RO5j9mwuQK9S2L/MyeY6Xp7iFwtH61DoVLkvZ/6m71YyvTs++bRnM+EwSuz5pZygsNh9n4jS2ElnkMVrrVQ8c7izISafxCbPloHCtiSZ+OE7+LCJfcJ2a6g4e4a2p7vyTlurHtELGDv/W4Hwf7sBbD1j1ULAtnp1xiLpeWXq2/3oXfq2PaZIwsF5gz5p/ciF8VrHWz9chYCU/xvZTusuauOsY742JuFRDUaG2WioouTJ08yOyt2kX7605/m8ccfz3pPy1jGMv7r8LOf/Ywbb7wx7bO1XIhVYV3cOL4wX/2eEmyVJvZ/+0hOEhA62PhQLT3bhwXBKAc2fLiWmf4QB5/pzNmu5cl65vPkILoCHU13+/PmH/Z6I9XvLmXfN48tmdTjOd9F91+y512JayQGWz/59sztSeLXH3oY2pf7vXXNnWIhaN8POgicyr4go7MqadhczfiJGY78Ik/N62P1ROejbMtTp1kqAUdfqqPhNj/TfUHe+u7ijZ6paPmoyGnerljC0klKS4X3ogJKW1z07xul/fd5al4fq2c+vLTNiyavjrmJ3EQuV5OFqktLmOwK5H12Nj5Ry+SpQF4iV9O9gui/56nWzM93Su7QfH8lWoOarUuo4S0FvneIvj5yZIIjv8xO5ik+w8HooZHc408KVt3mQ2tQs/up7GQqnVVB0321zE3PszNHPdSxykTNFaWMHpviSI53T51bR8OtPvr3jtKZa1NNLMbah6oIT85zILVumfJ9IuZVVxbjqDEJslUslpVI9Zb6TdQuBb29YvOJ0+lkaCj3uLWMZSzjvw61tbUcPbowD1hxslZ1weKGKQv26x+pZOz4NG2/j5OAMgkUIGykDC4du7+Wmzxa3GLDc1YBB3/ayXRP9ndN/7sKcTfZaftDL0P7xrO2a7ynAtkhsfd77TmJI6tvLyc2H+VAYv0lHyQoXmun983sRGDfOwspWe+kb9dIXpJU6nFzEVE2fKiG+VCU3V/LkytIsOmxekLjs+x5OnfMq64qwVFtEu/judrFhSM6/ty3QETJcm6zW1oSQan5wSokkybvGmLpOU685xTSs2OYzhfenprK30NSWio2Pl4LSgXb8pD96673YK82cejZTsaPZd88kICtzsjY4exEaoB1j9ag0any1tv8l7opWGll7/dPEB6ezdpOcko03+1npj/I/jzEeEulTP01Pnp3D9P1Ysq8noOolA8bP1SNQgVbP73wbpWJoFRypp1Tr49kJS/ForGF7yRY/8FK2l/qZ+TgdPp3KWi404vskHjrR53M9GWOUSwao/GeciSLhu2fbVv0Xepxq99ThNVrYMeXjie5E5nOW7jWgvdsFzuePp5xHEgeV4LmuyuY7J6h7Xf9xDSxjO0DkUkG/Mfo6e0hFBKJ2Ze+9CUeeuihjPe0jAUsXoVexiJ8/OMf5+Mf/zgXXnghr7zyCgDbYn+EGQVnKq5OtwMKAArQ6FQoVIp0AkOCUJTyUDhqLCiUioxko1TonSQltvNhLjDPeHduRtHE8YAo3v9VTDSuBiND+xYPvn1vjtH3ppgIi86wUdZSkHPnmGOVgcLVNmzlxpwEl1NbhgiOLG13dfmlhRQ1OejbM8KJ5zNPjEefzb0gmYqencOUbnDlVVIKxGOokrIr3yQw0TnN4IH8u5aWQlACGNwzSdG6IO0v5U+qBg+MExzJn4gY/XpqLium46XenApWfw9W31lOcHyWthyFA4CTL/eikVS0v5R/YXSkbZKZgaX1jaXcR+efBrB5jRz8RefChxmeJX3cpic8k6LGE4sumuAVSgWDBydw1pizk6OiseRzvuMr+ReZN272EZmPsfNrKYWiLPzRY/8xSu1V5CQoya4Y7lVmnDVGdn8rPeaxyEK/955jwu7Xs/cHA+x7ZlCQfTLAWqFmvH2emc4IA4em6Hx18ViR+re9OwOUNJkZOR5a9F0qpgajoAC9VR2/l8wEJQCVWpFm+5ftuEq1AoVSgd4JgT7Eb5QSosGiA+xr2wOAPCezcuVKtm/fvmzrtoxl/DfD6Ogoo6OjFBYWMj8/zzTjvBz7FUV4WaFYt9AwYU9VIiyzlpIrafVq1EuY23V2rbBiyKNEM3JkAmOxLifRAGDH54/ifUeBIGPIwlIpEykkdcFt7YNV9O8dy6nas+oOoW4zsn8oq1pR60+7qb2ubMkEpQ2P16JUKXKShfK9jCcQHI0yOzlH7578O8vnA0LZLp9qzrHfdFB5VXlehaLgaJTgaH7iDUDf7lE0xvz94tSrPag1SgZ25i/WVF1dgtag5tAzSyy+5YFjpRHP2YUc+U1PXpWi7r8Npln4ZkPHi714zilcEkEJWJLS1PEXepK2YrmgVIvnNadCEjDTFWRuep6Tb+Ze3EGhYGDXBAO78qiLXlZEYYOV7tcHOfV67k0iAO0v9qLU5C74rHuoCo1RzdCRyZyxXPdwFR0v9TJycIatn8pemHSsNDBycIad32ijdIMzJ0EJYKIrgN6VYuOTJY9UqBQitdXFxPiZhSCvVCtRKBW4as3pClKnHTc4CkqVAl3CGvG0Ww/Gghwyv8n45Di0g8fjoampid/+9rc572cZy1jGfy1uuOEGbrjhBu666y6+853vALCLl1HGlGziEnSKFDug+PQjWTQo1cq8BAFHtQmlSpk/R9OJV29F/qmLwHCIwGDueTA0GKLz1QF6d4lx3lZryKhqNNo6zbbWuDV8vRH/RUU5SU36Uh2lZ7hwrbDmXLTq+HMf0fmlkZ6KW+z4LnTTt3OEE1kWg7peGsypvJeKk28OUX5hUU6CEpAkvig1+fPnoUPjjLbnJx8thaAEEDgVYvzENCf/lv+eerYNMR/MrECfCl2Bjpori+l+fSCngtXfg7r3lTE7M5+XeDSwcxCdWUPP6/lz7b69I8xN578fgKmu/LWxoT0TFKy0cujfc+ebOqvIZRL5di707h6luNme/flOIc3kWwQHoSAUjeRWmUyg88VBtEY1x3Iou+qs4DuvgJINdnZ+MftzWNxix91oY8/X2zOTf+IweXRMDYYIjcc4+cYQJ/+am1A5cmCKuYvmGTmWOy8OjYdQKBXoUuymFyGeW6l1qsV8gwz5nFKlQKFSonPrCPUFFxGUxv297GrfAnMgjUisWLGCN954A6vVmvNal7GMZfzX4siRI4TDYQoKCpicnGScYV6O/IIyqqhRNS00jL8GSmZhmaTU5ici6Ewa1Lr8CZXskECpYHo497vmSNsktmpTXlWfvd9op+RMR5KgZPZmJs+89b0FcvKaO8oZOjyRk4DUdKdQtxk5OkM4y7V2vjCASq1cMkGp+cEqNDpVTrJQPjW7JMIw3R9kuDX/ut9sQKw7SS4ppwpP2/M9aCRVboJS/NxLISgB9Lw5hM6ZYz6K49S2YWSblr4t+YmtnotcyDYp72bRpcLslfCeX8TxF/ryKiS1v9CHzqbN2Qag87UBYsSWRFAC8hKUAI79x0mctZa87RLryrkISuL7MIGhEKd25K+bThwP5lVhLd5kw3duAZ1/HaR3S/4168O/6U7axUFmUs/q93swuHVMnZphsjP9t0nlNjTc6aP7zWFGW6fTiEKnw+LXMdERYu8POylutGUkKKX+7WjbVNLW8PTvTodCqUBrjBGezHwvsWgMoqLu5ao1MbR/Kv27VIRBrVEiGTXJf6d9HQnTan2DkfFh6IDS0lLOOOMMnn322azXt4x0LCsp/QPweDycPLmwy0iJigsNNwolpdOgUCiovNyFs9bEiVcH6d+e8gKT+oDE/7bliWomTwU49JPcA/vGD1UxOzPP7qfyqOx8tEZILed4aStoMlN5SYmwzXo65XindY3mByqRLFr2fa+DQG/2F+W6Gz0c/m330mzXinWsua2cjpd6sxJ49E4la+6qYf9PupLEoWww+vWsvtHHWMc0h5cgxaj36PMe8+3Ghg/XopLy79R/u1FylgPfeW5G26fyxmapSkqbPl5PdD6Wl7H8dqNxcwWyS+Ktn3Yy3fF3/n5LJPsttF9I/g0FCmFzlqcdemh5oJKZwTBv/TDzs5xKLmraXMbs5BwHf7Y4kU4oD629p4TgSJiDPx/IeIzTh/KaKxx0/m2M2Yl0YlLqcZvvKkStVbLt2+m2j6lqR1pThMZbS5mfjbL7G/EiUfy8qSSh4o1GPBtt9O6f4uTfphd9n0DROjPeMyx0vDLC4IH03y5BUorNzaMvhNU3eBnrDHD0t0Pp93racdc/6EWhZEE96XSoVBwKbGHaNMj09DSxWIxoNMqbb77Jpk2bFrdfxjKW8d8Kb7zxBmeddVbaZz5qqVSszPo3S7FMA6GCZPHo2ffNwzntyIpa7JSf7+bYc7nVkvyXFuFustH2/KmcZI6kbdbnW7PaLMl2aLy3Pq8CgGxXUnKue0kWbQCrbi9HZ9bkVB9YfXs5KkmZ384VoUxlcOrY8sXs97JwsSDLb7/1Wy44VhqpucrDeOcMrT9+e8hCS8XGj9ShVCny7hZbqpJS/c1ebOVGDv/yBKNvE+F8qdj0sXrmZvIrZ73dkEvkJVn11d/sxeo1sPd7uRWHAKzVMrVXedn/nSNZ+2LhBivl57nZ/+3sbdKu83Rbtgwwl8usvNFHYCjEvm9lV41o/KAf2S7R+u+dOW341j1UhVpWpZOdMrzar32gCqVOyY7PZhgPE3lxLMbK9/swFacomaXmzCnHLT7Lge/cQk5tHc5qOxiMBdnKC5gsxqRSZW1tLYcP/9e+MyxjGcv4x7Bu3Tp27dqV/LcKDS1cnE5WSkHpOU48Z+W3TAOh5DLRNcPhn+dW7ln/WA3zMxH2fCM3AWLjE7XMBSI5FXEsFTpW3OBnZjCUU6l69e0+jMV6DjzTkZMcUnVlMSf/mttGLgGdFdbcXUvHS31Zre90VlhzVy1Hft3JRHtuUoquQEfjnX7G2qc48mzuGIJQcgm9jfarS8HaB6vQGjVLJrS/XbBWyax4n5+RY5N5Y7NUJaWWJ4WCVD7L6LcbtdeXYa8y0frsibwWe28ndFYIhchvKaiDlkfqme4P5iT/JLDmznIi4SgHcxD3m++vJDQxy6Fn8tdyIW7L9sZgTou15vsqkSwa9jx9OPvzqoNNj9UJhdgctXPHKhM17y6lZ8cwXTnshOz1RmquKKPjpT4GslkUxWLorNCwuXZBySxL3gXiXUElqdKVME/DidgRhi0nmZmZIRqNEovFeP311znzzDOzXusylrGM/x5obW1lzZo1zKfUu/2swK/KXvPa8GgV83MRduex2vS/q5CCVVb2fr8zK8EHwFZrpObKUtqe62HkUPaaV3GLDe+5bo49d4qRA9lrXgnbrN1fbc1ugyZBy6P1hCdyKxBJZig5071kAlLVe0owl+hzksmr3lOC3q5lfx41R4Caa0uxVZjY9sXDee3PxPUqCU++fZa7+SAXSTTeXsHY8WkOP7u0OfTtwtpHqtHo1HnVLpeqpOS/1E1Rs4Mjvz2Zs3/9Z2DjR+qYm57Pr5z19yLPWmQ+wloCFZe5ca20sv9HJ7ITuOLrk7JbYuX7ynjre8ezPn+2WgPVlxaz70edhIfnUg6xcL1phJ24LduJFwYXfxeHrlBH0+1epnuDvPXD9L6YetwVN5Ri9uhp/dVJxo8F0r4/nfCks2rZ/oWF3yTTeVe/34PWqmXXlxePI6nHrXq3G0eNmW1xu8ts9+qoN1JzRQmnto1w8rWRrISov0WeQ2+Tkk4Qa9euZefOnRnbLiM7/nENsP/F6O7uZmZmBlmWAYgS4cWZZ/hL6BeL2sZiMWZn5ohFYkmCUkGjQXwZZ+wloPeI482F42SnJQh7ZJNWSyAyGyU8kWHRPgWDeyYJT8xy5Lc9Oc+7+6vHhUVabwhbnR7fuwoztjv8U0FQKj3PyaaP11NyliPruS3lQvnAWJT9ZgPDUbZ+8jCB7gC2Oj2l5zmztp3uDxCLxpa0y2rl+3003OrLeX0gSFItH6nDc0Fu38jE/XreUZCz3XRfgPBEbvZs4rwbP1JH1XtK8jQUxKfq60pzNuv52whvfv7QkshbS8WWf2tl21fyLzZseKI2/30gkoG6G8ryths/Oc18KJKXoLTpY/Wsf6xm4YMsScHGJ2qpvjb79SmUQp1n9e1VtDxRnanBoo9i0RjBsey/cywSoeoKJygU7PnmyYwEpdS2Kk3KLnUWCEqxWCxJUFp/Xynr7hX94NgfxgiPRhcTlPRQdbkdgF1f72HvD09mJhRKEYhEmB2H4OgcJ/6Szro+nSjU+5aQbYzNx4jNz2ckKCnUaiZ6xTioL9BkvleN+LtAnIullhZim3pcfakKfXwImp2aZy4YzUhQmvH3cND0Ej3RNiYmJvB4PDzwwAPEYrFlgtIylvE/BGeeeSaxWIxPfepTyc86OcLLsV/RGctMQpqbmScUH4MNXhnZnjnlTewcT5IQ5MzXoHdKoICZU7l33syHI8QiMYYO536ZPvFyH1O9wQVST4bzBkdh79NHkgSlqqszz1PB0WiSoLTh8VrWf6gmY7sEdBZNXoWdt753IklQynbeBEJjs0QjS9vzsOnRetbcVZe3Xc21paz/cO77ALGA2fLR3McbOTjNfDDCZFf+XVO115Ut6bxVV5fkjTPAti8fflvlrFt/3MWbnzuUl6BUe11Zev6TBTXXxOOcpd+nYnZijvHu3DH0X1rEpo/XU7jWmrNd+SVuNjxei2zPfU7PhQU0fqCcmmtz57gglGRj0VhOgpLnAhcGr8z4sSDbPpObfGQqllGqFRhKTVnblJ7rZNOTdRSutRAcJStByXdxIXKJzOSJIHu/fiQ7QSn+Oxx7vo/AUDgnQQlgdnqe+VD8nScWy7xopVCAIo8ir078XXRO5Ixp42XKcZ2rRSx6d40QnYsxN5NZKXOs4QTb1X8mSoRQKERjYyOxWGyZoLSMZfwPws6dO4nFYhQWiheuCHO8wR94Lfb7jO3nZiJEZqP07xMDq73emLFdQskllsgbMnOe/i7MByPM5ql5TbSHmO4L0vZ8b87zvvW9TvZ87QhTXSF0bh2e8zPXgNp+JwhKrgYLm56sp/jM7DUlfbERlUaJqST7ZBsah+2fPcJEe0goNZ2TveYVGgwRi0SZC2Qeg1NRdVUxTXf6cx4PBDFl/WM1We83AVeDhU0fq8f3jsy1wATGTkwTGs1f80IH6x6tpurK4rxN1z1cTXWemtJ4W5A3P3toSeStpWLrJ1rZ/pX8BKV1j1RT8e6i/O0ey38fAJOnAsxNz+clKG18opZ1D2eoUWU4b9VV+eO85q5aWh6tz9sOIDofTb5vZUPFu90A7P/OiZwEJQCNXo2cRxFh3cNVrH9U3G/HHwayEpQS59391PHsBKXEOBCCie4ZOvIo2Y+0TRGdjxIJ51Hl750RiuGOLGoVkrjmxDWlKZml5F06q1BLAgiOzDI7PZcx15soHuJIyTbaOcjExASlpaU8+uijRKPRZYLSMpbxPwT19fXMzc3xi1/8AqVS5EodHOLlyC/ojmTeJBQcmyU8IsZgySkhuTKPOQtKLglJpszXoI8r7EwP5h7Xo3MxonORvEpy7S/0MnFieoEgkem8YdjzVGuSoOS9uCBju/AkSYJS8/1VrM0z7xkLdGj0uWtebb/pSRKUvBfnXssLjoWJLVEdc+PjdTRsrsrbzntxQd77AGj8YAUbH89d8wr2hQmNzzJxMr8CkP8S95LO67nIRfND+e9j19PH3lY73o7n+3nzM4fyEpS8FxfQfH9V1v6cgOd8F2sfqkYy56dBzAwEGT+RO4bFLXY2PVlPQbM1Zzv3ehvrHqlGsuQ+r2uNhea7/EvKhedmIsTmowRHs9e83M1mzB6JYH+YnV/KTlACMBToUGmVGIsWXoxSCT2xaAzXGjMtT1RT0GSBMJx4YTD5XSqKN9owlgiy1e6nji4iKCUQ04i/bXuhn6meYJKglPz+tOMGx2aT7zyZzpu45hiQiyUR04i/S/AuUsfL1ONaqwVHYaR1mrlQhLlAJOM5x9a087ryt4QJMDMzQ1NTE6FQaJmg9A9i2e7tH4RerycQCBAIBLDZbMzOzhJhnpdCP0WNlvN01yTbdr0yRtcrYoG/cK0R/4VuiteG2fed+ItzvKMHuoNpvo8tD1QTmYux4wuL2ZvbPrfw2YYPVYMCtn92cdKy/fNtSX/alo/UClWBLyxut/trYiHKVqen7movM0Mh9icK6CkvQQmLtJorvSjVCjpfG8iqmBQJRiAGEzl2P6fayYFYPOh+JfuOlLqrfaCAU69mkbMJwNZPLBTAcykldfyhm5W3VdGzO7fNQyAQRaFWYPUbc17bqe3DlLW4mJvJXSA79OOlkYQCw1GUagXGgjyVuwCoJCWmfO3ibd925Dmm3qlEpVGiz5Isp7ZTqhVoTZnJK6k48fxAVuu/VMyHIoTG48l1lsUZfbGEUq1AZ8kvDzneObN4Yfc0gpK+TCJwMsy2z8bVJ7IQCRvv8qCzaphqDtG/67QEKBoVakV6KFqjp3frFNu+lFLQSSEmpf3ZfCwpKZ9JPQlg7S0lqHVKeksmmOmC8Hj6eRUqVVI9aS4QZc93ennrxwPx08bPGScKlZ5ponStVagi7ZsSSkYZUHWZHUelgbd+eZJAD2z78mlFw7k5UKnwnm/GvdpC7+5xul+bWLjnSCT9fvWw+royInMxdn61i33fXVyE7Age5Dj7UB0Rv5dGo+Huu+/ma1/7WsZrXMYylvHfH0888QRPPPEEDz74IF/96lcBOM4BjscOUEszpYryZNtU5aGV13tRaTMrGB5M2flbfombomY73a8NLrJXa3+uj/bnhH2DtVqm/tpyeneO0Pnn9Lmo++XBpLJIUYud8gvctL/Uu8iWbGjPZFJpad3D1WgMarZ8YbESUcIGy16nx1VvwVKsZ1eOXT3R2Six+dyEoZ1fXMgDi89yCBuULKla6dlOXPUWdFYtB76XmViRKuucT/Vmui/IzBLsfmW7FrVWhWzPrboUHp9DY8gvY55PUSsBnU2cF5mcqlAGl07Ip+dpl1dZ6h/BEo5pKJCWJO+ud0rifpdwzFz9LoHZqTmic7Hsu8bjMJfpUWmUBPOct/vNQQpXWzn6XHaF2USfa/t1D23ESUJZcr7SFicl6x2ZbdbitiWl5zo59ddhjv+2j+O/7Vv0fSqme2cg5iISzr45QrZD8To7Bast7PjcMYKjpz2f8eOuuascQ4GOvT/oZKYryL4sSh/rHqlCqVay/bNH2f+d7GogGx6vJToXZecXj+VUYtvw4ZqktWPr6RsZUnKvxnsqkJ0S0blORg8H2PbpxYSj12LPMUcY9oLRaCQajTI8PJzc2LOMZSzjfx76+/sJhUIUFxczNjbGHLO8HPsVWmTOVlyabDewa4yBXaKuY62Sqb3aw8wZQfZ/Jz13CI1H2fbphTF440O1ROdjGefp1M/WPliFUqtkRwbbjdQxbv1jNUTnohnHvbfiC1E6t46mO/1M9QQ48P3ORe0SFmirbvSg0asZ3DOUVYElMisK1zN92Um8o63TbGldyEGLz3TQ+0b2GtTqm3wo1UpOvZbdbio1hrmUkk6+2ovFY+DU9tzWVaEQqCUVFp8ByF7zGto3gf8dRcxO5a555bNGWzgxqHXqvLUiEAQWQ+ESal7/GaJRS1AV0ujVGPLV5HSgltTobPlrXr1vjOTsJwnMTs0zN52bsKazivPK9vw1r8FDYxgcueftRJ/b/tl4P8ySd628xYvZoyc4NEvv1iwJvQ7cDTb6t43ltNxJIBKKolDl3qzbdE8FOoeWkdYJxo8HsxKUNj1SR3hqjt1fO55VvcnVZKHyncUcf6GXod3jbPtM5ncKz/kuSjc6OfSLE0y0hxZbZsdzqoS1Y8+2YbpeGkx7lk8nIDXdV8t8OMKOzx3l4DOdi87ZG+umlR2o+lXEYjG0Wi0PPvggn/3sZ7OFZhnLWMZ/c1x77bVce+21PPXUU9x///0AHGMvxyJ7qWc9xaqFmtdb319YJ1h5QxmSScOWzy9W+mn7XS+JrMi93ob/Ireww92SPi73vDFCT3zekVwSTXeU07NzhO6X0/OC/l3j9O8ahxhYqw3UvdfDiRf7xGcpmDgeYOK4GFsb7vCjL9Sx+2uLVZUS/5aLJErWObH7Tez9RnZF77nAPKo8lnd7v7nw9641FoaOTGRVQHKsMFOy3ompUM5Kpu1+aYjuuIJePtWb0eOTSxJPkG0SalmF5JRyKlwFhsKwhD2Be57Kb70KIJm14rx51J4MDhnJoMmvCrU0p7m/D0s4ptktizXEPG2NhTIavWpJylaZ3gsWXVp8o9jgwfGc7ax+I2qdinA49483dGSC0k1Ouv+SPXdO9LnuV4fofjW3BV/5RUVCAfTzGWpAsSgolLjXWujfNcGp10c49frIaU3Sr3d6IEwsApH45riMikIS+M4vYDYQYdeXsxOjaq4pxl5h5OBPOpnsDnPgR+m5V+LYjXf7UMtqdn75OEd/ld0xoPmBCojC7qfaOZCFFAXQ9EE/Gr2KbZ89Ruefh+j880IMU++n/n2lWP0GDv/6FGNHZtj5pcXP1LbIi0wzBntEzctgNNDX14ck5X+XWUZ2LJOU/kno9XrC4TDDw8MUFRUxPz/PPLO8FPopKtScr7surf3ArmmKm2c59luxqL7y1hKGj0wJlaXTzKfDk3PMxpmCxnI90alARqup6Hwk9+5YhRJiUaLzMSKzuSfJsa4Akdkop95Mke7PIDm7/zuHKdrohgDITlCgTBKYEujbNkbfNlGostXpqXxXadrC2OlY94hYpJvonmGiLTPz5eh/dCE7l1bobvloHQqVIqt1RmA4mixyuRpMDO3LImUZYGnWbAEWv4hmgdGvZ+V1Xjr+3MNgDjuYpVrCLbXdxo/UEZ3Lb3+zFBSdYaP8/CK63xjMThpDxHkp17fUdusfq2GqL7gkRail3GegN8yW/5Pld4sTkFyrDQy9NcORX2SYGOMTPEDDXWXIdon2P/cxuDdeqIzGMhKV9n2vh+ornQsEpWjK8xNXSdpwpweFSkHvvsl0MliK9Zn3XDNWj8z+H/Sy6+nutO+SiEYx+3VMdoTY9UwP/rOszHRFFp03oc40Ow7zoSgj7dPpNpbK9JeA0fYpSputqGUyn1eKQAAmOmdwVBgw2vUEeuI3kqJ6VNBkYnB/gM4t4xTUmwmNzyUtMJPn1UPjDaXs/dkpCMDMYJj+fWPEIunj35HgLrSV85w4cQLih3j3u9/Nb37zm8XXt4xlLON/JL7yla/wla98hVtvvZVnnnkGgCPs5khsNxWspFxRm9a+85V+nPXCK1y2K6m5tpx931xc9AgMhkQOFCcoOVebMlq7SWYJYjDalqimkJHkodKpIAaTbbl3AI0cm8JeacxJFBk9HKB/zxgd8RdXs19msmPxH6RacTVsrmC4dWIR4SoJGXznFlLa4sxsAwWcen0Y2SXR9uvsFlYJFG6wUvGOYiZPBjj4w86Mbd5KITo5VhoZOZh5l9K+b+a2M05g/3eX1g6g/kYPhgJdTruyTP3in2nnfUcBJeudHP1dd9Z7/XuQUEfKl9/s/trSClS5in8JFLXYKTvTxYEfdxHMYxdz6vXh7P0tBbmsdhJI9I9c7w4AjR8oJzJ7mg1LBkIRQPcbQ+mKWqmLQQoFjpUGPGe6cNWb2fv0abFJOd66h6o4+O8nGT8aEFY2Gc4lF0oEJ0IER6BvzygnXk0hNJ52XoD+PaN4zykkOBrM+H3yT+djRGPRrFYfCUTnokRmMxfiZLcOVAqCPUGCw2GUmsxF3uKzHFg9Blp/2s2xP/ZSeXHRIhWvYCzIUEUbY5NjzMWLtUVFRezcuZOSkvxKEctYxjL++0On0zE6OkooFMLpdDIzM8MsQV6O/QoNGjacZgM33hZk6lSA9rgqSe21pYx1zCRJTKkIjoSZj6uS6Nw6iAqloNMxH44uqXgZnRN1r1wIjYeYm54XJO0c2Pn0MbxnFQiCgw50Zt2iaxttnWZrq6gl6Et11F1VltMiYs3dfgwFOoLDIcaOZCY2Hfp5J6YyQ85rS2D9YzWodaqsqo2h8QUSl63WkPWchFiyNVuSmJIHugIdq27y0P36UMbfPoGtSzzvUq8voSr0dtjT2moN1F7t5dSWQU7mqHkRYmnKmaGl3W/z/VXMDAQ58u/ZSdoJ5LLHSZ52PP95E/0j32bA+hs9WP1G2p7vWbAvzJJ3HXymi4p3u7MTlIB191ahkdX07xvLSgYrbrHjrDPz1vc72ZMjdzV5dEx1h9jzg3Z8ZxcwfjzHy1UIQhOzjLZltzQCmGqfhGgxGlmVmYwlxYQSU+ckJesdaE1akjeSkqvZ642Mtk7Tu3WU0jNcYtE5A1bfUc6xX50gNA5j7VMMZ1Dn7Y61EasKiJrXPESjUa699lqeffbZnPeyjGUs438O7rvvPu677z7+9V//lf/v//v/AGhlB62RHVTRgFeVrprc/kIfhautgrAhwarrvBz4RdciAkdofJbZmXl6d4tx2VptYPzY4txAtqmJRWJMJjb+SywmgygUaGQ1sQiMdeXefTR4eJxCtS2nqkuwL0z33wY5tU3Mt8ZSielTi8fK1JrSihs9jHVMZ59nJKi6vATfBYVZ6wojhybpLRuh84X8m+Gt1Qbqr/UycWKaQ1nWpY6l1M4slXomjmde41yq6uPRX+bPBRLwX+rG4jUkVdEzYal2cEttV9Bsxf+OItr+0PO22LM13lOBSlKx68u587gDP8qtzphA68/z34e12kDlJSUc+kVXdhu1OEYOTC7pPpO/b441e0ulzMTxYN66XOPtwjJ3Kblt+4v9hEZTEqpUvoFCibFEwv8ON+5GG/u+05n1OA13+Oh4sY/J7nDSGu10SGbx3/AkdL02xPCB3JbfvduHMbgkJgdyx3g+HEWpzk8qi4Yjp9Mp0q5NqReKUlO9ASRz5g0Cjnoj9hoTbb/to/35U1RdXsrY4XhumCJM0enZw1RgkukB8U5TUlLCtm3bKC3Nr/q+jPxYtnt7m+B0Opmbm6Orqyspy5hQVno59HMCoYUJae+3upNkI1ORjO+szJLKe75+goM/jJOZrilhzZ2Zpfh2faWDHV8UL6brH6lk05M1GS3btn/uaFIxacOHa2j5SO3iRgHY/tmjjBycQe9UsOljday+3bfwfXxgDQ5Dxx9E0anhrjoa7slwrBT4LyxGY1Bjq8tu63bwmWNMngxkJSgBjByYEYQYvSAhlV+aXWZ6qHWCmQwFrtNR0GSm6vIymu6rzN0wbquW65wAFVcU0fJkbhnGaEioJBWsyeNzgVAYcqxaWpEqH2KRWF6FhaVCpRWLr7NLsK5bCorOsC2pnVpWYXTl3qHW/EDlYpuTDIs5G5+oxXNBFunzhIerEyovLWHdwxXZTxifETteGWE+GFkgKGXAxkf8VL1byIge+92wIAllICgBtP15mJHj01kJSkQiFK40Z98RFz92w23F1F9ZiHOlEQLQ8efxhe/j0Dthw4OlrLpJXNuur5+k86WUYmJ8XKu9ysnGh8rQF0HgVIRtX+ykd+tphZ1IhMbbi9h4jw/0MLg/wLavnGTwwGKCUuPdZfgvcGGt0kMAdny1m8E9iwtFnvUWJIuaFVcUEotEeOuHpxjctxDnqcoOXgr9lG6O0NHRQVlZGVdeeSXz8/PLBKVlLOP/UfzoRz8iFovx3ve+N/lZOwd5OfYrjsT2JT8b2DXOofiOqMqrvOhdUkY7qoFd40mig6vJTPUVZay525+x3ZZPtDLZEUS2K9n0WH3GdqdeHWLLJ1oJjkaxVsts+ng9FVcutoHoeL4vuYDUeE8Fmz5Wn9F+q+P5PghC4VorK28sZ9Xt5YsbJSCD3iVRvD6HpW0QRo5McuRXuV/aEwSlmmtK2fB49nxvYPs4c9PztL+Uv7iz/sM11FzlyWsz5n1HwZJs1dY/VsOauxb/BqkwFOjQGJa2P6Nwg3VJ7fJhdkpYkKl1b8++kFgks7zxPwJ7nT6v3RqAs96CWqciOJEjp5ZFXu65MLdMesXlRax7JL+0ePP9ldRc5cHsz78xYWYwRP/e7MUQ/6VuNsb77am/DjN5IrjYGi3+fjNycIbxrgB7v5+doORcZURjVFP9riyWLvFjN97pZ8MDtaBQcOKPAwskxJTzrrnDz6Yn60CGgV0TgnwWWHxdLR+pZd3DVRCLsesrbRkLrLIdNn28nsZ7Rb6684vHsu6mbLzTz+qbvIAo8mYj3XnPKsBaLiybZrqC7P/2ArksGAty0PUGb/I8x9qPMTc3h8fjYWRkhN7e3mWC0jKW8f8gdDod09PTjI2NodeLus5c3AbuL7HfEYotzBMHftBJ4JT4t73KTPmFmWso+79zIpmjrb7JS1OGfAoEOTiRKzVsFrmSzrq43a6vtCVJG2sfrGLjExnylpAgsIy8NSXUVJ6sZ9Wtvoztul4Sm/fW31dDU548o+ICN5JVk9XqDmD/jzoYbZvKThYCprpCSQWdDR+uzWmt1rd7hKme7PWzBExeHXXXeGnYnKOmEcfaB6sof2fumlfpOU4R21xlmdkQGoMaZ7057zl1VqHA9XYgFo0t2YY4H9Q6NbFIlNmp/IoIS4GrybKkdlqzBoM7dzxW3eZbms3bI9WUnZfb7g8d1F3jXVKO1vHKIOGJuQWCUgasf7Q6abfW/vvcFmpHfnmSoQPjOdWqSjY6MBbJOfvbils8rLqlHFeDGULQ+eLg4kY6ka+uuUO8Q+15uj1ju/JLCtn0ZB0mj0RoPMrWT7UuVrWKxVh1m5dNj9WjsyqFetKnjzC0bzL5fQKrPuCj9moPjrht7o7PH2Vo3+L4uRosGItkKt4tcrTDPz+Z1i5QM8gr/Jpj7Of48eOUlJRw/fXXE41GlwlKy1jG/6P4l3/5F2KxGB/+8IeTn7Wxj5cjv6At8lbys/FjM0nr8ap3FWPy6HGvsi463vixGXZ9uQ3CYPbpqL/Gw6rbvBnbbfvsUUFgkmDTo3Wsev/idkP7J9j2mcOEh8JILomWj9bjv9S9qF3vm6NJdaP693nY+JG6jPZbp14bhrAg96x+fwUrb/bkjI/Za6B4Y445Lgw9O4c5+tvcNa8EQclzvivnXDh+bIbgcJiu1/LXvJrurWTF9b4kkSMb3GutrH1oabZvq27z5WxjLtEjWfOrJgI4VuXPz5aC2ak5iMbyqlstFbFIbMEW+p+EuVy3JJs310orWqOaaG6hUDZ8qCavhXLxGfYl2dCtvNnDiut8WKvzr/mOd07nrHkVb7Kz/pFq0CkZ3DPBZGdYrFWeRlACmO4JM9Q6weFfdGY9ntkjoS+Q8J6b+32g6YPVrL5drKf3vDmakYRY895iWp6oRjLDZGeY3U91ZFS/Wv9wJc33ifeUAz/sZvfTGTY2StDyRDWNd/kA2PutzqxEq+Z7a1j1vjIAjv2mL6vSkv8dbly1ZohFCU9EOfiThXbhSJijhVt5OfILjp9oIxgMUl5ezuDgIKdOnVomKL2NWFZSepvh8XiIRCIMDw9TXFzM3NwcMaK8yW9hVsEZXIZea0q23//d4yhNosDTcLcPnVmTZuWWQNffBnFUir/TF6mpuaKUvd/sTH6vUCqIRWOMnwxgLdMnSQ2Fa80M7JpMqiklMB+cFySTXNBqiUVijHacRhg4TVmpZ9cItngBGz0Z7b92f+04Rr+e6Y4AshMcq5yL1HeCwyR33q97pBqVpGLbpzIr3BjdehQqBQZX9hf3479bUL1ZfUd5Ut77dAzumaTsjFmOPJt/V7dKUmKvMHGC7MmIQqFAoVRQ0GTOqpIU6A0tWf2o4Z5aYpEYWw9kV2nyX+bG3Winf+9okjyWCUvd9bYUnHp1OKeCUgKbPl5PdD6W9bcE8LyjgLKNLux+U147vKXETSWpUGXaFZ6yw8tWp0epVmDxGoGU+zjNvi04DIHhED3bst9r7XXF9O4eZ7I9wM6vZOhncTUlvRMUagUGl5ROTEpeuIqqyxw4qo289ZNORg/PMHp4Ju37hMKQ51wL3X+dYMd3utDrWSAvpR43/jy2/WWImncWMtwayHxeIDimIjofIzw5n66elIpIhNG2KSxlOrSyRCDxsCeuSw/Ocj3DhwKMHJuiYIVl4XtIkpNKz7ZiLpFp/Xkfx/48ROX5TsaPLCYmrbixCKNbx/YvddH1yijBkXAaMQlgR+hFQtIk863zKBQKYrEYH/jAB/jOd76T+R6WsYxl/D+HX/7ylwDce++9fP3rXwfgFMc5FTuOgyIaFWck2x743ok0haRNT9Yz0jaZZlkGwo6teF2IY/8hcon6m72MHJtYZNsGUeaDEfr3iRfGbOpLKq2KWCTGSOvpf5+O0NgsGpM6p6rSwK5xys5wcfz5uBxwJiWnIOz9TkdS+cZzYUHShi4ViV1ZBq/MmpvLheLLHzPnEXqnJObWHBZniZ099jo99jorx3+TWZq36y8DuFZa89qMWT1CIjmfjZxKq0Sbh4C01B31K2/zYSkzQISctmUbP1KHUqnIubO/b+sofTl2j/+9WMo9VF1dgqveQudfB+j9W3aViJqrvCiUirw7/7PZ/KWicLUVhUqRd1HQ5jOi0avz2uS1/qaHmsuLM6qFASDDimu8HHqmK7sqUzzn0xfoUKoVQtkokxKUQsHGx2sJT82y9+l2Wk+301AoIBaj9Gwnp3YOM/zWFMGJE8x0BRfeiRILUSn3NTMQErLyqd+fhvHuGXQOLbJOQTCQZQtYLMZ8KMLsTGYrF1eTmaE9kwRHYW5mnonOzIvVjfdUcOQX7QRHYaJrhsGDGVQtZNj4YB3TA0EO/qCTQ892Mjee/hsEY0G28EcMRgPTg0IdTJZlent7l23dlrGM/yWwWq3MzMwQCoVwu91MTEwQZZ43+AOKmIKNXIBBYU223/N0KxqLYBfU3+TBVKxn+1ePLCIltL/YS8EK8Xc6K9RcU77ILg5gvGMalVaZtHByrDYJwtFpCOexJAPQ6ZTMz0YY786tdtj9xhCumpTFHB2Lrv/AjzrRl+oEOUsHxY32xTv7Qws7q9fc7Udn0Wat0egKdCg1SvQF2Vc5Tr46zMl4LaPufWUc/u3JjGSPqa4Q031Bjv0hjw2bDrRGDbby3DWvaCSGUq3EVW/JSlYJjS9d8bvp3nqikXQrwNPh3mjHf5Gb/n2jdDyXveaVy+L078XQvomMZJLT0fJRcf3bc9iVuRosVF9WiqvOsthe9TQsRW1Ja9SgknIvvOncOjR6NVaPMdlPMiIknquhQ9nv1X+5m9EjE4y3Bdn91UwWIvFam07U4ww5NhZ6L3JRvM7J/mdOMNUdYqo7c78sPdvBqddH2PmlNnQFUmYiU/xZbH9hgPr3li6QhLLc53xontBYjo2WsRijR8YpXGVFLafUzOP5ICyoIg2+NYHOogWii3JCV5MFR7WZI8+epO0P/VRd5s44TlW/pwRHjZmtnzrM0L4JIrMRRlvTx6MDse2MaQeIHo8ma1733Xdf0v58GctYxv/7+MxnPsNnPvMZvvjFL/Loo48C0MVhuiKHceNhpXJDsm3b73oZap1IKiRt+FANo21TtP0uvTYz2RlivGOGE38V833VFUVM9QQX2baBUJ4bahXja0L9BUgbGyU9ROcieRXqQhOz6EO6nPZbE8cDzPQHaX85notkUnIC9jx1lHBckbO4JUPeBXT9WdTBJKdE451+encNJ63bToexUEYl5bZCS5CtjKUSBattdGSpn7X/uZfitc6c6lEgiFZagxqzV2KyK7vCjEZWo8jg1JGKfd/Ov7YJUHl5EYWNdtrlXvp3ZFe7XPtINeoc67MQJ7Qtwa51qVjKPZSc6cB7biFdfx1IWhRmQs17vGh0qrxqnG2/6aHtN7nV463VBpQaZW43I8BRYxY2dAlkUZts+4+TVF/pyahklrz+95Zw9Fc9HHk2t5qWoUCHSlIi2zSZlaAUStY+VMH8dIR93+2k7XeZ+2xBk4WJ4xNMdofZ+/1Ogv1Z+mP8eRw7McP4iezXDzDWMYO5TA9aDZD93WxuZj6prns6kmqwYVEzH81yzpU3ldH2Qj/h4TmGDk8w2p653bqHKgkMhjj0s1McfLaL6Ex6XhiOhtnKn5BNOqZ6xXhms9no7OzEbH57yH3LSIciFsujFb+MfwqBQACn00kwmF7gXckmirS+tM+a7vGiNarZ9lnxwle41sTArsUTe8PdXmEp9UIvg3sXXl5O31nduNmH7JA48XI/fdsnFtnJJbDukSo0ejVbvng4I8EogU0fqyM8PsvupzLsto13ow0frkUlKXMWIzY8UYtKo2TvN1oJZnlPXvtQFSqdiu05ihSpKDrDRt+bmSfVkrPExBUcCqd50maCq8GE7NDR/UoWf88sJKx/FLITSs8uyTkR1t/kYezEVNb7S1zX+ntr6HylL6d9HAhyztjh3Dex6eP1zE7NCXZ9tlN69ASGA3nj0fjBCman5nKSj2Qn1FztZ9+PO7Iez1anx1RmpDvTjqi/B6mJQabfM4WkVHdDKYd/dirlqwyJiB5aHqwmOh9j++cz9y+dE0zFeoYP5VH2UirxXmClaI2V1t8NZF2cW3e/F5VWwVs/6SSQqB2elvCseX8Rsl3LgV/3MtOVOQmw1+qpvsTF2IkAR3+b3dO28Y4SJLOabd/ozPl7b3hYLHhu+0Jn+henEaM2PFou2n2uI414BYAe7F49o4cD1F3vxlKqZ/+POwj0p49vA9UHGBwcpL9fJFYej4d3vetdfPOb38x+gctYxjL+V+Bf/uVf+Ld/+7e0zyRkzlJcmvaZ2S+z8n3lDBwao/13fcJeqn06I3li08fric7F2Pbp3LauSyHmynYljffWMjMYyml7VX+zF6vXwP4fxwkRGWCtlqm/rjynxZrBK7PmlnLmpuezklzsdXpq3+PjxF/6l0Sqca42Mdw2lZVosvGJOpSa7Ja7qai5tnQRSSwNeQgtfy98FxcycHAyK+lJduuoeJebg8925jxv/c1eVFplfhKPDLJFl9Mqbd3D1WiM6rzxslbLjB/LHYzCtVY8ZxfktUkrPsuByS3nlA+vuLKI9j/3va3xz/V7ei4sYLJ7Ku89Nn6wAtkhcew/TmYkBYJQw1pMKsyMDY/XMjs1l1UWXXbraLzTz1xgnp1fyBJXGTY9Ws/cTPbnDKDpvkp0Vm1Ocphsh8YP1hMcCy+2nUtB6XkuPGe6GO+cofXH2eXOi1rslF/ozjpOJIhOIBQGAiPhRWNTb6wL6mc4duwY8/PzaDQaVq1axe9///tl1aRlLON/OUKhED6fj4GBdFJLPespVqTvgF/1AR+GAl2SjJKNYFR/kwdr+WmWUhlQe30Z9ioTna8OLFY6ScGau/0YnDr2PN2aJDdlQsuT9QRHwjltXZsfqEJr0rD1C61Z1V/WPiTa7PlWR0b7OoA1d/mRLBp2fC6/RT0I0kO2WNjrjdRe7WFmIJSmepcJlgodplKjUCvIhAwErH8KOii/oDCnjVjVlcVM9Yfo35Y7B137YBVdrw3mJQ5ZKnRMtOe+iU0fryc8MZeZcJO49AIdoclQ3nisuMVLZDaa27pFB/Xv9dDx4mDWPqFz6yioN9H9l+y1mb8beX7PqquKaftt5k0Fqdj0sXphr5tt46MO7H5j+ia7LHBvtFF+npvDv+zMasnWfH8lkkXDvh+eSKqynY76G8qw+o0c+vmJrL+3vlRHwy3ljB6fymmft+o2H6ZimT1P5R4jNjwu6tn5SP4bPlyLSpulnQ6sZTLjbUH8l7spXGXn4E87mOpKv4ehFe0MjQ7Q2yt+n9LSUq644gqeeuqpnOdexjKW8f8+fvjDH3L77bcTTam3GzDTorw4rZ3klGj8gI+h1gna/9CP2adjsi+UkfDT8pFaonNRtn8+dx1h40dqic3H2J7IXzItLUuw6bF6pnoDHPhBZ9Zj+S91U7jGzqGfdzB5IvM4LhdJNN5ewXj7dFbrLskp0by5QszrWWx3jaUSK2/y0/3aQE4b0gQslXpCg4GsJKO1D1ejNajZ8rnWjPFMhf9SNx3P51AWzELC+kfhXm8jMBDITnqSoO4qDx1/7M5Joqq6shitQZ3V2i71eJJZIpzFyhRgzR3lGNxy3vkzH1kLBGHIf1ERe757PGfcHKvMWL0G2nOQ9D3nuxjYNZSXTPZ3IYs9IgjlrOB4eIHolwX17/NgrTDQ9lwvQ/sz572OVealWewplDQ/UMH89Dz7v5+5biSZofm+GsLT8+z+avb3oI2PVzM3My8UkbJg1S0eDEU6tn0mx1giwcaHqwkNz7Lvu51ZmznqjdRcVcJ4xwytP8+ex1mr9dS/t4yJzhkO/Wxxu1Tb6/WPVBIcCXPgh+mxGI0OMbtimKPHjjI3N4darWb16tW88MILuFyZnbCW8fZgWUnpPxl6vZ5AQKzqFxQUMDQkXjYPsoWDs1soxs8K7UYA9nyjK0kkqru+BGu5AaNbpv0P6aSMfd/qoqDRKAhKeth4fxUjR6do+11/GlHp6K86qbnGJwhKQMPmcvY9c2IRyWC6L4ipeEF9ybHSwMjB014s9RCdjzHZn2UAjTOnJ0/N5NwxA3Dgu8fwvqNEEJT0oNcrCQynkxhSyTErb/Uy1jFNT5bd4E33VaKzaSECfdsWE3l6/jaCSlYtidxSdVkZKMhOUorHaN1D1QQnZjmYI9EqPc9JcbNDWDdkweo7xAtu2ws9WckfrT/JkwjEr2spxa2m+yqR7RJ7vn4oK0FsqVhzkxeFKv8CZC4f3ASCw7Avx0ItQPXlHlSSkqE9g1mvvfLKYiwePbu/msHeIp4MyE5ouKOWY384ubifp6Dhbi96pw7P+Q66/yL6XiwaW0xUCkD3G4P07B6HGIuUmAAaPlCBQqlg+FD6PcYiot8rNGoa7ypl77dP0fXKOF2vjMe/F+QdRVyJSF+qInAqwqHfnqKkyUagL/7cqBarovXvn8BzhpOZ/hCQQTUtEmH00BSxi53MTmfYnR+JYK3WM348xNiJGVx16UzhxLVVv6eQmcEwvVunGDk2TTQSS1NiUigUwirx7nJmhsIc/Ekvh383wMSpaYjA6bSvjff6IQZbDx6n9ae9kBLvQCjAAcMrTM5MwltgNBoxGo089dRT3HrrrYvvYRnLWMb/Svzrv/4r//qv/8qPf/xjbrnlFgDCBHk59iuUKGnhXcgKmcmOYNqOmporPRAj4y6bvU+3ojQJlZDVt5cjO6WMu6UH9o0RmRVjc+nZTrQmjbBpOw3zoQhDrSI/s9cJYubpCI/PEimWsxKUAMLDQeZDEXq3Z89xZrqCjByZpPsVUeDOpEo0ejiwcN8yNN5WkXP+rr6ijMocpK393z6K2Z9/h0n5JW6ctRZUN6lo/UkWkkVQkKIq3lUilBdyvMs331/J0OHJjKpRIO69eL0DV70lK5Ek2B/Kmd8lkIsUkopNj8UXdf7J3WVmv8yK6/1M9QR4KwcxamDXeE4FqARyqSyBIMoUrrJhrzBlJ+YgCFbdfxvMec5Vt5ej1ikF4SbH71e60QkbnHl3uu39ejul57myEpRKz3biOaeAgpW2rCSy0vNcGFwSR//9VNbfRnYLclmwP8TI0Um6X85BpgsKqfOxrtxqHIGhsNiZn4Gs5VhpZOTgtFBFCswzmcHCR7ZD5VXlHPjeCU69OoSzxsSJ5xf3xaqrS3DWmNn6ycP0bR1lbmYuY7wSylumojE6nu9j6yfTn+mR8i72duwEQHFYQUFBAbIsc+JEfoWtZSxjGf87oNPpkhtHVqxYQWurGMNb2UFrbAcl+KlTNAFw4Pudyb/zvaOQ4g0OBnxjtP8+PVdq/Ul3Uq0EhE37UOvEonadL5xEa/AlCUorbvHS/vuuRSSDyVMzaHSq5OepheqFGxGK44EsBJIERtsnsflMOYkfB3/YRtl5xUkyiq5At4iYkkomqn5PCdN9wayLZitu8WLxGtBIqoxtRlun6bTnJmolUH+t2DCUlaQUv8w1d/uZD0aSdnyZ4Gqw4Dm7ICfRZ909gojd9+ZAVvLH6eoO2bAUlaSVt/iw+Ay89aP2RaSPvxerb/Gi1qnyLqjlilESofy1vRXXlCFZNQy2ThHKQm4vPceJq97C3m/kqLPpYP39NRx/vmeRKk8qaq8rw1FjZnZ6PmltmA1tf+hhqjO7OsaGB+KknE+c9m6QWLxWKFhzZzn7f3yC/m1j9CdqtynfgyBqhfpDHPpxO2XnuAmcDKZ9n4reHcMYCnWEh4MsriyJYwdOBonMRghPZNi4F4thrRJkoaHWCXRWzeI2iLFqdmqO3q2j9O0cyWpps/6xGmYGQxx6posDP+skOp35N2x5pB6ArZ9speO5/jRlsFAsxCHLFsYmRuEgGAwGLBYLX//617nhhhsyHm8Zy1jG/z68//3v5/3vfz+vvvoqF198MXNzc8wwycvRX6JGQwvvQlJKhIfDbPvswnpR/bVeUCoyKhdu/eIRjE6h3lj1nhIsXj27vt62iGxxastQUk3GtcaC7NLSnWEOCU/OMXJMECiyEU/CE3NEwpGsBCWA4GiY8MQcffuyE4vCw2F6dg7THydzS67FhJnpU+G0+tWqD/jS8tLTUX+tl+h8lO2fzbzetuvrx3BUm/OSi9xrrbib7GhNmuxk5rCwJqu5ysNb3z2WkzCz6gM+xjtmOPnXzGuXkhn87yjKSdgiDIefzb/euNT8rOXReiLhCDu+sDTifTZIZlh1ayUTndMczJFbjR+bYc+xzNb2qRg5MJmbxCNB6SYXrtVWducQamjcXEHPzhEGd49nbVP1nhIMdol9381sZ5aA70I3xMirPtX6827c623ZCUorTNS8u4TJNdY0i7JUuBqsWL162n7fn048SgiZKJRIZgiHITwJ/XvH6HljICU3W5zvBIfCTPXlJlhN9ASQrJqMZC2zTxJ2dGEIj89lrHkJEl0Jh5/tYaR1monGGdqfP7XIvs5znoOiZjvbP9/G+LEArb86yfjR6UXXXnaOg7IznfTvHqXjTwPsOK2+Oe3pZ1vn38Q/DgkOh8PhSL7TLuM/H8skpf9CDA6KCfuMM85gy5YtAPTSQe9sBxJ6ztZemWx74uUe6t7rSxKU1j1UwXj3DG2/ES8vCQWlghojCqWC6Lx4SG21esaOiIc7MAx7v9EJQMlZNvROHQ03l7PvW+lF5cMpLMTGzX5kp8QJYx9928YXGgVIS2A2PVknFlxSiTEKBYd/tjDZrnuoGo1JzZYvtKYRcALD0WS7DffFlZdOa5MKs8eAqUSflaS05/vHabjZn5GglECCoLTy/WJ3zOkF+ATaX+whOptdbjIBjVGNMo/XakIeWO/RE+jOfHPHnz+JzqrLr0a0uQLJps2pzOBqMOE9x52zcNOzY4jCNXaCb4Ma1MBbY8i23D63K272EI3C4RyM67obPVi9BvZ9+3BO4tT2p45Q+Y7inG3sVSbUugyEnJSCRuHaAhRqBWaPMSdJad+3uqi6uihJUEogQVSqe18JFo+ebZ9po+dv41mPo1Ap6dk5hmRaGG4T5KQE/O+0I5nU1F1bwOF/H0wn+cQJSM33lKHRq3jrFycJdM/R1h1/AUghKK25rQjZpmXb0x0M7JoSSmynEZi855oparLRt2eMrlfG2P6VDL9NJLKgdvSFTjpfHqPz5bH4taerHjkqjdh8Bnq3TnH8+ZG07x11ekaPBCEACpUCjawiFokycWyhUKZ3w4pry+l6fYDBfQHGO2eYOe1Foit0lGPswmg0Mj0t/latVvPaa6/R1NSUNfbLWMYy/nfj5ptv5uabb+b48ePU19czNzdHlChv8jzEoJ51FCu8yfY9O4bRGMVYXdRip7TFycEfHic4GiU4CoyKFzGNXoVStTCvpJKM2p9bWDwr3eRCqVEsIikFR6NpxOLa9/oyqjS1P9eXPJ7/0iLcTTahjpmyOBUcXSApy3ZovLeeyVOBRSSbhFqO2S+z8sZygiPhrCSkldcJJc7Ss52cej3zpDvUOsFkV/Y5VMRsHGRoebiOoSMTGa3fTvyxH6VWQfvvctuPWLxGVFolRQ327EpPMkhWLYWrrFlJSsGeIAP7xmh/Off55BKZhlt9DB4YT/tNT0fd9WVEo7GcSlDjJ2aYGfznpYjmxoNM9gTo2ZJdiQAZmm6vpOPFnpxqRBsfr2V6IJRVfQtE3+p+bZDJU9l/Z2u1jMaoxt1sz0lS0jultGcmG9pf6GU+lNnWLNGXRo9PcfTfT3Hq1ewqA6deH8ZRbebAz7ITacpanDnl0mU7Qj0prkCW8TeOqycFR8Ls/UZ71hx8w+O1qNRKtnyilSO/yFyYTBCrxhuFKlI2Jaza6yqQnVKS0LTvm+kE+FS1LYVSkfx3KkGp5ppSTMUyu77SRtuvezC4dHT8Jb2f/y32PJJZw3TnQs524YUX8uKLL2a8rmUsYxnLADh06BAgcrCf/OQnAPTQQU+sAxkjZyjemWzb+foAZo8+STxqureSqZ5AckEkQa6wVOhQqBZqL6kqOaFxeOt7nYBQE7J4DRlt4k48P5C0L0uqL73cn074CZE29rZ8pI7IXHTRprPUY625y4/epVukqhQaJ6lO0/xAFZJFw56vZVdocdRZsFebspKUDv17F6uu8+Xc+Z8gKFVdVYyjxsy2Ly+21AM48tvuvLUsANmmJWrKLbzvbrIhWTSYvLqshKAjv+nGVKzPqU4DUH+jB1OxnF5jPA2WCh3lF5Ww74ftWUlip7YOEKOAuYl/Xg6qb/cIhoLcVqZVVxWjVCo4+uvs6ujllxZSuMrGvh92ZiUfAez+Thvl5xbmbFO4WsQ8l0JS4Uobap0Ki8eQk6R05BcnKb+0MCtByX+5m4IVVrZ9+Uhu9SqFgo5X+jEVp2xYPU1Zo7jFjqFQR/17ymj92cn07+P1ujV3lmMo1HHgmRNMdQUXFkdT6nkrbvFgKTOw56lWxtsC4pk9jcDk3mDDf5Gb3u0jdL44kFkVJBZLUzvq3zaaVcmreL2DyGyU3q2ji1SuEiQnAKVakbSfTlV/0lmVrLy1gpNvDjOwa4yBA6PMnbZRcDDWy1tswWQyMTUhcjZJknjjjTdoaGjIeF3LWMYylnHeeecxOzvL0NAQ1dXVjI+PM88cf+P3EFWwkvW4lQuqlp1/HUQfJyJZqw1UvKOIg8+eJDwsSAPTPaIerzOrUWuUSYKB2adjslOMa6deW1gn8Z5XgNagpvv1wXQyQpg0gkz9DX5i89FFc3zPGyNJu67iFju+C9x0vnJafpZ6LAlaHq1jsnuGQ6cRM5K2bi6J5rsrCPSHBGEkAyovL8JUrKf0HGdW0vapLcO5rYPDggSDBBseqGGodSKjWlL/rnG0Nk1Wi7kEjMV6NHo1jhWZbeuS7dyiXTaSUngSTr4xxMmtuc8nmZWsubOK4SOZrzsB/6VulEoFx3PUxYYOjBHMZaW6RITDMHxkgoF9OdxkEBtHu14bYOJ49gXOtQ9XE+gPZVXfEieEtud6CE9mZxVJLgnZKVG4xpqTpGQu0aMx5KdaHP5VF0p1hrXLONY/Us1YxzRtv8ttxTdyaIqxVdPC6jkLyi8oQKVV0fb7+O97GskHCZrvrSE8OcfupzvSrQsTJB8JNj5UTWg4zL7vdWVVYmq+14/GoGbbZ4/R/cow3a8sfq4c9UZqrixhrGOaw8/2sPebmet1dVeVYKsw4lpjZmj/JId+mk5QMnslJrvniEbEeqO1Ws/40ekFghLgucCJo8LI3m93cvK1ESxlMj1vptdSd0b/Qsw0x8zJmaSd7tVXX82vfvWrrDFdxn8O8r+ZLuNtx5tvvkksFuPxxx9PfhYmwEuzP6O9bAeeK4yEhqH95UHWPVRBwTojalmFzW9k7QN+9E7xN42bfbhWWNn6qWP07R5l3UMV1F1dRstHqqm8ws26hyuSxy9YaSE4GWbft7uQndDyZC3ND1cCUH5JIesfrQbg6B/7iUQiuFbZAFh5i4f1j1bjuUhImnkucrH+0WpmZ+aYGQ6z+nYfDfeUJ8+z/rEa/Je5AZifnycajSLrxXcrb/PReO/CNa17pJrQeIjQ2CxFq22sf6wGvUc0XnGzh6b7xPXt+1Enc6F5qq8rpeQsB64GE+sfq8FSJdrWXeVJerE3bq6g5WN11N1QBgiLsPWP1eBqMAGgL5BQqISyC4gd9/U3iWTN6NfjPduNUqtE71TS8tE61j1cnbzepvsqWPl+n7imbx4hFo1RdIaIU8UVRax/rCbZtnFzBbPT8+z9RiuB4QDrH6vBc4GIoe9dhcm2IwdmcNZbWHO3P3lN6x+rwfeuQhHvC1ysf6wGpVaBQgmr7yincfNCDNc/VkPFFUUAFG9yojVr8F4iOsjK9/toui893uZSI2995wSFKy2L4t18fyWpUMXJPol42+ri8b6hjOYHKun4Qz+HftxN8wOV1N0oYmipSo+3xWfE5jemxLCSFTeLtnqPaCsXaFGoFJScWcy6Rxbi3XhvBStvE/GWy2H9B2sIjoikwX+ZOy3eDXf7WX1HOTs+d5R9PzqyEG+FQsT70YXjmssMBIZCnPijmJjWP1pN+SUi3qXnOdj4kSrqbxK2FTqzhsZ7fAsxfLiCineLtpJdeAGbq0QCsuKmUho3+5KT5vpH/Wx8vAL0EB4PYys3YPDoiEWi1L2viKZ7vJRd4EChUWPxyEwNBmj9eR/2aol195fjqNOjUKmovspJ410lnHxziNnpeWre6abuWvGMmasMrL2njIJVUtwyLUYsFkOK19Ea7iij/roCiERwrlCy9p4yZmfnic3HMLi1NN8bX5yPRFjz/iIa7izC3aRHcggy1syweAHxnm9l7Qc9xCIRChoMbPyQn4Y7S1GEVXT9bZjoXIyyc8zEIhE859tYd3851VcXUn15EU33elh9WwlbP3OcPd/sYt2D5fjf5URfJlFyppX6a3yoJAWFa6ysuKkIyayh+xWRjKsvGKezdAfH2AWAUqlk7dq1xGIx5ubmlglKy1jGMpaEyspKZmdnCQQC2O325Oet7ORvmudQXRREtkPXi4NoDRrW3OWnYLUVjUHNilsq8F9ahFwiU7jWyrqHq2n95Sm2fvIw9Td6WP+hGmrf66P8EjfN91dScaWYk52rTUTCEXp2isLAqju8tHysDnt8Lm28t4Kaa0oBGO+eIhqLYq/TU3yWg9V3+ZI5EAhrK2OpRGQ2ymRvkHUPV1N2Xjz/uLyItfdXxVsqicViqOW4cqBbx7qHqyncYAWEalH15aXMjs9x4uVe1tzlZ8Wt8XlAFoo4xWc5OPjDTkaPT1DULGJVfJaDVbeXJ+dkAKvHgGTVItuF/cP6x2uEMgwi/1hzh18cVlaiUCkwlYj7Lmqxs+7hamS7yNvqb/JiLBR/WH+zl40fqaXichFDV5NZtC2RaX+uj7G2KdwNtuQ1NN9fSeV7igGhQLNuczVHn+tk55eOUXNtaVrO2XhvBTXXiniPHB1n3eZqXOtEflL5nuL0eN9Tge8sQWCRCyXWPVyNq8m8EO8Hq5JtbVUm7NUi55HtStY9XE1Ri4ib7+JC0V9+0kXXi4OsucOfzCMT8S49W+RsCm364srK23ysun0hv173cDUFaws48L0T6F16kZ/G473iFi9r7hLx9p1diM6mxXOeiGHhBuuieDds9qNUK1FJStbeX7Uo3gavDLLYXe9aYUlazzbdV0nV1SI/stfpkzny3qePEBqdTY/3BxfibfbLRGejtP1BkHwqrixKyzkb7qmg5aN1yHaYPBXCf1ExhWutgCDnpcZboVJg8erj8V7osyDy65aP1bHiFtGnY7EYK687Ld4XuCjcYKX0PBfzwQh7f3AkGe/ViXjLC/EOjoaZ6JuJx1B8XX/zQrwJQowYCo34/RJjhOzWgQz1t3ho2FxBYDhMcDy8aIxY93A1K+8Q12tw64hEIpx4XhSZUseIpvsq2PhkLfY6PXu/0c5U/wzec91p8a69roxNT9ZTf0056x6uZvzEFFv+TyuOGqsYI2QRs4bNfmyVRrQmTXKM6Ns7AkFwnWtgZkMP2w1/JkyQyclJKisreeihh4jFYssEpWUsYxlLxo9//GNisRhPP/10crd9kGlejv2KttKdFF0mlIiO/b6P5vurcDVZ0Fm12KpNNN1bic4K6IQFU/F6F1s/0UrP66Jt/fV+Wj5SR9l5TprvX5gjitc6mRkKJglKG5+spekhMTcVn+kQbXXQ+UIPkXAEe5WY22uvLaX5/io854t6TeFaG833VxEcCzMzGKL2+jJW3eETpBAEmcr3DlETiM5HQBETG8+AmqtLWH3HwvzdeE8FoUlxHNltoPn+KkxVom3VVcWiDkR8Lp2cperKYgrX2rDU6Wi+vwpbrQEA/0VuVLKoz9S9r4yWJ+uouSZes3CLto7VIh8xl+lRahZKvatv91F7naiP6axK/BcVo1Qr0VkFiTY1hqtu9VH3PtF225ePEAlHKY7nNaXnpMd7xS1eovMx9nztCFNdIZrvr6L0HJHXFLfYk/Ge6gph8RlYdetCDJvvr8J7UQEgbOya769CJatQqpXUXl/G6tt9yfM03VNJ+TtFvIs2ONG7JPwXu5PxXnPnQrwbNldgr7Vw6JmuZLwtFfF4X7kQ7wTUehFTk/e0eF/upvGeCk6+OsyRX5xk9R3l1FydHm9XgwUAZ50FR71lIYYf8FF7fSLe4l4tZXoUKiUF9aa0GK68xUd9vJamc0PznVWE4+SVZJ+No/4mDytv8bH7a23seeoIzXdWUXaeiLd7o4i3zira2iqNTJ0KcOIFUfNqurcyLd4bnqih/hZxXsmgWRzvS0W89U4JpUaJvUIkndXvKVnIgYC1j1ax6WP1oIO5yTA2nwlrpQ5iMSreXcSau/24W+ygUOBaaWHi5DStP+1GXyLRfH8V9nojKBSUX1pI0+YKOl/pJTQ8S/mFhdTG80hdoY7m+ypxNZohFiMajRIjRmI5Y9UHykWfjcUwVUg0x3P6+VAEnV2zEMNYjJU3e2m4pxz3BvE+EY1FmRoIpsdbJ4hHLU/WsWaz6Fttf+hhPhhZNEb4Limg/vpymh+oZNUHfGz79BH2fqM9OUbo3DpcDRZW3FyB1qyhYJWFmqtLMBbKnHxVLN7p3jlLV+V+3mJL/DJjNDc3EwwGCYVCywSlZSxjGUuCy+VibGyMWCxGXV1d/NMYB9nOa8rfwTkTSC6J/h1jqDQKVt7sobBBkF5r31OE50IXkkvCWm2gcbOfEy/1s+2zR/Ff4qbpAT8rbyrH+w4Xq27z4o+vWZm9EpFQhO6tgzCroOo9RbR8rA5rtZhLV93qpeIy8e47dGiMSCSKrc6IY4WZupvKaLhjYT5ZebMHW5WR2cA8I8fHadxcQdEZVkDkHw3xuUeSBMdVFZ+/kcQanDtePyhusVN/dSnTfUE6Xx+g9voyaq4rTZ6ncXMFxS12jj/XR++eEVx1FpCE2lHNNaXUv2+B0OWsNaORVYKE9EQt6x6tRjKLuafqqhJWxNcTJQlUkgpzfI3NVmcUYgMuQQarvLwIS7H4ruIysX7ovVjMyZZKPY2bKzB7JXrfHKV/7yiOFCeLVR/w4b9U5DzGUonGzRW0Pd/JnqeO4724gDUpOeeqW71Uxms7g4cmabytAkeDqHl5znclYwiw4iYPnguLUGqVSDYtjZsrcK0RuUzJmY60tUd3gx3XalvWeDduruD4c330vDFCzbWlyRwoGe8zRB6pklVC9FCEheqrS1hx40K8G+7yU7rRydF/P4VKUokYJpS9rixmZXw9saDZirFYxnteYVq85SIpGeNVt/lQaRSoZCWrPuDDF88jzeW6ZLyRwH+JG3ezLankteq2xfGWbWp2f7WViZMzafFeeYuXqitFPVJySkTnorQ9JwjrZecujveGD9cgmRSEBoP4zi2goFnEu3iTncbN/mR8VToVlnJDSrz9uNeL+LvX22h5sja57h2dj1J3VWq8/ZSc6cDVYKWg2cbczDwHnu2AWJSqq4oW4q1Q0nCnj7KNdiZPzjB6YpLGu33JPlt1RTErb44fNxw3UIo/ctZqPY13+zCWxON9ZSGrbvUw2RskOBxm1fs9+N8l+rfZI9F4t4+694k4mcpkInNROuKbSlfd4qHiMvHbrLi1lJaPVGOrNXD42R6Gj01RstYm1lljUVbe5KHqymI2fKia+hvKabzbR3A0zLZPH8Holmi4S/w2klnBihs9uBus6OwSmKI03u1j+PAk4UmwNEsENvaw0/giE4wwOTVJeXk5TzzxBLFYbJmg9H8Jy0pK/xfx6U9/mk9/+tPs2bOHDRs2MD8/T0dHB11dXUQiEdYpNrFCLsXqMbH1U8dY91AFGoOalbdWoYovZmhNQo7W6NahllXMzswx1RPC6jWg0atpvs/P7u93INukpBWcyqxHoRCqJgA2vyBBAQS6AygVSgwuCc8FTixeI7FYDEeFie6XhrDH2+795jGCw9Dy0VoUSgWbPlbHlv9zOEmmApibiSLblGhtemrfW4TskoQdVhwag5pYNMauL7dRd6MHtayi4VYfW77QiqnUgFKtSF6T1qDBWqbEWW0mFomJRQqPgYm2AOYSfZKkpNQqUCgUmEvFYG7xmVDLKsxeI0P7piBBugxA0UYbklWLOs5yNRVJqGUVVr8JS7lJKL8YFx4RnU1CG99JJhfJqGUVZWe68JxVyHxgPhlDANkp4h0chuJzbfHjGul+ZSgt3iBe/BVKBRvuq2X7Z48kY9jJALZKcf0Hf9ZFoDdEy0fr0nZ9q2UVVq+410ggBg6YjsshG4vkZAwT8bb6DDTeW4FSo0Atq7CUSQS6AxhL9KhSClkAivglJmJo8ZkYOxzAXGpAJSlZ90g1p7YMIVm0qHUiTpZyY/xezQztm2I+GEm7V51Nm+yzJrcGtaxiqiPIni8dF8pbKYxj2SahM8coaDJTealIKG2VJnr+NrI4hi5dvFAhflu1rMJeZaL7L8PJtv4r3BSusHI61LIKW7mREwxg95tQKpVYykRMjYW6tHhr9GocVSbaowPMjs8jmyV0Rh2TTKfHOxZNxlM2gjV+DdYyLdMnApiK9ag0CkrX2XBUGJBMGlQacT8Wr4xaVmIuk/Ge40Qyi3gN7gswuK+bjR/yo9aLOJkL1ahlJf6L3Azu60Cj06BQKAgNx1AoFOhsGrQmNaveX4IhnmhYSwxs/9IJmu7xoNGr4uQmsVMSBXjPdDI1NIdSrSQ6L5STbOUG1LK4n8B4VBzbqiUWidC7fwLvWU7s5UbU71TiXGFCpVLS/Wo/RpcXrVGNVl74XdWyCtcqM4VrrEz1BVHrlBz6fS+TrQE2PlZBVBHlWNGbdHV1wZ/E7rHCwkKam5t5/vnnF/1+y1jGMpaxVMiyzMiI2KV1ySWX8Kc//YnZuVn+/OLzKBQKFDEl6wofRyOphd2ULKy6bJUG3E025sMR1JIKY7GWYH8IU6mYO4OjYU78sZ+ij9fjMquZm46gMarQGNVibgYMBSL3Co6JRES2S0nlv5m+MFaPCbPHRFGzXZCpU6/bLjE/G2H7Z45Q1GJHY1RTdmYRphIzeocWbXyeCI5GUaBAMonxvvEOPyjAUWlmYPs41nIDWrMmadNaf40OlMLO49gf+tAY1dgrTPT+bQSdRUJjVNN4bwWyXSIWSUngZKEoafMbGWmbAgWotSpkWUkwGBXzYXzuDI7GE694DlrYZEFjVCM5JYKjQUwlMiq1mF+sHgMoweYTeaS9wozGqMZcJBHsCWL2GlBpBIn85BtDSFYttvjfWrwmNEY1ss0ABLBXmtLmb9kuoYnPRWaPaFv1Tg/hkRPYvMa0fE92SEIJ9P+0UrjWSsW7irFXmBnaM4nNb0zGG4AYROfEvUlOETNbhYm+raPYKsVxi1rslKx3oDVqiMbjIFt0om2ViVOvDy/kD3ELMFNR+q59jVFN4RobVo+RSCQq7tUubPtMxfqkSlHnnwcoXu9AFT+eo1LEUF+sJzg6LeKtUSZtSzZ9vD6Zt1t84nrNxTIrr/cKK4uUn11n0ybtLSzl4riuVRbaft2P2SN286XFW69mw+O1zM7MojGqsfiNDL81hb3clBbvxE5O90Y30/2BZAwHdo1j84s+62oS8ScKyrhCpMYqVJxs5UZ6/zaCzWdEoVAk80OjWyYW36Uvx/tsWYsThULBTF9IXENQ9E9TkYxCoUC2K2m8tzbe/0zsfbqdFbd4hYKqSYbRIOZSPUq1gvqbvbT+uCs+doh7sVWIezMWa2m8wy8ITCjS4m1XK2mnD4tfxFtjVONqMmPxGFApVclnJnWM0Bg1KJVKzB4To4cD6EySyJllaL6jEsmiRWNUM9I2icaowlxiwOIzpvXZTY/VMzczj0avJjIXZcunWnGsFNcQLpzgdfXvmX9NbDBxuVyEZ8McOnSIysr0TQzLWMYylvH34IMf/CAf/OAH6e/vp7KykpmZGbpOdvGz3meIxCKsVjfTZPVjLzey5ROtNGyuQO+SWHlrFVqzhliEpGq40qhDsmoIT8wyeTKArcKEZNXQeE8Fe3/QjjFVxUUnNrho9WLOtleKtjqdktB4FIVSgalExrHahL1GLAbZKk10/2UIW6URyarhwDMnmeoKseFDNah0KloerWfrJ1rR2bXYK0x0MkBobA5TiQJDgYby81zYKk1pm5Rlh4RyUsnur7ZR/s5CJKuGVdf72fO1I1h9xuTcGRqPorfr0EhqXKusROejKNVKzGXCls5WbkrWBdSySmyWiteBTMUSklWD1Wdk5K0pYglh4xA4VpswuPXoZsWHOpdo66gyo3dIqLTKNOsqY7FMNJ7z6cwi3iWbnJSe4SI4GhbWDXGYiuXktZu8oq2twsip14axVogY6sw6QqEQ5rJ4Dem+anZ+/pi4Xr+RLgZxVJmRrBraXzjFeFuQ9R+qQaVNqSE5tdiUJk4wwNy0uI+peM3LXG5ALaXnFCqtklW36lDKSiSrBlOpkYn2ENZy46Id7on8yVRmSMZw7MgMNp8JyaKh6d5KeraPYCiU0VmFirihQCPalhsY2jdBeGwOnXNBYdzo1hOdE9epsYi4jLaF2PfNVtbc5U+PYYnIVSwVOlbcIBao7H4TvW+M4Ij374RikrnMkNzUHhqPxuNt4uSrw9jj8XZvdOFucBCLgTJFfUxn12KrMNH10iD2ciMqjQpLqcj/zB4DKik93k69hRPPDxAYDmMuNaA1iQTV4jMk82kg+XzpHRLmMnEN5jIj421BbOWCEO2/0E3haisGp465oCBgmUv1IoYVRko2OpObGSbaQ+z5xnFanqxHZ4vEj61GsmqouqSEoT0TSAatqHmNR+PxlonOR6m9riy5ccBeYWTH546y+o5yEcN4Pmgs1qHUKPGdW0D/vlE0OjWh+dlk3JNjxIRQTzc4RB8f2jdB1eUl2CpNRCMxSjY4UEkqRg5NYikzorNo0BoX+oDOrsXdbKN4g4PhYxNIVg1Hnz/JyJ4p1j9Wg0IDHd49dHR2wJ9Aq9VSWFjIWWedxS9/+UuWsYxlLOOfQcKi6KGHHuIrX/kK85F5Xn71RZRKJcqomtXFD6C3yMIxRYJNj9ahVCop3eBkdmYOrUGDsUhmuieMrcKI1qBmqidA14tDtHykDn2hjvDUPLFoDNkhQTzvsPpNKBQKwlNirDeU6NHG587JriCFq+1YvAZc9RYxH6fUGoylBubDEXZ98RiWSj2yU6L8/GIsZSY0ehX6ApHjhSeBKOhM4rgbH6lDqVZg8Rvp3zWOvdKI7JSS7981V5aiklTC2u2nnchOCVuFkd6to+jMWmSnxIr3ebGUGojMRtOE+WSnhL3axPDRaZQqJSqNEsmmITwZxlJuQB2fO5PWbPE4FDXbkZ0SxgJhOWepMCbnTmedGZVOhb3CRBeDmEsNom2xgcmuMDa/Ca1Jw4YP1XBq6zBGt4zWoAH6MRaLuCRqXu41trR8yVCsR7JJQB/GAgnZJVFzuYdD053Y/aZkDAFMpQYisxG2feowZq/EypsrsPqNDO2fwF5tQo7XaEDk4YncUJKUyE4Ja6WJ/l3j2Pwi3o4GM2XrnWk5TjKGfiO9b44maxuSWcTF6jOmker1BTrcehWWMj2z0/PITgmdVUV4OL7eGP/7wd3jVL6rGGX8xzJ79PF46wj2hbFWiHxvW9xFZ9OT9WhkNZ0MYCqJx7vUQNW7PeJ6U/J2Y5GM1hiPt1tGdkk4V5g5fmwGR4VZ9PdE2xI9OkeE5oeqmJ2aE3EpNzByaBJ7pTE93h4DSpUCd4uTwQOTyA4Jq8/I4O4JHJUmZIeEY4WJkUNTxOajqOL5qSSJdwl7hYn+HWPYK8QzptHFa6g+Q3rd0yHhOcuFQqlg+Jg4D3GBK6tP1FORoOWRahQqBbGIkf3f66TiMjeyQ0Lv0BAensNSbkBrVFN3vbBcUygUIt6xKOYyPbJDwlikY+VNXrF+HIUDPxKKVS1P1Ij1RsBYKn4bvUuHe+0Mdr8RlVpJeHgu3md1aK0aYACdWYtCqcDilRk7PIXeqkHv0oEEq27wYnTL6EIR+vePIZm1OGvM2P0GRg6ImpfepWPTR+sIT82hkdVEI1G2fuqwUMJySISKx3lD8xyzu2eJRqM4nU5MJhN79+6lomKBlLeM/ztQxGKnabAu4/8qfD6fWJxPgQIlm7gMvUa8uPne6cLq1bP3G50ojAo23FtF56v9wtopjlg0liQ1bfnSUWEnpmfBViylcrL+seq4z/piKzH/ZW46/iCk3tY/Ws1UXzDN0g2g6r3FyDaJt75zAn2xhLPOJCTdUrpW1XtKsFeb2B63jJOdLLLtqr6uFGuZYZGcdirqbihj8MAoIwdm0DuVBIazW7NVX1dKaGw2afWWBr2wZ4jOx7JaqOU7PsDaB6vQmjQ5PerXP1aDWlax73sdBHoz6zE3P1DJZF+Qtl9ml4gGYY2WyzptKdj08Xph1ZfD+3TTx+uZnZpjVxY/1qKNNsovKmL8xDStWXxPl4KKK4oYODDBdEd2eUZ9sY5VN/k48Gx3Vtu8DY/HZZpPtw1MyS5XfUBY/e39Zm5bOQzxBCnDqTwXOSld72BmKMRb3818342bfez9VvaY6J0QGBXXtfr9pbz176cWzhVfvEzI2XsvsFGwwsrO756AAMnFNoVCgeSA8AjUXuPG6Nax62udgGijUAi1MN8ZdjpfGkVfqqH+yhJ2fb+T2MzCMQw+HSuuKuLY8wOMHwvgOd9K15uj4npSkpzmDwqy0dan2mE6/lynWqTEx5Z1D5Sj1inZ+tXji+LXdI+X2eA8B39wkqIWC0WNdvb8qCvZbu/sawzTg04nCpmJa/zJT37CDTfckDWey1jGMpbxz+CPf/wjl19+OdFo+nxfhJcVinXiHzI0fqCCk38bZPitKVbfXo5So1hks5SwW5udnBO2T3HCyemQ3Toa7/QTGAqz75vti47hWCls1pyrTfjfWcyBZ7oIpto+yLBuczUHfySs6HwXF9L5+kD6uWRYf28NI0cnaX+uD9ku7LvSTwbr76vh5BtDOS3UVl7nS9qCyXblAvEoAxo2Vyy6p9Tv9C6J9j/1ZrYGyxKvtCZuHY13+Bk7PsXhZzPLGieIJnMz81kts8x+mZqryjj4g+M578daLWPxmejKlEsuEStv82Eu1XPwpyeSqkSnY93D1WiM6iSBLBM2PF6bRjD6R1FzbWlOezoQdmB6p8Teb2T+LRO2geHxWXZ/7Xjmg8iw6ZF6AiOhRc/KoqY5+lXLR+tQqBRZY+O7uBCFSsGJVGnqLMd3NZkxeww57QXXP1bD8OHJRTaNqc/QhsdrGdg3Ruef0+WiPRcWMLRnkOAorLnDz2RvYNF11d/oQW+X2BWXrPdcWLDYnjBOkExYzS2+ISC4MOYER8PsfTr9tyrcYMV7TiE7Piveqxo2VzB8dDJpkxeMBdnKC6CMJXPHaDRKfX190q5pGctYxjL+M3DGGWewZcuWtM9UaGjhYnQKUdAvPtOBs9bMW98VqkjrH6vhxF/6GdqTbjm15m4/hgLdgpVaFgus5vuF5dqWz7cu+r7sPGdS1aTpnkoCIyGOnDZPei8qwFys58CPOtFZwblmsT2I53wX7iZ7sp6ls7LI4sz3jkKc9easdRYQKj4TXTOMvDWFzqpMkjEywfeOQqLz0UUWVAls+lg9kbnstZ98xweh5m0okNn6xcWxS6Dpnkp0Ti0HnunIavu25i4/gcHQgoVXFlRdVZy0yvtHsenJeubDkZy1xU0fryc8Mcfur2b+LRLEofEOof7zj8Jzvoux9qmscYG4Hdj7Kzj625NZ2619UBD39nztSNbfrObqEhy1FvZ8p4PQYB67uyzPiqvBQtXlJUz3BZPP3+lYfUd51u8S95O4xvobPbT+ujtr33FvtFO2ycnOrx9b1CbxDJVfWoiz2sLOb5zWRgeeTS66/zKEzqpkxc0V7P5OW1obXYGOVTd7aP9TL6Ot0xS32Bk9PLro2Vx9RznGIpk938oSu3i8mu6tRGfXsuVzi5+H1bf7iMzFOPRMF/Z6I2VnFbD/Rx3Jdkdj+zjJ8bSal1qt5qc//SnXXntt1nguYxnLWMY/g507d3LOOecQDKbXIsqopEbZKP4hwar3eendPcbIgUmqry5BMqs58IPTrJ3ipKbQ+Cx7vt4uVHFSnbLi6xaSGZofqGeqN8CB73cuOoZ7jY3+HWOYvRLVV3k59Isugn3htDaNt1XQ+utThIfCFJ9hp3fXaPq5EGPyeOc0Hc/3I5lTCEMpx2m+q4q+XSPZLdQkqLlioUYimZWEJ7PnRitv8XLwmcyWV3XXC0Wojj/3ZbbqSnBcsruLIZmh8d46Ro9NciyblawEmz4Uz2O+ljmPkVwSK6/3cPDn3cLOLwvkIglHtSmr7d1SUHl5EQVrbBz+dTdjhzPbzK65oxyDW85Zz2p+oArJpBGbRv8JVFxWRPsfstd8QLgFWcoMi/tnHJJTonlzBcGRcNa6GMDGx2sJDId563vZ8yIAyaIkPJmZhrH24Sq0ejVbPn84Y99wr7ehNavpfjm7hZ9kVhCejGH26XDWWej400DWtk0frGDk+CRdL6YfT1yj+P/mByoYOjBO96txe8dYFBRK3GstjHUGCA/PUXNNMcHR2TgPIP7MKJT4LynEUiqz99udAJScYafnjeHk9wm0PFFDeHKWPV8/kW5FBwtjiwSbHqsjMBhi32l23rZaIxUXF7Hrm20QFopVYx3T9G4Rz3o4GmYHLzKnFEytWEzUvjZs2MC2bduyxmcZ//VYJin9N8UTTzzBZz7zmUWfF1DGGs0ZSVUk/6UFuBtsdL85RM/rYxSuNSXJSrFoTBAihoV84IrrypjqDXLgB/EX7PjDX3GFG6vHwO6vtYMe1t5RSevP2gkMp3eNTR+rYz4YYccXMi/4wALhad/3Owj0hhf5kIMg2tj8Rrr+OkDP30YyHEXIAcouiX3fOJKRKCQ7ofGe+pwLUJs+Xg8xsk5+NdeXMnpkQigs5cDGjwiZzGxkpqXAVqdn7HB2Is5SUHVNCQV1Vkbbp7ISlVa+34e5TL+YrPN3Ih9JaSnY8HgtSrWCrZ/IHrdNH68nFo3lbLNUOFYZ/n/23jvOtbrO/3+ml0mbyWR67zO3z61zpUsREBCQpqAiKjZ0VVQE3H2sSpHqqtgLCAiIFKUJgojAndvr3Om9z2RSJ73+/jjJmWSSXHB3v/tz3bz+ujfl5ORzzuS8z/vz/Lxe2I550x9clU2fS40XlVG6rpCxV+eZ2+PK+TqJVML6T9TkBJQ6rq7CWK1l8ZiLkRcyC4eSTQU0nlOO1xrk6K+nRSgpVZ2fq0WlV7D7bmFCb/VPtEQiYfuX65FIJey+ZzTr8wDbvlQvjP8PR9LOBUnKmBgatXRcUoZ7ysfxR1MagVIJLZcIdouDv5+n8iQjZRsLOfCr8QyAqetrjUQCMfZ9bzQdhATKuwzMdbshHqPrphaikTh77xlKDia+0DJ75S9TbDEzNycUj2q1mvb2dt566y20Wm3Wcc4rr7zy+u+W3++nrq6OxcV0WECKjC7eh0ay4myz/ettSGUSuhMrc0q3mFagm+TL/AlIWS3LrEM0sOVTzUy8uYD1oJu2K6oJ+yKMrMp4T17TD/18NB1SWrWtnTd2CPXZiSZibukgGjkBoKwR4G3fUm6gZOOnG9Ba1Dlhm+ZLK7F0GFk87mT46SyTSxpYe2UdPb8ez7mfIMTL1Z1WynT3Uia88S5lXqvD1pO9OfL3aOctHSDJXUuCANFEAtGc9ei70buBlN5JSfjNNuDOCSGt+UgtpjodU7us/+mxTaqoXYv9v1Db7ripnVgsJkI0uWTpNGCoLMj4+0hq562Jej9HI2vrlwWnzl339GaHBis1bLq2Htekl+M5mo01Z5ZQ1VXMwmFHzv1IglsipJhDuX4XNGVq2j9YxcEfCtBX5+ebsA26MwC5DZ9ooKBcLf4upAFeGihu1rN0dJn688oo31zE5BuLTP9tpeF4LL4HeWUMh8OBzyccv7q6Oi677DLuuuuunPudV1555fXfrR/96EfccMMNWUDxOtZItoj/r+gqou7MMqbftjL5FytFHTrsox5x4j8JRKhL1HRe38DypI9jD42nbbP69GLMrUYRpN746Ub6n57JgBG6bukg4ssBiCaUhBROBOTUv6+U8q1mJv+2mHPSp/2qagob9Bz85SiBbHWeWqjxQsu5rytd3+gAKXTnuAbWv68U96wP29ET97y2fqUFqUzKnrtyL2R7J5maNTiH3oE2fwdVnVpM7aml2Abd9OeA0ZsvrsCyxsTBn70LEOcEeidI6d1oyxebkWtkghtFDnXd0gEx6L7jvzbhBlDYJjhr/WdUdWoxNSeXMPrqPPO7c0zUJtRxdQ29v88OFjVcUEbZxiLmD9sZfS4TENfXqln3kQY8sz6O/nI86/bXf6KeglIN3ffmBt+2fbUVmUJG9+25x02sn7MAQ0klfxeywWb17ytFoZUz+PQM5vV6ak8u5eAvhzO2tfOWDsLJ34WkMULiNZaNRqyHhR7ijpvaiEXj7L17pbYNxAN08zKlFRZmZ4X7I5VKxbp163juuecoKysjr7zyyut/Shs2bODo0aNpj8lRso3T0UpXYsY2f7EJhVrO7kT/yLzOgO1YCgGUAAg2faYRtUlJd+qcWTwOKthwTT2z++xYj7jEuK3xP6WDE80fqMCy1sTRB0fwTOcAaRJATsgbYf8J6rMdX0/8Bp+gL7bjG+14F/w5wZS2K6spatLT+7sJnIOZ19uqU4upOaWExcMOhnP0BdqurM5ZwyRlXmeg9cIqJt/KXSe+kwz1ajGm7L+i7V9rRSo/8fV2+1dbiQRj/6Wa6d1ASu8olVAbW3tdDD2THeBqOL+M8s1mproXmfxzbqjn3chQq8I9cQKi7B205UstIIH995943IxNGgqb9Iz/KXuPbsfX2kBKznpz0/UNaMwqDvywLxPUQwCYNn22FfeEj97Hss9pWjaaaD6/nPlDDkZfWsyEhiRSVMUKNn+qgYAjASmuel7cn0/XozIqMvZXZZTS+sFajj46AYEY666txTHqYfqNdD6g9YOVmFsNHPrVKP65oAhgJVXYpsPR76Fsi4mGc8qZeGORmbdWtjEc6yFc4cbpcuL1Cn/HNTU1XHPNNXznO9/J+v3z+v9X+bi3f1Alo+B8Ph+VlZU4nU4AFpniz+HHAQmbOANegNEXVn7AGs4qp/69Zez+rvDj50tc58K+MJFAlOlu4YH119UQCUTpfWSKkT+s3Fi2XliJ0qCgdFsJYy+mFw6pTkvbbmxBrpKxaxVcsvdHg7RfVCUASlrYen0Lx38znAYaLR13YKjUioCSZaM+AxQKuEOoCpU5nYz8SxBejrBwLAuVnNDhX46iSLjilHQaWDyY/is98LgwgaOtULPx4w1M713K6roU8UUyQJDVqju3lIotZqZ3WZl8LfMC6OjzoS2W0n5VQ84V5+Z1BbReVMvsARvjWWjXoSdn4BIYejq325J7youuXIOxUotr6L8GRf1XFfaG02wns2ng2QmUBmXO57tuaSfgCHFo9YUvoaYPVCBRSBh6ciYTUEpu4+Y2YpE4e04wCeae8FCyxoRrLpx9G19vwbsU4Nivp7ICSkk4sPfRWcq2G5jfk6UiABaP+Kg9NcbcfntWQEkik+K3hZGr5cQ18TTgR1sMEoUE3zx4EwT86vOy/fIy4jEYeGqBsb8soC5SZsBqGz5ehcaspPv7w7gGPVldjwDMTToRhpx5y8XMW0LjxbxGS8OZZez7wRjE4oQ8EdxTiQ2kbKf5ohIsHUb05RoGn5qj+86VGwnHmlEcbhsjoyMQAY/HQ3NzMx//+Me56aabso5dXnnlldf/S2k0GhYWhGvvnXfeyc0330w8HidGlLd5AeJQSAmbJaekgT4dH67B1KBDZVIK0EfK3IxjzIOuLNHJTrgfDfxhCveoP22yqahJiCZYDT/0PDie4pgiuAO5JlaBFH6Y2bOEa1yoo9qvrCYSjjG0asWVdyEgRiwU1GqILfsznJWi4RjLM7knl2b2LlF3allON6Chp2ZwT3hFYEuM6ErZ1ySgtOFTDagLlVmhKc+Mj3g0jnvyxBNq27/ehkQiYfedmaBzElBqvbyKgDOU0wlp02caURmVWbcBMPaXebwLJ55wi/ijBN3Z64f/SWkKpURDMZyjueGs47+ZoPGC8pyAUsP55ZRtLKTnsdyuT5s+20j/4yM5AaW6c0qp2GZm/K8LzOZYjAAQ8UeIBLPX+XXnCHX1oR/3Yj3oTj+PADRgbhRAtP6nxvEv5K55rcddFDbpcrp0+Wf8RMMxAu5QxnNJ2G3y1UXKNhZiG3Cm70aZmjVXVLP/P4Zwj/oFQOy5TEBs562JhRX3D7L3gYGs+1KxoxB1oZL688oYe3FehJUAOq6uBaD3kQlmDwp/h4SE/U11oNr5ZQGqWzray9iL86KLkz1uh04n/f39+Hw+JLMSampqkEgk9Pb2otGkxwvmlVdeef1PKBkFFwgEWLt2LSMjwj3/HOPMxceRIqWTM6CbtNXvrRfXQCwuToiJrjKhEEFXmJl9Qs+r7cpqiEP/E1NMvb4kuiXVnV2K1qKifKuRsRfSJ3dSYZ/NNwjONasBoIO/HKb5fRUioNT5uSZ6n5xOA2bsQy6K243ixFM2uCTgDhEJRbMDSgAB8FoD2Aez9xYADv24F7VFs/IZ4940wGIsMRmoNsGmz7Qzs2cpq+tS0BUWY0tyqWxHEQ1nlgk9ryzbcA75UZug9fIGjvwsO/Cur1Wz9kMNzB2wMf5KZs9r+o0lFBqZuN/Z5BzzUtikR22UEPiv8db/ZQUcYVTvsOy355FRtJbc19ntX2sj4Ahy5OfZV+BXn16M2qRk6JnZnIDS9q+3EX+HidnlaQ+xSDHeuew107YbW/Hbghz79XhWt3Tzej22o8uMPjfP8pRfBHMyPmcikPg7zF0DLs/5xPi8VKlNQqyjbzqAe9KHQp15TjZeWI5cIWXgqRmGnp9CX1WQARUl788O/qCfwGIgJ8RU1mlOxA3NYDu6LMJ8+lo1LRdVc+BngiuTdymAZy5RvKVsJzlZbW7R0/+76bTJOGfHJK6Qg6Eh4Z7P5XLR1NTEDTfcwBe+8IWcY5NXXnnl9f9SR44cAeB3v/sdV199NeFwmAghdvEyxKCEStZLd3LgP1buRWvPtlC13cJUsZXJhCtv0u3F1u+msKFAfO2mzzQw8tIM7rEAR1Ic90rXm5DIpBmQ0tCzswy9NJvimNIhQKWpIEUQRl+ZI+AU7n8bzisDCYy+kA7KOlL6ICqLCoLhdEckFYR9EbwLucGeuf02tGZVVkAJhDrFvxTCdlyozQrbdRnOQUlAqfWyKgzV2qyL2TzzQaKhKMszJ56723xDM3KNNOucVhJQqj2nhFgwztRfswM5az5cg65Cw567s9cIwy/NEXafGMQJusKEfZETvuZ/QjqLipAvwvJUbmB79IV5Iv5oTpfRiq4iak4tpfeJsZyQ17qP1jL4zFROQEmAYyoY/8t8bocuIOgKpZkFpG1jWyF1p5Vw6FfjuIb9uIYzm0SmlgKcg156Hh0jfIJDNHfATtnGwqyAEkDQHScSiBJwZm7E2KTBNRLEesRNzUnF2AZdaYCSyiCh/Yo6Dj88QXApzPxBO6N/yazTd3ythZAnzMEHRnI6T5nXFqIrV1N3WjHjf1pMc2prfH8ZcrWMgd/PMLdviYJSNbHwyv4ntf3GFqQKKd139DO/38l8ov/si7kJbl5iYGAAj8cDswKYVFNTw6FDh1CpVOT1j6s8pPQPLq1Wi8MhgDj/9m//xre+9a3EM3EO8RpEQYmGU2QXAjB/WHhtPBan5bIKipv1HH1sCs+Yj733rhQYulIh+xyJFOIxdA1aPKM+Bh6fobDdIbr+7Ly1PbFyKx2s8dlCaAoTOaNaWHNpDccfngQf9D0mNOdbL6xEUSCnZKslDbqxHl7Geli4eat5r4WqnRZKN/nSVtanRsp1XF2DqV7H8AvTaaDRvu+tXOSFVVAhDnx/ZT9To9Wazq+i8Zx4OtmdUEGJAiQgU2S/aKROJLZeWSXCTalaPL5MeWcRy7O5L5Ktl9ejMikp31HI3O5MuMo24gUJKA2KLO8WdCJACWDyteyQVKpEt6X/wmr9bTe2IlNKRReJbDr4w9xWiEkJYFGOMUuY6CRzb7PJssaIRCphiBzjEhcuwhFfNOvTDe8vY/6gA+sRH9YjJ3BAkIJCnf3nsu59Fso3FWLpMNHz8EwGoGRZr6XpvAocox76fzcvOA6t0ravNCKTS+i+e4S+32Un8Td8vFGAre4b5dhDWb5vLI6proB4TLAuXDy8MraWdVr0FRpGX1rCNrxMuaEIrVGKzxcTwaKky5O118XwH60cf3IW98hKsWxo1OIe9lDYWIBcI6XhHDOjLy1x4Ifj4ms2f74OuVrGnruHGHp2noJSFYMvCd/HWjrJmOs4rmUXHBZsrZVKJUVFRYyMjORdk/LKK69/GN10003cdNNN+P1+mpubmZkRfnMdLPJq/PcAtLCJGkkjYy9N0nJJgwh97LipnaBbgGtTQaGmcytQ6OQYqgpwj/oxNGhECGTXbb0YGoTJi9bLqzC3Guh9YgznoH8FZtCoiIZiLPYI9UP9eWU4hl04B/1pAE5howA8rb4uHvnFyrVn3YfqkMpXxWf5SQOGssVkpMIiHVfXYqovyHBVSgJK666rR1+hQa6azxolJ1dJkcqy113uUb9YXxTUajA367NCNUFXWMg/P4HMrQZi4XhOSOmdIPScMXgpOpHbQlJdN7cT9kZO6LBzImmKYNNnO7AN5nZJsvf52NP3zg4IuZyAABQFwoDmApSqTilGY1bR8P7anK5DnjkfsUgRjuPZFxI0XVLB8NOzJxwLmVIKElAVa/DbM/el60vtSKQSdvX0ZoWltnyxGaVOsAkff3khI5atdLuJxrMrRGekbLBc0rFoRC3EE2ab+KvYWojSoBDBotRj0/HhGnHFftgbWZncSvk6W7/UgkIrZ9dtvYw8O4et1yn83UPab4SptkA8V1P/DovatbRdUsfsfhvjLy+wcNRB2C/UvP64H0fbOL39iei2g6DX65FIJNx///188YtfzBz4vPLKK6//H6RWqxkeFvo4Dz74INdddx2xWIwYMfbzKsRBg47NnIZaombqrUUUGuF6VXOGhcodFvqeHMM55E9b4W2qK0ibGNDXqlmeCDD+ygKOEReuEaFf1PWNDkKezLgMz6wPnWTlHrXt8iohBi6AGFlWe1YJ6iIl5Z1Gxv600n9yjQTE+iAZn7Xa4WnshQXGXhCuT/Xnl1LeaWbohZm0SLsjP12p37puFnpeBx9Y6XkFnBBwCteK9ktriUVjWVdZq8xqkEqQyqUZzwFp0V0NF5Rldchx9juJnlqCZz43vN1wfg0FpWoquoqyTtosTwRAslJvZNOJACUA62FXTkAmqeaLK7B0mASH8f+kyUDn55pQ6uUndEnq+c34O25neSJwwqg3QFwclk0VW4uRKaUnjMALOEPEc/TNqk4txj7iwTUSOOF3kcolyLNAQQClWwppPLcc10ZhscTq8dfXqll3TQP2QTf9v5vO6rSw9UstyDVyum/vTTv3U9X5+ZV4wv4nsrtQlKwxJf41g3PIL7p3GRvVmBoMTPx5EetxF7pyDaiVQEA8B4yNatZc1YC1x8nQs7P0PJruhpb8jdBXF6AyKmg4S/hbSP073PCpBtQmJXvu6mf6jSUK63SMvyLUf54SK/3+IzjdTjgOMpkMtVpNeXk5vb29qNVq8sorr7z+EXT55ZeLMZNbt25l//79ACwyw6uxJ5EgoZ0tVEjrmHjDis6iEQGlLV9qJuQKc/RX40y+vgIuVZ5kRlOkwlCrwz0WQFelEt2R9tw1gK5KgARqzrBQ1WWh98mEW1GCm1DpVQQ9YZYScHblSWY8835cw7606DTLWiMSmTQDUhp4cuVefN01tSg18nS35SAcSOlB7Ph6G+FglAMpKSKuYR8HEzVpw3lllG0q4vgT47iGV3oOSUCp+eJKLGuMjL8+z+zbmTWPUitDKs/e8wpagyI0pCpWUdymS3OCScq/FESpP/H0fcVmM7FwLCekFE3WB6uj+ZLf51huGD6pwzng81Rt+0orYV/khNFo76Sum9tZ6nPndEnyTAdP6KaVVC5ACUBhkIME3LPZazPzGgP66gKaLqjieI4kG5/VTzQUxTacfU6z7n2ljP9pITMuMUVSuQSkEtQmKcEsZlpbv9SCQiNj1+19eGYyD9y6a2spKNWw+850WCcpU0sBHZfVCM5IL85nTctpubSS4jaDEE+438mBH2Yaa5jXmNCWrIBFqTFyTReUi45iQWcIjzVzPzdcV4fGomb3nf3Mvm3DM+0R4S9NuUqMeSxuMyCRCfcp7okgBx8YEV+z4Zo65g7bmXjFysw+G/GUaV5ryzBH+g8J/zkAOp0OuVzOT37yE6677rrMgc3rH1J5SOl/kf793/+df//3f8fn89He3s7kpPBDGcLPq9EnACj9Yw3rZF0AyJXCH7ZnTLiQdn62noVjTmbedLDr9gG0xcJ213+yHl2pmpGX51jY50yLJYsGYwScArZY895iDJVaen4zmQYUrf9wPfoyDTVnWdJs9AYen0HX4MAzmgSeOvBZAxxOucGbfM2KpcNIzxPC9tZ+tJbxN63iewA8c34M1QUioKStUKcBSGgTq/9PQEI7Rj14k82UVZFUAjS1UrRs+nQjh36SeUGtOr0Yc7Mh6/O+SZ8YWaZr0BKLCI+l6tCPRrI6Oq1shHcFDnXd3E48njt+TlujpfncsrQb6VQF3WHi0TjaYmlOp6p3UjQYhRMkqTV9oIJoOJq18QBQc3YJVduLczpPAeDjHWPgum/rw7yuIPMJiYTy9xQy97aDffflmATTQtnGQkrWmtj93cwCp+YMM0q9guE/zNN9xyASqSTj/filjL9so6heR0+qa0UKcWw96qPxnDgBVzjjeW0x+BwyAo4Qcs2qhmEszrqPVTH0/DQBu4Tl+QBLfe605wtbtbRdXCEUcM9ZOfa7WTzj/rTXADSdWw7A6EtLTL3uYOp1obgv2ailfEsRR34+yeLBZRrOLBNdDURAKR5jx9ebkUgldN85zPAfrczusgoubVrYdE0N07uXWDy4nNEY2/XD4+ziReLEkM5KRSt/qVTKPffck58gyyuvvP6hpdFomJ4WGh0PP/ww1157LdGocDc0yCEG44eQ2mTYf54eB5e8BJRuN1G2oYgjD48y/PQsM3+dF11P1n6onlgkLjr4JGGEsDdKLBwXQYUNn2pg6s15AUBJASnKO4so31SUEXG167ZeCmpTgKdmA4ceHMOf4pA08dcFEWbSlKmpP6uU3ofTb55D7jA+h7BSLS1OKiG/PYi+UpMTZhl+ZozWyxtXIJ+EI1RSqa6STZdUsDzjY2GPM2M7666qQ6qQZIWUDqfUYqXbTVnfP/DM5Alj33JF26Uq6Qw08tLsSqzfKtWfV0Y8Gs+AYZKKhmMiPPKfkVSvIRaJi6sHs2nddfUMvzCXMxqw6+Z2YtF47sg/yAlAJTX9tyUCziBLWWJjDA0awr44S0eXWTqavX7b9JlGNMUqXOOeTHckhPP9yM9GGXluLjtMlTiPZvfbkGtzT3B6FwJIFZkTsZoyNf75AAt7nNSdVoZnMf38NbVoKNtUTP8TUww+PU7r5fUZx3zjpxvQFKnovr2PkefmmD/qxDuRvp2G88spbNTTdkU1/U9MpYFsaz5Si31ombluOwF3OK2eTv7dV51STM2pJdgHl+l/YopDP+4X/warTinG3GbgyM9GsY8LtZpCJ9zSjzw3R098L/NMolKpCPYHkUgkxONx1qxZQ09PT84xyyuvvPL6R9DHPvYxPvaxjwHpk2Z+PLzF8xCHir/W0yHZDKz8/jmnhN/PddfWYet3M9ttZ/ed/ahNwrWg9dJKzB1GRv8sRF0lASUQXMf9DqFBXrqlkKJmHX2PTTGQcn/femkl5jYjdWeH0xyAJv68iLXPjW9a2N6Om9rwWQNpMVfWwy7KtxQx9Aehf9dySSULR2xp++CZCxAJREVASV2izogyi/gjKz2tLJo7bFtZnKUmDc5xjQTSHKHWXVvHsSzxu+b1eso2FqEv02Q4+wScK7HB6hI1Cg0Z8E3vo5NCHF9v7trrRHEiSW37aisSqSRnzaIuUdP4vtKcwHTQFSYajqEtVovH5u9V2B8RoOkcqjnDgkQmYeLP2UH4JJyWjCnMpXeK2NtzVz+FbVl6XoCl04j1oCtn7w+g5uQSKrcXZ/0cS6cRfaWG0efmswNMifNoYb+D0o0mRv6YfbyXJwJEg1H8jsw6NRnHuDzrR1uUuYq97cpqxv9iJbAYwD60jGMk/dxRl6nZ9PEGlvqcDD0zy5GHx7Ie047L65FIheORCrKZmjVUn1TKsV+P4xoJEA3FCCf+TlLP3+1fa0OmkLLrtl5m37Jh73EILm1q4X5k/ogD60FXBlC278F+9vAyYcLIlmTivaJCoeC+++7j85//fNYxyyuvvPL6R9G+ffsAeP3117ngggvwer3EidPLPnpj+1D4lfgeTomDi68s9jK1FFC1zUzPk5PMvGVj6ahdcD2RSFh7TQPxSEyEcZLAUiQYJRKMim5F7VfWMHfQhnPQmwYRVZ9cAmTOf+25awBN+QrwVLG9mJ6HR9Pi4sZensfcJvS8VAaoO6cqDWICwa0y5IkkXiNNd10CAq4QkUA0DVBK1dCLM6gN8hVAaRUEdOyhlWtm9WkWwp5wBkgCCaCqQC44EK5iPFIdpTIi9xI6/lhuRyDgHaPnQHD1aTi7nNE/zWbdR4CK9xQhU8hywlCRYJTIf8FtSWWQEg3GCLpy97zarqxm7LVFgllgGICtX25BIpGw997czpITLy8y8XJuK07bcTe94exxfyqLCqlcgGhyOVN1XFWDqUmHdy6A9Wjm8eq4qobexyaZ3WVndleWRZGJ82jqzUW0ltzuP+4ZH0q9IuO8UxWrCC4FcQ56CXkj+FbdT2jKVVRtK2LoD3MMPj+DqkCeccw7rqrBUK1h910DzHY7cIz7RJgoqbJthZRuLESmkjLw+xkOpdSizReVszzjZ36/E58jjFyzgqAkAaXCNh3tl1YLbuS/n+Hwz4ZExyTLBiOl64z0PDKZ+FwJ8kRaz/QbNoZjPYzTh1KpJNQfEnte27dv54033si7Jv0vVB5S+l8orVbLxIRwoTt48CBdXV2EEpb/C0yyEBUuYMO/aadJtj7xJlAXKqnYUsTMmw60NVrwCRfZmW4rdaeXsbDfDRIpO77egmchQM+vx9N+cMs3m7PepB/9+RiNF5WJgFLXzW34bEGO/HRMhI00FgnxmOBqA0K0mW/Oi38pZaJKC4aaAtZcrmFPyg1yqjtQMlZtadDN4BOJ4sJH2ut33tpBJJC++r8vhXzd+ZUOIv5o1hXR6z9Rj8aioubskozot+nXBau5bE5Kadv4cB3EyZqxmgSUtt3YSs+DQ1khocJ2LW0X13LkkYkM0Akg5Amf0F2o8cwSdKUaEdJZraGnZ3I7D71L5YqsS6pkrQkk5ISUwl4BlJrszl7YbLuxFZ8tmAbDparz800s9bmYfM2aNeat4+pqTHU6Cixqhp/N4Rjgg4VjDubeXhDykiXp53bVjmKQwHAiDjEei4ugUuXJJmpOKhHdkQ7+ZCINTKo6pZDq91iY2Wdn8jU7u+9OTKSmvKbrGy3EI3F23zfK0QdTzqlE06N0iw5dmZq2S2o4/Ispen4zIz5f3mVgrtuNY8AHcZAlrNmTgJKhXsOaD1Zg7RNckSbfsuJYvXovHqP21FLkGhnqYgjYpOJ+6uq1rP1gOXOHHEz8eQnnuDdtFWpBhRbfkg+NXoq6UEl1l4XFg8sc/NEYvrCP3byEsVCPz+8jHhC+c2lpKZs3b+a5557LfjzyyiuvvP6Bdc0113DNNdcAcMkll/DMM88ApMXBKVHjv8MvAkvV2ywoTSvuiAVVBfjtAtzhGF4mFBBu4BvOL6dknYkjD44x+sIcoy8I1y1NmZqCUjX1Z1Zg70u/7h55eAxd4oZVhJF+OYp/PiACE1KpcKOWBJSSIM9ct12Eh9ourURTpMLUohEBCYD9KW4CGz/dikQiSQOiUqOkGs4vp6yzMA3i8dtXIKJk5MLQC9NZwZSSDhOWNmNWyOjIw+OUrNFnOySiWi+rwtxmQF+pZfjp9FXmSUCp9uwSTHW6nPEj666rR6WVp33vpBb2WSnbVEQ0lBsyKu8sIh7LDSntzdHAeLfyTvhzRtKB8P0MlVpqTinOCRoFnKGMWPmkTC0a2i6upffJiazgWUGtho5Lqtl3/2BWQAkE8I44GeBcqg79eITmSyuzngcN55dTUKoWwZ7V2nZjK3K1jF3f6c3qjLX1K0IUdfftffRlacS1X1lNYbOesVcFd69sE5+tF9eK9zp+e0w8hzVFUlTFKpyDfiLBmDCOCWAq+fe24XoBXtp9Rx+jL8wRj8fFvxFRGjDWFqAtVjHXbefYL1cmgNdeW4fWomLvXQNM/22JkvUmZhORRSiVaMrAPx+gfEsRioLELbxfGO/heA/j9FNcXMzSkvCecDjM5s2bufvuuzn99NMzvmteeeWV1z+6kpNm4+PjdHZ2ig7js4wxGxd+P8f+sJb6P7aJ79FXaVEZFMx221GXJF1LAszut6GxqJnfLdQ/W29swTsfoPeRyTRnv+r3FAvO1qsgn4GnZgi4wyKQsuOmNryLAY79anwFmFALt/vJRT/GRjVBW4iAM5bmVFS8xoipUZdWG1gPukRAKelaY+t1pYFSqcDrjpvaiASiaauiU3svXV/pIOKLZHV7bLmkEn2VlrqzSzMi12xHl1moczDyx9yuiwCbPtEAEjKi8AARUNp8QzN9z0xlBUr0tWo6Lq+l/+mJNFgrqaAzBDniMQBqTjJjqtNRdWqxGKmXqsm/nBgMejc69qvxEz5fsc2MRCbNCSlFQ1GiwRiLB7PHnnV+pomgN5wTtFp3bR3OcQ9Try9ljXlruKCMso1FmGoKRGevbJp6exFrX3ZorOmcCpBKsjpnmdfrab2oGvuA4I6Ueg5DAsJ6fyUze5aY+PNi1sm6rps7iMcEd69stZ2pWUNRsx6VUcGRn46mvSYJYAXmA8RjMaSJXlzyfFKXqNl0XT1LfS6Gnp1l+KVZvEuZk5b1Z1agKVaJ4F8S1lKXqNnwsToWDjsYf2WBxeMOlCnu6doKLQGnMG76Ki0KtRzrQRdHfzFGIB5gP6+jMSkJhoKEfcKCRIvFws6dO3nqqaeyjndeeeWV1z+yTj/9dCEmCfj617/OPffcQywWI5wSB6dFT/C+ICqp0Iuq3lGMvloruCAFg2jKtATdwjVr8ahDnL+q6CqiaqeFY78dZ/Ztuwj2qAxQ2KRDbVJwaDDdEODQL0YxVAi1XM0ZFiq2mul5dAzPdFAEJuRqGcTiIqCUBHlsx90rjkcX1WCo1WVEs6Ve59d/ogmZSpYGRKXuZ9m2QhrOKmf4T7MsHnAKLwiugEgN55VR1lnE0HMzWI9kuj1WdhVDnKwA0LFfDmPZVJTV5Sip6tMsVJ9sYaHWwcjz6TVaElAq22KiuMNIT466ovmSSnQl6qzGDPNHHNScXEI4mNvMoOaUUoiRE1I6mMWF5+9R0B07IVxkXmfA3GIgFo4x+FT2eU3fYgBpDsBcZVGx/iN1DPx+PGuMm6pYRcdlVRz68UjOuL9NH68HqSSncQQIYFnd+0pXzoOUerZsWyGmxgJaP1jJwO8zv0PnZxtRGhSiO1LG53+6AZVBwe67Bph4xcrEK+nHovZsC5VbixMxdI6s7kkdl1Wj0isY+tOccA4nzheVAVRFatzjAcK+MLGoGpUBgm7Ev7e2K6swVmvZc/cg83sdyDVSpt/IrHMta00YagqY3+9MSwVqvqQSY42W/d8bwtHvYXnWx9z+lferLCqC1iBVO8xoilUigLX7rn5mY+P0cYBii1noecUhFAqxefNm7rvvPk455ZScxySvf3zlIaX/5ers7CQYFH4o0uPgYJw+xqPCj2bb8hZ23Q+ahFv1ussrkamk7LptANtxH7bjiUkbLUhlEhQaKUikVJ5ciKFSS99jU+y5awDLRh0ggDTtl9biGPXQ99spRhIghxjRFU6AFluNxKNxFg+66b6jX4BBgJYLa4SYhlTnIB8MPDuB3yW8ZtPnGpEppGk/qItHXJSsNTH4nDABU3duaVqUHAjkrrjSfJVrEgiRC64cma9HfzFG5clmZt4UfiAtG/VYD69MxiQBpZYrqihuMXD00fE01ycA63EXQU+YXCp/TyFyjYzGC2uyNj4UGjkSmYSqriIGs0BKqZF22XTs8XFK2k7g2AQYm7Wo9PITviantFDTZTlhrNyu+3opaTPkfH7ubUdWgCopuVqGtjgH9ZoA7so3m9P3IeWi3/vIFJ2fa8gKKG39l2bkGhndd/SvnLcpMq/RYjvuo+/pKYLu7Mdx5i03VTss2PrSc1qT59v0ARdVXcVEg5G05ytPNmHrcxJYAr89hNcaFKEkgNqzzJRvMLH7nhEW9ntQFNiYfiN9nDZ+qgZNkZJoIMriIS/d3105H5ovKmHoD4uiC1JyEmvmzZVtdH2jhUggyr77Rzj+yAgo5ARsUswdasq3mOl5aArPvAeJTIK+Qpho739iFiRS4tEo277ShFwtY3FgAN9slKO/nWJxeIn9/JnK6nJmZmeIhsLYHXYaGhqQy+UcOnQoH+eWV155/dPo6aefBsiIgwsREIElDQX4v++nuK4I/EJcV8tF1dSdHmb/fwylQRQFZWqkconogLPmI7XM7F7EOejnyG/GiC0LEMS2r7UiV8jYdVsv3gm/CEfIEitKku9v/EA5I8/OpX1GeVcR9WeWYWk30fPguPj4oQdGqDjZLABKGtjxxXYm315k9s2VG8WlATdqkxIQwClDlTrNXSbkixCLxFk4nnhslWuSbcCNrlKTFUwBAbhKyrxWl+Z85J/xM5GArLpubifgFKL0UjXw5DQbP92QASilqmxTEbIszjpJacxKZDkiUPz22AkBIYChF6ex9p24pqo63cL06/+5CTNLpwGfLZzh2JPUxCuL+JYCJ9yH1eOWqrJNxUiVUqQ57gybzipHoZNTvF6fE1Ka3Zd9Es7UoqHj8nrmDtoZe3E+LQYRVo756Atz+O3BnBF7y9M+1GZl5hOJ8y20HIEsPbXkuI+/MoWuvAXngDPt+a1faiHgDnPsl2P0PZm9obfpc23EwoLzWSpAX7rFRDQUFcZkFcOWBJQ6rqnFVFfAoV8Jjmap7l7tV1azNOjCetCNQitDrlhxhxKbfBrY9MkGwh5hsrnnwWH8/hiT8RGWy+eJx+PMzwufFQwGaWtr47rrruPGG2/M+l3yyiuvvP63qa6uDrtduDb8/Oc/57Of/SyRiAB6j9DDSLwHkNDOZnbdDWq1cD1fc2U1KqOCXXf3sjwRSHNglCvk4r2yeb2e4mYDA0/NsP8/hgTXmoDg4NL5yQbsQ8v0Pz6VBqPE44i/+0UdOmRKGdbDrjS3mrZL65AppRmL1479ZgWYXvORWtRGZVrUnGvYRdBVzMRrwvWy4iQzs6siQMLeKKFkr2IVUAXgWwrgz7HKfPDpGVyTPhb2Cz2CwraCNAgmCSjVnlVCxbZieh8fzQCJZnafuJ4p6tChMilofG9ZWsRdUlI5yNQyStYX4RrJrN9WuzhlfIcXZ7ANu7HlqEkAtFVqNEWKE77mRMo27qna/b1+zC25QXp7r4c9vbldkpRGOTJt7tpUX6FFY1Yx9XqWDBBg9Ll5dCXqrIDShk81oClSsvvO/qzvTx7z1Bp8tWxHlwmfHcE2uGr8Euebtd9FwznlGU6hlo1GlmeDBBYDuKe9GS6gZTuKqD2lhD3f78c55BfdzVLVcXUNpnodUqmUhf2ONJen+vNLGXthQXQaSy7YS42g67q5g0ggwr77Bul7bATUAqBkbFRTsc1C32NTBBYF182CMmECPBXy23xDMyqTgoOzvQSccPjXo9innBzmTSz1RczOzhIMBgk4vdTX11NQUMC+ffvycW555ZXXP42++93v8t3vfpdgMMhJJ50kOlv6WOZN/ggx0GEi+OApmCoNBJeCoIKOy2oIOEMcfGCE0RcXxHnAgnINMpUUv12oTZovqWThkA33WIADPxmBkFDTdH6uSYA07ugjaA1iTdQyCq0cJBIRRqo5w8LkX6yMvjjPaOK+29RSQOsHqnBt8HD8kRWzgp6HJynZbBIBpa1fbmGmeyktlnbhmANdsTAHojKAod6YBhtFgzGioSiLPU7hgVXuNbZBN0UthqyAEsChn4+iSpgiGurVac5HQXdMBK63faWVkCvM4V+kL66b+qsVY7UmA1BKVeVOC6oszjpJ6Ss0KHWKzCcQXn8iQAhg4NkpHKO5nTJBAKXmjzlPCFzlkqmlgIgvkuaIlSrbMTfHg+M4J7IDREDacc/Yt04jCo0MqUpOth2sPbUYjVmV07EKYPz1BZS6zKaZplzFho81MLt/ick/WxlfFV1sbNLgGvYzv9dBNBjLeZ7Yht0U1ukyn0gcU99SEIksE+Kv6CpkttvBxBtWzE0GbEPp88kbrqsjEoxx/JFJeh6bQqXNHILOz7URi8TYc/cgQ3+YA4RzzdRSgEQqwdHvEeb74yv7kwSUGt9fRumGQnoeGcU9EUxEJAq9y4ZzS1meDWA94kKplSFXycT3p8bhbb6hjaArzIEfDtP72CjBIFj9cyyUDiOVSZmdFepdv99PS0sLX/ziF/nMZz6TdRzz+t+nPKT0T6RkHBzAxRdfzLPPPis+189++pf3wzK0sYXyN41Y1hqFJ7Ww80uteBYCHP3FBLtuX7koVW0vRqYSgCXiMbyLQtEQCwvRFbN7hR+jzs81Eo/HOfSjUbpvX7mBbDizHIlMsgLDSCQQjzP+13lMtcKPrnldAc3vr6Hv9xNprjhKvQJp6g+vFnyzAXHFma5BS8UWMyVrTGmuSKkr0rr+pR2A7ttXJpf23beymiyb61ISUNr8hSZURiWx6ESGW0888aPsmc+EiERCVAvbPtvK3h8NpIFSc287cE0Fs7okgeC2tHjwxBbYxmYt7R+spe/3E7hWXXjw8Y7w0Zor60R47O9VwxlllHeaURerVtysVusE+7Dtxla8C36OP5y7cMjmQpW67cO/HE2P/Etow/X1eOb9jPxhnoMPZHdLiIZjyNRZIkLiMbq+0YZEJmHX8QEc/enjWnVaETXvsTCz18bkazb23J1OI7dfWYmpvoCh56dZOuZj93fTn9fWaKg5qYSKzWb2fW+Ewz9L+f4JuEllkCORSyjdomNhv0cElDZ+shqpXMrBH08w+Nw0TedVsnhwOc39acsX6lFoZcwd9eAZ8wnwUjxG5ckmqnZY2PPAEPgg7IvgXRQqEZ8P1OowxCU0nF0urEBI7Ev3HYPivnV9sYWgM8yBB0aZ2WujsE6Hb9nHYuMAUgkMIrx2anqK8vJynE4no6OjFBcXZz0GeeWVV17/DEqNg5uZmWHt2rU4nU4A/HgFYGlcWG22yXYKznEv1uPC7/qWG5pRGhXs+k5vmpuKpkhwWtEUVrF/cIjYchB/onfimQ2gTjgzaYpg/SfbGP3zLL2PrNzYmdfqKF1XiKFCmwalzHXb0+J1N9/QRHA5Qs+D4yKQVL6xCKlCgkKTuEYm4I9UqGTd1bXINTLco05xv6Zft4rwTel2E41nV7Bw2CHGdS3sd4pQU/15ZZRvLkpzXRLBGw20XlxD9PxYVpebeDRONMfKrmRsW9MlFSgLFBnxdXu+349Gk+2dgvbe9c5ORx3X1KI1KbO6LeUCsMT3friGwkY90UA0J4RzIjWfWwWSE9dHufaheL2exnMr6Xl8IifklG11e6qO/GIUTaUmLTYQBIehtR9tYt/9gzldpIJLQYhDLJJ57Eq3mGg8twLvzgBHfjaaMTbv5I6UGmGXzSVr61daUGjl2I7Y8NtjK44SKSCdQisXGz1JF6midi3NF9aIY2YfXMY2lNlIajy3gmgoxtLRfo6kNBI3faaRWDjOkV+MsnjEjq50ZdLKtxRJjB0UNuvRlQsA36EHVv5eN1zfQEGJWljM4Qf3tI/5AzYm4yOoK6JMTk3i9DlhDsxmMyUlJXzgAx/gpz/9aZYjkFdeeeX1z6NPfvKTfPKTnwTgy1/+Mv/xH/+RiBSP08d++vz7kfgltLGZold1lHUWiQDPzls7WJ7xcezX43TfsXI9rTutDJVRAS/MQAD8dgG6kMoh7ImweFSo3dZdW4dULuHIz8fS6pSm8yqRa2RpkATA8J9mMDcJC7e0VWrWXlnL4B8mcQ6tXEu1ZpVwD56UWohVO/B9odZQm6TUnV5KxeaiNMenVKhp2w2tSGWSNJAjNf4rm+tSElBad20d+iqtsPJ/1f7HIjGIxQnaMmM3Ul2KNn+hmeO/GRGisRKy93o4aB8lkCOC1jUSSF+wmEXJMRt6fjrTSSjAO8JHGz7aQDwaw3b0xHFq2VS2o4j6M8rQl6rT3Kze7T50fqYJnyN4woiVrPFqKTr4QC+BLMPXflU1QU+Y0efm02IFUxUNxIjncF8XnSnv6c1wuVrtjrTvnnQnrvrzSynvNDP0wgzWg66Mel1tguYLKkWwOs0lKgE3KbUyZEoppWsLWdjvEAGljqtrUOkVHPrxCL2/n2Tt5XXieZrUhk81UFCqxjniwdHvpTvhZGBer6fx7AqO/mKAgBMCjiB+u3DeBpygNgn/bjqvGpVJgdokPJ7qBNZ1SwcBe5BDPx5h8s1FzG0GnI4AizVDSDQwKBkkHo8TmPJSXl6O3+9n37591NXVZR3nvPLKK69/BqlUKtHZ0u12s2nTJkZHhRrDg1MAlmZATxEb/Sdh7XHiTESSr/tILbpKDd339qWneqjA0mFEX67h4APDEAqS8F/ANeEVF0yjgi2fbWHiLwuMPD8nAjqachVVOy0UNejTYB7noBf70DJjLwqfs+7jdUT9MXofmxTdjwrbdSg0cuQ6mfgZBBHTYQA6PiRE1LtnA2KsmPWISwRLjE1a1lxZx/whO6MvCICUa9jH/u8J18xsrkvBpSDBBDO89kMNhANR9mWBgmLROJEcDt49iXm06tMsFJSpM2qMA98fQmWQ5gSE3o3TUdMF5egrtVndlhw5XBmTqj2nhKrtFmRqGTMngLxzqfWiKqQKadoc7mrlcjjSValou6yW/icnckJO7xTzNvjUDBOWpcwoORVsuq6RQ78cYX5vdsOFmDdhQpDl0BnqVKy5oo7lWR/Hfj2RAShluCORvhBg21daIA577xvM6r606foGNMUqMZLtYLIPnAKrqQuVRMJCnR60BgkCukoVbZfVMPjsFO7xAAuHHbimM/uFHZfVCIlE/YNpDlZrrq5BIhHOy4VDDkwNOmKJtD/xnkAFZZ1FFDaGsR5xpUFkrZdXYW7Ss+vePggKi1uX+txYY3PEKl3MzM1g99thAYqKiigrK+Oqq67ivvvuy3oM8vrfrTyk9E+qZAwJwHve8x527dol/r+f/fTv2g+7oJoWNhW/h2g4LpKoG6+vRaVXsueeIfbcM0T5dgFm0laq2HhtA357kEM/GmXPd1cupipDComrFUCW0efnOfLQGOVbC4EV96X5ww5Gn5sTnXTKO4uRyiWEEz+che1aHH2+tAi3tdfWYajSMvTclOhs5Bn14Rj1MPGmcJVf9/E6Asthhp5c+cEM2ENIEme5phj8PtKAoUgwSiBH1mnfs7O0XViRNU5s6OkZEUaqPNmMqa4gA7ppPKscuUZG64VVGRFxSUBp65dbiASjaRMT4jAWS1l3XQvHHpvMCjRJ5RIqtxfjGsqEfapOL6bmpBKmd1mzOh5Zj7vwWXPn1Z5I87sX0RQqmXotO6DUdUs70WAsa5wegFwjo6A0+0zhli8245rypVkBJqVr0LLuKsES3NGXHfAqsKjRFqoyHJK0NVpa31/GoR+NcjDLWCdhn7lDjpwOTrZeB9VdxWlxL/FYHF29Fs+Yj8luO4ZqLYGUmk1bo2HNJRXs+94Ivkk/7ikfIy/PpsFF229sRCqT0H3nIIO/nwOJMMmnrVbhswXBB2qjEqRAPIZvNsbRX0wI0YxfbSQajrPve6P0PjNL2VodnlEP2hoNRXVqpv/mQFGgQCqXUL29iKnX7ey7P/H9tbDzi61E/FH2fW+EvqTrlA/aLq/AVFdA952D4IFoKIbPEcIX9dHjHGb8j+PYsMEIKBQKCgoKiEajvP3223R2dmYdv7zyyiuvf2ZVVlaKMST79u3jtNNOw5eI1fWxzNu8wNu/eQEFKrZxJj57EIlyBcTe8Y12rH1ORp6do+fRMcI+YWJh7bVNKLRydn27Nw1GKt1aikwpRa4Sipyq0y3Y+pax9XhYqHcw+7ZwLdl2YysSmYQ93+3naAoMpTIokSVgJE0RoFSnxcBBIh43GE2Dv4/9aojasyoFQEkDWz/dQs9Dw/jtiRteR5BoKCZ+fkGtJg2MCXsixKMprkup8oNz3ItjOPuEz+6UiZCNn25g4Hfj4ucmZWkzitGsq7ft9wsQV8uF1Rz+1ZjoPJWq5ksr0ZWqs7oO6UrVwqqfHNr6lRZkSllW6+ex1xaJReI4B/5+QAlg/G8LqA1ZXIRYAb9yxultKEKmlBILZk5WGRo0tF1Sw94HBtLcr5La9LlGQHDcWg0oAdSdXYlCJ8/qEtVxTS3W4w6sB905I+AW9jup2GZm8PfjWZ/P5o6kKRKOJX4IuEKEfemdoOZLK1GoZfQ+OsnQc1MUry1MO0+SIJ1twM3A76bT9i019lCmlFK1zczAxLQIcTV+oJzStYUc+rXgijR/0MFct3CuN5xfLkY1qguVorX90tFllo4Kf0ObPtuIxqzi0AO9+O0w8sqsGHO47WuteOcDHP/NBO4pHyqDAk2RlHnjJK/u7aenp0fYyWNgMAiT3hdccAF//OMfs45dXnnlldc/u+677z6xUX3NNdfw6KOPEo/HiSeBpeP74TjU0cbawvWEfRHc00Jt1n5VNboKDfvuHeTA94ewdBoF9yQTdF7fgHdBgGdT49I0xaq0RXTJuLSjvxiibJsFSLgvXdfA3GEbYy8siBBL5ZYi5BoZ8YSLsrFRjWskkLb95osrsKw1iQAICE3++cN2bL1OANquqCbsj6TFsXnm/ILDAIAa1GoBwEgq7I0SyuH0PfTMJK2X12UASgBTry+JLjzm9XosHaaMCbGKk8yojApq31ueAfMkAaUN1zdAnOyRu2rY+pkW+p+eZHlVPH0sIvSOSjcWZY07M6/X03phtQjUrNbcPhuBHM7Y7yRnvx1rhYbJHJNs2cCvVKkKlcjU2V2SNnyqQVhYlyVST12iZuPH6wS3gizfGcDUoCcejWVEtKlNUloureHoL8fp+c14zu828ddFCpt0Ge5bILgjNb6vnLAnkva4tkqNbzrA3NtWLB0mQq6VCTy1Scqaaxo58PMhAk5YOu5i8i/p323rl1uQa+R039abFsWnLlFDKEDACQWlauQJd1gCiN9h21dbiUfi7Lt/kIHfjVO+w4Kj34u6RE1RSwGzb9mQK+XINTJKOgVnjUM/Xqnjd97aQcgTZv/3hjj+xBQKjfD3UX9+KSVrC0XQKuwN47cFCcQDDDHOq69OYMUKkyCXyykoKEAqlfLGG2+wcePGnOObV1555fXPKoPBwMiI8Ps6PT3N9u3bRXeTZey8yR958xnQoGMLZ+BdCqI0KiAkAeJs+0orS30uRl+c59AvR0SgIQkF7bq7N80pqGydCWWBHEUCKCrbYsIx4cc/F2TyzUWsvUKNtemzjSg0cvbeO5BWp2jNKqJJYFcFKoMKR58n7f5/x5fbhet5Sj3W+9sRqk8tF2GVTZ9upPepafH/0UCUkDfCTAJY0ZSrxDgsWHFdcg05s47jwhEHflt2kCYJOgGs+XANwy8vCIu+UlTWWSi6CK5W0B3DUKui/fI6jj4ynrZfSdWcYcFUr0vrDyalr9aiMmbvO4GwGEupl7MnyyK/+e5FFEoZS0dzJ6ecSKOvzKPJ5pyNcOzrz65g5OWUuL0UlW4sQlmQHXNQWVSsvbKGnodGCLozF86tuboGhVbO4Z+NZgJKQN3ppWiKVFRuNWfAV00XlOOa9GE94krrV6bKPRbAPellaJW7UlI+eyjTHUkFKpUQteZbCBBbBT/VnGlBbVQy+NQMvU/PULm1MO1YG5s0rLmiDmufm6GnZ9iTAp0balW4J4JEY6AskFO6oRD3+ByjiaSiypPM1JxcwvHfCq5Ik28tYj3uEZ+b2WeDIBSIsdrgmQmKyT9rPlyDsa6AAz8dJbgUZODZaWzHhb/VzZ9vwrcUpO/xKZanvOjK1agMKhalE7zZO8Cx48eIE4fjwu+NVCrlqquu4pFHHsk6dnn98ygPKf0f0Ntvvy3+e8eOHezZs0f8/xSDTI0N8sc7oJhKNspOQqGVI1Ws/DhWn2RBppFh67ETdIWZ2S00KrZ+uRm5Wkb37f1ClFtC6z9cj75MQ8gbZvp1mwiMqItUxGNxbP1ukEhYe20d3gUfPQ+lrK7RQvsH6wRCMwVycQwvoy1WiYBS5+cbGXl5jr5HVwAdfaUWXSy+QmZDGvm7/uNtQsRdyoqtNNellNXYIIBEScp406cb0VhUWePdqk8qQSrPnBAb+cMcc4dcK4BRlug5uUaGNEf8iLHJiEwppf7U4gwAyjXkO+HKM9uxJap3WiCLBSCQFQJ6t/ItxU7oghQNxTKaGqk60X4rDQqKmrJbZlva9UikEgrKtJmQkhbwxTn8q1F8s5kFRcfFFSj1CoxNWlzDKe+VSNn25SbkGhm7bhtg/OX0Cbami8ooWWtk+IUZFg97VtyFEtr6xUYUOjlHHhzFO+HPcFeq2GhArpHRdGEpw89ZOf7oLMRjrLu2mqV+N3PdLrzzfuRambg/AIZGLWsuqyDgCHHoJ+PsTmxXWwxtV9Rz8MEJ8MaIhmOCq0Q8hm/Sz+ikMLG24UPVIIHpvzkYe3GRsReFpt3662rQlWnYdZvg7hV0hlkadBOPxWk9vwzXjI+hES9yjQyJTIK2QoHLOcef/jTMgcMHhH08LKykAFCr1Tz55JO8//3vz3rM8sorr7z+L2rr1q14vcLEwltvvcU555wjAkthggKw9MgLyJCxlVOpaq1EKpOIjfnyzWa0FhWHfjTC4jEnhQ0Ju1+NAA45xzz0PjqZ5lxT8x4L1V3FdN/eJzoYAUQCUTHmTFMEbVc10v/YSFpjpuPDTahMSg79fDQN3PEtBUU77qpTijHUFND7yIQIbDSfJwAqls5iJl8VrjPOQb9YRxkaNKz9cD1+W1CEfqb/tsT034Q6MgmLTHcvie8XHZAS3zXkCmc4FxWv16O1qGm9vD4tugWg+/4+NBqpuI3V4E1BmRaJTIK5Rcd0FkipqEmfMxYuF3ydVNgbzRo3BkIU3zu5FZ1IqfF7qxWPxolH4zmdlFa7SqWq+qQS5BoZ5sb0mL2klDoFWSvJxNj2PT6V1WEJDZjqCtCVqzP2q6hdS9sH63COe+l9eCIDCNv+9TaA7O5IGtj0uQ7CXiHCIxvkb2kziv92DvpxDvopatdSfXIZR342ysIeJ7Unl+JcZVW+7cZWoR78di/2vpU6u/68MjSFSnofncQ5vExJhwldqQL/jF+EkurOKaV8cxEqvZy+x6fSVv/tvKUDvzPIoQdGmD1go6LTjN8vgIXlGwtFSEmukImLPvrmD/PHvUMs2BYgcehVKhXBYJD3vve9vPrqq9mOSl555ZXX/1k9/PDDPPzwwwBcdtllPPXUU8QTESPj9DPu6Of5e6GUatZJtqMyKpErV9qhNSeVoNDKmd1vwzvvZ/aAABVvuL4BbZGK7jv60npHbZdXYW4zEovEmPyLlfFXEnB2iYJYNIZzxCO+zu8IMfTsbFos15oPrcR4JuUc82Kq04mA0rpr65h6ayENRknWhKmAS2/KquQt1zejNAgRd0kIJc116cZWYKWmCThj4rW2/apqChv19D4xlub2BNBwVrkAQq2Klpt9y4Z92LvimJQlek5tVIpw1moV1hUIsPNOC30T6XVSYP7Ebku2o8vEzsvtGJQ8Jv8ZBZxCLF4uhX1Rwr7cPa/u23Pvt9aiRmVQMEImpFTUqEUql1JQqsmElBJje+iBfgKBzIKz9bJaCso0FHXosPem1zidn2lCVaSk+95eFvY70hyKqk4tpubkEoaeF9y0Vjs8Jd2Ljv1mlOWJQNrfAUDxhiIh2u/sckb+OCeOW9sV1bgnvcx223GOedCY0xcDqkvUdF7fgM8a5PBPRth3r/C3oDZB6xUNDDwxSsCZnOwVvm/AGWMsMcm38eN1QvzHW7a079R2eRVFzQZ23Sv8DXjmfGI8TesHKvAtBliemEWulCGVS9HXqplfmOfVv/2ZAwcPCJNjh0CpFCZKDQYDjz32GOedd17GmOeVV155/V9VVVUVMzPC731vby9nnXXWShwTHgFYeh6UqNjIaVgsQrx8MtnCstaAqUYAZeYO2rG0G0TXlx3faMcxvMzAk9PMJ9y3AerOKqcuDrvv7BPj0QAi/ujKQjUVrPtwHYO/n2RPyvVq7RW1GGoKOPrgSJrTzvKUl5BXIEDM6wyYW/QMPjXDcKKnVn2aBU2xipI1Bqb+KswZeaaDItSkKlax6bpGfPMB0dUpw3Xpijom31oU9zkVxNrxjXaCzlAaXAsCSGKs19H2ARlHfpEOE+27bxBVcoF9lmg3dbEGmVJGYUNBVkjJssaEQp8dCci2WC9VQWc4a9wYCEDN8HOZtc27Va4INACkEmLhlLi9VUp12lqt6h1FqIwKdNU6gscze2bqIhVyVZYeYGJsx/+0wNwBZ1aAqWR9IaZmfca+a8pVbPp4I44RD32PT9KT6iwpkbD5C01I5VL23TfIwO8yTSB2fqWd4HKYAz8YpidLhF35xkIkcmGfg9Ygoy/Oo6tUUXd6KT2PTOIa9hNwhsT7kaQ2faYBTZGKXff04Z8Lsus2oW9VsbOIgjINQ0/P4BrzEOsqRmEQBiAZ6Vay2Ujd6aXoKjQM/G6avSlJRdtvbCHoCnP452PM7LMhVUogFKRks5GqHcUipCTXyFAZhHNvxDnAq08MMbuQuD+aE3pe4XCYiy66iKeffjrzmOT1T6s8pPR/TLt37xb/fdlll/H73/9e/P8SM7wafYJX7wE5SrZxDrWdFuRqGabaAqb/ascx5sHcamTxoJtIIIpUvvIjvuOmNmYP2Dj68zE6rq5m+nXhR2znre1EQzH23DUguicBGCo16MvUQva3FnRlWjyjPryLAZZ6hR/39Z+oR12oZO/dA2IMW2G7FnWhiqb3VXBgaMWqcNe3e9HWaMX36co0HPpJL/5E3TJ3wIa5TVh5jBbaL65Jg5wigehKFMUqoMg55UFpUmQASgC77+jDslEAa4zNWkIOn/iZSUBJnPi4tzdtu923pay2X/WZc7sdOIcd4raySVMMTRfWcexX42mP+5dWbXuVLBv1NJxdyegrMyL49W615YvNhLwRjv4ik7gGMpoWSdW814JMLU3Lel+tXffmbuaMvbCQ9b3JWD4hAi69YCjdamRhn4v9/zFMSadhBVBKcTJang+gL1uVHZ84Fgs9y1g6DJDiylDYpqWwUcfoC4tM716iYosZ39xKg2rj9bWoTUp2f3eI4T8uMH9sGc94AOIr55auTIPapGSu20XPw0Ix0nJpOYUNOvbcPYR72EPQGWZ6l1X8TEe/D0unBZVBQct5pQw+OSe6IlWfXkTVjmIWjzkZeX6RucN2PDM+4rE4274iUMo9D03ht4cEt6kKBVqzkmgkysSfhRNMqZdTWCsEJO/fu5v+uX6sVisSiYT44TgymYxoNEp1dTXPPvts3jEpr7zyyutd6KSTThKBpZmZGdavX4/dLkx8RYmym7/AAPBtqKaJVslGjLUFYvTHxCuLmD6hw9SiIRYR7J+9CSfEtdfWoTEp2Xf/IEMvTqMyCo2K1suqMLcZGHlpNs3Suf7cGjRFKgzNJvx7nBS1a7H3+Zh8e5HKbRYRUNpxUzuLx5xpAFDFNjNyjSwN/Bl6aobZ/XbRKWnnLR0sz/vF+Dr3qB+/PcjE60KzoOH8cpb6nGKkFpCAaxKFTipU5BfiSR1TmeDM0tFlJPIV1yBLp2EFhPGD3x+joFbDho/U47MGxCg4gMlXF0UgKhvEtOf7/VkdhVLVcH453iW/CJcktRqYWq1119UjV0nfsfGzWqVbTNSeVkr/05NpY5fU+MsLOaPW1n6sToj4y/Gdjv9mQnAmWm3wlBibbLF7miIpmz7XRtAZ4sAPhtMAJU2ZGqlKgnfCz+AfpljKEoNi7/MRDcVEN4vVivgixFZNZrZfWS3EvfnBvxRk/vDK/YSmTM2m6xqwDy/T/8QUhx4cy4CmGs6sRGlSoClT458PiJOz225sxTPnp/fRSeYPOzBUCfcRhgaNONZlGwvFpqetx0N3j1Bfb/96GzK5lF239TL+8gKaQiV9j09Rd04ppRtXVuZHIzGiicnEwjo91n43+KGoQYdCJ6egVsPSuJ2XXniJfYcEK30OgEQifKZEIuGKK67gscceyzpeeeWVV155pevJJ58U//21r32N++67j2hUmIBaYIqF+BSv/hhUaNnKGRRVm1AZFRQ16Jl9y4a1z01hAhaK+mNEwivLl7d9tZX5A3b6fzdN66Vx0RGm6+YOoiFhoV1qvFhhswFTNCY6/ehr1SxPBHCOekQn87bLq9BXatl3/6DoaKQuUaOv0lJ/ZgWHhlbqhu47+lAnehctl1RibjVw6JdjBBaFGm7q7SXKNplEUKj10so0h6OQJ4Ik+9wSrikf+kptBqAEsO/eQYo6BPcdbZWaWAjxM5OA0qbPCG6BB3/Ynxb9tueulFpiFcTk6Pdy8Ae9ac5PGVJD+8XV9D2WCXufKDJNX6um7ZIaxl9fyOoUdSJtuL6BiD+aHleWomQc32pZOo0UFKtPCEh139YrjMNqqWG2285slljg9dfVoSvXcvjB0YyINvN6Pbajyxz5+Rjm9foMQAnAMbmMWWlIB8gSx2Kpz0NVV7Hg3J2QvlaNudXI+CsLTP5tgZpTS9OcrtZ8pBZDpZbuO4SJYvuIJ32/1FDUokdfoWG2287QM8IEVN3ZpZRuMLHn7gECiwE8c35m9gr3AaZmDc4hP/oGIwUlaurOrqL/d9PiWFs2Gmm+oBLrMSdDz84y+ZaVoFtwxd98QzN+e5DeRyfxWgMY63XoS9VI5RCPIDqCFVjUotPCkd7DjL49yPzCvNDzOrDS86qvr+fpp5/OOybllVdeeb0LdXR0iMCS1Wrl5JNPZmBAuN8OEWQvL4MVXrxdQi2tNEnWYm4yoCkS+lfzex0UNugx1KsJLseJhWKi01DzxZXoK4RYuL4nJyhIxKhXn2ah+iQLo3+a5divx8V9qTu9FH2lFvMaE7PddtE1ZmqXlRoJIqC05cstWI870+Knak62oClSMaiaEcGfqb9aWRpwi7DP9q+14pn1i+8LLgVZnvIymwBlK08yszzlwT0hvF4ilRANRbENJvoiq6CioCOEayrTOdE9EaT3dxNivFlhuy4tbi24FERVrGLz9Y0sz/nS5gUXDzizug0ldeBn2WuYVFWeZCbsj2Zsp/ex3KYFIPQiVQZFVpemE8nYpKXp3EqGX5pJNxdIaH6vI2fUWsullUz8eYZg9jV7DD83x9Qbc5nPJ45F1ppOBV1fScTA/mQkDVBSGaQoDAo800GOPzGedX/9c0GCnjCu1f1MFRCCkDuMTJkORjWcV8boa/MQBPekl6X+lR1WGWDTp1uxj3gYfGqGww9NZEBT9e8tQ1+tRVepwjMTFJNkOj/XiHchwMDvZ5jZa6OoWQ/BhAOYPQhBqNpRjEwlZQjBFSkJ+G2+oQlFgZzdd/azeMCFoULL8HNzlG0rpOo9xey/Xxi7SDBG2C/cLxU16rAPeQi6wVirQ21SYmzSsDjo5JU/v8y+g4me1/GVnpdCoeDqq6/mV7/6VeaxyOv/hCTx5PKivP5P66abbuKuu+4i9XSQy+Uo5Ar8AT8fvfqj1DbUEo/EkcglEBeirtzTPpYGHTSeVQUIMWKGKg0qoxLPnJ+jvxxn563txONxum/rp/myciytJnyOAId/Pcam6xrQGFX4lgJoi9XEY3EkEgm7viPAKju/2QEIANL6T9SjK9dw9NFxZDLouKwWiVRCLBpHAkjkEkLuMPv/Y4htX2tBrpIz/MI0iwfddN3SjkQqEVdiJbc78dcFCio0FLcYBKr59SVh0kEphTjs+k4vO7/ZQSQgxJ00vL+Msk1FAPT9fpzm91cLee7fztzfZOTa0qCbiDdCyQYTUqk07bWxSJzdd/Sx4fo6Ckq0eB1+jvxwjC1fTKyAS3ltPBan+7Y+dA1a1n+4Ds+cH5VOIdLP4mtv7UiMdx9rPlaDsVonuhhsvL4BbYmaibdmqT2pgng8joT08Q66QqiMSmLRGFKZlL7fj+Po89F1c7tAS8eFCReZQkp4OcK+7w3S/uEaCht0BL0hBp6dZe0VtUjl6eMdjwvH1nrchWWNkek9S0y+ssj2rwkOV2N/ESIAd36zg2gwxp67+qk7t5SKLWbh+3ynj21fbc0Y71gkTiwSY6rbSv3pZThGlul7bJod32hFKpMy3W1l8rUldt7aLoz3nf3CdlRS3NM+eh6aYvPnG1AZFey6bYANn6qlwCKci913DKKtULDx2ga81gBHfjbBzluE1YdJV6UdX28GYOSlWaxHvXR9o0XY3+8NsuFqYVuuaQ/GKp14fg+/KDgz7byllZA/woHvjbL1yw3IVXIm3ppn9k03O77ajEQuEd6TmBwL+yKMvTqPZa2JwgYdsUicPXcPse3GZmQKCWOvzoNMQv3ppcI5e++wuL+z++3IVFIs7UakcglBVxiVUVixH/SFeflPLzEwPIBCqcDtTq/ctm3bxpNPPklNTc3f+9OSV1555ZVXFvn9fjo6OhgfH097XKfT4fF40EkM/MstXyAaiKHQygn7Iyg0cpYGXQQdYUo3FgrRYzHYdZtQq8RiMUZemqVkYyHGygIh/uKVRbpubRdqq2/3Ci42l9YRCUaRq2XEonGkMgkLxxyMPDvH1htbUGjk2AcF4GPnrR1EIzH23NlP3ftLqNhUjGvGg7FSRzgYQaESouiS4EqyVqk83UztSaW4Jrwc/82EMHFVrCIejdN9ex87b0nUKrf3Ca5JNwr1k3PMi0Ito6BcLUZiJeuPkFNwVdr5zQ6xrun8QhNqoxLXjIfjv5pkx03tSGUSdt3WKwLiSZim7Ypqilr0Yixaas0GQk2RdDVY98k69GVaJt9YZPpvS8K21DKxLgRE18/as0uo3F7M3AE7jmEXbZfVptd7t3YQCUWRSCRI5RIkUgnWXhdDT82w9UstKHRywp4ICp1cqLHCMfZ8tx/zWh2tF9cQ8oRR6hQEXCHURuXKdm/pIE4c+9Ayk2/b2PTxeqGu+fU4Gz/dgNYiNPB81iCaImE1eOp4x2Ixdt/Wz7rr6tFXaEQnreR4J8+Jnd/sEKKeHxih4+paTPUFhP0R5g44qNpmRqqQptWRyZpNhOVemSXqj9JyUXXO8U6OadJVK9XVqPbsEqp2WIhFYnTf3kfV6RZqTrLgWfRz9Kdj4hgmnZl23tpBNBxDKpMQi8WRKaTYR9xMvW2j/QNVmfV1Yn9NLRo6rqjH5wigLVQTCUWRK2X0PDqGe9QvjLckztTbS9iO2Nj0uTai4Sh77hxg+02tyBQydt3TS9uFwnkWj8Y5/NA4tScVU9Six2cNorWoxLrur8+8Qd9cL7FYDPeym3A4LEySxeOUlZVx9dVXc/fdd/83//LklVdeef3f1Y9+9CO+/OUvEwyuNPVlMhlKpZKAP8CVF19J87pmseaKR+LE43Hsg8vMHbWx7qoGAKw9TtQmJfoqLe4pHz0Pjgu1VqKvUnGSmbrTS/HZghz+0QhrrqvFWFGAa8qDsVpHLCxcB5JuO6n1SMsllRSvMdL/1CQBd4S1V9UiU8qI+CLIVFKkCilBZ5gDPxgSa6DRP88zv9vOtq+1IlfIRLfMnd/sQCKRMPnmAhKJhKr3WJh+W4jaSvab4jEBmtl5SwfhQIR99w5SuqWQxnPLIQ79T09S/95yVCZF1p5XUYeOtktrsPW6WF4IUHOKBalspQbqurmDWETo7TR/sAJLuwnfkp/DPx4T+3tpvZ1onN2394Eadn61g+VpH1K5hIIyDQAHfyAAUDtuakMikdB9R58Yk5eM6Gu7spqiZj3Dr87SdGaF4LQkkQhwUOJzAksh1MVKomGhrzX0nOAitO3GVmQqGfFojFg0jlwlI+gOc+D7Q9S/r5TyrWYCriAjL8zQcmENigL5Sg10q1CXSSQSJv+2SM0pJczusTH+ygKbv9CMyqhg/NV5ZrvtdN3SQSQYYd89g1g6jTSfXyn2Hzs/14S6aKXe67pFGMNYKMbQ81N0XFkv1unbbhRi1JLHtesbHcTjMXbf2U/n55tQFyrFWnzdx+vQV2rZ9e1esSaOhePsvrNPHBfPrI+jvxwX+6cHfz5KYD7A9q+3IZVJGXh2EnuvR6yfDv1wgLqzKyhqNWAfdlPUaCAaiiJVyOh/agJHv5ed3+wg5A2z/74hNn2+CU2hkum9ViZftrL1RqFvGwvHxMm60HKY4RenMdbpqdxRLNTFd/aL9d7on+cJ+8K0XlQt1pFdt3QgkcLcQRsRX5SyziIUWjnLMwJ4F49ByBfitb+8yrHeY6g1alyudHBt+/btPPvss5SVlf33/ODklVdeef0fVzAY5IwzzmD37t3EYivwckFBAV6vF5PEzOdu+gxhTwS1SUlwOYRKr2Sx10nAFqJknUmIUU/MnXXd3A7A4HMzGGo0lHeamdm7xMTLi2nzfoZ6NR1X1hMJCD2veKInsHDYwcjzc2y4voGCEjVLvS4Gn5phxzfaiUfi7Lm7n5KtJprOqcA+vkxRrZ6QV+jF7PpOL6hg59dWahVjh5Y1l9ThGvNw/NFJOq6qwdSkE6+t27/aikQqEWPAdt7aARKwDy0TC8cobjeKzk5bv9KKQivDvxTk0I9H2Hlrh+jOtOajtRhrCnBPe+n59QRbvtSCXC1j9x19Qs1QqBT6Yz8eoeYsC1XbBXhrfr8zrRcIQg8p6BbqyOZLKrCsMTH5N8HlqfNzTahNSqG/eEsHSBHcfL43hHmdgdaLqpjdb2Opx8maD9cjS+kD7fhGO5FglHgsjkIjRyqTYO0RoOJ1H69DX6HFO++noExDLBwnFo2x954BVBYBtPI7gmgKVXgW/ehKNOJ2t3+tFaQSbMddDD83x85bO3CNezj+yKRQ7yXSWLzzftSFSiRSKbu/2yeOdywi1ETNF1diWWOk59FR3GMBcX5x/qCd0RfmhfFeDHD4Z6M0nFdGWWcRweUw8wfslG8xI9fKhPqURB2cqNmSsNz4a/N4Zr2s/Uij+BwIdXBoWRjvrm+0I5FLmH57icnXrYKrUaGKXbf3YVlvoPnCSuHcuqMf8xo9rR+owj3jo+fBCTZ+sh5tqRrb4DIDv5tmx01tQrKKBIjHUWjlWPvdzO1eov6sMvRVWnZ9JzkOK/PyKoOEzTe04Z71YqgoEO95jv52FM9skO1faEWqFPZx6q/CXGo0GGXP3YNs/mIzKr2cQ78cxdJmoOo9xcQicQ79fJTqriJKNhTimfOjK9MQiwl95l0vHKZneh/hSIhlzzKhUCit5/XJT36Sb33rW/8vf4by+l+ivJNSXgDceeed3HnnnQD09/ezbds2pFKpCCs89MhDqNVqAoEAFmMJl3/wStQqFaY6HSqDnIg/inPag2fRTzQco3SDAl250EjwWQMoTXK0NVpUOmGSxN6/DD5QaOTEIjEm3lig/oxyIqEYEqlwIQk4Q0T8Uax9TgBiCcil/vQSjv1ynOU5PwqNDKlMglQmBSm45jxs+ZdmZg9aqdhYgmc+RP35pUhlUiLhFbeb0HKYWDTGzJs2SjoNmJv1aC0CsOGe9mGo1hALCMBW0BUi5Bey7F0Ty1jWmpDKJDj6fLg2eNGlZHCGAxHRbtq54KPCH8U55GbxoBuZRoaxUsuG6xsILYcJOIKEloV9WuyxU3e6RrQtdIx7KGoULrTaYmni+wsFXdTtI+KPYh9ZZnrPEmuvrEFbpBH3wWsNiHbaxmod8Xgc27BAbNuHl1HqFczscTLzupP1n6hHmmLTGPFHcYx6KNtUJBQNoSgBq0AEL8/6URTIxGiNrV9uwTEuEMHOkWX0lRpUBUoa3lvK8rQ3LcM25A7jnvfjnfUTWg5R2KDDNSa812v3YSjXUbK2kLm3HQRdIXyJvF3X+DJlnYWilbZz0ouhTIO2WMraa5sJOkP4nSF6H5lCW6MVxmVc+K62wWXMrXomXxNWTfntQSGKBQgth5AqlNiGhNc6xjyY2wWXrcUjTureWyo6VfhCYaGYTgyTa9pDQfHKePuWghSUqGl8XwWLhweJ+KMsHnfRcn4FMpWUiD/K0pAbQ3kBflcQSVzC4uEVklqRcMuY7rZRtb2YSChC1zdaCPnCRN0xPItBpHIJhgoNMpUUmVKKY2QZY50WiVSAmCLBCLGohLk9LjZeXwuAx+pHU5zYX7MG14SX9kuricfiBF1hdr+9i/7Jfnw+H4FgQJwckyvk1NXVsX37dh5//HHyyiuvvPL675dGo2FsbGV10fXXX8/DDz8sNm88cTd33HEHcpkc4hI21m3ijAtOp7BOj6xFin1wGU2REvecDzQQ9IRQ6ZRYOgqZ67ZScIEaTaKuAUQHAZVJTSwewz3nIx6KE5fEMFboKDAr2XlrB7ZRFzqzRowmixMX488W9ruxNJvw20LoS+K4Jz3oSwtY85FaAo4Q3oWAuHqmpqsEEBowAPaRZUoKZIz/RYgsCQcjKyuH/BD2RJCpZcwfsKItK0BpkuNPLORfnvWjr9TgdwmrpcOeCPZEXTO3z07tGSWMPius6HLP+sTr6t57BtjyxWac0162fqWFqb2L6Cs0eGaF7URDUVJXagSdIZyJVWyKAmEbwUCi/pv0ok1Yao//dYHS9SZ8iyu1SskaE64xN3VnlCOVSsWV3QB+WxC/PUT/E1MU1GrouKQa59hKXVZYpxMWACDUcMnIXN+sj7AnwtQuKwt7nNSfV4a5eSUS17sQQFuqwtxqYOC56bRxsQ97UGjkzOy3MfumjXXX1a9ErfghFoshlUpBA46hZdQGBX6XUPe453wYKrXM7nOK4+0Y9tDx4RpURhlhT4Seh4bx22MYKrXCWCWcl6LhGL4lf+KYuzFUaXFPB/Hb/TTH44T9KbW4Nyy6SIT9EaRyKe5JYf9DgQgytXB+TLyySMlGE+4xoR51T3iIdZnRlWgo7yrCMeHBUKFl7M8LbLmhGZ8tSNARQleuIRSMoFTJsfW7BccvmbBaq7yriLluO97FAGFvlE2fa0RtVBL2RFg44KRsUyEeq4+iRiON51Zw6IERoWFWpqHAosJhUQn3EbsEl1eZQiYs9PAL56DKLCcWhPaLK1EXCtud7p9l/OAQh48cFs6tYJB4PI5cLsdgMNDY2Mgvf/lL1q1bR1555ZVXXv/9+uxnP8tnP/tZAObn59m+fTsulwu3202cOI898xjql4SeV0lhGR849xI0KjXFa4xoS9UEnWGc0x68c0G81iC6So3owOca96IrU6OtUlNgEeoF20DCFUmvIBKKMrVnEblCRnA5gkIjY8dNbfgdIQL2ELZBoe8WjQlQc8WOYnp+NY57wotSLyceEyJYY5EwrhkPnZ9pYm7vAhVby3BP+yjdIsDr0dCK65N3MQCSOFOvL2Fq1hCPF6MqEmpDx5gHc4ueaDCeeK2fSER47/K8n7A/gkwhwz7qwVjjxlSvE7cbcAZJ2jH5liMEnWHsYx6sB10oNDLMLQbar6omHo3jmfERDgrbndpvp7jNyELCNd0xsoxCk2hJJ1pqYq0SECJFbEPLzL5lo/XySnSlWjHmzD3lE3qACLEl8XgcR6IGcgx7KLCocfc52dXtpO2KarGuAwjYQ9hHlqkoNhMLx4h4oyzPJ2q6MQ+qQqXoGr7x0424Z4RaxTnuoajdgNqoova0MpxjHrQpvUCvNYBvIcDyfAC/1UfQWYhrUuj7uOe9WIwmijsMzHbb8S74CdiFWnF5Nkg0vBIf5xhZpjCmR22CtR9rxjPvI+yJ0v/EFGqTAKnZxoTzZf6gg4odZtHRyzPrI5I4B/zOICqTAkey5zXiERepzR9cwtSoY3neJ45/LBYjnlgct9TnwlBbQMCZqA0nvRQ26Wm5sIrdvf3iOVu+w4KqUEHQGcZ6zIaxWod3KYAESVpcnUItHOfJvy1Qd2oZnsUwXbd0EHSHCLn8uCZ8KApkFJSpURoUqIxqXOPLlG8rElfZhwIRYsSY322n7UoBfPc5AqAW/tb05VpcY17aLq0hGonhXwqyb98hxl7sx73sTut5KZQK6urqOOWUU3jooYfIK6+88srrv18qlYq3335b/P/tt9/OnXfeKfa8nHEbd3z3dpQKJfFInLWVnZxx/imYanUoO4QIXn2FBte4F5UBvEsBdKUaStaYGH9jgaJmgxiXHo/Gxfk4qUIG8TjLM16C7ggSBZgqdcg1UnZ8ox1rnxNJHAYTTpMSKUgTvQfXgBP/ZjO+hQCGUi22kWVMlQU0X1xJyBfGPrQsfk7rudUgQZxbso8soypSMNktXJND3ghKvUJ07PHbgih0MqzHXEjlEnSVGsJuof5wJuqygEPoP/kWA+Jc3vx+B7pyDUMvC7005+gy6sSc28EHhtnwiXocEx46P9/E1Ftz+JeCeOaFnkzIE0GWkoKzPOfDm3DAVCVMD0KJnpdt2I2hUqhrh56foWyjCZ9NqFV8S0H8S0FcE16qTipBppTic2TG5g09M4PKIKXjQ/XYE1FjjhFP2j64J71irRJ0C9ud2Wdj8YCTiq4iZBtWXuua9GGsL6BkQyHDzwnfzZHYrnN4GY1JyeReK7bjblreX4lcuVLvRaMxZHIpKoMU56gHXamaYOL7OMY8FDcbNOFpwgABAABJREFUWOoR3Jl88wHso8s0nFdGQbka/1KQ3qemCVqDaAqVqAuV4nEMecJ4E/OW7mkv/iUDnlkv7okgsUicsC8s7oPP7md5WjgWflcQZYFcdFcKeiPCduNxrEdcVJ9iwT0h1GWexRCRUBRjdQEVO4vEc2z8TzNsuK6O5TkfIVeEgmIV0WhMmJcf9uCZCSJRSIR7iZ1FzO6y4xj2EIvEWHtNDbpyDX5bkKVjboiA2+qntMNE03srOPyLMZwTXszNetQmJSqLimgwytTbiQSWAjnxeBy/PYh3KYhr0ks8FKf5vDKMdTq89gALfXa6e/o4eOggUqmEQCBAPC44VRoMBjZt2sSvfvUrOjo6yCuvVOWdlPJ6R5122mm88cYbWZ/TarQY5UWs8Xax46Y2wT0nQWo2X1bO0AtzlG8qpOGMcpYTq3IqTxaciGbetLPz1nZhJfq9g5R0GijbVMTRx8bZ8YU2fLYgR38+RtMHyjE3Gzj66wGqz6hk8AkhHqvrlnaICZbXSa29tg5DlVZ0UNJWqPHNBlh7bR09CfvHbV9tJeKPihEo5nUFtH6gFvekl56HJjJi15KrzI4/Po5rKN3CL+n0k3RhSlXXLe0QT6xaT9HOWxOuSKseT6rmvRaioZgYbycMdPo+ZVPV6cUZ+2DZqP+749xAoIJDy2H2f++dLSBTVdiuxTHhS9tXTTGYmgqZ253dlhHI+v1Sj9lqNV8iENCLPU6Gn13JnG29shJzk4GJNxaYeTPdJrvrpjbiZLEEl0jpuqkFiUzCrttSoupS9mnnLa0EXWEO/khoVpVtNVB3Rim9T07jGvbRekUFi0ecBJd8+JYEO88dX28WaPXbV7bZekUF5iY9A89OYe/z03CehbmDDhrOKkNrVrH3PuGc3HlzK9YBN35bEFNNAT2/ESCsjddUszzrZ+S5SarfW8HAE7Pi/sUicXZ/d5DKUwvxLAVxHfex7StNgvPD/QP4DDaCpQ4OHDyQMZ5yuZyNGzfyb//2b7z//e/PfozyyiuvvPL6H9G+ffs488wzM1ztkioxl1Jha6K6vJ5Nn2wQXSSLNmpRqJQs7HEKjkKKlRVTrZdVMfnaNC2XNKS5FHVcU4tjeBlDlZaiZr1Ym2z9cgvLM34m3lqiZI2eiVcWKd1uovHsCuYO2Bl7cV7cH2GF0spKbE0RaEq1FLYaGXl2DvNaHS0XVjP0/LQY/7Xli80o9QpxhdHq6LWd3+wQooKzxI3t+EY78Vg847mkw878QQejL6zUBs2XVmLpMIrOUtm05iO1mZEeWeLgUlXeVcTcYXv6azRgKNdkjWU7kZKrw5PH6++Rea0OW0+6jXTVKcVM/+0EecGQ8f2qTrcQ9oUzYuyS6ro5sQrvtt6Mx+MxxOOfVNJhauzVeeZWRZcUr9fTclF1Rhxfcp9Ed6dfrUS3bfpcI3KljH33D4IGOi6tpfeRCTHCreJkM3WnlWIbcDPwu+n0/YvGhRWMGmg8s5zZfQ7WXV3L/GEHk68usuFTDagLlez5fj/rPlTP1JvzOAf9aQ5aVacUE/ZFWNjvFFdf9v9+HP+Cj/KTSxn9gxDtsvObHaLLVnDbAsPjw8wtzCGVStNWkFZWVrJx40aef/75Ex+nvPLKK6+8/p/rYx/7WBosniqtWkuRzEKbb2vG9bruvBLmdy2itmjouLKe5RkhcsPSaUSmlDG/O+Ga4xMcX4yNaqreU8rx302w7fOt+G1Bjv16nKpTiynvLOLYo5OUdxoZ++sCBBBW4cskaT2MpNvSyEtzLOx3oC5RE1gM0HZFNf1/mIIAbP5CM5FglCM/Fa6x2io1Gz/WgGtScNVZHbu2/ro6dBVa+p+azIgLK91SSOP7ypl6e1GMzUpq+9fakEgzeyxd3xBWbeeKY7N0GlFo5cy+ldLzWrVP2VTRVZQRh1bYVpAGxLxbCS7i4ZzRbbmkr1WzvBDIiE4rXVvIwv4T9LyyfL/2q7LH2AFUn15M9UklLBxxMPLHlbq27uxSKrabGX99IX38EGJsJTJJ1vo51aUy2z513dJB0Bni4ANCT6qoQ0fLhVUMPDuFo99L/fmlOAbdBKx+MZ5v+9fbkMqloktV6v4l3amqTy/G2uehZqcZQ7WW/f8hjPeOm9qw9btxT/spbNLR//gUahN03tDB8qSPoT+MU31aBUPPJnpetybuDe7qx9JpJBwK4ezxi85TB3/QjyswT2CNn33792V8f5lMxqZNm7j11lu56KKLso55XnnllVde/zMaGRnhzDPPzHAWT6rUXEq5rYVidSk7v5pwdv7RCLp6FRqzGut+F1u+1IIyxdGw7n2lzO2yUntWOcXtRg78ZITgUpDmiytxTXpRFymo6DSLzkabPtOIZz7A5JtLFLfpmHnLhqFezdoPNzC738b4n1aiW3fc1E48FmPPXcIcj8ogRVWooLDNyMTLi+iqVKz5UB3DL8xhOy708dZ9vA5dmWZl/m9V1JvgYhll370pc1EJbflyCxJg332DaY9bNgjRp6v3L+noM73LKoLLq9V8SSVDT8+kP7hqn1bLvMaAZ8qdHpWmAkOZSoy0e7fa8Il6CspWXJL+HhmbtBmxaiWbTSeMtQMyvp9lgxGZQsL8/uzv23ZjK1K5NKO3te0rrUikiDFoSZVtMdFwTgXjf5nPqE91VSrWf6wxkTSUEn+X2Kfmi4U+Zc9vR3GPCzu59poalAaFGNWWPGaqYhXBpSCmlgI6LqvB2udOO5Zbv9SCVAZ77hHOl5ozLSzstbL2I00sHHMw/YaN1sur0Fdq2P+jIVovqGThqBPnoJdNn2lEbVLSfUcflg1GAKxHXLReXkVxq4H+p6ewDS9Tc4qZyVeE+4Cdt3YQ8kTY/71B/J2LjM0NMzs7m7Xn9Z73vIcnnnjixMcpr//zyjsp5fWO+utf/yr+++DBg5x++unixJnP78OHjzme5C93Sik0FiKPFbCtZDuWVhOFNXr23juIyqQQosKAmpNKkMgkzLxpZ9d3+mj+YAVohceVBgVardCEabm8EmOTFkOl4CDjX4LB382w6TONzB+yE3SFIbEG3rJRT9P5VYy8NMP4G4t4RoUL18brGsTosKSSUW4A2hotSoMy7UZ955fTIaLeJ6douaBCBJQ2f6GJvt+O4luKEXSHiEfjTO8RfqSTUBSAfykorvpJ1a77Vj6r/vxS5vcs4E/p9VTttACkQ0qJ6/DmLzQhV8vTvg/A9pvakCmkwn6kXLOTgJKmmLTPSG5LZVT+XRNiq+PWRCWAHkdfJkm17lrhPa5hF76llQtVzXstVHVZOPrbcfF4JZW0/q47t5Txl1aKruTFeeiZWWb22PDNphdEU39borBOj2MisLJfCPsW8oZJtUxo/1A1QXeY0RcWmTvkQKFdoa1bLquguEUvTKztcQngXYGUmvcWM/nnJQKuMBKphOIOPa5hHwNPzFK+3Uj7pa1ihNyRR6fxTfrY+sVGAPb9xwgze50U1umQaiRs+GQNs/vs+GbDaM0q5Brh81uvqODwg6P4ZsPs+HoL0oS7QmGtiqGXp7Hu97LlC40o9YI7mVRGIn94Ck0x1J5UQtgb4aWju3n9zUmGhoZYWl5C4pEQn1kZgLq6OjZu3MgzzzyT+4DnlVdeeeX1P66tW7emRRB89KMf5dFHHxXdkBZtCyyywOG5t3ntbi1KiYqG+Ca2ntGCokDOwlEnu+/sY+21NWgqNWgMEorbjWjMKg7/ZATLNgOGZhP+PU5MdQXoytXsvWuAgloNTZdUMPz0LAqtHF2JGv+Mn0C5irXX1rFw3E40FGN+twD6bP1SC5FQlF3f6UVTKTgMrr+uHl2Fht4nxhhJQMSFLQYkMglem7BCvObMEvb/bEgEZKpOKabm1JI0+Mna6xIcAIDGC8qRKCQMPy1MUoSWw8QiQj2hKQJ/ohfgnvAQ3WZmrntlIgdg6KkZpt+24U+sGGs4vzwNYmq8oBxTnU6Y3HsiZaLIjxABdlk9I6/OpsE7BbUa6s8so3KbWZxsSb7HPerPCTjt/GaHCJW9W+38ZgfexYA40ZhU8ruvBpQ0RVJqTi2hfGsR++5Nb2pt+1orIXdYAINW7V/NeywQJ+17aoqkmDeYmX7dyuGf9IljnSq/PUQksOLckISGFvcvUd5pJhIUjrumUkPbhRUc+vEIS0eXqdwWYPDpcfF9Sfv27tv7OJZo4lSdUozNH8Rvj4m24cKHQu8jE2JE865v9zL7pg3XpA9dmYqum9s5+ug43gk/AWeIWCROeVcRxR1GYdsakGtkmGoLcLdo8Mz5OfKzUQwNGvQVGurOKOfw1Ci2Qbc4MVhzagnRUIyF/U6W573YRtzY+3xs/UoLCq2c0T8ssNw8xR/+MMTRo0cFZ6U9K+Mkk8nYvHkz9957LyeffHL2g51XXnnlldf/L3rwwQd58MEHARgfH+fUU09lamqKeDyOL+DDxwTTTPDa/RLMRWZUcQPtkk4qNhdT3GJk//eGGH9jXuwp1J9RhlwjQErdt/VSf14pqKH2tDJ0FVq0xWr23jNA/fmlGBvVmGp1KArkBNwBxv4UYM1HalnqdeNbCiJNOFrqa9WsuaqOkVfmmN5rwzct1DWdn2oQot7vWZk4kauk4jVTbZJiqNKmTQrt+Jc2YAUuGnxqkuaLakRAacMn6xl4bo7AfIBIKEI0FMN6SGgoJaEogOUZn9jHSFX3HX2oTcK/q04tZumInYBzpRfUdE4FEqkkHbJJtHDWX1eHqlDJvnvSa5gkIGbvc6ZtKwkoqU2I8ExSqRFn71abbxCi2TIm0RKmScsTmSTV5k82ozIpWJ73i8cFBBir6ZwKen83hmsk/X0tl1RS1Gyg/n2ljKVMNNadXcr4KwtMvb6E9bhHHOuk5vcuULLexPLUCpiV/O4BZwhpiltBwwVlxMNxxv60wORbVgpKVOJztWeVULmjWIyg676tF9TC8Zp+YwmfXXC5LGzW4+j3MvbCAsZGNZ03dIgRckceGicwH2DD9Q3IlTIO/GCI+b1WSjaYiEljdFxdg7XHRWBecL9Q6BTifh19ZBzfdECsowD0DUYGXpjCdnCZ9Z+oR1+hxXrcQWA5jmN8mb5HpkANzedXEnKHefXYPt7Y9zrj4+MsOIRYw/j+uBglUlNTw86dO3nsscfe+cDnlVdeeeX1P6bGxsY0Z/FvfetbfPe738XnE+aHFmwLLCAA22/drUGnMNAQ38DGszaiLVHjHnSx//5Bmj9YiaZcRSwCFVvNGKu0HPnFGAsdDgyVaqxLQSwdRoz1Bey/b5CFQ27q3lfK+J8WUJkEN6LgUhDvopz2K2uYPbpEyBth4YgTgI2fEKJ+d9/ZhyrhlJmMDut7apKJl4XemKlRj1QuI+wR5qkquoo49ui4CMiY1xhovbiKmX1L4num91qJeIQ+SuVJZlRGBaMvCP2woC0Iyd5H8tIdBPdsgJA3wtwqyGbqr1YWe9wEEw4/NWdY0mCliq4iLGuMSGUSBp5cWdBFEDTlKjZ8pJ7x1+bT4B2VQUrrxVUEHCsAs7gfSUApC+TUdXO7sNA/9T3voJ23drA8K4D+qVIZIOgmA1BCBU3nVlB9soUDqwwWNt/QTMgbFra1at8az6sAWPU9wbyuiNm37ez9QSYwBuCZ9ZNq85KEhuaPOak5tZRgwg1dZZDS8sEajv1qHM90EMewh9FXV2q8bV9pRSKDPXcNMPTMDEPPzGDZaEJlgaA1iEKnQJFSVw89PcPmzzehMijYdXsfzkEvh341ikovZ/uNLfQ/O4Vr2I/fGgAJmDv0lKw30ff4VGJ/FJiqC3BWegg4gwz8bhqVQYK51YBSL8c54cU25GbyVeFcaT6/gkggivWIi+UFH8uzHmw9bjZ9uhFNsYrJN5Zwls/y/HOjHD5yWEj9SfFCkEqlbN26lbvuuotTTjkl61jmlVc25SGlvP4udXZ2pk2cffvb3+Zb3/oWkUiEWCyGzWEDbDy3OMkrd6qQSqRoYka2tV2HXCNj7NUFjjw0RusllVg26gh5YljajBjKNez//jD1F5ZR2F6I7007xS0Gihr07L6zH22Firr3lTD+t0U0xSqqTyph772DWDboaL6kUohvkErwLEXwTfpY/4l6vNYAfmuQ5YTF4dqP1qKv0nL4p30isLP28mrkGhmuMX8aXBRLXHlKOg1Un1TCgV8IF9a6c0tRGZXUn1vF8YcnmXvbwdzbwmopy0Y9zRdUC4TsL8Y4nDKZtOMb7Uik0H1b3wpEpIXyTjOl64vYneIG1ff7ceSqzEYPgEwpE2GvVI29MouxUZ/VbSnriilIWPjJ3pVLU1KeOT8FxeqMx7d+qgWFXs6ue3szttXz6AQNZ5WmAUoA6mIVSCAWIUNHfzFGw/vL0gClypPNWNYY0ZWoOfSTERFQ6ri6GlOdjuOPT+Aa9q2s1tPCzi+3Jxp2gxz4wcjKB0ikFDboiEXijL6wyPjLVhovLGXjp2o5/NMxpv8yQ2FdCwFXUHz9jhsEYGjyz0s4+n3sum2Azs/W03VTC913DjK3x0VVVzGuqWW2fKGR478VPk+WiJ0pbNNSssHE7u8Ooi0G7TlVVO+04FmKMn/UweSfrZRuNVLcbEBrUjLw1DiuqWX6EpO8taeUEA3GsB4fwL8cxDHuwjfhER3MFqPTRMwO+n57gJGREeLEoVsoEECIFtq0aRO//e1vqampeXcHPK+88sorr//f9dBDD4lRBH6/ny1bttDbK1zTk7D4Qf7CofteR1egw+8Lsp4dGKo6WHeVhr33DLBwfAmFVmjCNJxegUwpZWGPk0MP9FJ9diWaImg5rwJNsYrFww52faeXmjNL0JSpqX6PBaVBQc/j41j3umm9rIq5AzZkSulKTRKNs+lzjVj77Ci0MpyDQu3VdXM73oXASg2igaquYso6C9mbWIXms/qIBKOMvS40ZDZ8qgHHqIfZBKxdss6ERLoCKSWdMAHWfaIVuVJwunGP+sWV4+a1OlovrmHxuJPhp2dFQGnTZxvRmFW4pzyiq9PIc3NEQzHGX16pOdIkAa05vfbxTvhxjnsZe2Ei4+WaIimbPteGfynIoR+PpD0X9kRwTb/LogsBRAp7IqKl9coTsOlzwor3Az9Ib/747TFs/W4WjqSvrgeQyqRifN9qDb04jc8WTntsw6dakSokTL9uTQOUdt7SQSQoTIge/slIyusbKChVc+Q3Y3gn/Gkr0BrPLkVTrKJ0u4mFPU4Gnx6l/UNNDL84g3vUj28pSDS0UisaGjTUnFpCyXoTB384zN57BtBUaui6uZ2lATdDT82wNOBCU6ii8YJyVCYlvQ9PoNJKkMgkWNoMlG0yMfbqLM5Bf9okWN0ppRx6oB+/PSa6jo08N4euUsv0PiuTf7KKTqqzby1QUFWAdynA4BPjaMrUlK03E3SGeO1vL7P052HGxsZwxV2QPp9KU1MTl156qRipnVdeeeWV1z++6urqmJhYub4/+OCD3HDDDXg8HuLxOEu2JWCJmfgof7tDiVymQBcvYtOaD6EpVrFwcJmjvxii5bIaijp0+GZ9lG82U1iv5+ADw1SfVYyhSotvOkB5p5mSDhN77h5AbZJSs1OYVDLWFqApVLL/P4YwNqqpP7+UWCiOVC4lvBzCNx2g7cpqIap23IM/EbnReGE5lg4jhx8U4BGAtivr0VpUeOd8ImDjnvKJsbv6WjWN51bS/7hwPbd0Giko09Dw3hJ6H53EdnQZ29F+8bXrPtLA8rSPY78ep/fRSXGctn6pBblaJjqdJ4GhmpMFZ8XUhXZHHh5DU7QSS5wqmVImRrmlavCPk5SsK0oDlJLa9Blh8mTX3b1pbkWOEQ9KnSIrwJRLzgkPplpdxuMbPiLUOAd/0J+xD8cfHqLunOo0QAkQemdSSdae1+DTMwScobRJxKIOHRXbzRjrCjjys1ERUGq4oIyyjUX0PTmBo9+bBqQJTgwR9t07KMbUJVW2vohYNMbYnxaY322n+vRi1l1bx7FfjzPx5iIl601iTC/A1s8JtdL0niUC8wF2faeXdR+tY8dNbey+sx/XSIDAUgjHmIsN1zcw8IxQmysLBJBcX6umbFMRe+8eADW0nl+N2qhkeTbIYq+T6TeWMDaqKdtYhL5Mw8CTY9hH3cwk7gGaz68k4o9iOzhAwBPCc8iHc8gvAmrO+BK+2kUef+woQ8NDQs9rz0rPS6VSsW3bNp544gnKysre8VjnlVdeeeX1j6F//dd/5V//9V8BIRb9wgsv5LXXXiMajRII+AkE/CzxCvt+9md0BTrCnihr2YqlrQNjdQH77x9k8q0FtMUqAWB5byUqowLrERe77uml8ewyVAYpjWeVUtisxzXhZfcdfZRtK0RlUVH9Hgv6Si2jL06z//5B6t5Xil3pRK6TQ3IaLhhkwyfqmT9iFyLg+4QezbavtOJb9NN9e4qr4HvLqOgqZn/CCSnsCRJ0h5nvFiYk26+sYXnOJ7rvlG8zo9TIRUjp2EMrdWjnJ5tQG5XsuqeXoDXI/vuFbeqqVKz/aKPguPj8nAgodVxVg6lJh9caxHZMMJmY7bYLhhFvZfaIYhFAKkFlVqY9HnTHsPY4mczyHlSw88YOfAsBDv8ifTGdf3FlLvZdSUVajFuqNt/Qgd8W5NBP0vtqBGF6j1WMR0uVVCFJi31LVd+TE8TD0bTH1l0nOHLN7renQU3bv9pKNBxn//cG6X1spd5tvawKc6uBnkdHcY8F2JvihFV9ain6Cq3o/Nn3zCTrPlzH1FtWnINe3DM+pElDC4kEVbGK5vdXCL3Dn45y6EfDqAxStn+1BfvgMkPPzrLY40RfrqXqVDMFFjUDv58hFo4jU8ow1hVgrC5gqtuKa8TPpusb0CT+Bio6CznwU8FNbMu/tKDUyZl4eRFDvZGJtxaYecPOumtr0Vdqsfe5kKlluGa8DD89Bco4dSeV4l8K8ubeN7DtHmFsbAxnwAljyd0XvkdTUxNXX301//Zv/5brCOeV1zsqDynl9V/SN7/5Tb75zW+K/7/ssst4+umnicViBEPCL7sfP7fffRtKpZJQKITWo2e94Ys0nF3JnrsGsI+7KDBr0VaoKGkzIlNKmXnTztDzU5RvN1PYrqX+jHI0RSqWp70c/kk/ZSdZ0FaoqD+zQgBw7u1l6MkZwXlnyYeuXIPWomb3HX1oi6V0XF2DVCFFIpGIgNLWf2lhccCB1rjifrTzmx34UlarV7+nBJVRidakxucLsLjPinfOJzoUdd3cTsgT5sD3h/FMLxPxRxl+RZjkanh/GXO75/EvQdARQp6AVVLdfeYP2XGMCAWDeV0BtmNe0Y1IUwybPiPsTxJ4Sm1GpLo2LR50s3hQ2E75jvRoNduQG1NtQcaxG/nDHCPMZTx+IvU+Mpn1cduwG3OTISPmTVsufKeelOJKWyzFtxRj8InptLkcXYOW9R+uwz3lo+fBcUafFwqz5LjMvGmjsEEnbktjjuO3SbD2ODBWFxAWYmVpvriCoWdmwQdBV0jMwC3fYaL+zHLGXl9g7m07A89OYhv1Cm4HPrC0G0XXIt9SnGO/HmLj9a14rQGO/GyCqV1WZBopmz/fgLXXxeRfVoq08u1GtKVq9n1vhKrTilDq5dSdWcnyvJ+jD4+luyLFY5TvLGPgxUlsB7103dyGRCph8s9WTI067GMu+h6dE6Pa8M7QcrmQfdz7mxEsLTpMlTr6l6bZr3+VqaeOMjY2RogQ9IJCoSCZ4rl27Vp+/OMfc9JJJ/1dxzmvvPLKK69/TGk0Go4fPy7+/9ixY5x77rnMzMwQj8dZ9gj1yUH+xuHvvIVMJiMaj1EmvYqGugY0lRqOPjTOmiurabygnJFX5yhuNmIsL2Df/YO0f6iSko2FuEf9VHUVU7HFzO47+yju1FJ7cgkTryxibjNgrC1g93f70VRqKN1uwtxsRFOkIrAU4cAPhmm8oBzXnHD9TS44qj27hKImPdN7lgjahYv2xk83oC1WC5Bzoo9RUKpGZVAw+eoiaARnnaJ2oXiqOt1CzXsswjW8x4O1x4WxJlHjaKD+9DLGXpwn7IsSC8dZPCzUQ0nXoUM/GqH9ymoRUCpq12Lv84mA0rrr6tGXazj0i1H88wGcg/60lfSaIil+uzAx1fuwUI8Ur9ezNLQs7r/fHiPsiYi58anad/9gxmMnkt+e+z1BZwhrX3okYOkWEwv7nemr41hxN0qF4iF9/K0HV7aVHJfhF6dRJwGtFHeosC+C3yEcQ02RFEtnMZOvLjLx1zmaz6/Guyi8cPMNTci1cvZ8t5+eX49T1K7FvyAUiwqTBnWhkvozyjkyOsqRn42y8dMN7Ly1Q4TOHEPL+NxBNn2ukUMPjOCf8SORSFBo5XR8uIbepyfBn4iik0pAA9qyAnZ9uxdNmZpNn2zAVF1Ar3cGa7+DhW4rpdtNVG4vRl+lZWbXAl6rl6k3raCButNKCXsjWI8JE9GLPXb89hjrP1mJRA5/sb1MeZOF/T9/jbk5oYaeOgJqtTBGRqORc889N79iP6+88srrn0gf+9jH+NjHPib+/2tf+xo//OEP8fv9hMIh/j/27js8jvpa+Ph3tvdd7a56lyzLkgvuxsaA6b2nACEBAoQAISSEFAK5T+4NgZeEJJQAoQUChBYIEBN6L6a5YWzZsixZvbddaXuZ94+R1ha2sSkuCefzPEaaurNNczhz5vziiThhQvz+tuszOS8XXmZmX8yk4wr54Pf1dK3sx1PuxJJnIbc2C5PLSPfqQdY91ETRgTl4qqwULszBU+YgMhxn5S115M7LxpJnoeLIQqx+MyvvaKLlpV4KFvsYbouQVelETaW1m7QsMOUbRaBTUBRdpkBp5vcrGWgMEOkzZwqUFl5VS6g7zJp7mgEoW5KHLduM0W0hOhxlpGmEukc2M9ygncvn/7SaxGiSVbc3MtITJTacoPVNLVdTfIifvlVal6RQbxSrd0unnvGhxFrf6iXcpz22p8rKcIPWbSjcHgULLPzJxOPZusB7665NgcYogUatKCZ7ppu+1VtunuyrC5Bd697mvWt/o5/2N3Yy/O0nbD202tYG6oMYzPqJBUoW8FY4GKwbndCN0+LRER1O0/xiD80vbimCt+RosUmwTetENF6gNP66DNaNMlAToP6JjrH9aMVVfWuGya7xkIxoF9ZKj8ih5a1eiMJoT4RAi9ZVKWuKnSmnldLyhjYUXN1jY+/j2HuRN9OL0T52GSAKH966ccLr3/xKD+YsI/t9p4LBhiBtr/VnbuD07ufAnW9n5e2b8M1wYs+xUHZINgMNQT5+qJVodzRTTNTwVCfFC/3UP72ZgTURFvxM63zZ/kY/vloP/RsCbPxHh9a1ymOk8bluyo/OJTocp+7Rdix5FvxVbhrrmvjQ8TJt//6Y5uZmYsRgAxgMBlRV65g0Y8YMbrzxRpYsWfKZ3mchhBD7JrPZzAsvvJCZbm9v54QTTuDjjz8mlUplcl7LeYOVv31r7JygcJLlFEprqulePsjavzVSc2YZpUfl0PJCL7n7eXGXOFh56yYqTsjDXWpnaP0o5YfnU5pM8f7v6nFVW8ie5aX9jX4K5vrw17hZ/qeNmP1msvdz4yy0Ys+3oq5SWH1nE0UH+4n0x7cUMaEN/5U9w0PTq52kQtr5c8rpxXjKHay6tZ5YUIshPBV27PkWLUYxw/JbN+Iq0HIKvukuqo4vpOFfHQysC9K9ahBftStTQDPeJSkRg0Q0Rf8GLR4a7zpU93Ark07IzxQoucotBDdHMwVKVacU4qtx8dG9TUS6YsT6YhPyRGaXLnOc40OuusotxAaiW4Z9i0G4L0rfhi2x2LhPFi3tVIxti5DGjHSFtyle8k11MbAuSOtLE4e1G+9u9Mkh8mpOL8FdbmfVresndGQaf102PtWKs9Cuvb5bda2KDSWIh8Y7JIF/ho+OtwdofbsPm99MbECLT6efW4bFa+bDP9SzaWkXfesDRHu1xzE7zTgLbBQv9DO8McSGR9qoOaOEhb+s4d1r1xPri9KzeohwIMrM88pZfXcTsWAaRVHQGXVUnpBP+xs9tAX7mHe5djMAJhXfJDvLfluH2QVzfliLb4qLun+007dhiL6Vw7jyzZQfno930iitb3Qz2h2ma8UgKApVxxcQCyToXzsKOoXuVYOMtseYc1kVRrue9wJv4amwsf6v79LRMTak3KotOS+fz8dJJ53EPffc89neZyE+hRQpiS/VP/7xjwnTF1xwAffddx/JZJJ4XLuYEWaEa665JjNOZes7kzn2hGMx2vR8/GAz075VyqzvV7DqL01UHV9M1bFFfHD7RqafWULhgmzWPNxM3jQfubVe3r12A2Un5lB9UhH1T7dTMNdH7vQslv2mDv8cJ/kHZJEzLQtHrpWmFztZc/dm8g/IItAWwOg04CtzseKWTeTvn4W9yEI6qTLao51kpn67BEWnsPpvzVoxkA1mXjSFWCCeKVJCBXUsR2HLt9O5YoBwq3YiypvlJWd6Fu9dt37CyXb+xdWZwqrxQhxsUH1yKalj05kuAJEwqCl1u9XH5cflkj/bx1DjCOsf2pIMGe+aFGjd0hmq8ekdFyKVHJmDM9fCuge2X3y0teyZTvLn+lnz0OZtuiU1PdNNE90T5s04XxuCblnjxO5KMy+aQjqpbnOhbLQpjJpSM3cBgtY9qXRJLqFFWuHYeIHS3B9VYXIaWfbH9fStHqVv9Yax9b3kTPPgyLWw6i9NrLinkaqjtFaOw5uG4bB87GPtOSODSRZdXqN1IfhzI2vu30ze7CzmXzGZD/6wiXA/pJMqqXiSmjOLWP9QO9igaJ4/kwBbeZtWPrzol9WgQNcyLQG15qE2jGao/VoJObUuOj4YINAapHvVMBXH55E3w4vJbsSZYycajNH5/iC2AjO+SS7iwQT5i9zoDDraV40lrcpt1K1fz796n6TAUMC/bggQCmmJqEg0jNlsJh6PU1payj//+U9mz5690/dTCCHEf77p06fT3r6lIKWjo4PFixfT3NxMOp3OjAf+4GMPolN0WjtewNT6NSZXT6ZxaRddq/vJqfXin+HEkWvH6DCw6blOGl/spGCul6KD/LjL7HjKHCQiKeqfbMU/1YV/hpOSg3KxZJlYdVcTOrNCVqkdq3eE3P2yyJnu0YbOtULBgT6ya9yYXEZab9NioinfLCYRTZFKpDPFL/OvqKb9/X76lmsXlOaeX4XJY2TZDVqhkCXLCCoMjCUqdCaF1X/T9jfrXK1L0kh7iP41I5kuPp/sbDTe+njm9yuwZVvY+HRbpmgpMhTD7jdnOi9tbf9f1KAzKNsULU0+qZjycHLC0Go7KiyyeqHypDLa3+nJdJv6NLVnlTLcsqWrVEaEbToouSqsVB5TQPHCbJbf0jBhH55yO82v92yzn9HeKGb3xDvmth5CTXtdRrB6J3Zu2vr57XdhtdZp8uVehjdG6CocwpVvJdg0sSU2QMWRhZhcRpb9RitCWvXXzUw9tYiq0wppeKKDUF8Mk8tIxUn5BDePsv6RNuZeqn0GrIXgKvKw7Ldal6/iRdnUnlrCcGuI+qdaGKwLZ469/b0+Sg7y0/5+P60v9rLoqlpQoPnVPiprPQy3jrDu0VbmX6LFzcMbW5n5/QrikQTrHmrDUWAipkR5YcW/GXAOsPa+t+np6UFFZdOmAG63FgeaTCbOO+88brvttp2+l0IIIf47/O53v+N3v/tdZnrrIUrGc15BBrnmt9dkYq/yj8s5oeIE7DlG1j7cxrQzi5nxrTLW3NPM1DMd2I638OHtG6k5rZjsWjd9dQEK52dTMNfPu9etp+gQP8UHeGl4rpOyQ3Ip2t/Pu7+tw1NtJXduFlmVDnzVLlre6GHDI21kz3Yz0hnAlm1Gp3hYefsmvLUOXOV2krEkob4tnZeMNgMr72rKFDbNvnQK0cE4KxvG4gwV0mnthO7MtdC1ajAzdFnxATkUzPfz/vUbJnRVmnWRFpOt/HPdhCKh2m+WbzM0XSqeYrR327grb38vFUfkMVgfZMNjW2Ld2RdNwuI3ER2KZQqvPq0YKW9/L55S+8QhfXfAXWmhcGEOTc+0btN5aXuPMe8irShnZefE7kqzLplCOpGe0D0KINobJR1PTch5eWsdTDmthNFOrVBovEBpvDvlyls2MNISzezLW+ugcH8/nnIHH93ZxJoHN1N+WC4AQ80hUMfiZWC4LcKiX9US7Y+z8vZNfHzvJvyzvMz78WQtlotCKpYiHk0y+dRCNv5Te+ySxTnojToSkTTrHmuBKFoHb72Orvd6MNuNrL63iXQcZl9YQbgvRuubPQw1BxlYP0Le/l5KDsxlsCGI2R4iEozR9cEgWLRCqdhwAt8MJ3qzjo4P+yAKvloXja2beKbnHxQUFPD6H59idFSL9yObw1gsFuLxODU1Nfz9739n5syZO30/hRBC/OcrKipi1apVmem+vj5OPvlk3n//fVKpVCb2evzZR/jnc1rcpaBg7DqFKVOraXmhl6bXOinePwffdBeOHCuOAitdy/rY8GQrhfv7yJufhT3HQt5sL2pKZe0DjfimeciqcVA4z4e7zMHHf9tE16ohnAVWzC4oWpQNaZX3xq7jjRcoOQtsmaHeKo7LI5VIkYymMoU/sy+ZROubvfRv0M5x08/UhqZdcbO2H5vPDCqMtmkVQQazXtsfWpekrConkYE4fR8F+HC8i49Z6zoU6onw0d2b2bRUuxY45fRivJOcNCztoO8jraAoMhgjHUsT6frEWGjA3B9PxmDV8961W12zM8O0b1UQG01MGFpt9Z07KEYyQ/WJRXSvGtx2mLbtmHRCPqM9Ubo/GNpm2TbDv/nNVJ9SROTgGKtu23KtteLYPPJme2l+rZvOdwYnbDPSFcZRaCW21dOd88MqbQi139cR3BwluDkKZq1wPjqodW7authq+vmTMdkMdLw9QKQrRscHA5h9FmLBKGpKZevEV8lBOTgLbCz7fR2x/hgr7mik+sQCKo/Pp/GZLm2UmjwLJUf6CXXEaXymi+nnlmHLs2DO1uHIc/De9RvwTXcx5ZRijHYDfesC1P+7i2D9SGZY4s6Vg+QvyqXlrW463hhkwU+r0Zv0tL87SNlcP/0bA9Q/2c6s8yqxes1seKSd2jNKiAbirHu4DaMFVHuC1+teotPWwbpH3qG7pxsVlYEmMjkvl8vF9773PX7/+9/v9L0U4vOSIiWxW911113cddddmenf/OY3XHvttUSj0cyFs42NG9l445aLHY1Lp1JcUspIOsLm1zooX1JIxaF5mKzGzIWUza91U7S/n2lnl4Kq4i51EFkcp2vlIM58MxXH55FV4cDsNrHm781k1zgxuozY/DrKD81HTedpQ4/4If+ALEoW52YuyACUHJaNI9+G3qzLFB1N/1YZ8dEEPR8PAzDzwgpSyXRm2JFJxxZrF0be74cwtLzeQyKkDZsx7dwybD4zH9xQT/+GwISuQyVH5tD6Yi+jXREG6rUAJKvGxtD6sHZxb8yCn01h49JWhtaH2fxaD9m1Hlpe7Jjwetc/3UbpwbmZAqUMG+x/WQ2jneEJXY0K5/q2O3zc9pQcpA11Z7PpCIe3JGAWXlVD79rhbYqhNv27jfy52dsUNEUGYwS3Gupkzg8nEWgNs+mpzszzHX/+HW8NkDcri4YnmrH6wVOdRdeyYXrXDpO7XxaEYdLJ+finuHnv/22g461BXEU21j+sJbEW/KAavUlHwwudRPqhrz5A9hQ3m+gi3BkjMZokmUhReKCXjreHcZfYMFj0FBzkJNiW4r3rN2Y6GlkL0zhzXKz6y3qKDiqgeFE2Fp+ZeDDB5ne6CWwMs98Fk1F0CsMtLZQelMtw8yibn2tj5vengAq9awJk17gJdo6y/qk29v+hNlRbz4cB9v/FFBLRJMtv3oTpyDjdH27mrTffQmfR8cYNCRIJ7bM0PDyM1+slHA4zffp0li5dKsO3CSGEAKCwsJDNm7cM9TA4OMiRRx7JqlWrMnEXwBNPPJ753f6KnYWhhYxEwvT/aYR5P53M/Eur+eB39VQeWUDB/kY+uKWeaWeUUjjPR/1TbfiqPPgmeVh1TxOlB2cz6bh8Nj3fTcnBORQu9LPq3s1klRspOiQbV4GVrEonLW/1MvBRH9mzXYz2BPFOdpIYTfL+9RtwVVhxFNkwWPW4Cmy0DqYpOshPLJLQ7uAeq+fxT3bTtWoQIlqBUO70LLzlTj7800ZW3dZI1WmFmYKjBT+fQs/qIZrf7CExmqTzQ61AJ3+hl67Vg9Qv7WLKSQWZ9T2TrWz6Zyeb0O4WqzqtEHu2mdV/0ZIT/Ru1ocW2FhlME2wL0/rmtkPFVZ6cT06tZ0IsZ/RYcRfb0R+Uz/DGnd9h5im34yy0TigumnZuGTa/WRtKYyvBpggjnRE2PT+xaHzzyz1MO7Mksw/fNAcVRxXw4R82Tni+rgqtsKhrxSCOXO0uqZLDc2h9uZfIoDbs3HjnpnmXT2akI8KGR9vY/GoXjHXMtnp1lCzOJjEriw//uJGVf97E/Cuqqf12KXUPtNC7LoC/xkntd0qpu7+FSEcEk8eIx2Cn6CA/DU90gFVrHe6rdGK0G1l+dwNEyBQaBVuipONp2t/rY7QzzJRTSxntjOAuCzPaG2akLUrl4Vps2LtumGnnlBGPJGh7sw+r16oNsdMXpfKofAxmPXVPbWbQOkhjd4oNdRtY37Ue56iTkRVbOmHZbDaysrJIJBL87Gc/4+qrr97peyeEEOKrYeshSkDLgV155ZUMDg5misM3t2zm5ptvzqzT+GwNpeUVDKsx1j3eRO0pFZQflovRosdRYMPisdDw7w5KDsqm9lslxEYS5EzPIhlJ0fpmL64SG6VH5OAqsuEqtlP3WDOh3gjpeBpLjoVJxxRCukDLb1kgd24WxQf4tULhsSHRChZ68ZQ5MLuMW4aGO7OYUF+UgbHz/ZTTi1FTaqbTePXJxZhcRgbXDhEdTtPwzJZ81ORTC3EV21h+UwN9dQFypnkyhT5FB/tpf6OfwY3BzE2BzlILIy3RCfHM3B9V0fh8J0MbQnS/N0jRAh/Nr08sDKp7sp3KI3MzBUpbm3f5ZEK90QkdwEsWZ2Owbn/Yj08qOSgPV7E901Vq3P6/mELPx0Ns/vfEeG/DP1spXpyzzfBvI21hwkNbtp9xXhmhvhiN/+ri/bHn6660EGiMMlg3SujAKBv/3a29V9Oy6Fk+ROfyAUoW5xCNpik5NJu82V4+uKGewbpReiYNZTo+zfmedrGq650+osNpOj/sJ2+Wl6al3RCFcF+MRDSRGXrEVWDD6DCQtyiLUEeED26oz3Q0al3WgT3Hycpb6vDv56fyyHzchVZGeqI0v97JcHOcGRdUY7DoWXlXE5VH59K/LkDr2wPMOq8cdAo9K4epPMrHcPMI659sywwh17cywLyfTCYeSrDilgZ0i6Ms/6iDd955h7QlzZu3bLnQPDQ0hM/nIxqNMn/+fP7+979TVla2S++hEEKI/27Z2dm88847melYLMY3vvENXnzxRaJR7dyrovLUU//MrGP50MIi0yLiiRQD9wSZ/YNKpp83ieV/2kjNqSVYsswsv3UjeqtC3iwvIx0hcqd7yZ3hZdWt9RQfnEvhwlya3+hh0tEFpA7NZdVdTTiKzRQs9GJ0GShakE3b271sfLwZT6mdyFCIvFleosNxlv9pI9Z8M858I5YsE55SOx1vD5C9n5tkPEW4O5opYsqbnUXnin6ta5FZK4bKnuphxS0N1D3cSsWxeZmCo7k/mkzP6iHaXu8jPNaVB7RuTKMtQTY/24HxayWZ9V2l5glF18VLsvFU2DPFQD2rhnAVWSe+4DGtY2XPim2LwYsO9lM435eJbUDrHuSb4sLkMPDxpuadvp85M7LIiqYmFClVnVyAu8zB8ts3ThiCLdYfY6A+SMe7E7sodbzdi6fCoQ3ZNvY8q04sYcUtDROer6vUTLAlRusbvXgnOyEGefOztMeOQaR3S3eoWRdVMtoTpeGfHTQ+17llCDkzTDpG60a04pYG1t7fwuxLJjHl9GI2PNJGz0fD6PQKk08qZONjHcT6YthyLBisevLmemh7vY+21/tYdHUtsWACdPDxE80QhAU/q0Zn0LGyZRSjVc/mV7oYagox6/xKRtrDDGabGOmJ0LVygILZXgrn++ldM0TVKYXEw0lan+/CbAZftYuRzjCF83yYXSY2Lm0lrAZpi2xm4ysbWde3DqfTyciNW3Jedocdr9eLyWTi6quv5uKLL97peyfEl0WKlMQe9cnh4fr7+zn44INZv359ZoiqdXXrWFenDWXywduvk7cpj9GRUaKjcS754UUsuryGZdesp/yQPAwFet69bgO1ZxdROM9H61u9OGZ5ceTZWf3XJsoOzaH21GLa3u6l/Ih8Cuf6aH+/H4NTYeq3S0gD3nInXasHSEbT5Mx2MdIXpGhRNslIimW/qcNWYCFrshlXvp1QT4T21/rJnunE5DJiMG9JdiTCSYbbIxDWhjorXZLLUNMovSuD2HzmzHBvTc90E5iunQRmXliBLcdCOpGeMH58zdfKUFNq5sJW4YE+9GYd+XP8DK1vhTCZZE7+/lnkzfGy6tZGAg1h1jRo+6n6eiEN/xhLGoVBp1cwu40T3o+6f7QQ6Nh5VTPAips3kTPbRbh/SwImZ7YLRadkxiEFreiqf8MoAx+HGPg4lFmvaFEOK/+8iVW3btXC0QZmtwnfZEPmItmkkwvIme5hoCFI/SPtrLhZKwJbdHXtWLeiYVrf7ScwNu6szWdGZ1BwVNgYbQqTVeFkzqWVrLilkU3PtlN8cA7lS3LZ/GwPFpcJxaBQeXIOjU/18uGNDSy6ugbrARbiIwlW3d6M1Zdm1vdrSISSdC4foOHf7RjMOmadUwMqtC4zkU6pBDvCxMNxCuf5CbSMkj/VS2QoxuCmUcoW+7HnWGl5u4dp51SRjKWoe6Kd7Kna3WKxkRRzvlsJOpW7r7kfe6WJ7n+tp6mpiXA6DM9veYmMRiMVFRUEAgGuvvpqLrnkkl16v4QQQgiv18vy5csnzLvpppv41a9+xciIFouEQiFefuXlzPJ3b7WTlZVFh9pJw+8/4uyfnsF+364gFkhgLDRgL7Cy9qHNTDmthGlnlNBXF8BX7aJwQRbt7/aTVWln8nH5pFMqrkIbTa91oOgVTDYDnmov5YflgQobn24jEkiSv9BL0UI/RrtB65gU0QppihZlozMqmQLySafkozMqmBza/77kL8wl1B9l8wvaRZq5l1VhtBtooANvjQ29SYfFY4KIVsQdbNIqncoPz6PskFzevXZ95u6r2m+V4Klw0Pp2H+2vaQmPrErHhLHsN/2zM/P7rIsr2fxyJ8MbI6y9rxnQinwchbZMMZDBqEfRKXgmWzNdk4JNEeqfas0URu3MqlvrMHomJoksDuOE4wKtIKrxqS4+vmdLLDnrokpa3+phYO3ohJbXebN9GG0Gsme7MkO8jQ+XtuyaOm2YPaDsqFwKF/hx5Fmpe7CFxufbGRwbkthoM+DIG2v3XOXGU2anZ90wkcE0Q01BzM4t3ZkMZj02nwlvjY3Wl3vxVTnxlNrJXeAk2BBi2W/qmPeTyZQcnMNAYz+2LO19sGQZqTgiH1u+GbPVSNfHg8SGEsz8bjmKTmHzK91UHFHA4MYgza/3Mev8ClAh0BwhZ7qH3vVDNDzRyf6/rEGnKPQsH2bRr2rp7+/ngbv+TuXUcgZXDNLWpnVWWPnklrvfbDYbBQUFeDwenn32Wbxe7y69X0IIIcQFF1zABRdckJmORqMcd9xxvPnmmyST2rAR6+vXs75ey/WsWK/wzmCuNnxcIMV53z+X2edXsOyaOiYdU4DBaqDu+g2gV8mdmUXr2324i+y4SxysuquJ0gN9VBxRQPu7/VQelU/JwWk2v9KNOcvAlG8UEQsnKJjtp2vVANGhBFlldiLDIcoOzyM+kmDZNXVYPDqcFTa8lU5C3RHa3+jHU2XFlm3GYN2SNo6PJgh2hrWiHAtUHVfIYEOQvtUBHPlWjA4t39T+Rj+jnVouaMo3i/FVu9DplQkdkaadVbFluDrAN8OJyWkkb5aXoQ3atstv0u7Yz5pip+TAHD66azPR7ijr7tduvCs/LndC4ZDBrMfinNghcv0/WkgEti1o2p6P723GW+uYUADlrrSg0+swGLfEXnn7ewl1hRlpiVLX0ppZr+ywAj66s4m19zdP2K89z4Y5y0QjWsxadLCfkoNyMl2ixovA9v/FFHQGHT3Lh+hbGSA6EIMoWLNMGCz6zLBw2bVu3MV2Vt66iY1Pt1F+RB5587NpfrEHk8OA3qSj4vhcmp7pYfVfGll0dS2ObCuRoZjW8coCi35aSyyQoH1ZP+ufbMPiMjDru7UANL3YhcGsZ7AhyFDHKFVHFjHcPEp2jUJ0KMZgwyiF87PwlDloe7uXqd8sJhFLUv9EG7YiCyaXkWBbmOlnlGG0GXjw94+hK0vS/fwGNm/eTEgNwVtbXh+DwUBFRQWxWIyrrrpqwvdHCCGE+DRms5mnn356wrwnn3ySH/3oR7S3t5NOp4nGorz66quZ5cvuseHN8tKt9tD424/51i+/zvTTSwl2R/BXG3GW2Pjob03UfK2Yqd+uoP29fqqO85KMJml6qYusaidVx+YRCybImZFF46ud9K0bJp1ScVd5qDg8D3QK6x5pRk2kyN7PTeECH7YcCyturiMWBPckG6WH5GJyGDLduosP9WOw6DP5lIK5XgLtIdre0GKd6d8tw55toenZbqz5Zow2A7axEUM2PdvB6FinzKrjCyFdyHvXr88UIJUdnUvBXB9tb2tFMgA50z2YnAZtmLMYmfkA075TStuyPgKbwjSMdVo0Z5vJKrXSvXwYIDMsmWeyneGNWuwW649R92hLZnpnlt1QhyN74s2AFq8W92xdoFRyRDatL/VR/48tseTUs0roXjXMwLpgpokEQPZ0L2a3kez93JkCrfk/qUZv1vHutevp+yhA30cBcuZ4qDgqn6wKJ+sfaaXplU6tqxLa9crxofyyKhzk7pdFcHOAWBC6Vw9g81kyj2dyGFAV7T3tXTGMr8pF9hQPw3OCBFrivHfdemZ9v5KKowsYahnGmmWn6cUu9BYdU04ppmvlADpFoXNFP4mRNPtdUIXBoqf+qXamnFxEz6oh2t8b1HJewFD9CBVH5dHz8RCbnupk/hXV6Iw6Bj4Osv+VNQz1DXPfPQ9QuV8pbzw0TEtrCyigbpXzslgsFBYWUlJSwj/+8Q9cLtcuvV9C7A5SpCT2Kr/fz7p16ybM++Mf/8ivf/1rRkZGUFWVrq4tHXpuvPlGTCYT8XScl/8PTjjhRIq+7SXSl8BTrJA/z8vqBzYw48xq9ju3nOZXu/GUO8iZ7aZ9WR/+aS7yZ3oJ9UVxF9vpWN7DiEWPxWVCdagUzfcD0L8xyFB9gOrTi3AX2TFY9TS92knXyiFyZruoPLoQRb/1hbNcLB4T8aDW7SZvUR5qWmW4WbsIFe6Lgk47s40X4fRNCbD6gSamn15G+2taRe/8K6rpXjXIUNMoibFxT3Pnu4kOR1l9+4ZMgdCcSydR9/AmIv1QfGCO1unHD5GxouaqUwvJqfFgPEufuYts6+FJxgUadq1AaVzvyuA2070rJ+63aIGfwnk+3v3tls4BZYfmY7Dqsfl1hPvT1J5VQrAjTPtr/ZnnNenkAjY91cmmpzrxlNlpfbudeZdPpm99gObne+n+aCjTFnvR5TWoaZV3r91Az5ohLB4To03ac0kl02DQXuuBtSGqT7ZgcZrpWT3Mx39tZu5lk8id5mO0K0KwcYSWN3ooWphN1fFFGOxa94FASwi9VUfZkjx66gZxF9jp2xAgNhSnZFE2AMMto+RN8zLcPErLyn5mnFJKKp7GU2LHkW9l4/Ot+Kuy0Jt1pGJpRrtDOBem+fsDz9HV3YXb46avr49kOgkNWlAdG+s9OXnyZPLy8njuueew2Wyf6T0SQgghPs1ll13GZZddlpmORCIcffTRvPvuuyQSCUKhUGZI0ZZIA7/97W9RUEimkkyePJn999+fnrcHmUIJBpseg13P5lfbKDukiKGGESweM3qjjrVPbqZgmp+SRXkMbhohb1YWalql9Z0+TA4DxQfmEOoPk13tZag5SLoD8md6SSfSVB5TQCKUpOWNfqxeHe4aNznTsgj3xah/rB1rnoWc6R50BiVTfKTqVFJxLU4aXB/WOv+s0+7GmnZGOQDLfltH8+s9mSLziuPy8ZTbWf9kEzVZFZkCpcoT8vngd/VYvToASo/MweQ00vBEB/ZSK1afmUlHFbF845Z219POKAeFTJHS1smTre1qgRJAZBAigxOHhdt6KDeAaeeU4S6xkxhNZQqMrHkWrH4zFUcUMLB2I1avjupvlLH6L02su78Fq1eHvciOb5qDgbWjmbvFSg7PIXe6hw//tJHmF3pw5GsFSlO+WYx3sjNTxBXsCJMMa+2TRrsjuEtsFC/00/ZqPwaLEVu2haLD/LS/0s+y39ax6Fe1VJ1YQqOxgw2PbsY12U7lkcVE58cZ6YzQ/Fo3rkI7s86t1eLnplHSqkqgLYSaSpNV6SS1PkD2QjeR4Sg9qwLkzvZgdBjo+WiAWedVkIyl+PifrUw9uQhFpxDqjlFyrotVq1fx738/Q15eHstvfpnh4WEAPlrzEWazGVVVsdvt1NTU8I1vfIOf/vSnu/z+CCGEEDtjsVh45ZVXJsx76KGH+PnPf05HRweqqtLdvaUL4p//couW81LjvHwtHHvscRR/K5dQY5zcWh0Fc72sengz079WwqzzK1j/j834at3kznbT+EIXubM9FC/2M7xpFN8UNx3L+xhqGkFv1OHMtVCyOBtFr6PrwwGCnWEqT8zHVWTD6jOz8dlWRhvDeGsdTDq2EINVn8l5FR7ow1FgI5XQYsSC+T7SqXSmM9JoV4RoQOuEU7DYR9khWpedDY+2UfutElpf1WKsOZdW0bNmiJ41W4bjyJpiR02qrLxly7BpM84rY+MTrUSH01QcUYDZY8SSYyE6NjRc0cF+Cub4sXrMmaHm3r1uq+FJxmyv49KnGawbnTAdaIyy7LcTc14Vh2n5vq0fr/LIIix+E7YiC+H2KJUn5mtFQG/0s+pW7XmVH53L5ud7aH+jH3+Nm+Y3O5n5/UqGm0ZpfrGH9nf7Sca057/wl7Wgao/Ru24YR4GN4QYtJkzF0qBXM8/PkWvD6rXQvTpAw5OdWH1m8mb5GOmNMbIxSOPzXRQf4Kfm66U0LO1AZ9DRvy6AzqIw6dgCetYMYM+10bVqgPhIkoojtIurvR8PUXZgHn1rh+laN8D0r2nxlt2fwFfrpvG5Vuz5DkwuA8lIir6WYSoP9vHII4/Q0tyCz+ejr79P6wq+WRsmd7xb0qRJk6ioqODRRx/F4/F8pvdICCGE+DSnnHIKp5xySmY6Fotx3nnnsXTpUoLBIOFwmHBYu460Wa3n2uuuRafTkUwmqWyoZOHChQTeC4IKJrcRR56FtY9vZuqpZeiMOmweM2aXkVUPNqKmVIrmZTPUMKINAadC88tdmLKMlB6cy1DzCCUH5DKwKcBoVwRHqQsHUH1SEbFggoalHZhdYCuyU7woh1B3hIZ/dmD2mylY4MdkNbBurHBGZ1JIxLQ8TKQrRnQwRu/aYQCmnlGGYtDx3nXraXimA8tYo4KChV5ypntY/2QT7iJbphCpeEk2K25pwOzSQQxy5nhw5ltpfKYLs0uHq8ROhd3Aqk1bmg3MPLcMvVGfKVIa7wr0SbtaoKS9OTDaPnHouU8O8zbphHxyZ3khRSaeNLvAXebA7DExsC6I2QVVJ5ey9v4WGp/pov3NHsw+E1k1DobWj9K1YhCjXetmlD/fx6rbGuldMYynzM7GZzooOSKbov2zaXtLe04DG4MwNtxxoDVM9lQ3/lleOt4YRG804CqxU3SIn/bX+nnv+g0suqqWyScW0fBMB+ufbMVX46L6+GIiAzGGNo/S9HIXnkoHs86rAaB3zRCKTqF/Q4BoIEb5IQX0rh0mp9ZGZDhG30fD5M72YPWZaX2zj1nnlWs5rwc3MeVrpegMOsK9UUq/7ebjDWt5Zum/yMnJYcXtrzA0pOVBV380hNVqRVVVHA4HtbW1nHfeeXzve9/b9fdHiD1AipTEPufyyy/n8ssvnzDvb3/7Gz/+8Y8ZGhrK/E8twNKl/8r8bnnZQklxCaFEiPAHw8yYMY3ixTkkwknsPhvGmSZ0egW9WYfRrqdjeT8Fc3JIpVLoddrFqmQiRSKSxFfhxJ5txOa1ERrWki35s72UHJCD3qQnnUiTTqWZ8u0iIv1Rcqb5SKfTdHzQh63ERt6MLBRFoesd7aTgLLZlug0NtwfwT3Ux3BCEMDjyrOx/1RTWP9aKwaonf76XkbYIm17sxFZio+LIAhRFK4iadHIB3slODGY9VSeXozfpCPfFaHtHuyg1/4pqeusGaPhnB64SK/acLVW948PTWbPM1L/QRvVRxXSvGiRvthe9SSuk+eCGLe0ZDfYtd4rtf6V2R9f6x5ux59komOMjlUjRvXKIrElOjGY9q/6iBS3JeIrRbi0YmXx6IZ4iB2sfasFo11FxXDFGhwGr14yr2E7eflkEWsO4iqyY3Sa8VU7qnm1j+Y0N1JxVgtFuwF/tIjYcJ3c/DyNdIbreGSIcjGKxmciqseGrdmGw6pl3RRUf3tBAYjSJJcvEjItLWXNbC63v9lCyMJfp3y6jfVkfkeEoBqueyiOKiO4fx2jVEx9NEO9KUn5IHqqqkk6oRAZjxEbj+Ce70el1pJoDFC3MJplIMrR5FG+FE51BIdAdYsYppSTjKRRFwZpjYu3a9bTEmthUr6PlxRZ6e3vR6XSkH9jShcrlduF2uwkEAhx00EHce++9MmybEEKIPc5qtfLGG29MmBeJRDjttNN45ZVXJsRdGzduZONGrSvPO7/7N3l5eVgsFjweD4mGCBXlFYT7othzLUw7tZxVf93ArMlT8FY76FmnDclasjib4fZRrF4zqg5SiRR6ox67z0RWlQNFURjeHGKoZYTSQ3IoXOzDZDESGYphtOnJX+il+ECty1JoQLtYU3Z8DhanmUhAS25MvaAUo8OAp8rJwNpR4vEEOkUrOEpFUpQenIM914gjx47RYWDaNyax9m+bwAr7nV2OPduKI9/KR3c2MefSSZhcRm04180jlB2cR+OrXfS8M8SUbxZjzzez4sZNNL7QSdFB2Uw6tYBN/+zEW2Oj8ugihluCOPLsjPZEceRZaHurl8knFpOIJwk2h6l/rB3GQq7xoqHKk/PJmeYhMZJk+U0NzPx+BalkCrPdxLpH25h2Rgmtb/XSs3yYcF8Me56F1pd7sZdamXRsPomRFHWPbibWH2HejyeTVtOYnSamnFGEM8/Gh3/ayKxLilFVlZG5EdY+2gzA/pdPQafTYc2zMPVbxZkuoBv+1caCH1eTVemg/bU+XIU2VFRKj8yh5cVeihb6KVqUTaBtlI8f2syCy6opWZRDOp1k6KMgyXgKvV7H5JOKGe0JY3GbGe2JoDMq5Ez14K6wodfp6a0bJqvCQVaVEzWlkoglcRXZ6FnXjyPbjsGsRzGYKFrkx2gzEBmMUX1KKcHRIO+89Q46n46m51bS0NBAKpUi9WYq89kNBAL4/X4CgQB5eXn87//+r9ypL4QQYq8488wzOfPMMyfMe+6557jkkktoaWmZEHs9++y/M7+bVpgoKSkhEosQXVHD9P2mU3V8MdH+OI5cG8YDjKhqGqPVgDXPwua3uik7IJd0Kg0qKHod8UicZCRN9nQP9kIT7kIXocEwwZYwBbP8mA8xYbQaSMZSJMJJqr5ewGhXmNIl2n46V/djybFQujgHRa9khtDw1bpQxm45D3aHSKfTDDRrN7k5iqzs/8sprL67GbPHSOH+PgLNYTY83YbFA1O+VpLJeZUcmk3Ofh5MDiNVp5agJiHcH2XTs21Eg1Hm/LCK/o3DtDzfh7faidW75e772m+VoOgVzE4jm1/pouKIAnrXDpEzLQuj00BiJMmKuxpgrG7JuFXOa95PJ2M0G9jwz1b0Fj0lB+SQSqbo/TiAq8CK0WHIXDSLhxKE+rWdlB2Tg2+Sm/VPtmE0Q+E8L7ZjzNhzraTiaXxTXIx2RbD5zDiLbPhqXDQ838bqvzRSeWI+tmytuD/QOkrxgdmMdGhD3QV7R7H7rHhrHbhL7Jg9RuZeUcXyGxoID8TwlDmYcVEpa25vYdMLbUw6ppgZ55TS8mov4YEoFp+JqqMKiMz3YbQaiI7EGd0Yper4QlRUktEUod4okcEo3skuDGYDQy1Byg7JJRlLahfKpmRhsOgJj0aZ/o0KEtEkqOCpctCwoYH6ZD2GLgOt77fS3d2NTqfj7b9tyXml0ik8Hg+hUIjDDz+cO+64g7y8vC/47RFCCCE+G7PZzIMPPjhhXiwW48c//jGPPPIIQ0NDpNPa+auxsZHGRu0a15u3LCUnJwe7zY7T4cRYH6eispKRthBGh55Z365k2c11LNovC/90F90r+3Hk26g4poC+hiEcBVZUg0oikkRNg6vEjn+6B51eoXf1EKM9USqOyiMR9WNxmwl2hjBaDWTPc1O8IBuT3cBIp1ZMlbPAjT3bSnRYy3lVfi0Xa7YZb7WTofWjxKMJ9GNdHxOjcSafVIi9wIrVZcSWY6H2tEo2PN0OZphyahHeSa7MUG/Tv1uGLduC3qCjb90QlUcVsvH5dvqXByk7OhdPhYPVtzVS/1Q75UfkUXFcHk3/7sZRZKbq+CIGNwdxFdoJtIXwlDhofrmT2jMrSIQTBJpCbFrapVUhKOCb6mJgXZCig/0UH5hNbCjByls3MfVbJaRJY3GaqXuokdozK2l/t5++jwKEB2MkIglaX+3D7DdTeVwuqXCaNfc1MtoXY9b3K0ml0zhyrFSdWoAjx8qqexuZc2YFaVVleL9RNjzZBjFY8PNq9EY9jiIzk04oxOo1Y36pg9aX+sif48VVonUy91W5UIwQGYrT/kY/k08opOTAXEY6YzQ82YG7zE7J4hySkRRDm8LEwwl0Rh213yhlYFMQR76VQOsIoFA4349vqhOdqqNzRT/+Whe5s7yoyTSRQAxfdT4dK/qxZ5kxuYwYbXr087zYfBZG2kNUHptPKBrinbfeRSlXeeHNOhoaGkgkEqTf3hJ3BYIBsrOzGRkZobKykquuuopvf/vbu/OrJcSXQoqUxH+Es88+m7PPPnvCvOeee46LLrqI1tZWVFUlGo2ysUG7cNbR0cHLL7+I0WAky5uF2WymrLQMFJg9ezbuLDf6Kh2qqqLX60mEk8QjSexjrfoUg4LBYUBVVYwmA0aXARUVRVEIdoUYbgxRsjgHT4kDX7mbRDSJwayn7LB8zE7ThOHPJn1dKzJSx6pvixfmotfrKTk4l77VI6ADnaIj0BCm/t8tVB9XiqvYzsIf1aDotf1Eg1qSKqvKgcGsp/29blpfGmTRr2qxeNWxIc/AYNVTMCeH5mf7IQ1Gp4Fp55RhtOix+rW7xRWdQsWBWmcj7yQnqWgKnUnBYNWDDRhrrqTT6TLPQWfQXquh9WGKF+disOoxWPUULvCjN+lQdAoLfj6F96/fgMGkx+axMuv7lVjH2jXac4yUHpyH0W5A0Sts+nc7Oft5cRXZyKpw8MFt9cz53iTMThMzTi1jfboZd7EdgOU3NuCo0Iq8HDlaVyGbS3ufsipd1D3YxqKrazBaDNgKzGx8rosZZ5bi8NqYcV4ZQ50jY89BofTgXNLpNDqdjnC/VqykN+ixuHVY3WaCfaO4sh3oTQoWtwm9RYeiKHSs7KVwdg4AeoMef5WbeDxOW3sb/foB3n3kNXp6e7BYLPT19ZFKaRfFjEZj5vfCwkKysrKYPXs2t956q3RIEkIIsc+yWq08++yzE+ZFIhF+9KMf8fDDD2eGitv6zv/Vq1ej0+kwmUzk5ORgs9nIrchl/XqVqqoqsms9xENax0lPkYOWNzspPagAAItbuyCGAmpaxVNmx+TRodPr0KsqI10RLB4jRquB8sPzUFMqqqpi81iYem4p7iK7VmQcT2MvteLK1c6xnR8MA2CybBnu1lVqR1EUbD4rH/5pI/N+UoXRYSR3YTYFs32ZeO2jB7ShN8weE+lkmo1Pt+GtdmN0GChe4KfnnSHc5Xb0Rh1Tv1PKuvtbqDymgKwyB/N/Vs1gYxCjw4B3sge9UYfRZsBg1dO/ZoSq41WMZgPuUi3WGY/3PJO0oipvuRNFUUhEtBjC5rdk4lD/VK2wqvTQXDzlDpx5VvRGLWbb7ztax6i0W2W4xUbl0YUYHQYCLSG6Pxqi5ICcTIzas3qI3BlZuIptLPjhFNY8uAGdTkdoIEqkO4rBotdiQSvUnlaKwWDAmaclvUK9WiGaf5qLlhd7iYcSmOxGppxaymDDSCaGLD+wkMLZORhMehKRJKH+KJ5iBwAOs5VQf5R0Kp15fxRjCpPNSCqRIhVNY7Rr/6uaVe7GaDXQ3d3N0NAQPd09rP5oNU6nk5GREYLBLZ0+rVYr8XgcvV7P9OnTAbjttttYvHjxrn78hRBCiD3umGOOoampacK8Dz74gEsuuYSPP/6YWCxGPB5n0yZtOIuOzg5efvVljAYjniwPFrOF0tJSdOiYOWcmnmwPep2CiorOoCMWSBAaGMVX6SZuSGAw6bH6LKiqttxZZAadFmsMNAYZaY1Qdkgu/io3OTVZREdimB0mihfmYnYZMrELQPFh/gk5r6L9/ej1ekoPzGNgpdbFSVEUor1RVj/UxMwzK3CX2pl/aTV6kx5FIdOFyTvFhclhpPm1LjrfHmLhlTWgh8GGUWIDccxuI4Xzsml5vg81oWLONVL1tQKsHjM2vxlFUVAMCiUH5mD2GMmqdBIfTWB0GjB7jNj8Wqcj0PJc44wWLf83WDfKlG8UYfYYASOF8wwoBgW9Sc+8n0zmw1s3YnIaUVNQc0YxWZOcALiKbOTO8GD2GDEY9ax/vIWcqR58tW6MFj3L72jQCuFzrEz9WgX1T7fhrda2XXFLAxaP9hrZ87QY1p3nAAU8lQ6alnaTP8+HyWrEkmeh8fkeZl9ox+G3U3NWMcObhgHQG3VUHp2v5bz0OgKtIQwOPQaLHrvJgt2n0N8wiH+yV8ufZZkxOg0oikLzq+2UHlw0th89eTO8JBIJ2pvb6Nf3895jb9DV1YXVaqW/vz8zdKHBoL1uAHl5eeTk5HDggQfyu9/9Dotly02TQgghxL7EbDZz2223cdttt2XmxWIxrr/+eu666y66urpIpVL09vZmlq9ZuyaT88rNycVisZC/Xz7r1q6juqaavDl+Rvu0C2vZk7LY/Gon5YcUgAK2sQIURYF0Io1/qgeLL4zerAcFhjaPYnIasGaZqTqykFQqjZpSsWdbqf56Eb5qbTiuVDyN2W/GPykLgP61Wldsi9ucyfW4S7V8kj3bzKpbG5l5UQW2bAu+GicliypJJdOoafj4780AOAttpGIp6v7RgqvEgdVvpvSAHPqXB8mudWO0G6g9o4S6h1uxfM2ErlLHnB866V03hNVvJseehdFq0EZ68ZoJtsRQk2lMDhOeSTqgC51ei7k85XYG1gXxVY3lvEa1HKGz2K5dI9UpuCe7tWM4JBdPuR1LlgmDWcsNzbqgAp1BIRVN0V8XpPKYAqx+M8ONozR+1EH5oQXo9ApmM7S+3UvhAj/eKifzf1DNB3+uR2/SM9obYbRdi2sVnYLObqZskQeDyYBr7HrkUEsQX5WbnFke2t/oJ9QfxZFrZcophfSuCaDoABUqjywguiCGyWEkNpJguHkE/2QPKFpsGeoOk0ykMFtNoILOpMPiMpOKp4kNxbH6tGun/kkuTC4jvb29DA4O0t3Vzccff4zVZiUUChEIBDKfQ6vVSiwWQ6fTMWPGDBwOBzfeeCPz5s37sr4eQuxRUqQk/mMdc8wxNDc3bzP/j3/8I9deey2Dg4MkkolMMNHW1gbAW2+9hU6nw263MzIyQmFhIRUVFZiMJirKKigoLiARSWA0axdM9CYd6ZSKzqAw0h3ClW/H7teqahPhJKpZJdQXwV3owJplRk2rhPqjNDzdyfyfVmOw6Emn06x5oJXsmU4sLq1YaMVNWnJp/G4zgLLF+QCs+dtmKo7IxeI3se5vDZiybCz8ZQ3RkRhGi4H+ei2p0vhSO5VHFFG4wM/ymxpofbsXZ752bOsfaiIcTmvFTjolM9ybrcBCuHPnLa/jI4nM7+MtvgHW3LVZ28/Y0G0AtWeV4Cl3kH9AFmv+3qwNvWaDWedWsurWRmwF2rj0sZE4K+7cBGGoOKoQVEjFU8w5fxIrbtxE9TfzcRe7iIVgqzovKg7NRVEUOldqLR0TsSRGsyHT7SnUG8GeY2X62aWEumL0fNRPVpUbZ4FNK85KqkRH4yiKFrTFwglsfguhvihGq4F0Ko3OoMORpSWEQn0RrTo9GmX9+g1EYzE+ePIdOjs6sVgtDA4OEolMHH4FtEKkvLw8+vr6WLhwIffff790RxJCCPFfwWq1cscdd3DHHXdMmD84OMiZZ57Jm2++SSQSIRqN0tqqDbuxYcOGCduDVoRUXV1NdnY2ra82sfCg/THaDZlzeTqVRtHpMNtNpJMqseEEznwrsVHt4lU0ECcZTWHzWVDVNJ5iB+HhCH1rh/CUupn+rVKtG1NLiEhHhOpvaRdcxrdPJRMoikKoR7sDzWgzkoylGFwfJLvaTX/DMJuX9jLn0kmkkyqokE6oDKwdJdw5irvYhslpxOqF9//fBmZ+v4J1/2gB4KP7N5NVaqfk4BxQx4YFtoLVqg3dNu7daycOR6LGVTBB41PaEMcf/mnjhOXjMZw1z0KkO0rbKwMsuqoWT4WDNXdteY0HN44w1DhCz/Jh5v14MkaHgXVPbSbwcQTPZKv2vPvC7P+LGj66bzOd7/RQe04loY4oZrv2/jDWfEin6FBTKkSg7okWFl2hDcXmqrDS8noXNV8vw2w3Me/yyXx4+0ZmnFOO3Wshp9YDKgxsCuApcZBOaReudHodnmIHI90hnLl20ok01iwtKaSmVFKJFDnVfjY3bWZoeIihwSGamppQVZVEMsHg4GDm7sZxyWSS/Px8RkdHKSgo4PLLL+fHP/7xDj/DQgghxH+S+fPn8+GHH24z//HHH+fKK6+kubmZRDJBX5+WJ2lr13Jeb77zJjqdDofDQTAYpCC/gIpKLedVnC6mrKqMWCiB0WTQbm4zawXCepOeYPsovgoX7kI7qBAdjWM0Gwi2h/BXmbD7tcKmYGeYtX9vZu5lVZhcRtS0St0jm3FXWnAXO1BVlZU3aUPUqikYa2hJ5cFaJ526R5vJn+PDUWSh7v7NYDKx4GdTCA9ouapQl5ZvWffUZqZ9rYKihX56lg/RsLSDrAqt4LnhyWaiUZj/A63Y6d1rtXhp62HhPk0ssP2c14bHtCF7LR6IRoEoVJyQR95MLwWzvKy+t0krdLLAjG+VseaeZiweqDgij+hwnDV31hMdhknHFKKmtbzhzHMqWf2XRkqPziZ7iod4IIGibkl6lRyaj6Io9KzShg2OBmLaEMoWbZ3BxhG8lU5mnlNGsD1M8+ud5Ez34q1w4SywkYqnCfVGMNj02LIsRINx3CV2RrrCpOJp1FQanVGHu0S7yBnsCuPKt5FMJPn443XEbBE+emYFbW1tWK1WhoaGMkPhbM1ut5OXl0cgEGDJkiXcfPPNlJWV7fS1FkIIIfZ1ZrOZ//mf/+F//ud/JsyPxWJceumlPPXUUwwMDBCNRmlp1XJA9RvHRiV5Uhvid3zYuOrqanJzcul6tZnZC+dg9ZkZ2jxCVoWTZCyFTq/DkmUmFUsT7AyTVe4kNBgFFYLdYUilsXotoIC/xs1od5iBjUGsXgv7nVuG3qhjcFOQwKYwpcdoN6ONF3wnY2M5r24tFrJ5LSRCSfo+HiF7ipuhzaM0P9fD9HPLQIF0PE0qoTK8McRwSwjvJAeOfBtmv5kP/7iRqWeVUPdPLce3+t4mbH4z1ScVYbIaM7kqs0tHLLglX/P+77eM1gKQjmldPRuf0XJeH929ecLy9/6fliMz+83E+mP0Lg+w/8+nkFXp5IM/12M2a4Fk70daB6reFcPMOK8ce66V9U+0MLQ+hDnbjO4IhWBHiP0uqKbu0Wb6VvVTe1Ylo50RzE6tIEhNaDkqxaBoo6l0xWju6qFgro90UsVVbqH1jX48ZU4sThOzL5nEukfbqDg6B1eBnfw5PtSUSu/6ITwlDhKxJOa0CQUF/2QPAw1B7X2OprD6tM9EOqkSG41TOMdPe2Mn3UPdBIPDNDU1kUqlSCaT2815RWNRCgoKiMfjVFRUcNlll0lHcPFfR1HHb3kQ4r/cXXfdxTXXXENHR0emu8326PV6XC4Xo6Oj+Lw+SktLte45fj+VlZXY7XZIa3ddpZIpDEYDqaQWXCSjKXQGHTqDonUtUhQigSgGk1YPaLDoURSFke4wjS/0UnNyAWa3iVQixfv/r57JpxeSPdnDUNMIdQ+2suhXtaSTKoNNI/gnu+hdO8CmF3qYfnoZ4eEYuVOzSISTfPgH7WLWgp9NAeD9321g4S+1TkzLflOH1Q+Rfsg/IIuuVUMQhrmXVTHYOELTM93YSmxUn5DPqlu1dpaLflVLfCTB8hsbqDq1EDWtsumpzsxjbHiylUBDmJIjc2h9USsCs/l1TD6tDFuOhYalbbjLnORM97D6nibCnVH8c5xMPraY2EgCRYXlf2/Aho79LqxGTUPLa91UHFlAqCfC6juaWPSrWlRV5d3fbsBWYGbmdytIp9Os/1crjmwzJYvyMhXiwbYwVp8Jo027i0un0xEejGLNMhMPJzBaDVox2FiHBkWnkEqkUBWV9vZ2enp6CI+G6R/oZ3BoEIPBsN1CJL1eT05ODoFAgHA4THl5OVOnTuXRRx+VzkhCCCHEVgYHB7nwwgt5+eWXCQQCfNr/cthsNoxGIyMjI0yZMgWv14tep6esvIzCwkLUpHYXUjqpFRWrKRV0WsGS1W0mPBjF7h8rcFIUbRiOnihZFU7t3K+qbHqhjXQKqo4pQqfTseyGOojAwqtqtCFGrqlj1kWVWP1mNjzezOSTSkGBj+6oBytMObkcvVGHyWnk48c2M1IfwVVhZdqZ5XR80E90ME7lMQUMN4fY/O82IoNacqHoID/tb/Zrw78dW5SJ2SadWkAylKL5hZ5MQdH4BbKZ36+g/qlOIt1RKk/Ox5lnY/VfGrF6wVXhoWf5MFavjshgmkVX15JKpHn/+g3M/1k1alLlwz9uBCvMu2gyRruBno+HMNuN1P2zlcknFOKvdtO1YpC8mVmZWHHaOWW4S+y0ftBL2/N9LPjFFPRGHaHeKBuf6aLqhDwc2dp49vHRBIpOS+hYPNodYaiQTqskI0lMTu1ip8FkIBFJYrDoScZT6PQKwZEgbW1t2sWvUJiW1hbMZjOhUIjh4eFtYnSXy4XdbqerqwuTycScOXM444wzuPTSS3fPB1cIIYT4D/X000/z61//mvr6eqLR6A5jL71ej9PpJBKO4HK7KC8rx2Aw4PX5qKyowOlykkqkMZq187jJZiQRS2Iw6okG4hhtBu2OeEUrPgoPRNEbdaTTKha31lk80B6i8bkeqo7Nw1loIxlP8cH19RQe5qPsgDwGG4Ksf7hNy3kl0nStGKRwfz89Hw/S+Hw3U04qJjYaJ3+2j3gwwfI7tGHa5l5WhWJU+PCGjcy/ohqDWc+y39Zh8eiIDqfJnulmpDlAdBj2u6CcYGeYzf/uwZJjYfIJeay5pxnQcl6xQIIVNzdQekQOeouOpqVah9C5P6pi07/bGW6IULDQS+e7WqW5xaOj/JhCsiY5aVjagSXLSNGiHNY+2MRISxTnJAvTz6ggOhQnlUhT/3QzRGG/70+GNNQ/2ULt6eWEuiN8dNdmFl09nvNaj8UDsy+tJZ1OU7+0Db0eqo4t0Yq50zC4IYC90IrZaYKx7lfB7jDObCvhQBSrx4yaAp1eIZVMozfqSESSKEbo7Oikp7eHkZERBgcH6e/vx2g0brcQSafTkZuby+joKKFQiLKyMmbNmsXdd9+Nx+PZPR9cIYQQ4j9QLBbjyiuv5Mknn6Szs3PCcL2fZLVaMZvNBAIBplRPwevzotPpKC0tpaS4hHRCxWQ1kkyk0Bv0Wu7LqBDuj2LzWhjpDOEucWp5FUUhEogT6orim+JCp1dIp1U2vdBBdDDGtDPK0el1rLi9kVh/jAU/13I7y66po/aMErKqnGx4oo3yI/PQGRU++ksDMdLM+Ho5qk7FmWtj7T/aCNaPYPabmXVBBR3v9hNsDzH19DKGNo3S9Gx7pigpb34W3R8M4SgyU31KCStu0YrUi5dko+ig9dU+9ju/HHueNVPUNPWsEja90EOsL0bhYh/eyU5tWF0z+Ca7GPg4iNkFsSDsf2UN6XiaD/5Qz5xLqwAyjzHz+xXY/BZa3+vF5jaz8ZkOig/wU7woh44P+8me6sFkM7Dsmjoqj88nb7aXjg97aX6uj7k/qsLkNDLSEWLj0m5KD/Xjn+xGTatEh+OoKiRjSVwF2k12KAqpWIpkLIXFYyYZ02Lk+GgCo91AIqINuTcaHqW1tY3hoSFCoRAtLS2YzCbC4TBDQ0Pb5LycTicOh4Oenh7sdjuzZ8/mO9/5Dt/97ne/7I+sEPsk6aQkvjIuuOCCHVaa/uIXv+Cvf/0r/f39pFIpgsEgqVSK7p5uunu6J6xrMBgwGAwYjUZyc3OxWq3Y7Xa8Xj+5udl4PB6cTifpdBq9Xo/JYUSv15NKaiegRCyJM9fGzLPLAO3C2WhPONN1SVVVml/txTfdPtZ6W2Hjo+3YL6kkd7qfVErBWWjDUWAlForTVzfErIsrUfQKOpNCKqoFCP2Nw2SVae2jFXRUn1GAb5KLsoPzePfG9ZhcRvw1bpqe6ab62HysXjM5s130rgxOeL7+GheKTmHTU53k75+F3qyjeFE27vIIRQv8+KodjLRF2fRUJ8HOUSxeE32rR1B0CjnTPcz8bgV9dQF0JoVYMA4GMNlMTD6sKNPa8d3f1jH38ipUVSUS0TobjBcT7X9lNbFAgmQsicFsYOrJZaRSKRRFIRlPoTfqcBXbMgk4VdWGgDE69fT399PX18fIyCjBYIDhoWEGBgdIpVJEIhFCodA2nwWr1Yrb7SYa1arNp06dit/v5y9/+QtTpkz5PB89IYQQ4ivH6/Xyj3/8Y7vLNm3axHnnncfy5csJh8OZDkzpdJq6ui13sr/x5huAdkdaKpXC5/ORlZWF0WgkJzsHr89Ldiobt9utnf/HhkQz2g1kVTq1LjyRJCaLkcrDizLDesRG4sw8uwLLWCefdFKLneLxBDbFQvEhebz3/9az6Fe1zLyomuHGUaxeM+FglGRfmoL9fMQrk+TP9oICgeYRhtsilB2eR6A1QGQwTeUJ+bjK7Fg9JhKxJNm1How2A75pDgbWjpIz1UM6odL8Qs+E16bgQB+2bAsVR+ay7v4WfJNdGExa58iZ39cK0D0VDuqXtoMVUokUXR9pF8/UlIrRbmDGReXoVIWuNUNk17rImepBURSqTiwgu9pDoDXE5me7yZ/jRVVVPJOttK3owVVcTvG8bHKneAh2jeIpdmLPsTDru+WgQiwcx2Q1YrDp0ev1mdctlU6h1+sZGQkSDAbp3dhLNBplaGiIYDDI0NCQ1nUhGMwMD7I1v99POp0mlUqRlZVFdXU1S5Ys4brrrvsiH0EhhBDiK+Wkk07ipJNO2u6ym2++mVtuuYXW1lbi8TgjIyOkUin6+voynZjGjee8DHoDeXl5WKwW7HY7Pl82ubnZuBQXbrebVDKFXqfH5NKGOEsmtJxXdDSOq8DO7AsqAC23M9wyyuwfTsLiNqGqKi0f9OGuHBtuzqij5aVe7DkW8mb4UFVVG0ZNVQkPROldH2DGt8pIAyaXMdP1u2NVP4Wz/WCBaDRN1SkFZE/1kE7m897/24Atx4rJaWTzv3soPywbR4GNvP29dL83OOH55s3yojdpRUpZU+yYnEYKFmRjdAYoOzyP7JlZBDePsvn5HgKtAZwlNvo2BHAXWlAOyGH6WRV0fNCPyWFgtDuCYlax59goWZSPbyyftuw3dcy4sFzrdBAd7+6pFRMt+MUUIn1RIsEYVpeZmpNKSSfSKCjERuKYHEZ8Ne6xOBfSY8MeW71GBoYGtJzXJi3nNTg4yNDQEMlkcoc5L4vFgsfjIRKJoCgKtbW1FBYWcscdd0hXJCGEEGIXmc1m/vjHP/LHP/5xm2Xt7e384he/4JVXXqG/v59oNEosFkNVVdZv2NJZ+6233gK25Ly8Xi9erxejQct5Zfmy8OPHk+PRhtVVQNErWL0mrFlmULTRQ8xWIxWH5mOwaLmjSDDGpKNzsedb0Jt0pBJa7kYrYndQdKCP5X/ayMKrapj1g2q6VgzgKLASHowy0hnGW27DU2ihYIEfRacw0hkmsClMPJwg0BUiFkxTvCQbZ5kVT7HW4dJZYMXsNuKb6mJgXZDCRX7UZJrWVyfGmZ7JdtxlDioPh7qHW8ndLwuz2wRmmPeDaoxWPZ3FA3S93QekSUZS9KzVOk2mk2ksPhPTzi1Fjat0fzRI7vQsiub6QadQNBihZHEuw00jtLzQS+F8P6qqdUdqf2+Q3FlZFMzNJqvSxXDbKP7JbpwFduZ8v5J0XCUaiGF2mTDaDRjMepIx7fVMqWmMRgORSIyh8BA9m3uIxeIMDgwQHNmS8xoZGSGRSPBJPp9P28/Ye1xbW8uxxx7LlVde+UU+gkL8V5BOSkLsxIYNG/jJT37CsmXLCAaDGAwGUqkUqVQKnU6XKYrZmk6nw2q14nA4MkPLud1u7HY7ZrMFp9OF1+vBZrPhcrlQFAVF2dJ9KRN0jM1LjCQx2PToDDoS0SQf3rqRRT/R7roKtofwlDi1wh1VIdQbRdEr2LK1sWg3/bud0iV5GO0GBpqGGW4I0fNBgIqTcgk0jTLwcYisGhsGs56+1SPAxE5KAAUHuxlaFyDSD7XfKaHufq3F47Rzy3AWWDNJl4VXaUPLhQcjmGwmwr1RnMU2reORCsl4CqPFQKBnhLV3tGa6JSWiSaLRGK4sR+Y1TKfUTEvw8dcnGokyGhqlp6eXdForJguHwwwOakmmUCiUueMrmUxOaJGoKAo6nY5UKkV+fj5Go5G2tjZsNhtz5szhwAMP5JprrtltnyMhhBBC7Jrbb7+d2267jaamJuLxOAaDIVM8rNfrt9sR02g04nA4MJvNGI3GsYtpWiIgJydHK2zKycFqtWKz2SbEb+mUin6sgAkg0DOC1WHBaDNoXZZ+U8f0i8pwZduJjsQw202oaNv2bwjiKbETjyS0bk5JlfduXM+iK7RumMG2MHUPaq3Aa84qZv2DbVi9OpyT7fS+p8Vdn+yk5J/hJBlNMrwxgn+GE1uBmdbn+8lf6MVZasVf5SYyEKN71RAVR+STTqcJ98ZIhFO4S2yoioper6e/YRjfJDcAy26oY/4PqzGY9KQSKeIjSSyeseHWVBXSWrIrE4uOvTaBQIDR0VECgQDRaJRQKJSJv1KpVGZ5IpHYJhmj12vF9yaTiYKCAnp7teKl6upqKisrue222ygsLPxyPjRCCCGE+Fy6u7u56qqrePnll+np6UFV1Qk5L2Cb4ScURdluzsthd2AymXB73LjdbpxOJ06nc0vOK63FGalUGp1+bF5KJTwQw+wxYDAZiEcSLP9zA4uuqAUFetcPkVvr1eK/lMLw5lGMFj2OIis6vY5Nz3aSNycLe46F3vVDjDRH6Vk+RNFhPsJdMQbrRnFXWtCbDQzWjQITOykBZM9xMNIYJjqcpvqbhdQ/2gHAlNOLcZfa0Zt0LPt9HQsum4LepGOkO4zZZiTQFsJf60ZBQVUhOhrD5rYw3DXKurtaMjmv2EiC6EgUT6Er8xomYyn0Jl3m9VQUJVO8P/4+DA8PE4lEJuS8RkZGdprzys3NxWKx0NnZicPhYPbs2Rx55JH87Gc/202fIiGEEELsqieffJK//OUvrF69mkAgMFbE/Ok5L4PBgNPpnJDz8nq9KIpCdnZ2Judls9iwOWyoaTWTt0rGUhjNBhgbaXa4LYDZbtFu3BvLeVWfWYh/kofIcBST1YRiUEBV6a8L4Cy0ER2N4ylxkIqleP939VpX73iawU0jNPxTi5sqT86n8akuzC5wltvo/0jr2PjJTkruSTbURIpgSwxXuQVXqY321wfJqnHgmWQnf6aPcE+U5td7qP1mKWpKZahpFDWl4i6zozMo6I16ej4eJHuqBwWFZb+vY/YFlViyzCSiCWKDSaw5ZvQG7fptOqlqnUDRGiOMX3vcEmsNE49HGR0dzcRa480sRkdHicfjO8x5GY1GCgoKGBwcJJlMMmnSJKZOncr1119PUVHR7vgICfFfQ4qUhPiCwuEw//d//8cTTzxBR0cHyWQyc8Ky2+2ZzgCKomyT2AEtkWAymTLj1tqsNixWCzabDb1ej9lsxu12YzAYsFgsJBJJsrI8mM1mLBYL8Xgcj0ebHv86jw+DFovEMVtNJJNJDAYDalqla+UgBXO1i3ao0LV6gPxZPoaaR1n/RCs1p5SQVeEgEU4yUB+k6ZluLbGSVBnpjuAu1jo8RQJRklEVV95YFyNVu2PO4jRteW1Go9gcFtLpdOYCFsDo6Gjm4lYqlSaRiBMYDqCiEg6HicVijIxoF+4ikQiRSIR4PL7du+/HkznjFybHh5Sprq6mt7cXVVWZPn06v/zlLznssMO+vDdeCCGEEHvFxx9/zFVXXcXy5csZGhoiHo+TTqcxm83odDoikcgOC8lBSyRYLBZMJhNGoxGTyYTL5QIVXG4Xep0eT5YHvV6PwWBAr9djs9lwOBykUinMZjNOp1MbXjYQxubeMuRrbCSOyWZEGbvwNrR5BEuWEYtbKx7vXx/AW+XUCryvqaPiuHx81U6MdgODG0fY8GgbU88uxV1ip/n1HsoOzs0kkjre76dgrg9Fr2ixnd5APJbAZDECTChyTyQSDPYPYbIYicVimc5GJpOJWCxGPB4nGAiSVtNEo9EJhUbjsdcnL36N0+l06PV6PB4PsViMYDBIYWEhHo+H1tZWKioqOPLII/nf//1frFbr7vkQCCGEEGKPiEaj3HnnnTzyyCNs3LiRUCiU6QZgt9uJxWKZbtc7ynkZjUasVmvmhj6LRevOND7tdLowGneQ84rG8Xi3ynmNFVaDlvMymU2k0lrOK51Q6Xi/j+LFOQCoadj8SjcVR+Qx1DjC+ofamHxqIf6pbuIjCfrrgjS/2MPCq2pRU2kG6oPkTM9CVVXCQ1Ei/XFt6I+xi1ux0ThWjznz3MJDYWxZNtLpNKHRELF4DJ1Ox8jISCbnlU6nSSQSWs5LVQlHxnJewRFUVKLRKJFIhFgs9qk5L7vdjsViIRAIkEqlqKmpycR2M2fO5Oc//zkLFizYTZ8CIYQQQuwp7e3tXHvttbz99tu0t7cTCoWIx+OYTCb0ev0u5bzMZnMm52UxW3A4HSgoWs5Lr8ftdqPT6TCZzOj1ukzOK51OYzKZMjmv0YEQDp89s+9QbwRrlgWdQUHRKfTXD2N06HEVOFAUhd61w3jK7Bgset69dj2Fi31kz3Bj81roXjVI08vdVByVR94ML81vdlNyQC46g9bgoPmVbooXZ6O36Ekmk+jQExuNYfVYgC1NDRRFIR5LMDQ8iNlsJhqNjuW8hjGbTUSjUeLxOIFAQLtmGYtOKDQaj70SicQOc146nY6srKzMfsZzXkNDQ0yZMoVDDjmEn/70p5jN5m22F0LsOilSEmIPWrlyJb///e957733GB4eJpVKMTIygsWiFSWFw2FUVdUKilQ1c9FteyfLT9Lr9RiNRgwGQ+bi0XhQMT6dSqUwmUwYDIbMXfJ6vR6TyZQZnk6v19PS0oLP58Nms5FIJDLdoxKJBMlkMrOvZDKZubsumUySTCYzwdHWyxOJxHYDpq2NJ64sFq2oKZlM4vV6MRgMBAIBEokElZWVBINBQqEQkydP5pBDDuGXv/wlNpvtU/cthBBCiK+eSCTCfffdx2OPPcaGDRu0wpxgEFVVcTi07o2hUCgzrEk8Hs90DtiZ8bhl60Km8YtI49Pjcdb4OqlUKvNY43GawWBgdHSU4eFhSkpKMrGUoiiZwvfxmC2VShGLxTLbji8fv2t+69hrexe5Pmn8wuB4XKfX6/F6vZm79HNycvB4PHR2dpKTk8P06dO55JJLOPDAA7/weyOEEEKI/z4bNmzgzjvv5K233qKjo4NoNEogEMBkMmGz2YhEIpn45/PkvLaOoz4t56XX6zMX78ZzXuPxlcFgoLW1FY/Hg8PhIJFIZPa1vZxXMpnMxFpfJOcFZG5QHB/m1uPxYDKZGB4eJhaLMXnyZEZHR0mn01RVVXH44Yfzwx/+EIvF8mW8PUIIIYT4LxKLxXj22Wd54okn+OijjxgcHCQQCBCPx7HZtNFNRkdHt8l5pdPpXb5Wt72c1/i8T8t5GQwGkskkRqORUCjE0NAQJSUlE7p17iznlUqliMfj6HS6zPR4bLarOS+LxZI5Np1Oh8/nIxKJEAwG8fl8+Hw+hoaGKCsro6amhgsvvJBZs2Z9WW+REGInpEhJiP8AGzZs4KmnnuL999+nsbExcyJNp9OZjkuhUAi9Xo/dbs+c3MeXj0+PBwoA8Xg803FpfBq0Nt59fX3Y7XbsdvuEgERVVRKJRGb+eCDhdDpJp9PEYjGAzN10IyMjOJ1O7HY7w8PDBINBioqK0Ol0BINBcnNzKS8v55BDDuH000+XYiMhhBBC7HWRSITXXnuNV155hXXr1mUusg0NDWXaakciEVRV1bpgjl10G0/cjA+NEo/HMRqNmf1Go1GMRqN2N/5YkZGqqoRCIUKhENnZ2ej12pj3JpPWmXL8QpjVatWGC4nFMu29x7seORyOTHvwcDhMbm4uyWSS4eFh9Ho9+fn5DA8P4/F4KCwsZNKkSZx//vlMmjRpz7+4QgghhBCf0NzczEsvvcSqVauor6+nv78/M9Ss2WzGYDAQDAYxGo3YbLbMhanxGCmZTGZyVOOx13gn7/F4LRaLZfJifX19mY4B44VL4xfbEokENpttwsWzrXNe48Xu8XickZGRzH4CgQCRSITc3FzMZjOJRILCwkLy8vI47LDDOOmkk6TYSAghhBB7XSwWY82aNbz11lusXbuWxsZGAoEAQ0NDmS7l4x0ex4f1Hc95jTc/gIk5L0VRiEQiO815jefLxjsQjee8bDatM+X4PsdjqXA4jN1uz3SQCoVC5ObmkkqlCIVC6HQ6cnJySCQS5OXlkZOTQ3V1NWeeeaYMtSbEfwApUhJCCCGEEEIIIYQQQgghhBBCCCGEEELsVrq9fQBCCCGEEEIIIYQQQgghhBBCCCGEEEKI/25SpCSEEEIIIYQQQgghhBBCCCGEEEIIIYTYraRISQghhBBCCCGEEEIIIYQQQgghhBBCCLFbSZGSEEIIIYQQQgghhBBCCCGEEEIIIYQQYreSIiUhhBBCCCGEEEIIIYQQQgghhBBCCCHEbiVFSkIIIYQQQgghhBBCCCGEEEIIIYQQQojdSoqUhBBCCCGEEEIIIYQQQgghhBBCCCGEELuVFCkJIYQQQgghhBBCCCGEEEIIIYQQQgghdispUhJCCCGEEEIIIYQQQgghhBBCCCGEEELsVlKkJIQQQgghhBBCCCGEEEIIIYQQQgghhNitpEhJCCGEEEIIIYQQQgghhBBCCCGEEEIIsVtJkZIQQgghhBBCCCGEEEIIIYQQQgghhBBit5IiJSGEEEIIIYQQQgghhBBCCCGEEEIIIcRuJUVKQgghhBBCCCGEEEIIIYQQQgghhBBCiN1KipSEEEIIIYQQQgghhBBCCCGEEEIIIYQQu5Vhbx+A2Lf19PQwPDy8tw9DCLGHeDwecnNz9/ZhCCHEV5bEXkJ8tUjsJYQQe4/EXUJ8tUjcJYQQe5fEXkJ8tUjsJT6NFCmJHerp6eHrp34d9Hv7SIQQe4rFYuGBBx6QwEEIIfYCib2E+OqR2EsIIfYOibuE+OqRuEsIIfYeib2E+OqR2Et8GilSEjs0PDwMejBs9KCLGgAdik4BZcs/RacDBVB02rxPLN/xv7FtdAowPq1sNa1ogxEqZKbV8Xlj6289rSpb9qGOD2I4vs/xdSf8HN9ubL2ttlHH96Nos1QFVN1W2ylb9q1O2IYJ20x4fLZsl1n3E9tm/vHp60/YZgfzdvp7Zp46YZ46YZ/qhGnt8dVttmebfY6tp9uyXFFUbbYyPj3+Nm61fOyntmjLejpFHdte3WpaW0f7CKigqJn5OkXVlvGJeYqKDu2foqhjH9WxecpW64/9zPxDRSGNbuyxdEp6bBnoSKMoKvqxx9Mr6bGfKoqS1uZnlm89nc7sW6ekM8dgILWdZWl0gG58f2OPM/5cdKgTHkdbd+xYx37Xo6AAegUUlLHpLT91KOgUHW0dRn57i4fh4WEJGoQQYi/Ya7GXotun4q7M9D4ce6m6rbbdF+KuT6yzL8Zeet2+FXfpGdteYi8hhPhKkpyXNmu7sZeOfSru+uS8fTX22pfirn0x5/XJ2MugpCTuEkKIr5B9JvZSdPtW3LVVXLXPxl66TxwHez/ugq1jrPG3ct+Jvcbjpn0l7pKcl9gXSZGS2CklbEAXMYEyHjToMsGBFjQooNsSNChbLZ+wLDM9/rtu2yBjbFpVxs5UWy1TlbGzkjJ+WtmyjrrVGVQdW2f8hL8lINl6+hO/65RtAoIJJ8OxIqXxQGZHwcS2P5VtAoMdrbuzAGF76+10OTtbdzuBwyeXsfWyTwYK6jbLlPHfP1mkNOGnto4yHgB8MmjYapma+V2dsJ2O8cceTwRt+aewZZtPBgG6Hc5LbzOt3/rkPX5SHv9dUbUT+laBwPjJXK+k0SlKZn3tJ2PraSdxbXvtRK4bCzaMSho96cy+9WPT4/vUgoL0lt/HHnvL7+pWj7Vl/3qUsd+1AEE/Fiho07qx37WfQggh9r49HXupOt2+FXdNWJd9MvbKFCntK3FX5hj23djLoEvvU3HXlvUl9hJCiK8yyXl9ct3xOGffibt2uJx9KPbSfbJISXJeO4u9jEpK4i4hhPgK2uuxl063T8VdW2KNfTj2+mSR0t6Ou/bBnNcn5xl0qX0q7pKcl9gX6Xa+ihBCCCGEEEIIIYQQQgghhBBCCCGEEEJ8flKkJIQQQgghhBBCCCGEEEIIIYQQQgghhNitpEhJCCGEEEIIIYQQQgghhBBCCCGEEEIIsVtJkZIQQgghhBBCCCGEEEIIIYQQQgghhBBit5IiJSGEEEIIIYQQQgghhBBCCCGEEEIIIcRuJUVKQgghhBBCCCGEEEIIIYQQQgghhBBCiN3KsLcPQOz7VFuStA5Ah6JTQNnyT9HpQAEUnTbvE8t3/G9sG50CjE8rW00rWgmdQmZaHZ83tr46vh8UVO2Xsd9B+w/jO9CWp7dso45vN/ZwmfXHpzP7HpvWKVst0xZr/2HC/AnbKKCMP95W88Yfc3yeup3tP239CdvsYN5Of8/MUyfMUyfsU50wrT2+us3223/+6th7pY69DtoLrCjj02Ovz9bLx34qbD0fdIo6tr261fTYu57Zh7rVsamoqGPPTSWdeS7afBWVtKKOfVRVdKjaPj/xM/MPFYU0OoWxddNjy0BHGkVR0aNtp1fSYz9VFCWtzc8snzitG/s4az8VdAoY0KGHscdV0CmK9hPQje9v7HF0qJl/E/ab2eeW3/UoKIBeAQVlbHrLT+2xdLR1yClBCCH2BXs89lJ0+1bclTneLf/2tdhL1W217b4Qd31inX0x9lJ1+1bcpR+LgiT2EkKIrzbJeW01PX54OvapuOuT8/bV2Gtfirv2xZzXJ2Mvg6KXuEsIIb6C9nrspej2qbhrS+ywD8deY+1O9qW4C7aOsdjnYq/0WNy0r8RdkvMS+yL5hIgdSqfTGAwGkpOH9/ahfD4qWwUQu075xE/xn2f8rU/v7QP5VOOR1b7V0M5gMJBO79uvnBBC/Lf6j469JO76Stv3Y699M+4Cib2EEGJv+Y+Ou0Bir6+wfT/ugn019pK4Swgh9p7/6NhL4q6vtH0/9to34y6Q2Et8OilSEjuk0+lIJpNcffXVlJaW7u3DEULsZi0tLVxzzTXodPteMCOEEF8FEnsJ8dUisZcQQuw9EncJ8dUicZcQQuxdEnsJ8dUisZfYGSlSEjtVWlpKdXX13j4MIYQQQoivBIm9hBBCCCH2DIm7hBBCCCH2HIm9hBBCwL7Y+0uI/0JvvvkmV1xxBYcccghutxtFUTjnnHP29mFt14MPPsiFF17I3LlzMZvNKIrCfffdt7cP6wtLJBI88cQTnH322dTU1OBwOHA6nSxYsIDbb7+dVCq1tw9RCCGEEF8Cibv2Pom7hBBCiK8Oib32Pom9hBBCiK8Gibv2Pom7hPhySCclIfaAv/71r/ztb3/DZrNRUlJCMBjc24e0Q1dffTUtLS34/X7y8/NpaWnZ24f0pWhsbORrX/saDoeDww47jBNPPJFAIMDSpUu5+OKLefbZZ/nXv/6FosgIwUIIIcR/Mom79j6Ju4QQQoivDom99j6JvYQQQoivBom79j6Ju4T4ckgnJbFDPp+Pc845B5/Pt7cP5T/eD37wA9auXUswGOTee+/d24fzqe6++26am5vp6+vj+9///t4+nC+N0+nk1ltvpbu7m6eeeorrr7+ev/zlL2zcuJG5c+fyzDPP8Pjjj+/tw9yr5DsvhBB7l/wd/nJI3LX3Sdy1a+Q7L4QQe4/8Df7ySOy190nstXPynRdCiL1L/g5/OSTu2vsk7to18p0XOyNFSmKH/H4/3/3ud/H7/Xv7UPaqJ554goMPPpicnBwsFgsFBQUcfvjhPPHEE7u8j7lz5zJ16lT0ev0XOpZ0Os3dd9/N/Pnz8Xq9WK1WioqKOOGEE3j99dcz673++usoisKvf/1rli1bxpFHHonH49mlyt3DDz+c0tLSL3Sc4+LxOH/605+YN28eTqcTh8NBbW0tl19+OUNDQ5n1ysrKKCsrIxAIcNFFF5Gfn4/dbueggw5i5cqVAHR2dnLWWWeRk5OD1WrlyCOPpKGhYZePpbCwkIsvvhi73T5hvt1u5/LLLwfgjTfe+BKe9X8u+c4LIcTeJX+HJe76IiTu+s8j33khhNh75G+wRmKvz09ir/8s8p0XQoi9S/4OS9z1RUjc9Z9HvvNiZ2S4NyE+xe23387FF19Mfn4+p5xyCj6fj+7ubj744AOefPJJTjvttD16PFdeeSW/+93vqKys5Mwzz8TpdNLR0cHbb7/Nyy+/zJIlSyasv2zZMq699loOOeQQvve979Ha2rrHjjUSiXDEEUfwzjvvUFVVxbnnnovZbKahoYE77riD73znO2RlZWXWj8fjHHHEEUSjUb75zW/S09PDY489xuGHH86yZcs46qijyM/P56yzzmLTpk0sXbqU4447jvXr13/hgMxoNAJgMMifRCGEEGJvkbjr85O4SwghhBCflcRen5/EXkIIIYT4LCTu+vwk7hLiv5N8S4T4FHfffTcmk4nVq1eTk5MzYdnAwMBeOZ6CggLWrFmDzWabsGxwcHCb9V966SX++te/cu655+6pQ8z41a9+xTvvvMO3v/1t7r333gkn90AgsM3Jvquri8WLF/PQQw9lTuCzZs3i5z//OQsXLuTcc8/lD3/4Q6ZC++KLL+b222/n6aef5tRTT/1Cx/rXv/4VgCOPPPIL7UcIIYQQn5/EXZ+fxF1CCCGE+Kwk9vr8JPYSQgghxGchcdfnJ3GXEP+dZLg3IXbCaDRmql+3trfG0TSZTNut5vV6vdvMmz179l4JGpLJJHfeeSdut5ubbrppm+N1u904HI5ttrvhhhsmVBifccYZmf1dc801E1pIji/76KOPvtCx3nnnnTz33HMceuihHHvssV9oX0IIIYT4YiTu+uwk7hJCCCHE5yWx12cnsZcQQgghPg+Juz47ibuE+O8lnZSE+BSnn346P/vZz5g2bRpnnnkmhxxyCIsXL8blck1Y78Ybb2R4eHjCvHPOOYeysrIv/Xhuu+02pk2bxumnn84hhxzCwoULsVqt211/3rx5E6aHh4e58cYbt1nv17/+9Zd6nBs2bGBkZITDDz98QpvFT5OVlUVJScmEefn5+QBUVVVtU809vqyzszMz77777qO5uXnCeieffDIzZ87c7mM+88wz/OAHP6C0tJQHH3xwl45TCCGEELuHxF2fj8RdQgghhPg8JPb6fCT2EkIIIcRnJXHX5yNxlxD/vaRISYhPccUVV+Dz+bj99tv5wx/+kKm+Pe644/jTn/5EeXk5oAUOLS0tE7ZdsmTJlx443HTTTZSXl3PvvfdyzTXXcM0112CxWPjGN77BH/7wB/x+/4T1c3NzJ0wPDw/zv//7v9vs98sOHAKBAACFhYW7vM0ngzHYMm7rpy1LJBKZeffddx9vvPHGhPXKysq2Gzg8++yzfO1rXyM3N5dXX301E4gIIYQQYu+QuOvzkbhLCCGEEJ+HxF6fj8ReQgghhPisJO76fCTuEuK/lxQp/ZcIh8M88sgj1NXVsX79ekZGRrjyyis55phjvvTH6uvr489//jMffvgh6XSaWbNmcemll1JQUDBhvYMOOmi723/ve9/jrLPO+tKPa3dQFIXvfve7fPe732VgYIC33nqLhx9+mMcee4yGhgbWrFmDXq/fpqJ2dzEYDFxxxRVcccUVdHZ28sYbb3Dvvfdy//33093dzQsvvLDN8W+trKwMVVV3+3F6PB4AOjo6dvtjbe3111/fpfX+/e9/c9ppp+H3+3nttdeoqKjYrccVj8e55557ePHFFxkZGaGyspLzzz9/m+rz7dnV79vW1qxZww9+8AMA/vWvf2Xej8+6z6eeeoqVK1dSV1dHb28vRx99NL/85S+3ebznnnuO6667brvH8uSTT05oV/rKK6+wbNky6urq6OjoYObMmdx8883bbLd582buvfde6uvrGRwcxGKxUFpayhlnnMEBBxyww+cuhBB7isReXz6Juz4fibu2tadir8HBQe655x7effddgsEgXq+X2bNn84tf/GLCesuXL+eBBx6gqamJVCpFUVERp512GkcdddSE9XY19gKor6/nr3/9K/X19UQiEfLz8zn++OM55ZRTMu3PV61axWWXXbbD53r++efzne98B4Af/vCHrF69ervr6fV6XnvttR3uRwghdjeJu3YPib0+H4m9JtoTcdeuft9aW1t5+umnqauro6GhgXg8zqOPPrrdi4W7mp/6tHjq9ttvZ+rUqZnpdDrN0qVLefrpp+no6MBisTB58mS+853vMH369M+1TyGE2Bsk9vrySdz1+Ujcta09EXt9lvzUhx9+yH333cfGjRsxGo3MmTOHiy++eEL89VnyU/39/Tz++OOsX7+eDRs2EIlEuOmmm5g1a9Y22+1q7AVaHu2uu+5i7dq1qKrK1KlTueiii6iqqtrp6yZ2DylS+i8RCAS47777yM3NZdKkSaxatWq3PE44HOayyy4jFApx1llnYTAYeOyxx7j00kv561//itvtnrD+3LlzOfrooyfM+0/9wvt8Pk4++WROPvlk+vv7efXVV9m0aRPV1dV75XgKCgo444wz+OY3v0l1dTUvv/wykUhkh+0Y96Tq6mpcLhcffvghQ0NDu9yGcU8YDxq8Xi+vvfYakyZN2u2Ped111/H666/z9a9/naKiIp577jl+9rOfcdNNNzFjxowdbvdZv2+gnZRvuukmrFYrkUjkC+3zoYceIhwOU1NTw8DAwE6f53nnnbdN4ueT4wE//fTT1NfXM2XKFILB4A731d3dTTgc5uijj8bv9xONRnnjjTe48sorueKKKzjxxBN3ejxCCLE7Sey1e0nctesk7trWnoi9enp6uOSSSwA46aST8Pv99Pf3s379+gn7fPvtt7nqqquYOnUq55xzDoqi8Nprr/Hb3/6WQCDAN77xjcy6uxp71dfXc/HFF1NUVMSZZ56J2Wzm/fff5+abb6ajoyOT+CktLeXqq6/eZvsXXniBDz/8cEIC69vf/jbHH3/8hPUikQh/+MMfdinRJYQQu5PEXbufxF67TmKvifZUzmtXvm/r1q3jiSeeoLS0lNLSUhoaGnb4+Luanxp32mmnUVNTM2HeJ7s63HbbbTz22GMceeSRnHzyyYyOjvKvf/2LH/7wh9x6663U1tZ+5n0KIcTeILHX7iVx166TuGtbeyL22tX81LJly/jlL3/J5MmTufDCCwmFQjz++OP84Ac/4J577skUmX2W/FRbWxsPPfQQRUVFVFRUsG7duh0+/q7GXvX19VxyySXk5ORwzjnnoKoqTz75JD/84Q+54447thkeUOwZUqT0X8Ln82U6lmzYsIHvfe97u+VxnnrqKdrb27njjjsy/xO1YMECzjnnHB599NFtHre4uJgjjzxytxzLnvD6669z8MEHT6gSTiQSDA4OAmCxWPbYscRiMVasWMGiRYsmzA+FQoyOjmI0GtHpdHvseD6NwWDgwgsv5Pe//z2XXXYZ9957b+aObtCCXL1ev00By+723HPPcdppp5GVlcVrr722RwLYuro6XnnlFS666CLOOOMMAI466ijOOeccbr/9dm6//fYdbvtZv28AS5cupbe3l+OOO47HH3/8C+3z5ptvJjc3F0VRtrnTf3sWLFjAlClTPnWdq666iuzsbHQ6HWefffYO11u4cCELFy6cMO/UU0/lggsu4LHHHpMiJSHEXiex15dP4q7PR+KuifZU7HXDDTeg1+u58847t1s4Pu6f//wnPp+PG2+8EZPJBMCJJ57It7/9bZ577rkJRUq7Gnv961//AuCWW27JtCo/6aSTuPTSS3n++eczRUper3e7fw/uvfdeioqKJlwU214h0osvvgjAEUccscNjEUKIPUHirt1DYq/PR2KvLfZkzmtXvm8HHHAAzz77LDabjYcffvhTi5R2NT81br/99mPJkiU7XJ5MJnn66adZsmTJhItwS5Ys4fTTT+ell17apkhpZ/sUQoi9RWKvL5/EXZ+PxF0T7anYa1fzU3/5y1/Iz8/n1ltvxWg0Alo8dv755/Pggw9mRnz5LPmp6upqnnnmGVwuF6+//jr/8z//s93H/iyx1z333IPZbOb222/P5PCOOOIIvvWtb3HnnXdyzTXX7PA5it1HipT+S5hMpglDKn2a9957jwcffJCNGzeiKAr77bcfF110UWbM00/z+uuvM2XKlAl/MEpLS5k9ezavvfbadoOVWCwGgNls3sVns+84+eSTcblc7L///pSWlpJIJHjppZeoq6vja1/7GqWlpbu0n7fffpu7774b0Nrpjc8755xzAPD7/dxwww2fuo9IJMIBBxzA5MmTmTNnDiUlJYyOjvLMM8/Q3d3NFVdc8aW8xnfffTdvv/02AB9//HFm3nh7w8WLF3P++efvdD//93//x3vvvccDDzzAe++9xzHHHIPZbKapqYnnn3+et99+e7vjt+4uGzZs4JRTTiEWi7FkyRIefvjhbdYpKyvLvCdfljfeeAO9Xj+hqMZsNnPcccdx55130tPTs814vuM+6/ctGAxy9913893vfpehoaEvvM+8vLzP/HzD4TBms3lCoLi1HT3XXaHX68nJyWHDhg2fex9CCPFlkdjryydxl8RdX4Y9EXu1tLTw/vvvc/nll+N2u4nFYuj1egyGbf/3OhwO43Q6MwVKoCXZtlfYtKuxVygUwmQybZOE8/l8tLW1feq240OanHvuuTt9nJdeegmr1crixYt36biEEGJ3kbhr95DYS2KvL2pP5rxg59+38eLtXfF58lPhcBiTybTdmC+VShGLxbbp8JCVlYVOp9vhMX/aPoUQYm+R2OvLJ3GXxF1fhj0Ve+1KfioYDNLc3MwZZ5yRKVACmDRpEqWlpbz66quZIqXt2VF+ymaz7fSx4bPFXmvWrGHBggUTcnF+v5+ZM2fy7rvvEg6Hd/lxxZdHot+vmBdeeIFrr72W+fPnc+GFFxKLxXjqqae45JJLuOeee7Y7Rve4dDpNU1MTxx577DbLampq+PDDD7f5Ij///PM89dRTqKpKaWkp3/nOd/6j7sS97rrreP755/nggw9YunQpdrudyspKbr/9ds4777xd3s+mTZv429/+NmFeY2MjjY2NgHYi2FngYLfbuf7663nllVd466236O3tJSsri+rqaq677jpOP/30z/4Et+Ptt9/e5ljfeecd3nnnncz0rgQOFouFl156iT//+c88+OCD3HXXXej1ekpKSvj+979PWVnZl3K8u6q7uzsTwD7yyCPbXefggw/+0gOHhoYGioqKsNvtE+aPBwKbNm3abtDweb5vd999N16vlxNPPHGb9/Dz7vOzuOyyy4hEIhiNRubNm8cll1xCcXHx59rXuEgkQiwWIxQK8c477/D+++9zyCGHfKF9CiHEniSx166TuEsjcdcXsydir+XLlwNa4uNHP/oRK1euRK/XM3fuXC6//PIJ3+uZM2fy0EMPcffdd3P00UejKAovv/wy9fX1/PrXv/5cz3HWrFm8+uqr3HDDDXzjG9/AYrHw/vvv8+abb3LRRRd96rYvvfQSsPPuSMPDwyxfvpxDDz10n2jxLoQQu0Lirs9GYi+NxF6f357Mee3t79t1111HJBJBr9czY8YMLrroogndxM1mM7W1tTz//PNMnTqV/fbbj9HRUf72t7/hdDq32xF8Z/sUQoh9ncReu07iLo3EXV/Mnoy9diYejwPbLxg0m81s3ryZgYGBHRY87mp+akc+S+yVSCQm3Dw4zmKxkEgk2Lx5M1OnTv1cxyE+PylS+goJh8PcdNNNHH/88fz0pz/NzD/66KM566yzePDBByfM/6RgMEg8Ht/uH5Txef39/ZmxG6dNm8YhhxxCfn4+AwMD/POf/+Q3v/kNoVCIk08++ct9crvJRRddtNNE/64455xzvvAJyWg08rOf/Yyf/exnO113yZIlqKr6uR7nvvvu47777vtc236S2WzmJz/5CT/5yU8+db3m5uYdLtvR8ygrK/tMz/GLvCZfxI5Owlt/Z7bns37fGhsbWbp0Kddff/0Ouxh91n3uKrPZzDHHHMOsWbOw2+3U19fz2GOPcfHFF3P33Xd/oe5Jt956a2ZIE51Ox0EHHcSPf/zjz70/IYTYkyT2+mwk7vpiJO7S7InYq729HdCGfJsyZQq//vWv6enp4b777uPyyy/n3nvvzbRqP/vss+nq6uKBBx7g/vvvB7QkyP/93/9x4IEHfq7nePzxx7N582b+9a9/8cwzzwBax8kf/ehHnHTSSTvcLpVK8dprr1FTU0NRUdGnPsYrr7xCKpX6j0n4CiGExF2fncReX4zEXnsu57U3v28Gg4GDDz6Y/fffH7fbTXNzM48++ig/+MEPuO2225g8eXJm3auvvppf//rXE4YMKSgo4NZbb6WgoOBz7VMIIfZVEnt9NhJ3fTESd2n2VOy1K7xeLw6HI9Mla1wgEKClpSWzz+095mfJT32aXY29iouLqaurI5VKZa6fJhIJ6urqgC1dycSeJUVKXyHLly9ndHSUww47jOHh4cx8nU5HTU0NK1eu/NTtxytDt27bNm68AnF8HYDbbrttwjrHHnss559/PnfeeWemHZ8Q/+1isdguf2c+uR3s+vftpptuYsGCBcyfP/9Tj+Wz7HNXHXrooRx66KGZ6QMPPJD58+dz6aWX8sADD3DFFVd85n2O+/rXv86SJUvo7+/ntddeI5VKkUgkPvf+hBBiT5LYS4g9b0/EXpFIBNASMtdffz06nQ6AnJwc/vd//5eXX36Z448/PrO/4uJilixZwkEHHUQqlWLp0qVcc801/PGPf/xcd2rp9XoKCgqYP38+S5YswWQy8corr3DjjTfi9Xp3WPy0YsUKBgcHOeuss3b6GC+//DIej4e5c+d+5uMTQoi9QeIuIfa8PZXz2pvft+nTpzN9+vTM9OLFi1myZAnnnnsud95554RuFTabjfLycqZOncqcOXMYHBzk73//O7/85S/585//jMfj+cz7FEKIfZXEXkLseXsq9toVOp2OE088kYceeog77riDY489lnA4zO233565hrejfX6W/NSn2dXY65RTTuEPf/gD119/PWeeeSbpdJr777+fgYEBYEtXKLFnSZHSV8j4Hb8/+tGPtrt8vD1cLBZjdHR0wjKfz5c5yW+vQODT2rqNMxqNnHrqqfzhD3+gvr6eGTNmfObnIMR/GrPZ/Lm+M5/l+/bKK6+wdu3a7Q7x9nn3+UXNmDGD2tpaVqxY8YX2U1pamhmP+eijj+byyy/nF7/4BXfccQeKonwZhyqEELuNxF5C7Hl7IvYa/3nIIYdkCpRAu5vummuuYe3atZkipRtvvJG6ujruvvvuzLqHHnoo3/nOd7j55pu54447PvNzfPDBB3n88cd56KGHMq24Dz30UC677DL+9Kc/sXDhQgyGbf9X/6WXXkKv108oLt+ezs5O1q1bx6mnnrrd/QghxL5I4i4h9rw9EXdtz97+vhUVFbF48WLefPPNzB35yWSSH//4x8yaNWvC36E5c+Zw9tln8/DDD39qB43t7VMIIfZlEnsJseftrdhrR8477zwCgQAPP/wwf//73wGYN28exx13HE8//TRWq3W72+1qfurTfJbY66STTqK3t5eHH36Y559/HoApU6Zwxhln8MADD+zwOMXuJRnHr5B0Og1o7c+8Xu82y8f/5+fVV1/luuuum7DszTffxOVyYTKZMpWFWxuf5/f7P/UYcnJyAK21nBBfBT6fb7utAnf2nfks37fbb7+dJUuWYDAY6OrqAsgE/r29vSSTSfx+/5fyHf4scnJyaG1t/dL2B9rFvxtuuIG2trbPPCydEELsaRJ7/X/27jtOqur84/hn+uzO9t6ABZYqUqQXAcHeNfauaKKxReMvxmiiMWpiNEaNmmLBFnvBAihFUKooXVn6wsL23nennd8fszu67oIssmqS7/v12pfOvffce+bOrvN4znOfI/L9+z5ir7Z/xsfHtzvOZrMRGxtLXV0dEBr8mT17NhdccEG7ZCa73c7YsWN5++238fl8nT7Jtj+zZs3iiCOOCCcotZk4cSKPPfYYxcXFHcplt7S0sGTJEkaOHNnpf4++bv78+QBa6k1E/qMo7hL5/n0fcde+/NB/bykpKfh8Ppqbm/F4PKxfv568vDyuu+66dsf16NGDXr168cUXX3T5nCIiP2aKvUS+fz9k7NUZh8PBrbfeylVXXcWePXtISEigR48e3H333VitVjIzMzu06cr41P50Nfa66qqrOO+888jLy8Pj8dC3b1/+9a9/hdvI909JSv9D2v5j8G1l+0ePHs1DDz3UYbvVaqVPnz5s3ry5w75NmzaRkZHRYaD8mwoLC8N9EPlfkJOTw9q1a2loaGg3wNC21mlOTk6n7bry91ZaWsqCBQtYsGBBh2OvvPJKcnJyeOaZZw7J33BXFBYWHvK/9bbykN98+kJE5MdIsZfI9+/7iL0GDBgAQHl5ebvjfD4fNTU14b+3mpoaAoEAgUCgwzkDgQDBYDA8sNsVVVVVnbbz+/3hc3/T0qVLaWxsPKDEowULFpCZmXlQS9GJiPxQFHeJfP++j7hrX37ov7fCwkKcTmf4yfuqqiqAfcZoncVn33ZOEZEfM8VeIt+/HzL22p+EhIRwwlEgEGDt2rUMGjSo03N2ZXxqfw4m9oqOjm5Xde3zzz8nOTlZBRF+INZvP0T+W4wZMwaPx8OLL74YHsD+urZ1Y5OSkhg1alS7nzZTpkxh8+bN7f5Dlp+fz9q1a5k6dWqHc31dY2Mjb7zxBrGxseGBfZH/dlOnTiUQCPDuu++Gt3m9XubMmcPgwYNJTU0FoKSkhN27d7dre6B/b/fee2+Hn7Yyibfffnu7TOIDPWdXdPb3vmLFCrZs2cKYMWMO6pxtAcbX+f1+PvzwQ1wuF9nZ2Qd1XhGR75NiL5Hv3/cRew0fPpz4+Hjmz58fTqAGmDt3LoFAIPw3HB8fT1RUFEuWLGlXUruxsZFly5bRs2fPgyqnnZWVxeeff05NTU14WyAQYNGiRURGRnb6pNqCBQtwu90ceeSR+z331q1b2b17N0cffXSX+yUi8kNS3CXy/fs+4q4f+u+ts+tv376dZcuWMXr06HC1zLYn8BcuXNju2C1btrBnzx769evX5XOKiPyYKfYS+f59H7HXd/XKK69QUVHBueee2+n+Ax2f+jZdib06s3DhQjZv3szZZ5+t2OsHokpK/0XefPNN6uvrw6XZli1bRmlpKQA/+clPiIqK4uabb+bee+9lxowZTJ8+nbi4OEpKSli5ciVDhgzhpptu2u81zjjjDN5//31uvfVWzjvvPGw2G6+99hrx8fGcd9554ePeeustli5dyoQJE0hNTaWiooI5c+ZQUlLC7bff3uUlDUT+Uw0ePJijjjqKf/3rX1RXV5OZmckHH3xAcXExt956a/i4e++9l3Xr1vHJJ5+Etx3o31tnX+bbtm0DYOzYse2eJDjQc0LovyHbt28HQglCO3bs4LnnngNg0qRJ9O3bF4BrrrmG/v37M2DAADweD1u3bmXOnDmkpKRw8cUXtzvnunXrWL9+PRD6n4umpqbwOYcNG8bw4cMBePDBB2loaGDYsGEkJydTUVHB/Pnzyc/P59prrz2kFZ9ERA6WYi+RH5/vI/ZyOp1cc8013HfffVx//fUcd9xxlJSU8MYbbzB06FAmT54MhMrbn3feeTz11FNcffXVHHfccQSDQWbPnk1ZWRl33HFHu74faOx14YUXcs8993D11Vdzyimn4HK5WLBgAVu2bOHKK6/Ebm//v/m1tbV8+umnTJky5VtjKC31JiI/Voq7RH58vo+4qyt/b/X19bz55psA4SU+3nrrLaKiooiKiuInP/lJ+NgDHZ+68847cblcDBkyhPj4eHbt2sV7772H2+3mZz/7Wfh8AwYMYNSoUXzwwQc0NDQwZswYKioqePPNN3G5XJx99tnhYw/0nCIiPyTFXiI/Pt9H7AUHPj41b948Pv74Y4YNG0ZERASff/45ixYt4uSTT+408elAx6farrVr1y4APvzwQzZs2ADApZdeCnQt9lq3bh3PPfcco0ePJiYmhk2bNjF37lzGjh3LWWeddUD3Xg49izHG/NCdkEPjnHPOobi4uNN9r776Kunp6QCsXbuWf//732zatAmv10tycjJDhw7lzDPPPKCM49LSUh577DE+++wzgsEgI0aM4LrrriMrKyt8zGeffcbLL7/Mzp07qa2txe12M2jQIC644AJGjhx5aN6wyH+IlpYWnn76aebNm0d9fT19+vThyiuvbFdl6IYbbugQNMCB/b115plnnuHZZ5/l3Xff7VDu9EDPed999/HBBx90ev7bbruNE044AYAnn3ySlStXUlRURHNzM4mJiYwfP57LLrusw5qybf3qzGWXXcYVV1wBhLKYZ8+ezc6dO6mpqSEyMpIBAwZw5plnMmnSpP2+dxGR74tiL5Efp+8r9lq4cCH//ve/yc/PJyoqiqlTp/LTn/60w0DL/PnzeeONN9izZw8+n4++ffty3nnndRiwOdDYC2DVqlW8+OKL5OXl0djYSI8ePTjjjDM47bTTOrR95513+Mtf/sIf//hHJk6cuM/7FgwGOfvss4mPj+epp57a53EiIj8ExV0iP07dHXd15e+tqKhon0/tp6Wl8dprr4VfH+j41BtvvMH8+fMpKCigoaGBuLg4Ro4cyWWXXdYhPmxpaeGVV15h4cKFFBUV4XA4GDp0KDNmzGj3NH9Xziki8kNR7CXy4/R9jHkd6PjUpk2b+Pvf/87OnTtpaWmhZ8+enHbaaZx66qlYLJYObQ90fKrt4b/OfP09HWjsVVBQwEMPPcTWrVtpamoiLS2N448/nnPPPVdJjj8gJSmJiIiIiIiIiIiIiIiIiIiIiEi30iJ7IiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCIiIiIiIiIiIiIiIiIiIiIi3UpJSiIiIiIiIiIiIiIiIiIiIiIi0q2UpCQiIiIiIiIiIiIiIiIiIiIiIt1KSUoiIiIiIiIiIiIiIiIiIiIiItKtlKQkIiIiIiIiIiIiIiIiIiIiIiLdSklKIiIiIiIiIiIiIiIiIiIiIiLSrZSkJCL/k5599lksFgvPPvvsD90VERERkf96l112GRaLhV27dv3QXRERERGR/dCYmYiIiMj3Y9euXVgsFi677LIfuisi3yslKcl/pIULF3LGGWeQlpaGy+UiIyOD4447jjlz5rQ7bs+ePfz85z9n7Nix7Y498sgjmTlzJj6fb5/XeO655xgzZgxRUVHExsYydepU3n///S73taSkhOuvv57evXvjcrlITk7mjDPOYM2aNZ0e3zaBs6+fzZs3tzu+beBgfz82m61LfX7jjTe4/vrrOfLII4mJicFisXDRRRd9a7vly5dz4oknkpCQQEREBEOHDuXhhx8mEAjss83777/P1KlTiY2NJSoqirFjx/Lcc8/t9zqH6rPpDhdeeCEWi4UnnnjiW4899thjsVgsvP32299Dz0RERLrufyUmqK6u5oEHHuDCCy9k8ODB2O12LBYLCxYs2Gebu+66a7/x1wcffNBpu6VLl3LaaaeRnZ2N2+2mZ8+enHjiifs8/pvuueee8DX217/OtLS08PjjjzNmzBiSkpKIiopi0KBB3HDDDezevbvTNtu3b+fyyy8nKysLp9NJeno6F198MTt27OjStbtDMBikZ8+eWCwWNm3atN9jGxsbiYuLw+l0Ulpa+j31UERE/td0NXZqm5TY1895553XabvS0lJ+9atfMWTIEKKjo0lMTGTkyJE88MAD1NXVfWs/t27disfjOeDY7pu6Gs94vV7+/Oc/M2zYMCIjI4mJiWHSpEm89tprXb72tm3buP/++5k2bRo9evTA6XSSmprKaaedxqJFizpt821jZ//4xz86tFm1ahW33XYbJ5xwAmlpaVgsFrKysvbbt4ONnfdl9uzZHHvssWRlZREREUGfPn04++yzWbFiRafH19XVcfvttzNw4EDcbjfx8fEcd9xxLFy48KD7cChpzExERA6ViooKnnrqKc444wxycnKIiIggNjaWSZMm8fTTTxMMBju0OZi4a+/evdx7772cffbZ5OTkYLVasVgsbN++fZ99O5gYYn82btzIhRdeGH6fmZmZHHXUUbz66qudvk9jDE8++SRjx44lKioKj8fDqFGj+Mc//tHp8ftTW1vLL37xC4488kgyMjJwu92kpKQwZswYHn74YRoaGjpt19V50YN5n4c67tq7dy9XXHEFGRkZuFwusrOz+cUvfkFVVVWHY79tTNBisdC3b9+D7suh8OSTT2KxWDjnnHO+9dj77rsPi8XCjTfe+D30TCTE/kN3QKSrfvWrX/HAAw+QlZXFqaeeSlJSEmVlZaxevZrFixdz4oknho/dsWMH//73vxk7diynn346CQkJVFRUMHfuXK644gpeeOEF5s2bh93e/k/hlltu4S9/+QtZWVlcddVVeL1eXnnlFU455RT+9re/cd111x1QX3ft2sWECRMoKipizJgxnHnmmZSVlfHWW28xe/Zs3nvvPY477rhO2954443ExcV12J6UlNTu9fDhw7nzzjs7PceSJUv46KOPOOGEEw6ov23uuece1q9fT1RUFFlZWR0Sozrzzjvv8JOf/AS32825555LQkIC7733HjfddBPLli3j9ddf79Dmscce4/rrrycxMZGLLroIp9PJG2+8wWWXXcbGjRt58MEHO7Q5VJ9Nd7nqqqt46aWXeOqpp/j5z3++z+N27drFggULSE9P55RTTvkeeygiInLg/ldigl27dvGrX/0KgKysLJKSkigpKTmgtpdeeinZ2dkdtufk5HTY9ve//52f//zneDwezjjjDLKysti7dy9vvfUWc+fO5Z577uH222/f57XWrFnD3XffTVRUFPX19Qf25lr5/X6mT5/OsmXLGDhwIOeffz4ul4vPPvuMv/3tbzz//PMsX76cwYMHh9t8/vnnTJs2jbq6OqZPn87555/P7t27eeWVV3j33XdZvHgxI0aM6FI/DiWr1coVV1zB73//e5566ikeeuihfR77+uuvU1NTw1lnnUVKSsr32EsREflfcjCxE8CwYcM4/fTTO2wfMmRIh227du1i7NixlJaWMnXqVE444QSam5uZN28ev/rVr3jxxRdZuXIlERERnV7L7/dz8cUXY7Ue3LOrXY1nvF4vxx13HIsXLyY7O5vLL7+cYDDInDlzOPfcc/niiy+4++67D/j6v/3tb3n11VcZPHhwOCl+y5YtvPvuu7z77rs88sgj3HDDDZ22Pe200xg+fHiH7aNGjeqw7aWXXuKRRx7B4XAwePDgA4oND/bz78ytt97Kn//8ZxITEzn99NNJSkpi+/btvPPOO7z55ps8//zz7SbiqqqqmDRpEps2beKwww7j6quvpr6+nnfeeYejjz6ap556ihkzZhx0fw4FjZmJiMih8vrrr3PNNdeQnp7OUUcdRc+ePSkpKeGtt97iyiuvZO7cubz++utYLJYObbsSd33++efccccdWCwWevfuTWxsLNXV1fvt28HEEPvy3nvvceaZZ2K1Wjn11FM566yzKC8v5+233+a8885jwYIFPPnkk+3aXHTRRbz00kukpKRw/vnnExkZyfz587nmmmtYvnw5zz///AFfv7Kykn/961+MGTOGk046ieTkZGpqavjoo4+46aabePLJJ1mxYgUxMTHhNgczL3ow7/NQxl07duxgwoQJlJaWctpppzFw4EBWrVrFI488wgcffMCyZctITEwMHz916tR9nuu9995jzZo1XZ6XPdTOP/98br75Zt555x3Ky8s7zC23Mcbw9NNPA/DTn/70++yi/K8zIv9B/vWvfxnAXHrppaalpaXDfq/X2+51S0uLCQQCnR43depUA5hXX3213b5ly5YZwPTt29dUVlaGt+fl5ZmEhATjcrlMXl7eAfX31FNPNYC54YYbTDAYDG/fsmWLiY6ONunp6aa+vr5dm0svvdQAB3yN/Rk3bpwBzDvvvNOldh999JHZunWrCQaDZtGiRQYwF1544T6Pr6mpMcnJycbpdJrPPvssvL2pqcmMHz/eAObll19u1yYvL8+4XC6TkJDQ7r1WVlaavn37GsAsX768XZtD+dnMnDnTAGbmzJkHdHxX9O/f3wBm9erV+zzmjjvuMID5zW9+c8ivLyIicqj8L8QEbddasGCBqaioMMZ8FY/Nnz9/n23uvPNOA5hFixYd0DW8Xq+JjY01brfbbN68ud2+TZs2GZfLZSIiIkxzc3On7ZuamszgwYPNhAkTzMUXX/yt/fum1157zQBm+vTpHeLj3/3udwYwl19+ebvtQ4cONYB56KGH2m1fsmSJsdlsZtiwYe1i3P05lDHu1+Xn5xubzWaSkpI6/f+DNpMmTTKAmTdv3iG9voiIyNd1NXbKy8sLj3MdqJ///OcGMHfddVe77X6/30ybNs0A5rnnnttn+9///vfG6XSaRx555Fv7900HE8889NBDBjDjx49vNwZWV1dnRo4caSwWS7u48dvMnDnTrFmzpsP2xYsXG4fDYZxOpyksLOzQpqtjQGvXrjVr1qwJxxeAyczM3G+brn7++1JUVGSsVqtJTU01JSUlHa4BmN69e7fbfsMNNxjAnHnmmcbn84W3l5SUmB49epiIiAizZ8+eA7q+xsxEROTHbuHChebdd9/tML5RVFRkevToYQDzxhtvtNt3MHHXnj17zCeffGJqamqMMcZMmTLFAGbbtm37bHMwMcS+DB482ABm8eLF7bYXFRWZlJQUA5jdu3eHt7/11lvhOKGsrCy8vaWlxZx88skGMG+++eYBX9/v93eYd21z4YUXGsDcf//97bYfzLxoV9+nMYcu7jLGmGOPPdYA5tFHH223/aabbjKA+dnPfnZA5/H7/SYrK8sAZv369QfU5mB+Lw/UVVddZQDzl7/8ZZ/HLFiwwABmwoQJh/z6Ivuj5d7kP0ZLSwu33347PXv25F//+hdOp7PDMQ6Ho91rp9PZ6ZNhDocjnCm9bdu2dvvaSjzffvvtxMfHh7dnZ2dz7bXX0tLSwsyZM7+1v83NzcydOxer1RpelqNN//79ueKKKygqKuLNN9/81nMdjI0bN7Jy5UoyMzM56aSTutT2qKOOol+/fp1mmXfmjTfeoKysjPPOO6/d02dut5t77rkHCD1p93XPPPMMLS0tXHfdde2qD8THx/Ob3/wGoEO57UP12exPVVUVkydPxmq18sc//jG83e/388QTTzBu3DhiYmKIjIxkxIgRPPbYYx1KTV511VUAHTK72wQCAWbOnInFYuHKK6/8Tv0VERHpTv8rMUF8fDzTp08nISHhgNt0VWVlJTU1NfTv358BAwa02zdo0CD69+9PU1PTPisk3XbbbeTl5fHss88eVOWDnTt3AnDSSSd1aH/aaacBUFZW1u74DRs2kJKS0qHc86RJkzj55JNZv349S5Ys6XJfvm79+vVkZmYSExPD/Pnzw9srKyu57bbbGDRoULhs+/Tp05k3b1679j169OD4448PP2HXmc2bN7N06VL69OnD0Ucf/Z36KyIisj9djZ0ORtt3+qmnntpuu81mC4//fP07/es+//xz/vCHP/Db3/6WoUOHdvnaBxPPtH0/33777Xg8nvD2qKgo7rjjDowxB7T8V5vLLrus00qOU6ZMYerUqXi9XpYvX97Vt9bB8OHDGTFiRKfjj/tyqD7/3bt3EwwGGTt2bIcKkEcddRTR0dEdPuO2+3z33Xe3qxifkpLCzTffTFNTE88888x36pfGzERE5Mdi2rRpnHLKKR3GN9LS0rj66qsBWLx48Xe+TlZWVng5sQN1MDHEvuzcuZOYmBimTJnSbntaWhpjx44F2sd9bfHAL3/5y3aVc5xOJ3/4wx+AUDXzA2Wz2TrMu7Y5++yzgfZzrAc7L9rV9wmHLu7asWMH8+bNC48pft3vf/97PB4PL7zwwj6Xtvu6OXPmsHfvXsaNG3dQsfbXBYNBbrzxRiwWC2eeeSZNTU3hfR9++CEnnngiSUlJuFwu+vbty//93/91qPLVVhnpqaee2ud12mIyVVGS75uSlOQ/xvz58ykrKwuX/Js9ezb3338/jzzyyD7XYt+XQCDAnDlzADp8UXz00UcAHH/88R3atZXnaztmfyorK/H5fCQlJREdHd1hf58+fQD2uS783Llzuf/++3nwwQeZNWsWtbW133rNr/vXv/4FwIwZM7DZbF1q21X7u2eTJ08mMjKS5cuX09LSckBt9nWfD9Vnsy/5+flMnDiRlStX8vzzz3PbbbcB4PP5OPnkk7n22muprq7mggsu4Kc//SnBYJDrr7+eSy+9tN15Lr30UpxOJy+//DKNjY0drjN37lwKCgo4+uij6d2790H3V0RE5MfmvyUm6IqlS5fy4IMPcv/99/Pqq69SXl7e6XEpKSkkJyezdevWDknybduGDx/ernx0m48++ohHHnmEP/7xj/Tr1++g+nnYYYcBoTjkm5NF77//PkC7BJ7i4mIglPjVWVLUt8WyB2LhwoVMnjwZYwyffPIJxxxzDBCamBs5ciR/+tOfSE5O5uqrr+bcc88lNzeX448/vsOkVttk174GXdq2z5gxo1snjUVERA5WYWEh//znP7nvvvv45z//yYYNG/Z5bNt3+uzZs9ttDwaD4UmhadOmdWjX1NTExRdfzPDhw/n1r399UP08mHimLaZoix2+7lDEE1/XNon29SSdr1u3bh0PP/wwf/rTn3jhhRfYu3fvIbnuodavXz+cTierVq3qEFt+8skn1NXVdUi87u77rDEzERH5T/Ft8UBX4q4f2mGHHUZtbS1Lly5tt720tJRVq1aRnp7O4MGDw9sPJB5YsmQJXq/3O/ftvffeA9rPsR7svGhX3+ehtGjRIgCOPfbYDuNf0dHRTJw4kcbGRlauXPmt52qbl/2uCT/Nzc2cffbZPProo1x77bW88cYb4aWcf//733P88cfz6aefctJJJ3HDDTeQk5PDgw8+yMSJE9vNJY8aNYrhw4eTm5vLsmXLOlynoqKCWbNmERsbyznnnPOd+izSZT90KSeRA9W2DMWvf/1rM2TIEAO0+5k8ebIpLS3ttG1ZWZm58847ze9+9ztzzTXXmJycHAOYCy64oN1x9fX1BjBRUVH7PA9gUlJSvrW/jY2NxmazGavVaurq6jrsv/HGGw1gxo4d225721IY3/yJjo42jz322Ldet+3acXFxxmazmfz8/ANqsy8HUiZx1KhRBjCff/55p/sPO+wwA5hNmzaFtyUlJRnAlJeXd9rG4/EYwDQ0NBhjDu1nY0zH0tXr1q0z6enpJiYmpsPSKW3LuVx33XXG7/eHt/v9fnPFFVcYwMyaNatdm3POOWefpbHbyl2+/vrrB9RXERGRH4P/1pigM11Z7u2bPy6Xy9xxxx2dLoP22muvGafTaaKjo80ll1xifv3rX5uLL77YREVFmZEjR3ZaLry6utr06NHDTJ48OXzOA+nfNwWDQXPmmWcawAwePNjccMMN5pZbbjFHHXWUcTgc5vrrr2+3NMiWLVsMYFJTUzt9L6eddpoBzLnnnntA1//mcm8vvPCCcTgcZtCgQWbXrl3tjp0yZYqxWCwdlgasqqoyw4YNM2632xQXF4e3+/1+k5GRYSwWi9m5c2e7Ni0tLSY5OdnY7XZTVFR0QH0VERE5FLqy3FtnP1OnTu2wrIUxoeW7BgwYYAAzbdo0c8stt5gbbrjBDBw40MTFxZlnnnmm02vdcMMNxuVymS+//PKA+9eZrsYzbUv+zp49u8O53n777fD7bWxs7FI/vmnXrl3G5XKZyMjIdssBG/PVGNA3f2w2m/nZz35mmpqavvX8dHGplu+67Mhf//pXY7FYTHJysrnqqqvMr3/9a3P22Wcbl8tljjnmmA7LwKWnpxsg/Pl+81xtcd2B0JiZiIj8p/L5fOH5ww8++KDdvoOJu77pQJZ7+6auxhBf98knn5iYmBjjcrnMOeecY37961+bK6+80iQlJZmcnByzatWqdseff/75BjCPP/54h3OtXbs2/H5zc3O71A+fz2fuvPNOc+edd5rrr7/eDB8+3ADmqKOOahdHHey8aFff5zd9l7jrlltuMYB58MEHO91/7bXXGsA88cQT+z3Pnj17jM1mM7GxseExzAPxzeXeKioqzMSJE43FYjF/+tOf2h3btuzv+PHjTVVVVbt9bfHbL37xi3bbn3jiiX0uJ9e2LPO11157wP0VOVSUpCT/Ma6++urwAMLhhx9ulixZYurq6syGDRvC64VOmTKl07a5ubntAg6LxWJuueWWDmupFhQU7Ddg8Hq9BjBOp/OA+nz00UcbwNx0003ttm/bts1ER0cbwPTv37/dvqefftq8+uqrZvfu3aapqcns2LHDPPjgg+Hj//nPf37rdZ999lkDmJNOOumA+rk/B/Ll3q9fv/0GZhMmTDCAWb58eXibw+EwQLvJsK/LyMgwgCksLDTGHPrP5usDLvPmzTPR0dEmIyPDrFu3rt1xgUDAJCQkmLS0tE77WlVVZSwWizn77LPbbW9bx3XixIntthcWFhq73W5SUlL2uZaviIjIj9F/a0zQmQNJAnrrrbfMM888Y3bu3GmamprM7t27zZNPPmlSU1MNYG677bZO2y1dutT06NGjXWyamppqHnvsMRMIBDocf/HFFxuPx2N27NjRpf51JhgMmjvvvNPYbLZ2158+fbpZsWJFh+PbPs+HH3643fZly5aFz3Hsscce0LW/nqT0xz/+0VgsFjNp0qQOk4jr1q0zgDnrrLM6Pc+sWbM6HXC74447DGBuv/32dttfe+01A5gzzjjjgPopIiJyqBxI7FRSUmJ++9vfmtWrV5uqqipTVVVlPv74Y3PUUUcZwOTk5Jj6+voO7aqqqswZZ5zRYazrpz/9aacPqy1YsMBYLBZz//33d6l/+9KVeOaee+4xgJkwYUK7RKT6+nozevTocPu2WO9gNDc3m4kTJxrA/PnPf+6wf/HixeZvf/ub2bJli2loaDCFhYXmtddeM3379jWAOf/887/1Gt93kpIxoSSu+Pj4dvc5JyfH/Pvf/+5w7JVXXhmOob6eLFRaWmp69uypMTMREfmf8Mtf/tIA5sQTT+yw72Djrq/7vpOUjDHmyy+/DD/01/YTHR1t7r333g6J1i+++KIBTN++fU1FRUV4u9frDScCf3Nc7kA0NTV1SOy6+OKLO01EOph50a6+z2/6LnHXVVddZQDz5JNPdrr/N7/5jQHMfffdt9/z3HXXXQeV8PP1JKVdu3aZgQMHGofDYV588cUOx55++ukGMF988UWn5xo+fLhJTk5ut62mpsZ4PB4TGRlpampq2u0bPHiwAcz69eu71GeRQ6HzWnciP0Jty1LY7XbeffddsrOzATj88MN5++23GTBgAB9//DErVqxg/Pjx7doOHDgQYwyBQICCggLefvttfve737F06VJmz55NQkJCt/T54YcfZuLEifz1r39lxYoVTJw4kbKyMt5880369evHunXrOpQPvOKKK9q97tOnD7/85S8ZMGAAp5xyCrfffvu3LuHWVlLwZz/7WYd9u3bt4tlnn+2w/a677ur6G/wv8MYbbzBv3jz69evH3Llz6dmzZ7v9W7dupbKykn79+nHPPfd0eo6IiAhyc3PbbZs2bRp9+/Zl2bJl5ObmMmjQIABmzpyJ3+/nsssu2+daviIiInJozZo1i3Xr1rXbNnz4cE4//fSDPucZZ5zR7nXPnj258sorOeKIIxg3bhwPPvggN998M0lJSeFjXnzxRa666irOPPNMfvvb39KrVy92797NH/7wB6677jo+/vhjXnvttfDxb775Ji+88AKPP/54p6W6u6K5uZlLLrmEuXPn8vjjj3PaaacRGRnJsmXLuOGGG5g8eTKvv/46p512WrjNP/7xD0444QR+8Ytf8P777zN8+HD27NnDW2+9xeGHH95pLPttbrrpJmbNmsVPfvITXnzxRdxud7v9bcs419TUdBqflpWVAXSIva688kruu+8+Zs6cye9///twrNy2NFzbknAiIiI/JikpKdx9993ttk2ePJl58+YxadIkPv30U5566iluvPHG8P5du3Zx6qmn0tTUxJw5c8JLULzzzjv88pe/5J133mHFihXhpbKqq6u57LLLGDt2LL/85S+/c5+7Gs/ceOONvP766yxfvpzDDjuME088EWMMs2fPxmKxEBsbS01NTTimWLx4MYsXL253zezsbC677LJO+xMIBLj44otZtmwZ5557LrfcckuHY6ZMmcKUKVPCryMjIzn77LMZN24cw4YN4+WXX+bWW29l2LBh3/n+HCp//vOf+c1vfsMNN9zAddddR1paGps3b+a2227jwgsvZN26dfz5z38OH3/33Xfz4Ycf8sYbbzB8+HCmT59OQ0MD77zzDpmZmeTn53c5btOYmYiI/Cd59NFH+ctf/sLAgQN54YUXOuw/mLjrhzZ//nzOO+88Ro0axfPPP8/AgQMpLi7mscce4/bbb2f27Nl8/PHH4aXtzjvvPF544QU+/PBDBg8ezGmnnYbb7WbBggUUFRXRs2fPdjHBunXrmDVrVrtrxsXF8Ytf/KLdNrfbjQkVPqGwsJAFCxZw2223MWrUKD744IPwfC0c3LxoV9/nj00wGOTpp58GOp+XPRBbtmxh/PjxNDQ0MHfuXKZPn97hmBUrVuBwOHj99dd5/fXXO+z3er2UlZVRUVERXn45JiaGc889l2eeeYZ///vfXHPNNQAsX76cTZs2MWbMmHZL9ol8b37YHCmRA/erX/3KAGbcuHGd7p8xY0anT3rvy8svv9whq7U7lg/Zvn27ueSSS0x6erpxOBymV69e5o477jBLliwxEFqm7kBlZmYawGzYsGGfx3zxxRcGMFlZWe2enGrTllH8zZ99+W9d2qXtqbCEhAQDmMsvv7zTpUyWLl3a6f365k92dnaHtn/84x8NYG6++WZjTKh6QZ8+fYzFYulSpr2IiMiPwX9yTNDZcrqdlTn+5vFdrVTUpu1J/nfffTe8bcuWLcbhcJiRI0d2qDAQCATMyJEjDWAWLVpkjAmVd05KSjLTp0/vEKMcTP/aluJ45JFHOuxrq17Uq1evDvvWrFljzjzzTJOUlGQcDocZMGCAeeihh8yrr75qAHPJJZcc0PXb+twWe3W2vIcxX1Vb+Lafyy67rEPb4447rt19z8vLMxaLxfTq1avTKlUiIiLd6btW0nnyyScNYM4888x229ue4O/sieeHH364Q5xz+eWXm4iICLN58+bv3L+uxjNt6urqzG233Wb69etnnE6nSUxMNBdffLHZu3eviYqKMna7PVw5p7MldfdVOd3v95vzzjvPAOacc87ZZ2XO/bnwwgsNYB599NH9Hsf3WEmprW1nlSAbGhpMZmamsVqt7SptGmNMcXGxufbaa02vXr2Mw+Ew6enp5rrrrjPbtm0zgOnZs+cBXV9jZiIi8p/mb3/7m4HQ8vYHs9T7vuKub/o+KylVVFSY+Ph4k5mZ2enyYW1Vdb45vuL1es2f/vQnM2TIEONyuUxsbKw57bTTTG5ubnhcbufOncaYzpfE7WxsqDMrVqww0PmKLl2ZFz3Y9/l1P/Ryb++///5+56/3p62SUlvcNXz48A5Vx9vY7fYDir127drVrl3bZ3XEEUeEt11++eUGME899VSX+yxyKHTt8QmRH9CAAQOAUBZvZ+Lj4wFoamo6oPOdcMIJAO2ezvJ4PGRmZlJfX09RUVGHNtu2bQOgf//+B9pt+vbty3PPPUdhYSFer5ddu3bxhz/8ga1btwIwevToAz5XcnIyAA0NDfs8pq2K0r6qLU2dOjWc8fz1n++i7bNpe09f5/f7ycvLw263t6sAsL82RUVFNDQ0kJWVRWRkJNA9nw3Afffdx6mnnsrMmTO54oorwhW72sTGxgKhagmd3be2n7y8vA7nvvzyy3E4HDz//PN4vV4++ugjdu7cyVFHHUVOTk6X+ikiIvKf4McaEzz77LMdvrs7qyx5qHQWs82bNw+fz8eUKVM6PDFmtVqZPHkyAKtXrwYgPz+f8vJyFi5ciNVqxWKxhH+ee+45AI455hgsFgsPP/zwt/bp/fffB+Coo47qsG/YsGHEx8eze/duKioq2u0bMWIEb775JmVlZXi9XjZv3sxNN93EF198AXQtloVQVaucnBxmzJgRrnL0dW2x1yOPPLLf2GvmzJkd2v70pz8Fvqqe9PTTT2OMYcaMGV2uHCAiIvJD6yyeqKur4+OPPyYhIaHTJ57bvufb4gmANWvW0NTUxMCBA9vFE23H/vvf/8ZisTB8+PBv7VNX45k2UVFR3HfffWzdupWWlhbKy8t5/vnnaWlpob6+nmHDhoUr59x1110dvve/WVkJwOfzcf755/PKK69wwQUX8NJLLx3U0/UHMtb2fdtf3BYZGcmYMWMIBoOsXbu23b7U1FQee+wxdu3ahdfrpbCwkL/97W/k5+cDXY/bNGYmIiL/CR5++GGuv/56hgwZwqJFi0hLS+vyOX6M8cDy5cupqqpi7Nix4TGxr+ss7gNwOBzceuutbNy4kebmZqqrq5k1axbZ2dls27aNpKSkcMXNyy67rMP39q5duw6of+PGjSMuLq7TOK0r86IH+z4Plf2NS8KBzT3ub3WbA3XKKadw3333sW7dOqZPn95hfA5CsVd8fPx+4y5jDL169WrXbty4cQwdOpQ1a9awZs0a6urqeO2114iJieG888476D6LfBcaqZX/GNOnT8disbBp06YO/1MMhCdK2r5cv01BQQFAhwGMadOmAfDBBx90aDN37tx2x3wXbeUmL7jgggM6vqamhs2bN2OxWPb5Hpubm3nhhRew2WzMmDHjO/fxQO3vnn3yySc0NjYyYcIEXC7XAbXZ133ujs/G5XLxxhtvcPbZZ/Pss89y0UUX4ff7w/sHDhxIXFwcK1euxOfzdencqampnHrqqZSXlzNr1iyeeuop4KsJNBERkf82/8kxwaHi8/lYs2YNQLtkrJaWFuCr5cq+qW270+kEIDExkRkzZnT6069fPyCUdD9jxgyGDBnyrf3a3/VbWlqoq6trd/1ve48vv/wyDoeDs84661uP/7oePXrwySefMGDAAH72s5/x+OOPt9s/btw4AJYsWdKl8wKceuqppKWlMWfOHPbs2cPMmTOx2WwdllMWERH5T7By5UqgfTzh9XoBqK2tDf/7130zngA488wzO40nTjzxRCA0iTRjxgzOPPPMb+1TV+OZb/P8888DBz421sbr9XL22Wfz+uuvc8kll4THwg7Gp59+CvCdl9Y9lH4s91ljZiIi8mN3//33c9NNNzF8+HAWLVpESkrKQZ2ns7jrh3ao44FXXnkFr9fL+eeff0j6V1dXR21tbZeSxDubFz3U77Or2pKg5s2b12Huua6ujmXLlhEZGRker/qmwsJCZs+eTWxsLOeee+536sttt93GX//6V9auXcvUqVMpKSlpt3/cuHFUVVXx5ZdfdvncV111FQBPPfUUL730Eg0NDVxwwQV4PJ7v1GeRg9YN1ZlEus2pp55qAPPQQw+12/7hhx8ai8Vi4uLiTHV1dXj76tWrO13yrK6uzhx99NEGML/5zW/a7Vu2bJkBTN++fduV1MvLyzMJCQnG5XKZvLy8dm3KyspMbm6uKSsra7e9ubnZNDc3t9sWDAbDy1ice+657fYVFRWZPXv2dNrftpKGxxxzTCd3JuT55583gDn55JP3eUxXHUiZxJqaGpOUlGScTqf57LPPwtubmprM+PHjDWBefvnldm127txpXC6XSUhIaHc/KysrTd++fQ1gli9f3q7NwXw2+9JWxrKtRKTf7zcXXXRRuKRnW5lxY4z57W9/awBz9dVXm8bGxg7nKiwsNF9++WWn1/nggw8MYMaMGWNcLpdJSkoyLS0tB9RHERGRH5P/1pigM9+2nFptbW2HJVOMMaalpcX8/Oc/N4AZOHBgu2VQPv30UwOYiIiIDsuzrF271rjdbmOxWMwXX3zxnfpXXV1tcnNzTWFhYbvt11xzjQHM9OnTO8Snv/71rw1gRo8e3W57fX19h1ja5/OZq6++2gDm1ltv/da+frPPbZ9LaWmpGTp0aKcltY888khjtVrN008/3em5NmzYYEpKSjrd1/ZejjzySAOYU0455YD7KCIicigdSOy0evXqTpckXbBggXG5XAYwy5Yta7dv0KBBBjB33HFHu+1NTU1m6tSpBjD/93//9537l5uba3Jzc9ttO9h4pqampsP5582bZ9xut+nbt6+pr6//1v62aW5uNieeeKIBzIwZMw5oSdevx6VtAoGAue+++wxgkpKSOu3j19ENy715vV6Tm5trtm/f3m5727K6qampZu/eve32zZkzx1gsFuN2u9stlxwIBExdXV2Hazz//PPGYrGYCRMmHPDytxozExGR/wR33323AczIkSNNRUXFtx5/MHHXN3XXcm/bt283ubm57b5jCwoKjN1uN1ar1Xz44Yftjs/PzzfJyckGMLNnz263r7OYZu3atSYpKcnEx8ebgoKCA+77hg0bTFNTU4ftLS0t5pJLLjGAueCCC9rt6+q86MG+z6/7LnGXMcYce+yxnS7/e9NNNxnA/OxnP9vnedt+D6+77rp9HrM/bcu9fX255r///e/GYrGYAQMGtPu8FixYYAAzfvz4Tj/H+vp6s2LFik6vU1VVZSIiIkxsbGx4PG716tUH1WeRQ6HrNXBFfkCPP/44a9eu5eabb2b27NmMGDGCvLw8Zs2ahc1m46mnngqXGga4++67WbZsGRMmTKBnz55ERkayZ88e5s6dS3V1NRMmTOC2225rd40JEyZw880389BDDzF06FDOOussvF4vr776KpWVlfztb38jOzu7XZvHHnuM3//+99x5553cdddd4e3btm3jyCOP5JhjjiE7Oxufz8fChQvZuHEjkyZNCpcAbLN582aOPvpoxo8fT//+/UlJSaGgoID58+dTXFxMnz59wk8WdabtfN/1qaNZs2Yxa9YsAIqLiwFYsWIFl112GQBJSUk8+OCD4eNjYmJ48sknOeuss5g6dSrnnXceCQkJvPvuu2zZsoWzzjqrQwZx7969eeCBB7jhhhsYNWoU5557Lk6nkzfeeIO9e/fyy1/+kvHjx7drczCfzYGy2Ww899xzuN1unnrqKc4880zeeOMNXC4Xv/3tb1m/fj3/+Mc/eO+995g2bRqZmZmUlpaybds2li1bxr333svgwYM7nPfYY48lOzubVatWAXDdddd1W8a3iIjIofa/FBPccsstlJeXA7B06VIAHnjgAV588UUATj/9dE4//XQAKioqGDRoEKNGjWLQoEGkp6dTVlbGokWLyMvLIykpiZdffrndMihjxozh8ssvZ+bMmYwePZozzjiDXr16sWvXLmbNmoXX6+UXv/gFhx12WJf6/U1vv/02l19+OZdeemm7Je1uv/123nvvPRYuXMjAgQM5/vjjiYiIYNmyZaxatYqIiAgeeeSRdudatGgRV155JUcffTRZWVnU19fzwQcfsGPHDs466yz+8Ic/HHQ/k5OTWbRoEccddxy33HILzc3N3H777QC89NJLTJs2jRkzZvDoo48yduxY4uLi2Lt3Lxs2bOCLL75gxYoVnT4hedVVV3H//feHKzHpaXwREfk+dTV2uvnmm9m2bRsTJkwgKysLgA0bNvDRRx8B8Ic//IEJEya0u8ajjz7KSSedxD333MP8+fOZMGECTU1NzJ07l927d5OTk8Ott976nd/LoEGDADDGhLcdbDwzcOBAhg4dysCBA3G73axZs4YFCxaQlpbGO++806UnuK+++mrmzJlDUlISmZmZ3H333R2OmTp1KlOnTg2/Hj16NEOGDGHYsGFkZmZSU1PDsmXL+OKLL4iMjOTf//43MTEx7c6xefNm/vSnP7XbVlVVFf4sAR588EGSkpLCr7v6+RcUFDBo0KDwPWxz1llncfTRR7NgwQIGDRrEGWecQVpaGrm5ubz//vsYY/jTn/5EYmJiuE1jYyOpqakcc8wx9O3bF6vVyrJly1ixYgWDBg3i9ddfP+jlbzVmJiIiPzbPPfccv/vd77DZbBx55JE8+uijHY7Jzs5u9719MHEX0O4cmzdvBuDWW28lOjoagCuvvJJJkya1O6arMcT06dPZvXs3eXl54fGsjIwMfvvb33LnnXdywgkncPLJJzNw4ECKi4t56623qK+v54wzzghXx2xzzDHHEBERwZAhQ4iOjiY3N5fZs2cTERHBe++9R0ZGxr5uawdPP/00M2fOZOLEifTq1Yu4uDgKCwuZN28excXFDBgwoF1sA12fFz3Y93mo4i6AJ554ggkTJnDDDTewcOFCBg0axKeffsqiRYvo378/9957b6f3JxgM8vTTTwOHdvzp6quvxu12M2PGDCZPnsxHH31Ez549mT59On/605+47bbb6NevHyeeeCK9e/emvr6e3bt38/HHHzNp0qROK8/HxcVx9tln8/zzz7NhwwZGjhzJEUccccj6LNJlP3SWlEhXlZaWmuuuu8707NnTOBwOk5iYaE4//XTz6aefdjj2/fffNxdeeKHp16+fiYmJMXa73SQnJ5vp06ebf/7zn8bn8+3zOjNnzjSjRo0ykZGRJioqykyePNm89957nR575513GsDceeedHfp6wQUXmN69exu3222io6PN2LFjzWOPPdbptfPz881Pf/pTM2LECJOUlGTsdruJiYkxo0ePNvfcc4+pra3dZ383bdpkAJOVldVp9aiuaHs/+/rp1atXp+2WLl1qTjjhBBMXF2fcbrcZMmSIeeihh/bbn3fffddMnjzZREVFmcjISDNq1Cjz7LPP7rd/Xfls9ncOvvZUWJtgMGiuu+46A5hjjz02/BRYMBg0zz//vJk2bZqJj483DofDZGRkmIkTJ5p7773X5Ofn7/NabRniQKdVF0RERH6s/hdigja9evXa73v9epxXU1Njrr/+ejN27FiTmppqHA6H8Xg8ZujQoebWW2/dZ5WfYDBoZs6caaZMmWLi4uKMzWYz8fHxZtq0aR0qTO3P/ioptcU4X38Cq01paan55S9/aQYOHGhcLpdxOBymZ8+e5rLLLutQKcEYY7Zs2WLOPPNMk5WVZZxOp4mLizNTp041L774ogkGgwfc36/3+ZsVrmpqasyECRM6VISora019957rzniiCOMx+MxbrfbZGdnmxNPPNH885//3G/FhbaKqYciLhYREemKrsZOTz31lDnppJNMr169jMfjMU6n0/To0cOcc8455pNPPtnnddavX28uuugi06NHD+NwOIzb7TaDBw82t912m6mqqjqgvn7bE+dtff6mg4lnbrnlFjNkyBATHR1t3G63GTBggLn11lsPqOrBN7VVMDjQuK3t+pMnTzbp6enG5XKZiIgIM2DAAHPttdeaHTt2dHqdtvuzv59vxjVd/fzbnpzvLKb2er3mr3/9qxk7dqyJjo42NpvNJCcnm5NOOqlDlYG246+44grTv39/ExkZaSIjI82wYcPMvffeaxoaGrpyizVmJiIiP3rf9p0LmClTprRrc7Bx17dd55vflwcTQ7SNSXVWFXzWrFnm+OOPN0lJScZms5no6Ggzfvx488QTT3Q65vHnP//ZHHHEESY2NtY4nU7Tu3dv8/Of/7zTVVy+zdKlS82MGTPM4MGD28V9EydONA888ECnMUZX50UP9n0eyrjLmND87GWXXWbS0tLC42U33nhjuwru3zRnzhwDmHHjxu3zmG/TWSWlNi+99JKx2+2mV69e7WLWJUuWmLPPPtukp6cbh8NhkpKSzLBhw8xNN93UaQXRNkuXLg3fn3/+858H3WeRQ8FizNcehxERERERERERERERERERERERETnEDq7Gq4iIiIiIiIiIiIiIiIiIiIiIyAFSkpKIiIiIiIiIiIiIiIiIiIiIiHQrJSmJiIiIiIiIiIiIiIiIiIiIiEi3UpKSiIiIiIiIiIiIiIiIiIiIiIh0KyUpiYiIiIiIiIiIiIiIiIiIiIhIt1KSkoiIiIiIiIiIiIiIiIiIiIiIdCv7D90BETk0iouLWbJkCXv37mXv3r1UVFRgs9loaGigpqYGYwx1dXXU1tYyYMAAioqKKCwspFevXiQkJLB48WKMMYwfP549e/aQkJBAcXEx5eXljBs3DofDwdq1a3E4HAwfPpzGxkYqKiqw2+1kZmZSVVVFeno6TU1NREVFMWDAABITE+nfvz/jx4/H6XT+0LdIRERE5JDw+Xxs2bKFL7/8ksrKSnbs2EFLSwtWq5Xi4mJ8Ph91dXVYrVYsFgsRERHs3r0br9dLTk4OTU1N5ObmEh8fT2xsLNXV1fTo0YP169fjdDoZMWIEFRUVVFVVkZSURFJSEoWFhcTExOBwOLBYLKSlpWGMwefzkZSUxIABA0hOTmbYsGH07Nnzh75FIiIiIodMdXU1ubm5FBUVUVRURHFxMTabjWAwyLZt2/D7/Xg8Hqqrq7Hb7dTU1BAIBAgGgyQkJLBlyxYsFgs9e/akoKCA2NhYGhoa8Pl8ZGZm4na7qaysxOl0EhsbS0tLS/gYl8uFx+MhOzub8vJynE4nI0eOJC4ujh49ejBgwADsdg2xi4iIyH+HQCBAcXExe/bsoa6ujoKCAhoaGnA6nRQWFrJ7927cbjfR0dHk5eURDAaJiorC6/XS0NCA3+/H7/dTXV0djrF69epFU1MTgUCAxMREGhsbSUpKoqqqCo/HQ1RUFGlpaezduxebzcbo0aOJiIhg586d9O7dm969exMdHU3v3r1JSEj4oW+RiBwCFmOM+aE7IfK/rLi4mPfee4+VK1eyefNmysrKqKysxOv1kpCQQFlZGY2NjcTHxxMZGUlBQQEAcXFx+Hw+GhoafuB38O0sFgvGGBwOB9HR0TQ3N9PY2EhaWhoej4cdO3ZgsVgYPHgwfr+foqIi4uLi6NWrF1FRUYwaNYoJEyYwbdo0JTuJiIjIQfP5fKxevZrly5ezbt068vLyKC0tpaamBpvNBkBJSQnBYJCMjAwaGhrCgyput5u6ujoCgUA4tvmxi46Oxul0UlFRAUCfPn1obGyktLSUpKQkMjMz2bNnD5GRkaSnpxMXF8ewYcM44ogjGD9+vJKdRERE5Duprq5m5cqVbNy4kU2bNrFnzx7Ky8uprq7GZrNRVVVFQ0MDHo8Hj8dDQUEBxpj/yDEvu91OTEwMLS0tNDQ0kJKSQnR0NLt378Zut9OnTx8A/H4/8fHxJCYm0qtXL8aMGcNhhx3GiBEjlOwkIiIiBy0QCJCfn8+XX37J1q1b2b59O6WlpZSVlVFVVUVzczNVVVV4vV6io6NpamqipqYGh8OB2+2mvr4ev9//HzfmVVVVhdVqpUePHuFEqejoaFJSUggGg6SmphIZGUliYiITJkxg4MCB9O/fX8lOIj8w/Z+PSDfYvn07zz//PMuWLWPXrl1UVVVRV1cHQExMDLW1tfj9fmw2G4FAYJ/naQsIANxuN5GRkeF9/fv3x263s2L5CmKiY5ly1GT8fj8L5nzECacdR1RUFMs+Wk55URU/ufQ0rFYr786cixUbZ11zKi0tLSx6ZgVHnH4Yvfr0pHB7MdvfLSZtdALDjx1IbWU9q/7+Bc00c9RNo/H7/cz520dEJjmZct5E6urqmP3cfKafeyTR0dGsW7OB3DWbOe2CkwF486W3MQQ56YwTaWhoYP68+Rx22GFERERQsLeA/MZ8oqOjw+/fGEN+fj5NTU34/X5qa2vJz88HYO7cuQDY7Xb8fj8AWVlZABQWFuLxeBg0aBBer5dhw4Yxbdo0Tj75ZAUZIiIi/wN8Ph8LFizggw8+YO3atRQVFVFaWkpzczNutztcTRLAarUSDAY7PY/dbsftdodjE5fLhdvtprq6mrS0NNLT06mpqWHLpi1MP2Y6kZGRfDhrPlasnHr+yRhjmPvKfI6YPJQ+/fpQVVXFirfWcOylU/B4PCx4ahkWr4VjrpuE3W5n2cPrceBgzM+G4ImPYM07W6jIrWHATzJIyU5i+6btbJqbx7SfjsfusPP243MIEuDkK4/F7/cz69nZ9BnWg8GHD6ampoaF7y1i2slTsVqtzH53DgbD0KFD8Xq9VFRU4HQ4sdlsWCwWgsEgTU1NbN68maamJoBw3PXhhx+G74nD4cDn8xEVFUVqaiqFhYXhKgRxcXFkZWUxceJEpk+fzuGHH96dH7OIiIj8SJSXlzNnzhxWrlxJbm4uBQUFVFZW0tTUREREBLW1tfh8vm8d84qIiMBqteL1eomPjyciIgK7LTTu0y+nH06Xk1XLPsOCleNPPZZgMMiS95cz+ZSJxMTE8OXaXAo3lXL8JdOw2+0seGYJVmyccM1R+Hw+lj+1jpyjMsgZkUNhbgm75lYQ1yeKEWf2p6GiiTUzc/HjZ9wvhhAIBFj0t08xbsPUGWNobGzko5nLGXPWUGLjYtm+dQdffrKFYy6YCsCclz4kSJDpZ0ylsbGRRR8upv/AfkRHR1NaUsrOnTuJjY0lEAiEqwns2bMnPOb1dX//+98B2t2vzMzMcBJXW9WA2NhYxo0bx+jRo5k0aRJRUVHd8vmKiIjIj0cgECA3N5dPP/2UDRs2sG3bNgoLC6msrKS5uRmfz0dtbS3BYHC/Y142m42IiAjq6+sBSExMJCIigurKGpLSkujRswcN9Q1s35jHxKPH4fF4WDbrU6zYmHb+kQAseXkVGYencPiYwdTW1LH+jS2MuWAYsfHRrHphPf5aGH/NMBx2B6v+thkHNgac2Yv4rBg2vLuDul2NpI+LpteETHZ+uZudHxYx6opBuCNcLHh8GUGCTJ4xmkAgwMJnlxGZ4mL0scNpaGhg2durGH3ScGw2GysXr6K+tp6hQ4eGHkZctYZgMJQw3tLSQnV1NX6/n/Ly8vCYV5snn3wy/O8OhwO/309kZCSpqanh5KakpCSSk5MZPXo0I0aMYOjQoXqIT6QbKElJpItmzZrFzJkzWbt2LeXl5Xi9XpxOJ83NzRhj9hsIWK1WPB4PTqeT4uJihg4dSnp6OgvnfoTNODj38rOIjIxkyeNrSIhOZvJNwwkEAnx63xbGXNofh8vBtoV7KF1Wy/jjBmGxWIhckQH1MHz4YAL+IN65kWRGZZKcE0e8SWLzywWkJ2fgjHQwwjUJvJAYnwgG+loOo+Yd8F8E6ckZWEZEUPZ5DdbjrFgbbES54phwUW8ClQGKV9XR2zKIfpMzSYiPpWp1C8MtE+jbKwe728aup6sZb+lJTk4OxhiOtJyEp5eTww/PwdfsJzg/hjHH9cfhdrDp3e3039vC+PNC72H5HzYBMOGmwQSDQRbcs5IhV2TjcDlYt2Y9az9dy7QTj8Lb4mXBwgVAaOKwpqaGYDBIfX09q1atAmDdunU899xz7QZ30tLSsFgslJeXExcXx8CBAxk1ahR33HGHEplERER+xMrLy5k5cyZz585l69atVFZWYowhGAzi9XoB9vuEV1RUFLGxsdTV1WHBwrSjpmGz21j24QrGTh1D/0H9qKtpYOdLxUz79RisVutXcclFgzHGsOKeXDJzEsiemE5jdTMZuYM5Ylh/nBF2Wubb8TVCTt+cUH8tflgCmVMzSfQkU2uxwg4XSUclMWnSBPIXlVG6qIHkIbGMO3c4uW/vIdgAlkQrvs3QZ1gP4iJiadrlp+EDB70s/UmKS8IYGGwZiSPWQUZGBo3lLYyyTGHQsB4k9I5hz6pSJliOZ/jQgVjtVhrfC1WenDA99B5iP+9F9rEpZI5KprnBy+q/bGPcjQOxWq18fPd6aqhg4rXDaGpq4o1nZuGMtjPmyFEUFRWxdu1a4uPj8fl84Xh38+bN4Xv8xhtvAF8lk0dERJCSkkJZWRkul4vevXvTt29frrnmGo466qhu+10RERGR7+6zzz7jjTfeYOXKlezatSscezU3N39rNUmLxUJiYiIup4viomIOO+wwsrKyWP3JWgL1cMrlxxMREcGqJzYRRRyT/28oAX+QT/+4mRHn9CEyIYKdnxRQtLiacccPwmq1ELE8HQiNeflbAjTPdpNQl0D2iHSiWxLYnltEgj2Z6AwPg6NH4q/3E+OMw+KCDEs2jYuhzt1CfEQigQEOqrbWY7FY8dUEcTuiyDk+naYdfsq/rCXN0pOMEQkkxCVStaqZfpbD6ZHQG0+yi11PVzPMMoE+vfuAgVGWo7C74fDDB9Nc20JgXjRDJ/UmOjWSrR/uoXfeCMafOwiLteOY1+J7Pif7nBSiEz1szd3KmsXrGXdC6OHAj+Z/RJAgbreb2tpa6urqqKuro7CwEIA5c+YA7RPvU1JScDgcNDU1kZqaSt++fZkyZQpXXnklcXFx3fsLIyIiIgetqamJhQsXsnjxYjZu3EheXl44+aipqYlgMLjf2Cs+Pp74+Hjqqutx4WTSUROx2+2s/3ATOcN7c/j4w2ioaGTXa+VMumUYdpe93ZhXMGhYeV8uHpud4ccMoKawnpQvdjMosydxPaLwLnbhrQnQKyMbm91KmcUHX0DqielE++OosgRpWG7ocVYs/fsPomR1FXveqiJpcAyDj+7D7sWl+CsMliwL/t2G5KwEYqOjKf+8gbolkGxJJ9Yaj8VvpYclB5sT0pLTqclvYIBlGJkDEumVncquT0oYahnP4N45RMQ7Q2NeFhg/bRAmYIj5rCcx/dwcfn5fGkobWfePPEb+LAeXx8mS+zbS5K9n5LX9aW5q5oNnFuG1NDPmxBGUlJSw/vMNxMfH4/f7qSivoKSkhO3btwPw3nvvhe/1N8e8fD4fqamp4aV/L7nkEoYMGdL9vzQi/0WUpCTyNV6vl0cffZTXX3+dHTt2tHv6y2q14vP5OrSxWCzEx8fjbfFSXlHOoEGD6NWrFx9/sARH0MWF155LbGwsq/64FRww4fLBBPwBPv3jFkYelYM72kViXQZFS6vJysrCYrGQYsmE+tYLBEOVlKp21JE8KJ6YVA+l1OJvDuKIsIET8IIJGiytscqud4tIujEWmyO0bMmueSX0Pi6dzPGJFHxcQe7re+g1LYU+J6Wzc3YR22ftZeQNA0g+LEjZuprwe3M6rXjSIqjeUUfV5nrcKU5ie0ayd0UpJSurAPA3BWipbr0vTjBBaChuBiBtdCIWi4WyDdWh/YFQxaSqdS3he2eCoU5HDQg9Aear9xFliSM5IQVHpJ344iwmWTIYNWpw6BwfxQEw4cLBBANBVt63mWE3ZmOxw/IlK1n/6QaOPH4CPp+PhQsXAhAZGUllZSU+n4+ysjLKyspYsmQJf/3rX3G5XMTExFBWVobVaqV///64XC6GDh3Kr3/9awYPHnzQv08iIiKyf1u2bOHhhx/m008/JT8/P1xtsq2CT2cDMdHR0cTHx5Ofn48FC0cddRRWq5XPFqxlzOSRDB87jOZKH7nP7GXcNQOx2r6WeDQxlLQTmBdNfJWHlJQUPNYmii2N+Or8uGKdEAk0ggkYaK1oWbCwkl7j0zCtD75Xbqol7YhEUsYlUvBRBXWFjXhSIsJ9rNvbiNVuDbVdVglWCylD4ihaU03lpjpSDoslto+nw3tLGRxLdKaHT/8aSgLqc0I6dYWN5H9cHtp/eAwttT62vxeaqCIIQV+Q/IVlAJgABE1owsrRWoCzpTqUzOWMcmCMofiz8vCxWMFhcZBEGomJiQQDhjGWafQ8Mpkeo1OoK2kgcV1fxl00EKuj9T5aYPSv+1FTU8PrT8zCEh9k9ISR5Ofns3HjRhISEggGgzQ2NtLY2EhVVRVr1qzh9ddfB0KDaG1J5gkJCfTs2ZP4+HjOP/98Lr74YhwOR5d/j0REROTb+f1+3n33Xd599102bNjA3r17qaurC1fx7mzMCyAjIwOPx0N5aTn9+/end58+rF++EUuNnVOvOZ74uHhW/WkrEBrz8jX5+ezBrRw2ohdx2VEkNmZR9HElGakZ2Bw24ixJoRMbCLaE4pbCVRX0PS6TiCgXAA0lzUSlRmB3g78ZfI2B8PhRwbJKMkcnYwmGYq28D0vod2omiQM9lHxeQ+6re8icmEDWlGT2flxG3oISRl3XHxOAqq317d5bfL9oKrbUUpPXiD3KTuLAGHbMK6T089DYWKApQNWOr9oEmoPUFYbGvBKHx2GCUNo6jmZ8ofix7NPa0OuAIegP9dneWvSosdyL2xJFcnQKMckeShbWMdISz8gRoURzsyA2dB8vHIzfG2DV/VsYeGEWEekO1q7YyPqlGzjiuMNDlZ8WLCZIgKioKKqrq6msrKSyspLc3Fzef/99/u///i885lVZWUlERATZ2dkkJiYyefJkrrjiCrKzsw/iN0lEREQORFlZGbNmzWLFihXh6pNVVVX4/X68Xm+nxQ6ioqJITEykIL8QFy7GTxmLw+Ekd/4O+gzKZsxJI2go8LLtlUJGXpKDK9YZHvMaP3YQwWBozMu2y0rSKcnYG+pxWhqo2dVIYr8YnMlOvGVeWmq92JyhWKphjx+/N0CgORS3lKyuJjo1koQB0RSvqqb8yzri+0aBDQhA2bpq7JGhtnW7m9g+u4iUw2Ip31RLU6mXYF9D0vAY9i4pb/feYnt7iO8bzcaZeQAkD42lbm8jxatDc43R2R7q9jaxZ3FojMtqt9JS66Pk09D+oDdIc9tcpA2CXkN9UahSUmR8BMFAkKLV1QD4GwxOt8EWsBFliSUhLoFARIBBliOI7hfJ0JG9qdhZQ9zqbIad2hdPkovl97WOed3aj7q6OuY8/hFN1npGnjiUvXv28uX63PCYVnFxMYWFhaxduxaABx54AIC4uDis1tC9SU5OJiMjg6FDh3LSSScxbdo0bDbbd/iNEvnvoiQl+Z/0wgsv8MQTT7B58+b9lkJsW2otyhNFj5492LxpMwQtnHnOGSQlJfHFE3tx4mTClYMJeAN8ev8Whk/tQ2Sim4SmdIoX15AQn4DFGjoP3tYTt16mYksNGSOTiUr3ANX4Gvw4o76amDFB0zY3xrYPikgeFI8n2Q1A5dYaUocmkHx4LGWra2gobcaTEoEzCrz1QZprvcRkhia/yjfW0veEDLLGJlPwcQU12xtwn+bE2iP0ZemtD7LiwdwO98lbH2T1o5vwto7HRKW6cXjs+BtDwUrfk9OJiHex48PQRNngc0IlD3fMKwAgJiWSgD/Irg9LAbA6rPhbQtWNnK0DNM1VoZuSNigGgNKN1aEdrffMm//VZxIMhK4b25rQ1NbWYXXijLQTuSmN8ZY0Ro8OVWiyfBQPhLLC/b4Aq/60hd6XJ2CsQRZ8sID8vfkMGDCApqYmysrKCAaD4coA69ev54UXXiAqKgqfz4fX6yUjI4OMjAyOOOII7rrrLtLS0jrcMxEREWmvvLycBx54gDlz5pCfn099fT3GmPCyY53JzMzE4XCwc2sevfv0Yer0yQTqIP/VKsb8fAB2l+2rxKNJg0OTVgvjiMhzEjE1gkCokBAt1T4iEl04YkNPzAd9JhyXVW1owJxqsLa+LttcQ9aYZDKOSKBwaSWNlS1EJrrDffI3B0IJ4sDOOcWkHB5PfGYUBVSwa3Eph5+XTc4p6Wx/r4jy3Fp6T08jc1IiBUsrCPoMzmgHkQkOamp8bH59byiJ6BtzgZve3NNuW3RWBHaXlfq9oUGXjLFJmIAJv47N8tBQ1gw+cMQ6sNgsVOW1lu4eGo8JQvH6agDcsU4IQsEnocEdC+BvnRikNfxsqgwlkrs9zlBC0+oKAIJBsH4tX8zhcBAfk8AwywR6TUwm84hk+sT3J/WLAYy5eAB2Z+jz8Rkfg6/JoLy8nHdffx9XlINevXqRn59PIBCgsrKSsrLQ4NOCBQv42c9+hsfjoba2FofDwWGHHUZKSgrXX389J5100j5/x0REROQrn3zyCc8++yyffvope/fupaGhAaDD0mttT+ZHRUWR3SubXdt3Y1osnPCTY0lJSWHT3wuxW+xMuHIw3gYfnz+0jX5DMkk+LJbkxkwKP6kizhOP3fbV8LIJtiZ6AyVry4nt6SGidZyroaSZ6ExPaDTaD74GHxZLaFyqZFUNfaZn4I4LxV6l66rwHO0mbkAM5etrqdpeS0K/WOxRdvz1fuoKm4jLDo15NRQ2YwEyxyZT8nkNjSXNRCa4cLhb++WHzx/e2nEU3A9r/74VfyjnCHesHVecE+ML9T91ZBzRmZHs+CA05tVregpWq5X8JaExrrgeUQRaAuxtTSZ3eGy01Hq/dgEL9UWhe584MA6CUL4hlNBksVoIBg2121ovHgzFmgDuuNA9aSwN7bM7QsuzuLfHM8wygVFHDMJqt8DCOCA05uWt9/P5X7eSdUYsjkQrSxcuZ+fOPAYMyKGlpYWysjLq6+v58ssvMcbw8ccf84c//AGPx0MgEMAYQ0ZGBr169eLEE0/kqquuUhUmERGRA9DU1MTbb7/Nhx9+yPr169m7d294znFfy9726tWLCHcEBVuKSU1OZ+ppE/GWBCl8v5bDz+9NdFoEy+8JjXmNHTuQoDGYBTGwEyLckbRYQk/QVe9qIGWIk4hkJ01lXpqqveFxq0BNkEBLEKsJjXmVbqgmLjuKuJ6RlJZ5qc5rIKF/TDjxqLG0Ody24otaeh6Z0vowXjWFK8tIyIkmc3wSBUvLqdhcS/8zskgeGkvZhhqCLUHciS7ccQ4amgIUrKigeHUFAW/7912wopyCFeXQeluisyJxxzloKg8dmDU2GYsVGopCMVBCv2hqCxoJeIPYnGBzWqncXtvaNoKg31D2RTUAkcku/M1BStZ/NeYVTmgCgn5DbWFoLC0q3kUwEKTii9C58BuCPhPul81iw2OLpo9lMHH9Ixk8IptMe2+SNuQw9KTeRLV+PgECDLwmncryCua/vhivtZns7Gz27t1LeXk5NTU1bNmyhUWLFvHII49gs9mIiorC6/WSlJREdnY2hx9+OFdccQUjR47swm+dyH8HJSnJf63KykpuvvlmPvjgAyoqKsJPhu2rNGJmZiZJSUl8uTZUdvryX16E2+bm0we2MOScXsRmRpGfVsyehRX0z+mP1W7FaSkNt287a/nmOnpNiiA21UMxNaHEo+hvJB61ZtLuWlBGxshkPAmhJ8WqdtSROjSBpMM9lG9soKmiBVdc6yxbPTTXeLG2Ztru+KCYmJ4eIpNCbXcvKqXX5BTwOKHeS8HyciITXeHrbn13L76Gr76UV/1lS+hfnOBJcNJQ/I2IoVVbglJ0dgTlG2sp31gb3rfj/SJa6n0Urwp98e9eUEzPKak07Amdq2J7DZ74iPB1mut81O5qBCBxSDyBliB7loQmpiISXQT9hj0fhSbDrFYLAW8w3Ba+qgSQPDA6dK831bQeS/geAViwEPSF2iaNisJisdBUFpp0S4hLwBXlJKdsFDmWUUw4LVQpafk9m8AJY37Znx3bdvDe63PIHtyDyIhINmzYgDGGoqIiCgoK+Oyzz/jnP/9JdHQ0VquV2tpa4uPjOeyww7jyyiu55JJLOr2XIiIi/83mzp3LX/7yF9auXUtNTc1+lwRx2B0MGjyI2po6qnbXctK5x5HdNztUeRIYf2Go4tHK+3Jx1DnISM+g3tZEPlU0lrcQm+nBleWgZa+PgDeAxdY6mbPXCwZsrcFB5bZaMhOSSRkaT8GSCpqqW9rFR/7mAFZH6Nj8RWVkjEgiOiMSqKRgZTm9p6WRMCiSytxGSjdWE50VGW5bub2WhuJQXFOf10TFllp2fxKapCpaWdnhn23/7sl001DQjK+xk5vYGqpFpjporPSx/smd7XZvfmNPu9dFqyup3RM6kSMC6vY0sGdRMQCuaDsNJU0ULgnFVhaLhfqSpnBbE4TaglDblMPjIAgVX4biPFecA4JQ+nkdEModb4vLHJGA+SqhyRXlxIIlnGhuCRIOjB0WB8lJycR54jnSchK9p6aRMTKRki8q2f5WEaNv6kdzoJl///V16qhk+KhhlJaVUlNTg8/nCz+R9uGHH2Kz2YiPj6eiogK3202/fv0YPXo0f/nLX4iNje3kZoqIiPz3qq+v57HHHuPtt99m+/bt1NbWhpNNOpOZmUlqSirb1+4khkTOvulU7EEHax/dSe8pKaSPTGbPkmL2LK6gb1YOzmgH9tYxr6DfhL/by76oIXlwbDiZqKGkmdheX0s8avSHE8LLNzaQc5LBHReKvco31eJpfSq/8ss6avIbien1VWXJmvyGcNuSz6tJHBCD0xMaut67tAyrzRqqrFQPBcvLicr4qorl1ncL2r3f9U+FntDHHko+aq7wg7/jfWlLUIpIcVFf0BxKZmpVsro6NPm1PjT2VPBpJVabhcaCUKPqHbV46786aVNFC7V7WhPJ+0TQUu+l8LNQ/BeVFoGvKUDhZ6G4zOa04q37Wma6xUJDaWvbfjGYIFRuDg1yWa0WTACaS1qPDxr8ja0JTWl2MISrCMTGxBObHkmvqsPJtAxi3EkDwQIr/xh6IG/Mbf3J27KLBW8uJql/LJ4YD19+8SXNLc3s3r2bvLw8Fi9ezK9+9Suio6Ox2Wy0tLSQmprKkCFDuOaaazjxxBM73kgREZH/crm5ucycOZOPP/6Y3bt3hysidfbwnd3mYPDgwbTUttCw28/4E0bTb1gfPntwGwRg9NkDwBg+27oVqiA9NZ3KhnqgltrdDUQlu4nq4aR+j5emKi+utvlFLwRaAuHiCpWb60gaFEt0ZgRNZV7qC5qI7xcdTjxqKmvG6mx9UG9zPS1TfUQmhCbbij+vIjLRRUzPSGrzQtWMYrIjw21L11XRXBOaj/PWBChZU0lZ67hPbX4jO+YUUrUtFKvU5DWw/l87AHDFO2mp8nZIUALCSUDOKBvepgA75xS127313b3YXNbw64Jl5bS0xUtOGxWbaylZG+qDK8ZO1Y5aSje0zRFaqd5Z91WhCAzVu0L986S7CPoMlVtCY1zuBBf+liBlrUlKFivt4jIT/Cq2ikxwYfyGyi1fzYu2PfBns9hIiIkn0kRzhOVIEgZHM+DkHhSsKid/fimHX5aNJdbw7kPzqKGCvqN7Ul5ewfbt29izZw979uxhyZIlPPHEE+Exr+bmZlJSUsjJyWHKlCnccMMNREVFdXIzRf7zKUlJ/uN5vV5+97vf8corr1BYWIjT6cTr9XZaprpXz15EeiLJ27KLw4cNZfK0SdBiZd1jOxl74UBsTitHJI5n98JSPB4Pxhg8aU7Kc6uIyfCQOjyBPQsraKn3ERHnovfxqeR9UELQb7A7bUT1cLF3aRk9JyYTlx0DFFKT30DyYXEMuqAHuS/toaXOiyvGSWyOh5rtDQR8AVytgcGepZWkHJ5A5oQUyjfmUVfUSGSym7QJCRQvr8TusGKPbf2z9YI7xknm6CR2f1hKU3ETnjQ3R1zRl5V/zMXusZE0NJbkYfGs+/tW0kcmEPQGiT47ksK1FaQMiqPo80rienpIGBhDc42XNX8LrbWKFSJTv5rAG3/7IIyBlfflkjoyjoyxidicVorWVBKV5GbwRT0xPkNURmjQJWtqEp4EN4mDYmiu9eJMcJJzfBqR8a6vkof6x2JzWYnKclO+sRZHhA2LDaIyndQXeAFDayVvkgZFY4yhpT70mXoyIjDGULM7NLFmc9m+GohzAhYItjZO6h+atGooDR1rd9nC9w9aj219yi9jQgJ2u53MpB5MsBzHmJMHYHfbiFuTDRYYe9sAiouLeenplwnYA+Tk5JCfn48xhsrKSpYsWcKSJUu49NJLSU5OJj4+ntLSUsaMGcP111/PySeffJC/5SIiIj8e69at45577mHp0qVUV1djt9tpbGzsMCnm8Xjo1asXFeWVNJY2c84VPyE9PZ2tswqo3FXHhNO/qkSZGJGK3W6n/7mZbH21AL83gMNtI2loDOUbajHGEBEfipeqt9cRm+lh4Ek9WP/PnXjr/EQkukg9Ip6SNVUE/EHccU5wwO7FZWSMSSJ1RChJqWxDFb2mpdHz+GTyPyijqcqLJ8WNI9aBr8YHGGJaE5Fq8ppwRNrpMSmNytyd+Bp9RGdEMOCsTLa8UQAWC72OSsce4WD3glIckTZG/LQP5V/UUrqxmuTDYolIdBKTFUnl9nqi0txs+nc+Qy7IBquFos8ryF9YitVpxWq3ENs7kpq8RvqckkbasAQKVpaze0Epg87rgd1tw+Gx8+UruxlwehbFayvpNSWV2qJGYnpEUrWlniEX9QEgfWQSO+YUkX5EIlgtJAyOpnJbHRGJLkwgFId5Mt1Y7VYcrYM/7uTQgFdLa0K702MPDbQ5AB9Y7C3eECUAAQAASURBVBYCjaFJuLiBMWABb0PotSfJhcFQuz1UKcDisIbjMEckYAG/N3RsVJobYwzl20ODSDanjWhbNEMt4wCYcOxg/C0BVv15C/3OySCqp4slC5aydu06+g/Owev1Ul5eTlNTExs2bGDDhg08/fTT2Gw2srOzaWpqIiUlhTPOOIMbb7xRyUsiIvIfz+/38+KLL/Liiy+yYcMGmpubaWlpwev9auanLSm8Z8+eREdFU7itmL7ZOUw97UiCNYYNT+1m+Gl9iUx0kecoouizKjxuD1hCyTmlX1SSfkQSSYfFs2dxBQ0lTbhinGROTqTgkwp8TQEckXY8GW6qt9ZjgoaEPlHsBKp31BHby0POqRlsf6uQhpIm4rKjiO4ZQV1+E956P57UUEJT+YYqek5OIXV4fChJaXc9if1jSBkVS+nnNdicVqLSI8MJT54UFzE9PBQur6S5xk9sbw+HZ/fls4e2YI+0kXx4DKnD4tn4wi5SDosFC0Qfn07JuioSBsRQtrEaZ4yDnpOTqStsYstru/E3g81hIfprCU5jbhkAwKoHtxCTHUnm+CTsbitlG2uwe+zknJxOS12AhH4emqt9pI6Mw+ay0WNSMg1lzbgT7aQOSyC2VxRgoQBI6B+DO8aJJ8lFFfU4PA5sDgsRCS6aSluwWAkvX+fJDC3J2/ZgYUzPSDCG2oJQbOWKc4aPBbA6LPhbl2NJGhR6383VrcnjMfZQVabq1uQpK+El56Ky3djtdpKj0hhmmcDQqX2ISnMT92V2aMzr1gGUlpfy5pPv0mipJScnh71791JdXc2uXbvYtWsX77//fui6SUkkJCQAMG3aNC6++GImTJhwaH7pRUREfkAFBQU8//zzzJ8/n82bN9PQ0EBdXV2HMa/IyEhycnKoq2jAXwLHnDuFzF6ZbH51L3X5TYw7ZRAtdT7WPrad6OY47DY7vY9NJW9uCc1VLXhSIojt7aEmr4GAN0hUagQ2J1TvbCB9ZCKZE1LY8upeGkubiUx0Ej8wiqrN9XjrfXjSIrBF2KjaWk/QFyRlRByl62oo31hNQv8oMsfGU7C8ivqiJhL6x4SSguoDYAwxPUIJ4s0VzUQmuUkfnUhtXiMtdT6SB8XiawyQv6CUYNCQc1ImzshSij6vxB5pY9D5vSj/ooayTdUkDIjGGWMnrncU5VtriUmLJG9eMQNOz8QWYaNgRTmla6uxOiw4Im140t00FDWTPCyWPsenk78wdN6sI5NwRjlwxdjZ+nYBPY5MpuLLajInplBX2EhMbw91e5oYfFYPrE4rvno/hZ9Wkjk2GXukjZjMSGrzG4np6QmNednAGWHD7rZjd4XmUt0JoWrh/qZQfOSKc2D8QWw2K4FAEHuEDV9r4nlEuhOrzYKvuXXMKy0CLFC7t7XCpcdGsHVsDRtY7Fb8Ta3zluluwNDQWknTHmHH5XKQbQnFmuOOGkhLvY+1j+0gdVQMGVMSWbVwNV+s/ZKMgSn4g35yc3Opr69n586dzJs3j9tvvz085uV0OhkxYgQnn3wyp59+OhERX8WzIv+JlKQk/1E2bNjAddddx+rVq2ls7Ozx89CardHR0ZQUlzDpyEkcccQRtBQE2P5mMRMuGQwW2PDMdiLtEaGyxs7QF4q3LrQcSOiLJJS4YrVZcMY4Kf68lj7TCZeKrslrIGKEi9g+UUAJQX8Aq91ORLyL+j0tGGOwtT6Vv3txOcmHxeFJC523qdKLO9aFp4eLmu0NWC1WLPbWpc0qvVistJZRhPIvQ5WVMkcnUry8kobSZmKyPCQdHkP5xloCPkOgJfQF6Iiyg8VCc1XoyzI6NQK7y46/yY/XG8ST4sYEg60TUjbccU48KW4KPq8gMsMdysZ2Ek7esTq/vjaqheaq0ICHJzUCd5yToN8QlRRBZJobm9NKTV4jwUBoAjEmLYL8JSVE94rEFe3A6bGw6aV8Rv+yP+7o0ARjbWEjngw3nsQI3ClOnDEOMBYc0U56TY/D7rIT8IVSq5P6xWKxWLA7Qn2y2CxYLBYiE13U7WrCWAyW1rKVSYNDy8b5vaG2EXGhybDm2tBraydrvraVIo9tDdBaWpeRa1uTt43NZiMjI4OJlhPpeXQiPcam0VDexLondnL4jT2prqni+ZkvEsBHREQEBQUFNDQ0MG/ePObPn4/D4cDr9RIXF0ffvn05+eSTueuuuzr9PRYREfmh+Xw+Hn/8cf71r3+xc+dOWlpaOhzjcDhCiSDGQqApwLmXnENaahqrH9hB/1MySR4QR31ZE+v/vpOUxDSsNiuRiS4qN9WFKh61frdXbqojvmc0Ma0TRs0VLTgyI/GkuCmnlmAgFMPggJL1tfSckoo7NpRYU7m9jsxEF3F9IilZU4W3NZncEdmaeGQIl6yu3lpP9nQLCdkx5FNGoCWAzWElZXgsBR+X42304Y514Yi04qvxEWgO0LoKCYEWg/EbileHKkg6PTaCQUPx2tDryJQILDYrfm8Ad4KDyCQXfn8Ae4SdqFQ3ntTQeytYWU7GuMTw5JjV3pooFO+iJq8RV4SDYDBI2cbQedvaWawQmRQ6r8NjxwQMzig7kfGtSwFvqSW+fxSejNDr7fOKyDkug6hUN1arhaqddcRnh56+yj4qBfgqXk0ZFA9W8CS5KaMGp8cRrmQQke7AgoW2NYij0kJJXP7WARxHZOhzsEbYoDGI1WYJT4bFtcZlgdaJtLZqCL6KUPxtsX1VacsRGepLW1zmjnWGBv0iDyPKksn4UwdhsVnCy8gNu6EXW7ZsZcGH84mLjaOhoYGSkhIKCwvDiXQ+nw+r1Uq/fv3IycnhkUceoW/fvvv+pRcREfkB7d27l3vvvZcPP/yQgoKCdolIbeLi4khMTKSiqJLRY0YxctxI6rf4yZ9XytgLB2K1W9k4cyemMUBkpAd/63IgTeUtRCa58GRFwGdV+FsCOD0OnB4bNXktmGAorgCo3F5PQr9Y4vtEh5KUGny4ou244hw0FDYT8AVxRIaOLfwslAAe1ZqIVF/cTHzvaKJ6uKnLbwIrOCJCx/qbweqwEtuWEL69AY6FtOEJlH5eQ21hI+54J7G9PNTsaMDbGCBYF+q/3R5aIq2htSpkZLIbV4wTb40P/H48GRFY7KGH2GxOG1FpbhqK3JRurCS+X1Sokqa9NfvJasEe0X5sqKEkNJYWkegkKs1NwBvEHevAnezCHeOgcWMNJghR6RH4Gv3sXV5O4oBoIuKc2CPs7P6olJg+nnB82lTupaV1nNHuthKd7iYYNLhjHUQkOXHHuvA1hcap4nrHYnNYsdpDfbK2Vgh1RTmpp7k1XgrFTpGpbiwWC4G2Ma/WOLCldTmTttiujcVixfhD9zC+tWqVt8bXev7WaYHWalJWu43UlDSOsBxJTE4Eh5/ah9q99Wx8ZjeDf5pJg7+e1599k4ZAHZGRkRQWFlJfX8/WrVv5xz/+gdPpxO/3k5iYyIABA7jooouYMWMGdrumH0RE5Mdp/vz5zJw5kxUrVlBcXExzc3O7/Xa7nZTkFCwBG9YGOyddeDxpyWmseySP9GHx9D46nepd9Wx6MZ+EyBTsTgfueCd1+U0E/cHQGIgNKrY1kDnBQnRmKAaqzW8iKj2SyEQXNXkNeBv8uGOcYLNRs6sBMEQmtY71bK0j+bBYYnt6qNpcT0NZCwk5TmxOC4EmCHgNTk8o/qgraMbmtBPTM5qC5VX4GgO4YhzED46hZFUVTZVe4npH4Yiy4asP0FjVDK1jMiZg8DX5qcwNVRtyRtkJeINUbAs9ZBadEYnVYSXgNdjddqIzIwn6TSiRPd5FdFZo7GrvinKyjkwmKj0ilKRkt2CxW3FFO2goag6dtzlI5Y5QlaPozAis9tDDe6740Hlr8xsJ+oPYI+3EtN6z0o01JB8eG66kufXdvQw8uyfuRCcBX5CSDZUkD44DIG10IsaExqcAUofFY3fbcLXOTUYmOLE6baEqUzbAWEIlxIHoFDdBY/C1VlZyxbkwJrT8boAAdqc9nKQUmerCAvibW1/HuwALTWWt8avbigm2T2gKekP3OyLZTURkJFmO3jgsCYw6NgdHpIMV9+USMAEOv74HO7bvZPHcT3BGhR4OzcvLIzc3l5deegm7PfRwYUxMDDk5OYwbN47bb7+dtLS0g/pbEPkh6P8S5EdrxYoV/OIXvwg/KbYvAwYMIDY6lsLPqxjRdzQjLsyhKq+e3BfzOXxAb6JjI1j+TGj9Vn9LAKvNQn2Bl/oCLznHZYYHOKp21xGR4KJ0Y6gUc3NVC+5YJ1VbQ1+WQZ/B2/pUU8n6StKGJ9BUHJqsK/2imtSh8dS0ZtPW5zdhbZ1o8VZ6MX6Dry40gJA3r4T4q6KJS/VQSCXrn99B/1N6ENM7VFZx90cl1FeGzlOzvYGmSm84aebLF/IZ+6uB9Dk+g/KNtax6YDNZU5MYeUM/Vj+6jRX3ht6nO8XJ5tf3trtPn/11a7vXuz74aqm6NY9ub39Tg1C/56sksLbzAuycU9ShDOM3uVOcNJd6+bz1mtnHpNL/tGg++0vodZ8T00kfmcDOBUUUragkvn8UQZ9h0ys7qd/TQtXeehweO9vfLQTAGetg78pS8ueXgxMiYl3UFzRRsrqamN6RWLBSsqZ1CZVkN956H188FXpPBmip9VH4caikNgYaykP3N3loDBgo/jzU1mq3EvQbtrwaum7QZ8JBhDMq1LaxrHXgKtYNBnYuDC2p4rZHkJXh4SjLaQBMuHQwvkYfs/+yGG/fatJ6pLJ+/Xq8Xi/19fWsXr2a1atX8/vf/56kpCQiIiIIBAKce+653HHHHeEn0kRERL4PPp+PP//5zzz77LPk5+d3OikGEOWJYsjhQyjZWk5CZRZHXzceR4SdlX/MBaBHZk9aWstBl+fWkpQTS/X2UCzVUu3F7nSzd0loSTRvo5+2sokl66rpPT0tvERGze5GolIjqGwtHd1Y3kJkggt84Kvx0VTpxdsQuk7hp1Uk9o+hZm/oSaXqHQ24hjlxOEKrp9UVNIYTaxrLfexeXEJs6yDHphfzyT42lYLloT5te7eIAWdk4Upw4WtsYs+ycrKnpZIxPpHCFRUUr61i+BV9KFlfzRfP7Q7fF1eig88e2tLuXpVvqKUze5eUh+8BgL/RT9BvKFkTSkrKfa39km6fP9I+hlt5f2i5joLWZdwAHLEOtr/3VXw24ud9KVxZyco/hT6X0TcPwARNuG3Qa6gvamLjzF2t73svrjgnpWuqicvxUFfQyM7Ze8AH2UemEQwY1v0jFFtFpbrxNwXY/m7oek2VXlqqvbRU+IhMd+JvCrBneSjOjO8ZjQkYcl8LxaVBv8HXEKChdZmUoDdIXWHoM084LAYTMOxdEVoKmAAEA0GKl1e3tg3irw/FZTHJLuJi48iJHUjAEsWgE3oS3yeKz/62ns3VW+g1NY3q6mrWrVtHMBhk69atbNmyhdmzZ+NwOMjIyKCpqYlRo0Zx1113MXr06E4/KxERke6yfft27rnnHhYtWkRRUVGn1cDBQr+cHBLiE6j6rJk+0b0Zfe3hlOXWsP3tQvqkpBETFcvOVaEYpLnKizPSTn34ezZA7d7Q2E7ljjriekdRtS008VS7u4nYXhZq8kL7W2r9+FqrV1duaSAwLUhDceg7umh1JT0mJtNYGjpv2Rc1uBNalx3xg7fWT3NlqG3R8grSRyQS2boc3Kbnd9DrmIxwZaWt7+zFWxs6trnaT9WOevyt1Rl3f1hKQu9o+h6fzprHt7P+nztJHBzD4Zdns3HmLlY9EHqfzjg7ez8uY+/HZeE79cVzu9rducKVX8VJX34tZgMItASpap0Yg1AFpTYlq6spWV3dyWcBhSsqwtf3VvvDcVTysFiyp6Wy8dk88EPqEXFkT09j54dFlK6rJjLVjb85wNbXCmgobAY77P64lIKloXgwMsHJjg8KKfk8dN2YLA+V2+qo2FSLOy5UGalgVWjcKjLVSX1xE5teCcWLVoeF+sImilaG4kgMVO9uXdokw03QG6Sgtd92jwN/Y4Dts0MxnL8pEF7OFyDoC1K7JxRPR6dFEvAGyV8Suse2gJO0pDTGBI8GC4w5fyDeWh+f/H01NSlFZAxO4YsvvqCsvIyqqiqWLl3K0qVLufrqq0lMTCQ6Oprk5GQuvPBCZsyYoWVLRETkexUIBJg9ezbPP/88q1atoqSkpMO4lwUL0RExHHb4YGp3NBNTkczocw7Hk+oOLQdrgYz4TJrKQu2qdzbgawhQ2VpVuqG4GXe8k8rcmvBri9UCAWgsaKalqoWanaFj6woa8dbFUFcYisPq8huw9Aw9/AehhPFAayWfmh11VG2vpzY/dGz11nqiUyPDSc0VuTUkDogBGwS8Qba8vZvozND37N4l5Xjr/ZR+WQ1A3rxi+p2S2Vo5KMDuj0rpf2oWyYfHUraxhtWPbqffqZlUxtaxe2EpuxeGxnYcUTa+eGFXu/u17p872r3Ob43LKjfXUbm5Lrzd3xTEW+ujcmtoW8GyCgqWfRWn5b7Sfgys7bxlrcu4tV2/ZHUVJa0PDfY/M4uyjdWsfTw0TjXk4l5YbJZw24AvSE1eI9vfC83z5S0oxhXtoHpHA+4EJ9W7Gtm7rBRffYDM8YmYgGHTS6F4MTI1kuYKL3ta5xMbS5uo3VlPS5UXW4SNpsoWilaF9sVmefA2+Mn7MBRbBX2GhuImGktC88beWj91BaF4Oirdha/eR+GK1vHAoAVfvY+Sz0Lv09cQoKk1nra5bES5okj392S85VgyhyWSOS6Jdc9sJ798N0mTIqhtrGXdmnVUV1ezevVqPv/8cx577DHsdjtZWVnExsZy3HHH8dOf/lQP68mPlpKU5EehuLiYSy+9lKVLl3ZaIcnlcmHBgrfFyxHDjmDacdP44u+78NYHGXvGQCwWWLl6M007vZigCT+lVbWjjqi0CJIHxFK2ugZ/kx9XzFfLmPm9gfCTYoUrqkkbkkB0ZiTl6+tpLvcSmeAOJ9w0VYeSlgAa9nhpKG/G2EITa5Wb60kblkh870hKKr34m/3E94whOjuCul1N7PiokIwjkgBoLvVSvaOOPStDX0b+JohIcJEyNI7avEYqttUxYkZfKgfVseWtvax9fDvOKPCkOWko9rJjbiH1JV8lbbljndjdNpxRVrz1QXDCiBl9aarysu4fXwUKgy/oSXVeQ3hQBSB9fAIph8eR+9JOvF+Nz3Sqz4npRKW52fBMXnibM8HJoJ9kkfvmXryVoeAs6fAY+p2aRen6Kna8H/pyjkx2YY+whys17ZxTREu9l6IVoUGWgC/Iqgc2t54Uxl8/iOoddeHXkcmhgRUoBy9U/D97/x1nWVWn++PvfXLOdapOncq5qnOku6HJoIBIRiQJjGIAI454f87cec3c1/hV7+iYxjw6o4gyBsBRUMAACN3QOXdXV87h5JzP74+1a586XdWGmZtGz/NPd521w9prr6r1OZ/Ps57nZIzgGbF4ewbsRMcTjDwryELedQ7UOpXyPGqNREEO7nQuHdlEjpn9Ygw8faIYNvuaCLYMVp3CHAcolUrKbjprp7CcW/Ke1VuFRGRMTughlZX7oIMyZVKBHF7JT8+W7Xh67XjnmghFMmx+byfzwTm+9+3vkSOHTqdjbm6OfD7PP/7jP/KlL30JEAXj7u5uHnjgAT7ykY/87hdUQw011FBDDX8EnnjiCf7u7/6OoaGhlYkZScJsNpNKpjBg4i333I7L4uboV8bwdNvpvrKRKcsik78MkF7MoG2pFBkKqQIqWSEyPpQUNm0OET+FR+JiB3+bgeRYhuRcGlOdHJflhee70Sl+nj8epnGrC3eflfh4irlDIRq3etCaIJ+CYqaIRiur8kTzaE0afJvczO2NMPrsHHqrBveAndRLAWb2hbA1VWIne4tZyDXL0Fk1XPCBPl777Gni4yn2f3YQi7wDbGZPUBBlXg8rx2tNGsyeSjzZea2PuvUOTnxvnLhsRWvyaGl7g4+zT06RT1WKP2vubiE6nqoiKa0GrV1L381+pl8LCtUpGb4dLix1es4uIyRteEcHertWKbBp7Vo0BqF2sIQT3x1BK++sM9VrOfWkICAB9Nzsx9Fh4dCXzgLg6bdhaTAq/Z56LUghXVB+llQSw7+YBsDRZcbaYCQuF0CtPrFDP7pE8i+ViE2mZCs9MXaJBZGgMfsNqNQqUgsieWP06ChkiwQOh+Vj1YqlHICkVpFPiblq77JTKpQJynGZ1qgWBKiolk5pLRfs6KOYK+E50oXJp6X7Dj8vvvASh48ewuFwEI/HCYVCPPPMMzz77LNYLBYSiQROp5Pdu3fz5S9/GZ/P9zvfUQ011FBDDTX8oUgkEvzN3/wNP/rRj5ienqZQKFS16/V6jAYjpQwMdK3h8jddypnvTpEJFNh8dScqo4r9+89SSIjik6IQOZTEM+DA0mQhE4mRjxeUHeIgNmzpzOLY8Mko+QvrMLr0QJzkYgZnpwWjV9iPJeaSWBvFOl5IFAiPxSnJKY74SBLpIi9mr5FMIE8+VaR+vVMhHg39fJrGrSLnVciUWDgcYvFUTPnZ1iSKPfGJNLGRJBse7CR0Osboc/OcfmISNGBwa8gEC5z96bRixQGgt2nRmjRoLBpFxXHdve2kgzlOfrdCPmq7wktiIUPgWIUk7uy2UL/ZydDPZpVzz4eGrU5sLSYGfzytfKYxqGi/xsfkr+fJyPZp5kYDa+5sY25/iInfiFySya1Ha6nEXfMHIxTzpaq+HFrKz2lg60M9BAcrbbYWM6hQSEozrwdJzKblZ7ASHIwphCzfFhc6i1Z5HrVGTT5VlPsL6VCWeTmWcnRaKBVKBAZF/szo1Au1S3koiqUyqVk5dvUbKBfLSvHUKFvMJSdFDK1SSWSjFSKdVC4LtXfJQV9PBy276vEstBIOJlhzdzOxUoQfffspksTR6/VMT08zNjbGvn37ePTRR1GpVKjVatavX8873vEO7rvvvt/5fmqooYYaaqjhj8GBAwf47Gc/y4svvqjUXZYgSRJmkxkpp8aGg6tuugKX3sPpJ6YwWjWsu6SDCWmBuVCE+Kyct1IjyEbBrKJamA7mKBVLijJhZDSBs8OC3qMnNZMlOp7ELqsYgiBJ6+X8WHQ4SeGSErZmE4mZDPPHomgMGtRGNcV0kXyioMR7xZxQNarf6CB0Os7isSg6pxZrk5FMKMfi8SjZSAHkuM1cZ8LealL6rNGp2HBfB0f+eYRctMCJx8YxuGS3k9EUQz+bJiITrVCDzqbB4KzENXUb7DRf5OX0DycU8o3aqKZ5dx2TLy8qxCqA1iu8pBayLB6rEIxWg1oHLZc3EDwTq9TXAHu7GUujoYrE1HGtD2uTkSP/PAJF4X6is2iEs4yMwSen0FpFn3UWNXOvByjKqU7fVhfezQ6Of0fEjbZWE/YWM+O/Fu0BmVCVT8hOLFqJ0RdEzk3v1OHstDL7muiPyaNDAmVDAKoy4aE4uag41+AUZHIQxCqNQU06mJXb9OTiBYXUprdoSYcr+ViVRk0+IH621BspZMtE5RyjzqKlmC6SCxZpkJrYMNBBqVjGdagdtU7FwDuaef3X+zh64hgGu4Z4PM7Y2BhHjhzhU5/6FFarqG329PRw8cUX89d//dc1kYQa/p9AjaRUw/8VfOELX+CTn/wks7OzlEqlFe12ux2fz8fc6QB9bOWqv9xOKpDhyFdHaKmvw2gw4l7nYHZPiEwki9FlUM4tZEtoZJuuyHCc1t31eDqtLB6IEh5NUr9Oi86lIxfKkQnlUOsrikeSWoWj3QYsMPLyAtZmE54BG1MLAaLDSUrNlb7qTBohwYhYzNPBLPWbnMwfiDD8zAz+SF7ZGW7xmDA6dViahR1cfD7DmjtaOfi1EXKhHHv+4aRis5ZZyJEO54hMVlhDG9/dB8Dr//O0kuRwD1gJnowz9PQMQ8xUBi8H4aG4UrRZgq3FjM6mrSIp2ZtMmDz630tQArA1m4Ql2zIY7BpMXgNNF7gUklDgWIzGbWkmX63c5+TjE5V7dpmJTiSZfkm0d1zno2GjU+wak3erpcM5JaFFDkUFAGDjuzpRaSQGnxQ78u2tJqXoBnD63yex+YQ6gq3dhFqvYeQ5cWzbJV4MNh0Zme2eDGTQ2XXK86s0wgplqZ86o5ZYUgQC5nojxVyZ+f0i2aPWq8gn88p70+g1SsBRt9ZBuVgmJO9QNNi1lIplQmdE8KLVafHXN3Ox9GawwM4HBlgcDPHzf3sec78WnV7LkaNHKJVKnDlzhkcffZRHH30UgDVr1uD3+/ne975XCyRqqKGGGmr4gxAIBHjf+97Hz3/+cyKRiGKvtQRJkmhva6eQLmGYs3PV7Zfh7LQq6kgNdT4hTQgEjkTpeqMPs1vEXpGRFFa/GXunkehwmny6qBCN8qkS2XgetVHEWgtHotSvc2JrMJIcy1BMCZsRk0dLKpAnNBzDIlubZefzJOczZCJioc1FChhdOnw7vEz8aoGpVxbpeGOjcu7ESwtEpysBjbXJjMaoZvKlAKGTcVov8WK+x8CJ74xz8t8mFIIOQOhsXNjeyqjf7KTjDQ1MvLzA9G+DzL0eRmsCndNAcjqzQp1y6rUAeptGISgBeLe4sDWb0ZrUVSQlk9dIeWXouwL5VB6z14it2VRFUvKuc6CzaoEKSWnm9aAidw2CtLVc1cnRZZYTTuKh19zVQSlX5MAXxY6z6FgKnVWj9HPo32cZ+vks5AXZqv+2ZsZ/JYpw1lYTJo8Bg00PJIiMJ5naE2DiZdHuXW8nMZMmFRD3cnXZyC8jGiXm0kSGRULG1Wkhm8gz/dq86GerFbVGRV4exmK+TF5WvzT5dJQKJSW+tTeZkVQQHRextqSVyCWqFSiSstqDs8OG2WSix7Aeh9TCuhvbMLn1/PoT+xjkGJ3bW5iZmVGIS08//TQ/+clPKJfLuN1uuru7ede73sXb3va23//iaqihhhpqqAH4+c9/zsc//nEOHz5MIpFYEXvZbDb8viaiZ1J00Mfuh7eQmEtx6vFJXCYrRoMRW5OFTCBCbC6Ds71S4MpE82jk4lhsOo0kga3FROB4jOCZGMY6vUL4SUynFdJyIQNqjQpHu4WplwLMHwrh7rPiaDWRXsgSGUpBSVLuozdrsfpMjD8vCDqxiSR1a+0ET8aYemWRUraihmiw6rD4jJgbDSRnMsRnM/Td0syx74ySixTY94VBhRhTyJRIzKaJTaWVe224rx21Xs3BfxoiISuULxGgZvYGq1SRQMSUSypPS3D12TA1GKuIQaYGA1a/iULmdxOUAKxNRiw+Y9VnGrMKZ6eVVCDLtEwwT85kCA/GmDscUo4b/9WCEiuZ6g3kohWyVP0WB22XNzD0sxmCJ8Vnidm0ojQKcOCLZ5UMfc8tTeitGkVlydZmxuyt5DzPPjuNtV7kvAxuDXqbhpGfi7jQu9GNud6oWL9l4zni02lyQZnQpJMIyBv+DA4NRoeO+JiIy8weHblEnsBp0Ue1UU02nFXsS3RWLSl5E5+lxUCxsIzQ5NZTzBUJnxLPpDPp8Kjq2S5dAcD2u3sJnI7y6k9ep9SVwmDVcezYMdLpNK+++iqvvvoq999/PxqNhr6+PjZu3MgXvvAFHA7H731vNdRQQw011JBOp/nSl77EE088wenTp4nH41XtKlR0tHagTuswLThZv2Mtjds9HPjKWciBx+ytEI8WC+QSRfR2kdeKjSfx9Nmw+I0kJtLk4gUcS8SjoshxLJGJYqMpYfXq0JGayVJMlTC69Bg9OtKBHIsno9hbxLnFXInYSJKMrC6Zjxex+I14BmzMHwgzdzBEx9U+DC4dmVCOiZcWSEcqOQ9nq5mUNcfi0Sip+Sz+CzyY6n2MPDPL5EuLTL5UUZuMTqQwuCsb7azNRnpubGLixQUWj0ZFvkgNRqfo54nHqhUoQ4MJTB69QlACcHVZcHVbmdsfqiIpLVnC/T6SUjEH9lYzmVCuiqTk7rdh8VWTlBYOh0Xdrbh0bonj3x5T2k31om85mWTUc1MT5TLKcyQW0hin9Eo/Fw5FWDgaEYQno5rem/xMyXGXzq7B1mQiPpkC0mRjOcZfmCcsx23uPhvxyTSZJcGGPntFuACITSUVApO10UQqmGXhhBgLR7sFtVat9KOQL5KdlpWTjGpK+YrSp63RiEotKXkttU6qIjRJkkRSVuEy+w3oNXqa6MQoeWnfXo+z08LeL55iimHqtluYm5tjfGKcgwcPcvDgQT73uc+hUqnw+/2sXbuWRx55hMsvv/x3vrMaavjfgRpJqYb/7cjlctx///089dRTq6okAZiNZi657BI0MyZSR2Ddra2YvUb2fkKo65SLJXSy3/3cgUUat3owy373sdEUepsOLEACKJbl4g0kJrOko1kkeUd/5GyCugEH1gY9wVCOUraEpd6okJbmDweVXWe5OUFa0pnEtaLjSRq3u+m4zsfIz2Y59cQYxgajog4kqSVlocwlSrj7bXjW2tn3mUFGfjbLyM9mxbFAbDJFwyYnepuaXEjs6B+4rYWZfUHGX1ioUkACmNkXoJCqLHZ1G+10X+dnoTvC0NMVgtKSctO5Vm8gE3101Z+tdtz5cK58I4ixP/C500LBaRmW1JbMDTqSoZxC5EEHA7e3kI3nOfgFURgbeX4Wg11bkdPOUfX8Ox7tIzmb4ZgceBSSBVRy0Ahw6EvDynM1XeqheZeXwacm5fsbkCRILogORCcSzB4KEh8TySz/BXWVxV0nFveCXKAzOLVEJpKMygSnuj4bao2kPGu5BNm4SPQYvGLn/+KJsHKsSq0iNiqCCglJsQoEkFQVy7nGdW5UKon0fJ4uaR1rdrRiaTDiPtJJjhzNd1o5c+YM+w/sR5IkTp48yYkTJ3C73RgMBpqbmwH4xje+wcUXX7z6y6uhhhpqqOHPCnv37uU973kPx48fP491CKwZWMOavrXM/ziDFi3bb+slMppk8IdTpOYyuLttuPoshE4nSAUyVcWRbDwPsq97fCaNWqvC0+sgOpwmcCpKw2YXWpOKfKpEPlEQ3u5ANphHY9BQt9bB7N4wo79eRG1UY/DoSQXylNJlVKpKcUzSSLTs9jL3WpjIUJKjj4+il+OyTCCLpJIwNRhJBfLkEwXW39nJ0LPTBI7G2PeFauu1fKpQIcvkYeCuFsz1RvZ95gyBo7Eqa7b5g2Hs7SamX6skRda+rROdRctrS8qPgNYEaLVkg3nFcmMJY7+YZ/rlxSqCErDCEu68yMPeT55a8fHJ744oJJ4lLB6JsnhEJD3MfoNipQbQfb0Pz1oHJ78/rti5TL60QKlUKZbOHwwrVnOtV3pp2Ozi2L8Ok5rPozZrRRFSJoDFZ1Ls/cwpheS19aEe8skCE3JhDpWIc8T4qDj7zDRZWSmp81oftmYzY8+LQpraoEYlSeTl3FUqkCEgJ29MHi0mt57AnHgWg1NPuVAmvKQ6oCqTDGQUhSajXUdm6f8NWgrZYqVw5tFRzJVY2BcBQG/SUsqVMUk2NnIh2y/pJTqa4MzUNOYdKlQNeX75wq+IxaPEYjH27t3L3r17ue+++2hoaMBqtXLdddfxqU99Cq22msBfQw011FDDnx8KhQKf/OQn+eY3v8nExMQKlSQAs87C7ssuRjNhJnO6TPvuBtzdVvYPChXDQqaIXlbiCR2LU7iyiMGztCkuibXBgMGjIRMoUMqVZDUkoXgUn01Rltfe6FiCxu0e9A49mWCBQrqIq8+GwaEhEykw8coCJvfSuSVUkoRKLxfWppK0XdlA8yVeJl9c4OxTU+g8OjQGFYVMSdiVLKViCkKlx7vBweGvDjN/MML80YjyvMn5FMVMEa1J2KIZ7BrW3tPBzGtBZvYEOXNOLmrq1aASPwBY/AYG3tLK3MGQYjMCKKpPky8ucC4O/tMQGkP1Z9MvBxRy0e/D2admVnyWCRY4+MVBhaijHPsTcazGooFCgUIl9GLgDmF9fOxfxgCYPxLBVKdXCEoU4PQya9/ND3URn04p988n81SiYTjzZGWsXL1WOq9rZOjfhdqT0WVAUklk5bxWcjHD0cdGSc+I2Kv14nrSgUpBUaWWKGVEDKh36wmciSobDOvWONCatORkxahyCTJR8X+NQWzSW5QJTq4OGxqdWimcSRJkgssKZ2qJpBzD2dtNqFQqUrNZGqQW2nvF3Hcd7qBAgcbbzYyMDfP6669TKBQ4ceIEx48f57HHHkOv19Pc3ExzczP/8A//wObNm1e8oxpqqKGGGv78MDo6ysc//nF+8YtfMDs7uyL20qClp7OXgd41BJ/JoZbUrL+qnchIkolfL5AO5JAkCbvfTHQ0SeIcQnhyIYMkL8aZxSxqnQp7s4nERJrQmRgGpxatRdilZcN5pVZVzJXQGNW4e20ET8ZZOBpCa1WjMYlYq5AuolJLisKRpJFo3u0ldCpONpzj+HfG0VnEsbm4OFZn15AJ5cjFCwzc1sLo87NEhpIcf3xcqUUC5FIF2YlEoOWSOhwdFo5+a5TkbIaR2cpGt/hkmrmDIRZPVIhE3df7MdcbOPyN4cp11aAzqsklilXxGMDisSihM/Eq21hghSXc78Jq9caRX8xWPRdAYiZDYkbEFXqnTol7ALybHDRfVMeZH00qx0y8uIhKV4mm4hNp4hOiHugesNF0UR2DP54kHcihMajJpwqkQ7I9W6JQ1a/+25op5csE5DhOkiRRBwZQw+gv5xQb47r1djy9dhYOR0SzXoVKJVGUyVPpQJbImMitqY1qHK0WRf1Sb9NQzBYVJU1JKxGbSpGTYzFznZFsrFLHLGQKiv2fwaWjkCkSGY3L19JSSJXQSTo66Gf9+nYitiQTkwvo2kC/vsgrv9nDYnSB2dlZJiYmeOaZZwDw+Xz4/X4eeOABHnzwQdRq9e94gzXU8J9HjaRUw/9yJBIJ7rrrLp577jkymUxVmyRJlMtlNGi57S230tzQysHPD0EJNq3vY1EbYeTIHNlwEWujCotfR2I6R3IhjcEhEim5EBTSBSWBkVjI0GjQ0HGxYArPHAhQt8ah3FMlSehkm7bwYAJJgqYL6wiejDP2mznqNlSONXuNWBpNCvFodn9Q+LnK58anUyzK/q0qnYbua/zUdds4+f1JDn9lGFu7SbGHi02kUS37G77m7lZszSb2fPoU0aEk+z5T2YUfHUqSjecVazGAvlubsDab2PePg0z9pjqpsng4irvLytCzlSSKs89C/y0tBE7GFJUhEBZnBrtGMJKr3Vz+Y5DHZglLpJ269TYWlxX40MH6B2TbuS/LC3sO5vaHCCyTtSZXUVpqu6oe73oHh796VrGuS4dzBM9W2O9LsowA6+5rw9xgYO9nRMEwOZMhE8kSlBUHSrkSr32qYiPX8cZG0qGs0p/g6TixaVHAar3YSzaWZ/g5EbD5trgxuioqS9OvB9BbxDwyeHUYXXpm94lkjrPTgkarIjYpgohcqkB8OklyTgyUqc6g2JXoXCqK2ZKitmBuMFDIFpmWdwaanHqQYzudpKO1qQ2X5MVxsA3/hW7c28w8+f2nGJsdxWQyMTExQTab5ZJLLsHhcGCxWNBoNHzhC1/gTW960+99nTXUUEMNNfzXx/PPP88HP/hBBgcHV5CSVJIKyhIdjV3c8JbrmXxO2If1rmvC0mAkJIniGGUwucU6N3ckRP1WF5ZGE6HTCRJTafQ2LWiBvIjnbH6xgzs+niIyliCfFV+6k7MZNHo11jYzoZNxYpMpfFvcCmlpes8imZj48p+P5rG3WJBUEqHTCYafn2XdXW00bHcy93qYhcMRRYIaoOuqRowuPXtPniIVEGpBnrUiTgucidG4w01G9m/XalVsfqiH8EicwR9Nc/xfq3eCRWQCyxK0di0b7m9nem+A2b0hBn80XdU+8vPZKrUigIG7OzA4dJVYQ4ZrwEroZHwFQWlp/P4zWCIo2dtNpOYzVffoubERd7+do98eVYhKZ38+S6mIQlACmNtfsa7b8nAXwbNxxn4h1IyScxnSoSypedHR+HiK/V8Qc0RrUrH54R5CZ2KclUny0dGEEuOY6rUMPztDalbEP11v8uPotHDk64KYPn80gtasVq5tbTIy9aqIcbV2La5uG5RFjJjPw/S+oEKe8l/gplxGOddgr+wCRCsk1+cOCUUD3yYPerNWUXeQJJlYtwxLiR97uwm1VkVanjf1Li+uDhvxhBok2PSuTiZmx3jqhz8hS5pcLsfZs2f57Gc/y+c//3kaGxvJZrPccMMNfOlLX6qRlmqooYYa/gxQKBT4m7/5Gx577DGmp6cpFiuVFEmSUKHCiIVrrn8jzQ2tHPvGKORhXXcngVyUydMBsuE8ar0ai99AYjpDbDKF1Vdh2GRCongGolCmt+nwrHEy9eIis/uCeDc4REa3IDZFmeR1MRMsQLmMb6uL6HCS6X1BsqkCS7U7k9tA3RoHky8HKSQKTL0awLPWLs4N5AmeihI8XcnX9N/UQvBUlKGfzjL442kMHq2i0hQZTaA3V9LK7ZfV415j5/BXBskECxz++kjleYIFkguZKsKMf7cHT6+VI98YrRB4ZCSmM8zuCzHx22qC0vp721k4Gmb0uXnlc41Fg8GuITGdqSIL/Ychj+sSlghK9k4z0eHq+HHj2ztIL2Y5scx2bvLlBRJzyzpSgNGfi/7WbbDj3+nh+GPjil1bfCZNdKwSpy0dC9B+TQPuHhuHvzpEoVAiE8mTmEsTHq2oMB38pyHl/z03NJGazyj9mTsYJiurknrW2cjGCsqYetc7cLRbGH56Vj62smlTY1BhbzUzvVfEaWa/EY1RQ1omnhdyRYJnoyTlYqC91VLZDGAQmwOWrIDN9UZZoUkm1Hv0LAmLaSQNjS4/lrQTi9SEs9tC8xvd/PzJ5zg7OYjZZGZycpKhoSG2bNmCzWbD4XDQ2trKxz/+cS666KLV3mANNdRQQw1/Yjh16hSf+MQneOGFF5ibm6tyZtGoNJiw0Oxq5Q23XsnMryJEhpP4G90466xEpDEAysUypjqxzkVGk2SiOQwunSApTQtLN7VRRTFdQkLC3iZIS7lEkcCJKPmMTDQJ5tGaNBjr9OQTKRLTaZov8SqkpcmXFxVlnWIOXD02NEYN8Yk0i8ejmOuNuLqthE7HCZyKVqkT+Xe5cbSaOfjVIYrpIsf+dQxrs8hDpeazxCaTVdar6x9oJzIqiFfjL1TiBxDqSWqjWiFEqXUqem9tYv5whODJWJVSEQhij9VnqCIIdbzRh63JVE1cAiyNBhIzmRUEpaV7/acgn29w6cini1UqTb6tLhp3uDn5b+OkZVGChaMR1FqVQlACFPIOQN/tTUTHUsy+LvJFmXCO5FyatGyrlg3nOLW06VANGx7oIHg6xpRMco+MJCkVReCitaiZ3R9SVJT8O9w0bHHJ9coisck0i8cipGUXF2uzSbkvaqjf6CRwKgaIuHf8xXlico3Qu8GJpJKUc/V2XRVpPTGXVmKpul47BqdeUZ6XVCrSwSxFWWRUUklEJ0XMqrOr0Zo1Cgnd7nTQ4HYQT4qcV89NTYSyizz/9AvECJPNZtm/fz/79+/noYcewu/343a7uffee3n44YfR6c5Rwaihhv8kVL//kBpq+N3I5XLcdNNNGAwGJEnCarXyk5/8RCEoadQajJi4/aq7+O9//d+5qf0eLpVuoE7fWFm0cmJHz5Jk8fT+BQqZIvZOKwCZcIFivrLoSSoJV5coSi0ejhI4EyUVEn/Qy3kJk8tA/RYHAJOvLqI1VNhC6UBW+bKcmMzSsN7NwG1CjebMD8fY8/mT6GQyirXegMGhVZR65g6H6bquERAqQnMHQpz8sbyI6WDNnW303SKuNfjkFKd/OKWcGzgVJblYWSzNDTq2P9JLw3YnAAe/OFQlS12UF7/l6kf1Wxy0X10PIK69jCwUPp0gMppg7PnqHWl9N/tZe2cbOkv1e2u61MOujw3gWWfjD8W2D/Ww7eGeFZ9vfriLrjc1VX+Yg8CpmCI7vYTR5+aJj6XRuXQM3NlS1aaSFa9ySwFODo58bUSxqNv2oR463+RTjg+djZNayCrjEB5LCGUlhF1b5zWN9L+lWbnW6POzSn+63tyI1qxm7nVR/LI1mkQhVL7W2acmOfQNcS1Ls56OKxoVez+NFjLRLIHTEQCcHRYSs2lFocnVaVVIdeggMhZn4jciUGy5qAGtWUNkXAQKpXyJYrZY9S5jU0nlvhqdWvHD1Vg06FUGOkObuUK6hXc98G4++L5H8OBHhQqLRUg3jo2Ncf311+N2uzGbzbS2tvLTn/50xXuroYYaaqjhvyZefvllBgYG0Gg0SJLE1VdfzYkTJ8jn82jUGjRo8dPBRz/03/jwQx/hcukmuqMb0BQ1GFyCRFFMF9GZNWjt4ufIRELskAfy0RKlbIlyQazHidk0BruOph0eACZeXCA8XCEQm9x6PH0inogMJYlPp3B3isAjMpIguZhGJctfG106uq5pUu576BtDjP1CjhXyYPTosTWLeHBufxijS0fzxeK+Yy/MMfSzCnmo77Ymuq/3Y6rXQh6OfmOUxLxYi/OpkijiLLPS6LjGx6b3dAIwsyfIye9W7GjzqTyURTy6HD23+NGaVERHUyuSOGPPzym7nhRooefNTay7v23Fe9v6nh7l/n8I6jbY2fnf+vGsr47V9G4tA3e00vVmf9Xno79eJHAyWqWkRB6GnxHj23qlF0dXZXcgMp+mVKioKgWOxzj6DaGI2bDdydb3divvKp8vkVrIVHbbaeHs0zOMvyCKXd03NLP+3srznXpykqlXFhXrt85rfIrKgtauxejSY6qrFGQPfO4Ugz8R77f/tiZ8m1xkg+Lc2GSKpEw6QisSbJMvifs2bHBirjNQSMpEufkk84dDCiHc2WmrUmco5kskF0Ui0OI3kk8WmD0q3qPFZ0StrhxcLoKjWM9u6Tpu67uPh9/zMG++4DYs2KirqyOdSrO4uMg3vvENzGYzXq8Xu93OAw88QDT6u+XNa6ihhhpq+K+BQqHAf//v/x2/349arUar1fLxj3+ciYkJisUiOrUeJx6u33QbH3v0r7ih9S52SlfjyHkoLctjqTVqLLI1/cKpKNloDnODWAfTgWxVoUdSgUfeMJecyTCzL0g6INbBQrqIrcmsxF5TrwZQG1TKNtT4VIrYpFgDc5ECjdvcdL9Z5LFGn5/j4Bcr5Gqj24DZaxCKQMDiiShtV4qcUyZSYOI388ICVsa6ezvovFbEHzOvBhl9fl65b+BMjMRMWiFEaSwaNr6jQ8k5nXp8gvDZSlxWXoo/lm2ftbYYadzlBmDiNwtVZKH0QpaFo2FF+WcJbZd7WXNnGzpH9T5cZ4+FC/6yD1evlT8U6+5vY+NfrIzV+t7STO+NzSu2+s7uDzH+m+qi4PzBCMmZDBqDivZrGqraVGoJylTZz519clrZcb/u/jaaL/EqbdGRJLGplEKUSgUznHp8AgrC6q3nxiY6r6vkyIb+fVrpT+MOF0aXjsBxkWe0NpnEfJNvPfnreY58U+S8NBYN3dc3Y3CKnJfKoCI+kyIm562cbWai40lFhcDTb8PsqcRwgdMxxVamYa0Tk8egbMIsF0sUMkUK8gZHSSURHkko99XbdBRl0r3OpkbKqmkJ9HOJdD333fwXvO8dH6CdfvSYsNlszM7O8vLLL7N7925cLhcul4sLL7yQl19+ecV7q6GGGmqo4b8mRkdHueuuu2hoaECtVjMwMMC3v/1tZmZm0EgaLDjoYQPvu/dDvPst72WX9EaaY/2UEyrURvF9Pp8sordp0dnF4h0aisMS7aMI+XiBkpzzSgeymL0G3HJsNbM3IPIecknR6NYrcVk2nCN8NoFV3sQWn80Qm0oiycfqzVq6r/ejs4sPTnx3jCk5d0ERrH4jlmUOMRqTiroNgjA+syfI0E9nlJqpf6ebnpuaMMrqmsM/nSUtE2QoCueX2ESFQF23wU7f7aIWFh1NMvrzuYpFWrG0as7Lf6FbtnjNKWpBS5jZE2R2f2gF8aj7hia65NhyOfpva6b/juYVn58PZp+BLQ93V+epALUO1tzZSvNFnqrPF46GmDsUUghK4sFQiEB16+xY/Ms2F6qBMgrJCMTGyiFZEdPWYmLgzhZFvQogOpYkKlvhohbXnj8g8kXNl3jpf0uLMi+m9waZ+PWCouzUdJGb0FIOUg2WBgNGeTOoWqfm4DeGmH5FzIXWS7007/IqSknJ2TSxqQq5SmdSMyMLJFibjTjaLJQVF588068HFGJWXb9NqauCINhnwiKXZqozkAllCQ2J/JSlzoBap1beaTlfwhC1sknazRvct/Lgve/ixnVvwUcr9Z4GMukMR44c4ZFHHsFsNtPQ0MC6dev4zGc+Qzpdbb1cQw3/EdSUlGr4D+ETn/gEn/zkJ4lEIiva9HoD6qyGPrZy3cd2k43lOfjFIVKnyqR6M+gdGuIIhpzeoVOUeQJnY5hdYoFOTuZAktDoxF/88FAcT79d2Vk/ezCkLAYAjjYL9lYLc3ujzOwJko5lFJs2lUaFxqDG2WMhPJhg9mCItsvqGfnlnEykiRI4Jf5I5xKw46P95JLCjuxc6w6rz4jBrsPSrCcxmWXk2Tlh//b8LORg5rUAswcrY7LhHR0YnGKH/fyBSMXSDMgncqCShDLBMrRe4WX8lwucfbJ6Bz9A80V1aIzqql1jgGJXt6RItBynfzyNf6tTUQRaQnImQ2I+TeBMbMU550N4OAHllZ+PvjC34jmAyjMsEa2WxQ9dV9djb7coFnUAI8/OMfLsHADuASv5dFHxpNVZVEKJaxlBe/qVoFIw7LutCWeXlUP/PExmIUd0KMncgRBTL4vrtV1Vz8yBMDk5kLP4jejMlT4fW+Zj61lno+fNTcy8HmTs+XkS81nCZ2OM/kYOIi7zkYsWSEyKApferkWlqRS0Fo9FmH5VvKOOK324uuxKgDJ3NIDWoCI6JIIdz4BdYT0vIS8X2eztFjKxHBO/Fc/g7LCg0auVcUxHc6QDWTZKO3H2WBh4SyuT+xf42TM/Q9csXlQoFGJiYoI3v/nNOBwO4vE427dv53vf+x4tLdUksRpqqKGGGv7fRCAQ4K677uKll15aoVKpklQYtEY8uUauuvYq/Js9HP7GWVLzeYJn4xjk9TmfKqE1aXG2W5n5bYjxPQHMjUYcbSYWj0QppUss36ZTyBSp3+Ri8qUAodMJgiejypdarUVD3YCD5FyWmT1BjnzjLL4L6pRzDQ4dalnuOjqSorC9SOvuOgafmmFqzyKlQlmQgoCGTU4at7k5/vg48fEUr/9DtR2axWdErVUxSYDoaAqTR4v/QjfTrwQZfm6e+rmMoq5j8ulYf28Hc4fCjD03z4nvVKsnlZHt5JYpGtnbTZRKsmLQ5warjrd3mHD32CikSow8u4x0LYcP0dFUlUKRGGgYfW6OVDDLuQgOxlbuNPsdiJyNE51IKupQS8gG80Lx6bXqIl0+mlcUjrR2rWKFttTnhs0uHO0WIkMjSl8PfLGy+35pXJegs2hBJSnvijyKdQla2P7+XhIzaSX+PP2jSaVgqjWp8F3gZuLXomBlbzdhdOmU4lc+mq9612vvakFj0Ch2eJMvL2JvNSvXcvfahOw3Ih7SmjTKLvxivsSJJ0aJjYjfjZZLfZRLZUDET9P7Akrxq3GnG71Nq5DX1Do1lCEvE6nK5TILsn2v1q7F6NAp5CiNUSIxlyZ/XGKHdDWbbhEWgM996hVOc4iGtjpmZ2ZJJBN861vf4vvf/z4qlQqHw8HHPvYx3v3ud5/7imuooYYaavh/FE8//TR/9Vd/xenTp1dYiJj0JgxZKz2s49IPbFesvfKnJaJrEmjNIqCSyhKWOiMai4ZCosDc4aBCUipEClAGtVYktqLjSfw73Hg3Olg4HGF2X0gpsgG4eqx4+m0ETwwRHU1x/Puj6E1yoqVURmfRYmsyERtLMX80QvuVDSwcDFPIlJjdH1I26lGA9e/sIp8scOxfxph8caHKOs3g0GH26hWFp9l9YRp3uFg4HKGQKTHxm3mFYALQfWMjtmYzB758lvhEmtMTlRxaIVMAlVSVdwGo3+xg/mCEmT1BZUPaElp2ezHW6Zk5h4i0NIbn5sIAxp6bI7WQUXaILyEbLRAaiitEmz8EwdNxVLqV+3knX17E4IhWkaYApn8rq54vZdeXtTfu8OBd62DxWITElIhR5g9GmJdzhuZGA5IkVKOWrqFSS5SXJd1CZ+KEzoiNAf7dHhq3ujj2nVEygTyZYIHxX88TOC3a6zc7iI4kyMjjYPWbMNVXiESjz84xKufbzI0G1t7VxuQri8y8GqSQKTB3IMT8EVHk8293U0gVlb4Z3Hp01koJIXAiysJhcax3owPfJhcpmZQUGYtjPKxTYuT6zS6ysWUxqYSiimDzG0nMp5k+KK5lb7Ois2grpKxQllw0T6e0hjWejWy8u4vJvQu8+ptXyTZGQQMTExO8+uqrirp4uVzm2muv5dOf/jQNDdUksRpqqKGGGv7fRDqd5uMf/zjf+973GBsbq1Kp1EhaHFo33nwz69dvoONyHyceHyO9KEg1piX17SLorDrsLRaCx+MET8ewt5ox1enJRQsU0tW5mHyqSP0GJ4tHoqQDOeb2hYiMiTVV0kg0bnWTjxVYPBbl7FOTOLsqm8cMTh3FnOhjNpwjG8njXe9k6uUACyeiSGqhwARgazHTdkU9p384SXI2w7FvjVb1w95qJh3OsXgkSiaUI58u4h6wETwZY+5AkFyioKj+aC1qBu5sY+FImNnXQiss2CiJWEKtUym5J4NLh0orkZrPcvJ71bVDvVNH/UYXlGB6eUwm110zoZyiGrQcwz+bIZ8prPg8eCa+4rPfheRChuCZWJU6FAgFqvFfzRMeTa74fClnpTaqq1SWAHzbXWQjec78SBZxKMLpZRbDrj6hYLUEjVmNpJKUd0kRxp6vxJrr7m0nMZ1m9DkRP43/agF7m0kQfNRQt8bO4lGRJ9U7dVgbRSyemE5DEY5+s/KuO97QgNGt4+g/i89mDwQV21zU4O6zMiXHv8Y6naykJCdpJTj9o3GSsmp580V1IEnM7hHx0/TrAYV0ZGs3YWkwMiPnC9U6NSCRi4oDJLXE3OGKupPVbyYtW/ZqzBKR0QTpMVgjbaN7lx+zz8CerxxnjFOY2zTMzs9y/PhxHnnkET72sY9hMplYt24dH/nIR7j22mupoYY/FjWSUg1/EPbs2cOdd97J+Pg45XI1S0UlqbBq7HTnN3HRvZuwtZjZ/7nT5BIlFk9ElC/4mcUcBoeexs0eAofjjPxqlq43+nG2CfKQwaxFZ6lMyfRiBlevlfEXFgicidFySY68LIdcSBXpuMpHPlZgfl+EkedmFUsHgJ7rmimXYX5fhNk9IWYPhLC3VBi5GoMaT6+NwLEY489P03d7O8mpFLlEicCpKPGZSsFpwzs60Fk07PvHwSoSDYidWQ2bnOhMak7/YErZSb6E0FAce5Op6rPum/wsHIsQHUry+v+stgdpv7qexgs85FPFFckagP2fO4vFXy2pZ2s3sebONhaPRRQW8HLkQrlVEznhwQThwcSKz38Xhp5eeX0QKk7nhQ52PtJPKpjlyNcqct8nvz9ZRVA6F13X+ymXUMYolyjx+qcrxayBu1sYempKsZsLnomhdwqrvSUo70oHvm1unD0WDv2T2CmmWNAhiGG+bW6Of3eExGSW2GiC2ESSsRfFuPXf2ERoNKEQnPQObVUhd+S5OYV01HGtD98WF+lIjrnXw4w8M0sulWd+XwSANbd3kE9XgrjUXIakLHneuNONpJKY2y8SXRaPEZ1ZQy4knrGYLDJzVhT7dC4d1nojxZQcgWghNpNk7rUo66TtbLm5C51Zy4sfP8IZDuPutzA9PU2hUODVV1+lu7sbrVZLuVzmnnvu4Stf+cr532ENNdRQQw3/x/Hoo4/yta99bVVCuFlvwZ310c4Aux9dTyqY4eg3Rpl7PYzJpUdl0gB5DBYtjlaLQsqZfn0Ro1so/eUDefRWLaY68fPcoQiODqtiVRabSlUVI8w+IwO3t7P/c4PM7hVfaJf+9ax30bSrjkKmxMyeIAf/aQh7eyX+MTh1FGQ7uNR8nthMms6rfAw/M8vMqwEMDh2ZRRF7WVtNDNzewugv51g4GGHfP1YTh3puacbg0DH9SpB8NK9IMAOkZnMkFzKEhypJB61dS/sVXgZ/PC2KM+eMZc9NzVAur7gPCILVcuu0Jax/WzsGh24FoWoJSxZl52J0WQz5hyCfKlWpPS3HEvlnNXS9yYdnrYOj3xpSCFzk4dh3RhQrtnPhv8hN6yX1lIpl5b1O/GqBiV+J2NbZa8HWbKrEunlIzKQJLLOEyQbzSsKo/Vof7m4bgdNRUrM5oqMp9n6yEvdufV83qUBWIThN7w1ilJOLercW3yYnJ38kCp32Dgtas4ayvPutlCvx2rIYuu2KBsqlMvs/K97hie+OoJcVLRu2O2m+0Mvgk+JamXCWVDBbUVnqshBbFvfrbTqlkGZp0BMdTzD2GxH/1m9wYfIYFIu9+EyafDKOXXJzmecaNtzeReBElP1PnSDcMg5aGB4ZJplM8p73vIePfvSjpFIp1q1bx1e/+lW2bdt23ndYQw011FDD/1mMjY3xzne+k9/+9rekUtUEZI2kwaWroyO7jnVXd+Pd5OTQ14bIRQrM7guilXdfFzIlLPUmSgNlQqdSTO6ZR2NSY/LoiCUKaM1ajM5KPic6lcLZbWFmb5DkTIbkfIZsVKzT+WSBjje2UMyUCBwTCtW5eGUN77muCUktEToTJzoqiNYWvyCklItldDYt1mYT4bMJpvcG6L62kUwkRy5SYO5QuGqjVPeNjZi9Bg5/bYSFwxFF1QfA4NHSvNuL3qVj9Jk5hWCzhOCgHHMtJ+fschOfShGfSHP4q8NVx9dtsNN+lQ8kqjbxLeHEd8cxeKpJTQa3hvX3dTJ/KMz4rxZWnFPIlJiRY5flSM1nVt3897uwWh4OxCa/5Exm1TaALe8Wcc2pZcW/id8ssHgyqliknYueG5pAgkNfkgnjBTjyjUqk2v7GeiZ/G1Rs4WLjSayNRjKBSiFvuYVvyyVe0mvtHP+2IOkrBTrAPWCj/aoGTv1gguRMhmwow+KJCAtyzNpykZf4XFrYBSJISRp9haw19cqiQljybnTQckk9+XSRxSNRFg5HKJfLLB4RRbq+W1qFWriM6GSSXFy2GOk0o9apWZTVnYx1egwOnSDtAfl0gUlZYQANuLtsBAfFsSq9muBgjMUjUVqlXvova8HSYGTfZ84wXj6Drr/EzOwMkUiExx9/nB/84AcYDAbsdjvvete7+NjHPna+11dDDTXUUMP/BTzxxBN8+tOf5tixY1Wb8SRUOHUe6nMt+Ghl84PdpBaynH1qmuhQigVvWPEH0ho1uHvtTP42SDFdZPKlBcxeEQ8V0yWMLh1Gh54IScJDMdy9VuztZqKjQgG8kKoEMKZ6Az3dzRz/9hjxiTTDz8woCpDmBhNtVzUgqSUWj0UZ/PGUom4EQmkJmQNVTBeJz6Zp3Opi5rUQwTMxTB49GZkIorNr6Lu1mamXA4QG45x4rHpzXduVXmxNZoJnYhRzsHisotCcTxSJT6aIT1ZiVbVORcN2F9O/DbB4LFp1PEDntT5UGqmy4WwZsuEcJx4fV5SAltB+VQO2ZhNHvjmyqn3bcju15Vg4FFn18/PiHFLQcpyr6rQc3k0OmnbVcfJ741UkqtM/nFDIOOfC0Wmm4w0+VCpJuXboVJzQKRHLGj06bK1mRTUJIDKcILnMwreYLirHN2514bvATWI2TXoxRzacq4p7+9/STCacVwhOcwdDSj5WrVPhXedg6mUR85i9BvTLviNQhiPfqox9y8VeVGqJY/86BsCZJ6cUwQhri5GOK32clVXJC6ki8ZmUQoBydJqJT1fqrwanlqJsXWh06QgORlmQlcXdPXZszWaF/JWYTxGdTGKUjKzVbWXjtZ0sHIkw+OIEAe84JVuW4ZFhXnzxRV588UVsNht6vZ6rrrqKv/u7v6Oz8w9Xkq/hzxc1klIN58UHPvABvva1r60q22bSmmkudNFMNzs/NkBqMcORr40w/vICDZscYNFAIoelwYTRowfdNORg6JlJDG4RKBSiBcwNRurWOwgPJjjzwwm6b27G0qEnMSJ/iZdkJkhOkDmaLqojeDLO3OEw9RudpCLiuFKuxKa/6GTkhVnm90UY+uk08WU72Lc93INap2LvJ06zeDjK4smookZjbrRg8Rnx76pj9Ll5hp4VhQidRUUuUSIbzVUTs3TQd0MTp38wRXgswfDzM8y/FlHa1t3VhtGl5/VPn2HylUUml6/xFlkWud7A4Ylh5dmWzh19bp58TiYo6SptG97RwdyxEPN7IySmc1VtsekUyYU0E0s7uJapFm37YA/JQIaT31lW4JLP7b25iYUzERFs5arbzj12+XW7rmkkfDZOcCheday930zf9c2MPDcrxnfp2XIiKbF4PLriuvGxNFhg072dDD0zI36W7zP49BSFTHHVPjnbLDhaLbRf08iZp4Xt3eLRGItyoaz96nq8m5wceWyEzHQOcnDiR2NkZPnE1iu8xOZShE+IQDOfKlLIVJSRMGs4/sS4cl97hxWDR68QjQ5+bUhp67u9CVe3jeOPjxEbTTHywizpcFaxkdv+l31kglmmfhMQ1m+jCXIyO7x+pwOdQ8PZn8uqBzY1qCTlHasMEqO/rBCtLH6jHIQH0LvVTL22wNzeEOig9eJ6jC69IFLpYPFUlHIBdJKObf6L2HxLF+GzcQ4+cYr5pmEkAwwNDVEul/nqV7/Kd7/7XZLJJAMDAzz22GNs3LiRGmqooYYa/s9heHiYt771rRw8eLBq1xiAChV1eh/d2Q1svL0HZ5eV/V86RT4Kk68sUKIMWsjG8jhaLKjUEidGJxh6dg7vRismr5bUdB57k1nsqJZJS2O/msfWIqSQE/NpJBWKFPbC4RC9t7Tg6DcTOZUkOBhHpaswdN3dVhq3ujjwxSFm94Yo5IpKMsTZa6HvlmZmD4QY+8U8h748rKgPAfi2udCZtQw/M0s+VeLM01NoTaJT8fEU+VRFdhstOLrMGO16ZveGGPzJJMuZwqZmHWvf0s7kbxeZPRDi2GNjikoSWmi/wour14bZL+9SWtYGMPjkJMV8eYW6UstlXo59c0wQlJb6LrfPHgzhWEZ+Xzq3frOTlkvqOPHDMVJLAaB8rqvTgq3FzNiv5yt9WNZe9f9lfXS0mnF124SSk7a6rf9WQdhSxldum9kXQOfQklpSYJKvu0RQatjhxNVhrShwamH6t0HKRZg9EFpxH/IiKWJw6hh/dQHkfNTJH1Tiy60f6CE2lWTwhyIxMvjDaVzrY8o9u97sY+jZWeW6mVhOUZvSmlQsHIsobb5tLuztFkweHanZHIEzMaH8Kbf33dZCLp4Xzw0c/vYIJjlB07DTSetF9Zz4nkj0JYNZElMpQjKh3r/TU0nQaBFTSQ7zrZ0mYpNJRp8Vz+BZY8PWbCGfEseGRxNM7ZXjbRPUDdiJyuoMRb2YFwv7Q9h1Ti66ahPmOiN7P3mKWWkU+jLMLcxRKBQ4dOgQO3fuxGg0otfreeihh/jbv/1baqihhhpq+D+Lr3/96/z93/89ExMTVTkfCQmr1kFLoYcGmtn2oV7icylOPz7J7L4g+VwRZHd3U70BV5eVsZcWIAOnfzyBySsaCxlwdFrJZwrExlJM/moOLmvA3GwgOZkR688y0Z7YdBrfBW5FqTE6niAtk4kK6RJr7+5g7FdzBI7FOPvTaTKJSmFt3f1t6G069n9ukMR0hv1frJCvjS49rh4bqXCO6ZcDzLwuiDgag4pCpkQqnKtWD9JA6yVC4TsTyHP66Umig0mlrf2qBuytZg5/ZZjQYJzQyWW75g3QuN1Nqs3MyX+T44RC5bqLR6JIkiSIUJpKW/fNjYSGEgSPxgQJZ1lbJlogPBpXVH6Wqxatu6+NdDhXvaFOPrf5Ei+RybiwKCtUt5177PLr+nd4SEyniE6mqo41NGjpv7mVid8sKMSZpfbQUIzo+LKCnXzdJYJS31ubmXpJJvrI9znz4ylUmtX7ZHTpqVvrBJXIE1JAKFXNCNJ13QY7LRd7OfGDMTJzIkA69r1RkC306jbYycRzxEdEzFMqlMjF8xWilUHDyHNzyn09a+1Yo0blXZ76wYTS5r/YQ9MOD6f+bYLYWIqF4xEK6aKi8LTxHR2kQ0IBAg0sno5Szol+WDuMWLwGzr4mCFNaq1AsSAXFOGhMKkZfmFOe29VlJW7UMPdaGINLw9hvZgkej4MGmna6cbZbOfvv06CBwJkIIVkZvtPay5Y39RE4GeXkT0dZrB+lZM8zPDRMPB7nr/7qr/jEJz5BsVjk4osv5otf/CJdXV3UUEMNNdTwfw6hUIiPfexjPPnkk8zPVxNT9Bhp1LbQnO+lfZePhm0uDn9zhGKiyORvFkXcpRYkEU+vA41Rw8hPZ5l7PUQ6kEZjFqo6Vp8RR7eFyVcWoSjcP2zNYgNdLloUKkMmEfNERhI4r27A2mokPp4mMpxAY6pYt9haTDRe4ObEY+PEJlIM/mRKIecYXDoG7mxl5rUgs6+FOPvUdJXri3eDA3O9gZnXhFXa5CuLsqIN5KIFstE8xSVLYLUgyBidekKn44z9egHtMjsurV1N380tzL4WJHAmxshzsxXikBq86x00bHQSOhMTVnDL2gCGfjaLSlv5maJQ/Wm6yM3wM7OCoLSsDYTzTC5ZqL5WUdSm2q+sZ+jZmYrlmnyuyaPH0mhk4WikmtikXuX/y65rdOlwtFqErZy6us1/oQdrg4HT/zZV1RY8Hcfk1ZOJVvdhiaBkazeJ+HyJAKWGyHBSEM9GEivuQxF8293Ymk3MHwsrdb/JVyqbAwfubCExn2FCVq+aeS1EfE4QlAB8O1zM7qtY46UjOUUhSq1TEZ9OK7a5rl4rngE7C0cjpBfFZssj/1whJXXf4CefKHDqCRH3nX5qCr1ZBJDWdiMdV/k4+7TIW+VSRUKDcWLTYm56NzkFsUpWe5IkCUoiLtO5NMQmU8y+JitYtltw99iZejEAarERL3gmqpzr2+ohMpJggQjoJKZeXSQ8lMCoMXLxlktxdlg5+KWzRKUAqc4gi9F5FhYXePzxx3niiScwm810dHTwwQ9+kHvvvZcaalgNKzVsa/izxdzcHBs3bkStViNJEp/73OcUglJjYyN33HEHF/NmPnj/h/nwf3uEmz94HQDhoSiWeiNdb24kG8hSt9bJ1neIL3tDP52klC+x/b29ADRfWE/LLi99tzWRS5SIDMeo67cLQoZJg73VzNo7OgBhJ2Fy6llzXysA1jYzlgYjBq8OcqCzaVl7exsAwaG4kGHcJrzr7Z0Wtr2zm/br6gEhY7d8tu/6yAC7/moAEIurpBL2DQCbH+xi16MDrL1f9MPZZVWsvHw7XVz46BpcvTZar/Cy8YFOOq6o+L/vfKQfY52eXKpA3XobFz66htYrhJ/8hgc72Pn+AY59Z4TDXxlmx4f62PrubgA2vaeTCx9dQ8e1PqZ+E2DdfW3s+kvRP50FzA0GOi4X9zF4dVz46Bq6b/IDMHBbC9YGk6Lys/39fcp4FwslnG1W+t8ivGD7bmviwkfXoHOpcPfb6L2hiQs+0Fc1LmvuFuNt8Ij7LCk3bXuohws+0Id3rYPG7W52/eUA6x9oBwQpaO2t4l1ojRq2vKuLHR/qV65rb7HQuF28m6ZLPVz46BrqtzjEeD/QhdGtp36DU4zhh/vZ9PZOwqcTmOr0XPjoGi74SC/mBh0b39nJzg8PEB5McOy7o7i6rGx+Zxc6lw73gFWM95VecskCKrXEpvsqSYeBG1tYf4d4Nt82FwO3tNL5JjGmri6LIkFet9HO1ge7uOCDYgx1LmFZs1RI2/ZIDxd+dI1yXVurhVKprNjSXfjRNXjXi2frvbkJrVFNWibTbX9/L65uq6Js1XlFI3qbjkwkR8d1Ppq213HmJ6KotvXd3Tg7rZVx+csBUpEsxx4fo/VKL+vf2kHTDi9QYvM7uzA6dAz9+5Q8hgM07ajD2W7Bf6GbLQ90E59OMfnqArves4E7738rd9x2B1dwC+996H1cfPHFmIwiYD9x4gTbt2/Hbrdjt9v51Kc+RQ011FBDDf978M1vfpP6+nokSaKrq4t9+/YpBKVLL7mUe2+8nyulW/nYxz7Gux59O74+L1N7ghSyRTY/KNZvV5eV9ssaWHd3G+Rh4WgYe7NF8bRvvbiBDfeJeOP498eR1BIb5BjHv8NN/XoXjTvdkId0KEv7ZcIWIR/PY3Tr6X5jEwDhoQSNW9x03iB853VOrbDtldFxZQM7PizW/mwwi6SSlERBz61+LvzoGrquF+uu1qihvIyEtOvRAba9txt7h4mu630YHDqiQ6LosPVd3Qzc0krTLmEnt+H+LpouFP9ve0M9G+/topgtUUgX2fxgF9vkGEhr17Lzw/1odCqOfXsUd4+VXR8ZwN5uwuTTsfMv+9n+/l6ioykSU2l2fKiftfeIOKHlMrFzrX67AxDKSRd8sBIvdV7lwyCr/tRtsLPrIwPUb3ai0kloTRrW31nZLXTBB/rYcF8Hjdvc+La62PWRAfwXiZhozd0typgBbH9fL5veLs41+w3s+sgAHW9spH6jg/7bm9m57NhtD/dgazFRzJfQ2rXi2GvE+DZd6BUKWjKpZ+tDPUrMiRY6r2rE1mYGrVBd2vWRAbR2LTN7gmx5Zxc7Humj/w4RO+78cD99tzVx5OsjhM5E2fXBAezt4tk3vaOTbe/rBa1QfHD32hi4U1jJNu320Hd9M/YOEy2Xe/FucHLBhypjaKk3YfUJgtzGd3Zx4X9bg2e9kE+3+U2US2VBcNLCro8OsPUhEdN51tpQa1VKAmbTQ51sfWe3KCQiSNuSRiIxlcbeYWLdW9tIhUUcNnBnC9YmE0a7iPm2vb8XrVnN4I+mMfl0rHtrO+4+O6Ci99YmPH129n7mFOTFeLdeUk/zrjq0JhW7PjhAeCzO8C9m6b6hka0P9Airk2iere/uxuDUMbNfFIFv+dh13HLrLbzl0rt54A3v5q1vfSu9vb2k02mCwSB/93d/h8PhQKfTcfXVVzM7u8xasIYaaqihhv9lSCQS3HXXXVitViRJ4sEHH1TUwhu8Pu64/Q4u5Ubefs17+MBH38sb33EJADP7AziaLbRe4SWTKNC8q46tb+8BDYz/ep5sMs+m+8X67b/AQ9cb/LRf0wAFmD0UomGTG51DA6jwbXGxVs5LjD47h6XBSM9tIrfj7LLg6rZhbhQb+/R2rXJsaj6D1qLBt8UFCHLU9od6aLlcxESSWkKlrZC4L3ikjx2P9AnCi0eHpJZIyzmNvlua2fXRAfrfKtZs3yYXGtl2ztZmYseH+/Ftd9O4w03PzX56r29WrrtFzlPk4gVMfgM7HumncYeIa7puauSC9/Zx/LFRTj4+weZ3drH+bSJn1HOLn51/2U/TJXUsHI7Qfk0DOx6R4xoNePoddL6hUfl5xyP9tF8l8nmtF3txd9spJEXsuOG+djbJOcdCroRnjZ2Oa0X86r/Iw45H+jG4NTRud9F3YzOb31nJC13wgT66bxT3Mbp17HikH0uTGO+1d7ay5T3d+C/wUL/Zxbb39dJ7m4iDPetsbHxbF5IKVFqJ/ttb2Ppwj3JdT59dyd04eyzseKQfz1oR1wzc2YKry4q7V/y89aEe1ry1ldR8BkktseORfjY/3IXBo6X7Jj/bP9BHeiHLsW+P4uywse6eNjQWDQaPVoz3LjfFTAmVVmLDPZWYs//mVnpvFO+q+WIv6+7qoOVSkY90tJkx1YnntDQZ2P5wD1vfW+m/zqwhHRIEpnUPtLHrowNoZKV7T4+VcqlMbEzEWjsf7adhq3jWxp1uTF4D+bQIOjc80IF/m1tRpFpzeysWn5FCskD9Fgdd1/gZe2EaCrDmra34t3vwrnMAsO19vaRDWQafnsKz1sbmd/TQfqUPNCr6bm3G3mzh9I8noQBbH+6h641NODos2DvNbH2on/BInNn9Ydbf2sWtf3Ezt1x/G5eVb+Khtz/MpZdcitlsJp1O84tf/IKBgQEcDgfd3d089thj1FBDDTXU8L8Hr7zyCpdeeikmkwm3281XvvIV5ufnUaNh986Leevl93GldCsfeO8HuOvDt+PpcLB4MkomnBc5LsDabKT3+ma6rhfr9+Rv53F1WXH1WIES3W9uVnJc4y8JAknvzWL99m500HppPXXrRH4sPpOm4yqRN8mni7i6bXRcLX6OjiZo3l1Hy2UitjI4dVj9RuVZ2q6oZ+tDYu3MRHOodSokmXjsu8Al4pyLPQDorVpK2Yq93Nb397DloS4sfiPeTQ6sfhPpRbHu9t3SxPp72mnaJc7deF8H9ZscAHgGbGy4r5NCtkghW6TnzX7W3ydiK7VRzaYHuzC4dBz/7jgGh46tD/dg8RvRWdRseU83G9/eQTacI72QY+PbO+l4o3jWhi0O6tc78fRZAeh4g0+JrQA6rvZhklV/TPV6tj7cg6vfilqnQmfT0n9bq3Ls+nvb6b2xiboBO827vWx9uIe69WK8Wy6pY8t7upVj197VRv+tzUr/tz7cQ8vl9TTudOPf7a6Krda8tZW6tXaKGUGw2fpwD/6dIub0rrHj6bMrxK/+25pZe1ebcm7/rS141thR60TObuvDPejsGsJnE/Te1MSmd3XTeqWIMze/q5vWK7yMPDPL7IEgW9/dg7VZPHv39X5lbmWiebzrHErezdFppvfGZqwtRlx9Vlov8bLlPZUxtLdalI0Lvbc2sfPRARxdYrOjxW+kXCwrBKcdH+5jrTzfjV5h9ZaUa9U9N/nZKit2AnRe7UNrUpMKZNHZ1Wy4r51cOg9FkYdr2OhUcrVr72nD6NEx8eIiap2KjQ900niBG9QS/p1umi/ycPDrZynmSgy8pYWeG5po2OxWxjs0FGXq1QUatrjY9p5umi+qo5gu0XdLM1a/SVG/vPzhndxw05t505pbuH3Nfdx1+1309/aTTmU4fPgwb3vb27Db7TQ2NvL+97+fUGilAmoNf76oKSn9mWPPnj3cfPPNzM2ttJ/wNzTRTg+GsIud9w+Qz+QJSGeZOxhCa9WIHc8Ir9dyucziyaggHo0mKMuEoFxaMEWXpKQHn56k5bJ65o+Ic80NJrFjLQeZhRwzB4JKQcXcoKNMGa1BLDaDT03RuNlZkaUulZAktaK0EzodIyjvolk8FqFhg1NZTKdfC6C36tBZIJcQfqcGpw6DV0d4MIqlTk+xVAYdzB0I07DVKdi7QOBUjPh0is43+Zh+PUioOUp4Isnc3jDZeB6r34RvpwvvOgeLJ6KkFrPM7Amic+kInYkSPB1h2weFklPoVExR61k4FiUry3VrTRrymQKLJ8W4zB0MkU+KbUu5hPyzbOuVieQInYmycCzC9r/sIx3KEDpTUSlaOBxWdgEe/MIQ/bc3MXdUXHf+SARJglyoxP7PncR3kRdVqZLICg/GWDwl/HrzyQLJ6TQJebGcPRRCZ9KycCRIYjpH361NQk0JCAzGMDi0DD8zQy5RQlKJQG4JwVMxMvEsF3ykj4XjYUJnooRlUs/svhDmeoOy823xRFSRI4yOp4jPJDF7jdjbrcweDGJrEot5fCzNwrEIJq+eLe/uYuS5GTHeZ6IkJrMUMkUcrRYatjup3+hk4ViUXEreYfbdEVoua2DxRBTfThex2ZRQbQKiQ3HyiQILx8WYGeu1YrxlyfNcPI9aW2G8LRwPUV4+Z0tl5V0tHI+g0sDZn4pnKxdLSPplc/aMPGdzEBqJ0rDZSdslPo6cGWHuSBidScvUS6JQVcwWMbsN6HQQPBPF5NIRnUmQS8D84TCtl9Tj2+pm8WiMwKkoGqOK6T1BiukC+Z0eLD4jifksc4fCuPttFGKynPa0KISvr9/M6Z9PkV4zSzAS5OzZsxSLRR599FE++clPEo/Hue+++/ja175GDTXUUEMN/3F88IMf5Gtf+9oKKxGtWse6rg1YzzSy5pY23P12zj4tyKfh4QQqvYrEXBbyeTQGtRIPTby4QPPFXuYPCwU/U4OBMhCbSpGP5oUyjiwOoDVpFeI1wJknJ/FvdRMZEfGTzqoRKpZayKdg6tUAubhY5IpJsTab5PV97IV5XB0W5VrpSA6T24DWriUVzbN4JEz4rIgTFo9FcbZbFP2juQMhyuUy1lYT8fEUiyfDGF0GUnMpFhHiNqYGE1qThtmDIXQOLVO/Fl9+A8ciBAbjrLu/jdBQnMWjYc7+XCj0aIxqtEY1rgErPTc0kVzIMHc0oti16S0aUvMZPOsdlMtiXJewcDRCbFqoBAz/bBr/Tg+hM+Ln+YMRjB4d/ovcNG73sHg6QnxSXDM2lWLxaJj4RIJUIE8hXcTSWElkzR0KkQnlmT8Yxt5pxDvgIDwsxmX+cIRMKI/eqZWPDZNLiPHOhTMsHg0TGIySmExhbbFU2cXOHw4r9npoYfFomODpqPIs5XyJnlv82BpNyngDgsh2OMTikFAmWjwRRZIgL8dIc4fCNGxzYfKIGHrxeESxcpk9EIES9NzUTj6ZZ+5gGK1JA3k48vURut7kIzSSYN39bQSHYiweDZMK5omOLKDWS5Tyog9tV9dXjffc4TDuPhvx6TRaE4TOCrtBAJNLSzFXIiTLrCeDaRaPhpl9XSgaFfMlKJeV7w9zB0JkI/IYxsQ7MnoMyn1ysTxDP12KrUrobVq0di35aI7FIyECg1HyqRILJyO4+2ysu7uNY98aY+5ACLVRzcLhEPl8iWw8h7PdynB6ioVjEVR6FenFLOSFolLLJV5MMpFt8UQYrUXL/OEwpSL03thG+3UdvH7qDKqNeQLSJJNTk0SjUZ5//nna2tqwWCx4vV5+8IMfsHbtWmqooYYaaviPYWxsjHvuuYe9e/dSKCyXq5Fo8jTRJvVjCNjYdk8P+USBgDTC4vEopjoDAXldNVh1IAmLeQoweyAoiiIFKGUKGGxaEvNizRl7YZZ8qkDghDjX3mwSOZhMATIw+vwMkiRiMY1Fg0oloZFzXkP/PkP9OjtZeQNaOV9CUqvQGIQq0/QrAeIySTc2lqCYLyt5l+lXgxhcOuXY4GAce7MJg11DYibN3P4g+WQejQEWDkdQ61XMHxKx4+z+EJlQjsZdbhaORpnbFyQxnyZwPI6z20ImlMfZbaF+s8iT5RJ5AsdiaAwq5vYHCY8kWHtvKwaXnrmDIcWObO5AiEJGFOiMTh25RF6JDQMnopRzcvGuAKPPzyq2rhRgbr9QC9j4jg5SoSxz+4PKteYOhlGpRVR56vEJ2q7wEpJjushIAq1eRSZa4MAXTuNeZ0etrqS+5w6GiIwncXbZyCcKzI0GyQRyynV1NpH/yQQLNF/iJTErxjsxk2Juf5Cp10IUEgWK+ZJi2QEwsz9EPlVg80NdzB8JM7c/SEKOZWb3h4jNppmSrXpn9gXJyday6VCexVNRXF0WrH4TgeNRsmG5bSHL3P4QpnoDm9/VxdmfTTK3P0hkOElqPkMxV1RIOr6tLub2BSnJY3j0W8O0XlZP6GwMZ7eFZFCMIUAmkCExm2bxuHj/5kYDc/uDBOV3kwll0Vu1FDLi92XucBiVrHKvsWgoF0RhV4x3khlTgCm5SFXMlVBpJEWla2ZvSNjpZCA6nUQCfNvrCJ+dYP5QmPBwQrGcy8Vz2JpMaAwaElMpZvYGSAayFBIFFo5GcLRZaNjoJDqcZHZ/CJ1FzeKxKJlogXQog6PNwsjPplk4FqFULlGIiz7GT+XZdeFFdJvWMPrCPJm1iwTSCwwNnSUajXLPPffwvve9D0mS+MAHPsBf//VfU0MNNdRQw38cjz32GH//93/P4OAgpVKFqGNSWVjTvA7LeANNF9TRtLOOM08JpZj5I2G0Zg3pxSz5dBG9Q0tGJmXMH4qg0kmKOrLFZ0SllkgspijmRAyhVotYSq0GnUWrWIBN/mqe9HyW2JQgfOjtWlQaCbUOijkYfmaGokwmyuWKlEtCGAFg8uXFKlu1xGwGV5cGnUVNLlFk6uVFolNy/DGaILnOQVl+3LmDYVQqCaNHRzqQY2ZvAHOdkfRilmK2yMzeAGqTGludnvlDESKjKcWFZOb1IPHpNO1vbCA+mWRmb4D5QxGKctykNWsw1evpu6WF2HSSwOko2XCOcklcNx3KYWkwUC5B4HTFMm3m9aCSR5zZGySfKhCTVSADx6Mk5zM4Os00765j8XiElKwGmY0VmNkbIDGTJhctMPjUFJb6Ss5rdn+IQqZI+GyChWNBnJ124vJ4h87GyWeKaPTi/cztD1GSVR+LOdHf2GSCdCCH3qlXlBiXxrBcLiv2ajN7A0TGRA4pMp5AUkP9RjvOTiuz+0OoVJUa58RLC8RnxPyIT6aZ2RugKOfTFo5EaNimxiwTiGZfCxKfFf0Nn02gVqtovayBQqbI3IEwWpm0PfKzWZJbMqQWM7S/sYHohHg3mVCO+ESaEWOlvl63wc7svsp4zx0KU8qXSC1mQA2xiYRCUNJaRH43LNdZi6kC068sEhwUc6uQLYl3L6ssTb8aFHXMIuTSYs6aXOJZwkMJSrmSUPACcskC9mazmLNpMWdj0ylhWzccp3Gnh643NDL07zPMHQoTOBMjMiTn3uZTePocTL4UJDqeYOo1FdlInmKuxMLhCB3X+JS84cz+IHqbVrzvdImODfW8Yfd1NAz2oW4rELJNMzk/yezsLJ///Of58pe/jNPpZNeuXXzuc5+jpaWFGv58IZWrfKxq+HPAD37wAx588EEikciKNhsuNnIRa25ux9ll5fX/eRqA9W9vJ3gqxvQrwoZs+3t7CZ2NM/STGXw7XThbzZz8vggqum/y4+yw8PqnzwDCf3P69aBQmpHPjYwkGXxyCveAFb1dp+yy6XyTD8+Andc+Je7r2+lidk+FWbntQz1kI3mOfnMUnUUkdnIJsUD7L3bTcpGX44+PVWzDltmEbX64C61Jo1x7OXQuHVve3UVyPs3RZR7wS+i41odvi4vhX8woNl7LsebuVqxNRg5+8TS5xIpm2q6qR61XMfzTc3ZGn2tldg42v7eL0efnCJ9e5aI62PzOLsJn4ooyz3L03NTE2PNTq/bn92HXxwaITSQ5/p3x33/wOfDtdFHKlZg/EFnRtu1DPcy8FhTzaBWsf3s7oaG4sEb7A6Fz6ei/RezwXw1r72nF4j//u7ngI32UyyhzfTkszXrW39tJZDzByccmVrR3vbmRurUOjj8+KubcOdj2wR6K+RIHvzhUdc3EZBaDV8emv+hk4pUFpl8S4+Hss5AO5cgs5Fh3XxsGp459/yhk2g1eHY1bXIw8O6f0e+FwWHn33Tf5BenpZJz+tzRjaTQq5zZsd+LqsSrPcMFH+lg8HmXkmVl0FhX9b21j5rUAi0djDNzRjNknzh0rn0HdkyMQDBAMij7abDZMJhObNm3iqaeeQqdb5pdbQw011FDDCuTzee655x6efPJJcrnqRV+Hni7W0yi1suXhLqJjSYZ+OkvdBjt1a+2cfXKCfEooBnn67ez/rPi73ndbE4FTMQLHY6CFLe/sIjScYPTZOVwDVmxNJsbk9aH1Si/edQ5lTWi53MvsgTB5WXZ4y8NdxGfTQk2mXovaoCUuJyr8F7nx7/Bw6EtnyadKmHw6xb4LYNO7OymXyhz+6so12N5hov/2VqZeWWTq5ZXr+sAdzdjaLRz40pDSl+XY9qFeyqWy8szLobVr2fxgJ+GzMQafmlnRDmL9P/OTmVWvfT40X+zB2mSq2KCdA/+Fbuo3Ojn4T0Mr2uo22CmXywSOxlY583dj4K4WbC1m9v5/p/7oc7UmFU2XeBl9duWGg7ar67G3mjnyLyPVFnMynL0WWi72njeGEjdgxbkd1/hIBTOrxsRL7yY0GOPs0yvfTeNON22X1zP2q3kl/l+Odfe3YfYaFQWjc7H9kV7S4SzHvjm2oo/2DhP9t7Uw/PNZYTki94d8nnxKzAmtVcOhLw0rp9ZtsItjtbDtvb3M7Q8y+ZKYrw3bnSTns8THU3Tf0Iit2cQBOaazt5uoW2tn6N9FbL/1Az0sHo8w/sICaKHnzX4Cp2KETsbpepMPe5tZObdxpxtHu1mZZ9s+2MP80QjDL0wzbD2MsUHHyMgIxWIRlUpFQ0MDKpWKb3/721x22WWrvqYaaqihhhoq2LdvH29/+9s5ceJElYWuGjUefPSzlZZd9dRvdHLoy+Jvc/eNjUTHUsrmpA1vbycykmT8VwvYO824eqyMPi/ssRp3uanf4FBsR1uv8BI4FVOstDa8vZ3YeIrR5+cxNxowunUEjon4wLfNiW+7m4NfHYKCsHtYss0CWP9AO9lonjM/mkJjADQaCrKtm6vXSue1Pk79YILEVGaFTVjfHc2YPQYOfPHsykHRCKWa+HSK07J1xHLUb3bQfpWP4Z/PKGvocrRfVY97wM7hfx5R+rMcdRvsGBx6Jl9cWHFfVh6uYOAuESsuqfSce+7AW1qJjieZ/u3KWLLpkjrmXquQl/4YbP9wH+HhOGefnP6jz3X2WJAkqeq9LWH9X7QzdyCszKNz0X1jI4npNLP7VsZQ54PGoqHzDQ2c+dHUqu3tV9fj6rNx5Jujq76bje/qRKWWVo1fdQ4NG9/eRXgwxtmfrIzbfNucNF/s5eT3x4VV3TlYe28rkkri2L+MKZ8ZPFoygTwai4YND7Qz9cqikh80NxooZgtkggXar2nA5jdyRM7BaiwavGvtzOwV8eGmdwvC18yr4mf/RbIN32iK5ku8uLrNHPmXUSiAs9uCq8fK8M9mlWdePBFl+uUAGgO0X+MneDJG6Eyc1su9ODrMHPnGKAvlGXJdIYLRIIuLgkRmtVqx2+1cf/31fP7zn0ejqe3vrqGGGmr4XSgWi3z2s5/li1/8oqJQCSChwo6TdgZwS/X03d5MfDLF9J4glkYDnrUOJn+zQDFXom6dnfqNTo5/ZwwA/24P8fGUYq/Wd3szsfEkM6+FMNXrsTaZmD8g1tK6dXbqNzk5/u0x5efIaIJ8QsSAfbc1kVrIMvHiIjqLGrVJrViVObrMtF5az8nvj5NPFNHZNeSilbW0+81+1HqJ0z9YuQbrnToG7mhhem+AhUORFe3+3R4aNjg59p0RxYZsOdbc3YpKLXHsX8dWtKl1sObudsJDCSZfWlzRDtB2dQOTLy9STK+89vng6rFiazVVbNDOgaPLjG+LS7EZWw5rsxFJIyluIn8Mmi+uw7vBwYEvrBKj/h6odVC3zsXcgZXqO54BG84e2Qp2lWEwenU07aoTdnznvQErzvVuclDMlgieXJnfW3o3obPxVXOdthYTPTc1Mf6reRaPrYyp266qx9Vt5ci3Rld9d2vvbSMbyXP2J8v6LPfR4NLRd1szY7+cIzKUlPsjauTFXInWK7yY6vSc+n7l/dlaTMrv0bq3tTF3KMziUXkzRbuZfKpAaj5LwxYXrl4LJ5+YUO7l7rUyLeftBu5qJXg6pvze+Xe6iU+niU2k8G5y4Om3Kec6Os3Y2y2MvyDm2Zq7WwmcijGzP8Ck/izqljzDo8MUCgUkScLn89Hd3c1nP/tZNm7cuMpLquFPGTW7tz8TfP3rX8diEV+kb7/9doWgJCHRQAtX6m/lw+96lNuuugOdpKOQLFAulNDJG+Tnj4TxDAiZPnJQLlW4bbN7QhRzZWEVAhQzRcqlsnLu6K/n8W9zKeeWCiVKRZFECJ6Mk43mqN/mACAdzFHKl9DJO49n94RoutSj3CufLFZ2RydK5BIl6jaKfi0ej5Nb/oU8JwgsS3Zl4cG4wgRdgl2W2MuFcgRPxhj+afWC5ewTDzHyzCxDP59eUYzxXyie+cRj4+z9RDUJRmdRse7eNgDGnp9fQVDy7XSx88P9uAesrAZnjwW9VYvFZ1y1nZxQSlqNoFS3URQ3my72rXKiSHxteug/5r/eeoWXCz7SJwhWq6Dt0nrFhuVc7PvM4HkJSgBGlx5nm+W87Vvf382W91X3OxfKKcW1xp1uOq5pqGo//p3Ku7G1m7C1m6raj/zLCKd/KIpEtnZT1XMlJrOEzsQYekYU/pbmyxKCp2OkFjMKQWlpviwhuZAhLatC6Vw67F1mRUlLZ9ZQyBSJymoKvp0uklMpMnKQXEgVyGcqgUrTDo9CUDI36CgVSmRkdQv/xW5SCxmCJ8W1ysWy8jsGUDdgZ+qVgNKPUqFENpGTx6yOfLrAolxULRXLFGULnjaplxveeBPX9t7CZi7GbXNjt9uZn5/n2WefxWKx0NXVxe7du1cU3muooYYa/pyRz+e55ppr0Gg06HQ6nnjiCeXvpBEL27iCuy94B+998P00SkImuVQsU5R3Py8eiVLKlajbIOKMQqpIKV9CaxKh++z+EHVLcVkeSqWyEpuFTsbJxQt4NzsAyCUKFHPCEgxg4lcL+C9wKX0tZEsU0+Lvfmo+TyaSV2y3YpNpCukiWrtIzqdmc9g7TEo/kvMZkjPVJF17h1hnoyMpErMpIqPJqnZrq2gf+/Uc84fDVSQirQlMPrEQDz45yZFvVRPH7R3Cqi0fzfPa/zy9gqDUeqVXsdY4/p3xFQSlzQ91seEdHZwPtlYz5nrDedunXwmuWuABaL6oTpEJPxdak4ptH+xRrDH+WGx4sIP+25tXbWu6xItvs0sZ1+UYe25exEjn4WlZG40YnDrM/tWf2bPWxo4P9eE6J1YdeXZWiYn772hGu+zWS+9miaDUsL36mWf2BBn89ymFoLQ0X5Yw/PMZ5g6HlD5bmqrj4PBQnKC8k87k04m5KB9bKgoJ7shZkXBxDVjJRwVBCSAby5OLy98VtKJvS4VYk0tLMVskKe/W9G52kF7MKoS9Ur5MIVeJrbzrHYzLZCatXUspXyKfFHGbb4uLfKpISI7LSkUUZQMAV4+FOVn5TGsXSlH5ZAGtpOXqbddy3a4buKx8M346aGlpIZFIMDU1xeWXX059fT3d3d089dRT1FBDDTXUUMFLL71Ed3c3KpWK7du3c/ToUYrFIhq0tNHHldKtvOvW9/KGndeikTQU0kWKuaJiabVwLIqzu/J9vlQoU5K/jkeHk+RTRTz9IsYopIoUcyXl3OnXQnjX2JVzi7kSRVk9MDmTIRPKKWtpKpSjkClikM8NnYnjWWdTdO4z0byislPIQCFRwN4p8hCx8TjpUE7ZpU8BNAYVBo+I8UKn44TOVBdTTEtxTUEo+Iz9sprUvGR1Nn8wwpknJ1cQlDzrxDOPPj/P/s8NVpFgNAaxcQtE7HouQcneaWbbe3uqxnU5jF49pjo9lobzxF4FOPnd8VUJSha/gaYdHhoucK96atebfKy5p3XVtt8Hzzobm97Thcawesq8440+mi7yrNp29J9Hz0tQArA0mrC2mM/bvuauVtb/RXvVZ4VEQSEoObstNO6qfubR5+Y58PmzFBIFDB4tlnPiuuOPjTP4lDjf4NEK8puMXKTAzL4gk7I9zpLV4BKiE2miE0mFoLQ0X5aQmE6TkO1INAYVFr9BUdLSGCTyyQKJWXGus8dCNiYISgDFdIl8uhJb1W90KAQljUVDMVdUFOZdA1Zy8TxRuTBaKpVEbCVPR3evVVGV1RhUlPIlpfDn6nNQypUUUlmxWFZUHLxSI1fvuI4rfNezgzfiNfpwOp1MT0/z5S9/GaPRSGdnJ3fcccc5Smw11FBDDX/eKBaL/O3f/i0+nw+NRsOHP/xhxsbGkMoqPDRwIW/kpo67eetNd+OWhK1WMVeiJOetEjMZ8ukCji4RI+TTBYq5ImqjUNwJnojh7KyOy5akNlLzWbKRnGKdlU3kKWaL6Czi3MVjUZzdlRxGPl1UHDRyiSK5SEGpD6UWs2RjecU2LBctYPTolH4k59PEZ6tJukavyFllwznCwwniU9WkHaNHtM/tDzPzerCaoKQW5A+A4WdmOf2jajKQwaXD4NJRzMHRb46uICjVrbNjbxfPPfbc3AqSS89NfnpvaeJ8sDYbqyzszkVkKLkqQQnAt81N+1UNq7ahFuQaV9/qdc7fh67rG2m9wrtqm6vXTtNFHiyNK+PFwMmYICCdh6dldOgx1xsw1q1eyDTV69n49s4V9cKFQxGFoNRySZ1CBAKUd7NEUHJ0Vsd1sYmUiKllgtLSfFnCzJ4AM6+FlHe3NF+WEDwZIySrKunsajEX5ecrl8WcjS/FZX6j+N4h56py0QLZZSQ7Z7dFISipjWryqYKSE7O2GBWCEojYqpitKDa5ui2Kk5JaB6VckZJ8H3u7mVK+rFwbRM1/6VxHp5XQYEw5t5gtUkwXUUtqNndu45Luq7mUG+lnC23N7SSTSV588UU2bdqE1+tl+/bt7N27lxr+PFDbDvAnjKeeeor77ruPaLQ6ySChopVu1tZvoWmHh6GfzEAODA4tZjk5MPrcPIsnwhjqTOQSKZxtFkx1enQWFblEiX3/OIhh2R9YV68VY52emT1BRp6dU8gUAK0XeXF227C1m4iNptj/uWrGbPf1fkqFMvP7IszsCVbtqq7f5qB1dz06s5aRn81y+KvDVedufHcnRpdeWM2Fchz4fPW1Nz/YSTFbZN8/Dq4g89jaTax5SyuR4Tgnvz/J4JPVjOjWK7z4d3oYf2me6ZeCzO+LVLX33dqEq89GJpxTyCFV51/lw9JswtlnWVUJKTGbJp8sEJ9YeS5AeDDBno+vvqO+45oG9DbteYOGxcNRIbM4srqMUrlUrkhp/5EoZIqUCiUMDp1CqFmO009Orq78JMOzzoZ/p4cjX1u5a381lavlSC1mKeXPv0vOv8ONSquqmn/L0XdLC5IaXvtk5T6ZhRwZWc5q4PYWivkS+z5TUW04/UMxL3QWGLi9lXQwq8zD8GCCsCy96Nvpov2KBmZeCyps9JPfrSgxDNzWjNGj58DnTpJLQGw0pahagCB3+be7ld+PU/9WmY+tV3ip3+AkHcwy/UqQ5Fyuqo+NW92oNCqFALbUZxDEKqvfhKffrjDdl5/r6LCglwvXAJHxpLI7wOLXobdoMVi1uCQv/X09qDVqBifHOcxLOD12JicnGR4eRq/X09HRQU9PD08//XRNYamGGmr4s0M+n+dtb3sbP/zhD8nnq1khVhysYxcdF/jJJQqETsYxOHXo7UtWU3kOfXmYug2VApet1YxKq2JmT5CplwNMvRyQiUYl3H127J0WTPVaUvP5KmUYgKYLPeSTBRYORpjdG2J2b2XHUdNuD43b3KQDOeYPhleo6Ky/pxW1QU3gaIz4eKqKlKO1a5Ud7Scfn2Dwx9Xk7tYrvTRud3Pmx5OETic4/q/Viozr396Oya1n72dOk5rPr1D/2fBgD5IE+/5xUClCLEffLS0U0gVFkeZc1G90kksUhMLUKkjMpZUv1avhxO9QkFx3fxsTLy4QHVl919jBrw1hb1pJFALQOXWUC2UlMfbHolwqUyyt3u/RF+YInIwpZJrV0HOLn+RcZgVRfOLXi0z8evVdeQDRyTTZWJ5McOXOeRAFI0e7Bd8OLxO/WljR7llvo+MqH3qbVigMyVhSm2ra7aF5dx0jP59jXrb6SM3mGJsVcVT/7c3YOy0c/eYQqXnxO7VcnWng1lYknYp9snprfDzF4a+I3wWtSUXPDU3Et6SU97r83M6rfNRvcpIJ5YgMJUnN56vmesvFXmUugkggLsHZa8Gzxk42UWDilwvko9Xn1q21Y3DolPk9/XqAkWdF/00eLZYGE7amjPg74NBy+olxUnJBz1wvFDcol+lXbaF9TT1Tr4Y4wzHmjSOUS2WGhoa46aabMJlM9PT08KlPfYqrrrpq1XdUQw011PCnjKNHj3LXXXdx4sQJlovE69DTxgAd1l4atjiZelGsdaZ6g7AJRViexcYS6G1CqcjiM2JrNmNwaMhEChz7lzF0jkrKtH6Dg1QgS+BYjIXDkSoiinedHe8mJ8GzcWJjKY5/uzqe6L6hCcplQifjRIeTHB2ukLCtLUa6rvVjchuY+M0Cg+eo5fTc0oSj3cLBLw5SyJQ4fs5u+/Vv76SYKQhVmHPIMQa3hnX3tBE8HWXop7NMn7Pb2z1go+tNjYz/ap65/WElt7GExl1uWnZ7KWZLK9oAvBvduHttLHZGiQ4nV7RnI1ky4dyK4t4S0gvZVRUzQSg7meoNqypFAiSmMxz7zijJhdWvXSyVqwjCfwyK2RLlfAmtTUshk13RfuZHk4q932qwNBlourBuVcWqQ19aPYZdQmIujUp3/v3ETRd60Fm0irrQuei9sQmtWcv+z1XGtZAokJDJZf23t0KpzKGvVL47LP1+COWqFhLzGU7Jao+p+Qxn5PyQvd1E320tTP52Ubn/2C8r8V37NT5cnVYOfGWIQqJAJpDn6D9X5nrHG30UUgVFOWniN5Vz3QM2mi+so5gpMrc/TCFRqDrXv92NzqZVSHTTLweU+Wxwa3D12cnGi4JMpVFVnWtvN2NrrsToqbmM8swaiwajW4fersMiWdjtvxqtSc3UxAIn2Yfeo2J6epqRkRGeeOIJ2trauOiii/jWt75VU1iqoYYa/izx2c9+lk9/+tNMTVXiFTVa6vDRw0bqOpyUiiXiE2l0Ro2oJ9rV5KJFzj41ja2l8vfY1WUlYU4TPBkjMpQkMpRUyEHWJiOeNXYWjkVIB3IM/rg6PmreXUchXSQylCQ2mqpS93F0mWm52EshXSR0Or5COKDr+kYMbj1HvjZMLlrg9L9V1mu1TqyVkdEEI8/OKrZZS3AP2Gi7sp6z/z5NbDTF2HPVcUrHNUJF+eg/D1FMF5l9vfr8gdtbUBvUHPvWqGJJtxw9N/gp5Eqc/O7quamGzU7y6SLR0ZVxF0BiJo2kkVZtAxj/5cq8zRLa39jAwpEIyfPEbYNPT4lcxSrQGtUUc0XFOu+PRalYrpDwz8HiySiJubRij7Ya/Dvd5BKFFcpFocE4ocHVa68A2XCWdCBLNrI6Edno1VG3zkE2UVAUhJbDVK+n87pGZvYGq951fEIQuB1dZjqvbWT0uTlCp0U/comiogrl3+mmYYuLE4+PK/Nhdn/lOh1X+9DZtEpckw0v+11Qi/kSGU8yIitJLj+3br2d1svqOfPjSeKTaYrpYpUiWPNFdWj0ao7Km0MXDkUURTCDS4dvu5tyUVyzmKPqXHefDWuzUblf+GxcOVdtVONoN5ONCBs8rUXHyHOzClnP6NELDkIR/FI7Xs8mwuE4M0wxrjmNJEns27ePnTt3Yjab2bRpE1/4whdqCkt/wqjZvf2JYc+ePdxwww2KTO0SVKjoYA1t+l50Fh25UI6Bu1pwtFk4+PWhVckmO/9//eQSeQ58fuWX6I7rfDRsdHL88TFioyl0LnHNJWx5XxeSJCmEiyWLq6X/D9zexugv51g8HMU9YCU+EVdUiOo22mnc5laKZq1XeKsWUPeAFYNHx/RLQWztJqyNxqqii73LTDqUJxfK0XZVPeHRBNGhysK9vK+9Nzcx+tyMYhl3Lvpua1pVznEJrVd6q4ou58Li15GYPmdsdaDTqc57TxDSxEM/m1LG7FxseqgTnVn7e0k9/1H8Z+zefh+6bmikbo2DY/86tHJsZAzc2UJsJvU7bd8M3lVIUjqU+b0aLM16jG4Di4dXSi1CZbf/avYlIOb9wtEQicnsijkP1fOlbqO96j46lw7/Vqcgy+mg901NnFkWYDt7xO6A8GCC1iu9mOsNVSSn+i0ORSJ76/u7iU2kq4h1S79j9dscdFzl4+y/TyuS8kvkQhCWe5JaVW1vJ9sO1q230XNDM/NHwwytYtGy9QPdaI0a9sh2NBa/jsWpEId4maK+QLlcVpRCnE4nl19+OT/84Q9XHcsaaqihhj8VPPzww3zjG98gm61es2242MRu7A0mhWCx49E+0uEcR74+CueE4N3X+/Csc3D8u+OCcKKTYJkf+7YP9VJIFxRrEa0JRSHGs9ZG13WNnP7RJJGhJGa/geQyS4au632YfUaFIOxZa6si8vTd1kRkPMnc62EcXWYKmRKJqYpCUtebfAzJiZ2Wy+qYfS1IPlWJY1wDVqEao4WuN1SOXcISEcvebsLWbFLstM5F/WYn+UxBUaA5F571NlIzaYXQcS60di35VH6FcpDerSUbPL/tW9NuDwaHVrHuOhfWVhNr7mhles/iefv+n8F/xu7tD8H2R3pJB7NVVhzLYWky0n5l/XnbofIOz8USUe58aNrtWVUCewld1/vOO+5au5bmXR5Gnp1dtQ/2DhMWn/geoHdr0RjUVfO+caebyNkYqUAe/4VuEjPpKvJb4063sjli3X1tTO0JED4jvpBoTSpM9Qaioym8mx007/Jw/Hvjyjxa/ju2+aEuCtlilWX0Ul8dXWb6b2th4uUFpn+7rKAoSVAus/mhLrTm1e2ozU0G1t/bzuIxUVzWu7VkY3kms0MMcQyLzUw0Vok1N23axGc/+1kuvvji8453DTXUUMN/dQwNDXHnnXdy8ODBKis3HXp62ECDtgWdRUMuUqD1ci8NW10c/ddR0vMrcytbP9BDLpbn6DdHlb/LS2jY6qT1snpOPjFOfCKNxqKpUhEauLMFjVGtFA2MXj3pBVk12aGh/9ZmJl8NEDoZx9JkIBPIKbZktjYTjdvdSlGsfrOD+YMR5doWvwFTnYGFwxEMbg22ZksVAcno1VPMCSWA+s0OkgsZYf8mY3lfmy/xMnsgtKoNGKzMt52L5XmI1WBwaxRlnOU4d7zORd/tzUy8uEjqPGSfvtubMXkNHFzNuu5/Af4zdm+/D75tTpp2C4u0JQvAc9F6hZdsNM/c/vPbvukcYh5XQQMaw/nH1uDQYPQaViWVgVC30ujVq9qXLPU9PpMmMZ1Z9R22Xu5l/KUFKIhrLSenaQwqvBsdzMibI1ov9zK+jMRuqjeg1kvEJ9LUbbBjazIp9mwgdvuHz4p+r7mnlcRMumpuLv2OWVuM9N3SzNBPZ5TjNQahPAZiY4HWpKlWP9VKkC9jbjSw9u425g6EVs57SWLN3S2YPHqFpG5wa0gEMpzgdaKaAJJaUr7z1dXVceutt/KlL31p1bGsoYYaavhTwb/8y7/wP/7H/2B0dFQhhavR4KWJbtZjcRgVAsKGt3eQCedWtSj1bnLQcrGXU/82IYgw59hsrbm7lVKhpFhVqXUqRSHG7DPQ/WY/w8/MEJ9Mr7Bla9jiwt5mUu5rbTYSn6zktPwXeUgHs4ROxRVVneWkF99WF7OHQlAUFmLh0WSVSpHFbyQxLa7nu8DF7DnkJbVRTTFdRO/UYWs2KnZa52KJpLVcgWY5LH4juUS+6tlW3CdXXKEcpLWoFXu71eDstmDy6s/rcKKzq1nz1namX1vduu4/i/+M3dsfgrX3tpEOZxk+T25JZ9fQdGEdI8+s3g7yfCuWVoztEsnufHD1WwmdOj8RarX5svye3vUOheyzNI+WYPToMHkNBE/GUBvV6Mxq0oHKvHV0ijp4NiyUxXLxijISgKvPqpCj2q9uYPFEVJnHah3onXpS81ksfiMtl9Qx9LMZZe4t/x3rvaWJUrFcZZu31FeDS8eau1qZeHFh1Xnfc5Mfk9ewQnwExLxdf38HcwdDTL8SVOZ3uLDIIEdQ2cuKAIter2fXrl185jOfqRGW/sRQs3v7E0AikWBgYABJkti1a5dCUJKQaKWHK6VbuVy6mTapl52P9LPmrS0ADD09xdFvDytEj9YrvOz8b/2K1drkq4uc+P4yJZg7WxT7sqk9QWITSTKL4ltgLpSj56YmRV0pHchVJRsSk1msbUJKMDGfRVJLmDx6QFi+LbdJc3dZMdXplWud+8Wx8zo/TTuEnVhsNFW1uOoswrN+4C3CEmPs+fkqgpK9y8yWd3fRfZMfgDM/nqoiCzl7LOz8b/2Kjdu5BCVzg44LPtKntK8gKOlEsmPgDnH/1Ug4mx/sYvPDPSs+X0LdehtGtx5H5/nlEQ/90zCvfXZ1glL9Fgc7Ptq3wnpseR8tzfrzXvsPgk6Mxfmw6aEuNj+8up3c0NMz7PmHk+clKAHYmk14+uznbR+4o5lN7+hSrPwU5MRctLYZ2fFo5T0tITGZFcQhnSjY9dxULX8593pYISht/8s+1t3XVtU+8rNZQVCywJZ3dq6Q4V6aL7Z2E93X+ZV5AKJfS2peXW9sxD1go06204FqVSZnlxWrv1qNQUkM6kBSS6jExgIMXh06CwqhrZgpkUvkCcgy7103NKJzVpSS5g6FCZyIKv3c+v5uLPViPiwejTG9N8DQs4KgtPm9XVX2evs/e1aRIbV3mVl/fxdr3tTNLukadueuZ7N0OXrE73ksFuNHP/oRkiRhNBr59Kc/TQ011FDDnwq++93vYrfbkSSJf/qnf1KS1Rbs7OI6rpRuZbt0Ob3XtrDhgS5MDTqQJE79YLKKoLT5oS5lLRn71TwTLy6KHTeShNVnZNN7OjHJFh6LxyPM7qt8sdW7jLRdLWSzoyMxMtG8YvmWnM6gNakUizeVVoVaWwn7z1UasrWacfeIuCMylKwiKNVtsFO33kHzxcLWYuLXi1UEpf7bm+m9oQlTvRbyrCAorbu/jc0PdoIWoqOpFSSfNfe0svV93QDMHwyvICh1X+9jixxTBI7GVhCU/Be62fZILyaPTGA5hy9jaTKy6R1ddF67uhUbCEVQZ9f54674eIq9nzl1XoLSxnd2sO7+tvOeb6rXgva8zX8QzmfJBoIktv3DvdjPkahewuufP/M7CUiubgvmeuN5z0cr1EnXPdC2ommJoNR3W5PynpZjiaDkv9DNtg/2KHNyCUsEJf+Fbi74y76q58xH8wpBqft6H1ve1SXGUkZ0pPI9oO/mZtbd3VY1zjN7gsp88e/w0HVdY9W9lwhKJp8Oc72xapd9PlVSCE0GuxaVVrUqQQmE7eHS9x6TT0fbG+rJxwogSSQDeSIjCRYOid/dgTtb6L7eJ/4GSBKnfzQhCniShMmnY8ejfYotYHIqw7HvjDP0CzEG/bc2s/19PTSrurhMdRPbElfTb92ICjUqlYpDhw5x2WWXoVKpuOiiiwgE/tcT6mqooYYa/m+gUChw6623otPp6O7uZt++fRSLRbTo6GEjV0q3crF0PQ1SC1ve3U3PDU0gSYy/vMixb48rBCXPWhvbPtgj7NEkibEX5hn8yZRCUGq7wkv3jWKtCBwPEzwVJR2SrdcSBfy7PYq1WnI+Q2K2Ei+lF7IYveJ7dS5SQKVTY7CJYxNTGYWgBGBpNGJtMinXWk5QAui8xkfzRSLnlQkWqhWSNLD27ja6r/Mr5y4nKBncGjY92EmbbJkx+eJCFdHEVG9g6/t7qJdtgc/Nt2ksGja9u0tpX42gtOHt7XRe51P6dy767mhm4190nFe73+I3YG0yYW85v93I6X+b5OBXVi9kWfwGtryvW7HBWw1LY/sfhkaM5fnQ95Zm1t67up3c7L4w+z5/5rwEJRA70F095489Wy71svEvuip2fUsoiLlocGvY/HA33o2OquZMpKDklTa8vV2ZB0uIDicVgtLGBzvoudm/ou9CjQg2/kUHfefYDY//ShCUDG4NfTc3K/MAoJApKQQl3zYnDVtduHorz5iazyjKAs5OC46O6pzlEuEIQK1VodIKJQiNRYPGqBLFZEmiXIZ0KEd4VBzvv8iDzmEUv8eSxOy+MPNHIoAgba27vw1znV7EZbNZxl6YZ/pVESP139nC+gfkvF65zInHJjj1g0mQJAweLRse6KL90kY2SLu4uPhmtpWvxqOqR0IiFArx5S9/GUmS8Pl8/Ou//is11FBDDX8qeP3119m8eTNqtZr777+fkZERpLKKepq4mDdzmXQja6St+DfUse5tHYpl1eDTU1UEpZ6b/HTfKNaahaMRRp+fU5R6dBYNvbc0oXfqlPblMZHaqMK7yQFAciFDaiGj2HXmogXUOkFyAJDUiHVDrpcsJygBuLosONrFupNezFURlCyNBhp3ufGuF/cKnIxVEUX8O9303tyk2LSdSzhpvbKetfe0odYJpZtziRotl3lZK1vQxiZSKwhKDVtcDNzZAmpho3ouQcnRaWb9/e3onTrRr1VINOvubce/c3ULXABntxV3j+287blokUNfHzovQanrzY10Xd+4ahsgrPbU523+g6Cza857DaNXx/oH2rE2rx47Hv/u2HkJSgCWeiOONvOqlnFLWHN3qxJfL8cSQcm/083AXa0r+rhEUHJ0mVl7b5tiO7iEpfni6DSz4R0dVdZzxVxJISjVb3Gy4f52ZZ6BqLEvxW2tl3vpu62l6v6R4STZsJjLTbvqVtjxLRGUtBY19nYzVl9l/Io5FEKTzqZBrVWRk78z6J26qnmYmEsrOS+tRU3DFpfyO5JPFFg4EiEkx3Etl9RV1WRHn59j/FeiJqo2qtn4zk7FFjCfKHLs26PM7RP12PYr69nwFx04pToukK5kW+wqthh3Y8ZKPpfn17/+NVu2bMFqtXLfffeRSJzfzaeG/zqoaZP+F8Z9993Hd77zHUrL7B8kJHy0MiBtBcQO4ebddRz60iC5RInFk1Gi44K0k0uU+P+z997hjVz3uf8HbdB7IwCCBNjJXW7f1a66tOpdspqtLlmW5DhO7CTOzb25T5Jbfil2YseWq9xkO7ZlWS6yZLnI6mVX23e1lb13sIEkiPr7Y4AhQc6A60S+du7F+zx+HmtxOHPmO2fOfOd73vO+vm1W/BtddDw3xMSZaTzr7OhtGpIx6H9lHGvESCKvsmJwCajy61vJWLJIZccS1uNpsaHRiTZVJ767RG4CsSDviFo4+k1RPWflbuGND9egMag5+Ll20aoqf84CGm+pZGZonqG3Y5x8uofF8eJEw9lkYbIzTjIOw/smGFDYjTTdPsfc8AJD78hbW0x2x0ktpJmfkFcwSsXT5DI5yT93FZKQXkyTkNlpXsDA2+M4qhUIRIhEkenOE0XEreWo2OEUiTTKHB9RjlvB6i20003kogo6Xxxi6G15Fu9aOOdPm8imi23RliM9u4ZXe1IkOWmM2iI5zgIOfv6U4vUD9L4+QkSnViQ6LY4vkkllSc4q34dcNkc6odzP5GyK2YEF+d/iMN07x1jel3UlZrrmGT48SeevxeTI02qTVI0A2p8dZLJ9VrIJ3PBQlDM/G5AIg4e/1CE+A4iWh5FLKjj5dK8Yq2SxXdv691ejNWrZ8w+i+sL4sZmlcwngXefA7DdI6hl9y2xdnDUWdCYtyTlxPNvrzJJVHUBiIilRWQWXQON1QU7/SHy2F4YXmGqfpT+/wLfx4RoALE+IYzvpWKTbeITe/l4SiQSf+MQn+Lu/+zusViuvvvoqdXXyJLYyyiijjD9UdHR0cOWVV9LRUbz7w4iZjZyHRS2Sa1sfqCaTyHLiu70M7xtHo1ORyr+P5mMpmu+opP3ZPlLzsDC2KFqAqVSk5nMMvDWBtcrEbM8cmUQKwaLDFrEwPz5J9wrb2pqrKjC59XT/aoTUPJLNVQFbPtJAYjLJkSc6V9my2aMmGm4J0/7cAJOn47zzr6eLyD0mv47I7gAnvtvL2JFpUnNpptqL5aQddWam2udof26AwDluRTWd4YOTOCLmVeShApYv8MkhlcyWtOtYnE2RXcwwr5B7xfsXmO6O0/umMmHj6Fe70Cnwc6zVJpLxVEklpuRsmvSi8s6qljujoELR0mQthM5zU32xnzM/7Ze1spsdSJBJZNDoFfaf5Lvu3WiXbDKWo/flMYb2jknKXHJ/Hzs1zXgJmezETArBrrwgmEllyaVzotKVDObHF0nGU4q2LYMHJ9FZlVWbTv2oD0+zTbxWHViDpiILvENfbENnFz99Aztd6O06un8pPlPzQ0n2/MtJKU6bH6tlcTLJifwOzuW2eJZKI633RBg7NiUR8k4vs9kNn+fDVW9laH+MxVia1HRqycJXpcLgFKT7pDOK43o4LxuuEUSlpIl8cSdypZ/EREoiDfa/NY45v1ipd+vYcE8Ez29shI6JJL+F1hH2Hn+bdC7Fm2++SXV1Nel0mo9//OP8/d//vWzcyiijjDL+kPGZz3yGv/3bv5V20IK4c7+KBmrV6wBw1puJXFbB8e92k5xKM3RwkoXxfD0nDSaPgLPezMDr48z0z5OYTKIRtECa8eMzGNxatPoc6QQYPHp0JrHyn04UE68Fh5bKnR70Vi2dPx9eRe6pvtRHxVYXx77VzfxIYpWtV/0NQQwugWPf7GbwrQkG35mAZeWI0AUekjMpxo5Mc/on/aRX7Ia3hAyixVgael8dYbJDvmCSmEgz1TnLyDH5HfzzEwkWp5MsKKhPpxNpcumsZIsnh9R8hsSMcl40uGcCV62l6PqWIz6Q4NAXTkvKNyvhbLCIRBuFv9cIalJzaeZk1LFAVAtovCVM5y+HVlngnS02P1xLLpPj8Fc6ZX9fnEmRUcq7ANLimNGZtLJkpaNfa1e8foDB/TEEm1ZRaSoxnSaTSJOaV65pZdM5UiVsjucnksSHFTqRhokT00z1yNvJJCbS9L0+KsXXWmWUCEiQJzstIyXV3xSk7/VRidR25kcD0oqELWKi7roQZ37cJxKkQFQ3y6PhxhAmr15S6o/3J/KWiiogR3C7C1vYJClvjB/P58oqFZZKE3q7QGYxDbkc5qCRkcICrErFwugiKYN4H7UGNZErKujO53zpuTQjhyYZOxKTrkFj0GB4ygBqSJvn6LO10dHfxvDwMA888AAf/ehHqaur46c//SmVlcWbIssoo4wy/tAxPT3NQw89xPPPP08iIc7HKtR4qKCRzRhVIjk4elUFZBEtrNriCGYtyRlxfk9Op6m6yMvAOzEyCxnmxhehsI6WgYkTMxg9AgvjSTLJHAa3gNmvlyX3hHZ5cEQtjB6dggycWaF+uO6eKItTKU4/08/QO7Eiuy2DS6D+hiDdL40w27vAsW93F5F7dBYNwZ0eel4cIT6Y4ORTvUUKNCCqN80NJRh4Z4LkXFrWng3E92U6kSGjsFY3N5JAa1Rm8GSSGbIl8q70QobUQpr0nPwJktMZxo9PM3ZiSvEYnT8fQqOgN2BwCWSTGZIllJiSJdY6AWqvDaI1akpujisFW9REww2VtD83wJSMhfDCRFIi0Mgi33VblUlWpSp2Zpbp7lnFewQwdnSa+IhyfTIZT5OaS68iiRWQzeTIprNkkvL1y8XZFIlJ5Rx8sn0Gg1NQHGc9L43iiJrF82vA6BZYWOYyc/L73WjN4k22RU2Y3QaJAJWKZzj81Q6p7/U3hUjNZyS7wtjJWYlsJdg1rL+rmuFDMWlT4HKREF+rg4ptLmLtMySn02SSWfpeW1pvNLiEpRquBtQ6zTLlSw3zY4tSHdi70U56PiP9PnxwElN+04dGUNN8ZxV9r5txdokbdBdrpjjct4/Z+DRPPvkkTz/9NE6nk7/5m7/h4Ycflo1bGX/4KNu9/SfDc889xx133MH8fPFka8XBZi5EUAkEdrkQzFp6XhzF2WCh/sZK2n7aL+2mKbJ++lgDKu0K66c8LGE9G+6tZapjVirSL0fkcj/+zU6JcGSvMxepFnlabVgDRrp+NYK5QiB8gW+1dVqejLTu7mq0Jo1EpFiJXX/VzMJUksNfXC0LZ/AJbHm4jvjQQtGHbAHmCoH199WIcr4K1myt90fo3zPO5Cn5Qo+zwUImlZUl1BRgjRiZ7VZ+kZkrBOaGS7wJgaZbK+l8aVTRrsy/3UHdVSGGDsYkr9HfFgafQPg8Lz2/HlAkAq1l91a928fibErRFu1ssOuvmknNp6VCgxxqrg0wcXqmaFytxHIrQVkIYHaVjn3lxZ6S1nIbPhil85eD8ucRRNLWVHu8yL6tgML4nB2Yl03UvBts1F1fyfC+CUlpaTmCu9xUnuvhnc+dhqSoFrb8vnlabdiqzHQ+P4TgEqjZXfycGXwC2bRILGy9P4LOquXg51ZbOCLArr9oYX40IVktLkfdDUF8rQ6OfqtD1u6uQFI68kQngkVN7bUhOp7vIxmHKf8gc85JTp06RS6XQ6vVEgwGaWlp4YUXXljdlzLKKKOMPyDceuut/PjHPy4ihWvQ0cRmAupqdCYV0csDnPn5IKRE5aBMIsOJ7y3lTpLdWY2Jltur6H9rXFaVZ8NDEUxuA3v+Ud72a/OHa5kbSXDmmQFJkWa5/VX9jUG6fz1Iah4iV/iZbJstsrcqWMTpTLDxg/X0vDoqS1qJXOGXfNGXEz0KWH9PNZaQiQOfPV2kqrS8H/aoRZGUY6k0UnWhdxWpfTkCO10M7VEmU69lMwaiqs38kPL731FnxhIwlrQj2/qROjQGDe986nTJc5WCf4sTtaBSvJ617N50dh2hnS4G9sRkLdfOBjVXB6jY4uTEUz2rCGcF6N06Ks/x0FFCAhsd6G2l7fNWKg2thD1qIpPKFSl2LYeryYJnvZ0zP5S3YKna7cO/0cnhr3XKxmP9fdVYAsrjc+OHatBbdbzzz/L3tPXBCIuxJGd+MigqM604Rf2NQbpfGSM1naLqUh/T3XGmO5eeE2t1niClg+0faWBg7wSDMhsDmm4L4ay1sv+LHbLXsf1jDaTm0xz+cueSQlS+mbPRTN3VQY5/v4f54SThCz0sTCYZPzZDKptidn0fvcM9kpqS2+3GarXyve99j507d8pedxlllFHGHwKOHj3KLbfcUkQKV6HCQ5B17ECr1uJssGCw6xjaN4nBo6P51io6fjHITL4eozVAOg2kofW+anRmHQe/sPobWGvRsvXRWsZPTBfZThXg2+QgdK6HQ19phzSYg4Yiwoml0oCt0szgngm0Fi3hXW66fr3im17kQxG9wo/eJXBKprYGsPUj9SSmkxyXqcFoDWq2/FED091xWfsUrUXLhvsiDB+YZHCPvI1H9JoKYidnivLC5TD5Dai1SCQROSy3tJOD4NCKC0gl1pCqLvYxfDi22sYsD2uVkXXvjzCwZ4K+V5Vt6EpBa9Hi3+xg5NCUoi3aWnZv3o12sqmcoi3a2WDrR+tJz6c58tXVdcoCAtudRWQeORg8OhIKVsdSGwXbvQKUiOoF1N8UZODtmCIpavNjtUy1x1ePb9Yen+aggXUfiDCwZ5yBN1bn3K5GK1UXeXn3W52kE8XWbSAS9OxRCwNvjKM1qgif76NrWW1XaxHZTunZFNGrK7BUGBUXSbd/rIH40IJEaFqOwHYnVRf5OP69Hlm7u/obRZLSqaf6QAvRS/z0vT5KOpFj1jzBbOUwp06fIpvNotFoCIVCXHnllXzhC19Aqy3vES+jjDL+cPFP//RPfPKTnyxS4jVjo4nNOFVeNAJUbHUzfGCSTDJL9ApRraUrT3CAYruz9XdV0/fmmKwqT/SqCpw1Fg5+uV2W7FF/U4jFySS9r46hyRN7lqsaBc5xMXp0msxCBu8Ge17VeCk30QiiQgwaaLm9ioE9E0x3ra5/eFpsVF3iFwmyMmTi6kt8eNbZOfrNTlkbtcA2F+4WG+/+W7fsdQh2LYHtbnpeXP3eLGC5zakcBIuGpIxy0srzKFnDgWgXZgkYGVMgr4No5WVw6znyldXrrmcLW5UJrUFDTGFj21p2bxoBPK1OYqdnStrWlYJ3g53qS/yc/lHfKiUt6TxGDb5WexGhTQ6CRVOStKV3CpKCkRwMLgGVpthScDmMPgFvs53eV+WFNFzNVkI7PZx+ule2H9W7fbib7Bx7Un581lwbwFJhkGypVyJ6VQWpubRYC11huwjiczZxfJpkPIOnxcbCZFJSQAMkoiEaWP+BCEMHYrI5c2iXm4ptLo59q1PWMm/9PdWkF7OSBbb0/AJGr0DtVQE6fjHEwlgSV7OVdCLDTNc8mVyGeP0wvVOdjIyJz5jL5SIajfLNb36T9evXy153GX+YKGfJ/wmQTCa55JJLeOutt4r+XYuOTVyAQ+UqUh4Kn+tFpVHR8+Iok2fiRQQkW9TEug9EGD0yScdzQxx5sruIaBDY5SKw1cXBx9uJ9y0ycXKGrleWFQYEsFeJZKTEdJJcJieRb1YSSaKXVaAR1HT9aoS54eQqgtLO/9JEYjLF4S93cPw7KwoxAmy4N8rAW+NMnJjlwJc7VhF3LCGB+ECSxGiS0WNT9L40jBzmhpNkk1lSc/IvFsElYAkaqdzpUSQpNdxUSS6HLJkLRIsLV4ON40/1KBJq1t9bQzaVlbzNV8IS1uNqtKEW1IqLdiP7pjB7jYr+qYJLILDFIXrEK7wnE6NJxULM2WKVd7sMnA0WjG69ZKWxEr1vjjJVYke+YAH/JifWoJEj7fLktcqLPVSd56Pn9REGXpM/z/Y/akAjqNnzj/L3rubaAIEtLtLzGVnSlTVixOwzUnmOl1N9qwsuAJnFDPFx+eQnMZpk+PCkpDhUGLcFjB2dYbq/XRrfGx+uYWDPuKSGNPj2hBTDwvM7cjBG5wvieF+unFSz24erwYYtapIIdYlljOpMOot2mQqYs8myNOaTogrZVK84futuCGLy6CXiX/uzg/S+MS71c+ujtcyPLUqEpuXEpvAlFTjrrZiDFpJn4jgmgzhGgoRYxyHewFZppH+gn97eXtRqNevXr+cTn/gEd999t2wMyyijjDL+T+Pll1/m1ltvJRZb/uGqIkCEdWpRrbJAXrBGLLhbbITGFxl4c4Jj3+guOlbrAxFMbj17P3Wa6c75VYSEdXdVMTswT+8r4/S/MYbRXWzJaq8xiQQIlYpsOkcuL2+9ktTgqDPjabGTWsjQ/auRVcpLkSv9VGx2cfQb7cyPpNj/2eLigKvFSsUmJye+20v3r0YY2LuaEFMgBnW+MIin1SFLAAGYn1gU7SlkCB4AwR0ubGEzerc82SW4y03kUj9qjapox85ytN5bS2I6qUhwr7zAQ/h8L+0/H1RclAlf6MXsNdK/Z1xR6enkM73YQsp2IhXbnMyNLcqSuQoYOfjvJ3WDeK8Lqj+K0EF4l4fh/eOyikidLw6RmkspEpQAai6vwB610PvmuCIZattj9ag0KsV81tlooemWMEMHYqvGYAENN4fJZXOKJLbAdjeWCqPi+EnNpUkvpBX7ePongwS2OaXxafLoimwCj3ylUyL5edbb8G1wFOXex77eLf3/DfdF0dsE9v3LEqGp7aeDS33d6sLdaOXQlzolG8fCWDD7DOSysBATi6bWKhOzQ/PSNfW+PEoynpGuY+OHogy8PSHldfs+fUbqZ92VATzr7Rz9agfz4ykmT8+x7/TSM1yxzUUmkWH82Aw6tQ5XWw2uVA3TxOj3nSSrytDd3c2uXbtwuVyce+65/OxnP5ONXxlllFHG7wMf/vCH+drXvkYyufT9asLKBnaJapV5sg9A+HwPWoOWoX2TJMZTHFqmJmlwaNnwUC0jhybpeWmUk88MFBENnA0WgjtcHP9OL+nZFIPvxBg5sizf04rz99zQolTzMrpEcs5KRZzoZRXo7QKDeyZIx9OrCBxb/qiOxGSSE9/tld2QVH9TkNFj00x3zHHkm12rCDUF4kk6kaX/rTFGFRaY0vmd3akFhUUqLbjrbegMGkWSUuPNIVQaFQc/L7OhCdFSq3KXR1R47pY/xrr3R8hlsorqQ4JDS8U2F4JFs8oeuIDZ3gV6Xhpm6JB87qQ1gLfVKf6ucLnpeJqBEgT0s0EpQk8B5qABo0uQVbkE6HlphPhwCcVQLVRe4GN2cJ5TvfLkNVejlfobQnS/NCxrvQeidbLRpWf/v8rnVf4tDqKXB1CpVLLKUgaHFkeNuPDT9QsZkpJWVA+Yj8kT1NKJLP1vjhI7JcZhJWFqbjDBwS+1S+N7+bgHiJ2eJXZ6VvrbDffXMrB3QiI0xQcSEnnOv82Nb5OT8TOzErFLem5UKkiLKgYFWCoNRXaIva+OSnlZ8BwnlqBJUuYY2jfJ2MlZ6XibHowSH01IxMLl+V/FJge+TQ5inXGmO+awLrqxnnYTZB3tvIsqnGBgcIAnnniCJ554go0bN/I//sf/4IYbbpCNYRlllFHG/2l0dHRw7733smfPHmlDng491TQQUTWKjfLkBcEuULHdRXI+zdiR6SJyEkD0igpsETNHvtLB4mSSw1/rLCIWVe/2sRBLMnpoiuGDMWZ754tIEUbfkiJMNpMlk1+7WH4MEIkfwR2ijdTQ3tgq5SVvq53wBT5OfL+HRCzJie8Vr6+ZAwa8rQ66fzXM+IkZJrvmVp1DsGtITmfo3zPB/MSiImFmYWpRVNVRgLvRhqveyvCBSVkyiy1qovaaID0vjSgSiJpuqyIZT60WfcjDUWem9uognb8YUiQ7VWxx4ai1EDs9ragi1PXLIUwVyjZo9qiZZDylSLgBZNWLfhtkkjByYI26mQZcDVamu+dX3TcQlZDIrbb6W46KLQ4qNruYOD2jSO5qur0SnUmrSHg2egRa7qxmcN/EKuu/AuquDaBSqzj2pPwxvOscOOutkuLYSmQSWVLxlCJRqv/1cRZiSWl8FsZtAZ3PD0kkP5Nfj2+Dg+6XRqTnrusXS89wzZV5QtMy8Y/l1xU8x01yLi0RiUC0oQMQjBqymSypfO5k9AgsTCal8wwfniKbykl9q7shyOixKWnd8t1v90j99G12UHmulxPfE5/fhbFiJ6fgNjfZTJYTXb1oVBrsXSFaMyHqWaDPcYKkPsGBAwdobW3F6/Vyww038OUvfxmN5j/oQ1jG7xxlJaU/YDz99NPcd999LCwsTawqVFTTSJ1qiQ3obLDQdFsVQ+9M0P3rkVUkCO8GG4Ftbmmiab0/Qu8bY0VkmoI6S+11AXytDg59raOI3FDAjj9rRKVRrbJrK2DTI7XM9M7R+cKwSF6KJYvIMsv71nJXFdPdc7KLT4JLYOujtUx3z8kSdiwhgdb765juiisSejY+XMPwwZjih7xgAQRRDWalKsxKOJssZNM5RQKS4BKou7qCE/+mrAhQvdtHOpFRXGwDisgl/x403FyJd72dd7/XrdjXhpsrSS9mFIlOsLaSki1qInKJn1M/GVCM21pj5WywUp1LDuvvqebdp3oUSVkVO5zobTpFFS0Q700p4tXy8bGWctPmD9fS+ath2X6L47qOuWF51S+DT2DzB2uZap9dsgZZ8fctt4U58XQfyVhSti/Lx9C2P8mrZBxenew23FyJZ52Nkz/slSXnbXy4Br1DkIh5KxWcmm+vJNYVZ2TfFOFLvFi8+iI7E2vEwGy3WAza+ZdNLEwsFhGZFnJz7ONldGYNc3NLsbrwwgt59dVXV/WnjDLKKON3jVQqxU033cQLL7zA8vTYjJXNXIhBveQH1vpABINTkOw3zSE9cwNL83HDzUGme+YZOThFxVYnloChaDGmoGgEsP1P65kbSYjKSyvScs96G/U3hBjYMyHZTS1v49lgo/Jcr2T1Zqk0rlKnKajamDw6aq4OcvqZPllyUeOtlThqLBx8/Izs7+vvq8ZSYWTPv5ySJY446syEL/CuImktx3Jlo4K6lBJC57sZeEM5Z6q61Ed8eIHYCQXCsw6abqpULOgUIBez3wY7/ryR9EJGcVGvYJ3X/ZshReWntZSUQFS3QoUiWcnVZKHpfVX0vz1O70v/PuUBdKItTin1qeAusTBQSk2z4dYQXT8fULSPc9SZSSeyJeNeGB96t2iBpkQi829x4m6yKn4PNN8Zxl5t4cCX2mXHW/PtYWwRMwcfPyXb3+AuNxa/XlJVMtmLCU86E6hNAosTKSKX+zD7DatVMFQqQMyN0wtpDn5h9Q5Fc0jP+g9E6H9znIG3JormCBDJisFtLinXarkrzODe2BLpbFnfIpf7RELitzqZX6Yk2pk9RRfvojfoJfl+p9PJl7/8ZW677TbZ+JVRRhll/C6xb98+brvtNnp6luZNDVpq2UCVulb6N4NHR+u9UQb2TDD41gQGh5bEMsUea5WRiq1O2n4skgjqrgswfHiyiJxQUGfxb3EQvsDL8e/1sCBjF7bhoSg6s25pp/eK3KzhfZXMjSQYeGMcwaElm0gXqb4s71v0Cj9zo4uyxBCtATY92sBU+6wsYUdr0bL5Q7VMts/S/uzgqt9BJHvEzsSV1X60IFi0JKfSq1RhVsLkN6DRqxQVfbQGCF9aQdfP5TcHgqjyrNaoS1qsGTw6ElOpkmpLpRDc6abqIh8nf9CjSLgKXeCBHLKqPQWspaRk8OgIn++l75VREgqqT+JY0XLgs/KqAGeDlepccqi9NkDHL4cUY2avNWP2GhRVtAD8Wx2KtVGgaHyspdzUdEeYgbfHZceK1gCbH2tgpn+e0zI5uNagZtOjdUycmZEdS1qDmtprg/T8ZpjEVFq2L6YKo6T4tP7eagb2TEjOAcsR3OkifIGXMz/pZ7JtdX2u/sYglqCRQ3nF/pUKTtX5b42JE7N41tmwVhrpWpaHL19U3/JHdcyPL4oqS3mks2kO8zpJ0zwLCwvkcjl0Oh233HIL3/nOd8rqSmWUUcbvBf/rf/0v/vmf/5mpqSmgoFZZQTPbEVRLfmDRKyqwho2SEstK5ZjgOS4SkyliZ2axVZmwBAwMLiM2LFdEWXd3NXOji5K11HKY/Hqa76ii/81xWZKKJWQktNMtKfUZXKvtsApqQhqjhuqLffS8MipL/Aie48K3ycnxf+uWJR9V5zd/H/1ml+zfGz0CwZ1uOhSI1sv7AkvqUkpwNVmJnVLewO9qtpKeyygTgDQQPs9bZLUlB0n15t+J1vsjZJJZxZqLxqih8lw3I4emFK3K1lJSApFkphE0DB+QJ/4YPQLr7orQ/8a4YpuzwVoqSI5aM2qduuS9CZ3vEZXFFO6v0SOAmiI7tpUojA+NUQMZZbtAa9iIu9ku+/wAhM5z49/k4t3vyKsVhc5z413v4Ni3umX766g1Yw4Ypbx5JeEJjUhGSsYzeFvtWCtNdL4g/wyUGis6i4aW91czuHeCsaPTRXMEiDHztTroeVmsZ1bv9jFxcqZI6azQN3eLjeqLfZx8ureIPDeWG+I0h1EZsywsLKBSqWhtbeXTn/40l156qWyfy/j9o5wR/wHiyiuv5Fe/+lXRvxkwsYPLEdRishDY6cTbbOfo17uYPBNnfizBdN4rXCIo5dWVPM12zBVGiWixkgW6/eMNAOz7lzN0PDe06kVbd2OQqc4448dm6H9rXHl3FqC36zD7RebtSnstc4VILJrpmeP4d3pkCT0bHozS+csB4gNJ3v7USUXiSXwgyXRXnM4X5SdnwaLG5NHjabYrfohveqwJENWR5Ig2lrCexpvDHPt6e0kbuHQyw2z3giJByeATSIwmS5Jg3C1WJtpnSxKUNjwURbBq2f8Z5Zf5mR/3M90bL0nscdRZyKWzJUlKa8FcYcASMOKsNTGikHy0/WyAuTUSoJprAvha7YoqR4Xr8G6wMXZUvvBWIFIV4rwSyxfRQhe6ZRWXCvem6dZKWSWrwviouSZAxWYnHb8aZGTf1KrjWCNGDA4Bb4td9h4kY0mm2mfof0e+eJQYLR736+6uZvhgjIn8AmwyluTwl8UCiuASaL23lvgKG7nCGHI2WNCZtIqex92/7gcqpbHdclcVPb8Zlp7b5YSi0IVuqi7w0/6zfuk+LCdRuRttGBy6pYPrchJBCWCmd47pflEFJHSuC2eNhXe/08uFXA8LMBnp5kD3PgBee+01bDYbAC+99BLbtm2T7X8ZZZRRxnuFffv2cfXVVzMxsTQ3q1FTwzoiajFXQAfNt1QydkJUr4udmcXkXirgzA0sFqm+OOus6MxaRg5OMbyi0OLbYqfmigDtzw8yfmyGfZ8pXgQzVQhU7vRy5qeDjB+fxV49Te8bY6sWyQAEsw69VScRkVaSPtbfU40laOLA504yP55aRT52NVnwrLNz5pkBTv+wX1G5BqDvtTE8zXbF3z1NNkxeg6I6UsU2J9HLK+h9bZSBNydkCSNNt1WSmE6JSk4KBKWKHU6G35ksScQp9KEUQcnVZCF2Kq5MlNHBjj9pzFtTKC/6HPlGJ4JFp/i7rdqCvdqM3qFf056uFDyNNnK5nCJJKXYqzpmf9TOukC8VsPUjdcyNJORjk0IkKOnAHjYVWZgVsFwhU+leF2zarNUmsunsKuu3ArFGZ1Kz7t4oZ37YW0T8gSWlsA331ZBNZjjwuDwJzN1kxRJUVl3qeXmY0E6vIiHu5A/6pL81hwxUXeAtsgBZfr0tt4lksgNfXCI8peaB+SSoVJh9BoxOQSIlScg/u13Lvls8662Y/EZ68zno3MAiez+5pNa08eF6MotZSR1kunNeuh8mvw5bpZmFWFKMZb7/hRhO985h9hskglLLXWFGj07DsSZqaCKRmOe0bT9jMyNMTk7y/ve/n/vuu49bb72Vb33rW7JxKqOMMsp4L/EXf/EXfPazny1STbLjZgPnoleL9SRngwXPOhttPx4kMZ5iunuO+GBeLbhAGsmrK9mjZhxRi6TgspL003pfBI1ezeGvdDJycIqRg1NLeZVKRXCXm4XxBJNtc/QXNpUp7Oc0uQXpt5WWZVqLqOI02TFL208G5dWTbgjSv2eChdFF9j9+pqQa0Pi7UwwdUMhBtGALi0qPSiSljfdH0eg1HPx8uyxByeDQUndjJaee6lW0+TL69Ki1KuYGE4oEJcEhEqEKSoBysFQaiA8nSpJf6q4LYK4wlLRHG9wzwUJsUZGgBOBptAKlSUprQW/V4aq3MdkRJzElf10dLwyRmi/NtvJvFXeFH/him+y9LhCU7FGT4jUVrAgLcV6J6Y45SZXI02qTvQ+FumjofA8Gu26VvWFhfPi3OIjsrqDjhUFZhSjBocUSMOKqs8qSlNIJGDk0RaxNPmbpRLZo3EevriB2asmGMJ3ISgvRWgO03lvDdM8cZ5bZyM0PL4BKhdEnYHAI6EzyNa/B/TG0Bq1EUIpe7mfo4ISk8rRcGcnZYKH++hDtzw1Kqk49y741XI1WbJWmJZKStnjhcfL0DPP5uqGr0YqrwUL7C0NsS18CCZitGOXA0FukUimeeuopnn/+edxuN88//zzr1q2T7X8ZZZRRxnuFgYEB3v/+9/Pmm29Kqkl6jNSzkQpVpdQufKGX2YF5pjrmmOycJTm39M5enEwW2UJ51tmJDyeInZllpne+iEhjCRpouDlM5y8HmWqfW+WgIlg0eDc5GXhjnPmRRQbfmmD8mPwmKLWgwuAWMHoFFsaSq0gw1Zf4cDfbOPINkVi0kjxh8utxNVjpf32cwb0xBvfHFO3Thg9OkYqnFYkn1rAJa8ikSHKxVhlpuKGS3ldHGTs2LXuc0Hlusos5hvbHFEkwjjozU+1zxE4qk2R0Fg2peKYkQckSNBAfTJQkKG14IMrQ/lhJO7gTT/UhWJTVaExeAU+zncnOuCJJ6WzgbrKiLkFSWhhPcvrHfSUtckHcgJmYVF6LLYxlk0dfZBVYwFTH0ppeIc4rUcgx9U4BtXa1rVsh5hoBaq+rpPs3w6uUmwrjo+l94jO4ymkoD3vEjC1sRCOoySRXbygdPTIFIEtQAhh4c4KBPRN5VTQNgW3uothMdcxJ11x5gQffBifvPtm5pOKUQfr/Ro8ek0dYdY4Cun49gkZQA6JymbnCINk+puKZovXGhlvCkIOTeYL3wnhSIihpjBpc9TZS8bRIUsrPPYVrnB9PMNkel+JevdvHZGccugJ4CZBZyNBtOU53vJ2jR49yxRVXYLfb+djHPsZf//VfK/a/jN8P1L/vDpQhor29HY/Hg8FgkAhKOq3AbTfdzm1ND3C++lrqL69k48NRAFy1YkG+7uYgACd/2E/1pX48reLi/s6/ambXnzeLvz3Vx3RPnOjFPkBURNnx542ELvEAsDiTQqVeKqY33xGm6bZ8gmIB3wYH1Zf6AcikM4R2ekQCFLDuvip2/bcWArtc0rFibeIL1LvJzqZHa/FvF/sU2uUjvZCm+0UxWdj4oRrCl3gBkaSz+SO1mANGKs/1UXdDkNY7I1KfNnwwSvQ6Pzv/somWe6rY9Ggtva8OkxhNUnNNgNb7xbbWiJENj0SpvMDH2/98kt43Rtn0aC22qKh+ELncz4aHxBgO7hsnvZim9roAIJKoNj1ai7PJAkD08gB6u4A5KP73ururqb85JMbQJbZtvLmSlturCV3oZtMjSzv9Wj5QRdOtYgw3P1TLrv/ajH+rAxAt9TY9utS2+fZKGm8Js+2xegA2PVorxdO/3SG2FSAVT6MRNLR8oEr6202P1hK6UJS59G6wsenRWibzH/f1N4dYd3e11HbjwzVU7/bxzidP0f7CIJsercVcId7I2usCtN67FG/UoHeJv9miJjY9WoslLNrP1FwTwNts563/fYKRfVO03h+h5hoxhpawnk2P1mKvMzN5Jk5wq5MNH4xKh229N0LdDeKYNfgEXI0WMpkcBp9A+BIvGz9UsxTDu6touLkS/3YH9TdUsuPPG/Fusotj6Tx3UQw3fijKlkfqqLm6AgTy406Md8UOJ5seraX+5hDVF/rZ8MEIzXeEi2IY3CXG0BYxYY+aRZUtoPGWSlruWoq3LWwiMZ1kZN8UnlYx3kI+TnU3Bqm+wMfbnzpJ+7ODbHy4hub83zobLGIMQwInf9CPd52D1gci7PwvzdTfHGLDg1GiV4jPmDVoZNOjtbhajNiqTESvDLDhwWUxvD9CzbUBkrEk0z2z6CwanA0WnE0Wqi/zsfFhMYaTZ+LM9s9j9olF3h1/0cQ5n2iS5gjfNg8mn166x44aC013iONFsIhxKcRbsOrIZbMSQWnrn9TT/IF8DPNzQc8bYrGm9sYKzv3LFmlcNt1WCVkYeF0sroYv8GKtEoup3k12Nj1Wgz8W5TL1bTx446NcfNHFpNNpZmdn2blzJ01NTTz66KOUUUYZZbzX+Ou//mvMZjM7d+6UCEoN0SY+eMtjXKp+HxF1E+vvryZwjhNSYI9YqLmiAp1dJ5JsFjI03SbmBaFz3Zz7iWZqrqsA4PRP+1Dr1Jj8Inml9roKtnykDoDRY9Nk0zlsVWJuYg7paX0ggiVsApWK+hsr8ay3Y/KIfytYNVRfJOZwJo+OHX/eyLaPiTmDSg3x4QWJBNJ4ayWRq/zYoyZ0dh1as5bJ7jipeQjsdEn5EkDDLSFqrgrgrLWis4vqUJ5G8R3h3+Kk9YEIddcH2PFnjdTfHMS33k5HnuDc+kAE3xYHADXXVtD6QIT2Xw6x99OnCO/y0HBTUDpP6wMRkVi0f5LZkQVcjVZ0JvETJHp1BQ23hqS2zjor7ibx3eOoM9P6QAS9W4xD5Ao/Gx6OUnN5gKpLvKy7u4rKC8Rc1lptEm31AgKRK/1sebSO1geXrrXlA1VUXZqPYUBg28caaLwljKPOTOUFHtbdvfSub749TPVlPkwuHZnFLN5WB4468b0V3OVm/T1LuVXjrZUEd7iZ7ZlHZ1LT+kAEVz6PrNghxnD4nUne/vuTeNfZqcvnnOjy8d4gxluw6VBrl3Lx+usD1N9YHMO+N8c58Hg7nvU2Wh+IoMsLe9VeE6DhFjGG40dnaL1fjDeI1mutD0Qky7DIlX40Bg3pfDFk/T3VhM4T39f2aD6GHh1bH6mj5Y5qmu9cypda7qoifKEYb0ulkZ3/pZlND4o5R9Ul3qL8tOXOMFW7fTTfFqb5tipaH4hgrRY7HDrfzbp8DC1hE0a3nujVYlx0dh2tD0SkeAd2ukgnM/S9JRaAGm4NUVNom4/38OFJ3vnX01RsdLLxkRrpuWm4KUjd9QHmR1K0/XyQ1gcirL8/wvaPN+LbZqf1gYhI7gHqrgrQcFOQ0E439moLGz4YpWKbGENXi1WKd/fLwySmF4leLo4lR52Z9fdVE9jpglyOwf0TLMbT6Ow6grtc7PzLRprvCoukJZUKX6sdwSLuEao8z0vlTrc0R1Tt9tFy51KBOJfNSRtDfJusbPloHZZKIwDuRjszA3N0vSDmXud8vIlzPiFK8ps8OirP9dL/phiz8CUeHBELzogY06bbQzRdHWVj/EKudn6AO2/9AHW1dSwsLPDtb38br9fL5s2bGRr6929mKKOMMsqQw9TUFNu3b8doNPKpT32KZDKJoNZz82W3cUvNvWxXX0rlZh/Nd4hzoaPKhLvBRnV+zu38+QDBczw468X5bOtH6jnnT8UNd/2vjjN+fAr/Jpd0vg2PRMUcDliYXBRrXvltmtW7fUSvqJBIpdUXeanK18sy6Sy+TQ60hnyucpWfcz7RhG+TI3+sJFOdYiHfWmWk6Y4wrhaRFOPf5GBxNkXf62KBveGWkPQ+MQcNtNxVhbPBSsUWB8GdbuqvWXrX198UJHiuiy1/VEftdQGa7ggzcmSaxESaim1OqRZlcGhpvCNMcIebA19so++VUZruCGOpFL/7/VscNOYXO/reGicZT1F5kVh301q0NN0Rxp6vjwXOc2MNGiWLj+hVfqrz+RJaUTGn+fYwTe8Tr7FpWR0lsttHZLfYtvXuKDv+vFGKg7PeIrYtxPtSH+vuirLxfrGu0XRHWKpL2KMmmu4Io7VoSc1nUOvV1FxTIZ2n8X2V+PM5p6XSQNMdYRZGxbw3eK5bqi+BWAOr2ObkyFe7aPvZEE13hDHk84LgThf1y/JTjaDC6BHrIQaPjqY7wpiD+RhudeDf7GTvJ08xfmyGuusChM4XcyDBIcbQWmVkbjCBI2Kh8bal93f0mgrC+bxda1Dj3eAgm85isGvxrLcVxTB6hZ/q3T5xHN1WxeYP1+FsEPNIV2NxvOtuCrL1sXpRJSofQ3eLrSjeofPd1F0TouHWENGrl2LYdHsY70Yxv3Y3WvGut6PN5yOhCzzUXhuQ2tqjFuKjCcbfncESEuNtcIttg7vcVF3oY//jZ+h5aZT6m4LUXi+ex+jT03RHGKNPT+8ro1iDRupvCbL1I/VU7xZrvIW6m8EuxtBSZcDdaCNymZ+G9y3FsPbaAKELPKQTMHokhmDRYouYsIQMeDfbabo9DLkcC6NJJs7MYHCI93HTh6Js/eM6aY5wN1gx+fP32KGlYpuThpuXYtp0RxhXntAmWDXkMlliPWI9e909VVKtGECtVdHzmph3VWx3sOsTzdL8Er7ICzqVSH4EIpf7xOOmxTmi+f1h3ItBLlbfxF3nPcilF11KLpejp6eHjRs30tTUxN/+7d9SRhlllPFe48c//jGVlZVUVVXx+uuvk8vmaAy0cPeFH+QC1bVUqCqJXl2Bq1mcC90tNqp3+xHsGqba50jOpqm+JP/tW2tmx8ebqMy/D9ueFzcmGfLrIt7NDmkNJT6YIJVIY/KKc7Bg0VBzTQCjT2xbdYmPynM96J3if2uMatzrHPn/r6H1gQit+bUQtUbFbN+CREYInecmsM2F0SegEUBv1xJrmyWzkMEeNUtrVAChXW6il1fgabGjEdTUXBOQ6nDWKiM11wTwb3ey4cEowV0uPC1WSQ2q5pqAVJfwbbVTc02AieMzHP5qB44as1SLAlF1ytUgkndjHbNYq0zo8qQe70Y7Vfk8DMC/yYV7vfj+NnoEaq4JINjF96y31U7djUFqrwni3+qkercPb2t+bcauFWPoEfC22tn0cG1RXlN1kRffZjGGOouGdXdX03RHFdYqI64Gq5j3FuJygQf/Vic6i4bFuTSeFhuWfA7kqFsdQ1+rXYy/RoyLtUqsS9iiJmquCTDbu8CBx9uw+AyE8u/6QgztUbPUf61Jgya/jhTY5pJyK4CaqwOMHJ7ixL/1YA4YqLkmUGwDlo/3bO8CkSsqcDWJY9bozcdwWbz1Dh3pebHmVX2ZH08+XzK4xLZ6p0DjTZU031FNdT6XBZHw5t1QiLeGzY/Vsv7uCCCqWkWWxTB8oRjvhhuD1F4doOaaAOZAfqNFvYXoVRX54wjYq01Uni+OAY0gxsUSEmPoqDWTTWcZ3DshxTtwTv57Jh/vmZ55jn6zC3OFgYabgggucbwEznER2uUmFRede2quCRC50s+GB6LYa8X7WCAMVWxyEbrAg7vJjrvRRt0NAZz1Ys5p8uuleI8emiQ+NI9/i9gHc8Agxjs/R4wdm2J+Iolg12CPmtnykTrpWkEkmhVqXoHtLiK7KzB4xZvuabFRfZlfapvLQjJf87IEBNbdXS3NEfZqE1Ndcel53PRQLZsfE9eCNUaRaDV6bEqMYYMZ/2Yntkrx2a680E3ldi+1cxu4Qn8Lt191F431jcRiMf77f//vuN1uLrnkEmKxf78aVxnvLcokpd8zPvWpT6HT6aivr2diYgK9Xk9L8zrO42puabqbpnWNmPIfzqGdblGlKJfj+A96SCeyWCrECU1v02Dy6DGHxMkwncgU7eI1+w3iB7dKhT5gQWvUENgoTjbJqZQ0YQFYKk04G61YQgIkIZdZ8hW1BkwYXYJE4jDYBVDlUCGey+gSsAaN+bZGjG49tVdWUnNtQPrgLyi1mNx6rEEjzXeEMYcMGGwCbc/2cOrpfixBI0b/kheqyaPH4jGSnEuTTWcxugQMLvF3a8iIKU/EWHdHNRafUdxRnQSDQ8DoEqSkyFZjwhIQ+9f/yjhavRZrSJzABFu+bZ64kU3myKZykmyw2W/Akn/ZCEbxWifaZuj8xSC2fFykeFcYMOXbTrTPgEolnddasaJtwEgqkRF9QQsxrBD7ZPEb8/EWOPlUH6mFtKRUBWB0CtgCYlv3Ojsmrx5XQ/5vg4aitiaPXnpZmnx68bg2IR9DU1G8ATT6vG+pV2xrdBuk4xaKOeKxDFjzL1aDQ18Ub/9WpzRGAYx+g3hvAMGsRWfUMnwgRmI0KRbH3EvHtfiNmIMGRvZNMXFmGo2gxpK/z7aQsSiGgllHLpOjf28MQcjHMB8Xa0iMd9vzAwzsGUcw66Q4FOJty/d//MQs5ABBPLZ5RQyNLoHEuMiwrtjqxOTRo7dp8nHJj8M8cdrkNeCqtRK60C3FUGctxNuIyWsgOZdiqmMWo0ePNf8iNbnzbY16Dnz2NMnpFEaPnvqbQ1jCejHe+RiOHJxCbxPj3XRzmOB2N8Zlyh4mf/5ZECCbyqAR1CJpSQBbcGkcznTNk5rPkMuIO0LX3VuLyaPHGhQXzPVGLar8fCK4BPQ2HY6IRVp0M7oELF6x/7p8Ajl2TFwcs0dNmINLY0ClVjHZIRZ+XI1WTG49VZeJyYw77GDXtvM4b/E6AkSor6+ns7OTL3/5y6hUKjZt2lROIMooo4z/EFKpFFu3bkWlUvG///f/ZmFhgUgkQqN1I5epb+P6y2/AHXIAYoHZVmnCERWTnr63x1BrVOit4geXPWLGFhF/Gz0szk36vKqc3iJg9uoR8vO+uymvOJdXPMllchjyxBG9XcASMFKXXyBIzaZJJTKSKoolYMQaNIAOdDYdGkFNLr+hxRIwFr2nrEEjgc0uGt8XRmdSYbDriA/kc7gKAyafAUulkcgVfqxBI6m5DAcfPwXoMPsMmPLHslQYMPsMTPfOsziTwhIwYsm/p9CB2Se+Hysv8FCx2Y25wohOpxbVaIJGLKElazxL0IhnnVgUmG6PY/Ya0FnFd4U1ZJTyGIBsOsfsoLjwZ/ToMfsMkkqRNWREMOvoeXWE3pfHMFcYl+UfYv8NdoGh/TEyixkxR83DXJGPIWLuqhXUTHfPMdU+hzVkxOxfek+Zg0ZsYRPzIynOPDuAwaaT8h5LyIB5WV7jarDhaxXHi86qEeOSz1WsfgMm79K9sQSM0vtQp1MXtdXo1FJsQczFLcvenWafAUt+AdHkz/+dTpdva5TyAmejBWvYhLMuX2zwijHUmcR3uK3SRDaZlRQmTH6DlJ8aC21tOnpeGWVhcrHoWs0VRilXMbh0oILpnrh0j4vaBsQ+df5iiN43R8Wxlc/xbEGTNGYnT8dJzaVRa8Xr11u10tgCcTwLRi2j+UUfV71NKoipjWK8LX4DpMASEOOy7p5o/l6tjiHkWJxJYnIvxV5qGzJx5pkBDnypHZNbjyVspO76AJZ8vNVGHfNDSXJpsFYYqb0mQPNtVfmxJZ7H5NZj9urRW7XksjlUKhXmfP6MTvyWKOScQ/tiZFM5BKuApdJIaLsLc2Cpv2qtmmxK3CUX2OHBYNNhCiw9C2bfUlvISTvqTCETloqlXN3k1pNOZGn7mXjPnbU2glvFb0CdUUVdXQ07/ZdwLtdSG61Dq9Vy+PBhgsEgdrudT37yk5RRRhll/Efw3HPP4Xa7cTqd7N+/H61Wy7rGVs7neq703UrTxnqMzvyGqCsCOGrEd1jXi6MsjC9KNQC0WuzVJundvzibhGWb7SyBpd+0FhUWr2GJWDSRRGtUU3BXslWb8G9xSHlPOpGViEcml4A1YEBrEd9NRpcelVolWQFbgyapnmB06bFVmqi/LkTVxT6sISMqtUpSarHm30XVu32YfQJmn4H25/rp+sUIltCy3Crf1uw3sjCZJL2YwRo0SmrF1qARWz63av5ABFetqOpCGrRmrdg2v9BnCYuLUQCxE7No9ZqluOjFYxkLdZckpBYyzHTPL/W30NYgHnfi5DSdvxjC7F1630FeTSAs9mnoQExUFPQu5RTWoBGtQQy4JWQkOZuk99Wx/L0yYs3nDcZ8XVCrF5VrErGUtMhQ+NsCicoeNeOqs2LL5zm2yqV7Xuh/oY8Ghw5r0Ig+nw+aA0ap9gdiXaJQuxAs+baFeIdMRW0ty86j1YtxMbrEGFae58FVZ5Xa2oJGrPm6rNagxugQGN4fIzEh1vJWxTBkZLZ3gYF3xtEa1FJt01SRb5sfswa7QHoxw1h+QcYaNEq5YSGGI4en6XpxCK1eK+UbIOZplvxYHzk0SSaZldSHrKGl/K7w34Wal3e9HUfUgtaolc5pDZkkFSRH1IJ/g4uKbU4MdjGGhe8bS8iINWAiMZlktn+h6N5ojfkxaxM4/KUzxIcSWENGQud7MPkNWJfFe/TdGYxusVbb+L4wkYv9S/ldLoctZJLinVrIoDVqxPGtBcuy/D8xlWZuLEE2ny813BrCETFjqtDn75UWCjzGvEqZu8km7ghRqfP1yvx9NWogm2OmZxZUatwtNuzVZimGarWaseOiIoWt2oyz1kLwHHHR1hm2s6VlO7sWrqGBTTQ0NNDV1cXf/d3foVarufjiiyULpjLKKKOMfw8ymQwf/vCHMRgM3HLLLQwMDFAdrmaTZRe7Ve/joi27cVeLRAxvq52KzU4ceSJJ14vDqFQq6f1tqzbiahJrOVPdc+TSWYlQo9FqsIWXyDiBzU7s1WaJWJJLZqV3sMakwdVgI5IXQUhMpUhMJSU1Ilv+fYhGJBHrbTqy6SxowOw1YA0vvdNslSYCu1w03BQGjQaT38hcXg3S5NZjC5sQ7FpxTSpoJL2Q4dg3ushkstjCJkz59USDU8AWNrEwmmAhllyVJ1grTZjcehx1ZiKXBHDVW9AYVZAR18Zs4aW27mabRByeao9jqzShNRTes0v5EkB6Ps1sj5h36Uxasb9mMabmCgNGh0DXr4cZOTAp5ob5d71gFtvqTFpi7XESk0kpFwExpyjUdrQGDTqzlvET08z2LmD06yVyFoC9Unwnp+IZun45iN4hKhMuj2EB/q0uKraJ9QONRo0tbJJyTqMr31azFDPLsvzDFjZJdSCdQSPWfTRL62i2yuU5kVFaA9c7dNjCJjSCKh9Do9Qno1egYrMDR404ZvX2fNt8XmMJGMku5hjIK2LbKo1S3q6z5MesSUP/W+PM9s4VXas1bJLWMbUGLSqNWlTnASw+w4r+ivHu+tUwva+PYQub0OdzIJNvKd4LY0niQwuoNeK1qAWxD4U1OaNbj94uMNkWl+K9PKewhU0Y3AJkwOAWcDXaabpJJFxbg0aslcXxVmtVLEwkEfJjS52PoSUk1qKG9sY48o0uzH4j5oCe0C639Czo8pZu6UQWW5UJ70Y7TbeFcdSYpO8xwSrGuzBHqFAt1dY0+XuezzmHD0ySmkujM2oQ7BqqLvVJcw2AVq8mmxS/r3ybXdiqzUt5sFdfdG05ciLfARAsKlwNVilvN7sNLM6k6M9vbvRvchO+OE8M1GioilSyUb+LC7mBxlALRoORV155BbfbTSQS4Xvf+x5l/H6hyuUUNIzL+J3i1ltv5Zlnnin6Nw8BNqnPl/5bcAk03Rzk1FPdJOOiIsl03xxDb69YpFepsEVNrH9/NbG2WU79oI+VcK+zEb28gv1fbIPFHM4mi6KFmWjLVkvf66Idx0qEznNTdZGfUz/qVTyGLWqSbKcab6nk9HP9stZt9joz6+6oJnZmRtGSY+PDNcTaZ+l7ubS/KojKQwvjSUXbtPqbQ3ia7Rz/Xrdim+0fbyC9mOHQ5zsUz1N9mY+hPeMk46sl9iTk7fbeC9TdGGT06FRJO7jALhdVF/g49NVOWfs6EJVraq9asphRwrn/rYWZ3rlVtjDLseWP68imcxz+onKcCqo+y6X8VkGA+mtDDL0ztmRV+B/BWcS95uoKOn8zrNiuYoeT6O4K2l8YZOywvNzllj+uQ2fUsvef5K3qQGQ7n5WtngBbHqmj44Uheas+AXb9eQsLsUUOf0k+3qEL3STGk0ycmMUS1hPvWy1XWcD2jzeQSWU5+Dl565TtH29gcSrF0a93FVuWFAqzESOL4wsk51Ssv6eKbDLHie/L2B3qVez6s2YWJhc5/KXVY0BwCTTdFOTUD3pIxnM03VrJ7OACA28tzTux7CiHeR3UkM1mMRgMGAwG9u3bR11dneI1llFGGWUsR0dHB+eeey6jo0uStloENnMBdvXSrvvgLhd6h46uF0bQu3XUXu6n7dkBUvOr0+WNH4xidAns+afTq34DaLw1RC6T48yPB9HZdegMKNp9rb+nGp1ZK1k7rcTmR2tABYe+oPDO1YHJIzA/lMTVYkVr0EjEjlX9frgGg1Ng76dPydpj2WtMRC6r4MhXSry7l6HqUl9J67Udf9ZIYirJ0a/JW3d4N9qpuTJA27P9xBTySp0JKrZ56HttDduOEnZ1vw0slUY8LTa6ZWxalqP1gQiZRXm/9QI2PlxDLpfjaAnrkpa7RBuxPX9/UrGNd6Od6OUVnH6mT9EOxOTX0fL+KN0vDstadBRgj5pw1FroeVH5vv1WWCPuOrsO33qb7HdFAZseqUGlVnFIIa+015hovq2awX0TiuPNHjWhMWqInVCWRS8gfKEHa6VJ8d41vC+Eu8HGkW92iBZ4qy4Kai4LSHLylkrjknXgCrs3V4uVhutCtL8gn3+HznUT2uXh0Fc7FW3p7DWi/Z7OrqP1rioxZ5QZBw3vC+Kut3HkGx2y803FdpFk3/nCMDq7jvprK2h7frjovEezexilD7VaXKDP5XJ8+MMf5vHHH5ftWxlllFGGHP7n//yf/K//9b8kSzcVKoLU0qzZKm6dRVT2iV7mo+s346Tjaaou9jA/nlg9V6rUGFxaNj4QZfT4DF0vrP7GtoQM1FxRwYmn+0nH06K9WL+8hZnWIh6r/40xRvIWBMvhrDdTd12IMz/tl2y0VsLkN0gWaeGLfPS9OSpr52Xw6Nh4fy2jx6foekHeLq3+piDxgQWG9slbnSyHvdZMJpEhPiB/bcGdbkLnejj5gx7F62+9P0Ium+PdbynXe/xbHEycicvaxEnI2+29Fwid72G6K654XSDuTI9c5ufkD3okIthKWEIGGt8XpvMXQ9KGQzns+PMm0ZbvxwOKbVo+UAUqFSf+TTlO9TeH0AhqTj21ug67HKHzPUy2xRVt9X4rnEXcA9udjB2bJK1wOnutmfrrQ3S+MCTZm61E8/urMLn1HHi8TfE8wZ1uBvco53fLse6eanpeHpEfl1rY9pEG5scWV8c7n1e5WqxkEhmmO+YweHQkplJiHFba7CKOcXJw7Mlu2b603hchGU9L1nIrYXBrSS9Cei5L9AofKq2KzudlansqNdv/pI758UWO/1ufNLdJl2VQEb0iQM9r4ySn01Re6CI5nWK0UGdUqYlnZjnCqyyqF6SaV2VlJS+//DKVlZWrz1lGGWWUIYPp6WluueUWXn75ZXI5ccOMJedgPedgVlmkdo5aM0a3nqF3YmgENZUXeOh/a0LWmqzm2gD2KjOHvtIua5EW2uVGrVPT99oYGgG0ZnkbNBBVLE0evWTttBL1N4XQGtRF1usrIdi1JKfTmPx6BKtWspFf1e9r8v1+Qr7fRo9A5fle2n42oGj9thzeVntJO7T190ZYnEnR9hP5nMISMlJ7bZCuXwwV2eIVQQPeltLnKbQ7mz6vBcGuwVlnY+TwZMnjFRSYun4ln8OCOE40OrXi9UNeeWijgwOfU84pLEEDNVcF6PzlMPEBeUs3jVFD861het8YLblOanAJ2KpNktXYfxhrxF1j1GCPmEpa9NVdH0Rn1iiOcYNLoPn2Kgb3TTByQP6bwOAS0Fk0a1reAbgarNgiZroV7l3gHBfB7W5OfL9H3hJQA4HNLob2x6RzK9n5GX0CTbdU0fXroSK7vAIctWaqLvZx6qneJRs5mWMsjCbRCFB3QyV9r4/J2vEFznER3OHm+L/1yPbHFjVh9hkY2htDI0DlhX763xwvmuN6c210coKsWvw3s9nM//gf/4M//dM/le1bGb9baH/fHfh/Cclkki1btnD8+HHp31SoaGY7QXX1qvbWCj0Wv5HADi89L42JJJ4Cp0ylonq3D/9GB+/8yxlmuuY5+aM+JpdPhMs+1FQaUeHE22xj7PD0KnJRzTUBfBscHHz8JHPDSfb8w+pFEsGiJhnPMnZkEv8WJ6lZ+UkpdKGb6gv89L45Sv8r45z+0eqPvsAuF0Nvx5hun+Pd7yoThhBEZrMzalEkKTXcXIk9amLfv5xhZN+U4nFIQtuPB+j59VBJctH86CKpOeW3jmBBlBmvsyoSRgDO+dMmFqdTHP6ycpuWO8NYq83iQqESsUYA73oHJq++5ALX0Nux1QS2FchlcqQXMiRi//HCSHouQzpZOisqSU7Kw+AQ8LbY0enVnCiRiLbcXYU1ZGLvPyqTgryb7NRdE6Ln5REG35YvlNiiJiq2uDA4BcWFqVj7HJW70swOKr/wD36uXVIUUyJGFQhKNdcG8DTZOPzl0yRl6mTOGgv6PBNZlqSUhGNPthPPS5sGdrnE3YrLzjnw2tL1rr8rSmYxy75Pn5Ht+9zgAulFcS4RLKzq075/Wfq7jQ9HEcxa9n2mTZpTZnsSouIUOfQOgVw2J0tmYjHHoa91kM0X0Fo+EEbvEKRF9mQsydGvd0t/5qg1Y/Lri0hKLrWPS3kfyWySha2DHDh0gEQiQUtLC7W1tfz93/89N910k+x1llFGGWU8//zz3HbbbSwsLM3ndjxs4nx0at2q9v6NTrQGNV0vjLA4keLE94tzmI0fijI3lKD9Z0O0/aSfVAlihsmjJ5NXQklNp0itqDVs+0gd8xOLnPhenzIpWJuDFMT75ym1rWDbY/WoNCr2ffqMPEFDB55mG+NHZzjxb53oTDpFUomt0oTBIRSTLpYfyqRm44fqGNo/wcAbyoSRAnHl0BfbSM0r511zw/MkZ1PMKhVrgLobwjiiFiZOTysSvULnuQmf7+Pk0z1Mdyofa8efNzLZNkvbTwcV24TP9eCotTDwxljJvh/7RrfibwUkp1O8F3tCFiaSpOZKr0jNj6TY/xn5d/9yVF3sw+wzliQp6ew6Nj9cw/jxGYmII4cNH4wiWHQlz9tyexijS8/AOxOK425uOCG3xiRhunOeA587vXQ/ZIhREmlHJz4TYyemFa/RHjVjcOplfwM488wAlsqYSFDS5QuGR5Y9xCmkuFRd4iW000Pb8wOMH50R86BlF7M4nWRhcpHxU+Kiu86kKiI+Drw1IeU+OruOLQ/X0P/2eBGpqzCmHRETOrOWrEIKfuaZQew1U+Jzko/DwN5xhvaKRa7hZQvggS0O7FVm9FZtEUlpg3onsJN0TZwzc0cYHBrk85//PM888wwNDQ28+OKL6HSr588yyiijjHQ6zV133cUPf/hDstk8EQkd69mFR5O3jli2iC9YdLjqrMyNLDK4Z5LeV8aXflep8W60Edrh5vA3ukjE0hx/qo94n/w7PpcV7VNtISOx07OriBD+LQ7C53s5/PUu0vG07CKJVq8incgy2RlnfixBclb+vetssNBwYyW9r4wwtG+SvldXv2tcjVZiHbMkxlMc+3Z3SXKKJWBErVErkpSC57rxrbdz+OudiqSpAnFlcM8Eo4cnSSeU85f44IKkoqx0rKqL/bib7SUJOps/WEtiJsXJEmTtqotFq5Ij3+gqSXgK7nBjDRlLkn0m2+LSTvNSSM6kWJz+j7OnFqdTJXMToCTJqQCtQU3lLg8Gu44OOaJLHtHL/biabKUX8CoNNN9eTc9LI4wenpJtY3BrqbrYjzlgpP1Z+Xx3bmCBxakk8+PKNa+T3+uVbA+ViFEFgpJ/q4PAdjfvfrNLduyZ/AZR8SlglCcppeHdb3aSTogncTZYRPWCNFJeJX3jqFS03BEhm8pw+Cudq/IuEN0ApH+S6fty8lL9TUHMHj2Hl9Vbl5PgjG49ap1KVFUqoDBP5bIc+lo36ryKRPVuP5aggePfEQlL6USOtp8tLQ56WxykF9JLJKVcFovGynlcRzqTZmHTAPuP7ae9vZ1oNEp9fT2PP/44l1566eqYlVFGGWUA7777LrfddhunTonrJSpUBIjQlNuMRqVZ1d7b6sDgFBh6J0YmmaXnN8U5TN31QRYmkwy8MU7PS6Pi/Kbw7WnyGiicIpOETLJ4caTp9koWZ9J0/WJ41XkK0Aji3872LUjKOXJouj2MYNFy9OtdzI8sriYvaMAWMjHTO0/nL4dE+y+Ffhtdesx+A0a3SIqQ61PjrVWMHZuW/iffeSADJ7/fTabEhvnF6SSJiUXmxpQ3lId2uqnY4mJ2YEGRCGKPmqm5KkDbswOKJB6A1geixNpnGXhdeZOft8VBxTYXsdMzpBRII1CanFTA4kwKrfAfN2xKzqVYnE6J60wKyCxkePfb3Wseq2KbC1edhdGjU8rkIg203hsldmpGUl6SQ83VAUxePe9+S/m81Zf4cETMTHfMKo6F+GACrUk5TolYkqNf75RUsuWIUYlYkkR++bf5zjCTbXMMH5BfD7aGjVgDBkWC1dDeGJNtcWm8LRcdAfFvCgQlV4OV6JUVdLwwKEsOzCxmiA8vMNsnjkuNoF66DmCqY46pji7pt3X3VDP0Tqzo2So8i0avEYNLEK26ZTC0N8ZU11K/Wz5QxfChSYkgNtM1L12HvdaKp8km2tQtIylVqeqpop6Ma55O/Ql6Brr52Mc+xj/8wz9wySWX8J3vfAeNZvX8WcbvBmWS0v8BxGIxGhoamJhYmuw06NjOZVjUlqK2LXeFsQZN7P3kaSZOzLJ/uKNYFUelQrCoSMZFsglqFZaQQHwgKRKPln2YtdwVFkkd/3Sa8WOzjB+V2Z2dJ1dMd8dxNVhQmwSIr55JG26uxN1s4+jX25kbTsoqsAgugWQsycBrE9grzZLE2kpYI0ail1bgqrVy/Ds9sgQlZ4MFjV7N+LEZ9n6mBIEHyKQyeYsuZNsJFjVbPtLITO8cJ77bq0hQKqjPHP+OchEGREJH27P9zHQp71AHsfAzt8YuqbnxRQSHUFr5JwkHviiveLMc3g02xo6W7tP4sZmSCkq/DY5+XZkwtRyCS0AwqxSVfRKjydJEtTxmBxYQzLqSSkljJ6apPM9LfFg5UZvpmqfjV4PKhDZE8sz+fxULQwafQGIqKXvOZFwcN6131zB2fFqxAEQ2Ry6XkyUoAUyeivP2p05K54he4adrhXpDQWVKsKiJXFqBf4NTkQDX99YY2VSehJR/LpdjORls/QOlFaEWJ5PFyWEh/vm55sCyuaDl/WGsYRN7P3NaupbEsmRfo1UX1XUKc1kBe/7xNIJFPG7LHWGsVSb2/qt4LEEtIByKcCkRDvMGep+a06dPc/PNN6PRaHjkkUf4/Oc/L3sNZZRRxv97+Id/+Af++q//mkxm6SMkRA3N6q1F7XQmFZsfq2fi5CwdPx/i3W91FqsmqdTojDnp39RqtVikBsmOTTqWXcfmD0alYx2SUZBbTqxYnE2JO4AVsOPPGliILXLs692SVdOqw5nUpOaz9O8ZJ5tW/pDfcF8Uk9vA+MkZUvOQml993vCFolJR32vj9L09rkgmSaWykMnlyaryqLsugLvZzuGvd7A4IX8gnUkNOg3zIylF9ZwCTn6/D896myJBCcS8a34iUZKgpDPBQmyRmb7Su45O/qAPS6WxJEHJHDKQjGcUlW+WH+u9QLx/Yc04FeBqsiiqUgGceXaArMxOyeVITYsS7AuTyoU0gKmuOcnaQwknftCHya1MjAOKSGOmgCCrXlS4H813it8473z2tOIxc9kcmUXl+/fukz2SvZ6rxUpyJr2KlFf475bbqrBXm5npn5cdz71vjGFwCiJBCXEuSE2npFxpbmCRI0+IebM5pKf1nihD+2OyBCqdAVLzaaZ7lghXy69x7Mj0EllKBzs+2iCS7p5dmiMKz4DZp0elRiK3SeQolRpyWXpfHmPo4JQ0hnf8WfGxtJ0WWjiPCNN0+o4xPz/Ha6+9hiAINDQ08MorrxAIBBRjXEYZZfy/g0QiwQUXXMD+/fulfzNiZjMXY9IU17yil1fgarJw4PFO5kcWOfDlFeQVlRqtAdIJcWOUSqPC6NKxMJpaRVCKXubD1WzjwBfbmRtKSN/wRcgTFGYHEiRnU2j1kJZ5RQbPdVO5082xb3ezMLrIcRkCudaiJR1PM3kmzuixSYYOyZOKBIeW+htCxNpmaPvJoCxByeQ3oLNomO6Y49ATHSWVcXKpbMkFG7Sw9dF6prvjtD83pEhQMnh0JMZTq2oNq5BGVCuaKk30meqOr0kGWphcZH5isbQiE3DoC22gLb3AZY+aFNUkC4gPJDj2ze6Sbc4WpQhFy6G1aNGZNCyMyudM6USWY98qTVQDmBlYQO8WpPEvh3h/gvjwAvNjysdKTKQ589P+kkpS6URWipPWooV0VnbcpBNZBIeWDffVMHZsih6lzQk5IJMjnZYfe/MjCfY/fkYa54HtzlWkPGm8aaHuuhBzwwtLGwtXEJG6XxkRrVNUKrQGFelE8fOxvJ9Nt4Yxe/QceFy+rpqYTEnWw4XzL38eT3y3RyIoVV3swbvexpFv9kpjevnYVuvUkqXL8rmsgENf6kRrEH+TjvXVTtIJ0Gq0WI9VcwnVdPAuqYppTp06xe7duzEYDPyX//Jf+Ju/+RvZayijjDL+38Mvf/lL7rvvPkZGxHe6Bi01tFCtaihuqIHWeyLETs8y8PYEnT8fKiIPQDGhQKVRocnPY5mFTBG3QSNAy11LpI62Z2WIussIEYnJFIszykWA5QpESkQLjVFDZiHD4L6JpflVBgXL4CNPdJBJZklOr653eFpsjJ+YIXZmlljHrCJ5JZOkNJkb8G12ENju4uRTPbLnEjsPGkFDKp5RVO4rYODNCWb65hUJSiCSp2f750sSlNCIG8AWZBRois739gQTp2dLEpQEu5ZMMierslV0rBJkqN8Gyem141SAJWggPqicC/W9Pkbf62OlVacyMDeSYGGqtCXLTM8cyXjpul/Pi0OMuA0lyWrLx3hBFWxVl/LPYeh8D+5GK8e/3bPqeQVAI47RTFr5Ant+Myo9j+aAgWw6y8JYcQcL463yAg/+TU7e/U6PrBparGMW40FBIigVnssCktMZSUlLsGhYd0+UoXdiss+1WlCxOJ1ibjQhXcvy+xQfWChS9pcj3RUITYJdg1qjIpPPYVeSo2InZ5nunpf62np/hFhHXDqWZsJEPduoZgPdriPMLE7z/e9/n6eeeoqLLrqIZ555BpdryX2hjN8NynZvv0P09vayfv16ZmeXdrQbMbOdyxDUgvRvlpCAzioweSpO+BIP7gYbh7/RKUuK2PrHdWgNGvZ+Ut5aBPKkitEklRe58TTaOfzN/LFW3OoND0Yx+QyyqkkS8oQES0ig9ppKjjwp36/Kiz2Ez/PR9eshht9RKNQsU2ypvsxXcvf2OZ9oIpeDdz6prJoTudxP96/XKK7ksenRWob2TTByYEr2d/9WB7VXBRk+GKNTQYIboPa6AB2/GnrPbNzeKzibLLTcVs3woRgdzykXUmxRE9lkek1btbOxe0MAb9PaxKhd/7WZxZkUBxUKAr9PVF7sYapjtqQ12q6/amYxnlK0RgPY/Ed1dP9mWNH+cDm8m+wsTCQUz1lzTYDAVhedLw4pKmOFznMzdnKWZCwpq4S0HOd8oolsSllVKXyJF4tXz8kfrJEEqlS03BXGHjZz4PHTReSiAqov9eJssErWbuYKgblh+bFWd30Ab6uD49+TJypW7/bhrLdIxwqd6y5SWALoyp6kg3clOxKdTsdDDz1UJiuVUcb/w/jLv/xLPvnJT0rKNSpUNLKFSnVNUbuKrU6GD4oL/RserGLs3WlJaUSCSo2j1kjTrWEG3hovthorMC5zWUwenURY2vBQhNGj00VqJQXo3To2P1TD+MkZ2hVIR8sJCQ03B5nunmfk4Mp+iYWZbR+pAxXs/6zybmudCVLzYPLosFSZFS3ggrvcRC710/2SshKhtdqE1qBm8vTa7zpXk4XK87yKFm8Amz9ci86o5Z1/Vs5prdWih/2qGPwBYPOHa9GZtLzzKeX+Azgb8zvBS9Q0zsbuDUQ7N5VWw1wJK5TaawL4Nzs5/PV2eZuy3yd0UHWhj16FXZQAkSv9BLa4OPl0r6J8u3+LE+86W+k8dRkqL/DQX6Jwtv3jjeSyOWU1KB2EdrglZaPCcyUtli37xqrY4SSyu4LOXw4xemj1jkudCRpvreb0TwdFclApqzwdnPOnjUx3xzn19IoCsEqNzpil+c4IQwcmGTsyXTQXLZ+jCtjxZw1568Vuiai0vF/Nd0YYOTzFyKEZHHUmkpOLRWTMVDbFAV4ijpj7m0wmHA4HR44cwePxKFxEGWWU8X8zpqamOO+88zhx4oT0b068bORCtJqlPZEGhxadTctsbwJ3ixXfBjttP+mXJWK0vD+M0aXjwOdlyN75ecvg0JKYSuNqtOLf7KDtJ32kF9WrrJZqr63AWWdl/xc6IKVAXM0TErRmDbVXV9DxsxX9KlhNNVuouyZE5y/lrTuBIkKCf4uDkaNTiuSjzY/VolKrOPh55TpDxTYnw/vPLgdqfF8lYyenFS1PrVVGWu6opn/PeMnFpOAuN4P7Jt4zG7f3CgaPjk0P1TG4d4LeV5TzCKNPTy6TUbSDK+Bs7N7QigqjM92liVFbP1pPcib1npGj3ku4W2wkppLMlVjI2/rH9STjqZIKoc3vr2Lg7fE1YwFgi5jIJLOK5/RtclBzZUDMlRTUoFwtVuYHF0hMpZeeKwVZq00PRyFHkRLScnjW2bBWGun6Zb5+rGSXp1ITudQjKn99s4vkVDF5EsCz3oZ3vY2TebXdwlwkh8B2B+ELvJz8YR+zvatj4d1ow9O8dCzPOivjx4uf39FMP8fZC5oc2WwWk8nEX/3VX/Hf/tt/kz1nGWWU8X8/nn76aR555BEmJ8X8QI+BZrbhUVUUtXPUmiXbpZprAkx1xWWtqAwugZY7q+l/e0zRGkuwaCSLppprAkx1xomdWn0sjaBm/f0Rxk/OnBVxJXiOi4VYUlElsem2SrQGbUnlnIISk8aowRo0yFpNgbgm1nBDJT0vjSgqI+mdAjqTpjQJKA+jTyB0jof2nykrdNffFMLk0XPkq8pOI4Jdi9lnOCulyP/TqL8phNlvKOkSA3nC0EiiJCHobOzeoEA60ZQka3k32qm+2M/x73XLKmH9XqEB7/oVKtwr4G21U3WRjzM/7ZeUh1bCGjbibXVILi1rwd1iY+KE8hrt+nuqUWlUJXNVV7NVmiMKz5UcbFUm6q4P0fWrIflxq4HI7goG946JBL5SVnka2HB/lOnuOXm1NY1IQJxsn2WyLY7OoilJrFt/b4TkbIozcvm9BmquDDDVHid2ZhajTyCzmCkiGWZyGU5xiGF6yJHDZDKxadMmfvazn5XJSr9D/Md12MpYhaNHj2IymaiurpYISg68XKa+jfPU1xQRlADW311D3dVBAPpeHufwl4uJQN4NNmxREwATp2aYOKU84ez4eAMb7o0C0P/qhCh9u4KgJLjE84+fnGGuhJ1V8x1hdv1ZM4JFTXwgKVp3KUxO/W+NMz+aIHZCgaDkEtj6x82sv0e0tStFUAI485N+TnxX+QVevdtHaKeHyotLFMQF0RYL4PCXOhQJSgAjB6aY6Z2j8zfKBCVngwX/RifNN5X2BN/0WC0bH64p2QZE4pR3g61kG0tYz67/2kL4Em/JdnP9cYb2T9D3lvzCYgGNN1ey7q61+3Y2qLs6SMONYSxhZasMgMG9E2clDbnjL5rY9Ght6UaCSK4Lnecu2axih5NzPtEkjXWlY4XP9VF/fen7OXZ8mp7flCbDHfp8O5On4ggW8dylUHtVgJbbI4q/d/58iK4Xh0ta9w28OUEylsQSEtj60RYab1G+hrF3pxl7Vzkx6nt5TCIobXy4hnP+skmx7cSpGebGEhJBaWV8e14ak0hFNVdXsPFB5TE++u40c8MLEkGperev+Fi/GZWOVXmRuHhefWnxcxBVN3OZ+jYurbqU6upqFhcX+cIXvkAwGOTGG29UvI4yyijj/z48/PDDqNVq/umf/olcLocaDVu5lN3qW1cRlKou9VFzZYU4P+WyHP1a9xJBSaUGlZrQ+eJ8M9U+x2zfPBNnZop+ByCXxbvRzsYP1hLM5xtHv9a9iqCky6vMLE6kmB1cINam4FGugx0fbaTlzkrI5Tjzo4Elco5KtfQ/gFyO0RPTDCvs4AdouCnI1j9uQu8WiQtKBCWAwbcn6PzlkCJBCcQcou7akOLvIJJH0EHsVLwkQQmg55VRhg+XXnirubKC6OX+km1Mfh3bP96Iq8Vasl3oPDfNt4dLtgHRvmzbH9ev2a7zF0P0vSFvRVyAo85M861VVO58bwgc6++poeHG0vegf+84fa+PMi/nKb8M4Qs97PzLZml8KsGzwUbr/ZE1+9b6YETK85XQeGMloR1uTAHl/Gzg9RFibbOKBCWAkYOTEkGpMOaUEL7QQ9WFPnxbHIptTjzVw6kfllC8SiERlFruqmLzhxvFc+ZySzv78/+beHea2f558XmT2QuUmod3v9VDajqF3q1j58caqb1GQY0oBbMD84weX1JokpDLklpQc/QbvYwdFeeUdfdE2fLhWul3oGjOGj8xI+WE9hoT9lqL9HtqHo5+vZuRg1OQy1J3TYB190SLrE10ah071Vdymfo2dm7ZRTabZXBwkIqKCjZu3Mi7776rHMMyyijj/yr09/dTU1OD0+mUCEoVVHOZ5g62ai4tIigBtLy/itqrxLlu4sQsJ79fTASyVBqwBA0AjJ+cZlTu+zU/r214MELLByIAxM7McfKpgVUEJa1FCyo1sTNzTPfOKxJuqi72sf2P6xHsGtLxNKef7l8iQ6zIu2InZpnqijOltIikhY0fqqf+ZvE9PXJwqiTR5/SPBjj5tPK7x9ViJbK7gsD2EvUFrbgoAXD6mX5FghLAbO8CY8enGNmnvGho8OgIn++l5ooKxTYAjbdV0nTn2jlV0+1hnA2Wkm20Fi3bP95Y+jqBxFSKnpeGGT6sXCcBqLs2wLr3R9fs29kgsNlJyx3VWKuMJdv1vjpK14tr17w2PVxDyweq1mxXd10Af4m8BcBea2bLH9VhcJc2SKi5soLI7tK59ND+WEniF4jWbzPd80VjTgl11wZpuEE5Xx09PEXbzwYUCUoAsROzJKbSCA4tmx9rIHqFfynvWoHhQ5Pyc0Ye48dnJIJS/Q0Btj5Wr+grMdklzhnJ6bxdpSXfMD+/jL87I5GK/JvtbHwoikthjE92xZnqiksEpZX3dOzI0rFcDRbqrgkQ3Fn8HPg0lVyieR/nu6+jtqaOubk5/vqv/5qKigoefPBBxWsuo4wy/u/DE088gc1m4/bbb2dychIjFnZyOReorltFUHI1Wam7LoSzXpyfOn8+tIqg5GoW6yeJWJKJ09PM9MiTUC1BA6331+BttS8dawVBSWMUbZEyySxTnXPMdCt/y7c+ECWazzMG83ZTShg7PsNIiZpRYIeLDQ/WIdhFVRclghKIzhrtzw0oW7cBtVdVUHNl6RzIVmVCI4hKLqUISgADb48zpKAQVUD4Ai+RyypEIocCNEYNrfdHsFWZSh7LUWsW11fWcKmquSbAurtL124A+t8co1fG0ng5BLuWptuq8G1wrHm8s0HDjWHxnV8CsTNxel4aIbmGApKrwcrmx8TxUQqWoIEapZrMMkSvqKDm2tLtQjvcVF3ow+hVrnmNnZhm9OiUIkEJRPvDAkHJFjWVvKfOeouoVNugXBM982w/7c+XHq+FOSJ8oZf199dIz/VKzA3PE2ubFTdjyiED3b8aJjmdQSOo2fhQLaFdCmu5GZhqjzPVuaTQtPL3zheWyFANN1XS8n7lXHr02BQTp8XrMLgE6ftSOtbPh4idEX+PXOqn6dbiY2lUGtaptrFb9T7Oa74IVU7FW2+9hc/nY/v27Zw5o7CxsYz/EMp2b+8hjh49yo4dO1hcXFJI8RBgk/r8onaCBZrfH6XrxRFmuubpfnmEKaWXtwB114ZYnE1y8PEOun+9+sVgjRjIJrLMDScZPTZFOqnMJtz+sQbUOjV7/+kUg29PlFyMGj4yiWDXkZSTlEMkY0R3V3Dqx31MnoqLJCYFJGNJ5kYSJRejmu8IY6s2s/czp0rKEoNIYMhksvS/olxg2Xh/DSavgYljU4oWbwjgbbEzdnh6zd3Yk2fitD0/wNhh5WQGIJfOrSkJaY0YMboErJXmkkpEKo2axZkksZOlz5mMU1IBqoDuF4fRmt+bx35o7zipuTTxNeQjlTyHV2JhLMH8eOljkQSz30Aum5MWi+QwN5oglwOzZ7XV2fJjtT/Xv6YSlGThtmysKGHdvbUYHHpxnCuctu3ZARanS19n4blsvr0SW8TCoS+cklVLig8kmR9PMLBPeZF0OeN6+8caSC1kOPwleQb8RNsMziqFImIux8iBaUYOiNdfd2MQ7zo7p37UJ6sg1b83htmrl+Lr32qX/hbEj4OjXd0AuFusVO7yYHQKnPrhakWn/lcn0Aoael4Sr3PDAxFGj08vqbb1OqllG06qaTMfYGpqimeffRaVSsXNN9/Mj370I8X4lFFGGf+5cf/99/Pkk09K/61Bx1YuxaZxiP+QLyhXbHXirDVz8ulBel8eJ5PMrZ7/84vxDTcFcDdZme6ZI943z/F/6y36HfI7Xd8VbZc8TVbGjsjnN64WK403hOjPKzEd/06v8sWkID40z8TKHGjZruGNH4yi0qg4/KWOkmo0AEOHptBZdcp2a3Ydmx6qYfzkNF0vDK+5U//k070lfeZ1dh3RKyrwttpEKy0FeNbbGD89Q+zEbMnFNIAj3+jEWVN6cUvv0JPL5kiMKu8QB3BEzZj9pReZoGAvu3auNN05X9JaDmBucI6eV0cYfY+sdntfGWVxtrTM9OJEqlj1SwGTnXM4G6yivViJNNMWMmP2G9C7lccSQC6VI7tG/nv6h/24miwlFZ5S82I7yI+Vd5Vjp3frqLmyAneTdckOZAX6XhsnncyWJOkVlKl0JjWbHq0ndmqGDoUda6NHpsQ8X8kOcSEnPeeuFiv114Zoe25A1n5vcUaUuB45qty3E99dWsDe/MEoi7MpjnxFhgCoUjO4b5Jc3uLSVCFATsX86JKy0vJvhZor/AgWLXs/1Sb9vnyB/8T3ezH5xYKOo95C6BwXx5/qla7bcqSK86niKG+RcyU4evQora2tOBwOXn/9ddavX694TWWUUcZ/XgwPD7Njxw76+pbmphB1NGuK7XTRQsP1AQb3TRLvT9D1mxEWSnzrN7+vksRUkmNP9jJ6ePW8b3BpQZUjMZ5i+OAkKo2mKC9bjvX3VqO3iUpMk+1zTLbPrVJYKmD85Awmn0CyyG5uKe+yR03UXx+i7dl+prvmOVPKgiIN091zTJxUfm9VXezDs87G0a91rmn9FTsxS4dusORO7PrrgrjqbMwOzhervqyAs97CZFuczp+XrhklxlOc+mHvmpZq2VQWdbb0nlfBocUaMhIfSZSs72n1EB9eYLp3DdWCNKvsweTQ8/IoguW9qXmNnZwlm82xMFq6b6Xu0XLMDi6wuIbtHYA9akEtqEWimwIWJxbJZXIIVqGkatTpH/cz01/6fkp1YS04o5aSC8aNN1dir7Iw3RlXtBU885N+MqnSOWFht3/lRV586+0cfbJb1hIwOZVmune+JAlpeP+U9P/X31tNNpPjxL/J54Wx9rj4jMuFLJdlumuB6S7xfgd2uKi6wMupn/QzLbPwPXFyGmvISCw/vp11ZnG+ySMxnubMj8V80uTXE7nUi8kj0PWr1d9wsTNxun4zKt3zuusqmOqak5SVdBMGIhNb8NHAu/o3mJ2d5Rvf+AZPPvkkjz76aFlNvIwy/i/Gl7/8ZT7+8Y8zP5+39MbGJs7FqCquk9iqTDjrLfT8ZpTYqVlUapXifB7Y4SK0y0MilmR+ZFF27cYaNjLbt0B8MMHYsSlx/pSB0SfQfFs1/W+JSkw9L5be6D3dPcdsifdSzTUBBIuGUz/oL6kMAxBri2NwCYp2axpBVAuOnZ5hcG+sJIkJoP3nA2gNJXIIDdReG2Smb66kk4klZBStWUcWmV9j3azjuSGRSFFChUiwasimcyzOls4hbFVm7BFzaYszxI1Q6TUs3AAWxpKr7MFWIhlP0/mroVWWzP9e9L4+SnZRYR03j8xCpiTZrID44DyzA/Oo1KWkfMDo1mMLmxQt2ArIZrKo19B8GXh7gune+dJxy0Dfa+IaV2GsKHVPI6ipuybEZMcsXb+Qz+Mn2+J0/HywZP4mPiOiqtH6uyJMton2j7LHa59FrVMp2vxlkiIJCcTnv+HGSrp+OcxM7+oxkMlkmemdE+0VFdD76tK6ZvNtYdILaU49Lf/NNbh3ArVOvAeCRYNKpymyp1uuBhe+0IulwsihJ9pl49v+3CBGlyi+YXAJBHa46H1pWFKQMp7ysour6aWNKdcQ+/fvp7GxkfXr1/Pss88Sjb43myLKKNu9vSdob29n48aNUrIA4KeKVvU5su0Fl8DWR2qJnZ7l9I/kH7iWu8K0vzBCMpbEvy0vE60wt+36qyaS8TQHlOyocjkEi5pkPEv1bh8aQa1IaGm+I4w9YmbPp0+taWkmuAQ23hfh9E/6Ze2aQFRmmR9fLC2hnEflxR586x0lbcE2PVLL3GjirI4nWMC/3Uvfy8oEjo0P12DyGTjwxXZlMgsQvcJP16/Ozlru94FNj9Qy2T571oSgtXBWdm9nCcGipuXuKMMHY4pWgL/dAXnP7fa8G2wk5zNMl9i1v+UjdehtAm9/6oTi+QWXgKfRWpL8V4DBJ9B6d4RTP+pjtlu+6BW+xIt3nf2srPIEl8DG+0sfb8ODUZIzKVki0Eq03F2FNWhi72eWzQXLCraWkED08gDHvtkjnV/pGfJuslN/bZDRd6dp/6k8azu4y8VgXj2q6bZKRo5MyRYzBQts/UgTM/3ziov9cWGSdxIvkUVMaoPBINdeey1f+cpX1rzuMsoo4z8H/uRP/oTPfe5zkq1LQVSGAAEAAElEQVSbDoHtXIFJY5Zt3/KBSiwVRt75XNsSuSCXlRa4HHUm3A1WOn4+AjrwrbczenBSdgGs7roKvOttnPi+8iKOzq4TrZwQbUs6fjUsS/DQmVRserSeybbZJQu4gjKLDBpuDKLWqRQ/2OxRE7XXBDn2jXbRjmoNbHqkhuEDk4oEJXvURN21QY5+u0e6nlKo2OFk4t1pUvPyRQWdCbZ+tJm5kYWSlhL2GhMqtaqkms6/C6WstX4LVGxz4l1v59i/db8nxztbu7ezRfhCD7ZqM8ffgzzud4W1LNhMfh0bH6xjqivOye8rK02EznMz8M7EWd2HuusDCDad4sIVOtj0YA2D+2IlSU0F1F8fQGfWcuL7fbLPrD1qouaqAO8+2UlqvvQnt84Emx9rYPzEjOJ3WuRyH4mpFMP7JtGZVOIxFRbptzxWg86kYe8/y8up64xZ7DV2xo/PYvLpqDzXw5mfLCu0LpsfG24M4GqwcuDzZxTnlTb1AXpSYr5qMpnw+Xy89dZbBAJr70gso4wy/vAxNTXF9u3baW8vfJeqqKaJes0G2fZaA2x+tE5UMJHZaAcQvcLH0P4YiVgaZ52Z2f45Wfs3gG1/XEsynuboNxTea7ksWqOadEIkuOrtWgbejBX9XkD4Ii++DXaOPNEunq9E3qU1qGi+s4quXw0TV7Barb8hSGouTfdZ1GJcLVaC21y8+90eRZWl+ptDJGdSZ1fb0YJ/g6MkmaXuhiDuRhtHvt5ekszy21jL/T7Q8L5KZnrm3rM+npXd29lCC023hBk/MV2SXP3bHO+9ttuzVhnJZXPE+5XJcU13hLFVmjj4+dOKz6LWoMZRb1G0PCxqa9Gy7s4wHS8MKT4/nvU2/JudZ5Wzag3QcleUzl8MER+UX/StvbaCbDJH16/Xrt9W7/bhbrRx9OsdpBP5PG1ZXiXYtVRf5KXtWTE/0prVpOfkv3EsQQPrPhBm+OCUtLluJVzNVlFRNw1VF3uY7IzL2sChha2P1jLTP0/bT+QXwRPaBAcWX2QB8VspEAjwyCOP8Dd/8zdrXncZZZTxnwPf+c53eOyxx4jHxdq4FQcbOQ+DSn7jVfhCL64mK+9+s1PWpsnoFXDUWBjaK+ZH9qiZ6S75eotvs2hXefqHfcQVrDs1Ro1EYqi+xMfQwQl5slCBFNEZZ+CNtTdTBXa4EKxaxTzI4BKIXu7nzI8HyCgIKyxH/Q0hJk7NSOopK6F3CtRc4efMs4OKpIzlsEfNxIcTym01sPnhOuKDC7Q9q5xjGD0CGkGtGN9/N0rzcc4atioTnvV2el4cOas4r4WztXs7W7iarDiiFjpfODs7tN8HPC02xksQ7TRGDRsfrCF2ZobuEnmLq8EqknzO4r76tzox+wwl41J/Q4ixE1NnVW/1b3VidOslUtJKGFwCkd0+2p4bWvv50cCGe6OMn5hmcK+8wpi31U4mlSV2ahaNoC459hpuDmHylbAj1IA1ZGS2dwGNUUPFNqeiDWVgm4uKbS6OPtmleB2Dmm5Opw+TIY3RaKS5uZlf//rXZRu49wBlu7f/AIaHh7Hb7dTX10sEJT9VXKa+rZigpFITOtfNOX/RKC3kv/3PJ5cISiuKy9aIAUe1hZpLRfujkf1Tq0gRgV1OBItYSOnfMy7ubJVDLseOP2tk44fqAFHVpvOFYcUizFTvHMk55a9hwSWw9aN1WELidez79BlFghKAYNVidJew3AKabhWtqvpfGV+TjKEzazA61z6es8lCMk5JghLAye91MvTOREmCkn+rg+A5HmqvK11kD+xyiXYYpbuHNWLEElqjEaLVW8udYYTSAgIAGJwCZr9hzXabHqnFu8m+9gHPEq33R9a0okvGsxhdAraQ/MLxcgR3udeMc+FZ8G91rHm8wC4XGx5cm9Vad12I+muDJduc+WkfPS+PlCRIJWNJiaDUem8EwaI8xRpdAhpBg8mrbJfX9/KY9EyELnTjbFIeDLaQAa1eg8mtfLyjX++SCEobPhil+jKffEOVivmRRRZnUsXXu0xeOz6QlAhK4Us8bH20Fv9W+bE1dnia4cNTEkEpdIF71XNSICghgLPOQtVF8uMqGYe3/+GURFDa9EgNmx6tKZpHLUknl6rfx04uY13LOkZHR3niiScQBIGHHnpIMT5llFHGHz7+9m//FrVazWc/+1lyuRxaBM7lei7S3LyKoLTxoQjr7hJzjBNP9/POv7QVExmWzRtVF3jxFKwLUjB6aLo4P9NBxTYHAO2/HGZgz4Q8QUmlxr/FwdbHavFtEefEE9/rU1SgSc3nWJxOMrdcBWhFjlZ1sWfJAu4nA4oEJQCDU4/OpMXkV5aBdjVZJOurw1/uLLnYY3Tr0Rg06K3Ku8l0dh1Nt4lxHn5nUpGgBKJKTs8rI5wpUawBqLsmSOPNa9uIrLu7Cs8a1rnAUps1iCyRK/14N66dJ1lDRkw+w5rHq7zAI8XmvYB3o31NSzUAS9CI2bd2XqgzqWm4JYTeXdryDcAcMmDyr9FOJxKu1rLeq7suQPgCL4465dxwfiRF/5tjnHymhA0beRu2FDgbLUSvLi3NbnTrMThK5OAp8ZkoEJQUbdjyMHj0GAp5l8y+n+mueQ59sYPUfA5LpZGND0fRlVBoX5xJMdWjXCjq/vWoZCe58eE60dpNQR3k1DN99OaLwDq7Ds+64nuSWlBLu/Mrz/XgarRi8iy7v8vmvzM/HWLPZ0SCksmjY/uf1q2y863PbhVtnhrOweFw0N3dTTAYpKGhgaGhP9zCYRlllFEa8Xic1tZWnE6nRFCqponLNLcXEZRUahWuBgtbHqtBsGtJJ2Df4+0SQUmlLs5tDA4t3vV2Attc4k7/9tUEJWeDGa1Fi0qtoue1Mc78VDl32PBglPX3iN/94+/OLBGUctlV8+RM/zyJZTtuV+ZdWoOYX5h8etILWY59o1uRYAFg9OoxeJS/wUFUUAJRHendbykTlACMTgFjiW96ENVnbBETpClJUAJo//kgva+MlCQoWauMVF/qp/pShfpAHvZas2hnt4ZQkcGtxegrfQ0gqi1Fr/KjNaxdmrYGjFgq1s5tGt9XiauxdB7y26D22gAV20pb0ZEWcy9rYG3FTlejldAFa9gA52/VWlZ5hTYNt5S2AgZovDksWS4qofOXQ3T+akiRoASQTmQlglLttYElOzQZCGYtWpMWQ4ka7vi7MxJByd1iE8e1AgxuA4JFh2DXyeZdAB3PD0sEpfobgwTPUbh3KjXz4wkWJheXCEpQNGckp9MSQcnVbGXLI7W4FXLc+GCCvjfGpdzLs9626jmJnZxFlRXnG98GO5XnFo8DaZ5Mw4HHO2jLq3Q03Byg5QPhonnUkDZwnuY6zudGWte1Mj4+zt/+7d9iMBj4q7/6K/lrLqOMMv5T4Mc//jEOh4N77rmHeDyOBTsXci3nqC4rJiipVNRcE6DmanFu73ttjCNfWUZQWpHfVGx24d/kFEksKtVqgpIG6ft89PA0va+MyhNoVCqsYSMbH6yR7KV6Xh5VVDMiA/PjiyRKrL25mq1ELhctvobeiZUkauvMGgSbDkOJ9UajT5Cupe3ZAUWCEogqRTqLFsGq7KelEdTSOsV011xpMkZGfJ/2vFqaLFt1kY+669d+f1fv9ol2X2vAGjZK5y8F70Y79ujaa3QmrwFb2LQmQcnVZKXqktL5428DS8gojelSMHr0xVZeCtAIENrlRrCvrbIp2DXo11h3RiOS8ta6J96NdiKXVyzdFxlkFjL0vDxC3xpjJXZGJCgZfaLaTykYnAL6Na617dkBiaC01vGMLgGjS7kOmIglOfV0P5mFDIJdQ8PNIUWbOID5iUXiJVTwx45NS3aSDbeElmySZbgMXb8epvflUVCp0Ajq1fckI9pdo1Lha7VTsdG5+v7mjzu0P8ahJ9rJLGQke0VHrbnovMFMhEtUN7EzeBFut5uDBw/idrvZtWsXsVhpW8cySqNs9/bvQDKZpLq6muHhJQahnK0bgGBVk4xDfCRBLgtGp04kxCQpKv7aoibqrg1w8CsdzHYnOPpkB/EB+Ze34BKIXlKBt8XO0a910/eyAgtZABYh1jZbLOG34qGOXuHHs87Ovk+fYejtGENvKz9UBrsWwaLD3ewgPiCfMAguAWfUxMiBKfb9S2mfxsqLPbiabFTv9pVMQArkrrWOhwDOeisGr17WgqoAZ4OFbDbHdPtcSaYqwMiBKTSCZk11HE+jDUvAuKbKT/31IfRWgbf/vxMl2wW3eXHUWlGbBIiXPuief1h75725Qix22avMa1rWnS0sASMqtWpNMtjb/9/ZKQMEz3GhETQlJTNBLEJaAkYmT88oW/kBnnqbSN5aQ32p85dDTJ6eKnnOeN8i8T5xt1b4ktIKXe4WK9awiardFYrKQZOn4kX3raB2poTwuV4yySz7Tsk/A+PHZpZ2swkQ2ulm4DWFMSsgyhmWyDO7XxyFF8Vnsu6GIPaIiQNfapeN49jxGVx11iU7N5l4dz4v3lODT6D6Ah/uOitH5VQ0knDgy50k82O+5f1h0oksZxR2OGZT2aU5TaUGXVY6t0XtxHLKiTEb4AC/AeCb3/wm3/rWt/jCF77Aww8/rByAMsoo4w8KTz75JA8++CDZrDhxadCxnd1YNCsIJcuUcrKpLNnCB7UMmaT++gC5XI7254Y5+VTp3bvr7wxjCRqZODFFai5L78p3gEotnXvk2BTedXYmOxRI3DrY/MFaxo9P0/faOEe/1l3y3PZqM/pSxAogsNPF0J4YIwcnGTlYeod5zZVBVBpVSaUYnUlNaj7L8H5llaUCqi/04KizYqk0Eu9XtsMI7nIz+PYEQ3vW/ng7+vVOrJHShROdXYclaCIVTzNewrrV5NFRf20Id4NNshFTgq/VwWJ1ak3bjrafDgKl/dwBHDVmTJ61CydnC3vYhCVoQmeipFJWKeWh5RCcAu4mG4npVGn7QB203hNlbnSBY1/vLnlMa8hEOpEpaeXX/twQM4MLa+7cKtjW2WtMpBezki2bHKou9KG36+gqYX987JtLfV+udiZ7vEt9+DY5mBmYVxwPy9XAvBvtTLXNklqQXzRz1VswOAR0Vh2p+dXnTc3DkSeWbNy2/lEdw4cmGXhLPpcbXW4RJ6MQNj+aYn5UfHabbgxgDhiY7pqVHTdnfjKEyTfO/HgKnQla7orQ9rMB5oeXHTT/f3U2Hblsjrlh8VlfORadHRGcREjzNmOqPtra2qitrSUSiXDkyBF0urUJcWWUUcbvH+l0mt27d/Paa69J/xZW1dOo3rKqrc6kIp2A+fEE2UwOwZq3SkgXk5MMHi21VwU4/cM+ElNpjn6zi8Up+ZUUrUG0Mpvpm+fU0wOMHVF4z+cVZ8ZLWKwB+Dc7qNji5MjXupjumJO1bpIOadZidOtxRM2KlmxagxpbtZnY6VmOfk3GgnMZXI1WAjtcpBMZBvco15S0Fi3peJqjXy99PAD/Rgf2ShPHu5XzV5PfgFoH8f7EmjZps70LtD83uKatiqvBir167YWtyOUBbCET7/zr6ZKELE+zHd8GJ8MHp0gnStuhHHh87Z33WgPYqs0kJpPETpe2FD5bOGosaE2aNfPh/Z9Zo1aZR2CHC4NDUNzJXUDNNRV41zk49ER7SSs/R8SMrcosjR8ltD03wNxAadu65FSa8SlxDPg2ORg9PKXY1uQ34G62k05kFGu58yMJDnx26b5pDWpFizgQF/2yqSyHv9Ip+3t8IMH+f12Ks3eDbbV99zJYKgxoBDWDe+Xv3djROGNHxbpxYLsTzzo7x77TLTtmZ/oWmO6ZY6Kw0C2jdjW4RzyPzqSi5go/7kYLp59Z/b2gUqs4/JWlXf+R3eLibs/LY9KcmcvmpONnk1mymqz0tzn10m8GjQHDqRYc2Wr28huy2TT/+I//yGc/+1m+/e1vc8sttyjGp4wyyvjDwjvvvMP111/P6Kg4p5qwspnzMapWvHc1QJ7wmE1lxfliOZat+1VsdaExqBh4c4LeV4bhdY30tytRfbEPT7Odo092kZpNM3Z0xTewSiWp9Mz2LTDZNsvsoEJRQgMNN4SY6p5j9NAUnQpW6gVYg0ZxTa2ECpCjzsxU+xyzfQsceUL+PVFA5BI/OrOWqXblnKqg0jLbu7BmLudeZ8Pb6mD81ExJ+zZXg5XYmVlFharlaP9ZPyb/GuRmDTiiFrKpXEmRCI2gpuHGSsZPTq+pxFmx2Ukynl6zj8MHYgwfWLt2Zw0ZcUQtIlnkPYDJp8ceMSNYNCTjyoyrgTfGz0qZSy1oqNjmIpPMrXk9694fXVMBiww46izkoOQ9GTsyTXImzWxf6dyrkHsbPQKoKGkTF9juxhoyMnQgpvicLLdbXK52JgdXk5XgTjcLsUXF2tzydXNr2Mj8eFLxmJagCZPPgE7pvBlof3YpL2q6Pcz4u9OKalOjR6fR6PP8CQ2Qyc9deaJ6Kp6RCIiVF/nwNNo4/LVO2XMP7Ztk4vS0SKbUiOvzfa+NkZhMLc2ZGfG4gllDJpVjMV8v1OhVZBaX5lnLkJcmvJjooJ2j7Nmzh8rKSi6//HJ+9KMfodEok7TKkEfZ7u23xI4dO9i3b5/03w58bNNcIv5HYYdWnny04f4qzH4Db3/6DCz30lwpy5/L4t9qp+aKIO0vDCoSSEIXuBl4fWLp/++dUCRe7PizRtKLaQ4WLODklJPyt77m6go86x0c/lqnoqJQ5HI/g2+PkFTm/UjY/rEGtAYNb5+lZYWn1VZSKrjuxiDedQ5O/KCnpB1XAQafQGK0NKlnx581otap2PMPp0q2c7dYmSixyLIKZ2FFZq4QcDXb1yT2wNldy+8C76Xd22+DUpZhy2EJ67FHLcoknH8nLGE9yblcyT40316Js8HG6R/1lRwblpCgSDRcia0frUdr0LD3n5THozViZHEmc1bxWX9PNbYqM0e/1SERq0oheoWfrldWqEQtmzNa7ghjDhrZ9y+nV/22Et5NduquCdLz8siSOtIKBHY5mTg2STKet3k7EFN8brb/aT2ZdJaDjytIN0r9VdN6bxWWgIEDnz8jzlUr5uR55zSdmsMMj4gLmA0NDfzrv/4rV111Veljl1FGGb837Nu3jwsvvJBEQlwkUqNhK5di16ze7aGz69j6oSixttli2yIFbHmshmwmx+GvyBckdCZwNtoZPTSNzq7DXmVg/Nhs8Y78/PwS3OWk6gIvp57pOyvJ3G1/XMdkxxwdCsUanUmFb7NLVIkBxd3CIFpKtby/mvHj03nyTGno3To0WlGpRgk7/qyRxZnUmsWfAkx+XcnjedbbaLixksH9E3T/UpkcrrPr0OlgfvwsPdTO0r4tuMvNVNvMWR13LfLK7wLvtd3bbwO9W6eo9LUcofPdjJ+cWbvtb2mpVyg2lsI5n2giPZ/mQCnFVR3oTGd375yNFhpvDjO4d3w14XBFu8nTZ/Hxo4OdH29iYTJZRDRSbG7X4VtnUyQg6d06NtwTYWDvhGIutRybH61FrVFx4AsKz6sOKjbYGT4wDTrwt9oZOSj/venbbKfmMj+nftzPVHtpz0idCbb+UQOTXXFO/1B+7pla383BY/vIZrMYjUYuuugiXnjhhTWvqYwyyvj94UMf+hBf/epXJUvdCiK06nYCSAthhYX0mqv8uOotHH6io8jWcqVyUi6bw1ploOmWSjp/NUJsxYaywnE9620iCSANnnVWxk/PkkvK50AbH4yQzWQ59qSCqrh4YAB8m+yEdno4/v0eRcKHf7ODiba4SPRYo0y6/t5qjG49+z535qxsuWwREzPdynNqcKebyvO8nHqmt2S7ArQWLelEuuS5N34wis6sKyJ1yMFaJdognDXOwopMcGhx1loYOTC15uEEh7YkCed3hffU7u23wFpkogIMDi22iKUkUWjpoJy1PZzBoSWdpmQfQhd4CJ/r5fSP+phsU86DDG5tSYWu5Wi5qxqDU+BgCbKZwa0lm+GsxkP0Cj++TU6Of7enpNJZAf4tDiZOTBerJi1X1b3Yg6veukQeUrDTBcS57H2V9Lw8yujh1bVslVqFs8HM7OAi6XgaV5OF6c5Z0onVcyPAurvCqDUqjn6zR3buXH7c6BU+3I1WDn+jh3Q8vWpOTlumaTMeo39Q3JhRX1/PV77yFS6++OLSASqjjDJ+bxgYGGD37t2cPi3W3A2Y2MQFWNR55dpCTqJSoRFg/X01TLbN0vvKWHG+srJWn8vRcHMItU7Fqadl3nW5HGjETXHTXfNoBDCHTCLxQua4BSvztp8OEF+D9ArQfGeYmZ55BhQ2/WsEcNaVtsMqQLBrab03yuiRKfpeW3s9TWPUoDVoWJxUXkNZf2+EZDzNmR+V3si21AeNsloUYPLrab6jiqG9E4pWVoW+aQSVSOh/D+GoMzM/tnhWx12LvPK7wHtt9/bbQGfRkCpBeCrA1WAlPjhfkhwF/NaWeia/viS5DURBhnQiw4nvlviu4eyvxegRaLqtioE944wemlJsZw4YmBs6O8vBjR+qYXEyWVLdvwCNAI46m+IGCI1RQ9P7Khk5OHlWc0D9TSF0Zm1xfJbPU1oVjuhSbdFRZ2aqkMOumBstISP11wVpf35AJJHJzJ3Lj7vxwRqmOuL0vDRa/Hv+7+bqRtjf+TapdAqDwcDtt9/Ok08+ueY1lbGEMknpLHH//fcXDS4jZs7TXFfcKJcFQWT/zvYs4t9mx9tk493v9Im/rfjICex0EtruYv9n156c7bVm1t1ZxVR7nBNPrb07uuWOMAuxRUleeyUsQR01V4bOapeWuUJg40N1xIcWzqq9JSRgdBtK7mjZ/vEG5kYTnPhO6Ym3cP7a60Ic/aryuQWLmtYHazj1g17mhtcmcRh8AtaK0n10Nlhovq2KybYZTv6g9ORbfZmPnhffG8bwb4vtH2+AHOz79Nnt3DobvNckpcjlfoI73GdNmnmv4WywgJqS6loIsOvPW1iYXOTwF0sTYkIXllApWoGWu6tIzqYVFZVAVGYyOISzKpBZI0bW3VlN90sjDL+jvJuv8mIP/a+szSg3+AS2PCzzfCsQkUIXuDC5DbT9RP56DD6B5lsrOfTVzjUJe2LMm0lMLnLoi2svhDfcHMLgEuR3OKjU+LfZ8bXYOfYtcV5x1puYPBNfNff2ZtqYcPUQm4yhUqmwWCx0dXWVPWTLKOMPCOPj4zQ3NzM+XpjHVKxnJxWaqlVt7RET0/kFnZY7Kxk+PEnslDzpYf09YWYHE/T8Zu3CxsaHIxgdAns+c6aYdCGT0+lM0HxnNSd/2K9Ikqi7LsB0n7Iqy3K03leNOWDkwGdPi4t+a6TrBZUiJVRscxK+yMfxJzvPiqhTd32A2YFESVWmuusCqFTQ9rOzs3Kq2OEs+d4C8aPX6BTY84+lSeTORgupuUxJ5abfFew1JlruqKbrN8NrXs/Z4ndBUtr20XoyqSyH1shpflcIne9m4I3SuVLDrSHc9TaO/P/s/XeAXNWZ5gH/Kt1Kt3KOXZ2D1N3KQoBEEAgEIoMAEwzGOOAwjuOdb2dmZ2d3ws7sepjxDh7njHMCJ2xjG7BNkIRybnVS5xyqU4Wu749bVV3dXVX3yh+eb2338w+o69Stc9977nve857nPO9n22RJbpMX5xQRkEwBgbpbw5z8UntZtan1D1Vw9pk+Rddsui+CwaXn9X8vTZJyt1iZ7p2TSFxlyNwgbW6LQSOHPn5B2e8/EOHCTwZKEsQqrvOiM2hp+2FpFakcGu8JYq8SOfq5DmaH5H974zsqufjSSL403DLooOnOEP2HJxg/N4MYNhDvWZ3gSqaTHOJ51NYMU1NTqFQqPvKRj/AP//APsr+/hjWs4T8PTz75JB/60IdIp6XEtwMvG1S70GqXBNhzG+LmgJ7ZwQTWCgPeZjttPxkgk8is2mC3V5sIX+HOlwkvtkGfu6bRraPlkRgjp6dp//Hgqs9XouJaD8m5dEkyp2BTU3GNl/PflSdwa0Utm95ezWTnDGe/3SMbdwl2LWavQVprlkDLWyqZG1ng/DPKfr/6Br/026XaGKBhfwVtP+pjXkEspxW1WAKG8iQTt47WR6sZOjlBx4/KzyG+zXZFpKPfB5ofiaER1CUVdn4XvNEkJXezleobgpz8WmfRufD3DZPPgNaoliW5bX1/HbMjC/kSa6Ugd5i0ELHdXjIZljZvisDVZEUMGGQVHkAiKzXdX0n3rwYZOVG6D3m1J5m4K/9+d80sV1UtQURy1pmxhIx0lahaoBW11O7zc/57PUVL4y3zc1rY8kQ1c6MJTnype/XnWeT8XOgKJ5aAgbPf6V/1uUqtwhoz4mu2cf5Z6X01+/XE++ZXXXM0NUCn/TgTk9JaJRqNcvjwYex2e9F7WsMa1vCfj7m5Ofbu3csLL7wAgBaBVnbgUK8onZXJYPQIzGXn/ujVHsbb4xLBOJNZ5QNj1/mYH08wcDAbH5URLqjeF8QaNXH4kxeWky6KXFcjQGxPgO5fDpYkSfg2O1iYSDBRRrEyh4rdWeWmz7crIl04asWyMY01aiJ2nY+z3+0tS07Kwb/ZSWI6WbYUnHejHZ1Zq0ixB5QdwKq6OYAtaubwJ9vKEl2MXgEy5ZV1fl8QbFqaH6qk8xeDsiqbSvH7ICk13hsB4LSCvfLfB5yNFsZOlxe3CG53Etjm4tRXu5gbKf0sxZCRhcmEondBEDXErvdz4Yf9Zcvxxfb46fvtsDzpComgbg0Zy6qyi0EDiZlkWbJeDrn3+/jn2xX9fsVuL/0HR0te29NsQ7DoipMeV/ir0A4X/i0OTj3dzdxIdh+6jB+svytM/+Hx1cpY2etGdrmZ6JxhunsOvUPHwmRCendXXPPU4kFmbGNMTk6i1+v513/9V97+9rfL3vsaQL7w9584vvnNb6JWq/MEJQ06dnHHaoISgErNtnfX03SPtIE2eHBSIihlP1sJwaRBa9QghkvUalep8W+T6mdPXpjh4m+HyxKUNr27mta3VgJw6usXSxKUyGQIX+7F7DdiiZWRFcxWFpkZSHDhp31lCUrBHS62/3kDBq+kHlOO/AOQTiySnCnvoHxb7Ri8AjMDibIEJQBXsx1B1GHyl5dJdDdb8+pEcn0cPxdn+NQkF35UnqDk3+YgvMND1U3y9VK3fqCOhnvCsu1qbguy4y8aEZwydVCB8Qvx/OZsOTTdF2H7Rxpk210K1j9UwfY/l7/m6Pkp4gNzZJLynMjWt1Wx7cPy1xRDAts+3EBwh0u2bcNdEWr2Bss3SsDgkXHOfFs+sMkRlEJXyP+26DNiCZevU3vxl8P55FjF7vJ1fJOzaRaTGRamyicmcwSllscq2fTumpLt5ocSXPhJwfudG3KZ4pvivlZHvuZ0qesdfkoiKNmqzVz2kXo8LdbijRPQ/lwfp7PJWM8G29LvF4HRJaC3li4TMnhwMk9Qqr09QOM9EVzrVv92VFPLxsnraAo0s7i4yNTUFLFYjMsvv7z0j69hDWv4T8OOHTvweDx5glIljVyn2V+UoORuttB0X5joVZI/PvW1HsbOzBRN/gIY7AJmd2lHI4gqnA3Z2vXP9nLu2d7VqjDZmM7dbGHbB2ow+XUkZ+HYZ7vKEg6c9VYCmx0lPwckFRrg+NNdnPteT1mC0oZ3VNO4X1qUy5WkTcSTZBKLJGX2tHLzWtuz/bJl48SwCUtUvuSHf4t0z0oIPee/f5Hel+UTQFXX+2m6b/V4WInQFS62vK8OvUu+xNTW99ct1Tsvg+RciqmeWcYvyCvsbP1APXW3y8Qfl4htH6qnWkHMOdEeZ+y8vBqoKSCw/c8biOxyy7atuzPEpneVjilyqNoboOIqH456sWy7jp8N0X9orCxBCWDkxBTJySQmtw5bVfmYSgyYMNgFLLHSsQrAiS9J76vJp8PZVL5tYiZFcq78icSRY5LKlCkgsPX9dbjXl77miS920faDXkUEJVuVCWvETGBTad/R9fOhPEGp+ZEKmh+pKNn29Df76PzVcJ6g5GmxlvSXlqgRwaxdktheAVVaxamv9zJ+TkrENu0Ps+mdVava6TQ6LtPcyMap3VjMNjKZDP/4j/9ITU0N3//+90v2dQ1rWMN/Dl5//XVEUeT9738/6XQaI2Z2qW5ni+7aZQQlkDbXWx6toOGuEABTXfO0/WAA0uqivkRr0KC3aBFDhuK+RqXG1SCiUquYH0vR8bOhsgSlxvvCNOyXfrv7VyOl1eYyi3jW2XBUWRDD8mVXU/EU55/pKUtQctSKbHpXDQa3jsREqixBCSAxmyIxU37usFWbMbgkZZ1yBCUAc8iM0aXH5C1/P5aoUVLLiafKbuYBzI8k6Xl5JF9etRSsMROV1wWIXFU+VwESOavyRp9su8BWB1veV4fBLR+jjZ6bZrxNPu6KXu1l83tqZdtdCir3+BTFPvGLs4x3xEnNy2/E1N4eZOMT8tcU7Fo2vKMa3ya7bNvGeyNUXidv955fD3PhR/LErBxByb2+RC6nANaYGUukfHw2emoqT1CSu5/UAiwupEnKvD85lamam/2sf7h07JOKpzj7vR7Ofi/7juXcWmZxuUJuFr5NUum3ctc7841eUvNSGcvN76rCUbe0Jlrmt1Jw7pk+LjzXj0qtwlZlQlvkFVapVajUKsxuPQbn6j0ClVoFKjVTnXN5glJwm511b4rgbFgdb7u0fjbHr2eD9zIWFzN0dnYSDoe57rrrSt7XGtawhv88fOADH8BsNvPCCy+gRk0jW7hafdtqghJg8htouq8C32Y7AN2/GpYISip10Y13o0vA4BSkz4ptzGvViGETqFR0vzBE2w/6VpNlst8TgwZaHo1hdAmkE3DhB/1lSRTeFjueZnv5m89WQup6fohz3+8pe72aW4NUZOc2uZgmtZAmNZ9mMVl+HnY2SOv0gUNjZQlKANawCZvM/AZgr5bmACWq6j0vDNHz62FZJZ6Kq7zU3SG/h2irNLP+oQoEm3yJqXUPVlB5o1+2HekMI2emiCtQ2Fn/cIzILo/8NS8BzY9WElKw3zfeVlCGtQw0Rg2tj1fh3WiXbRvY7qTxvohsO0+Ljao9AazR8uNj8PAYPb8dKUtQAoj3zpGMp9GJGsyB8rG+YBMweQ2Y/eXbdf50gET2mpZo+T3z1Gya5Gz5QRnvmycxmUYQNTS/OYatsnQ+uOv5Ic4907NEUCozPPUOAVe9FVd96dhr+PhknqBUucdP7a0FedYVfq735VE6nhtgbjQBKhXWCnNxYrpKhWDXobcLaIUiHVRJsdfFF0fyqrN1t4Zoujda1Lc2qbewaXI3flOIhYUF3vGOd1BbW5snoq6hNNZISiUwNjaGKIrs378fAJvVxjau5851D7P9XfWY/dIGV80tfloer8BSIS0i0uk00wOSA7dWGtn4jsr8Z1V7vWz9s2o2vUtK3toqTAyfnCTes4AYEtj4zipJ8UWlJrbHx6b3VFJ1vZ+aWwI0v7kCg136TYNXautulibVyDVuNry9ivTCIumFNOsejFJ/pzSJCaKKje+swrdZeskbHwiz8Ylqznyzh0P/0Ubkcg+N+8PSi6VXsfGJ6jwx6rIPNrDj/9MIAgwemKBxf3jZ5s3GJ6rzm1lGjw6NXo3OJL2gDXeHWffg0iJxwzuqiVzjwdVkwd1sJbOYoesFScWg9o4QzY/E8m1bH68idr2PqusCND9cycYnqhFD0r1X7wvQ8pbKfNuWt1ZSdVOA/pfHOPHNTsKXu7FWmrL29tPy1oK2b6mk9tYQLQ9XSfZ+ohpHdjFXcZ2X1rctJdWbH4lRe0dIIo4IUtsc0SJ8tZsN76jOt3XWWYgPzdP+o34EUbKLb6sdkDbHNj6RbStINWLNgaVJYeMT1QR2SOot/m0Oqa0As0MLZBYz1OxdChw2vLOa0C7J3p4NNjY+UY3gFGj7fh8qlUQYyrd9e3We7OJqsrDxiWoW5pIkppPU3BZcZe/KPVLAZ6sxS33I+tmqm1fY+7FKqm6WNsbEiB6Tz0ByXkocVO7x0fr4chvW3CZNGIvzaTR6dX6xXbHby4a3L9lw/UMV+cBrbnwBtSZLWEFSLdrwzqW2TQ9EabgnLJVSy2QIXeHKj9ngjgJ7IyVqmu6L0P7zfo5+qo2NT1TnSU2+rXbJhtn1fMM9YQxOnVReT5DGbPhqacPO02LN2xug7o4wW95XS+xaP6ErXLS+rYqK6yR7OxpENj5RnfcRY23TyyQ0Wx+voir7XK2VJjY+UZ0nCzY/GiN8hSf/ectbKqnel7V3dswa7QKv/Z+z2CJmWt9Wha3GnLd37R1Swtbgldq6m61kkhm0evWyMbvuwYoCH6EmuN2Fb7MdzwYbl/95E1s/uJTYa7o/QmOOWCdAJp2h7zXp3a3c52fTu6vzxKLGe8I03b8UyNXsCwAqpgfm8W22sfGdVQhioY+IMnhokvmhBBveXkXtTUG2vKMGd7NFapu1d+0dQZrfXMHRz3Rx4Mk2Wh+vpOWxCja9qxrHOpGN76xCDEqZpuqbfbQ8GqXr5/2MnZsmdJmLqr1e/FvtWCr0bHxHJdZKyd5XbLiKDzz+50Q8MXQ6HS+//DImk4n/+l//K2tYwxr+8/G3f/u3qFQqXnnlFYwGI26CXKe5l71330jtLVlShg5aHq2gep/kc9VaNamFRbqzZZNqbwtQd0cwnxxueUsFW95bhX+LHfd6C4l4irYfSifaa272U3enNE+p1CqaH4my4W3V1N4cxFFnpmZvkOl+aSFZeaOXxnuWFkHrH4pgCRtYTGawxky0PFqBySstaiqu80q+UKXGHDbQ/JYY0avdHP50O+0/HaTlLTHEsOSHotd4WPeAFFuFrnBx+Z83UntXEJIwP75Ay1ti2LJxTXinm/VvXprrBYsOvUvykzqbjpbHKvOkkOAOF82PZr+rA/d6GxMdcZKTSXQmaT7PbTr4tzhoeaySyr1+old5Wf/mGLW3Ld1ry2OVeLObCZ5WGy2PVYIOjvzHBaZ7ZqjLblTm2ubmZGeThc3vq6XqhgD+bQ6qbwpQf/dSkqX50Vg+jnTUi7Q8Vkk6BRdfHCF2g29ZYmD9QxWEd0pzsq3SRHI+Tc+r0lwU3e1dFp82PRAleq00PvROHYJZiyBKG2CRXW7WFcRLTfdFiGVjoLmJBUxefZ4EE7rStSxeargnTNXeALP9Cc4900f97eH8pkDgMifNb1lqW3d3iJpbAixMJZidSkj2zsaRvk2SvfNtbw9iLthwbHmsEl+WkOJusebtDZLCFSqYn5TGZfNbYgQuk+JIZ4NkQ51NaryYBqNjiZDX/EiM0JWSvW1VJloeq8Tk1jHbn2AxtYizfmkTat1DFXnSkqVCamsOGVhMLKLRa2h6oMDeb4oSzcacpoBAy2OVjJ6Z5MKP+xF9hmXxaeN9EWI3SPbWu3Q03h1mol1KNoZ2SWO20N45MpbOpKblsUrWP1pF3W1h/Nscy+19VyjvI4aOTzA7soBGJy1zvZvsy+xde1uQujuXxuyGt9ZSe6v0b/d6yd66bJ6pZl+AurtDtD3bz/HPdtL8aIzq7O/kxmzO3pV7/RJpcDFDZjFD6HIX4Z0F9n5LDJNPaltxnRdvNnm74e1V7PgvDUSzMacYNi7zEbYKM9P9s3RmD5+0vr1KStSq1Jh8uiUfkVkkvNOF0akjnZDizsZ7glTeKD0bnU1Hy6MVOOrM9L86TnCHg63vq6HmJj+2KiP1dwap2efP2lvys3qLltf+pQ21RiIlbHx7JcEdDupuD1B7ayB/qr/l0Qq8G210/WqYie44LY9WYKkyYvIK1N4q+WQAnUbg8fvfzi0b76UyVklnZyd33XUXgUCA2Vn5AxdrWMMa3ljMz89TX1/P5s2bmZ2dxW51sEN1I3vCd9H6pmqMHslnBbc7qb87iDmQzXmlFpnqkd5Zg0ugYX8YMSDNN75NdtY/GmH9g1FQqbHFRAaPTjHTv4BW1NKwP4S1wgAqNZ5WG+sfCFGzL0D0ajdVN/owZuMaSTUohCO71nWvs9B4X5j0/CKLC4tU3eCj4prshohWIi85G6X8WOx6D433Reh9dZTXP3EBd72Vyht82c08NY33RXBnD7Jsenc12z5Yh9agYvz8DBXXeKi6aSkH03BvRNrQUKkQ7FoEUYvWJMV74as81BQkyOvvCuPf4sAaM0mkLJWKwSMSiSp4uYvaAtJy7R0hgpe5qLkpSOP+GI33RzH5pFggeJmTuruW4qXa24OErnQzeWGG419qx9fqyBOvfJvt1BccgqvZF6Bhf5TGN8XQiloa74/m40hPq42Ge5diq8qb/VRc65XUAVIpGu+PSvlIpPmw8f6lud5VZ2GyO87FF6S5qPH+aJ7g66y3SG2zxA+dqJE2P3M2vC+Cu1myt63aTOP9UbSiloWpFIvpRULbl0jSDfsjeQKLJWqk8f4oBruWvt+OkkouLtuQqLsrTGCrFC+ZgwYa74+ymF5kbixBcIcrnxvJ2zubBzK4dTTeH83vLQS2Opbb+9YgoWzMabBrsVaZSWXzOb5Ndhr2L9mw+uYl4lYqJeX79DZpDLubrTQUxLKVe/35HN3M8AJavQpnfdaGTZZl9q683kflHp9U9iydwb/dmY/bHXWiZMNs6FhxrZfKm/y0/7ifk1+7SMO9ETytUi7NVmnK2xsgcpUXs88glWjTQv094fymtxg25O0NELrSzfo3x6i5OYRvs526u8IEszGnySe1NXolnzByemrZIbra24MEL8/a2yWNQzEkdbjyRh9VewN5G9fcGiR8lfQu58asyS1w5FPt6G0CDfdG8t+tuslPxW4fqFRoDWppzNaKpFOLaPTqZWuHyht8xHIHALUQ3OrEWSeRFre9v57Wt1flx2xst5fKPcuJAT2vSMQ9/1Yb6x4KL9n7Gg9VN/nyMVD1jQFUGhVzIwtYY0Ya7wujFbVkFjOEr3RRfbOPqc455kdS1N0RoOHOII33RhGDBhr2hzA4pU4EdziovTXA+WcHOPrpTmpvC1Bzm491D0Qwh3U07A9h8mpBpZbG7B0B+l6fYPDIJO56C6HLnTjrLRgcAg37Q3kf0RRt5t33vo8a+3qMRiPPP/88JpOJJ598kjWsYQ3/+fjBD36A2WzmX/7lX9Dr9USp51r1XWy7fDOhy5dIGdX7gnmShkZQk5hJMX52AoDANhehnZ48ybLq5gDrHqzA2WDBHDSSmElz8TdS/OHbbCea9bGo1FTe4Kf5wSg1NwcwegSiV3lZmEpk4zIHFdcu+cLYdT7EgJHUwiIGl47qmwMYHFJs6Gm2Ebvel4+Pqm8J4mm1cepr3XT9coDqfQFJCQhJSS9HjLHXmNn6vvp8vmZ2JEH1vkCelOGssywTATC69Zg8+qwdpH1BS0RaJ9urzdLvuAXQgKNGZLJjJk96qt4XyO8RWqMmqvcFJGLJDQGqbvITunIp/qi6OYA9G3OKISPV+wJoBDVtz/YxfiG+jIRTdVMgT3Qy+fQ03h+h9pYQ7iYr3o12otcs2bByjx93kzR/Gz2ClEvQqBg+PomnxbbsoHrFdT48zdL8rXcIJBfS9L4s5bzcTVZie5bi04prvHnCjWDVYnDq0eil+NTZaKFq75INI7s8+DdL8/fM8DwmnwExKNnbUSvm9/lAmvsD250k4mm6fjlI+ApXntxiqzTn96hAUqsJ7XAxO7LA/IT0HHOkFUtUsmGOmBLY7sRasbQfWnVzAEetFHOKQYNkb6PU2L/ZiUqrYiF7oKtqbyAf4xu9AtX7Agii1HZxcRGjfSnnFSu0t1tqq3cIpOfSpBNp7FVLpN6K3V48LZK9BZtWGksegXRiEa1RQ+UNS/aOFthbJ2qo3hdgdniBth/2ojVplo3Z8E43gS2SvTWCmtieADNZroC9boUNr3QT3J6t6qGRxmzTfRVU3SiN3VX2zuZP471zTPfOotZJwawlkhuzWXtvc+bjLICWR6vyOS9zYLm9fZsdRK/yMHhonLZn+qi80Z+P4YyerL2zBDhPqzRmM0A6lcHbasuPWYNTamvI7uV5mm24sjnG6lsCbH53bT4+FWyaZT5CDBiY7J6h/zXJb9XeEcK3xSGVuDRqlnxEJoOzTsQSkfwSQGini8C2nL0l32mJmBk7F8deZc7nty1hPaEr3IR2LNml+mapv8c+10VqfpHqfUFq7wjiarIQ3O6U7J2tpFB1cxB7jZnOXw4y1h6n+uYAJq+AYNcR2OrM5081ag23XnMnt9bdT3Wshs7OTq699lq2bdvG3Nx/fiWAPxSskZSKYNOmTbhcLmZmJPbrmx9+M2++7a1YNU5MTh0Gu4BgkSZls0+P6DXQcLu0GNIKGjQayUEYXQIGu4DBIU2mot+A1qRBZ9QgiGBw6jFnExF6m15q69IjBgVEnwHBqGXg0Bhtz/ZjdOnzGxiCWYvBLmB066m/M4yv1YHBLnD0Ux2c+FI3Jo8eU5YgoTZJ/TV7JAfkrLRisEv9SYwlMHkNGH1LGyMGu4CYVSNKzaeXsQKNPgMmr35ZW/d6u0RcSErkheRspmhbo0MgsNlJ/R0RrBVGDHYBvVWTtaEBo6ugrVNA9Bs49/0eRo6PS21tWRsGjBgK2pq8Bnwb7JI9zZK9jVlnaPYZMBacQDG49MxPJmh/rg+dRWpryl7L7Dfkv4cAlogJVzZhIJhVUtus/S0+49KmjwBmjwFNdlJAELL2lmxo9hrz5DIS5JMbue8W2tvsNUhjS1DT9/IoidnUsk0ro13A4su29UhtHbXShGUK6DF6Cu7VIeTZtEavNLZGTk5z+KkLiH4jRnfBM3cu9cHoFJb6izRmje6CZ+PSI+au69CjEdT0vSJtDItBI4aCzTCj25Af31pRh8Ghzyc1zH7D8rYefT7p2fvSsHSCyFNg74I+mb0GTNk+HPmP82gFTd5OZr9klxxpxuQzYPIZGDwwQSK+uNzenuyzEYR8W7PHgCVmZMeHmjC69Hl7m3LPxiw9Z5Nfj1qjpveVEXp/M4rRuWRvk0uyt2AVlp6rS0/1vgCb3lMjPZusXYzurI/I3p9KpSKdXKT9x9LJKINLn7/uko8Q8s/G7DPklduMriV/Uugjjn+xk3jvHAa7IJHcBDB59Ziy9labpLZmr4HJ7jnSyUW0wtKJWclHLH/v9Rbp3/4W+7LxYvQtP9kpmLRMXIgzP5TAEjFidOkxeJfGpcmz3EfMjMxz7tk+jG49BrsevVWdt6HRpc8vwIxOAb1dj9aoxWgVlvsIvwGDU08iDme+1YfRKWCvFqne4yd8hVuyS3bs5d77+rHtrB+7itbWVhKJBP/4j/9IdXU1Bw8eZA1rWMPvHwcOHECv1/Pf/tt/AyAajvG+97yfjbpdgPRem/x6VGoVgl6F2avH2+zA2SRi8ujRaCVfoVKrMPuW5h6QfLLWqJV8pkePya0no5F8nNlvwOKXTvYb3TpMLj3xwXnO/7APk1tqq8uuoyWfa0Tv1NH6eAyTR49g1nHwYxcgCSa3gM6sW+pv1tc17Y9iCRgRA0aSk0kMdi0mtz6/AVDYduTMFJmM5MMBdGad1DYbR5p9BkweQ16ZaHEhTTp7WlsQNfk+A4g+PSa3gcb9UVofqcLiN+bnTnTSdXO/a/YaMLn1dPx4gM5fDKIzaZZO5OiQ2nqW+iAGjESukhZgJp8xP69CNk7I2t/s1qPTa+g7MMLAa+OYg4Z8DJFrm3tW4cvdiEFj/nNLwIjZV3BdrwFLluStd0nx29xQItt2+TM3e5d+Z+J8nMXUInpb1t5BIyZPwfjwGxGzCbGLvxpGq9fk4x7zihhI9BsxB/REd3tx1puzdpG+K3oke+fb+oyY/UaOfbqDwVfGlrU1+wz55wRgDhiXKdWY3Et2MXmktros4cbsN5KaTdP7m9FsWwNi9tnk22a7IQYN2CrFPNnF6F6KKYzZsaLJjtm50QV05oK532NADGbtbZPGrN6ipe0H/cwMzC2LT80+A5asDfVWQWrrEBh8fVyKOZe1Neafo84oXdfo1rPuoQqiV/qWrQfMPgPmbPJMbZTG9/iFaU59oxvRZ1hub78RU+662TErhg1selcNriaLZO8s0cvsXz5eFtOLTHVKaz5T9l1Ap8s/G0vB+DZ5DPhaHdTdHlzyEdkDGqJfOsk2O5jk4JPn0Fuk2NC/2YHRkW1bxEeMnZsmQwYx2/+iPsIptfVvdiB6DbiySVGdqM/6iFzMKf331NOSUoCt0owrq34piKrlPsJrQK1R0fPbUSbaZhH9UrJSpVYV+Ag9mcWMFDe69WhNGrQGyT+s9BFmr57B1ydZTGQwufXU3xxk/YNRzH7pfcwpqBhdAqGon5re7Vy57hrcbjcDAwNEIhH27NnDGtawhv8cvOUtb8FoNHLu3DlAxf13P8D9ux9B1NoRRK2Uj7IKEuHaq8dRLVKT3fAQTFrUGonwozNrEX169Pal/JjRJqATNWhFLWJAj5jNTemMKkSfAb1dj8GpRfTo0dt0dL84QvevRvJ+FECtl/pgdOoIXeEkuN2J6NNz/pl+zj87gNm/lD8A8m39W+wENjuxZOe+VDyFOWjM+1ipj0vzQGIqBWoVakM2N+U3YMnOf6hUmH1GXA1W0Eo5r3RikfS8lPMS/cvjGjFgxLfFSeM9UWwxE6LfsMzvF/ZBDBgx+/Wc/c5F+g4MI/oN+VilMI4BsETNhC5zoTWo0eqlmDa3Bjf5DMviMDFgZHZonvbn+tEaVNm1cTZ/4F3e1t/qxLvBLv1DK103lz8zugr6oJXiJ03uhLE2Ozdl4xqDS8rfabPx+Px4ElWBOI3oN+bjBqMj1xbGzk4zN5LIx2E5++fIWoZsW3PYSOhKN2LAsOzAn1gwn+stOkS/gemeWU59pUuae1bZO5srEaW2uWy42bfc3ubAUqyiMWkRjFr6D43l7W1e9syXNvq0WTvliObmFfa2BIz52Gro0Digyud2TJ5sH7KhmDm41PbIp9oRDFqMrqwNndmcXFblLNff8fNxUvEUot+ImLW3IZtb1RpU2bZ6Kadq17L1PXXYY+Yle9uzbbPxoOgzoDNq6Hx+gMFDE5K9vbl4TxovgiU3ZqXrBrY6aH4khhhYeud0Zl12fGdz1Bo1qblFel8ayT/HnP11Js2y8W326nFUiTTul0hwlqARczY3pTZKbY0ugY6fDDLRFsfsM0gERG32mQcLY0UDRofA/Mg8yZkUgnHpxLxkl8K1hB6DRepD+HI3togZtb5w/SjdW2Yxg9EuMHYmzsJEGrNXwB4zYXTn3nv98vfTb2CqZ46Onw2ht+skG2cJZJJfKoiD/QbMbulzrSC11dt0BW0NkIKuXwxj9huwV5qoudlH4DI7os+AwZYbW1L8XznbQvPYtWxs3UQymeSDH/wg1dXVHDt2jDWsYQ2/fwwMDFBdXc0tt9zC7OwsFd4qnnj4PdQJGwDJl4t+Y55Qba+UyuXaKk0YbDo0OjXptEaKy3wGrAVznMVvwGDTYnTq0Vt1WIJGtFl3YvYZpXlKpUawarCEjMT7Zrnw434EUYslZERjyPoWr4AlaERj1Eib+hEjepuOU093k5xZxBIyojNLvtPk1WMJSgSgulvDuBqsiD4j6bk0Gr0GS8iEPrt3anQJ+dhquneeTDqTv45GUEltbQVtQ8Y8YSg1k1pS1dNI183NEUaHHkvIRN2dYepvD0vxRm6O1rCsrcElYAmZGDszyYUf9aERNPkcBoAlZMznIgw2He5GW/6gnsmnz8/1IM39OVK93qpDbxXo+c0wI6empDk4WOD3Q8Z8Ls3basPb7MDsX8qt5WwI0hyX20vViWosAVO+9JXJZ8BS2IeQMR8DxXvnSM2n85UnjO7l/bWEjPmYue+VEXQGDfqcDZ2SvZf6YED0GfE027BFTcvt7ZTsnYM5G9e0/6if4WOTWEKmfBxpsEv2zsWOos+YPziYt3c2PhVsumxb6TOTX08qnmIkW2ZODCzl5fTWbFvj0p6yo96C0SPk+5+La7QmabzosocLpnvm8rlWqa1pad/SkG0rahk6PMFk+8zy51iwltAIS+N7om0Go0tYFkNYQsalPbfs+DbYdFRc46Vmbwix8JkXxLaa7Jgda5ui7dnevA1zRC8pr1LwrEImjB499XeFcdZbsm2X7GIt6H8qsZhXDdNn7a01LLUVC8dAxETkCjfRqzwIYtbe+lxbI5agkWQ8zamvdGGwCZi8euw1ZrTGrA2X+QjpuhMXZiCdQczmeIv5iFyMaYkYcTfacDfasm3Vy32EU0Clgo7npL1Tb5Mtf/gEjQZL0CiRKVVqjE49Wr2a7l8OMX1xToo5w5I/lHxEdm84s4jBKfkpvVVAZ9RK8V5g+bthdBmY7p4jNZ3GEjIS2+2j8e6ItB4LmPJqTWLQiMNro/LiZq4M7cHv83PgwAGCwSCPPvooa1gNVSYjU2z9Twgf//jHeeKJJ/L/tuBku+b6om09G6xM984zP5wgdLmDifYZZgaKy7bFrvdgqzBx9NNFan5n2XiF163dG2DgyDjtMjXhAbb8maR4cvBfldXzrLzeW7wMXHYYuJutuBusnPlmealpALNfoPWxGqZ7Zzn++U7Z9oII0WuDtD3TV7Zd8yMxjj/dCQpKrtbfGcZeI/LqP50p285WY2aye0bRNQGaH44xfGZStjTJtg/Wk0qkef1jbbLXrLktSNuP+2T7YK004W600f7zftm26x+qwBo189t/PiXb1tEgkpxOSApEMrj8vzYx1T3DCZk69QjgabAy2T5FQkZ9e9O7a9BbdLz8D6dlf9/dbMUSMNLx00HZtp4NNjSCWvZZhXa5iO70ceab3bLS7K1vq6L7xSHGz8hLiuf6m5PDLoWGe8JYK0Re+7czisZh1U0B5sYX6C8lYY80VmwxMxd/OSx7PcEpsOWdNcT758qWbszBEjMSvdLLyS9nx0ARGUNbtRnBrJEtnQhQca2H4HYXZ77dI2t/gB3/pYH5qSSHn7qw/IMi8oy+LTaCW50c/vQFSBbn3lbt9dL+Y8n3ha500vvr4nYdSvcyVzPI+TbJp8ZiMTo65O21hjWs4XdDU1MTp09L84IKFZu5Fodu6ZRS7pQqgH+LjYGDkwBEdjrpfmG0RGmRDE1vinHxpWHGz69W5yi8JkDr4zEEs4YDT15YVVZkJRx1ZupvC9H5i0EGDk0WXlT67wof5V5nYW58npnehZLXbLw3TNfzg8yOrCj9VCREb34khtlv5NC/nSU5W7r2eA7hnW7G2qaY7S898QQuc6LWquj9dfmScSAp2rS+rYaR05N0Pld+jnbUi4yfVTaPOupFgttcnJSJO5xNFupuDXPhx30MH50s29a3yUFiJqmoD9FrvUx2xplsl1dzuewjjcwMzXH8c51l2+lMasSIifH2+OqSgSvQ9EAUa9TMKwpiJJNPh86kY3JlvfQiv7/lffWMnJzk/PfLx97oJDnx4ZMTZceKdF0I7fTJPn8gXx7l9X8vHyf7tzmwRk2c+5Z8+ZFcH/ROI/GeMieRdLD1PfUMn5igU0E8qTNB7a0RTn2tfNnfyr1+On4+IPtMQYrTxbCJQx+/oKi0W91tQQaPTZR9tpFdbi6+VCSGKeKDNj9RRSqxyNFPd8r+dtVNPnzNNk59s5epgjLSK/1lDusfjjJ6doq+l8eLfm70ahEDJoaPTmHy6hCsOibaZotec6j2HB09bUxNTaFSqfjiF7/Igw8+KNvnNaxhDZeOX/ziF+zdu5dEQvL1HlWIDbqrlhoU5KesFQYS0ynmx1K4Gs3MDM0xP1ok9sgs4mm14qqzcOZb/UU/L/RNYthA011B+g5O0PPr0mXGcjHZugejaPVqjn2ua9VnxRDYYqP/YJEYIesnxZABT5ONjp+tmBtycVfBulcratn09momO+Ky5dikL0D4Cg89L5Rfn9feGqTjp32k5KtoELrSjbfFzuFPtkGZ6lcmn4HE5LyiawJU3uRn+uKsbB6j5bFKyKAohxDa6WbwwIhsHwxuHc46K32vjZa9J5AUu70bHBz6t3Ok5svHvmLIQGo+JSkFyWDbhxoYvzAtqaeXg1Yq9zI7MC/7+w33RrCETBz46FnZ3xfDBqxhc/7QXzlYYyZ0Ji2jp8o/K2e9hZp9Qc5+56JsnFh3V5iBQ2PL5ny5Psi1De10411v4/jnOmRtBZLCx2IqUzamN7h12GMiAwcL8n3FyhdlMmgNaja9u46p7hlFOW2DXUv4Sg9tP8j6rSK5JqNXh8EqMF6ihE9hPONeZyG228vZ7/Uy1TlXspxuDpueqGRhKsXJL5ePPUHyx+HL3Zz7bg+phSI5r8wiwW12+g5M5fsycnI6/1nhvcVTE4xWt3G+7TyZTIZt27bxwgsvYDDIl8ZcwxrWcOl45JFH+MIXvgCAgJ5NXIOoKShrVPCO2qvN0oY+4FlvYfj4ZPEyRepFam4KMHhsKl+GaBlWvPc1+wKYfXqOfqazZO4q9z2jR6D+jjDdLwwzdraglFaROAmkw1HphXTZclbhnW6GT0yxMC6/IVJxnQ93g5Ujn2lfVpmiFJwNFmaHFpgfK31tW6UZQdRK9pSDBpruq2C8bZr+V0vvyYCkSjOjoCQaSCpA/k1OOn5Sfr/X6BFovCdK+0/7ZcvHWaMmFtMZ4r3yCi3uJitz4wlF/W19WzUzA3Oye7gaQRIpiA/Oy5avi+zy4G21c+hj8nvYgk2DRq/JH0ws3QHY/EQtQ0cnuPiizN6YBjxNNqZ758qOlVxbb4udocMTsn2tuyOE1qDh1Fe7y7azRk3YK810y6wRCvtgdAjly8RpYP2bYoyenqL/YPmxmmtfsctL1y+LcAMK4N1oZ/TkBGkF+5cVu724G20c/3z7Umm3MghudzLZPVt2HLqbrIycLlLGr4gPqs+qoebXaSX8GoCnxU50l5uz3+0l3rew/PMi36vc42Xq4gyjp6aLfi6YVZi8BiY65tCJGvQ2HfHe+aLXnIh10zZ6momJCcxmM9/5znfWDukVYE1JCYjH41gsljxBSY2GXdxRkqAkiFCzN0BDtlRA72/HSxKUIMtoLlB3yaNI7evhI1NMXZyl58XSyXRLzED4Kkl27eDHz5clKFkrTVz2kQZC2XIDRQlKBQhf6cFRY1nd1yKYGUjQ9dKgRCgqg/o7w9hqzCTiyE5uoV0uLCET4cvdZdvlcPY7PbIEJYDGuyNsfXedomsCHP9ipyzpBWCqe4apbvlFfeQaD74WB8HN8vVUo1d68G905AR+yuLEl7o4/pUOZYSu28I07o/JN7wE+Dc4qLstgqdV/r5OfaObQx+T33wDiF7tzUtRyqHqhgDRnatrNq/E8OvjzI8vkJyT3yQ6+sl2xQSlit1e6m4L50vxlcKZb/bw2v9WRlACSRYxtL38Nac6ZvMEpXUPVuRL1xVDYkx6X499WRnhpmKnF2vUjMFbeiBOXpiRCEoCbP9wPU0PlK7Z2/WLYV7+P2ckgpLAMjnRYhg6MUnPb4skrYv4TWeliN6iXd22ADmCkrXSSMUuD033F6/r7NWEqOjYhA+pPE1nZyehUIi/+7u/K3v9NaxhDZeGf/7nf0alUuUJShU0cJ3u3mUEJVhK/DbuDxG7xps/mVqKoJSDwabDXr3aKRbb1Oo/MEb/oYmyG16x6z2gg/FzM7zy5LnlBCWpo/kFSNO9Iba8RyqxOXJyuixByeQXsMVEwlesqOFe4gzB8a900vnzgbIEJZ1NR93dUoza89KILOkkuMVJcKv8PA6QnF3k4JPnZAkqkV1uGu6K5E+Ty2H8bFyWoASS4sHsyDzDp+STS5FdHmpuCsq2AwhudRG9Wj6WADj0sdOc+Y48mca32Unj3VHsFaXrtP8uaNofo+724nNYIZKzixz7Qoc8QQnQmXQEt7kIbZOPv72bXAS3uPInC8thqmuGifbyiTWAgdfGFROUAFrfVkfjPaVjDgCScOCjZxURlAD8W9zYKsV8Wb5S6PixRFCy15jzpetK4cTXuuj82YAigpLOJG0uhq8o/wwuvijFRuGdLrZ9oAaTN3siscAH5XDoqfY8QSl0uXOpbbHr/maM8QszRTcgV/pGnQkMDl3+JFwxzA2lGDosvac1+4LU3xbKq1mt9N3e83VsmtqNFh2ZTIa3vvWtNDQ0kEwqYIKtYQ1rUIRUKsW6devYvXs3iUQCASPXqO9aTlCCJT+ihbpbA1RlSyCNnpouTlDKQvQYMLqFfEmkPIqs3eI984yciTNwZKLk9fR2Db5NNlRqFaeevriMoLQSBreWze+WSvsCxQlKBQhud+FeZ13e10xGSniv2HhLxVO0/6SPs98vT3gI7XRL5TBSyBKUnPUWnPVWPM3KYqTeX49w+KnyBCWQkvTNj1SXb1SAjh8NyBKUAMbbZpjslJ/LnU0WIpd7cK2zy7YNbHISudKD1lB+DQ/Q8dNBjn1eGeml9rYw9XfIxAeXCGvYRNO9FbjX22Tbtv2wn8NPyROUQMq9hhTmPav3Bonu8si2G7swzXT/nKKDDOe+3aOYoORqstK4P5pXcy2F3pdGOPzxC4qeFUBwu5vg1vJ5v/mRZJ6gVHmTXypdV2ydpFKRml+k/Sd9nPmuAkIhENjqwllnweAuHR/NDSXzBKUNj1dSe4u/ZNuRk9McfOoC093zqAQVwR3l7dX32jj9B+XzzgDWCvOyMs6roFLT99oEIJGvqvZ4qLnZl/+sEKLWTkXXFupUGwF47bXXqKqq4l//9V8V9WUNa1iDMvzsZz/DZDLxhS98ARUqGtjMLs3tywlKkH9HQ1e4qN7rzysgliQoZWHyLFf6yKNI7DVweJy+A+NLG+dFrutptoAG5oYTHPlM+3KCEiyLk0I7Xax/sAI0EO+bL0uk0IkaPOvseJvl51GArl8OcuEnfWUJShpBTThbzmrszLQs6cS/2YF/i7J9JtJw6itdsgQle42Zhnsi+dJvcpgbSsgSlEBS7ZzsnilOPluB8BVuKveUnpcKEbrSozjvd+LzF+j6hXwexRI103BPFGuBwtIbgao9AWpvDsk3TMOJL3fJE5SQRIaiV3vxKIjn7DEz0V1enHXyz3aye1Y6mCiDqe5Z5QQlJFX+2ltkbJCGE1/qVEZQApzVFtzrbHmlslIYOiwRlIweQXZ/tutXQ1z4SZ8ighIaiSgklyfOqWg5as20PFaZ94nF1mpnv93D2e/15Nvr7RpWIevzxs5MMnRscjlBKYeVflOTU8EvTeBOzGTy+c7ILg91twbzimArfay9M8rGieuwIVXv2rdvH9u2bcsfHPpTx5+8ktLdd9/Nt7/97fy/69hAVFO/rI1KrSKzmMHTYmH4zDQkpHrRfYfGUaVURTe1fFtsuOssnHxafnHkqDXTcGeInldHufir7CmaIgFFtjNs/bNqtAYNL/+jPDkHAbY+UUvH8wOMHC/CQMw1M6tIxKXfFJwCiTKTe+UeH9YKM0c/1a7o93d8sJG5iQRHPn5Bvj1g8ArMyzBlmx6MIlh0iq/p22wHNQwemCjbrvXxKgBl93aJ8LRYFSnOQFb5SYYtfanwbbWzuLCoqA9KlZQEEQLbvfQfnig7Zi4VZr9AMp6QVWcCcNSJjHfGFZN/lMK/zUHF1T4OP3Uu/26UQv2dYc5+R1kiJHSFi9Blbl772NmyfZZ7DwvharJQf0eE4VOT8icBkcZi5CrvagWw3ESfnRZy76IgQmKm/CmwjU9UMXY2Ttfz5YmQAE1vimCPiZz4ahdTpU74qdSSHxRg+5/VMzs0z/EvdC19VgK2ahMVO90c+3xpBnvoSie9r41BQvLVgwcn836+EIl0grH15zl9+jTpdBqj0ciZM2eIRqOy97iGNayhOEZGRqisrCQelxy8HhM72ItOtyI5nPUB7maLFL/owNdsY/D1ySX/sAJN94fp/NUws/2lSUE5rHsgjMEhcOj/Ls33pUhKjjopThs+MUXbD+STCtFr3NiiJo5/obt0PJe73SToXToWRsuoKOlgw1uq6Pj5oKT0IxO6194SwLXezokvdZZXminsjk1XlkihM6lpfbyGzl8OMKIwlqnaG6D9x0UUFQqgd+loebiSC8/1M3aqdJz6u0BnAoPHxHSX/AaMzqRGbdSsfg7/v/y+TYe32Urvq6NvqJKSe72VxcXMG24vS4UyW8GlqWRdCpofjZFeWOTU0+VPoV2KShZI8f3swBznn5Ufj0rHQOvbqjDYBF795+x6bEUMtQwqFc2PVDB6dpq+MgqZhb+vM6nyZbSLwb3eRmSnm8Of6VCk6nTZh+uYn0py9FOdJX1djjwU2eUisMXBya91M9MnH4vW3xVk6MQk42eLrF1UanTGRRx1VoaOTKEzgRgySSp3RXz5dGiQ7sRZ+vokct3b3vY2PvGJT8jf4BrWsIaS+Lu/+zv+6q/+Cin1p2KdejtBbdXyRmoVLGawVhiYHZTUeJz1Zqa6ZkglpM9Wwhoz4G6w0v6TEus/9dL3jB4tTfvD9L46nlfFLJfzWvdACKNDkMrqrsAqH6aF5geiXPzNaNkT51p9hlS2VJtg15KYKM368W6w4ayzcOYbPbJxF8CWP6tjbmSBk1+RJ1wr+X2A2G4vJr+RUwqvqVRtp/b2IBq9hjNfl1dvuVQoUdvJwRw0MNOnUPZJIWzV0qbL5AX5XNqlKCn5Wu2MnpXKqb1RMNi1pOYXFRF6xJCB+VHlKllKYas2U3VDgONf7JS9t+jVXrp/JZ/rASlHV3GNjxNfKE8u04paxTY1+QysfyjG0OExOp8fKq6mVAAxbCB2rY8TT3eVJfjl30UtUlxSpm3DPSGmLs7S98pyYlGxgzPRq934N9k5/a0+pksdbC2IgzY8HmN2ZIFz3+1f9dlKGDwCkctdnH+m9Aayq8nM6LkZSIGjzsT4udllPjmHVCrFaMNZTp8/RTKZxOPx8PrrrxMOyx+IWMMa1lAcc3NzXHHFFRw+fBgABx42cBUazfLN81we2hI1SoQUjUSOmLgwUzRHDVBxjYfhE1PMDhfPeRV+r+JqN9aoieNf6YY0Ja8JUnnQdfeHGTg8ni8tX3DRVf7I2WDBUSNy4Qf9ZeMkjQDphERUSsqQGGpvD9H/2ihxBbGBb7OD8A43p77RJa+2k+uLUVNemUkDTfdG6Xt1NK9mJYfAFqcsQUQjqGm8L0r3r4YUCR1cEjRS+au5YXkbaASpVJkiMonSnzdqsFWYmGyfllXduRQlJTFoQKVVKSJqXQqMbhllohV9UDIWLxWxPX5UQMdPy+eWLVEjmTSKVLJAEgNYmErmy+mWgpJ3sfCalpCJo5+5IKuUBdK9xXtm8ySjYih8DzWCmnSidJxoDhqIXOGRyOcKfr/1sUoWppKc+Zb8QU1nnZnILg/nvteXHxPlfGT4SheTnbNMF8mxq9QqMqoMtqhJUjLVgOjTE+9bKL7f6Jik3XCSnp6LqNVq/v7v/56PfOQj8jf4R4w/WSWltrY2dDpdnqBkwsp1mnuLEpRAIgzU3hyk5UFJXaPvZYmgVAqBTQ4sYZMiRaLxrhkSM+klObASECxSUHD0i10cl1FDqd4XwNEgQgIOPHm+LEEpfJWLzX/WIBF5QJYYYYma8rVLZZGAY5+7IEsm8myw5QlCcgQlAK2gQa0tvygF6bkBDB6akCUo5SF/WQSnwKZ31yBG9PKNs1BKUAIUE5S2fbiBiuuUnfwfPDBxSX1QgkQcup4fUkym2fr+OmrvkGdCzwwoIygBkjLPJRCUGu+N0HCP/IJ7YULa8TEH5dngOYJSbryVQzq5iEqjytdlLYWcTf3bHLS8pbJs29FT0xz74gVFBCUAW0xEMOtWqyStkE3MvYsb3l7P1vfVlr3m4afa8wSlpgciZX3fqacvcv4HvXmCUkkFKJUaEjA/kZCIaAoQ2u7E7DeWfRa9v5YISgaPQPX1fprfHM3+3PKXX9AI+E+voyG9FZAWmhs2bODOO+9U1Jc1rGENy/HII4/g8XjyBKUNqqvZpbu1OEEJiUhUfaMfnU0LSZYISkVgdOuwhIwEFCr3THbPMTcqX9ZKpVYxfm6Gs9/rLUtQ0pmg7g5Jtaf7lyPlCUrAlrfXsOlx6bR7WYISYHIL6K0CtqhJ0UbZ+Wf7Ofb5C7IEpXUPVeBskk4GySm9GDwGVBoVi2UWkDnosrXC5QhKAKZsbfn5cXliWd3tQWr2lVfhK0RyFsWkm+TsoiJySu0tATa+U5lKQXIyKZXQe4PFYEZOTCkmKEWv9bLlveXn7xyU2gq4JIKSpcJE69uq0Ck5XKcgBgcYfH0834fceCsHtVaF1iiv1pAbA82PxLBVle/w0c+1c+SzBeubEvL3AGgzGOwCtkj5a+Z+37fJzub31uPdVPqU38iJSQ7/h0RQcjaJRK8qfyryxFe7OfmlDjKLGQSxvKHj/XPMT6YUEZTQga3CVNb3JufUDB2R1iD1d0Wouz20NB5W+HRLr491w7uw4EClUvHpT3+aiooK+vvl/cka1rCG5ZiYmMDj8fCXf/mXZDIZHCof1wv3FycoAVoD1N8epDqreDt2NktQKgFfix1HjVna3F+JFeuqueEUc2PJkptqOWiNUs7r7Lcucuobq0k0hUne4DY7tmoTqkUVJ750sSxBydloZtO76vJxjxxByBoxYXTpQaPsTOexL7Rz8uvlyURi2EDD/oii3wfQGjVodPITo1aUHsBU56wsQSkPBfOt1qBm3UMVmIPKS0ApJSgBiglKG95WRfAyZSf/Jy/MKCIoXRJSUj5RKZmm+ZEYsd3yObr5iZRixaF476URlCqu9VK5p7zaI8DCpDTPm9zyeawcQSk33sphMbmIWqtCL5Mfy9nUUStSd1f5HN3s4DzHPn9BIiiB7JrIGjJisAsY7OXjxNy72PJwjA1vrijb9sw3e/MEpcobfHk1tmIbWt2/GuHMd3olgpJKvVplLodsHDQztMDUxbmin62Er9mGLWbGYC/9LEZPSQQlraimZq+fujuya6gVvlmr1eJrW8eGzLWoUTM8PExzczPvete7Sl57DWtYQ2l84hOfQBRFDh8+jAYd29TXs1lzbVGCEkiko7p9AXSiBtLkCUrFoDFqcNSKOOuLJ9FXfm+6b474wHyeoFT0mlk3PT86z9nv9CwnKOUUl3J5LQ35Si1jZ6ZlCUoN94Spv1vKt8uRInSiBqNLwORTFnMMHhrn+Jc6ZAlKFbu9WKPSwlOudJzeKqDWqllMysd+GqP0PJUo2Ag2yVcnZ+XjiMB2J6EdymIeANIoIiiBRBZTQlDyb3bm41XZa86lGTsjT1C6VMT75hUTlJyNFtY9WH7+zkEpQSnXB6XQOwRqbw3lx0U5lDl3vwzT3XN5gpKS62p0arSC/MVz72Jsjx8xVH5vsv2H/Zx+ulMRQQjA7NXLXjP3HloiRlrfWo2jtnRZmJm+ec58SyIomXx6PK3lVbBOf+si53/QD5nFJUWjEsitS1eOiaK+UgPOOgve5tKq66qMKl9queJqD/W3L42HVfuN4zYa+i8nrKohk8nwF3/xF9TV1TE2pkwR648R8quLP0Jcd911PP/88/l/72APos65bGGRGzz2WjMT52dIjCXoPzRGx6+GS07sYlDA22Kn46fDHP10l7TxXsr3CbDp8SouvjTM8LFpDv3fEiSeXOmQN4WxRc0c+sQFEmMJEuXGrADe9TZsFSZFJauGDo7hbrAxeHyifEMBiXT0aflyUbYaM3W3hjj6+c6ypfBy8K63Y3LrEUS1rGoNwLHPKitZteFRidzx2v9RJrmsVEHJ22JFbxVQaeSdf8PdYWxVIoefOiNLvAlf7Sa0zc3Jr7QT7y1vN8EpwGKGxbR88CSI0PRANT2/HVYk6X0paH44Rnxgjg6F5TTUMieecmh9vAqNQb1a7adEH4w+A6/9s7y6mBg0kk7Jj7Hxc3FFpQRzqNrrx7/JydnvXpRqlZbAwGvjikoJ5uBpsmHy6vPvXynEL0oJ36b7ImhN2rLvSNszfUulF1ded6XUfSbDWNu0ojrQIBEO7RUiVdcHaP9h6Q2lHGGu9fFKjE49r/xLiVJ4KjVHP92VXxRtelc1/a9P0P9KcRueeroHwakjMZbE4BEIbnXQ/qPiY3N+OEHva2P0vzoMqHDUm/MqAMsS4LoYQWJMtXZw5PgRvvvd76LT6Th48CCtra0KrLKGNfxpo7+/n6qqKubnpUWeiwCbhGukDwuJPNmYxxozMtU5x7kfDOJuEElOpkqu5Cp2e+g7NM7caJrXP36BZJm9Ef8WG571No5/vpuel0ZLtlOpVehMsPEdNUz3znHqqz2MnSm/4RG92oerTsRWZZLUjmQwcnaKxVSR+XtlkkdQMTuQ5NX/fVY2Gb/+oQrmRhNc+FG/bIk3nU2H6DfibrQqIrxMd81y4KPysZR7vZXaW0J0/WqIvpdL2ziH8bNxDpw9J9sOJPWVRQXzN8DWD9Qz2RXn3Lflybsb31nNwniCU19ToChQpsTgSkSv9WJw6i6pjJkSuNdbCWxxcvzznbJtM6lFyEgkunLvBkhkooa7InQ+P8Dw0fKlcnQ2HRvfWsXg0XG6fl7+VL1aA0aHHkeDnaHXJ8q2Pf7ZzvKdXIGt768jnVjk9X8vHyseVqi8CtK9mbwGvM328u9yUiIV6V061t9fwelvd0vv3YoYKtf2wL+cW/q7jrLktbEzE3hb7Qwdly9rCFCxy4POpKX7hdLvXLxH8r8mr46WN1cyenY6T7xcubk2fn6W8fOdgCT779/i5PiXu4r3OQmH/6MtP76i17gZPDrJwtiKxlkffvbbF/FucErtVWCJ6pnuzpIWCuaDy4S9JG0z9NhO0tbWRjAYZP/+/Xz9619XZJM1rOFPHR/5yEf4p3/6JwDUaNiuvRFRa1+uopGd08x+gZmBBKl56H5xhNHTUyXnO8Gmxd1ooe+1Cc7/YFDaeC/ccyn8nhYa7wgyeHiSsXMznPpqifkw6x8qrnHhWW/lxJe7mB9LkZovH8sEtrlITKU40VFefQ9gqn2aqZ5ZptplYh6tdD9tz5bfeAMwevXU3Rrk9LcuKiIdeRptiEGjYvWYth8oI2c23RtBI2g4/HH5vAnA+e/Jny4GsFaZMXkMcoI1AAQvdxHY5OTo5ztk781ZbyF2nY+z3+2RJSppDUAGMmll8V/DvRH6D4694USlypv8LIwl6XtFPraF0pvBK1F7exCDXVAU01Xu9eOoEmVjHgBLxIRaI9+H+ZGkVEpQIbwb7FRe7+fc93oYP186uTnZMauonznYa0WsYZPsuzE/IsUWFdd6MTgEzn67p6SiUt+r4/S9ms0ZZd/rchg5NYVKgc1AIhx611tJzae4WCb2muqUNhdrb/FhjRo5+plOiWy28iCLSi2pImX/3nBviJGTcUZOTi+tgQu+0/XLUXoPjJOKL6IV1fiabfS+XDw/loov0vnLYcbbpb6IQf1SmZOC+cCudbNbez/xhi6OnD3EU089xZe//GVeffVVGhoaFNllDWv4U0Y8Hmfz5s2cOyflNiKqOhq0mwCK7jcavQJzQwl6fjPMdP88yXi65NzhabEy2TlLMp7mxFcursrPF37PWmHE22zj/DP9jJ2bYbxttvScpIF1D8aY7pml47mBJVJGidybZ70Nf4uDyfZZReouo2emUSkQGEAjESeOfUZ+r69it5fUbJrel0dJTMo4dg3YKsywiCIFo4XxBCe+2CnbzuTT03hPlO4XhqSSfDKYG1Z2XQBL0Ihap4KX5duuf6hCcQmx2ttDJGfTdMqo94CsUOEyuJusmDz6SypjpgTmgAHfBgddz/fLE6DS0jsmq5SFtI6puy1Mz2+Hyx5uAInA1/SmGCOnpuh/TZ48IgaNWMPGsvERoKjkXyGa3hSFDJz6avn1zvnvKc87agQ1tqiJ5FxK9l1OxNNojBrqbg3S+fxgWaLXyS8XHNjQUJbcNN03x0RnnCmFhyVD212YfAaGT0yWvG7OJ2iMGpofijF8eko6OFoEcyMJzn9fWmuJIQOBzQ7afjywjNSZ991pOPV0F+mE9Jm7ycJk9wyJqeK+uOelYeL986TnJL9eqOBVOB80ardQrWlmIHKKs+fP4na7+Yu/+Av+7u/+TpFN/pjwJ0VSOnXqFM3NzSwuSsG9Ax9bdNcsa1M4cYtBgcY7Q0x2zXDy6R46fz6CasWRo8xiJv+dutvD6K06On41DAlYmCqd1BAEEMxaHNUiw8dWJEpy9WEL0H9gHK1eLa9YkyUcHP9yB/Ge8qfUKvf4GD03xVTHLEf+o3zy3lZjpml/BYNHxmn/kXyyxBoxoRE0CEZlIjcnv9wlS8IAWPdgBWq1iuMKJ/fBI+No9PJsUzGiJ3a1nxNf71LU4Z5fjdDzq/LyeTnMTyYxzqQUKQNlFjMsphZlCUogKe0oJV8ZPNJJQNFvfMNJSuaAAbVeGQ34wL8o24gESM2lFZ+onxlZQGOSf86X2geAwA4nFr+JczJ17XteGkAMGJnuVqZu4GmxErvOz4H/e67smDv++U5F70YOgkNAo1NIyxbgsg80MDu0UJrUpFLR9kz2nc9kaNgf4cz3e0r2Z/jIJPMTC0x3zud/o1zfB14fw91oW91mpR9UqRGcAoKoRfSXVzBLZDfG6m4JYPYZ6HllvKTv7HpeCqT1Li31t4eYGZrn+Oe6VwckgPVoJc1JKwf5GalUimuuuYatW7fy3HPPle3PGtbwp4z77rsvv6msQsXlqpsw6Vacfih419c/GMbs1fPqxy6QnEzS/1oR9aSsfzB5dQQ22TE69Jz5dp+06V1GvUj0G9HbdEUJG4XxHEifT12cZfDIRPkbzJINLvxokIGj48zk5u9i/dBBzQ0B2n7QT+fPyhA7slmB5jdXYHDqFc9bglWH0hrOyckkrz55RlblR2dS0/KWKi78pF92EQ8w2R5nsmuGvoPymzg1+wJMdM8oLh+neLNDJ50Mnx2SV2cCSC2kSc0rI+Ke/76yjT0AW8yEwaZQefQSIAaNmH1GRaXJLr44wsUXlcWr032zZLJqj3JITiZZmE6SnJG322T7LK/8L/kydjnoTFBza4S2Hw/IKnwNn5xkfkL5abimB6KkZlKcK7NBm5xM8uq/yL8bOWgNGjQGDZaAWSIp5cjesDzDl93srtzrw9ds59gXO5gtcZAjOQvHP9cJgK3KhOg30vvbIu9U1hce/kwHJkdWKUCGADU7lGS6f47+15cSbYUxz8oktq3CjMGmRaeDZInr5vypzgSBzQ6sYSMnvnRxWR/zbefU9L48AUDj/iDWqJHXP9UtPesVG3G6STOVk9uYYJYR+vjmN7/Jq6++yosvvrhWencNayiBkZERamtrmZiYACCgrmS9cPnyRgXvuVbU0nRPiIkLs5z/wQCDR6dZtQhfzOS/U7XHixgwMHRsgtQ8pGYzJQlNWnUGo0OHJWRg7NyKGKJIzmvoxCSCVcf8WPFNp7yPyhIOTn2tm/mpVP6zYvBttDEzNEe8Z162vJnBraP5wRh9h8ZlSyWAdFpYa9KiETTIMiCAjp8N0vHLQdmmlXt8aM1axSrJfa+NolcQbwh2LdFdXjp/2qdIlWfs1DRjp5Tlm1KzaeYnE8rUhjSwmFhkZki+E6l5OKLwIKFg12IJmZi6OPuGk5TsMZE564IikpISwlEOqdk0SYOyGHRueAGDXVBEuDnxBeV9AKk8mzVsousX5YnnQycmsMVMTF9UtqFkiRqp2uPn5Je7yqpGdfxogA7tgJLXCJAUC/Q5haTCuKsENr2thpmhec5+q3ROr++Vpbio4lofXS8Nl+xPvGeeY1/qZG4oGxhpIZNaHUPlMHh8ksUUS+9dYbyzIuelNUile8xegZGTLPssj8wiqWx+uWKnB1edmdGz0yV9Z37PQVDRcEeQeN88Z77bv+S7C/yneKaCLSkPv+VZpqamuOyyy7jjjjv43Oc+V9wYa1jDGnjyySf54Ac/yOLiIgIGtqn3YNQsV9At9A8Vuz04a0SOfa6D1Lx0SHql/8jFPBqjhsgVbszeOF2/GCY9ly66ZsvB4NBhdAlozdpVhI1VsVIaxs5P59U/ipKTMot5ssHw0UmmumdZGM/6vmJkbk22BNqrY4oIPBW7vdgqzBz7QocitRa9TUCjcN4kjbLraqDx7ggXXxpWpJ6zML7AyOlJxs7K359/s5PZsfl8JQk5nFMY+wHMjiaYU1jZJDWfJjWnbJLtPzimSCEKwBI2YQkZ33CSksEhYIuZ0ZoF0ony9zh2bpqxc8r24hKTKdIJZeMnnYC50QQJBbHtwniCw/+hnJyNBiJXeBg8OkZisnx/ho9Pkk4qI+sDRK/ysLiYoafMWiadWOTo59oVKyRpBNCJWoxOvSI1Kk+zjfAVHs58q7t0+zR5joHBKSD6DcXLxGXjvPPP9EmqZGlkCVDpuTTj7XHGzigbF6Jfj9GtR63KsFiwDi70s6n5rN/VQOhyF7YqMxcKDv0Vtl1MqRjLCseELnfia7Fx4uluElPpVfuNQlpPtHMjabWetsVj/P3f/z3f+MY3eOmll/D7/Yr6/8cAVSajoG7EHwFuu+02nnnmGUDaJLuMmxB1luKNCzbV6+4I0Pmz/pIEk8xiBnutickLcwgi6J1Lp0GLJUpClzuY7J4h3iP/Qhs8Ak37w5z4Qrv0+2U23gA2vL0KvVXHq/+sLJGw4780sBBPKlKqQYCNj1dz/nsXFRFolKLx3ggqrYpTX5E//Qaw8V3VqFQqXv+/l+D4lfRjfxh7rZXDn2qTLTdnqzEzN5ZUXOLs9wWDV5A2Zn4P3bj8vzYx1T3DiS+Vlyz/XSCGhDd0DP2u8GywMXxEPqDc9J4aBJOWV/6XclUlJfBttlN5fYCz37uoSPHM0SBSfUOAgx8//4Y+85a3VDJ8epL+l1cEoEUSPb7NNqpvCDJ4bEKSdZVBw91hHLUixz7XrkhRreneCInZlHRyFWQ1MKtu8pVUScrB1SQyeioOAohugXiJ0iUqtYrqm330HxqXNg1lyFXjTRc4ee4Ec3Nz6HQ62tra1jbM1rCGAoyMjBCNRpmbk05leAnTKuwq/YXsxro5qMNVay2rCGIOaJkZSUES7NUmJi4ULPiLxErRq1xlr1eIqr1SeYb2Hw9lL1c6TDaHBJrfFGPgyDidP1uxKC/Sj5p9ATzrbZz6RndxhZYVSXb/VgeOSjOnv9GjqMybEuhMsP7N1bT9qF9ReS9ng0jNvhDnvtejiKR0Kdj+4QbmxhYUnZhzNlkUlzj7fcLk0zE7+AbXb0Miz1ijZl75B+VkHsXQgc6kkyX8/L6hs+kQRA0zMuWtTQGB1keqGTgyTsePL+2UmRw2vrOa1Fxa8QZi4/4IC9MpRaULl6HUZlkmgzlsoGpPIE9CksOmJ6rRGrWlDyYUxko62PaeGuID85x6ujy5XqVWobNpabw7zOlv9UiKdTKwRA3obbqyZcQtUQPT/fOQzP5/93zJeE5n0xHaZl/yn2UIVrO6SYaC5zh//jwAjz76KJ/97Gdl+7yGNfwp4b//9//O3/zN3wCgQcvl2psxaEtI6BcQHcJXOBk4OlWaYLKYwRzUS+s5LZjdwtLabnE1SclZZ2J+IlmSiLmsG6KaulsCnHu2n1R8sWzOK7OYoe6OIJaQgdc/2bGMQFAqXtv87moS00nFfr/hvghdvxhkblAZ0VkJIld50Vs0ipWRGvZH0Jk0l0R2UYLwVR5CW10c/fyFvCJNKRi9epKzacUlzn5f0IpaUvMpxeSVS8G2DzUwfmFaMRnsUmBwaZkf/f+v7QBs1WZFhK3G+6OYvQYO/uulHeiTgyVqpO72MG3P9i5tgpeBOWigao+f01/rvKTydnIkpZp9ASa6ZhQd2BTDBtbdV0H/oXG6FRxMDV3hJLjVyYmnu5gfKfPMs7FQZJcTgIsvKtsADm6z0/faxPI/riA3WSIGpi/OgxaMDi1zwyX6oVYR3GpjvHNGaiNDeJus6uRk1xFmZmaw2+2cPn36T2rDbA1rkEMikaC1tZUzZ6T9gpiqiVptS+kvZDfWBasGe6XIUBn1Yp2oJjm3mC1zJDA7uBRTFSMpeZqtDMv4uFys5N1gQ2fQ0JsjZxYhjucgmFU0vamCwSMTq9VkiuSoPK02oru8nP1OjyK1JWulCUeVSNfz5UmylwQN1N8epvulIdlycCCpWtXeEqL9JwOK+nwpaHm0krnxhCKVGzFkfMN//3eBYNPIEmd+F0R2efC22jn0sfNv+LXRgM6okS0r+PuGxqhBMGtkiTw6UUPzm6sYODhK36tvbImv2ttDLKYXufCssnVH6Eo3meTiG9oPwaYhssvLhR/1KyJC1d4ewuTVc/STJQ4mrIjzmt8cY2Zonna5fKFKjUaAqhsDdP5iSNH40DskMtbKuLXQ7+rtWlKzKdIJMLoEZocXypbp9DSJDBzK+vsyBKtEOsFA9SnOnj+DSqXib//2b/nLv/xL2T7/MUCh3MYfLuLxOHq9Pk9QcuLnOt29ywlKuRqrgMkvcNn76mi4OwjAue8NllXAaXm0gsa7IwhOgUScJbn6YhAgustL3W3la23n4Kg2o7focNSVqbdYEEQMn5pkZkD5ZHbya128/okVZJ/CEgVIJcXczVZIwOF/vyBLLml5ayVb/qxWcR+MHj0mT3lVlEIc/vcLighKTfdF2PahBolooACnv9HDoY/LE5QA6m4NseltVYqu69tqJ3y1W1knBEm1RymaH4ix/X1/WLK79XeGaX1LLQavsgcjRvQ4GkrXJl3WNiRQc1tQUdvG/WFq94WwVppk2574SvclEZQa7g6z/c/ln8vgoQle+cfTighKIJVK0Zm0OKqU2aPiOi/bP9IglQUsg2Of7cgTlPzbHDJ9nuT0dy4qIigBDB6bYG40IU9Qyvpgc9CILWZe+nuZJLVngxX/Bjs1t65OkqjUqnxwMHpKsu/Gx6pofrgSlaF40JBZzHDhh4PMDiQQHFoue18djftDJX/fcaqaDXM7AUgmk2zZsoV3vOMd5e9zDWv4E8Ff/uVf4vF4mJubQ4WKK1S3riYoqVX5Ta36OwNse3cVOhPM9CXpfqn04khngvX3V7D+XimWWkZQKoKafX6C251YYyX8/YpkjC1qxhoxF2+b/4rU75neBDPD84ycLqKIWeR32n44WJqgBPn4K1dne+DAuERQKgOTW8e2D9XL+u8cLFERwaJDb1Empjp2Js5r//usPEFJJ5VYi93gU3RdgFefPMPpr8qToe01ZhruiCi+duVePya3TlFbe40Zk09ZW0uFiQ1vrSW626uo/f8r2PZn9ay7L6K4vW+TsrEEELrChVNhnLbp7dXU3VZ6Xs1htj/BwafaFBOUdCbY8r46qvYGZNse/viFS9r0NXn1mAPK1ymb311D4/5IaVKhSsVM70KeoORssqCTCUWPf/4CJ7/WWbpBob9JQrxvnuETytTJnNVmjHYd1pBBUfuavQGqrivxHmZjueluiaBk8upoujdC/Z2lY/PkZDJPUKq/IzsP2LI+uWCOADAlbcS6tuJF8v1f+MIXaGhoIFlK3mkNa/gTQiqVIhqN5glKQXU11xruXUZQUqlUqLJxhlZUsfltMSqvl/IUvb8dL0lGUalUVN3opemeEAaHFlIwM5BYul6RhGzlbi/Ve0rMlSvaiz4DJreALWosfYPZWE2lVjF6dprpi3OKCEoAp77exemVPrQg/wdSSTFbtRT7nfnaRdkNrZpbg7S+tbJsm0KYA3rMfmV+FuDMNy4qmquiV3vZ+M5qqSSaAvS8MMyh/2iTJSgB1NwcYMNbleW8bJUmfJvsyjoBuJqsits23BVm8xPK84v/LyC4w8WGt9Zi8il7MAaXFku58V/Y1q4lfJVHUdvQTjeNd0cVXfv8d3s4+O/KCUqhnW42vatGtt109xyH/u28IoISSNUG9HYBc0A+Twfgbray+T21GGzlVdXbftCfJyg560scVs4i3jPPya91KSIoAYy3zTDdN8fcULKsL8rBVmHCHiu/1sxBDBsIX+Gk4hrX8g9U6mVx0vRFidFVf1uAdfdF0JpKkLYWM/QfnGJuOIXWAJvfFqNqjzSeCueIfF/bY2xauBENWiYmJli/fj1/9Vd/pajva1jDHzueeeYZzGYzZ86cQcDATvVtqwlKBfFGaIeT1kdiaIwaElNphlZWVSmEVk3TfVGqsvmPPEEpe72Vm+G+jTYiO92IZdZ0hf7JHjNjjZqWcuelDghnFknE00xdnGWiY8XeRbH1rkrF8LEpTn29S5ZsY41Kfn6qY1aWoKQxamh5tBJnY3n/nYPRJWBwCQhmZXmeuaEExz7ToYggtP7hGIFtyvfujn2ug/bn5PMaBqdA/V1hgtuVXdu70Y4gM/flYPQKkgKNAuhEDS2PVBPYovwe/19A88OVVN8knw/KwVppksgiCuCoFRXHaevujxIrlS8pQDKe5uhn25UTgzTQ9EAFoR0u2abnv9ermKAEIPoNmH3K7g+g/q4wsevL32NiMi31IS1V4NEI5Sko55/tLat2udLfTHTEGTuv7BCryWvE7DdgdC/P65UiFVVc5SW227tqfOR9pUrNwoREUNIYNTTcHZLal/Cj6bk0A69LfQ1sc9D6SAydqMlddNn3BI1AtHMDdeoNZDIZ/vqv/5rW1tb84e8/ZvxRl3v767/+a/7H//gf+X9v50asOvvyRitk5WcHEsyOzDN8akpWxQPgwnMDhC5zrlLVWbU4EUCVUtH2436GT5dPHNuqTUxemKX/lXH6Xx8vreaR7V/D3WHOfKuH3pdG6X2pvFJAYIeD8GUejn7q/GqpwSKnT9Y/EEVv0TFydkqRektyOqW4/jqgWBGp7o4wag2cKeewCpCYTUsnrhT02dEgMn4mrlgZ6ex3e7BElDnv8A4PglmrqDRcaKuL2LV+NHq1ova9r4wiiMpe4Ya7w9hrRF75xzdWDQgkJR6DS89r/yx/7b7XR1nMZFicVWbr9Q9Ukl5Y5MAZ+YRJ9Bo/9gqR7pdGZJ/lhZ8PEZpIKpLbzF3LEjMy3TcnO6ZmRhcwBw0IIopK/DnqRGLX+zj87+VLLva9PErfy8qUQABmBudZvAQ5yJa3VGIOGJnonClL1suRqhruCWP06Dn8VOl+j5+LM34uK2+408Xs8EJZUlZhSSO5U3/DR6bQ6NQMHJiQ/lCgfFTsVEnbj3rxtTggWz+2XAIpMZ5idmSegaMTJdsAiDon16vexNi685w4dYxPfOITfOMb32BgYABBeONL/KxhDf+vI5lMEolEGByUFM4cKh9b9Nctk5AHVknLD5+eQiOopJJBMjFEchYGj08xVOz9LNyszypytP1wiInuWaY6i/j7whOoWcWPw5/tKFsqSaVW4ag3ozVoGDo8yfHPyytBtr6tismuWTp/OlSaoJSFyS9QszeAs1bk7Leyp61kVJTS82lmFJ74HzsT59UzCmIBHbS8uVI6TdYjvyDSmXSk5lLMDsv3Q2dSo7Npme1PkFQwT020zdDzygjdL8qfrjP5dPg3OtBoVUuqfGVQc1MQlVbNgY/Kq5DOTyQZeH2ckaPjsm0Btr6/jqmLs+UX278LdBLxaOjYBJ0/La8mCDBwaEyxDHj0Gg/hyz0k51OKlKsiV3qYHV3ISxmXw8WXhpnsVqbGlVN9slWaZDe2krOQmktJcb9C1N0eZCGeouvn5cfUoUtUbk3MphTJgQOgg7p9IWZH5jn22c6SzZKzkJxdQGfT0fpwBe3PD5Z9Nqe+tjTeam720/bD0knRwdcnGTw+mfd5Ylhftlz4iS91YA6Kku/ULi73lStO4M4OJRk5OUX3b5Ql3obPTKExqElOZn1CTp1FrVo2h7QKu5jTT9DrPs3Zs2cRBIGnnnqKd77znYp+Zw1r+GPDt771Lfbv308mk0GNmst0N2HWLD/kltt4zomop+IZpi7OMdY2s2pTutj3un87Tmo+zfz4cv+2SpQ9q8px7tkB5oaKxA6FxMOsMuHEhVkOfryjtJpH1q9Er3bT/asRxs7EZeccW7WJymu8nPhaz2rCUZEcX+3tEcSAkQMfOyf1QybuSkyl0CosNQ8S8UkJgpe70ItaOhTM7QCpeWnOUaI4I4YMxHvnFSsjtf2wH0tQWc4rtMON2Wdg8PUJ2ba2ajO1t4QQzBr6D8jHU32vjKK3Kst5ha5049/k4NBT599w5aWqm/zYYiKHn5KPC8bOTaIRNCQmlcVeTffFWEwucqTU6fEC+Dc78W12MnJiXFapafDACJlUhulu+Tg+V4rN4NaRiqfLlmYDmBtdIDmTkpSuFIwpk89AbLeXU9/oLvtsxs/HOfikcrLU/FhCcfkakJ6jp8nG0dH2smS9eI+kAhm60oU9ZuLkl0u/w7ODC5z5hrRmczZaSC+kmeosbfMTX+rJ78SYAwIz/aXHSbxnnvM/HGS8LRsLFyofFVGx6/rlMO5Gq+QTVsRPhVCpVKTmM0x1zzF6XvKnmUwmT1Qq9O0GrYHduvuYqLnA8bYj/M//+T/56le/ypkzZ9Bq/6i3lNawhpK48cYbee655wAIqapp0m1ffVBtxX7j2IU4OrNGKsFWbr9RpYY09B8YZ7KryNq58HeyihyDR6aZG0sRl1EsNroE5kYT+dLn5fbvTD4BQdQw0TYjr1aCROCeGVqg/9UxWbK3TtRQe2uIkdOTihWUkrMpFiaUHU6ZG0qUVmRZgepbAvS9MsrcsPycrREgMZ1kflzB/K4BvVVgYTyxquxeMcyPJej6+SDjHfL5Eo1RQ+RKDzpRq6g8ccXVPgRRy7HPyiuYLybSXPz1MBPtyvI26x6sIN4/98YqYWXR8pZKhk9MrlbwKoK+V0dJKbAzSKSj6puCnH+ml0kF9o5e42VuJMF0t3xer/vFIebHlI3T3LgwegT58ZeWxl5yXrlSVGCbk0xaygeWw6XmKxMzKZJKc14aqL01xMzgfHk1sbT0DmgENXV3huh9dbTsnu3FF5fGfWCbs+wYme6Z48hnlso+5vwgFN8fPPdsH6LfULys3IqcV3ouTd+BsfzeJyp1acEFlZrJrhn0Vu2SolPueiu+V6FpIKCvpDd4nGPHjmG1WvnGN77BHXfcUfI+/9DxR1vuLRKJ0NMjvWQmLFwh3CJ9UDhQsoNKECX5vZHTU9JpzpXBworBFb7SSegyJ0e/0M18CSdSOMC3vLcGtUbFgX9tW/XZSghOHZvfXsXM4DzHPltwurxIvwHCu1xEr3TT+/IIXb+Qr/8Zu96Lb4ODw59uXyJyrExMFS5IvALuJqsi0syloOUtlcwMzStWZNn83lrUWhUHPvrGyg8LImz+syZmh+Y5qrDW/aXCVmNmUkmJFEGqR3rxN8NveAm3it1eXI1WxaSwSyn3VnNbELPPoDgAvBT4tzmYGZpnuswiPwfBKaATUFRW7FIhhgRaHqlhoiPOqaeVlSZUivDVbiKXeznznW5FqkpiSKDh7gpOfLVLkfKXUgiimsBl7uUbdmWS1usejGJy6znwpDKZzss+Uk86sciBfynRvsCviWGBlocqmeiKc+ppeUnU2PUeApudnHumN6+cVLjYKvS5KrWKlseiaPVaXn+qfdVnqyDA1nfV0PfaKL2/KZJIzfa7P9HFCX4DQDgc5qMf/Sj33HOPbN/XsIY/Fvzyl79k9+7d+aTmJs1uXLqs0llh3JN9z0I77PhbbRz6VKe00b3y/VsRK218WwXzE0lOf6OvdCeysZKzUaT2pgDdL43Qf2By2WfAqjivcX8Aa9TEkc90slCwoCzlHza/uwqVWsWBJ0vMqbnfUqlBB5sfr2KqZ47z31dWTiKyy83Fl0cku7xBYbrJp6P+ziinvtHNwqj8otnZZKHuljAXftLHcBkZ8t8FjfdFsFeKHHyq7fdSgszk05GcTkqkNxmIYSMGp46RY8qUZy4FzY/GmOyapfsX8gmbSy331vq2KgaPjDPwmjLClFLoTOBucdJ/aKwsWS8HS4VJUdnA3wUtj1Vicht45aOnFfXlUrDlfXUk4kmOfVo+UQdQtTeA3qbltMKN5jxkyo+ELncxdHJK0Xugd+loebiSnt8O0//qiudeJNEdvcZNaLuTth8NMFxifBf6tfUPRTB7Dbz+8fPl353sb21+V4zkbHr5erWwHwU+1xTQs+7eCN0vDTP4ujz5reJaN45qM0e+2L307IvMIy/P/5A4E+h0OjZv3szLL78se+01rOGPCTfccAM//elPAbCrPGwz3AAsJw/lSUhaWLc/xHh7nN6XJ1aRk1Z+x1lvpuIqF6e/3cdcwWZ+4fcKv9O0P4hg0XDkM1k/WeSdzUErZNjweCXxvnnOfLsgH1QiVnPWmam52UfPr0dWlz1idX7N02olcrmbE093kphIrbreyt/SilpctSKDhyfesLgLpA27hckUF19QtnHT9EAFgqjlyCfKH166ZGhh63vriffPcfqrb2wuIwdz0MBMnwK2lBY862yMn528tHJeCuButuLb4OCkghwWXFq5t+BlLqwVJs58/RLjAAVw1IksTKaYHZQ3iNYAWvPvp5ScVtSy+Z01jJ6dou2ZMuut3wHOJgvVNwY59/0eReXnBLuW+tvDnH+259LuVSbuQguBjQ5FBDmAyuv9WKMmjn6xUxHxbdM7q1hMZTj6mc4S/Ss4LW/T0vpIlIkLM5z/QRliYtZ/etZbqLjKzfkf9jPZPrfsM2CVz63d58Ng13H8yz3LPlNplvvCTCYDWmh9MMLg0SkGj0wt/T33naxdJ1OjvJb8CRkyBINBPvnJT3LzzTeX7vsa1vBHho6ODlpbW5menkaNhq2a67FqsoozRWIYe5WJ4FY7p77ZI210l9tvVKmpvdVHam6Rjp8Nl85fZf9u8gnU3Rqk+9ejjJ2ZWX29FQhd4cTXbOPEV7uXlfIqtUfZeE8YnagpTWzJ+Yisf2i4O0x8cJ6eF+X3JkFSVZxoi5NOKD9cLQedqKHqhgAdP+9XVK7M5NNTf0eEzucHGD+vrMqFUoSudOPf6OD4F9t/L6XTBFFDOo0iApTeIaC3aJnqfuPzNpU3+pkZnGfo8IRs20st91Zza5Cxc9OMnVGmmKMYGnBWWxi7MK2oFJnRLciWb/tdUbnHj6NG5Oin20i/wT/ReF+EdCLDue8oIyF5Wm2Y3Po3nHDmrLMw3TerqNSaxqih8Z4I/QfHGD21IodVJMZz1luo3OPjwo/7S6v/F/jP2HUenDUiR7/QzeLCct9TLP/fuD9MOrGYJ3auvF6hzxUsOurvDNDz2zGJXF5mD4LMIu4mC+4mK+ef7V969kW+czr5Gj2ZNrRaLbt37+YnP/lJ8fv8A8cfHe29ra2Nurq6fEDdxHZCQvXyRisGRiIuBd1ao0aRetLM8ALphHzyIjegx9un0eqVnbRKjCUZOT3Fxd8UUUwp0reeF4aZG55nVOa0s+AUSIwl6PzZ0NKp62ILuKzdqm4OMHholJmBBD1D8gSl7X/ewNzIgiJWLoDBIaDSKFdcOvRv5xWVbjN4BZr2Rzn33W7Z0nQgPfv+10aLs9OLYNsH6xk5PUX7j5TL5ikiKAEk4OIvlQVzBq9A7U1BOp7vJ35RXrWg6/mh3wurGaDt+5eWwKi9I0R6Pq2IiX8pm2+JscQlcbsEUc2Gt9cyfHxC9rRivDfByKkpOhUmGEFSGlKpkC3V0/OrEXp+O6KYmKYx6tCZtLgaLPQOySsrORpEGu6I0P2bIXpfLN0+EV/ME5Tq7wxz9gc9kMiUTPSc/PJSgjPnX8rhxFc6SUwou8l4T4Kxc9O0/3K4bG3sHEZOTuKoFvMEpZXI+eJcwJGaSRdwCJZ/thImp4BKBYup8j4/IFQQoIL+2mOcPnOa/fv3c+utt/L973+/7PfWsIY/Btx33318/etfB0CPiV2GIuz+FRtUi+kMqCQFnuS0fNY3OZtWplCiUjN2YZbZ0QRjhaXgykhYt/9siOA2xzKC0tLXVvvAo1/oRldKObrAZ+lsOpKTSQ491V42YQSgM6kIX+Wl48eDy06FlEJ4p5vQDjcnn+5SpHTkqLUiWHRoBGWx19ipaV45r4wcUndniNTcIu0/VhYbtf9sgMAWpyJiRmyPD1edhUOfaFNMVJkdVM5oiffMKbIfSGVUAVn1nRxyJb1+H7gUYrgYNhLd5eH893pIzpYfh8lZ6H9FeS36SyUoxW7w4aq1KFIo6n5hCJPHoPi5m0MGam4OcurLnbL3efDfz10S8UkMGtAZlatmrH+oAoNLL6kBlNkw6/2tFJeZQ3pctZaypUUWRpPLFCdz/gUoGit1/3JEkuZvU/aM2p8bwNNsV0TuA5jqnmN2LLHqlHAehX9fhMXkIjNDyhTftAY1ajXLn9EKBT6AHYabGTf30aM7zSuvvIIgCHR1dREIKJd6X8Ma/hAxMTFBJBIhHpfWPq26q/Bpl5f1XKWQlAK1BjSCuqR6UuHf58cXSC9I72/R663AWFsco6MgOCp1On8xQ2oe+g9OMHq2SA6rSLw2dnaa03NJqZzkChSu4XKqLsNHpxg+MlHyejl/FdzuYOxCnPmRpERQksHGd1YzO7TA2W8rS/abvXp0ZuUp11Nf6VKUodUa1NTfE6H9uQHmlPjVFHT/apDZEWU+uPWtlYycnVZ0Oj8HRQSlbF+Ukt+1BjWVN/rpfXlMEYFn5PhUvqTXG42+V0bpe0W5qnXwchdkUKSEnT99rQCpeS5JORIttD5SyciZaXp/Xf55puIpel4ZYfj4hOLLR67yojWq6PhJ+Xza2Klpxs6dVaxwpdaq0NsFbDGR+VH5/ph8Bpruj9Lz62EGDpVpnyJPUApf5Wbg1VFS86XzPB0/G8j7ECWqUae+3k1KYV4vMZmi//UJhhQelJjsniM+uMBkz3xxlaQVcdLCdBKNTl30s0KoVCo0Bg0qdXZ9XvB3WE5WsmldXK99gMGqE5w8e4J9+/bx+OOP88lPflLRPaxhDX/I+NjHPsZ73/teABx42SJct7qRajUJUKVWIRg1JGZKlQNf+k5yJk1yNl30s5XfmR1KMdUzT1zB/JtZzDDw+iSLC4uKCTPnvncRTan1b2Zpr0BjlNShznyrR57orYHARmdxAkIROGpFotf4OPc9+VK8AGa/AYNLQKNbKX9SHLODCxz+VJsiokpwu5MM0K+wPNfAoXHSc8rs7W6y4m21c/bbPYpJWwkFhI8cFsYTLChRfwI8zTZUWpUi0hFAx0/k9/Z+V1wKYVqwaQlsctJ3YFSeDJOGsXPKiU+XSlDytNjwrLcpEjkYODzGVM+sYoKSYNNQcZWf9p8NyBLUTn/zoqKxnYPoM2J0K68KUrHbiyVk4sQXO8u2y9laEDXYqkSGj5VeB6Tn0suul/MvwDK/k7/22WnmJxLMKqws0PuKpDKfu2Zhvr9Y7n+iPU6q3DtZkPPKAMm5NPNTqVWfFfueRi+V7lz27It8p1G3jZihhg7LcZ577jk8Hg9nz57F6fzDKskoB3lGzh8Q3v/+91NbWysFAai5irvLEpSqb/Li3yJJYR/4t3bani2/6bD+wTAIMH52hoP/dqGkihKAJaxn3QNhANp/NMS575bfuKm41k3T/VL789/rX37tIonnDW+Pse5BKRElR1BCgM1vq6L18Urp3ypV+RMmAvhaHdTeESndZgXmxxOKiT4Ar/2fs4qUi/zbHEt1LhU4bF+zHb1VkC0XU4jOnw0qSgwIoppMJkMmpSxg2PCOaja/t1ZxPza/t5bw1W5FbV21FiwhE0aXsjr31koTYkQv3/B3gCCCp8WquL2z1oKzTlkdYYCN76qRrXWaQ+UeH5f9l0ZFhLZEXHqOKp0yN3juuz2KSwICiCEj5oDCmq4JMPsFmu6Tf+cm22Z4+R9OlyUcFWK8PU5iJsnsgLIJ21En4mq00nBbWFn7BpHN76imaq+/bLt4zwKJeAZbtZltH6rHElsxdldM2me+3UdiLIm1ysyGt8fKX7svweH/kAiSvk026u4ovjmVCzhOfa2X45+TgsWaW/2414klZW5nBxK89tE2+l+dAKD5zREEsXRfAudbcKel5/jMM8/Q0tLC2JjyDd81rOEPCclkEqfTmScoRdWNZQlKOquKxrul97P/tUkOfbyrLEHJ1SQSvVaquX3iyz1c+FH5OK36Zj+OWhMk4fgXLhYlHeWhg+aHI5i8OhbGknT8ZPm1V5aNtEQNbH53FeagQHIyyWypEgHZeK3yRi+b316JGFY2T1fuDeBvdWDyF0xgZZI88f455icSigk2vb8e5dV/OsNsmZICOdTdFUJn0ykmcViCRsVlcEEiW3Q+p6yUSZ7QrqAvOpuO7R9uIHCZssVa9FovLY9VKmoL4G6w4mmyyTcE0IGzQZTKDv4eYA4ZMIeUjS3Rb8BWYcYSMytqH7rSRevbqhT3ZdO7alj3YFRR20w6Iw1rBXaZaJu5pDK3WkGN0aHHpeQZZcdTdLcXZ5N8THrsMx2XVPptqneO2SHlEhE1NwUJbHUpHi8tj8XY+Fb5sZsjKDXdF86vSwtRuLk/O5Sk63npsET9XcH8GrkUzj87mFeYbLg7iM5eYp2hUjM7lOTQU53EexLoTFB/Z3kS0YUfDfH6JyQlDP9mK5GdBe/0injNMROkYXgXajQkk0nq6+v50Ic+VPb6a1jDHzK++MUv4nA4iMfjaBG4VndfWYKSf4sV9zrJ/x//Ui8XXyx+CCj3naobPGgNMDuU4tgXepgfT5UkKAlWLdV7JQLvwOtTdDxf3me714lU3Si17315nPmxghiwSM6r7nY/tfukPEAxgtJKtL45SuN9WV+Xk84vBa1Upqz6xgJ/JLO5Fu+fY7pXWdwFcPTTHYqUi2zVZoI7pHhXCYnDXiNi8hjQ6JTnvAZfn1BU9gutZIZMWmajMYu6O0OXFEute6gC32a7oraWiAlnrRWTR9mGidGrx+j9/eS80EolaJUe8/Wut+FZpzxH1nh/lOBlLkVtPa02tvxZHVpRQWdy+yQKD4j2vjSypD6mANaoEUvIpKxxSiL6VMrkjQDmR5IcfPIcg+UIRwWYHZxnbnSBGYWxl9ErENrqInK1V1F7k0/PpsdjhHeVf0bzYylS8RRGj44Nj8cwB1aMxxU5r56XxkhMpjA4tTTcEyx77cRUijPf6oMUWKMGoteU6Es2Tup+YYwz2X2I4GV27NXGknny9Eyao5/rYfi4tLdQfZMHbTbnVcz/+9rXU00LAJ/61Kdobm7Ok2bXsIY/NqTTaXbu3JknKNVrtpQlKGkEqLhaej8nO+Y4+dXesgQls1/At0Fad3U+P0Lvy+PLrrcSvs0OLNk8QPtPhkhMlWchVN3gxeDUkZ5L039wYtlnKw/r6h1a1r0pgtElkE5kSEyWmA+yfsHTbKP10UqMXmXzdGCLk+AOF0aF8/r8RIK54fl8aSY5TLTNcPST7YpIJaEdLgRRo5jEYQmbsEYUzndIZAu5Mls5qLSSPRURlDSS4rS7SVmM4WqyUnNL+fmlEM56C971dsXtxaABjXJeyyVBsGkxOJVdXG/V4V5vkw65KYCjVqTuTmX7XgB1d4apuknZQahMKkNmMYNGkN9vnBtOKCLsLUGFGDRiq1AwFrNj291kxRqVb9/x04FLqh4z3TtHfEB5zit8lZfw5R6phJoCVN7oZ92borLtcwSl8E538WdUEHsl42kGX5dIUqErXDjryudI+w9O5FXJwzuzPqMYVGqS8TRnvtkvESo1EMnFjCV8+eCRaU5/UyLiWaNGvIV76yu+Y5x3Uj9wJSJ2RkZGiEajfPSjHy3b9z80/NEoKVVXV9PeLpFebLjZJuxZ3qDISQN3owVr1MTA61PFazWrVZCW3mhPqxVLyETl1R46fpZNvpRgwpFZJLLTgyVsQgwKxPuWJsdiah0qtQpnvRXBXHqgr+qaVo1Gq1ASMQGTXTOMnlPo9BJw8qudTPUqOEorSO2VlkprejDKVM+s4vJxoctc6Ew6On+mbDPrUhSDam4N4qy1cOQTZ0koWE8l4ouXVG4uMZVEa1DmeQWngM6oQTAr253o/c0ovcXUtkqg4c4IKo2KV//pjOLvKEXk6gD+jU7mp9oVlWW71D4IZi1GhUFJfGge11wK0SMoUtJ67f+cvaS+NN4bQQwZFY2DgwrLoOVQsduPLSZi9guKStYJToGmeyOc+vrF8uSpBBz6t+zGWvZ9LYfxc3FOf1tZ6TmA8TNxZofm6VF4mkCtUaFSgdagbPrxtdoxOvSIYYF4z+rOr1RCCu1wIZi1ZBb7y9bXzsFdLxH+Rk7K1I9VqfFttiL6jQS2e/IbeWQWQaNZNoe0CJcznqhjIHSK48eP43a7ee2119iyZYuie17DGv4QcOTIETZt2pQ/XblDsw9Rt3xTW6VSLTt9GdjsxBY14qw1M942S8mKw9n3KXKFC51JTfcvRsueAEWtAk0GV72I0SUwfn526e8lvmMNGTG5BdyNVrqLqNKt9B9aowaVRqXIrwAMHhzH5BKI9yhbtJ37dh+2qglmFZYsnWibYaJNPvbSu3TU3RrizNe7ZdVlQFLdcdVZWVxYpE1hSd5LIW9seW8t421xLihUpOz48QDKNDqlkzmJeFIxOcToFBAsyllEl3KfjiqRhruidL0wSO+vlcdrStF0XwXp+TSv/7t8nwYOjjNwULkypd6StYsOReSwxFSShMKyfV0/H1KsRAUS8az10UoGDo3RI6PoMNkxyyv/S1m5vBwCm53MjS0wJnfgI4vwTjcml7Bc7rkIlpX4U2DHU1/pQHDoFRMDBw9PYAkpJwaqdapV5T3KwRI2ojNpGDhY5JTbCiKBJarHFjMS2WGn/SdlFGFzpT6vcOOoMmGrMi4vV1JC0dK/wY7WqObiS8vjzML5RafTsVt3H+fEVxie7efJJ5/kxRdf5LXXXlN8z2tYwx8CbrvtNp555hkAvOooG/S7ljfQaPL5qxz8G20k5xYZOTO/6jMA1GpYlOIDS9iAq87MwlSS3lezuaPFIrGDWk0mnca/wYqzxsxAdv1aTHkjB5VKhbtOXL0xlY/ViuS8dGoyauXl10ZOTytPlqfgxNNdJKcUxF1aqf15Gd+fQ+UeH3NjCcVzb3C7C7PXoJiYO3JiipETynJ7ga0OfJudnPhyl6wKDAApiZirFInJpKzKVh5a0NsEBFFZbmf8fJxX/1l57qj2liBao5bX/++l5WGUwNdqp/K6AKe+3sVUp3ye9MglKF4CGOwC805la4C50QUWJhPoTBpFz/SowtK2OUSv9uKsExXdg9LSejmEtjnxrrcz+PqEwvJ2ampuC9H+XL8seSrfFwXjcW4owcmvdSlep80OLjDROcNImdP/hVCpVag0KjR6ZbGXs0ZE9OsxB/XM9K04XLiYWUUuCm51YPbp6f7NGKq0qqTPBckf+1tsJGZSTFzolQ51azQlfbs1asBZbWZuNElf9qBe7rPC71TomvCporT7DnLixAkcDgeHDh2ipaVF0T2vYQ1/CBgYGKC+vp6pqSk06Nih2YtRs+LU6op1jL1GxNVgYax9lume+dL5q+zfA1sdmJwCg0cm5XNeixm8zVbmggtM984v/R2Kxnh6hw5LxIRtcIGhI/L+S61To9aqQOG0PtYWx+w3KFI5AkmFaKIjzlwZ0Yc8NBKB45yCkqwao4aKa710/WJIUfkzwabBt8kJGpWsymAOSlU0QSqzNdkxQ5/CfZLhY5Nl1WUKIYgaFiaSzCvMvxhsOowu5Syis99Sfp8Gp0DDPVG6fjmouP+XgrpbwyymFjmlgPA/fXFOcRk5kPK7BptuuVJPGSxMJkjNK2O0jZyaYuQSiEcaAervjjJ8clJWbTQxmeLwfyjPSwKELnczO7KguNyfs86C0aeXVVQdO1NQik+BeFn7T/ox2ATFxMCRk5NSnlFhe41es6QgqQCOKjPzDoGxczJl4jKLCFYNnkYrmVSG3pfHSh+Eyfpjd70ZT5OF8Qtx4r0LS5+V8O2+VisGp7BaXbPgOxqNhh2am+jWn6Jn8Twf/vCHOXjwIE8//bTie/5/GX/wSkqJRAKdTkd7ezsGg4E9W29nm7AHk09g/QNhST1GrSK0w0bjvQEQQAwK1N/pY+j0JIc/2YVgU7H+gTC2aoltGdhup+l+iWUqOLTU3u7H7NVz/Eud9L48yvoHwjjqpMSwd4NVUlgCUKmpuc1L1Q0eTn+9l2Nf6SR2rRf3OimAcTdbaH5o6ZRb1U0+qm+XToYd/ng7s0PzeDZIrDlXkyi1zc4jVTd4qb09gDl7wn5hMsngCclxOepEmh+uQBClFyF2vZf6LBvUt8VO05siTHTOMHhoEkvMQPPDFRiyLOeKaz003LPEHN3+4QbC17qY6phF9Ag0PxxDDEltQ7tcy5ReGh+IcvmHm6i9I4TBK7W1xCS7BHe4aHpg6VR1w91hYtf7sARNeJpsND8cw1YjsRX92xyse7Ai37b2jlBeleX4Z9uYGZ3DlT3l7Ntsp/nhWL5tza1Bqm4OZO/bR/Ojsbyqj7vZKrXN2fDmADW3LrGH7dUiqKWSb44GkeaHY3mFlMo9PuruWLLLugcraHpYuh9bjVlqmyXOVFznpeHupbZNb4oSusLFqae76fjFAM0Px/L2jlzjoXH/UtvGeyOEr3aTGEtw/AvtmF36kvZuuCdMxW7ppI/glOxtrZSYsIEdzmX2rr8znFcfEkQ1idkkw6cmJBtutbP+oSV719wWXGKaCkg2ywakng22Zfau3heget8SK7X54RjzUwv0/HYYvVO33N43Bai5bcne6x+qwLfVDhTaW13U3k0PRgnskE5Nn/5mN1q9Zrm971ltb4C50XkWxpNkshNY+Go3jfcWjNn9YSLXeABJuaj54RiBHQ58m+2ErnDR9KblYzZX2iVnb5WgYjG1KNm7QDWg7o4wlXty9pbs4miQBlPjA1GaH12yYTF7u5utnPpKN10vDFK1Z8lmVTevtrcne8LCv8mKya0nsEWyadVeP7V3hPJt1z1YYO86keZHY1z2gUaa3hQldr0v7yMAmh6I5k9vWmJGwtvcGLwC1fsCrHswutze90YI7ZTaiiGB5ocruPDjXhJjCSr3eln/yJJdGu8JE7lGUgeTfEQFqUSKV//5LEaHQNMDkbzfknyEJ2tvHc0PRbBVmzj/vX46Xhyk4mpffmzV3h6g6gZv3t7rHwzjapLs3fvyKDMjc/nPqm/2UbV36YTc+gfDuJslf+JeJxIfnufwl6QEXPWtXqpv8uZP3q5/MIw365MddUY8DVaOfa2brueHiV3vofH+pWe17k0h/NukZ2OrNrDz0Q20pq5GNIhkMhmuvPJKHnvsMdawhj8G/M3f/A0bN24kk8lQW1XH9ZYHEHU2orucxK5zo1KpUKlU1N3uw71ORAwJWCsMmBwCJ77ew3jbLMEdNqr2ePLXrLvVh7dFejcdtQINdwU5+2wfRz7fRXCHg+q9nnxwXnuLD/9m6X0z+QQa7gpgtOk4+oWLjJ6ZpuaWpXe+5iYPgey7qXfqaLg7iDmqY6pzjs4Xh9Dblxbs1Tf5CF0uzT06m5aGu4M4Goygk1Rapi/OEe+RFhiVN3rzJyN0Jmi8J4ityoQtZsK/zUbFNR5OfkVa4Meu9xDNzt/opLnIUS/FQDW3+dn4Tkn1c7J9luhuL7Hrl/rfuD+Ce73kh+w1Zra+r45tH6oHHUSv8Sw7jVx/dxhPq3SvlgoTjfsjBLc6MXuNRK71UlMwn9TdFcK3yQFIqjyN+yPoXTriPXP0HhhZlt+vuz2YVycy+XQ07o9g8unQu3TU7w9Td/uSL6y5JZCfk/Uuqa0YlmJD33YHGoOa5EI6a+8A4Z3urA3VNO6PSKfUAXeLlea3VOa/W7nXTzQ7f0s2jGDPxpHOJguN+yPM9M5z+OMXsFeJS/bO2tCZnZMd9SKN+yOgkxIwQ8cmiN2wpNbYcE84b29blWRDXfbQUWSXm6q9BTa8O4R3kx2QyF2N+yOSAhVgDuqZ7p9lKFt2pO7OEP4tkr1NAUGyoVtqG9zhwuRZOmlde1uBvd1Zewekcerf4qDuzhBdvxyk4+cDkr2vzI5D23J7ezfZqbt7KS6o2hsgsmuFvauW7J2b69t/3M/wiQmiOwvHbARHvbjM3jlM98+RKEjsNO6P5NWJ7DXmvL1BUq+qvGnpWTbcE8adjdttlTl7S7FheKeb6BVuMqlFVCppzJayd+gKFzW3BPJ2aH28Cv+2rL1zYzZr78BlTmqz8enxL7UzNzifj4FyYzanUuXbJNk7h+B2J4466zJ7W7Kn2DytNuoL1gOVe/20PF7J9vfVY3KraNwfXrL3esuy9UDoCi+uBhs6m46mByLLfISzQVzWNrrbi9El0PasRPRreSyGe33O3iYa7wnmx2z0KheVN3o58aWLHP98F/V3BwleIdnFEjVKbW3avA2rb5LehYNPXSAxncK3yYbOBOagQMPdQfTOrA232ai5WRof090LjHfG8ydcxYiOhruCmLxSW/9mG7W3+JaSK4KK/tfHmWyfk3zy/qC09lGr8G2yUnfbkk+r2uNm+PQUR7/Ui84ETfcFsGbX6+51Zupv9+c34WLXudm98SbWWXaQTqc5cOAAsViMyck3PmG6hjX8ZyOVShEIBHjmmWfQ6/Xsab6NDfpdaEVJ+cgc1INGg7POSOX1LtCCwaUlfIWDoVPTnPzqAFpdmqobPIhBab6x15ioulHyxVoDhHbYsfj1HP9yD72Hpqja48IaluYea4WBqhuyc7BaTfAyK6EddrpfHOP4ly7i32DHVinNPZawgeobvfnjkIEtNsJXSX7nzLf7meycy59aFYNSW2320LNvk5XILicGu/TlhYkkI2ekedTo0VF9kw8h67O8G6xEsyrUzjqRyuu9zAwtMHpqGoNTS83NPgxOqa17vZXKgthq4zuqCWy3MzeUQG3QUrMvkFcBcDVZl8VW0eu9bP9APRW7vWhFqa05KHXYWW+h6qaltuGrPAQvc2KvlpSJa/YFsEQluzhqxWVxWOhKd37uOf10N1M9M/kYyBozSW2zNgzucBG6UrpX32Y7NXcEcdRKc7IYNlCzL5C3YWCrg8hVS/fqbrKi1qpJxVOYg9m2WQUe32Y7Fdcuta280UfN7VIfjV49NfsCCPacve3ECmKryut9eFptdD4/RNfzA9TsC2DIzrPu9dZ8bgSkchC+TXaJAPX5DvQWDSZf1oZNFioLbBi92puPl7QGNTX7AojZOdlRJ1J9c4ENd7qX1Ie0UmnooaPShqCt2rzM3sHLXVIJtixq9gVQZc8TrrL3ZS5CO5cUzqtvDpBOL9Lxs35QLWbtrS5q78qb/PkYyORbYe9N9nw+L2fvXMx5+ptdaNSq/Nj3tNqoLFATj+324t1gB6SybHMjC2SyhBH3eiuVNxbY+1pvXq0qN2Zd6y046sRV9o5c5SWwNWdvyS4ao4p0YhFH44oxu8LeNfsCWGPSmI1e56X2zqX1QOGYzdnbVm2m6xdDtP2kl+BWR4G9nYSvWloTVt3kx1mfjWtqRezVIt712RzYFgfRAvWjyr1+XFk1CaNXT82tATa/p4aaWwL4Nq6w9/U+3M1SW4NLi3+DA4NLS3C7g5qb/UXsLf2mYJP8ycXfjDA/kcK32UbdHYVj1o1/S4G9b/ahUqs4/B8daAU1VTf68mMgfKWLQE6pUgvVe31YIgb6Xpug7blB/BvsIKiySm8OgpfZ879TfaMXa1aNvO/AOJMXZ/PPLbTdTmjH8ra2KqmtJWRgqm+Oth9KG/3B7VbCV9gl0pFaTeUeN4466TmaPRrcDWZOfKuPvlcn8G2wUnXj0nOMXefO590MHi1NN1fSmrwOt9lHKpVi69ata2qWa/ijwTPPPEMoFGJqaoraSAPXi/dg1Ig4G8xSLkqtyu43SjGQwanF4NRicuk5+e1+pnvmcdaYlt55pFgrl8MwerREdrro/vUIJ7/Rh6PWTHCbrYC8ZJNUwgGdRUtklxO9XcOZb/cxfHKa0A5H/rqBzTac2bW6xqghssuF0adnYSJNx/ODCAXKe76NNtzZeUojQHSXCzEsgAa0gobJzpm8EpF3gw1Py1L/o1d5MAf0GJwC9lozoW3OvKiAp8WGd6N9Wduc2rZvk52GeyNoBIkk6mm24du81P/wTnde6cXoFlj3UAUtb6lCI6hxNloIbFtS1Q1d6cZWKdlQ7xCIXuXB1WDBFjXjabYS3F7QdocrHy8JNg3RqzwINg2JyTTdLw5CgWpkYLsTZ4NkF50otTU4BTRGDeGrPcvmtMAWZ37u0Qhqold58iR8S9SI3iaQTknX9m124GnO2lAj2cXkk2JxMWSk5pZg/rueVls+n5ezoZiNOc0BA9GrPCTiac5+uwejU1hm78guTz7mNHolu2gEaY+k/7Ux/JsL7LLTnd9PNDizbbOl/VbZ+woX9mpz1oZayYZZNRmjV2C8fZqJ9vhqe4s5e0tjz15tzvcPILDNibMxOw6NS/YGqRpMaKeb7heG6H5hCP9mZ145SiNIdsnF7ZaokciupRjCu9G+yt7mgGRDMSjZECRiWP/rYzjrlkiH0as8iNmDYCafXmqbjRVnhxZIzS8RdZfZ25OztxQbupqsBLYs9blwzK6yd4MF70Yni6lFyEg2zPmIwjEL0loilF07aAQ11bcF8pVqcmNW75DsYqs058fs6W92Ee+bW2XvXGk3a9SUz8uCFDP7sjZcZe+IMW/DnL1rbg2y4a3V+esWszeAZ50Na4VJUpu7zrfMRxSOWZBU2kxeA73ZAxzV+wJLPsK12oaBbU66nh/m/DP9hK705HkEeoeO6FUedNkx66wz533Eiae7mRtZwFFjRiOAYJV8p2CV2tqrTIS22wFITKUZOjnJ3OhC9roaIjtd+bWmrdIo+eSs/9aatPS8Oka8d0Gy4TUuyd5qFZaokfCVS++Yr8XKeMcsp77VDxqIXefK53/FoF7ad8iSnzwtFjbXb2ej5hoyi/DVr36VhoaGPwo1yz9oktIvfvEL9Ho9qZR0ouID7/sgLdsaABBDBixhQ17+zFX3/2XvP6Pkuq4zf/hX6Va6lXPsquqqTuhuZIBgAkEw50yKShRlSVZ2lP9jv+u/lte7ZjQeTXDWeDyyZUuWrDSSbJLKiZTEBBAkQYCIjdjd6JxTVVfV++HeCt1d3X0uRFj0O/2s1R+AOjfte+4+++zznP0oA9aOD6XpeCyOOy3jTspQKmPzK23daTvodfhaZKWEn6HItt9I42t14mt1Mt2/iOSUcMQteFQH7W9TqnCg0+NqthBod+JXB/DF8TyOuK3qMPwtDhxxG0jKzopAh5PQJjcRtcM7YjYCrYoD86ptLS41WdLmxNfqYPP70gS2OHEmbATa1MXzjF1pG7BW27qb7QrB4dYI7pRcdYzutKxUeFIHRG+bE3dGcciRq5TFo/BmlayQlHEkbMgx5VkD7W5c6ZrzdiXslMtlBg+P4whbcCRsuNXf/ZucuJrq2jbLeNscvPhfjtHzk0tK6Wb1uoE2F86mWnk1b86Bt9VBYIsLkyzhCNrw5BQb+lqdOOrKK3pbFLsgQWSXD0fchk+1oV9tK6kOztfqwNtaK50m2YxM982p/UNpa1J3dfnandWBFcCVsuNJOYhd48OTVuxi99faupvr28qEtnvwdzlxpew4EjYcUeXd+NuduJtrshLujIy/zaWQ5xI2HAkbzqTaX9pcuDK187qbHfjalfvvfiKFo8mGp2LDdtcSe7uzcrWt2W/G5rVASVezd7LO3hUbApIsLbGvf5m9K99CBY6EDWfEzrkfDeJtUu1dsWGrA29Lra0zacff6iK8y0PbgwkcSRuSx9TY3kmZQLvyHXmaVXsHa9/CUnvb8avSHi61zyZvCldt6F5uQ/W7kWOKvZv2hWm6IYS/w4WrTgpF2f2gtLX7FbvMXlrg4J+fwt+6tH97cjV7Sy6lrTfrQE6Y8WSUb26JvdXAV5L0OBI2fDl1gS5qxZGwEdjmrNpwub0r373ZYYYSDLw6XrWLN1frW84mO4G2OhtGbeSn84ydmcbX7sCdrbNh0zIfkbAhhyz4N7lwJm1LbOhK26vvxpFUfE/FR0S2+3DGazZ0ZWT8ql0cYQuOeJ2P6HDhTsts+VCL2tZe9ZVWj0nxnaqfDTQ7cCZs7Pp4ju0fa8ablauJK6NNbZtTJNt8rQ4cIcXPbv3NHIFOV80uklKi1af2NV+rA0fYigS4c3aCm9zVyRooPtmv2tublXHELZQXUKoqbXHhTsm4c3YoFnHErfhbHKDX4U7bccQt2PwW9pTu4aYbb8ZoNPLFL36R9vZ2NrCBf8/YsWMHf/zHfwzA7q6reewdj2Kyqb68VcZfN8nzpG2EtznpfCxO0/Ve3GmrIiFRLuNvcywprepptuNrddB8m5/W+5K4M1bMskRhSm1bN0Z4c8ruNPQ6Wu+N4Gm2YY+ZWRgt4Gt14s06qkG8NytXv2N7SMKTtdGhkmJ9OQfeOl/oban5cqtHwp2xk7srxtYn0/jaHNXJOSjjY8Vvmmwm3BkZT7OdlvuipPaFlvhNf7uz6rtNJmXsr/h9X4tL2dmkkjgCbU787bXEhLtZrvpGd7OM0WZgdmQeCsrYWXk2AE/OgV8dM9xNNtzNMsNvTvHCf38TR9SGp2488WadVX/nTChtQ9vdYAJ3Sl7S1tPirPpye1hpK8fsNN8cxtfirJI2ALytzqoNbX4z7ma5FotnHeh0es6rFS+9bTUbmr1qW3Uc9rc6ccSstD+skGH8bc7qWG92mnA3y9XY0N/iwN0sk9wXwGTTE+hwEVDvAZNiN5/a1tustDWZ9GCCQMdSe3uyjmpyyp1RFkZMDhPeNpnE9cHqYlLVhuq7caUUu9hUEocv68LqNVNQd7h5c46qDZ0Ju9I2rMbt7Q5MdZU0va01e9vCVtzNMk51nPW3K2P94CvjjB2fVtuqhD2fSbWhrWozb7Nyns0fyBDa5sG/SWlrchmVtuqY7Gtx4snWxj9/u6t6Dyabau+MGovnFBtW+2y7i+Bmd5UIVm9vj9q24iP87U4CXW7iVwcIbfPgydb6rCut2FtSEyv+TS68bU4O/uUpLjw7rNhb7e8utX/b1YSev8NVjfHbH45jD1tq8UdMOa+tLhavtJ3tz+NtcxFSE3z2kEWxtxr7+jsceHP1pdR1zI8rSVubV7GLW+3f/vZlNmxzYrQamR1eAJNR9REq0avFsdRHdLgItDkJb3ZV+0fFR3hzatsGPiKy24MjaiO2xw/lktJnMzV7+9qdVfuC4g9Te4NE93hwp5T4zqImDv3tjlosXlBix/AOD9s+kiO83YM7Y69K7vjbl/pOd0LG1+ogfWuATY8q/ltWk1O+Ngee7FL/7UzKoNfR8VAET8aGU00G+loceLL2mv9ukfG3OihMFDB7JFxJGy3q4qo3K+NWSV+VCi3+Vhn3RJjbAo/Q3t7OuXPnSKfTvPrqq2xgA/9ecfz4cSwWC5cuXUKPgY/9xifp2N4KgMVtwdcqV783T9qKr9XBpoejdDwcw9fuwJNS5ipGqxFfq11J8Or1eDI2fC12KJXoek+S6C4Pvg4H8xMljEbwtdiryWB32oav1Q6SHovPSHKPl4hKgliYKOJrteNVv0dH3IKv1Y5kM6LTKTtDE7u8+Dsr8y9Z8Ql6Xa2tUx0j2hyENrvofiKJt9WOr02u+ho5asXX5qiSOHxqDBHa6qLl3iiBzU78bRVyiBVfmxOb31I9r09NzLsyVqx+idBWJTls9Uj42pzVfI231bEkLvC3uigXYfTkFGanEV+7C5dqF29Oxt/hrrYNdLjwtTs59NnTnHymF197Lc/lbrbjqztvYJMiB+ZpkcEInnRtXPBkZHztLozGSlsnAZWkkdwbItDhrs7lXSm1rV315Ztc+Otkxqx+K5PnlR3CjqgVX7ur5vc7XNXYCiDQ5SG4SdnAZQ+Z8bW7sPqUvKGv3Ym/Tv7Dt8lFaJsHV7Mda9CCr92FPaj68lZnNd6oXMfX7gIjWL0mfO2uqlSNr8Wh5MMqbTfVjm17R5LAZg/OhGJDT1Ze8m6CnbVnNVqMOOM2dHp1EUK1YX3bYN09+dpd6NWxxtWk2tBSsaGzSooBJSZyRm0MvDKOHFbeo1Fd7PBvchGoiw39bS4l95y20fnuJnybXLU+277U3v52VzXXI4eVd2MNVsZOJ756G3a6q/Gp2ae8m8S1ysJPfSxYuafKdSwupc9mbo6Q2h/Gl3VUcznL7W20K20XJhY5/PmzuNPyyj6rPqvRqMfXruRDjLKR2E6f8h7r+2ydFI2v3YVXjYEsbuX+feq783e4lsgp+zvc1XmfZDdSLpQZPTmj/uZc0r/97a5qXsgRteJrdTE/lmf87Ay+dscSe/s6anFkzUdYCW3z4mt3Vheclbau2pzQa1riI1I3BJfau6OW3zM7jPjanDjVDQOerExwi4vOdyZqbVVfJNmN+NrsOCtExibFz3a/M07XOxP4Oxz41bboy/ha7dWY052y4c3YMVqg691Jors9+NscVeK2r8WOJ6N8N84mK95mOzq9CWvASNN1AcJb6p61Ra6ub8hRK74WOwaVwBTZ6SbY6cSVtkCphK9Vxpu1g16PHLLia7Vj8xnZVrqZW/begcVi4c///M+58cYb2cAG/j3jk5/8JPfeey+lUokdqWt44IEHMNoUv+9rdSzJGwc6nPjaZDoeiRPd7SXQ6cBgAEplPFm74rNUQpO/w4knYyPY6aDjkQTBbgcWl0RxoYQnY18i4RXY5KzGS003eInt9GALmilMF3Fn7IqkaKVqR7tcW9exG4nu8tJyj0IydSVsS+RH/R3O6nhikAwEulxk74jR8XAcZ5OtRvBAjRPaa+SQQJcyV83eESFzS4RAl6tKKvC3O5fGFN3uahwZ3OLB0+zAIKljdKuDQN0YF+z2VNd57EELVr+ZuaF5ivnSipgi2Omuzi1tfolAt5vZgXkO/a9T2EMWAl3u2v13uao5I4vLTKDbjSfnxCCpa7Ddtbb1aweSw0Sg240taCa8w0Nsl4/Q5rrzdtbW0UyykUC3G1nN7bhTMnqjnoGDY2r/cFXHCINkINDtrq4RuZI2/J0usnfF1HdeNx4aVBuqeQmner+KzfX42p3LbOiuxpxyxEqg243BagSDEsPVxyqhLjeelGrDkGIXyWHA6pdovjO6RJY30OnGo65j2vxK2woRxtPsQA5bKUwXa/ZuqZBDlHdj85urbStxYsXelXyH5FDsUiFveTIyoS43k+dnme6bJ9BZyzEarEvt7WyyE1TfY+aOCMl9oVpb1d5OVZbWmVDfuUo8CnS4ltgw0O2uxviOuNK20md97Q5CW91VUk2gy41btaEcVuxdicV9bU7COzykbg7jbXcQ7HLjVsdkW1C1oVNp6805CHS6OPbViwy9PqH0UTWnZPVaCHS7sbhUu+Qc+NXvs2l/iOAmT3Ujodmp9ll1rdqTlauyffmJIoFNLkJbPWAAya7Yxa7GnO5mmWBXjTRICWYGF5bYsCLt62yyL/lu/B0uzG4TU32zGAzFJX3WkajYsNJW8RHOJiVHH9zmqfqIyvfYyEc4kzaCmz1Er/JCuax+5y6kik9ucyzxnaEtLrJ3Rgl0uhQf0eWq2tuTc9S+haLyLYe2uuh6IqVcs9OFpdK/M1Yl/6sWMvDmHMrxXU42PRon0OWo9m93k23pfKBdxpVQZHbTtwSJ7vAgq4VnXEnrUv/dIeNrsVOcK2KwGAlv9ZBTc16umIXApkosqMPf7sDf5sA672Sf9DBdnV0cP36cpqYmTpwQV396O0JXXlVr4+2N3/7t3+ZP//RPAZCwsNfyoNBx4R1OjGYDF3+hll5uUDq1ilKZjkejDB6dZPiwGCNt8weSnH6qb4nE22qQZOh4PMXRL51lYXL91yDJ0PZQktc/r5a5ayRJtAyZOyP0PC0mqUG5jCUoMS9YplELMndEmOqbZUigvCQolV3cKZnX//E00xcW1j8AhWmbn1kUuv/MHRHGTk0xdkKcaRjZ46X/ebFSjTt/pwW9Sc+LfyJWnnr3p9oo5ovCEmHdT6ZZzBc5+kUxrdDuJ9OM9kwJy+xd/UcdTJ6f4Q2R8s0SdL8nzcChMSHNeE+LTPPtEU4+3cfEqVVK6tUhusdH6sYQp7/bJ3T+tofi+NpdvP4FMfk5f5eTyTPT5KcF5RMlaLsnTs93LwrJBIZ2uhl4eVzs3MDO327BaDHw/KcFJUsk2PRIE0e+qK3UttCpvZIiJSdYwj203UV+qij8XaVuDlJcLHHhJ2q/XK1cooq2h6LMTxQ4+4OlciKryS91vTfB4JFJBhrJlTRA95NJjn3rEvmxVUqJ10mcSDI03x7hza+p/nUdCaiZ5AAHzz3HwsICNpuNgYEBZFle85gNbODthEKhgM/nY2pKKee6xbiXoCmxzlEKsncFOfW9waqU0Vqhp9VvIn1jgKNfFZPUCG1x4E7ZOf6tS40bLCunmtznQ2/UK35EII6KX+ejOF+kX/XjjWR76+FRiVdjy0vGrnEtk8tUJbMsPeZXCNFN0HJvjBPf7hWWkLrqD9qYnyjw6v88LXwZf6dTSHLE5DKRuNpPzw/7he/H5DJhD0iMC8QKnlaZ9oeS9L44LCQnFt7lIb0/zPFvXxSS+nJn7aRvCXP8mxeY7V8/zgxuc+NvV6okiqDjnUmcSTsvCI79sWt8OGM23vzqBaH27Y8loIRw++0fy6LT6zjw52Jx6e7fb6MwuygkPwfKLsH1SlnXw52144haufDs+nGsLWRCZzQwUymBvw5caRsd72hi6PB4tTrReghsdmF2mtaVoAOEY6gKzD4TCyOCHwlKZaUK8W+9OAqg47E4R79xsfodriVhaXIZabsvyuEvnV/53Ta4lhyXSN0Q5I0vrlImftm1/Jtk3Ckbp55e45utm6vHrnYzO5xn7IRSPWA9iaELyYO8eVz5pv74j/+Y//f//X/XbL+BDbzd8I//+I+8973vBcCuc3ON7R4hn+JssmD1GBl4VZ2TFYtK1YxV0LTXy+TFOcZOrz93Bmi9N8iFXwwzO7i+1JTRAtk7w5x6+hKFuTXimkp8ZYTcbSFOPqXszF8rfqrEZNE9HvqeF5Q1LZeQ3MbG0lG/Ymo0vMNDfmqR0eNiEqJN+4OEt3s58k9nmRYcs6xBM+VikfmR9W0fvcrLVN8cU+fF3isoiwKi99/9ZBqTbOSgYKyw5UPNlIslYfmx7F0R0Os49S9ic4LsXRGm+uYYeGVcqP2u32tj7PQUJwWkZECp+D5yfFIobrT4TeTujnH2RwNC9nc122l7IMHp7/QJxdXRq30krwty5Mtnhc7vSFqZGy2ISf4BGCFxTZD+g6NCx3hyMmMnxXOrne9NYfVKvPw/BBdUjJC+JcyZ71+C9W5HY9xllI1rP+OyeMepqgdMrpNrrMRXgS4nBrOeSwfGG55vCfQ64td4KRVK9L00vt6tA9B8a4Dxc3OMHl9/vgSQuyvIhZ+PMj+5im8tlWrjhRFS13s5+2OxPHjBM8bzwz9gfn6eYDDI6dOnN3JeG/h3h127dvHyyy+jQ8d20014DMH1DwJiu11cOjRBsZIqWGO90WA1kLjKzdmfiMm8OuIWvBk7555dpf2yHJW3zY5ZNtJ/YEIojvK2KOTDqnTTOnkya0DCaDEwdWGZH1wjjhKV1dKK+HV+Lv5yWFgSavMHMixM5Dn2VXFZM0fSKjTWGiQ9wS1u+g+OiktUWQ1Y3CZm+tePA80eReWj9xfD9B9Y3y87ElZa7otz6qk+Js6sP0ZY/RLJvUHOPzsoJMnnSCiE37M/HhB63sT1AYKb3cKybJ6cjDNu49xP1s/vgdIXDJKecz8Sa9/6UByTzcgb/3hWqH3X+9Iszi3y5j+L5dScaRuTZ8Qk1kD5ruSwlaHD6+fJTLIBg2RgflRsDV9yGel6T5pLh8aEJQ7lmBWrVxK6H60wyYYquU0EgW5XTVJwrThPjbGablD8QlHAPEaLjqb9Ic79aGBl+wYxm+Q0EL/aS893h1b8Bqzw+/aIhDtlo/f58dVvom688DTbKBZKTJ4XmxsOJN7k9ZOvAPC5z32OJ598Uui4txv+XZKU9uzZwwsvvABAQJdgi/n6NdvH9riIbPVw4K/PCp0/stOFM27h+DdWWfBapiEY3OJEb9RxaZ3BvwL/Jpn87CKTZ2qdba1FL0/OTqlUZuL0Mse2yrWcaRuOiJXeXwoGOykLmZsjvPb5HhD4eBWJp2b6Xh4RWggChYRTKpTEJ6ESpG8Iceb7A0JtRe67Hnv+sJ2FyQKv/KU2HU9RSLIeR9LOiEACAxTZuuJ8Uex5LwN7/kM70/1zHP78WaH2WklKe36/g5Gjk5z4pniQJwrJK9F6V5QzP+kXIqxptb1WeNqUhdDB18eFE2bKjSHUT/1dTsrFsvD9x6730XRdiHPPDdC72oRl2X3s/q02ZgfnhftD7Ho/rqiNo18RC8QkGeLXhen5zio+tAES+/wKWUlggQ2gaX+Acz9SAoK1FtgqaH0gwvH/U7f4qNOv6kPlmIX0TUEO/6NYf87cEcCZsPHq3669GD2Xn+bnpW8DkEqlOHjwIF6vd81jNrCBtwOGh4cJhUKUSiVAxz7jA5hM1jWP6X4izsiJaXp/Ob7it0ahZ8ejUU5/f4iFscaL8zqdbslxzbcHOP2dVSYF9VDjq9jVHnp/uWwBa42YLbLbQ/+LKxe8VovXkjf6Of/c8OoEnGXXankwyviZGQZfWWPCV/e8m97dhNVr5sCficVR8ev8JK4NcPLpXoaX61qvAm+Hg+J8kYkegYm0CWGyESgLR4FuN6/9/Wkhks/lwNsmM3V+moLA7dtjFpquC3D0Gxc0PYcoWu6L4m118cKfiJGOtJKUNr0riT1s5aX/evxXuc1VkbwxCDpq5Jd14GmVmb4gZvvLwdYPNyPJJl78jBj5XyuS+wKc/4mAP1Gx4xM50Os48KcC36NOR3JfgMgOL6/8r57GhMTlMEHnO5roeaaP2eFl7VeJXyK7PUycnWV2UKxDuzI2FhcWmenNrx5H1V3LlbFRLsHk2dnab2sgvM3JwtQiYydrnUJn0K9KUs3dFWTk1AyjxwQW2Uyw9YkkF18YZfiNtdu/vvALhnTnMZlM3HjjjTz99NPrn38DG3gb4OMf/zh/+Zd/CUDC0Eq7ZbfywyqJWU/WSmyXmze+2r9yEb/Bd+dKWfCkbZz9ySqLHDrdkuOcSQsmm56RY7PKIvY6qMjKTffV5u+rph5LZawBIwazkemLyxKyq8RqFq8ROWZl6DWxGMfiNtK0P8jxb11cneRQd3+S20j3Exn6Xhih7wWxvNrWD2cpF0u8+r96hNqDQiTqe0GMAKAVOz7Zwvx4njf+4ewVOb/RArawrTYurIPoHh+UEbanVmz/RI6pi7Oc+D9ipCOtJKWdv9PK8BvjVyZnZ4TcHVEuvjDC3OD6OS+jBewRGxMaFr+0wBo00/1EmksHRjn3Y7FYULkx1icRocgUGswGJk6LEWs8LTIt98Y595MBLh1Yh5Co+sgtH8wwO7wg3B+8HQ5cTTbOfGfZ+10t3jFCdOfqBMlGsVVgs1PxWaudc9kxoa1OBg6t7+MqpO3k9V7OP1vnT/T6Vf21ySWR2uvm5FNii5WhrQ58OTtHv7p2jm9xcZGfLXyVIos0NTVx4MAB/H7/msdsYANvB8zNzZFKpRgcHMSExNWme5EqJUBWQfMdQSYvzDF0WJCcfIOP/oPj5KcaL84vz3lFtrvoPyhAEKiQjVrtKwmLq8RR5VIZb4ud0eWb69Y4JtDlYvT4xOoL/8vivNgeHzND80KbzgCS+4I44zbe+NJZIdKLO2un+fYop5/pY1xwPKlIUYmQgjAgTDYCRfoqcV2Ao18+J0TyuRzYQmYWxgoU8+vH4pJLkTbtfWn0ihDEIju8RHb7eOV/nrwiJKXkviCenMxrGuJqLfB3ONGb9QweGhdqr8X2l4PsPVHkiJVX/0Z80ygg3E/9HU6Gj08K9+m2RxKYbAbhtUNvu4PEdQHe/Mo58hMCFzFAen+YvpdHWRgT+17czXbmxxdXJ2cti6+sPgl0VCUsGx+iW9JeZ4TZgXzD8y2HM2mlXCwzVbfZZK2cV2SHi5nBPJOCG0ha7wsz8NoE42fWbn9x8RQnygcwGo28853v5HOf+5zQ+d9OMK7f5O2FYDDI0JCSRG7T7yRpVkpdN3r5lUDd7JTQSzokt478eLn6/6t1mPBWN5K9QSesdNplC1SpfUrAfUmwWkfmtjDlErz8PxSCzHq78nP3RNHp4MX/KubEc3dFkWSjMEkptsOPzW/B7pWYubS+U1gsQH5mkZHj4kzKF//0GBb32sFdFSqZQ3Ty3/loE464jef/25vCZKWDf34cvU2s+6duDhHa6uHQ/+5RqsoIID9d0kSS0Up28WUdms4vXJXncpCH5//jUU2H2MMSeotBqNJRfjTPYUFWM2i3PUDXEynMLhMH/mz9b2zs2DRH/vmcUBWoCrqfTGMPWYTew/BhsURrBb3PjjBxZlq44hh5mB/PV6UORRDsciPZxYeL1oeacERtDBwaFfIpLffH8Hc4mR/JMyRQtS5ze5DINi/5mUX6X1h/12zmjiDeFgehHbO1qkp1VZGWT8Die7zYwxbkuMT0xQb3v2wssDhNmCyGNe9Bp9NhMzu4ufxOetOHOPrmUXw+H9/97ne59dZb132GDWzg14Uf/OAH3HLLLQCYMLPP+nBtd2WjpKdekdEyWvRY3Kal/w+UiysnK86EGUfMQmS7i7M/XJoobRSzhbc7CXQ4mJ8oNCRBLUdkl4vktT5KiyX6X6rzAasguMVJ6oYAJoue8z9bP5ayxyRiO71Y3BIn/k+D8bzBtdwpGbNsWpukVIfp/rl148V6XHxumNFTk2KEIJVwJLIzvNJ+92+3Md4zzfGvi5E5Tz3Vz8DhCWGC0raPZpkemOPE18UWFgBGj4nv4J7pneeo4A4oADlupTC3KFzh5sS3+gANsZ1GHBGspFmFCdxNduEE4XktC1LA2HFtGui2iMSmx1Jc+MUQl15afxw//rXzFGbF2WQml4ntv9nMyLFJTn57/fdQJSgJku+OfukssyJkIxVjp2eqso0isAfNyBErwe1ezn5v2XyoUfxigqa9IWY7F3j978Qqa7beF6M4X+TgX6+R9Ku7Vu7uCOVimYN/KZAk1OuIX+ujvFjm4MmztdMVS+gM6lhQPw83KfLlZrfE2PHZNef15XIZq8uEwaxHko3rjkfd1uuYCvVxdORlnnnmGXK5HCdPis2pN7CBXxeuueYafvnLXwLQJV1LxJJTflgt7gIkm0GJvWQj8+OLtW+jQdyFwUB4qwt7QOLsc6NLSQUVEtSy7zC114teMigkpVXuof4em28NoDPqePVvL6inWyfndVcEo8XAK589u2a76v3cHEIOWRg6MilEivB1KjLmVq/EnEDl7dIizI8uMHFefM5/6G9PYZEF58wqmUOUoJS+OYS/08Whv+0Rrobz6t+cqEqYrQd/l5PEdUHe/MpZoSpNAIvzCBOUAPqe10BOMiryXVN9c0LvFxCu6HS5ePm/ayOGS24jRrOR2QGBhdBFOKkhJ7g4j2aCUvqOMI6Ildc/t34lq7nBBd744llm+sR2cQNk7gjjbXEKEbiXkBEFiE1jJ6Z57e9PM7+cuL0GZobmmRkQzJGhSALagxbOsEbcVYf0TSGCnU7Ge2Zqi1lrIHqVh8Q1fopzRUZPrpKLq9tJH9zsJLXXT6lYZuj1qSXVI1f4U72e0FYHoS1OZkcWGD6i+q36qkjLxo9gpw1X0oY9bGLmUgO7LhsLLE4TRqsBzAblfa0ythgNBvYbH6c/9SqHj7xOMBjk2Wef5dprr13TPhvYwK8Tp0+fZtOmTSwsLCDrPOwx34HOoOR4G+WvKr9JdgOSbFjx/42OMbuNeJvt5KcXlQpH9edrkPNyxC1Edrop5ssMvTG1bhzlTFpJ7w9iMA4zdGT9ikhy1Ez6ljCSY5hLAkQoSTaQvD6AzS9xrtHmngb35211YPWbhXMQswPzGMx6YRLF+KkZDv/jGfITgoECguQkFZufzDDeMy1cmWfw0DhTF2bXJETUo/XBOPOjeeFKQQCzGsa1/MQi538mvhHL7JEoF4rkBSvc9B8YFarodLk4/5NBzmuwDShEotnhBaE+NHxU2/qbFtuDUi2o9f4E/QdHGRG41rkfD1DKa6glY4DN788w8uakUIXv6vMKkppOP9NHQQO5bbpvjrnhPGXBQySrAXdGZn48T/9LYv0odVOY2aEFTqy2waDi89S4LXtnmNJimSNfWj33Wy6Vq0SlzK0hdHodb4jkW/U6Etd5oQxHvlS7n1VzXigS5PZggakL8+vmvAxWHSabAZPVsO54lDC0EpQDvJ7/BX/3d3/HxYsX+d73vrf+M7yN8O+mklI+n0eWZQoFJXjerb8dl9kHrE5QCm11cOmVlU5gVZJSXaUTyVZeKuVUv6Nh2SKR5JUwmlSWnUAlJVezlXKpXK2ktN6ikxyXsLjNDL+xbPFotWtJ4G91MCzI5AaQZB35qbeeCeppk1mcLwqRUUCx5fbfzDL0hniVmsgeL4F2F6//nVjZaK1ouilIsNvNy/9drHpBx+NJLD6JV/5CrEpTaKcbd0Lm+P8RW+iL7vGRvinMmR9e0pbo0QBNlZQuA7v/oI1SXryyVmi7G09a5pjgYmjm9jD+Dhcv/TexRFLHYwnMXolDf62RrSyI2DU+vM0ODv/zWTEinQRX/U47M5fEq18BxG/wC0v6aYJZp7laWaDbyZBg9Q7QXkkpdq2X3p/Xgpj1qil5Wu2MLd9RUn+tZf5U8hrJj5UaV8BahbAK4O90MHl+uqEUYP3Y89z8t5hnBpvNxgc+8IGqfOkGNvB2wmc+8xk+9alPAeDEz1XW29ZcEDa59Nh8ZiZ6Goz5q5CUKt+FyQn5iXLD32BlzOZKW5lYZzdB/Tca3u5amnxZJ15bTTpktZjN2yEzenQVokaja1X4W2vl2i8zRI/u8WmKDza9K4ktZOVlwTETE3Q8mGDw6IRwlSat2PyBDNO9c5x+Rkx+a8cnW+g/OELvz8WeO3d3hOETU8Lkmh2fyKEz6MQrgmqE1kpKWhG71kfT3hBvfv288DNn74ow2jMtTF7b+uFmpi7OCkum7fh4jt6XR+i/QhUkNr0rycDr48J9NHtXBP8mFwf/4phwRShHkw2AqXNrHKBRdqQCk01HYXYVH9CAZO1tkxntmRWuDObtkJkfXGB2uLB2DKVey5W2UJgtMFu/kLVGJQBbwERhpkBheplfN9SOqffrJqeOxUpXM0E533g8aDTvD3Q5GT46syaBY2JhhBcXlSpKra2tHDt2ZapybWADvypisRh9fUoe5GrzPchqzmu1/u3JWBg7tQZxaHkys7LADBgtRRbrp0f1/mrZt2a0gNFqZH5sceW9NIgNLT4jRrOhWklpzbRjqYzFbcTsNa2MIVeL14zgjFnWjwWXPcPi3Brx32XGXfaouitfkNBhtOjZ+uEsA4fGOf9TwYqFLTKBTpdwVRitCGx2Edvl49W/Fdut3rQ/iDNhE85VuJrtuJvswlV5XGkb7Y80ceaH/QwcHBc6Riu0VlLSiq0fyVIulIRt6kzZ8DbLnBVcDA1tdxPZ4RPecZ+8IYgjZuXIP12ZHJ+nRcbf5uTkM33CxLJtH8sx3Sde/QoguMXN4Kvjqze4zLiruoW70b2vEu+4s/ZqBdrlc8RGsVVwi5PBV9eopARL1h78m2SGj9Ti9tViocrilRyVVlaja0AircDoNNTGgOX+bxXCKoCcsDA/XmCxUTUY9V4oFjk0/xOGihewWCx86lOf4o//+I9Xtt/ABn7N+PGPf8xNN91EuVwmrG+iS7p2zQVho9WAxSM13Pi72nE6ow6KYLDC4qx4zssWMFcJL2tVo6zAnbExXl8Vex2pN62VlOSohenVYp3V7k9jNSJRaJUZTe4L4s7Yef3zZ8TuxwDJawNMnJ8Vkkq7HDTfFWF+JE+vYO6u4/EkQ4cnhOW3Iru9TF2cY7pXLFZueySOyW7i8N9fmfVVrZWUtMLdbCd7V4wT/3JRWGYtssPL9KC4NHLuvhizQ/P0/kLsnbU/mmDg9XFG37wyai9N+4OM9UwLP29wq5vYbj+v/8MZ4epaZo+E3oTQJg+tMEh6TZWp7BELM0NiJDR0euwRM4XZxXUrO1ViNotXSdTPj4rlvCTZQLEIxZmlweNqOS+DVUep4kINUF4Uz3k5kzamehfWJM4u5Kf5eeFfKLJIR0cHBw4cwGpdWwXj7QKx1eBfM6anp7FYLFWC0g2GR6oEpXrodLrqX3Czg/T+AM13BFb81giRnS6u+ngzoa1OKNURlPS6hgQlOSqx4xNp5KhEfjQvRFDqfn8SSYaJ03NLpN5WQ9tDUSSviemL+ZUEpQZI3xLC1+GAPEIEpUC3k853JwHIT6+fkJFkRbYtsS+wbtsKsndE2fRYSrg9wNzoAgOvr7+ruoL+50eFCUrOtI09f9RB/AbxcrPnfjgoTFACQK9tXhze6sXb5hRuP3x8ir4Xhxk+LGYjT5vMVf9PO6GdbvGb0oidv93C5g9mhNtf/PkQZ38kLgUW2uLB0ypuo3JR6c+SLObijv7zBc0EpV2/38bWjzQLte39xYhSDUp0PM/D7OA8oz3iQUz7owmS1wZxpm1iB0iw83daaLk/LnQ/oPiMrvc0CZ2+QlDqeEdCqP2Fnyjkqpb7I9jD61ddqxCU2h6MEt3jWbd9haDU9USS9kdiyn/W+2ydfkngkR9VAoydH86w9TdTjU9aGR/qxojs7SE637W2jXQ6Hddb76c1ugmAv/7rv+aJJ55Y9xk2sIF/S3z4wx+uEpRihhxX2e9YmuSsQK+v/m16JEbLXeGGvy2HTqdjy/uTbPmA4iPqCUrL47VKgN56X5i2ByIAQotSkV0uUjep1S4FdofZoxJN+5UYZ7XS/UtggpZ7lftZlaC0DB2PxXFlbAqRQIBM0HJfVHisAUV2K3VjiMztEeFjxs/MMN2rYTd2QRk3Rckfmz+YYcfHc+LnB1772x5hgpLZp0wkS4uCi4sm8He6CXa5he+n54eXOPcz8V1c3e9Ps+U3xd+bVoR3edj1e63YYxah9oOHJzn/7CDTF8Tfs7/LTXjL+uNrFTox+dUKDvzFSU0Epfh1fq76f9qx+U3rN0apNqWFRDd0dIKZgXm0TI87Hk2SvVP8W4tf52Pnb+VqJMU1UCEoVX1GI9TFLqPHpqEA3jY7sWtWzpOXY/ToNLPDBcxeE5nbg+u2nzgzz+xAEZPbzKZ3rhM7lsrMDhUozIKcMLPtw02Y1YRPuViLvep9fWGyTLlcJrTNwa6PpPG12xvO25fP6ZtvD9B8ix9XyrzmmOMy+9gnvYN0Os3x48eX5BY2sIG3AxYXF3E4HPT19aHHyI22d9cISvWo6+dy1ET2Vj/J69wrflsBgwF31s72J2N4W6xQrCMo6XQNCUomh5Gud0WxBY0szrOSoNTgWi33hDDKRuZHFpdIva2GxHVeJJdS/akhyX0ZQltdOFNWWBSLBeW4hdzdSmy6KMIhMiqybeEd4uNf5tYw7Y8khdsDTPXOMXpKfIwaOzEtTOSwuI3s+t1WTc8w9NqEMJkGQG/QgYacV7DLRWibuMz5TP88Z390iRFBYrU1aGb7J3L4O8VzRlrR+d4U7e8Qf8/nfjrAmR+LS8MFNqk2EizGVdmpLrnFDjj/00HNBKUtH8iw6d1i+Z+xE9NKNSjxghZMnp9h4qz44m9ib5DMrRGcKcGcF0rV9PRN68c5LCp/ctxC7h6x2K5CUErfFEQn6daNgwdfVb752B4P1sD6761CUIpf4yHQXavIuWKurC5YTfflQa8nc3uAzC1qznsNn704qRzX+XiETY9HGieyK+ND3W8ttwdouyekEJIqf8thMLDVfhOdvl0YjUY+/elP8wd/8AfrPvMGNvBviS9+8Yvs37+fcrlMzrSdbuve6mJvPXQGQ/Uvc3OQ5lsDDX9bcZxOR+6uEG33Kz6lnqC0Ws4rtttFap8fnU63PkEJZfNeZIcLYClBaRVITgOhbUr7hgSlBohdrcSjqxKUliG5N4CsErhFyASRHV7aH00ohCYBWLwSmdsjxPasP+etYPKCOt6IEqaKcP5nQ8IEpea7ImxaZy1gOU4/1S9MUDJIlU2f4oT6yHYfvjbxas4Xfz7MhWfFc17p28K0PSywpnSZcCStdL8/jTUopswzdWGOsz+4xMwl8YpH4R1e/G0u4fa65TyBdfDmVy5oIih5cjLbPpLF4hV75nM/GhQmKAFMnJ3VVCUWoPWBGKkbQ8LtvS0OOt+TYh21TIAqQSlxfZ3PWAMz/fNQVCpm+TvWifnLJWb65shPFDFYDUR2rT8vmh8tMD9awCBB+uZ1+A+lMvnpIsW5IpLHSNvDUSRnhajaOOdVnFNyXo64mc3vSeBqsgrlvILdDrJ3BHDEpDXHHLMkc4PlUbLpHEePHiWRSJDPXxnpybcab3u5t1OnTpHLKQsbevTcZH28YbvlL3TwtSnksJnT3x1alZhUj5GTk4S3uhk7WZcoWMPpWANmDCY9JocREeZBaIcLm99CeKeP8z9ZfwCSoxKenIOcxcCRL4rJUYS2uvF3OIWlriI7vdgDFiSZhlU/lkPymCmXYH5E3Nm/9vmzeLN24fb50Tyv/k9xssiW32xm+NiEcPWYcrnM/NgCg4KLFq6sHYvHxMDL48L3dFSjBMdr/6sHSXDwAcVGolJ4oCzaFWYLzI9duUT8wmSBwpT4+UUZxxUc+8oZoT5awZnvD2iyEShVvEKbXVxoVLa0AWb655gT1EytnL/j0QS9vxgSqjCktTLYm9+8QOwqn3hwktcW3AJEtnuxhyxK5TUBYmN0jxd3WqbpxgDnfry+XSWvhK/NicVt4vW/F/uOXBk7tpCF/hfHhdpLdhO6tSY+Ov0S8tJ03xwLIiX19Toolbnwy2EmBCvHNY1txeyx83rfS/zDP/wDPT09PPvss0LHbmADVxK333473/3udwFoNe2kSWpv3HDZwtSp7w5i8UgNf6tHJS6bOD+3IkZbK2aTHEZNJIhQtxujVb9CQm41pPeHsAct9D0/JFRJJXmtH1+7A/+paYaPrB97mVwmnEk7xcVyNam9HsrFsjj5BkV26+yPBzRVUur9xQi9iLUPbnMT6nZz7KtnhavNTJyb0SQZGrvGx+AbkxQE5bQWRgoc+DMNZPICPP9f38QkxnUBNEjhqZgfz2M0Xbm9IAsTBfJTBcqNKms0QGGiIFQCuh4H//qU8DsALqsaZWCzi9nhBWZ61094jp6YwJOThZOXoFSQ8qRlocqgEz2zHO45K35y4MwPLzF2WjzJszC5SLlYxuYyMSsgWVLxGaXiOj6jLnbJ7A+jM+mEY+3m20I44zYu/HJM6H2Hux3IUSuenI2xU+u/N8lhwmA2YPVKLIw2Pr9Op6sm30dPzxPsKjB1fnbFb42OO/2dIRbnSkycXTY/1etXVAwwmUzkBq9jwDzI7MIMVquVnp4ekklt5IINbOCtxvj4OMFgkEKhgAkL+5zvaNxwWWw13Veg98Vx+g5Mrhl3VRaQp/vnmR3JM1m/+3+NuMviUkrMm2wN9JgaXM+ZtOBMWvG32bh0YP35rlE2Et7iwuI0cvJfxebu0d1eSvkyr/3dWaH24c0u3BkZo2wUkkmzyEbKxRILk+Lj35tfu4gzKb5LdXG+xLGvikvOtj4YZ/zstHhFIQNM9s4yfkYsdrEGzVg9EqPHxWMdrbmWk9/qwyiLL3wtzpe4dEB842K5VGJhPE9eUArvcrAwlmcxL14OQmvseO5H/Zz+Xr8wyWfw1fG1Kwo1gFE24muRGXhF7LiJCzPCsi+gVCvL3pNg8LVxof4kWj2/ggs/G2RhIq9JZrBULGkqkhbsdmvyGe5mG4FuJwuTefpeGken162plmC0QGSHGzli4fj/EduQ4W93UJgpMnx4aVJ0tRjJ7DCtXb1uWYw0cb5OVlynW70iivrbmZ+OsjC5zDYGQ0MJuGhhE3aXkxd7f8h/+S//hVOnTvGNb3xj9XvbwAb+jfDpT3+aP/zDPwSgW9pL2NSYYLJ8Ifjcz0ewekwNf1tyXCXndXYWk93Q8LdGMDsljFbxPIK/w4HVK62QkFsNke1evDmZoSNTQpVUvK0Owts8TPfPCcmMGiQ9nlYHOqNOmNRULqsbzgSHm/nRPKef6WNcQ4Wj8VMzwrJzcsxKcIubcz8eFK42M3l+lgUNuRNvi4OJC7PC5y/mSxz9krb1xlf++qQQUaQC0fdVwcJYXlOuUisWZ4vMj+ZBsNBOMV/SLOGmpaIQwAlBFZx6OJJWFmeLQjKAkxfnmDg/oylu8eRkPFkHPd9ZP6ZYGMvTI7gZtIKzPxhQqhcJIj9doFQsY7AaKebXj6MMEnjbHOhN4j4jeX0AyWESe9/lEpEdPoKdLkaOTZKfXP99u1J23BkZR3KaqQvrP7tBMmCyG5CcplXPXx+zzQ4uMD2wwMzQ/IrfGh03+PoUlHVM9S7tQzqDYUVlJYPBQGZwD+PWKYZHLuHxeHjjjTdIp9PrPsevE29rubdnn32WvXv3AmDCzD7rwysbLQuuOx6LsDC9yOmnhhomJ+uPKxeL+Dtl5sfyTPcKkg2M5dU5SetUUpI8RvJjKz/O1SYwzrSVybV2h62QJ1JGnvyoBuLEcoLSW9gdJFlPflq8ZFvnu5solcoc/SexQVeSYdvH2pk4M82bXxFP8mjBlg83Y/Waef4/HhVqbwlKGPQwc+nKsRRz98cwGHUc+5r2gVEUV1ruzd/lJH51gFf//rRmGTEt8LTIjJ0QYzdt+VAzVr+Z5z9z9MrckwR7fredkWNTnPim2LvzdzlJ3xTm5b86oemetH57a2L55KmR/NkacDXbmdCwgOfM2Nf2e8sgeU3kR9eRKln1YKAgPvlrutHHuR+PoDPo1wweyuUyFr/EpoejHP5KX9Un6wyGhmPShfwpzpheZXFxkc7OTg4dOqT9WTawgbcI27Ztq/bBLdKNBE0NdsbUJS+tPhMtdwc5+o1eClOsn9gsFold5ab3hXHheyoby8ISRktQKmOy0ZhMs1oJ67iZ6YurT0KWx2yOpFWsNLB6vVXvZ9XjxOMyk01PYVbc95tserrel+H0d/qESVO5e6N4W5y8+JkrI5VkssGOT7YzcW5GOAnjStuEEmaXf096Wh9OcOG5IWE7acWVlnsD5d3lZxY590PxRUKtsIVMFOYRIzeZYM/vtTN5cZYjVyjebHs4jiNp5+U/Py7sQ9ofSVBcLGmSHln127tcyZEl517mM9aRxbX5TRRmC5r8jBw3M9O3SnDX4Homl57CxDq+plFcZgIKayfm6+GISxgkA+M9c2vP6w0GKJdpvs2PzqDj1NN1xPhVxqSfzXyNvG6eYDDID3/4Qzo7O4XuaQMbeKtx9uxZmpubKZVK2HQurnU8sKKNzqBfsiMztddNqVjm/M8nVvy25Dh1XuKISRTzJWaH6nJRa5Fcy2VlO6NWvkephFGGxQbT79XmTtaAkbmBNRz0snjNaAGjRam8tBYRYPkx1SpK6+TstObDjBY9i/PisVf6thAGo55TTwkuEBhh22/mGO+ZoucZ8UrUWtD6YBx3WubFPz0m9M6NshGjGeZHrhwhKHq1D7PdyJkfaCNDacGVlnuT4xZie/yc/tc+TX1E83ViFqYFyN4AufuieHNODv7FMbHKYpeBHZ9sYeTohPC7k+MWMrdGOPpP5zTZqeG39xbEXcq563zGGnFXJQdlj5iZ6RdfwLOFzcyu5vcaxE+V+1kzflqNqLqeL192zlC3zMDr0w0XvqqHGAyUy2WMNmi9K8jp740yP7Gonq7xQtvY4iCHSz+iUChw9dVXb2zO28CvFR/72Mf4q7/6KwB2Wm7DY2hQba2OeGewGsjc5OPMj0ZYnC0K5bxWlVJbDWvIoq0nmWuw6ik2krNdJeaxeE1rEyaWHWf1ScyNCCwEVO7zCkm8gXZ5KAzQ9mCcC88NK1VYBBDe7iW03cNrnzt9ZZ7DANs/nGP01BRnvisW21kDEnNDV3ABzQCZWyIMvDombCetuNJyb6BI3JUWywwcFCe6a4UkGygDBUES97aP5Bg/N03P09rIQaKI7fHh63By5AtnKAp2kdi1fvR6HReeFSvUAJfx7WmAQUL43tHpMFgV4qcWgpnFZ1FIb41O2SD2MlgNyvkFJXqXHgy6klhMKqmbgmYu5VclfCvnVHJewW4Hkmzg4i/H6x6g8Zh0aO4njNCLz+fj+eefp7n5ylX7/1XxtpV7+/GPf1wlKNlwriQoVcqUllYOnHLY0jiRWVf+uhJsN98cpP2B2LpycBXs+GCaHZ8QZ56lbwmw9cMZkGhIUFoOSYbNv9EEEsIL9S33x5BjiuycCEHJ0yKTuz8KiFVQAtj60WZi14uXUczdH2P7J9qQE2bhYySXSbicHSj3/sJ/flOYoBTY4qLjnUmFmCCIVz93mp7viu/uyd0RZfP7s8LXkLwSu/+gTZNtXUkbjoR4eWPJK+FpkYXbXw4sQQmXhopZjogVq8+MMyb+HDt/u4VOwVLTAFs/mqXtITGpMYBTT13g6FfOaSLgRPf46HhM8Bp5eP7TbwoTlAB0Bh1GiwFfVrw857aPZdn6kRbh9pKsZ+tHswS2CJa3zIMjZaHtIbGSnhWCUvvDcaGKYRW/l7o5QPOd65eTzKu78ptu9LP9o6sMthU5lLrAInVzgKt+qwVP6xp9sE7OLXmDl9guL/FrPZSLpVXHjHK5jE6nw520YLIacCdrPrBcLDaURUhIWXb5b8HhcPDqq6++7dnNG/j/X3R0dFQJSrulu1YSlCql3uuCXzlqRpKNyCFb48C4vkR8sUj8Og+Ja7wENzvWliVR4cnZ2P2xDJFdrrpTrh2zbf2NJOHtSulXkYX69G1BIqok6loEpQrMXhPZOxXpEGHt8rsjCoFDkDgQ3Oai630pTOLDJFs/kqPryZRwe1dGxmQ3gob1uJPf7tNEUGp5KEZgs3j55MIsHP3nc5z9vvgEvv3RJrqeSAm373g8qUmKTU7YkMM2rH7xmNaVtmFyaSjVdBnQeg1XWsadFo8HY9f42Pm7rULSZKAQdTa/PysmqQFQgJP/2suRfxYnKJls0PpQHLdgzHnsaxd5+b+JE5QALD4Js1uLXW1s/0QrSQ1y2NE9XrrelxJqW/EZ2bsi2GPr98HZYYWgZI9JpG4RexczfXlMNtj0rriYFN1ECUyw+TeSS3zzetj+G010P7FO3Fw3LrTcHaH5NvUZSqXVx4yislgghyXsy8vBl8srpayAvfaH2b51B4ODg3R1dfHqq68KP8cGNvBW4dSpU2QyGUqlEm59aAVBSWfQNyQhyWEzjoil4W/1MVJlUav5Jh+52wNrx09131fHI2E2vytWf9KG31EFgU47mx6NgHElQalcLq9cXDMqEr4YYW5IjOgSu8aLNWBSZOfG1z/GGjTRpPrlxXmUBbd1CEptjyYIbnEL3Q9A9Cof2z7agiwovQpgdkua4gkW4ZW/PClMUHIkrWTuCGMUvyWOf/siJ759UZiUlrjez+b3ZzFaBNPJRtj2sRyhbW7he/KkZVzN4jGLUTZqeg+XA63XsHgknAk7trD4MZ3vTZG7Lyrcvu3RBB2PiefILvx0kCNfOquJoORtdZC+I7x+QxUH/uyEZnKZ5DBpynG2PZZg8wfEY3mjRTnG2yGWV1ucB4vPSNN+wThKJSglb/AjudavHlshKAW6HMSvW18GsfK+/JvsdL4ztnbjOgQ67ez4YFKRyFzNh9f5fm+LjabrvYS2OigXi6tKipSLRXQ6HTafGYvLiC1UCx4r+bDl44zHGORq7114PB6ee+45du/eLfwcG9jAW4n3v//9/NVf/RU6dFxjuW8lQakiYVi3UGzzGrB6TFi9RqGcl7vZRupGP96cbe2cl/r/1qCZze9N4G0TX1dpuTeEt1Vp35CgtAyBbideVfprfpXqtvUwWA1Edyv+SYigBER2eTF7JGFijxyzkr07WpUyE0HH40ly94j7QXvQgtklaeKwXjo4ymv/S5ygFNvjw5UWf3cUlZxX7/PiBJHWBxJk7xaPDxLXBzRJsVlcEq6UvVYZXwBWv4RJ1lDm+jJgDUhVQooIPBkZd0r8Xbizdrrelxa/hgG63pchulN8Hffkv16k57saCEoGhUQkx8SqtPY+P8LrnxMnKAHY/GYsbvF3LbmMdL8/Q2i7uJS0O2un+W4x+dzKvYe2e7AG1r+v4pwqs+YyEBa8p/nRPBggfUtQTIpurggGyN4dwtfReE7SaG7d9mCElrvCQr4fvZ7MzUHSN6m5xGJxdSndSs4rYsYeWjaXXCXntdW6j52brmF4eJjW1lbefPPKbYr9VfG2lHt76qmnuPvuuwFw6LzssdxR+3GVhSzJDflJPQc/q62izomnL1GYEd8BNHp6GpOGsosWj6RM3kWZjFcHsAUs+LIyI0fXZxBJsg5fuxOrX+K1vxWTh0ruDWDzWzgn94nJvHklzA4Tdp94CevhIxNYPRLTAiXRKnjlL08Jt5VkcCQdwtJ2AKEuN46EXVuVnDziZbWBsz8dINDhFr6G2WmglC+RHxdfPTnwZ9oYx9nbw3gyDn7x/z2i6Tgt6Hg0iVk28bxgBYDLkWNbzBcpLogzZC8+N4hZA+lNqaamjZUe7HZj1XANACTwtzoZPrx+ScKhVycYelWsZGsFI8cmMTs0kP3yJSxOE96MQ/hamZsj2PziUpGOlAVPzkHWqOPolwVJhZtciozH02L9xGg1YDDrhO/p0qsTuNN2xgSrb5z/6SilxTIXfy7Gxh84NMXAoZp/WnFflbFMJdNaRpy0L17DL3mKs2fPsnPnTl5++WWha21gA28Fstksp08rck3Xmu/HZqxL4jaY0Veqewy9McPQG+I7xC4+N8biXJHB16bWliZRMd07y+xwnuFjYmV7zR4TBoseo0V8IuvNyhSTZfoFpV0z+wO4MjJ9L44ISzb5OlyYZKOwD3TFbVi9kqZqKKPHJzWV4R1+Y5LhN8TLIXvbZEZPT2sifHibHRglA0OviY9lWqsinf/ZILND4qstiwtFDAvisfzY8Wle+BNtk7n2R5LMDi/w+ue0SbeKwuQysenxFIOvjQlXYzjwpxok8YD89CLF+aKwNFlhtkTfSyMMHRkXvoaW/gdQKIAn56BUKAmXawdtfffQZ7XJ1k2cmWXq4gyjJ8V1ieWgBYtHEq6sZnKZ8G9yIckGjn5FbPNE5uYI9oCZsz8ZFHpuZ0pGjliJbPPQ/6JYrGOyGLD5xWPOyQtzzGqo+HviX/vX3jm8DK/9g/ot6HSY5LJS3a8elbFMPaf3eDtO3VkmykPs3buXz3/+89x///3C19vABn4VHDlyhK6uLsrlMn5Dgm32m6q/6QyNxyijDYoLeo58XXxRA+DEM0OaFmdGTs5gcYqTNS1uCaNt2SL2Gt9uoMOBM2HF3WRl/LQA2dsIke0eHFErx74mVvUmvtuHJyvT+/IYi1Pr+x2jRUnYLwTECUTjZ2aQo+JVbACO/bOGfKURXAlt1SL9bU78HW56vq+h6tIijGkYw/pfGmFhvCBc9cYiG1mcW6QwI57LOfJP2iosxnZ5iez0ceCvTgpJdF0OcvdEkUMWXv4fYvHU8OFJoZxPPRbniywuiO9S731+mFGveJ+dH18EAZJfPXztDtxpmTNaKnlp6LvTF+c1x6gjb04yp2HOszgP9oAZV9QqLMOXuDaIu1mm96VxMalIt5HQFjcmm4HTz4jlsMJbXRgkPRefGxVqb7QaMNr0mJxGCsvl1hpg7MwMvlaZ2QExHzV6YpYe0wjDR8Ri7KmLeV7537V5yJIKVNQqP1XGA+O0g03lW/kZX+Kll17iqquu4oUXXhC61gY28Fbg3e9+N1/84hfRoeda+8NYqfOfDaTbKtU9pvoKvP4F8Q3s46dn6WGI8dOzQjmvubECU73zTF4Q+1YNVh0mmwGjWYMsXJuTcrnM6DExHxje6ia81cPIiSkWxgRITRKEt3mxuCXOCMYgjogVe8hCcZWKoI0wdHiS/Kx4Qmqmf57X/rZHuL09YmFmcF5TBSV/pwvJZWJCg/yciPRXPc79eEDT+nVxoUhhXvwh5kfzHPqs+LosQMt9cWaHFzj5rStTkRJg0+Mp+g+MCEvZH/2yNkm8xdkihZlFjBaDWFWeIpz/6SCTF8UVQKYuiLetXCPY5Uav1zHdK36sLWRmYWxBiKyk9Z3lJxYZPTnF5HnxPm5xmbEHLLWKROvAIEF0pw+bzyzsQ2K7A7gzdoYOj1PMr583svklPM0yUxfnGBaJB4sg2Q1YBAjoFUycndVUGbTnB4MYTOLrFz3fV78FnQ6DpUxxeRdZlvNy9aRpMo5ztnCY3bt3881vfpP9+/cLX+/fCm87ubevfe1rPPLIIwC4dAF2226v7ZxcDnVxt/nOAP42B8e+1cfEmfzS3xscJ8nQ/nCMN79yoeFidiOT+Dtkho9Ow1olpdcrHb3qYUvPWZEvEjgQADkmMT2U18SvWFXO5NfUHTK3h+n5jvikt+OxBO6sg9f/4bQmIpQogQGUalDulF04CfF2hSNlxd/i1EQK0ir3Fuh2IjlMwkHD2xUt98dxpWzi71yj9BkoFaEMZgMv/GfxBU9Pi4zRZtBMWHpL0CijLSnJ6PlB8Yd3pCxMnRWYcKnVjrR8q8pha2TeG5VmrPhrnR53zsb4udmV73KVc2bvDFIulen57vDK06o7x+qx7TebMEg6XvozZbG6oW65Ol5N5yfo8b3IwMAAwWCQS5euTFn/DWygHul0mrNnzwJwnflhrCZbjYm/HGqcsP3DSfLTixz+Yv/K3xscl9rvobRQ4vxz441vYln1S5NNIRxN9xaqcVmjnf/rlb5eFeWV1xMhC1RiNntMYkZUKhiw+QxCRI+VF7wycZm/28n8aIFpDZPr3Z9qIz9V0EziqEg8iWD7x7KMnJjirEYi89sNkau8zA0vCBNpLkfuLbkvwPCxCWb7r2DZ7ysNE2z/UJahNyc5/yMxGTqtkomutI1Nj6e49MoYPd8R38GW3Bfg/E+0EQFW4C2SHQGwhSVmL+XXlXurwgRmh4kFgTllJYYyuYwUJhaX/6j1VhWsEZfpdDo8WRtjpxq8yAZzd5MDWu+O8MbX+hv7klJpycKCp9lK7s4AfQcnuPjz8cpFVx6njlfnfAfo6TuByWTiqaeeYt++fes83AY28Kvh9ddfZ/PmzQAEjU1sddykVGptQE6qVEqK7nAS3eHkxHeGmbqYX/J7w8pIRmi908/p7w03rJpSrfBaB2fczOTFhVr1gDXiwIYolYSJhUZZx+K02lYgXpNcRvIzi0uq/awn92bxG5nXKo1xBfNh0au89L0gRkYASOwNErvKxxtfPKOJCLWcKLDmPe3xEdjk5LXPn9Eu7/c2gsVvwpt1aLKvVrk3Z8qG2WXSRLx/OyJ2rR9/m4PX/rcgkf4ypB+7nkhhdkuayEe2kAWzy8jYCQ1JoOV4C+MuUIhH82vI2y7PQVkDJuaGBCY9amzV8FtdJ35aFWsRIXQ6bEEj+cnFpdcrlxsSMwCi22T0koHeF1cS7SpVlurRdn8Ai8vIob/vW/Vey+UyOoOe+cV5Tjp+Ql9fH+3t7Rw9enT1e9/ABt4iPPzww3z9619Hh5699keQDNZa1YrlUOOgjkcjFGaKnHx62ZxwlZxXYJMdnb7M4Our5ACWr1MawOo2MTdSWFOG963KedVLKq0ZQ6nHmT0mIYJSBSa7nsJc8YpJvWmFHLNSzBc1yaR1vz9NfmqRY1/VVgRDi8Rd2yNxxk/PcumgeMzydoS72c7iXJHpPrGg83Lk3vwdTqb651kY+3ec80J552OnZ4Rl6DTJn6HMk7rem+bSy6P0Pi++NhvocjF0+O0T10ouI/nl+ajlqPe9BkV+Lz8h8PGpsVcj0pTmNcXKT43m7pX1C4MBe0hiZmDZi1yFr2KQoGmvj3PPjjZ+98vGK6vPSOs9IfoOTiibwGH1ubvBQJ/8JieGX8FgMPDcc8+xffv2VZ/r14G3ldzbj3/84ypByaMLKwQlWDvY1uvpPzjF7FBeiKAEEOh2YXGbcGXEyge7s1Zyd4Zoe2B96aEKtn+sma73iktNuZptdD+RBBAjKKEQeyRZp1SAEXBcklcivlcpRyciZ1K5RqDbKdS2gp2/00KTqNQD0HRTkMgOnybJs1NP9XLplTFxgpK6yVcL6cFg0DbBlRNmtny4GUdKvOKUM21DksU/Q0mGPf+hncwdYuXyAKbOzmmuWqQVQ69PaiYo7f5UG5veJV6aGsDTpk22rv3RhLAsGUBZi+YN1L47DcWUzj87yOlntDGWWx+Ik94vXmJbkmHHb+VI3Szus5CURVIh5GF+MI/klYhdLfbdVghKFb+17iXUbzW0w0XHY+Lv0L9JZvfvZXHn1invWZF/k6Dtvihb3iveFz0Z+6rlQ+ulFSoYfGOS0Z4ZoaSSLLnIjlyNXq9nYGCAREJ8HNnABi4HuVxuJUEJ1k7y6nSM9cww8NqynQerEZsAT8qGd73vsg7tj8TpeEiRHhKR4/W02NjxsRTOJnFJhdYHonjUEtkipAez10T8OsXniRKUIrs9mGyIE5RM0PJAVFhiC5Q4astvNms6Jr0/TPvD2vzL6Wf6OPcTDfFE5X5E81pq+1JRfCzO3Rsle5d4TIQJXBkNGnooJcV3/Ja4jCpA/wujmir9XA7O/2RIE0EpdWuI3b/fpukaJpcJOS4e1zqabHS/Py0uQ1dQvm+9UTzmrn6rgpeYODPLxReGufAzcYJS4no/8asDhLaJl7NO7guw7aNZ4fYA/k5H1aesh9lLyruOXe0Ve/YCLIwWMLlMJATnWBWCUsc74tjC4g5l0+Nxup8UjCFR5Ala7g4tkQdZC+6UjM0vEVhtHqDXL5FkGDs9x/SlBQbemFp3LANoGtlBzNHE7OwsN954I88995zws2xgA1px6tQptmzZAkDIlGGrQ6mgtFr1pMpvQyenmby4IEZQArxpC3JIwplYJS5aliuzeI203h0gvc+zprRbPToeCZO7qyZ1uR5ByeIzkrtLmZ9WCUrrILzDjVFWE9YCRAmjBUJbXVAuCROUwjvceDTEqKAsYkWvWl+mqQJfh5Pk3hCRneLjSv+Lg5x/dlCcoKRu8tUi5aWrjL+CJBTJbaT9HUnsUfF42xayYJS1FfHf8VstxK7zC7efHy5oIihdDibPzmomKG35zWZN8m0ActyiSfOg6cYgaQ15n3Ilzha9RqVvaLin8z8b5PTT4lVHAFofjJPSkPPCqMjjRQXzUZVj0reFhJ9lfnwRowUCm8Vy4hWCUniHW0j2rfKtOlMWMreK59DlqJktH0iIz3uN0H5fhJa7l/WTNfy8t8WOJ9P4/DqDQSG61mHwyDQjJ2fXnLNXfrMYLbRP7cNoMPHmm2+ydetWsefYwAYuE+9973v5+te/jh4De+3vUAhKsCpJDwCdjuFj0wwfW6Fju+q3487Y8GbXWLdYFntl9vtpuSeoEFwEYPVLdL0rjj0kvggR2+PFkVSeV4T0YJAU4gIgTFByZ+wYrAYK0+IEpdi1fuHnBoWs0vpQXEimqYLk3gC5u8Wl4QB6vtNP7/MrNySvisozaCJm6TStP0V2e4nt0TDWAdblEujrIHF9gM73pDQdM356RpigdLkYPjqpiaAU6HKx+YMZTX3LIOmxaFBJMXskMndGhMb5GnToNRCpq9+q4HPkJxY5/5NBLgmSoECRY2u6MVSVgRSBt91B+2Pa8shy1FL1KeuhQlDy5GQxGcgi5CeKGCSd8DUqBKWmfQGsPvH33nSDj5Z7149TK+sXkR0uWu4OYvUty3mtwlexBSSccQuO1fKvy2RI50YWGTszy3jPnFDOKzrdTotjG3Nzc+zatYvXXntt3Wf5t8TbhqR04MCBaqkpty7ITtstjfX3KjAYCO9yY/ZJzA7mOfzFugmQTrc6sUmno/fnYxz6mx6GXm/AWGlw3PipOYbenOLYU+ILM4sLixRmxUeo2C4v9rAVSdApSl4Toa0e2h9LCV+j9Z4IyWuC2MOrXKNBUim42a1pomgPS+iNek0LTOd+OEjPD/vpfVac5JKfLtHzjPhiw5Ynm7nqD7QtzBz7+kVNVZTczQ6sHvFSywDtDyfZ8qGc+AGSxMJUgZkh8coH6VtCtD96ZYkOoZ1uut+f1nTMwmSBOQ2BRtNNQToebiK03S18jBy1akqgnfxmr+bKWR2PJdjzex3CRKWBg+MMva6t7PfpZ/p49W/Emeb5adAbDUiy+AJTdLsPd1omsS+wfmMV3e9Kktwr3l6OSYS3emi5X7w/RrZ7cCbFF0inB/OUFsEoCQZ/izoGXh3n2LdW+pPVEiwv/80ZDn727KrjjG7ZGHTx52OcfkrZeZPa71s9eFDHPJsks0d/LwaDgb6+Pvbs2SP2LBvYgEZs3bqVU6eUkr77VIKSzmBoXO0LQK8ntkcJ/Hu+P8rg4eklv60VGB/63xd59QviBM1TTw/Q+/IYFMVCVZ1eR3mxzNyYIHnZBK4mGxENmtrNt4aIX+0TJ2CYoGlvgI53pISvkbzGj6/Vib/VIbybX7IaMJr0mmTYXv27M5z8V22E2eE3JhldnqRbBSYbXPV77TRrIFVTgIN/eUq4og6AI27DkRAnHYW3etj0jpQm8snsyALzI+JVOzHBpncl8WokVmtFy4MxYteIJ6vmR/LMj+c1kdm2PJmm7QFxorDRosfmt+BOib+TA39xkrPf00am3/37bWx6VJwUc/5Hg5qqL114dphT3+lj4BXxJA+A3qQX9w9Aal+IyHbxRW57zEzyej8td4kveLbdHyF2lQ+T4CuxBU04YlYi2wTuS68DvY7FuSJFDSWtz/xggP7XJpkdEHNaQ4enOfS/zzF0eHr1cUavXxJ7Hf3qAIWJEragCf8m++oxmzrmteSvwauPotfreeihhzh48KDw82xgA6K4dOkSLS0tlMtlQsYUW+R96+a8PDkbFo+RxWk4+Z26fIlOv/pisF7H6Ml5XvvHPkZPii0ezI8u0ntgkgvPi/u9xbkiiwtFZYPgGhUAKgh2OnGllOcRgdEC8Wt8ZG8TX7xP7A2R2h/UtDgT2emj6QbxaxhlI3qTtlTqyNFJTvzrRfpf1mDfeejTsBu65d44Oz6pjVTd+9yweEUdQA5ZkSNWsYWDyn3dF6Pr3Ro2pxlhdmiB+RHxXFFou5v07RoILpcBV9pGywPaFjvnhhaY1fAcvg4nne9M428T3yjqTGqLhfueH1HeuYbqSMkbguz6ZBtGwdTaxJlZTRKCoGxEPfyFs+IHLIJR0iNZxVciPWk7wS43UQ3zv5YHEqRuDDYkNjWqRGKUjSSu9dN0g3ieLLTZjafZJk6emlyglC+LF7ss6bn40hg9P1zpT1YbR974+gCHvzSwamUnncGw5LfRE3Nc+IVC4gtvltcc1zAYMBot7LU9gtFg5LXXXmPv3r2CD7OBDWjDxz/+cf7xH/8RHXqutz+GZJDQGfSrksN1Oh3eNoW4PPj6NGN1srQ6g2HNucjJfxnk2LdXmdc2OO78z8e4+MK4MMFFb1Ck6/PT4uuN3lYHgXZxEkLsKh/J6wNILnHfmropRPNt4mOwt8VBeJsHV1KcIG60GjGYDZqqyxz/+kV6viu+dggw3TcvLs9lgK0fzGomEB376gXhijoAjqhV0zjvSFjZ9I6UJvLJ/Hie2WENOS+g6aYQjoT4es3lILbHh79DPCaan8gze2kBgyTef1sfipPVkF/R6cCVtGPTIBF97KsX6D+gjUzf/b40mVvF86lDhyco5sVzMuOnZjjxLxeFJSABKILBZECSxe0bvzZAZKd4zkuSDWRujRC/RnyzQmJvkMR1AQyCMaHBasCbkzV9I4W5RRY1SCj2H5qg96UJpVLeihtYeZ9TvXkO/1Pv2jKhy9Zrzv10jPx0EUk24GyyrLqWUxnzooV2stI2AG666SYOHz4s/DxXGm8LubdTp06RyylEDVnn4WrHfbUfl7Hz61/i7o8nKMwVeeVv1BJ89QP+8sfS6dj0SBijbOC1v12mT7nsxdfvCIhf4+HiL+oGjiso9yYs86bC02pjrGdak9xUZI+H/uWJp7W6wGXIOl1pdL0nhVE2cOivxeVGmvYHsYcsHP2SmDapHJPQmQxMndWoG6oRoZ1udDodl17StgiiBVs/mkWyG3nxvxwTPkar3Fv7I3HcOSfPf+aoZvkzUUheifhVPi4+O0B++vK+NbELQaDNKUwkCmxxEd7i4fjXzwpX6mraHyS0zctLnxF/J/8WcKSsK/v8GqQDR8qCTqdn8oz4yl9gi2tt2brlmZZKfnmdfnW5pRnrEysWnwlH1MyQWh1m+aR1+XAZu9pDbKeH1z5/jvzksj5ZP66oSfvQVgeZm4IMHJmi53sjlZMuPa5ujFswDHHU+CJDQ0Ns376dAwcOrP4cG9iARlx//fXVahHXmh/GbqkF58t3Rlb6c+ZmD4E2mRNPDdaSNQ36egUml57ux2Kce26E4SPrVJVRj/VvsjNxYYbC9OrnrcevUvpaq2wUKBWbRo+JV8hxpWwUZgvMDohP+O0xMzMXr+yOJE0wwY6PtnDx50NcOiAWr5hsenL3xel9YZiJHjEjezscjJ6c0kS20gqTy0Rkh4fzzw5eseuYXCa2fyTLpVdGhck3lyP3tuv3WpkbXuDw589e5p2uj9A2D8V8keE3tJGrtUKOWynMLbLQaALfAK0PxZm8OEu/hqoJmz+QYW50gRPf0EbOu2wI7JSz+U3MThQ09cXQdg8Dr4hXcjDZwOK3MnV+9TnN8hhqieybYAwFLPW5gnIl4R1OLh2o619rVVAGNj8RZWaowKlnhteMoSrjxtb3xzBaDLz82YsrfqveT91xw+nXOfT6K5RKJfr6+ohENBAtN7CBNTA+Po7P56NUKuE1RNnpuav24xo5r63vCVCYLfHGV1QCb/03uSJe05Ha68Lmkzj69bUJv/Xxk7/DxvDRurF6LcJR/Xe3rJ1IanGJzFv1PKsfZw+bWBhbWLU6UCOSgK/DwcgRDRVvjGCRjcyPq37v158iJX17GJvXzJF/EsvHAAQ2u3DErPQ8IyYXLrmNGM1GZgeubMzpycnoTXpGjl65WKLtkQT2sIWDfy6+sUur3FvsOj+x3X5e+Z+nWJy+Mtp4RgsEt/oYPDxxxa6hXAhcTXYmTovNaeS4hcgOL2e+e4lFQVKyv9NJ4roAh/729L+NlKBghQJrUGJOQ37b4pMwWozrVouoj6WcKSuTa+WSG8RWVem3KyH3VjemGK0lHGELY6eV51m+oLXcj3tyNpJXuzj6rQEWJ5f5xvp7VX2xIy7ReneAS4enufi8miBdPlaZamysed0Mxw0/4tKlS9x1113867/+6+rPsYENaMQf/dEf8Z/+039Ch45r7Y9gk2qbiCpyuhVUvq/AJhvx3S5OPjPIlFo9u/47WZ4rM1j0tN4T5OJLEytz48u/WfX7kiMS8xNFFuuLG1wpubdVKv2sJfcmR81M9wquh5XLWLwS5TKaKt6YPdLbTsJr07ua6D8wKkzaMEgQTojMxQABAABJREFUuybI6PFJ4YpCctTC9MD8FZXEM0h6vK0ORo9PaSKtaLsIbPvNHJcOjND3olhO5nLk3rqeSDE7ssDpf9VGNtMCZ9pGuVheM1/yVsDskSiXimLSZEDsGh9zI3lNJKLmuyIUphY5/7Oh9Rv/G8EkGzTLQDrTtsZrjatu+gerb534blnsVS/79lbKvVVRF5e5M1al4lH14svIRMvGlcxtAfIzRS7+cmLN3FVlPMrdFcDqMSnk8mW/VY+ri73Goyd4+c1fYDAY6O3tJRAQJ9ZfKfzaKylNT09XCUpWHEsJSsux7AWeePoSb3xNraAkUNYKWJlwWCOQb3swTOJqL+6sICtUgl2/kyV3nzh72NNqp/1hZTeOKEEptM0FEowdnxUmhDhSypaXFQSlVSDJeuSYVJV1EkFkj5f4DeIsR4CtH21m5+9o2+2lM4qVH6/HuR8NChOUADK3xuh6p7bKQJeDgZfHNRGU5JiEr0Oc5Qlw6K9OaSIoXQ7e/OpFnv+P2ghKlqCkSUowP5qn55n+K0tQArZ+oJnsXeJVA4ZeneDw58UJSkC1ypocE9/hmbkzwp4/bEfSUJjBHpY0yd1VCEqurLqbYZ3vbOrsvBI0SKxeoW0ZKgSl0A632E3llT9Pm0z7I+I7F21hiV2/myW5T3xHQ9fjcTI3r76LdnlSaHG+RLlcRnJI68qSAgwcmuLMT4ZqBCXlpKseZi4GaBpXGM4HDx7k9ttvF3iKDWxgfTz++ONVgtIe831LCEorUNe3e34wRs+PhxsTlBrAZDVQpkxxQXyxJ70/SMcj4tXWknt97PhoSlP1kty9IeS4WZygZAJfh+J8x06IHWQLmsAEE2dnmR0Ui+9caRuUy5oIStm7I5qe3eQycdUftBG7Vtw3yiElDs5PizMpCrMljn7pvDBBCZQKAJ2Pa5OB1YrCREGp1KSBFOLtcGiycWGiwAufflNzdSCteOm/HtdMUPK0ytj84s8y8MrYFScomWzKBoTUPnGpkuNfv6iJoARKbkG/VvKhAXZ8IkenBjlYgNi1PvydYvHt7LBCULKFJeEKVxWCkl0whizMoiTcTODtEAsiKwSl3L0R5Lh4rJq9O8j2j6aE23tyNpqu95G6SXz+WC7VhU4Ci3XHvjXIsW/3N/ytEfxnurGVlfeXyWSYmNAm7bOBDTTC4uIiwWCQUqmESx9cSlBajmU5r+NPD3Pyu6q/EyQNauHYxPe4SO/14kyK7wbe/ESM5F7xHbG2oIm0+p2Lyry5MlYwwsylgrB8mTWoONKRo4LJfCNY/CZYpEZQWgeenKypsjMoBJotH8xoOkav12nO1g69NiFMUAJIXBOg670p4eo4l4uxk9OaCEoWtxGnhoqMoOxQ10JQuhz0PjfMS//1mCbykFE24moWrxRRqZ51RQlKQNsDCVrvE59vTV+c5+S3+oQJSoCyIAXYfOIdLLzDw87fbtEkDyi5jTTtF6+EVlnAskfE7mt+dFFZfDYqspiroX7Bv0JQcmuojrQ4D7ZQzVeKwCgb2fz+BNEdYhInAG33RMjsX/0ay3NexXwJymA0G9ckUFV+m7qYp+eHIzWCEqwpqWUp22mdUaooPfXUUzz++OMCT7GBDayPz372s/yn//SfAB3X2B9cQlBajvp+P3RkllPfG2pIUFoBvR6DZKBchvLiymIJqyF9o5/mW8W/dW+rnc53xjRVL4nudmH1SwoxQJAcUJGFm+4T22AnyQYwwPxoXphwZPUrc0stBKXILq+mZzdIerZ8qFlY/gmoSncVF8THuWIezv9kUJPkWe6euLZq45eBYr6kuaqOHLVg0mBjivDKX50UJihdLg5//qxmgpItZNZUCWzyzOwVJygBdL6zicgO8Txs7y9GtFU5QiHbVKWcBdH+aILmu7T1SU9OxpkWi9UrMpCSyyBcibVCUDJ7BHNRRTW+MyBc3atCUIpd5dVUgTe0zcWmx2PiMp0+E+n9PiJrxWrLx5n64WSN3FVlfOr50QgnvzPU8LdGcPe1EDFkKRQKZDIZpqe1VT+9Evi1k5RcLuUFmbDw4Q9+lMAmpYMHNtnofCykVNEwGMjcFiB7uw8k6HpniM53hJAcJvJjJbxtNjrfEa4u3mdu8tJyd0AJCHQ6Nj0aJrLDyZGvXuLcsyPKwO41gV5P0z4PrffVJjQdj4SJXe0GoO/gGAvTBfJTqlbhDV7aH619tB2PRUneoCRn5KhE1zuSlBbLzA4tEL/ex6bHa+SA9kdiNO1XWGmWgETXe5O4mq3E9/hwZ2W63lubILY/HCNzu3JPkgzd70viUSUjItd6aL49zNb3K0mOtofiNUciQfeTqSrxI7TdRfeTKRL7/HQ9nqbr/Sly99fK13W/L6UQnoBAt5PuJ9PVqiWbP5Sj+8kskqx0ke4n00T2KM/q63DQ/WS6+lvmjghtD8eJ7fIRvypA1xOpqvyEK2tX2qoydulbQnTUaVcaJSPFRWXQdKSsdD+ZrhI3mvYH6XhnTcqh451Jmm4K8vrfneHEN87T/WQaR0pxPPEb/HTWlZBufzRB+hZlsSN7f4Sdv9tSJV7ErvHR9USq2rbt4TiZOyM1ez+ZZujEBL0vDhPe5VHsoqL1gTjZe6J19k5X7X31/6eDXb/fWm2bvTdK7v4aqaL7yTShnW4A/F1Otnwkw+YPZrAEJZrviiwhk3Q9kara29MmV22YuTVG6wMJ2h+pa/ueFLHrl9rbojrX1M0hOh6vs+G7klU5LzlhVuydMNfs/a5aW1vITNNNSj+0hyW6n0xXB6DY9T666rRq2x9NkFHLa0tepa2nRemz0T3L7P2QYu+2BxNk74rR/WQaf5faZ3e6l9i75f442XtrfXbX77bQ9RvK74EtriV9NntPlJb7a3bpfjJN+CoPe/6wnc0fSKt9Vvktc+dKe0fV8pwjxydYmMov6bP1cnmd726q2tuZtinvdbebridSiiTdMntXEiZyTKrau+/5EfoPjNC0r96fJEjdrPRZS1BpW99nnQkrC5MF9DaJ9kfiZO6o9Fm9Yu+Kj9jjrdqw6cYw3nYnLQ837rOh7Uvtnbs/xq5PtdLxSLLqT0Lb631EqmbvuyO0qhIwuz/ZSveTzUT2KGWzFR+RQpKVwChze5i2h2v23vKhNM23Rmh/OI6r2a609Uqg05O+JUDHo7W2m96VIH69j+S1PtzNMt3vSyJHVR9xo5+Od9TadjwWo+nG2kRPb9BhtCoTjfi1HiWIUNH2cJjUzUpbyavoevceHOH4v/QTu8ZN57tq5225L0RGnUCaHTq63hXH12Zn8LVpLjw/RuoGNcjU68ndEyJzR6Bq787HI1WZkeBWVcIJSN/kpfs9EZrv8FXHqs7HI4Q2K+/c32ql87EQXleULZb9OJ1Onn32WX7nd36HDWzgV8F//s//mS9/+csA3Lv7cbY9kK3+1nybl9gupY9KXhNtD4aQoybie5y03uej9R4/Q4dnQK+n+TYf8T2KLzHJ0HZ/AFeTMp4Euuy03Rdk9lKBV/7mIp6MleRetay+CdoeDOFRCeD+DjttD4aqUj0TF2eX7OhuezCEr135Ljw5G20PRaqL+ckbfTgTZhbnSxQmCrQ/HCXQpfhCd8ZG+6PRqsRRcp+P5juCmFx6vM0ybQ/GCKv+zZmy0f5YvEpEiV/nI3t3jXC+/UMZcndHsYVN2KMSHY/Hq0SP2DU+Wupiq5b7o8Su9tLxWJIdH2mm4/G4QibQ6Yns9tD6UM0PtdwbJXG94ltMfhObHm9S9NNRkvT1Wt/ZuyMkb1TGE5NNT8fjSSJ7vAQ63bTeF10y9jTfESGlxkCYoOPxmvRYYJODMjrGzyg7p9O3h5fIY3Q8nqwSLLxtMh2PJ5kemOPAn57AEbctSah0PJ4kuM0NgCtjo+PxJCabEhtu/ViWtrr7b38kQXiH0gccTUpbs69ibz8t90U5871LXHh2iNaH4tUx2RaR6Hg8iS1UZ2/Vhu2PJdjzRx1VwpXNb6Lj8SSyquEducq7ZOzJ3Rtl8wczNN0UxORS2rrUuCa0zbMkPs3eHSGpjt8t98bZ+sEMbnVMDmx2LbF35vYG9lYJ5d4Ox5K2qVtDZG5fakO/OibrdKg2VH5L7g+SvWtpnFCRqXOlVXurfTa5L0CuLl5qfyRBeJfSVo5bFRv6TbQ9mCD3YGKJXEnLQ7GV9o4o42zypgA7f6cFe0xZyGl5IEb8OnU89C21d3iXh/ZHErQ+FOeqP2gjd3eEpBpzVu2dUR4uuM1dtXdhFmYG51lcWFxiQ0+r0mf93c4lNkzfHiZ1a4jUrSFi1/oa9tmKj0jdEqr22Vf/pge9SU9gs/Ldu7P2lfa+u2bv9scSFPNFpi/Nr7B34nr/Enu3PRwncpUSt8evCZC5M7rURzxQ5yMeiBK7WrV3yETHexJsfl+Gtvtia/sIl4mOdyZxJK1Ednvofk+a7t+ozX2yd4VJ7lPb2qDj8TjurGrvrS52/1YLLXcq99F8R4jUzcq70Zl1tD8Wx9Oq9G9fh1z1h96cTMtdkWpbgPZHo1XSpqfFRvvD0aq9zS6TIoGk/rv9oSjBbuVbcKWttD9c55Ov8+DN2jn/3ChnfzhM6/1hQtuUto64Mv5IbtWGe1xk1djq9S/0o9PriOxwqDaUaHswhC2gtI3ucJC7oxaXxXa7cEatik0eDdJ2fwA5quQBwjuctNxbe7bMLR5iVzm4xvkAYV+E+fl5tm3bxgY28KsiEAhQKBSw6V2885H34sko8ZIjaqT5JpdCEjEYiO5wkNijfF/ZW9xk9ruwuI0sTJaQwxLNN7sxqvPZULeN5HWuquxi+kY3/nYrZ382wdmfj9F8qxezuuAS7LLTtNddvZ/UPjfBTuWbH35zhtnRPHl1E01gk430TTUCUuoGL6EtykVNDiPZO/2UFossjOXxddjJ3Fr7hppu8BLdqfhYowVyd4WQYxYi2zwENjloubdGRk1c5yV6lXpPko7c3SGc6sY6d7ON9geibFI3qMSv9RGvI1fn7okoi/8oviV3XwTvJgfd70nR+mCE5A3+KqErd2+0OibLcQu5+6IYLcoctfNdTWz9jWYkt2Kn7N0R/JucoNNhj6ptVbJEZKeH9C0hort8JK4LkrkjXB1PrEEzufuiWHxK29C2pdJjJtlIUV28tLiN5O6LYg2qMfNmF8131sae9M0hIjs9nH66n+Pf7CV3XxRZHYN9Hc5aLgolf1MZvyO73Wz5YLq6wOhtdZC7r9Y2eUOQ2LXqPNkIufuijJ+f4fxPBnAk5CVtY9f5Seyt5Uhz90WruZ1dv9fK1o9mq8SL6NU+mm6sa3vPUnu3PRan7dEEFp+R6FVeUnVkkuxdkWoeyBZS7C25jUSu9tPxjibSt9X6S/qOMMEtbsWGfpNib3WcDW5xk76jZu/0baFqzFmxty2k2NDf5VwSW8lhC1F1/DbKxhX2ztXb+8aavY0WxS4VMpWnZakNE3uDxK7zk7k1TOt9CXL3RatkJVezXWmr2jB27VJ7b/6NNG1q/smRtKp9VrX3Ht8SQk72nii+Dic7fquFtkcTK/vszTUbNt8ZqfbZoTcnmBmew6L2/dB29wp7h9QY3+JT7OJtV54xuMVNpt7et9TsLan2tkctTJye4cJzQ0R31qTVUvuDRK+q2FCv2DuuPJy3w4G72c7s8AJGs9Jno2q8VOmzlbjdk6vZO7zFS2SXj/QdtfvP3RfFk1PtnbYttfc1PrZ9uJmOdySV867hI6J7fDTdqPi4Le9L0/2+NP5NSlt7xELuvkidvd2k9geqZKWW+8K03h8jfWMQa8BE7p6IQnLS6QlucZKui63SNwcIbXUS3eHF3+4gd28Ia0A5b6DTQeaWOj+7z0toW40Mb7LoMajzL2+LjcytNV+ZvN5DdIdTtTdkb/PR/9okJ787gidnq8ZWAPGrXUR3Ks+mM+nI3ubDmTQzdTHPuV+ME9uuXlOvI7rbQWxP7R6ab/HizlhAr8ORNOPJKOSsUJeNlrvcxPfIVZm3zC1evOoYKIeVMVB2ubjG/Qhut5tvfvObfPrTn2YDG/hV8IMf/ICPfOQjANzW9iit19Xm+ZGtMr5WZaw0WnUkr3Vj9RvwNFuIX+0gfrWLyfML6AwGwttdBDrUyYsBEte4sIeUTaqOhIXktW7y00Xe/MYgVr+JYLcapOl0JK9z41DXt+xhieR17uqi9mjPjFJNR0XyOg+OpOILbUGJ5F4vBjX3Htgk405ZKcwqMm+J67y408r9W30mmm7wVSWOfB0ysd3KdQKdLrJ3hPGoOQyz20jTvkCV7ONrdyyRjm9/LEbbgzGsfgnJaaBpfxCzRxlnPTl7NQcAqgRXu4PsXVE6352iaX+wSj5yN9tJ7quNU5Hd3ipZyGDV0/XeDG3qpkRn0rZkTIvs8BLc6q7au2l/EHfOTnSXj/j1gSVtg1vdhOqkO5v2B6vkBHvCCpSZHlaIJ4HNLiK7arFt075gdX3LGpRo2h+kOFfiyBfPIclGortrbZN7A7jV8dvqV9pWyDytD8dpqhtn49f58bao+VSXQqCtkGW8bQ5i1/k5/b0++l8aJXaND68qwyfJir0t6jqUO2sncb3in2PX+tn52y11NlTaWgNKW1faTlO9vXd5yd0fJbTdg0FSlWVUUu5ye4e31+yduydOxzuakGOKDeWYVWlrqNk7XCdT37Q/WI057RELTfuDtT7bvdLerrRiQ51ep7RV+2ygy7VELi9xfaCad7N4FXtX+qx3WZ+NXeevynVJLoNqbyPtDydJ3xIhVt9nr/Hh66jkrw1L+qy300nXk+mqTaNL+qzaVl1ndaZtNO0LEtvjY+uHs0R2eauxVaXPVuztSFqX2HvszDSFuRoJvb7PylHLCntHdijnDnS5aNofxJlU+qwtZFbtra/ZW+2zp/6lj3KJFX22Ym9/h3OFvRcLJWYvLWD2NLD3tXU2vNZf7bPJfSGab49WSUSenLzSR6j2NlgNpG4J0vmeDPHrA2v7CElP0/4gtpBZWXN9IkVL3fptZIeX4Jal9pajqr0TVja/P0P2zigYKj7CrbTV6WnaH8ARr9jbTNP+AAYrBLtdpPYFiNQVU0ju9eNsUv1sUFL8rNq/LS4jBou+yiuKX+PBVfHJXiPJvV6MdtWGrTY8GRtnfzxC/4EJYntceJqVtpLTQPJad83eLTKxq5Rn6/nhKOV8CW+u0tZE8novFo/S1p0yE9ut5pENBkKdDiX/aFDm+YnrXFh9ijScK20jcU3t2UKbZQJtNjrl60h6ckxPT7NlyxZ+3fi1kpSsViulUgkdevb534E9KOFWSSfulBV7UKrqS3tSFtxJC7HtTmw+CTko4VEnhO6EFXvIjNGmOvO0DafqKJHAETMT3aW8ZFfcij1sxqq+VE/GjrOOYeeIWPC2yYR3OHFErUh2E7ZAZaCVccZrLEFnzIo7owQgtqAFe9hC74sj9P5iDG/WjiNWd96EFY/qIOwBCXvYgiNm4/DnzzM9NIccqTtvk616XrPPjD1sxdOkTsaSdijBqWd61bZ2PGpbSZawh6240sq/vRkH9rCVgZeHGT87jcUp4U6pu3hMZewRa/VYd7MDe8SKJKtfXLlMabFcrVpT39aVkpW2arDibrbjSssc+LOTHPnns8hRK96c4rTcTXbsESv2SrCSk3HUac4aLfpqeUtHxKa0DavPmnXgTNTaOhM2Al0uJK+ELWzFHrHijCltvc0OHPXvpsmOW70HT7MTk82Iu8lebStH69qm5Oq7kVwS9ogVq9PMuR8O4s0qdqnAlbbjaVbtLekVuzQ7QYLF+SJGs6FK4vBkZNzp2v3bI1a86rtxp2VsXgu2gEW9Rxlnusbql6O26nXcScWGZqeBnh/0sTi/iDNV1zZuxZdVHJMjblXtrUz63FkZd7PM5g8oi56uhB1vVp2AV+2tfnPNMq5E/bsx4lHbWgMW7BFrdfD0ZZ3VRamKXcI7vAS6nVi9JuwRKy7V3p5meam90zKeZplzPxqg7+WhJW19zcvtbav2OyQw2ozYVZt5M2qfrdi7WcadWWbvlMzMwDylktLfTWr/bmRvb1b5t15nwOyUsHrVYLzFgbOpdl5H3Fazd0Kxty/nwBGz4Wt3VIMGAGfcjlt9j/awYm9HXO2HWQfOpL3aXxxNdjw5ta3frPRvVXPYm3Ng9Zp55S9PMT+Yx5mSqwGHWW3rUZ/H0yxX3+nRr59ncb6EM6r2b1np31Uf0Swvsbc7bYcy9L04ot6zFU9G/ZbV81Z8hDsj41J98OBr4+igeg+uJrvS1l2bpLhSNRtavWYKMwXe/NpF3E027OE6H9EsL2E9O2NWvFmZ1/7xHBefH1Laqs/naZarNlLejbXaB+whC+h0LIzn1bZ2HNG68yZs1bY2rwF72IzRaGT81ByetIwjVttZ50xacas+WHJI2MNmXOoY40nbsIfN7P5kiqYbPLiSNX8tSWAPmasTSHdSGX+QwN8qY/WZcCdr92QPmXEnLdVr2oMSkgxBKcl99zxAsVjkf/yP/8G3vvUtNrCBy8HTTz/Nf/gP/wGADss1pDsTS/qgO2lR+qtej81jxBkzI4fNBNtlXHErroSlyuJ3p2x4MsqxZqdJaatODiLbXbgzVqwqCcWdsuFRkwAmmwFn3IJDTUi7klaccQuxPS4wqf4vrH5/JnDGLbhUv+pqsuFMWDCpC+DetA2zbOLVzymVEp0JSzXOccYtOBNWTLLqyzN23GkbhYkSr3zuPAajoTpGO6JKW2slCZNdOp4YJD0LEwVmLxVwqL7Zoi4uebPKeas2TNvxZmXOPzfMxLkZnAlbtRKRN+vAXTf2uDJy1e/bHEbK5TJTvbPVe3DVjT2erAOPOk6ZXEacTXZMViOvff40+elFZTyptpVrbW0mnE32qt+3+czo9DDTqyTFvM0y3ubaPTmb7HhUuzib7Dib7MTUxQRvzoEnV6u65UzYq3ZyqW0lj4SnVcbqkZaMnS7VLoq9rTib7FhUwoe3xYGr2cHAK2NMnJnFna7dvxyx4WyyYwtYa+9GjYHGz84A5WrMafGbcTbZq/3Qk5Grzw1qrBuw4M7IWNyKXSpJGE+zHWfT0raV8178xRB6o776PJ60fcmzebNyta3JBK6UnZZ74ziabHhSstK20mezjmrMWbN3LZnpbLKjtyqNfS0O3Nk6ezfV+qUjrswVut7VpNrFgbu51laxd4Xwodjb7DNz7ieDlMvlJf3Qk3ZU340tYMHZZMceVMettIzJbsSVrCz01Pps5R1XJvrerANX2s54zwyTF2ZxZx3VONLsUPpsZR7lziy1tySbcKrxUbXPVu0tL7V3s4w36yCwyU2g06XE/Op3704rMZvJpC7W5GrfTcXelWSmM6m8R5PDVH2PS2zYJDM/WuDs9waQY4oNbXWx4VJ7y9W4vf+VUfR6HZagGq/m5CX2dqcdeHN19o7ambw4y+nvD67tI3wmnAkbzriV/hfHyM8WsHlqlU88zfbad+9U26oxkjtlR6+HU8/0q21r92uyGXEmarG4O6XMjQsTBV7//Fkog7e5LrZNWKv+3BVXfbJNsYvJaqRUKEFRp7a1VP2jM27FmbBUiUfuZsV39r+sVCpypazVBUU5bMEZt2B1K+/Rk7HhaqqbHyStRHe62f6hBPaQpLStzNczFtx1bd0pK+5mG742GUfQjCtuQQ6p86QmK666mNPdVHu2a0L3sHPHTnp6evD7tVUK3sAG6tHS0sL4+DhGncR13kdxJy041Q0XjpCEO2nBoG6qcKcseFIWvBkzrrgZb9qCS/WxtoCEu8mCZFPaetJWPHXfZrDdTmynMke1e024U1bMLkPtvJlaX/ekrXhyFnytViweI1aPqerf3KnadwAK6bvyb7NDj7vJxqVDUwy8OqnEd81L44/KOGVyGHGnbTgiZk5/d5CRk1NL5m3erB2veqzRYsSdqeXPXEkrpVKZcz9V5qTenFwdp5R7slfP5Ugo+YLJ3jkG35hEkk3VMRkUf1eJI51xG55mR61KS7lMMV8kr1ZRqr9/OWzBk3VWSRxuNQY68k/nOPrl83hbnFU/avOb8WSdWL1q/JF1LLkHyW6kMKNcw+xT2trVONKdkZfEVp4WB4HNHiS3EYvLqLQNV+Iae3VcBSV+qown/k1ubCErjliFvGVT8lTVtjI+deHMaNTjyTqxeS30vzyGM2HDk3VWSRy+FgfeXP17dVZzaQsTBSTZiNFirLb1tNTuyZ11VMdkR8SKq0nGmbSjNxrxNDvwtNbuyZNzVG1oDyt2MTtN9L84zNzIPN5sra0vV2dvn0W1t7n6jsNbPFVijzfrxK32F8ktqTasta23t+Q0Vcdzya7YW1bzI66UbUkc5utwktwXxNvqQG9R26r5BXeTXbFhxd45O74WB73PD3P6B314ss5qrs2VUNoa6+zta6n1b1vIUo2XHDHl3VTs7W1xVBdAlXfjwJ22M9GjLHwpNlR9RItzybvx5BzVuY8OsAestcWlrANvru7+s45qHsvqVeztStnx5pwEulxL2npanFWbSrLaZ4O1WNzb7sJoUcfzVmc1rjE5TXiyzuqzuprsOGJ2jnzhHPMji3hbHbU+W7F3pW3SVrX3+Z8OMje6gLMur+VpdlTnRo6k+t1XbJhzgA4uPjcEi2v7CE9Wxqu+m/4DSrWIig3lsBlPRq75iGZ5SczpiNuYHV7gzI8HsQUsuDN2LBV7N9urxAHlOnY8GTunnh6g54cDuJM27AHVR6RsDdsCWJwG0OnITxbVttbqb8p1bNVxwmgx4k5ZMMtGJi8u4EpY8DbXjwsWPGreymhUzuVU5+uOqBlPysLWJ8JEd8h40zY8qfr4yYIzqpJvw8q6jtECwU47rrgVb11bT8qKS63cZw8oY6BJNiIb3dx7y33o9Xr+8A//kB/84AdsYAOXgxMnTnDrrbcCsNl+E7FMZElfd6eV9UWdTofBbMCbs2HzmQm02/G32vFlrdUKFN60tbpOaZBQ2qrjd3CTTGSro0pC8aTV70+nA4MyDlTGentQwpuzE2i1gQFsATOOcC3n7M3Zcao5DLtfwpuTMZgrMZwNq0fi+DeVSom+nFyNl6xeCW+rjGSvtfW0yFCEN750EZ1JV12jsHjUtmoOxtVkWzL2mGwmZi7NMzecx+yU8LU6sbgrbWV8bUtjCleznQu/GGL02AS+NhdWdR3KmbTjqxvrfS3O6nhikHSUiiWm+hXykCNpW9LW01KboxokA742F2anxOEv9DA3lsfX5qqSOHx1MRCAr81VzflbnCb0RgP5ccU3erNL81jeNmd1DVEOWfG1ufBtqq19eOvuydvmrOZCrF4zvjYXJrsRq1/CnZHxttQ9a5sTZ6pGsPG1uTC7VDJRSokLJs/MMjuwgK/VWZ33S04TvjYXFm/F3na8qr2ne+col6mSfCS7YpfKeqIzYVt6vy0OXE0y7pS9asNKn3XElGetf48VG575YR8mmwGHOpY6IkrbChHDm6uNh6CQ4FrvT2CPWLAFFbvoJfVbyC6NVbytzmrcrjPq8LW5qn3WlbYvbdvmrOYlLF4T4W1ecvcpJBV3Wl7SX/ytzupak9ml2Nvikuj5Xj+L84v4l/RZZ22OYjcqbdUx2RmzIIetyOEK0b/2bowWxYaVnK4jbsPb5mSyd5bRE5NKXKbGihV7V+L2ig0rMDuMtXVXg9JnKzGnvWpvNV5qlvG0yIS63fjaHPhaXTjUb9ketChtrbpqW1+dDX1tTvyd6kYKv/JuKkQYpX/X29tBfnKR/gOjWNxKP5TUPutOLTtvq6Oai7343CA6na7mI1J2fO119m51VMn5kmzAm3Mxfmqa/heG1/YRVqV/2IMWJs/MMjM4jxys+UpPzo6nuc7erc4qKUyOWjFIek5/rx+Kiq/01sfxLY6q77SFLOqzGTjypfMU8+UlMZy3teZn7X7Fdxptig1NspHifImiWgzOl5Or3BKLV/HfVZ/cpMRwFTWKQLuMW52TW9xGvNnafN2ZNOPN2qtVlTxZG9HtDjY9EsTkNODNWrF4Kt+yBV+d8pcnY1PyeFEJT9qKv9WGVSU9OiJmfHXzOm/agkvdGLRZ3sfVV1/N6dOn6erq4tcJXVlEOP4KIJFIcPHiRQBucb5vxe8VTb/lGrEAZp+O/OhKbT2gVgKrTq9v8/uiDB2dpu9FtcTwOo+85f1xzA4jL/zF6ZXyVY00WyXY9dEMg4cnOPsDMc1HOSrh73By5vviGpGSVyI/uuyGyr+C9NVb+OolGU1yV6BUAOo7MCJejhvY84ft5KcLHPzzU1fs/vxdTpJ7gxz/+nlmLr299HEvB5s/kKEws6hJ7u7qP+pg8vwMb3zhnFB7Z9pGy70xTn+3n7Fjv/4Scb8q2h+JYzAbhJ8fUMhGGrpLoNtJy70JLh0a5fRTgqUrJeh4KMnQG+MMva5RfkXj/WmVVLxcWIJSTVJyLQkDFfawRLDbtcJ3rqYfK8mw+TeyjJyYouc7Dfxtg+O63xvHFjBz6HM95MfXuJm6kovbPpDg/C9HGT4yo96Qet5GftZgQHJCfnyl/65MhhsNzYdmfshQ8QKyLHPo0CGy2eyKNhvYwGo4f/48TU0KoSFhaqfDtmdlI/V7WBF7mUCy6CnMNo7LKuWxK3GZv8NGdLuL17/QX/tOGsVs6nFWn4nud0WYODfHsW8OrmxXWnnN1E1+PBkrr/zd+dWlu5bFbMm9PgYOT7JQkdcViKHMXlOtPZXDNMZPorGalrjMhCbJMlAq0njSMie/3Sd8TPauCMHNHg5/8SxT58Sl27TeX8djCRYmFzn9zJXTmv+3grdNpunGEMe/el6R8xJAxzuTOJN2Xvj0m8LXaX0ojkHSa4rv3q6wxyxk74jS8/1Lwv3MZENcslHFto9mMdmMvPgZcRlkb5tMoNPN8a9fFL+QTndZ97f2Od+6vUUml4nCREE97VqS6co1k/t89L8yWT2milWOTe71EeiQOfjZxnF0tfS06ttNNtj6oTQzA3mOfKVOqmiVGAogul3G02zjyD/X2q8VQ+kMekwuyI82ir0q+YOlxxUKBX48+wUAdu3axYsvvtjweTawgdVwxx138J3vfAcdem50P4GxwkqoQF/5FlbGSEaHjsVpoEHcVf326mKrljt9jJ2dY+jo/IrfVhwHtNzpxREx8+o/9K6UU2sQdwFsfm+UoTcm6XupsQzi8m/PKBsJdsj0vTTesL1yrZXHrJC6WiOOWjcm05ovWyMWM1oQlp6rIHNHmJE3J5k4Iz4g7PhkC/npAq9/7oyma2m5P3vUQmpfiJ4fXGJuUEzW5e2M3H1RivmSJrm7Xb/XxtjpKU5+s1eovcVnJHdPnPM/HdT0Pt+uSN4QxOw0cvJfxOcFGAENSnT2qIWud6fpf3mEcz9uMMdbBembQ4yfm2HshGBusZJ70Xh/a5/z8uOu5bGV5DKSV6V0RWQ7JacRf6udvpeX+trlUmxVGKHr8ThjZ2a5+Ivxlb83kPxovtWLN2Pj8FcGWajcWyN/Wjm2XKL9/gD9r00x3jO/9LdG443RqPikhdLKd1IZCxuMfadnX+XU7EvYbDZeeuklNm3atPLcG9jAKpiensbr9VIoFGix7iJtabDoWum3hZXOwmAzUFxgzRiqkg+zhySi2xyc/M7IinzY0uOUb95gha5HIoz1zHLupw0kshrEXoFNMr52Bye+3VddEF953NLv1t8hM3l+jvy0ei8CMZRJNiiSTEt/XPW4t3I9cU0YEJaqq0COWnCl7fS+MCJ8bHCrm+T1QY597bwm6Tat95e4PkBxoXjFJdL+LWANSiSvD3Lux4PML1+rXgWJ6wMEN7s5+Bfi8ryxa3yY7CbOfl88vnu7QpINJG8M0ffiCLMDYrG3QWL1b38VtDygrGm9+jenhY+xhcz425yc/5k4T+Fy7+8tgcCapcFqqEq6rRV7VWI2X4eDqfOzNd9Za9DwOF+HTHirm6Nf62vsB6rxk+ovDbD5PTGm+xc4/YOxNe+9kp9yxk34cnZ6fljzGbpKDNVovDEYMFihuPwZAEyrH/fT8S+xUJ7jlltu4Xvf+96a93al8GuppPTQQw9VCUo3WN655DedQV9LFNYhcY2L7neH0ekUgtIKqDIhS6BWKHnt7/tqBCUBHPr8OXp+NCi8oG9xSZRLMCeop1oulUnfEia83avIzgliy/ua2PlJbYvSu3+/lfY6qYt1IcHuT7VVpaSEDvFKbP9kR1X6SfQYOWEj1O0WvzfgyJfP0fNd7QOTFgKVI2LF7DRR0KADH7vGV5Vnu5LofHdTVZpOFK/9bc8VX8CaPDPLgT89qYmgZA9LbPlQc1XS7ErBHpaWyO6JwBKwYPGJ65EC2ghAwNDrk5z92SVxgpIKV1om2O1Zv2EFkkLu63o8pemYXb/XukQecj3IMYndn2qtlsMWQXyvj22/0VyVnxNB6wNxwtu8Vf8Oay+w5ae1EwqOfeMip78/uDZBaRle+dsLNYJSPVQptxX3NYkiNbLTyeYnV/ZPnU63Igm11X4Tbdl2ZmZmuPrqq8VvbgMbANJpRdrRY4isJCipUiHL0f3OEL52G7qSvuFie6N+CjB8dHYpQWnlgUu+i7mRAqe/P8yxp8ST12XKlBZZmwhT/0wmiOxwk6uTAlgPwS1Otr4/RaDLsX5jFckb/ez8rWxVFkpkcSx3T4QdH89Wq+2IoPOxJnb/fpv4AUCw071kJ48ITj3VT8/3+rURlEAzgcrqN2MLmddvWIFJkf2qSMZdKbizdjrf21R7nwIYPTbNob8+LUxQulwc//pFzfFd6pYQLQ9qi4kuB+EdnqoUoAgW54tYvdKSiofr4XIIQKe/08fhL/ZoOibU7VF2a4l2AZ2OlnujbP94W1XaTASpW0Ps/K2cpntruT/Kjk80azpmx0eb6X5nYv2GKqx+E9HtbppvWhbfrRl7FSiXypic6ySP1Pl7YRZ6vj/Ika8tWyheJYYC6Ds4XSMoLXs3q41NhQkl19D5WIhQd4P5x7Kx0GQycaPtMUKhEIcOHarKRmxgAyL4zGc+w3e+8x0Arne/aylBSW+oEZTq4Gux0HqnB3QqQWk5GsVr6mlPPD1SIygJHHf8mWFO/2BEmNRitKNU2p5ZPUey/LtrutZL/CpPtdLIEpTKDRfEOx6O0P0+cR+l0+vY+sE06VvF4zuArR9uXiIDQbm8LkFp20dbl8hnrQujskva36Et9jry5XP0fE87aVsLgcoeVHa+F/Piq2veDkdVXvVKIn17eIm8hAhOfqtPE0HpcjA/ssjhvz+riaBklI20PhyvSqJcKUhuI/G9gao/EIEtZK5WVxCGRgLQTN88p57u1URQAvB3uasyIetC9Ts7PpGj9V4NuW8jbPlAmvRNwfXbVg6RjWz7cIboVeL5OG+LnS1PpqrS2yLI3BxQ5Ibq3ueqBCWARSgVy5o4mad/NMqp7w3XCEqwak5AuQE9b35zqEZQqocq5bbituaBsh5Xxkz7fb6VxzUYC5ttW+hMb2N+fp59+/axuPhWsc428H8DmpubKRQKxMytKwlKq/TTzE1eRY3FoBKUlmOV72JmIL+EoLTyuKXrlMU5OP29QS7+UhtBpbRYWpsEUH9vBohf7SWxt8H3tgrkmIXu9zRVK9qKwNvmpOt96WoVKRGEt3vZ9K6maiUkETTdEGTzB5s1HeNulglt1rBmAgweGufU073aCEqgmUBlC5qx1VWFEUFou6daBedKweqXyNwe0XSducE8x79+UZigdLno/cWIZoJSoNtVlcu7knCmbdUKVyIo5svIESs2n3jsdTkEoAvPDXLsaxc0HePJyPg3uaqycCKI7PCy+QM5TccEulx0PZHSdG/R3V4637PsmHXmbW0PxWl7QDzvabAaSF7vXyJTCKxJbipMFyktljFa1nn+Sk6rCD3fH+L0D4aF72vyYqFGUFp+mVXGtOKc8ltqnxdPcwN/0+C46xyPEolE+dGPfsSf/MmfCN/fWwkNU5i3Bl/4whf4xje+AcB2+21IhtpKcyNyUgXOmAWzY5XbbbAI5kpLtN0Tof+VCc4/N770R52uYUf25CyUSzB2YobBV8Wr+8wP5Xn5z3o07dJ6/e/O4e90kB8VX8AYfmOi4c7Q1SDJUJhbZHZEfGeUxS1RKpSYHdYwMOcXme6dpe+VEfFDRvM8/5mj4tdQMalxx9L2T2TRG/W8/N9PCB9z5vsDnPn+gKbrxPYEQAf9z4sHm7t+t5WFqQKv/S/xxRJ7xIrRru2zdaZtzA/Naq50pRVywkx+rFCVCFwPklPC6jPjiFuZONWA3NEA/i4nubtinPnRJS69tDbrtILQdh/BTjfDRyaEd2Id+ittlboAMndECG3xcPB/nlpZ8WwV9D4r/s0AkIeDf3ZM2MaVYybPzzJ8vPGO19WOKS4UKebF/c10b55SvsRiQfzeLj4/gjfrYOKiuL95458vIlnQRAo78BfadqHmp2Ho9Sl0Oh2J6zxceK5BX1uFfLHz403MjxU4/E/LEsurjDuOsBmz3YDk1Tfe3a/TLfH7TSNXM+wZYmhoCKfTyeSkxopaG/i/El6vl1KphAkzu1x3LWXOr5KItHpNmJ0m5KDE6ImV32ijZEznO8JIDiOv/O8GO3INhoaM/dguJ70vTTJ8VGwcqODcD0c4hwYfWoA3vnye/Ix4JmHi/ByTF+cYOiweExbnSyzOFZWKI4JxYWGhRGG+qInYM3Rkcs2FwkY4+qXzmGza9ydcOiA23gLYQia6n8hy4eeD9P5C/P0c/Ett466/1Ulkm5f8ZEH4OpGrvCSvD3LkS+eYvjgndIwjakUO2zCZxF+PyWXCZNMx239lEzYmG0geS1W6TwSuJjsmDUkEgO73pzFaDLyiITZKXB+klC8y+Mq4UPuFkQIv/Il4daMKdnwiR35mUbjaxESPdmbTm9+8oJl0N3B4HINZ27e2MJ5ncb60pMrRepgfzytlyjVULht8c4Lignh8Nzdc4Pi3+xk7KW67SwcnuXRQQ3yi11eJ3u6chWK+yNTFBg+0PAmj15O81kW428EbX+1nbmSpz10eQwFgArPLiDNhYeD1VcYdva5KnjCZbLTar+a5wW/x2c9+lrvvvpvbb79d/Nk28H8lXn75ZT71qU8BsNN5LxZjXYKwATmpAkdYUgg9jaqBNIjXLB4jHQ8EuHRomr5Dy/rzKnGXLWjEYNQxeWGBsUaLzatgcQZlftNo1+YqOP3dQYaOWpgfX/Ywa2wgGXh1Qpv/NMLC1CILE+JjrlE2sjhbrMqCi1YEGD0+ydCbGubUi/Dynx8Xb69Ca2Wj9seTmGUjr2rIKw2+Os7gq+OarpO42o/BbGD4DXH/3v3+NIXZIm9+WZxU7UrYyM8U6f25eBLfGjRTmFzQXOlKKyx+E4vz5ZXVvlaB0ajII0+enWHqvFjsaQtZ6HhHknM/GWDoNbH+5snIxK/yM9M3x9hJsZzXsa9oW8ACCG1zk7whxOG/O73yu14FWvpLBYf++iSL89qqoI0cn2TygoY4bxEKc0XyC+LXWZxepDC7SFHDMaMnZhhrn2G6X7xznvreJSVe1zDVO/JljcTGRRjrmUdn0BPstDH4RgPbLY+71MW67scDLEwscvw74yvbNxgj7F4TFrcRs1PPwmSj6oCGJVWVYjO7GfUP0zeoVILu7RWrdraB/7txww03MDg4iGzw0unYu7QvNljIBaW6kdVvwjJcYLK3QRzRIPZq2utGDkoc/frKiiM6g6FhNSVvs5XR03NMNbrGGhg6Ms3QEQ2LOUU4+tVeihrmrnOjBYaPTzHWI56PKxVLFKYL5CfEY8JioUhhtqiJ2DN6corFfEnTMRefG6b/xVHNBKJxwXUpUAgN3U+kufjzIYYOi8eFmiozo1QrSlwboJQvCV/HmbSRvi3MyW/3ClfrsXgkXCk7/S8boFEFlgYwSHoMVn2tSuAVgkECkyxpIkM5EjZsXjMXEK8KlL4tjNUradoEmLw2QKkEE2fE+k4xX9JU3aiC9kcTLC6UOPktsbFwbkh7HrL3pRF6XxKvPgYwenoayWGEonhuaWGiQGF2sXH1tlUwP1FgYbKgqWrTyDFtsWdxrsiJb/VqUlSaPD/HVK+G2Eunq44B1qAi1zs3vPL7Wc6P0Rn0eJstxHc7Of6vQ/8/9t47OLLjSvP9lbvlUQbee9uNbqDRaEPXpGhE753oRE+KoihRdqSN2diIp915+3Z3ZnaMRmbkViNpSHkvkhJJ0TXJZnvvgIb3QAHl/fvjVhUKhTI3QbaW4vQXoRAbdbNu1rl5M78858tzCGYuCbn2/CU6IkE9C6dz8M+0dhqNhnXqi5mOP8Nf/dVfsWPHDrZt26b8t70H+LOWe5ucnKSyUs4CU6vroMtyfuFGeRwY+bouWWN03VrN0Z9PE5zLsjpnadv3sVq0koY3/zbPhJHRn81PNjK5z8Xoa4kAjoI0iqU9Rczsew8Dy2st+fZ/p9IfsLbycFs+0878STenBNIRt91Ug9YoWApDtCxWoo21yoj7jDLHA8CGBxsJLIQ58TMxkiKK8/5TF+4xHwe/c0aojUi5N4Dz/3odCwNujnz/7GVtkpwS6++uY+iPU4rLBEoWkBx6PCNrSGMuMBYcbXJ5l5M/H1G8qEkWNT2PtTJz0CUsjFvLO6QYf6ZSb6vvq9whLVnAXGlm4aRXUakSyQLr72tgat8iY2+kBdzztO28tQJ7o5mjPxljcTBj/OQQKa3/SCWLo35GXsuzgciVXYYCJ+Qg1d/nFr4JwIUXXsgrr7ySv805/IfGRRddxKuvvgqo+LDzYfmP76ZUbB5eVrXVirlU4sSvcgQVMlJYO5qNtF1bxvRhN4Mv5BGapLWrPs+Os9XCwR+MpoLyealsLI692YRr2Lc6iP8u7JA3Q9v7pBRvOtZSeqrhinKK26zs/topxQIIU6VE81VVDDw3qVw8s4bSdSCXCPNOBxS3dXZZqb2glP3fHljT/ZSi685abI0WdgqUbltLubf199ZjqTbx5v+rvM1a0HJdJTqjlqPPKg9miT6bFATHQvutNQSXwpwR4FDNV1dibzILC+MUv0Nni0O9h+XeVn5tYQ6VhLPTzPzRhBMuX7sEqrfbKe0qYt83V+4NVDkCBQD9T9YT8kXY/+0s+70s/MlUpqP5MifHfj5FxJ+nTwr6mxMqNUc9bzIcOojT6eTQoUMpn8Y5nEMmAoEAJpOJeDxOs2kzLZb+wo3WWFJDK8Vp+XAxZ15ZJLCQJUiQ5XvX3VqKvkjL7m/kcXRn8LV1d1Qwe9TD1IHE5jOPUCnJyWyNRhYHM3wjouVyV3zxGku+FeJkZ9EntpbycBsfbmT+pJeRPynPPFN9QQn6Iq1YJqG1lMXSgtGpFxJRtVxbSdgfZeiPYpl0RLHlM+0snvFy/CfKfWui5d4Atn6ug/njS2Il0gShNUD7bfWMvjHL4mmFQdM1PJv0tkrHgrFMT/2Hyjjzh0kCSjOGamHj/Y3MHnMLCc9A4Tv0PuNdeXlVoe/NkinPUm7AMxbI7ydK8iMtdN5YwfxpL1N70/yleXhX7fl2KjZaOP6bWdyjGX7MHH1t+pAN72yYqUN5/N/5+qvQti9Mf4MYES6//HKef/55RW3O4T8m/vqv/5ovf/nLaNBxieM+NHnGfApr5A6ORj2WCj0jrysrfWt0aOi4qZypA27G33Ll6c/yPe1NRkrXWRl4bjoVlC/k8zKWSYRcodVB/LNVMvf/YkwxF9ZSeqqkq4iyHrm0ezSk8NC9RUPNRWVM7JpTLghZQ+k6kMuFRv0Rxb/LVK6nensJA89NLpe6OguovqCEyj4n7/xv5Ukh1lLurf7SMko6bez+J+Vt1oKKPid6u1aIr+odEsGlkPhzFRwL1ecXEw3EmdytPDFGWa+dks4i4czr/9fKt71bFOKCCsq9JWGplnlXwXYJMZG92UTZeisnfpHhk8yzDnXfXUnIF+X4L1bz4mxJfLRGFfUX2DnzygLR0Br9ggr8YZPBQfa7X8But3Po0CGqq89+Fv4k/qzl3pI/zKSyKRMoaTSsv7ucjhuzpPotQDhCi7Dvm2PZBUo5cPAHIwz8UbnK0lQuoZZUaCTlZmy/uYrWqysp7lKe6rXlugq2PN2KpLwJNTuK6bqjQJrsjBe4ansxLTcoL+8EUN5vp+exZiSLchuU99vZ/MkuKrYoT78oWWRCFg2IzfwnfiZWCsNSLXHe57pouqpC6D6EEBIoARz41uBZFygBTO6ZZ/QNMWfAWjCxZ56xtwQzAwkiNB9izz+eUixQAlnIsxaB0vYvdtLzkPISGgsnPOz76mkh1W3IEyMej6PSiU3FWz7XwYaHxEqCNF1dyYYHG4XaONosdN2lPN0+QGmPjQ0PNAi16bi1hv6n24Ta9DzaStuNyuerkAe0ejXmMuVl/I79ZIqhV+ZWC5QgJwE69MMJRjKz92U2zUI47E0Smx+vRipRluHifPPNlJSU8Pbbb/ONb3xDUZtz+I+Hb3zjGwmBElxovUtRG1OZRO/9FZgrs9Q2KuBQHHtzKbdAKQsWTvs586c5Bv+gfLNlsOvkbEAKBUoAbddWsOnBesX3AOj7eBMNl2dPEZzLmdN1Vw2ONrESpu23VmOpESsBse6eOmouzMKN82DDgy30PSlWMphkAjgB0YhvIsTBb50Ryu6z8YEm+j/TLtY3kO8h0Lf5I245e+XZrcLG2FtzZ50PAYzunGXsDbGa8WvBqV9NCAmUQPzZgFzeZftnO4VK6x3/8aiQQAkgGonJ41qgUmDV9mI2f7ITW1OB+m1p3EBn09H9QAOOdrE5oemqCkq6M0qcFJh7226uoqxXeTkhnU3H5k80U7tD+TxS0m2h7doK6i5JlA9QIDbQGDRojerCZd/SMPjSLEeeyR78zRag802HOfiDqcICsiw2bLummPbrSwr6FQA6Ldvo6d7E/Pw8GzZsKHj9OfzHRU1NDfF4HIe2UpFASaVR0/yhIpouzlLaqMDYjATg2C/msguUcuD4r2cYeFl5hkStGXQmzbLPS0FQqmqLnfbrK3C0KK95WbHZxsaH6tBm8yvlCJIVd1lpuEJ5qSaQ97e1O8RKQBQ1mOi4oxatRXlGa0uNgb5PdFC6UaDUm1Y2bzQs5vMae21WSKCktWjZ+nTHynJ3ShARz/J06tcTZ12gBDDyyjTju84+9xp5dYYJgSDRWhAJwOHvDSkXKMGang3ApidbWXeH8j2SfzrIsX8fUS5QSvQtHgcEtUQbH25k3T0F/FcZvKBis522m8QCKqZyA01XZ/h/C/CuogYjrTeKiZVrLihm48MNQm023FVD+3UCJSYjIFk1GIqUk9zRN5cYfGlhtUAJcga0Bl5cZOpAAeKVZf0ylmjpvr0Yo1OZ//NC572Ul5fz8ssv84Mf/EBRm3P4j4fdu3fz5S9/GbVazUWOOxUJlDRmDR3XF2N0Zrk2T5UXgIXTgZwCpWzvjH8hyuk/zDH+jvI4ht4moTNrFQuUAJo/XEbbTWIxvc47aqjsFyuNVv+hMizVYv6r6gtKMJYq98WDLE4p7RYrl9tyXY1cUk4AKq2KeCyuWKAEEPJEGfjthFDGmqYrK9nwkFhMBiC0qFygBOCbCnLy52NnVaAEMH9siaGXxPwwa8H0QRfDAsL9tWJy97wwXw0uiAuUSrtt9D3RKlQqcez1OSGBEkAsGCMejaMReO2KGk30PNqKtVb5+62R1DRdVSlc1ris1y5UKg+gensxjlbl4giNJB8gLetVPseZyiXabqiioq/w3JOcl9UaFTqzRqhc4pmXXZx6LkfsJAsHjfjjnH5hIXtJ0nRoV+9VqzdbqL+wKG825yQq9I1s6byAxcVFtm/fXvD69xJ/NpFSa2srsVgMFSoutN+6XP8uG3lI+7tOr0Zr1mT9LBvK1pvY+lQt5ZusivtmqZYwlUmEFmHmUIGNYBrh8E2FePtvBxh6Uflm+Pivx5na72LuiFgKlHgsLpQ1paTdRlGD2Mte1mOntEuMADgaLBidklD5Ke+kH+90gMl9yp1jIQ/s+tsTQtlmyvvt1F4i5oCKhME94hNK41253Un/p9swVyif+SWnJIu0BBYLc4XE9i92Un+pmCNu4HeTisucvRsM/GZCcdm2JLZ8rkNYOFPUaFodvCmA7vsb6HlcueAIwHXazcxhl1Aba4NRWOi3629PMPAbsdTMrlMe5o6KZWOzVhsxliivewtQtcWJrcGCZFHuUSptL8JcYUByKh/c4UBUDvoLvA9Dr0xzStBub//dACd+njaHKFART7wtzwWlG7IQoWRd2UxoNPQ9XkPPQ7kdZCqNeoVYKR6TiY2typB7ndNpU59ZJAdlmiaCwSCPPvooHs/Zf8fP4S8Li4uLPProowB0Gi/ApDPJDheNOitxTY4tU6kOtU5FPD3epVLnddZuvLeCjfdWFM4ElgZnmxy4mtqXZ+zGYqtO85/+7Qx7/mWYeDye21kTi68IoJ/8/SRnXsmyAcjxm3QmiEXihH0r7x2PxXMKlEwlOopqTDiazYpPh+qLdTharFT22hVdn7pXuRGroGNo5ugScyeVO8YAzjw3JVTiC2ShialSzAE1e3iRheNia9qGhxtpu1UsCOHssGCuzlKTOw/Wf7ReWNy1OOhj+MWz70hxnfIykm1c50HdJaVs/XwHOuVxY9BB6UabUKlAS42RzZ9oxdmlfD82f2yJhVNiYxSg+oJiofuceT4xrkXKK+5fYGnUR9irvFHYF8ZcqsfeJHDKBCjrtlG+0S7UxtFkpqRTuQ3Ci2Hi0Xi+xI6r5rHZgx4mdi8y/FLavjdjrs3E8EtzvPNPZwgvLV+TL4sSwOwRH2GfnCHJWLw6yKZSqbKuNRU9VvqfqKaoIc/8k7GWSWY1OmPi37m4l1abWjvLx/rQaXTMzs5y/vkKDlydw3843HbbbczNzaFBxxbnjai0mtT/MpG+F9CZNEjmtHeugM/LUqlj0/1lFHcqn8z1Ni0Gh5ZIAFyFyrylTQ4RL+z79hjjuxYVn5of3+Ni7O0FFk5lBLHz7L3UahXxaJxIul8pHsufzaDFTHFbjjk2R9uybjsVm+z5ur8KRfVmrFVGIgHlYrCIP8LCgIeF4wLrWgQOfHOQ8TeU+xdtzWbK++zK75HA7JFFXKeV7x9tzWZ6HmnCVK6cR2kNapztVjlTj0CbzZ9qo2qbU3kjYGLXguJyau8G42/OLZ+uVoieR5pov61GqI2xTI+tUYSsQdPVFXR+pE6ozdyRRWZFShgil7yrERT6HfjmIGOvinHW2eNuZg4L+ryqjFgqBQNl64so6bQh2ZUPVHuDGXuDWS7PqRBhX5RYOI421yuUZX4cenWOk78XCwLv//YYQ39KC2YqEGzMnZDfHVt9Fn+hWpV97taoWXdTMetuKs79xRlrWTwKGp0Ko0O7yh+WRPq6adAaqNdsIhwOc/fdd+NyuQr+lnP4j4VoNMp5550HQLf5UiSNUebuyf9lQq0BtQZjkQaNXrWS1iR9ZTnQfIWTtmtzHG7I8Z5YEnGipWEFItI07jW1d5Ej/z4u5PMaeH6a0Z1ZhAy5fFMa2ecVEShfqTFqcLRasNWZFGex00hqyjfYKe4Qi+NYq02YBefzuaNLzB0V8yfMHFjk6L+LHcgq67Wjd4j5vBZOuJk9JLbeNl1dSd0lYjFAc6UBg0A8BmRBmKi4yz8bYuaA2O9ZC/zTIaGSegDODisbH20SEo2gkUvlaYzK20g2DZ131lIkwNeWRv3MHHAJZytytlmFhECzR5Y4+syI0H2Whn3MnXATXFLu84qGYlhrTcLcq7LfSXGX2JxQ3FWEo0W5zysagliBUnSZWZR8UyFGXptlcp+yMRePx5k77uHwD8YJpZevU6vlfXOO+dszGSIWVKG3apGKsoy5HDEYa62RDXeVZj9UnkTG+qczpfm8EmtgzjZaLY6ZLqySg5GREe6+++7c93mPIbBdXDv+63/9r5w6JQc5Ljbfk58kZ3y291sTOT/LhEqlwu+KEvZGcZ0uoOpXqVIDpf36crSShrf+95n8bdLQdWcVcyc9TO3O2DSp1PnTIYbg9G/ENhmnfiWQtjmBfV8fUJZ5Kc0O+/7ltJCwAODYj8QzAXlGguz/xoBQm4otDlnUJDC51mwvQTLrGHlJ+SnzwHSIg//njFDfJJMWtVaNV6A+as32Yio3OfHPh4SEPUF3WC6fobRvFmi/tYHRN2dZOHZ2RQydd9TinvIz+rJy50PQFcI3K3biq+PmWlCrmD2o3GGh0qhQa8WObh19Vnxs115Qir3ewvAfJ4WEe44OCyFXSHEWprVk4FL8zqVtNA4/m8hCJvDeHXlmRLhkojwnis2LU+8oIAxZFnTJAh231XLi11MEFGba67i1AnuDieBSiKUzodVrUdo8moRvJkw4EJOJSSz3WFBp1MSjMRbPhHj7n0dRpW+kc9SVTX5WG+pmQHWEQNxDb28vJ0+e3fSn5/CXhYoK+URokbqUOmNn/hNhaWN69liA2cNp65ICwY17MqjsdGzifXA0G2m9qpTpOnfuLEoZ742pXEf9RSUc/fkE8ZBYaumF42J1zsI+2Pu1QaE2vtkwb/7dCSHhQ3AuzO5/OEY4vU2W+SQTu/7XcaG+AQwLngoyVUroDFoWB5XbTl+so6LXgUar4tSvlItIx14XP/mu1qjQ5FVYrEbz1dVEg1Eh4ZVvOkQsLDbeqs8vxuiQOPVrMSGtKBztFip6HUJONd9ckMBCCHTK66o5W620XlvN0MtTip9V0B1BpVUhCWSdWBz0CY23JGrPL8U3F2ReIMsmOijpLGL2gDIuGfbFOFyoBHKmozYMb/5/4u/q7q8NEF5MezYK5uA9XzkpXM5xz1fF5jiAoRfXlpm1vMdKUY2Rk79WPg+tu62SkCfC/u/KWZUyxU0qlWqF035+wEt5t4WIHzlIkC/TU2K/fujZxB4x/bvzci81F5pu50X399m1axd/8zd/wxe/+EXFv+kcPtj49a9/zY9//GMALnDek1WYlERmYPbYr9MObxUKKKtURIIQcEVYHC7gF0jzTbVc5kBv07LnW8rXpoZLnCyNBZg/nuGvKLC/IQJjO12K7wMw/raL8beVt4nH4pz8+UT2gH8ef9zxn4yuzIikgHeN/mmG0T+JZS4MzEU4IVB6DOQsTwsDHqEybNVbizGXG5ja7VLcJuKJcFrwsI/OpEGlUxPyKu9ccVcRjZdXcvTHwwJly9T4ZoL458SiNy3XVzF9wMXSGXEeIYL6S8sILISY2uNS3MY7ExDKdgbQel0VWoNGiLOqtWo0OjGf19AaRPXlGx1U9DmZ3r9AyKX8d1mqDUSCUcVZmAqKmrIEyE/+Upx7n/nTNKOvTy+XlVPAu4ZfnmX4tVmhd3Vq7xJTe8VEV6tKZmZDtv2QFlo/XMLImy4CLmX7mJrziqjotnD8VzO4x8Or16Is3Mo9HYI4hefRBLcKLETY9/3ZFT6vpD8sG1RaDY5IA2VSI9OhQfr6+jh9+rSi33MO/zHQ3d1NKBSiQmqmQt+YXZiURFpg1jMV5fCP0uaYAtmTUKlxT4bQ6bNclxHkTo5po0ND69UlTB9wM6Ywi5LWrKF6i53R1+eIBMV8EL4pQdVDFE78TKx0adQfZd+/Dghlj4mGYuz5mtjBN4BDgrE5kIUZIpAsGjQmDf5p5bbTSGpqLyxFZ14QKmG6cNKD8lQNMtRalXDl0cbLyolF40JVZfzzoayi0XxwtFowlegZ23l2s1gayyRK19kZe31aseAmuBjGOykmKDc6JdpuqmHoxSnFoqiQJ4pG0qDVKxc2BRdCDAvuKQBqd5Tinw3iHlZeohgNFFWbWBpWyI2jcOZ5cQ3C/q+Lr8uHvjcknO3r8PcGhcVdx34sXp55RomPMGPej8fjFNUaKKo1rt4Dx+M5RZ1t15UQ8kQ4/kt5LlFlrmEZOhPfXBjfXIRwAHndysGfAHk9jEQ488rS8r9T/ddALIf9tVq2mG7ixdB3ePbZZ9mxY0fqAPzZhCqeN2fgu4fH48FqlVVuHabzqTetW31RNLqKAG+4swTPdIiBF5dyOhnjEXlHkOvkfjyXgzF1gfy9lmoJW52RsZ3Lk1Detto4255qxjcX4sC3swQGsjhFJAtseqKNueNLnPiZ8o1T90frGPzjJJ5sqVdz3LO4yypUDot4HMkpERIQ2QBYavV4poJCYgRHh4WabSUc//GwYhGHZIHNn+zCM+HnwLfEHOpFjSaWBAIerTdVszTqZWqXS+g+opCcEqXrrYy9cnYXc2uDke67G5nctyCUree8/9TF0rCXQ4UCMmnY/sVO/Ash9n317G4aS7qLiIZjZ110JTklmi8rY2TnjOJycZJTQq2VxW6K75MY3+4xHwe/c0Zxu4bLyzE6dMJiKluLOb8wLst8KlkQyuQGcuavaEyhLRKsu/3mKhZHfEwqfP8kC/Q90cbiiI+jz2QhatlUx3US6+6sY/bIEqd+m5sYpq8rkkVOKzn4QuJ9zRc8iMdzf55w5qt0OTbOKjWWci1t1xRz4rkFPGNptotG5UxKWTDgeIlTp06xfft2Xn/99dx9O4f/MLjsssv44x//iBoNl5c+nP2iSGTFWC2q0dG0w86RX88QWiR3gLcAtypIKxPvQd1FdoZ3ulbqJOLxnEGvpitLKemwcOB7I/hzObcz+txxaxXWaj27vjKYX4+RxqEq+mwYnBJnXphJ+zj/bzKV6IjGIDifcZN8ovXkwYds/cpjQ2u9CfeQWACm7eZqPBMBxgUcCOvvrcdaY2Ln/zwqJLwylegI+6KrslDlgqXGSEWvnaE/TgiLLERhb5EzjLoEsz6KYuMjTehtOt7+n8oFKl1311FUZ+bNvzmquE3TVZWU99h55yunVopa3mvooGKjg7kji4qf61pRtsmOqUQvVMLNUmPEMyqWPWEt41tn09F6TSXDr8xkv1+u06Q6MDl1+KbEnpHOppOfq4Bn0t5iwpWZuSQHVGoVlho9NduKVztv8tyz5ZoynG1W3v6n06ttlyNLyvp7ajA6dOz6x8H8mZTSbFi52criUADfjHyTfO3i8Xhux2py/s7VXq2iYUcRJoeWIz/PEM1Go1mDHf6yYd4+/RJarZb5+Xl0OoHagefwgUQkEkGSJOLxON22y6k2ry5hGo9EV43T1sut+FxRxnb5cvOnhM8r5xyTzzkJKS5isGuxVEvMHl6eI3IFhgGIxeh9uAb/bJBjP8siZMjG17TQ90g9M0eWGHo5T1mCDF7VfFU5E3vml+fJPPwpycmsdQbc2URaedpqLVoiniyqgjy8y1CsJbAYERIjmMoNVG93MviH6ez3y9o52PqpDlyDHo4LiptM5QZ8U8qDMdUXlOCfFxT3rgFagxp7i4XZY0tC9hO+j0VL38daGH97nhGBkiBbPtvBwmk3J3+mPODT94lW/PMhjnxfuZ9sLUielj/b2aG0Bqg+v4yZQ0uKx5DWoEZrUBMQECihha1Pd7Aw4BES75X12DFX6BnMlk0oTxYPc6UB74RYgDJ1hDuqnHdJNi1qFSlbZJ7IX4EEt6o+30FwIcxsenWFfO20sOnBehaH/Qw8l8V/lUWkZLBrWX9XFdOH3Ay/njvYtmJN0kJVj4XxdxL9ysfXYvHcoo7kfJpDLKJSqdBaoP1SG2d2evFOL4+jeDSWU+A7VPRHjh47ynXXXccvf/nL3H07h/8w+PKXv8xf//VfI6mMXFL+QPaLIpEV4iSpSEPDeRbOvLYo+7hzcYYU98oxzqPRvO9tkl+VdpiYH/CtDKzn8aeVrTdTtcXBkR+NEnTluC6DQ1Vvt1PcZuXwDwtkTUn7rUV1RkylEpO7FxMf5fF3JdrpLBpUsDJbCBQUemskhIUFxhIJ/6xYo6qtTgJLYeYFMinVX1JGyXob+752UqiPOouGWBTFIgvJpqWko4ipA4tnvQybsUxCrVGLr4GCaLq6EmuNkf1fV56EovaiUso22tn9j8oPWJdusFG3o4xD/zYkl1c7i7C3mHGPBc76M7LWGTGVGpjarVy2ZnBKBATj9vWXllHSJTa+NZKamvNLmD7sEhLvoQHJoiW0KEb4NUaNsL1N5Xp8U2lx2nxZ3VRqJJuGih4Hw3+azfgod7vyTTYqNjk49L3h7LbL0rbhkmKK6kwc/P4oxHOsHSrVCr+WvUGPbz5CaCkq+7TyCW3jsdxC3OSePk/70g4DljIdg69kzJGx7D6vkGmWtyZ/jVqtZm5uDkkSS2wjirNe7q20VE4Da1RbswuUtNrV5FeST+rordq8A00l6VKB5KIGif4nqinpSqQXU6tyB4Iz7uUZC60QKOU9FQYQUfHm/zzNge8rEygBoNPiXwgxI+AIcLTKaaXLNhSonZh2T0u1RPuNNXR9pFbxfQD6Hm9m4yNNQm26bm9g66c6hNqUr7djqTYBIrVeYfDFSQZeEFc/igiUQD5VXdmXJ11tFohmnwIIzYeEBUrmCkm4zJn7jJ83/usR4XJia8HOvzkqLFBay2+aPbi0JoGSZEGonJhkBGe7jYpe5eMhNB8SEiiBPL5H3pjh+C/Fxrez3UpRg1gJkZYbqlj/kYbcqSizzLfWBgN9T3XScl2l8htJsOHBZtpvECzF02qhoseu+PqwT4VvPsjSiPL33D0cYs9XTuUVKGUi5CElUCqUoU6l1a4QOPU+UEn3PeXyP9RqVPkWdY2aKDE0OhX2+ozrNDlSMgJl3n7i8ThvvPEGO3fuLPh7zuGDjTfffJM//vGPAFxsvyv7RVnKiFgr9XLK60iOMobpbRNYf2cZ6+9MSz+sVhU8gZMsMzX8imt1gDsP/xr4/Qx7vjagWKAEsDjsxTsVVCxQAijdYKd0nS3t48Ja/pbrq+h9OKN0aT6BEtByZSXbPtOBPks5o1xwdljovqeB2otKFLcBsDdZKO5QnhYX4Pgvxznz0pSQQAnkjFIiQpaKXjul3fZEZh+F0LEs8hKA65RXWKDk7LAIPSOQMxeKCJTWioHfTbDzb44KC5SEf1MYJt9ZWJNASWcTs11ln5PyjcprxgPCAiWAMy9Nc/I3Y8Lj21ZvpiRbWuo8c+aWp9rouEWs/Er3Aw1seqRJSKDUeXs1nbfUCNm8rNuGrdGMqUJ5m/kBL76ZYPZXNsd8eeiZ0cICpQxMvOPGNxNWVJpQpdWmbFXcYaTvkUpMpYkOqlU5Rd7y5xr0Rbrs6eBzlNwyTtchxSx4PJ5U1sJz+I+Nzs5O4vE4Nm1FVoESGk1WfiSZ1egt6vy8S7vsEzM4tPTcXYI9vayhgpPPWoMcRE8XKOXNNpbgY3u/McKxXykUKCW66p4I4hrKMy9n3NdQosXZZsbZluApBfgTyKKUrttqabk24/0r0LbnwUY67hDzk7XdWEvfx1qF2jhaLThbxHwcRODEL0cZETiVn4SIQAnktbayV6ycmlYgM2ISkUCM2UNiAiXJrhUucxbxRHjrfxwTEiitFbv/8aSwQGktv8k97F+bQEmLWL0ErZaKPiel65SP10ggJiZQAojAwPMTDDwndkLf2W7F2SrGu6q2Oui+t4GiBuWlRyS7li2fbKf+onKh/m18sIHGK+V5KK9AKQ0VG2yUCvhAVVEVnokA7nHl73nAFWHft4bzCpRWIUJKoJSzJF0Skm4FP+q4xk7HNfZEh1Wo8u3rNBpQadAZ1VhKM7JkatQ5xVHV83KZ3V/96lfs2rWrQAfP4YOOyclJ/vN//s8AnF9yZ9ZrVGr1Kh+quViDzqRGpcpebjAFnZTaWzRcZKP5cvvyZ4X2FsjCHICZYxkCpXzxxliM6QNuDnx3SLFACcA7GWJpLKBYoARQ3GGlLOF7VyJQAqg5v5T19zVCukkLCJTKeu1sfKRVqDSasURi3d0NlPXaFbcBKO4owtkq5vMafXOOwecmhUVUYU9USFhhb7JQta0kNS4UQYPY9Qn4p0PCAiVzpUGsNBow8NsJIYHSWjFzYJHd/3hSWKC0lt/kOuVdk0BJpEQcQGm3ncrNYjxcVKAEMPHOPCd/PSY4vmMUd9mwC8Yb19/dQMvVVUJtGq6ooPu+BqE21ReU0Hl7HZItYXMFZSdt9WZK1xVhLFn5QuWb+5bGgrjHxHj4mVfmOPDdkdwCJVg1Z7rOBAktRUGTOwlPCmnrkrlMw7qbnRjsCTto1Kj0uScMlVaDvkiLZFWvnMMB1Jqs4ijJV0KZuhmPx8OmTZvy9+09wFnNpHT33Xfzgx/8AIAPl2RJC5VugEiWTU7y4WQ74ZXcAITldsXtBhp2ODn47+OEPMsPNR7OvXlad3s5lkoDe//1zHKWkDTCkM00jjYT0VCUpQGxU1srL1NuckUZjjLu23RVBeO755WJJRK/seO2GlxDXibfVq7iLO+zY7BLDAmWEBEtBbUWtFxfhbOtiLf/4ZjwvSSLWqhU1/YvdRJwhdj7FeUCna47a4nH4egzykt0rL+3nqJ6M298+YjiNmvFWjIprQWbnmxBb9WxUyBzQEl3EbUXlXH4h8OKs38VNZpYf3cDk3vFMkqtJcNY1111mMsN7Pq7E0LthLGG90hyStTvKJUDc9na5lgQuz9az/Brs8rTtCPPQ1N75wuXsEsLwInau6AjKF9wT62i5kIHo6+unvNyEYP191ZjLtHz1leHcto+PQAXj8dZ/5FyYqE4R34iz5OphT/bepH8LNual75eZknJuG/pJaZCJ6mpqWFkRKye9jl8sKDRaIjFYtSZeug0b812wfJ/i3KvJBKnv9pvkMUyx38xu+IkQa6T+ToT9N5fw+KIn+O/yCEUzHKyrLLfxsSuxfxZmgS41XJHc/QzmcEkdVmBTEoVOorbihhJio8V8EFbk4nKPgfHfpRxejvPb9SZoO7iSoZfXkPWIeXVvdaMvidbWBzyCpV6g9X2LoTmqysp67Hzzj8rzyBkKtHRcmMNQ3+cEioptu0LnXin/Rz89hnFbdaCtWRSWhN0cN7nu5g55OLkL5SLo9tuqSYWigk9242PNqEvEssoJToWQK6xvvHRFqb2zDPyytrKkSm/GdnfozwOhZoLi/HNBJkXENhX9Dkwlxs4/TvlGaVMFTqcrUWMvlr4EEQ6f9LZtIQzT7yJ5pVPRx5uZms0EY/FcI9mMWIWG+psanrvq2H+lI/Tz+fZo6atawaHms7rSjj90hxLw+GVn2eby5P8Klu663TulWVtem7ma6jVau6//36++c1v5u7fOXyg8Y//+I889dRTqFDz4aonVl+gkHfF8wWuEuPPUqGl8UIbJ56bI5gee87D2eovslLcYuLAMxNEUj6v5XchG7eylMt99oxn2fAUONC3Fq6mtaiJpPtfFGRSquy3szDoITAbSf8wb9/qLi7DNxNg9nCa8Qq4Q22NJgxOSaicGiALRc5i9iCAyn4H5X1ODn1nkEhATEicM6tUDvQ91UpgIVS49Gka6i8tQy2pGfydcmFK4+XllG9y8ub/OnrW7beWTEprQccdtVirTez6W+V8yFJtoHZHGYO/HVcsCJLsWnofbWHi7XmGX1buoxUdCyA/W3ujmf3/Kl46Vgi53qM8vEtrgKptZYy/mVbCTQFarq1kcv8inlHljdLnISVZlCCHvfO0LRi0ylf+WqOhdJ2JmcOr9z65BBpNlzqwNxjY82/Tud/BDH7U9CFZdDXwojy3Jn1e2daDlD8sWzaZArzrjO8gxxdfobKykrGxs/vensP7GxUVFUxNTdFhu4h64/pVn6vS3ot4ZPVYSo7/eFZelmib+Ky634JGUjH8unvlu5qzPDR031bG4nCAoVddy39P50/Z4o1NBhZO5cmsCe+pz0tj1BApVMI1ra1k0WBrtCyXwlIQTjaWSJR22xl+SSBuqIHyHgezR5bEBSMahErRrQUdt9fgHvMz9rpY4gHRjDGlGxMZhL6nPIOQxqih8bJyJt6ZFxIqbXy0Ge+En1O/Ek8OIYK1ZFJaK/qeamV6n4uRV5QfUK/eLicpEClh13xdJZZKk1DJM42kJhoSPACoga4765k55GJmv7JydGvGGt4jZ4eVsDeCe0S5sKeozoS50sDEW3my72ZAZ9FgT5+HCmRRSiLf+5eVvxXyh+XhbcYSCZVGnfWAdTYxkEaCdbeVMz8QYPTtPD7DtLYaXYyWyx2MvLWEbza64ruzxWOSWSqzrofSsrA825r44vS3icQDfOlLX+LLX/5y7v69S5y1TErz8/MpgVK/86aVH2q1OdNPdd3kpPZ8a+5BplatHAgJ9fLc8QC7v75SoFQIU4fceCYCskApFiucQQlovryMrptrVv4xHsvrEOm4tYp1d9fk/DwbDKUSSOQP2Oe478DvJgsLlOLxFYTi2I9GhQRKAFO7XWICpaSgT1BYsekTLTRdLZDFBYhF4vJLuQYxlIhACWDm0CKTe8VsZyo3YCovdDxlJc68PMnI62J1S8v77Gz9fAeODjEF7FrQ+/EWeh5rFmoz+IdJBv8odppKX6TDYNNhLlMuKV8a9OEa8DB7RGwhFxUoAcTCMaIRsTEkOSX6nmql+nyBLF7Jrgko60PzIdkJJyBQAjj43SEhgRLI81BBgVKW/gFY6/VC7cp6itj08YxMcAUIRdftldRuc2KtU27AmSNulkZ9iucVlUrFoR9OrRYoJfuXq48aNVKxmo33lCFlSyihXp1Vqcd5OV1dXYyOjrJuXZashefwHwJ9fX3EYjG0Kj2dReet/DBHRgiDQ8X6W4vRmQtkUMr8LmRxUqZAKR/CPnCN+Jk+ojxYb28yUnehk6YPl+a/cAU3hJ6H63G05zm1nIU/mavk+UBUJOGbDAsJlAAWB3xCAiWQ7Xf6t4ICpXxl5XKg+vxieh5rEs5WFIvGiUbEHWei9p49uiiXHhNoZ6owYirWozOLZQIYfGFSKNADsOGhRrofaBBqsxY4u6z0f7o9VcZOEcIw9PIUY4J80lJhxFyh/EQ6wNSeBWF+vJaydWFfjHgkpsRPugINV5SzITMDWsGbJf4//d0oMG+OvjonJFACmNy9wOnfion9fJNhRQKlTIQXI+hMoHcmfpRCgVLn7VU0Zs7LBdaCjhsqaLqsLO81K/sWY2k0wOxx5fYLLMTY+93J1QKlZP9y9VGtoWarlZYP27N/nmUNvbDpVkwmE88++yw+31muV3kO70tEIhE++clPArC17LaVH+bgXQD155sp7zYI8y7PZISDP8oQKBXA/EkfrqGALFCKxQtnUIrFqN9RTPt1FVk/y4Xq8xy0XJXn/c5yX8mmRWtgpUBJISZ2uVYKlKDg/DX88rSQQAlgcdAnJlBK0gxBgU3X3fVUXyCWKTMeh3gkJixQAoRFKRO75pkSXNMtVUasVWLcYWLXHIMvTAjZz1pnZNPHW7A1C/ChNaLjjlo6PyKWHXH0tRkGfi8o4DdpsZQb0Bcr94uEXBGm9y0wf1JggkB8LABEI3FiopxfC+vvq6d8k115m2TX0ul7gXkzEpDfdRGBEsCpX08ICZQgxzxUAEl7G0sTP0rhPrqo3sC6j1SttEU+gRJQe76NhoucWKqUb+pmT3hZGPQrfwc1GgZeXFolUALZH5ZTZKXRoDVraL+qCH225CdZ1tCGol66129gfHycCy+8UGEHz+GDhk9/+tNMTU1h1jposPas+EylVq8QKCWhMULTJVa0ljwZlDJ9tImxPLbLs1qglA9RmDvpY34gsTcoFG+MxZCKVDRcWkL1Vlvu62BVH1pvqMBanSe2lMU3pbfLvyuvQClLvDHkiQoJlAD8syExgRJAFKZ2L4gJlJJThUATe7OZtptrhLPgRENrWP9QXhouCfeIn8nd80IZhCSrBkuVEZ1J7DcN/n6CsbfEDns1XVVJy3VimXPWAmOZRPdHG7DWivHJwd9PMrVfnLdaBHnrzKFFJnaJ+WCEBUoAUTneKFCYCIDSbhutN4pVOUm9RwLDaP6YW0igBLA07BMSKIGcxSw1Dwkg6pezFemyZNfKdyi55gInlf0Z83KBtaD1mnLqLlCeKSsagvmBAAsDyu0XDas5/puFVQIlkEW4udY5lVZDcYuR6s3ZYyUqrXaVkOrimo9gtVr5+7//ezwe8cpGSnHWRErV1fILYNWU4JTSBCb5aushn3S21+TYiOUYBJseqqR0vUk5YUhg9oiPw8+ICSQOfH+IwZfEHPuGYgmjUyzovu6OWrY/3Zb7gixEo+maSvqfbitYjmgFmZDkbDaONjERS89jzbTcILYYdd1ax/YvdQqJKgB0Ri2S4AI78NsJ4Uw2XXfX0f/pPDbPgVO/HGdip9ik+s7/PsnufxBTDntGgowIjr1YOEYsEiMSOMtSciAajBINit1n4ZhHWBw39vocO//bUeGSb0d+MCxc/q/tphq2fE6spOGxH42y5x9PCbUJzYfQGTUYBFKgAmx8pIltn+4UamNtMLL5k63YRIKawLp76sRKvgGdt9XQ/ymx9PhdH6mh+64GoTKKOrMGyaTB1qycTB75+QRDr8ziHlZO+Kd2L3H0p2LvoEqlksvf3VshC3BXXZB9GTYUSeiLNJR35UlXmyFUKp+URSlHjhzhwIEDQv08h7987Nu3jz179gBwkfO+lR/mKbFT2m7G6NAJiTfqtlvpvDURnBbkXid+NcfCSeXk2zXg58zLsww8p/zdczSYkKxa1NmIeQ6Bt6lCR/c99TRfLZbmv++JJpqSQTmFAqXmqytpuymDQxVw9DjaLfQ81oSpREw5tPXpDrruEgum6IskdGadcOalvf9yWui0PED/023UC4gWQA4Ynvi52Cmv2UNLvPnfj8llRwQwtWdBKPMSQCQQJRpcg+NBENFAlFgoSjwq5iQbe30OX66yiTmw559Psf8bYum8J99ZYFg02yqw+alWYb6x+59OMfqqmGNNsmiRLGLvk86mY9sXOmm+XKx/LddWsu5usffQ0W5l40MNQm10Nh2bn2wWE70Dmz7WStv1Yr/JVCJhLhXb3w68NMuRZ8VOvh/72TSLQ4KTkUpN6ToTG+7KMZ/nWLfs9XqsFQX4Z9p6avKVYVTb8Xg81NWJPd9z+GCgq6uLeDxOsaEBuyHtHSpQ2rCoUsJeI7bv67rBgbNJ7J0DcE9EGfiDgv12WgDt+M8nGXhR+Zwaj8cxl+kxlmaZU/MIo5qvLKNHUCxa0Wen5+GG3OXHsu2ttImMhenlnxQE2NpuqaH+Q2Icpe6CMvo/3S5cHk2yaoXLUky+syCcyabh0jJ6Hm0qfGEGxnfOCXOow98b4sA3xfoXcEWY2uMSahOPxtfki1oLosGosG/NMxZg7oiY7RZOetj1dyeED4oNPj+FZ0xMaFN1XjG9T7QItRn90wwHv3NGqA0RkKw6JKvY3Nd6YxWbnxTz0xrsWtbfVy9U8g2VmsYryqi7WEwsWLujWJiv1V3spPueOgwlyucJjU6Fwa6jqEr5YdeR1xcZeHEOz7hyHrU0EmLwT27F18udk+eu1itsVG5YbfNcQiWtAcwlWhwNeX5TxnpaNncharWa1157jcOHD4v18xz+4jE/P8/f/d3foVarOa/0jhWfZRMnJWGrlLCWS+j0OdbZLNzB2SzRsMMmB+oFfV7juz24xxT4mhPcK+SKcvr3M4y9ozz4bizWYSyW0EjKfV46i4Z1H6mjanueAHqWdh231lC1NdFGoUCprNdOzYVi86mxRKL9lhqh8nAAG+5vpPEKsRLcOosWg00nLB46+fMxYWHFunvqqegTL+8lmq3JPx1i39dO4xLkDkvDPvxKqvGkIRIQ50NrQSws30vU5zV/wk0oM1t0ARz/ySjHfzIq1GZp0Mf0XpdQG4DOO2uFDycce3ZEWKCjNWnQWwVPn2qg9/EWqreI+ZTKeu00XSXmUzKWSrReXy0kiNJIsv1KN9qF7rXx/gYaL8vuH4rH4lnFSuYyPcYSsf33mZfmOPWc8ozoAKM7F/HOCr5PKjWWCi2tl2cXt+YSKhVV6bDX5v9N6UIlTcxCha4Tr9fL9u3bxfooAPHC4grwX/7LfyEQkDdG55XenrhTgVslSOs7/zq9WsQi6bKnxgaK6iS0Bg06AeWrpVKi8+YKBl+eZfaAAPmWIOSKM7V3SSYouVI7ZmDf186s+LdKrSpYOmTo5WmKcqlEcwTB1FrZhqF82o0MMlG+0Y6+SEJrENOrSVYdRkEnwPwpN1qDRji70Vv/3zGxBsglwWYPijkCYsGYsJq1tMdGSXuRUNm2taL95hpUGlkEoxQzB5aYOSBmh7XiwBpSPRd3Wam9sIwj3x8UzmAliurzi7GUGzn+U+X2iwQixMLipEtyygIT9xnlgfg3/7v4OHcNeAj7xEhXcCmKzqTF3mBm8VSCuCo4xWuuMKITdLbGogVi9lk2gsOvThP2FxfMYpWejnHs9QXGXhcQu6lVEILxtxLkTrB03sYHqoj4YopFrqqwCr1Vi6Usx7yvUsvrXNqasjQc4u1vT8n9ylcrXa1JbZglSaJcamYqdJprr72W4eFhpT/pHD4A2LJlCwB1xm50usQmpECQDJWKkbe8jOzxrhakaLU5uZexVM5oJ+Ks6bq1FJVaxeFnBUQLidJKU3vcie6q8qe/TmDhpI+3/y5Lut08E5JvLszMoSVG31ztcMjJ23QyrYpF4ooFSgCWKgPadAeZgt9krTahL5LwCWaacQ14WBwWzYQ3wcDvxE58W2qMBN0RoUw4OpN8iigi6Bhqva6SxTE/04JBLFHoi3W0XVfN8J+mhYRKR77/55l7Fwd87P4nMVE0QNuNVYSDMWFBmTB00HZNFdOHFnGdUj4GI6EYkTWcLnN2WIQyFp34qXiZiPBimKVR7/I7pTALit6mw2AXc7ZKFi1Gp4SjzczCCWX2S75/GilP2ZAs8/bE3gUWz/iEyrzt/soZxdeCXA539lDidwiWnyzuNFJ/voODPxonrNAvJ5nlgL+pVIdvJsvN1Cp5nUub2w/9YkHul7rA2pm2tm4yXc9zS19hYWGB/+f/+X/467/+a2UdPIe/ePz617/m5MmTqFDRX3aj/EetNv+anpgzDv7EtcoTp9Jqs5cdAQx2FfoiLVqj8ndUa4GuG0oZfmMJ16k8a1jm6X6tnIlk4ZRf7m8en1c6Jzv+syy8oYDPa+T1eYpqswSnVerc5Ul0sg1Fsr8U1RgxlxnQmpJlt5UFOowOneJrk3CP+dA7dMLZafZ9VXmZiCRsjSZhIXU4JH6AzVpnpKSjiMEXp856CbaaHaXoJDWDLyh37nvGAme/7FgCJwVF8iCXbqs5v5SB5ycIKSzdtlY4u6xYK41CGe+jgSjRQFTOaiagb9JatEhmLb4p5Y32/LM4b1047Vn20yrkXQFPBINdwlJhZEmJTy7Bf4pqTEQE/dzxaOIUfs7SdKvn7cm9so82sJT/XuninoVTfnafUl5uMclV5o4nfr9gCcq2qxzEo3FOPu9SfD+jU0cslv0mKpUKdLoVa07ABXueXZT7lc9vodGknr1Wq6W16AKOu17hyiuvZGTk7Pviz+H9g/7+fgBaLeeh0ch7K5VWmzdTkUqjZmEowsLowqpMOyq9nngo+6bE6NBiKtZBXLnPq/Y8GzqjioE/ugpmT0ohUVppaUh+V5X6vPxzYQ58K4vfIY9fKuyJMrpzloXTOfbMOdrGY/JcJ8KJLFXGxP5XuejdWKrH4JSEecrccTf+2aBQm5n9i8Jls/QOuW+iwqZIIEo0JNamcrMT/0JQWHAkCo2kpv7Scib3zOObUm5D4QxZa0RwIbSmmGvlVidEYeIdMUGZMDRQvaWYxWEfnjHlMcCIL0ZsDT4vc6VBqJTfxFvzwqI6ojB/cgm3wO8BMNglDAIJBwA0OjWWajnzqtJMTNEQgAqVRlmptyTG357HV2CeiMfiqNL4yPGfivnFVRoN7rHEPQTL5pnLtNSdb+P0Cy5CHmUNtXotBrsWg11DwJWjtKlupa7mzFteiC6XgMuFdKFSk3Erg+r9HD58mH/5l3/hYx/7mMJfpRyquJKVT/RLE+Sx23o5VebW5Zp4WZwuSaVz1UYd4UCM6UNpL1o6Sc3hsAEKioXi4ZVtS9ebadhRzOEfTeKbyP8CJM1T1mOl6bIyBv84w9TutEWsQFCq/kMlDKWdQiskTlIMgWDY6rbv+SM/azCUSYVL12WgvN9Oy5XVjO6cYegPZ3fR7L6vAWutiTf+6xHFbcwVEhsebGH87Vmh/m3+VCsqlUosQ5QEkkUSLlt23n/qYmnYy6HvKd8ESxZAErtX/WVlVG0p4fAPzwhlOdr6+Q4CCyGhU/09H2vGaJfY+TdHFbdZK7b9VScRf4R3/rdYtizJKf6s3jWUlhl4z++79kR+WevFArZmI1q9hrmjecZSRtv+TzQSDcfY81V5rOdMR52ERsPG+6uI+FeLlFSFBCGJ8qRZHfZpNWDT1zTJCA2X2Dn5grwxyVc/NrnGDlr/wKnTp7j11lt55pln8vfpHD4QePDBB/n2t7+NGg2XVzwGkJ97JcZ508UmTv9paWWwOP3dzMa9ku9QIe6VUQe569ZSUMORZ2eyO2zSuUni855HaiEG+745knFplnco8V452k2EvRE8oznmUkH+pJi3fVB4mQ50Jp1w2a2+J1tQ6zXs+l/Hz1LHlrHtC524x30cFuAo3Q80oLdJvPP3yjmUs8NC2w21DL4wydQe5UJYnU1H2BcWEmF03V1HUZ2ZNwU5ylrutfmpVsKBKPu/rpxD1V1aRtXmYnb/41Hl5QZ1sP1zncwdWRTOfCWKukvLqNkm88nFAbGArb5YR3BOvMzcn4U/vQuulP3rCvR5DferPs/B2BsLeUWr6dyqYrONugudHP/FJItngskL8t7DXGWg47pSBv4wi+tMxtxeiHslhd7Z5tn0Q1Rpc31ppx5UMHtCXgPjWdas9DXWVzTM20MvYLVamZkRy7h5Dn+50Ol0RCIRNpVcT5mpCZKOvnAW7pQYh84amcMsDKZdk3byPx9nyyVgSiGDd1mrtDRe4uDE7xcITBdwyCY4nbVGT/t1ZQy+NMfc0bSgSJ5AWzwep2xjEdP7cxyMEvV/FeBTeXmZUi72fuJdgGTXCotXLDUG1t/dyPAr04zvFC/1KYLGK8op2+jgrb87pljkoDVA7xPtjO2cFerfunvr0Rk17BPgKGhBa9AKC8O2fLaDhdNuTv5MQLS8hnsVdxXRdGUlx386wtIZ5Ryl5/FmAgshjgkE59pvqaGo3syuvz37fHzTk61EAxFhgZjWoiUSiIgL3s4m7zoLvimh7y3Az9J5lKlMi9aoZWkkj98w3VZqNevvKAc1HPrh1Krvy3pvjYa2qxzEonFOZYqUChxATwW1svkKdGk+r/R1RQt1fUaG9yYGRbZ1NOkvS3x2xvQcx48f4+GHH+brX/963j6dwwcD3/nOd3jggQfQq01cUvWw/Mck98omNEqMxYoODTNHA0TTh1Xa/iGrSCn5XhTkXivHec32IiSjmoE/LKS4VaG2rdeVodapOf7Tlf7lfD4vU7lEPBLHn76HVciBCvq38n3P+4w/vRtojBphsVH7LTXo7TrhLJFrwcZHm3GP+Rj4jXKRRMMVFVgqDBz6P2cUtzGWSHTcVsfQS1PMH1OeyENj1EA0mhCMKEPtRaWUbbSz+x/FYmUao0YWeQk8rs47aolF4kKZkZydVup3lHP43wYVi0QA+p5sZeagi+E/nV0/gLPTStMVMp8ULa2ms2gIC/ym9z2UckJBfreC06W1dbabmT/uze/zSltXrLV6mi8v5fRz08tZ9dI+zxZ7lIp0NF/hYGTnEp7JjHUpPWaYZQ5PxgULcq+0Nc1aoUEjqXFNJfqSjXsl45jhCEFpjjcnforJZGJ2ViyLvRK85+XeOjrk0kha9CsEStmQnoqxYoOVuq1FQveqv9CKvVEq6JxU6Vb2YeaQl13/PIxPQPwScIUIuMJMCaRVq9xqp3prMY1XyCVRlAa6+j/VQsPlpYrvA1CxxUFRY/Z6gjkhIVRSKQlLgZRg2eDosNBxW41wqbeeB5vY/EmxclELR5eYeGeOiTfFXpjifGWVcuDg/znDG/9DuUAJZP+hfz6IZ1xsQXnn708Kl7DrvLGG/o+3Ctt9LdjwUCubBFOHD/1hmp3/7YhwGTb/bFBY0bvvm6fXJFAylEnCY370zRkGXxDLUFDeb2fzEy1UXySWTrFyu1O49CLIv2st48JcqAxGJiRoulKsfJJkgc1PNVN/qdg82HlzDY2Xit3LPebDNSQ2/vZ/Z3xtAiUJ2q5xgEG5g61mqxVHnZ6SluQpodz3Sa631cGNxGIxnn32WcX3OYe/XITDYb797W8DcH7xnQD5uVeCDJd0SBQ3GanaIFD6Ua+i8ZIEVyvEvTIygB358YwsUBKAa9DP4rCCUyJp/Krp0jI6b6kRuk/dJSX0PNIoZ/cQbCfaRrRcG8gZh3Q28XZNV1VSskGMW9duL2Hzx1uwNYlxyoEXJhn5k5gw3FQprel3vfnfj3L43wVOEgPuMT9eQd41f8zDm//9qJBACWDTY81svF+8lIooTCU6+p9speFDYuveO/9wUkigBOCZ8OOd9iO0dQzDzv9xdE0CJbtgSdqJdxYYeXUa36TYer7p4y1suE+s1JDOBK03VGGpESghkoBJlEPFY/I7Ivia2BpMlHSL7WvqdhTT+2i9UJuGy0upu6AYR6vy+WLuyCK+2RBhv3Jhp28qzJ5/HV+TQMneoKN6s1kouFm31UJ173Ip9HzlI1RaLaalOkyShdnZWXbs2KH4Pufwl4t77rmHSCSCUVO0UqCUDWl8qHKjibotltzXZkClUlHWpcdSoc3L7TLvA+Aej3Dg+zME5pQrAcK+KJ7JIIuDyk9tFzUYaLykhOrtDsVtALrvq6Fqi12ojb3FhEWg1BEgi0oEswEDGNbA10zlBhovL0cr2MX1dzew4SGxtSgwG2DoxUmmBcs+WOvE167B56eEBEoy1LjHfHinxUqPHf7ekJhACag5v5TNH2/FYD8rhQJWoOuOenoeFuN4c0eW2PW3x4UESgCeUZ+wz+v4L0bXJFDSWrTCY3745SkG/yBWzsJaZ6TviRYqe8XmC0ebhdodYr4hkH+X6PsIiI8lLcLzGVpYf3cNVdvsBcWc6WKF9huraBApSReL4RoN4Doj9i6e+N3CmgVKtVsMkKusVhaUtUiUtulx1CXa6PLcJ/FZReh8AL7xjW8QKSQkOYcPBB57TD6Mty1VsSXPGEuMRXOJhor1JpzNAj59nUouW6ih4JjP3IuMvr6orMRuGlyDfpaGFcz1afNE7flOWq9PK2+mQKDkbLfQdnMVGsHtaOn6IqFSTIBw+VoANLKQQhRlvXbheKij1ULPI03CnGjktRlGXhHzaUo27Zp+1/6vn2bg92JZXLwTftxjovG1EHv/5ZSQQAlg3UfqaLlOzO+6Fmgk6H20marNYuXyjj4zIly6LTAfYnHYi6gUb/e/nFyTQMlULhZrXDztZejFKaGMVyCL6zpvFyxNr5GzURlLxQOHkk2cj2uMGuF5xlgsUVQn9u4Xd1npvE3huE3MqyVdFhovLaNIYL5wjwdZGg0Q9ikXhoW8MY7+bC6/QCkLVJIOo12Ds0lX2D+Whpo+MxXdafYrwL30oWKKTbXMzc3x0Y9+VPF9lOI9FSnNz89z/PhxLBYLTz72NCqtFmezjv777ZSvlwd113U2+h8oSTn7Nt3roPsWG3uemWf47UW2PFZO9VYLaDS0X1XEloeWyfemB8rYeJe8MTGWqKjoNtNymby5ab3GyZYnqpevfbCSno/KC7Zkhq2frKfpw8W0XFPMuo+Us/WT9XKAXqNh02N1bHp82Sm79dNNtN0gO/wbLy9h22eaCSzF2ff1IXofqGfzJ5YdCNs+10rn7fJ96y4pZtvn27DWyZNM2QY70VCUwedniMfibPt8K+vvqQWgaruD7X/VjqNDdlJtfLierZ9tRXLqUGlUVPQ52HC/PIGUb7Kx/a/aKd8k1xjccH8dWz/XnurDls+203R5BR231OLosLD9ix1UnycLHdbfW8e2L6Rd++k2ej7WLD+L22vZ/PEWWm6Q60V23VnL9i92pq7t/3Qbm56Ua5NLTontX+qk6epKuu9tYuvnO9j+peVrN3+qlb6nEmIiCbZ/qZPWm2S7tFxfReetdTjb5EDZpk+00P/0ck3x7V/slAVMyKe0tn+pMyWEiEVjaPTqFdd23S3bpebiErZ/qTNFRnoeb2bL5zoIeWIM/G6STR9vo/u+BkAWcmz/Uicl3XIfNjzcyNbPdyw/x7/qoOPWOpquqqB0QxHbv9RJxRZ5bHXf38DWLyxfu+VzHfQ8JtvQ0WZh+2c7U8KSrnvq2PZXy3bZ8pl2ep+Qr7VUyzas2Ohg31dPU7bettLeT7ex6RMr7d18rfxs2m6qWWnvT7auEG9t/1InbTfJNmy6ppLtX+pEckqM71kgEo7S//GV9u68Qx6H9ZeVsf1LnViqZXv3PtHMls8sj5dtf9VJ1z2yvasvKmb7lzpxtCXG7KNNbPncsl20Jk0qJWd5v53tX+qktCcxZh9aae+tn+9gw8Pye1TSLdu7MlETufu+Bral2/uzHfQ8LtuwqNHE9i91sjDoYeC3E3TdVbdqzPZ+XLahuSIxZq+S54GOG1bacIW9LbINW66XxT4tN1TJ10rQ+1Az3fc1sflTK+3dcWvC3ldVpOwNsOnJFio3OZk74k7Zu+vOhL0vle1tbZAXtp6PLdt7ar+LeDyOo00OKlVtT9g7OUc80rTahg82UtnnpHSdbO/yPrts7wdX2nvL5zrY+IjsTHN0WNj+n7rY9GgLLVdWZZ8jHpevtTYY2P7FDuo/JM+7277YwcaHm9Ns2Mqmj8v/lpwS27/YkbJ3+8018r8vraByczFbPtNGX8LeSLD9r9ppvVEe3y3XVbD9r9rlbFzA+o82IVm1SFZ5gdz+hTY6bpWfTeMVpWz7fFsq0NfzeCObn5L7MPjSNFqDmq475GtrLnCw7XMtFDXKc/LGh+rof2p5/t76dBNag5aB381Q2W9j22eaKemSA6Pr762m/6mG5d/6VAPr75Wfeck6E1s/VU/Pg1VIFlh3RwX9aetP3+PVdN8jryH2Joktn6ihus9EaasBR72eLQ9WyOprtYq+hyvYeLdsX0spbHm4hLrzrYnTazZK2kwce26R2VMheu920HOHHZVWg96uYcujpTTtkI3WfLGR/vvtqLRa9LFKent75bGwYQPn8MFG8hnv2LEDe2kxKq2W9TdY2Xjbsjhl8/0lNF9iRaVSUdVjYPP9xfhmQxz93SKOej2995bKpwRUavruL6H1CrltebeJ/scqKKqXQK2i9yOllHWasNfLJHnTw5W0Xy/ztOIOI/2PV+Fskz3B7TeU0PdoNTobtF1XQt8j1XI2JcDebGTLk3WUdVsgHqft+lI2f3x507Tp8XrW3V3NmT/MMnXIxZZPNlK1RV5PWq4pZcsnE8GBWJxNj9bRfb88x+qdOrQGDYtDcnCt+epStn56ec7qeaSejQ83yP/QwdbPtNJweSk6owapSMPWp1pTYoCNDzfQ+1g632uj5Vp5fqvbUcy2L7RRs62Y6n4nGx5soC+x9gBs/Ww7bTfJ81DVdifbPt+eEjT0PNqyYt3a8pm21JpcvsnBti90pAQa6+6tp//pNuovrWTzEy30f6adrrtkOzm7rGz7QkdKhNR1Zy39n16eyzd/qo2KPgeVfU5sjSa2faEjxWvab61hy2fTrn2qle4HZbv4FuTyLpYqub+tN1StWE/6nmxJrSc6m45tX+ig7tIyFo57MJUaVqzfvR9rpjfBOdHBti90pGqU119WRs9DLfQmvmvjo01sSrfh5ztovU6+tubCErZ9oQNTufxwNjzcyObHl9fkLZ9tp+1WeQ6u3OZk2xc6sNbL3LD7/gY2f6qNM89PcfTZEfo/005nYk0u3Whj2xc6cCbW2a6761bw0/6n21iX4ECOdgvbvtBB2SY7INdAT+dLmz/VRvf9sg1nTyxiLNZTuU3mNW23VLM1jS9t/kRrigOZSmQbGhzymtZyXeUKe2/6eAsbEwJwnUnNti90UH9ZGQDlW4qJx+PMnpCzV/Q8nmZvZHs3Xy3bsO5DZWz7QkdKFLbxkSb6nlxp77Yb5TFbfUGxbO9KuU/dDzbQdFkFB799hrAvxpbPttOe4EAVm+UxmxS1rb+3ns2fSrPhJ5bHbMmGInnMrk+M2bvqVozZ/qfbWHdvPY1XVdB1Rz3bvtBJ+SZ5zHbcljFmP9lG9wOyvc3VBvoebyYWjRP2yeXs0u3d92RLyt764sSYvUSei0K+iFyKOoHeJ5rpeSwxvyTGbMOH5fW84YpyeXybdJR02ei6o5ZNT6TZ+/PttCTGbN3FJWz7fDv64sSYfaiB7V/soPseuR/55ojuBxrYnNhT2ZpM9D/ZRG8ieF2+yca2z7Vhb5Htve7uGvo/ufwc+z/VQtddNbTdWEXj5eVs+1xbSqzUdUc1mz+53N++J5tYd4/8HIsaTFRtdaI1aUAH7TdV0v/J5SBs3xMNrL9PvtZUoWPrp5upPs/BmZdnWJoM0JrYrwBserSODR+V3zFdkYqtn2qibof8LjRcVkLvI40c+t4YvqkwGx+oZuP91Sl7b3myjoZL5Wded5GdLU/WIVnl59N9dzmbHqmkboe8Fmx+vJqmy+T/ru630P9YBaYSmTeuv62E3o8mntv5Nmr6LbRcYQOVioqNJvofKcdSJT+bruvt9N7tXOZl9xfjn4+w/xkXJa06Nn/UiaNeh0qtpuMaG5vuXT5M0PsRGx1XWlBptXyo824sFgtvv/32WTlZdg7vHwQCAb7//e9jNBr56F2PgVaD0QG9t5gpaZbHYN02Az23F6WEQ+uuMdFxmYnDv/Ex+PoivXc7KO82gFpNTb+B3o/YUt+/7gY7XdfZUalUaHXQcL6Flg/J61TVZhObPlqaKhXXdYODdTcvO+03PVhOzXYLVf0WGi+1senBcnQWQKOh46ZS1n+kLHVt74OV1Cfep7KNVvoeqwU1HPvpFM1XlrHhvuVDML2P1tF0hcz3nO1m+j7WgLVG5nsVG+yEg1HGdslBud5H6mi9OrEPajay+clGHG3ynNV6bTm9j9eDFtQ6NVXb7LTdJM8flmqJzU82UrJOnrOarixn0xPy3BePxdn4UAPtN1TRdkMVxjId/Z9soTyxJjdeVpraDwJsfKgh5TOqPb+YLZ9qpf4KuU91F5etWOu7H2hg/Ucb5H9o5bWoZkcp6+9pZNOTst8qKXJYd2/9CjHR5k+1UX+pbNPKfgfd9zdS1usArZbOu+rY+HDatZ9sozGxTy7daKP/6TbMCcFVJBxDShNS9T3ZSktiXnV2Wel/uo2iBtmGbTdX0/tEC5EATOxaoPu+hpTfzdZoov/pNpztsg1brq9i05PLfKn3481039dIzY5SLNUG+p9uo3SjPAYar65Y9ucBPY800fkR2YaGYi39n2ijYrM8PzdcWrZird/wUCPr7pX9qVqDmv6n2yjb5ODYMyMU1ZhX2vv+hhRfAtnetTtkG1ZtL5btnbDFurtX27vxcvk5lvfZ6X+6DUOJjvljboKeMB1pAZi+p1ppvFq2d0l3Ef1Pt2GpTuxRbqtZwZc2fbyF1oQfyNFmof/pNmzNMhdvvbFqBT81lkiEvbIgoqhBtndxl8xrWq6tpO8TaTZ8rJmOBMc3lcv2Luuxy/a+spzNn1y2y8aHG1N8yWDX0v90G77ZIGOvzVJ/6coxu+HBdHvLNqy+QH4/q7eXyNcmhtP6++pTfClp7/oPJey9zUn/021Idi0bH2hk44NNq8ds4r0p3yTb21gm+1U67qil5rySlPCq7xOtNF8jj9niLtneyeBv2y019H5MtqF72A/EUz5cR6ts76SPMdPevR9rpv2WGso3Oanc7KD/U62UrJPt3XR1xbJ/Ceh5pJGOBMc3lkn0f6qVzU+2UH1+GY2Xl6/wn6bPEVqrRP8nW6jaJo/vviebVvC77o/Wsf6+xNjSQv8nW6hJ+H+rz3ey+RPNlPcUUXthKRsfrqf7o8vjcPOTjdRdLF9bsdnG5icbUwKojpurMFca0BrkdaLv8XoaL5WfY+l6K5ufaEz5xTtuqmTD/TIPG/zDDBq9hqYr5O91tpnoe7yOojp5fLdeW8LGB5Z9UxsfqMZo1TC6c5GiOj19j1bjaJavbbrcSc99FSnxw4a7y2m7Vu6DpVzLpvvL6LzRgdYCDRcV0XvX8nrTfYuDjqvkZ2GwwaZ7iinrkLBUaKnoMtD3EZscLNNoWHejjc5r5LlGa4DeO6xUbZTXwOpePdW9Ro6+4GVhOErXFUa6PmyUg2U6Lb13FlHdK4+7yi4tvbeY0Fq1GFR2+jdtA+C8887jHD7YePTRRwmFQpy37QJspQ7QamjcZqD9suUA67obbFT3mUGrpahaQ/cNFmLRGMdecGNyaum4ZnlMdl1jpWazPEdZK7VsuN2JpVILahWtl1qp3WLGUiLvQTpvLKb+fHldNZVo2HBHCUU18rtZ3W9h3e1laLRxarYW0XFTCY0fsgOgd0psvK8KZ2LfVrXZxoZ7lvdM7bdU0nxVGTOH3Mwc9bDx/lqKE/7oij4bGx9IzCWxOG03lNN6feJgkgYMDgnXGblkW9kGKxsfbkiJj1qvr6T95mUOt/GhBio329GZNJiKJbrvb0yJiFquraTz9poV1ybjic42C70fb6bhsgpKu2w0XVVB193LsdMNDzZSlxCP2hrN9DzWjLlSnls2PNy8Yu/e/dGGFF+yVBvpeaw5tUbUX1JG9/0NlG2ws+HBJrofaKDxSnn9NpZK9DzWnPKPVV9YsoIXdN1VR8OHyinrtiPZtPQ81oyzU35W1duLU34UgI7ba2m9Xp4bA0sh1Fp1qhx7RZ8zFeeTn00N7WkHH3sea6aiz4lvKojWpKHnsWY0kjx3t95YTcfttcs2fLSJqq3yXFncVUTvoy2su6cBgOZrK+n6yPIaseGhRqovlOdcR6uFnseaU6KQpqsqWfeRZXt3P9BI3SWyDYvqTPQ81pwS7tdfVs76+xqYObjI0B+nWX9fAw0JvmSuNNDzWHNq3a3bUcqGB5ZtuO6eepoSPiNjiWxvR6u8JldfUMLGNGF25521NCf8HZP7FjBXGihJcKDKrU42Prpsw47ba2i9Uba3RpJtaE6Icsr7HLK9E26YtptrUv6lpL0rE6IkZ7sNVLCYEG23XF+V8p8m7V29PTFmO630PNaMPuFba7qmMsWtQB6zNQl725vlMWssk69tvKKCpisqGPjtBGFPlO77l8estS4xZmsTY/bSshVcdv1dDTRcIY9ZU7menseasTXKY7b2olI2PLhyzDZdXUlpt411dzXQ+/EWnB1pY/aRlfZOxil1Fg3diecWDcWo3JIxZm+toS2xH0Aj27Cs1w5AaCmMZNEuzxE3Vqfi8Cl7J8ZsabeNnseakSwaqvqLabu+JuU/Bdj4cBPV5yfnCNneyRJvTVdXsvlTbXTdWZ+yd645ouFyecyCXEZxy9NtdCWea645ImXvexto/HAFzVdV0nBZOT2PNqXNEcUr7X1nNc2Jfalk09B4aSl6uxaNUUP1NudyfADouK2aluvk56gxatj4cAOl6y3MHvEwf8pN4+XL++i2G8ppS87JwMYH6ijvkZ9j6ToLG++pZujlWQILUVquLqXtpuVrN9xdQUWvmXg8jrPVyIZ7KpBsCRteYmPdrcWUJcRD628vobpXtoO9TmLDrQ6MxfJa1XChhc7r5Gdc3Wug+QIzNX0G0GiwVkt03+LAXCq/ZLWbDXReJa+PaLV0XltEYDHCsZf8mIpVdF9nxlqhAZ2W6s0muq5dPvDYcZmRhq160GnZVHUVNpudZ555hslJseQchfCeHjWpr5cHYXfXBgILMskNucME3VECi1FUWi2emTBq3fJJRr8rIteXDsHidIygO4p/XhY6eGbCSObEjKXV4p+PpE5dRgNxAosRZk7IQgDfTBijfVlZ5p0LyfVSkbM+BhbDeKdDNFzoJBKOElgMQ+IwpncmhEq1rJMMLIbxJE78+GZCxKIxGnfYOf6TKbxTgRXObP9CGPdk4trpIAFXiKBH/i7vVICoX5vKoOSfD+FO1I30z4YIuEKEl+ROeCYCxCNxQvNh3v5fJ9nwYD2exLW+uQABVwj/wvK16enFAnNB/ItBZo+4Cbvl7/XNy6pK93gATXp/Z4ME3LIib2r/ItZqM64BOZjnngog2ZcVkt7pALFAQo0dkr/XO+Vnam8crVWDuWT5SIpvMrCc9TEkZ57yTMoLiGfSj7XGyOGfjkBIvlatWxYe+V0h3FOJa6fl3xpOpE9ePO2THebJa+dDeBP29ifsHUo4CTwTfoyBKBsebMQ96kvY25+wUSiRDSu4bMM0oblvNohKA6NvzaMv0sj2TpTd8oz7V/Z3JpD6rOW6amLROL5ECnXvRADJvDwOfdOBVIrAkF+2SyQao2KLg6VJP3rnsmrWOx1I1SMNeeT+eqaWbViyvoiue+o48m/DKRskkW5v77SfgMtEyBMiNB9i8bQHtZTW/4Vle/sS9g4lRPveiSCSJUJRnTlh72DqXsnxHUqMWe9kYEX9VN9MEPew7KRIju+AK23MpsE/G8QzFUBySrReW00kFCUwJ1/rnvCjThOm+WcDqbEf8kYIuELEYrIN3RN+JGu6vYNEEirVsEe+NjkGgt4wKo2K6vOLGXt9Du9UgHgkYe9Qpg0DWKuNEILRN2dxNJmJeJfVr+nf603YkFDCLuMBtDYNPY83M/LKdMLegRXXBhO1572TAaLJ/ofk/rsTjh7/nGzvsDtpQz/x6PI85Z8P4pnwp8Zsy9VVy2N2wr9CghqYC6ZOMYbdIQILQSLBCJN75ylut+WcI4JLMfm9n5Hbuse8mEqX33vvdIBYMNGn5BwxvTxmTeUSA7+bxDvtp7ilaPkEWFidsHcgca1s74QJ8U0FCMyFOPlz+dSA37U8z3pn5PtEPKHUtTqj3P+pdxap6HHgSdjbPydnwAul5uQg0eDymPXPh3BP+nG0majaYiewGJbXhsRYSp8j/AsRvIn3PLAYIeSNYLDpqNriwDMVXPmOzYcJLCRs6I4TXIzgXYjgGghRVOXFlPbe++bChBJ9Cvkh6I7im5fnNO9cBIM9ytJoYg7xRgh6lsdscCmK15X4bfNRzMXLY3T7+ssYGxtjaGiIyclJKirSTtmcwwcGw8PDHDt2DI1GQ0/7NgYSJ7A8cxE0Ca6l0mrxL0TwJVJB+xaiBLwRwkEIz0bwzEaQfGnvxUIE76x8rd8Txz8fIZL4fO6UH0uFDtdQ4rvmVr4X/vkwgUV5HPqmQ6iIU9Vjx9FgxD0VwDOVmMvdMXwL4dQa4Z0Ook2b971zQazleqw1EgF3HN9cCP98OHFtCL0tlHKmeiaDKYFsLBDGNxti7oTMa7yTQUwly5k3vNMy10rCNyuvcTMH3SyN+KhICCLisTjeiQCqtEMI3hl5zgXwzATxTQeZOjjP1DtuDHadzFVUaojH8M0GUvObfz6IbzZI2C+/1+4J3wpO4ZsOyuuJSkVgQb42lJj33ePyvD+RyOQjFelS3xtcDOObDRJI2MUzFUClXeaGvkk/s/Mhxl6bQWfS4JsN4k/U3/ZM+tGZl3+cZ8JPMMG7loZDeCf9y9dOBVbUFXdP+lPcMOyT+6DSykGnuROL+GbT1ogJ/zI3DCfsnbYe+uaDTO1fSF2bPo/6ZgKptdM3l7BhQBbQmEr0uIaXszz4Z4Opuuz+2YQNPeGUDaOBKGWb7HgmfPimA6lMlgFXwoaLaVwlvepgNEZRrRl0EFwKyTacy84NvZP+FFcZfXUWc7EhZUPvZAB9GldxT/gJJzhFOGEXNCqkhL2NpctrhGfSn+Ja4XAM32wQ38zy93qnAngG/SkbpieL8c0GU+PFNx2Q7xMO03VnLcZiiflTy6flfDOB5f3MTMLevnjKLmFLRLbhmBffTCDFl1Lj2xtO/bZYOG3xVMUxV8qb6sC8bO/UfmYyAGn99U4F8E4HmNm3ACqwVhoJLART16bvv7wT/hRXCXmi+GaDmCsNdN5ey+KID71jmXe6J/1EE3NYzB9dYcPZg4uo0/ZU3skA8bT+J+eIZP98s0HCi2He+ZfTNFxUsuKd884E8YwneM20bJdY4r33TgSJx2HhZGLfmm+OGPcTsSf2QQM+Qt4IriH3ChuGlpL2DqT2uyC/V56JAONvz0M8Qt1FlSk+4pkKosqYe3yJ8Rz2hPFOhRh+bRbC8jhM3395JoME3XKfwv4ovtkQvrkghGH+qBtV57IdPGlcK+yX529f4l3wzQTxzcnju+WqYtRqFUsJmxEG33wI33RifZkN4V8IEw4nvzdEcZuR0nYzw39axL+wfK3fFU74CRI2nAkhmWU3x4nfz9NwkR3vjHytvFZFCCX4q2c6RDS07BLxzUdxT8rfo9LE8LsiBBPj2zsbJh5fzhTgnYviT3C2eBC2bTuPP/zheS655BIOHjzIOXwwsWXLFgA6WzcQWtIAMcKhBL9yR0CnxTcfwZB2ato7FwOV/F74lrT4ZiP4XYl/z0Xw2eVrk/6y5IH4SBwWR8LMJ/bYgaU4vtnl05We6fCKLPa+6TD+uQi124qIhuP4psPEEwkmPFMhtPr0OSuU4nsBV4RYJEZFTxFnXpjDMxVacfLTOxXEO5PkcBG804GUUMM7HZS5VfI+E8GULy24FMYzHSSY2F95JgOgUUEE9n9zmNZry/HOBSEeI+KL4JkKpPZi3qkAWuPyj/OM+5g7HcF1ykvYF8czFcA/L7f1TPvRO5bX2aVxf2qPOn9qibINdpYG5WCevIbp5exq8TieMf/y2h+R++ibCTD62gxSkRZzuTGVGd8zvpKreCb9qT22bz7E0rCXwRcmiHgieMYC6Mxp10748SV4TWBB3geHffIXzx1dwuhI41oT/mW+5wrjmQykeI1nIkA8Fqfl2kp8cyE502GCAwXd8rXBxPronVjJVTxjfvyzIWYT3MszGSCQWJN9kwH0ljSuMu5P+bHabqwlFovjn0usydMBDBP+FdcmuUokEsMzGSASjODssibsvbwme8b8K9b+pL1B9n9oJDWNl5Vx8ufjeDL8Qp4Jf2psBeZlG0YCcSKeALOHllZkbshm70jKbxggFozhaNOlrk0+x+BiRLZ3Ys3zTgZXZOJbGvLiTZxgD3kS9l5c5jUa/co++BdCoIWuj9QRDsbkMZv4Xr1tpQ2T+61IQLZhOCTb0DsVSPme5Gt9xMPxhL3l+/oTvCbsiaDRqynvsTP1jgvPmB+VJm2Nngykfqt/TrZLLBBj+JVpbI0moqF42rX+1D7PP58cs9HU90SCETpur2Vi9zyecX+K4wcXE9d6k2PWv6IM+PxJD96kn3YxacOkvQMrSm3IzybI9N4FtGYNjZdXpni7dzKAzqhNuzaQ4oZhX3IcRpk+6MJSacg+R6jUEJHnHv9sKNE/N0UNyxk9PeOBlXPEVADfTAiVWkVgLoRnKsDUviVCS1GsVcZU4BqVOnVtyoZTQbnUXaK/ocUIwy/Py/+eCuJNPMeAS45JhBNjwj0ZIBzQEY/HcQ3I80NyTg4uhvBOB1N+ce9UeEVSFd9UEO90CHOpmtrz7PhmQylO550JpnwGxOJ4psMEFpf5nn8xjLlUoqzdjHc2vEJM6ZkJE0rEZyJBeS0LLMXwTEYY3evBmr6fmYkQjcr3iURkruVLrIH+pTi+hRg+2QwEvFEiae5j31wUv0eVuDaKbz6ampM3NF7M6MQQR44c4dSpU7S0LIvWzuGDA7/fz7/+67+iUWtYX38eY/sSc8t8FCmQeDklHZ6pcIpbhX0xfEtRoqE4IS/4XHGisWVe45mJpPyu4bAKz1Q4FReZHwjJ8/BUNHVtIOFLiwRYwZH882G0OhX2RhMlHSZcZ3z4ZuXvjYaieKaW3zf/Qgj3RNoaMRXE0WjEWCIRWpLjhaHE++efDyXiVgl/73iAWFomJfdYANfpAMRjBBZCuMf8qSo/nskA6rR53z3mxz8fwjXgwzsdpGyDTS6dhezD0Bg1K69N7A8Di2GWzviYP7HEwkkvKq2KiD+a4k/uUX9qzgp5wrjHfGm8ZhFdGqdYGvOn4mZhX1S+NsExZH+SCteAB62kRmfS4k/4CaN++dpgYu/rnw3iNi/PQ+5RP/PHPcwcWUz030co6dOfDeIezc5V/LMh5k8spfyR/vngigxEmZVP3GM+4vEYTVdXMn/ajXvMRzSxrnkyuJZ71C/vk4GgK4TrjIe5o/KhMu9EkNDScuY3z/jy+h1ckm0Y9UexN5uxNZpxDSz7a9xjy7wm7IvIvzUx7yf/XlRnIuiWP0v6O5LXhtPmfXUaV4kGozhaLGiMcuKBVfZOy+joHlvmKnOHlrBWGVO83T+30obu8UDKLxSNyjZUJxKWpOydGLPeidX29i8k18MQC6fcBBKxJu9kYAU3dI/6U76GoEu2YSQQpebCEmz1ZuYOL2a/1p2wdzDxnk/5Zf9fnYnAovxOpcasR7ZLkhf7pldyw7gqji1xSDISSDwbz/I4TPdjecZk3+v8KQ8qaRprtSG1T/LPhVbYe2nMTyyxzsZCcdxjPvR2HfWXlrF4xrtyzI75V1Rwco/5UuN77rgbtV6dmiO8E/4VfqylUV/Kd+mfDyXGYZx93xygbJ0NTdp+zD3uxz+TnCMS1ybmE8+EH7VWlcrIm2+O8E4FUv0NLoRYGvWzcFpul2uOAEClSoyPEJN75yEGVVuLl8fsTAi3aeWYDXujEI8RDWlYGPAxtXeBqD+Kb27l+PZMLMe5o6Eo7jG/PL7jMeZPeldUi/Cm6yCQ/WXJmEXAFcY9ESQahYreIjR68EwuxyXcE8GUDymwGMEzGSIaTthwNoy5XKKs08T0QR+eyTC+hWRMMIpnOpwas97ZCNGIbJfhN72EA8bUtWF/DM90mHBE7nNyvUv1YTZKYBGIglodxzMbWV7XXFE0mngqs5JnNpqKRUajGrb37+D3f/gF119/PW+//TbvFVTxrEVOxbFz586Uev3KmqeyX6TVrKoT23mtFWu5jn0/XSS0BPFwOHtbWK6bJ4EkQciT8Xmueq+JQR+PRuW2Rggl56jkz0+vh5yGeDzO5icaiEbi7P3qmezfnyWtYvdHazE49Oz6+1OKy7whQfUWJ2OvzRe+VmGt2ext/zJqyNZfVobJKXH0WbH0fFs/34F/PsgBwdroa8GmT7Tgmwhw7MfK+7jhwUYslUbe+K9iZeJ6PtbM0pCPgd8qT/dYud2JrcbEsR+J2fC8/9TF0rCXQ99TXk6lvN+Os8nK0WdGlN9Igr7HWxjfNc/ETgXjPoHeJ5ox2CV2/jfl5dskC/Q81s7oG7OM75xT3sc1QHJK9D3ewtTeeQZ+p1xZWt5np6zbzsHvnDl7nUtCoOzFe3tf5Qn8LFUSxhI9MwfciaYF+qxS03pDOc4WC2/9r9PZr8nyHSVdFlquKmfwjzNM78+R4jRLykR9sY7gXFhZqbcMGEtU+GfluVil02WvNw6opETGqFss6Mxqdn0r4z3RS9nrxgJjllc5eGwvZrMZjydzwTyHDwIcDgcul4sqYwcbiq/IfpFaDencSgeb7y7G74pw+FfyuIiHcnAvtSrFvQwOVUqAvgK5uFcC8WgMya4h5MpyXY62ZRssNFxczNEfj+EeXV2aNx6Pr06Lr4MtH29i8sAiwy/mmeMz+JOz04J3KkhwPpx2yRp50geAm3XdVcfE7nkWjiufMxo+XE5Fj5M3//Yo5KHx7wWqthdTtdnJO4J17Lf9VSeeMZ8Qr6nY4qC8xyFcGq3t5mpmjy0xf0R5yuyuu+soqjPzpmBZ2tYbqlgY9DB7YElxm4YryrFUGjj0XbGSedu/1Mnc8SVO/GRMcZu2G6swlOj/LJy8+4EGDHZJuDRy241VuCcDTLypkIf+BfCn1U0V9Dnx/ZX9NiZ2CZQPUqvY/EQDS2N+TvxiddkXVQ57bXywFuJx9n93PLdNE47M5HfoLBBOTk2FuFeyPENiXtYVQdhPao5S6XTEc+z/VZKEyQHrri1i7kyQgZcySl/l4V6vLnwTr9fLsWPHaG9vz3rNOfzlYnJykspK+QTxlU2fyXpNXKtBlcGr6rfoKWmSOPxbDwE3OccPqmXehRa0eohkDL94obI2iaCJ1giRpN81yU9y8Jt4PM6628pABYd/mMPXkOV9aby8mKJaI/u+mWf/n+Wepd1WZg6mrZEF+FNeXrZW7vU+4V2lG21Yyg0MPi9WNqv3Yy3454McE/G9rBGdd9URmA0K9bHx6grK1tt56/87JnSv9ttq8EwEGHtNeUY6R5sFe72ZwRfEbLjlsx0snHZz8mfKeY2t2Yyz1cLg78Xute7eeqb2LTB7UDlfa7+lBluDmbf/l1j5tp5HmhjfNc/0PpdQO2Foof+pdsZ3zTH2qvLnZWs0UbbRzkml5YDPJu/6M3GrfJBsWozFOhYHEhN2ge9VqVRUbbVT0Wtjz7dGVpdhzGEvc7mWjpsqOfOnBeZP5CgtlcVvleJehUq96RKChLS5VW+BYJK3STqIZN/7xw2JjFEX6TA7Nez5uXfF74pLOlQ51s05/R52HXmRiooKJibESiOdw18GduzYwSuvvEJj0RbanednvSau06IKruRe3TdY8C1EOf1Gwp+Uy+elUqVikZIJQtmqZeXiXkl+Eo2iNaqJZClnHc/h87JW6Wi6vJRTv5nCO6XQ5wV031fL9KElpvYsKuZA5ko9YW+EUOLA9LviVe8T/vRuUH9JGfOn3LhHlJdULe22UXNBKQe+M0jUr7yE01pgazRTva2Y4z8ZJrp6aOREz2PNLI36GPiN8rmwqNFERY+DE78cS4mGlKB6ezFLY75EhkRlqL2olLKNdnYL+vIqtzrxTgdYGlReyq6024a1ziRkC5Czmc4eXmTopWnl/dvixFJh5OQvlfPJtaLh8nKs1UbhuGHVVieBpTDzR8XK+r3v8G44YRonszebcZ32pn1UON7YeUcVvqkQQ6+sjjeoVKqU7yodLVeXotapOfHL6ayfA8vip0T/NHqIRpDfxyT3ytG/TO6lkRJhluS7XIB7aSTovlzP3Jkwo/tWTjZxSbfKp5HEG7PfYsnt4tSpUzQ3N2e9RhTvWSaliy++GIBqS3eWu6Q5ESXdCmJw+lU3NT1mQkr2alotRCJ0XOmgqErPvmcmCRUq9Zq28CYDyiGFE3wyaPzOV84UrBGdCf9CeIUqUQmaLi2jcpOTSCDK1Dt5nMMZhKH/U634ZoMc/rfhwjdJ/KaKLQ7KNzo4+sOB1WKvPOi+vwHvVEBIeFG6oYjmq6s5/dsxZgSCKM5264rTXEoh6ggBuZyaSgXHfyom5tnzj6eE73Xi12PY007mKMW+f8khusiD8g0OjMViNU7XivINDswVYvV8CcHufxC34enfTaw4xaPoVh6EHTwg1yutvbCMfd8+ncq+VvBe8yF2/jcxERqAs9mCpdqEZFET8ih3uPY91UIsEmfvV5SPEUu1RMu1NQw8PylE9JquLMdcbuCgQHDT1mym4+Yazrw4ydQe5YRo3V31xOOkREpK4JsOYqkwIFmyCFlBnsszFvfZIx7mjnqzXJwfwcRpGmOpDv+M8sj8xrtL0Zs1vP31yRShUKlUOYVKAKP7fEjmjDVFnzhxm3QmZThuqkMf4iB78Xq9vPXWW2zdulVxH8/h/Y/jx4/jcrlQqVRsqLh6dcArnQDrdMtCpTCM7vHgXygwxyTfkwT36r61DO9shCM/Uy7yNDi1+GdC2QVKeTB9wMP0AU/WgFiu90Rn0hFYiqRODGVFFodL0xXlxKNxdv+TciFKxWY7teeXcPiZIXzJetEKHERdd9WyOORj7PUMG+Z59+0tZmovKOXYz8YILwrMM482EY/FhcQhphIdRfVmfHNBIZHSmeemOPOcWLBGZ9PRfmMVI6/MsCiwBo3vnFuT0PjEL0dTJ5SUYvLtBSbfLrTRWI3i9iLUGpWQSGmtKOmyoTNrhURKZwQDoUmc/v1E6nSTUpxQGoDKQOt1lYSDMaG+Hvz2mTXdy9FahGTTKRMpJZwipRttNF1ewZFnR1JZRJWg/rIyDHYdx3+s3IGls+lov6GK8V3zzB9Tbv+uO6rROyT2flXhHBCPUbnFQcMlpag0KsbfdCm+V2ApQsBVQDiRgf3fGllep+JxRQ6npEDJ4NQRWFTOk03FatbfUsrMCT+DLy8tcy+1OqdQybcAU8cCTOzPeL4FuJdT1YqXfZx//vnnyr59ALFtm1xaptG5bdVn8TSfV6ZTb+xAkHAwLguUckG1knfVbDJR3mHg8C/m5ZOOCqEvUhNcii0LlAogyasO/2i6oPA8EwFXBMma593P4kMr6ymiMVFKfIVQqQC6P1pHYD7EyV9l+KESWSyzwdZooqLPyenfTxLxpEe88/v2mq6uILAQFuIb5ioDnbfVMfD7CeaPK/9dxe1FWCqNwiKlvf8i7kOpvqAEnV7NmT8qD7wAHP2BAj9jBkZemWXxjPj++rjg4TqAkq4iHC1FwiKltaC0s4jiTpuwSOmwgEg+ieFXZ5D2ifPQfd8QE9cDWKoNVJ9XwunfZbwr+RCBXX8r7l+z1plxtBRhsE8X5g5p3KDrrlpUapUyv3cCWouWlqsqGHtrbnUgNY+AqHyTnaI6Yyqz96puZQkWGUq0dNxSy+hrs8weTswB8VhBoVLnrVWotSr2fk35GPHPBQkshNEaNEQ8yuZt71SEPd8Q5+VJ7qW3QlBga9N2mRlzqZa9P1yU40Agx4ZyBMsAxg4FMFi1qwRKIItQgFViJWdsCzrdq0xOTvL222+nsh2ewwcDi4uLvPLKK+j1etoqL4FgRhA1TVgX1+tWCJWG3/ETyeMaAlJzjEqnIx4O036lA+98hIGXFQz2BMeRzGpCS9GsAqWciMdxj4XY/50xIZ+XRpKzTAcXxPwaDZeUgRoO/9uIYoGStc5IwyXlnPr1eCq7khKBUt0lZfhng8wcVE5eDU6Jqm3FjL4yncpWowTN11Wi1qg5+XPle2uNpKa4yyZnGBIQKc0cXBT6TfLNoOmKSib3zOObKjQYl7E46E1loxHByV+OrageoQRLgz6hmFAS5ZucaM1aIZHSWlGxyYlr0CPUzzU9L2QbJrNeKsXE28qTLqSjcrOTWDzO1G7lXO/MGrluyTob3pmAkEjJUmWg6apKBn43kcoYrgSl3TaMJXqGBYReGgnqLq5g7tgSS7n8a1n8RTUXlmCpMAgl57DWGWm5uoKhl2eYETg8EFgIE3DlmXtjsVVCpFO/nVnud5bPsyGaGH5aI0SSt8sSy8yExiAfsps9EWT8QFAR94qGYPxQkPnhldwqxb0S/58pVmq07GC/+xdcddVVnDghdkg0F94TkdIrr7xCKKH86S67YqU6WZv/lGPIo2HgteWBniQG+TC2x0s8xmqBkkaz7FjJWHSbLrNT2mXh2C8ncZ0Orl5Y1eoUMUgnA2U9Vqb3ueWBkGshz+IYOfXLybSPVYpO5Q/8bpqwX0ygBBANx4gGFCxCab/L0WjBVKoXEigBmMoMK9IYKkU0GGVxVPmEBrD3n0+DVPi69wJF9UZlJ2HSIFlAZ5HwTgrImoHAdIjJabE2ACXdRSwNLgk9s31fExc2rRUHvrm2U/JFjSZikSieEeUkYC0ECgAJLKUSnjHl9rdWmzCW6LHVmVk8JU4SRSCaNSyJ0FKEaESAiKpURMJgLNbjbLEI2dNaa0rVbVaKxREv8WgctSS25Az8YQrfpMJ5I+H8GdvpYmynK/+1yfk48c4nT+ibyiXUEnhGMsZHntP6fY/XoNaoeeerOTZFWU6jTR3yYLCv/nuyH8k1KJlFCWD2tILnq9OuCpbVlXQyPHuUhx9++FzpkQ8Ykg64Okvv6g8LEN/JwyvHiUrSLWdTyrEWTh3x4cm2dqVzrwysu6WUsC/K/v+TQ9icpa2lWkfQEyO8GM3JzVL9TONW4cUwB76Vx2mdI4B15Jlh9LaVc5oS3hYLx2SBksAJfkulEeIsi5QUOHlsDWbM5caV2bAUIOQKr0gJrgS+2bBwJp+1wlqpx1JpwlisFxIpmcp1+ObDwhmb1iIYMlcbUKlUeEbFHC87/0w2XOu9dCaw1lmYPya2CZje4xK+F6ztmdmaralU0Gcbb/39MeHx5J3yE/JEUAvupG11phVlipUg7AtjqTBibzQLiZQigRiaQExofzPxtlxqb+JthQ69xHcf+rfs/DVXFiW5rbxOFXeamDvqW54Pk23S1rEUL1KpcLYaaPlwCaO73Iy/k2MMp5/2V6nxzcPcYICpw6vnGlXiPkmxUjr3Gt4VQnaX5BmLGdxrXemHCBjH8Hg8vPrqq1x44YW5257DXxRGR0cZGhoCVLSVXbzC5xUv4POKBFWMH0jPapk2bnK8J7MnfKi1qlUCJZVWmzObUtk6I3VbrZx8fp7FodBqjpLGndJ5lb3RgGswkJfTpXOyZPvxt12Mv+3Kfn0ODjK9b4l4LL5SoJRHaCR/rCIciBFR4vNKQ1GdmaJaU6q8ktLT/7Y6M3qbmEhJpZbLLvlmxTjDsWdH3sOjo/lhbzSjM2tBRKSkBYNNS2BObE2OeCJr4l62RhPeCd+Kck+FIGfkWZsoWhSnfj3BqV+LZ2sxlRuIx+P4p5X7vPzTQaHrU1jDMzM4JWx1FsylEotKRUprxOifZhj904xwu4ArvKJEryJEolhrTVjH/EKB1KIaI0U1YgcwA7MRuQxfZhcLCJUG/zhNSKHNk7xq4ZSfhVPJzEvq9Atyt034tLQW0Bm1+Gcy7pnFb5XEuluK0Rk17Pv37IHY1En+tD5MHQtizrwHLMeIEgGzZBYlAPe8Bvd8fJUJ0xHXaVcJlZpKL+LExIs89NBD53xeHzBcc801ANRbt6/6LJ5nzAIsZsby05Mm5HhXJg76CPmy8KCEgBxYxW+ar3AQDUU58cvsnEGl0SxnU0rwEMmmgahctlzE5xUNwenfpK3hBfhTEid/OY7OqhXKoKTSqIiGonLpNYHsSbY6ExqdWkggYq4wYG8wM/KK4iaAvC5otWIxymgoxp5/Fsvks1YYHRL2RjOLQ14hkZJk08hjQzBhU7L8rwgkmxa1Rk1gXixO+eeyIaxNmK+RwFBsELZJToFMAUgWDdFQVCjzlaPVQjQcExIprRUHvjsoPJ78C2FCS2Hh5GmWaiOWcoNQm2hIziAWcoeFnkE0GCMSVPDD0niYe9jPwHOTzJ9Q6FtLtB18Po27pvHRFT6v5F45yc0Sn1mrJdxjoVWfp5eQS83BKjVGp4b2a4sZ2+1l5nhi7siMZWZwr2gQZo4HmR/KMtfk4V7TQwBaVHl8XpkHsCqKOpiMvsXw8DBvvvlm6iDXu8F7Uu5Nr9cTCoWos/bSVfoh+Y85TiUCMinQaNh8j425M0EGX1s5YRQSKeVMswg5U2dbKiRqthVx9CdTeRfX9DSM9hYjXTdXM31oiVO/nS6cTSkxmBqvKMUzFWRm/1LaR+/SzO+mhAh8INIxKkH3/Q2YK4y8+f+e/QBR0zWVVG5ycuiHZ4TEK+vvrSfijwqViHO0Wei6o56Jd+aEslitFWsp97ZWbP9iJ0F3mD3/pJx02FrMNH24kpO/HBESN235TDuoVbz9P8SzbYli/b31WGtMf9ZgpSL83ypTAmc3nXbad0sWaLqqgmO/mCyc/UqtShGKrZ9uIrgUYd+/pgkdCpQTqb3IQTwOY2/kUF/n2TivIBRZ2678XLJA9/VFLAyHGHjZs3yaP+uXL9vrnaXvMj8/z/Hjx2lpacl/z3P4i8Dx48fp6OhApVLx4Yanlz+I5uEK4TANF1uwV0ns++niqqB8wfIh+T7PEdCq7rcQDcaZ2FsgSJHWfuP91UgWLbv+KbH+xGJ5s4wRi6MzySmbh16aJpy5n3kX/Kkgd/sAlHd7L7DtCx3Mn3Rz4qdnP71x/6fbiQaj7PlnAc7QaKL+0nJO/WYM34Ryr0Hvx5rRmbW8/T/FT4mLYq3l3taCxqsqqNzkZN/XTuKbVa7Oab2hCpVWJVTuzdllpeOmWoZenlqdQewsYOvn5dItIn1UjL/AMm9y8/cmJXZWpH13yToLepuWsTdcctNC9lKrab6yhJIOMwd/OI5vKm0s5uFeKpWKlmuKGd7pWi7fnok8JUlUBcQkmW3rtxtw1unY+4xbXgfzca8EFor28Nb+l7Hb7SwsnH2n4zn8eVBfX8/w8DBNzu20lu2Q/5jH56UKhUGlYsMNZuaGw4ztzVh/8mSTkD/P4yjM8ZnOAtWbrJx5KX8JkHgaXzQ4tXTfUcHUITfDry4qKOMrf16xqYjgUoSFUxnE6934vfL1+d1ysg8Q72q8qoLi9iLe+fv35uRqPpT32Wm8rJKjPx5mUSCbYuNVFRCJC2U3Mti19DzWysgbM0Llw9aKtZR7Wyv6PtFKyB0WKs9hKNHReEUlwy9P4xU4wb7hoUa0Bo0QV14rGq8sp6TTJlxqVxH+ksu8rfW+Ckq9JaE1QNU2J+NvzsuivgJ+q6RIadNDlQQWIxz5cVqwrYDYo6RLFh1MHc4+DvP6tQp89yqRrxY2XK5nYTzK6O5g6hR/Iex3fYepqSmOHj16rtzuBwSLi4vY7XYMBgM76j+5/EE+7hUMU9qhp6RRx4k/+VcLBnKV200gbzwyR9kbe6MelQoWTuYPrKdzt+YrS7CU69n/3cT6o8DnhQaqNtuY2ru48ne9m5K5Ctp/kPjTu8HGh5uYP+Fm5BVxka0o1t/bQCwa44hAJkvJpqXuojLGds7in1Xu82q9vhpThZ79XxfPwiiKtZZ7WwtKu23Uf6icw98/I2SPyi1OtAaN0HM2lkisu7uBoZemmDkgnr1JFBseasQ14BXKVPQXj/eozFv2j5XHGy3Vegw2HbNH5MNyK0RGmVCrQaWibIOFmq12jv50En/aAQJVPn6kUlPdX8TMSV/OZCWqfH4pQe5V2qShtEnDkT+EUIUjiriXXxrg1UM/prm5mZMn3/07/e68nsDw8HAqi1JKoFQIRgNSEURDcfxLYgGenjsdNF9uE+0mnskQR382I7S4uk75mdjrYviVxEuvcDNStsFO3QWlK/5WaMDXXlzMlqdbkZxiGUqqzyvGUFagzf9lQlFzcQmSRWyoVV9UzPYvdmJrESuLtjTqwzcjrhxeC6YPzDN9yCWcXcdYqsdYLlaCzTvuYfSNGcZ3i6UQXH9vPZs+8ecRJTRdVcGWz3UItxt+ZZrBP4gJrySLFkORDnOZ2OmmsTdnGXvj7BNKgMVRH941jMVNT7bQ91SrcLvSHhtFjSbhdmuGaJYzlZrq8xwYSsUarrunlk0fbxJqY2u24miyUH9BceFupRGdid0uTmWKAAvMn6OvL+UWKOWBpVJH7z1OnC3K7RHyQCwcJxKKE7cqnxs1PgexWIz+/n7hfp7D+xPJzAy1lh7ljQx6ov64nP5XIGtIcauOnjscGBzim4KxXR4m9xXI1pLhZDr5+2lGlZRdSkPl1mJKuqwYBdeEjY800Hp9ZdbPcjlzTCU6ynrFeSji1WvXDGu9CUe7Rbjdpo+30P1gg1gjHbjH/Ws+cSSK0TdmGN0pFrgyFusxFevRCGbzO/PiFEMvim38dSbY/Kk2qs8vvP68F+h9opm2m6uF2kztmmPo5Sl8guXvTOUGzGViJ6LmT7qZ2DPPwnHxdXIt8Ez4cY+JZbFwtFvY+vkOStYXCbXT2XRU9DuE2vy5YSqTKN8kNl+ZynT0PdFEWU8Be2TsbevOd1K5ya7sJomTYyNvLjL6lmulQKkA4vE4p36fR6CUB02XWFl3g9hzDnmiRAJxdDoUcy/H0iYAXC7XuZJvHxB4PB6Gh4cB1bJAqQDiBj1aLYT9MaEy3gDtl5up3Sq+rwt74MyfloRE1IH5CMOvu5hI8jWFTuDKzXZqtjuF+udsN7PxwToMzizrcZ4+F3dZs2ahfT+hpLsIrWA5ekebhc2faqOoQexZe8b9LI38eXjX4mkPo2/Osjgk5vOylBswVYhxhoAnwuALE8wddAm1a7yynO4HGoTarBXlm+z0fqxZOPvVmT9OMfSyGKfU6jVYyg0YBX3EoztnGXntz+Pzco/6WRz2Cduj485aNjzUKHy/ogYj5kqxcbUKIgKljN+lRKDk7LAIz1eNl5aw7u6avNdkir8NTj3lG4oo21CY56nSBEzDby4y8FKGgLqAiGH2RCinQCkf9BZYd6URe42AzSMQDsaJhiBWpHxutEfXEY/HueKKK4T7eQ7vT9xxxx0A1FqUZ2iIW4xEw3HCgbhQRhNTsYa2S01IFnGfl2swyMJA/sPTmQKkkZ0LjLwhdpDB2WKmYpMDY6lYPKn1+kpqLhTzTegsGuxNYvE4AAqcBXkvYXBKWKrF/H8AbTfX0HJ9lXC7xSEvXqWVHt4lRnfOMP6W2AEvvU2HudKIRhKLv46+OcPQH8VLiK2/t57S7jX4RdeAtpuqqbmwRKiNa9DDwHMThJbEMkSZyw1YBHmGfzbEyGszwlx5rVgc8uGZFPN5GUskNj7ShL1Z7L3WSGocreK+5fcUBfama5mvNEYNXXfU4Gwr0C6DM1ZtdlCp1AeY6PfcMQ9Dr86vECgB+blXPMbYHo9wBSyAsg6JpvPE1omgL0bYL2cgi9mU2dIYakKjkjh16hQzM+9+3/Gud/o9PT0AlBqbAVYorVSBjEU6jRiHlmDvsxkO62QtWEkiHso+iah1KrSGPKtelnI3HTeVoNapOPzMdP4U1mSkYQQGX1DgWMxwqLz1DycxCW4kdXoNqCGUK71ejhSOdReXUbrBxr6vZlG85giuN11TSXmPg0PfH8R9Rvmk1v/pNogjdEpGsqipu6CMomoTR76vXAEcWooQ8kbwT4pN8EN/EFeROtosdNxSy5mXp5jYqTww6hkJcnJE/NTVrr8VP2UU8sCQSFruBGLxOPyZNGrxaHxNJyfXcrJ+Zt8iM/vEoxNrPcXf/+k2wr4o+76qvHzeyEszjLy0hjTWC6HVKaIVoPWaajyT/txl97Is6rWXlFC7vZSDPxjEfUY52e77RAsavUZ5dgmVGkuVRMMl5RRVuzn6I9H3RoFB0tIizux3E1gI4h4WI6PDf8p4/5PpGePxrPZLOnvKNpqo2WJjzzcyUr/nUS573So0WhUmh4Z5lWr1fG1IIxRpp533/iiRkcaoz1kbNm5cbqsKhOituJ4/TXyFaDTK/Pw8TqdYQOEc3l8Ih8MpAthVcgmQlupaJz/zFUhT9o+8E2DknYx3Pcm9cpTbNdp1qCU1AbeGnCVvMrmVDno+UsHw6wvMnwygUqmynwxLCpTS3gHfZFguo5YvI2c61CqGX5pj7vgS3nEx0UWuTB/5TpvVXlyKs8XCwoCP8KLycm/9T7YRcofZ/6+DyZsXFEE62i103FzLwHOTTO1R7sRq+FAZ5nLxrJL+mSARv2CJhzAcXkPWxQ0PN6KR1Oz9ilhZ2glBARvA5DsLTL4jns1k4fgadoSoIRZ/1wlQlSIejcv8SwC+2TC+WXE+tKbTdWEYXEMG0MptTuouKuPgd08LCVjWMhZ9s0ECrhCRQI79YY55ovWqcmwNFiZ3iY2tvo+3EI/H2aNk7CecIrYmE5231TDy6ixjbyh7B1RqFa3XV2F0SEztUc6ZfdNhVBoVWqOYm+DoTyfwJ4RvBbMoJRByhRnbmdG3QpkAEpmOOm5wEvJFGXgho32eLEpaowatXr3M7zLXmXTulchyM3EwzMTBxBjUkpt7pZ1kUwVDlBlbmPaf4sMf/jC7d+/O+5vO4f2PZNCzqmg9AHH98jhT+TN4V1rpnUgEjj6f4W9Jvh9Z/FZJaPW5fV7xeDyrT6vuPAuSWcOp510KfF7qFdmUpg54CvOuZEnEBKfb+61hDIKiHK1Rg0otC6NW/qj89268rAzfTJDD3x9Z/WGOtuW9duo/VM6RZ4bwjAYU8S6ADQ82olKzzNcUovnKKuaOL3Hql8rLjkVDMfxzQXwCJ7wBZvYvMrNfzBdiKNay/t4m+ZS3QNuAK7Km0lwiGYNSiMDUWkrLRhHmQmtFPCbfK73yjxLMHREXa3vGAmvKULSWMnsA3Q80EAnGOCqQuWH20BKzh8R/W3AuRCRXibM8HKLj5lqWRn0ce1Z5VvriListV1Vx9CfDLAn4v7vuqsVg07HnX5TzX61FS8vVFcwcWmLw+Qz/bcGT/IpvA4BnPMjBH44SmIkU5E7pmM0sfZtsG4tnP5id4FW2Gi21my0c+rVrhUsgXxalYEyHVq9Cb9WAKr5qDk4vN5KeXfDoi4k50aQhbkjwrkCmzyuNd/lD1Bf3M+zdydzcHC6XC7vdnrNf5/D+RzQa5YUXXkCFmqbirQCpsQCg8mXEG9N8r/NDUeaHMjhQcl5JL/mWRDyO3gxag5pwOIfPKxYn28Tfdo2Tib0e3OOhnNwr5QdL+zy0GGV+0Sfk85o/7sU7FSDoSpaOU9ZWUZaQjO8qXWejamsxB747QGgxqjj5wfq76gl5o5z4qfI52uCUWHdXPYPPTzJ/Qvn6VdHnoLi9iN3/JJbBwzsTWFOc7IxAZsgkmq6uRF+k5ei/Z+GveeASTIYAcgmr/V8X860B+KdD+KfFeChALBon9ufiXsqHYAphT5T5Y+J86NSv1lY+eC0l24oaTTReXsGJn43in1H+DIb+ID4WQ0sh/HMh4dLZFVucVGxysG/opJDws+O2GlQaldDY1zvkuWDklWmhcpG1O8qw15vZ85UsGURzkKuoP4pKo0IjiSkrz/xxhpBfnoPzZlFKv1cI5o6t5F4qhdyrZouJeATG9mS0z5NFSWPQoNWrlte9TO6VFjNM+iKWJuMsTSYesHaZY2X6OeKmtHijL0hbycUcmX6Om266iddeey1nn5TgXYmUQqFQKoV5X+WNitNwOhvAUWXk9MtpGwSFzsw931PgmM1w+EgWLRqdWNS/vLeI2vOdHPvJOJ58pSGykYIQ+CZXt1GpVTkDXwPPTTPwnLgI5diPR4iExAJKi4MeLJUGIYESgGtQfJEMeWKc/t04njGxk15rFaE0XF7O7JEFPGPKZ85YLE7QHRZWRDddXYlap+LUL9a2gImgpLuIqq3FHPv3IaGTmEf+TbmD4d1i8PkpBp8XXyhbrq9Cq1dz7EfKSexa4eiwULOthIM/OFO4DFgaAvMhwl7BwC1yRjDPeEAo25aImC8dgy9OMicYUF046cbRZCUeFiMpC6c8+cWiWeAZDzH44hTjgsTtyA/WNi5EBUpJdN1Zidag5cB3MohUDqESgFqrRqNTU9QgsXQmcd8CqRUJwTvfVRhs16hXCJWcTRqcTVpOvl54TMYNEqpAiI6OTvbu3cPFF1/MgQMHlN33HN6X2LJlCwB2ST5tGS801hJoPF/P3Mk4S2NpjhMF3Gt0l4/RXQrW8DSni71KQmtQ599IZnHIrL+7koArwqnfCAZD1KrcAqUcIm+AfV9fHYAqlA77+C/GKVtvkwVKAlg45SYo2CbkibA06mP+tNjcfuKXYxTViGdgOPqsmPMEZPGE0akXFgEFZoOodWLeeJ1JTcv11YzunMM9dPYzCLTdWEVgKcKwQDalsC/GO/9w9tNXJ7Hva+LCIX2xjparKhl9fZbFwbNvx6arKgl5wowKlG7xTQdk0bZgSQ1TpYSj2crYa8pFWMG58JoEWGdensbgFN+ruAa9RMMFyjxlYHHAh3vUh0eg3AvA4B+m1lRy/J1/KhCcz/Jc/LNiAqUkLNU6Wq8qZ/DFWVwDyn+f3qpd7XTPI1ACOPkHgb2sVrMcMNNB41YDsyNxlhRMB3G9xKaK63nH/X84fvw44XAYXaESv+fwvsbOnTsB6K66ZoVAKR8sTnBWSYzsDy3HuxS+H4d/vXrdXyX2zgiG6S0aJIvY/sxaLdGww8HpF+bwTeXZO2VwNpVKRTwSJ+DKshdRq3IeXJret8T0vgxBg4IyJYd/OCJcYsk7HcA16JEFSgKYO+FGoxVPOH/spyMEF8X2n0tnfBw+Iy6uLe+zszjkJSBQshWVCv9MEP9c/mwPmajY7EBn1jHyp7NfUsJSbaBqazFnXpwilG1s5YBISbl3i+l9Lqb3uYTbVW0rRm/V/ln6aq4yULnZyZnnx+UyYArhmw4SE/QLAZSsLyLgCgm9a2u1w6nfTOCZEvNju8f9LAx6CPuiQkqghZNuJGuaKELBHBTxRDj120nmT4nt3QZfys9bc3ErUYFSEvU77BjtWo79IoOb5wqWJaAzqbGWaHFPyu9n3jJvABHY/0uFzyuddwGWYnA2wdDhwk3jRgmVP0RXWy/v7Hudq6++mjfeeEPZfc/hfYnPfOYzxGIxKqxdwEqBUj5UtKpxj4Mv/ZVSwL0WhiIsDGURNGTymTShksGhQWdSo8pDC7Md1Gu8tJiwP8pookS2YqhVywIlAZz85UThizIw/s483umALFASwOwRN9GQWJtYNMrc8SXhuX3ktVnmT4mLUNZSTtZYIqG364TFQ/65IFG/4DPTQP1FZUwfdq1JPCSKyq1OoqEY03tdQu1EStG9W5z8pXiCCI2kpnZHKdMHXPimxLjvWlDWayceiQuJa0KLEXyTQWHRnGTTYK02CwngoyGExINJzOxbYGnIKyRQAlgYENcQBBdCzJ9YwjudxicVzN9jb8wy8bb4Icwj/17AHlk4Y8gjJlBKQrJqaLy0mPFdLtyZmoU83Mtg1RDN4OZ5y7wBE0ciTBxRuI/K0NCUt2pwe8CrYBjHTXpq6WFOtY+9e/cSjUbRrIGTJvGuyr0ly40YtEVZBUrx5GlEjWYFca5oN+BskORyQSpV1gGnklYbfEXK6wJOyFQf4nH2/58J9nwzTUiiwGAGhxa1VoVnLvNknGp54GRxqGz5dAvr78mdpjXbxsZQKuFoVZBKK8vLsXDCszoDSnz1CYV0zB1xc0DwZBjAyZ+Nrale+9RuF94soq18qNjiwFwhlo1KskD1thLqLiwXard4ysuefzrFkmCgprjdirNNrGQAwPYvddJ2U/5UvpkoqjNjLjeiNgnqCiXEy3K9G6zhXvZGM0V14mlEt3+xk66764TaOFusWKtNWATL7R38zpk1iajqLyyn/uIysUaSPP5FSz9O7JzPk4kt+2LnGQ1y4JuDQqI+gIHfTXJC6VyQNm+N71wQEoclIVmgpNuq7OJ4DOIxrHUS2z7bTN3F2bMGqTTqrKRCrVWjkXKQoLS5NT1l9uRuD7u+MrYsUCqA9PXNWq2mpEVauRYasoxPjTqVEadqgwlH1fL945IutQavUEQnPzdI2N1yxp2DBw8q6uM5vH+xb98+ADZV35ZVoJQ6kZg2ZtBBcb2Oiu4Ej8rFvTIcjc5mHaaStOsUci/XYJB3vjrGwqllfpJyrsZiOU+MaXRqNFpV1mBYLuds3Y5itjzViN6Zx3GVhT852s3oMnQ8ioL5YZjem8bYFTq7T/1qgpFXMhwiBTZc3rEAh783JCyICs6FhU/Y64t1lGwQ5zR1O8pouLRCuN2Jn48Lr6umCgP2RgtFtWJpvTvvrGXLZ9qF2gDYGi04mteQ2vjPqUXQid9Psuiw1pqF06O33VjF1s+Ll/Ut7iyipEtsbC0O+Nj/jQF8+Q6KZEH9heXUXSjIuwBTeY7xn+cd9U2G1pSt4PRvJzjzgoJgb8bccvj7oyyeUbZXSe433cMBPKNrc8rZm03obFnmtzzBq87bqtj0eB5urlavyDIDEFwIo9apMeabwxNQpa1B+/9tmqM/U+6MUqX5Kqo26lf3Jxv30mpAq0EHFDdKlLcuf8cK7pXFURTXS/gXY3i9Xm6//XbF/TyH9x8+85nPAGA1VGQVKKWyOWSM79JGLaUtknwqMAfvynaooaw97V1IjPms2ShXdCLOyedcHP5J2juhxOdl16KR1IQyxTXp/c3C2TY+UEPrtXl8LlnmCa1FjbU2o3xCHoFSPBZP8TLfVBDvRKbPK5a3vWcswImfZuxXlTi6X5tlWLAsF8DiaUHREHJGb0Ox+LnRhksrqNkmVvYiMBvm8PeHhEVbJV1FlAqWQwW59G3j5WJ+OXOFAXuTFa1CIWAKWt6DGgGC9xOEo9mCvUWhPyMNfU+2CpelsVQaKG4vwlAiVq7k9G8m1nTosPGKSmrOLxVu52izIGWWRSvwjs4fdwsJ2ABCrggnfjqGf0as3cQuF0MvygdnRESS88c8qxOxKNgvag1Q1LD6meUTf+uKtGx6pIaqzdnfUZVGs8JvlYRGp85dEiiWliE/jXctjkbY+4P5lECpINJ4l6EIbNWqFWvLiixKSSR4F0B5p57S2uXfHjfoUkKV9CxKqc+NEk7VpQC8+eabyvp4Du9bfP3rXwdgXf0NWQVKqWwOOu0KLlXWqKG0LbHHzcW9kmMz4d81l2jQp71Cqf1GAd9QYCHK4f+fvf+Ok+Sq773xd3VOM909Oee8YTYnJSSUUUQgCYSEJCREEiLYEpZ/z+P7u/d1r+/F2Nd+sM0FHDBgwGDASCBERoCklbSrzTnN7k4OPTOdU3U9f1R1nE6nV1qEn/28XtjaqTpV1adOnfM53/M5n+935vFmbpDVvjdFUQpyN71Zh06PUMyrpt/O2ve3Y3bpS/KfTNibzejLWVrI7aNksjczlSmyn97tERJpgOoqNfazGaLLYn20HJKF1/H0Vj3VHTbhtHSN69303CCeIm7qFQ9nfyXGKU0OA3WrnTiaxGI1rZfXMfpIj1AZUPmJu6eCmNdFTO2HXvx+epNEzUA19kYxLtS0sYZ1j/WK3QxoWO2idkiM54U9UU48M0FI0FG1frWL7uuayvu2M2ByaO1fAFG/jO+8mIAQVGepStylxn42kxaVldnvRBZj+Z2oyuBe1joTemuexlWkbPsVtYzcW6Q/yNHBAESDMgazDmMhF+IC3Ovkz5c584Kv/FTuGdyrpkN7hkzulWfNMDWO6qFp0Ehtxk9TrKYU58p0UUodt5kxxFsJBoN84hOfKO8ZC+CCREqvvvoqANs7Hsl7XDEa8gZHDv8kzL4fBVH0xYUCmQu5rRsttI7aad1UZiet16MoCjUDlvzCiSINXZIkzv1qkVf/+kz+BfWEUrBxRLwxArNiweCe6xoYfncbpjKCs5lY/5FeRu5pFyqDCUbu68DRKtaT1Y5U0fOOZrF7ASPv62D1/Z3C5bqvbWbgnWK/LeqHw985y+lfik2sq7ttuAfEB+TX/vdxXv2Lo2KFTBDyRPFNixGp0z+a4uX/fpiwoIp688cG2PoJ8QWlStB3ewuXPbVKuG3t+psTvPqXZaYNy0BwIYJvUmygPPXDKV7674fxnxf7Rk01Jpq2lJlzNAMnnh3n6LfEdkdWtVjpvaGFDsF8u40bXWx6oj9/f1cksF23prJvu+emJlp3lMhrnTOoO3ttbPlkP+6h0t+bpJNSwaA1D/bSd6PYIrjvXJRoQE6pnHNRaMJ48OsT7PmH8RWLaFkocMzVp4lvy3S2ARi8zkX71gyRnq34GJdwOjj2QpRXv7+yDSsmIwl7/nHVZDIhaVt8nn766bKf7xLeWvjrv/5rAAw6S2FXBqMhK8UbADHY9R0/Z14OQQnVfaZQqXNbFUM3ZQj9Sol4JB1Gi4KjtTKVxr6vTHDs+2KpoaK+KGFvnIhHbGFo4JYWhu8V4yd1q6rY+JEebE0Zv6+MyULL9hrarxTr0wG6rm/E2SM2iTQ6jaz/cC/uQTFe07GjjoFb2zA6xd7d0e9NcPwH4g5M9aNO4Xstnw7y8p8fEXLJAfBNhAgI7swDleft+7KYw46zx8aOJ0doExzDK8WWJwZZ/4hYEMV3NsjOCurROxkiOCe2uAnw2l8dq8jxydljw94qFlQ6+8tpDgvyLoD+29vpvTEn0FBGUGTk3jb6bxPkUEbovLYBZ3eRbztPUMTeamLgztLB0dyFtMF3trD6gTLnVJIOJB22BiPDd7XQcZlYOw56ooQXxQLMsSDs/sI5pnb7i8/P8+1WM0J1h9aPlLmbrXWDmbb1Nmr7Mvofa/F2FrXa2fd8hBMvrhxnFJORRJ6ADcDGjvcB8Otf/7qsZ7uEtyb+/u//HoD1vffmPa7o9XnnBmd2x9n/kygxY4nNMRnzBle7gY7NNhpHNK5WZJEL0NwiFRxNhvzCiSIBVkmSmD8cYu8/TeR3W1GUgqLy4HyMYKHNMQXQssnNyLtbsdSIKTyG7m6l52YxsQtA942NWBvE4hKOVgstO2qFRSjd1zXSLygkAei9uYXem1uFyx361zHGfyfmOmptMONoExtTAQ5+9Syv/12e9Akl4J8K4ZsW414zu5d49XNHCc6IcY0193ex8UP9QmUqRfNmN9s+PSxcl4f+9Sx7viBej77JIH7BmNfM7iVe+YujwoI0g8NAzaC4kOr4989z8kdiTh0Gh4HBO9tp3pgxzyyDd1V3WVnz/k4MgqkmqzpttF4mnvK+ebOLhnViIj1LnYG1D3Xi6k1uDioWV0pvgh64rYWBm8U4ZcyfILwUI1IgdV6h8eP0zz0c+t5CcTGrLv8xW70BgzFbOJ733hl8dPBtVtrXpb+ZhL14zEt22xnbD7t+vvL5FYsR2V64b7daalAUhf/23/5b0XtcwlsXO3fuJBQKYbfWF3RlUEyGvHHX/T+Lcf6AnH8hNhMZZVvXW+i7KqPvSySKx730OtCDtbbA91NM1ChJnPzxPOdeEEthH4/IhBYiwk5KvTc20fsOMX5ibTAxcm871tqM76yMXFuuPjv1a5xC9wKoX+vE3izIT/QweFcbVYKb12qHqhi4sw1ztRg/PP/CHMe/Lx7zqu6w5RdAFEF0Oc7uz59gbr+Y2Cs0G8E7Lu6Sffgb5zj2XbHNgyangU0fG6BhvUv4fpVg9X1dDL9bdI1Y5vW/E6/HoCeM93xQWBR18GuVmRtY601YBE0KZvctceibY8LuRu1XN9Bzk/j6X/uV9bReLh7frF/rxCZoEmFy6tV7CdZ/6/Zaem/J+G3F5sDaeqPeqmf47jaa1ov1W6HFaHFhWb7+UoZD/zaN50S4+HpjvjFPD7Y6VaAqGcqrGFerns6NZpyt6fNLcq9qOwd/p3DuyMpjitVE3JG/nQ613gTAN7/5zbKerRAqFin95Cc/AUBChymP61Fyd3/CljPQaKdG/GK3ntgd5vxuHxO7ypigaWRCMhjov6GeDffnDMglcr6aaoxUdxXoIEos0O37h7Oc+Wn+gEHmbrBMnHx+lsnXPERLLbDlLITpjTp0hRw/CqBxjQtXtwNXv9hEq3VHHY3rxEUaFpcJs1t8sfLEs+Oc/qnYQiXA4lG/sJCn75YWhu4SFHtViijs/T+nmHpZjJBWiuk9i8zuFVeuVoLZ/Ut4ji2v3In5JmHfl05z/leCKYEqRN/NTfRcLz6Qz+33CqXnA/CNhTj72xnO/UKs/RssegxWA05BV6q2HfU0rnUJlQFoWOukaVONkGV2aDGOpAeboCDz7AuznKpgV9/rXxhjeldhQlow6G+CmsHig3du2boRK0PvaKT7KrHg19mdfg79MOcbLUZYgEjCqO7Oy5mTJ6rVZy4kVNq48VZ0Oh3f//73hZ7xEt46SArM1nTdlf8EjXspudzLCMQgFhbjXod+6GHsxTItZDV+07Ldzap3Nq0QKpVyAXD3WStyoJl+3cf+fypiNVxgp9nJH09x7jdiY4ip2oDOpCO4ICaIalrvpmljnr6hRJ00bayhdbvYZNDRZMbkMKIXTKU29pt5Tv9sSti1KbYcU3cMC8DoNNJ/SyudFQi3KsH4b+c5dJHS3wYXYsztX8Rzsnzr5QvB9OuLTO2+SJzy1UUO/PPYRbkXwPC7O+i9UYx7BedjFaWwG/v5NMe+Jx54NLvNWGrFAi8ALZtqaNksxhdq+6qoHXQICxd1Jh16k1iUJzgb4/zLHs69mOP+VsJJ4NwvFzj8b5Wlwa7uMK1wt1uBnL583T0NDNxQmxYolSEanTgQYWynn4WTOX1dicXRaEQjXbncy66Ot/mESlajjb6+PgKBAL/85S9LPtslvPUwNjZGOBxGpzNiMawU/ypaIHHF+9c+uVhELFazdD7O6ZcCzBwvYz6djCvp9PRfV8Oq22vzHy8Agw1V3JQPJfjJiWdnmHx5qfjz5fQXk7sWOfubecKe8oSMScGl3lTE8aMAHG0WGta4cHXmzItL8a71btorcIQx15iw1ApuZwaOfe88ZwU32IHqEpU31V4RdL29keF3i7lQXwiO/tt55g9cHC40tcvD1K6Lw4UWz/iZ3rUgXP+V4vj3JoRTKleK1q01DNzRhsEi9r0tnwkSLyCSKQQ1LdoEE6+IvTe9UYfZacJWJzBplHQ0bXDTurXEBrs8aN5UQ9N6sTh4eCmO3qLtlheIlZ1/ycPJn2THAMtJoXv429MsHC3MfQvOwQ1Q1VaiHnPGEVu9gVW3uGhaZ09evOTzAZzZFeLor7PXcpQSbn9RvWGlIxUgO9TxtpBQaePo3RgMBr7+9a+X9WyX8NbDo48+CsBg7+15jysmbb0xN+4pAQrIconvJqfdnvptgLOvlDl/1OYa9YM2hm6tw95gyHu8EOyNpoocaLznwpx4RpwvnP7pDBMvl5HeLOO5zQ4jerOeaFBMENWw1k2z4PwWoO2yeuH1RqtbTb8myg8XDnk59dwkkUWxdSs5mhBOu44e+u9opWmT+FpqJfAc93HmefF11Eogh+JM7pzHe1Y87lIJpnd5mHl96aLcy3smyOnnpkA8s2JFGLizjfYrxeYeMb9cUSrAyZcXKkqdZ601YRUUUgG0X9FA/RqXUBl7g5WmDW6qWgVjXkYJgznpHFRevyCHZMZ+Ocf0npx1wxLl5w/7Of2zEmsJBfiRxaVHX0pbmVO272onfde40hvK5dKNc2lC5vSrEZYnss9VSqw3RgvkL41XqeNtPqGSXq9naGiYpaUlfvvb35Z8tkKQlJLe0flRXV2Nz+ejo2EHgx3XofOnXR1y04/ogumOfP1dVlDg9R+kz5fCxT8sJVriw4tnMNccEt20zkrMF2f+WCi/OCnz52vHR+5pprrdyuv/cJrIYubxPFWVMZB3XlPH0tkAy6dWCqnKSiFSDOXaeqXOL3w/k0MnLJwAcLSbhR1oLib6bmvB0Wpl7xdOCZVz9tmx1ZuFhUNbnxzCc8InlALPVGOidtChLigJjCfDd7dR3eXglc8KOjdViB1/OoL3XICDXxPfjS6Kkfd14Gi2CbtSuYcc6I064eDX1ieHWDjq5eQz5S+iONrNVLc5mHxZzHWg+/pG3ANVvP634rvm3jTkBDpMNSaIRomKrTFjqjERzd0tn9lPCQRkciFip13gAur/N0H3VXVM7fUSTlo/5rl2VvBHp2PDB9sxWvW88jdjK6+dJ5iSLN9zrYvx3f6CdZkvjWkW8u3kzxi3Eo40SetYA829Og7/KoJf40ZJkVLqpwTS/XXCpt77pSOfIxAIEIlE8gqML+Gti1gslnpn16//vwGQAhkT5RzuJWncy9kKA1c5OPt6hNnjGQQ1WlyMosQyjufjMAk573GjE5pH7Jz7ndo356WZmXxMO77l452EFmMc+NpkSTF58pq2eiM1Aw7Gd3og388R5U4I8DXBaxudxmwBUBn022jTgVEvLBy6mFj3WA9zB5eZeFFgfDRC06gb75ifoEBqlL5bmnH1VbHrr48LPWPNkAM5khAWr2z+5ABLp/2c+EFlogsRjNzXQXWHnZ1/nmfbypuALZ8eZP6wl9M/Ln/nu9EGNUNuPEcXiQlUZd+tzbh6xd9b4wY3gdkw/nExB4HRR3tYPOXn3C/F0/WkUKa1dKWwNZkI5kuFXYw7GcFopGjdXxB/KsXbSlw7yYWcXRbsDWYmX80I9pQIhtgaTKy9r4XZwz5O/9SzokxeFyVJR02/GZ1BYj5X0JHxW6Q8KemzkM9dMKN/zhT9rr9RTyKusO/H6fslRUpJ6IIZMRGrifnI73j98C9paWlhYkI8KHgJv19s2LCBPXv20N12DT2dV6PPjHnlzAky3/2qtxvR6SUO/Dw9xpWKeRHLmFfl4QhKkZiXu8tAIpZg+XysZMwqebzjcieNa6o48M1pQgsZMZ4SvK1hbRXB+Sj+yYh2egk+U4pXlUj5VmlZg0UiHlfSi9xlhj0tdUbhtG0XEy3banH1Ojj8r2JxGlujBWutiYXDYrGTdR/qZfGEj7O/KH9MNVjA2VPN8mlvfpeuAmi/qoGGNU52/+0JoWesFFv+aIjFU2LxvErRfV0jrv4q9vy9WFzI0WpBb9IJc9j1H+7Fc8zHWQEuZHEZcLTZmD/qzSsOKYTGDS7qVzs5+NULiB2+mbxL0qnOS/G4UHsE1fFJFlyoz713QZTJqwqX165tgMY1VSyfDafdLPPwrqzr6fUM31GLtcbA6/+UR/iQzyVJe96WUStzZ2LEM5tkxrXzpXGTMvryFRvZASljwU2uSh+va1LoGUlw7BUFn0YPkyKl1E8JpMdW2aZyvlf3/wU+n5dQKITFIu4gdwm/X+h0OkDPNTv+DCCbe5ly1hu1mKfJDsNXGDl/MI4no0vP4l75eEBmTCxPDEqJZ3z/GZxDb4KaLjNzR0IrjqVOlzO5l/rfa9/XQmgxxokfzZVcaE7yK6Ndj7Pdwvwxf1o4IRCLuhAuVS53SkJv1SOHxPpMvQnQi5e7mOi/rZXFkz7mBTmUs9tOyBMRSmXXsN5FwxoXB786JnQve7OFhJwQFq+sel8nS2cDTPy2DDHbBaL9ynoaRl3s/vzF4XmrH+jCc8zLpIggWq86YAWmI0JtsnGjm/pVTuH3Vt1tI+aLC6d863lHM/7JELN7loTKXUyYnAbhNI6gblCRYxegoyjholRpWSDFhay1Rqx1JhaPZ5ChfDGvDH6kt+lY+94WZg/6mXjVqx3OeJ58WVkkCVudHoNZj282p04yYxElYl55uVfGmJfJrYbWK0iKzLFX0ucmRUpJGPzZ3CsYPsbLu7/Opk2beO2114o+SyFUvIrs8/kAGOy4LuvvuQKlXCzPyCzN5Ki48uUizkDLegsb31+LtdTGhzwD7/TekCpQKoWMF3PqFwtM710mulT82rlo3lRD97ViVtTuIQcbP9aLo61IHeQhDJYGU/60TkkUmdBUIlACLppAqWV7Les/0lv89+WBxWnE5BC3YVg+GajI2UiOysQDYp1t8wYXPdc2UyuYjz7il4kFxTv2rusaaXvbxXEqsDeZGHp3myp6EUDUGycWFA8E9t/aVpG7USKWQA6LkV//+YiwQAnA7DRitAn6xaOmzlv7cLdwuUoQ9YgLlICVAiVID+YlBnVHi7g4ZuTeVla9t630iRn3rm4107zRTdu24jsXcoPr5170MPaC+Ps+/UJhgVIxDN9axejdrqLnZAqUAGbOQNCbKKruz+eoJEfV9vjud79b+Dkv4feL97znPQBUWfP0e0W4VywC/gWZxTM5jaUEiV37bjf911WX5j85x2PLcO7lQPEySWR8e2d+tcD4y2I7hVu2uGjb5sZcJTb2D9/dKp6iCbA1VJbGDhAWKAHEgomLJlBadX8nHW9vEC5nchgxVQvWSwymdy0KCZQAoiGZuOD4DdB7Uwt9gjbnAFF/nIhX7BltdUb6bm3GXFt5WxFB6+W1tF4uvjM8GogT8YkFQlz9TnpvaqZmSGw3YKzC9zbz+qKwQAnA5DBgqRbjXkankbWPdFO3tvpNFygB+QVKpRC7AIGSEeH0ilUdZkYf6cDeUrpcZnCl6211tG4T20UbnIsxuXuZ868spf9YQqwK4DkRWSlQgpKBe1s9rLvXSU1P8d+W60q4OCOzOFP82rmOOnXmywGYnHzzxY6X8MZj3759APR0Xp3191IOEIvTMovTYjEvZ5uBNXdWYXGJi34Wx+KqQKkUMspO7l1mfOdStiNMGfyk/bIaOq5IjzvlOH1Y6w2suq8Ne7PYHNBYbSyeeq3InDMeFhcoARdNoOQecDD83g5h1xpztQGzYH8OEJwJCwuUAOIhmZigSMPVV03/ra1Ud4rFvKL+KBGv+PjYuNFF4waXcLlKYHIZ6Hx7AxaXGM+I+OJEK+D0fTe30JObjrYMxEMyMcEF3/BSnPmDYgIlAGOVUTh1DkDLjloG7mp70wVKoDo3iQqUgAsSKFXirtb99lr6bi5jPpaxEGa0Gui4zE3jmuLfW27Ma3yXl7EXxNLgAEwdyhEoqRcvfm+dRNcWE8PXFRcMZQqUAJbmYdmjI1bk08nnqGQ2qt/MBz/4waL3u4S3Hr74xS+iKAp17pUpPHMFSllIwNJ0Am+OuUUp7tVzpY22jZbS846cuYUchbnjZa6RZVz7zK/mmdwt9t3V9NrpfFs95qoM7lnGpuC2K2pp2VFiTpZnzmRyVmD1pKESoZEcraxcJeh8e0NFKcosNUaMVeJrO8tnAsIijUQkQTwkvv7XeXVDRWtk4eUoMUE3RL1VT/PWGkyOytuKCNz9DmpHxDICAUSWYsIc1t5gYeC2NpxdYk4+cqiydVvvmaCwQAk0NzHBODh66L2lGWe3WAaWSlGJQAmoXKCkVzmpCMwuA/23N5eXIjwj3ta82U3HZbWlN+tkHJfDcO7FJWYOBjIOl/6twXl5pUAJSgpdTTYYeruF6ubi32mu+NszB5754mVyHZVslkEkScfevXuLlisG8R4W+MpXvgKALsMCKuEwI0XyV07CZgGDDikQ5tTLFSjoLOp9QoXWjCUJ5JUD65r31BOYjXL6px6UQi9Okla81Mh8lLGfL2iHpWz184ryutSg/vo/jGHK4dylFMuOJjMmu554Pm5TJMA6cnc7ZoeRl/+nmPvM5k8NEJgNc1gk7YUJtjwxxNSuBaH0Wm1vq6PjsgaOPzMu5HbjaLJicZqEnIaAil1/Rh/tYeGEl/Ffi6mGd/21uPJ3auc8sYDMwkmfULnTz4nleE+icb2bRDwh/NsqgWugitohJ4tjfmY85b88EUejTJx+fhI5Ii64e+1/i+3kB8AEow/2MHtgSUjQVkk+WlBJkdkpHtTY/KkBAF77qyK/MTkAZgSDNn+iH99EqPznlXQ42kysureT8Z0LTPzOk3WsGEbubcPVY+elzx3L+40XWmQzu02o/r3lw3smwvFnp5g/pCmHiizgKYqCpC04zB8qILAolA9dUZAMBhwNevpvqOHsy8t4Tmb/uJQtYz4kQCn02wq4D0T8cOCXAEbizVb0gfyRm4TdnEWK1vc9wGsnvsChQ4cKP88lvCXxzDPPALCu977U3xS7BSman1cpNguKTkfQE+bIz8RFxkoCEnIRDpOHe9UMmGndUM2xH88RXSrCn3S6Fdxr7oA/+3ipQFFC4eSzs8wf9hPJTZdbYoHa7DKhFxRNGJ1G1n2gh9n9y5z8YfnjVutltbRsrmHvP4+pgqMyF8oG3tmKrd7M3i+eFnrOTU8MkIgneP3vxHZq2+rMKMXedwG8+pfHhMs0bXFTN1zNwX8R423nfjHLOYGd/Ekc/8F4RQ4z+74sVvcAzr4qGta6WToTICKYFrASNG9UF4onficmrN37f8RcRwGWTixz8scSi0eXhMqd/fksZ38u/t5aL6/F2Wnn8L+KpeqrhOfFgjFstWbsjVbmD5TP0Rs2OOm9vpkTP5xg/mD55dquqKVpQw27/iZjLlFGsHn47lastWZe/4JY29z68X6C8xEO/EuBusxzbyWhYK4y4GiyEJguf/5+4sczxEICbV/jo+d+u7TyWCKBVEiEqyRAr6fziipsbgNHnllccbwQ9wouAQpasDnPWFBgwXRsj/YfRgOxGht6f/75TsJmRsro65ubWpiZnearX/0qDzzwQP7fcwlvOezfv59EIoHRkA5Syw4zugILBwmbGfQSukCEySMKIDamGuwGUCBcoCuRdLrsHf0a+q+rJrgUZ+JVf96YmFZ4Be+K+2Fqj8q9JL0+26kpFxm8bN/XzmIwC4QRdRK2ejMWl4FEXGzu3veORhwNFl77GzFOs/ahLoLzEU4+OyUkUFr/oV6mdnmE0mu5BxwM3N7GiWcm8Bwrfxyw1plxNFqIC9bJmZ/OQAVp0PvvbMV7LsDM7iWhcgf/ZUz4XksnvRx/VsF7VizmNbN7Sfj5AJo314LCRUkFYm+w0LyplsBsmPBS+THOyZ0LTO4U3wR16idTFbnyH/jKmHAZgMF3t7Fw1CsUvx1/YY7xF8RSaAPYG8zYG8RdbtY+1IXOILH3y2eEyq2+v4PATJgzPy2Pk0o6CYPDwOr72pl61cNMbjqQIui4uo7mDW52f+ls/lR4RWJeBrOuLPFnEjFfnGPPzOI9p6mwipRNxq0AfOMx8loR53NRAkgoSAY9Bgf0X+5g8mCY5fEckWs+d8p0cRKSlo8r97kKxNnicYljewEMRJstGH35+aVsN2X19av67+Kl1z/L7373u4LPcwlvTfyv//W/AOjveUfqb7LDjC5aYL3RbkbRSUT9Ec7uKzCeFuEBCjqUROG4kKTXreBHtjo9LescnNvpI+pTCi4US3odSiy7rG8iY+6g15dO25NQmNm7jH86RGRJLH5lKSVozhMz05tgzQPdTO9eZCI37XcRuPrstO2o5/gPxoWECc1ba6hut3Hs38XWTobvaQcJjnxLLF27vcmKLp9DbwlUMqZWd9uoHazmzM+mhVKHzR/2Cjs2AZz52TQ6g/hvO/Ws+Hqjrd5E67Y6QgsRoifL3KB6AWja6EZv0guL7StJbRaYDXPimQn8E2Kb5Sp9b+5+B65uB2d+Kpaq79DXK1gDl8HRYiUwFWH5TPnvzdFiYfCd7Zx6fpIlgfddM1BFy9YaDn7jbPnfgCTRekUt1S02jvyb2Pc9+lAPwfkIJ36Qv03niwkn4grWOhMWp5HQXPl91/iLC8ja6YqiFOdtipJaT1w4tnLXoaIohd2/FQUMBuoHzdhrDYy9lFP/sgyWlQYFAFHtVjqbEfJQ2EKp32bHtd9iNhCpLcy94g5TllNme2sf58aP8+1vf5u77747/+8pgopESh//+McB6GlRd5TJVq0irUYMS3m2J2idZN8OIyGfzMSBlWk+FLMRKZLnRycSjL8WZvy1AtsekgO6XrciKGNy6JEjRX5ikqhkBF3qRuy0XVbL8WemCUxri3o6qSwnpagnumLNPfkBFJpYnv/1Aud/nWeyWmKBbWLnAvb6IhO6AiRMjiaIB8QCIfYaEyQUElGxcr7xEP7pEN4zYp308e9XJuyoFLY6M7GgmEIWEzjqTfgnxJRUUX+iIkcee5MJSY/w/V7564uTHg5g4jcLzL2+IJ42zAHWJjvLgsRGNM1b6n41JnQGCItYYEbBVmfB2WpjCnHXLVFUsjAKsHQmUHqROc/AqSiC8h8lgX8mTCKuCC9qT7zmIVpAXV5sEXnPF0oEoQos7qUESiUgSVJaFKHTMXhHAwazjkP/phHFEjumQXXdMNr02BtMWSKl1CKZouSt/yO/LBAg0pCozuifMgLZNid0j8KREzGiGPMKlaKuNFkxLYZx2GtoaGi4lHLkDwyxWIyYtoXQalTbQxb3Ws6TZlanw1oFHZvNjL0Wye/AYTLmT/umKBz8QZGFhSRHyeFejloT5io90XJ4RkZQZuiuRqLeOKd/ljE+FhAq5e40WDqV54cl+4MCXGrvl/L3J0UXAWIxpvcuMrN/KUugXgpKQiERU4gtCSqvK9xUvHDcW5HYqCIBb4WobrNhbyyViHslzLVGEiGZWFCMjy6fFkuRkURVpw3fZLBY97wCUzs9zO/3CKVDuxDs+/LxoruLC8HWaESOIySkigVhtsIFQFujkaAnJlSX1W02HM3i7aQixGDnZ8UFd8tngyyfDxBaLPF9Z3IUJYEiAwklnQayzBS58VAirytVKRHe1J5F/FMF5tIF7u0fj/Lq/z5dMh0JpPtlSZIIzuSfz5eyv7Y1Gem7vo4zv5zXFs5U4URqDl7gOayu/M5ZKe6V794x2PNMOHVdKU/fn8m9pFi6zpsHwWiGU+MgO0x5hUrxDO5lXAzT3baBqekf8l/+y3+5JFL6A0LyXXW1vw0AWds4J1sMGBfzfE96LRXOsEQsojCXZzqnWEz5074pCgunYiyciuV3MdH4kGTQrxAqWZz64rswk3wlI6blaDLQfpmbM79eJJR0DipnsQxV3JRcdC9n9ycJhYXDARYO55nrl+BSk696iosYCpSPhWTiyZ3TklSWUMngMKAkFGFBSHgphuekD/+M2GLG5EsLTL4kHheqFNXtNhRZERMBGcDiNBBeENtoGg+D57CYQAlUlyKdHuH77f2HUwV1FW80Fo/72fU3R8RdeQyqwCkwKVbQd07cURLAYNGhs+iILonVZVWrjagvVnGsTQSFFpFKYeG4D8lQYbqOMsU/SV4V98dJRBMk4gL9gqRj7pBXzYyeT/xZhFcd/fep4gtdBRaUUgKlJArwLkmfMYeVdLRtd2C2Gzj18yX1bznH8yEeTGB26rG59dkiJU2gJCUUlDy/ceyIDlDUfB55um7Zme7rM3mXwaLQ1QunF+KEq4x5F8uirvTinmkxisFgoampiYmJCeLxOIaL1UFcwgVjbGwMnc6I1ewEIJ7MTGAzYFpaufFO0UnoDQptq3TMnk4QzdNlKlYzUijPpj1F4czLRfrk5PzGYMgSKlmcBqw1BuQCRg2QkeotI6bVtsOJHFWY2uXNux6ZfevsPidQLE14AS508ofTxTlNnpiWLMP5387hOy8WzFBkNdtIVNCRRwJRTT+gjQMVbEITTZV7IbDXW3B1OYQESgBGh56ELO4uFZqrwKkZsNaZiHqjyALFfedC7PnCcaEyF4Ij3xETqyRhcupBhqhfoC5lhAQ8ufeL+mWhd25rtFAt6Np0Idj3JfH1xtB8lPmjXiJLYoHHhJwgISuYrPry3oHGfxIhhbiou5qkY/JVD+ECrqWF+ouYX2b/P54VTs8b9eV5vkIxr4z1RJNDT/tlTqb3+Alo69KSwVAy5mVySFjyudwlBUoF1hsPJ1O2FeBecVeae2WKgd31ChYrjAUgVpB7pYXpZk+EzrYrOD9xgs9+9rMViZQkpazIQk4h7Udft+nP0otkGlaIlDJUnFtuhlhYYe+zhXPeZwmVEglMDqhuMjF/Mrpyd1duECV351jO8RVuSpn31khB5zU1NI26eP1Lp1aKLYoM7msfUtMQ7f+n/DtUCxIDE/kdgwTyy64sewF5G/+Asf1PhgnORyoWeIig7W11dF7RyMnnJoQCPe1X11PTXyU8KGx6oh+DVc9OQeesSrHjT0fwngtU7E4lguF72qkZqObF/3VIyD2r56YmHC1W9v+j2A6qrU8OkYgnirsNvUFwtJpY82AfM3sXOf2jyoIwbzjeSDvtMhfVyr9cGc9WqM8s8Cwt2520bq1l31fHiC7l7xvzBYJGH2lHb9Tx+hc1MlxEpCTlBj1yfseKnfy597NaMDnAUQeesexDWQIlyBIpuVtgcIuO8+d1nB1T75ErVMoUKYEqVHph718Rjft49NFH+dKXvlTwd13CWwcf/OAH+fKXv4zD0sCO4Q+t5F45IqWkIr5jBJr7dRx6Pkiw2KbwTKGSouDuNOKfixELgpIrYsrlJ7ncK+d4UTdKjZetf6SNqF/m0Lfy9JMZQZtMymqrNzL8rhbGfjXPwuECYsR8XMpIQaGE0MKUKE/7T8jNem9upn6ti93/zzFh4VAl2PSJAUgo7Pp/xJwsV9/fyeJpPxMvlr8YaKszsu6xfqZe93Dmx2K7mirByH0dVHfY2fnnR970e4HKhcKLUWHOvOahLuYOLAu5TDRtcdNzXTPHnx1nfv+bv+i15qEurLVmXv2cgOjozU7xliNSKnpc+NIX+OylAjJF+swVl9LqcdV9rciRBEf/PadPzwza5NS5yWVk9L5mxl9ZZGqXurgtZXKv3N+Zy8ukEtwrJ2CkWM3UtINvGmIxsoRKudwrc7Fs9DodepPEKy+n+VWuUCmew72Mi2F+uue/IkkSiTLS2F3CWwMGgwFZlnn7Zf8tJVBKYoVISZ9uf+uvSBAPKxz6deGFmiyhkqJgMICtQYd3MgE5u+5zF69WuCmJ8DKtndetstGx3cn+b80Qyw2yFhEq9d1Uh96s49j3prVHL8JtMjmVgfziqyJcqiQn+/8oD9v4eD+B2TBHBXcXV4KawSoG7mjj5I8m1DRgZaJudTV1q5zCzzhyXye2ejO7/vriCOe3/NEQi6d8nPj+m795p+2qetq21bH3iyeyUyyWQOMGF65uB8e+K7aRc91jvSBV5pwpCoPDwIbH+pje7eHcr8t0zryYvEu46JvIq6CoSCkVlyrUZxYQKbl6LHReVcuxH8wSXoznPV/K4x4y8I46TFU6Dv6b5piSeU7O75AMObwr91lyXJRyhUqKzayOdW7UlFwZXXimQAmyeZfFoTC6FcYmDZyfUbld7mJZpkgJVKHS3kNfZWHpBE888QR//dd/zSW89fHd736Xd73rXdS6B1g3cn9aoKQhV6SUbGM1DQrdgwmOvRgnVGSoyhIqKQq2WomIT1GFFpGcIHMOZ1ixHpnLKVasP2ZyL/W/+2+tR44kOP2TPA5FBWJeeqvE0G3NjO/0sHymgGg1Hx/SkxJKFOVTuWX/k3ClNxL1a520X9HAwa+fJrr85qelG763Hb1Jz8GvjgmV67y2kcBkSMjNR2+C9R8eYHLnPJOvvPkb8tuvrKdh1MXuz4tnpqkEax/uJrwU4/j3xDhU941NLJ8O4DlevuC+qt2qug09N8niCUH3hgrQdX0Tzk7bRVkDvyi4UF5YgnsV5XaSLqvPXIECZbveXgcJhbO/zvl2MvlRTsxKb4JVdzcx/poXj+aqlLWmmHuvnPVGKZd75boo5dRjwmHB7lKdmmWZLO6VKVCCbJFS/2oFqx1eO5neNLqSe2XzPrMnwi9f/DOMJgORiHg2D2Hmfu6cKsIZGBhILZJtuzzOxm3qgG1zwtbbdXSu04FBx+Bm2Kq5NL76HOgMEutuVdPPmCwKW+6x0rNFvU7vdiObH6hWF6ETCdbdXc2adzrpvdJOVQtseaSOvmvVPMtdl9nY8lgjJod67XX31bHhA43qP2SZLR9qZvB2NQVC++VOtjzehqNFrbzRB1vY9OH21G/a8vFORu5pBp1Ozdstga1JfQlrH2xn8xPd6XM/1cOaB1RBUuPGarb9cR/1o1WADmuNiS2f6ss4t4+1D3cAULe6iu2fGaRluxuANfe3s+3JfnZ8epDhu1vZ8ql+1j3WBUqCqk4T2/9kiPar6wAYeU872z8zlLru5k8NsO0zQ9ibTFga1HN7bmwERWHorla2Pz2cOnfTJ/rZ+HH1meztJrY/PULf7Wp+5r7bW9RztTa18eN9bPpEOu/v9qeHGXpXG5YGEz03NbH96WEsWo7G9R/tS6WWAlUgNPJe9be2X13P9qeH6bujhcaNLtZ9qJctf5R+/m2fGWLNA10AtGyvZfvTw9SOqO919NEedvxfI4x+sAdQF1HWPqzWf/06J9ufHqZxs0t9Nw93s/XJ9HXRqYpjUG23tz89TOtlahtY9b5Otn0mXS9bPj3Iug/3AuBoN7P96WE6r1Vzfw/f0872P0mfu/lTA2z4mFqHphoT258exlZnYmb/Iq4+R3Z9P9HPxo9rdWhS67D/zlZAzfvZflk9tlq1A9nweB+bP5ldh8N3q22r67pGtj89jL1JrW9F23SSrsNhRt6n1nfb2+rY/vQwzj41p+i6x3rZ8sdqvWz4WB/b/3SYNQ+q9d20xc32p4epX6vmcl37SHYdbn1yiLWPqPVtsOvZ/vQwTVu0NvtgF1ufSp+75Y+H1OAH4Oyzs/1PR9j2J8M0bnQxcl/Hivpe/1H1XHuTWofd16vfq84qkUgoKeHJ5k8OsOFxrb4dOrY/PUzvLWpe3f47W1Nt1tFsxdFiZdMT2W128J1qHfbc3Mz2p4cx1ZhSdbH5UwNMvDrPxMsLapu9V+0HOq9tYPvTwzja1Xez7sO9bPn0YEZ9D7HqfZ2Amrpn+9PDuAfUzmf0gz2p+k7VodZm7S02bXxQX15um9365BCjj6ptvXakiu1PD9OyvRZnn50d/9cI2zLa1pY/GmLdh9Q6rOqysv3pYdqvrgdg5L0dbP8T9bf23d7C5k8NsP6jah1aGtT67rmpCSSJoXe1sf1P0s+w6Yl+Nj7eh6PVpLbZPxnK7iP+ZCjdRzzel13fnxlgzYNafd/QwPbPDGKp1/qID/ew+RPp/nD7UwOM3Kueu/YDHex4epCqTq2+H+tiy6fT1936R32sfp96bst2N9ueHKB2xMG2pwbY8njfin52zfvVb6F+tIptf9xH40a1fa95oI32y9R+1FpjZvMT3ax9UH3nrj4r2z7dS+t2dYfOyD3NbP1kuq83WvTIUTWViKPdytaPt9NxhXru4G11bP1YegzZ8HAj6x5Q+w9TFWz5UBPdV6rP0HeTm80fqE2du/49btbd61L/YYLND9fQs8PE6htt9G63sfk9Nkza2ti6O6xsvD5VlK3vgMHt6tjauQYGthg4eFAVKG3cHGPb9hiy3YhsN7LtehjZrJbrbIty5bYIbmeUqNvCA/c/gCRJPPvss1zCHwa+9a1vIUkS77z9HmSrkeZ2me1XyzjdKokcuUrH+psNKDodik7Hxpt1DO2Ac4fhzP4EI9fbcKtdGIPXmNlwV3oBdv07bQzdoI4frnYDm+530XuVnZGbq+m/1s7GB+vS576vlpE71bz29iYjmx9poGmDWrb3BiebHm1KnbvugSZW36N+F9YaI1s+2kbbdvW76LnOzZaPtKmEXa9HSSjoTSqZNtpgy+OddLxNHXs6r6llyxPdKAa1Hx19uJ11H+jApOWa7rupkd6b1b6w/Yoatn6qF6Nmbb324U42fCiDw32yj00f6mXrp/tp2e5m66f7sbeYUBIKqx/oYNPjvelzP9XH0LvUvrBxg5Ptnxmg/071962+v53NGXxp8ycHGHmP2ifUra5i25OD1K1Wec2ah7uyxvpNnxhg9f3qy3D22Nj21BBNm9TfOvTuNrb8kTr22BqNbPp4P2se7lLru9XCtqeGUrxm4I6WrPFk48f6GH2sh67rG7E1m9j21BAd16j133tzM9syxu/1H+lNjScYVf6x/U9HsDUa6bq+kW1PDaEZdjH6wR42fDTd5259coi+W9UxWW+TkPQSRpvKvdY+0s3Gj2Wc+8dDDNylcqDmbTVse2oIR5vKr9c81KWKjpL1/elBhu9W67Bhg4ttTw3hHlTH2VXv62DzJwcYf2mO8Z3zan3fp/b7NUMOtj01RP2o1pff287mjPF70ycGqO6042i24uzW6lvjNQPvak3VN8Cmx/tZ+wGtvZjVgF4ySNh/a3NWfW/4aF+KqxqdRrY9NUTntQ00bnCz9amh7Pr+cC/rP5xuW9ueGqLnJrUOO97ewLanhkhm0M5X3/3amNx6eS3bnhrC1qi17w90q5xaayNb/miQgXep9d20xc22p4ZwdqsvcvX7O7PqGykdAK1bW822p4ao0bj4yH0dbP5Uul42f3KAVRrntDda6b6+mYYNLgCG727P4kubnhhgzUPq8zjarGpbsuuZ3LVAzXAVW/84u80mOaetTq3DDo3X9N2a3Waz6tum1mGXxiO7blDbLNr6hMVlzopRbHtqiD6NR3ZcXa8+k9ZHjD7ak2qzax/uYsf/b5iBZH3vqGXbk4PYW1WusuahLjY9nsE/Pj3A0LtbqR91MvDOVrY9OYizR6vv+zvTfYSkY/Mn+lIcqG61k21PDlE3WoXRaWTkPR1ZfGnTx3tZfb/6LTh7bGz74wGaNqrte+hdLWz9dB/mGvX5Nz3ey+oHtHfTYkr1bQD9tzWn+JKtycjWP+pn9BG17zE6jWz9dD8db1Pru+fGerZ+Kt1G1z3ayegjHQze0cTWx3vY+okeuq5Vx4LOa2rZ+omedB/xUDvrH1GfQVEUNn+8G4tLbdCtl7nY8kQ31jr1eVff18L6R1pT99n80Q7636Fet6bXgiSBbyqMpNez6j1NrP9AS+rcjY82M/AOtf+rX2Vj86ONuLrV6w7dVsOG99enAusbHmxg8Ca1Pbs7jWx6fw11vWo/NXCdnQ33uXC1Qv9lNkbvsDJyrZoqoqoRNt1jo0nrBvo3wuYbQTHqUYx61t+oJ46eV17WYbPF2HFFjPbOGLLDRO9GiS03ph6XTRujbFivTW4a9AwMDKDT6ZiaeotsWriEogiHw8iyTG9vb0qgtG40wtrVasDNYIBN10FLvwR6ibZ+2HSNWnbPb3Uk9HpWXZ0OKm64xUjbarVjah6A9XfZMVhQ4zfXWVl9u42Bq+xUNUmsv9dJx1Z1rGwYMLL+PjcWl3qdweurWHO3ysNQEqy7r4buq1RuVTtgYcP763E0q/ftv9HN2vfWp55h9IEmem+oBZ1EPJQAScKufZt9N9ay7sHm9LkPtdF/i1q2qs3Mxg91UDNgAwns9SbWf7AjNYaMPtTO0F1qWWu9gU0f6aZhrfr9db+9jo0f6WLzR3voubGBtQ+2M3xPCygJTNU6Nj3eS7MW2+l4W12KhykJhbUPd7L5E31Y6gxggM1P9NF6eS0oCVp3uNU+Vqvi1Q90slYbe0wuA5s/OUDn21UO1LJVPdfkVn/ryHs7GH0kzQ03PTFA942NGBwGGja62PzJAWyNatB26J72VLwDVIFQcjypHalm8ycHaL+mThXz3NXG+o+k+/INH+2j/w61D3P22tn8yYFU/KD/tha2/+kIw+9R+871H+5l8N3qGOFotbD5kwPUrdE4881N6fgSoDfpMGu/xVJnZPMnB2jcqNZh93WNWWP96CPdrLpP7fcNDrVeWrZrMdKrGrL46ZoHu1IxIwzq2F/VYeX8S3NY681s/uQABovahlfd35nmS6hcq0ur76ZNbvpuaaWqVR0kht/bwTot3gGw8eP9dN+s8un6USebPzmAvUWtb50x2/Vqw8f66btNrcOawSo2f3IgxWv672xN1ffQve1sfXKIgXeq40t1l43NnxxI8Zq+21rY+LF0Ha77UC9DGuc0WPVs/uRAikd239TEpifS9bLu0R6GtTinRWtbG58YoHakms63N2TV99oPdLNK4/gGi06t7x1qfRtsOhRFIRxW4+ar359R36j13fE2rc1uq1Xr22HA3mShZrAqu81+YiAVS2vU2qxF+5aH7m1n3Qd7VM784hwbH++nR6vvutVqm3W0qfU9eFdbFj/NbLPuAYfaZvu1NntHSxY/Xf/hPgbuUtustcaIziSBpL673nc0s/HxjPp+rJehe9T6tjaobalxvQtLrYFtTw2x5Y8y2uwHuhl5r3quyWVg8yf6admanBM2sPkT/RgsEq2X1bL2A12sfkCb4Bpg8yf6ab2iDiQdrZfVsPmJvnQfcX8Hax/sxFKj/mHzE310XqP2cS1bXGx+og+T04Ckkxi+t421D3WmnmnjR3vovyPZZqvZ9HgvtkY15jX0rhZGH0m/xw0f6aH3JvXd9N7SwJZP91DVrtb3wB1NrPtg+rrrH+2g/xb1XGe3lU0f6cbdZ2XjR7pY/3A76x5Nx5tGH25j4Hb1XEeziUiYJs0AAQAASURBVI0f6qBuRJ2Dd19XQ8919SgJMNr1rL2/haE71N9mcenY+GgrjWvVczsud7Lh4XRfb3LokCMK6HUY7Do2vL+elnXqN9a6ycqGB9JxrJFbnYzc4kzV9/r3OGldr3LklvU21t9lU8c1YPhaC6uvSy+cbbjTSscqGNohMbhJx8YbdFjULo6hHRLrtqQFIJsui9O9SkEx6qlvUVi9BQ6clDg/Y2R1f5jNq0PEqozEqoxs3BGnf1gtW+eMc9naEO6qOFG3idtuuwOdTsd3v/tdLuEPA5/73OcAeNtVNxC3Gaiuktk8GqHKoca8Oodg9TZVnKToJFZvUegaUvDMSpw4oKNvu4lqtRulbUSXxcOGLjfQtUVtk2aHwppb7fRdZqX3civNq42sfqcrde7A9Q56rlL7Pr0V1tzlpnZI/S6a1lpZe0/6u+i/0U3fdWpZvQnWvreBuiGNw622M3p/Exh1mmOSgt6cnqSOvr+VpvUahxuxs/bBdgw29XjvzQ0M3dWMyWZAURS6rq2ndat6n5oBO6Mf6MDsUuc2PTc2puaZAGve38Gq97Sx7oNdOLttrHu0O9VndV1bz+r3tWec20WnFjOqarOw6RMDqb6x8+0NWePU6vs76b5e7QutDSbWPdaLq1frh25szOIFI+/toOcdal9jdqvn1gyrY3Lr9trUvN7k1DN8T3tqrNdb9ax7rJf6NWpf07ypJouHDd7VxsC722hY70LvUM9t3KiOEfWjTtY91ovepNZh/x2tDN2drpeNj/ex+VODWOtM1I1Us+6xXkzaGmLvrc0M35vR5z7SQ+vl6hxVb9FjsOjQG7X6vqk5tT4EsPahbjquUuusutvGusd6sTernWHXdY2sfiCjDh/oovNarS9vsbDusV6qO9S21XF1A2se6mbyFQ8TL8+z6n2dqZiRtV6tw+SY3HpFXXZ9v6eDhrUu7M0WTE61XmpH1LbVsrUmVd8AQ3e3039Hcj6uU3mX1iybNq6s78G70nW47rFemjbWUNVuZd1jPaz/SB96q1ov/be1prgVqHGtVo1z1gxXse6x3hSP7L2lObWGDCp/ar1CrW9Xn511j/Vi1daWum9sYuPH+ui7VW0jax7sovNqrc12WFn3WC+OVvWb63x7A2ven65vnVGHoq3H2ZvV+nZ2a+PhVfWptTtQhfI9N6v17eyy03tLCzUDWpu9rJbRR9J1OHxve+p5jFo7tNaaOPeb2dR9UvX97jYGtHVhvUmtw4b1LgAa1rvUczUdy8CdrQy+K7u+m7eo8776NWr7Tq572xvM6IwZ/cmjGfU9pNa32a3WYc/NzYxo84HuG5vY9pkh2q9U26yzW61vW6PaP3Zd38Tq+9N1uObBLjrf3kBVh5XWy2pZ91gvVR0Z9V2qj+i3Y3ToabuiLru+M/uIGhPrPthDzVC6j1j3WE/q+xy+u42+27QYtFXPug/2ZPcRH1Tr2+TQs/6xbobercWQ9LDu0W6atHlS/dpqRh/pQq+tcfbf1szgXS20bHWy4dEuRh/uoHmTet3aEQejH+jApDl299zYkJrvAqx9fzuOZjOSTsLVa2P0wXasGsfsvqaG4bsa0/VyTyNtO9Tr2pvMSBJEFuNIBgOdV7kZeWd6zWXkjlo6tju0d2xg7bvcVGlz+7bNNkZuq0bRRK1Dt7jo2qy+N6sT1txiw9WitomW1QZWvcOGxQGDW/SsvlJHz6gEOjBZYfTtOurq1bG1tV1m/eY4CZOehEnP0HqFhBVeO2lCr5fZsipMU22MWJWRhh7YsCVOUtG1uivM6i5181akxsDIqhFisRhnzogZikAF6d5uu+02ABob0y8m4IeYFoMLmw2EAzJBr7rY5F8Gsz1dPrBMKm1YVIawT8G/qCqxAotx7G49hBPav2UkPYQWZHyTEPHJ+OdiIMsEFqKEl00plVtgLobeLKXUy5IBqrSgcsgTJbwUJ6ap8f0zEcyO9E8PLcbwz6g/IOiJElqKpWy7/DNhEjGt9eokQp5Yyi4/5IkQWooSXoyw/5/P0X1dLY6WtMIstBAhMKsGsiJLUUKLUULz6n1802F0Zh2xoMzcYS8Gs46QZkkW8Sa0cyPauaHUYhyo9We06THYjcRm1BQDvmn1mXxTISz16clAcDqcUk333tCqpgybUtXX/qlQ1vMGp8NZysLQYhTfVIjV7+3EYDMQWoyS0NI0BafC6G3pzjDkUc8FCM1HCC1GqR2sxt3tYPG0H6szrcYLLWScu6CeG1nWfutkCIvblLKWDC1EUs8bzqlD/1QoS2bnnwgR1Oos6lXPDS6o//ZPhzDY0urF4GyYiD9O42YXPdc2Ew3GCc5qdTgTSnXkAIGZMImIJjWMqtddPhNkZvcSLdtrsdak6zswnbGrMqrWoX9aq++ZEFULNvb+46lUfWcOKKHFKF7t3MBMiNBiNPVd+cZCGO3p5w95IgSS7XBWq0NvLFUvVs12VNJJJOIKPi2Xasij1eGiVi+T4SwVZWg+gn86jKPRSiKutUOP1mYnQlm2yqG5cOpYxBsj4o1ishmQ9BKB6TBGe/obC8yEiQXUZ4ol60Wr76XTAYwWY9a5iZjWR0TVZ0jap/unQ9ibLBCF/f90huF72rNEosk2m65DG0Sj6fo26xj/tbproWHUlarv4GyY0GKUaEBJvcd4Zh+xEMXRZmXDx/o48/Np9Vyv1g4nQ1mpEEOedJsNzattcO7QcurdZKbwCc1H8M9onfmy+h5DCxFC0wHiwTjxSMZ1Z8OElpP1LWf3EVNqH1E3WEXjWjeBhRAhzQ42EYxm9xGTISx16fYdnA5jbTIz+lAfr/39EbW+M/uIZkvWubnq46oWtYP3zYSpXoySCGn1PRNGb8npI7T6ttaYUVCI+NL1LWf2EZ4ovin1twXn1eePLEXxng2AUZe1wSvkiab65PCi2ieHPFr7ngqDTuLAV8fT70Nrs1GfTGgpRkhLdeOfjqC3ZPQR8xEi/jiYIBpWx5DggvbO56KYnWr7kAwGggsxVdAENK2vQtJBggQkFAJzMezudFvyJ+3rFQWi6s6dwGIc72wUR51EdZ2FqHaK3yuhyxBdhwLqmAoQ8OkIhSAYSP4bjBki5mAQliPquwqGIBSCaDKDqbmehoaG4lbil/CWgs/nw2KxgE6ddIQCGvfS3qnXb8CWsbsr6E3g04xOgssQ9CpEtM0cAU8ia4NUYFEmtKSAohD1xQgtxfGcixJaVLC5deiNWjtREgTmY4R96n1ioRhBT1zdDawktKCLROMaOzMHAgTmo0SDMpJeRzwcI7gQI6ilFAnMRLHVag3WCP6ZKAnNJSwWg+BClKA21gcXYgTmoyknj4DWDy2dDrL7C2dZ/b7WVHre4EKUwHyEZP4r/1QYQ0YgKPldK3GF0HyEwFyEiE+9r386RDyQ/laDc5FUPxT2xJAkieo2NYDgmwyTiCkpi+zAbCjd7y9GCcxFUrukHU2WVP8AEJwOqc8IxAIxAnNhQgvpvtxg0WNrNrHu4T5CS+n+LeqXCcyFUzzHNx3O4iq+6RDmaiMtm2vxTQfUc7Vx1j8dxtaUwVUmQ+mUcDEILUdTaZoCM2ECc+FUCrHAVCiLqwTnwqlnmj/sw1xtIqalVPFPhLO4SnAurPIM0Oo7TCwUZ91jPRgdRvwTaRvxwGw4gxtGCcyFiWjjrG8qjJKA6VfVRl3TV4VfG9MivjiBuTBhzXrYN5nNVQLTIeY9UcZ+OoOtzqjWt1aHgakwpgyu4p8OpWyIY36Vt3nH1E7WNxPGUmfOOjfJDWNB9T0GZsMYLHoUhRTPApUnZCIwFyagjf3BObW+k5sYA5MhdOac+p7JqUONavomQ5idRnTaoBicC6e5YfJcbbeLbyKEnMEp/BNBvOfU+g971OePLKe/m0xhfGAm/Qz7//kkve9oJbSQfDfZzxuYCqW4Siykvhvf+RBLJwO0bK/FnOEC55/O4IZBtX0n7+OfClPdaWPrk0Mc+955/FOhFDeMxXLrUP2tyT5i6aQXKcPVJDAXTrWX9Lnab50IpeYzy+eCmF2mFD8NLoQJzEWI+jP6iIz5WHA2gm8yTOeV9UgmicBchJjmZuibCql9mqaWCsyG033Ektr39N7QSngxyuIJX9Z8JjgTVvs8IOaPEZiLpLiKbzpCzUAV3dfUc/TfJ/FPh4lofXI0oKjnzic5UCjFVSxuMzqDJkzQKjGg9YHJ57M1ZM9nFEXBczqIklAwOY0EtTltcC5CYD6a6iP802F0Gc7JwYUo80e8zLzuo2bIRnAhSjyYblsmuz61wys4H8U/o/WzizGCC9Ekbcc/HSUeTjfE4HyMgHZuyJsguBBPuR5XNRjTdagoBBbiBLU6iwTjhBbjhH0JSCQIzMeRjHqWJmD8QBRHvY7QsnqfaFQi6INQcrxcUlO7JeH3qvELMBKLxQgEIKDxMJ8frJa0i5I/AHI8Vd309PRy/PhxHnzwQX7yk59wCW9tfOpTnwKgti4tqvN5damN7uEqA/7lOGHt/Qd9avtIwr8Eugz308CiQnBJ/XfQC4ElBWJqu/PPy4S8EFqK4ptWCHhkgp44JBKEvDLBuThx7XvzzcUxB9PpOQwmHS5t00fEGycwFyOWjKXNRZBjGc8wE01985FgjMBMNMXp/DOR9JxarycwHSaopY2IBWQCM2Givjgnn5unca2D6vb0/NA/FUlZ68dC6tgZXkzOmSKYXEai3jieU36UhEJcE2kkInH80+l4QnBOjUMkY1exQBx7vRlzlZHwUhzfdJiQ1g+F5tNzW1D78uTY33F5PUarXu3rgYB2bkJLlemfzI5j+adCBKYjDN7Ziq3egm8ySDyiPqNvMkQ8kObXvslQmn8sq3GH+mEXtX0JZg8sZzkn+CZDKX4a9cXxTYWILMdT93S0W1nWOIZ/Is0N4wH13GQdBmay4yoLR73qHBWIhxX1XK0O/bNhzDVpbuidULlKVYe6uzvii6XGiOBcmnclnyGFuDqO+SZCeA77cA848DVaiGtt2j8RUkUpGXWYHDtDCxGWxvyc/OGUdm6YiD27voPTybm7WocxLca4eNKPNeP5/ZNBAtozRnwxtQ41XhOYCqcETXq9jnhITnHOqF87V+OG/slsLuufDBHyRKnusKPEE1n1HZwJY84Y670TQWJaGut4XOUU1lozkl4dO60ZdeibCKrzAyCevK7Gl7xng1icJtCarX88mMVVfFMhAhl16JsKQTzO6eemkcOJLK7lnwqluaEWW02Ol/6pMDFfPJWurXagOsWXwkvauVr78WVwK1DbbFWrjdUPdHL6JzPq82vfdmA6nLU72z8VTI3JsUCMpTP+lOOAfzqUFVfxTwRTse5YUFa/5cUI4YU44YUI8Yxn8E4GkUPqb0mEte/ek/4WfNNm7K022i+rxzcRzIq/qn2Eem5oLqePmAxT1W5m3Qd62PuPp/FNp3lkYEHrIyJxQMI/FcJgzgjCSOrcA6aJLEXxT4eJa/2sbyqcmgch6fBPhVOxy6omC5Ki9mVqvURQMsxY/FOR1DNE/TECs2Ei3hjzR7zozTr0GdzKPx0h5NG++1CCwEx67hOcjWG0hDn+QzXO6Z8JE9HWM+KRuHquV/13cCGKf8aQdd14TAFDsn3HCGjrMyGPOqaA6qLkm03voK/pMGI0S4ACiQRBr0xwQU5lt/MtyOh06dRv/iWFoBeWZhRsLgVXraSeqwNfUI8xs16W1TgHQDgKvqBEOKQ+sy+gI56Res+/DEtxQ/rcgEQyOUfU4KS5uZloklhewlsee/fuxWw2I1kaIaDy52WfLsWBlmUDZDjR+ZYgmGwrYfAukZonB5cT6DNWPP2eBJEQoCjE4+CfjbM8EyXikzBaJfy2pO2QQmA2TiyqtTMZ/DMxIl4ZFIVEXMFcpaemx4zndITATFQVbev1yLKMbzKa+jbD3ji+Sa396dW5TWYI1jcZTqUMj/pkfJMhEtq6ZWA6gt4sEVqIcfjbU3RfW5eKZUe8MXwTIeJauME/E0mNo6DO+2NhNT4X9cXVc7XUSYHZiJp2XIN3IqTO8RSFqF9GSShUtdqBOfXvGQ/sGw8R1GLtclDGOx5MrUPVDjqzUpL7xkNEA0muop2b7LPmI/jGQ+itetY+2It/JpROhSqr54aXkrHACN7xdMzIPxnC5DLScWUDkaUY3vFgKv4fWVT/LWtczD8VQmfIHGfD6A0SUW8UvVmvnqu958BkhIgt3cf5JkIpvuQ9G2C+3pz6ff7pUNZv9U6EUvw65ovjHQ8SC8bpu60FW4M5K3WYbyKYmlNHA+lzQeUfOoOUOr+qzZaqBzmUXd+huQi+DG7oHQ/iOe5nercHvVWv1Xe6Dn3jGVwlYw1LlhN4TvlTa4ZBT3hFfWciWd+SJJGQITwbQo6m60VnSo9bvvGMNdpl9d0kUu8mTNSb3WZDyTmKV3uPWpv1T4WwN1pSPM43EUqNnTG/rNWhNsbNZru3LJ70EUy+m6B63ahf4zVzEXQZY71/PEhYq99DXx+j/aoGwssZnKI6k++FkLW4SiKq4B0PEpyL4p8I4eq1Z63h+yZDKNq4JctqHSa5YVhbvxr9QA+nn5/CPxnKWnPzjgdTseLwUlStQ62+PUd96KzZ9Z2M0UW0+k612an0fMY/oWoBkvOkqD95rno8MB3Kms94x9U+onVbHaYqg1rf/oz6LtFHdF7dSHghytzhZYxWQ9a56T4igXciRESr7+B8GHN1Hc3bajn781ltPpPsk2W8E6F0H+GJ4tXar96sx+gwpP6NrLWtZN+5FMM3HkoZ3/kn1Ta7fDaEpNdhdhoIeWKpOvRNpNt3YDpCNGP+6JsMszwWZPFkEFuDSeWD2jP6ZyPEwnLKRck3HSGo8amYTx0XVI2KRGg+nrU+45tOx/5iUQnfTIyYxotd7SaM2jqrkkjgn4sT0eYochT8czKRoAwKhJYUDFUJwn4YOyBjd5NKhyorsOzXEU6OlwHwLWc8g18iatADair4Zb9EOKLFNcM6vMtpFyVvMNv/qLtnmEOHDvLkk0/yne98BxEIp3vT6/UkEgku3/oZTEkbowwkTOoLMHmyO7IN16mxlD0/13K6BvLnfZUSykqbxdTFM+wPY7GVx5M/JRan4ypVoXbuheWMw+kGnQ+m6gQbHulh7pCPk88VsKnNY5NocusAHVFPYfJbdgqRNzHNm3vAQXWHjbM/L9OCV0PL9lrMVQbO/HRGqJypxoTRVCB37hsMU42Jtq01jL/iKfoecuEectB9bRPHv38O/0T55Zq2uKnpq+LwN/Kn93uj0Xd7C4qscOqHF2f37cVM91bdbaPzqgaOPTMp9O4qRetltVS32TgiaD+++v5O5GhCuFzz9hoS8QQzry0JlasIJnA0mvGfz7HVKyFGqe620bjOxYkfTQql3HMPOahutXH2l3nsasvEm56mRENVhwnfuZU/rphQZ+unegguRDnwjfx9X8oyO+MZzDXQfUUNZ37rIeI1ZJ+XiUxLxgK23bLTjlSgXw81a+419SHaO2DfHvD7MxZ/WzQ19Vz+HC0HX/8cCwsLTE1N0dTUlPecS3hr4Ny5c3R2dmK329k2+pm85yhaENOwmOZe1fUwtE3HmQMJ5sbUv+mC+bmXKporkM8ngzOtsLlOlgVsbh2tW6oY+7WHWGYKe43/FKKbq+9pwFpj4rW/LTDeJBJ5y9pbjAQmM1ME57l+mZxKKM2b4LVbd9TiHQ/iOxssfbIGo01H+1WNTO9dIDglNi7aWy0EJgq85zcYDRtcJOIJ4RReA3e1ggLHvyeWXmPgna0snvIzt2+59MkXCFujka6rmxh7YUb4HVSCi53urfumJuRognO/EJsTVIqBd7XiOeoTShfjaLPSe1Mzp348hX88VLqABqPTSPMGF1OvLJROQ/gGiHVtjUZivjixYE4/UsJyuuPqOkILUeYEv5/2K2tZGgvgHxe3UC732VKogKMleZXJbUSJxLLHgyQKpNDtvaGWuiEHr/yf80jxAvdOls14tvZtDuSYwuTuQDrNW753a00LK3LTkCSRqLIV5F7hRlWounV1mIQCe17LTi8SbE5yr5V9RjSyzEsvfRaz2UwoVH57voTfD+rr65mfn2fbZX+CJWn3kIGEJuA2L2SPtyNbVVp/8GX137pAge9UTiAV5F2ZPuyFeZcSj9OwyoreIDG1L7jieMG0bTqFTY+0MnPAx7nf5RlPE4m8cSWDBSSDjpi2qFB2qrd8KMGhhFKT5MDWaKG63cL0rqWccsWfqWawCovbxOTO8lPDguqYY7DrCC/keVdvMAwWHQ3rXMwe9KaEJuXA1mih69pGxn4+Q3CmfI7o7nfg6ndw5rk3P+0tQMuOWiS9xMRvK48tiOBipnuz1Blp31HP+RdnL0pbqRmswtlt48zzYjHc7puaQFGEy9UMVoEePEc0xUCh7+0NSudhrTekBEm5xwrBUmegfpWTqVcWiOf5DArFpezNZuyNZmb3luBrZcalil6iVP3kixtllLHUGQjPr2xfkl5f8BnWP9hMcCHGsR8v5X+mZKqRjPsYLNC20c70wQDhcHJT98pnU6zpmJeiz3//uNOalXI3E0Ftk02zKcpAZ4wDJ4z4MjYVBZrU/7bN5f+mzh/8AmNjY5w4cYK+vr6851zCWwPRaBSz2UxnZyddAx/Ke05CE0CY59MfsMmiMLIRzh6HxTm1jen9RbhXofXGzFS6ebhXctHeYJZpHHEwc9hPPJPOa5xLyU25q6HrKhfVbRb2f7XAeFMg5mV26Yl4SowZF8KpMstfQKq3mqEq1cght18uBj00rnOzfCaQEluXC5PTQNQfL5ye6Q1EVYcVSS/hPVN+PA9UNxidUcf538wJl/NPh7PETW8W9FY9bdtqmdm3JPwOKsHFTvdWP+pE0knM7lm6KPdrvawW3/lQajNgOTA59XRc1cjEznmh70dv1VPT58Bz0p8SdL2ZMDn0yDLC96obqSYWkgu35wK8p2aoSjVxyBNXyS5fmHuVvd5YQZreJF9TncRk5HzhHb0+LzdqWG2ndYuTA9+cQo7lj4ul3Bky4mY1vSrf8pyKIpk07pWbipcc7mXI/9viTmvBPj+kca+1jSF0Ehw8lZ1SLqA5O9lmV7YFWQ7xyvP/f5qampiYEJtfCad7S2hCoXhn7cpjpgIVi7pjLOQrPuCliGkyl7EJ1t/jpH7QlCVQKgmjgXMvLOcXKBWCdn3veIi5o0UmH3kaZu+1jWz8YBd5NFtF0brDTdd19aVPLBclJjSLx/3CAiWAyZcXhAVKAFFPVFigZHKodnGmjB1U5aBhbTXNm2pxd9tKn5yBxaN+Xv/bk0ICJYCG1S6c3YIvHC0VW0ZajHJR01eVshn8zwZ3j4OqVhtVTebSJ2dATUU2XPrEHNSvduHqFX93B792VligBNBxRQMdVzQIl2vc7ErZvJeNKCsFSmXAeybIie+LCZRA/X4uRKAkCmevNZV+CSh7kW3DhzpZlWGZmSpeos9cPhdi4USg9PiTMSmMeODoD9ICpbKgXX/1zRa6t6t9n+xURUhKiWf0hPREwgV1ToTqjSv+FnEbCMbV+zz88MPlP+cl/F7w+OOPA2C0txFqsqw4Xoh0KgkIBRT8pdZakvzIpLaVzh1WBq7X+shCC1x5EFxMcOK5/AKlgkgkmD8ewHOywIRF+zbyfaur725nzQPtK/5eCn23NmFvEeMYF4KJlxaEBEoAsWCC0z+eqkgcU4lAqWakKpUSQwQdVzbQdbW4yPH4dyeEBUoANQPV1K9yCpUxOo1sfTKdRqxc2JtsOLsdOJrFeOUfCmoHqqkbEuQYqClGkqn2hO7XX02t4P384yH2ffm0kEAJoHbQQduOepx9JbheTr9idBpp3VGbShtXLoIzsZUCpTJw7lfzwgIlgPO/WbgwgZIIEgodV9akUjeVC2udkQ0Pt9N2WZ7vroBACWDhRADPqSBGYzlz9/Tx8zv92QKlMiAlFOp7JdbenB5XE1Xq916Ke/nDEoEiry5Uv3KMURrrtFQ/F0dEegkXBo/HA0CiK0/My1i4fQSW1f8VhbaApZjS7XX4BivudkO2QKkEJIOB2UOh/AKlQkgoGAwwfyzA4pk8fWtyzpPnG2ja4GL9Q+2pdI5FkREzqxm0p6zz3xCUmP8FZ8IrBUplwHPMJyxQAnX3r7DoxACNG1wYHALzRaCqw0bHVY24BGNewZkwh//1rJBACVSRUsMql1AZ0FKxJdMKC6BuuJr6kTewrbyFYGuwUDNYjbV25VyuGFq21bDpEwPCbaV2uIr6Ct7dmR9PCwuUADre1kDHlRkxr3zjaJ6/OXvtOHvtK8/Nh4xvX2ghXEN4Ps75F8QESgCBqciFCZQEoCgKlnoDnVfXCJcduquBVe9cOS+TkryrwLx84VSQhVOh0uNHxvF4GMZezBAolQFJc/Ht2whtWhg37lQzOxQSjiexmNARCEkFHzFYv/L7iDj1BAxqBpA/+7M/K/s5L+H3g3/8x38EIGBsItC8sl0lTPm/MUlSHbWSjkoFkeRe2npjfZ+BTi1NTpZAqQTiET0Tu/MLlAoikWDxTJD5I+Ixr8Fbm+m/XTze0rzFjbXWVL5A6QLhOeoT75dlmNm9WJE4JrosLlCyN1uoareWPjEHbTvqKlrTmXh5QVigBFC/1qUKfwUx+sF0GrFyYa42ULfKia1ObD3uDwV1w9XUDYvHvEbe05FKtSeCxtGaVEq+chFdljn5zKTw92OrM9F5TSNVrWK8Um/VUzNUlUp5Vi6ifrkiMdT8Ya+wQAm0PuUCBEpCUBLUDNmF51d6E6x9oJXGNXnmLinutbKP9U2FmTus1Ump8SPjuOdUNFugVAakeIIqN/RvTtd1knuV0pF44zq8gcJ1HGxYGdeL1TlQ0DEzIz6XEJrp+P3aqJ+nEeQKlKI16g82eVSye3Rn9vmK3ZLlprRCOW824WqSMVgk9MaVg6pkNKbdlHKYav2wGXenk+PPLmiHc8onG4osZzWW6BIc/lYZTjU6KU3wlQSTuz3EwnLKcj7rdxYhBC2ba9GZJMZ+ljFoJeu2CFHY/Il+ooE4+76cJ7+fJBWcXKx5sAvPaR8TvxELvqx5oIvJXQssHPaVXcZUY2L0wS7O/XZWyEHGPeyibUc98Zgs9JzjL80TmAyzOFaKmWbD0W7G4jKn7JDLxf5/Es+tCKoVnhwR79Rf/ctjFd1v+58ME/ZG2fN3pyoqL4Lqbhur7+ti+vVFTj9XvuPT2V/McraCnfzB2QjhtiiYEBLX7P1iZXVhaTBR1WJlbq+Yg8Phb59NW0ALoPvtTcRDsnDbXP+RXkJzEY5+R01xVu5uteG721g6H2Dq5cWy72Wq0jH07g6m9iwxVypwk4G61VX03dzM6Z/NMLev/HJNoy5q+qsw1ZhKu25lBDomdy1mpfiEMnap6fUc/X5Gu0yOFTpdfmckJZ3WpWmjjapGMyd+qvaZyd00qXKWPBOARAKTXYeipAVKqUtLUtau/qSLEsCi38TLh9T/NhJPOShlIlRvXOGo1L3hNg7/6oucPHly5bNcwlsKv/71rwHoWnvHimO5AqW4W+VehsUQvgU48MtsPpCwWbLdlHL5gsmI3a3HaNPlJcuSwZB2U8op2/P2arznw8wf0SI2Ofwn+c0pipLFvaZ3+5InZF8zh8xLkpTF58Zf9aSstIEV3Cwf7C0m6keqiQbiBCbTAstkYLoQZ2vc4KTzbfUc+fcJfOdCZQdz6ked1K+q5vA3zgvtTGva5MbRZEmlyigXA+9sxVxt5MBXxoTKdV/TiM6owyPA8wAOf/0Mkrmw4KAQ6lZXs3w+RGy5gItEAez8nxW4DMVkQp5Iyua5XMztW67IsannpmYa17vY9XcnhX9fJRj9YA/maiOvfk6MJ+76m+MV3S84FxauS4CXK3SIqhlyEF6MEJwpvy6n9ywSmouwPC4mDmwaddJ+eT3+6RDLp8sv27TRTeu2GnZ/6VQq5Vw5AZOaITv1q50c+/dJoedsvayGqhYrx74rVm71Ax3ozTr2/YOYC2zTOicRX5zZ/aX7h2Q/H5qPMb3Py+yhnG+oiEAJYGksytJYev6X7PMlScpfNqGofb8Ret/mxHMmxtLZnPhAku9ZVwbwjEYdJquErRb80eygVC73SrooARw6qXEtGxiCcspBKROhetMKR6WGhgYWFxdZXl7G6fzPuRD/nwHxeJxEIoHOsPK95gqUIprgIOmodPZozvl2c7abUo4ISTEZsdpimO06DKY83MJgSO/oz+ERVS0G3O0Wzr7ih/jK49kxr5zF5V8trbxXbhA1k5clEswf84KipNLZ5vKyQmje6MLiMjK1K6M/KBHzknQSq97XTjwsc/TbeUTNkq5g2d53NOGbCDGbnLOXyb96bm5i4YiXZZGd8gYYfbCb8ZcWWDgs4BTYZKH7umZ0+mmmXit/7r142s/Br59JpfoqF5ZaA+Zqk9hvA04/N83pClyUKuEJAPv/sbIY28aP9xNejHLoIriAGxwGNn6kj8lXPJx/ofwYluewj1cOHy19Yg5CC1E1fXNcbCH5xH+IcYQkDA4DVc0WFk+IxVWP/cc4SrRIH1IAvTc0I0dk9p0q8e5zeNXQ3e1ElqOc+clM3uOF0HlNPYGZMPOHBOY8Bui/uZmFo148x/MstBW4t73ZxOAdLZx9YZ6Fo+U7YtT02mlc62TmoJdwrkNQRkxKvXd6TJre48VcnRPzyuVOSd6UhF7PuZcy3nUGd0o5KGVCUVL3dHcacLSaOL87mvfZMnfyp55HVrBW6dDrIe7M5mWKTspaFwpmbGINxw3sGjeABEYSKQelTATrDSsclVpHb2Dh9Cvs3r175W+5hLcU/vVf/xWAxpGrVhzLFShF6jTuNR8mEpI4eTD7fNlhznZTyuVeZhNWl4SlWpdfoJTBvXKdkRrXWAgtxPCOa+0+J2aWjPkqciKLVy2PhVkeC4vFvBIK4zs96XTduSjAg/RWPS2ba1BkpfB4nKeso81Gzw2NnHpuKpVCvhw4Wq3UDlUx/ttZZIG1mepuG1VNViZeFlujbN5ag63eLJxppO2yOszVRuH1vJM/nERnFI95OVqtRJajqdRY5aKiNSu9moY1siQWfwrORNj9t+KuRvVrnHRc3cChr5+9KA5Mvbc242i2su9Lp4XKHfmWuNEAqCluI15x18vX/74yhyh7s4VYMK6K78qEbzLEoW+MpVKZlYvqNis9NzRz7HtxfOfL3wxY1WGlbXsdx5+ZFBIr2RrN1A1Vc+4FMcGeq8+Os93G2V8VKFeAe3Vf34C5ysix7wvG2La4ifjiLOWbKyW5icafkjEvOQoTryyqawSZWMG9ElnOAmFPgolXMuaNyXFEr087KGVCTqeOa15rxbcAgTmtTHIM0xyV8nEvvS6BxWbAWq3gk3KEmjljUiiDe40taP9tB0MgkXJQykSwQb/CUamppY3ZqfN4PB5qasoX3QuJlB588EEALFV16oNoATlLsZ1DikJ1HTjcMJnzrSp2Czpf4Q9iaVrPa//sKXrtfKgfsuNoNIHRgFLIRhtWkIH2K9woCoz/brF00EUnpRrR8qkQy6dW/o5SiuXX/uYkljw7LUsh4osT8xb5XQUmg44WtSGKiH9MNSaq2m3U+uJCIiWL04DOoENXwOGhEGb2LZGIKSyfFFwYiqpOUaLovbEVW4OF+QOHhctWguPfH78o90li8YQP3+zFSSkQnguzNOZn4bj4rvBKMPnyApOCZPZCMHh7G7YGi7BIyTdWWf2feGaCyLJ4gM9g1qfzvArYabt6qzBWGcsXKUk6olGwN1mp6YkLiZTCngjxUIJETCzYduanU5z56RTRgE7ITnt6V/azlSNQAnC0mGjd7OTYj+fSQrhEIj9pAHWiZzTRMGTHUm0AsvvMlFipwG1f/zc/sjv/jonkrv5w00plt9MRxV2lMDZVePdDqN6ILp4eF6rr+3A6nSwtLRUscwlvDfh8ajuyVavcK+mmZJkvPhlp7oPlOQjmdFkJmwVdoHC/dPhnEQgVCUoU4Ea1PTZMdgPzx6MQK8ILM7iX0Qbtl9cwtdun5l2WpKI7CTK52cRLSwWer3C/EpiMsuvzx8mXMbgY5EiCWFBW814L7DZzd9mpbi9zd3AG6tc4sdWLi5QMFj0Gq3gA5ch3z2XlBy8XwfkYaVVG+ei/tZXlM34OVxg0EEEsmGD/P1S26FUJFo4tY7DriAXffIESwNyBZSyui+cMdvhfL06a4yQG72xn6YxfLMAUo/hCbAEOML1rgcBsmOXzYou4OpOEzqTH5jSq30SZC2V1g9XU9DpU56Yym4ukk3D32LHXi+2YA4h6Y+grEBXu++p5Ip5YyVQludxq7Oc5TpslBErJwE3rlirkuML06+l5naIoBbkTCQXJaKK2xwo6XVqklC5c8JZTh+NMHY6vEIenimq/KdKQu+s2RmsjeH3gK2K9Fao3oYul79/a2sHs7CxPPvkkX/ziFwuWu4TfL5LvxupSd9AGm9R3XDTmBVgdYK+G+ZyYaMJuRuctzLtCQSN7v1MkzlKgDbu7zNT3mzn3ShhFKRbzyi5fN2JDp5eYPRBQeVWxHZwZvCw8F2d8rnxBTbLPOPSNCUxOcY4RXY4RKxYELyBUcvdWoTfrVZFSuQJxA9SvcqHEFCEhj8VhQG/WoyvirpUP/ukwR759VmgREIA4+CtwzGy/rIGawWpe+QtxkUwlmPjdxXNaBpjdt0xk+c1fJAOIh+PMHlxi8dTFiXktnvALC4YuBN3XVNBWJKmwA0CJuMvxZ8aJh0ssduXhVUarHjlmEN5FX7+6GmudKSVSKisVSBxc3XbiQXmlSKnI/SO+OFF/nHhELOY18doSM3uWkCNFni1nwQtg6XR237BCoJQqq/WLRrVfNldLNKyyM7XHn3aZKtZ3KgpYzNQOWKhuNKRFSpnPVgQHf5EgVpPfrSDpqBRqWDm3sRvjOO0JJik87wnWG9BH089usjhwuVzMz1/cPukSxHHwoKo0sroaAVJuStYS3MtdrxD0QySU/b3IDjP65cLc6+wBBSlQuG8tlLatcdiGdyqKd1KGWJFxJ/M70EPzumoWTgSIeuXyYl7a/T3HCggci8Sk5JDMni8W2YxaoKySSBBZignHMapardQOOYU3n9f0V+PucQiLlIwWPUab+Jz2zM+mMFjE+agqMhLfeD5weyuLJ/2c+elFSJkrw6lnxWKHFwL/VIjpPYvEBFIPXwgWjngJzlwkJ2ng7K/EjRQuBIN3tuM56WNMpK3IlHYaygPvWT9H//08/mmxtUpJL2Gw6FX+JSBSqm6zU7/WxcSrnnS5MtYqne023P1V+UVKxbjXcryizJVHvzuhfuvFeGWu0BuY3Zszhy/IvZLmBepxV48FSYLFUxncTZYLrzfKMpLVSuMqG/rT0bRIKYkijoDLM7A8EydWW2BtIrnRsDGXX8nU2hWCMYkQRbKnNejRZQwbTZ39TI2P8bnPfY7/8T/+R8FyKx5DKWf7k4ba2lo8Hg992x+grn0NMbtacVXnCn8UkqKwfnUIh1Ni57M5u+rjCaRQkU4mOWgXEBopcRkS+V+CyapakRUiFoDaQDKIwabHu0CBXX87Vr7FvJJg5N5Wls8FmXgpO2hT0laxGC7EcvEC8sj+oaLnpiZcvQ5e/1sxV5DqbhtVLVYmXhQjRWs/0I3Bpuf1z4vdzz3kQI4khHPZbvx4P7FAvOLdZaLY8acjeM8FOHgRdqPVjlTRd0srp386JSQAMjnAPehi5sCSkJNS57UNNG2oYc/fH83rflYIzj51UUhUGNV7SzPVHTb2/P2b72aVBQGBEiDmSHWBlopl54Wt9P451zc5YOC2VqZeX8JzrMS3l7ErrfMqFy0bXRz70QyeYyqBk/T64gt1BgOYdQXrUrKYC5KORLWWZqTIQl64xQY5w8PW1SGsZvjBUjWWhcJjh69Dva/ztDru7fz2H6v3+//gmPGHBHXhV2LHOz8LQNyqtj9H0dSOMXZcmcDvSXD4tznXS5TgXsmASiR/I1YUJb2rPxdGICyvWBBbUV67R90qO33X1XHm1wvM7PVn7dgvWBbNgWSoimM/ms5e3E8oF8Sf3lQ7bNHvTEC48PvC6KM9LJ70ca7Q7pYCaNrkxjcVEkpNZ641svaBbs6/OMf0q+Uvkhpt4OypVh0gBOqzYYOLzrc1cvjfzlaUQk8UI/d1UN1hZ2eFjkOiWP3+TvQmPfu+LLYbrarThk5XQgSUB+s/3Et4IcqRb4sJ05q2uPGeDwinPlz3WA9zh5aZ+F0ezibKj0TwRllO5730m8ydSkFQpNS0qVpzhJvNu+M/+9rpZ9v4aCuJeII9/5wOtEr6EuJ0gwGTVVd4rcBsKhgwSlQlU40Uvn642ZZKUwKgJ8Zlm2U8SxIvyg6sC4X7d3+ret3qMZnZ83s4+do36O7u5vRpsW/vEi4eduzYwcsvv0z39nup79lETONdVeOFBxFJgaGWMHXN8OrPco7FE0jB0rxLihS4fhHeZTBCLJwoGBNTr69kxbxWv6cBnVHH/q9OZ+zWL7RLP3286+21+GcizB/MFhAWxQXyqqK8rFxO9p9ontO40UX9KicHvyoWo7HUGXE0W4Udmvtua8FaYxJ26HS0WlAUCEyK8adV93USj8oc+87F2di35Y+GWDzl48T3xVMQi8LWaGHoXW2M/WpGzLnUAO5uB77z/rxpygqhbk017Vc0cOgbY0SXyl9EtDaYsTeYmT8o0FYkiZatbtx9VRx6o8XsbzSvMqA6z6UufwHcSjAmJXz5UnxVp8vmVQbouaaGheNBlrU1moLXSHIinUTtgIWeq1yc/MUii6e1scpgKH5/o1GNeRVoWorZlNrVnwvVQUlG0UsU2jcfaDFnbbADWNsWpsYh84OoDetc4XiZv1V9bucZdYx47VufQZHjl2Jeb3Ho9XrQGdnwXnVBM67p2KrOFzNFgG3DIZYX4fSh7PYqyQl0/sLcS0puqitkbCDL6ppj3ocFYnLxND0JJSUCtzWYGLq9gbFfe/CcCJYd87LVG6kdqGLylYWVDkVFONAFx7Qu5reipxL9z0VF7y3NeM8HhV22nd12IssxIachvQmG7+1i8rUFPEcEuIIeqlqsBGdCQm5WjlYr3dc1curHUxdFBNR+ZT0Noy52f74yxyFRdF7biLnayPHvifFKS40JySCeWrb/jlai/jhnfy6W6srVaye8KNZWQOXpy2cCzB0Qd4D/veJC4nEluNfFWG/M5EfObiuOJjMTLy+VHfOSJImhO+qQJIkj38+IpRsNRetGMhrRmw0Fhx7Fai7MvVxWVO5VeINdoDWXe8lc3hdhxqvntWob1tkiMa829bmrzyiEfQsc/P7/4Morr+SFF14oWCYXQow/6biQKVAC8HWsVLJLipKySD++E07vXylQArUCV1hRyepgv+GeKta/O38uxxRZ0OWpfFkmqtnp5U3Lk8iwXcwIWO76/Bj7vzEhFmyRdFR32KnpX+l+UfTDMMGWT/fTeU1d9t+VRHHCYIK6NVUU3DzwB068O69tYP1HxPPXm6uNGG3iimjvmaCwQAkgEU2QiInX9cBtbQze2SZcTo4kSu8wyoOem5qoX3eR0gmYoO/2Fqq6xHL8xkIyiViCRK49dAk0bKqj7+ZWGte4hMrFozKJeALB7o/lk4GKnJvMLiNGe+FBoBB63tHMusfEvwWgsgH/4mw+TPWLjhYT1d3iTgCbHu9l4I7Gwifk6XejUahqsVA3VCKvc+YClaJw9uUldn9pLFugBOoYkG/il7TEjuTvx6VkmrcC4tnWIdh2m46aBhkph3WEW2yqQAlWNN2jY3r2HVOfLVyrI1y7sm0nBUoAyz3quZKk/v9z5y6uM8YllI+pKXWRVq+lHEkKlAD87cXzhh/5XYKx/dl/kxJFuFciQW2Xjs33VVHXl7/PSvGjfPbvsqwKlCDvd6goSrq89q3NHwqw+x/PMnPIn81f8iwWZ3Kz2n4H7h7bSoESFJ1U9N3axOijXSuvnVCKBnOq2i3Y8uRbLhuVcLOLKFBa83AX7VfWlT4xB6Yq44pUmuVgeteisPBHL6FyhbhYXdaudjNwe5twLvpENIEcKRKcLICqThtdNxQZo95g1K2upu0K8XcXD8rEQ+I73wbvbKP/tgp4bCyBLJiqBGD61UVhgRKA0WHEUp1nslSCH40+0k3zVrfw/dRrv3kCpQuGpAMjuPttFDH+yYv2K2rY+NGu4pfPU6+1/VW4e+wruNUK5PT3+789sVKgBIXnyNp4FA0l8m9OMmvtoEA0Z/216v+kRCI1RiYRbrYRbk4KyNO/UcbI0VN6jo2pzxaqlQjVrqyDpEAJwNulp6F9PQAzM2KBy0u4uDh2TE2f6e5YlxIoAfjaVn48kqL+D+DcUTi+N+d4MuZlM6PYVvIuEglW32Bm9Y0FOF0R3qXICVWgBPljYpnzlYyY18FvznL4e9PZMa98Ir2c47UDDmr7HBmHy4uZjX6gg6ZNOfGIEjEvRadQ1WEp7Pt+IaLxtwDqR52M3NcpXM5cZcKUb2wrgfB8TFigBCBHZeKCMRqAvlta6b+tVbhcLBQnHhSPeTVtcuPuzx83fjPQekUd9haxOEYiHicellEEY4juHgeD72zH1S/IY2WFRFS8LkOzEWGBEoDJYcTsFG+bzZvdDN3TXuDabwKvusgCJYvbgL1JvF5Wv7eVzquLpMhI9tmZ/XAcavvsuLvTLkV5++lM0XZCYeF0mD1fm84SKCXL5i1v1MbCSCJvXEtJ8q4Cc6iaOpmtV0GtW0HKKR9oMRNoUcfDhCH7/ZyaMbB7TD0WqpcI1efjXem/LXerdWS0qN9Ocmy/hLceZFkmkUhgsqlcIZ5htOVrz5d2UPsfcOR1mMjR/SfbVcJhJuHI5ldSLI7NHmf0diuu1gLxHW3OIOVb7E3IqkAJCqei1vhPMn4cnI2y71/G8ZwOCsW8nB026ldV5Z/CFOiDlIRC8yYXQ3flGYNLcC+L24ip+iLPZy+iQKnnpmbq14qvj1ndJkzV4ms6y2cCFaRC0yFHZeGsE1UtVgbf2U5Vh5iLeyKuOsaLrm+a3SYa1rsoYq7yhsLRaqV+jfi7i4dl4gKuP0l0X99I740twuXkqPjaJsDSqUraClhcJkwVxGN7b22mZrjE+tibhTdboKRH5V2CbbNmwM7Iewvw0SQ0bpfdT1vVtUaBmJeiKJz4yfxKgVKybJ7yksa95Eg87+al1PpOAe41vFZm1Tp1fFzBvVrNBFrzcS89ByfMnJ5Vny3UIBFqyMO92tJ/83ZLWKpqATh+/HjeZykEoZacKGLb6eswpRyVpJzKDDisRM+mbcSkMoPUSxMxddHIZMxSN69YMNDp07vHZJmNH2xh+VyYk8+rqeIkva64o5JenyIhkYUSnUKeRaydny1c6ZJOyrvwZXKYQAFZcLGldVMtXdc0YvzF1Mq0TEUCRW1vq6NtWz2HvjUmlH6q67pGGte72fP3x4n6y+9oR97XgavTwUv/XSyNmr3OjLmCwf/Iv1WWMqTv9hZMVr1wypFKHYbGfjGNXMGAVVFOWqBxfQ3VnRHhFGWVwF5jonGturAj0sa8Z4K89r/FOi6A2V3q9714TCzgNvGbBaGUh0nUr3PSurWOvf98SkjQc/jrlQlA7LVmzE7xb2H9R3oxV5vY+b/E7NzXPtSFwa7n9b8t0dZySMH6D/eg00vsLlUuByPv6SARVdj1eYFy2r0L8pJCgaYovPy5U6V3o+UiohCNajlnS6UpyVw8MMGm+xtYOBnizG9Ue96UQCkJOTttXKLaxvI0uBsSxMr5fHSkHJWW/SaWe7PbSrhWl3JVyhQoZWJ0dJS9e1/nqaee4pvf/GYZN72Ei43/+l//KwC26qa8x/3t5gKOSkYWE0YMGRbXuYuv+RDyxvHOxlmeiqkLuxluSiuClAZDihx3Xu6gttfG6/+UYTGsk4rvoNfpIJEg5qOkiCf33ieenSFr703ufQqkAJEkCalw0qACN08weHsL6CR2/Y3Yjp/1H+4lHopz4J/HhMuF5iMcFdxJvu2pIfzTIQ7+i+AOe7cZa724Kuq1vxIP9hptOobu7mD85XkWj5VvZxicj7Fb0C0TYOGYH0k3zfJJMa4wf9ArtkijoWmtk/q1bsZ+OXNRhGat2+uwuE2M/1YsjYFo20ri9PNiud2TqDTl3sC7WgkvxjgnaB//2l/maZtlcACLy4StVmzh0WiT2PTxQeYOeTn5w/Itum11Rlbd18n5F+eZ3rVU9NzMhTRnj42B21oY+8UMcwfK32HZstFF55V1HHt2Cs+RAqkD8kBJ/p8C7m6FuNWhb2rOFLkBeEUp+i5iGVOWvJuNMpHBvXquqcLZYmLP1xfS5cw5C4OynLWgkKiy4pkuX0eq6KWUo9Ksx8hyTzb3CtVKKVelTIFSJurr6zGZLl6KxksQx/Ky2ggNBsOKJu9rM6YclaScdhOsthCfSwtwy415ec7LKm0xG7PdlIrwLkVOsObdbpYnopx7SfueM2Ni+ZAR84r5Su2yX3l89xfOZhwuUj6TkyXjrQIO40pCwdltY/idbZz5+Qwze5ZzTyhYtmakiu63N3Hs++fxj2vvQpJKfuT1o07aLqvnyDfGCAu4znS+XXVo3v35o0IuN1a3GVtd8c0G+XDu17Oc+7V4CoqW7bWYXUbO/Fgs5ciZ5ysTVJ75aWUpR45/rzJHo7bL6wnORS5KWjSDBdp31GM06YScosILlbmi+875OfX8JEuCDpaewz4xxyYN1V02WrbUcvKZCeLhEn1Yxlg+9otZxgS5GoCl1oStVvxbGLyrheo2G6/9jdjcoPfmRmz1Zg5+TSz+O/SuFgw2Awe/KhbbG3pnM0oC9v1z+fdL8qqCVKkIr3rt78+vOK4oSvE4WFQhHteO59uIlAljNu9Ze4eD+bEokwe0sSmXd8XlrF39cacFr09mcb54dvkkEgYptas/EDOw3J4dkwvVS1jnkrwr/29cs2oNu199gT//8z/nK1/5SumbXsJFxzPPPAOAtSb/RhhfuyHtqJQznC9brZgXMrhXsbU/DXIUFs7FCS7KK9YbcxVBkkGfWoOs7zdSP+zi8LMLaXFNBrfKB0mvR5Fl1d1GMOY1tXuZqdeWChfIiHll8SxJQjTkhaLQdW0jRpte2D1x4M5WEnGFk8+KxQn672gl6osJp4kbfaQH/3SIUz8U4xq2ejPxoPgmrYrW//TQc30zs/uX8E+Uvz4mRxNiae41BGcinHpuEt85sRRewZkIRwWdrgFcPXbaL69n6YQvZRLyZqJh1EV1u03YMajS9MPnXphDZxD9iOD0c5Xx39bttcTCMrN7loTKHfzqWEX3s9dbCM+Li6I2fqyf6b2LQvWqN+kYvqeDqd0eFgTcwcxuI4N3tnH+t7Msnig/dlXdZqX/lhZOPjcl5P6uoOo39IXS2eWsNya51bkXPJx7wSMc84oHM7iZsTj3kjK4V8OImZouM0ef86ZF5bkb0HO5l8vKwrxctsFnJvdaCulZ6svhXg1SylUpU6CUiaamJuE1WHG5HWS5KOUiV6AEsHlTlIUFPed3ywWDNYrVrKYfyRjcT/8ug7VqxKHgjmadPpUPVoklVuSvl/Q6lFjhwcjRamLonS2c/c38ynyCSRQKrhRYDEsfXilUinqivPpXGYtdZe4Gmzvqw2jXs3BgKftACbIT88WJBeNEvGKDh5JQUGRFSKAEar5QfRHb/EIQFQtdKKo7bBjM4p+ByaEjGk0Iu8/M7F4SvheApcFEIhgVSk8GsOcfTpKogIRVgsB0lL1fPkGgAvWvvcmklhMoGvUnGP91ZYTDVGMiKvic1W02rLVmLC4TYUHLx0pwoEKy4TnmqyjQE4/K6Mwlvtk86qDIchS9vryBJ3OR7fzv5omJ7JTU7r3rbwsE9wTTkGSXLfy7Rx9uJeaPc+S7edpasl835YjJopCIK8RjauopyVrAXUwTKiXTvPmX4OBvMp5ZllH0+rSD0ornBhKw3KtwvdPL+bCRI5H0vTKFSrlY7tHDnOq+8eqrr+a//iX83vHLX/4SgNq+zVkuSqXQ0RmjtgH2vGbAsBgvKFBKcS/teHAejv0sY2KrCZUKLkYZDBCJkIgqyJE899BJRUXiQ3c2YLDoOPiNPJM57btUitlogxA3O/FM9n3KtcIe+9VM6cXyPIgsRYkFxMdgOZaoSNDsOebFOykWmIACgo43CeYaM/ZGK/YGi5BICcDoNBJbFlP+xJZjTO30CJVRbwY2p5HgvNj9Tjw/xcTL8xfNCevwv46hs4pvYTPaAKN4fXqOVrgAaASjUUcsKNaune12LM4YF+z3V+YE+ZXPiX8LsaDC8lgAz0mxxcBYMKbukiwxh8vd6R/1xogG4uU7rGr8ae6IF0kn4TtbfpAHncT4i4uMv5g/xWJZqUjyQVEKpl9rWGOnbZuLA9+eIJ6vuSX7dWP2Qlg8oqT6TUVOINkKiM00oVIyzdvZg9mHpUQCRadLOSituL0mVGpZLbPOFOGFpWz3jkyhUi68XXoSLySYmxNLkXkJFxeyLIOky3JRykWuQAlg7VAEz7Ke2UNFYl42s5r6LYOXTR5O84SUUKkI71I0AbkcTRAP55yn0xdOyQsYHDByZxPndy7hOZ7DF5LfayHepYnLyxYoAcRh3z9m9OBlpncLTAQ584tZFnKD0iXKx4NxIstR4v6cOighVFI015l4WIyzLZ32Y7IbhARKULnYqFI4u+xYXOLiSINFRzyeKJjSqRBEU8Km7udQhXii9bn/K6dJlBLUvEGIh2HvF08Qzm1jZcDiMqjlBIrGwwinmEnC4DCs/BZKwFZnpqrNhrHaSDxcJPXLG5Q698zzM5whRwxXhoPSwjE/Ua/4O0hEFeQKHPHDizGMybmuQJq3c79dICGXf78krzr0zQKL/cV4lSQVPK4oClIRAdLgzW7ikQSnXljJEZN9vpRHYB2PKqoDh5xAKcS7tMUyNc0bxCN6jh9KH5bkBIpel3JQykVysWy5R+FKk58J2cApOX2vTKFSLlQ3pQF49QX27duX//ku4feOH/7whwBU9Q5nuSitQM5rrnPFaaiROYwR80KsoEAp4TCj80dSKd6iQRjfkzEHTgqVCvAfyaBHiUaR4wbikcRK9x+9HoqsN7btcGKqMnD6+Twx5VIxr1Ib/yTdirJTry0y9VrG3K3M9G7jv5srvSaQB2FPFFlAjJ6EHEtU5NY4d2CJ8KJ4sKVSQUclMFr1OLvs+CaDQiIloLBIogjkaKIyobYeTFa9sNBoZu8ii8e8F0WgBHD25zPoTOK8Q28CnUlPTPA5A1OCRDR1Q9DrdcKxXGePg1ggLixSqhT7/6myDYRzB5bwisSS0Nyl4gkUAS4EEA8nCC9G04L5MtO8BaZCnPnFLP5pgfSFko7FE0EWTxSYvxRYb0yJwCuIeVW1mGjb5uT0LxaJ5usiCnAvOaoQj2h1GY+jVBVwT0tyL5ca85qdzH6OFPdqLc69HH0yg4YIr+QMzplCpVx4uyUSko7FebGYl6SUmZg3Go1iNptBr2fjA5/Nf5IC1edyG0GUHdvBswjH96uk2LCUp/a1AV3Sgi5GE7RtNDNxJEJ0iZRdlVIoX2yGk1LeR5MTFMr3CuDsMNB/SzNjv55nbn/5IqXW7S5at9dw9HvjeM/k78TyLoKZSAsyLtSu+g88xdsbgY0f70NvMvDq58TcYyrF1ieHSMQTvPZXYg5AI/d1EF6KcfpHYura7U8PE16OsufvKnNUEsWOPx3Bey5QsWOUCKq7bax5XzdTr3uE6sXeZKLv1jbGfjXD8snyB8m2t9XReUUjJ5+bqFg0JoK+21qoX+Ni9xdOCgujhHChgaLkgF+oP7oAu+03OiesyUG2YK+M6697pAMkiX3/kGeps4hIaf0jbUS8Mke+V2RwLZI3VjKbi95DcaiEQTGqhKF1EOJRmNE4Y7hZXfxS8qj4F0ZUcZQhFOVWd5ipiJ5dwWyCsjQaw34yvyOX1+Zl4v/+L9hsNgIBMaJ5CRcHTqcTr9dLx3/7nzQdLRxYzHVTGhiM4a6DV140phbKMl2VUkhyL41b1fUb0elh9qjGtZLcq9CCV/LvhYIqiQI28RqGbqvDYNdx8Ot5+v5karo85UcfakeOJDj49SJuMHn6MqMNYsHk4XKtMy6Ao/0n5mf2Vgtr7u9m/MU5YRefStC0xU3Pdc0cf3ac+f3lOxy5+uy0ba/j2DOTQoKc3pubaVzv5rW/PSEs5KkEI/d1UN1hZ+efH3nT7wWw7rEeTFVGXhUU5XTd0IjRoufED8R2Sm76xAAkFHb9P2JuZJVi8ycHiPhiqoPTG7SQlhdvcoq3NzUVSSlk3jtJIzI+hVICJVefjb4bGzj983k8x/MEfJLlc/hR/Ro77VudHPvBPEFPkQVIg6Hgb5SSO/kLiEsVe5p7WR1Q3wHnMsx/I40ql8pNNQLgGVYrY4s+QINJ5vkFC7k59BbXylQfzz9mH/r8UyixWOlUWZfwe4MkSeisFkbv++/5jyuk3JTSiLNlNM78oo6xk+q7Ny6tjA1JyRQhSadKA7T0G1g4HyfiBym5Ia/QxrwMJ6W8SMhFF7MsVRL9t9Qy/srySpFSMlaWp226eix0X13HyR/P4j1fYrElj5MSccoWKBU5ofjxUvhP8M2NvLcDs8vEnr8Xd5asBOse6wUJ9v4fsRhU93WNRMMyE4L8cOPH+4ksRTn41Tc/BgWw5Y+GWDzl48T3K3NwEoHBYWDTR/uZ2LnA+RfKF6gZHAZ6b2hi4pX5tDtYGXAPOBi8s52TP5qoyBm0KPKM/82b3bRf2cCBr50hdKEb+t6AuFOh/uSNjktl4QKvncurDBayBXulNgHr9QzeWofBouPQd1a2sdSGmzy/Yei2GqKhBKfziJRS5Q2GwjEtszH1DPmQqFJFRQmTeryuUSahgGdW/XeoST0uG1fW4eKgek9DCG40+5iQDRyIZ28CDKwOYzmeXyQVcEcZ//RnaGxsZHpazE3uEi4OLr/8cl588UXa/uefUTdWOLVl1bnseUFrfYymOpndRyzoNVFAXu4VUTmVLqgeq2qQ0Bl1LE/krCMWWG9UkvyoUExMLs69WjY7sLqNnHwuT0y5SMyr9+YGlLjC6eeLjBl5nJT0JtUtKt95ha/zh8+R3gzorXpGH+rh/IuzFQuGRVDVrqZtO/mjCZYE1rmsdSaaNtQw8dKckHCofq2TzqsbOfDVMSKLb/5m/PYr62kYdbH78xcnJtR3awv2Ziv7viTGY+vXOjFVG4WdmIbvbUdv0l80QdzIfZ3Eg3GOXwQee0F4o9Yr8x56g6+tJ1uIWuL61joTvTc2cv5FD95zeXh6AV7kaDLRcZmbM79ZIrxcpH82GJAK8T8tY4tSwIkpxb3MBkwmGVctLMyCLGupSJu143m4l2dE/dtQOEqHLsYv41Zyc+iFVocwHc9vynDmy39BbHKKeDyOvlRmGg1ls//nnnsOyAj65UIbz7wduQosEy+9bEoJlEohaQ/q7jbQ0G+mrsNUOEiTRIattckOjsbsZ0wFcQq9VFlm+UyEXZ8fKyxQgrwNMx5NkIgqBW2hC02ORu5s47I/HVLFSgJovaKWNQ9m5K8vk0g4Wk1UdRVw8ygCk0OHySE+SWzeXkPrlbXC5TZ8rI8tnx4ULrc8FsR37s23d05i+nUPU6+L78yvarXh7Cy2NSA/ZvYsMrlTPEXZhsf76LtNPI9qJTA51EUh0ffunQgye3CJ2f1i9WmpMWOrt+BoEUvLsXjUy/yhZRYr3OEniuUxP4GZEETFCF/PO5rZ/vQIphqxTsLRZqbv1mahMkg6MIGl3pR/8C9CCEwOqFstnsu27cpaVr8vv51vsXtv+HAX6x/rFb5fPCjnt3YtEezZ889THP7ubOHFpMy8sRkwOcBal/GHEqm2kosWrf06WgfUsSYpUCqFuNXEs4vVeQVKAIG+/JNtk8OBwWDAZhPvky7h4iAUUheCjMb8QrMk/O3Z3Ov4MWOWQKkUFM0NrHW1idY1xXMZp5ARpLHVGVVnlkxo/KfgQnYiwdH/mOXgvxYPFuYrHwvIRIvtDC4QhFn/oT7WPNhR9H75MPKedpo2uoXLuYccGG3iHMpca8xd8y4NI3Rd34itUaygrdnEtqeGab1cbOyO+mV84wF8ExdnLPWe9jOzZ5Hls2I70RzNVhwtNkwOMbehmf1LTL3uERYotV5ey4aP9gmVuRD03tzM2ke6hctN7Fxg8hVxXunstOPsLLBbpwimXltg8rUKHK0qxPLZAEunA8IBkU1P9LPmoS7h+7Vsd1O3RpwLGW2s7Ds1FAu4ONrMWOvEUwKP3NtCw2gZz5lxb7PbyPYneul+W335N9LpiPpk4mE5/1y4yHuZOxBgzz9OqS5mhQL+STeAnL7eVqfL7jtLpHyQYjI1bdDSq8Op/bykQKkUXpXtPL9QRT6BEoB3IP8Y5a5V+9qkU+IlvLWQXMCUCnDjpIOSry33+zPw6j5LSqBUElrMq8qtci9XiyEtUCqEzMUxA1hcOfwiGRMr1HfIMuGlOAe+PrNSoJSJPN9nQoZYUCYWiAtZt7dtr2Hrx3sxOYvXS24/UTNcRf8dzZknlHU/S60BW2Oe2ECJmJnBoroGicI94KBhnUu43NC97az/kPh8dul0gCVB174LweQrC0y9WgFX6Lbj6hLnChMvzTP5ijhXGHlvBx1vaxAuVynWfqCbxg0uoTJxf5zxnfMsHBUTDBlteqo77TiaxGK5vskwk68s4B9/g3l6ge/fNxVi6bRf2DGzcYOLzZ8cwJLkNGUKlCw1BlovqxHKDSHpJDBQsj/KB4NFTYUniroRO/03N5Z+tpx6HXpXM6MPdRY4Ow+0BaCoX867QF3KEfjoj5Y4/UtvEScZrc5yYloGC1gyNSUlHJB1UfV4Zw90dKl/SwqUSiFuhecjVXkFSgDhgfwiPoPBgNFoJFEiHncJvz9MTKgL7HpH8finryP7252YM2YJlEohobl9NQ2aaFut9Tkl2qyS0W5Mdgl9bnheLs69FFlmYucyJ39cXOyQN+bll4kFijxfAW606n1dDNyRsw5URt/acVU9NQPi81l7swW9SZxDGR363DXvstCw3iXcj+utetZ/uI/6tU6xm8kynhNegrMCriwXgOB8lIkX5wlOizn5mF1GXL0ODHaxelk+G+D87+aIeMXWq1x9dobubqvo/VWChvUu+u9oFS43s2+RyZfFN1RWd9pwd5e3HpOJ6d2LTL4mzpsrxdJJH0tj4hvOR97TQf9t4vXp6rNT3S3IhSQJvUn9nygsNSZMTvGYV8dVdbh6y3jOzH5RDxs/0k3LpvL7CEmvJxaGWCCe3ymqiDjHPx3lyA8WCC8WEbkm07nl8BeTI/vSUhEnPwBdJI69Gjp7wa518UmBUikctZj4ZdxBPoESQHQgf0zB1aAG137xi1+UdR8QoPRf//rX1QIuN541CjUHMhpXTl16O8wpRyVdHrIQd1nTbkp5KlIxm5g9FiW45MU/l5O2TVtISzkqJbKPt+1w0zBk5+C3Z/HPRFfuMtNsqlNIEgrN2UiSpOI7G3OsFmd2LTGzaynvqcV2g80cWFKDJfnSoxRBTY8DR7NGygWUzv13tGNxmnj5f4jt0F79UA9mh5GXBXd2t22rQ2fSMfEbsc7ZNxHCWEHaipPPiO3oTmLzJweIhWTh3WFnf16ZPfcrn63M6en0jyvb8WEwGyqqz0qhM+owWQQn/VEq2r22cNjHy4cPlz4xB4HpKMe+V8R9owDq11bT945WTv54krm95Svo5/Z7mRNwfUjCNxGkus0G0RI21jmTmbZt9dQOVXPuxYXynJu0QXnkrjbcPQ5e/O9Hs9MklZjMDL6zg6o2K/MH87sxFFpkc/fYsdeLp6Wb2beM2aW1MQHF9MFvqG0sa/JXxm40SDs3pawck8hVK2fknF39rgZ0BondX1tKH08k0na+jpWBRikmc/hliPpWCpQkLR9s0lEp6aKURDJWY9CG1qRAKYlAX7ajUrhBfb9OpxNroXR0l/B7RzxjQWphjUTtgcLjvr/dnHJUyidOijutaTelfNzLZOTwTwIYLawQKCUDkylHpZxdZMN31hEPKez7ujZW5fCfFdxK42EpZ6PMNBx5Aoi55Q9/q8iYUWQha/bAMsG5SPkuSgCSjup2G4l4gund+VMeFcLwXR3MH1nm+PfKH+OMTiMbP9TP7L5FTv5QwF2wwULL5lqUhMLZmfI5ihxVCMyECAgGQmLLMQ59XTwJV+MGN53XNHDsu+eF0oEE52OcqiDH+/hv5ytyevKPh/CPi6fOM1j06M0Xj3cZbHqMFvH7VboTcN+XTldUbuLFyoI1ax/pRmfQCfP049+bqGjHlm8iSHipDGFaDjdq31FH2Btj/oDY4vHGjw4QnI+w/5+zXSNK7QhbdW8H/ukQhwq5yRXgblWtVuKhBLP7yn/OyGKM+aM+Fo6rZcpN8Raci7H3n/L0fbnlk32+Vi51fSOqc1NCyeZ7uelKlARIOlwdRgZvdDO+N8jkvgz+q6XWhbSDUibmjsosTkNwaaVASadxr6SjUtJFKYm4Tf27IaielxQoJeEdiGc5KoUaFLq7u/FMT/O1r32Na665ZsXzXMLvF//xH/8BgKG2hsU1Cu6MmFduijdfmzHlqJQv5hVzWVI7+lMOSpkwm/DNRTnwsyDyUs5xg9avp5yVsnlX04iV9s0OjvxoEf90fEVMbEV6kGTMywDEc3hVvoXbnPRo3jNBDmaM2UVjZsnvNaGwdCqI0aQjulR4TpqPkzk7bLi67ckTCpbNRdc1TVS127LdrsuImfXf2YGjycJr/1vMJbtlay3WGjOze5eEynnPBYl6xV0aK9m0BrD6/V3IsQRHviHG20R/VxJ7K+QK07vEeHYSRpsefQWbAiqFwaJHXwH3Gn9BPNVnaDbCa38lnoo27o9XlFLQ0Wph8K52xn4+w8LhnBhWkfHfPx7m+Lh4TC84H8E3HlRTVwo4KNUMVtO+o46FY17C85ozcAZXyHVUSv674/I6mje62f13J4TSCrZf2UDDGiev/FUBPlqAt1W32XCKLugBswe8WGs0zlFmzArgzK9WfkMrBEq5cT7tuMEM8QiptLip8rm8KyOmNXCtA6NFYu+zGZWZUT65iz8TuqjMoX2qe3iuQEmvpeJLOiolXZSSyI15JQVKSYQHsh2VIvXqb62pqcFQJN3dJfx+sbi4mOL/i6sTuA8WbvO+DkPKUSmfOCmLe0VWcq+EzcLpV8Kq2ChXoKStNyYdlXIXhvuuryUeS3D8h5qYNrd8DvdKpmFLORsJxrzO/bpIDCOHG2X2eVO7FokFBNNhShLuwSokg4TnuNh8duhd7cztX+Kc4Bg3+oFepnYtCMUJ9FY9HVc2oNfrmNolIGqW1fTsoQUxMY4chbGfzZQ+MQeOViu9NzVz6rlJ/JPlDzZySBb7XRqWTgbYc1LcZTO6HGdGMMYJYDDpMdoM6PUldX5vCIwWPUZBARaA71wIH+IxvVPPiscdgcpS7gE9Nzdjsus5+h2xtcpKhP0Ay+cC6TRqAui4ooGIL4a33Dhucn3s/i6C8xFhN/ahd7Xjmwxx6kf518QLrjf2OVAUdR5aNmRVZLY0prWXEvE4SeM5ckjm+DN5+HYJ96AUt0o6N5WIeSmJBJJOh8kBq26rYXx/mLmT6Y9PisVTjkr5uNfytML+gEQktFKgpNO4V9JRKemilETcph43BNW/JwVKSUQHsh2VIvUybW1tzO3dz/PPP8/1119frCrSP7mss4CTWmdnbFJ3AaSESgXm/EmhUs9gnKYW2L8b/N7yOxTFbCqdtzM3GAPMHgmBJOUXKCWRFCpl9KSr7mqhqsXCzr8sY0KdJB5KApPbgMmqwz+ZPdCVWgBbOOxn4ZC4cOHAv2hBbEErxnO/msXaIC4ImHxlAVuteLl9/zKGqYJ170qtlpu2uJHDsrAYJLIcEydvQN/tLYQWI8IirEox9O42lseDTL0sNgBdrPR3oIo4KhJhmWDk3R1M7fawePTNd8My1Zjou76Rcy/O4j9fvho+GpSJ+GPF3TsK3K95vYupV+aJ+ssnAXN7l4XEUEmcfn6c8Z1mIYESwNSeJeJhcXZ59rdzuHvyK8yLLbId+EoZQdI8gaqJlyoLXpocYK4x4TsXLZ4zNgej72/GUm3glc+fBzKESgXsFJNCpalDofy3yAjq5ENgWibUIbi7A3iH2YtegudC1SsESqlra0KlpEAJwOPxsLBw8ZT+lyCG3AWgcoVKW66QicZg706xAHo0biQ2W2ISncfmemK3n3hSdF3IXj8ZdMkIyKz/QAf+mQiHv1164p8ur+BoMxHxRFOp21IosZA19rM5MYGShp1/caKiNCNnX5hlacy/YrGvGGLBGNOvLzJ3WKz/D0yE2ftPJwnOiwVeIgsxDnxlTKgMqGKqhtXVzO5ZFNo1HfFGiXhjxIJii3NVnTaa17s489PJle/9TYB70EH9aifHvyvGS8/+fLZiIXslOPbv4qJrUHmzvc5SkfCrErRsr8Vo1wvXTXgxir7E7u98qFlVjU4vMX9AbF5w7N8rm4cc+NoYsQo2WE7u9hCcEy947rfzBGYKlCuyyPfKX5Yh9srD3U78sLI2bWs0EgvGiCVj3WUKx7Z8rI2Fk0FOPa/Ne5JBm0ILTEqCwEyM6SMhls7l6QMzhEq5iMUgNicTaSucXiIfGoixwxbiaNTEScwrBEpJJIVKoQZ1DDgTVp9vdvbi9ROXUD4OHToEgLFe3f2XFCrlCpSSSAqVmpridHcnOHhQh88nEEQ3m4jMl4h55eFdy+MR9EYd/vk8AqUkkjGrjJhX52Uu6kfs7PpCGX1dkrskEhgc6uan8ILYPNg/GcZfxHGxECc785MZzvxkRph7jb80jy1zE0yZ3Gt6twdrBTGvY9+fwCBejMmXKpt7uQccJGSF5VNiu6bDCxHkfDt8S6BlRy3xoFyxWEkUHW9rILgQFh679/3DmTfpifLj9b+rLN1e901NLBzx4h1784mswQLtVzYye3CZgMACaTwiE16MEvXn8PQS47fBIlE77GThhJ+4QLzMdy7E0XPjwineJl/z4DmRX6CUi8xjC8d8JBJKwaxNBS7A9N6lwnOsIvc+/dM5Tv+0+MJ9PvG355i4MwJornAOQ7peyuTQ/dc7qW4xs/srGjfRhEYrBEpJaDGtySPR/A4qOUKnXESXINAh7rZ2NX6sKPyUqhUCpSSSQqWkQAnUmFdc6KVfwsVEJBLJEpGVK1RaMxIlLsORY2LZB2IGC/Jy8W8sV6AEMLkvkKZchZQZGvdSMtcb72nBPx3h9M9Kj/2ZMS+zS088KAunbpvbXyCOlLkZOQ/2fflMRWnfzvx8mmCheWkRjP9unuXzYmtAckhm/1dOI4fEvmc5mvh/2fvvKEmO69wX/WVmVZb3rqu9754ebzCDgeUAAw+CcPTeSJT3R9K5ete8d5fOuXKURJGUKIkSJZGiFY3oRG/ggfEe46envfddXfb9kWWyqrNM1AAD8Nz51gI5XZmRkRkZGfHF3l/szcXviNs9FFXG0+lg/soKqdXa/SWptRQrU2ukaozylYPFpxLsdzF2ZE6ovnphC6v4e90MPzdVnOKqCqZOLTBVKmR+FTH83DTDz4lzZ3eHHUfYymidYh5ReLsdqC4zE4fnhMqtzcZJrYmL352NVmSTzMKgGK+sdwPhma8Mrh+PykHHbUZemGZtQVQ4KXPlJxOsldnUUYn3Hf3U5ZquX4rhF+ZqvLliqC6FVDJFKrekrzG92bb3hJl6eYWhF7LjYBWbVyadJr4qM3Rsjfkxg6iZOqHSOqQgMZdhpV0sQpgjlWIfq5xAZQjLOoFSDjmh0lpIu69Rv2ZbW1mpvW/WvBKYndUcw2qkIf/b9Jbyk5e6nCYWMLMwB8uLsFSa8l41kVbLG3BaN0tsf6u4o3ZpNMHFH4o79idOLjAjuNgH6H+8kU3vbhcu13SLj84HGqqf+Aph+tQiQ5VU2GUw9uJsXVF84jNxlobF85mGtrgJDIiHl2x7Q4T2u8Xb89g/XeL0F64KlwsNeIhsFU/9svt3+9j8vnbhcr4eN5Et4vX9PEB1qvg6XYQ2eIXKOZtUbv7DDbTsE0g/AbgaLPh63AT6xMaX+fPLHPqb88wL5AUGCG1w0XxLCP+AWH2qX6Xp1kD5lJCSZGgsii/B0lANC4SSCXn2zBJnvzpafLwGY9HCpVWu/HC94eUVzwubha/PTv8T4t96/xPNbHxLi/ZHNYGSrm3HTywyda7knVd7NkVh7FickSPGY2DGUj5cZffNMrvLGFwA5rrMzHWtLz+eUphIKUj3TuOLlF8sDLyxeCdmxciBN/C6QKnhcmpL+f5nXkmzFjAzOw0zBvbQjGoiU4F7bb5HpfVmsRSaAGNHV5g6ExM2ME+eXmLiRNZ7nU5XTYuYw6a3t9D1gHgq0+6HG3C1Xr/IYcPPTLM8LGiwScDF74yyeEXcgbEyGtcijwjAbJdp2OUrm3KqHEIDbtreEMElmM5j7vwyR//+IivjYjfq73ES3OjF7BEzQrbuC7H79/owC4YJDva7CfZ7xNPu/ZwgvMVLcJP4Omvju1rZ+Wvi6ewi272E6+DNZ/9jmNNfFOTpkkTn3RHa76qeXqMUvj4Hvr4KfboMN1qZSNSUGrCUGw3+aKoo+pIkSzXxp9EXZo2dnIJj8DqUqbt1X4DwFlfNUZRy2Py2Rrruyb6HKmUlScpff+rsMtNnS7hXFWNPMikz+OIaK2W07GUNNmbYeq9Cq78895rvNDPfWTwYLAHTKZmZpELi3nmcDeWN7C1vKjjQ00Ft3TI+Lr4r9wZefeRSjpgC/vxvMxVsXuaVDDG/iaUlmJmRWC21eVlNpCtEGQ42pxi43y6UsgggNg8jR1ahmr23xBk1c2GFiRPim4La7wiz+R01pOkugb/PQePe62fDWBqOMZHb5COwxpk9u8RIHc6P5FJSWLgFWtqoelJHtd8VoeNu8bnt/DdHuVSHTS+6w09ku1e43NYPddD7uHgaifA2L+HN4vX9XMAEkS0+Aj1itk6T08TO3+ghepPYd2Rymols9+MR5OmxqQQn/+0Ki4NikQccTXY67mnA3y1Wn8kqEdzkwSS6/EwiLFACWB5dY+hn04Wxs5rNK3tsdTLJ+GEDG8s12rzK8SpHxEzrvmBtdisdWu/ws/nNDRWvnYcs5e9/8uwq46eKeWXV8orM7FCGqYvGnu2yvAto6oadLeXXugvtMgvt6599FBMjmHDeNU4kXN7vs+Oh4oj7VTNm3MBrimQyuS7S1ezm8nYh83KGWEBhelZmdnZ9P0lbTKQt5ftf55YM4f4Ki/wy393cYIKFYfEoiGNHF5h6WZx7DbylmebbgsU/1iDebtzjxxYWs5lcC2ZOLxKrZZN0CcYOzrA6IV4uPp+sXSiRhaKCt8uBIphpxNFkpfO+KM4a01LmsDoV59zXhlkV3EDojFqJ7g5gcYstDPy9LrZ8sAPVI/Z8nhYn0Z1+FPX6RQK/ngj2e2jY7q9+Ygla94UZeEercLnQJi/RneL1DT83zZUfim9gar4tRNs+8XTH9ogFZ6O43T8+nyqI5ypxhJJjkycWxIRUWe41e26ZlfH139Cr5W8MbXRpaeKqRVEqeb6BJxtoudmfO1i1bK782LFl5q6slZ5QsTwoTJ5PEi83pVTgXr07oFEtPybNdcnMdRW3TQwYRmEOhcj+Idobyq+Xb3rgRP7fmVAAgMnJ2iPs1WzJXFrSnl7taNcqy7bZ9Nb1RE9dLkyag7KDowdMkCg0kqzbPZ12rP8opHgCszWbr9CgcfOp3mRF+0+Hph02eh/watcpt2sg5wTTGTsnjy1x9mvj1YlrOlOIEiDJDD83w9ghg5CqVYzMke0+Ilu9lesywNYPdXDTb/UIpzDoejhK/5PihqWOeyN1iak2v6+dze9pFy7XeX9jXY7H018a5MxXxcVG7g47jgZx8vbc/zzNob+pI5TiUpLVWXES9tz/OMWRT4qlugDY+78N1CWKqgsq3PJHA2x4i1g/i8/Eeeb/PsnZr4pFA4ivahEnREOlT59a5Jn/+6R4pAMVfP3O8qKhMhh+aZqXv3aVsSNiEYCi272039VAqF9sZ3dom4ddv9mDs0nsRt0dNgbe3owqmHY3uMnFlg+0FbVLLYSh84Ewe36v27g9KxiKotu8+HPGPYGIKMMvzDJ2eC4fkrEs9GNrOs3YwaXCTn5080q5nTPZxXW4X6Hv3mLjc8ZmIWPLbrc1SLeVCDgwu8yYTWAyiPA221doLKWExxxIOjh4c8HBZiRUummDFilwx55z+d+i0Sgul7gw9AauH2SdkSTHvYyESmZdNJvj03YGLxT3dWW1MFZmjLhXIonJJmF2KMbcK7f70GRap+zvud+LvyvbP8t8Y3l+pXueSz+YYerUStUYwZlMRldeYuTFOUaMwhJXMDSbPSZCG91EBPPQmz1mdv9OtyYaFSw38M4WLcS/gFHU7DHT+3gT9qjYGO5strH9V7rwdIo5vfz9Hjrvi+Lr9wqVmzw6zekvDzJzTiwcuNmO8D2CFqHo2T8+pQmxBLA2nyS+KB656dzXR3j2j08Ji756n2zi5v++QazQNWDju9vY8/v9wuWO/eOluqJfrs0liNUgxinF4U9c4KW/EE9XYo+YcTQJGFCyc/iZrw5z+svi6Qi77m+k696ocLmBdzTT92Rt6xf9GrH1rmB+bBExtnQ/3EDrnSVjUg0CpR2/3MaGN5e5zwr1R7d6iGytMHbKsqFBf/TQPKOH5qoba0rmjYvfm2Xuoo7o5OakMmNpbqd/5x1WQj3F95GxqmSs2fE0vr7vJlwqJquCyQLKigH36jXmXiuYeWrNyfhtBTGVkVBp4wZtfdq79zIADQ3aujqREP+ObuDVR86QZg5pTqFKNi/zSuG3Caedl182k0wW+JESK/SnlMsg3E4iiWqRMdtlMrKBsyyX6s2Ad/naTbTenJ1L5TJrmxy30n3bi0NxBp+aL7Z5GTnjMpnC9ybLjB2Z56ouonNNNjMgvMVD467yxvpy417PI1G2fqBdWHjZeLOf9rvDwpEAIju9NO4V43kAnQ820POouO2q894Guu4Xn2vOfGWIs4KpEgBsYQvWgHiajIMfO8fxf74sXG51NkFsRnyMO/BXZzklmJIOYNdv9dYliqoXu3+vn44HBW2kSXj+T05zSTBtTDKWZG0uzppg9PfYVILn/+R0XVG7nM3WgmiozMa4UsxfWebUF68wc0Zsw7C70033g1HcHWL2CGezlc3va8MRFQtlZg2a6LgnjMlpKh5fjMYa3W/ORis9j0QwOXXn1cDbItvd7PhwGybn+nMriYD8fW4atrjKi7f070W3yWfi2ALDL8wVrq33X+ih512ZDHOX4wy9WOAw+QhK5dboWV7mCWfo3FWSksRqIWPV3osUW99v1wJWFLeM2ZTBtLz++rM9hXsrtXmdwcrlvQU7l5FQ6ZYezea1d3dhnROJRLDbxdefN3B9kE6nMZt1PCjbfY2ESublQn8+h42xieL+p+gi7KTc68cHKZ7AbJMwO0xkLAb2liz3kkymdZHEmrZacYWyN1fOrpxLMak7PnFsiYXBtWJuYsC9Sm1eg09PM6nPwFJFoJSLTtm424e/28CwX6m8Alve305I0FamqNC2P4IjKiZ4UFSZptuCWP1iNi/Vo9D3ZDPOJrGNh7agle6Hm/C0iI0DC4MrnP7iIPODgkEtFC1KEYLan+lTCxz467PCkakSq0liM3Fh8dbYwRkO/PVZ4ahNjXv87Py1HuHnqxet+8Js/yXxjXIXvzPK4b8T993G5uLEZsV57LmvDXP0H8VTHqtORfhbALj0/XHOfUN8XdB+V4T2OjY9tN4ZonVfuMA/atQmhDa5CQ7U6NvUca/oTb51Y1ItNrO+Jxpp318moEUlf+NuH8EKgVP0AiM99xp8dpaJk0vFvKxMSs88UinGjiyzNKbrZ1X8jVJ2nmzoVfCEi7ldxm4lY9fGYdmIe4XsmFwyJlMG8/L6e5vpL3zM8lrhPlOKwmHFhuP2wmYXI6HSrV2aZuG2XacBcLi9gNjGvJpXqvG4NtKZW1vyxpocprdmCBzVflRLHjTgiBPuSnLlQvmq0g4r8nI2Z2zWeHjxmTUusn5QzhgYF/Xwddux+wvkRlLk4rRvpZ0km0AzstONI6Ry4TtiOVSnTy0xfUpcEX3oHy6i1iFsLhJkCKQP8XU5kc3is0doiw8khKMpmZ2munYqnP3PIRDPqFJ7PswSDLy1lcRKioMfPVf95FcA9QiNrgWLV5eZOf/qp1ADIA5Lo6tMCeYvrru6mTgHP1pfqO16EBrw0PvGZgafnuDqjwXGiTjCIcsBRl+YYm0xweQZg7IViIDJJqNYZGTVpFVuBINJOdjrwtfpxBF1EC+NHFQB7lY7jogVZ1BlaSRes5NtbSFBctVgjKhijD711ZHisbM0b2sZTJ9ZZvrMcmWRkkG7Bvts+LrtnPvW9Hrha2kYa90iNthtwxE0ARXGpkRynRjk2KHC36blJMls3mW9QMkITcTxD8EZnUbQF1lgdlwjgjmBUg479pzj0As9mM1mUtcjifQN1I2cSKmUe01tkQge074hc0m6rbZAnFg8xfxs+f6ecViRctwrK5o78h/G336mSnh0X5tGhmfOZXlbSXLydXwgm3a3814/0y8vM39RbA4f/Km4wT0xn+TA35wVTxWWSZNYTgqn+rT7zbhbHMw3LjN/sfYx1dNiI7jBw+LIKiujtYclNjsUzDYTilWM682cmSWdSjN3TsypkFiB2Tp2BEZvDtO8N8jxz1yuK1qUKMYPzTJusJng1cLsuSUU0zVGsxHA9MsLJATDnV8Lzn/z+qSHy6H/yTYUi8JLH6lB4KSbw5eGxCIA5HDuG8NlU5lX4idmuwlFrbyAMeJHkS1e0vG0cMhtb4eD+HKyMBbW6MiPL6ZYWzRYS1fhUYf/4RL1aGoGn5rT/lGBtxrxstY7PCyNxZk5u7peNJtNq5svr+Ne/jYLJrPE5LkK7z+eAFUvCDHx/NOFv5SVJCl7lnv1VuJeCfrNScYWYVZny3I2LLE0pjkGcgKlHHr3XubSpLbbcW2tjvyAN/CqY2FBW3cpgUBFm5deoATgNCVpaEwyMgLlTGwplwVlMfves7xr5EyKkTMGPDxZmZv72qx4W1WuPJOdh2WlOO1bKbfPph/xtFtxhMwMv1iyvszysnJYGlljaUS791oFSgBnvjpSNktjDpIsrUv7traQKKQQqpKeRA9flxPVbebyD8SEIA3bfSgWRTiakuoyG6c6qoLz3xrJO2FFsDpR37ix4c0tJGMpjn3q+qRFO/sf9aWirRfTZxdYvHodcgFnMXN2QTjlXt1Iwol/vXJ96gIcjVY2vbODwZ+OM/K8QHqUJCxcFuRekszCpUXOfj3DwqDYmkKxyKgOBZNV7PtzRe2Et3iYvbjE3MWSCIoVxhpHRMXb4cDqnmdpKVZzBKXEcpL44nqeXi1K0dWnZxk9MEuy1kx92fRrS2NJlsaWKl/fgHc5G0z42q1cfX5pfYq3UpuXjpcFWs3428xcPFB+LSLFkmRKIgqeu1LgV6blFEmHdn29QMkIAZI0jEkMNxTmjEh4nvEJzYmZEyjlsHf3GZ57sf+Gzet1jkwmUxAplXTd2c1pfMe171wvUAII2RJgS7GyWr7fpNwWlAVt7sz5G88+VWZRU4V7BXttyCosjmbLl9i8SgWBkqKQSaWIbHOxNLrG8ljJHF6FexX5GmsUKAEc/uSF9T7uajwqk2FtPkHCYMNGJSg2hUCfm5WJGMujtacWVT0mojv9rM3EhaIwKWYF1WVGVsVI1NJ4jLNfHWJ5rPZ7BCCF0HPl4O9y0flAlDNfGmRJIOVqvVi8usri1frS1teDhaFVzM55oRRx14L5y8tk6khbXC8mDs8xwdx1q6/jvigWj5lj/yTG09fqCIIBWorGetYhZrdpPb8o1SYY8I/wVi+ZDMIpAn3dTlKxVD6FZc3+xvmEcXq5Kjazk5+7Wm3/dDGy3Gvm5ewapJLNy+BYaION2EKKxeF4QaCUQwn3knRC3lCvysKIzPxEeQOdHEuui+Z8+FRBTGpeTpNwaHXqBUpGaE7FsS7Bqk772t4wzeUxbYNPTqCUw227TvP0s11IksRqaZjpCpAyNSpJGhoaGB8f57/9X/9X2XMUg7Yxy9o7iqdASlaqKl3eKAzZY1VuteLhymVNNhlJkkisiI2wsklCkiG19lqGDr0RttRkU8ikM6TWxBROskkiA2Qq9k2D+uzZ+mKCiipZ0l6XoIDLZFfIpMSfr16YHSYyqQzJ2HVgHJLm3EnFU6QTgn05a3AVLWO2KaTWUqQF37usyqQTVcYqg/pMVplkLC1+r4a4xrCGr2e8io8mKaCYs+9BACarjCRLJFYqlKt631L1uIVSBTGJBJlKBn5LCjUJEhJrpvV9TJHK97t//dtPMzExccNZ9jqF2WwmGo3y5g9+qOw5Smz9+7Wp2nCzlgA5WaHvZjJVuFeGiidUG9KqzHVWr5nkWoqk4M4ds10hGU9Xn7ur8spXG/8L8zOzhGozEV9OgojBQJa0uVSQX8hWGbPFxNpiXEzMLgGKBKLzvVXBbFFYm69v4S8Ks8uEbJLrNjSIwuRQkE0ycdGoSLKktamgkcjsMCEpknD0S0mVkCRIV11nFU/EJoeMhETCYIf2a4JXk7q9prSwcuUmm0w6lSEdF+svFo+JdDJTmXtVrV6q6kTMlItAA2RkyJjLl89YUjhTEgkpw5pBEByTbHzva6sx/ur/++d0dHRw8aL4TssbeHWxbds2jh49yvt+93dxeI13k5sNfOlWUxpVgYU1GaXSer2a5VMfwajs8YoXqHjc4lEwqTLLk2XmmjJlTVZJmzMEBdu1XLvm4zVxqv+FeRegelTIZITnUsUqk8lAWtCWZA1YSCczxEW5kEnW+qogV7AFLaTiaeHnqxeOBhvJtdR14162kJXEcpKkoBNYMstkkqI2KLAFrMSXE6QEbdwmu4nkWkrM+WiSsHrMrC0kyNRk07vWVB2vUdnrgvpvUFYlzFaFNQNhFEhlL606Zcw2E8tTFb69alG1JKocV0ibKhyXIWktf1xxJbCtgSklsWhf38csSvnv6ksf/wKDg4M3oli+TmGxWGhoaGD/L5W3eakz6/uG35YikYLFuIK50jiXTFW0xUvpdEXulanGzdKVbWaeFivxhSSrc2X6aJlrW/0mksup6jbsa+ZP/2tzp2uBrMrYfBZWZtbIJAQ4lAJmm4nEclKoeRWbgt1vYWl8VcxPKYFslknHBf0dDhM2n8ri6Mp1ERxZAxYsbjPzl65PMAWrV8VkV1gaERRRK1rka6F3Dlj9KoqqsDwmVp9iVZBkSZgfWr1mUGRi09fLn1OJn2SqHL+Wa1/jpWsqX38FVo+ZVDJtbLuqcFl3k5VUPM1ypdTh+uhNRpBlMpVSAysyaUt5m1dahoSzfHlrcBXvvMKaOc2qAfeymsqvof7i1/6c7du3c/DgwfL3p4NwzN9KBYzaLJUBKRvoooIPdl2IAMUESJDKcchrtklU7mya8TSDrIh1SsUsg0RxtKYaIJtlJAlSghOIMV73q6yaIZs1g4aoeESStY+2oiO/XFlAqrRYMiyjLfBkwd3yikWGjPh7lyRN5CBan6RkdybWwzklqb766lQ3S7KMbCCwqASTVSGVrMFRbVifhCz43kmDXC6NZNl6tPenmCQyacHxRZVJiYqifo4gEAyuUEbR3puwINEsI8ni7y+dgKpzg5T/nwrHK0A3ecqK9mdKx1EycpVrpKX8ekIx6GOVfHTVdvHdwGsLSZKQZRmlwiBg1KUT2bWwItfAvXSXNtu0jfj5MMEZqLoQuQbuFV/SblT0u5TNMiYJUiIDiKQTNyWqiK/WVUhdUR5/LviZLGGyKiRXxQwokknKjscyyIIDeSqj8T0BSLLGt2VFFgorrVhlFLNC3Ch6TKX6FClv7BFClquJGohy84BwuyiaEEPUgKLtQpKE6zPZTUgyJEQd1Yrm2BBuz+ynKlcQixhBNinZ9yfWLkp2R77wJoSKeB2NA7lbEfxky27OqMIhFFVGTkOywi5hIySykZmr8/Rr4GY6bmVWtY1weu6VVtCMGGWQkSAmZbS51uDx5DJ1y0mtj93gX69vmCQwlXFoGfKuNKTSoMiZstnXgOwGm8KfqhUUM6xmAxFLUIVvSGQqfsCVN/AkltMkltPCa3yzXUE2ScKbPVSHjKTIxrtZ10G/CxdtfNE/S2loq59jqE6FTAZhIa2iytk5Uew9ZHKZ/wQjq0uShKyIl7P5VdIpLSqDGDSnkGh9ikUmk86Ib3gj+4yC9ZmsctYGJV6XpAjWJ4E9YCGxmhTrL1kblCTLGGWTrIR0IqNF8hUYJiSThGKSUVSZdDWSof+UJQmLy0R8JSlg0/v5GgtKA91VRJYbKGZtI+fafFKIspltMiaLTGLVKH0dZXlbcg1Sa8nq0WArGJYy1TbmySBl14yqGUwKrOgCjKRNEqYKvEtOS8RlSMplbF4V+oUsyzd41+sYOZuXqYJtx6hrLsU1e7JJzmg+xPIVFAkwnH6JZCJDLMe9MpUjGmUyEhUXT+k0lcal5bE4mUzWf2hcgeH1rW4zcUkik6o22RSXtYetrC0mtBReVe15BUjmLF+4PnvjryskM1g9KqvzcRCgJopFs5WZLTIpwbknvZZBMQnyGZOsberL+pprhdlpwpoTGwlwE209IGn3KbI0MIPJYiIpaBOSZW0DmiLKR80ad0qJiryzNijR+qwBLR380rCY2EjOiptE6yMFmVRGuJxiNWn8S7Cc2WVCViTW5l5Hwt1qm89ELmXKDqu5cb/G4uXXL5UvYHGbSCXSpBNG0ZvKl1ue0BwvZecGcjajCtxLqSIgN0t57uV2ZEgkYVWXzi1jlatyr2VbmrSk/Xvd/SVfuSwCNUs6lpe1cLZj957ixy/sXnfcOqndlO/cevZtmSl+SebZ9aHu5BXtxUhr2v83bjHjiZo4/d3VfDhsKJPuTcf4+x704girHPpUIR1BxXRvUDklCVSOfiIQclGPLe9rxeQwcehjYumqdv1mD4pF5oU/zaY9qNFBt+3DXSgWWTit2ZYPdSCbZI78nViaspt+pxeAlz5yVrhcci3N4Y9fnzReG97aQmw2zqXviYUErxct+0KsjMeYPnV9UqLt/aMBViZiwqG9b/mjARYHlznxb1dqL6TCrX+wkZmLC5z+wtXq518rVOh4Q4TJk7MsDb/6u9+sYZXeh5u4/OPxutMLiiCy00vnfVEufneUySPzVR1BObTdFaLx5iBnvnKV2TM6dXqVsIaNe3003xLk5GevsDxWe3u23R0iutPL4X8aJC4QprXv8SiBPjcH/uZl4su1T2ptdwWIbPXw4scvFrLZVdkpX2SQKFUYV2nXojQkRvXow2Hrzu3e78LTqHLoi4V3kClNWQKkXbmc2BlSDjOt7Uk8Xjh+RDt3MZtGKxZY30Yre3Nh5rV6nY71c+snNv07AB8ZuXfdsaBlGcu/WLBY1udqv4HXBxKJBCMjI4w/cIWnf7Jp3XFrdkeZ7+x6MqzOV+de0mox9+rdZ2V2KMXkuUQx9zJK96b7bcd7w0ydW2XwaV341mrcqig09nouVTHQZ7WodAbczOwxs/U9rQw9N8Xoi3M1l3c0Wdj63k6GX5zmyg8mKpfLl89gj6psekcHg09NMPbibG3lAGezjf4nW7j8gzGmTtQeDje4yU33G5u4+N1RJg7N1VwussNHxz0Rzn5tSDjtXj3wdNppujnIua8NVY+S8grA0WTF3+Xk6s+mXvW6APrf3Iyvx8ULfynGfwfe2Yq71cFLguU2v78dR9jG84Ll6oWvz4nVpzIqkgLkGtB6dxjVppRPM/cKOxy2fbgTSZY4/LfZdU+NadR2/XoXqUSaw39XzLerhaTe/L5WkispTn9RLDz79g93sLaQ4NTnR8qfpK87O2bu/q1OYgtJjv3ToBB32vr+ZlZnE5z9mm69VGnHlnaBCvcm604zOK8a99KpQPSpeLe93cfcUJzLLxbsBUbcK+O0Zf+VJulUGdiSZHoCxse0c5daynOvxb3Fxkqbff3OxY9v1bjXnw4+sO6Y/ZL2zpxO57pjN/DaI8c9Fnae5PuT+9cdt0zLoILv7Pr5S10otoNZZtb3DTkbOTLHv/zN4Gsyc+GFRD71LlDEwfLQ8aamnRZ8rRaOf0nHLyqle4Mi7lSVl60rW3heEXtZ5/1hbAGVk58ZLH9t1tvMNr6rBZtP5cAnLuZOqFg+h97HmrB6xdMl9DzSiMlp4vS/V77PUmx+fzuKWebI34tFRdvygQ7SyfR1S+PVdleYxGpKOJ1dvQht9bA2n2Dh8vVJwXbT7/SxNLLKmS+K2aB2/14/sxcWOfdVsTl4z+/3M3N2kQvfuj4pcKM3+Zi9tESsUpSbVwgmq0zHA1FGD8ywNPQqpKgp4VWuViv9jzVz5UeTNdlIc7wqMOCi894I574xwtyFGvuZJOPrtdN6e5Bz3xxlZbz29gxudNF6e4BT/zFMrNKO9xI07fXSvMfP0X8bZG2milJJx42CAw6a9vg4+aVRkkvZctU4byVuVSevykNv89I53Rs3mwl2qhz9TsEOmFHXq+JSnkKKkYTTRMifJOBNc+ailvZtsVkrEwuuv7fM7vncnQHgtq/vlx/r/xwAfzm63ublV5cx/ZMJU7XcozfwmiEej7O4uIj5/jN88/kd646r0wo4wXtuPRewzBX/ZsS9lBVNRCStaMeaNiosz6aZG8nkU8ABhtxLbwfrf8DN7OUY48d1Y06FdG8AGf1xQ/5UgV8VCbUN7GVG3EuBTW9vYeTAHDOn59cfL7pAobxiU9j+i10MPzfF6Iu1r/MVm8LGt7Uy9PwUM6dr93OpToWeR5sZemaK+Uu1p0+1hVU2vLmNyz8cY+ZM7fW5Wmx0PdjIle+Ps3i1vrTwIrAFVcJbvYy8ME1i6dUPUaR6FNxNDqZeXrguEZGa9gaI7g5w5N8vC9XXckeI8FYvJ/7tslB9bfsjBPrcHBUsVy/sEQtWj8rM2evjuw0OuLF4zAxfJ57e/cZGzA6F05+vkTdnOcWGtzSDJAn7fDsfaCCdyJRPx13G5tb7WCPJ1RSXvlejHT6Lze9tJb6U5OxXRqrb83ScqPvBMImlFFd+VngPVQXOeptY6bkiNi8D7lWUflf37979dhbHU4yc080BFpVSJPXcy63S3hRnYUlhZl6rd77dBDGIBdbfm/OWyaK/XZb1c+tHu78AwJ+M3rfumDejjbOKQYrhcqiZpamq9rDTZ+a47/YjfPepbfljOYESaDmE9UKlzsAaTR1JXjwoAesbDEBeKTxoxqIircUZOZZg5Nj6RYOkmo2FSlkk4+miSC7rIhyV5nzNEoauh0N4mu0c/NvLxee/IumZ1uPYp8UMIDlcfWYSky37ggUiCMSXEphSgkpOyO9gFsX8pZUqu/yMISpqula42xzYQpbrJlK6+uPJ6icZQaUgyBDAqS9cYXXmOilj41p9yyN1GKPqeb449b+3OupzRqw4ojbcbfbrIlIaPzjH+ME57Q8BJ9zC0Cqe8dW8IlcrX6MIKFM9C0EpkrEUyVgG4mINOnJghsRyUkigBHDlR9Nc+ZGOuIkIlOpA131+PM0WTfiazhTXV2ro0OWMTSfSVaOKFQRKBQxeLlwzJ1ACsE6nDZ1lOdxxNYUrLfHTgUKdOYESwO80fq9IqBS0aAvBqampG2GvX+dIZznLbW84USRUsupCXs/2moqESjs6V1mdhwsXy2+dzTnIoMC9zv7Y2BgtmUzGQqXcPSYzpJPruVW+vCQVG12yx7d9sImZs8sM/rTYEFJjJmIhJOYTHPibGgTXJQag5Yk1hp6bYurUXG0VZe89Fc+QWE2SFEyxkMlk6uKeK5OrLAwuszwu5lAYPzTL+KHaRVTXCnezHXebA9WnklgRdH6YEdr5BrA8HGN5uE4nSx31XfjeOFYBw9614sxXhrG46jC654YGweebffn6hObOwd/jwmRVgOvjCDzySZ2juVbuBMxeWNIiX+pQTaAEaMHo6hjv4sspLdVircimR776zDRrS0lh7nT0n4dKrncNAqUSZDKZdfVte3eYmfOrDD63uJ57lYSpyaTSeYdaOlk9kkZBoFTAqWOFbygnUILK3MucSHD/EJwPw+VQ4fecQAng91u/UyRUClmXGBrVHAY30uy+PpETjy2NL/Pw7Qf55jM788cs0zqbV69cJFSKOBK0N8Q5ftZEsoyJTV7ViedsKtJqnJkhmBkyGIjNJmOhUhbptZLI06VhOhTF0HHWuMuJv8vO8c+XrKEFFoDrOF0FXPyv6kZlIyfb0HPTqE5T7oSa7y2xmNB2TQsik/8fMcycW6oeecQAoiKqa4W/z0Vi5fqJlCaPVnGMlkPu0xGMUHTys1fE5sRrxMnPXiY2X0d9JoSfDWD0pTp5eh31qV4Lvi4XS8Orr7xIyYBXLQ7GeOmva9ugqudVK5Mx5i4tExNM1ZeLKlZuM3E5JOMp4supbJTt2jF9ZolMMsPaQu0CJYCpU8tMndI57kWcZNVQyquAxm02/J1WTnxltohXAettXslUXqiUTmVIVUnpqxco5TA5Y2Iyu1zKCZQArFMZQ6FSDhtHIZg0c7iv8CJyAiWA345+r0io5Fe1NpyZmSElaui8gesGSZJIZm1ND998qEiopE4XeP9cj1wkVOr3x0iYYWjS2NcIoKzouJfdgrSyxvDJMn2hCvdKJUq4V2mfkosjQOYESj0Ph5gfXGXiaIngQSTSrCTXxodScOIzNQgISnhcajXFlR+NszAkKOBJZbSoTYKRNjPrb6EmxBdTTL+8wOqU2Dpq8eoqRz4pFnzhWmD1qQT6PUydWhAXKSkIC43i8ymm5mvf4Hit9Y0dnGXm/OJ1EUQBDD0zxcSROrlQHc+3Mr7Gyvj1W6t7u53Y/Op1Eymd/0aFjW6l0PGPmQt12gIzlNcIVLC5xZeSJFfFO9nVp6dIJTJCAiWA898uXrcKCZSqwMjm1XO/j/mra0ycXMmFZC7UvY57JfN8LJXQ5qNKSBpwr8vDhblyvr1wfet0xlCopFUG2y+ZmGlIMhMovIucQAngD6LfLRIqec2rrE7GyGQyeT1RLZAyNVoYWltbuXr1Knt+Yxvb3qM5yb771LYigZIeOaHSFv8yoRA885xERidSyu3o1wuU9HA64wTaTQw+b7wwysQTlWOmplKVU7Cl00WEovfRCK4mKwc/fqVgdKlhp/6GtzThaLBy4KMXSg7V0KwCBpf1Zf8Xzf9UJ3b/bh/JtZRwZKp6sfe/b2BtMSFc38DbWlieWqs9GkOuvv9tgNXptetGqm75owEWRCMp1QlrWGXnh3uYPDHP2a8OVS+QhepX6X+0iatPTzJ7tvaJ0tfvZODNbYy8MHVdxGlaRKRGLn53pCA6EsG1RgkQcLKJX/o1vjcBJ1vvmyK4W20c+JvLGpGooV0lRaHnoQCuRpVD/6BzkMrSemONHoqCZC0fnShjNhkKlADCrSDZJF5WjHfY55xlhShKGh64mMKehO9u1xbheoGSHh8ZuTcvUAL45K7PaPd0Y055XULK5h9+9/Pvy//29E82FQmU9MgJlW7rW2F5CU6eKiaEOe6lFyjpEWnPkFhMMnvF2AKbSSaLIiitQ7qy0jGTKT6+4xdbmD6/zJUfzeSNNFX7YjrDrl/rYPLUIld+VBIdpwZeVZGfXQsvg/9XcbOGXT7a727gzH8MMne+9t1v9aL9vgiNuwIc+cdzQjuffX1Oojv9nPrSoJAgp+dNjYQ2eXn2T08JC3nqQS6S0vP/8/SrXxlapFSb38ILf3pGqFzLHUGsHjPnviEmGtr+y12YHSZe/POXhcpVRIV5fNuHO5EViUOfqJM3XyM/uWZ+VPnilY9XqtvAMbXu8tdqjNGV3/ELzcxdXuHi92eqls3Xqyhsf1+EmYurXPmZztgqS+sESkXlFdlwB1kOGbPJUKAE0NwPEzMyE4HK3EsfRcm+muCNw3DGDWfbtblDL1DS408HHyBk1dYqxz59jCN/e5AdO3Zw8ODBsvd7A68NHnvsMb72ta9xy29tY/u7NwDwzWd2FgmU9MgJlTqsMdoiSQ6cNhNPFtYIuR39eoGSHlYlji8C4+eTxmKCRLIyr0qmqtrE9Datpj1u/D02jn9mvMC3qjlu02la7vDj67Rz7NOFtXrNouoK3KqqzeyGvawIWz7YQTqZ4cS/XL4u9e389R7iiwmOf1qsvva7w6wtJITFNbt+q5eViRinBCNa1Yt6IynVBRPc/LsbGD80w6Xv126DMlmh4/5Gxg7NsjhYu/PYGjCx7UM9XH12kuGnaowmeg12J1erjf4nWrj0vTGmTho4Sl9LXvUq25yqVv8K8qpq5Zt2uwlucHD0X0a1eivtYM89l6zQdJMdf4eV418sbLSQFLmyzcukGEZNyiGjmg0FSgAeXxLZZeKC3ZiX5YRKhShKGvZcAW8Mntuu2TT0AiU9/nL03rxACeAf9v4H8Xj8hs3rdQqz2YzZbOYDTz+a/+2bz+8oEijpkRMq7favsBKXODdUbHvNcS+9QEkPj3ONzFqapcky/CeRrLhBj2RlbkY6UxRBqe/RMAuDq4weWixwk4rp5TR+NfC2RmbPLzN6QPcdZNLX7m+88R3UDFeLje6Hmjj/reHrEoEpOOCm/Z4GTv77ZVYnaxfh2kIq4S1ehp6d1tL81YiGnX6abwty9FMXrkvEp1wkpYN/I5blp150PhDF0+bg8N+J+W79G1zYvOKioZ5HmrBHLBz9B7EIq/Wi+5FGVIeJU597lXjzq50mtQI/e9X9ja+gTazvsQiLQzFGXspmwanR5tX7sJ+FoTXGjujs6Yq8XqCkh8lExlpB+GNRDQVKkCLUAFNJlclGY39lTqikj6KkpGDvGTOXQ0nmWzTupRco6fEno/fhNWvj5PiJKb783u/z6KOP8tWvfrX8/epQM1v3+XwAzFwsLDisbeXDns32KCStEi+ft/D0c5YigVK+5gq1N2y2ER2wobprvcMCLH5qEBgVHz/7tXEOflxAkJGd8BOryWIlNbUJlLZ+sI29/9uG2uvLovnOAANvbxEupzplXO3GC4DqhcWLhLZ5iO71C5fb8evd7PrNHuFyS2OrLArmCr0WTJ6aZ/ywuIrX3e7A1+MSLjd1ep7RQ+KK2u2/2kXng1HhcnVBhZ2/0UPj3oBQsdhcnJmX5xk/LtaeNr8ZZ9SGp80hVG55Is7suQWmztapMhfE6kyc1Zk1VqYNBJkVJr22u8Ps/e8bcDaLpeJyNqm03R3WvlsRg4zgd54jDKrPhLNRfJCI7vGx8R1N5U8oQxi2vL+Fm3+/W5hQaPlha1uMSYqST/N27lvTxQIlqGzsASRZRnWCuVyzVCjf2gdtXeWvvdKQYaVh/XN8p1PhP3oV/o8N3yorUAL4YucPi/52Op3YbHXODTdwXVBqTJM7ygtCZntNJOwyL76orhMoAWQkiUyFcadlm4Xm7cbGxEowW8Fsp7ozqcQYc+jvr2oCJUGk4tUjlRnh5v/Ww4a3VBh3ymDDW5sJbhKfu+1RFbO9DsO4mUKkG4EyTbcFsATECno67ez5/X4iO3xC5Van11ieWCW++OqnWwWYPrPI1Mk5EotiiiFPmwNPmwO7R6xdJo7PMXlsVlig1Lg3wLYPd4oVuga03xdh8/vbhcuNHZplvI7daP4+N94e8cXZ+JG5uuoriypGg6XhVRaHxKNe7vzVLrZ8oEO4XGSHB1+vxkeFDCql3VKSK3O37DFHo1kbc0tRpe7exxpo2FF+LCtnjNnz2x30Pd5Q8dpGSCXTJHM7a6s54WQpf/+HPz1eLFDSbq5yeUXBXGlJUIZ7OX3Q3C3h7S1vDFqJZFiJFM85KzYzX+g2czRs5n/f+K2yAiWAr/d8K//v9CVtUAkExNZLN3B9EI1q6+aFkQLX8rTPlT1/tlcm7pQYnjDz7HFbkUAJIKPIZIxS52Th71Bp2WbFVu6zrNDvTWJLYACGX1jg+GeyAol0uvou/uzxVCxVNVrGOmTSdD0YYvdvdZc5XP56wY0uOu6PiNWHJuiwheswXoFAjPkC3O12AgPic+KGd7Sy9UPic83i4AqLV69PCjWAscOzjB+ZEy7n73fj7xVvl9EDM4zVwRX639pC0+1B4XL1YtN72wlv84oVSsLYgWkmq6XfKYHJasLf7cbdKvbBJ5eTjB+eYa7WXe/X4oiSZBLLCRaHV4jNGawLKvCawICLXb/RhbPZeP0pyZIhr1I9JiLbPdW/29K6Rb/zbN0mqyb8EoWvy07n/aHyJ5ThRp33BbjpV1uFIyhlkulCRJNqfFSS8tcffmmlSKCUP16lvEmtoGOqEGWupQM6Oso7xNcCGdYC6+eIF9rgu33wB93fLStQAvhM+0+K/rbZbFit4jaOG7g+MJlM+UhKOXhayo+Vcz0yCYfE0YvWdQIlqM69mrdaiA6IcwXFBEoNxUrtdy9/bUITKEGN3Esrn1xNi3MvYPsvddC+X5xDtd4Zwt1hvJm2ElSPgmKrI3MLaFFuBM/3b3ChesQKqh4TW3+xC3+/mE0vvpRifnCZxPL1CRm0OBpj9MVp4oKCIUfISnCDB9Uh1i7zV5YYeX6KhGC0Gk+Hg97Hm8XfX50IbfHQ9UZx3+bkyTlGXhL3pXo7nQQ2iPPYyVNzjB64flHVl4ZjzNexLuh7spmeRyvYxXX8QA93hx1nUw3+o1LuVdpPqti8crzP4jXVNOaWoukWP77uCmNZGX607YOttN8VFBaXp+Npkmspw2OGdWfrP/vNmWKBElT34yoypgp0JlMmorCqQns3OCuYqmMNKWINxWNBSoGnNyYYCmf4/3V+raxACeCfW3+S//fyBc0H7nbX/h3VzLLb29s5duwYM+e1ReNPB7Ne1F3zcMCz7nzX1WvbjX71wCpT5yFeSUcgK+t2jnXd4yHUY+fwvw2zNpM2VsqndB1HJLxiDjon3Plv1BeJZeLkAt4F8a3ZgV439oCYaAFg43s6sHpVnvsfYju0d/x6NxanmecEd3a374sgm2VGnxMbnFcn1pBM4gvkU5+tTzW649e6SSczHPk7sZ3W578uEBpPh+f/H7Ed6znUu7tLdZix+kQ9nfVBVcFsN2H1Cc4gcTj9xdojKOUwf36ZZ//4lHC5+EycU7XmXdUhcpOX9rsaOPv1IWbP1B65aeHSSuX+JUmGOxlWptaILSSIr4gtSpr2hAkOuBk9skB8pnbn8cATzXg7HDz7P6pHOdAbinrfGMUVtfHcnwikapRkAr0unI1lZtb8ri5pneB08uQCnrbKCycjQnHh21klcI4wZDL1GePMudQDxuUls/a9bXzAiWKSOPC5YjFvpkKEJYBjLyuYzYD4MJ/HWMpDg6Jb1MfjbHnjGPbvNwEKn2h6nl8ZvhkAq9V6Q6T0OkZpSo1nr2gOjfjOJdSD6yM+OIeujXu9/OMl1qpF9jeZ1kVT2vrOCPGVFMc+M2743UIh3HW5Ma9myBKH/76MqLxKGOzps0uV84qXKe/tcJJKpJk6USUnecmzbftAN1Nn5jn7H7XP4Wa7zE2/3c/E0VnOf7P2aDXOiI22OyMoFoXBH9YerTGxnGB1Zo3YnFg44/lLKxy/dFmoDIB/wEXXA42c+/qQUASmxSsrLF4RX4Bf/t44l+uImjh/cYX5i+L1qW4Tquv68C4Am0fF4hFfuU8cmqurvnp3hdWbYmbLhzogA8c+pUuNU8PcLfLt6LE8sUZyVXwcbXtDmPhSkrnzl4XK7fmNHpYn1zjxrzWsY3QGi01vb2VpdI2T/67jzzWIo3wdDhRVYezQ+rGskjFm+twysxfEI6Yd/efsekkkDYkRco6GTNrQcCOpZlxRhQ33uxk5EWPocDH/rcS9lmbh6CmF5dU0eOu/xbGkhwZTlnslEmx7+xhHPtfArU7NKvePLT/lQ1fvxLqkcd+cGOYGXl/YsEHbRDZ3RTNCPTWs2bysO2eIHVy/Acsxcm270SfPJlgcgdVKugwD3tWw2ULzDgcn/3OWlUmMoynlbV7GvKwqdHaykRfnGXnRwGFY5drTZxZJGzjYqm3q8/U48bY7uPRf40LRlLoeasbTZufFvxCL2rfh7a04G6y89JcC61mg9Y4QFq/K9CmxzU8rYzHidTj0RCLw6LHh7a1IEsIRioafrjECTwkOfby+6Ob11mf1qSSvY7o3i8eMuY5Uu5cF+HkOsbkkL/y5uA0xGaP2qOG6+d/drkWNuPBfo8wLzPuxmTRn6rDpxZcSrEzGSS6Jvb/gBhcttwZZHFllZbx2m1frbQGiO7wc/MQFktXWvDpe1XJ7kPBGNy/8Ve08WJIkfJ12Aj0OLv7X5PoTKnCj2fMr1VPLGZQfObTEyKGlQrq2MrypGqRsOjdSKWORd9Ym1ne7imqXOPyN4nVkxl7ZmHViRNUuYRzAsiZcTfppMen8DckkXb88g/efNFH9Rxtf4jdGbgI0m5fDUYey9wauC1RVZWmpYGPPcS/bthlWj7zy3OviC3HSVYYcyWRaF02p70EvyVias9+eWZ9WN4t8Rpc6/Y36jDBnvz5mfG+yVJFHTRyZZ3Gsgh2jjD0uuNEDssTCJTEbyOb3dDJ1Yp4rPxab43b9Zi+jB2eE5n5FVei8N8rwM1NCYpBUPMPy6CpxQT/s2myci98WtyvYwirdDzVx+YdjQlEQ12bjdaX8mjq1wJQgFwVYnYqzOiUuqlGdJqw+c7nP4BWH6jZj84k7SRYHV4XaP4eL36rPllRvhPnOB6MoJplz/ynm+x07WJ8gamksBnVs+m27I0xiOcmZL9fA93S29a3v72Blco1zNfjS9f7G/iebWRxe5eJ3BNY/kkxwg5sF5yqz5w3Gsgo2s4nj8yxX45QG3Ovct7Icr0pAg6rIqr7Xpd3NwaKi2mDgPhvDJ+NMnC/++Cpxr3gcDl6xEksB17CvYy5twSvrOF8qRfT/XMDzPzRB/l9GX+C3R/eQuKC1s9frrfnaNad7+8IXvsDb3vY2LF4LHf/0h+tP0AmV9AKlgBrnpqY4I6MSFy5qRnTz/PrVgLxUeEBpraRD6HLCZuIGE4rOKOOKyoQ3OrnwwxnIXqboEY1Gz3Satn1+oju9nP7qCHPnSwYw/eRvYCSxN6isjMWzh+sgS7UaXq7BqRfa4sYetgqnGWu6NYAtYOH8f4qJcnJRmxYvX5/oRr5eJya7wuQRsZ1JWz7QQTqRFk5r1rY/TCqZZugn9RlSRNH9SCNLY6uMvfgK7kKvgOuZ7k11QteDzQy/NCNMhuuBo0Gl+ZYwl34yISTiCW5207G/gTNfvSrUr61hFV+Xc71gr9QZpP++r2Enm+oEd4enujO9BMFNLkIDbk5/sTIpKt3J5u1x4O+0c/G7BoYX4wtUPl5KGPRjag0OuHJONtVvhmSKeKm+THe+ZEAodn64EYCDnxwpCJTKlTcXHNMNWyyodpnBQ7r5y8BJltaRiHioWCy0EirUN7PR4Lk6Ct/Le87HMDuW6HvjTwv3kBUqbb/9CrahNOlWBV4o7Nr9leGb+eSuz2CxWIjFqlnpbuC1gNlsJplM8p4X3p8XKOmhFyrpBUp7m5exmTK88FxBvGAyEKHoU+5W5F5G4a51vzXfZCc2n2TqtG5s1H27GSPulcmw85daSSfTHP779U6TSvTUbAcUE4n5MkaG10nat7b9YWbOLQmLa3ofb2L8yKywSMbX52Tp6hKJ67HJ3gyRzT5mLiyVfw8G8HTY6XqwkXPfHBFqF3vQTHR3kMFnpoTqqxeeDjvhTR7htGb14nqne2vY5UP1mIUEbdeCplsDZNLiYqWBd7SSSWY4/cWsuLxGfhTc5GJtIcXioMDHcA3pQBxNKmRgZUysb7bfG2ZlIsbEkYX19evHoZJjzbf7WR6LMXsu+3yvdioSI1QSHmWvp3rNxBcqWy5LDTD+Xivd+wMMPjPP2LGVgkCpqFDhNymbasRsh8atVibPxliZL/A5I+6VsRXmxrVgMfdaDRW43MzA+nZJdWp8add4gk1LCZrv+xl2X6GfNZjm2fnAFVxnEqQ2mkl/vzgCsmfrGKuTK/zsZz/j9ttvX/9sN/CaYmhoiJaWFtwtLto//pvrjuuFSnonmZUkdzasMjSicGVM61+qwVyl6G1eseLjkt7OlTT4bnS8y+LMEOixMn58peBo1wuVDG1eGYL9Ntr3+Tn7zQnmL5dwfz3vMnCsmd0mEgvJ7KklHKqKvawUwjazGnmZu92GI2gRTjPmH3BhD1kZ+mmN69ksrEEzkiyzOiEm9K4XjkYrqsPE7LnaN0yBZkuSgHOCNr3wNi+SDON1CptF0bg3wNp8Qlj0VS+ud7q39jvDTJ5eYHnk1V93m5wmGnf5mTgyQ2yugje+ZP53NlnpvLeBi98bY2m4yn3q5mKT04Sn1cb0y/PFqSuvgVtVikxpsoI9YmXhSpl7LFOvs9lKaIOTS9+vYsctqdvRoOJptzPy/FzlcrnqryXFWy2crEx5kxOkjLxegKVvDwNetenJALJZ4tjnZwoCJT30djKdTczXoqA6JMZ0ezKNnGQpR4F3xYLFmytWgoVrz/etr1rtKowH77m0iOpaouOuF/O/5YRKvW8fw/NcnPRtVvhSc/74b4zcxMd3fg6Hw1EkhLmB1w/a29u5cuUKv3rw7XmBkh56oZKee21yruIzpzl8orD51Yh7mRZ13Gu12OZVZANLrB8r9XYwf7uJZCzNwpCujI5v6QVGeaTT9D+uRTU686XKc3BpeUUFFKWQvquEC71e0r6FNntYGlsVSk8G0LQ3wNzlZZZHxeZER9RKbDpG6voE9MbdYWd1ck0oHZrFp9KxP8zVp6eEnk+xKYQ3epg+My8cTakeWP0q/h4n44dnrkt7Xu90b+4OO1avysThuetSn6/HiWSSmDkt5o9ruSOEbJa4ImibczbZSMVTwt9eRVTgIJZsEIy12TI2LyPulUkT3uYhvpBk7uKyUIo3f5+TtYUEy6M1rrOuIcVbTfawMtxLdSrEq7iJS21eNr9C/yMhrjyzwMz5mGFYyqIyFo07KQoEus3MjySIxQplDLmXs/DbaqQ4SMRypHDtuY3r54lgp8atopNwx/Qqm/b9GKe30K9zQqWm35rB/9VVUk86SX80nD/e/444F38yxA9/+EPuuuuuddc3Qs0rhsceewyAxFKZjr9Lc4aWRlBajMNSAiaV2nYV5wmCCtsed9C4xWzsGNZDLpDaxcE4F75TECiBrqOVk3fKMtPnl5gfXGFlpsIkYDC5t98TYtv7O/D1OYSMLY4Gld7HoqjXsHNABJPHFoQFSgDDz0wLC5RAEyfVI1ByNqmEtoiH1Ot+qJHO+8R3pB77p0t1CXEadviJ7hBPZ7frt3rqSiMR2uQhepN4fT8PsIbs+Ps8BAfWR2SrBE+3gz2/30/DbrEUNb5+N8GNHjytYtFjpo4v8NJfnhXu1223hencH0X16xbjRpNf7rfs/9f7LcSXZWGBEsDUiUVhgRLA3LnlV0+gZPBb6x1+GvcY95VKpGLLO5vY8t7W9QeqLMymz64wfXal/DyULa8XKAGMHVtj8PlCX6kWQSknUNqzLUZXqzbZ2ydr21H4p7v+A6tvFkdDsbFtLKW1kzUrXpEGi+e3pRnNqaZcq9r7Bl412O1a1LBEwngREN+pGdpKIyhNrShMryosR2uLsJLjXq07VTY+mB0bq3EvHYkeen6xWKAE+W/XUKAEIElMnl5k4qT4eLX1/e1sfntj+RPKjDUNuzxEb/JWr+AaDOp6XPnBRF3Rf85+ZbiuKD6zL9cnUPIPuLAHxaL/OCM2uh6IEt0lNgfPX1rh0MfPC7eLu91JZLsPT5vY3N2w28dNv9OHPSL2fMENHkJbfJgF08T9vKBhp4+G7WLvDmDTu9vqSmcXvSlAYx089tS/DwoLlAC67m+kUyRVUPab9w84hb8FgJXRhLBACeDy9yaMBUq6ezI6NvTUTEGgdI2oZpAxe8y07w+KfQuZDMEBOzve10jDdrHF7spUkplLq8xdjRkLlCC/Js8JlAASK3DluRgrOh1cNe61FrTR2pRg19Y1crkdbZO1vcd9Gw5i8S1gdha/h7GkB+fL2jXkU+uvFc86Sm4IlF6faG7WHJuxOWOHgnWnZrAr3cUfA2biMpPWGm1eOoHShn1mwl0SGbVKWR3vis2lGX5ppdgRLesiXxhBllgcTTB1Zpm1SqIFA4FScKOD7e9vwddtMxaRlzH6mpwmmu8IYHLqjKj1bOqrkZctXFoRFigBzJxaFBYoAcSmEnUJlKxeE54u8ageHfsjdD4gbvM6/58jwgIlgMY9AaK7xVNTbnpPG31PNFc/sQTRm/w07BTnJj8PMFlNNOwKEBBMg2cNmNjxq90EN4uVczfZaNwTwNlcIQK1wfy/NBzj2D9fri5QKkF4s5ueh6LY9FH/a/hutW9BPL1QMkZ5gVIFLA3FhAVKAMtj8esjUMoiuNFBcKBMu1Qov+GRCBvfbMB/qwg9J19eZerMqrFACQrzSol9YPZqivEzuo1NVSIo5QRK2zpitIU1+4N9qjZH/B9v+TqOyCSOcPGGh6tJbX3hPqBdT3rBuF/k7Co38PpDU5OWdihWJo28bZsx95pJKEzEFZaaarNn5gRKgTaJrt3ZiBWWyvYySce9Zs7HigVKkBfwGQqUQPM3nlliuko2BqPyfY830vem7Pds8A2XE3J6Ouz4+2pYf11Lmk8dJo/P1yWSGH5uWligBLA8Wp9AydloFU4Tp9gUeh9pJtgv5q9am41z5ktDws9nD6o03RrEERWzeblb7Wx+Xzu2YG323xxcLTYabw5icoiV+3lBaJOHxjp4bNvdYfqeFOexDTt9NN4kXt/Vn00KC5QAOu5toO0N4eonlqCebwE0cVJZgVI5SDITR+aFBUoAMy8vXReBEmii0Mg2N6qzTLuU4V72sMqmdzTi7xPjGPHVFBMnV1iaTJTNm5ufF3TzVCoFEy8nWNO5Uapxr9WIlYAryabmVRQ0zuUYr20D0Ic3/ABvdBSLvdjmNZfW6vR9Xxvj5O8WRxFbGNXmvDvvvLOmekAg3Zuqag2STpY3KmQMrhZH5ekhrayDhGEUJYC004K8GNMXxGyVsDizncBsgtJd/nrICqxpHbfvTQFmL68ycbTQgJIkUckcsnQ1zqnBMrulcx3ZgDtPHJ/HZFNYFjROeDsdhAY8LAytMvbSXPXdYVljUHSvn9Y7wpz6whUhsYSv30nzzUGO//vlIgFX1XK9Thq2eYXTcbXtDxPod3PoY2Khnnve1ILVqzJ5TGz31PlvjSDXkSZOdcqoHhNLw2IM5/AnzgLikRaSsTSJOkJRH/zo6fURYGrAzX+4gZXJWHGajFcJql9l5y93M3F0lgsCaTYWLq3w0l+eFH6+dDJNOpEmKZg7d+gnU0wcE0uFBlqEItVnYemq2Ld+6ScTLIyuFOqrtBDQHeu4J4qr0S72LUgy3Y804IxYOfIPl4Xus+kWHxaXmYvfNSZG5RZAnfeFkFWZ89+crDyOlRCGbR9uI5PKcPQfsxFUKhEG3bGGHR7SiQwjLxRHTatoDJJlRg/Nl+UsRhGUcrj84zlt4VlJcW1e71Tof9DFxNk1Zs7HybgrLBBNMvF82NI4ZhNYLIXZKqVKzPeUKXvJjnerZmTrvu/Zwu9LcR7ZcxopmVnf3VqyY7IJ3O/Q7qu11UC8dQOvC4RCIRYWFvjhF1dx32Z8Ttqg+56bKVbJG0VRAi2Sl7xc4F5mh4RqL9kpWYl7mUywtoa/x4q/y8b5/ypxDMmSIXfKYfCns2XDYOe+aSNn2Oihuepjv0HqtqabtQXj6EtzVcNk67H1Qx2kk2mOf7pGUXM2hHbnA1ESywmu/kws6mLr3WFis3HhlFybP9DO/OUVBn8ktsDtf6xFOC3d0vgq578zUlcKKHtUJTEfFxJUjR2YZfqcWNQmgGQsRWotRUqQel349iiDPxkVFn11PRgltMXL839xOqd5eFWx+X3tWP0WXvqIWGqbI/90EYOpqyriq8mK66lyOPr3ZxHYG5OH1leSJFbFaj37jSGStZbRkYPehxtZGl3lxL/VnhZYkiW2fqid8SOzjB0QiOhqhu77Ghg7OsdSqcHb4N7yxTwyXfc0MPziNIvlyhnA22mn+8EwF38wycwZ7butZcdYsNdOw1Y3C0MrzOi/v3S6oqNsfjjG2Iklpi8aE3zDENZAbCbJ+e/MaM9eTqREsUAJINRvxhEycfmpVUimyDjLG4oyikTcp82TVmsG7VKF66XNEnNluJdy0Ypj6wy+rhF8XVmn/0qCx247gZJLa5XrehlQOrNrMBVSh5qJBhqYmb0+kXFvoH7EV8pzjLTFaGwx8dKMZgxzyCkss8bfZsppQVkuPmaxS6h2GUiRUc3FEZXWVWMiE9M4XcseB8uTCWYu6q4nV867sDaf5NIPykS0qzAezF1ZY+TAHAujlexx0rq6nRGVppv8rM0mmDy+UDPv8nTZ6bq3gXPfGmFxsEYHTyaDo9FKdJefy98bIxmr3VZjj1gJb3Jz+acTxVFgqiC01UNkq5cT/yoYlfvuBjztDuG0dJd+MI6iis+lJquMyakQmxIjJif+5RL12LwSyyniK+I2r6N/f640s2FN2PFrPaxMxDjzxdrn7rphgt2/2cfYwVkGf1I7304uJTnw16erpxgrQToFydUUqTWx9zDz8iIHPn6ufBq1Mt+7yQomp7lyXzHgJhPHF4jNJVidSQht9ojuCRDZ4uH5PyukWqwUQSmHxt1e3G0OznypZO1SpW5/nwOrz1xecFSm7oYdbkw2E0PPVE6tUsqr+h5vQFYkTn8pax+tJlDKlm/a5SGThqlTJQuRCuUlSWLk8CKmcmNEBU41fnwFFAWp0v0ZbGBqu0lldjjBwkiStKe88DIjwVqg4GSzqWlW44W2yphgYX0AHQDiF9wENmki0uabjxcOxJLcv/8MymoGs5QprLsSwIZsWj6bxB3/h4WPUxAh38DrDz09PTz77LN879sZfOVsXub1/GFkTYWcmUsCdc543Eq6LEXRlMyqjMWp638WdX1UcR0kk4lMLIY9pOBrtzH8UsnaRlGgnEgJmDy1XFdOrNGDc2RSVLSzG9m0Gnf5MVllZl5eMrSJlUPng1FkReL8NwSjLm73kklmmDwultkktNlDYiXJnKA9qfOBKEtjq8LRcfoeb2Hy5DyDAmnpUqspzv7nEMtj4oJ01WMitZoUElQtXl3l8N9fKETPqhGphOZrNMr+XAmTR+eZOT0vLPoKbfXQcmuIo/98Sfhe60Hb/gieNruwb/PCN0a1iGSCSK6kSFjEn+vsV65Sj81L9SikVjOk4mJc78K3R2rf/KFL89j9xiYWhlaK09rVYBfqeaSR6bOLzJwp2WhchXs13hxk9sISq1PGHc2Q9ynQeluQydMLrE5U6aC6+i1ehZ43Rhn86TQLuVR/VXilJEnYG6w03ewjNp8gvlS6Abv8860tJRh6aZ6lYeMxopzNK7UKwy8tZP2NFQRjJUJaV1jBGVYYPRFHSlThXrJELKT5Gy3mNHZLpsg9kzZLLPQa9/Opi376N13FE5rGE9LZDuIptj02imkpjUUClrL9bzGDsjfr33XJeBINLFljQkER6toq/gv9z5Q9ttCx/pJRR5x+SZt0Eh7ruuNAXqCk30H20r8vcenZ7EvOEoayyv5kMq9g9rTaCPUXO4UzqZT2wVX46LruDxHZbrBDJZ3R/jP46FbG4pz/zzHis8maFlM5DB+Y5eDfX6xNoAT5+04sJUkLDloAvk4XriY77iYxZV9kqxd/nwfVKdZVbF4V1VmzBi6Pyz8Y59IPjPPuVsLs2SWmT4lHY9jyoS42vkt8R3h8KV2XaOjI313g9BfEjSf11AWwPLbK/OX6cqIKIx5nZSLGwqB4ffU83+LlVV76y7NMHRcPBy4qUALovL+Zre/rLo6IVGNdo8/NVB1/SnHpB2NceUrA0Zwdn2w+FdUt5nmUZInorgDhrWUiFFUY2/y9bnzdrqJ7KHdveqRWU6RyxmOBsfPFT1zi2OeKF03VBEoAw8/NM/SMwaJJUchkMmVTS/U+EsTZVOadm0yas6BEZGFWwR01E+hUwWop62xIu7XdEepsjsyoPH3Ayqlz2jy52KS9R0+ZSKg5gdLHX3qA4ZcGiGdtWIFDqyhrGZQUSCV2SSkJchKkGPz0ee3D27Rpk3EFN/CaY9++fQA4nvsRH9pYgXu1FX9jZhJ0eWMEZ7XxOOk1VtbnBEo57nXhZ2sc/rJuQM5xr3KkPMu9Aj12/J3r+UUmlXVilynvajbT+UDI8Fil73L4uTnGD1UZ+w241Yl/v8rBT17MHq5d9JBYTZKs4LBcX7d27cAGNwHBKIEA0R1+orvEo85YPSpWv7jy5NIPxxh6WnDnTgImDs0Ji4YcTVa2faCbxlvEd/zUk+Zt6tgChz5+nrVp8bL1RKWaH1pmaXjlugiUAOYuLrF4tQ6el6jv+c5+eZiTdUQgTaxAYkV8/bL5XZ0MvKtduNzsy8u1pXor4ScXvz/OlZ/WLiqUZAnMoDpNWDxi/NAetBDa6BaOquAMW/F22HA2iu2wzGQypNYKmyVqTfE2+tI8R//lKjNnaneUIUkk5tNc/sE0CQPqJUlSYX1dgtBGO817K7SJomjcrcSTHey0EGzPznVmU1lnQzob9lqd1ea/sxdUnj1QmCOXG7X36C3DvRxbNQfll358P4tXgwD4T62iLqYxrWVQ1oqfSYplkGMZpIUMn3s2wtLyMi6Xq/zz3cBrDiXrbPpwz1Nlz1k0CIzsMyXpimv9as1nPB7kBEr6lINHvhVn6LjGMfJrhnI2r0Qib+wM9dsI9pTY1tKp/DdSDtFdHvy9BuNHJqP9Z/BtJ5eSXH16przgAQztZXMXVjj6qUtMZtfrkizVZDNLrqRJxlIFKlfjhj5H2Eqgz429wdjmWA6+HicNuwJYvWIcSnWZsXhVga2fGoaem+L8d8QjGy2PxFi4LD559725hU3vFI/mnYylhUU1AC//xxCXviNu00vGEBKJ5TB/aYn5S9cpjVMS5i8vszgi/h7qacv4XJJj/3SJ2bPiz2f4vVaxSYV3BNj2gS6s5aJKlrH3JJeSWnoTwfc3+tI0F743lr10beMDgNVvwVo6ztYgjmrY4SW6w2t8sELdgT4XoYHKkUmMeFViOUUit4asluJNV/7oZ0c4/bWStVkVgRLAzJlVJk4Y9E1FKYzxBmi5xYU9VGYgy9q8jNKQBjvM+FvMmsB21Zh3JZ3ae7JMF44/97Kdl4c17rXcoM1X7gvrywJ5gdJfHb+fyTPtJLPpTVzn17CNJbHMp5DmiucIaS6NPJdGGk3xt1/Q5tWNGzcaV3ADrzkeeughAMJnnuW93c+XPW+xrfSXFFFLHH82ik+8zByeEyjluNfYuRSnflRYrOfXDGUiiWfiCZAVPE1WQv229aKHVApJkcs6o1WPQrRMBoi8zctg/Jk9t8LchSoRmAzWUme/Ocrxfx/MnVCxvB7J1RSJOgTGoY0eAhvE1zbRm/xEtolHT7QFVGxeceXJhf8aYexQZaGpERYurQgLcRSbwpb3dRLeJm7Tq0f0szwa48yXhlgrs0miYn11RKVanVxj9vxSXeK7erA4vKJF4qkD9Tzf8HPTXPx27cEX9HWJCo0A+h9vpfuRCpkCymBlfK22KGYlmVsufmeU0RenC7/VaBeyBS1YSv2NVbiXokLjbh/eTmMxTTneZ/WYCQ64cYYqRwkyqj+xnCQVz3GvyinecvxpcTDGsX8bYn6wdoESkkRqFSaOLBqmZ6xk83I1qQQHyguMJJOiaWBK/ImeZhOhbm38q8i93NkNeZPa/Dcyo/LiBTugca7F5iz3OmtsM+jfpGkXPnbwTcxPFqKDWYZSOE/FsQ0mka4UzxfSlSTylSTSiThz8+I2LylTzgNkAEVRSKfT/MWp/fzDmVuLjmWOFDth3JcKH+XdzUsoMjzzfKFjlUZU0kdRWufQNTAyZvQEuXS7jZIqiha0LtVI6SNnHcx7fqeT2EKCI/8wWHK85PySSb7v8SjLU3GGfjadPSyw21eAMGjnvzI5Y2uGCqpav0jmeqHt7jDeLidH//6iULmG3T7MDhNXfywW3nvz+9qRVVm4PtWvIpsgVk0FWoLtv9JFYjFZV2q6enDLHw2wMLh8XerzdDvoe1MzF783KiY4UsEZUoWjYDXuDdC0N8DRT18WEiu52m1EtviE0x923BvB1Wrn2KcuC5UTwjWmJsqRAtVnIj6bLBrDqhqKSusuHdOuMeRixaprDaWtwsbHGhh6cYb5S7p3XmLAL72eq93GxjcFGT+xzKWfzK+/15KQjOuEHCVpRvQi3JxASY+4L3d9jXDkRErAumhKOYESwM4zMg0LJroe/CFOvzZYP/qRS0if0DyD+rvOvdnnf7GNOz49SDKeYXR0lIaGhnX3cwOvPQYHB2lra8PmMfF/Pns3/3iymHuZjhQbS91XtO/Pqya4uWWN4WGJi5cK/ag0opI+ilJN3EsvyCvlXiVca13I6tKISZkMnfcECG9yceifh4nPrJUcLs93PB02Gnd4Of2lMuNxFW5VlaeJcrN15a+Nq5k95roEOdcbm97bxuz5JYafKROVwQhmaN8XYeL4LCuVIjKUwB4xs+HNbVz52QRTgtE27REzKzMJIeFQcIub9jdEOPWFy6yMv/rvYuCdrbhbHTz/P0+/6nUBDLytBcWqcPzTl4XKWQJm0qspYcHR5g+0s7aQ4OyXa4/WBdB0a5C1hbhwGtvN729n8sQ8Y5XS/rxC3OkaLoDZDokE4qK2a6y7VoGScd01RgHY7cbsUrj84yqRL0ueZcs7IqhOhQP/kHVwlxr8S7mbnouZoVQtoE/jkBMo6RH3KeijKOVESsC6aEo5gRLAQ4cVVtUMu5/4NgD9nxxl659rc5IR70r+f3x85O27+cON30VVVdbWxHfk3sD1gd/vZ3Z2lr8+fiufurSv6NjKiWJniku3ofd25xI2a4ZnThRE26URlfRRlEqNioabGvQ2r5LUvxkpXSwIKN0+XWoDy3Kf7R+IsraQ5OQXSkQkZWxkOTTd4iOxkmT8sMEcbMSrKnAp4ZRvNYqU6kbOB1+HiOR6IrjZTXDAwxnBTW++Hieqy8S4YITOjgcbsLjNnPm8WH0mq4xslYlXSitogP63tJCKpepKTVcPdv9eP7MXFjn3VTFuUg+sARP9T7Ry5ScTYoIjE1g9JmLTYm3p63XSekeIl796tbhslfnfGjQT6HMz/MK0seCoDHeKbPfg7XTw8n/U/+5eCV5VC0xO03oB16vNq2rkTvWU1dfdea+fiZOLLI3qnq9UtFpSl9mjsO3NQUZPrDD00sp6m1ZpGpISEW1pqlK9CDcnUNJjLZC7vnbdnEgJ1kdTygmUALqvynSOmem/70fYA9q64KGvXEX9fW0dasS9fvR/9/C2f7jK1GCMM2fO0NfXt+5+buC1Rzwex2KxEOly8Pvf2Mu/nL+56PjyyRLulXVTqKTY51thcMLE1clCXyuNqKSPorSOexltakjoUhiWcrMqXMvIBhba6KDlFh+nvjxKrCSSyDqbl44f2QJmggNOrj4zbRid/JptWtfbv1gCxaZclyg814r2eyIsDa8ydUrMBhXe7mX+8oqQcEixKfS+qZGRF2aYvyQmylE9iiaUEGhSR9RK274wl743VjbKzSuJljtChLd6Ofg3ZXYDvQr1qW6TULYXALNTIZ0SF4x13N9Aai0tFK0LwN/rIhlLsVDLJruS+uYvL6+PbKSHEb/Qf/vXmvaxBu6lqNmhsqQ5X3XeV0MEpfJla+Ntvi4bFreJsaPLJYcr27w69/txhs0c+0LWtyeX2rhKuJueaymQUSpwL/f6zTqxkImcQAkKIiVgXTSlnEAJYONBF3E1zVse/kL+t1t/tIz0C+OQNuBeMnzto1t4/NeOEYlEGBurfdOKkHXW7dZ2NZ5+erIomlKpQAm0iEq5qEqnTkscPlr8MnIRleTFWHGaNzSSm1HNbHzIzk3vMN6tkH9ZRvGAU4XdY+sESlCsEtQZX45/doij/3i1uCMZTfolH4Gvy0lQpxqu9SPb8SsdbHiLYMhRScIaseBouE75QuPXV6AU2uJm2y91odaQPlcPR9SKzV9FXWmAsRdnhQVKALJZrivU9rYPdLLlveKRmyRZQlLEB+/GvQF8vYKNWS9UaNkXwhoW65uySQJZEp4XO+9uYOsHeoSfT7HKyCYZ4mKGnsXLq8ICJQBnkw1bQLxv9j7WVNv4cA1OttLdavHZZP53/f8L1a3/rcK9eXvtwsYg1a9y06930LDLLWQI8rVZcTVZ8bbpVMoGO4yLFoiKwuLVOIf+ZYRLz2YdbLn5ILebrLR8bj6xWtYJlKDgfDASKAFsHUhzx+40i02ZIoESaNGUchGV9AIlgIOdaY62xXH6l3jUof3H/x4i84xxGrd/+MHNPPdbPUjZHK03BEqvX+RS8cUWtW9TH02pVKAEWkSlhTaZuTicPCVxsSQabi6ikrwcKxIoQZZ7OczseoeTztuMx6y80dKIeyl67mVgENFHVMp+a1efmebgJy8Tn0sUfbPV9PPeNjuedhv2BoPdchWMMQ27POz81U69P7q28mbwdNQYifIVMPZcb4FS7xNNtN8bES5nD1lxRMWiFZCAy98bFxIoAZDKcq9y0SXKILjJzbYP9RDdKbaLTZI0biI6T9mDZhr3iuehrxeeTjuhMlEQK0Ey1ccrt7y3ky0fEOexilnGZBLkK5LE8LPTwgIl0KIUuSpF0jBMo2Zm83tb8RhEhVtf/BoMKpKcrz+xwnUTKNmCZlSvKixQ6nkkzKZ3NWXrrt3JFuh3EOhxFq21DevWr7UlmWOfm+TEl3WGvdx8UiY6TD6iktmEUTiTnPPBSKAEcPueNJs3rLHcqBYJlECLppSLqKQXKAH8tC/FoRbt3t7inGfL79rJvLhuizcAyYMtfOTtuzn+dc2RdoN3vb7R3d0NwNEfzBRFUyoVKIEWUSkXVenskJmDZ4r7UC6ikrIcX5fmLWNTydhUOneb2PGmclFbs30+sX6gkDK6XftG+R3034zuOzv1H5Oc+vJkcbprI+5SwsvCG10E+wzW3eWcZNlxrv/NTXTcGy45VD1iislpwuo1XR8nW/L6CpSczVb639qCSTDyuDNsxRkVi6IHMHtuSVigBGBS5fKpoypg47va2PTOduFykiIhmcTnOH+fC2ezIB+9BoS3ebW+KQBJUbTnE5yDQxs9bPtQD56u8rutjSCbZGRVKXYI1VB3bCqhbT4oXerpuIsR7JH6+mbTbQE67ou8YryqFlxPgZKzyQqVviGjCAYm2PLuRoIDdiGBktVvwt9pwx3V8R2jqHolNq/EEhz+3BRjRzTnaN6mVcbmlRPP5vw26+4pKwIxEigB9DamuGNjnOWGTJFACbRoSrmISnqBEsD5aJqD3WuonkUess/zkH0e3uUmfrjFsJ5PPb2Hl59sZCVL324IlF6/UFUVWZaZG9MmYn00pVKBEmgRlRbbII7CsYsWrk4W96NcRCXT4lqRQAkK3Gvr/SrNG8vYFbIRldYJlEBzJOecyQb+xqKIStlvafLMMkc/M0RsNlX0TRravHTjkS2oEtrkwRZY/y1VEii5W20MvK0JxVbBblKGO9lC18nXSH0Rg64FTXsDNAjahABczXbsEXGOMXF4TjyyUSqDoiooZsFsNiGVLe/rItgnFqFZkkBWpGKlQQ0wOxX8vS695uFVhS2k4ukQ40GgPZtczX5hgN5Hm+l7rEm4nKLKmo9TEDNnF4UFSgCuJhu2SpGGDPiJomqpHZ2N1msTKAlwr1Sc6yZQUp0KZpep5ghKOTTu9tD1QHa9KmDz8nXZtUibIjYvReHij+c5803dZt/sWj4fQakU2fkoo5rXCZRAx70MBEoAN3ev0duwxmKzUiRQAi2aUi6ikl6gBPDywCJXOjUB1q1WmVutMjzoInPcOELvx5+9gwPZbDs5m0qtEPpSb7tNSw77rb84D2hp3yqlfgNwjCRYWFRZWV0/0ZVL/ZbD7GiShbEKA3qZhOWdd3vY9YsNFcNcA+t2h62M63a25UJylYPuY3j+z85x5JOXK9dlAFmRUSzig+X2D3bS+7gxEa+E3f+tX1wUpcLu3+2j/R4x51VgwMXePxqg+Q1BoXLOBhs2vwXVJybqOPWZQZ7/f8R3n0du8rLp3cYG5Uo4+g8XOfSx88Llhp+bZPgFcVHUoY+dF97tDtC2L0zb3eKOx3rgjFhovS1M024x59zsmSVe/LMzTApGRpg4NsP4sVmWR8RUdFd/PMkLf3qG+JJYFICWfSHx7wc4/ukrvPCnLwuXczXbcFZLz2gwKe/5vR62fVg8nPuu3+ii+42FvlIrYdjzu5103leSrqkKWXG1qgw83kTXg8ZpnsrB5pW1ywoGOZk9F+P5j1zmyk+yERUqzA2ZTKboeHyRosh8FecFAKuFDfda2f6E8bsrl/oNYG4IZuISuUhKRigVKIF2+lAE/sfZB4p//6WxdWsNCXjjb54AwOVy0dQkTrxv4PpCkqQi/8yHNj5TMfUbgGM0w8yMGSM1TrnUbwAkYH48zfxgBU9NGe61/d1huu/zVudeOoOIlgJKd0yWqwqUSGe48qMpnv+zC6yM1SHmkcDuK6NSKuMI674/ysa3t2H2VEkDUnLv7fdFuOl3xA2iXQ9G2f4rXdVPLMHWX+hk12/1CpdzNztwt4qlAwZ48c9fFo6MA9D7aCMNu8RCe69MJXjpL88yfqhCZBwDzF9cYuSlaWbOiQldJo/Oc+CvzgqLqRr3Bmm/K4LZfm1RempF+/4GOu+NCpc7+ZlBjn3qUvUTSzD07CRDzwpEzsriyCcvckokEkN2Yb/hrc34+8XF9i/82cuc+0aZHXNl+Ik9YMYRtmKrkta3lB813x5gz+/14GgUM+q27guw45fF1yC9j0TY+Ut1lHtjA9veK85jFVXJbigQ69PH/nWUg3+XfefpdGXHbEmaqNhsyVhsJHzVw2xix5udNG0zHqPLpX4DmJvIMJKq/O5KBUoAS3aYc8P/c+b+wo+/PW7Iu67+qrZWOf8t7bfbb7+9Yn038NrirW99KwBPZdNLf7jnqYqp3wAcYymWYiZiyfUO3XKp33KYnZaZHazAZwwESgCRzVa2vtVXNr1IHiVrl7X5Ao+TcimAykHHyw79/RVOfl5ww46kbewy1WHz2vb+NroeriLoM7j3bb/YSccD4kLArR/qEBYZ28IWbvqdPqI3iXEaW8CCq8kuLHS5/MMJDvzVWaEyoAnt60kjce5rI5z4V/HI2kPPTnP1aXGb1+nPDXL2K+K8svP+KG37ro/Ny+Q00XlflMgOMUfn6sQah//2AjMvi/HR+SvLXH1mkuXh1eon6zB9aoHDnzhPLBfNqkZHVHCjmw5B2y/Apf8a5+DHyuTrqgBPqx1Pm/gaZNsvtDPwdnFOs+ndzbTcoXt3Ndq8tv9CK01713/nlbiNyWli4MkoLTeLjQ9WlwlJgUxGzIEXm0ly4O+GGTmwpI37ldbkJTavZAySuqkmUxoBubS4aqZ9h8Lme43nt3LpRwAWR1OMJhQq5cksFSiBdvq0D/780v1FPyv/x7Qh97r9j7X+6LS7iUbF10o3cH3hdDpZWyl4sd/b/XzF1G8AzpEUi6sKRkqJcqnfcpgag4WR8v3UUKAE9N7vofkmx7qoF+ug/4ZSkNIP4YpS2eYlS5BJM3NmkUOfuMiqYCaODJq/0VxOpFSm7vB2Lxvf0Y7qEeMmoc0etrxf3AcR3u5lw1vFfZudD0XZ/N524XLuNjvuVnEx7fF/viQcGQegcY9fE/IIIBVPc+JfLzNzVowrxOfjDP5sgoVhsehLSyMxTvzbldpShung63HR+UAUVVBsXy8a9wTouFec21/58QTn/lOcVw4/P8XIC+I2r/P/OcLl748Ll2u5I4Srjr557FOXGH7KwEcEZXmfYjPhaXNgqbI+LYWvx8GOX+7CHhHz1wcGXAy8tblomK7F3xjd7WPg7WXGhwr+xubbAwy8RdzPJZtkZDPCNq+L35vm+GezdsdabF56f+NyaSS9ysLNjGpm4G6VUKfx2F6Je02PwLCl8vdaKlACSNog7oA/vvJw8YG/njHkXnv+7hKH/1l7jh07dlSsrxRCo8m//Mu/EAgEGL+geZT++tl7tAOtCWyDxgQgFjBhnV5hz00ZpqYlLlzUhWCcXsmHozJqyJGXqmxnyhlkSgyX8dUUqXiajJzUOlcVgp1D820+GnZ4OPDRy8U5YQXDV1dFtuyBj9YX3m7kxWmWx8W3eiVjSeIrgkrlOCBLwkrQxbE1ViZjLI+J3eel741z6XviA3q9CPZ5cLeKq3HrhVBKlFcA574xTGzm+mwLXLq6xtlvGOTvfLXqG45zfvj6hAIHCPS7xfMeX4Mq+eDfVBHBlZmUF4dXidWQxq6UFAjt6svWrTohGcuwtigQlUqWWJtLMHZkjrGjYsK0+YsxXvro5SrXr0HxnE4bnpc38mfSIMkMPBHAbJU5+lmdkaSCI0AymyGRJBlLk7KuPy9jrdx/rsxZ4BBgwMOWm7Pv5/kQzpuLjTb7D5kY9iVx7SlOVSqd0PpBBjj7tgC9n9cMOJFTSwyfWWBmZuaGSOnnAE6nk8XFRWZGVvA32vnE03drB9qS2K8Y07iY30yfa4VgIMPBQ8X9zjyzWpF7nfteFeFnziBTQqATsbSWwz6VQlJk42hKoH2DOsPI5nc3sjaf4Ox/ThaRekPDzTWEtM6kM4y+OMfoi3Ply0uy4TVGXpomvpggsVLBiWhwv4nlJMnVpKYVE9BTSXJ96ZjmLi1hqcNQcOCvxR1e1wJ/nxvVZWbsgJjgqB4kVtJcvo688srPppi5sCScDq1enPvGEKqjinjuFcTo8+vFGq84cn3fDN4OJ8mVFDNnXqGwrhUMGvMXV3j+zyp/C0YGleWxVZbGVlmuxbinq99oB1dFZOtOrKaJC/YvSZK4+swMtnICTSi7Zj7z5dFrS1MCxRFbSqE7ZrbB5rdFGD6wyPhxnYK1EvcymTCbkyTX0iQMliD6dG9GOHEhu2nKwNe5lOdeASw3F9ZwGwchsiDzo740N7UUuJf0grbmygCZX/MgfWweCWjLjnUnj59GlmX+6q/+quI93cBri9/8zd/k937v97h6SnMQ/NnBe7UDrTFMg8ab7FYDCrbpNXb2JJiaV7gyUeh3lpk1Unbt21MMeMTs+TVmqbCJORfJokQknlhJk1hNoZiSJJNSebGRXLz5LtBro2mPh1NfGiOxnCp8v4a8S+NlZZ1plXhZlk+d/KxYqrAcrj41SWyuyrgqrX/u+HKKZB1zcD2Rq1dn1li4uszypFj6xsmj80wenRcqcy3wd7sI9Lk5bxoxTuH1CmNaMCXKteLlr17V1iDXAcmlJKe/PMjy+PVJ2RmfSzL8dBkHVK0Q4BqBfjfuFhuXck62VzA1rlHkj9OfH6rruvOXVlhbSQrfnxbFLftHrbv4TZBYSZGMFa99q6UJScbTDD47y9zlMtERypSPzSY5+q+V02NU5Y+Koo3PRs+YK5vSorp03O7E6lY4/a3CmLQu5ZseJgUpniC5Cok1I5tX5XXJeNzG+EkMbV4rDdl7eyGMZ0+xKODmk2bGfElcm4ttwMoPsxGgJDj0+01s/9Nh5Ax0/GSGpbkkk5OT+ejUN/D6xcDAAM8//zzTQ6sEmm189MBd2oGmNUzDxk7x1YBCaypGgy/F8UvF/MwyXZl7DR+KAVJZ7pWLZJFJFn/3ydU0qbWkZgtTFMNoSsC6dVXnPQESKymuPjOn2cuq2bzK2KXy9ydLxtGUMmkWryxz4oqYWAVg7uIimWSG1KrYfJpYTbK2mEBRZVJxwTVqHdFUFgdXWKsj8vhpwdS114rQVi+Lw6vCgqN6kIprkZuuF6bPLLIysUZ8/vpwr6tPTWC2Xz+b19x58e/nWhDe4iWTybD4SvlTK3CE+HySw38nLiqPzSeYvbjM2mJaiHvJkhYpNRdJqdZvPhlLkVg26F+V6pYlxo/Ml+ddFTD0bIlt2ogH1ZDRJZPJGHM0fXRjs8SGh/2MHl1m7rJuPWEUvTIH1YyUSpBYMZFcWz/2Z+yVxWMXFmywALSvP7bSpF3v/AttdO8pbE7xj5kJTKmc27DM5kAx95K+ptlnMyo8/ced7P2ji5jisOGb4xz3LSNJEn/wB39Q8Z5KIWWqblkvKZBt6L84tb8gUspCL1TynSmeqO/qXWZmBs68rDWaOr2+w+idZdKq9pJabrKQiGUYO1x8fsZoR5nOIZYp3elfpGI2JhGNez007vRx8ovDRVGVtPK6ZiohCs13BGja7efwpy4Rn00K5YVVnRLxJYFX8BrnjH29IrLTS+d9Uc5/e4TJI6++wWfz+9pxNtl57o9PCZVr2RfCEbBw5stii/Hd/60f0hle/AvxiDz14JY/GmBhcJkT/ya+c04UbfvDNN0c5OzXh5g6XrtBK7TNQ3iTl5OfEbvHbR/uwhZQee5/iEfeqhm6Cemm3+4luZbk8CcuvoLXv7YUb69FvcA1h9K2uKTy6ScrGFK2vr8JSZY48k8lCnpdGaNdyBvfHMZkkTSRkpGDTOdYk8wlhNlcIBdG4qS0s3gRHffAxv4MVwYlllZUFlsKZfICJR1yQiU1BvtPKaxGF1nWRVn6WNMLcN8gDCb4/NNbQFUhHufxW04w22JjtyQxdGKRu+66ix/+8Ifrn+0GXjd44IEH+K//+i827Avy3o/tLIiUstALlXxnC/ymryFGxJ3ixeclchGVzDPrFz2l3MsegMiAlUtPxdY5xEqNNECxWKmEXxUJlYwE45mMJlJaSHL2q+uNsUUUtYRbbf1QK8nVNCc/m51Pq4jH9dzMbC+J4GRcoMoJRTda+7n/C2HrL3YimyQOf0J8kVsPbv7DDSwMLnPq3wern5yDGfre1MzE8TlmX65d6BLe4aX7gUYufGdUOHpTPRh4ZyvuVgfP/89XkZvocNNv95JOpDkoGBW0541RFkdjwgKzvf99A9PnFqpH3rqWkNNZRHZ46dgf4cxXhooNTK+go62OwvWXfRXTkGjXN7g33Xhtdsrlx8sy17aHzQw82cDgU7NMnqpgbCsRL9kjZvoe8DP43DzTL8eqc69SQ46eexmIk0pTvoX7FSQZhoa1OXKpuVBmyYB75YRK2y9B80qGsbuLjd2f/O0vwYUEvNDMZ2MNkEjw2F3Hme+08pl/vIU/3Phd7d7+Xzpn/DxBlmUyZPj4qTsLIqUs9EIlT4mu8fboEnOzMuezDjXLzHohg95ZJq1ox0OdEplUhunzJTashIFxVsfN1tm89H3LyOaVzuDttNJyi4ez35ogNlWhfAlv8/fZabszyKkvDxObTgoJx03W4nRqIvaymvD/km/K1Wqj/4kWLn537LoIgToebCC80csLf3ZGqFxwkxtnxMrlH4pFHtj6oQ5ks8zhv70+vHL37/Uze2GRc18V32UvisCAm543NnH2a0NC0ZTc7XaCA24ufm9MSGDW81gTvk4nL37kGjYiCHCXze9tJZ3MFIkSS3mT/rt/tdJ81IxXk1tdo7DbZJfLpp+sVG/vwwFMVplTXy3ZUKB/VoPyHfs8WF2aSMlQnKTnWiUpSPTp3ozESUlXMe9KuCW6m9OMTMmsxEwsthSunRco6ZAXKiXhnpclVhqWWegt2Ps/0fwzlF8eRz6T4PNf3aTdazLJA286w0S3g18Kqvzk30Z44okn+PKXv7z+2W7gdYOPfOQj/O7v/i63vL2JJ/73DQWRUhZ6oZJXN6w12eO0OJOcOG0ilQ3VYZmuwr2WY6g2CLQpjJ5JIZVyLYMIrEV2sNJoFzq+ZbhRL52m854AydUUgz9dv3G9ks2r++Ew6USGi/9VftNVpoy/UlGzaZYKFZW9xg2UR9cbo6gO03UTOW37cBcLgytc/E6ZqNBl0Hx7kLmLyywJRF50RK30v7mFS98bY+bMqy+markjRHirl4N/U1/QDlEMvKMVSZaE/YbR3X7W5hLCArMdv9rD9Kl5rtQReUsUziYb3Q83cuHbIyxe1b3zV8CeVhavpT2tWv11XFvPqdaNl3o+VDYqFQw8FmXohTlmLxXPO0V8rcTmpTpkOvf7GD26xPxg3FCcVMTHSlLrFnEvA3FSKfdytMqYlAyTc1q5+XYd92paPy/khErhIZW2uQyx24q/nz+JHIH/7yScivPZT27MC3bv/uBZhns93Pq5YdJJiWSZLBzlINy7crkc/+x7t6w7ttpaXsn6o7MOjkxVjlhT2NlfeLGRPgvRfktlNVnpdZJJVD/4unUvpYZwXSPPzXPgY5fXC5Sg0NkNDCax2TjJWBrVUUNz6sr3PtbETb+1AbVKWoFShLa42foLnUJlAFDBV0fKBED4HgEadvsIbfMIl7v5DzfQ/2ax0L0r02vE5uPES/OLv0qYPDXP/GXxXd2hjR58PWLhHgGmTs0zdUpcfLXlAx10v0k8tHc9sIZVdvxaN8HNYjlwZ84vMnd5iYVhsYhPoY0ePG3iUbAmT8wxd+EV2pFvhJLJa3UqxkqltJVlsPcP++l73OA7qDApq05ovyeE6i+T7qLcpK1SKcNYWdgjKvaIeMHO+0L0PSYWRlySJDa/p42bfrNduL7EcoqkURS5rPG9XJqEk1+eKi9Q0t+bTqBkVsHfaTJ2KpRB3KMSDUPQr/0H4Lqq9RkjgZIe21oHmbr/UpFAKY/vtvL5F3dpAiUAVeUrB3bw469uQF7wIUkS//zP/1zzfd7Aa4OPfexjAAwdWFsnUAJYaTPuay+PWfnZWQcxf+UQ+qXcy9+mEmxXcUUlIe5FKoW/x1qUYa5qChJJ4vi/jXD268aLuDyxN3BmJZZTJGqc8/WGm92/08PGd9UQjrpkrO19UyMtdxiksK1i7LFHzFgCdez6Mc7WV7mIx0zz7UHhcj1vamT374mnpVsZj9UV2bNezJxdYPKkOBfy97oICIbaXhpcZurleRaHxfhCcJPG0a9XureuB6NseJt4mPTxY3NMHJsTLhcY8BDaLM7tp88tMFXNofoKGVTWFhKsTK+xOqvjXjUYVHofa+Sm3zLOm17JoBIYcBIYqLC+KlO32VNfH/F02IS/cYCBtzbi7SwJI15lfexssbDzw+203u4VqktRIbGaqhxp0yC60sp4gsOfHi8vUNJBL1DytJgw2xHiXgmPlcbGNC1NhbW5c0jrM0YCJT1MewfXCZQA+FIzHOrQBEoAZjNffWoHP/qXAdSpSRRFwecTS/tyA68NfD4fZOB//vS2dceSreXnvadGnRyPVeZduZ39OYESQOMGlYZelYxZzOZlsoKrUVemqihRYu5ijOOfGV8vUNKXNxCWxxdTxJdSKGYxm1fjbi87f7VHeM3oarXR90SNNiH9c5vA2Wwc8aoaTHVEo/T1OPH1iNvYdvxqt3BaurWFBMvjMeJLdaQ7rgNz55aYODknXC640UNoi1e43MTROcaPiNfX/UgjrW8IC5erByarzMA724Tf+fL4CuPHZ1kZF9sl7+tyEtrkFSoDMP1yfZy5XiyNrbE8VhjTjHiT0W87fqWD9rtDYpWZILLDLf69mrL/CTqyVLcJq69QV61RMCPbXbTvK0kLWINwvO+NYbZ/QNyGG19KEV82EkhkKtZ96WdL5QVKeugFSiZwN0pIZVJiGSHhNuN2QDSYwu/W7sl1VZuHjARKemyOjDJ2x0iRQCmH1N9G+Pw3thXsFiYT3/nWJg7+dQdjL2m26T/+4z+u+T5v4LXBL//yLwMw9oJlnUAJINlkHL1ueEXl+Qk7S4HKHCPPvZY1Dmf3yzT0mnEGEeJepFPYQwqKvrpKEWMBZJmL359m8Ok5w8MVbV5LKeJG0USMoONem9/bTs+bxFNiRvf461rrq04F1VmlHYxgnK2vchGbQmDAXfwOakB0l78uX+rK+BpLI9fP5jV5bI6Zs+JC9Mh2H54OMR9ZbC7B2OFZ4eiQjqiV7kcaMdfzzutAeLuXtrvFed7k8fm6bF7hLV78/eK+2/Gjs8y+mv5GHVJrKRZHVlhb0M3DNfCTxj1+tnxAPD2js8lWV7pEJZt2UlSgZAurxWNDjQKp9n0BHFGxwcHkUNj6gTYi23T+7BqycilmhdhCkviKQWSjnJ/AYH6IL6c5842ZsgKlIugESTYvKBaEuFfcp9IUSNIWLswjnstZ7mUgUNIjsunyOoFSHv9niM/+45bC8ykKP/z0Bg7/dgTSCpGIeOpoYevohg0bAOj8+lP53+6ajLF3WhuwlYZl7kssEnFqRr423xq727Ttl041Tv+WNfpbCtsxN90BoWzkzXAbbLyv0JE677CyMB7n8Jc05eLAox5CG0xkEgmCfSobn/DnHeud+1z0PODL7ybb8e4Weu7XFju+bgub3h5B9cqQydBxT4C+xwuNtfHtjTTdok3C7l4LW97fjDWoXbj97gAb3pzNXyxLbHxnM813aLnqnc0qm9/XSmx2jYMfu4C/28XAOwokYODtzbTfo92Do0FlywdacXdoRqvmOwNYQ2ZmXl6AeIKBt7bQeb92T6pfZcsH2/H1agvfxr1+try/Pe8Ia3lDGEfEijWsojphywc78sKQht0+tnywMNj0Pd6cF6lseXcHG97cmhcOhbZ5tHOzbdj9psYiUcSWD3bQsNvHzt/oYccvdbHlgx2o2bV418PRIiHRlg900LhXaxdfr5MtH+yg/a4I7fsidD7QwIDOgbL5Pe00v0Fz9Lk77Gz5YAeOhmx73xMBMqxm01VtfFdbfiJytljY8sEOnC2a+KxlX4hN724DYPHyKmuzCfyd2g1awypbPtiBp1uboJvuCLD5fe35e9jw1hY6H4wS3Oxmzx/0s+PXuvMCruje4gG7/8lmuh/JLhJVrV1SsRSnPjtI5CZvUXv3PtZMz2OF9ElbPthBZKc3397J1RTP/YW2S777kUb6nyxuw+hebREbGHBl27vwiVpchYFr8/vaabq1uL1zQrKOeyP59rYGLAT63LTs0/qhq92mtWGTdm7b/jAD7yqEvh14Vytt+7X2liwSWz7Ygavdtq69AQbe1kJn1rCm+lX6n2zG4jZj8ZlpurWkvd/STOdD2nekOmW2fLCDwIA24TujNkyqQjz7zo3aO9dnIzsL7X3qs4NMnpqn97HiPhu5KdveW9zF/Tvb3sPPTHP6C1eL+2x/cRt2Phgtyo28+X3t7P5vffk+teWDHVjDuvZ+R7YNJYlN726lZZ/Wv53NFmRVZvhFLepN210hNurb+x0ttN+jtbejQfvu3R12ULVcxI7GgtBSGyNy7W1mywfa8PVo/btxr48t72slsMlH0+4AG55souuh7HjihC0faCO0WWvvhl0eNr+vcA+9j0XZ8Yud7P2dXlQ/bH5fK6Gt2ngS2urWzlUBSab74TC9jxbGzs3vbmHLe7VrBTc62fze5vwY0flgiL7Hs4ZXWWLze1po3KO9R1+3HX+3E9WrkZSOe4JseLJgpN30jiaab9WcOO52C5vf3Yw9ojJ2dJ7YXJwNby6cO/DWKC13at+Ns0ll0zuj+f7dfKuHgbc2cOpL45z4/Bj9j4dpe4N2XUvAzKZ3RPF0akbsppucDDxRMJD1PhKg8143KDKqEzY+4cfbqV23YauNjY/7tVQtZjPd+2x03KZdp3GXlZ43OGm9WUv9FtqosvHuAinp2iPRtVtCXopBMs2m2zJEw3FGJ1QuXga/L4OWZxM2Nq9wC4UoEPtZpBdtrvU97+G+M2lMl1SIg/NICPcLhXfzu599K3/zzE4AFq6EuPKdW1id0V7O2Ev9xGIxwuHwjdDXPwfo6uoCIJFIsGFR6xuR1QT3Tq3iyUaV7PUtc2ui0Fe2Nq/SFlgDEjQ4VxjYlsST1IziTT3Qs7Nw/Z6d0LhV69tWDzhCJs79bIHF0QwNA2Z67nNBJkMmmaLrbjfNN2k8xuyG/oe9uFuskErRea+X3vuDNGzW+lnHfi+tt7iRFBmzHTY8EcHXpc0nwY0ONjyR7a+SRPdDAdr2a+MxZtjw5ij+fq2e4ICTgbcVDLXt94TouC/Eqc8Nc/brYwy8rZHQJm0s9PXYGXh7s+asBlrvCtL1YOG7GHhbM0tjq4wdnMHTaWfgHc2YPRrpb90XpOeRaP7cDW9upOGm7NjSbCMw4Mbfp42jzbcH6H28cE99Tzbn52R7VGXgna3YswujrR/qZst7dTzhiSZNSIQ2Dg28sxVXm3bDDbt9bHhbC/agmb3/bQPbfqGL1ru0OcLs0c71dGrnRnb4CnMP0P3GKH2PNdJ6Rxhfj5OBd7bi69PeRXCLm4F3Fs7tfCBa5BhzNtlJxjT+7B9waedm10Lt90XoerDQLgPvbCW0VRvLJ0/OY7IqeUFO691het6oO/dtLTTs0sZcT4edgXe2YvaY2fTeNnb9di+9jxbacMNbWojeXGjvgXe2Yg9qN9F0W4DeJ5s4+5VhJo/O0/tkE023Zds7orWLoyk7Bu8NFPHT3jc2MfT0JOe/Mbq+vXf5ivhpzxujtGY5Z2IlhcmioLq09xje4S1u74ejtN+b7VtmrV38/U6sPhVbwELfWwrX7Xiggc4HitswuEWbZ/392rvKrcja743Q/bDu3He0Et7hBcDb7dDaMNfed4Xxb3BhD2pcYcPbWmjYrbW3q01r75xAruWOIL2PF/ip3a+SSmjrCkeTVWvvSHF759vwyUKfPfapC6TiaZzN2rccvdnPBt2z9j7aSGuWc+b7bIeds18eRrWbitq7W9feZofEwDtb8PVp33Joq4dtv9TBTb/di6vVTteDUdrv07d3C/4sjwxucjHwzsJ1fT1OlkZirE0n8u0dyra3r9ehfffZMaLt7hDdD2vfwur0GpIiEdmh9e/cGKFmU6S13hmg+42F76b/yUYadnlof0OYznsiDLy9GUtWJN50a4DeR6N5Y0rfY1Eab9beo73BzMDbGtn+wQ42v6+Fxpu99D1WeOe9b2qg6dYcV1EZeEsjruzap+EmNwNPNtL3kHYf3Q+Fab1D+27MbomBtzRqIiYgss3Nhjdr35irWcXdYs3fA2bY8JYovu7smDzgYMOThbGy/d4gbfuDrC2lmTy9hLPFSmCD1mj+Xrt2rqpxuLZ9Pjr2F5xwG56IYPFaOPav48iKRP/jwcKYfJubznt8eWNG38M+Ipu1g+5mMwNP+jF7AEWmebeTrv0FQ1HvA14attiQJAlno4m++5xYszb0nn1OtjyR/SORpGufjcYN2v3ZPdB/pwm7H+SlNRrbM/TcrB176aDMwgK0ZTda2awJdrYsE8rm5+wmxu1SwdC49Xkbd48vwrwZViDwfAPmUa0NbZed/Obn38pnF7WxaeK5jUwe0MSfiRUz//UnflKpFDt27OAGXv9405veBED4i0/nf9s+mWTzdNbA17jEHYsrhKxaXwlbE2wLrABJrKYkrZ0xerw5m1eK3o0p/EFtw4THn6LrJllzlgONGxQWxlOc+L7G8Tpvs+FvlSGRxBmW6brDjimruWnYpNJyizNv89r6jjA992jjhT1konu/B7NLS+8W2Wyn7c6Co6ljn5fgRjvIEhaPRO+jQax+7SbCm52F71iS6NgfILJd+/6sXhM9D4dJJ1Oc/Pdh7EELXfcVHAUddwdp3O0FwOSU6XkkkhcJBQZcOFtsjB+ZI76cpvUNQaJ7tPs1WaHn0SjurK3B3+uk59Fo3snWfFsQX48Te0S7Vs9jjXi6tDnC0+Wg57HGfBs23R6kdZ82hnXdF2XzezvynM3dbqfnsaZ8GzbeEihydPQ82khwk5uBd7Sy/Rc7tXOz4ofGm/103FsYG7sfjuY5kD1ipeexJjrua6DtDWEadvmKuFXngw1EsvO3NWCi57EmrFleE97mRVJkYlOaU6jj/gjRm7R2Ub3auY5G7YaDm91520h8Lsnq5BquRnu2DWV6HmvKt7d/wEWPjlu13RWm6bYgjkYrO361m03vbceTtUf6ep1FdquWO8M031lYC+eOXfr2WLa9mwrtfVuQtruK2zA3J7tabaTiaQ7/rRapsXFvgHZ9ez+itTeAo9Fa1N4AFk/h310PRQlv09rQFrZobRjQjkd2eul4UGtvR9hCcLMnb3fLtbctbMm3t55bddwboTHLOWWzpLVhlkcGN7npeUS37rg7nLcZmawy3Y804mywYPGY8fcVt3frG7T21k7W2jDXZ21+KyaLQmxO+3ab7wzRcqeuXR5rytt/PR32fHtf+eEEQ89O0XZncXsHBrQ2dDZbS/psgI57IsycXuLSd8fpfmM0byt2RK30PNaI6tXObdjlpeO+Qv/ufLCBbR/upO/JZqwhlZ5Ho1iD2fbe7qFTt6bquC9Cw65se3tNmGwyEyc0AUl4q6do/dWxP5wfI8xuM72PNeb7bCKWyre91oZBGvfqxog3RXG3Zft3r0P7u9lO+xtCdD8UyvMlgJ5HIniyYmxPp42eRyKFPnurj41vbWL3r3dmx7QI/t4s/2i10vNwpDBG3Oyl9c4Cr9n0jia2vq8VSZJwNVnpeTicb++GXW7a78qeK8t03h8iuFF758E+O+HNLqzeXBu66LircN2O/X7C2XWz1Wei56EQVr+JsWOLLI2v0anjVu13emnYrp1rdsp0P+DHHtauG+y30XmPn8tPLXL+e3O03uYiuj03RkD3vV6cUW3s8Xda6Lq7wK2a9zpp3W3RBEom6NrnxJ0VvnrbTHTtyxr3TApNW800btGuE2o30b/PQdMWLfWbu9VcZF9o7IGWDWBaXENOpunZmiboTbKwbOLUJQmPI4nJpH0LbQ0xtlEQ7+1hmVa0sVF+wc+dgwlMY2ZIguOiC+/xQrv8+tffxqcObQMgNu1k9OltxOa0Z599uZWFhQWCwSB9feKbcW7g+sJms2GxWBgZGaFlSeNLzniKXVNJHHHt70b3CtvmCmKKbvcaDfY4kMKrxmnriuNd0biXL5iitbOwUbWpNYW/U1uXKSq4QzLnno2xNAWeBonmXVYtO8tanMhGC6FezQagKNCyx675rNIpghutbHw0hK9DGzAim+2EBmzaiVKGttu9OLP+LVejSltuo4csE93uILKz8P21vSGAq1W7jrPBQtu+QF54E9riIrrLw5WfTDP09Cxtbwjm529bWKXtrlDe+R/e7Kbp5sJY2HpniMWRFcaPzGL1q7TtD+eDKgQG3IV5Ci36Tk6MoXpMNN4cxN+fs1O48jYA0Na3ubnH7FRo2x/BlvWdbvlAJ/1vL/iLmvYG8mInxZY9N+tD8XQ4aLs7jKLCzl/tof+J5jy3QoG2/RGcWQ7karXRtr8wnzTs9NN6R4iOexpwNNlp2x/B1aKN+86m7LlZ83t4u5forsJ44eqwayJvBewRC237IyiqnG1vD417Cue27Qvjzc7fc5eWkFU5396hzR6asrwg19454bLFp9K2P4Lq0Z5503vbadK34e1B/Bty7a2dY/Fp7eLvddFyR4jh56aZu7BM060BgmXa29vloG1fgRc07vEz+JMJhp+eQlFl2vZHsEc0DuTusBfx3uhuP+HtXgBScc3mZbZp7eBqKW7vyE4fDTt17bI/gqvVhtmh4G6207ovXNzeu3Xn3h3O+8Bz7S1lz13XhvvCeLP+W1tQa8OcACo44Ca81YujIeubvCOEv7fQZ3PtDVqf1be36jGTTmo2LzXbhtas38/X46RVx3v1ffbEZ6+QWElhC+naW9+Ge/z5PquoWrs4otZ8el59G0Z3Fdo737+bbPn27n60kc3vbccesRDe7l3X3u5WrQ0dUWu2z2rHnE22opR7bXdHiseI/WHDPhubS4Ai5f2J+TEi296BAVfetg25McJN8y1BOu4J03Z3qNDefU6aby+c23SLP+/rNTsV2u4OsfldLfQ+1oi3y07LHYVzG/f4CG3UzlVsCm13hXRjhJ3N72ql7Y4QSDLRm3yEtrgKbagTIrlabbTdFcy/49BGF9EdhfVv2xsCuJq0b8HZaKHtDYF8nw1tdhHZ7iGTSDF6YA57RM2PyfawStsdPhSLZjcKDTiI6sbvllu92AIq5749TTqZou12L0pWwxXos9O4y5W3eTXvceJtz2YW8yi0v8GF6pLBZMLfqdK0vSD+atpuw9+pgiyjes207LLk/azdtzvY/JD2hxRP0LjVgj+7lDOp0LYRbE6Ne/m8SZoHtL5/4rKZqQWJBr9mt1CUFH2hFXzZKIANqQTb4wUhpunpBrZNrcCKAikwH4/AtNYu0pSNX/rWE/zrnPYu5882M/+yZidPpeBnH/OTSCTYs2cPohAWKX3xi18EYG68EGqwYS1DUzYfXuS4CY85g9+hGRcCzhQeW4aIM87ezgRBJ3gj2ktSVXB4JNzZPuoNaX/j0EixJ2rGoYsI4ggoeJssoCi4Gy04gmbUrNHT22zF3WQp2rWf20HrbrLhCKmoDq1eT7sDd3OhAzijVrzt2sfZ92AUR0i7du5cV27RlM7garThzw6czgYbjogVR4MN1WcisMGFq7FwXXeLDW9nbpC14IjYcGXr9Xe6cPitnP7SEPGlDK5WO56cwMZjwhGx4W7JGhC6nNpgnFVEmiwm1hbixCbiyHYVR4MtH1HG1+HMD9ygGWV82esOvzgJGa3u/D002PJBNnydTtzthZ1/jgYbvg4nY0dmiM2s4WiwYXZmB+hOB+52Z/G5Xdrf7lY7jgYbV5+b4PhnL+PpdOJqLah5nU22/D24Wmw4GmzYQlobe7uckNEW4wCuZjve7P07GrRzXc3atfzdLlzNhft1t9nxZY1RjqAle26hvZ36d9PmwNvpYG0xQTqVwepR8Wbv0ddZ0oZtDrxZNbLq1Nrb1++i+02N+LuLz/V02PN9CbXQhgDe7LtR9W2oiwTkiBbO9bRnz80aaQL9LjxdBRWvs9GGP/u3u0Vrb0eOrPQU2vvFPzuDrEj5PuCK2rPtrd2zr8uFW9+GzXZ82esqqqy1YdSebxd9e7taHXiy/dsRVLH5rIy8MM3wz6bxdxW3t6vNmf8WVI9J67PZ/hMccGvnqsXvBkDN3oM32y75/p0919vuyE/CoLW3v7QNc+3dobV30x0Bmm4NaNfNkk5vqwNHgw2LWzF8N85GG7Iik1xL4Wq2Zdtbm2A8XU5cLfb89+lqsuffjbPRjrPBljeWeLucuJp07d1i1/o8YAvpxoi4FqHN4iyMf+vHCGuerOTGiNFDs7z89WEsLnO+zWSbqp2bdcp6Oxw4Itaie5BNkqb2joMjYsXXmfsWtHNVi5xv71ydALIsEZvPjrNt2nhocmTbu634XEfEgi/7HU2dXCSTAas3S0DaHbiadGNygzV/rrvJhiNiwR4wM/zMHJKsFJ3rarThzY5bjpAFR9iCM2rN37+rwYq/L0sAG614s4ZwR9CEI6ziasi+xzYbTt0OX2+LlXCfE2fUhOpWcQTNuBuzz9ZqwRHKvptkEneDijd7bPpSjEw6g2JSwGzCG5FxeAvzkies4AkrpLMp4JwO8PmyjmK79reqQtxrojGZIkJhYe0nQzQb5z2oJjAtWvCdbMH/VBvqlB11Vvd9LitcvKJFhIhN+YnPuUksas9+6pCfyclJ5ubmuIGfD9jtdtbW1vDNaSmWQskMkUQGZ1ZA3z6TJmjR9RVnmqAjzS1dcQaaM/gcaayBLAcKgzdc2MXgCUn4Ahkwm7B5TbjCJlSb1r/dzWbcDdldZ4qMp9mMty2bwsRhxtVgxhkxgSSjmGXS6QzTZzSHrrfVhrfdRiaVxmQ142qy4MoKL72ttvxCwdtpJbTBTXBD1vBqBlezNT83uZuz42L2k/N12PFlhTq+HjuuZlt+x5CrRftbzoab93UV5h7QxrtUPM3YwXlcTRrPsri0dvF1OvNzPWhzUZ7vRa1kMjD4M42b+Lpd+TEWtDEsN8/aQ1bcrQ4cYe17W5tPIpt0Y0B7Yce9PWjB3erIj1n+bhfuVgcrUwmmzyyg2kx5bqU6Fdytjvwc4um0424p3K+304XJZuLUF66wNLyGu9VR4JFtDtw6HubrKtwvZrB4zCxk83Z725y4Wx2Ys5ESfF3O/D1obejIj8++HieeNgfmbBv6u51FXEXPn7SdNw6sXjOp1TSKKuPp1J2ra0Nng9aG1uw86+924W130rDbR8MuH972wj3ZQ9p1c/Oar8uR5xeF9tbqsXrMWhtm+Ymv21k013u7XfnrmgMmPO0O/Bu0hai3w1HS3oV7MNu167rbHAw9NcXUyTmc0cJ47Ot04uvS9a1WB95sve7su8ltDNL6bHF759rQ3WLX3k2WG/q6nZAmn7LN01ZoQ1djtr2zIjxfj6uoXbzdLsJZw4rGJxzY89zQiVd/brtTqwuw5vpsQ26edeJuLzybp9OV5zVWb7ZdOuy03xfB1+fE3aa7bpcLf7cTJElrwxZHnuP72h3YfBbS8TTx5QS+Tgf+rsIY4W4ptKGn1am9m+wY4e915QV6SLLGtdp1bdhiL4wR3YXv/urPppFlKT9mlI4R3i5ngeOjrXd8XU5OfP4qk6fmcTXbsAdyY48dj25N5Wm16cYIC65mG4vDK4wfnsPX6cDTql932LT+IkvYA2ZczVacuf7d5iSdyjD80kz23dh1axSTdm60wGvcWSfg4pAWbdZs0Z7F7DTjarLm17ieVlthvQv42u34Omwk5lNc+OEUzpAFT3ZN5W7VyuWCSHrbbfh0z+pqshDa6MDsBHezFVfUgjm7e9nbbsPTZsuLENxNFtxZAZazwYKrwcLGRzUDoLdFxdNcEOu7G1U8rdrfDp8JV4MJm1e77tqSLlqm2YQnrOBt0J7V6gZXUMbh0SIHesPgzdutzLjd4Pdp96P4TYSkNIEs92qQkoTkwi66iDmJfcxF47NNWMbtWGatWOe0e7JO2/AuKvzjoBZ5Z3UsyOpo1kiakBi8NIwkSXzyk5/kBl7/+OhHPwrA0nAhFW3TSobm7E5J5xEbYXMKb5Z7+S1JwrYUTlOSO6OrNDvT+HQbfn1BcGf9R043+PxpTLbsWN6o4AwWNjR4ozKuiAKKjCOg4Gk2YcoOEd4mM75mc2HXYgaWs4JMu9+Ep8WC1ZFbt9nwtRfGFm+7FV+L9p33PRLG3+nAlo0O4m234cutqTMZvB0OvNm/VbcJT7sde8iCyQmhjU68XbrxrcuRF1CrDkVba4ZzY4sdd5Odyz+cJLmUxNft1MZ9QLaY8HU6cUZt+XN9nc68uFO1mViZiLEyHgMT+DpdeLLzsLvZjq/Tld98Guh25jnb6IFZMqkMnuza1xm14etyYbJqJ/u7nUWRrb2dLjxtDsaOzLI4tIKvy4XFnW2XTifebt253a78mGsPqfi6XAw/P8WpLw3i7XLmbQCQ5Yq5db7fiq/LhT3bLt5OB5IEoy9pvN7X5crXY3Gb8XW58m3o6yjmYf4N7ryDy5w915VrwzYH3k79PWjtnVpJkkqkcUSsOLM80t1SsPsA+Hsc+XeDSbsnT5eTptuDeNrt69uwWzefd7rwZNf9rsbsuVlnh6/biU8XzVI/lzobtHaxZnlNaIuX4IC3cP89rjzHtwct2rvx5tYPhfY++o+XkLLtCGDxaufmRNyeDkfRe/T1uPJ2FcUka+2dnWe97Y78ewPw9bryz2pyyLhbnQw9M83YgVk8HSVt2OvEn+X4pux1c/Yzf5+LQL8LslOtv9uJv0fPzV14srzd2WTU3sV9Nme3dWX7t9mebe8uJ94eF8GNboKb3RqPz7VhWMXX6cLizs7J3a6i6/q7XZgsMqlYCrvfiq/Tic2fa2/d2gHwd+tsdl4z/m4n7hYLkixp3ETHez1dDjy59YxDLhojlkfW8jYhyPaXzsIY4e1w5O2K7haN8yxciXHqS5r4PccNMWW5eparuJpseDsc+THC3+XA7DQxeXKR2FwSb4cdT86x3WDF22HPt7ev3Z63hwEoZpnlCc154whb8LTbsTi0tbRmj9S9xw473iynGzuySDqZQXWbQJL4/7P331GyXFWaN/yLjMhIF+lNVZrKqix/69b1TlcWIe8lkISQ8NA0NDTdTbuZ6XfWrJnvfWfmm56m+21LY7r5cI33CAQCAQKkK11/db035b3Lykr7/RGRttJFyYyg77OWFtzKc8LsOHHOE3s/Z29Xu6Uwr+bPk/dNmT0yznYzVp+RqZPLkAVXe5GXuWJW3O1aW4eIM2rGqgVPHVELrg4z9oj2XNvNuLS2kk3CGTUX4huOsIyrrXjcQI+F4GYHSquEJIEzbETRxE9KwIgznPd5ZXCFJNxh9beZ4TTZTA5BNJAzSigucAaEgtDL3QLuFoGs5lPwOLO47SqfsplEPE6QJUg6RNqWMoRKahkGydCq8TCnnMY8acH/UguBF1qxTFiwTBbXNc+MxJHz6kb65JxCfNRHalG18fMHuxkdHSVTrfTpVbwusX79ehKJBI5RNdCvpCEaz2LTHmH0soGQsThWWixpfKYMmzxJNntXaLVkkDRe43CBpyRJm8cPbiUDshGjCdxhEdmszpuKT8Qd0niVJOFuN+HQNr6KMrijMla3CAYRoyySSWaZOa/OCa52M66oGVJpRBHcXRZsWqDdGpDVTXqiGpiO3uijZWMxyO3utqFoQhKLX8bTo2CQte/OmA23xmusLTLuXqXgB7d4THh6lIKwxBGzlfEad6+dXAZmTi9h9hjx9jowOooxTm9P6bplx6n5iUxOI7l0jpE9akk6R9SGt89R0tZRmO+MNglvnwOzJrBZGFlGNBZ9jO6eor9MMot4+xzYfJogK2LB0+Mgk4TRF6cx2qSSOJTaNi9QtwctZdfg7rFhcho5/pVLzA/F8fY5CjzS1mrG2+dAFEv8WL3FdUvxm5m/FIcM2AJaW4s2l3cqq2yY90cqQTO+9c6CiMPRYS2IZADcffZC7MPsMuLtcyArMumVjHrvJcf19tgL8VtZkfH2OTBpQlZ71Iqnz46ry4ar24anx14QOktW1S4Wjdc4ItYybuXptRd8SKLFoNpbW2ftYSue3tJxV1xnRYtIy0ZnIbanVNq7SymMQ6Bg79kzS1x5bhJnVEGUi/7UUm7o6XUUfJcFe2uiMFdXOa/x9NoLvjaLR022IGm8xtlpQwCOfUHN6OLpsxfiW2aPZkNHMbZUmkE9sNFVEB7JDqM2ZrX1MFqMIUPeX6Y9G1u5ve1hK56eknehx160oTZmbUFVZOTqtOEttXdP8dtHFDUbanFkpcWCM2ojnciQSebw9CgF8VDe3vawqgewtqg2zM8RvnUO/Ou18wgCnp4i57T6TOp7r4mUnDFr4dlMn1xAgIK9C3OElhjD2aGU2dDTa8fZbuXsD0cZfnEab68ds1PjH22W8rYlNjTaRLy9dmYvxJk4MocjYsXTU/6Nkh93kknA06MUeLsSNJNJZhh/SU1a4+4q+kRFWcTTo2DzFwWeee6dXMywMLJSGJOI4OlRCr5LW0Btm/+MdsWsuLusZJIwsncOZ8SKQ/Ol2Xwy7m4boimvJbHgipXwj24r3h4rohksHnWul/Njts2MO1b0ebk7LNhD+Y3hIoF1Ct23ulQbBuVCjAXA1WHCoQldjSZwtxkxaXPP4nSarJZxLycbcbUIuDR3k9EE7lYBiwIZq4zDCT5n3o8l4lZyeO3qYpp1iXQsZ3Dl1H97s1ki2RIeJqSRLrux/LITJi1Iow7EedWG4qwF95SRLw2rIqTlET/xvM8LOLxXjZn85V/+JXoh5HL6i5LmUxHGvvj/kImXp6XyvlD+b9Ns3iBJtntTXDoLS4tFJ4wYLy+DZFgoSX+bSoMMWx92MHslydmnK9LdVZLNilp3q2rBVrYvSd2VN0NolxNBFBj69SyrUKPOK8C2D3ditIg89/9touZ3Sd/2N/qRnUZOf3O4cb/ixTbf9jcQSpsJs8vE5BF96Q13/6d1JGaTHPjHV7+GffutASK7/Zz81mVd19l1bxDfgJM9/+uErvNt/4MeJIvI8/9TX7+14tq/GGD+0hIvfU5f3da1YN2jETx9Tl7866MkdWRFHHx7O2aPzN7/V18t251/2g/ZHC/81UmdV1oHNVIq2jvMbHxbJ2OHZjjz3ebrCZsDMvaQhYmDc6/vmq+N8DLOXZlG29VtIbjFydkfjBbHSb2U1Fr//jcFcLVb2P8vF0mWZIcWSlMuVrlOpVWmdbPCmadm1T+UCGCFynSMlf+uSBecM5enmsxW/DvpNXD9zhyT03DijImkq9h/el15asikq2TtSSbZns4Q7h5mpVudh47PladU/J22Z8v+/X/tfZDhP/wrVsanectb3sKXvvQlruL1jyeeeIIvfvGLGGNhQv/tQ+QqudeL5ePErHGvkCuJspRi6EL5u2JYLk8PWsm9Oq41444YOfCVBUiVt13FrSrrDFfwo1XtS9Omarys8w4/I/tmWZ5cnba0jKaW8DBrwMimd7UzdniOcz+cqHru8stS+xqdRmK3+BnaM8nSUJ1SnHWOVb39bzY38wzYWRhKkJprPnVs931BAhvdvPj3p3X1Wyt2/FEvuXSOvTpr2G/9UDeLI8uc+sZQ032sLUY2v6+H4b1TXHhqrHGHl4mBJ6I4ojae/x/HX/VzAez6s34SM0kOffJc852MsOPDvYzsnebKs5NNdwtsddF9V4hzT40wunem/MdXqMRbKTa9P4bZIbPnr/SNE0+/jcR0kvh46v8sd4JXlD+tPnbz1xa71cvyTJLRfQulJ2h47J0firA8m+KlL1aU8iy9ryo2at1iI72SZfJEYtW5VnGvytTZldzLVM618qVN8+jYJeJ25djzogEwlnOv/kruVZzfPakUvZkU1juL3/yn5srTz78v+suyf//nPQ9w8e3/Sb2O3/C14t8TJEkik8nQ/ZX/RjpZPiaUveXp7k2zxee6UVxidExgOVEcU+JyOVeS5krKRmhlCjfcaWJuNMPlPfGytlTwqFwFL1vl46rkXSV8Js/J3F1mJLOBiSNVPr7LeFf5sdY9GsTqldn7jxe03+uM55Lz+jc4MHuMXP75VEWT5vo3hd+wd8vslTA5ZObOxxs3LsH2P+hleXqFo6+Bn8Y36KD7njCnvnWF6ZMLjTtoaN3uJrjTy4FPnIF04/Z5rH+iHYvfxN6/acKn+gpg55/0M3N2gdPfbJ4frhXhG3y0Xevn4D+fLmRTagaxO1uwh60c/vT55jpo6+bm98UQJAMHPq7DN7pG7iIpEts/2MnIvhku/ax5figp6qaxuXNNvAP/h3xS8ArwqiZ4Ux5mn0Rwg53Le2ZIx5s4v3ZvkWsdBDfaOfLlifLxVca7Vh/H5BLxr7Ny5QX1ZGUl31b5vMrXwcoSWZU8Ky9QymPFI7JrMMXEjMi5IZmko3i8mb5yO6Ts5fN/z0qS7nWXSIRVn8W5BW/Z75U+r/9y8D4m/vcXmXvhBL/zO7/DJz7xCa7i9Y/Pf/7zvP3tb8e6cx3BP34r6ZXyMWbfX17K1TSnrvtuOY1rNsXENJTWB5LidbhXMoW/S8TfIXLsJ0mERIVfqDK+mK6MJ1b8u6LkdBnf13hay2Y7M2fjJKv4TWr5vESLgU3vijJ2YJah56ZX9YMKLqVxJ1EWaN3hYfrUAssTFff2G8aXXkkoYQsrc0lSi82LFwNbXERvDHD4M+cKWWteTQw8HkUwCBz9vD6e1/fmCPGJFS7/YqLpPqIMWz7Yy9Dzk4zsqT6+Xkm03egnsMnFPp3+vLVi43tirMylOPn1K7r6Db6jg7GDM0wcbr5sri1oZt2jUc79aITp481z5oaoXLu197fr3iD2sJWDn9DhzwNsQROpeJrkXBPvwMvgXq+6P+0V9JcFNttJL2WYPl3CR0v5UOUz0H7b8NYWEvNpTn+//Pu2NIFOtftwxcxkMzCfj0eU+LVWxxsruJdczq1yVlPZvzPWci7m7TPQ4k5z+IxMBpGEq4R7rS8/VbqEe1kyGWKJDOvfeKCwrB6ZLS9F/ERoT9m//+uBezj3+H9FFARSlf6KJrCm0Wa1qsq8uZ+8gGitP0GvFDJIyBw/JJYJlFZdTGmQDFRnYxKyqRyZZJVFtEHd18HHW+m+SyOvTarnh/fMNRYoQdkgy2VzXPjpOGd+0KQIQTAU+vsHnXhK1KPN9RfY/gc9bP1wt75+qOXTSlNWNwNZMTDwWFuZArkZtOxwseOPegtpyZpF30Nt9NwbbtywAuefHuX0d/UtPKCWKsuX+WoWF38xzqF/Oa1bSJVZyZJN63S4AYc/d5H9OhcegB0f7V3TOFkLWna42P2f1hVKszWL49+6wqF/Oa1LoASQTWXJpPWT64P/dIqjX2jSyVOCfJnBVajjNFgYTnDuJyNc+tVUzTbV0HlrCz33hAoZo5rF+re1seEdxXI0zZKCvjcFad1e5bnVIwUybHpfFO+6GjWPa5y7ZYuDaz7ahW9Q38TgX+co7IjFYGg6yHbuZ5MMvThXW6AEVef3xbF0UaDUCNoHrFGGLW9x4OusbfdKgRKomZPSGVheFsqCZACe43XWLllmr9VSU6BUif9r74MABK0OrFYrn/3sZ+u2v4rXDz7zmc8AkLqgCpqFBtwroXGv4Vl5lUCpEtW4V3IxSzqZK2TKKEUZ4a6Ap9fEpre1FjKarBIo1cC5pyYaC5SgbF6Jj6e49MspLj/X3PwqGAQEg4DRCN5eBV+/vrXKv8nJrj/tK6QhXn2C6u+9Z8DOhnd36DoXqOXcSsusNYuBJ6JlZb2agclrpP+hNqLX+Ro3LsHwc5Oc+cHwmgRKVp11wgGOfu48hz6t36GRSWXJJvVxr/hYioOfOs2Fn+oTKLVsdXPNn/fXHievMDZ/oIstH+zS3W//P5/l2Fcu6+pjNBpU7pXSZ8vx/bMc/NRpRg/pEygZnUaMVv3OhzPfH+bsj0YbN6xA731huu8NNW5YApPHyOb3xwpl6oCmnDmuLis997UU5soy1OFu0Zu8ar8aqBXI2vTuCBvfFdElUALw9Sn4tZTdCELTorKzT09x6Zcz5XN45X1VChAMAqOH4kWBUiNo3/axGy303lGfU1YGzgCyaUinoFKgBOA5UZt7TRuNPG8uZkKoFChV4j/veQDXT/YB0NvbW7ftVby+kH9ec8/sR5Lr+5JWXMXxff6isUygVImyIBkUBHbplRzpqj6v+u9t5y1Ooru1d6BJ3jVzNsHE0fjqOWEV7yrxeeVyXP7VNGeaFe6W+Lx8gyW7fZuFYGD926IMvqO9cduK647d2VIo0dU0JLUMmD1qady2BM6YlQ3v7iiU0GoWnXeE6H0w0rhhBc7+YJhzT+lf4ySzoaysWjOYPDHPwU+d1iVQgjzvyqzSODTCyW8PcfBT+n1eG97ULj/yAAEAAElEQVTdweA7O3T3WwvsUQs7/qi3UPKmWQw9N8nBT+kTKAFkkzkyzXLYkjX6pc+f5/iX9AvZ8uXd9CC9mOb090cYPzirq19ou4v+inJ/zSB2m08t5aYTbTd48Pbr5+d9D7XijJmr/1iDV9kjJrb9bhvuHmvV32vB02HB129DMkoIgtBYIKVh9MA8F385Q2KmRIywindVzO+iyMoCBYFSQ+RFGhIM3GnFWecztVKgBCAZIJUSSKwIZQIlAPfJ+mP8tEmuKVCqxH85eB8AvqkUJpOpkBnxKl7/eNvb3gbA8mFVXCmZGsQbneoYn0lKTEyLlAqUKrGKe8lGUvEsqQSF8knlHWrPS7aASM8d7mK/VHPz+tjBBZILmVXzRj2fVyae5sLTY4webFIsUcK9Wre6cbXr87srITOb3t+pmwtZW0x03h2s9wiqwhG1Eiwps9YsojcHykrRNQVRFfIENrl0dZs6scCp71whuahfoCQ79a+pZ74zxAmdfhqATDJLVqefJpOEw585y8hefQIlJWxh8+926R4na0XP/WHWvaVNd7+j/3aJM082nzAgj8xKplAmrlksjSQ4/JmzTJ/Sx5lFi1goy7YKdTjA5WcnOPdD/d8D3XeH6Hhja+OGJRBl6H9zWPfztvhkwtd4qs+xdeAdsBO5rs68UMNf1n13gN4H9PND/4Adb782V+qJN/50huEXy5/3qnhJpc9LNDB7KVkUKDWCxr0C/UbadtW3f6VACdRwZyolrBIoAbiP1j7WsihyzCbXFChV4r8euAfzqWGEXI7BwcG6bWtB/2wJ/M//+T/5yEc+wsznf4Dzlp0FoZLrZ9WJ+4rLgGk2i0XJsG4DXDoLk+PqXeYNaByrseAaJQ5+a5ncUg3iLIqqk7JyJz9gUsT6vlRt0OUqBEzrHm4llchy5nva7s9aO7wEQ2GwTb60BpWkYGDvx89Ak+OyFPGpFV27kvKwhy2FlHl64Oq2k0nmmDnVvJJEkkVEkwGz30pysfkdYheeHsMg69fPjb4w07hRFWz7QBfL00kO6tlllITFZieUElz48RgXfqx/R35yeg2DBFgaT5CJ6xdFrQWJmRTLM0mWp5oMLuSxRlse+5J+0gaQXMySXNR3PiUss+ld3WpGpO+UZD1r5DRIwshz+sfluafH8K1LQErfeyDbpYIwSY9q2d1jR3YaGd1bquSpf25XuxWLR8bWYmLq+FL5j3XOnVnJklxKM3+h9lxSzRlz+rtjnH4KSOvbqZacznL5l7PFn2uJW7O5gvBVdkP/XX7OPzvHwmVtrGSyCKb6zMreISGZhFXyXyGRJGeWqwqUABjJ8gtr7Y9Hz/EMo7tX2+SehSXGNAJUS6D0ycs3cHGs6MhJTs8zcukSwWAQWdYvEriK/zMwGo2IokgmkyEVj2O0WgtCJc/PqwsoEy4D5tks0e4sigOO7S8OzLzjUBqvLrQdPp5l+HgC4tXFJ4JoUAVIFdzLaBIxWg04Wk3MX16pfjN5wl+irHd2mGm73stLXx4C7c81s00YhAIvG/p1pehBO3ad3ffL02me+6tThfNURZX+S0NxEnNJcpk6H6uCsMoBrAQt2AIWrEGZ+Ejza09gkxOr38xZnR/VJocR0ahv7ViZSnHhp2NMHNMnvI5PpohPzurqA9BzXxD/Rjcv/vUJUjo4SryKkK0ZHFqDyBtUoZLuPlMrLE0kSC69+pmlQB2XgqhfyLMWYVkqni2UltOLVbZsIugy8EgEs0tmz//Wl/lyaTjF0rD++zvz5Aip5awu/mTxGDFaDRjyz6DJ3WZ5R8jpH1Z8EzQ4tzNqKZQhqkS9QFZ8OkVuDdUuXvyHi6qQSmcWgamTFeLXWveVyxa4V+wNDhDg/DMl81Auh1BNLVsCi1PCaFptd2ElSc4kVxUoAVzal2Gx0w6u6sf1nMgwek35cTtSSfpTSX5hVNfdWgKlT126nosjRe515ts/AeDDH/5w3Xu5itcXPv3pT3Pttdcy/W8/wXnz1oJQyfzr6px9xSVgms0hSWn6urOMjBmYnlHf14xW2s00WuP7xyhx/JdZhMXl6r+LBshkV2dRAqwuiVSVd6AAbV7KVXC26PVOcjm4/Cvt+6/Wpj6DoZBRaeFKxXd+/t2ulxFJMHD8q1eq+q4Eg1A3m1J8PAmN1rgqfNHVaScxk2S4SSF7HoFNak2+hUs1nkMVGIwGZMWIyWEkqUOAcunn4xit+t2xevxxpdj8gW6WJ1Y4+gUdwpU0JKb0Ox0nDs0xcaj53eeF060hAAiwOLRcn5+/gkjF0yyMLJOY1em/WqMtL/50vHEjWLVOpxOQTug4n2BAMsPmd6sZkS7+tPlMDIJBYPqE/nE5vHeW5Zlk/edehVfJDmOhhElDlPCPlg0OFsdWmDqxVKdDyakFAbNXwh4ys3DZxNz5yvmv9ryby8HybKrqJpx6/Yf3LjB8cAEh04h3VTzvZRh/KV7z97IL08QXkhG6b3VwZX+cxTH1GeSyWYQGPiKbV0K2CogV9ExYTpKzyFUFSgDiZIbnldoiMffJLOPbV//9+vgy05rPq5ZA6ZOXb+DKlKvw73QiyeULFwgEApjNNQRmV/G6RFtbG5cvXyazGEdUrAWhkuW5GtzLKWCay+H3ZHA4spy9UBx/aW2NNY9Un59mpyRmp3II8zXmc0mCdHpVFiVBUEv2mFyyylOqIP9dVsq9zG6R0HYXF385S0ajGZXxyAJKfF7Tp6rPWfX4UyYlsO8fz0C1w1fxWeWxPJlkeWKFbErfmmp2yzjbbVg88urMTXXg6VPLjurN4mNyGsk2KcwvIAPnfzjKwrC+DJaZ5QzzOrNeQmkGprPNZa3RkNSR5akUZ76ro0JP6fl0XFuhz2KK+StxXRmpXg4Wh5cxWPTHiTPLa7u+419eY7xxDbZsf2MAR8TKwX+uiEnX8r9of0/OZ0jO6x+XZ3842jh5RgX3MioyskNClJrzk+X9ac52Cy1bXYzu1/F+CwYcESu2VhNXflWlXx1/2fLUSkN/WjWf2dEvDqtinFq8Lj9fVsQTl8bK57qaG7pz2QL3Cqy3IMoCIwdKnl0mg2CqkRhDg9kpYbJX8XnFV8hZTVUFSgAzp7Jc6LbV9Hm5j8LENeXjwZ3MsC6R4oBNXU9rCZS+MLyLM2NFseiVf/sR2WyWj3zkI3XvpRbWVO4Nyku+Adh/raq5xCq7v1xn1ECVLCfZuQPGhuDsifIHK02ri65QTYG8nCAwILM8l2H+chWSn8xHtKq/ZLn8MavdquZwKTXDjt+PkU5kOfDJi/UdLiXnzGVzbHhHlMxKlmNfbjKbj94U1qv6v3YpGmXFQHLxtRG7rBXttwZwxRR9pSuAzrtaWRiKM3FYX3Bu+x/2MHVsnvM/0ic6kj2ybtFR171BXJ0K+/72tUmJ+FqWe+t5KIw9YmH/3+kLfMkeWRUb6fQP7fijXiZemtMlFpMViL4xxOiBKRbzgfcmAmwdtwVwdtg49EmdmZv+D5R4kxXUbFavYomSwodajbnrZaXSrtLXGpDpfyDAuZ9OMHs+Vf8c+esWDLRsstB+nYszP5pi+ow2wDRCUZV05ImKXN0hk0+FnbVVd5BENwgMX4JZ32qnTdqsXtfkloofkkkeSySZQeBpLV1dZNfqVPUXjqhkQgio4/bSRz9GZnSKW265haeffrrq9VzF6xN33XUXP/zhD5F72wn+598FwPWcSmQNVeZB11n1mW/YkMRmgRd/AZUKOnFGS+1ehXsZxSS+bpmRA9UDNYVAWS2epDlcqr7veWeMxsF8GxQ6b/Fz+vtjzJyONy6Ho53T3WOl/Q1+jn7lMqm5Eo7SRNm3Og3q/94IrxA3M1ohpf+b8zXHhnd3MHl8npHnm//wVCIWfAMOLjwzVl8sVoHoLQG8vXYO/JPOsr5GMFqNuoU5Wz7YxdSpBS79pMkA0cvAa13ubeuHupk4MsvlXzRflmOtdmy/NYC7217cDNDkrnDfoB2Lx6TvGgUDG94ZZerUAsM6ReKvdYm3snf81SxFojN7UpWD6zp2772qo+LU9yaL11Xr/vI2MwhsfKsPgyhw8PMlgVGDyq/qci9j9SB/nnvlqnAvpx8Eq4HpMYiH6nCvzeXXvTOxTCyT5luYSWniqdCu1Q7hy4fV9AJZv7o4Xy319psLg8FALpej+yv/DQDTCyrnFqq4rFxn839Mc/1gkpFRAxcvl38bGKfVILchufoAwvIKjhBkExkWq+kDNJ9XLluDp+QDYdV4ThVOtuGtLWTTOY5+dbxY1q3WGC3xmXXe7ieXy3H+xyVz88so2/aK8LJX6N2SzAbSide3zyuw2YWnz84JnQGU4A43idkUM6f1iUkG39nB9OkFhn+tT/AlKZIqktGhkwnucOMbdHLkXy/oOtda8VqWewvt9uLts3PkMxd09WvKjlXW6Q3vbGfq5ALDjfh5KXeRILzLw8yZJeJjNTabrOou4N/kwNujcOJrawuQNnVtelGDd0hmVcD1WvuldB+j1jVUuS/JAn33+Ln0/BwLQ+ma7dS/i4XfHWGJnlucnPvFPDMXNF9Z/pqqZZHRuFhlqZECNN6VsVcPtPnbc0xNwpx/Ne/KyOr1Tm2seB7pNA8kVpjGwK9kNStV287V7+v5YyrvMraofouRv/sqS88e4eGHH+arX/1q9eu9itclPvaxj/HHf/zH2K7bQOtHHgHAtFflXoYqn6B57tUZXMFjy3LgpdUZleSp2txLSidwtopMn6sRWNB8XjUzhOe5VxWxUUGApM0z1oBM770Bzv54goXLK1XjkWXQ+JHFK9F2vY8LT4+VCVheVsnc18k3iSir2Xxe74jd3sr8lThTOjb1yU4JV6fC1NFZXffoHVCzj574qs5KMSKIsqhbmNPzYJj5y3HG9q0t8YMevNbl3nrfFGHm7II+4fwa7ejf4MTTZ+fk1/Q9NyVsweKRmThSmjSgMY+I3d7K3KUlpk+8gqXl4BUv8abrHX8NS7ytPnYTvK6kTWi7HYNs4Mqv55r3eYkGOm92INtETnyv5H3T/FqrSr1BodxbTe6l/T3tWO3zslgziDaR+XlYaFud2TOj0bXpLeXrRXc8yfrlNE/KFjLatfVuX60POHFUzW4m+VTudfaJ/4qYg3SVRELNYM0jL1/ybebbPyv7e55cVkMyKfPLX9UWKNVD+zUKsd3VldMFVBnMOSGNyVt/ByaUD9YX/+68KlDSAcEgYHIZkV2Nz1WJHX/Uy6bfienrlMsR3O3B+RqVk3hZAiWdyTpkj8zmD3Th36gvhbI9aMHi1Z8Z5NwPRnULlEBdtCSbvt1vrTvd7PhQj+7040aziGjSnwHL3avgzZdpeJUhe2Rad7p1P2+jRUSS9d/blt/pZMeH9JdNMBgNiPV2m1ZBchHOfGdYl0AJtDGps5QggoGN72kndrtfX79C97Ut2q+2QCmP6E0eTFXe03qEQQnL7PqjTkK79M0JjjYTRotIVudOtLFDy7zwjyOrBEqNYHNUKVdVI3iWh7VFIByF7v76x/YdqPiDLPNV2c7TdV64vECpFJ6MAVEUefLJJ+uf8Cped/jOd74DQPL0pVW/ZetMM0eOCDz/gkwtgVIttO+2EdlixehsMD9Xee+t7ibnEo3kTx5Z5IW/Oc/Maf2qHNkmYg+VpD1tIpgVvtbDrj/pwejUx9msPiPha+us36+gs+e1FihFbwkw8Hi0ccMKWH1m7K36dqguXlnmwo/0CZRAzdS1Fi60/QM9bH6PTp4NiCYRudmd2nkY1dKARuvLXE+bhLtPwd6++oOzEUTZUDutdA1ErvGx48M9ukvZyRYRKf/cmg3coGap1StQArD6TNj8+sZkYJODwXe0YdRryvwUsgb+9JoIlABH1IRvUP/34uDjQTa/R38pIpNTxOwUGzuCKmx2+N8mqwqU6sHspGqJhUbcK7reQO/6hofHd7B8Tn/BbOGrJQKlasgLlPJwfO85AFpb9aVVv4rXB9atWwfAzJPPl/09V3eISfzyJbmmQKkeunZbiWypPxEJ1Zyo6TQmR+O5pPS9PPJvY6pAqbxBw/4WjxGLu4R4NhIZadjwjij9j+grR0sui6fPjhJuMKfrWFvq4WUJlHQmRZLMBvrf0oa7V18pFlvAhNKqv7zGyIszugVKAJJZPxdydFjZ/qEeWnSWVDGYRSSL/uxStpAZR4d+LrQWSGYDnj677udttIiIZv0cdsM7Otj0rjoctsbYlyySfs6chqFfTesSKAEoATO2Fv3ZanruayV0jbvWwXUfrxmUCpRq4WUFsjQENiiYdZaAlBTY9r4QAZ2czRYwIdulJrJelo+H+aE0+z47tVqg1AAWU5UPuAa8y6Dk6OzK0RGrv154D1fcgyTxXVnhV4bazo68QKkU9jOTiKLI5z73ubrnu4rXH/7gD/4AgPjeE6t+y9Zx3Zwbkdh7xkItgVIt+LuNRLeZkF3158tqGyZkc5O+H+3djI8nOfgvV1SBUtnP9d/dXA7MXiPmEj96Q4E34Oq0sel3OpEb+fMqYFREPOtemzjSay1Q8m9w0n6r/nJQ9ogFq69+ppNKJOfSjB/QJ1ACMBiFNXGh/jdFGHhMvz9PjcnpXHNFtVSfXn/SWmFtMWHx64/3Gq0lfqgm4eqwseX9XTii+nilKIsY1/DcFoeWdQuUQBuTfn1jUgmZ6bw7WKe8XI1x8DIe82slULJ4jThqlKOrN8d2vNFL35vq1K8tRclGIbPTiMUt6fZ5nXtmvqpAqR5ECwiZKtyrlnBJQ6hToLe3sdjOc6D8Gs9YZb5bIlCqhrxAqXAphy4gZLKsX9+Ek60G1lTuDeAzn/kMjz76KLNf+wlR/11lv2VkoWpGJRUykiOJMQvLi+IqgVLeqVjY1b+sEoqLzy8yfiZZIM65bLaYQakUJSXYAHb+bpT0Spb9n7hSfNHzQaSKXWiVuylka04N3FdDlSDYvr8/1xRRqOy/Mp9kZUa/yiz2xlaWxhMcOtN85iD/Rgfd94a58MwYI881v+u9+4EQ3j4He/7XaqJYDzv/uI9cLseLHzvVfKdkGovHhD1i0yUeWmvWn9BuL652q+7yYXptATB9ZglnZI658/qUrid0KnHz6LkvDAaBqWP6r1UvIru9BLd6iE+s6EqFeeyLqwPuzWBs/wypuP73Zi3PLbjbg7tT4dgXLulygh75rM4xqS1eFo/ctMM3j8gNHqLX+zn95AiTR5ofX4PvaMPslNn79/qyPe34w06SC2kOffpS0+kUZReEdriw+mWOf3Vk1e9VYTAgmg2k4mnmh2p8YNboP7pvgdEDFWuMNr/XVDrnsmAyqBm6qoiTcpls8QO1ZMH298nErrUy9FKSoUPabpsKZ41hSb3+rM1MViOvi/Nw6liGuWmwJhPEQ6qDL7+LvxS+A8WMSsH5FOOyDDXScVcKlHLjJpbOHmB6epru7u6rpd5+A2E0GpFlmWQySfz0RUKT5SLNrFw9o1I+im7x5VieVMdVpUBpFfdaSXJxT5KJUxKpRYpjPZOpWmqkNB115BqF0BY7J747xvzF1OqdqpW7zPIO0WwWoxWSS3Xmvop5ceZ0nBf+poQDNblbf3E0QWIuhdECqbmyBnX7t9/SgiumMPTi1GqBTR2B0sb3xZAtEnt17hja/pEe5ofjnPpa8zu8A1tddN0R5PR3h5h8qXkO5QhZsOh0vADs+cu18Yveh8NMn1jQdY1nnxyBNdSUH3pxqliOSwf2/o0O7qrB06XQc2+Yiz8bY+hX+rIOrAXd94TJrGTY/w/6slG++Nf67236zDxmp5Gl4ebKZORx+rsjwIjuIHLvm0PMnFlqvPOt4sN/z1/pe88Eg4AtaMHmN+sWB2773U6y6RwH/lkf39vxBzHGDs5z6dnmv8WCO51Er/Vy7OtDLFxeaTqIFr3eg9UnM/mSjucmCCxPpzBa6syJNYJZR74wtvra8nN3SdbKUhhNOVIreV622hlSi3v13e7AIAkc+Frx3iq5l6Bxr5zNTNas/nZoXxafF8CAdXiZuCZ0rcq9DuaY3CzgTKVIJNElUDJMyMw9dwhJkvi7v/u7mv2u4vWLb3zjG/T39zP95adp9d1a9ltOqp5RSYUEljTmXIZEQlolUMrK6ljM7+oXltWA1bnnl5kby5Xxrmo+L8FgKMuotOlxP5lUlpe+OrW6BFsF76rkZZKcJZ0oa1DTXwZw7MsjRU6nIwvS8nSSVDxT8XPj792ue4IsDC9zopGvpsTXZwuZGXhLlIvPjDN+cLbhOfIIXeMluN3Dvr/Xt45sel8MQTSsLtVQB+lEFnvYyuJoQlcJt/M/GtOdyRvUkirOLhvnnxzV1U/PPeURH40z8uIUcxf18YWhZycZelaHOFlD111BJLOomwutBd4BB7Hbghz/ykXmdPi8Lv50vPnSbSUYfn6SbK1SdnV4wIGPN3huVYJB7m4brm6F85WlaFd1LT/v+R+Pc/7H+u/NFrQgVCsdUidQ5e610nNPK2eeHGP6ZJXxVcMvFbvNhyNs4fD/r9yvWjkfVvKXje+MkFzKcOJrI43FSfm+ErTf6GHq9BLnflTnWyCbLTumJEssz6aIa1n3c7lc+fXUuLe5iysc+EzFM6vkXZXcKptDMgmkU7WFrwVfWIk4Q/FD3y0KV15KMXpKm98reJe4oK5nGbuJrBYczqbg6JE08WWwpVZYCqrfnNU2uXsPC4WMSp54hllJqrlpsFKglBqzkFm+xNTkJF1dXVdLvf0GQhRF+vr6OHnyJInzwzinKnxexuoZlfJRdNkBSc29UClQWsW94gkmzsDCWFqN/WkZK0hnChmUSiGIhkJGJVeHTOw6hdM/mmFxJFXO26hSxq2Eo4gyZBKr45G1uFViOs3hf7lcVsmlLrR2yzNJlidXMIgiZXXfGmysC2xy0brNw9yFuK5sMp13B7F4ZI5+Xt93cf+jbcQnVrj0TPPriBK20PdQhLM/HGb2TPNcwxow4YjoF3of/hed1TE0hK/3sTAU1xUjW2vJ3NH9M2va0Hfs3/TH5Cxumd6HIlz86Vi5wOZVQuftrWQzOd3xQ71jESA+lmDoV5MsTTQn2M5jdN80o/v0lS0ECO/2sjiaYO78ki5/2VrGpMVrwhm1Vi/xXYd7rXtzBEEUOPZv1b/FaiVLGHxHlPHDc4wfbN6f54haiN3u58z3RlkaTTa9oa9lsxNPl439nyh/5o3ijcuz6fpT4iq/lsrdzv1kWrfPSxSzZDKrfVp55NLpYjYlqfh7bKcFk03gpadL1qUKgZI0r653aYe5wL1OnwaHA0DEfnmFhTaNe1Vx+3sOGJjeksWSyZCOG3QJlNKTFtJffxZBEPjv//2/1+zXCGsWKT3yiJp2kUyWZDK5KuCZFyrlS70VoZZ8W07AgV/VPn7OKJWVHxk/pkN6qgmVcqk0E8cXiU9W9K1TfzWPHR+JkUvndAfuBYOA0WWsX86rIgh2+NMXdJ0jf+1nfzjMzMlZXV3nzs2zMh8gMaNPyrsynyKzkimWhGoS02cWdNeyTS5mee6/H9PV5+XAP+jUrT5dK5LTSU5+Y22Co7Xg7A+GEdYQmFsLrjw3RWI6yfzQa5P+QU+5tpcL/zontlbLK7ZLsxH2/G/9qS8XhpdZHF1mXqcALrWYXhORjY+vkJhN6coAkJyFk98eIT6TKXyENQyyAXPnk+z/ZJX3pkFfk9/IylSdj6oq1966xUb7dS7O/2KW8eN10nxULNhzQ0lmrxgZOhQHjA138ZdiYrT8WNWCZKVom09xEytcSKZ5Ti6q+6/sCRPZNVQ1gxLAxCe+ApkM999/f9PXdhWvL/zFX/wF/+W//Bcm/+bzhN7231b9nhcq5Uu95dHbmyQQgP37YWW69vgq5V6pRZhb1CEE1YRKYwfmkG0GlifK358yx0sVtG6z036Tj5PfHmXmjL51xOQxsjJdPy1PqTNn7lycQ+cu6DoHwMWfjDFsn9adAWhpOEFiDTXUk/E06SV9u/pnzi4xd36ReINdg5V4Lcq7lsLb40BA0CVSWiv0lKJ7uZg+u8jZH4wwfVZ/toK14OyTQ2SSr01pmvhIkjPf0y8SA9bEnzzdDkTJsCYnnV5c+NE4F36kP8A2eXxRdwkvo9NIKp5lZUHfRJKYTbE8k2JhtAmBUglOfmsEe0R/homzT9UIrNUJ0hmdkJ7Xt5sMYPDRFnK5XHkmpWqo4F5Dh5Yx2QxqNiWj1Dz3ShmYrIjTN+JeNyRXsJLjaymgRKg0vCdEaNfwKoESQCoe58qlS0iSxMMPP9zctV3F6wp9fX2qQHw5STqRQKoIeOaFSsVSb3mk2TWYZDkhcPhI7eNnZams/MjcUPPzSUGolE4zemSJ1FKlCFxoKCLa8HgLAgKHP19RpqmBv0wQBESbSHq+zjxW4fM68z194ph8/1PfHmJpSJ/Icmk8wdL4Citz+n1eycWUWmJLBweeODq/Jp/Lix87qbvPWuHts+PusesWKa0F6QRrEuSsFeeeGkE0vjYZLKdOLZJODDF3+bXxeY3tn63+w6vgl3L3Kvj6HQ1FSq8UDn6iiq+9wU765ekk06eWmB+qXo68FlLxLMnKObLy1FVsujC0TCqR01c6Nw3HvzFCelkfP0xMpzn2tXIelMvlqpe8LYHRblA3FdVCFfG3IyLRe7uLC79eYOpMnbmu4tyJBRg/nWTqTBK1DnTzPq/5+fK29apwADjjGW7PLHM6J3HAWBQVXH4hTNvOoaoZlADG/vZLpFIpnnjiiaav7SpeX/jHf/xHbrnlFib+6Vs4H/2zVb/nhUqV3CvkSdERTHPgtFwQKlVDKffKJGFpSgf30oRKs+fjjNoNLFf6oESxugBAgz1sovsuP2d/OM78pXJ/TSN/mdFuJNXo+7E0IcJMilNrKGc6fmiW6dMLustdLY4sk9LjP9SQXEzr3oC+PLHM5PE5Eg18gJW4+JPXjpsABDa4kEwGXSKltWL2rD5h+MvB8kyS098ZYnFUn89xrTj/9FjzSUFeJpKLGUb2vnb+Q/9GF0b7EnMXXv0xMnFkrrqorAH3mjyu/ztHlCE5nya11ODdrjh3KpFhcSRBYrp5gRLA5WcnmaoofdeMz2zsYI0Yap2+ogWyCf0+r65bPYiywPHvNiitKJXztrHjSWRFQEim1bJvDTIolVwp8xVrYTWBUim2zKbxZzN812wp872d2ttO7/aLqwRKAJlMhisnT2O1WrnnnnuavLbVEHJ6Pasl2LhxI0eOHEF2Beh/23+o2sZ9cgVDxc6Pnu4k0zOwcDylKpRrXdzSctnivvERJwCHv6q+ULlksqbjJZevf1dl9xdQlzTkcjm67w6QWk5z8Sc1HLQ1dtvv+pNu0okse/+2zs6VKn2Du92kFtONM6C8TurGvi4hw+4/WcfM6QX9tVvXgB1/1IsgGXhBZxaBgcfamDgxz0QjJWkJuu8PEdjgYv8nz5AYf/XzYV77FwPMX1p6TYKWa7bj41EmXprVlW2r8+4grVvcvPTFC/pJ4hocQbv/Qz9z55c49uVGOz9f2ZqvOg+w9r5NZlBa27GL19V5h5crv5oqF0g2OHZgk0LnG71ceXGOK78uHyP1HD1KWKb9ehdHvzMF6eriLUE01E7JmK8Xa6qRqUgSSbtUJ4u/NUNXP5w6CtMTWj+joaBurnruDCz2priGFPsxslgiELaOCMx3VV+bkjPzjP5//m+y2azugOpVvL6Qf682/d5f1WzjPpVEKOFeVmuKUAjOnAF5Ilmfe8UTBe7kjhnpvNbKyafnWRxTj5dLpiBbo3+eW9XiZplMTR5jNGfpujvIxZ9NEJ+o42yoOHbbDR7C17g5/rUh5s7Vn9dLP2yNTiPBrU4uPTNZ2qBu//oH//f5XvU/EsHRbuOF//3qB9o8/Qp9D7Wp2UB1CI98gw7cXQqnvz3cuHEJdny0j+RiikOfaD5j6Vox8EQUR9TG8//j+Kt+Lnu7lcHH27n8ywmu6MhY4N/kxBm1cua7+oRKOz7aR3o5zYGPvwp2rOAwvQ+FcHfZdIm918SjXoPyuDVP/QqUIalzcAA8vVYMEkweq5hTGxx7y7uDGIwG9n+yyrtmEGrarW23gmAQuPTcYu0ybwahuLNs1W9apmVzbe6Vcarca9M1WTJpeGlv8VqykoHFaO3d9kIWzH1pfGQ4ZCxvZx0RWOisvnYs/sM/MXH2LLfffjtPPfVUzeNfxesbH/zgB/n4xz+OJRyj862/X7WN+1QaKmhANJBkIW4gcTYF6dr8wrC4jJAp/t5zo4wkGzj+tOb4T6Zq+q4K2S1rcZBMpi4nC+1wQA6G99b4nq5x3k3vbSObzHL4M3W+catwKnevjWw613jX+8vhY/Bbz8m2/2EvUyfnOf+DV19wtOFdHUhWiQP/qC9LUfstARauLDN9svkNVK3b3bTf3MJLX7jA0vCrH/ja+Sf9zJxd4PQagrh6MfiOdmS7UXe2p9htLcxeWFpdqq8OFwhsdhK7tZXjX7vE/IUKMc/L5C/VONO2D3Uyc26Jcz94meKm3wC/VJ0TvOxjh7bbGT+2QLqEegmCUPfelJBM/30+rrwwz+jBCs4mGmra1OyC8HYHF59dKO7qr4QorgqU5ZHL/72GzysnGUi7VL6kKGnWDeQ4dUpgblblcVnRwGKkdmZvIZNjvi/DQC7NOUFisYT/WcYEFrpq+zKu/OF/IJvNkq0VC7qK3wiYzWaSySS9f/S/EGv4Xt2n0wglQ0EUM4Q8GYYnROSxZGPupfnELC6I7bJwcW+iKFhqhnvVi0fWGn+GHNHr3IwenCU5W+P4udyqY7t7rMRuDXD628PMX24g0izhUKIs4Ol3MHF47reeG72aCO/24tvg4tAn9GeX1AuzR2b9E+1c+tm4rixFSsiMM2bTnc178O3tpBOZ1ySO2najn8AmF/t0ZphfC4yKyMZ3d3LpF+O6Nr3Z2yw4IlaGntNnx/VvayeTzHLiK/qq9AC6OURwl4eWTS4OfvpcWZK06sfW1vha31av53jkq+Uz07iXrUVGNBlWCUYbPY+e+/yY7BJHv1xF9FjH5+XpNiNaDEwcS9SMKQoGQ20RktYnZ6keM8xJBlJu1efV06OuU6dPF4+VlQTmO2pzL0MKsusy+DIZzlQkI7KOCizGqg+2lW98j9Gf/Jz3ve99fPKTn6x5/EZ4WV8oe/fuBSA5O44UX73YuU+qO/mzokC2RHF3+oysCpRAJb1ViK+wpC26olh4COlEjpSWEjGX1IQajQaswUDX3V4G39pa/FsdgVIeZ54c5+Iz09VLAdVxmkwcnWfohTqBkxp9O97QQvSmQP2LqiAU5oDMjo/2Er7OW79fBcwBmZ6Hwrr65Pv5Njh09ZEV6H0ogr1DXzrFje+Jcc1/WKerD0l1Z83CsL5dNWvF1KkFpk/qzwDg6rLTurlG7fWa55pnYShONq5PoNT9QIj1b2vX1WetaNnhYvMHukBnFampkwvMntGfccDVqeAfdOnqM3NmQU21qTfb0xqdDvGplca77CoWr/Vva2P3n/fWaFzZtXhd3fe14N+k4/0UDMgeCd8Gpfk+GkK7nbTudNY+tCBUJQRbP9BO173+xicocdZ4+iy0DDqIlM5zjciGwcDsUJy5Swmu7G1eoIQosjia4ejXptRybxUQREOxf8k64u+T2fSwo2Ed8/xaJ80uFy41l4XpOVWclNN2gNovr04rKmQofIArp4z8QrYVBErWEQHriGoTx9nV9+c5LND6/R+SzWbZsGFD/Wu8itc9+vr6ADj/nU8iVVnu3Ke0FPGiQE7jXvG4kTNnjKpACWpzr7hGzrX3aHEsRSYFkkl1DObyJUdqBZE1mH1GNjzegqO9SIgLKa8Foeo7nIrDia+NsDyZbvBBUf7b6OFZpk4tEp9qvD6Wzpnt13uJXOPFFpZLGzQ8Rve9QTb/bmeVg1e/rzxatrrxb6o9b9aCb9CB0aqPrvsGHbTf2oBTVsII1/x5Pz0PVM/EVgsLw8ssjb02O6gWRlaYPb/IwhV9PM8/6MQ3oN/2M6fmmTquj+cZrQY2vLsDT7/+tXUtWPdYG9E36nvWidkUs+cXmbukjwsFNrrwDbh09UEQmDwxx+SxVzhjllA98LLW8bjzo930vanJsa+d19FhIXaHP19RszkYBNz9NoxOPZ1UdNzqQ3bVIdnavF2K8C4nm98bxthMIqWS+avtOhexm32rj1+zq8r7RvYtMP5SFU6fn3urfUcbBC7vWVIFStVgKAboCpuQgP67FKI7zY2Dh9paJ86p80Y6pf4HqjgpK6n9lUrnFKo4SdAuN3FSKhMolXIv+7kq3OuIgGFxEafTyfe+973613gVr2vkS/UtD53HuFjF53VKG5eC9p+GS+OyKlACkAzqfxUwLKrjMicayGnfGOkVCj6vQqm3OinX1XMLhLZa6bndVfxbnneVvEOVGH5xvrpAKZOp6zMbOzTH8N6Z2seu4fPqvK2Ftut9VX+r1VcyC2x8TwctW131+xX6a2XsFInITU18d1ZAUiScMZ3Z5yRouymAEtZXWqjrniDb/7C57/5SLFyOs/ga+bwmj84xcVR/RsPAJje+QX3ca2F4mamT86zM68uoENrtpfve6llVXmk4u2z0v6UNyayPm08e088pAQKb3XjXVfHx1Ak2L46sMHVynvhkxaaPlxmIqhWMWhhe1u2D7bjFz/bf7yrWdmjy2kK7Xbi6Kt7POjEBQRAwWgRcnfrL+7h7rc3z+ZLnsf4tLbRd72rcp4S/mH0SkZ0ugluK70zhe7iaEELjwYnZNBMn4kyerCJQgpq8KzEvcPanCwU+VN63GIMp3dikBKD/NguSo/56lNPWOmk2UThcOg1Li6o4Katdm3Jl9be7kMkVNlo5ToocNpoLAiXLmIBlTONdZ1dfg/uoAe9XniKTybBjx46613gVr3+8/e1vJ5fLMfHUN5CqfLK6T6vrRE5U/wPIZEQuT8iqQAkacy9JJCeJLC9AJlXiK2qSe4k2gc5bXCjBEp9X/lulyneZepFw6RczJOdXZ2jL5XLFDaUV89rMuThjB+eIT6fqzsdA2XzqHXDQ/oYAloC+QE3LNjd9D0d09QFwRK04Yzbd/ZSQGdGir8KDErYQ2OLSfa5N7+8kckMDLlqBpYkE8xdem0xFibkkky/NsTiqb111diq0bvPoPt/ksYVVGWgaQlSTANij+tfWtSByg0/3s84mc0y8NMfiiD47errta7LjxNE5pk6swee1hnjj8sQK85fizQuUNGx8T4z2Ut9hE9zL5JZo3eZErJhCGgmUbK0yRqXGO13Dlwdq2bZCvyazZ7k6rfS/KYjRJtaMRxZQMu8GtzmJ3VyhqWgi3jh2ZJHxIzp9XqKB6fNJVaBUBYLBUCy/W1LqPbLNhL/X2HA9ynMv44w63pNJgVRKvZ6sJJDVyis7LqzmXoZUsYyq4bhYJlCyjgpYR9W+yvnV1+A8JiKeOIOiKPzDP/xD3WtshDWXewOQZRm73c7CwgLnf/5vxG56K2lrcy9X13awew0cfEp7aJJYd2c/wLHv1njZDeXkvdSBCWD1yZhs+m+1/Q0elFYzR7/Y/M6as9+vs3ukjrjp9PeGmNSxywggMZ7EIBmQdd5b5BofgUEX40dmmdNRu3XD2zowSAYmj+iYdGUZ/6ATgwgnLjSvyp27tLbF/2Cj2utVYGuVGXxHJ6P7pnWlfjz3/bWVvPj1Xx6rKoCoh5kTi8yc0C/ksYctGG36AyFrgSNiw+LRXzbv3JNrtOP/fUy3IGrm1CIzp3TaURDY+dFeFkeWa9ZfrYVDn2xQLrLKojx3KY4oNyYKlYTAN6CWLZw41Pz72X6jH/86BytzF1m41PygDO/0IhhgtNau2xowSAKGhkrp8t+nTy5zIjvCzMWELvKWnIbj3yxPl90oVbZ/vZnAOhunvz9FsnLTYZ2+9lYR2WYgWWJCYSVZzKZUYwfa2LDIWD7ZQJ3XtHR30DrfMi1Khu8lTSTlxi+A57Bqs4P792I2m/nRj37UsM9VvL6xZ88eXC4X81fU7HPSMqSb+DY0GlNsus3A+KUsI/mkNw24VyoOB79SIzCRFyrlsyqVBLMyiTQmp4QzbGH+Yo2sSFVKiRgd0H1nkJG9s8ycrSOgKClhkprLcvpbza8j+bnz4jOjTBydZ2mosiSwoS5fEwxgWENJj/abA6QTGV27eFzdNnofiHDluUku6SibEdrlxeozcfFpHemsU6glQxvtzKvA0K+mdO/WAlj3aBvWgIl9f9/8jvLUXIrjX9K/M+n41y/rLtEHrKm0mcEiYgtYUIIWptfA2/RCCVoQTfqCTmu149HPXdQnyNHW7PNr2FkffYOPli0eDv7zaVJVNsLUwsieGUb2NEifXIFcNsfiSIL5Zkq3lHCY1k1OPL02zv+0QYmyCvTc2UIqnuHApy413cfTbyO42Ul6OcPQr2eb7ieaDRgkA6lGt1bBrw59fhhXmxZs15GZaexIle+3Bg6s3nvczF9ZYfRQlYus09fsFLVNysU5XEgki9mUanCvo/uaux+hZBm4rmOJ8QWRKZpzxHqOCFx49stMjY2xbt06jMbX5lvsKl4dSJLEpk2bOHToEJd/+U3arn+IlNIcDwh15PC0wEt7tPaSoe7OfoDze2p8k4mFKBxQspNfg8VjxOKt4xeqUf7NP2jDHjJz7kfNr+UjL9bhMnU41KnvDjOvU2icTuQQZRHR3ETwqoRX+vrtRK7xsXAlzpyOEhgDj7ZhVCT2/a2+Xd6hXR4kq4HFoeazG81fiWNo4ru/Eie/rn+3u2Q2sPG9qs9rWEc2ypEX9a2pebz4tydBZ9WXpeEEZ76jL+slgKPNisWn3w+1Ftj8ZuxhKwazARL13+VSjO5dmx33/OWJ2l77XK6qfyQ+ltCd9RJg03s6WBxd5uyT+njbqW/qP9fCSALZIaljRId4KrTNzeLYCrP578QmdtkHNjqJ7PZw/OsjLFxpXsge3uXGaJGYPqVP1G+QDI2/FSu4VWIyzbFvjJCYrbFZJ5ureq/pZbj4iwqfXAOfl71VomW9hQu/WiBdaY46QTDFJ2FxiuRKl6iVZCGbUq6KGARgbk7iwP788WtfV2kW6Kg9Scie5qdpE4laWTRL4D6qnvvgr59BlmW+/e1vN+xzFa9vfPzjH+fTn/4008dfIPKGR5DikG5CPyySoWdzjpkxmBxpkntl4ORPa3CTOtwrkwSb34jVY2RxpIazwWBYlVVJlCF8jZuZs0ssXK4zJ5XytgwM/VqHz0WbV6eOzbEwvMzy2OqNsPVgEIQ1lVGNviFANp1l7nzzvMvklul/JMqVX04yuq95fuJf78TVpTB+YFbXNc6dX2JJZ5my2TNLjbOAVkH4Oi/OdhvHvtj8dz8ZuPiM/rJ0Q89NMvTL5rNk56HH5qVwRm0sjiyzcOnVF807220kZpO6nnUmmeXSGux48ZlxLv5Cfz+94xDA0+8gvMvLiW9cJrXYfHnF2XNLzJ5rMB4ruZVgYO7CUlFU3iT38nTbCe3yMHFskbwqqpkMSrHbW0kvZzjx1QpNRZ3zWnwykWs9ZLNZJg5rGoka/KcUoiwgmgTS8Qa8vIJ7nXlqAqtX8x3piDfOX1phnpVyvtbgGsPbFZanU0yfq5KUoI6/zeYSESUBKN6bsLxSyKZUi3tdvNicVsRQsnRt9i4zvWJgmua+qZzHRKZP7mNoaIjt27cjNxGjrIeXVe4N4PDhw2zatAmAre8plh6xX64d8DZkcqzvXMLhE9n3vdUvoTBX26lvcWaIbLNx6vvVP/JyyTpRiGy2YRalUnNsfFcbZpfEC3+jCQ2yubpOl3wZkd6HghhtEkc/f7myQd1zN7iwtfetgKyAyWdhoTL1bwP4NzvJJrNMHdMnplLCMouVQcBXCfYOC84OG1d+pmNhlmHHh3sZ3qMv0KaEZUI7A5z6/hXdoiO9kBUDkRtbGNs/xdLob1e5t/ZbAsQnErrKtq0V4Ru9Krlv9jlrC87WD3Uxf2WZMzpKxbh7FSxemeHnahC+VzqlogyyTSI503y9V9ltILjFzcWfNmmP/HllcIRMzF8oX1xfVhptqB8I01HexNNrpm23mxPfG2dlKtNQnJT/8Oy7140zYuKFj5c4lw1iw+xLtQJhADlb9YBWeB1kTDKXh2oHrhZDq4nBltY4HmuWr0omrFO1iYO0VFwzLjz7ZaZPv4CiKCws6NwhcRWvS7jdbmZnZ2ndfDvhLXcU/l6PewmZJNfsyDA1lOHioSq/z9f+yGldL5FeTjNxrIZzI1VnXcrmilmUqiGXKzpujLDzQzEmji5y/scT2s8N+E8mgzVgpOvuIOefHmPxSvMOmLp1zV/hUiP2disLw3HdYpnIDT7G9k2TavTBVQKj00gqnlqTMGctaN3uZnE0waKOwGP3vUGsrWYOf6qBmLcCwWs8ZJM5xvavLdijB75BB0ZF0lVabq14Lcu9WVuM+Na7ufTs+Ks3RrQ122iFyE0tjL04vXpHfx2Er/XSstnF/n+s2HzQgDuFr/Uwc26B+Ki+G2sqVXWVc1sDRuLjTZyr5PjuXitkYeZMc0GvPLdSwkYWx6u81y+nvJt6gtq/NTh2Ke/rvd9HYjbFpV9o4oVGO3y137e/t4WFsSQnv1fyThvE+pkRJKnuteWU6tyra6eB85eMrKRqO22WIuWZUIykuDa2wuiCxK9bLYXsSdVgLOFe+/71jwG4ePEi0Wi0Zp+r+M3A7OwsbrcbBAObf/cvC39XhuvxG+hW4viCcPR5SKfLx45htjbvMhqzhNaJXNpTPYiSS9QJruRy9X1eFbys+y4vjrCF/Z8qEb7U6Z/nZeHdLswumbM/KHHkN+kvq9Og/u+NUMq9JLB6zcR1ZtdzdFgRBJjTWRre7JVITOlU5awRZp8RR8TG+MFZXf02vjfG2IEZxvY338/skvBtcjO6Z2K1oOGVhgSh7V6mT8+9JrZ8Lcu9+Tc5Scczq8u2vRKoWMe9A3YMRqG4ea1Jv9O6xyLEx1a4+ExRfN2IH1lbZKw+E5NH1+BjWIs/TALJLJFeTDfMoFToYgbvOgdjB5r0N+b5hQQ2r8TSmI6x2Iw/rEFmytr9ykuIWPwS7dc4uPDsPInZdH1xUgnviuyw0rLOwr4vThWEhILBUH+XvpZxphZytupZ5DxhEBSJkUkDtdR2S8HV/rAe1wpBe5pvWc1Ypmr7y6REcc6fPPECV372ZYLBIMPD+sWOV/H6w0033cQvfvELQje+Gd+G6wp/tw/VfieFTIZt0RVmxmHk4ur3qR73crWAkE4ze7n68etyr2xuVcKE8t+zZRxl07vCTBxdZDgv+s5m6/u9MhmMikjbDT5G988QHyv63xpyq2zz4oeXC7NHJjGXbJzhpQKedXbmLsTJLDffUbSIZJIZ3edaK5wxG8nFFMsTzcfkWra5cYStnP6OPp7h6lazUa1FGKUXSsiM7DAyrTeb0hrwWpZ7kxURZ0xh+uQCmeSrXP5ThNbNHqbPzJGca3JACgKuThvB7W6Of/2KrnHs6VVYmlhhZabWhuAafCCXXRP3kh0iyfnmBUqg8kODZGBxqGTebCZzk0skHc+QKX3Nmjhnw3jkKxRvDO9SNw6OHVb5fN14oWAocLP1D3lYmkhx4Zcl75ko1hUoIdfPoJS1V/d5BbtgdFEmka3t81oMVwqKMuwMrDCxLLKv3VTInlQNYonb/+in/zOZxNIr4vN6mV5N2LhxI5KmbB/a91RTfYwTcU4/T1WBUiMENym4oyYcUf3qLP8GRZcj9/BnLhcFSjpga7VgXcNOnu0f6WbDu/SX5nJ225A9zdsjuYhugRLAxME53QIlYM0CpfCNXt3l5WK3ttJ2nc4SJ0l48WOndGcCCGzy4h904ozqS2W58X0xtvxel64+toiV4DYPgY36ysT9JiC000vbjfqeWfg6Lzv/tB9bq755ILzDR/jaJtO+lyxS+//hrC6BEkD7GwO039yiqw9A1z0tmP1rUJ8maSxQquwyk21eoFRxLr0CJd/6Bqmyq8zN1oDMjt9vp3V7g3mgoq8rasHslMitNLHGlJCkk9+bKRco0YhwCDhjIvIaqvq0dIlEOvT3OzBq5SfnFFr3NZ8K17o8jCRJPPPMM/pPeBWvS+QzYo0ffrrpPsbJFPufrC5QaoTwRguhjfrTNhttoLTJzX8QpOCFvzlfECg1i9QKWL0mnO36XsbgLjc7/rC7eimkeh9QRnD36bPHwkX9AiWAK89O6hIogZopZy3nsvqMRG/RyaGA2G2ttL9BX0mVM98b0S1QAohc6ye8W1+ZYyViYfsf9uLbqI9Ttt3gp+16/aViXu8IbPYQ2e3D6tGX3WXT73Qy8Fhb44Yl77S9w05wiwdXj13XuYZ+PbVaoNQIRoje6KNdJ6f0DCi0bNVfDhBoTqBUgZlT8TKBUrMC78UhfQIl2WXE2trgGVc597qHW9jw9sZlcyqv2+aXUXTycoC9nx4rFyhB/cCjwYC7U/953GHwRkRadFY8T2Hk5+cVTk6aCT7XJM++8HMEQcDv918VKP2WwOVy0draCrksYweb49Pm8WWGzgoc+qWwSqDUCN5OI/5uE46Q/mzgzqhcn8NUvF9nfjBVLlBqcnOcvdWC0qrf57X+iTZ6H9JfmssSkJEUHfZIo1ugBDB/Ia5boASsWVTjHXDg7NLHKSPX+ond1qr7XIc/fV6XQAnU8iGRa3zYwvqusef+EOuf0OfbNDslojcF8OotLfsbgOiNASLX6Ssv4+5V2PLBLqwt+soIhq/x6veJAse/dKVMoNTUuXZ76bxNv88rtNuD2bWGwg5pGgqUVnVJ0LxAqeJcugRKgKPNXL9eRRXeJllh87uC+Ab0lZl0BGVsAZl0PWFEFVx5Mc6+z06VZzqrJ1ASDVgCIpK+YQhAsBPaOnLoLeJxetbELy7baN3f/HMWzz+PKIpXS+z+FuFrX/saAHP7fth0H/NkimMvClUFSo0QGpQJ9OvnNaIMFp/UdIkhgEOfGSoKlGhiYx6QTWZwRCzYdK4JjpiVDe/qQK5VeqkOlJC+cyWm9QuUAKaPL+gSKAFq+zWcy6iI+Dfp//bvvDNIcIc+P9TYvhndAiWAyG4foZ36ziUrIuvf1o5LJ6cMbvfSduNvn8/LGVNof2MLslPf+tN1b5AOnbzG4pGJXO/DGW3SH63NFbPnljj+FX0CJVD9r8FaJelqfAPagiZc3fp8cnnoFSgBxMeSugVKACuzFQKlBhAtAlZvA59XFe7Vdr2Lnnv1c2Wl1YitRb8v6ug3p8sFStTPoIQoYmvRP2dbFGjtFHDr++QARF4Yt3J+wUTr883FHwzDJ8kll4nFYq+Iz+tli5QAvvnNbwIwdkgNmjnPr2BI5zCkay+yOUEgJwhEN4C9ci4UDTV3AZz98RxHvznB/JXqb3Ct2oOdt7jpvs1HYFNtoVItUqCUqsvqvFT5urAH/ukcL/5NlfIVdWouAqST2drqTkGo6kg2B2TWP9ZO9536nBSdd7Wy68/6dfUBVWDT9yZ9dWkjb/Cx68/7kRV9wy16fYDoTfomjHM/GOLYl/Vn/5EVVeylB1d+McLBT57WVTIPgCzkdC5AMycWeenfLnD+Z/pSL294Vwc7/1T/c14L1j0a4Zr/oP9cRz57lmNf0ZH6Mo9sjtSivg/yg/98kqOfO9e4Ycm7JntklIj+D5Vjnz/Pme/pI6PuHhutm92Ed9YXo1XulNj0vnY2/25H/YNXzD+yAts+FMO3oUkSpZGRwSfCbP3dcodjwwCbDF13BtjwzipzR61a3YDZLZLL5FgcrpEZpUbfc0/PsOdvL5Na0taDWjtLSuyhBKos/oJQezeMds/d19nZcF8VolfnvnIGA/uezHH8lzWOncmp/1VgY2AZZSWBvFCbMNgvp7FfTmOZVieZC89+mStXrtDT08P27dtr9ruK3yzs2LEDq9VKNptl6IAqEHdcWEHI5MpSpVciJwgYbQLRwSo/GoSaDt9j35/m0FdmajuEa/CbjY8H6bld+7iuRcBzuaq/WXxNCCiyORAMpOYz7Pmr07rExrlsjvjYCrlUDrOvyg6EOrv5N76jg74H6og1avDJrR/qpvdhfRFy30YHWz7Ypa/MFrDp/Z2sf5u+D4XQNT4i1/iwNmP7Epz89hVOfUP/Om4LmzE69Z3r6BfOsf8TzZeIA8gm0k3XMy/Fya9e4qXPNMEZKrDrT/vpvEt/AHYt2PHRPt1j6sJPxzjy+QvEx/QJbHLZHNk680uxYbHN9LEFDn76DMN79WWjsketq8d8I8dGCo596QoXdZRGBGi/IUD7TXUcc1XmN4vPyPaPxAhsauDoqZhXu+8JsO7hUPHQGpeoxaMEQQAjbPtQO6GdFc7UBhtvYm9ws+GxUA0RZvXvSoBsSvserXH8Wt/aBz49zLGvTNRdS9QDFI9r9Vd5/wWhZhYXwWAgsE6m50YboY1VnEN1fAgzIwZeeibDyIHq417Iqf+VwmtN0eFaQV5IIC/U/nizX0ljv5LGPKO2OfniMxiNRj71qU/V7HMVv3l49tlnARjZ8yQAjotpDKkchlQ93gU5IYc/nENxVbSr860wdmiZo0/OMz9SY9yJYtWgcmC9hd47PHh7zTXnzFym+vtt9pQ48Zvwl5345giH/rVK6dA6Pi/BIJBOZMjW9HlV7yuZBTa+I0bHzQ2CKBVzU8tWF1s/1K03Pk7PgyFiOgMUngE7Wz/co1t4EbutlegN+oJDV34xztEvXtDVB1Azw+gMOI4dnuXgp07rKpkHkM3kyOrkXompNEc+d56h5/SVK4nd3ao+59cAbTcF2P4Hvbr7Hf3ceU5/S1+ZPkEQyGVyZFfq+LyqrMeHP3uBY1++0ND/XApJkbAEytfkZoJR5384wkmdJfrMbpm2a734dW4e6HmglYG3hhtmUCrjKBKsfzyEu7u5cq35uS92m4fBx3VyeUGg914//fdV8WHXme9NikQ2laudEaEGrxo7HGffp0dJx7Xfa4kcSsaAqQptFQyG2tnzNE7VtdPE+lurzB117gtB4OgvBU78uvp8L+RyCFWuudO1gmMlibxUx+c1lME+lMEypbaZPPECly5doqenh61bt9bsdxW/WfD7/WzZsoWlpSUmX/o1AM4LqcbcSxQwWHIEIlXa1BmzZ3+2wKmn47WzahhE9b8K9N7tpeN6dT6r6Ruv8Y7J9iaC0FrfTBIOfvKCvioUuSyJmRSZZBbJppOf3NlK70Ntdcs0VkPvQ2Hab9YXy1NCZvreHEHUWQK3674gnXfrm6tdXQrtb2jB4tMnNDj9nSEuPq2/jL3slBAt+ox46ptXOPk1ff61TDLXOKtWFVz46SjH1xBH3fieGKFdNYQyrzAG396he0xNHJvj6Bcu6Mp8BWq8Vq8dlyeSHP70WSaO1SmHnUfJHGHxyohryFFw7EuXGH6xCleuw/mC2z10vFGfDUUZNryzHU+vokug1LrNSfstJd82TXLR9U+E8Q1UxCgbnDe42UX/IyEkW5V3rM58n03lSCe0eVlH9aqT357k3I+ni3yziXhj1XleFMlla/AcUUQJiPReb8HXubpvTjSQq+HziscNvPRrganj1b8dhKz6XylsYoZWaxJ5MYW8WJt7KVeyKFeyBe517udfw2Aw8E//9E81++jBGrYurMa9996LJEmk02mu7P0+Tu+thd8M6RxZqfqAkmVo7Rax+7IcfUZ9qMJiya4l0QCZ1cZZ1HzPsqJmBSogVXwAgiCUOVHOPTsDuSzjh7QOVerCVkPHLV6CW12c/v4Yky9pijfBUDd4JRgEctkc7h4bM6eb/5g/+HH9gZDEeJLR/TNceV5fNpSV+RTZVBZzQCYx3vyEbXIYdZd0WplNkU1mMflMJBebz+B04huXmTmnLx2ymrVJf+amDe/pQbZJPKejzEZyEZKL+s91+F/0Zw4A9IuhgPjkCgadJG+tiE8nMfv17yhfS6atoV/pK82XR1PPrGJ8d9/RgqtTYe//e7x8vml4rlz9j4cqaRZnTi/x0pcusTymb/dmJpmtTxiqEAJnlx2jxVBa1rQ2So6dTWfJlAhQm5oPknD511O66z5Pn0owfaqK87sOlFaZ5GKS1FKD66qwSd99PsjBvn8Za5zqseT3Mz9fwOyuCLKVkKDSWrF55NeuxWmgcnNESQBYuZxgsU11BilykqAjgzkKB89UZ7H2KmmJp0+/AMBnP/vZ+vd0Fb9x+NnPfsbOnTsZPfjjspJvAEImR06sPo47t4DDJzJyMkNKm7LLuJdhNdGOT6r/NtohVfndVSrkq+BHV56fZ3G85L2vx73y7002y7bfayebznLgEzref8GA0ZJFshpZbrKs1NyFOHv/QWe2FuDSzycwOXSqhlDn6lwdh1o1GCQDRpuEs83K3Lnm14bMSoZ0Ql8GpovPTjJ6cFZXWS5QhSh6YfIa2fSuTsYOzHD2yZGm++kV1gDEJ1Ps/Vv9KaX12iGPxGyS5Znmyw6+HCRmV1ge13mulJbZSycOf1oHf83lCmvlWp7Z+sfaiE+tcPjTF9Q/NOnYmLug/74OfuY8zrYau9drnNeoSGRXsiTm6gQOq/Ays1tGMqnHbMSf8r9bPUayqSzJpZJzNZEZ+PzPZggMJknpNMnJ7+rn1442I/OXU40zG5TY09dvpvMmF5eem2f0cJ2AQKGr2nf8eBKzI87w4YpxJdbmXkYrpBIQr+E3LBUnlXKvbk8SuznH8OXaLhP7lfIxMLT/hywuLmCz2bj//vvr3tNV/Gahu7ubYDDIyMgIo/t/gsN7U+E3QypH1lh7DLf3weIsnNivtZ8v8YnU4EaJWfV/JTNlZbZyqZKxL4plga/xo8tIRpg6pXWo57cq4V2+9TZib/By5qkJZk7H615XJZSQqfaGkio49c3m1/w80okcl58dZ/JkE3xDKAbrk4tpMisZzC4jCR1rutktkzLp21WWnEuRSaTVIOBs8xupTnz9Eos6v5ETs2ld58hj4NEothYzL/71qeY7pdeWJers9/U/Z4ClYf3Zr1amk8QdryHvmtR/rsQantf0yQWm6435Wutm/pnpKOkR3uEmuN3N/k+cIzmXbjoYlU6g6/sEVFsc+cIlkks6s2YkshhqfN9CdV6lBEyY7FJz91PCrbJJ9JWH0c597idTJHVupIxPZDjyRX2Bb5PDQCaZJZ3U5/Pquc2FQTJw+CvT9XfwQxmvOvvLJSzeCh9Umc8rSc5S/nt+7UosAhVx7FJxkjKcZDGk9pVI0+lK4TQYOFqDe9mHVo+bK7/4GuRyfOELX6h/T1fxG4ennnqKQCDAyK++jW/w2rLf6nGvYARaQjAzniOlvSeNuFfe3y+aIVMRusolSziEQSwroTb04gKpheK6UBmPrIV1b24FAY5/bbRh21KIMojmYvmlRkjOpTn2b/r86gCj+6aZOb2gO8tLOpklndbnh8rl1FJxFr+JxaHm44aZRJZcnQQZ1TB9fIHFoWWWJ/XFovRcVx6qyCPG6L5pXTGs5KL+FFGZZJZjX9S/cTC1hnMBLE0kSMyvzV+2lnPFp3Vyrwy6nzHAuR+sjb829cwqeErvg2GWp5Oc0ll2eHmqyn014HxnnhxZvY43gGSTSMXT5X6oJmB2y5hdclPXlYdREUknsqSXS+aOBtxNEARGDy2QnE+T1skph/Y0ISirgMUrsjyVaRwHLd2U5xPpu9PDxefnmT6zUj9zJRR+XxzPcGX/MpMVQ6NUnCTEV8hZiz4vUVbDM8kaU1WpOMl+OclCm/qM2uxJWq0Z9kyaqslwAFWgVIr5SyeYn56io6ODO+64o3onnRByzaycTeCpp57izjvvBODmm/971TZZScA0Wi608EVg8kqRpJYFykqRyZJbKb6EO97rJ5XIcPAL00VykKr+0hRusZpyWSMlNc0gw7r7Wzn75Eh1gUINp8+6t4RxxWzs/+R5ErVUm1X62jvMuGIKl59psHvolXlsv5XY/IEuElMrnPhq8zuVWra5kGwiQ7/Q55jf+vvdLF5JcOqb+nZFyR6Z5LS+xXLrh7uZu7DE2e+tbcHUg2v/YoD5S0u89Dn9ampdkGHHh3oZfkGf6EhWDCSTWX16NBl2/n4fQ89P1j5XlYXG3mHGv87FuR80/+EgKwKb3tfNpWfHGdvXYOFbQz3YYtcmnC0v4/jNEIK1H7t++SclKOPusnL5l7O6+m59XwijWeSFf6jyThqEmvZo3WZDMhu48nx1MaCglTWt6gyUjXWvKx8oyxkM+KLQvdXA8Nksl46ov6e9lqqZk4BCoExeyOJRkiwsQooisZzvkKqKkwDSY0+y57mfYTabWV7W/0F1Fa9/2O12FhcXCYevobe3ejA0JwrIY8VxbTSCUYH4TBPcK5sjl1Qn2uguK62DVo49OcfiSKooZKqVbUzjOLlqLDfvEKrBZcLXOFhZSDNxuI5jvsqOhV0f7WJ5Jsnhf2m8dpXujonc4GXs8LxaJq3k2teEf4f8LLDVRWS3T81wpMNP0X5rgIkjM7pELOHrvLRucbPv7/VlU8IIRqNBV+m88HVeAhtdHPgn/UI2vRh4IoojauN5HWL5tSJ2Vyv2kEWf6AgwOo3Fd6RJ9NwfwhIwFcVGTSK4y83KXIrpE4tN85jeB4LIDomXPtecE7Yhh3qV+FM97pTL5RpzKx2ly6ucvO5xQ9vtzF5KVC1jV+u6rC1GBh9pYfz4Eheema1x3tXXbLRC9AYXZ388V/u6NCdN1UBanpfV2EVWECkZDGy63YBoFNj//aIvIOW2rMqclEeReyXwOGB6vlyUOtdhXCVOyuP0r/83ExMT7Nmzhx07dlQ/wVX8xuLMmTP09PQAAjfe9T+rtskaBcxj5bzb7s6xMANCrkqgrKxzFiFR/MDd+CaF9EqOY99fKvCLMpFSKfK+rmq8qx4n087bcbOHK7+eKhNElf5ezV8WvdFD6xYnR754meVaa3kVTmX2STgiVsYPztffrXyVj9VE35sjJBdSnP9R8+IGZ8yK7DAycUifY37g8SjxsQQXfqIvU6GkSGppLh1Y99YoC8PLXPm5vrJja8HOP+ln5uwCp3UGh9aCDe/qYPzwrK5ye5LZoAZ6q5mwznq+6b0xRg/MMnag+eds9kh4+hwMPzfd/G55CTY8EWVoz7TK1xrhN9Ev1Qgvg7MJgoBRMeDptDB2uIoPqk4G43UPerF4JPZ/pso7KdT2ebk7ZWSbyPjxGo7UfPCsCrfKGTXeVdPnlQ9ICiguWHcNDJ2GYe0zKumxVM2cBBRESvJSFsWcJpGGdLooUpprl6qKkwByE79kz8+/g9frZWLi1Z83ruK1x86dO3nxxRdp77uLaPcbqrbJGgUspSVexSwWEyzHDYVM43W517IqgPC0S0R3Wjn10yXiU5ki90rW4Dh14pF1Y5GAp8dKeiXL3Pk6G9Kr9N34rnYScylOfXO4ccaXEh7l6bOzOBonOZf5redIrwbsbRbCu32c/taQLhGrf4OTuUtLJOttbqqAq8tGaKdXrTqiR3shgigadF2fq9tG6xa3rhjqWtF2o5/AJhf7/k7/BkK98G9y4my3cUZntkfRIuouPdi6zYO9zcLpb9Xhk1X4gqvbRno5q0sAF9zlweKRy2OUL4df1YGe7ElVOr+8k6/Rn6b2rX9ud5eFpcmkOhcWD1q3j+wwsv7RFsaPLDK8t0qcoka8UZQhsFFh5HCcWmnpCr6uagImLd5YK3NSXqSUMxjo2QJmKxz5VfH3pNe8KnNSHnmRkryYwm6GhUT5+ec7xFXipDwu/fyvGR0d5vDhwwwOVivVoR+v2Ci+4447MJtVh14i8RSdnSrpVZQkmzcncTqTGNI5Iv051t9Q7Odrg46NYPMKGO0CA/dYcWoVNIIbZNbdpe1sFQ303O4gdpOa9mv6UgKEHN5uGQwiLZusrH9rMW1Z991eOm9XSyYJJoHBx1rwD9rY+jttbHl/mMEntHSABgNd9wboua+YznnD2yO0bldTNfq6FaSStHydd/vpe1OxtNqGd0YJ7VbP4+6zseFdUWS3xOVnJ4hPJYiVpKTe8PY2wterWwgcMQsb3xvDHFAHRMdtAQYeb6Pv/giRXT7Wvy1K+xvVvkrExMb3dhRKTrW/0c/6txfLLQ08EWXXn/XTeU8Qc0Bm43tjhdJl4Ru9bHhXR6Hture0FVIhyi0y2/6gB3e/atPQbi8b3xMrtO1/JELXvZqdZNj43hi+DQ6QIXKzh43vLbbtfShCz0PFchMb3xujZZsLAP9mJxvfF6P1GtVO3Q+EykrGbXxvjFatvJV3wM7G98aQFQNKm4ld/7Gfjb9TPM+Gd3UQvk5NPeLuVdS2HtWGnXe1MvBYG0aLiGw3suEdHUTe4NPsbWXje2PYWtW27bcGGCgpg+Jd50CS1eeshFUb2jvUlMBtN/sZLLX341Fit6vjRZRFXD22or2vq7D3oxE679HsrRjY+N4YG9/XwY4P9RC60VNu74cjdN8fKrN3PgVyyw4XZqdcyNzQ81CY3ofKbdiyQ7P3Rof6bGRVDLX+ne30P1zS9j0xgrs9q+wN0Hl3kHWPFttueFcH4RtVezu7bWVjNnZ7CwOPF2244Xc66H2TOgbsHer4zpdKrLT3wNuidNzWgqzIiCYDoZ0eHDH1XY+8wceGdxRtOPBYG513qe+c7FGfzabf7eGaj/avsnf/I6X2LhmzQPRGP5JFRNB2WvS9KUL3AyX2fl8M/2a1lEbLNicb36sed+FCAtFsoLdsfHcUxqxvg52N7+1A1jISdt0bpO/hNjWDlSCw8d0dhDR7u/sVtW3JmF33aPG4u/+8l80fUM/riFnY+J52zP78HOFn4K3FZ7P+bW1Eb/biiJlp2W5nw7uiKBG1bfRmL+sfjxQWyIG3hGi/RX2OZr/MhndG8G1RLzh8rZvBtxWP2/9IK513+MEgILsENrw9grvXqt2bn43viRTSGvY+2ELnnb6CDQffFsY3oL4LLVvsDL5Nvbdtv9fOxneF6brXX0i3OPhEUC2/CfgHbeqcLAOCQNedXnrvDxDe4cTkNTL4eJCWLXYwGPD0Wxl8a0vB3p23uOm7T703QRDIJDOFzC2uTpn1bw0gazu32t/gou/e4jaugTd5Ce9UD7Q0kcYZNmHRbqftWoX++1yFtn1322nbqdrB5ocNDzvY8W4P/n6Z8CaJ/juKWRh632gmul1b7J2w/o0GHK3qszDbIZPOcumkdtxrcnR1qx+8spxm8/Y0Pr/68RKKpLk2tIhnJQEkCfkzdEVVgmAkyc6uOD0Lqrgk4kmyoydOXrk30Jbg7OmXUBSFn/3sZ1zFbyf27t0LwOjoiwwOJskrRDo7U/T2qmNByOTovxYCHWofqxvaB9QAsdkh0LZeIHZdMX177xsttPSra40SFOi/x4nshJEjcRILGVoGtbYGgZ47nLRuUd95q99I/wOeQvme4HY7PXd5CGywseMDEfoe8BLeqc7HFp+JdQ+3oITVtq3b7PQ9UORwFo8Ji0v9zegQGHg0hDOmrsktm+1l5ZK67g4QfaM6BwwfnCGXy+HuUd9H/wZ72bzZeVeAjtv8BWfOwOMRgte6abvOS8/9rQw8HimUmOq4o4WuktTRA0+0FWrXu/tsbPm9LrUMG+oa131fSdvHo7RuV9cIZ8zKwBPRQlmzrvtDDLy9uB6ue7SN4DXqvKRELAw8ES2UW4vc4KP3zeo8avIa6Xs4UuBA1haj2jaozjWh3V76Hynea++bwnTeF8QalDF51bb2dtUurTvdrHusWK6u54EQUS31b9+jYXb+eT/OTrVtYKurbK3vvjdIh8aBMKoc1B4yI5pFwru9DDxRbNt5V5DYXUXOPPBEFN+gOgY8A3ZsLWbi0+qY7bi9he57y20Y2OoC1I/3gSeiGK0GDKKA0SbR86aSto+1Fextby+3d9uNPnrfFGbXH/Uz8EQH/Y9ECO1WbWgLm1Ubtqhtw9d7y0qn+Te5MDmNYCza2xY2F+y97tGiDXsfDBHVOL9n0MHge9pxarymdbubgVJ73xckeotqb6PVwMAT0cK3hn+Ts8zeXXevtrdnQK3V4Bt0sOn9nYV7jd3VWlZmbuCJKD6NR3r6FfXZGNWyEhafadWYbdmqjdnOchtG3xig7y0Rdny4h9hdrax7rK3AgfL2NnlLxuybijZ0xmyYtF1U1laZgSfasGpcPHytl74Se/e+KUTkBvXZzJ1dpHWbB0XLcBTc5WbdI8X3vveBINGb1QXb6DQy8HgEi1/GaJNo2epk4LHiu9B9b2sh3bTRqr73nj513uq6r4Vdf9KDyaNef36OKPCnx0J41qltPetsDDwWAqM6t3Tc5qPzzuJ33sBjIfwb7GAQcHdbGXi0WGoterOX7vv9BYdK/8NBWraqz9HRbmbdI0GMTjVbbeQGN933FI+78V0RWnc4wKB+G617uAWLZu/wbic99xbb9t7vJ7TTQfsbPWx8Z4h1D7eo41sQCO5w0PtAsW333T7Cu9U5TfYYWfcmP5FrnHTd5qF1i0LfA6p9BUGg6w4Pbdc6Cjbsf5MPR7t6DbaAkeRSmiEt8Bq7xUX0Bq2EixH6H/Th7lSfubfPTP8D6nyXikN6JUf7jcVyL/33ufH0qG09XTL99zgRtMxT0WssbH3CzeBD6jX33mrF16e2dYah71ZLwd5tW2Q6dxbTe2cyOeLabmPFC/3XC8gmlWtFY2l61xedxus2pOmyLOPJJLBbIdqSwWpW56n21iQbwssFgdJge4KOgBrUsMopxNmnGB8fZ3Bw8KpA6bcU3d3ddHd3AzmWJn9ApEXj8FKagc4V7Da1BJy/JUfPhmIAyOODUAxM9hyiMUf3NRJ2jfa4w9B9TTH4G95mIrRJHduTZ5LksjkcYQkEAWebke5bivV6QlsthHfk/WUi3bc6cXea6H/Ay/pHvHTf7kIyA4IqQoxeXywb2X2HB0+vyq2UiEnNsKu5vULbHbTfVPxm6rzTj39QPa81YKTn3hbMLonh/fPMX1mmdZOr2PaOAIHN6ntt9kn0PBDE7FPvL7DZQeedLXTe1kr0Rj+x2wO0blf7yk6JngeD2ILqOusbdNB9X3Hej90aYMsHu4jc5ENSJHoeCqFE1LbeATs9DxTbtt8SIHSd9lFnhsF3dxTWZHevUua3arspQKSk5GfPQ2HcPer3oXfQrrbVHk/4Bh/RNwTK2nr6VLvYoxZ63hQu+G9Cu7103FLS9v5QgQMpYTM9D4WRFAnZJbHtD3roL+EJ3fcGC5zTEjDR81C4UEauZZuL2N2tyHYJo91I7O7Wgt/N7JXoeSiMJWDS7O2i657iWu/psyNpWbZll9o2X/7NN+ig5/6iDTtuCRT4kmQRcfc7sEfV8eIZsNPzYIm93xggfL1mb0m1S9f9IbZ/qAf/ZmeZvSM3+Wm7qdyG7l7V3s6YFUfEismh3mv4eh/tJaUpeh4MFTiQPWpRbWg2ICkSnXe3lpXo674/VPAD2UKqvWXNhsEdbmJ3Ftt23RMksNlVbm+vZu+tqr2L11DkcGbNhtYW1Yb+Tc4yLhu7vYXQNR6QwGg3EtzmQQmX2PvBijF7rWZvs2qX9W9rZ/uHe/H02ctsGL25hfANpfYO4exSuYp3wIbZIyNoGYfC13tpu6mYurnnwSAezd6ODgs9DwaRzJCYTiMYKPigAXrua8Wr2VuJmOl5IIikqHYJ7XTReWcAySpikAS67m7Br9nb2iKr772rxIa3F+297fc6GHhMtZPZJ9Fzf0v5HHFH8ZnHbvPTss2JxS/h7LLQc29LwafrW6/QdVegwK3ab/YQ2q6+N5ICPfcGcGll3jx9NrrvLh43eqOH0C6XyhMk6LnHh6NdfTbBnQ763lRsG7nORXi3q2iXe3y4Os3qnNxhpudun1pW7q2t9D7oJ3Kdq+Dz6rnLi7tLPa49LNNzlxfJrHKr0HaF3nu8tF3nwuyR6Lzdg7fXAgYBJWik+w4Pkubzat1so/2G4vydSWeZG1J9XmaPRPdtLkwO1Q6BQSsdNxTLpXTcoBBYr17D8kwKe6uM2a229fXKxK63Fe1yjYWW9XLBht03m9nyiIKnQ8LbJtC5u7hZLrpZItSvLhqSDD3bBOxe9bhmBVIpGNf2DbX1QzScF3mk6etL4XSqXMrjTrPFE8exEgfS+B1Zop5soe2G1mVic5qAxJpmMJRA0pR7Hd4Vzh9/HovFwre//W2u4rcTP/7xjwG4cubHxILLiKLK6Vs9aaIaDzOkckQ7s7h86tixmCAQBqOcxWjJ4QnlCK8rxvbCAyJubVqVFQNtOyzICkxfSbMwlcbdUdykGtpkxtOl+XetEL1GweRUj+WKWYhst6EEZQYfa6HtOge+PpVvSBaB9htdWDTfjiNqJnqDu3ANJoeESVGPI8rQ/gYvtha50Lb9DcW5u2Wrk4AWr7jy/DSZVBa7tp4oYbP6ravdXmCLk+B2V0Gg1H5rAHe/ndhtLUSu9dF+a6BQYsq/yUmwpGRX+y0BXNp6YvHL9D4SKfAT/wYn4d3Fa4re5C/wJbNHpv3WFmTtflp3la+z4Rt8ePrV9UR2irTf2oLJrX3z9dppu1H7VldEwtd58Q04Cv9uv7VYms3VbSNaUvYrvNtLcLcXs0dGlA2039qCtUXlQI6YlfYSHhbc6SGwxQVA6FoPmz/YhaJxIHvUQvutxett3eahZVvxWbXf2oKt1YTRJuHqVtS2BXu7CO4st2E+vmVtMWFtMZPRssP4NzrLSqS131xib59qQ6MiIhgETE4j0RJ+2najH0+vakOTW7O3Ng496+yEb/Cx8Z0xuu8LqfZep9lbKbe3u0cpO65/gwtrwIxoEREtmr21OJSry1ZWZi20y4N/ozoOlZCJzntai/aOWstsGNxetDeiakOjxu/sbeX2btnmpnVbiV1ubSlwTiVkpvvBEKJS9JdVjllnTLNhQLWLaBGRFQklZCkfszcHcHWvtjeAd8BB+EYfW97fRWiXh0jZmJU0e6vX7+m3E8nzMMDTpxTGaN7eZk+JvUu+HcLXePBvUG24MJTAu86ORYuzOmPWMt4b3OXBv0kdh6Ksvsu2gAlZkYr21vxWrducBLYUeUL7LX7sEdWGgS0Otv5eJ7JH1P6tzRElbR2avW1BE+23+JHMAo6oBf8WR3nbN/hwab5ii0+m/Y3+QjlD34CdyA0ekNRrarvBi7tbbWv2SLTf7C3MEZ5+G+HdxXes656A6nczCKq93+DF5BI1G1qJXKtpPASB8C4nnn4b/vUKvQ+00P4GVbgN6piNXFe83uB2J34tTinK0H6Tm/YbPbTf4FXn5BuL19C6xY5/UONPIrTf6C5wTpNTZHk6yeQJNQYX2GgjsKGEP13vRAnm/WMS0evsIKplOtPLWVoGi23bdtnUb3vA6hVp22Ur2rDbyLq7bXTdpD6PyEYJR1j9zWxXuZekhWQ8UZFQj4Gc5vPK5mBBK+hjskDHuiwmSV0v/d4M0UjR5xWNpIkIKzgTKWQRWp1pLLLWVknR61guCJRinhWCdjW+JIsZzLPPMzo6zObNm18xgRK8giIlgJMn1ajrsWMHsdvVG7dYQFHA4QB5YglXq4DiKZ7W7jPgiwoM3migJbiMzSPi0BZlZ1BC8aoPIhdP4AjLuLQg/PD+BWSrhEMTQbjCMraSeqLOiAlXfhekDLaAjLPDQnI5jWAwYAuYyCejcEUtONuLNaptLSZcWiDH0W7B1mJm8B0drHskiKvDhiNqLWlrxq1Nho6IFVuLGbNLYnE4iUEUy9oqIQvebnWw28PqcRVtMnd1KTjarJz67jAH/uUc9rAVV5fa1tZqwdZiQQmpx3J1KtjDxePaI1ZEkwGzXUJpMWNrtRQmIm+3AyVYvDdHuw1Xp3q9vXe2YnbKhcnR1WXD1lraVsHVqV6DrMjYWi04223s/uN1RHYGyto6Y1ZcHdoLJ6vX7I6pfd0xO0rQQuctqgjBFbMVFpD8/Xk6844JBVurBdkpkZxZQZQMWL3F1GVKyIJba+uIWrG1WrBogQVnpw171MaLf32Kw/9yHiVswdOpOTFCFmytFqwBdUy4u+w4IkUbOiJWgts9tGxzYWtVj5u3m7tLwR4pt7dLe45nvj+EaBRxaEEUT48dJVRiww6lYG/ZbcTWamFlIcPk0TlcUaXC3jZcml0K9s7bsEMhB4XUja4OW8HRlrehu6PChopM912tuNoVHO3l9s7b0NmuPnNZK1fl6rLh6Ch+0Cqhog0dbXl758lhhV1arfjWa2QlqNrb1locs45I8RocEXV8J6eTnH1yGMlqxK7ZzdNpRwkX7WKP2nBq12vxqDZcmkgwfmgWd6dSeC/y9nZrBM+o2dARVf+t+MzkcnDlZ5OanWwFO8gmAVtLccy62u3YWiyqeOndHXi6FZwdJTZsseDW/u1sV7C1WDBYNbvEbFi8Fvb8r5OM7Z1V7a29y842K7YWC2aN2Lg6lbI5QpAEZK1O9Ko5otOGo61kvIQsuGI2uu4IErslqLbVxpMrZivYE9SPlvw4VAIythYzvXcE6bzDj6fbhtJaFCg4ItbCvZocRmwtJhyaA9jf78DmK76PjjZLYa6UFa2tRmxcHVZsLSaUsIzBKGByGXHl71UGW8CES2vr7LCoRMukOjWcUQsGg8C5n06yMpXCFpBxa6JBV5sFm19GVjR7d6jzXd45ZXbJ5LLq/7eHLNh8MmaHDAYBV8SEPVRcJ5SAjKvDzLb3tdIyaMHmM2LT0l+6Iibs2lqEKGJvkXG2qe+J1StjcUpksznmriRxhWXsvuIHr8Mv4gpphMMpYHMZsGu82OkFg2goZAFz+EQ8TpUIyGawKeBwqb953WC3wNb+NDduTONWcngdKkkQZLDZwW9U11q3PYO9+Mg58uIPmJycxOVysWvXLq7itxN9fX1Eo1EymQynTj2PURPYuN05XC71/8sTSzh8Bpzat47iBbvXwKabDfTvFnAFwBUqZolwtEg4NcKsOAXsLUasDiOpuFrn3BUs4VohI+4OdX6w+kTsQRMW7cPHFTXjbDOzOJIkvZLBETLjiqltzS4Re8iEojn1Xe3WsvnN2W7Bu05h2wfbMXmM2CNmlKA2F3bYCnMSgCtmLfCw8YMLWH0m7Nqa7OywFfhQvm9+3seormtWl8zp746QmFzB0WZVbSgY8HQpuDtL1q02W2Het0dsmF1GJIuIyWvE3VXkSwgCjrbieq6E1XXIrImuWja6cLUX11lHyTUprWYcURsmjfe4uxVcHQqxu1rZ+rvduGIKbo1/WP3qcZWgFnTrsuEsWb+dHQqtm9103RnC4pZxRG0l66yCs4QXuDqVwjplNEtIRkOBI7liNhxtNdpajTiiNjLJHC/+1UksTrmw5uavqczeUVuBKzrbbTjbbQWhT5kNNXvn2zqiNhxRG0anxOVfTLI8k8QZLQZpHe3F8zgiql2sGjd099pxdiiM7JtmZN80zliRlykt2rPxmovXUGJD2SqpZUpTYPaqz0Zp0daiThuOEl7g7LQXeHvvvWEcIVuBD7o7y3mYs8tetKFdxBG1IVmkwjWU2bC7+MyNRgOOqK3w7FzdNpRWC+03+grnyXOgvN3c7RU2tBo58dUrJOdTuDpLbNhmKwjTHBErjqit4EBwdyk4QlbGDswwfngWZ7utwNuVoGoXS4nTK89dQRXzx7VdrbYWC442G1Z/0d7OkndBHd92AluddD8YxtFmLfATd8xWbsOS98ZkV3n41MlFDnz8vMaXitzK1Wkr2NtgNuJosxbmCKvfhMEosKKJ5QpzRC4LRrBHijzHGbVij1iweAx03RkgsMFRNkfYIxZcGje3hy3YI2YkqzYOO6z4+hxs/3CHauOwGafGiexBM/aIGbNdKFyDUzunu8eKLWAiqDn4bH4T9rAZs1vjke1WnNGSubPNiqvDiskuYbSI2MNm9ZsXlZc5S+ZDZ9SCO2YBgwGrW8IeMjFycI6zP5nG1W7GGS6ZZ6MWXBoPM9qN2IMm7JqQwBkxY7RIhVKgrqgZt3ZNRhm1reYAdkRM2IMmeu5yM/BmH+6oCXebxiuNYG+VceadxWEz9hZjYV1zRUwYZIGklg3N0SrhCKpj1B4wYg+IGM35thJOf5GXWWwGsmmNG/rUNdCeUYmY2weukjIkTjeEnBm29aWJtqRxKjmUvCPInsXlAbOWOt6jZAu8zCylOHxwH6Io8pWvfIWr+O3FgQMHADh5fC8ue36jAXicWezWHKbJZRxecBV913haoDUMm3aBz5XA2WrArvnEHAERp7aZQUis4A4bcUXUgT9+LInFJWEPqL8rPgFnWC6IZjxRE+62El7Wpn7rpJYyIIAzakbQ2rqiJtwl/gNnuwWnxr1sPhPOdgu997YQu82Ds8OCq6vY1h2zFuZCq9+EK2ZFduSz5Ai4O0vadloLHMjikXHFbFg92jwUs+HusnH+6TFe+uxFXF22wtppckq4OxWsmqPeHbMW1msAV48d2S5hUiSMVgPuTjt2zV/jaLeWcQh3l4JHWzvbr/PjbLMVBCvONivuruL65+mxFdoiaX6iNivbfr+H9je24O6yI2nOdk+3UhB4qPeqFHwy9pAVb7+DzjtDSGaDun73FM/j6lIKvMbWasbdZcfslEjOptX5usSn4eq2F2xo9Zlwd9mLwaUuO54uO0c+c4FTX7+Cp8teuHeTS22bD5Q4Yzbc3cVrcHfZCV/vxzNgR1Yk3F32wjrr6lQKzwJU/pTnH6e+fQWjRSrwSGe7rYxDuLuL9pbM6nGzyQzDe6aw+k3l9u5W8PSUckV7Yc1WIlZyObj4zEShbf4a1Gu0FziQPWTB3WXH6DAS3uWhdasHV0/pvSq4ND5iC6j2ljWBjavbXnZN7m57YaxZfLJqQ4+58Nw8JTb0rnMR3qm+3Ca32tbqL/qBXCVtXd3as0nDya9fRnbK2DR7V9rQ02NfZcP45ArDe6Zwtltx59sKAp5uW8GvLEng7iz6Nm0BG7ksjB6cVa+3R8FTeq+dSoF/KEHVL2gwSXTf20pgo7PM3s6YrdDWFjDjitmQbeq74OxScIRsHPin80y+tIC7y4aro3SOsBWCee4uG+6S+cRoEwsC9lVzRIe1rK2ry4q700b79X767mvFFbNi1fxRrnZr2Zzm6ixyWcki4YxZ6b2vlfB1LpxRc5n/1NVpLXA4ySzibLeitKrHDW11lh3XHbPi7tT4kwTOdit2zV+pBNW50+KWkMwiNq+Mp2Q+dEbNOLXvVnuLjLPdjNGi+a/bLYiyyOkfTJGYTqvcS+NPVr+MM2rGrPkGXVGzysO0YKTilyGXLwss4WwzFcR9roiMq63os3NFTbgiMhseVUVQzrARixb4c4ZlnPk1xGDAHZYK64/ZAs4WI9lsjqXJNK6giKu1yK1cQRGnxsMks4DTDzaX+pvdrY7NfMJldwt4Heo/JAk87hxOTaPutGXxKVk2dmTZ3ZfE78jgcxSzG3jcOfyCyruc1gw+e6awBl45+lPGxsbo6Ojg2mvLS4FdxW8PnE4nb3nLW8hk0lw++0u0/eW4HRm8LnWsmCcSeALgdKm/mW3gDUD/ZujZAG4ljStUjEW6wyKOgBb4lVK4o0ZMNhEykF7K4QoX/WOuNglnWH2nJKuIO2bCoolD7K0ynk4Ly7NJkvE0zjYzjqj6zktmEXfMUliT7WFTIWAPqh/LN6Aw8GgIySbi6VGwat9tSqsJT7et8M67u4rf+dOnF3CELdhaTQgGAaXVhLfXXkjC4anwCXh7HVjdMqe+PaSKInodiJoR3Z0Knp7StchRiDdafCYcISuyIiE7JfX7u3Sd7bMX4hlmtxFvnwNZ21jfdl2AwIZi8N/bay+JM8h4+xyYNCGro92Kp8+Of4OTje/pxLfOgTM/P1tFvH0OLNoa4WizFYQ6oK7f0Rv8RK7zIdkkvH0ObIH8t6QVT6+jpK1S8B9IRgNmp1wQGStBC96+0rZF/wGAt8+BIBg48q/nEU0GvH3lNixdOz29RRvaAmZ8651ENUGOq1Mpv/5ee8H3Y/GZ8PY5kKwiM6cXmR+K4yzxC3n67Ng1e5tc6r3m4yLOdhveHjsjL04zun8Gb4+94NeSHeqzyfsjHVEr7r7iNZgdRuYuLZFZziArmr21ddYRseIuvd6eIufsvi+Cf9BVtHebBW/ZvRX9hqJo0K5XKrd3/l3uUnCXcENvn6PA8a0tZgKDLsI7tM3/XfYybuvpcaBE8t8zZtWGZpGhX02xNJwoH7M9dpyab9PsVsehUVtnnTEbni47Q7+aZObsIt4+R+HZmJ3amNU28Tmj5eNQMoksauWKjXbN3p68vW2rbOiMWbG3Wei4JaC+n5q97RFr2XE93fbCu2yQRby9DuYuxTnx1SvYQ+Zye3fZ8eTHrKi+c3leYwuYke1GSKrzpafEpwtq2zyvsfq1+cQi0n1PkPAOT4UNFZSwFQQDFq+Mp0dBtooFG7ZucbPxHZqPt8eGQ3s2Zqfa1mjX4gXt1sL3gMVrJLDeQVDbpGpySHh6FEwOTbQZseDpUQpxP1eXDVe7FaNNxGgTcXfbCqIwJSjjKZn/3J1WnBo/FS0i7i4bQ/tnufyrKexBE56u8jnZpelDRBncXVZsAVndLBiQMbuMhbJ+rnYzro7iBm53zIJN27Bt9cu4YxbCWxU6b3Gp3+AlvMzTLmMPqG0tHgl31FgQjjpDErLVQCqubnZyRyTs2lplcRhwh0WM2qFcrQbc/mKmI5sDchrvMlnB3SqgJFSRt9OZxesttvW5M4RMSbbHVoi40gQcGSxG9ZwuaxavO4dFK5XuVzJ4rFrcUoSXXnwGg8HA17/+dV5JvGLl3vKIRqNcvnwZWbJz47Y/IWMtLuzyRHkKw1w+lZYM63bAyZ8u1SzflIuvzjvt6pTpfoODMz+ZZ/ZMRXrZipSHudIUiaW3XFGDVv259Hf1/2/7vRgr8yle+nxF+rs6KaiN1hyb3tvNxLE5Lvy4StrR/8Ppq2XFgGfAyegLM7r6dd8fYmEkztiLs033sXdYsAXMus+1ZsjoKwUG7P6LAWZOznPiazpTHK7hXK8V7B0WrXygvrS3ayn35u5XsLhNDD+nr2Tea4Zaz6lBSr/d/7GfhStxXvpc87V9ZUUgudjgHX2FyrwpIRlnh42hX880fVzZbaDz1gAXfjZdXo6yQSpHs9+EIyQzcbiJdN6VaFDebc19KaZ63Pb+EBMnl7j085LU5pX3VGEfb7+J2E1uTj01w/ylZPm1VEm1WFZypPT/y8aKhuXnzVrNbL1DYHkxx/FfsSrVdcpdDByKK+WpRX2DIrIxy9lhlQCZZsoHcqJEoGsZWSbFFM8d+DjJZJKVlRVkWeYqfnuRSqUKz/j6rX+G2WhrintF1kFiEaaPV5R6Kx2bK8mKn3L03uHApBg48vVZqJX2Ot++Vim4GimvC/0yGdy9VrpuD3Dqu6PMX6zggHXSWkdv9uDrtbP/49VLWTVMib26g772ZX1Xn8u30cHcxWVdZbOsLUZCO31c/MmYrnJlrTvdzJxdZGXqtakVb7TqK6emZmGysucvT6zhZOgqLfdaonWnm+WJFebO1yijWAVrLfcW2u1l9ty8rpJ5rwnya+AanlPvQyE8vQ6e/1+nmu+Un/IanEtXyuo6fKplq52FKyVl0ZooQ+LfoGDxyFz6+XTz14CaVWD8+OLaxnuD8m71uza2VfQGB+6YlUP/NgqZOu0rbNn/oBej2cCRr0yuvs4qdhekEj5Wet350iPFiy77p6vbTGyzyMnnMyxNs2pOTruLTilDsmRdMubo2mrg6HkD+cElz5Y/gErudWHq3zhz5gRbt25l3759q+7hKn678MADD/Cd73wHmzXAru1/QNpWHIumyfKU/bnC/JAjtg4u7U1UL9+EKlIqQzaHxQM9Nylc2JNg/mLFsSt5RinvKuU7VXhXropPbOCRFlJLGU5/v8J3UOEzK+tryDH41gjTZxYZfm529U3V4VF6ypToRv4aJTVAN3VsXlf30G4vibkk08fqlB6ugNkrYWux6j7XmpEfdjoqqu34aB+Tx2Y5/8Pmy8QVzqWvcttrBrNXwtGmMK4Jc5rFWsq9KWEzZo/M5JHX6BmXopmSZvnnpNPXtP33u5i/sszpb4803UcyU708ZCleoRJvskPC0WZm8qjqh2qGo0hmCO30MH5knsRMyeBtwH8kRd2gNnO2SvmVl1nerX7f5soQDz7qY/rsMsMH6nxnGMr9WEqrka6bHZx7dp6F4XRtn1Yepbyr5LpzDXxeOYvMut2wsgznDq4+bMpdFMAbKnxeSpeIRc5yeUrLRlFRGinhLZ7bMpYknV5iz76/YmVlheXl5UJlj6v47UQmk8FsNpNOp7nu+v+ELCukS6qemCfKJ6Oclk3OE8iSTsHSudqTlVAZb8zlCG00YXGLnP15fHWZ3UrukkpW/S1XzedVwb0sHonOOwNc+Mkki6OrOWB53yIn8g7YCQw6Of6VK9pPtdvWvYZXCfY2C/HJpK6yWUZFJLDBxejBWV39XF024pOJ8tJNryJEWV85tehNfjz9Dg7+89k1nAx95d5eQzhjNpJLKZbHmw+IrrXcm6fXztLECiszr9Pga63nVGfdD+70ENzuYf8/nqneoJI/5d9pEci+OuXd1NMWr9kRtbAyn2JlNl39mkqvS/vdHjVjccmMH9bHkx0dFpZGE2SqPGLdJX31lPFtgtd5+qz4+qyc/eEk2VRJ+wbxxshuOxanxOkfzap/kIr+gqr3VPJ7adndRtzL1GKmcyOcOwLLCyBUfLcnvUWfV3m8MUPLoMilSYmMphg0zZZzr2Vf8dzW8STj49/h6EvP8+CDD/LNb35z9T28DLzio/rMGfXlSqYXmJw5ixiv7VEtBGmTcPKHtQVKtRAfT5LLgclWf3GoJAayV2TjO8OFNGfNYN8/nl8tUGqA5CIIolBWLq4ZRG7ysvs/9hdKZTUL2SMX0ks3d33ZNYmGznxnWJdACWDhwvKaBUqOkl0szcC/2cm1fzpQKPXWLJ77f47pFiitf1s71/7pgK4+oJbd0/OsAHb8US87Ptqrq8/ChWXdAqW1YubEom6BUvutAXb/xUAhxXezGHisrVCarVlseV8Xu//juvI/NrHQPfc/TugSKAFs/VAvWz/cVbtBlYVdiciF7G71UBlgWxxOFgVKTSI5k+XEV0fLBUqNzisIrEwmdQmUZAUCm+z6CAKw9f0RtrxXy73bZBBN9gAC5Eqn+0aOHoPA1Kkkez85pgqUmkTfXQrh7ZbyPzYQaxjiCXI5lb9VCpRqIwfkmHwpU1OgVArLiOpIuzT+XVKpFLfeeutVgdK/AxiNRh588EEAnjv4NwBNca8rx6sIlBpAEAR1HOfQLVAKbbfTfaenRuvVmDkVZ+/fX1gtUGqEnDpPGvVRB7Z8IMam93Xo64Sabhhj43Z5TB6e1yVQAoiPpTjz3RFdAiCA0Rdm1iZQ0sqb6cGW3+ti8wd6dPU59oVLaxIoXfPn6xh8rL1xwxL4NjroKSlv1gw8A3au+Y/rCqXkmsXoCzO6BEovB8PPTekWKG3/w95CqcJmsRb7YYTdf9JPz/36+p361qg+gRIQvdbL7j/uLaQFr4ZqAqV8KW29GNu/UBQoNUCep0wcWdQtUMJgYPywPoGSp9eqzn86nDn2sJGdH4rg11JWN+sIEk2iSmn1DEGDwInvTBcFSk3A7IR199oxKhWcMFU/Yi4b0uRysLSADod8DlICZ/fkqCVQKoVlZJmp2bMMDV2kpaXlqkDp3wm+/e1vYzAYWIqPMz1zDmmp9lgUCoEjgUvP1xYoVYVBYHle/X6QpAZRigreJVkFeu9yY3I0/x127KtjnH5ysuH8UTZHpMEgCUgmfd97nn6FHX/QXSjv1iwks1AobdUU0qxJNDT83JQugRJAYiq9ZoFSfjd/s1DCZnb9UT+h7c1za4AXP3ZSt0ApdlsLuz7aXxRFNYmOWwKFUjDNYsO7Otj8AX0cJTGV1i1QWisWhxK6BUq+QQc7/6Rf37hFs1/eT9bkutz3YIQdf9SrS+AnGAT2/cM5XQIlgA3vjDFYUsK6yoFX/cnskZobRxWcLTmfLgiUmkU6AZd+MV0uUGqm32KmukCpFiRwd1t0+7zWvdnP+ke0VMdNCpQks8Zn9XwSGgQWx9Mc+vI0C8PN2yK6w4S/t/x7UGjw/S8sJ8ll9epLM0CGxbOZmgKlUljGVH/Y8PhXWVlZ4aGHHroqUPp3AFEU+djHPgbAvr3/BIBUR8giZFTuNT1uqCtQqt5Z9XmRy60WKFUiVe6fdXWZCe+012i8GsvTaY5+cZilsWTj76+SOTWXySEYKJQIanYjTs8DIfreHGncsAL2Nksh00czWLi8rEtoBJBazDD03JTufrNnl9YmUBIpZPxrFj0PqqVY9eDSzyfWJFDa9P5Ouu7S50dRwuXlzZqBxS+z9UM9hfJwzWLu/JIugdLLwfSpBd0CpXWPtdH/aFvjhiVQQmbd9gPY9sGesvJvQEPeNvLCdPMCJQ2eXoVtv9eDEtLnw8pnGWqEynlk/tJyUaDUuDMAC5cSugVKGATmL1UXKNWCrVVGrO36qwrZLrLpnWFc+eyYTQrPJaOAKAnl19dEvPHKnsWiQKkJiGbouMaCaC1//o24l5xNQA6S8dUCpdrIACJjL1FToFQK63iS5eVpLpw/gt/v52tf+1qT52ker7hISZZlPvKRjwBw8NRnATVYVitgJuRyhYBZz80WdjxhbypQD6oIaN+/TjJ2qEogwCCAQaiqXJatEhaPkeCm6iIHQRBUclChRJYV6H+kWI+8mV1hL3zsNGe+M1qtQc2+k8cXSC6mMcg1FssaTtbN747RdVeo6m+14B2ws+vP+vWLRB6P0vuQPmLTdW+QLR/q1tWn+/4QG94W0yVUmjg2x8LlOHMXlho3fpkYPzzDzBl9zitQU1K2bNIX9Jo5t8jseX335O5V2PQ7nchNLkgvB31viugeE/NX4iyNLrM0rC+Y5+qy4x/UJ1IaPzTL9MmSZ6VXiasDkycWGD8yW/3HGmRj4JF2dn2kfoC3kjB03OZnywdjxeM2mUVp8++244iVkBptvqx5XkFgy/ujDDymjyB33NpC1+0BHO01xp8gVH0Oy1NJlqdTDXeilX7EJadh3z8Pc/mXWhalWveTyxbuN7Jbwb+ugtzlcmoGpSpZlNTjGrAHZDzV7imZqnlPAAefynLy17WDZOJKpkzVPLgLdt4KkMM0k6wpULKMLBcESsfPfZfz58/jdDoLtduv4rcf3/zmNxFFkUw2ydkrPwOa415GI2x9RKHzhpL3oM4YBjjz4wWOfnOu5u9QPYOSp7e8LFHNvhW8zbdeIbi9ZL6vt+s+l+XSM5Ps+8dzpKosK/V27McnV4iPr6z+oc7c6ulX6LknREdJjfHyvtVtOfB4lI3vi9W8lmpwxqxqHx3aIaNVdW6Er9P3ob3zI330P6zP+TJ+eJaxQ69NtszJY7OMH60/BisRGHThHXTp6rM0lmD+0hKLo/ocm933Bem4o0VXn7XA6jOy/u3thfTWzWL2zALTp/Vx18CgC+96V3ONS8b81LF5JpoN2DbJY6ph5nyc2bOLLFyqHlSq5rh199nY8ER77fejRpRl43uitN2gBYWb4E8AnXf66bzT3+AuyuHpV9j6gTaUsD7BYNftfta/tQ4fNxhW8SvBACvzaebOxXXtVDv/9AwHP6N95zaYm/O26ry1irAzl6v7/AMDVmw+I2I1U6TSNefa8VNpDjyZhmTtazMkM4UsSkZjjp23Qmy92l6eTdUUKJVyrwMnP8fy8jJvfetba57nKn778K//+q8AHHrpMwBIS+maYiUhmyuIlcKDBrbcK5dtlqyLrMCR7y4xfXb1d0Dhe6gK7xJlAXvYhLe3+hpR9HlVzHMStN/kLr5XNZydpf6yw/96mUs/qyLCrOPzmr+SYHkmWZty1ug78Hg7Pfc08HlV+MtsITNbPtilWyTSfkuA9ltqcLwaCF3jYf3b9XGo1u1uNr4rhqOjeZ/X4lCCqeNzzF169UXRkyfnGT+on+MFtnjwrde3MW/q1AIzp/RxFGuLmd43RzC7dKqo1oDwDT7dYyI+kWTm7ALLU1W+M+ogsMWDb8Chy281cWyO8cOzTbUVDIK+DJMVGDs0y8RLNfh4jfW8594gW9/X4P2ouKbAJgfrHwuBtNoHVBMS9D8cLA/kVeE/leh/uIXuu6psdq3zfRze7qTnzgCOGsL3Wte89P9n7z/D47rOc2/8N21Pb5hBHfQOkCBAgmBRF9W71Xu1miXZllxj55zrPR/OefPPSd4kjh07iVsiN7nGRZatZlm9kGLvBSBB9A5M7/8Pe0/BYGawNyzKjo37unhdJGetXdZe5V7Pc6/nmYjgn44Ud3TlcKNYCPY9M8nILn9x3pWIp3mXu1WPo27x2EgmEsXbQ6XC4dHhql1KvFTL2LwOvwsDews/mjocXxRFqaEVes8ShbjCfKygQMk4HskIlEbf5/jxYzgcDn72s58Vvtkq/qzw8Y9/HI/HQyg0y8jIDkAUKhUSK6niSVGspIHObTqq18gPIDC6P8KJ1wvYAFL7v+hSXuaok9J/FxrXBbiVpUqgpMVU0B+ZqS+O2ZkjPg4+M7RI0JOe04twr8BEGN+4MtuG0S3QdkMNZeuViaJrziul5SMeRXUMJQLN11SlxVdy0XKtR1wvFWDtnfU0X6nMhzp1YJ6xXR+OzWti5xzTh5SJPRyNZioUitcj8zGmjywo5igVvSVU9Cq710qgMWqov7QCY6kyv+bMMZ9im5ez2ar8nTQw9v4McyeyhNR/iL+xkD1MpcY/FWFy7xy+cfnfyugSWHtnDWXLBHrI5YNNV1VkgmsUs9Nl/Va+wY5nq0P2swEYy/Ssub0q7/ctxvkaLi6l5coCPsoCe1e1FgJTEXzj0eLfKIcfTez3c+hnYgCQZDIpy99Y2WNeKuyMxYq+k92jw+bJb/Mqxr28k3DwzQSJaOG5f7G/MU53XxJPrfhv/VysoEDJNBHBJIkRd77/b/j9fj796U+jKeQz/QNwRnZxX/rSl/ja175GNBplx8H/ZGPnvWjmpM1zblj2LCyMxTDa1EsyAyRDYfEjF1ikHU0CNZud7Pu+vBNBvqEIu75xiojCjEWVm1w4Gy1UbLQztl3+omSpEihf7+TEr7OeT6UuSBxCExHe/3IBNSWIHTKPUGng5TEiPmWnRLxjYTEalUOZAdxSaSQWVqZU1tt06EzKutzQO1OggtCkAuNLBPY9fVLRfQDab6rG2WLlbQWpNib3LjCpVCEKvPV3BxVHDjv+ixHF97HVmDCVGTC7BSIzZ1bhbKtTGLYCMfrS7GHlqcPe+j8HZYsZUxh+U4rypIAsdD/UgN4u8N7fH1F0r7zfahnH2+Abk+jM+Sf5QsYjg0OHzqhR5NQrbbdhsOtQazWy0pOkkEyIpzVkQ63m6G8nqZ2LsXAqb7zGglUP/XQifY1CSCaT6ecradFjLjdkBEqFkGqnhEgqKtaYSSZg8tD4ss+UjR3fmVva/4rUrevTIZjUHH2vQIFYHN2kj4RtsRPBOw9qdQxVECggWtXMixvMhElHJBJmamEfIJ7wXsVfFl588UW2bdvGwPAr1JafjU6nQzMvOey1+eeWaCRJyBsnMJ2Hj4SLrxnNVzgJTEUZ2b50Dk+Nzex0IPt/PC4r2kZu3foL3CTjSUZ35AgQl0kRUn2ui/lTfryDGSOMSq0qKFQ68pMia2wBvjZz2Mfg6xMMvaMsimAyllScdk5j1GByGXC32ZjaL493RAMgWHQY7MoWzOF3pwgXiRySt84bK0v12vdUK/7xEAe/Lz9i4fFfKTvpDXDwx4OK02WFp6Mc/J6ySIoAjgYL8WiCkyhMpaIQpgojVo8JU5ke35D8E9/Hn11B+31/cHmBXO46GIWjcrlran3WwZYnWxnbPZs/VXYBeAeDHMojUCrmfPOd9jO2Z46JXQX6bj5upQPBpEGwFudQuYYHa5VBPlWTuI/OpIYk+GRGbJJuzNFnx1FrC9ysAK9aOB1lz3fGpEvI40K159uZ2BcgNBNd3sEGkEhS0WPG3WTEPx5hfJ+MPitdd/DdEKM7Qyx3mDkbay4zcGpnEG+hbUY8gXZqKfcKBWB+KMW98q+d2dxrzPcskMRqtfKP//iP8h9wFf/tcc899/DFL36R4eFh9h98hrWdt6GVeFeyyGEz70Qcq0uz5LjgklRvOTCVaqnZYOLI8/I4QHghyZ7vjRNT5nPA1WyibK0V/1SEqeXsHFmczODQ4lpjZfjNLDtZEZtXdCHK/qeLrLEF6p783TiJqDIO5Z8QT5jqFDq97PVmZftfQGfSIlh1itKjTe2fR2fWEVAoil7Jeu45x01VXwnbv3xU9vN5B4MFRcDF8N4/HVacIm7kLeV80ugScNRbGHfpCck98b1ClDRZ0AhqTr08IbtOYDykKKVcCu/9/WHQKXN0zRz0ihHAliEd2fyo5ZoKzFVGdv9b/lTZhTDyTh6b+DL3Pf3mNHpbgfmxAJfQ27QINi2qYmllc+CoNWIp16PRq5RFOIonSeSO+WV40fCOeWKhJAtD+SfbbLtVNgZfX+ZwHUhhuMXnN5VpsVYIjO9dxjaeulc8DhoNlV0mVBoVc6dmpJ+LcbbMb3t/4VfkMSprVGFyqBkoZE6PJdBNBojbFou5Aj4wCkkSXsCRv6p2QWzbuEkAogwO/xaAX/3qV/IfcBV/Fnjrrbeoq6vjxPFfUl6+Ho1Gg25mGe4VS+KfSRCYX8opVMv4GyvXGYkGE0wdK3CYDRZxlZOvz2XSPqXmHhmRLarPcqHWqpg5FljsBF/GZlTSZiE0FyEgCfiSiWRR7jWsMPsFQHAqQv8Lo8woFBAnEsptXioNWKtNWCoMzCs4pK936NDblfk1R96ZJhZS5tecPabcfwViFpbARJiBF/IEsSiA0R0KIzADQ29NMfS6/GjFAPFIglMvKbdbOSTh/9j7yp9TCQSLhpJmCwsn/QQVZAMZf1+5mOz0a5OcflNhNpp41rhS5G9sZGLXXOY7yzAWhWdjDL6mbAxHvBEG35hi9nj+vlvIXqa36RDMWkX+RmuVHp1Jy/Dbc4u5Tb55QPpdZ1KTTEBkfvG3Xc4mdeK5cTQGZTav0GxcjBhcDDl1SzvNzA+GiPjiy/CnjM3LWqOnostEeCHGTL+0dqiL7EGl686cjDN/2pcvS3tB1G/QMn48SsFkGvEkwoSfuD0TcVKjESON+6cSqEMJ4ob8z6ZbEL9JzKJjYeFtIhEvjY2NfP7zn5f/gAqgSi5JZP/BYHBwkLo68YTEljWPYY9lhY3LI1RS+QoT7WS2wSZPx244x0Rpp5mDP5/EN7y4UyeLhYHXxKk7u4RTr+SfUJPxpYu6vcnA/InQsvFLsxfi7o/WYSoz8P6Xj+QXRhW4VtsN1UR8UQZeKLBYfAh5ZP+7wtVppbK3hP3fOSW7TtVWF2XdDg5+94QiAVvzdVV4RwKKU+Apha3BhKvFWrg/fIA46687WRj0K2q/lcDdZUPv1DGscJFdCTpvq2F4xwzzJ+QL3pqvqcTk1rP32ydl16nbVorOqlsqVFphdACxqoyFcCVQ4GBTdt1lnqnQtQXourWSgZen8Y1EZKd6676nAr1dy3v/NpQR/+V7t+y2UqtAAItLh280R0VdQBFc0ig6+mcHc+bs7Lq5uWKTSbqvM6HRq3j/2TxMI5b5v1xHmSqYYRnZhCL9mPMZQ3bCpGN44RkOHTpEe3s7hw7JF1uu4s8HbW1tHD16FEFn5bwNn8mIlCCvUGkR98odl8s4y9bf5SQ8H+fAz6aXcrMsVp1LM0ua9EQDUbxDBVh0lhEnmUxirtLhn4wuFZjk2+hIfEpngg2PteAbDXLge/nTuOYzmFiqDdRfWMr+75zOe90V4S+IqzVeUUlgOqQove+au+vwDgcZ/J18Z4+90URZl4NjKxBvK0XVVheByRBzx89sdM7OO2ux1Zp5R4FQfqWovbCUqcPzBEY/YPF6zhxStsGOsUTPqZeW+bZZa7POrqP9+ipGt88wdUC+IbTj5ipGts8xf3Ixx/tDIgQU5Vd/LP5UDDLDVeei9hw7Ko2KU6/OSZdZ/vl1dlh/dzVzgyGOPrsMh8/hXpYqHb6RPPN/PsONWoWn18jw+0FUxcLO5HAvW0WS1gssDO8LM9Kf57pZe/w/hHvNMc3hU99DpVJx/Phx3G5lqcZX8d8fPp8Pq1W0c23a8CSOeCY6dT5nmXohi5fljLXlREqlDSpq+swcfWEB3/hiG1fRdCTRGOU9ZsZ351/H8kUeN5dr8Y/HWM5Kms3xmi4vw9ViZuc3B4nlOziXw6VSPMxzjotkPMHI2wW4g1IO9hfEuyweAxXrnYrESs4WC+W9Yp2836kAqs5yEZqLKE6BpxQGt46SZisj75xZpxfAps+0M3vCuyIBkRJYa40YS/TKU9KtgE80XFzG5OGFJXbxRZfN4TBVmxyYq4wc+7n8fuRea8VQIjCUa8f772ibKgYl910mCng2Wq92cfrdeYKTMdmp3loud2Kr1rPnu2PEUlQkr80rx66lBYNNQ2gmx8GWz+alUmFygdagZWG88Fya1OccgEkmaTtXh8GmZvcreSrEMvN4rkhJHczMQzHH0mhUKYESiCKl8akfcuDgXnp7e9mxY0fBZ1zFny8eeOABvv3tb2O1VrOx77G0SAkKcK/5wjYv1TL+xvZLjYR9Cfp/n2fty07Bk8NVjCXi+ApMRvOLlHL4lWDXEPHFIZ5jPyti80IDPQ/UszAUpP8349JPyfxlF91Li2eLm4EXRzOCqlXIRtl6B7FgnJnD8vlQ3UVlBGciTOyak13H6BYoabGuSFimFI5mM1F/HP+owtSIClFzXill3Q7e//KxM3ofAHenDd9YiNAZDthgrTVidOnFbyuTM2gEqLu4UoyIOiDNTzL4U825LqaPetOixA8CH4q/MXdeUhAwQfl9C2RBaDOhM2kZ311g3OappxGg645KZgeCDL6WFRRBhr/R4NAQmpMm2Cw7l0qT5/lUKkoaBWZORcgfOlxELvfSm5O0natn5FCMyYk8trIs0X2uXUsdyqxfUcdSm1dKoAQQECIc2P8vxONxTpw4QWmpsgjxcvGBp3tLoba2liuuuAKAdw58dfGP0Zj4pwCazjOw/uYC6cdyw+pHIwy8Msd7Xx8uuhHLh87rK6nsdWDxyD9hPn9CnLDtTYVTK+SSgkM/PMXebw8UFr4UGPSOJnPxNGx5wnx5znOx5a/aFaf3qtjkxN2lLDQiiDkglcLerCzMdsUmp+K89KWddmy1ZkXtMPL2NLv/VZlACaB0jYPKXmWpVLruq6d3mdReuag7t4zKPuW5Uf+UUXNeGbVnKwuX3XhFBZs+246gIEOhxSPgbLFRqjDVy/FfjSoSKAG419hxtWWJMmWkL2m+poI1dy3NlVssBLepwoBgVTiFC2TaTYERqPFyt/z2lhb27vs9dN+fE9p1mTRSFV1WTC4BU6m0KMvMpbrn6TEO/2picXSy7Hk45xsIJrCUaSACvrGYbCJZv9VC84VZ8+Qy75Myku/5RYCdP/ejCmQR/lh8kUApG03tUfq2xREKTF+a+dAiJxnA4f5fc+jQIZxO56pA6S8YR44cQaVSEYl6GRh+Y/GPRfqczgQ9N5ip6pJ3XDIZjbLzuxOiQAmWnU+y55Tmy0ppvEgeqVWpVARGYxAFc5VucSSXXD6YZYCJBuDQT4YLCpQg/2bMUmHAUmWkpF0ZT+l+sIGue/OkLijiKNOZ1NQqTBcBoohDScq3VB29S1mlzttqqL1Q2eajdK2dsnUORXUOfOeUIoESQNkaO+41djHSjEzo7Do2PtlKlcIc87XnlVFzzpnZhP1RoIPqs0qp3qxMTLHh8WZabywQrr3AWli5oYSK9c7iF87hR9H5KPv+45QigZLZI+BotKRP84mXXT6FSdd9tbg685CbIrzNWmdQ7EQzumWOvSzDSEmrCVeHggilKhWmUh0bH6vBvSZn/lomvYmz0YirOXMvOeeXovOw/8cTHH2+iNE0px1TaevyCpRyIc3vNo8OT4+ZxvMVkP5kkoVR2PETH6P7o4u5VzyxSKCUVYne8+LUNRV+tnzc6719/8rCwgKXXXbZqkDpLxQWi4X/9b/+FwA7dn1l0W+qSAxVpLDNq6pdTdelMm0V4QiTh8Ps/MHMEoHScqg9x07NFgemMvkhMfzSPczlRQylOXPFiZcm2Pv904WFL1nzQba9rLTDhqvVmq9Gpl7OnFzSZqX3480YXDnvtMz85WyxKE75BqwojZi5aqnBtxicLRY6bq9VVMdWZ8bVYcdYlj/NVD7MHvNx+Jki36kAqja5qFCY6qXhigrWPdCgqE7lhhJqzy8/QzH//zjwbHVTt01ZGuCy9Q7WP9qE1iK/IbQGFWXrnbjaCqf0yMeNRt6bUyRQAnCvsVG+Nus+MmxelRvtNF+Vpx2KpM4V7Dp0VoXOKi2ZdlMgUKraaEObGrbL2XkktF1bSsdNyr6tvU6P1aPHnNqbyYw0cuy3sxz51VRGoJRbN/eZtWAo0UAMwrOJ5SMoSb/XbTLTdK4CDirNu0dej7Ln+TCqQJboI5ZYJFDKRmVZjPWbYmgLTF/ahfAigRLA6NhODhzci8PhWBUo/QXjW9/6Fg6HA693iNHRnYt+K8a9NBpoO1dHaV2h6BuL56JkJMKh38znFyjlImcObL7URfVmaY6UkWoyMi8KlASrZnGKoCI2L+Jw5GcjaYFSwefKgd6uw9lkwVanjA81XV1J09UF0isVgEaA0u7iaaby1jNqQGE2IY2gRrAoq1RzXqni5yvvceLuUOY/PfXyhCKBEoC1xkTlJheCXf47aQQxapPS1Hd12yqoVJgm7k8ddReXU7pW2bdtvaGa2vOV2kAdVG12KRI1xyPQ/9yoKFCSwZ9AHBNl6+zYa5RlsWm8sgJb7VINQzF7mdGtVyxQWjT2cq+b/e+sv5vLBWy1mf2SnJS+GqOGtXd5cDTmvNMy82xJkxlXa4E5r0C9eAQO/XSS4XdysrYU8TcanGI7hObiojhpuQhKKhWCBWr7THjWFdaaLEEySdgHe18IM3Uyvph7xZOLBEpZP9C5NkpVeWGbl24hskigBLBj+1eYm5vj/vvvP2MCJTiDIiWA5557Dp1OJN5vDfzH0gKSUCk3ilI8IjVkMZtNboePgLFUS9OlyxjDs3Dwv0bpf3Fp9CXIH0UphZ5H6ui4camgoBAiPvCPRUSBQCHRTJ7Bv+trR9j5lROy7wPgPR0kHklgLFHmjGq4uILaC5Q5y3o/0ULXvY2K6qx7oIE1t9YpStVlqTRiLBEUCY4O/3KIt/7PQcUpzlydVsp7HYrqvP+vx9n9r8q+UzyaWBpGeBkceXaE/d8/qaiOrcHElr9qV+yUWwn6PtWq2Ah14AeDHP7p6eULZiERS0IiqUhM5huOsP2fDnL8N/KjLggWFTUXuhWnlXv/y8fZ9VVl6eEsVUbM5YsNmcs511qvrWTDx5oV3aft6gp6H2vGVFnYkJlLCEraTJR32am5QMZClLWwx4JxYgVygxfC2Ptedn3jFBN75EessEhCyYWTBcZ6nrm15So3nTeUFhZeFTg1vP8nMwy8IaU9WI6AJpM4aqC2T+pA2Y9XQCiyuHqSSFadlGMs10EGEIn4GJ/bBcDTTz+97LVX8eeNX//61wCcGHqRaL6T9VL/y+Ze0YDoMFIUdUS6dO1ZFswVOtmnIU68NMme7xeYiwsIE41uHV231dB2VcXSHwvcd0GKqGIqK8yHct93bMcc73/5KDOHs+YgGSf4Y8E4Eb8yZ0/9ReV4Nrswe+Q7sax1JjY+1kz9hcqM4b0fa6blyipFdcxVJqzVyjbAO//lMHu/oSxVhM4EnrNdioRXx347ytt/d4hoQH50heh8FBJJWQKMbBz60SkOKzxhv/buOjY8rmx9Xgk8Z7vY9Jk2THJFMABR2Pfdkwy8oiyMdTyaIBlRFs1izzcG2Pnv/YUL5Fmf3V1W7I3K+p1/OMLb/3CUU6/JfydzlYDJpcfoyuFDRYwxOhOsucVD20fyzEMUPvG19o5quu6pLv5AOYaRmrOdssWcKT4iWDUkIklxz6kAe54eY98PFPBjuxp00sngQvaN3HbUQcfVbjqvL7IfSaROmmXacWE4yonX5ul/VSbpTyap26JHZ2PpsxXZ2+t0Iu+K50zjxbjXqeDPgSQWi4Uf/vCH8p5vFX+W+H/+n/+HqqoqEskY75/4wZLfU86yRVGUgFhEXJO0SvaaMdBawNMnf54cfGOe4y9ME5hYylPyRVFKoe26Ujpu8sgXi8QgNB0DrXhKPy/yzLH7vzPAvv9Ullo1MB4kHoyjNSpTsjRdVUXtucqMq5131rFWoc2r8coK1t5Zj7ZQGoI8MLoELBUGDArW9JH3pnn3Hw8TnFCW089SbSh+GDIPdn+jn4PfUxZlOxlJEI8q4w6n35pm33cGFKWJMzi09H68hfINDkX3WgnWPdBA243LrOk5OP7rUQ79UEHbqVQkk0mS8YQiMVkslOTdfzpWkA/l3edpoawnS5wjE4d/OMyebxXheHlgrTZizd33LLN/bLjQRc999YruU9XnYP0D1ZgUHKg1uLV4tjio2lyiyNEYDcmzeWXvP+ZPhdnznyNMHZafQjEllCwoUs3zzA3n2Fh7jQN9IQ1oav7PqXvoRT/9b8iMPp9MYnRAVYfkhMt+vALipBTUUkaq7JSk2jnxH7niJIBYLMaJk88C8KMf/Uje863izxYpkdrhQz8lHl+690lzr6woSvF4Kh3aMhfPnpekYeJq1qejIxWFxHP6X57hxAs5aYVS+70C3EtjhM5bPVSflWe/VGCuDE6L7y7YijnCF3MR72CQPd84zsJAQNF8F/PHifmV2fjdXU7qLijHVC5fTC1YNPR8tJHKXmWimXUPNFKj0K9przNh9SizPRz83gBHlUZg1EBJqxWNIJ8XTuydY9fXjooCNpmIRyAZT6I0pujR/zrNgMKUb3UXldFxm3zf+ErhaDKz7oEGDAqDcRz47ilGtiuLypmIJogvs3blov+5UfY9rYwfW2uMisYEQDwY5/1/6WdUgdhNZ9Fg8xgxuBa3XVG7vwY6bqqi7gJlfuS2G6poua6iOK/L+a1yo4OGi8UxKzd6kmBUEQ3ECSjx96tUHP/NFEd+nifdYgGBksYIaCDii5NniZGuu7Ru6xUlNF5YWByX1ptkvW/EB8d/72V4r0xemExS1qxBMLI0Gl4xrYFG5F25S5BuTrR15YqTACb9rxEOz9PQ0MCXvvQlec+3QpyxdG8pzMzM4HKJHbur4lqq7B1LHyIQgnzhriQkC4W+ToVWlBxIa24tw+zWsfvpYSJe6cMXi8SR9VXsDXrmBzL3SSaTBU80uNdYMJXqGHyl8OnRfGlEtn6+lbAvxs5/KbKZy+MMK+2xM7l7Pk/h7Hp/2Gd0d9mY2regqI7nPBd6s47+38jPqepsteBssiiq82Fi8+faScaTvPf/KROZ/KnCXCHQcWsdp16dWL4PZWEl6d56HmkiOBnmyM8KR674o0JhuMD6S8rwbHZz9NlhRW2Xud8ZSu8mXdvZZsJZb6b/eflOOVujAU9fCYd+nP+kXCFS4O40M3Xcv1hok42VpnfLgrPZgH8stFR8VuTapWtMNF3sYmyvj1O/n8uppyr4DfQlUN3r4MTvisx52eGvBbA4VfikkNcqXRHjcTKZTjuy7loTeouK7T+R2k5aj5KG/GQ0mScVavp1AiESpvzWw5OhH3H02FG6u7vZvXt34WdbxV8MNm3axPbt29GotFzc9pm8ZVSBUPENRDj/gM9OKaIzQc+dFfgmIhz6hbQBLJZmF8khlkxi8ejwTeQ4uYtwtvqL3Qy9NyeKTfIhkVzCoeovKaVivYMDz5zGO1g4dHEuZ9OZwFRmyqSOOgPp3nQmMFWYmO+Xn4IUoPUmD0NvTipK1VV7URmzx314Tym714eBio1OGi+rpP/5UcZ2KM8b/6eIluuqEKxaDnxXvtN1JeneSrvtVJ/lZv9/DigSbH2g+ENCMedZo/s+2UwynmSHwkMamUueofRuAHoVtVtLmD7uxZ8nGlAhDlV7fgnBmQiT+woIbfLxHB04agzM9RcJub7C9G7ZKGkxMnNsqTGkmJGo+54KtEY173+9QNSFAu3o6bPgHQ2zMFLEwZbFvWweHQvDmXYumu4NQKfFYIeuqyzMjcY49orUdtIcvBLupQqF89YbDx7m2Mhz6PV6hoaGMJmUGbdX8eeHUCiEyWQimUzSU38LZfbWJWXUvhDJPKl3U1AV4F25fKzhPDMl9Xr2/9cMYS8kY7HitqB4PG3XslRoxSiyEkSbV/71w1Khw1wmML4r/36pkBlx/cO1RP1x9n+nsE0gnzjK3mRaPi27HD5WpC2stUa8I0FFAhhXpw29XceIgnQbpnIDjgYzIzumFd3rw0LPw42otGp2ffX4H/tRPhBoDWo6bqtl+O1pZo7Ij8S4knRvrTd4iHpjDLyozJmnCCvhVjJsT/k4knuNlabLKzj+mzGmV5LK7wyldwORi5jLddjrTIy8J98eZygVqOyxMfCyMuekpUogNBtdHKlICWSke7NUaAnNxZbeo0hbWMq1tF9XxsguHyM7crikunDEJ60FyjstjOws8kLZ3EoLRhsEU81WZL0CSEo2r9azdFjL1Ox5LkxMls2r8HXVoQgJU35H9Gnvjzh85BDnnXcer776atFnW8VfBj73uc/xd3/3dxh0ds5b84m8ZVT+UPGxWcjmle2H1MC66534JqL0vyaNwVisaBS0ZExc/AWbhog/vtiRHI8X5F5l3VZmjvmJFhID5bF5uTut1F5QyuGfDuEfLSJazqmnEUBwCAQnImcuVa4GTG49gXFlYmrP2S6mD3kVpeoq7bLjGw+K7/MnBovHSPtNNQy8OMb0QWW+1z9VVG4qwejS0/8b+ZEYV5LuzeIx4tniYuD5UTEl4p8iFPK2zjtqUatV7P+esqANHwTk+BvdnRb8ExGCU/LHknutlVgowZwS+7YGzG4B/3hk5SneZPgjLZUCvnz28yJ1my8vwVgisP8Hefh+EX+js1FP2B8nUCzgeBa/Mtg1hLKFiEIRf2MiSdIgoBFg7SV6ZofjDO6WAgBJ4qdCfsOkvgj3CkZJmJdyNl9wnH0DT6PRaBgaGsJiUXbARSnOuEgJ4JOf/CT//M//DMA2zxPoLIvDay0Kw54lVqrtE3DV69j5nwXSiURyDMS6BBZXpuMtioZUJAds90drMNh1vPuVfojkMbgUC7+qSxR23LPY8dXykUpmj/uY2l9g85fH6JISSgy8PMbI2wU2WXk+YcOl5UQjcYZ+P5Wnwn9PCBYURc/puqceU4WBd//vYdl13F02fOMhQgpITc2FpVT1uXj3nw4X7Qu5MFcI+GcisutYPAJtN9Yx+PtxJveeWVKzEpHSStDzSBOBiTBH/0u+sMniERSndlz3YAMavZpdX1V22qtik5Ox9+Q7TTtursbWYObdLx2T/V1z+7VsB5tSg5DC9CTyr7v0OdbcWsGxFyeJzMp3mvY9USs6Jr92uuB1U0g/rwAd15Ry6FeTmfbOfs98bSSQKVtEHCv+Li7ia29wYCrRsvuZKSK+AiKl7Hk4i1RYK8E7vLgdcg02KmktazxLj61Cw87nM9dSZ62PuWRD7QvwxtB38EUnqaysZGREfiSEVfz5Q6fTEYvFcBnq6au6MW1ITGER90qNGx2su8rM9IkQQ9vFzUXu/JDMic5krtDhH8v6PxkiJcGho+eeShYGgxz+LynV1zLpHdPcTEf+6B3ZXE3iUzoTNFxaydFfjxaM+JFPVN73yWaSySQ7/vlEbuGCz6d36Wi8qJxDP8qznp15qn3GoDOJkbbklVWz/rEWJg/MMyBXjK4Dd4eNKYW8pvvhRqILUQ4+o2BjrwOTXUdgSka6KQkt11QiOAQOnGE+tBKR0kpQ2m3Hs9XNgR8MFhb85UIHepuO8HRW+WV4g86uo+eBBgZfnWB851zhgjnrtMmtQ3DomDsu37jR92Qz86cCHPuFfAPZkn5djFPJ5GWKuZSCFCR5brbon55NNpJJGNm+IPu6VRut1J7l5OTrM4zt8kmXXf4dSloMWCoEBt8ssJ/NE0Vp0fyb256599RoRAHsbW58E1EOPSs6JuWIlABMbghMsWTeXcK9pLWq+zojYwNJRrN89aosx0RuvfjcAi+f/mfUajVPPfUUf//3f1/8uVbxF4Onn36ae++9F4CLmj+DxpzL2zO8K1us5G5UUdGo4cCvpCiOuWMkjwPN4FQTkvZZKUeY+I88fEOyebVcXoKtWs+ep0eIhfLZvHI4Tvbv6sQSsU0hM2LVZjv+8TDz/QVOg2ZxqRQHc6+10XxFBQMvjTO+q4AYIQ8HK1/vABVL15n/xrxLa0CRSKLhigqcjRZ2/ot8wZG11kh0IUpoTr6Cyr3WRu35Zez9z5OKovsIDi0RX0y2WEtr0dJ+YzUj7ygTHK0EKxEprQStN1YTmYtw8mX56Y0NTh0hue0mrbst11Qg2HUc+G5hbpzP1uRsNTPb75f9jarPcVG2zsbeb5+S3VeX9OsP0TYlCyu4Z+OlJZx+e4Gov/D+MPdd1t1dASrY+3S+0/wFnkELDec6OP3OQqYNF9m88tTTqdPfU7WczUviV43nGnHW6NjzywViPmSLlACMDgjOyLN5VbSqKakX2P8u6WdUhzLrXK5ISe0Ls3/0OYbn91JRUcHoqLLUhKv480ZDQwMnT56k2rmeNZWXkxQW7xdU/myblzQWNNC8ScfCUJjJo9ImJWf85QZL0Ns1hLMdydncK489KRmLoRGg6/ZKZk8GOfXqnPhDrkg7h3uluZWGpREycu+V4kUaqN5Swum3pvPXyS6bhc47atHo1Oz7z5OyeZPGqMGzqYTBV5VFZf5Th0agcLSUJYWh654Gpg/OM/KufDGsrdbEwqCyQ4PN11QRC8U5qVAYLdg1iiIwVfSWYCpTJjhaCVYiUloJLFUGqra4OfnyqPx20IBg1CgTQmmg6656ht+ZZuaofIe1zqpDsGqLiwpzsPauGhYGAwy+Jv/QRG6/LupvPIOiczmQw/2czSZUWpWY+UAm37PVGWm+zM3J12aYOZJn/BW4jrlMwFyhY3JfVp1i/kYNkMxOa1ecQ6m0GkkA68A7GmXgTckOkE+klDXvJw0iRxLMEAmBKifafa7fMGXzaj1Hy+S4humsIa4OZox0uSKl5Lyf3x39B5LE+du//Vs++9nPFn2fDwJnNN1bCl/60peoqhLTTLwy/LU0Oc2LnFDsKrUqk5JnuVzNUTW+0QiCGeovcCz+LbfTZRGDU69OMbZ7rkiUkPwDZeMTDfQ+3FT8mbJw7OejhQVKBXDyxQnG98wWFigVQFmPk4pu+anvQExPseWv2hXVqdjkpPcTylJalPc52Phki6I0Wu03V7Pxk52F0zPlgX8qTHhBviMKYGrfgiKBEkAsFCcRS2Aplf9C5X0Oeh5qofost6J76Uxa9ApDHNoaTIpS5a0U9mYzgkXZlKIza9AXCgdfAGvvbmTjJ1sU1UnGkiRXcIpRiUAJIDgXEY1wCrrQ2nsb2fwZ8X3kCpQ6b/Ow5g6P/JuoVbRdX87aPHWKEYGOmyvY9GRD4bGaZzGv7LNh9RhwNSlT2J54cZLT78wVvG4Ki55Xyg9bsL1zNmIVvSY2PViJu01ZWM0Tr84x3Z+J8pQr0sjd0Nk9UNEp9utcgVIustdDrV6FKjuNb6Cw1U/tC7BgPoQ/JgpRd+7cWbDsKv4yMTgoRnGZDp1kzHesOPdK8asoqNUqdMbMGFxOy54SKFWsMxVNrQaZk/ORuSgTB7yc+J38DRZAaZeFzU80UtKek0u6AD+MBuDozwsLlAph8PVJjv1S2Qbd3WbD0WjBvTZPTP0C86zOpGbTZ9povrpS0b0676yl4Yr8KacK1rmjlpbrlKV82/SZNtpvq5ddPhpIEJ6PEp5T0OBRFAuUQAxjHY8pc0L2PtLMmnuUpWwRHAJ6m7IUyjq7Dku1gnziK8RK7qO36RAsWojKN77UnltG76MtitKw6a1aktEE0ZCy026BqagigRJAaC5KQMEpL32Jjt4nWqi/REr5I0OgpDPB+gdrcbYWboN8c2X3/dWUtOepU4Tn9D1RR/OVRdIR5ZlPyrqsVGywKXLOjezwMrpnQZFACWDmWIjB14uM2Rzu1XN7GetuL/A+Be4ZDcD4gQCn3ssY+xYJMfKgZr0gpqHLI1BaclvJWKOzglqjWhQSX1UogjOg9gfZF3oGgI6OjlWB0ioW4Z577uHSSy8F4LX+r6AKF+6zquzUz0nQaFVo5dq8QBQoaaFyXc4akDumsmxep7cvMLpzobCooMD8sebWCrruWJzeqhg3HHl7rrBAKQepve/U/gVOvz1dWKBUAFWbXVSsd+S5cOH5rOHycno/ocyWYG8ys/beemV1Gkyse6BBURotz7luej/ejtYi3z4SnAwTmFYWocA7GFQkUAKIBuMkIgkEs/xns1Qb2PBIC1UbFaRsiSXQ20XnjRKYyg2K2m2lMFcpv4/BoUNwKLPHdd5RT7fCPhePJ0ko5MYAs0flC5QAwt6o4ohDzddU0vuxevEfMgVKdReW0HylgtQ9ajWerQ6ar1RmY609z8mGh6oVjVVHowFXiwVngzIe3v/iFEPvKIzSHoOBV+YKt3euLapWoPdON84GZfuXwfeDjB0KiwIlSKeILwSDHdwN4vfKFSjlYrHNSy2eBcwjUMqF2hcmoB1k1LsfgF27dhV/iVX8xeHgwYNotVqGZncx7TuVTvOWFylBUFz0H2v1WbxnGe6VEijZPDqMzhznc67ASdqzxCMwsmuB0feL+AHzcC9zpUDPvbXYanPml0LPGIfTrxcRKBXA0BtTnPjtqCJht6XCQOk6B/YG8/KFU9CIqVI95yicmy8so3KTspRvNeeVKr5P1331NF6uwL8Sh8BUiLBXGY9SKlACSMSSJBWu6203VtN+Y62iOnqbVrFvTiOoMbrPvK9RY9QoTvWmM2sxOHWKxkRJk5V1H23CWiN/XRcsGmLhOLGIssEX9cUVCZQAAlMRgrPy7awaAXoebKRyk6gNkCVQ0kDr9RVLU/MWg1pFy9Vl2GqV5Q3uuqua6rMyugU5MXTcnRYqN9gV2bwWTgU5/fZcfoFSEfgnIkzs9RcukGPzarmshJbLlekwiMPQzgBjB7MIXq7fJmfed9dr0Ggg4l8qUMpFyualEURbQzayBUq5UPtCHPH+lEQyxpVXXvmhCJRAfob5PxjDw8Oo1WqSyThvDX2fs6rvEH/IR3wlodLg9ginXs0xgqY+TqHBpVLTcqUbS5mO4V0zRLK1PalOnKNUnjseZO64aEgRHBDOp0tI3S+rc3hHgiTiycxgzqNMTk0CqVNi1jo9a26tY/i9aU7/Pss5V+R0/vFfKVey7vmPfsVim/mhABqDZnGkkWWgt+oQzDosNXp8p+VNsGqtGp1Ri7PewqxMpen4njnUejWirk5edJb+51agABag99EWZg4vMPCCPKXy6NszjCoUkc0emmOqxsLsYfmOOd9whHf+f8pP2Hfd1cBsv5eD35OfdmQlWHNrHd7hAPv+46TsOtv/4aji+4zumCHiV0YGFz2TTCdM35MtTOyb55SCE28nX5ri5EvKopdNHpjH5NIrSlEiOATUcspnlTGU6BcJD2B5h5RvLIzWpF06HxQhBKPbF5gfDBNQOP/MHAmK15UpUNr4MQ/ekTBHfiG1t4z2CEzFCC/EmToizVXxxLLRlAQLBKfhxO/yzFUFSFTDRiM6s5qx/YXbIJ9g5OgrIRJmY0FxkjoQSq9fkYiPY74dCILAZz7zGSoqlAkWVvHnj8rKSv7mb/6GL3zhC+ye+CUX6T9B2lSZj3tJPGX3z3xLTo6lNgwF5wwd1Gy2EZiOcOCH8hxTJ18WyZbOpiK6UHxDkrr/5GEflRuchPPkSl6EHF7WdmMVlkoD739lcTS9fFGUAMZ3FjAeF+F7w29NM3t0oXCUnlTbZc0b0UCC4HQY34SyvAJK1wwAg1NAo1cmJJ45soBvVNmz7fm6soiFALUXluJqt7Hra/JTfO395oDi+wy/M41ap6wNVhJBqe3aKiwe04o4mxK0XFGBvcHC2wqiLw29PsXQ68p4ytShOXQGjZiaUCaH8g0F2fEVGVEdkon0uKq/pBR7vZk9Xz+p6Pn2P62M3ybiSWZP+Jk8uCA7gpKl2oTOrJW7BQHAVmdAsOrQ5Pa5IjxHZxINUAtDeebRIm2/65vDCCXKnFEAp16dky1Oqt5qo3ydhX3PjBGZl98QCyNh4pGsuTaRLMq9UlGuBt+Vb0gyOaGiQ0CwqjjxauE5S5UT6S/qhV0/C5AwGQqKk1ShcDp89kDit0xOTVJTU8P+/ftlP98q/nLw/PPPY7PZ8Hq97Dz9EzbU3AQs7XuQESpNDWiYPpizz1jO5gXUbTbjbtIz0+8nNJc1JvPwDYDQdIyR6RioVWgNSaL57K6p+SlL3DQ3GEKjUxW0peWDwaGl8/ZqRrfPMroji1MVsZcNv6FMuA5w4JlTRAqJbQq0w8JgEL1NUBSxSKvXYHAKWDwGfMPyKiWTINh0mCtNzA/Im89mjngxKBRGj+2YXVG63DV31zF7wsfIW/Laff6En90nlHE831CIkXenmTku/6BmLJTg/X9WfsK+6556Zo4scOyXZzay8Jrb65g/6efIT+VHAl8JZx16c3J5wVEOh+l/bnn7ZTKRXLSHWHt3LdOHFxjdPif72Sb3+pjcqyDEPTB1wEugPKIogpLBKaAzFj+JDiziVSaXDqMSPqRSEZiO4J8IKxJdzfWH2Pf9MULz+eefQtzKNxaDsQJzViK5pH3W3VmOdzTMwO/mxP+Q4WQM+8E/HWX2tLgnTcYTy0ZT0hogFoDhXfKdpvVdGsxuLVOnggX5cT6b19C+GIP92oLiJHUgkl4DY7EYR2dfRqPR8Dd/8zerNq9VLIHRaOT555/noosuYvfIjzi36ZMIqa6VL8K3xGGOvhFFFczp7zK4V/1WC/6pKCdeyqmbx2cIpJ3cRSP1SHNY6kCffzSCdzREdDm/R45tynNWCc4mC/u/k7M3LuBvXIloZn7Az75v9yuLNhMX/afBKWWiDHO5nvCCjDUgC0aXoFisO7V/QXGAgxMr8NOWdFgp67JzOF/k9QJYSWSj0Z0zaA3K2u3UK/L9XilUn+3GvcbO+185s1GRKjY6qdxQwo4vyfcfzh7zMXtMGU/xjQQYfnOKwLg8ezZAZD7OoezI7svZVVRqStdYcbZaOfpfyvhq/2+Vpxke2zvP/MmA7AhKRqeAwa5DpZHvbxTsGowuPdoi6cSWQAPe4SD+SWVzwrFfTqC1KLd5Te4v0hcSiUU80tlooHqTnSO/mcpE4SrWftJv86fDqLNVNol40WhKqTVhpr/AwpDHV6HRQ/UaLUYrDO0uPGfl2h3iETj0+ygJi76gOEntD6f3zCPhdxgeG6Curo5nn3224H0+aHwo6d5SOH78OC0t4qmlJvtWWkq2LqvOT4YjlK3VU9NnZd9/TRGZy/qx0IlKAVz1OqYOFplYciNhAOseqMFo1/HOV04UFuksd7KtiNgo5Qzb+Ikmht+bYfSd2ewfi162+8EGDE6Bd//uSJ4LF34mW4OJBZlGkT9H2JvNWKoMDCsIh7f5c+3M9/s4/BP5xAEBLOXyhVofJhqvrGTq0LyifrCSdG8Nl5Yzd9IvW3j2oSH328hwxggWFes/1srk/nn6ZaassXgMOFuti8WHMqHU2ZxVsfjvH3IYbUu1gG9YGblvutyFu9XC7u+NEJ4tvB4sel4Bum+rYPpEgKE3F2QZawqiiMGm47oSrBU6dv94ikiOZqFo2hEB3A0CUycKvE9O+625UlTqH3guuHz/lDbVvx34BwD6+vp47733itdZxV80uru72bt3LyrUXNb4lPify3GvSIQ11zmIhRMc+W2OmLYA9yppEpg5XHydSeaEtzaV6lh7WyXTx/yc+HXhjfGyVLUYN0smqD3fha3OxP4fnF4UVamQSAnAVKGj6656Rt6b4XQ+DlGIt+nA5BIIjBUgkv+NU5DIgg48m11MHVpYnB6sCOovK6e00872rxxVFPXK7DHgnwgpjpR1puFoNmOuMChyuK4k3Zu1zoSjzsTp1z7E1M4yuYPZo8c/EZb/bVRqWq+rxFZrYseX5YvVqjY78Y4G8Q2tgH9/ACne8l62WBt9gCneUrB4dPhGlZ3e633Yg38izOGfT8nmgxU9ZsrWWtj7XclAdga4l84A3XeW45uMcvjXS8WixbiXs0HH7Oki+2lNxkhkckDbNhMntweYPQ3JZb63Kp7gxOx7HJt9HaPRyL59+2hqkh9NeRV/WZibm6OkpIRkMklH6cXUujbmFSktQjSGrUpL/SYDR17yEc7eTuexW6Vgq1Qxf7rIRJuHszVfVoLNo2fPd4YLO+Vz05HkIJfPLYLErdbcWc347nmmDmQJVJaxlbVcU4G12sTOr+URwxSpayo3EBgv8DJ/7rwL8f3NFXom98iP0NLzcCPzJ/2yD+YBoBWjAoUUpM39sFDZ52RhOIh/RL7SZCXp3sp7HfjHQ/iGlIn4V4xia3T2WqsFY4mO4IS8b6NSq0ALPQ80MHlgnuE35R26FBwCzkYT4/sWFEVfAv4sUrwBGEq0hHxLU2BmLrv0uuU9Zjy9Ng7+1yShmSINl91GWmi73MXCcJjRXb5FPGZpvWXSihSxedWcZaG0SeDgrxcI5Z6hXSblm61aw3whc2nOd2ncrEUnqDjyenTZg4KpdeSlI/9APBnhnHPO4fXXXy9eZxV/0XjiiSf4l3/5F3QaI9vanhT/cxnupQpHqe0To38Mbl88pycj+W055lKNuMctQoOSOeI8jRHW3lzJ1JEAw28VnmuLcisoavNKxuOUtFlwNls48duxxc9XhD/pzGo6b6tj9P0ZJnbNFb9/DgS7lkgBoeafPTRi5B3feEB2OrHSLjvl650cemaQ+DIRULIh2KW0uQojZZ1pGEsFTKUGpg/KD76wknRvhhIBq8fI5D6FUQg/BCz5NjJESpV9TlytFvZ/r3Bq3lw4msyE56IEp5UFAxBv+aeb4i0fCvFBg1NDaF7Znq7zlkr8EyFO/X62+LfJ4iu2Wj3lXRaO/Vq05RYVeRfjZVCYm2mg6/oSfBMxTr6V59RQEZuX2a3B71MVnA+SukxdjQCtZ+kY2h/FO8Xy3CuZZMo3wPuDz2AwGNi3bx/NzcqyZ/0h+FDSvaXQ3NzM3/3d3wFwYv5t5sPjouEk9Scfkgki/jgqFejNuiW/5V1sI6QFSk2XFwgNmCdix/iuOWYH/IpSNQFseKyernurlxUapbDjn08sFijJgHc4SLBQGGeVKu9gq7uojLV31uM52yX7PoJFzbqPNuDqzJOupAicrRbMFcrC79mbzYpSvjlbLXQ/pCxNR8vVVdSerSBEMPDu/z2sTKAEbPpkO523Niiq03hFBS3XKwgpiSigWv+4MqN4/3OjH4pQbeCFcUUCJXuzma1/3UndRfK/j7PVQtc99YrS1zVcUE73fc24u2yyDRERX5J3/+6IbIESKjW155VRc5Zb0bM1X1tB87XKTgM528zpexaEWrWIMFRstGUeVaWSZQRae6eH8l7b4v9cJtJRx/WV9D5aXfD3fPBPRgj5YkUFSksQgT1Pj4kCpeWQTGDxCPQ9UkHpWmXhJ4f3BPCOR5cIlAqhfK2As14LoUR+gVIsnlccIk7hycKb6HAk8wfo14hKZr1evypQWsWy2LNnDyaTiSQJXjn17+J/Lse9EklxulSw8Zg5IfbPkhYDrg55IXIDk1EWTocY3a0s3VfZOit9H2/A6NbJSosy+Oo0+58+rUjMEhiLEpqLEpzNQwqL8L2Nj7Ww5rY6+TdCPB3UeVuNojoA7nW25QvlQEnKLoCmKyupVbBOm8sM1J1fTvVm+WG2Tz4/zvZ/VCZQKtvgoPu+RirWyw+pq3fp6LilBrOC8MW128rY+oUOTG75J3bmjvtXFBFCKbynAooFSt0PN7LxyVZFdZqurMRzjvy9BEDnzbVsfETGhlalTvOZo78YVSRQUqlV1J5XSuNlCtIl6mDNXbVYapbpA1nzis4E5qrlv382vzKV6rB4suosw58AXB0m2m8oh9xbFdjnAXg22VhzUxVlXQpC7gPBmQjeEWXCrrHdflGglMMx8yKZoPNGN2tvLZK2bkmdJNFgktnBMGP7c/YtiWTBub5uqwHicWaPF3AY5+FeWqPYpBFvdGlIbQmqUCT9J8o4p4PbAfj617++KlBaRVE4HA6ef/55AA5NvoQ3NCmKflJ/8iGRIBqIoFKDzpSTNiSZLCjWTgmUPH3y54DxAz6mTwQURQ0B6LipnLbryiCRkLWfPPC9ocUCJRlYGA7hG8tz0LAI73J1Wum6p47yDQ75N9JCy0eqcLYoS09uKjdgcCkLRm8s06M1yDe7msoNtN1crSjmfcOl5dRvK1f0XLv/vV+ZQAnoub+RjluUcdzyXge1Fyizx63/WBNr7lZ2n9Hts4oESivF+PtzigRKBoeWzZ9pp2qLfB5lLNPTfE0VgnMZ7pE1LtztNrrvbaCko7gdV6VWZRxWMdj97wOyBUqo1JR326i/sBSjU34HrdripPrc4u+fO8dZqvSyr5+Cs0lhquVkkqbLXLjypeUtgrZry1l3e2EbXr75OrwQJzgXKy5QykUMjjw7zejuwPKOxEQcvRV67nBR0qjMLj95LMTcUHSxQCmZLCjwdFRrsFWoIZ7IK1BSxeKLU5qm/l+lQkWyoGg3m3cBDPFr4skIJSUlqwKlVSyLr3zlK6xfv55oPMi7A98BMn0xX38EIJnM3orKgn8yDnEwuTXYPPnHWi5Higdh+niAGYUHuq0ePV13VaN3aJa1eanUKmaP+Tnx67GlzusiLxn1J/BPhAjNKXOEdtxWQ9sNyuxXtlqTIv9Pdj2lMJUrW0PK1jsoy5c+uAB0Rg0Nl1dQulZ+ncl98+x/+qQigZK50sC6+xpxtcm3+2mMGmrPL8VYKn8tKGm3suHxFkXp24KTEUUCpZUiNBNRLFBquqaSrvvqFdUp73VS2mVXVKf5ag9rbpf4qkx/4+j2WUUCJYC6C0qpPV9ZGsOGS8swlRUYB/nmBA0YXTJsnlm2IMGiUZzyz1QmUHeBC01OtWJ7S3uDkY5bPJS0KJsLfGMhApPRwt8mj41uYTDMsV9Py/OdxuPUnmWl+VKHouciLnKv6f6c/UQR7lXapoNkEv9kAcFiHjuDVhBfPR6I5o1sCYu5VwQfhyZ/CcDPf/7zD1WgBB+ySAngM5/5DNu2bQPg7ZHvEclWJxdwls31R9jxzQm8hSJ0FDBaNF7kpLTNTHl3jtGmgHFofJeXoz8XN+qCQ75jLh5OEA8piP8POFvM9D3ZjEHmotH/mzH2fuukonucenmC2WNehrcrcZQkMJcbKV0jf2IWLNBxcy3N18gXJ9gaTKy5rY72a+XXsXiMmMoMigRUx54dYdc35Ts8UlAiNAEYfneS028qC4/oarfhbFYmBvMOBZhTGLKw45Zq6i9RZrRSCqFEYN0DDdga5C8YMV8U/1iQ2X757+Nqt2GtUbYoTeydZXL/PFP75RtJDWUKvr+0sB98ZogTvx0jMiOf3DsbLDgbLUWjeeSi7SMeeh4pIojLcRyZygUaLixlzW1Vsu8hWMBcpseZ/T1lnFA7/fYso7uUkdSxXX72/If8EKZdd5bTeo0yZ6nWIEZa9BWKbJILQfyzcDrKoV/lJ8PJ3PUqkaC6x0TjOQWM3UUi1+z/uZf9Py8wDsKLn/n9iR9zvP84Ho+HhYUzvyFYxZ8H5ubElD7huJedo79Y/GMB7rX/Z7MceXZO8b3qLyihdqtjyf8XOhl2+OcTBMai6BRM7b7xEIloAo1e2emN1o9U0nm7fN6x5xsnmdqnzME2/M4UAy/JFLhKcDZbsNaYl4oTiqDzzlparvKgM8mn8t0PN9Jxs7L89M5WKyXN8p14/uEQR38xxIkVpNzVy9kUS5jYN8fIjmlmT8jnEDqjFkeTuO7KxfxJH/OD/mKBLJbA3mii845aRX16JajdVkbTlQoEOsDsCR/zJ5T16ZJ2W2ZfIDMixenXpzj9lgIBlQ50dvnfP+Vg2/ufJznxG/mhst3tViyVeoxO+YbLhovL6bq9RhRFFnqeHANG42VldN5SrWhMlzSZseUK6JYxjAzvWmDqiI+JffnyNhXGwZ9MMvyevH5gKtPRc18FpnJlobVjoTixkEwBejKZHi8nfudl7lT+AZd7Mrm8U0tZq4GqngKiswLca2EUdv5gHn+BrZsqKwVJNBplz8JvicViXH/99dx5553F32UVqwAuueQSPve5zwHw1slvEsvmWgX4UHAG9vxkAd9E/nm2kFCpbI2RynVmXK0546AAv/MORTj1qri/0SpYp2KhONGgsmPcxlIt6+6vweCWJ2gY3znH0f9Sxh+mD3qZ2DXL+N45RfUcDRYcCvgNWlh7Vz31l8hfdw0OLevua6DmQvlOOYNLh73OgrNB/rP1Pz/Gvm8rT7ertWgViaFOvznF6deU2bxK19hxr1Emqp896mX2uDKbV+0FZYqEQCuB1iCK2yzV8sXusRjMnPCyMCR/nXbUmXC129Dq5X+chdMBTr89zcwx+RxPsCv4+JLN6/RrMxz5xSjBSfliG2eTGXebMjF123WVdN4q336lNUDz5aW0XKXAiacFe60Re60ycdOp16YZeV+ZHWauP8Shn07KLt98WQn1FyhzlmoMWuLRBAEFQiitDkKz0P96gSwUuYKieILqbj0NW/KPgYJiEMR7HPldfoGfKif126Hxlzhy/BCVlZWMjytPcbOKv0xs374du93OXHCIw2MvL/qtUN889U6QU+/IT++UQt05Djx9efw5BUR4Q2/NE5yNgwbxjwyE52PEwnHUOmWpuzxbSmi4NA/vKCBUOv6rURZOKmuD0e0znPq9srFprTHiaLIuEScUQ815pbRc50GwyG+DpmsqFQuo3O02ShQI16O+OEf/a4jhN5UfTNMpeBf/aIihN6bwDsrnEGoNlK5zYKmSv7YFJsJMH1kgLnfvDhjdAnUXlaGRk5b1D4Cr00bV5gIBSApg/oRfER8CcHfYcLUr89EOvTXJ8DtTiiIzrqS9Dv7wNKd+L9+2ZioXcDZZMCwnds9C5Xo7Hbd4MJQU4YY5/saqzU46bqhUNKbttUacjeZF2+HlxEDzg0HGds4zc0xZAI7B1+eYPFhg7OT4OAWLhrbr3Bhdyr5PPJwkpkATkmqr8QNhvGMFxluO8dlapsbTZcDdXOB7FrAthH1w6PkAwbn81bK5VzweZ//kDwmFQzzxxBNcdtllxV7jjOBDTfeWDZfLxczMDCpUXFb52NICUmirZChDYvUlsO6GMqYHwvT/zgvRPA5nadFNOZDdncalad/yfbxEpkN13FKBrdrEzm/2E5nLaZ5lUooU/innZEi1wNo76jn5ygRj2+dkR2HqfrCBaCDGwe8XUV3+oZ9UQHE0qbqLyhh9d4qIT/7AbL62isHfjSmqs5JnU4ryPgdNl1Vx6rVxRWni/lSx+fPtRP0xdn7luOw6StO9ubtstF5bzeCbEwwpWDg/NCgM5bzl823Eggl2/HOREJR/SFjEbGT16WXTvqnUeLY6CM1FmT6UZ6EtUN9zloPpY0HCUysYPCsJny2jvfWlOrpuquDEy1PMHl/+NH+KtGz4aCXhQJwDP8gxkK40hGWecIddt7ow2rS8992povNNOu2ItH4IFhCsKnyjSRAk8pBvMyzoEMyw7hozs4MRTrwaXPQbsEScBLB/5hWGAvvQarW89NJLnH/++YUfbhWryMH+/fvp6uoCoNmymWZb39JCae6VGZONF1px1gnsfWZGpF2Foi8BRGNYPDrCs1GiOfuHYuGrdSboub8W32iIQz9e6pwqSlUV8LK1d9eg0WvY842T0s/L86WSdjONF1Ww59snMu8kk7Plf6Y899ShOGWZqVyH1WNhfKf8yJwl7Ra0Ji0TO+fk32gFz7YS9D7RjFqnFiMq/TdH7YWleLa42fedk/iG5Bn8VpLurefRJnRGzR+nzf6QtBzpa2TW35rzXFSf5eLQT4aYO17Y+LDi9LjZ95Pbp6V76WwqKntLGHwl/54gn1FFZwN3m53R95UZx9LPtpL2lcHX2q5zo1LB4Z9nuPpyRqHyLjPVZ9nZ96MxIkpCbMvhXtJ8aHCq6LqpnOn+AP2vZn3/PHO0KsWTpDXFWa9j9qT0QfWS1Scf99IL1G8RKPFo2PeLhUVrVNIg1st1kgE8f/rLJEnQ2dnJgQMHCr/TKlaRB2eddRZvv/02arRcWv/xpQVSYeKzeL/WAGuutjF9KsrQ++G8KUdS4zZl87JVa1kYyuFnxfgaUHu2jdIOM/ufGSeUm66jaDq3pRwozdNyxqzBoaXz9moGX51i6qBPtr2s5dpKkokkx58dS/1Y9F2KohCH1KI4XVVZj4OZ4z5iPvkVq85yMbF3XlGdlTybUlhrjXTeVsfgK+OMblcW5f1PEesfaybqj7H/P0/KrqM03Zup3EDX3fWcfmOCkXdkRh9aCZRyAJl2qVwOtf6RBuLhBHv/o4jN74NKBSKjT2fzkZJWE7FwgoVTMqNWqdWUtJoITEYIzSoYPCrVysdbEd6VehetCTo+Us6pN+ZYGJQRwVJqs47rS4lHkhx9bibv7/nrFnas5UtX0rTNgq1CYN/PFjLLRd59qmTziovzsNYAghkC05DUi5wsnwAkKejQamHtpQIzp6Oc3pkh38V41+mF/RyYeh6NRsPLL7+8avNahSLMzMxQVlZGPB5nretSqm1rl5RJSmkMs/tfWbtAabPA4Rf9xCOF070BEIsh2DTEQ3HiucXyiJTSHEkDXbeU4xsNM/Dy0n2lnFS6eZHDkeq2laK3aTnysyIHeXLqGMsEGraVc+zZEaLeP50UbjqLBnOFgbnj8kU6pnI9gkXL3AkFh3g0fCjp1NpurEZv17H3WwNn/mZnGCWtVhoureDwT0/jH5W3Vq8k3VvztVUYXXr2fftPtM0UcDZni5nGyys5+stRvIPKxZGyHifFE/L16SKcTiOIgSEm9hYQYefhHxoB7HVmZo4pOzCXerYVpfqVYfPybHGgNarFNG8y61s9AnXnOjn2m2kiCzkNV4x7KUjFqxFgzUdKmD4eYmRvFifMy710i34zuzX4p6TnyrGHZSNp0FPaqKa8Xs3h3wUXrVFJo3hQMx/3evXUNwjG5v6o6XU/9EhKKUxPT6PVakmS5MXRfwMB+j7qovEC8YRF4zl6+u61I0jCz/V3uVlzTSnRUILAVIRND5fScpWopKw7386mxz3oS1SQTNB9Vym9D4unLqYOBtn8RA29j1QhlEDN2XY2P1mPrU4kxevu87Dx8dp0iK9NTzagM6vxjYVwt9nY8ukm3J2imnbdvdVseiqTbmzTpxrFNG9AabeVrV9opefRegC67q1h06czYbE2fbqFnofE35ztFrruauD0W1OMbZ9jzZ3VbPl8e9Z1W1n/MfE+lmo9W7/QTv0logra6BJwZJ2q6nuqhQ1PiCHnhRKBrV9op/HqKlCpaLuhmq1f7KDzrlo2f66djZ9sYeMnW8SKAmz9Yget14vP33R1JVu/2IFgUUMENny8mc2fa0vfZ+sXOui4VVQiN1xaztYvdmCRQluuf7yJ8h5nWmy09QviPQGqL3Cz9YsdYmo3RIfKps+K73r8lyNseLw1HYKvYpOTrV/soFRKX7LuwQY2fy7TLps/1073vY0gQOk6G1u/2EHlVrEPdN1Xz5a/ymrDz7bT86jYLt2PNnDW/+yk+gLxVE3nXbVs/UJH1rdpY/3j4rcyVwg0XlJJaCHC3FEvHbeIbZhp71Z6PyGWFSxqtn6xg+Zrq8T+++k2tv51ZzqF3cZPtrDxyZZMG36xg7YbxPZuvEpqbyli04Ynmun7VCb9xtYvdKRTv9RdXCa2d40ee7OZvs+0sunTmW+z5a86WCuFw/ac52LrFztwtot9pPvhRkiSFiht/lw76x4Qo/CU9znY+sUOynsdYns/sLi9rbXmdHo9V6eVrV/soGqreDqt657F7d14WRWBmTBDv5/C1mBi6xc70mE8O+9Y3N59n2plwxPNuDqtNFwhvlujFAmg/aZ87b24zzZfJ47t5uuqpD4r/tz7iWb6nspqwy920H5zNesebGDtfXVs/UJ7OkLShsebFpf9q3Y675Dae1spaq2aGSnSQM+jjWz6TFZ7f76NrnvE9q7a6mTrX7XRfquHTZ9qofvhOjZ/JvPNN3+mhXUPiGVLe2xs/as2yjeKJ6LW3V/L5s+2pEUwmz7dQveDYllnm5ktn2vFc7aYxmbNHdVska47/PYcjZeW0/OQWNZSLbDls83UXSx+m46bKtjyqUwaio2P11PeZSc8FUFwwOZPNdJ4mTgWWq4pZ/OnMnPahkfr6H28DkuNAIJYtvlqt/SNXWx+sj7d3usfrKb3UbHNWq8rZcun62m7QfzmdRc42fzJOiyVYnt331/Fxo9JJxnUajZ/oo62q9yotSocDQY2f6IGe700J99dwcaPZSKdbHq8mjW3lpFMJinvMaM1aRjfI36bNbeXs/FjmZSJGx+pYu1t4jO42w1setxD36NVlDQLdN7gou+RTFju3ocq6LpdTENiqxXY9Eg5no3icWIVCVQa0t+m9x4X3beJ38Logk0Puqk9ywSJBC0Xm9j00RLMpRDxQcs2Bz23OiAWRzDE6bvPQcO54kLWeL6RvvscoIoRCcRQaZLYs9LB9N1rp+ksLYQj1J8llhWkg6cVFy0wpxZJ+Ve/+tVVY80qFGPt2rV885vfBOC4713GA/20Xm5lw12ZdFnrb7HScbnYX201Ovo+WgpqiPgS1J9vZeO9mRPK6+8pY+2N4r9NZTr6Hiqnqs+KbzhK7XlONj7mof4i8do991XQdbc4z+vsajY9UUvtuQ4AGi8pYf0DtcwPBhjbPU/3AzV0PyDNFzrY9MkG6i8W56G6bS42P9mYjrix4dFatn6uGX2JOI42f6qJ5qvEOaD63BI2f7olHf2k6/469FZdWqC06almWm8Q15OqrU62fLYVq3SStuveWjZ+QpxH46EkgkNLx60irylbb2fL59ookdbZNXfV0pe11vc91cqae2vp+1QrbTd72PK5Nkq7xXm/89bqRev3xidb6bq/HqJgbzCx5a86qL1YfP7Wmzxs/mxmnd34iRbWPSiu36ZyHevua0qfKGu5rmrR+r3h8WZx/Qd0JjVbPt9O3cVlzBz2YSk3LuKc6z/WxPqPZdaMLZ9vT0fnqb2ojC2fakdn16EziZyi94kMt938uXZaP1IltbebLZ9vx1QpYCrXcdZfd7LpM5l1dtNn2mi7SZzbKzY52fL5duxStL6u++rRmDSMSJE/+z7dRucdYnu719nY8vl2SqQomp131tL3KbENK7eUsOWLHemUIM42C1s+3075BrHfddxWs2j9Trc3YKkW2yHFa1pvXNzevU80pzlQ3cVl4re5UFwzmq+pXNSGGx5vpueRVHtD1SYXoztn8A0FabiiQiwrTfU9jzax4fFMG275fDvNV4vtrVKL/05FlOp+KE973yCueZ6zXRjsOg7+aFBswwfq2fjJxe3dcYs4jio2iu3taDZTc56bro/WL+JAfZ/Kau+1YnunUgl23pFpbxD799p7xfa2N5rY8rk2KnrF9m6/2cOmT7dRvsFB5+01bPx4M+seENvb7NGz5XNtYgpqlZrWj3gW8aWybjvxaIK54wF0dh1bPttK7TZx3DdfVcGWz7amDS49DzfQ81ADPQ830Hp9JZs/3UK9dFq07qJSNn+6JT1HdD9Yz/pHGtIGmc2faqL50qw54lNNmTnivhp6H6vPtOEnGmi9rpzoQpKoP8bmJxux1ogb+7V3VNP7sbq0YWXjE/W03SByjNIuC+vvbyAkGTc6b66g92OZCGa9H6ul42YxwqmzxcSmj9fRKKUnb7+6jI2PZcpueKSaNbeJ17XVCmx6opaKXnEsbPpkLZs/mUmHs+GBKtbeLl7X5Nax6fFqPFvE79h0WQl9j1WjM2rQmjT03F/JurvEsjoT9D3mofZcsWzdNgd9j2W4VUWPlVggkRYo9T1aRf2FDgBqz7LR92gVOilAQtft5fR9rIr2j4jfbuPDFTRdIpb19Fnoe6QCU6kYqnrtDSWsv0f8FqHZJCoNCCY1JJJUrNHTd78bm8SROj/iYP3d0voTj9N7h52eO8R+p9bBxvtcOBt1EIvTdpGRDXdkog+sv91O+xUWMa1bIoZWr8JRK1639WITvXfY0iGue26x0Xm1OLeby8Bft5MkCSwWy6pAaRUrwltvvUVVVRUJYrwyKKbcXX+zheoN4r6nvFXN+huM6KX9VftlFtousxL2JgjNxei52Ur92eIAc7fp2XCXC6NLSzKZpPVSK+tuFcfFwlCMnjvddN1Sgt4GJU16Nny0Emu1eJ+Wy0vovjsTWbn7ngr0Ti1zp0LoHVp6H/bgbBIjYzRfVkLPRzMn0Lvv94hp3gBLpcCmTzWw9k5x7W+41M2GR2rTIfG7P1pL+83ibwa3lrV31zD87gxTB33Ub3Ox8eOZfee6++rS+2+tRUvfk81USbYda7WB0rWZ6Dtd99bTdW99+t99T7VQc764Jled5aLvqRYarihnw2PNrLm7Nr32kEyy8clWGqSo0hUbnfQ91SqmbItBxx219H48s85u/GQrDVdKc3m3nb6nWrFIEe7ab6nBs9WVFhv1PtFCy7Xiu5a0Wel7qhV7k/itWm/wpNf6kbem6bqnntYbRQ5kqzfR91Rrmtc0X1tF78cz6+H6R5tov7EGtGCuMtD3VCtlPQ6xva+oWLTW9zzUmF6/WyTbSGWfODfWX1S2aK1f99EG1ko2DK0B2m+swT8ZYnbAR/X5pWJZSYvQdV99mi+J7d1K3TaxD6x7sIFNn20XozABa+6so/vBTJTnjU+20nCp2N7lvQ76nmrFKKWb6Li9lp6HM32g9xMtNF0lciD3WpvY3tUGjGV61j3UyPqPZb7NhsebaZE4p7PFQt9Trel0fS0fqUKlIi1QWv9YM21Se1trjfQ91Ypb6k/NV1cuam9ns5V2ye5mLNPT91RrOnVgw+Xli1LktlxTiXc0yMg7M2Kffao1Hb2pbltOez/QwNp767FUGyjvE9uhWuqznnPd9D3VilYKRrP2njrWfbQhnd6178mWtC2tarOTvqdaMDjE9u68s5buj2a19ydaaLislJZrK2m6upy+J5vTaW7ab/HQ83BDOsXbhscaaLpK/DauTis6i4a5k2LEqtbrKxdF617/aAMt14nfxt5oZOPHG6jb5qbnwVpab6xg/aMZ/tHzYC1tN4plLVUGNn68AXeX2L8bryil99G6tAio+/4a2m8SyxpcWjY+3kD5eol/XFhC78fE684cDVB3nisdTUlrgd7H6qnaLH6b6nNKFnG2NbdVUNlrTwuUeh+tpfpssWzVJju9j9ailbhK5y0VdN1ThblcC8kkvQ9UU3e+OG7Keyz0PlKDQUpn135DGevulvaLm+1seTLD2dydJnof9mCpEMu2XeOm+55MpLWe+ytputSFRq/GXKplw0NV2OvEb9N8hWtR2e57Kmi50gWJJNYaPcYSLVNHRDV14zY7PfdkoqKsu81N6xXi85pKtWy4v4z195Zhq9ZSf46F9Xdl9utdNzlpv1rkRHorrL+rhPI1UjRRVRKNXkUsKqYXWXONhY4rxDGl1Yr8qapbD/EEVV1aNt5lw+iGWAjqN5npvMqcTqW1/iYL1evF9aaiU8v6myzoNDHi0RgaPThrMpEZ1t9opm6N6CQra9Wy/iYzBvFTUbHVz1D0HQC++93vrtq8VqEYJSUlvPvuuwDsn36B6eAQnnUCa67MhI5sP1+gcaPYJwULdF1vRaOH0EKcsnaBtddmfG6tl9toulCczzQCrLvJSWmbgchCHHebiXW3u6noFq/dcrmTliuk8aeBdXdVUNZlRqVSUbbGTPcdlcz2+5k67KX5ylJar8sa1/d4qJR8Ba52M90P1CJYRVtP2/Xl9H2yEcEu/nvdfTV4zhLnAGezie4H6zG6xPHXeFkZ5nIDR38+ikqtYt39dek0UbZaIz0PN4jpNFVq6i8pT/uSEtEk1loTDZdUgEqFxWOk55GmdKq1ugvLWHd/Zo1Yc1cdjVdV0nVvPTUXlNLzSFN6Tfac66b7wcxa33lHLU3XiPOdYNew/vFmKjaLz1+1uYTuhzO2qPZbamj5iEdqbzVr7qxHZxa/VUVvCT2PNKUjUbXdWJ1e6wF6HmmicmMJgfEwOrOWnkea0lFrWj7iSfs0QbRreSQ7UEmHlZ4HmxDsWjSC6B9NcSsQ+VP1uWIbOprN9DzShLFMQGPUsPETLXQ/knn+rvsb0uu3tVZsQ4tHtDHWXVyO0a1n5B3R5rX2nnrqLxU5p6lcT88jTdgbxIWq9vzStO/O3mCm9xMtab+ZoUSg55EmSqSoP56zXWm7FYg2sGaJn+osGnoeaUqnMavcLLVhqr1vrqb1erG9ne0WNjzenE57V7besai9W2+opv3mTHvXXljGyHvT+EdDlHbZ6XmkKR0lqvnaKjpuy2nvs8X2VuvU9DzShEHyhzZeWUnnnRlOse6BBmolvmRvMGOpNHLiOVFw13BpBWvvqc+093316fZO9VlrrRFXp42mqxanfFt7dz0Nl4vtbSwT29Ah+aqrz3WLPExC5x21NF2d6rNiX0ql0/VsddH9cKOYvvDicjpurUnvBzRGDT2PNFK6TmrvjSVpOyFA+QYn8VBcFChpRLtW+QaxbOk6Oz0PN6Qj7bRcV0n7zR5aP1JF7Xkueh5qSEeUcnda6Xm4AcEmtffVlXTeWp22l627vw6PVNbZbBbnCLe49jdeVkrn7RlbT9c9NdSc5yIegdBclO4HazFLvry6bW7W3OlJi3TW3uGh7kLxO5orBdbeVUssLNq8as9z0XVXpn903lpF4yXidzS6dHQ/UItHyrjg2eRg3b2Z/tF+UyWNl4tlBauG7vtrKGkXv836h2rY8Fimf7ReV0bzlWJZjQDd93ooXSPOPeU9Vrrv9aAzaxDMGlquKqXlarEsajXd91ZR3iOWLe000X13BRqJi5d3WYkG4mmBUtcd5VRuFMuWNBlYd0d5ek5u3Oag554K6i8Q32ftTW48fWJZR63AutsyEZnqz7HQcY1YLh4BjV6FzqKGZBJruZquGx2Yy8SyNZtNdF6biWDfcYWZzivFdkgkxLXK5tFAPI6nS7t4XbvERP1mA6pIlGQ4hsGuxlYuXrdyjY61V5rSNq/WC/Q0bhG/scYI4ZqdBGNz1NfX/1HT6ypLqP4Bw+/3o9friRPjteHvsG7h4/inRHW9fyqKpVRHJJYEVPgmo6i1Ko78eg6AsnYT4QXRgxyYihCai5GMiMZT30QEXVYKkJAvitGuo/E8NxMHfYTmo4Sl6MG+sRDGrPQCwZko86eCnPr9DI5mI+GFKKHZiFQ2TDKeUbcFpyL4JLVoaFb6TVK4eUdCi9SUwckwgWlRJReZixCcjRCYimCpFjCXGwjOZBR0/okQEb+4uYoEkgRnI/jHxfsMvTOFuz1jePWPh0hI7x3xidf1j4mbGe9oEGO5nsB4GMGqIzwTyajzIhCcjeCVyvrGg1hnTUSk3KhavQaNXoOhTCA0IV53YVQqOxYkOBshIok+/SNhdOYYnbfVYK01E5gOp1W0/rEQwdkI4QXxu/pGghhLspR+ahUGpyC1vXif4GxYKhuCLHF3cCpMJBjjrM92MnlwTmzDSbGsdziISpvV3uMhglJO3XgoQTKeJDiRKaszZbq+fzxE1C8+U9QXIzgbYfjtKfxjERbGguhL9IvKJqLiQ0UiCbENRwMQEXPSxqOJtLDBPxpc3AdmI3hHg1K7BIm0WNjwcCMDL47hHwmhMWY0g8EZ8d6pewZnI0T8SdovKUNn0LJwKqNSDU6H09cNTITFstK7+0aCJLLy3Qanw3iHAlJ7Sv1Q6pe+0cUq3ng0gXdE/L/wvHjdoFR2YSSAWp953sB4kJD0jUPzYhv6J0LpsoI1M8b8EyHigQQ155VhLNETnA3jHxfv4x0NYijNau/RIImsMYcK7HWm9PNaqoxE0u0dQq3Jau+ZCN6xILUtVgLT4vMnAql+GEJrWtzeqTb0jYUITIcZ2S6eWvINBzE6M302OB1hYTi4qA3joRgkwTsUIlmWNUdMh8V+jDhHiG0oPrClwkgikT2fZOaI8Hw0PUeI7RJCZ9PS92Qjx38zRmAiTNiXmiNiBOei+CdSZcMIVnFMtd9QjtaoYVY6QRAJQGg+im9M+ubjIUxZqe38EyHstSbW3FzNu/90UiorXtc/HsFaFc2093gYtaCWnjdGMp7ENxoGlQr/ZJjQfJRIQKo7EUYwZsZcYC7C3ECI02+O42zWY6s0EfLGpfaPYHRm+mxgJopvJELbtW5U6iShuRihObGsfyy86ERJcCaGf1K8Z2g+QSQQQ6fXEPEm8E1EFs8R09H0qeGwL0JoPkZMOvUyPRCmJJEpG5iJEZHCnsbDUh+X7hOci+KsFag7y8bBXyzgn45m5uQIhL3xtNrZPx3H7IpjtoF/CuZOxyBLkB2aj+OfjqXL2rxxkiGYiYzxxk+fIxaLcfvtt/PQQw+xilWsBA888AD79u3jn/7pn9g19xxtg9WoVBlDpn8qSmg+DskEEW+UwEyMqcMh+oejVG0wojOLDmTUKnyTkbQ4ORqOEpiOEZhOjfkozkYobTMx/PYsvvFIJu1PNEFgOoJ/KsWtIpjckXS63ZIWM6rUkhGFwHSEgLR++8fD+Kci6eingSnRAGFy6QjPRPFPhtPzW2AqjH8yTCw1748G0RlEkt5weRnxWCK97gUmxbIRaV71jgSJBcS/z58MMH/Sz7x00iU4HRHnOGmd9Q4HF3FD/3gQ32gIraAhNC8+U2hWfIaFkcVcxT8WJCilCI16RZ7rarEx+NIE/tEQgjkzb3pHgmluGA2BfzJEaCFE31OtBKZDBCYzp5d8o5m1PxpN4J8MpdfkpCqBWqvG5NYRmIriGwosOhninwzhGxPLBsZD+CdDdN5ag2DVMXtkYfHaPxnCmyo7KZaNBpJE56MkYgnCWafwAuOhdHsHp8JiWa/ULkMBYqE4w29Mp9slxVVCM1H8kyHC8xkeidTcjnrR6JfmKnPidUOzGb6n1mWe1z8SxFhloOfRJg79eBD/ZKbdfCMh9FlcxTsWJOYX27Cyz0UynsAncXHfaCi9yQfwDQfSXCUaFdvQP5a6bhBLpWFR2Wyu4p8M4R0J4bLrICn+OxGU3nU4iCaLqwQmQul3DUhtGPHF0+8atWXa2z8eYmFE4nvTUllvhOpzagnNR0SOmio7Fsx8m9mI2IYz4jMkAa1BjaXaiG8oiH80iH9KbN/ogti/U3sY70gIrUGLo9GMrcbE3IAvw1V8CfyTYQJTIal9Q+iz9l/eoRDxcGqOEK8bGJeuOxrEWKonmUiiUqvEZ02CucJAPCxdV+rf/okQ/slweo7wjWT6QN02N2pBRURKVxSYCuOfyp4jQuiywm/7JyNYKgx03lrFyPY5/FOZOc87HiIWyua24fS4qbvATTyayOx9xkKLuKx/Ipye08ILUYILEUrbbWh0GrxjYVTarD47FiEo9f2oP0lgOkJwKoLOBLFAnHgWB/JNRAin54gogelomkf6JyIYHFoO/FCMQtl8eQmJWKbPBqaj6T14YCJCoFRAZ4K268rxz0ZIZEWeEstGIJHENxXBOh1NBzf2TYQRLEbU0jwXmI7hn5CuOx0hMB0jGogCKrwTUQRzHINTRWg2iXc0wryU2j0wFxe5lz/VhlFi4YR06ldNkiQ6oxqdHUILCYKzMYlHijaD7MNo/uk4YZ/4gBMHwpgdOnGdA3yTsUUH3PzTMcISH3350A+YD07S1NTEoUPyI5ytYhW5GB4exmw2Ewj4eWvk+7ROfZTAnDiXBOcTBKbjxCNi3/ZORNEa1Jx6W5yTnTUxQtJaGZ6P45+KEgtLXGU8SjSQtZ7MRnF49Hg22Jg4GMA/ESEqzVn+iQiJLBOMbyyCbyzE2C4fBreWwHSE8ELquhFUqswg8o6E0o7/WDBBPJxI72H9Y+E0twJxLk9xqVgogW8sRHBGnH9s9ab0OipeNyi9N8RCMbyjobSt4dTvp9IOFRDXzuxx7R0VOQeInMI7GsI3HsToFPBPhlGneI1KXDO8YykOJ9pNYpLpTWvQIFh1GNw6QlNRvCMBAtJcni4rzasprlK3rQxXhw3vSCDDP7xRvKNBwvMpG0xoUWQotVaFSeINEZ9Udi7Da9RZ3NA7FCAejbPpyXbGd03jHQ2m11n/aAjBkuGG88OBNFeJhsV+FJB4pW8ihGEks9Z7hwMkouIzxWLi2jq+c5bQVFTkc6PBtJDEezqAKoureEeD6TXO4NSL67UUesU7HFxkx/KNBNPfOTgt2po6bq1l8JVxkctmPb9vOIhP+jYhyVYW88WoOsuNya1n+kAm7bp3JJjmVqF5sQ1D0vqY+v/0dYcC+CU7YdQvlZ1N2UqCqPWZPhsLxvFKtp1oIC61t9SGoyH0toytZGEkSDwg2SliMbFsypY2FsJYltXeQwGS8SRVm904GiwsDPkzfWtC6lup9h4OitwwmQSVCpVGlbZ5+acieEdD6X2Udyi4yI7lHQniHw9Te54N31hocdnhTP9NvY9vVOIfc1EWBoNM7J1P/5aMZXGKkQxvj3ij+MZCxCNxkklYOBUkGc2eI8JpG24sEMM3FiI0J97X1WxeFBHXO5yxdcfCcXGOmM3YjIxuge4Hahh4eRLfaIiYZFeJhSS7qNTegclw2kbuOduB0S0weTCTItA/HiKQstdMi/b01Lj3joQp7TDTcWMVO752Gt94ON1fgrMxsWxE6t+jYQSzxK38MXFeG46AWk1oLop/PEJM+uze0TDRcMaO5RuL4B0OcWTvNKYyLbbqSJpj+MfCi+YI33iEwESE6nPsaPQq/BNRQtI+yi/5QrLLpoTw0WCM8HwUwaolGgTfVBTBnNU/xqNEpTQk8SgEJmNEQ3HQwtzpKJqsCADeiViar8YQywak/UBwIYFKDTXrTBz9XQDvZGxR8IjAdIzATGpdSxKYiiEYITYL40ejaHVZa9VEjMCsVHYhRmBaSywEoZiPn/7y+4TDYR577DFuu+02VrGKlaC3t5cf/ehH3HLLLWwf+xGVY4+i1WcO5vkm40SCCYjHicc0+MZjzA/FGd0TwVGjwW/L2Lz849H0PERCHFNBaX4LzsZIJpKUd5qZPBQQbeepqGJxcU4IzWX8JN7RMEPvzkMczGVhdOasdXYkRFAab+GFGN7hYHpv7B0LYyk3Ili0RObjeIdDaV9Y2BvDOxRMCwV8Y+F0at7SdTbisUTWehhnYShjU/KPZ3yc4dkoYztm09eN+GMsDAWISjYx33hokR3LOxwkNBdBrVYRno+yMBQgJHGg4GSYBXMmZO3C6QAxae2MB5PoTFpczTbG3p0lkOWjEq+b4SrxeEK87kKEtXfX4Z+KsDAUSEeH8Q4FFkUIXBgKpH0qSVUSrVGDwabBH4yLXEvImhuHggSmstbDoQC155dhLjMwtmuWyEJm7fSeDmbae0EsGw/EiQfjxMJxQjOZqCQLpwNpf2jUF5faULI9jIcgmWTq4IJ03czzxkJie0d8EjecCKW5isVjRK1V45P8ZvGIeN0UrwlORvBmRe9eGA5irzXRfnM1x34xwsJQIM1rglNhFk5ntfdQMM3p6y+sIJFIEpJsuqFpqb2zvo06p71Ta3JwRiybiEhr3EgIdRY39J4OEpyMYK4wQCIptovUT32jQaJZ0UYXhoL4JNtOxBeV+LfUD8eCaZ9sqr1TdpVoQGpvX5zWa6vxT4ZYGFrMywISn45LZVP2mkQiid4mYJJ86N6scRKPiM+b4u2BKfF3q8dISYuViX1zJMLSHBEXx1jq2wSmc57hVICF1NIfF981Ne5DcxEWhoLp4Di+kRBqnQqjS088LvVvqc+G5qNi2VCqDQPozKJtqqTdisGpIyZ9i7A3Ks0RCalsmGgwqw2HgpjLdDRcWsrY+3N4h4KZPjsRXuSX9w6F0s/QeFEZiWgi7U/3jYfEw/6psiMZG24slMA/HqSix45Gp8E3GsJrzmqXkWBmjgjHxbpzUdCIOo1ktr16NEw8PUdI+1Tp2wRno3hHQpz8nejPrey1LfK5eUciWe0dwzsSAZV4cDo4F0WV/a6jYYKSfy7kjeMdCxOX2tQ3EcVQoktzM+9YmMC0NH/743hHI8RD4t7ePymuIYJJ9MlOHwvjk+xukaBo54oGpX31dIxkUoy+pwKSiQQGhxbBIraLbzxG1BsH1ARnY2iyVD3eybjomwbmxuLMnIwRkmzFwfkEvvGMQc83FScm9dl9Qy9w+sA+GhoaOHZMfoSzM4E/Wrq3FMbGxqisFNWJVo2Ls8sWE9Fkdh6+LBa8/m43Wr2a7f+aP3xhMjvEolqNpUrANyItHMVCKJIJsVh7XgmeTU5OvjrF6HZpg/wBpXtLoXyjncZLKhh4aVxR2rfOO2tYGAow9GqRdGR/wKcVSgTcbVZG3paf7qzh0nKcrVZ2/vtx2SnZeh5tIhlPsufr/bLvs+6BBk69NsG8gnCPSuFstVC3rZzd3zpxxtLLGcoEuu6s5+Qr40zunl++glRHZ9LgVZAvuPuhRrRGNe//85lL91Z/STnl653s+kY/kRl5DSZY1JirTcwe9i1fWEL3w41E5iIc+tGQ7DqAovCL7TdVE4smOP6LIqFR4Q9O99Z+YxXe8RDDb8wUT18i3adio53ac13s/o+TRKRNfdGQg0DjpW7s9WZ2f31Q9nMJDnB3OBh5t0CIx4LPKbON1WrW3V1B/ysz+IbkD66Nj3iIR5Ps/vbSVFDidf/wdG8bP1pGIp5k57elVHLaPDrerPVDJYVftJSDbxySWWGu0+lIJKTSMbReZsNRK3Dot/P4UhkMslI85Nbzekd5c/7HgJgy4s033yz8LqtYhUxcdtllvPDCCwCc67wHs9G26PfF3EscI7YaHe2XOxg/4OfUa9L8kDvucsJbp4QwsEz4akiPrQ2P1ooRAP8tM299UOneUlgvnRTe9W8DUrHl+ZK11kj9BaXse3rwD0s7kn62pfes2ORkev880YD86/c80sjUwQWGXpeXatVUrmPNHQ2ceH6UmYPyUlF5znahtwn0/6bA/PsBofGKSpIkGfjN2Bm7R+uNHnRGDQe+K39dtDeaCIyFZH8XU7mONXc2cvqNCcbek5dCZSXp3jY83kxoNsLB78t/F0u1kbA3RnReXg6/0m47NeeUsu/bxzPpsT7gVG86u4726yoZ+N0EvqHiocJXnO5NpcZWb8SzycmhHy3D7yDrtFg1yUSCA89k6hQLS60zQcct1UzsX2Bsp3x+W9FrZfqwb0maTEUoEvras8mGwanlxPP509Pke6eKHjM1Zzk49sI0c/1Z4aiz58uVci+pXsU6E7VbbQy8Mc/kAWlvky9dSdacm0q1a3JDYGrx+qDK4W3JWAx0sPFON+GFOPt/lfkm2etcis+l8PboD5mPjaFSqRgeHk7bKlaxipUiFAphsViIx+O49fVsrLx+cYFI1pycNZbbL7NgcKjZ9R3JJpM75rJTuqlUGJzaTKqjZdK9JaXUPa42I43bXAy8OsPUQWkSUpjuLfeaubDVGWi9rpKTL08wtb8498jmZA0XlxGYiTCeSlP7Aad90xrUONusTO6RZ4sBcV0sW+fgyI9PEZOZiar1xmrUWhWHf3ha9n1aPlLF6PYZfMMyb7ICmMoN1J5fyvHnRpWlo1MArQE672xg6I0pZo7I451aixbBrBUdejLR8pEqDE6Bfd8+KbuO0nRv7i4bteeVcfCZk4Sm5bWX1qDG4BaW5TfZaL2hmmgwxsBvx5cvvMJUb9XnuEANQ68tY+9dqc1Lul/12SVEfDEm9hS3LaV4iL3BQP22Uo78dDQtdCp+HzXl6624W80c+KH8/YPWAI4mc2bOkwsZaUZAfJ/Wa1wMvTtPYELOe0i885Yykkk48JMC+zol6d7ycCeAtTc6ANj3k9klv6WRPc9LvxtsEFrI+U2XU1eyh3nW66noNHDkFT++Sem3bDtBTr1QwMvvx8Rog9dffz0/+9nP8rzgKlahDP/7f/9v/uf//J+oUHNh1UcR9NbFBbLssKmUPYIV2i+1MnEwwOju1N4kZ9wt4mwqBIsmfXAoX7q3bKTswm0fKUejV3Pwhxn7ygeV7i2Flusq0QpqDv6wgP8kTz29U4dnq5v+50b/IJ9iMTiazHhHQsSD8vOrtVzrYW7Ax+Q+eXxNY9TQcXMNg7+fYGFQ3jzvaDZjLNEz+t4ZTOeKGKFIo1Of0ftUbS5B7xQY+K38ddFYJhCZi6UPECwHjVFD5601jLw3w/RBef6jlaR7a72hmogvxskX5L+L3imQiMaJ+uT1MYvHSPVZLo49O6qoXwLybWMaaLy0ktEdswSnPlhHczbHM7oEytbZOfXKZL6CeevXXyRmOul/PqtO0RRn0HRZGXP9fqYPy/fN2+uN+MYjxIPxlaV6g6I8zNFkwlwqMPxugXkiT12rR6DpIhcnXprBN1rgu/yB6d5sHh2N59s49baX2X5xP5CPey2ya0n2KcEiZm1ZtDfP8RumuNeaa6yE/ElOvJFlu8tek3LqHZl4lQHvdnQ6HcPDw5SWlhZ+lw8Bf9RISgAVFRW89dZbnHXWWXjj07w7+TM2l96Qv7B0sgRgeJcPs1Pm4ycSaYFS0+UlqFRJjj+7vDNn8J0ZbDVGRhUYLQA6b/Ogdwrs+try+TLHd8wzvnc+I4RRqWUZX2zVJnQmbXGRUu5z3VWLWqWSJTyJzEQyAiUBWUKdgRfGGXhBxkY6C7v/9YSi8sCKcrcKFjXuLqds0ZXBJWB06SnttMsWEClFaCLC9n88qriOUjOVqHw/s0M9Go6RiCaI+OQvtBFfgogCgRLAnn+XL2ZbKaw1JlkO6xQs1QLGEj2Te+UZ3VI4/FPR4SVHoAQwtmOesR1ZfVGGo67/hSlgSv7ib1ATWUC2QMniEWi7ppwjvxrHNyLP4eluM2B06nDUGhSJlHb82zAqvbz3KO82Ub3Jwf6fjhKekf8txw/605EF8iKLFOhLoOMKB4eem1siUMpFMstJcGr7AhrBkVeglAu/d5qTlrdQLahobm5eFSit4gPD888/T1dXF/v37+f12afZxr0IRmv+wskEqNQsnI4ydzrCyPtZ84N0wqwQAlNRdBZou6acw78YISpjmhzft5A+ESIXpjIdHTd76H9pgtkjyxshdn1rABbpsFTLzvvOJjPmCgPWGgNemYYOS7WR1murOPDDQcLTy8+RaUGLjkXPVwy7/03ZuhgYjyrmHsNvyuea2XCvtREYC6aFasvB2WReFGHwTODoT+U5orIx36/MgRENiSdd4uEPQMxW7D6BGFG/Mqeib0i+yB1gcs/8YuftByFQgvS8AlDSZMJcaUBnKrLBz0FFr53pQ/PyRT3JBAsngyzIEflnzWn7v7/YqLscn4oGYO9/SHXkOLJ0QEylSNDUfn0Z0WCcE7+VPy6dTUb0VmV7gbHdfsYO+CGe9c5Fxue6O8vxTUTof1GeMA9g7FAAe40+I1DKh6x9ceNFNmJBOP1eYIlAaUm1FPeKwuSxIN7xTNlFQtwcTLvewz86hU6nY9++fasCpVV8IDAYDJw8eZLa2lqmwifZPf4cPeVX5i+cSKTnj5F9ISylOWOwEO9KJtMCpaoeE1qDisE3lrdjTB8J4qgPMHVU2VpXe0EJ1koDB36wvPBz4VSIHf9yIh2ppxiyOZmzxYJhNkukJMNW1nBxGVqzlmPLHThCPNmbXuO0yHq+JeuiDBz9qcIDVsCxn8sQ1OZAawBHs42p/fL28jqTGlutGXutSbaDSSliIdj7TWX2u5gvplg0FfPHieoVOpYUIhFJEgvF0xF55CAWSigSKAEclSmaUiIgSkWjTMHRaEatUS0vUpJgcGgxuATmTsicJ6S5aujN5Z2w2dxqfiDEnm/KFPNJ8+T4Li/juxTY4nQqYmFkC5R0Vi1t15TS/9IkgSmZBxZKNVgr9dg8BgITy3C8bN75ownQyfuutmod9efYOfrb2XSk8TSKzJOjewNohCJ8NkuEpDVA84Umjr8eWCpQykWWPWz8UBjBoskvUMqtFgjSr/stKpWKs88+e1WgtIoPDP/jf/wPRkZG+NrXvsYrI9+ShEqW/IXjcdBoiHhh+kSEiSNZe5Ni3CuRJOKLoxGg7mw7g6/PEgsuP09MHlDmPwAxdVfLVeUMvT3LwuDye9pjz44uinonB+YyA/Y6E+YKfToi0HIQ7FoaL6ug//kxIvPLr91zUqYHNKSjIi2HY79UZsOJB+Psf/qkojpzx/3MoTwYgqXKQMQfk/XuACXNFlQa1RkVKY28q/zawQllwpl4JE40EMtEwz5DiPpi6YhechGeVfYuvuEgh3+snKsrgaXCiKPBzNRhr2yRkr3BhG84QLxI8VyfYnA6kl+gVAQnX87RSCznb4zDiecm5N9AGuvzWba4ZDJZ1LZWfbaTZCLJ8Ntzsm/jqDVgqTIUFinlgXc4wu7vjaJKyLNzNl3iJDQbZXiHfPvdwliUqeNBZk8VnlOz7VrlawwkVRomj0SWCpRykcO9wqGs9yjCvbzmvQyFdqPX6zl06NAfXaAE8IeFAvmAsHXrVn77298CMBsbZefUr9OGxdyTjVLcKyb2hxh4ZQ6Axoscy98kkYBEAkeNAXu1Ud6DRWD/94YhIuaERVi+CogThCJFYERUxvU8XI9gQdxsLrPh3PkvR9jz9SKb/TxGW4NDQHDo8hQujL5PtdL3eOvyBVMQxNPg5b0O+VUs0Hp99fIFs9B1T306H6scrLm3kbpt5bLLj749w9v/56AigVLdRWVs/WInFo/MjoIUsarLtnzBrPIbP9lCxSbn8oUlHPzeoKJIVSvB8GvTotNTAQ9Y/3gTzddVyS5vKBNwthbYUBTAxidb2PjJFkUnALb/41F2fEmGqlva+DddXknLVVWy5weADY814uq0yBYoebY6KO3OEhDIECh13VWNs1UMEy4nYF7lZgebH6+ndK152bIpOOqNaPUaogoMdVOHAuz61mmG3pJnCO24vpSqPundZfYvwaIFFYR98r67u1WAZJLTb/kYfi9nUxKPZ/5kobTVLEYDc2kKCpSSsVh6Latab8BSCuEZOPxbP8lwZIlAKRVFKRkOE/Z6eX3+ewwPD7NhwwaOHlUmKljFKpbDvn37aGoS85H/bvY/iQRD6b68lHuJaXaO/naeqB/MlTpKOyUulUgWdVxbq4wYnVpKmuTN38NvzjH2vmi0cbaYliktIuqLolKp0FtkchzJP1252Unz1WJecpVaVXROHnxlive/clS2QAkgEYujM2lx1OWZV1WqvIKPsg0Otny6g5LOAqKxPHC2WejMyvkuB+51Nkq77csXlFDSbmHdgw3LF5Sgs+toucZD/cUVsuu8/5Xj7PqqMvF67xPNdD/cuHzBLNgbTejs8vlw05WVdN1fL7t8dD7Kzn85rtiJqRT7vn1SlhM2hYpNTnoebUInb1gBYt/SpdKKyNjb2BtMbPlcO+UbHLLvMb5znnf+9iizR5c3CiYTSdBB/bYyWm+Qv3eou6iU1utk7AOy5oDGS0tFEZGE5fZ2Zd1Wmq/K2twXc+RI2HBfDd33yufCAHq7FkO+/VyR++3/wTh7vyvPuCvY1XTeUrpYLLnMPA8K9Ws6MTofUTjy6zyiJmnNyXWy2av0OGoFkslkQW6bzb1qN4ud/dSbfmZPRUlGo0sESqn1LhmOsGfiObbvfhur1crPfvYz2traFLzUKlZRHNXV1enUgWPBIxyYeDljWMw9ESnZrhZGYgxvF3lHVY8M3iXZyhz1euzV+vxl8uDE8zMQA0uVTvbZJpUKZQNfOjfVdmMVWkvxm6Q42d5v93PomaHcH4vayvQuPQZHno15Ad4F0HVfPT33K+MSDZeW4+qUb8dBC7UXlCm7x5UVeM5xyy7ffG0NjZdXyf6G8wMB3vv7w4oESu61Nvo+1YbFY1i+sAStQY2tXj750Bpg7b31uNfKb9+BF8cVRapaCWaOeNn7zQFFAqr2W2sUfXetRYvFI2PsZo2BNXfVsO7+Otn3ANj/9CB7vy0jarq0Dlef7aL12gq08j877TdVYqsvXiGbWzlbTTgaZdrqJYFS0+UubLXyH8reYGTjQzWUtMq8D2CtFBDMGhIJ+e4T/0SMPU+PMLariBNLrUrzztpz7LjXSGNEZvcSTBpQqzIp1VMoIFCyVmlIJpNMHQ0zvj/HUSatOblc0lalw+TSYi5RF+aZsXh6LXPWazGWiOLEgXciooMs10mWiqIUiRILBHl57F8ZPD3Ipk2beP3112W9+ypWIRdf/epXueOOO0gS5/ej3yIeDma4lz6HK0h23+HdYeJB8bC7vUYqU4x7JZLoLWos5TqsVfIcAzPHAswcE/mduUJenWgwjkqtQmuUORdJr+loNOE5q0Tecx3xsvebJ2QLlACScTFVlqVc/rxq8RjZ8Egztgb53MBYJlB3kTIeZfEYsTfI93GYyvU0X6Ngb66Bthtq8GyWz9UO/3iIQ88o4yttN1bTdpMyv6mxVEBnkX8IrGy9g6ZrFBzOicPhHw1lRGdnCAMvjDH8hryo8QC2WhNtN1ajMcp/d3OlQVF5wa5h/ceaKWm3yvM3qtT4RsLs/Fo/Cyfl25ObLiun/pL89tR89uvSNVZqznPJvj5A+QY7muwpaBl/o9Wjx7PVIQqPZKLt2grab1B28Mvg0OXfzxWxeZ18ZYZDP5EX/V8jQMM2p/juCnR2qizutvxNwORSQSzB0Lu+JfdJ2bRy7Vr2KgGHR5vXF5lGFvcqbRHbaep4BO9EIj/3StkaIlEGp9/nzb0vYDKZeOGFF2hokG/nP5P4o0dSSuGyyy7jmWee4bbbbmMiepLdcy/S47ikcIWkSBDKesyUdphJJkiLlorh/W8PiY7urBNqy0FwqGi5ugLPVIS931o+pcKB7ytXX1prLRhdeio3l3LqZUnxWOSkWETa6zRfV8X8gI/JvTmGBZVqyUS58yvy032lsHAyQDym4CR4BOx1ZjQ6NePvz8mqUntRFe41NqaPWJmWmXrEVGFAbZC/STzx3Aga/ZnV5M32+3C2WuVPVsDaO2vRW3RM7ZNpGIpE0Bq1GOwKFDECWMr1+E4rUJIohFAioNaKkZ7kQmfSIVhlhooAmi6txF5v5q3/e1C2WMU/oixiwEpw6JlTuLucsp/JvdaK3qYThTSFkGN4rdpcgkoFk3u8svqXpVLAXKHH1Wphj7d17AABAABJREFU9mhgedGkWo13VMzjOrlfPsEcemtBttgIoPOWco4/P06k0DDPMy9bKvUINi0j2+WfNDn95gKn35QZDapSR9M2J+62MId/meMoK0QG4gmG3g0ytCuY/7sn4iRjOSHVN1iIdZjY+fREwYgtybCU/zsSYXtcTPHmcrnYsWOHrHdZxSqU4vjx43g8HkZGRvjd7DfY5nyQotINyWnccokTrV7N5MHFJ8zynYaYORpkZmBYdmSgFNpvqsReY2DXfwwRXiaNaDQAO76iPMpiWZcdXc5mtFhUpWgAdA49jRe7OfKT5R3+gbEI7/79keKFcvjaxL45KtY7Cc3KX7Pd7TZsdRZ0dp3sNF6Nl1YSD8VlC2kMTj0mlx5rnQnvqeU31tH5KAMvjjG2R35UlZXAOxKU8n3Lg86uY83t9UzuneXYr+RtYPU2Me2IEpjcOqJRZH+PlcDsMeCfCMkeW4JV5B5KUoq1faSGwFSIvd86Kat8PJokMBXCO3wGjVVROPxfw0R88tvWVm1EKBZJKNfA02WhrMtKxB9j6M1ZWYdP3O1WzOV6QNrHLbfPVKmYGfArzl605z/kC9PcnSZMTi2Dby7I/u4VXRbMbgFLmQ7fcHRZcVL6ub4rP5ru2utcGJ06tv/H2NL+W6hBkkl2fb/IqdB4nOwnrT/XQlmrgYWxKHP9IQq9RUowPl26m9EJ8ZDCD3/4Qy65pIgdYhWrWCHa2tp4//336e3t5XRgL2pUdJScX7hCQuRdVo9A1QYzap2KIUm0lHaY5dkbHvyvFZzO1kLb1WX4JyIc/unyKRVOvaLwHio15lId1mojZWutjLyzPD+IR1RAkqotTkIzUWaOZjn8C9jKlhWq5LGTzZzwoZZpG0zB1WlHZ9XJFvhUrndSuakE70iA2aPyTt/aa82E56PIjR9w6vcTaA1q2SKHlcA3GsA3GiSh4B4t11djqTSy/R+W4cQSYiFEe4lVwQFLLRhL9AQnzpzNS2vRotUiLw2ZBL1VS0xB6pCarS7KN5Sw46vHC4uhcmxF3qEgGuHM2jqPPz+Oe8AiO8WhpcqApdyA3qaDPLHg8/Gq6i1OtAYNu/59GZu7NFa1Fg2OBjPRYJKFQRkPplIRXojhGw0x0y/fTjhzPMTM8Tzcq4BPoeGiEk6/O0OsGBXOmbcd9QbMpQJT+/yyHX9TR0NMHc167yKEUmtO0nqxnZlTYfp/nzP/FHD4JRMJZk7GmRmayzunJGOxJd+xbpOJaDDB/p/NUpA5S6myYrEYO4LfJ0mC5uZm3nnnnYLPv4pV/CH43ve+x8LCAs8++yy/G/0m2yo/iqbYKeN4HJIJ6rbaMDg07DudZYtKJBdFBE4hMBVn7w8nIb58hJBseLbYKVtr5cCPRwnPLLNWxOHAD5RHhXZ12DC5BIbfksfb4hExlVdVXwmnX1s+IkvUF2fPN5QdjPcNB5k75SesYD211ZhxtdkY3TFNZF7eulp/UTmJeJL5AXm2Ca1Jg9UjRnmWJdSKw/Ffj+A7k7YPwDukMDWpBjpvr2N81yxDr8sT+OgsCn2NiNG9EnGUp0hTAMGuJeKLyRaS6Cxa9A4d8Yj8Z2q+porARJhjP5c7vlTMD/oJnEHOCXDoZ8Mk8wyRQodrLVUGTGUGQF6UTHOFgGezGLFoYveCLH+js8mCs8msKMLR7Ak/aq0ynnr81/IjNZkrBMxlAhN7fUWjTmXDXmfEXmNAb9cRmJRvVzz+vPz9b/0WM/YaPft/OrXkuQoGk4jHOfayryAXTMbiqLK4p7tZwLPeQMgbZ2EoXHjtkbiX13yMg6dfQaVS8cILL7Bp0ybZ73OmoUrKCbHxIeLLX/4yn/jEJwBw6+rodVwOsVj+HH+SKqysx8zE3qUTdrJIWKuK9WZqz3Fx8Kej+IYX95R8eWAbL3Uz9N40kZkiluScTUH9JaWUd9vZ9c2TstJ8pPMMFrnm4gqw9VPthOYj7PpaAUKQ5/M2X1dF1Bfj1MsKQrMpgGBRE/Eps7g72y3MKkz9dabReGUl5eud7Pr6cUXiGyVwd9nQGjWZFC9nAOseaMBSaeSt/3NQdp2z/rqThUG/rNSAAD0fa8LoFHj7/z200sdcFhaPgKvDwamXVtBvZW4QNn6yBZVaJS8VjoLw2ouryXiW3GsLYK8xMH8iJFsElz2fyBEpKUXX3VUceW68+JyYBXeHiebLS5k44KX/pbn8hfIZelIcOVL4PZLJJCqNmjW3lqE3a9j5LcnxnHKs5Vs/UnOrRkPjhTaG3lkgkm2rSiRBs7Rdum93QRL2/LDAmE3EIU9uWUeDQGA0IH4TdZ7nicVAoyYS8bFfeIHJyUkqKysZGVEe6n8Vq1CK0tJSpqbEzes254PodLp0n1yCWAzBrkKwCqIDOwf5DJYprLurjGgwwcEf5XFm53AvnQkqe50Mvj5bPBpcjgO997F6fGNhjvxsdPn0uQXSqhVL/dZ8VQXutTb2f/eU7NRZepeO5isqOfDdAkb3D4CK60woEp9Y60x4RwKKxWNnGhufbCUaiJ3R9K7V57qZOTQvOw3dSrDlCx14hwIckMmjOu+sxVZr5p2/kc+jtn6xg+mjCxyVIZhbKco3OAnNhcWUdx9UqrcUVGrMHoGuu+o5/fqULMOpLA5V4F4FUeCajkYTc1KqP7mG5kXjUIZISQmqz7ajVqsYfH2ucKGce667sxy9Tcf2rxU/QJP7fnLnE8GppuuWCobf9y5NWZevzaU5WSjRUNpqYXh7rqNsKfeyVOlou8zBwOvzzAwUEo/H83I9V4uO6cOSgTkfF4zFQK1hz9yLzDCIXq/n61//Orfeemv++6xiFR8QXnvtNc4/XxQnVZvWsrZkG8lIFJV2aT9NRf9yNOiZO5ln3YrFCs5j9hotDec7OfqbKQITi21jyfhSjlTeY2HmRJDoXBHbR45Du7TLSvVWJ/ufGSEyv4ywMZlAa0C20EGskqT3iSZCsxEOfO907o8F61VtdUEiwci7+aK1/eG8S2tQE1MgkgawVBsUp/460yjvdVB3YQX7nh44YwIfS7UBvU04YynlABqvrKB0rYN3/+9h2XU2faad2RNejslMr9Z6YzWOegvv/X/y76EUBocWR4uVsR1zxQuuwBaV4lCdd9QgmDXs/vpJOZUU3wcoarMqyKm0YHbp8I8vw8+zuI6i+WQFPLblajcnX58n6s3hH6l5MId3mcu0dN5Qwdg+b/HDfPnaRwtEkvn5CojznUZDwwU2LGUC+34kOZ7TNq8i30qjoXKdkcmjwcXtlUjmXXdaLrag1as49Jv8jvdkLLY08jJgckHYGyXmzxOZGXE9U2m1xGIx9iV/yvj4OM3NzRw7JiOS/SpW8Qfikksu4aWXXkKj0nF+5YMIGkHsk3n2bMloFI0Agk1HcDrP/iMaKTg/NlxgQ6WC/peW8o90OmoJGgFKWixMHvCl55W8tq8cbtV2QyWh2QinXpkuyoWSiWThtGpF6pX12Kk5u5RDPx4kMC6PG2iMGmrPLWXgheWF7iuFRlATj8jnXka3QHA2oihSyoeBzttriUcSHFlBOmC5KOmw4hsJyBZ0rQTrH21mftBP/3PyDv/VnFdKWbeD978sf87vfaKFqUPzZ8yHDWL0pXg0oSiCWBoyuIXOqqPr7jpOvzHFpNwgFYVu9wHbw4xlQibVn8xrawRki4GKPlKetitpMaE1apjYWyRQQc6c3XipG0u5nr3fH4Ziadty6mW/RzF7n8aoov3aMkZ3e5k5luMDyMfZpPlaY1TjqDMwfSynXyWTS/yGgkVFy8V2Tr/jxTtRKGJ4PJ2BJRvWCg0LQ+I8nY97EYuBVssp724GQu+i1Wr5xS9+wbZt2wq88R8HfxLp3rLx8Y9/nH//938HYCp6ih2zz4o/5AtxJYUJndjth0SSxkscrLlVXui/4HSYRCxJIrI0pGk+9L8wRWQuiaVaoPYCeWESfWMh4mH5BpCUoKD7wTrca2Wk+YjAvu/0FxYoQd7J0tVmUxSaWrCo6XuqVXZ6tZRAyXO2/BBzaYGSMtEu9mb5YRvrLyln8+faZZefOjRPYELZAmWtNypKQze1b+GMCpQATr81ydjuM3uP4TcnGdtx5vLpAviGI4oESqXrbNRcWKrIGDHX78N7WoZXRlrcu+6tZcNj8kPD6106DKUyOnnWZkGwABFEgRIse6Ld3WlBKBGI+MRFdlnHmgAbH6ul9jz5KQQrNtowuQVcjfLT700dCrD/mVH6X8jTT/KEll53dwUlrQYxUlEB8pMbFjHiixFNKfgLpkEQTyQL5kyq0P5XJIFS6kRyvrrxBMQTRAMJorkG6UQ88ycLJY0CG+4oAXWMuWMFBEqxmPgHCER8vDL/PSYnJ2lvb18VKK3iQ8Pk5CTl5WIqpN/NfoNoyjst9ftF0GqJzCfxDYXRGRN031WGrXoxES4UtjQaSBD1y9skRwMw+Lq4dtVtc1E8xFMGEV+csFfmiSzJBl7SYWHNnfLCJx//9Rh7vz2Ab1hBpKM2G9Zqk6IUbrXbyuh9oll2+WhAXGMcMnmR95QoUFKS+gvECEHp9F8y0PNoE603eWSXXzjpY/a4MtG652yX7PcGGHp96owKlABG3p1m+G35YalXdI/3phl//8zyu/Gds6JACWQ5desuLsO0XMj6rFQ9yWgS30iQ2aPLR0tUqVWgg40fb6Kyz7Fs+RSsdUVCz+czxEhzTUqgBMunzS2TUvJGA4jGj2UESnXbSui+r0r2vAbgbrXg7lCW9njv98Y58GN5EY5cHUbabxDT1SkRPMbDyeVPEUrcy9NnwVCiJTJPRqBUjHslkySiSRJRCM3lrEUF0vF2XuugZpMJ4vHCAqUs7rVz9jeMRY6TTCb527/921WB0io+FJx33nnptDZDgf3smX4BEI2PuWmkU8bGuYEwJBNUrjPSenmOLafAOArPx4lHErlblIIY3+0j6o1jcGgpXy+PswSnI4vTDRULg69SEwuL82PLRypxtspbuw98/9RSgdIyKO924OqQn9YWrZj2rfr80uXLQlqgpMSulhIoKUmZBWCukl+htNvO+sea5ad8O+Fj/pQv70HNQjC4daIITCZ8Q6EzKlACmNgzx+k3lo/48IdgdPs0Q2+e2XuE5uPLC5QgbS+y1hooX1+8n+emBJk77mWuX0bUB4mrNVxaKnufBKA1qTA48nfAQrYprQGIsbxACSCRwFqtR2fVKhI8dt1ZSdVG+ePVXm/AXmPEWZcz/or4D/wTMfY9M8bpN+VFqm290oW9Ti/O3ZHi9qsUIv4EEd8yNq8UtFC1Qdzsje6VBEpFeFcykSCZSBDxx4kGF/+eSqebK7Iwl6rpvMqChij+sfwCpex0u7FYjJfH/pXx8XHWrl27KlBaxYeGF198kSuvvJJ4MsrvR79OJC46m1P9PhsqnY54BIJTUVAnaLnYhsmVs58okJ46FowT9seLpqdOIR5BFCgBpWutaAR5dvyIL0ZErs1Lmi5M5QKNl8tIfw5M7Jpj33f6ZQuUACwVBpwtVkUp3Eo6rHTeUSs7glw8kkBj1GCulMeLglOiQEmj0Neos2gUpf9qvraK2gvlp6Kb7fcx26/M5lXSasWigA/OHPKeUYESwOnXJpg4w/7GwdcmmNg3d0bvsTAYUCRQKu2yo3cKivyNM8e8eIfl32PtXTW4cuzHxQRKRleRTp5PoCR172B2UI5lOIW9XrSryRUolXZaaLu+QtH4K2m1UCpHE5GF/hemOPzzMVliRHOZQP2FDkCZ0CoaiBOaX2bOlbiVs1GPYNUQj5ARKEkp2fPaVONxiMWIhUT+lY2UbSDXPlDTZ6S0TSAZixUWKGXZvAbm3+fQ3KvE43G++c1v/skJlOBPUKQE8NBDD/H0008DMB0b5u35X2Z+LJKPz+wW0MvMtzk/EGbHV04SGI9gKhcQZNov2q71ULVRnkhpap+XHV8+QWQ2JgoNZECwgMmlp2ytvAdKRYGqPt9FxaYCIoOcSXPXN/rZ+WX5qd8ivgSoUJQurfGqSuq3VRR+pjzY/Ll2Njws3yG3/rEmOm+pky1sivhiJONJ2fl+FwYC7Pl6v6IoSg3bKqhY71Qktup+qBGPgpyhfZ9qZdOn22SXnz3so//X8lTNK8Xk3gUGXpCf5qH+knLO+utOnK3ynS09jzYpMoZVn1tG9Vb5eYEBjv9qlMM/UaBkTyy/6UhBpVbRfn0VPQ/Uy54PnG0mNjzWLFsYCdB4aSndd3tkn/q3uAT4/7P3n+GRXWW6N/6rqKpSJVWSSjmnbrWkzu3czjnjnI3BxgEwwWeY8+28/3Pea2bOmZkXGOJgwASDAWMbB2wcsMGx252zcs6qnMP/wy6VSqUKSww+YzO6r8tcjWrttddee+217vU893oeOUQC4uR1ao+HfT8YYnKPmLGx4zoHqME3meNbymHk0dnVaM0qLE25DdfZm72l/jz1/AKHfj4jlJqk+SI79o5S9E4xD6G5Qfqoj/5mnqO/Fgudqa9QotTI0RpzvIsMsgAQUi/QX/o6AA6Hg2PHPrqoZOtYRy5MTU1RXS0ZoF9b/BGBaIZxNZdYCelEiEorRycivgSOPjXNqecl4YaxVuwaQ7UaZ6+JlovENv2HfjzK0CuSA0FUgGNtMVBarkFlEpsPAjNRUEHrNWLim/G359n7rX4WBFPagmTckinkwm0C2HRnI82XiwuCanfb2fL5DvTVBUQcGVCZVHTf10zzleL3SMaT5M2zlAMnfzvByGtrOyVVc6aDmjPEnIoAzp0WNt5ZJ1zettHIrr/roGKrOKcdeW0GV99HG/Z7+A8zuAfF1SRbv9BK7wNNwuWrzrCy4bZa4fIqnYzKbRaqTy/AvbJD489EOfzEqLBorNSuJplIEs6XAiUbajmdN1Tndq7lMfL03FHLlgfEx0fFViON59up3G4SjkypUKUchmvQyu1/fJxDPxfjqOWbSnF0SRxKtG+tzaXoHWrheVOlg4g7yf4fT+EZE7iHCiq3GGm+QIzTqoygMkljZN8TM8JhuEsMcnSWPPaALO61UHOQhYQkfHj++ed54IEHhO6xjnX8NXDGGWfw/vvvAzAZPM6HrpfSv+UyRi5BZ1WgMYopUEKLMQ79fIbQfAylHpSCe9CG821U7ygTErr4JsIc+vE4UU9spfimgFhJqZVjrNRiaRZrUGhB+m6tnQZsG8QM14d+MsyhHw4JlQUgBjKFDIVS3OFQvtlMyxVV2LvFxVC9DzTRcVO9cPm2T1Wz4eZ6YdFRxBcjGUugtZQIlQ+5Ypx4aozQvHjKFed2KzVn2tcktmq9toryzWbh8l131a+Js/jGQ0y8LbZH/0vhHQky8a74PWwbjez4cjumPDaNVZDJaLu+Gnu3uJCmaoeVunPyc+BcDq2J910MvboGsVUyd+S1nJDLqNvtYNMdNSj1K++dzz6lcyjp+XQ9FWsQEDWeb2PDDRXC5ZV6BTKFjGhI3OblHgqx/8ejzBzO4PMFBEr1Z5thDekAlXrQl6sw1+b5VrPED0vf2/gHPk68sChk86rboaeyV4/OLjaB6B1SuaE/+zn1BzFbn7ZMjrpUjtKQOxLgkjgJIKQMcEL1HEkStLa2cujQIaF7rGMdfy08//zzXHXVVSSSMd6Y+HeC8WWhSC6xEoBaK6fEpEBTJvYdjfzZzdjbki1Nmy1sygO1SUH1rjKc28TsDYMvzzK5R7qHqADAVKPDWKNDLeg3jbjjoICqM8T8Ku5BPwd+MIBnDfaJWCiOXCFDvQZBUMf11TReKD7/W9oNdN/XgtYh1lEKNXTd2UjNmeL2pWQyz4GbPJh8b4GZfS7h8gC1ux1UbBH3DZkaStcUREHrULPloRYsHeICkbmjHnwTH22E0NmD7pVCmiLovKWWjhtrhMubm0tpWMN4QgG1Zzuo6DULXxL1Rhn6wyyhBbHnUOsVJKLJFemCC0ZQUkDbtZU0XpJDhJgnglLTxQ423iYuQDfWami+pBx7p7gfV65WIJPL1iQG6nt+huNPix3YN9SUYG6UbNmR7IiXeWCuLcFYqRGeNxVqiIfh5PPzkh9AANXbjdSdLsZpFWpQl0LEDyeeXyTkEnsObZkCnSmP7THL5uV1HGcg+B4ymYw//elP3HDDDUL3+L+Nj126t0w89dRT6Y7TyPScbc5xslGhSKd9y4S+Uo1vKlow5duS2Gnb5+tJxJLs/aaUkqFQl6h1SbTlmuWoJpnIEyrRUFvChpvqmDvu4dRvBcQiapYjhxRLVZLCzsfaiIUS7PnXIqcQMp6tZrediC/K9AcuoXusFfUXlDP0irhwpePGGgJzYeEQfrYuI1pbCaOvf3SnmfQ1JTTsdnLox0NC5TUONQo5+KfEZ+Bdf9eBe9jP0Z8Vyb2eQvOVlSCDvmcEJ+16LfVnlXPidxNEBBfEtaZ7a76ykkQ0wcCLYmE9y9r11Jxu5+ATg3mj5GRCrYctD3eweMorLiKSyShr1bN4Ukyd3nhJBfFwnOHXCoyn/0BYbZDmJUePmYEXBMa4TI7Grqb1igqO/3JkZSrIAuTEUFuCzlLCzAFxZ/ha0r21X1fO8eempfcmIIRybjVSd2YZY++7GFs6USaX5zfwLLUlcx4sALUeeu+qwTcd4eiv8vRrnv6ytmmYP1n8JtWn6anqNTD2vofxD/xSWMZ8R5KVSvR2Gb7JHORFrlhBFJYwExnhQOAVADZt2sS+ffuKtmkd6/io0NjYyODgIAA7DFdhVuUQBynkOceyzq4iMBdfdcJyCTKZjGQ8TtVOI9U7yhh8bZ6ZQ6nJrcAJbnOLlsWTeYwdeYwBnTdXoXeU8P43+8SEABmp3wqle1tC7W4bVTssnHpukrkjXiG+ptJBwwWVnMxev/9KVNzebcI/FSAgcgoZSXTUdmUlJ56dIOoWu6b+onJm9i58pJGIas6ykUxKEY9EYGrQrUms03ptFWXNBuGUICqTipbLnIy8OSuc4q/ufAfJJIwIctq1pnvT2VTU7i5n5M1p4ffddKmTaDgu3KaOG2ow1Op4/59OLP+xyLqvK1cRDZF7PGVzKBV0XF3J8OuzBcfTXxTSOuNeVaeX4R0P4RlKvbsi9VWdZkZjVNH/0ko+WEj8XXVGGeNvi52az6hQqJijS49MIUU4KYoUh+q924lcJWfvd8VS2KSfLU8KzGw0XliGtVnHoV/OpMUDIjBWq/BMRyFWPP1e750OZDL48Iep8apU5l8nFAp0FhmB2RxtUeTmXn9a+CWBpBur1cq3vvUtrr/+euHnWMc6/po4ePAgPT09JJNJjEoHuyzXrSojUypWOHqXoClTSlHG8vAu5LL0d7Pp1nJIwsGfSfaZgqIDWRy9XS18wASkNFUbbq5m9qib4TdyRc7N4jpKIEZR/pTJyTY/0Eg8nODAD4aWfix4LYBtg5FkMsl8plD8r2gCdW4rY/ID8VPkdec6CHuiTO0Ru0ZfpUHv1AqX/0ugsSqp3mWn76VJ6Z0UgVKvRFnCmoRNWx5pwdXvo1/w8FzlLivKEgUjb4hxFo1VSdVOO+N/nhUWiaw13VvlLivIEBZDlVZqqNxuYfAPM8SKiatT6/DWz7cwf9zD4O8F7KgprqOv1OR0EubiT+WbzcjkFI7W9JekeMu4l8asxNphYPwdacwWOzyn1CtpPNfKwGvTxAQDS2isarQWFYv9Yrw81RDhovXnWBh7d0GKPCRguzI3aGi52Mb4ey4mUulvCz63XCbNiUvzYPZv2VBC720VeCcj9L3syl1nnnRvxmolnvECc2XqfpZGNY1nGRj9wM/0kRAypTL/nl6loqQ0Rsi1ei6VqVQ51ytfbJF35n9BkiRbt25Ni3TXsY7/DNx000384he/QIaMXZYbMKhXH4iWyeU5x7LaoCDiS0op33JBJicZi2Fu0NCw28LQGwssDqTm6AI2r1K7Ev907jrzcbaas6yUNek48pPhnEKAVXatzNRvhThUiidZWg00XFRB3+8mcA8KHsBSQNVOK+N//miEw4YarRQ9fVHMv6VQQ+25FYz9aZaoT0wAYO824R7yfaSRiCztBhQqObOHxGwIWrua4Ky4r9G53YKjp4zDP+wXE4kooG53OTMHF4VFQfYuEzKlTFhwtdZ0bwqtgqrtFqYPuoXftyMlHhJtU9XpVmwbTBz4boEsRVlQG5QkQXg81Z5tZ+qA6y8eTyL2sLKWUsKeKIGlOaQIl7O0lqIpUzLxXtb4K3AvS1spCyf+egcxM3mSoboEpUbBYp+AXTfFvVqudFBiUHL4pxn29YLcK9UnOVJg5uJsjk2lVGwycPz5ufzvLkc/a8oURP1x4rECbUndr/VSM6oSOUeelvbOMpUq70ElmVqFShOX1p/s31SqnPaAQ67XmAgdp6ysjN/85jfpdPMfR3ysRUoA77zzDqeddhoAStScV3b7qjLJaAxZRhj3Eouc7lsr8U1FOPLzifwDNEUOqk43E3bFmEuFWCzYJakFXq2HjXfUc+p3E3hHUhNAgQV+0z21DLwyhXdYPFTihttqSCYSHBUIbW2o1+AdElCvZjzbzv/WQSwYKy5sSkGtl7PhzgYGfj+Few2nw9V6eToF3McB9ReUM/HOrFCbanbbqTnNzqnnx5ndv0bnw8cEVWdZqTuzfE3PsFaR0vavtJOMJ/jg/5z8jzT1r4s15pzf/uU2kvEkH/xzgWfIWHxqzrEye8RLqAhJ/I8613IiV50pFbAsKn6/rjuqmT/lZeIdt5BQqXyzgYZzrEx+6Gb4jZShNFc/J5Mr/m5qUOMeLE4o9ZVq2q50cOzpOQLZ/ZpI5G3jxpvKmdrvYf7EyjlwaS6XZRhsum52sDAUZPzPqZNhufLHLm0cM35rvbyMk79blH5T5TlBE42hdarour4c71SEY79dWPFbrnsFnCP8+dgrJBIJOjs7OXLkSO6617GO/4vYvn07H3zwAQCbdOfh1KxOa5mMxVZ8W+1X2zBUlLD/iXEirlj+OSUeB5mMpout9L80v/LvebD0LVefXoaxSsvRX2ZsQvIIimxdemytxjVFx9NVqGi7qpojvxglvFDcU2+o1eIdyTCOF3GW1Z3voHKrhRO/HWPheIYVvgDvrNxlxdxYytGfigmZQRJDrSVd00cNXbkKU4OByXfF0sJu/UIryViCvd8Qj/r5ccPWz7eSjIs/w1pFSuWby2i8uIJTz44zd/ijTaGyAmvkViuvXTknlG820XhhOX0vTDF7MP8zLPEolUmFvVPPxDsCjtpCPOov4GX5HE3pb01Q7F3WrKVym5mTz0xK1wn0Z++9VZLg6NsCqY6W2qECXZlK6LRX+9U2osEEAy+v7tdkMpnz2Y01Kqq2mzn2dA4h4dKcnOpnY7WK+rMsHHxqGpbSoOfiXkvzZ+o3a2sJcpWc2SNBaX1Q5uFesRjt19gxlKvZ/7PplXNfLDf3Oqx+kfEJqT/37dtHT09P7rrXsY7/SxgbG6Ouro5EIoFWbuAs222rC8ViK5zQSg103+TAPR6m78X5/PNePA5yGZZWDYkYuFKOsoIipSVOpoQN11Uw9MYc/umU4bNAJJGWKxxM7HHhm8hh88rD1+rPs6IokdP/fG5RRqaDTWNTSgKU2IoC+Z8D2PxgM7FgjINLwiYoyLuUGmi+qoaJ9+bxDImTKaVGnk4B93FA+WYz8yd9xcUxgKXNQMuVVZx6fnxNUT8/Tihr1dN6dTV9v5sQTi23VpFS96cbkCnk7P9O/3+kqfmxVo5VxGaUyw616e46ZAoZB74/JFSvvcuAdzxYWJBchFeJRvgWhVIDsYi4kKrlchuuoSCzh/35+zjDfmWs09B2uYPx911MfFBkLGXwv1KHEv/Mcj/lTW2nl9N+uY2+lxdy92ue/mw8t4yFoZCU+jMXMtaH5vNNeKcjTB9MzWHyHLxr6dBdBr+q3VnKyLt+aQ3IxdUA4nGUpQq6b7DiHo/Q96p3xW+5rgsbpnhr4Bni8Ti7d+/mtddey133OtbxfxFf+MIX+Nd//VcAtpRdga0kR/SVSHTFt1W1TY+tWcOxZ+eILEbzfq9LHMu5xcDk3qxvJB9S/MrSosNYq2Xo1WVbWT7OVlqhxtamZ/iN3Ie7ch2+U+sVNF5SwcDLU0RcBfaKKa6ktamltGmCsHYaqT+vnFPPjOMZEeNR5qZSypoMDL4sdvAdWE4R99FmNBOGSq/AUKljQSCNPUDHTTXIlXKO/ETM7/ZxxFqfYa0iJX2VlrZrq+l/ceIjj1K+JqyB1+irtLRdU8XA7ydZ7CsurFaowdxsWHG4Ys1+xb9EbA555zOFem2p0bRWFc5tZQy/NlP0uiWu1HKFA41ZxaEnBDh5BvdSmxQrBUR53k3VDinq+Xi2KCurHZlQmxQ4e/UMv5mDCyZW2rXUJgW1O40Mvr5IPLzSrpX7OukZSh0KVFoFruGINOfm4msAiTjVu4xYGzUceXaBWOZQisVWp3oD+pSv0zd6FLVazaFDh2htbc1d98cEH8t0b5nYtWsXw8PSZBcjwsuLjxOJrB7hmTnUwwsJXENBBpec6EV0WON/dkkCJbXktBdJ1aWxl6DWKSlrFAtzduD7w3iHw6gtKkxNYnH0S0wqNGax+GNLAiV7j4mWayqFrjny5JCwQAkAtRKNSY2jyyx8yaZ7GtjycJtw+rOyVj3bv9QmnJJNX6Vm+1face4SC3lY1qqnaqeNhgvF+mj09Vn2/OvxNQmUuu6oZ/ND4mnr1gq1RU3zlZWo9WKf7/ib87z9/zv6kYqs3v/H42sSKNXstlO+zfyRtafuPAfbH21FbRHPu/f+P53gwI+GhMtX77LR+Snx0IhbH2mi9RqBUJspMtF9by3tnxIPObnxU1XsfKhpjaklVRirxNL8AEx/6OXY0xPLAqVcSM23JVYVnddLoSZFBEoAxhoNSrUCZXaT8hjD7RukufTwk9N5BUoroIYSoxJToTzOGWtJ0wVmKrdI4dnTAqV8SEXtC84lcY+FGXhzYdVv2Tji+xP7hv+MSqXi4osvXhcoreNjg/fff5+rr74agIOBV+n3781ZLtNYMvJnN/P9AaJLe8cCTiySybRAqXKbkdozzULtMtVo0VrF0p/NHfJx/NcTIJNj6RCbGFU6FSqdAkOVWP6KJYFSx6cqhdKyDf9hhsM/G1kpUAJpI5VnM2Wq01FaoZUinAhAZVKx5eF2Wq8TT8nWen0VG24XT2/VclUlvZ8TT8HRek0tdWeLpesDOPD44JoESrpyFVs/30r5ZvF0bGuFY7N5TSmM9/zryY9UZDX94SLv/M9jwgIllUlF3fmONaUPXCt6PttI67Vi/Bpg+kM3e741WFCglIn6c2zUnmlD5xB7Bud2E1s+Vy/8zPoqNZs/W4u+aiV3LCRQ6r2vgdarc4TVzoOyJh066xpyQgP7fjzOsd+KGWwbzi/D3FACUYTDUZcYlegsq/soF48y1qlQ6cAzGuXYr3NEHs1hCDfVaFHrFehMBVIkpEQGKh10XCXt6eZPhpcFSvmQOi028q6Xub7gaoFSFqLRKIdUv2N8YhSTyYTL5VoXKK3jY4Hq6mrcbjclJSUEE15enf0BsVwRLDJ4VywEM8cDjO1JEa9CYp1EkoWTobRAqeVii1CqLo1JicaswlAtZr86+ew0vokwSo0UAUgEGkuJeGqyOUmgZKjVUHtOKv1IEUP8sadGOJgdFbsA7wLQO7WUNYmnM2i6zEnvA83C6c905Rq6P92ArlzsAqVeSc9nGnH0mIXKa2wq6s+voOaM1ZEhcmHhhJe93+pbk0Cp4ZIKNt5ZL1x+rVDqlVSeZkWpF0uvs3jSx3v/cFxYoPSX4MD3B9ckULJ1GbF0iqdNWSusnQZ67mtAYxHMBQgcfHyYI0+KH+CoO9tG0yVrsEndWk39uWLjDqDlinIaLhAv33C+le576lEKZtBDCaXl2vx7u2Rylb/AMxzi6K8miguUAKUOGlNpbDMFSvmQTCbR26X9puh8YaqT5seB1xbzC5SyoLMpMRayqWdEBa/s1mJvl+6RFijlQ+q3WAhmTwQZ21NcfDHiP8LeqVdQKBTceeed6wKldXxs8C//8i/87//9vwHYu/gcY4GjuQtmcK/pwz5mjgeIpG1ehf2NSwIlU10Jjk1iE5euvASdvWRZhFMA/qlIWqAkyrvkagUlRhU6a0lhDpXiSUsCpeozbagEUsXNH/Vw9OfDwgIlgNIKDYYa7ZpSMHXf20TtWeI2pqpd1jWlP3NutawpbVjdueXUnSduFzj5zMSaBEoKrYLOW2qxtH50vMJQq11T/ceeHP1IRVa+8SB7v35KWKCkUMtx9JpRrCF94FrRcmUVtWeJpUAE6Rn2f7efxVNiz+DYZKbhPAdam9jHYGrQ0XlzNWqjYGpJvYKOGypX159PCKWADbfUUHeOOFcz1mgxOEtAIS6uOvXcDCeeE7N5OTYZ0Dul9otGp9KUqdCWifWRpkyBQg1hV4yh112rC+SY9/U2FdoyJUptgWdOC5Sg7nQ9KMA/E18WKOW9TnrGmSMBZo4FVwmUcuEIL9A3ehSr1crMzMzHXqAEwpnN/3NRW1tLOBxGq9WSSCR43f8EZ8Q/Ral2ZX6/TKHSyeck51eJVU37lXYO/HR8OXVQHoNExSYjOrua6u1ljP0pjxM+FZbVMxjm3X9adj6o9RDxyYue5Oq+ow6FWsa7/1BcHPThNweE070tofZMOyqdAhHpkTeV9qB8ixllqYLxNwuHYowsRHjnn44JpWBawvShRawRo/A1EU8EuUqGsUGPf6r4iXvfuFSxWiduvOh7aXxNKe7WGgUqmUyuKYJ43fkOKnfYOPTDvvTzFIKtzUB5dxmB2TAT73w04TM/alRus5KIJoTfw7YvSpNpwShHmZABcplwerslrKX8oScGhcolE0lkGhkkIRErMpZkmadjFSSi4lP09CEPJFmZFq4AIj5475/FngE1tF3q4MRvZ/ILjrIGfcNZZRiqNVLqzQmxfp14z8PEBxkPUEDk0Hq5FUuTjmgwhmtguf5sp9pSpBd1KUS8SfZ8K0OVnalqzjaqKBSUNWowVqqZeD+PgSpDfNRwnhlFiYK+V9yc+N1iXmESSBFo3vE+izc5jyKu4IYbbuBnP/tZ3vLrWMd/Bp5++mm++MUv8i//8i/0hT9kMTbDVv2Fq04DLAmV/FNhBl6RnOJNF1sJuaKMv5vx7WRHGkl9q44uA3KVjJG3XHmNmzKZjGQyyZEnlyMoLUcwkRU0Dlk6Smm9vILJSjfDr80V5FXugQDv/3OfULq3JRhqtZga9dSeHhdKYeFNGWtarnRy6tms8jLZqrn02JMC0VMyEHVH8Qz7mT0sLkxWlypRlIhv5JPxJKyB5/T9boJESDwliGjquSUEFqIgA7lafBO89eEWYpE4+78jFta59gw7yGVMvf/RpVv5KOHYaKRqhw3vWIAFgf41NejouLGOodempGcWOC2WTBYZF8nEKkPoWt71qWcmWewyiIlvkgmUqTG96h6JZE4jjMGpRaFWEPZK5Yud/I8GwD0SZPawuFN34PfzDLw2L5RSrXKbkeBClMX+IIEpgQtUYGsppdSuxjUonm77wI+nVjxroYjCrZc4iAbiHPhxlgEpe86Uy9Jz9Oif3Yz+OWM+ylxDsuZjR5cRfbkaS5OahZN5ThqmDDEqHbRda+fE87MEZmMMvuHJn/IKCAQ8vBV4EtxQWVnJ0aNHMZlMecuvYx3/t6HX6/H5fNjtdlwuF68tfJ+zzDejUWeN0wxn2ei70r5JqYXm8630vTIvpSeC1Y6n1HdqatBgrNFga9czlS+NpEIB8Tih+Rh7v7PMQ5QaiIUKpD5KoeP6atQGJXu/NVT0uY8/NbFmm1f1aTZK7SWM/GlOiqq09Kw56llKWWGs16ItK2E6M/1DDt4VC8Geb5wUSnu2hNkjbmQylvu+CCL+GEqtEp1DTWC6+EVL0ZCUGrFDaqG5KCd/Oyac9j7zHsJIJtfEl21dRhovrOTok0P4xos/c2l5CbVnOoiH4kx/6Fpb2z4mqDnDQTKeEBZ/bbyjDqVazv7vF7HRpMa7XCVDJidvlKNkIpnz9P1a3vXhn4wiL8nDh3I6tJIkYivHRb6ojAAqnWJNB/7nT/qRq+XERAMqxGD/v+fZS+XgO3VnlzH8x8XlyHFFUNFrwtKkZfqAsqBIKZNbLQ6EcA0Kpj3cpqdys5FTL83jLpSVIWXzUpZALJTk4M8zoqpknspPZO21lUpsbRoSkSSzR/IICjL25+UbtZQYFYy8F2TkvUBRIflhzx8Zj5xALpfzwAMP8I1vfCN/+XWs4z8Bjz76KDU1Ndxwww0c8byBLzJHu/601RFcU9wr5oPJfdK3Ut6tJx5KMHci49vJ4+h3dOpRGxTMHCwgBEyllpT8kZLNYSmCiUwhLxgBU2tT03pVJZPvLzBZKJ0nEFqIcODfh5b/UIBDLdkA1EYFjq4ykrEk4wJ+qCVhU9UuK+PvzxeNdjT+5/k1pYeLR2DxhIeFPnGeo9QpUOnEbV7xeEKau3OkhsqFkT+KpadN1x9cWwioeDAurelr0N+031ANSTj+lJg4uWqnDZVOIRwN6uMGfZWW2rMchF1RofSEapOCjbc1MvTaFAvHxJ55rT5fgHgkdUEOe1g2Jve48M2EhaOXKVTSNxrxxIUiKGksapQaBfFQavwVi9IUh/kTXjyjgpscYHq/R/JRCgxxc6OWeDiBdzxMxCX2TTi6DIRdGk49n+PQXB70vzQnFP08mUzSdKGVaDDOiWeyItStSp+pSM/RC30BFjJT1WXavLKuM9dpMNdpWByK4BnLw+2W+JoCGs8xMvKeh0gAJg8GC9q8YiE/f3Q9STQZoq6ujsOHD6PXix+8+c/Exz7dWzb0ej1+vzTRbNLsxqmVUpAkcziEZQoFtWebqNhk4OTvplg8lfqgljZIOYiB2qIishCVFiI1ucU1WYOr+95aNGYl7319AML5SUMykcTaqUdVqmRKVCSTTNB4cTn2LjP7/n2wqIhCiqIiy5mfUKpv9d+3f6UdkKLhiGLTPQ30vzCOf2ptIpBPIuw9JpovrWLglYk1iZtEYWzQ0XBBBf3PjwmJlFCDoVKbFpmJYMdX25k/7qHv2YnihVl7urcdX21n/oSHvmfE6lfr5ahNSrHnBdqurUYmZ01pewDhEIw7vtJG2BMVc1b+BWEThUIzrrXePHWKhNPuuKGC6QMeFlZspvLfv/ECC44uIwOvzjFzIEcEEFg9t8hkkuFVIJfxhhsr0JiV7P3O2HI7chm/M9uohsazLQy8slDQuSZTyGm93Iq5TsOhJ6cJzmY4+pZIQ/ZaoAbiCtQGcpOkpXRvGevO5nudyJRy9v5gOrdAKXWvZCzGRO0HHDlyhGQyyeOPP85dd921uvw61vExwY9+9KP0GNXI9JxtvGHFeM6GTCGn9x6nlFrjxxkG2KXvN/t7U4FKLUsJjuJ5nfeZ37auXEXXzTXMHPEy+Mps0RNs9efbGPpDaoMh4AhLKpJs/UwTnokgJ58uvq7pbCoCc1FhJ1v5ZjONF1Uw8uZsbmNMDq5maddj6zRx8jdiKSk+6dj06QbUOiV7/r81RPxcA1quqiQaijP0ezExh65cRdQbJxoQe8fNlzsxN+qF27/WdG9NlzopazWw51/Eo1jqq7X4xsS4Y2mVhsYLKuh/cZzAdPQ/luYtEymu49xRRt1Zdo79egz3QPFTln/11LkC9a0pPUkRg4euQkXNzjJO/DbLeFngHlvuryEZS/Lh98W5r8ooJxqmqAhKbVbQdWMFk3s9TOzxpp81l1kgsx/Ku0rxL0TwjWelN8ieg0tkbL27Et9MmOO/yTLuLHGvzPlSlWqzQoHKBNGFHNxryVmQWnfKmkpovsDG6Acepg7kMdak7uUuGaU/sofZ2VnKy8uZmlpDKoF1rOM/ARs2bODoUelE/xbDpdi0qWiHOce5HFu7hrqdRk79fg7PaGrvJcvDuwClUUbMlxKaK8ktyMm6ruUyG4YqLR/+YBQiBWxeySSlFWq0FhVzRzMcBIW4WjKBo8dI1S4rR342SsQdy/gpx3VKUGqUq8UWBXhYz30NyFUKPvy3HFEO85hEm6+sZPzdeYIzYtFLPsnQV2vouKGOwVcmmTv0149GpLEqqT/PyfAbM8L9qSvXCIm4ltBzfxMLx72MvCHmKFxrureezzaxeMrL8Gti9Ss1cpSlckLzYoKXqjNtqDUKBv9QpP412I0y+VP3vfVE/DGOiURSErnHGrjZXzvlm4ijqf5cCwv9ATzDGWMon+0KKO82UHumhf5X5lg4KRgBRC5HY1IScufYE2dxq4bdZRgqSzj4iylk8QL9kdWvldv00kG+Qu9EIad6ux5Hh5ajzywQWsxoz5JIaZVASfofpQZi4fjqdSCHrazjqjJUWgUHn8oTZXzpmliMqYr3OXT0IIlEgl//+tdce+21+du/jnX8J2P//v1s27aNWCxGmdLJdvMVy3uPSI6NlUJO22VlJCJxTj2fYc9Jfb+5BEUKDcRDAPH8zvsMO7har6Dj+kpmjniY/MBdOE1vMoGjx8TMIfeKuouJids/VUVwNrycLq4Aj1KXyon4xIU1hhotrVdXM/LHGWYPih2g05WXUNZqYPyt3Onr/tbQeKkTnVUt7HtbK5w7LBCHyT3Fg0CAJNqJB5PEC/D8TDh6zTg2moTbv9Z0b1L9Zg4/MSRUHqCkTE3YExESyKhNCqp22Zl8f4HQGoMciNjHDLVami+t5NSz4/gmljQJHxOf4hL+EjtbHqj1CpybzQwXCYKSiQ03SZHYj/5CTLwNoEgd2siZSi7jvSi00H5VBVP7PcwfDxTkjpmczVClJh5JEpiNpgMfAKv3smoFG6614Z+OMPRHV1YjFauvWRI8KuQotBAP5Jifszib1qqg9UILox/6WeiP5LQFLKV6CzPLscSbTE1PsWXLFvbs2ZP3eT+O+Nine8uGz+dLh6g6GHqdo963pYU6x0BLxuMMv7bAvu8NSQIltRTKPx3SNcc1kQWJfHTdUc2OBxtzpynL+oBnDrnxTYSFogXNH/WlBUqb7qkTSs3knw1JEVhyEaMsRHwQ8SUx1GvofaBxdYEck+jRJwfZ/y1xgZK+poRSp5aaM8TDKnZ/ppHND4unQDM26GhfQyqtslY9LdeIpzbZ9mgrPZ8VS1Uye9RNyB0h4hU/caTWy7EKhnb2DAY48N0BYcEOEdYkUAJIRBMkoms7objm+gVJDEjRqYSfFzjxmzFhgdKKvhfUYPqngnjHxfrUUFfCrsdaqdwllvalrF1P0+VFQn5mkAlbl56mS8W/rfJeI9u/0ICpUQrtWkx3qtaDsVpH5VbxtDUDryxw/Jmp3AKlrBDZjRdYaL3CDiAkUALpNGlsSeCZSBQUKLVeZpXSvEWkdsGSkj2Z+9kTSWYOewjMR1cLlOLxVcaV1iusbL+vGrUpnl/FHY2lhUiGWmmR+PCJSfZ+ZzynQCmZTJKMxQgHArzi+SGHDx+mpqaGN954Y12gtI6PPe68806OHz+OTCYjlPTxivtHREMhiMdzGpyT8QQf/nA8LVDSV6XSCC1929nXRCHqT6KzKdn+uQbqz88dOjfzXoHpKL7pMDNHXELPsCRQcnQbqL/AUXwDF4VoKE7EJxblJTAnlWu9ppLqM4uHwZ3+0MXRJ0fynxbLkYakaqeNsiaDcNo3c3Mp277URlmb+KmJxkucmBrFUrqAJJQpFQwrXrnLyo6vtlMimK7POx7EMy4eIhwkIZdo/5x6ZkJYoATSmBMVKIE0fuIfIe+KReLEw2s7fScqUALwj4c49MMhYYFSWVspKp2AgSNl+AwtRgjMR4QESgBdd9XS85kGobIAjZc4luceATRf5kBXLpWXyWRFnWnd99TQ8amMcPFFoopUbjFjqtWiNou36eCPRzn2tMAYVcHGWyvQWlVEfQhFaUrG4iQiCYKpfW8+DiWTyVDpoe1qaV6ePuSXBEogGVyW/stGOIlnIszM4awTjAqFNAYyDOAqHWy9u5LWy6wQj+cWKIFkkInF0u9psT/M/h+PM7XXm1u4kUhCNMZx9zu8O/4iLpeLs88+e12gtI5PBI4cOcL1118PwF7vC/R7P5CMlbkMyfEEc0cCHPjJRFqgpLEql7+1XJFUPNK323SBlc13VuZOO5QVOXP2mA/XcEAowpB/KpIWKLVcXo5SLytqBA8tRoiHEqv86DkRk6LBaCxKOm6qXo4PL5Pn5XjHnxrl4A/ypOrKwbvUZiVlzQYqNpsFGiSh5Zoquu6qFy6vsalouEA8NUhppYbac8TtBF131dNxc61QWd9YCP9UcE02L6VGjrFejDeG5mMc/+XomgRfaxEoAcRDcWKRtXGjNdUfjhMNidcfCyWEBUoA42/NMfhKkXU/Nb6VGjA1aIvWmemg9owG8ApyQY1ZyZYH67FvymHTlK/+nnUOFTVnWoTqBtBXllB9urg9yliroee+GgzVqcmqCO9CCdaWUpw9K7Mv5ErvtoTpgz6O/WZSSKBU3qOnfrf0vLkEStKtVnKrsC9ONJhDDJSJVL9WbTdQlrLvrYg0ng/JJHOngvimIqsFSon4KoFS9Q49m29zoDEkifnztCnDVqa1SZPssWcWOfirudwCpWQSYjFioRCvzf+YA4f343Q6ee+999YFSuv42KOnp4fp6WmMRiOLsUnemP8p8XBY2mPk4V4nnp3n1EupLC7mDId0Inf0uHhIcppvurUK59Y80Vwz/JQRXxzXcADXoNi8PbNfEijpqzQ4t5qB4uKGiD9OJFPwXYBHRfySLc+5w4J9U/FotN7RIEefHBYWKAHYN5qwd5qE075pbWq67qrHUFt8PVyCo9eMvlIw32aqvNYhmnqrlO7PNFJSJlbeOx7APbw2m5euvASFWsydP/negrBACaTUWaICJYBkLCmJXD8iSPWvLdJneFFMoATS8w6+NCUsUFrR9wL+xlgojnc8gC+TzxYQAjZeVE5HDl94PrFhea9JStsmKFBybjUtpwjOweWy0XyZg4Y89vlcsLbpsbSWojaJh/s68fQkfS+Iif8bL7KjNiuIR/IIlLIRh1gwUXRvI5PJkKuS1J4hzWve8QiBWQGbVyyBayjIQn/WN6xQrL5GARuutVF7phGSydwCJUhzNrVBAQoIzsc5/OtZKchEnghKyWiUSd9JXp/8JbNzs1x99dWfOIESfAJFSgAnTpzgxhtvBGA0doy3vL8qWD7ilz66ntur2XB9pdA95k/4CMxGhIRHk++7OfJz6fRN46XlqC3FFyN7j5HScg3VpxcxMsjkTO9188E/nyLiS0oiKwHY201ozCWUtRZ3TvlGw0R8kjBIROjjGw2z91t9a4pqEwvEiYfEF7r6c8spazEKibhAyv1q6zAWL5hC2BUlNC9oIInAvm/2sXhcPIxkz2dbaL5cXDRl7TRQd/4aRF/3NdJ1R71w+Q/++SQDL350Rvm11F/Wqmfbo62UtYu9XFNzKQ0XlucWDOZA/QWVtF9Xi7FBJ3zy//ATI/T/TkC1K5OjVCuJBuPMnRCLMV1zmhX7BpPwWK7absG+wVj4eTOIhFwpIxkH95iYES/ig33fHeDwT4ufGNRXqdOCI1d/jvpzkDJzvQ5jTYENQsY1SzlkT/1ujgM/FIvCVdago3KbWHqOpgstqPXgGohw+GdZBr88IXbnT/oJuqNEcvD4bAde5/UOOq5yUGKRF10rfKYZDmhfIEkSpVLJqVOnOPvss4WeYx3r+M9GW1sb4XAYtVpNgjivBZ7AFS2wkYgCcjm6ChUbrnPSfEnxjU1gNkpgPsL8cbHT20d+Po5/IorKKKN2t9jGybmtDNuSiLXARk4ml3Hg34cYekUKH6tziAkLTHWlwjnc3YOptG9XOPMLdzLWsEM/HeLDbx4XEiAA+Cf8JKMJFCoxqq/SSfnPq3aJ9aXKpMLebabmNLHyrgEPEW8UlVYsjengi1Oc/LV41ChLu57262qpPVOQS6mgdrddWGRladez5aFmdE4xMjL8hxn2fSuPM/SvgLXW33lLLZ23iDkqAWrOsq1JsNZyeTVdd+U4HJGN1He3eNLPwR8MCdUtk8sILUQJLQrydhXYN5ioPSvPWMgyxqhMKqxtemp2FRcYLiEWThDxixvM+p6fZd+Pxoi4in/AjRdY0DmURAMQnC9evqxei86ixtxQYCxnOPO0FknMtO/xSRYHinNH52YTxqoSjHXF50GNRUX1Lmk/dvLZudUp23IY5aIB8M9GmDuVh1dnGndUsOEaOxs+ZU9fWwhzjQcZiR0G4MEHH+SNN94o+gzrWMfHBU899RT/8A//AEBfcA/vuZ4tWD4WlubXtsutdF5tXxbukP8Qy3xfAO9UWChNmWsgxMDvJWdcxTYzKmPx9VxfpcHcoKO8q8jeTSbHMxzi4OPDkvjILMYVjLU69BUajNVZe88cHC/kihELJdHYVNSdW5wrRFwx9n23n8GXxAXNMV9MEiEIomqHDfumMpR6seet2mmlfHPZindbCMGFiLjNCzj6sxE8Q+LOss5b62i5Utzmpa/W4NwmLkxpubqSlqvF7LcAh344xMTb4qe314q11K+xqej+dAOmBjEupXWUULnTAiox+5Wjt4yO62uEhEpLGHx5hrE/CbRfJkdeIiPsjgmLmip6zFT0mCRBYg5kz0HOzSapvKCfWK6UkYgkCc4JCtdicOBHo5x4vrjjS2VQUnu2JDjyTYpttMqadJjqC/R9Bu9ams8mPvBw7DezQlGlbO2lOHvF9pSVW0pRaqS0fydfcmW1I/d85BoK4Z+NEnLlsNFnRWupO8PAhisty47NAvQ3pnVxQPks0WQIvV5PX18f27dvF3qOdazjPxsWi4WFhQVaWloIJ/28uvg43mgxgYcCpVZO+1V2qndlcZ0cYsp4ELwTYdwjYnPr8OvzBOciKNTg6BWzg5f3mrFtFCs78MJUOj2c2igmLChrNlDWJObgCM5KhnLndgtqU3HyMvzqDIceHxQTIADBxQjxcAKZQjAajAIqt1txdItxEYUaqnfZcHSZhcr7pkKEFiLIBXna7AE3o2+Kp6zSWNR03lSHXbA9KMDWaZSELALQOtR03FiD1i5WfvaQm+O/XGPGkzVgrfXXnm2n/sIK4fKWDgO68hLh8k2XOGm7XjygRnAmQt9zkytFUwXs0MHFCIGF1bw9n9iwYksZzi1mobYo1NLcUN5dZG7IsL3EQgmigXjO33Jhcq+bgz8dJ+Iuvhcq7zGhKVMSj0DEW7y81qbGUKnBICgwVBskMdOJZ2bwjkcKRlFKJpOYG3SUNWnRVxQf+wot2DpKARh/34tnLGvCytVPcfCMh3EN5dmXZfko2y4po+kc6V0Vmw9dzqMc9P0BgH/6p3/i6aefLvoMH0d8IkVKAE8++SSPP/44AMGkl1c8P2Lr56rpus0JySS2DTp2fKEO51bJULrxZicleiWzJ6Qck9seqqP7bmlDbWooYceXGqk5U1qkOm90Unu6lUM/kSbCHV9qZMtDUohtXbmanV9uouECySnT/qkKdn5FihCktqgp7zax+T6prFoPOx9rpfkK6XRU67VOdv1dGzKNjNn9HmKBONb2ZWHNrr9roz0lomq6rJxdf9cmCZ5kcjY/1Mz2L7XSdUcTm+5tYNfftdN5Sw0A9Rc42PW1Dgz10ofa+7kmbBvNvPO/j7F40seu/9ZO151Sm6rOtLLr7zuxbpDu23N/Ezu+KqV7a7rEiX2jiU2flk4qV2wvY9fXOinfZgak1Bs7/5tUNrIQYcdX29nx1Xb0NSXYuozs+lonVWdJBv6uu+rZ9Xcd6WfTV2qRq6VJ1digY9fXOtOinM7batn1teWy27/UhrJUwd5v9yHXqdn1tU4aL5NOK3fcUM2ur3Wmy257tJWtX2jh6C9H2fvtE+z6Wiet10gLRss1Vez6WmdaHLL18y1sezQVhesHg5S1Gum4UerDxkud7PpaJ6WpyWjzw81s/1Lb8rv5WgdbH22VxETnOdj1tU5JBJPq76U+lN5jB9FQjP4XJ6g63cqur3Vi60r192dXlt35WDvd9zVSd245lTts7PpaJxXbpXG46d4Gdv635X7Z8dV2eu6Xoj+pSpUY6nRUnyONw647Vvb39q+0s/khaVzqa0rY9fedNF4pLdSdt6zu7y2PLI/hXV/rhNT61359Vn9/sZVtX2zN6JdO2q6vRuNQ03xlZaq/pWllyyPL/b1UtvOmGtQmJUqNgvbratOiu80PNafTDi714cbbpTHbfKkT5w4rZc3Si+x5IKsP/1sHm+6RxqxzlwVrp5HFIS+ewQDd9zWw87Hl97jjq2103yeVtW8ysutrHfTc34i108Cmu+vZ+dhyvTu+0kbP/ZLDzdRUyq6vdVB3ro3FU36CCxG23Fe/3IePtrD5QalsaYWaXX/XRuNFDmRyGdGUEyuS0rhtfaSJLQ9K7zE9R1wufQstV5Wjtao5/MsRiMCWBxvY+vBy5ICdX22m7TrpPTZeYmfnl5uY7w/ywdcH2Xx3Hdsyyu54tJGOT0ll63Zb2PGlRjbc5kTvVNNxUy1bH1lu/44vNrLhRqls1S4TO75Yj6VFQ/1ZViytpWx7uG75WR+pY+Nt0vdYvtnAji/WU94jGVA23uZEqVWw5/sjAGx7qJZNd0hzmq1Dy44v1FF1mrTIdt3hZOPNTtqutkMyybYHa+m+WyprrFOz4wt11J5pBqDjOgc7HpG+1X0/G0WlkdJJkUhQUqZgxyM1NJ4nfTdtV1jZ8UgN+gol9o5Seu6uYvO9UnuTqiTbH66m6WLJCNV0kYXtD1ejNsOGGx303uuk7qwyDv1EMkZvf7ia1iusJJNJ6neb2PFIDVq75KTruduJ1qpkccBPaDbK9oeqab9G+h6rTzey/eFqDNUKkvE4yl2zHFz8Iz6fj6amJqLRKGq1oOpuHev4mEClUhEOh2lqkuav9wK/I9A4zPYHq1GVSlGSum+vYPM9y86Ejdc7ifjiDL81S9UuE9sfrk0LfjbeXsnmz9aky257qI6oP453LIJzl5EdX2rElOI1G26tYsuDy/PQtocb6LxBuk/n9dVU7TBTsVWahzbcUsW2zy+LJbY+0sDG2yReMPLnORQqORWbpTW544Yqtn9xOcrj1oeb6LpTEnLoqzXs/GorPZ+pZ9NdDbTdVMXOr7SuKNv96XpASve286utTB92cfDfh2i50snOjHVqy4PN9C6t3zpp7W+4pBydTYWty8zmzzanIwD1PrC8RoC0xrVcWQlRcO5ysPO/ddB6g/Q83Z9pZOsjLctlH2un9XqJ2zo2W1FqlYRSoohNn25YsX7v+Eo7nTdJ/V+xtYwtD3cw+MYkR386Qtdd9Wx7dHnt3P7lNjak1mTbJiM7H+vAXK/j4A/7kavlbP/yctltj7bRdbfUL+bmUnY+1kHF9jIC01FCixE23LL8Hrd+oTXNOUurNOx8rIPqM6V5tPW6KunZr6pMvccWej4rvVeVScXOxzrSPLL5CietV9Uw9vYsk+/OsPnBZno/l+pDFex8rIOmS6V1oP6icnY+1oHOJKdql40Nt9ax5aHlMbDzseV71u62S2VtKpJJKDGp2XBz/XIffrU9baSo3GVl52MdGOokbth1T/0KDrT9y21pkVD55jJ2PtYhRX4CNt5Zh6m+dLkPv9SW5kCWTgM7H+vAkYrk0HlLLdu/3IbKpEKlk3hZ1z1Sm0wNOnY+1kFlSmzT/qnqNF9SaOSY6vV03yf1oa5c6sPa3ZLYo/XqSnY+tswNa8520HGD1AaVTsbOx9qlKGRIEbR2PtaeHrObP9dEIhZnKJVeZedj7TRfLvV33fkOdj7WjsqkApmcns80sO2LTTRfJnGOnV9ppfVqqWzNWVZ2frUVXYVU8aZ76tn6iPQeTz07ibFGl94nObeZ2fHllrSQauMdNemyxOQk4kmQScYBe5eBHV9qwtqpB7mMDTdVruBL3bdXEZiNcOL5KcqadWz/QgPlm6X5pP26CrY9slx2ywN1bLytiiM/HWf6gIvtX2igaqf0blqusLM9gy9tvq+annsqabzIitaqovfO6jSvabrYxvZHlsv23ltF912VqLRJbO16um6tou5cidfUn1fG9odr0/3dfXclvfcuO4VbLrYz3+dnco+X2jNMbH+wGnXqNO+m28qlOTlllNn5+Ro23V4BKqjaqmf7g9XoK1Nz8s3lbLlvud5tD1TTdpWNkTfdTOxx0XaZA3NDCclkks5P2dl83/Jcv+WzlXRcZ6PxfDOVW4xs+1wVtk7p3bRfY2PLZyvTDsrN9zrpvN6OvUtHy6VlbLu/ksX+AAsnQ7RebmXrZ1L1JpL03uNk483SPlpXrmLbvVUE5iIMvLZA80XStek+vKuCTbc4SMYTJEvijFa9y959e7DZbLzwwgv88z//M+tYxycNX/nKV3j77beRyWS4YlO8Ov9DNt5spf3yMkgm0DmUbLm3AvsGyVnecI6ZUoeK6YM+iEHXLeV0XCPN8yVGBVs+U4mzV1p7as800XyBhVPPzUIiweZPO+m+U5qblRrY+tkqqlIOt+rTzWz9XG0qzRrUn2Wh+65lI/3Wh+qpPUvaX1VuN7P1oQaUeiW+8RDBxTC2NkNG2QYaLpDaVL7ZyNZHGtHaJW9Ox03V9Hymno2319F+fSVbHmqk+QqpTbaNRrZ9sRlDrcQN2z9VRfUuGx98ow/PUJAtDzXSeo20npS1lkqHolIH9lqvqWJLKqp33dnlVO2yShGYAGO9lm2PtqbtNc1XVrL189L6HfPF6H2gic0PNVNaqUFXrmHbo21UpCISN1xasYJbmRpK0yes1WYl2x5tS6/J9ec5VnCr7k83oHOUsP/f+4iFYmx7tI2as6V1tvpsO9sebUsLOLruqqf70w0MvDDJvu/2s+2RtnQEpsqdVrY92pYWQmy4vY6ez0hrfd+zE9g2mGi4tCLV32a2PdpGacrA33FzLb0PZPDgz7fS/dlGTE2lWDuNbHu0LR0pqe1T1Wx+cLnslodaiEeT9D03TlmLnm2PtmFJveeWqyvZksFPez/XTPuNNVSfbqf2HKkf7CknSfPlTrZ+YbkPe+9vovPWlD3VpMLWaUoLmxouLl/R3z33NbLxznoAlHol277URu150tiqO3dlf2+6tyFtMwKJrypSgqCqM2xSf6fEYhvvlPo7s2zDheVozEqc28qk/rZKZTtvrUvb6EDitk2XOVHrVagNatqvr0GfEsS331hD7+cy+vCRlrQIq+48B/UXVGBplfhg23XVK/jp5s81pzmnqUFL1U4rs8c9uAeDtFzpZOvDy23ovb8xPb5LnRq2fr6JjhsrMdZraby4nK0PL++Tuj9dn7Yra8xKtn6+mcrtZilq7WSQjbcu79U23VXDxlulepUa6VuuSkUXj/gl50osJK31G2+tpuv2zDmiIWOOMGGq13H82UliIei8sZJNdy6X3fJAPQ3nS99Nea+RrQ/VE/JGOfijMZovd9J9T0bZz9bQeJFU1tZZytbP1dJ8uQ2NTUnTRQ56Murtva+GlsulfUZZk5atn6ulrElL9U4jzl4Dmz+9XLbnnirarpTsVMYaDVsfqEnzmsYLregsag48IR2m6L7DSfvV0rjT2eRs/WwV5akITk0XltFzl5OG86Rn33RrBR3XSWVVejlbPlNJ5VY9yWSSmjOMbPm0NB6OPDWFXCljw/V2ydklT7Ll3gqqdkhzWtU2PVvuraCkLImz10D3LQ42fiolto/H2XJ3ObW7pLLOHh1b7i6nxCij6TwTHVdZaDjHzIkXXNLYutNO/VkGiCewt5ew5d4KdKk5uf0yM+YaNTPH/IRmI/TebqfxXOnZLE0lbLnLgaFCDrEYqu5ZPnC/hMvlore3F6/Xi0YjHq1kHev4OEChUHDy5EluvvlmkiR42/0rvGVDdN9qR10KxOM0nmem4+rlwy0d19gJu2NM7vdiri+h+44KtDZpL9aw28yGTy0LozfeVE4iliQwFcJQp2br52rT0fnrzrGw8dbKdBS2DbdUpqOY1J1jp/ECO7aN0jpbe7aVTXctz88bbqmh8VKJF4y/PY+yRIYlFVG76gwrPfctr2mdN9fQcpXEl9R6Bb33N9BytZONt9ZRs9tG7/0NaSFFxw3VtF0rzY0KtWSrmj/l4eTT41RssdD7QHM66lHb9dVpHxtA7wPNVO6woNAqqD7dTs99zaj0Ur+0XF214gBVz2ebqErZgUxNpWx+sDlt62m6wsnG2+vTZbvva6Rut/Sbub6UErM6HRSh8RLnioiWm+5pSItWDDVaej/TzMhbMwy8OEnd+eUreEHXnfU0pmxGuvISeh9oxlBbyuGfDpGMJen+zPLaueG2OpqvkObrkjI1vQ80Y+00Eg/G8U2FaLt2uR86b66lNRUQQqFV0PtAc5oDOXdY2PJQM1VL9psbapazyiikPnRuldYPR6+ZjhtrGXlzmtlDLtquq6bjpoz+vn+5HnuXid4HmlEbFdSdV07rtTVpbgXQ/ZmmtN3N0mqg94FmSZiUAH2ljtarl20Cm+5toO48qb+NDTp6H2hOR6JquLCCrnsbpDRWQNfdDTSk+ltfpaX3gea077TuPAflGdFJN95Rn/b1au1SHy4d+Kw5y073Z5pQaBUo1FJ/L4ni1aZUH6YOQFTtstJ7f3O6f20dRtquWxqzcnofaMbRK93XuVUas0vtbb2iis6blsdh7wPNUoo8wN4t9aFCKxVuvaaKZBJG35JEZT2fbaLqNKm/rZ0Geh9oSgvxmq9wsunueqkuhTRma8+2g0yOuamU3vsb0tG5Gi8up+t2qQ2T7y9iqtVRl+Kyxlotvfc3YEjxyPrz7Wl7NSBFvUopO0or1PTcV4c51d/Zc0T79VV4J4MMvzmPxqKk595aLG2lqT400313TVpc0/EpJy2XORh6dY6Zgx567q3FvkGaTyq3m+i5d7kN7dc6ab+2gqodUgS0rluWOVB5j1R2aY5ovaqC9mudoICKXhNdd9Smo8rZN+jpubcGpU5OMpmk+TIH7dcvRy5vvbycuRNe5o/6sbTo6Lm7Ck2Z9G4aL7LReYMzfch3y/01bLqtEoUaTHUl9NxVSWmqvxt2l7HhhtScnEiw8aZy6s42M38iwNAbCzRfaMWQ8lXXnWlmw03L83fn9Q7qd5up2maiZpeR7tsrMNdJIrfqHUa6bnIs9+HVVhrPM2OoVOPcrKP7Vjv+qTCe8QhVW/Rsuil12Dcep+1SM80XSeNOoYXum+34Z8KMf+CmoktL98325X64pIyWi8wQjxOPR5iqfJ/3D/8Zq9XKO++8wxe+8AU+qRDUdn48cdddd3HllVdit9tJJBL8f//2r1y87UpASWg+SmAugn9WOmnhHguRTCYZeEGaTGRyUGpkIJcTdCcIzEbwTaXKjgaQq+TIZDKSSSlMo0IpffUxf4TAbARvKpekZyyIWi8N3shCBO9EkLBbcghFIhCYDeEZDabLai1qiEgqSM9YABnQdUctWmsJgdmQFEIb8IwH0Ts1UiVIoXlVGunjG3tvlobznLhTp5y840FM9SHCHmlR9owEKDEoIQJqvQxkkEgpuH0TIQKzIUILYZDJ8Az70VqlD2rf9/vpurMBz5B0ktU/I5X1T0ntdw/5ScaW1YD+uSDGylIadjsZeHmCwGwonWPTNexfofT0jgcIuaISWVDJpH4Zk9rvHvSj1Cwrtr1jASnNykKE0mo1YW8Y76jUJtdoALVp2bnvHQ2QiEl9DxCYD+Gd9aX6wY/OVrLUhXhGgivUzCFPGK29JHVPP4YqLVFfqr+HA6h1y23yz4TQV2ip2GxhYs885tlQOqyveziAJiN9g386hHvYz9whD6bm0lR/p8bWoI/S8uWNmn8yhHcyyNzRRdRGJTVnVOCfSZUd9pOML/e3byJIMPWch382RNtV1fhT/b044kOmXO5v33iAsCc1Dv1JZDKwtZkYYAr3sB9V6XJHeEf9xKLSfSK+CIHZULqNrhH/ijCV3tHAikPQgdkQMiVs+WwLM4cWCMyGiKRCQ3pGAygzToItje/pD1zEQwmqdtqIpPrQM5LV39MhXKl3PvDSFPUXlROcW343GktGf08F8YwGUv8OEZgJMfL6NMhkuIf8JMLLDfZPBvFPS6rV4Lw0vnV2DeU9Zqm/M054eScChFJpMIKuOIHZEBqLmuYrKnAN+VeE1/SNB4kEpGeJpvrQOxFEX62W5gjDcn/7JoLEY1Kb0nNEKgpSktRcNCw9q3c8sCyylssIzEZwp+aTSCAGsiRaK0QWwDMaRKldbpN/Now7dfLNOxHCVB9BX66l9iwr3rEA6owTm/6Z5bK+qSCB2VJCrhiHfzpOyzV2VOqMstNhvJPh9HWBuQh+V5gtD9QQckWk/o3KUu8jTGAhAskkgbkYgbnleXaxP0CJUcngH+dT9w0RTo2HkDdGYD6Cd1IqKy+RIZOB2gKRuQTeiRCx1CYkGY0TWIjgmQhCIoF7LITaqMQ3EeHUi7NYW/Uk4qlQ2xEILGTM3+MhtDYl5gYdeoeawEKEUEaKt8BCBPe4VNY7FUZfqUFfqWTDdQ5cowEUCjknn51DplDgn4/gnQiTjMfxTQQJ1GkIeWOctLzJ8MtDKBQKLr/88k+sonkd61hCX18f9913H9///vd5a9+reGOLOEJdALhGgygz58aZMPMnfES9EAvFkClkaCxyAjMyPCPBFfOQdzIkzUNyOaXWEmQyKClTwhB4RwJEfRlr0YQ0xwL0vTRF04WO9DzqGg4QD2fM5WMh/LPSnBWej+KbDBOLJtj2+Ua8k4F0PSCtW6EUhwt74/gmg0wfdlNWr8czGkCRwWvcwwGiwdS8H5AM+b7UfKHQKtJiXwD3iJ9Eij9Fo9I64B0NEJiLMvLWDGX1+nSEJPeQH3nmej4RxD0eAJkM33iARG8ZlgYDKpNKWs8z+dN4IH0C3jcRxDcRQGVSsvWaFhYHvYQWIyvKLnFO/2wY30QAb7+07kaDUSIjy8dkvWOBdEpUiesFCMyFCUxGcA/7kWVwK8+In2Dq1H7EFcE3ESCY6n/3cACdowTnTguT7y7gGfEvcxVfHN9EAN9kijMPBzA3lGJtN3HqhQncw/7lFBvRqNTe1LtzjwTQmNWMvD6buta/zFWi4JsI4B6Tns03HsTnCBBwJzj65DDWNhOKjPZ7JwJp3u5N9WE0ECcw52Pig/kVXMU7HsA9kuLMU1LZJVFYPJxAVarCttHI3GEPvrEA7iWuMiP14VJkIPegH61Vg6JE+nZ8owG8qX4Izaf6e2apD/2QSNJ9l2RQc4/601wl5JH6Jc3bU/sZgEM/GKL16koiqZNQUW88qw+DqAzL3Gr2qIvkUndHEvgmgnhSY8AzHkBrVWeMWYmrLByVDoL4JoLpZ/VOBDE4g+nIEu4RP7Y2A7YNRvqen0r193JZ32SQaOqTdI/4KTGo6LixitE/z+GdCKXDoftnI/gmg+n+9gwHiPriqMxKiCbwji3PEYH5EL7JMMHU+HeNBIhHpO/R3KjDOxXCPxmGKITd0hyR7u+R4MqonDJQpA5dhH3gmwyneY13PISyZHn+c4+GMNRosLXpmdwzj28qjHcqxWXHQ5RkRCFxjwZJxJNEA3D4VxPUn2nFl+Javskwusz+HgkiV8io2mnE3mHANxOW5j+5XOIqTjXJUBQSUhsy2+SbDZOMJiGcwDcdxjcdJuxP9eFoRptUIFeCqlSeal8YY004zZE8Y2GigUSaN3snw/gmI4zv8+DoKMXWVop/PkIymcQzFpJEYyl4J8ME56NU9RhQlMjxzUQIpMawZyIs8d6UccczFiIaiNN5nZ1EMoFvJsTEHg+BmSjeiQjKlNEwGZf4XyyUIGRz8e7Y80SmIlgsFo4ePYrNJh6mfB3r+Lhh165dBAIBKioqcLvdfOvxr3NhzzVACRF/BM94OJ260TsVQVEiY/w9KSqlXJ5EqZMhU8iJhWN4xkP4ZqRv0zcdocSoRKaQDlXIlXIgCYkEsZgcz3govW/2T4XxWIJSmrUYzBz1EvUv75k8I0G8qbnQPxOW1tFUSPrF/iAqrZyGC2yYarS4R4MZnCKCZzRINCgt2u5hPyV6FfFogvkTXiq3luFJ7VGD8xE8IwGinpT9YNgvRbSLSYIJuUqeDtgbckXwDAcILiyvnYnU/vvEr8doucaZtqNEXFGp7JKtYSSw4pCze8SPY6OZyh1WBl+ZxjPsT9trvCOBFTzMPegnEorTcGkFKp1CKptakz2TQUrMy1zWNegnGZciNik1cgKzQXyTqTVuIojH5k9H9XcNBpArSe1/E3jG/PhnpXr900E8w/703tg16F/BVXxTQfQpm5d/JoRn2E841YfuIT8h8zI3dA/7sLQacXSZGH9nQepjb6pfhvzEMk5Tu4d8+KZCuAcDaGwqPMP+9DrrGVlpM3IN+QgvRFk47kauU1Kzy0ZwLvVuRgMr7FiuIV+6fSd+PU7TRRXpNBmekSCq0mWu4hrwEUvx61gohlwhw9ZpYuTVWbzjQTQZdiz3oH9FmzzDfsypQ3C+yaU+jKXa4EepzOT8fhLxJD2fbWHi/TmprH95zKr1GWNgyIdnTOLjx345LNm8/EtjNkDYuxypxzPkT9tER16fQ6GUE5iJpN9FZlpf97BP4ibJBGF3FM9IgMn3F6V6RgMrolW7hvyE3VI9YW8Mz4jEqR0bE5IdK4MXeIYCaTtWLJyQbEo6OdWnW/BOhlAbM8bsUCC9nsdikv3JPxNCY1VKNtARdTrKjnsksII+eUaX5wiZUtoHhpb2ByMBlJqMNo0G8KS+z2gwjkwO6lIZoVmpnhX9PRLEm9p/BefDeCeCmGt1EgcaC6Wfbek+/hQPC7qjeEaDBF1RFl+R5iD1ko00mcQ9EiC4kDps6I3hGQsRnI+w8Ran1P+jQUjIU+0NST6ARIJIQOIugfkU5xwOoXdqmNwjzcnu0RCxlH0yEY3jGQ/hnZbKKkrkyJVQYlISXoziHgktv9akAs94GP9MBJIJifuNqwh7kpx8aR5jlQa5Ipk+ie8ZD+ObSs3fc1E842F0FgVl9Ro8U2EC4xnjcCyMbyJlI12I4pkIoyqFTedZWRgMEHIrGPmTFxRyPONhvFNRiMUILkj3ifoSDJve48RrR5DL5dxzzz1897vfZR3r+CTjZz/7GRdeeCH33HMPb596Gb9igarIJgC8Y0FCGeusa1TiPbFAnFhUgUIlQ6VTIFMo8IyHJBFnyifnGglJWVtUKnRmlTS/aeSQSOCdDK1IteUaDBBckDjb2NsLyFWSDwmkfXPmHOsaChBJrS/RYILFfj+RYJyNd9TiGQuwOLCcGcQ96CeaWl/ikTiuAT/zJ30SzxoNosyIxO0aDqT9gPE4uPr9BFJzi0InQ66UpYPEuAcDK+xCrn4fvpkQ8WCcvhfGMdfpSaRSsmbbsVwDPvyTS3wvTCQQw9puZOLdeTzDAUKL0RVll3hk2B3F1e9DpoCOm2pYHPCnD4ovtSFtC/RIZf2pPXY8HMM1uBzJd3HARzhlW4j5Y7j6fYTdUSLuGN6JIMrSjH4Z9KXT5MVCcVz9vrQNzD8prUOWDgMLx7y4h5btWPFIqmyKc/onQ4R9Mco3W5jau4h7yA9LQyC+1IepfpkL4+r3MXNQSuvnGvKjyOAqiwO+tF0ikCob9yc5+uQwhmrdqv5esrsFF6WysWCcqC/O0B+mVqSodw/407apiFvql0jKfhANRSm1mjE3lOLq8+Me8BFI9XfEF5HKpvw83vEghmodJcZU6vZBXzrKdCyY6pfFJftHELlaTutVlSjUChZPeZf7MJjE1e8jkOKRvqkQKoM0vgdfmiK8GCGeHrOJVH+nys4EcfX70pGNRt6aTe1/MsZL6hsLzkntjy+N2ZEASrUcb8pW6BrwpTl+cD6Cq9+ftjG5RwKoDSqcWyxM7lnANehP+7fC7iiugWVO7R0NEPHHqD3bxuxhD64BP77ppT6M4RrwE/albCVj0hyhUAMKBa5BP8EU34j64rgGl33BmXOE1qGWbN2uGMQhGkym5pdoahyGV9jxZQoZCo0cEknioRiuwUBGf0dQG5ajrrpHApjqddg3mpg55sM1FEiPgcBcGNdQIB0kyD2c8svH4dhT41TtKMOfsrv558MsDgZIRFM8ZjSIokSOuUlH+SYjrtEA/qmwpONYjOIaChJNBdf0jgbT3y7A/Ck/coWMeDhJxJMqG1jiR0HJjp+ak5UaedpnG1iI4RoJEvbF08+aSCxHA3WNhAi5osyfCOAaClLWUCr1dyKJbyq8cv84Gibqi1K+QUuJWYlrOETIl9JmzErR8dKcbSxMLAa1pxmQKyTuOH8qQGgxjt8QxzWaetB4HPdoSEoXp/Hxp4VnCR0MUllZyaFDh7BYxNMufxwhS+aL/fwJg8PhYHZWck7Y5TX0anevLCCTrQidtemeGpKxJId+kkoxlCendTKZRG2WEQlIDm69U41vMrWRzxfmLJnAucNM3Vl2Tjw7wWKRtFCNlzgwVGvZ/52hos+5BHWZktrTrVLYuIIFYfsjbcwdcRdOx5UxDNQWNR3XVXPgewNF26GvUuMbF4zDiBR1CJmMfd/sEyq/dAL8vX84XrSsWg9bHukkMBfiwHeLt73lmipsnSYO/bgf32jxMNgah5rQjPizdt5Wi0Ip59APh4SvWRPUCKUjBEmxHAvFGf+zWHjq0/6+E8+In8NPDBctW1qhpmqXg6FXJoj4iqf0U+uXowr9tWHtNNBwQQXHfzOKb0wstPlSpK28bcpYZbY83ISyRM57/3SqYJ0yuQx9tZquW+tZHPBx/KkiqcxkcpqvKMexwcipF6eYPeBd+XuO0I5Vp5mp3mHhwBNjhOZWDoR8IaR15WoC03kGjVyengcbL7IRjyYYfm2hYEjEJahN0H17HTOHPQy/sbjs0MuxvOirSrC26KRy2cjT7vIePVXbzXz4w7HVY36pfam2L0UX2Pfv45LRPUcblvpHa1NJG0SgxKogPB9Pi1PzXWOqV9JySTmnXpzG1S+NsSXjfiZ8ER99preYmZ1Bq9Xyy1/+kssvvzzn861jHZ9EvPjii1x66aUAyJBxRsn1aFVZKQ3k8jT3KmvW0niBnWNPTxKYThkO8lHQRAJ1mYpIyhiR+e+8tDWRpOe+OuLhBId+PFqw7SodbLytjqE3ZvJytFx5v2t325g75CYwVyAVQDJB7XkOHBtNHPheH9F8uaazUHe+g3g4zthbRdbpZBKdTVW4DRnQOdVsvLWBodemmfnQVbR8+eYymi5xMvb2bFr0Uwjtn6qmrNnAh9/tIyyQmmr7l9sIuSIc/P5g0bIqnSTqEk1xZ6jT0Xypk5PPjuMfF0wHsUaodMVTTAGUWFVUbrcy9vY8UXfxB+i8tRZjbSnv/q9jQu1w7pQ2oJPvFgtBn4IK4X7MiQKpKTpvrSHmi3PymTxcJ0dI6xKLivBC/gYtHXQw1uvo/FQV4+8tMPpmkW9DJqfrjhp0NjXvfb1/5fPmCZG97eEGEtEEe7+9ku/m41Hdd1UTDSU4+mSOZ83Dl3R21XJO+1VtlknzoAo6r6ng1O+mpPElkAqkbncZ1uZSiRtFWcWHVpa1MPGBi2gunp6n3RtvKcc1GGTsndUpOJf6J5lMUtasofkCG/1/mGfhVDA/j1JI99FZlNL8pQKVKvU9yWW599Wp99Z5vY1kPMnRX82uqC+ZlZLkYOCP+DQzBINBGhoaOHWqMF9fxzo+aTj99NN5++23AahRt9NZevrKAjL5CptXy6VW5Eo48Ttprcj+ZkD6npPxOEpNSlcUA02ZkpA7VTZPimwSCUwNGpouKqfvxWk8w8vrbq45oGKzkbKmUo79Is9akSMdpFID5VssxbmREnrubmD2mIfxpXRWOepbWbeMpsuqOPHM2HL6ojwcU2NVEpoXT/HZfkMNSo2cwz8ubksB6PlMI4oSBXu/LjBnKWHbw634pkIc+/lI0eKVOy3UnOHgyM+H0mL6QlCblURc4s/acGE5ylIlp54WT9G7JigpmF4qE0uRCWYPuIXKb/9yO4v9XqG2K/VKKraUMbV3kZiveIOUGoTSKAJCa34mtOUlNF/iZODlmbQzregt1DKUygJtyuBqHTdWorWo+fBbQ7nLZnAqtVFJz101zB33MfBy4X2DTCajYqtRsmO/NMNCETs5gKVVR905No49NUFoMavf8/AXjVkpOeKKoLzXgEIlZ+J9d0H71dJvSg103lDJ3FEfE3s8BXmXpkyNuVHD1L7VRsZMDpUJY20JdaeXcfy306vfkyLlXE7Na+1XWFGo5Rz59az0W655OnWNSpckmmqGSo/0b4V8VVo36RrpmTRmOW2XWBh4YxHvWHT5t9jKfo3FQhzS/IGZ2Wl0Oh3PPfcc55577up617GOTyhOnjxJd3c3oVAINRpO11+PWqFeWUihIJn6NrRWBQ3nWhl8bZ7QQupgba7vUy6HaBRlqYJYSvSt1isk32OeayS+lkhna+l7LisdbTbvUUDrVZVMvL+AVzC9HEh+Fe94oHCa8mQSa6cR5xYLx341Slww1a2t04hMKWP2YPF1Wq1XEPGJ1avSK+i4oZaRN2dw9RVfW/RVWtqvr2HkzRlm9rmKlq/aZaVii4VDTwymRTeF0HVXPWF3lJMC/GJpOImmuFOblDScX8HIWzME1+CjXAsUarH2KLQK7J0mFk64hd5VzVl2HN1mMb4LmJtKkavkLBz3Fi8MUoQk8azLa0LtbgfxWILxt+ZW/5iHx6n0CqK+eMEUbyBFh9p4Sx1j784zs0/6NvKleANouMCOqaGU/f8+JD1vkfo33lpNMpnkyM+yxmMeG0zTZeUkE0kGXsyRMjdPu9QGhVDatvrzbIy+vUg8GM/Lh2CZK9k79di7DBz9VSptXgEfpb3LwEK/j3guG/wSj8ribA3nWfBNR5k9unreyGyf1qak+QIrw3924RkJS7atXPar1H3UWukgLgpQqCAeAlTKgnyt7jQ9cqWMwdddK3/LumYkdIxx1WH8fj/nnXcev//973N3yCcMfzMiJYCbbrqJX/ziFwAoUHJe6S2rC+XYQDRdbmf+uA9XX+5Fe6mL9FVqNt5cg3vIz7FfpQQ/eYRKxno1rZdXcfAnw0SyN1N5kEwkqTqtjPE9i0XFJ5vurqW0Qsu+7/evSThTVCCSTFJ3voPKHTb6nh9ndr/YBr/pcif+mRBT7+cQHvwHUL7FTMgdxS1AMgBar6lmct883iExAvYXCWYExUG9DzYhk8v48OtigqzeB5uI+eNCoqbqc2zUnuHg1LNjzB5c7Tz4j2ItIqW1YvtX2knGE3zwf04WLauvKaHzpgYGX5kUGot15zmo3G5l7zdOEPEJTG3F3mWOhV5tURERcKwBtF9fycBrc+lIX8Xu03CBjcFXsghPAWKSt7osgrThlkpOPTshPNa3PFiHTCZjzzeGioqU1voN9dxbTYlByXv/NrS677PaXbXLyHgO51ghdF5fTjKZ5NjTOYhjBtRG6L2rBv9MhMNPThcsC9BxjY3+388IPesg+znlOwBAY2MjH3zwwSde0byOdeRCIBDAbrcTCEiqjVbVVupLNqwumEU1VQaoP9vOqd8VMGan+NqGm6sodajZ973BtDgkH3Vtv9ZJLBij7/kcm6l8UCao2GRiau/KNSZbpKTSwZYHW/HPhjj0wwJOoSzjkKioZevnW0hEE3z4b/1CzVYZlTRfUsGxJwsLsv4S1J7rYOQ1sT7UlatwbrHR/0IR0XwKKpNKSLSz8iKEBDY6m4quu5sYfn2aqT3F+ai920T9ueXs/8GgUJu2fr4VEkn2CBpV1oK1ipTWgvLNZTReXEHf8xNCjrvOW2tRqOUcenxo+Y8FHGi9DzQRC8Q49KMcnDGbRwm8y2yDjMqkJFrMGJi6j6G2BGurgaE/pDhAEQ5latAiV8lYPLnyI80nUiqIDL5UsdmAUqdg7E+u/OUTifQ19i49DedaGXlrgakPvQX7W3ROWYLOoaLrZieLA0FOPpdjzs1ot0onGQNnD4ntuwDUZgWd1zg4+fwcgZncL3epP1sut2Ku1XDgp5NE3IUFBOZ6NYYaLSNvuoq2IRqN8nbk14TjQVQqFTfffDM/+tGPhJ9hHev4JOEf//Ef+epXvwqARlbK6frrUSqzAqTnsFFVbjNIUTvyHTBL8S6VQUn3bU4W+v0MvJwSwuYT75TJab60nBPPTKcjHC2hkKjc0laailyTecHqOaHx4nJsHQYO/GiQ0Jy4cEapgViw8Bxj6zLSeKGTvhcn0pEA84rnU6jcaSHijzF36K9rfzE16IhHE/jGxAQnVWfapNPeE2LllRp5OtKSMATFQe031KAqVazkDIXK31hDPJIQEgZZ2gy0XFXFqd+NL7+jvyLWIlJaK3o+0wgyGfu/U4TXy2Qo9Uq6bqtj+PUZFk4Uf05bl5n63XYOPzEsJMZBCbJEAV6Tw+al1MuJFTqAmMGvas60MHvYs1pElH2bFBeo3GpiYo+YnbkgsuxUjRdZGfnTPLF8FCaDdwFsvMWJokTOgceLvH+ZbG2iM6D9mnJKy9Uc+PH4yuuy2gBgbdMy3x9EFs/zjnJw2dozTChL5Ay8mme/k3qnSg1suqUc31SUky8UP9hQf7aRsfc8q581x/w8Sz8fLr4BQENDA++///565Mp1/E0iHo/T09PD4cOHAejW7qZC3bCqXDbvUaihosfI+LuuQpUDUHu2hbKmUg7/fJR4MHd9S1hKNT7+do7vP49AO5lIYm4qxdVfZI+ngJ57GvBPhzj1TIG5MceziohaOm+ulez1gjYshVpO9ek2hl9fg31PEPYuE7OHxNYihVaBY5OJyffEDogptAph4dbyRQgJbBRqORvvrGf0rVkh8Y6+Skv9uQ5OPjsuJLDquLEGhVr+kfgD1ypSWgv0lRrarq9h4MVJFk8Vd9zU7nag0ivoLxb8I4WWq6tIxBO5y2fbbjLfZREBUfqS1DdUSJy0hBKzEnNjKdMfuoXuobWqUGoU6ciT/yFktM9Yq6XEpGT2UIFxmEimr9FXltByWQXDb84VFaorS2S555Q8PkqlTsHGm5wsnPIz8laRoAgKMNVocA+FhAIzACg00HSBjZG3FgkXsWM5t+pxbNBz7OlZIp7UQMjzXrUWBYZKDTOHxexve/wvMh+ZQKlU8thjj/H//D//j9B1nwSIvYlPCJ588sn0ybI4MV72/5i5SJEIJmqwtRioO9uW35CSgm88gmc0wOAbxRclz2CIPV/vJ7IYw9igofFSR9Fr1BYVtWc76L6jrmjZg4+PcPKZ8TUJlLrva2Dzg22SMKMAhv8ww95v9QkLlADsG81UbrcWL5hC27XVdN1RX7Tc9F6XJFBSSxGeiuHk02PCAiWQxBVqvRyNo3jdANsebWXbg61CZfd9s19YoLRWzB314Br0EZgRW2CcuywrcgP/NbHWuueOuIWJoLZMCk0eFnRoDr82yzv/73EhgVLVaVZ2fbkDe49JqG5jgxagoEApG8d/NVFcoIQU4QhYLVDK1Y76ErY8UJ/3e8h2rDm6DRicGiq2lQm0WMLebw5zsJBYLpGARIKO68vp/XQ9aoti5W8Frtv/xBgnnpsqKlDSO9XU7Cxjww3lRdurc6hpvkyaf47+appjv8ojOspQH0c8UqjJoT8trvot+xpLsxpTrZbq062rfsvGgP1thiPHkMvl7Ny5k/7+/nWB0jr+ZqHT6fD7/ezeLUWvPBndw9v+Z4teV3OaFUuTDkOlsvCcgRSCd+6ET8gpf/xXE2mBUtOldlQmVZEroPP6aurOdawqm705jAbg2K/HCguUpAvT/9SVq9jyUBvNlzsLXCDhwPf6hAVKAJXbyjA36DE3lwqV19lU9D7QhK68eJ8sCZR0tuJlA9NRYYESkBYD6au1QuUdm83s+nIHlk5D8bbMRXnvH48LCZRACs2dTILOUvw5AWYOuZg+IC7Gb722CttGo3D5taD12ipsm8Tq9k76mT/pwXVKzMG3Vn3Ovm/15xYo5cDW+5vovX+1UTcXtDaVJMgRFCgBeEfCywIlyHuYZOl7dw8GVwmUcqH9eid15xbY52QZN8o3GSnvMuaf37KcVLOHfOz7wbAkUMqHZBKVNknP3bW0X+NY9Vs+BGainHhupqhACaDtynIazipDpSnuzK4724zOpiLiirP/8cl06P9VyOiD8Xc9LAwE0wKlnCeLU3+vPcNM+QZ9wfoAFqJTnCh7jXA8iFwu59ChQ+sCpXX8TeMrX/kKg4ODlJSUEEr6edX7YxZjK/c+uexa5V16anaZivKuqDfG3HE/Ex8UF+KE5mMcfmKcqCeGpkxJ1S5z0WuUGmi8qJzmK7K4UQ4D+8BL0xz79diaBEotVzrpua8JpaZwublDHj78Tv9K8UuRBbBiiwXnFvF9XdWZNlqurixazj0YkARKSiliTzGMvzUnLFACKU2cUiNFmBFB19319NzTKFT2+C9HhQVKSxDlGZ7xIDOHXcI2r7JWPQ0XF7cd/CUoa1lb3dP7FpkR5Iwak5JkMkksLDbO5w572PP1fiGBUllzKTseacHSnmM9zYGlfYKoQAlg9K2FogIlWB5/IgIlTZmSDTdX5h+zWfzFUF2CtbkUR0ee/UIOcdDhn01y5OfFBWq1Z5rpvrMGTVlGW4r4Do4/M8uJ380UFSgp9dC420rLBcVt6Uo9VJ8mcf+RP7kZeCWPXyKD+8ZCMHs8wFgq3Vwhm5fOKsPWqsO52bDqt2wMGt7laPBd5HI511xzDQMDA+sCpXX8zUKhUHDo0CH++3//7wAcCL7OPv+rqwtm8StraymODXp0dlXROWPqgJvZw560QKkQxt9eTAuUyjebVqTAzIfac2w0XVyO2likbBxOPD3OqefF7TsKrYKuu5uoyraX58CJX4+s6ZCduVmPbYMJQ42Y7UihVdB2XTUlZcV9fEt+KZH+iwfjwgKlpfIAGgE/JkhCos33t2BqKG7bi0cSHPjegHB0oVhQsnmpdGIccOaQm+n9LqGyIEWZMjboihf8C7CWuiOeKFMfLqbT2BXDWo+knfrtuJhACWi/tlrYT6rSK1aI/HJF9M9G2BVbFihJF+Usp9DKQQHB+aiQQKnmTCsVWwr4SLP4n2OjgYpeU/5MUxkCJQDfRJiDPxkpHklTAZ03VlGfZX8rpNuI+aKc/N1McYESUH+WhYbdVhSa4n1t7yxFY1YQD8HJ5+YI5fEJZ7Zt9kiAuWP+tEApX7uT8QQV3QbKu/SSsC3rt0wE4h6OlL7MfGQCg8HAyZMn/6YESvA3JlIC2LVrF8lkErPZDMCH0T/wXuDF/BdEYP8TY+z/seR0sncX3rwd/cUkobkIunI12x5pwNxSfLJsvKACx0ZzUXFQ1BVj5I8zHBAMCz1/1AcyOVsebqblmuLGj+kDLilva8HIMdKHG1mIgBq2PNJM3fnFBVaHftjPh98QF+TonCVorGKLNcDOL7az6fbi4i2A8m1mdv1dh/BCtuWRNjpvqBUq6xr0syDo5FmCaDv2fbNfODVcaCbC0Z+OpHOqF4N9gwlzU3EH31+CtdY98MIkQ68Uj1wDMHvQw/v/eBzPYHEHklovp1TA+boE33SIwGyosBgvtdCXtevZeHMtzVdUFK03mUiy9eEmuj8tMF5lciq2ldF9Zy215+QxeGYt9pYmPSqtAqXAoyaTSab3ezj001FGXi9iJFNLEZTKe6V3GfGxWlGcEieB9NvUATf+2TCRhfjybzlUyCUWJVsfrMXWZYAIuPqLkyPfRJjRdxc58svsELbJ5f9SaLzAirVFj9qYzL35i8fTxpVNt1fQfpVkQDn+zBy+4WBeY41jo7QRWjgR5PAvJhn4/fyq+pawEJnmZd+P6Bs8hclk4n/9r//FO++8U/Q517GOvwW89tprPPnkkwD4kou87Psx7mj+TfzA7+c59OQE3rEIqMDSmt+T5B2LMPCS5Fxvu6aCzhuL8x2tTYWt00jT+faiZY/+eoLh12eEIum4B6S1yNZlYOvDTflFUDI5yOQEpqP4JkNMCWzyl9LClW82s/lzTVLEmQIYfnWWAz/oEwpnDSArUaA2qDA3iglbanfb6b6vmbI2MafGpnsb6PmsmEOr+QonXbfXU1pVxIOIJAzyTgSExcogOViyMw/mwuIJH3v+5SRuAY4Bknhr9M3iYuIlWNuM2DeKCaHXCmubEXunWN2ByQgnfzVONCAWReHIT0aEoygZatdmkJo/5WWhyMm2JcNM2zXV9H62uXCFKad2WYuO7V9opKwtR3tyGE26bnSy9cH6/G3I4hI6q4pSR0nhtqTvl+DAD0Y5+ovxwjwKyfHVdbs0p0WXthfZ/Z3BeaJBGd7xENOHvSt/y/GOGi+00HWbJAJwDYg5eE/8dpKhNxaIhvK0eynSig7KN+qp321e9UzZ15Q1aem9x4nKJAkJ+19aIBmP5xYoqaCsSerno09Nsv9nY6vbkIEPfL9nT/BFpqam2LJlC/F4nLa2NqFnXcc6Psmor68nFAqxefNmIMn73t+x37vSYZZMJlfMZYd+OcnJZ6V9lalWLUXKyYOh1yXRgVIvZ9PtlRhri6/XtWdacW42FxUHxSIyBv8wTZ/gyWXvSAiZXMaGW2uoO7c4r5s54sY95CcWLm7qXErb1XlrLZW7ijvXjv50SNheA2Bwaim1F++7JfR+ppkNN4k5NUwNOrZ+vhVDrZjjruezrTRfVS1UduGUjzmBiD6ZKK0Ue87jvxjl5G/EIhfFfDEGX5giJJji2NpuxLFR/GDWWmDtWFvdkx8sMiGSkjeZxDceYv93BvAIHLZUakBjETfjhzwR3CN+FvoKcK+UzUtrV7Lxlhpqzykkyl7mGxtuqqT9+uIHMQCM9Rq6bq+mYqvYPsRQrUVjVq1y2uREIoF3JMihn4wxsce76rcV3EEJG291YmmV+GLR6EgyGXMnfHgnQpIQqwDvUpbCptsrKWuW6vZNRHO3IQMxHwz+cYG+P6wcK0vzd+YcXru9jPINekoMitwOwUQy/feWi8to2C3tE0bf9hKYDOe1eZmqlaCEwEyMw7+aY/TtVB/msHn5Y15eWfwhJ0eOUFpayje+8Q1+85vf5Kx3Hev4W8P/+B//g3379lFSUsJMbJhX3T8hEM8SdGd87zOH/Rz59TSBVHABQ2V+A0/EFZdSTwJVO0w0XFhc9KfQynFuMePcXnxtGn1znsFXZnKn/s5CcC4CcUk403lLLapcIp6MOTAejOMa8An5ypaEGIZarSTiKDLHzx/1cOiJAbyjYsIThQI0VjUGpxgnsbQb6LqrEaOgTaPxEidt14txKUevmQ231aEVCIrgGw+y2O8l4hW3ean1ChTq4nwgtBDhyE+GhdPDzh/1CAcWAHD0lGFp/mj8jWupO+KLM/6nOSm9mgCGX58RjqKUV2yWx042f9LLQp8Yj67b7aDrTsFDfFY1m+6uy839cwiVmi50sPEWsfEKoLOr0QnbvJL0/W6aE7+aWB0lKIOPAFjaSmm53AEKiAeLC4NkCRmL/QHmU7buJT4kU6yeMBybSmm5xAZyeXquLYahP84z+Noc8UhWfVk2LxRQucVA5RZTXi631DatVUH7NTbUegWxYILx972reFwm9OXSRnzg9QWO/XYmHXkrGU+sEij1BT7kLc9TjI+Pcfrpp+PxeGhoEBsznySIySg/gVhcXOTee+/lBz/4Ae7kLK/4n+B01TXolKsXnvBcBJKgNstoPN9BRY+Zgz8cLRjqX2dVI1eI6S73f3cIY4MGIsVTIy2pocva9bRe7uTkMxMsnirsgJIrZSiVxRemqfcX0+nY6s61M/yn2dyCJZksbQxXlCjRCSh/l8QyVWdZKavTFw0LuO+b4tECAOaOe/BOiDmRFvsDxM6IoygR27zPHHSxcFJs8VhrKOitn29BqVXy7v8rlr6jtEJNNIJQ9J2a3XZUGgUDL04VLXvw+4NC9/9LsJa6DfVaqrdb6X9hgogAOS5r17N4XCyXWPOV1Zgb9Oz5dr9Q/7n7/RzoF2v74oCPxVM+Rl4v3tcAYW+UqF/sJNzCcTe2DgMjb4up8odenWfo1flVf8+cr5LJJOZmLXVn2jnw+Aj+qeJEV29Xo1DJUWpT302mYy1rIa4+s4yZA24WT4VYPJHnm8i4RqWS/Ih5v8mltieTdN9dRTya4PBPJhl/273it2yoTRBxw+GfTGCsUxPJ5tE5DDFKtZyEdnVO1+zr9FVqGs+zYWst5ehT0/gmInnrnK45yMBYH0RAq9UyNjaGWi0uwlzHOv4WcOONN3LFFVfgdDrxeDy8F36Oilg9m7Rn5ywfmJbmpfarnJhqNOybHiOyGC0YblVRIhfaiAfnohx5chTfmPTdqkxyovlCskZhKnWid+MdNSQTSY78RHKMy+SynCdZlCUKZAoZ8mKGc5mcwz8ZhWQClU6GdYOZqQ8KC0aVWgWKEgU6k4pAEadMYCYGKui6rZ6Bl6fwFzgd4x8P8d4/HC/S4GVMvjdLabmGxQGxNTjkjqAQ4KIAw2/OQZKC7U0jCocFo/QAlFZp2HRnAzP7XcIRnkwNOiGhksqkov4cO+PvzqbHbyG88xGkbvtL6q4730HYFRWKMFVilYyn4fmoUKiDDTfVEFyIcCAfF0wmVkTHGHxJPFT70OvTGKsKOF+zom5Eg3F8o2J7hfH3Fykxia/TH34nTwS1LK7Ufl0Fcyd9zB3yEVyIr/gt13UlZhUqTUYdmX2eyXtU4OwxMrnHy/HfzhQ9jQtSKHi5qsA7TLXBXK+m6UI7J56bwjeeYOaQb/m5stutAlWJFFnu6G8m8Y3n+A5WPau0V9UaVUQW8n/zyXicjTdVoLOoeX9wRIqet1Q8q85ANMB01YcseqSIyX/3d3/3N3eSbB3rEMHevXv55je/yUMPPcR0bIg/LP6IMwzXUSJbtnklk0lkMhkxHyTjgBJaLrHjmwpz/OmZgrxLY1AgV4mt7SefnUbnUBILSUKKaJS86cLmj0r2LV25irarKul7cRrvaEia1/OcBpYrZcgFOKC7P4C7X1oLHL1mZg65iqYtU+sUlCxFbMmwhWVjKXKNpdOAtdnAqWcLR20//su1peSd3rdIyC1mYPdPBoj4okJpIQAm3psXtqeN/0lckA2w4dY6dI4SPvjnk0Ll1am+jghEArJtNKI2qph4e7X9Ixt9z07QR5FI+n8h1lK3xqrEudnK6DvzaSFcIeirNPgEU3BU7nTg3FbGgR8WT4Eok8sIzcU48RsxPhycjTG1z8XEHk/uAlljLeSOkYiJCeA9YyHmT/mZ3OdGJhC/YPaQN3f6kCzepbErqTvDwYnnpghl7vXy8C6NXolSo0ClLa5+sm0oxTUQIDAT4+SzxfmrTK5ErpQt27zytAGg9QorMpmME8/OMXcskLbl5XJmKbUQC8LAHxbQHlASzo4wmmuvqpFLlLKIzUull9NyiY3FwSD9v8+IiJXjujnrMfpmj5AgTnl5OUNDQ2g04iLMdazjbwE9PT34/X527tzJnj17eMv3KxrVPbRoN68smDrAuxRJo2qXCccGA0eemiTijhfcZys0CpQC/qx4MMHxX48TWpC+W4VWTrzAoaTFlMO//gIHCrWcgRenC0ZtkSvlKFRyZAJi0aWD6Ao1mOoNRX1sCrUclU6JWq8smoIs4pb6sPESJ5N75gnO5udJEV+cA98dKN7gFBZOeTE4tfinxPhR2BUhHhVzpc8fcaFUywnOi/G6wZfE/E2wFL2qkak9C4y/U5wfAWgdaoICIg6FWk55r5n5kz7Ci8XL7/vWR5NBZq1127tMxEJxoVRvCq0CuQJhQVPrNVWEXVFO/DrjAFWBb3j2QFaUowLp2MbfmUdfudLmlUwkc/N7BYQ9UQIFvoFMTO5zoRWM5gXk54uZbUkkqT7Dgm8ihGsgQCRzzsmeT1LXlRiUqEoFvhsFWJtKWTgVYOztxQKpw5fvqVDKC+8PU+9Ja1HSeL6NgVfnCM5FpVRvS6KnHOKjpehWJ56dJrS4epzkaptCLUepkxP25p/TkvEE9bvNmGu1HPrFJPEQxFLCrWxxUjweYaT8fQb6TiKXy/n2t7/Nfffdl/9ZP+GQJYvlOPuEY2RkhIaGBhKpAeeUN9FVsitn2WQySe1ZFqYO+4gsRFBb1EQXo4XTwCWSqPXQelU1h386tvK3HAaWbV9sJhlLsufruUU6SwTB2qmn6RInR38+vOwcz4eM+5RvMTG9t7DiVV9dwqY7GvGM+jn8RB6je65nVlM4ChPQc38TJUaVsCOs7nwH5gY9B74nTiJE2vFRonyLGec2K/u/XVxoVbG9DKVOwdgbAoYeNZz2lU684wGhE3rbvtiKXCVfk9NRFKf9fSeeEf9fPQdtyzVVODaa2fudU8VTFS71x2iAQz8eKlq3vkqNc7tdEpIVcaw1XuZEY1Zy9KeChkPBHLIrLylifJHJ1zSWHZuNVG6zsP9HwzmvyTZstF9bjrlBz/4fjUrOxkLI1Y48Diq1GXrvbSQwF+HQj7LmvKXrUtcY69WEfSkhaGadqxtPqvFsurOKeDjOkSenln/LMR/VnGmmcquZwdfmmDmQRUKXiEbKuOLcZkStVzD8+qL0Wz5jjUIhCZ9SjsX68ywMvbUAUdmK+pYQiQT4Y/xpkiQxmUycffbZPPPMM7nrXsc6/gvhnnvu4fHHHwdAjoKz1degyhPaRqVJ4Og1M/5nl/T/jRD1yXNuFJaQTCapPdtKYC7M3JGs7z9rY1Sx2SgJs1+bZerDPEb3FI/acGs1yQQc/flYxk+FabLOoQI5BIqIQTfdXYvOrmHv148Lpa4DpGhKRaZvnUPJpruamD7oYlBAtIwKuu9qZPj1aeEoTCLt+KjR/qlqfFMhxt4qzqcaL3Ey9cFcUZEXwIbbajHWlAqJfgx1Orpuq2fs7VlGXs+ROus/gM5bazHWlvLuRyBs2v7lNiK+mBBv3XB7HYZqndQOAZFS5S4LEW+UucMFDJEpDrXp7jrG3plj4bhg9C8RHrUWyGVrHssbb6tm/riHqb15ni+TK6lg62fr8U+HOfbU5Ao+tOqafO3II8zu+FQ5hkoN+388SSSXsTDjXVk7dMwfE5hkUm3XOxW0Xl7Oqeen8Y5Fl3/L0fbNn64mmUyy799zCNSzeGPbVQ5OvDADUZApFHlTu8kUCpT6JFF3Aq1VhaleI/V3Hh56NPQuY7ET0j3a2nj55ZeprRWLiLuOdfytwufzUVdXx8KCdOilQdW9ymGW3ivG49g2lOIbDxNySdGSYgEKp4FLJkEJjedaGXg5yxmS47quO6qQyWUceDzPXjvFrUqdalouq+Dkc5PL4t88IqVMPlbWXJp2tuWD2qSk994GFga8nHp6DcIVJZKoqYANsOWaKozVOvZ+61RRARSArcuIrdPE8V+sQbS01I7/JJgadFTutHHs50XSHCOlQlOVKpkRTA+y/cvtuAa8QhGVNt5ZT4lRxd6vnxKqey3Y/uV2Fvu9az6IWAyVOy3Unl3OwR8OEpguLj7a8eV2Fgd8nBRoh8asxN5dxugfZ4vyIOf2MnT2EgZeFItiXpRXCQriViFrLBc6DGyo1lB9WhnHfjOZe/xncYOq081UdJs58vMxSaSUj3flaEfBJmug555aScz5mxz9l/EMGosSkiwLfArxvxRaLrGCHE49P5+qTpbT72Bt09Kw28rg6wssnMyKJLL0PlJzo7lRg86iZGKPr6jNS1kSl+Z9oLynlOnDfkiutKEtIRaL8Vbgl0SSIQwGA9deey0//OEPc9e9jnX8F8L3vvc97r//fhKJBFqZnh2aK1ArsgQB6e8+jrW1lPljEndRaBXEQ4mCQsJkMom1vZRYKIE7O9Jelo3KUKuh+eJyhl+fYeFkYX5Ue7YNRYmcwZdniqeWSnEyKSWVglDmgfAcc1bDhRWUtRg48IOBdMqzolCQjiKSDyq9gg231jOzf5EJkbRrCmi+tJLp/YvCUZhE2vFRo+pMGxF3lNmDxSMZlW8pY7HPkxZxFULt2Xbsm8zs/bdTRZ9RrVew6d4mRv80y/ResbS1oqg5y46j2/yRcLquO+uJBmMc/2UOP1UWanc7sG80CfUHSDw3Hk7gGUktnAV4TOOlTmYPuVaOu4/Cp5j/wjWP5YYL7LhHAvnTsGXxjY23V+OfDjP48qz0W655RC5bcztqzrBg7zRw5JfjhHMcZJApFGl+ZagqwTsezrhfYX+jWi+n+RI7Q28sLEdcyqgvE61XOVCoZBz71Wr+txTNaYmzVZ9mYnKPm3gkP5eTrpMjVyeIB0GhBVOlloX+IDKF1O5sgdJkZIBDoTeBJB0dHbz22mtUVBTP7vNJxt9curds1NbWEo/H2b59OwCTiX5eCf6MSCS3MmDkzYW0QGnz3TV03lg8fG31WXYMVRpsG4qnxJg74mb+RB4nGcuT0PxRH+//71P4JiJo7GrqLygQ2jo12dXsttF0cSU1uwuHhfSNhRl6fTq/QCkHNtxWx85HO1DrCw+Z/d/u571/ERfNGKt1aMrURVPhLWHHV9vp/XSTUNnKXVa2PFIkTUQK1efY2PHV9qLPB6B3atFa1Oirijd66v1FMYESQASmDywy+KrYSacD3+sTFihZOw3s+Go7ti6x8MprweaHm9l0j1iYuVNPj/PBNwUESgARmHh/npG3xRyBvvGIsIHJWKNF7xQL59l9XwO994s9X/MVFXTfK5aW0NpRys4vNFN9pljY8LJ6HSUGBfkC9GSHETz+m2ne/Xp/XoHSUtkNN1ey/XMNqPVZv+UJZRhxwdAbcxz6eR7il3FN+9VVbFyaQ/MRhkQCdZmcunPMABz80fiyQElqTM7Lpve5CMxFmDmWLVBIrApNXbXNjH2DYfm3PNBZFfTeWUP7deUADL26IIm3coS6nm84yQHj6yRJIpfL2bNnz7pAaR3rSOEHP/gBfX19KJVKEsR5PfIrjoXez1k2GiAtUGq7poLeuxtQ6YufynV0Gag5LU+azAzMH/fgmwwzdSg/91riUUd+OpYWKNWcZUWlK7457Lyplg03FZ/3j/1ihL4XJ4kGxai3yqRix+fbaC2SzjcwE+Pd/3NcTKAEqHQqNGY1ZS1iYZNrzrKx89EODHVia2bXXfXU7i6ejgWg+75GOm8VExcYakox15cKlR14cVJIoAQw9vYcI2+JRffxDgf44BunhAVKG26vY9On//pheG2bjGz7Yiv6arEUL+//0wmO/FgscuTw6zNMvDcvJFACmHhnobBAKQV9tQadrQSttfiJ6xKLim1faMbRU4CzZhh6ej5dh71LYDwnknTfVsOWB8R4mkonOQMNlQX6OZMrRWHPd4YkgdLSb7nqNSnY9tk6mi7O2q8lEqvS2S7h2G+nGXxtvqhAqfZMM80X2rF3lRaOtpRMUr3LgKo0gW88yoffGVsWKBVo+1yfn5lckQ2yeKOtU4e5XkPVFiMkk3kFSgBtV1npvb0alQ6C89FlQVgWD41GA4xUv8d4XIrUcfnll3P8+PF1gdI61gHo9Xrm5+e5//77ARiMHuB1z88IZeQyytwrzh3xSwIlDXTfWkXzRUX2o4kE5V0GrK2llDUVX3tmDnqZO1HgJHOKW/knI+z//giB6ShKvRzn1vxpTGVyGTK5DEuHgdarK6ncbi7Yhog7xqkXpzj1W/GT6Q3nO9j6YAtKvbLgOnjq6XFhgRKAoVqHzq4pmgpvCT33N7HhZrG1ytJmoOuuerGynQY2P9icjmRUCBqLGr1Ti668eKMXT/mEBUoAY3+aZezPYif/j/9iRNiZpSvX0PtAM2WtYqmK14KOW2ppvU4sZcbEuwvs+eYpIYESSJEjJz4Q64+QKyYJlIpAJpdhrNFiEuTvLVc56bypwJ4jYz/k3Gqi7RqxNG+lFWq23t9AxeZlTlfoELCxToPWos7/rWRxg/E/u9j73SFJIFRAaFl/roXN99SgzNxKFCgfC0H/72c5/mxhgRJA+9XltF3pWOZdeepVaqCiVxqbp16cTwuUIH+fLAyE8I6H8IysdLJL9rqV6VSqtxmxbzBIvxXgXcqSOJturaTxfGkfPb3fL81lOWxeC/YB9mueJ5IModVqOXjw4LpAaR3rSOG+++5jYWGBmpoagkkfb4Z/wVD4yMpCS3NWnLRAqWq7ia6bKlCXygtGswSo6DFRuc1ctC3e8RCuwQDu4eKCnJE/zjH4smT/sG00oiwU4SS1526+rJLWq6uyflvNkwZfnaLvuXFhgZJCDZvuaqB2t6Nguagvzv7v94sJlJC0BzpHyaoINflgaTXQ+5lmdOViqa7qL6zA0WsWKtt0uZOGi8XEBWX1pRhqxNbt6b2LQgIlgNkjboZenRYSjER8cfZ9t19YoFR3noOW7LHxV0CpU8PGO+qF38mhHw1x6rdihxKmPlxg5M0ZYQHN4imfkEBJbVJgrNbmTw+XAYUauu6oxdyU28aZLSBsucqJqUFgbCQTNF7oYMOtgu9EATqHmtJCfD+Lbxz+2ZgkUFr6LVe1ath0azXVp2XtMQsII0f/tEDfSzO5BUoyWZpflTXraL68PJ1et5C/0dKqRamVE/HGOfrLqWWBUkZ92Zg/4WMml40zKxVvqUONva0US3MpxOMF+W3VNgMbP+VEoYV4EBb6pbk6O71bPB5nrPIDjkTeApJ86Utf4ujRo3/zAiX4G073lo333nuP1157jfPOO48kCd6I/5KKUCObNKflLB9ZiOAdDzL6bmrjkEjmPTky8MIsM/vd6YhHFVtN6dQh2Uh/xEDvAw34JoNFDSft11SitZYw8c5swVRxo6/PUaJXMfp6cVHMxDvSwl65y0LFljI+/EbW6eqs6CVzx9wotQqhFF1EpDRdLZdVcfCJwYKCFJGIQZnwTgSE86hqzCpUOiWlFep0Orp88E+ESCZAY9cQ8RU+fdz/u0n6fycmJAKov6CcslYD+75ZPEzhWuoVehcpRINxErGEqM9pTUjEksQj4m0RScW2hKWQocXQeKkTY61OKEoAwP5vi0fuSsaSJPKc6MyGzl4inD7EOx0ltBhlZp8Y8Tvx2zx9kTU3bbqzmng4wZEnJySBTY53vhT2H2DupA+ZUpaeWzJ/y0TdbgumhlIO/mCU6b0FnP0ZGPnTPMH5cP4CqRC4HVdVoDGrmPxgcXmOS/2WCb1TTfs1FZx6fhL3cJRDT+QnoGo9GGt1zB0NcPDJcSKFwnim7hWYieCbCDH23vI7ScbjK/ojEPHx5/gzJI8mMRgM7Nq1i7fffrtgP6xjHf8V0dTURDQa5ZxzzuGPf/wjo/HjjPtPFYyqNPHBAslEGdHUFJNvPgI48IMhUEq/WdpL8Y74c0YoigYk8RFAWYuOxgscHH5ynPBCfhGLyqSkcocFY42WIz8dy5v2DaDvhUmUJcVjYEcDMJdy7nd/uoGZQy4m38s//0fdUfwzIeZOCKSjTT1K5y21kEhy9Mn8J/Wj7ijv/aO4mHzqgJuyFgOhWTHuVWJWUxoQ2+0nYgkSgvzhg/9zQqgcACrYdEcD8yc8jP+psNPHPRDAPSAa2krqP1Ekoom/5NCUEJKxJNGgeIiFaIHQ75nwjQWFU45039fA7GF3ek+RE6kO8I2FePcfxdLAaMwqkokkvqniRtbSShVqvWI5VW0RzJ/0oTGrhMpGA7D3m7kjimbOTbpyFe1XOzn5uzzpzzIhlxN1xwnMRZg/mbGpy8F5UEH3LZWMvbvI/Ikgs4eKhy4fecsFChmzhwqcoE0mUZepqdxiwlCh4divp1f8lr1ZaLrIitai4vDPJhl5ozBntXeVMnvIz9zRAIHZSQKzBfojda+p/R5iocTK+TurHUdC7zAeOwnHoaGhgV/84hds27atYFvWsY7/ivjWt77Fl770Jbq7uwkEArwZ+Dn1qo20anN/L7EQLJzyM7d06j7HHLCE6X1e3EPBdLQQS6uOhZO518/p/ct7xfbrnQTnwgy/Udix1HCuHXNDKfOn/ERc+e0FC8e8jFlUTLzvKljfUlmAslY9VTutHP7ZcEFh0XyflxKLejlFV4HUb8QkUUzrVZUc/80ooQLi6MEXpxhEXCzl7vcRKtAHmVBqFZSY1GgdJQRnCuy7gcBMiEQ8KaVXKZJqbXqvi+m9LtEm4+gxY+8ycUQgEvfEu2KCHIBYSNzOlAjHSAqmH1srEtEEiah43SJp3gCQyZj+0CVUtHyzGUurgWO/GoV4cd5z8mlx22I8kkShEkuyoLOXoLWIuRLCrgi+qRBzeeaKbIz/2ZU+vJKJ7D1h06V2ZDIZfc/PFBYLprjV4kAAdamC2BI9ysW7kFK82dv1HPv1NIv9YtE3ht6YJx4p0ndyOQ3nWTHVaJg74UtHMcrVDpVBQceVdob+uIh3PMLJ3+X/XpQaKC0vwT0c5vhzM1AwIF4q9WcAFvuDTGc44JLxeDo6AEAsFuKtwG+IuEOUlpZy8cUX8+KLLxZ+xnWs478gTCYTIyMj/P3f/z3/83/+T04m9jAaO746qlLGtz57YskGX9xmcuSpCRRq6dssLVcTWowQz0UP4jD4iuRv1NrU1J/roP+lyXS6uSVkppFSqKHmDCumGi0Dvy8cVWnoD9OojDnm/WyeFCct5mi63Mlivy/NxXIhHpHKu/qL73OXBCU1Z9lRaBQMvZyfV8UjcPDfxQ5pAbiH/HhG/YQ9Ymu3zqYuHoUq3Zbkqigp+bDWbCaNlzrxjgaYPVQ48lJwLkJwTtwXJxwFC4hHEmvyCYpCJoN4JF58fc1qiwgi7tjKlGwF0HxFJYv9PuaPFveDRdxx9gumG1Tp1cSjScKu4vZFtV6BpkwtlKoWwNXvJ+zK8k3mSzsXhyM/zRPwIeMatV5B02XlDL0+VzxtoFwmfdvjIdzDGfwvj7ai+TIHs4c9uIdXi7JzYbEvgFK3yGJfAW6ZSKDQyKk93YJ7OMjgq4X3HuXdevQVGvpfmmX+eGHOaqhS4x2P4J+JcOSp6cJzeTwOCgVzx6U5Lh5c/dsSxiOnOBL6MxxP0tjYyDPPPMPGjRsLtuVvCf9lREoA5557Lslkkk2bNnHo0CGmkgNMBwc5W3ENavVqh9mRJyUHuFoPvfc14R7yc/zXUys/qFRYsyWBUudNlZjqdATmQ3gGw3nDVaMGhUqe07GV7Qzb/90h7JsMkvM+X3oomRySCfqekzaidec5sG8wsufbfQXTSRmrdKi0StR6GRFf/ok/00jh3GVhcu9CwXrlchlypYxSW4lQ1JzyLWZqz3LwwTdPFqz36E/Eoz8NvDjFgGBkgcWTPt7/p7WlTdPXlBDxJ4uKbjRmFepSpVBqL7VFTeeNNYy/M8fs/iJp+6rUbLi1kfH354pGa/IMBvjg/4g5h9aK/d8SEwYBbHu0Fd94kGMCoc67P9OIe9AvJFTSWdWUGMWcTrYuQ9pRXBQyOQd/KD7mDv5gOHVZcTVYZD7E/u8VJ6Adn3Ki1Ck59ERG5KJMMpx1L0WJIm1czjTkZCt6K7YamdrjYXqvJ6+oMvO6UkcJJXpF0XFct9uCtc3Ah98eZmpPisRlG4BSamW1HiIBOPDTcSwNWmmOW1Iy57gmEUsgV8rQObS4h/Oc+E9d13V7DUq1grnDA0Tm8tdZYlPTc3s1sye8DLw0z5FfSHNGrlP/rtY+TgwdI+mWoic999xznH322fk7Yx3rWAdvvPEG+/fvZ9u2bcRiMV6P/IqqeAsbNKtT73rHInjHpDm/8SI7lpZS9v9oiKhnpWFaJpMRDSQBaX5qubicsDfG/n8fyR9uFtCUqZApZSRy7SFSPAog6o5x8rfjLA5JmxOVDqKBVJqUrLpdGRujzQ80MrV/kYl38jvyVTpQG1ToHcVPph/+cWqNUIG905R/I50yDil1CpJx8U181131BGbC9L+Q34kRdUfXZODZ8y/iXOPQ40PCZZdQ1qZnsVB0BoAolJjUlNrETl3V7rZjqNJyRIBjtl5fRalDw75/K859jhUQi/1HMHfQw9xBMbFw9Zk2KrZYOPD4YFGBlWOzmfJuM8d/OZL6vvJDZVJRYlShLsS9UgYNnU0qIxrdyjMUZO83ihh3UgYT/0T0/8/ee0dHdlxpnr90L713SCSQ8N6UQVkWjWiqaKrojaiipyhPyrJb2p3dc2Z2z85OT/f0qjU9o+6WWq2WFymRkihSFJ3oTbFY3gMF7z2QifRm/3jpAGS+TI440w7fOToi6kXGixcvXsSNe7/4Loe+WT7xfPSN+ZLpSlQ66LrPx+Arc6scH/l2VP58pLGqkKvkkulLxIrB0aJn9swKp382IZ1aKZlEpVGh0ivRezTMnS/irJGJKew23VvJ1HExLd3wH+Zz1/KRSmXTzEUXY/T+boaF3lDuWpHfKDVylBp54fry2mGp11B/lQOjR03/7+dWn1Jb87umA07MPi2HvzvCYn+Yxf7w+jqBUCzIbP0pxs+JKhpXXnklr7zySuG+2MAGNgBAY2MjKysr3H///fzwhz9kMHaK0dgFLtHdjqaAPMnAK+k5QwlbHqhmcWCFgZfnV3+76dRB4Tnxu/Z9zI6720gsOIV/NFJ0PpPJZKg0CmLaAm7HNfZa72+mMNVqiC7Fc17KArEimVzG+DsLyOQy7O1GPD0WTv54WJKooHNpUJtUKDVKSfLI8mCI5UFxz21rMTJ/0Q/xvH5YM0fJFKAQFKiNKkmSUgamWh1117g5/aMB4hJ84IEyD2oBTB9bLFvFKDwbK/tQVwYauxISooKPFFRGJRqzgNIg3ccASo2cxpu9TB9bZL4EGV9pUNJ1Xw0T788zeViaKBtejHPsO+XbBB8G558snT4kg+6H6/BPhhh4roQvUiaj+VYvgfEg4xIHFzIQyUHqsghKphoNy0Plkc6Ryel/voSqaF5g6eLvylMgBZEIee4X6/cZa0lHVZfa0DsEzucd4C1mdwEoNYqyfG7WJi0LAyGWBsPShxLSc5jeoUJtVqHUUPgbTbfD2anH1WXk9E8mWMyQmYrYgUoNxKPQ+/s5TBXq1ek1CxClUqkEcpUMtUWJfyya9+/r+6PlRhdqs5IPvjNGbGX1tfzfKXXQdXclsxeCjL61xMAr4ngr5PNaquzn/ORxoithNBoNr7/+Olu3bl1XbgMb2EAO/8//8//w2GOPsW3bNsbGxng19FOaVFupU3flCqW/++gSjL69CICz00DFZhNnfzlBfGX19yiTyUglUlnCSMN1biLLMc4/PSnp81KbBPEATwHTLD/emIjKuPDrcYJp8opCoDABSiYnNBcllLYBW27zMntumbkz/kxDc2Uz85QCtFY1YUcMkF7n82M+pjodywPSBAGlToFSKI+sAVBzjZv4Spyxd4qTFBLR5IcSDTjzk/LjRFJkqmLQezRlCTTo7GpiZZKi7e0mTFU6Bspoj3e3HVONrix/1ugbZWaP+ZAIjIfL9qdZmwx4dzm48PRISfKfwavFtdnC0CvTpclYCtDaBVamS9MnFFoFCkEm7mPWogBBKDwf5cxPpZ8vQyqMBhKc/H75BLb58/7ChKT8diig5RYP4+8u4M8/pJjPY8irQ6lXoFTLS4tfKMTsNcvDIQZfnpVUTiKZQiGIcXOdQ81SEbtVJhNTxzXd4GLu/ArzF1aYOZGeV4rEG1GI81nvc9PrhUsK+bzUaZ+XUrZaYSt/76dQoLEoaLzWwfSpAGPv5KmZKdbMSYkEnm1mHC16zjw1RXgxwei7S9lrq4tGmaw+zpnzp4EUn/rUp/i7v/u7gn3xrxn/6tO9FcKJEyd4++23xQWfFK8mnuJQ6IWi5aNRiPjjzF9ML5RrZM7yceZn44wfXhAJSoDRVyRAEoXD37rI2Z+LbMXWOyuLl4Xsx7ftsw3s+GpTqUdEaxWQl7Fon/vFKO/9+XmigZSYviyfaFlg5tG4BOquqqD7Pun0FXNn/Lz7Z+dEo6UMYRmlRoFCrZBOqZCH7V9tZuuj5aVyc3abaLurPGnmqo85aPt4dclyggG672+g9bbS8nnnnhwV07KVk+EsEEVrFTD7Sqc0CYxFP1QwUjBQVjq7Dwt9RZm5+sioLpXXZq21hNxgHk79cGh16rsiJx41LoHmG6vouLd0aghTvZ7uh2tWpUErBmuTnva7q7Iy9FJwbjKx60+bcUvI2edDZVQhGJS5eacYQSn9Go7+3RAnvj+SdU6sTQMHoK9QU3uFg857vOuurf2duV58B6d/Ns773xosOY5VeiVylaxwv+XJc9fttbPlM/VYGjQQTjJ/dqWwgzuZpO0OF2qHQHAqyqFvDjDx/vK6+jLIpGG8+Ptpeos5BvN+F5mNEgnEs0ZLKpFY56yZj07zQuhHHDr+LqlUissvv5xEIrFBUNrABsrE5s2bicVi7Nu3D4CxRC8vrvyQpVjxU/WByTDhxRixZXGOKjSXZdD7/BR9z4vfu85dnDQxcWiJw98SyRq6ChVNN7uLll3oDUJMVF/a+vkmKneLMrXF5nmVWYVCkKMscbolFoT3v9lHb5pUbvSVluzt/EQNDdd7UJmlCCEyTnx3IEf8KYO3KxiUqMtUlanYZmXX11uxNJaXcq3ljir03tJruEonp+O+Gsn3lkH7QR+tt1Wj0pW2Zd7/y/NcKFPu2eDRonOVZ3+mIkmSsfJtrwxB56OEyqwq6/1COqCRSJWlAGWq1KJzaoitlD6BFluKcei/XGDw90UCqXkOjYYDHjEtcBltbrmtkoqe8uyjppvcmOvLe2+bP1XD5k+VlzpHY1ejVCuQq2TZeUcqUDZ/Lsjhvx7EPyptIHXc6aV+rwOVpkA63YxzJZlEpUmidaiILcU4/NeDJdWLVCpQCgrU5iLOs7wUcj2f9NF1n5jOZeFCsGh6OaNXSf0+MQ3I+V9Nc+x7YwXrA9BViC92sV9Uouz/fREHcN7vloZDhBZiBa9l8EHwJd6IPMnZs2epra3l5MmTGwSlDWzgQ+AHP/gBAwMDGAwG4kR5PfhTTqy8Jvmb4GyEpZE80mARu2v41TmG35gXCUqAxlnceX/yR6NZUoPvCpuk72B5ULx3+13VbC4jnbzGqkJZiAC1BmNvzfPBX/cRD8TRWJQoNdL7daVGRuOBSlpvW+NDkslW+chWxsN88Ne9LJUIqGWgUMlR6pSobeX5OLoerC07lZuhSkPdvuJ2bT4cnSbqri8jbYASuh9soPba0qm9xt6Y5YO/7i1LQSgeTmLwaDF4Sq/h8UCcVLz4HmAdlCKx6aOGpowUeRkkIklSEQlbKm8cGTxa9GX0A4iq/Ee+XZqEpdRA661VNN1U+r1p7ALNt1SUlYpQa1dQt9dRuiBgrNKw7Qt1ONqL7xvy36nGrEQwKkrbXenXcP6pyYLkp3wojXIa9jppvs4paXeRTKJP70OG/jDPse+NSpIIAVRqOUqNYnX6uAJwdRnY/FA1pio1RJOiQkARUmftFRY0FiXxABz7/gSzp8V5pdAeWJNWsur/wxx9LxS2u/J/Fw9CaD5GcKa4z2sl7uelpR/y7tlXicVi3HzzzYRCoQ2C0gY2UCYqKioYHR3l//q//i9kMhm9sSO8Gvg5wcQakk6ePzq8IH6XawlKhdD3uymG3xD9Z4K5uM9pcSDIyX8cJhpIoDIo8F5iK1gulUyxMhEhFUuhdQh0P1yHs0M6hbpCAJVOiaqY7ZVZ3xJw6oeDjKUJLFpH6bhRzdUumvZ7EQzS/rSB5yfp/U16b1oGV0ljViFI+dHyYPRp2fyZBgze8tZl7x47Wmd5qb1qrnGXlQas+nInrXdUoyrRDyD28cjrpVPAAugcaoxlPlciWn7sDij5zv5HoBDkKMoPN5JMJMtSJ9O51JiqdCSiZahFJcQMQBP5aQaL2KPVlzroure2eJvzyD/e3TasTeX5VT3breg95R2+bLyxgtY71sSpU8nVxKP0f6uNCgSDErkgy5UpQlBCAcGpKCd/MEpwStrnVXOFg8brXKLPdi13IuNHT6ZAlkIwKUhE4dQPR5n4oLSylVKrQDAWmXvy5tXWOzw07RdTSEplVhJMcjw9YjrisfeWxAw2mWGxZh+cmXPDiwmGXp9jrNjB5LzUuYGJECuz0RwnqUBa3f7wMV5e+TGnz52ivr6e/v7+f5MEJQBZquzd3r9O7NmzZ1Wqnk3yK3AJBQgteR/Wjq/UE5gIc+Zn45Ls5dbbK7A2GDj9xDDLA8V3OYJVydZP1bMyFebkP4ps3GKygbV7nWhMKs79skjgpYByk6PLSMQfwz8ovdPa9fUWEpEk739zTc73NUOk+konI2/NlEW6Adj5p62EF6McL1Pyrhy03+sjtpKg9+kiknR52PyZBrQ2gXf+y9mSbd7yhQYEvWo14aUI6m/wMH54riylKAB7uzHHNP8nwO7/vY3wYrSs0/+X/Lt2lodXSkpNGmu1dN9Xz9TxBfp+U14w8KOGuVHP0vDK+ndbhN5bt8/N9IkF6RSAMjmtd1RibTLywd/2E5VICwTQ9YAPg0fLke/0E12QdswZqgSab6ri1A/6ia6UQRorNsfkBcntrXqa9lcw/v4Cw6/PryIarXu09LXqy6wMv7taEW3t77yXWPDtsTP23gIjb0gHyaovsxYuI5cXdMSoHQItN7k58aORwt9l+ncGr0DH3VUsDqxw/qkpyTq3frYGpUbOoW8WUf1I/85UK9B2axWj780x9vZS9lqhk2STDSfo6+8jFAqhVCp555132LZtW7Fu2MAGNlAC58+fp7u7m2hU/PCNWNmt3V+wbP5cVLnNyumfjhKciYkk8yLm644v1RNeinHie9Knm1pu82Cp03HsH4Zzqd8KqV+qoPMTPs7/epxYgVMxxew17yU2xt6WTm3i+5gd7047vc+OM3uyuDKOSgeOLqtkerhcg1L4rnRSucPO6Z8N4x8qL3BWCiqzio67q7nwy5GSijhqu4otjzQyf3GZC7+QttN0DhXdjzQyeXS+OOElDb1Xg6VWz9hb5aUJUelAbdMSGC0vXcNHjcYbPbi6rbz/170lSULt9/gw+fS8+/+eLVnvpk/XozELHypt34dGiSNSlkY9i31FUoqtObWlc6iwt5sYeV36vcnkMrZ/uYHgbITTP5JWLFDpYOvnmlgeC3H256Xtz4YbXMgU0PfMdEklJaDoHJMfKOu8V3SiHvmbMk5SyuWodGBvNeRUJvOuAVm7ZutnfMiUMjHVXIET9hkYqwXkChlLgwXS+xRJUdR4g5OVmUiO7F3kdx13e9A7BQ79zVA2nWShOi31GlpucjN50s/Qy0Xmu/TvWm91oXOqOfJ3I+uu5WNaMcqirZ/BwUEAbrrpJn79618XrnsDG9hAWXjsscf467/+awBkyOnRXINNWYDAkPc9bnrQS2AyzMXn59IBp8LOfO8eG5VbTZx7ehL/6Hp/U3YuVcK2T9fin4hwPpOGqogN5ew2YnCqGXipfMUWQ5WGZCwlffI8lWTr5xtJRhMc+660SqRzk4mF88vFyQpr5q4tn20gvBTj7E/LP11fCnV73SSTKYZeLt0PTbd6sdTqOfrtCyUJFq13VaN3a/jgv/ZKF0QMjiz0+ksqKWVg9Gnxl5Gq4X8Wtn2pmdB8pKy0czseb2Xhor+kT1FpULLtC01MvD/H0Cvlj8mCKHkEvTB0FVqiS5GS7zYD9xYz/vEQIam0qzI5VXtsohrZD4ZLvuO6fU7srUZO/GCEaImUOBqLkobrXJz/7QRxCcV+KeXvtdf1bhWtt3kZe39+vS21Fmn7ydmhZ6HXv7rf1thd1kYtjTe4GXt7gfEjEv5amQxXl57pEwUUXYupKOmhcZ+bc89MFVZ7S7dFZVSw6WAF8xdD9L80n66ysC3afocTjVnFkb8vbP9mfqexKGm/zcXY4WWm0m0WlVnWz+VT1afoGz7HysoKJpOJt99+m46OjoL1b2ADGyiN+fl5du7cSV9fHwBuuY9N6svXF8zzbVvqtVTvsdH720nCC+J3Wszn1XVfFZHlGBeeLnIwN+3X8u6y4dpk5vTPhrOKHwX9VwpouLaC4ddniBUjehTwldlajNKKiKkUtlYjdXsruPjcOIsXJVKSK8DWZGT+XHlxM1urEd8VLi78apTglHS623KhEKBhv5fBV6YKK+Lkl9Uq6H6gjvnzywz9Qdo2UGgVdD9Yx+SR+dWElwIQDAqMPn1Z6cXEysVD/h8mndtHCdcWMTPOie/3l+yz6suduDZZyrI/Gw54MHp1HPvbD6cA+lFC51YXHlsF1nyVQYGlziCdei/tJ+u630dwLsrFZ0uoWilg00O1+EdDDLxQ2v50bzGj1CpEP3TGJ1fIx53vrytxvW6vE51LKJ4SLh9yUfHIWqsVD/2uvQbZvV/LbR4Eg5KTPxiR9M+prUpUagUrhchRRWKDnh4zkWCC+fNFfOFpH1TNFVYs9TpO/XgspyJXwD+lsSpou83D5Ak/E+8Xeb9p1WHvLjPmGh1nfj6x7lo+AoklJitP0d9/EZlMxpe//GX+8i//slg3/JvAv3mSEsDk5CQ1NTXZgJkKNZfIb0IQ1tAfkykQYPMDNcz3+hl+tcTCYpXTcI2bs0+Mpf9WFiUw6CoEgmnSRNWlNkbenStJqNn0SA3R5Xi2/izWTDA7/6SFVAoO/cV5yfpqrnISnI0wszaFRJEhYm83UnOVmyN/3SdZb9eDtSwOrTDyh9LsXo1LYNOD9Ux+MF+WMwYonUZNAEFATCX1x9b1P4i6fW4qdzroe24smzbvo2qHtdXAwrnSD1e/38PKZKis+5dLUhIMcmr3VjJ+eIbAiLRRaPAKREOUTI8n1lvm+0IkwaWSrE/X9z/oAMpfjD9MO9QOdelnk0rXuKbcji/UM9+3Qt8zRYK2eYu4YICOgzWcfWqC8HSk6AJfc5UNU6WOkyWCf/lou9PD2ScnJNOY1F5jx7PFwsAfZiQdRqZagab9Hk79fILwTKRonalUCu8lFsY/WIIoGDwCgYlodoO29neCBaKLYgo7lVZRkCy1VlJ862drGH1nnunj/oIbv77ocQaSpwBwu91cffXV/PjHPy76bBvYwAY+HL70pS/xrW99K/t3q3IbPlXrunKpVApXtxHPNgvHv1da7rdqj5XgbIT5syuozHJiS8VPMutcKoLTMVQ6sDYZmS6RZlVXoaL11irOPT1KcHK10z/f2eO9xEbNFU4GXpmWJhYpkzTfUMmFX5dP8u2418d8r794vakUOo9A04Eqjn+/P0cwkEDjjR4sDcbyU7WlU0ZJQW1XEZkrL72XmE6vvFt/GGz/SjOpJBz+q/Keq9x2qO0qFLLS6csMVVqcXWYGXpos2V8fhqTk3GRGaxMYLsOuNtfrpNNb5GPtey2yRldst1K/t4L+FyeZfL/AOCwkLV0Cq9TJyhhfACqzkthyCdWnQnUVsZF8l9twdZk4/sOhrILbunbm9Yl3jwW9U82FX02tszEySClTdB+sZvCV6ZJKSxk4OvQoNXImP/BLkpR6PucjlUpx5G+k58Xmm5zIlXLOPTUlOnGK1alIUrHJzOQRP6hA0KuILsYKpiRRGSGW9h837Xcw+IfZwt9O3v18l1nEtIo/K6x8EIvFeDv6KyKEUCgUNDU18e6772I2l6estYENbEAagUCAtrY2RkfFfaBOZmaX+gBK5ZoTqel9UcvNLvxjYcYze7si6h9KDVRdamfwJZGIqjRAPG//nL/PEkxKosE4xMHRYWD2rL94mra0T6vpxgoSsRT9z0sTmTd/qhaZXMbRvx0oSiAnlcTRZSIRSbJwobxNvt6jofYqF6d/XiSlXPr5GvZ7CE6HmSi0Lq6B0qCk6/5apo4sMP5uecRrlEimtMvUW46SUTl1/Y/A0WWi8QYvfc+OMXuqjODah2iHoUpDoAAJbi0qd9kIL8RKppGD8klKKKFqj5P5c36CU9Jt0FiUJIFoMcJPnq1QNKVYAWz+dAMyhYyjf1P+wU9Jhe/8FB4foh2CRVWSoPRh3uumh6pZ6F9h+LXCvvW1Kkptt3kYeHmG0GyssN2VSuHsNGKt19NbzI9WALVX2Rh8fR6Sxe0uZ6eeuisdDL42t5qotKYdGpuSpuud9P5uhvBcrLhfMpXC1mZgeThEPCyOnfBivGgqOKVOVEQy+wQ0NoGpYwXmsERiVcqRjjtdjB9ZZuFiuOAcPhkb4ETkDSCF0+nk7rvvXrU/38AGNvDH4Uc/+hEPP/wwsVgMOXK6VJfiVhbO7GD0qqnoMdP7m1wsrFjI1takJx5KsDwcQqGVkwit+b7z4oKCSUF0OQEKsNToWCh20ChT3qCg4QYPAy9NE14b48ir11yno+lGL0OvTDEjteanUnj32Ms+aAaiqlJgIixJ1FEZFNReU0H/c2OF09StgbvHirPdzKmfDK5O51QMCkqWU2gVpVOGZcoWS6f3R6L9nhrkChmnfjD4kbZDTF9GLp1VEQhmJbZGEzMnF0lEpX0zH4akZKzWorEKzJworbCjdQmEyhSQKOe9gki6b7m1msEXJ5ktNA7/R2KOa9SJymmHQoBkSiZdtsy6AGwtBip32Dj/9FhxQmJeO23NegweDcOvzRVMWwdAKknDgQomDi+WVFrKQO8RUBtVzF9YKeqfk8lktN3lQa6Ucfon0j5zz3YzgkHJ0B/S80wxn5csiaVOz2K/eKBCMChEBa4CtpdCC4n0uYvKbUamTvuzf69Cns/L1qTDUqej/+XZgu8kkUhwIvoaM8lR5HI5nZ2dvP766xs+L/6Npntbi4qKCiKRCF//+tcBiBHhteSTHA0XkMOOwrHvDGUJStu+WEfXg4XTg0UXklkCUf0NLrZ+uh5LETm3DEFJ4xSo3uOg+57SKQlUOmVxmbM8nP3FSE4KUUIqb+iVGZGgJMC2LzZib0/LPBaZeG0tJtRGVcl0Xye/P5glKFXutkuWDS9GScaTxMPlza6bP9vAji+tD2quQlQkmhiq1dTvLyF5nJ5LHV0mrK2l83w13epl55+WuD8w8OoUUycWmDq5WLKso8vEJX/STs3VrpJlux6spe320qnLAPqfnSiPIPUhEA0kufD0aEmCEkDzrT56PttQVr1bH21jyxfKK9v/wgSjb60J1BUYs+33VLP9K82lK0wlqb9W7PtSBCVDpUDDflFWPTIr3QcN+93s+lIThqry9CoT0VQ25/M6yDPy4AKWRi3RABz9m0FJghKA2adHay8tc7r5ER/eSywAnH2yuIx2SiVumAZfmmPkndyJtmJpmeRKBQpBjskrFHUqpVIpNE41vkvsdN4pylQGJnL9sPZ3Wz9bw6b7a0mlUky8v1SUoOToNLDzK/U4OsTv+sjfDIkEpcRqI3o5Os+A9z2GZWKg2G63Mzw8vEFQ2sAGPmL81V/9FdFolMpKMfXQufhhXgr9lGBs/SZ0+oQ/S1BydhnY8aV6zHWFpYpH31oQ00cCmx6oofvh4mtkcFpkLzTfWkXdXhcqvbRZbKjQolDLS6b1HHt7fjVBqdi0GyNLUPLusdP1YAnbTwU6pwZrvYR9IpMRnIhy/DsiQcnSqEddYt4PL8ZEu6sMFWxjjY5dX22l6jLpdA8ZglLd9RXSaerIEYN8VzpLN0AlnpJvurF0CouRt2a4+Hx5BLBNn65n82dbyiq75ZFGGm4sne43MBpi4HelCUofFjPHl8oiKKl0ctrvrqG5jNTEvqtd7H68DUNVaQnwudMLTBydL0xQWoPtX27Ed1Xp1CDWZh3m+nTqwxL9VXO1U0yHVoqgBGz7XB3tnyj9/ACxcIJEJFmSoOTaJO6Pxt5a5PzTk8UJSqkUeqcKjUWFtU5aztvWqmPTg6KS7+zpFZGgVAwK8bn7X5zh3C/zTt8VSIELYlpHwaAoTlBK/67jTi++y2yodEAMkaCUQd7vrE06tjxcg3enGZJJep+ZLkpQ6jjoZfPDYv8Pv7GYIyitaeeg8QNOmV8iguj1+Yu/+AvOnj274azZwAY+QhgMBkZGRvjxj3+MQqEgmFrilfCPORt+d3XB9Pd5/tfTWYJS5z0eWm4pnB4sHoaBF2dJpVK4N5vY/GAtpppc7qj8+TG6LBKUlBqou8pJy82VxRssyyiMqMpKI3Hu6VH6fpeeYyRcZLMnl7MEpc77azA3SM/P5hodWocabbEUHennu/jsRJagZG83SdYZD8RJhBNl+7yab69i62caS5bLpLPzXlpi3U0TSAxVGky1pdMOV+62s/ULpe8/e3KZ0XdnWewrTVDSuTXs/EprSf8giLZkx8HaslKSjb87XxZB6UMhDqOvzZQkKAHUXuth08Pl+bG6H26k474yfXkvTjLy5mzp+1/tYvOn6pAJJYJnqSSebeIaW4qgpDQoqdojpgtaZRsUQMVWE9s+XVfSRyxWLKb+ixQhPWXmDpVJibFKA3E48/NxSYISiEF4fYUgOQ8AtNxagXuz+K0OvjJfnFglF+fEmVMrDPxhtrCS0qryYkoSnV1V2JeeTiGiNCqov8pG/V7xG1ilZLXGXmu/3UnnXR5IJlkaDBclKBkqBbZ+shJrvfixnH5yWiQorTnBH44H6He/xZnE20CK5uZmxsfHNwhKG9jAR4x7772XUCjEDTfcQJIkx2Ov80b4V4QSq4lCqVQK/1gkS1DSVwh0P1CF3lN4Lp3vXRHTRwKtt3poXmuj5REJosvi919zuZP6aysQTNKTo9oioDIoS3IwlgaCXPzdeI6gJGGqZQhKlkY9DQdK+3GMlTpMPmn7JBZI0PsrkaCkdQqSKfAAossxYqHyGLSCWcmmTzbg3CS9F80QlJybzCXvnyEGObvK29+23V2Nt4TPDWDs7VkGXy6PlNtwo4eO+0qnUwbour8W3xWl0whHl+JMfjBfkqD0YeEfCZVFUEIB7R+vwXdl6Riqrc1Iz+ea0HtKG5T+sRDDr08ze760Tdt1fy3uHkvJclqnMpe6rcQWwNltQjCL6dBSMWl9mY6PV2fjmKWQjCWJBePEipHr0nNHxt8+f2GF4VdnJAlKgkGB3qXGWCJ9sc4t0HxzBShgZSIqEpSKIf05Db4yx8Xf5cZ3sXijYBDTBgOSPq+ay+3UXWlHqRPLrkoRmPc7rUNF1yeqcLbrIZlk/NBSUYJSzcfstNwqfivzvUH6X0gTlNb4vKbUfZwyvcRMchRBEHjiiSc4fvz4hs8rjQ2SUh7+03/6T6RSKWpqxCDRLKO8GP4x9fcaabtDXPA9O8zs/FoD5gZxQlOoZGgd6eCLANu/XE9H2hnu3GRk5+NNOLqMTB9bJBlP0pRejAUDbP9SI533iwQna4uenY83Yq7RMvT6DPFogp2PN2FvFwNR27/USPfDYruMNWp2/WkTE0cWOP73Q7TeUcnu/605S6rZ9sVGNn+6XryPTaD9rmpM1ToQYPfjbVzy79qyz7z10Qa2fL4+2/5dX2+h5ZZKVDolVXvs7Pp6i0hsksnY8oUGtj6Wc07YW4zMnl9mZTJK7Q1udn2jFSHtvNn82Qa2fakpW3bnn7ay7StN1F7tpvHWSnZ9oxVDtTgxdz9SlyOPREGulGOuEZ1F3kut7PpGa/bZuh6sZcfXckEkjVUAxMnJ2W1i1zdacW4WP+6Oe2vY8Sc5AlHXA/VUbLWCANZmA7u+0Ypnt7jZbr+7ehXZqPmWKlpvE9+NwSuw6xutVH1MNA5a76jKlg0tRJALMjZ/viHb37u+0UrtXnFyarxJfFai0PfrcbZ+upEtGQePALu+0Zo10Oqvr2DXN1pZHlgmMBHC3m5a1d+7vt5K861iAKPmahe7vtHK1OkFxg/NsfkzDWz78ur+brtLLOvdY2fXN1qpP1BB6x1VdH+yju1fzZF1dvxJK+33iM4Rd49FbG/aGF3b3zu+1kLXg7Xi+283sut/b2XTZ8Xx036vb1V/b/9qM92fFI0fU50OwahkeUxcgNruqlrV39u+3MSm9JjVVwjIFBAL5ILHu76eK9vzxUa2ZPrbIKfhOg8ai/gNNtyY7u80tny+ga1pslM8mESlV9CYDmzW7XOz6+steWO2np7HGqnYYcWzzcbubzTTcpvoOK263M6uP23CUCmW3fRIDdu/1Ej9dR5c3RZ2Pt5E+8fF/vbstIjfcoO4OHc94GPbFxtYGlwhvByj7U4fHQfFss5NJnY+3oijUxzvnfdUsf3L9RCFD/7bAJXbrXTeJ5a1tujY+bUG3D3i+G6700PXfdW03OiBZIptj+UIk0afwM6v1GeJRm13V7Djy3Wc+P4Ih749QM/natn0kPjOBZtYtuZj4rfQeJMLrU2FOR2o3PqZGjZ/Ku08E2DHl+uo22vH0qRl95ca2PHVOhBg9M0FNn2yOlcWsWzDAScdn6jEd42V5gMVHP3+KNPH/HQ/VM3Wz4pzWiqVYvuXaum8V+xvR7OWZCrF4KszpFIpOu/z0vP5XPB++xdrab2zglQqRXAhglwlw9qsQyaT0XGwkm2P1mYNl22P1dJxdyX+oRUSiQT1+5w4uw2kEkna7/KI/Q1Eo1EWOs/zgfxF+i72UVNTw49//GNmZ2fXq+ptYAMb+EigUqkYGxvjt7/9LQqFgiQJ3ow/Q7/7ENserc2W2/RQNV3puTBFCoUgw+wT5yjfx+xsf6wuS7Dpuq+K7vT8Nns2gMaipPYaByodePdY2f6l+ixppvO+KjY/UsPpJ0YZemWGTY/U0bDfjalWh2e7he1fbkBXIZbtuKcK704773/zIivjUbZ9sYGeL4jzh2uziR1fbcScDvS0311FZY8VEAkVl/xpC+33iO23terZ8dVGbK16MbXonVVs+2ITpiotGotAzxcaaf+EOJeb63Ts+Fpz1jnSfEMlpFKc+alI2Op5tJGOe8Vn1VUI7PhaM56d4n0bD3jY/tUWWm6rpuPuGrZ8roGuh8Q+VZlV7Hi8JUs0UurEfOTExGubPlVP9yNp54UKdjzegi9NnLY2GJCr5KxMi6yE7k/WZddvEMvWXS/azLX7XHi22Wg8IP7d9WAtWz6XC9xs/2pLlmzU8UANVZc68ewW299xr29VQGzbl5tpvt0LMUilktg7zVga9en+rmbbF3M20LYvNtF2VzWThxaybXJ0ikGI5ju8bPtyzgbqebSR9oM+Zs8ssTQUYMfjLbi3im1ourlyFbl5y+cb6LyvhtG3Z5g4Os+Ox1uywbWGGzxsz7OXNn+mnq6Ha2m+zYtzk4Edj7dQfbkj3S9udjyeK7vpU/UYvTkn3I7HW6jdJ9qR1Zc72PF4i5jTHeh6uJYdj7fg2moR+/BrLTTcIPZh5W47Ox5vQZfel7TcWU08nGTsPdEpuP0rzTSlA8LurVZ2PN6SJSWZa3WkUqlsajyxv9NrcqeRHV9rxtoi9nfjgSrsjcZcfz/WSPvd4vi2NIrj29FlRG1TIVfKqNhiyZbd+rl6OtLfgt4rsOOrjVT0mKm7yk3bHVVs+2JufGz+dB2d94nfgtqmYvuXG/BeZqVii4X2T1Sz/Us5B9umT/roSu+pVDrY/qV6fFfYWZmIgEz8GxUgl4lzxAO5Aybbv1hH7VUOJg4tMX1mme2P1eXmiHur2PxJXzYYtv2LtdTvdVJzpZ2KHhPbH6tD5xbLtn+8ks2PVJNKpVBqU2z7Qi2VW628/+0BQosxtj2aC9y33uFhy6dzbWi41oXGJqB1qLA26dj2WC3WFnHv03yzi62frhJJPx/3sOtL9bTe5mahL4RSK2fb5304OsTx07jfSc9nfVibdNRcZWXzw16SsRQnvj+Kzq1i2xd8VPSI765+r52ez1VjqRfHgFIrJ7ocJxYU045s+7wP7y7xu6m5ysq2L4hzzcL5AKlkCltLesyq5Wz7gg/fZRZIJvHtMbPt8z5UOpEAqdIp6L4/TURIJtn2eR8116SD0t1LnLa8zIXJ0wSDQXbv3k0qleLLX/4yG9jABv7n4ODBg8Tjca6//noARuLneTHwAypvVFF3jbgfNNcIbHmkKjtnKTVyjFVpp7oSuh+oouEGkVhsqFSz9TM12Jp1zF9cIR5OUHe1M/07MTVm043imqaxK9n6mRosDQYu/n6K8HKELZ+pwVgt3qfznipabxfXNKVBydbP1zF3dplzvxin6lI727/SgKlWnLPaD1bT+nFvtk3td1VjrBSvbX+skd1fb86SFNrurqLjnmrRuS6T0/NoI7XXulCbBdxbrPQ81ojSIBZuvauKrgdy+86KrTZmTi0Rmo7i6jHR81gjmvQ623yrl+6Ha7Nlt3yuka6H62g8UEnVFU56HmvCUCU+W9NNlWz+VM5ekqvkGL1ie23tBnoea8oSpupvqGBz3uEuo1eT9c/oKzX0PNaELX2gsG6fmy2fz9lL3Y804rvciVIj9nfPY01ZO9L3Mdcq26rr/jra7qrO9nfPY014tos2kPdSBz2PibZVeD6KSq+g4/5cv/Q81kTlJeJcXrnLRs9jTSg1ckZfm6HpVh+d+WUfbaL6CtGOdG+10PNYE8lInPneZSxN+qx9CrD1C43Upm1OR6eJnseaWBoKMPyHKepu8LLpkdzav+WzDVmb09ok9mHVZXZqr3bReFNl1icKsPnT9TTeJK5FRp+WnseakKVjGXXXV7Alr783PVJH063i2NK5NWz7ShNtB32gFElAq/rwoVpa7hTtGo1FicGjYXFAJJBUX+Gi59Gcfdp5fw1td6f7WwNKnZxYUAyYVl5ipyfP99d+sJqOe3J+laYDHtRmcYxWbLPQ82h93pj10nm/WDYeSaCxqfCliWrOLhNbP1+HxiaWbb7VQ9f9Pkw1Gqovs7P9S3XUXS2WtbXo2fq52mxQvOlGN90PVeO71EblNgubPuXLBsHMdVq2fqYGU604vuv3Odn0UDWByQgrMxEar3PTeINY1uDVZOcIgLprHGx+xAdxOP3TMVydpnVzhLNTtIF8l9vY+kg1TQfcol/ooJfWW3NzxJZP+3BtNpJKpai92sbWz9TQ99w0x/5hhPbbK2m9Ix0MV8KWT/uo3CF+C5U7zVjrdegrxXmt9U4P7XfnSJNbHqnCu9uExi5nxxdq2fYFH0qDgplTK7Tc7KLj7lyQffPDXnyXWai7xoazS0fbLRWcfWqC+QtBmvY76DyYLptKselBL40HnKAEo0dDKpVi/NgyJJM07LXSfTBHNOi+r4L6vTZIJglMR1Bq5ZhrNSCXU3e1je77KkTyUSJB1yfcNN7gIDCXIB5JUneNDVuzFhIJai83s+nhqmy9S60XeCfxG/ou9lFdXc2vfvUrzp8/v15VbwMb2MBHAoVCwbPPPsuZM2dwu92EUgHeiD5Nv+UDOg56ssH4umudWduKFKhN4poCYGvT03VfFQqtWLh+rzNLTJo+tYzOpcazzYxCAGujjq77q7OkmdprnLTcXsnQH2bof2GS5psq8e62oXUJmHxauh+qQesQ5/2aK51UXWLnxPcGCc1Fab+nOrsfN1Sq6X64DkOl2Kaqyxx4tot2gL3dyK6v5eJbWqdA98N1mOp0IJPhvcRB5/216Cu06BxqWu+qonaf2H7BrKT74TqsTeK879lhQ6aAgefFwzitd1VTn/Z3KLQKuh+uy5LBXVssdD9cR9ONXhpv8NJ0k5fGG9NzuQK6H67D2S3O+0qNArVJhUIh1tNwwEPTLbnDTN0P1eFO+/AMHi1qo4JIOi5Vf72Hlttz82jXA7VU7hRtZlu7kcb9lVRdKq55tXvdtH08t8/vvK8mSx73XeWg6SYvri1pu+xKF+0Hc2t9+0EfvivSYyAJFZutGKtFW9F7mYOOe3O2VdvHq6m52sXSwArxUILuh+swpw9GeXfb6by/Nlu25Y4q6q6rYP6cn7nzy3Q/XIetWbQjPdtsdD2Us62ab/VSv9/D8OvTTB2dF/swTazK9HcGjTdV0nhTJd49dozVWrofrsOV9v042k10P1yHQhD9WPX7PTkxDKDroTo829J92Gyk++G67KGEun0VbPp0PZa0Xdx5fy3etN/NXKen++G63Jj9mItYKM5MWhSi496aLLkr06YMKclcqyclI5sauv2gj5o0uUnrEsesMe1n9u524Oo0Z8lErXdVZ2O9aqtY1lKvR6FVIBdkeLblSPctt1VRf504vlUGcczaWo34LnOJcdmHcu+x6WYPDfvTa78Cuh+qwdltwrvLTvPNlWLZ9BxRf4Obxpty9kfXAz5cm80sDQdJJlN0PeDLzRHXumi+JWfXdN7vw7PNwmJ/kOnjS3Td61s3R2TT0T1QRcvNHjzbzZiq1XQ94Mvrbzutd3pE0pI8SfsnqnBtsXLiByMEpkJ03V+dtSOr9tho/3iuDQ3XuzH5xG9L6xDoeqA6e1jCu9NMxycqs/fY8YU6aq6yE5qNkkyK+8mM38rTY6bjYCU6l4B7s4mmG13IVTJ6fzONQgud91RmfVWuTj2dBz3oXGKblDoloYUY8WACZEk6D3pwtollne16Ou+pRCFAaDpCMp7E0pD2ecnldB6sxNVthGQSW4OGzoMelHoF4eU4aqOSphvTRLFkko6PV2QPA1AT5Jz1VY7Pv82yf5kDBw4QDAa5/fbb2UAOG1ZoAQwODtLX10dHRwfRaJTvfO/vsNvstER3E1sxEA8lSURENtziwAoaq7ix2fpILQq1jPCSuIjFggniIZGhGBiPMt8bQO/W4N1jpfpSJ9GVGJFlsWw8FCceShEPJpg6s4TGokJjEWi+2cvKrjDRlRgxv7iBTUZSxENJomkp58hyDJlcRu2VLhbOBYgG4sQzjMhojHgoQcQfgyjEVmLIVDluWswfJ5nIMRDjoQSB0QjnnziH9zI7ni1KKrZamXx3gehSHLlStqpsNP2sFd1WZEoZRMU2RZdjJDU5FnEsFGfhvJ9UClZmwlh8euIR8b6x5dUnYaIrccJLMbZ9qQmlVkE8lDtlFl2Oo8irN7wYJTCepjLKxTbFg4lsv+QzxENzUcL+qNgPIbFfYuk+DC/H0QTjq+oNzYnKOPGYWG+m/8NLMXRp9vXoq7PY6o3EI5n+jor9nTZkIv5Y7l0IoDapcmzVKKvKhhfFstEonPjeAO33+lAo895VKEHEH11V7+LFENPzS7TfLZCM5541FowTSbc3mi5rqTWgNqpY6PMjU8jyysaIpN9jdEUcO4JRnn3W/P7OvJtMe0CG3iEu9pHFGGpz7mRVNBDPjo9kNE48mGD66GK6/fGsQyZTNiNNHotCLBBnJi2nGPFHV7Hdo8txEnHx+9v8mSZSyRThxVi2bDyPDRzz58bWhafHMFVrCS+v7kPSaR6jyzGUagWThxaQKcDTYxe/G8T2xENJouFcG0jBie8NYW3SU7fXTXg5SiqZSpdNkUiPiehKDLlKxuzpALOnA2z+dO2aOSKV7QuVUY5SI8fSpGOxN0g0EF89R4ST2eeLLMeILMcZfXs+3YeJLLErERFPpUUDCWo+ZsNSrScWzo27qD++esyGkySTScz1GqKLcSLLcc48MZEeP3FSyTRTOZU+7eaPsXAhKL6XlNi/qZT47BmFEZlMRjycFB2wlaJjNR5O5vrbHyMZVWQZ0IlIEqNHS+dBL9Onl4kHk8TC6TkiEEMmy52mU6jlorMWmD62jM6qJh7OjPcECkF8ttqr7Sg1chLxBNEA9D4zScO+iuzcGV6KoTIoORZ+DZwRZg7PoFarueuuuzaUkzawgf+F2L9/P/F4nE996lN897vfpW/wAv/1b/4Kc6SCNmEHUX+cZFycD2bPrVC1I0bUH8NYraayx0IsnLdG+OPZNW7wxRksNToiyzG6HxTTgMRWEhBLr3nLcRKaJMRg8sgy7i0WTNU6HO0mBl+ZJLaSzJ54iqzNry4HlVaJ0achthIntpIkFk6vRcux7GZ8vjdAxVYrwRmxolgwSWwlQSwormPh5TgqQ4yzPxfTr3Q9UEMqlUJlVhELxdN1p+esQBxtev7y7LSiNquIrIj1JmKpXFmZaItGAzHG35tjZSxI7T5P7sR+LEFsJU50JWOzib+ztRpovqWaqD+6Kud3bCVO1J/psxihuQgL/UFUuvSz5tkU0UCcaHrdWpmKEF6M0fdb0cEUWYySiCnzysaIpJ9n4v15tFaBpd5Aur/X2IaBnK1y8bkJ6vZWZO2p8FIchTZnf0QCMcLp9lqbjSgEebYPo8u5ZwHRFoguxxh7cw6dW4XepSEWzL3HaCDf/ogR9ccZfWNWfD8rcaIraRtuOZpdgyG3ztpbTaBI92Egt35n2gMQXYohmFTZfoyt5Nb+aCCRLpvM9ouxUoezw8z0kUVigVjWromuiPWmhzeRxRipRIqVsXD23WTqjQXFssmY2I7QVIRUPLcfiAZi2XQesZVEdozXX1+BsVpHKE/6PeKPEU5/H+KYTYj27XyMyaOL2YMHufcolk1FUsRWEkRDCU58v5+66yrQ2nOnr6L+mPi9AslEithKkuhinJM/HsbaqMfRmlOqiC7n5ohYTLRRo/4Yw6/NUdFjRtDljbu8OQJAqZZjb9Uz+MossUCCWDB/joiRUOfs4MhynGgwxuArs9jb9cSCCRIxWfpalAxbsvuBGlTatHR0jPR+MLefiSzFUajkOLoMzJ4MEJqL4R8PE5qNodTI0n0oplqLLMUQ9GIbFi4G0DpUWdWBeCgu1pvup2ggQXQlju8SKyq9guBMNGdHRtPvMijKWUf84jzVfFMFR/9ugMiyaGeSTEJMbG/UHwe5HMGgQKmR42jTMnt6heWRMKm8/WNsJUE0Pf5dm83IlTJiMbj4/CyKm5zIFbLsSbLYShz/XIBTxpeY/WCWRCKB2Wzm7NmzeDylT9ZuYAMb+Gjw3HPPMTs7y6ZNmxgfH+cHP/8edquLtvhuDBE1UX+cRFCch2bOBDBWiD6vtls9aCxK5i+KZOV4TJwrYsEk0eU4U8eXMdfosDZpabjWTWght5YmY6TLJlgaCCEYlESW47TeWol/LERkOZazVeJxosuJ3PodiCFXKai+1MHpwREiS1FSeYdfo8uJ7H2CM5FViuOR5RjyPBXMyHKM0HSUD37fi63FiFqvwFqvZeaEn8hSbNVp8MhyNGvXVO12otIps+tNNO2HQyaDVIrIUpTFgRVmYklWpsNY6/QkomLZtbZKeClKeDlGxz01aBwC0aUYicwasRzP2jwAK5MRQmnVZplKJvp3goXLLg4FSESSxMMg17CqbDSQ8z8CLA0FCS9Gcv3tjxFNryexQM5emj/vZ+7MMvkHl8U1OuOPFMvG0z4avVu9ytcT8ceIBtK2SiBTFnp/NU7dPjdKfd67Woxl7dOM/RmcCjM/F6DGqBLXk0wfLudsw1hILGvy6dG7tUx8MI9Sm+c3XIplfTCJSIqoP5Y9RR1ZihFejq0qm3nnybjo7zD7dBAX/WGRPDWh8GKMeLq98bjY/kx6mmggmvUnZZ4t00fxOIRmIsyd9aefNXfPTJsydvCmT9aRSpL7FlYSaVWydP8vxUmExXrH3p7HUqfP2gmxoPgdJTOun/S/Lw+F6XtuEvcWS9ZvGA+L9SZiyex7kwty+p+fZvrEMlV7bOL4SaZIRJLiHJG+b2QljuCPExiPcPbJcVpv9WTrTUTj2TkCQGVUorGoMNVqWB4ME1mKZcda/hyRaUNgMsJ4WqVMtFXEa6mYaJfHVuI4Ogy4N1ly4zsuvsf81I9Rf5x4NI6hUk00EMc/Hqb/hZl0velvOW2rRP1xYv4E4Zk4wQXRF0U806ZcHyGTif4ywNGsR6ES/87uH/0Jsd70xxMNxLDV62i6zsHkiRXCC/GsDRfxx1Fq5NmT/GqDEmWt+N9z5wIYKzRZH2NkOY7aIF5zdurROQVWZsIQhwvPzdJwtS07LqN+cW92MXIcv3Wc6cPTqNVqHn/8cf78z/+cDWxgA/9r0NbWxuTkJH//93/P5z//efomzvKdn4/giTZTK28TbQqFTDw4NBlhcTBIzJ9AMCuovdwhro2J3NyYiIlr2MwJP5YaHdFggsYbPQg6BZGlGKmkHEisUqtbvBjE3mrCWKWhYouF3t9NEFmMkYil7QR/zo8FIj9a51Cj96hJRFJi2XQ8NBrIxYcCE2Eiy1GCk6JNkYgmRd9PJpa3Eie8GGXszVnG3pyldl8FiXgSlUFBKpEispSz/6KBeDbGY6rTYa7Rs9CbVkhMl83EiOIrCSJLMcYPzRENJHBvtqzao0aWYll7JBYU7SXBKtB2u4+VmTDh2ZxPI7yUs2viwQRLg0FWxiOgEGNN+X6s8FIsu05Fl+IsDaww+pqoghVZE+MML+bWuNnTfoxePUuDYhwzuhwnrF1tU2T8YwMvTVFzpSsbu4kF4oSXVrc3ml5nTT4tarOQi0MFVtsqkaUYsUCchd4Ay6MhDG5t1ocaWYkRWczz7SzHiEeSzJ/1oxDE32bs61hgtc0ZWRTXx4otNhRKefY+kI5hLsXI92PFnWoUqrTttRglkvalxcJivRnRv6g/htqowtZiYvHiimgbputNRMR6c2M2jn80RCj9LsOL0Wwb4mGxbDK9ZgenI6tU8cOLsez3kYyJbUxEkji7zdhbTQRnclKTkcWcDZ2KJYgsRolHkiRCCcbensuS7ED0DcazfizxWePBBH3PjOLebsfgzvN5LcVI5I/ZRbEPz/xkGGO1BkerSHRJJVNEl+OrxIwiAdEGmj62hKlGi6BX5eaI5Xh2DwKgsahwdJiYOLwo+uqW4tl9lNgHuX4JzkTxj4eYOLSAzi2IdmZ67xNZjiJXiWVbb/OicwjMngtAApJR8ftMpu+biSGbfFqWh0MExsPMzEWJLCYQzJn+zozZZNanuDQUxOzTZm3WZGzNHLEitr9iqxmDW83iYDA7L5EQ7eJ4SPRrxYIJlGrR53Xyx2NiLHUJ0d5TpL+NUALkcpQ6OTq7CmOVmsW+EHPnA8jzOBSRpTjx9Jj1bLcgGJSkkgmmjvlRqOSotPKsHRlZjrPiD3FO/zpTFyeIxWI0Nzfz5ptv4nSWkUHg3yBkqWIJTjcAiHLzf/Inf5L9W42WXewvqKzReMCFUivn3JOTCOm5KZsuKi9vq65CoOmAh+PfHQJEJZPo2jyvadRd62T88CLhmSiGSoHAeOFygk0lOoejourL9KllonPS6ad6Hmtk4vA84+8Uzv8NIvvT3mak95kxMRVckeFSc42LeDTB2Ovl5ZhtP+gjvBSj/9niqaRqrnahMijp+3XpVB3Nt1Zhbzdx+ieDLA8UyjmQg2ATqNplp/+54vfOwOAVCMxEs2ngiqH1jipW5iLZtHbFsONrLSwNrHD+qdGSbWy9xcvQ69MslcgX3HZXFfFYit6nx6Qb+SFwyb9rZ3l4hVM/HPpI6jN4BRoPVHPx9+P4Bwvp4+XQcW8NiwOBkvmK9RUCHffVM/7+LKOvSZfd9Kk6Lv5unMCo9DdhrNXgH0wbIYVkDNMw1WkxVesYLTLe842enkcbUAgyDv1ln+S9ATQuDc0H3Jz4h5GiZQSrnI6P+zj982GiC3nSgcXSDwnQeYeXUz+RHh/bv1iHTA6HvjlQ/N4G6LynhrFDC0wdLS55KZPJqLnKxuDLYv8YPMKqlG35yL/WcIOT0TdmifgLzDMCCII4pzbd6CYeTjDwYk7yXCaTZQlPGodAeDYqSkne5OHMLyeIFkjHF6wb492+N0kkEgiCQFdXF2+//faGctIGNvBPiFgsRnt7O319uTmzVbGDalXTurJqq4qWmyo4+/QoseUUaquKyEJeGoI8x7TvKvFky/Arc6h0aQ5CgYwFKrMcz1YLw6+I84vOpcqmhVuL7DUVeHfYGXtrbpUzfC0qesy4t1g5/o+Dq++dZyOCaCskwgk++G8S64YK2m6rypKbCiLPZlOZVbR/vJozPxrMBgkKofO+Gs7/ZpzYUuFnXtvOyHJMTC1XAt5L7Sz0LhOcKl2v3qvJEmukytRe6eL0j4Yly1Vf7sC9xcbx7w+UfCbPLhvGSi0XnpJeL401OmqvcnHuqbGy+qkctN/jw+TT8+7/e/YjqQ9ENa1UUiR1ScHSqMezzUbfb8ZWj40CGu/NN1di8Go58t8vStZZdbkTlV7BwPPT0o1Ugc6sIjgr9qNUKkXfVQ4m3psvnFosD5YGHS23epj4YJHhbE764vU2XOdkZTrM5JHi6WHq9jqRK+Hi70qn2QPw7raQjCUl07Y5uww07HMxfniR4deK78Uqtplwdpg4+Y+l9g5qrLUCU0f8Yso2KNpXOqeK4EwMnVuFtUHP2LvLBVPFqcwqcYyroOMuLxd+O716zMtFR0z+nNp0o4vIYozhAul3Y7EYF13vMTw+CEBVVRWPPvpoNuX6BjawgX8a/Pa3v+X2228nmj5MYpTZ2K7cV1BZo3KbGbVFycBLc6AEpTKXLirftag0KGnc6+TcMxNiijeDMnsoaS3cm40sDQcJz8bR2JSE5/PK5dlImXRf8TA4Oowsj4aIriWRZ38mtqXjnmqmTy0xc3w5/+LqZ9ptx3eZkwu/HWP+TPF529FlQqGSM3VksXCBNb6ymqtdJOMw8lrxtdDRaULv0jD0Son1Mt3Oqj1Ozj4xhH9Y2qei1IBrq53xt0v75zQWJeFAvHi6qzSqrnASX4kzeVg63eumR+pYHgoy8KJ0+hGlRk7tvgqmji2UfB7fx1zI5JTVT+Vix+OtLFz0f2R+NKVBSeN+DyNvzLAyXsSOTdtWdde6CUyGVo/LInV2HvQxeWSeyQ8k/C9yGc23ehh5c5bQjLRtqnWqcmUkfF4amxJzja643yfPtmq/qxKNRcWRvyvtP1QalNRf7eDCryeLl9GINueFZ6eLzhtr0XC9i/6XZiTHcdf9XlRaBUf+VmL/oIS22zxMn1pm7sxK4bQhADIZ7s0Gpk76IQ4aq5LwQuGb51+r3GFm+myAeKDAfixvTq3caYZkivH38/pfLs8GIFVGJTF/HKUemq530/f7uezB2nyE3bO8O/Iy0VgEpVLJ9u3bef311zeUkzawgX9iHDx4kJ/+9KcAKFDRpdqDU7E+TblCq6D2Y3ZG3hCJOCq9InuQB1jl83K0G1BoFEwdWUIhIB7wLpDVSSGArdXE9DExnZZgUmTTwq1F/jVHu5HZM/51dlQ+jD4tnh4bF58dyxI2gXU2UteDtSTjKU7/SHrd8F3pYvj16ZLpsUDsq/prK+j//WQ2FVsh1O6rYOztGWKB0pV23l9LbCXO+V9K78VBVHUMzkaJLJQIIiKq8ZQqJ5iVeHc6GHih+HqZuW/lTju9vxpdnb6qACwNevSVWsbekE4hq7YKeHfZGX17muhSeemJS6H6cieuTRY++K+9H0l9ABU9NuRKGH+vuD8FQOsQcG2yMPr2nOTYAFHNy9pg4MxPpX2NthYjaovAxCHpe6MAwaDI9aOE7eXsNjHfu1K0jRl/mdYu0HqHl/H355k6UjotnmuzmXgwLplizdllQjAoGZPgCeTD0qBDrlIwf754nXqPQMstlYy9t7C+nXl2pLlWi6vTSO9vpe18pU6G0aNlsT8ECnEuK5iGDRCMCqL+BEq9AmuNlplzwYI+L4VWke3vur0Oxt5ZWJ8GLplEkQ4VJqLg2W4mEUkyfWL9vjGRSDDmOMG58dOA6PP6j//xP3LfffdJPtu/dWykeyuBxx9/nFQqxdVXXw1AhBCv8QsORV9YV7bvmUnOPSESato+7mPr5xrFVGlrEJyMZglK9nYDPZ+qpf7awiy6/t9NE56JIhhEOeZNn6wpWC46LxKUEKD6Egedn6guWC4DjUtApVOgsakly51/apTJD+ZFghKQljNZV27opeksQWnzZxuwNhvWlcmHwaPFUqeXLDP08nSWoFR9pTTLcPitaVYmQyUJSgBtt1fh3mLNpvkqBo1LoOvBRroO1pas09JgwNFuKlnu0H85X5KglIHBo8XZUTovpaFKJ6bz+2cMc4MRrUONXFl6yjFV60TlgRJYmYxy6M/PMfqqtGHl3GxG59RgrpMek/oKgc6DdaK8u4TBANBwnYfqSxzrvm+ZXLYuwDZ5ZJ6Ffum89c5NJnQVAuGZ6HqC0hrj39ZgRG1UYq3Pe54CwbfuB6pxdOghSmGC0ppA+sBLM/Q+N1XwWj5UOjmmKon8vckU9jY9nq0Wmm8SpTCzBKU19Rp9Al33VNN6mxuSKS7+drowQSmZYucX6mm/W5RB7X1mahVBiWQuJ23XvVVsfqAawQDBiQjH/nZwHUFpJjrGK4kneLfvTWQyGWq1mqNHj3L48OENgtIGNvBPDJVKRW9vL+fOncNgEOe5c4lDvBz+KUux1fN9ZCHGiX8cIbYsKg9tfqiallsqClXL8CtzDL8i2intn/Cx7XOFc7HHlpJZglLLbZV0PVCbS+u7BhnyUtMNHqr32DD6pHObG706Ma3aWqTTj2TQ9+wYfb8rQdCOkSUoOTeZab+ngN2XZ6/ZmwxorQLGWmnb69QPh4gtxdB5hGy6qWKYv7DM+KHSwS+VDqovddFw/Xqn21p03Ouj675cuq1isDUYMFbrMddL2z8jr89y+K8ulEUmcrSZsNRLPzOASq9A79Ziqf3nbXuZavRZyW8pONpMmOsMxGLSBCWAC78eL0lQQibH3mrE0VLaluu8u5ruh+tQ6aQJSlqHisoeKw03VBYtk8HicBD/WJiJI3lB1AJ2jSed8uPi8zOSBCUAs0+LqUorWcbaqKMznc53/N2lggSl/AD+zMkA44cWsgSlYueGNBZBVDIyFryc/W3bLa5sepdYMEdQWltv571esZ0q0ZYefWuhoLOm5ko7Wx6uwuBVQQxO/3g1KS+VSmUJSls+XUfrzaIK0oXfTDH0+nrH1vvhF3lf8yzD44MoFAoOHjzIyMjIBkFpAxv4Z4ADBw4QiUR4/PHHkclk+FPzvBL7Gccjr68rO354SSQoAY3Xutj0cG2WPJSPeCDOuadFgpLOpWLLQ9V4d1sK3n/qyDLh2TgoofNgdS5FE6yyj+LhHCGq9ionzTcVXxNkchlKgxK1SZVNDb+qzjzba/ydOYZfn5YkKAHMnlzOEpRa76zKpoTI1bt6HTPX6rHUSdsKs6eWs8Qb12aLZNnpk0ss9vvxj0sTegBq91VSvceJxiJNRFBq5HQ93EDLzVWS5QCcHWbsbaXX9uPfHShJUAKIx5PYmk3YmiQWuDQs9eXZNP+UMHm1mKp0KNWlfV62ZhP25tJ9GQ/EOfZ3/UweXpQsZ6jSYK7RY6qW7iOR9FRD0y2ZFGTFA801VzrxXeYo+H2vxeSxRWbPp7+fZKqg3WXyadDYRbKiFEEJQO8RUwJZfNL+6qYDbqyNOmQyGf3PrycorbWBBl6apS9NoJc6r602K9G71MUJSskkepcC3x4rtZeJ6WqyBKU1NpXGoqTzE5XU7RXLjR9aKkxQSqXYfH8VLTeLPrTx95ZWE5TSqd0A6vba2HRfJUqDgrg/ydknJtYRlALxRV4N/Zy3h18gkYzjcDjo7e3l7bff3iAobWAD/wzwk5/8hLm5OTZt2kSCGMdir/J6+CkCidWB/EQowcVnp8TMIgJ0fNxLzeX2gnXOnglkiQA1V7vouq9wDDERJUtQ8u6y0XVvDWpr4XkhQ1DybLNQc5ULvUd6XtY7NevtLlgXT+x7bpzBl0vbCsN/EAlKhkoNdfsK+/oy0DkFDBVa9E7pNg6+MEkskEAwKDB4pff4s6eXmTomTc4GQAG1V1dQnd6PS8F3pYuOgzXZ9GbFoHOqsTYZS7ZxoTfA6R8NlSQoAZjrDDjKsOXkCrDUGdA5yzAC/glhqtGVZR8aq3U42krHWAEmDs2XJCiBqNru7CjdlzVXuOi8pw5V5n0Xsb0UWgXVexxU77GVrDM0J2Zsmr8QSFeZKnhg1tok9s30saV1BKW15c21pePLWoeQTf272B8uTFDKe76ViSjDr82uJijJZevimIJeicYioNJJ29B1V7moucIhpsBL5AhKa226mivttN0ppm6LBeJMn/YX9Hk52vR03+vNpoMbeHF21XeU8XmhgI6D1fguF7/v8UOLTBU4aNAXPcEh9W85N34aQRD49//+3zMyMrJBUCoDG0pKHwLRaJSWlhYGBwez/1ZBHV3CbvGPzEcok2Nv0+NsN3Lul+Lmq3KXmfF3CixqAnQd9HH+F8NEA2Cq07A8sPrUTWbSaL7Vw8ypZRZ6VzDWqPEPFVaFsbcbWJmJEp4O4+w2MXNuuaQSUPvBavqenyqq6ASiqpK1Sc+R7wzkyq0ZPoZqNV331TN7dln6RJJAtk1SSlIAVR9zUHOZm9G3Zxh6ufTJKUeXidmTEieSBLDWG1g4J00cAfGZh96cJjxdgt1skBMttNEsAH2FgLXVVJJck99HHwWsrQaab6qi/4UJZo5Js2zLVVLq+WIT0eUYJ78/+NE1FEo+e8E+LBJQAxAMMqKB0lNdy21VjL4zy8pk6Y63txuYO7N6DOUH2BwdBmZPlx5jADsfbyIRTXL4v+apGOUbLTI5giFPmS2/fwoE9QRdiq2fbWB5LMSZn69RUMgzQjrvrULnFDj07QGxvnwDJa/e5pvcTJ1aYqkvtO5afr3uHhNTHyyDXEblTjPj7y2tuydyGaZaNcuD4vzVdqeHiy/OinPAmnoNXoHAVASi0Hp7BfMDQaaP5TmP0/UKNgFTlZrZUwGszTrcnUbOPTW1zjkWFZaZqe7nzNkzALjdbv6P/+P/4NFHH13/PBvYwAb+WeBXv/oVd955J/F0SgMlAjsV+9Gp1m+emm50M3FkgcBYFHu7nuX+QEElEdcmIwaPRnRmq0BrVhGaXUNiSSXROlR4d9vpe0a05QxV6qKKfK7NJqaPLZNKpnB0GJk9LR3osjTqsNTpGXwxT5ll7WZVBdsfa2ZpMMCFp4qTltrvrsLg1XP02+cLK6dkbDUVWQUnlU4uqai07cvNyOQy3v/L85LPkXsePYsSyo/WFgML50uviXqvBmenmcHfl3ZYlXqGfHj3iCqjkmSlvP75qNBxrw+lVllSbapcJSXXVgs1V7g488RwSbWpD4X8Zy9iT1XutjF3wU9kTqKT8oLJKl1xJZ8MdC4V7q1WBl8orVBkadSxeFH6mS0NOhYvFrlpno3hu8KOd7uFvt9PMXOy+LhUmWTElsvbKjfe4MTWZOT4D0eJLqzuo8x2W+tQ0XVPNVOnlrOkyfyteEYaXrCq8O2x0vfb6ex1WYH3otSmMFTqWOgLoncJKNQy/KPRgvXq3CqCUzGsjTqMVRqG0ipTa+s1eFX4R6OozCpRBeU3E6u+i0y9FVuNTB0V+65xv5PpU36Wh8Lr2rvSMsLJi0dZ9i8jk8nYs2cPb7zxRll9uoENbOCfBvv37+e5557L/l2n6KRJ2LyunKFSjaNVz+ArIjHR3qZj9kwBW0AJTftcDLw6RzwQR1chrFepTO/bKndbCIyHWR4Ko3EoRfJSAWe+mHokQXg+jqlGQ3AqnCUw5SPfAV+3z8XYe/OF1ZfS9/DusePpsXHqBwOEFwuroggWJd0P1DF7aonBQv6pAi5WKSUpEE9jN99SxfDr04y/U5oAbvRpS6oPlVMGRIWk2VMLhOekFWuUGrmYFrQMCBYllloD08cWpQsqKang9GGgdalpvaOaoVenSpLOylVS6rinhlgoXlJpsyzkr7klnl1pUGJvMjB1dDHv94WDNzK5DKWGgt/AWnj32Jg7nyYGlqjXVKNheah4pUafFv9o3vUi/iSALZ/2kYylOC6hGr7qGUr1jwa6H6xheSTExedW25H5NlD9XgfmOh3H/mEE4oXtLhBVMJdHwrnnKURQSiax1KdP8Mvl2Jp1zF8IZq/lnl2OzqUkOC0+QO2VNiaPLotzyhq7S2NRimmq41C1x0JwNsr8hbzvNk1MUmrEA6qL/WF0LiWuTpM492bum25vWBlmoeosJ0+fBESf13/+z/+Z+++/v3hnbmADG/gnxalTp7juuusYGxPXGYPMSo/ySgRFmpySmVvlMjzbzCwOhQjNRNF7BMLz8YKqK0afBoNTYOLw4nollzRSyRQKrYKKLWbG3hZtOY1NIFwkRmeu07E0EIRUsiwbQ2sXsNQZmDicd4BlrY2kgM57alkeCYqEpCLwXubA0Wri1D8OrkrLuw5p8gKAQpBLlm27uxqVXsmJvy+eUSIfeo+GlYnia6LOrSY4JZ3BA8R3YW81r+6XIij1DPmwNhlYmQhJk5Xy+uejQs2VLtRWgQslRBnKVVIyeLXUXu3m4u/GCc18hIHRMp7d0qgnOBkui/CFTIZCkK1Kq1YIKoMCR6H3XcD20roEQnNRyXYaKtWr4pb5e538uKStWU/dXlFZbCHPV7u2fL6SUKk+cm8xU7HVytlfjq1X2ErvpRRaBe13VTFzepnJDwrEn9NtVGgVVGw2MvbO4qo5bh0UoHcJrExEURmUCHoFwenCPi/BoiC6mEDrEDBVaZg8upS9lg+NVUFoXiR+Vl1iZ/jN+VXPnanXXKvN2sGebWaWhkMEp6PrfF7h6mlOTL3P4tICMpmM/fv388QTT6DVShMMN5DDhpLSh4AgCAwMDDA3N4fRKJ72mWSAF6M/4Vz0cK5gKsncGT/nfiEGlFpuq6DmCifWlgLMziic/L5IUNI4Bdrv8tFxT+FTTBeenmChV5xUOu+uoeexhoLl5s4ECM9EQSancX8lPZ9plHwuc4MeS62B+qtdkuWWRleI+OOrCUUZJnT6owyMRHjnL85mN/rO7iKM0nQVzs1mej7XSN0+d9H7jr46WzZByeAVaL6piq77a4sXiiISlASRlCKF80+NEp6OIhikP5UMQcm7pzCbPR+td9VQfUkZ+Scz3fwRCbvE/FGS8fIMm3KRjCfLNpbKQuZZS9gg9ddV4tvjQuOS7hz3Nkua3CNtMAgGcfyef3pckqDk2WXFuVkc01IEJcEm0Higkq6HfJL3zeDiC1Oce3pMXNAz/8tVDMCWzzSw+TPpUxCFCErJFDqnCkOFimgA3v3WxRxBKXOabY3TaHEkKOZ8Da+/ln0WXQpbk4GaywqM2bx6nZuM1F/jouGAOI+Mv7dU8BRdxTYTHXdWUXu1HZIpzv58fD1JMZlCsKjo/EQ1nXeJ3+i5p6dyBKU19W66v4qGveJ9F86tcO4Xk6uuh6IBXok+wRvB5zhz9gxms5mvf/3rTE5ObhCUNrCBf+a45ZZbiMVi/If/8B+QyWTEifJW4mleC/+SWGy1g6D3mSkCY+n0kXvdRU+OTR/3iwQloONOL90P+CjAeSI0G8sSlGqudtJ50Ie1qfDJkuljIjm68UAFTTd6Sir8+C5z4t5kEckhGazdpMYgvBBlaVCa6XHmZ6Mc+pZIUNJ71etViDIbsnQ8cPNnG9j82fXp8/Jx/ulRLvyqeBAhH10P1dJ6e+E+zCBDUHJuMuPoLH7aaGUsnCUolTpFEwsmUZlVkvUB6DwCvitc1F0jbedmiRjSIk4fColIkmTso7W9UvFUeU6TcpB51hIEJQDfZS5aby1iN+cpUri3iifUShGUVDpRjawUQanhBnGPsNgXlDzx3353JS23eoqrcOXZBcOvzTH0xpwkQanmKjtbH6nDUuJbtjaL1/uem+HQf+/PEpRSqVT2fxmE5+JElmMExkPrruU7Tmous2Jr0qN1rD/Rml9v5z0+mvZXIJPJCM7E8I9G19ULsPmRatrv9JJKpZjvXckSlNbW23anh/a7qkSC2VKMc7/MEZTy67W366m7yoXvY+Ipv97fTrM0GFp1397oUV4I/Yi3jr1GLB6jsrKSQCCwQVDawAb+BeDZZ58lFArR0dEBwEDiFC+GfsxA7MyqcoHxSJagVLnbQsM+N5aGAs7YOPQ+J6ZtUmqg464qmg64CqqtjL+zmHUGt99ZRdf9hRXCVyYi2bRwTQcqafu49L5bY1Pi7DTj3VXEX5Nex4LTYUJzkaIEJYDoYpzD/603S1Ayr1VLWrOWGn1atn6mEa/E6fr5834GXpwoi6CkNChpu6uGplulFSozwcOaq6Ttn9HXZgjPxVFqpO2uDEHJXoaCeON+LzVXFffx5SpN//9HJOwSCyZIfcR2VyKWJBH5iOpMpXLPWoKcVX2pndqr3WiKKLpmYG3Uo9ApShKUMopIY2/NryYorYGlQYetWfRdSxGUlBpoucVD6+1pVaa13/Oav3ufnabvd9KHELru89HxifS4LtJEpUGJ1qkkHoYj3x3KEpQK2V0ymYylkTDh+RipWHG7CyVUbDbj3WlZf8NkMvs/Q6WapgNufB8T55H5C8Hc9TyYfBo67qoUU7YBg3+YXz+npFIo1Sk6P+Gh6TrR1zb69lKOoJSnnATQdqeX+mvEcsHJKIMvza66bzwe5s3gr3nT/wtOnj6JxWLhW9/6FpOTkxsEpQ1s4J85Ojs7GR0d5ZlnnsFoNBJILfBa7CkORX5PND9nWjLFxKFFQmkiTP3VrmwGg7XwD4eZSKcJ9V3qoONuHwrteuWeRCiRJSg52o10HKzGtFYpMo2ldPYS11YrzTd7Syr8VPTYqOixZtMkAev9DQkIzkQIjEkTnsbemOX49/pJRJMIZkVxFaL0tNl4YyUd9xb2B2Zw8XcTXHxuQrJMBrV73bTcVl2wDzPIEJQMXi0mX3EfQjSQyBJWFIK07ZWIimmm1ql3roHKoKD+Og+e7SXikpllRVrE6UMhHkuSiH50zCeZHBLRxEdXZ+ZZy6iu9uoKavd5SpazNOghlSpJUFIIMmJ577sYPNssoIDQtDRByXe5nZZbvAgm8aHWqiHl/z1/YYWBF0WCUkZpaS1Byd5upPt+HwZv2kgscu+MgtrU0SWOf38wR1AqEMdMhFMEZyMECxHM8uKNrjY97k4TGov0YGy6wU3jdW4xHrCSyJKE1vq8mm500XKTh1QqRXAmkiUoreqfVIqqPVZab/ei0itIRBGVzRO569kDhk6BhutcVPSIttz4+4usTEVW3XcyPszLoZ/zRu+LhCMhdu3axfLyMs8888wGQelDYkNJ6Y/A4cOHufTSS4lEcizZOtppVHWvLiiTU3OljaF0+pDO+6oZfHmKwPj6j7X5Vg/j780RGI9SudvKfN9K1vjIR81VDsLLMaYOL2Gq0xKeCeVUVvLg7jERXoixdHEFc4OepZGVggSQfHWA+uvc9L8yJUkUqbnahaVez/HvFGAbp4dU3T43nh12Bl+eknS2bPpUPWd/OliWElHDAQ8aiyCZs7bxpkqGXxkv2B9ry7m6LfT+ZjSXzq4ADF6BrgcaWehd5tyTxVnB7h4LjTd4mTgyT/+zxY0cY62WVCyRDaQWg2CQ0/PFVhb7ljn7hAQbWYDdX2tjaWiFMz8pLUdYDspVUioXu//39pL9lym3NBTgzI9LP4e7x8LUB4u5fygQWNv9jVZiwTiHv9VXtB7BIKPnsRb8oyFO/Ug6ILvja03IZPDeX6xmfRdKUVJ/rZPR95eKqoSZ6jQ0XFfJ0e8NgpTTKx30a729goXBoKhUBLmFPc/A2PHVelJJeP+b/eL1Ao7fim1mKnosHPvOcPG0bnIZ3l0WFi6uEJyKYqgSCIxGV13P/NbepmfurEierL/eSf/vZwvW6+gwMHt2BZIp2j9eyZmnx9fPMXKZOFe+LM4XLbdVMPLWPMGp6Lrnab7FzdJIiKkPlnF0GYiuxFnuX+1Ei0ZDTLWcZXhkmGBQ3EzdcMMNPPvss4WfewMb2MA/e9x///388Ic/zP6tRsduxQFUqtUOfFONBrlcxuLFIBVbTWhsgujMXQOdS0XFVkuWtOTdY2XsrYV1ZAiVDmqv8dD7G3F9tzbpWOgtzMKo/pg9mzLO0qgTyRUFoKtQEZyMoatQYfDomD66JEnC2PRIHSNvz0qeDN/+5SZSKTj8V2tOJ+WZ++6tVgwVmvIcMirY9FA9vc+MEpwovJ7pHCrs7WZGXi+hEAnseLyFRDjBB39dfF0GaD/ow1il473/75ykulHPo40oNAoO/YW04pOj28SshK2XQdvd1Zhr9Lz7Z+ckyzXf7sXWaCxZrlyUq6RULtrursZUree9P5duX8sdVVgbDLz7/50vqSKlqxC9i8G1ZO48cl3DDW5c3WbOPDHKUn9xllLzbZXYGgwc+e4AsUKKFmm4Npuo3+dm9J15Rt/I20sUOHWm0oFnp53hAgScDNrurMQ/GRZTnJWAyqyi6TonZ35eXMWscqcF36U2hl6bY+LwEjKZrGD6kM6DVcyeW2LqaKBoehGZIMO73ZJtW0b5KHs9XbdKB2qrQGAsiqVeh0wJi72hdfWqTDIEg5LgRBzXJgMyhYzJD9Z/AzqngL5CYOZkAGO1GnuTkcH0/JX/PPpKFdW7HJx7Spw3vLstjL+7tO6+Y5wjWDGXVR52OBw8//zz9PT0FO3HDWxgA/98MTo6yiWXXMLIiLhPliGjRbkdn6p5XVnXZiNTR8V5puE6F+MfzBOayZvj03s57x4rC30BglMxbM16grNRwvPrFyFHh5FUKsncmRW0DgWxUKqgGpG5XkcynsQ/HEbnFoguRbOEjXxnfFaZCfBstzBxdLE4USSVxNFlwtFm4pyEL8a5yUT9Pg+DL02tVrxZMzc23+al/4UpSTWlDDzbrRg8Wnp/I7H+7LYzfXShpLKRZ7sV35Vuen87Jmk/Kg1Ktnyqntnzyww8VzwVl6FKQ8fBWiYOzTP8avFDhBliTXitUum6G4uqoaXuC7DtS80sDgTok+iXD4NylZTKxfavNDN7bpmB30k/x/avNLNwMUDfM6XtcGuzgYULeY7NAvZPz6MNxIMJjn9vsHjqXCVs+1w9S0Oh7F5mFfLq7X6oGqVazpG/Ke0LrNhmZrE/WPD7BfGba9jn5vQvxstSzKq+zEZwJsLcueLqrJsfrga5jGPfHS5qd5nrtHi3Wzn75ERxu0smw9asIzgXJTwXR2NXrlYTk8uzJCBjlSarsFS5w8z44cJpQ0w+Dctpv1ntlTZG35lfTx6TyXBvNjB1VPweq/ZYmD0TENPFyWSriEne3RZC8zHmz69grNKQSkFgjZJqPB5nsu4kw+NDBAIB5HI5Dz/8MN/5zneK9uEGNrCBf9749re/zde+9jVCIZG4Y8XNFsVlKBSrD2pr7CoUgoyViShGnwa9U71euSSVTCv3GEVVJcDWamT+nH99eigFeHfasqQlvUfNykRhZSBnl5GZE+K9pBSEBLOS6FIcwaBAV6ER1bclQtGNN1YyfXyR5eHivoT2e2pQqGSSWT2MPi1Gj5bx90qrFaGAphu9jLw+U1RFSqFVYGs0MHNSOjMJQOf9taSSKcnYJYjKQvY2Eyf/YUBSAKDl9io0djXH/+6iZH3Gai3+kdIKmt5LHbg6LRz9G2mfXOVOG+4ttpLlykW5SkrlwnupA0e7meN/f1GS2JN5jhNpkpsUBLMCmVxBZKF4zNa5yUzNx9ycf2pE7O9iSuQ7bbi3WDn9o8HChwzTtpfBq6HlVi8jb85m0zAWg0IAe7uZmRPLBdO7AVRdZifqj0uWEW8vQyGI72XwpeIHB811Ohqur2Do1RnmzvjFdhfwW9de42R5JJRTmCwElQxHk57ZtPCDYF6j8JaxYxWgtagIzcXQOgSUGjmBscg6m04hgEqvJLKYwOBVo9IqmO9db0OqDEp0DhVLgyEEowJbk4HJIzmVpUy9glGBe7OZkTfEecPWomfhQnDdfWcT4yxWDTE4OEAqlaK9vZ2nn36a5ub1++MNlIcNJaU/Atu2bSMcDvPaa4Gbd6MAAQAASURBVK9lg2MDnOHF2M+4GDuVK5hKZglKliY9xkotrk2WgnVeeHoiS17yXeqg8+7qghvNoVdmmTosfkytt1WxpciJ+KkPllnqFxeotjuq2f75wuUyBCVTnY6KrTbaby98Yi0Ds0+HxlJExSatrDTwwhSzp5dLngY7/p1+ooEk5kY93Y/USZY11ejRu6Xzofb9RiQoWZsN1EioQ/X9ZpzzT41IEpQAAmNRViZDTByVDmhMfbDI2LuzkgQlAP9gqCRBCUR1ppXJEPMXS7CtohCcjbA0Wnwjn4FgoKT6UNkQRAJXOfdcmQ6xMFjiOQQIjAaZO1c6iAisJigVwYXfjHHxBWknUTSQIjAWYuxw6YDVsb/t5cyTqwlUqxSUDNB0i5gjuf/3M5JpDO1NRtQGBUZ3kZNxMjmenVbaP14JwLlfTuYISqlkQZWikTfn6M+kyCliiBi9GtQGJUKhHNGZ59ClqL7UTtON4rOsIijl1e3dbaH5Jk/2JH3/72YK3rfhBhdNBypwdhkAxIBfga6p3GnCu91G7V7xlOn5pyZFglKB57E1GqnYbAFg9mRgFUEpGg1xSPUcr/E0586fw2w2s3fvXlKp1AZBaQMb+BeOH/zgB6RSKW655RYAIgR5NfEEb4R/TSyWc5AvD4VZHBDtH2e3GVeRXOHB6ViWoFRzlQPfHju2Nv26IEAsSNap795qpvW2qqLqiSOvinaP70oHbXdU4egwFr73pNjepgNe6q9xi6o2RdIt6NwqNBYBg0f6NMbFFyYZfLnAupenejl1ZCFLUGq7qxpbe+H2AZirdGitAtb64mWCs7EsQanxgEdSiejMz4b54G9LOzkmjy2w0O8vSZzpf3GS878srfhUDkEJYO6Cn4WLgZJqSstDQZZHg2WpLumKrfP/A1DbVWXdc2koiH+shJQRsNAfYGlopaw0d8HJ6HqC0hpcfG6KkbfmJAlKANMnFlkeCUoSlEBUKDv31NhqgtIaVF1mQ1+pIhZEkqAEoHMJWGoKKNtC1s7ouNuLzq0ithRbTVAqpPjx3iJTJ/xMpPdkBQNhKlHBw+zTFw2UAbTcWEHVTis6p/iC8wlK+XV3319D662ibbjYHyzoNAHY/EAtrTdVkkqlmDrmL0hQAmi73UPtx8ST+f6RSJagtPZ53J0WzLXa7Hgee2dx1fU55xAvhn/MmfAHjI+P09jYyNGjR5mZmdkgKG1gA/+CUVVVxfDwML29vVRUVJAixbn4IV4K/YTh2IVVZTOqtxq7EluTHkdrYdtr7K2F7BxXe7WTllsKn1iePe1nLp0+rvlGL933FfZRLfUH8Q+Le8GWW710HKzNXpPJZdn9eoagpLEp8V3upPG6iuIPLpNj8unROTSSKj8zx5cZPzS/mqAE6wIWF54aIx6Io3GoaLldWs3bXGfAUClt742/M0c8nETn1uDZbi1abuL9Bc78bKhk6rN4IM7ixQCzp6SDI4HRMEOvTEkSlEAkJ5UkKAHEYfFigKXB0r6spaGAZNAyC6WYbu6jgsZeRl1KWBxcYXmolIykjLkL/tI+vjRWEZSK4PxTYwy8UiJNchzmzgeYLvZ+84JNJ344wrmnJYhgSrL+n8nDS0UJSgCmKh1am4DBpV5/MW1Xmeu0NFwn+m1H3pjPEZSK+LOGXp9j4OWcelIh6J1qtHYBdZHT+TKZDJRQd42LuqtFG2hdusM0CclSr6X1tgoqt6VP0h9aKkhQcm8x0XJLBba0wubgH9YQlNK/MdeoqbnUllVZGn1rUSQoJZOrCEoA7m4Tri5xHvWPhlcRlOLxOMdVf+CV2M84c+E0er2eT3ziEyQSiQ2C0gY28C8cn/vc5wgGg/zZn/0ZarWaBaZ4JfELjkRfIZGnrBSei7GSPkjmbDPi2mQuWJ+o3LMIgL3dSN3VLsx1uvXxxgRZgpLBq6H19iqc3YXrnDkp2hW2FiNtd1VjqS+8x86k2K263EX93gpRVakIqUOhVaBzqdE5peN+gy9NMvSatB3iHw5lCUreyxySykZqk4DOpcEooQyVCCWyBKWKHhsKiXBY7zPjnHuiDB/VuSXmzy2XJM4MvzFN76+lD/0DZRGUAJaHVpg7u1RSTck/EWLhol/yWTMQzIqPTJ1JZVCUdc+VyZBoP5ZQSPKPh5jvLd3PANGlhCRBCWDm+BKDL06W7O+FvgDzvf7iKuhp2yswFubskyOSBCVbiwGtQyARheljS5LkI5NXi9GrLVpGJpdRu9eF1i7Wl09QKvSbpYEgY+/OiQSlvHavhb5Cg7HY/iWTVnubGd8VDjQ20bbOEpTkslUqSy03VdC4X1SJC01H8I+GC9p8rbdX0rDPRSqVwj8aXk9QSj9P/V4HNVeIscaoP5ElKJFcrchkrtXhbDOidYgDcP78yqrrQcssr4Z/wdHYHxgZGaa9vZ2+vj5Onz69QVD6I7GhpPQR4le/+hV33nkn8Xhuc1NNI62qbavKCTYhS17Y+vl6wvMRzvxs/ekdQ5WAQq1g6WII7x4rapOKi8+u33za2w1oLCrG3l7AWKNGZ9cwdWT9xFax3SI6qt9fwNygJ+KPEZ5eP/G6t1mYShsv+f9dDO4eMxqzwNArBViX6eFVu9dNxVYrJ/+xv2g6rfa7qzHXGzj63YsF27UW+f1YCNu/0oxCreDd/1T6VHrHvTX0PjchWZ94U0qmIiunbeZGPe131TD+3mxZaew+Kuz8eivJaJL3/78LkuXKUVLy7LZRf42HgZcmy5Il/6iw6xutBKcjnPheWsWrgHFbqv9zBcm9zyKBYRCllUcPzeIfKnwyIGPYt93lxVKn5/QTwywPFJbGXtW2YuMp3ZZNj/jQmFW8963e1eXy2tp1fxVqi4rD3yqeQ1mwyqm/ysW5X0oTthwdBpaHAkQDonpBJn3RWrh7TFnCVMttbs4/VcApJoDvEhvDr86DAI3Xuul7Zn05U52a6t0OTv9EnAO9uy1iPto1sLboaLqhgvO/GWfpYhjBqsz1Y7o/AtEAh/gdWoOaQEB06F1yySW89dZbks+9gQ1s4F8u9u3bx4svvpj9W42WHYrr0GRyj6U3JSqzSDqwNumo3+fi/K/H1xMwgYqtJiaPiPNb6x2VDL8xlSUT5aPuOhcDz4vrt/cSG2Pvz68jeqSSKRr3V9D3rDj3OrqMzJ4sECRSga3JwPyZACqzCp1dxVKJ4EXTTR4GX5qQTKm17YtN+MeDnP9FkRPiKtj5pRYCE0FO/0hCwVBF9tky/VgIlkY9bXf6mD6+WFKlyVynw9lhpu+35ak5lSTRqEClkhMLFnc8dN5Xg9ap4f2/lFZd+ijhvdROzRVuzv5iOJvyrhDKVVLa9sUmZApZSTvuQ0MqzdvVLip7rJz4x/51xBnxt+IaLDU2ViHvfRY78a91qKja46D31xLjI33fHV9pILIc4/jfFx/D2bapZavH0ppUtzq3iq5PVDNzxk//82vs83RbdW4VHXdVMfrOfJacVAhVe6wEJiIsliBsOToMzJ4WiXH2Jn02IJ8PnVOFTAUr4zHcm43EwknmC6gMuLqNBCbCBGdieLaZCUyF8Y+st11rr3EQnI4wfcKPuU5LLBAnOLP+3bXe5kFlUHLyB6KTVWVU5t5xuj8uRI+yaBjDH/CTSqXQaDT8/ve/57LLLpN87g1sYAP/MnHixAmuvPJK5ufFwI8MGQ3KTdSrOoEcaUBpUGZVg9rurCTqj3Px+el1xAONTYlSpyQwGsbWokfnUDP61vpT73qPgM4uMHNyGY1Nic6hZv7C+nnQXK9DqVEwd8aP1qkiFUsRXoyvc7pbG/UsDK5AHKzNehYK1JVFKompVoveqWHi/eIHm5ybTPguc3H6Z0M5gs4ad6vvYy7cW62c/EG/NIlHCcRX92MhdN5fg8am5vA3S9sFdddXMPHOrGQqu/x7l0KptmnsSrrur2fs3bn/pf6iLZ9vJBVLcuw7/ZLlylFSMtfpaLurhoGXJso6JCcJCVtrLbZ+vpGVqTDnf5kOShbwVSk1EI+z6l0VtKvKfJ++Kx3MXwgSGJfOG1d9uQ1Pj4WzvxjHP1K4bHZsyGWr77/G7gJoutGNqUrLB387sLqdec9Sv8+J0avh+D8UD/oqNVB1iZ3BV6THmtGrIbwcIR4Ac52GpZEwqdj6NHDWRi0LfaHsM4+8XkCNQwnuThNTab9Z1WU2Rt9azF1PE5M0diWVO6z0/15sm71Vx9y54Dqyk86lpOlABf0vzOIfDaPQK7LfWKZd4XiYD2IvIjcm8fv9yGQybr/9dp588knJ597ABjbwLxf/5//5f/Jnf/Zn2UN5FpxsUlyBsIbJodAqSIQSaO0q6q910f/SjJg+ag2pwFKvy+5Rqy6zM3NyuaCCkHurmanjS5AQSRLzfYH1hJBUEs8OGxOHxDnS6NNm082uRUbpRyGAxq5mpcR6U7nTxtTRRUlySdvd1QRnIsVjawrofqCOwGSYfikflYLss2X6sRA0NoGOgzVMfjDPWAnbRmMTsDUZylZzKicdmUKQS/ZHzdUuzDX6XMzsfwEsDXoaD3i58JtRlgeK+z7KVVJqvasKlV7FyX/4X/cMtjYjNVe4OfeLYUKzxeOJBcdGIfuujPep0Cqo2GZj7M3SNnL3w7VEl2Kc+2Vxm1Vq3GabKpchGBS03V3N7KllRt+eW3cdQDAoaLndy9h7C8yfK37QwdasJ7aSwD8WXm+r5s07xhpd9kCJ0afJ/ncWchkqvQKlRk5oLoaxSo0MGcvDoVX2IIDRqybqjxFZTGCp0xEJJgjlp5ZL25rObiOxYJLF/iBau4pEPCmSotbYot7dFnQ2gd5nxTlEoZbn+jF978nEECPqUywHl0mlUlRXV/Pss8/S2dlZtG828OGwoaT0EeKWW24hFovx9NNPo1SKjMAR+ngx9jNOxN7JlltLnsj4LQSrEsGQ+/fAaJSli+LC7t5kxVlEBWDuTICxt0VnSdN+L/X7KkTywxpMvr8oqi/J5LTcUsWmBwurFmVIScZaDQ37PHTc65N87uo9rpI5TyOBGPFIoihBCeDMz0b44FvnCU9HEWyCpOKPoVpNz2cbaft4ccWn49/p49SPpR0TIKZfM9XoqZdQXQKRXLL7a2203yPdH823VtHzuUaMtcUZ2Et9K4QXI6xMl0gcD7TeUUXt3sI5hvPb1nhzJYJB+pOePDzP6Lul07GUg4WLAaZPLTJ7XvpUXs3VLpybCzPvsxDEtH+muuLM9gxWJsMsDKQDfUUcPd331rDzT1ok69G4BHZ/rZWW26RPMgoGsDQYqL+m+EnLjNPz7BNjXHhmvDhByapk6yO1dGZOgRYhKFmaxH44/t1hjv5NcYISQGg+SmxF2ghpuMaNtcGA0Vf8mxIM0Li/graPi+O7GEGp+RY39de4sLeJpyQKEpSA7nuq8e6wIVjlEKUgQQnAs8WKsUqLoUps21qCUubfM9+Kzi5AKrlqHg0L84w3Hedd2TMk0tHHK6+8klQqtUFQ2sAG/pXjhRdeIJVKsW/fPgAihHgj8TR/CP+CYCxHCskE1tUmFTKZjEBapU1XsVqWJkNQMtVqMddqcXZYCt43Q1DSOlRU77HTektlwXL5BKXmA5X4rnKsLxSD+bTcbdvtlbTdUSWplmOu1+FoN+P7mHSu9OhKjNBsYXJt5r5H/vuFLEHJXGwNTsfQOu6rYetnGlAVKbbYt8LZJ4fLSiPn+5gLe7u5pCpQ8y2V7PxKKyqdtH2z44sttN9TK1lmaWgF/0jpk/rGGh0d99WULOfoNFG5W9r+nT27zPjhOQKTEu/hQ2D07VnG3pV2YqjMKmr3uUv2me8qF3XXS6hIpBGcCrEyEylMUErDXKtj22frCo/vPLR/3MuOx5pKvvfqSx3Ymg1oHRIF006PM0+OcPwHxQlKLbd52PpJH2q7kCMorVGj1LkFVDpRvejI3/UXJSgBBOdjxMMJokHpiF/lNiu+y6XHR9udlTRe60JtVUGMggQlgM5PVNFyQPzep475CxKUVDqou8ZJ/bXinmHi8FJBghKAq8OEO33SdmkgtIqgpNKx6huXycj2Vz4JLdAyxFH97xlKnmFpeYmmpiaefPJJgsHgBkFpAxv4V4zu7m7m5uY4fvw4TqeTFCn64sd4IfRjLkSPZsutIq/kbdmVGvF/GYTn4wTSaZRcm8y4NxX2ea1MRJk5KdpotVe5aLjBs6qeDJb6g9mTvk37K+k4KO5t15I3FvpEgpJgVtJ8YyVNRdSc0j+m+lIn3kuk17h4MEEsGCe8mLdervFXDL86zdH/3kt4NoZSIy+u0hMX1YC2fLqB+huKr9XnnhjizE8liOZpaCxKnO0WPCWeASX0fL6JppsK27UZVO620/PZRgze4moH4bk4/vGQtC2aRtUVTip3Sa+ZSo0c76UOlAZpZaOxt2cZfeej8XmtzEQZeXtGVNmUgGuzBWuToXiB9Dhovs2L3iOtEAEZ1aj0Wl/kMF3L7dX0fKZ+1b+tJeMpDUq2fa6eumukfZ0owdVpouqS4qpcGYy8Pi9NUNLA5gerabo5PW7jrFcBl8swVIrqSr3PTHH874sTlED0eUX80j4vz3Ybrk6T5JhEKRKwG68Tv/fF/lBBglLlTgtN+yuwNmqzz1wI9dc48V1mQ5NW7ipEUAKwNxuwNegxeETf1lqCUmYeiC7HARmCSUEqtTq9ZVi5wkTDcd5MPMUKSySTSW666SaSyeQGQWkDG/hXjv/7//6/iUaj/Pt//+9Rq9UsMsNriV/wbvR5wokcISgTWFfp03OKX5xDBPNqiZsMQUkwK3C2m7A2FlZBmjoiEpQUWgV1V7uovdJZsFyGoKRzq2m+2Ytnm61guYzyTM1VFbTcWo1CKO6vUFsFPNvtVPRIr0uR5TghqUPqCTj9o6EsQUnrLBIXSS8xvitddN1fi0JbWBYoPB/l7JPDJQlKABXbbLg2W0uqAnm22dj8SAMqg7QUUef9tTTeKG2f+cdCLA2U9nlpbAJ1+ypKqh8ZvFpsrcVV1QH842FG3pwhNPPR+LzG359nrIQdpxDkuLZYir6nDOztJjw7Co/HfESXYiyPrkgSlNRWgU0P11PRs6a+NQcSvHvsbHqormTbXN1m3F1m1NbSip3nfjlC7zPFCUreXTa6H/Ct+9bzIZiUKLQKooEEp34wWJSgBKL6WsQfJx6S9nl5L3GI/StBUKq6zE7T/oqsumUhghJAyy0V1F3tgGQK/3BYJCithSxFw7UuqtJZDRYHggUJSgAVm80420TbPDQXW0VQUgig0KbbnELcq6Zt1XyiV9A7zQnTS5yMvcliYJH29nZeffVVhoaGNghKHzE2lJT+J+L1119n3759RCK5SdqMgx2qawqW3/yZWjQmFe/+eWFGqcqiIjofxb3VTM2VLs78fGi9CoAA7m4zU4eX0DgFmm6o4ORPh9eRIYw1agweHRPvLmDwqtDa1AXTntVc7WLivWmiAWlVJWOtBv9gGHODHsGoZGatRF1+uoDtFtxdVklW7/avNqNQyXn3z84VLdP1YC0DL46XTJ0m2AQ2PVhL33PjLJwr7FwwVKsJFHHk52PTp+qZPDIveYpK4xJouqGSkz8ZLEt1qRR2/mkrsWCcI39dPD2Kc7OZ5hurGH1nhqGX/nhlpnKUlMrF7v+tjehKnA++VZwp7d5uoWFfJQOvTDLxThkM8xKn0LyX2NG51fRKyVQLsPmhevpfmMwxvYs4gAyVQjYNYyFs/UI9i/0BBn5fPIdrBh33VDHy9mxhIpNMTsutbmxNRs4+NcbiWpnCdPtcm024u02c/IGE3KcANZfZGXpZNDpMdWqWB9aP8XxVpJqr7EwcmiO69jMRoGqHldE3F0CA+iud9Bd4Vu8lVrQ2FX2/nUYwgKnOwOzJ9d9c531VKLUKjv2dOL4Eq5zowvqTAJ33VmGo1HDkv/cR9a+/PhEb4jTvkkKcX2w2G5dccgnPPPNM8X7ZwAY28K8ad999Nz//+c+zf8tRsFl2BXbV+gCP2qZiy8M+5noD9P56PZFSZVYRWxTnze5P1hKei3DhV+sJOPZ2A3O9AYhB/fUuAhPhLNEzP1jgu8rBcDqVUuVuK+OHF9YpBKl04NxkZfydBVAmcbQYmT21ngxs9Onwp1NeVF/uyKZbK4aOe32Mvz/HwvnCDgtbq4GWW6qYOLrA4POFVffM9TrcW6xckDi9k0HttW5MVTpO/H1xW0/nUBEskQrE0qinarejpD3ScIOH5bEgM8el05SUA+8eO9WXuzj35DCLfcUdPFu/0IhCo+D9//LHKzOVq6RUDmquceHd6eDkjwbxS6Qd2fzZBpQahai+8CFO9xeEIKf9zip6fzUqqe7l2mLG0WbkzE9y9ksxNSVdhaqgihmArc1AzeVOTv1wgFhImoylr1RRfYmTc78oYhPKZez4Yh3RlQTHvlNgnKXb13F3JeOHF1noK/6Ajg4DoYUIK+MxDF6h8B5FBY5mUT1JZZLhaDUxcWj9uHV0GFiZihCajVGx1cjySHid2pFKB437K+l7dpxYEJxdBmbOBdbNK8ZqNS03euj93RRLA6Hiqlcq2PmFegJTEU7/dKxgqpXD0ZdZQJwvdTodgiDwxhtvbDhpNrCBf6Po6+vjyiuvZHQ0N6+75NV0yC/JHtzLR8utHoyVag5/e6CguktGgcVYraHhOje9v53IpjIBRKe3Emz1euYvrKDUQN0+DwMvTKxOrYSo0mTwaJk97UdjUaJxCAUVk1ybTcz3BYkH4qKqUv9KwbbpXALBqTBal4DGIkim4jLVaqnYauPCU2mbqYDbtevBWtRmgcN/VVwFqfGAh7FD84SmpX1VSo2cjntrGHx5iqUip9g1DlVZKdiabqkUU5JJpIhTauTUXVdB72/Hy1LpKYUtn20gFkpw6h8Hi5YxeDV03lvH8BvTjL/9xyszlaOkVC56Hm0iFoqvt3vz7CujT0vbnT4GX56UTOmR+620fWNrNmCo1DD86vo9QNa2UkLLTR7GDy+sDwqtgcaiFFW2ity39c5K/OMhxt4qriaWQd21TmZO+7MExFVIn1r37rBy7ulxlgcLB6tMtRoqus1c+I10Krt8FVx9hVDwYKylQcviUAhZQoajy8DCBf+6+QIluNpN2RRGlTvMYmq3NbA169C5NIy+OQ9KsPi0LPaHQJ7utzT5qG6vHa1NnU0drDSpiC8XUOe9xo6jzcixfxwlWsA2W4rPcSz+KlHEBttsNu666y6+/e1vS/bLBjawgX+9+OY3v8m/+3f/jmBQXO91GOhSXIpJsZ6MoRCg+8EaZs8uM/L6+rVToVUQXxEX8ob9FcRX4gwVWFcMlWpCsxESUVFhKbIUZ/Fi2qbKIyQ4u8zMnBHJTdamtE21hmOqEMBcbxQVWuQpjN7C6ksam5BVeLK3m5g7vyypTlNzjZv588tF03BpnQLtH69h/P05JoqoG2lsAs5OMyOvl47vOLvMWOoM9P6muB0hmBW5lFZFoHUIeHbY6f/9hOTzuXusRBajuX7/I2Cq09G038uFX49Kpi1rub0KjVXg+HdLi0CUQrlKSuXA3m6ibm8F534xQmCsePsbb6pEaxM4+f3BP/qeKKDmchfj788RK5TCLW3zGau12FtNDL5YIhUv4mGJ6FJh20vnFqi5wsWFZyZKKiQJJgWerdaC3y6IdmHXAz5igQRnn1wfS8zYjTVXOpm/GCiqhgaiPZ4IJwnNRVFblESW0t//GsW2jKqaQi3HXKdnvoAvWu8RiIWTRBfimOu0hBeiRBbznlUuA1kK36V2xg4tkgglRCWmsbD4rWTs3WQKwayg8YYKRl6fwz8WFpWlIsmCPq1ND/vwT0bEw4kFrvfFTzCUPEuSBBqNhrq6Op599lnq6goLvmzgj8eGktL/RFx++eWEw2FOnz6NTiceSV1ilhdjP+O12K+JxlZvnkbemM2p0gjQ9YAPIY9NGUufyBJM4r8F0inRBFseJTeKqJYEVO+xY6jUYvSsz//tH4ow8a64uWy+pZrG/d6C6ktDL4sEJcEgo36fh82frl9fCPCnN5ZNByqzp1KKwd1lRefSFLxfBv3PTzDxgTRZ5eT3BwmMRdG4BLofLj5JCHoZCkGOrlAe9DQyBKXWO6oklZKOf6dfJCgJFG1/eDoqLn5lEJRq97rZ/JkGyTLvffOcJEEJYObYEmd+PlSSoOToMtH1YG3phpWB2r1umm+VViEC+OC/nuX8L6WDi1PvL/L2n5+RJCh5L7ez+bMNYqqOEhh7e06SoCQYgCgc+9v+1VKUeQuqoUpg22MNCAYkCUoIoFQr0JiLD2jvJVYabxRPtp/+8WhRpSVSSQZemGC+11+UoATgbDeid6lFlaIi6LjDS+U2a1aJqBBByegTqL/GRfvdIhN/6JUCBCWg+x4f1ZfYxbkmSkGCEkDFFgu29AnCaIDVBCWBnFLcmvU/n6BUu9dB3V7xhOfIO7PMX/CvIyidi33ASdurnFO+nyUo3X777czNzW0QlDawgX/j+NnPfkYqleJTn/oUMpmMJAmOpF7hxehPGYidXlU2Mh9j9qyfsbSDwneVncpdluz12FKs4GZRpWOVEszcmRwpwN5iLHpyLENQ0rlU1FzupP0277oysSAiQQlov8NH0wEvavt6NZkMQcno01G1x0HzzcVPVKntKgweLY6WwuoEAPPnAsyeXmLwlamihJWl/mCWoNR4wINzU3GVRK1ZQFXi5FBwNobKrGLL5xoKPiOI6kwZglIxBSeAi89NlEVQUunkdH+yDkd38b4Ye2uOd//irCRBCeDcU8O8/63SBKXGAx68e6TVAcqFmBpZWnVy6KVpTv9EmqAEcOxvLnL4v0mnh+l6qJbK3aVPnhGDMz+RICilX+/00aVVBCVYTeRrvaOS2r3iCc1iBCUArVVAqZUj1xRXWmq/uxKVWc7KeKw4QQkgmWL8g0X6XyxgQ6edHiod6N0aXJ3Fxw0qaNjromGfSIgsdoii6xPVNOxzgQpiy6mCBCWVDhquddFwnWg7Th7xF0zHpnVqMFdrsnPOzMnVBCWVWeyf8JxoA2rT+8p8gpLaqqLtzspsGr6ZM35G3ppb5ayJxcK8Gf0NHxiezxKUnE4nb731FgsLCxsEpQ1s4N8wGhsbGRkZYWJigsbGRgCmkyP8If5z3o38jnh89R507L15MXVIHFCKqZ4Ec87nlVEOURvFf4ssiHPpKvWcONlUb65uC9YGPRrbevWU8Hyc2dOif612r5umA5UF1Zemjy2L91VC434P7XcWVusOTol7+Pp9FTTu94hprIrA0W7GVK1DqUnbVAVsq4EXJxl7WzoI1vfbCULTEZQGJU23rrcbM5Br5Cg1SjS24j6JDEHJe5mDxgPFfXa9vxrPEZSKCT2Fk/T+qjyCkmuzhVYJBXSAo9+9KElQAgiMhTn1o4GSBCVDlaakElS5cG+1UHNVCRUi4Ph3e7nw6zVBnzXv3D8c4tBfnZckKNlajLTdXY1SW9pVP38hUJCglIFSA8Th/FMTRQlKGouSznt9KA3KkmkABYMCjan4+LI16/F9TLRHBn4/U5igBJBMMfbeAlPHlooSlEAkIhqrtFn/dyHUXW3Hd5kdfUVafbsAQUkwKWneX0HjPhepVIqZEwUISkDjPhe1H7OjSdtKhQhKIPq8MifziYtqTOJzJUGeLDjHIJevIii5uo1U7rQAMHF0icnjS+sISmPxi5wwvcxR2ctECaNUKnn00UeZm5vbIChtYAP/xvHlL3+ZlZUV/uEf/gGz2UyQAO8lnufV6C+ZTKyOvySiMPHBYtYecrQbsbfnlHESocSqQ0MZTrVCYJXKTmBcJCgBODvMWVXetZg5mVNfqt/nofaq9ZlBElGyKaS8exw031yF2rp+fckQlASzktqr3VTvKazkBOL9LLV6zLWFVaEAQjNRxt+fY/po8dhTeD6aJSi5e6xYGorXJ5iUqIxKSTWi6FIChVZBy+1Vq+zdVe2ajYpKTwkkVZemPlgoj6CkgPobPFiKKGQBLA8E+eDbvZIEJYCBlyY49YPSBKWKHhv2dglfyYeA70pXSdXJuTPLnP7JoCRBCaDvN+Oc/OGgZJn66z3ltT0BQ3+YLkxQAnEcKETFMCmCknePPavuFF0qbnsJBhUqvUJyTNRc7URlUBBdThQlKIHocxt9Z56h19f7vLLfvwLMNTps9cXHDUD9dW6qrxDjdpHFuBhLXUNQqr/WReP1FWLqtCgFCUoooOmAB98esS+WBkKrCUoAyRRqowJHqwFHi2h7+YfDOTJfMoVCLdrM0UACGaBMK8rnE5QUWjk1H7Nnv9XJI0tMfrCwyueVSCQ4EXuTo6YXGEieIkmCrVu3cvLkSc6cObNBUPqfjA0lpf+FmJ+fp6uri/HxnKNcjpytXI1VtTp4UXOVg8rtNnp/O87s6Vygf618r6FKoPu+OubO+zn/1HoHvGATxLRIAuz4QhOj785mg1+5QlCxycLk+4sIViVNN1RkU3/kw3uJnbk+P+HpKJ7dVubOr6xLXScYwFxvYubEMgavgMoo5NSL8oeaAETB2mzAXKOXnLx7vthIeD7G6R8VJro031qFvd3EmZ8PsVQioAQUP9kMbH2sEblCxuFvSrN6d/5pK9GVOEf/W3HyUOudVVgaDLz7l+eKEpY67q3BUKnlvW8WL5NB9l3+EWi+tQpHu4nD3+6TrKscJaWeLzah1Ch47z8XV7sqC5nFtsSjtR/0YfLpePfPigcEO+/zoa/Q8t5fnS9an3OzmcYbKhl5a5rR1/IcXGsC0Zlv8PQTIywPFDZ6DFXCOjWzQooAPY82oBBkHPrLwuPF2qKnab+HC89MrCcnpdsm2AR8e6y5tGmqZO4Z89ru2WEWA14CuLuM2RSPq5/NztDLotFdc7WToTfn1vWXu0ckQvX/bhbBKsfs0zNzPO80ZSoJAmz5ZD3+0aConpRRRMo3TmRyEGDXlxoJzkY58Q/Dud+vaTvA9i/Xk0qkOPyti+u6wb9pkNPnT+P3+5HJZDQ2NnLHHXfwH//jfyzYrxvYwAY28M1vfpM//dM/JRbLOX7d+OgWLl1XtucLtaTiKY787Zq1b82Gq+sBH1q7UHROV+lEslHDDW50bg0n/n5wXRlHl5Gli35iQajd52J5NJhN+ZarCLzbrYy9Ja5V3kvsjBUIzDg3mbMEHfdWC1NHFgs0iix5of76CkbeniuspIK4JjVeX8nZX4wSGCnMOtnxeAuRpRjHv1PaYaHzCAQnCi/K5nodrXf4GHplisnDxU9mV1/uwLvbydknh1jqL9wmlQ42f7aFxYt+en9dhJSigh1famH+/DJ9z0inpVPpIBZjnSrNh8WOx1sIL0Y58d3iqlLlKCkZqrR03VfL2HtzDL/yx6lmZpV0JBSUVDrY8rlmFi746S3SV2KZFmbOLDLwfPFA6+bP1KFUywuu7ZCznbZ+ro5YMMHJfyycukbnUhGcLvBC1tgSlgYdLbd6mPhgkeE/FA5mtt1ViVKn4OT3Rwo3Wi7Dd7mN2fN+MdWdCoisTlUCYG3UEZiJEVuKYW/XM3c+TRTKswfVVhXGSjWzJ/3oKlTonRpmTq//3lv2V9D//ASxsAxXt5Hps/7V4y+ZwrPdjGebhSN/K/ZR9l2uSaPSdMCFrdnAsX8YIbIQy/4+v+0gqi817HUx+MpMVokgg5g9yLTlAmfOngHAZDLR0tLCq6++mj2As4ENbGAD+QiHw1x77bW88cYbZFyNwv/P3nuHR3aV6b6/SrtyUKmqVCqVSiplqVvqnJwDzgHbOGEbMA6ACbYBDwPnnLlnzvOcOc+ZuUyAAWYGGLANGGwwDoCNcW7j1O4c1Opu5Zwrp70r3D92qaRSldTMnLlnUr3/2K29atda396117e/9a73Rc829SWY1Da5Uf5Z5Ogy0XS5izMvTBM4vTaxVrCq2XS3j/njYYZenS/Jy5bUlwA23dPI5AeLBWu45UZgbzGx2BdFJeRouKSGgd/NlJBs7G0m4otJkvOyqlJsJlW8gJBXcqryGwmciSHY1OhsGsLDZeoFaiANepdAVZOJyfcWyyoqgVzrkOJpmfhTBp491XjPdXLyqZF1dzcvQVetJrlQfuGj86M+BKOKI+vkJSArLqbPom7kvdBJzSYbR757pizxA6DxUtni98j31m6zhJXX8p8Lz+5q6s93cvSxoXUVqP4QJaWuO3zoq7X/vF3/K3MsNajVnHX8DZe6cHRZOfCt8vkSgP8yF1UtJo7+cHDN85l9ejo+Usf42wtMr6GGD+DYYKbxEid9z0wWk4pW5FU6h5rkfP6arFHDAZkcrrNpOPj35WuIhhoNbdd7GPzdDOGR8gpLapMC96Yqxt/OLyArc8u/0RW5S3WHkYW89a29xSCTFlfV4VybLMwekZ8DNVsszBwLl/zerX49JreOyfeCqHVg9uoJ9C//vpaeYZ23eIjPphjdu4haJ1/HlUspSzZx2x5oIDabou/p6aLPK1bl290fr0OhVHDkh6U5aLR1jN6RI4TC8rtda2srn/rUp3jkkUdKY1ZBBRVUALz22mvcfffdjI3JzxQlKhqUnbSoe5Yb5Z/fHTfXoVQr6P1ZeWeGpXVH/+UurA1GDv9gqKy6j0qvIpPI4NpixVpv4MyvJ0ramer0JBZFMokMzk1WkgGxNIdRQXWbmYVe+Xlt7zSzeLKckrieyEQCMrIKULicaqSKQh9qtlUx3xteU4FG7xRovsrDwG8nScyusbnoE42I0TSnnl7HxSKPgiJOGejsAu03exnbO1cgZ5WDvc1Mw6U1nHl+Ym3yjQo23tlIaDi2rtpTzz1+Fk6FC7XENbFEsFpfqOes6L67kVRI4vQ6OdUfoqSk0qvYfG8TE+8uMH0W8YqzYekeXb8RdH+skcWBKBNvrUHyUUHPJ/zMnQitqcAFsmqTziacVQW+/SNesplsac6fz60Ei0w6KmCN3EtfLdB5q5fJfQtMHyhPrPaeX43eLnDmufL1PIVSgb3DTGI+JVvdqSi2wc3nVnqXQCaZQQxnMNXpSMwlC6TFJaj0KowugfBIAo1JhdGlJVhGpMF7bhVTB4JkkjksPj3h/O96Jax+PZ4dVZx8erJAeix3Ld3brHi22zj+s/F1FcuMboH2GzwMvzpT2OiyFM+MPsasZ4jjJ48CYDab2bNnD88++yx6vX7Nc1bwL4uzmx5W8C8Gu93OxIT8sN61axf79u0jS5b9vAwS1NNKh2YbACOvzTN1KIgYkCe4XY+0EJtOcuzx4peY6KxIaCzOSP5B2nxNDfEFsaCStEREsdYbUKhAyv+gBbsGcTFfsBZh+oMgAP6LXFh9xrIT/sqFscYLa/DuyvDBKjKPGKVgG9d2Yz1as8C7f3lSJkAoFMtFmfyDrPEyNzqrhuE3Z9YklciEzLW5dKefGUd4c5mMZbSXl/gFudCitwu8+/WTZb/v4N+ur1i0hMhEnMjk+sWh4EgMQ40OQQBxjbGtRbxajc0PNKO3Cby7zuJV3QXVeHc7OfSd04jRUmsskGN1+pk/6CvPivXs25aw+dPNoJB366+FDbc2YGkwcuAbfWv2G6D3iRULVmssqsXnUqgN6nUJT6H+MMlANbMrk50yRZaR1+YZeW1tFnLPPQ0YXToOfHdw+be0CkskpgPfHUBYh/mcCknkcrJsegnyfWu/zoWxRsfo2wHEhWRZglL3J7yYanQsnJEJhOUISrU7LdTttKNSy4pII6+VSVhzWer3OFAKCgZfnEcMZJkLRArHhCq1TEYSQaVRoDHKWe1KgpJQJe9YO/6TSRAhOBhlvi9aRv5RYMOtPqYOBhh5bYEjjw4XnnsAUSnKB7xEGgn2g16vR6fT8dJLL3HBBResHdQKKqigAuRdZg8//DBvvfUW1157LeFwmBlGeVl8Ah1Gtikuw5CX6Dnw7WE0VvmZ6bukGnePlWM/HivxVp/Yt0iVP7+7RAMdH/Yw8MJkQUVm6b9qvQq1sPwMXmmxNH9suTjh2mjB1mgsJSlJMPGOnM/5r6qhdoudxGKKxVXWtUsEJUONhqbL3dhbTJx8arzkXEttajbZEEwq+n5evoCgElTkcpCKrL1IdOg7Z5Di8vN8PRKSwaGh5xPNhAajnHyqtBAfGoz/QWTn6SMhbC0m4tNrL2JKcUiFROIL61iiSLDv62dXP9JWa9jyqRYWjgfXJOiAbAOcTqTLkvuX8Id83x+C6Hhi3TwQ5Hhv+HgTw69Or6sste0zzUQmE+v2W4rDvr9cX2kJFKQiIqGh9TcJzPeG0dvWSYTyOPh3ay+Yaqxquj/WSGQyQe9PyxcKl0hMwYE4B783uiYRDyCXWef9QqlAY4DabTYsXgPHnxgvS1BCA23Xu4nPiRx7bIyF49Hi43lsvM2DUqNk/liE+LREfLb0t2Wt01HVZKB2dzWjbywye3RFATObQ2NVIoVyZDNZlBolhhoN8RmpiKDk3mpBY1Qz9naAiQ8CKJQKUlGpRMK68xYPRpfA/m8PM3csSnA4hhRazs/OSEcYzvWimAamwWg0cvHFF1fUKiuooIKzQqfT8eabbwLwqU99ih/84AeImQTvpn+DMq2iRbWJBlUHAPO9UYKjcdL5GsDmTzUQm0py5lfFG9jEWJr53ghTR4IAeHbaEGOZgirAEqlF51Cj1CjIZuRnXhHhJU0hf3JtsePotDBzNFSi9rK4wsKt6fIaMoksh1eSzRVKSGcJ5DcWNV9Zi8mj54Nvni5VFcr/u+FCF2avgdnDi6STirJEpWw2Ry69ds1r8t0FZo+Flse6Dgmp9cY6bH4Th747UJbwc/Kna8/9KxE8EyG5zjwKEBmNYfUZkEX6y9dyhl+dZfjVs5Or2z7ixeoz8MFfr5172NvNNH6oht6fDK+p/DP53gKT7/2f28HBqhrUGmi7qQ61TrVu28YLXbg2V3H4HwcQ11EsGnl1lpGlWK1huxZfENFVi+sSnhKzCaKTSbn+sg7mT0QKv6Mi5LKgUNJ8VQ32ViNHHhtFDJbP9ZdITL0/myyvIpSHGMtAbnnHexHyeZPvHAeODhPzvWGSC9LyLbUir2q+0kV1u5HY9CjJxXRZgpKlUYf/YgeCScX42wFmDq0iLebh3VWF1qph8r0g6SQFglIul0NtUpDOh0+tVRZqdSsJSmodNFzkYvDVOUjD7IkI4bE4q/eC62xqNny0jqkDQSb3heh9eoJ0dLlNKp3kUOZ1IrlFOCbXvNxuN88//zw7duxYO6gVVFBBBcAll1zC6OgoQ0ND3HzzzRw8eJCh7HGGxOPYcdOtOgdBKb+L9/1iAlVe8drebsJ7XjWnnp6QFVFYJiXMHguRCqUL5AHfBdVMfBAsEAWW/qvRq1DrVIV2K8kEK4k27s1VSLE0faOr3uMzsJAnJTm7rTRcUkM6mSlZk1wiN6n0KlqvqWO+L8zIKzMl51pqU7fbgc6mWZ5TV0GlUUIuRzq+NrGh96fDZPKH1yMhqfQqNny0kcX+SGmfkNWZjnz37Jv7QsMxwmOxkvpjETIQn0+RDKy/0//oD9YnogOoBCWb7mti5lhwbYIOsioTORh8ce262L+InRryfXXgW+uvN6oEJV13+Bh7a25dZamNH2sgMpFg8DfrbE7MnL3vKpUc89jU+kzzxb4IeufaLj5LWJP0lsuCWknXbT7Co3EGX5opWUMDWdlSTGRILIgceXRkXSJWLpMrcTNZgkKpABXUn1dNdCrJwG+myxKUUEH7hz1EZ1L0Pz9FdKJ8HFquqkFr03D0ByNI0QzBWGk7XZUKV7eVdCLN9MEI4VWkRZVeSSaRJSvK+aLepiGxIBWN0eLTo7WpmTsaYeFUFLVOhVhG3ar+/GqsjXqO/2ic2HRprKYzo5zO7EeUUuRCOWw2G/fffz9/8Rd/sWY8K/j/DxW7t38lvP/+++RyOT796U8XdlWMcYb9ppeY7zyNKIkYXVp2P9JK7W4biUURjUnNrkdaqdlqpeESBzsebmHTxxs48eMx1FrY/ZU2nN1WvLuq6bjZw+6vtBa+r/WaWlIRibnDYQS7wPYHmtj5JVmOu/WGWnZ/pQ2AU89MIsYkWq6uBQF2PNzKnq910JyXg266ys3uP+6g77lRTj03wZbPNrPjy224d1YBsPuPO2jLy1AvDkaAHDqbgGBSsO2hFrY/3Fbo066vdJCcS9L71Ch1u6vZ87VOfHmLh033N7HjS3Lbg9/qx+w10HWXjw13NdB6k4fdX+2kqkOWeeu5x8/mT8qSa1s/3cKm+1sKlmbOHgu7v9pJzTYbANlMRn425+fyHV9qo+de+bPWFiO7v9qJZ081tXvsnPPfutj91Y5Cf3d8sa1gzTb6xjR1uxzUX+xE5xLouNlb1Hb7Q63UbrfLNm2CwO6vdtJ0lWz/0HK93P8lbP18C9u/3FaQ29z91U5a8vLUTVe52f3VTuZPBpnvC7Pls81sf2j5uu7+agftN8mWaya3Xvb5bJfPs/nTzez4YnG8u26XZbY9e6rZ/dVOrHnpx577/IV4A6AEQ41cYajZZmP3VztxdMvSh913N7LzkeWx7vxyeyHe1V1mOd475HhrLRr01csT9I4vtbHpftky0NyoZ/dXO0nFJUJDUZqvqWPXV1bF+zNyvNtvqWP3Vztp+JAstd1+k5fdf9xeaLvtCy1s+WwTg7+dofcng+z+445CvJuvrWX3H3eAADqXwMZPNKFQKRCjOVAo2f3HHbTeIN/f/sudnPNf29n6+aZ8DP1sf3DZjm/3V1rpuFm+NrG5hCwSZJB/v5vua2DHQy2FBa89X22j+2ONGNwCtVtsbP1MK7ZWOd7dn/Cx46EWeu7xoXMKbPioj/hskvljEZybLOx+pBVHtxm0SrY80MCOh5s49ugoJ38xxqa7vHR/QrYkrOowsfuRZto/4oJcloyYIZvNFciJ2x9spueTPgRjlq6P1rL7y82oNEpG9s6iMarZ9Yj8DCCXZdvn/Oz+o2aarnIg2AXUOiUzR+UFzpbrXOz+cjPksrg2W9j2mSa2P9wECiX7/2EIq9dA01UOyGVpusIp97/LhNlrYPuDjWx9oJG+X0wyfzzMrkdaab+tlrYba2m41MmGW+oR4xKJhRSb7q2n+84GAIakXsaaD3NY/6pMUAJ8Ph99fX0kEokKQamCCir4J+H8888nFAoxNzdXkGlNEuMdnmOkcT/zWnlhof16D5vvbyC5IJIISmy4w0vLtW6ar66h/iI7Ox9uIRUSGXhhhg13etn+uWZsTUZM9Ua2P9hMW34+cXabsdYbGHx5BoVSwdbPNrHj803YWmRC1PYHm2WLJaD/d1MIZjX2LhPNV9ew4+GWorln++db0dsFBl+eJpPK5ufdBpkgcaOnMNfHZyTSYqZQdPJeVM3OL7cX7Lparqtl411+ep8cpe/nE2z5TBPbvtAMGplAtfPL7dRf4GD+WFjOOe5rwuAW2HBXA5s+1VSYv9HAls+20nh5DSavnk33NLPnv3QW7Nh67vMX5u/4vATKHOl8dafuvGp2PtKOwSHbUHXf3cjWz8lz0ZYHmtnzX7tozVvXubdXsfORdkxePVJIIitm6bmnpWANt+OLbbTdLOecjh4LOx9pZ/TNWSZ+v0DX7fVsf2g5r9n+UFshB6pqN7HzkXa6Pir/u+3muqJ8advnW2i5qpbFM2HC0wl2PtKOe7uc57Z+2MOOLy3nH3qHFqNb3l1jcGjY+Uh7wdqt+epadj6y3HbzZ5rpuU++9zQGJTsfaceXtxDRVWtRqhUFW7RN9zexaYXF8s5H2mm8QpZKr7/Awc5H2gtWXj33+tnygBxvjUWDxqCiukPOBT178vGukdtu/EQDWz/XwtzxMDNHgnIMb5TjXbPVxs4vt2P2GbB3mdl0v5/tn29ZEcNWOm7Jx3ujOd/WyJHvDlGzybbqnm2m63YvWrsGa5MBzw47wRG5gNR2o4cdD608bzN7vtpGdacJo0dg58MtuLfL8vEt17rZ/pB8XimUJpfLojbI97fWrmHnwy1yvHNZ/Fc62XRPAxs/LufFXTfX0n133l5GAzsfaqL9ZjetH67Bd3E1Fq+O43myU/fd9Wy6V86tXJst7HzIT90eByefniQwFGXnF/yFeG/8eD3bPtcAqhykcuSyORKLciGxdoeVnQ83YfRocG82s/leL1vv93HmhRlOPDnG9i/4abtBzk+dG0zs+mITWz/jg2wOz44qpESG0TdkEv22BxrouLEWsjm2fraB7Q80Ye80MnM4SmQ8SedNHpl8lM2x7bONdN3uoW63nZqtVnY+6Mdcq+X0s9O0Xuli+xf8eM+3U9VuYMunG9Db1cTnUhgcanZ+wY+j3YwkSYz7DnPStZfh3Akgh0ql4gtf+ALRaLRCUKqgggr+yfjud79LOp3mW9/6FkajkSwZTmcOsk//G+bbTpFOp1HrlGx7oBFnt5nYdBK1ScnWzzRgadTh3m5l411eOm6sZejlOdJJ2PZAI7W7q/HstOM9r5ptn12eK5uvqCUZlljojYAadnyuia2fleddz04b2z7bhFoHU+8HiM4labxYnoO7P+Fj+8Mt1F8oz981W21s+3wzp389Sf+L03TcUseWzzQW6jVbP9uCP1+XmD8VQqEAvV0AtZzXbLp32Q5gywPNpKISJ58axdJgZvuDrXgvkL+n9QYPm/Nzfd/PxjDVGWi53oP/yhrqzqtm24OtVOWt1JuudtP9sUYAOm6vZ+tn2mj7iDwnGz06tj3YWrCqyGVyKFTL5K2ee/103CrPh7pqNdsebKVmq42qVhO7v9LJ9i8t15e6726k86PyfDj+9jx15zjw7LYj2NTUnedg24PLbTfc2YD3HCcnfjRCOpll24Ot1J0n2z94dtvzyttyybnzoz42f6YJq19OFrd9obVgo1az1ca2B1sJDUeYORSk49b6Qo0OYOvnWvBfLudAeocGnU3AnLdzabupjk33Fce76Wp5nq1qNbHtwVYsjfJ3tlzvKeSnIG8Qs3jlY2afnm0PtmLP19L8V7vZ8tnlXGXTfX7aPiLnF3qXlm0PthbqYwaXDotvWV2w+5ONBXs7waZm2xdayeZyzPUGqdlUxbYvLMdw48cb6LpDblt3YTXbvtCKZ7ect3v22Nn2+ebC1uKuO+rZcFc9MweDnPzZONs+31y4l2p3yPes2qRGsKppuV4mTi3dA1sf8OO7SL42zm4Lu7/SSvcn5evcdmMtPXc3LMfw0378l8nXJjoTR6FWIOStM1qvr2XTPY2FRbMdD/nZ/MkG9E411iY9mz7ZiLVJzoubrnSx+T4frR92o7Or2XCrl9hMisDpOCaPjm0PNGJvN4KgoOvWWrbc52Pwt7P0PjVJ27Vu2m6U36l0Tg3bPtNA44eqIZtDSqXJZnIkF+WxbfyYl46PyPaL/suq2faZBgx2gYG8je+2zyyPbcPtHrZ/rpH68+2gBl2VRlZYAmq3W9j6aR8qbQ6zV8f2zzSx5T4fCoWC4z+ZwNpooO6cKnK5HDVbLGz7TAPWZiPV7UY23ull4511jL65QHAwwZZP+Wi6shrfBXacG0103eYhGRJJBCRar3PRlf/tzqbHGWs4wAHtb2WCEtDT08Pp06eZmpqqEJQqqKCCfxL8fj8HDhwgHo9zww03oFarWWSavdlnGPYdIGKUiSj159rpuLkOKZomPpuS7enPsePeZsXeYaLn7gZyOZj6IEDjJU567mnA2W3F6BTYcEc9vrzVk8mjpbrDwvg7C6BQ0nJjLTseasVcL88DXbfXF9Zx+l+cRGvTYPUbcG6y0v3JRro/3ljoe8et9Zjq9PT/ZoLkYoqee/00X1uLSoDanXZ68ut+mUSGZFgqWDpVtZvouc+PI58DubbY2HCHj5NPjjDy6iytN9Sx4a6GghVXz71+XFtsRCeTzBwO0nmbD22VGv/lbpqvq6Utv8YGsOEuP7Vb7AgmFZs+2cT2h1sRTHItoumqWjpu9Rb6pNBQIMnbmo303OsvWPA2XlZDZ74W1Xp9HTu+3I73fDmGZp+ennv9GGt1ZMQs6ViG9lvq0eS/p+vOBhry+aqhRkvPvX7mjgeZOxai7nwHGz+2HMPO2+tpvEzOl3R2gZ57/TReLn+2bk91Ye0OZPeXhg/VMHMkQHQiTs+9fuydcg5Uu91Ozz3LuZW10Yg5n+eoBDmGzm5rId499/oLikyt19fResOyPfFSvEHOnwSzplCvbLqmlvaPLMe755N+anfJOZC9zUzPvX4Eq9zWf6W7kMtqTGr0Di22fI5s9cvx1jvleDd8qIauj/qYPhBgoTfMhrsaqL9AXm821cnxNnl0GGq0tFzvke+PPLru8NFwqSvfXzmGRreB/ucnMfsMbFxxz3beVo//cjcakwptlYD3fAfxOZmY49llL4r3hjt97PxyGxa/AZVeRc+9/sJ7Rc0223Lem4FsJovGqJRzrfw96+yxQi6Ls8fCts8105pfp/df6qL1w8sWzj33NNJwiQPv+dVUd5mp7rAwnFdhb7qqhvab5NqfpV7Pxrt91G6t4tTTE8z3hum+uwFt3vLWf7mLjXfVy1Zz+c19yaBc87L49PTc3YDeJWDx6Wm93k3nrV5G35zn9LOTdH3US/2FcryNbg2b7vex4Y46UGZxbLCQikpMH5SJiZ23emi4WM5l2250s/2zfqx+PZGJJIH+KM1XLttFtn+kFv9lTmq3W3FvsdLziXpMtVrG316kdouV7o97sbcbMdfpaPuwG5NHS3QygcqooOcT9dj8BjKZDDO1p+lzv82xzO9JkcThcPCXf/mXBAKBCkHpXxEVktK/Mv7+7/+ebDbLq6++isFgIBaLcejoQd7klzx/6gkmJ6cRw2mO/mCU0FAMMZambo9sQ5UKS6SC8uJ9OgVSPMPAb6c58qNRkiGJLDl2PdKKYJKVWgo7dkSRjJQlMimzkhUqyGSWmZnJRYlkUKSqyYRap0ISMwUf2GRQRIqnCQzECQ/FSQVF1IKShgvlB7gYk0jkH1qJWRExmiabhs7bG9GaNYjRvLWEQoEUT5MISIT6Y4hBCZRQt9MJAqQCIqkVnt1iVCIZlrDUGzB7DEhxiXRSXvBKBERSEbnt0MvTpBMZEnlGcSqSRopLiHk1gNjUMtu46w4f2Uy2YIGQSUhy26hEeChKRsoirth5lgpLpALy2MQESHEJ95YqNt/TTCIoIsZWtA0tX5uGS5woNQoS+Z1HiWAKKb48tlRQQtCrafyQ/OCV4ssxTAblPs3uX+DMMxOkghKpFbvZxFiaZEg+b3AgSiokEspbk6UCqTJtJXZ8qQ3XJitSXCKTkI+nFpdjtIRsWr4nxKUY5mORCIiIMYndX+3Ae5EDMZou7LAT48XxnusNkQwsM8DFSJpUPv7ZZAYpLhHqj9L7xCjJgHxvFcUwIOLcbKW63Uouly2MNRlMFcVbqVGitQqQV62S4mmS+XgnQ/J5u26uZ8t9zaTikuz3nt+ZJsUzJPL3dyIgkUlnic/KSYVYEu8MZq8ewa4hPJYkFU6TTi1fx6X7MJfNkQyJJEMS8WkRMZJGjGdI5+OdDIpIqTQGp466nVXy/Z2/X8SohBjPIMXT9NzlRWfRIMXkY6GBBKmoWIiDFBVBCfZmCwiQXCj+3aQiEqlgisbLarH6jEhihlQkzcTbAZKhtLybTSNf51RYBIUCg0MLoogYy8jXKpdFSklk87vBZg+HyYhZ+TeW950V4xlSQYkNd3px9tgQ4xkmPwhy5NFh4jMpxPAyw1+KZzA6dFS3mcmI8liPPzHG7OEw0YUkB47t47DtVfo5yqlTp3C73Vx11VXkcjlGRkbw+XxUUEEFFfxz4XA4GBwcJJfL8dGPfhStVsuZM2c4FPk9L4tPsHff68QWEsweiXDs0THESJq0lMG5wYLZayAVTZNOys/DZEAiPpviyA+GCZyKkQpJ2JqNtF5fi5TIkIqmC/N9bCZBOpkh2L+8IyyZPyYGM/JcG82gq9KgUFP0LE+GRZIBiekPAkiJNGkpjcmjx3eBi2RAlJ/fecRmkiQXRTQG8O6W8w8xPzclFkVSIYlQfldaKi6htQh03VwPkpz/pKL5vCAoIkYlPDscmOsMiPH08m4tCcSInCtGxxNEpxIkAimWHPWSAZHUit3WiXmR+HQKbbUG50YbYkRabruwnJfFZpOkk5nCv8WohBiRyCbT+T5JiIk0Wz7VQst1tfI8m8/hpGhaPm8ig8agxNxQ7KOeConE8+eVYnL+aPWbsPoNJANSYV4FSIYkkosSp38xQWQohhiRY1MY24p4h0diBE7JixtSPi5LuUAyJM/JS6SiVFAsjE2SsnLb/Nyfy+dcrIzhit1xYkSiqsnE1s+1kMqPdSmIK9uGBuPEZpKyFHr+c2JEQspvYkrlxzrwwhTzx8Kkwst9EmPyODMpicaLXBgc2iIFhVRYIrEU71QGtVZZWMxbureWYyiSCIpsvqeRhktciNF0IY9MBotzlWRIJCNmCY0nSSdz8vhiSzm+RFbK0ny1nCNHJpIk5pbySElum78eyUWRdCJTKMKkgulCfAFS0TRGhxZboxExJH+2cCwokQqm0RjA/yGnrEAUEgkPJxDDabmttJTriggGNR15Ml0yIJHIK2qmomlSkTTpeA7f+Q4Ek4ZkOE14OEF8WiIVSsv3bDaHFM8gJdKotWpMXoFkUJJVIfLEo2w2RyZP7gsOxeX2Mfl4IiiSCqfR2jVsf9BPLpcjEZA4/rMJep8cJxVJI0Yy+bhIpMJp6nZUUbfLLj8DRhL0/mwSKQWT49McibzDW8pfcrK/l0AgQE9PD++88w6SJPGNb3yDCiqooIL/E3zuc58jGo3S19dHc3MziUSCQ8cP8Hr2KV6de5qp8WnEWJozz8+weCpGMijh2VGFd4+dZEAitaRanJbrDkMvzdL3zBSpkEQ2m2PLA34Eq5rEokhyYcV8HpEIj+ZrXmoFmUyWdP7Rn5gVSS6mMNTICybpeLowj4lRuQaQmE8TnUySCkhoDGoa86SaZEgiGZZPJAbTxOdS5MQsrVfXYnLrSEVX9CEgkgqmiU4kEWMSSrUCzy4nar2SRHC5BgDy/JgIiNhbLdiaTKSCy/WRZFAika+rjO2dI7GQkpVmgEwqXdQ2PpssqBc0XOoik86SzKtMplP5HC+SJjKVRIyni/KNxKK4on6TJRUUqd5gpefuJlLRVfldIFXok2dPNRqDilQkPyeHpXzbbD4OKXQ2LQ2X1BTGupR7iRG5/wunYoy+MUtyIUVihSpmckVtMDKRJDwWIzImE5+Ti1IhF5T7JJIMSvTc48e93U4qKJJOZJePrRhrLgdpUZ4r00l5rGK+7pIKSCQDItu+0Ertjio5z8l/Nidm5Hjn84iZA4uEx5Z3gicDIqlFEXI5smk5B42MJxh6cYZUSCws8sj9F0ksipjqdHh3OoBcYaxiqDi3UmrA6NIV1IpSIQkx3zYVku9f754qNt/rJ51Kk1xc8T1BORcAuS4oxjMk5vM1x4BUqFUCJIIiZp8OwaIkPpciNp0kLaYLx5auObks0akk0ekUibk06USGZEgind+lngqJiPE01gYDrh4LiYBEYql+Lcq/ZSmeofVyF+Y6feEdJDqZlH8bS3VDMYdSo8S1wYJaJ1+b+JKNn1IhPyOCIp6tNpxdFtKpDGI0zfyJqJx3rfiNJRYlUIDOpimMXVY1z5ER0+RyOdJpiIwnSQUlYnNJcrkcuVxOrk9GJPyXVuPdXUUyKBEaiXP0sTEio/FVv+U0OpuAe7OVXD7+/b+ZZfF0jNhCkhMDRzhmfZUj6Tc5dfoUDoeDu+66i1wux5EjR/B6lxdtK6igggr+qdDr9TzzzDNIksQ3v/lN7HY7/YP9vBd8hVeln3Pg1PvE5pNEJpL0/2qaxIJIOpnGs8OOpcFAIiCSSeXfJUMS0YkEx380SmQ8SWJRxN5uxnt+NelkTn4Hz6/PxaYkkgspIvk5UaFSIEWXcpVM/nsyGOwCKrWS+NI8pcqv7QUlgv0xMiJIsTT2VjOuHjupiERiRX4XHYvL+Z4KGi9xo9GrEBPyPCVF0/LcOp9fFwyLGN06/Je6ISPPu0v1MTHf1tpkwtZsIpPKFuUJiUWRVFRCjGZYOBUmMpEoKCslF1NFfQoPx0nMJFHpVbh6bCQDItl8jpFaUS+IziRIBZfn93RSXnPNpPK5SlBEDEts/JifuvMc8ljyc3RGXBFvFTg6LMt2bchz3NJ5s2KGXC6Hc4MNk0cn57ULq8YWEJl4e4HoVIrkoijXGoBUVCqskwEsnAwzf0LexJ5ZimE+BxIjEslFEXuzmZ57/KQiqcIashyn5XwpJ8kbvJaCmAqKRW0TCyJmr57O2+uREvK1WbIUSwbEQp+SiyILp8LE8oo+hRiK2eV4L4jMHAgQGorJuW0+58ykMvkYZvGe48DmNxWNNbEoFlTFMqksWosGa5NcWxRDUmFz2lLbZFCk8zYfDRc78zHMjy0flyXE5pOIkTTJuRRksvm4yG2lSBopmaZuj7z5LtgfJTq7rEK0MoZSRCI6m2R830LhfinK4xeS6Ku1VLeZCzFceR8mAxKooPkaNxqdqvDbWophTsqhUCoQoxIGl7ZA7opMJkktSOSyOaRkpvCM8F3kxODSkgzIv4fkojzuVFBeM8yksohhCY1Bhb5akO/DueX+ZtNy3QsgMBAjPp8iHV/ObeOLIioBNt7pRaVRkAyK9L84R+9TUyQCIum8un8qkiaxKOI9t5qaLRaSAZHwSJzhV+ZAzDA7ucApDrBX+QxHRw+ysLDAzp076e3tZXZ2li996UtU8K8LRW61DmkF/6oQRZGtW7dy4sSJor+bsbOVixA0MivUVC8QGUlh8evZcJuP0b2zBUuQJTRe5sTeZubgt2VJwZbr3Iy+Po24SvF36+ea0Jo1vPu/V9hRlJGT2/VH7SQWRY7+4yrJQAHMHh2R4SQ12224t1Rx5LGhYsstAbx7qhl/cwEEaL68loFf5+X2lm5BAWq32Zl6dxHBpMTiNzF/rFiWVzApC5ZgTVe5GX9/saAasxqbPtVELp0rL3EowO4vdZAMSutakYGs+JOTMkQnSr+nZpsNq8/E6WfW9qdtuNSFa5ONI9/tX9POzNFtYf5UeF2bMmuLkdZrPBz90ciaYwa5QDT57try1ls+20x8OsWpX67d53P+axfh0diaPqqmOoGOWxoYeWOWucPl7USqOkxIEbFs3JbQc4+fVFBaty8Azs3W5e8pY/XWdmMdlnoD+9exoDPVCTRe4ub4j1baxi3zNN07bAXbw7VQ3WWi7cN1zBwOMPhiqWSos8eM/zI3x348SnKudNy5bI7ma2oYf2sWMQqCiZLfIwK4uizMHg4jmKCqwyrbtq2AtVmPqUbHxDsBTF4BfbWOuSPFvxXfxdVYfUaOPTZa+ExooFhGsbrLROu1HsbenmPi7eLnx0p0f6Iek1svW9sFislsnj1VpEISC71Rmq6SpeyPPDZcci/veLgFMZbm8D8MIZhAZdQWYpSoneHg7PvEk3IR2Wg0IkkSjz/+OLfddtua/aqgggoq+JfAs88+y1133UUstiwVrELDRsUeXBq5SGxwaeQiigQ99zai1ig4+Per8gsNdN/VwOLpKBNvL1DVbkQtKJnLW7stKe0ZHBo23etncSDKqV+s8iFfAe/51Xh3V3P8p6PFdiS5LFa/oUA22nCXj4VTEaY/KH6OOzdZCY/HSS1I1O6qIjweJzZRLB3t2mpl9lgIpHwusirvAtAYFEjxHBqDgtpdDkZfKy+ZbagV6LqtkTPPjxMaLLVla7yiBvdmOyd+NkJkZG3btqW+r2VX1nlrPYOvTpNaWNuCZOvnWlg4FWbklbXtRewdphLrvNVo/bAHtVZV1qpuCYZaAY1OXbgeq+HaaqNuVzXHn1jbfqzrTh8Wn5H31rFza/2wB12VsK4ctXt7FdP7157PDW6B9hvrOf2riZJ7oQgasDUYCfaXl8/WWDX03NXAxHsLTB/If18ZW5KWa90snI4QOF16HpNXRzaZIT4vLUtJl0HPPQ0IZjX7v1E+X99wl5eslOPkU+VlvLVVKhydlsJ7ksawbMm4BHunkcX+GEhQs9XMzLFIgTC2hIZLHAUb4NqdVqYOhYraaAyy0uf4u4sEB+IFy9/V2HiXF51Nw/5vrSPBroFdDzYTm0tx/PHiHFljQLaEy9v1brrPx+zREFP7in8vnt026s+p5ujjoyTmUpi8WqITeZKZJDHlO8GpkV4AFAoFNpuN7u5uXnnlFTQazdp9q6CCCir4P0Q6nebOO+/k6aefLpAxFShwKurYoDgHtVrexbtka6mzq9l4Zz2jby0we3hFnpLL4txkwdVt5cSP5Xnas6eK2UOBEiusjlvqMHl07P/2QMGGrZzl55bP+EksiGUtcQ01WuIzKcw+HXW7qun/1USBAAOAGlwbrczm6xZ151Yz8faquowaqtvMBbUna4OR0ECsyAJOraPQ/9odVSyciaxpEdZ6g2wneurn5espWz/XQjIo0fuT8nWdJehsapRaNfGZUmsGS6OBqmbTmpYpAI6NFup2V3PiZ2NlLeZAVguITCZKbfFWQO/S0nJ1LWeeHV/Tzm3p++aPl7fwAlmRIbmQWtdmbucjHQQGIpx5prz9sdqkpvNmLxP7FljsLWOJBpjqdKRTGZLza+SkCgUt19aSSWYYWicnBYpy++XPL+dWnj12HB1mjv5w7WspWNX4zqum/zfLdjMrcyx7m1G2R1sHxlotnbd6mdofYOLtxZLjJq+Olqvc9D07SXK+zDXKZfHstDF7LEw6WXw/r0RVm4HA6Tiowd5U2i+9U43RpWf+RATBqsZUoy1uo1Tg2GDC3mzk9PPyeOVd86llm1ulAoNLQ9fNXsbeXVi2fVtxfAlNlztxdJg4+vgYySViZP64vc1AWswSHk5Ss8WCvcXIyacnIVucv/Z83Es6maX3ZxOyUpNVQzJfP0tUBTkWfJtQIgiAwWDAYDDwxBNPcNlll5UGqIIKKqjgXxBHjx7lzjvv5Pjx44W/GbHQpdyJTSWr+mhMKjLJNBkRmq92o7VqOPlkcX6RU+RousJNZDzO3NEwhhoBjaG0FqLSKdh8j5/5k2FG1qgfAdhajPgvdXPq2XHiM6mifEjvFAqEhoZLXUQmEiz2Fc/Hpjq9vLktlMbWbMyTzIvfwc0+PfHpFBkxi7k+n4uscodSCUoyYhaVAPbOtWtRGpOK9hu9DL86Q3SydHJzdlupP99J39Nj8njWgcVnKJDpV6P+AiczRxYRQ2tbebV/xEtoOM70gdK5egmmOn2R7V451G63I1jV6+Z5glWFSqsiMVt+jc9Up6duTzVDL0+t2ef6C5y4Ntk48Ldrr93VbrdjcGuX14zLwOo3EhpaO5dR6VW0XF3L6JuzJfdCcUOZ/L2WjZtKUNJ2Yx0zR4Il991KuLfZic0mCuQ8oLB2KVjV8ga4wNq1S5At9UxuHUcfGyq5N0G+/5UqJUMvr2FfqFNgbzYydyKa7zsFgtcSjLVakgspMqKc24fH4iXfVbPFxuzxEGSgqsVIYChWaJPL5lBoFPgvcTLfGyEykURrU5OKpEvO03CpE3OdnuOPl7FCXpHbbrrXR2wmSf+vZ5e5CAolKgGqOyzMHpXzttbralg4HZWvw4rP25oMNF7ioO+XkyQXRLk/SySzTIaF2hGOTxwkQxqFQoHdbufmm2/m29/+NirVCoZfBf/qUP9rd6CCYgiCUEgY/uzP/ow//dM/JZ1OE2GRN/klCklJFzupHVmWoktFJObyiywdN3tILIqMvDbP8MtzDL88B0BVqxFXtxWVRsmpXxYviB389mDBOs3kFdhwewODv5sumZDjs0nC4/IDt6pNbh84HQURIsPyA7261Yyhuoz/pohMUALarqnD0WUhNBJl/lhkmXQiwdS78sTadacfvUNLeKiviNiz9P+CCWq22rE0GNckGSlUijV9NxHh4LdOF85nqtcSHSufPHTdKsf6/b/oKzk2cyDIzIEgsDY5qMhXfg0sLQqaG/VEhssnD9l0Fo1RjaPdvCYJqfNWL/Z2K5Gp+JrnOfSd9UlZfwiiEyL7/2Z9j9iWqz2oBCXv/e/SuC1Ba9OgFNYWdLP4DYSH4jJBqQw5aQmn1ygsATi6zYQnUkQnxGKC0go0XV2De7MNoCxRyegWiE2LLPRGOTB6qpRYlEdGyqHI78xKzoklhU+LX0/NJhtai4aTT06UPc/mTzaiswnM9oYRo5QQlADarq9DoYSJdwJEx8Wyi2BWnwG9Q1aXQmSZoCSAd3c143sXWOiNUn+BRLxM0rb5M34yyQzHHh3l1NNjaO3aEoISgO98J6mwTFJaSdwyuAVarnbT99QoqXCO+GxyWXErClIoyge8QkIRQTGuYIkv29rayt69e3G73eWDXEEFFVTwL4wbbriBaDRKPB7nvPPO49ChQ2SQOJLbCyLYcLJ54iI0avklJjIRR6OT/19jVdN6jZuB386QWpQ4tmLhwHeBE61ZXSApKZQKctkc8XmJ4z8dIzIlP5e7P+4DBQVS6RLic0niC6kCQcmzp4rJdwOgUBIaTsovZxow1uiREukSktLKPK7+PBeZZIYD3+4vajN7UG6jMShoucaDe0sVxx8vXvyQ4vLzueW6Omx+E/NHA7KN2ypoLQIKpYJ0qjwhe/ilGSbemkOKZ0EjW8KWIxrV7rbjv9SNYFYz8fvSfGeJMGRwaNBYNGUJUQdXjbMclghKxjpdYRfWauidWlSa9YVnuz/WhBiV1syvZg8GmT0YPGt/zoYzz61NaAO5wNd0RS26aoHhl2bKtrE2mhDMGnJrXCOQ5+/4tLgmQQlACknyvaRQliUn1Wy1MnMwRP+vp9c8R+fNXnKZHAfymylK+6EhPi1x9AcjBSvBclColChXplurNlq0fbgeg11g4oMASKUEJY1VQ9s1bkJjCU4+OcnMwdIClKPbhGe7jVwmx+ibCyWEoEKfnVqq200EB+JFuZmt2UA6lSY6LhIeSxR22K2Es9tMw8UOjv14nNSiRN8zk4QGS3P5xktrqO4wMd8bJj4tceT7y88N7/l2NAYVQy/NETgTwdFpRqGS4xEdTzGdHqM39z4anZrkiHzPGwwG/tf/+l889NBDZcdUQQUVVPAvDbVazZNPPgnAL3/5Sz796U8zPz/PbG6c2dxTCKKWLuVunDN5uwglxOZShIflB7j3fDvpRIbp/SHmjoQLm3V0DjXePdVojZoSQkjfzycweXWQlhcMNny0npHXZllYRVYOjcYLO5+NtTqUGoiMys/LpcUme4sZU21ezkahXJ530hQISp7ddurPdRKfS8k1syWkkQlKQOu1HuwtZg78/UARsUdWas6BGrznu6hqNdP7RPk6hlKllOtea+DoP/YXCCI6h2ZNMk3HbQ0o1Yqy+VN4OF6IfXWXhYXeUnLQ/PHwuqQhgMho4qz9yIkZtDYBc4ORZLD8XFt3voP6c5x5Rc/y+VvfOuTyPxTpaHpdYjiA/3I3WqvA/r85vWYbfbWWjLT2IqPeJZCYFcuT3XPZQp41+e4ik++WX4g0eXWko2mSwXQRQWklarZYabzExcBL08wfL811BKsaMZYmNpXi8D8MlCUWgbzrXaFSIBjVMklpVd6ls6nxnutA79Qz8MJM2fO031SLpV7PodFB0knKEqdar6lFrVcxfyKCGEqzGFpRi8qThyx1ekweHShzkGb5flAqcPaYmTsaIT4rqw4kFlaQl/JtOm6sJQecenqSwVdmmTkSLCEoATR9yEUiIHFicJyZAyFmDoRAqUCwqGm4sJqh12dJh7NEJpJIeUUR0hCdS3Ii+w5z2XGUs0qy2SxKpZILL7yQp556CofDUT7IFVRQQQX/wujp6eHYsWOIosiDDz7I448/TiwR5oPsKyizKjyKRtpCW1Hm55zIZAIxIiunqHUK6i9wMvneImI0w+ALy+/4np3VmD06Dv1D8QacTDLH8Z+Oko6lQaGk4VIHGr2K/l8Vk09SYYnIZHw5x2o3szgQhXRuWXFFBRafrGazmiyykoBTf76TjJQrIWYv5R+ooOXaOsJjsRISzJIKj3tHNe6tdiJjiSIlnCWo9SoUSgUZqXw9Ze5YiMVTkcL5BJMKMVqaA1h8BlpvqGP0jVnmjpbmO2N75fVclV6F1qIuS3g69fT6G/5hOT46u1B2PCATxLXm9SkCHR/xIcXTnPxZ+fwqOpHg1C/O3p+zYWr/2oQrAG2VQOv1dUy+N8/k+2vkRG4deoeW7NqpF9oqgVRAXJOgBPI9cfLJtfPJJbLUeiSxtuvqQMGaIhCCVY0YSjP4whQqQVGWoASgVCtRqFfU3VblXg0XubE1Glk8EyUjlhKUVAK031BHcDDG4Eszhbx+JUweLd5zq1EoYeZQiMXTxe9IS6R3s9eAGM0QmUgWCEGAvAaJrKQfGU+QLfMbMXn1NF7s5PSvphCDEqefnywmvuWfP85uK56dVUQm4iTmRc48P1U4bm8zorWomdofIjKZIDqdLJAbU8E04cwiJ7L7SOuSJCeSKBQK/I1+/vzP/5xbbrmlfIAr+FdHRUnp3wGi0Shbtmyhv7+4YKDDwE4uR1Atk4J2PdKKlMjI6kkC6KxCQa2kusvEQq/8gNn6uSZymRyHVqkAODdb8F9aw+EfjiAuyMpIM0eDJaoo2x9qRaNX8W45AkqeFGHxG+i6tZ6Bl6ZL1HZWKuN0f6KBU7+aKlIHEow5ane75B3wAnjPcTD+xnzROaraTMQmo4hRqNlhY+ZIaT+X0H6Tl8X+MHNHSwsnjm4Lbdd7mT0WpP/50gUgZ4+FbDpXKCaVQ/3FTnznuRh/Z25NQpL3Igd1Ox0c+k5fWXKKtcXIhtsaWDgZPquy0FoQ7ALOTnPpjr2iRuBoL6+WsISzKinVa8lJOWLTazOSTfVaTLUGpvetvaN/XQiw55EuEospDv9D+QWs7rsb0BjVHPz22sSr3X/cQUbM8sFflykcrVhYa7q6hsEXyhR0BNjzxTaSYYlDf1delavnDh9HnxhFkZYn7NXkpCWVJoVSgaPbLJPzVkDnFLA26JnZH8LkFTDXGZh6P1jUpvmaGuLzKabeD2Lx60gG0yWkoS0PNJFJyfaQa2HjXV5Z7ejRYeKrrp97u5XpoyEQYdN9DWRSWY7/qDghqzunivpzHBz98QjxabHouQJg9mmJjKZwbJBVmkbfnmd87/L92Jc5SM4TJxQOEY3Kn2toaODOO+/kz/7sz9bsdwUVVFDB/0384Ac/4Atf+ALx+PLLmxIVTWzAr+kq/E1WO7Ln1Y5SGD0CsckV5IQWA8H+OCavlq5b6hn43XTJHNB1hxeFAk78ZByNAax+M/MnVu0Q8+rovsvHwskIp59bY1dRLkv3JxtRKODoD4aLDmmrNah1SmITKdw7qhBMakZfnytq495RRWAwSmpBwrXVSmAgXqL8U1AfUudwdFqYL5NXAWgMSlqvr6N3jSLG5k83IZg17Pv6qbLHfZe6GD0LwXv7w20olAo++Kvy5wDY/Jlm4nNJTj9dnsy86f4mdFVCWSL6HwrXVhvR0VhZ4tYSDDWyMk185p+vpFTVbiIwGC1R+FkJ984qFo6HZCLYWliH9N12o4fqdgtHfjhQtq8aq4bNn2xkdO8cMweDZQlKvosdeHdXc+Y3U2Xz7iU4NphJp7JlSWbNV9fg3GCh9+cTZQsojm4zJrdO3oyx1IeVhRoNVLfK+YnGqERrL1U1qt1pLZCN6s6tYmJfoCi2eoeGhgud9D0tvxvYO40snixeRHN2m2m8xMHxn4yTmJdAQ9nrs+tLzSSCUml+tqKfBreGzo/UMfDbWYIDxWPuucdHLp3j2ONjoJEX5cL5zQgGl4Z4QAIJNt/fgEpQcOBby3lzUopzkDew1ZmZnJwkl8uh0WjYvXs3v/zlLysLZBVUUMG/CSSTSW655RZefPHFgroSyETxbuX56JY8rpB33WbELMd/NA6qLDqLmuSi/F5s8uhki4Q0dNxah1KtpPeJ4lzE7NPRfIWbvqflZ3dVi5HAcKxE4WfDnfUYnFo++JsyxGc1kAadXc2Gj/oYenmGxVPFuZu1Oa+SBLRcW8v47+eK1YHU4N5sY3p/EADX5mUVJgByOQw1OsSQbEtR1WoiMBRdU4mo7nwH8ZlkMSkqD1Odjg0fbWT64GJZRQOTV4dKqyr0txzsXWbarvMy+uYsk++VrzdVd1nwXeTi2OPDZRWVdA4Nmz7ZzOyxAEO/LU+mORvUOiW21lLV9eJGYPEayuYQSzibkpLOoYFcjuTC2opOumo1hhr9mkpLwLp5F8i11fh8it6flK/h+K+qxejSlt+NnsfWB/L13e+W1qtWKil5dlcx+V75+ty2zzaRDEmc+En53L3lWjfDr0yTTpXJu4CqNiOBwRhklFgadYSHixf+1CYlljo9i6diCFY1Fq++5H3Hs9OGGMswfyKC3qkmI4IYKo5/xy2y3W7f01PFpKMV8F/mwLnRwvEnxkryWVuzgehEnLSooO36GnLZHGeeL74Xq9oMNF1Ww8mnJ4hPi5jrdUTGlsejd6pJLGQwuDRsvN3LyN55Zg4u348T6UFCNWOEo2EiEXmMjY2NPPzwwxVSeAUVVPBvBm+//Tb3338/J08u1yB0GGmhB7fKV/hbVauRpstq6HtmgviMiGBVkVqxHmGoEeS/m1R03FrP6BuzBFe94/sudKDWKRn87TSowFynXyYP5SGYVHTf7WfuWIjRN9auBfkvd6M2qDjzbPH8rdKr0OhVJBdFLH6DvAH8ULCojcVvkO3KQmnMPn2R7dYSTB5dQSVpPbUjVNBwkYuRN2bLkkuar6vFVKvnyD8Olj3u7LGWJSitROft9WiM6lJXmxVoud6DGEkz+nr5mDVdXYvVZ+TQ9/rXJMGcDRafgWRILJmTV0IwqUClWLPNH6KkZKzVEZtNrttPW7ORyGSSTOKfN5ja7XY8e6rp/elIWaUllQCdtzUy8d48gTPlVQrsHWaarqhl4IXJ8m3yuZ+xVl6zj02Vksxcm63Un+uk75djZY+b6vSYa/UycatczWvF70ilVSJYhJLxVLUu5WZyn0ODkSICk8akonZbFWNvLeS/U1esCJX/W9PlNZz51ZRM5FZR9vpsureBREDi9CpxlKJ+GjS03+Bm9M05oqs2ijZdVYNSo6T/VzOQyxaeK0v9lBIZyCppua4GnUXD8R8v58WZjMTJ3AFUdWkmJibI5XIYDAYuu+wyHnvsMaxWa2mHK/g3hfW3BlfwbwImk4kzZ86Qy+X4q7/6q4IEf5I4e3mWVzJPcjizF4D3v36G44/JhenOG+rYep8fo1tmMq4kEkjRdME/1OgW6LrNCwLMHQ6z7y/PyIQhhZKmy2vZcl9zSZ+O/mM/g6/IzGmTV8uOh1sxN+YLR/mHnWBSkZVyhEaL1ZeAAkHJudmKuc6AZ5ut6PxiTMHIq3OgUNB1kw/feS6sLcaiNoHT0YJlVtPlHjbfW9rPJVS1mam/wFX22PyxMOHRGKOvld+hPnc0LBOUBNj6hRbMjfqSNmOvzzG1f2FdxaRUUCKXA8EqlD0e6o8RHIgw9Lv1d8qb6gScPZayx8RFcX2CEtB1Uz3tN9QjmNZtti46bvLRfffa8QaIjqXWJSh5LzrLoogIM4cDjL01t3abbHmZ9pUYeHGS/t+Uj+mm+xrwXlAFUJ6glO/HwukIw6+X74ezy4KpVk/TxS5y2VxZ9aSmy2rYcIdsGbR6cRpg40frabxIvj+j42IJQWnpe9xb5L6Gh5IFgpLFr5OJgUAmlS74GK9E1+11bLhT/v7Tz44z+MpMCUHJ1mqk6TI37dfWAnDk+yMFglLtLhtNV8njCw3HSKeyCGb5ObTyubLt88103eojl80xdyzC/r89xfjeBeYyk0y1H+dt4XnGOcPE5ARVVVVs2rSJVCrF8PBwhaBUQQUV/JvCPffcQywWIxaLsXv3bhQKBVky9HOUl6Wf8ab0LCFpnvG3Fjjw7TNEx+WXyg23++i5Z1ntMtgvFzQ0ehXpRIZwfodv42VOHN1mAHqfGOfET2Rysv8KD63X1WJwFdstRceTDLw0w+kXZIJS1+1eWq+vLe60QkkmmV1WMtLIqjgAqQWpYO9Vu60K99aqkjFPfxAoKBv5L3Wz8Q5fSZsl9aHOj9TTek1dgXyzGnXnO7H6TVibykvgjLwxy+zRYNljQIGgVHdeNV1l+gHQ/+sJTj+7/k75s+UIE+/OM/Hu/LptQFbLXAuzB4PrEpQAeu5upvX6+rN+z1owODR03uyj6UO167ab3hdYk6Dk2GhBW72+jdfQa3PM94bWJFNpzWpyOUiG0mUJSgCjr88z9vZ8WYKStdHApvsaQQMLJ6NlCUoAo2/MsHgmuubionePA0dXPhfOZUsWyno+3kjLVbUgKJHilBCUqloNNFzooOlKJ4BsebtqyK4eKza/HmuTnPevJChZ8u8CsZkkWSmHYMnvPMyfw+zTsuVTDWjtcrwHX57l5M9KFxc3fcJHy5U1AMSnJQ58e5jgQByNAdpucKOxygodUmT5vQ2JAkHJ5BXo+YSPxosckMty4sdDBYLStOc0Z+re4y2eJ0aYYDBIc3MzP/7xjxFFkb1791YIShVUUMG/Geh0On71q1+RTqd58cUXqamRn41B5ngr+0teFZ+kT9oPwJF/HKUvb2/mPcdBz92NGGrkfCc6mSyQeMRIGjEsP5jVJjX+y12odbIy0uHvDZNcTKNQKmi5prZsznPq6TEG8moBglVNzycbMC4pKOW/Q21QkxFzxGfyz+W6ZTLVEuHH5NVR3W7B3rWqQJ6mQFDyXeTCf5m7ML8AoFAQn02RTuVAo6Dlujo23NbAWqjZVIX3nPLP9ehEkrneIBPvlM95ouNJub9q2PCxhqJxLGGxN8LomzNrEpQAxKgEuRyCsfyO/OS8xOzhAGNllDJXQrCpqWotX7BKJ7PrE5QA33kuum5rQGf755sHNF/hYePHmtZtk1xIr0tQcuXVutfD+NtzTO1bJx45yGXWz2dP/2qS/t+W38TQcr0b12b53luLoAQwfTjI2O/L17xMXh32FhM1W+1l8y6dXU3rtbU0XyHnqasJSgAdN3rwXybXvMRQuoSgBODeasWd72tiLl1Y6NQ71QUfiEwyIy9MrsrxGy+tpuUa+bkx9Po8/S/MlOSzOruatuvd1J/vhGyO089OFwhKVW0G6vbI70eRSREpmkatzSuKrCAodd3uoeu2esjmiE+LHPz7QWYOhommg0w2H+UdzXP0Zt9jYmoCq9XK5ZdfTiKRYGhoqEJQqqCCCv5N4dxzz6W3t5d0Os1DDz2E2WwmSYzjvMsrmafYn3mFaCZM4EyMw98fJDaVIpfN0X6jl/abPIXzLBEJVDoVYkQiPivXnZw9FiyNcj1o9M15Bl+aBYWS2u3VtN/gRe8sXh8ToxlOPz8h12cUsnpT3fmleU06mSEdz7MkVLJKEEAmkSmoBbm6bWVrXuGheGFu8V/mpuVaT0mbJYJS3XkOWj9cVzj/aji7rDg6rZjcpeuEAJPvL8juK2twaZYISlWtJvyXl3eTGH51hoEX1rY+g3zNa5261/SBRcbfnjsrQWmtvAsgPBpfl6AE0HGbD/+H/vmuGCoBOm/1Ubdz7dobQHAgtiZByeTRIVjXt/GaPRpkev/imlZwKr2KXC6HFF87YIt9EUZemylLUNJWCbR+2APKHLGpVFkCEsBCb4jZY8E1j9duq8LZk393KJN7NV1ZS+s1HlRaJRmRkvHoqwWarqihbqe90OfVCksWnwHnBgvGWi25bK6IoFRQRlqUSCezstITFO4jrU1N+00eNGY5Vxp8eZaBX5euvzZf6aY5X/PKxCV6nxiTCUoqqNttRzCpyGVz8ntbSCqMc+m5IphUdH+8Ac/2KshlGfrtVIGgtFA9zoD3A17LPs1UbpiFhQU2bNjAq6++SiwW49lnn60QlP6doKKk9O8Uoihy+eWXs3fvXlZeQgVKmummUdWBySPgPcdB3y/kB8TOL7USGo6V2L213+Shut3M0ceGiE6KCCYKSj/OzRbSsTSB01HabqzD2mDgg++cKVIsqr/YgXeXg0M/GCQ5K2Ju1BXs35YgmGDbg53E55Ic+V4x+1fnEkjmpd22fr6Z8Ei8RP6x7vxqJt5agFyOjlu89D03XtSH2j12wkNRYtMizs1WQv2hIrUiwaREFLMgQt0F1cwdjxQpNy2hqs1E63V19D41XGL/Zm0x0nWrj8n31ycjNV3lJiNmz2rxti7yalTlsOsrHeRysO//Lb/r37OnGu85Dvb97amy5zDVa6lutzKyd3bN7zibkpKj24KuWihRt1pC992NKNQKjn6/PNO76So3tdur6f/tBDNl7NUK4z/LrrM1IUDPx/wc/dHQmmNEgF0PtROfS3LssdJFzp67faBUcPQH5WPQeJmzYKe4ZAe3ErW7q5h6L4BCqaDhUqdMussjl83h3mEDYOZACFurkUwqTWR0+Z4zujV03upj8HfTLPbF0DmXVdGWYPIKdN/VSHAoxskni3cQGNwC8UURRNjygB9QcOjvihWpWq6X5SCXdof6r3AVxrR0DXLZHDseakGpUbDvr/pLvmPDR31MHVhk7I0FPHuqUGmVjL2xQEKIkmif4uDhg4X2druddDrNM888wyWXXFI2rhVUUEEF/1bx+uuvc/vttzM7Wzy/W7CzlQvRaLTUnWMnFZGYPxbBd2E1zm4rR380irTqhX7Hwy2kIhJHvjcsq6+ATHDQ5C058ztZtn++mdneEKOvFc+3Wz7jJ53McuxR2QpLqdOQWiwuxHfe6sHmN7H/7wZKFJG01bLVmqPbgu98JyeeHC2yXrP6DWSkHNHxBDVbbWTETLE1hAbqdlbLxOhcDucma4lNsMGhkck7GqjbVV3Wug3knEGMpsvKQ2/4WAMGh7a8GuKKvmy4zceJJ0fXVRk6K9ZQwVmynxt6dZqp98pLOXff3UgqIq2p2OTZU01sJrEmKeesSkoa8O52sHi6PIFIY1Cy6d5mht+cKa9upVCw44tt5LI59n9jjZ1ra4y/LMopKF1YTUbKMfHO2nLXvgurqd1h59iPh0nMFv8mTF4t7TfU0ffL8SI1siVo7RpsjQZmDobQGECSivurMYCp3kjgVAxjnRadTVtEpEadpfmyGgZemJGLozusTH1QfM82XenA6NbLto0KJVp76e+q++P1GBwC7//tQEm8jB4NsUkJg1vDxo/WM/LmXJF9nMYA3R9rYP5UhNHX57G1GABlQTlJY5Dt6Mz1Ahtur2fygwCjbxTHs+U6F5Y6PQfz6p4t17qZeG+BxLxEqnWBk7NHmJuXn1FarRatVstVV13Fj370o8JGlwoqqKCCfw9Ip9N8+ctf5nvf+x6JxHLRXEBLq3ILHnUTOpuami1WRl6T32F7PtlAeDTO8KvFZAvPniq8e6o5/pNR4jMiah0FGypLg45sJkdkNIlnjx1np4Ujjw8XKRZVd5nxf8jF8SdGSM6n0bs0JGZXTQKqLDu+0EZ0KlFihyHY1Ih5FaWuO+qJTqZKVAKcmywF67qGS12MvDlb1IeqViPJkERiJoXVbyA2lSSdXLFgoQa1Wkk6maW6y0JkMl74zpXQu7S03+jl9LMTxGeK63Y6h4aNd/llG401ch6Amq02VIJy3TZnRV6Nqhy2fKYZhaq8/RzIdbuGC10c/9FwcQzy0FWrsfnNTB8OrPkdZ1NSMvv06O1aZg8Hyx73X+1Ga9KUt5ZTKHBtttJ0eS0DL00WrmsR1hm/fI6z7ClWQ9t1tZz+1dS659nyGT+xmSRnniu14G26sgaNUcWpp8tv6qvZYmXmWEhWDbOpi5XAAHubUbZqUyip2WJh5lh4uS+5LLZmAyqtioWTMQw1GpQqVWHxF2TyX/sNtYz9foHgQLxge1I0TJOarff5WDgdk3O4FRCsarKpNOkkdNxSi1qr4viPi98nPLttOLssHMmrWdZstTBzNN/PJQ5bGjbcUYfWquHg3w2v+n4lG27zMncszOS+IFVtBgSjmplDYdLpFJGN4xw4uo8ccl3ebrdTVVXFT3/6U3bs2FE2rhVUUEEF/1YxMDDA/fffz1tvvUU6LT+PlaiooZ5WtiCoBOxtRtJijvBwHHu7Cc/2Kk49N1miSNT9cZ9c51lah1xSYFGBo93M/An5XbzztnoW+yMyoWcFWj/sgSyceX4CVCDoS63T6s6V7dmOPT5UMn9oTCqkaAZDjZaGi10MvDiJGFr+vM4uoFBBYk7E4pPJVKtVk1ba3Fr8BsKrrFlX2rmtZYkL0PChGsjlyq4VNlzswtJg4NiPhtcmEqmg8ZIahl+b+WerIS2dp9znLT4DbTd6GXlthrlj5dWdGi+rIStmGX2zPKG5qtWEGE2vaaF2ViUlFdjbzEQnE+UJUSroutXHxHsLhIbKK39uuKsBpUrBsceG1/yO/5P42TvMqDTKNWO01MZ3oYtTT4+RWCh+VxCsalqurmXolZllO8OV3dOrMNfpCPbHUAkACjLi8rq/SgC9U090IoFg1qBzaIs39imz1G63M/W+rL5kazYSXKWS6tpsxeozFCzUln4nK+G/3EVVk5EjPxgimy5em9Xa1CQXJTQmFV231zP21jyBMyu+QwXt13sIDkeZPhBC7xBQ61UF5SSVINvRaUxKuj/WwOT7i0wfLI6ne5uVqhYzvT/NiyfsrGLxdAQxnCFTG6UvfoTJefmYIAhUVVXx6U9/mv/n//l/UKnWJ6lV8G8T//xtJRX8q0IQBN544w0A+vv7Of/885meniZHln6O0J85gmpMRfuTO/CoGkCAbDqLlJAf8rW7q7DVGzj58wlO/XKyiGSx7fPtxGYSHP3hKHOHlydX5ZLXff4Z2nRlDYOvzTD2+jxjr+cXzwTYeIef+GySIysIKmIUpvcvyr6y+c/KEm5TBYISAqgFFRqdqvDvpe+ayC/W1V3gwN5uof5cJ2MrlG2mVnizt1ztQYq5ihZhxGi2cE7feS5qNlVx8G9LCx66agGFSkFOKuXuhfpjvPv1k4U+VXWYCPSVMmYdG23kMmuTlKwtRjpv9jHy5kxRv5dQs8NG0+Uehl+bLnt8+PVpomNry1ZnM1kUKgWWutLkCWSFo+jY/wGBCs66c02lVaHUrE0wGnxxmoyYLU9QAnY93IEYlTj0nYGyRKWdj7QTn0lw/EflJa8bznNirNHh3lxVquYkUIjN+99YQeRaVQRSapVA+TE4Nprx7LAjmNScfmaqhKBUs91K06U1GBwCgy/MFghKKxUdGi92kknlmDkQIrhiMs+pcyCCGBZRahSYPXoW+2IFgpK1WY/vfCfHHh0lOi4y3xdm5M3ixWuTR6D7Y40EBqP0/XyyyKbO0W0ml8kxfzyy7A8rgCKtKBCUTF6BjXc2MnciRP/z0xx7YpTknIhCqcC12YKjw0zvzyaITabIZXIoVXLshn8/w2nr+0xnJlGJKjKHM6hUKhQKBZ/97Gf5xje+UTaeFVRQQQX/HnDxxRczMyMXx//0T/+UP//zPyeZTBJmkTd4BiSwv+mmh3PRaDTkcpCVcgWCUvtNHmZPhAicirHvb8+gMciEgdYra6nuNHPgH4aQQlKBoKSxashlc2RS+aJ3h5FsOkewP15k19t8tYeqZhP7/36oiIzU/9Ic3j1S4W8b7vIx/PoMsYlUgZBkcGhRaVWk8koDS0SV0Ir8of5cBwq1spikJFFQbmy5zoOz24oUSxPsX57PltSF2q7xUN1lJTyWIDJSmpcoBSVqXfmFmBM/GimQuMwNBiKT8RJiiHtLFZZ6I+5NVUzvL79DvOsOH3q7wIFvlV/s2vSpJjQGNfv/ppQMNfXeIkqVYk2CEoBKq0STXvtlePLd9RUDzgoJxt9aW/HJ6NGj0CjLqiku5VEnnhhCV12qjADg2WPHd4GLU8+OEThVWvCp3VVF/XlOTvxspKDItRquHhtkKUtSsjYZCA3GGX1zgdF3FgrXcKUFSS6bQ6FSoLMJZUlKXbd40RhVzBwMIZVJg7s/7ketV7Hv9CCxSYnYpLR0YgB851Tj3GghNJ5g/li0mKCkzoIEaq0KjU5ZyAmXCEr+K5yIkTQT7wQYe3sBg1MouQ83ftyL0aHl/b8aID4tse+v88RwDdTvtjP21iJSLAsKUGrk8wcHlgt4G+/yYnAK7PurfiKjSY78YFi2kBOUtF5Zw0J/lMWTMdKJDJn0cj559L2jvD/1e9KI0AuK/PXu6Ojgqaeeoru7uzRYFVRQQQX/DqBWq/nGN77BN77xDebn57nxxht55513ELMpTmTf44T4HrpZAx0v78CpkhVcMlIWKSkX2m3NBqr8JobemGXy3QCLJyMFksWm+5qITiU59fQk4ZHlZ3GhhpFfG/HstDF5MMhCb0RW185j4x0NRKaS9D25ghCRUTL6xizxBXmerNlqQzBrGHtzrogspNGrUenz89wKosoSkaWqzYR7axVSVGLy/eW8prAAoFDQer0XKSYV1dxIQzotz3n+y92kQiLHfjhcEledVYNSo6TcftXkvMT+b50u9Mnk1REdL11sqt1mB6ViTZKS3qWl6zYfo3tnS0jsAJZGA+031TPy2kxZEtDgy9OkguXzDYCslEUpKNG7tCV2MSArHE0vrK0a9IcgMpooe+4laHSq8vlrfh6ePRxCoVCUJygBW+5tQoynOVGupqVQsvneRmJzqcIi0mo42s1U+U04OizMH1/1HWowOnXEppIc+v5Q4XquzLsAVDolKm35/NVYq6XhYieGai1Dr8yWEJTMPh0t19YyfSjI6BuLzBzK92HFTn//ZTVk0zkWTsbyJHup0D/SIMbSqHVKDNUCwYF4kXJS/bkOTj87TTqaZvKDINOr4qg2qdl8t4/5viiDL83S9/PlOJnrdShUsqJTRsySy+VQm5Sko9mCLZvapGbLPT5mj4UYeX2BU8/PkE7m1cobdTjaLQy+NEs6miWXXlZMn+sNM2w6wojYj0IFmaNyzctsNvOVr3yFr33ta2XjWUEFFVTw7wHNzc289tprADzzzDN85Stfob+/nymGmWIYdUbAfbKRVnpkMoBCQUbKFUgOdedWEx6JExlPcOzxUTQmeY6p2Wqlblc1x38yghjOMN8bAYUSlSYLuRzZ/PutoUaLUqUgOpnkzHPLBNq6ndW4t9k59qPBIqLR9MEgmWSuMH80XlbDzKEAifllGzedXUCtVy+r7+SJKskV4gWe3dUIJjVHf1C82X6JdOTcZKXhohpOPTNWlBssEZTc2+zUnVtNMiCWJemodcrVQjgFjLw+W+iTzi6QDIklRBpLnQF7m4XwWJzFvvIKjvUXODHXG+j9SfnN9s3X1qK3azn++HDJsfBonMGXptY8N4BaryKrXptAvZY12h+MDCyeXPv7dVYBlaBcV13yzLPjaKvKK19Z/AZarvJw5tcTZfM7i99A4yU1nHluYk2VpZpNNpRrkJT0LoHErMhiX4TFM5Hla7hyXTOTQyWo0JjUZUlKTVfUYKzRcXhoMK96VDzWlmu96KoFjnx/GDGaQYzmC2P5m8vebMKz005iQSI4ECsmKOXvMbVWhcaoLvx76Xfi2mwlJ2WZOxFh+kCQ8HiihKDU+CEntiYjh743hBTNLAs7LBEPeyOFNXWFUr5XkovL+V/DxfLnD39vCDGc4dhjI4jRDAqlgtqdVcSmk4RHE6STWTKpTKGPw6fGObr4HmEWyI3mUCgUaLVarrzySv76r/8av99f9npV8O8HFSWl/2B49NFH+fznP08sVrzAoEbDRvbgyBdvNt3XgKFay7t/Li/G1J1nZ2KfXGDovKGOxcEoM/tDNF9TQ1WTif3/MAArFj6cm620XVvH9OEAA78ufmluuqaW0FCUhd4IzdfWYnAIHHu0eILc/mALSkHFvq+fkv9QRjlo2xdaUGlXtMmjqsNEID9pbbq/icn3iy0lnJutpOMZAqejODdbSSwki1SRqrvMxOZTJGfLqy4tQecSaLrMXdYbvutOH7ZGE8d+MkRkeLWH7rJqU1kIsONzbQy/Ol3WCgMBNt/bTP/zY0Qn1joJ66otnQ1dt9cjxjP0P19+x9R6Sko6l0DHTfUMvjRVlgR1VvwB/e68rZ7Eosjwy/mdUquISls+20RoMMbgb9ewaKNYoWsltj/Uilqn4r0/X6VEpVDi7DFjbTTS/3zpLjNYVkcCeTfm5LvFha8ldSWFUoH/cieDv11BBhOg564GJvctMn88gq3VQHAkXhSLluvcODdaOfT9oQIpaOXnEaHpCieuzVWc/MUYoYHle692l42azTYO/8MwAB03exj9/TzxabGIHLXnq+2IsTQH/nZgxdAVNF9bg63ByP7837s/4WP8/UUCfVGqu0yIUYnIaIruj/swefS8+1cywUvMiBzlbYLMotfrC7tcVSoVF1xwAb/4xS+w2+1l41lBBRVU8O8dkiRxww038NJLL5HJrKwkKKihnk52oNFo0FjVbL3fz+KZKGeem8Lk1aJUKwkNxqlqM+LeZOXkz+U5eesDTcz3hRl9vZiUsvWBJjQGFe//ZfHOI4Nbg2dbNf2/keeuTfc2MrFvYdleNJelqt1I+431jL45y+S7i2VVc4x1Wro/Ju+eH12plKgBU42e6HgCR7cF1wYLvU+PF33ed5FD/kwuh/d8RwmhpmZrFTMH5TmznOrSEpqvrmW+L1SqOKSBXV/sIBkUOfLdwZLPLSlDrYXGK2ow1+o59uhw2eO+S10IehX9v15fSvufpDa0AtYmA74LXfQ9OVyWYHM2JaWmq2pRqilRGl0TqwneZ+m3sU5L0+W1ZRczQSZn+y5wcfB7q9SDVhK8NaDRUDI+a5OBrlu8zB0PF+7R5Y8raL/Jw+CrsyVqY5BXR6ozEDgTx+DSoNKpiIwuF/1MXi0avYrAmTi2FlmePNi/nNQ7us24Nlrp/am8iGxtNhbsd5aw/cFmUmGJY4+OFo9pRcy2P+hHjKQ5+sNitYSu2z2EJ5KMv7WIvdOIwaFl/K38gm2+UNR8dQ2ubisnnhwv2uWmMSrZcGcDcyfCTLy9gHubFWONTlYJ0IC7x8r0wQjksuz6civh8XhBNXNBmuY476HSK0gmk4WF5sbGRv7bf/tv3HvvvSWxrKCCCir4j4K9e/dy33330d/fX0S0MWCmS7GTKrVs5dl6nRur38j+b8rvt44NZuZPRSAt5y3xuRTzJyLUbLXh3Gih76lRpPjy+UweHRvv9DG1P8DIKut3z04bsQWR0ECc2h02THV6zjybn6Pzz/8Nd/rQWgUOfidPkC6jnNP50Xp0NoFDfzdQ9PeV5KDWGz3MnwgTOL08v5l9srVIZCSO1W9AimeLVJGMHh2ZVJrkQhpLo4H4dLKs4pDapMZ3gYPBF0rrHw2XuHBvs3Pip8MlRCW1DtLp0vEsN4CeT/gZ2zu35qJVx231jLw+S2J2bTLSWdWG1kHDpS6yaRh7s/wGvfWUlNQ6JS0frmP87bmyJK0SrM67/oB+N1ziQkpklonsqzbNddxcR2Q6uaYSKVBWeQhgw1316O0C+78zUNQPhVKByavD1mRkfG/58xbUkZBrpwur7OxqttqYORjMW/ZYmfpgRU1MDS1Xulk4HSFwOobBrSW+IBX1oXa7Fe+51Rz7ySjJ+VV9z8fNtdlCw4UOTj1bTCKsajPg3mrj5M/kdybfRXZmj4ZJLhafZ9tnGxFjmRLFdM9OG9UdJo49LueFzVfVMNcbIjySxOTVkZUyxGck/Jc5cHRaOPSDYdLRLOl0mv7cESZz/Qh6oVDz0ul0XHXVVTz++OOYTGvb5FRQQQUV/HtGJpPhf/2v/8W3v/3twqY9AA1avDTTSJdMWFLBlvv8LJwMM7p3AcGqQq1TEZ8R0bsEXF0WRvJ1pvYbPQSGY8weChWRW9turMPg1HJ4Zc0nl0MwqXBssDL5vvyu3XxdLXPHQ0XrUnqHQOetDYy9NSuTSMqo5ggmFRs/7mf83XlmDwWXD6hAXyWQmBcx1upwbrSWqBY5u60Fcko51SSr31hQ+CmnurQE1xYbselkWTJTz71+UiGprMp4OcWblXB2W7E0GhhYo2ZU3WVBZ9UwcbYNdP9MtSG9Q6B2ZzVje2fL9vNsSkquLTY0OtXZ+7cWztJvwarCe56Lwd9OlW1n8ujwnuek7+mxdRWtVColGbE4p9ZWCWy8s4HpwwEmfr9qc6FCQd251cweCZaNi0oAvUNHdDKJxiQTiOIzy7mxYFUjmDREJxLonTpUWiXR8eV7y+TR4dhgLayh6mt0JFath264ox4xlubMc6vujRUx23hnPVI8w6lniteKGy5yEF8UmTsaxlAjYKzRlaxnuzZb8Z3voO/pcaKTy31XaBS0XVvL4kCMuaMhLD49Zo+eiQ/k37GtwUBoOEEum2PTfY2ER+MM/U7O22OZCKc4QEIXJiWmyGazqNVqtmzZwn//7/+da665piSWFfz7RUVJ6T8Y7r77bu6++24A/vf//t/8j//xP0gmk6SROMxeyIAKDdP/sA2fVfazN7oFGi5wYvUZ6H1inIEXJgqkHY1ehVKtLBApOm/xMvbOLHOHQyjVCmb2BwHY8XAruSzs/+YZBn+z/MAz1erQWpcZrM4eC3NHw+z/Zj+CSX6Rr7/YgXe3k75nxoqUiQJnImjN8vZ5waTITyQzhTY6l4DBqaW63VL0cJw7vLzw1XS5TMp6/y+WCSkrX7JbrvIgxV1lrS+aPuTG2mjCVCeUkIX6nxul8TJvCUEJllWbqrvMtH3Yy+ArU8WKQSLLtiXC8t9WHj+8qki1Go5uC63XeRl5fWbN3fnOzdaiWKyEqd5IOvHPq/bYGo3o7Vq01vKWEc4eC3N94bXt6h7uIBkQOfK90kXGJZx8ckUxYUXBR7ALiIsih75T/rM7vtiGGJF3FJYjKAEMvTyNoUZbeiCXxXeBC41BVZaktKSOpLcLDL4wU0JQarnOTU2PjcSCyMzBUDFBCRAEMLp0uDZamT8eIXhGTijMDVqsDSbG9y4wfWARY42WbCZXRFDa+tkmlGoF+785wOBLc4y/PUcqnENbrUFrVhEZTWFwaNFZNAVbuL5fTJLL5mi4xIFnVzXH8naOg7+bZua4fF80XV1DZDzO3NEIKrVS/q3nyVCnnh6VnwMCtH+4jthckiPfH+HYz0YREyKHeRN1FYiSSDQq/yaNRiPbtm3jxRdfrBRpKqiggv8U0Gg0/OY3vwEgFApx3XXX8fbbb5PNZplhlBlGUUgKqudriX99T8Fuyf+hGgwOLe/9xWkCp2NEx+VihsYASrWiMAc4NpgxOARG31zg2GODmBvlZ6u10UDnrV6GX51h+kCoQP4w1gnoqjTobHKCYfLqSC0mCZyKceCbpwqLb9s/24oYlTj6j8OFsYjRLLHpBFOH5Dmi7pxqAgNh4jMS0XE533F2WjDXG0visERqcu+UFXmgWPlniaDUfHUtrs020skMgVOrFq004NhoxejRcXRwlV2sBBPvzhMaLV/oWSIodX+yEbVeJSsxrsDwSyuKaVZNif3d6B9g0dt9TyNai1BWbQmW7MZMpeMC9HYtRpd+zeNng7XRsKxoWvLF8o6pxaUcetVCWd251dSf6+TEz0aJrBG/2ESqLEFpyVZt/nikWEkLZGuPrVYaLnJx8hfjREYTsgXbKoQG4zJB6XeluZXJq6Oq2YgvWV1i4QHQ/Qk/aq2KfX/TT3x2lb8b0Hmzl6yU48CZwSJy0hLszSZMtbqCjdoSQcl3sYPR38/LqmEjceJzqcKYAOydRlqvdjP4u1nmjkU48v0hmXyVy8qbJU7JcTQ4tSytjy+ejLFIDHJZtn7GTyad48j3hxl4eYbAUIzwcByjR8C9uYqBF2aQYllUggKNUd5dOn0gBJq85P1NssX2Qn8MKZTl4N+dYTw0Rh8HqKqxMjc3RzabhQRs3LiRO++8k69+9aulwa+gggoq+A+ICy64gNOn5bn4ueee48EHH2R0dJQ4EfbnXgVJJiwtPLONGpMbkMk4TVfUYPMb6f/1tDwH5MshGpMKlaAs2L81XOJk9niQ6GSSk78cJ5RXgdz4MR8qjZIjPxhmcl+w0B9TnR5zrb7wb2uTkdBgjBM/GUWtk+dke7uZ5qtrOf38RBFZdvFUBIMzX5tQg2dHNZPvLhSIMWqdAqvPSDqRKSIprdwB7r/MjUpQceBbyzWt2ApLrdbr60jH08WqS3nU7bTj7LIxczhY9BmAkb1yblSOpLMUK6NHR8fN9Qy/MlO8WJeGo/84VBiXWr38mSX0PVlMIFkNo0dH1+0NjL45U2IBswSr30BoLF6WEGTzG8lIOcbeXPdrysLg1mGuM6CzCWXHLxO/4vKYyih/b7mvmURQpO9na49x5LXyuafapCYdTdP3i/I2dN2f8CElMvQ9NVHeDgUYfnUOc52uJC65bA7vudUYnVrG31koOW5pkNWRpg4EGHtzoSxBSVYEzzB/IlJMUMrD6jeQy+YInI4VLIp1djUWn4HZw2Hm+mJYGwwl90PnbR4Ek5oj/zjK7OEwi31h0oksar0SwaohPiMhmNQYHVr0TjWJubRsiZvL4thgofFDLk7+fJzYlEj/b2eITcq/kdrtVhKLKYKDSVDJapZLdo8jr88U+tF5k4fIdJK+pyYZen2eMy9Pc0o6QMKySCaXIRyW72+j0ciFF17Iz3/+80rNq4IKKvhPAZVKxZ/8yZ/wJ3/yJ4iiyH/5L/+FH/7whywuLjJEL0P0ImR0eDKNZL6TQSXI77fe3Q6qmo0c+IdBErMi48F8fUglK1Gr8vUNk0eH3qFl7miI089PYPbIOZVgVbHhjkZGXptl8VSkQFDSmFSYavUFazZtlUA6mSExL3Lk+wMFAknnLfVkUllOryAjZzIQGIwSHJTnt6pWE/F5kVRALKjn2JqM2JpMqN6cYeU+xCWCkrleL+deWmUR0WmJoLSW6tIS3FurSCyInHm2dJ4ff2uexBpKkksEl8bL3ejtmhJr4bljoUIfVXrVsnJUHmtZ0a2E/3I3Jo9uzc19qMBUoyuybl2CWq/C2mBkzi4gRddWolwLlnoDWsvaJCpTnWxzVg62ZiP+y2o5/dz4mnZzYihTtGZdQF5QMjqZLGvha/bpabq8ljO/miA+kyKTKSX9pwIiE+8uMHesVGFUsCip2VQFOZh4p3RsBXWk7w0iRTMlRKa26+sAOP6jERJzpWMz1xuw+Y0FEtsSQcm5wczimQgZEQIDMaRocS1N7xLouLGO4ddmCZyJcfLnY3n1JjB5tAWykcmjRykomTsaJj4jEp+RG7Xf5AHg1C8nmT0cIrEoEp1MIVhUODplQmFOyqHSLivnh0cTxKYTkIG686pxb7Zx7FFZFer448MEEwFOcxihRlGoeSlFJVu2bOFLX/oSd9xxR8n4K/iPgYqS0n8SPPLII3zzm99EWrV6oESJn43s2b2HxYE44qLI5k/70VnVvPcXxcQdk1eg52N+FvoinPrlOOZGHalwFnFRpOMWLwB9Px/H5NXSer2X078cK7LB8uyx47/Uzfi780VWaNVdZnwXOQvEk85bvEwfCxYRlro+Wo/Nb+LYE0NEhlc8kDW5Ahlm6xdayIo5Dv/D8sKUziVgqtExfyyMo9uCya1fVuehWHWpustMZDS2bA0HBYKSYAJHd3VZQlDHLV5MHn0J0UnnEui+q5GTPx8pUnJaiV1f6SAjZtj/N6UkKZmIVMfw6+Vt4bZ8roXhV6fLWs7V7LDRcmUdU/sXGHyxvCrQelhPSels2PO1TqR4uizxC2DjxxqITieLrsMSdn2lg8RCSi5orV5kO6ca30WuPDGrvKz4pvv9xOdTnFnN+r3URc0mG/u+dbqEPCWYFNi7qpj+IIiQrzGsVNZy77AxnSeZNV3lYvDF5XvX6Bao21PN6Wem8n2sYuKdQNFnGy92cvzHI0QnxbIqUjseakGlVfLeX8iFVoVSAQJ0XO9hYt8CkdEUrTe4USoV9P1ieVwKpYLdj7SSTmUL6kdLikntN3lQaZT0PjmO0S3QdqOXM8+NE50UcWw0FxYa93ytnXiefLQSXbd7sfqNvPuXslpS3TlVDO0fY39iL476KqampwrPkoaGBiwWC7/73e9wu91lr0sFFVRQwX82TE1Ncc0113D48OESOw0L1Ww1XIC328XMwRAaA2z9XCvzJ8L0/7p4zu65R1a+fO//lecIe4eRxb4YJq+O5ivc9P5UVuZpu8mDGE0z/LviBY/tn29GoVbwwd/0r9qhlm//8izWJgPOLiv9L00VcUB2/VE7YkTi0N+vIgbnFWZMXj1dt9XT/+IUiysWMdzbqpg+IM+FLdfWMvbuPKkVcsm+i52M5hUJVqsqaawapLgEkqy+tNgXKFHm0Rhg06famHhvvsSCrfW6WjRmDb1PlLeD9eyRc4n+30wwX0bNsvuTeSLSN0qJSL5LXeiqNJxeY9Fo2+dbUOlKFUD/EJxNSWk9+K9yU7tVVjooKFCtyKGq2o3Un+vk6A+GSz7r2WOn/jwnvU+OlSUwbftcCwol7F9pkbxip7/Jq6PtOg/HnhgrJn5pYOt9TSwOREvuSZA95qePhuSFZJeGxIqd9BqrBn2VhvBwHFuLAYUCAmeW++a7sJrgSILwcJyqdiPRabHou7vv9kEOjj02WujLyvva2mSg8+Y6Zo+FlnM6hZKqVgP2ViMDL8zlz1PPyOtzRepHvkuc1O2oou+5yQJRiVwWg1tDy9UeTj49iRSSaP1wLVIiw/DvZtHaNajUEJ+V/17dZuLAd4dLiHI7v9RCbCbJiZ+Mo3doMLi0HDxygGD1JKhyzM7KfTUajXg8Hu6//37+6I/+qCS2FVRQQQX/WfHoo4/yta99jenp4lxKi55mRTcb2jeSXBBJBtO03ViLuU7PgW8V5zhqk5qt9zcyeyzE0O9m0dnVZDMghtJ4L6hGo1Mx9LtZ1CY1bdfXMvi7qSI1GGuzgc6bvIz+fq5oU5PJo8N3YTW9T8iLHw2XuAgMRgiv2PTmu8hF7Y4qTvx0pJgYs0KVp/P2elDAyZ8uL6KoTWqMDg2hoTimOh2WeiOT7y3XrSyNMmkkMprA5NWRDKZJR5f7rKtWk1xIg5ry1mGA90In9mYTRx8fKiK2qE1qORf89VSRktNKbP5UE7lsrixJyujR0Xmrj9E3ZsvavnV+1MfEu/NFc/ESTF4dG+/0M/bOHBPrWOKuhfWUlM6GbV9oJZ1YQfxaVbvyX1VDKpguWz/c/KkmkkGRvqdWqSQolFS1GWm91sPwazPMHi6/mNh6fS1SLMPwKoK9c5NFttJ5fKiEAKTWgbUpr4qkBo1BU3QPrFRPqt1hY2rFJkvBqsa9xVbYkODYYGb+xHLeb20y0HxlDX1PT8gLV2ogU6wKtfFOL7oqNfv/drAwVtTgO8/OYn+c6HiSuj1VCEYVQy+vGJdCyZbPNJAVcxz5QT6vy7/P1J1rRzCqGXp5HrVJSeu1bkZenyM+I2Fp0BZ+W9u/0Ex0NkXfU8U1Qt+Fdmo22zj09/2kU0qqu4wsnA5wOPEueq+K6ZlpRFF+f6mvr8fv9/P000/jcDjKXpcKKqiggv9siEajfPGLX+TnP/85odByTUeNgJM6OoTNVDfYCA7GQQVb7/czczRUYg/fdEUNVr+hoCpp8sgkGMGqwneBi5HXZWWeuj3VZKUcU/uXlIvlOlvHrfUIZvUyOToPzy472TRMH1hEZxewt5qY3L9YpJLTc6+smFxCTskrzAhWFR0f8TH8ykyBFAUyKWbJSqt2u52FvlDB+g2KVZcsPkPRZ1WCEsiSEeVjselkiTIPKui6vYHpg4slFmjubXb01QJDZTaBgazo1Hy1h8HfThbbfeXR8CFZZfz4j4ZLjlV3WTA4tIztnSs5BtB+sxedXSirbn42nE1JaT04u600XLI28UvvEqjb5aD/V6WOMVa/Ef/lbk4/O16kULSE9pu9aPTqsvEAOQ9qvrKW/t9MlhCI2j/iJTweZ+r90nVKq98oE+nz99FKm0KVoEBbJRCfSaF3CqgEVREBq7rLnLcOTGGs1SJG0kXf3XSlTJIrWCKqgOxy7qWtUsvKTgcWl4lRCiV6l0CV37SsSHaNm6n9iwXiEYC9w0zTZS7O/HqK0Ao1MMGkwneRi9G9s4jhDJ5ddnK5HFP7Aqj0KlSCTASr3VGFZ2cVx348UjRmgJ57GolOJRh8cQaVXoXRKTA0NMS0bYCsViootRkMBpqbm/mTP/kTbrnllrLXpYL/WKgoKf0nwde//nW+/vWvA/Cnf/qn/MVf/AWJRIIsWQY4ysB7R1GgwEk97qMWqurN8gcF2PPFNmaOBhl8cZaD3x8iGZTfeNuu8yIY1bz7v/vo+/nyC7aj04rOKrBELPVeWE1wIMrkgUUMLl2BoLT1c81I0TTHHhsp7NARTGBrNaM2qGTyTZ7U0fvTMZybrQWC0s5H2pk7GmTodzOgAHI50okM2bwlnWBSojSoSc6KBUUd34UutBZNETlmpdJQy3V15DKw7+vLqktLCkodt/sx1ehZHIiUKPSstbM9OSvywV/Ji1w6l0B1h5mJVZLKi2ciJALlCUzzp8I0XOwiuVBeEejQt/vL/h1g5oMgRqeewVf/6QSl/1P0/2b9Is96xKfEYorIeKLsbrS5ows4NliYPFA88QsmqN3lYuTVWY58r7TwBZBJZ0ChQDDJSkwFKJRsvLsJrVnD9JFgie1f42VO6nZWo9IomHgnUERQAmi6wo3Jo0ewLyAuigWCksWvJzyUIDIWJyuBxiLApAii3N9N97WwcDrC4Asz9D07RiqS92vVKeQ2RjVVzSYUSgW9w+Oc/qVMgnL2mGm63E3vU6NERlOM71sgNBInl83JBKpXZ0EEc52+oMIRmxY59Hdy8tj9sXrMXgPhyUHERYnjTwwTGZHvv12PtBKZTND7xDizx0Mo1AoC4iSz7hFOj8BoQi4KzcyK1NbWYrPZeP311ytWbhVUUEEFZVBbW8vBgwcBmJ+f54YbbuC9994jk8kQZoE34s/A+/JO/83SuYSGYsz1RlAoFXTeWofBpeXAtwY5+oMRDG5Zfcng0tB+Qx0LJyOcfm6KIytUkMxuHel8DqQxQM22asbfWuDMr6fQO2RVJavfRNuHPZx+bpzTK8i8nh12rH4TI69NyUo4eVLHsR8OglqeS5qucmPzG4vsvjRGJVkxS2RCzs3MPgOR0XiBoGSo0eDcaEWpVXD66eXvG31jPi95bKfhwhpUWiXT++TPLBE3NAZZGaBmq42jqxa1lHo5HulVO8MAzqyQtvae72D8vfkigsrckQXsLSbmT5Zf+IlMJMqeF86utjT02gzZ1cWl/wsYf3OaTDJTapGXR+BUjMCp0uIUQHwuRTIkrqmwNH04gEqnKrEg8eypYq43SnQ8ycG/K1OgysdcpS7N5wxuDf4P1VDVZOTkzyfzCkkyFEoFmz4hk4z2/+0Awf5S27/a7XYsviTHh+OFcRlcGuIBmdyWTmRgJS9QkpWTnJ0WDnxnkNBgnNO/mmLxZD7pE5Qgyb8Dk1vLwO9m8ve/nK923eFFqVFy/PFxRt+ak0lTfVGMHgGzR8/0/hAKpQK9XcDRZmTqg2CRjPbmexqJz6c49ugowy9PMfyGrOTVeJkT10Yr+/5azueDgzEWBsKckPZhNKmY7J8kRgwWoKamhvr6er72ta/xwAMPlL1WFVRQQQX/2bFSVfwXv/gFjzzyCKOjo6RyCXpz++jt24cGgTpFM7YT+qJi/7bPNTF9OMjE24sc/N4wOVGem5quqMVYo+WDv+kvsseqajZgXKHO7NhoITabIDQQZ+ydeSbzCjMdt3nJpDKceXaK3p9OFMgZrk02tDYN4eGJAglp9I1ZQmOxAkFp8/1+Zo+Hi4gu6Xh6uVaiBp1VJhiFovLfvec5MdcZmNy/rJKzkuDTep0XFHDoO8u1pOSC3LDlylqqO61EpxMk51dtblQo5LrbKuWddDRdWBRUm9TYW0wlZKPZYyEyYvncKjaZJLGQIrFYviZ28qflSecgKzyNvjkjLzj+X8bp58ZRapRrHh96sXRD3hKiUwni5Wp8uSyBwRihkRiLfavyVDW4N9uY3h/kzPPlbVwyYg4FoNSqIVl8oVpv8GKq1REajJBOghSWr69CqcCx0UzzFW6GX5tl5lCoiKAEULfLjrPLwuzRIMnFdIGgZKzVEptKEZsVySRz8i55hVJe/FVl6b7TR2AoxvjeBfp/O7l872iUkJbVtWo22dDoVUTH4oVFNJNHR8t1tfT/eoboRJyxt+ZJLkqQy+LebmP+eJB0Ul7Y1ehl+YN0JM3JvLWv/0MunD0Wjj46THIxzYknx0jMpSGXZdN9jcSmk/T/eprF01E0BhWRdIQx20kIZBiJy7mfMCNQW1vLpk2beOyxx7DZbGtezwoqqKCC/6wwmUx873vf43vf+x6JRIKvfe1r/PSnP2V2dpYphpgSh1CdUWOnhlZ6mD0RJphXG6o7r5oqv5HjPxpl8KUZtFXyErVKr6L9Ji9zx0KMvjlXZHdvrtOTy+aY2g+owNlpZe54mOFXZzHka16CVU37DV4GfzddIGIAVHeacW+xM3M0JCsM5UlIJ54YRa2T5xJnjxVHl4XTv1xWlFFpVaQTGZL5PEVnF0guigXyj0qvonZXNYJZzcjry/WiJYKSrdlIy7V1DL08XVAyKhCSVNB8tYfodKJEVWlJjSqXLtUWmV6xLmbvNBMaiBT6CxAajRE4EyEyVr4GtKQ0WA4LvWHWM1ubeOefTgr/l8BcrxzPcgQlgMSsWJagBCBGJeKzSeLz5XPN2SNBBEupW4ytxUhsOokYShc7vqyCUlla89KY1bRc42H+VJiRV2ZLyDrtN9ej0ig59tgwibnSnLD+PCfRqQT9v5oiNiX3W2NSkRWzZMQcUjxNNp2XgFIoIQuOThM1W2yc+MkoqUWRU78cXyY+qeX8zNVlwd5hZubQIhkRBvKK/L4LHQgWDf2/mmKxL4JaryQ0GkewqjC6dATOxMgBZq8Os9fAQm+k6PfVfZeP+FyK089OMnUwwPzJMFI0g7PbgmeXnSM/HIaMfH/F5lKMZwbI1kSZmp0gQgSC4HK52LRpE//zf/5Prr322jXjXcF/TFSUlP6T49FHH+Whhx4qSNeuRL27gR7rVjZc0cFifxilUonOIqBzCMweC6DWq8mJWUZ+P0frdbU42m3MHAoQGIhibzMz8Gs5kdjzXzrJiBn2ff00CLLVx9yREM1XuslmckQnk8weD1B/jpPQZAyFQsHsBwuIUdj5SBtKlYL3/vwU5kYdro1VTBxaoOe2RkLjMWIzSRJzIrH5FJ5tdgKDEQJ9UTZ/tgmDXcf+7/QiLsrKQoJJQ2g4RngoTtstdVh9Jk7+bIi0BHU7qwlPRFEqVWQzOextJmaPhgj0RWm8rIbYQgLBpGHueIT6c6pJBFNM/n4RZ48FY82yOlP3fY2I0QynfjaGYFJSf1ENE/sW6LzFh94mMH14kcH8BFB/sRMxKjGTV/DpvMPPwG8miE6IVHWYqGo2F2QIvRc5yKSysqKSAM2X1zJ7PIjNb8K9zc5iX7gQ77pzq8llKRSzmq+tZe6E7NNr8RtwbrASHo/TcrWHhdNhYrPJAnmq6ZpaAmcidN7iIzoTJzadYuB3UyCCe2cVaoMKz3YHYlQiPBovxNvoFnBvr2bsjSnEKNRss6GzCQVCmv/yGkxeAyqtkr6nx6jbWc3YOzKxx7nZisGpZeQVmaXdeJmL2EySuaNhBLtA85UuFs5EmP0ghKPbjLnWIJPTkKXYHRutCCYNxx4bpGaLnen9C8SmRdw7rHjPWbbyq7/YgRhJyxaFZiVdN3gZfW0WlLL8ulqrZjBvNbLx414WTseYei9A07U1KHIwezxIZCRFzyfrESwC+78xAAL4L3EghjMFgtLOL7egElS8+5enMNdqcW20MfDyDHXbq8hmZRsfz3Y7gcEo2XSOwJkogTMxNnzci9Vr5J1vnoIo1F9kBxRkxSx6h5ZsKks8lKLhPBfj7y+gs2iYORYgOirSfK0L9yY704cDDPxmBv/lTiKTSeaPR9j9lVYyUo4jj40gGBR4z3WSXBRRKhVUd1qYPRYivpCibped6HSc40NHWEjOMTY2VrBxs1gsKJVKtm3bxgsvvIAgLFs4VlBBBRVU8IdDkiRuvvlmXnzxxRJ1S61ax9aWHWxo3IypVkt4NEFkMkHzFW7mToYgpyCXyzJzOIy5VkfDJS6USgUffKMf7/nVxOeSLPbFaL3RjbPTxsnnxgiciOHaYkEwaUiFJBovdjJ9JEhsJklVo4n4QgLBLBAYihIeiOPYaKT1+npmD4cYeGEKzx47YjSNrcGIxWdg4XSEuWMBLF4TiUAKa4OR0dfn0BgUbH+onURA5PDfD4IGGi50EZ2OsXA8htlnoPV6D+HhGP2/nsK9rYpcLoe2SmD0lRkaPuRCJSgZfGEak1dPdYeZyGSC2EwSW4MJo0dg8CWZPNLwIReLZ6JERuIYagU6bm7g2ONnkEKyMpNaryLUH2HT/S0kIxKDL0wSGozLpKnuKibfmUWKQ8PlLhRKBcO/lef++gscRGeSBE5F0VZrcG+tYnJfACkkYe8yo7cLTPx+gU33N5FJZ5l8d57FvigaqwbPjiomP5DbVrWbMNXoGNsrF3Dqzq0mFZKo2+NArVcx3xti7nCA+LyErcWIpd6AyaPH4jMy+sYsYkySVZ7yMczlcni2VzPy5gwao6ZAlnLvrCKbzjF7MFhoO38yTGwiibnBiL3NhKPdzERebSqXyzFzMAjIMVwYiBAdSmCs0+LotDLyinxe11Yr9lYzfU/Kiz2+S12EBuOEhuMY3BpcW2y4e6qITSWZPhxEY1QV1CI2fNxLfC7F0ItzGBwanJtsTL47hxSHxiucSJEME+8s4t5uQ2NQEZ1OEjgdo2abFYtPz8gbC9h8ejQmNQqlkom3FzB6BDpvqWfs3Xlm9oWwtemweE3MHA6RWpRwbTLSdGUdoeEYJ5+cwLOnilRIIjGfQrBrsHgMKFVgbzEzsncWo0PH6Jty3rvrj1plC+Lvj6CxQu1OB6H+EO4tTubOhDE5dBhrdKg0CpnYpswxvU9+Z9rxxWYUCgX7/qofk1eLvc3M6GvzNF7uwr3ZxvDeGabfC1F3jh19tZqZI2GarnCTXEyRCEgkAilqt9gZOjTKmegJookIQ0PyQq9SqcTpdKJSqfjud7/LNddc8//H46iCCiqo4D8F9u7dywMPPEBfX59slZmHEiX1zkba9NvovKiB4GAUhVKBSlBiqTcwfSAgLwhIMHMwiPdCO/8fe/8Z3sh1p2njdwGFQs6JCAQz2TkHhe5WDpZkWbIt5yDb0oyDtE4zDn/PzLVz7ex6xjmNLcuyLcuSo7KVbaVWaHVURzYzmMCInFFI/w/FBptue0f7vpP2HdxfulF1UDg8RbJ+POc5z+Pf5iSyP05iOIut09hweN7xmW7KxVrDHTx4kYPEUJ7WC52ggvRUgehQmuBOp7JopFGR6E9TKcKGj7ShNYsc/OYwOqeIo89KfDBF3w2tpGYK5GcL5KMlKoUKjm4zmdkimckCfW8PYO8yc/SuUYqxMtYuIzqrhsx0gfx8kcBuJ+61NgYfnKacr+LZYCU7V0TUqKjK1UYsXSqcx7vVRjGpxGklBjN4ttgp5yosHkthDukx+/XMLNUTXdf7qFXrhB+fQ9SBZ4uT+GCK9st9WNuMRPYvMr30nHWtt1Cr1hXHTRH63hpk8oVFCgsljH4d1nYjM0viFNcGC/XKchyJ/wInydEcBrdEcJebhePJRlvHGjMqtUD0xFLb852kJ3NkI0V0Lg2OXgvp6Ryr3xZi8VRKmV9acu70n+ckPZ1jzbvaSU9lSU8VWDgSo1JUYl8ks0jLFjvlQo3EkLKYkh7PI9lEXGusLBxPUclWlPG2aZQoOkGgZZsNY4sOrVVi6JEZPBuW21ra9Rg9OmaXRPnezTbkbJnEcA5RJxDc4yY7UyB6MoO5zbA03kpbzyYLrnUWzB49x+4J4+ixEB9MU4xXsLTraL/My/EfK+Ia17ql8T6dAR10XeZl5mCcaqmOvduAWhIb37Od13nJTBSInsrgP88OAqTG8+RmS3Re48XYouXEPZNQAe92K9VCreHIveEjIXRWiSPfH0E0iDj6zMwcSuHqNVIt1xD1alo22khN5innKmTni2Qmi7Rf6ca7wcaxu4YpJhX3J0GASrGGwaOlkq9Sysi0XeRl+rUoklEkPpajOC/j3WKh4/IWIvtjTL0Yw7vZSjFVJjWWZ/NHO6jVapz+dQSVAC3b7RQTZWpV8G2xMXs4jpyp4N1oJRstMb4wxEJ5humZ6cZcuNlsRqfTcd111/H9738fnU73r/lrqEmTJk3+y1CtVvnyl7/MnXfeyfT0dMNZXEDApLKyvnULbfYuzEE9qYk8paRM6y43seEM9SXHg9R4DskoEtztRjKIHP9pGMcqM3KmQjZSoGWrjdAlXgYfnCI1lsfcbkBnEikkyrRf4mH+aIJiSkbv1FLOlxF1IvnFArkZGb1PYu0725ndHyOyL4a9x0S1VEPnlHD2mYmeTpMaz2FwaSmlypgCeqWGUMO223rJzhUakbXujVZKCZl0pIDOKtFxuZf0VJ7IvhjWDiOCCjRGkcXjKWWuSqdidn8CySpibTeSj5YoZ8vorFoMLTpFgFRVnIOy8wUKCzKSSU3XtX5Gn5pBTlUxt+rRGEVSE3k2friTQrzI5AuL5GaLaExqbF0m4kNZqoUqznUWJIO6UX8411goJWWyM0XUejWOVSbiA0pbo0+H3i4R7U/Tea0PlQrmjybJTBVQS6olQVQWOVvF4NVi9OgaYixHr5lysYJ7nQ2dXcPiyRSp8SxyqoreLWHy6dHZJDwbbYw+OUOtWicdVhy23Ous1Cs1grs8TL60gFqjatRsti4j9drKKL3MVIFiXEZrl7CE9Dj7zCwcTVEpV1GpBZIjS203LI3hvNwY78WTKagqEW6OHnNj3fKPx9vaayJ4npvMVJ75owk0RpH4gFIDtV3hoZyvMvNKTBnD3uXxdm+yUivXifVnsHUbUYmqxvesqVWPtd3AwutJdHYJjVlEhUC0P41kVdN3Yysz+6PETmcxeiUMLfrGeBsDEmtuaifanyb8zBz2HiPVUp1CoozGrMLo1gF13GusTL0SRWeTWDyujOHmj3WRj5UY/O0Magmc66xkpnM4epR/tVYtepuIxqwh2p9GpYHEqOIAtf7mNkSditfvCKO1i1hajSyeSuFeYyF0sZvxZ+eJ9Wdx9JnQ2jUkR3IEL3BSTJcpxssUk0VaNjmYPrXAVH2IdDVBODxGvV5HEAQ8Hg89PT189atf5bzzzvu3/tXU5D8xTSel/+Kcvdts3759vPOd72RqSnnQTs1NMDU3weOD0N7WzhVXXIFQ1qJSCQR2uKiVa9RroNIJeFbbkYsVFk8nCe3yYG03Yu80ceg7w9TKNZRtV9B3QxBXnwXJpOb1H4yx+qYgLZvsaAxqbO0mTD49CAK52RLyQBaNTkTOK4t4LZsdeNbZyEULHPjGENs/1YOtzUS9rmwmU2tUGD1aEoM58gsljE49eocROZ6j80of9WqdqaV4EVefFQSQC+DdaKVls4P0ZI7515Nsua0bnV3C0WVh35dP49vuoBCXOXrHKL7zHbRscVCv1UlP5Ahc4EbvkBoiJbPP0Bhba6eJls0OKoUqr/9ohC1/2Y13k6MhUgrsdFIpVJk/mKTnhlZMLQZCl7TQf+8kwfNcmAMGxh6fRXJIhHZ7qFUUkZLOJtGy2YFKo0LOlBG1alo2O5ZFShe4oVZnZl+MbZ/qQWuWkIwi6XAe/zYHzlVW5o/HKaXLWNtN2DuXHZ5aNtvR25fU52YNZp+R+ddjZCMyrRe6UWlU5GYLlLIVWjbbMbXoSAxk8Wyw07LZgWutlcj+KN4NNjQGTeNh37LNSb1aoyrXcK2x0LLZQXa2wHxcpnWXC51di86iZfDBaXzbHBSTMovH09g7DTi6LFhDJhYOpgie70bv1DZESv4dTkrZMmNPz6C1SrRsslMpVMnNLdC6y43GKOLeYGHxeJrADieVYo35Q0m239qNZBQpbS4z+vg87RcbsIQMjD0xz5r3BLG0GtG7dMy+lmD61TjbP9aFqFUzODGDwa1rKNqRwb3GjloSkEwi4WcW0ehECnHFNcm/1YlrtQW1QYW710q5WEEQBPZ/TRFOXfClPhy9Jg59a5R6VdnJZvVrqZdVeDfYEXUqyoUaolaljP18kf1fG6btMjctm+2411l57Z+GsLaZqFXrjD4+T+ebPLRssWNdKBE9mUHOVtDbtdg7Dfi3OxH1AvYOE7OH4wgqAecGI2MHT7H/yQnC42Hq9ToqlQq73U65XObmm2/mjjvu+Nf9xdOkSZMm/0XRaDQ88sgjjdd/9Vd/xZ133kkmk6FUKbJv4CX2DbwECFx99dV0bOsEAfQOLY4uE9HhDL3X+1GJAhqDmviwIiYNnudEJQpM7I2SnijgXmVFVCvPqu43+QB49X8Nsng8zc6/6qGYKKO1arAWDYr7ZalCtVilZYsTBIGFk8oftKGL3NRrsP8rg5hDBta/rw29U8TRZaWYlNFaNEw+v0g5X6dWrS9ZV0P31S14NtiZOSQQO5nDt92G3iZRdio1XXCXC2p1JUZMEgjsdIEAKlEF9TqeDXYOfrOfch5a3+NCsmkw+40cu3MM/w4nWpuGzESetku96O0S/h0eJn6vPPvVWjWzr8UZfjxCz7UBAjucpMbyuNbYCOx0kRzNkgrnCexQ4hrOiJQC57vJzuRJDGbpuzGI2W+gGC8yf7hM8AIXeoeWyMsxNHo1BrOOwAUu4gNZbO0GAjtdFONlNEbFkrxWqTdESsEL3BSTMrm5AlqnYkNdKVbJvxwjcJ4Tc6uR9GRuqa2Lcr5C9Hgao0dHYKeL6JCS725rN2HrMDVESkpdJuDf7uDUr6YI7HShltSMzczh22rDtdpKuVilXq/TulupDeeXBE3B81z4tjs4/O0BfJsdeDbYGiKrtovdSEapEcsX2OHA4JBIjedxr7Xh3+Rg4qUFIvsTbP5IB6J+WaRkbTVibjEQfnIRx2oLgR0OZbdkDfzbHNSrdSKvxpk7lOS8z/WSWxIpdVzuRS2qSI7lWTyRYf0HQxhcWiKvxKjJNTQGNcHtDuYPpFCLIoHtDlx9Zo78IIx7vR2oN2JPgjudlLIVJJOaWq2OpBeZfDnGkR+E2fDhVowefUOkJKhAY1B+TmydZgJbHGj1auzdRvRuCZ1V04i/3v7JLkSDGskoMbs/iiipWRxUfk7WvLMVUVIz+VKUxEgW7yYrgW1OhLoK1xoLBqeEoFKjUgnonVpKxixHp17hsV9Ok8lkqNfrGI1GzGYzHR0d3Hfffaxbt+5f5XdOkyZNmvxXZ8+ePZw6dQqAkZER/uIv/oJXX32VUqnExOIYE4zx+3sg5G/jiiuvQD1vQKUWaN3lol6FilwFdZ3gDhelTJnUeA7POiv+HXbcqy0c+8k4craCask90H++g7ZdHgyOJAP3RwjucRLa5UKjV+FebcEc0KMWVRTmlEUivUNCzlZAUOHoNtN+iYeaXOHYj8Os+0Abzm4TlXwV0aBGrVGRHM+RmYyQiRRwdJvRWjQUY2X63uKnXoeD3xxWXJUucKNSCdRrNSwhPaHdHoZ+N028P8Oqd7Zi7zLh3WDn4DeHaN3tobBY4tR9E1jaDbRd7KFeh0K0hG+bA1uHuSFS8qyzUa9D+PE5JKuO0G4P1GDggSnWvCtEYIe7IVIK7fFQKVaJ92do3e3GtcpKrVpn+IEIno02vBvszLwaQ9QpLk/VUlURKYkQ2u1Ba4yTmS2gNWsI7fawcCRBpVij9QIXKo2a6Ik06z7YjimgZ+FogmxkDucqK60Xujn602HyCyVsHSYcPebGglfrLjfxEcUFSzJrCO02KwKn6SKB851obRLx4Qw1uUZwt4f0VI70eB5Lq4HQbg++rXZlUbPXjNGjY/7I8nVr1RrVQg2zX0dolxs5VSZ6Kk3gPCf2bjM6i4bwHxZo3e2mEC+RGM6h9+jwb3dSKVaJnszQssWOvdPUECkFL3BRzlUYekxxCAjtUurXmX1xQns8mFp0jQWy1l0uanKN+OkM694Zwho0UM5VmXwhisGhw7vJxsy+OG2XumnZYMMWMhA9lWHmtQQ7P9uD1pQiPLuAtVWPzi4h6kQq2QretTa0dhHJJDLzWgKdVaIQK1EpgmeTmdYLFCG+b7OdUkZGpVZx5AeK8Hrn53ooxhVBeK1UR6UW0Lt0CJoqnvVWdFYN+ZiMwSEhiALZmQJH7wzjWmum7SI3gR0ODn57FHuXmYpcUwRKW2x0XuEhOZEnNZanEC9hbTNhDRlwrjKjtYq41ohMPLcIAnh2WDh24nWOHBxn7KzFMYfDQUtLC7fddhtf+tKX/s1/FzVp0qTJfwXUajV/8zd/w9/8zd8A8Itf/IKvfOUr9Pf3kykneXXiOV6deA7NUS2XXHIx/tZ2BLWAZBFp2WBj/ngSa8hArQomr5aFM8/v3W4ks8j47+fJzhapV2uoRWX+qe+GIGpJYP9XBjl57wQbPtxBMSGjtYiUi1VMXj0Tz89TLYJnja1RTwG0X9kCdcVlMjmcYcNHulg4nsCzwU5mJo/Zb1BqiCpUilXEJRc/13oLnVf5mHpxgfRkAXuPCVuXiXJJcc0JLM3RnUkUCV3sQZRUqCQ15WyF0B4Px388ipyt0nmVA1unGVubgYHfThO6yEP0dIqJZxdwb7Jh7zHjmrQysy+Ob5sDnUMiPhBm+NFpuq8L4FlvIzw7h8mnp+1iL4WoTDZSoPNKH2qN0BApte52k57Ok52ZJbTbjW+7g4HSFPH+DN7NdqwhoyKaMYqYAnoEtYrMVAStXUPbxV7G5Br1Sp3ON/mpV+sNkVLwQheldJnkeI56tUbbxV4mnkcRZ62x4t5gY+FYUml7gZtqqUo6nEctqWm72Mv88TjZ2QJGt4R3k7NRswXOd6ExixQWSwzeP03bxV5mDyjiMkeXicAu5XNRKeusakndECl1XNVCrVLn9TtGsbYbabvYS2o8h5yqELrIg6XVQDFZZv5wgtY9HmIDynibQ0badnuZeH6exVMpet4cwODSNkRKvq3Keu7MKzHMfh1tF3spJmRKqTKdV/kaIqXkSI6Nt3aSnS2QjRToebMfnUVDbrZIciRHx1WKW320P01VBlOLDt92J7HTWWp1aLvYQ2GdhVP3TeFaZUMQ6kT2LzbGsJyroDGIQB2tTWJy7wL9v5yi401evBvsLJ5KQU2FSi0gmRSnKL1bInShi9kjKlo2WjH7tJh8eg59fxSqsPb9rZj9eiaeXWD2UBKtRWThRBLqNfreGsDgkEiOZUlP56lX6/h3OBRx1hoLJp8OjVaNSi1gcEmIgTInDh7luecmyWTS1Go19Ho9brebiy++mH/8x3+ko6PjX/vXT5P/S2k6KTX5k8iyzFve8haeffbZc3b6A1i0draFdnHB2zcydyRB9HQKz0YbZr+B078M0/O2EBqtyNE7x9AFJDa8q4PpVxfJLZQIXeRi8DcTyFnY+dd9FBIljt81juSQUC3J5jZ/pItCosTIYxHkZAk5C+6tFrqvCjDyxAyLR1MEL3KQi8qUkzKmgJHsTB5TQEfbnhaGHo9QTpfJTpfwbrXSeZWfyGuLTD67iOSQkPQgpyrI2RqSQ8XWj60i1p9m6KFpJIeE0SUgmfXMH07i2WbBu8HBiXvHATAFtXhWOxoCosB5dsJLDjzGFglBL5IN53FvsiKIdRaOp5divlRIdg2r395GRa4y9MAUZZlG/FjndT7GllyLzrTNTimWfps/3sXiiSTTLy1ZILdqyc6XGvFhkl3baKvzKCKj4oLM9k/3ko8VGX5wEjl7btszY34mws7UqkVOlNj2yTWkp3OMPze3oq1GUuLDltuWkbM1kMCzwUL7JX4mXpgjMZpf2TYgNcYbSSkyG/33Sqx7R4jwM/MkhrJK28LSuEjgXmemUqyT6M8imQQkqwZTwEjHpV7GX1ogdjrbGENTUItrrZXxpxeQTALmDhOxE0oRYV9jQjKKzB9MYl9lwhTUM/VSTBET7bJjbzdy6t5pkKD1QifzxzLIcRnJBFs/0Us6kufUvdPKGNok5HwdOV5G55bYeHMbpXSFoz8MYwpKyEmZNe9Riuzh30XILsi07XYz+3qK1gtsjD6mLKTt+GwPpbTMsR9NKOPikRDUAuvf2048nGHq+ShlWfmclu0WOi5tYWpfjOnXYnRd5aVehbEn5tlyWyf5aJGBX83gO89O8DwnAw9P4ui0YO8xM/K40oed/62HZCTDY48+ht6vYXpqmmxOWeDW6/UAuFwuvv71rzczX5s0adLk35mnnnqK22+/ndHRUf64PBcFDR2WHi678nJsQRPHfjaJRgPd1/tZOJ6ilJXpuLSF8RcWiA9nWXWDH8mk4fhPJ+i8xkO5UGXq+Rihi5zKRMSDU6TGimisGjR6CJ7vwtln5vg9Y9QrdfLzSu238dYORJ2aw99VYkE6rvYSfnae4HlO5g/H0Vg09Lw5QCVfJfy0EhdXTpXZeGsHklHk4D8PQ1mJfkMQyC/VBWveH8Ls1bH/20PK+RYJS5uBuf1JNPo6XW9uJXoqRfRkGq1Tg2uNmfRkkcxEHt95dlITWfKzZdCArdNIcin2q+0KD4uvKy5FAAafhLlVT/vFPoafilBcLJGfVfrg2milnC+TGlZiUAxeDeVMlXK+hn2NidZdbo7fqSywaKwaNDoa42LwaigXl+LpNGBwSeSjMi2b7QTPdzHydITkwNJ1XZrGuJzpUz4qQxk0BhUaq0j7pS1YQkaO/2jkX2x7pv9ap4b2y73o7VqO/nAMQ4ukxIeUlbg8jUVqjLfWqUxKlGLKdQN7XNjbDZy8Z/KcthqrBu8mK9MvRpf6oKWcLrP2fR0gKBEn+blyo60lpKVWqpMYymHtMZCP5CnnAQ2EdjmZfF6pXTuucjN/PNm4b2ve1crUC3Nkpsp4tlooxItkZ5TItu4bW3B2mnntW0vfHx4NlaU/R8r5CqGLXPg22Rl4MEJ+Lo/GpEFr1dB1jY/ws/Okp4o4uoykJ/MYfRpqqIifyNKy00pol4fBhyKkxvLoXcp1V789gN6m4cR94+RjZTQGDZTL9L2jFa1Jw+HvjaF1aOi4wsPUS4tYAgZ8O+2c+EmYch7WfyhEKVVm6MFZ1r2/lXQkz/zRNN5NVjzrrez77XGmGaAilBkfH2/8XNtsNiqVCtdddx133HEHVqv1/+yXRpMmTZo0+X9MpVLhc5/7HD//+c+JRlfGV6hQ4ZA8rLdvY/s71zN/NEl8OIO13YAtZGLksQihSz1oLRKnfzWNZBVZ/Y4gMweURZbQLhejT8xSKcKmv+iglJY5/asIokmZ8BJFWP9BJQ509OlZKtkKlSKY2nWsviHA2NNzxPozONdbqOTLlGJljH49ufkCkllD97UBRp6KIKcqFKNlzCE9q25qJbIvysyrcUSTiKiFSkmJZEMH2z/eS/RkkvDT84gmEa0FJJOOxFAWc5uOlm0Ohh9RYrl0LRocnZYlAZEKzxZ7w8VIZxNBJ1KcK2JpNyDqVYpovgKiToVoUtN9bQDqdYYejVCrLPUBxR1p5kBsqS2IJk0jWm71u1uJD2cU52tA59JQyZapFM9tK5pEVCLIyQrrb26nkCwz/lSEShElBs+2sq0oQjFZOeu6Vbbc1ksinGHqxYU/39YpUsnVqBRrIIIlpKfzch/Tr8VIhvOI2uW4PJ1TXB7vM31Ilpe+VoHetweZfjlKeryAziZSOWtcLJ166nXIhAuIepVyf6wSPdf6mNi7SGIk32irc4nYukzM7U8i6kDfoiMzrkQEGvw6dDaReH8Wo0+HKaAldjJFpQiOVUbs3SZGH5tHUAl4t1pIjOSRU0p/t360k9RUnpFH5pb6L1IpKn0UTSLr3htETlfo/+U0OpciXup8kw9RLzL2zCzFaAXvFhuxoSzeDRYiryqito23tlHOVOj/VaRx3VoZNn2knehAmplX442xsHbq6L7GT+S1OHNHk/i22lBpVERejrPm3QFKqTKjTyxg7TTQdrGbsadn0dm1uNZaGH92nmKywsab20lFMrz0wivgKxGZUQThADqdDo1GQ29vL1/5yle49NJL/1V+lzRp0qRJkzfG0NAQn//853n++edJpVKN4wIqjIKZNkMPWzZtwdlt4fT906glCO7ykBzJUkyVCO3xMHMwTjqcJ7DLicGlZfjhGVq22KhWayweS2PvMdJ2iZfhx2bIzRRR61SoJQHnKgv+nU5O/2qCSqmmPP9QEkh0dolTS2Kilm125l5P4Og1kxrPoJZEWve4qVdhaq+ynlPOVum81ofJq+PUvWGqMkhWNSA0rtt2qRtbt5mTd48tnRfRu5TNXwCtu1ykJvOKWEevxtKqp5iUKSzI2LoMlBIyhXgF1GDwaMkvxX65N9lIjWSQl2KLJasanVVDx9V+wr+foxiXG30wBfVAjex0qdG2KkO1UEXvlQhe6Gb4sQjISnSdWqIRTSaZ1FSrSlvlvSJytoI5oCd0sYeJF+bJThb/t22pglpSodar8G6049lo4/hPx6j92bag1ouN/mtMarxbHJi8WgZ+q9Tb1UKFqnxuW7VejUpNI87ZsdqErXMppUYNkmllW3u3seHIqVy3RvtVXjR6NWNPz61oq3dqoC6QjRTQeyXkREWJ7VODe62FxVNpqIJ3i51EOI2cVM61X+Zh4XiK/FwJc4eeSras3NMq+M5z0LLZzvEfj1GV640xBGVsnGsttO1xM/ToDIXF4tL9UdF9jZ+plxfIzJQwurUUUyUks4igUZEJF7B06Om62s/wozNkZ0qKK2wV2i5xY23Vc+qXE1QLFVCroVYndLEHo1fHyZ9PojGp8W+zsXA8hWQRCV7oZuCBCapFFZ3XeCnnq0y9EKXjSg+5xSKJoQyWkIHATifHnxwjIgwiawuMjo0Bypy2zWbD6XRy880389nPfrax/tikydk0nZSa/EkkSeLJJ59svP7Rj37EF77wBeJx5Q/NdCnBc8O/47kv/w4BATN23nfRe9HZJOQsnPrZJJs+2kngAieZ2YISj1mtkxrNUdxgZdU7Ozj+4zDFpEw2ojzQPOvN+LY4OfazcaZeXaAYl8lOl1h1UxB7l4nD3xtk3+HTjT4Fdrip1+HA1wbJRhQxidBqoF6tkxjJggzdb/YRG86w72unQQYEgc23dFIpVjn8HWVnNDIUYiUWTyUBcPWZyc4VFNtmwNVtxeQzIJkk5LhMdqxEdkxxLWq9wEnLZgf5xRLzB5NLopwl0dGVPup1WDikPPDkbA05W6IQLVEpVhsCnjOMLTkhrXlfCID+eycb517//ujSjQGdTWoIh5Trgn21nvaLWzj584mG4Ajg4DeHVnyGnAU5q7zXFJBwrbE3XKCAFdeltvK1HJexrLdg7TAzsy+2sq2sfJ1nvlYaowDuDRZatjg4cfd448SZ95paFcHUke+OKHZYQDYiY+0ysvEDbRy7a4TFI5mz+l9HzsrIBQieXyU9uixQAvCst+Pb6qCULjO7L9EQKAH0XhsAYP5gksRAlsSAIs5BUOFdb0drXnZHmno+Rte1XkYfn0fOQm6xRHIs1xhD5zojHZd4GPvDPHMHk+xfipRb9TY/Y89HkbNQLdUQ1ALZaeV7c+LZRcXlaKOD3LzM3MEkB76uvG/jLW3obFLDYWmxP83E3ijdV3nR2SWOfH+MuYNpAue5KecrBHY4sIaMHPlnxU5eLapQqVRIJvCssxDZHyMzLhPcoUVnFTk9fYJSMMnpe18mElFyjlVZFRaLBY1Gw65du7j//vtxOBw0adKkSZP/GK6++mqGh5XnQD6f573vfS9PP/00hUKBSr3McKqf4d/2A6BFzyrjZtbZ2tG7JOYOJdFZE/i32okPZxEEAVGnPNfGnlhg0190IKcqlDKVpWgEpfZa+84gudki4eeiyLkquRnlD/Edn+0jO1Pg2F0TUFcst/3nO/BtcVBKlZl+KYbGAPk5mWqpRqVUJR8tY/BqaL2ghWN3K+IeykuOAhd5GHx4uiGESQxloFKHJeGJe52tETdWLghYQ0Y0ejXRk2lKsTKRl5bzzoMXegjsdHNoSeB0RqDkP99JYIeLSr5KPqospJ0R9MjZMpmRHOX8csxLdGl3ltapYd272zj9wGTjfKI/S6JfqRMMPon8rEx5eQ6NfLzMmneEiLwaJRXONz5n7kCCuaVdao220WWxf8s2O4V4CcpK+3K+Rjkv/8m2Z/rfusdFrD9FPlpe0bYUrzD4m8hy27Pqyp7rg8wdTzWOnREnGVwa8tEykb1RInuXblEeynmZNe8KUs5VGf7dbEOgpPShBIKK/EIR6jQESqCIqTova6Neq3NoaLQh+AJo2WgjeJ6LqgyRV2KEn15snDPYNVj8ejzrHWSm5lk4nMbabsDVp2PxeJrYqTRag4hGA5WqQCFaYfNfdqDSCBz+3hiTf4gy+WIUe7sB304Xk89HKWfL1Ct1qAHlSsPZYO17Q9SrdeInssztTzG3P4XWoWHnZ3uYO5pk4tlFpl+NIhnUUIOtt3Yy9WqUhaNlspEiNbcyudJzbQvpacUi3tJqRKVSoTFpcK03USvXGHpQqeP1TolMIser87/HNWZhau8UhUJB+boNBnQ6HR6Ph3/6p3/iXe96F02aNGnS5D8GURT5xje+wTe+8Q1AiYX71Kc+xcmTJymXy0TlOZ6ff4znv/MYIhpc+Ll645swerVUZYHwU4v0vdWHZ5OF9GQelVrZzV9YKJOZLdF9XYCB+yPkF4vkFpT5D0urntAFTgYemib8h3nKxSrFaIXALif+rXaO3T3OwW+NNvoYusCFoFZx5PsjFJMZRZTi0FKTq+QjRSrFOv7znWRn8xz89hAoZRzr3xuiKtc4/tNx5WsF0hN5RUwkCFiChkbcGIKAvdOKvcOCzrpAMVahOFdmZm4phm2dldBuD3KmTPREeknAs7Swd7UPQS0QP62I2StFRdCTmy2AShERnc0ZoVPHFV5EvZrhR2ca507/cqrxf51NbAiHlOuCMSDReoGb4UdnGoIdYHmeqdGYxnt1NhF7j5nZg8u12dnXpbbydSVbQRfU4QoaiJ5MNwRIAFQF0uEiR38UPqu98q8poMO3w8HwQzPn9sGlCKb6713++orJCnqPEjdz6tfTpMcKy9cs1KgUK1SyFUqpMpnp/Iqv19pqpH2Ph1qpxsLRdEOgBNB7rQ+VRiDenyU3WyQ3u3zOu8GG0atDUCn19vzhNP7z7YobZkX5/jizcEoFtBaJDe/3E35ugcVjaY7+WBnn4B4n0SXhU6VQQxAqFKMVRJ0Si+jeaCF4vhM5V2HxWFrZkAf0vLkFc6uBI0uRiJH9ceaPpQnssGPy6Th1n7KBopgoU85XcfaacXSbOXWfMm5qjRoERVDl3Whl9mCCbETG1mXG6NQym5km5pxi4LFXGukAQkbAarXicDi4/vrr+eY3v4nNZqNJkyZNmvzH0Nvby0MPPQQosXBf+cpXuPvuuxkbGyNbSXEqd4hTrxxC9YqIFTsdhVWs8oYoRkvEBzPMHozj7FXqLgQQtcqc19yRJD1v8VPOVamUauQXS+RmlGdgx5VeCjGZucMJapU6+aV1s/U3t5OdKTaSSQAsIQPBC91USzUWT6SWRDsVqkXFQaicraLWq/HtcDD21NL7qmDpMNBzbYDhxyMNcUtqIo+gVlFdmqaxthsbDkEA9i4zWotEOpynWqiSGMo2zgUv9ABw8p5xqNIQKFk6DLRd5GHiLBcjOVWFKhTjMrm5UkP8A5CdVuoLtV5Nz5v9TDw3j5xSOlSYlxl+UJlPkqyKgKe6XI4gZ6u0XeIhOpAmN1tsfF2ZyQKn7plYcV/PCKYArB1GKsVqo31VVpJVzlA+q63S/wrONRYykRxyqkpVrqxoO713cUXbM/jPc5Mczy5/TqFKFUXYVC5UiZ/OEj+dbdwjOVUhuNtFHYi8FG0IlM6+bn6hhFpSrficaqFK+yVBBLXAibvHKcwvz7uZA3raLmkBQWDxWIr5I8v1ploScXSZKWeq5OdKZMIFdA4Ja8hAKpwnOZptpNmcGcPeGwNozRpO3DNO7FSa2EAavVPCucbCwlElcrAqV6nVgGpV+TkAeq4LoFKrOBEeJz1e4vU7wqg1dTbe0sHC8SSz++PMH4mRGBKpynV6b2xl7vUkiaEM2Zmlm16vEdjpppAoUYjJaCwiKpWAxqDD7BehVmfqeaWGNHl1lApFTqePoS3VeOyX0+TyyrysXq/HbrexdetWvvSlL3HxxRfTpMm/RFOk1OQNceutt3LrrbcCisvShz70IR588EGKxSJ16qSJ8/2ffxdQMmadopdtxi7Mfj2RV2NEDkTxbbUzdzSB3qFFZ1V2dB/7UZgtn+jCd74dyaBBUAvIcZnpF2Ns+stObO0mUtM5tDYNclZZJNj+6V4SY1lO/jyM3q3YNAd2O2nb7WH4iRkOfGNZmONeZ8Pk15MYUFx4AGIDacr5KggC3q1WWrY46L93FHnpudW6W4k2OfC1AQD6fzWF5JCWXHVUbP54L5MvLTC7L87oY7NUSzXmDyYB6HtrkPAz08hZOHnPGJJNedjYV5moFKtkxgsNm0eADR/uIDaSbsStgSJCWkrHO4ftn+hFpVGx/ysDK457N9qV/FGJZXXQEsYWCe9mB2NPzq043nGFH3PAwPiL8+e8588RusiD1qJhZl9sxXF7rwlTQN+I0zublk0OTD49konGGIMyVs7VFk7/dnJFIQZg8EiIOjVGvxF56ZxkgnUf7GLwgSlyczKHloRBAMGLnEy/GGPsyTmKSZnZpdiR1ktc5OdLxPozjD83R25+eZJm6+3dFKIl+n8V4dTPx1b0rf0KNy2b7BTiMjP7Ehz/yQRtl7lZ/4EQJ+6ZZPa1BO41FrKRPCa/RHZGxhSUcPSZqddh8MEZTvxMEZnt+HQP9Xqdg98aYezJBUqpMvHRPDs+3cPM4TjTe2OkJ/PUSjVMfom+t7Yy/tw8cryMSi0gqJVvho23tBE9lWL+UIruN7cgGdVIDonW8+3I2TL9v5hWxs6pJamd4yWeZmSfl5n7Z5CrMkwo6mVJkmhtbeWHP/whl1122Ru78U2aNGnS5N8Vg8HQmLwBOHjwILfccgunTp2iWq1SosCx3Ksc++qrAOgwcLX+GlrdLijD6d9EWH9ziNBFTqKn00gmJaJham8MrVlk7XuDnLpvWnnOqBSxSTZSYOOt7Qw8ECEbyZNc+oO39SI3nnVWjv90hFqlztzSQs/GW3qoVWoc+f7yYlrwAjfOPgtTr8Yop8oYWiSS4Sy2TiPxJXHwmve0kgzn6F9ajApc6CSww0kpUWbusHLt/d8eRKMBBIHVNwWRrBqO/UhZ1Dj960kkkzIZ5VhjRjKIzB1KMLMvRq1cY+6Qcg3feQ5mX4uTn5UbYm9jQEfXm3wc/1m4IZAyuLSIehGdXdsQG53BscpE342tRA7EGjFrABqDBkvQQGWznVQ4zx8T2OUkGc6RixRXHG+/rIXcQoETY+Nv5NsAjVVDcJcbvUvL0IPLgiQEgdBlHmYPJRquS8t9EzC3GqnXIN6fWXFu3Qc7kbNljv5w7JzP0tq1qPUrJ4wCFzixBPWc/u0MQw8vT96ZQ8rup8xkgZEnZskuTdRoDNB6kYexJxeYO5RE1KuJvLIUKbzNRuuFTg5+f5T8QpnDd4RX9L33LX7q9TqLx9PEB3JkJnOsuinE9L4YyZE80dNpBLWAxqq4HJXzSs2us2kUkVIeDv/zGN4tVrZ+oofhx2eJ9WcZfWqO7JxM1zVeLK0GXv9hmFK8TG6hSG6hSMfVHgxOiVP3KXWUoBbQGERatlkxB/ScuFup57RWDcZSDY0BXGssTO5dJL9QJniBDskmcqz2ElKLimM/e46FBeV7JR2OYrVa0Wq1vP/97+d//I//0XRLatKkSZP/pOzZs4cjR44AisvS1772Nb7//e8TiUSo1MrMMcHdT90BT4EGLW61nw2umzBl9SwezzC5dxHvRhuJwTRGl4TeqcwFDT00y+p3BSmtq6CWVAgaFcV4hWI8Q9/b/FiCerKzRTIzhcaiyIab20hN5Dhx3yRG99KcUq+J3usDDD8xs0Io49/hIB810n/fJKIOEEXmj6dQVjCUZ3Zgp5OR30WoFJU5tbZLPCDA6z9Q6qPJFxaYORSnkq2CCJtv7Wbq5QWiJ9KNuurMYk7rRR5m90epFGucuHcCg0vpn9GvAyA3UyT8zPJGuO7rfGRmCkrk7BJap4RmSUz/x6z7YDtai4bD3x1ecdy92oK104SoUynORmchmkQ8663nzFP5znfhWW9j8UTqnPf8OYIXujEHFJFSA0FA75GwBA0rvo5G39ZZsbUbEU3iCkGR/wInrRe4GHhg6px6UWfVoDFqMLg0pM+8R4TVN7Uy/twChYVyY04JwL3RwuKxNPOvp6jKNaKnlBrPtdZMuVglNZon/Ie5FYL8te9tpZSUGX1ygZHHZqicpblyrVVi2iqFKgtH0ww9Motns5We630MPzpLaixPYixHJpJH5xIpRitIVhH/NjsarZrw7xcYW4pMXv/BECqNimN3jbN4LE29Uic5mmHDh9pYOJFi7lCS5GSeel1ZCO25zkfktRiVbAWVSkC1NOfVe6OP+FCGWH+Glm02dFYNOoeIvctEOV9h9HHl88x+PdNzM7xWfgbXmI2Zl2colUqQBavVitlsZsuWLXz1q19l+/btb+i+N2nSpEmTf1/UajVf/OIX+eIXvwjA5OQk//2//3eeeOIJFhYWSNQXSdQWOXLXS4hosOLkPPP5WEItUIXISzGkqzS4N1qJD2XRO7VIJpGFoyk0+jQdV7UQfnoOlVqFIChik8x0nt4bA4w/N0cqnCO3qIh/7D0mfNsdDD4UYeSxCMlRRXDR+9ZWBEGg/5fLz2PPWiv+85zEBtPIKeXZWIyXiA6kSS8969su8ZCZKzSMAawdStyYEgWm1BfHfxJGvaRRCVzoxOjVM/SgMicx9Mh0I6LL4NWis0rEhzKkw3mGH42QCuca/U4MZ5GzVQbvV94rmdSELvUSfmqmIZCSTGq0Fo0SnRZdOeel90iseUcbkX0x5g4vbw5US2DrMVOv1VeIns/g6DVTiJfOuV7HlS3kZosMPxo55z1/+hsB2i/zsngyxeTzCytOuddbSYWzK0RQZ97j6DWjklRkJgsrTq16eyvlfIWB30yf81F6p1bZ1HYWtm4j1jajEnG2f/nr19olVBooLMiMPj1LNa/0QS2BZ4OD2UNxMpMFxp6ZJX5aqcksHUo08OlfTVItVDl29/gK0Vjn1S2oNYqYqLAoM/GHWUKX+IieTpGZKhA9nUZccv4CqMp1fNucWEMGRaRUhf5fTmEK6Nl0azejT86SHMsp64iZCt6tNhzdZk7/eoqqrAjQcwtFPJusmHz6xtqwWqNC1KqwdBiwdhgYeVSZ6zMs/c2BGtxrrEzvW6QYK2LvdqBv0TCuGkB2pzn55EvMzS9da0yN3W6nq7uLW265hVtuuaXpltTk/5imSKnJ/zGSJHHfffc1Xk9OTnLDDTdw/PhxqtUqdepEK3P841f/EVBES5ujm7lMeznIcPzHYTZ/rJPut/iZ3R9Fa9agt2kZe3KOerXOxls7OPajMJJZg95eZeR3s1RyVTZ9tJP+h6ehXodandycjGO1hS2f8DD23CzZ+SKLRxUV8ZbbuihnKxz+7mmQlF+wfW8NYQoaOPyd0w1BiqPLjMGlRc4JIIB3m5XX7xrDuDTR0naZh5atDk7eM4YMGP0G6nXILxUx5nZ9o+CwrzLhXGOhXg8y9NA0uTm54ZbUc10QQQ37/+kscZEEercWJ5YVIqUj3xtp/N+71dZwdAKIvBZDMp37Y3v8rvCfFCgB9NzQit6pZezZuRXnh5+YQWNQv2GBEsDJu0cwh8znHG+71IveqWXqlcVzrnfinvFzBEoA4WdmEI3qxu49AO9WK/OHU8zuSzSERmfQunRoLRKeDXbCc8uTXorYyUxhUSbWn2Fm31JBIUHwPDfFlHJ8/nAKS4dBOSeoUJJ0lM+Vs7Dh5hCSRcOh74wy/vtFCjEZOVNB55YoLsrY2g3ozlI4H//JBJs/1oHOKrHvHwfJTsucuG8crVli51/1cPqBadLhAvGRDDW5Rvf1LZh8Oo7+cFy5gAo0OhW9N/qQjCInfj6lRMkZ1ZgDekw+PaJBzeHvKhOHeodEpagImWwdRkafmkOOyxhcWuazM7xQfRCX18m+bz9GLqcUq4uLi1htViqVCn/7t3/Lpz/96Td4p5s0adKkyX8mtm/fzrFjxxqvf/CDH/AP//APzM7OUq/XKZLn4Wfv5+FnlfNa9ARK78LotJFfKBP+wzyB853MHUtjatFhcCsLSUd+MMaGD7Xh22lHY1Sjs2goZcr0/zrCmncGkEwitWodQSVQLqiYO5Riw0faSY7nWexPUa8qi132PiPd1wQYeniayIFYQ3yy4QOdZOcKnDyz00oDJp+eerXOzL44Bq+G9FSBoUeniZ5U/rDf+okusvNFBu9XJjXq1JX4O0GAuvL/M4Kn0B5FPH1mAe3Mv651Fjoua0EyiQ2HJgD3WisGpxaDVdNwLUoMZtn/1YFG/xw95oa4Jz6QJTGSYXbfysmScqrM4e8OKLFmf4TGoCK024O1LUf/fZMrzg0+PEViLHvum/4M5VSZk/dNKHEhKz5DILDdgblFx6k/+oxyvs7+bw02RFhnM3ckTn5x5QSTY43y9Z5ZqGwgqHD0mFfUPmdY/fYg1WKVw98fIzGUaxzvuMKHc5WZ+eNJchGZ6ZdiGAMSuYhMKV2mXgejR3ktmQQ2faibyb2LzB9JMfS7GfJzeVzrzcROZalUwejR4egxkRzJM/lCFK1Dw9a/6CA2kGHokVkGH56hlCmz5j1B1Fo1J346wfyJFM5VZirFMhtvaWfuSIJyarmPBo8SCzfx3CKp8TzutRZ0Fom6us7694SIHIgzuz9Bx9Ue9DYJ0SwSulBxEOv/lTLRpTLUOJk+wOn6aU7stTO/ME+9XkeYEXC73ej1enbt2sUvfvELXC7XG7rXTZo0adLkPw+iKPKFL3yBL3zhCwAkk0luu+02Hn/8cVKpFOV6iZlqmK//81eU9kisK67Hb72EShGGfzfHqpsChC52MXMoidGtJePQML03Rr1WY9VNAQYeiqC3SdSqdaZejFHOVln9riDhp5RJ/3odKrkaYkjN2veHmHhhgcRolviQUqOseU8rlUKNQ/883Jgjar3Ii2e9jcN3jDbEMvZOM+aggUplqWbrNXHi7jF0LmXDn3ONmbaLvZy+f5JKdmkBp15XojcAvUfbqK/0Hi3+HQ5ErUD4mXkq2UpDYNN9jQ/RIC47li9hDhkRDeIKcc/Ar5ZdhaxdRlKjy8/pyKtRpQ9/xMhjsyDONtyizqbzSi+2TjMLrydWiJGmXoqycCz5hgVKAAMPTGEJGs45HrzQhb3TTKw/1RB7nSH89DxTL84rcXNnsXAkht6uWSFQsnYZSU3kSAznODR81lgJKnRmEZNXj73LTGFheaHMf76D0C4XlVyVxEiuIVACJUqkmCyTGp0kFS6g92iWLidQr0N9ac6rUoTOq72YWnQc+8k4iyfSVEpV5EwVnUOkGK9gbTVgDuqUlYIKDD8yS99bfZiDBg59ZxQ5VeHEzydQa9Rs/ssORp+aJT1RJHY6DWoB/3l2LG0GBn6t1PCCIKASBQIXONA7JEYem2tE4RncWjQGEa1dw4l7lFrW6NFRK9cRTSLOVWbCf5inGK+g2yaRqsfZV34So1fHvrseI5tV6unqfAmr1Yrdbufv/u7veM973vOG73WTJk2aNPnPQygU4ic/+Unj9QsvvMD//J//kwMHDpBOp4kxx+NHH+Lxo6BGgwUbbvEqDA4Li4UqY0/NEjjPRTKcxeDRYvYrQomhhyJ0vqkFx2oLgqCsxVULVSZfXKR1jxtxq51qoYqgEqgWqiRHc3Re4yM7WyB6Ko0gKs9RnUOi53o/Y0/PEf/5soPPmne1kZnJM/q7sxyZ2gwIGhXx0xk0JjVytszgg1NkphRBTd/bgxQTMhNnbYSr15ZrC5VaRTaitPXvcGIOGIiPZqBKQ6Bk8GrpfJOPGWuM2UPLNYMlZMTsNyAaJarykmvSosyxu5Y3qplb9Y2+FBZk5o8lWDyRXHE/qjKcvHu0IXRagRraL/eSHM8x9sTsilNDD09TSpT+xJv+DFU4ee8EtfK5QqTW3W7MrYZzPoMqHPvpGPzRWwBmDsSpFFaeOPP1Dj98rnDK2m7CEtSDmhXX670hQLVUpf8XkxTOSq3xbHDgv8BJcjJLYUEmfjqD1i5RSsiUM1Wog2TTUFiUUath9fvbmDkQIz6QIfzMLHK2iqVVT3qqQLUsYG03IKdlMlMF4gMZ1JLAxlu6iJ5KMfniIhPPL0C1StslbiSrhuGHZ8hGCsQGM8hZmZ7r/cQG0uRmS9Srdeq1OmqTmraLPMwfiZObLWG7yI3eoczrdVzVwuyROLH+DO4NVoweHZJJja3HTCldYfwPypqrxqliojrEKU5gDhtZ2L9ArVZDmBNwuVyEQiFuvPFG/v7v/765Ea/J/2uEer1e/5ebNWnyxunv7+d973sfJ06coFL5EzMIwAUXXEDQ0Ub8iQq+8+2Ednno/+0E7Xu8GLw69n91EFDERsnRHIJawLPeyr6vD4AM6z/QRiEhI2rVWDuN7P+K0n7DR9pJjGVx9lmQM2X675vCvspE15U+IgcXsQZMDCwpi3f+dR+JkSxDDy1ZGzoktn20i8xMnhNLttitl7hp2Wzn4JI7U8+NAWb2LTbER+d/cTWlbFmJK0MRKp2JEdvw4Q4y03nCz8xjbJEwh4zMHUhg7TZi8uqUneVnCYt6bwwyfyJBaiTX6M/Wj3WTmytw/MfLO+XO0HujIoY6G2u3kcB5zhVRcTqPhKhRYtTeKBd8aQ3pydwK16d/CecaM7Gzduy7N1lx9pgZ+O3KPrZe6iY1nm+oy89gbJHY+OEuMpE8J362/Llr3tvKyCNTishpabwkh0Rwh72xc6vtUjcTzy1ibJHoe1srQw9PkY3I2HtNDZcm9wYLPW8OMHc0ydgTyvs63+QhOpAhHS6w+h0BtHaJoz9Uxloywbbb+8jOFTj+08nGsc0f7SE2mGHkd3N4t1kxOrXo3VpUKoET90wiOSQ2faiN6X0LuNfYmH41Rqw/y/r3t6J36zj9wCTd1wQYfmSa7IzM5o91IGrVHLtngvXvCTF7OM7MvgRr3h3E0qrnta8Ms/GWNlQaFa//IAxSCeubRF54/gWyuQwaSdOYoJEkCZ/PRzab5dOf/jRf+tKX3vD9a9KkSZMm//dyJq5kdnaWWu3chRiPy8uFu3YRf7iGRi2x8ZZ2yvkKww9Ps/mjPcQHM4w8PkfgAgeutRb67xtn4y1dlJJlTtwziTmkp+MyDyOPz7D23SFSE3mGHorgWmemZbODhdNJQhd6OPajYcp55dldyVYpZitkI3niA1m6r/Nh7zZx8J+HGwKa9R9sw+jT89rXBxrHNnxEsd0ee3IOa6cBS9DA1F4lfqzzTS14N9o4+YsJMhNKHWHtUOySTUE9nVe3cPq305RTZQK7nEReVkTgoUs9zL62oIiKNEBZcSnquNzD0APLExVr39+GOWjg8PdHznEosnYa0DuWF+rO0PvWAPNHE6TGlusae5+JxOAbFyOteW8IS8jIa18+/S83BhAEDC0S5UJ9RT9XvyPIxN6FFdFvoIzbHztqAqy/uQ2jV8/h7w5SztdBUGHrNmDrNDH+zEphlv98O8lwlvxcGc9mK4mxPOVUmdClLowuLaeXoues7YZGXMjmj3agMYgc+IayCGdo0eBZb2P894rz5taPdxLZH2PusLLJYN37WzH79Rz67lBDANZzvQ9bh5GD31Zq7Z43+0hFsgR3uhl8ZJr8XJlVN/lRa1Ukx/KK89NSX7Z/qovFU2kEFYh6kaEHZ9BYFaFTZH8MtVaFpdXIibsnltp3kwznmD+WpPfNfkafniU+kMP7Fg2j0yPsP7Afq81KJpOhWlVmsDweD5IksXr1au666y5CodAbu4dNmjRp0uT/Wubm5vjsZz/LU089RSKR4I+nVdWIbN+2nVZrG4kX6lg79HRe5WP4sRnca604ekwc/p4iDl7z7lZSkzlqco3ghS5ev2ucSrZCx9VeKoUKtSq0bLJyeGnOqectftJTeWydJqolZVOf3iPRc62fyIEophZDY9Fr88e6SA5nCC8JtkUdbP1EH8nxHIMPKPM0rrUWAuc5ObY05xS4UHEHOBNXtvX2HuS03IhVMwV0ZJecIruv95NfLDGzL4ZoErGE9MT7M+hcGixBIwtHkyvGJbDbRSqcJTtdXOqPii2f6CE9nWfg11P8Ma0XeZh6cWU9ovdo8W93MPr48oKVaBIRdcLKKLd/gR1/tYrEaIbhh97ATv+lTXWWdj3p8eUd+6agDvdaK+Gn51c0d621UEzJja/z7H5u+csukuGs4pApKBGBHVd5mXpFcRY6IxASdeDZZGfmNaXu9G6xMX8kiWgS6X2zj/HnFsjPlzD5dWSXIm1Mfh1r39PKzKEEUy8otbNvu43MbJHsdJHWi5yY/YaGm6kgCWy/rZv0VJ7BB5ai6kTY9OEO4kMZJl+IYmnXY2rRoTVpEI1qhh+ZRdTB2ve1M/3aIs4eCwvHUyRH83Rc4cHabmDggWnaL/cy+eIi+XmZvrf50dklTt07Tt/bWlk4mWLxWJrQxS7caywc+8kYHVf60JhE+n8xRaUi47xBxSsvvUI0GUOn15LJKHONGo0Gv9+PwWDgs5/9LB/5yEfe8D1v0qRJkyb/9/L000/zzW9+kwMHDpBMJlfUXmpEvDYv23buIPNcDXVVous6HzW5TviZOTZ8qIPYYJrIqzGsHQa8G22MPjVH3w0BStkyo7+bRbKqCe3xMvVylK5rfGSn80y+uIjRp8Oz0UZ8KE3wAjcDD0xTLVQJXeKhWqkhJ8sUUzKZyQKezTa8G2z0/3KyEXHWdrkX1yoLR+8cbRzrvNZHKS4T2RdD55AwB/SN+Db3Biuhiz0M3j/VeL7r3RKFRRnJqqbtohYmnptDzlZxrDITH1Cej+71VuKDGeUzlgQ3aklFy04HkZeijbFqu8SDa62VE3ePneNQpHMoTqCJ4ZVzWf6dDtLThYZwChSRVH7+jYuRWve48Wy0neOU+b9DsqqpV1dGxAV3u4idTp/j4NSy1bHCCeoM7Vd4cfQqtcYZVyO9S8LaZlpuvzReti4jxUSZYlzGEjJQjJeQs1VcaywYfbpGfa33SA3hUs8NAQweneL8Xq8jmdTY+yzML7nEr35nK/OvJxubDNou8+JabeHoT8KN/vi2KfOwJ342rrze4SAfLdKyycHkywsUFmQCu51oLRLJ4QzmkKGxGXP9ze1E+9NU5So6q8Tki4ughk23dBJ5LQY1sHUaGX5EqfPWf7Cd1HiO+eNJeq71M/nKIulwHsduiZn8JAcPHkJv066Y83K73TgcDq6++mq+9KUv4Xa73/A9bNLkjdB0Umryr86aNWsaNtmgOC29+93v5uDBg5TLyqTBq6++CigRJdqDWroT3SyOJ4iNbefCz6xly21dHPneKBq9iNYucvoX08i5Mts/0cuxn42jd+tQG9QcvWMMc7uOrbd3M/zYDAaXjnq5ztE7xnBvsrLx1g6Sk1k0BjWxEylm9yVZ8+5WSrky5UKFfFx52He+qQVrh5Hx5+dJT2ZBENjwkQ50dokDS7vrJYeEe40VrUlUxDsSTL8WRc4qX1PbZR5sXSZlh7wMetfy7q9cfNlVqfOqFnRWLZGDsWXXIQmcq80YWrQcHVEmq+S4zOyBGDP7zo1Q852vPLwqxZWLTqFdbkx+QyOeDqB4Ru17ZiP8Wc/wNe8LobVoGjEo/zsCe5z4tzk5dvd449pnxkWOyysESgCBnS5FpXtGiLU0sRPc6cK7oboirg0gNyczdyTO2HPLEzz2VSZsbSbarvAz/NBMo++r3xbA4NYx/fICcrbOxMvKGFVroLVo8Ky3k43MYwnqabvYw9E7x1g8kcW1Osv8EeX6kglaNtkxeXUcD09y+jcRVr3dz/mf72XfPw0hZyFyII5oENjy8U6OfF+JhKuUaqjUsOkv2+n/bYT5Qyk2f6wDQSXQeY0XvUPiwNeHQYK2i1qwd5to2WKnWqlz4BvDmNu06GwarJ0mQhcbAIGD31ImHDUGFXqHRGCXA2ubkZO/HCftjXCwf5bBoUHmq/OoZTXVB5eLM3/Aj8/n4/bbb+f222//F+9jkyZNmjT5/x6f+cxn+MxnPtN4/aMf/Yj/9b/+F5OTk9RqNRai8zz08APKySqcesSH3eJAlbFgfNTAqhuDpKby6GwaJJNIOQ+HvjPKxlvb6bneRz4mY3BrKZfg4LdHWfV2P703BqhVaph8ek7+fIKFQylWvzNIdraI1iyhFisMPTKDwaVh/QfbyEWLyLlKQ4y08S86FEeA4axyTAM7P9XH/PEk40uLPa273Jh8eqb2RaEMs6/HUItCw9J5/YfbWTyZIhXO41pjweDUwtIOrMh+RaCkdUkEdjoxebT0/2qq8fnte1w4ey0YA7FGLNvQAxN4t7rOESgBdF/jR61TrxApaQyK25CoV5MaWxaInxEoaayaFdcyeDWsvqmNyZcWWTyW+hfv68ZbOyksFhl6eOasz4RyhXOESAaXBmuHiWClxtCDy+073uTFu8lGMpxtOFCdYeChGTxrLQ2BEkDbxR50Vs0KkZLGAKE9bpw9Zk7cM8nC6ylF7AVYAvqG25LGAKGLXCw4UswfSRHZH1ciPJaEYe2XKpFrkVcWlXi274+x/VPd2DuNnP7tDOHn5jF4dax5jzLREnk1TjEpI2e1tF/pRqMTGXlsDr1Lg+YSNfYuI51XmJl6JUZqLM+a9wQxuLVY2vV0XuHl2N0TlOKKo5IoqTC4NKx+RyvhZ+eZP5Ki76YAkklNvVZn80c7kLMVTt0/TnHTPOEXjnFy6CRVqivqrmq1Sk9PD729vfz4xz9uOiU1adKkyX9BWlpaVriLJ5NJ/uqv/opHH32UWCxGtVbhtUP7eI19AGgntHQ9100+UqZ1YjVbP9TL+g+GOPGzSSSziM4uMfrYHHKuytp3BBl8cBqLX0+lVOXUfVMsnkix/oPthJ9bwBw0IKgEBu+fxhTUseqmIIlwFsmsIRcpEjuVpf0yD+VylVK6TCGp1AveLTZcqy0MPz1DYUFZVOp+sw9Lq5Ej31fmI0QdBM5zYfBolfkXESZemKe25JzpXGPBvd7KyCNTVIpgDuhRa5X6oVKsKE6UgkD7pS1YWo3EB5Ir3IV8WxzYQkZO3Tex9J4aE8/PExs6V9ht7TLi3+mgVqutWFxr2WrH0Wch8soixaSyKbKSrVDJAiKIIis+s+NKLwa3rvGZ/zscfWZad7sYfGiKYmx5w+WZGLezBUoAvu0ObG1Gpl5cWOGu1Haph0q+2hB+naGSrTD54jzRk8lG3aX3aPCstVCv1Bl/dqHhFNVxpQ9Hj4no6QxyqsL88eTSRSoYPVrs3Uby8yX0bongbhcDv54mO1Nk/vXUshuCCK27XKQm8wxOzzD1YozgHtj+yS4O/WAMKjDxwgJqnYq1723l1H1TUAE5W6FGnb63+Zl4doGZ8QJ9b/MvxeHaMHq1HLtrXOnnpS0UE2XsnSYEUeDoj8aRrCImnw6zX49nnRW1Vt1oL1lEtFYNjl4jng1WBh+OkNDFyS/MMvTKELPlWdRqNdWHlmuvgNNPT08PX/ziF3n729/+L97HJk2aNGny/z2uuuoqrrrqqsbrvXv38vWvf51XXnmFRCLBTDLCo08/BCipLif3teCxeNHU7Aw+rGHNO0PkFopojCI6h+Km1P/LSbrf7Cewy0VuroB5yUmx/74JArtcBHe7kLMVbB0mwr+fIzU2QXC3i1KqjNaqoVZVahS1Xk3nNT5yCwVKmUpDjNR9vZ/MVJ7ws3ONYxtv7WTheLIRLebdbMO5allglBrLMGcUGwKlzmt8JMeyFBZlrCETRp+OMxVHfFhZi1NLKlr3eDD59ISfmWs4ArnWW2nZaCc+mG6Iaib2LpCPls6NUEOpX3T2PxIpqcG90YbOoV0hUjojUFLr1SsizdR6Nb1v8TN7KE5yZNkp88/RdZ2PYqq8otZjKRFYTq3so1qvxr3WhkpUrYiGc6+3ErjQST5ePMcUYerFRTKRwoo++nY6sQQNzB2NK2NVVT6z40of6ekco7+bJT2Zb/TD6NMtu2yqoWWLg9RYjvhQhrkjcTQ6EVR1qIJ3iwPPBpsiHCpUOf3rKda9vx1zmyIsmj0cIxnO0nG5h1Q4x+LJNMVUiWJSxrPJikYvEtkXQ61Xo7tEg8mro2WTg8VTKbKRGKGL3VhDRnQOidBFboYeiVBKlOm81ofOqlHG/3o/k88vEB/KEtjlRGtWJu96bvBTzlUIPz9HsSfKyyeHOTV1ClkoUX1xeXy0NQ1r167lqquu4ktf+lLTKanJvzlNJ6Um/+7Issxtt93Gb3/7W5LJ5DnndVoder2ebDJHl2cVN/3FW5g/kgBBcVMaf2GBuQMJdnymFzlbYfF0itCFbk78aozsuMyGD7WDCkqJCo4+M/u+flpxX/pgG7mojGu1hUqhwpF/HsXYItH95gDVShWDU8+BrymOTBtv6aBSrqEWBY7/eBzqdbZ/ppfFk0lmXo0iZ2ts+lgXWoumEeG29n1tmAN6Xlt67d5gYfG4kjO76S+70NqW2545p/NIrHprK/2/mUIlQjEpg6w8oNOTucb7Ta1a1r+vk5mDsYZS9uzrn83ZAqXlg3D+Z1eTWywq0XBLrL+5HY1ZbDhBneFPOSl1XOnFs8nO/q8sR9aZWrWs/0AXsf70Oa5OoLg4Fc+yREQQsHYZKcznGs5IOz/ZR36huOyeJMHad4Q49ZtJkMEU1JKdLtF5rQ9Jr2bg/mkkk4DRbyQxlGX1O4LYukwNly1ji4SgVpyj1rwnhDmoZ/+3h0GG1TcFsHWb2Pc15XvC3mui4wov6ck8I4/N4zvPjnejlVq5xvzxFPOHUqx+ux9Lu5H4iFL4DT80g321hVU3Bpg/kcAaNDL8WITsVJHNH+tEY9Qw9coCree7OfDPIyDD1tu7qFfrTL0apfuqFkaeniM/m2fVTcpu+8PfHeH8L6xidnKeX977a9rWBIjH48zPzzd2BgiCQL1ex+/3097ezte+9jXOP//8c8a8SZMmTZo0+WMOHjzIpz/9aV5//XXy+ZV/tAuCgM1mI5fOo69auOl9b8Xjc3HgGyNs+Vgn1UqNgQci2NoNtF/qYeDBCB1XeKlX6xy7axyNVcPG97Uy/sI8HVf4KERLnPz5BNYOA6GLPWQieVq2ODh+9xj5OZmua3xU61Xcq2xEB1KEn5xXFpxWmxElFdOvxYj3Z+i+zofBo2Xi+QVS4bzigPOxLuaPJQg/OY/GILD5Y73ETqcZfXwGg0+iKtcpxcpK2492s3gyxegTs9i6jSQnclCG3rf4KMRlpvZGMfgk8rMyaKD3LQGG7l/pqqR3aDn0bcVNU2PVIJnUDUHTGbRODaXYuaKmnrf4ca628vqPRpbPa2D77X3M7I8qjppL/Dknpc0f6yK3WGTogWXR0foPtWNwatm/VLO+kb44VpmWI/IucePb5uDoT8YabV3rlPjjyRfjaAyARoNKDb3X+xh4aJZyqoxjlZH4gDLJtOMzPWTnCvT/Ynrp+ivPJUezDD0y23idmy9w6r5pNFYNLZvNuFfbOPIDxW583ftbqchVVGpV43rbP9VNdqaAqFMzcP8k5Txs/stO1BqB2HAGrVnD4IMziLo6W2/rZfZwArNfR6VQZeD+Gaw9ela9JcjYM/P4ttkRtWqO/GAM7xYrbRe7iexPoDGqadls5TfffZSiNY3BpCM8FqYklxo/F/V6HVEUWb9+Pbt37+ZrX/saGo3mnPFt0qRJkyZNzqZSqfC9732Pu+66i9HRUYrFP6odJC0Go5FyokqrsYsbP/EmIvsTVPJVghc6GH92kVh/hg0faqNcqDJ/JEnn1V4GH46QmSzSdY0XUa8mM1MkcJ6D138wQqVQo/OaFkqpMu7VFqrlGid+NoGoE+h+c4BysYK11dQQJPXc4KdWqyNq1A1XpQ0fbmfxVJrFU2kq2Qp9bwti8usbu947rvDiWGXh8HeU2uiMm+WZ61lCpkbbM+dEo5rua32MPT1LrQJUKlSK4D/PQSEmNxbCJJvIhps7mXktxsxrsXOufzaSTUROnuvavu2TvWTnCitcmTquacHk0TWcoM7wp5yUvFtsBM53c+TOkYZYSLKJbPpIF4vHEg1Hqn+pL3qPRDlfa0TubfrLTvKLJcU9aYnOa1oY+70iStK5RIrRCr7tNnRWSfkcEcx+HZnJIqGLXXg32RouW5JVRKWBYrRC2yVuXGstHLtrlEoRgnuc+Lc5OHJnmEq2gsmvo3WPi9xckam9MaydBnzb7VRLVRLDSnRcYJcDz1or8/1J1IKKyRei6D0a1r+vnZkDccx+HdOvxslMK2Ilo0dH+PfztF3k5tRvI1SyFda8J4igEph4YZG+G/yMP7dIeipPz3UtqEQVJ342ydbbOlmcifHYb5/AudpCKpVsRFeDUnsJgkAwGGTNmjX80z/9Exs2bDhnzJs0adKkSZM/ZnJykm984xs89dRTjI+PUyotu/wICNisNqo5sFScXHTVblra3By7K0zvjQEEAcLPzCFZNHRd62f08RlattpRaVQMPTCNWoK+t4eY3hcltMtNPi4z9vgsklWkdbeb1GSO0G4vp38zQWFRxrvVDipwr7YSH0wzsz+OJWTAscqMSqMi2p8iHc7j2WxTNnHti1JYlEENm/+im/kjcWb2x0ENGz7QQWwoTeSVGJJVDVWQs1XUEqz/UBeLx5NE9sXQuyXklCKQ8u1wUClWWTyeQrKKSjSdGoIXuJh+NdoQMbVd4sHcauDkfeNLzksgWaRzXIo0JvUKN6MztGx14D/Pycl7w434O4B1H2hn7lCcaP/yuuWfc1LquSFAKVVeITpqv7IFa7uRYz8ePSfS7Y9FUWc421nSsdpM6243p3892eiXya9D79YqmwXVoJbUjTGY2rtAOVtdcY31H+ogO1toxDCffW7DhzqIj2SYXhJWrf9QB7mFImOPz6KWVNi6jXg22Dj9qykQBNou91Cv1VGpVI04tXXvayMzW0ClVjH96iLlbJWe6/1IZpGFEyn0DonJFxRXpM23djF3KIFkE6FaZ+L5RfQuNb03tjHx/DyObjNaq4bTv57CEjLQfoWX2QNxqNdpvdjNsz97mYRuAa1DTXgsTLG0/HfJmfngdevWccMNN/DJT34StVp9zvg2afJvSdNJqcm/O5Ikceedd3LnnXc2ju3du5dPfOITDA4OUiwVG78sBxaO8w//8wQA9XqddeF1rN+wHvk1mWJCRufQUK/UGfvDHBve00X4+TlUWhVqrYqpV6KEn4lw3qdXMXswhsGjQ61Vc+Brg9h7TWz7ZA+pySxGt46Tv5wgHc7Te2OAulDH4NaSGMly6rfTeLfZcK+1oBJVyJkqcrZG55taUKkFMlNLEyYSGH16ppYcfey9JnquD+LoTjP44DSxoTSWgKHRtmWLg9R0Ef82J3qnFskokJ1aLp7c66zYu0wNEZKcq1POV4gNLu+6P3Nu1duDWDpMHPi2ItKR4zKSQ2Lde0OcvG9SESzJkJrIsXgyueJe/PFEzf+O8DPzhJ9ZaWOdnS+RjeSZfGW5kFj3/jZy80XCz8w3BEp9bw1i7VL6mBo9S0UtK8Ks7Ozyw7Flkx1ryEjbbg8Tzy6QnVbGxdFlQrWUAxy4wEOtWicxlGXxdAqNWUSSQJZhw4e6KKbKvP6DMfp/Oc3W27tY/RY/p38zzeLpJDq3ho0f7ODYj8IkhrL0XOfHFNSz5p1B+n89zey+GOd/cTXejdCyycaxHymirh2f6aVeU2wR67U6+748iMkv4l1vx9ljZs1NIQrREqd+HqbjugCCWsDaamDVjQGqco0TPxth1TvbqchVaqUq5gtFjg8d4+mnnsLusPPad55sxLYNDmYxGJTvF5fLxXXXXcfXv/51HA7HG75fTZo0adKkyRm2b9/Oyy+/3HhdLpf5+7//e+6++27m5uZIJBR3IJlF7rr3h8oO5mqVvT+QuPyqKzBtslGeq1IpVQjstHP0J2G23trJttu7GH16DkGjwtJu4OgPh+m5MciWj3cRPZ3G6NYx8GCE8WcWWPNuRYxibjFQr9c5+M0hNAZY94E2avU65hZ9I+63961+dA4JjVbdWJxa9dYAhWixYWfd8SYfpZTM6BOzIAj0vqUVnVWjiMXLVbKzhcauc0tQj9GjI/JqDEu7Cb27wtTeqCJQAkJ7PDh7LDhWpRpinsxMgXpteS9HOVWmnCqjMcCmv+xl4USSiT8sNIQ+bZd70Fo0jQWoyIEoolZNKX2WaKgMB79xrrjoTyIIvH7H2DmHZw/FsXcYG6+1Tg2r3hqk/77xRl80BoFNf9HN4qkU479fWOGglBjN4eg1KwuFS7Rd5EElqZl8IUo5rwLKmEN6jF4dnnUWoqfTeDfYGkKkzHSexJjy/94bfDhXmTl2d5j8XJnpfVH825frldRkDq1VQ+BCJ5FXYtTKAmqtir53+Fk8nuLkz6foe7sfc6uezms81Mp1Dn5rBHuvkb4bAwR2u3B0WhrRbutvbkMyqmnd7aBlq4PXvjmEvcOIs89EvVYncIGD0B4X/b+ZRu+QEI1q8rNFytUy9e4sDz36EoNDg7jcLmLPxBQL6wwYDAaqtSoGg4EtW7bwt3/7t1x55ZVv7F41adKkSZMmZyGKIp/61Kf41Kc+1Tg2ODjI3/zN3/DCCy8Qj8dJJJQd9KdzRxj46usACHUVfak+Nm7cSOVEmdx8EVNAj0pSMfhwhDXvaCX8h3lEvRrJIpI9XODgd0fY+tEuZg/EsASNlKxljt4VRufSsOFD7cSH01hCRgYemGT0d3MELnSiklRY24zEhtIMPjqLtcOAe70VUSdSKyviGu8WG2qdQGJ02THb1mlk6qUFEAR0Lg2rbgqxcDxB+Kl5EmM56metGbnXWSkkZOydJiytRjQGkdzMWfM+Wx1LQhmlRqlVoBgvkZpcni86UwMGdrnwrLdx4qdjVIo15GQFUaei722tDD8eaYiEYv0pRZR+FuEnzo27/ZMIAvOvp5h/faXTpZytEB9MM3t02Umz4yovpUyFmVdjjc8OXOjEs8HGiZ+ONtwKzpBbKJKbW57vs3YYcK+xUozLzOxPUowq13D0mpFMIvwBvOutqESBzGSR2GAWvVOCitJu483tFOIyJ38+ycTzi4oQ6WIv4afmSY7ksAT19Fzr5fSvI2SQtPfvAAEAAElEQVRnikgGEcGvo+NKD+FnFkiO5Nj237oQBAFHr4nRx2eY3htjw81tCGoBUadG1Ko4+K0R1AY1vu12zH4tHVd4KCRkjv90DP8FyveRwSnS8a6gsnnhZ+P0XNNCpVilXKhg3aFmJDrIs08/i8GqZ/9Pyo3YtuigCqPRiCRJdHZ2ct111/F3f/d3mEymN3a/mjRp0qRJk7MIhUJ861vfaryuVqs8+OCD/PjHP+bw4cPE43FqtRppEtz39AhqtZp6DfY9aGTP5RdiWGOjPFFHzpVxrbUQfnqW7jcHWPeBdkafmEGtUWH26Tj96ykC5ztZ854Qc0cSWFqNTL2wwJHjw4QuUmKwDB4tglrg5D3jikPP1S3UqnVsHSaO/lBJMwmc70TrVJzMC4tK3dBxZQuZSJ7U5FL9s8OpuAwtbXAL7fFiDhh4/Q5FcJ4YzSqJLiiJLka3jmh/GnuXiapcY/F4qiHScfSa8W6yk57IKy5BQG6+iEqragiBqjKKQEkN697TRux0htlD8YZAybXGgs4pNcQ5scEUWouInF0p1j55z/gbvm/DD58buxs9maScKzf6pdar6byqhbGn55YFSmpY++424gNKH7Nn1ZjZmQLFmExVXp7PC5zvQmvVKCKlKlQLVSSriK3dSGbKRHwki6PPQna+CFVIjGQablG+bQ78Fzjp/6UiQpvcu7BC8BUfSmNw6XCvt7J4IkWlUEPUqWm9zENyJMvEHxbw73Tg2WimZbuVek3g5L0T6BwSa98dIh8rYms3Mbl3gcKiTOebWjA4tTj6zAR3uTj+kzEkm4b2Dg+lXBVrh4Hua/0MPRpBpRbQOjTkZ4tUa1W0W8v8Ye8zDAyexuaxEvvnpTmvFBgyBlRqFd3d3Vx44YXcdtttbNu27Q3fqyZN/q1oipSa/Kdgz549nDhxYsWx7373u3zrW99icnKSytIf4yf7T3Ky/yQAe3+sFCD1al2xWVx1HaFdLZz8eZg172qj7y0BTt43TqVQwbnawvhzc7RscXD+F1Yx+coiGr2aYkLm0HcGWP3udgS1gEYvAnX2fXkAJNh6eze1ag2dVcu+pd3ta94XUgRPoooj31OKgo03dyAIIGeUxSHnagvFtEz4GWXnu7PPgkqzFHd2gQtzwIA1pGfsiVmmD8eQ5+WG21F0IM2R7w2ApERndF3nQ2vTNOLRJJOKzR/vZeqlRWb2xZBzFaql6ooYN2tQh9Ys4V5tbhQy/b9YjiFZgQTObvM5cW0rmphUGP0GEn9swy2fK3QytOjRmEU4S9BUTMmY5eUZq23/rYfsTIGB+6c59qMw7k1WNn+8k9e/P8bcgQTZmTxyUua8z/eRHM0xcP80x389oYwT4Nloo1auMfHsAka3DoNLCwhAnUQ4o0zg1BUbTYE6Bp+Olh125g4ksHebca2ysv5DbUzvi3HgG0Ns+EgH1g4DGz4cIh+V2ffl0wR2Ownt9tDzdj+ODjOv/2AIa6eZ0EUeatUa694XxBw0su9/nWb9B9qoVesUM2V6bgxiazNz+M4R+q4PUKmU+cOTz1EI5okcGGJoaIhSqUTtZK0xHvl8Hp/Ph1qt5pJLLuGrX/0q3d3df/Z+NGnSpEmTJv9v0Gg0/MM//AP/8A//0Dg2OzvL5z//eZ555hmiUWXSQa7KPPHE4402hlEDra2tTBSnyfxhI3uu3o1vi53T90+z4f1tqEU1crqK1lrH4JJ47SsDnPeFVcT6FUGxWFcz9odZSjGZ7Z/uJT6SxuTXM/JYhP6Tk3Rd40NrVWNpNZEaz3L8N+M4Vpnwb3dg9OiY2R8lFc7TstWOsUVPTV5+ltaps3g6BYKAyiBi8OgweXVkpwt41tsAiLwa49C3h9FYBUXY9FY/1jYTB787SLQ/2RAtbby1k4nn55lcypzvfWsAvUvLsTvHKJehKtcoJVc6Ftk6TYiSqvE6Pytz+rfT8Cc8a62dBlJT+Ub0XIOlaFxghfvT2URPpImeWN6R5uqzoLdLGFr0pMaUyaZyvk6lVKOcX8q432kncJ6LQ98fJjOZ5+gPx1j9jiDZuSJTe6Oc/NUkpXSZ7jf7cPSaOfCNETKTBQ7fFaYcK9Oy1Yqtw7jsBOqQcGoE5g4lmdgbxeDR4lptZXIuSqVYQ1DD6ncHOP3LCIP3z7DjM914N1oxuiWGHp4l8kqM8z7fi2QSCe3xcPRORRC+7fYuquUallYjlWKFw3eE8aw3IerVGFw61r+3nfRkjtlDcfw7bci5ClqHht7r/ZTSFSZejLL6piDjQ1Mczb+Kw2pl74PzTE5OKsK7X55lQ65W4/P58Hg8fPzjH+cjH/nIuTeqSZMmTZo0+Veir6+P3/72tyuOPfXUU3zzm9/k8OHDJBIJavUqp4f6OT3UD8ALv4NgMIgakUpUwDiwh+CFfgbuj9B5pZe+t/g5du8EpXQZW6+JyRcXcfaZ2P6pXkafnENj0lAu1DlyZ5iOy90EL1Ch1qhRS0JjfmndB9qoylXMfgMHvqE4JHVc5cUU0CMZRPrvU1yJem70I4gClaXay9FjITtXILI/DoKAo8fciJNw9Jlx9llIjGaZP5IkNpalkqyAILD19m6ip1Ic+eGIIshBcVUyuLScvGfJXVuEzbd0Mb0vyuKxFJVChUqxQqW4XPfpXBIGjxZbu4mFo0kAxYHoT4UFiGD26xtxwQ0ElmsvEUwtOrLTK12vqMDIY7MrDlmCBipylZlXl10xS8ky1VL1jI6Ite8PkV8oEX56nuGHZjCH9Kx5b4j++yZJhfMcu3uMYrLMlo91kxjNEn5mgcFHppTYOpQFMep1Zg8m0Ts0mHx6VFoRihXmTyYx+3Qr+mT263CtNRM9lSE5liNwvpPet/qYfz3JsZ+M032tF+dqM2pJoJSucOg7o9i7jfRc78d/vgvXKgsnfzGJzq6h9UKnEtt3mRv3OgsHvjlC1zVeBEBOV2jd7ca7yc7xeyYI7HRQU1V59Q/7yXYkiIYHGXp6mEIhT33orHuRr+Pz+fB6vVx//fV8+tOfJhgMnnuvmjRp0qRJk38F1Go1N910EzfddFPjWDab5a677uLhhx/m1KlTJBIJctU0T/7+yUYbwwMGQqEQ0WKS1L4+tl++Be8WBwMPTrPxw52oJDVypkq9Wsfk1fH6D0bY/NFuFk8lkSwaBI3A9CtRClGZ9Te3s3gqhb3LzNhTM0z8fh7PZht6pxZ7l4nEaJb+xybReyS8G23Y2k3MHIiRmy1iCRkwtepXOAkJKlg4fkY0rcIaMpCZzpOfL+FZb0PUqon2p+n/5SRqk+KG49vhwLXWSv99E5yYWXY86nqzj/kjSaJLTkG+HQ4srYaGu2Y5X6WUXTkZZe0yorMui5TK2SoTz5/rMgmscHb6cxi8WvLR0jluSdmZ4grRkdmvw9SiR2/XkD0jUqoqfayUlNfWDiOtu5bdkwYfmCaw24WcLrN4LMXIE7NQreLdaqdls51jPx1DTlU4dk+YaraKuVWPe51V2ZA3nFVMJcwa4kMZFo4nMbXqMQcNFBZlKoUqgqii43Iv4afnibwSY90H2nGusyLZNUReinFifILNH+1CaxLxbXUw9GiEmf1xVr9DqX2MXj31ap2jPxrF3GFEZ9OgtWrovT5AajLPxIsLeLfYKCVk1DoVvdcrjlPTexfoe1srkZFZBjPHMbZLHHl5kfB4WJnzemB5MFUqRZC0c+dO3ve+93HFFVf82XvRpMl/JE2RUpP/tNx+++3cfvvtK47dfffdfPnLXyYcDlMul5mcXBbe/OSeuxBFEa1Wy4FfWvD7/LjXeChW3VjsZkIXeZHzMoJaILDTxb5vDHDB51YTvMBNbr6IoBHQGNQkp7Oc//9bTT5eUBS2p5IMPzHNjr/uRS2poAbZ2QJ6l45Nf9kJagGDQ0u9XqdWqeM/34l7vRVBEJCzyoPY4NJSLSv/r+TKoAJTQMfi0RRbb+lGEODQ90coZcrYu03oHR0s9qeQLCLezXZqFeWP+9XvCGLtNFGvQSkls+1TPVQKNQ5/ZxidR2LTLV3k5wsc//E49p40rbvdDZHS1v/WTb0OklFD5NAigW0uFo6ncK4yI+rV1K+v89o3FDcmVGAK6htju/WTfQiCwPGfjuBea8e7xU69DpmJHJJNQtSqOPQDJVJNUEFhoYTk1LLhfSFEvZqT94aZeG6Rjbd2IhlF6jWl3c6/7iMzmaeYktHZtJz3+T7SkQL9906y4UOKcKwQL+HdZqPrah+FRInX/3kMOV9GZ5Vwb7CQningFwW23NbLa/84iJws4+g2s/Ove9n/1SFGn5pj9TtaabvEjaPbBHWoVWqYfQbaLlGz6m1B8gslhh6J0HWNH1OLHtcaC4XFEsVECVevhWqxhmuzjY6LfVSKVbKzMsYWHYIKNn+8E71dSzFTomhJMxqJcPCRg+j1evY9UCIWW564kiQJWZYRBIGNGzfS0dHBj3/846ZDUpMmTZo0+Q/H5/Nxzz33rDiWSqX467/+ax5//HHm5+fJ5/MMDipOQPtPv8qBgX1oNBrsdjuHfyqxeu0ajKIJp3kVWotE55tboFbHtdZK7HQG0ahm9U0hFgaS1Cs1LO0G6rU6vu1OOq7wodaqEAQYeHCK7FyeC/5mNXKmjKgXmT0Up2WrA4NbqyycGTXk5pWJi7XvD2F06xq7qnre4kfUqSgmlcUolUbVyJMPXOik7RIPidEsmek8Zr+BHZ/s4+S9YTquacHcasDo0aF3aUmO5Nj+6V5q1RqVYg3vVjttl3g4/dtpMpN5Jaat1cjhO0Y5ducY2z7VS9/bgww+Mo2jx0z3NX7ysRI6q0RutoCxRc/w7yKsfXcb1XKNzGSO/l9NIerVqEQB90Yri8dS9L7Vj2uNlUK0xOt3jLHl410gCIg6FSNPztD9Jj+TLy8ytz+BwSlRLddJjeVpu9yDe52VUlLm9R+MorFq2PHZXpJhZcWr580+7B1mDnx9CJNfj7XDiHu9lcm9i5TSZZyrLVTkGhp9jc0f60XUq3n1K4OUMspEln+ng8XjaWrlGpaQkY6rPYSfWkBr1RA830m5UGH2tSRtF7mxd5pY96FWpp6PUa+BSiNg7zax7b91IupFhp+axugyENzpZMdfd6NSqTj84zBbb+mgVq6RmSqz4f1BtFaJwUcidFzqpUYdU6sBvVeLRiuSiCUxXFji8aceY3BwCIfTzlPfizVidcZmBERRRBAEPB4P3d3dfP7zn+faa6/9t/1hatKkSZMmTd4AV199NVdfffWKY3v37uWrX/0q+/fvJx6PMz093Th37yPhxpzXoWdseNxuWjb4KQsO7H4b0sUacrEiap2K9svdHLt7gu23ddJ2aV1xohQEDG4t0aEMOz7bRzqSxdJqYPb1GJN759h4awc6u5ZqqUpmuoBaLbDqnUEEASwhI9Tq1Ct1HH1mWi90Kgt1S05Cjh5TY6GomC2j0ggYPBKxftjykS7UGoGD3xogv1jC0WdG79QyfyyJtVNN6GIP1VINmKX1Ig/eTVaqco1KocraD7RRK9c5cfcEol5g88d7yESKDPxqksjBGK273SwsOYaveWcrakmFZNIwsz+G/zwnc0eTODqNGDxaKoUax36qxKCptSpsncuuPTs+2YtaUnPinjB6l0Roj4d6tU5yPIeoU6OzaTh+zzhUQCWpyE/mEU0iq94aQGvVMPjgNMd/Mk7PW/wYXFoqchVUStRbZjpPJlLA1KJn2ye7SYTzjP5ujq5rfGhMIoW4jKVdz7r3hMjMFjnx0wkKqSK2kAlHr4ncYhFRr2Ljh9s4+M1RClGZ4E4nW2/v4PB3w4w+PcuWv+ii7VI3ljYD1WKNarGGrd2EqFOz+iYDyfEcgw8pkc2u1RLeTTYyMwVSU1l8W+2UkmVMrTpWXR9AzlSIDWSwdRlRiQJr3hvE1KIjHytRD+aZnJnhkR8dQS2pefWlMrFYrBHZJkkS5XIZrVbL2rVrOe+88/jHf/zHpkNSkyZNmjT5D8dkMp3jdFkoFLjnnnu4//77OX78OPF4nIHBAQCi03O8dveLSBoJu93OyV+/yqrVq9DpzARaHBi8OsrFKnXq+LbZmT2UoF6vs+FDnUy/tkC1VFuqNerYu5SN7ypJhahX0/+LCfKJEjv/uo/sYhGdSWJi7zz+bU60FjUmnxFTQE9yVJnLCV3uwbXW2qh5Qpe40Xt0VGWlDhO1KjQWZanf1mVk9TtCzB9LkBzLUSlWWfu+NoYfjeDZbMMU1OFeYyU9nicbKbD2fW3U63WqxRqmgF5xLXpqluxMkdBFblwbbBy7a4zR382y5t0h2i7xMLF3Ab1Toue6ANm5IgaXlsRYFnuHiaFHp1nz7jaqco3kWI7xZ+YQdSoks6hsxhvJ4dvpoO1iL8lwloHfTNH3tiAqSTGQGH5ihp5r/EzvixI/nUFrk6jKVbIzRVxrLLRss1NIyAw9OK1E4n24g9iQYr7g2WbHvcrC8Z+FsbUZkSwirrVWIvuipMN5fNvtVEp11JKa1e9oxeTTcfDbw1RKVer1Op7NNhLDWarlmuIKGisxuz+O3inh7DVTq9SInkhTk6t4NztQaVTMHUlAHdQaFe7VViwBAwa3luEnI2i0Ip1X+th8ayeCSsXJ30yy7h2tSJYayXCO3hv82LrMnLh3nLY9HhAFbF1G9C4JvU0iNp/EeFmNF/c/x8DgIFanhed/FadQUOY6hbiARqNBr9fT1tbG2rVr+dznPseOHTv+HX6imjT516EpUmryfxU333wzN99884pj/f39fPGLX+Tll18mmUxSr9dZXFxkdlbZ7fTUU0+iVqux2+1UK1UCgQAtPh+utziJR1I4/FZ0donUVA6DQ4vBoaOQKCIZNNRrdUx+PetXd1EtVqAGyZEsiakcnZcbEFQaVKKa4T9MEdrZQtulHjRGDQIC+UXFEnDzx7tAoBH34VpnBaBSUIqIqlxBEAXkuMz86wnaLvYiFyq07vIgqFByWV+eBwlEkxqVRsXJe8dJh/MEzndhbNHTe2OQ8RcXEFRgcCs7qkpJmXK+wpbbu1GLKooJmWqlhkotUM5XKeerFBMyky8uYO00YvYZVrgxnR0DImcrlHNlshEZc6hMOV+lXquTmS9iVgmIHi3n/9VqBu6fopyvUEyXCV3oRDJrkPMVBIPEzr/uQM6VKWUqHP9xmM0f70QlCRTTZcaemyc1k6f7TX5sbUZc681Idg3UYOK5RaxdRur1OoVFZdFJMooggJyrkhrNISCAGrxbrYw9NY9ngw21pGb7p3uZeGlOsZ0UwOQ3IGpVVMs1khNZqtU6BocWrU2i94YgMwcWCZznppSWEUQBrU1CUAkkp3J0XORDLpSJxqIspBYYOTxMvV6nWCwSiURWZB0DlCtlfD4flUqF1tZW3v/+9/O5z33uX+cHoUmTJk2aNPl3wGq1rojnPcPPfvYz7rjjDvr7+8nn82QyGfL5PFMRZbf9I0+pkCQJi8WC6jUVbW1tBAIBdEkLJlmHp89G5FAM3yY7glqgTp3cYgFL0EhmtsCqG1tJL+ShBsVUCXk6j63diKhTYw4aKSZKFJMyQl3ZkS+ZRCrFKrHBDJ4tVkxuPdQhtxQnq9IqInOAZCRLqOammJCZfimGd5MNBLB2GvFtdpBdKJAczzJ7RNmhpjGIlLJljv0ojL1PiVlb9fYgR+8Ypi6AShRo2Whlam9UqfXUcN5nVjH/ehw5WyEfKyEIAoVUGdEokgrniRyIYQnqKaaVYqteVRZ2yjnldTFVoZAoMfGCsiutlC4jiFCvihQXSsjZCq0XuvCstZIYyTacPD0bbKhEFaVEmZ7rfdg6TcjZConRHAvHU6y+qRU5VwENHPznYVa/VRG/t+3xkE8WUYsqoqdTlPMojkhLLqCCKCCoBVTapTEcz2Ns0WHrUqJpx56ep+fNPoLnu3B0mUjP5lFrVFgCBjqv9qIxqImPZKjkath6jNSrNXrfFCQ1mVfqYVFFfrFI73VKnHJ+sYQpoEdQC2TjecQ1RQ4e28/k1CQajYZoNMrCwsode4IgAHZ8Ph/VapVLLrmET33qU2zatOn/zY9AkyZNmjRp8u/Knj172LNnz4pjc3NzfOc73+GJJ54gHA5TqVRYWJhnZiYCHAUUxwCbzUatWsN3wo/f58N1uZu50zG8fQ4sIT3R02lsbUZMfi2Z2TySSaJSrKKzaln3ni4KqRLUayyeSJGNFui9JoBar0atUTPwcJjQLh++7Q50No0yT7Ikgu67KYigFshHl5yv11sQVALVslLfyJkSkklDpQhzh+P0viVIOlIgtNuNaFCTnS0yczAOIogmFRqThsF7x8lMFnCusuDos9BxuYfwCwuo1CrMfj0IAnK6QildZvU7QmhNIulIAZVKgPqSA0CqTDlTZvLlKJY2A9agASpLBWG9Tq10lrv1YpFysUY2UkRjUOJ669U6xZjSd8kisv22HgYfnqaUkillyrhXmzG26CilZKDK5o91IWfLFFNlBu+fZtVNQXRWDYsnyyycypCLl+l7sx/3aguJwSx6l5Z6tcbcoSR6j4ZapUZuXll0Mji0qESBcrFCYUHpi6hV41htZvFYmv8/e/cdH0W1/nH8sz29kwYk9KoUC4KAdAuigiJiBbFexWuv19+1XBS9VizXhoiKHRQEpFcBUapI76EG0nuybX5/LFlZEjohUb7v1yske+bMmTO7O7sPM8+cU7tDDMFRdlrfXo8dCzIp3F+K4TaISg3FFmLG7fKNMOpxeglPDia4lp3m19Rhy/Q9NOpdm5LsMsAgPDkEk9VMxvo8mlyWTEm2k5yCbLIdmSyeuwmP4aGstIzde3b7k8DLhYaGkpSURHBwMK1bt+b666/nhhtuOLUHhIiISBUKDg7mrrvu4q677gooX7hwIV999RULFy4kLS2NwqJCior2sXOvb8CESQtNOOwOIiMjMW02k5KaQlJiMtacIIoyIklsE8vOBRkktInCEmTGZDWRt7OIWs0jyd1aSLP+KeTtLPTNzJHlJHdLERF1QwiOteP1hFKa7WLfqlIsZhPNB9YlJD6IkswycjYVEl43mKjG4RhuL4UHRgN3RNv8o0MWZ5bidnoozXGRvb6AhFZRmG1mHNFW6nauRcHOYvb9nkvGWt8Ut0ExdkrzXWz4YgfBtewYBjToncS6r3dgGAa2YAuxzcLZvyKX0lwXXsNLm9sbsndpFqW5LoozyzBbTTiLXJTkluHMc7Nj7n7CagcfiJHA8BoYXnCX+GIvV4Gb3B2F7P7FNypTaa4Ti8OM12XgzHZRmuui9gWxxDaNIGt9PqU5vnYSz4vBFmYlZ1sRiefGUOusCEpzXRTtLSFrbT4tb0zFeeC83Jqv0qhzYRyJbaOp27EWGzN2YQu2krkmB0+Jh7IiN/YiN3gMMMAWbMUS7BsdPXdrIfGtoohpEsbeX7PZOiWdljekknxBLOG1Q8jbUURxnpPolDCsIRZCEhzsXZ6Np9hLVMMwPG6DRpfWJndzISWZZdjDLeTvLCL5/ChsYVaKthQSnhyMNdRM5rY8Qs71smbn7+xI24Et2Oa7/rh/vz8JHHznvCKMcOrWrUu9evXo0aMH1157LfXr16+SY0PkdFGSkvzltWjRggkTJlQonz17Ns8++ywrV66ksLDQP3VJTm4Oq9es9tczm83ExcVhNpsp/amMjp06Eh0ZRZy7FqHWUOyhNrI251KrSTSFGSVENQ4nJDkIj9NLzrYiolLDSGgegyPchrPQRUlWGSUHvjg7PNkczCZytxeSNiOduj1jCU8OxevysnO2b4Qdi93iH2XJEWHDAHYvymT9np20vaMheVuLsDqsdHi0Bfv+yMYWYiN/24HpPErcuErcFO0vwZntZPWY7ZSV+u5eKytwkb4yh5DYIGwhFtZ+ETjdW/qiHP/f+5blBj55XihO/3Mo7GUHhgIH2PtLNnt/yQ6oHlbXQdN+KRRlFVOyr4ztM3wXjvLTi9m/xBfweJxevF78F9yK9pZRlucitlkEsU3DWft1Gs4CFxmrc8n8o4B6PRLxHDiBFJESjMlkwnVgiMj8bcVENw2nwcUJbJ2+j6XvbeHcuxtS/+JEktvHUrC3hPTlmTTuU5fULolYrCZKsp2YzCYMjwW300NUvTCKskoxDHCXuvGUQdJ5sZTmO8nMyaDIWcj6BetxOp04nU72/rjXN02b988TWTabjYiICMrKyrDZbLRq1Ypzzz2Xt99+G/uB6fpERET+bgYNGsSgQYMCylwuF6+99hpffPEFW7dupaSkxJ9Ikr4v/c+KEyEkJIS42DjSZ+zjrLNb0qhxI4LNYYQUBhEaH0xxTil2h+1AcrWF2MahFOeUUZJThqfMi8flJTw5BHeZB6vdzOqxO0hqHUV86yiCIu1gwJJ3NxMUF0KLyxIwmWDvcl/sktgqGkwmCssTmKwWnIVu9v6Si9lqJqZRBJsmpnPeXY3weAxythRQnHXgxIoHinOcWG1mXMUG677YSWyrCLJW+aZfK80qY9eivYT0b8Ce5blsm5FR6fOXNvOgBBuTCY/Li9dtkLu5CIAds/b7p5oDWDMmMIYrn66tKKMMr9tg5yJfjLvys23YrCaK053U6RxLmNNL4Z4SMn73xWLFmWUU7Cqi/cPN2PDDToqznFiCS1j9RRphdYLxeg1Ks3wJT9agA4ldLsheW4intxdHqJ3EdhFkrM0lpJadyNRQLnikMfv+yGHP0izCE0OwR9qIjLSTtbkAd4mH/N3FWIMtBMfasdezU5pVhq2Wg/TVOdRqGonhgfz9eeSX5pKdm8OaWWsICQkmIyPDf2f+wSdmIiIi8Hq92Gw2kpKSOOuss3jiiSfo3LnzUd61IiIif02JiYm8+OKLvPjiiwHlGzZs4LXXXmPevHns3r3bN2Wc10tObg5r163x1zObzcTGxmK1WCn5xUnHizoQFR5JuCcaiyOMkHgHe1ZkkXxOLAW7i4lvHUlEbghlhS4y1+UT2ziC2CYxhMYFU5hZQnFGGRmrcjHMJs67vzFmm4mMNXnsWphBrbPDiT8rCmehmz0LfbGXLdTuG1kIsIfbwAR7l+VQvK+UZtfUIX9HCZ5SD+0eaMaepVnk7yjyT83mKvFQkl1GcbYT3PD7J1txHxhp3FXsIeOPPCwOMyFxDrb+lB7w/GSu+XN63LwtRewsf2Ay4XEa5O8u9i9f/dmfsVbOpiJyNhUFtGWPstL0qto4c0so2V/GnsW+fSvJd5G7wZes5Spy43UZ7PnNd64vf3cJ7hIPMY3DiWsWyZpvd1Gc5WT3kiyyNxaS3CHGP4VdcJTDl9h1IHFq/+oC6naMJeWiOLbPymT5h9tpe3s9GlycQNK5keSllbBpSjrNr6pNauc4rMEWX/J3qRdXqRmv2yC+ZSQFu4vxug1cRR6cBW7qdU+kNNNJdmEmpUYJi2ZtprCkEI/Hzd639lJaWhpwzstqtRIZGYnH4yEuLo7mzZvTo0cP/vWvf2G16pKCiIj8PXXs2JGOHTsGlHk8HqZMmcI333zD0qVL2bt3L5lZmXg8HtIzD5oadpEv+SkuLo78FQU0aNiQRk0bYnOFkJ9uJywpmML9JVhsZtylXgwvJLaNJn9nEfk7iynLd2N4DSJrh+BxerEEW1j33U5imoYR2ySc0MRgTF5Y9u5m7KEWavdIwGKzsHOB7/xTVIMwTCYzJZm+G+otQWZKc53kbipmq2kvMU3D2b0gg2ZX+5LM01fk4CkuT+KG4owSrA4rrkIPO+dnkptWREGaLy4rzS5j36pcgmOCyNlcWOGaYsYK37mnjFV5ZKzK+/O5cxq4itwU7va1k7k2n8y1f8ZpabMCb0Lb+P0uaneK88VWbi/py3zXMdd9vxOrzUJZjpOoRqG4nR4K9xWTu8UXt+WnFZO3s5Bz7mjM5om7Kct1kbOtkC0/7cURYcfrNfyJU44wKxi+a5YlGU5Ksp0ER9iJbR5Gwc5idi3MIKF1NK3vaMD+FdmkzU0nKCaIoGgbMU3CyVydS1m+i/wdxdjDbITEOghpHkTetkJC4hzs+S2T2BaRYED2jgKKTXnke/OY++UMHGE2MjIzyMrMwmt4K5zzKh8NvEGDBrRs2ZKHHnqI5s2bH+O7V+SvRf+jkL+t7t2707179wrl2dnZPPfcc0yePNk/Ak5WVhZer+8LYfLkSf66ZrOZ8PBwQoJDKJ5STONGjYmKjCI4JJhGjRoR0zAcvAah8cF4nB7MNjPBsQ5CE4Jwl3nBDPv+yKJWs2ha3FgPW7AVr9vLxok7aTEwhbCUYExmE3nbfF+kYXV8U4iF1wmhYHsJQZF2bGdZWT92J84CJxFJoaz+cgfnDG2Eu8RDaGIwhTuL2b0wi6B4O82vTQXgt1fWU7djLSx2M4tfXu/fnxY3ppC3s4jdi7O44IFmFO8v5Y/R26nbrRZJ58Xy2yvrOdTZt9TDEmph5XtbiKgfQsuBqexdms2eXzJocVN91n67k8KdZSx7axPNBtQlunE4EfVDiGsRSWKbKIIibeyYmcmqjzdz7j+bUb9XPI6r7az5ajuJbWMIiTPI2VJIVMMQgmMc2ENsgG/kAjAIq+Ng55xM6nSoRULLaMJqBbH79yyCatkJirLTcmDKgYCgiPDawVhsJiJTQgmKsWGxWSjJLyYkOhh7qBVLsAWX00Vm4X52rtmJ2+Nm1+5dmE1m8gvyyc7OxuPx4PH8OX9r+ZCJpaWlhISE0LRpUyIiInjiiSe45JJLTsl7VURE5K/OZrPxxBNP8MQTT1RYNmfOHN59911+++03MjIyfKMQ7tmNx+Nh+YrlLF+x3F/X4XAQFRWF2+UmIiKC1HqpsB4aNmxIrdh47GE2XMVuzDYTZdllOMLCaNQrkaAoOyV5TrweL0V7S2kxsA6hsUF4PF4K95ZQmFXC2YNTCa8dgsflJeP3PEIS7VgcZsz2A7FHkJXw5GDCatvJ2lJAdIMwivaXkbfdN+1baZ6T0FpBvulxgZTucdS+II4dYTaK9pcS1yISV4mHFe9vBSAkzkbDy5NZ/10aSR3iSWobzR+fb6V4n4vWt9enJLuMjd/vOeSJhPPuaczOnzPYtzyXljelEBzrYOmITdS+MJaQODubftzLum99079c8EhTygpcZK8toM3N9TE8Br9/up1dP2cRmRJKXItIHNE2zBYzm37YRcM+yZRk+0Zjij87CrPVBC6Irueb0iMsNRh+MZO7vYi45hGc98+G5G0rZsPknTS9vC71uyfiLHRjtphJ/yOHhJbRxDaLwOaw4HX7ptR1Oz2EJwdjtpmJbRxOibOYHbt3kJOXQ25uLrm5uXi9XrLnZFNYWFghESk8PJzS0lJMJhMNGjQgPj6eSy65hPvvv5/IyMhT+r4VERH5q2ratGmlI14WFhby6aefMnHiRNasWUNmZiY5OTl4PL6pLCZPOeScV1g4IaEhlPxaQoNGDYjaHUWwLZRGjRtSq2UkJgtEpoTiKnNhtZtxJNgJrxOMq8SDyWJi99JM4ptH07RfXYKj7bhLvWyYtJN6PeKJbhyGNdg3UiNAeJ0gzDYzkXWCKN5dSnhSMCG1HKz7toCi/SWEJwaxZdIemg+si8ftJTIllNxthexbnntgerU6mK0Wlv9vM3U7xhEUZWfpW3/eVFe/ZzzFWU72rcil7V0NKMooY+P3u4ltEU5K51qs+HgruAOfr/qXJhAS62DNFzsIirVy1o312bMkm/0rsmh0RR22z0inNNfNH5+mUbtjLPFtosncWEBInIN6PRLYuSCDPb9ks/rLNNr9swl1OsURHOVg44RdYEBIgoOszQWEJNiIrhdKwS5fclRwjB2zBYLirGRvLMRT5iXp3BiCYuzsX51H7vYiwpODOfumFPL3lJC7tcj3/NlNJJwdSViSA6vDQlFmCfbIUILjbASF23A5PWTnZ7Hm1+24cbN78W5MJhMFhQVkZ2fjdrsrPeflcrmIioqicePGNG/enHvuuYfzzz//VL5lRURE/rIsFgt9+vShT58+FZZt3LiRb7/9loULF7JhwwYyMjJIT0/H5XKxYu0yVqxd5q9rt9sPzPjiJSw0jHr1UjH/aqF2Sl1iQmKIjAmhNMeJLcxKcVohUXHhpHSOI6xOCIW7i/C6vGStK6ThZYmE1wnB6zbI2pRP/t5i6l2aQK0WUbjLPORsKsQeacUeYcOOb5Qlq8PiG51obT5ZGwuIaRaBq9BN7tZCzh5cj+KMMiJTw/j9oy0AxDQPp36vRHbM3U/BrhKSzo/FwJdEBGAJtvimf5u5j6hGYdTpFMeGsbsozXbS4PIk3IVudsw75OY9C7S8PpU9v2aRs6mQ1G7xhNcNYfUX24mqH0poYjC7F2Sye4HvZrxWQ+rjLPQlAzXvVwfD5Nt+7uYiImqHkNgmFnuIFWuwla0z0kntGk9RegnOQjcpXeKxhVvAA8FxNmzBVkKTgshYlUfWunxSusRz1q31yFlfwKZJu2l8ZW3q9UqmJKsUs8XMjgUZ1O1Yi+jmEQRF2HGVeMBj4CpxE14/FIvVTPzZUbgoI71oD3l/5JBbkEvOuhy8hpfsNdkUFBRUOOcVFhaG1+slKjqKlJQU6tevz4ABA7jyyisJDg4+lW9bkRpPSUpyxomJiWHEiBGMGDGiwrLNmzfzzDPPsHjxYtLT0yktLaWoqIiioiLcbjdLly0NqG+1WgkJCcEwDCIjI4mNjcVmsREdG0NYWBi1aycT0zQCi8OMUeb7IvJ6DJr1TQUTeD1e3KUeHDF22j/VHIvFjMftxVXkoelAXzazxWQhf3sJeTuKiT87ijqdYvC6DYLjHOSlFbJ3RRbtHm2Gx+kbTWDHQl/m8c7F+6nbMYGwug6CY4NIuagWthAr9nAbu+dnUZbnIjfNlxxVPr1IWF0HhTsDpy0zWU2YzL5AJn93Ma5iN1mb8glN9iUVnXVDCu5SD6tGbsPiMFOcV0ZpRjFbZxQT1zyc2u1qEd0gHMNtsH3ePuq0iwMgON5BrVaR4IUtk/bS8pYUAKKbh1O3zEPB7iIi6oZy9s31cZd4KCtwYnFYCE0IpmHXZCx2M84iN7ZgC/YwK44IG4WFRWRmZZC5Pouy0lLy8/PJy8+juLgYt9tNbm5uhSGqTSaT72Ko243L5SIhIYGEhARCQ0O54447KkwvKCIiIsenW7dudOvWrUK5y+Xi+++/Z/To0axdu5asrCxKS0vJycnB5XKRlZ3Ftu3bAJj781zAd0eazWbDarVSK64W4RHh2G12oqKiiI9PIDoqisj64XjcvgtxZQUuwpJDqB9txxZsxVnkxFnk4dyhDbGF2TBbTWRsyCPpgmjiWkaACaIbhLN1UjoJj0dRu30sxZm+KTGsDgubp+7mrOtTMQyDiNohOIvc7F6UhS0ESrKd2MN8/70665ZULA4zwdEO7NEO8rYWEtMojOJs30hFmMFsMVV4TsKTQjCZwFnkq5e/oxgOnMuIaxGBPcJG27uD2To9HY/TwO3ykDZ/HwB7lmSR0qkWLa6rgy3YyqYJ20lsF09EnVBKMspI7BBDeJ0Qdi7IoGiPC1uwBUzQ8MoksjcU4nUbxDaI4IKHQyjcV0pZoRtbkJm4syKIaxmOs8SN3WYFK9hCLEQ1CiYnP4vdu/bgcjvJy8ujsKCQzKxMzGYzBQUFFBQUBFwIAwgKCiI0NJSSkhKsVitNmjTB4XDQuXNnHnzwQVJSUk7yHSciInLmCgsL49577+Xee++tsCwzM5MPPviAuXPnsmXLFjIzMyktK6W4pBiXy8Xy5X8mjjPdd0EuNCQUA4PICN85L6vVSkxMDCFBISTXTSa2ZThBEXbK8svABG6nhxb9UzGZwevyUprjwhZm4bz7G2ELteEp81C0r4zUHrWwhlixeA1K9jvJ2VRAao9EErJK8boMwpKCyN6Yz77lWbS9qwHOYg+OSDvbZ/vinl0LM6jXK5GQhCDMNqjfIwFbmI3gnDL2rcilaH+ZPyHIVewGs4nQWkH+6YDLmS0m8M3uQWmem9JcJ3nbi7BF2AmvE0KDPsl4Sr1sGLsLe5iVwv0llOwvoWBHCYnn+qYQCU0Kwmwys+mn3dS5sBaYDGyhVup0igPDYNf8HaT2iMNkhVpnh+MsdJO5MZ/EVtG0uqUeZXluCveVERRlJaZRGGHxQdjDrRTuKyGkVhAh8XastYMpLCwkpzSHTSszKXGWkL8yn/y8fIqKi/B4POTm5lJSUsKhoqOj/fFYcnIySUlJNG3alBtuuIGePXtqVCQREZGT0KRJE55++ulKl/32229MmDCB33//nS1btpCRkUFhYSElJSVkZmWwfYfvnBeLfb+CgoKw2+1YLVZq1apF+M5wbGY7UTlRxMXEEW2NJuGcaLwuD5igLLeM2MYRhMQ5CKkVRNHeEsoK3TQbWJeQWAe2ECu7l2QS0ySc2LMisTgshNcNZufcTOp0jCO8SzzFmaUYGDgibGyZsos6F9XCbDMR3SCc0hwnGWvysFggb1cRFrsvaKrXKwFrsIXw2iHYI60U7i2lNMtJ6YGRisxmEyZrxXNe9jArJhO4y3xxScHuEswOM3ggpkkEYUlBhMY72LM4C2eRG4/Ly57ffCNY7l6cRf1Lk6h/SSK2YCvbZ+3F6/US3SiCon2lxDQPI75NFFun76U020lwrB2z3UJyhxjyd5RQVuAkoVUUUfVDydtWRFF6CbYwG7UvjCPx/BjK8lyYw/CN0hkbRII9kkJnPrsz9uLKKCU/L5+CwgKysrIxW0z+c15ud2AGvMPh8CciJSUlUbt2berWrUuvXr249tpriYmJOen3nMjfhck4OIVPRI4oPT2dN998k6lTp5KWlkZxcTEWi8V/EsBsNgcMjVyuPJkpKCjI/3dkZCRWi5WY2BhsNhtRUVGYzWaio6MJCQ7BYrUA4CnzYDKbMFvNmMwmCrOKKclwEtvEN/Tftjl7Se2UgNlqpjS/DMPjm0LOHmrFMAzW/rCTxFZRxDSMIH1FNttm7aNel3hCk4MwnAZrv9xBi5tSWPvtDvDFEFz4rxbk7yhi9edpgC/oKMkuw+PyUq9bAumrc8jdUIAlCJr3rw8GLB+5jRYDahMSF4S72I3FbiFtYTqpnRMxvFCSWYYj2obVYaEkq5TszUXUviAW8M1LW5JX5hvi2mTCZDJRUlxCYZEvYCssLKSszElRQSHFpcXk5uTi8XgoKyujoLCAoiLfCZlDAwKz2YxhGAQHBxMTE0Nmpu+iWePGjUlOTuaee+6pNPtdREREaoYZM2bwxRdfsGTJEvbs2YPT6cTlcuFyuTCZfCc8Dv3vjMlkwuFwEBoa6ru4FhpKUFAQ0dHRmE1momNiCAryLQ8JCSEkJITQkFC8hgEYFO0vJTjGgcVmBgN2zN9PTNNwwhKDKctz4iz0EFzLgdkC22alU69LIu4yN44IO7k7Ctk0YRdtb2+EYZhY8802zCYrESlBJLSKYev0vTiifPHQngPT57a4sS4RdUNZ/JJvhCZbCNS/NJmN3++h2bW18RpQtKeU3UuySO1Wi+Tz4ti3PJvctEKa9qsLBjgL3TjzXVjDrARF2HCXedm5MIMGvRIxDIP9v+cSnhJMaGwwHrcXr8uLL/HK6rug6HJTWlZKbk4uXsPrH3Y6L8+X7J2fn49hGBQXF1NUVERpaSkul6vCc18eC8fHx2MymSgsLCQuLo5GjRrRuXNn7r33XuLi4qr8fSMiIiLHLzc3l3HjxjF9+nTWrl3rv3mvuLgYwzAwmUxHPedVHntFRERgs9mIjo45kNgUDV4TcbVicdgdWO028BoHErNNWIMtWO0W8ncWkbujmNoXxGC2mNnw425SOsdjD7NQnFGGq8CNPcpGSIwDDIO13+4gsl4Iye3i2LUwg92/ZpPQKorQxCBMJtgyOZ36lyawc+4+3Afyk9o93JScrQVs+sE3omV8m0jcTi/OfBf1eySS/ns2hXtKweSl+bWpmCwmfv94Cw0vTSamSQTFOaXY7Fa2zd5Ho8sS8XoMCnaW4Ii0EZoQRF5aEVnrC6nfMx6TxYS71EPRvlIi6oQAYLKYKS4sorikhOKSIoqLin3JYkXFFJf4znm5PW7KysooLCz0n/NyuVwBz3v5Oa+goCBiY2MpKCggPDyc+vXr06RJE2677TY6dOhQpe8ZEREROXHr1q1j2rRpLFmyhA0bNpCenk5+fr4/9jp0FB7485xXSEjIgRgslODgIN/1RczExMYSdOCcWJA9mJCgEEIiQvB6vJhMJjI35hFVJxR7uA3DY7Bx4m6iG4eRcHY0BXuKKdhVSlSjUCx2M5sn7aJe9yRcxR7Ca4eQsSaXtFn7aXFDXcxmCxt/2I7HBaFJwcS3jGLXokzMVhP2cBtZB6Z0q3tRLeJbR7Hs7QOjX1qg9oVx7P45k9odY7HYzRTtKyNrQz5xLSOo1yORPYszydlSSMvrUzFZTRTsLsFV5MYSZCaiTijOfBdpc/fRYmAqXpdB2tz9hCbbSTgrBmeJG3eBB4/LQ2h8ECazCWepC6enjNysPLxm3zkvTIZ/gIO8PN+on+UDVhzpnBdAbGwsDocDu91O3bp1qVu3Lj179uSaa64hLCysit81In8fSlISOcU2b97MJ598wrx580hLSyMnJ4eysjKsVitWq5XCwkL/XUqHJtUczG63Y7PZ/AGHxWIhyBEEJt80GBaLBYfDgcfjISws7EB2roHJ5Mu4djgcZGVlExUVic1mw263k5eXh9VsIzrWlxBVVuKkIKOIuk2TKc1zkrUqj8Rz43CE23AWu3EVusnakk+dC+IoLS1j15p0EpvF+i46FRRRVFRIeEQ4JpPJlzCUX0homO+kS+mBkYwiIiIoLi72/9hsNkpLSykpKcHtcuP2+EYwKh+tyul0UlpaWuGu+3Llz53D4SAyMpK8vDxKSkqoV68edrsdk8nE2WefTceOHbnpppuUmSwiIvI35nK5mDlzJj/++CPLly9n79695OTk4HQ6cTgcOJ1OnE4nFosFr9db6YU18I0UYLPZCHIEYbPbCA0NxWQyYbfb/ScegoKC8Hg8/sSm4OBgcnMLiI6OwOFwAFBcXEJYWKi/blF+MWHhoYSEhWDCxI6l+6h3fm0cDhvb5+wn4axo7KEWbGE2yvJc7F6cSWK7KIKi7aSt2EVUagT2YJtverTMbMBEeGSYP1krNzuPmLhonE6nP2m+PDmooKAAm82Gy+XC6XSSn5+P2WzG5XJRVlZGcXExHo+H0tJSysrKKn1eTCYTFosFwzCIiYnBZDKRn59PUFAQderUwe1206RJE1q1asWAAQM4++yzq+R1FhERkZohMzOTSZMmsWDBAtauXcuePXvIy8vD7XZjMpkoKiry33x2tHNeVquVoKAg3zkvswVHkC+eioiIwGKxYLfb8Xq8hIX7znkZhgEGOIIcOBwOcjJziIyJxGq14nA4yMvOw2RYiE2IxmK1UJrnIndbLvUuqEvhvlL2/ZZL7QviCI51UJrvxJnvZv/qXBr2TqSsxMm2xbtJbZ944O74QgrzCgiPDvffnFhYUExoaDCYfOe8cnPyiIqOpLS0lMLCQv85r7KyMkpKSnA6nXi9XlxOF0XFvnNeZWVlx3TOy273jRRaWFjovxM/LCyMpKQkWrVqRdu2bendu7cuhImIiPyNeTwe1q1bx8KFC1mxYgWbNm1i3759/vNeJSUllJaWYjKZMAzjsPGFxWLxx112u52QkBBMJhNBQUH+a5AOhwPDaxAcEkxwcDAhISHk5RQQFR3hj9EKcwqJiPWdAzM8BnnpBYREhRAZF47X6WXnokxqnxtPSLiDbVPSiaoXjiPGRmh8EAV7Sti/IofYs8OJbhTGtoV7iEgJITQxGMPrJWtnDl6Th6jESJxlTtxuN1n7solLivXFTyW+EZ/MZjNFRUUUFBRitVh8id2lZRQUFGC2mHE6ncd9zgsgKioKm82G2+0mLCyMuLg4EhMTad26NU2aNKFLly4a+VvkFFOSkkg1Kiws5IcffmDhwoWsW7eOvXv3kpub679DraCgAKvVit1ux+12+0/wmM1m/8kOj8dTIaP3RJnNZiwWCy6Xy//l7PV6T2n7DocDq9Xq38fyoQ9LSkoICQkhKiqK7OxsPB4PycnJhIaGkpSURIsWLejVqxddunQ5JX0RERGRM8+GDRuYMmUKf/zxB1u2bGH//v3+O6ZKSkooKyvzTydXUlLiv8hWPmKjx+M5bKLT8TKZTP67sDweD1ar9YiJVCfSfnkcWT7yQUhICHa7ndLSUpxOJ4mJvpGWyuOwxMREIiIiaNWqFWeffTaXX345kZGRp6Q/IiIicmZxu90sWrSIJUuWsHbtWnbt2kVGRgb5+fn+BGrwJea4XK7Tcs7LbDbjdrsxm83++OhUtl+efFUuPDwcr9dLWVkZwcHBREVFUVJSgsPhoFatWkRHR9OkSROaN2/OeeedR+vWrU9JX0REROTMk5GRwfLly1m3bp3/nFd5UlP56IzlcVBpaSler/e0nfOy2WynvP3yc17lo3qXD97gdPqmjImJ8c1iUx6DRURE0LBhQ1q1akVKSgrnnHOOEr5FqpGSlET+4pxOJ+vWrePXX39lzZo1pKen+y+yFRUVBVxkM5vNWK1W/11gNpvNPzxkfn4+DocDt9vN+vXrSUpKIjIyEq/XS2hoKFarFafTSUFBAbGxvmnaykdEioiI8A89bbVa/fWjo6NJTEykSZMmDBgwQF/4IiIi8peXl5fH8uXLWbNmDZs3b/ZPiVZ+B1t5TOTxePyJ5larlaKiIv8ITeUXq0wmE9nZ2WRmZtKkSRMsFgtOp5Po6Gj/CEher5fIyEhcLhelpaX+0TS9Xq9/5ACbzUZMTAxJSUlER0dzwQUXcO6552Kz2ar76RIRERE5YW63m127drFx40Y2bNjAnj17KC4uprS0lIKCAoqLi3G73f4kp/I4y+Vy+S+M2e12/wiTHo+HDRs2EB8fT3R0NIB/FAG3201JSQnh4eH+C3aGYfgTj8ovchmG4T/fFRsbS2pqKhdddJHOeYmIiMhfntPpZPv27aSlpbF9+3Zyc3NxOp3k5eWRm5vrHxmyfEYUl8uFyWTyn68qn6Lu4HNe+/fvp2nTplgsFjweD+Hh4QEJS8HBwQD+a5cWi4Xg4GAiIiL8MVhSUhJJSUmEhITQokUL6tev7x9oQUT+mpSkJCIiIiIiIiIiIiIiIiIiIiIiVcpc3R0QEREREREREREREREREREREZG/NyUpiYiIiIiIiIiIiIiIiIiIiIhIlVKSkoiIiIiIiIiIiIiIiIiIiIiIVCklKYmIiIiIiIiIiIiIiIiIiIiISJVSkpKIiIiIiIiIiIiIiIiIiIiIiFQpJSmJiIiIiIiIiIiIiIiIiIiIiEiVUpKSiIiIiIiIiIiIiIiIiIiIiIhUKSUpiYiIiIiIiIiIiIiIiIiIiIhIlVKSkoiIiIiIiIiIiIiIiIiIiIiIVCklKYmIiIiIiIiIiIiIiIiIiIiISJVSkpKIiIiIiIiIiIiIiIiIiIiIiFQpJSmJiIiIiIiIiIiIiIiIiIiIiEiVUpKSiIiIiIiIiIiIiIiIiIiIiIhUKSUpiYiIiIiIiIiIiIiIiIiIiIhIlVKSkoiIiIiIiIiIiIiIiIiIiIiIVClrdXdAarZ9+/aRm5tb3d0QkdMkKiqKhISE6u6GiMgZS7GXyJlFsZeISPVR3CVyZlHcJSJSvRR7iZxZFHvJkShJSQ5r3759XHv1tWCp7p6IyOkSFBTE559/rsBBRKQaKPYSOfMo9hIRqR6Ku0TOPIq7RESqj2IvkTOPYi85EiUpyWHl5uaCBawbozCXWgEzJrMJTH/+mMxmMAEms6/skOWH/zmwjtkElD82HfTY5JuM0IT/sVFedqD+wY8N059tGOWTGJa3WV434Hf5egfqHbSOUd6OyVdkmMAwH7Se6c+2jYB1CFgnYPv8uZ6/7iHr+n84cv2AdQ5TdtS//WVGQJkR0KYR8Ni3faPC+lRo80A985/LTSbDV2wqf1z+Mh60/MBv36I/65lNxoH1jYMe++r43gIGmAx/udlk+JZxSJnJwIzvx2QyDrxVD5SZDqp/4Lf/BwMTXswHtmU2eQ8sAzNeTCYDy4HtWUzeA78NTCavr9y//ODHXn/bZpPX3wcrnkqWeTED5vL2DmynfF/MGAHb8dU90NcDf1swYQIsJjBhOvD4z99mTJhNZnbutvHC21Hk5uYqaBARqQbVFnuZzDUq7vI/rsGxl2E+aN2aEHcdUqcmxl4Wc82KuywcWF+xl4jIGUnnvHxFlcZeZmpU3HVoWU2NvWpS3FUTz3kdGntZTR7FXSIiZ5AaE3uZzDUr7joorqqxsZf5kH5Q/XEXHBxjlb+UNSf2Ko+bakrcpXNeUhMpSUmOylRsxVxiB1N50GD2Bwe+oMEE5j+DBtNBywOW+R+X/22uGGQceGyYDnxTHbTMMB34VjKVf638Wcc46BvUOFCn/Av/z4Dk4MeH/G02VQgIAr4MDyQplQcyhwsmKv42VQgMDlf3aAFCZfWOupyj1a0kcDh0GQcvOzRQMCosM5X/fWiSUsBvXx1TeQBwaNBw0DLD/7cRsJ6Z8m2Xnwj688fEn+scGgSYD1vmrfDYcvCXd/mXcvnfJsP3hX5QIFD+ZW4xeTGbTP76vt8cqOf7Evet7/siNx8INmwmLxa8/rYtBx6Xt+kLCrx//n1g23/+bRy0rT/bt2A68LcvQLAcCBR8j80H/vb9FhGR6ne6Yy/DbK5ZcVdAXWpk7OVPUqopcZe/DzU39rKavTUq7vqzvmIvEZEzmc55HVq3PM6pOXHXYZdTg2Iv86FJSjrndbTYy2byKO4SETkDVXvsZTbXqLjrz1ijBsdehyYpVXfcVQPPeR1aZjV7alTcpXNeUhOZj15FRERERERERERERERERERERETkxClJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlLW6OyA1nxHixmsGMGMym8D054/JbAYTYDL7yg5ZfvifA+uYTUD5Y9NBj02+FDoT/sdGedmB+kZ5O5gwfH8c+Bt8/1DegG+59891jPL1DmzOX7/8sb/tA4/NpoOW+Rb7/iGgPGAdE5jKt3dQWfk2y8uMStY/Uv2AdQ5TdtS//WVGQJkR0KYR8Ni3faPC+pXvv3HgtTIOPA++J9hkKn984Pk5ePmB3yYOLgezyTiwvnHQ4wOvur8N46C+GRgYB/bNwOvfF1+5gYHXZBx4qxqYMXxtHvLb/4OBCS9mEwfqeg8sAzNeTCYDC771LCbvgd8GJpPXV+5fHvjYfODt7PttwmwCK2YscGC7Jswmk+83YC5v78B2zBj+n4B2/W3++bcFEybAYgITpgOP//zt25aZnbv1lSAiUhOc9tjLZK5ZcZe/v3/+1LTYyzAftG5NiLsOqVMTYy/DXLPiLsuBKEixl4jImU3nvA56XN49MzUq7jq0rKbGXjUp7qqJ57wOjb2sJoviLhGRM1C1x14mc42Ku/6MHWpw7HVguJOaFHfBwTEWNS728h6Im2pK3KVzXlIT6R0ih+X1erFarbib5FZ3V06MwUEBxLEzHfJb/nrKX3pvdXfkiMojq5o1oJ3VasXrrdnPnIjI39VfOvZS3HVGq/mxV82Mu0Cxl4hIdflLx12g2OsMVvPjLqipsZfiLhGR6vOXjr0Ud53Ran7sVTPjLlDsJUemJCU5LLPZjNvt5umnnyY1NbW6uyMiVSwtLY1hw4ZhNte8YEZE5Eyg2EvkzKLYS0Sk+ijuEjmzKO4SEaleir1EziyKveRolKQkR5WamkrTpk2ruxsiIiIiZwTFXiIiIiKnh+IuERERkdNHsZeIiEBNHPtL5G9o/vz5PPLII3Tr1o3IyEhMJhODBw+u7m5VasyYMdx1112cd955OBwOTCYTo0ePru5unTSXy8W4ceMYNGgQzZs3JywsjPDwcC644ALee+89PB5PdXdRRERETgHFXdVPcZeIiMiZQ7FX9VPsJSIicmZQ3FX9FHeJnBoaSUnkNBg1ahSffvopISEhpKSkkJ+fX91dOqynn36atLQ04uLiSEpKIi0trbq7dEps2bKF/v37ExYWRo8ePbjyyivJy8tj4sSJ3HPPPfz000/8+OOPmEyaIVhEROSvTHFX9VPcJSIicuZQ7FX9FHuJiIicGRR3VT/FXSKnhkZSksOKjY1l8ODBxMbGVndX/vKGDh3K6tWryc/P55NPPqnu7hzRyJEj2b59OxkZGdx9993V3Z1TJjw8nHfffZf09HTGjx/Pyy+/zPvvv8/GjRs577zzmDRpEmPHjq3ublYrHfMiItVLn8OnhuKu6qe469jomBcRqT76DD51FHtVP8VeR6djXkSkeulz+NRQ3FX9FHcdGx3zcjRKUpLDiouLY8iQIcTFxVV3V6rVuHHj6NKlC/Hx8QQFBZGcnEzPnj0ZN27cMbdx3nnn0bJlSywWy0n1xev1MnLkSNq1a0dMTAzBwcHUqVOHK664grlz5/rrzZ07F5PJxLPPPsuiRYu4+OKLiYqKOqbM3Z49e5KamnpS/SzndDp54403OP/88wkPDycsLIwWLVrw0EMPkZOT469Xr1496tWrR15eHv/4xz9ISkoiNDSUiy66iOXLlwOwZ88ebrrpJuLj4wkODubiiy9m06ZNx9yX2rVrc8899xAaGhpQHhoaykMPPQTAvHnzTsFe/3XpmBcRqV76HFbcdTIUd/316JgXEak++gz2Uex14hR7/bXomBcRqV76HFbcdTIUd/316JiXo9F0byJH8N5773HPPfeQlJREv379iI2NJT09nd9++40ffviBa6655rT258knn+S///0vDRs25IYbbiA8PJzdu3ezYMECZs6cSdeuXQPqL1q0iBdffJFu3bpx5513smPHjtPW15KSEnr16sXChQtp3Lgxt956Kw6Hg02bNvHBBx9wyy23EB0d7a/vdDrp1asXpaWlXHfddezbt49vv/2Wnj17smjRIi655BKSkpK46aab2Lx5MxMnTuTyyy9n3bp1Jx2Q2Ww2AKxWfSSKiIhUF8VdJ05xl4iIiBwvxV4nTrGXiIiIHA/FXSdOcZfI35OOEpEjGDlyJHa7nZUrVxIfHx+wLCsrq1r6k5yczKpVqwgJCQlYlp2dXaH+jBkzGDVqFLfeeuvp6qLf//3f/7Fw4UJuvvlmPvnkk4Av97y8vApf9nv37qVTp058+eWX/i/wtm3b8vjjj9OhQwduvfVWXnvtNX+G9j333MN7773HhAkTuPrqq0+qr6NGjQLg4osvPql2RERE5MQp7jpxirtERETkeCn2OnGKvUREROR4KO46cYq7RP6eNN2byFHYbDZ/9uvBqmseTbvdXmk2b0xMTIWyc845p1qCBrfbzYcffkhkZCQjRoyo0N/IyEjCwsIqrPfqq68GZBhff/31/vaGDRsWMIRk+bLff//9pPr64YcfMmXKFLp3707v3r1Pqi0RERE5OYq7jp/iLhERETlRir2On2IvERERORGKu46f4i6Rvy+NpCRyBAMHDuSxxx7jrLPO4oYbbqBbt2506tSJiIiIgHpvvvkmubm5AWWDBw+mXr16p7w///vf/zjrrLMYOHAg3bp1o0OHDgQHB1da//zzzw94nJuby5tvvlmh3rPPPntK+7l+/XoKCgro2bNnwDCLRxIdHU1KSkpAWVJSEgCNGzeukM1dvmzPnj3+stGjR7N9+/aAen379qVNmzaVbnPSpEkMHTqU1NRUxowZc0z9FBERkaqhuOvEKO4SERGRE6HY68Qo9hIREZHjpbjrxCjuEvn7UpKSyBE88sgjxMbG8t577/Haa6/5s28vv/xy3njjDerXrw/4Aoe0tLSAdbt27XrKA4cRI0ZQv359PvnkE4YNG8awYcMICgpiwIABvPbaa8TFxQXUT0hICHicm5vLc889V6HdUx045OXlAVC7du1jXufQYAz+nLf1SMtcLpe/bPTo0cybNy+gXr169SoNHH766Sf69+9PQkICs2fP9gciIiIiUj0Ud50YxV0iIiJyIhR7nRjFXiIiInK8FHedGMVdIn9fSlL6myguLubrr79m7dq1rFu3joKCAp588kkuu+yyU76tjIwM3nnnHZYsWYLX66Vt27bcd999JCcnB9S76KKLKl3/zjvv5Kabbjrl/aoKJpOJIUOGMGTIELKysvj555/56quv+Pbbb9m0aROrVq3CYrFUyKitKlarlUceeYRHHnmEPXv2MG/ePD755BM+++wz0tPTmTZtWoX+H6xevXoYhlHl/YyKigJg9+7dVb6tg82dO/eY6k2ePJlrrrmGuLg45syZQ4MGDU5ZH5xOJx9//DHTp0+noKCAhg0bcvvtt1fINK/MsR5b4MvM/vrrr0lPT6dWrVr079+fa665JqDOgAEDSE9Pr3RbtWvX5quvvvI/Liws5PPPP2f+/PlkZGQQHR3Nueeey6233lohAAWYNWsWY8eOZcuWLVitVlJTU7n99ts599xzj7ufo0aNYvTo0RW2YbfbmTlz5mGfr1WrVjF06FAAfvzxR//7TkTkdFDsdeop7joxZ3LcBTUr9po/fz4TJkxg69at5OfnExUVRYsWLbj11luPuN+7d+9m0KBBOJ1OPvzwQ5o1a+Zf9s9//pOVK1dWup7FYmHOnDkArFixgvvvv/+w27j99tu55ZZbKl323//+l0mTJtGhQwdefvnlE+qniEhVUtxVNRR7nZgzOfaqSXHXjh07mDBhAmvXrmXTpk04nU6++eabSi8Mvv3226xcuZL09HScTicJCQl0796dgQMHVhhNYefOnXz88cf88ccf5Ofnk5CQQM+ePRk4cCBBQUEA7N27l+uuu+6w+9qnTx8ee+yxSpd99tlnjBw5kvr16/Ppp58eto2CggJuvPFGcnNzef755+nateth64qInGqKvU49xV0n5kyOu6BmxV7H2uaUKVMYPnz4Yfv19NNPc/HFFx9Xm2VlZbzxxhusW7eO/fv34/V6SU5Opnfv3vTr1y9gaj/wxVHvv/8+8+fPp6ysjObNm3PPPffQtGnTCv0pLi7m008/Zc6cOWRlZREZGUnLli3517/+5Y/9pGooSelvIi8vj9GjR5OQkECjRo1YsWJFlWynuLiY+++/n6KiIm666SasVivffvst9913H6NGjSIyMjKg/nnnncell14aUNa4ceMq6VtVi42NpW/fvvTt25fMzExmz57N5s2bK/1QOx2Sk5O5/vrrue6662jatCkzZ86kpKTksMMxnk5NmzYlIiKCJUuWkJOTc8zDMJ4O5UFDTEwMc+bMoVGjRqe0/eHDhzN37lyuvfZa6tSpw5QpU3jssccYMWIErVq1Oux6x3NsTZgwgddee40uXbpw3XXXsWrVKkaMGEFpaSk33nijv959991HSUlJwHbS09MZOXJkQBDj9Xp56KGHSEtLo2/fvtStW5ddu3Yxfvx4lixZwueffx5w0mbUqFF8+umndO3alUsvvRS32822bdvIzMwM2Nax9rPcww8/HPD+NZvNh32+vF4vI0aMIDg4uMI+ioicDoq9qpbirmN3JsddULNir61btxIeHk7//v2JjIwkOzubn376ibvuuov33nvvsPv/9ttvY7FYKl12880306dPn4CykpISXnvttYB4LjU1laeffrrC+tOmTWPJkiWHPYG1fv16pkyZgt1uP+xzdSz9FBGpSoq7qp5ir2N3JsdeNSnuWrNmDePGjSM1NZXU1FQ2bdp02O2vX7+eVq1a0bt3b+x2O5s2beLLL79k2bJlvP322/7zT/v27eOuu+4iLCyMfv36ERERwZo1axg1ahQbNmzwX3CLioqqNO769ddfmTFjxmHjrv379zNmzJhjeh+PGjWKsrKyo9YTEakKir2qluKuY3cmx11Qs2KvY22zdevWlcZJ3377LVu2bAkY6OBY2ywrK2P79u20b9+exMREzGYzq1ev5p133mHdunX8+9//9rfp9Xp5/PHH2bJlCwMHDiQyMpLx48dz//3389FHH1G3bl1/3cLCQv75z3+SkZHBFVdcQe3atcnNzWXVqlW4XC4lKVU1Q/4WysrKjMzMTMMwDGPdunVG586djZ9++umUb+eLL74wOnfubKxdu9Zftn37dqNr167GBx98EFC3c+fOxuuvv37K+3A6zZkzx/B6vQFlTqfTaNOmjQEY27dvP+42f/nlFwMwBg0adFzrlZaWGgsXLqxQnp+fbyQmJhoOh8MoLS319xswnnnmmePu38GGDx9uAMYnn3xy3Os++uijBmDcfPPNhtvtDliWm5trFBQU+B+npqYaqamplbYDGF26dKlQvm3btuN+Hn/66SfD4XAYiYmJxvr16495vWO1Zs0ao3PnzsaXX37pLystLTUGDhxo3H333Udc91iPrdLSUqNPnz7GY489FrD+888/b1x88cVGfn7+EbczevRoo3PnzsaqVav8ZatWrTI6d+5sjBs3LqDu5MmTjc6dOxvz5s3zl61evdq46KKLjG+++eaI2zmefn788cdG586djZycnCO2ebDx48cbffr0MUaMGHHc64qInAqKvU49xV2Ku47XXyH2ysrKMrp27Wq88sorlS7/9ddfje7duxsfffSR0blzZ2PdunVHbM8wDGPatGlG586djenTpx+17sCBA43rr7++0mVer9e4++67jeHDhxvXXntthX082X6KiJwqiruqhmIvxV7Ho6bFXXl5eUZRUZFhGIbx5ZdfGp07dzb27NlzzPvz1VdfGZ07dzZWr17tL/vss8+Mzp07G1u3bg2oO2zYMKNz585HjfseeOAB49JLL/W/Vw/1zDPPGPfff79x3333Gbfccsth29myZYvRtWtX/zm8OXPmHPN+iYicCoq9Tj3FXYq7jldNi72O53g9VGlpqXHJJZcYDz744An183DeeOMNo3Pnzv7PK8MwjFmzZlWIn3JycozLLrvMeO655wLWf+2114zLLrvM2L1791G3JaeeRlL6m7Db7cTGxh5T3cWLFzNmzBg2btyIyWSidevW/OMf//DPeXokc+fOpVmzZjRv3txflpqayjnnnMOcOXO48847K6xTfteHw+E4xr2pOfr27UtERATt27cnNTUVl8vFjBkzWLt2Lf379yc1NfWY2lmwYAEjR44EfEPXlZcNHjwYgLi4OF599dUjtlFSUkLHjh1p0qQJ5557LikpKRQWFjJp0iTS09N55JFHTslzPHLkSBYsWADAH3/84S8rH96wU6dO3H777Udt5/nnn2fx4sV8/vnnLF68mMsuuwyHw8HWrVuZOnUqCxYsqHT+1qqyfv16+vXrR1lZGV27dg2Y6qxcvXr1/K/JiZg3bx4Wi4Urr7zSX+ZwOLj88sv58MMP2bdvX6VTp8GxH1vLly8nLy+Pvn37Bqzfr18/ZsyYwS+//BIwVOKhZs6cSVJSEmeffba/rLi4GICYmJiAuuWfKQe/r7777jtiYmLo378/hmFQUlJSYWjsk+lnUVERISEhFYYPPVh+fj4jR45kyJAh5OTkHLaeiEhVUux16inuUtx1vP4KsVd0dDRBQUEUFhZWWOZ2u3nrrbfo378/tWvXPub9njFjBsHBwXTq1OmI9dauXcvu3bu59dZbK10+bdo0tm3bxrBhw/jHP/5x2HZOtJ8iIqeK4q6qodhLsdfxqGlxV0RExAnvC0BiYiJAQIxWVFQEUGGUhtjYWMxmc4WpRA6WmZnJihUruOSSSyp9r65cuZJ58+YxcuRIRowYccS+vfXWW1x00UVHHCFBRKQqKfY69RR3Ke46XjUt9jqR47XcwoULKS4uplevXifUz8M5OJ4r/8yaN28eMTExAVNERkVF0a1bN2bMmIHT6cRut1NQUMBPP/3ENddcQ3JyMi6XC8MwjmmkcTk1lKR0hpk2bRovvvgi7dq146677qKsrIzx48dz77338vHHH1c6b3c5r9fL1q1b6d27d4VlzZs3Z8mSJRQXFwckLEydOpXx48djGAapqanccsstFT6EarLhw4czdepUfvvtNyZOnEhoaCgNGzbkvffe47bbbjvmdjZv3lxhnvEtW7awZcsWwPehe7TAITQ0lJdffplZs2bx888/s3//fqKjo2natCnDhw9n4MCBx7+DlViwYEGFvi5cuJCFCxf6Hx9L4BAUFMSMGTN45513GDNmDB999BEWi4WUlBTuvvtu6tWrd0r6e6zS09P9AezXX39daZ0uXbqcVOCwadMm6tSpQ2hoaEB5+Rfs5s2bKw0ajufYKh++ulmzZgH1mjZtitlsZuPGjYe9ULZx40bS0tK4+eabK6wbHBzMyJEjCQ8PJyUlhd27d/Pee+/RrFmzgOEXly1bxllnncXYsWP5/PPPycvLIyYmhptvvjlgjtoT6ed1113nH0a0U6dO3HvvvRUSp8AXyMbExHDllVdWeK+KiNQ0ir2OneIuH8Vdx66mxl4FBQV4PB6ysrL47rvvKCoqCoinyn333XcUFBRwyy23MH/+/GPa59zcXJYuXUr37t2POvT6jBkzACr9DCguLub999/npptuOurJ5xPpp4hIdVDcdXwUe/ko9jo2NTXuOlZut5vCwkLcbjdbt25l5MiRhISEBFwUa9u2LV9++SUvv/wyQ4YMISIigtWrVzNhwgSuueaaI8Zes2fPxuv1VvoZ4PF4GDFiBJdffjkNGzY8Yj/nzJnD6tWr+fzzz0lPTz+hfRUROV0Uex07xV0+iruOXU2KvU7keD3YjBkzcDgcdOnS5YT6Wc7lclFUVERZWRkbNmzg66+/JjExMeCGuo0bN9K4cWP/dL4Htzlx4kR27txJw4YN+eOPP3A6ndSpU4f/+7//Y8GCBXi9Xlq2bMmDDz74l5xK8q9GSUpnkOLiYkaMGEGfPn149NFH/eWXXnopN910E2PGjAkoP1R+fj5Op7PSk9jlZZmZmaSkpABw1lln0a1bN5KSksjKyuL777/nP//5D0VFRRWyMmuqf/zjH0e8q/hYDR48+KS/kGw2G4899hiPPfbYUet27doVwzBOaDujR49m9OjRJ7TuoRwOBw8//DAPP/zwEett3779sMsOtx/16tU7rn08mefkWGVlZR31+KjM8RxbWVlZWCyWCnd12Ww2IiIiyMrKOmz/DnehKioqimeffZb//ve/PPjgg/7ydu3a8fzzz/vvFCsoKCAvL4/Vq1ezfPlyBg8eTEJCAlOmTGHEiBFYrVauuuoq/3NxrP0MDw/n6quvpmXLlthsNlatWsUPP/zAunXr+OijjwKCsC1btjBx4kRefvllLBbLYfdVRKQmUOx1fBR3nZwzLe6Cmht7/eMf/2DHjh0ABAcHc8stt3D55ZdX6Punn37KPffcU+GE05HMmjULj8dz1BOxHo+HOXPm0Lx5c+rUqVNh+ejRo3E4HAwYMOCI7ZxoP0VETjfFXcdPsdfJOdNir5oadx2rDRs2BLzfU1JSGD58eMCITBdccAG33XYbY8aMCbiAevPNN3PHHXccsf0ZM2YQGxvLOeecU2HZhAkT2LdvH2+88cYR2ygrK+N///sfAwYMICkpSUlKIlKjKfY6Poq7Ts6ZFndBzYq9jvd4PbQ/v/32G506dQpIODqRNufPn89zzz3nf9ysWTMef/zxgNEus7Ozad269WHbzMrKomHDhuzatQuADz/8kOTkZJ566imKiooYPXo0DzzwAJ9++ilxcXEV2pFTR0lKZ5ClS5dSWFhIjx49yM3N9ZebzWaaN2/O8uXLj7h+eWaozWarsKx8+LPyOgD/+9//Aur07t2b22+/nQ8//NA/HJ/I30lZWdkxHx+HrgfHdmyVlZUddnhpu91+2G14vV5mz55N48aNK80sj4yMpHHjxlx99dXUq1ePzZs389VXX/HSSy/x/PPPA39OC5eXl8czzzxDjx49AF9QNnjwYD777DN/ktLx9PPaa68NWN61a1eaN2/Of/7zH3744Qduuukm/7IRI0ZwwQUX0K5du0rbFhGpSRR7iVStmhp7PfHEExQXF7Nnzx5++uknysrK8Hq9AXdxvf/++yQnJ9OnT58j7WIFM2fOJCoqivPOO++I9ZYtW0Z2dnZAHFVu586djB07ln//+99HHcb6RPspInK6Ke4SqVo1Ne46VvXq1eP111+npKSE1atXs2zZMkpKSirUS0pKonXr1nTp0oWIiAh++eUXxowZQ0xMTMAI4gfbuXMnGzZsYMCAARXu2s/Ly2PUqFHccsstREVFHbGPX3zxBW63u9L4TUSkplHsJVK1alLsdbzH68Hmzp2Ly+WqcLPdibTZtm1bXn/9dQoLC1m2bBmbN2+mtLS0QruVnes6tM2D48A33njDn0DVuHFj/vGPf/DDDz8cNUldTo6SlM4g5VmBDzzwQKXLy++MLSsrC5iPG3wZhuVf8i6Xq8K6TqcTOPI8sDabjauvvprXXnuNDRs2aF5t+dtxOBwndHwcz7HlcDhwu92VtuN0Og+7jZUrV5KRkVEhIQhgz549PPDAAzz11FN07doVgM6dO5OYmMjw4cNZvHgx7du397dttVr99cD3H4/u3bszatQo/zy4J9rPcr169eLdd99l2bJl/pMzs2bNYvXq1ZriTUT+MhR7iVStmhp7nXXWWf6/e/To4Z9q99577wVgzZo1TJ8+nTfeeKPChawj2bNnD2vWrOHqq68+7EmkcjNmzMBisdC9e/cKy9566y3OOuusgHiuMifaTxGR6qC4S6Rq1dS461iFhob6k7w7d+7MjBkzeOqppxg5ciSNGjUCfOedXnnlFb744gvi4+MB33QthmHwwQcf0LNnTyIjIyu0faQpdkeOHEl4ePhhE5zK7d27l6+++ooHH3zwsFOliIjUJIq9RKpWTYq9TuZ4nTFjBhEREbRv3/6E+1kuJiaGmJgYwDfYweeff85DDz3El19+6R8pyeFw+Nc/UpvlSUsdO3YMiL1atmxJUlISq1evrnR/5NRRktIZxOv1AvD000/7D+KDlU+dNHv2bIYPHx6wbP78+URERGC32ysdWre87GhDn5X/By8/P//4d0CkhouNjSUjI6NC+dGOj+M5tmJjY/F4POTk5AQMwehyucjPz690aETwBQJms5mePXtWWDZlyhScTicXXnhhQHmnTp0A+OOPP2jfvr2/n2FhYRWmWivvS0FBAQkJCSfcz4PFx8cHfFa89957dO3aFavVyt69ewH8/8HZv38/brdbwy+KSI2i2EukatXk2KtceHg455xzDjNmzPAnKb333nu0atWKpKQkf0xTfudpVlaWP+n7UEe6AHawsrIyfv75Z84999wKnz3Lli3j119/ZdiwYf5tg296uLKyMvbu3UtERAShoaEn3E8RkeqguEukav0V4q7jcdFFF/HCCy8wa9Ysf5LSDz/8QOPGjf3HcrmOHTsyZcoUNm3aVOloljNmzCAlJYWmTZsGlO/cuZOJEydy3333BUzJ4nQ6cbvd7N27l9DQUCIiIhg1ahRxcXG0adPGH3dlZ2cDvvhr7969JCQkKHFcRGoMxV4iVasmxV4nerzu27ePVatWccUVV1S42e5UfAZ07dqVjz76iAULFvhneYmJiTlim+X7VN72oVPdlZcdmlwpp56SlM4gtWvXBjjq9ADnn38+r7/+eoVys9lMgwYNWL9+fYVla9euJTk5+ah3euzZs8ffB5G/m0aNGrFixQqKior8dwqA7/goX16Z4zm2GjduDMD69evp0KGDv9769evxer3+5QdzOp3MmzePNm3aVPqlnp2djWEY/v9YlCvPoPZ4PP5+Nm7cmPXr1+NyuQKGYSw/2VJ+bJ9IPw9mGAbp6ekB9fbv38/MmTOZOXNmhfq33347jRo1YtSoUUdsV0TkdFLsJVK1amrsdaiysjKKior8j/fv3096ejrXXXddhbpPPvkkYWFh/PTTTxWWzZw5k9q1a9OyZcsjbm/BggUUFxdXmsy0f/9+wHci+VAZGRlcd911DB06lAEDBpxwP0VEqoPiLpGq9VeJu46Vy+XC6/UGxGg5OTmEh4dXqHvo+bFD92H37t3cdtttFZZlZmbi9XoZMWIEI0aMqLD8uuuuo3///vzzn/9k37597N69m4EDB1aoV/6ZNXny5Er7JyJSHRR7iVStmhR7nejxOnPmTAzDqPT81Kn4DCifuu3geK5x48asWrUKr9cbkNy9bt06goKCqFu3LoA/ufzgRPJymZmZpKSkHHHbcvKUpHQGadeuHaGhoYwZM4ZzzjmnQtZibm4uUVFRxMXFHTY7sUuXLnzwwQesX7+eZs2aAbBjxw5WrFgRcPK6vK2DFRcXM3bsWCIjIyvcWSLyd9C1a1e+/vprfvzxR66//nrAlyD0008/0aJFC/+d5vv27aO0tJTU1FT/usd6bJ1zzjlEREQwYcKEgKBhwoQJBAUFBZSVW7x4MYWFhYe9675u3boYhsGcOXO47LLL/OXlyUAHnwTq1q0ba9asYerUqVxxxRWALxCYMWMG9erV8392HE8/K/u8GD9+PLm5uVxwwQX+shdeeKFC32fNmsXs2bP517/+Ra1atSrdPxGR6qLYS6Rq1bTY69A7z8A3dceyZcsCjsFHHnnEfyKl3PLlyxk3bhz33HNPQD/Lbdy4kbS0NAYNGnTU52XmzJkEBQXRuXPnCsvOOeecSmOqV155hcTERG6++WYaNGhwwv0UEakuirtEqlZNi7uOVUFBAcHBwRU+EyZNmgQQcLzWrVuXJUuWsHPnTv8FLPCdezKbzTRs2LBC++UjXVY2cnn9+vUrjbtGjhxJcXEx//znP0lOTgZ8N9/l5eUF1Nu6dSsff/wx119/PWeddRbBwcHHutsiIlVOsZdI1appsdextnmwmTNnkpCQcNjpGI/nMyAyMhKTyRSwfmXxXJcuXZg7dy7z58+na9eu/vXnzJnDhRde6J/mLSUlhUaNGrFgwYKAz5jffvuN/fv3H3WqXjl5SlL6Gxk3bhyFhYX+IcsWLlzov1P2mmuuISwsjIceeogXXniB2267jR49ehAVFcW+fftYvHgxZ511Fg8++OARt9GvXz8mTZrE448/zsCBA7FYLHz77bdER0cH3Onx/fffs2DBAi688EISEhLIysrip59+Yt++ffzrX/8KGIFF5O+iRYsWdOvWjQ8//JDc3Fxq167N1KlTSU9P5/HHH/fXe+GFF1i5ciXz58/3lx3rseVwOLjtttt44403+Pe//027du34/fffmT59OnfccQcREREV+jVjxgzsdjtdunSptN+XXXYZX3/9Na+++iobN26kfv36bNy4kcmTJ1O/fn0uuugif92rrrqKyZMn88Ybb7Bz504SEhKYNm0a+/btCxi29Xj6ee2119K9e3caNGiA3W7njz/+YNasWTRu3Jgrr7zSX6+yC22bNm0C4IILLtAdEyJy2in2EqleNS32Gjx4MOeeey6NGjUiPDycXbt2MXnyZNxuN3fddZe/Xrt27SrsS/kw0m3atPGfmDnYsU71lp+fz6+//kqXLl0qveMsISGh0ina3n77baKjowPirRPpp4hIVVHcJVK9alrcVVhYyLhx4wBYvXo14Ds2w8LCCAsL819YWrlyJSNGjKBr167UqVMHl8vFqlWrmD9/Ps2aNePiiy/2tzlw4EB+/fVXhg4dytVXX01ERASLFi3i119/pU+fPhUusns8HubMmUPLli39I4ocLCoqqtJzWd999x0QeJ6rsot3YWFhADRv3rzSdkREqpJiL5HqVdNir2Nts9zWrVvZsmULN954Y4XkouNtc/r06fz444906tSJ5ORkiouL+e2331i6dCkXXngh5557rr9u165dGTt2LMOHD2f79u1ERkYyfvx4vF4vQ4YMCdj+0KFDefjhhxk6dChXXnklhYWFfPvtt9StW9c/fZxUHSUp/Y188803pKen+x/Pnz/f/6F08cUXExYWRq9evYiLi+OLL77g66+/xul0UqtWLVq1akXv3r2Puo2QkBBGjBjBO++8w2effYbX66Vt27YMHTo0IEHg7LPPZvXq1UyaNIn8/HyCgoJo3rw5jz/+eMCHhcjfzVNPPeVP3CksLKRBgwa8/PLLtGnT5ojrHeuxBb4vbqvVyjfffMPChQuJj49n6NChXHvttRXaLSoq4pdffqF9+/b+kxuHioyM5KOPPuLjjz9m0aJF/Pjjj0RERNC7d2/uuOOOgCDf4XDw5ptv8t577/HTTz9RWlpKo0aNePnllytcyDrWfvbq1YvVq1czb948nE4nCQkJXH/99dxyyy0EBQUd8XkTEalOir1Eql9Nir2uuuoqFi9ezK+//kpxcTHR0dGcf/753HTTTZXeeX+svF4vs2fPpkmTJkcdbnrOnDm43e5K7+YXEfkrU9wlUv1qUtxVUFDAxx9/HFD2zTffAJCYmOhPUmrQoAFt27ZlwYIFZGVlYRgGtWvXZtCgQVx//fUB57zatGnDu+++yyeffMIPP/xAfn4+SUlJ3HHHHf4RDA62bNkysrOzufnmm4/1KRQR+ctQ7CVS/WpS7HU8bcKRR5s83jZbtWrFmjVrmDVrFjk5OVgsFurWretPLD+YxWLhv//9L//73/8YN24cZWVlNGvWjCeffLLCObVzzjmHV155hY8//pgPP/zQPyr53XfffdSp5uTkmQzDMKq7EyIiIiIiIiIiIiIiIiIiIiIi8vdlru4OiIiIiIiIiIiIiIiIiIiIiIjI35uSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlERERERERERERERERERERERKqUkpRERERERERERERERERERERERKRKKUlJRERERERERERERERERERERESqlJKURERERERERERERERERERERESkSilJSUREREREREREREREREREREREqpSSlEREREREREREREREREREREREpEopSUlEREREREREREREpIYwmUx07dq1urshIiIif2Pbt2/HZDIxePDggPLBgwdjMpnYvn37UeueKvXq1aNevXoBZaNHj8ZkMjF69Oij1q3JDrcfImcyJSmJiIiIiIiIiIjIGcvj8fDRRx/RpUsXYmJisNlsxMfH06pVK26//XZ+/PHH6u7iEc2dOxeTycSzzz5b3V05rbp27YrJZGLu3LkB5X+FC1d/hT6eLkVFRXzxxRfccMMNNGvWjNDQUMLDwznvvPN47bXXcDqdh1137dq1DBgwgPj4eIKCgmjatCnPPPMMJSUlp3EPREREAplMJkwmU3V3Q0SkxrJWdwdEREREREREREREqoPH46FPnz5MnTqVqKgoLr/8curUqYPT6WTNmjV8+eWXrF+/niuvvLK6uypnkHXr1hESElLd3Tgtfv75Z2666SZiYmLo1q0bffv2JScnhx9//JFHHnmE77//nlmzZhEUFBSw3q+//kr37t1xuVz079+funXrMnv2bJ5//nlmzZrFrFmzcDgc1bRXIiIif13Dhw/niSeeoHbt2tXaj379+tG+fXuSkpKqtR8icuopSUlERERERERERETOSF999RVTp06ldevWzJs3j8jIyIDlxcXF/Prrr9XUOzlTNWvWrLq7cNokJiYyZswYrr32Wux2u7/81VdfpWvXrixatIh3332Xhx9+2L/M4/Fw6623UlxczIQJE/xJhF6vlwEDBjBu3DjeeOMNnnjiidO+PyIiIn91SUlJNSIxKDIyskJsLiJ/D5ruTURERERERERERM5IixYtAmDw4MGVXgQJCQmhW7duAWWjR4/GZDIxevRoJk+ezIUXXkhoaCjR0dH079+fTZs2Vbqt4uJihg8fTps2bQgNDSUsLIwOHTrw1VdfHbZ/06dP54orriA+Ph6Hw0HdunW56qqrmDlzpr/f5f177rnn/NOLHDwN2sH9nTp1Kl27diUyMtI/Dcn27dsxmUwMHjy40j6UT6t2sIOnmFu6dCmXXnopkZGRREdHc80117Bz504Atm7dysCBA6lVqxbBwcF069aN33///bD7ezLK+5SWlkZaWlrAc3Hovq1fv57BgwdTt25d7HY7CQkJ3HDDDWzYsKFCu4MHD8ZkMrF161befvttWrVqRXBwMF27dgXA6XTyzjvv0Lt3b1JTU3E4HMTExNCzZ0+mTJlyQn00mUz+9g+Wl5fHk08+SdOmTQkKCiI6OppLLrnE/36obFvPPvssK1eu5PLLLycqKoqQkBC6dOnif+9XtzZt2nDjjTcGJCgBhIeH+xOTDp3Sb968eaxbt46LLrooYJQzs9nMf//7XwDef/99DMOo2s6LiIicpLKyMl566SXOPvtsQkJCiIiIoHPnznz77beV1jcMgxEjRtCiRQuCgoKoXbs2Q4cOJS8v75RNJ1se+2zfvv2odb1eL/fffz8mk4mrr746YMrVadOm0bt3b+Li4nA4HDRs2JBHH32U3NzcY+rHwTFsZYqKinj00UdJSUnB4XDQqFEjXn755cN+/3/77bdcdNFFREZGEhwczNlnn83w4cMpKyurtP6yZcu45ppr/HF4amoq99xzD3v37q20/ubNm7n22muJjo4mNDSUCy+8kMmTJx/TvoqcaTSSkoiIiIiIiIiIiJyRYmNjAdi4ceNxr/v9998zZcoU+vXrR9euXVm5ciXjxo1jzpw5LFq0iKZNm/rr5ubm0r17d1asWME555zDkCFD8Hq9TJs2jRtuuIE1a9YwbNiwgPafeeYZnn/+ecLCwujbty9169Zlz549LFq0iDFjxtCzZ0/69u0LwKeffkqXLl0CElsOvUg1duxYpk6dymWXXcbdd99NWlrace/zoZYsWcLLL79Mly5duOOOO/jjjz/4/vvvWb16NRMmTKBTp040a9aMW265hbS0NL7//nt69erF1q1bCQsLO+ntH6xevXo888wzvPnmmwA88MAD/mVt2rTx/z116lSuvvpqXC4XV1xxBY0aNWLXrl18//33TJ48mTlz5nDOOedUaP/+++/n559/5vLLL6d3795YLBYAsrOzuf/++7nwwgvp1asXtWrVYu/evUycOJHevXvz0Ucfcfvttx9XHyuTm5tLx44dWbt2Leeffz4PPPAAmZmZfPvtt1x88cW899573HXXXRXWW7p0Kf/973/p0KEDt99+Ozt27GDcuHH06NGDlStXBrxPaxqbzQaA1Rp4GWP27NkAXHrppRXWadCgAU2aNGHjxo1s3bqVhg0bVn1HRUREToDT6eSSSy5h3rx5NGvWjHvvvZfi4mLGjh3Lddddx8qVK3nxxRcD1rn33nt57733SE5O5s4778Rut/Pjjz/y22+/4XK5/N+dp0NpaSk33ngj33//Pffeey9vvfUWZrNvfJTnnnuOZ599lpiYGPr06UN8fDyrVq3i1Vdf5aeffuKXX34hIiLihLftcrm45JJL2LNnD5dddhlWq5Xx48fzxBNPUFpayjPPPBNQ/6mnnmL48OHExcVxww03EBYWxpQpU3jqqaeYNm0a06dPD0iYnjRpEtdccw2GYdC/f39SU1NZtmwZ7733HhMmTGDBggXUr1/fX3/Tpk106NCBrKwsLrvsMtq0acPmzZvp27cvl1122Qnvp8jfliEiIiIiIiIiIiJyBlq+fLlhs9kMk8lk3HTTTca4ceOM7du3H3GdTz75xAAMwJg4cWLAsjfffNMAjO7duweUDxo0yACMl19+OaC8pKTEuOSSSwyTyWSsWLHCXz5t2jQDMOrXr2/s2rWrQh927tzp/3vOnDkGYDzzzDNH7K/JZDKmTJlSYfm2bdsMwBg0aFCl63fp0sU49DRy+TYBY8yYMQHLhgwZYgBGdHS0MWzYsIBlzz//vAEYb775ZqXbOh7l/ZozZ05AeWpqqpGamlrpOtnZ2UZUVJQRGxtrrFmzJmDZH3/8YYSGhhpt27YNKC9/7ZKTk42tW7dWaLO0tDTg9SiXm5trtGzZ0oiOjjaKi4uPuY+GYRiA0aVLl4CyO++80wCMO++80/B6vf7yjRs3GhEREYbdbje2bdvmLz/4Nfrkk08C2nr//fcNwPjHP/5x2D4c6o033jCeeeaZY/754Ycfjrntw7n00ksNwHj//fcDyvv3728AxtixYytd7/LLLzcA46effjrpPohI1SgqKjI+/vhj4+GHHzZ69+5tdO7c+aSO2fvuu8/o3LlzpT9du3Y9hT0XObry79+jefHFFw3AuOyyywyXy+Uv37dvn5GammoAxsKFC/3l8+fPNwCjSZMmRk5Ojr+8rKzM6Ny5swEcMb441OFiwPLY5+C44tC6WVlZRseOHQ2TyWS89NJLAevPnj3bAIwOHToE9NMw/oxLH3jggYDyymKj8rqHxjHlz81ll10WEGPt27fPiIyMNCIjIw2n0+kvX7RokQEYdevWNfbu3esvd7lcRp8+fQzAeOGFF/zlBQUFRkxMjGE2m4358+cHbPull14yAKNXr14B5b169ao0xh0/fvxh4zGRM5mmexMREREREREREZEzUtu2bRkzZgwJCQmMGTOGa665hnr16hEbG0u/fv2YOHHiYdft3r07ffr0CSgbOnQoDRs2ZPbs2f6RirKyshgzZgznnXcejz32WED9oKAg/7QUX375pb/87bffBuC1116jdu3aFbZdp06d497Xq666qtKRZ05Gp06duPHGGwPKBg0aBEBkZCRPPPFEwLJbbrkFgJUrV57Sfhyrzz77jNzcXJ577jlatGgRsOyss87ijjvuYMWKFaxdu7bCuo899ljAHfPlHA5Hpa9HZGQkQ4YMIScnhyVLlpxUv51OJ2PGjCEsLIzhw4cHTL/XuHFj/vnPf+J0Ovnss88qrNuxY8cK090NGTIEq9XKb7/9dsx9ePPNN3nuueeO+Wf8+PEnursAvPPOO0ydOpU2bdowZMiQgGV5eXkAlU7ReHD5sU4nIyKnX15eHqNHjyYtLY1GjRqddHs333wzTz/9dMBP+ZSR559//km3L1IVRo0ahclk4vXXXw8YNTA+Pp7/+7//A2DkyJH+8k8//RSAf/3rX0RFRfnL7XY7w4cPPz2dBtLS0ujYsSO//fYbn3/+OY8//njA8rfeeguAjz76KKCf4JtKrk2bNnzxxRcn3Y+33nqL4OBg/+P4+Hiuuuoq8vLyAqbwHTVqFABPP/00iYmJ/nKr1cprr72G2WwOeJ4nTJhAdnY21113HZ07dw7Y5sMPP0y9evWYMWMGO3bsAGDXrl3MmDGD+vXrM3To0ID6V111FV26dDnpfRX5u9F0byIiIiIiIiIiInLGGjBgAP369WPOnDksWLCAFStWsGDBAsaPH8/48eO55ZZbGD16dEBiCFDpBQeLxUKnTp3YsmULK1asIDU1lSVLluDxeDCZTDz77LMV1nG5XACsW7fOX7Z48WJMJtMpTSpq167dKWur3HnnnVehLDk5GfBNX1Y+JVq58oSrXbt2nfK+HItffvkFgN9//73S16J82r9169ZVSGI60vO3Zs0aXnnlFebPn8/evXspLS0NWL579+6T6veGDRsoLi6mY8eOxMTEVFjevXt3hg0bxooVKyosq+w1stlsJCQkkJOTc8x92L59+3H1+WR8//33PPDAAyQmJjJu3LjTOnWNiJwesbGx/PDDD8TGxrJ+/XruvPPOk2qvskSk6dOnA9CrV6+TalukKhQUFLB582Zq165Ns2bNKizv3r07QMB3e/nfnTp1qlC/ffv2FaZH3b59O6NHj65Qt7IY6Fht2LCBDh06UFRUxJQpU+jRo0eFOr/88gs2m43vvvuO7777rsJyp9NJRkYGWVlZ/qmXj1dkZGSlCY5169YFCIhxli9fDvz5nB6sSZMm1KlTh23btpGXl0dkZOQR61utVi666CK2b9/OihUrSElJCXhdDo19Abp27cq8efNOYC9F/r6UpCQiIiIiIiIiIiJnNJvNxsUXX8zFF18MgMfjYdy4cQwZMoTPPvuMfv360bdv34B1EhISKm2r/A7t8tFesrKyAFiyZMkRR9QpLCz0/52bm0t0dHTA3eEn6+A7x0+VykayKb9AdqRl5YlZp1v5a/HRRx8dsd7Br0W5wz1/ixcvpnv37rjdbnr06MGVV15JREQEZrOZlStXMmHCBMrKyk6q3+XvpaSkpEqXl5dXNnLQoSMYlLNarXg8npPqV1UYP348AwcOJD4+njlz5tCgQYMKdcrfW+XPy6HKyw+37yJS/ex2+zEnJyxevJgxY8awceNGTCYTrVu35h//+Eelo9sdbMaMGQQHB1ea0CFS3U7ku718ncpiUIvFUuGY2r59O88991yFuieTpLRx40ays7Np06YN55xzTqV1srKycLvdlW77YIWFhSecpHSk+AYIiHGO5bnesWMHubm5REZGHvdrc6TXBaomBhf5q1OSkoiIiIiIiIiIiMhBLBYLAwYM4I8//mDYsGHMnj27QpLSvn37Kl03PT0d+DORovz3gw8+yOuvv35M24+KiiIrK4uSkpJTlqh06EhQ5cxmMwBut7vS5X+nKbPKX4vff/+dVq1aHde6h3v+hg0bRklJCXPmzKFr164By4YPH86ECRNOqK8HK+93+XvrUHv37g2oVxXefPPN43ovtGnTpsIxczTfffcdN9xwA4mJicyePZvGjRtXWq9p06bAnyNfHWrTpk2Ab3QEEflrmzZtGi+++CLt2rXjrrvuoqysjPHjx3Pvvffy8ccfHzaJIDc3l6VLl9K9e/dTmvArcqqcyHd7REQE4ItBD03i9Xg8ZGVlBUwT3LVrVwzDOKX9vuKKK2jatClPPfUUPXr0YMaMGRUSjSIjI/F6vWRnZ5/SbZ+og5/rhg0bVlh+6HN9vK9N+e+j/d9ARP6kJCURERERERERERGRSoSHhwNUeoGnsmkbPB4PCxYsAKBt27aAb5ows9nMzz//fMzbbd++PZMmTWLq1Kn069fviHXLp5U40VFxoqOjAdi5c2eFZfn5+YdNBKmpLBYLTqez0mXt27dn3Lhx/Pzzz8edpHQ4mzdvJiYmpkKCElT+HjlaHyvTtGlTQkJC+P3338nNza0wesCcOXMADjuiwanw5ptvkpaWdsz1Bw0adFxJSl988QWDBg2idu3ahx1BqVz37t154YUXmDp1Kk8++WTAsq1bt7Jx40ZSU1OP2IaI1HzFxcWMGDGCPn368Oijj/rLL730Um666SbGjBkTUH6wWbNm4fF4NNWb1Fjh4eE0bNiQrVu3smnTpgqJuZV9t7dt29Y/LfGh33GLFy8+bML5qfbkk08SHBzMgw8+SNeuXZk5c2bAKELt27dn8uTJrFmzhpYtW56WPh1J27ZtWb58OXPnzq2QpLR582Z27dpF/fr1/fFVeQw/d+5cbrvttoD6brfbH9OXvzbl9RcsWIDH46kw5dvcuXNP9S6J/OWZq7sDIiIiIiIiIiIiItXhq6++YsaMGXi93grL0tPT/dOCXXTRRRWWz549m0mTJgWUvfPOO2zZsoVu3bqRmpoKQHx8PDfeeCNLly7lP//5T6XJRFu2bGHbtm3+x/fddx8ADz/8MLt3765Q/+Cy8rvXd+zYcdT9rUx4eDjNmjVj4cKFrF271l/u8Xh46KGHKCkpOaF2j8f27dsxmUzUq1fvpNuKjY0lIyOj0n7feuutREVF8dxzz/Hbb79VWO71eo/7QlK9evXIzs5m1apVAeUff/wx06ZNO+4+VsZut3PjjTdSUFDA//3f/wUs27JlC2+99RY2m42bb775uPp+PLZv345hGMf8M3r06GNu+9NPP+WWW24hJSWF+fPnHzW5qEuXLjRv3pz58+fz448/+su9Xi+PP/44AHffffdhR78Skb+GpUuXUlhYSI8ePcjNzfX/mM1mmjdvzvLlyw+77syZM4mKiuK88847jT0WOT5DhgzBMAweffTRgPgwMzOT//znP/465W655RYAXnjhhYApT51OJ0899dRp6rXPAw88wHvvvceaNWvo0qULe/bs8S978MEHAbjjjjsCyssVFRWxePHi09bX8udw2LBhZGRk+Ms9Hg+PPPIIXq83IBmpb9++xMTE8NVXX1Xo55tvvsm2bdvo2bMnKSkpANSpU4devXqxbds23nnnnYD6EyZMOGzSusiZTCMpiYiIiIiIiIiIyBnp119/ZcSIESQmJtKpUyfq168PwLZt25g8eTIlJSVcddVV9O/fv8K6V1xxBf369aNfv340atSIlStXMmXKFGJiYvjf//4XUPedd95h06ZN/Pvf/+bzzz+nU6dOJCQksGfPHtatW8eSJUv46quv/Nu/+OKLefrppxk2bBjNmzenb9++1K1bl3379rFgwQLat2/vTwJp2rQptWvX5uuvv8Zms5GamorJZOLmm2/2J0odzaOPPsptt91Gx44dufbaawkKCmLOnDm4XC5at27N77//fhLP8tGVJ4lZrSd/urpHjx4sWbKESy+9lIsuugiHw0Hr1q254ooriI2NZezYsfTr14/27dvTo0cPWrZsiclkYufOnfzyyy9kZWVRWlp6zNt74IEHmDZtGp06dWLAgAFERkaydOlSFixYQP/+/Rk7duxx9fFwXnrpJX7++WfeeecdlixZQrdu3cjMzOTbb7+loKCAd955x//++SuZM2cOQ4YMwev10q1bNz755JMKdaKionjggQf8jy0WC5988gndu3enf//+9O/fn5SUFGbNmsXSpUvp2LGj/wKpiPx17dq1CyDg+D9YaGhopeV79uxhzZo1XH311afke0XkRA0ePPiwy/73v//xyCOPMGXKFCZMmEDr1q3p3bs3xcXFfPfdd+zfv5/HHnuMTp06+dfp0qULd955Jx9++CEtW7bkmmuuwWazMXHiRCIjI0lOTvZP43s63H333QQFBXHbbbdx0UUXMXv2bFJSUujRowcvvfQSTz75JI0bN6Z3797Ur1+fwsJC0tLSmDdvHp06dWLq1KmnpZ8XXnghjz32GP/9738566yz6N+/P6GhoUyZMoXVq1fTqVOngFHZwsLCGDVqFNdeey1dunTh2muvJSUlhWXLljF9+nQSExP54IMPArbx7rvv0qFDBx544AGmT59O69at2bx5Mz/88ANXXHEFEydOPC37KvJXoW9nEREREREREREROSM9/PDDNG7cmJkzZ7Jq1SqmTZtGaWkpsbGxdO3alRtuuIEbbrih0hFZrr76au68805eeOEFJk+ejM1m4+qrr2b48OE0adIkoG5ERATz5s3jww8/5Msvv2TcuHGUlpaSkJBA48aNeeONNypMSfOf//yHDh068NZbbzFp0iSKioqIj4/nvPPO899JD76EjR9++IEnnniC7777joKCAgzDoFOnTsecpFR+J//rr7/Op59+SnR0NFdddRUvvvgi11xzzQk8s8fnjz/+AGDgwIEn3dbTTz9Nbm4uEydOZOHChXg8HgYNGuRPAOrRowerVq3i1VdfZdq0afz888/Y7XaSk5Pp3r37ce/vpZdeysSJExk2bBjffPMNFouFdu3aMWfOHLZu3VppktLR+liZmJgYfvnlF4YPH87333/P66+/TnBwMO3atePRRx/l4osvPr4nqoZIS0vzJ6mNGjWq0jqpqakVkhQuuOAClixZwjPPPMP06dMpKCggNTWVf//73zzxxBM4HI6q7rqIVLHyz4ann36amJiYCssPnVKp3IwZMwA01ZtUu08//fSwy958801CQkKYMWMGr7/+Ol9++SVvv/02VquV1q1b8+abb3L99ddXWO+9996jWbNmfPDBB7z//vvExsbSr18/XnzxRerUqVNhOrOqNnjwYBwOB7fccos/UalBgwY8/vjjdOzYkbfeeosFCxYwYcIEIiMjqV27NnfeeSc33HDDae3nyy+/TNu2bXnnnXf47LPPcLlcNGzYkGHDhvHwww9jt9sD6l911VUsXLiQF198kWnTppGXl0diYiJ33303//d//0dycnJA/caNG7N48WKeeOIJZs6cydy5c2nVqhXjx48nIyNDSUoihzAZlU2oLiIiIiIiIiIiIiIVjB49mltvvZVPPvnkiHfIy7F76KGH+OCDD0hLSyMuLq66uyMiIqfR+vXrufPOO3nyySe57LLL/OVz5szhmWee4dVXX6Vdu3bH3N7NN9+M2+3mq6++qoruitRImzZtokmTJgwcOFDvfRGp8U7fmG8iIiIiIiIiIiIiIoeYN28ed9xxhxKURETEr127doSGhjJmzBjcbneF5bm5uRXKNm7cSFpaGj179jwNPRQ5/dLT0/2jjJUrLi72jzjYr1+/auiViMjx0XRvIiIiIiIiIiIiIlJtli1bVt1dEBGR02zcuHEUFhaSlZUFwMKFC9m/fz8A11xzDWFhYTz00EO88MIL3HbbbfTo0YOoqCj27dvH4sWLOeuss3jwwQcD2tRUb/J39+abb/LVV1/RtWtXkpKSSE9PZ9asWezatYvLLruMa6+9trq7KCJyVEpSEhEREREREREREREREZHT5ptvviE9Pd3/eP78+cyfPx+Aiy++mLCwMHr16kVcXBxffPEFX3/9NU6nk1q1atGqVSt69+4d0J7X62X27Nk0adKElJSU07ovIqdLr169+P3335k+fTrZ2dlYrVaaNGnCP//5Tx544AFMJlN1d1FE5KhMhmEY1d0JERERERERERERERERERERERH5+zJXdwdEREREREREREREREREREREROTvTUlKIiIiIiIiIiJyRiotLWXDhg2UlpZWd1dERERE/vYUe4mIiIiSlERERERERERE5Iwyc+ZMnnjiCR555BHuuOMO0tLSjmm9LVu2VHHPRKQ66NgWETk90tLSjiv2+qs7075fzrT9hTNvn8+0/YUzb5/PtP2FM2+fa8L+Wqu7AyIiIiIiIiIiIqdTz5496dmzJxs2bOCOO+445vXKysqqsFciUl10bIuISFU4075fzrT9hTNvn8+0/YUzb5/PtP2FM2+fa8L+aiQlERERERERERERERERERERERGpUkpSEhERERERERERERERERERERGRKqXp3kRERERERERERERE5Izi8XhwuVzV3Q05Bex2O2az7skXERER+StQkpKIiIiIiIiIiIiIiJwRDMMgPT2d3Nzc6u6KnCJms5n69etjt9uruysiIiIichRKUhIRERERERERERERkTNCeYJSfHw8ISEhmEym6u6SnASv18uePXvYu3cvKSkpej1FREREajglKYmIiIiIiIiIiIiIyN+ex+PxJyjFxsZWd3fkFKlVqxZ79uzB7XZjs9mquzsiIiIicgRKUhIRERERERERERERkb89l8sFQEhISDX3RE6l8mnePB7PGZWktG7dOqZOncqKFStIT08nIiKCli1bcvvtt1O3bt3jauu///0vkyZNokOHDrz88suHrbd7924GDRqE0+nkww8/pFmzZie7GyIiInKGMVd3B0RERERERERERERERE4XTQn293Kmvp5ffvkl8+bN49xzz+Wf//wnV1xxBb///ju33347W7duPeZ21q9fz5QpU/zJXkfy9ttvY7FYTqbbIiIicoZTkpKIiIiIiIiIiIiIiIjIX8iAAQP47rvvuP/+++nTpw+DBg3i7bffxuPx8MUXXxxTG4ZhMGLECC655BJiYmKOWPe3335jyZIlXHvttaei+yIiInKGUpKSiIiIiIiIiIj8Zb3yyiv07duXSy+9lEGDBrFw4cLq7pKIiMhxefbZZyktLT2hdd98803S09MD2nrggQdOUc+kJjv77LMrTG9Xt25d6tWrR1pa2jG1MW3aNLZt28Ydd9xxxHput5u33nqL/v37U7t27RPus4iIiFSPtNIMRuyexFvO2YzYPYm00oxq64uSlERETpDJZKJr167V3Q0RERGRv6xnn30Wk8nE3Llzq7srIvIXNmDAAL799lumTp3KE088wbBhw8jLy6vubomIiByz5557rtIkJbfbfdR1D01SkjObYRjk5OQQGRl51LrFxcW8//773HTTTcTGxh6x7nfffUdBQQG33HLLcfUnMzOTDRs2+H+ONXlKRERETp3xmb/Rd81LfJo+l8WebXyaPpe+a15iQuZv1dIfa7VsVc5ojz/+OEuXLmXjxo1kZmYSHBxMamoqffv2ZejQoZUGwwUFBbz00kuMGzeO7du3ExwcTLt27Xjsscfo0aNHpdvZtm0bL7/8MnPnzmXHjh2Eh4fToEEDbr31VgYPHlxhfuUZM2YwdepUVq5cycqVK8nOzqZjx44sWLDghPYzOzub559/nvHjx7N3715iY2O59NJLef7556lTp05A3dGjR3PrrbcesT2z2YzH4znufsyaNYt33nmHX375hZycHGJjYzn77LO5//776d27t7/ezp07GT58OMuWLSMtLc1ft2HDhgwZMoSbbrqpwl0Z5T799FPeffdd1q5di8VioW3btjzyyCP06dOn0vrLly9n+PDhzJ8/n5ycHBITE+nTpw/PPPMMCQkJx7xvgwcP5tNPPz3s8nXr1tGsWTP/46p8nk+VGTNmcPHFF3P++efz229H/mL48ssvufHGG7nyyiuZMGHCaeqhiIj8XSlmqNqYYezYscybN4+VK1fy+++/U1BQwI033siYMWOOuN6iRYsYNmwYixcvpqSkhMaNGzNkyBDuu+8+LBZLpetMmjSJV199lRUrVuDxeGjZsiX33HMPgwYNOux2jve18Xg8vPXWW3zyySds2rSJ4OBg2rdvz9NPP82FF154zM9LVenYsSOLFi1i8uTJAe/fyjRt2pSNGzeyfPly2rZte5p6KCKnUmpqqv9vk8mEy+UiMzPzmC7OiYiIjP/XQorzyqqs/ZBIB31f6HjY5XfffTcAnTt3xmKxkJycTGJiIps3b2b//v2sX78ek8lETk4OUVFRAMTFxbF06VI+++wz9uzZw3XXXUdwcDCjR48GYO/evVxxxRVs2bKFxMRExo4de9SpvOTvYcaMGWRkZDBkyJCj1h09ejQOh4MBAwYcsV5WVhaffvop99xzD6GhocfVnx9//NH/vjzYtm3bqvU8/OlSWFjI2rVrq7sbp82Ztr9w5u3zmba/cObt85m2v/D33+e93jyeLRuLgQEYAHgO/H4m7RvC0z0kmk/N+ZMWLVocUz0lKclp98Ybb3DOOefQq1cv4uPjKSoqYvHixTz77LN8+OGHLF68mLp16/rr5+Tk0KlTJ9auXUvLli25++67KSwsZMKECfTs2ZORI0dy2223BWxjyZIldOvWjZKSEi699FKuuuoq8vPzmThxInfddRfjxo1j6tSpmEwm/zrvvvsuEyZMICgoiEaNGpGdnX3C+5iVlcWFF17Ixo0b6d69OwMHDmT9+vV88sknTJ48mV9++YUGDRr467dp04Znnnmm0rZ+/vlnZs+ezWWXXXbc/Xjsscd45ZVXqFOnDldeeSVxcXFkZGSwbNky5s6dG3DBZsuWLXzxxRdccMEF9O3bl5iYGLKyspgyZQpDhgzh888/Z/r06VitgR8bjzzyCK+99hp16tThjjvuwOl08vXXX3PFFVfw9ttvM3To0ID6kyZN4uqrr8btdnPFFVfQpEkT1q9fz/vvv8/EiRNZuHAhKSkpx7Wf999/v/8/6AeLi4sLeFxVz/Op1LNnT+rXr8+SJUv4448/OPvssw9b96OPPgLgzjvvPF3dExGRvynFDFUfMwwbNozff/+dsLAw6tSpw/r164+6zoQJE7jmmmsICgriuuuuIyYmhokTJ/Lggw+ycOFCvvvuuwrrvPPOO9x3333ExsZy0003YbfbGTt2LIMHD+aPP/7g1VdfrbDO8b42hmEwcOBAxo4dS9OmTRk6dCjZ2dl88803XHTRRYwbN46rrrrquJ6fU+2OO+5g0aJFjBw58ohJSvPmzWPjxo2cd955SlASOUnFxcV8/fXXrF27lnXr1lFQUMCTTz5Z6eel0+nk448/Zvr06RQUFNCwYUNuv/12zj///BPe/uuvv85PP/2E0+mkffv2Af/nFhEROZLivDKKs6suSelo3n//fT744AN+/vlnoqKiGDx4MMuWLWPBggWEh4cfcd1///vfjBo1im+++YY2bdoAMH78eH799VeWLVtGbGwsAwcO5IMPPuDJJ588DXsj1SktLY033niDli1bcumllx6x7s6dOxk7diz//ve/K9zQfaj333+f5OTkw97EciRXXnklHTv+maSXlpbGsGHDqF+/Pk2bNj3u9v5q1q5de8wXbP8OzrT9hTNvn8+0/YUzb5/PtP2Fv98+G4aBq8RNcU4ZxbllfFu0CpMFDFPFumZM/BGdRffaHU5rH5WkJKddfn4+QUFBFcr/9a9/8eKLLzJ8+HD+97//+cufffZZ1q5dy9VXX80333zjv+D14osvct5553HfffdxySWXBIxO9Oyzz1JUVMTo0aMD7hh/9dVXadeuHdOnT+fnn3/moosu8i97/PHHeeGFF2jWrBk7d+6kfv36J7yPTz31FBs3buShhx7itdde85e/9dZb3H///dxzzz1MnTrVX96mTRv/fyIP1aGD70PheBNRPvroI1555RUGDRrEhx9+WOE/Gi6XK+DxhRdeSE5ODmazuUK9iy++mDlz5vD9998H3FWxaNEiXnvtNRo2bMiSJUuIjo4G4NFHH+Xcc8/1331fr149AEpLS7n99ttxuVyMGzeOq6++2t/WV199xQ033MDQoUP58ccfj2tfH3jgAf82jqQqnuf/Z+88w+OoDrZ9z2zvu1r15m654waYZpqpDi1AaEkggHlTSEgCHyEJL5BASCGBEOBNgRASSCBgML2aFgM2uBsXyU1Wb7va3ndnvh+zGlnIxjaYFp/7unxZO3Nm5pwzu9qjOc95nv2NJElcfvnl/PSnP+Xee+/lD3/4wy7Lbd26lTfffJO6urrPXFglEAgEgi82YswwnE9izHDHHXdQW1vL2LFjefPNNzn22GM/tHw0GmXBggUYDAbeeOMNZs+eDcDNN9/Mcccdx8KFC3nkkUc4//zz9WN27NjBNddcQ0lJCStWrNDbesMNN3DwwQfzu9/9jrPPPltvA+z7vQF45JFHWLhwIYcffjivvvqqPrb/5je/yZFHHsmCBQs47rjj9jih8kly3nnn8f3vf59nn32Wnp6e3Tpv3XfffcBnPwYUCP4biEQiPPDAA1RUVDB27FhWr16927K//OUveeONNzj33HOpra3lhRde4Nprr+XOO+9k2rRpH+n6P/zhD7nqqqtYs2YN27dvH7IoSSAQCASCD8PusXzuzn/uued+rPH0ySefrCcWHHbYYbz//vsf+VyCLwbBYJAf/ehHOBwObr755t067w7whz/8gSlTpnDMMcd8aLkNGzbw8ssvc8cddwx7DrA3lJaWDlsYJBAIBAKBYN9RFZVULEuqKD5KhbX/tX9pbVsoQzKSoZBV9OPWz29BHa/CLh6TqKh0ZkKfYis0hEhJ8KmzK4ESwFe+8hVuvfVWtmzZMmT7okWLAPj5z38+ZEV+eXk5P/zhD/nBD37A/fffzw033KDv2759O6Cp9HfG4XBw/PHHs3HjRvr6+obs23my5uMQj8d58MEHcTgc3HTTTUP2XXnlldx+++289NJLbN++fY8rO99//32WLVtGTU0N8+fP3+s6ZDIZfvrTn1JfX7/LyUZgWAzL7lZLmEwmzjzzTN54441h9+ZPf/oToAnMBia0AEaOHMl3vvMdbr75Zv72t7/xs5/9DNAmwXp6epg9e/aQyUaACy64gF//+tc8++yztLS0DLHr/6T5qP28O2677TZ+9KMfcdhhh/HMM8/oVsrvvvsut912G2+99Rb9/f1UVFRw6qmncuONN1JdXa0ff+mll3LjjTfy0EMP8Zvf/GaXn5n77rsPVVW57LLLPtIfhwKBQCAQgBgz7CsfZ8ywJ1HSB1m4cCF9fX18/etf1wVKoI2lb7nlFo4//nj++Mc/DhEp3X///WQyGX70ox8NERX5fD5+8pOfcNlll/GnP/1pyLh3X+8NwB//+EdAc4faeZxy8MEHc9555/Hggw+ycOHCPUbmfRitra2ccsopbNmyhb/+9a987WtfAzSnljvvvJN///vfbNmyBUmSmDp1Kt/73ve44IIL9ONtNhtf/epXueeee3jggQf40Y9+NOwa4XCYhQsX4nQ6hxwrEAg+Gn6/n0WLFuH3+2lsbNyt+G/jxo28+uqrfOtb39I/eyeddBKXXHIJf/zjH/XfMQDf+c53djup+rWvfY0FCxYM2WYwGJg1axaPPfYYtbW1++3vfIFAIBD8d/NhUWyfFU6nc8hrg8EwJBornU5/6PE7j9MNBgP5fH7/VlDwuSIej3PttdcSj8e5++679ygKWrlyJe+++y633HILXV1d+vZCoUAmk6Grqwu3243D4eCPf/wj06ZNo6qqSi8bDocBTRj1YYtCBAKBQCAQ7BlFUUlFMiT70yRDGRKh9BAB0sDPqUgWVVH3+rwmmxG710K1qYRtUm8x7m0oEhLVFt8ujv5kESIlweeGZ555BmDYqsnu7m6AXQp6Bra9+uqrQ0RKkydPprGxkeeee46vfvWr+vZkMslrr72G3W7/xB5WLlu2jFQqxYknnjhstYssy5x00kn85S9/4fXXX9+jSOkvf/kLAJdddtkeVz7szEDu9Pe//31kWea5555j/fr1WK1WDjnkkH1qe6FQ4PnnnweG35vXXnsNYJfWsaeccgo333wzr732mj6p9WH3cmD72rVree211/ZpUuuFF14gGo1iMBgYO3Ysxx13HG63e6+P/6j9/EEUReH73/8+d911F1/+8pf55z//qT8QuP/++7niiiuwWCycfvrp1NXVsWXLFu677z6eeeYZli1bpkfWVFZW8qUvfYknn3ySxx9/nIsuumjIdfL5PH//+98xGAx7lS0uEAgEAsHuEGOGz2bMsDd8WJ/NnTsXu93OO++8QyaTwWKx7PGYAefFgTJ7c51d3Zt0Os0777yD3W7nqKOO2uUxDz744D7fm51Zu3Ytp556KrFYjOeff5558+YB2oPw4447jtWrVzNz5kwuvfRSFEXhpZde4sILL2TDhg3ccsst+nkWLFjAPffcw1//+tddipQeeugh0uk0CxYsGDYJJBAI9h2z2aw7NnwYb775JgaDYciiIovFwvz58/nLX/4yZKLrnnvu+Uh1KRQKdHR0fKRjBQKBQCD4LHC5XEQikV3GUwOMHTuWd999l1NPPZUnnniCRCKh73O73UQikU+ppoLPG5lMhuuuu462tjZuv/32vXIP7u3tBeD6668ftq+vr4/zzjuPK6+8kq985Sv09vbS3d3NeeedN6zsj3/8Y5xOp/4sQCAQCAQCwVBy6TyJAfFRf5pkKE2iXxMiJfvTRUHSPoiPJLC6zNh9FuxeCzaP9r/+2mvVXnstGC3a8+tD0hNZsuFXuzydispZ/kP3V3P3GiFSEnxm/Pa3vyUejxOJRFixYgVvvfUW06ZN47rrrhtSrrS0lK6uLpqbm4flQQ44JjU1NQ3Zfsstt/DOO+9wySWX8OijjzJp0iSi0SjPPvss+XyehQsXDnGu2Z8M1GX8+PG73D9u3DgANm/e/KHnSaVSPPTQQxgMBi6//PJ9qsPy5csBbcXMjBkzWL9+/ZD9c+fOZeHChZSVlQ07NhAIcPfdd6OqKn19fbzyyits3bqVCy+8kNNOO00vl0gk6OjowOl0UlVVtVftHFjB0dzcvMt67+5+7olvf/vbQ167XC5++ctf8p3vfGePx36cft6ZdDrNRRddxBNPPMGVV17JnXfeqTscbd68mW9+85uMHDmSN998k5qaGv24V199lRNPPJGrrrpKdw0DLXLkySef5N577x0mUnrmmWfo7u5m/vz51NXVfeQ6CwQCgUAgxgyf/phhb/mwMaXRaGTUqFFs2LCB7du3M3HixD0eU1VVhcPhoL29nWQyid1u/0j3Ztu2bRQKBUaPHj3E5fTDjtkXFi9ezNlnn43D4WDJkiUcdNBB+r7vf//7rF69ml//+tdce+21+vZ0Os2ZZ57JrbfeyjnnnKNH9R100EEccsghvPfee7zxxhvDYgxE1JtA8NmwZcsWamtrcTgcQ7YP/C7bunXrPq3Gj8fjLF26lCOOOAKz2cySJUtYvXr1bj/bgUCAYDCov25pafkIrRAIBAKBYP9y9dVXc8IJJ2C323f53PqOO+7ge9/7Htdffz3z588fIgz+3ve+x4IFC7Db7TzwwAOfYq0FnzWFQoGbbrqJDRs2cOuttzJlypRdlgsEAiQSCWpqajAajcycOZNf/OIXw8rddtttVFZW8rWvfU1fNHTNNdeQyWSGlFu1ahWPP/443/72tz9Vd2OBQCAQCD4v7Mr9KNGfKYqQBsVIudTeuVlKEti8Fhw+K3afBduA8Mgz8LMmPrK5zcjGfUvYGWEt46YR53FTy7+RkFBQkZFQUblpxHnUW4c/+/+kESIlwWfGb3/7W3p6evTXJ598Mg888MCwSbD58+dz3333ceONN/LII4/oq9b7+vq44447AAiFhmYlTpgwgeXLl3PBBRfwzDPP6C5NJpOJ73//+8yZM+cTa9fAqhWPx7PL/QPbByxRd8ejjz5KOBz+SEKUgZUQt912G5MmTWLJkiVMnz6d5uZmrrnmGl5++WXOPfdc3njjjWHHBgKBIXEekiRxzTXXcOuttw4p91HaecQRR+D1elm+fDlPPfUUZ5xxxpD2rl27Fhh+P3fH3LlzOfXUU5kzZw7l5eV0dnayaNEifvazn3HllVdiMpn2OOn0cfp5gP7+fk4//XTeeeedYZNmoEWi5HI57rzzziECJYDjjz+e008/nWeeeYZYLKa7b5100kmMGDGCN998ky1btugTfiAm1AQCgUCw/xBjhk93zLAvfJR+25tjEokEkUgEu93+iV3jg8fsLQ899BCXXnopY8eO5cUXX9RdJkGLEXjooYeYPXv2sLGW1Wrl17/+NS+99BL/+te/dJESaOOl9957j/vuu2+ISGn58uWsXbuWGTNmDInTEwgEnzzBYHCXjksD2wKBwD6dT5Iknn32We644w5UVaWmpob//d//HfI31M48/fTTu5zAbW5uHhKjszvi8TgbN27cpzoKBILPP+KzfeCgKAqKopBOp1HVvY/L+KS59tprh41zU6mU/vMxxxzDunXr9Nc/+clP9DIXXXTRkEWOAy6iA8dfdtllXHbZZUPO999GJpMhl8uxdetWfeEoMGzR838b99xzD2+//TaHH344sViMl19+ecj+E088EdBcgV988UX+/e9/U1VVRUVFxS5F4XfddRc+n2+Ia+4hhxwyrFw8Hgdg+vTpTJgwYX82SSAQCASCz5wBAVIimCYRTBEPpkkE08SDKRL9mghpX9yPTFYDdp8VR4kmQNL+t+IosejbbR4zsmHfxEf7whmlhzDDOYpFwXfZ1LeDiWUjOct/6GciUAIhUhJ8hgzEePT09PDOO+9w3XXXMWPGDJ599llmzpypl/v5z3/OSy+9xMKFC5k+fTrHH388iUSCp556ipqaGlpbW4f84QGwevVqzjzzTMrLy/XJtnA4zEMPPcT111/Pk08+yfLly3c7ufJ5YCBO5H/+53+G7duxY8cuH6redNNNgPbHNmir7J9++mnd4nXq1KksWrSIhoYG3nzzTZYuXTosxmXChAmoqqrb4y9atIgbbriBt956i+eee46SkpKP3CaHw8Gdd97JJZdcwpe//GVOP/10xo0bR2NjI88++yzTp09nzZo1w+7n7vhg1Nno0aO5+uqraWho4LTTTuOnP/3pHuNYPqyf94aenh6OOOIItm/fzkMPPcSFF144rMzSpUsBLdZgwLFiZ3p7eykUCmzevJlZs2YBWjTgZZddxg033MB9993Hr3/9awDa29t58cUXqa6uZv78+R+pzgKBQCAQDCDGDPtnzLCnsZlgz9x555089dRTHHHEETz99NP4fEOz0JcvX06hUECSpF32ay6XA2DTpk1Dtp9//vn84Ac/4PHHH9cfuAPce++9gBYJJxAIPl0ymQwmk2nYdrPZrO/fFwa+M/aW008/nSOOOEJ/3dLSwi233MKoUaNoaGjY4/EbN278r5/wFAgORMRn+8AhnU7T3NyM1WrFarV+1tUR7CckScJkMjFq1KgD6r5u3boVgHfeeYd33nln2P4BkZJAIBAIBAINVVVJx7JFAVKaeDBNy+YQPa+t0cVIiVAatbBnAdIQ96MSKw5f0fGoZOg2s334M5DPgnprGVfVfImNkY1Mqvls//YRIiXBZ05FRQVnnXUWM2fOZPz48Xz9618fEjVSVVXF8uXLufnmm3n22Wf5v//7P0pLSznvvPO46qqrGDduHOXl5Xr5fD7PV77yFfr6+nj33XeprKwEwOl0ct1119HT08Pvf/977rjjjk9k4mhA+LS7HPCB7bvLFwfYsGED77zzDrW1tZx66qnD9u/YsWOIc8EAA+0ZOPeMGTOGZVDb7XZOOukk/vrXv/Lee+8Nm3AcwGAwUF9fz1VXXUVFRQUXXHABN9xwA3fffffHaufXv/516urq+PWvf80bb7zB888/z8SJE3nggQfo7e1lzZo1Q+7nR+FLX/oSNTU1dHR0sHHjRqZOnbrLcnvq572hu7ubaDRKbW0tRx555C7LDEQJ3HbbbR96roEVKANceuml/OxnP+Pvf/87t9xyCyaTifvvvx9FUbj00ks/dCJVIBAIBIK9QYwZ9s+YYU9js4/CR+k3j8dDIBAgEons0qXkgy5IH/Ua+3rM3vCf//wHVVU5/vjjhwmUYHA8tXz58l2Kvgf44HjK4XBw4YUX8uc//5mHHnqI7373uyQSCR555BEcDsewWF2BQPDJY7FYdGHhzmSzWX3/J0lpaakeKyoQCAQCgUDwReYPf/jDXpX7yU9+ortvfRiPPvroXp3vlFNO4ZRTTtmrsgKBQCAQfJpkk7lBsdEHXZCCmgtSIafs4sjokFeShOZy5Nf+Of02HCXF1yWfjvvRfzNCpCT43DBixAgmTZrEmjVrCAQCQx4aVlRUcPfdd+uTXQO89tprABx88MH6tsbGRrZu3crMmTN1gdLOHHvssfz+979n5cqVn0g7BlZebt68eZf7t2zZAsD48eN3e46Blfq7W9F/zDHHfKgd8UAddjc5NDDxs7cWvwN/cOwc9eJwOPRJva6uLqqqqoYc82HtPPbYYzn22GOHbf/6178ODL2fH5WysjI6OjpIJBK7LbOnft4bDjroIC6//HIuueQS5s6dy2uvvabndQ+w82Se2+3e63PX1NRw6qmn6pGFZ555Jvfffz+yLHP55Zd/pPoKBAKBQLAzYsywf8YMexqbfRQaGhpYsWLFEKfFAfL5PM3NzRiNxiHjjoaGBgKBAJs3bx4mKuvq6iKRSFBbW4vdbgc+2r0ZM2YMBoOB7du3k8/nMRqNezxmb/jrX//Kr371K372s5+hKAo///nPh+wfGE/94Ac/4Pbbb9+nc19xxRX8+c9/5r777uO73/0ujzzyCLFYjEsvvXSfxmYCgWD/4Pf76evrG7Z9QIz4aQmIFi9ezOLFi4eJGwUCgUAgEAgEAoFAIBB8/lBVlUwsRzyQIhZIEe8r/l/8OR5IkU3m9+pcNo8Zh9+Gw28lS5K6cdU4/DacRVGS3WsRAqRPECFSEnyu6OzsBNhrwcg//vEPgCERWwPW8IFAYJfHDDwMHbCS39/MmTMHm83G22+/TSwWw+Vy6fsURdFzoXc14Qaa5fCDDz6IwWDgsssu+0h1OP7445EkiY0bN6IoyrAolAGnqlGjRu3V+To6OgCGTUIdd9xxPPjgg7z44ot84xvfGLLvhRde0MvsDeFwmGeeeYaysjJOOOGEvTpmd0QiERobG5Ekabdt3B/9PMBXv/pVrFYrF154oS5U2nlibs6cOaxcuZIlS5bsc0TbFVdcwTPPPMN9992Hw+GgpaWFk08+mREjRnysOgsEAoFAAGLM8GmPGfaF4447jn/+85+8+OKLXHDBBUP2/ec//yGZTDJ37twhjiPHHXccb7/9Ni+++OIwkdLu+nlf743VauXwww9nyZIlLFmyZNiYdl/v5wBer5dXXnmF+fPnc/PNN5NOp/nNb36j7z/kkEOQZZklS5bs03kBZs6cyaxZs1i5ciXvvfce9913H6CNswQCwafP2LFjWb16NYlEAofDoW/fuHGjvv/TYN68ecybN4+mpiYR/SgQCAQCgUAgEAgEAsFnjKqqpCJZ4n1JYoE08b4k8UBaEyUVRUj5TGGP57E4TbrjkbMoRNLckKw4Smw4SiwYTINaBC36efSHnFGwvxHyL8GnyubNm3cZDaEoCj/96U/p7e3l8MMPHxLxoCjKLlc2Pvjgg/zjH//g8MMP58wzz9S3T5kyBa/XS2trqz4BMUA4HOa3v/0toE3KfVwaGxtpbGwcss3pdPK1r32NRCIxLOLj7rvvZseOHZx00knD3HYGeOyxxwiFQpxyyinU1dV9pHqNGDGC0047jdbWVu68884h+15++WVeeuklvF4vJ598sr591apVFArDf7HH43GuuuoqgGECm29+85sA/OIXvyAUCunbd+zYwT333IPFYhk22RWLxYZdI5lMcvHFFxMOh/n5z38+zN5/27ZtNDY2DokE6O7upr29fZf1veSSS0in08ybN4+KiophZWD/9PPOnHPOOSxcuJBAIMDRRx/Nhg0b9H1XXnklJpOJH/zgB7t02Mpms7udcDvllFOora3lpZde0h0FxAN0gUAgEOwvxJjh0x8z7C3nnHMOpaWlPPLII6xYsULfnk6nuf766wH41re+NeSYb3zjG1gsFn3MOUAoFOLWW28FBu/FAB/l3gxc9/rrryedTuvbly9fzr///W/Kyso4++yz97nNLpeLF198keOPP57bbrtNfz8BlJeXc9FFF7FixQpuvvnmXb4Ht23bRnNz8y7PPTB+uuaaa1i2bBnTpk3j0EMP3ec6CgSCj88xxxxDoVDg6aef1rdls1mef/55Jk2atNvfxwKBQCAQCAQCgUAgEAi+uKiqSiKYoruxn61vdbD6ya0suXc9L/zyPR67+j88cMnL/Ovbr/H0jct4/a41LH9kM5sWt9K2po9wR1wXKNm9FsrHehl9WBXTThvNEZdO5qRrZ3P2bUdx8f0n8LW/zOPLvzySk/7fbI64dDLTzxjDuCNrqJrox11hHyJQEnw2CCclwafK888/z49//GOOPPJIRo0ahd/vp6enhzfffJPt27dTWVnJvffeO+SYZDJJRUUFJ5xwAmPGjEGWZd5++22WLl3KxIkTeeyxx4as+rdYLPz+97/nG9/4BgsWLOCRRx5hxowZhEIhnn76afr6+pgzZ86wlfBvvfWWLmoaEEVt2bKFSy65RC/zwAMPDDlm4sSJAMPiPW699VbeeOMNbr/9dtasWcMhhxzCpk2beOqppygvL+eee+7ZbR8NxIl83JXd99xzD6tXr+aHP/whzz33HDNmzKC5uZknn3wSg8HAfffdp8dmAPz85z/n7bff5vDDD6e+vh673U5bWxsvvPAC4XCYww8/nB//+MdDrnH44Yfzwx/+kNtvv51p06ZxzjnnkM1m+fe//01/fz933XUXI0eOHHLM3//+d373u99xzDHHUFVVRTAY5JlnnqGrq4urrrpq2MQZaIKylpYWmpub9fM1NjYyb948DjvsMMaPH095eTkdHR288sordHd3M3r06GEitZ3ZX/28M6effjpPPfUUZ511FscccwyLFy/moIMOYsKECdx///1ceumlTJ48mZNPPpnx48eTy+VobW1lyZIllJWVDRO8geYqdumll/Lzn/+cd955h8rKSk4//fT9VmeBQCAQCMSY4dMZMzz55JM8+eSTgCacAli6dKk+1iwtLdXF9ABut5t7772Xc845h2OOOYbzzz+fkpISnn76aZqamjjnnHM477zzhlxj1KhR3HbbbXzve99j9uzZnHfeeZjNZhYuXEh7eztXX331MIelj3Jvzj//fJ544gkWLlzIjBkzOO200wgGg/z73/+mUChw7733fuQYNbvdzrPPPsvZZ5/NH/7wB9LpNH/605+QJIm7776bLVu2cMMNN/Dggw9y5JFHUlFRQWdnJ5s2bWL58uU8/PDDu3TFuvDCC7nmmmt0YbgQfQsEnwyPP/448Xhcj257++236e3tBeDss8/G6XQyadIkjj32WP7yl78QDoepqanhxRdfpLu7mx/96EefWl1F3JtAIBAI9pWCqrAqvp1ALkqpyc1M52gMklgHLhAIBAKBQLArVEUl1B6na1M/3Zv66WrsJx3NfugxkgT2EiuuMhvO0uK/Mhuu4s8OvxWjWYiMvvCoAsGnyPvvv69+5zvfUQ866CDV7/erBoNBdbvd6uzZs9Ubb7xRDQaDw47JZrPqpZdeqo4fP1612+2q3W5XDzroIPUXv/iFmkgkdnutN998Uz3rrLPUyspK1Wg0qg6HQ505c6b6y1/+Uk2lUsPK/+1vf1OBD/33QXa3XVVVNRgMqt/73vfU+vp61WQyqZWVleo3vvENta2tbbd13rhxowqotbW1aj6f3225vaW3t1e98sor9Tr4/X71zDPPVN99991hZZ999ln1oosuUseNG6e63W7VaDSqZWVl6vHHH6/++c9/VnO53G6v87e//U2dPXu2arfbVafTqc6dO1d95plndll26dKl6imnnKJWVlbqdTrllFPU559/frfnHzFihAqozc3N+rbW1lb1iiuuUGfMmKGWlpaqRqNRdbvd6sEHH6zecsstajQa3e359lc/A+rRRx89bPvrr7+uOp1O1efzqe+9956+fd26derFF1+s1tfXq2azWfX5fOrkyZPVK664Qn311Vd3e53W1lZVlmUVUH/84x9/5PoKBAKBQLA7xJhh1+zPsdmNN974oePMESNG7PK4t956Sz3llFNUr9erWq1WdcqUKertt9/+ofV5+umn1blz56pOp1O12+3q7Nmz1QceeOBD67cv90ZVVTWXy6m33367OmXKFNVqtaper1c95ZRT1Lfffnuv+mOAgX55/fXXh2zPZDLqWWedpQLqxRdfrBYKBX37XXfdpR522GGq2+1WzWazWldXpx533HHqHXfcoQYCgd1e6/LLL1cB1WazqaFQaJ/qKRAI9o5zzz1XPeqoo3b5r7OzUy+XTqfVe+65Rz3jjDPU448/Xl2wYMEuv3M+DRobG9WjjjpKbWxs3KvyGzZs+IRrJBAIPgvEZ/vAIZVKqRs3btzl8+EP45X+teoJa29Sp634gf7vhLU3qa/0r/2EavrZc+ONN+5zP+0Nf/vb39RNmzZ9pGPvuusu9eKLLx62/aPeV8Gnz76Ovb7oHGjfLwdae1X1wGvzgdZeVT3w2vxx2lsoKGpfc1h9//nt6su/W6n+Y8Er6r0XPD/k331ffUF95Huvq8/evEx9449r1ZULN6tNb7SpHRsCarQnoRZyhf3XmL1E3ONPH0lVP2ABIxAIBAKBQCAQCAQCgUAgEBwANDU1sWDBAu69914aGhr2WH7jxo1MmjTpU6iZQCD4NBGf7QOHdDpNc3Mzo0aNwmq17tUxi0PruGb7A3xwIkUq/v/b0Zcwzzdtv9Uxn89jNH72IRiSJBEKhfB6vcP2fZw6HnPMMXz/+9/nzDPP3Odj7777blasWDEs8eCj3FfBZ8O+jr2+6Bxo3y8HWnvhwGvzgdZeOPDavC/tVQoKwR1Rujb107Wpn56mENlkfkgZo8VAxXgvlRNLqJpQQtkYz+cubk3c40+fz36kKxAIBAKBQCAQCAQCgUAgEAgEAoFA8DmjoCr8pm3RMIESaJaoEvCbtic51jvlY0W/SZLEDTfcwPPPP88xxxzDDTfcwA9/+EPWrl1LOp1mzpw53H333ZjNZjo6OrjqqqtoampCkiTOOOMMbr75Znp7e/nmN7/Jli1bUFWV7373u/zP//wPACNHjuTrX/+6Hnt92WWXcf311wNwyy238M9//hOLxQLAU089xS9/+UsAjjrqKAwGAy+//DLXXnstsiyzdetWent7aWxsHCZkKi0tZcWKFYwcOZJNmzbx/e9/n66uLgC+/e1vYzQaWbFiBT/4wQ+46aabuPXWWzn11FP57W9/y6OPPko+n6e8vJw///nPjBgxglgsxuWXX86aNWsoKytj8uTJH7mPBQKBQCAQfDyUvELf9gjdjUVR0uYQuVRhSBmTzUDF+BKqJvqomlhC6SgPslHE4wqGIkRKAoFAIBAIBAKBQCAQCAT/xaxatYqVK1eyfv16ent7iUQiWK1WvF4vo0ePZvr06Rx22GH4/f7PuqqfGosXL2bx4sXE4/HPuioCgUAg+Jzyj543+GvXq4QLid2WUYGeXJhftT7BT0ec87GuZzAYWL58OQBXXHEFRx11FPfeey+qqrJgwQLuvPNO/t//+3989atf5cQTT2ThwoUA9PX1AfDd736XhoYGnnjiCXp7e5k1axYHHXQQc+bMASAcDrN06VICgQBjxozhG9/4Bna7nd/+9rd0dXVhs9lIJpPIssyf/vQn/vznP7NkyZIhTkorV67krbfewuVyfWhb8vk8Z5xxBj/72c+44IILAAgEApSWlvLQQw8NcVL617/+RVNTE0uXLsVgMPDggw/y7W9/m+eee46f//znWCwWGhsbiUajzJkzh0MPPfRj9bNAIBAIBIK9o5Ar0Lctojsl9W4Jk88MFSWZ7UYqJ5RoTkkTS/CPcCEbhChJ8OEIkZJAIBAIBAKBQCAQCAQCwX8ZqVSKxx9/nGeeeYaenh5UVfOAMJvNuN1uMpkMzc3NbNu2jVdeeQWj0cjhhx/OV77yFaZOnfoZ1/6TZ968ecybN0+PHNkbQh1xUsHcJ1wzgUAgEHxeSBTSHypQ2plgPvaxr3fppZfqPz/55JMsXbqU22+/HdC+1w0GA/F4nLfeeouXXnpJL1tWVgZoAtyVK1cCUF5ezpe//GUWL16si5QuvPBCQHM7Gj16NM3NzRx22GGMGzdOFz7Nnz+f2tra3dbx3HPP3aNACbRIr3Q6rQuUBq67K5588kmWL1/OrFmzACgUBic/X331Ve644w4kScLj8XDhhReybdu2PV5fIBAIBALBvpNL54nsSLNy4xa6GzVRUiGnDCljcZr06LaqiSX46l3IsrSbMwoEu0aIlAQCgUAgEAgEAoFAIBAI/ot46qmn+Nvf/kYoFGLMmDFcdtllTJ48mQkTJmC32/VyqqrS3t7Oxo0bWb58OW+99RZLlizhiCOO4Dvf+Q7V1dWfYSs+X6iqytt/XU/P5hDZZhMzvjwWq9P8WVdLIBAIBJ8gDoMVr8GxV0Ilv3HPwp094XQ69Z9VVeXxxx9n/PjxQ8rsiwOgJA2dMLRarfrPBoOBfD6PwWBg2bJlvPPOO7zxxhvMmTOHhx9+mKOOOmqPdRw4z86ionQ6vdf1G0BVVX784x9zxRVX7LHsB9skEAgEAoFg31BVlWQoQ7gzTqQzQbgzof+c6B/4Hu/Ry1vdZqqKLkmVE0vw1TiRhChJ8DERIiWBQCAQCAQCgUAgEAgEgv8ifv/73zNv3jwuuOACRo8evdtykiRRV1dHXV0dJ510EplMhldeeYWHHnqIl19+mUsuueTTq/TnnNaVvXQ3hgDY8GILW5d0MuPssUyaV49sFFb2AoFA8N/I1yuO4aLyuZzy/s305iKouygjAeUmL9fVf3m/XvvMM8/k17/+NX/+858xGo2EQiGCwSBjx45l7ty5/O53v+PHP/4xoMW9lZWVMW/ePO69915+8Ytf0NfXxxNPPMFjjz32odeJxWLEYjGOOuoojjrqKDZs2MDq1as56qijcLlcRCKRIXFvH2Ts2LG8++67nHrqqTzxxBMkEpqgq6GhAbvdzsMPPzws7s3tdhOJRIa09Xe/+x3nnHMOJSUl5HI51q9fz4wZM5g3bx5/+9vfmDt3LrFYjIcffpiDDz74Y/auQCAQCAT//RRyBaI9ySEipHBngkhnnFy6sNvjzC4DdVPLdbckT7VDiIQF+x0hUhIIBAKBQCAQCAQCgUAg+C/iH//4B3V1dft8nMVi4Utf+hKnnHIKPT09ez7gC8zixYtZvHjxXjtS1EwtZeY5Y1nz1DaUnEomkWPZPzax6ZVWDr1oAnUzysSDW4FAIPgvxCDJXFt3FtdsfwAJhgiVBn7rX1t3JgZp/wpW77jjDq677jqmT5+OLMsYjUZ+85vfMHbsWB588EG++93vMnnyZEwmE2eccQY/+9nP+MMf/sC3vvUtpk6diqqq/PSnP+XQQw/90OtEIhHOOeccEokEkiQxbtw4Lr74YgCuvvpqTjjhBOx2Oy+//PJu6/m9732P66+/nvnz5+P3+wEwGo089dRTfPe73+XWW29FlmW+/e1v8z//8z9cccUVXH311dxxxx3ceuutXHTRRQSDQY499lgA8vk8l156KTNmzOB///d/ufzyy5kwYQJlZWUceeSRZDKZ/djTAoFAIBB8sUlHs4Q744S7EkUhkiZIivUmUXelsAYkWcJdYcdT7cBb7cBb5cRT7cBT7WB761YmTZr06TZCcMAhqeru3p4CgUAgEAgEAoFAIBAIBALBfy9NTU0sWLCAe++9l4aGhj2WX71sHdHVsGVJx5DtNVP9HPrViZTUffy4H4FA8OmzceNGMRlzgJBOp2lubmbUqFFD4s/2xOLQOn7Ttoie3KADUIXJy7V1ZzLPN+2TqKpgH/io91Xw6bOvY68vOgfa98uB1l448Np8oLUXPj9tzqXz9GwJ098SLToiaYKkTDy322NMNiPeGgfeaifeageeKgeeaifuCjuG3TgCf17a+2lyoLX589Be4aQkEHxByOfzBAIBent7CQQC7Nixg0AgQC6Xo6+vj5aWFj1HPBQKUSgUMJlM5PN50uk0iqJQKBTIZDLYbDaSySTZbBaj0YjRaCQQCADgcrno7OzE7XYjyzKKouDz+ZBlmWQyicFgwO12oygKqqqiqioOh4NsNovL5SKbzWIymfB4PJjNZhKJBG63mwkTJmAymchkMkydOpWRI0fidrupqanB7XZ/xr0rEAgEAoFAMJRsNksikSAejxOJROjt7UVVVVKpFM3NzfT19VFaWkoul2P16tVYrVZqamro6Ohg27Zt1NbW4vV6Wb16Nel0msmTJ5PP51mzZg2qqjJmzBhaW1vp7u4mFotRVVXFhAkTSCQS9Pb2YrPZmDRpElu3biWbzTJ79mysVitr167FaDRy2GGHAbBmzRrq6+sZO3Ys4XCYWCzGnDlz8Hq9xGIxXC4XY8aMwel0YrVacTgcGI3iz0CBQCD4qFjcRo7+1iQmnVjPsgcb6dmsRcB1vB9k0XVv0XBcHbPOGYfNY/mMayoQCASC/ck83zSO9U5hVXw7gVyUUpObmc7R+91BSSAQCAQCgQCgkFfo2xqmc0OQzg1BereEUQq79p5xlto0EVK1Jkga+N/mMQvHX8HnEvF0WiD4lEmn02zevJnGxkaamppobm4mEonw+hNLsPnNZHIZYtEYGFRsThvxeIJCIb9X55YkCVVVsVgsGAwGkskkIOHzeZFlmf5gCIMsU15Zjqqq9Hb1UV1XhdlsJpPMkk5kKC0txWKxYLVaSacyhPsiuN1ustksHS2dqKhU1lRQKBTo7e7F4/MgSRKpVIpUKo3DYUdRFFKp1D73jcfjwWAwEO2PY7faqB5RRbgryowjDsJiseD1ejnssMMYP3489fX11NfXi0k2gUAgEAgEH0o8Hqenp4eenh7a2toIBALE43H+8r9/R3apxMJxckoWyaGSU7Okkiny5FDZs+GsjAEJCbPNhCzL5BMKZrsRk9XE2lXryEULOCttGAwGtq3cgYSMb7QLSZJY9uxKHGUWLFYLuVwOi8XC8ufXYPIZsZWYSMQSPLvqRRw1FlRV5V9/eRQVBavfhKIovP3qUlSDisEiUSgUyGcKqLKCoih7rLcBAxazFYfLTj4EBsWIt8qNxWgh1Zbnqjv/h3g8TkNDA+PGjcPv9+tjRIFAIBBolI3x8qUbD6X53W7ee7iJeF8KVYXGV9vY9k4X088cw5STR2AwGT7rqgoEAoFgP2GQZA52jf2sqyEQCAQCgeC/EFVRCbZEdVFSd2OIfKYwpIzDb6V8nFd3RvJWO3FX2jFZxVyp4IuFeMcKBPuBZDLJxo0baWpqYuvWrTQ3N9PT00Nvby/BYJB4PE5/MASS5jy0OyS1BIvDghoFu8lOQ8N4MqksHe/3MOXoCfhKvKx5uhFjwcQRl8zEbLaw+i+bMRksHPujWWSjOVbfs52JX6nFN9LN+w9uJ9aSZtbF4zBaZN79TROocPD544n3ptj0zzasGTMN82tpea2H8JYENMJJX5tPz9owfW1hkGDyYSNJ9afZvqMbe4WZqV8dTefyAG09AcafVIN/rIfl9zSSTysc+t0JSAaJZbduAmDOTycQ64+z7P/WM+asSpxldpqWbaV9XQ9TzxxHoVDg3WdWkSdPw6TRxGIxEv1bMdmNhCNhwpkwL7zwgt5HDzzwgP6z0WikkC/gcrvw+/2YzWYqKipwu934fD7mzJnDuHHjGD16NGPGjPmkbr9AIBAIBIJPEVVViUajuvCos7OTnp4eAoEAHR0dtLS0EI/HWffuerJyhoIyXOxtxITVbMVpdqBaJYxJExV1pTg9dnrfjWHERMP8OtScRPvLQfzjvIyaW0Xvqgj9q5NMOm8kJfVulv92MwAzLhtDJpJj40OtmMwGpl40kva3g/SuDlNa6qJiVgmN/26jkFEo93gx2Y10bA9AAFx1djyT7bS/HaBGAofVQsV4Hy1v9FKQFOoayrD7rTQtbANg2pdHkQ5m2LyoE2eVjUkX1NP6Vi/dy0JMOK8WZ52dpb9ZT4E8Ey+pIZPJsv7hZnCojDihjHBHlPblvXgb7EhWhdZV3eTJkpIShJNBosT5wVU/QGGo2EmSJEyYMatWxs0YjcfjYebMmVRUVJDJZHRBU1lZGeXl5ZjN5k/+zSAQCPaZWCzG22+/zcknn/xZV+W/AkmSGD2nivqZ5Wx4cQdrntpGLlUgl8qz/OEmGl9t5ZALJzDy4AqxelUgEAgEAoFAIBAIBDqqqhLpSmiipPVBujb1D4tus7pMVE32UzPZT9VkP+4Ku/jbUvBfgRApCQR7QXt7O8uXL2ft2rU0NTWxbds2NqzeRCafRqGw25X2EjKVVZpoJh3M4bQ4mHnsdNLhHN1Lw8w+ewo14ypZc89W8nE45PIGJAlNTJSBw06cRLQtzob1rYywllM9yY+0xkl0RwqfsQyL04RH8oMChZRCJqh9ebW+FsBxrg2r10KsJU3nsgAV032Y3Uay0Twd7wUxmjQr4nRflo3/bGXk8RUYDDLBxphef6NVZtTJVXS8FyC8NQ6AyWogtCVGx9v9ABSSKrH2FPmwNpGVieRI9WcAsFeYUbIqoXVJXJIXt+rDX+JhR1M/o6QSGkaOQ5YlUpIFZDjs+ElE25JUbtjB2GOrKJ/sY+OjOwg3JZn9g7FkChlevXMZSWJMOn00gb4g65duxGG1IUkSba1tNDU16Y5SDz744GBbjEYKeQWrycqocSOpqqpi0qRJ1NfXM2nSJE488UThyiQQCAQCweeAQqFAV1cXLS0ttLa20tzczLZt23jq/udJkyQjJcmrQ4VHsiRjUi3YLTZ8lT7yQSinltqpFZRUeul4KYQZKwcvmEghIrH5sQ6clTYmfLmO5sVdBDfEGFFfQclYJ6vf2wbASG89uWSBlGTC2C7jxEcsX8AiKfSvTWAxmTFYZAoZhZ7VYcxObRyRixQIboyj5LTxYX9THKPNhNFioJBR6FsXxlZmpWKGj9514SHtcFRacVRYaXmtl0JWG1slutJEticAMNoMJDrT+nGSQSKyI0lgbRSAeGeGQkbFJJkxYcaWc1PoSVEilWN3WxlbXUvzhi4MkpcRVRWUjHWxesVWkGDa/NHkUwU2/rMFs8vA5G+MoPnddlqWdeGdZcNYCk0v7yBLhkQ0SV93H++9sYIsGfIMfYAiSRIWrFhUO74SL3O/dASHHXYY9fX1OJ1OpkyZQklJyf570wgEgr2mp6eHX/3qV0KkBCxevJjFixcTj8c/9rmMZgMHnT6GcUfXsvLRLTS90QYqxHpTvPr71VRNKmHO1ybiHyGizgUCgeDzwt44kAq+OHzYwmCBQCAQCD4vxIMpXZTUuTFIsjifOoDJaqByYgnVk/1UT/FTUutCkoUoSfDfh5iRFwjQYkD+85//8J35VxMnQooEijFPtpChoBaGlbfZbDg8DpSggl12MHveDDL9efpWRJl6YgOjZtSz5v+2kY8rzDx3LAaTzPLbN0MGZk2fQGh7AsOyNqQuM4ZxRmx+G7F4inhnCqt/MEYjHclSSGl/MAfej1Da4MFaYiG6I0VgQ4SK6T5kIyh5CG6KYrRpH+lEZ5pgYxyjRXvdszKC0WrEXWsnsDFK59tBxp5WTe2RZbS/1UchnScVyJCODJ1gyqcV0qEsuVgeFLCXWag5vIyWN3pRsgpGq0whU6D1jR4AjE4Dyd4MXe8FtX4qtZLsydC7NgyAqkCiO42SHTx/oluLhXOUmckn8wQbIwAUUir5VIHwlqT2OqtiUMyUSzVghGmTJ9K/OYJdqmLErAqqZ5aw5q/bSKWzTL9yNDklw+v3LCdFnAlfGklXexeb1jRhthvp6+ujsbGRV199dUh7JSRKS0sxYCQdyOE2e7nsp1/jy1/+MlOmTPloby6BQCAQCARDUFWVYDDI5s2bWXDEVaSIk5ZTZKQkyUKCDKkhAnCTZMbj9WCyWLBlyqgeW0FpTQndb0SxYGX6ReMoRCW2P9uNzW2i4dR6Wl7vIdQUp8bhx1/nJiU1A5DvY4j4JxXMoCratSLbEth8ZmSLjJJRCG2NYfFq47J8WiHakgBVeygQa03grLRidplIZTL0b4rhHeNANkooeZXeNSHsFVYkg/Y6tCVG6RQPPatD5FMFCukCmWgO9QM58vmUtr2Q0+pYMt6FwSjT36KJyC1eE/2bY8Q6tPGTwSgR2BAhnyroxwc3aYIl2SSRDmcJbRkUmse7UsQ70lrZRJ5oa0K/djaSJdqmndfoMJKPqRTaZTySnxpHKb4aJznsIMGkw0aQiebY9kwnZreRCRfUsvWtVrrWB/AcZMFYqtL46g7SJMmZMzz5+JM8+I8Hh9xXIyYcZie+Eh9Kr4xFseNz+7h78W1Mnz4dk8n0Md5lAsGBS09Pz4fuDwQCn1JNPv/MmzePefPm0dTUxIIFC/bLOe0eC0ctmMKkE+tZ9uAmujZqi3u6Nvaz6Cdv03BMHbO/Mg6bR8RnCgQCwWeF2WxGlmU6OzspKyvDbDYLR4IvOKqq0tfXp7m/ir8jBAKBQPA5Ih3N0rkxqEe4RbuTQ/YbTDLl47xUT/FTPclP2WgPslH+jGorEHx6CJGS4IAhm82ybNkylixZwpo1a9i8eTNN6zeTVTLDnJBkZKrKq1AyKtlggRENI5gwYxw7nu3FGncx8+IxyGYDq+7aCirMntZAaHucLSs7MARtyIqMo9xGJJ4g0ZXGUWXTz50J56B4vdC2OFWz/Nj9FmItKaItScwuE7JZRskqJDrTSMXvokRPhkwsj9FsACDamqC0wYOr1kFkR4J4Z5ryg3wYrTL5tEI+lcdVY6ULUPIKkkHCXm6FjdrEVf+WmCY+QhM5tb+964fVbW/26T8ngxnCzQlSfZrKyFpiweIxkw5rr70jnRgtBlKBopNSqZVcMk8+rk20GS0GEl3axJjRbkDJKMTatckwi99CLlkgXHQKkA0y6WCWgaQRNacS79aOdVbYyKcL9BfdnQyyTD5Z0OtFDgwFM+VSNbJZZurk8VRRj3ftCEYcUkbVrFJW3buFaDBK3dk+EukYy55bRZoEvhIffb19hAkRzga48cYbufHGGwFwOV2UV5QzYsQIpkyZQn19PV/60pdoaGj48DefQCAQCAQHINFolC1btrB582a2bNlCY2Mjzz3yEkk1NsR5x4INl9VFic+Hq6MEG3bGHFmPOWcl9G4ah9fG+C/X0fpmD5FtSSrcXkrrPGTlFlChEJJ016J0KE8mlNVXGMU6Uzhr7BjtBvLJArGOFFafFkOm5lUS3WlkgzbYSgbSZCI5zC4j6UyWZF8Wk92IZJBQCyrJ3jQGi1Y2n1IopBUsHhOpQIZcIo/RasBaYibZmyGXLmB2GTHZDGTjebLxPPHOlC4mykRyZD4gDt/V9kRvesiDCavHjJJXBoaS2EotJPu0cZdskjHZDJqYCrC4Tdr4qLgiSzJIpEM5vQ6qCvHiuEw2S+SSBRJdRZGSxUg6lCUZ0OqiKhAvCqMA8ukC8Q7toYrJbiQfVyFowiOVUGX346twkJecADTMrSUTztH8cjeKK0v5sW5aVrXT1x7EWKKQM6fpU3q1RQLRAocccggSElYclJb7OeFLxzNz5kzq6uqoq6tjypQpYuJBIPgQvvKVr3zoRKuqqmIi9lPAP8LNqT89hJYVvbz3r0aiPUlQoen1NrYv62LGWWOYfNIIDCbDZ11VgUAgOOCQZZlRo0bR1dVFZ2fnZ10dwX5CkiRqa2sxGMR3q0AgEAg+O7KpPD2N/XRsCNK1IUiwJTZkvyRB6WiP7pRUMd6nz/sKBAcSQqQk+K8jnU7z2muv8eqrr3L/7f8gSZwcWVSGWviajCbKK8tJ9Kax5h3MOGYaNbXVbH8ogCzJzDpvHOHtCbY93Ynf5KK+uop0mYFoIkmiJ4NzJ+FROpJDkoqr8Jvj5FOleuRHpCWBzW/RHY/i3Skkg/ZQOBXIkk3kkYvRa5GWBCUNTuylFuKdKSItCfwT3Pqx/ZujWNzapEyiM0PPuhAWj/a6b0OEVDCDrdRCrD1Fxzuam9FAxFvra70AuoipvxjrZnYbcY9w0L8pgjI0OUXHUWXF4tJW7ncuC+rniXemaHqsTSskQ3RHgvD2GPm0gmyEeFeSnjX9+nVSgQy96zSnJGeVlUwkq6/2t/sspENZ0gFNaGSwyCR60/q1CjmVeHHizOwykovnibcVFccSmiVi8RYrBVWfdLP5zRTSBcLNWllZksil8mT781glO5W+atScSlIyI1tlZp02jp7V/bS+3kfZXCeWenjjsaVE0yF85S5isRivvfYar732GgDXXHMNAFaTjerqamYePINjjz2W448/XoiXBAKBQHBA0N/fz4YNG1i/fj23fvt3xImQJEaWQbtiMxa8bh+lJaVIwWrcFjcTjxtDolEhsSND6Sg3ZVO9bHq0FVSotJahmiAm9ZEJ58lGckhyUUzUmyZb78BoNZBPFUj0pLEWHY/UgkqiN6OLlFLBLJlIFlNRpJTuz2J2mZBkCVVRSQYzuggoG82TjeWwOEykA1kSXSlsfgtml5FMOEdoWxxXjR3ZpImieteGMTmNIGnuTJ3vBvXr5pMFut7rBwld5BTZoYmH7OWaMDsX3/XAS5IlHJVWkn3porhdQzZKBBuj+muDVaZ7ZUh3gjI5DHSv7icX00RIRpuB/s1R8knttcluILJDE3hLBgmDUSZSFDSZHSYKGYVkMFu8liasL2QKg/3aMyCGkor9XnxtlsjG8qSKYzhUVR/DARQyComeNJIk4bS5KbOVk0irOKUyKutLcNfa2dzWjqqq1Jzipa+7j+bV7WRtSSRbnsceepy/3f83fVGBjIwNJ36fH5fBw8/+dD2TJk1i7NixQrwkEAAul4vLLruM6dOn73J/S0sLN91006dapwMVSZIYeXAFddNL2fBiC6uf3EouVSCXyvPev5pofLWNQy+aQP2sciEcEwgEgk8Zs9lMfX09+XyeQmG4i77gi4fJZBICJYFAIBB8qmSTOYItMYI7IgSaowSao0Q643wwgdRX59RESZP9VE0swWwXz68EAiFSEnxhURSFd955h5dffpn33nuPpqYmWne0okqqnkFtkA2UlpWhJFWkmJHDTp2N319G+8Iw7joHDV+uI7IjTuO/26lzVFJW4yU+rUDg/QiFlIJvlAOz20isLYUkSdQfWcr6Ha1E25KUjHNRMctLz8owmVAWd70Ta4mZdH8WVVGpOthH37oIie40ZoeRuqPLaXm1l0wkR+XMEuxVFpJdGfLpPJUzfXS920+sLQWyTMVsH/GnUyS6UlTO9uEZ7SC0OYHJZsAz2qH3QcVBXpAketeGMZplxp9VSyaSY8NDLfjGOqidW0YuXmDzE23UHlGGioqj3Ebf+jClkzx0rQgim2Rq5pRSNsnDpsdaQQGLz4R/kou+dWEAGs6qJRvP0b85hmeUg+pD/EgyBDZpoimDRaaQUXBUWFGB4IYIyBI1c/xkk3m2PNmBvcxCyQQ3RoeR7c91oeRU7BVWfGO16xQKBSxuE2aPkXwij8lhQDZqD2ptZRYsbqPuXuCqtWH2mJCKzgfOCqu+TzbKWNwmkr0ZvazRYiCf1Cb5HFU2ZMPgA2Cr16w7P7nrbBjMmogLoKy2BFeNnbGZqSDBwWeNp5BRWHXPVhRfltr5XhrXbGHz+1uwlZiJxMMsXLiQhQsXAmC327Hb7YwcOZK6ujqOO+44zj//fEpLS/f3x0EgEAgEgk+cRCLBxo0bWb9+vf7vzVeWkFE1EbGEhNfhw2cvwddXRll5KWMOGUFiY4Fkc4762WW4ahxsfbaDTCRHiacM15Q823Z0kg5lkc0y/klughuipAI5yqZ69LFVNpGnbJKH8NY4qWAWg1mmdIqb7uUhEj0Z/BM92MstJHszFDIF/A1u+htj5OJ5TA4j/oke2pf0kehOUzGrBPcIO5HmBOlQlvKDvAQ2RlGyCoWsgqPKSqQlQT6t4Ki0kglnyYRzGC0yFTO8ZKJZkj0ZXHV2KqZ7aX2jl2RfhrKpXuzlFvobYyT70pRN9ZIKZrD6zMS709hLzPSsCeOud2AtxrZFW5MYLDKuejvmtUay8TzOWhs1h5XSsribVDBL2VQPBrOMwSzTsyZM+UFeQltj+Cd4SIezmGwGupb3UzLehdlpJNKSJLwtjr3UgqPSSj7VTzqcxWCR8Y5yEm1JIptkVFSsHjOJzjQGq4zBZsBokcnFwV5m1QVYkiThrLLqwiOTw4itxIxsKo7TfBaMdhkJzeDJVmZBzRYFRSYJq9dMRC0KtEotmJxG8klNoGXzm/XxniRJ+Kt9SDEjOcmMt9rOyBOq2LyonXhPirK5drK2NBte2kqSGNhybAs0cc455wBgMBhwGT2c9pX51NfXM2rUKE444QTq6urE5L/ggGL8+PHEYjFGjRq1y/2FQkH/e1nw6WAwGZh22mjGzq1h5aNbaHqjDVSI9iR55fZVVE/2M+drEympd1FQFVbFtxPIRSk1uZnpHI1BElb/AoFA8EkwEA0mhO4CgUAgEAj2RCaeI7AjQrA5SmBHlEBzZFh02wCuctugKGmyH7uI+xYIhiFESoIvBNlslhdffJHnn3+ef/75EVIkKDC4+lxCQsaAy+xh8vSJyHEL+Y0mphw3lrJpXjY+0koinmZk+UiMRol2JUq0JUUumSdTjDyLd6cpGVfQI9BSwTQ2vwUlq5BPK2SjObLFeIx4e5JMLI9aUIvHaivt8+nBCI8BAU2sLUU6nEUtuvwEN0dx1dj1yZJYW5pCdvAhcT5ZQC6uwk/3Z0GR8I12E9qcoL8xhslhpHSSm8DGKF0rQxTSBYxWGSUPvWvDhLZpK+TTkRyB9yMkAxnyaYV4VwqloJLszRBq1s6TieZI9WXJRrK4Rzh1J6JCVhmycr9nTYjwNm1yKRvLEWlJkEvmiexI4KiwYTBLRFuS2Eot2MstpEJZEl1pMvEsrko7Sl4l2pZixyvdmOxGjFYZ72gnvevCpPsz2MrMlE70Eu1IomQU7OU2jCYDoS2a25OS1+oda9UmQQsphcj2uO7YpORV4sXBgLPaSiGjEGlLFN8cKplojnS/1p5CWiHeU4w2McoU0gVi7dqxRpuRQqZApFXrw0KuMCRyJZ9WiPdodfB6PdSU1ZKVDbilGsYeVoVvtIult6+nn14qjnPT1d3F5o2bWRVczYoVK1i0aBHf/e53MZvMVJRXMG36NI477jjmz58vXJcEAoFA8LkiFAqxatUqVq1axe+uvYsYIZLE9f02HDjxMLa8gYrqCjKbwJJx0HBiHcneNB2BIDbVQom1lHQ+CORI9mUwuzTHHlRIBdIo+WJMWyRHLp5HzWqDkVR/hmw8rzv5aG5JZlC17+N0KEs+oY3ZcvE8uXhedzGKd6Uxu0z6JHxoa0x3YcolCyS6U+RT2rHZWB61AEargWxWO69/gltzaUoXCG6MYHZrzku5ojtStjg2SAUzdK3o1+PWkr1pUv0Z4h2auD3RnSYZzJCN5ilkFZJFx6PuFf04a23kEwMuRQq5WJ5CTmt7NpKjc1mAVNHVKBXMam1RtTFaojtNLl6gvylKIafoLps9q8PYy8wUsiqyUaJ3XQR3OEc+U8BRaSUVyOpuR95RDiRZ0oXaVq+ZbCQ3OJYND/4sWyRibSl9/GR2GEn0pHX3S9ksk+rN6I5OWgSvdl6Tw0AqkNaPRYZkT0Yf+6p5lURxn8Eik43kdaG5ikS66IQlSzJ2yYVL8lBf1BtNOKqO/s0x2ld3o1RmMI4s0Ly2lacffI6kIUauoN0nA0bKvOW4JR833PVjpk+fzvjx48VklOC/ljPPPJN0Or3b/RUVFVx33XWfYo0EA9g9Fo5aMIVJJ9Sz9MFNdG/SXIc7NwRZ9OO3SH1Z4amxK+jNR/RjKkwerq07i3m+aZ9VtQUCgUAgEAgEAoHggCIVzQwRI3VtDvJOuGWXZR1+K6WjPJSOdOMf5aZ0pBu7z/op11gg+OIhREqCzx3JZJLnn3+eq879f0ToJ01yiCDJIBsp8Zag9Et48DPnlFm4zD62Pd2J0SQzecYoOt7tIyBFSQYy5BIFfZIn2Z3C7DKjDEyABbJkQtoERrInTSaaJ1+cDIs0J5ENBt1VJ7QtjlKcPEoF8+QTBZTiBEt4RwLfaFfRsadA57tBXDV2vc6BTVES3dqD4lRfDlSwlVhIdKbpWRNizClVuOpsxNpSbHy4BUeFFbno6NP8UhfpsFb/WEcKX4MLW6mmug28H6FiupdxZ9TStKid9rcCAHhGOUj0pOlYGhysw8bBeBBAj20DiHdliHcNRrLkEwXinYMPtgei4wb6LBUYfJ2NDuapZuOacKlkgotET5rYjhSxHSmqD/XjqrPR9EQ7KFp8nK3MQvNLXWSj2r3tXBogWIygkwyw9u/bGbjt1Yf66dsQJdqaRDaCu95OYGOUXDyP0apFlfQVY+Rki0TPujB9q7XXjlIb/Vti2nVkLd5kICrFWmoi3pmie2UIAJPNQLQ9RaJD6wsljx6DIltlsvE8wfXasRaniXQ4R39jUQylSMQ6UxglM+XUMmXESGrVsVRuasA90k71sT6WPb2cjkAH1kqZeDrBc889x3PPPcfVV1+NzWpDSYPb4OXCK7/CpZdeyrRp4kG0QCAQCD55AoEAq1at4tsnXU2MEDHCpNC+3wwY8NlKqZRqsSad+NwljD90ND3vhclG8/jLXNg9FtqyAS1+tS9DJjogAMqS6s/qY6lUIIvNPxghpglkBuPR4l0pckVhTLo/S6wtqYu80/1ZjJaidb+qjYmk4rGZSI7AxogmfkITC8kGCUmSUFHJRvI4a2wMWP1EmhM4Km0kujOkg1m2Pd+JxakJVsLbE2RjeV2gE+9MU1ZqwWgzkEvkibYmqTq4hFhHklh7inR/FkkGm1+L2x1kMN5tQACfDg3uje9UVslDOpTV65+J5IaIpOOdO58X/bwDdcynCli8JjLhHPHONLJRourgEsLNCb2su9aOqqiEtmpCs0hzgnhnikwkh2yUiLYltfGRqrkbmV1GelaHQAV7iQXZLOui7ny6QGhznGwxri4TyRHeFkNVwOQ0ouRUws3adU02I5loXhctKVmFYFNUE/pL6KJ30OLp0sU2AEgSRFoTFDJF8VNG0d2cDBaZTDRHoiuFWbLiMvso9XgwZUtQJaic6SWZT7B9dSsxIkjuLJ3drXz1q1/V6mU04VQ9OAte/J4y7nr2N8yZMwejUfx5LPjiM3fu3A/d73K5OOWUUz6l2gh2hX+km/nXH8KO5T28989GYn0ptozp4YUR6yDHwFcjAL25CNdsf4Dfjr5ECJUEAoFAIBAIBAKBYD+TDKW1qLadXJISwV0v/HGV2ygd6dHESKPc+Ee6sbmFS5JA8FEQT2EFnzlr1qzhX//6F6+//jqrV6z5gEOSjAUrkxsmY4k7MXe4qWmopGaOn02PtpFPFrBmXBjt2ur4fFIhn8xjcWgTTbGuFJloFnupmXhnmmRfBpNzcNV0NpbXV5/HO7TV72aXiURXmnhXGlupBdkqo6QVlJyqC4+UvEKwSVtZD5DqSdO3IczATJqSU3FW2zA5jeTieVKBDFWzS4i1JVCyCk2Pt2G0ax+/XDyvTcoltYkmo1lm5HEVBDZF6FkVJtqaxFFlxeI1E2tN0vpa75D+C22NUyiouvAKGaoOLiHekaL97YBebtTJVSS7U/SsCevbSsa7KDvIy5ZFHSh55UPvU9XBJTgqrGx9tlPfZvGaGHF8BW1v9uor860+M9UH+1ELKqEt2kRYsClKNpbTnZoSXWmaHmvTqmuE0ileeov1ks0y9XPL9fYjQ6w9qa/0N1qNbF7Urte3fLoPk91IOqRd31Vl1/sWILQ9Tr7Yt1afmXQ4p7tCuWrsmOxGcvGiy1JOIbHTRKBaUHWRkqPMgixJpPq1ekgmbXJsoN9VVSXRpQ1cjHYZSZZIBoqOA04TxoKJklgtXqmaUVMrMZoNND3ZRoBu/HOtbNuynY6udgJKN3feeSd33nknEhIjRo6goaGBr33ta5x11lnY7YPiN4FAIBAI9pVcLsfatWtZunQpS5cu5cmHn9YFSUaMuPBR7aynqqKKwjYjdlxUTfGTS+QJbooip2WkvIzBYgDymgCo0oYkS6iKSiqQQTZr47JCRiWfLGAoxnnlknkkJEx2LdYs0ZvBUT64sigVyOgulfm0gslh1KLSUimSvekhEbOJ7jTSTvGtJpsRxauSDmXJJQqYHEZc1TaibUliHSni3SkMJplCVtHFNQO46+y4au10Lg2gKprQylVjI9aZIp/W3JMGUBVtbDAw7gAtGs033kUmGtSFRmaXkZLxLvrej1DIDo6xKmb4SPalPyBoGo5slKicVUL/lpjmrDlQ13o7JoeR4KboTtscWDwmuldo9VTyKpGWJKngoAC9f/OgqNxaYtZcM4tCKGeNrdj+IKqqkk8rJAMZ3eUq1Z/V3I5UTeztG+uiv+h2abQasPvNJLpSg/3THCdX7GOjzUi0NanlwAH2civxDq2swSwVBVl5/VypQIZc0SHL5DCRL7qYaidX9Tqb7AYykRzpovOn0WogG8/rojbJYEAOWyiVqqi01VA9xk9vIkIsGEetzZDzJti+voUg3bRFtnLUUUchY8CNj/kXncRJJ53EiSeeSEVFxYfeJ4FA8MVm8eLFLF68mHg8vufC+xlJkhh1SCV108t4/8Xt/M39n+KOoeXU4qbftD3Jsd4pIvpNIBAIBAKBQCAQCD4ihbxC+9o+AtsjRWFSlFQ4s8uynioH/pGaGCkhhZh59DR9kaNAIPj4CJGS4FMlHo/z73//mx9ffgNRQmRIMzBrIUsyZsmCTy1j8pRJjB41lrZnNceeCQfVEu1M0dkZJNmboZBVsPjM5JMpsvEsrmrb4DW6UvrkWCqgxawZbAb9dflUk77aPLwthr1i8Fglp2K0amXT/RnsZVZKRjsJbIzSsy5EJpZFNssoWQWlAIbign4lD85KG/ZSK80vdxNtTZIKd2J2aCKlRG+aaEcSZBlQcNU5qDnMz9ZnOkmHsrS/FcBZbQNZm5TbsbhHj74AKJ/mBUki1jqYb1o520fvugjZeJ7A+4N28Ciw7fkucsmhE3CZUJZMLDd0WyRHrC25R4ESQDKQGTLJBpCJ5siEsqiDaXWkQ1k2P9WuOySBFhkyEB/nn+Ai0ac5FwC4ah2UTfYQbU2S7s+iZBWaX+4mWZxYc1RY6V0TQimervaoMmSTxNanNbFUoic9OIElQ7Q1SaS1KEKqtVF9sJ9tL2pljRYDkizp/ZAJZ2l/u087twylDR6CTVpfmp1GrWzRaUs2y0TbE6T6tHo7K2z6BByALEv6RJnFayYTzekTkGa3kUK2oAuaJINEOqRFl1Tba5kwog5/dz3h7jglk1yYJhT4zxPvEFL7CIfDvPzyy7z00ksAlJWWYcHGVy+/kPPOO4/p06fv8d4JBAKB4MClq6uLpUuX8sOzf0yEIFFCKChIyHhkH2VU4zGU0DBrLJlmlVQgi8NpxVfjpGOHJtrJxnL62ErJKSh5BZPNQApIh7NkYnmMNplcokAuWcBWHEvBgMuPmXhXmmxMGxMNnCufKiDJErJRQsmrKDkVd72DeGcataASWB8Z0LZQyKhIkqQJjTIKSk6hYoqPnlSIbDxP7/thrD6zft1UMKOLkVRFpWKGj1yyQHBTlEw4Rzaax+zUxFKxthSpvowucDHZjXhGOcnG84OiGIcRk91Asi+ju2MOkOhJkw4POiFp19QcJj84dkr2pYeJpHaFkldJ9KZ116md+xN1aNnwtjiSYei2AfclySDhrLIOEUW56+wUsooudIq2JrVIOUVzN5JkzWlJa7eBqtl+LaI3lEUqumUNjIFkk0TXyn7dXdQ31oWaV4hRvJ6ELnaSTRKR5gTJovDc5rdi9ZoJprR6yEZJdy0FKGQKpPsHYuOMmptV8bqSUUYtqHqfS0aZZF/RgUkGo0XWx4cGqwElp5CL5zFJZnz2Eiw2Ew6pEoCyQ1z09PXQtr2dmCnEU4ue4p///CcADpOTSn8Vhm4HD733F6ZNm4bFIlbICb54HHPMMTz44IPU1dV91lX5XDFv3jzmzZtHU1MTCxYs2Ovjnsu9z1XrHttv9cjW54kXdv1gHLRf+z25MMetvRGzvP8e432t4mi+XnHMfjufQCAQCAQCgUAgEHweyWcLNL3ezrpntw9zSZIk8FQ7KdXdkTz4R7gw2wcFSRs3bhQCJYFgPyNESoJPlN7eXh544AGeffZZ1q1bRyQyKKYxGyz4zWU4Uh5GeMcw+8yptL7ZS2RHglLZjd02KB5K9GZ0F55sNItskHGUWkh0pIi2JbGX2jDaZfJJhVyigNlVfGsrmluSu9ZBZFuCeGeavvVhpOKKfk1cZNWFR+GtcTyjnfStC5NPK/Ss6idajLZAgYppPgophf7NMfrej1A5w6dPcPWuj6DsNDlVd8SgmCYbydP9XhBHpY1Ye4rQthiqouir8M1uIyPnVdC9op/AxqguUBo4d8vrvUOERFafmZLxblKBrB6RAVA2zUuwMTpEPDNA57vBYdsSPekhYqgPY2CyaggKtHzA2QnQBUq+cU4t9qUo3kEG/yQPlq4UncUousiOBInulB4FY3YaSRYjQZBhxDHlhFsSdBYj59rf7sPk0O6v0a5NVg3UzTfGRc1hfjLP5EiHsiR6M3SvCenCIkelhe5V/fp7qWq2n0hLgsgO7R53rQjqjlCuWhu5ZF53R3JUWPXrAsR70qSKTklWv1lz4OrRJuQGhG7ZaLHdKoSb43qbbF4LCV3AZCYTz5Es3gery4Q976KB6SBBwwm1RLpjrFiyirAlgNkm0dHZwa9+9St+9atf4XQ6qays5Oijj+ass87ihBNOwGwenKQVCAQCwYGDqqps376dN998kzfffJP//Oc/7NixAwArNkqs5ZRnavCofkY01GNxmulZFQIFLIqdgk37LsrEcuQSBQxWLcY2nyrgKh0UZsQ6UrrTQz6lIEkgm2SgQDaSwzPCoTseRdoSmGzF709Vi/Qyu4yk+7NkIjlNeO41kwpkigKeQUG1xWfGVmKmq79fc+jZkcDsMZGN58nG8vRviZErClFMdiPlU726mCbWnsLsMuoCqNCWuB6PBuAd7cBWaqHz3SCqopJLFvQ65xJ5OpcFdHENgLPKitllGhyjoLn5GKwG0v1DBUoAuUSe/qYYH2RPDko7s6ux187XH0BVVFRFE/nYyiz62AW0MaO73kGyL6PXsXddGEnSbqDBrLlLDYwdnVU2fGOcdCwLasKeRIG+DRF9zGpyGrUxTbFrSsa7dPGXVuc4kqyd21gUBw2IumwlFrxjnCSLkW2p/gxKXtHFYVafWRdXySYZm99CsrfYXgki2xO6wMvut5CN7SQWN0hk49qJZLNMqj9Lplhni9MEkqQLxlQV0kUROhKYZDPOpI8Rkh2b10LZZA9bl7YSygTI+eL0p/roYxuHHHIIBtnAjJkzmD9/PkcccQQHH3wwXq/3w2+kQPA5QFXVPRcS7DUpsvTmInsuuJ8JFxJQ2HO5vSVR2LtnAQKBQCAQCAQCgUDwRSSXzrNpcSvvP9dMKqI9J7J5LdQdVIp/pIfSUW5K6l2YrEIuIRB82ohPnWC/0t7ezv3338/zzz/PindXDolus8l2xlY2YOp2UUEt40+uQy2oNL/UDRFIR7KY7IOOR7l4XhceKXkFT72DzqVBlDwEGiMUCtrTuWw0j9VnxlZqJdaaJNKSoOawUoxWmXxaIbw9TqEo8FHyCt4xTkxOI21v9hEqRlVYfSaSPZpTUCFTAM3wCNkkM+rESpoWtpOL52la1D7Eocgz0kGqP0N2S5xYa5Lyg7yAJv5pf7tPF94AVMwswTfWReOjbSh5hfC2hB4Hl43maX6le8ikUu0RpThrbDQubBuMciuSDmWHbTd7jJRP9ZBP5fWYNQBbmRl3nV2LedvpNLJZxl1nI9qS0F2K9oStzIxslIfUE8BZbcNebtEj27QLQMV0H9G2JJ3LigIpBbY+2zmsPQP9VDHTi7/BTePj7VoZBZpf6SZTFD2ZnEay0bwugqqY4cVd52DTo62gQGhLjEw4q0+kVc70EdgU0evjGeFAyWtxc8jQ9Hi7dq/R3Kq8oxxsfqpDq2qBIROO+WSBljc0QZbVZ6Ziqpe2t7TXakGhf0tMnzh019qJd6X0/naUWUj0FJ0A7Eai7QkiRVcsV7UVs8OkT7opKoPxLDKoBcgGFGqlMUysnMrIYyvY/FQ7vaFuaEgSyvazfes2tm7dyl//+lcsFgvV1dXMmTOHk046iQsuuECIlgQCgeC/FFVVaWpq0kVJTzz8JJmig40LL6W2SmY6j8Qe9+ByuqiaXUL3qn6ysTy5aAGLc3DSOhvJMaA8KqQVzE4jFo+JfLJAMpjBYDXogh9JkjC7tT8jVEUl3Z/F6jNrDkWJPNHWBAMqFoNJpmSci1TRkTGwIYLNXxQ8qRRFKgMRbwVKJ3uQTUkS3WmiLQkizXGtWiqYPSbspRY9LiwTzuGqsRFtTZJL5Ola0a9HhUmyRNk0L7H2JNGWJJmicHhAlBPZkdDEVsUukE0SVbNLCG+PE+9KDxEogRavu3O8HICjyobVZ6a7v3/IdletTeuLD4jGLW4TSl7RI373hCRLWH0m0qGsLuTRtoOzxk4qkBkSh2YtMeMb7SQdzOqCnFQgQ2coq8foDfS7qqpIMlTM9JHoSuvxtvHOFNlYTnc0kk2yHrkrGyXKpniJ7IjrYqvetWG9XyxuE0aHQR8nmt1GnFU2YkXBf6I3TTqU1fpWgoqDfPp1JYMmIlJyWj2NVpn+puhgnG+NDYvbRLRNO5cWqTsotDJaDdp7BW2sZXGbyGcGx/+RlkE3Uke5lViH9tpokckl8uRig85QmWgWc9ZKhVRLeZWXQk6hLxIiJoWRx2Zp3djKrSt+SY4ssizjpoRvX3cF06dP5/jjj6ekpGSv7q9AIPjiYsNMucmz386XVfKaAGkPWFMm7BYLRothj2X3BofBuudCAoFAIBAIBAKBQPAFI5PIsfHlFta/sINMcUGks9TGtNNGMf7oWozm/fM3lUAg+OgIkZLgYxGNRrn33nu5+ZpbiRFB2WlZnwUbI0vHUGGowdrjxVProP6ocrY820E2mifSksBT79DLp/uzupgoE8liL7XirnPQ3xQjuKm4Ur4oHjK7TDjKbQTXx8gnFXrXhbE4jcTQIswyYS2WjbRCIatQe1gpiQ7Nrafl9R5ysax+3YrpXqKtSZI9GSI7EigFBUeZVXMZ6k4jSejXdVZZqZjhY/OTHShZhU2PtQ4R/njHOJEMmkgpG80jm2UcVVYSXWl6VoUJbYnrjkhmp5FxZ9TQszqkuSd9QPjT+36YWGdqyPnLpnmxlZhpfaN3mNAnG8nTtKiNfHLodmelDe8YFz2rwkO2u2ps1B1ZTlOgjWxk71RKlbP8yAaJbc91DtnuqLTgGeEYKlJSYOtzHcPqM1BvV62N8oN8NL/UrfdJcGOUbKwwpG0DzkayUWbsl6oJb4vTtVybDOxYGqR/c0wTlBllHBUWbcIRrX89IxwkutNa+xTYvKhDP2/1HD9Wr5ntz3cB2j2TivcZwGCV6Si6PZndRsome8hEc0SiebKxLNue79Qj6SpmlmAwyfqxmWhOn0w02mXSkRx9GzSxlKPCgrvWQVdRuJUJZ+laOeju5BvtJLxdm2QzWmWy0awejWdxGon3psiEc3gkPyPrJiIZZUbu6CapxjEdkmXzlkZamltpbm7m4Ycf5tJvXIpZtXL6V77ExRdfzKmnnrqn2ywQCASCzzGtra288sor/PTymwjRR5YMEhIuvFQZ66kqqcHc68QkmSkb7yWfKhDaEiOXyJMKZTBaDZpIKZEnlyggGSTUgopSUHFV24i1JVEVlWBTVP8+VnMqzgorqb6M5lLUkcRd79CPzacKutBILahYfWYMZpnQ1jipQJau5UH9u97iNuEd5SDZl0bJqYS2xrGXaaIlVYFEd1p39VHyKuUHeUmHskRbk8Tak8TaBsUmJocmgol3pVByKrlEHovHVPweVuldEyKXGBybekY5cJRb6XwvqMXL5Qf3KTmV/s0xUv2DY0TJIFE2xUN4e5xsLD9U6IMWsyabhgqXkDQ3IrWgDhMpeUc7yGcGY9b2hNEqUzbFS8+akB47B5oTkKvGhpJVhoiUkr3a/RkQ+ujli/X2T3CRDuV0F011QOAdHVrPAYciZ7UNz0iHdv9yKkpepXtVv35Ni1sTWev31mvC5h90ckr2ZjQBt6oJnCpnl9C/OUahX4uNi3WmdNdJk8OoRQIWX9vLrFh9JlLFMVB4WxxDMSbQYJbxT3DTt14bW0myRC6e18XlRotMeFtcb7ej0ka2GPUryRLR1oQ+vrR4zVi8Zl3QpBZUMh8YF6eCGWTJgN9eTmWFD39XHRlyqJUZ4vYQO7bv4LZbf0eODJIk4VJ9lEjl/OrhmzjttNOw2+17cbcFAsEXifmmqfy/Seftt/MVVIVT3r+Z3lzkg4meGio4YxYuvu8oZFWibLSHwy6eSPk4336rg0AgEAgEAoFAIBB80UlHs6x/cQcbXmohl9Ke77gr7Ew/Ywxjj6xGNsqfcQ0FAsEAQqQk2CcUReGJJ57g73//Oy89+zI5BidyrNgpt1UyYdQk8hvNyJLMuCNrSPSk6ewNkuhKkehLYyuxkI1qK5bzO7kWFbIKpZM8hDbHyScVupYHSQ5kg0pQMdVHJpwjsj1B+1sBPCMc+rH2Mos+EZFPFkgFs7jrHQTWR0h0pQg0RVGKIhCTzcjoE6vY8lQH2XiezU91DBHFVM0uIdWf06PQUsE0Vq+ZdH+WRE9aX8ENYDTL1B5RRueKINlIns1Ptg8RFdUc5sdRYdXdkwZWgwNk43m6V/YT2j64YtJolak6tJSOpYEhjkEDqHlFX9m+M75xLkLbYsMEQQB970d0gczORJoTNAXbhl3jw2j7T++QqJQBetaEh4mgAL0+rhobmVhuyLUKGc0hi53GBPm0ortblU7xUMgMvlbyCt0rQ/rKd20jepRb2TQ3pRM9ND3eRj6tkI3nh4jIao8sI9aZJFLs70RnWl81j6y9/wbaYC+zUDndR6Y/S6wjRTaaZ9Njg85V9cdUgAQ7XunR+nJ7ohhzo4mSbCVmulZoQiqr14KjwopanMArZBW2vdChu0dVzvaT6MnQ3xgDGbpXhXTHAu9IJ7YyK+lQQGtuQSW/02SrZJTpL/ZPSUkJo8dV4W2vJhFOYxsNYU+QtavWECfKo48+yqOPPoqEzNRpUzjkkEO45ppraGhoGHbfBAKBQPD5IRqN8vrrr/PKK6/wt3v+ThJNyOrGRzUjqSqpwV0ooRAFi8tE6TgP3ZF+ClmFeGcSe9mgS0IhvZNrUaqAzW8hFcxqUWs9aU3IUXQtsvksmJxGuldo5+pe1Y9sGPzStpWYiXdpsavJYAbvSAeJ3gxqQSXeldIFI6qi4h3tpJDV4nKTfRlSwaxeD4vbRMk4F5lIjnyqQLQtickxuJopGcjo7kioYCu1YHYZiTQnSAUymvug7oYkUz7NS2hrjHhXeohACYouQdEcO88AOyqsqKo6KKjZCUnSvnuVD4iTjDbNVSobyw8TBKGiiak/oF0C6FkbRjbuYsduyCULdCwN6K5IO1+j890gu5rJVnKaQ5K1xKKPJ/R9eVXv9wEGRECyUcIzShNKD4ypk71plJwypI35ARcoCUonu0n0pAkXx1bR1qQ+TjbaDXjq7YS2xrXrqtr5BgRQBqtBc1gqntpVbcNglXXBe3j7oHOV0WqgcraP3nURQBPERVuT+rmsJWbS4azufmV2mbR71qO5TkXbkvoY3OY34xvjItmnja2ysRz9jVG9zZ4RDl3EJRkk8pkCheKYzWQzkApmycbzSJKEz1lKpaMSt1SFqqqYx0FnXzvd4Q46pWbOP/98DJIBr1rGd2/6JkcffTRHH320HrUnEAgEAxgkmWvrzuKa7Q8MfA3rSIAqwdnthyKr2u+Pvu0Rnr5xGeOOquHg88dj9wlHJIFAIBAIBAKBQHDgkgylef/5HWxa3KrNOwO+WifTzxzDqDlVyLJ4FiMQfN4QIiXBHtmyZQt33HEHf/vj30mzk0AHE34qmTRiCt5UOam+LCX1Liqm+WjapsV19a4P46qyAaDkQZIkpOK8UzKQoXKWD1eNjVhbilh7Ul89DZqwpWS8iy1Pd5IOZtn+YhepomjJ4jFSe3gp+XSeWFuK1td7sVdY9GMtXhNqfiA6RCHZncY70kH/5hjx7jTBzTF91bfRJjNyfhWtb/SRDmXZ/lLXELFP/dEVmD0mNj/RTjaap7PorjPQJpNLi5QYcOtBRhc1db0b1BydBpBh1LxKws1xQlviBBtjQ/ra7DHhKLdgdhpJ77SSf0CMFdg4fOW9xWuiZo4fSUJzFdr5fG4tHo3h2iWAfRIowU4TUx9E+cD1dkYuCoTak7S/HdA3J/syWtRfscwH6+issFLIDYqUAP1n2Swz+qRKuleGiHdqzkk9q8LE2jS3LGQtkm3AgQgZzC4jJuvgpGdkx6A4rHSSh8oZPi3OL54n2Zeh8fE2vb0jT6wg2ZOhd21Yq8e2uOa6hDYJZy0x0bdO22fxmLGWmHVBUyFXYPMTbXqkXtXBftLhLK2vaVFxW5/v1AdIJWNdVB/qp2lRO6DFohg2R/X3asl4F+FivWWzXIzJKU7yekxEWxO6e4Gv0k+NvxrLaj8A7kNNNDVvpLlnGxs2bGDdunXcd999GDBy+FGHccYZZ/CDH/wAWRZKcoFAIPgsURSFVatW8dxzz3HHTXcRpR8VFRsOSihnvHka1aW1ZLuKUamjfKSCGaJRbRyV7E1jtBkoZJXBiLDijGcukcdZbSMV1AQd0bakLgBSFJXSSR763o+QDmUJN8dR1cFpUvcIB0aLgZ7VIQoZha7l/Ritxe+Mosul0WrQHJuCWZzVNrJxzX0o0ZOmsJPI2lljw2Q30N8UIx3K0rEsqIuwDVaZytklBDdGSfZl9Gi3AQxmGaNtJ0tmFUx2A7lkASWn0L0qNChqQhsneeod9K0PU8gopDLZIeezeE2oiub6MwRJ+44NrB8u9HbV2rH6THS91z/sGINJi5PbpRWGynBR0x4YJlDa6VwABos8JJ4WNBeikvEuOt8NDjk+tHUwDviDs+AGiwGrz6TFnxXHP0pe1YVbjgorVp+ZYFNUO06FntVh/b4a7QbNYal4TqPFgNFm1AVeakHVxUwAZVM8ZMI5fewabIzqrlQmh5GSBheB9REKBRUlr2iRfkV7bmuJWYvAK57bZDcMea/HOlL6e8DiNVM22UPnu0HyhQKpYIaulf16n/knuMlE83o7d/5MWDwmTA4j2Z0iBHdGkiDSprXJYDZQXubDELRQJtVhchrJ+5M0N2+nn15u/vnN3KTchBkrJZRz7e3f57zzzqO6unqXt1cgEBx4zPNN47ejL+E3bYvoyQ1+95SbvFxbdybzZk2jc2aQpf/YSKhN+32+ZUkHO5Z3M/3MMUw5ZSQGk4gsEAgEhJDDvAABAABJREFUAoFAIBAIBAcO8UCKdc9sp+mNdv0ZlX+kmxlnjWHErIphz3IEAsHnByFSEgxjwC3p//7v/3jrjbfIqdqEgNlowZ33UWMdycxZM0i25oi1p5gwp458ukDrG72Et8ewlZmpnOmjc1kQk8WAs8aGq95OrDVJaFuMsmleUsEsmXCOXFLBVWcn1pYiHc5RN7cMg9VAz6oQfRuj+Ma6tImI/iylU904qyrZ8M8dpPqydLwX0K35rCVmGr5cR+e7QXpWhehZGcI9wo5slFHyCuUzfFjcRvo3x1CyCtlYDnulleiOJEpBxWCVMRQn2iweM6WTbUR2JEj1ZUmFM0RaBuO3Sqd6cFba2PFKNxaPmeDGKLE2bQLNN86Jf7wLg93Ilqc68I5xEm7WJi/sZRasfjOFnOZi4B3joJBWiHWkMFplvGOcRFuSND7Whq3UTOkkN4GNUWQjTDx/JLGOBK2v94EMpRPdRNuSZKPaSu5AU0Sf5PGMdOgrzEefVIWiqLS82kMmnMPiNeGqsRHYFGXUCZWkIllS3RldsFM62U28KHIxWiVKJ7vpb4qi5LV4Ntkq4xvtJLQ5jsluINGbJhXIYnIa8U9yUzrRTduSPgppBaNNJrwtAQr0bxnsI6NdxjvKSXhbnHxawTPGQf3cclpf7yWyI0HJeM1NYcerPVp/T3YTbUuQjRawV1iwes1EWxIUsgr2CguqqpLoSiObZezlFnKpAr6xTipm+Oha1U9gbUSrw+aoPiFVc7gfs9tExzuaY1W8J0WkxazHy9TNLSO8I06sNQWyNlmGpPWLvdKC2WWgb50mGKuc6aOkwUVwoyYmspWYaXm1l3xawewxMv6MWvq3xmh7ow9XnY2+90PEOrRz1R9XjrvOTuNjrZjdRkxOA12rg+TieVw1NmqOLNUnR/0TXORSebKRHCankYoZPgrZAonOJI4qK57RDkw27Vd6SYMLo9lA57IgRrsWiVI23oMcMDNWmoqj1kIg1cuaDatJWiMsXbqUJUuW8P+u+X+MGz+OI488kp/85CeMGTNmP/92EQgEAsGuiMVivPDCCzz11FMs/NcTZEljlEz4DRVUFaZTU1qP1+Uh2pbC5jNTOsFDQImS7EkT2hzDPdKByWkkF89jcZuQTTK5RJ5MJIerxoan3k6kJUkuVcAqSZhdRs2FRlWpmO6la0WIQloTghhtMoS0etUfXU5/Y4xom+ZEaCkxYTBrIpyyqR5sfgstr/VQyCqEtsV1lyDZKFE22YOSU7TY1Xgeq8+kR6YZrfIQRyFbqRnZIBNrTyIhEe9KkSy6AFm8JpyVNnLJPNFWLYouUhxbGSzad793lJP+zTHyKS2+LlfUwjgqrKiKglJQMFgMWDwmkr0ZVEXF4jUhGyT6m7Txk73cQi5RIJfI46i0UjrZQ/tbfRQyCmaXEYPFoDsTZcJZ0v0Zva22Us21yOozU36Ql8DGCPHOdLFtFgqZAgazjKPSSiqY1SKOswomh0EbYwz0g9+MklPJRHNIMtjLrUiSJrSJtCSwuEy6y4+1xIxnhB1JluheFcJRYSUdzlJIK1o8bXGsBJpwW1VVMmFtTF9+kBeDRaZreT8Gi4zVaybRk6brvX4sXhNWi4FMJIuqaH2YiWnxeUja62RvGlXR+t9oN5AOZSmf5tXcspqiej/Gu1JIsoRskCg/yEu0PamLqRNdabLJASGRCavPrEf5mZ0GZKOsP1zSXCW1+shGidJJHmIdSbKxOCankUw0p4vMSsY5cY900vZmL0pexWCW6V7dTz5dwOQwUDm7hGhrkkg8j7XETKIYkSfJWmyzxWOid00Yo00TbWWjOT3C0FFlJdae0vqh0orFayIdzmG0GnBUW4m0JEmHs1i8Jtx1dgwWN+oOM5Mrp6OaFXrCXfTEOwkZevnhD3/I1T+8Gp+hlEt/cDGnnXYaRx11lHBZEggOcOb5pnGsdwqr4tsJ5KKUmtzMdI7GUFwhUz3Zz1m3HkHjq22sfGwLmUSOXLrA8kc20/R6O3O+PpH6GeWfcSsEAoFAIBAIBAKB4JMl0p1g7dPb2bKkQ1/EVj7ey4wzx1J7UKl4viIQfAEQlhkCAPr7+7nhhhtwSm4MBiPnnnsub775JmaThUpGcNah5/Oti67kEOl4pjfMov7QSkomuABoXdKDs8qGvcyCkofSSV7KZ3gBCDRGkY0y5dM8gLbK3jvSgaNSsyPPRrNUTveBDLl4HpPDiHe0A9DiJypnaAIQ0CIvzA4DxqIzUflUL6NOrATQJ3sGIiwclRZGn1xF2VR38di8vioctEm3MadUY7TK2DxmjGajLmDxjXFSe3gZZVO9xdcubKVafc0eE2VTvBhtBowOI55RDsqna+WQtUmfbLpA+3/6MDuNVM32YysxY/GaKJvqoXJGCa2v9xLelqBsqhffOK1to+dXM/K4SmylmhuUq9ZOxcwSQHNrkk0S5uIkltEsUzXbr69od9bYKJvo1dvmn+TGP1Frd9s7fdi8JlzVtmK/WKma7dfEXSq4a+yUTvbox1bOKsFVo5W1eExa2WJ/l4x3UT7Jo325y1Axw4e73g5okS9lEz30rg0Ta0/hG+ekfNpgnUrGu/GMcmiTUF4LVbP9mJxae5yVVowWmVRxsq/8IC+eMdp7wOQyUjPHT8OX63FW2/COdFIx3Uc+rdD8UjfeUU5KxrnwjXNishuomu3H6jPRuy5MrCNJ+eTBe1M2xYtvvNbfJruxeF+L/V1l1+ID0SbfKmf5qJqt9b9slLG6zbq7Vt0RZYw6oUpvm8lpItaV1h2cRp9SRcVMn9a2ChuqqtJXFBpVz/Ez4vhKlKz2XvSOsJMOZcknFWx+C3VHlKNmtfewb7wLi9tELqWVrZpTitlhItqexOozUTbZja1U+8yVjHPhGeGg7S3Nnaliho+SCS7sZRYsHjOVM3z0rAsT3pbAM8ZBzSGljJs0hmnSHC4+/XIuPmkBB5UejMdcQkdHB/fffz/jxo7DJFk4/fTTefzxxxEIBALB/mXbtm38/ve/xy9V4HF7OO+883j2ieepop5Z8tF87ZjLOKLmOGqlMYyYWkP5QT4MZplkX4Z0fxbvKO17y+w2UTrJjb1M+06LtibwjnJisBhQCyqOKhveMU5AE9c4Kiy46ux6PRwVVkxFZyKTw6CPPwoZBVXVvosBkKHu8DIcRYfM7IBwpUjpFA91R5UCmmtOPl3Q3ZEsXhMjjqnQv2uNOzkbIkHFQT7Kpnow2g2Y3UZcVXYGniW4qm04Kq26qKmkwYXFawIJzE4jvtEugpuiJHrSOKusg2OTUgu+cS4MZgOBDVGMVgP+BjeyScLiNVE3t1wfh4E2/rP5zVr9FRWz06jHjdnLrFp/S5rTk3e0E7PbBGgORP4GN0argVR/lmRfBne9Qz+vZ6QDe7kVJAnZKGtli/1tK7EMqYO7fnCMrJe1a2WtXjMl43cqW2dHVaG/KYYkS/gb3JidWp0sHhPeUU69r101Nlw1dr2/HRVWLcJM1SIC/Q1ufWWZs8pG1cEl+viwpMGF1Wsm2Zch0ZPG3+DG4jVjsGiiK88IB6gQ2BDB7DBi9ZlB0pyVBvpbNstYfWbctTa9/q5aG5Zifb2jnVQf4sdgGYjONQIqqJpzVv0xZfjGae0xFJ0kk72a2KlkvJO6uWV6vJ7ZZSLZk6aQUZBNEnVHlmHza58Nq8+M0WLQnTb9DS68oxzkkwUkgyailyQJJa9i9ZrwT/SQ6Nau46qz46y2YTDJSJImwsvG8qSCGSweE2WTPLjqbKCCq8aO2Wmk7/2wdp2Jbion+6m01TC1ZDbnzL2QkyrPokGagdVm5fd3/J6jjz4au+ykThrLgw8+SDy+k+uVQCD4xFi8eDHXXXcdd91112ddFR2DJHOwayynlMzkYNdYXaA0gGyQmXTiCM793VwmzqvXvy+jPUlevm0lL/56BeFO8TtEIBAIBIIDhU2bNnHHHXfw9a9/nRNPPJFzzjmHG2+8kba2tn0+129+8xvmzp3Lj370oyHbI5EIDz/8MFdeeSWnnXYap556Kt/85jd59dVX91czBAKBYK8Itcd4/Z61LLz6P2x+ox21oFI92c+p1x/CaTfOoW56mRAoCQRfECR15xwHwQFFa2srt912G4sWLaKjowMACQkHbiqoZYyrASUugwyTzx9B/9YYXe/1IxtlZLMmnlGyClUHl+Ab62Ljv1v0uDOzU4v9ko0w8Ssj6FkX1h1hjFYZRdGOrZjlw1NvZ/OiDr1eFq9JW+ktw/gzauhbHyG0ZdDJSDLK5OJ5vGMceEY4aHmjV48Kc9XYiBVjQarn+Im0DMZfGe0GbD6z7lzkqnMMiRIrneQm2q65E30wtszsMVJ9sJ/WN/r06K2dKZ/uxTvKwdZnOvRYr50ZdVIlRovMlqc7d3kvSiZo7kEDddXZRQzazvsmnVdPuDlB57Lgbgp9NKZ8bSQ9a8N6hNn+wOQ00nBWLd0r+3cZWwfsur0yVB/sp3tlaJd97xvnomaOny3PdOgOATtTfpAX72gHW5/p2u29+2Cci9lj1OL7gLJpXkJbo7pIyew2YiuxENmRQDbKuGptuhOVbJapnOWjv1GLr7H6zeQTeU3AhOa05am3s+NVTUxkKzOT6tMmymQjjJlfQ7AxSn9TDKPdgJJX9di4smle/A0uGh9r0+sx8B6VjTDh3BH0bYjQty485DMG2mfBM9LBpkda9WOVrEI+rWC0ykz4Sj3dq0ME3o9gtMqkSsM0dm4gWOilIOVRVRWbzcZhhx3G+eefz8UXX4zZbN71PRQIBALBLlFVlXXr1rFo0SKeeOIJ3n//fSRkSijDTxVlhirskhO1oOKqseEd7aT97QCqoiKbJCRZ0gTVEtQeXkqkNak5z0iDMVRqQcVVZ8dVYxsyNtAjwSSoPtRPpDmhO/IMiH+UvIqj0oqjwkrvurAe22VyGMglNMGsf6KbRE9aj6SVjRKySSafKmByGLGXWoi2JfTorYFYLlTNJSgby+vuPgazjNVv1sc+BqusCWeKOKttulviB5GNEhUzfERbk3o7dsbkMFA5q4S+9ZGh8blFJIOEu9ZOpCUxbN+H4azWBF+dSwN63Or+wFVnx1NvHxKLuz/wjnFiL7PQ+W5w1/FzMCz2DTSRk2ySdeeoD1I5y0cuUSDYOHw8JxkkKmf6iLYldYHPB/eXjHcR3h4fjKnbKSbPaDNgdhmHxO/Zyyyk+rV4N4vHRC6Z12PzLB5TMfJWc2GyuE1kivHRkqwJ5RM9adKhLAazjKqo+r2zl1tw1djpWa1ZhxmtBvLpgl6nqtklxDpSxDtTyEYJVUVfneesseEZ4aBjaUATU1kGY/4kGWoOLyPcHCfeoR2LJKEWtAhGzygHzkorHQMR0laVqCFIZ7yNoNRNSk1glI2cfe7ZzJ8/n1NPPRW/37+bGygQ7B1//vOfOf/88/F4PHsufADS1NTEggULuPfee2loaNhj+Y0bNzJp0qRPoWZ7JrgjytJ/bKS7MaRvkwwSU04eyYyzxmC2mz7D2gkEXyw+T59tgUAg2Fv+93//l/fff59jjz2WMWPGEAwGWbRoEalUij/+8Y+MHj16r87T2NjIt771LQwGA7NmzeLXv/61vu+dd97h+uuvZ86cOcyYMQODwcCbb77J6tWrueSSS7j00kv3qc77Ovb6onOgfb8caO2FA6/Nn0V7AzsirHlyGzve69G31c0oY/oZY6gY7/vEry/u8X8/B1qbPw/tFSKlA4wNGzbwm9/8hof/8Qg5ihNMGPBSSh1j8FOJLMlUzPRSOsHDhkc04ZHVb9ZXHQ+IlgKNEXpWhXWnnQFBROVsHyXj3WwsHmu0yrpIQxPWjCC0NUbX8v5hopSyaV7Kp3lpWtg6eMxONJxbRyqQofX13mH73PV2RhxbwfYXu3Y5YTXy+ArMHhObn2gftk82yjScXUv/lig9q8LD9ltLzNQfXUbrG33aZNsHsJWacY9w0LMyNGwfaH2AjC50GWBnUdUHMTmNjJ1fTed7QT3W5IM4q21kozmy8Q8oo2QYdUIl3Sv7SQWG19dolclnld0KoPYkUjLaDeR3cqbamerD/aT7s/Q3xobt845xaPF3u7quDONOryHaltxtP5qdRpAZIiADbWX8ru4LaEIgd519l/cVtGg3paDQ8fZwoZfRbmD8GbX0rg3tUlhVOsVD5QwfTYva9ai4nRl3ejWFnMr2F7qG16vUzNj5NbT+p3eX97fu6HLsZWaaFu70fi1+XoxWmQnn1tO9qp/Ahqi+T5Y18WD1YX489Q42/btVP3RA1CSbZSadV0/PmhB970f0ffm0gpJVqD7cj6du8Ni8PUufo4VtvVtIU5wANFs4aPpBXHzxxVx66aVYrdZd9q1AIBAc6CiKwrJly1i0aBH3/PaPpEhgxEQpVZRTQwkVGCXNqajm8FJi7UmirUlko4RkkHQRh6vWhmekQxOxqDuJjgAkqDls8FhJllBVVReeOGtseEc56Vga0AQWHxClVM/xk+zLEN423HXBXmbBP8lN57vBIQKiAcoP8qKq7HK8YLDKVB/iJ7gpSrJvuNjFWW3DM8JO53v9uvBjZ3zjNMFWePuux0DuejvJvgz51K7HI0abYdg+o82Akld0gcsH8Yx0YPWa6FkzvD2gicEsXtMuhU+OSitGi2G3wifZJOvOUh9kjyIlCWTD/2fvvaMkuQqz/adC5xwmh53Z2Zy1q5yFIggEwiAZ2ziAAdvgwGc+bGPDDywZg42NP8BgG2Nh4wBCBgRIgAJIgIS0ylptzpNjT+dQXV39++N213TPdBiBYBXqOUfnaKfv3Lp161bVnb7vfV+poTDK5lUJDLobzlMUp4xik0W0XwNcUQehdV6mH481FV3Vin7Meu0yRqnc8LpB5drMFpYEP7XtdStEtgSY2xdfGsPLftfT7RR/JzSovufcMPnFYt1GA7OtARtdu0JMP7WIllwpXI9s9mNzK0w3mGcqdpne8yPEDqfq/46o3C+BYQ+eLmed+E9WxTWRZIm+C6PET6RJT+bMz6qipsAaD94+FxMPz5t1qk4xPiVZov+iKIvHxe+Wy2VK4RzjiVFmSuOkiKPICiGjk49/4Vauu+46ent7V3aMhYXFz8RLWaQEQgh94pFp9v7XITKxpWeYK+jg3F/ZyLqLeq3dxBYWq+DFdm9bWFhYrIZ9+/axadMmbLYlYfLY2Bi/9Vu/xWWXXcYHP/jBtnWUy2V+7/d+jzVr1vDkk08yPDxcJ1KanJxElmW6u7vrfue9730vzz33HN/61rdwuVyNqm6IJVJ6efNKO1945Z3zL/J8Z44s8vQ3jjP29Jz5s6Fzu9j1+hGiw7+4TTjWNX7580o75xfD+apn9OgWvxAOHjzIFVuuZZ4pSohFChUbHfSyho0EpQjIsPGN/cSOpJl7Ns7isTT5WNEUk7g7HAxe3smR/x0HAyYenSczIxacDM1g+NpuUuNZ5vcniR1JCWFM5XddEQcdO4Oc+O7U0u9Wd1Yb0LUnRKlgMP9cgsVjSbRk0RQoqW4RbTa1dwE9bzDx0Dz5WP3Oal+fi5mn4yRHs5y6b7puYSE44qFUMEiN5xj/yTwY9asdnTuDxA4n0fMGR+8crxNGySp07gox/eQi+ZhW5/YEYlGoa1eQ8R/Pk5vXVoiBPD1Oes+NcPLeqRXiJBCLHYOXdnLs7gnTTaeWUl4nMZohM9VYxASYCyHLsftUVKdCMwli34VR7D4bR++caFygBeFNPvrOi7L/f06bwrS6Y7tUdEfjBcP48RaOBQYkT2VIN3BMqDJwWScAx++qd6SqCpR6zg2julTGHlwSseXmNLN/gyMeFJvMQo2AauyHS5Ob4IiHYrZkujbo2RJHvj5mjovoVj/Jsawpkpp/LkF6MmcKlLrPCTP7TNzsl5P3zaA6REyLu8OBt8/FbGXhMzev1QmUunYHyS8WzX9PPxHDGRJ/XKpOmf5LOpjcu4CWEM5MYw/Nkalc/85dQVS3wuTDYuFsfn9i6R6riL+mn1xES+oYuvjdqkNB99khPJ1Ojt89ZZ5TZrLqrgE7Xr+Oqccj9MytR5c1MsPzHD69n71797J3717e9773oeTs/MO//h2/9Vu/hSxbKaIWFhavbKrCpF++6DeYYRyNPHYcdNBHJ72E6ESWZDxdTgLDHlP0sHAoSTEj3ieGXqZza4DsXIH0ZI7sXEG4GVXdjdwq0S0e4QBThtjhpClEKRtlgiNeilmdzFSe3FwBPVsyBSWqUyEw5CF2OEXZKFeOu/TedkXsKE6F9ESO7HwB49nEkkBJEgLr3IKGnisRO5qqmwvIqoS310VyNEspbzD1eKxO1Kw6FRwBG5mZPOnJHJmZfJ3QxeG3IakS+ZhmumjW4ukRMWX5Rc10zqklssmHltZJjecaipciG32UimXm9ydWfAaQq8QHN6NslBsKlECIkKpxZctR7DJ9F0SZey5ObqHx77eie0+YQlxj8djKPpEQTo6KXV7R9lLeaCguq6Ili2Sm8xhNxEZ2n0rXWSFmnl6kkFgS/dS6YUW3BYgdTpljF1i6NpKIckuOZkxhWDFbYvrxmPm5v99Ncjxrju3kaFbMbytRb66IvW5uOPPkohnt5gwJV8fqPLCQKDLz9JJAyTfgJr9QMCOfF4+lxcaBStv9g24SpzIYepmSZjD3XMI8T2+vCyRIVzYTpCdy5meSDNGtARKnMmgpnbJRZv5AwpwPentdOAI2Fg4K4Vh6OkchVTTPueecMPHjafRcScQC71/6Xf+gB09nGPUJN0PSJnRvnphtmtHYKd7+9reLqDl3N5FMDz+av8dyWLJoi6ZplgPqKwBJkhi5oIfBszp49lsnePbbJykVDXLxAg9+9lkO3TfGBb+5meiQ5aRlYWFhYWHxcmP79u0rfjYwMMDQ0BCnT59eVR3f+973OHnyJLfeeiu/+7u/u+LzRhslJEnikksu4cknn2RycpKRkZHn33gLCwuLBpTLZaYOxHj6G8eZ3C++N5UkWHthL7tev5ZQv+8Mt9DCwuKFwBIpvUw5ffo0t9xyC//xhS+Zjkk27HSyhjVsxCv58Q24iGzyc+reGTAgfiJNdk4sAmhJneCwF/+gm+RolvyiRnoqh6wKp5b0RI7giNd0cSlmdHO3tJbUMTRDRHzENHRN/Fx1CvedxImMuUAAYPfaKKmijJ41zOgsgYSn24kr4jDjFmrx9rkIjHiZeTYOBitciTq2BsjHi2Kxapnzj82rEt0SQC+UiB1KrXBucnU4iWz0k5rINYwacYZseHtdK6LhqpQKBsWcjtFkLSpxMsMpfbqhQAlEP0/+pHGMW8+5YZwhOye/N93wcy2htxQgze1PoFTEM8+X1HiOseIsGI0XvU7dP9Pw51WCIx66zgpx+GvjKxyVmjkXVJl4eJ5SExcCEOOwlTecr9+N4qgXKdUS2RRAz+l117s6LmRVLEgpTqXO6am6WOnucBDZ4CM1nq0TOVXHnbfPRWidV0ToVE6h1kHJ2+1CUmTzZ8W0bi5Y2X027D6bucCnumUSNc4SkiwmaVVsHtWsR3UqFFP60oJdrws9VzLrXr5Y2rE9UOPOJBM7liYzK+6r7k1R7MEeAsd7MTBID8wyWTjNeG6M3/7t3+YP/+AP2bR5E+9///t505veZAmWLCwsXjGUy2WeeuopvvzlL/Ppv/1H8mRx4KKLfrroJ0AESZIIjnjRkkWycwUKqSKpiRySDGUD9FwJb6/LfH7n4xrFrHhWlwoGiqOM3W9DSxYpaSWKWd10csktaNj9NlM8IkmYjgklzaCkacg2CaNYpmyUsbkVFIeIaVselWr327C5hEiJMnVOhZIkBBiGXkbPlVbOrTwq/oElh6Pln3u6nbg7HGRm81ATnVXF1+8CSWoqBHJHHRQzelP3RD1vNHTnqTJ/MGkKXBqhJYsNHXgkRaJ7T4jFo+mmx06NrRRNVTF0IURZ7ki0WuLH05S0xgJwLa2bAuhmdOwIko8VSI3Xz5NL2vJ597K6U/oKgVItRqlMKV/CKDXuc9Wp4O5wkJ3NoxVXzpUdfhv+NW5yNUIiwHR1ckbsBIY8ZOcK5s9qHZ/cnQ4Uu1x3TZaERBLeHidG0TDrNooGWrG6EULBFXHUnX/tuFOd9ZOrWoGabBOfVedlNrdCIVE0x7NRNOpcpJwhu+kmJskSuXmNYkVE5wzZxTlU7l2tph6A7sFO3OM+OqUhikqeTNcip2aOcZAn6Yh20N8xyC1/+xFuvPFG/H5/w+tg8crmxhtv5KqrruI1r3nNK2KX+isdm1Nlz5s3sP7Sfh79z4OcfkJs3pk5ssg3/vxhNr1qgLNv2oDTZwnXLCwsLCwsXs6Uy2UWFxcZGhpqWzabzfJP//RP/Nqv/drz3gQRi4kNKO0ihefn51lYWFrnWK14ysLC4pVFai7LxL4FjvxwnNkjcUB8J7f+kj523rCWQLfnzDbQwsLiBcWKe3sZEYvF+PCHP8w/f/rzaAiRhIJKlB6G2YxX8tc5xfgGXHRuD3L6+zOmEMPT4zQFFutu6CUznWdqb8w8RlWkFBjyMHBJB8e+PdlwsWbk+l4kCY59e3LFZ3a/yvob+pl8dL7hLvnwRh/RbQGOfH2liAWE4wyS1DQSrHNnkNRkltychmyXV7j9hNZ7SZxMY+g0/NzT5TTdmBp97gjalhb0lsXVmZ8ni02j1BxBG3avumKhqIrqlhm5vo/Jn8w3LRMc8eAI2BpHmMngDDSPP1sN7eLe2iGrMqpbbijecobsRLf6mdwba+jEBGL8pKeyTSPaZFUmuNZD7EhjsREsiyis+2XAoLG4TAZZljF0A1fUTiGuYdQUqR0PgWEPmalcvftWzec954ZZOJSsP0bNsfsuiDLx0PzKqD6Eu5i3a8ndaDmbbhogOZqtixypEhzxMHBxJ0e/PdHw/Iev60GSMCPoqvc0iGszfG03oz+YJTOTxxmyo+d08xw7dwVxhuxm3GLnziCxo0m0jM60+xS5aJxTYycpl8s47A52nbWLW265hauvvrrheVhYWFi81Dl06BD//d//zd/d8kmypLFhrwiTBggSRXUouKIOU2Qd2eQnn9DMuZasSsiqjJ4v4QjYiGz2M/PUoim0qQqYQDxzS5phurPUYveqdO8JM/PM4grREQg3G1fELiK0liOJurOzhYYOjYpDJrTeR+xwUogylsXFKU4ZT6fTdM+RFKlOZCHbJOxem5iXVMRT5RpnS0mWTMGUJNd/Vm2fYq/E2y07dpVG0W61uDsd5OYLZl8ux7/Gjd1ra+qwJKsSgSEPybFsQxGU4hTv/2b1t6Nt3NsqaBXF6x90o6X1puIvZ8guYt+eXGwa4eYI2tBzpeYiMKkSQ7jcuanmminOlZ/XjhebV10Rn1v9XFIknEHbCnF19XO7T8XmUZecJJcdO7DGQ6loNBzjkixEaPET6YZOV54uJ6H1XiYfXWgYFdi1u+IK22D82Dwq3XtCzDwdR0sW6+5pEPNJu1ddiuD1qaYrmmyTiW72Ez+ZRkvpwmlMkcgvahTKedKd80zkTjGbmkZGZqBjiA/c+if8+q//uhXFa2Fy9dVXo2macNoZGeH666/n6quvxuezdp7W8lKPe2vG2DNzPPIfB0lMLQkyHV4bZ9+0gY2vGkCWrQg4C4taXir3toWFhUU77rnnHm699Vb+5E/+hOuvv75l2c9+9rM8+OCDfOlLX8Jut3PTTTetiHtrRDKZ5K1vfSsDAwN85jOfaVn23/7t3/jiF7+44ucf+MAHGBwcbHs+L3XS6TRer/dMN+MXxivtfOGVd84v1PnqeYPE6TyJEzniJ/PkY0vfCUkKdJ3lo/d8P87gmfdbsa7xy59X2jn/PM93tX9Tnfk72+JnwjAMPvvZz/LpT3+aI0eOAKCg0EEvQ2wmIIXqvvDv3BEkO1cgM5UnNZYjNbb0Rb0pbvjWBPmYxrFv1guMhq7sAgVO3TND4lSGzGzOjDFT3TIDl3Qy8+Qi2bkCE4/Mo+eWXiiqWyE04mVuXwItqTPzzGL9jnNZLLBpSZ3cQkG4NskyRgO3HsWuCLFHI2QIrvMiKSLma7kIxu5V6Ts/imKTmT+QXPG5MyxEGhM/WWBxWYQJCHHJutf2MfNkjPkDyZVCJBnWXttDajzbdKGpa1cIZ8ROany88TkYkJ0tkKuJtVtOq9i0wBoRI9dMpKI6ZSJb/CwcSjaMoVsNwREPZaPeCaiW4Wu7oVxuKLLJL2qM/7j1IlxmNi/iBpsQ2eyjc0eQ5Hi24YKcI2hj3Wt6mdy7QOzwMiGTIYQ5I6/pJXEqUy/0McQ9hQxrXtVFZjpfFwdXHQ+yCr3nRVb8fvVzu1cluNZLdq5QL1KqdLfNo6I6ZPQmIq3l180eUNESS/VMPxEjX1mE9vQ4UR2K6QQQP56hlJ826xi6spPEaNYUBJ787hSqW9xAvj4XA5d1cuI7U+QXNfKLGge/PGoep+/CaJ3YsNapwRm207kjSG6hgJ41GJTWoY8ZrCnvYJQjFEIJHn/8ca655hq8Xi+XXXYZH/3oR9mxY0fDc7awsLB4qRCLxfjyl7/Mv//7v7N3795KhG4fG9klotxkWTgcFcvYvCrBES+5hQKlgsHCoXqBUceOIKV8ifkDSQqJYt07xeZR6NolxA3FjM78gUSdQMLd6cAZtBM7kkJL68w8tVjn1OOK2NELBsW0TmYmv0K8rDoV4fZSFg4yVdem5ZRLZRSbjGJXMIr6CpGQwyecJdNTOeHUtEzk4h/04I46mNy7INyTlu2PCK334vDbmHostlKghBBY1f7+cjzdTsLrfUw+utAwqk1xyIQ3+omRNKNOl1NM603FOSDcexpFrVWJbvJTKhpLToTLcEXslMs0FQm1Q7HLuDsdpKfyDdtp96l07w6vGANVGkXj1VLM6OTjLdomQXiDj9yCRvx4434IrfPhDNnqNjcA5jXz9roIrvWsEPpUz8fT5SS8sXIda4RQtZ8H13qZfHS+4e87w3ZcEUe9SKmmqyRVQjaaLMZLIupPq0TWKY5KdF7l93MxDY6lzeN6e11k5/Lmv+f2JZBVUbfdb8PX7xJxiqUyxYzOxE8WMIrV6OAAet5g8aiYn9bOpe3eynWsiA2NoiEcOCt4up3Y3Ar5RQ2H5MSdGCSi9ZMny7xjkoXiJO9617t497vew1ve+su88Y1v5PWvf73pqmbxyuTOO+/k3nvv5e677+bQoUN86lOf4nOf+xyXXHIJ119/PXv27DnTTbT4OTKws4Pej0d47juneOprx9ALJQrpIg/9234OfX+MC35jC90bQ2e6mRYWFhYWFhYvIKdPn+aTn/wkW7du5brrrmtZdmxsjDvuuIMPfehDzysi2DAMbrnlFtLpNH/0R3/UtvwNN9zARRddVNfGW2+9leHh4VeE2+crTQT7SjtfeOWd8097voZuMHs8wcS+eSaem2fuWGLFRsbOdUH6d0TZeEU/7tCLZwOWdY1f/rzSzvnFcL6WSOklygMPPMBHPvIRHnzgQcqUAYkgUYbZTETqMssFhoXj0ZE7x9ESOsfumqoT3vSeF0G2SYz/eJ74yQylwvRSlIEK0a1BFo+nKaZ14qfqFyX0rGG60eh5A1mVUSoxbstFFoFBNx3bgyweT6FnDeb31e80Hr6qG9WlcPTOCXLzGrn5eoeY4Wu7SU/mmNuXaOge07UryOKJNFpS59id43XuN4AZPaeldY5+a6KhywCIxaPRB2abLuZoSZ2pvQvEjjVx8DFg/KG5lgKj0QdmsXub33p63mDswdnGH8rQd0HEFHs1IjWWYfSHs41dhABn2EHH1iDxE5mfWqQU3uCnVCg1FSlNPb5QF3PRiOj2AMWU3jBmZLqR00MNc/sSJE5nmjoGFOJFxh+eI96kfYYOk48ukJlq7FSFAaMPzqKlmsSb6HD825PoeXENlrs2aWmdw3eMmuOwa3eQxWNp85plpvIcrYgAVafM2lf3MLU3ZsYVJk5lzH4Jb/TRe25E3MOV368VqYU3+HAG7XX9aMYeykDN7ljVKVyiqte9kCqyeDRlLlxHtwdIT+bMczn9gxlsbhEL6Ira6b+og9M/mEFLCjeGA18ZNZ8nA5d2Iclw4u4p1rIFZmGkrHGSAyxoU9x9993cdddd9Pf386u/+qv8xV/8xStKlWxhYfHSplgs8p3vfId///d/5+tf+wZQJkI32zmfKD0o0lKEaufOoBAkHUySj2lMPDxvCilUl0Jkk5/5gwlKeYPY4RSlwtK7zOZRsPtsZKbzFDMlkuNZU9xgFIWbjCTVRF7VaA+Wi1MCw17ysQLxtE4xo1OseSWqboWec8LMP5cgt6CtmPc4gjaCa73MPh3H0MvMPFXvXqk6FZxhO+nJHNm5ArmFlS5FVXejxMmMqL+JBihxMmMKPBqRGsuSWyg0/f3MTL4Sadd4TlMqGEztXWgZA9fIPaeKK2JHVmXTZbMRC4dTSC0STj1dTsr89CIl2SaL67lYpJhZOf/TUjqz++IUmsxbQFwzT4+z4dytpBkN3U1NyjD7TLxlHyZPZ8jMNI8SzkyL69TIiQjEddQLzZ2a0pM58jHNdPNSnfXuWcnTWXMDRO34rFIrrvL1u7D7bKYrWblUrvu8Y3sQLVU0he5G0TDFT4pDuHmWCiVz3BhFA6NqsqpIyDXuUIpDrjunWqGZ4pRxheykp0X8oZauj9cLrfdSyhskK+cVO5JCUsS9YnMrdJ8TFgLyhJt+bR392joypJjiNF+7/et86Utfwo2XP7vlT3jjG994xr94sDgzuN1uXv/61/P617+eU6dOcdddd3Hvvfdy//338/3vf5/Ozk6uv/56rrvuOrq6utpXaPGSQ1Fldr5uLesu6mXvfx/i+MNiI9HCqSTf/sgjrLu4l3N/ZRPuoOMMt9TCwsLCwsLiZ2VhYYE/+ZM/wePxcMstt6Aozf9GA/jUpz7Ftm3buPzyy5/Xcf7hH/6BRx99lD//8z9n3bp1bctHo1Gi0ejzOoaFhcVLn3K5THI6K0RJ++aZPLBAcZkTeqDHQ9+2CH07ovRsDmN3285Qay0sLH7RWCKllxCxWIwdkbOZZowSYoHChZcBRuhnBLmyOtJ9ThhJQogexjJMP66gVxY0DM0gtN5HaiyDnjfQ8yXkUmVhyEDEi1UjzGRZ7PYtlIgdSq1w74lu9dO9O8yh/x1Fzxocv6veealzVxDVrTD58AILh1IsnsjUCaTcXQ5KBYNCvMjMU4srdtbXUkgWm+7wl+1ih3xJLzP/XGKFQEl1K4y8ppfZZ0V82XKBkqzKjFzfw8LhJLFDqYYCpcgmH0YJFo+mGkaMiTb4mN+XaBrRFhjyUEgVyS9oDSO+QERxze+P1zlc1eIM2fEPeFg8kkajcR2G3tzhCMQiz3NfOtX089VQjQprRnamuUirSnCNh+x8oaFICYRIbvCyLhaPpxuW0ZI6yNCxNWBGZNRSHa/OiB2Hz7aijmofqU6ZnnMjTDw8Vzd2qudQFRHNPB2v69fqNZTtMmuv7WHxaKouRqdal+qUCa/3V2JAGjgsyJIQ/SQaLyzGjqYoG5gCpeCIR4ivKrfS2INzqBVxoDNip/fcCKMPzgoBlwGn7p0x6+q9MIozYOPI1yfMPjTbLEN0sx9ZkYRISQY9WzKFYJIioedK5nkHRzxkZwpolXt65qkYik20wx5QGbiog7Efz7ExuQuKu9BDWZ6LPcnE+CQf//jH+Yd/+AccBTd33PMVKw7OwsLiRcuhQ4e4dvMNTDFKkQJegqxjG90M4pDEbh7VqRDa4CN2KElJM0icypjCIhBRYbaAjXxMo1QoUdJKyLJECZYEJ5VYKlfEIWJnK4KI5On6OUn3nhD5mMbisTTZ2UKdM5DikAlv8BE7mqKUN5h9enFJzFQ5hitsJ7egoWdLLBxICoeYBuj5EnpWXxFNVcUZsePrc5GZzlM2yivKBIY9eLudTD66UPm8fo7nijrwD7qF8EUzKC1rhqRIBIfF+66ZAMkVsVPMlNDzpcbiHwm83U7SU/mmwhdXxI4r6hBzuybTUEfQjupSWoqUWkXNAcJ982egmNEZ/9FcyzLtBFCyXa70R25lJFsFZ8iOt8fZsL3VPrR5VGRVMoU05uc118nbI6KTa8dF2SiTmxfj1dPlxCgt/btKocYl0tPpFC5CNdelKoD39bkIrPEw8chCnbNU9XjLx2ejcykqjefRgBAvVf4uUd0KElCszIdKBYPJRxbMeys44qWY1c0Ix6ozJYh7sve8CAsHk2TnxLnWnrMzaCcw5BF9Jfac1PWroZUpVZ4lsk3G4VdNYZSeN4gdSpnixMCwRzx3xmEd2xgpbCXlijGWO8GHP/gRPvjBDxJ1dNNdGOTx/A9xOCwxwiuRoaEh3v3ud/M7v/M7PPzww9x1113s3bvXjN84++yzuf7667n44otRVeuropcbnrCTK96zi81XDfLwFw8QGxXfaxz78SSnn5hlz5vWseWaNchKC9WthYWFhYWFxYuWdDrN+9//ftLpNJ/5zGfaioKeeOIJHn30UW699Vamppa+6y+VShQKBaampvD7/Xg8nrrfu+222/jGN77Bu971Lq699tqfy7lYWFi8dMmnNCb3L5jCpPR8/fdpDq+N3m0R+rdH6dsexRt1naGWWlhYnGmsb55eAnz961/nIx/5CM888wwAKjb6GGaErdgrC2SBtR5SozkMvX7RwdDrF0ZUt0Lf+RGmFFg4lGL2mXhd+fAmH107Qxz8qnBIOXT7WF2dvgEXqlNl8WiK+PE0Jc1Y6cZTETlJgFwTL7A8Om3w0k4ys3nGHpwzv7g321kRhsw+Gyd+PMPkT1a6J0W3+ImfSKPnDQ5/fXxF/dV26NkS4w/NkTjdzFXHILdQWLHYUouvz2WKlBoRXOuha0eQ5OlMU4ejzp1BimmdU/fPNPxcdcpIsliQaEZ+QePg7aMrY+YqOII2unaFmNy70NRl6BdFdHsARZGYqYkIq+XY3ZNNzwPE2JUUCdnW3F3B0+Wka1eI3IJWt1u+lq6dQewNREpVHCE7nm4ndr+94QKfrhnkYsUVMTlmOzWDsR/PLcWLVEV+1d/PGxz+33HzPgpv8pEcXXKx0rOlpTEhw4bX9zF/UAjmxAGWxp0zItyMoN5NSa8sNtqcCpIsmYt4sirX3b/TT8RwBoR1r+qUiW4LMPt0QpQx4NAdY2bZ3nMjuDscHPuWEB9mZwqcvGfabGfPOfVxd7XCNJtTBUlCrwgL/YNusvMyu6SLMcoG2poEx5IHmC5Mcc0119DV1cVrXvMa/v7v/55gMNiwny0sLCx+UeRyOe644w4+//nP86Mf/QgbdnpYQw9r8ElBQMRvqS6FQqJIqWiIOY9NoqSxQgzt63Pj7nBUBDusEKx27Q6RmyuQHMuSGs/WiaUlRcLX5yI1nqNslFk8ml4h2pZkibJRxigaSJKEYpMp5Y16gRLg7nAQ2eQ347SWz7083U68vS5mnlqklDdYOFQ/51HsMo6AjexcgfREjsxUAwFIRWyVGsuSj2kNBU4AelZHSxYbCkhAvKNcERFv1sg5CIRTVCGuNY1hcwRshNb5hNA903hOJJyppKYCJag48LRIy/IPuClpRksR0y8CxSETGPKQqAi7lqMli0w80jgyr0rZKIMkIdU4AS0nMORBUiTmamLIalGdCsERHyXNaOpQ5QzZG4qUquiZkhDfNGlrejJHMVNaamNl3JmfT+RMgZJsk3GGbHWCvtqx7+504OsXgrlqfbVjzj/gxu6zMf14rRC9xoq8dmwsa0fVUa3aD+5OB3reQKsIizLTebKzwoVMUiR6zw0TO5o2+6X2bxd31E5wxMfkI/MYuhD+NRtzsiph99mRFiNslSJsVnaT6Zrn8MRBnmMvAW+QG9/0Bj70oQ+xefPmxp1s8bJGURQuueQSLrnkEmKxGN/73ve4++672bt3L4899hh+v59vfvObZ7qZFj8nujeFecNfXcih+8d4/PYjaFmdYk7nkS8d4vAD41z4m1vp2Rw+0820sLCwsLCweB4UCgX+9E//lLGxMf7+7/+eoaGhtr8zOyuSHP7iL/5ixWdzc3PcfPPNvOc97+Gmm24yf/61r32N2267jTe/+c386q/+6gvWfgsLi5cupWKJmSNxU5Q0fypZ992IrEp0bwzTtz1C37YokSE/kmzF0ltYWFgipRct8/Pz7Ow4hxnGTdckP2FG2EJE6q4ra/erDFzcweSjC8QOp1ZEZYU3+Ihs8XP0GxPo2RJHvj5e5+TjCNrEDvGpPOmpHHafDVkGw2CF6Cm03ofqVFg8mkLPr4yG2HBjH6nxHFOPxRqKU6Jb/MRPpdGzBifvnW4au6bnDTKzeYrpxotKqluma1cIZEm4Jy1bjJFVmXWv6yF2LM38vkRDZyFPlxNZlUhN5Bj/8XzD48iqEMucur9J/FqFqgNTK2HQ8bumhIClCXre4MTdzR2K7F4VXTNWirFqy/hUnGF7S6HTwGUd5i7wnxZ3h4P+i6Ocun+mqSjL7lNR1BYnXLPbvVk0nSmKaUJmKs/hr49TbOJMBTD2w/mW/Z6ZygtxTrVbl4mMMFiK32vi3JQarcaLyKy7oY/pJ2J1IqLqfSTbxbi1uRVmnoyvaIsss8IZo5b8gsaxb0+aYipxPy3F3qUmcmbUm82rsv51fUw8Mm+Ofy2hoyVEX3l6XYQ3+Jk/kFxykKo579REFq26SCdDaMS7dL8bcPhr42bZrl1B3F1OTn5PXK/MTL7OWa3vwijJsQwTDy0gSzLO0RDbuIgNaMx0HGehNMttt93GbbfdRm+kj1v+5i9529ve1rAPLCwsLH5ePPfcc7xm+41McRqdIiE62MZ5dNKLLNVbpPvXuHGG7EztjVEulYXjSxVJxEVl5/JkpvIkRzMrhLKuqMMUImSm8+a8bLmoR1Yl/ANuCskihfhKwawr6iC8wcfUXuHsMrtMOKLYZRxBm/lu0VKxpq5CWkpvKsgF8Pa48PQ4zWi35QIjd6eDwBoP008KB6dG4m9vr0sITLKlhuKiqnNTMVNicm9rQc3MU4tNRU4gxGKTjy40jYGD1u9cEOJ+PVtq2Q7VrbScZ6guhchmPwsHk20dl1oRHPFCGeInGouyyqUydp9NxIs1O+eyGFNIUp3bV5VCokghsdKdspbY4SRGEwETCLejyUcXGtZfZeHQklCvkVtXIVk0HYIcQRtG0agTmpUNzLHq63fh7nAy8/Ri3XWqCo48nQ78azzkFrSGwis9bwhBXZNzih1JoTjEBVYcFaFezZipHceBIQ/OoL0uHrFWEOXtcVHM6KZISZzL0nFTkznzM7vfJpzXKvdreipPbkETAikJuneHSJzKmAKo2r91qs+FiZ/MYxTLyCUF32QXZ0tdZMpJEtFpvn7HN/jyl79MUIqyoXsz9x2+C5/P17APLF7ehMNh3vKWt3DuuefyyU9+kn379pFM/mzubxYvfmRFZss1axg+v5vHvnyEIw+Iv+0Wx9LcdcujjFzYw7m/uglPyHmGW2phYWFhYWHRjlKpxIc//GH279/PRz/6UbZt29aw3Pz8PJlMhr6+PlRVZffu3fzVX/3VinJ/+7d/S3d3N29961tZu3at+fP777+fT33qU1x99dW85z3v+bmdj4WFxYubcrlMZlZj36mTTOybZ/rQInqh/vuu0IBPiJK2R+nZFEZ1tI6etLCweGViiZReZDzwwAO8733v44knngBAxc4g61nLVlRp6XJFtwUIjXg5eucEWlLn2Lcm6xaWnGE7kgK5OY1CokhuXjNdVZZHjfVfGAVJ4vhdk2gJvV7kJMPQVV0kTmZYPJpm/IfzK4RLzpDdPHbsWJrsbONdvapTpnNnCBSJ+X2JFQIl1a0wfE0304/HSI3nmHhopYjGFbWTi2noWYMj35xoKk4xdIPUeI7sdPNd7V27QyBhijqWExjy0Ht+hBPfnWoqpgpv8IEEscOppgKlwLCH3FyhacQbiOi8/GKxqRsQiBg/Z8jOkRpxyHJSYzlSY80/B9BSRUotREyrQS+UyC82d54CmHy4vQgqui1A91khDn111HQDWo5sl+k+K8T0E4srxh5gjoHoFj/zh5Ir3Jmqv2PzqnTtCjH+8NxKB6fKv4eu7ERSZVNss5zAoIfOnSHSUzly841dl1IT2aZxd4ZmcPSb46aLkrvLUVfW0GH8oSXB3LrX9RI/nq5zQ6sKlGS7TOfOILJdZraBILCUN1g8ljLHd+19CpA4kVlyX5Nh3Wt6mXk2bgquxFgSvxsY8tB3QZTcgmYev1YsV0gVUWommsERT51I6+g3lsZkdHuA4JCHY3dNYjfsDMxvZoDNzDPNCfazkJ7n7W9/O+973/t4+9vfzgc/+EH8fn/D/rSwsLD4WdF1nTvvvJNPf/rTPPjgg9hx0Mda+hjGLXnNcpIMnTtD4hk/WyBxKkv8RI3wqCZKjXLlXVt5ry13NLJ5VTq2Bph5ZpFCfOW73xmy4+t3MbcvQalgMPGThRViHNWpoOdLFBIaqfFsU7FO1R0pNy+ERctFMt4eJ66og7l9CYoZncTJlXMVm0cVn41mSE1km7ojFZJFsvOFpmIPu08V0VgZval7ZXRbED2rC+FHo2okIZpNnMqs6FeziCxEGtnZQlOxjqxKePtcpMZyTftOscv0nBNm4UByhetULbHDjV02TcpirtJoDvN8aCdwMvRyndtPM7r3hMktFJo6UIFwoVIcckMBV7XfFYeMza02FLZVBUqebiclzWgaRWdzK3TuDDK/P2mKkpYTWOOhVDRYaBKZV0gUhZ1Rk6ltaiJHdk6MS0mWUJxy3ZxdSxZNYZAzJOLX5vbFl8ZXGfNednc48A+4mwqecvOFpbolUB2K6W4JMPtMnEo6N+5OB66wwxRslUvlunjH0IiXUqFUNwesjmdJFnF7xcqYsHlVynrZPFZmOk8hUcQoijZ27wmRHBPPLo/kxzPjp7s8wiyTzLpG2Tv1IyL+KO99/x/x27/926xfv75xZ1q87Mhms9x7773cddddHDlyhHK5jNPp5IorrjjTTfuFcd9993HfffeRTjd/Jr6ccfkdXPrO7Wx61QAP37af+ZPimXP84SlGn5zlrF9az7Zr1yC32nxkYWFhYWFhcUb5x3/8Rx566CEuvPBCUqkU99xzT93n11xzDQD/8i//wne/+12+8pWv0NPTQ1dXF11dXSvq+/SnP00oFOKSSy4xf3bgwAE++tGP4vf72bNnD/fee2/d72zbto3e3t6fw9lZWFi8GNC1ElMHYow+Ocvok7NkYnlgyXDBFXTQt02Ikvq2RXBbmx0sLCxWgfVNw4sAXdf567/+a+yS+ELwqaeewk+IC3xX8js3v5uzes9DlVT6L4uy6eYBAAqLGs6Qjd6LIgCUigabbhrA1y/yO9fd0MfmmwYB4WqiumR6zxeW3apXZfe719O1JwSIL+9t3iWBwZpXdTL4qk7z3+F1Pjw9ol7/GhebbhpAruilhq7uYtuvDxHZJHbeRjf7cYZEnFRgyMOmmwfouzCCrMp07wmTTxSYr7jQbPilfqLbAoCIU1v32l70nE6paNB7foS1r+4x27D+DX10nx1i7TU9DF7WyaabBlBsYvh2nxNm3WvFJDi8wceWX1lD154QU4/FMIwym24awN3hAITjy/rX9wFw6v4ZJBl6zxN9aPerbLppAE+PeIE6wzbsPtUUKA1f203vhaKs6pbZdNMA4c0+/P1uolv8bHzzgNneoau6GLhUxHL1nBNm61uHCKwV+c2h9T423bRUdvCKTvov7sA/5AZg000DhNaL/gys9Yj+tstMPxbDKJQYunLpj4eNbx4gukUIOHxDbjb/8gCqW/RL30URhq9dct3a8MZ+otsDzDwZJ7dQYNNNA9j94kL2nhdh5DVL/e3qcBBYI9rj7nCw6aYBnBFxXbvPDjF4WSejD8yiJXXWvbaX7nPE2HKG7KK/u0R/d+4KsuGX+s16176mh97zK/3tVenY5mdufwI9bxDdFmDDG5fKDl/TTf9FUVSnTGi9l62/Ooh/ULQpssnHppr+Xnd9D2uu6iI47EFWRR8GR6r97RXtD9nw9joZvra7bnxvummA8EbR31qmhLfXhWwXfdh/cQdDVy/1d/fZIeaei5Ob1/ANiHvB5q304QURhq/uZuKhBbS0zoZf6mPDL/UjqzKeHqfo74CKnjXoOTfMyA29DF/dQ+euIOtv6KVrd1D0fVT0oavTTn6xiLvLwfoblv7IG7m+l55zwhiawcnvzxDe4MPT4yS6xU//xVHWv0GMb0M3cEYcdO8JgSz6ftfvjJjPiOhWP+vfIOpVnaKN1ftY9Yp7ITAk+lCxyZRLZXORccfbhllXuY+QKwueMbGQ2XNumI03DuAbFMcZuKyD/ouipgitZ7d47mCIZ8SOt6/F7pWJSt288eKb+eXLfoMh5waSi0k+8YlP0NfXx7XXXsvRo0exsLCweKGYm5vjox/9KD5HgDe96U0888P9bOM8XjtyE+dvvQi35EVSJNa8qhNPt5OyIYQX0c0BFLuMUTTwD7jNeYwzaGfo6m7hdgPk5gqENwj3SRCi3Oo7uZjW0bI69sr7Q3Ur9J4XMd/Jrg47/gE3kiKZv+uvvJMVpyzeA+eK96476sDd4TCFQ9GtASJb/Lg7Hcg2GW+vi9iRFGVDOEj2nLMU3xLZ7MfV6URL60iqRO95EZxh8a53dzjoPS+Cf9BN164gkc0+wut9potL73kRXFEHkiLRuTNI7/kRDK1M4mSG0DovkU1L4tKec8O4Ox1oKZ2FQwkim/xmlGtwrcecx4AQelWj1ex+G73nRUwXm8CQh+7dIVwRB6pToWt3CG+feNfYPCq950VQXQquiIPecyN0nx0y6+3cGcQ/IPpQdSkMXNJBcFhcY2+fi66zlsp2bA8QGPJQ0gwWDiUJjnix+20AeHqcdJ+91IcdOwIEK/M72Sb60BEUZd2dDnrODaPnS8SOpAiN+AitE+NDkuv72xGw4Rtwm+ce3uATQvgKvedFMIoG6ckczrCd3vMi5vgIrfMS2eyvK+vpcpr19p4XQa7MmQPDHspGmURFDNO9J4S3Mu+1+0QfKk4Zd4eD6LYAHdsDZr1dZ4XMOYTNozB8dTfhyrzBN+Cmc1dwqb93BPEPunFFHHi6nGJ8V8a7t9clNgoAxVwJxangiop+UOyy6MNApb+7ncgOmVhFyBPZ4jfvMbkyZmVVJjWWxd3pYM2runBV5qvhjT5C60XZUtGg97wIHdv8dO0K4eoQfVjt79B6H+GNPnMzR/eesPm3gzNkrxxHEhsgFjTCG33C5WzQTc85YTzdTvO6BoY8KHYZb7eToWu66di51C9du0N4uit96FIIrvOaz4jAsIfOHUtly5Qp5irulz1O1r2uF7tPlPX2OLH7bKYgauDSDvoqfxMqTtlsL4CvTwgRq2W794SIbPEjSwq99jVct+MGrux6PT2s4e//9pNs3LiRgdAQ999/P+Xyz7apweLFy5NPPsmtt97KjTfeyCc/+UkOHz7M5s2b+b//9//y9a9/nT/90z890038hXHVVVfxsY99jN///d8/0005o3SuC3LDLRdy0du34vCKZ3AxX2Lvfx3ia3/2EJMHfnoXZgsLCwsLC4ufL8eOHQPg4Ycf5tZbb13x3wvB6dOnKRaLxONxPvaxj604xjPPPPOCHMfCwuLFQzZR4PADY9z790/yn++6n+/9zeMcvG+UTCyPrEr074xy3q9u4o0fu5hf+ccruPz3drL+kj5LoGRhYbFqLCelM8js7Czvec97uPPOO9E0DRmZTd1bWefYTn5URzVkkmNZipXIpcCgx9zVm5rIMf1knGJGCGgkVUJ1KUiVRZ/xh+dxVxY+QEQEGKXKjv68jp7TKVd2dGem8yKqokIxW6JjR5DYoRTp6RzTTy0Sr+y21pI6ybEsnl4XqdEcybEshm6wcETsIk+OZs3d8YVUkdxcgcCwl9R4jsxsgXzNLunUWJZiVmfkNT3MH0ySHMsy+9Qiet4Q0WbVHeOyON/MbIHM9CyFVJHolgB6QfRLbr5AuXJuYvHFMOPDSgWD5FjWrEu2i4WXanxHajxn7tw2NFFWtgnRRna2UOdQk57MmTuUDR2SY1lih1Pk4xqeLiepsaXdz+npvLmL/Ni3J+jaHUJLVfolqZGsKZudyZOZyi314ViWQlK0X0sVzT7WNIPYsbS56FDtw1xlB7vdo+KOOrEH7OjZvIh1qYliS41nKSQ0nCE7xay4jlU3nMxcvs6SsZQvmc5PeqFU14e5eY2yUUZ1y8iyTGoySz5WbFi2doEWID2RQ0tX+ls3SJzOmrElhUXhBmG2dypHKW+gJXUO3j5G956QGT+WTxTr+jB+KkNyMifce+RqH1b7W5RNjeU4NDFGZIOvLvM2OZY1hWiLx1Jiwcow8PQ4yc7mTcGS6O+c6SoQXu9DdSvmrvbsbL4uiqSQKOLv9+AICgeK5FjWHBPZ+QKGZjA7v0hqMoekSOQrbdDzlTGbNRj/8ZyIDonYhaPZ6SzpiSz5yj1WrIyPYkan97wIpUKpzhksPZkTzwgDxn40R3Cth2KmhKvDjpYtmU5JelY4dVTHw9qrupBV2bxWhXiRxcp1ku0ypbxBflH0g6zW92HiZIZpn3BDAyF4q3VQWDicInFauI9IqoTNpeDqdKGlM2RmCyhOmXWFHayTdqCck2P/2LPcc889bNiwgfXr1/O+972Pd77znVhYWFj8NDzzzDN88pOf5Mtf/jLFQpEedQ2berYiTwshkp4yKOXEM8sZtGH32kzHlMXjabSMbkZdyXYJm1tMpfOLGtNPxMwIt1JRxNaWK+ohPaejZ3XxjilDZipnvjPKehnZLhNe72P6iUWyswX0nGEeN79QoKQbqG4FQxMuednKcYrZUp3LT35Rw9NTcU9a0MjM5M13cjEnynq6nDiCNvKLwg0mO1dAkiEzm6dUmeeUCiUys3lS4zny8SI2l7IkWCiLsnq+hM2lmHFy1c8LiaIpoAEhSnaG7GRnCxQzot5y5XVZSOrouRJ2n4qW0omfTFNYXJqXibKiXi1VpFQR6lAWQrDqHNnQRVlDF+cz9VjMFEIB5BYKZn8bepn4qQzpqVwlRkw3rxtALqaZ/ZBf0Mi48+b7Uc+WyM4tuXQ6g3ZsbpX4iQzlUqUPC9VrXiI7W0BxVIS+8SX3HWGNnadUmXuVNNGOqhtQPq4hSUvtr/a36lLMa0OD/rZ7VTzdThKjGbPezGzedIvSUjqlgrE0H5krUKyIV8wxq5dZPJ4mF9NQXUtzuOz8kiuoUSwzfyhJujLnKKZ1sz1mf+fEnFBWJXz9bkqVY9b1d1k4UZUKJWSbjKRK9X2YLZGbES5gil2I7hKV+UjZqPRLpQ/1XAlDN3B3OMktaBTixTqRTWY2T26+gCRJGCXR/9X7sZAQ/a2ldLRUCmPIg6RIdGwPED+dqevDwqKGpEpCWNbvJjubNwVA1f42SmUyM3nm98fRc+JcHEEbufmlMZuezoOcwCgZOEN2Quu8xI8vObmI8S3qlQAto1MqiDYUs7r5DACYe3bJ+Ul1KihO2Tx3LV1i4WDSvHaKQ8HmUVlARM1lZvPYUk42SDvZ5NtJumeOfcef5qqrrmL9+vXcfPPN/Omf/ikejweLlzazs7N85zvf4Tvf+Q7T09OUy2WCwSA33HAD119/PUNDQ2e6iRZnGFmW2HzlIMPndvP4V45w6AdjImZ0Is3dt+5l7QU9nPerm/CErUUHCwsLCwuLFxOf+tSnVlXuAx/4AB/4wAfalrv99ttX/OzVr341r371q5932ywsLF46lMtlFsfSplvS7PF4nWu1J+xkcHcng7s7ScizbNux9Yy11cLC4uWBVLa2SP7Cee655/jd3/1dfvzjHwPgwMkaNtLPCLK0JIhwhu0MXtbBqftn0JJix/3yyLCq2AYZ1r22l5mnFk3hQS2+AReDl3Ry9K4JtETj2DFXh53cnFiY69oTYqHicLOirkE3Q1d0ceKeKTJTDeLUZOjaEWTm2TgYQtRgNI3bgKFreph5arFpXetv6CM9kWOqNoZuGXa/KgQ5MiujvGrLBVS6doYY+3GDyK8K69/Qh54rNY38ArFjOX4qY0ZjNcLTIxZJmp07CEcmxa40jZOrMnRlJ4nRLItHm9vQq26Z4JC3LhZiOd5eF8NXd3Ps7gnzWjdi21uHmHkmztyz8aZl1r2uFz1f4tS9M03L+AZcGHq58bWtttspM3BpJ7PPxMnMNC+HLJwdmkWpVfEPukm2uC6yXWbg4ijTTy427Xdfv4uhK7s5ee900wi+wFoPTr+NmQZRa7Vtro4zc4w2wO5XGXlNL5OPLJA4lVlZQIahK7pYPJkmcaLB59VjIY4XHPFQSBabXuP1r+9Dzzcf48ERD3pOLATbvSqGbjSN4xu+pptyyeDU/bON231VF8nTQtAn20XkZO29V9svQ1d2kosXmXlisa6adDnJKdd+ktIi2WyWaDTKH/7hH/L+978fu92OhYWFRSvK5TL33HMPn/jEJ7jvvvtw4GKAEXoZxi456soG1niQ7TKLR4VwWLHLdZFhkgxIEuVSGU+3E2fQxsKhxnFf0a1+DL3cNA6s6m5jFA0cAZsQrDaJxao6rMw2eS/bvSqyXSYf05Dkil6kyQzf3eHAGbITO5pqWMYVsRNa72PmycWmcWmKQzaFJFWhRzP8A24KqWLTd64zZKdzR5DpJ2JNo3FtbgVfv5vFY+mm8WxIwjmo3ZzK7lWF6LlFmx0B25ILVZP4OgBHxWGpWVQZQEfFbWvuuUTTMr4BN4FBd13k64p2+210nxVi6vGFOlF0HRJ4Op3kFgpN4/BAuDw5g3ZiR1pH1akuIcZu1QeyKqE6lZaxxs6QHWfIVh+RuIyOHUEkSUSiNUSC0DofydOZpuOyWo7ysjHagMCwB0fA1jAyF5bcreb3J5qOFUkRzwIk8PW6SFUEdCvqCtro2hli+skYWmplP8mqhKfbaQq8qxGLjVDdCt1nhZh9Nt6wLmdIOLFVnxWyTTZFaVWqzzXVrRDdLFxNSzXzvHK5zCJzzIdGGVs8jYqNP//wB3jb297GwMAAFi8t7r//fu6++26efPJJDMNAlmXOPvtsrr/+ei6++GJU1dq3BnD48GHe8Y538PnPf56NGze2LX/gwAG2bNnyC2jZmWPueJyHbzvA3Iml95fNqVgRcBYva14J97aFhYXFi4HnO/d6qfNKe7+80s4XXrrnXNINpg7GGH1iltGnZknP1a+FRdcGGNzdweDuTiJr/OaGupfq+f4svNLO+ZV2vvDKO+cXw/la30j9Avn2t7/Nza97C1mE0MRLgI3sIiR1LBWqEWJoSR0trZtf/iz/8j+6VUQWHP7fMfS8wbFvTtYfUAZPh5PMTJ7MVIHYsZS5m3c50a1+uneHOfL1cbS0vkIkgAzBYQ/x40KY01SgBJWIiCDZuQKpidxKkY4MvedHmH82gZbWOXH3VMN6ADCEM0t6urFQBETMVmDQw+H/HcVosj7i6RH9oCV0xn441/x4wOgDs80XwBDCKrvPhq1md3kjBi7uIDtXYPSBBuKNCp07QgTXejnw5dPNxVWVBdF26FmjpUAJxC74Uz+YIbfQXKC0Wib3LmBorTWOjQRzy9HzBrJNRna0/pKz97wIwSEvB77SvK9cHXbWXNHF6I9mm4t5EAt9zqC96UJmajzHqR/MNBUoASROZKh+Xevrc9U5GJlU2tlzTpjgiJfDXxtvKFrT0jqJ0xkyzca5IeIJq/ScEyZxKlPnnlHbJx1bAxRSOqM/aDz2Tt47ZS6OOyN2JEk4ZFWJH1/qu94LRETLka9PNKwrdixlDk/VKaO61aVFdgNO3bPU7r4LorjCtrq6aoVbhZSOXlmUqxXweSU/2/IXoMs6R3mGqfnTfPCDH+QTn/gEv/Irv8InPvEJ3G53w/ZZWFi8ctE0jf/5n//hPb/5h6RJ4CPINs6jk746UbjqUjCKBoZeRi+UkGvmAMvFEN1nh8nNa8RPpMlM58lM18+FbG4FvSBEHZmZghBmNqHrrCCFeJHYkZTpQllXl1elrJdFXNjR1AqhQS2+ATeyTYiUyg2K2X0qjqCd1FiW7Fyh/v2xjEKySGY6bzrfLEdWJbrPDpM8lRHvvkZTAUnMlbRkvfNhI/KLGjPPLLYUuagu4f7SSlnkjjqIbPEz9WjMdL5c0SxZonNXiORopqWgWVIk5KoApQWtxElVFo+nkV6AddxiWmfm6cWmc3lAuFy1EnzX0mZqKSkS3XvCJE9nWl7D0HofNo/K9OPNNxMoDllcvxaCtsUjqdbxYmVM8aAkS9jcTYRR5aW2p8azTa9zbr7QdJyAcKgqJMRMT3UqwqHqdKau/dXx4QjYCAx7yS1qpqtSXV3xYp1AyRWxk4tpZl2GXjYFSqpTofvsEPP7k3UOX1UMzSA1njPP3e6rbGKpunAtauQrLqvV+LyFQ8m6e776XJMQbmxVMVdVwCchEaaTcLyTQXUTp/Sj3PLhW7jlllsZdK3lu098iw0bNjTtO4sXF3/5l38JQE9Pj7kDvrOzs81vWVhAx0iQG/7yAg4/OM5j/3OYQrpoRsAdeWCcC39rC71bIme6mRYWFhYWFhYWFhYWz4N8UmPs6TlGn5xlfN8cxdzS9xiKTaZ3W4Q1uzsZ2N2Jx4pus7Cw+DliiZR+AXzhC1/gz//8z5mZEYv1EbrYyFm4Je+Ksr3nRggOCyGGoRsrXGrsfhVHwEZqLCciAco0dThZXtfU3vrFA9ku4+lykBrLETucFBEHTRaIopuFiCkzU6CY1hsKlMKbfMQOpcjOFDh8x2jTdql2GX+fm9xcAa2JM1B0qx/KMH8g2XxHdYXZZ+JkpvNNBUqyXWbNFV0sHkut6INaOrYHmNufaLsD39Dh+F2TLcsAnPjOFEYLsRPA9OMLYsGjxXoTBpy6r7lbESCEX+dGmD+YaOqUBZWFjRaLcs+Hdo5GVaLbAmKRssVxV9Ofs8/ExY7/Fn2Vm9M48d2plgt0hmZw9BuNBTe1VPspMCRciZq5W9i8Kmte1cXM04vM7WvskjC3L04uVmjuqmXA5E8WACH06b0wyviP5xuWl1UZ34DbjO1pxNFvT5riRl+fi0K6WDcu9KxBtSO7d4Ww+5uLkMYfmsMRsJttc4YddeKtWjFY51mhlkKyuefipuuEbJcJrHHXuYPV3p+dO0Lm86tal2qobJb2sLF8FunhGQ7NPsfnPvc5/uVf/oUrrriC2267jf7+/obnYWFh8cohk8nwz//8z/zd3/0dk5OTROlmAzsJ0VEXoQVC7NC9J2yKVpaLjqAiHp8viMiT42nhYlOtp0ZUISkSXbtDJEeFMCIX08GoFyw4Aja0tE65LLNwKCUi4JoQ3eInv1hk8WhqKQK3BtWlIKsioip2JNVSYO3w23B3OESsaoNisk0iuNbL4rE0RrHc2NWvQtUdqiqEaISvz0VgyMPkIwtNHX1sHhXZJlGIN3dZqpJb0NoKrLNzBfQnFlsKT8pGmZmnYi0ddgDyMa3pe7+KM2xHscltRUGNrt1PQ9koNxSzLUd1KXg6nWa0aiOyswUzvrbp8UrliltP62PGj6dp58vbSNC3nOp1k2QJd5ejpQtnYMiNp8vJxCMLDcdzuVQmdjjZsr9EtJu4/7w9ToxSuWmf2P0q7g4HybFsQ+FaIV5k8pF5c6y7Ox0r6qoeS3UqRLcGWDiYbDiP0/Ml5p5NkI+L8ecI2tCSunl/G3p5KTZXkejcGTSfOcspFQ1iR1NCEFWpS8+WTJFSMSui4My6Ggj4nCUvm6SzWGfbxmJ0nIOTz7Fx40auuuoq3ve+93Httdc27DOLFw9XXnkl119/PXv27DnTTbF4CSLJEpuuGGDonC4RAff9+gi4kQtFBJx72eJFqWzwZPoE88UkUZuf3d61KC+EYtfCwsLCwsLCwsLC4nlRLpeJT2YYfWKG0SfnmD26WPc9jivoYPAs4ZbUty2K6mhtzmBhYWHxQmGJlH5OGIbBpz/9ad73R/8XnSISMr0MsYFdqFJ9t0e3ByjlSyweTTP7bFzEbzRZO+k9J4LNp5Iam0DPr3TOcXXYUV0qqdEss88utqyr55wQ/gEPB28XDkQrvtyWwdfvJjWaZX5/kvRknmITEZOv30XvuREKiSKZqXzjmLgBF5mZAnre4ND/jrUUm7g7na2jJewy/RdFGX9oHj1bInGyxWKaZnDq/umWrgGuDjudO0NoKb35wpwMQ6/qYvaZeMu67F4VLdtc8FXXNp2WizAg+q2dI5EzYCc47CVxOtNSpBRa70NWaBpN83xwhu2EN/iY3LvQ8lqG1nrIzBZaipRALABJstR0oVLPlhruTl9OdbHQHlBb9gUy9F/Y0dZNoWt3iNx8oakDVzGtc/K+6ZbXUc8bpjtR584gWrpY51ZUiyNkxxW2o7pktAYiJUM3OPKNcbPPA0MeEqPLhG4GpsCp++ywiC+8p3G026kfzGD3iWeS3auiuOS6mDg9a6Bnxbl17AgSWufj0O1jDd1BJh+txNUZwnEsvCnAfE28TX5BI19ZZA6v89K9J0xmKt/wXqkV8Mkq9F3YwcyTwmlDlmT8p3o4lx5mGWc6cJL777+fgYFBrrvuWj73uc8xNDTU8HwtLCxeviQSCT7zmc/wkb/4S3SKdLOG87kGr+SvK6c4ZPwDbhaPi+iwVkIM1akQ2eynfEC4muRiNeXKIubJ0+0kM50Xoo7nUkKMICsrBEqyXaVjR4jEqSypiRxaAxcem1elVChhFMvMPZtALzR/74XWeUGSmHs23nDOJMngCNjJL2qkJnJNo6hACGAdfhuqU24aJebucCApEpnpfEOHl1pSEzkKiWLLyDFfvwubR2XmycWmZVwRO45A65gwAMUpU8obq5p7NY1Kq6C6FMpGua2QyRmyY3MrLUVKkiLh73eTnsnVxWn9tHi6nRhFo6VgS3HIePtcpKdybWPRHH5bayHPKpyiTFceGSRlZbRYLXafiq/P1XIe6gzZCI34KCwWmwrOEqeyot9biKOqfSSrSwK8ZkI+u99GuYVIKTtbcR8rV+Lt3OqKvqmOdUfQRmSzHz3b2B1Mz5eYeixmitccwco1qGlaVQAoyRLRrQHhCHV65Vy1XCoz81Tc7CdnyI5eqJkvl6kTh4XX+8jHi6Yj1cq6lgR87g4HkiyZ41st2uiYGibMINOM8tgjj3PdddcRoYuvPXg7l156acO+szjzfOhDHzrTTbB4GeD02rn47dvYeMUAD//bfjMC7vjDU4w+NcvuX1rP1mvXICsy9y0+y9+MfZ2Z4tLfgV22AO8fuJGrQjvO1ClYWFhYWFhYWFhYvGIwdIPpw4uMPjnL6JOzJGfqv1OIrPExuLuTwd2dRIcDSHL7JBcLCwuLFxpLpPQCYxgGH/3oR/nwBz9CCR0ZmUHWs47tddEitfh6XWjpIotH0w2FGD3nhMnOFUicyjD+kzmMFhu7u3eHkVWZ1Gi2Ii6oL+wI2rD7VFJjOaYeqzi/NFlL6NoVJLo5YMbJNdox7+4S0XSp8RxHvznRVGAi22UGLu5k8XjFzajRMWVwhe3k5rWmMVXmeQRU3FEHDr9aF1NVizNiJ7zex+QjC21df3JzGoe/NtZSBGNzq9i8atsX9sBlnRilMie/2zzGTlZhw40DTD8ZaypWAbFAMPSqbkYfnG3papBf1DjwP6dbtgvA2+tCcUgviEjJ7lUJrPEw91yiqXgN4OjyGMImDF/TTS6mMfr9FtdehvU39LF4LF0nflmOf9DN4OWdHP/OZJ3gpg5DCKPs3taPwRPfnaw4DzWnKlBydznwD7iZfrz5gqu7y4HNqzS97pmpPIfvGBf/kMEZtK90c6g0x+ZVGbikA/vTalMXp+PfmUKunKIzZEfL6PUOTQammKtrTwhPl5NDt481rGtqb4zF42kM3UBWITjiI3Y4VVdXtS/8azx0nxUiNZ5t+FyYP5AkOZE1F/AGL+9kdl/cFDHVCvicEQfeHhczysp+7ZT66VzsJ+VaYF/2cb773e+yceNGzjrrLP7rv/6LkZGRhudiYWHx8mF+fp7/9//+Hx+79eMYlOhlmDVswCV5GpaXFQlX1EFqMoeeLa0QG9g8Ct5el5iX5UtM7l0QApMG0as2l0J4vQ+9INxUaiMsq7g7HWQXdAxdCAqK2dIKARMAEnRuD5CZyRM/kWko0JAUCdkmUcobLBxKtRR0e3uXuRk1KGpzKxRzJfScEE60whGwmSKlZgTWeMjO5SlmS6ZzTDNih1PIttZzKsWhoLaJ17X7VLp2h5h5Kt5SVOPrc+HqcDD7dLxlfYFhD6pTaSmeAuEg1A7FJuPtdZKLFV4QkZI76qCYK7UUKRXiRSYenm9blyvioGNrgMlHF1q6T7k7HASGPEw9HmspCurYHsQolVvOzyRZQnUJBy2j2Liy3ILG5KMLLcVOZaNsis0Cwx4hyGrSv4pTwRG0oTjkpq5WtXMZm0dpLGSrNNc/2NrFqRAv1kUO2rzqinlytR2KXaZze5DFYynSDcTuZaPM9BMxM17ZEbSh50p1ArpiZqnuwJAHPVdi4VDj+OfpJxfNx5grYkd1q6Rqovxqz9sRsCGr0goRniIp9DFMb3qIWWWCE6UDXHbZZfRE+rjtv77ANddcs8KxzuLFha7rfO1rX+O+++5jdHSUQqHAD37wAwCOHj3Kt771Ld785jczMDBwhltq8WKkY21ARMA9MM5jX65EwOVKPPqfhzjy4ATlt8rcWrhjxeNxtpjgfSe+yCfW/qYlVLKwsLCwsLCwsLD4OaBrJSaenefEI1OMPT2HVuPeLqsSvVsjQph0VifeqOsMttTCwsJCYImUXiAMw+DjH/84f/GBD2JQQkFhmE0Ms2WFOEl1K4y8pofJvTFSo1lOfq+xw0kVd6fYNZ2AhmKJ6LYAhcou+bEHZ9Fb7JruOTeMzSWcmAzNaOjU4u5wkJ0rMPN0nMTpbNPYNl+/i6Eruzl137TYMd9AiCCrYFRcXU7cM2UKEBoh4uk8HPrqeEOXFhBiJ0MzyM1pHPpqYyFFFW+PC2+vC1mVm9bnDNkJrvMy/VisrUtPMa2vKiZs4pF5FHsbK3NZJjWZFfExLcjOFdrGlz0fxh5sLf56PohoidEXrL7RB2YpxNs4IBiQnsxRiLeOYEmOZ5ncu9BcoFThxN3NhWRVqvecp8uJp8fZcnHT1+PC1+9m+snFpuK/U/csRfdVx3Mzes+NEBjycPiO0YZxhsW0LoRYFaFeo/oMzTCFjYOXd1DMNHdVGvvRHM6Q3azL7lFXiBOr93BwnY/ecyKkp3INF+XjxzNmPCRA7/mRFYK2qjjKHlBxRe3IauNFrexMgYNfWRpr61/fx+LxeqGaLxfhQulasq4EM50nefTRR1m3bh0XXHAB//zP/8z27dsb1m1hYfHSZXFxkU984hN8/KMfpwz0s5Y1bMAhrfxD29vnwh11MPuMEAlNPrLQtF5ZkXEE7Ch2mVKxTKlQrhMoKQ4Zb7eTxGieYh4m98ZXOtYYJZCFwCayOSicmBY0IVBahupWKOUN4er0TLwuC3450S1+JEVi9ul4UxGHpEiUS2VS4zlyMa2pm5GkSHSdFSI51jgqanl9i8dai3IkWcIVFU4ujc6ziq/fRT4m+qKZUKVKejJXFzHaCC2ts3Aw2db1R8voq9oZFjucQnG8MJE0er7ExE+aj7Xny1wLAdDzJbdQYOrxWEuBEoh+y84VkCSJcotct8TJDKUWwiKAQqLIzFOtxV+AObYDazykp3NNXa0kRRLCrYxONt94Tl1M60txshLiPJo4KkmKRNeuSmTjWON7In4yIwRFZeEeVS6zQqxU62zUuSPI9BOxhq5KJc1g+smYKQ5qJGiqFV+F1vnQUsV6gXgNM08vIitijDuCNhS7XOcOVS6Vzaba3Cp2v41m2xZq73dXxE5gyMPsM3HzeSJJEl1GP530kelY4Gh2P9dddx0BwvzLVz7HTTfd1KRmizNJoVDgj//4j3nuuecIBAJ4PB7y+aW/M3t6erj77rvx+Xy84x3vOIMttXgxI8kSm15VEwH3AxEBtzCe5N/nf0TZCyx73ZYrP/qbsW9wRXCbFf1mYWFhYWFhYWFh8QJQ0g1TmHT6iVmKuaXvFJx+OwO7KjFu26PYXZYcwMLC4sWF9VR6Adgo7eI4+ymho6AwwjbWsGGFOKkaP6VnS2RnC+i5xoIM1a0wdGUXk3uFA9Dxu1o70YRGvGSm86Qmcg0FRc6QWGjLzOQZ/+FcQ7FDlZ5zwyLO6Y4xDM1oKCqSVeFykhrPMfrgLKmJ5otHI9f3kV/UGPvhXEuBEojdvamxbFNBEcDIq3vM+tox/1yC+QPNnaJALFoG1rjFl+7NxCKycHmZfiLWOj6sQrvzBCEcmXhodYtWqxEobXxTP7HDqaZuOmcS2S6z4Q19zDy1yOLR5guczRyxlmMuNLXCgNjzcIvqPidMbr7QMjbQNyAESLPPxpuOqZmn48y0+LwWV4edtVf3MPqj2aZxftOPL5Iaz7a8Z6v95oraWXtND6M/nCU13ri+0z+YNRcYq/dxHcbS+O09J4xvwM3B20cbnk/sUIr05JJAKbTetyI+pLrQ5gyJxa3kaLah65aW0Jfco4Dha7tJns40dvySxT2RWxCLbjavSjGrm2105wIMn95FB8Mc4HEeffRR9uzZg68YYv/UM3R3dzfsGwsLi5cOyWSSs4IXMVo+jIHBAOtYwwbsksMsIzkcUNSQFAmjaFDM6OQVSayQlUH2eDAyS898T7cTZ8jOwsEkOi6mn2gupHB0hfD2SqRnNEoFo06gpIQClBYTuLtcZOc09FyJyb0iQknxeynF69/TkixEEemJHKm5MsVsY2FErVComcACxPM2ssXPzBOL6PnWManlUpm5/YmW4h6zvicXm7rQmPUZZSHSbaE7kmTwdLsoG1DMNp8/uqIOVKfc9H1Wf2CaxnTVUogXmzp+1lVXKrcVrnu6nPjXuIX7VGud1RnB1+fC3eVs7QZVrnfhaYaeLbV086xSWEU0XBXVpeAfcBM70nyuJqsSnm4nxZze9PqWS+W2Dk+1hDf4UJ0Ks8/Em9Y391yitQtYeckJKbTOh+JUmHu2cX35RY2ZZ5Zi3yQZysvmVFWBkqyKZ0HiVLrpuK8VeNl9KqWiUe8gVV6KnXOFHdh9atO+qxVhOfw2AkMe5g8kGooaSwWD/OJSfGM1XhGEWMk7H2VX+VIWmOG0/SA333wz737rHzCkbeax8g8aHt/izPClL32Jffv28a53vYu3vOUt3HbbbfzHf/yH+bnX62XXrl089thjlkjpFcJ/zDzAl2Ye/OkrOBeM3YaIuy/r5N3N3wVlYKYY51XP/H/Y5Rfuq8i3dl3Gr3dd/oLVZ2FhYWFhYWFhYfFixtANJp5bEMKkx2fqHJPcYQdrz+th+LxuOtYFka0YNwsLixcxlkjpZ+ALX/gC73//+4kRQ0ZhLZsZYnPDWLfAWg8DF3dw7NuT5GNNRDYyYIjdt6WC0XS3t6xC97kRYodT5Bc0jt810VLE0HdhlHK5zIm7p5q6IqluGT1rMPN0nORYtqlgxxmyM3xtN+MPzZEay7VdtFg4lCTfwvXG5lXpv7iD8R/PUUzrLQVPICKi2rnoDF/bTWosy/yBZFuxyGqETM6AHVfY3tYdKbrVT2idj6PfmmhZn2/AhTNobyso8nQ56T47zOkfzLRdLEucyrSM/gBAho2/NMD0Y7FVLTathnWv6yVxKtPyXAzNIDnaOPJrOV27g9jcKuM/bh1T4uqwExzyto2m6dgeILjWy9E7WztguaMOyka5pUhp+vHFlg5JJoYY10NXdjHxyHzTqMHcnMbCkSSZqeZj3tANc6Gq9/wIWrIoxnWj+mIasaMpUi0cJ8xrIAsBYXoq11T0NfloDNeJtDhfGeFItuy5UBUoBYY89F0QIR8vNHSvyi9qdW5QfRdFWDyWbtw3Muh5Y+lZVXkumhjUOaAMXNqBJEkrxJxeKcC5XIkezrIv+xgLxVn6+/u55JJL+K//+i96e3ub9pOFhcWLk2w2y2c+8xk+/vGPEy/H6ZPWMVTegENy1pWTHEKs1LkziF4osXAgaQpUZM+yCLiKaMnQyxhFA8Xvb3hsu0/FsyZMclwjO7ZIbqJebKCEAnVlI5v9lLQ4hYRuCpRqkVUJQy9TNsosHC9QzDRRWUgSgWEPDr+N2afbC4UKiSKpsWxLdxzhMimt6t1cSBRJjmZbHtfutxFa62Fuf6KtM1LZgOkn2otK7B4V1aMALeaFEnTvDpEaz7UVdAfWeMjM5dvOp0LrfRQzelv3pmJWF8dscx6+fhfOUPs532pxRR0Ehz1t5z9aWgepvchdcchENvmJHU217RtvrwstrbcUtQknoiDJ0SzZuebCMVmVcAREBFszlyRDLzO5t3GkWh3lpfY5AjYWDjaeJ4Fw5mo3ny8kxPkpDpnQOh+xw8mmbmTpqVXUV7nHnGE74Q0+Zp5abHjOhl5m7tk4WlqUbxSJVxvvGBzxYhTLzO9vPLbiJ9JU/yS1e1VcUQeJ05nG/SlBqWgsnWfluVhFS+toabHRwOZV6d4TYvaZeN3zQ5IkonQT0brIdMR4bu5JHucBLrzwQj70oQ9x3XXXteomi18Q3//+9znrrLP4lV/5FYCG0Xy9vb0cPXr0F900izNEppRntvgCvKOeR1pEvJSB1q+c50Wm9MK4TltYWFhYWFhYWFi8WDFKBpMHYpz4iRAmFdJLf4+7gw6Gz+tm+PweutYHV+UibmFhYfFiwBIp/RTce++9vO6aGyiQR0JmDRsYYdsKcZJsl/H1ukicypA4lUGxyeRjjYUkvj4X/Zd0cPzuSbSk3jSOCUR8mrdbRGXkF7SGAiVH0IYkS0IQ9eAser65iqlrV5DwJj+HvzaOoRlkppp/yZNf1EiczpguJo3wD7pxhe3MPB1vGkdQRVJAdcgoNpmmSx4yBIc9xI9nVji1NELPlVpGpYBYhFKcMvP7WguUoCqwGG9dCLEIkZnJt63P2y1i6NotWEmKhKEbbReNQAho2iGrMpnJHFpm9Tvd25GdK7TebV6hVaxOLeUSTReCanFHHASGPMw8FW/pvJVb0FBduZVCl2Wc+E772DcQddgDKl07Qy3dvEp5Az1Xansu1etm96vYPGrLe091KpS0FmPBwFy0tAdUOrcHGX94vvF5G2LxqlXcoKEvPQt6z4/g63Nz+H/HGtaXOJWhkCia0XCBYc8KwVf1OaU6ZTxdLjLT+cYiJaM+lnDoyi6MYpnRBxpHFU7+ZAHVpQBi4cwZsNWJHdUFN2dxGXEWmIoe5cEHH6Svr5/f/u2384//+I/Y7famfWBhYfHioFQq8cUvfpF3//bvo1GgTxpmi3wRTsktYtVYEiY5AirFjHj+xk+k0QsVl5Jl4iQjkyGy2U+5VCYxLaFpoDV4zCjBoKg3ouIMqKQmxXOuKlCqFSc5AwqZUzFKwNRji5RtLpQGmidJhp4LusnMFEiO59FSoo1GrYtSzcJxPqaht3K8kYSrZnI0S6kiDG6FYpORmsRrVnH4bUI0rxmkmsReVSmXyuia0fqdJ0FoXaWNTUQptSROtxdTS5J4z2tt3ICqjjxauth2TlUuGS2dqqpoKX1V8x89V6Igv3DzrlKhJETpy0QkyykkiqbYpmV9mkG5VF7Vzjpvr4vMdK6lSKlcKpOLae0j5FJ6W6GVqLBy7D4Xeq7U9O8oEOfSbmzVXjNX1EGuxTxIViQUu1z5cq9xZ9fW5x9wi35v0j/FtE5mOt+yjdXflW0SPedGiJ9IN50bzu1LmF882twKRqm8ou7qc8rmVXGG7U03KdSOF9Wl0LUryNy+RMOIumJaN4WfIDawFBJF874RzkoRzuMq5pRJDj13iFe/+tV00c9Dxx5gZGSk6flb/PyZnZ3lkksuaVnG5XKRybwwG1rOFM899xzvfve7edvb3sZv/MZvnOnmvKjxKE46bYH2BVeBZuhCgNSGoOJ5QZ2UPIqzfSELCwsLCwsLCwuLlxiGUWb6YIwTj0xxau80+dTS9w2ugJ3hc4UwqXtjyBImWVhYvCSxRErPg/379/OWt7yFffv2ARK9DLOJsxo6J4HY3R0c9pAaz2DoNBTsyKosxAAzBZJjmaYORrJdpvfcCLNPi8iAI19rLZoZvLyTYlbn1D0zDb9grmXhSAo9X2odd3ZpJ3P74+TmNCZ/0lpw4u1x4YoIkVIz7H4VPaujJfS2LjfRTX6694SFICbZ/Fyq8VWriYLzdDlQXYoQKbWg++wQ8weSqxIKpSZybZ2goCIkab3pGhC7vdvt5Afw9DgxikbbuDRDMxh/qLVD0fNlteIj2S7jH3ARP976S8tm8RvLWTiUahwFtozV9mGV6Fa/iBJr0ZcOnw13pwO7X206Hg3dqBcathFJ9Z4XweZROfqN5vdCrUjHGba3XKhzRx14up2odrmpe1qtSG7gsk5ih5JNnSjmn0uQn9dankNVoOTrczF4aScnC9MN+17PG3XPr55zw6TGm1+n5Olsy4i6/KIGFY1ex7YAwWEPh746uqJcUIoQnI3QKU9zoPQ4//qv/8r//u//8s53vpOPfexjzU/MwsLijFEul7n77rv5kz/5E/bv30+XNMiItB235G1YXlIkopt9JMdzpMbzFBLCOUmu1SfV/M2eWygguTxA/QOjlBLvF/dABLtXITWlkV3QyS4slasVJwE4/ArRjW60uQSG4mooaahGvUlON4nTWfKNImQr4iSHX7xrFo+lhYCg3FyRIqsyzrCd3IJGSWv+blBdCnqutCoBUHijj0Ki2DKOqyqUKWaEaKEVqlPBGbK3FWnYvSqqW1lVfFvZYFXOkIZeZvLR1c1X4idWsTAvgStsJx8v1jnbNCK3oLV3unweCHFU8+jcWmweFSQaxqyalGHuudU5aKzGAQto6Uq5HMUh4+5wtI31c4bsFG16y7lPbr5gio4axarVoroUolv8zB9INhUqFbMlM15NkiVkVaqLdqxDEnOzcrncVKRU0gxzvNp9Kp4uJ4vH0w371CiWiR9PtxRRlUtlc/wFR7xIstR0Hp2ZzpOZFnM8xSnj63WTOJVu2EfVv0ur4j9JllYI96ouWZIiEd3iJzGaXSFmlCSJTqOPjlQvU5zmOM+xYf0G3vTmN/HZz36WSCTS9Nwsfn64XC7i8XjLMpOTkwQCL4xo5UxgGAaf+cxn2LRp05luykuCX++6/AWLSiuVDV697xZmi4nGr4syRAwv39v5IWyq9VWkhYWFhYWFhYWFxXIMo8zM4RgnHpnm5KPT5JNL34M4fTaGzu1m7fk9dG8OW1FuFhYWL3lWIZWwiMViXH311Wzbto19+/YRoZtLeR1bpD0rBEreXhfBEbEaNv3kIse+NYlRavyyCG/ysfFN/ahOIVSaeGihqaBAloUYxdXhaNpO2S6jukV7Rh+YZfSB5mKdwJCH9W/oQ7bL6NlSS8GHLMs4AjYcflvTMiDcWwAmH13g+N2tnWmGr+2h78KOlmWqzB9IcuyuyZYCJXeHg41vGsTTtbpddOM/nufUvTMty9j9KuH1fjzdbeqUhSjMEWzdP9U6gbZuS6pTxtWxOoeX7t1huveE25ZT3WKB8IVEdcq4ou3r9HQ7Gbi4E2ekfVnVKRasVnV8t7Kqp1jX7qB5XzZFhshmP4Gh1uVS4zkO3zHecjzWsvY1PQxc3Hqsjz4419I9rRZnxM661/a2PJ/48QyHvzaOnjfEc8HZvJNku4wzaKvE6jRGS+rmQnXXnhBDV3c1LZuayHH8u5Om6KjlfSELUWOrcRE7kmLxqFiQ7T2/g3U3NI9pm3xkgRPfncbQxXl17Q6uGB8Ro5tLpNdyTvfFyJLMxz/+cSKRCF/84hebt9PCwuIXzhNPPMGVV17Ja1/7Wib2z3KOfBXb5QvqBEqSTUV2OfCvDQhRQqnMzDMJUuN5lFBwZbQb0LXdh7/fieL3U8g7yC/WP8ulUAAlGEQJBrF5FJzBZYtoslQnUFIdYo5XSJaYPS1hKI3zTspakc7dHfjXhgDIzhfNKCcjl8PI5erckxSHjM2jonjd0ESgJNuEy4tRNJh6LGaKRRvh7nDQc04YpcX7oJbZZ+IsHmsthglv8BHZ0jgebzl6rsTU3lhb9yFX1IF/wN22PneHA29v+2wZSRauNKvB7lWRlPZl7R6Vjm1BbO7m780qNreyqjqfD6pLQW7jhAXCXSuwps3cp4JtNedeGYaKo/0YUl0KofW+tuUcfhv+AXfbazT/XGLVUcUOv43e8yKmy2Ij9FyJqcdiLUVAtYTWe+nYEWxeoAyzz8ZNsVW7+0x1KqLPW5x2ZjqPoZeRVYnuPSEcgebzqfkDSRYOC6HgkvtTY+xeG66Ive55IzuX/tYxisKFjrKoq/f8iCjfAMnhYurxGOkJIVByRR3YvfXPTEmS6JWGuJDr2NG7m6/d8XW6oz389V//Nen06gR3Fi8cW7du5eGHHyaVavy3/8zMDI888gg7d+78BbfsheNb3/oWmzdvZs2aNWe6Ka84FEnm/QM3AnWacEHlHXLut9fy7Q8+wsyR9k7QFhYWFhYWFhYWFq8EykaZ6cOLPPzvB/jye37AXbfs5eC9o+STGg6vjY1X9HPdn53Dr3z2VVz89m30bo1YAiULC4uXBZZIqQWGYfB//s//IRKJct999+ElwAVcy1nSxdilype1klT3JW90s5/IRrFgYxTLaJnSisUl2S66PTmaIXYkid7CPanvoogQEuUNDn91rOXu5JFX9zBwSScgoseaOiPBUhxBC7GMM2LH7lUxdIOjd060dMEJb/Cx4Yb+VQl1ACZ/Ms/0k62/mOraHTQFI612TgPkE0USoxlyC83jsgCiW/ztxSoVtKTOof8dI9FmV70zZMfd4WhvqSjDyGt66T2//c7h0AY/I6/uNcdKK05+b5KJVTgkRTb7GXlNT9tyz4fOXSGGruxuWy41nuXw/46RX4WbQO8FUQYuay9gs3lVNv3SAOFVLIK5O5y4wm2ETwYc/ebkqqLzQAik+i/uaPsUTZ7KEG+zsGZoItZPtssMXNbZUlSUX9CY+MlCW1eq6r295vJOhq9pfo0MTdzf1XHuH2y9OKwldTPioxnVGDffgIv1N/Th6Wki9DPg6J0TpqNZ585gy0XnxeOpJVcPWbiHLKe6SO8fcBHdFFixWFYlMNPNzthlrGEj8cU4b3vb29i8eTOHDx9ueW4WFhY/X2ZnZ/nt3/5tzj77bPY++BQ75UvYI19BQFp6dyrhIEo4KP6/4tRn94l7vez0o4SCGDVuM1JFqyCHgmQydgqllc8ZKRRACgWwl3N4OsRcJj2tMXcwixT0IwX9sOw97/ApdJ8Txt7lR/L70Cbr3x+Sz2f+B6BlS+g1LkKSz4vkq3eFqs6j8hmF+aMapVTzZ33njgCh9ZXfb+Nwk50vMH8gSamJGB6EmCe03ockC8eYdrFn2dkCubnWIg9JlgiOeFclqgHhjNTKibOKzau2FG1UcXc56T0/uqrjR7cF2gqVAbS0zsQj822dSgG6zgrhW4WY6vnQc04Yd2d7Uf7CoSTzB9q7JMk2mZ49YdzR9gLx4IiXrl2htuUkRcIZsrUV62TnCkw+GjMFe+1wdzjaCtm1tE56Ok+p0NoFVa9EQ7si9raCt8SpDLHDrd3Cqvegza3Qe24EZ7i5ADs7V2D26ThlQwiaVGdzQVW5LM6pVYReuVQ27+3wRh/RbY1dcCRVJR8XAq1yqYxskwgMeyhreWSns06sBFAqGqRndIoFBdnpXCFkM7JZyooTySnmjr5+F56epb6U3W5kt/hMkVSik0NcaFxHD2v48z//C/q6+7njjjtMx0yLnz+//Mu/TCqV4r3vfS/79u2jVBLjKp/P88QTT/C+972PUqnEzTff/FMfI5vN8m//9m+8733v4/rrr+fSSy/lO9/5TsOymqbxuc99jhtvvJGrrrqKd73rXTz22GM/9bETiQRf/epXedvb3vZT12Hxs3FVaAefWPubKyLkgpqbV39zB+uOdbFwOsW3PvwIP/znZ8klVicWtbCwsLCwsLCwsHg5US6XmT26yCNfOsj//MEP+PZHHuHA906TjRewu1U2XNbHtX9yNr/62VdxyTu20789iqxYy/kWFhYvL6ynWhPuuOMOHIqTT37yk0TDEa5a/1rOl66ms7eDzTcPYg/aQJLoPTfM1l8bNBc17AGV9LTYDe/ucLD55gHTaab77BA7fmuYDW/oQ1Zlhq7sFovshhC6bL55yQmoc1eQDW/ow9/vwdPtZO1reui9QCzQ2b0qm28exNcvvgSObg+w8U39TD0WY+In8wxf2y3EEwhXms03i/apTpkNN/ax+eZB8osao9+fZfCyDgYvF8ImZNh886Ap4ln32l62/cawOUoGL+9k6MolB5XNNw8S3iQW3kq6gWSXKVW+QO+/uKNOGLHxzQN07Q7StTuIb8BF/0Ud5u663gsirK0Rz2y4sY/OXUHcnS5C671svnnQdADqOTfMutctOamsf30fPeeFMTSDxSMpNv7SoOlA1LU7yPrX95llR67vpevsEL4+N/aA6MOqeKJjR5ANb+w3y266aYD+SyIYmoHqVkR/V8Qb0a1+Nr15wCzbvSdEZiZPPqYh2yv9PSz6MLzRx+abB0VBA/R8CVfYVtff1Z3mwREPm28eRFZl5p6Lk10oMHhpR12bohXHgsCQKKu6ZQxdjJfha2v6+039RLeLLwZ9fS423zxIajzDqe/P0Ht+hJHra/rwDX107QoC4O5yVNogrk73OeE655r1N/TSfY5wbXKG7QRHPMw8s7jU32+o7++qIMvuVRm5vtdcBOqojNkqYsxGAZg/GEdxyKZYJrrFz6ablvp76KouBi7roJjWmXoiRtfukDlmwxsq/V0ds6/qZM2rOjn5vWmmHouJMbtR9HdgbaW/K0KwgUs7GLy8w+zf2v72Dbor/S0WkfouirD22m58fSLacMMv9Zs77D09TvGMqDiL2X02OreLz1SnLPp7d6W/O0R/V58RfeeF6doVxFEZ7+te10vPuZX+rnlGLB5N0bkryOa3DBKp3IPNnhFTj8fILhYa9PfKZ4Snx8nI9b1s/82hpf6+sqvuGdG9O0QuJr5MHri8g+1va/6M6L+wg9RElsxUXozZXx40BViNnhGdO4P4B9z4BsSYrQqMqs+IzFSe2KEUG27sY/0Nfay/sQ9Pr7PhMyJ+PMPBO8ZYc0UXXWeH6Lsogq9flK0+I3r2hHnNG67jUvkGto5s5+jRo2zZsoXXve511u5+C4tfMMVikU9+8pP0dfXzH7f9J+etv5wL/TfSIfUS3ewntN6LEg6iRoP07vbQsUm8v20eFcplCkkdJRQktMZOaGhJHNBztp/Bi0L4N0Rw+mX8vSrFeSE2CA45iWxwI1Wckbo22QkMOXBFVBw+hZ6zvChR8R7w9yhEN1QW3yXo2ubGFvUSO60jSdA9pKNWHGb8fQ46zhLPbldIpme9ga/PQXJURJ31XtSBvVM8u33dNrrOCoqyETtrX91HZLt4H6pO4WJSFWB5e110n73knCgpkqlNqjqeVIU7nm4nPeeGRfSnWyG62Y+zIoCSFIne85dEFO5OB73nR7C5VJwhG9GtPsIbfOa59p4fwVURsLgidvoujCDJQhTqCNqJbF5yU+o9P4K7U5R1huz0XxLF0+VEVmWCI16iW5fK9pwTNudhzrCdwSs6URwy5VKZwLCHju1LC5zde0J4+0T/270iKqvqrOMfdNNZmccAdO0Kmm5MxYyOYpdRHOL97et30bV7SWTTuWNJED9/IIGnx4m94hzq7XHW9Xd0W4DgWiEKKxsiqrUqKvN0Oek9b0lIF6mM2dln4mTnC/X93eGoE6yHN/rqBMK950dMIY4zbKf3/IgpDgmt96KldbJzQpTfe17E/NvBEbTRe34E2SZXztVNdGtNH54dxlvpb7tflFUcMkbRIDOXr3Mj7dodMv/OsHlUes+PoLoV0lM5ComiOW8EMQettl91KaK9wNTeGO6Ig+49S/3dsT1gzpEVR2V8e1VkVSK03kvPOTX9vdVPcET0t6yKMesfdIvNAZ2OBv1dFa2X8XQ5cYbsyKqEK1rp78ofHuENPnPuVO3v6nhZ0d/rvES3+CkVDLSUTs+5YTp3BZFVCUeg0oeVeWR1zBazJRYOJQmu9ZrzXruv0ocVMZJ/jZvOnaIPQyM+hq/txldpg80j+tBWcbj09rqwuVURkyjB0NVdBNaKPlSdyopnhM2rkjgh5jAdO2r62y7Te65wZJJUFU+3k/6Llu7PyCYvwbVuU4zUe34EZ8hO4ngcZ9BG73lB+i7swtvjJLKp/hnRc3YAT3+A2afjFOKFyhi2447aCK11E93VYYqVhi7o5ayu87i8+5fw2oO8+c1vpsPez8MPP4zFz59du3bxR3/0R5w4cYLf//3f5z//8z8BuO666/jjP/5jJiYm+D//5/+wcePGn/oYiUSCL37xi5w+fZp169a1LPvXf/3X3H777Vx99dX8wR/8AbIs8/73v59nn332pzr25z//ed785jfj87XfxGLx8+Oq0A6+s/2D/OuG3+Njw7/Gv274Pb5/wV/y3l97PZE1S9fmyIMTfPWPf8iBe09jtBFGW1hYWFhYWFhYWLwc0AslHr/9CF/5wwf45v/3CM995xTZWAGbS2Xdxb1c83/38Kv/dCWXvmsHAzs7Gm7StrCwsHi5YAXBL+PkyZNsX7uLDEkkZNaylQtHLiIznSdFlmK2ROJ0BqOyEz4zVyC8wYu3z0nidJbEqSzZiluMniuROJURkUuq2HG+cCQpXI50g+RY1nQk0Qs6idMZijmd6PYAuViBxeMSM08tChFTwEYxK3Zs65pB4nQGLa0zdGUXNp9K8nTWjFdKjWcpVVyUDB0SpzMUUkWcYQcOn43E6NKu/PRUDqO09IVQ4nRGOCwB4w/N4anZqZ2eyiHX7KBNnM4QWOMhO1OgkCiysD+BoVf6ZSZnfmkPwk1Gdan4+92kp2ZInM6YDlLZ2TzFmt3oidEsuXmxw9juV4luCaAX9ErZgnluAEhlIpv9zDwVR8+LftFzlXrn6117UuNZ5g8USZzOoNpl0d8ZUW9+oUDSLs5NVsEZtKFl7JU+LIuylYiSXEwjcVr0oafLSW6hgJas7G42jLo+zMeXygLEDiWXzA6MSn/HRTsLCdE2wzDAgPjRdN3O/+TpLLmKS0whKcp6Op2E1vlIjGVQ4ku7sBOns6ZrUSEtymoJHT1voLoUitml3djJ0QzZBSE60TNifFfdwHJzBYyiUVM2S746ZvMl4sczpCvRFtllbgrJsSxaWpQ1NAO9UCK82Ud6Mkc+ppE4nV26NhM59FzlWszrxI9nTIeC3KJWF/GRnsxh6KIXFw4lcfhtFBKV/l6s9LexVLZ2z3chWSRf6W+t0ocYonB6Ko9ik7B5VQYu6SCf1Mz+LqbE/Vk9bmY6TyGpM78/AQYkT2fIV/qwmNHrnxGzefR8id7zIvgG3cRPpMyxqedEf1djHhOns2gpncxU3uzDRs8IgNx8gXKpTHiTn4VDKVJj2YbPiEK8SOJ4FiNfpv+iKPMHk02fEfkFjdEfzuLwLrlTtHpGOHy2uvHR6BlRdX9T3TLOkA27T0XPaw2fEamJHOnJHI6gjUJaR3bKkG78jNAzOpIiUUxX+ru08hlhaAbJsQwl3SC8zkdqLNvwGaEaKt3HNzC0eQMPnfwB3/72t+np7uHDH/kwf/zHf4yFhcXPl3vvvZcbr3szGSPJgGMjm8PnEHD4SEoFSoBWclRMKXXKZcgnSrg8BqpTpuzwkE2rKMEgAPlkiXI2iySDFAiSy6rkc5CLi2dGdqEEZeGcpCEjlUCxl7E5JLKLJfLTebSUgdrpJ5tVKBvifallDHRNx+aW6dgRJJ8yKOYNtEwZxQaZuSJGqYzk86GVZYy4eM64ggqGrlEsO5B8NgybRGZep6RDaXaOnGbDiHiR3W4KOZh5NmlG0OmJNJlpt/lMK2Z0tESRwJCHxKkMqbGaZ3mpTGZaiKCqZTMzeXz9btS5ArmYZr7DKIuyVWcWPVuqvNeKQljS6VhyZiqLd17VdaaklXAE7Xj73aRGsxTiWp2TZGYqj16ZY+j5EsnTWZJjWcqlMoVEkWKmpuxMnmJGlHUGbCJurfJxIVE0he8AmdmC+R6weZRKFJY4Vy2l172nsnMFc56j5wzix9Pmu0rMLZZcN7Pzhbp+SI/nKGmlSh+WyM4slc0tFDA0QwiFUnp9f2d1sUmhQj6mUTbK4niS6MPq+RRzor/NsosaikPG4RPv3sx0nmK1v/OibNXVqhAvoiV103koPZ0z3/2lglFXVksX8XQ7sPtUtJROtqa/S1ql3tLSvKbWzSc7mzfnYUZR1GsUy+L/Z/J1UXfZuYJ5zQ1dlC1V+rukGRRqIv5y8wXTTaxcGbO6VsK/xoOvz0385JJAOLewNGbLhmhjZlaML7tXre/DSn+DcB7KTOcp6QY954TJzBRE2fJSf9dODuf3J8lWYt/0Sn9XXXDz8WLdXDy3UMA/4MERtFNMizFQHXtacmnMZmcLqA6FclkI7tKTufoxW3MNY4eT6DkdLVWZMxfLZn8D4ueV9tjcioh4LFTncJX+rnlGpMdz5rVz+G0oNpnEyYx4RswUTIcpvQCJ03kSp1JQhkJcM2OpZYeDbMzAKKuARjFfIj0l5leFjAQ1fWJksmRmnOgFA9ntplRWyC6WcQTtKHbIJ4um67DsdpNdLKNnS9gkLzsdVzI0OMWzMw9x8cUXs8a9macnHiYQaOwEZfHC8IY3vIFdu3Zx5513cvDgQZLJJB6Ph82bN3PjjTcyPDz8M9UfiUT4+te/TiQS4dChQ7zzne9sWO7AgQPcf//9/O7v/i5vectbALj22mv5zd/8TT73uc/xuc99ziz77ne/m3379jWs561vfSvveMc7OHLkCIcOHeK9733vz9R+ixcGRZI5x1cvUuvaEOL1t17IwfvGeOKrR9CyOlpW5+HbDnD4B+Nc9Ftb6Fzf3q3PwsLCwsLCwsLC4qVIfCLN/Z96isUx8d2HzakwuLuTtRf00Lc9impv7rJsYWFh8XJEKlv+6oCIdnv3u9/NP/3TPwEQpZdtnIcqN9BxydBzdpjkaFZ8kS2VodwkRqJcpuecML5+F0funGgZrwZiB++663sZe2iubcwYQGi9j7JhtIx+cnc4lgQkMi3bEN0ewNfn5uQ9U23bqjpl1r6ml/nnEksRTG2Q7XLLGDq7X2XNq7oY+9HcqqLB7F4V/xo38/tbRzCEN/goZnRSE7mW5Wrr1TWjZVtBODnp+RInvzfdspzqlOm/tIOpvbG2UVm+PheRTT5GfzTf9viBYQ/RzX6O3z3VshyIa6tn9fYxYcC2tw4x80ycuWfjLcvZvCod2wLMPZeoE5E0omNHEFfYzugDs+3busWPM2RnfBUxdt3nhNHzJTMyrBm+ARdDr+rmxD1TpgioGa6ondx8+/EHYkx37Qoy9XisdXxiZed/7PDq7pXBV3VSiGvMPBlvfXxVNhe92rVz3Wt7md+fWFUbgiMeolsDnPjudOtxWHmmOCN2sfDXpKjqlOnaE2LiJwttny0g3MAy03nGf9x+DES3BYhu9nPkzonmba159vVf3MH8wUTTZ0x+TYzHxh+ioBcYGhritttu4/LLL2/faAsLi+fF1NQU733ve/nKV75CSO1mk+t8/OqySFRVzMNsLhl3RCUxLu5bI502hUkryGfoPq+TxGSR3GL9M6GcFM+/qnsSQGhAxeaSmXk8JmLdGlBOppD8PpAg0K2QnC1Rrk1f0pf+IUmg2CX0QhkkKBcaP2tKs3Oofg/RzR4So3kKiaX3qJFp/K72dDvx9roqUVHtp/CSIplClGb417hRbDKLx1bnIOfpcpKPa6ZAp+FxZfANuEmN5VbVThAxqnq21LKMI2ija2eI6SdibePWvH0uJAlS4+3nfqF1XgrJItnZ9rEzkU0+8otFMjOt5xKKQ8bb4yI1nl0SiDXBN+AmMOhe1bynGjHc7vggYlSFIL713FM4GQkxb7t+Vd0KgSEPsUOptte2Y0cQCZhtM5+UVcmMGVwNjqANWZHItflbwdPjJDev1Qmqm2HzqoTX+5h7LtGy/GruKfP4XU58/S5mno63/x0JOrYHyUznWo9DiaVoOY9qbrhohLvDgVEq18VmS2rjPUqukEJka5jppxJ197aRF+OsLgpOgu5dAdIzBZIn4qZL0nKMXBbZ5cbhV7H7FFITNeelLH35akglZtxHODD1OIpk4+8+9Tf87u/+LopifUF7piiVSi9I/1dFSn/2Z3/Gq1/96rrPPve5z3H77bfz7W9/G49nKWrzP//zP/mXf/kXvvrVr9LV1bW8yqbcfvvtfOELX8DlEg5m6XQaRVG4/PLL+bM/+7O2v3/48GHe8Y538PnPf35VTlIHDhxgy5Ytq26fRT3ZRIHH/ucwR384UffzDZf3c84vb8Dlbx9BamHx88C6ty0sLCx+MTzfuddLnVfa++WVdr7Q/pyP/XiCH39hP3qhhCtg5/xf38KaPZ0vWWGSdY1f/rzSzhdeeef8YjhfyysO+N73vodDcfFP//RPOHBxLlexS77IFChJDb6g8/a4RBSDJDcXKEmie5OjWWLH0vUL83J9ndW4i3xM4/Cdk80FSpJEeJPPjIlYPJpaEp1IK9thD6isfXWPGcvWThxQTOkUU8W25WRVRs8bHPnGeFuB0vA13WasQjvRDYid7NUd+02Pb5eRVbEjvp1ACYSYaykGojmqWwFZ1Luath7/zhQTP2m/oGTzqSKqYRV1ynYZxamu6viJk5lVCZQAfH1uvN2uVZVdLYpNJrDGY0ZStGLu2fiqBEoAkiqbMWztsLkVbM72x0+N5Th290RbgRJgCpSqcWOtcAZshNf56mJSGpFf1ExxkOpu3149U6KUbz8GDF1EEq6/odeMh2lYTqvcr5U2tLMKLWZLwp2i3Tg0ABmGr+qm/4Jo02J63mDiISFQcobtDF3Z1fIaH/3WFJOPiHvL3eWgTi+67PmZnsixeDwl2io36VtD/J7Nq+LpcYqIqFpqfs95OsxF+vX0MsTkxCTXXHMNv/Zrv4aut164tbCwWB2lUonPfvazDPYN8fXb72S7+1LO8b6mTqAkhYKmQAlAcUg4g6p4FoQCTQVK5XAAvAEy8yW0TL0owAj7kEIB8Z8MNqeYN8UndGYWHM0FSmEvkW0hFDtQhsTUkkDJ8LvrBEoAgX6V6IiNst/TVKAkedzIbjdGqYyeM0zXFMntRmqw4C/JEpLNTnbBYOapxZbiELtPpXOniKRajZjC0IyWgqMq1RixzEy+bXm7z4a/343iaP8ur7rqtRMogXASmnp8oa2Qplqvssove2RVRmowj27EwqHUqgRCqkPB2+Osc5p6IXAEbWZ0XDtmn4m3FSiBcA1V7DKS2r6tZaOM6lRWdW1jR5LM7W8tIq8ev6SJODPZ1r4N3h4Xnu7W8y4Qzl5G0UBSpLbXoer62W4YVO8pT4+TyKbGzwzz+DN5pp9cpFwqtx8HZdCzevt7sXJLe3qcdO8O1blSLic7VzAFSsG1HhHb2ER4klssMb0vax7f7hPlZKdTRMB5ap5LZUhP58kvauIzd+O/L2SXG8njweZVzLhJk1LJ/D25rNCT2cxF3jcScXfx+7//+/SFRzh+/HjrvrB43nzta19rW6ZUKvGRj3zk596Wo0eP0t/fXydQAti8eTMAx44de1713XDDDfz3f/83X/jCF/jCF77ARRddxI033sh73vOehuXn5+c5fPiw+d/p06d/uhOx+KlwBxxc9js7eO2HziM8WBMB98A4d/zxjzh436gVAWdhYWFhYWFhYfGSR9dK/Ojz+3jgs8+iF0r0bo1w419fzMgFPS9ZgZKFhYXFC8UrOu4tnU7zute9jgceeAAJibVsZa1crxozBUoy9OwJEzuaohAvcvTOCVOE1Iius0J4e5wcv2uSzEy+fjFj2SK6I2hj+OpuJh9dIHY0SzHdZJFGkqBcxuZWsNeKQqrfpjcwxdISOmM/nKuLy2pEcMRD/HiGxKlM27K9F0bwdDhFH6xiw7NeMMxoh5bIIv7g5D2tXYkABi+JYvPaRBtWwfG7JmlkirWi3ss6ATjxndUJfwzNQFuFmCg3p3H0G6tra+LkUkRWO1SnbEaFtePkd1d3Ts+H/KLGwa+Mrv4XZJDl9s4/7Rycahl7cG7VZXNzq3NHAggMeRi4tINj35oUDkFNyM4VOHj72KrcjADCG330nB3m6Lcm0JLNF1knH11Y+kcbBzRDK6MXDNoa41XqiGzy0bkzxNFvjaNnG1ecmcqbgi53h4NS0Wi+0GnA6A9nKbTop1rsXrWtsE2IoySQy6y5vIvURLbeVUlWoBLDlF/UzGsUHPHQsc3P8bsmGwqsitkyh786Zv6755wwi8fS5BOlujplSWYLZ6O7sjxV/An/9V//xTe/+U3+5m/+ht/5nd9Z1XlaWFis5JlnnuGd73wne/fupd+zjfXqLuxyvcBSCgUBUF0yrqBCaqpIPl4iH89CqHEMkKxCdFeI+IyBloTUTP3z1QjXC5UDvSpOn8z0QY1SwAdGXQKUSSnoxZZIo4RtKDaJkiaes4ZfLNjLsZVC7UTaQboAzC+u+Ky60C8nF5BdMnrOIHZMxJ9WxUmlufr3mmKX6T6ng8XjGbLT7d2OymUR0WWswrmFsog7bYfqUug+O8zCgURb9xoQcW0TP1lo67Rj86h07wkx+3TcjBJtRzWyrB2rnUuBiI9dDZIiiXNaxbppISn64IVm8ejqHK+qyKrU1skJhKBpNZTyBjNPrhzbzco+Hzp3BClpBgsHW1+P2OH2Lk61dO0KUkjqLB5tvrGipBksHKgct8atqBlGsWzG2rWkLOrrOitIdq5AcjTbtGitm5kr6iA339xRqRrDuFr3KdWpUMyVKBfySA4HlFbeR0axjGS34w5JhEbcTD0eN595IJ5f5Yxof3pqqW0dm1xkF1TSpxv3byahkp6s2Nm7ZZxBG6lJ8fuS20U5K9zOnLKH7VzBmp4pnp59iA3rNvLeP/4j/uqv/gqHw3JVeSH41Kc+RTgcbuoQahgGH/nIR/jhD3/4c2/LwsICkUhkxc+rP5ufb78RqBan04mzxvHL4XDgcrnw+RpvVPrmN7/JF7/4xRU/P3nyJKUG98dy0uk0Bw4ceF5ttGjMxl8LMf24yuiDcUqFMoVMkYf+bT9Pf+coa18dxtdr3f8Wvzise9vC4uXJmXYJsLCweGUSn0xz//97msWxFEiw+43r2HXjOuQXeDObhYWFxUuVV6xI6T/+4z/4zd/4LcoYBIiwU7oEu7S0w3O5e5IsS/jXuClmdQqJFl9aVYRLuZi2cmfrMnFSNaapEC9y+oE5UuMNFokqAiRZlfD1u0mcTC/FP7XY6jt0ZRfpqRzzB5JtRUf+QTf9F3WgpXWyM+1jLuLH02ir2JVdFdCMPbiKeK+tfsIbfBz71tSqxB7TT8dx+Gxty3l7XeiFEvkFDWMVJijTj8dWtTPcFbUzdFU3p+6bbhsLpjqFK1ArQUoVWQXZ3j7upFp2002DTD8eY/7A6hbXzjRbf3kN84eTzDyxisUtWYhZVtNvyOCK2FclQhq6qotSsdx2XCZGM9ieUMgn2tdp6AbIENngY+FQa2ex+MkMsm114wGgc1eQwJCHo99sLgo0dKMucrBdrGJyPIfNqzYVKC2n9/wIpWK5pdCtKmhS3TJDV3Yz+cjCUszk8uOPZs1FOtWt4ArZm0cxliVO/WCGYmXxWlZljGqzq89UY+l+Kab1yv0u1YmO6qj8nmovExjyUEgWySeyDetUU27Oka9hVDrMhHGU3/u93zOjKdxN4k0sLCxWomkaf/VXf8Utf3krHjXEeZ1vJuTopZxeWpSvipOqODwy7oiN9EyRcqCxOAmEe1IJKOTKK971y8VJkgxlA5LTOsmiDyO0cuGrFPSK47uhXBCPg7lj4hlUFSctx+aWCIx4mB8rY5RWPnrqXEiA0Fo3ZaPM/MFMnXPScoGSZLNjVIRE+YXW87lqDFUxrbedF0iyENSnJnIiurgNeq7E4rFUS9FuFU+Xk8xsflUikmJWJ3YktSqBUmSTn7JRXlXEsM2jUMyWViUmUhyyEHqsoqx/wI2n28nkIy+8+OjngbfXRWjEy9iPVifoVuyyEN6soi9Up4KhG20FUHavSsf2ANNPLbYVLSVOZ1YluqmOLZtHRZJo66wVP5lp69JaRVYlus4KkTiVaTqPAcjNF0wRUVshWBnSkzkKidUJ8Rx+G9GtfmaeiqM1uzfKmOJxb48Tu8/W8t6ofSY4QzYKCfEsBFYIlrKLZfTDeVOgVLsvp/osq4qVkEBLlyjmDNMZqSo6qkWquOU4fDqeTgepGpHT8t/zZ3q4uONXOJV/nL//+7/n3/7pP7j/R9/jrLPOanp+Fqtj+/bt3Hrrrfj9fnbv3l33WVWg9OCDD/LGN77x596WQqGAzbby73m73W5+/rPwgQ98oOXnN9xwAxdddJH579OnT3PrrbcyPDxsxb2dAbZug+wbCuz970Mc+/EkAJkpjX23TbPpigHOvnkDTt/qXAQtLH4WrHvbwsLCwsLC4oXg2EOT/Phfn0MvlHD67Vzxnp30bWueQmFhYWHxSuQVF/cWj8cJSBF+4zd+AwmJ7dKFnKNcZe7ilxSlTqDUucOP6pYx9DKHvz7J/IFlu5fLhvjmVpIJrfcxcInY+ZcczYmoIllZ+q8G1V5m4y8NEN0WBFmpFygZJSFAqhEhdewM0HdBRMQjLftMtKP+i/GSvood9BWSo1mO3z3ZVqDkHxRfSmdnCm0XvwJrPWx84wD2wOp0cJnZPOnJfFuBUjUeKr+gtRVfgdg53Xfeyh2azcjOFUiNNxFL1FDSDFJjWXKx9ot10W0B1r+ub1VOToFhH5vfPIhtFTFjhgETP1kgOd58R3YV1Smz8c0D+AZe2Lg3gJHre/n/2fvvMEuuwswf/1S4dXPs2307T0+OmhnNSKNRjkhCCAWibcB4sbH99ZplCcaAWa8DuwYMtoGfw8LaBuy1l7SAjAEhCQmhiAKKo8l5OqfbN1f8/VE3dt/uWzVWVn2eZx5Q31N1T52qOnVunfe8b2ZXwlHZ0UdmHTsbjFyTYfiKHkdlBy9KM3J1r6Oy+dES+dHObYaJHSXo0AQgPhymb08XwfTKL09N1WT6GTv6xEmkXWGsbAt4HNZj5OoeVl+TWbGMltcZf9QWioX7Ah3rceLuSU7dM+GsAlRjW5y4CwC9u1IMXJxe+jRq6tNKUyp6xUL0S2x48wDprZHWsk39bGGsyKn77MnjSH+AkWt6ERWprWBJVwX2f2e0HoHXfU4MJSq37rPKsLiRC81r6Qn3cffddxOPxPmLv/gLR8fo4fFa57HHHqMr0s+f/sknWRM7j4t6f5mkv7/+uZBM1AVKkgKhVDVWbFpnYtS3RKAk5Ap2rFs6TvKcBL6qccL8mIU+VcBMRev/mokpZbp3RrFSUfRoFL3pES5mCxiJSF2gJAjQ1QfRpP25GQstESiJszk70i0WxgyFMJvdmKbnEMKh+r9mzIkpZk9ZzJ2x2ke7+RQEn4IU8tdd5xZOleqRcMvRc07cUbQt2MPX0rS6vACiuT6SfVSFsXJD1LAMSlQmtSmKP9ZZSG5XBEciKYDSbMWRSAoBenYmia8Kdy4LdG+Lk9rgrN0Kk+UV3XiaiQ2HSG9dXlx3tgRSCn17Uu2tvxZRmq0w/dyCo7JyQGLgwjSBROdJYEES6NuTItTTOXJNK+oUJiqOxjGVec2RUL9Gan2E2KrOguHyrGqLlAQ6x77pFsXpiqNIQbDF1v17u/AvjjNbRH6sbAvnBDqWrSxojD8y6+j+BPt+dvq7T/QJpDdFCGeaBJqSBJKEWWyMj9WcgaAoRIYi9J6XgnLr2Lnev4VCzO+fQ83bJzg54ifYF0EIBW2XpELruL+Qk5k4bAsIJZ9AuLvxm6e2DYAs+lgXupArVr8dvWKye9d5bO69gELBuUOax1I+9alPMTQ0xCc+8QkOHTpU/7tpmvzpn/4p99xzD7fccgvvf//7X/C6+P1+NG3pNa6qav3zF5J0Os3GjRvr/1atWvWCfp9HZ0IJP1f8zg7e8N8uIDlU/b1nwf6fnOKbH7qX/T855cpFz8PDw8PDw8PDw+PFxo53e4Z7/vpJ9IpB35YUb/qziz2BkoeHh0cbXlMipb//+78nk8mwwCwpMlwm3EJGHKp/vtg9SQ6JdG2KER8O20KkDi/XBVlADkiOWlVXBWaP5Fk41UYQ0yxAqu5r4rF5jv5wbMUJKjkgEu6zJwtO/XSqPvG+HEOXd9cnZTq5ASlxmeErekhtcjaJkztdYnp/FjW78gv+mnCnNKW2xlstw/AV3ay+vs9RHQCO/GiME/d0dnKK9AdZf1M/csjZLaEu6Jy+f9rRhMvkU1lO3jPpyMkpd6rAqfsm0ZxMjJgwdyjn2JGnMFpyHJHihsJkmbIDZy2w61t2IOwCO3Zk1GFMyuRT8xy7o3NMINgryd1EpWR2Jxm+qrNYKnu8wMHvnu54L9WIj4TZ/JahjhNVhYky44/MAjgSus0czDFVFUF1RIThy3roPz+1YjEtr6OXTeSAyJrX9xFILj+BqRdNjv5wzF7dL0J0eOXJw9MPTNkRjyYd+05TNZk7nGfhhAORGXY8kag0OS+13Skg2uXSm2Ik1iya1G4WmKoK55QuZatwAYFQgA9/+MNccskl5PPuonc8PF4rVCoVPv7xj3PBBRcgInJh5pdYH78QUWjcV4vdk0IJiWiPZIsqkvEVHV0sy3YwWTR8W5aiECI/3zYdty5Oat735EnIH84v654E4K92GboKM6esen+zWJgEIAcEukZkxGgIU1/q+mRMTSH4Gv1rfFWI9GZ73GVpnZ8t2ZNFCuOdhdY1V5TsiYItmlgBX0hi4MIu/HFnoiM1pzP60Iwjx5iuzTEi/c7F08XJyorONnUsmHxijvxo57YAOzos50DwDaAXDUdxdwBa0aDiwI3RLUbFoDRdQVjBUbVetmzabj8O5nT1ssHUs1lHrlaWYTH55LwjgZllwvzRvONYMkkRyZybxBfuPOiZ3rfgyk20Z3uC5PpIx3LZZuelDs2sFw2yJ4qOx+Ph3gA95ySWOu4uonZvhjMBEmtWrnNhosz8EXssosR8dWFhO0zNYuzhqUZcW3PRNp1peV4jP67aCtIOCKItguooirNsZ6VAQiLW50NY9LU1oRKAv5zmwu63sS5xHgcnH2X79u08+uijHevi0Z5wOMxnP/tZIpEIv/d7v8fo6CiWZfEnf/In/OQnP+Hmm2/mAx/4wItSl66uLmZmlv7Wq/0tnX5xXuLfeeedfPSjH+WLX/zii/J9Hp3p25zi1v9xMRe8cxO+oN1BVPIa9/3vZ7jtvz/I1FGHv3U9PDw8PDw8PDw8XkSyYwVu+8MHOXD3KRDg3Det4/Uf30Mo2XmBl4eHh8drkdeESKlcLnPFFVfwG7/xG+iqwXbhYnZJVyBXZ/wXuydFB4OIsj3Zfujfxpd9+S1IEr6obccPMLs/z7E7JhGE6v7EpS96By7qIj5iT1xNPD6Pmmu80BZEgeYl6uG+AJvfOkSoJ4ggSe2FIIJYn23r35tm8JJux+0iyQKi7Cz/VM3qHL19jNkOUVZyQLSdp1SzEUu3AsOX97D6OmcOOAAzzy4we6DzZIQcEG03IhNHK7Ity0IrGI7irxJrw47FWmALK5aNslqEXjaZP+JshXB8JExirTOXAL1scvr+accCITeMPzJL9qizOitxmczOhKOyxQmHk5HYorGyw0lDsFew9+915rBllAx0h+Ku2gRVINV5Iqcm5HMyGQj2+d701mGU2MqTdrlTpXqUWqCrQz1MOH7XOKcfnHZUB0QB0ScsmUxajp7tCYYv7V5Z/Gc24kpWv6631T3LslozRmj0m6JkMnJ191K3NlGq9+nzRwoc/dEEmHa0SWpTbIkYtV4N1eTg9yeYfNJ+6R0bDtafkIufEX3iCOep19IXHeT+++8nk8nwj//4j84axcPjNcKzzz7LBRdcwKf+7NOsCe9hb+btxJTGGKXZ6UgQwR+2xyO5SYOxST/WMveqkQwTXJ1A8gEWTJ8wKRdAT4bQk6El7kmyAvH1fpBEdA3yi9JGtWQAq0ns0dUHqV4wYgqVoNJWoKRH/Qi6iZgKkx4WCSWa6hdWEEpLn11mKIAV8iOolSVmmEIoYP/ztfbZ80cLzBxREYMrv8yQQ3ZblWfVlnFl27JBif69aceiI71sCzCcPKtq9TAqzsQoetlwLFyJj4QdxfHW0ArO963mdWcibgGiA0HH9ShNO3PndItWMJg/WnDsJhFM+zsKomuUpitYDh15KlnNlaNFOBNYUeRcw9BM9LLhyP2pFtMn+cUVhTk1cmdKjsVrAN3bEyTXdRY15U4VsUwLSelcj8JY2Y6+c3h9CpLz32sIkN4SIz6y8u8DvWQgCAJKVKb//ETdsQ3ArFRaxEpGxbJFSkAwSlvnKiEcQggGwR9k5lCZ8nxVYNXtQ4oFEULt+7DChMbEUQvLAEECJdJ0bwX89j9AFCTWhvZw+epfYvpUjj3nX8DHPvaxti48Hp3p6uric5/7HKZp8qEPfYj//t//O3fffTc33ngjH/zgB1+0eqxbt47Tp08vccfat29f/fMXg2uuuYZPfepTvO9973tRvs/DGaIscs4Nq3nLZy9j7UWNRWpTR7J87789wH1//wzl/PP/bsPDw8PDw8PDw8PjbJh+tsB3/+B+Zk/mCMQUXv/R89n9lvWIHdycPTw8PF7LvOpFSnfddRfpdJqf/vSnJOjmMuEWesTB+uf1ieeqOEgOiAxdmqZ7WxwEEb3c/gVybbvk2gjd22JL4pIsY+lkhyBJ+GM+/G1EBu2iB0ozKrnTxeVXYS+avD/9wDQn7uwcyVSbRDp+12TH1cfhTICeHQmAjnFwAIOXdrP6WudOR7OH8sw7EbhUDzV3puQoLqx3d4p1N/Y7vsILY2WO3+Uszio6GHIcIdK1KcrgJc5WgYqKyODF6Y4ilBqJNWG6NsYclZVDoiPhzNngZt/BlJ/0toSjODuAtIvomthwiJEOMWc1/DEf8ZGwo7ae3rfgyOWrRu/5KdZc34cor3zxmXpVyOfAQQggN1pi/mjBcfxIekuMdTf0dzzG0rQKpi0g69uzsqOSXjQ4fNto3S1KDqxc8ckn5jn243FH4j+w3aiyJ9vc38LS75FDMv6Yr766tpl2/W9qY5TubQkQl7rm1TBVE0GS7OfAJem6oK62v+btZNPHlsJFbJH2YlkW733ve3nrW9+KuaJtk4fHqx/TNPnCF77A7t27Obz/DHtXv5u18T0t7kk1IZGYs8UC0W6J1IgPQbQdjZaLFDOSYQTBItYtEIovHTdJuaWuLlYqgOKz2unG0dqsZCrmobSCHluPNuJnDB0mj5oU56v/HV7mWRi1v0crw9SBcouDUrvJ+/iqoC128AfQyybGwvJjNTko0XdeimDaWSyOUTHJj5Y6ipnsytnD49ypYkcnHlEW6N2VIjrg3Bkpe6xgu/x0QA5KRPqDHZ1naqS3xByLsEI9fsIZZyvaZL9EYk3Edk11Uj4kOReXuEQOOt93bDBIqNvZ9SEHJBJrI+0eu21Jro84vvZskZKD82LBzHMLzlxFsYcIvbtTxAY7x76VpiuNa99B8xXGS45+/9To2ZEgubazqKl2bNHBIL7QytdTfrTE7EG7UxJ9HU6MZbuLZo85c3jUSwbFSbXhGtVMm7GSHBDxBUQEZWlfZxVb3chEWSA+qBBIVBcFLSNUsgwQggGiPT7S6wL1a88qVsVkgcb15S+n2Jt+C2vSe/j0pz/Neeedx7Fjx5wcqscihoaG+MxnPsPc3Bz33nsvN954I7/3e7/3otbhiiuuwDAMbrvttvrfVFXlBz/4AVu2bCGTcfa7zuPVTTgZ4Mrf3ckNn9hDYqApAu6uU3zzg/dy4G4vAs7Dw8PDw8PDw+OlQ1cN7vv7Zzj4nWm0skHv5hS3/tnFDJzjxbt5eHh4dMKZUuAViGmavOc97+GrX/0qAgKbpT0MSutaJq9bJpxDInrRRC+bHLtritJUe2FQbZtAUqY8pzP5ZJbZA7n65HY7/HEFyS9RmlE5dsdUax3aiJPSW2MsnCqjFQzOPDQPLJp0b5o58EUkBi/q4fR9U2h5nbK68mqy9LY4PdsTHPzuaUcOQ7HhEJGBIJNPzncsCzD64Ay+aOfLSpRFTN2sO750YujSbiSfyHEHIiyA8cdmyZ4qOopj696eIHem6NiJ59RPpxyLn0RFWiJgW45A3Ed0MMTUs87sy0/8ZNJxPVLrY/RsT/DMPx13toELes9NEe4PcuCbpzqWzR4rOBKZ1Yj2BVELGnOHOpcVRAHRJ9rxXh1Wpy+cLLJw8qTjeogypLclmD+a7xjnMf3sPIXREqbu3B2ib0+Kw98/s6KYx1TNuliqdv+sWI/9C+gVw3H8SGwgRGxVmKmn5pcVZzYzdHk3wZTCwe+cWbFczQ2r/8Iu1AWN6WeXn2xvjqjs3p5g7uACeu22rM9a2XVTF3QOfm+s+pFAdDjIwvHW/qTWJ1uGwehDs7aoyhSq4ipbhNpO0GRoAkfvnKI0bQsefBEJvdTYZ/M2A9IaeqV+nok+wLe+9S16e3v59re/zaWXXrpiu3h4vBoZGxvj137t1/jxj3/McOo8NvRcgST6INe4N5udjkQZTN12T8pZQfRYe5GPkQwjSRaCZWGZApPHTMzqbagn2wsT5L4A5TLoFYGxMRG5qStcLE4SJQhGYMFSyANUh3PyfEP01CxOisYsfJJAbtqiLCvLjqbN6qR874hAKQcLTzdc6xZP2Buj9vhGjgYJD0TQdYnSrL6iQAlskcH0s1lHEWSCKGCZFtnjnZ/DkiKS2ZVkZt+CIxclU7eYembekfhJDkgEkj7y42VnMWQlgzMPTjsqK8qC7WTjcL7SH/MhygKFic6xZXrZ4NTPppztGMjsSJAfLZM94Xzc4wgB+vd0MbN/wVG9J56cd9wegiQQSvvJj5baC1cWIcqiY7HU5NPO6wHgC8soUbljpJxlwvS+rDPhXZX0tjh6Ue+4UKI42RAo1e6flZg9kENz0G72DiHca4v6tGJndyfJL9J3forZA7kVnUZrv+8kv0hyfZTZ/QuY+tJ6m+UyYiBA9kQJsMdGSlSi2PwbuPbbtjruyY2qCFm7w1PifgzNwii29j1C0D4ms1Ri/OkCpg5CWEH2C+jY/Z5VXHpOc/MSpbJlD/MEu1+u1zrgh7J9zKIgsS51GQOZtTzy3PdZv24Tf/03X+C3fuu3Vmq+1yxf+cpXVvx88+bNHD58mK6urpaygiDw7ne/+6y/99vf/jb5fL4e3Xb//fczOWlHsL/5zW8mEomwZcsWrrzySr70pS8xPz/PwMAAP/rRjxgfH+f3f//3z/q7PV6d9G/p4k1/djHP3H6CX3z7EFrZoJLX+NmXn2H/3ae4+D9tJb06/lJX08PDw8PDw8PD4zVEdqzAXV/4BbMn7DmNnbesZdeb1yFKr3pvEA8PD4/nhVelSOn06dOsG9pIhSIhouyWryEgNlZ2LxYTiTKsu6GP+WMFxh9faCtQat4mtSFM3+4Eh384QXnGwNCEtgKl2t8GLkoh+UQO/7s9AdVOmAT2RLoU9NG9LYHkz9djhxo7XPpwEwQT2e98gqC2EteJQAlg7JFZxF90LhfK+CnPVFDzuiOnlzU39FKeUTl9v7OYqfxoCanT6uEaoh1vlnMggBJl2+1IEHAkUlIisn18Ds1Spp6ad1YQW8zx3NedC2cAx/WYPbRAYbLzRNbZMPn0PNLBzhF8Z8OxH487Lps9XnA08dqMqIhg0llQJIqkN8cxygYzCytHHupFk1xtskmk4zkqjNvRI6bDubVgt8Lqa/o4cc8EhbEVzqlJPTow0h/sGG8yvW+B2YMLjusx9UwWf8yZUwWApEhIfmf9jhyS6N4aw9JN2+2t2QKlTT+YXB+mf0+KI7lxynNL42dqfbFeNhAkiaFLUkgBicPfn2gRMjVTntEQBAlfRGD9TX1MPJllZn+hZX+1bSQ1wA71Kg6LT3F67gDXXnstf/iHf8jHPvYxR8fr4fFq4I477uDG198CgsDu4beTjqxp+XxxDFskAYlhhfH9Klo0Am0ewUay5lpo0d0PmgozE2Aay4uT9GQQn2KR6TWZmBAplwCEtq5JAPJ8hcCATDRukRu1RVAt+4sudYlRChWssIzRpluVp3N1cVKN7KSFdmoWaO8mYoxO1CPdTN1i4sncsm5SLfWIyqg53ZFAyR/3kd4aZ+IXc47EJ5ZpUZyqoBacOS5hNaI7O9YlabsZ5juIT4B6dJbTCDJTt5h62pnYG2DusDPHmbNh8qmsY8GyKywY/8UcetHhA9uFMEgr6K7cI2eeczH+q9ZDUkRHUWfBlEK4N2ALsTocQ/3aE3B0vOWZCrrDWEKA5PoockDseG3VBH2CZIt+VowRtGDi8VlH9zrYLmjzR/KUHEY3i5KAJAvV352dGyXcrdi/52Y1zGIRMdTUx7b5nZsc8aOXTWarRkaWulSsZAHoJeSAQGajwswxjfKCWe8HF4uV9LKFEAwQSxkEUzITR5uqXnNUqoqVgtoAFw3/Gvun7+K3f/u3+cyf/v94cv+DRCKdnaxeSziNI/7qV7/a8t//UZHS17/+dcbHG7/j7r33Xu69914Arr322vp5+vjHP04mk+H2228nn8+zZs0aPv3pT7Nz586z/m633Hnnndx5553k8y/c88Dj+UGURba/YTVrL+zj4f+zn6MP2gtWpg5n+e4nHmDzNcOc99YN+CPOf6N6eHh4eHh4eHh4nA1HHhzjvv/9NFrJIBBTWPOGBOe9ccNLXS0PDw+PVxSCZVmvKm/kr3/96/zyL/0yFhZDwkY2+XY72i65PkzuTMlZLJEIidUh5o84cwGSQyKCAFqhuu/l3kZXBQ1yoDVmzjKMJRPzckBEV03QnU36x4ZDFKfLjmOXhq/qYeFEoS5yWBERNr91mPxYiVP3OlthntoURcvr5E53XjnshlC3n1VXZzh2x7hjZ6S6G1GnphFh6y+vYuqZrCNnKSUmo5fNjq4+Z4MSl1l1ZYbT903Vo7eeT7a9a4SJJ+ddiaycMnR5D3pJZ+zns8/7vgGCacVRm4iyyOa3DzH51LyjCU0n7kXNjFzdg2nCybsnHW/jlP4Luph8cs6R41EgqbDujf2MPjRTFymuhBwQGbq8h7FHZik7nAhLro8ydyTnWDTni8gdY1xa+kFZarvvZsFnqEehOKk2f7jsvpWYjC8oUphwdnzpTRFmjxYd3ctGqsCjhXtYyGW54oor+Pd//3dCoc4RNB4er1R0XeeP//iP+eQnP0lXeDXnDLwRv9waiWr5lk5wiyL4YxLFZbolqy5MtgABJWBh6GDoQtv9AVgy1DKcFMVCVRt9hNVWIG4hmPb/iiKYTQIleb68RKAkSRaGISCqRr1eS46r2BBLBCON6Dgxt/x4yprL4guJxAYDzB4pYlWHdiu5KIV7A6Q2RBl9eAbDgdhC9AlE+0PPv6sP0LU5hqmbzB1yPsHrxJUG7Dis2HDYsZOSLyShORTiuyW+OowgCswfef4nsqNDIeLDIcfifTf4IjKpDVGmns5ias//mFSsCmGcCI9iQyGiQyHOPODgOB0Kjmr4IjI958SZeGLekRDPDYGkgiAJjuIJwY6Y9cd8jD3ibKwb6vbjT/gc30OSIiIHJSpZZ8JAQQQEoa3YTww0hJOiLNiuSwIIgfbRjUJVLCT57HvYbG5qeZn1T6JAIC5SzrYbzLWJ7vSBLyRSXmh/AVhy6zMgK+/jkf23E5CjPPDI3Wzfvr19PV6DPPHEE2e97YspFHo5cODAAd773vfy5S9/mY0bN3Ysv2/fPrZs2fIi1MxjOUafneGBrzzL/JnG2CYQU9jzSxtZf9nAsosDPTxWwru3PTw8PF4c3I69Xum81p4vr+bj1VWDh/95P8/daZsN9G5KcuX7dnJi7Oir9pjb8Wo+x8vxWjvm19rxwmvvmF8Ox/uqcVIyTZN3vvOd/Ou//isiEufKl9Ml9tY/F3wyltY6KT5yZZrinM7Us3nmDi2dtGneRonJrLqsi1P3z1BZMMkeb7/6W5BELMMkvipI97YYR++YQi+aCJJof6a3mZiXJPrPixFIKBy9faIxMV+bZBeWvqBdfU0PWsng+B1tnGZqL3tr+jMR+vd2kR8tcfo+B5MCIkiy6PyljgnH7xrvKDpoZnZ/Z7EEQPqcOKEuPyfvcSb00CsGuVPOottERUSsui45woQzD02vGLHQTP8FXfhCMoe+t3Icll0Z2PJLq5h4fJYZB20jCALqgua47qkNUQQRR/t2SyCpkNoYZfzROUciHq3gvN4Am942xMz+nCPBVGpTlIEL0jz3zZMd3cJM3WTs0VlyZ5wJ5WrHpsRkRxFquTOl1ombDsRHwqS3xjny76Mdy7pxOSjPqZy4a8L5cZrVya9AexHAYvwJHwMXdgEwd6jz9RUdCLLqqgzH7hxf0Qmqdo0k1obJ7Epx5IfjS0SWlmnVXY1qAqWe7TFC3X6O3zVlr/xvMwmuFcy6aHTkyjSF6QpTT9t1r/XhzUzvzyNIIr6ozMgVaUZ/PtsicGp+VkizYc43r+Nx4R7uuece1q1bx2233cZ5553XsW08PF5pjI6O8iu/8iv89Kf3sr77clanL0RomnDWU2GkXOM+V4KQyAiM5/zopoCxsPRZraUCyDn779GEhU+B2UmLfNVpyNdmrKHGffgKGt09FsUiFPICqipQSdgr6ZU2fbYZkxgKV5idESmXBczqba9FqkNjo1WgFAhYpIcExiYlrCmDxQIl029vVxMphWKQ6hMYO2yhSxK06R4tpbHSf0lMmW/lIXphvIxeNBwJlABMzXImUBKgZ3uC7PGCYwFEaabi2A1GCogYZdORQAlsl0m9bDoSq8gBib7zu5h6Zt6Ru1R0KESkN+BYSGJUzHZ6iraIskB0MER+vIThYszjlHBvAFMzHR2nqZloBX0l7W7rvvsCJEbCnHnQ2VijZ2cSdUFzJIQuTjt054L6ORd9IpZhdbxmtIJOYaLi2HULoGtTjNJspSXWrR3lOXcLArLHCnUXMCcIomDbwTsUZsVWhQkknIugujbHEUTai/LF6oVhmvVYuO6tUSrzGrmsDxb9drXKFYR4FANAUxEkSK/zs3BGo5LXsWIRhMVxbqZFSfdDGBSzTGJQZuaYZrt3WhZWJIRQaIxTDQ2MrIkZDxNNgaJXmDvdFJeuGxipCOKCvU1c38Le4QxPjd3Grl27+eM//iP+4A/+wFHbvNp5rQmNPF5b9G/t4tY/u4Rnf3Scx799GL1iUF5QufdLT9cj4LpGYi91NT08PDw8PDw8PF4lZMcL/OQLTzBz3F5U2BLvNvYSV87Dw8PjFcirQqQ0Pz/P+eefz+HDhwkT5zz5dSiiAtiTx8uhlU30srFEvNRuG71soldMBNG2O1o8iQ325HYNtWigFvTOoo3qBHturOxq5ff4E1mMSpvy7WZPTDj6ozHnsRCm85it6FCQ3KmSYzeftTf0UZyqOH6pjmG5cq9RF3THq9C7t8Xo2hRn/zdOOI64cuQsVWX04Rl8YWe3mCjC9L4shQ6TJDUq8xonfuLcoSfSH0SUhBdEpOSLSMRXhZl+Joua73yuxh+dc7X/2YM5ChPOBDYLxwtoBR297Oxemj3grj36L+oiPhR2FMvntq31koGhGUuc1JYj0KUwcnWGE3dPtI2obKYmUApnApTm1BUdgUzV5PC/dRZK1ajMaxz+t1HHE3i5MyUmnphbOaquieJUhcKoQ5c7QCsYqMGmG1oUlgiVLKMhHNXKBnqpdd+1vry5n7f/v4hWMtpGWtaeG5amI4oy54nXkBse5fETD3DBBRfwpS99iV//9V93dAweHq8E7r//ft7ylrcwN1Ngz6p3kAwP1T/TU+G22xg6qIo9PpMWCZS01NIYNNOobpO0BUPLCZTq36uB4aD71yKyPWleEtCc6XAoiDLivIWqweIQkZpAqZliFiqGiL6M3rNZoARQWTCoLBRscdIKGlHRJyApdoxULVpqJZSoTNfmGJNPzTsSy9hOKiaGC8edTgKPOgL07kqRO11kwUEkL9jCoFLF2f71isHEk3OoOWeDusq8iuVijNkpNrUZURYJ9wYozVReEJFSsMuPXjYciZSMiulqvKMuaGRPFB0LZmYPLDgWy+klw5XLkSAJ9F/QxfyRHPlO4wYL5o+6c7kyDWcCuBrx1WF8QcmOol2BuquUAP6Yr6PgrzBRtmPtHDJ/NI/oQgS1cNKdg1ppVqveRz7bHandIpsaFugVC0NrNKQVCiwRKgm5IlY0hBkMYGp63TGuvk3Ydm5qFiuJ2QJGLIzm8wNL+wwzZm8jLpSIKF1cuOqdnFDv5hOf+AQnTpzgi1/8In7/0shOD49mvLi3VzaSLLL9xjWsvbCPh/7Pfo49ZL/Hmjw0z3f/4H42X7uK3W9Zjz/sRcB5eHh4eHh4eHicPUcfGuNnX67Gu0V9XPE7Oxjc0f1SV8vDw8PjFY3DNbUvXx5++GG6kmkOHz7Mrg17uHn3L6OICoF0gHVv7CPYZU8cda0PsPp13YS6FRJrI6y6uhtDtZjdn8MXFll3Y4ZwfwjBJ5NaH2LNtWksTSc6GGDVlV1kdsQ4/pMZtLLJ2hu6ifTbLzyTa8OsuzFTn9Rec303/XsSlKZUzjw4x7o3ZIittqN+YgM+1t3Ya7e6JNF/YRfrXt8DQO5kifiqEIk1ERBEokMh1t2YQVTs/fbvSTJ0WRfpLVEAMjviBJL2i5ZwX4D1Nw8gh+1Zrd7dSYav7EZURPov6mLtjX3EBkOYuh0nsP7mAZSY3S6ZnQlGrs4AoERkdv3ndfRfbLuiBFIK628eIJC0JxS7z4mz+rqGO9Wa1/ex7o0DpM+Jo8Rk1t88QKjbbpf0lhhrbuirlx2+qofM7iT50RKVnM76mwcI99kTkqkNUdbd2F8vO3R5N/0X2HWYPZwn2OUnOmS/hE6sDbP+5oF62cFL0vRXXVwGL+tm868MEx+xJ0fjI9Wy1au8/8IuBi9pDBxiI2GyJwuYuh0nsv7mgXp79+1JMXR5T73supv62fiWQZSY3GjvkN3emd1JVl3VKLvm9X2kt8RQF2yR2vqbB1Didnv37Eww8rpMvezqa3vpPieOqcPCiSJDl3YT6LLbO72ttb1Hrs6Q2ZVonPNbBwhl7Pbu2hRlbXN7X9lD7/kpwI4b9Md9TD9nT6gk10dZ98am9r6sm/69dhuKssj6mweQAnY7xNcsau+L0wxUrw/AbjNZ5Lmvn6xfL6JcvWb3djF0WaO9193UT3J9BETb8Wj9zQPI1e/pPT/F8BWNNlz7hn5Sm+xrvTBWZmBvGqXqbpHZlWDk6kbZ1df3kd4Wt481LNO7K4U/Zt8b3dsTrL62qQ2vzdCzw25Df8LH+psHGLyki/SWGOmtMVZf32jDkat76u3ti9jXd3m6wun7p0htirL2Dc3XbA99tfYO2G0YHQgiB0Q2vHmQjW8dbLThJc3tbbdhfCRMYaLM3ME8q6/ra1yzF3UxeHG6pb0Ta+3r2xeV8Sd8dfeK/gsWtfcb+0ltsNsw3Bdg/S0DjLwuQ++uJL3nJRluumbX3mBfs9DaR4xcnWH9zf31PgJg9XW9pM+x27t2zpvbbNPbGsc6ck2Gnp12Gzb3EVNPZ0lvibHhTY1+oNZHAMghqd5HqAs6xakK697QS7BLQYnJDF2Wpn+PXVaQLNbdmCE6FAJBxLKEej8U6fMzeHGS/r1JW6wkwrobM8RX2f1JdDhAMK0wf6JUbYceBvbGG214Y4bkOru9owMBVl3exan759DL0L83wcY329eLpemsuTZNap39DIkM2v13cnqQndaV+H0B3vve93LzzTfj4fFKx7Is/u7v/o5LL70cteTnjZe/h1TUFiiF1waJrm9EBPUmKwSjEEmC3Ocnuc7P7IyAMK8RTUEqY4uTtFSATLdBOGQi5ytEkxaZQYsFv58pK0AsYtGdbMxod2dM/H0SatyH32cylNGQZZibE7ESEomRhotSv6ISjdodpRWX6F1tEfKbgO22lOqy0CIyWkQmPigQj9jfI0oWvX0mwW4RMSYRDlqEgo2It2S3RTQjYvplBNEuG66UCMUgPiDRvU5Cr+oSEt0Q67PHDJbfR/emAP6IvZ90osjIFQl7tz6Z2KBCfLgxqZ45N0mwOi7wx32sujJDz44kCBBbFbKfq1V6diTq/Z8Slcmca/eT5VmVUHeA1MZoow3PiRPOVN2pwhKZc5NIfhFTsyjPa8RXNYRm6a0xItW+Wg7aZeWghC8i07cnRfc5jX6za1OM6IB9DUh+kcy5ybpgO9wTwDJMCpO2eCG1MUpsyB4jiz6BzLlJlKhdNtTtZ+jy7vr3JtdF6nUSJLusv3qOAynFPlbLFs7GV4WJr67WX7DbMJCy2zCQtMsKIqg5HckvkVjbaMPMzgTBtN2G/piPzLlJRFkAwa5D7bkKtuNUqKfa3hG7vaXqODKYVqjMq3XBVHpbnHBvtb1D1TasOhZG+oPERxqxoF1bYkT67TaUA9Wy1TFnuDdAeluc6WezzB/J07UpSnSw2t6K3d618VKox0/39oTdvrJAekuM2HCo/t+Zc5P18VIw7a8/r7WCgS8kNdpbXKa9q4S6/UQHG/Vvbm9/wldtb/t6j4+ESW+JkdoYRRAFenY02luptbfPLhsbCpFcG2Fm/wLFqQrd58Tr7e2rtbffbu/oYJCuTbF6/Yav7Km3txxqXLMAkb5AfcwzdyhPMO0nUrtmA7VrttremQDd2xrXdzCtIPrtz0SfuOSa7am2N9jj7d7dSbrPSdTvBX9VVBnsam3DxNoI8dVhlKhM7+4kveel6r+/atdszbwtvjpMfCSMoZoIosDI63oJdjf6iMy5ybqLU62PUHM6ak6nZ0eCrur4utZH1No7OhQkuSECokh+tExsKECoSyYQl/BFFXrOiSApdtlwoExqWAa/guVTEP0y/qgEAoQTAj1rJKREACsUINwl0bW6IQ6IpQXKhg8zFMQXhL6tCophj8NCcejaHKoLlpJDMr5KmYUZIBmi77wwoYRdh4hRpKc65DRjQeLrgsR7/Iwo17Kt9/X8/d//A0ND6zhw4AAeHitxzTXX8KlPfYr3ve99L3VVPP4DhLuCXP1fzuX1HzufeJ/9/LIs2Hf7Cb75oXs5dO8ZLMuFKtXDw8PDw8PDw8MDMDSDB/7xWX7yhSfQSga9m5Lc+meXeAIlDw8Pj+eBV7ST0kblfA5qjwIC5yiXsL1vJ6U5zY7eMcyqk5FdVtcEtJJJ9/Y4vqBEcVpFq61slmTUoll37DEqJmpOR/CJDOy1hQfFSXsFsmWaqDkD0xQQJBFDs+quGkpMJjYYwNRtlw7TxC5bXV1sGAJqwQTBfrkt+QWig0EifX7yZ8qoeaO+8tbU7DrU8kfUokEk4aN3V5LCRIVKXredkQQB07Co5HSoHo5eMhAECPf4iQ+HKc9V0Kqrlk3dopLT6nb+WslAqsYuWNhRCZV5rVrWtMtW3UT0soGab6wELs+pFGfKTD+dxReRW/dbNloisbS8jlEymN63gBwQifTbMRVgrzau5Br71Qo6CLbIZfKJOSo5rd4uRmVR2bxup9qJ9mSSqVr1snrFWLRfA1FuTHJW5jQWqtEnhrZov0WjJVbC1C0CVUFIvb7Vz/WCjtq0mlnN6YR6A2QCIvNHC1RyWn21sF5sdWGp5O3os9hwCEEW7Dastote0lsi9NSCXnfb6t/TRTDlx6yuWtYrZst+tbyOXj2vpo7dhppRbUOjxWVAzWtNq5/tY6tNGJmL2ntxREclp9VdeWptaFavWa2gY6hN7bKgo1dMov1Bhi7pJj9WrMfrLHb5UnNa3XnAEuyJIESr0YZK4zxqOQ29VDtWE9Ow6L8gxbHbJ9BLBpWma1bN6fUV/Fb1XlAiCqYBxckyWnPZvFGPjLNM+9iKMyrlGZX4SBi15XrR68dgmtSvWV018fkl1Kbj04pavV+qldWrrmiGaoIA6a1xpp/OoheMFnO0Sk6ruxWYJZO5w3nUrL0ztagj6Q3daWWh4Shl6iaVBY3xx+x4u/SmWEskk5rX2/YRal7HsqwWlzc1r2E077epj/B3+Vti4tR8U3tXj7W5jwgkFHp3pTjy76P1PsLesdVyL9j3nM7gJV3oRYPSrNpwmzLtvrLWLoZqouYNkEQGL0phGiZzR6qr70XB7merdTBVuz8H8CcVooPB+jVZq7+hWnZ/blC9b+wCvpBMMKXgTyqoC/a9qjXXoWgiSDIJf4Yb1v4yTxd/xm233UZETDC+cJpIpDEp7uHxSqFSqbBm+CJGJx9nqPcCtm64DiEqo1cELEvA0C2sJvl7RVGwEhBNWRhzoGn2WEMA1LCCIQHVrlSrDnmUfoV4l0G+KEDVUMMwQBMbrkklxcCoGsjEIybhgMWZmA/dFJFNk2aDzLJPQkVAs0QkyyKgmKSiUKyIVPwSotx41uu6PVYDMIIyFdEgETWp+AVyBQFdB998BdMvowkmpl6L17WPzTQhkpKQZNCaDG4MDbBkrKqARatQHxdoJRO1hO2gZIGpWi0xv1pRr/ebpmGRPVkgf6YMlj0moqnPai5rGZb9bCoZzB3OE84EaHpEoBWNuluSZdrbRnoDlOft53qz243t9Ffdr2nv1zItfGEZyS9Smm44Henlxli2tt/aeMqoxpPVnu96qVEWa2lZLOoCJ73SGKfXyzYfa0kntTFK7nQRo2LUE49rZettqJtoRR1EgVCXYu+z6XrRikb92WNW29CybBFSamOMucO5prJ6fRxm1tql+sWGara49Omlxn4Xt4upmRgVE8knLmmX5vaulW05N2WzUdayy5pGraxVH5t0bY4RSCmUZtVqWVrL6mZrTK4IUlW8UttvLUbN0u3/rtehYhLOBAh1+ylOVVrPTb1sbbxqIEgCwZSCFBDtdqmeV8swq8dKvQ0RqF9fdtnW67u5bG3MIykigiA02tuwFl1bVovjpqEahLv9FCfLUDs31Y8NzayPj8B2Dau3/6J2MXX7Oqzvt2yQy2vVRQuLzo1u2b93amUrhv0bo2I2jcfM+v82t3dz7KAcFPEFJSSfPfaqXbM1d6jFfYRlWcSGw+THy5iq2VpWtRCEamFRRC9byAGBWL+fmUNltJKFJckgWxiWiK429Z0VC0OUCffJJIdEilmrfg/qsoKGgFUV2umq7ZAHEBkKEegSMUcl0Gz3PL3ad1rhIJooYGpVRyYLlAAE+oPkTdCDrf2sroHp92PGoD++h/4tA9z/8NfZseM8zln3dh555n/j4eHx6mfgnDRv+vQlPPODY/ziO0fqEXA//bun2H/3KS76T1voGvYi4Dw8PDw8PDw8PDqzMFHgrs834t123LSG3W9db8e7eXh4eHj8hxGsV+hyone/+9187WtfQ0ZhT/B6ImJixfK1CCWxKstyFO9lmigx2RZ/NKcYSNKyeSLBbmXZ6KV2TR3qVihOqUviiOrbLPoeJSo3BCaW2WaL+pcBtlOL0ygzN4T7Ao7jmsB24NFKOhOPzzsqn1wfJXNugoPfPbNiNNXZMnRZN6XpSse4hrOlf28XclDi5N3OItnW3zJAZUHjpMMIt9qK6U4xX/X939TP3NEC089kHZXf9q4RJp6cZ+qp+Y5lRVlk3U39TDwxR/Zo5zgJUbEjUAqjZUdRfsFuhXU3DHD0x2OOrrnoQJDe81Mc+/F464Tb84QSkxm8uJvTD0zVBULPJ/0XdRFMKBz5gbMg40CXwuDFaY7fOe44Es2f8GGUDUexcq6w0zAdIwdETB1H14Egy/giEnrZXNInCFL7bKRAl49yVm9bJ0GWl/TjgYRMed75OZWDYn0SWgqIddHEcjyt/owx7RiJRILbb7+dPXv2OP4uD4+XmqmpKW699VYefOBhNq15I/095wJgLfPDXFBqOmsBUbQwzYYw0pTbbWPLl0y5li7UGmWkRSXkNn2cIFiIfgHNaB99JCzaRBQsBAEqfglfof0zQmyKLRKrgiHTsvcvrRBVJRWX6QREEXF+mefj7Pyy+zNmGtG4kiKCgONYLUkR6docY/ZAznEEas/OBOVZ1XEUmxt8IYn46jCzB/N18cjzieQXSW+NM3sw1yLwXg5/wkdmR5IzD087imMTJMEegy9oKw6/a4S6/cSGQ4w/5iziNjoUIj4cchxZHBkIEuzyOxqngS32sizL8bioa0sMyScy+aSz/XdtjqHldRZOPf/XDti/O3xB2XWcmxNEWaD3vBSzB3OUZ52Nq2PDIQRRIHvceYxay2+45xFBXPkn4WIkv7ikHxFDobZlhXAYX1BEK7Xpe8PBNluALyCgWu1jlcyIH7HUFH0ngCRXhZztIsurWNVnhiBWf+JaIEq2qMlq+zwByydRURd4+uA3yeZP8dnP/jkf/OAHl/0OD48DBw7w3ve+ly9/+cts3LixY/l9+/axZcuWF6FmHmdLfqbEw/+0n2M/H6//TRAFtlw7zO63rEcJeRFwHkvx7m0PDw+PFwe3Y69XOq+158ur4XiP/Xyce//X02glHX/Ejncb2rm8e9Kr4Zjd8Fo7XnjtHfNr7XjhtXfML4fjfcVJPnVd54ILLuBrX/saYSHOZZG3E/F1tS8sSSBJdG+NsO6GbjvGQgfTsv++3DaZc+OMXGk7KKkLTRPc1f0tntju2R4jc24CJGmpaEQUG/+qpDdHSG2wLahXEijVSG0Ik95sW/M7ebkdXxOm/yK7TZwIlOIjYTa8ebAeJdGJQEph9et6Sa6Pdi5cxTSs+qpkJ8wdyrH/W6ccCZSUiFyPjHKKIAn12IROiLKIHHJ3q4w+NONYoARw6LYzjD7gbGIKbHGSU4ESQGGqgrqgdS54Fpi6SWm6gr7MZO+S8qpJ7mTRkTAF7GN97usnHIvicmdKHPruGdcCpVoEYif0oo4oC/hCzo3oREUkOtx+Amgxow/NOBYoge3kZekWst9hfURYc10ffXuW6Tfb0Lcn1RI9uCzVUxruCzB8Zc/KZbEdIEzdxBeR7ai6FW4zS9fR8oZ9rCGR4cvTddGpHeVW/ddEeUZDECQCKT+rr0nX4wVr+6v36bXyVYFSfDjIujf2Ikf9tMXnA5+vLlDqvyDB2mu7wbfys+Wc4BVsUvZQLBa5+uqrueOOO1ZuIA+Plwn79+9n7969PPLzJ9i99T/Rve4CtJjSVqCkxn1ocZnePpN4vOYyI6DGfKgxX1uBkpGQ6BkBJWwLlZoFSlpUWiJQkkSLTErHjItUIvISgZIWEuv/wBYapeM6omChBqRlBUqGImIoIoJg0ZUwbHGVJdj/ZPtfOywZUhkL3+Iuozr+aydQSo9IRNLLdHqaTosdFHbEU3OUVCdEWcAyrbpbkhMmn5h3LDLxJ3z1SClH9fGJiJLo+Nlfi/FyilExmXh8zpFACexYuNMPTDkSKIHtxlOZdyZQqtWnPP/CjLvAdhVSs873rxV0V+OiuYM5xwIlgJnnFlwLlESfiODwNAuC4LhsDSXms504O2DqFqMPzzgWKIEtlLE6/H5rJpwJtMTTdULyi/Sd34gvXrEudnolibWReiTfStQESuG+QD1KEtOkxUqytu9CoS5QCqVlQqmmsWab37gAWtnC8slE+3yEk619hJivYAZ9mMFqPa2qQAlIDwmE+nyYIWVJPQTdxAz6MPw+W6AkQ+9qgVAMjKAPI7j0uAXNQI6n2LH7N1g1uIMPfehDfOADH6g7vnp4eLz6iXQFufq/nsv1Hz2PWK/9W9wyLZ79UTUC7r7OEXCGZfJI7jA/nH2cR3KHMdyoQj08PDw8PDw8PF5xqEWNB766j7v+6hdoJZ3MhiRv+rOLVxQoeXh4eHicHa+ouLfp6Wl27NjB6Ogo3dIgO4JXI4pie1ej2kSxYTB3tGhP1HRafV7dpjyvIyxW1Cw38QxIAWmlxZ9AqyNSqNuPpZvMHnS2+jbcG0TyCUw/l+tcGPBHffijzleFqXmN0lTF8eRFeVblxN0T5E6VHH/H6EMzjsvGR8JkTxYcO7Kkt8VJrI6w7+snHG/jRkCU2hihd3eK/d846ch5RlRE9+5PJo5dbeSQSPe2BDP7Floi3lZi9EHn7X82nLp3ylX59JYYesVg/oize+BsHH9q7mlOGL6qh0Dcx8HvnOlY1tTh8L+NuqpL766kfY2ednCNVj8PdisYJbPjOdbLpitREyacvHfSlcitNFNxPLEMIPsl/FHZ8TkIxH2EMwHbZcCBO5U/6iOY9qNEfZTnNCxNR/At/zgTZQFJkRCXERgsFp9W8podl6eatiBJW3kiePZAnvKsBhXNLt/Obc8wQJIYDmylJ97N/Wd+xHXXXcdnP/tZb2W/x8uau+66ize/+c3oqsL5234TuScDgFxYeq/W4tjkgkEWkXJlSZGl28RkBNOiottxas1o0fZjL0EAKyQidDBVUfJ2/yNLEFSslYZyGEpjol2WIBiwyBVANVlWnARgybZTlM9ndRwLNlMpWGilNhNjWvs+cO5wHjnoTEwOdmzZ1NPO3BOlgIggCvY40IHuQhAFurfFWThRdCxMqWQ1Jh26/gD07EhQmlGZP+LMOUeUhXoUmFNMzXn5YNqPIEBxysFFDVQWNCovkDgc7LG4G1GN5BeJ9AZZOF2sx5OthNu2BECwrw0n+5cUkf4Lu5jZt+CoTfOjzn9zgL0YoWd7nOyJIjkn12g1h9If99Vjr1fC0T6bKEyW7ShEh05otshNdS4ytGy3Mq0gUcHZdRdM+dFLBqWZpuvINJeIjmr4oxKWYVGsGrxZuQJCNLzs/kUJLL9ES55iE2bQ1+KqpJYsarekGVIQl3Omwx6LL0xblPMgmxX0qB8j6EMqtR67vFBBj/kZWfcmwsEu/uqv/orR0VH+4R/+gXB4+bp7vLa48847ufPOO8nnn3+nNo+XB4Pbu3nzpy/h6X8/zi++exhDNSllVX76N09x4CenuOjXtpIaXroA7865p/jMqe8woTXGUxlfnI8M3co1ye0v5iF4eHh4eHisyHPPPcePfvQjfvGLXzA+Pk4sFmPr1q38xm/8BkNDQ6729ZnPfIbvf//7XHjhhXz6059e8vl9993HP/7jP3LixAkSiQQ33HADv/qrv4osv6KmGT08llDOqzz7oxPsu/0ElYL923LHTWvY/Zb1iMs4+Hp4eHh4/Md4xYweDhw4wNZN2zDQWa1sZ31g99JCzbNPIvTvijH+iyx6yWT6YHlFhwuAaL+f3GiF7JEc2UWf1WmaeJbDPvSyydhjC0s+W+4FL8DJe90JRk7dO+3K82ryyfl63JsTStOqY5GJEpNRF3THAqXk+ghyQHI8UabEbEcV+eciM/udibJGH5ph9mDOsUDJrQhq/kge3UU0Vv/5KcJ9AQ5867Sj8qmNUWKrQhz/8YSj8krUR3JthLkjeXDyLlWEQFKhPKe6iuJygxKTwcSxaCo6HEYv6o5FSqlNUWLDztuo+5w4PTuSPPsvxx0d89TT864Hm/6ED0EUHE0STj4xx9QzWeftL8LI1b0snCpw5n5n/UUgpdC9Le7oXq65UjmNW3N6nmpkjxdcRaDkzpTY/+1TjtunOKVy8DvLCMVqbkpVhwNL0ynNwJHbbacyyS9haAaYtpuSUPsR3SRsLc/qnPrpNPh8BJIypiqiFsylYiWfLcgoF6BcdUpJbw5TmlEpNOsgF8fKZXu4MHQrPy/+Gx/+8Id57LHH+D//5/84O3gPjxeRf/7nf+ZXf/XdJFJr2bn7Hci+pa6FNWESgF8x8clQKUChYLsnLYcak5FFC1mw0A2BufFW96Rmai5KgmChRiRUBIpZW1UgNz2btSWuh3Y/UPRJHMuL4FuqImoWJ9X3owucHpds16dlRspWk3DJNAXGx0XkmuHfCmPAGrmpNh1eG4GSIAkIgi0aceoSlFwXIXe65DjmLTYYItjlZ/RhZ88by7QY+/kspgMxCtjiCdO0HLsWAczszzkWxwqiwMBFaWb2L1CcdCYiSm+LUxgvU5p2Vj7YpSCIgmORkuQXbZeYFyCyGOzYKykgoZecCcskn0ikP2CLZVaILGwmvTVOYbzUKmJZgf4LuiiMlcme6Pz8N1ST6WcXqMw7F1ohQCBRHc92wDIsxh+fc+UeFekNkFwf5cyD044FbJGBIHrJ6DwWtGyhHrSPW2vH3CF3ggmnv7VqTO/Ltr92ak5Di/qxuWMrXPu1stVtxXyReaoOoj7ZFiyV9epnFcyIbTtXc1QSSxoLUxagQljBH4QKtqPSYrFSbZuFCoimhihBImkyPye0OCo1C5YEQaJn8CpQevj2t7/JT+95kCee/Dm9vQ5cQj1e9VxzzTVcc8019cgRj1cnkk9i5y1rWXtxPw/983OceMR+rzC+f47vfPx+tl63il1vXlePgLtz7ik+fPQrS7rJSS3Lh49+hc+u+TVPqOTh4eHh8bLhX/7lX3j66ae58sorWbt2LTMzM3znO9/hN37jN/jbv/1b1qxZ42g/+/fv54c//CGKstTdFOChhx7iD/7gD9i5cyfvf//7OXr0KF/72teYm5vjQx/60PN5SB4eLxrF+QpP/+AY++88iVZ9jxbvC7P3XZs99yQPDw+PF5hXhAT0wQcfZPOmLRjobAtc2lmgBASiMrEBP+G0b0UXpIZASWH44gThjLLks3aEB4Ksf0M3oe42g7Y2k1NKTGbDzb2t+18JEVZf2010OGj/t4M5jsFLuujeHne2f2w3m3U39TcikzpgH8MgqY3OY96C3X4ifUHH5dUFnSM/GGXmoDOBUg2nq8nDmQDDl/cQHXQWvQW2U40bkcbMwQUmfjHnuLxlWq5W8xcnKuz715OUHU4aBbsU1t84QDjjLhLPDauuytB7fspx+WM/GnPlvmRqpqs2yp4sOJ5sBTtSzmmcXI1VV2XoPTfhqKxeNh1PLgNgwvE7xznjwgHLF5YIZQIoEeexb+tvHqT3/KTj70hvi7Pupn7H5f0JH2vf0I/PSZ1MO1px9XW9RIec9xlrrsuQ2ZVY+oHY3tJk5Ko0qy5PL7/DRf3+4AVx+s+r9qu+FRzqqp/FhwPEBhfda22eJSExyiWxtzDYP8S//Mu/8Na3vnX5fXt4vAT85V/+Je9617vI9J/Ltl2/1lGgBBAOWESCJmB1FCgBdMd0emKtfeNy7kkAyT6L3mit/NKItyXlIyZdPRZ1m5RFLBYohRSTTFxHEKy2sXQ1agIlSbLI9BhIUtP+VxIoCdCzViIUX1SXNvFuNRKrw2R2Oe+npYBIsMuP2EaQtRxzR/JMPj3vuDzYIhMnjjlgR9WlNzsfnwKoC5oLgYnFzHMLjhxwABDA0p3XH2D2QI6Z5xYcl0+sidC1Oea4vFuUmI/+87scx4epeZ0zD844FigBWIbpZs0Dc4fzFKacj6VK0xVXjk3BlELP9oRjRzG3sb+FiTJjj8y6c9hKKShR52t+wr0B+vZ0OYqhA1ukmNmVJJheJn62DdHBIPHVDlyCqocZSCp0bYos/XyZWDQlIpLZGmzfx7Tp//wh6FsnIK/QTmaTuMgfhJ5BUPzVuNA28W/N2ykBCEfarCtqEwHX07ONiy56D/PZGdat2c6ZM50dVF/JmKbJ0aNHmZ5eGimu6zpPPPHEi18pD4+XmGh3kNd9YBfXfeQ8YplGBNwzPzzONz/8Mw7fP4puGnzm1Hfa6jhrf/vMqe960W8eHh4eHi8b3va2t/HNb36T97///dx44428+93v5otf/CKGYTheFGlZFp///Oe57rrrSKXav+P/m7/5G9auXcvnPvc53vjGN/L+97+fd7zjHdx2222cOHHi+TwkD48XnPx0iQe+so+vv/8env7+MbSyQWo4ylX/ZSdv/vNLPYGSh4eHx4vAy95J6Xvf+x633HIrArAreC1p30DL54Ist7w8EGXbAr6c1Tl0+xxGuf2kjyCJLdvlRlWO/3SWwqTmSNRUmFSZPVSg2ByZtMLElKmalOftCCEniLK9Att1bJiLyYRKTqM4XcF0qJ1QF3RGfz7D/BHnAqLRB5yLLERZxNRNStPOV1VvfMsgMwdyTDtcPVyYKHP4B2ccR13FR8KE+wOujqM0pbqK0po7lHe9WtoNlTmd43eOO14JfzaceXDacYTF2TB/pOBKKKZmddSsO6FbfCRMZCDg2Lno5D2TqAvO21QOiKy7aYDxx2YdHUvtPqjdF53InSpx4NQpx/XBhNFHZiiMO49QKc+qFGOyLW91cLqN6uoDSREdhY+YugkWiJJz/WxpVq27EyyhjVBpZn8evWIiOOjnAU4+MI+pNnWsPp/93FmcS1X97PhPs/XnTu15VNvn4u1kU2Fj9krmxe/zrW99iwsuuICf/exny65Y8vB4MbAsi4997GN8+tOfZmj15axefz3CohyzSlxqiUATBAvLEphdENFiEnKs/WBEjYot200uNIahK4mT1Opn8yVhSaRaO3FSjaIk4dOdCZTsAwFTBENqL/CxJKHFQUm0h2qYJliisOw40EyEEecLCEClaKFVGu0jxKJYM+2FzWIgwMLJoqvnt1E2XYl0BVHAMi3Hgo5Qj5/4SJjxx+Yci3xmnss5FtMAJNZGKE1Xlu/bF2GZzmPY7A1w7NZ5tmSPFxBewKUgak5n4hdz7n8nuMBtGzl1paojQGJ1hNKMs3NdmlUZe8Sd0Co6ECTcG2D8sc6LByyT+r5r90Un3LoXFadsYZbpMMbNMiwqWe0Fc+QCe3LeMk0E0W6DFtoIlYyKhVpYQeS3qB+slGBhykIrAytE89aESpWSwMRJC7XS5FYXUjCCMlJp6diraPrIzvmQDAOw7O7esrc1gj70kITc1L/JvlXs2PmbPPnEP7JuwzbuvuuH7N27d9l6vVIZHx/nIx/5CCdOnEAQBPbu3cvHPvYx4nFbMLqwsMB//a//lXvuueelraiHx/PA1ybu4Z8mfupuIxH4NdDKOlpZr4ty/1q7A+shi6J/+bGXBUxo81z15H9HcbrizwHvylzOr2aueN725+Hh4eHx2uGcc85Z8rehoSFGRkYci4duv/12jh07xic/+Un+v//v/1vy+fHjxzl+/Dgf+MAHWqLdbr31Vv7pn/6Je+65h3e/+91nfxAeHi8S2fECT952lMM/O1N3CO9eF2fnzWsZ3tWz5B2oh4eHh8cLx8tapPTVr36VX/u1X0NEYk/oDcTkrvpntYiexRPFI1d0oZdNTj2UWyJQEpomvi3DfunavTmMVjbIHq9QnNIRBGGJzqd5MtsfFbAsqGR1Jp7Kt76INdq/NBcVEb2kcfKnzieNTNXk2B1TWMvssx2n73MXI5c7VXIc21YTJcwecDZhISoisaGgK2HJ8BW2Ovn4nc4ivRBh/mie4qQ7Bxw3AiJfVCaYdL56OZTxE+kN2o4EDucTahF6Thm8pBvRJ3Dy7snOhbGFH7kzzoUoZ0Nxwt3EVHQ4RP8FXRz63hnHE2yiIiKKOI7di/QHCXYpjieQfCHJPtcOBThO3btq6GWThZNFKgsOnR6w22n40m4Ofe+M4yg9JSLjT/oc3dvZo9X70+Ex50dL5EedX0t62eTIvy8Ty7YMx3487qr8+GPz9v+RJOSA2P76aPpxkT3Z6C/iwwGyZ5rOx6LJOEES0Qr2E0Hyi/TvjnLm0Sym2hQTR+tzyCjbn4W7ZYb2xjhx3xzFKa1ebvGzSxRFLgjdyPH4w/z85z/n3HPP5cknn/Sy3D1eEkzT5Ld/+7f58pe/zNqNb2Bw5NKWzytxezzkKzTuFb9iku6zOLMgoxpSy2dgC5NqyCULUbDoihhM5yVKocb4yldatF2ksV1MNyhqAmXd/psWatzTcrl11Gb6BETBwrQECuWlKhGz+pViS1dsC5nyhkg+J+Jb1CFay4iWNE1gYlpup4Fqi2VBdqwaXacvP76z1OrzRbAdiwzV2fPGn/ChFQzHAgg5INF7XpLJJ+dRc86eMVrRoDBeduVCZJmWY2GJIII/KjsWKIH9vFdzmuNjEH0ClonjY5AUkZ6dCWaeW3D8HW6ENGeDZViuxhMAXZtj6CXDVRyr02gysM9duC9IZU5FcyJ6s8Afk9EKurPzbeFsv01Ucjrg7ndCelscUzXtKGmHBNN+yrOVpSKfRViG1RBzCThaXDJ/xN1Chtxpd2P+SlZDfc7+DqGdSNystrlod56GZjF33D4GUbSwaqdk8Yvcpn4zN2sfqKzY/aCqNMY4otp6TxkhmRJACKKShgAUcgJyXkOPNMe5NbbzzWuocYXulIEAzJ5qNKwvq6FVXf9qYqVwuIddu3+T/c99hSuuvJoHH7iPc889d9k2eiXyt3/7t6TTaT796U+Tz+f5m7/5G/7zf/7P/NVf/RXptO0oarmxSvPweBlTMMpMau5Eo3VkoI2ZnBPmjQI8j4/7guHueeXh4eHh4bESlmUxNzfHyMhIx7LFYpG/+7u/453vfCddXV1tyxw8eBCAjRs3tvw9nU7T3d3NoUOHVvyO6elpZmYac1ee85LHi83sqRxPfu8IRx8cqwvU+7ak2HnLWvq3dnniJA8PD4+XgJftLOiXvvQlfuu3fgsJmQsjtxAS7YgxYYWJW0GWmT9RRi87f+EW6vahlSSyx52JLPp2xxBlgSO3OxME9e2OER0IcOB7Y45EAMFuhaGLUxy/exo162wiZOR1GeaP5h0LghJrwyTXRjnxk3FHLkqiDBtuHWJ6/4Jjx6LUhii95ybJj5Udr86fO5xHcJbgYGPCxOPzjosn10fo2hTj6A9HHbtHTT+ddXzMAOFMkK5NMSafdFYvJSaz8dYhTv5ssiEY6UB5toKwzIRpO0LdfmIjYcYfmXW8jVviI2F8UdlxW2l5ncJYCVF0rOViw80D5MdKnL5vaWRBOyIDQWJDIccipel9C0zvcx7lAtC9PUGkL8Cx250Ja0YfcickLIyXmTmYQ3exgr5vTwp/QiF36rSj8jWHp8kn5x2LEFMbosRHwo4FRXJAZNVVGcYem3UsaBu8pBtBxHEsYM/2GKl1YQ5+f7zV+WgZEquD9O+JU7lzjvJ85w5BiYgEUz78EZnSbOfypTmd+VMVStn2dWkWK4miyJrchZhpkX379rFt2zaeeOIJAoEXLqLRw2MxhmHw67/+63z1q19j/a630d+9q/5ZTZzUjnxAxlc20AxnzyWfZBFQLGQRnPQGfsmkP6wxmvVR1Fb+jppAaSSqMVOWWkRK5grji3TCQDcFZotLC7UTKPn9FrGYyfSs5DAOyyK9SiI/a1LOWY4ESuGMn+hAgLGHKo4cXcDum8uzKnOHnYkaTN0Wz2oF50JpLa+7ii/tPidOcapCYdzZxJtlwsQT8473D3a8Ve4MjgVEidURlJiP8UedjYssC0ozqis3m0h/EK2oO4+gc4kgQnQwRHG64nicXVnQXDkvhbr9pLfEOX3/lKNYNsuE+Kow87rlWEzk9lwLkkDPOXGyJ4qU5zqL99QFDdWlmKs4UcZwKPQDW8iV3hJj5rkFx45e0YEgkf4gY4/OOhIqCZJA1+YYudNFx9dUqNtPsMvPzH5nY1s5KJLeEmV6Xw6jXdMuEisJImQ2+MhPm+SnDPtG6fBSt2tAQFdh0uFw2x+kKlJyVj5fsN329LCE3KZf06vCWLloEAgk2bHzvTz6xNc4/4KLeeC+e9izZ4+zL3oF8OSTT/LZz36Wvr4+AD73uc/x2c9+lt/93d/l85//PD6fz3sJX+XOO+/kzjvvJJ9/4ZyNPV5YwlKAHp+7WNl2GJqJWtDQBINyqHNfm5DCz6uTUljyfvt5eHh4eDx/3HHHHUxNTfGe97ynY9mvfOUr+P1+3va2ty1bpiYwaidi6urqahEgteO2227jK1/5ypK/Hzt2DMPFIv1XKvl8nn379r3U1XjReDkdb360wun7s8weaCzoSawLMnhxjNhQgCyTZJ9zZgaw4ve8jI75xeC1drzw2jvm19rxwmvvmF/I492yZYujci9LkVJtpZ+Mj4sTb8Vv+tuKk2pOFIIiEx/ykz1RYe5Y68vhtitCAUQQLIGTP2svYFguCujkffNIyvKRHouZOVSkkjMcKzFMzY6Fc7waXBbAtLAcTB60fI9uOhbqmCbMHcmRd7Eyd/qZLLnTRccTJ4Crld1KTKZrY4yJJ+cdT7joFdOeoHF43KJSjdlykbAw9dQ8U0/NOy6vF3VO3jtJYcxF27oU0gS7FFLrIi+oSCncFyCU9jsWKZVnVcdioxpnHp5Bc3hfAIw/MntWxyyHRPSis5OuFTQqOTfKuqqgKyIz/UzntjJV0/UxnHlo2vE1Drbb0fyxgquoHEM1MXTTsQOTrpqYJkg+59k35aw7p6r5owVMzewsUKpOyMwfK1HJ6ZTnmw6guV9f5KpUnjc59MP256Kdq5Kpw/gTdp/mTyj4QiL50XKLm1Lztpaus968GFUxOXBgP9u3b+eJJ54gFAqtfDweHs8Duq7z7ne/m3/51//LhvN+ie6hc6FothUn1ZySxJSAbgpYpsBsqXWM1uye1MACLHIBmVxFguDSydFm96QaFUPk5JwP1RBbHJQWY/rsz0wLZsoSeU1EYGVxkinb9aoYwpJUo+XckwCQBCxBwKF2CEGwuxTTcOighC24KUw4FygBTDzeOdKqGVO3WDhZdFw+0hdAKxquXI60guEqDlaUBUeCmGbGfu7uOblwqojULu5vGUzNdO1mE+4N2JF1L5BICWyRklbQHY+18y5dNcvzKpNPzdftz51w5gF3YzugGovnLF7NMmwBlBsnL0ESiA2GyI2WHLmMuYoOBIyKydjPZ9HLzn/zlOdVW5vk8DAsw8IyLFeiEsu0bKcch45NRsVEzRlVl7Gq49sKzkoWEgsTBpVcU5suJ1Sq9qfTpy1783DT7lZwVZrOVz8LCUjF1nvJCDa2q7kqlSqN+ippkWJJQC4YLW5K0CxWirD14vfy3IN/zyWXXsa3vvkNbrrppqX1fwVSLpfx+RrHLIoiH/nIR/jc5z7H+973Pv7bf/tvL2HtXl5cc801XHPNNRw4cID3vve9L3V1PM6CX81c8bzFpOmqwRPfP8z7U18hH6m0dcsUgB5fgh+e8wmkFzLb1cPDw8PD4yw5ceIEf/mXf8nWrVu5/vrrVyx76tQpvvWtb/GHf/iHKIqybDm1+r6iXRlFUSgWV363cNNNN3HxxRe31PGTn/wkq1evXuLO9Gpk3759jidsXw28HI53fP8sT3z3CKefqr6nEGDk/Aw7b15LevV/XOC+mJfDMb+YvNaOF157x/xaO1547R3zy+F4X3YipS9+8Yv8l//yX5AFhUvib8UvhuyJ8GUQZJnUmgCZbWFKMxpq3n5Raun6sgKlUJfM4AUxTt6fpTy3dDa/nUApsz3CzMEiWsnA0Dq/6VUiImrRRF3QmXUR5VWZ1zl5j4tYON3i+F3ulL7zRwquYtjcOhbVIpecTsyIisjQJWnGHp11HHsWzgRJrI0w8QvnE1O5k0VyLibjerbHSa2Psu9fTzrexi2mDtljLs4FdqRceUazBVQOmNmfY2a/88iKs2H0QXcOQQCBpIKhmY4dGdycu7Olb0+KxJoIz/1fZ+fc9b2E7figxHyOREo1MjsTGKrpSKBWE1iJsohpOhPZuRVCZY8XXIkKMeHYj8ZcfYcbBzMANW8wXY0rCSTkzu5IgkBpRgdRJL0pRH5MpdzsXreCEHX40gSmDmceWTppLcjyEiFS784IvqDIkUl9SURp83YAWyOX0tOT4PH9D7F161YOHDiw4ksCD4//KLqu8453vINvfvNbbDz/V0gPbAdWdk9SYyLDEZ2yJjBZaFzrvoK5jEAJMmEDQbYYtSTazfgsFigpoklAsljQJAr+5etSEycB+EQLzRTIqnZ5Ueo0XrNj3rIld2LTclmgXHa+jWUJzB1bWXhpLYp004qGYzcaQbRVCG7EPeG+AAKQH3MeLRLKBKjMa65ESvNH3Yl7+i/oInui4Dqyyg16yXAVxyYpIoIouBKhuBWMucUy3QuCBElADkiOnbNMzXLkVvQfQoCBi9LMHy04jpN1E8MGtmYmMhCkktMcR/XKAYnYqhBzh3IdI9yA+rXhVGSnFQy0grtrfOY5d4sUSjMqpRnn588yYfagi/vVNCjOVsVMgu28a2iwkr2cYQog2H1zOAK5LDQ/D5oFSzb2Z4pi0dMD41kLrY2jnhGUUbIqatweL/lki56UyeSMSBG5rasS2GIl2Sez9eJf58gj/8Cb3vxW7v3p3Vx00UWOm+HlyvDwMAcOHGDVqlUtf//Qhz7EX/zFX/DRj370JaqZh8fLG1mROO9NG/nY8TfxB9P/WhsqNrDAEuAjQ7d4AiUPDw8Pj5clMzMz/P7v/z7hcJg//dM/RVpmIX6NL3zhC2zbto0rrrhixXK1d5Nqmzh6VVXx+/0rbp9Op+uxwx4eLxSWZXHm6Wme+O4Rxvfb72UEUWDtRX3suGkNycHoS1xDDw8PD49mXla/qv/xH/+xLlC6NP52/EoMlot3k+X6pO7s4TLH7p6vC5SQxOUdlCQJNWdQnF7GrajNwE2JiiRXBwj3OZ8oXnVFF8OXJB2XT6wOsf6NvcgBZ6dEEAWGr+ghOhxc+uEyL4eDaYWhy7oRZeenffDiNJmdCcfl5YDIxjcNkd4ac7xNIOkjkFIcTQLUmDuU47lvnHTsGBPoUghn3Nlnzx8pMPao80mmULefTW8bItDl/DpJbYqSWBvuXLCKHBBZe30/iTXOt3m5svq6Xrq3OletKzGZvj0pRBfuB6uu6mHo8m7H5eeO5Bn9uTvBlRwQia92fj5OPzDN0R+4E+z4UwpK0wrwToiyyMa3DJLZnnC8TSClsO7GfuSQ8/ZNrA3Td37Keb0UkZGrewimnd8jmZ0J1txgR1U4cVkIZxTWvj5DdNDZ/S74RFJrQ8RH2pRf5od8cVqjMKku+3wSZLnls9M/X+DEfQttP2uh+ln35DmsCmzj+PHjbNu2jXLZuYjAw8MNpmny67/+67ZAac87SQ9spxKTqMTaX/tqVESN2SKj0QWZqUKjnBoRlhUoqRGBvCmSk9vvV2vThcYUk6TfQA+2v+9Nn/2vRthnMhJTUUQTSwRrha7MEsGULQbiOrFAq/DElIVlXZR8AYtU2kQQ2tRpme4p3mUR8K0gbilXWgRKkiLQvS2K5BcxHd770cEgfXu62q72Xw5fSMYXdrdWYfKJebInnAtUg12K7fjpgpn9C5SmnQsrUhujJNdHHJcXfQKx4RCiC2e/6GCI7u3P/yq7F5tQt5++81KurpNg2k8wvfLL5mZ8EZn+vV3IAYciPgtmD+QozbpzL1KiMnLQ2XeYusWZB6cdC5Tsaln4Yz4kp8eBHfHXt6erKhp0RmwoRHzE+RhSkASS66NIDn8vgr0oILlu5XvEaopXEH0CvefG8Sd8tqPSStELpgmmSWqVTGrVonGqZS37mzQQEoglrFpyXAtGm3tT06CoS5iahb7MeTeCMka1XTRd4MyERLEa+amHZfRg+zbTgiJGJMya895LODHIZZdfxV133bXcEb9iuOyyy7jjjjvafvbBD36Qq6++2nba8vDwaMuNI+fzubW/RpfQOpEVyfm55Se7WXOg27uHPDw8PDxeduTzeT7ykY+Qz+f57Gc/21EU9Nhjj/Hwww/zlre8hbGxsfo/wzCoVCqMjY1RKNjvAGoxb+1i3WZmZtrGwHl4vFhYpsXxRyb43n97kB996lHG988hSgKbrhrirZ+7jCt+Z4cnUPLw8PB4GfKycVL6xje+wXve8x4kfFzS9csoYjXiZrHrRNPkbmZ7mNKsxsJplXLWgOWESQCShCgDIugFk9MPLbR8thJqweLgj2YwXSQ2nHk46yhSoIZW1CnNqujllbepvfgWFRFfWGoVHHV4SRJI+gmkFNtdxSEWVqfdtqCrJhNPzDHvwmWlOFHhwLdOOy5fc2pyE8PWvS1BqFtx9T3lOdXVCnJDM8mPllCzzp2z4qvCGKrp2I1HV02O/niMiot69Z6XJJBUOH7HhONt3JJYG6Zne4KD3znjeJuTd0+iOlzNDyD7JZJro8wfzTuewCxMlF05S5RnVMouVp0DJNdHyexMkjtTchY9WC3iJlbu5E/cuaWZusnUU/MsnHbuPqUXdSzTQg7K6EVnbeCP+wh0OZ+8NHUTX1hGifocn8PyvNYiTKsJlZabBCxMqIw+Mk/utENhjwlH7ppdvn9vfj5UJ+pmDlbdD3wKSlxBLZhLn1VQf16Zqo6JieiDgfOijD1dQS9Xn2XN2+l6Xai0KXYpckjg0KGnOf/883nyyScRHcaMeng4wbIsfvd3f5evfe2f2HD+LxPZtIOaTEAutfZNNfGRLFj0hHWmChK6ad+DamT5CXk1IiALFliQU1vHWu2ESc2MCxKi0d51yWyj2SxoAqMlmcoK+vvFwqWSLqLq1Zi4FcQ0tc9kyUIWFg23mv6/FlXw5Rp9m6AZ+GUwfLCkiym3F2WIPhHLtNDzzl1WCpNl28nFxXjNbXyZ6BMwNcvxd4g+gfS2ODPPLVCcdC5AceP8AlCZ11xNEsoBiehQiOJkxfG4Pne6SGHSuVhUECGzK8X8kfwL6kSU3hanPKc6jnErzVQYf2zW1XUS6vaDZVGadnYOjbJBcbLs6py4jVcDSG+NU5yqOL+Oq04Ygig4ioozyiZjLl0mSzMVTN10FdFoAe00jytt4I/78M3IGGVn15YoC8hBCUFkxQUhNaGSiUQlp7f+jq0JlZb5zZwdrd1MbfrRNhFwxYJAqShiWe2z6JqFSpJmYlkCs7PV38CihRGyt5XbOKLVhEpUf1OHAiayDDNIdaFS8zPOv2BQiUmY0QDrr3wPx3/6v7jxxpt46KEH2LFjR9vjfSXwzne+k3e+853Lfv7BD36QD37wgy9ijTw8Xnlck9zOlbu28cjcYR57+DAzP8vSeyKOaAn85BdP0L+ti4vevYXEgHOxtIeHh4eHxwtFpVLhox/9KKdOneIv/uIvGBkZ6bjN5KT9vvkTn/jEks+mpqZ4+9vfzu/+7u/ytre9jfXr1wNw4MCBlmiY6elppqamXjWxyR6vLEzT4thDYzzxvSPMnbLfD0iKyKarhtj+htWEu9oYPHh4eHh4vGx4WYiUfvjDH/L2t78dEYmLU2+3I97a0ew+IUIwKYNpsXBa7ShQAhi8IIrPL3Hk9ukln7XDF5Xo2RJh7BcLjicyAkmZ8pxOccrdpERhQqUwsfLL8OZJeVM1OfqjycbKVweTAXOHcswdcheRcOZ+lzFeJo4iqWoEkgp6xUB3GGkC0H9hGn/Mx6HvORfEnPrpJErc+eUe7gsQ6Qu4irmrzGucvs9d9Max28ddlceEgotoFsB2DBPcORm4RSsa9sSiiGPxWGHC3XEUpyrs+9cTrraZftZdNAbYjhShHr/jcz9zIMfckbwzgVKV1KYo/ed3sf+bJzsKE5uJ9Acdx6G4uQ8B9LLJEZcOT3YbzTvfwIRDt426+o7louUs01pWqDR32C7vKPYN6v17YnUQX1hi6pllJj0lqcVRILlaoXdbiCP3LKDm5PZCJbCfXbqO7BcJxGT8Ua1x3uXlt1snX4JvWOCZZ57isssu47777ut4LB4eTvn93/99/vZv/5Z1576V2Jbdy5ZrdkfyiRYByUISQTc7C5QU0WQkpDFa8lFuEg+tJFCKRQ0qloBuiG0fJ0sFShY+ETRTIK8tP6ZrFSjZioXZqhOUE4ESQKEiUkBBoTb2Wv44akxVtdErSQzFZAJzbh6AykyByRl3MaJG2aS4jOipHf6Yj8qCc+W9pIj07+1i+tmsYxGRqVmMPjjjSigcGwpRnlfbO50ug9uxhJrTOXO/u7GaoZoYLp7xIFCZVzFcLFY4G7ScjuEigs7ULFTNeduC+4gxU7eYP+ru+kWA2GCI0qzqOIpu4ok5DBfjJ4De3SnKc6orgZ6kiCDi6LuMiulKkAeQO+UuytgyLcYfdSeeKk5VXAnBLMOoj6OWYBhtfzvr5ep9LgrIftAXf10boZJlCQiCRaLbIjsnLOuOa/hEpPq9ZNHXZVDRBKbnJfSg1FaoBLZYSSqbKIqFTwa0RmaTHhSXiHEBJF+AtZf/Os/d8b84f++lPPfML1i7dm37inl4eLwmkASRvakN7H39BhZ2FXjwq89x6okpAEafmeH/ffQ+znnDanbeshZf4GXxetXDw8PD4zWIYRj80R/9Ec8++yz/83/+T7Zt29a23PT0NIVCgYGBAWRZZteuXfyP//E/lpT78z//c3p7e3nXu97FmjVrAFi9ejXDw8P827/9GzfddFM9Ru673/0ugiBw+eWXv3AH6OGxCEM3OfyzMzx521EWJuzf1b6gxJbXrWLb60cIxp0vqvbw8PDweOl4yX9FP/XUU9xwwxsQELkw9VaCchvbvXbROCYc/2nWFietEO3WzMQzBZRmi/jlBErVie9Qyke424coi5h655fTogKrr+pi9kiJiSecvdRPrg2RXBPi+F1TbV/OCpK0ZNlrZmec/HiZwnjFkTgJETLbE0w8Ne9YQBJIKkQGgkw/k3W2AfaK7kBC4fR9U4636Ts/hRySOPRd54Kj6WeyriNKAFcOR6G0n8TaqCuRUnwkTGGy5Ngd52yI9AeJDgYZ+7nzCYrZA+6EaWdDYazsWjwVGw4RTCuu2vhsiA4EqeQ01AVn5z+UCRAbCjmul6mamC6NEhZO2pM/uotJz65NUfr2dHHw/51GzTs7luhwiPTmmCsxXLBbIdwdcCVyig4EQRLInXQ22SbKIr3nJ5l8cs7x/ZLeEiO6KsKx2xuOYCu5KslBkTXX9TD1TI7pA86EXeFuH76QxHQn0WtVqJQ9pSIIAmquSXAEy7oqqWU4dPvc0mfaCtutKl/MtJLl/vvv57rrruP22293dCweHivxl3/5l/z5n/85Q3tuIbF5b9syrdFt9uRuyRA5mZNRI8vfI83CJdUUGC/L5A2hPuBcTqCkB+3vCUkmgilQMBrf0c45qUbSb5AKGhxdULDauHgsjX2zGIjq5PMiC8YysXYREbncGF/JokU0aDJfEO3v6DD0EjSDQBhMCdTqo9GMhxGzhWUdlACCSajMS+jLTLov/SLo3hpn4WTRsehIDkpkzk0y9WzWsTuOqZvMHshRnndhKQouhT3289c0LMciJSkgIikSqgvB1dkQGw5RyWpUss6+xzIt5g67c6o6G9xE7wEgQHw4TGmm4ngccTaIPtvtteL0erEgMhDEUE3HIiW3AiWA7LG883urSs+OBJUFzdVYOrk+SiWrOhcsCRDpDVCaVTEqzo5LEAUifQFyDl20wBYn+iLyUrF7m8w1yzAQJBYBpqwAAQAASURBVIHucxLkZ0wq2aZ2W8FVKdYjEO6SGN/f5jy2+c0qihAMQbEAFXN5sWhDqCQwsyCi642ytfi35VyVZlQBacGEaM21qSFUsrdb1Oa+COuu+k2eu+Ov2XHuHp59+nFWrVq1bN08Xvnceeed3HnnneTzL3y/7fHKJpYJc+3v7ebkY5M8+LXnyE+XMA2LJ287yuH7R9n7rs2MnJ9BeIEXiHl4eHh4eCzmr//6r7n//vu56KKLyOVy/PjHP275/NprrwXgS1/6Ej/60Y/4+te/Tl9fH5lMhkwms2R/X/ziF0kmk1x66aUtf/+d3/kdPvaxj/GhD32Iq6++mqNHj/Kd73yHG2+80ZFzk4fH88H4/lnu/usnKczYL9z8ER/brh9hy7Wr8EdWeIHo4eHh4fGy4yXNjhkdHeXcHfbq/T2pm9l5/Srig/aDJD7oY901McTqaqT+XSEGzw8RiIusuybGhuvjJNbYdn3RXh/rXpdAUuz99u0IMXRxov49G16fILXWTyVrYhoW617fhRy1vyezPczwxbF62dVXxklvsPerFg1Mw0KsPtt6toYZuSLZKHtVku6t9mxbICGz9nXdTO3PM7UvT/fWCKtf18jiHbkqTWan/T1KVGbDGzOEMwqGZuELyax+XWNAuOqKNH3n2fWXQyIbbu4j0h8AILUpzMBFKcIZ+7+Hr+ih/yL7e0RFZMOtA8SGbSeqxNowG24dIDoQpPucBKtfl2Hwkm77S0TYcOsAibV2/eMjdtlafNzwVT0MX9Zdv0LW3zJAaoMtIIsOBtlw6wBy1U6//4IuRq7uQRAFBBHW3dRPeot9rOG+ABtuHUCJ2Oex97wkI9c2jlX0ixSrERrBtMKGWwcIJO0T2bMzwerr+xrtfX0fmZ0JilMVyvMqG24dINhtl02fE2ftG/ob7f26DL3n2edq6NI0O39rLeE+u83SW2Ksv6lRdtVVPfTvtdtQDthtWJ5XOfDNU6Q2RFl/y0C97NDlPQxcXG1v2W7D+EgYUYbV1/Wy+e3D9TYbvCTN0GXd9W2b2zs2HGLrrwyz8a2DKBGZ/gu7GL6yp152/c0DpDZV23ug2t4hkUBKoWdngpGrG2247o39pLdW2ztTbe+Y3d6ZXQnWvqGvfq7W3NBH9/YEAIGuanunqu29I8GaGxrt3X1OnMwuu6wSl9lw64Ad+4EtSFt3Y2t7D12WBhF8EbtspN++j1Kboqy/udGGw9X2DqYVYquq12j1mk2uj7Dh1qb2vqybwYur+dki7Pyttayvfh5fXbtmq+19cZqhy1vbO7k+at8j56dar9m9XQxf1dreXdX2zo+WEAT7OAB6z08xck2jvde+oZ/0tjhgx6BsuNU+V+tvGSCzO8Hq63rrZde8vo+endX2TtntHUwr6EUTSZFY23x9X9tLZrd9zSoxuw1r93l6S4zkhijHbh9HzeuMXN1D354UUO0jqvc5QGpj45q1dIvoUIjBy+w2XK6PaG7vkat76doSA3nlPqL/oi6GLrfbsGdHgnVv6OvYR9Tb8MY+urfGCfcGO/YRa9/QT/c58fqE6oZb+wkkfdXvjbP6ukxdrLT6mjQ92+17QVJEBAEKVfeA9OYwa65p9MmrLk+S2WHX1xcWWXddiuzJCid+liW1Lsiaaxp9/dDeKL07wtX9wrrru4gOBDB1sAyLtVfHCHXZ9R88P0z/+XYdRBnWXRMj1l99rg0prLs+BSIM7Qmz8YY4A7sbzoHrrk8RH7bvx2h/9Rkow+7EDWzZtJUf//jHfPjDH8bD4z/CN77xDT74wQ/Su+0qNuy4iIFwQ0jQF9ZI+g3UqIgsWKwKq/hFk+6AwUhYZSik1QVKfQGNLsW+LyXBYiSkIsXsezEm66wNVQCBBV2i12+QSOpoYRCxGAmqhCR7YjgqGYwEVWqTx5pl78/GYiSgEq6WDUsmIyEVoaoS6lZ0fLLFaNGHicBwRCXisyeqg5LJUEJDrO6rK6iTCesIgGYIdEUNoopdNiCbDMc1ZNEumwwYZOKNSfbBLpV0TAcBFNmiv9dAlqvHGjXp6W5Mjnf3GESSEElCohsyI+Crjk/DEYP0+sZqrtRqhWjG7jsEVAYvThMdsvvycCZQf36ALVSNr7L7IVEW6N2dJNilgAD+hI/MrkafldoQJb7aLiuIdtna2MoXkjB0g9KM3Tcm1kZIrmvElNT3i73f3t1JEAQKE2Viw6F6Pw+Q2ZWsjwv8Mbus6BMQJIGR1/WSObdR/54difozTYnI9O5OIvntayk6FCK9Jcb4o7PkR0t0nxOvjyF8IYne3UnkqhAhMhCku/oMjvQGGbk6Q3TQLisFRHp3J+tC9nBfgJ7tTW24Ocbgpd3ER8JIil1WidplQz1+Muc2teHGKPERuw3DvQF6dyfxx+2+PJj22+1SJbk+QmJNpNre9nMs3BcAwX72221ol02sadPeabsNpaB9rIJkF46PhEltbGrvc5OEeuyySsxnC/2rxxobDtG1ufF7pmdHgnCv3d6+pvYO9waIrw7Xx41AS3vL1TrIIbu946vDrL95oD4mSm+JNdrbX23v6mfh3kD1PPvpPidB16YYsVX2M0702WX9MV/b9i7PqvXvFCT7mvUnlmnvdRESayOkNkSJDofs67s6lg0k7fYWxFp7h0mut9uwNKOS2hRrXLPx6jUrL9Pe1d8cc4fzKNFqG1bjZ2NDre3dvT1R/50hB0XSW+PIAft4ogPB+rgR7DF0ZKC1vZMbovYCkb5AfZwO0LUlRmwo1NLeSlTGF5Lo3p6gf2+qUbZNH1G7ZkPdfnr3pAhXr5/WPgJ6dyXqY6tgl0LvrgSWYaGXNGL9fhKrAo12OSdMICmDYeCPCPRsVOrtLcigVSwsw+6ze0YEQtUmVYKQGRHqmqh40iSRshg9JVApC/T0mYQjdr+qKHY/K0n2f8ejJqleC8MnUq6IpBMG0bCBIlv4ZIuBbh2hKqyNhQx6E43+O5MwiKRAkU1WpTSGUyqKbNcvFjDo6W30370RnWTQwBeIsv3qX8cyVXZecAmFgktB4MuUK664glOnTr3U1XjZcc011/CpT32K973vfS91VTxeAQiCwKrzMrzlzy9l5y1r68+QwkyZu/7qF/zoU4+SHXt19BkeHh4eHq8cDh8+DMADDzzAJz/5ySX/ni8uuugiPvnJT5LL5fj85z/Pvffeyzvf+U4+8IEPPG/f4eGxErmpEnf8xeMUZsoEE372vGMTv/SFKzj3Tes8gZKHh4fHK5CXzEmpWCyyY8cOTHS2R19HQumlnNXRK/bLSN0QKecszOriRjVnIIgCugZaycI0TLRqxIFesSjP67bhkCRRKYKh2i8nRRmCKR/RAZPZYzqGIdjxP/X96mBadfekyoKBHJTo2xVh5lCR8ryOWX13qRYMBKmxCrQ8r6PmDTBNJMWiPKexcLKCqZqoeYPynEbtAMpZzS6LvSK9tlq2MGFbsER6G5NW5ayKVqyVpWVlrZY3mXxqgYlfzNv1bY6TMO396pVqu5Ts/86dKrH/mydJbog1VrGa9n5r36OXDEqzKma1vrP7F1g4ka+3U3lWRSvq1faulbU/q2RVDE1i6im7ToMXp+uCAqNs16HmRKUutEaPlaYrFMZtkZKhVstWj0fNacj+xirdypxKqD9AIhemMFGx20WttYtOabaxYrk8r9VX4qtFncqCVm9DNa9TmlWbyqr1FdlmtV306rWlFXXKTWUrWbUeXVIvWzIwdTj243F7QqvWZlmtZRWdXdast2FxroJRMlGLOuqChtG0Arg004i80MrV9tZtFylTN1ucpEqzFbSC0dqG1TqqOYPwziADF6U58ZNJyrMqat6ekDa1Recmr1GebbS3VtRRc9XrULPs9taa2nuu0d6mZpHemmD2QJ5KVm25DutRcLU2rLb39L4Fpp5aYODirvqx60Vj0bnRsJpWXpemK3XnB73ceh2WFzTEJked0oyKXtQ58oMxBAXSm+J1tzJ1QcNQm9u7glpsbUOrfs1qLau/S3MVtOr1rat2HbS8fY3pZZPyXFP951TUXLW9q/utXbOmbuBPKPgiMlpepzynolWv2XofUbu+i/aEci3WpjSvoRdqZVnU3o1rNj9aYuLR2Y59RHN7l7MqU09nO/YRalZDrIoBTvxkgr49XR37iHobTlWYeGKOheNFAkll5T5i1nZ8WDhdobwwQ2ZnAlOrXt95Hbm5vef1+n1j6iYLp0roZRM5JKKVjBYXkHK2UdYy7G2N6n6lgIASker1qOSMejybZdpl9YqFIIn2M6mgs+qiCFPPlajkDCzdQlB8WCKtz7WySTmrI8g+KiUBMWtQyRstdTIMEUHxYVQsyk3ub9sTVzMWG+dzn/scGzZs4Dd/8zfx8HDLvffey7ve9S5Sa3YxsOv16BaUjcb9lldEVJ8AeVsyVDJETARUQ8AKihiWAFVnoIopoFWdL9SQQE4WMaq3Y1iyiPlMJCwqIZGiJED1kVHbr2GBERCoCCIFySSj6GR1iYrZ7KAkUBTssgCGZW8LIAgWugWmIVLU7b+VdRGjWifDgrLecD1SDQHTAkMWGVdFukUd3aqWNQVKuv25JYIKSFqjXRZKMmUVMMDComw2Hgu6DqoqIFX7VVUEQ4Pp0yArEE2CVaggaKBHAqiFxrNTK5noqoWZLyAGI0w+NU/utO1yoleMFgdANa/XnwmWhf3MKRlMPZ3FH/fVxRMAakHHqjaaZVlUFrT62MpQq5FUtfoXW/vcyoJW7wtN3UIrGSTWhMkeK9jjnSZ3JPtZWnummVQWNCwTREmgsqBSaa5/rqmsYVXL2t9jlA3UJtMBNa/Xx2H1skZT2eozOHuigOgTGvGZpl1/syqQMComlVyj39fyOoJoPycts9ou1fGSoZotblRaQa8/a8YfnSOxNlx/Tpmq2eKqpBWM+ljFsux26zknwan5KUxt0X5LesvYsLKg2W0alLCqx1o/NyWjxcm1sqi9lZhM1/oIE0/M2+3VZFSj5hrjXkuvtSGMPjxDMO3HF5aayuoY1eu31i619tYKOsXpSv2/7XPTeB5WFjSsWhtWTNScRmG8TGGiQrg3UN8v1evQ0JvOzeL2rkUDWh3OTdFub1mRMKv7qV3ftfau3Z9a0UCQGm0oCLZIvzhVaVyzy7V3Tqc8r2IZFqbees3qZYNm47bm9p49mCM2ZDTKVkzEJncwLd+I6bMMi0pWY3rfAnrRIJBS6uPGWtnavdB8zeolg7FHZvDHlEYd2vQRteMxVJOFEwXmDtlOMS19hGFQyVbq17vd3nZ950+bhDW1xaOukjPqZc2KgbrQ6Ge1olVvBxkDLSdiVJ8xlgFqqdp3mhZaBSxTwG5IC0WxKEmAJWACFVVonEedej9lKgJlSyQSMElEdMamJcqqgGmCERJRJZD0xthK1QR0Q6DsFymJIlQszOpzQjcFyrqIHqiO93SB2pBZDKfZ/bp3c//3v8wv/dIv8Z3vfAe5nbvzKwjLiQOzh4eHI2S/xHlv28D6Swd48Kv7OP2UHSV75ulpvv2Rn3HOjWvYefMaLwLOw8PDw+NF4Qtf+IKjch//+Mf5+Mc/3rHcN77xjWU/u/TSS5c4LHl4vBjoqsFdf/U4lbxGenWMG/9wb8vcoYeHh4fHKw/BeoneVkV8XRT0WTaE97I6fG6jQkqr4tVSGy9qJUWqT3oDWFpTjMBiy/mm2Jxwt0wpazXi1JojddrEBKU3+IlmFI7dM7/ks9rKUKAuQJJDIutv6Gbq6RzT+wstn7Vs29TUkT4/qfURTj8wY9fLXOE0VOPeooNBe9Jnvqn+prHMRjaBLoXyjLssqkBSaRFaOCG5Pkr2RKFl8qoT62/qZ+rZLPNHnK80W/P6PgqTZSYem3NVPzdEh0MMXpTmyA9GHUeEvZwJZfxYhkVp2vk53fauESaenK8LzzohyiKR/gD58bKra+DlytDlPcgB0VVMmlvkgMi6mwY488B0fVK6E6Issvq6Xmb2u7tvokNBKguaq8hDOSRh6par8xlIKpSzquNYSURIb4o5i5arLr1PrgsT7g1w+r6Z+keCb/mXv6IMG28dYP54ifFfLP2edtsmRgJ0rQ9y7Ge5pTGcTf244Gs8ryLdIrnxRuGVnmWLPxNMrf49K22nmmXun/9XEE3+9V//lTe96U1L6u7hsRxHjhxh49btBLv62XDVexGlxrWvRlvHQnKpGqWItSTaTS427gEt3H47sAhKFrmmlwVSU3yaEWjdTsJiRFCZ0mQKhojpW/R507a12fJuRScmm5yY87WNeash1ibTZYGeoE5BEylURU2S2tjv4lg4X9ECLKIBk3yxNpFe/SzXGHvVxEn16gkWvoqGUb11hWJr5JOQa/TdZt7+/7VV+Pqc85hNOSgh+kRXUWehbj/h3gBTz2Q7RtbVCCQVkusjjD86uzh9+Hml+5w4WtFg/sgrP25HlAV8ERm1KtpyQnQoRHw4xOn7px1/jy00EhxHpL2cqccQPj3vOO7vbIiPhJFDEjMuIm1D3X4i/UEmn5x3vI0oC/gTiuNIxRpy0EXc41luI4ckJFlcPiKyKf5NDIcQJEiuDpIbraAVTYRqJK4QbpPdKVcdz7olokMBxg8Z9Z+qlq+xXyPsb91OhJ4+i0JOIGu1Wf3a9DtZj9j7EQULxbRQmwSlWqT1fYDUFJ/XHGEqYFWfK1VxUnTRc67pmTM/up9DP/0H1u7cy6HH719at1cQl19+Of/8z//M0NDQS12VlyUHDhzgve99L1/+8pfZuHFjx/L79u1jy5YtL0LNPF7uWJbFiUcneOifniM/Xa7/PZIOsPddm1l1nhcB90rCu7c9PDw8Xhzcjr1e6bzWni8vxPH+7MtPc+Du0/gjPm75HxcT7Q4+r/v/j+Kd41c/r7Vjfq0dL7z2jvnlcLwvSdzbO97xDgr6LH3BjSsKlJrp3R5i9eWR9jVeLFCqEu31gShRmLFaJ5o7rIKcfq7YVqDUQpMISS+ajD++wOxR56IBX0hCDopLJ8BXILM9Rt95qc4Fq4gyrLmurx4L5QQ5JLLuxn7S58Q7F67ii8gM7O0iuabNy+pl6yZSzmp1ZyGnHP3hmCuBUjCt1KPPnKLldLLHC64ESj07E/V4OTd1q0VbOGXN692dT4DiRMWVQOlsMHWThZNFV4IWJS6z8a1D9XgMR4i26KoWOeaEcCbA6mt7XfV2udMFssfd2bSLMvXYOifoZZP93zjlWKAEdjtrhYbjj7OKweDF3aQ3O7+nEWHDLYNkdiQcbyKHJLvv2Or8e6J9QXrPS7m6BiRFtCNUHJ5PU4exXywwtc/5xPf88TJH7phbsX9uFigB5KfsibtAQqzH3LWUX+b5ll6nsO51iXps4UrbKWKAy4bfjk/28a53vYvJycnOB+PhAeRyOW6++WbkQIiR6969okCphiRYDHdpxKX2k9+LBUoAsmDhEyz0kNgiUIKlwqSWzxA4Xva1FSi10PTRrCYxXpFXFCi1bmohixaCsLT/XCxQqhHwWfREDRQXw4hIDHpH7AilxQKlZmoCJYBov5/eHREcHor9Pf1B0k1xU06oObA4FSiB7Qg49nN3AiV/wufqWACKkxVXAnlBEkhvieFzMY4SJMF2onRRN3/cjlVrdqrqhKlbVOadC5TOFq1guBYoxVeH7UhXF0iK6Hq8Gl8VJuLi2a6XDfKjpYbzo0PkgFSPAnRC9njBlUAJwNDssZeb6ybY7adrc6wuQHRCdDBI7+5UPe7PCYk1YTI7E67qllwbqcfwtWXRAhjLtK8BN/dAYdZg9ozZsitBW0FIZcLkmEAhv/KB6E0iJNMSKAsipgIBpf11Y/jbjMewGI5pROLLd4R60/Mq0b+JbVfcyOFfPMDf//3fr1g/Dw+P1yaCIDByfi9v/syl7Lh5LWK1H89Pl7nzL3/B7Z/xIuA8PDw8PDw8PP4j7L/7FAfuPg0CXPm7O152AiUPDw8Pj7PjRRcpffGLX+Rf/uVfiMhd7Oi6DkHx1f+1Q5AlBFliYUwje0prdeiQpGUFSoGUj6G9MeLDStvPEYUlLkqJVX66N3d4wJlmi0BJrL6wnTtawtSEJZ8vx9yRIkdvn+pYDmx7f8u0OPKjcU4/sGiFtbj8i3lThxN3T9gr5h2iF01O/WyK+UM5x9toeZ2D3znNzEHn25i6yamfTpEfdS7Q8EXcW2X37k4xfEWPq23KcyqjD810LtiE7JeQ2rwIX4mhS7vpO7/L1TaFsRKlGXersjM7E4Qy/s4F/4NkdiUIdi9zv7XBrJgURkuuVn8Hkgprr+8n3OvueESfiC/k/PqZP1Jg9oDz6xkgvjrKyJUZ16I4URFdia5O3jNJ7mTR+ReYcOQHo+6uaRPOPDDN1NPzjjfRiwanfjbF9LPO+5vcmRIHv3uawli5c+Eq0/tyHL9z0rFbkyDLZI+XMComovPLE4BAQmLw/MiiHQot0UiLGd4bo3d7+8m/ds+6hXGd+dM6lrjCc7DpOSmrcdYHr6BYLLJr1y5U9YUVIHq88jFNk3e96108d+gIq69/D7I/hBoV6v/aoUUEymGBOUOiYLT2T1pYaCtQAkhFDfriOsupYIyAsEisZNEnayiCielbQaDUZGQkYCFgYVgCBUPE6PA4MGUBU7a3Gi34yGuN47HE5QVKgmlRqQicnJZR9dZ6aVEJqWIscVECyC/AzBEV8u2f1Wa+0CJQAsiNVpg5XEKMRFc+mCbmj+SZeMKdq2R5TmXusHPBpiAJCG0cR1dCDklkdiQJJNx1uIWJcku8bidEn4DoE93orWzB0XnuBEeG1hqj6wQlIhMdeOFfmClRmUi/u+/R8jqVeefuWwCJNRG6Nji/NsE+P4KLsQ2WLSCqxS87Jb01RnyV80USNdxcA5V5zb5vXFxsxYkyow/NuLpuChMVpp6Zr8ewOSF3pmRH9Lqo2+yBXOffhqbRECtZMLWvYMelY7sKtzgLN6MboBuY/gDlXNWRr6mpBc1YXqxkAqZJPGoSDCzaf5vf7TUiAYvejIm4zK1g+MUWsZKFQLYiUdDsmDd9GQFt7TM9ICBuuISuzRfw3t/8Le6//5XtpuTh4fHC4QvInP/2Dbz5M5cycE66/vfTT07z7d//GY9+42A9dt3Dw8PDw8PDw8MZU0ezPPiVfQCc99YNDG7vfolr5OHh4eHxfPGiipQeeeQR3v/+9yMLfvb2vLXzBrJUn1QuzZlMH26a8FlGnFSjPG9y4sE82ZPOJzyCCZlgyrnAQPKLbHhDN10bqi/HHSTnyQGRvvOWd81o+z2KgBywXZf04qKXth2WaRfGyuhFdy9CsscL6C4nCdS87iriKbUh6qoNEGHDzQP2amEXnLh7ktM/cx6dAZDaFEUOubs1Rh+e4cz97oRNJ++ZYuKJWVfbTDwx7yrmCyC1KUa4x4Vb0VmS3hQn3O1m1bzJ6funXU2WledUjv54jMK4c3FbYaLMkX8fRcu7cxuIDocIdTsXQ2WPFTj0/TOuHLhEWWTz24ZJbXY3+Rfq9rtyHzqb2MKz6QeyxwvO+4Eqtbp1FHct6uviq4KkNlQFRCvGZdqfiQqsv6GH7q3OJzPlgEgwKeNr1x8sI1Q6/WiesSc6iMiaIubUvMnUAfvZJivACo6CNXqDa1kd3c2ZM2e46qqrOpb3eG3zJ3/yJ9x2222MXP1OAslMx/JaxI5fA4EZXUZvsujQO5jFjesyZzSZdrYe7cREPiAkWuBiPJD0GawOaQjVWXlhpT6n2jXEfAZBqVZQ6LwdIPrtHejG0mPx5ZcbV1mIOZVKfvk+SQwvbURTt6hkdcycO3GsUXHe4SoxnyvXIYBIX4CBC7tcubToRYOxR2YozzsffysRGX+8c9/XjFE2mXxy3tUYtzKvMf74rKt206sRdNZKz5lFKDEf0SHnzopniz/uIzroTqRUnKq4WiAA9rN9er8796G5w3lyp1wIqrEF5aEedyL06X0LzLpYWAEQGw7R68KZFkAQBVdjQssE06UrlKmZrgVkRsW0f4O52UY1wbLbW+j0c8do3F+CBLEhP0K1G7H0Fb5Xsz+LpAR610mdv6eJgGwuOxSy2giV8mWBMzNS2766GUNpfD5fkdBMAbAQBQujw5BaECQGLnkTscwQb3jDGzh48GCnw/Dw8HgNE+8Lc/1Hz+Pq/3ou4ZTdwZi6xRPfPcK3fu9nnHh0AsvBu0MPDw8PDw8Pj9c65QWVu/7qcQzNZHh3DztuWvNSV8nDw8PD43nkRRMplctlLrrgEiwL9va8DdkfsidqfW1mpmTJ/gesuiDM0J6mF/0ruCcBCKJIJKMgyBKFKXcvbceeLHDy/mVedJsWmBZC03cbFZOZg3myp4qOBEoA4V4/iZFg3YGpTrvVoZYJlklmZ4INt/S3inqqny1Hz84Ea27oc1SnGultcUau6TyB2UxqQ5SNbx1aejwrEB0IMnBhGn/S3Sr70w9OM3fUuQMAgKmaruJDAkmFgQvShNLuIsjO5k4qz6moWXfXqNuoM4Dn/u9Je5X1C8yz/3KCaZcRGoGkguLGIcu0hXduYhJruLlGAfr3pOhyEaVj6iblGXeuNqZuMvrwDAvH3AnP+vd20bM94Wqbvj0p1r2x39U2ibVh1r7B3TapTVHW3zLgapv+vV2svaF/+fuoJghq6vPiq8PEVzcJjqp9dFssC7NiMXOgQPZkw7VJkKQVt8uPaxz68TzaYnFoc70WiZVKcyam6EMOiSsLrxY9/8LdEuuujhBMirZQqd0MXe3vio+N8YvZsGYz999/P5///OeX/x6P1zR33HEHf/zHf0LmvOuIrdqMGhNQY0JbsZEWsf+FMFkXUPE3qXj00MoCJSloQtBCCwhUFlkTGf72AiWAiixwyPRRXs7OyLL/NU8u53SJGVUCU1heaFTdrvYfMcUk0hQHVNuu3YS3XLHwqSaDSY1EuPULfHljRYFSf1ojGAEruHR8IyzkERaWjmF6toZR5IorgVJmV9K1OCU+EiaxJtK5YBPFqQozB3KuXFoAtKK7SLnIQJDEWnd1cxOJVcMyLdScuwGE5K9GjLogP1py7ch5NuROlxj7uTuxuyAJrp1J9bLh2uEIqg46bqL1YjLpzXFXLkd6yXDlPATV6/o5d+NVX0QmvSXuaswq+gT6L+gikHLxe0ew3aFcibUE6NmRINzr/LeLIAn070mt6MQlhqqdflWoJMoCkYwfJdxoA0vXlxcraTqlWY2FSbPlJ6sZ9iNqBmJbRyWByWmRhXkBYZnzaonCor5boKKLqBEBX8jEWKG5DUVoeZ70hXV6w3b9jQBtxUpqXEAPCpgRH2uu+1VU3eS8K2/AMDw3FA8Pj+URBIHVe3p5y2cvZcdNa5oi4Erc8ReP8+M/f4yFCS8CzsPDw8PDw8NjOUzT4u6/foL8dJlYJsTlv73dtdu3h4eHh8fLmxdNpHTllVeiWypbEpcTCa1gySe3TgRMH6wwe6w68d/BPUkQRaK9MqsuCBPq6jCh0BSTFu1XSK5e4WXwCqunp57Jt7obiSs3afZ4ief+39hSR6TFNL3NnXpmgbFH510JMyoLGqVpd7Fgpmq6dk4pZ1VyJ4uYqvPtcqdKHPjOKUpTLgQdJmSPFlw5wqS3xBi8JN25YBPlOZXnvn6ChdPOV3/HR8Jse+eIq0mfQFJh4OIu5IDzW1CJyay9vt/1xOTLmVXXZOjZkXC1TXpLjPS2uKttRq7JsPp1va62OfKDMU7d6yySsUZ8JOxa6Dd3KOd6FfzJuyc5dse4q22KkxWyJ9y5GhiqiVbUXQnjKnMapamKq22mn8vaUZZOupFq33jy3mmO3T6xYlFh0TNjel8eNbdczMjy/bwSFslsayg0BN8iAVEbV6Xh84L0bVM6PhNqQqXCjMHMEZVStqkRVnJVUnyMlK9EFhQ++MEP8vjjj6/8PR6vOUZHR3nHO95BdHA9mV1Xo8aW/yGvNelDSghMaRIVyy7fyT3JCEK/qDMkLnUAWSxOavy3RbekI1cdm9rS9pa00CyBBbX13jZXNOEROF2QmS7Z26zkoCRX7C+1LJjMyWR15+IUuahSKVrobYY2i8VJNTclQbJdBU3d3dirOFF2LbaZenqeWRexvGCL8d2OJdNbYq5dkWYP5FzFiwL0bE+QchlBFukPunLDAYgNh0lvdS5YfrkTSCr07U4hys5f7EmKSGJN2FWssRyQGLy0G3/M+bVQnlM5dd+U7fTjguT6iKvzqpcMVwsYANQFjTMPTbsar5maRWGyjFF2IWax7LGXK+GVZf/u0118j2VYzBzIURh3GLdrGBgVi9HHFqh0+C1mBRvnwtCgMLW8O9RyQiWwCIdN/EqjHbRIa3+8WGQalC2GohoBaWWhEjSEr/MVidlS635XclXSkgn6r3onubGj/NEf/dHKX+LxiuHOO+/kox/9KF/84hdf6qp4vArxBWTO/6WNvOlTl9C/rav+91NPTPHtj9zHY986hK56okcPDw8PDw8Pj8U8/q1DnHl6Btkvcc0HduEPu3vX5OHh4eHx8udFESn9yZ/8CQ899BDp4AjDyV3tCzW5JwGI1WdObk6gMGt1dE8SqhPBuXGdEw8XKM44/6Ef61dIrGp6I/n/Z+/Pwyy5zvoO/HNOLXffe5/umZ5dM9JIo5G1WZJlS0LGBmwWAw5gh/AAIeixgecXQwjxQ8KSEJYfEPODYAh2gARjm9gOJli2vMuSZUuy1lk0mn3t6b377rWc3x9Vd+17b3e1tVmq7/PIntv1nqpTb50659R5v+f7Nq41QGFjxz0FhvdvPG0QQHoy5nm839q7FD0Vkuyqy9JJf5dVLwWlHgHy5ZOlwLurF55b5fyDwUgZ5ZkaFx8Jvls8aPqpiVsKgdJbAQhdIo3gTdyuuoFSVlXmalx+bCFQOjEjqZHaEiwVSL1oc/Izl1gNkKZDj0p2f/8WUltefGLT9nvHGA6o7nPuS1eYeXIpUJnYUCRwkHH+yApzzwZTkwqaJrEBachgalfSUzlKjAZI3xYkvaKP5dMlZp9aClRm9VyFs1+8EiiAXpqpcv5rc4HK1JdtVs/2IVD1SqumXHC88yfGYp3pGQcpKgFmQrD7e4aID/eIYLWX1Vukw1heJ7s10jvtW3s92+p68eka5x73g39SDiYrGTpoOrOnFbh0qub1U1UCZDTGjRM/gqZpfO/3fi/V6gaDjSFe9XAchx//8R9nqVRj/O0/jpXpPYdqqCc1IFEoBFdMHTveW3GpeY2Y9x/AOdfgottquIPUk8B7vbKmQ0S03tVmULlDBamFmHSZjlrog5Qru8pqQmFKFxB9lZeUFOg11SQoeRCU6xLH9d7pXgpKjq+uoxVraMUayoWlK2D53IeGmlIv9aTmOZZWmXviSmDC0eqFCrXlYGmhGuSHjcJMG6S3xgMp4UhdbErhCDxCRxAsnylRvBQsbVkkY2CmgqkIrZwtMR8w1VlqMkbhqhef2BTJGoweygV6RrWlOpcfW8ANQoIR3twrkMJR1WHh2Cp2JQBxxiWwKhJ4qXODtrtI2iC9Ldg8PEiawAaWT5U8ZbEAWDxepBJQmXP5VClwqrjKXA3X7u3vpopSOxwHbAcEREY6v4EHKioByYxLYaLPtdpUlZx46/1MJRUJ0+2rqASdqkoVW3Bu1aDqeO3UMVlXVakoNVbiGqCQbYNHP1UlgNiu3Uzc+mZ+67d+m7/927/tf4FXIH7sx36MdPrVQ7p8oXDPPffwO7/zO7znPe95uasS4lWM7JYkb/nVG7nrvQeJ571JsmO5fOv/PM8/vO+rnH38ystcwxAhQoQIESJEiFcOzjw6wxOfPAHAHT9zDfmtwTaphQgRIkSI7wy86CSlY8eO8eu//h8xZIxDI9+/5rgy9DXqSUjYfmuM8QPRweSkaKRJTgKIpr1/l2ZtkBIxSIWiDRceLXLmwTYCw4Agt1IKdElloU61V4DI7b2ArcclU7fnGd43YEDtko2XOuz+vjFSkzGU4/RP79YVsBt7XY5INhizOLszMTg1UQ9kdnSlW9oA0lvj7P7+LYEUhKQuSU3GAu3GBph9aomzXwy22LP1rpHAKj31FZu5Z4MFsFbPVTj60XPBlKtcjwASRLUK/N3VL8HuvFrRChSMAi/lRhByF8C5r8wGfq6rFyosnw4mp24kdXa8dTwQIWr5dImT/3wpmCqGC+ltCWKFYOkPx2/MM313MNUmM60zekMuUBmkl9YxyDuLhKEDGeKjwchk2988xtD+jQdPNFOw7U1DDPdSuXBVz/64XnSpLtm9yU/tZduwfK7O8c8uttK+DSIcRSOgSarLLm7dI9zqjUCXlKh4fzKaMg0ieYM9d8ZIjXZdwzRQ0bVtJBMZ5XX73sSlS5d45zvf2b9eIV5T+IM/+AO+9KUvM/G2n0BPrJ132PFOchJASjjs0erIqGqSj3qhnmuRkww/sOsgqCNxTKgPeIWVBFeHOoLnLJNSW5o30YecBCBthSuh6kh6xaul1btsPuKwNW4hB/TJetc4nIk5jKZtQGEU3b7p3YyVOtIfW80oJLqmDnK5NJCgJIUduN8HSE/FA5FFwEsfFVSF0Uxo3vgXgDPi2orZp5cDEajMtMHwNZlAyj4A1YV6YHLX/JGVFul/g3BqLlYp2NzGqbuBVG02C+UorKI9cDjrhmsrj+gc4Lk6NZdL31gI7O/S5WpgVaTkRIzc7mCp/+aPrGxcEciHHteID0UCEbw0UzJ2Qy4w0S1WMIkGTHGtRWWwNHGAHtMCv+fRnMno9WuJbmpAKrPU1gTDuyKIHp/oyrYR9tqydk1hVRTK1BE91ZM8slKLkCSYuSJZXPb6OuGogW22mtFwNUnV9uwN2UmAreT7P2jHFAzHHaaiaweSfmSl3E13MTK9k5/6+ftYXFzsX7FXGP71v/7XZDLBvnNDhAjxwkEIwY5bxvnh338D137f9ibBdnW2wmd//zE++/uPsXolmPJxiBAhQoQIESLEqw3Ll0p86c+eAuDqN29j5+snXuYahQgRIkSIFwsvKknJdV3uvvtuQHHj2DuQXYFd5ae5Ud1kIhfmT1osXRiwwK91nis1qrP9jqSX5m299Do+9LgkNeZdu5lKrRGcHpRazoVLj62wer4rBUYfghKAXXY5+blZZo/0SbXRYzFYmhKr5FBb3niqDT2ukduVChb4kjB+YyHwru/cjmTgVBuO5VJbsgKRc1zb5djHz7NwbONpSqQpkQGDeOAFfFTAtCv5vanAZIzNIDEeZeLmwvqGbbCrLme/cCVYar1N4uJD8yweD5ZKJjOdYPRg9sWpUBukLhnan8YMkJLPKntBPBEwcAoEug7AsY+dY+5wMKJbbdWiuhzsuUYyBkNXpQORGPWoZOLmApnpAIREFwpXpQMreFklG7u28cCua8OZL17h0mNLA4zWvs/nHlykMj8g2NqD4OraoJleelBg/XHGH6Omb46x5brOCFdj7OuFahHmz1iUFjvr3SAo9SQqFQ+QiozwqU99ik996lOD6xXiVY+nnnqK97///eRufSOJrbvWHG+oI3UHXstKMutqDKKXdJfZIq1mmrf10us0+EhJ4TQVmxpoCCq5A85RdSUzNZ3uaHqPLHNNzFU1LqyuLdNAN0EJwHYFliMwil6l3A0oMkYTkMy1riGXBxNh3KVlYnmTwr5MIAUYI66R3pYITFKqF+3A6XyLl6pcfixY8D1IOrAGvMRO9FV06XmdqCQxGkW8BHqwqal4YOJ/+UotMDF6M6iv2iw8t9p3D0NPCG/uZSSCzVM2AzOlExsKNj9Wrgp2Pz6CqniVLvvtOwhZq+5SX7UD1y+5JR5YATQ5HiO/O9g3lpnSSU3GA/nBqTleWt8eZfoRlUpXLGaeLaMGTNe6iUrVVcXKlcGOs5O++pzTSLvp1SkaVcgG6Wid5+VqgpjuMp2pE9E6rzdojFp2NOattWNFPeP97h77hNDJ3fNjOJbFfffdN7hSIUKECNEFI6pz07+4ih/8ndsZ359v/v3s41f4+Pu+yuP/J0wBFyJEiBAhQoR4bcKq2jzwR49jVWxG9+S46cevermrFCJEiBAhXkS8qCvU9913HxcuXGBb7kbSkeHm3wcFaJGA0Fi61GdLvbZWXYK6xeqMzcWnKpQXN77aPLQrSnZrlOc+s4BbH1xO+WpFue1eaqHZp9oIBQPISQBKeCl8+kr391kEtssupz53eVClepRxOPLRs8FSQblw7P+cD1DAw+kHZjrTEm0ApUtVSpcCpiQalCKvDwpXpRm9Lssz/+t0oLLnvhws3R3AyHVZVs6UKc9snEy27a4RlCKQIlAsZ5LeGg+WXk+CEdcDqxVtBg2lnSCB0NhwhORolJknljZcJrUlxuQdwzz/6Ysbvi+pe0Q8u+Z4CgIbgQsn//nShuvVwOTtQyTGohz7ePB3KkhbXzgajBAGnoLXs393JtA7YZddnvvE+Y37zcexfzgX+L09/+Bc5x82IA9RvuL3q5IWCwIQ7WOFu1YBKVbQye+Kc+GRjZPDRvbHSU9EeO6LZe/eGufrNwZokpkjNayKd7ydYNQYB4W11q9XzgrAQEirpw8b5xHV1pjyuql38vD5v+CnfuqnOHXqVJjO4zWKWq3Gu971LsjmGXrTW6CteQ1K3SZQ1GOCK32mhd0BWicKWhUuuAYaamDwt+21RKKY1G3mHI05V0esM2WTtjcXHDUdFi2J3catX0NOarBdfGi2i0JQ68PHbycoKdEiSpVqkvp8/87LWFk7l1uZh5UF7wQdBKVoBKqtuYG71FLtLF2uUb64Gii9lVV2uPDQbGCSxMqZgLvyu3y5UYxen6N0uRqIoFNbsag9EywdayRtkN+bonRl4/NJPaYxcl2W2WeWA82J4kMRcFWgVFpSFyi1udRlgSBAMySO5W78eSlIjEWpF22s0sb9UNiXxrVdFo/3VwfrRnw4SjRvUpnb+Pw4qCISgNAEW24bYuHoKqWZgOUDtvWF54LPveaeWQr8zq6eKwd+b8tXapRna4Huxyo7azaBiEiLUKUcB9G1cUe5bXN9AcjWcRFrDRYNopJqU0xO5cGqQdVXJ1NG701BDaKS0GFkyGFpWdJ8si2xpZ4oKcmlokHN8QzqyZZhY6zSurrxipJUNEADre72PHljHNT8ihipLFve8gP83d/9b2666SZ+8Rd/sXeFXqFwHIfZ2Vnm5uaw+6TqO3jw4EtbqRAhXmPIbUny1l+7iZNfv8wjf3uE8mINx3J5/OPPc/wrF3j9v9zP1PUjL3c1Q4QIESJEiBAhXhIopXjwL59h8VyRWDbCXb9wEE1/CXanhQgRIkSIlw0vGknpmWee4c///M+J6mmuGr0bat5q4ECCErD9lhjlJZeZYz0Wy7oJSj6k9GLEy4OUl3rg8jM1Fk9XWypKfaDayEDRnI6ZHKCy1KPs1G159Kjk1ANdAfgBUvrJiSiaCUsn+gR6ehCUpC5BEjgdGGyijE+mWM937TDTOpG0wer5SqBL7fvhrSwcWwlEZFk+XcQq9Q7w94MelbhucF8c/ei5wJpkqxeD+QBg7vBKYLWd1HiM6XvGOP7pC1T7keReIGy7ewzHcjj92ZkNl7n8zYXA16mtWiyfLqHWIQe2w666PPu/TgVqrw2YaZ36ysYLzh9dYflMMAUFaUr2vWOKS48uBAqAmUmdaN5k5WyAQJZLYOJfUIJS8zp4afOCBITNtE5mOsnsU0sbLpPZHmfixjzH/+9F7A3GQvWIJF4w0OMSu7wxZ8w8U2bulLPWd41BqAdKS4CD5/MefleG3pOoFE3CtoNxzj1epbLU+9wqajaJSqYe58Z9b+ar3/okP/iDP8gDDzywoXsK8erC7/zO73D48GG2/NQvIHW9SVIaRFCK4bIlanFSmVg9iIG9Ut0Ifw5iIaia/cmEqmtsdBE8h7mhgL30lXUMAQnNZdne+EBrOC7bshaXijqVrnK91JMayMQcagvg9Il+9yIoyZiGW3FA9VFQ8olK7QSlBpQ0gQCkCtE/828/RHMmVskOlHYrMRoluyPJhYfnAhEe5o+u4NSCVVCLyMBlyldqVOZmA9VNOcpLPxbwWjPfCp7KqbAvjXJh7tlg5KugMJM6Y4fyXHp0IRDh6OLXA5DdfVQX6rgBSVdLp4pwMvClEJpAiI2raylHMffsCvWVjRPJwEtBnRiLcukbweaikayBXXY2/E4139kAhKggymKdF/NJcgEVqWJDEZya0zOlX0NRqZusNLQ3hlV2WD5XH6xA3IZI3HNC1e8qheX0JSoBuEpw8bJGOd5j/UDRh6gkWHE1JArRx8gx1xKVAEZ0m4ihuFjS+p28SdIFiF1zPRPHnuY3fuM3+Imf+AmGhob63ssrBa7r8jd/8zd8/OMfZ3V18DfHl770pZemUiFCvIYhhGDnreNMHRzmW//neZ75zGmUo1i9UuH+33uMbTeMcMu795EaHjCZDxEiRIgQIUKEeBXg2fvPcOKhSwgpuPu9B0nkeixIhggRIkSIVxVeNJLS937v96KU4nVb3wmAipiDFYf8xc3VWZdaqSvNTSyCqPdeeNajsPP1aS4/W2X5wsYX6I24xCq71Jb6E4VUDyLQpcdXW/W1+i+Gt5ddPltpqsw0MYCgBJCdjhHNm71JSj3qBTB8TZrC/gxHP3pmw2QMM6mz83snOPvlK4EUjna/bQuly9VAgY7c7hRDV6UDK7nMPrNE+crGd2ED1FfsQMQSgJGDOTLbEhz5+7OBygGBFWM2o4KzGVTma5z96hXqyy++ktLlxxdQ7ousGoD3bDcTYNsMQWn0hpzXZv/XmQ2XqcwFJ4O5dZfZw8uUA6gNAAxflyE9mWDl7MbbbCRrsOut3ju/emHjZLkdbxmnulTn4sMb9/3E6wukJ+MekW+DSI7HGL4mw+Lx1YGqXO3BstJMlaWTRW+IaUblehAa/DFImCarF+usXgzWjlwbVNU7ta6D3f6oB6V/MyS7bo+yMquYeX5t368MHRUzEbVWI62WobjoYisNZfYP4Kmo2UxTGq9cRTo6zuc//3m+8IUvcNdddwW6vxDf2Th27Bj/+T//Z9K3vJHo2BbAC6Z2E4Xa4cSgpgQrrE3zVssq9GrvIO0wDinT5QQGvQK5va6poXABG4Gm+opgNMlJDVhKcLLiX0cHfUC31SirBCzVZFNJA0C4Cm2AaqbUFMOGzRVDo+J01s41JJH5XnMkxehWKF20KXanAG4v30VQyu6IoxmC+WMbJ7RGcyaFfWkuP7oQiHBU2J9m9XwwVZb6ikcGDqqmFERtCAABEzcXWHy+SDEgeTsoWcupuy9JCjaA5VMvzXWsssOVp5ewqy9+SpjACkWwKTUugC23FFg5W2bl3MbbbBC1pgaqi/XApDUhBSPXZgO32ezOJGZS58qTSxsuE8kaDO1Lc+mbCxsmLQlNMHHLEIsnVgN912WmE1Tma1j1AfMNx0Gmks3f5XkLp+bXa8B3bUNRyc0kmDu/9j6ENaCso7xTxwWaVDhu18gxwC2JqMtwzOF5y8DtQ1Sy0gLZ1nTKrqAuBI4p6D9KeWOra4BAI/aWd3D5//c7vO997+NDH/pQ/wq9QvDnf/7nfOQjHyGXy/GWt7yFQqGAtkGSWYgQIV48mDGdm3/8KvbcuYWvfegwl494BNozj13h/FNzHPz+nRz4nu3oA74LQ4QIESJEiBAhvlNx+egCj/yvowDc/ON7Gbsqv06JECFChAjxasCLQlL67d/+bc6cOcOWzHUkzDwq4qe1qfQI3jeUlRzv2NzJVpBW9VFOakIIXAuWzluUZnszEIRpoLoITolhnW23JjnzcJHSpR7l/MiH0CTKaS1eZ7ZGWD5ba5GtNK3nomw3uWnlbNsidoPEIWTPCEuD5HHuq3NIs+v++5CTGlg8WaRecgKRMRReSoG+qej6Xeu5VWrLwYJRM48tsnSiGJjQM/dsMPUgaUrGrs8xd2Q5sAJO0CBZdmeCwt40Jz5zKdB9pSZjlK7UAqk2Tb1hGCEFZ7+08RRxdtVl+eRLEywLnMYPzw8Ttw5x4p8ubFjNBiA2bOJawdKvDB/IkBiJcPrzG/ff4vOrVGaDB76G9qexKk6gQOWVAEphDcx8a5FL3wym8lBbspg/vkqtGOz9Xb1QoR6wzOJzqxQDKqctHF9l6cRqqx/rlfJNyGZfKaTALrtcenSpdVzTUEohepXVtA5VADMl0UxJZd5uHqfR7/cag1yXHXcksWuKs9/oujfTaP27vb92Yem8TbEoB6ouNcfKmg0uXHjWaTtm+MfWPgMV89O/VeocmnwHD535c37iJ36C06dPY5oD8nCFeNVAKcXP/dzPoRIpCnfcA4CV8NqgXln7Htjx1jFLCC61TQft6OC5hmMqlpTAqq1VmlB+3MTRWkoTDWyRNhLFabd3mxR24/yiSSaKSBdHCWwlmundXB1kj6FdWq16u0qwUGnd0yByEoDhjz9nV/Q1Uy1j1buwa2rI+to539KJGnaf86tlj5AsYjFUpdVf1JYtpC5xqxsfN+2qw+q5ciCCEsClIClifVhlB6scrO+OFUyEJgKTymefXsYqB2MRF/anqc7XAxFn9JiGEN69bRRaVDJybZb5wyuBFAU3pT64CShHUV0ITowuXJXGqTssBZgfCk1gJvVAc38hBUPXZFg5Wwo0X5s7vBK4TWhRSXIs5ilZbpAcVV+1eyoHDYJyFZe+sRCYGFaZr1FfDTaHskoOxcvVQVyZtfVzFAvHVoJ/o31rEeUohOH3z3LtRWUsCo20YLpOea7TdyIaBdsBfW0A3dtw5NkrUyeaoKmmBOAkzGb/6vYIwMelw3je4dySQd3urFst3Xu9oGxLlmoK1xQoBKIP0cv1s9vJGhTdzmv3Sw8HbeMoKcbv+V4+/OEP8+Y3v5l3vvOdPa/zSsH999/P1NQUH/zgB4nHQ2WWECFeachNpvie/3ATJx66xCP/6yiVJS8F3GMfO87xr1zg1p/cz9R1wy93NUOECBEiRIgQIV4wlBerfP6/PYFyFDtuGefq755+uasUIkSIECFeIrzgST2Xlpb4j//xP6LLCPtH39wMuvZEW+q3kf1RRvcG4Ez5wWfXhZnjTqeiRbdpe+AYKM3bzByu9CU29UJqMsLkzVnihcE7lzoIShKm7sgTyfj3tY7KTCPo3lBdCpp2rL5is3g8mEKPVbQ5/7W5wNeaO7wSSIWlgaC77HO7kyTGg0k7RjI62R1JtEiw5l1bsoKlzQKU4wUOgxCUzLTO9N1jpLbEAl2rMlcLrLQTzZuMXJd9Ed70tUhNxcjvTQUqY5UcShcrgYlrW984yvDVmUBlnLqLHXDHfH3ZDtwmADLbk4Gfrx6VDB/IrFVdGwC77G4qvePlby4EVteafWopMOGtMlcP7j8/jaTUvf/WI2e2q3eNHsyS25loHVuvrOMweUuW0QPJgXbdmD1W5crhAQSlXmUuSCoNMZVBqktdiGdh+mazWaRBVuoFFTOJ6AkO7b+TS5cu8Uu/9Esbvk6I72z8zd/8DV/60pcYfes7kIbZJCj1QiOwKpViq1EnEkCSxjG9shUhmVunr+pOEzfjasy6wbjxo6bDuGk3CUr90E5QSpkOmUiLQLARgpIQXlogpQarZ6y57kqValENnIP2QmXeYvVMsFRgdsUJpCzTgGurQKmjpCFJjEURWgBmBBDNR4gPR4JVTm1Ozca1XFw7WJnUZJzCvnSgMrjeOOZYwa4VH4kQSQ8eE14ICAnJiRhagHkDQG3FCkykiuZMRg/mkPrG24VyFa7lBlZU2kyb0EyN5EQMPRJMYSKSNogVgpF5N6NcVVuyAhP4XMtl+VQJ1wrmwPJsLTCZUfmp/JrPdz1lVJ+spEcl2W1d77092D8R3WZ4SmAGmCZX64LZZQ272lmvfgQlAEcJZkwD5ffpasNtVzGi26QyrXfEGdBE7Lgicf2NDE1t49d+7deo11/c9NrfLiqVCrfeemtIUAoR4hUMIQS7bpvgh3//Dq55yzTCJ46uzJS5/78+yuf+8HFWZ4OvxYUIESJEiBAhQrzS4NouX/jAE1SWauQmk9zxs9f03nQcIkSIECFelXjBqQs/9mM/hm3bXL/7BxAxL7CayPrBZsCIQnxIbxKUYmkw44DwdukmChIRkShNokchnmsNStG0xEwJj6AkYfqmCEO7vfPoUUgUZIdtJNX6nRjW0f01VN2A6rK/gKrrRDIa0YzmKRspl8SI0SQK6DGNxKjJ6vkaJx+YxakrorlWkC0xaqLHpafaYQgSY5GmV9OTUVLjUY9P5SoSoyZGwjsoTUliPILUvUV8I6kRGzZBwp4f2MKW24YwU951pOadV+peWTOtEx9tLQjHhk3Gb84zfCCD1CExHm2qMBlJncRoK1IYGzIxfdKUmdbZclsBPe7fa1zrIARFCyaRbCvIkhiPokclQ/vTpLbGOm3zJtGcucbWezaSkYNZdrxlHGlKojmTaL7LNq41bRPj0aYPR6/PMXKgRUZJjEYxknqbD1u2ZkYnNmxSma1z+O/OIKS367vdttEOzbTeEUxLjEeYesMQZlpv+bDh7+Raf5tp70TLZ0vMHVnZkL+R3nld2+X4py9QWaxvyN/es5FUFuvMPbPc8vcaH7b83ThvYiTC2KEc0UJvf/f04VCb7SB/pz1/NzB0IMOw/6ykLjt92OXv+HAEM61TXaxz8ZE5Ijmz6cOe/u7y4bmvzHL5sYU1/u7woez04cq5Mosnii3bddpsw4dDV6cZOpDekL/BS89x4etznH9wLpC/ZUQyfnOB9NZ4h217m233d3zU8+HIdVm23jWy1t992qzUIbU1xuj1WcykvqE223g2mR0Jxm7M9fZ3tw/jXv2jBZPpu0eIDm3M34367v/xafL7vPaUGIugx7psZcPfOtGcV4f4kEl6Ot7Rz8ZHTZRQLR8WWv13fNjg8hPLnH1wCWnS7JMBzKQklpVNVaVYQSeS8XxaumKjmQIpXXBdjDjEcq3xJpaRmInWWJUoSKTujXU7btJJj+ARlaQk2hgDG37JgkzoqIg3Zpkx7zS6CdEkROIeUUlFDBI57+/g/X8i4xGV0vJWYmaKD37wgywsLBDi1Y1SqcSv/uqvkt1/LeaB3VgJhalUB/kohgsxFzuukEoRd10Mn8QngYhysaMKO6qIKRddtYhMMeXiGi6O6ZXbY9ebZaO46CiUBkJ6ttI/ZihFtI2BKoC6Hyx2TUVMuEgUwgbDVkRFy1aPKAyhOF/VmS1pRKVnC6AJRVTzbKWliDouhmwErhVJwyVueMdNyyWit85raApD8+tXdkhaDlIqUnGXrWM2ZtSlwaiIVevEqq1gsxlRSL+sXqoQcyrkJyW66b1/WrrVvxl2CVH2xhuhef1Jg/sUL0A03Qq0G0kdze9jhSYwUzrC7060iMRI6GhRjzhkpvQmAVvIhq13Ys2UzfEawEhoDF2TITEWBYFnq7VszXbbuNYkuphp3ZtPGp6tNGRzPgreXFGPtoggZkpH6oLF46ssPLfaaRvT0GNdto3z6oL0VIz4SKRlG++2lU1bM6U3fbhyroxdaREhzB4+bNh6PtRYPl1k7vBKp79lb383IA3J6oUyTs1FyLU+7PZ349mktyZITcUG+rvpQ//ZSK11zXV96JMtpOnNyU2/zuv5u3He4sUK9RW7r7/X+DAqcWoOF78xj2urnv7u9GHrvO3Pak2b7fK3kfDatx7VyEzHN9xmEYBSXHxkHrvqDG6zotOHyckYud0tgv1Af/s+lIZg+ECG+HBkfX/7PtSjGrGRSLO9m6kBbTba8qHQBJkdiY7fg9psw4epLTGSE7F1+4jmhg4B+X05xm/M+rYCMy6bZCUjrqFFRMuHSQ2hbISEWE4nNtqayOhRgSbdJlnJjItW+9YABTPHLOoVr+8UzXmkwowodNtG1r2+2TQVVspT7avVBYbupfWUtiKiu2j+/E42xwW/vlJhSq/vz+k2W4y6N1bpAqFDVLqIhi2KCC5uxFNVigqF5lObJIoYnq1jgjQ7x7Wo8sZSJ6ER+8F3cPLUKT7wgQ/wSsaOHTuYnw+usBciRIiXHmbc4JZ37eMH/vNtjF3V+gY/880ZPv6+r/DEJ0/gDEiZGSJEiBAhQoQI8UrHN/7uGJePLmLENO75pUMY0Rcl8U+IECFChHiF4gUlKT377LP88z//M9PbdnH1tbsBL/g6fY1GLOUFT/NTGlPXtBZ0t1ylMbJNMnPCZf6yYOsNERJ+sDe/RWPrdd7CpTINJg6YjO72gxkGZCd1Yv4Oyuy2KFtvbi2Qjh+IMrrfC3pLCdtenyI9EWHq5iSTNyXZ9vpU8+7HDqYYP9hS39h2R5bsVu86qYkI02/IoRlQmbcZvS7FxI0t0szWNw41lTtSYxG23zXUDBZktsWxyg7VBU8CYOsbhihc5S2Ex4cMtt89ipny7m/kQIatd3iyzTPfWiK7Lc7Q1RlQimjBYMe940QLnu3Q/gxb7xxp1eHOEfK7UkQyJmbaZMe94yT8RfDCvjTb7hpt2k7ePszY9V5O18z2BJO3DZPa4vktvyfF9N1jLdvXDzF+g2erRyU77h0nNRVn6JoMowdz7Lh3vGk7cUuB8Zv8XLESdtw7TnaHp06Snk4wflMBpRRu3WXsxhxbbh1qlt3+XWPkdnq2yS0xdtw73iQvVOZqHQGA6XtGye/xbcei7Lh3vBm0GD2YY+r2lvT1tjeNUtif9v0dYce940SyXhBx+ECGqTeOdNgOXZPFSOhEcp4PG4SQoaszbHtjy4dTd4wwetBbJEr4dUj4hJD83hTTd7f5+7ZhxnwfGnHdsx2LUZ2vk9maYPs9LX9vuWWI8Rs9W2l6/k5v9dpWdjrJrre2/DJ+U4HxmwrNsjvuHSc77ft7a4Id93qEsPmjq6ycLzN5c5u/7xkj7wdkUr6/jbjnw7FDeSZva/Ph3aNNdaTEqO9DXx1g9GCOqTtaPoymTFbPeTv6YsOeDxvkkaFrMmx9U8t26o0jjBzIenXYlmDHm8eJD7W12Te1+fv24aa/zaTnQz0isasu+T1Jpu9ps71tiLFDnm2jzSZ9RaPcziTb3zzWJKFsubXN37rnw/S05+/MtOdDJGR3Jhm/Ic/ELV3+3uH7cCre0WbHb8gz+fqWv6fvHqOwx7ediHW02bHr80z6bba+bGOXbcyM1+4Sw56/TT/wPXJtds17P7Q/g2u7aIZYt48Yudb3Ydpk+q4xxm7IkxiPDuwjTL/NpiY8H07cmGfq9tZ5+/URANkdKc+HCsyMydTtwwP7iB33jjdJVqPX51CuYtVXDenoIyYT7LhnpOnvsetzTN6aR7mKUw9cITESJe/bJkZMr09O6iilGL0uw+QtrQXerbfnSI1HcWoOsZzJttuzzcDm0J44Uzf5gUvHZeqmNIVd3rOIZCTbbkuy664UZlJS2B5h6roWQWHLtSbDO71nYSYEW2+Kk8gK7DrEkoLJAy1i15b9BiP7/HEt4o2XSd9N2Smd8f0mJ5+EehUmdsLYtO9CHbZdZ5Ac986VGYLpa1qk3jff/Q4cx+Ftb3sbIV7d+N3f/V0uzcxw03ffS2O0HHNtJv20hnZMsQOLrJ9mMKEUu20LVwhO6gYZ02HCaEkV7bAt8q5X1oi47KJOo8WOKoch5dDQl9iqW+SlZxtBsUvVMf3Abx6HrdIigst2WWebtCgI/7wopqN1or56R1Zz2Gq26jBh2BQMGyyBi2BbwiLqE4TSusuWlNVUTxpJ2ORj3nmlgGTEZbUm0eqKRMRlKtdSwxhKOhQSPmECmBi2iUcUlZqkXBVMDDsI4aV4y+YUuUKLTDQ2oYhmPQ+bccHoLh0zLlAK0sOS3ISGipio5VWG98WJ+/2xmdQYuTqBnvb6xpFrc4xe3+qHRg74RCI8gsHYoTyaT6hIbYkztD9NJG2Q25Vk6OoMSb8/1mMaY4fyGD7RJDkRY/ia1vy0sC9DLG+iXIUe9WwbY09iNMrwddmmbX5vmow/37BWbVxLNecF8eFIcwwGyO9Okdnu2QpNMHYo35xbxQoRxg7lm7a5nUmyfn+M8OYYsbzX30VzJmOvK5Ac9+4nM50gv6tFFhm9PtckN5tpg7FDeaQuEVKQ3ZEkv7elijRyXbaD/DF2KN8iDE3FKezL4FoKu+IwciDTvKaR8PzSmGcmJ2IMXd067/CBNNkd3r02fNjwd2I82kGiL1yVJu2Pf7PPLBEfijbHk/hIhJGDnf5Ob/MJybr0zut/O8SHzI72kWv3t/T83SD8RjNe6tuKn/ItuyPZHCvB93fB80ska/o+FEhDkN+bas4FwZvTNXwY8f2t+aSlzNYEud2pJtlo+Npsk9xsJhv+9tvspOfvlg8zTfK1Eff93afNDu1Pk5qMo0Ul6W0Jxm8sNL+pEmNRhq9t8+FVadJTnl800/NhY36aGIkwcl1bm92TIjPt+7urzdaW6x3qS7ldyeYzb7TZBkk9mvd8qByFciG9NU5uV8vfo4dyxPy5bCTjt1mfZJWZjjNybbY5rx+5roe/zUabTVC4Ku0/c5i8dYjsdu86/fqIpr+v8foIPa436zCoj2i0WT2qkZ6KNdPLxUciDF/TOm9hf5b0hFdfqQtGrk4QSelYK3VWL9YpbG/NgbKTBpkJP32tchjeHyOS8PwQTQlGdmhYNRB1m+yI6Oxntyhi/ud8XHMYnVbNrL+5lMPUsEUh7bXDLXmbpE9IjWmKrSmLhgBcPmIzlG/19aOmQ1r3fkelYjpmodKecUHaTGqtcWIyblFJCObQvXGNOpG2cW1Ks6hnvN/bHJshf7xMj42x49AN/Op/+A+cO3eOVyre/e5389WvfpVjx4693FUJESLEBpHfmuJ73n8zd/78tcT8tQKn7vLoR5/jH37lQc4/NTuwvKNcvrn6PP+88DjfXH0eJ4CKaogQIUKECBEixIuFEw9d5Jl/Pg3AnT93LZnxxOACIUKECBHiVQeh1suHEwBXX301hw8f5q7rf56onvfSX0iIxaFWBkfXMe06uglVX9AkVYB4VnL5lPc7FqlTL3vpfnTTC9pWVwEhiBgWygXLVzaOZiT1kuulBjLB1F2qy/7u+YQEpaiXFbgu0ayktmIxdnWcetGhOGdRXfSUk8yEBMemXvTKRnM6VsnBqSukrph+Y476ss25h5a83fBSUl/xFjNjeY36ioVddZGmIJLSqSxamP4OX9dS1Ba9wFu0YGBXHOyyi9QhktapLNZRtqekpBmSasM2b2BXbOyS7dlmTWpLdc8v/o7gqh+UiOZMHMvFKtqev/MmtSUb13bR4xI9plOd92wjWQNlKy/Ng/QCVZX5Om7dRY96O2wrc56tmdFB0brXIZPaio1bdzGTEi3aZuurtPSylab07nWArVW0fR922SZ10GimpooWTOySb6tLIlndC864nhqB1AVTdwyzeqHM8ukydtVu+TtrNm31uIYe0agutnxo1xzsstPmw4a/JXpUb/o7kjVwbYVVtLnqR6aoLdU584XZDfk7ljcxUwbJiSgzjy1u2N96VHLVj0wxf3SVS99YCObDtLc7u+HDnra+X8ykjtAFu79vCzNPLrF6oey1w3Jvf3tt1vdh3lzj744228Pfrq24+l9sY/bZJa48sbiuvxs+jOZMolmT2aeX0BMtf5sZHRyaaUzafRgbNtnz9klOf36G5VOlF6/Npj11oqnbhrnw9TnsirOuvxtpEKMFM6C/vTa7mT6iUaeNtNnme5/2dv5vtM12tO8Xwt914dmmdCrza/sIoWlECwZGXGf1QtXzS8agsmh5PkwZaKZGrdGf5HTsqksko7P19jznv7lCccb2+oiYRDMFNV91LzIUwakrnLqnjhTLSkauinLlSBXLNdBNQXXVV2xKemOYXQWkV7Ze8lK3dIxrQCQBTiSCVfKuE0tCrdoaA7WMTqUkSUZsUjlYvOwRlhq2ZakhVhw0HcwoVPyx1YzCc3Mf5cTJ4zz66KMcPHiQEK8+nD9/nj179hC56RYm3vJWqngKXobyVCDqQuAkXRJFsBA4QiCVYsS1WRaSYkJguAq9Iqn7keCIcnEQ2EKA4RKrQg2BEgJdKaR/XiU9W2oSWwiEUpgo6r6t4XpqFFodhqXDjCtxkdgINMeztWsChfDshKKuvCB90nGZilqcW9GpuQJTKmzXIyxpQmFaCsvy6qtLBQpsJYhoDtICy5Uo11PX0CXUnZatVlE4rkAoF0MHxwFXCaRQaBqoZQdpKTRNgQDH9soahoLlOq4Lsm6hGWD72Zs0HRDgzhdR1Rp6zJv/ubZCSE/tpDazBAo0XSF1gVX23nk9puHaLq7l2epRDavieLamRGgCu+L459G89G2W27S1q453r4ZE6qJJJNFjGspRXtonAUZMw666KFchDYE0pDfnwTuPcrtsay7K8eqqmbJZXy0qQdFMx2XENfS4TnZHgtmnlhCydW8NolC7rVN3Pb9oAj0iO20FONUBthWH+FCE4QNZLj4yj1XyU07FNdyGrRToUdnpQylIjEWpLVvYVaevv7t9mN4WJ7czxZkvzLT5sOFvgdRly9+9fNjwt+6NXXa7D12aKbmMuEZsOEJ6Ms7FR+Y7/d3Dh32fzQb9nd2RIDEW4/LjC+v6u70dJsdjlGeruI7XBj0f9vC31vLh0DUZjLjOpW/Mv+htNj4axUzqzPsKp4P8HcSHDduebXaj7duUCN1L07vRNttIK2ckdZyas24f0epPgvcRwjTXtm/f3zIWRY9IlACn7vWLelTi1F2UA1oyhh6X2HWBa3sqTCiF4/NOtYyJg+6dV/NI1nYN8lskxAwWZ8HyJZYMw++TXYGQCpUxsGxwTQ3NV70TwGJRQ+XAdgW2JpEodKmou17KTl0orLTAUgKhwBQujhI4CAQKUyhW0wJpCXT8cc2XsjJxqWTBAUaqLhUEZU/3z7dVFPOgVQSmUrjQHAOjK0sc+//+Hj/+L/4FH/rQh3il4gtf+AJ//Md/zG233cbOnTtJJHoHA777u7/7Ja7Zy4MHHniABx54gGKxyFNPPcVf/MVfsHfv3nXLHT58mP37978ENQwRooV62eKxjx/n8P1nOrKiT980yi3v2key0JlL84HFp/jdc59gxmqlGR41Mvzy1A9wT+7al6ra31EI3+0QIUKEeGlw7NgxfuZnfmbDc6/vdLzWxpf17nfx/Cqfev/D2DWH6962gxvf+Z3fBsJn/OrHa+2eX2v3C6+9e34l3O8LRlL6whe+wN13300hu4cbtv1IxzFldsr0yXIrfcbQlKCwVfLcIwrXBVGrswZteUhF3cKMQ6Kgs3jO7rSzun4DuK1dQsruIYXc2EVk9yrr75rcGcO1HRZPduV9912nnLXnnXp9jvholGOfuNQ8T8/r4qV7A2/Bd/x1OS4/sYS1anVcYxDMtN4M5r8iIT2SRIMEsVGMHsoSK0Q4/bmZYOVuyFGdr7N8uhSo3GaQmop5alkB7m1of5rcnhTHP3kh0LXioxHsihPoWQ/tT5OcjHH6s8F8eM27ppl5conZp5Y2XCa/N0Vme5JTn7kU6FrJiRjVhRp2deM7+kYPZkluiXPiny4GulZ2Z4LipUozSPRiYvL2IeaOrARqG7ndnlJG0LahRyXSlK/ofsBM6tTLHgFooxi6Og0K5g6veH+Q2kB7oWmMXJdmeH+KI5+4hFtXa457/+jMbS1NGL8+y5UjZeyKSzOPSscNeAoNQvY4Fo2s/VsbVMw/7qeOiyYhmpIsXXJx462yosdY4sa93bJbttgkM3D88dYxJ2502Gplq+P3qljh69/6Yw4cOMCTTz45sI4hvjPxcz/3c/zDP/wDsX/3CxhOvOOYk+x82bSSn1pIKfbYFgtScjnp/U0rr23Xrtl6f7SqIOM6VESLzKQa6YZqa3PFi7ZXT9bW1tsXX+p9zAJdKPK6w0JJ+kl32u7D71KF0/l+S6HYlbaYLWqsVLWe8ye90vqb8I+n4i6uglJFovtkQWmt7ai0YquysmYhNI9M2DzfSiudqKp23pizvNL64b40aTkaRHnlBJvmj92QY+lkqUmI3QiMhJc2dOlkcX3jbxOa6aXyqgSdUx7MUpypUrpU3XAZqQv0uE59xVrfuA3D12YpXigHqmNqKk5ma5zzX5sLdK2hazKUZ6qUZ3u8TH2gRSRSl02S10Yx9ro8y6dLVOY2fi0joSE1b6PIi41o3kSPaRQvVNY3bsPQNRmq8zWKAdoGeKSkBgnplQotIpskqkEQhtm0T0/GWDpdbvYdMtZKx4vs0d/HYoxfG6M0b7Nyee21VNRXWTI61wPiGYETNZvkatdcO8ezfMVh11w7RtXSrb+5+tp61X2lJG88UmQ0l6IjcRDUWoJSaD2aZi3npUbdX7W4hM4SrbrV811ja6Xz2vMPfpbS/V/g+PHjbNu2be3JX2bU63V+93d/lwceeIDGMpDomhcrpRBC8KUvfellqOHLh6CBslfCYl6I1y7mz6zw0IcOM/PcYvNvekTj+h/YyTVv3Y6mSx5YfIp/e/LDdM8EG2/87+/4yZCo1APhux0iRIgQLw1CktKrG4Put162+NT7H2b5UomJqwt89797HVJ7QRP+vCwIn/GrH6+1e36t3S+89u75lXC/L1iSz3/9r/81INi/6wehbbGvm6DUjdkLgvlLqsklUhGzRVQSaxccAdJjOoXtBsuX7I4AEYbeIiq5nQuI0oTcdISF0zWvTLfEsa63iEpdpKKFE73JSQ0ITVtDVLr0+DKRbNm/uOg8Zx955VjBJDkeRT3Wdi4h1iUq7XjzOKWZKue+MljmuR35PSmGr81w/JMXce2NswZ2fs8EpStVLn9zYcNlUhMxpu8e48T/uxgoiGIVHTQjOOli5rHF9Y26MHn7MEITnPvylUDlGunNgmDu8EqLdBEA5ZmN+64Bx3I3FJx4IeDaLk41eLCmeDG4D2eeWGLmiaXA5ZZOBCeupaZiTNwyxPFPXcCtb9yX5x8MFmgEsEoO1YU6Uu8Mfq+H6XvHcKoupz57ecNlzIyXyu3cg7OBgrZjN+ZJjEQDEcQiWYM9b5/k7FeusHxq488gPhpF2RsLsDcISAvHi5QuV3GrbkcwrUlQglaf2iBbKJ2Lj7cF1xt9dIOsZBpth1z/kHcsXtDQU7JnYA7aCEoA/gdXflKQyHskpQ5bv44NslKDoARw6ZLEvQByAMvLiRsdRKV4tEA2vZ2nn36af/qnf+J7vud7+pYN8Z2H06dP81d/9VckvudeL4jc1oS7CUrtUEJwJNUZDHbibpOo1E5OakAoxbjrsCAVM1rnvM6JqCZRSXQVTSkHB0HVz68ru4YIN9IiKsm2uaOtBFcsHUzQfLKh1sX3UJroICqJOpxf0rF81aTu+VM7QakdEVMhKy61Uuu4a8gOolI7QQkgMmQwNOJy8ZiDWhhMzGknKI0ezFCerbN6buNknkjWIL8nxZUnlppKMBtBI5XX7NPL61i2IDRBbcXC6UHSGgSrZAcmKGmmZOS6LPNHV6ivbnzAc+puYIISsKk5g2urwAQlALfu9Jvqv+Bw6y5uQCKaU9vc3PDyoxuf+zfgqQQGnxsWrkpj15xAc4aGemRQWCU70LsFXoq20etzXHpswVOp3CAy0wmMpM7cMxt/L6UuGD2UY/H5YqB7zO9NYSZ1Lq/zXdQgKDUQyxuUZiT1Yo/n5qrOuVXMU+yYP1HDqrreo26bbzUJStD6RvfJSkXb7Bi3ZN2f+/hkpQZByTvm+sckQiiSMddT7fND7dKfKzbISg2CEoDyBDAZM20u13WWna7xz79Mg6xUy/nnEoLDUQNXCLQBnypOTHUQlVJvuoOVLz3Ir/zKr/CRj3ykf8GXCX/yJ3/C5z73OXbu3Mmdd95JoVBA0wZvAggRIsQrD4Vtab7312/m+a9e5JH/fZTqSh275vDNjzzHc1++wM3/8ip+l0+sISgBKDyi0u+e+yRvyl6D1muDTogQIUKECBEixIsA5Sq+/N+fZvlSiUQhypvec92rgqAUIkSIECE2hxeEpPS5z32O559/nqH8PkwzgWOCtAYvSCspiSa9tG9u97pwH3ISgDIN5k5aLF2wewfx15zMQ2rUYGR/jKXzNdx+wRddh3pnMGL8hhTzz5WorzZYVL0DAd1EJbvqYl/uIpX0iVgIKVCOw+r5Mkc+Wu5hMJiodO7B2cCL67VVi9XzlUAEJYDipXIzJd1GUbpc4+yXrwQiKAEsPLcayB48VSk9pgUm9FQXagitf7vrd63sjiRzh1cCkVc2A2lKxg7lmD+60kwNthEsHi+yePzFVzYAjwC0GRLQ8LVZ6ivWS6J8ldmeQOoikE+sokPpUgUpA4kAocc1YjmT1QA7+osXK5sibV18ZL6ZFmSjqK/aFC9VAwcqK7M1lBOwv1myOP/QbCBfAJz9QhtpcB0VpQbssovdUOvzyaHC6DPUKdUx3gztjVFbcVi95JdXLkR6qyQp10VISWFPHD0iWOnu7wfg8imFe8LpUFHqOHePYJHr+oo3aV+Qqdj7GTTVlfwh49q938/DT/wJv/zLvxySlF5l+O3f/m1yuRyRN7weGExMaiLqIPCISt3oRU5qwI7B0ZpBv1Gym5zUwAgOFVNwuS7XEJSa142A3tYlJ6SLLlRHILmboNSA0gR6tXFxQc1eW8N+5CQlBEbRZqnklV1TL0NiLPbus2olmDvr9iUoiWgEVa11KigBlfk69ZLt9WcbVFRyLY+UE3Set/h8saco3CAoR21qzhDJGFhlG9cKRpapLAS/r/hwBMdyA82FNotYwUQaktLlYAo780eDz183i83MlfW4RmIkyvKZEj2jly8gpC5IjEYpz9YCPev6anCyHHiqjUEJ+kGIUA3UVi1mnlzELgfbTFEvBidEubYK7D+A1fPlNQo53egmKDk1l4vfXGr+7lBRalbIbzRtZKV6qa1u/vewSnSmHGrCsptEJd2ARBqW51uHZd2hVuhxXTyykowJssOKclFRtrqUMe3WeNBRZQTHqyYOgnqGnnCMtX9z/W9wPepSE3KNalKzbMxXV9YVkgg77ryDj3/84xw7duwVtyv8S1/6Env37uVP//RP0fUXbL9aiBAhXgD89cyX+JuZLwcrlAX+jaJesbHa1gOc5X+iGu8/V1LAjLXEXU/+OqZ84fqCd43eybtH3/iCnS9EiBAhQoQI8erCU58+yZlHZ5C64O5fuJ5YenB2ghAhQoQI8erGC/I1et999wGCfTu/f0P2TjqKUa2z/aBk7qzL7NmNX0vqoOpgBxSVWT5nsXq5jlMZsMDbFXg305LMZISVCzXqq3WQsrnwOghbbslRL9nMPr3xwIHUASl7k13WUVIKooLSXmYz5WYeXwpcxrXdwAQUaUoiGZ3KbLBd0UP7M2SmExz5SIBGBZtSNooVIowcyLJwdCUQeWX7m8ewSg7nH9y48pUelWS2JVg9Vw4UmJO6BMmLTqLyLga6KQOlbQPIbItTvlIL1EbiwxG23T3Kqc9dDpZObUcCYWiBgrDVxfqmVJGGrs5Q2J3i2f99JlA5PS7Ro3qg3fKbUdnCJVAbbGD5dInl08Ev9+2Q5fS4xB7QXYkuUk80pzNxc55zX53DKg1uj+1lM1tjlK7UWyQlWKMa0A7lulx4qorrBGMCNAi2MiJwaxuPEEvpsucAzM3A+ZU4enH9vkDXcxRy0xw+fJjHH3+cQ4cOBapriFcmzp49y4c//GFS3/fdxCLm+gUAe9hifBGGbIdno0ZPolIvCKVAVyihBeYznMBAc9YqKLVDdnV1cc0lJt01aheDoEvFcNJmtqhju6370uqDayxlQ8mzB7mp2L8Pdl2oLQ7ud1Vt7fGVTagvWiWHpRPB+0+7Ely9Ro9rnjLPBhXsGhi5LsviiWKgNFtO3d3UfSXHY1gVJ9BcyEzqDB/IMPPEUiC/RDIGRkIPTFKSuvDUjV5kAhB46lcoFUi5SY9oJMairF4oByKW5fekEFIwf3Tjc2ahCbI7koHJOUFJzQ2MHMyxfKbE6rkemz4GwEjo2BV7435UbIooFyRVXjs2Q6SyShto691qvz6EJprpyPuii8SdHNWRmmDl4vp+UYbXvzdISsWlzk9svepgR3uPAW5FcXZGp94jBdwgOA3VJaFw1cY3pgwrhxHX4YhmUt1iIyvrj03Wm26DrzzIH/7hH/Lf//t/D1TPFxv1ep3rr78+JCiFCPEKRMmpcsXauNJeBwz/v4BYckqbETzsi5ITfI0xRIgQIUKECPHawIWn53j0758D4PX/cj8ju7Ivb4VChAgRIsTLjm97deqpp57i+PHjFLK7MY04rr+g6EY19NXOAI/SW4uJjg3nj7hU2nk8vpKNipmISu/g0K6bDVbnNS4/1ePjVykvLU+XGpLUwbUUbh2ErqPsHrteGwQlTWuuktZXXI5+ag61Dkmood4khPBs29c911vgxZM5zF+VYfyGLEc/fq6T5LHOtSduKVC6XA1E8NDjksRYzCsTIKiRGI/i1N1ApBCAqTcMs3BsldLMxhcsUhMxtt45wrFPnqO+vPFdypcfXWTheMBd5dIjvZRna4H8sXyqtKmgwer5cuDd0PUVmyN/H4x4BbDl9QViQxGe+z/nA5cNiqH9GcZvyPP0/zwVqNzz/7jxtGEN1Es2y6dKuAFVgE5/Plg6vwbMtNdV1lc23hbnnl1i4Vhw8tvWO0dBwMn/dylQuYlbCqxeKAdKQShNSXoqFlgBK1owMWIaq+c3fi09Khl7XYG5I8uB+pCtbxwhkjM5/qmN+8P2yah6XMeu2i2FPdknoOX30yc+v9DZBzQUBvoQlUQ0gmsBuEhTrlH3U1FzjVpTA3rBZNcBuHBSsDwvoEvVzkm3iCey5qdAcSXnT7qsrgJxsJPeSnQ3WanxdwB91WLHlu/j0swfcN999/Hwww/39kGI7yh84AMfwDUMkrff4v0h2db4ip1TOxVvRR5mdUlRig6CkvIVlJSpkOXOd0TpirTtsrVqcyQGqkdwVgBOVKFVuxQtlEI5wnulzN5qSA2Ckmu2/j1r6YBal2DUOK4kaFIhRNtUbgNjg152GB1XVMuwuNhZ9wZBSRkaoksZ1IhAUq+ysuqlKKbWeWPucu9+P5I1cGoudinAHEpALG9SXbTWJwy0IZozMdM6K2eCETXye1I4NZf5I8HGrouPzKMCphzTohIUgdX8rjy1FMgevNS3xYvVwHOvpZPB53hCE0zeNszc4eXACqKbwfjr8pSuVIOlRVusc/Hr8+sb9ijXV06tD5yay7mvBidECwlGXKceIJUawOXHF3ACkuWNhMb46/LMfGuRWoD0fmbaID4UCZzq0EhoCCEC3ZuQ3ntdW7YCkQhjBRMjobNydm1fIBokoy6ikmYKxm/MsXCqTnVxcB27U+A2EY0g/A5Z9ZHuF3WbWh0ulrtSiCb8uU0fopKV0kCBXnNxIq2Ubw3U0wJpq2bqt3bkMzYJ4XICf47V5cp6tvUH6d/6otAoaa1ku27MGxO6yUoq1963R0neeRsf/Kv/wfvf/362bNnSywUvC/bu3cv58y/+d2GIECGCI6FFGTH6yL0FgF1zKNdqVGPrj2lZLfGCKikltN5KeCFChAgRIkSI1zaKcxW++CdPoBTsuXMLe++aermrFCJEiBAhXgH4tr9GPRUl2Lvj+5oEpY1itX19fIOptq6ccjol5WEtkaeLqLTlYAxpCM481GcBv1fqIunFs3umlGtHV3o5IQQXHl7sbStkR8q39oBTI9gfhKAEnpqPVQq2gJ/emmDipgKli5VAqjfjN+RxLJdT91/ecBlpSmJDEYwLZZjZeB1Xz1c4/cDlQAQl8FSbgpKoYgWTnd89wanPXd5Uqq2gmHs2OHFls5g/soKReGl2yq6cKwUONm4Wdtnh4iPBA2ybxba7RqktW5z94sZJTnbZJViCOA8XvzEfOA0jQGIsSn3VYpWNt+HEaISp20eorVwIpFo2djCLkTJYPX9hw2XsuktiLMLqeSPQOzr/XBE5YLd8t4oSeP3oyc9cQXQHxly3P1EJmo9LmuB2V3GAolJmQmP86gjPfbXaLKeibeo2jb68jRhSr8LsRShvgFPpRrQmUWl5MZhygJ0yiJJlamonjz/+OCdOnGDnzp2BzhHilYWVlRU++MEPkrz9FmQ00klQWgeOEBS1tQSlQShLwSVDwxaC9ret+21oJyrpSrHXrXMGgxK922y3ghKARPmvoWCQDE03ganqSi4u976O0kC0K3SUGz8UC4tyTda1QQpKAEa1QnRcY/ni+tvOZTSCW/WIKvldSaqLVRaPb7z/M5M6w9dkufzYQiBCgx7TiObMwCSlhaOrgUkoEJxoBJDdnkQzJVeeXAp+wYBwaq6X2uwlgHIVs88uU1998dPRASwcX8WpvYASCAPwUpCuGohkTEauzXLhkblApCO7HNwXVtnh8rcWsTagTtgOPSqJ5oz1uqs1yO5MoVzF3DMbV8uQumT4miyzzyxRCTCH0mMakfQGpDXaiEpOXbF0zqJeHODLHmngijN+HxXtVFgSjtuXqNS06fxEbmKQotJExqbuCC5brfurp1sdWCP1WztZaRlJSTUe2ODOztU9opItBHbQjjFlkbr9Zor3f4H/9J/+Ex/84AeDlX8R8TM/8zP80i/9Eg899BCvf/3rX+7qhAgRog3vHn3jC5Yqrbxa4y3P/BZLRqlndyeAESPLPx/4D2hB8wOHCBEiRIgQIUIEgF13+PwffYvqqkVhOs3r/9XV66YmDxEiRIgQrw18W+yFhYUFvva1r5FMjhHJDq05bqdM9NV6h4ISQLbgkrtK59zjNm6fAamfmtLSRX8F0zQQdWt9Io9SLJ2ro5mt6zTVlHqRk3xkpiKMH0pz4v456qW2azQC4o6zhqAEEBs2qS7UcPspAPirsN074utFm/mjbdHqDRCUAE78U3AVmoWjqxQDEpQATn7mIlo0WJNx6+6mVHxc291Uqoetbxxh4bnVQGSj2mKdk5+9RGU2mDT1xC0FNFNy7ivBdointsSoLNZ8EssGy2yNM/66PCf/38VAz608W4OXKKhUX7apLwdUsQK23FZAi2ic/UIwlaPEaBSrZAcK3KamYozdkOfEpy8FIgKdf3A2sAIDwOTtw6ycLfXcwd4PQUl2DRz/5MYJQw2sXqhw7BPnAilEAZx/eB63HjAQ6MKxjwfvC0qX+7ffXgSldsQKBrVVq5Nw5BOVRK80F65i620ZtJjk1BeWeh4HQApEWxCutOAwf9ryx5QBi7y+qpKb8MrOtj+yxjhpux0qSs1LR7x7lTWH7LQknbQ4cdYLzLUrKrWrKDVgpwwmd9zNuXMf5Fd+5Vf4+Mc/3r+OIV7x+NCHPkS5XGb0rTf3JiglbSjqHQpKANtLDoumy3Ld6EtOcuMusixReuu4JQVz0mt/TtxFK8v1w7UOXEGj0mbp+GpKvchJDWyNWtRrgplal7KG/0po9bUEJSkUmvTEyLQ+6RMbRCW9g8AgqFYb//LK9SIoNdSU5LJHcqkC1ZW28cBXU+qnoNQgKl1+dB4RjMtPfdXmwtfnAo8/xYuVTZGu7Wpwgkc0bxLNGoFVh5ZOFr1UZQEgDcHwgSyLx1epr2583NIiEmlIrICqPIV9aeyyE4zgpDaf0mszCJIatgEtIhk+kGXh2EogP0pDokdloDLgKXTZFYeVACnYaiuWp4oUkAAXyRjEhyMsPh9A3UhBPYCCUgPlKzXKV4I/64WjK4HJ6E7d9fqCgP5YPV/pqXopulK1AR1EpfLsAH/0ICg1FJWkLtGjAqva2Rc3iEoqvva6BjZj2wRXLmvUenRbut8v2VHNU1HysVLVsF3QLYUd6d+XNFSV6hlYM0drFFOdKkoNuP5QpFuKLbEas7Zk1Z+vtSsqdaooedAmoozcej2f+MQn+MAHPkCkl89fBjz66KMcPHiQf//v/z2HDh1i586dJBKJNXZCCP7lv/yXL0MNQ4QI8UIgnorw/qt+mP/PyQ+v5WX6GWnfN/H2kKAUIkSIECFChHjR8fW/PsLsyWUiSYN7ful6dDPg4liIECFChHjV4tsiKf3ar/0aSil27nprz+OOKdH0tR+9SoHrgJWMoA1Ie9FOVJI6bNmnM3PCpl72TzKIyKNp4Kd1W73cYzFdSPqqnEhBZdFm9nBxrWoTeEHuHgQlgG1vKLB8rsLFhxf631cXQSlWMMlMx7ny5JKfOmhjkKbE3QRxAoKlrWrAtcENGODZLMZuzFOZqwVKXyF1SSRjoEWCLbS4NpQuBSMoAVglG8cKuKgjYfqeMS59c565wxtXVLIrNpW52vrKXl1IbY0jpQiUDnCzMNM66a0J5g4vBxIQqi1aSDN4YHT6nlHmjiwz8/jShss4VZfasuWlgAzgy8rc5ohD0ZxBdSFYN6tHJaM35Jg/vOqlVnkx4W6uL9iMUkEDUpcbC861EVgz03HMlM7s0xt/ZyIZnR33jnDp0SUWjne1f9dFKdVz18bCyQrC1FuE1F5V6yI42VWYPd7ovF0vBVQ/NMYu/9rDWxSODQsz3m8rH0UO8E9lLEratbAdhfeitfogO2lQy+pEltY+UzO6AyOa5p/+6Z9wXRc5SFEqxCsWSin+/M//nNjNe9HzvdNBmPE6NbezbQulsAW4AkS+jir2V9Zw0zai7LX/vO0ggHndfx+UGEhQcjWFVhM4COYCTjGFUszVNVSfeZBWA81aO+9Lmi4jSYfTM4Ovp3f1W+mUS70uqNYEWnnw5EuUfSKC8EVT2qqhNkLOdR0UvZVC1sNLpVBoJDTiI1FWzpYDpW7TInJTio2buy+BVbIDpbsCSI7FSE5EufBwMAXG+qoVuJ5CE8SHI1QX6psiNwdFrGDi2ora8sY/IJSjqC3VA/sxPhIhtyMZOH2bXXMC+0I5KjAZCjwilZkM3h5jBRM9YBrbzWKz7WLDbdEnlbbLxAlNNN9rGY32TWUufQKS0CA1FqE8bwXaHJGZjhFNa1w+urY9CscF212zecmuw+KMoq4krtF/hHGNznLFWuu3XlPU0v3nNdJWSFvg6mCiGMLmEnozVVw954Lqf+3aWB1npfdxN+YQjVvUymvHVfHW1zP3lW/wqU99ih/5kR/pe/6XEh/60Iea/37sscd47LHHetqFJKUQIb7zcU/uWv5gx0/yu+c+wYzVUu9Lrka444t7Wa6scPFfzTOxv/Ay1jJEiBAhQoQI8WrGsS+d4+gXzoGAN953Hanh+MtdpRAhQoQI8QrCt0VS+ru/+zs0I0o+v2vNMcdPz1PPmJjLnYH25QXJ0lKw3dORBMQyGyzTUEjSdQrTGrVVpyVBD6gBCkoN1Isuc0d77PjtQ05q4NQDV9akDmld2E9iIkUHUSlWMMntSHL5saV169WOnW8dp7pQD6Tko0cl0/eMcfGb85RnNr77N7M9QW5HktOfD5CzDZi+exQ0OP3ZYOUSI1GU47J8auNlXNvl+KeCq8lkdiSIpA2uPLEUqNzs0xtP09CEC8f/8QJ2OVjgpTJb59xssKAQQOGqFJqhvSQkpfhwhPEb8iydLAYisQQha7Xj5P2XAqsilGdrgVK2NZAYj5KZTnAxYIDz+X8MrnTm2pDaEmf1XCUQSSkznWDytiGO/cO5QAGl/FUpEqMxzn05mF+m7hymumgx+9TShstECya73jrB6c/PBFL5SIxFieWNDpKSkKIV8e+xA7RedDn75TlWBygx9SIqFS/VwdiA/2wH9BaRSTehsMNg7oLAruONQ+ukNwFIpKDeVUVXlwOJSjN1g/mltcdrWb35/72ISlt23czpZz7H7/3e7/Erv/Ir69YtxCsPDz/8MEeOHGHrf3xXz+Nm3OszIskatWJLtUEJwbm4tj4hVO9sV1FXoQMb6fmEH5OWpku+7rKAhttGadI20J2VHIns0fS1AdOV1ZrEroGrBLJHziW94p1Q6QLRJGUo4nGFEFCtDZ5bymVvLqgMnWjUYWi7weUjdZwNckLccpnUZAzN1Fg6GUDdBcjvTVGZrwdS5tEikvEb88w+tUwtgDqMHtVIjEQDzxdKl6qbInpndyQozdQCpSx2LZeFY8EVG1cvlCkFVMsENkVY0QxJYW+amScXXxKSUnprAqtsByIpubYKpjTkozxT3ZRyU9C0gw2kJmNYJSfQXKgyV9uUkpWR0ImkjcDPfPiaDHbNZfH4xtulkJDfm6Z4qUJtaePPzUzpZHckmX16KRDhMb83hR7VuPLkEjLqk5CE6EtUAm96lRgzqZedzjllDxWldqxesVm94jAolZroQVQqLYGTWP87X6sqnGjLLma46JpizvQIQloNnHUEiwSKhFAYSlFvr6dQ/YlKQnAmA9TXzuuiea9vifQgKhkTI6T3TPH7v//7rxiS0h//8R+/3FUIESLES4h7ctfypuw1PF48ycXVBea/uoz9jxbSFSxR5P/91jfY+fpxbv7xq4jnBvfxIUKECBEiRIgQQTB3apmHPnQYgBt+aDdT1w2/zDUKESJEiBCvNGyapPS5z32O5eVlRnfcSi1nEFlsLbI2CEq9kEi52I6gWvUWAZ2EuSE1pcoyPPdgZ3o35S9IinrbAm8XASk7aVKasynO2GvJSbreVFvyTugdj+Z0MlsizB4tde5abScotad9axRXimojMNwmmd9+7gbaiUoLzxVZONZF1BBi3ZRvs08vYQVUNJGmxLHcwDvDpS4QevBcsUuni8gNBOq7sZk0dptFYjhKrGAGJimZad1LNRYwBrWZAI8elciIpL4cjJQTlBz27WDpRImlEwFYZT42e2+bVTfS4xqurQKpkEVSBqnJOMj5wM87KFzb5ehHzwUuV5mrMXc0OOFLSoG2iXdbOWqNKtx6qM7XmXlicf3AeTtxSLlcfHiug4gkZFd9ldt53O9zVi/2CFQanQGkNUQlQyc1YRJJacwd84OVskVGEmZbedvvf3UNBOQmDcoll5UrfiPpIio10rz5Fwbg9FFoBPOstjRvrh/Aaycr1XKta7txGDIcFpYFvVLMdROVrKTG2O43MHPiQT784Q+HJKXvUPzlX/4lxkiW+IHtCFmlvNIKJjQISmugFBlbUYy7TdUImbRw29WUushJKu4gyhoXTd1X/2q9I3bMT41WaUuj2/ZKx3AZFg4LyntvuslJrtmZ8q2Roi2nO1RdQcWQSKv9eOvfjq+y0a6oJCyo+u+AqwtkmzpMg6DUvK8mUUlweUZDL9bQ24LUSgpEW7/WICg1772qWLpg41hrFZREJIKqtSrrlltllctAQkA/CE3QJytyXyhXsXKmjFUJOKbO16nMByPibhZCE8SGIlSXLKwAnCihCYQUuFawgdi1Fa4dXAFQj2o4lhtIWcquOpwNSPr9djDzrcVNldvMvW3Wj0J6CkdBvz1iQxEQ9RdfVRICpeVtR+lKNbAilXL976ruucx65RyFa7lIXfYnwLXNVxr/Ll2q9vyG6yYqyfZ0ZAouPdZFvFqHoCSiEZy6XxgFbYqNKtbJHOomKrlJk3RGUS6C7d+baltPqKda45Xmp5JzooK46RIxFHPtn+hdRKV62yYnaYOF5Lhu0Jh71bNthYXvj7Yxzxlqtb+I5iDrkkqfVJXdRKV4qkby9kN8868+xfPPP8+uXWs3dr3UOHjw4MtdhRAhQrzE0ITkxtQuSAE/CrM3LvPQXz3L7Elv092Jhy5x9ltXOPRDu7n63m3IHmr4IUKECBEiRIgQQWCVHR7479/CsVymrh/m4PfvfLmrFCJEiBAhXoHY9Nfnb/7mbwKw9erv7vj7IIISwNhW2LKtczHXSQxIjQMgPZWK9Ug73QQlgBMPVrj8zAZ2xbaRiOIFg+x0tDMd1DoKSkopJm7OkduVaKv3BhefN5P/A48UEnT3en3F5tT9lwPt3AVYPF7k1P2XA5UBr44LzwXf9b4ZjN+YZ+87JgOXu/jIPCf+36XA5fa8fZKRa7OBypgZncnbhtDjwV69wv40u79nS6Ay3ykYOZhj53dPBC43dE2Gof3pwOWuescUhb2pQGUWnlvl2MfOBSYojVyXZd87twYrtEnUizYzjy0GUlECT8kqqEIawPkH55h7Jria2OzTy4EVsIAN95OijRSkxyVb78wTzQ3m43aTB5LDBuktbeNSX3m8FuwaHPmq3SIoNbCecp/y/scwB49v7QQlgHTCZWqrTSI2oEy2876ljKLHRzl69CgrK5tTMAvx8qFSqfCxj32MzF3XrQlu9yUoAQkHdlZtYl2vnUwOngfozbS6g8cr0XWaFaHxjGF0qCj1Q4OgBIqM7hDX3K7jg8tHlcNwykaK1vvjboh0qdCLdQapfXQTlABsdErz/d9p4Qf52wlKAMWLlUDpaxuYP7xCeTaYKoxrKVbOlXF7pMZ7MTB52xCJsWA775WjuPSNhcCk7eR4lImbg6ckSYxHSYwGVwcYvSFHcmJAJ/sdjPGb8iRG1pGc6YJmSrI7k2jrfOt1IzUZZ+yGfKAyAFeeWGL1XHDy0MQtBVKTL81zK1+pbWrzwezTy4HLWWWHucMrGyMotaG2YlFdqDdVlNrRK+3tZiCirbYUz0nSY9q6386iSzEylVUYbU1SbGAzwXxJ45S7th2vN3ZIW6ChED3U99rRTlACmKq4jDuD57CReOegaN+9Hxk1+chHPjK4UiFeELz3ve/lnnvu4c1vfjNvfvObed/73vdyVylEiFcchndkeNtv3MrtP30NkaT3jWlVHB7526N84te+xqUjCy9zDUOECBEiRIgQ38lwXcXxT85RnKuQHo3zxp9fu44ZIkSIECFCwCZJSq7r8sgjjxBJ5DFML49oLWf0JSjVMya1fAQlBSePCc6dCjYoZbeZ7LnNQO8XX9C03oHgRnWE6J/iTdfXBL8Xnq9w7NPebnKhycGLrFI2A9xmXEOPdPlAuX2D60IKkuMm+//FViJZo6dNP6QmY+R2JwOVAU/9ZzNPXY8GL6RHJZkdicA7sfJ7U+z70a2B67l6ocL80ZeGEAVw9stXAqduMeI6iYlYYJ8sPlfc1M78iVsLjN6QC1xuM4gWTHa8ddxrYwEwd2SZs18Jfm/xoYi3yz4gzn1ldlPB4s2geLnC/JHgZJCJWwrs+t7gxK34aITE+CZk2qWnshYURlJHBtTji+ZMRq7L9jfoEzCbvnuE6buH+3/U9Ohr3bqLmdTRo37gTusdwAOfqGR4N3PpyRInv9BFwHKdThWldtjOwHPjuKhI/z5+2x6YOtDb/64um6pK7VgqSZ49G2FZ6KxsM9YQkhqoZXWsZKtu47vvBOC3fuu3+tc3xCsSn/nMZygWi6Rvv6b5t3i62pegFEnWyBaKVOIuh7OScq8mortrVJQa2KHqTA4IErvaWoISDWKTEKD6p3hzzXaCEoDgdNVk3vLaqmusE2RWIC2FJsDUFd2ibnrFXaOi1CyqC8ZSdfIjvYPTslzvSVACSBYkMq6vUVFqRzdBSUiBNIL3r0ITgzhUfWGmDYxEcKHU0etzpLfGA5dbOl2ivhqM+L5ZlGdrzD0bnBwbSRsYyeA+mX16mfKVYJsB9JjG8IEM2ibmzZtBeluc9Lbgz+3Kk0tU5oORZIQmiOVNpBGsYZauVJk7vIkUyZvEytlyoPR34CkbTdxSIFZYZ+NMF4QmiBVM730NCLkJFUsEgUliSI3kZBoz1fsdEEIge6gkGXHJxI1pjLhcV0Wp43K6QDP9e3PdpvJxz2vbLk4iglKCC6cFlVKnT0Td7VBRaodWVTjNvnVtf+4pKvX2sYFiv6pjpvuQ0IVqqSq14UxcciohwXTJTyw3U711IxK3iKe8QUzGTZKv2/OKISk9/fTT/Mmf/AnzfZTz5ubm+JM/+ROeffbZl7hmLxx++Zd/mfvvv5/777+f3/u933u5qxMixCsSQgquumuKH/6DN3DVXVPNOefiuSL/9JuP8KU/fZLyUvD0qSFChAgRIkSI1zZcx+Xrf32EpZNVNFNy9y9eTyQRLO4ZIkSIECFeO9jUCvqnPvUp6vU6w1OHALBiAismqAz1XvxUbQu3riup19detq+akqNYnVVcOgV2j3VA0SAf9VgA3XlHnNF9A4ISruP91y+47CpwFaLf8S71jdNfnGP22dWOsgjZkYaoo7irqJdcFk8U16Y/Wkc1KrsjydD+zECbXtjx3eNM3joUqIw0Jft+dBv5PcHUZxJjMbbeMYKeCNbMqkt1lk4VA6vWFC9WNqXssucHJxm6Orgiz8rZMvWVYIowpUtVjn3sXOBy9aLN6oUNKIJ1Q7G+AtkLBUWgtCEN1JftwIpgAGe/dIVzX5kNXG75dMlL0xcEEvb+8BS53cHegfJMjStPLgW7FlC6XGXpTHAi1dihPKPXByel7fuRrYwezAYqY6Z1rvqhKVJbE+sbtyE+HGH4mkxvUtSAHf3LZ0ssnx3wDmgaaBpKqSZx1LXh+X+6QvFS2wJrH9Kp0KSXvtPpHbAShjHwOEDEdLjqTpPUUOe9qbhHputWDWjg8qrBxcv9SU6VIQM7IrE7SLCSqtX6Xcv09l01JygPS8rDnm1+fD+pVJpPfvKTfa8X4pWJj33sY0SmR4ls8cbwfKJMPlFmJNObLBuLtOYVdU10vF9SKqRU6PE+faESXIhozPXp8mTdT9nbFbdOodivLCIDunSt4v3XqXjUGDsEWs0LLrt91jC0emucqViSC4uttD0NcpKri76KSnrJplTRKPdwm1b0+wpj7dxR6pDJ2Rh2peecE8BZXlmjZhIrmEy+figwISGzLc74jcHVZ7LbE5siG5Vmquun4uyB4oUKVilYCrDEaJSx1wW/N6fmbir118KxVZZOBCOVA9RXrMApysDny75EU69GZq2gqC1b/RV5+sCuOFz65kLg5+1U3cAKrgDJiRijh4LPaYoXK9RXg83zXFtRulzFrgS7Nz2qMXxNNjAxMDEWZcttQxsnIgqvD8/tTjHcQ8VVGGbf71UZjZCaivUl9jdVkLpI4HbVZfViDVfvvyFARCMdKkoAxVmHxbNd/u+zWciNm0jLQVoOnjM6G7Sd0NGqDlq1/3MZExZTibXPu57204P2GI8s4GRCo+pIhN37IbhDVsPtrXJSoNr+EI/2DuBP5JYZTa8ymvbWBSav38+zzz7L17/+9b738VLh7//+7/na175GodBblW5oaIiHHnqIj370oy9xzUKECPFyIJoyuf2nr+Ft/+lWhra31sSef/AiH/v/fIVn/vk07nrKwCFChAgRIkSIEEBlucZnfudRDn/2DAC3//Q1FLYFj7mFCBEiRIjXDoJvKwb+23/7bwBM7L4TKzZ4dbWdoLRtp0u1CjMXepNWnISJVmoLPviEB7sOCxfXruOKdT6Wl87UqK54NkLXUPb6C8+pCZMtN6Q58cA8Vqm1SCo0DdUenFadxzRDbTjNkmrb8l9fsbn0zaXAAYZzX5ndFMXswtfmsAIuwOO6nH9ojuKlYCSZ5dMljs2dC0wIKc/UKM8E37WV2hqnvmIFDoQUL1YClzGSOvldSeaPrgROr7UZZKYTGHGNucPBVHkufr33LtkXA9WF+qZSAsaGTDLbk1z+5ksjK57bncR1FMsnA5CAXFi9UKZeDBhkk5DZmqB0pYpd3vh7t3x6c0pPZ798Bbce8P0GLn1znmrAd6C+YnPuwSuULgbrFxaeX91UCsilk8GJbA3oUYlttY0grguy1YG2p4gDwHGYujWDFpGc/uoG3rmIR7Ktl2HpvEWt3L9DF7aL6lJGKpb6d+aVof67TeKmy/ZRi2fqUSqupJYRRJb7X7s8LInPQjo3xvPPH6dcLhOPByczhHjpUavV+Md//EfSb7sR8AhKg9AgKEUs2L3sciYpPKJSD+hxG7tdZkl5dkW/nXaXahCUetYTwUJdozHqOwZoG+hapqI2NVcwv9o5LXUNkG3l2wlKrg66o3DVxqL8eqk1FymXBKAj2Hh/6S4UubBAX1KBs9zWV0itmSayumQx+8wSrh1soleaqQbulwFmn17alKpLMWBfDp6ii5HQqS7VA81j7YpDZS74PC9WMFGKTaXXCgwB6ak45dlaIOKKXXE2pfa0WaycDZ4ODTySjF11NkUeCgppSBIjEUoz1UDvgVW2N9VO9JiGZsrAakqbmXtZZZsLD88FJnxVF+vMPbvBOX0bKaZ4oULpcud8SBitjT5rvld9zDy16r2jch2F4DYoF1YXGsSh4BAauO352xwX2uZbbrxzg5KJw8i04MolQX0Dj72e8s5Vqkt0W8EAQUut2k2qFSy1EUqFLVB62/gy1L/tjFVddFfRePPi0Rrlan8i12h6lZlbd6F90OBzn/sct9xyy6DbetFx9OhRbrjhhoE21113HY8++uimr1Eul/nIRz7C4cOHOXLkCKurq/zqr/4qb3nLW9bY1ut1/sf/+B989rOfZXV1lZ07d/LTP/3T3HjjjZu+/gc+8AE+8IEPsHv3bu677z527ty56XOFCPFawciuLG/7zddz7IvnePQjz1ErWVgVm6//zRGe+/J5Xv+T+xm7KjjBPESIECFChAjx2sCV55f4/B99i9JCFT2iseOtOXbfvuXlrlaIECFChHiFY1NKSo8++ijxVB6ViQGQMByizXQhLqmEi2YolCYwdZdU3DtW1TVUQiMaa9kmUy66X1bXXRINcSBHEU1AagjGdwk0HeJjJrq/nqlpLolCq/pmEqKNYK7jEM/C8oU6pVkbaUJiSGverZlQRNtUJ+JDOnrKAE3DrruUF+tYfpoQMyWJFfQ2WwMz4ZWVOiRGTaQOU7cX2P09I8SHTRp5R+LDZjP1lTQkifEIwt9JbyZ1EqMR8nuSmEmd2JCJmdH9NCmKxHi0qTRiJPWOFE7Rgumlh3MBCYnxaDMdmx6XnbZ5k2iutQjsugq77AXq9GiXbc4kmm/ZJsaj6HGJa8PquZKXJsD3YSRrEC102jZSaUjTP6/0FIDMjE5suM12NIrZZdtIGWWmdYauTjf9Fh+OtHyoN2xl04fx0dai8LY3jrTSSPl+6fDhaOtem/4GLn5jHtdVTVs9rvX2d9u9xodNhq7JEskbA/3d8GHD31vuKLDnhyZb/i5022qdz8b3d3ZXksL+FvM8Mdrb3w0fNv0tvRRgTX/ra/0dH275sN3fouHDPv6OtbXvpr+j6/u7u80mxqMMX51p1ila6OHDHu179FCWvT882bPNdvjQR6PNZnemyG1PdPh7jQ8z3jvZ7u/Zp5YpXaoO9jed/jbiGtPfNUbGV7UY5G+pt7VZCfk9KVJbYwN92N1H2GUH1+5qsxvoI6oLFlU/7UuH7Tp9hFV2mn7obrN9+wi3j79HWn5JtLfZtj4isz1OatJ7/1o+NDGzkZYPxyJI3UvfZiYlI9cl2fuD45hJry83U42glEtiWEf6p9Ljkvhwq6+vrliU5i2EYSAiRqet4RDPtsaQaNobgwBmjtmYhsKQXpBQy0Za4xoQTUDMbAUIoxMGuu6SzzmMjVqkEi4NGblo1CXRZpuK2MgY2BGJLl2cgqJsCDShiEmXpO5QywhqGUEqYmNq/tiKS0a3kbiUhyWZ8etRSvFXf/VXhPjOwIMPPkixWCRzaC/5RBnhQqQmmtloDEcRtRWxiEUsYhG1QPfj1Hq8Tj5WRSpPPSmiXKJtRIGorTD8eYtwIW4rhmsOacvFcBXRSIvcE68qTJ+kLZQi7rqoiPc7UgWzBrPogCCCi+kHtwWKZNXFqHi/NRQx0VI8KtsCu9p4pxRRzUXzb04KRcJ10HwSgCEVhqYwNJgetUhHbTSh0CsuUigiRkuJQ0bA0FWToGRGFGbUJRpTCOliRr05l1asYdZqtAuGGKlWOktRLGImpCeMqUAzBUbG6xCc5RWkU0bzlc6EBDOlI3St+dtuU+MxEtpaW59UpJmy2fdZJQen6rTSholOW2nIjvRNelxDj2ooF1xLYab0pnqTNESnbUxDj7UC9NGcQSxvgvBSNQ2yNVN6M31dbDjiqT35j06PahjxNtuk3kxNJTT/vAJqKxbFyxWMRMvW6GHbECLVIh4ZKjEW9eY/CX2tD2XLh+2p3YyExsTNBZLj0TU+bPc3eGN2w9/SEGR3JltjUR9/d/il4W9zIz5sfEt02Ua15tyk29/tPgTQotLztxjs75YPW+fNTCea8xEhRacPfX+3fNjy98QtBTLbEx0+7PZ3d5vV4xqZ7UnMlN7h7w4fii4fGhLlqCYJq6cP9d4+zEwnGLom02m7AX9r/jxmXX83zpvU0QyJU3f7tNmu9t1sswLNlB7ZTvm23T6MdL0Lvr9dW3VwhsxMbI2/pakjNA1pCKJDPhFZgR6T3vzOJ2mbKQ0tEW35Jal5akpSoEc9W80UxHIaZkI2+0Op4/WHvoKSHhHobWnVzLhgZK9BdjqG1MCM0eojtNZ3P4AZaQkaOw7UVpX3rZrQIa1hGK2bjTk2puX15UIoorqLQFGxJRVbEq876P4YIzIKvW38iQkXver91lHIjIOuFGOOTdJ1MJRC2KI5rkl/nNNdRcxWTUWlqKNIpcvEchVQEK2DdD2iUsqoEbNa9TXqAt3nOo2OVEleu5P777+flxtLS0sMDQ1WVc7n8ywuLm76GsvLy3z4wx/mzJkz7Nq1a6Dtf/kv/4WPfvSjfNd3fRfvfe97kVLyy7/8yzz11FObuvbP/dzP8fd///d8/OMf53Wvex3ve9/7KJc3R+YMEeK1BikF++7eyg//wRvY+6bJ5t8Xzq7y6d94hC//2VOUl8MUcCFChAjxSsSRI0f4wz/8Q9797ndz77338o53vINf//Vf59y5c+uWfeKJJ/h3/+7f8UM/9EPcc889fP/3fz//9t/+W55++uk1tq7r8qlPfYqf+qmf4s1vfjNvf/vbed/73tfTNsRrA0opDn/uDJ/+T1+ntFAlM57g7b95K0NXB8u8ECJEiBAhXpsITFI6ceIExWKRqw8caP5tZ9ZiW9pbhXNGdHZts0gnvQXIfMZl15R37NyMQSKmGPe/d6WE7XsUaV/JP5uHbddpTQWlsZ2Sid2SzLBAuTB9QCMzLhGOS3pYsu1QpLlgOrbHYHyf2UzFs/0NCcau9gL8ySGdbbckMZNe0H50f5wtNySb9d96S5rCDm+RVtMEyZEIEX8Be3hfksmbvIVuoWlM3ZajsNcrG82ZTL+xQCRrMHukiF13mbqttbto8vYCw1d7uVLMjMH2u0ZI+MH1wr4k2+4aZuLmPOmpGJO3DzN6necIM6mz495xUhNe/fO7kkzfNdo877a7R9j/zm2YGR3dlOy4d5zkFs82uzPF9u8aa9puuaXA+E1enVJTUfb+4CSZaW+SkJlOsOPe8aYPx2/Ms+WWlvT79u8aI7szRWY6wejr8uy4dxzdD36M35Bj8rbWAuf0XaPkd3l+SU3E2HHvOFN3DDF8bZbRg3mmbh9u1f+uEQr7PMJNYjjCjnvHMf1g38iBLNPfNcaIn8pg65tGGLo64/vbYMe948R84sPQNRm2vbHlF6viNIMD0YzJjnvHSfjEh8JVKbbd3bKdvH2YsUN5pC5Jb/P8kPJ9mN+dYvs9LR9O3jrEuJ+WRPr+lrrGs397mljOq38DEze3/I2EHfeOk532/JLelmDoqmxTrWDsxhxbbmn5cPt3jZHb5bWXhO/DRvBGuQq3beF7+u5R8nu88ybGop4P/TY7ejDX9Pee75/kqndMNQlOsWHPLxGfBDR8IMPWN440z7v1jSMMH/D8bSQ0z9+NNrs/zbY3tXw4dfswowf9NpvS2fXWca5993ZSUzHye5JMt/v7tmHGbvD8oke1jjYrhPTuz4+Db7lliLEbvfNK3fN3epvXZrPTSc/fEipzdfSoF3xsYMe942S3++1wym/fjTb7ujyTtw5x6jOXOP35K2y/Z6yZwjC1xfO3Gfd8OHYoz2RHmx1l7GAWM6OTGPGeebTRZq/NMfWGlg+3vXG0GRwzEwau41Lx09MMXZ1h65tatlN3Djfbutlos8MeQWf7vWMd7/Lk7cOMHvR82K+PiGQNpu8dZeudw4zf4PlwI33EltsLjB7MInXPhxvtI3Z+7wRb/b4p6ftwI33EjjePcdU7pprBytHr80zd1ubvN/XuIyZu8q4/eUfrvFNvGGJoX6tP3n7XULOPKOxNkd+V5NJjy17/fGuO4f2+bVpn+o15EsNe31/YGWPrrdnmedMTUaJ+qkojKtl2S4KkT4TNbo2w7Rb/YytiMr7PZGyPd8yMw87XR0gOS4TtkB2G6WtawbvxHTC2o5X6becOm2xWkUwohnKKnTvspsjT6HaYzrUUQ/aNWAwnvTEukYH9GYvjpQhFR2M6UWdXsmW7Z8QiP+rZZgyXA+kajWxx+2+5GtM0+eu//mtCfGfg/vvvZ2hoiN2+THKkLtgyo6P5/eYuUWWqTZRjckGQLQtqBswnFdvmJVE/6DpUVUyvto0nq4oxYYESRFzYW7IZrrskHEXectnpE5tlXbDVsRn251k6sNuyiCuFVhVksdknamh+YHiLsBkWNo7hTTano3US0mv3Kc1lui0dXVIpEn7gWgDbEhZx/3c85jKZtZoCRoWEzXDCxnHh8qrOSNoh7SsiRSOKiWG7mbUol3YZjreuMzquKAxBYVgRiQhGtwnMivfepIcE+YnWtHh4qyQxbMBKESMu2XpLkuw2r29Jjhjkd0Sbad+G96c8Egygx3XGrs+i++PJyLVZxtpSVg3tz5Ca9IgDWkRj7FC+2RcmxqJeKifhjUtD12TI+Ck1NUMydihPJO1dMz4SYeRg67z53Slye1IU9qUxEt55I1mvvrFChLFDrflpbleS7A5/Hiy8cXfi1iGkJojmTcYO5ZuElcz2REeq09Hrc8R9Eq9Tc3AdhfQJFOlt8Y7UwCMHs8T9eZiZ0hk7lEczJXpMI7sjSeGqFvl65ECmSYo1Ep5tYw6U2hJj6Oo0c8+uMH9khaGr0yT98U+PeffaIIQkx2MMtxFUCvsyCM0j1epd/o6PRlvkdiC/N03Gn28IBLjgOo2NB5GOdKr5XSky231bTTB2KN8k8m7/rnHGb2yNldmdSbI7W98dY4fyxPKeX6K5hr9p+jvf7W+fTBTJGJ4PfRJNZmuCqTtHmnOx4euyxH2CuJn0fRjx/JKeilPY15km2vWVyRrtpUECSk50+nDo6jSpLV6brS7Wye9KNUlMibEoIwfa/H1VmvSU375Nr80KAecfnMVI6Iy0pZYt7EmR3ubZSt3zYSTjt+8hk9Ebch55R0Bud4psw9/S82GDNN1os41OQhoCq03FdexQnljB92HW9Of/fvuebvk7PZVg6xtGmt8OkbTRbLMNf+fb2uzwtVkSY1FSkzHyu1Oere/v1GS8Iy338NUZkuN+m417/k5OxohkDK/NXt3m7zV9RK7VR4xHmbxjCCPl+Sm/J0l60juvZkhGD2aI+OT35GSK4Wu8ezPikm135snu8GylqTF6KE8k7dU3ltMZaVtEzm6PkdmVIprRyO+IMLIvRtQnykfTGiP7Ys02mx7TyG5pkayGd5vUy4rigusRlnbqzXlNaliSm9CaKkrDkxD3m7sZ8f4t/HaZSbsMF1qEptFhh1TCJx5lBVMZC0Pzfo8kbLZmvL5eryimDIu85o0LplBsN+tEhEKrQk44TNs2Csi7Ltsdm2Ff+c60BbuMGo1MqPm6YlexpUy1teJiODCfUuguTM9qxPypV6oq2LnopXoDyC/q5Jb8jR8Krt69jYcffpgrV67wciKZTK5bh5mZGWKx2ECbQSgUCnziE5/gYx/7GP/m3/ybvnaHDx/m85//PD/7sz/Lz//8z/O2t72NP/qjP2JsbIw/+7M/67C97777eMMb3tDzv7/4i79o2u3fv594PE4kEuHHfuzHiMfjPPvss5u+lxAhXouIpk3u+JkDvO0/3UJhujXuHf/qBT7+//kKz94fpoALESJEiFca/vf//t98+ctf5oYbbuC9730v3/d938eTTz7JT//0T3Py5MmBZc+fP4+Ukre//e384i/+Ij/6oz/KwsIC73nPe3jkkUc6bP/0T/+UP/iDP2DHjh3cd999/OiP/ijnzp3jve99L4cPH34xbzHEKxB2zeHLf/YUD33oMK6jmL5xlLf/5q3kJlPrFw4RIkSIECEAoVRb3rIN4Jd+6Zf4oz/6I2743vcgs9sAiOouyoWaK3ENRVJXcNnBdSW65jZiONi2t0HTVcCcDbjE4lCrg2tLdN3F1BS1WX/Hu782VvczUMTiDlYVHAs0x8JMCKp+ahszDrgO9RJQt9h1dwqr4nDmobK34zMpqSzZ4IJhukgdan4quGhWw64q7LJDYU+U2pJFcaYOrqeuoRmS2rKNchzPtuZil71zRDI6tWUbp+agxyV6RFKd9xZJozkdp+5ilVyUcojlTGrLdVzbO68e06mv2uC6GHGJaytvUV1CLG9SW7JxbdfbzZrQm0on6ek4hb0pznxxFrfuEhsyqa3YuHXP1kjqVOY824ZKS33FZvRglsL+DEc/fg637iJNSSTd2xY85RaraDNx6xCRtMH5r822bJM6aFBf9myjBRO7ZGNXXaQuiWR1CvvTOBWXuSMrSF00U0pECyZ2xfZ96NlWFjx/G0mdSNagulDHLjtE8yZ21cEuO56/sya1pYYPvR3YjbQf0ZyJY7m9fej7u+HDSNZA2QozbbD9u8Y4/9Asy2fKvX2Y0UF1+mUj/m73oV3t42/R8uFA2w34u92HDX9ndyYQumD1XLnVZrNm01aPa+gRjepiy4d2zeGqH5pi5ukliufLbf6W6FG96e9I1uhos4mRKLFhk6UTJXBVR5s1Mzo4NFP/DfThy+lv3y9mUkd0tdmpO4axSjZnvzi7xt+aIVs+fIHabGIigmMpqrO9/d2rj8CFyduGmHlqkdqCtTF/p3WPiHhdjqMfO4uR1Ju26/URk3cMkRyPcfSj5wK12dFDOfSo5MLX51tt1pC9+whDEsmYVJct9KhECIFmCqqL/nmHIl19skFt2cK1wUibXp/csM3q2HXPFukF5epFhev6qgGxlm0krZEYi1NesqgVIZqW1Iuu9xwjniJBtaL7ftG8NluGREEyfaPJqW/WKJVNNB2MlEaliGfrC1OVIxGaY6ArsW0vC0okAuUKgESNecHDqu2rjpkONVtgu5LaOMSkS31Vkdah6oJAUnF9FZAJlxoC/bJA4hLXFEVHAJKIdLnyz3/K4uLit7VTPsRLh+uuu44DBw5w9icmcDVP8Ui3wTa87GxZrYpUgjNlL5Bg2uAApgtVHSLKxdJguRRHdxWagppPLIk4ChtBrWoglCLiQk16Yh26As0S1HzCSqwocQFbeIoTEaVwqwJXCNI1l53C4qgyqSExUB5dqeKlC4rZCksJXAQShSEUNSVJ1B1MqajWJbbybE2psF3P1qy5GEpRdwQg0KWfCtgVGGUXQ1c4DijbU9fQNfDENgTRqoUQ4PjZkQxD4TgKECgFkWoNq+6RBjXdU8qwfU6TboJaKnkEWscivcXAripPodMQiOIqdtXFrVvoMQ3XdnEthZAeGdcu11EubHn9EMVLFZZPeamk9JiGcpSXHkqAEdOwqy7KVUhDNBVkJm4usHBslepivdO25qIchdQ9NRbLTyWqRSVGTCO9NcG8P+/qa+szFh1f4clMaig8YofQBHqkv60R13DqLq6t1tr6SoCOnwZXj2u4DVtfncWqOAxfnUHogoWjq9hVp+mXbh9aFQeUp6ojddFMu+bZKlyr3YcOyvUIKlKXLduohnIH+7uRjrWn7QB/ozr9YtdcpC6IFUzqKxb14sZ9GC1EyGyNc+nRBRAtH/b0t+8XzZREMgauo6gu1D1/Ww0ftvzdsBVatw+72mzThy+Sv3WBNFv+1qISXJqp0ho+bPg7ljcp7Mtw6dH5Zpq4bn8rp0c7DNJmI7Lpb2l4SklWye7rbyFFq836/k5tiSOkoHS5so6/PR82/F3Yl6a6ZLFytrzG38pRuK5XN92ko81O3FJg+Uyd0kwNPSpxLbdnm9WSUTRDYBUtpCHI7YyzeqFKfdVBRCLoMYlTs1EOSE0gTYHtKwnrae8j3LFc/90WOJZCOV4aNz0VxfaViTQDz4c+WUdLm7i2l/FSaALNANsX3tA8oT1s3UTpEt3Es3W9/teMAkmNcllCVHh9su2NP4aucFyoJQwECpEAyxEoBFtSFlLAuRWDekpgCEU9JnAQCBSmUNSVoJYVaMpTWSrFBCiFCR3jmpa3sEyFK8Sa8XKysIQC6o6Gz7nF1sCVoDlwdfYKTsTlQimL7nF/cXRAgTi+zBf/zf/gQx/6ED/5kz/Jy4V//+//PY899hh//dd/zejo6JrjMzMzvPvd7+bQoUP8l//yX77t6x09epSf/dmf7Znu7c/+7M/46Ec/yqc//WkSiRZJ7m//9m/54Ac/yMc+9rGedQyCd73rXbznPe/hpptuWtf22LFj/MzP/Ax/8Rd/wd69e9e1P3z4MPv37/+26hcixCsdrqs4+vmzPPr3z1EvtwjA+W0pbvtXVzO6Jzeg9Hcmwnc7RIgQ34l4+umnueqqqzCMViaIc+fO8a/+1b/izjvv5P3vf3+g81WrVd75zneya9cufv/3fx8A27Z5y1vewq233spv/MZvNG0vXrzIO9/5Tn7oh36IX/iFX9jwNYLOvb7T8WobX5Yvl/j8H32LhbOrCAE3/ou9HPie7Qg/Xfmr7X43gtfaPb/W7hdee/f8WrtfeO3d8yvhfvX1TTrxuc99DqRG+cB2kuf8NG5+ANU1vABS0Ya4nzrEdiS2A3u31VEKnjvj7Zz0/ldSaVPfdqpQQUDcQJatJjkJQDgO1dXWb9emSVACLzhMY6OjafD851ebqXlcGyoLrQ9qq9y566e65Hikirhk9JokF76x1Mi2g112sXFRvnJAdcnxUrI1zjtvE8lI8rvizB5Z9YLfjfMutq6JC5X5lsqFXXaxy/5v16FWdzpt59psqy52tfV75XSZldMtxw2ybZAJAGaeWGLmiaXWZepuR9l22/bznv3i2t2W9WKnbbXt3lzbO+/5r8ytKdfPtgGraHfsfm6QOTzbrnstO81Ah5nRGb0+6wV3YK0P2/0NTTKEXXU5+ZlLlGarrWfe7cPltX7JX5UityPJif93qa+/G7bN+te9IIKXXqu+rm3775GDOZRyufC1ec8v6/iwgaUTpY5rDPIh0CTaeMYb82HDtnS5SulytWW/jg8biGRMJm4tcOaBGepFe6Bt+7PRoxIjplOaqfa07de+h67JkNoS49T9l/vb9mjf574y6wX0erXZdtuuNpvelsAdjzH79HIgf5cudkqpd/u7n1+e//RFurFeHzH71DKzTy37x9f3YQPnvzrX33ZAHzHzeCcxptlm/Q+Zzvbd6jsb/avVaNaa1tHPerYtP3lt1iU5bmKmdBaeaxtwXKguNcYQ5ful1X/XVhy23RmleFnj4hNlqkutonbNT98UafjFaeYrKc27HHmgimN4Bx0b7GKrbL3RXCPQMQbqEseFcsXL41kZMqDThZTqrdQxNpJVVzKctrnaqPLkUpSi01KBWcWzrY9B/LKkTQiAlYzGQrLA8qlTnD9/nsnJlpx/iFceFhYWeOqpp0j/QJpdeYPjy8MoCZY/x0lHqnhJAtvmRLqXhmZ6TnJ2xKbSypCILUVH06r6Ehda3MYp61Slar6Lti2w2zQ366KlCqaEoCoEviAJKxHJ07VIYyjFQqA353GCmmqVdf3felWRibjENZczNa1pW3c9W72qPFtP18ark38sr2zqBtQsPy0SCqWET1Dy4DiNHEMgbIVlefNUAG212tF3O13vmzPXGj+VC8vnWtaupVB+fyFNA7tiddhaxVYfduGhzrlQg4jgGdMkSzTO61re73Nfme2sULetrXDt1m+n6uJUXaqLS97v9uGl27bWOQ+ut3UQylEd1+m2bT+WHIv6f6v41+y0bR/vlNs678LzqwjRIntAp1+U2+0XF9fy1B9LM1XKV9rGxwE+BLCrDmZSx3XUmnvrZduAHtXIX5Vm/uiKn0p1rb97+cVxFMWL1Y5jg3zYqFO0sHHb5nnrLuXZli/6+bth247Ulhiuo1g+Verr7+Z5256NHtM8X7oN2/4+bH82I9dlWT1f7vgW6udD8Npsea6O9dgCdsVpXm8jfhFSkN4aZ/lUydssMsiHbf52LZfastvftk/7Xj7dOdfuadujfV9+rDUX6va30P1P9B7t+/xX55ARb47RPm9ptxXRiN9mVbPc/NHOetr+fANcXEfhVlpjiFNv/FuglGoSkgAwIh2/nfaOFG+OJCQk8oJaUWHXWn2/Y4OKeQOSsF3sNlFnpTwSU25Yce6cQlXBNlrHLbtt/EGgSqCi3t8uFXVcBfWU99tSHkGpYds+/jjCO6ZXwY5CXbXGPGvYxkKAIxC6WjNeWv5jmVqAOpIL+Zb/HQ2ciPd7S2KJC6Vsq6CAbYcckhNJnnjiCV5O/MiP/AgPPfQQ9913Hz/90z/N6173OoaGhpibm+Ob3/wmf/mXf0m9XudHf/RHX/S6HD9+nMnJyQ6CEsC+ffsAeP755wORlFZXVzl69CjXXXcdQgg+8YlPsLq62nfBbW5ujvn5+ebvM2fObOIuQoR4dUNKwf7v2sb2m8b45keO8dyXLwCwcGaVf/yPX2fPnVu48Z17iWUi65wpRIgQIUK8mDjQlvGkgampKaanpzc1x4lGo2QyGYrF1oKm4zjUajVyuU6Cai6XQ0pJJBKOBa8VnHlshi//2VPUyzbRtMld7z3IxP7C+gVDhAgRIkSILgQmKZ08eRIjs3a3jEdQaqE84qdSuGKDglPn9UYMF4B6xsRcbi1UN1LfNM8XNzBti903Si4ctljt4ruoiIGo+auijkMvuP7pldu1st1Y+LVtX9bJ/1l2OfrpuSZZpXmt7vML0SQqKcchORJl+JoUs8/6LKqmXFSPsm0YuTaNmdQ4/2BvMk8/mBkdt9YZUH+1QI9Lxm8c4sqTi52kjHWgmRIzZaxv2AXXdjtILhuFU3Opl/o/234YvT5PNGdw/JMXApWrF601AZqNILMjgbVqdwSxXixI3Usltnqh0kGUWg+O5VJbsnDb3sWNILsjyfiNBZ7+m1Nr3tmB16s5WJt4du3koyAwEzqOEfzhjd6QwyrZLBxdXd/4Ow0SolmT+kq9meYPaParCEEzj0gbkpNRRq7OcPL+mXUv0QzwAempGPGC0UFSEu0DEnh9tmwbxwyTk19abfazype0F5qEiMkaOC2ikmsDbd2R8AO4yvCO2z0WcaXtsmefQ7EkOF4f/GFfGm/5Zt6RfEtFWY5KjBKUJsQa+/KYIH658/1K7b2O5acf5W/+5m/41V/91YHXC/Hy4hvf+AYAIwdG1hxLRzrHry0Zj2x4YTlDPeJyZsSl2tYW06kyK6vx5m+lOtuLFrcZXRDEHcXz5tox1Uk4aCWvHeuVNYdxaZ2v+7jrn05aHvmogSs1DU1oKA1EW9fcbgN0HDfKLpkhh1JV0pgKKk0g/NRcRqnPGCQUw6OK4vk67T260n2ik+0iVtYSDmTEQGJj1/y53fJK53HTwK37FXGDjy8vNxJjUaQmWL3Q46EOQEOxJii6ySkbhV11mqSLjULqgrEb8sw+u0xlbuNzIeV6yoXKCXY9LSKJpA3KczUIVnRTMH0lwg7S8wZgV53A9wZe2rLKfJ2lk8X1jbuu5wa8nnLVGsLzhiDAiOvNlIUbhR7XSG2Js3SyuCnfvFhozFca35Syx+K/0GRrnhLtOq5p4DhIXSA0gUtX396YbykXEY2uOXduW4Ra0aE8v/6zUI35kYLsuMbCOQe73iIBNQhKzUvbbrP/BSgqneLZ1tik+UpOjiGxUmuXLfSqwo4KXLX2Wetlf8NU3DtWz66tb67iskW3eFY3sYY770/ZHlGpgdHRpea/Z3MOjnQwNajbGlcPXaYba4hKwMi1Izz88MNrK/IS4uDBg9x333386Z/+Kb/zO78DgBAeGa3x7/e85z0cPHjwRa/L/Pw8hcLaYEbjb3NzwdZIHMfhgx/8IGfPnkXXdXbt2sV//a//lWQy2dP+//7f/8uHP/zhNX8/deoUzoA1nAaKxWKY1iTEawpDd+hEto9x8p/nKc14897nvnyBE49cYusbs4wdSgYee1+JCN/tECFenXi5VQJeDiilWFxcZHp6ekP2pVIJy7JYXl7m/vvv59SpU7zrXe9qHo9EIuzfv5/PfOYzXH311Vx33XUUi0X+5//8n6RSKd72trcNPH9IEP/Oh+sqHvvYcZ781AkARvZkufu915PIr/2ODBEiRIgQITaCQCSlK1euUKlUSO/wJnbFKW9RsTv42QH/UN2Wa1Qh6hmTyHx/gogb1Vk8bzXT5KxBn8WjzBad3FSU09+oosoDAhI9SBENYhOahqoPWPAXAmV7NzR3tMRc1+5UlCfLPxDBMu01se1No9RWLM5+Ya3C0SDsftsEiydLzD2zHKzc27dw5cmlnjuF+8FM6uz5wUnOfWU2UDk9ohPLG0g92OJGZbbO8U8FI/4ApKZiJMZiXP7mQqByy6dKzdQtQTDzrQWkETyod6VNASsIxm7IU7xYfklISnpUZ8stQ5z98hWWAwSVqgt1zn4pWFsGWDpZ9O4rYKxz8XiRxePBgmuw+bayRg1jg4hlTaQWfJFvzw9OUpqpNFW3Nort3z3Oyuki8wFIUVKX7Pq+cWaeWAr0PsQKJrveuoWTn71E6VKPMUAp6HXrrsJ1XGRMx6337z+7CUgXv7E88Hj7+QEv5xr0JIIqx+1ZNQAcB5WMMzQF8Yzk7DOd5YU1OOCxOC9YTgwmW7YTlABcJMt+ijcr0auEh/KYQGvrBhI7d2IYBv/4j/8YkpRe4Xj44YeJZCOk/JzuuzNenzJT7Z/jXfp5aKo9+HTpVJnllf6NpZx0qa70nx72IicBbHMtlk3JktAwl/r3Xd3kIxA0+ABKA6PU/91WGpir3r2dnzPoZoFoVRfp9B4UlC6QEkS53nf61YugBGAmJMO7klz4yqU1SjcNSNPArXb2Z7GhCJltcS4/vhiIsJIYixLNmcwfWVnfuA253UnMpMHMt4KlcdRjGtom5iZLJ4PPgwAy2xL/f/b+O1yS6zDPxN9TqfO93TeHuZMDMIM8SAQIkiBBMIgJDKJsS6Isio9s+eGuZdkil+u1qFWiZe3PawXbKz27DpJskSYtiaIYQZEACRCBIIgwAAYzgwl35ubQt3NXOr8/qnNX973VIAYAUe/zDInbVacrdNWpU+d85/sob5qYuZ2L0YGBnt2uI1l8bAOnEkw85lRdNp4PLhI2UjpjR4eZ/+7qZRG6JKajRIZ0lh4LJlLKXwwmSKuzdmIrsFAMYOPkYILrQa4Vu+QEvgfAizyLDHmRyU6A3y42ajB21TAXv7u27W8udANpmY1yqV1xVp7INpdrveteoaqIWIzkmEJsxGhOjmksV0Dv0YZQVTIH46gRjdXnSv7r+IjDm4tEt/ipA9ki4JYSLp1oeReQEhn3L1+fqGQPR3rWk6rl0usK0CqS8rhgV8xm3VQpOe3HURcrmenu51IFhTVbw52y8Gt4ypp709Rs+/VktpxmQ+tdt8wmsuii+cyYmZvhwW88SKFQ6CmcuRx86EMf4oYbbuCv//qvee655xr7c+WVV/Le976X/fv3X5b9qFarbZEkdQzDaCwPQjqd5k/+5E92vP573vMebr/99sbf58+f5zd/8zfZt29fGPcWEtKLo3DTW1yevXeex/6HFwHnVFzOfnWD3HM2t//Do0wcenVHwIX3dkhIyI8L3/jGN1hdXeXnf/7nd7T+r/3arzUmyem6znve8x5+9md/tm2df/kv/yWf/vSn+c3f/M3GZzMzM/zRH/0RMzMzfb//xQrEX+282kWwVtHh+b9aY+us1+81fVOKPXcNcX7pBeies/GqP95BeK0d82vteOG1d8yvteOF194xv5THu9N3qkAipc997nMApA5fBYAd275MaUJjulQlnXI5v6hCi627sk1HrlOVLC5pKBX/jndp6Aizu8vSdSROVYK1jXpBVaBlMGvymgRCwNITRXAchKr2dkJynLZZh4GRblundBAuPrCKHKDtVlyrBh4QUgwFM29hV4Nt0DZdlh7f9GaSB6CyafL8XwYXGw1KbCRCajbG0qPByilGLeLQDKaQ6YzL2ilaXMG1g2/v1F/O02kk9lJhFmxO/Pl5XDvgBhUw4hpmyQ4kOPLiuQYQXylejEtrLMpOGPRaGZRz39zeLciPtRNbmPng15ldtnG2qzM7cG2X8rrZHu+yA6qbJuf+bqkt9qUNxV9ElL9YIX+x4omMBpyl2VOgVEfXPCcURSU+qjF5LMb5h/INAavwcZdpw7JxHK0rOqqOk+o9yDfvRCEHnSYHrXS6zQBMqhZDqssP5jQia72Pr7jPq/8TZ3UUJUosmeSFF17ovbGQVwSPPPII48fGG7nukxFPuNJPpDQ3tEVlPk0pIil2TGiynf73wJZQYVhCj3FsO+YjVJISSwhcQCv1vzddDZTa/aEJyVTUZqWqYroKWlkiFRA9qiKtLHE1gdIQSQSrB0TWYr1f21NTwe6uz8ySy+opExcN8K+3OgVK4D2zK1krsKOOdGRXXNROKK1UqWwGa+cBA4muXwzxiQh21QneJtUVr40R5HxKArk7NhCg6krg36G8VmX+O6vbT1T4EbF5uoAY4HGoaAKEFwMWBCtg26l1e1ISWLg16LUyCGbebotg23G5gu2JsCRtbrvb4drSaz8JGte0MIyek2REzHvxtisuVZ/3ifry+iSaTnJrEuzek4NENOK779kLtf3xc5HcITJm1ATo/herkzAQtkRqgnTaxXUhl2uJekv077LQShKnz+Rdc9h/u5YQXBoVUNEg1vvath0VTW2JFHRhbEshH3e5Ye4sq2ZvwdHVqYsAPJXfxegNo7h/4vL4449zxx139D2ml5oDBw7wz/7ZP3tZ9yESiWBZ3fe2WbsHXurIkLGxMcbGxl7SbYSE/DiiqArH3raHfbdO8eh/P8mp+73+u/VzOb74aw9x+E27uOmnDhMbCmN/QkJCQl4uzp8/z7/9t/+WY8eO8fa3v31HZX7xF3+RD3/4w6ysrPDVr34V27a7xEPxeJx9+/Zx7Ngxjh8/zsbGBn/+53/Opz71Kf7wD/+QdDrd8/tfrED81c6rWQS7cjrLN//D4xTXK2gRlTs+dhUHbusvSns1H++gvNaO+bV2vPDaO+bX2vHCa++YXwnHG0ik9MADDwCQ3H9lm0Apt08wdLajU7PlT0OXxKMSP4GSlfZeXPVsU2wgasKh5LBnllT1GyirDSL5CZXylyzyl7zPhK4jOzu/WhtYHUKlzuW+QqXW5UKw761j5ObLrD1baFsuFOE/SFHL7VIiKm5A8Q94rkGDsPBgMGcV8AbYzgd0bKqXW3sqmGPTi2HyujQjR4Z49rMXApVbeSI7kFhs1+vHiKT0wO5NY8eGcG0ZeEb5vrdOe+5Z3wr2W7iDaaIGJrBAiR246vTAGNIYOzbMyhOb2KWdb3fkUIrZW8c48d/PBxJ9DXqtTN00wvDeBCf/x3zgsoMwqFvB/H2DOT4N4hTl2pCf7+Hi0EOgVEfoKoriDe75CZUaIqSWwTA1orDvzhFWThTJL/SpP/WWR6Lr4LoK0gVVU3BNtylQqosYtPZ9rbsIbJ632ez8PpoCJaXq4Ea6j1NTXIbjLpsFBRcFpyVGtbCr+fzsFCpFFEmi5pxTHfMWdIqVKjPN52Bxn0XirI4ZTVJaXexxMkJeKTz99NOM3DUCNAVKANcMX+LJrdm2dbW6ukdC1BI1t4eWWNuaQCmR8OraYouCybUUFCkZslwKusCvdVKPeusSKgnBSqmprnMNUDpuNa3c3I+6UKk+Ni+laFvuJ1RqXR6NS0ZiDovrKrImVNJqMZ6uqvi6Kak509MPqCqio12n5Foamj5CJXczT6WmXfATEfgJlACqOYvqAOKK0mp1IAfE6tZLL+RoZebWUXLzJQoBY+IWAzoSghfrO/u6MVaeygaKX1UNheRsjPzFMm4AIW5kWGfy2gyXHl4LHE93uQRK3sYGM2bNHEqh6gorT2YDlUtMRpFSUloJdn1OXJehmjXZPB3MDWuQawVg9vYxsi8UArUrB8WpuhSXKk0BTv3/O34YoRtt/1/dMtvuWSXuRXH2EyoBVApQ2Wy/5+oCJfDcmDqFSiIaxS7X3sU1xYs8b1se6b/vcaPvBBnpI2BKjAiiSYW11Zb2iI9QyUk0ywofl666QEmtudg5HTGTVsL7vtWNWpsr3ra4IVDSimD7mAjGXBchoVSuxeq1iJXGpprP3FahkhQQNQWlqPfd44Z3XXeKlW4Yar6XXp26yONHpxCK4Pnnn3/ZRUqvBEZHR1ld7X6PqMeAXC4B0b333su9995LoRDcrS8k5LVMfDjCG//RNRx50y4e/M/PsHHB64d4/tsXOf/oMjd++DBH3jyH8mMQARcSEhLyamJ9fZ1PfOITJBIJfuM3fgN1u8maNQ4dOtT477vvvptf+IVf4Hd+53f4jd/4DQBs2+aXf/mXuf766/mn//SfNtY9fvw4H/nIR/jv//2/84//8T/u+f2hQPzVh5SS5745z/f+6zO4tmR4OsFb/un1jMz1njQZEhISEhIShEDZDidOnECoKorR3RGZ29fy4tnRv3hej/Ls2WaZ7RyU6kztgck5cOMd2+sYPJKtzhaOixGn7chEL+v7Oqq38vKTRZZ+sE20ho+zkpm3sWqDY53L2zLZpdsUKGmCYz+1m5Erh/pvrwMtrjJzyyh6MpC+DMVQiI4YAX9xUDTQosEjQIxhjfSBPtlDPRi/Js0VPzkXuFxhscJawFiUF8PaU1ssPRZ84CQ5HSMxGTynd/HRDVafzgYuN/fGcUaOXJ6Go2Io7L17ksR0sOOrbtlcuH+lt6tOD7SIytBcHC0a7F7IXypz4TsrAwmqBqFwqcz6c8GvzakbMxy+Z3b7FTuIjRkM7w1+7yma59gVFD2pYQwF+w0Axo4OkTnUMfN8O4GSqnLlB2aYuHbY+8CVbbGdXS5JtUE2p+pSzTu4ATWhlXWLc9/NY5XcbR2UOgfotAgosjkI2OmgpHQIVCujBvGIy75xi3hk+2ekbDnUC5bBd2bbt18XK0G7QKmVoclpbNvmwoVg4s6Qy0cul+PixYsM7xv2XX7NcFMoq7WqegSwf5OteLdAqR8xB/YXXQwXRLz9Gq0LlBrf1yJWN0qgenKjxmfuNqYbrgaWFFwq68gerk11WgVK4N32piW6BEqN5WqzLlNzJmrOe74MjcL0fk+o1H+DzeUylyc2qhMb9a8DegmUANSoMlDEq6KLfslLPYmOGGjxnXVAtjJ98wjJ2R3Yo3aQu1DCvEzCKNd2WXkqG9gpUDEUEhPRwDHCVsFm5alsYAfLyLDO6NGhoCZfA5OYjJI+EDw2KnehRPZs8AH5yLBONB3cUWfzVJ7CwmARc4OQO1ccyL109nWjwdvpwhPcq5HeN21dmNRJ/V6vC5Qa63e8a7eKkBCgDUX61hF+sXGqIRia0b2mVsvy7WLcEjNRZq7qvY6fQAnAscCu+k3W6d/G2VoTDRel7RyU6gIlAIFEUyR6qfn9nQ5KWodpXHXUYdp0mdqhgLHxHBUwP+lw7Z52N8q6WAnaBUqN7Uc1UlMpHnrooR1t78edgwcPcvHiRYrF9h+mbjV+8ODBy7Ifd911F5/5zGf4+Mc/flm2FxLy48bUFSO877du49afvRI95tXb1aLFA//fCb74fzzIyunsy7uDISEhIa8hCoUCv/qrv0qhUOD3fu/3BhYF6brO7bffzv3339+I4H3iiSc4e/ZsmxsSwNzcHHv27OHpp59+0fsf8srBrjrc//88xQP/3wlcW7Lnpkne+xuvCwVKISEhISE/UgINgczPz6Mkkv1j3nz7HV1KE97Lai+BUt1RSbTMfn/habh4pvYNdaGSTwwH1IRKtbL770gyfqijc1fXPQFRn4xbRfVfJlTVG/zuUfbSQ1m2LpR7LheKaIiT6riu5NJD697s8wA5DUZKY3hfAtUINnqVmo1x6N2zGAHFTemDKa788B4ULdj2hvck2XXbeKAyAKXVCpungzvBFJcrrAacDQ4wc9soe98yGbhcabVK/mLwwZZz9y4P5DxTWCgP5KClagqKevlmrqm6GnimnGu6bJ0tBh4ILK1Wee5z84EcFcAbeNx6oRgoWg5geG+CIx+aC3wvFBbKA7mKFZcrZF8IHsEzemSIqZtGApfb9YYJ9r11Oni528eYe33wez01Fyc5vfNB8boAaekHW2TPdSgaXNk7xq02GHbxoRzF5R7Xiq51uR41cVB6LbIdsJ3uAToFDt9ukJlRvPi3HhFvdaFSZdQrXygrPDkfoVCtOUDVYnhaXZTaDq12yPkDtWdPR7Zjq1Cpk+I+i4mr9gDw+c9/vud6IS8v9YG6A0f0NhelTrRO26FaU2tuyKt7egmU6o5KruVdY0UVTgyrVGqXXF2o1ClQqmPHvHi3tHA4onbfX67hCYw6RUZ1FCRa2b8ylor3z69sxVJYKXk3ZqdAqbFtVWmIk+qU8pCtJWlKVUXJldpdlDr3Iee1R6LDGrFMy6B+TUDQT6AEMHbFEJkBBNsT12ZI7w8uPBk9kiIxHlwIXVgoDxQTWlgoYwaMUlN0wfTNI0SGt5lA0IF0obJhBnJDAu+Zv/DwOnY5mErVtSWVDbOz+b49gsDthBeDUBionWcV7YF+843n82w8H7ydXt2yBoqKGzs2xNCe+PYrdpC/VMYqBj++/KUy5gDlxq9OE013XNO197teAiU1HmHXHVPEpv1FqPV6pk2ghDd5ZPq6FEY66ru8Ub4mRBJRbz1FEyTGdZS6S6OPkKlt34WAiEEl77Jx3vIV3vUSKAFU8pJsrsc2pMRJGG0uSq0orkuvXEe16qJW3TaBEkAm6rA75Ykm9ZLsGfFWFypVR73r8UJE5WyLu6WoOSq1uii1Un+e3jZx1ncXW4VKnVydusjMVIbHH3+85zqvJd70pjfhOA5f/OIXG5+ZpsmXv/xljh49yuRk8Hf0kJCQlwdFVbjq7Xv50P/1Bg6+vhn/snY2xxd/7Xt850+eppIbzBE+JCQkJGRnVKtVPvnJTzI/P89nPvMZ9u7d+6K/T0pJqeT1mWxuevbSrtv9kuwXDRfy6iW3XOSLn/4ep+6/hBBw0987wl3/9HqMeLB+nJCQkJCQkO0IpFjJ5/PoB3oPYuf3ClKdsW+43DxR4VJRY6nWeRtb7+78VUwXJ66j5ZvxAa4Lbu09VlgOUlcRPURKwna8QWbL5tITZaqFjv2w+3c4R4YUDtw1xvwDm11xQF1xb637rYEaU/vO1pWu9EYRWkc6XJqd/AFyGkrLVZ79i+CuF/lLZc59cynwYFLhYpmLzmpg15nVp7Nsng7uHlNcrAwUzRAbN1AUheJysLKVdRM7GrwRnT6QwLUkuQvb2D/8iBg7OkR1yyIfMFLl3DeXX6I96sY1Xc787ULgcoqmMHbVENkXCgPNeg+KFlfJHEiyeSqPHSDCxSxaFAdwAdDiComJGFvnggmO8vPl3pFofVgYMBpl7cQW6gADq4vfH2x7Z7+21PxjBw5KdTbPdJ9HoSreA0Ppsf+KgmIIFE34RwPW3Zh8BHYH3zpCedNm4cnenarCspFtUXFw6RmbUtZFxiMoFRu3h+OXFddQyy5OzIt4MztugfK4gloFx0fnlD/sDcapFXhLvsqpiMa5Due7ydsXOH/WX0RWvXkG/gwuXQoWWxly+XjhBc+l4R1HF/mBm/Zd53jmAk9kd7V9Fs9rJLM6K3NlxhPePbOY63ZuNC0N3bCpWrWBYiGwWm+DotbXEEbPCxwD8qaK6Sh0jmJ3ulZ0MqnaGMOSS1vdHR29hE0AqiLRig6u23vv9LxZizVq3vNW1fsHoORLSK13u1KWy4125eYL3XWxa1pe3dXHom3j+fxAUVybp/IDuf0tPLLRa1y/L4OIrhEQTRuYecuL39wpEsprJk5AYbKiC+JjEUqr1WDbGxAtqhIdNTz3nwCbq2YtVrPZl2y/OiksVmCAdnNkWEeNKIFj2wYlOuLVMUGF5dUtK1BbrY6R0nAdiR1QGOXbru8RgQZNAdLFB9d8r8u6Q5K0utu3ri1ZP1PF6vPzKcNDyI5Yc7visvJ0AbPkIFK1Waw+77kiYiAiBrI2iccquSw+0Tw+Yehg6F0C5wY1AZJjSso+92s/gRKAjBmoOjg2/vdQj7ZXLC4ZnYP5hf5tQ7UqcSLNsnlTpWx7baDqkNIz3g3AMSRaXsFOudg+k4WMlEmuGGUo0f3jvG7qrLf9jRjaZozqge528N8ff5jnqv59JkeuK/HMdy6f++/LxRe+8AUKhUIjuu2BBx5gZcWLLf/ABz5AMpnk6NGj3HnnnfzxH/8x2WyW2dlZvvrVr7K0tMQnPvGJl3P3Q0JCBiSejvCmX7qWI3fO8eB/PsHmfAEknPzWPOceXeKmDx/myJ1z7Y7zISEhISEvGsdx+PSnP82JEyf47d/+ba666irf9dbW1igWi8zOzqLVJi1sbm6SyWTa1svn89x3331MTEw0ls3NeckX3/zmN7nlllsa6548eZL5+Xne/e53vxSHFnKZufCDFb7975/ALNlEhwze/PHrmDk2+nLvVkhISEjIjyk7FimZponjOMTGe8z2rPUz5vd1C5UWihqF4s4Gv+1UBC1fRTNg135YugDVrf4dzJ0DTPmljvVrHbdC05B+YiXHxarA4uN5yht9RBI+bkqJmSi7bx/h+S8tY+boWi5d/5GNaEYnOR1j7ZnL00npmu5Ag1BmwcY8FTwOAhd/McA2REcNhEJg16DJazJoCZXTXwwmktk4GXw2OMDoFcM4FSewSGnf26aoZi0WHl4PVG7kyiEKC+XAIqVXA4ohmLg6TTVrBRIpRdI6e++aZP47q5SWdz7IFhnWmbw+Q2GxjF3Z+XVWXjW5uLq24/XrpGbj7LptnGeXzgcaaNOiCrHxSGChUlBHqjpBzmErlYAxfUHpdEhKTEXQEyrZMz73np9QqVZ+923DCCE4+61N3+W9WH2ujFVxkbbjG59CLQauU6i0tVT7HWoGEP2ESkBDqLR71KRqC5a3dAozO4ttcqJwrqqR1drX333EEynu2bfqL1SquTecOXNmR9sJufzMz8+TTqeJJVTweVzpitfmuDZ9sU2oZEZcCmmLiruzZl4kYVItGoxVXVQXlmMKFPuX1fPNwQULgdVDoORqAsVn8F4rwZaq+mkD25AKdBpFTQ7boEtWN1SkJhAd36/n/eulWNKLIDJbqjs/oZLM92/3OIWdiU4HcY4BT5gxCHKHccptCIgM6VhFO5D4RzUUJq5Js/Jklsrmzp8Dri3JvhC8XalFVTKHUlS3LNwewjI/IkM6I0dSrDyRDSSM0pMamf1JikuVwc7rK5zYWITIkB5YpJTen0A11MAxtp5zogwsUhpIQAeMHE5RzdlsngrWztcTGtKVTeetHbrdSqmBDHbfKtEolc3e76giVnNKMvR2oZKEat5pOCRth1CVhlDJf0eUbqFSqwBJQDyjUC24ODv8+WTMQDdgar9g+bzE7PgZnc4o9xbMKqyuq7gSFFvi+kQ1WgmvrdcqVLJcgeV2P4d6CZUAtLyCnrCZsFwuGiqOEOgTO7vmzKgLoyVPgNWy2bcOnwDgisiir1BpfEZlfn4eKSUigJvyq43PfvazLC01JyTcf//93H///QDcfffdJJOeW+CnPvUpJicn+drXvkahUGD//v3863/9r7nuuusu277ee++93HvvvRQKA/R5hISE+DJ95Qj3/NbtPPON8zz2+VNYZYdqweK7/+8JTn7rIrf9w6OMH0i/3LsZEhIS8mPDH/3RH/HAAw9w2223kc/n+frXv962/O677wbgj//4j/nqV7/KZz/7Waanvbbqv/gX/4Lx8XGOHj1KJpNheXmZL3/5y6yvr/PpT3+68R1Hjhzhxhtv5Ktf/SrFYpGbb76Z9fV1vvCFLxCJRPjQhz502Y435EeP60p+8PlT/PCvvD7iiYNp3vK/XkdidOcpCCEhISEhIUHZsUipHjliTI2gHMvhnmjOyBcdffetQiXVFCya7TPky6Naw01J8RkwsFMRIk4V1QDRKfqJ1azvy14vaefAkpHRGJ7SWD9VwbXpmlna1Qlc67R1Tdg8W6W1l9HXQalDqFRarnLhuxtNh6KW5V0CJVEbPJcuyZkYUzdkWDsRLAZq7NgQmQNJTgUU4wzvTWCkNFYDxk6ldsXQ41rgaIfxa9JoUYXFR4K5rExdN5jY6OIDq4gBXGCMYQ3XCj7TehDHIPDi7Mx88EHL579wcaDtXflTu9k8U2BpQHedICiGwtGf2s3CQ+uBrhe75PD0n54LvD3HdCguVbArwc5ncbHC0/81+PZQIDZiUM2aXt2yQ7bOliguzwd2AkjNJdh12xjPfjaYuCkxHWX8qmHPRSvAJqOjBkO74qw8kQ20n4nJKEO74ywGvMbGrx5meE+C018O5vaVOZAgPmaQPVPyHJQ6aRUqtQiQlp70uSY7BUqds/o1ja1LzYFBadvtQiWj/dnWKlQa2h1B0WCz1TCqRahUzXRbI6llF02VOK7oEiiptXHkuqNS3UWpzvPD3vqiNoBYFyjV6RQqxUbLgEIikeDcuXNd+xLyyuDixYvs2uWJj25PPc8D+cONZXWBUp1WoVJBU7paeNNDuYabkml1N/8iCRO1rKFJugRKbtyrTJSSd2+1CpQAkoaDjaBiess7HZQ6hUpaTWNYcer3ajMO2M9BqVOotLUskK3ttRahUpdAqd42sF3S41BermDne1eOXQIlXWPicITCsklpzeoWKPVxUxrek6C0VsHqEUnni/AEHZUNM9DzTaiCkcMpchdKgWKuVENh8rpMYLGRU3W59NBa4Pg1oQjUqOKJQAJof8y8PVBcrmO5lDdM3IBCo/JalfnvBN9eYirKyOHUQPs6CMP7EsTHI4Hb29kzgw3GmwUbRQsuhg76vlNHNRRQwAnYhlp9aqvnRJF+jF7RIm7qFJAI0XBT6oxwG94bwy5HKFxqnlelJYZN1NoGdUclpSZAio/p2BUXs+C0vaPWBUqN8h1CpdTuJFbZpVqvyzSt7Z1XdLgc1YVKE0dj5JdMKoWO9pOfUKleVhGM7DZYP2dSNt0dOSgB2BasXJAN97o6XQKljrZXNapTbdEJdQqV6gKlOnWhkiIksYwk56htdUurUKma8RHMFhR0w0GRoEy2C5RyRe93qDsq1V2UANyYTSUGoKLj1dV1gVKdTqHSocgS88k0lcoSCwsLzM7Odu3Pjwuf+9zndrReJBLhl37pl/ilX/qll3iPenPXXXdx1113cfLkST72sY+9bPsREvLjhqIpXPWOfey/dZqH/9tJzjzg9aGtvrDFX/+r73HFm+e48ScPE031f66EhISEhGzP6dOnAXjwwQd58MEHu5bXRUp+vPOd7+Tv/u7v+NznPkehUCCVSnH06FH+1b/6V1x77bVt6/7O7/wOf/EXf8E3v/lNHnnkEXRd55prruGjH/0ou3fv/tEeVMhlo5Iz+dYf/ZBLT3mT6o/evYdbfvqKgRIXQkJCQkJCgrBjkdLTTz8NgDE7BtAQKnUKlOrUhUqG4pKKuGyWvSibnVJUI7zwWH+XGr+IjlhKYXSvzvqZSs+It0YncMus0mhGIz6isXFmB5EJNSGSlBK7Isld6J5xuV3H+NqJHGvPBO+wN/M2xbXgjifxiQjJ6VhgkdLw3iSxMSOwSEnRBVp0Zy4grVz83hqKz4zZ7fBEHMEHTfa8cQKraHPumyuByw7C8g+yl2U7dVafzFJ+iZ1u6ri2y/LjmxRXgseODIJdcrn43eDORoOSGI+y/+3TnPnqQiDXIdd2MXPBr82t80XKa9XA4iZFV9AiKoqi+OaE9yI5GfVcMQKKlGJjBun9ycAiJTNvU9ro7zrQ6aIEcPF7G9vf6j6OSuWWmFEhxLYOSnXioyqRpMrmee8+agiVDP8c7rpQaWgcNL1dpATbOyqdP6+zdSB4xnfadFGBDZQugVKdulDJEyh5JBIJspcxmigkGAsLC8zMzABep35dqNQpUKpTFyoZFYFUwDKCDdJnx2yqK/G+63QKlABGcKggqKD0jHirC5W0lqZdSneoOgLT3b59WBcq6UUHs0cIXS8HpTqLZ0Ep+MQW1dyUejkoVcvgmG5vByU/oZKA5EwUq2QHEikJRZA5mGTtmVwwkZLwBB0iYB+SY7osPLKOUw3+nBqkjJHSmLwuw8Ij6023mpcQu+wMLMgZhGrOYvP05dteea0aSJT2Yrlc8XB1MoeSCEUEfn8JGidYZ/XEluecFdDhRtUVHFMiNB1pW20CpU6UFgHS0GyE0oaFWdj+XqgLlUQ0SmJcp7hmN0VK0BAqdQqUGuVVhWrewUXDtyFVFyp1lJcuXHyy2hQT7RApodrxKt/PQamlJIm4pGoKbNv7HepCpU6BUh21KhExGDccKhUFW+7cUaksFM5ZEcTuYLHMuKCWdJyoDXq3QKlOXah0KOI1CEcmvDbexYsXf6xFSiEhISF14pkod/6Ta7nizbt48D89w+ZFLwLuuW/Oc/bhJW76e0c48sZdYQRcSEhIyIvg93//93e03qc+9Sk+9alPtX32/ve/n/e///07Kh+JRPjIRz7CRz7ykcD7GPLKZPVMlm/+u8cprFXQIiqv/+gxDr4+fE8JCQkJCbk87FiktLzsDXpqo00HJeVYDvn0kO/6WhHKE4KpTZf9GZPHFqJtEzTtuNfJaPToRFaq23TWKgrQvc7WosvWYhkCJmUMzRiMHoyxcaaClDvvhE1OR4iNGKyeCCDiqX//AOkRuQulwBFjQOAZ1nUufnewmeDLj21uv5IPQR2N6kzekMapuqydCBY/cfHBNeQAm9z9pgkqm2ZgQUckreOYTuAovH13T5G/WAocD3i54gQBcAk8iATeDLv975hi+fHNYLEeCkTTBmbOxrWDRbjsfuMEi4+sU1rd+WBbed3k7DeWqKwHq1yMYY3J60ZYfqzFcW0HuKZLxQwuMMtfKJEfoI5YeyY30PWydiIX+L4D2LpQYetCb0Fbz05KF38Hpa4vaC+fmNCJjxusniiybb5US9nhWYOhab0hUvL77i5Uhflney92I/0FUnpeYqX8t1HY7X+tHyw7RFxJ5E0nATiTG/Nd7x/d9m3+y8lmdrymaZRKwa+XkMvD1tYWY2Nj1EVKAG9IneR7xYO+66+bSXbFs+TnZzANyeZYe30Vj3jXsZ+TEkAlH+kh//FQelRhZ/EGnvVtqiy1o8qdiNlsVlU2qgrqDqo7tSbaHEq6VKoC0xIty/rXr0o93rNH20uWe9dHW/NV3ELA+0TCpe8Fi3YFL7JtEBce15aB2yTeBhlILKRGFYbmEuTOFwMJQsyCzdLjmzjbtfM7MFIa6X1J1p7ZChRLJ1SBaiiBjzGaMRjaHdxd0C45FEqXL5rXzNuY+eAipeR0lMiwzvpzQSchKAg1uLNRalcMLaoGFnBlXyjSt1LqQXI6CkJQWAj2WzgVt+aS5N/WUxKe0qUtfg3YONUUuKiplH+8OKAMJcFqLlt6ov18iJQXgdVroo2STCBth+UT/sclEvGeZQFyq6KnYxIA0UjzPbUVCTJas3Ls855cd1Gqk8x4Ik+rAm6svwDbaWkbjY+4rG0qFOzmj+8a/S+EqqZwstTtUtkov02vh5mNYKT93wtmU93vN8JRiFwaorIrxzvHHwPAkv4b+WDqaZ4wvXbZ2C7vWWNZg8V6/qjI5/M88MADvP3tb39Z9+OVQBj3FhJyeZi+cpR7fvt2nv7aeR7/wimsSi0C7k+e5uS35rn9544xtn/45d7NkJCQkJCQ1wRSSk7+3TwP/pdncG3J0GScu375BkZ2p17uXQsJCQkJeQ2x4/nWa2ueY4mWSbZ9Lq7qHpxunUV/LqPxxFKUVg2BXm7+Yaa7O/OUqsP4lMuVd2g4ie4OTVH1Ol+loSM73Swsu9n5q/l3FDY6jlsGuldOlHj2b9bbO5UVn9PjOI04NyEEickImYOJ9uV4A+y+g+y1mfbj16SZe8N49/Jt0OIqRnLH2rJXHeNXDzN21F/41o/IkIGRCu4+Ul4zA8Wb1HEtN5Awps6+t04xcV0mcDm74uBYwVVtw3sTRNLBz8ugpA8kMIaCX5922QkcxaLHNQ69e5bUXLBsZOlKHMsJJEYEzxGpsFAO/LsrmkI0o6MYwewtjGGNXa8fR4v/GFqrKiqK4Z0XPxp1p+w+10N74ux7q78AB/AckuouSS0DcYkJg5H9sabASbq+39/6XMBxWHyyzMmvNZ9zQq/ts+U/CCijtUjSqoWotg9A2cMR7GFvAE0vdZcvTWhMH3S4fqyMnu++PrcONfdXVNqFTk8nVGK3NWNIDgx1u4y9Y9qb5f+RIw83PovFYlSrl9cZI2Tn5HI5hoaaz0S1prB5XeJ017rrZrN9ljq4yFam/frbqjbdO9LJbsFNJR/haM5mUljIWLegQ8t594YTkzix9utTL3j/ANwejxy96JWRLZfumZzBRlVFb4l4k2p320kruWg1ca+rCoaHXIwWlyitYNW2reDq3XWmUqggBIztVjCGfZ5R+VrDtUe7UbHLCKUZ2dSG6/SMe3s1oEYU0geSXqxWABRVwUhpgQUk0pGYOcu3+u1fEBzb7aeP8CU2YjBz8yjC57rquzlXDuTGo0YVoiOXL7ZEi6lEM8G35zoSxxykXRln/FjwAUTpEkhcVscuOwNNYNBiGno8uKNrai5FYjKC0Pq3nYWPm6ISizZckkSPugQAXfP+ddIa8eZTXhi19oXmf1wNByVN86/LdB1Vp3d7tH5MPkLs9L4o8bTouVzGjC6BEkBqRBCJNgVKQkqEz03sxJr7K2w4d1GlUGxupz65Se3xLmSmalGjFYlWaV/HHPb+gb8ToD1icdQok7FczGy3yOnKqaY75YXiSOO/peZS3r/Ju2YeaXymi+623VWGJ1a91vDaZdHasWxuDjah50fF8vIyn/nMZ17WfXilcNddd/GZz3yGj3/84y/3roSE/NijaArX/MQ+Pvh7b2D/65pxmKunt/ir/+NBHvj/TlAp+PfPOdLl0fxpvrLxAx7Nn8YJ3JgMCQkJCQkJAbBNh/v/n6f47v97AteW7Dk+wft+67ZQoBQSEhISctnZ8YjE+rrXwaZmuh9WrUKlzpgPiULFVvpuqlWoVHdQKuZhZVF0lasLlHoxul9nzy0tooWOTtquma2tA9J+77h+QqUWln+Y4/m/ruX5ONt0orcMYgUVSNSZuXmUPXdNBi932yi73zQRvNyto8y8bjRwuX1vm2Lv3cH3MzYaITrSexZsLy58e4WFh4I7FoxdNczwvh7+/324+MDaQO4x8/evsvZ0cLeh+ftX2TwVbLY7wK7bxkjvD358A6HA3OsnGNrVPyqoE9d2OXfvMsXFYDFxVsnm3L1LFBeDzZK3Sw7nvr5MeS2YOE2LKkzfNBJYhFVZNzn1V5eobATdnkp8MoLiM+Dej9RcjKt+Zq//QHwfEpNRDr5rJrAoKrU7zuF7ZncuwlK8wbWRAwkOvWu669HQJe706XwM1B9ZEyqtPF3k5N9sEw+4jUNTQ6BUp0OoVBcoAWRmFPYd38YxyUeotF5RWSx6v12rUKlVoORHRVNwjfZ1WoVKdYFSnbpQKRaLoWzznAt5+cjlcqRSXrtL7bAAahUqtQqUvJUl7jbj861CpUree+4uRRVyPpGrdYFSL/ZqJqmWCLpOoVJdoFSnKVQS+Klc/IRKrcwvaBSKtUHpQn83CqXQfLb4Nr3yHQ3XzsH9SonpG9NEa4JfX6GSD6qhMHU84wl5AqBGFCauSQcWWOgJlbk7xgML2RVVEM0YiIBRu1bRZvkHm4Ej39SowtDueGDRkFmwWX8m50VxBaCyabL8+GbgctUti/Vng7fzYiMRxq+6fC4AiYkoI0eCdySWVqpkXwjuGpKfLwd2XwIoLJTZOhcwTguIjRokJqPbr9hB9oVCYNcmoRvoSQ094d17nUIlJd7evm0VKo0fSzFysF003ylUErHu4xjeEyU10+O9p4/QaeRgjKGZ5vZ7Rbw1qLVfxg4apCa17vfbTtHVdo6RO4zDWzwjKWT7r9MqUGrZAPVng93RLu0UKtUFSgCzcYshvf/7eKdQSQILEZVSrf3ZKlRqFSj57aLUXYTSIdptESrVBUp1rjXWiNTais8//3zf/XyxLC8v9/1Xn4AWEhIS8nKQGIny5o9fxzv/95tJz9b6qyQ8e+8FPv8r93Py2/PIlpjRezef5B1P/Qa/8Py/55Nn/4xfeP7f846nfoN7N598mY4gJCQkJCTk1UklZ/Kl//NhTt1/CSHgpp86zF2/fANG/PJNcg8JCQkJCamz45GMutOCFo36innE0Rzqo8muz8cVm/G9Ds/YETKn+gmM3LaIt1LR+wcuTkJHLVo9BUrS0BGmBZaNbWpYnREEmga23dN6H1VhZI9KfNRg/ns+AhJF8Qa6fURIQghPcNRDoFQfcO/c9toAsVgAK09kA892BzC3LJxtOm39cCy3r61/LzZP5wcpxoVvrwQv9CIY3pOgkq2ydTbYwImi1bQPASdvFZeDCXEa2zO8a9ANmOhx8q/mcYMbRQ2GC8/+j/PYASNAwBMA2aYb7Hy6kL80WKSKoimBHZG0mEb6QJLcxRJmLni0SlBKy1We/8LFwOWqmxYrT2axy8GOz3Vc7IDxOwB22aa8vsOLTGkOumfPF6nmrbbfvGfEm3RBKAhVIX+xQv6iz32k9hnQd11QFP+YuNp39xIoDU+rpPdGuPD9HkIIywZdaxMogecYYZYEomohIzr2sI7fBa6XTKy4RmlCA1yyZn0/vHX1PF70m088iyh55+vOW54hthJDPz1Ebn/7oPqB5BoHE8u+6S4/c+hhvqDrVCqD1UshLz2maWIYBoqUvillt8ZP87eb13V9bqzEOZLYwklYPLa2q/cGpKwJlLxv39BF43MZtRFltSZQ8nG+iErUikAvQFUVeOMIzfVcHRSrW6DU2LQq2aPYZMsKZR8hu1RBOLLhoNSKq4LiyJ4CJbd2HNpm8xkhJazP175L17x7t1OgVKfWbnQLXtTUypM5rBY3F6FryG0cyKQrqW5ZA7nHOJYb2GnIMV02XygErsetksPS9weLBB4ELaKSmo1RXKrgBBQOCUW0DVjtBNeWVHMDxCoJT8AV9PcrLpUprV6+OjU3XyJ/KXhkp1AAIQKLt+zKgK5hwtO1BL2uoxkDNaIO3H7eKV7EG2yebq8ThKYjbatLoNRYbuhI06K4KcHtvs6EpiFt21eghK7hoiB1BWI92j+ahvAREltlF6cWd9lToFQXObUIijbOW813ifr7rY8rVKOclMiIweaC38u/QEa378h2YxqdzxAhJVKImkCp+xocH3YolyGr6b7LVUvi6KImUGout1xwJGgVFzsqGg5Kneh5sJISa9Q7Gastzz4Ac9Pwot98bo8LBc9N6Z/M3svmxVkqWpxIhzuhhs0Rfcv3XfjGYe9dNxYL5gQblJ/8yZ9E9BGTSSn7Lg8JCQm5HMwcG+We33k9J75yjh/8z9PYVYdK3uI7f/w0J791kdv+4VF+OHyef/7Cf+6qklesLf75C/+Z39v/c9yVueZl2f+QkJCQkJBXE8WNCl/5nUfIXioSSeq8+X+5jtmr+qQVhISEhISEvMTsWKRUH8R889ne64hIdyd5BBdDwITqoB3o3REuHG8wqo6ieB3oTq0jVbgquL3FOcLV2sQ06dmOTlMp+7oX6VGBogmGdvWYrdujrJ5QUDSFanabAZABnZN+1ExcGzxqDGDi6sHKccdgxYISHdGRjjfzPSjxsQgjB4NFzMXGDFwz+MCXnlBxbIkb0HkgPhHBrjiXRRwDEJ+MMJcaY+r6AX/3ICieE0B1ywwsrNFTGk7ZDibeUiExHqW8aQb+HQD23z29/UotKBpERyJUNk3cASL7BmVygFhBgCs/tGegcul93SLVQGw7a7/xP32W90aNqBhxhXLW52Lps23VEOgxheREb4c3qSg9v2N40hNASbX3wK6rSVzNq0sUJKoASza/z4mA28e4IvPIFEpVQXEU4mvdA6m2OuJTqs5S6KT0CsY0TS5cuMDCk0d7rpMod/++Ws7AjTi4EYdDpd5NvVJF4LaIqA1H4ijg1K5nUXERdp/7wwFRGx/P+FzjKiB6Pl4lw8JlOCqwXf9tKJaErqpMkopLzKLE3iapUKn0Fi+Kqot0+zgNmibS7ePsaO9MrJGaDeYuWCcxEdw9BmDk4OWx51YjCvGJKIXFMnIAIdbs64J1hGlxlcRElNyFYiChi6IL9LgWuH2oJzTi45GB3H8GwRjSiaZ1FO3y1MfRjIEWVykEFHtrURWhCaxCsPZobNRAMZTArpl1dr8xmBtsbNQARVBe3T7OVOg60k/J21iu+QqFG2gaOH2Wb1deUUjv7l3X9BOSjB6K9/9u7wt6LpKq4hu/1ly+jaPbNg5ssbSCbUlMn5/BE5P616OxmMS2YUTpfd86hvB13cvUXCWdCH0dBR0Jbt5b13Aljmg++7zPXDLl3vX3xfWrKK5nMBIl9Gj3AZZV/2vPtl3gy5jmSzuLJJVK8dGPfpTrrrvOd/n58+f59Kc//ZLuQ0hISMhOUDWFa969nwO3TfPQnz/H2Yc8p/qVU1n+8l8+wJ/9k+8hffS4Eq8L4Hfn/4o701ehivCdNiQkJCQkpBe55SJf/u1HKayWSYxEecf/dhPp2RfZlx8SEhISEvIi2bFISa/ZxB+85mm+cumqruVWQYcIRBe7ewO1Du2SkevuTFVrYgG1NkM3PSpJDcHivEAxWzowze5OcdEyUCSkg1BoFy20uBxJ16cztLVj2a+jt3XWdsfISGLCQE9oZE8X8Ztu2dbp3dIJPHpsCD2us/RosIiy+EQEVVcCO8gohgIKuEFdblTvxV8GnDhtDHvXixlwUGji2jR21WXjuWARG6ldMRzTpbSy/WDEj4L4RAS76gY+vqmbRqlsVMmeCRZBEZ+IYJcdzHywQaHRK4cor1cDn5ddbxgnd75I7nyw2fljVw1TWKhQ2QiwPQGJqSiVTRMnwPWpGAozN42wcbqwo0GoxuZUiE/GKK9Vcc3gIqWgKIbC0Fyc3KVSoPvPSOmMXz3E6tM5zABiOMVQiKZ1SuvVXmM//gjP6CioW5dQPQGQXeqzMR8RjJH0BoCz54qI7RRGLQ5LiZkoI/sTzH9vo2lM1NYh6fNdqiCa0UlO6Kw931F3tu6bT1HR4v7k59YkdY3GidZalgtvdUdtCmadSHd5K9n8zIopTMQshnTJuZzXE1sZAyRY0e7ny649XlRHvTYZ1rufC/dkfgjAQ+V9Xcviojpw9GjI5UHTNEZHR7n9wLd4xuxW+yzaaXZzhlOl9njV6hQsVoYABdLeFbJZ6XZt2MoLQGJXvebgoYLDpi7YNBSUvAo6oINidt8ceqH2mQDNkriAbLmJWh2UhE/Vp5Ulq/XlPpeh1ipabVsuccs2paKCZQmE1f3lSrE5+Ctq7TBFhfG9KtlFB3OlxWHJxwlTlprLhbSJj0eobFo4tWeGNHdWJ6uGgmMHdAnEq9KCOs4IxXtumAU7kDuOnlBJH0iy8Vy+cXw7QTUUissVSqvVwG48g6Dogq2kTiVr+rqb9CKS1hnek2D9+Vyg30E1FPSESmUzWDvPSGlER4zA7afEVBTXjLIesP0bSesYSZ38xWDb02Iqiq4Eal8AJGdiGCmNjZPBIt/0hIpQxWUT20fSOkIRVHPt97fsEBd6Dke1+sJyGJqLIVTYOleuLY8Alm9ZABE1ABs9piBNu9tNNBKh0UZw2o9dGBHPrAgXpH9dJCItk25aImYVDaSmI+vvsH4iqdY2SW15dFjBtSRmSSKNZvtF+JRvbd+M7lYwS5L8WvPmkxF/F6TW5SlHYppQLbc/Q9raQz4iKjvaXC59hEZ2TDR+NsdolleEREowE4r3s1ng+Og9rVRtv21wUg6HizYbukK2FrEcz9R+/+Hu94vbM2cAKAJMLTJldMemXWN45bZ83LXq+/1SuxgdPnyYfD7Pvn3d7T8Ax3HCNmCNe++9l3vvvZdCIXgEZkhISDv/dfnb/OnyfYN/wZvAud3FLFm4jsRRXSpG77aKBJatLG9+4tcwlGCRx724W17BUXpPEAkJCQkJCXm1sTGf5yu/8yjlbJWhyTjv+NTNpMZfWmfXkJCQkJCQnbDjtzjD8AZMtell7tmzyu8/c2djWXk9BvXn2n5Inm53MYpU2jvA4lvtnbBelEd9oFhDy1tsrLooGtimglpuXV9DlNtnHooW4dLUIZWhGY3n763NfPaJeGuLXmv9bwVk52BXZ4dxh4hp7URHJ33HqFJXh3OtM7C6ZaHoSuAZ2nNj4yiGytozwQYx9r5lEi2hcvqLC4HK7bt7CkVXOPO3wcrtf8c0UsLC94KJsFAETtVl81SwwY+g56PO3rsmqWRNlr6/GazgMwNtbuD9HHR7w3sTFJYqbDwX7HxOHR8hf6kSbH8VyBxKkb9UChyft3ZisPOy8sPsQOV4Kvj2jCGNvW+Z5OKDa5SWg4m+BtlPPamBgNWntwI5FqR2x5m8NsPS45uYWzsvN7w/we47JnjuC/OBtpc5lGTqhlGe/WyfqD+le4QpczBB+kCSzVOF/sKoDmFQftGkuFhl/bnaNdYpgOoY9BGN8jXRQWekXKfwqLO81vGYbPnbi3hrreMdzzEBmNyvkJlVeOYHLUsT7ftaGTGgJfmzKhVWSyqKAqarUNjdsi95qIy1n9/4ZPuzUI+2D1J/avqrjf/ewwt8Pnd94+9h1VtXSonWeYwhrxg0TSMWizE2us4bWOf71aZr0gVrFL0mUTuaKfBkYa6tbLkj4jWvtrfF1rNJqA/eRh2sss5jaYErwBUCpfXeiIFabb83jBa3r2NalSVbI1uzrTDykk7JnGjZnaaAyft/Idu/Wy860BoB11G1VNdaj0XtEiqpbVW8gnAchADXcagWJO5Gp3ChWQnJQvvzS9EFw3s0cvMVKllr25i3xj5EFGZvHWPlySyVzZ07ZmgxlZmbR1n+4WYg9x89oTJyeIilH2wEEjSrEQXpQmGpHNjtLzcfPGYsMqSTOZRk5cnsAO6CwSNei8uVwIKaF4PrRNCTWuB4MsVQMAYoh/AibF/qOLQ6l2s7dYb3JlAjSuDfsL6fnc/w1ntdicch335vSlkCAaUVEyURg2L7PShbhEIiFoVae2n8SAxHccnNt9QPLcsbtGxfRDXGDxvYVcnmeasrGlxEI1BsqdtaJu1MXJ3ALEmyF1vfaTveOfWO9o7tkBhVsauSYlFp/27ahUrSaI9Zcx3Xi7Gt3YIyqkOfS8GN6WBCMe8vxHHs9vaQ7Gh72Y1nQi02veVnNBNKQ+jjfQBOxFvvYKrKRlVly2k+vzqN3sxM+we2Lvn+kN549iUnio2vz1ppDoy0v8tqmXYhSyKSbfv7dZFmPTUBbLTkbkeFIJf39u2ljtp93/ve13cbk5OTfPKTn3xJ9+HVwl133cVdd93FyZMn+djHPvZy705IyKuaolNhxdrafsXtCGhEmnWKwSZo9aGsvbROdyEhISEhIZeTldNZvva736dasBjZneLtn7yJeLqPa3hISEhISMhlZMcjk+l0GoDcusnIdJT/5ei3+P1n7vQESh0UDloNodKessneEYuHNqLUB5xK4yrxVe8N0hMotWOndLS8hdiyUH3eNGXMQJRNhM9M9uySS7E+K9hHoAReh7W07bblk9ckSe+JcvJv1lpmpfq85dYHxF0X6bgohuKJqerHUZv+7jcb1lsuQMrATkh15u9f3X4lH5af2ET4WOJvx+rTW4htnP79uPCt5eCFgLWnB+vQiI0bSJtAA4EAlS0rsDsRQPpAAqvkDBxbEZSRIykqWTOwOObMlxdfoj3ywYVTf30peDkFxq4cIjdfuiwz7BVNYeRwkq0LpUBiHNeWlDdMnIARcYqmkJiMUFyu4to7L2sVbBYeCijyA/IXS5z8wjxmwCiW0kqVS99bw6kEK5e/VOL8t5ax/Rw4fMRJdTZPF8m+sM0At49zUXXLal4nfjFl9VnhQrQIlDzXAcVQvLpaEb7f3Shfj7rSNCaPRknvNjj51ZrqwbZB02oCJR8sG3SNjZxOqeNUqrXBTiehewKlDiI1l8HqUIdAqUZ0TWkIlY5ee75t2cy5KJFygtL1nj1+q0CpzgeHHufzuesbAiXwBsmcXs+rkJedVCrVNrP/xsgG36+OcMEa7Vr3muR8Q6hUPjVFKu6SzzTbSePxIqslL95sPdtt6azHLKyyjpLV8LmzcCIStSowtrqvzQtCo6J5A8dG3l94IlVPqNTqsHRg1GKtqLJVURtuSp5AqYP6DrmglywU1dOEy9pAttQVhOWi5vyfkVJVwXEoZSUi1y2irbcLOwVKAK4lWXgs7y3foUAJwDFdlp/YDByL5VRd1p7ZwuqsQLbBKjleHe7jLLXd9gaJNBOqwEhomAUrkOuTa7teVG5AfZIaUYimDYorlcBlB0GLqkTSOsWlYO288lqV8trlcfUEKC5VAu8jeI5PakS9bPtqDOkomqCyEaydbpedQG2nOvpQBIF3X7RSv9eVuP/oZznrIi3bEyj1wXNgarJ+pvZeZ+hgWp5AqVfZaHNZbsHGrTn2Nt5PqQmUOql/d8Rg86Ld7XKrqZ5QSe/xeq+prJ4ykRHdd7FUFYTj1gRK7VRa6nUZ9S9fx401lyuqbKurnZj/vgkpG0IlO66yd8piI6+QK3ptNWF7QiUz4fd0ArUqcSKC84qBGRVtdUTd0dmOdwuUALQtb5/cYZvkRHddeGZjtCFUevv4043PpSMon5zj2V0xrhw/C7QLlOqMKAYbrkm0dnyVincPHDp0yPdYflS84Q1v6Ls8lUrxjne84yXdh5CQkNceCTXKhD78I/u+qmOx5W4vik+riR+Zk1LML1suJCQkJCTkVcjCiXW+8X89hlVxmDiY5m2/eiORZP/3uZCQkJCQkMvJjt/iRke9AbGtlSoj017n6hUTyzy+vtd3/cJBi+glnUJBYbHcvRlX6y+YiU6pTEctLjzbY4VON4walbxs60jtSYe9ee5SBbOw84Hauj365DVDDO+N89znm05D0t1++9FRg9iIweapy2MrXl4bbDZQYWEwMVVPR5VtMIY1FEUJLDaafd0YdtHh3DeDiaOWHt0ItH6diesylFergUVK++6eorRWYfkH2UDlJq/LsHWuGFik9GpAMxSmbxzFMSVmbucz5bW4yr67p1h4eD3Q76AnVaZvGqVasAMNHtslh/n7gosEY6MGe++a4sxXFwL9foqhEMsYFFcrwaKCXAILlMATRW08H8CpoCa4tEsuuQs+HYd9BEoAokcd3qCHiCg2qhPNRMie3aZu6hAwjR9Nktkf5bm/WuuIh/PducZ/5hZNzA63AdRtyisK1TJUe+yi7HPsk8MW1pzgFD1mtWT868b8sE0l5vILE99lVu39XPnE6Cn+Y3a28XepVCISCWfQvFIZGhoil2t3fksrJS7QLVKCplCpOGRja91tkWK1f6f7Ltek7Ag2e9x/Wsn/2s3X8nj0bapircNZc6WgUq05aviJ1rvK15w1d+1y2dwQ5FtcOpRy/3pPlKvEhhWsiMCu+rTTthEgSTNgO0pCNRssSgu8NmQpQIRp6/aCxLU1EGAkNKyyEyi2zUhoTF6fYeGRdezyztvPVskZqO1rJDVGrxiivGHiBhBiRdI66f1JVp7IBjq+yLDO6JEhz5HnxzARKT4eJTZqBBYpDe2Oo8dV1gM6dCano+hxLbBIaRDnJiUeJ70nglAEqz5OnerQUJdrUR0tpkB6CKfkf+8qKU/g2Vm+1RFSpJI9v18kE22OR9VCh5tRvCaO8osfB2QihrAdrFIPMWgs0haD7re813dDzSHS5z02NiQwpYa9TZXWKlACmNkNWxuQ3wIn2r/bwYk021ZrWypVqyMizujf9nJ1KLq915E9Nq9Iyaxjk8+UeppDRTWfAxegT2RRIhYzap49fVwpd2lJ1hxPAFWqCXUzmUzP9UNCQkJerfzs5Jv42ck3/ci+z5Eu73jqN1ju5c4kYdJI85Wr/yXqdu/4O+SZZwa0MQ8JCQkJCXkFcf6xZf7u93+IY7nMHBvlrb9yA/o272QhISEhISGXmx2/xY2PjwOwteJ10n19zcvovv7Kc77rRy95nZQFW+V82QiyKQD0ioWW8FyKeuHnZGEkYGy/5m2uR2ehtGodjS2DcOV1m80XdibIabgkKYLNMwUuPeITFbbNC3J6f5LpG/0HGfsxfvUw+942FbhcajbG2NXBZzQlpqOkDyQClxu7apjJ48E7X2dvGWP2dcHPy4X7Vrj0cHDXGS2uoMWDd2Y8/5cXB3K1qm5ZmPngriXPfvYCCwMc3xUfmmPyhnTgcoOgaArH/sEeModSgcrZFZen/svZwBF/uJLKphV4ULaatXjqT8+S9xPW9EPxIt8CVmUUVyuc+tKlwIPOqdkY+98+jR4P9gIRn4yw+84JlG0GczqJZgzGjg7tbOV6LIcQJCajTFyXbl++A4HSyOEkB97Zoy7r5XIEpPfGmbp+m/30KZ89V+bS9/PNZTsQkwKUN102z7cMqka8546weggiastTGUiPdS+2U9vMzExDshh8RDyfsdmoxb9dcrpdcgAO6N7n/yjddDyzbZt4D0eJkJefoaEhtraanfKnLU8kfk1k3nf9upNSKeVgxoILVtScjqb3v/5cn0lXQ8IhXlNTOp0RQzXqDkqy5fbMV1VMZ2cuj1rNYUkKhZUVhVK5u5zU+9c9md0a0aHuulEWvcFj0cOBZPyIQWzU6IqD3I7Urhh6IqAdpYDEZBQ1GqwOVzTByOEUejzY9rSoytTxEYxksGeNWbA8gVIlYJtGeK5IBDT3LK+bXLh/JZBACTwnLDNvBxYaFZcrXLhvJXC5xGSUXa/3qfxfIob3JJi6cWT7FTvIvlBgcQChvl1xsPzczrZh42Se5R8GjFYGFF1B6axTFHXbdsbmBZON073FcF1RrjVGjqYZmjV6vkP2IjVtEB/VEDXRb6/vBzzHoxqxtIoe29nNIGv1k9RUEqMKRlz0XN6r/NhelfhIj3NXr/98hNQjuxSi/k2LBp0CJYC1ZSgVWwRKO7yfCmUFy27uh117V1N7iKSspEAgyagOms9GrD7NRgXQ4g6l9WBtIaFI9LEcSsRrD57vIUyLK167b0z13qcvXvL+XwR8noSEhIS8FlGFwq/O3YPAp+lYq+7f8tBRtuaDu4KGhISEhIT8uHL6gQXu/beP41gue45PcPe/OB4KlEJCQkJCXpHseATk4MGDAKycLzUESnU6hUp1gRJAeVoSn3bQRXNQIbrZ/G9zSMUcau8s1QoW+S2FU8+oWB2W86JqIarNHspOoVIsAeP7NLT6xx2dxA2BUp3agLUWUxg5EEO07Ceq2jXY3RnjVtlyyF8o+y/vFCpJ2XBwWnpsg+f+R3tcz06wSjZmIfjM/ORsjJGA4hGAzIEkk9cHFxsZCY1IKrh95KWH15h/ILj4x9wK5opTZ8+dU+x6/XjgcoGcbVpYeHg9uBjnRbB+Mk/hMkXSua7L2rNblNcvj9uTXXGZv2+FyvoALmED/H6p6RhH7pkjmglo/+3i7WPAbeYvlTnz1YXAkT9aRCUyrPedKe9HaldsZwOdHYMq8akoo1e0jP7s0EHJrjhe5E8nfQRKQlVZ+mGB57/UxzGtpbxsccyr5hzyix3nslOo1DHwKR2X1KRGYqL2HIm0//ZdQqWW5SMjDqNj7c+LVoFSJGsR6XBZKY0rnC1FeK4QIbbcvm+VQxUqh5r38jMXptuW/2L0ET6eub/xd5tQyXU58J+stmuiLlQqlUokk9uMPIa8bExMTLC87F3vdYFSnU6hUl2gBLBH22KvaH/WnNtsPsujMZNorL3utDeiXIhorOgqMtJ+/UU2FSKbzTZNp1Bpsuow0iJW6RQq6R3Cu7pQKaa7RDUXvcWtTArRiP2po3WIIsoVBadlAFvNNY+lU6ikFEooBU+UunjCpJAVveOQ6BYquaUSVtHGtZtRkjtleE8CYwAr7dErhogMBS+nJzWEFkzcZFccFh/bCBx9K10viiuoiMdIaszeOhZYgOttNHgRq2izeSq/I5fTHwVmwRooPm9QKlmT/MWAousXQWmlSm5+wO0N8BOMXpFi5HCPNkZHe0OJxxsxbq4lcX2sc1pj3jqFRCIeY/OFCrlLtfqkc3lLTJvQtLbyelSgJtpdCVuXi2ikPcKtJiQa3qURS9eOo/Wdt8MNUnbUS8kpHaMl+qxzeadQqb7crkrP9akzLrdPnSijOpfOKhSyPVfxFSgBVEoCU+tY1nEd2FEVO9oSz+u6JKIuSi0D1O6YTNIpVLKSXp2sCZjBIt4hZGwVKOl5gZ5vr8MrIw6nEholTVBYa5+Yc2xiiWMTS42/v715pHkYlsqNzhJviJ5ufNYQKkmJ+mCFuGg/9jE1weqa9zybmgo+6ejF8qY3vYn5eX+R82uZe++9l09+8pP8wR/8wcu9KyEhIT7clbmG39v/c10xcsl8hHd88RpGv53gLz/1AA/96bOYPZwQQ0JCQkJCXis8e+8Fvv3vn0C6koOvn+Et/+v1aEbAyXMhISEhISGXiR2PENxwww0ArJwrM+Gz/Porz/H4s3vbBEoABnANFU5MRbAWtx840boEOC5OXEft87Ipowai4nUob12y2brUMXNW08C2uwVKdVSVWFpl6rokxeUqlS3/gZpOgRKAkVRJ742z9lwBp+xnBa94IzmduIE1BABkzxTJngk++LH4yAaLjwSfMX3xwbWBBB2DuP6AJzYahJErUmhRlZUfZgOVW/z++kADVzO3juKYTuDYNi2ugisDx+HtvnOC0kqFNZ/Yin6sPpkNtP6LwiXw+QDQogq73zzJ8uObweLzFG+w0yzYga7R6IjB9E0jXPreGmZu59dbcbXK+W8tB75G4+MRRo6kWHhorS0OZDtc0x0o3i93oeQfv7YNq09tsXqih416HZ/B+dUnt1h9cpty9eIts/NzF8rkLnS41/URKLXi9tKl+ZSXUiKEYHhPBFDYuthR2JU940MBRg9Fka6kuOX//BKW7Q3+dQiY5p+uXZQxb5+2c1Aqjde/36WuH44tS8qT2wsifnX3V3j6797A0Pgau69u2tNfcpLMqgUO/JGF8m82cYsu/HK7U10ul+Omm27adhshLw+7du3iq1/9as/l10TmebI61yZQAtA3o6hlnd17N7lQ2l5obG+0CKCkBCGQEYmo9r7+XB2UWrPnXEWnc36zowtUS3YJlBqbUSETc3AlrG/1vvc7BUoAsZgn+q6URZtAqfHduoqwusv5NcfqLkqtCF1DtogQN57vaFfW4i634+IDa9uu071DcOH+4A4+ri1Z/kFwpxokA4m8hSoY3pugsFAOHPe2/MRmYAcmLaaS3p9k83Qep7rzh75QPDeeIGXAi3sb2h1n7cSW73XTC6voYBUHi0oehOqWRXVrgMkLMzH0uMpmH7chPxRNgBCBHa2GdnvioKDtk+wLLfennwhaUcHtvpZSMxHsikt5oxnVqPi4BgpNQ9p2I2atKwqy9g65HZsLAAHvI01l6emqV3UaPiIfRQHX7RIgASyd9La1E8lka/nsos/v5idQUkSbkLtfdddLoKQokngK8pbEdTv2VNJz53UNJjM2F9c0Sj3c8VQLHL0pUAKwpOBksdbWqu1SPwclADtjN555dQprCZJj279rX+8sc+6Fw1xxzeOoLRX2edtm//0WsZ9Zxf1zFd7cLnwqFHIoisKBAwe23caPGrmD59Zrkbvuuou77rqLkydP8rGPfezl3p2QkBAf7spcw53pq/hB4QXWrBxj+hDjZ1I8kn+OHCWkK3n6K+c4871Fbvn7Rzhw+0zoWBcSEhIS8prjiS+e4dG/eB6Ao2/dzes+crStLz4kJCQkJOSVxo6nW6fTaYQQnDrXZxDZ59sqwEPEWUEF2e6i1Io5pLZ1hiqKy7HrHUZqiign3n9GuYwa0Ct+B7a17c8vVnn2fy77C5R8HJXqGEMa41el0GN9vlwoXb270RGDfW+bQg8Yr9GInLpcDOgYNCjDexMDxZNFMwbxscj2K3ZQWq5SXh3AiUcQOPYFYP/bppi+JXgMiHQZaAZ6ajaGMXyZrhfFG4QaJD5POjLwtRZNGxy5Z47UTL+bzwfBQA1013TJXSjh2sF2VE9oJKaiBM2JS87EmLklePThi6LfoW13vW8Tv9J5zrW4gtYaZ7RNRKao1cHTx4eYuMbHFW4bgVN6X4LhvVH/hX32/ex9OeYf3WZQNdJbgKSUrQACJbglU2GuxeFGCtoclFp55sI0cc1b9/CtjzB18HTXOru0COIL3iB0/f/rfNA5j5SSvXv39t2/kJePXbt2sbi4yHOl3s+3Nav7frBGy5R3eaLW9XK8zUWplWjMxCo0r88J0+HKcrMdJCMSrdhfqKTnoNdoc6/otzqrawrrS/73vp+jUp1UyiWeALXYR8Cuqw0HpUa5CZXURO1e1zVfgVKjfLWKW/LKK5pA0YM/2wbmMo8jD+9NBI57EwrERgzUgNGi0pFUs5b33A+I8M366E9k2GD21rHA+4msi9qCbVA1FCLp4C5Yg6LFVIxU8HaelHInOrsuMgeTjB/bYTRsKwP8duA5YVlFuxGj5oc6NNQlQDJSWiP6UBiGr0CpjjLUrENT0zqRVHt7QESjbS5Kbcs0DZHo/d0iHmt3UOpEU0Hvfb3IfmUBGYv4ipjAc1OSsZbyAtRWPami9G2/oAhkVEfVYXRWeGU76CVQAhAJleFJpWfzrNNBqY5pwblLGpVt2s2tAqWWrQICrSL7C5RkTaAEjFqSq/JW27u664o2B6VWvr15hJIbIZXOcvDKp1FVn8bzl2rtrr/tfsZsLGhMTU2h9/ndQ0JCQkK6UYXCTamDvGPkBm5KHWTvdZO8/1+/nuMfOoRaa6eXs1W+/e+f5G9/42E25i+fg3lISEhISMjLiZSSR//iZEOgdO17D/C6nwsFSiEhISEhr3wC9djHYjH09TX+wdTDPdepzHUOGCkUUYgteA/FStp/k0bW6yi0a/EPrquwtiIo18ZU605KMuLfoScqZmMm6N7bYqTnfGLeNK23WMkF6fR4cFsWWJbvTJzCQpUTfz5PNWv3fvD7zPBFgqIKREC3xdSuOEfumQs8AJLaFePQ+2ZRAg7SpHbH2f/O6e1X7GDs6mGu/KndgctFR3RSu3p39vdi4XvrnLu3TwRUD4b3Jhi5IngM3sL31ll+LLhjwcLDG6w+lQ1cbv6+FdaeCeaiBLDr9eOMXTG8/Yo/AjRDYc+dk6Rmg/1+dsXl7NeWKC4Hi6UzczYX7luhvBbMbaiybvLCVxYDuSiBJyycvCEdVGvE1rkiJz9/MbC4KZrRSc0FFGABM7eMcuh9s4HLTVybZtfrewjo+giUZm4dZe4N/SMT/erG3XdZTnhzAAEAAElEQVSMM3fHWH2F3mWF8OremvWcUET36i3L/coDnP/2Bhe+63MPqTW3ux5WGUJTezpgSUNHGro3otbB/uMKwxPgxg0fh0CPaq0ej6/Wt+2yUNHYsrwDLE15+x457T84euN+LzL0DxfeghGvYNTFTbbLlf9kkTt+9iLGh5fhhdr2z1jwk5fgJy9x8efX+J0veud/dPQyi+FCdsyePXuQUlJdLjKi9q4jZyLZtr+lJkGTPL7u1QWpqH89mV/1ov6k4V2DBVWw0iLG0Te8/3YMfzWDsQVSg5TqMBfpFvwaeYmrClzVvw6RUiA1/2V60UYv2r7ChpUVha3ztRuzx3cr+VJX5JFQmtWZLBT7twtpiiPHjg6ROdgSi7hDdcfI4VTDQSYImUPJmrg1GNM3jZCaC769xGQULRasQepaksVHNwK7+AhVkNoVQ40Ge5jaZYfVp7dwAjpRmnmLlSezOAGdf6o5q+aiFEzJE80YTF6bGUiQMwjJmVh75OoOKS5WyJ4J5qIEnhPS5iDlzpfInQ/u8piYjBKdSPRcria9ZZ3Rbesni+QuVjyRUDzm71QEDQelevlYRkOLeddmQ5zUr56oiXxmro8Ty3TcQ/Vtdkar1YnqjB6OoveYfCLr5TtUPooGEwe05qQVrce9q7cv1yMwfUTDiHYs99t2RPfeuYVAiNohdNwKbkTrjs1tLFOxTMH8eYGfkbETURCuRPiWF9gRlV43kRUXWHGB2vFYG9IcZqPexqyEQOuhQbWS3ja1De/4S6pg2VAbD4f4iHedPrXk//578/A5AL5WOkak/mx1JSP/pcjYH+TZ80c5In9be17/TQH+7w3v33/K8ny1wP2PxxkaGkDoFxISEhLShWaoXH/PQT74e3ew53jT83/puU3+8n97gIf+LIyACwkJCQn58Ua6kgf/0zM88cUXALjp7x3hpg8fDh0FQ0JCQkJeFQSaejs5OcniynnfZY+f3Nv478qcRXS+2Rl8eNNEj7ucqzkBVNIK0ez2gwXLl7xO3c6oNxnREdXmZ/WoNwB0Dbsi23RBPWPe6tQcmOZeN0xx1WT9VO9OdCFEX6t0oYj2AQ0/gRJQ2TQ58+XF/vvlQ3mlwoX7VrAKwWIy7KpDdcvykgOCFJQS6UgUjUBRVaWVChvbOCj4sfyD7ECRYYMytDtOZEhn47nLM8uqsDBgBEhrElQAznxlAde8PHZYdsXl5F/NYxcH2J5C4GNzbZetc8GjDwclNhph7MphVp/MDhTVGJS1E7nA8X4A+YUSZil4dE/PgdhtXmqskoNj9a8T/Vh6fLO+QvPDbaLXcF0WHm2JluvcN9dtGwzc9oVM7T9Irhoqu1+XYPVkheKa1XOQE/CESo0BSbCqYGvN9bWChZ1s/l3tEJrGV11K4wrz5f6uS3XqAiWAaE7jc6ffy/tv/Vs0w8ZYd5n4ShEhuw1ZxHfKCGBOlDmXWgDgPe95z462GXL5ufLKKwE4fcpmbk93k+3vCkcb/z0TybJQTXt/2IKLZ+fQUw5W7VJLRavkK/1dOUqqQqluNLTRfn84hkQ1m/eU0XIrOqrAloLWDB8j31/coZdcorpLOuGylFURdp/7tf7VbR+0oApoceZR8s12XF2oJGyH3JLXdpKF/s8Ot2W5UFWyZ4sDRcPaFSdwzFiDAVxu8pfKXgRqQAaN6B0EIWB4b9J7dlQGcLIMiGtLKpsDbqfrutue0lqVysNrl80NK3e+SH4+uPhnkGMD75l/OUntTlHJ2VS37K4Yxk7q0W096RAV1wVKreVXngnQTq+7EAnILdlY5T73ei26rW17oumUKjUVYTfPrexsb6gqtMSOW7aC6/TZno8AyTZh7ZyDVe1Y7rNvbeUswep8i8tQpOO7O9pubqRVNNVtoeVE+re94hlJRLNZy2solsTt8z6pVsGJNHfDdgVWorm+VgS7ReNWFyg1lm9olEdsyj3Erp3UBUoAzsoQf5u9mZ/Y9QhKSTL+/8uhZSVS0HxvK7mI393w2mNpBeV946yurnHN1bfuaHshISEhITsjNR7nrb9ynAuPr/C9//IM+ZWyFwH35XO88OAit/z0Fex/3XQ4YBsSEhIS8mOFa7vc9/88xZkHFkDA63/+GFe8JbhpQEhISEhIyMtFoGnMhw8fplJ0cV23zU2pVaBUpzJnNVyVDMUl0jHJs+6oZGTthotSHTuuYcc1olGX4Yx/p2ndUUn4DHBcfMomt1pbz0+g1DojtrWzu9aP2vbi6lO+bbnjsPfN44xf05wR2RiU7yFQakUJmNBgVzxhRlBXlvKqyYVvrWAHnIGeny9z9mtLgQRK4MWoXU6x0fjVwxx+/67A5ebvX+X0lxYCl9t71yQH3zUTuFz6QIL0gd4zwntx6D2z7H7jxPYrdmDm7MC/+YvB3LIDX5uxMYOrf2YfielgrhHGkMbkdenA7mDpAwmu/si+wLF0m6fynPjz84Hvhckb0gM5Gw1Kfr7M2lNb26/YwepTW1z87lr7h9t14gmF1adyPe/1fraypVWb0qrPyawJARoOSh0oitt/3+qOSy3LVUPhwNtGSIy1/OZ+AqUWNyWhqShGRyRObXCz4aDUSW25GzU4/4JGPtsRcVdzVOoUKNWJKy6jhk1pSjZclOpETkcbjkqtAiUAxRYYZRVFcbklYnH9bkn1ryeRtYG6+jfV/99KKHzzc4c5PZ9DCMGtt4aDZa9Udu3aRSqV4swp715pdVNqFSjVmYlkPVclAVFLoLrt11HdUSm/mmy4KNWRhovUHVK2i9FDkFN3VDI6qpiiq7Dg6g1XJD+BUqujkl7yGaxvaQ/pRZ+6oeVQEo7J5Fz7Z3VHpVaBUisNV6WSj0CppV3o+giYrJLErp/6ABlZuQulwC6BAJunCgOVKyyUMXOXb7b41I0jgZ/dri25+N1VKhvBhENqRGH3GycCO4kqWs25KWBbIZLW2f2GCdRtBBWdSEcGdnt6Mbi2xBlAjD56xRAT16YDl4uPR4hmdiambWXyhgwjh4M5l4pIhOUnc2yda97ToiauUZOJhotSW5nafTx96yiJOZ/t1Z7dnQKlru/xi3drdVNqjUmTUFh1sG2luQ2/NkJNRF1vQ7gOrF9wMMtenVKvo3zbFy24QmNzwcVuvYVa3ZT8HJI0FelCpaoiVZ/l9X2rOyi1IFoirrsESo2dkrXlzf0YGnIZGXURLXWmn0Cp1U3J8XFYU2pC+LqDUid1R6XNqMZFnwi1uqNSp0CpsZ+W98yLj5QaLkp1nlqabjgqtQqUAKSlIW3veEeHBdmvjWPeqIMEUesCEA6eCO2mKGe+OoYdF1w4VwnbXSEhISEvEbuvn+ADv3sHN3zwYCMCrpSt8q0/fIIv/9YjbF4MI+BCQkJCQn48sE2He//d45x5YAGhCu78J9eGAqWQkJCQkFcdgXrejx8/DsALT3mzTP/B1MN9o98AEguSs8UIJ/Pds/d7Rb/VSc8q7NrVW+jjJ1CqYyToa2MPtAuUgPkHt9g45R2bEMJXoNTYthCNGa1m0capBJ9ZfOSDu5i+JXjMzthVwwPFQGlxFS1gvAbgXSUBiyma51IUdHup3XGu+NBc4HKVDZPcIDPJB2T9ZI7VE8GFIOn9STIHgsfLrTyRZeNk8A6VmVtHBxJFDYJiKMy9cZzYeLDBK6tgs/joOtWATgfRtMHYVWm0gAOPpdUqi49tXDbxVmltsGtz1+vH2fPm4MK05Ews8CAu0C322uEsQ2NY860f+uZeKzB1fJhIuv9gV9e2kgpXfmiW1FywQXGhgVlwcEzp1dv9HJSki6gN9tkVOP9gidJ6S/3uE+3WtutxA82QKJr/MfSKfgPYZVnsH+l/H3QKlABKIxYXr97i36/c2fhM3hil8ri/cPOLD17D5nVJ1ucjDA8Po/SKogl52RFCcPToUU6dbLZXRtRK3+g3gMezM8xP2lQi3ddhr+i3Ovtsi9E+aaadAqU6ChIV2SY28qNVoFSxFJayGlJ69YXUegiU6gjQCiauC5bZ33jNj+iIxuzxZM+oXT+BEoAWUxmaiwUSKNX3N2isWaPoDp09WtFiKkYqoPodGD06xPC+4G2F0koFu3h5nHVcy2X9ZA47oJOPoisM700GFhvZJYf153K4drDf3EhqZA4lL1vcW3w8MlCkYGGhTO7CAPFrU1HiE/0d2fzInS9SXNq58E5Eem9DbPd+B5TWeov0ewmUVEMwfV2KyEifdyxNaxcoAYoKkaTwfvNe0Wu+O0LXddJXoFSLfVNU71/3vql9330jwyrxfgnQPdoC6QmY2NNHoNQDxxUN8ychZV8HJeHKhkApX1ZZy7dvS+nj2AlevJuOpJc9WK/oN6Rk/4ZkMtbfQatToASgzW6gjuX5SuEqANxZleznRpEdQioZF5z8izT2jMrpUzrlsuTgwYN9txdyebn33nv55Cc/yR/8wR+83LsSEhLyI0AzVG54/yE+8Lt3sPuGZn/K4jMb/M//7QEe/m/PYVWCO4+GhISEhIS8UjDLNl//N49x4bEVVF3hrb98AwduCz6ZPiQkJCQk5OUmUI/9PffcA8BDX/VGr3775Nv57ZNvZ2Sqt1ijOlLvqHNROvKc4msOdlLFTvp36K6fcXjuyd67KHUN6dMZO7Zf48AtEahUEf0GX9Xu7dbFMdK2vc7aHuWl4zZiihYe3mTj+Y7eT+luO8i/8kSW7OngcVUjh5KkZoMPSBx53y7GrurXO+2DAlf/zD7Grhjaft0W9KTOnjsniU8EExNYBZv8QilwnFb+UpmlRzeCFQIyh5IcfHfwRlx+vszW2eC/3blvLHP260uBy22dLQ4UFRfNGBip4IKVQVAUiI0YaJ22adtgV1zWnskFFg3lLpQ48WfnAkfbmDmbtae3AsfLTVybZu9bJ4MVAvIXSiw/1mfEvwfltQrF1f5iAj9mbxtl4pp04HJXfnCOyeMZ748dOCghFBQNjrxnhrEjqY7F/WKbFIykQeZAAiPpP+AleoiIbBOWfpijvG72Fgv41Nl2yWX+gS0qm3YtMqXHj6+qoKrIWgWk+Ont+gwgyoiBKFtMTTkcutpn/xM6dqJ3+dOuzolLUfwezZUpm8qUzaNPHvD5Yu//jqXaI0TV/1HoGicXwN6/8qKd8tkqc3NzPfcn5JXB8ePHOXmiORvqa4WjfK1wlFQfoVLK8OoO4XOpLy5lELqL0H0WCsGpapRVrXfbydW8f50ciJiMmzZ6XvouryO76geJIrz7Wc87SEX4rOOhFi2kIrCqsLHcnVCklKq+bTsAUShhrZbYPG/1jLkSmv+O6zGV5HQERQumPElOx5i5ObgYfXhPgumbRgKXG9odJ3MouBC6mrWwBoiJy10oUR3AuWnsqmESU8Hah9KF4lIlsGuQXXa4+N1VzHyw43NMl+JyBekEEykpukJkSN+pzvdFo0bVns/SflS3rIFi8Faf2hpINF9eN3d8rSjxOKJ2H09eM0Q003xuKqkkSirZ91msZNLkFkxMn/hhEYuBrnv/OpCupFwUOP1ejw29q44xkgrjBw1EzHNIkn2ESjLevO4TGYXZYy2/naF7QqMe5aWuIaMRkqOCyQPd60hdRfaou6WmEBlWSYz0qdsN/+uouAVbuf5dBm5M64h5g2JBsJX1yjkRFdHjVnINBddQUGqCQMVnRTvW+4ayY6CXXY4oVYaV7t/cjnv/fBGCp0ZUFgr+K8ykc8ykc3xl+Vjb59JtNkMn9WY/iP5DC6XUvv9KSWI/7n326IPedXfNNdf0PJ6Qy89dd93FZz7zGT7+8Y+/3LsSEhLyI2RoMs7d//w4b/2VG0iNewJk6Uie+tJZ/sc/v58XHlpEBp2AEBISEhIS8jJTKZh85XceYeHEOnpU5W2fuLFNlBsSEhISEvJqIpBI6cYbb0RVVU48XOha1ilUSp7SSZ7yOuLMEcnNUxVmYs0Bgvha+0zoTqGSnjOxbYHrCFyjuyNWlJqD951ipdySzcUftEQDdA5am1bTDaM2KA2QORDj8LvGEErHQEZHedk6wF0TKrV2oEun5diE6DngP2icx/N/eYmFh9YDl7vw3VU2ng84sODCwsNr5C4Fm21dzVo8/9cXyV0MVq6yYXLpgXXcgINQigaJ6Wjw+LyqG1jkAp74J3Mouf2KPyJSczFSu4K7Z73wlUVWfpj90e+QD3bF5fm/vET+YjAxlRZXGDmSChzbNiixMYPh/cEdI+yyg9nP4aPP9oyh4AOI68/lB4ptO/PlRRa/H7x+WPz+hie86zeyWhMn1XFdOHffKlvzrfXtNuUBM2/z7OcWyF9sr/+EqvQUKAG4NqyfLGKXfOqHDlFpa4ejnlA8wVHrwGKnUKlj0FG6LrPXxNn/xtp93hLfIkwL0eGoJFucFdbmJQtnm8s6xUmRze6BWs9ZUKHiKiTn2ztLK1Pt112bUMmFY0/HObbpncvPrF3LZ9au9Q7p856Qsjyu8uCf7qEy7h3j3i+sM3+qTKFQ4I477ujal5BXFrfeeisnT54km+2+7juFSvevHeT+Nc+hYbpic2SFNkHO4lKmbf1OoZK+pmHV2i1+jkiRzeb93SlWumTp5Ey1bXkrRtHFqIkGWoVIu0ZtMkkXPd/eLuwUKqlFq22ZorTftkq+5Vy0tO1acSxJacPpytqVhSKy5qIkNK1LrFRaKXHpwbXArjrl9SorT2YDlQEorVXYPN3d1t6O7AtFVp8Kvr3CQpnSAKJYNaqgxYIJk8F7nrpWcDfD2Kgx0PYGQdEE8YngwrTKpsnSY5ut6aEvKfn5EmvP5AKXi6R1IkOXR8QOEBuL7MhVTIk3xSJCU7FKTuO+U1Id7e4OoZJIJb1/ChiZKCLa7sYkYn3a0dEIrhZha9HBMfEXCrVur6V+qeRcFk+7bXHAnUIlGTWQ0Vo7oSZEqhZcNuYd32NpK9vxnlvIKWxc7Kgv9eb2OoVK9b+3ViQrFySyw6XNNbSGQEkKgexoB1ZclXLR/z5wYxpuzK+NK9E0z9nIaREvdeqP3I62v+667JuwiEe8G8iOiYZASTUlqtn+BXasvjW4UNYpus3v6xQn6fnuY7CHHBwhcISgtNL+bjCTbr+vWoVK7kaK6JkRJjSvnf610m6+VtqN8Q3vOVR5e4TH75th463eDo58w3s3On9+if3797N3796ufbkc/P2///cZGgo28SgkJCTk1c6e45N84N/cwfXvb4mA26jyd7//Q77y24+SvRS8zR0SEhISEvJyUMpW+dvfeITV01tEkjrv/N9vZuZo8IlxISEhISEhrxQCqwKmp6dZPa/x2yff3rWsl6OSROGcrbPi24nZpC5U0nPNmb279kvGpqWvUKkX5kaV/FL7oG5fRyUAVaWwVGXxB3l/h5VaeenjwJHen+TgT0wHnslsDGnBnY1eBPkLJcxccJHF+nN5zK3g5apZK7BbDXiiDi0ebBAqOhph/93TxEaDzczPXyhx4VsrgcoADO+LD+SOMHFdmr1vCa5uH786zdixy3etXE5ioxFmbx1DD/ibpw8kOPie4C5YmUMppm8M7lCx8XyehQeDi3923T4+0Pbik5GBhFt2yfEX8WzDxvN5Kj7imb64kL9Qxip4g2V9BUrb0E+cBICikJqJtEe97XDm48yNQ+x5g89vUK/PezivrJ+tsvp8pe/gIbQLlACqJSgs7rzOrKQVNFyuyVRIaV65ulCpU6DUybHEIuxdh0y3s5vzkwnO/vQI9z54hPXbUnzjwSOc/ekRLn5gmM0HPwB4A1Yhr2xe97rXAbB58T/xtcLRruW9HJWqUZfNEbvhqtSLulBJX/PaMHHpss+xEHL76LZWrC2BJTsGv7cpLxXBRl4lX+7h/lGrU1oFSnXGdsHw2M72TRSaQsrokIqRUHq6JjXKbLN8JzhV12sLBcQqOpTXgouGXMvF3SYWyQ9FE+iJ4MebOZAcyLkpe6bgOeIFZOTIEPHxYFFjQvHaXkFjUNWIytiVw2jRyyOKutwM706QHED8PnZ0iMR0sLY2wNixIaKZ/nHArQIlACRsnq3syAVLtAiYjLjC5BVRNKNZH/kKlDrclBQNtEiPdoxfO6DedpCe02MvGuKkDmwTylvS/7v7uDE5ltfOaHy/3r1uL0elTnq5JzWXKySGJKoarF7RdJjd5aIPde9HXajUKVACL+13OatRNUVf9yRoCpRq30rJVSDAPAl7yGHcdJipNgVfdaFSp0Cpk4n0CrGptS5dv3l3lK0/SPPD/zBJdY/O8388zql/N8bGW2NkXYPnT1zdeKa/HPziL/4iw8M/nu+TISEhIf3QDJXjHzzEB3739cxdN974fOHEOv/zk9/lkf9+MoyACwkJCQl5RZNfLfGlX3+Izfk88XSEd/2rWxg/kH65dyskJCQkJORFEXgE/OabbyaXy2Fv+TvkjExtYSx1d3jOuwZ5VKojostFqZVOR6VWIyLXUBGW0+ai1IrUNah4y9J7dDJ7OmbYKgo4vbdtVQQbz+fbZsK20UPoVFiscP6+NaoFq91FqfNAOoiNRpi6IRNY3DS8L8HhD+wK/OslJqNM3pAOVgjPoWgQ16CpGzOMHQ0+W/PAO2YYORxs0KuyXuXMlxcorwd3ptKTWuBzufpklmc/Ox94W3bFwSz1vgZ7ce7ri5z9RvCYuIPvmmHm1sujqDeGNK78qd2kZoMNeuXny5z48/OBB3Id0x0onmbh4XWe/6tLgctpcRVlh4M+rZz/9jKL3w8eRbj/bdOMHAl2H2hxld13TgQejI1mDO9e7Xd4onthaleM8auHEIrY3kGppfz0TWn2vKmpLtiJQAlg5FCC8Ss66iIpe8dySgmKYPmpEstP94hn7CFQAiiuWuTX+w+SdQqUjChMHxBoBoiy1TPeLbJpoZpuzUEJdMVzAnBk81j6CZQeffKAF++mAXNZSLWPkH7swlv42k/O8vSvzzTPj6Lw9K/PcOGnR/mbv/kbotHoyzpYFrIzDhw4wOTkJPfdd1/PdVJqhYc297V9ZhmSUtIB4cW/dbootdLqqOTiXYv1O0NqYOREm4tSK64Gel6iCslYxEbtsMpwNdCqvQe4i7aK3OwtrOwV/ba5CltZUMpWu4tSK6raJlACSE3rJMa8dpfQtIaDkh9C07z4XzxxxtBc8Kjd1GwMI6BjjVC8NpsaCfbM0eIqI4dTCDWYYDQxFWXy+t7XRy82zxTYOBncxUeoAkUPLmpdeHid3IVgDp3SBafiBHY2soo2899ZDey2Gc0YzL5uNLAD06CkDyQZH2DCw8pTWTaeC/7b2dXBhHAXv7NGcal3G71LoAQgQNEFaibd7aJUx9DbBEoAZsll+dkKtikRkUh/ByVdh5rjUmJEZfxgy71aj17r53IUjxKfNEiOdd+rUlN7CpQAYiMaer+6QVN9Y81To9697sYNX4FSc/tKQ6wkBEztE0Rqp1mqoq9ASQrPyVjTYWQCNJ/D8HdQ8jCFwsKGJzbyw0+gBCCloFQUVPu4bknRKVCCYc0hqXrvV1pZ9ox30/MCxfYESr3oJ1D6yvIxJvUttJhJJNPtTvxfj1zHs+8ebr73C8H6exMUboyyua7y/e9/n6NHu8XGrwSklMzPz7O8vPxy70pISEjIS8bQZIK7/4UXAZesRcC5juTJv3mBz/+L73D24TACLiQkJCTklUf2UoG/+fWHyC2XSI3HeNev3UpmV/AJYyEhISEhIa80Ao+4f/SjHwUg/VfPNT47Oq9wYKkW4/ODDLc7ZUZrkWkzisXNegkNl72KydVaibkZq7Zxl6t2V8gkvHVHUzbXTpZxa4Myu/ZLELC6IADJ4Wskw1OArpEaVzj4Or2R2DFzhcrc1RrUZr7P3RRn9JA30zcxrnHgziRqrfNy6toEu29vimf2vznN6GHvBXX8miGOfngKI+V9z+S1Kfbe6TlwSMdh/9smGL/aawRER3UOv2cKLaaQv1hh4uph9r9juvG9+9422RAFGcMah++ZbcwAH7tqmPFjwzz9Z+cwCzZ775pk+iZvO3rSWzc54+3T6BUpDr13tvG9Y8dSaIYnmFAMhcP3zJLa7fXGZg6lOHxPc925N46z6/WeGCA+FWHuDRMM7/NmiQ7vS3jr1q6CXbePMffG5qyiw/fMkjmUInMgxcwtoxy+Zxat1mk8c+sou9/cdAQ69N5ZRq/wzktyJsbhe2aJjUXQExrTN42w962TjXUPvmum4SAVH49w+J5ZjOHa+b4hjVm0GgMn+985zcR13jmMjhi17zVqv1WaA+/0zrdrw+T1Gcav9QbZjCHvHCYmo7VzNtTmurP3LZNM3zxCfDzClR+a42iLuGbkSIpD72uew913TjBzmyf0aZzvXQlc2yV9INF+vt8wzq7X186h4p3D9IHa+d6bYOzKIZYe3QRg9vZR5t7Ycg7fN9sQZ6V2xdrO99SNo+y9s2Xd98w0BGCJ6ah3Dmtit6kbM+y92zvfW+eLDO9NMH61d75j4945rM9mn7wuzb63t1yzb59msna+9bjqne/x2vm+epgDP9FyDu+eZKp2zRpJjX13T1Jer1DNW4wdHeJQ2/meaIiltGjtHM7VzvfhFAfe1dyHuTdOMHt77Xxr3jkc3uudw8b5Vjxxk2NK5t7Qfs3Wz/fQ7jiH75ltuBHN3DbK7jsnwAXXdL3zXbtmU7O18x331p2+eYS9b2m5Zt89wxUf2s2uN4yRmKyd71qE2+TxDPveNtVY98A7pxm/xjuH0VGDvW+ebIibJq5Ls/+drXXEVM86YuN0nsyB5sDbTuoILaoSGdbZddto43zvpI7Y/eYJpo6PNM5hVx1RExHtum2UuTc0xUX73zbRuF5Su2Icfu90s464OcPuFiHSwXdNMnLE+16hwtCeGHpCAUUwecMQe+4cbfneccau9I49NhHh0E+MYwxpnL9vg+Jqlb1vbroi7XvrOOPHvO+NpjUOvWOU2Ij324xflWTfm9JUthxKqzZ77hhm8irvPBhJhYN3p4mnvYGk0QMR9r+x+YK39/UJDr5lqOasAAfeECNRG4TMzGkceL1Xt4iqydxRwcxh73tiQzBzWJAYARnVyGRcrrjCom4rt3u3zdycjZ1QAZcbRsuMR2zKrsJiSeOKdBUFFysluOmsw/WFpvjoDdkqc7UZnhOqCY/shRdGYDMGp8bhqeY9N/HUCF968o0AFNfTnP3OzZhFb5//9Dvv5uzZs8zNzaFs5zIY8rIjhOCtb30rf/M3f0N23bv23bJB9fQUshav9r3TV5NZbo4ijy8bJPMqRkUwlFWZWjCIKV4baKzisr/QHKDdV3CYXFCRChhSMufYLCkqthCMuA77Ha/NJlWY1SzGVO8a1JDs101iwkVqMKQ77Ema6IrXsT8VsxiN2BhFiSIku0YsYjUxVCLismuk1hYUktldNqMjNUc2IZmZcohFvXWTWEzNebFBAOkxSWZcYlYFtiWY3K8Qy3jnIZIQTB5QG5rIoUmFzP7maPb4FVFK6xab502MhML4AQUl7p23obkoI4ebcT/jV6WIpb3/1pMaydkYbs19LbUrxtixZjty/OrhRn2sxVSmjmcajpCjR4eYvD7dWHfs2BCpmthJjShMHc94Ymk8sdDEtWlAMHJFisnrMgzt8dZVdG/duuApPhFpExaNHE4xvDeBntQa31sXrMbGIkwdb66bOZgkXX++CK/dlj3nRV1ERwymjmca5zC9v90taep4htiY95zSIirjVw03BDnDexNt4trJ69KNdpiR0pg6nkE1vIjXXa8fZ7RFyD5xTbrh0KMnvHXrLkapXTHGrhpGOrL22wyTnG0/33U3xuR0tPEMrp9/q+hg5qzGeam3lxKT0cYzDLxn6fCeRO18CyavTxMZrp3v8QiTN3Sc79qzUiiCqeMZohnDE6MX7EbbFTwhUeZg83k+dTxDbNS77qKZ9vM9vC/RJtSfvCHTaBdEhnWmjmcaAq/hPQliIzqlmuvWROv5TtbOd+2dKjUXb5s4MH51c109Xrtma1F6ydlYm/Bp7KrhRuRw4VKZ4T3xhvNWYjrKROv5vnKIoVp7QzVq5zulIV3pncPWa/aId80qqRSKJpi8NkWk9j4QG9WZvWWY2ZvSqBFBZn+c4Tmjdr5h8lic6LCKSCaIjhpMXBGBmi5kaFonMaqBBBmLMHFVjOiwdx4iSYWJIwaipu1J7YmS3uud3+KGg5SSeMZb14gLJo42o6RTEwoju5uioPH9Gom0QDUE0SRMHtRQa5qj5JjC6H6jIRIe262QHPF2UDNg8oBCZk4jmlZIZgRjc00xz+guQWrUExGpOkzuE+g186pEBqYOKGgpbz9GZgRDteaTosLkXoFRq/JiIyoTe0TjnGkRSAzXthNRmdpLQ7QUS8LUnsYukJ4RpMcktiW4eAYyYxCNe/dfNC6Z3CcQNUFqJuMyMtpUAU7uksSikkpVIWJIZiZtlNpzIT3kMJZxEK7398yoTTLmlY3oLvunTSLD3t+ZqMNUsikSnE1ZDEW850TcdNkbNdFr+zBl2OyJes8UJyrYIyxG8coauBwUJhFcnJhkxHU4UPaWrRoqhpRMmt73GlEL7ZkRjKp3nhIFhcmlppBsz5ZD8dI41fUhnKpG7tQcVq1tZWaTVM9M8XDJi1xdmZ9jfaH2nuoo/NfP7sdxHN75znfycnLffffxW7/1W+TzTZHV4uIiP/dzP8fP/MzP8OEPf5hPf/rTOH0mdoWEhIS8mhFCsOf4JB/83Tu4/p4DjXZscb3CN//dD3nmv62QXQgj4EJCQkJCXhmsnd3iS//nQ5Q2qqRnk7zr125laDL4BLqQkJCQkJBXIoGzHd7+9rejaRqnf/gse3/hGiqWRjEKZs0G3gVyKJRiYCqSakGQlwoKsM+22KoK8paCFfM+K1UULKcmcLIEpZL3guhGNCplCyFA0yQuUMk62DUTJdtVKOdkI06sUpRosubEommsv2CTv+St7JgulS0H1/VWNosubsuM6krWppozkbZNYjyJaqi4dm3dgt3mglTZtDCLXqeda0rKGyauJRnaHSU+HqGyYXo9wdKlsmFh5q3aui7ldRO71glqFWxK69XG/pc3zYYrjLRr61a8dc2SQ3m96R5VuFhhyyzhmi6Kpnjr1jpbraLdFqFR2bSQtY7g1ae2iA4bje+1K077ultWmxtKed3EKtpcfHCV9ZMGY1cON1ymzJyFU2l2XpbXqg2HoPr3Lj6yjl1xGTmSwnWbs5FK69XGsdqmt259VraZt8nPl7Er3omprJtd59Ax67+NRXmjOVigJ1X0kve3Wz+HNQt/q9h+DsubVaySQ2XTYv7BNYZmo1i147FKdlvMSmXTxK1tE9f7XiUi2Hv3JJunCx3n26RxpG7tHNbOi1W2KW+YKFGBW/Di8BSteQ4rGyZWyW47h/XrNJLW2xy3SuvVxux+p+LtU+OabYn0W31qCz2hNdet1s6h5a1bzVttkWKVjSrV2vmWtWN1qs17ofUcVjbMxrZc26W0YrL61BZmzsasX9+N821i186DWzsv9etQS6pEMwaK5onNqtnmsdTXterXd6l2zbqe+MYsmsgWkwPvXvDK2uX6urX9z1rYhsPUjRmkKymvVbGKte+tn+/ad1VzVmMf6uc7v1Amf6GEY3Wf77b7ZsPELFiN86InNfSU5p2vvEVlvXnNep/VzqEl2+qI4kIFWibx7aSOqGyYnPqrS0xel27cJ/Xr0LeOEIJK1qK8bjbcMMrrVeyy034O6/u7ZbUZKm2cKpI947mQ2FWn7bxUcza2KRsOSl594n3vxskCqqYgpSdANXN2Y/AZvHrLKrugKDimpLzR/D2qWzaiXierqlcn1wQXruVS3rRwTBehKlhFB9tymbo2zsqJEpUtm2q9/pYK5ZxbuxcEZtml0hZrqRDPaGCXcF2obLk4tVNhOSqlYstzoSgb105+DZbnFczac03mbMotcSeVisBpcUepZsFUIKa4VB1JwVKwUt53l1xBtcURJacJqgkXEbMxq/BEfpTMxgi7D8xDzALV5UzJE4Zl4haO4R2rqltEhvIoqstvn34nkUuL5HI5fv7nf56QVwdve9vb+LM/+zMKub2IdIyUYqEkqlAb+LV1CbgYNTG2abjYqiReUiksDbOsC9wYKLqLLSWllli2kiqom104ChRdBVeCgcRCYOVbrl8hsFxvZYl3jaoFiYOgIgTnKzqV2rVfdRTqt7UESo6CVasrHRcqpkArOiiKJDYGpUrte6VniunUtuM4UDEVpArCkVhmzWVTkaSjNrYJjg1oKq7jUC016xInW0GqeAJ228YsONiVWnvVkVTzjrdzuo5tKUi35Zm8Xmo8/6Qt2TpbpLTqVQJ2xUUozfrCzNuN+li6kuqW1ajTlh7bJNLilmLm7UYdK128dW1vXafqUs157baL31klORNr7APS+956XVhft45VtHFtSXG5glC87623rRzTpbrVvm7rHPHKhom51WxrVbesRpqmVWp/xlW3rEabSI0o6HGtbV3XbqnfcnajHebatfPiSvIXStglG9kyBl7NWzi1tp/ruI11wXsWCdViaHcc6UjMvN1og0qndl5q59uuupit56VgY5suQhWN36a5rtN2Ds2C3Xh2CkUQGdZRa22kznNoFlqfW973OpaLXXbYOldsCIAa57DlfFe3rMZ2HKv2vbWvsksOjub6ruta9fNS+96yTWHRbTgUmTmreb4d2X0OW3bCSGrYFR0WK811a8fjVJy2iDUzbzWuWaHW2kg1wZ5TcRvtxsb57rgXhCIYPTpEeaPafh0WbKQRAyykolAtum3XbKWoUc46OKbEKrvIWttVSqgWHFwjBmWJY0vMSvO6UzTQDIGMeeKjalHiKBpg4joSs+h6AqaogV1tPr9dG8pZF8eUSEPHUb2yUlWRgG3KhruCjOhULYFtSYpZgaY4JMeaKbSOVDHrxlGKglmWjUg4V9OomJBflDgOROMCpdK8I80KmLL2PqOqVMtu416xTVi+JCjV9CWmreDW2o1IqJbBUVSk7tWLVUsBHFwHsssS1/Xi4YSEasWLV4PaumWQunceraps1BGyvm59H1SNSlV616Hw3t+VmljI0RUqVYdYVOJKF8cVVKqicV5MFOwWh4qKKbBr3+u6AsWAuCUpFiSOAtWWO6coFKqaAja4UlB2lcY+Xqpq6FGJE/XWt8oCs/bfLoKiFFi1W9ISArOooka90mVFUFUEImEjXShqgkTtcnJUSTUiyUQ8Bzfb0Hlkcz+Ros4t138PLV5BUV027CSuiKDEm+8+RrSMonjX7DcKV3H6mefYt28f1113HS8nf/3Xf83GxgapVFMM+Yd/+IecO3eOG264gVwux7e//W2OHz/Ou9/97pdxT0NCQkJeWrSIyvEPHebgHbN87788w8Un1gDYOlvhf37iu1z9E/u47n0H0KMvPgI6JCQkJCRkEJae2+Br/+YxrLLN2P5h3v6rNxId6h+jHhISEhIS8mpCyAG8bK+88kpOnnqem770z1AUhYrVfGkr/LA7WsrIe52EQ/M2bod5k15udsRH1rvjnhTL4thxWFuEtZM+cVBWsxNdlH1i4GoxHdLyKes0t12P80ChIRxqjYbzjXGr9exKx2Hm1hGiaZ0XvlqzSO/MlehxmqduzKAnNObvW/Vd3gsjqSE0ETgi69VA+kACI6mz8kQ2ULmD75ohv1Bi+QfByg1CfDzC9M2jzN+3EigKZPzqYSavz/D0fz0XaHuTN6Qxkjrz9we7TqKjBrieeCoIV/3MXpafyLL6ZHbHZRRNITZuUF412wQ+25HaHWfi6jRnvrLQvPd2wK7Xj5OYinDy8xd3XggaDkMLD60HKjcIWlzlwDunWXh4nfx8ecfl4uMR0geSLH1/vXf85I8CnxjK9uX9XXa2jXjzQdE854jSptX1e4vW/elw+EnNRBi/KsWF+zewre1jdOoRcpl9USaOJTj5pfXmPvnFy7XEvomaI1/b80BrLpc+0S/12Dfp04lpJ5svkJ6DUjvlCYVbxitcLGm8oES6lm9d0fKcS3ZcEK7LR65+BDQaAqVWPjz+SOO/f/u0N3t/5V9/gxf+7nGef/55Dh061FUm5JXH8vIyU1NT3POb13Lde+cAGFabdco31q7sKmM6KsKFU0vjXfe6azXvAXW5u4NjwraZdB1OqAbGZvf9IlqaREa+s30jEba3PaPY3fZR7OZnWtFplKnboLQuV0vdFaCotd20ksnUQYXNRZdKfbKz3d5WE8XuelcVDiP7DDaezzWEkw1a2opupSOaSngOP1bRbhOQ/jggVMHQXJziSqUhKN4J0RGDzIEkSz/YbBOavlSk9ydxbTdw5NvMraMUlypsnesd7deJUAVjx4bZOldsEz3tpJye0LAKVqCIudRcnOHdcS4+sLbzQtBwP6qLiHbKyOEUZt6isLjzmGShwNwdE6w9u0VpxT9623cfo14M4capfNt+Ki0iiQYt71vKUPfy+vuaSCa6ltXfCVNTGkbGYO1c9zkR1ZoQ3yeGLZWW2BVJJe/6PudFS/0iIz4xbfXlfvFwLbNjpE/MmmhpN/vFsAmrddvd7Yj6cr/4N2E5aIa3C47oXt7aFquLlOqMTHjC0HxW4EZ8Bmk7Hg9OrfzUhEO5ItjKeY6ZAK5PxGNrnKcd9YTrtb3uKmNHuss7UQCJ4xMPZ7VcIk6su34aSZhMWC5PJjREsvtaOTDbfOeqi5QauPDeyR8CsGF3RxHeEj/d+O+v56/GdST/7m3f5sPv+2n+43/8j13rX07e//73c8stt/CJT3wCgFKpxLve9S7e+MY38mu/9mvYts1HP/pR4vE4/+E//IeXdV8vNydPnuRjH/sYf/Inf8KRI0e2Xf+ZZ555xcb3hYSEBENKyfnvr/DQnz5DYa3ZNkqMRrn1Z65k702T7X0VISEhISEvmqBtr1c7QduO80+scu+//QGO6TJ15Qh3/8oNGPE+ceGvMF6LbeXX2jG/1o4XXnvH/Fo7XnjtHfMr4XgHynn5qZ/6KaTjsvngKQCiuk1Ut30FSgBmqu6yVB/xbfaGWjHPVclPoATg6joXLqhkz/YYINC9DlM/gdL+18eYvt6nE7uOqoCqNAVK0D5orqqgqv4CJWh0ugIsPLTRFCiB15MvFE+c1EcHZlfdwAML4EVizdzif777ceCd0414qZ2iRRUO/MRMIw5tpwzvTXDVz+xtRGjtlPhYtBHjEYTTX1oYSKA0dnSoEdOyU0qrVc787UIggRJ48Wvz3w0mNAJY/kE2sEAJYNdtY0y1xJO8lMTGDfbfPU0kE2ymWf5CiTN/G0ygBLD+3BaLj2wEK4QnTgosUFJqQrHhYMdmlxxOfv5iIIESeCKeod3xwAKlvXdNtkXP9aWlk23vWycZu7JjMLCPQEkoAjWqcuQDM40ImJ2WTczE2P+2CWIZH6FPva70iSBzXYlTdbcVKAlVaQiUADbPVjyBUh0/gRKA4yA0rSlQgvZr0naQhu47cFlHH9Y4ehOkOm45rRbZ5idQAoit2JywIiwo/t89/JyGSNq+AiUUpadACeCzqzfz26ff2RAoAVSeW2ZycjIUKL2KmJyc5LbbbsN6aK7x2ZYTY8uJ+QqUAAzVQSp493pHO0TRXRTd9RUoAWyqKi9oOsam//1WM/noEiglVJdDSROh9W73uJrA1USLQAloccuoL/cTKHnbrrmUSVg81SJQAk9MqKmIYtlXoATgoGIXeggsdO8e7BIo4YnDp4+PtLka7oRoxmD65hEIOK6RnI42YnSDMH5Nui0ubCdIV5KYijbi1XZKZcNk8dGNwAIlLab6Pzu2IftCIbBACWDjZJ7i8s7FOOA5NK0+mQ0kUAIwEhpT12dQA57LQUnvT7ZFw+6UjefzgQRK4N1zq09nA0+QsCsOK09mtxcoQUMwrAyliCQVYiPt51Fomr9ACbx3Ql0jt6X6CpQax+EjUAKIZjS0VO/nvNRUZERvEyipOsxeqWLU3fZ7tREUBRSlIVCKxGF8TjSaYrIWC+wnUAJPfCQjKqlplbHpHst9BEr1ZekZlcxsj2tSqa/X3T5yHM9ByVegBI3XekdXGgIlgKUVla1cS73uI1ACEK7EjoqaQAm8irK5rmJJ7IjwFSjVGU86zGnd16Re0yT6CZQAcgWdsyP4CpQAzlwaJxMptQuU6smjtUP1EygBPFw6yNfzV/P1/NUALH6/Qna5yO23397zOC4XuVyOkZFmbPKTTz6J4zi85S1vAUDTNG688UYuXbr0cu3iZefee+/lk5/8JH/wB3/wcu9KSEjIy4QQgr03TfKB372D2duHUNSWCLj/+3G+9q+/z9bizsXuISEhISEhL4azDy/yjd97DMd0mbt+nLd/4sZXlUApJCQkJCRkpwwkUvqVX/kVhBAs/c/vNz5bfXwS2aP/cvgMxFYkakxyw3SVTLRbjeAaCq7hvzvFCyaW22fA3LLbXC7qZC/ZFFZspOu2uWS0YVpdM2L2vCHNzE1D3h9W9/I2pNvuJhLwjK49NaDQ4uE1LgWcbQ1QXK1SCTy44OJabj+tlS/ljSorT2UDCy0WHl7nhS8vBiv0Ihg9OsTQ7suT5WvmbLZeuHydGxfuX2Hh4ZfeMQigvFrh9N9eaosHe0m3t2YONFg5CHpcY+zKYWKZbpebl4KN5/M897n5wOU2zxTIvlCoZSH1qLd8ljmmi1OfxV8XWPagXt8pGhQWq41ou5YVeu+gIsgvVDj37TXKPsLUfnVtccnk/P2bbW4EnWX71tWq2iYs7SqvaQ0HByOlcPiuBLFMy7FoKsLsLZYVrosrYWMZyvn2xW5EQ7F6q/DsqEb1gqDi8wBxonWngG7uWHU4tO7ynx+5ne887T/r6IEzB1haG278Xb60wcLCAq973et67k/IK5MPfehDfP3rX6fSEq103+ohyrZ/R8VzC5O8sDzGVMXhYM7/AS5ViVS7l1lCYGfVNpeLTvSCRHYsrrqCddNrb2kViduj6aUXHGRLlGHEkMxN2ai1+DqtaLct70Sp2o1BfV9qYiU/ZKHExlmz20Wphlut+tafZsFm6fHNwOJku+pQXjP7O8/57Ycjcazg7kTFxTKl1Z273AAgPQFvZePyPL/1hMbw3iSiz2/8o6SyaQ40IWAQzILF4qPrl217m6fzbJzKb7/ijwJJW+zyoPQUKAHK8BDKiKf0jaZVUhPt9ZtMJZB6b6GgjEd7C4UAmerd3l+9KMhne1+T0tCRHe+T0oWtZRfbBBmP9KyXXEPrEiC5jmy8W0lDw433tu2XuoJUFSzTi2XrWt5LgF1btr4myPaY61AXQPmxtS7IV7WeE27839+bbkiuruD2uc8dQ6GenDmetJnoEGM7hkA1e20bhAt5RyXn00/gREDpU11Xo1Da9G/Xa4aNZnQXjpRURufjVE2dzy7d1FMk/GhuD88XJxp/n3jgHCMjI3z4wx/uvUOXiUQiQS6Xa/z9+OOPoygK1157beMzTdOo+Ih1f1y56667+MxnPsPHP/7xl3tXQkJCXmb0qMaeOzOeWOnq5qTQi0+u8YVPfIfvf+75RrRuSEhISEjIS0Fuucjf/eETuI5k/63T3PXLN6AZl2cSVEhISEhIyOVmIJFSMplk//79FE4u4nYMGPcSKgGYLqzbKqbTvtn4yvaimZmDkJzcZnc7BqQ2zlrkduhg0jq4XVq3KK2ZPZf7llcE+942ye47Wtws3J29vOpJDWMo2Mz88poZeKAMYOnRjYFEMme/vkRhIZgbjJmzWflhFvdFDmbslIlr0xy+ZzZwuZOfvzhQ9Nexn97L+DXpQGW0qML4NenA7lKTxzMc/Xt7ApUBMLfsga6TQXBt77oM6og0ffMIV354d+DtZQ4lSc0Fd2K46mf2Mnb18PYrtmAVbE78+flAUTEAE9cNdk0OytbZIpung9/f8/etsnmqGCjezS65XHpwnWrWbl1h+425UFjoHkDfro6NT+xQIOY2B7OiGY0r3jtGbJuybe5JAI6ksOZQLdYu5h5ih65NZ02WLjRSRr3PerkP1LCjcGCiSira/3mReLpDqeS6LGoamz7OB3UeOHOg67NL/+0hAH7913+97/ZCXnl88IMfxDRNnvvWcteyXkIlgJIGW1EfV8fF/vdFDJdpxUIq/YUyrUIlWwo2TA210Hv9trK1wWv7/8/en4dJctR3/vgrIo+6q7r6Puc+pJFGF5LQAcMhARYCcdlgHowvwCy7xmvvAt6vzbLY4PXPxl/s9RcvXsCGNQZz22BbCAESEpLQgZCENCPNfXTP9N1d3V13ZWb8/si6u6q6stGFlK/n6UeayojMyKjIiKiMd7w/FmRyLUIBbSBiMWKS0b0Sre722zkoNSDATLQXBLhpmq6tcF11POqGrKxN6kTas9tQdq5A6niXFVmfb77gOcTrz8LIFb1EhtsoKduQWygwdde85zqJjYUYu7a1a1wngkmTUN8G33cLxq7t9+z4pBwoZe2nLSSgXXCwC97n2RMvHvDsIqqZkuhI0LO4LDYRZuwa93vrJFBqQNdZmSox90RNKKFiHdxxKQuUgOGdknCyxdhYES+1EjnVf9ZizG/nruTYkF5S2LK733Gq7BRZyMLiucq5O+etdzjK5iRrqabjFXe5DkIl2xItN/y0c18C0HQFLcKotULUtfeBPoeBPhunw/wEXIFSPbmSJG+JuuPdtbNCRrDSpIi1N5gyRgybYcvq6HYM8PBU4xze1hWr4ZqbYCseWG38vebYikPfneZNb3oTpum9H3qy2bJlC/fccw8rKyusra3xve99jz179hCrezZnZmZIJp8eJ14fHx+fZyOJkQi/8N+u4LrfvZRIrzu/cCzFw/9ynK+9/4ecemC25gLt4+Pj4+PzJHLou2dQtmJkXy8v/e2L0Tpt0PPx8fHx8fk5Z9Oj3G/8xm+gLIf5Wx9j/qGhhmPthUqSE6sBVmXtzV6zQKl5R6a+6r6cDkYEgaBrh1/ZpSqyeUS2aZdf04vlxJhBbLhcoHL4tipNrhgVJ475gxlSJ/NQWn+8im1XXTcqrJ7OsHK67OzSpUAJYPurhhl+Qe/GCZsYv7afmFcHIOku8kivExwJgR7vtpKRkaDnRRA9rHHemydIbOu8GNFMbrHA6uTT46wDMPvwMulz3q5nRHWGLukhsNHiaBNrZ7LMPbLsKQ+4oez6L/QmyNkswV6TsWv7kG0c0dqxenqT93Z+nORO76FwZh5a9iy42yy5xQIrm3B72v26Me9hGUMayT3Rxvqv77PauCvpYQ092Nk9CVjnAhIZCtTCHm3gvoQUVRejiRf1Eh1pXD1aJ1CqF78KQajfYPvLe4mNB9Yfb5nffWFoFRxSZwoUVupUQ00hONcLlGyKWcW5h/M4zno3lgY3pXJomQoD2yQN0eKaBEpmqoRZdrKzghIrKDE1CBsKKRTRs7Vxo5WDUr1QSZUMjkZ15tu4HzQLlCpuSuKRWQYHB7nooota5vN59jI+Ps6BAwdY+b47X7hjvjFcXzuhUtoULIYEst4xqUmg1OyoFFgSaEIREgoJKOn+AZgrCnOl8aV8vVBJE4qeoE1FpeFoNDgqGenG+ZHSBJaQLK1o2I5Az1jrjlfPnS2iZWsCnFIBVlOuMARaCJSanl+VcfvjYEJn6MIIetho6AOcdJMoqKlvCSQMkru8h9bSAhIj4k2MDiB1gWwTJqkdQhOE+gOenZviW8MMXtzjKQ9AZjbvinKeBvKp4qaEW5Fh73NRgNTxNPllb+6j0hD07IigBZ6eF4nR0RDhAe8uj0tH1yikvInZ9LBGcncMqXtrW/kl93vb0EEpEW+6YO2ZaRYoKUOvOiqpcLAqUALIrCisZhu3ZpFRvSjJ0AnGYHiXrE1l6vqOZoFSvZuSmdDRY43Pdr2bUisHJQDdqJy76Zgu3b/qfdb+X0iFGaz1vUqT64RJ9f+uHA+GFYm+SpyyurTNAqW6PsMxNRLDksHhujxNi7HNDkoVoVI6K0gXm87dGO19nUBJWpAuSFbzGrYp1gmU6t2UHNP9AwhrDmGtcU7YLFAy1gTGmigfU9gBhakUIaVACORc7TdZKweleqFSWtdYS7bvE5oFSkcyg5y5I8fyVJbXv/71bfM9nbzpTW9iYWGBN73pTfzSL/0Si4uL68p26NAhdu3a9cwU0MfHx+dZghCC7VcO84t/8WIuvmlHNQRceiHH9/7yJ9z6sQdZnfVDwPn4+Pj4PHlYBZsjP5gCYP+N25Ee3+v4+Pj4+Pj8vLHpN+jvf//70TSN6a/e3/J4RaiUON58xGEwVCIa7byg0fzi88QjioWzXRau/GJZFYv07QzSM9EkCGkX+q2OyKBBZGT9S/9Obh9LRzKsnvEufpi6a35TIbmCfSaBqLdFr2DSZNv1w0RHve16H9zfw+7XjnluMUOXJD0vellZm7WzWQpr3haG1qZyzPx4E2KXC+Jsf9Ww53wLj624zkEeyC0UeewfTpGZ9mahn50vsHBodeOETYT6A5tavNoMRlgjOhr2vHiVmc2z+IT3UCVHv3WOMz+Y85xv4bEV8h5D0vWeF2Pnq0c8X2ttMsfsg97b5OpkxnPbigwFGb96AD3U9JBu4FA0fFmSna/p7PbUarF77Jo+hi5NdOeeVEaagmDcQKvr3zdyUALILVucvnOJzEydA5PjbBjizSoIZn6abRtycp1ACZAaJLcabGiK0OTEEOmB/i0CU7nf20YOShWKtuTRs0FWcrX07cK7VVA5wZ50iaDVuDBXCfnWykEJYPne48zPz3P99dd3VTafZx/veMc7uO2221iabP1CvCJUeuJco3jcsBX9OYWUnR1X6oVKaaVxwjZx6K5PrwiVwjmHvrCN2RRGrl3otwpSKCJhh1YWNO0clZQDa4tgd+qHyqHfKgIlgMKaxdzBTHfh1Or6GGlIV5zp8T1Rz/YovXu9i2pHruglNuZNjK4HJQMXJDA8zg+LaxbZBY9h4oDVM1nXYcojgxf3EOr3Nj8pZWwyM95DEC0+vsr8oyue82Vm8pQy3twoKyIxbQMXmSeLQMLAjHkXwGVmvIvLCqkSk3fOe3ZuKmUsclnvGx36d5mEerUNHZSaWVtQFHPUhEkdwr9VsIuQXVVVwWOFdg5KFaFSfEAQ72txvGM4SsnITkG4r3OnqJraUDAEw+MgA6Kja1Izmg5mAKCWr5ODUoXlRcHiQrOjnOoYoh0gY+lk8h1cnVrkDRoOAX3jduU0/aTv0W2Sho2edfvyjRyUKixoGieNxu+2VXi3hmtnAgQz2rohqhLyrVmgVOEnNx9nZGSEV77yld0V7inmpS99Kb/3e7/H9u3bmZiY4N3vfjc33HBD9fjDDz9MJpPhyiuvfAZL6ePj4/PswQjqXPHLe3nj/+9FjF5YG/QnH57n6x+4iwe/dhSr6IeA8/Hx8fH52Tl+zzmKWYvYQIjxiwee6eL4+Pj4+Pg85Xh/q13GNE1e9KIXcccdd2CtrqDH17u1KN1dtBJNL/PGwxbLRYl1pvPiUP1ueQApQTehmC+//NU1hNXmx6BlIaTk1D1rrReo7Q4vQh2HwQsjKEuRmW4dlkgJybo32UBiawi7aLPmwdEnO+t9UQjg2LfOec6TXyxy/JZznq+ZOp4mt1TwHMrrzB2zWHnvYSjO3u1dtAWuc1NxzaLkIcSZlbcpZby/VIiMBJGaYG3qqXflMaI60ZEgy8fTnr6DyTvnn7pCNbE2lePwVyc954sMBZG6YO3sU1+PelgjNhZi5WS6rXClFXbB2VTYvNh4iNxSASvr7RmY/Umq+8TlBfSV01ke/9okVvOio5B0ajRzj60SON2+v2rnxnHy1lnERmHQmvI6RcXRm2uhqroRKLkZIT3dJNqSGyzQSejfGyJ1Oo+VbxprpIZos8AXGdAZuTBIdsmm0K5JtrB2z6Tg8D02ttAQ2NBGpOSYroNS+V8EdchbtbKEZx3Wtra/t+gjQdSuAttyDiu6JF93GXNObytQAoj/2xmEEPzN3/xN2zQ+z25+8Rd/kfe+971E774Grmv93OYsA0cJZN3kK2TBcFaRMqEwH+iosTFTjUdNFO7TJ1w3JUHbUFZGRpFHcHLZLUMzeq59XxS0bYbjDtOrgmKLKYrSBEpKRJOTmtQgHIPM2Q2EnbpejcWobCima+dR+e7mRLmFArlNCHlSp7yHewNYOLSKlfc2PyllbKbumcfpRoBVR35pcyHiNFOiBTXPQiUrZ+NY3sZGoQmCSZNCqohjPfUhNgIJA8dWnuaUdt5h+v6lp7BUjSw+7l3ALiQEewMUVoqe28lmCI0kcJRoOdde555Uh1VwcCIRSLV/BpxEBFGqHdd096+YBydgdNxbocKuokWUbEoFKM01OQ2FTGjz3CpDQxka82ccZIupkDK0ami3dcccmJnTsHLt694J6Yim5yOXgZlJsISG6DCvcwKNeTOrgsxq03Gn9bUds3Yzti2aTYMbjrciEAElHPKFFqHldIHTZiNDMmJjS8HMavtvrPl9AsC5go7EDQ0nLKCNSMkxXBclAEMpLEDVz0GXTRhq/5w/PDnOlYElzIIkH2mslLlMlAfM1gKlYrrIkTvn+OAHP4jeQhj/TPH617++rbPTJZdcws033/z0FsjHx8fn54CesSg3/D9XcPK+Ge79x8fJLhWwSw4PfeMYR394lqt/9Xy2vmBo4xP5+Pj4+Pi0QCnFoVtPA3D+9Vt8FyUfHx8fn+cFP9M23z/5kz8BYPFfvoWeWT9wJo64/1WiPhSI5KeLAeaOuJd22rywNFLuTun68G7b9gvG9rhpRbZQPr7BLlRHVi5boxKupzn8Wx2T96Q49YPldceV7aAqAqcWO/f7L4iT3B1rG1qpHaPX9JHc7T2EiNTx/C1uRhRVTFusTXoXkVhZx7OwCVxRTmzMe2iO7a8YpmeHt3pMHc8wdZd3Mc/A/gSDFyc959vx6hF6dnrbFR4ZCjB+zYAblus5xsBFCYYu9V6PO28cJbHDWz1GR4KMXzOA3GCRpZmVk5lNCb62vmyI3t3tF+BaYcZ1IiNdOp019TGtBUq0djsqh2grrlisTa13phBSdAwXVMoqiqttFnTqwrs1fFzePb+RA1KDAEnC1gNJQn3GuuOqhViocu1In8HAeSGMUHM4k7LTXn1fXkHTWJtXHLltjcLa+o6rPrxMc7hQAFt0blcV54Hgkpu3N+Kwf6JA2HQaxsLY6fXXFrb7ByCOBbitz2C2HA7FnNMx59xy6afXt53AEyECPynx0EMPsX//fnp6ejqW0+fZSzgc5m1vext/93d/x9KqQSq3fpw8Oevu8HWUqAqFVk042CsozLuuPEpz/5oJLJafrXJ4tyAOu/UC4bIqKZAqP3Mdpzei7L7UGF7ILIuClCZaOiMVizA1KSlaEpqOa5kSWqZULltjf6ab0DMk0APunLDVvFBVwsDVLRKbEUnvjsbnRegtXFNa9DOijbNTO+y8sykxSGGl5Nm1Bti08MSM6Q1Od90QGQ4yuN97WNmlI2sUUt6ETZqxOZeoUH+AgU2Evu3ZGSW2iTBxz3akWa5HjyEIw4MB+i/wNqeRkQiJrUGig+ufrU4CJYDllEk+TdUNrR4VDlRFRvWuQOGEoH+bxAm413MCRvX/G/I3OQmZYRrERtXjLZ71+rxKynURvjvmDWiogEYhJ7Bb/IBzDIlTdlBa78YkKDg6IFo6IdX/Zq6GRheqqu5pON5ijubUXS8SVSR6GvueqkCpRfdSKXcsokhEW8yfyvMbaSlkk8DQ0eFsWmd+rfUcyjEETjnspdbwE1YBgtIGfZZTMdRacdNttSy2lgWrjlE7bs22cK2re4lxf6GXxeFaAeYyUeYy7m/OI8uD67I+vjjMTz8/S7FY5Nd+7dc6ltHHx8fH5+cDIQQ7rhrhl/7iABe9dnv1N0F6Psd3/9+f8J2P/ZjV2e43rPr4+Pj4+FSYO5pi8fQamiHZ89LxZ7o4Pj4+Pj4+Tws/05a+a6+9ltHRUc498SiOY6FndKzIxgsjFpIANrp0sJyaWKn5pWUzs6cUVov1jMqCVNVVqWlH/NilEQIxyYk724SU0jSat4p27XzS5Kh04jszOEXvC0qBqIHl0c1HD0rO+6UtnL13keWj3YfLigwFGby4h5Pfm/EkIErujqEFJAuPdR8yQw9KJl4yyNxPU55CnA1cmKBne4RD/3Sm+wICx28+RyHl3fHGjOpYecfTrv4zP5gHZxOLhwUb5dG4KXUyQ/rsac+uVKNX9xGIG5z8zoy3C26Cnp0Rhi/r5cg/T3pyKTpz+/zGobVaYOdtz04KqeMZ0tOnPTsbmXEdK2t5ui+AI9+awvG4wNy7N07f7hgHv3i6c8Imkc+Wlw2Sns6xVAmd10UYtmDSoHd3lJmHVxr6rU7iJICBi3qQhmD2J97C5+x57RCpk1lmH+rg/NAkQDBDAiOsubfTwpVAKdVS8JSZL3H43+Zx7LpFr1Z2By2wWugxldG+kfYMw+AuneMPKayyGYmWLmBH3QXUdmFRUhnJyQWDbJGOo7Go6y8kDg5gbeQkVSbwhLvAXvzBLViWxfvf//6u8vk8e/md3/kdPvnJTxK44xB9119EKheiJ7SBiFgIdzm3LLipOEgorbF9NZNHMGkb5FqpkioflbthM13rj3WpmIiXmEnr5EptQrVpAtHgUlLv2tG5b693VCrm4NzDuVbmlm7aTFPdVIRKQrnC30LjQoLQDVSryWaZxPYI4YGAZ7ecxNYIVsFbuDJpCGLjYdLncp7ESpHhIGZMZ/lo2lMZhy5JsnwiTdqDs2F6Okdm1nsINiEF0hCe7svK20zdPe957FeOwi55n6/N/zTVtl21Q+qCocuSmxJhbYaB/QkKKyVWz3S/IGbnHbcePbp7KVt5EsDJiCsknz+YLs9ZPIj7EmGkpOt5lzI0RMkmvazIFDtPKpsFPsrQGNiiWJ1XrC2qjqHQ6o8FQhBLwtK52k/BbsKoReMK24JcVjT0g06HEIFCKHpHJSspRakoqteqd5FqRTgGyX6YmhQdu1WnSRClaVDRbLZ0T3L1QeuYX5LrNOpqwzDQ7slaNceKOKkVW0MlVoXGglX7vvUMWJFK3tb5JjUducEY4xarLtSno3Bk2U2wCx5fHEbZDmf//ce86EUvYmysc1hlHx8fH5+fL4ygzpVvPY/dB8b50ecOce6g6wQ/+dA85x77IRfftIOLXrsD3ePmOB8fH5/N8vjjj3PLLbfw0EMPMTMzQzwe54ILLuCd73wnExMTHfM+/PDDfOlLX+Lo0aOsrKwQjUbZtWsXv/Zrv8b+/fvXpS+VSnzpS1/iO9/5DjMzM0QiEfbu3cv73vc+BgfXi/d9uqPiorTzmhGCMXOD1D4+Pj4+Ps8NfmZblg996EPg2Cze8V0A9IxAz4iqi1I99Y5K40MW5+20qFfJVJwkKi5KDXl1STojKWRrLkrr02jrBEoAa3MlVs6VFwpauF8AVcckVSdWGro4xvbrejs6LgFVRxJl2+sFSl06Kp28dYa5R1IbpqvHyjvM/GSJzKx3hyPNlBhhb8qQyFCQaLcOL2WsvIPUhGeLyrmfpjj6r97D2eUWip7Dh+hhyd43TZDY3mIHbQecouNZtAJw6vtzrJzKeMvksKmwebmFgqcF0Z+FYtpi9WzWc504lrOpezv1/VnWPCzKVfAqUALYecMow5f3ec5XXLE839vcQ0scv2W6c6IWfYqoD8HUwTmp+gcEegwS2yMNYruOAqVyXj3g/q2jjYNShdlHVlg906G/aiG8KaYdjn17nuziBsq+Ftd2irgCVKl1FiiV+/jEhM7Ol0Zqormy8LWtQKk8nuQKGitzNYFS9bTpQluBUnCphINkLmfgtHB+iZ12GtyTKmzVS1wbzCEdp8FBqR79dNB1TyoLlBzH4uyjP2FkZIRf+ZVfaVMJPj8vnHfeedx4443Ev3e66iaWyoVI5UJVF6V6Ko5K0lFcUCjR2+QgVnFVqrgoNRyTghWhoRA1F6VmRKNACcByYKUgsZyy21e6dT9YcVQyMu7AIaViZNQmGMR1IengWKSkdMVKmfw6IUk7R6V6innBzP2tw6JVHZVauChl5wqkjnsT/wBIUyA7iBBaoiA6HEQPelzgUOBJEFJm+sElMtPe5pROSW3K7SmxPcLgRT2e820mzFt+qcjS4e7F/PXXUm3CYrVDOYrsfGFTGxY2Q365uKlwtI6lNtICriO3WGTpSHf1WBEogSvgUbZy5xqOg0zEO7ooqViYUEwwuldrnO7oWoODUitsw1g3FgNVN6V2IqKZYw7pjGx9vNwXrTtW1l055Z/THfOWHZQAQhEwm35OtRMoKd0tkwxq7jSmxXdW75DU/Hk+C0tLEtUi/GbFTalZoASwuiJYnJcbhnerd36qiI0cJRDKFSd1Eig5uvs3lrBIhOpC9hUroq3WeV03JcUSOllnfdn1THuBkrkiKUhBJiBbprFmw80W0Ail2LusGMi65ap3UKrnyPIgjy8O8/jiMACpe4+QXliuOk8/U7zvfe/j8ccf31TeXC7HP/7jP/KNb3zjSS6Vj4+Pz3OD5FiUG/7gCl723ksIJ935iV1y+MnXj/H1D/yQMw/NPcMl9PHxeb7wxS9+kTvuuIMXvOAF/M7v/A6vfe1reeSRR3jnO9/JiRMnOuadmppCSsnrXvc6fvd3f5e3vOUtLC0t8d73vpf77ruvIa1lWfz+7/8+n//857nyyiv5vd/7Pd761rcSCoXIZDyudfhUya4UOHmfu8F83ytah5L28fHx8fF5LvIzOSkBvPvd7+Z973sf9qP3w8tu6CpPZMZiKSBb6Yk2ztsnGbrA4OSDpa5dgNam3Zf3Qkr3hWy7BYcmR6V8qtTwMrhlaKEWjL+oHyOicfI7s90VsIzU3RAMXkQUCwc7OJK0ITOb59i/eRcAbSYkGsDxmzcQXLRgXdiqLklsixAbCzF194KHazmc+eEcmRlvC3ORoSCDl/Rw+vtz3oRREnRTehKv6GGN8av7mHk4RX6xxepLG7y6KPwsZGcLmwolOHpNH4WlIotPeFhAlCB16XkRcOiyHoQmmXnAmwPG1N3zlDw6nSW2RYiOBTl796KnfI7lLqh65fRt5RdgXTgoVVg5mWXlZE3otZGDUoXpH6fWf7hBXiEEqePeBEoAZlRSbCNwaEds1GTk0hgnbl/21J9aWYfcUqNjVicHJTQNZWjk0zDj8VEbHrJRPYqTy+0XW1sxaxkUlaDnQYN0l79bX1eY4y+KRT74wQ96K6TPs5b/8l/+C9dddx3fMf6C/8e6o6s8pbkw53SbdJcuXDUUQ5oNOqSsbsUygqVcxbHIDR0n2jkd1QmRHAfyedFgUqgVNu57NRMGd+gsnrYp5urmaoWN+1ItIFuKbIRuoErr85cyFqVNvHvbzHjsWIqzP/I2hoA7z9uMu9Fm5149O6PkFguenIPS53Jk573PGRLbIthFh/Q5b3M2qQvXOciDMCcyHEQPaKyc7v4LV44bIvbpYm3K+0YFI6ITnwixfCztSfTVbR3WC5SkIUjuCLM6maPUxXis4hFQinxGsXDaaaUTbIsdD5JM2OTS6wzS3OPRALLQWtBVMs0NXYmaKWRr1+nGQanC/HS9qhzsoI5oDj/bhGUJ5qZbhGgLdM5bkjpWun0lthIoSancn8othE2NeRuPD/fbFIqC5VUvokpFtiQpWk0i8w4OSo4BtilJeeyuBIqtlDitSXIe9mkpYDoiyBowfXKMwcGNXUSVrRj43hQTBw5w7bXXeivok0wqleI973kPF198Ma961as4cOAA0Wjn0OgHDx7k1ltv5bbbbqNQKPAHf/AHT1NpfXx8fH7+EEKw8+oRJi4Z4KFvHOOxW06hbMXaXI5bP/YgW14wyNVvP5/YYBhbOfwkfYKF0ir9RpzLojvQPLy/8fHx8WnHm9/8Zj70oQ9hGDUl/stf/nJ+4zd+gy984Qv89//+39vmfc1rXsNrXvOahs/e8IY38Mu//Mt89atf5YUvfGH186985Ss8/PDDfOITn2Dfvn1P/o08Tzl8+ySOrRjYlaB/h/dQ9T4+Pj4+Pj+v/MwiJYD3vve9/Omf/inmvT+g96qXEj9Ve1lqt3nJmC1oZAtttoRWFtBahNJyVgswrKMH24h5Ko5HTeHbzKikd0Jj+pGiu5jeQqikLMu9dvm6K6fzrNC0yNMur21XxQHp6Rx6wLut767XjZNfKnLm9u5320hdMnBxgpWTGc/CBjOuU1zdhBXQJjATOsUVb9cau7aP7FzB08KeEdYIJr1bYq6c2NyCktQl0hSe3IO2Xz+MNCTH/92bUEyP6GgtFhM65glr6CHNk7Bps+hBiRHVyS14u5YR1LA8ukQktkXY8uJBnvj6JCUPDgJSl4gNw06sZ1OLgDGdYI83AQoStr18iLlHU60FX21c2fSwhlNSHdthvQCplTPEhgKlcv+mh+V6F7EuBEpDF8dJz+TJzDa1jw6CiVCfwY5X9HPm7mXWpgrr0rYK8wZQyjmsTRewCsIdExy7pZOS0BrPl1l0yCzW1buuIUpWa6FSeazp7bVxdI1UU7fdMVyMFK5YMdN6YVF0WJQtrQnmaGMRAESmqlch3ydwnCKf/exn6e/v5z/8h//Q/sQ+P1e87GUv48orr+SP/uiPUH/wEoQQLMzVnEm0YOvOYGkDd6HWCMw1RXETzjxR00bLKrLItkIlPWPjaBJpO4BgeanFdXTp2jM1IbMF0DRsG7Ipp2X4KlG+Z2U1zgtVNktoKMzA+RHO3ruI3SQcbiVQqhCIGxgx3VNYNHD7WSE35wbkFSHdPs7xEObMjBvERkMsPuFNAG/GdIpr3kKbWTkbct5FUUITiA4OW63QQxqjV/Yx+/AyhZXuyykNiWzjhtcJI6JhF5yn5Xs2whp2yfEWhk0T6EHNkwAIYGB/D6Ws1dGVSgQCKMtClMMqCimQ5e9L9pRftirVcj6j4mVxkxA4liLfJK5xIu6cqpWYyAkZgMKMSgq59W1edXAxC/VqGCasLLYOn6bMujlAXT+k6WBpkoprmWjRRzmBWl5XTFSJk1Z2MSrPFZQmW4qNKuXWlYNtN9ZZxQmpXV49CKGQIp1S65yUVP38p6kh9PYrtIBkerb1eNFOQJTJSSzLdeYDEI6qlrEhf8M8XLCcbbyOYwi0osI2W+Q1XLHRsGOxIHUsmsVNLYsGgCbd2tdSGvR6aPxCsCB06DDHXkjVRD/JeBZ+dJL777+fL3zhC91f5yniM5/5DN/+9rf53Oc+x5/92Z/xsY99jImJCfbu3UsymSQajVIsFlldXWVycpLDhw+TzWaRUnLdddfxzne+k6GhoWf6Nnx8fHye9ZghnRe+7Tz2vGSMez53iOlD7sa4Mw/OcfanC1i/DF8Zu5e5Uk3sOmQk+MDEG7g+edEzVWwfH5/nCK3Csk1MTLBt2zZOnz7t+XzBYJBEIkE6XVuTcRyHr33ta7z4xS9m3759WJaFZVkEg96ibvg04tgOT3xvEvBdlHx8fHx8nn88KSKlj370o/zVX/0Vi3feSs+VBxqOaSXVVqgkpcO2EYvFFcnKmvuCMrBUqE+wTqiUX4OTD7Z+SyhydXmbXJE0AxITJsun8+RTdluxUfW6AI6DHpL07gwz91idUKZTXiB1Ise62CNdMH3/IsU1b0Iex3Ho3R2jlLY8iZT6L4gz/IJeDn3pjCc3ml03jZJfKjJ1V/dORT07I0y8aJDDX5/0FJLCjBgU2yy0tmPh0CoLh7y7S8W3hDHjBguPbbw7tkJmNu9ZaAQw92jKc/g7K2tz7FverzV4cQ/xiTBPfGXSc16v9O2L039+goNf8Pbjp+oA5IHsXIGzP1qglPXWPqbv9+agBBAaMIlPhJl9ONW1exvAwqMrLDzafXsCMMI6RlhrLRjqEDZy4kX9aKbGsX+faXm8+XxCCoyoxu7XjHDmznnS5zZws6jb3TfygiShXoMj3yxfqwuBEhIS20LYJWe9SKkDhVWLcw+ssLZR+ZrIL1tMr3YWDzQLlOKjOo6lSM/ZsJGQoy78Z2xAoDQaREr1AiV9rYjVIpb49Gx5+O1vKlfd0BKbdFibqJTTYb9RZM7QWCq1HrprAqUai3d8n6XFRT7wgQ8gPTvo+DxbEULwR3/0R9xwww3s+skW4i/Y0XDczutthUox2yFpO5wxtGq/Epzr3Dbmiu2ni+Za+/lQ1FQI2yFbKIdD6uCo5JSfSWk7BIPuOfP5uv6ljVCpwsq8AI+al8JKiYUnMjhKw0sHb8Z1IkNBzyKlkSt6yS54CxcXTJr0X5Dg3H0LnoQog5ckKWU6C0qaEQK0oHQdczwIbOYeTnWdtnotKYiOhcgtFFzBUpdsJtSeXbCZP7jiec6wNuk9pCzAyOV9LB5ZJTP91IfbHbwkydpUllUP4W8LqyV3TuOR1Im0G7atDSJQE2ZXhEp2wWH+kPudyfqhsEmoVBUolYkkBaWColi+rYpACdwxtl5M5AqUAASzZ0E0TRnqBUpOQF/npiQ193diKxoESnXoBozsgNlZKLTpBuoFSuAKg3p7bXRdMT8tqgKldlTKLaVibItiYRqymbIwaYO5l5IC01TE4orVFdFR/NzMUlpH867NZy0jqwKldjQKlBSJkMNaXrphSTu4J0FNgGRKRY9ps2RrDW5P9QIlPQNWY5OiJASnqDTC9hVizYXQB90KiBUV8SKc0RWqzTy8XqAErvPyka/fyf79+3nLW97S8Z6eLm644QZ+4Rd+gXvvvZebb76Zhx9+mFtvvXVdOiklO3bs4MCBA9x444309/e3ONtzj+9973t873vfa1iE8/Hx8dksyfEYr/7DKznxo2nu+8cnyKYKHN46zbcHfgpFGiIyz5VWeN+Jz/EXO37dFyr5+Pg86SilWF5eZtu2bV2lz2QylEolVlZW+M53vsPJkyd5+9vfXj1+6tQpFhYW2LlzJx/72Me45ZZbKJVK7Nixg9/5nd/hsssu63j+hYUFFhdrTtGbEU89Fzn94ByZpTzBuMn2Fw4/08Xx8fHx8fF5WnlSREpSSt73vvfxkY98hOzNt9Fz4csbjmvlRRXbEESnay+GHQd0vWG9t9XJq4lluvbWOdIHypZkU7R0XHIvXHNVyi07PHHzcuMaVJ3YSFktFi6kJBDX6T8/yupkltxiU14AR7kuSk2YPSbJ7WFmH0qt26HajrXJTbwRduDxL53xnC11MkMpa3sLUwakjqUpeBAaAaTP5jhz5xxW3lu+k7e2Flx0hcSToCQ6HiLSH/AkUtrstZ6ORasKCwdXWD7mIYzaz8DiE2ukzz4991ZKWywd2cR9efyuAMJ9Afr2Jpj9Seopv1YpbXG0lRitg0AJIZl5eAWtjUtAO4ckx3JYPJImu9DBVaKF9fj8YysYkfLQ0WGRrMHlyIEj32wKf9lJMFPO61iwfGJ9v9jSQclRIAWxURMtqJM63bRKWXZTahYnAWDb9G4N49iKdAuxZ4ObUtOAdeYRGxUsCzA2WnCUAnAY6HdYXBI4jiS0UCLXb2y4gBhaUwTiqmFZLXoa0ltbi5MAzPkCuQfvIpFI8Kd/+qedL+Dzc8erXvUqrr76apx/P8m58YvXdRN23m2zWtBCzTbubNNQXXdRwSW31UkUMd1hxao5h2zETFrDyDQ+c/VCJb1FGE1Hk8TiFkpBaanpeMVN0HJcF6UmQr06dt6mmFWITGPf0cpRSTmQW3L7QGG6K9yqWOroogSuu95mHPaWjqx5EuQAFNOWG27Mo+tN6lga2+Mcr7BS2pTgCHCbhIcyKqVIbA1j5WzPdeL5Wg7kFjYRY3qTzPxkCSu/udB5Xpl7JOXJLetnoZMLVb1AqYKyLIShg6pzUWpBs0AJINIrya04FLOqQaDUTE2gBBWXIhXQEOUwka0clCpCpcqYnU7VnaH8mSjZrQVKZbGkpUnm5qBYN+1V5f5JWM46gVKFXAYwtZaCnIojUnOZHQVzs7IayrKVQKmat+5YJi3IpKH+gVGt5kBCgFI4pnvvjgWtfha3FBEpBQISUYd0UWI1uT1V3JSaQ8MBhISiL2KTK0ryLe6p3k2pXoBUcCTH0iZWee7VyT0JXGensHJDB+bK89rAsqSQ7OK5KWjIokLV3fvcXILBwZV14qQK5+6YJHPkHH/xnc+idXzJ8fQihODqq6/m6quvBtxFpvn5eVZXVzFNk56eHrZv375hKLjnItdffz3XX389hw8f5l3vetczXRwfH5/nAEIIdl4zysQlA/z4G0f47Pid5QON6Sr+in8++S+8rOdCP/Sbj4/Pk8p3v/td5ufn+c3f/M2u0v+P//E/uP/++wEwDIObbrqJX/3VX60en5pyXz5+9atfJRaL8b73vQ+Az3/+87z//e/nU5/6FDt37mx7/m9961t87nOfW/f5yZMnsVusrT3XSKfTHDp0aN3nB//FfV/ed2GQI8cOP93Fespod7/PZZ5v9/x8u194/t3z8+1+4fl3z0/l/XYbFvZJESkBfPjDH+bjH/840z/9LsP7DiDl+lNrJYWwnOpLXJAcOV3e0bjRepeUDaKi4d06xYwim7I7L3YDaBqqUAQHpA6aKSlVQsVtsBM1M2/xxDemsQttJkuy9c79cH+AvvPiLB5exWqxCNeO3vNiBBMm5+5b3DjxurLQtSjCytqsnPQe4mwzLkVW3tnUtcD9vhwHT2KP3a8fIzuf5+zd3dfhuXs2Ud/A+W/ZQupk2pNDT6DHIL4lwvxPU56udd6bJ0idSDPz4+Wu8zxd4fzAbVNW1tuPCqnDvrdu49x9i55ER7GJEJopSR3vvl1JU3LBW7cydc+8pxCCi0+ssfiEN0GUGdXZ84ZxTt8xx5oHdwNpyvXOZhsIlABy860X1DuFcLMLorPwqs0LsvyyRX7F7l6gRPk5rjTFjfrrct7wgEHf7ghnf7xarZN24d3qyxzfEiIQ1daLlFjvnlTPqR9lkZ3CDrZYaArGXHc/UbJxwu3DTNYvGkbCMDpsky/orK0BqnN4N6PsUmMheWS1UWgSXHZaLzhWivzgd8jlcvzJn/yJ76L0HEQIwUc+8hGuv/56+i/cQ/hFF7RMZ+d19JLAMdy2tKZJ1jq0m2aUcNtoUFMMByxytkFRdSdSMjLuNQ1NUapbvFYbXH5+SUNmSu2nhm1Cn8b6JYW0oLTcvt8VuobK1QRGUhcktoZYO5fHyjkoq/twYEJ6M87ML3sPveqUnE05+hRWvYVfq0dooqNjTjPBXpOBCxNM3b3QfT6FJ1fOCpGhIL3nxZi8c96TUCnUH8AuOhQ91EtkKEhyT4ypH857KqNXV9SfhVLG+7US2yKE+gPM/NiDu6SA6EiI3GIBu9DY6FsJlCr07O0hlDSZfbyFSEwpVKK1IGLuhIMTMWG9fsnNamjYIQNZ56iU7AfDVMydE9hxE5lrXzd2NOA6KlU6maa21M5BCcCOGEjLId/msWwnUALIKAORad9wW4alU4JczhVBiQ4OZ/VzDSFUeY+MqJ23Q19VuW6yx6FQhGy2zn1qA4cjzYBEwiG/JNaJlKDZPalGoSQ5vWBQ6hCKr1mApAuFrUAhkCWFFW5ftnpXpz5sdBQn6S4kuFVwv8Nl0/1rIKO3FSgpy6Lw+e9y2WWX8YpXvKKraz1TbNu2retd9T4+Pj7PJ/699Cj/+adffdLOV7zQIm23F8srYLaU4uWP/A/MFu/RN8vbh17Crw699Ek7n4+Pz88Xp0+f5i//8i+54IIL+IVf+IWu8rz73e/mLW95C3Nzc9xyyy1YltUgHsqV36Nks1k+85nPVEMCX3bZZbz1rW/li1/8Iv/9v//3tue/6aabuPbaaxvK+NGPfpTt27ezd+/ezdzmzxWHDh1at2C7fDbNPadOIwS8+JcvI9ofeoZK9+TT6n6f6zzf7vn5dr/w/Lvn59v9wvPvnp8N9/ukrVpKKfnYxz6GY5ewD9/MRMxdiAnpDpcM5omZNuGZEoP9Nnu31xZpdm4pMTFcYLjfIpbOsecSRSThvoDtG1bs2l/ewZ/OM3Ghxshe943j1KMWgagk1u++nEz2Wex8ae1N9tilQUYvCpTLBruuj5MYN9n+0h62HYiz65U91bsfuzTMxNW1Hb67b+ijZ7u7GBwbD7DzVQNoIQ1pSkav7GHLgb5a2lcP0LcvBkB0NMieN4yih13xxPLJDONX91cX3Xe9dpT+C93rhIcC7HnjOGbc/RE6dFkP2181jBHRMaMaO189wuDFPQAE+0z2vHGcYJ/7lnTw4h52vnqkWobtrxrmknfvZOjSJGZcZ88bxwkPuffef2GCXa8drabddv0QI1f2uve2JcQl/2En0VF3AtR7Xozdrx+rpt3y8kFGr3bvVZqSPW8cJ74lTM/OCCNX9rHnjePVtBMHBhh/0UC5McCeN46T2OF+H4ntEfa9bUv1XOPX9jPxksFq3j1vGKN3j1uHsYkQe944jh6UmHGdS/7DbvbUlWn368bo3xcHIDISdOsw6tbh8BW9bHvlEItPrLJ6Ksuu14wysL9c3wNufQd6jFp9/0KtDnfcMMLQJeX6Trr1HRpw63vgoh523lirw+2vHGb48iQAi0dW6dkVJTLitpf+fXF231RX39cNMXqVe9962K3DvvPjDF3SQ/8F8cb6fukgY9eW61t30ya2uXXYszOCEdVZK4eWmTgwwMSBgVodvnGcnp3l+t4WYc8bx5GmJDwU4PxfnmDLy2r1vfv1Y/TuLdf3eLm+w+7DMPrCPrZdN1RLe9Mo/Rc01Xe5zQ5fnmT7K2s2pOf/8hZ23ujWaai/3GZ73TocuqSHHfVt9hdGGLqsB8eBpWNrDF6WJDxQbrP7E+x6TV0dvnKIkSvcNmtG3fY9dHGSgQsSbn2/rlaHW18+WKvvoFuHsS1hAJK7IiAVmVl32/vESwYZv7a/XN/lNru9XIc73Dqs9BHjLxpg4iWN9Z3c7S5QxLeEq/UNMHp1H6PX9DH30xS5hQK7Xz9G33mVPqJS324/NnJlL9uur9X3pe/eyZ43uPfTuo+opd356hEGL4qT2Bpi/EV97HnDaK2PuCjOzlfXvpvt1w8ydGmPW4dxnT2vH2H8miR6WNJ/Qawh7baXD1TrWw9L9rxumOiI+91seWkvF7699txvOdDH6JXueaUp2HPTMPEJtz/p2Rli92uHkKZk7xtH2f2aQcaudp8bJOx+zQCJrW7axJYgu18zgCwvhI1emWDk8gSBhI5TdNj96gGSO920sVGTXTf0oZXre+SyKFuuTVRFRMGYTmrKfQkYGdDZ9coejLAEqTF4foAtV4Vr9XIgSv+uAHpII5SU7LgmhBl1yzCw22DrlWVRkJRsv0QysKO8Az8K573EYPdVJpFe6N8q2XFh9bRsOx+Gtrj/b4bggh0FohF3dTAcVhSLirU191w7tpXYZbrPtSEdLhrNkyiH6RoOFLkykKXPsEjoFudFC+yKFMpV6HDRWJ6xrDueDholLo/nqKxC7s0t88Sj9zIxMcHv/d7v4fPc5LrrruPGG28k8r072T1TQJadG0dzNhNl0ai+YLC7VKSn/HIp4jjsLZSI2zZR22Fi3mFc1IQb22WRHuGmTazYbA8VMYQiawuWipKBQO0l1TaKJMr/NjXFlkQJU3PLkAjYDCctQqbDxECJsb4SiXC5TJpia7SIabppoxGH4cHaefv6HOJJEAZommJ4i8Ish4ALxxTDgyUoC62SY5L4kPv/C6dsgjFBICZB1wn1aAydXxP39UwYxAfKi/wChi6OYcY1zIhGuM9g6OKYu6YvBD07oyR3x6p5h1+QJNTv9oWBHoMtLx9k/NoBhHTH3cq4CjB0aZLIkHtdM24wfHlvtc8avjxZnYeBO6erzCGMiO6mLTuExMZD9F+YQDMl0dEQA/sTRMfcvlAPaQxf3otRHk+ioyEGLuqpnrf/gjjDlycJJAy0gGT48t7qfCkyHGTwklravvPiJLZGyv8fY/dNYwTi7nwpPBhg6LJkNW3vnlh1rBSacMtrSJaPpQn1mgxfXru35K4oyV3Ran0PX95LqDxOBZNu2oqYtmdHpDoXrNR3ZV4QSLh1KHVBYaVEcdWqjqvgzjGq9R3TG+o7viVM/744ia1hwgMBBi/qIVqtb7cO9ZBbh7GxEAMX1n4PRMdCFNfcZ0MPlus7Uq7vkSCDdfXdty9OvDzfSGyLMP7iAcxYub6HggxdWqvDvvNi1fmd1N06NMsOheGBAMMvqKVN7o7RU55PC+nWYTDp1mGoz3R/O0TdMvXsrKtvyvVd12aHL+9FaILcUhHlqIb6HrosSXiwnLbcZmVZPBLfGmbgwgTJXVGMiM7gJT1EhivtO8DQRVG0QLnNjgXpP69WhmCPVg2zpwcFQ+cH0IPudx7ZFqV/oiYy6ZuQRPvcf2sGDG8Bo/z4RuIwWJt+kNyikehxxztNUwxPKEolRXoFwlHF8IiDE3LrtHdQkehT5TpUDG8TBEPuv5MDcP4L3JBvAMlBiI9IHEOCcPueYMRNGwwrBne4qs1Er6J/2CE5UBMNDY8rgkmJ0gWBoGJkzEHKcn+YdBgetQmV+7HhEYdI1P3/QEAxMmYjggJHkyQSDv0DFUWRYscOm57yveohGBlzQ8YBxOMOA0MOShMoXTI45BCLK+IJxfhWh5ExG6MsUI0mHAaHa0qlgUGHeMJB6QJNU4yOWASDCk2W++ShWp88kLTpibv/llIxNmQRMBVKEwRMRcmCfNH97voTNslYOa8GEz1FQmZ5DhRwGO8tIYWD0hS9EZuBcEVM5o4hEcNNGwwqdphFRFlBNhCw2BMtMB5y028LFYlL9zph4bDDKKJV0uoWW7O1cc3AYbU8qQ8ph12qSGTJLe9QyWZboZZ2V7bEwIygv+AQthz2rtoEyuLLgbzDjryFs+w+K9tXHfrLDlemrYj8y0OkZmb58Ic/vLGw3sfHx8fnWUmOInOllSftL2V3t7EuZWee1Otm7KfPwd3Hx+fZxeLiIr//+79PJBLhIx/5SNfunrt37+aKK67gxhtv5OMf/ziPP/54gyt7oLw55cILL6wKlACGhobYv38/jz32WMfz9/f3s3fv3urf1q1bN3F3zy0ev9UNebflssHnlEDJx8fHx8enW568bRrAe97zHv7n//yfHHzkRwzuPIBRMrBjkC4JSo5AAsWSIJepOSrl8qBrguF+m8kZyKXBLr8nLBbKtvhl8mnlHpOCUkGRW3UQZQuKUt5x3T3KLwQLa3Z1d7sD5FIWpYJg5rEcuqGIDpe3RZYsN3yBFNWXibnlUtVpyUoXyS0a7HxlP7mFEtnFAla+9oI3u1iilLYRUmCXlBtOony4sFxEOVrZRUSQXSxQKodKswsOuYUCTnlHbHHNQmpFZh90XXJGr+qjUF4YcUrltOVwDoW1EvpSbYKZXypi2w6rZzI4lluGyi7nUtoiu1jbtZNbKlAqOzsJTbprceVWUMpYDeEwCktF7Iqri+OWwcrZjL+gH6tc/moZlosNm5AraaHssJOz3YU1CflUEVnngpBbLFZ3glt5271XB6xVi6Ujq9UFosp5C+vq0C1jcaUESrFUdr2JbQlXd7NbRbuhvgsrpYYyFFJF+vf3kF8tkZsrNNRhca1Err4Ol4sUVtzzLh1eJRAzsMttothc38uFqruQY7nlXz66xrkfLRIbD5FbqAn28svFupAd7r2VyrvAS1mb1LF0NVRcbrnY4DCRWyhQKl+nlCt/j45DsMfEjOoNTkC5hRb1XV4fyK8UsUt2VbiWXSxU69DON9Z3YcVqcPlRSmGWFzXtYjltsdZmtcX6NltwnzsH5h91Q5VZxXL51xrrML9UrJbBsdzzzj+2Qn6pSGxLuLEdLhWrIVYcp9IO3bzFFYvU8UzVXaqQKuKUFx2qact1aOXs6nl3v24Mq2CRPlf3vS7UnqNq2vJXV1wpYeds5h5JVdMWK/VdqKSttUOnznVi5VSGtaksCIFdVOQW6/uIErLifiIkucUihTWbUH+A8ECgWt9CCooZm3xd2LLccrH6HDk2lDIOyZ0RUqeyFNcsckuF2nmXS9W2hOM+n1b5e9SDWoNrSD5Vwil/b0KV01b6nqxDbrEIjsP8wVW0gNbgvpBbLFW/q1JekVsqVSN3FlctShmL+YPuAJBLWZTK79isgkNuqYQqV3hh1ca2RLl85fKn3fPaRUUuZaPKri/FNbvBmCqfsnE0we7rosw8nie3ZNXqO6uQhqo6P+VXHUqrNqDhWLC24JDPKTIrEj3gkK8fqzLu+IUQOI4ilwbLBtN0KBYV6YxWdW3I5QQlS4BwP8oUBE4etIJDURNk85KxuIUCUpbEcQTBZQeJQ0YTVXeaohKsWZLIjFsv0/N3kM/n+exnP4vPc5uPfexj7N+/nzcvpTkeG0AIQV530OoG5YyQ2JZEOgJLE6SlYNCyKQlJHq3BYCOrJFb5mbGVIGtLbEAJQd6RODjoQmEpQd4SWE45HI+CXElUujcsR1CwBLmiYGZZx9SdqsuGvmaTl2WnRAG2I8jXmQxZq+4i/Ng2wcwUFHK1yL62BYVs+SKapFQU1bFTKSguFaphdm0lKaRrC+2lvEKV5ybC0N1QUkXF7E/XMCIawqnNN0pZu8FQrrBSqo5pTskhM5OnkHLTWzm7IeRWYaWEVXbgdEoOhZQrCgFXhFzf7xdWS9U5hGOX05aLbOUdxFoJI6KT3BklPZ3DLvebylYN45iVtxtcgoprFqG+AEZUp5S1GtLahUZHoWK6VJ3vpWfy6CGtGirOLjgNYb6KGQtVcXNRbhmKGYtS2sKM6RRStS+ylLFqc0PljruV69glByFhYH+CuUdS5fqu1WE+VStTtQ6Ve59rZ7NVEVKlDqv1bamG+q7MRStOoIltkeo4VU1bV4eF+jln3bxdOU31XXAa0pbWrOqYFuozUZZTHU+sgt1Yh2mrem+qXC+VSV1zfZcyVvVeKmkrbc2xFZoh0QMapbRNKWs1zA3r69spueVHKYqrJdJnc4g6h5vCSqk6RtuWs64Ola2Yf9QNiRxIGG5aqeFYbnmdQgnQ3DYrrGp4t9ySTTHjPujKhsKag7LdEG9WCTeEmVIgBMWcwi4qQnFBbNygkHXnLG6Z3H4AwA4ZFIsOliVwDIm0LQo5yGcFRakTCCoK+dozVirWzqN0jXxeYduu41E+Y5Gad487pkbBUdXnD1Xue8pz5JLm5hXCLWMxqyiVp09OQCNnO1Q2GttCkM+rasTvIpJIwCGuOeTyGoWCe08AlpTkSrXo4EVHosrfha6D0Kj2yUpBPl/rZ0tKQql2r3lLYlkK2xJuWPWAwClPfGxLNNRLwRKU6s5byAlW0hLLEgSDipxdc1EqlET13lCQLwhsIRBC4TiKfKEWBrRoCWwESgqEUuSLErvSfzuQLwl6EzaGBum8hDrDq1xJUCqHh7OVImdJtAJYASjagtmCzpqSOBpkbYlVFjnaQNYRVEz+ikq4RsdKoQNZNPJlkZINZKvSJygIQEpk+bHLCvedxXDW4VRYktHBFkBGp2g5ZGStDrO6oCjBWQpQzORY+MFd/PIv/zKvfe1r8fHx8fH5+SSEyaDRPkytV4qO1ZVQKVIMEA4FOrpheyGiBTdO5OPj85wjnU7zgQ98gHQ6zSc+8Qn6+/s3dR7DMLj22mv5whe+QKFQIBAI0Nfnbgru7e1dlz6ZTHL06NGfqezPN4o5i6N3nQVg3yt9wZaPj4+Pz/MToZRSGyfrnjvvvJOXvOQlRHu3ctFLfxuAUqQcvmdmfYiFSui3yEoOy2r/Y0ym1+8CCUYUOy43mHowy9pMU5iputtShRbhNSpvq0vrQwE0VEnJLXPP9hCFVYvcYqnxeIuYudWFKE1x3i9NsHBotSpYoMvqjo6GSJ/LbZzwGaBlSKpnEdKUJHdEWDmVaRCUbcTEgQGWjq5VhUDdEOgxiAwHq8Kop5LwkPvCwkv5NsuFb9/G7CMpzyHpvKIHJZGREGuTmVo4sKeIyFAQPax5Dj04ek0fa5NZ1ia7fx4TOyKu2Gq+va13W7oIadb58Mbh4aAuBFu96qjTuTd4WdZxx3iXId4qBJM6payDXXAQG+34KR+XBuy5oY+Fw1kWjpafEbk+b0PIN80VkfZuM1k44YYERa/L06LcyizHHmkRLqsh5Nu6+lDsukKSzcLpM03xS4B8f+0zrdDcbzkUhjQsJMHl9X1arr88jpYFSmRPcd93/5b9+/fz0EMPrUvv89zjve99L//3//5f4v/tP6OXxQGq4lq0sL69OYZCUwpjvraw3IrA8vo5y6hZwpSK6Tm9Y14j02r8VYDASK+fO9UrnfVsCSEUkRhk1kApgagT9shMi761vAoei5SIDelMHyzUzmnVBpj6UG/Vz0oWUhdQyldFLbWDT+o0eXMIt0vxElru6caM6khDegppF0yaBBIGK6e8jcuhPhMr72wq1JkXhCYIJAyKq6Wq4OipIjYRJrElzNTd3kPgecWMGyjbqYqtN0Wr8dWo7X2piJTCfTqFNRu7qBC6e1zFW8Rwqxsz9T6TcBRSC3X9S0V4GFrfn8mSjdQUZkIjl6UqTK4eL4vVldF6PiELFo65/pisEx7agRbHLZtKH+i0OF4JzeZUBXXKfY6VaAjb5rQIdybL/Zkbwq2SVjScF0Bp6/tgURYY0uJYvSJVNYRhUwQCFTcksWGIt8p1E1GbRMRhclZHlb9D1WK+WB/yTWlg6g66hGyxLBwyRcu0FeyAW0anxT01hHxrOhwTNqMRiyOYFFvMUwvJWoXIptcUmlKUBsp9TGb9vi6ZdMchZ8ndUS6+/E2m73uAo0ePMjExsS69z7Ofw4cP8653vYtPf/rTXYUceTbYovv4+Dz5PNnPtq0cbnj0I8yVVlpHKlYQXQvwa595Maapc+kbdnLhq7ejtQlv7ePj49OOQqHAf/2v/5UjR47w8Y9/nAsvvHDjTB34//6//4+vfvWrfPOb3ySZTJLNZnnNa17Dvn37+MQnPtGQ9rd/+7dZWlrii1/8Ytfn9zr3+nmneXw59N3T3PPZQyRGIvziX7z4OefE+nycKz/f7vn5dr/w/Lvn59v9wvPvnp8N9/uk/+o5cOAAL33pS0kvnWbxnGvzaGQURqb1y31hOQjLKQuUFJF494sA+Yxg5rhDZq7FS3bhrui0EigF4pI9NyQJ9q1/0e1mLbsqlWpvK1Mnc+QWS43HWwiUoCwSUO4O6tmHlkkdT68rVycS2yJsf8VwNcxFtyR3R6vh5LxgRL0Zav1MAiWPLc6M69XQat2iByWjL+wnMuzNJnPyznnPAqDYeJjRK/o839fOV49Uw+F1y9AlyYZwIc8FIsMhthwYRA97a4M7Xz1SDW/XLb17Yw0ha7rl3D2LngRKAMOXJRtC/3RDz84IiZ3RzomaRUSy/pDoWqAENWcAhKz9tUMKjEjr49X+sAVmXGf0yp5qGJgWmVv2h6NXJNh6oLezQEnTqgIlAKcEs4+mWZkqO1W1WEAFULbTkNexYOFYsbZwZ9muOKmdsEqTbL/cYGhHi0XFbLFDHy+YmtKYX2h/T1rBaRAombpD0HQAib5MS4ESuOKkikDJcRxOPvINTNPkS1/6Uttr+Ty3+OM//mPC4TBXP/RE9TOR1RDZNovyJYGyXIGSiVMNkdMNi5bGTNG7QCkZtRlMdBBFuGvj6OUQPUoJ0quiKjhQmkBporVACUCTiGye3IrD8mSpQfSEroOutxQogSuu6L8gTrJVH9xh3iYNQc+OSDUslhfqnYA2RP2MAiWP77pCfWY1pFi3REdD1TBw3ZJfLnoWKAEkd8Wqocm6JTwQoP8Cb3NkLSAZ3N+D4XGO8mynZ0eE+IS37yo8EKj9xmg3vpY3flQESkK6ImCzbv7QUqAEoBROJIATCVDMi0aBErgOky0ESgCOoWHENQYGnJaPqhPSWwuUhBsWTYRaP4uO4YZ9WydQKrv4OrqGE9BaCpTAFQHVC5Sgrj/TRfX87VCScri4cudYd95Kf9iKaEwRajedlOX8TUKgQACGh22MSGeBUvN1MznJ4qqGKttBthIoAUhLoTRXoARQtGRVoASgFRWOLloKlABMw2FrtIQu1o9VelY1V1GVtJJMobcUKFXLVmoUKIUdB5TCFsIVJ7UQKIErTqoIlIpnpjhz1z284x3v8AVKPj4+Pj4NaELygYk3AOuHqsq/r7vvAqQSWAWbB750hG/8/l2cffSpF677+Pg8d7Btmw9/+MMcPHiQP/qjP2orUFpYWOD06dNYdRu5lpeX16VbW1vjjjvuYHBwkGTSfZceDoe56qqrOHjwIKdPn66mPXXqFAcPHuTyyy9/ku/quYtSikO3ngHg/Fdsec4JlHx8fHx8fLrlKXnr/s1vfpOBgQHOHfwGyeHzkFInWHYUsYNtFmgdh+Gt0DsseOInCseuDc6tXJQqLE05CIS7WO+0WGSrvCytO1ZIO+SWbNfOv8XxKpUFcLsSvsFg+LIEp+9YwC6odccbKC/4L7Zy2NlgV/7KqQynSjOeXVgiQyH0sGThsZWu84QGTHbeMMrp22ZZm+peiLHtFUNYOYepu+a7zjN8RS+JbREOf3Wy6zyBuEHf3jjLx9LVsCobUVy1ePzLpz25KIHrwBTqMz0JlZaeWGHh0ErDzuRusAuO5zyTP5zz7DYUGQkydk0/J78zUw1Z8lQxcWAAcMVe3bJyJsPhr09S9Fg2u2DjlLpfVK+US3pZFAbMhI4Qotb2Kj8a2j3D5eOHvza1/lob5O3ZHkVogpUTLRZs2wiIBvcn6NsT44mvn21/E015Az06268f5MwdC2TnN3C8qFts2vbyAfKpEpM/XKqdegP3pFBfgNhEiJmHV1uUq33eM/esoLcTNlXKpZx197Z8suAeayfWKn+uLAuh6wztC6AcmHuiEu6uk8irdiy7osinnbbH11H+ztfSre9JFm3C52wKfY2igLFem56AxWOP69i9rQUDwcVyOMOEO5wf2LPIn//LNP/lv/yX58VOJB+XZDLJX/3VX/HWt76Vf/21X+O3z7hiJWPZbXNOGz2HVIqdWolFpTGnGqeEwaVyiKmmpl1w3HMGKqqZFm1flA+puiZfLIlyyDZVPWeL9eaqG4coPzfxpBsyaS0lkOkiqiwgFE6LQVST2DbYK+uPqVzOFStZrcebpYPLtRC36zK36fOV69KXWypSSHU/qPedH0cLSOYeTnWdx4zpDFyYYObBDuVsQkgYvaqf1Ik0mZnu5zbR0RB2wfHkirR8PF0Nm+YFPaShHNUQDnQjpn+85Plajq0aQvJ1g5WzOfujBWyP+Xr3xHAsh1Sr8fxJRA9q9F+YYPHxVU+uUl5+J1RQjqptUnDslkIlLRFvygNTP8m6/4hHXd2gZTc6FpZxorWQJGZQUSqCKoeSLMXc8U+2+R6ssMaaA4UzFo7T2B/ZZRGQbq3/rWYYEO+HrK3B2vpz20G3T5TF+ryKsXHF6gqsFMrHrRZ5y9eV5Xba16tAKBYXZYMbkGhxS0qCLSURw2Fw0OHsOdngNqxko7NcAwJCMdyw6LkWjkZlF0jR1KcVCnBuwaBYpK2oUUlR0VpVsWyBlRMdhZAVYZK0FBgwFLdZSGvVcLWt3JFq1yyXW0HOlqwzNOv0Ll8pFIKUaP3uQZQgOCcp1rkpaUqxq2QxY+ssSokTal3P+qpbMCvmoByHidt/RN++fXz84x/vUCAfHx8fn+cr1ycv4i92/Dp/PvnPzJZq87BBo4cPTLyeF59/Pg9+7SiP33oapWBlOsO3//QBtr9wmKt+5Twifd42YPr4+Dz/+Ju/+RvuvvturrnmGtbW1rj11lsbjr/yla8E4FOf+hS33HILX/7ylxkZGQHg/e9/PwMDA+zbt49kMsns7Cw333wzi4uLfPjDH244z2/91m/x4IMP8ru/+7u86U1vAuDrX/86sViMt7/97U/9jT5HmD60ROpsGj2gsefA2DNdHB8fHx8fn2eMp0SkFI/H+fM//3N+93d/l2M//jJ7rnxb9ZiWt9sKlebOwuqSwrG9CQkSoxqDu02O353DKbZ5aStFTYjkwOQDGSh1ufiiaWDb2AUboQmMkI5d6E4wg5D07AiR2Brh9G1z3eUB1s56D/XmRTBUITdfZPr+RTJz3gRR6Zk8tkcR0NpUFstjaI61qRwHv3B644RNeBUoAfTtjTF0aZLH/vFU1wKizYYoO/X9Wc95rKz3e7LzDtnZAqrFAsqTTc7DYmYVB88CJYBT3+/+WWq4nEcXsKFLkoQHAhz+2lTjATdex/rPurlWm7ynvj/n2ZErfS5HRwOUFuIm5bj5Nlx8bhL6TD+YahCGdRPebeV0jpXTLfqyDfJaWQcr66y/RhvxUWJrgPiIyeSP057Efw3V0+WuFZEvMnuiSTC0gUBpdDsEQnBkynVFqqdx8bORc6dgOaSvy1OhIlCqkl/gf/2v/8XQ0BAf+9jH2pfJ5znJW97yFj73uc/xn/7Tf0L953chg7VFf1loLVRSCE7bBnnaLzILtV6oBIrRmEWuJFnOa+3zOrVF5kyhLBboMsSUEgKh3PBIHoye3Osakp4RSXbZodAsPiiHnGoWK5WybrmEbqCs7uZ4jqU4+6NFb4XDnQ95xcrZnudqynGF78XVLuesZeYfW/Fc55sRKAEMXtxDdi7vSdCzmWvll4rklzzOUxRdC8LqKaatTdeHF5SjKKSKOB7neJsJXZdbLJJb7LL+iiWohEbt4lL1AiUpFUMTsDgD2aZ9Ho4h1wmVrHCdo6LTfiy2Qhp6UyjHAhpnJsshujuVz9QaxurUsqBAe1dEu4U7Uj5PV45m9cLOnC1YWBQNXVXFqUhpLYRK5fPPzWu4vXvTfbQIU1s+K46h0So6ev01m/MMJB3SWUGu2P3kVZMghKKiMe0kUKrHyUlmVNN1OmTVlGK7UWTaMki1+HZFmy7RFoITjkG+w7yuIlCqYH7/h9x///3cfffdBALeHN58fHx8fJ4/XJ+8iJf1XMhP0idYKK3Sb8S5LLoDrfxS4ppf28fel4xz9+cOMnckBcDJ+2aYfHieS9+4iwtv2OaHgPPx8WnLsWPHALjnnnu455571h2viJRa8epXv5rbbruNr3zlK6TTaWKxGPv27eNDH/oQF198cUPabdu28dd//df8n//zf/j85z+PEILLLruM97znPQwMDDy5N/Uc5tB33bWuXS8axQy3dgz28fHx8fF5PvCUxS/4z//5P/O3f/u3PPHEwwxtv4og49VjWt590dssVnKsygtpBzMIxS5eeopsnhyQWSq/7awXIzXT5JoUHtDp3Rlm6t7Vzo5KAJpGMQcnbmkhBGpyVFJN51BKInWJ1L2JWrZdP0RhtcT0/UsbJ64jmDQ97X5v6fa0AQuPet+FnZnOew6ntlkS2yMM7k9w9Fvnus6zfHyNtXM5zw5H264bYvVsliUv9SjdsHRehEfxLWF6dkQ584PuBTr55eKmxGubYTNtondPjGC/ybl7ul/klboE6VFwJGHnDaPMPbLsyTFs+r5FNxziRgKWuuNDl/YQSJicuX123bGG9BWhUv3x5lvqEIJNSEFusVQNQ9kiQcuPi6sWU/est/JtoMWCVPqcuzi+oQVtWaBkRiVW3mns8zbIq0d1drysl6n7V8jOl1BK1a7XIZSdZgqELhrrr97poU3emccKG4fgrDvWMyYJhCUzk+uPtaT8HWfXXE2ssVqiFHcXsDqJk8x0CV2HkiPJtFi3XydOqtzPE1/FcRw+/elPI9uFq/N5ziKE4JOf/CQXXXQRv/z4ab57aaOTlizrW5rFSrnyAq6hFDbgtHJGKndXFbFSYAWyQUmx4nrZ5K7RkLfBVUnRE3coFCGXlx0dldzrCVLLYp3rh3u+Rkclka3NL5QD0pBIA9oO6nWuSk7GHRfMuE7v7ihzj6xg57ufRwkpkLroWtBSXPMuznUs1Rg+uEvS57yL3r0KlCr0nRensFrydM35R1OeXJTAnefGxkPMe5x3SF2gHOUpdF7PziiFlAeBDpus801gFx2Wj3lvE717Y2Sm8xQ8iNekIVxxU6Vt1I2xzQ5KFcJ9OoHBCMtnm8a7OjeleoESgOPAzGmwrZqDUjtqAiXFyIDN8qrEWnEL2EooVC9UcsOw1TouJ6AhC5Xfp+t/HleESk5AZ62p2hxdVt2Umq/raAJpKzJZWf13PUq2dp4DV3SVycjysfUdbINQqXxY11XZdamm7mwvTnJJ9IOUNovLbn3WC1Pbhm8TrqCsWQolHFUnpFqfr2QLzqWMDcVJtbpQDIVslgsSqyI22kjXVG6maUeSVwJjFUrlJtpOnAQQzEEJyLWZPzeLkwBKM7NM33wrb3jDG7jmmms2KNizg9tvv52XvexlHdPYts2nPvUp3vOe9zxNpfLx8fF5fqAJyRWxXW2P922L89oPXcXRH57l/n86TH616IaA+6fDHLljimt/4wJGL+h7Gkvs4+Pz88Jf//Vfd5XuD/7gD/iDP/iDhs/e+MY38sY3vrHra+3du9d3EP0ZyCzmOP1jd21n3yu3PsOl8fHx8fHxeWZ5Slcxv//976PrOk/86LM4LdQ5FbGSudwoXBndDjsudF9+dkMxC+ceLdQWwzssZtcf1wxJMKGjB+W6Y6pVCLcyoT6D/vMi6w9orXfVrpzMcPK73kN15ZaLFFa87X5P7Iiw+6Yxgm1CA7Vj7No+krujnvKEBwL07GxRDx0I9ZsMXtzjKU9yd4zz3jzhKY+VtymkLU/hvaysQ97DIlQFx1GeF/S2HBhkx6tGPOXRAhpmzKOuULqLefIpkyPWMJufpS7QQxpm1FvhevdEueCtWz3dk25KnJKD49HZwMo75BbatInKQn7Tgr5ddLDydnfOPOU0o1f1seMXhpuOda7L6EiQvvNibc7bOq8Z1ejdG+nc8zf3nxK2vayf8IDZtUAJYOzqJNte1t85fVNeKSGXKpFv7vc26NOXjhc4c08bkWCLvIGYpG9Hh50qpXJn3XS/gYgkEGv9va+jTlSRWoD5uoh8nQRKAKMjDnt3W0hZW0kPLrllaidQOvXov3HixAne/va389rXvrZz2Xyes2zfvp2Pf/zjfOYznyH76KGWaSpipcBSXVhdFLu0Ir2ic9usFxOl8hrZUl1nskH3WlmIN02F0dR/VxbEtWy7iZIiGldoLfp91UaQt3jKItci7FsDeuMJrZxNcbWEkK6jknuBjceNwYt7PM+hzJhO33mtxR3tENINLyeN7txHKkSGg57H2sGLe4hPhD3lsYu2Z1efUsb27OyjHIVjq42GyQakLhi/doBgrzenEz2kIVsIXjpeyxBonUKWPkkIKdBD7R19WmcCI6S5wl4PDF2apGdHUxt3OvQXRXccVx2en2aBUqWApaJo64rklL+LegclKaFkuXmsdmHF689hSoRQjI85hIKN5WslUKonHnMw9Nb31EoYBRCMKgxDdRXWrEIk7NCTcADVVihUpXzYNBVjYzaBwMbPUyWspmNIiiVBqdRCBNXhuo4SzC7p5NtsKGolUIqFHAytfdm0QjnEaN0pdQFBzalN5boQKAE4CGZsA7suQyeBklSK3U6RAdXYpishU1sJlJRts/APX2br1q189rOf3aBgzx4+/OEP82d/9mfk8603Dk1NTfGe97yHL3/5y09zyXx8fHx8wJ3f7XnJOL/0FwfY94ot1dcOK+cy3Pwn93PbXz9MZunp2fzp4+Pj4/Pk8/j3J1GOYvi8JL0Tbd7r+/j4+Pj4PE94St+gj46O8pd/+ZfYVoFHH/3Hlmm0vI0oNb4QXDgH0yfL4Qic9osd9bvmwQ37tuXy8uKDFFDq9DZSsDZtcew7S+tDg3V6Gaxp9GwL07u3zSRC0xBt8se3RogMdb84MvvgMkuHvbkcrZzKMHnXnOeQFmbEQA95W8DqOz/O4EU9nvJEhoL0nR/3JDDJpwqsnsm6DjpdkpnOc+a2Oc/hvQYv7qH/woSnPGdun/P8PS0cXGH6AW8OWctH1zj2r907Q4G7CLr7pjEio94WGjfDtuuHGbnS266uuUdSnLrVW+i71aksU/fMexL9WXmHk7fOeHLyMuM6Ey8Z7Lyw20KosnBwlXP3LrqryR3DmtVWcLLzedIzdWXbYOVVSEF8IkTf3haL4h3yxreEGL60p/2z1KLvMiM6RljbWIjXJBQ4d/8Ksz9drSvXxuHhimmHybtXcOq7rw0W5/rPD7fuT4Romzc+atC33US2WzBs4640e8TizE9KHe9FZgpVUUNyELbspTrSCsvBXGrvsGGkbYy0zey85Ny0huPU6lRfK7YVKGnpM8yfuoeRkRE+/elPtz2/z/ODd77znbz61a9G/vPNiPnWIbRkAWTdc+YgOOfoLCsNodo7GwEEU6p6XKAYjlqEjYoVCJirHeZtjmB+XrKabrHg2+lRl4KemEWwjS5aSbmuDwIQGkQGdVS+Q5i0OqGSU1IsHc1gl0MHV4VKG7B8PO3d0UYIzwIYIQW9e2MEEt6E6PEtYYJJb3lyiwXP4VhTJzJkPYak04KS3j0xT8KrwkqJxUOrnhyRHEsxf3DFc+i7hcdWyMx4Wwjq2RGlf5+3ueRmCCYNRq/s8yZaUzD7cMrz74SlI2tkptePX+1clEQ8Si6jkTrX+ktSZuu5VTShiMQVVqT9s1dqEuw7jmBhWaNYEjiGbCsWAiiV53RCQDojqppk97wbPO9BSSLuYJjrO8hSuN1cUdHTC+EO756dFhsqNA10zQ3D1pG6r75YhPk5jULFNU+T7V2URE3wlcmu75M7CZQChkMw0OZ7FaKlQEmg6InYRAynrVhLyfViLUsJTqcN8rbsKFAy0pUNI4pxvURE1MonLQh0+Mml5QWiIJmSBkuisfB6RrQUKAHI73wXa/Is//AP/0Ai8dQ/708WV155JTfffDPvfOc7OXr0aMOxb3/729XPf+VXfuUZKuHPzhe/+EXe9KY38apXvYp3vOMdZLPeQ6z6+Pj4PNMEogbX/MYFvO6j1zC4q6f6+Yl7p/na++7kp/92wvPmAB8fHx+fZxbbcjh8u2vP77so+fj4+Pj4PIXh3ir89m//Np///Oe5//77mZm8n7GBy1ruUq0IlZShUSxAsfyC1SzmsSoapg3s6h1LgRANYdUqzh9td/IKSSAuiQwaLB11X76rUudFmdlHVph+aAUhRNvzVoRK9aHfhi/tIbdYIDNbvrkudufrYY3Bi3o4d/9id2HIHEgdb70o2YmTt854znP23kXPIqCFx1dZOLi6ccI6cvNFcvPdhwOrIHVJIKmTm+9+ISaYNLE2cDlphRHVKXlYzMvOe1vE2yzFNYtTt83U2txTyNm7FrAK3uvOK8VVi+Kqt8VgPSixio6nUH5GSCc8YHoyydLDGtIQFCuL9EKybhW1hYio4ZndIMRbhXP3LzfKTDeylJCChScypE7l1j+3HRajSmmbYzd3EWLQcRpEAoUVi0J9JB6lOop7eneFsAsOK5NNYeUctb585XsNJnUG9obIr1ikZ8oLzxs4HAkhWDhSZOlEEad5CKzPW7Ko2L2YEYj2ayyd7tC+W/Tn1Y3/G/STWvm50UoWTtzAsiRLKfeYvta+/zJWCziOxU/PfA1N0/j617/uh3nzQQjBZz7zGfbv38/uo/dyIvRyhJCUIuvbaEWo5JiwWl5Z1lAYi7UwSM2LxtXr1J1u3VOn2h1wPxRKEYsqMnmBXQ4Zp2faj6FKCaaPl8N0Sdr35ZX2Xxa4B8KSxADkZgV2oXysqU9W6QyiPL9Utnss1GuAEF2H+PIqfKnkmX1og9CbTTiW4uw9C56dh6YfWPLs+OglNGo9ekhznQu7LKNAYMYNNEPilDzMIQRITXiqi9zC0zP3Wj2Tbbth4cmksFJi9uFlz+1hU9dKNbZxGXRdkFQuhwiFGo6JuCugljq0+kZV2N2wIYrWOrGSjOvucNrm0bDLjp31oc5MQ1GywC6HkLODWtWtt3rNJmGM4whSqdpndlko5BgCWWpyVyq7YtnA5Fkaj23g2Kp0jbOzqjy9aAoH3mHzxWqmO4csJQXCqXW42VzNJakldYeEUCRiDqtpWXWuqobgdNo7OMXCCkNXTC9VwsptcE3AkZLJpbIIrEkLVj/GaAWFHXDPlTBtMiWJ1UHBKpqns+USObjipE5o5e49UIRsAlbr5tF6pv01zRVBbvI4Z+76Pr/6q7/KVVdd1flCzzI+9rGP8ZWvfKUazu2d73wnN954Ix//+Me5/fbbGRgY4M/+7M+4+OKLn+mibopvfOMb3Hffffzv//2/GRwc5MSJE+j602Ap7OPj4/MU0b89wWs/fBVH7pzigX86TH6tRClvc/8XD3PkjrNc8+v7/BBwPj4+Pj8nnLp/htxKkXAywLbLh57p4vj4+Pj4+DzjPC2rmbfffjvRaJRDp/6VbH4RLd/+rWG9q9LgBOx8YV2oKrvzQu/anMOZB/ItHVbWhSkq1l6292wL0b873HVtOBbggB6RhPubdqZ3CBN34tYZJn+4UF+oDa9lRDR6tkcJ93kLTzHxkgGGLuvxlEfqEBlpFXqhNVWhg5dWVPkKPbY8Pay1d69qw8gLk2y7bnjjhHWc+cEc5+7xJojq3RPjvDdNeAp1pgclg5f0oIe7D9NhxnUueNtWYls8uCI5sDbZQpTyFJCZza9bxNqI3a8fY/Rqby9UevfGiI2HNk5Yx/i1A+x+zainPJnZPIe/NuVJfNZ/fpzdrxnz1L4jQwFiY+X76VKgVD1/t1+rFNU8XpzjjIgkmPT2Yl8PSXbdMECorzsHEgAch/h4kPiE2/90DCtXV0f5ZYuj31muCZSaaeqPhRDEht37WTdOdLhmYkSnf5tRHYtErmmhu43gdGkOJg92J1ACGN0Ge3fbVL7YjQRKAA8d+QLz8/N88IMf5Oqrr+54LZ/nDyMjI3z+85/n5ptvZum+HwBgdFh0rYiVBIqdWpE+s9YumxeBGxHMrulkSm36rqZHQ8+655UCehIO4VD34oqKtigQYV0fK7OtnW7yaw7Tj2SxC/WKqg79bFmsFB4IEOozUaXuRc5mTGfo0iSiQ0inVhhlcWu3VAUpXi7TUTTWnkDCwIh0PwYICSNX9BIe7H4uaeVtZn68RCnrTeQ8fFmSxHZvIfYCPQahfm/z6Z6dUQYv6fGUx8rZlDqI7p4sHEu5YaE9aJSCvSbjL+r31Oa0gCQ6GvLUtjUDRi8MEAo0iYXCnet/aUmyvNz6GbVbzrMVIwM2sZ6uiwYoIhGnGla8k9DIrgvbJ6iINzuHoqteRZdQzqOahDbNAqX6fwdMVb5W+VgX9Z5IOCSTzoZioXoCUhGPqqq2s6ObXR0LKcnskka7ehBNTd8wFZpQuHfVVA9tjZ4UvQGbqFEbgPQm3WSrsclBMGkZFNqNSWUqAiUNxS69SG9dmLeNBEpWNs3UN/+Rq6++mv/zf/5Px+s8W3nzm9/MJz/5SUZGRvjbv/1b3vSmN3H77bdz4MAB/v7v//7nVqBk2zaf//zn+cAHPsDQ0BBCCHbu3IlpenMS9PHx8Xm2IaRg70sn+MX/9wDnX7+lOgSnzqa5+U/u5/ZPPExm2Q8B5+Pj4/Ns59CtZwA47+UTniKG+Pj4+Pj4PFd5WkbDcDjMLbfcghBwfP6rOI6DlrfQ8hb66vofUqLkhoBbmoX5k1bjYrLtbChWivRLJi5q4dYkRMvF79nHMhz77nL7N6X11C16b7m2j5EX9LQ9L7g/JiviAqu8ABPqN2s1v8HL5Nx8kUNfPu3ZeccuONVwJd0yfEUfW1825KlV9OyMsO8tWz1NrBLbIlzw1q2eRD3xiTCjL+zzlGf+0RVOfte7QxTgqQ5Wp7JM3jXnyWpZBiSD+3sI9Xb/0tTKOiw8vkIh5S1Ex9ALkoQGnvqXs0OX9RAZ6n5hEmD5yBprU94s+PvOi5PY5m1hcu6nKWY8OlY0tAGlunI+m3tsjdM/mG8UD1UWxIVcvzguJP0X9DB8eW/3AiVg60v62Xb9YPvzVu+hFvJs/Kok218xUPu8/r+trikEAxfE2X7dQPfPg+OgmRKrYFPKeFtwPvWDZabuW23dl1ZcAuruM9Tr9vFWruJa1TpEm3vI7aMT4wYTV0QI9lQUW1bHfBXmj1kc+1ELAWybdpGMFxnb5iA69AlawW4QKIEb6nRmTqKvWS0FSnq6iLFaqAqULnlphqW1kxw4cIA//MM/7HgPPs8/brjhBv7bf/tvLN75bT5945WAK1QyMoLA8vo2L4sgioJZR2el1CigFU5nsZJQioGQRaLQQpihWCeicJTg7LRGek12DC1XQcu4bd4MwuCEJBDG7Zfa9U114d9cl03QQ/UWImU3lvR650mhSZaOZ1k64s2xz5132Ui9e5GAkIKhy3qJDnsT3g5e3ENiW5vYd20Y2J8gucvb2JncHSPqQbyuHJh7OEVmdhOLJB4FVMvH06TPeZs/RAaDxEa91XVusUD6nDdXKTNuEB3zdp3NYEZ1z6JtK2ezcirjyX3JCOskd0UR0nVQqrgoVVC5nOuoFI9WXZQcGxZOlihmHUR5Y0grgZIoun2GFTGwIjr1nYVwFMJR2EHZUqBUEe9MLRusZRuP20GtmmadyCck6R0EPSpaCpScsoCrXqCkaYotIxZG+RGyTdlW3KR0idIlUrp5QuXQaBUhUicHJaHB8JBDPOZBwCkFjgO2s4GDUtPhQlEweU6jZIuWAiXhNJZBCNdBCUSd85JoK4xSUqCkYCBmMxCvzXe0kmoZ2q0hL4LTawapYoswni3HI8UWq0jYdjo6KGnFmkAJXHesGVtnBemGdmshUDJWBeaK+6eURd99N5Mwdb785S//XItfdu3axTXXXINSikKhQDwe5zd/8zeJxbxtCmpFNpvl7//+73nf+97HjTfeyIEDB/j2t7/dMm2xWOSTn/wkb3jDG7j++ut597vfzQMPPLCp687Pz1MoFPjBD37A6173Ot72trfxr//6rz/Lrfj4+Pg8qwhGTa79zQt43UeuYWBnLdTo8XvcEHCP3nzSDwHn4+Pj8ywlM1Nk9sgyQhOc9/KJZ7o4Pj4+Pj4+zwqeNsnutddeywc/+EFmZmZ4+OgXuspjZ2yWJt0fWEbzGkkHoZLUwAhLZJv3husWwR3XVUMPSWIT3S/GnL1vmVM/qLnudHL/qIgMzKjOzhtG6D8/Xl+gzhdy3NBl4YHud3+fu3eRhcdWNk5Yx9wjKY79+1lPIbGy8wWWjq15akmZuRwLT3gL+ZY6vsahL51Z7wLTgeKqRb7LUC1VJOx761YGLuzpOouVtUkdz7R08GpbthWLxz5/ylM4FcdymP1JiuKqt935fXviRAa8iYc2Q+/uOKFBbw4FC4dWWZv0tvh39Jtnmbpr3lOe7HzB23UkXPDWrfRfEN84bQUhcYoO6XMtFmc7CJBO3z7Pye/Ndjjt+v4hdSLDyqnMxiHe6lidyrM2Wbegu4FACWD6wRVO39FlqMkyhRWLU7ctdf2sShNCfbobnqlTlrp7lTpsvTbOyKWRSoHbZ6s7tjJV4tQ9afKp7sqmmxAfLgsdmruSDqI1w5SYHR65ZnGSriuQimJesHqmO3HXSnqK//W//hfDw8NtF358fD7ykY9wzTXX8OY3v5lSurtxd62gYSmBQCGb1EWdhEqmptA6mQM2C5XKi9yhkLPuOu0o5mHmlEOhXpvSqRssC5V6xk0G9oQaF+k79Z8KVKmIGdW77mbtosPCwVXsQvcdpnIUcw8vs+pRrJuZy5Nf8ja/yczmPQve5x5JsXzMm1irsFpC2d5E8tHREGNX93u7TqrkWQy7dGSNuZ+mPF8nO+et3gJx3bMYajOYMZ3YuAd3TVyR0tpUzpP7Un65yOSd8zglD8IZB/IrDk75K+rkoFQRKsXjivFxBy+FcwyNkiVaCnTaORDZtuDMtEY+337uUC9QAnfIX1mTFEqthU218tQdU7CadvNUP+q0qUO6jktnZzXWmsQyG7kpraY1Vlbb2hKtwzQVQqjW8fjaEAsrxgasqgNVJ9em+lBx0ymdhbXunWMjuoMmFE4LZVW7MUgDTNns09SUpqnL1MsuVymlIbLddfQrd3+Pe++9l7/4i79gbGysqzzPRmZnZ3nve9/Ll7/8ZXbt2sWv/MqvkE6n+a3f+i2++c1v/sznX1lZ4XOf+xynT59m165dHdP+6Z/+KV/5yld4xStewe/8zu8gpeQDH/gAP/3pTz1fd35+nnQ6zeTkJF/5ylf44z/+Yz71qU/xyCOPbPZWfHx8fJ6VDOxIcNMfXc2L3nkhgajrYF3K2dz3j0/wz394N9OPLz3DJfTx8fHxaWb6x2sAbL9imHDyqV+n8fHx8fHx+XngafUV/OM//mNe9KIXsbh6nGNTtwE116T6MG8NOA6JQdh1tUmweWOfo2oOG3WszToc/8FaY3iPLhi8IMzIxVHQazvwO1FYsXCKDtKU6CGJsp3OriZAMW1x5o55Fh73JtIZf1E/W1426CmPHpRuyLcuv2Ura1Nc8SaAKa5azDyw5CmcmJV1mH1w2ZPgyLHYVMiy/n1xhq/o7T6DA3OPpjzvzu/ZGSG525tDwWaIjoZcJy4PHPqn0ywc8tbeNsPjXz7DwqMehHESEtsjntyxNoMZ1Rm6rMfzdWYfXq4JjjZy2xGS8IDJxEv6kR0Wr9phZde37XoXtmZWTudYPt5BdFXnoFRh9UyOhSfWu4asu279fTqQne9yIVxKenZGiAy3aJ8d6q9/T5TtL+9HC7UJKdTiXhwLztyzyvyRfHuxVbkvVmVBayDufi/ZRXvDMlVIbtUZ2VcXcrQbbIeFkxanHmtRpDZj3Za9sGO3g8i1DlunZYrVP4CileWx01/Etm3+/d//nXDY2yK1z/MHXXfdHgD6H7gFx3LbmJ5T1b9WyJJii2kxHFw/JxC2QqwToQjOrelkMmKd+0ZDqrIzSvU6UjHQ5xCNdD9fK5W7Zb3c1cj0Bq49UrA2b7FwJL9e+6BptFNWSUMydFmSsEeHwEDCIOjBJbGYtjwJRgAy03k3zJcHsnMFzyFZnZL3eZc0BL17Yuih7kUJhVSR1PG0JzclaQhi4yFPYcs2gzSEp+8TYG0qx/QDT/3iUHo6z7l7vYUoNiIaZsxbGNeNELEYIhZD1YVdDPVIArGyc1AwgMi3bntOQMcJuOXJ5QTLyzVhSksXpIYLQ2/UIhJsMYdSCtXG1UxpAlvIdaHHAJQu3HxNUznHEaTSGo6U7cvU5O7mKEFqTcNxXKeijuHUlEIJ13bOsmpOReUTtfy9W7nPeNRBdrKkW3dIMThg05Po0Fcr1rncrWUEM4sayhYbOuDJokKTrhDKUQKrk8tT3TWlUgyFLHqawgRu5ObnWIIzawa5FvZMWkGhNb0TCAqHPXqReN5Bb/OTz1yr/QGsHv4p0z+8lQ9/+MP8+q//+ob382zl9ttv5zd/8zd57LHH+MVf/EX+9m//lne961184hOfoLe3l7/8y7/kD//wD1ld3fxvx76+Pv75n/+Zr371q7znPe9pm+7QoUN8//vf57d+67f4j//xP3LTTTfxV3/1VwwPD/PJT36yIe1/+k//iQMHDrT8+/SnPw1AIOCKIX/913+dQCDAzp07ue6667j33ns3fS8+Pj4+z1aEdJ04fun/PeA6cpSH2uXJNP/+kfv4wf9+hGzKm9Dex8fHx+epoZAusfCY+05+3yu3PMOl8fHx8fHxefbwtAc/vf322xkeHubk9J3MLR9uONZOqLQy5zB/rER+rc1J27y4DSYkW66OILTG46rQetF95uE0J25L1dw8uhAqAex4RT9jVyW7SguweiYLDp5EEzM/WeLEd6a7Tg9gxgz693kLwaUHJXveOE5iu4cwItINKeblOtKUDF+exIx2v1ASGw+x9xfHPYlA9IjueTFm4bEVcgveHAp6dkS91RkwelUfEwcGPOfpvyCxccKfA4IJky0HBgl5cAiLjobY/box9HD3i5/BXpP+fT3eejsHFg6ukl/uoh2URYlGRCeUND2J6cav7WPigDf3iIH9cSIjHRwaWoh2Ri/vIdS38SJrvUBp142D9J3XZZsu95W9uyP07vL2HMw9keX0XanW7iMt7qXikJddtGqh3jYgMqCz40CM6FC5L9jIva7M/FGLk/e1CPMGiHxT27AdBrfCwI7WDa2tEBeYOWIxf7r1vVSESRUcx+H4/JfI5XJ84Qtf4LLLLut8Ez7Pe0ZGRviXf/kXHnroIWZu+RqqyQWstVBJsFDQWMq072tbCZVAkYjaxIP2OrGSkVn/IDmO4Ny0xlram9AkGIHhHQKjy+HDLipK5f5CtLqlFkIlp+Qw+3CKzLS30GXR0RBRjy460dEQQ5f0eMpjRnXiW70JFANxg4iH8G0AvXtjnkLLKVthxnQ0D3O1UtZ2Q8R5EGtJTZLYFkVvJ3BtgRaQDF2axIh0n8eMGQzu7/F0P89m4hNhkju9iep798SIb3HbmpPv7nkIJzXCPRIV7H6OVyoJMplWIpMW42O5yzB00Jt+54kOTodSKsYHLQKG2tCdqIKuuf0anZpNU7EDpkM8atPcqFsKlcrljYQUI4O263BUoYPoEwWBAPT0OMjup8WAYGZWY3W1TYjcFpeUQqEQ5FuEX2vHQMxmJNHd5pfKNRWCM2mDpXzrG9Kb9PmapRgzShjCdUVqplmcVCGvBHMZnWwb8ZTZ9M5Bm5tk9l+/yBve8AY+9KEPdbyXZzsf/vCHMQyDP//zP+e3f/u3MQzXgWPfvn38/d//Pddffz133XUXv/Ebv7Hpa5imSV9f34bp7rjjDjRN46abbqp+FggEuPHGGzl48CCzszWn2b/5m7/hzjvvbPn3rne9C4CJiQkMw2j4PdPJ6drHx8fnuUAwZvKid17ITX90Nf07au8Kj911jq/+1zt57NuncDpEIvDx8fHxeeo5cucUjqVITsQY2tv9GqKPj4+Pj89znaf9jbuu6zz44IMEAgEOnf4a6ULjDuCWThMOLJy2wXEIxZzWpW6zy1QPCPSgXLco1wrHAivnIE1IbCkv4siNXZVmfrLC9AOpxg+bHJWU3XhPkaEAe980TmS4u8Wi4qpVdTnqVqSTnS/w+FfOeFpgs/IO2bkCpawHRyUHerZHPIf66t0dJzzUfZ7CaonsfBHZZmd0K2YeWOLMbXOeyqUHJf37E57EUKe+O8upW9uH7GpFMWNRTHtzNTh16wxnf+Rt1/y264cYesFTOwE2ozq7Xz/mSaiWXy5y+OuTrJ31EPLOdiilS1j57uNTrJ7JcvAfT7V0K2pHcne0tpDb7uV20zO+cirLkX851/U1APKp0johVCcHJYQkuTNKdLjNc9Minx6UxMaDBOIdxAZCNLzElzpk5grkl7ton3X944lbFzh7/3L9idvXn5Sue5IDmdkmwU8L96QK2w70MH5VrPF4ff/ews0uM28x/WiO9JzdlUDJjAgi/e45ihubT1XDj+qmwDCbQpN0cAqMmCVErkRuFdLLjcfqnZMa6LmbqakzvPWtb+Utb3lLF4Xz8YErrriCv/u7v2Pl0Qd4R9/6vrCVq1LOkhQdiSwpQm1ebK93VRLoGmhl0UA7V6V6RyXLdp1TAkGF1LpTqeQzsHhWUdpgc7DKNIa47N0ZpG9nm3GqhatScdXtA73MO5aOrHkOt1vKWOSWi56chPSwRmQw2H68aEEgaRDtJHJtUzYvc0LlwMyDy56dngJxoysxbQUrbzN113z1O+oGx1LuvXTxm6BCIVXk7I8WsD0IkANxg+EXJD21m82Q2Bqhd0+zzWxnlo6mPbtrWnm7QUhcL1QSscbrV9yUFk+WWJpvfJ6a3ZQqDkoARqFIXC9WBTrNAqKqUKkpAtjcssZqujbmNwuU6t2UlCZAF+SLgsqwXLlO1UGpBWbQDUXXVkTX9HNBaRAwIRpWnR2UlGpoi5YtyBfckG+d3JPcvO5/8gXB1JSGZXXX1mSdW1NziLxW7kkAQdNhYtjC1FTDcWl1fo4W1jQW053VU/XXjBgOAoWlRNXlqpODkrBAlwpDqvUmeS3ckwAEinDOQc8KUrZGc6db75xUwcqusXLr1xgfG+Xv/u7vfu5FLy984Qv57Gc/y5VXXrnuWDgc5oMf/CB/+Id/SC7nLRz3Zjh69Cjj4+NEIo1C2PPPPx+AY8eOeTpfKBTiJS95Cf/wD/9AsVjk1KlT3HbbbVx11VUt0y8sLHD48OHq3+nTpzd3Iz4+Pj7PAgZ39XDTH1/Nte+4gECkEgLO4t7PP84//8E9zDzhh4Dz8fHxeSZQjuLx754BXBeln/ffEz4+Pj4+Pk8mT67ff5eMjo5yyy238PKXv5x7T36OA7veg6mHiSShkAGrCIawCUSgsr4UjLkL51suCbA0aZNZdigqsPKus0YoLsksOeAozKhEBCX5lMPx29eIDOg4jhtSSZoQ7jHIzJfAATMm0QxJbsldgAkP6CTGQiQmgmQW8wSiJrnFIo4lMWMSXdOq4Y/CAyZWziY9XUDqEB0LkF8uYWUdzJiOEZbVxffwgI5VdMOpSR2EJlg6mia3UMCMaBgxvSomCg2YOCXlhuWQEB0OkV8qYOUd9rxhDMdWHPuWK4YI9Zsom6rQITpaS6uHJcGeAOmZHKE+Nx1AfqkubaqAlXXQg5Jgb4D0uRxTd80TTJoE+0zyi27ayEiQwkoJK2vX0s7kwIFAj8GZO+bIzdfSFtcsSmkLaUrC/bW0ZkJHNzWy8wUOffk0kYEgZlynuFpLm50r4FgOZlxHD2lkZ91VSD2kMfvQElbWRuoQHgyRXSjgFN20Rkh3d+ID4YFAtb4rYcXWJnM4RQcj6rorVeu738Sx6up7S4SRFyQppIrkFosEEkY1bbDPBGeD+j7nvtQN9pogqNZhc33nF4u1tEkToVF1cKqvw/r6LqYtAj0GMqE31HdpzaKYrq/DHI4FZlzHcRSlsoNFZChIKWe59a1LwoPt6zsQN2rfTXN9R/WGNhvoM7ByFlbBrrbZStpW9V1ps8Ws1dC+9bBGsMes1UufCarWZqUmmfrRgutE1lV9F9u2WamLlvUtTcnIFb2sns2RmSlgJlxHiGp9DwUoZVVdfZvkl/KALId+rNVheCjghlFcq9RhkOyc68xjxnRyCwUylbQDJralqn1EeCBIdrFYq++oQWa2wJFvzhAaNAn06BRSbvuOjgTdvifvYEQkZswgM+Oe14honP7BAvmU2waiI4Fa2rBGoMcgM10ot0N3SMgvW0w/sEJkJIAeklg5t80GknVpK/W9bKEFJLHRAOlZt31rQY1gUiczV3TrO6EjdcgtWiAlkUEDGZCMX5Fg6r5lHEuQmS+CEG6fbEo3baXvzDkU0w4yoJGZK5Jdchc6zahED0iyi5Ybcq9PxyqU0+oQ6tUpZR1KeUF2wSbcp1XDvYWSErsERferI9Irya04OCUYPM8kNqDx+O1u+YMJgWMriuly2qQkt+Zg2w56AAJxyCzDuSdsgjEIRKFQFtLVj2u6CYEIpFMldBO2XyJJzTicLZsKRpJQTBcb0mbK4qVABB49+11OPnY/Bw4c4Atf+AI+Pl5429vexsGDB3n/+9/P2OveTv/YJehCoQtF3nFX2SMFG6e8QCxQBDRFVHdIBGwm1wykhIrkztQUSkHJEUjbIaC74YoWVySahIChKJTcBWZDV2i6Ki+kKwIBKJXAcVxnE9NU9CcUmTVBZs1dcLZKblozACoPjg1Sc5+NYg5ya+7/65GamNAMC6yiwrFcxyQjIilmHVCuaD2/ZrmhgKXAII9lCJySQmgCIywppm3QNLSARNMsShmLQMJg+PJeZn68RGGl5KaN6JTSJZTjuvNIQ1JKu32WHtJwSg5CChxLoYc0ShkLZSv3vIZ0Q7zhOvA5tkNhpURhtYQZM2ppTYkWkBTXKmk1lO0KRhCuqHz2oWWUo5CGRA/W0uphDRRYOffbMuMGVtZi9UyW9LkcZtyoinsqYdka0uYsnJJC6oLCqtWQVgjX+QjcccwuONhFB6kL9LBOca0EyhUvIxTFtfVp19VhUBLfGnHnQYtFzKiOXXKwC249GlGdUtpCOWpdfRtRHaeaFoxoUx2atfrWg5KV0xnsvAOCzvUd1lBOWaBTcqp16Fjl+g5ptXppqm8tpFWFXdIQ6CG9sb6FG2K5Vt/u/wsp3O+mXIed6ltoAqELSuWxRgtKpCYoZTaob1uBXv53plUdrq/v/FKxsc1aDgqQiRhGWFLKOu73aAg0U1DM5KE3gRFwNThWEbe+Q2AVSpSiITRNYRqKYt59QRuJQu8QrM0KlAMBU1GyXLc1TSp0HbJltxxDd8UnjgO2owgYULLdEGlSKgxNUSi5aiZdUwjddWkC1xVpeVW6aYXCMCpp3WNCQKks+AkEFCVHkMlL8gXc8pZctx/NBA1FsZzWNBS2DbYjEEKRt2B1QVbLICUUy9cxdcf9XWq7aU0DiiUoFAWWLTF1h2Kxdt5KWoQioJf7TgTBoHueYtndyDDcPrnaz5qsq8N43EEAyynp9rOWQKjGtFIqDB0KRZC2KzxMZyQli/J5FaVySDopFIZeq29DU0jp/ttyJJp0w77ZTWmFEhhSIaSiaEs0oRhLlFjIaMzbEikUplQUcMcjQyqkUBRsibAgKB0sAUVHciajE9Dc+tcKoAv3moXyuBaQDo4SOFnBgGExELI5nDWxkdUxkLVyWuHgICgpdww07BxHb/4MCVXijjvuIJn8+d/1/Od//ucbpnnlK1/J/v37n/KyLC4utnRcqny2sLDg+Zy/93u/x5/92Z/x2te+lkQiwTve8Q4uvvjilmm/9a1v8bnPfW7d5ydPnsS2W28wqCedTnPo0CHPZfTx8Xl283P/bI/ARe8e4vRtKeYeTgOwPLnGv/3xfQzsj7D1uiRm1JMFo4/Pc4J9+/Y900XweZ4y9egCq7NZtIBg17Wjz3RxfHx8fHx8nlU8IyIlgJe+9KV89rOf5dd//de5+/hneMne/8jWi0PMHLVZOusQH5AM79Y4/J0CttQY2m0gNTj7WIm1RYd9Lwsw97jF4kmb2KDO2P4gR76fxirC0HkmuqFz4g73B9mWF0YQEk7/KIM0BBOXhTl26xLFtMPg+WGCPTrHbk0BMPHCOKlTWY5/f4lA1GTbgSTHv7dIftmi/7wo0QGdI990HXMmru1l7Vyec/enCCRNznvTKKmTGY796yz950eJT4R44utuiLbxFw+Qm88z+cMFzJjB9uuHOXXbrGv1eFGMvr1xDn3R3b03fs0AhdUSZ26fwwjrbH/FMGfunGPlZIZi2iK+pbbbcOyqfqy8zanvzSJNyfZXDDN1zwLLR9fo2R5l5PI+Fo+u0rM1Qj5VQik4ecs0SNj+imGmH1hk4dAq8S0Rxq7u5+A/ncYpOoy/uJ9Qf4BH//4kANuvH2b2kRTzP00RGQ2x5cWDPP7VM1hZm6HLkgRiBke/eZZgn8m2lw2x8MQKsz9JERkOsu1lQxz+l0mKKxZDFycJ9Qc48o0pcGDLywZZm8wydfcCoT6T7a8Y5tjNZ8nNF+m/MEF8LMwTX5106/vAIOnpLNnZIsV0ie2vGObErdNkpvP0nRenZ0eUx7/kKtPHX9RPbrHI5J3zbH/lEAMX9PD4VydZO5Old0+U/vMTHPxCub6vHaC4VuL0bXPoQcnE1f2c/dEca5M5BvYnGLo0yWP/cKpa33bJ5tSts0jdre+z9y6QOr7G+W/eih6UPPSp4+DAyBW9CCk48W23DWx/xTDTP15k4eAqsYkI49f0c+wW916HX5BED2kc+1dXfLbtumHmH0sx93CKyHCILS8Z5PDXJwkNBNhyoJ/8isXRfzkLwNaXDrF0dJWZHy8TGQyw7bphjn7rLPnlIoMXJQkmzaqb1JaXDrJyOsO5exer9X38lnNkZwv0X5AgPhHmia+49d27Nwoopu5awIy7aU99b4a1szl6z4/TuyvKoX9y63v40l7yyyUKqRJmvNxm75hj5VSG3l1R+i+o1ffYNf1YGYvUqQzxiTCJrVGm7pln+Wianp1RRi7r5dH/67a70Rf2oWzFye/MuG32F4aZvn+RhcfKbfaF/Rz8wkkcC0Yu70XqguM3u/W97fohZh5apndXlPxykcTWKI9/+TRW3mHkBUn0iF4V+217+RALj7ttNjYaQjM0Fh5z+4ShS5KEkiZHyvW95WWDpI5nmP5xinC/yfbrBlk4vEbfnhgrZzKE+4Mc/kY57Yv7WZ3Kce7eJYJJN+2JW2fJzBYYv7aPUK/BwS9Oue37xf1kF4pM3bWIGdPZdt0gp38wz9pUjuSeKL27oxz9txmsrMP4lUkKqxZn7lzEiGhse1k/k3cvsXI6R8+OCIMXxDj4pXPoQcnY1UmsjMOp2xeQpmTby/o5e1+K5eMZeraGGLq0h4P/5JZ35AU9mFGNpeNZ5h5bZdtL+5l5KMXiExli4yFGr+jh8a+fxSnC0MVxtIDkxK0LDF4YZfyqHk7ducT8o2miwybjV/Vw+F/nsLIOg/tjmBGN499xFxu2XNvD0okci0cyoCTbDvRw9DsLlDKKgfOjhHp1jt2yVO6Te1iZyjPzcJpQUqdvd5jVH7guJf27Q0SHTI7c4ip5xi8Pk56zOPdQFjMm2XEghlJw6u4M0WGdxKjJkVvdLfKjl4TJr9ic/WkJMyzYekWYyZ/kWJu1KaQd4oN6NfTn6AUmpZzD5EMldAO2XmZy9tECqUXoGZZsuUjn+AMWKzMOI3vdxfUzB12Tqa0XaUwftVk+B/EBGN4hOXiXwiq6QgszJKlcaNsFgtlTisVJiPbC6F6Nw3fb2BYUo49y+tyP2bVrF7fffnvLcdXHZyP+5E/+hMnJSb7ylS8TfVmM8fO2ktAdjudcB5vRgEXGlqwUNGQItkRLTKV10pZB1HRIBmzOLurYhmAwZlGwBPNpHSlhPGmxkBFkLI1IyGG41yKVlswta/QnbJTusDgvESYMD9vMz2tksxAOK/r6HKaPg2XBwLArQJifcRfph8cVyxZkVyEYhr4xydRhB6Wgf0yQSAY49UCRUk4xsFMnddYms+QQiAj6x0KcfTiDY0FsxEAPSOYPu4LZgX1RVqfyrJ0rYEY1Bi+Icu7BVeyCQ2w0gBnQXUeg1RKaIQgkDQorJYywxvClSaYfWKSUtYmNhQj1B5i+3+2z+vfFyS0WiY6EyMzmiI2GmfnJEsU1V5QbGQly7l7XEbHv/DiFVJHlY2n0gMaWlwww+/Aya5M5woMBElsjTN3t9pu9e+KUshZLh9eQumT40iRzj6YoZSzCg0F6tkeYvHPeTbsrhl1yWHx8FaEJhi9NsnBohex8gVBvgP4LEpy+zZ3L9uyMIoD5svvT8KVJFg+vkpnJE+gxGbggwfSDS2iGJDIcRDMlc4+kAHd8XD6ergqfBvf3cPZHCygF2145TG6+wOQP3TINXNTD6pksa5NZzKjO0CVJzt23iJW3iY+H0YKSmQfKdXhhgsxMnpVTmVp9/3iJUsYiOhoiMhjk3H2LREaCjF3Vz9wjKVIn0mhBN+3MQ8sUV0tEhoPExkJVB8q+8+IU0xYrpzLVe519ZJlCquTW97YoU3eV63BPDCtvs/jEGr17YvRsjzL9wCK5xSKhfpPePTEm73DTJndGUbZi4dAqQkL/eXEWHl/BsRThwQD95yc4c+ccKOjZEUFIwfyjjfUNrrhp+NIkU3fP41iKxNYIWlAy97Bb34MXJ1k5mWbtbI5A3CA+HubsvW77iE9EMGM6sz9xx8OB/T2sTWVZPZPFjOgMXZrk3P2LxCfCaEENPSCZLtf3wAUJMrNufevl+p55cIli2iI25oYvnLprodpm88tFVqcdNEMweH6IucdzFNMO4T6d2LDByjxERtzFr1JesXzOQdNgcIfO/Dko2RCKQk8/TB13+6ZQFNKrNZHMyLDN3LwkmxOEQor+PoeTk+AENHrjNigwDMjmIRFVzC9qpAuCkKkY7LU5Na2jFPTGHSSKmSUdKRVbhy2mFzTWshrBgGKoz+b0jLuZpSfmYGiK6UX35/Fwv81KWrCc1jANGOmzODNnYNnQE7EJmoqz8+W0vRarGUkqrREOKAaTFlOzBiUL4hGHcEgxNeumHeyzyWQFy6saug6jgyUyWY3lVUks4BCNOkyec9P29znkC7C0rGEIxciww8ysRqGomBizEQKOHJMIR9HX61AqweKShiZhZNhmdl6SywnCYUVv0s0rJfT2Ojg2zC+6QriRQYu5RY1sThAOKvp7bU5N6eA4JOMVRyJX/DQ6YDO/rJHOQCgAQ0mLUzMGjoJkzKY3ZpNKS85lTEaTFotpjdWcRtBQjPRYnFowsIFkyMbUFVMrElsJ1zyqfKWAppiIlji5alJyoCdgExEOZ1YMbEOwLVpCoDi8GsCUsDVSYmpJJ61r9Bg2cd3hRLY8rgUtclnJOSSrlmTYtDAl5BxIaDb9js1hXIfSUdMi5whmSgaaKrHwnX+A1AI3330327dvXz+oPocZGRl5yq9RKBSq4ebqMU2zetwrsViMj370o12lvemmm7j22mur/z59+jQf/ehH2b59O3v37t0w/6FDh/wFTx+f5yDPlWf74sth7ugyd3/2EIun3Lnm/KMZVo4XeMEv7eb867cgtedGOGMfHx+fZzOHbnXXQwYvjmIEn7GlWB8fHx8fn2clQnUTB+0p5EMf+hAf+chHiBr9vHzfr1FSJo7luiaZISjMuS+nzDAoXaNYdlaKD4G0bVYmXdcRM6aTX3FfbRr/f/b+O0qSrLzzxj9h01dmedPVvqd7vJ+BYTwMIBBOgEDSSiCtkLQ/drWL3pVBu69Aq5V7VzorrTlawwohsSAQAuEZx3jvbc9097TvLm/SmzD3/v64aasyK6MGM6bjc06dmc58IuLGExE3bsb9xveJA46LU1T/jg4bTJ4XZ+FAlcqqhx2RVHNe041FN8Ap1GPTBm5JuYzoNoydn2TuqWIz1tAltXrZteiAjlcTeBVVgm5ob5zqkkNp3sGMK4eP6qqKtVMaviNUySlNEB20cXJqUmTbdaOcfnCJ3DG1c3baRPqot8R15bLjFDyEo9xMzITZdIuxB9REeuMN5+hwK1a3deyUiagJjJjeLNXg5HvHNtY7esEAo+dlOPj1U3hVQXTYxit59bx0xlpJE82AkXPSZHYmOXLbLF6xHmvq2GlTOQ8JFaubmnItAva+fxqv6nPku7PqOKbtZqwZNzBsvRkbyVjots7un5jk1IOLVFdcnJyD8Kjn22w6HLXnMD4ZITZos3qwhPDqOYybTXceO22C3z2Hm8n31utHKS9UWX6h0Ipdk+/2HA5si7P16lGOfX+u6eLUNbYth0N7laDt+F3zzfJ/0SEbr9w932ZcuXR5JR+36BEdtPFqnnIVq+e7Ww7P/4UdrBwqsPBMVr3t3zgP22OjrRxGh00My6Q0V22L9Vr57pLDgR0JUltizD62snG+23J4zs9so7xY5fj3F9adh13zXfEYu2iQwmwFt+C1YpNmZ7575VBqzfO7I99VD69CM4e+45OciFI4Xamfs/XYQQuv5qvrfk0Oz/3wNKXFGsfvWETTNSIZs9VHtMf6yiFjYHuMycsyHLltEd8RSE/gVqSKzVg4RQ/hyPr5bVBdcZm6MkNmV4KXvjuHk/fr7W/F6rZOJGVQrTvJ2UmD0QsGsFMGR25ZJDZs4RRFq49I6m2xOhhm0yUqsztO7lgVvybQIxp2wmz2f2ZcRzd1lW9dJ5ox8aqinu9G/636ZCtlYpgatXp7I2nlBjF1eQrhw9LBCtW8r87vmI5hQS0vQDeIpJQ7klet5zCtkxq3WHrJw4yijk1egFSOe8IHzzNUbErHjms4Zdl036pW1SSrnVBOAm4FEILogHJn8Q0bKwLTFxosHRUU5j11rxLgSjXBEk0qtyZRdtFN5QoYydiszKgSMgBurn4dpcD1LfzGPTAKtcUas4UXeWbxO0xMTPDiiy8yMDBASMjLxXEc3vnOd/L444+z9fpfJjk0STmmBEGWJhGAuarK4lgGVE3lZGFogoztU55X/zYNiWc2SgapWGPVR0olMogllTvHclbHMMAsePi+ijVjGp5HM9YwQK66gIY9oKoyVkq6Wq8FMusgharkaNh1ZxbAMCFpOxQW6iUXI+B7IP16rFfFq6phrm4CGviOZHCHjS4cVg6WEZ5UsRFd9R0SNE/dy/yq6i/MmIHwhHJd0sGIGsr9RoJuKQebRhlSFSux4ga1gosZNfCrPlIoVx3d1JvOOWbUQAqpSolpMHnlEKWZKvmTZXRTQ7dasUZUB0Gz7JgZNxCuZOoNwxROlSktVJvuPEZEB9kZ69cE0pdEMsoZaubBZdyScsIDmmPE9ljN0OpOeTGig7YSJ2mdscIRKof12EZeklMxagUHt9CWF7ceq2sYUb1PDnvlu5XDSMYiMRYle7SEcFUOzVjvfBtRnaGzUuiGxvzT2XqsUG5Ua/PdlsPRC9LU8i6FUxWkX4+19c58r8khgF9VJUaNyMaxwhEkJmOkdySYe3ylFWvrvfOta1gp5YYkPeUE1TxnN8jh2IUZSvNVall3w3w3chgfizB2YYaT9y7i1wRm1IBIFOFK0MAaSuI7UuXbBCMVw7AgktIpFpVQSHjq2jOSJr5br3AWVw6LXt0xSI/V8+1r+FEdywTPV32EZkgMve70EzHq5SRVn+N7ABq+D0JTbj2GQd31R8NAuSN5QiMZE0qUNGvg+TqaLjHbY/V6rK8hNeUKNJL2EFJjIWs0YzVJRywoFyYhVd+zfdKjUNJZyemq76zH+vVqd6ap8uUL5dZj25LRIZ+VJQPHUS5wjfJtpinRPNnsO626a5SUyklJerLppGTYKrftsb4jVQ6tRg71ZnvbY81oPYeynsN6HbbxUcFS3sRxtdZ6665FQmpIW+vIoakJIpbKRUkzVaxQsRoSU1ciNT+i3JM0TRK3JPmajo2KdaKGuv/oEkfUHZo8ga4p5z43rjFQFyKdqphYNYmlgyvASaj16oArNcwKWLokaghyMQNfqvucKzXMIhj1fS0ljOY9UErQcpLjD36F1SOP8ZnPfIZf+qVfIuTl8eKLL/Krv/qr/O7v/i7veMc7Or776Ec/yuDgIH/5l3/Z8fmxY8f4yEc+wr/9t/+W9773vT+2th44cIBf+ZVf4TOf+UwoUgoJOYN5vV3bQkhe/P4JHvvyQZy2Es5D21Nc/UvnMb73te8SGBIS8tpks2Ov1yKFhTJf/o27QcIl/78pLru2u8Pn65HX2/00CGfaPp9p+wtn3j6fafsLZ94+vxr29xWX7/7BH/wBx44d4/Of/zz3vPj3vHH65yBiITyoFtQ7m0BdnOSDqR4ipsctIjGT3ElPxa6qyW8AtwyyKprbqC77HL2v2Pp31Wu+qumVW3EA1ZyP9NRniWGboZ1x8idrlBdVGTevzfq7mheq1gCAgOXni53rWm39AGyIFgCQelMsUV6oUThdUeKOxr7m2mJFq3wVUJ/Yd9j9k1MUT5eZr79d3drXVqxwROvf9abppt4/Flh8Ns/is/lAsY2SG0v7c+SOlqgutcV63WMbzD62gl/z67Fr9rXsNydqgKZY6eDXTjVFQq1YgVduLduew/JsjfJs603MRg67xTb2NTEZZes1o7z0ndMdbWqIWtpjGzTeqA8SKxxB9kgR6UlKC6osWs/YthyuvFhg5cVCZ+xK73x7ZZ/pq4axEiaHvjnTFHGp2LX57syh257/tefhmtj4cKzDiavbObs2L0vP5ViqOzf0i21w/E7lPgbrz8Ne+Z6pOyi0s/b8ac/hlqtHkL6ouwbIdedsM1bTO3K4WlDODO19SnXVbS24JocvfvUUuqmj6aqX6+gjGrGaul69qiB7tIJuaM2yc9SXQ0B1pbWdhvgHYO6pPIWZalOgpNrfihWOoLrS0qnWCh6nHlhp/ruy7DZrZavY1r45RQG6h26DcGDlQLltvVB1WvujctISEWy7JsPsE3kKM06r/26Lbc94QxRanHMQQqOabe2LVxF4lbbYQqt9ZlSnuiqortbQTAOvWhcv1XW5DRErlqFymBNMnR/DcyUnHq7gOQJsdb9plJJq9PfVfGNZcGtw9FEf6veGhpC2/lI+1SKqjgvqmosN6Izu1MmvCJwqaLXWOVEtADbN2NpijVLkOM8e/S7RaJTHHnssFCiF/MDYts1Xv/pVrr/+euYf/gLyql8iKkZwE2pSF8BEItFwfFXux4+ArmkMRQREdEo1TU3O+4AFoOH6oNeXF0KjlNcomOrfni/R/MaITsOrgDRbsUKAWR/xpZPqGq2U6ut1wahfcqr8FlAfyvgeFLLqS90Er810QcW2+jfhQUOXX8v7iJLTvJ9IofqTBn77PVnT8Co+0SGbwd1J5p5Y7RibCFeViWzQELnU6sJ5v6ZKYalYiXDb+rBqWzkZCbMPt/pf4UmE1/rer3aOExptWHwui1NQJcuasbXusaDGUkvP5Zrb3ihW+kq0mTtWUmOWztCusQ0apVibsZW2WCG75nDwrBRSSLKHi22xrIlt5bCWdZtjQxXcOxZUDrNHit1j1+a7LS8N16MgsQDSk2y5aoSFZ7NUV5yO7WyUb9bkxXc2ODZCMrQnSS3vsnqouD62I9+tZRsuWEFiQY155p5YbbZb6BFw6+ea7LzGpB3Fq0m8GtSKPrLtLVFpm01xIQBlDy+qHFQMUzI2KVmcV0IZoypwo60yJI0+opkXXwlXfJ+W9Q6ApsQwojGIEOA3f0lCsaJTmakLKzUlgHLbBhxKcAmyPu5xfY2VgnIaasRq9T6kEdvMoa812zK7ZOB5SszZiNVEK08NAZJKoYZbhplyY3/r69FasXrzcKj+UPV/kmpV77le0PBqsrmigbjEjsLCkvpsbazb9m/hq3Jyhg7lsk612toXJB2x7Tk0dCVeKtfqHXRE5bCxnKzfJ5r5lhpRQzIW93Ack5rX+o0q0eoCJdBdiY+G6uLU/uZdg7xrYNbq9yrRuV4fMOtdkCtgS8LHNCXzroUjNayibMXK1v64UsPKeSw+9W2WDj3cdH1+PdGtvFk3NE3jox/96I+0LcPDwywuLq77fHlZ/XYbGRn5kW6/we23387tt99OsVjsHxwSEhLyGkPXNc5963Z2vmGCR//+AAfvVi7aK8cLfOv3H+Ks67Zw5c/uI5aOvMItDQkJCXn9sf/2EyBhywXDxIbXO4iGhISEhISc6bziIiWAv/u7v2NlZYXvfOc7PDrzj1wx9UEAZMRCxiJoldask1afFDj9HBjuGgvwxhNsvYtlbf0h7rY3JkEITjyQXx+zhsKsw0s3L+GURO8gXafjyTmw7bphIhmLQ9+c671cXXwgPNEsz7EZSgtVKitO/8A2drx1HE3XVOmsgNgDJmbEoLzY327dyXvrhCL9KJwo9w9au53i5rYBkN6RID7WKsfSdxsFj9J8FV1vlWLqh27qJCYjFE5W+gejVtsoOfKjZP6ZbIc47UdB/lQZ/+6FdWKrHzbl+c3Z/sdGbXxHrBOibURlpdbsLzakbuuRnIoyMB1j5rHVoKcKUJ8w32g7WucxE45gaX9Dbah1WaDLNhxB4VR1wxgpJZqmIaUkvSNG7ljA8xdITUWYvirD0TuWO4RG6jX07m2UAipLLpWVzV3HKy9VwDD6BwJDuyOMnRPjpTvynULUXsaB9c+PPVRuih+aiO4HNTGsM3WRxYknq0pc1A3HXffR8nFBPivwcw7rMmSrH6yNe95y5STPzXybRCLBo48+ytRUWLs85IdDOp3mlltu4frrryf/+BfQrvgIEdRbtG4CahmNSLZ1vRg15bB0VNqYa0QWRl2w4Fvrr3ndk9iWZHRMsFKTOE4rRvPaxA1m6/PlOXVJ6nVFjOh2/xJ0XKuGBeP7LFZP+lRyvTvihuiyvOIji+uvzw0WxC35HULfIFgJk/FLMiw8rYREQYkO2R3i2Y3oEOkEpF0YHwThBbgnrkHTNQa2xykv1taJfXvhFt11Qqh+mFHlhtch9tloG6VgcT8IvitYeCaLU9j8sdkMKwcLCH/zx2YzCE82z0U9Hl/3vSyV0BIJtHjdGlADO67hliVUa8hoBBnp/XNTWgbSlFTKsu6K1PZdl2GEXhOIiM5gwqdS06g6bR1Bo1/oeg5JkC2BUs/2rBm71NzW+rWNzIdFfRto1JzOPkvbYKwX1QW+0RBedaJ3PbaSsRGVq+Xl9duRutZ1e46joUzvNtj5juUkvtBYyWqqf+5jvKxJwdSQT7mmsZJfM1brsajmS2q+xjHXWif60t3u+z6R9HBsneVc7/GguW4Yq3GyaFFJtsRJ7bgptW07r77L7r+VE8/cwx/+4R++7gRKAH/zN3+z4feN3wQ/DpHSnj17ePLJJymVSiQSrXL2+/fvb37/4+Cmm27ipptuar7NHxISEvJ6JDYQ4bpfu5B9N27lgb95nuXj6iHGoXtOc/yxeS7/0F7OvmkbesBnTSEhISEhG+M5PgfvOgXAuW/bTon1L1GHhISEhISc6bxqClB/+9vf5vrrr2e5cown574BgFZz0WrdH/BLx8er+Og2bLsyhhlr+1IIes1yFGYd8vNez+/X0hAojZ2fwB7o8UBU1zuEUYsvFJh7PBto/Q0hQnTIZt9PbyU2agdabO7RFfKbFPisHi6y/EJ/cVY7W68dY/LK4cDxugl73jXF0NmpwMvExyPsfPvEps7G3T85xeQVQ4HjIxmLxHg0cLxb9Dh5z+KmBFGp6Rg73jxBdCjYMQQlnhq7KBM43ozrnPfPtpPelegfXKey6FCa3dyE5GZpOC1shn0/vXVTxzA+HmHiiqFNnSdTVwwz/abRTbVr6dkcS8+3XScbTcxIQXTQIjEZDSxQMqM653x4moFt6yf7ANUnrBEojV04wPilafWPXg+N2ieXdDjr3eOkd8S6x65BSkl6e4ytbxra1JsdlVWXlcOVToFSH/ya4ORDuabbUz923pBh/MLg5ztA9niNhRcqLYGSlBsKlMbPtjGjSjgm2nUBPQRK+IJqRaO47FPtctprrrdOoDSxzyQ9oaM5brO827rlKrWmQClXnePJha/i+z7/9E//9Lq1Pg555RgfH+f2229H13UqT38Jp6z6Pauk/rohq6DXJImoIJPoFHsYrkR3118zrqdckWqWge52F4i0C5aEUKWMDFOSykh0r8d12DJow3che9qnWgjWrzTESgNbowzv7dEXr8F3BKuHSx2ORf1wSx75E+UOp5p+2CmTsQsyRNLB++LYSITxSzZXqiG9PaHuXQGJDtpMvXEYzQg2cSGFJDYcwYoHE5cCFGerlOY3N14Z2pcisyP4PULTNQa2xTfVrvTOBBOXbSK/EqqrzssSd20Gp+AFFmcBxEcjTF8z0nRwDEJqOkYkbXUVKDVoCpQAK6oxdpaNVS8huZFASav3F76nsbqsI9qEKvoGonej6hOLSswuq+4uboHBAcH4kBdYoKRpkvFBD8uUaEL2Fii19UOpuGRi2KOhytF92VOgpLsS3ZMMDQqGBzv3VfdED4ESgEYhr1Eqrd8RzRNdtqf+XS1CPt99AK0J2TGGtG3JlgmBaUg0wYbjYE02cqOxnNcplNu2IekpULIRDETrbm6BBEpg1qDo61TL3Q+iWZEdAiVTl0zEXXQkelFi9TDJsfOyKVCae/4uXnrsdn7rt36Lf//v/333BV7j/Jf/8l+6/v3RH/0RH/3oR0kkEtxwww3rSrD9KLjhhhvwfZ9vfvObzc8cx+G73/0u5557LuPj4z/yNoSEhIScaYzvHeS9f3Q1b/rFc7HjajDllD0e+Nx+vvH/PsDCodVXuIUhISEhrw+OPDhLreiSHImx9ZKxV7o5ISEhISEhr0peFU5KDe644w6uvPJKHn/8cZ6c+waXTLxXfeF6YHVvqqlLrLiOFdU7SnVokQiyVls32b96vDU5HE0bVHP9H+7rJmR2xJASFpfrkyfd3JrqNMsxAdFhi+py/zepq1mHymJtXRmIjRsGO24ap3CizPKLvaw8WuSObN615+S9C+tK4m2E8KCadXE3MWkiPIkZ0bGTZmAnpuLpMtVNuAcsPJVlYU1pvH7ots7A1hjZw8HyVjhV4tC3Twd2PwBIjEeJj0W6lt/ohlcWLL2Q29Q24uMRkhOxwNt4OaS2xIhkrE5xTx+W9+c25QYWH44wuCvJ3KPB3LAAjt8xjxENPhEZH48o14Dl4O1aer7A0vP9r78GmqlROFVRjk3rvuzerxgRHd0MPqmomzrVrEstF/wayR2v4BQXqATorxp4FcH8U8GOuW7DzhtHmHs6T2khuKiptOQ2S771REjQVSk5NB2vKlg5XGsTo67Pa6PskxWD9LRFrSTInmyv+9IqL9qOGQXhgufAzPPrc6W5HtJeLy6IJDTEBsIsreo073M1a46nZ7+GlJI77riDq6++eoOdDwl5+UxPT/P973+f6667DuOZL8GFH8aOK0GkVRG4se59UkQIdb3RKicE4KRN7JyHsNrK9kiNlay6lixDgi47xAgNNNdHWq1rLhqDZAZKedkspyi7uanVxYTl+vN0w1LliqRoOcX1wi37iC7Cqo2IpC3SOxMsPpMNpHffrKDcKXjMPrq8qXGUV/VxCi6arm3s0NeGbmnoIrjq1y0rh0lN66k7WMfcY8Hv1w2suAFacMejlYOFTR1DKSWpLTHcsh84x9UVB7e0Ofe/5GQUp+htykFrs6SmY6ptAffDKXrkjpUCnyMA8bEoaDVqJ8tdhUpaLIosltCSSijmViRzLzp4NYm0TLRyDRnfqHyIJBaHakX1Ff3QJIDGzKLB2jOxt7AHak69RGVATB0MHVSNsWDLeT7UXK1vfLsIZ2FB7xj69RRlovpI0KjI9det1mO5ZFISiUhWFjZsUgdCQLWm9mejPdGkOgKWKXE9jUqjzNtGBsR14V4iJUhFBYWq3iolhxK7ii7jXUuXSKDgdB/TmxWJm+jMi6lJbENiV0RH2b927KJoLlc99H1OPfZdfvd3f5c//uM/7r0Tr3Euvvjint9dc801vPWtb+VjH/sY11133Q+0na9+9asUi8Vm6bb777+fhQV1In7gAx8gmUxy7rnncuONN/K///f/JpvNsmXLFm6++Wbm5ub4nd/5nR9o+yEhISEhvdF1jXPfpkrAPfL3Bzh0jyoBt3wszzc//RB7b5jmip/ZS2wgLAEXEhIS8nKQUrL/1uMAnHPT1tClLiQkJCQkpAevKpGSrus88sgjvOENb+Cxxx7j8dl/4rLJn1JfuvWH/O1ipWgEp1Tj8Pfrk+SGgW4qoUyT9hmktqfA6W0Rtlw+wJE7V5ULSA9xAKj1vXTzUud6NyotV2fk3CTjF6U59K05av3EUAJO3FV/ghy0wpgAvyo2Xephx1vHqWbdQGKPhmhIt3WEJwK169R9mytfV112OPTNmU0tM79JwVEDK2kGLjsysDXG1mvGKC+dDFQuTHhsStwCMPPw5q0+55/Ibio+MR5j+JyBH61IaTpOcjq2KZHSZmIBlvbnWdq/uWW8qgjs2AMwcekQmq5x+DvBzkczquO5BHZR0nQNryw4/WCXa2+DPmj20WzrH0J2uim1TzbWvxOO4OS9wSeHzbiOVxaBBUp2UmfHm0c59XCO8mKwc143dXxH4AYVPdb7wYXnNhAJrplonbo0iZ3Qeen2fE+3PLnGEcCrwEt3lVT/7m/QT/tqfVsvjIEGRx5v9Qma27t/0E2QZZcTD6ncrhUwadXO/K1UTvH0qX/CNE2+8pWvhAKlkB85u3bt4q677uLNb34z/pNfhIt/BjuhXGOsuvi7XaxUyxhksxIK6jKVUblOXNDuqNQSLElGJ8D3fZbmtPp3nRPOWpvTUqlgUC6qdTfWoPUTK+k6I7ssakVB9nQ9tn7NdxMrdfR5GoHUN74jEI7YlCDIHrAY2pti4elVRA+XkHYaohPd0gMJcNyix+pLPWxCerDZeL8myB19GSVqNdANLbCr0NC+AbyqH9j5czMuVQBIOP3g5sZemxH8NhjYlqBwuvwjFSmldyQQrgwsUvIqPoVTwUu6Asw/0XqbXpQ7hUparOWg1C5U8qpKoNSMWyNUar9+LRtGJwTzMzq1KsgNHt5q9VPIMCRqj9ucl/r8FipX673IBro8Tcqmm5Lra8wutvUza7VKXS7LSk2nUtu4LQ2BkqZJ0EBIjfrO9BEoCTKDEt2QLGc7hVC9BEoA0gOhS7rteC/XJc/TWFk2egqUtLbFTEMyPeqxsGpQquo9x8P6mus/WzHIVZRAydigTzRrkogp2JL2mPVMXFrHxKz0cKlClSf18zCbNwANJ9m5/3axs6Gzz97O6Se+x0c+8hH+6I/+qGd7zgS2bt3Kddddxxe/+EXe8pa3vOz1fPnLX2ZurlVi/p577uGee+4B4G1vexvJZBKAf/fv/h3j4+PccsstFItFdu3axf/3//1/G4qpftjcfvvt3H777RSLm7svhoSEhLzWiaUjXP8v6iXgPvc8K/UScAfvOsXxR+e5/MN72ffmcHI9JCQkZLMsHs6xdDSPYensvWH6lW5OSEhISEjIq5ZXlUgJlFDp4Ycf5pprruHBBx/ksZl/5PLh97QCuomV6my5KEIkZXDkvv5vredO1ND0QuAyRQ2B0uCeBLFhi5mHs32XWXqxiFv2cYrBJ1B0W2fPu6ZY3p8L5I508p7NCYJAlaAI6lgESlyw7/3TrB4uBnaxsQdMxi4c5NQDi4EFHLFRGyRUloKJHuLjEeKjUZaeywWKHzl3gInLhtj/5ROIDcpINMgeLVFePLmpXKV3JkhvT7QEZz8C4uMRNF0LXMJt8Zksi89kf2TtgbrY6uHg8WZUJzEVo3CiosRvPwIGz0qRGI9uSjR37LZZzHiXblFK6DLBPfXGESIZi0PfmO27bk3XiA3bJCYiLL1Q6LwuNhAoDe5OsHq01P066jJBPnx2AuHCakAHMDOus/fdEyw8k2fpheAP56s5l9omrg2vLDh2Z73/2EDcCcp1afdbhll6scTq0S7neQ9hwMzTZSIJPVA5z/iwwcieKKefcToFqH2Yfb6GZgD0d+jKTOlM7DY48oCLu2ZeeK04CSDrneDx+a+iaRo333wzN9xwQ/CGhYT8AOzZs4e7776bG2+8kcLjXyB56c8RId38fr1YSfWHpiGZyngslEzKTj9XHo3VpY21gGuRUkPTJUPTOvlFgdfFgK4DIVg96eE56/uIjcRK8VGb1FSEhWcLfbsPr+JvXjBb8XCLLoGVUEByKkZ6Z4LZh5cDC3ziYxGQUF7sl6g6GsSGI1SWgscnJ6JUs25gcdDk5UNUVhyyh4PdX5ZeyG3OVRR1v68s1zblMrkZNEMjmrGoZt3A5f5ejgh9s5y6b2lT8ZEBC+HLTbtCdaNdoNTO4DaTUl6jVuqep7UCQz/rMSNMvC5NMmoCP9LZrxiGZHrKZ3FJUvDVeG2tKEj3JaKtLGEqIajVNBxPU2OpPl2VbaryZ24Xxzdg3XhM0ySDA4JcQUduoGdrd1BKpyXJhOD0jIFE6ytQAnBdDd2HoAIlzZeUSxrlbqXhuoyjUklJKi6Zm+90N2ou0+WQer7G3IpBpaYF+L0nGR4QVGoaeYyu2+hGzdOYz5lUXA36VsGUTKdcnILGMkqg1M5acRII5p65jdNP3sqnPvUpPvWpT23ovnemkMlkOHHixA+0jn/4h38IFBeJRPj4xz/Oxz/+8R9oez8IN910EzfddBMHDhzgV37lV16xdoSEhIS8UkzsG+R9f/gmXrj9BI/9wyHciket5HL/Z5/nwJ0nedMvncfYnswr3cyQkJCQ1wwNF6Vdb5wMXelCQkJCQkI2IHidhx8juq5z3333cf3117NUOcZDi/+IEGseKrqe+ou2bvTZkw6rx2pqBsz30SJrBgFStP4sm+wxNfk9MB0hMWq0vtsAI6JhxdoesAvR+luLgNwxNTOd3hEPlG3hCIozFcpBJ4zqbL1ulNELM4Fi5x5bZeVg8PJUwhPMP7HK0vPBxECgylOltsSIDtqBl9l67RjjF2UCx6em4wyfnQp8FmePlTj90FJwUYxgUwIlUIIuM25s6sra+4FpRs4dCBw/fvEgE5cObapdrzYSUzG2XTuGGQ2eqLM/tJWhfanA8UZEx4xvrosT3uaO+eJzWRaeXN0wRtM1tPqbZ6npmDpnRfPLDQVKiXGbLW8cJDW1ZjJQyJ5CneRElORU8B9AXlkw/3SOlcPBSxI5RcGJu1cCTSSbUZ1dbxsmOhhcEys8KM3XKK0VLPbY79SUjW4IvJJHaWH9JLWUsvnXwIjo6vyr3y+6Kid8of6kYGyfDTpU84Jy2UBzveZfx7ZsC81x0RyX0kyN7KmWQEnaFlrV6SpQWrWO8fTCt7BtmwcffDAUKIX82Nm5cyf33HMPmqax+vDfkhXrBRBWRWBVBLWMGgd5PuRLOk4R9JpEr0mcdOe1rrui+VeKRPA9DTRJKiPRXQ/d9dHd9def5vr1P4Fhgd429NJ8v/m3FqfoK6cjBHZyff+6ti9Qy3hUVtxA5duauUiYjF2YQTP6T2gLV7L84ubKkpUXq6weLAQWKIESHEUyfWfxm0QHbUbOG1DjloCkdyQ2tY3Vw0WKM8Hde/yqCF5Prs5mS6ImJqJMXhF8HGXYOqPnZ7BTr7p3OzZFZneSga2xwPHJqRjjlw6u+7yXQEnTQY+aPYc1XR3QUM49Utd7uihpsiWQEQIWl3WqNRXbz0FJ0ySZpCASCXZSaUIymPQYyXQZEwi6CnEsE1IRgSF7OPu4skOgBFAoaKys6mie7ClQ0lzRFCgBlIoahbzab80TPQVKmi9JJ3wyg4K1F5MmZFeBEoBT0ShXtHXOeO35b36mSaIR5bBbqejQRdCle7L518A0JLquyro1/tZi1iRmTZIUPjFLABqlmo4b1zErsvnXjpvQsUoCqyQpZjUKtbYypEkduyjWCZSkFCwd/jannryVP/iDP+A//If/gNHjHD2TcByHRx55pOl0FBISEhJyZqAbOue9fQc//Z+vY881U83Pl47m+eanH+TezzxHNf+jeSEgJCQk5PVEJV/jyEPqZeZz3rrtFW5NSEhISEjIq5tX7dN2Xde56667ePe73823v/1t7p//v1w1/nOY+pomux7SF2iGTmnRo+EdMrTTJj/jqNJCRpen5VI0SyON7IvjVQWlhboIZ4NSbkvPF1lCvQ2+rrRcD6yEztarh7GSJkvP9X/7fuah+tvXuspDEFGNFFK5vWyCrdeNUll1WHq2v/ioKWoKWIqusujwwpc39wbmse/PbaosxvyTq8w/vrFApB2v7LN6aHM27onJKFNXDnP4e7OB3JdWDxVYPRRcAAZQPF2hmg1eSuTkvQuB2tIgPhphy5tGOP79eZyApe42y/Q1IwhPts7dPuSOlDiwcDJ4e3TIHy9T20Selp7LBXbZApi6ahgk3fehx1vVlSWHynLvfdDWTLgtPJ1rif02ECc1KM07vPTducCObwDH7+pxDNaWiYPm9by8v7j+uzpSyuZb5UZUZ/t1w8w+nlVlkurlldZvS0B9oke3dZDgNQRNffop3QbhwMwTa65VIbuaF+kmbLksSfaUw9wza4RWXbbV6LcLpxwKpxw0s8tK1yyXGNIZ2m5RXPIozzvrjmsTz0cDhrabZGc9PAfmD9TPWcftOTF4Ivs4LxTuI5lM8q1vfYvLL7+8+/pDQn7EbNu2jXvvvZef+Imf4PS9/wf7rJ8hPrVjXZxVEZhVHy9qkC3Ur3VdEotIShUd3REIe33foLsCzfWxUzrpQaiWwa0/626UepNrSsBJAYuH6teRaaCtNUvz/OZ37QxMGMRiFrPP17qLXtoc8ryKIH9SCdeDiI6A5thMNzT8gO46dtIkvSvJ0nO5vqXihCtbjkgBDZiWX8xvSuBTXXGYfWQleMk0CTMPrwQuc9fYxmbJ7EoiPEH+RDDx7Gbu9aDK6ZUWgrlRgnLPOv3gEv4mxl6ZXUmklC+vRF4AzJjB8L4UywcKgY/fwtPZIEOPJm7JW+eyJV0P6RbRB9YLGGTFYelo95+WWs1DrhHD6QaMbNVYnfeodrPIkRKj6iMiRttHGuWyBhIMXyD7iNOk1Dg53ypdpskNLhGlh2FxxWCtVkXzZU8RlVeFk7PrXXsADEc0S8jVWwSA72tUswJ69Dd6zW9uLzUgMUxJdkWVeTOqHsLsUr7Nb6mJWvtYFzX5omffpvs+UjdwhIaTWyNQErKr41EqIRlM+hxf1hFrBEqNcp9+W5+saap05+KCrtrUReem1+q5ian1peMCDajkdIyqQPY4ec2KwKjff4o1nUK1rZxgqfs1K4TPsYf+gYXZJ/nkJz/J7/3e73WNez1y8803d/3c932Wlpb4/ve/z4kTJ/jABz7wY27ZK0dY7i0kJCSkRTwd4YaPX8TZb97K/X+zn9WTBZBw4M6THHt0jis+vJc9N2zhyfJRltw8I9YAlyZ3YWxmkBkSEhLyOubAnacQnmRkVzp0oQsJCQkJCenDq1ak1OBb3/oWv/qrv8pnPvMZ7pn7HNdM/Dy2vv7JZkOoBGqSe3RfFMPWWHjGUU4Y3YRKAEJy7J5VRLfn+70m4IFI2mTnTaOcfnSVwomNJzrckuDwzfNUljc3UbPzrRMg4eitc31jN1vyockmJrOspMnud04y++hK4EkXM6qTmIiRO9Y/3skpIYZu68FEOPUQM67jVUUg8ZQZN5h6wzBzT6w0t7cRbsnDrXiYUR1nE5NTZlzHKweLDyrsaRB0vQ18V+AUgot7Xg5uxUduwu0B2JxgSmyudIpuAnrA86iO74hNCf2mrhqmvFAleySYQ4SVMHBLfuDSYo3rIKhAyU4aRNIWhdkuLmzdJpR12PuT46weKbH4bDBhnVEXHfi1DSZE17jKOXmPI7fVj12f/KambKbfmOHYPdnO/d5gQlx4cOyeHNXymphu29Jh13UpivMuc8/2OG5dlistCQ7eVUKUNzgWdaGEacPoWTa6obF0pCVQ6sVq6ileOHkf6XSap59+mm3bwrdsQl5ZpqamuOeee3j3u9/NE098jl3uh0lvP6drbEOoBJCKC9JJQbladzjpIVQCcAqCGacxub3G6cP11wmVGqSHJZEBg4WjXfp2z+8QKuVnfYq1MrgSzB7D3TWlPK2Ewdh5SeYfr/UVTfs1wcImS6n6npp0100Nv0tJum6kpmPEx6LMPxFAlF1fZSRj4ZY8RBeXkrU0BC6aoQUqZdYQKBm2Hli0Ex+NYMYN8seDiY6EJxABhV8NNEOrC/b7xzp5Fye/uXHRZgRKKt7f7LsDm0OCV/UDl58Ddew24xZWy7nUcsHzpJsgimVkMt75RQ93Gl1X93DfJ0gFVSxTMpASrOZ0hN9fTKgh0TQQUut/WjTeT9EkQmpN7SPUxT89SFg+VbHefQhaYp124nHJUNJnbkZDdCuptoHbmnIk6t6WVhsloFHI623fbVASzvMZnZB4mmBpufMg9BJWAxSyUC0ZCL27QKmdeEQwkvaZnTPwe5R4awiU2vdhIWeABka1d/vNeinSVFSQjglKTutY9BIoSVHl1COfZ2XxKF/84hf5mZ/5mZ7rfz3yJ3/yJ11L2rWXRH3LW97Cr/3ar/24m/aKEZZ7CwkJCVnPxNlD/NQfv4n9tx7n8X88hFvxqRVdPnf3HdxvHyIfbz1PGbfS/PbWn+KmwQtfwRaHhISEvPIIIXnx++ql/XPfFj7fDQkJCQkJ6cerXqQE8L//9/9my5Yt/P7v/z6PFv6ei6LvJmkOrnvoLesPYf0KHL67iFdpPHFGCZUarBEsifqD0cigxdarBjj9aJ7yXF14tNZVybLAdanlPHLHy5TbSgtpht5sw1oaAqXUdBQrbrJysP+beisHN1caBGD84gyxYZtj31/oG3vynsVNrdsteuRPbs7NZuziQdI7EuROlAKJiOLjEXa+dZJj35+jNNv/LXcrabLvp6aZeWSZlQP9hRbCkUQHbSJpO5BIycl7HLt1vn/D29j25jEiKYtD3zgdKF63dVJTwYRcoMqzTFw+yOkHl3EDCH1qWZfjd/Q/H34QNuNoBTB5xRC+I1h4OhsoPj4aQfgysCNDZk+KqSuH2f+lE4GFSj33oYeLUiRt45Z8YL3YZZ3Tjg673zlB7liZ2ceCOT7setsotazLyftWAsWPnJsivT3OgW/MtoRQG7ldCEnuZIXSXPDSkk7e48itPfqNNeKk5KTN+IUpjt+9GtjlobTksHq00hIobdB+M6ozsi/G3NMlqjm/1a+vnRVuFyd4kuyJGqVFtf4OF6W1y1kW2y6PUisJ5p8tdxeXeWv2SwfPgcP3lfE2mgB31XeZ65e55ct3s3XrVp5++mkymUzvZUJCfoxkMhluvfVWPvzhD/O9732e//Uv/xd/9w/q2vfWlNE0q+o6KFUlxbJZnyBW15Pe1v+uFSzJmpqiHxjXMQxYwcYoqD5+rauSTETRSlUqeYlb88CTTUGSTMXRCnXxS5urkpTg1SRoahuFOQfps16w1Lj2NQ237JM/XcUtBRfRGrbOyHlpVg4V+t6T/ermhU21nLspQblmaIyelyZ3okzhZDBR0PDZKXTbYDFg2zK7EsRGIsw+Euz+ZER0rETwnxxBHZSa67d1pq4aZum5XOAXAqy4EkCo+3h/UtOqTFrhVDBhctC4l4tX9Vl+MbhzpxHVyexMkj1SDFSqFQ2iGZtazkUKiWb1Lt+sWcoFaXRvlFpBsNo+nGr7raaXa4h4qxytJzSWZuthFRc/1uam1EXhZZoS26b7iyVr0H1JIiUZSvucnDORbW4/mg+y/SdkPR1RWzA+7DOzZOJ62obiJN2XaJpkdEiQK+jkCq31dxPqNPBLgpLGOvch6C1QKq30bkdnGyUjo1CtQrGg9REnNesOk8/R4czUS5ykeZJEQuC6Gg6aGsrUD+faffbbSqO7ZShqWrOqrh9ty1Wtc1tmCiYHPOayJnKt+LwRU2nflhI0Zcs6haqOWewt5LILPk6tgFu4maXF4/zt3/7tGSdQAvjkJz/Z9XNd10mlUuzdu5eRkZEfc6tCQkJCQl6N6IbO+e/Yya43TvLwFw9wy/yTfO89z6yLW3Bz/OaRz/Hnu34xFCqFhISc0Zx8YoHiUpVI0mLXGydf6eaEhISEhIS86nlNiJQAPv3pT7NlyxZ+9Vd/lYcq/8CFqbczFt0BhoFmW8g1ThVu0UMzdFLb4kyeH+HYvTmcwsYP5f2Kj1Pwcbu9ednFVakhNjBjOpGMRambg0kdzTCQvk9mdxI7bgQSKbW7FUWH7EACDbfqY5QDlu2oM3HFEEjJ3GP9hSYzD27O9WfuiVU1IRdQa1Wer7G0P0ttNdgkk1v0mH10mfzxYAIf4QkOfu1UsMa0kdoWp3CqHGg/ll/IowcsFwOQnIiy7foxDuVPBzrGUkrMqIFh6QSVi5lxHeEQqHTgy8FKmrhlL/BxNiL6ZuZcmbxiCCnhyPdmA8UXTlWYYTmwQCkxGaWWc9a7VPUQKAEcvWUT4jWhSuQ4xeDX5uJz+U05N8w8kmX5YDGwQAlg/olggik7abDlqkFOP7gaeB+kUCWUggiUdBt0U7mPzT9T6mhjLxKjFumtEZZfquD20TPqBiRGTQozLksHu/TTPewuakVBLaDbxpZLoui2zsnHa90FSg1hhOsihMfi1CPc/KUnueCCC3jooYeIx+PrlwkJeQWJxWJ87Wtf41/9q3/FL//yL/M7v/M7PPhkGrOshEpO2sTuEPtqaGUBUZ3BHToy79fLE22MVxaISL0E0BrWuio5FYlT135Eo4JqTd9QwKOlkhhOieSYRa3gU8tv0B/JugPJ6RpSqPuUcGXf0ma+K/Bq/qaEREZUZ+isFMsv9hejOwVvU6VwpS+ZeyK4OBSgOBe89FkjvrKJMm5KsLM50Y5u6ZgRPZDrou8IVl4sUMsHz9PgWSmEK1ja378MM6h7VA8TmO5oYFjB3aY2i2ZoyiUooIulbmjKDTHgeWolTMYuzCjn0S7nn8ivL/mWPekoAVGjNHcPByUAzdSwo1DrdlqsuSfrNVXyrVLVqWziNCpVNYQ0OgRK62g7PI6nsZo3cHucRproLPkmpcbpeaNDo72RQEl3PFw0cqvBBErpQYHwNUrBtICAcqXy/X7uSeo705J4LlQrGsKul4XbsL+TpJKSWg0cR8OPbFzWJWoLvDL4UmuWBW1nrUAJlHDN8TS0iuhaZq4dy5RMDPvMlE08T0Pv8jvfTag22gUfpzrL7PFvUK1WufPOO7nqqqs2XP/rlXe84x2vdBNCQkJCQl5jxAejXPfxC/jDJ7/WLI/bjqx/9J9Ofp0bM+eHpd9CQkLOWPbfdhyAfTdOY9oB7IJDQkJCQkLOcF4zIiWAj33sY+zdu5e3ve1tPJn9LnuTV7EzeQnQ3cVI+oJK1qO0qOO0C48acYZB87VOwKsKTtybBcCMWUQGNErzbZMwjafQdTelBpOXpImNRTj4zTnoMyd08t4uZdl0Y8PXgkcvSDN20SAHvnYSr48AaaX9rWqdQKIRXdfYzMyLGTfY+bYJZh9ZoTiz8WyBcATCUW2xkyZOgAmk+SeygdsCbOpN8gZmVEe39UDtiY3Y7LhxnBN3LwRyOwriANVOcabMwW+cCuxQVcu6vPStmU1t4+wPbmP+yVUWnw0mStks+35qmoVnsoGdkTZbnvDo7fOY0eAPOtyi13kt9GH6mlEqSzVO3NnmOLWBQCk+EaM8v17sss5BqY38yeCORQC5Y8Fn4iIZk1rWo5YNMEErJLvfMUb2aInlF4OJ+4yYgWZoeGvLE+n6OgelBqW5WmCXpi1XpImlTQ5+d7m3OGnNZGfuZI3CXA3hAhvkHSEZ2RdjaHeEl5azePUmaabRVZykGxAfsSgueMw/1yWfur7eQQkoLXlKx9qttJuUzXtG1StxyL6NmadmeN/73sc//dM/9W57SMgrjGma/I//8T/Yu3cvv/mbv8n73/9+5nMXYZaVq4qw9HWT8mZVUMtLZHVNGaC6WENELfRq6zopF4CCclWyBk3cNSUum65KdTclUBqI4e0G2Rmf0mqXPqPtGvVqktmnS60yV17dSS2VRBbWCMabrkowdlGG6orD6kt9ROUSlgMKXZqL+BJN19AtTfVhAUhORomNRALdxxsCJTNq4FX7i5U245AJ4JX9vuPRblgJM7BL1eCeJFbcYC6gU2NpfnNjr+UD+UDl8BoEdbtsMDAdJ7Utzun7X2Y55j4kJ6OkdyQCj6fckh94jAZqHDXzyDJe1e/poiTyRYzhwea/a3WRiEYZmU51XUYv1xCpKNEEjEzCzFHw66eEUXHxo91/mpqGRAhVuq0dzZNIs8cYwIWyv8HYcc3wRQiNfEmrC3W6nxt63bnINCSeD35b2bmNBEpxwyMzJVmY63RR6l3eTWIIWR8Tde6fMPUuLk91R6HFxv+vR2t7UcEwJVNbJMtLGqVib3GSsHW0Zpk5jfkFvdlNbrS/hisYH/YoGjqr+db4zY9qXcVJEVvgeBqyDMvl7ses00FJdfPlqgYFidVlLKoJiV1Q/VRu5QAHnvsSW7Zs4eGHHw5L64aEhISEvO75u/m7+Pz83T+09TnCIytLPR8dS2DezfLmpz+Nrf9wphp+Yfx6PjJ+ww9lXSEhISE/arIzRU4/uwwanPOW8PdGSEhISEhIEF5TIiWA6667jgMHDnDppZdyYOUB8t4SF2Xe2jPeKwtOP1kFAdG0QXTIJHu0NXEupUTrIkaYuCRJYsTiwLcX1gt91jwIPf3IqipjITYu+aaWVf+xB0x2vHmMU/cvUV7c+G305RdyuGVvUxNC6R0JJq8Y4vD3ZvuWH5l5eHPuSF7Zp5Z3ERvt5xp2vnUCM2oELoE2eFaKzK4ER2+ZCxQ/fHaK1JZYoDJ3ALveOYWTdzl2e383nMqSw+GbZ7qKUnqR2Z3AjBiB3tAX3uYnCIHAIjSAk/ctUlnanEhmM5y8b5HK8ibWv4m2gxK7OQHdCOy0ycjZaRaeXsWrBlvm8HdOK5eEACQmo+x66zjH7l6kcKK/kCi9I87gniQn7l5aXzKsMWve9qbZ4FkJ0ttiHLtzKVCOhvYmmLw8w0vfnVciJSk61teBkKCr8kGBHSeEpLLocOTmLmXeukwKTb9pEDNqcOyuHq/+C7FOcDT7ZIHogNm1L17L9mvTlJccFl+o9J/c19V2Fl6okJ+rNQVKQE/3pJG9EYZ2RDl4R14JLNsX8Xy0tpJVZhTSUxbLR1yyx/u7iqzWZnh05ZtITfCrv/qr/M//+T/7LhMS8kqjaRr/z//z/7B7925+7ud+DsN8mPMu+QUi0XTPZYpFdZ3oCJIDknKxc2Jer7iI9tJOqMt1dAvk0LoKjxpiJVD3zfmXvOY1LWMRtErve1Cjq01N2lgxnZUj1aZYqRt6NMbKwcKmyr6BEpU7Ra/DCbMbwpWbEoyAEtI7RU9NDATQ1lhxg4krhlh8NhfIpVHTNYbPGaA4WwkWb2gMnz1A4VRZlaTrQ3TIZuyCDLOPLuMGGM9mjxSRG5TbWotuaaS2xCnOVAK5F/kBxwcdBMw9QHmxFsgF6uVSXqoFLlUHbKrtDfq5cWlt5bMTIya+I6nm/Q1F3o17b6UIcydaAiUAehxvTUhGki5EDObmO8cPui/wzbVvqKoybJUCFPz1P3UbgsmWE5BkfNgnX9JxsxLf7j6GMhyBsHRAMjbi47gaSytq20bF7yqWMioewtQREXCczmGTUfUQPd6u1Ws+2eXu360VKBmmZHxKsnrSp9Ljp73u+B0CMN/TWFyAShnkBuNfzZNEbMnQkGBhUe8QZfWisb65JXNdN9tNoKRpkvEhn0JZZ7WL45JV8nDbykUmYoKao+H5GiurG7+dLKXPzMlHeOnFb3Hdtdfwj//4j4yOjvbdh9cTf/qnf/qyl+1VGu71xu23387tt99Osdjf6TokJCTktULJr7Lg/mheUtyIrF/q+/JuUEr+5l5CCAkJCXkleeG2EwBsu2SM1Fjolh8SEhISEhKE15xICWD79u2cPHmSN7zhDTz33HPknQWuGvlpBoYtvIpPLS/QoyaJUZPSsodwwE5IJi6KY0UNskdrJEbVw/TKsodmSBJjESrLHr4jsJM6+dNVll/Mgy+Jj9oIX1Jd9UCH1FSE8lwFryqwkwbRQZvCqSrosOtto+SOlVh6Xj3kSk1HqayoMlJmXCc2EqFwQi0rfYGVMqEuUkpti1NdcXCLXj02SuFUWYlYci7x8QiRAZvC6TKxYZtazsXJe5hRndhYtFmOLDpkgyYpzlbxqx6p6Ri1vIrVbZ3ERJTSjFpvdNDGiOqUZqsMn51i+JwBjt0xj5Nri52rIhxBJGNhxU2KMxVO3LFAYjJKdNCmuuqgmzqJqVasPWASGbDqJT4gf7LUmuzQITUdp7JQVTkcMImkLQonVWx8PIIZ1fFdgW5DYiJOZamKVxZYSZPokE3hRFnFjkaQSISvzKhS2+JUlmp4ZR8zbtTzrWJjozYaGuXFGqfvX8JKGcrdaU2+ERAdtjFMvflmvmHr2ANmz3wbEb3poJTaEiOzK4mmaay8VKznu4rwREe+AZJTMdyyR3IiSmw0Qu54uZXDtEkkaVE4R60PSwABAABJREFUrfKSmIziVwXVVYfd755CNzWOfm+2lcO2fCfGo/ieoLrsgK7KgTRKn9lJk8hgZ76lL6kstc7DhsalV74ra87Z3NESZtxQZfEa+R6x0QytKe5KbYtTW3GwEia73jHBXMPZqUu+28/ZzM4EoxdlOHrzabwq63KY2hKjVnSb5+zwOQNkdiWYe3y145xtz3ct63acs15ZYKd1UltirXxPRPEdQXXFQTchMRWjslCjNFvl9KMrHQKixHgE35PUVt16HxFT52FVXfdWwmgKlOKjNlJAZam1r5VVt9VHDFn4jgTROGdpChlT01Gqqw5uqRFrs3KkhPAlug7xUZPyQiu2llNlgsyoTmzEpjCjBJtLLxQw2ibGUlui1Ep+q48YsynNVEhOxRi7aICFZ3IUTqn1Jicj1IoeTt7DiGgkxqKUFqoIByJpE7fqU11163mx8WuCatZD14W6FlZ91SendEbPSTD7VAGv6CETOtGMSTVb72cnbCorHm7Fx07qqp+ddXCKPpoO0QGt1SdPxqis+s18xwYMSgsO01clKc47VFZ9Kquqk0hNWlSyPr6nREaxjElhzkN6HrFBk/xcjcK8um+kJkyqeYGTd1XsqElxlbroVWdwq0FqwmL1SJnEeIRaQeCUVb8VH4DCvKuO47DNcuwgTz5/J7qp8YUvfIkPfehD3W5vISGvWt773vdy77338r73vY8jL/w1kzt+iqHhHcSFUy/ZpKFnTDRNlQICSGoOwynQSlDSLSwbanUtke27aDrUNCVWsmxYmgVnroZugBXVcHwLKcG0lYjJzat+yE5oeEItF0lqpCd0Fp92kT6YCRvDAqekJsPtiER4Eq8q8B0TO6GjGSB90HWBEdFx63pTO2kgfIlXEdSyDpG0hVcVRNIWtZyLGTWUIEdK7KSJEFIJyDWaMbW8i2HrmHGjKUC2EiYgm6KSSMbCLflIIRm9IENludq8J1sJA9CaAqlIxsIr+1RXHZyi29wOUjlbarrWFKOr9vr4NYHvCPInylSzKmdmzEA3tWbprvZYzdCwU2aztN3aWHvAQjhCuerUY52CB1JixHQi0mqWxrRTpsp3RfXV9oCFU/CorjosvZBDt3QaMxftsY0cukWvWcLMSphNAZSVNEFIJXBqxJY8hCubY7TkVIxq1qlvozPfXtnHdwS6pe7JTsFjcE+yfk/11+XbdwS6qWElVRvslMXklUMsPp2lvFhbl8NGrJN3lShO6yyxGxmw8Bwfv9rKt5P3kEKV8LXaRBgd+dY1Nf4seEhfYkR1TNuglnfxq07XfDdyaET05jk7cu4AZtRg6YV8xznbjF1zzo6cn8bJOeTr52UkbeKW/Xq+NaykRa1e7tGKaSTHTKo5n2reJ5LScUwlJmxcy7WSBCkxIyAj4NbUXyQGngt+TdZjJdUaIDVMS2IgcWoay4sakUGt7mCkoeuSqCGo1VNsmhJDh5qjobsCSxPUdA18JYKJ2JKao6HVZDO2XM931JZoGugVgaZBQvepSB0h1fZsIajVVJ9m2xIpYHHFQJOShPSU+AgNw5CYJs3YmHARFjhS4tSgrGnoOmhlD8MEMwaNn0aWrc55v+AzMgmuA/mSRPgauiGxbHCy9TJtA2r85tb7WcuWuAWB64AeVbG1KoCGjY+mQbUuUIonBLqmhKRuURCLQFmqcpumqcaSjqOhOz6RqMQxTHyhxGS2JXErPrJ+bGTUoFZvQ8SWUBGYFkQHBcWyRs3RkWhEXRfDUHlx4yYRS+JL8DwNu+IQiWgsn5aUTR3TkJiGpOroWCUP25YIC1xAQxKxBaMRj6KjUSxraAMGVade0s2SmHkH11WKPC3jc/zQN3np4JN84hOf4M/+7M8wzdfko48fiO9973svazlN084YkdJNN93ETTfdxIEDB/iVX/mVV7o5ISEhIT8UEkaUMav3SyWbxRGeEiD1IVq2MIWBHTcxIz9YqaOEEf2Blg8JCQn5ceFWPQ7eo17MP/etoYtSSEhISEhIUF6zhaLj8TjPPvssv/iLv0jJz/JQ6e+J73UZ3qOUynYMtl6RJJZWDyOH9g4QSZkcvXMVfJ+py5IM74uhmSZm3GDb1RlioyZSSjI7Ymy5Ik21/tLJWe8cZccNQ/WH6zrbrh4kORkBIL09ztZrhpBSPdhNTUUZ2psEVDmS7dePMDAdAyCzM8mO60eVaMQReI5keG8K3VTuLztuHCe9IwFAakuCHTeOY9bf5h2/aJCpNwwzcdkgI+el2Xb9OJldajuJiRg7bhzHjqt9Hbsww9hFg5y6bxHhwdbrxxjaq8ouJMYiKjalSjeMnJdmy5tGAPBdQXIqxsi56odsbFCVOYsOqonA4bMHmL5mpHkMtl47wt73byG1La6coW4cJzGq8jK0b4Ct17beVB3aO8DANtXeaH29iQmVl8FdSbZdN9aMnXrDMImxKCfuWEDXdXbcOE5qizqu6R0qLw0mrhhi4tIhVg8VOHHPgsrhNhU7sC3OjhvHaTgNT1wyxOQVQ4AqCzL9plEGdqp8JydjHfmeuDjD1BuGmtvZdv0YZ71vmvSOBPGxqMphUq149II0W9443IydvnaUWtbl6K1zxEfq+a6fhyPnDjB9dSuH09eMMHzOAEbEIJpReYkN1o/NOWmmr2nlcMubRhi9QB2b/PES8VElbALlPLW1PYdvHGbswgwAVtxkzzsnGbtEleTI7E6y/YZWDqeuGGb8YvWdbqt8G1H1MCG9Pd6Z78uHmLista87bhxncE+SsYsyZHYnVb4b5+wlg0xe3ordfv0Y6V1JagWX/MkyExcPYda3M3ZRhqm2HG67bozBPep8iY9HyOxMYkStVr6vas/hKCNn18/ZYZuRfWmO3jaH8ATDa/K95eoRRs4bAFSJtB03jnPWe6fI7E4wvG+A6bZzdstVw4yer2LNhMmOG8aJj0WbOd12XWu9U1cMMn6haoMZ1dl+wyjJKXV+67rePFcAJi7LMH6Ruh51E7bfMNrsI9LbYgztSXLyfuVuNnFxmvFLWg+Wtl8/Qnp7vY+YirH9xhFMA7IvFRm7cIDJy1vn7NZrhsnsVNdCYjzC9utH2POTE6R3xhg9P83Ula0SLdNXDzG4ux47YrP92mHslGpzNG0zeamKlVKy5Y2DjJxdv5YzNtuuHSaatjFjOkN7E2S2x1k6oKb+tlyZYXhvAoTATplsu3aY+FD9/D47weQlAwxuU/s+eekAI2erNlgxja1vyhAdVm3I7Iix7WqVs9nHciTHbMbOS9SPjcXWNw6QHFUT2Jkpm61vHAANTFtj+KwoY+dElYpRh61vHGBgSp1LqQmb6cvjRJKCPTdlmLwkzsR5SSqraiJw+tIYA+PqfE6M2Wx74wCmCabpM7rbIpo2OHxHDiEMtlwaJ73VQrou8TRsfUMKO64jdZ3i9Avc++QtDA0Ncf/994cCpZDXLJdeeimPP/445557Ls8/8de87ToY3qU3ha2DEZfheMtVJ7PbIrcE5byasJ8a8zB08AbjpIY1Bid19IqLXnEZmVJCJZGOE0tr7LjcxtYdqDkkh1Rsg6EdNsmEQKs6WFGNzKSBVXdFiWckg1sNZL3E4tB5gyTGVL/j5BxiaQMrpmPFdBJjEUbOSSFdD+l6ZHZESdXHd4atM37RIJkdCQb3JElMRJv3YIDMnmRzvKEbGuMXDeKWlAg2OmwzfkmmFbsr0ey7NV2N6aKDlhKoxHQ17qoblKR3JMjsSjSXHb9okOiwan8kbbPlqpHm/T29Ld68VwKMXpAhPqLab6cs0tsSGJaObmqkpuMMntUqwTVyXprEuLqn2QmT8YsGyR0rUV1xSE7FGD57oBV7zgCJSRVrxgzGLxrEiim3SCtqMnxuK3Zo30Dz/mdEVKydNJWoKmIwcl4rh4NnpRjYqnJoWCrfdkr1z7GRCFNXDTfjB3cnGajnsJHvSFrlJTpkM3pehtMPLFHLumR2JkjvqOdFa+S7HpuxGL9oECRYMYOB7Qkyu1s5HLswQ6yZbxWrmxpe2cMtes02qHynidfHYVZS5bAxBkpvjzN55RB63V1n5LyBZr6tuMpLo4xtciraPJdAuYO28q3yYsXVeCk5HmPkvAFiwzbRIZuhfQOkttTHG/Vz1qqPOeKjEUbPV/krzlQxY0Yz37pZz/dAK9+N8wpUubrkdL1NwmXswjSRtIVm6ESHI4ydr+6zIptjYMrGcyS5GQ80jdG9UWJaXdyU0BjdaaBpSoQzMKozPuIwMqWOzeikJBarCwqjMD4paBg0pQckgyPqO+FrDGYE8YT6d8QQjE+IpjHjQFIwPOjXS5BpGAY0DJYsEyZHfCJ1G6NkUjIy0nrFfyzp4ZcktZqGacL4uI9VN3obsH1GR1tis9FBj4Gkj8gLqAjGJwW2OgVIxCXjYwKj4mFUPDLDMDohGRuXGIZkfFIQ19R2o3EYm26ulsyQJJNUgiIJDE5qRNVhJWYKxsdFq48YlGSGVAk20/UYHxVUy+DZJpEYjE9JTE+gOz4DgzDYZhy0ZatkfFyg+z52RMU2cpiJ+4ykPXRHtXFsUpBICDxPo7gkmRhW4iqA+IjOyJDAqKm/8bRHMiXRNbAtle+Y52FWPBJJyUhbDkcGfYZMlxHbYWRUMj7h48dNJBqJmGAy6WLVRYNDw5LEqI6mSWJVl+kBj9UVjVxWIzJsMF4/jlbeYdSuMVAf2patEidf+hLHjz3Pn/zJn/AXf/EXZ6RACeDLX/7yy/r70pe+9Eo3PSQkJCTkB+Aj4zdw24Wf/qH93XHRf2DcSveq9gYSkoUov/w/r+eX/te1/LO/uIpf/+rb+PuBT7zsbYal3kJCQl4rvHT/DG7FY2A8zpYLRvovEBISEhISEgKAJmWPmjevIf7mb/6Gj33sYwCck7qKaeNc0MFO6DglAQKMuImBi1NQD0l3v30I4QmO3lUAXb2565V99davDWbUwC0IpOcx/aYM1azL0n711oidtvDKHn7VQ7c1zKiBUy+dZCUNpCfwyoL4qI3nCLySV1+vjmFLnPqbx2ZcPYWfumKI2LDF0dvm8CoC4Qh0U8dM6B2xmq7i3aKHnTbbYpWIoj1W13XlEBTV2ffT21h6Icf8Y6ut2IIHQgkqdFtvtt8eMOtvbwuVw9TGsVveNMLS8zkKpysbxyZNhBBsvXYMNI3TDy525MWMtfbVSppIoXI4eFYSK2Wy9Ewe4YkesbJZCm/s0gzF01XK89UuOex0HBg5L8XQ3gEOfuM0ut49341YO22y5Y3DLL9QoDhTXp9DU2+W9ejIoakm/35Y+V4b25HD6Pp8e2V1vp/1vi24JY9jt833zaGdNtn73mnmn8qy/GK+I9asT5K1x0YGbbZfO8aRm2fxHL9nvjvP2fX5bpyzjX31qmvO7yD53mQOo4MmYxcpkVtlsbb+nPVlx3qH9qWwExanHljpyEsj335Vtva15DF89gC508pxy8mrY2HFNaSUzWNjp028ssrJxKVpll4qUa27ITX6iI7Yeg7TO2JMXzPM4e/OUV121Dmraco5QtPX9RF2xmTiggyL+/PUCh66ruEU/Va+HYmo+uvybSVMdFOj1nDUSJkIV+VQMzS1755gzzvHWT1cZPVQGadcz0NcazqYoKs8OTVN9ckWRDMGpfm6+0ZSR0pDucxJiT1gNPvk8QsTjJyT5OA3l5puSQhV/gjLxE7peCUVaw+oa6G84IFpYkYlSPAq9RymdHxPOVtpeJgxHa8mmL48xeKBCp6r4zb3VVc59MCIW5hRHTsqmL4swanHClRy6jhqpoEV9fFqAuEo8ZkZ0ynXihyx7+Po0aNcfvnl3HvvvUSj4duAIa99XNflt37rt/gv/+W/8M/+2T9j5sB2DCOCbkg0aJYE0tIm+nINKZRjytgOmD8KFcNG1yVWrtIs92RYSkvoRyzsSpnMFoPlE75yPDJAi9r4Hmj5EoatIXyJ9AEN9KSNv1LEsBo1rTR8R6JZllpvrqjceTQwbNW2iUvTrL6YpbLs4NftWAxbB8NQ7oOVMkZEb96zhC/RbV2VCZPKeUZKiXBVf2dEdYQjkUIysCPBwNYYpx9YVu43to6UIFyxLlYzNHRLa5Yf0y0dTaNZssyI6ghXIn2JpmtEhy1iQxFWDxXQDA1N03rEqrGBbuqMXzzI0v4sbtFvxUZ0pC9beYnoyhHI0EjvTFA4VW72m71ikUpwExuJkK+7KHaLFY5QlUgNjZHzBqgsOxRPV3rksBUbH7WJDNisHCpgWL3z3ZFDjWb51o58t+VQt4PnuzO2f74beYlkLMYvGWT2kRXckrdhDnVTY2BbnORkjFP3L/WN1QxNidMkrL5URIre+dZNreP8DpTDZmwrh2Yqqhw5NeVEppt6c73maBqkEhKpZdW9Xwogk0TXJX5du6ibyv0sMhplZR4MXbmhSqGqxOkmOLaJJkDXJbouGRmH1WUNxzBVuTRPomlKXON54EdMdF1ieAJdV6KkmiORUsO1TDQklhD4HkiUC5OmgWMaJOMCo+ZTqWj1kpTKDcnRdXRHNmNVnyYZ3yLxfFg51Yr1fZBSAwssx8P36nkwJJGYJJLUWV4C2xNqX6USK+o6uLqBXvMwDNVziYbpbExX/18VKtagmUMSBkbVJ56GVAYWTqvv/IiJpklMXzT7Vd1Q2ibHUgIdCw9NA89Vwh/dAMc0AQ3T81r7qkmmt0uKjkF2FtAkptGokqkhEuq6oT7ei0YFjqNy6Cd0Iq6P5wOyle9qRCm/ojUXKSEWV8e/XIZq1MIs+mi6eumnkUORMpDAZMxFCsnqit7Mt0gaREoOXlu+pYSKe5j9B79FIpHgq1/9KldccQUhIUFoOCl95jOfYd++fX3j9+/fz7nnnvtjaFlISMiPk/Da7s3tq8/wm0c+B3RWEW4Il/5o9OeIfd3kyEOzre80OOembVz203uJJDvLfYeEhJzZbHbs9WpFSsnXPnkfqyeLvOHnz+aCd+7sGnem3V/OtP2FM2+fz7T9hTNvn8+0/YUzb59fDfv7unil8Jd+6Ze44ooruOaaa3g+dz+z5lEuS74Dp9CK8csefts7H7NPFNS/fB98cJzWTyzhgFN/ixTD4NQD2eZ3Q3sTZI+VEC5ohoFwfBzHa37v1if90ztjTF81xJHbFnFyjfWqCewGDeHBzKMrRNJ2U/AAqkSEkxNrYtvKRiQtpq5QpdmER8ey7bFeVTD/+ArZI8X6etfEVgVUW+t18h7JqRhTVw1z7La5vrFHb55r/Xuj2LqgZOVAAeGKzn11BI7Tim2IWkCVhdMNrVkyY6NYdBjak0I3dMrz1S457CyMXpqvER93MW0dr7pxvp2cx9Fb5nvvK515AdjxlnE0U+PoLXOdsdX1sWrn6kIK0T/WjOoMbImzcrAIiHV5cdrzAhz6+unWZjbKYWPfZPfYtTl0ch5OzuO5Y8dYS7dYUC4RXs1vlmtTsd1zCGoiLEi+QZV+23btGIe+cxon5/XNd3XZ48QdC63P1p6zmtaMdXIeXsFDQ9sw35qu4eQ8rITB6PkDeFWf1ZdattjuGodsJ+eBppOYipCcijH/dG5NXtbE1imcrrD4TE6V9OsTKzyoLnkcu3OJbjg5h4YVivBg/ALlinHyvhXcyprjWOjMYSOni8/lyR2r1I9PIy+si83sSZKajHDygSyl+bbYgg9tbuBOvrXdhefLzXJuHftqGCAkTq4Vu+Uy5RRydCkPwscr04FTlED9XNweoTjvIhw48UChnoP2NrX+3y+7+GWoAYvxCoXZ+jalQLoCp2Ueg/DgxOIhDrj34Xkev/iLv8jf/M3fEBLyesGyLP7yL/+Syy+/nF/7tV9jx44dDBg3koyPdcTJnIdvGuiOT60CKzPgVMFA9Vt+W3fSFDFUXDwslo6qDwxTuatVC2oZGbHwa20XnARRcNAsm+FdOr4nWX5JleOSrovnAlYEvCpIVVYKYHl/kWoeRK3tOnfa7i+SpmCjIUpJb41TXqxRXXWanzWXbev7iqcreGVVnqt9+W6x0pf4vmRoXwrhCrJHSr1jhSq32ii5qsqzyR6x6t8+gtyxIrWs1yznBjQFJmv3VTM04iMRyvO1pkipVywox6bUdJziTAXhyQ1jpS9xCl6z/Gy/vJTmapTmaoFifV8qh6JLB1l4KttxX16bw4agWH0g8d1eOeyMtWIm6K22dMt3g1rW5cSdrfHFRnkR3po29InFkyw9n2cdXfLt+0qAFBu2qa44zVJ669pfjwUlhFqbb+HSHCdIH3y/9f3QziheTZI9Ub+u235TqfW2rceDSlZSyVYgEe34TkrVD2j1X6dCaKCp0me+B8JvW6/U6oIZMGo+Utfw0UilBPG4ZGZGlTDT6/vhtf0GVGIkMD2PVErg2RqlUuN7tV69fl01Yhvf5edl2xXXagOAXvbbfmtKfF+jXNSoZAUGjSKH9W8FiKqHbqm1aTqMTsHKHDg1EKU151b74Sj5+EApp/Ll1UtoNhyQ2rcjfDWUHR32KWTBqbUc6aTUkEUPvS6IF+3eCFJjcU7DdZXok7Z8S11Dq7SyYEck45OSuVmNmgNGRXTNt1X20HVJJAblkkapqHIIYNZ/P0uhdeyrXh/f5apKANUQJGm+wMh1bsfzJEdP3sWxU3dx0UUXceuttzI62mYjdQZTKpWwbRvLCieHQ0JCQkJePjcNXsif7/pF/tPJf2LebT23GrMy/PbW93HT4IXwr2Hfm6d54HP7yc2UkBL233aCIw/PceXP7uOsa7eg6T39mEJCQkJec8y9uMrqySJmxGDvddP9FwgJCQkJCQlp8pot97aW888/n7m5Oa655hpWvBnuyv1fCt5qz/jyoktpUU1ybbs2zfCeGAjRPbj+uRnXGb8wxVBbGY5e5I6UOPXASnMiaSO8smgKNqauGiY2avddRrd0DFu5z/RjaX9euY9E9WZJiI2oZtUEXLvYoB87bhpn7KJM37jcsRKF06oEhB5AInfi7gWO3T7fPxBAwEvfPM3coyuBwitLDifuWNjUfkaH7GYJjn6sHi2y+lKhf2Cds963hek3BbMEjaRsJq8YJjr82nvYPHphmtG20jAbERuxOefD25ulY/pRy7ksH8x3CHR6okNmd2JTveDSCwVmH1lRM0Z9cEs+B78+0yFQ2ojCiQovfm0Gt9Q+Odl9O7qpBGQLbYKmJlrnDplxnbPePUFirMe5IsW6ZSorDpUVt/d+CglCopuQmlbXw/KLpaYL0kYYlo5urXkoJSXNeiNtbLlygEhKuSYVTtU2XG+D2SeKzDzWZfK20e46ugnj58UZ3lOv0+L32FfPw4oIdt2QIppReVqqCyBw1/fvQghOxh/h6cLtAPz93/99KFAKed3y8z//8zz66KMAPHP4b5hZfLJrnOaqieZSvcuyIjC6FXThgdu9v9bqnyeGdTJTRlMzCoDrdl1m5aVyUyjRj2pdkGtEIL0jvu57zVozFtPU2KtRvmsjhCsoL6h+IjpoQ4Dn8E7B6xSB9sEesBi/dDBQewqnKsotJ8CEgF8TnH5omVq+e47XUpqvMvPwcof4ZSNyR0uUF4P15wBoqhRZENyKT/5EeZ3AphfRQZvpq0cxIsEGAqmtsWa5tNcSdsJk5Jw0uhVsPwfPSq0b04tqtXswUFz0qKwGO3ftuIa5wc8cbc0YQvgay4tKnKJXevUVreOdzerMzSmBEigB0wZbY3FRZ3W187rQuyyjytVJqlWNWnX9daS7ncukMjA0KtF6bF9zPKTVGvcIXwk4PZeey+iOh+54RGJq2CZ8KNd/Zmhu7/3UXOXUpK1ptl718OOdY0M7IkkPSvSaR62mrRFpdcepwfycjpftfnzaj1siIRkaEui6XPddO0bJJW26DI8IQJXic936MS2u7+N9mePpFz7H8dN386lPfYpHHnkkFCi18ZM/+ZN88Ytf7Phs//79/OM//uMr1KJXF7fffjuf/OQn+W//7b+90k0JCQkJedVz0+CFfO+C3+P/7P04f7rz5/k/ez/O9y74f5VAqc6W80d4/59ewxU/uw8zosY71bzDPf/rWb79Bw+zfLzH85qQkJCQ1yD7bzsOwO43TYWOcSEhISEhIZvkdSNSAohGo9x77738yZ/8CR4ODxW/xtHK0xsvpINwJX7jAfcGQiWv6HH45gWWXlSiAzO2cfpyR0sgBZndcbbfONI323rUIjkRJTHaXwSTO1bi8HdnEZ5oloTqx8Tlw2y5un87vLLgxB0LCEcJm4LgVjzc8kYTAZ1su2GMHW+d7B9YPxzJqRiJ8f55aQiO4qPBJrQABs9KBhYeTb1xmIlLBgPF5o6UyB4OJlABWHgqy9ILXUQnXSjNV3n+C8cpzweb6Bs5d4Cdb58I3JbNMHx2alPrfumbM5y4t7ujz1rcosfMw0vNyd5+OHmPucd6ixPbSW9PsPWaMaLpDWbL2ibLxi/JBLrWpJBEB010k8ACuJFz62Kp9vCGQGiNUGhgW4y975vETgdQ+UkBUuCVPZyS3/W7dhrX+9LzeZaez60XDtXFSQCaoTN6/gDTVw2i10vISCnR1s6CNdYdV2WUlg+WOH53/RhJ2ZHjjngbEiPWusnpxnbaxVAD0zbbr02DFFSzLrX8mn1ta7du1kVeHhy5K8f806UNBUqgJu2FR2vfXKerQKniFTiYvJX9x59k3759nD59mg9+8IPd1x0S8jrh3HPP5ZFHHuHDH/4w+498nal9h/H89X225vrNiXRNU8Ot5pBrA6FS4ZTD4mGvWSKp2cW47jqxklcV+GUXfI/hPRElcqwjfb/5105sNEU0bdDZAXdBwtLzuabAJojgQ7d0Rs5Pk5zsL7QtzlRa6w4gPPJrPn41+LjLjBtMvXGYyECAh2b1XCcmgo2NGqXRzOh6sWk3DFsnGUA0D2DFTUbPSxNJB2v3ZkRKTsFl6YVcYIHV8osFFp8NNk4DGL0wE1hgtVlGL0gHHuvW8i4n71vEqwQ7XwqnyuSOBxi/6qpmWfn4KrVCsJynJ3TS493Pk4ZAySir6zoSlcTiShyked3X3xAo6TUPy+p0P2q4KK0VKhlVj5h0ieKhxEyt660hUOoUKknGxgRDA51t0F2/+dfRppqPqAj8igCj81rWHA/N6ezvNF31hasnfGTF7xAvqf1Q4iQAGTEZnoKBocb+q35VRtePCTXHw/A9/KjNwgxNcZVe9dCr3fvcqOYTt3xkrHN9es1r/qmVS0ZGBdGYxKj6uKv12pvty1S8pgipIUoqFDRmZ3Qo+RsKlGDNPQIlTuomUFpefYmnX/hrfLnKbbfdxu///u+HjkFrWDtuBnj44Yf57//9v79CLXp1cdNNN/Gnf/qn/Pqv//or3ZSQkJCQ1wSGpnNFag/vGLqUK1J7MLT1v4sMU+eid+/ig39+LTuvbD0vnD+4ytf/3f08+Lf7ccrBXooICQkJebVSWq1y7FH1cv25b9v2CrcmJCQkJCTktcfrSqTU4JOf/CRPPPEE6XSag5VHWNr5BJ7o8Wa9gFMP5ckeVe4+4xemiKb1nmIlJ++BECTGbc561xjJqf4TBBqy7uu/cZxwBAe/cZql/eqtEnsggAhBh93vnGLL1cN9Q2ceWuTorXN929FctQl73r2FySuG+saevn+Z1UOFZpv6kTtWYuVg8LdnJq8cYuS8YO47qS0xdr9zKpBrFMDoBRnSO/u7YwGcumeRwzfP9g9sa8vw2alAsbljpcCiI6BZAi8IXs0PPDm1WXxXbMqNCmiWeumHVxUsv1gItK/RQZvRCzOBHLpAiQgPfuMU1dX+rhvRQYuRcwc6Jxs3cFPaeu0o264P9gZ3YiLC+EUZkmNtYqkN1l1erJA7WlrvFqXpLUekhgBJV6LDo99fajk0rRUn1ZexkzpnvWeCwT3166ZdoNQm8gElUAKYfyrPkdsX8Td0KoBoxuSsd02Q3lFf91pxUmNbQjRFRF5VcPC7i+SOVeuLrJ9gaSB9tU/rjv2adgPsvC7NlsuS4AvcXq4lngeex8RFCcy4jvDg2H0FKqt+V3ESwJv+1RT357/M8ePH+YVf+AVefPFFhob6950hIa8HEokEn/3sZ/nbv/1bvva1r3Fi5Uv8h/98U9dYzfVxqrB8GuVkZEFqVFdCpR5iJVHx0FyPwWmD4R1rLvQuYiVNA3yB7LG+drFSedll7smsEtpoqtxb47t1bkp14mMRpt4w1NeBR7iq5G5xprJhXDuJ8SiTVw73FUH5NcHS/rwS2ARwavLKPsXTFdxyMMebSNpmaG8KKx5MeDRy7gBDAcc7dsokszMRyMHILXnMPLxMLRdsEkMzNJJbYoHWLTxJeaHWLMvXj6BxDfyav+llgq9bBBZXweba7hQ8atn1+e5wU6o7uSbGbOxk73NEK3SKnZaO+qzWy6Xqpdb61jooAcSTMJDpFCi1C1vaHZSiMZia8ptCJb3POHMgI8kMyQ4xUjcHpfqWKGY1ymWtpzAJlDip4YJUzkM+27ow14qTGkKkTFowMSmay7ULlNrFSQDCNpESFk5Afs7v6p7U2I7meAyOa4xu1VAlIbV14qSGi5Je87B8JUAq5mD+pCoF1/iuKUxqRyqRluGs/65dnAQQjUu2TAssS6JXfGSxe56NkkvUdUlm1L/LBVhdUa5Y3cRJUtbYc/4pntr/t1xyySU8/vjjvPnNb+667pCQkJCQkJBXhuRwjLd84hJ+4nevID2pnrtKCc/fcpyv/Nt7OHTv6b5u3CEhIf154YUX+Iu/+As+8pGP8La3vY0PfvCDfPrTn+bkyZN9l33qqaf45Cc/yQc+8AFuuukm3ve+9/Gbv/mbPPvssxsuVygUeM973sN1113HXXfd9UPak9cWL37/JNKXjO8dZHh7sHmrkJCQkJCQkBavS5ESwMUXX8zCwgLvete7ePzxx7m/+mXmakd7xmuGgW5DenuU5ERdiNDLVQnlZLO0v0hxpoeopG2Cf/WlEsfvXAKpxE2RzAYqivomU9vi7H3vdH/3IAELT2cDvdktPNSkgw5brx8lOrRxWTnhKdeA5QObEBNdMcTud0z1jcsda7kMBRGVHL11juN3LARqQ+F0hRP3LDTLyvXjpW/PMPPAcqBYp+gFFnkBDOyIM7Qv4CBVh7GLMoHfjJ+4fJCpN/UXpwFkD5c4ec9isHZskuzhEifvDnZsEuNRdr1zMrD71/ilmUDlDwGSk1FGz09vdNmuo9sk3DqkpLrq8sJXTlE4EeycOn7XAnNPBXTFmqtx8BszFOslH7sKlOqf6YbAKwtmH8tu0F4VO7gnwd73TrXc0Lo4J7WLmpyCx/ILeXLH1+yjWP/AaMsbB4mP2kgpqa70z2E167H4fJ7CqUpP56QGO24YZNvVmfq2683rsUxmZwSkoDDjcPzeHKIxJ9aldFyDpYMVFl8o925A3T3JjOoMTEdIjVtg1jupLgIlTzgsb3+cT3/60wwMDHDvvffyd3/3dxvtYkjI65aPfOQjPPXUU4yPj3Pttddy1ds8hOgykV6fXJeJKJGERmJQb1Wd7CEsAijOOBQWNyhrFFeluKSA5UMVnKIAzyM22L1PaLoq1buY4XNSjJzTX2hTWXJYPVzErwUo/Vl3mbQHrECC6MpyjdyxEsINdjMzbJ3JK4b6jukAcsdLCE+urfDZleqqw8xDy4FdMrNHiyy/EGy8WFl2OP3gcqD8AXibcIwCyOxMYKeCOalYSTOwqN2I6IxekA4s3Fo5UAgkhH45rBwMvu7M7mTgfbRTZv8Su22lplNTUaIZC5ELduylpHWvrtNNoGSUXVaXYPGUEtj0o1qBxVPgulpXgVLDTcmoi3SW5jWW5tc7KLWj13w0TaJ5knJJw93ALaohMhrbBsk2w9VuzkkNIZJW8yllJfml9fuvr1nGikCmrn33y36zz+pow5plCquS3FJLoNSLSAymdoK95idnN3GSaYNlKfek5TmNaqmVQz++9gedamS1AtlVDT/fuw0N96RoApIDgAZ+TF3D3QRKheIsL536Oz772c/yl3/5l9x2223s2rWr5/pDQkJCQkJCXlmmLxjh/X96NZd/eC+GrcaSlZzD3f/jGb79Bw+zcqLwCrcwJOS1zRe/+EXuvvtuLrvsMv71v/7XvPvd7+bpp5/mYx/7GEeOHNlw2VOnTqHrOu9973v5xCc+wYc//GFWVlb49V//dR5++OGey332s5+lVttEKffXGcITHLhDicBCF6WQkJCQkJCXx+tWpARgmibf+ta3+PKXv4yUkqdLt2Ndu4BY+3S8jnDgpe8tsvSCEs9kdsaUgKbbhLeAxWfzICTRIYs97xzDTvVX20xelmHLVSO9A3S1rcKJMnOPr1Car/aOrbN6qIiT99BNVY6sn+jHtHViQzaRTP8JnKX9+ea6+05aAMW5CsXZDQQAa5i8Yojd79oSoASdevgfHQ7W7tzRhgAqwJv09cmMQM5VwOBZKc7+6a2Brp7TDy5z6BunA60XAcPnDBAPWl5FSNjEvJ0Z138kV7wZ3cR6dTV5HMR5STd1hvYOEBsOJtpa2p9n/5eOBxKRTb1xmF3vCFBuEFUiB72H+9Na0U89D7WsR2Wx9w81WRf+pHeoCXW3UYptAwelkXMSnPWeKXS7R7LXiJAqqy7FuarKdZf1SqEc3nRLuTkBLDyTb+1nFxciAD2qExu0uoot15Z6GzorQWpLFCklSy+UEW6XWbVGPY+6umz+6QJzT9UnO3W9p0BpYGuUqYuTxEc72yF9sa7tExcnmLo0ifQ8cserVFd7Oyilt0fQbXWOvnTLCqtHaz3Lu/38f72BB8pf4rHHHuO6667j1KlTXHPNNd3XHRJyhrB7927uuecefv/3f58//uM/psD3+It/+Gfr4hplispZyfwhT5m/GRBNaeB6SHv9vd6tSJxVF+l5ZLbZpCbarv+6o5J0OoWTdtJgeIdFZKT7GEb6PnpM3XezR0pkj5Wbn68tDddcRkhKdWFpdNAmNtxfIGTFDSJpq69ASHiy6bxkD/SP9x1BZdlpjpP6oVsak1cOBxJEN8qmBRFAuSVfiY46q2f1RJWIC1Y2D5SIO7U1Hmi9p+5forIU7GGpnTLVegO0WXhS6Wx7lDVdi6YHK923abTNrVcK2Rx39CMyYJGa3mC8r3cer7mn8uRPb/xbRcsX0XSY2GcQTa4pf9bjHm+YoHkSKdbvp17xOlyUNE0JcaplDTPf+7hbq1VMS2KaKr5ZFq6Hg5KmSaZGPNJxb0PnJK1t+WoRnApovr9ONASgVV20mk/U8EEDz1GuS2p9zjr3pGY+IhoRW6B365P0lkBJ02FgRO2Xn3eplvWuAiWt4jRdkmoVWJ4Dp3EYNa27exIwOAbDqS7rq7kdDkqmJRmfBsOU6CWP0oKg20WmCYlVcYnV9ZuFVZg7iXLZ61LeTUjBdT9l8uT+z5BKpfj+97/Pv/k3/wZdf10/0ggJCQkJCXldYFgGF793Nz/959ex44rx5ufzB1b5p393Pw99/oWwBFxIyMvkQx/6EF/5ylf4N//m3/Cud72Lj370o/y3//bf8H2fL3zhCxsu+653vYs//uM/5iMf+Qjvete7+Nmf/Vn+6q/+ikwmw1e+8pWuyxw5coSvf/3r/NzP/dyPYndeExx7bJ5ytkYsbbOjraxlSEhISEhISHDOiCd6H/rQh5ibm+PSSy/l29/+NncUvsiC28XuUsrm2726rTN5yQCjZ/efENE0VXbBq/R+Q7TBkdsWOHmvcrRpOpz0oFH2LTUdY+v1Y32PVmw4SmZngmgfUYdXFRz8p9PkjtSFPL1ED21MXD7MtuvH+op+CicrzD+RBQjklpM7UWL1cDGwO9H2G8eYvGywfyCq9Mi+D04H2r/M7gR73zdNdLD/RFxlqUb+VDmQAKq5XwGvtBf+4QRLAVyxAOafyDLzcDAHqPhohHN+ent/Z66Xwc63T7LthrFAsaXZKkdvng10vIUneOFLJ1h5McAbVY38BjyPSgtVirPBXJG2XT/GnoCCpqk3DHHWezaObUwUJsYjbL1mhNS22LrvulGYqZA9Wl4nllq7TEM0Vl12OH1/9/NDCommq8miiUvTbL12pFPc2GNWXDcEwpEc+u48Kwc7S7h0EzSld8TI7NxgslMIMAxS0xG2vikDQGneUSKiHhOXZlSV4yzMOBz+/irlxf79rl8Tzcn2bsg296TJi5MM71ZtFl7ru3Y84fGCeScf/ehHkVLyf//v/+Xuu+8mHu9/vwgJORMwTZPf+73f44EHHiCXy3HJJZdwZPEBRBfBpOb5zcs9MaQzNG20uiCvt/BGuBI/QOUyp+gz92wJpyiQjotu9RB3CB+35OMW1UqH9iaJpM2meLwXifEIiQDi4tJclYWnskihSpL1QzM0Ri9Ik5ru369kDxfxqr6q+tln3cJVIqhaPtgEQGzYZvSCtBLs9m00TFw6yEAAMRHA2MWDDO5JBoqtLNeax6YvjdtHAB1PabbKzEPLXZ1p1q3Wlyw9l8MtBWvH0NkDjJybDhS7GSJpi+mrRzGjwRydckdLLbfGPhROV5h9dCVYQxr53Sh39Ytb06CSk7i1ttKxPa5vKwJTOyTRePcV605biTZdMrVNEk9sfAD1+oRXZkgyMi47Gq33+P0mJRRzUOny7oVe6bx+Gt1EfgW8bHeHK63qIm0LXYeRrRqptoqwWs2BLsJMTQdqDpUCLByT6w0xq52iLCuinJx6VKpUy1QcRCrC0DjY9Z+M5UbF7kr3fkHX1Xcrc7A013vdDXxf/W2k5zNKKk/JDAyOt8VK0PPrx+jFygLPnPhrPvWpT/GJT3yCxx9/nGuvvbZ/Y0JCQkJCQkJeVSRHYtz0G5fy9t+5nIHxhhOu5LnvHeMrv3kvL90XloALCdksF1xwAZbV+Xti69at7Nixg+PHj296fdFolHQ6TbFY7Pr9f/2v/5XrrruOCy+88GW19/XA/ltVXs9+81aMIHNEISEhISEhIesIZh3zOiCTyfD444/zV3/1V3ziE5/gyfJtDJtbuDj2Fsz22fn6DyHhCA7fuqhKhQCJcZvSorNOBKEZOpVFh6O3KeGRPWAycm6KmceygKGe0LYhHIFwQDM1dr1jgvJ8jVNrS43pBrSVR7ESJnai/0REab7Ki185hfBUI82o3texZuziDEN7Uxz8+unuTjF1Zh5ZZvVwobnufqS2xth2/ThHb5ulPN/7rebyfK35fZD2Hv/+Ak4hWHmL/KkyRlQP1Obs0RK6oQcqnVFddZh5MJg4CNTb/0P7Urz4D/3rQG+mlByonAlPrCudsZbqqsvJ+xao/QjKjsw9toIf8LywkmbwScZNMH7JIOkdCQ5+9VSg+IZALwgzDy1jxja4/qRoinpyR0s4Obftq5YYaC3F2SpHbpmjvNh5TNYuo5tKy1PLesw/mW3GNFi7/m03juLXBMduX+j4rpcAauaRVVYPl3qfQ/UZsckrBklNxzn47bnWedreDqP1g8yM6rgVn2N3LCI8VU6zgzU1+ayojhnT1b423Ja6LBMdNNn5lmFmHi+SP1WjllONln6bo0K9NFtqyiaSNFjcX2Dh2ULHd81dqwuQ4qMWlZzEqwqO3LGKUxBdxUkAS9Zx9hfup5KrcNlll/Htb3+biYnwjZmQkG5ceeWVPPXUU3zqU5/iP//n/0x6awE7ewmpaKewtSFWKCxCOSua3aoV03Ar9fGQ2eoTtESc3MmWciA5GcWtCJyiQE/EEaXWd5pt4VXr4tDtGTJTGnNP5PBrAq1NFKAnEoiSujdolokZNQKJkZdfLDTFGrqpIbyNH6hrhsbEZYMUZyqqBGYPpC9ZeCqLWw5+zxw5L40UqlTvRuRPqPxoen3Yu0GTK8sOc4+tBHNqkkpQ62xQ1qmd7OEiXg8Xm7VslKt1aMqps3Cq0nSl+mFi2PqGwtcGhZPlwK5Lm8EteSw+nwuUO03X0HT6npcdBAnVYOqyNLkTFUoLPcaWbZNLwofcXNu9un7N6/kyYqBT1OYVfZZPg5sXkOhU2zQESkbZxY9bCAmFnEa10ipPplddRLS76+rqcYGWNFirYNMrHiLWGiPoukR6UMy1jcfaBDyyzbnHjsL4pM/iMR+n0irnBkqYtBYhlODIKzhovXJdc9ANGD/LJLcaodR2SbcLk2RcqYwaPx3dVZe5XN1cM9750opWaR0nDTAs5VhFrbVvIr4m3xWXzKSGHYW5eQv8Vj60WmvfRNRC0yTpIchngYLHSn0+Q8Q7j4VRckADKwo1IL8Kpbw6XbqJk4T0Ob5wP8cX7mPbtm38n89+nfe85z09EhfSi1tvvZXnn3+++e/Tp5XT72/91m91jdc0jf/0n/7Tj6VtrzS33347t99+e89JuJCQkJCQHw1bLxpl6j9dwzPfOcpTXz+sHGKzNe76q2d48c5TXP1L5zI43b8Ud0hISHeklKyurrJjx45A8aVSCdd1yeVy3HLLLRw9epRf+IVfWBd355138txzz/H5z3+eubkAbzDUWVpaYnm5NZ/ycsRTrxZWThSYe3EVTdc4+y1hqbeQkJCQkJCXyxkjUmrw8Y9/nJ/5mZ/h7W9/O4899hgPia+yx7uSCXtnZ6CUOAX1Cqhu62y7bpiVQyXmG2WIepAYjZCaimLafQQ3AhaeyQUSxawcKLByQE2yRwdt0KC60n25hiBn8ooh0jsTHPzayQ0FLNkjRZA9SlmtaW+lLqaYeuMwyy/mqWV7v4VfOF1h8bnshgKldgbPSjJ5xTAvffv0hpNbjXzZSRMMcHK9Y52813R16ouAlYObqIGuw9gFGQoz5WZeelGcqSiBiE5fEZIZ1znr3dPMPLLcLFnXO9bgnJ/exqkHFlk9tPFDVeEJsoeDC3M2Q+F08AnAPT85Re5EKZDIa+/7p8keKbLwVLZvbHGm0v8crjNx+SDZI6We19BaqqsOrNb/0WuysT6jXpqrUZrrfs63i4RS01EKp6pNgdJaAVG7UGn6mhHMmMHh76z/4deIaV9+4ekswu/+XftyU1cOsnywUC9N57R/2dqnNlZfKuJWhDqHN3B8Gr84RXpHgkPfml3f96wRJ6W3x8idclg5VGblUI8ykW3LVFc9ll4oUaznuF2ctJbkmEkkbbK4f/137QIkM6qz/dpBll+qsLi/0lPI54gapX0HeeLRR4lGo3z+85/n53/+53tuPyQkRBGLxfizP/szPvjBD/LP//k/5+njn+Pf//t/z/3/UEFfU59W83zVb5gGyWGdgXSE2eeqqjvy1ouVmttIa+gaOF1uhY3yb5ptUc155BxXlSVb813HMq7HwlN1NxndIDpkb3zPkEp8NHnFELkTZYob3BelLymcLFMJMP5rOPaYcYPEaJTc8Y3v4/kT5cBlvQDGLhrEKbisvrTxGKJRkjSStqjlNnZgKgV07AH6rmstVlwdi76CJanGJkHdoga2xomNRJh/crVv7OCeJNFBO5DbkFP44YuyQYl5g5azi49GGD57gJP3LSL9jc+N+GiEzK4ks4+t9IwV5TJ6PI6mQf50lVrbPopcHj09oP7RJlCy4jq2XaXoKMextQ5K7UIlrV5WrVL/uWWUHPy6UKndQQlaQqXifO88NxyUTKteWdYH36uXeVvjoNQQKpmmZHKLZGkenOX1624IlPSquoa9GuR0rUOg1E2cZKYsYikonHbw1h6+Rh9Ua/ULwofCkqBSaayz+zHXdJjYKiks+hSr6yv8touTrIjKgyth+ZBqYzcpZrsgq7QiqVrQEHa1i5M6ltEhEfFxpKRbL9BwTgJVki45qHH6lDpV5Eqlazvy5VkWnds5NnuM3/7t3+bTn/400egP3xX2TOD06dNNYVI7jzzySNf4tSWcX8/cdNNN3HTTTRw4cIBf+ZVfeaWbExISEnJGYVgGl7xvD3uunuKhv3uB448vADD3wgpf++T9nPcT27n0/Xuw490F6CEhIb257bbbWFxc5J//838eKP7Tn/50c2xoWRbvec97+MhHPtIRU6vV+Ku/+is+9KEPMTk5uSmR0je/+U0+97nPrfv86NGj+N3KWr+KOfxdNa8xtC/G8bkjECANxWKR/fu7PKR+nXKm7S+ceft8pu0vnHn7fKbtL5x5+/yj3N9zzz03UNwZJ1ICGBoa4tFHH+Wv//qv+Zf/8l/ydO1Ojtae5ZLIjUT0NaWJpEQ4guN3LzcnqGLDFpVVt6vgZPVwidWjJRCgRw2GdsVZer67+KVdNLLrJ8ZZPVxk9dDGE1CTbxjGtDUOfXNmw7jlF/K4Ja+vw46T91h4OguokmdO3qO82HviQ7d1UtMxallnQ5ESgqa4JDZi4xa9DUVbueNl7JQZ+O377W8Zx6v6HL2l/yhw5II0qS1xVWasDxNXDBEbtDl6a5/1Chjap97o6SdSKi/WNsxpO15ZkDtewin0n1jzyj6nHlgKLBIaPjtFLe/9cF0FdBi7MEP2SDHQsTv94BJOQCel3LEilYB5K81WA02MmlGdwT0pajm3r0hpYFucicsGOXLLLF55YwFUZneC4XPSHL1toa9YKrUtxo7rRzly+0IgEd/yC4WuZXbWipBS0zEKpyoUTlX7CpTMqE5yOkY161DLeu1fUl9Q/VeH8QvTzD+To5oXVLPd+zLN0Jt23CsvlXFKfrPv0QxjnTgJYHB3nMkrB6nevNh0RFqHEJhRnW3XDTL/TIHSnMPi80U0y+wqUIoOmkQzEbJHS8w8ke/aRzcESrFhk8qy6pdOPpCltNTbPem0sZ8DxcdwH3G58sor+c53vsPIyEj3NoeEhHTlDW94A0888QR/8Ad/wB/+4R+ye/duBspXMKyPr4vVPJ/CEjhLjuqONLCiGm5FKrHSGqHS4out+1psJILjrxeKS8cF26I4q/rdSMZiYDrK0gtFpOOuEyo1sGIweuEgi8+sbnjfkL4ke7REZbm/+KhRekvTITkV6yu6iQxYxEYj5E+VNxSatIt+ggiKCqfKgZ2aIhmL8YsGmXtipa/4Rjc1Rs5PkztW2nisiHIlGr0ww8qBfN/12imL1JY4xdlqX8HNRkKxtdQKLiKguKs4Wwk8pjOjBrFhe1Ni7iBE0haGrQdqR3XVYfH5XN98AbgVn9Jc/9yCGiY0rqX1X3YuH0npJIZNiqd6l3gDJVAa2apRLUFxpXMdawVKACPTUHQklQCHY3Ac0GAxgKmp5yl3H3dlY4GSbiphjueo9m4kUJK2hR2DeExQ1NcIidYIlOyYhmZArSgpFC20aq1r5UIZjzS3lZvXqBZk53eV9X3R4LSBo5lkj/a+LvWKSzwNsZTG8imJWwO3BsS7C5SSGSjUJLLgMdvjfY+Ge5JpK1FXcVlSyUukbnR3T9JqHDh1F6eWHuWss87iu9/9Lm9/+9t7tjlkY7785S+/0k0ICQkJCQnZkNRonLf+28s4+eQCD/7dC+Tn1csXz333GEcemOUNP382u66aPKNEtCEhPwjHjx/nL/7iLzjvvPP4iZ/4iUDL/Nqv/Rof/vCHWVhY4Oabb8bzvHXioS984Qt4nveyXtp8z3vew9VXX93Rxj/8wz9k586d7Nu3b9Pre6Vwyi6PPK8qObzhA+czde5woOX2798feML29cCZtr9w5u3zmba/cObt85m2v3Dm7fOrYX/PSJFSg1/+5V/mwx/+MB/4wAe49dZbuc/5Gtu0czkrcklnoJSUlzw14a3D9htGyJ+qMPNwtvuK6w+eM9ujjF2QJnes3HwLvRu6CV7VD1RK4/gd85ix+gNyW+8piHCKHkv71WvII+enEa5oujH1YvT8DLW8y4k7F3rGCEdw4Gunmvuom/QVQm2/cZzyYo0Td2283obrUXTQ7uswdfK+RbxSsIk1t+DhFt1ATka1rBPYheDFfzwZuDybnTQZOS/NzKPLfZeZeSh4KbnVQ8Hdn0bOT1M4/cMtfWInTcYuyFDLuoFESo0SM0EI6oI1tDeF74q+zlMAXlXwwj+cCHTc/JqgsuL0FSgB+K7AKXpdr0fZ+EFXFwAVTlQ4dseCElU1Zqm09e+PR9Im1VW3OZnduVKBFK1lYsM2228c5dQDy2RfKnR8174MgG4aeFXBwa/PdORBuTd1tj8xGmH4nAFK81WKcz0mtHQNI6Yxeekgpx9Sk9cr9YlmTdPWCZSMqI5fFay8VKJa8LsLlIRoulZ5jlCuJ5LmxGcvB6XRs+NEBiyydaFoB77frGBjp3R23jjE3NMFVg5VKM51728K3iqzY09x7NgxMpkMn//853nXu97VPQ8hISF9iUQi/NEf/RE/+7M/y7/4F/+C++//v3zkIx/h1N0JbKOz5JPm+jgYgCAxbJCZtph9rqrGHJ4PvgBjfV83MG5Q1U2yJ9df19JxW32yMPFd2RRkNFyV1uKWfOYeXW66Gm1U0q00VxcfGRqDu5NkjxQ3LLNlD1ikdySorji4G4wBS3NVSvNV5di0VuDQhfiYcs+ZfWQFr9p7ve0iFzNm4FV6x9ayLvNPrgZyBxKeVOsKcq91BE7eDTT2Ki3U8xCQ2LBy4OknHKtl3b5iqgZqPB/sLU8raZLZlaQ0X91cubU+xEYiRNJWIJGS74jArktu0SMXQEguq2XSe4YoztdaJVrriNUseibd8Vlx3qO44KHF1rwI0kbDQalWAc/pL1BCU+Igv8fvK3NJuYOJesmz5VklKOr4LrHekSfiOHguFLsMKbVSFc1q/XTOjOtYUZg/LNAqNfDXCx21Sg1NAyEl5XkoL9BRTk+rOk2Rd4PkiI5uajhLG4yZdZ1E1IOIRjknKa+2r1RbJ1Bq9BsrL1Xwre5ORFrVQa+PvXyvrWJ5XTylGesnBQ0LMoMCf8Gj268LvVRBq+9fZlwjmtSYe0koV6uih07n+SalZL50kJOVeyiXy/zpn/4pn/jEJ7Cs0D3hByEsSxwSEhIS8lph6yVjTJ43zLPfPspT3ziM7wrK2Rp3/venefGOk7zpF8MScCEh/VheXuZ3fud3SCQS/Mf/+B8xjPUvvnbjrLPOav7/2972Nj72sY/xJ3/yJ/zH//gfAZidneXv//7v+Y3f+A3i8Xiv1fRkZGTkdfHC57FH5vFqPpktSSbPGXqlmxMSEhISEvKappuz+hlFMpnklltu4c4772RwcJCj3rPcVfoKq9589wUEnLhnmYVnlAAomjHRe0i9Vg6UOPjNGTWhocPg7kTH9w23E+HBibuWKJxWEy/TbxomPt79Qb5wRLPE2a6fmGDbm8f67mNiLEJivL81/uHvzXLibiUk0s0NTo36pNPQvhR7378VM77xaXT8znlOPbDUd/ugyp3tfuckoxdmNoyrLjt4VYFu68THIxvG5o6VOHXfUqDJstVDReYf71/uA2iuLzpk9w01YjqDu5PNCbON0E2dob0pzGj/yzM+GmH8ssG+cQAH/vFUoDJrm8HJezz3+WPkjvUXCKW2xRk5P903DiC9MxEor43Y9I5E3zgzrqucBhSWlearnLx7sfND2X2SsXCiwskNRHgA6JDaoq7DxrXeM9TW2fUTE0xcllmzfdEsLddOZdnh6G1zZF8qdBU8NWa0t7xphF1vr09UiMZXsqO8HNDs00rzNQ589VTv9tbXaydM4iM2dqq+oJBdS8IlJmz2vmec+JiFZhhUltZMCguh/iyDqSvTRAdNEHD87lVK8/UJtzU/ru2UTnLCBt/n9COrHPl+l3O8PtMWG1btcwqCkw/lWDlUAXf9xLQQHgfNB3mo8g1OnDjB+9//fubn50OBUkjID4nzzz+fe+65h8985jN861vf4sn8lziZfwbZRX0jPY/Sss/SS05TFG3F6v1VF8Hiwgtlcicq4PtEBgwMu3NiXU+oh2m1vMfKASVWsBIG6R1xNLv7fachUIqkLabeOIyV2Pghnxk1iGQsdGvj+3gt6zLz0HJToNTeD69DAhqMXTzIwLaNHwiWF2rMP7m6oUCpnfTOBOMXZ7rePjraWy+fFkn3FwysHCgELre2crCwoZi/Sf22olsautn/Ler4WJT46MZjxAZW3FAllQOQnIwGykFlqcbJexd/qAIlgOzhIvNPBBurDmyLY3VxY1yLbmnERiJ9zwEAK2GS2hJFXyta6eKaaEbrzo7eBoMv30crKkFOYUlSba8+6LhopW5ibciddPH6uGLaETUsEj54fU7H1BCM79DW5UArVVUbrM4ffNk5wcqhKlqlhuzixKZVahgWjF8YJ5rSmu0GJQjSqg4y0lqusd2VUz4rB3oLlLR6mblIQsOOt46BVqkpsdQahrbqDE8ItJqDZ0bXDWUbbbEGIwyMqfXVSpCd7XRmaidWnxsUuRqzL7pUurwzoZcqaLoqtQfq2C6dVOeBll//u8EzV3ly5qs8ffrrXHjhhTz88MP81m/9VihQCgkJCQkJOcMwbYNL3r+HD/7ZtWy7rPXMe3b/Cl/73ft5+Asv4lSCvbQaEnKmUSwW+e3f/m2KxSJ//ud//rJFQZZlcfXVV3PPPfdQq6nfGJ/97GcZGRnh4osvZnZ2ltnZWVZWVBn0bDbL7OwsostvwtcbJ59ScwU73zARuruFhISEhIT8gJzxIqUGN9xwA/Pz8/zGb/wGnl7j0dotPFK5mZqoEEmbGJG6e5HJ/5+9P4+S5Crv9PEn1ozc99qrurqrd3VLra21oQVJCBBCWBh/AW9gGzO2x56xPbbxeDw2xjZmGXtmYHzsA/MzYI9nzCIhgZFASGhD+9ZaWr2vte9ZlXtkLL8/bmZkZVVmVRtjJKR4zqnTXRVvRt5440bEzbyf+3lxag5WVQy6Nl2fZviG5ocmPa42xSUyqIYKMqS2hum/IkVkoCkW0mNqU+Ajg5HU0CIyoa4AwUwAPa6uE6sze3CJhcN5VEMmkNBWxTYnJKafzzH+mJi4jw6FCHU1v2jWIypaRLyPYzoYcR0jpbPjPQOkdkZbJmy0iIoeabbJLFosj5awSg6yKrfEqiHFiy3PmWghhUBaZ+CqTDO2saI5JKPHRKxVcph5KcfSyWUv351iATbd2MXQtV0tefFiDbklh137Emy6sTW2IcZYncOBN2XInBfzfhexTQerRmz3RQm2vrMffcVrV8caSZ3yrMnBfzqDXXa8fHuxemusasj0X5EhPhJpyXdLbD2HoWyA1LYoakRpyUsgoXn9cKMcru6zRlKnUVdCNVbFxtrEdsj36j6b2hohuTXSNt+r+2z/lWkv/428eLEr+izA5FMLjD0+1zZWWxHbe0maHT85uCbfDbw+K8Om67uIDgXX5BsA1xWxUZVof5DhG7oIZlbnWxN5cR0v39nzYmy6LkuoR5xjXMe77pGclhw6psP4Y3PkzpRQg9SFSQ5GsjnprRoymfPCZHZFwHWoFaw19xNZEaIm1ZAx0gGWzpbInS6iR1UUQ/KcK4JprXkthGS2v7ufrn1xXMdFCajosRX9OyEja6JN8c0hjIRKadbkyJ1T2BUbfYVo0UioXg4lRThrzB8pUJw1RV4i9VjHIRCVUeo5VHWI9gYIZTSRb0NCDzc/+OkxRdyTbZu+i6L0XxwFGRxbQVZl9KjYhm2jh0V5u2BXgC3Xp8nsCoEM+VMFVMVu7d9RmTHnEE/Jd3F64TBbt27l8OHD3H777egdxAs+Pj4/GLIs86EPfYgjR45w6623cnDuu8wkHmSxMi4mtlfMicvYmEWhMAgmZHr2GOhpIdSRcMQkeF2wJCkSSlRsS2wKkNxsINVVmZKMd692bRtJdpAVFz2iYtSfmw23EEmWUIOK9zyUNRnbtFk6XaRWtFEM2RPKSDItsbZpM/NCTrgJScLZyBPVSK2xIBzm4pvCdF+YEPvVWmMb4gVZkagsVj1nICUgN4VQXqx4ba1koxqKJ6hRdLlFNLUytjBRJneq6Dk0KbqMoq+KredFDSn0XJLyxO/rxcqaTNe+hPccljXZG0+DEHM18qJFFLJ7496YQtakllgv3xL07U+TGImsODerYgMidv7wMvNH8q3nUZW8Z00zhxKR/iCJkXBrvlUJ1VBWxcpE+kME4lpLDiVlVew6eZGUet9aGbtCdLVhrN6awzV91suZQmxTGDWkrsn36j4bygboOj/uHc/K/r26z1plm6kXlr2SiooGsuI2YwNC6COr0L3bINoj2uTmiyK28diVQFUdJElc17Fw1RO0AChuzYuVihVUTZgspnogFLBQVzyWFbWpYZYLVVRdHGO6H5JdTaGMXKwgqyJeroufVE3EFucdFiZdFKUpTFKqFRQVT6Ck6pBMWShmFUpV7zhAHJeiNcVCii7h6DrFRYdaxRVtqgpBkKyCHGkebCQr0TcioVj17REdNygOUFZAdWri7zUTIy4jK7A47pCbctAcE7lSrfcX0Qavfzgm5dkqhRnbK7fW+B5dNk1Upyny0kNCfCRJQNVEdU2kmtnsL/V8a3aVbLdDOCC22VrAy7dcLKOUy+iW8FVKjATJbJJR1Lo702wRrVpCqp8rSQYUk+MLD/HQkb9DDhe44447+N73vsf555+Pj4+Pj4+PzxuXaFeIm/7Txdz0OxcTzYqFvK7t8tK3TvG133mYE49PrnGk9PF5I1OtVvn93/99RkdH+cQnPsHw8PC/en+u61IqiQUU09PTjI+P8773vY/3vve9vPe97+VP/uRPAPirv/or3vve91IsbryI+ccZx3IYe0nMQQzuy77KrfHx8fHx8fnxxxcprUCWZf7qr/6K8fFxrrzySnLODN8372Cx/wSpHeIDUbjbYOTt3Rj1ie3KokUgJr5pNdIaI2/rout8Ia4IZ3W23txDKK2zcLTI8liZ/suEDWRiJMzwjV30XChccIykzrZbegnEdI7eOYEeUdh6cx9d+xLoMZXhG7rpvVSo3/WIyrZb+8EWE0vpnTH2/Pwwmb3CpWboui4GrhD1cFVDZtut/cQ2BUGGLW/tYdd7h7xjHrwmy8CVYr+yCttu7SfUFSB3ooAcEK9tTBAMXJVh8JrmAGzzDT2Y9bIQ3Rcn2PHufm/yb+CKdIvL09Z39NFzYYJIf5Dk9jDbbu33BDi9l2bYdH23F5s9L05qVwI9rpLelWDbrf2eQKTnohSbb2pa1htx3St3EUoH2HZrP+GsmDjr2pdk5G19Xmz3viSx/rAQcMR1EdsjzmtmT5yRtzdjs3sTnptTI9/RwXrs7hjb3tkPwPzhPFbFou8ScV5lXeQsvlk4+6S2RcS5AnBg4JosA1fXVzHIIt+punAnsVnkxao4HL59lGh/kMFrV+TwnX2kd4q+FdsUZNut/eROFzn0T2fp359m05ubOdx6cx/p3fV+2Bdi26399O5PiX50SZrhG5qxI2/v84413G3Uz7lUP69JNr+114vd8tZez7kpmNbZ9d5BdvzkgMj3BcmWHDbeC0CPqsQGw0zVV/6nd8fYenMzdtObu+m7vN5nQwqKqlCcEec1vTPG1luasYPXdtF/ZX2/MXFuEpvq+d5az3f9zjZwVYbBq0WfnXxmHjWsktom8h3fJPLdENEMXJlh6LoujIQQ6m2+oZvMLpHD6KDId2OitW9/mk3Xd6MYMpIqs/ktvWTOi4PrEO4Jsu2WXoz6faHnohTDN3Yz+2KOU/fPsOnqLrrOF9dqOBtg2zv7CaXFbHzXhQl23CaOdelMmU3XZFrvEe/sJ9Ql+nd2T4yha7q8fjl8Qze9++v3iLDMtlt6ifYLQc6mG7oZeXsvxckqsy8tM3h1moHLm/eIre/oI7YpjOu4xIfDGAnNK583cFWa/itS4DrIisPWd/SRGA4RSKhsvrGLnT/ZJ+4RjsvAFSkGrhL7lRSZkbd3k90TYeTtWTK7omy9uZv5wwVwoO+SOINXpTznhS1v7WL4+gxqWCaYCaAaMoUJMYHYe2GcoWvS3gzk1pvS9F0ozvniyRJqSMGoC+S6z48wfHXTXWzbzRm69kQoz1vMvFKg+7wIobhUz2GUzTeInFUTC7yk3scrhSdwXZe/+Iu/4OjRoy12xz4+Pj98stksX/ziF3nsscdQFIUnJ/6JwJ4TRIaa7inJ4QDJIR3XsigvmMiK5I034gMBei4IC6GA7ZDcFCC5WdxTZ18uEEpphNIamgGhrEbvhVHUuLh/JEcipHdGKUyUmD6wRM+FCWJDISJ9QeGatD+NUhf2JDaHSe+Kkx8Tk+/9l2cYvLYLRZfRoyK2IVKJDYXpWvFcHb6xxxsXaGGVvv1ptLC4Z0UHQnRfkKQ0WyE/XqZrb4LYkIhVDYW+/Wn0upgh0hck0hvynJ36r8yQqO9X0WX69qc9h59wj0HPpSlCWQMjpZPeFSM5Ip5/sirRtz/tORYaSZ30DvG8C2YCpHZESdaflQ1RUMMJUo+oyLLkjb2SWyOkdjZF3b37U4TrYvhAXBXOkPUyxYktYe+5CtBzSZJwj3im6TGN7J6ENzaMD4fJrnBf7LkwSaQvKBx0zpaI9gXR6oKc2GCYrgsSXmz3viTRwRC4wiGp//K0t99of4jufc1nRHZvgvimMEuniswdXBb5jtZz2BtscavM7I6T2Bxm6pkFilMVke+64DrcbdC7v2n1nt4VI7E1Qtf5CYKZgMhhPd+h+u8NktujRFe4Y/XtTxPKiBwGUzp9+9OeECkxEmHTDd2eSKx3f1MwFkjU+2x9XBPfFKJWsLxyb90XJwn3ijGD12cDIodaSMUs2p7rU/e+pBhD1M953/40WkgIoqJDIbK7I80cnhf1nCK1oELPniBaUMaxoLxoEeluqmZSPQ6xbvGeimzTs0tHD0tohkQkq9C1pT6AM2ukBhXidYGTrEDvFolABGTbJhiFnq31bSWTVDckuoRASZKhZ7tKMCoxf7RKtQK9W/DERMk+hWR/U8w1sB2iMcdzGOodtJHrmxO9CqnNTTVU72aXeJ/qiad7durIQXF88YRNptet51Oid49OOCWzPOOgOjV6R2TUurNbtFsls1n0SaliEksIbbVjgWZI9OzQ0AISUsUkGnPIbhNtSPRrDOwPE82KPGm2Sc/uAFrdUSk8EKR7RCGSkkh1OaSHNYyoQrXooqgiZ4GQeM9wSqZ3l0Y4LfYVjErUyuBWTGQFenZoGBEJNxQgFIXBnTJSqYpVhWrJIRhrCiR7R2TCiuhn4bRM33k6kgzLsy52zSWVND33pO5dOqGEguu6LGuHeGb67xnPH+BXfuVXOHz4MLfddpu/ItnHx8fHx8fHY+iiLn7y01dz0U9u9T6blRarPPDZA9zz8afJjRc22IOPz+sf27b56Ec/ysGDB/mTP/kT9uzZ0zZubm6OM2fOYFlNN7LFxbUuvfl8noceeoiuri6SSfGZ+EMf+hB//ud/3vLzS7/0SwC8//3v58///M8JrlPi+/XA9LEctbKFEdXIbDm3ahE+Pj4+Pj4+nZFcf9lBRx588EF++qd/msnJSeLxOAOl3QyGthHOaBRnqjgWnstScbLClrdm0aMqJ++dxVy2kHWZcFanOF3BqTnocRUtqKAGZAbelGHquUXyExWqi2KlcLjHoDhj4pgOelTFSOv0XZJg/tAyxZkKjulSWTRF2ai+IOW5KlbFQY+oDFyTZfFYnsVjBULZAI7tUllYGxsZMFA0maVTJeEIFFdxHVE+DSA6EKS8UMUqOaghhXCPQbjHYOKJeYyk+MK5PNuMreRq1AoW294lhC1Hvj4GjiiBJivNSaxof5DqUg2zZKHqwtUkP1YWsUkdWZcoTYvYSF8Qs1Cj7/I0elhl8ukFilNlke+EWLlenBSTl+Feg1rJwsxbpLdHMQuWODemgx5T0cJqM7bbwKraVHONfAdbYvWIRmFCTD6GugPr5jsQ18iP12NX5rtNDoMpXRyrDHt+dhNLp4uMPjy3ItbEKtmoIZlgKuBNgBrpzvlWDSHkyE+U1893od4PuwJoEZVQJsDsy0uoAYXi9IocFq1mn+0KsOn6bqYP5Fg6U0ALqWvzvWQhqzJdFyYw4hqn75v+F+c7EO2Qw1X51uoOF428BLM6rgNm3mLX/zfE0ukCU88trM03EMyISZ3y3Mpz0znfKydeV+awbb51eUWfNTDzoh82ctjos/HhEGpIYf6VfMd8F6cqOJZL98VJuvclOPy1Ucwli3CPQa3cyPeKHFoOelhFj6oUpirgNPqsQ2Wx1pLDYFeA4Td3M/XsIrMH8/V86/V815BUiUhPQJQvciXyE+V6vivetbDyHhHfZFCcNbFKDrFNIVy7Wb7OSGtIskRlwcJ1XaJ9BmbRpO/SFLOv5JGQyE9VkFwJI6kiqXKzf28yGNifZOblIrnTJUJpjfxUVeQ7oSJrMqV67I53dWGbDsfvmRM5zGgU5y2cqk2g7gxWnDZJjgQZuCLJ6QfnyZ8tixx2BSjOVXFMIXJz9Cr54TEeffRRdF3n/e9/P5/73OdQ1Q51PH18fP7NcByHL37xi/zn//yfKRQKfOQjH+Hhvx4jGNZxXbAqYsiqR2SsioOCTc8FEXJnKuQnxP2hIYixTHBLZQIxlVrZJrMjjOvC8miFat7CKVc915xGqbFATMVIG4QzKtMHFlENRZQsc5vuNrW6ODvcaxDuMph5MYckS+gRFTNfw3WajjUNIXe4x6CyaGJXRZlaLahgFixc20UJCGccM2/Vj03FSOlUl2uYyzX0qNYaG1Awl2sEYho9+1PMvpATzy0JAjGNWtHCsVwUXRbtz4v2a2EV13WxSnb72KCCXXPovSRF7kSByqLplaELxDVqJRun5iBrElpIpbpUQ4+qSJqEU3WaOYxrWGUb23SQVQktrLbmUJaa5fNiGlZlndgV+dajKrbpYFcdJKWRb0s4/hkyirYih1EVu+ZgVxyi/UFSO2OMPjyDU2ufb8dysSo2kkzHfINwZ3Rt13PIapfD6lI9NqzgukIQ3Rhb1koWTs1F1mS00IrYkEKkP0i4y2Ds0bmO+QYh5E6ORChMlCnPmxvne2UOYxp21V6Vw/Z9tlO+Y4MhIoNBZl/IYdXUeg4V7JorYmWR05oUxHVA0SUUTcIsOvVjlSEQwKq6IIEekqhVXFy77siUCGE28mKIKrtWFRGbNrDyNRxbLKxQdTDrVdG0gChfa9XNjWLdEoU5txmrgVkS94+GS1sjtv+CAJV5k/mzQpykGpKIdUWsbAsnpEZ77ZqLbQrXIk1zV8QKB6la2SUzoqHoEnPHTexaPdaQqJVcXBeUqIbi1AjGFJanLDRDEk5DposkizzVSo6XQ1WHasFFUiAQVaiVXRErCUFUreLiBAxUx0TRJNSAhGpIlHNiH1bVBUVek+9Yt4IelpkelVGpiXtEI98hCasicmhEJbq3a0wermEWXS+HNSmAXCyjhyWsqotjQfdODddxmTlqgWWjGhISiBwCelhidmkcs/cEzz77LDfddBN/8zd/w5YtWzZ6RPj4/Jty5MgRfvmXf5nPf/7z7NixY8P4V155hd27d/8IWubj4/OjxL+2X9ssTxd5/O8PMfr8rPc3WZHYc/NmLrxtBM3wv8fxeWPymc98hq997WtceeWVXH/99Wu233TTTQB8/OMf59vf/jZf/vKX6e0Vi5I/9KEPkc1m2b17N8lkkunpae6++27m5+f56Ec/ynXXXdfxfZ9//nn+43/8j3zsYx9bN64d/9Kx12uBp/7fEV785km2vqmP637tgn/Ra99oz5c32vHCG++Y32jHC2+8Y36jHS+88Y75tXC8vkjpHPjEJz7BRz/6UarVKoODg3RP7yCl9KyJkxThYFJZtDCSKnpUY/msmJjwamjUMdK6N+mf2hZi/mge3LXGVrLq4pjitakdUQrjZW8CoRN9l6cpTlVYOt3ZYlM1ZLa9a4DZg0vMvbzUMS4+HKbvsjQn7pnAXO78vg03GscUJazYoATx5rf1YpUsRh+e7RijGjLIogTcRqR3Rum9NM3Ru8bWbSeIknfJkQhnH5jZcL+Z82IsnyltmPPNb+2hNFth+rncunGpnVGKUxWqudq6cVpEZfjGbqaeXvCEPJ3YdH0Xtuky9v3OufyXsufnhpl+Icfsi7kfyv6CGZ1Nb+7m9PemvX7fiZGbe1keLTH7Uud+CYAM6e1RlsfK3gRcO1RDZuSWPsYfm/cmCjuR2RMXpXw2ON/x4TCxoRCjj8619vXG7XTFCvDhG7vRwirH7hpvu301RlITQqOV+1wRH+oOsOm6Ls58b4bSTKXz/hrXoSSLycXVx+Q6eDVtgKHrRCnG0/eJ66JR8mUlwnWpl9lXlpk/3OH+4jqoYY2+/Ukmn12kVlyRIMdFUlrvc5mdYRZOlrGrNrIu4dpr74OubRPpDWDXhHtdQ6DgWM3tUt1lSQ3KRPsCLJ4o49o2oaxOeW7t9WY5FoHrl7j33nuxbZtLLrmE//t//6/vnOTj8xpgaWmJP/3TP+Wzn/0s6XSaj33sY3zlD59FltbeHzS5JgQyikIwpVJdbrrBOKWSd2+QFAlZESIALaTgVurjKVlZs09JcnBtF1mVCKYDnqi3E0pAlGtbPFHAtTsPq6P9QSL9QaaeWfTKbbYjuzeOVbZZPL7+qmBFl7HrY0QkYJ0RvR5VyZwXZ/bFnCc+aocaVIQI5xzouSSFuVxj4Wh+/UAJklujlGYqntimE0pAxkjoG+Y8kNBIbo0y/fziujlXAjKBmEZprrpufkAImQNxnbmD648/9IjI5fQLi9iVjceo50J0MER8KMTYo3M/lP0BpLZHcV2XxWPr9yMjqRMfDjP7Us67djqhBkVp3NJsFdkw2sa4rktiZxrVkFk4WW3daFlIsaYLk6JLBMISpUUHTNE33EiIdqS6XQpl1RMmNZBKoq+4hlDOqDp0b1OYP+tQybvN7cEA7ZBlIeRZ+VFNKle9Em8AyUEVSYKFsxbUS6uhaazGrZngghzUwV3z8Q+3UkUKCAG9GpDIbtOZP2ViFl3cqultW0kkqxBOwfTLZdDbH4NrmgS7Q2iGRH5m1fVbNSHYPFeKJgRI5SUXyhUkGZw2K57lUhkjoVAyG+1tCrsApELJ268Rk4RwqgZKrYhtuhBYu09TW4JNZ7xybn/8x3/Mu9/97rbH5OPzo+K+++7jvvvuo1Ao8OKLL/oiJR+fNzj+tf3jwZlnp3n87w9RmG1+xxdOGVz+czsZ3t/juzL6vOH4D//hP3DgwIGO2x9++GGgvUipUW75zJkzFAoFotEou3fv5v3vfz8XXLC+EOeNJlK6/SPfZ3E0z5t//QJGruzb+AUreKM9X95oxwtvvGN+ox0vvPGO+Y12vPDGO+bXwvH6SwzOgd///d/nt3/7t/l3/+7f8fd///eMOqNEpSTn61cTlptlKxzTodIQFG2PEB0Islx3C1pNQ6gRTOv0XprCqjqivNKqCTjHEh+sZFWme18SPaYx9fRC58bKojTEehNQAFbFYeHI8rpCJoCl00WWzhbFMcjC8abhHtPSzvpxq4bMyDv7mTmwuO6kSP5s8ZzaCEIA1X9FmvHH5733Wc384TyFqcqGAiUQq2y0kIqsyx3313jf7N4Esioz80Ju3X1WFk1vVf56LBzeYCKvTq1gUV2uYVsbT34VZ6u4tXObJFNDClbF3lBEdq6c6/4cy6U4XTmnHJUXzQ1FYWKn4rxvhKTKVBZMKrm1/XYlqiHTtTcOEsxtIJDSwgpqSOl83CuERae/N40eUpsCpTZkz49j5i2WThWbAqUO8ZV5k/xoyXPuaidQknUhJlo4VmDuYL41nytmzGRVTE6WZk3OPjy34XmslWwWjuXJj7fJZcvsHhgJDSOuUytWoMNkvBqWye6N4bgu84eLHQVKAH37k1QWaow+lsMsOC3bVpLeHiY5EmLpTBnbhtKs2fIFleM4HLdfYEI+hnmPycjICP/wD//AFVdcsf7B+/j4/MiIx+P8t//23/j3//7f84d/+If88i//Mrt37yYwMUw2sKnlmm44+MgKJDcbLI9VKUw3hTDN+4RC47/RvgCqpjL17CLCaqVVqOS6MmAT6jKIbw5Tnq+uK97QQsLZbiNK81Vcl3UFSoAQ6dYPUYuownmozUsaAqVIf5Bwt8HMgcU1oogGtZJNaaYqntnr0BAoBTMBZFWiONVZLDT7Uq4pkloPVzxjG2XI1iOUCRAdDFGaq64rPrJKNma+hiSDu84h2VXHc0jcCKviICsbjz+sqn1OoicQw3pJkXBqP6Q1IZIo13cu+2s4Km2EYzmeI9RGWGXb6yNOpbJGqNRY+1KrOGv7Yr2kgLtc8IRKwYRMJKNQnil6TZUKpTVCJblmomo60jpac6lSxTUCWCZMH7OxzKaAaTWyArFumaUJyxM8Q12c1IbykoNUM6Fx/bQRKAUjNtHeILMn7TV90q0096uFhKDHqrpMHqziVtYX75dmKzim0lag5JrN16oBCT20YkxYbb/fcFohlJApT4sxdDuBklQsYyQVUsM61dNgm02BklRoVYlJEiQHVApzDvkZ23O8Wzk6rdolTiw9yUTlIPFcnM997nP84i/+IoqyViTq4/Oj5sYbb+TGG2/0Jsp8fHx8fF77bLq4m/69GV74xkle/OZJ7JpDcaHC/f/zAP1701zxgd0k+iIb78jH53XCZz7zmXOK+4M/+AP+4A/+oOVv7373u3/ghQMXXnihJ4B6vVOYL7M4mkeSoH9v5tVujo+Pj4+Pz+uCjWcLfADQdZ0vfOELTE9P85a3vIW8u8ij1W9gXzlJxSmtiZ94MsfJb0+DA2pIpv/KtOc2tJLyvMmxf54SAiUgsyeCFpbXLL11LIdjd40x9awQKCW3RTHSa1fb4sCJuyc9B5zs+QnCve1XOk8fyFEriLJdW9/ZR3SgQ93gelN6Lk6x+YaetsfRwDIdChOlDVfAz73SFEiltkfXjdWjKuFuAyO+dkJgJQ13ou6Lk2iRzpOFS6eKnPjWxLoCJRDCq2N3jm0oUAKYfGphw5XqDVLbo/TuT20Yd/Z7M20FYauZe2npnMQ6wYzOrp8aItLzw6sPvfmmHoau6dowrpqrMfrw7IY5B5h4fN67HjoR7jYYvCa7bl9sUCtYnPnezIaOXFbF4ejXxzYUKAHMHVzm1LenWv+4SlTUfUEcPaaCA2a+tm5spF5WUcxeu63b65Px0X4DPazg1BzGHp3DsZyOjkyO6VAYL1OcqvefhkVAi5BIpu/yNJuu61rjfrbSRUmSXYbf0kV8s5gwnD6w1BSbrdivrELfZUnkoIZVdjj6jal6ScdVk54ydJ0fxZVcagWbo/88tcaVybVtXNsmvT2IHhETWGcenGf0sVzL9gbJkRCZnWEApg7kOPbNKezq2lnry35nMy/Evstp6yDRaJQvfvGLHD9+3Bco+fi8Rtm8eTP/+I//yDPPPEN3dzfP5+6msuMg/+Ur71sT65g2U88tU2iUHO3SMJLNccPK+8bC8RLzJ8QEvmLIhDKqECs5rfeNwkSZyacWcCwXSZaI9AdbZ97rVBZNpp5d9NyX4sPh1ZpzAOyK0ywr2xUgvSvWdn+iwULg0nV+gvim8Lp5qi7VKM9VOwqUxPG75E4WRPkoQ95QVGUkNIxEm3HmCuyq45UVi/StP7aYfWnpnMRC+fEyk08vrCtQAiHQWjiSPyexjqxKJLdFhbh4HcpzVZbOrD/+AHBqLrkTBXH8G5DaESOzO75h3LliJHQGrsyiBDYe/xSnKhuOx0GUz93QDQuIbw4TbPfZAyFOWmnOWzy9SH5qxdjHahV/uctizFyYsZl+qbiejhupYuLaMHvcxJxpVSmtFCEpGkSj4n3aCZRWCpBUHYwwKKr4e+PHQ1OF4NoQzkmVmTLlxbUCJdc0vR+z6FBetDyBklupej9eG8M62W0BIhkFt2q2CJRWuijpAZv0sIxrmthVl+KM1fY99YhMKK0iBQ0Kszbzpy0hTlolUNIMCSMmQblC/nSR6RfyawRsUrGMalYIG+K15UWbyVNCoARCnNQQKMkqxAc1JEUMWaefy7F8Ygk33/pZqOZUGXxrkScX/w9Lymn+7M/+jBMnTvDLv/zLvkDJx8fHx8fH51+Fqitc/J5tvPuTb2Lggqz39/GX5rnjI9/n6X86Qq1yDgsgfXx8fM6BsQOigkV2WwIjuv53JT4+Pj4+Pj7nhi9S+heSyWS49957eeWVV7jgggu4//77ebh6B89VH8B0Wr8Mb5Q5CmcDRHoN5A7Zbrj/qIZM13lx4pvqq4dXzTZZFccTEmT3xMiet/GkR2JzmPjQ+pNbsiome2oblPeYenaBMw/ONIUm7Y7HgfFH5zGXrbpoIb1uLwtmdfouTxPf0rmNlXmTw18bbU5urbM/NSST2holPtS+VETLe2d0Nr+tF1ldR3RVd3OKbw5vKIhRQzIDb8qKMnXroIWUDSf+GkSHQujrCK4ahHsNIYhZh2rOZPT7M1QWzs1R4FyYenphw7IoII5jo7yAyPO5xOkxFSOpbyh66t6XID68fv8HiG8R59faoGxL974EPZckm39ozKqtml2TdZnk9qh4704zb66LXD9lp74zxcRj65R4cV36Lk/TffEKcVsbgVJ8S9i7f0w8naM8V1lbawS89516ZpEzD860dVByHRfXcXEssKv22t2s+oMaUokNhQh36UKY1MYpRFJkAnGV9M4I0T4hnlwtHmuICGRdIrM76h2PWXDWiJMahLsDhLsDYpvDmvM4EzjF98pf4U//9E+xbZvf+Z3fYW5ujg984ANrD9zHx+c1x8UXX8z999/Pt771LZaWlrjmmmt4ZuGbLNWmW+IcyxUT77aNkVAJtHkuNu4jtinuUaGsQWJLpCkqWiVUcupOhUZSI7E5sqE4RI9pRHqNNaUt17TDEQL09ZxuXAdmX8yxPCqEAe2ETyDEuMtnRUwwrRNIrC/qTgxHNhSILx4vMH94ed33bRBM60T7gxvGgSiX2kk836Ah9jKSG4+VjJS+oUDKsV0CMRXV2FgUIWvn9r6yJhHYQDwPkB8tkdtAeP0vwSzUmD24tKGDlRKQz2n8qATkczoOAD2sth0LrxQnyZpEYnNIuD0ti/6zWqAEQjgWiMpg1jo6YUkVE7lmkt6ioQZWiKcLQqi0WoRkxBQiGUW4V3VyUKoLhsyiw/QLReylzmPioGGR3hJoee+GQKkhEpJkiPVpIIFVdcnPSWuESdC8hhwLZl8pdCzl7FZN3KqJY7lCHLlqqLfSOQkgmFAJpevnuY04qX4gRGI20UTdhbJNGTqpKNoTTCrE+jSvvXatVZzUfIFEMKGiGRJuvoC9SizoyDVOLT/NwxNf4Etf+hK33norJ06c4CMf+Qjx+A9PtOfj4+Pj4+PjE+8J89bfu5gbf+siIhnxOcOxXV74xkm+9ruPcOqpqZbxqo+Pj88PwmhdpDS4L7tBpI+Pj4+Pj8+54pd7+wHZtWsXBw4c4Mknn+SDH/wghw8f5hHuJGP3c55yGarcnOBYOlNm6UzZcxsZeXsPU88vCZeRFVgVh8N3jHvCi+6LEpj5GovHimuEDkfvGkeuq54SI2Fcm7al247dNe6JelI7olSXaxQnW7+4tyoOp77TdIUZur6L2ZdylGdXfdHt4DkA9O5PEekLcuwb4x1LRIW7gyS2RFg8kac8177kQHnW5Ng3xj0XpI7U32Pw2ixaWOXk3ZNtw6ySw5Gvj52TY4/rgqpLqCEZc7lzvGrIDFyZYfblpQ1clSSi/UGWTgU6Tj6AcLA6F2QVhq7pYu7l3IavGb6+m7nDy0w/u9gxxrEgd+KHN1EGrHucDWRVZtN1XUw9v7iuS5Gsygy+KcvMi7kN3asWjxXOybkq0h9C0irrljWUdZn+yzMsHF1m6pnO+QNQAgrS6rtmmy87HNPh6J3j6/bD+JYwfZemOXHPxPplCuv7P3Xv1IZl8FLborg1m6UzpbbiJIDMngSZXVGOfmMSq+JgrSwz4jogybi4DFyVZul0kfx4hbMPCgGV57BU37esCuHW5HM5zGWLw3dMtr0fqCGZ7K4Ik8/nqSzUOHrXVKuQyLZBUdCC0HNhirEnczimw/FvTYs4226dx5dh8/UZ8mNl5g4XGXus/XmbtE4ylznF1NQUgUCA3/mt3+fP//zPvXunj4/Pjw+SJHHzzTfztre9jTvuuIM/+qM/4olDt3Prrbcy+z2JmJJuiZ8/1HxGRHoCBOIa80eaf2sIHvOjJYqTZVynIbCIkDtVxFl1LyvPm0w8MSeEUBLEhkIUxstrSmRVFkzGn5j3nJCiAyHyY6U1t+TyXJXynBAyBBIaRlJv6yLYuO/LqkTPJSlyJwuUZjoLK8I9Bq7DuuOqhaPL6wq0V6IaCt0XJpg7tNxxn/mxMoWJyrpOTg1kVUJuU9pzNdGBEJFeg4kn59fdbyCuoYVUb3zaFhdR2u8ciPQEiW0KMfbo3LoCsnC3QWJzhNHvz64bd07la/8FODXX6zfrEekNEukLMr6eABpxHNHBkIjbYO5m9uW1YzinUkEKNMuQaSGFUEZnebQsnu1tBEoA4axGbEBmcrHDcGUhB6EQsiIhK9KaoVY7EVJx3qa0aOPmS0htSpgBZEZ0zGKNpfG17XIrFaSGS5JtU67AVKmMXXW97asbohoykS6N8kyJmqmuESdB3RFtV5DivEVhysRcHVKtQiCAqlhENuksnjGplRwWTjQWZ4ixV0OgpEdkFFWinLNZOlVsyf9KjLiCW6lSLVfIja4drrqVKpIRIKSbyCGV4qxFYdaiOGcJk8xiCWnFiwIxmVivzuzRCk7NZfL5te5btmsxWnmFSfkgpVKJD//Kh/mDP/gD+vv727bR59WhVqvxyCOPcPjwYQqFAs7qB16d3//93/8Rt8zHx8fHx+cHQ5Ikhi/tZuD8DAfuOsGL/3wSx3Ipzle4/388z8AFGa74+d3EezdexOjj4+OzGrtmM/7yPOCLlHx8fHx8fH6Y+CKlfyWXXXYZhw4d4sEHH+SXfumXOHnyJPPuBOlaH7uUS9Hl5mpx13GRVBmzaFOtl3/Swgq1oo2kKLi23SJqCKYD9UmkonBNWfntsoP3hWJiSwSk9iKlRiyIMmPtREor0SIqRlxD1ddfbb50qohVtjsKlEAIWA7fPuodk5HWqcyvFSs1Jr2S2yJk98Q5ec9kR0eb3Kki+gblOhrvlzkvRiChMf7ofNu4yrzJsW9MrLsvECKuE3dPUllsL7Ty4ko2h756dt2crCQ6GKQ4WcbpMH/lWHD8n89BwAWc+PbG7QORY6fmrivaOVdUQya9M8b80TxWqbMLl2M5HL1zY+GYYzkcvv1sx3w0iPYHKc5Wz0mIduJbExv6xTmmw/F/Hj+nicSJJ9v3pQahbIDui5KceWBmw/YVpyosnSmuK1DqvihBpDe0Vsi0Ymm9rIIWVqnmapy5bxLH7lQ7SLA8WkIJyM32rSoBB4AjSv1U4hr58c73i0BcJ7k1Qn68QmHKXNv36/s24jqJrVEWT5epLFqe8MhjRcmPYFonmFQpTpSxinbLdi0sC4c6RziHWBXbEzitpDQwzcniQSYnJ9EXdN73vvfxhS98AcNY373Dx8fntY8sy7znPe/htttu4//9v//HRz/6UU4UTnDbbbcx9V2bmJJpfYHj4tQcMWapo+gStukiBQK41aonNNKCqnCV6bDS1osLqUQHQpTnTZx2z476y/WYRmwwRGmmKu5XHdBC6oauN47lUpgobzgmmHtl2XtEqEFFvO9qcYIjHDSRoOuCBKWZakeRj1W1KUxVqG3wjHQd4X6U2hkjd6LQku+VLB4/t9K4y2dLFCbKGwqflk4XNxTXNJAUCS2kNEuWtqEwWaYwWd5wn8WpihCLbRCn6DKhbIDCVGXDEnbngpHSkSQhmluPpTPFcyr1tny2tOFxSIqEFlYxlzcej1aXLCaeyYHVub+7lsXyqEVptoKrrhUTrXQLsk2X2WPN31eKgKSQeKYn+lWqRYdyzsHJC8cft1xuK1QqztewKs2DdSvNHEmahqxCdrtBbsykMlPCWpnCFWIg1ZCwlirUqjD5TBlXbuO+VRVtdYHirEpl2V6zbeV+ZVX0T1kFp2yu2d4gkpCQVYnyTA3JWCtQauQovCmIQ4jqGdO7jlryV3+tHpKRVYki4BZKXleQQsF6u8RnEtt0qeVKUBLiTCnYHFM5co2F0HEmq8eZXpzmXe96F3/8x3/M+eefvzYvPq8qU1NT/PZv/zYTExPrukpIkuSLlHx8fHx8fuxQAwqX/H/b2XZ1P4998RXGXxKC/bEX5rj9I49w/i1b2PeuEdSAX3bWx8fn3Jk6vIhVtQklAqQ3xV7t5vj4+Pj4+Lxu8EVKPySuu+46Tpw4wd13382v//qvc+rUKeaccVJ2D7uU/RiyKFlklRxO3zfjvW7zW7ooz5uMPrJW/HD6u80yJt0XJggmNU7fP9M2rrEiPjYUItIXZOKp+TWCgePfnPDiEiNhZEVm4WjrKthaweLo18e93/suT7NwJL9GAFOarXrl1zJ74wSTOqMPz65pW0MI0XVBguzeBEfuOLumvFODyqJJadZct+RW/myz3EByW4SlUyVRLqUNkiKjaBt/8FRDMsM39jD59EJHAVfj+CN9QUpz6whkHOEIlBgJs3Bk7QrjBnpMZdObu5l8ap75w53jzkWgBLQVf7UjtT1GrWT9UERKgaROdm+CpdHSuiIlYH2noBV06hsrGbg6y/JosaP4DIQzgOu4oo+us8vYUIjlsdKG7dvy9l5yJwprrpfVKLqMosnrvmd8S5j8WBmrZDPxxPqip9Kciays2t/K2h+uy8CbugimdY58bUwIvNpolKIDQbJ745y8dwZz2WL6uVz99St2LEPPRQlyp0tU5k2Of2uqZR8NFyU9qpLZHWXiyUXK8yaH75gQ18PKOj+uQ6TPILE5zNij8xQmKhz5+kRTgLZCoBQfDpHdG+f4t2cwCzZH7pxqFTDVCaZ1trwly9lHZsmfLTPW5vyftQ4zGzvFwvEFIpEIH/rQh/jsZz/ri5N8fF6HKIrCz/7sz/Le976Xf/iHf+DjH/84JwonePvb3878wzJJtduLLc2aUHeHDKY10ruiTD23tGa8UV2uMfn0AlB3P7kgSe5UYc2zuFa0mHh8Hrde1jK5LUJxqrJG/FLN1Rh/Yt4Tp8Q3i/t/o4Rcg8JE2RMJaREVI6GtcdsEvJJukiyROS/G0uniWsGNW9dYSdB1foLyfLWzMMgVbTTz64w1XDyHJ1mT0CNaR1G069adkpT1xbIgntPBtM7cK8vt9+W4oiSfJNySOo6HGoKwqIrruNSKnccjiS1hgqnAuoLj1c5Y68dtHKsEZOJbIpQXzQ3HSudCuNtAkjcWKeHSUSi2mvUEdAChrgCpbVHGH5/DqXU+5lBWpzRntgiUnHweOdosLShho0UUzIKNVXGQI6uaXRcoBaIKsX6X+XGpYzk4t1RBChlIirhe3WKpbZwkQyAqU1m0KNVP/UpxEuA5KDkWVPMO1vKqzwMrhEKKa9K9I8riSZvSXL1c3UpBfF2AlNwSpLpkUSrIFGasNdsB1KBMsFsjP1mjumwzM7/Krar+vqGUgmNBZa7C4ulaW/GeW60SHwhQXhT5nT9WBr3Z7pUCpdRWA7MiU5yzWRoX11a7/CWHdTRDZurpOcw8LKz6qGc5JmcrB5kPHCd3Jsd73vMe/uzP/oxt27atbaDPa4LPfvazjI+Pc9NNN/GOd7yDbDaLovgTtT4+Pj4+ry/ivWHe9vuXcPrpaZ74h0MU5ys4lsuBO09w/PsTXPHzuxi6uAtpdW1dHx8fnzY0Sr0N7Mv69w0fHx8fH58fIn7Nmx8yN998MydPnuT+++9n+/btzLkTfN++C+uqScrS2gmniacWvAmacE+Q+Jb21rNW2cZcMfGirVpx3xDqGEmdYDrQUSTRiIsNhokPr29zq4YUYkMhjJS2bty5MPNSjrHvz64rQinPmYx9Xwz6wr3Guu1TQwp9+9Okd0U7xsy+mOPsg0LUpRqdu7pVcbArjjfZ2AlZlxm6rovufYl14xJbw/TtT6PHOmsAzWWLk/dMritQajD8lm56LkmuGxNIaAzf1L2hE8OJb01w9oG1QrcfhOJkhZf/4fSGAqm+y9Nk9sbXjVENmR3vGSDcu7GY5MQ/TzD9fG7dmOz5cfqvzKwbo4YUhq7tIrsnsf4bysJJolbuLGRq9K/8eJnj/zzRUTgn6zL9l6XpOr9zPmRd9vpY/mzJmzAHmo5qjR9g6tkFRh+ZFds6fFCyaw4goeqyECY1flYiycSGQkT71j8HgbhGbCiEHhd9zRMordqvFlQwkhqyLoMiJtewbU+ApIZEzsy8hVm0URW3ZTuAHlHJnCdWqJRnykw/v0hxlduHI0lc+tubeCH2XY5Yz1IqlfiVX/kVpqen+fznP+8LlHx8XudomsYv/uIvcvjwYf7xH/+RM2fO8FTxW5gXneJ3b//pNU4jlZzF4tGiJxiJDMWQtbVjBEmRsCo2dl3IpOitMY0xg6xK6FGtY/m0hkBJDSlEegzUwPpDbyOhEe422gpOV7YNwFnPmceFuVeWRPnPdVgpdIoOBL19tyPaHyK1I9qiSW15S9tl5kCupURdJ+yaU382rU90IER2T3zddgGkdsSI9ofWjVk+U2LquY3LvgXiGr2XpjZ8z0h/kNjQ+u9p5i3GHpn9oQiUAOYPLTN3sL2wq4EaVEjviqFs0Nfiw2FS2zuPoxsUJytMPbvYUaDkVquoQZn01hBGbO17Onkx1nUti2hfgMyOsNe/nYIQwLmm2eKg5Louds1tOiNVqmtKqcmqECotHFqmOLpWiOeWxXghnFFIDapItQpupdJWoBQIWqiyiVupsHhsuVXAGAgIYVH9xzZd5o+WKM3XQNPFz4rtLQTqDksdtuuJIOGkhOzUoNZhPG3WCMUlAqF62bl60yQj4OXFrQg3LD2ioAbr56AuUGpsl7Vmf7arLo4lhEmNnwZGUkVLiX69fHKJhUNrr5laADbd5vJE5SucqR3gve99Ly+++CJf/vKXfYHSa5znn3+eiy++mP/yX/4L+/bto7+/n56enrY/Pj4+Pj4+P85IksTm/T2859NXc8GtW7yFFIW5Mt/578/yN5+/m9tPPs7T+ePY51K32sfH5w1LQ6Tkl3rz8fHx8fH54eI7Kf0bcf3113Po0CGefPJJPvzhD/PAAw8AECHBDukikrIY1OTHml+UJ7ZEiPQGWDq51uVmpZgltT1K32Vpjt41tsYBZuaFHDMv5AAIdQfovyLDmfum15SyOvvgjCdRiw4GifQGmXxmoUXcZJVsDn9t1Ptbz6Uplk8XPQelBnMvNVf9JkbCGKkAUyuFFQBOsxxd9vwEiS1hTvzzeMfSXuldMfSw2tHxxyrZHPvnccyljR16AgmNrTf3Mf7kHLkTbfbnwKl7m64xjbIGa8JMh1PfnaQ8u74oZ+FwnsJEeUN3Hi+PMus671RytXVLkwDYpo1mKKhB5ZzKlv0oUQIyirn+RJ+sy5QXTKpLGztCncvxnb5/Gj20/u3NKtmcuGeC8lzn95RVGcdyOPu9dYRdMozc0kd+rLyhM5JjOhy/e2LdfhvfFCa9O87iycLaPlQXJmX3xkmMRDjxz+OYy5aIWyVQCnUHSO+MMfrQLKXpKifvmWxzfNBzSZq5g3nMgsXRuyba9sVIn0F8c5iJxxfIj5U5fPt4a1z9C53eS5OohszoI/Msniiy2O56A4avz6KGFI7/8xTlnN0xv/HhEJndMRaOFXBsmHuleR+0ZIvZ7HGOzx3m/o9XSKVS/Nqv/Rqf/exnkWVff+vj80ZDVVV++qd/mve9733cdddd/Nmf/Rk33ngjF110EeYLBt3yELIk49ouxRnx/JUVSAwHcSpVUfJqBU7NZf5QUwySPT+BuVxb46jnWC7TK4Qv6Z1RzKJNfrRVHGSVbMafmPfMdxIjEUrTlTXPtPxYmfy4KDemGDKR7iBLZ1tLmjk1h9kVY6/U9ij5sRK1VUKYxthBUiS6L0ySHy11LAGmBhXim8LUinZHp6Sl00UKkxuXYGscn5HQmHq2vSiosmBSWRDvI8lSR6F4fqxEeb66Yam02RdzooTdOnjbJdY1QbIqNtWlGrIiYa/zvrIitRW4vdrIqoRqKOu6HoFYANFJVO1Rz1WtuP7YyyrUmHh6Ebvafn+uJV6/NFoRzmYr+3OhiKSLBRENzbNZcFgoiL66WpwEEEwpJDcFmH65jL3O0NEtl8mfdilNSjidHJkqFWIjYcyCTe5Mm+ujWkVSoGt3mPykSWmuRiVnedtWEhsIUM1bVJdsFk+2L6GohxX0mEJhukZpukRphrX9URL7quRsTBPmjq4tQehWqigBifS2IAvHK1gVh9lDpZbtDVRDpntvmPljZSo5i+VZcIttFkpI4p5YnK6wPFtZMyS0wiVO5F9mpnSaJ/4B3vnOd/LpT3+aoaGhtsfq89rDcRxfSObj4+Pj84ZCM1Qufd8Otl0jSsA9XHmFR64/QiFahUVgEbq0OB8ZvI0bk36pWh8fn1aWp4ssTRaRFIn+PelXuzk+Pj4+Pj6vK15736y/zrjssst44YUXeOmll7j66qspSks8636PI32PMe6cbIkdf3yeE9+aAEQ5sO0/0Y+R0tfsM3e6yNSzC56AIbM7JtxK2lDLW94E2Bo3ofo3z8F0gFDWaC+Uqf9NVmVigyFCPRu4rCR0gm3avJLSbIXCeLmjQAng7PdmOPkdIRzSImrbntoQekQHg2y/rX+Nu1SDaq7G3CtLLI+2nyxYyfAN3Wy6ofPK0YZAKZjRN3RKAiEUWY/ui5Nsf1f/ujFTTy+sWzoORJm0Y9+YWCMgW018OMy2Dd7vXOm5JMnQm7s2jBt9aLZZXqwD5rLF2e/NrOu0ldkbZ8d7BpDX0R6phiwcfpz1xUwNx7L1BEqxoRA7f2oAI7l+f8aB2ZeXmD/c2dmg77I0wzeI0kOdBEqN/rR4LM/RO0bXFbkVpyoUJyvNa6iNg5IaUAgmNdTgOgIxWSY2GCTcG/COxaPuiiTJEnpUJZzRm/cZR7iIuI6LrOKdk1pJuCI1tq2cdI5vCmIkReDsK8tMPLUgtq8q7TZwVZre/Ulcx2Xm5SWO3DnRUl6x7BTR3rLMo+43eHnsANFolE996lPMzs7y13/9175AycfnDY4sy9x2220888wzfOc73yGdTvOy/RjHeh/j7Z+4BMttlg1zai4TT+U8gVJiJEJ8c3sXx8WjeSEeArSQQiDR3mWyVraxq+K+JilSqyNS/ZYoqxJGQus4dmvEBWIaoe7Aunbiii6jxzSkDk5OIO7X5fkq1eXOZd2sss3Ek/OeQKmTC09DhJI5L0Z0sLOLUGGyvKGLE4AWVui7PI0e6+Da6eK5ELUbE3vtqj8n1KCyrgOSpEj07U8T6uo8PrOrDgtH8xuKnpbPlsid6FBKbwXpnTGi/cEN4zZCkiW6L0oSiK/vcGrmLaafX9zQIbQ4XWlbVnAlvZekiPSt33Y9ouJaVluBkmvbuLaNasjic4gLtfKKuFpN/NRJbwuSGG51AHJLa/tRZclmedzEypdxq2vHcoou0b07iB4SfcGuNnPhOQ85NrIs2jJ3uOQJlFyzhmu2XiuuDeVFC3OxvOL1a/OrRxRU1WlxhWrZj2WhhSGYVJr3hhW7ab63TCCmoQWVlhi3XMYtlz2XMtt0heuT1NzWcJCSVYlQWoy7rIrD4qkK5allnFKrc5IWkunaG8GtlrDzRSYfn2Z5tFWslbNnidyU54GZr7GkT/KRj3yEM2fO8OUvf9kXKP2YsXv3bs6cOfNqN8PHx8fHx+dHTqIvgv4rAe659UUKkdbvTmfMJf7TyS9y3+KLr1LrfHx8XquMHpgDoGdHEj30r6824uPj4+Pj49PEn839EbFnzx4efvhhpqameO9738vk5CSH3Kd5wL6DY84LOPXlvY3yArIqYxYtzPqEUrjH8IQAjul4JeL0mErPxSnim9ZOqpWmq5y+f9qL2/GeIRIja+NmDuQ8cVQoG2DrrX1ty8kdvXPMc03qvijRdl/Tzy5yqi4uig4E6b4osSamOFnxSlglRsIMXdfVtic2hAmbb+oRMR2oFcSK91qps6hj+kAOx3TQIyrJbZGOcYsnCywc27gE2+C1XfRdmlo3pueSJJtv7Ok8CQkUJsod3WZWEkhobfO9mvWEUyDKllWXa+u26Vyxyja1DVyN1JCy4V1Gj6vndGylqQq5k4V1xW29+9OMvK1v3fcMdxsMXd21YYmW0kyF3MliR0cJNSST2iHKpCwczlPNdZ78reRMyoudBWThboPt7xrw2tRSZqROfDjM8FuE0Kk0W2Xiybpr04rJ62BWp++yFLguy2eKHP36OFa5dRJNDSkMXZdF1mUc0+HwHRMsHlvVB12HnouTDF4tSuYtHity7JtTOKbTKj6SYdutffRcJMoRzh3MM/VMG9cMGXovTZHaHsV1XAoTFYpTzXyEewLe/c0sWk3HBqd5H1hwpjnZ9yyPczd33303Q0ND/K//9b+YmZnhd3/3d31xko+PTwuSJHHTTTdx7733cuDAAa699lp+7/d+j+dC93LUep6yWy8ztcIpx67YntBCUqSWsVB1uebdm8K9QVLb2pfJWj5T8kRP8eGwd39ciWO5TD276DkJpbZHibQRsZRmqkw+LQSdsiaR3BZdU0LNNh2mnlnwxovxzWHx7F2JC0unilhlGyQhMGondHEskYtgWqfvsvTa/azALFhY64y7rJJNeU7kIdQV6Fj6rVayKUyUN3TqCaZ1snvj67ZJkqH7wuS6z3fXdsX7beTKKEEwE1hT5q9d3MoyWu2wKvY5lbbbCEmGWsHa0P1oozJvUD+2dUohizcU49T1XC5lTbh0teu/7goRcqwLUttWnZfa2nFTcaZGeX7tuWkIlYIpRZR5syF/trNAzKk51MoOdq2NOKlOaiRIZrtok2O7LeIkSddAEjGBuOhzS8eXqdVLb0t6UzAX7QughRVc02T2xRyFyWrLdgAjLhHOiP0UJqrMHq6scUaSJZuuvVFvUcnsKyWKs6I9K8VHoYxOz76w6HcuLByvUFtY+1nCSKgkNxvImoRTKlE4u9QsFScLgSAIAZeZKzXLSNbvA47rsGiM8mLguzxVvpuXX36ZT33qU5w+fZo//uM/Jpv1Sx38OPLv/t2/47nnnuPBBx98tZvi4+Pj4+PzI8V2HT41dqcQiq8evtfdQz/2yldYnNp4EYKPj88bB6/U2wX+5x8fHx8fH58fNn65tx8xXV1d/NM//ROmafKHf/iH/M3f/A1nCocZU46RsLPsTezHsEJUFkxO3z+NkdQx8yab3txFfrzE7EtL3qSWHldxbTh8+yhWxcZI63TtjWMWLOZeXkINqV4sMiwcbboJZc+PkR+vUJk3xermsEpl3kRSJXDEl9cgxFJ6XMXMWzimg6zL6FGVUNZAVmRK01WQm85BRlrHKlpYFYdIf5DYUNhz0dEiKtLK2JSOFlZFuQxZRk+qQhDi1GMV4Toz8cQ8iiGhGjJWxUFWQY/rXqxVtZl6bhEcMJI60cEgi8fzwpVHFn8zl0wcC7ouTBIfCrJ4ogCOyKFTc8UqfVlMQjacbuLDIarL1pp81woWZx+cQVKb5cBUQ27Jtx5TyZ0skh8v45gORlpfk8PKvElxskKtaKHH1JYcro5NbY8SGwytzXdKxyqJfCe3Rxm6Osuhr57FXLba5ru6aHL2gRlkVcZIN3OohhRkTfKOXVYllIBU/39rvtWQjKIrzB0UQrlAQsM2HS+HK/M99OYu1IDC0TvGvByuzLeR1EluDpPcHqMwWUY1WnPoOngTiY7jMvuyeM+VfbYRiwPjj80TzOr162ZtvgFqZYuzD02zfLbUNt+RPoPSTAWr5DB3cKn13KzId3ZvgvSOKLkzRZyK09JnAUI9AcI9QWYP5MidyKPHda+0nxpSUHTZEzZZVZuZlxZZPlvqmG/XcZEUmWA2QK1oiRwqkjjWXBXHgki3QXw4zNRzi0KUl9C8PtvIt2u5hLIBIr0GZsGmslAD1/FyaJYscEHWJc8kQNGllnxn98VYOlmiVrCZfXmJWsVGUqWWfEsIV6TxJxewSjbH756kVrBb7hGKoRDu1hm6JsvUs4ssnS2xeLxZ5i6QUplLjnJ66QjT09Oo4yr79u3jc5/7HBdddNE53XN9fHx8LrjgAv7+7/+ej3/843zmM5/hc5/7HKP5I9x6662M3p0nG+vFWq6QHy+j6DJKQCaYDpDcGmH6+cV6WSwXSZZQDJncyQL5UVnEGjLJkajnpufUnHqsEKg23IuUgEwoG/Cca1RDwbEdnJqLbTnIquSNvSRFQlZlISqql33TIxpGUmPptHiG2BUb1xHPa1kTsbImEek1sMq2eEZIwlnIrjh15zsJJaiI8mpuXczirnAhCinYVYfygrlGsN0QvjREXKXZqvf/SF+Qar5GrV5eTtFlkESsrEqkd8dYOllk+awQQigB2XNHUjRZlJCzXRRdRg0q1IpWS76tsk153mTmhVyLO5AaVHAskUNJBsVQmD24RC1fQ9YkZEXGqthr8r08VhKOS/XSYrK2It9QF+9IpHfGWDwpRMgrc9jINwinIassnoUrc+ja9Vhd9koXd8q3a4v2rywdtzrfjdiFo3kkRUINKc0crsi3GlIYuDLD9POLlOfNlhzi1mMVSG2LkB8vU5qttvRZxVC8WFmVKc1XsStNl6rV+bbKNtMv5LCrFqqhYVWcunOSgiPLODXh8rM0WkIS3+0iuxayKmHVmseq6ibVRYuyFEINyGDWSzKqErImYZUdJBlSmwPkR0ssna3U2yRjmw5u1UQJ6YQyGuWFGrYJuePimnRNd0WsC7KCpEBpuizaa9oougS6hG26SLomYvMVsDVkt4Yi2TSkU0o4gCSDla+CBOFMECwXc1F8flKjhthvzULWJOFIGQmI48zVcGVVCIGsGkqg3n4baIy7gwHskoPiVnFsF6fmohgygbhKedakWlFYHjeRzApu/dwoARnXcYn0GsjBAMXZGsXxJUqTQsjU+AwFoMUMYoMGesBh4qllpKDCwpHm/URKy4xWXiEfnmJ0dJTdu3fzqf/+CX7mZ37GF4S/Dnj88ce58MIL+ehHP8oFF1zA9u3bCYfXLhaRJIkPfOADr0ILf/Tcd9993HfffRQK/qS0j4+Pz2uJv59+kH+YfuiHtj/TscjZ6ywSlWDJKPG2439K8IyOZqhrxUw/AD/XfS0/333dv35HPj4+P3Ksqs3kK2KR8OCFvkjJx8fHx8fnh43/TeOrhK7rfOpTnyKfz/OlL32J4eFh5pnioaVvcqL3WaacUYyEzrZ39BHOBjlxzySO5bLlrT2kd8UYvDbLpjd303NxCqtko0dUtt3SjxpUsasO6Z0xRm7p85x1hq7uIhDVcUwhqNl8Uy9D1wp3osTWKNtuESXAipMVHMel/4oMekRl1/sG2fmTgyTr5bESW8Jsu6WfM/dPMfn0Av1XZtj+EwP0XS5q8m59Rx/JurtAea6KHlJRQzLBjM72n+hn0wpHpJG39yKrEqfvnybSZ7Dj3YMMXi0GfD0XJxm+XrjGFCbK9O3PkD0/wdZb+ui7KsO2W/q9Mlw9FyYZvlHEZs6Ls+n6brr2CeeCUDrAtlv6CWZFmTrHdITwor6SePiGHnovEY5IgZjGtlv6CfcGiA+HGbmln623Nkujbbqum966e5Jdddj6tn6S2yPEh8OkdsTY+o4+L3bomi56Lk5SnKwg6zLbbu0nMSxymNoa8fIN0H9llh0/OeA5PG27pZ/UVvH/xLDI98xLSxy9Y5S+K9IMXt3M4dZ39JHcHvN+F6v5xWRM7/4Um97c3cz323pJnxdHDcnEhoNsu6WfQL28Su8lKYZXlLkz0jqxAbG6PJg1RA7TIt9d+5JsfkuPyL8Mw2/pofvChIhN6S35tis2erSphRy+vpnDRp8tzlQ5eueY6LNv712R7y769qdAhi1v72XHT/QTGxQr9ZPboi35Hrymi4FrMjiWQ3nWZNst/SQ2t+ZbNmSS26L0X5EhvTvuvXbbLf2ktos+G98UYse7B72+13dZ2rtOAEZu7iO1U+S7NF1FUmTUeomd3kta8739XQMMXJ5GNWTCPSLfRqLeZy9KseVtPWz/yQEifUE239SDaqj13Is+G8oGCPcabHvXAJtv6mH5bIlT355k6Nqs58xhxDV23DbA4HXifRVDQZLq7kOSVL9HJAn3GGy7pY9t7+jDSOoc/uoYwaTOyNt6aCyrH7qmi/N+bhN9l6RQDZn0thil6Squ45IYibDt5h6vbwxfm2XzjV24jsv80QKbrs6Ke4QMXefH2HZzD1bVwqo69F6aZPBNaWoFMZm69eYe+q5IsfktXUT7DTZdk2X0+7PMvZKn79IUm67JUHFKJG6zeah8F08efZhCocDP//zPMzk5yTPPPOMLlHx8fH4gBgYG+NSnPsXY2Bh//dd/zbFjx3jWvJ9DiUd412euxXItElvCpHfFKEyUmX5+ka4LkoS7DTJ74kQHg/RdmkbRhbAgtilMZnccu+ZgVx26L0x65eL0iEbXnoTnEJQ5L87g1VnPvabrggTR+nO2NF0lMRxBC6nEN0cYuraLrgsSXruzexIE4hqTTy0gqzJ9+9P0XJJCC6tEeoN0XyieCU5NlH5qPNuTWyIMXpX1StOFug169iWZfWkJc7lGemeM/qsydZGtRN+lafFsdwEX+i5NE0ho9FycJL0zRnJr3T1KEttCdaeh7J44Q1d3IcniW/zE1gipHeJZ6VgukiR57ixGQqPv0rQnyIlvFjkESO+KMXxjN+F6aWE9pop81wU7oUyA7HlxQtmAKH22L+GVItPCItatObgOJDaHyV7QfNZnz48Tq5en00IKA1dlvbFipC9I974V+T4vTmwgKMrfLZj0XZr2xtPhHqPFHUvWZO/TlKzJImd1l6pQlyHGmHWxWHpHjER9fNfId6NEspHQRfvqEyHJrdEWt66+S9NCgKIKcXLfpWnP+SYxEiFdH5vYVUeImOplwgL1fCuNfA+HyeyKM/HkAvnxMt0XJYn0ihzqURGrGgqhrgC9l6bI7mnmpeuCBNH+Rg5V+i/PoIVUzOUakb4Q2fOinntSdm+c2GAQIyXKI/delIRKCWo1Ij0Bus5vjl17Lowx9KY0elRFtk16dge8sWMoq9N9vsiDUyhRy5tCUIQQ1PTui2LUz40RhYGLQoQTwjUpORIisVm0V5KhZ2+Y9LYg6ZEARkQisyPiic0Sm0MkhwPgOsS6Zfr2BQmmdeYPF3At6L0ogYSIjfer9F8c8crXyaqM47i4loWe0OnZG0aWbOLDQbr3RsnsCLN0pszC0SJde6OEkjKuWUMLKwxemaT/sgSyKhHtNZAVMOeLuOUy2fOiRPvEtZDaFmboqjSKYmMXykiWSXaPyIsSkMmeFyHSpWDXHNxqle5dOnpYLAwI9wToviBOalsYIy6THFKhWmX6QA5Fk+m7JEkgobHsLhB7p8X9M1/hWP4AN954I8899xwHDx7k537u53yB0uuEL3zhCzzxxBO4rsuBAwf4yle+whe+8IW2P28UbrzxRj7xiU/wG7/xG692U3x8fHx8VlC0K8zUln5oP+sKlFZQCdZYVIvMWD+c9y3alY3f1MfH5zXJ5Cvz2DWHSMYg0d+5MoePj4+Pj4/PD4bkuq67cZjPj4JDhw7x67/+6zz00EPYto2CyqbYVoYqO1AtHT2iokVUgmmdUCbA7MEcTs1Fj6rkx8tEeoJUFqpYdVeXvstSRHqCHPryKIGEcAGqLJogQ2wwhLlkUslZZPbGiA9FvJJvRlpMUJnLFl0XJijNVCjNVgjEdWplCz2kUZgQTgBGSiezNwYWjD06R6QvSCVnYpVsVEPGSAUoTJXJ7IyRPT/O6QemKU8LN5Zwr4GZt6gVLGRdpv8KMbFz/BsT6HEVVVcozVa92FrRInNenMJkBcd0KM2UcSwxiaUGFeEyBMQ3BSkv1oQgyRGTWqW5qnCWialoQZXibIWRt/ViFiymX1jEXLKQVQh1Bb3Y1M4o1aUaxUnxgTKY1XFqrnC/kSHSEyS1M0owpXPy21MEYs28BDO6l++eS1Nk98Q5cvso5rKFGpIxEoFmDtM6A1dlWD5TYuaFXD2HVayS08xhIzajIwHlOZHDSF9QlKApWC35xhETU7ImUZ5t5ruWt9hycy+FqQq54wUvdnW+z/+lLcy+tMjkU4vIuixyOFPFsUQOg2mdoWu6Gf3+jCj5UrYxl9fmUI+paGHVy2EoG8AybeE2JIv2l2ZErBZR0aNqS75dCxzHYdP13cwfyrN8uoBVEU4BRkL38jL8lm7C3QYH/+8ZcMR+G9dCI9+hrJjcPP3ANLbpeK5Aq/tsdFOY4mQZc9nCSOpISjPfiW0Rei5KMvbIHJWFatt8W2WHWsEi3Gvg2g6lGXNFDut9Nq6ihhQyO+LMvJBD0WVqZaueQ5lQl8h3YiRM1/lxxh+fIz9Wz2F3AKtie322/+oujLjGsW+Mo4dUtKjqlVILdus4VRdJkRi4Ms3sK0sUx4RzgBbVxISgIpGfKBNM6SS2hFk6U6I0WyXSKxzdhEtXmMzOKMe+MSUm8DaFmi5MQKTPoJIz6bkwSWwoyNmHZyiMm/V7hAZS3WVJlVADElpEIbE5yviTC+gRlcJUBRxYCE0wHx9lfGoMy7IYGBjgZ3/2Z/mTP/kT9FWlU3x8fHz+tbiuy3333cdnPvMZ7r77biKRCIlSF4PaCMGKEADoURXXdolviZAfK+E6ogSuW3f6kRTJEyIF4ipd5ydZHi2xPFpCC6vUCjVcRwgJtEjTka77wiTLYyXKs1UkWZSWqxUstLBCIK5RzdUwixaBmCbcVCwHuyLcZIx0gNhAiLlDS+AI55+GA50WVnBtsE2brguTVJdqLJ8u4liu5xJl1h2P9JhK5rw4C0fyVBZM9JiGVRIuRrImXI1cyyHSHyI/XgIXT9ShxzSssoVTc1GDCrImYy7XUHQZSZGQJFHKrRlro4UVUtujLJ4sUpmv1h1ehKtNrWijBhW0kIKZt7BNIbbRwipmvuY5SmlB0ebFY3lqJRHXEOY08g0SA1dlKM5WWDgsHKG0iIpTF5NJskSoO0C0P8TsizmQhKOTWWjkUMWxRb6RRPtrBctze1qZw0a+rYpwrtKja3OoGjKZXXGmnlvAsdzWHNZj45tDJLZEOVMv06wGFZDw3JL0mEa0L4gWUZk5sIhaFwc1YlvyHRULFuzGczfUzKFqKEgqnnB4ZezKHEb6QwQSGksni17/1iOqJ8hTdJmBq7MsHM2THy2hBORmDiXRnx3LofuCBKW5KqXZqpdDLRZE0WXMehu0sIJmQHFaOBMF0iFqpboblSaRGA4iyRJzL+XQk0Fct14WVwI9rGCbDo7tIuGiRxQqi1Y9L0JUU8uJsWIgHRTXoaFQmK6iGjJm3sY1TZFDVcGqOHTtjVHNW+THysI1CtE3axXABS0k07U3xsKJEuU5Ez2qYBVrOKhIqoQWFMeWGA7iOi6luRrmYr0NqSCO7SIrErWyTSCmoocVlk4ui/4S0kVJOQkyuyOU5kxK0yYSNdSgjFVVxP1El5F1Cbvi0HdpguXRPPmxEo6r1Uu5qdRKNnpEwSo7yNSI9gcp52xqRXEerIqDjcVCaIIp7RTTC1MMDQ3xsz/7s/zKr/wKg4OD/6r7q89rkwMHDpxz7L59+/7N2vFa5MiRI/zyL/8yn//859mxY8eG8a+88gq7d+/+EbTMx8fnR4l/bb92+JE7KdUxShqK3RRnq7qMHtK8BRn/UnwnJR+f9vxLx16vBo994SCvfPcsO28Y5E2/tOdfta832vPljXa88MY75jfa8cIb75jfaMcLb7xjfi0cry9Seg1SqVT4r//1v/J3f/d3LCwsALB37154KUy3XP/CuH7awr0GW27q5fT3psjXS7k1kFWZcJ9B/mxJON7c0M3si0sUp1tXcWT2xIn0GJy+T0yMrCxvtZJd7x2iMFlm9OHZjm1P74ySPi/O8W9OCDeXlgYhBDExlb7L0ow9OudNvqwmmNG9slU4bUMYvLaL5TNFr4zGakbe0YdjOZz6zlTb7X2XpclPlkV+1iExEsZ1Yenk2veRVZB1WZSW64AaEk467V7/LyHUHWD4hh5OfmfSm+RcTTCjk94RY+zRuY77iQ6IsiyNsmTt2PNzw0y/kBOTd22QVQj3hSjPVLzyEatJbY8iB2TmXlrq+D4j7+jDzNfW7VPnghqSCXcHWTq1fo479W1Zl+m5JMnEE/Md+xuI4x64uoupZxfa7ic2FGLo2i5OfnvSE3y1tNOQGXhTlqnnFpulGFcR7jaI9BtemcR2ZPfGkTWpfYwkvjjpvjhBrD/EsbvG224HMJIa297Zz9jjcyweW1HiQBLOEKohYxUt4ptCpHfHOH3/TN2lqfmFzcBVaQqTJXIniugxFSUgU55blRvHZvu7BzCXa959Blm4PFScEvGbHR566CEKhQKqqnLhhRfyP//n/+SKK67omAMfHx+fHyZnz57lb//2b/m7v/s7pqenueyyy/jwhz/M//mlb6JIrdWRM+fFUXSZ6ecX1+xHi6g4phB9hLIBtIi65tkkqxKZ3XGWThep1oU9ds1pGCF6hLsNUjuiTDwx75UIa0fPxUkKkxVPuNuO2FAIu+qsGQOujinPm54oZc2xhVVig0EWjhVw7bUfH/SoSve+JNMv5DwBzUoUQyY+FBal5Nb59CHJENsUZvlMqaW8m7efgOyVQetEMK1TXap5Dk4/KKntUWRN8krctiPSF8SuipJ07ZA1GS2sUF2qdTzu6GCI+FBo3fGbaijIutw2tw0SIxEKE2VPCLUaPaKSvSAhyhh2GIOfK8FMgMqiubYvrBhnCNcxu+W4ZcOov16UoC3Pre23UiDg/T8QEe5XDbE2gGQ0t2d3hnBsl/kj4jpzq63jr2BKx8gEyZ0W7+Oaq86TBPHhCKVZ0xvTulbrNaCGNBKbQyyeLOHUXFzbajkmSdeRVYmuvVGWzpQpTbVe89IKoXVyawg9CJNPt94/ZF3z+rZTrZLZHRMCr5l66bt6TvSoSqQ3wNyLouxAIKGJPqEFWvYXCLt07U0w+fS8J2BrjL2q0TzdN4a49957yefzXHrppXz4wx/mgx/8IIqi4OPzRsQXKfn4+IB/bb+esV2Ht7/0p8zUltoOySWgS0vwf5P/kSe/dJjJVxa8bYoms+9dI+y9ZTOq7o+VfHx+GLzWRUqu6/KV33qI/EyZt/yni9h0cffGL1qHN9rz5Y12vPDGO+Y32vHCG++Y32jHC2+8Y34tHK/v2/4axDAMPv3pTzM/P8/999/PFVdcwcGDB3mJJ3jAuYODzlNUXPGFdXGywsl7Jz2B0vANXfTuF+W0HMvxBDh6SEULqd5kjx5XketlquZeXvKEA5G+INt/YoBwr7GmXSfumWDyGfEhLTESpvuixJqY8qJJfrTkCZQaJUZEg8Q/gagmVqmvM3EU6QsR2xTuuF1WxeppUd6sPVPPLTDTQWQDMPHkvJefzN54x6shsSVCcnN7S0/HAqvkIOsyA2/KeDldiVVyPIFSo1xIW2RRSkM12jekNFsld7LQceIJQA2pROor7TuRHyuvK1A6FxwL8mdLHQVKIFyTIm360UoWT+RZXkckltkda+1Dq1ANGVkVIrFOAqXMeTFiQ6LcRzthEUC4K0B8KOyVY1tNYiSMHldxLDj7wEzH/SyPlZg6sNhWoAQib1pYRV/n/IR7DeKbwuvenbWIih5ZmxdZlb1zX5qqsHxmbU7C3QEG3pQBoLJY4+R3JlsFSnW2vaOXgStEGcelMyVO3jPlXdeN0n+4DlpIRg2JL2nMZctz7gqmdbbf1oseEdfo6MMznH1QiNEcJPLd0zxm38333W9y9913E41G+YM/+APy+TxPPfWUL1Dy8fH5kTI0NMTHP/5xRkdHueOOO0gmk3zoQx/imej9HHKfY9ldpKHrnz+8zPwRIVpRgwo9l6S88lq1guUJimRdRg00v8TW6vdKx3KZeTFHtS42SW2Pkt2bWNOm4nSF6ecWvf0lt0bQwqu+FJegOFP1hCuKLq/UkXqohuKVTWuHJEuEuoyWEq2rUQIySkBpKxwCMPMWC8fzHUU0dsVh4agQKKlBxSvbu6atQZVIj+Hla81+6gIlI6UT6gq0jSnPm6LUnCJ5ZdHav5dCKNt+H2I/VeHwsw7BlI4e7TxWcWqOcOH8Vy4LsSr2ugIlxRCujbLa+Xht06EwXu4oUJI1ue1ngJb3qfej8ly1rVhNUiQSI2EkWcKu2h2PO5TRCSbbn2NJhnCXjmvWqCzUWgRKq1keq7A8WsatVtcIlADkoC7KLEptBEqArKmEsgH0mIprWWsESpKq4jr1a0gVZd1WHlNj3O5YLqWpErXltW2N9hsEEipOpUru6BIzL6wV8AfiKr2XxFFUcW7mXln2BEqSInl5d6pVZNn2PgNVc7VG5V7im4IkhnTcapXKgsnUswtNgVIQpvRTPGXfyyO5u7n//vv5tV/7NU6ePMmTTz7JL/3SL/kCJR8fHx8fH5/XLYok83uDtwFehWWPxu+/N/gTZAbj3Pxf9vPmX7+AUEJ8TrBrDs9+7Rh3fOT7jL7wr1tk6ePj8+PB0mSR/EwZWZXoOy/9ajfHx8fHx8fndYkvUnqNc/311/PYY4+Rz+f5vd/7PZKZJJOc4ft8k5Obn+O0e5j8RFPkUVmqeRMYekwlszeOrIJZsDh217gnnhi6tovhm9YqwAtTZSafmvdKbnVflCA6EASEAKExqRFMBQh1Bb3XNcQ5pekqk08JIVN0IMj2d60VPOXHyxy7c1yUf9Jltv1E/5qY2RdzHP36mOe8NHhNFllvdlfHghN3N8UVPZckCXe37qM4WfGOY/jGbrouSLTNsZHS6b4gSWJze1HU6funOf3AdP0424YQiKtE+0NN8UYbUjujbLt1oKNQSQupZPfEiQ52EGc5MPHE/Lor3/NnSxz+6ii1QmcRUjCje0K2H5T45jCZ3bF1Y8YeneP0vdPrxiwcznd0wkIWbhWpbdGOrx94U5aRd/Su+x6xoTCxofY5bZzP/FiZI187297dSIbui1J07Um03YceV9n2E/1istVhjXOUrMr0XZn2Sp8cu2t8jTAruS1C1z6x/5kDOY5+fXyNo9Pwjd1k98YBmHh8vq371EhDWOS65MfKTB/ItbQDSZR9CWUD3qRaY/JV1mX6rhDtxHWYem6BqWcXWt/AdYlvCrH15h5CGTEhe+reaeZeEpP14R6D1LYIODbVxSpmzvQssctzJou1edS3Fngi+C2enHgQUy1z3XXX8b3vfY+JiQn+/M//HMNYf3LUx8fH598STdO47bbbuOeeezh16hS/+Zu/Cf1VnuJ+pvcc4a2fuoyKVWo+iyWoFWqi3BcQ6gqghcXDpTBeZv6wuD8GYhq9l6bRY2vFLIsnCyzXn4VKQCY+HPaENY0SZIouYyR1b7zllRtwIT9a8uJSO6Jk2zyvFo42RcHRgSCpHa3PVtdxmXp2geJUxYsxUq1jmsqCycwLOVF6rd7O1d/wN8ZdWlil+8Ikit7+o0Z0IERiS/tnc61oMfHkvHdM7URXIMr5BtOdBUYgyuolR9oLzUE8t9YTxZfnTcpz64uUZl9e6jyWabxPr7Gu6PpciG8Ke2K4dtgVR+Qt33kMaJvOum0VpV8jHYVOalCh77L0uuNdPaQQygRQ9Pb7cM0KTqXC3MEcC21E0gBGxCUxFOgorItkJJIDCm65TGW26JVT89oQVYn0ifFEcbzA3IuLuNXmGE9WJRKbg8iahGNaTD49T3GidWwWiGt0XRAHx8Ku1ISL5qrc6lGZ3ktTqLooG7d0puSJgiRZODK5jksgDKoiBnZ23WkNxGKOSF8AXIfyTJG5lxeplVadP9cle16MxJCGU6lgLteYOSBKfkuyRKQviKzJuNUqteUK1orXV/M15t0psu/TeNj6Bq9Un+GaW67ijjvuYGJigr/4i79geHi4bY59Xt+89NJLfOpTn+LDH/4wP/MzP8OHP/xhPv3pT/Piiy++2k3z8fHx8fH5N+PG5Pn8ty0fpEuLt/y9S0vw37Z8kBuT5wMgSRIjV/bxnv92NXtuHvY+ey1Pl/jOJ5/hu//9OfKznV1sfXx8fvwZPSC+d+/dlUIz1ll07uPj4+Pj4/MD4z9hf0wIhUJ88pOf5JOf/CSPPvoof/zHf8zDDz9MjRqnlEPs37+f8uMKPNN8TWwgRPfeBAuH8oDTUurq7IMz3ur+UDZA7/40Zx+aoVawmD+cb+5jMAyOEHHIugyOcGiafLopXoj2Bxm6tosT355sEXnkx8qMPTbnTVhl98bJj5dbYlRdxirZ3pf+qiE33Xnq/wTTgY4r5UEITWKD65cxMYtWcyXxKioLJkfvHPOEPWpIaRUC1duhx1VG3t7HxBPzayZ4yrMmh756dt1SYbnjIq+dXHhqBYsjt4+u604EwhkIV6yw7oSsyjhW+/0YSTEBNX0gt7Yk3zkS7QsSSOgd27De+4M4z73700w9t9hZUOXA0a+P4zid9zP5zELbCd+VnLxnsv0GGUZu6Sc/Xmbq6QWc1c2Q68dhOpz41kRHcZhVdNYVjsmquBZL0xVyHY41mAm0da9YeT3Uytbacj8ydJ2fYPF4gVrBYuqZBar5tS4Lw2/pBkni9HenWTpVbLpOuS5aRBXnwHWJD4UoTlVYKljkx8peTPfFSTRDYeyxeZbOlDj7yKwneFSDMo5p41iQHIkQzOgsHM3jWA6n75/BdCuc96uD3HnnnUxOTsK3hWPJu971Lj7xiU8QCoU65s7Hx8fn1WTTpk187GMf44/+6I+49957+dKXvsQf/uEfUpNr3HTTTXzgAx/gc+//CvOHm8+A+KYwpdkqS0VLuPhIwmGlulxj5qVmGbTktgi1ku252liIfehRjXC3wfLZumhJlz1Rw8qxV+a8GHa17ky0gsVjBc9hRQnIBFM6halKi/OLU3NbyqVJiiQccVbEGAkdSa51LE0aiGuEugIsj5bauungulhVW5Sxa8PisbzXTlmVcFa9v+cMszmMEddaRLcNNiobB5A7UVgr+ljB8plSW9fBlSgBmdhQiNyJYkcXKRDCsU7bI90GlVxNOCr9AMiaTKTPoLpc6+ioud77gxBKubbrufO0ozhdoTxf7eh2apVtFo7kKXfoFwDV5RoTT863PTfBtE5yW5Tp5xZpN7yTNQm7XKM4aVGZr+C4bT6qug521UaSWt9gpQNSIB4klNEpTDb7fotDkqoRTBuUF6yWMnyuZYn+aLlYVVF6TVKaeXVtGy2koMc0ilMVzDzMHVqmVmieE9ey0CIq3fsSTL+wTK1oM/NiU8AuSaK0o+u4BCIBjKROYVyMuRrnRtEl0jtjLBzNY5VtcicKLWPARlk4SRaOr7bpUJ6reiLDgrvMvl/Zwpe//GUWFxcpP7+T3/qt3+IXfuEXXpOlFHx+tHz2s5/l9ttv99wBJUnCdV2OHDnCt771Ld7znvfw67/+669yK318fHx8fP5tuDF5Pm9O7OG5wknmastktBgXRbagtFkZoYc0Lv/ZXWy/doDHvnCQqcOiXO+Zp6cZe2GWC39iK3vfMYyi+W6UPj6vNxoipcF92Ve5JT4+Pj4+Pq9ffJHSjyFXXXUV9913H47j8L//9//mf/yP/8ETTzyBi0s4FCZUTLCFXfAKLBwvCLGIDFvf0c/i8TyTTy9gLluYiC/rZU0IShpikcRImNJ01XNfatBzYZL4cHiNGKeyVGP+WN6byMqcF6MwUaGyaLJ4TEyeySqkd8WQZKllwsssWJy6d0r8IsPWd/azdKbouTEBLaIK1ZAZenM3E0/Oe/txLDh6V9N5Jnt+gspCtSmyQDjPNOi7LE1xutIiNGoce3xzmIGrspy4Z4LKfOsEjLlksXSmSHGqw2qZ+vsPXtuFXbOZeGy+dbMlnIMAglndK4u1koYgJb4l7JWIW02o28Bdp1ReYiTMwJVZDn/1bFvB0+KxQtvyXv8Sxh6dW3f70LUZlIDCibvbC4QCSZ1IbxDXmW+7PdIXpLJQ7SjYMlI6lZxJtcOEXzCjM3h1lrMPzlJZ7DCR5sDS6aI3MbSazW/pQVIkTt49uUaEpBoyfVdkmHx6gdrKPlxH1mV6L00y+fQiVsXh8NdG1wjY+q5IYxYs5l5aaumfDfSYyrZ39jP+xBy5E0XGH10bI6symV1xrIrNwuE8+cax1F2olk4VqRUscqeKuKvnNF2XnktTJEciHPrKWZyay6Evj3qvTwyHxOR5xcW1XDGBXMe7HgMSO39ykKlnF5h7ZZmJJ+ZxLAfLtVjMjlFKLHHs2DEe/htIp9PceuutfPazn2VoaKhtzn18fHxei6iqys0338zNN9/M4uIiX/3qV/nSl77E+9//fuLxOO95z3t4/v93lCRdTD694K20DXcbJLZEGH98Dtd2W8Y/ru164h5FF6U6KwvCtafh3CPJEr2Xpsi1eVYVJsqekEcJyBgJneJMRTg61fXaRkonPhymOF3BXTFsWCnoDnUFSG6LMvnUAs4KQdHsy01RRaQ/iKxKLJ9pOs2UZqpCrOoKkVF0MMTymZIn5qiVbObrQmYlIBPfFGbxRKFF0OTUxP8ze+LYVYf5Q2uFz+W5KnalgxC4vistpJDeFWPuleU1Ap7GGECSQQkoa7Y32itrMqohd3QhCqYDFCYq1Irtt3fvS2AWrY7jq3Yiq38JTs1hvM1YoYESkOm7LC3KCHYQQgWiGq7TWaRkpHQqC2ZHgZIWUqiV7I4LApJbI7gO5E4WOorHqssWxalKXXDjIKnNj6J6RCW7N8rsizmqS7V6jImkCdemYEpDC8ksj5a9Y2gRJiU0VEOhNCeE1o3PAY0YLayQ2Bxh/mgRx3KZfGbRe20jJrEljJEKMH1gGbvieAs3XLvZb4LpAOEeg9KcEDeV50QfU3QXPaJSmrGoFSyWxyprxOUSNn2XZVg+WyQ/VmZ5VPyAOIdaSKGyYGKb4v6w2lENxGeVcLdRH3O5zfuLW6bUN081mefgwYMc/qcE11xzDb/5m7/JddddhyR1LgPo88bhnnvu4Wtf+xqDg4N88IMf5MILLySVSrG4uMjzzz/PF77wBb72ta+xdetW3va2t73azfXx8fHx8fk3QZFkLo1uPef41GCUd/zXyzjx6ARP/uNhyksmtunwzFeOcvThMa78wG4GLvCFDD4+rxdqFYupQ2JuanBf16vcGh8fHx8fn9cvfrm3H2NkWebDH/4wr7zyCgsLC/zWb/0W4XCYWcZ5kvt4NnE/L1afoOjmwYHRR2eZPyomgDK7Y2x5uyiTVZgoc+o7TaFQ3/4MqV2ilJesyl4vmTu0xNRzC0JsIcOm67sw0rpwcGms7pchuydBfFPI+x2EQOfw10aZeSkHQN/laYauXzXIc8QkTu6kmOAJZnVRQmsFakhF0aS1jjIrfo1vChHt7+DOIotV3IF4e/ed/GiRmRdzawRKDSYen8eqOKiGTPdFibYx5pKJuc5KeSOpM/L2PpIdypiFugMMXd0lyqi04ez3ZtqW+mpQmCwzdaD9CvUfFfNH8swd7uz0VJyscOjLZ7FK7RvZf2Wavisz7V8si9Jng2/q/AWAVXEw8xZmm8nEUDbg5X7mQM5zBFrN3MElpp9fbLut0Y+MDqVbVEMmNhgm3F13AGtzmIomo2irJoxkIVAD4bg1+/LSmonp+HCY7bf1I6vgmA6Hbx/1xG+N601WZbr3JogPiesgd7zA0qkCuC59+1Mktoi/Lx7LM/HUPLgSuC5qoP6vJjFwZZZEvUTOzAs5Jp5cANclvSPCyNt7hEtGxREiqpMFHNdhqW+SsR0v85B0Fy/MPsPU1BRXXnklDzzwAHNzc9x1112+QMnHx+fHmmQyyYc//GEeffRRjh49ym/8xm/wwAMP8ByP8HL399n573tYtGdxXZfSbIX5Q0ueMKfrggTBjHgu5E4WPdeTYDZAZnfcEzc1Sm25jsv84WVPtBTKBogNivt3ed70BDjBlE5iJIKnQaj/W5ysMPHUAq4j3JJ6LkmtGf9UFmssnSx4AqVgWl9Twk1WJGSljcChLkRpuD9J7WIQ5Wz1mEYnjcTSqSL5sVLbbWbeEm44CEGVGlq7StmuOdRK9roOjsmtUbJ74p23b4t0HJfZVYeJJ+Y7CpQAlkdLXvnUVwPXdlk8ll+31NvC0TyLx9uLqIKZANm98Y7l5MLdBj2XpDqWXwMhTKuV279/dCCIpEg4tfbl5lzLopqrkDtRoLrcfgytBmW0kCxKqNV/VhLKBgl3h1q2r4xxbBc5oCLJTst2RXe9flWcqbJ8toJr2y0/6V0x79pbHisx+fQ8bq2+D1v8G8oEWsbuy6cLOFULLSiR2hYCx8Z1xNirNFMFSUKSXOEI5bpEeg1S2+t90BVCwVrBAkkswGjcO4pTFU/QZ2kmi13jmFfP8Kh0Ny/NPksqleL2229namqKu+66ize/+c2+QMnH46677iKbzfK3f/u33HjjjaTTaSRJIpVKccMNN/C3f/u3ZDIZ7rzzzle7qT4+Pj4+Pq8pJEli65v6+am/vIY9b19RAm6qxLc/+Qz3/Y/nKMz5JeB8fF4PTLw8j2O7xLpDxHr8CgA+Pj4+Pj7/VvgipdcJiUSCv/qrv2J6eprjx4/zgQ98AEmSmOIsj/MdHnK/yVNnHmE5V/9Su2pjrigLNfCmDKHuADhw+PZRZl7IAZC9IM6unxoCWYgmGivEAzGNwAoBUTCro0VUcODQV88y+7J4fd/+NFtv6RNBDp5Yw1yuUc3VhUAyRIeaoonGiuSeC1MMXtMqRKksmBz7xoT40l6G7e8eILWjdVLp+DcnmHharDbP7ImL8mgNHDhx92Tz+M5PEO0PNjdbMPui2BbtD7L1lj5UY+1lEhsOk94RE8e8iukDOa8MWjCrr9leWTQZfWTWc5laTWm6yvG7x9tO4qwkOhRqewVbJYe5l5bWLeU2/JZu+q5Mr7v/TuhxlZ0/NUgo27kEX36s3NEJKtxriNKB63Di7gkmnujgGODA6COzTD6zsGaTHlORdZlaweL0fdNtc5DeFSOzO7bm7yAmkDfVxXP5sbJXqhCEO1L/VWlkXcYqORz52liLW1cgoTH05i7vWjn0lbPkR8str99+Wz/JbUL4M/rwLNPP5VreP7U9yuCbsugx0a9mXsgJUVxIEdcnUF6sUsnVhIAQvGNM7Yyy8z2DIIu/HfraqNcPY0PND1SBhOZNUldzNXGe6q5K2941AAiR19G7xpg7uAwy9O5PEek1ADEJadavP8d1GK+d4dHyvTwo38mTZx7hzJkzXHLJJfyf//N/yOVyPProo1x33XVt8+3j4+Pz48y2bdv40z/9U44fP85TTz3Fz/zMz/D1r3+dZ3iQo4NPccR8gem5KVzXRZIlakXLu2cHEpp3by6Ml4XowXFBgt79aSL1sUl53vRKs6lBpWXcEagLZQuTFSaenPfESH2XpT1BQ0MgJSsSZr5ZKkyPqqKsVc3xREBqUCG7J0Ew1Tp2WT5bIld/poe7DbovSrKyGkJl0WTiyXmcmig/ldoebRGzVBZNpp5ZwLFcZFUivjnsfakPUF2qeeKa9O4Y4R5jbbIlUdo33L12m1NzmT+0jFMT+1fajDGWzhTXLZObO17wxn+dkFWpbWlWEOfJ7CCuAdBjGn2XpZG1H+yjV3JrZM14dyWO5VKYrLQvvSfRUZzfoDxXZeqZhY6l5IozFWZfXmopE9hACwuBT2GiddzUQJTLC7cVdkuSQ3ZPxOvXhYlyiwtTIKERSsu4NZPl03nmDi61vD7SF/RKQi8eX2bmhdaxYbhH9FcAu+Iw/ew89iqXzszuuCfqrhVtSrNi7GYkm+2tFS3hUua64DRLE3ZfmCQ6IF6bHyt5JRkbrkggXLz0iOr1y9JsFdt0kCSXvsszhHvEtZ4fLXlOsnpUJb65LnhywSpZ3rmtOVXGaqd43n2ER+xv8dzUE8iyzN/93d8xMzPDww8/zLvf/W4Cgc7jdJ83LqdOneLaa68lEom03R6JRLj22ms5derUj7hlPj4+Pj4+Px7oIY3Lf24XP/HxK+nekfT+fvqpab72u4/wwjdOYK+zeMLHx+e1T6PU28C+rL/gw8fHx8fH598QX6T0OmRkZIQvfvGLzM/P89JLL/FTP/VTBGMBxjnF97mbA+kH+f7xBzj8yAlAuL6Eewy0oJggCMRVwnUBytLJIjMvLHrioi039xIdDFLN1Th6+5jnONR/WYahhqDIEWIfgPxEmaWz9dXxsnBQ0iIqc68sewKN1NYom67rQo+3Tvycum+KMw9OA6IExfANXS2CIVmWKU6XKdUdBvSY2uzR9fYG07o3UdeO+KYQ0cH2injHcbGqdtuSYwuH8xy+fYxawUJWaStkCvcabL25v0Ug0qBRLivUHcBIrRUyNUrBRfqCa7ZBPR9v7iaxub3bkhpS6Lsi3bZdICZIKnMdyqBthCvcmtq5FIEQfnVygQIYvDpL/xXtBVKhbABZFSKg1SXWAG+FeXGy0nb78I09DF3d3mGpIfwZ/f4sJ77VvgydVbWxqu0n6Dx3pK72/UlWJYKZAEa8fj7r3abhBuaYDsWZCuZya94yu2P07k8Bol8d/+eJNTGD13TRf7lwljKXLM4+MINVcUjtjHq5Lk1XWTpVRJZbxUvxzWE2vbmbYEa049R3psS1J8PwDd0kRsTrl04VmHpOOEepIaU5EeyIfmikxesXzizz5NNPMnPeUR7Rvsljpx6gpOTZs2cPf/mXf8nCwoI3Wd9oi4+Pj8/rGUmSuPTSS/nLv/xLzp49y8MPP8w73/lOStlFnuJ7HBt6mt2/3sfJY6eoLIlnrxZWW57/elTzHJQWV5TQDXUFvGff8tmS56CiR1W6L0h64pOV4pTiZMUTojfGQbbpsHAk7zlRpnbE1jgHWWWbiafnKdfHdvHh8BpBcq1sU1kwvVJznvOO2/w9kNA6fpHXcF1qHGtrIsWza2XZOQ9XiMAb46dOjj6pHTEy5611TLKrjueE1E5kbZsOjiXKazVEN6tJjERI72wvcgYxNmsrsALsqt3RufFcMPNWR4chRZeJD4fb5xRxvF37Eh1z1hBe1Yprxz9aWBViG5eWcoUNgmmdnktSniBnJbImg1R3onqy2a9W4ljOuqL6YDqwrihej6roDeFevQ+K0n7iWGsFS7R7RWpkTSa9K+bFzL28xPzRAiutvrSQQtf5CSFUcl2WzxQpzVRE6cIVY9zSTMUTp7lOsw2ZXTHiW4QIxMxbTD27iG06GEnd65+uA7kTBcoLol9oYdVrkxJQCKZ0z51sbmyB4wuHkN+yzIO1b/Ji6Un2XLuTz3zmMxw/fpwHHniAD37wgyQSiY658vE5V/yJGB8fHx8fn41JD8W45Y8u49pfPR8jJj7XWVWbp//pKHd85PuMvTT3KrfQx8fnB8F1XU+kNLjPL+Po4+Pj4+Pzb4k/g/w6Z8+ePXzlK19haWmJJ554gne/+91YlsUUZ3mC7/J07LsYbzV54qsHPOeezO44fXURSWXRpLIovnxXDRnXdnEs8Q18bCjkuRSdvHeKscfEB7Bwr8Gu9w6hx1XyZ0veyvRQNkByS8T7Ar6xanrhaJ6T35nEXBKTR5vf1ismzhy8vwViGlpEw6pPZGgRFcdyGH903hNKbbqui81v6Wk5/tGHZhl9SAwsUzuiwulmBce/OSHKXQHpndHmqmXEJN/p7zZFUv1XpVuumMakSv+VWUYablErKE5WOPvIDMtn25cwAei/PEPvJam224y0zua39HgikpVUFkxOfHuC3InObkuJ4UhHgdbMgRwLR9s7OW2EuWwx9v25tiIhqDsddJikA+FkNfVs+zJqQ2/uov+q9mXeogNB+i5PE+7tvO/xR+cYf3KtA1P2/ATbbukXoi2HlpIw0aEQ3ReL1U8Lh/OMP9p8vRpSvPPuuSOtcE+Kbw6z+SbR58pzJke+OuqV32nse9ut/Z7gZ/zReYrTFWRd9pyQ1FCrM0ZlwUQ1ZEZu7vVcvsYfn+XUd4SwSl8RmxyJeiv4K4smk08v4FgOg9d2MXyD6OtLp4qcuHuC8pxJMKPTc0l9pZcDSCAroh226VCYFMeWGInQf3nGc7w6+I1TbHtXH2e2vsBj+t28UnqOgwcPsmvXLn73d3+X5eVlXnjhBX77t38bw+h8fnx8fHxe78iyzNVXX81f//VfMzExwXe/+11uueUWvvrVr/IsD/Fi9mE2fyjJhz/3fqaeF88bWZPI7I4J0ZIrnIVaHHFWzBfHNoVQgwpm3mLy2QWqS2KMljkvRmIkgmu7LJ0peo43wXSgWXoUPDeXmQOLXnldI6mT2RNHUqSWZ7saVLzngKRISIqEuVzzxouBuEbf/nSLu1CtaDP51IJwnQEy58U9xydoui7ZpnBdSmxZIa5xYfF4wROzxDaFCMSar23kRNFlei9Nt3VVWjyeZ+FoZ8ekQEIjvSvW8ixdSWpblPSu9mXhlk4XmT7QoQwsIo+dxl121RGlUdsJsM6B4nSlrUsRCHFLpC+I28ZECaA0UxUimTYuSKGuAN0XJlE6iNoTW8Ikt3Z2cCrPm8y+tERt9ZhQgp6Lkp6gZ2V/lmSJxEhEvKcLc68sC4fUOisXGOROFph9aallv+mdUU/gt3Ak77l8NcjuSXjCPrNgif7qNvu+a7uoQQXVEMIqq+qAK3KR3hUF16VWtJh8ZsETZjUcsBRNJtIf9MrD5cfLVJdqYrx4Rdr7+/yRvCcoDPcaXj92HVHarSE+MouW5+yU3hnzXCvLc1VOPjfKWz9xGUuXnOHByjc5pryIZVn82Z/9GYcPH+bBBx/k137t19i8eXPH8+Pjs5rNmzfz0EMPUSq1/3xaKpV46KGH/H7l4+Pj4+NzDkiSxLarRQm48966ydO8L00W+fZfPM39//N5ivN+CTgfnx8nFkcLFBcq4nuHXe3nbHx8fHx8fHx+OLT/ht7ndclll13G7bffDsChQ4f45Cc/yT333MOdd94JQNAIEiiHGX9wmE3RLYAQA21+aw9Tzyww98oyZx6Y8QQekYEgoUyAuYPLOKaD0R+kVhClRPLjJU9g1Hd5msqCycLRPAf/6YznMDN8Qze1Qo3T989QmhariGUVbNP2JnGMlI6sSCydLnqTYqohs/1d/Uy/kGPu5ebExegjc8i65L0u0mO0lPaQldZVobJad3yqtye2KYxVcbxV+isJdwUIdxnIMjir5nimDywSTLeflGqUPIsOBIltCrUIYADO3D/d1qkJoDJvcvr+qRZRzEoaOVMNec0+rJLNK//vTNvXASCLki3lWbNFsHMuhLIBrHK95FcbTnxrov1bqjKO47RMRK3m9HenOzoZ5cfKHP/mRIsICMTkT2pblNGHZylOt5/Amz+8jN3BFSuU0Yn2BpmWm45hDbSwQmwwzOLRgnBAcBrHIvqO0yijo8ueaC2Y0Ql3ib6XP1ti7LHWdskq7PzJQeaPLjP97CJTzyx6+4j2B1k6VcSqOMIeuj5n2LiWwr0Gm9/Sw6nvTlGcrHDinglwhHCp77IU408uUCtYlKbLXrWUYFbHrl9PwVSA5EiUmRdFOcCx7896Odn6jn5ypwtMPD7PwqE8o0dGOVU9ijxgMTU1xcN/+g00TeP888/nPe95D7/3e7/nOyX5+Pj4rIOqqtx4443ceOONfPazn+Wpp57i61//OnfccQef//znicVivO1tb+PgV05hPlZFc4TwIjYUIpgJMPHEPKWZaotQItoXxMxbWGVbiC1CClbJpjxveiJy1VCIbQqRO1kUguT68CeQ0Oi6IMHk0wtCjGQ1hSOu5XpCEiOlU83VPJEFNAXIE0/Oe24x1aUasweXvFJt4V6Daq5ZUk5WJZCaAhVJbnWb0cIq4W6DwmQFx2p99kuyeGbZprPGQcg2HRaOLnvlgVu2VR3sumFRcluUwkTZc1ACUeZ08unOZc1ypwotorDV+xaNE6Y77qoxQ+5Eof0L6ygBGVmV2joWrYekSGghRYy72giRKosm44+1X6ktqxKO5XYce5VmqtiV3JoSaA3mXlluKc3XIDESES5Ceautw5IQnOW9vtF6QBBM6VSXapQra92lQlkDcCnPVVvckZp9R2od00uirFtl0cSuOOROFbxxT4Nof5D4cJjxx0VZxem6c6QeVXFqLlbFxrUcnJoouYiLl7PM7hiyKjPzYg6zYIlcu2IcrQRkls+WsMo2xZkqri1KO6qG4vWxSG+Q8lyV6nKN6nINsyBKt0X6giS3Rhh7dA7Xdpl6fp7F6jyzTCJvMTl58iTP/pcHuOmmm/jYxz7GL/zCL9Df39/2PPn4nCu33norn/zkJ/nVX/1VfuEXfoF9+/aRSCTI5XIcOHCAL3zhC8zOzvKLv/iLr3ZTfyDe+ta3tvxeqVT41V/9Vd73vve9Si3y8fHx8XkjEAhrXPGB3Wy/doBHv3iQmaM5AE49OcXogVkufPdW9rx9GEX1v0Pz8XmtM3pgBoC+89KoenuXZR8fHx8fH58fDr5I6Q3Krl27+OIXvwjA2NgYn/70p7nzzjsZHR0l585xuPAsW7ZsQZoOYH/bJJ6IM3R9F07VIdxrkB8tU8tbHH9qHlmXGX5LN9HeEGcfmsauOqJsSV24kdwawczXWDiaR4uojLytl7HH5ph4ap5QxmD4xm5mDy3Re1GK0mylZZX+tnf149oOL//9GcK9Btk9cc4+MMvEUwsEEhq9+1NUl2pIkihJJVZTV8nujZPdkyB3uoBVcsjsiaNHVM4+IAaaW2/tJ9wV4PDXRpFkiZ6Lkow9OketZJHZHSO5NcryWJHp53IMXpOlOFXh6NfH0eMqA1dmqRUtRr8/S2prlHCPwejDwq1p9/uHsKoOR+8YQ4uo9F+eZuq5RQJJnfhQGEVXvDb0XZ7GLFjMvbyEkdbZfms/J749QXGySnw4TGJLmDPfE7HDb+miNGcy83wOWZUZui7L7MElgimdvsvS5CfKnPr2FIBwBXJdpp/LIeuw6c3dzB1cJj9WJtIXJLM7xvQLi2y5qZfl0SLV5ZonlBm+oZuFY8JhyYhrDN/YzdmHZ3FMh+zeOFpIJdJnCHctWbj0LJ0qEszodO9LMnVggcpcjcx5MfSYxsTjQpQ1eG2WQEJHluHsg7P0XJxk4ol5zIJFameUxEiEk/dMUlk0GXhTltJshYUjefSYysjbe8mdLDL59ALBTIDs3riX7/6r0qiGih5W0BMafZekmHp+kcq8SfclKXovSfLyF09hVeolNvbGmXtpidjmMP2XpTnzwPT/n737jo+jOhf//5nZ3nfVu9yLbFyxTceODQFCh0C4SWiBFJKQRvpNbvINv7Sb3FzSSAi5kIQkhBJqKLEpBmMbG/cqy7Ysq9ftfXfm98dIawvZYMAgYz/v10uWdubMmTO7knVW55nnoXt9iNRAljGLytj3XA/OUhv1S8ro3xGlZ2OIxn/up+6scnq3hYl3pph4aTXOUhub/rCX6P4EzhIrpdO9hfKF4z5YgWJW6dsZwVVux1fvIhVMUzzFRyaWw2RR6XxtgFhnkjGLywjuNZ7DqvnFVMwJsPnevWQiOWKdKTzVTlzldiwuM4qqENkfp+u1AXRNY8JFVQw0xRjYGcE/zoV/vIe+HVGysRzeOiehZuMO6XHnVqJaVRofbjUWq01QNb+YdDhD2Qw/4dY4yZ40+17oojXWjP0UnV27dtHfb7x27pCbefPm8ZnPfEZKuAkhxNukqiqnnHIKp5xyCj/+8Y/ZunUrjzzyCE888QTbeA0lZ5SMO/PMM3nljs0EuooomuQhFcxQPMVLeH8ci9NM13ojI46r3E7RZA+5ZJ7OtQNY3eZC9iKr10xgoofI/jhaFgIT3JisKv07owzsjOKucJCJZbEHrOTTGmaHqTDvclXYqD61lPaVfcS7U/jGucgl8sQ6k+SSOYqneIm0xnGVO8jGc9h8FpJ9aRRVoXxWgGh7kt7NIRSTYoxhX5xMLIfNb6H6lBKCu6MEd8fw1jrRdZ321YPZLAfLbw3simIyG9lqujcGQTcCTJxl9kLQS/FUL7HOJLqmYw9YqT6tmNYVfWTCWdxVDlSLQqw9idVjpniqh9DeOKmBjBF4XOciuNuY55Se5ENRFXo2hQAjqCk1kCbZn8HsNFE81UvfljD5jIazzIbVYyG0J0blyUWoFpVgU5REbxqTTcU/zm0Ex6SMebLVZSa42wha8o9zkY3nsRdZsTjNZBM5wi1xcom8kTWo2EZ2MKDFN8ZFLp0n3plCNRvPYTqSpWiCh/6dEewBC/07jfF765zoOkTbEiiKQtFkD9G2BJmo8bp4ap3YfRbjObWbQNcLge8l07ykghliHSn0wed/oDGCroGn1oGvzkXHmn60rE7RRA/x7hSpYAaL24y3zonZbiITzWJ1mzHZDnz/1C0sI9GXpm9rmFwyj3+8m+DuGFpOo3xWgHQsS6gpRufaAQITjXJoyb40gQlubAErvZtD9DdGcJba8I93E9oTw+I0Ub+4nN6tIcLNCULNMfzj3GRiRrCeo9RG5clFdK0LEutI4iixGUF4fgAde8BGvDNJ/84INr8FZ6mNgUbjOawdnHN2vhYkFcriLLNjD1jx1TmJ9aSwe61E25Jomo633onVa2FgRwQtrxOY5CETzRHZn8AesGJ2msinje+VqgXF9G4NE242sm8VT/Zi8xlZvIayn4X2xIiH4wQ9vZSd6uHll18mmo5SVFTE6dNO54tf/CI33HADbrf73flPSZyQLrjgApqamvjnP//J9773PcDIAqEPpmLTdZ3LL7+c888/fxRH+fY9++yzha/7+vr48Ic/zFlnnTWKIxJCCHEiKR7j5aLvnkLTinbW/K2RVCRjlID7eyO7lrdx2vUNVE8/dPZ4IcSxQUq9CSGEEO8dCVIS1NTUcMcdd3DHHXeQSqW4++67+ctf/sLWrVtJJBLsjm0nkAlQka7CFSyivnMs3hoXmqYy7ap6ujYFURWF1hU9BPfE8I914alxMOGiKnY93GbclT54Q7OvzomnyoHJphLeE8dZbsPsMKEoyuDimoJqVSg9yUeiJ02yN02oxVj4sLpNlDT4CO6OEWyKUjGvCJPVhKvChMmsotpUVIuC1WtmYFe0UF7E7FSpOa2EWMeBjES6phHrTpIOZXGUGmUlFBOggWJWsXrMOEuMkgumwX7BWGS0F1lwFFkxW43tQ+XrADRdNzLgYNz1bbabUEzQtyWMltXw1buw+sxoaQ2TTcWUMfq1ec1Y3GYsbguQRrUohTIUqlWlaJIPmzdJz4YQDParmhTCLQlcFXYsjgM/yiabWni+J19eh9lpYqDRWChTzUa/6WCGvc904hvjGjZ+k91UuNbCeQa7M9lUTDbVKIFngprTSjFZDpSBsbjNTPxQDe2r+jBZVMy2A3cbmG0mEt0pUgMZFJPR71CWIKvLTGC8m7KT/PRsCmG2qQfKy6gKVq8FZ5mRqcpkUQolSVzldkxWE8n+NC3PhbC4zYPjNcavZzWjrMbgeUxWFVPWeOCrdeIothayAygmMNmN59DkMGHzWrG4Bp9TTcUesGB1m4gD8Z4UFueBazPZTBRP8aCaVDrXDpCO5OjdZmT4snqNMZntZjzVTmKdCXQNgoOBYEWTvZjsJiPYqyWKs9TIolE+x4/JrmIyq2RiOVSThi1gxV5kpWdDGHvAgqvCjtlhYmBnBFSFgT1RYh1JSqb7KJ7qI95lZG9qW9lL6TQ/iqow5apaMokcWkqjZ3OcSDxMj7mNkNZPa7CVVCqFaY2J6upqFi5cyPe//32mTZuGEEKIo0dRFE466SROOukkvvvd79LV1cXTTz/NY489xp133kkil6DaW80p00+h47kesjsqUHMW7H4rnhon9oCVWEeSeE+KSIsRkGp2mCia7CGf0chEc0TbEqAbv+O8dS70vE7ftgiJvjQl5TZyqTz5jIaW0zBZLZjtKo4iK/m8Rqg5SrzH+B3iHSwp2vpSL8mBLK4KBxaHGVeZjUirZvxutalGdqOmaCETpm+sC98YF7F2Y+6lqAqZWJZEn5E5x+RQjd/BOqCAxWnC4jIbGXLUA6W5wMjE6Cy1khywkonmMFnVA7+/BzPs5AezMKomxcjcmDOy5QwFIg2VdzP6NVLl2HwWFOVARh6TVSmU4fJUO/CPdRvZpDJGv6bB+VG4JY670lFoqyiKMSZFwVVhp3xWgMj+A1k5VYuKYjIydSpmhcB4d+G8ikkxSokNZZ+yKKi5g8ekkolm6Vo/gMlmQj3oTk7VouIsteGutNP1WvB1z4uRbSjUHCcVzOCpdRa+H8DI7uMqdxDvSqG87vk2O0xYvRZMNhNaNodqVVFUCnNTk0Wld3MILafjqXUeKNcHoOvoQxk61aHnZfA1LLOhHBTnrFrUQkYkq8+C1WUuZDFSzAr2wXl8NpEnHTqQKQwF7H4LjrkB2lf1oyoK4eYYsY6kMXeyqOTNGna/BS2nY7Kq5HM62VCWwHg3pdN8hPbE0HJGacRMNIfVY8bms2Cyqmh5nXxGM15zm4qW18jG87irHPjHuEh0pUj2p8nGDtxUUTbTj2pW6NsaJtmXoX8wCMpVbsc/3k02nkMxKQw0RYnpIULWXrTJabZt20Y+lmfS7klceumlfOxjH2Px4sWYTHLHrnj3fOELX2DhwoU8/fTT7N69m3g8jsvlYuLEiZx33nnMnDlztId4VCxdupRp06ZRVTWyLLsQQgjxblFUhUln1VA/p5x1D+5ix7L96DqEO+I8/cO1jD2lglM+NhVX0cjS1UKI0ZWOZ+kezIRWO1OClIQQQoh3m6IP3TYnxCGsWLGCX//61zz//PP09hqR5KqqUldXR7ZFYeaU2dBpJRPOUT43gLfWSdOj7Vi9ZmweC9H2JGa7ypQP19G2spfQnjhmp0ouYSxgTP1IHdG2BG0r+lDNACpaTmPylTWE9sboXh/C7DRh81kGM78E6FofLGT20fP6sJJuvnEuas8oZfeTHYXyE2anicp5RXS+2k8upeGtcxolF0LZwv4pV9bStSFI35Ywr+epc1IxO0Dzs52F0lhD5b5Uq0rV/GK6XusfUUrsUOMDmHhpNblknuZnuw75nKvmwZJyB3XnLLcNKzd2pAIT3SR604VrPVLTPz6G7k0hejeHjvwgFYoneQjvix+2hN3hHOr6Di6h9nqeWgdjPmCUPTs4+MzqM1Mxp4i2l3uMUn4HKZrsAQUGdkaNwKWDui6f48dRbDMCsF5/WWaYclU9oT0xo8zNQdfavysKmnF8KpQtlPcDGHdBJYqiDCt/Zw9YKZvpZ/9LPaBByUk+o9xJTwp7kY1YRxLVqjL1ylo61vYTbIoVyvlZvWYmX1ZL++o+BhqjxvaMBhpM/nAtkZY4nWsGMDtVHCV2ovsTlJ7ko3iKl50PtgLgb3DQ2LoTz3QLjY2NhWxJNpuNKVOmcMUVV/CVr3wFp9N5JC+bEEKIoyyTyfDyyy/zr3/9i3/961/s2rULVVWZN28e55xzDsv+ZyWl3nKS3cbv9apTigk3x4n3pLD7rWSiWbScjn+cG3vAQte6oFGeTFXQ8zquCiMDU/vKPrSsXigH5iyzEZjgoX2VUcrK5rOQjeeMYBWLSrw7ZWRHGu8mvD8+rDxY+ewAuXSe/oPmO44SGyarSqwjaZRuKxn8PT/4rsM/zo2r3GZkUjrEO5GSab7BTD+Dv+MHg1fAKO2l5QbLgR1EMSkEJrgJN8fJHzR/sPktlM8M0LV+4NDlxwaPHSpLN3Q+i9M8rFTckTBZVWw+ixGM9RbeYXlqnfjqnLS9cuiybYdjdpiwOE0k+w9Rcu2NHOL6FBV0ncOOu2yGHxQKmaeGuCvt6BojSu6qFgVvnYtwcxxd0w+UbMN4nkqm+wg2HboknKfGgW+sm/aVfYXXxewwYbKqpMNZTFYVb52T8L54IXjJ4jZTObeI7o3BQrYiMMoQMjg+1aLgqXYSbUtgdprJJXJoOR1fvQtHiZWudUHje0HTQTeya9kDFjrXDBSuScsaPy9Fk72F8dl8FnJJI/Cv4uQiYh1JYh1JzA4TujdLa/d+xl9YyfLly4lEIjidTubOncuiRYv4xCc+QV1d3Vt48YR4+7q7u3G73bhcrsO2SSQSRKNRysvL39Y5EokE999/P9u3b2fHjh1Eo1G++c1vHjI7UyaT4Y9//CP//ve/iUajjB8/nptuuol58+a9rXMf7IYbbuDyyy/noosuOqL2jY2N3HzzzfzhD39g8uTJb9p++/btNDQ0vNNhCiGOMfKzLY62vuYwK+/ZTs/uUGGb2WZizuUTmCYl4MQJ7K3Ovd4Le1d38vwvN+KvdnHlfx/dbJwn2u+XE+164cS75hPteuHEu+YT7XrhxLvmY+F6ZSYs3tAZZ5zB/fffT09PD8FgkJ/+9KfMmzeP7u5u2vVmntrxT55LPsJqfSkb97xGV5NRniwTyVF9WgklDV40Dbo2Bol1GgtNZTMDTLjYuKNx7zOd9AwGwgQmeJj6kTqjNNVDbXQPbi+e4mHM4gq0DHSs7i/csW0vsmEvMjLsqGYomuQh3pGkfVV/IUCpbmEZvjonrct7C4EzFXMDlM8OFK4xl8iz+18d9A1mvymf46fkJF9hv57TSUezheOtbnMhAMZVZsNT7UA9xJvKg8d3sJYXumlfPbgIdYifwPoPVDD2nIph2xLdRgCPvdiKt25kAEnZTD8TLhp5l2iwKXbYACVvnZPas9/aXQGBiW6qTi0+9E4N+ndGRwQoFU32MPGS6hHPkWpWKZnmBQ5c38Fjm3JlLfYi6/BzDHYRbU3S8kL3sACloT4dxVasvtcdh5EVwV3pKIxVNauYB7MyZWN5MpEDi2T2gJUxS8oHszFA89LOAwFKgKPYSuX8YjzVRn/d60MketKMPa8Se7Fx7u4NQdpX9eEoteKuGjyvAo5SG3a/FdWqMrAjTHR/gsr5xdSeabwWWkZj2/0tBJti1J5dytjzKgHjZ2rfc10MNEUpafAy8dKawnh6t4QIN8dRzTD+gqpCpqdYV5Ktm7eziVfYUvYyj+z8G1sia1m1ahVut5vLLruM1atXk0ql2LhxI9/5znckQEkIIUaR1Wpl8eLF/M///A+NjY3s27eP3//+99TX13PnnXeyOvE8z0cfx3ZBklaaaG/uIB3NgA4mu0rZrAAokOhJEdlvZFlSFCOYyVFiI96domdDCC1rBHaUzw7gH+ci0ZMuBCiBESTkqXWSGsiQ6E2jmIwsOja/pdDG5rMY2Rp3RQrnsrrNlEzzkg4dCDCy+a0UT/UOy7AYao4ZwS66ESBUPNVbyJQIkE3kCuXrVLPCQQmPsAeshSw7BzPbTdi8lhFzq3QoS/em4IFgGGX4/qHyvDbvQX3qFAJ4XJX2EceoZoWKuQEcxcPnG/mMNiwY6/X8490j5zZvomiSZ/jYDpJL5g8ZoFQ+O4CrYuTd2faA1chmedD1DSmZ7qd4smfkSQavfaApSv/OyIjdVo8Fi3tkcl7FpOAstWFxGa+7rh3I2JTPaOQSOQ6+VcZd7SjMl2IdKaO87UGBY74xLvxjXYXjg7tjOEpsBCYY5dCysRx928Nk41mcpbbCuG3DxqcUsh+Vz/Ib7YBwa5yudUY2qprTSnAMvkaR1njhfUrF3EBhHpkOZY2smLqOu9JOYKKnEBgX6grTOrCPRn0jWwIreLbrn+xgHW1tbVxyySU8/fTTDAwM8NJLL/H9739fApTEe+rqq6/mwQcffMM2Dz30EFdfffXbPkc4HObee++lpaWFCRMmvGHbH/3oRzzwwAOcc8453Hrrraiqyte+9jU2b978ts8PsGfPHlpbW1m4cOE76kcIIYR4p0rG+rjoe6dw5ienY/cYc/pcOs+avzfyyDdX0LGt/016EEK8Vw6Ueisb5ZEIIYQQJwYp9yaOmN/v56tf/Spf/epXASPi/be//S3PPPMMe/bsYVtwA9uCG3A6nUyZMoWVr7ZSlKiEjBk0nQkXVrPzoVaibQkyMWNhJB3JMvWqOrrWBYl2JFHWDxSy50y6qJpoe5LONQNE9ifQBstHTLqkmoGmKK3LewoLUZ4aF9WnlhDvSRFsimJ1m8nEcsZd24PjtwesuMpt7P5XeyFgpmiSh5KTfOx+oqMQJGN1W8hnD2RMysSy7H/eCL6yF1mZcGEVrS/1Et4XJ9qWZMeD+41jVRh7TgU9G0PEu1PG+AYFJnowWRT6tkfIhAcXhVSYeFE1kbYE3euChbZ9O8KopkPHD1bMDmBxmgqLgUOS/ekDJdRel3zIP96Fp9pJ60u9w7abbAct5h1h4iOL03zIhTLfGBfeeietL/eO6CsTzZHoSxVev4PHVT4rQKQ1MSxACIzFqYFdkUKwGRil08afX0Xbyl6irckDC6I+M2UnBWhb0UuqP0PjQ23GASrUnllKrCNJsClGy4s9w8Y28dIqEj1pWl/qZWCXkV3J6jOTCefQ8hpWrwWrz0yqP0OyN0P53ACeSge7n+wg2Zth16NtmGwqRVM8DOyMkk3kUE0KFrsJzWsm3mlkFBh3fiWKArGOJKlQhsYHWzHbVRqurqNzbT/9O6N0rQ+ia/1YvWYmXFhN68s9RFuTDOyKFhZ1J11RQ7ApRrQtSaw3hWlnBFWF8pOLcFc5aHq0HU3XaNq7C/NY2Bpcz8DAAJke4zkszhVz2mmnceONN/Kxj30Ms1n++xdCiGNdfX09N910EzfddBOaprFhwwaWLl3K0qVLabbsoLFrEyUlJZx57pnMnz+Npb98BUWzkYnljMAfm0qsM0Vkf5xMLAu6UVrLP8FN9/ogwT0x8mnjl6M9YKV4ipfOtQNGgMhQ5qJyG/7xHtpX9hoZZQaDP3xjXeTTmlESDSMARTErKKpSyG7jKreTjmbpWN1fOE/57ADx7lQhiMlsN0q96UZMEia7Srj5QGZC/3g3FpeZ7vXGXKl/R6QwBmeZDavHQmhPjGw8R+daI+MNCgTGu4m0JsintULAtr3IStFED90bgoWgkmw8R2R/gnR0ZFC32WEiMMFDPq0Nm5NoOZ1UKFu4poMpqpHRKd6VIh0Z3qfFaSIbP/J7RBSTgtlpQjErI/YVTfKQ6E2TCr4uSEmBVChzyCxQ/nEuMtGcMe95nVh7gnx2eHSVr96FzW+hZ1OI3GBJOjCyJ+UGn5OD+7J6LXhrHPRtj5BPaUaA92CXjhIbJQ1eOl41vhf6d0aNksODWbKM4Cmjsa7paFmNynlFBPfESA1kCO6OouV1XOV2UqHMgedeUUABk0Ul0ZvG4jJT0uArZFQaaIqCbsxVXRV2Olb3o+V0utYNkI3n8Y9zYfNZC98TA4PZnVzldnxjXXSsNhaOYp1JsrE8iskIUAvujqFrkMok6WptZ8GtM3j22WdpbGxE13XGjBnDybPnc84553DVVVdRXHyYIH8h3kNHkkT7nSbaLi4u5pFHHqG4uJidO3fyyU9+8pDttm/fznPPPcdnPvMZrrnmGgA++MEPcv3113PnnXdy5513Ftp+9rOfZcuWLYfs5+Mf/zg333zzsG3PPvssp59+Oh7PIQIvhRBCiPeYoipMXlhL/cnlrHugiR3P7QcdQu1xnvr/1jD+tErmf3QKroCUgBNitOiaTtumoSAlKfUmhBBCvBdklVq8bZMnT+aOO+4AQNM0nnvuOe677z5efvllNm3aRD5vLGbY7XYmKhOZ755PLB+BVqicX4zFYaJ7Y4jg3hjZeIZMJIfJrjLpsmp2PdLOwK5oYXHH6rZQ/4Fydj/ZQfur/aSDxvaSqV5KT/LT+NB+Gh9pLQS71C8pJxPJ0jIYXIQK3nonxVO89O+KomU07MVW0uEssY5kITCqakEx/Y0RI7MPUDTVR8WsADsf3k8uoZEKZeh6bYDwfmPxrGiKh1S/kWXA6jRjsqnkh4JxDgr+cZXbMdvV4aXfNOMO7XjX8HIl0dYD2YEq5hURbIoWFtf2v9h7yOxL0bYk0bbkyB2AalExO0YGMAWbosZd4G9Bz6YQbBq53WxXsTjNhwx2Gip58XoDjVGi7UmysQOLaJXziuhvjJCJ5Oh6LTisfSaSI9qeIBUcvuBndVlwV9mxes3G6z90nYN37JssxhOmqiqlM7z0bo2g5TS61gVJ9h947usWlmEPWNn1cBuZSI7dj7dRNruIiBo3FgH7M5DXsXrN5FIamUiOqgXFeOqcRgk5YM+/OnCW25h8WS17/91JvDNF68u9ZBM5qk4pxl1pZ9cj7eRSGp1r+4m0Jak5owSL20LzM52ARnCP8X1fNtNPYKLbCLpSjecx2ZfG6jYz/txKWl/uJZPNUbu4hFWrVrGtdBsDAwPk1hnPp9/vZ/bs2SxevJivfOUrFBUVvfkLLIQQ4pilqipz585l7ty5fOMb3yCRSLBq1SqWL1/O8uXL+d73vkc6ncbv93PmmWcyZlY5H/jAB/jBol+RS+SpnFtEx6v9ZCJZ1MGkRqmBDFULigm3xEmHs0TbEmiDgdplM/ykI4PzpFykUKqrcl4R8c4UPZtChaBve8BK6QwfnWsG6N0SHhbIFG1LEG1LGhmRTAqJvnQhgMbqMWPzWehaN1AIZimfGSDZnya4OwZApCVhzGMwMhg5y+3EO5PoOqgmpZBhExgW8OIothHrTA0LJMrGcyR608PKwaFDpNUIfDbbTThLbYXHuWSezlf7h7cfFNoTO+TrpGs6ZrsJ1TpywtZ7iLLCb0TP6/RsDI3YrqgKJpuKcqh4J51hQV4H69kUMkqZDTI7TDiKrUTbkofMyJQKZ8hn8iO224ttZOO5A4FbQ+X4NB3VohbKolldZkx2E8m+NKmBDP07I4XXw2RTjXn3zgiJnjShPTGsHjPeOufgzQk6yf4M+XQes9NELpFHUSEwwU1wT4x4d4p4l/FR0uBFtaj0bAqRjedoX92HltOpPq2EYFOURG+aRE/KKBVnUymfHRgsT5gnGcwYN08oUHlyEZG2hJHpKZ03bqBQjQAnm99K9/ogeUeGqRePZe/evbzyyka2bdsGQOeje1mwYAHXXHMNV199NZMmTUJRRgaXCXGs6+3tfUeZVa1W6xEF5S1fvhyTycTFF19c2Gaz2fjQhz7EXXfdRXd3d6Hk3G9+85sjPr+maSxbtoyvfOUrb33wQgghxLvI7rZy+o3TmLSwhpX3bKN3j/HeYM/KTvav72HOFROZ9sH6Q2brF0K8u/r3RUiGM1jsJsonB978ACGEEEK8YxKkJI4KVVU555xzOOeccwDjj4MrVqzgz3/+My+99BI7duwo3P1oMVt47SkPXjWAJ12Ms2ciY8+povGRVhI9aSxuoyxD37YIU6+uY6AxQqQtQaQ9gZbJE94bZ9wFlaSCGYJNUVRLBC1nBLFMvLSa0N44Hav60QdXuzw1DurOKmP3Ux1GkJBmZEgaf14lfTvCdKzqB9Uo/+Wpc5IcyJDoTmP1mol1JGlL5MgljAWVMYvLCTbFCsE4JQ0+Yp1JEr1pMokcux/vKDwnEy+qJtqRpGvtAG0rDgQX+ca48NQ4aFvZR/f6UKH9mHPKibUnC4FMqlXFN8ZFLpErBCkNZSMy21Vqzy6jfVXfsCxERZM8FE32sPtfBzJDDeyMFoJoDvnaWdVCkNYbv8igqhRK3R2sf2eU/tedo6TBi3eMi73PdA4LXqo+vZhkr3Hn/cEBSma7im+si0w0S3/E6MviNlP/gTLaV/aR7MvQtsIok+etc+Ib66Z1eQ+xjiQ7H2oFDWx+C+M+aATwxDqS7FvaXXjezXaVkul+UqGskQWrNUnd2SX074oSbU3SuzkEJqOsS7wzhZaj8Pwn+tPGMVYjA1LPlhA9G0N0rQvS8Wo/YxaXo5gUmv/dRaI7TfurfWTjWSZ/uJautQOE9+WItibIRLLYi62MPaeCfcu6yMZyJPuNLAiqVWXKlbV0rh0gE82hKxDaayyAjj2nAtWs0rhyD9kxEXatWE9vqJswYV784aMoikIgEODUU0/ljDPO4LbbbpOgJCGEOM45nU4WL17M4sWLAUilUrz66quFoKWf/exn/OAHP8DpdDJ36lwaNw7gyPrwhYrwj6vEbDfT3xgh2pkEBXKpPPmMRvVpJXSs7iPRmyKf042AjVSeqlOK6d4YJLI/Yfz+1o2Sb/6xLro3hejfESlk2ymd7iM3mElnKE7DXeXAW+ei7ZVeI6BFMUqFuSochUBrq8dM3/ZwIROTvciKs9RWyNZj81vxj3WT6EmhazqxrhQMZi60B6wUTfbQvT5ILpmnY82BLD5Fkz1GZqNwtvC71eo24x/vNs43mEHIFrDgqrAT7UgWSo0NBSgZAecmwi0HAoAUVaF0+oG54JChEmGHoqiKkankCJKVKCZlWMmzIbqmjwh4UlSjpHJkf3xYwJHZbsI/3kX/zmjheR1iL7LiqnAQ60gVgpdclXZsXgsDjUaQfDqURVHBP85NojdNOpw1SiQPduUb48LmtdCzOUQmljMC2ge5KuxYPRaSfWkjO1JOp2iyh4HGKPm0Rt+2MNlkDpNVJZ/RsDjNOMvsRNsS6LoxD/LVu3DXOGhf2YeuQfvqfsw2lZrTS+jeGCIbyxFpTaBrxpzfUWwrjMHIIJbDP96N2WbcLKCoCvGeFPmshrfOiavcTufaAUw21chAFcthcZoonxmgc0M/MXOIcL6Tzh0dWMYq7N27lxe+8TgTJkzg7LPP5rrrruP8889n+vTpb/6CCjEK7r333mGPN2zYcMh2mqbR09PDc889R0NDw7s+rqamJmpqanC5XMO2T506FYDdu3cXgpTeinXr1pHL5ViwYMEbtuvr66O//0CJnZaWlrd8LiGEEOLtKB3n4+Lvn0rji22svb+RdCxLNpXn1b/uZNfyNk67oYHKqZKFU4j3UutgFqWq6SWYJFBQCCGEeE9IkJJ4V6iqyllnncVZZ51V2Pbqq69y33338dJLL7Fnzx72x/YAe9jWvIZAKMDkqZPpWh3itEkLqDm9hOZnu+jdFsLut5FLaaT7MzRcM4bt/9hPtDWBalHIxnLEO1M0/Ec9e5/tJNqeJBNJE+9O4R/vovbMUva/2EP/rkgh0GfMueVkIjn2Pd9NJmoEyZTP8hMY72Hng62F8ZbPDuAqt7PzAWOb2WlCMamFRRxHiZX2V/oKC0FlJ/nxj3ez69E20CDUHCc1YCxY2QNWFBMk+zJY3GasHsvwrEMq5DM6ufSBu9W1jEbTI62FoKCh4BkwAovMDhOm192ln45mSUdyRjDR6+KOPHVO0uHMgXJzQN2iMmxeC02Ptb/pa1o0wUPVgmJ2PrifXOpA50WTPYT2xEeUc8sm8mTC2RHZlSx2M1nHgeu0B6zkkjlyKY1d/2wdFgSVT+XIpzUU0/A70VWLgtVtHry7SMNT4yK8L046lCXcGicTN17r8ll+fOPdRnakWI6mx9twltoAI+BLtRnPoWo2XpvyOX5Kp/nZ/o/9aBmNxgdbKZ/jZ8qVtex8oBUto7F/eQ/5rMaUq2rZ+2wnmbBGsNlY8Kw6pRib30rzM52oZpV4Z5JMPMuYc8rR8zotz/fgrjIW3/JZjdqzy7AHLDQ92o5/vItoR4JkfxpPjZPiaW5eeeJVKs8P8NzOp2htbSVLFvaBw+GgqKiIs88+m5NPPpnPfvazEpQkhBAnOLvdztlnn83ZZ58NQCaT4bXXXmPlypWsWrWK3e7d7IoaWV/GDIxh3rx5XHLL2dz/zSeZOGcM2ViOTCRLoi+NzWcl1pmicl4RNo+FWKeRzU81qYXMNVpeJ9aeJNmfRs/pJHrSlM3wkwpmiHWmjOAa3Zg/lUzz0b89YmTIHAxuqT6lmPC+OF2vGSXaVLNC+ewAA01R4p0pFFU5kClpKLZG1+lY028EFSlGVqfI/gTxrhS5VJ54d6oQVGT3W0mFMqgmxcjE9PqkNooxFzg4cCfemSLRnULXjEyUignyg3Mek1U1ypMdRNd0solcoUzwsO5NCo4i67DgJZNVpeqUYnq3hoeVjzuc8tkBUsHMsKxNZocJk0UdUUoOFLLxHLnU8MxHilnBZDWhmhTygwFPVo+ZTDRHrD1pZKU6OLFUTh8RzKRrRslfk804p8VpRstpRim9cLYwf1VUhYqTA0RaEsS7U4Sa41icJswOE7lkHkUxXmfVrBQyJVWfVkK8K0lob9zIjtSTKmT3inemiHUZ32P+sW5Ui8JAY5RsMk+kJYECVM4vYmBXlEw0i9luIjmQweo2UzbTT9f6IFpWI5/Jk43nUC0q1acW07ctjJ7XMVnVQvng4sleEuk4bZEWZn58Aus2v8KuzC6S6SSmVhMzZszgrLPOYsaMGZx22mlMmTLlTV8/IY4F99xzT+FrRVHYuHEjGzduPGz7kpISPv3pT7/r4+rv7z9kxqWhbX19fW+r33//+98sXrz4TUtbP/744yMCuACam5sLGaHfSCwWY/v27W9rjEKIY5f8bIv3VAXM+GQ5+18M0b3emO8H22L86wdrKJnuYsxiP1aPLN0cDe9FALZ4f2vdKKXehBBCiPeazHTFe2bBggXD7mgcGBjg/vvv56mnnmLDhg2sWbMGDY19z+3EbDaj6mZ8uwLMnDcDzWkl2gGu9gQVcwJ0rO5n0mXV2PxWo/xacwxXuXHndN3ZpRRP9dO1fqAQ1NP1WpDxH6oi0Zsi0ZMmlzQWsuwBK+POq6F7c4i+nQdKsU26vIaBxgj9g9vMdpXJl9fS8WpfYTGjdLofe7FRHgwgHc4Q3ncgy5LFaSLcYizmlM7w4yqzsfPBVvq2hunbatz97iq3U3NWKc3/7qR1eU/h/LVnl5IOZwslPuwBI/tO+6p+gk1RMpEcTY8OBhapg4tNYSNga+iah5V3U6Hm1BLC+40sU4XXoDE6ItDpcGJdSbrWDwwLULJ6zVTNLy70dfB5w/vihPcdyDZgD1hJBTPse677QKcqjD23glhnktaXetFyRrvaM0toeb6HTCxH87NdANScUYpqVdj/fA+hPXFCe4y+y2b5KZ3uJ96VNMqwRXPY3BYy4ZyxSKqCalfRUhreehcVswLE2o22e5/qZMqHa7EX2ehaO0D/9gjR9gQTPlRJ37YIA7uMknT5tEbtwjL0nEbbij5Uu0q8O43NZ2H8eVW0PN9NJp7F4jSRS+XxjTUC5HY+1IqjyEomliPRk8JZamPsOZXse64Lm8+K1WWiZ2OIjJohW6/x6u717Ovfh123EPxrEF3X2fAUlJaWMm3aNBYtWsRll13GmWeeeUSvmRBCiBOX1WrltNNO47TTTgNA13VaW1tZtWoVq1evZtWqVXz5y18mm83y2qs2Zs6cSfuaPirCFZSWlKENKAT3xPDUOlH7VJIDGSpPNkrGxXvSWN0mUBWiHUbp0p5NIZIDafJZnXQog8VpLpTzSgWzZBI50CAw0YOu64T2GSXmwJgPuascxjwjacwzvPVOHMW2QhCTyaoawU6D5cFUs0KsM0kmavRhsqmFTE6qRaX0JB8Du6LEu1LDSqYVN3jJJfOEm+P0bRua55komuKhf8eBcmT+cUaGoM61xvmHSsABhaAboFCWDjhQ9gxwltoITPSQCvUVMjXlM9qITJJvJLQ3NiLbpafagb3ISueagWHn1TW9kHFq6JpyqTzZWI7uDQdK6LrK7RRN9tDxaj/5tIaugbfWiWpRCe2NGaXRetOYnSZKp/vo3Roml8gPyw5VepLPKNG2N0YulcfqNd5S6ppOvDNVCFrS8zolDT4SfUY5t2R/BsWkUHVKMe0r+42MUJtDWL1myucE6F4fNMrvDZZ7q5xfRM+mEJl4DkvcKOnrH+fC7DDTty2MxWki2Z9By2qUzfSTS+YJ7Y0ZJfvaE+h5ncAkD2arSvfGEP5xbmJdKeMmhaIcIWcPe5tbSDgjrG+NMzBgPKcdTzdx0kkncfvttzN//nxmzZqF2+0+otdMiGPNUHl2Xdf54he/yPnnn8955503op2qqni9Xurq6lDVd//u8XQ6jcViGbHdarUW9r8d3/72t4+o3cUXX8zpp59eeNzS0sLtt9/O2LFjmTx58psev337dlnwFOI4JD/bYjTMPBl694R45Z7t9O01/l7ctzVOeE+auVdOpOHcOlSTZHYR4t2SimTo2R0CoHZmyegORgghhDiBSJCSGDVFRUXccsst3HLLLYCRYv7VV1/l/vvvZ/Xq1TQ1NdEX6mLZik7A+MNp6dZS3BYved1EcmmEmR+cirfGSWR/gjFLKkhHc/TvjOAb68JT6aBnS4jJl9XStrKXaHsCXdNJ9WfQNJ1p19TTtrKXZH+GRFeCTEyj9qxSUBjMGGCUfSua7KFokoeeLSGi7UY5ksp5RZhsKvuWGQE0VreZ2rPKjBImGME7/rEuom0JMuEc3RsHMNtMgFHCbMzictpe6SWf1Uj0pArZjVzlduLdqeF39quQCmZoeaGbaGuycL7M4AJX1YJifPUuGh/aX8hC5Ci1MmZxBftf6CHenQIN9jzdMaw0HECsI3nEr1cmkiss5h28bddjbcP6HX9+FelQhrZXDtz9WrWgGP84FzsfbDMyGFlV0IwMBvtf6iHZmykEN2XiOfI5HdWqYvNbyKfy5FIayb4UymC61dqzSskm83StHaBva4RUKFMIngqMdxO1J4m2J4l3p6g9qxSz3UTHyn4GdkTR0Rl/YRWNDxnBZX3bwlj9FsaeV0nzM53kUhniPSlMDpXJV9aw58kOcvG8kUUrrzH23Ap0TadjdT+OMhvRdiMr0sSLaoi2JRjYHaV0mpeu9UFAp2JeEdl4jq61ScZfWEn7pm729O/EMl5n664wbV1tpLQU+nODpW3sdgKBMubNm8eVV17JVVddhdfrPeLXSQghhDgURVGoq6ujrq6Oq6++GjBKxA0Fiq9fv554fB0bdqxG69KwWCxMq53GmDFj2L+rHUfEg3mfQvFUL90bg7grfdh8Vvq2hwk2RY0yaW0J3FVOfHVOereFSfSlUUwKkZY4JQ0+9JyReUfXKWQSqpxXRLQtQSqYIRsbLBc3w08mkiWyfzDYWTGCkgcaoyT7jIVrX70Lm99amBvZ/VZsfgvxrhRaVjOyFQWNc/jGuECBcLORdVEbzHykWhQUVUExDWYQGgwmQjGCj8wOY+42lNFRz+uoZoWKOQHCLfFCmTowgq9MVqUwV4p3pUgNZA70OSjelTri1+xQ2ZaCu2PDMjrZvBaKG7z0bAoVAqcUk0L5nADRtkQhuH6opFq828g6lU9rhaAqTdNRBrMsWdxmsrEcuWSeVDCLrulY3GaKJnro3RJCy+n0bg0XgqfMDhOeKqNknJY1SgOWzfDTvrIPLafTvSlI0UQPnhqjrN9Qyb3SGT6irYlC4FJqIEPRZA9aViPUHMdkU0mHsljcZiobfHSvGzCyW6kKuWQaV7md4ile2l7pxVXpIBPLkuzNYPNZKJrspXPtAPZiK2anidbNHaQCMfr0fRRVe9ke3k5XZxd0Gu9HTjrpJGpraznvvPM4++yzqampOeLXSIhj3axZswpfX3/99cyePXvYttFis9nIZl+fEc7IAji0/91UUlJCSUkJy5YtY9myZcRisTc/SAghhHiXlI73c/H/O5VdL7Sy9h+7jBJwyRyr/7KDxhfbOP2GBiqmSAZ1cWg7duzgmWeeYcOGDXR1deH1epk2bRo33XQTtbW1b3jsxo0buf/++2lqaiIcDuN2u5kwYQLXXXcdJ510UqFdKpXiqaeeYsWKFezdu5dkMklNTQ0XXXQRF110ESaT6d2+zHdN25Y+0KGozoOr2DHawxFCCCFOGBKkJI4Zqqpy6qmncuqppxa2aZrGihUreOKJJ1i5ciWNjY3s7dmNjs6+6E5W/XMZHo+Hmpoasn1jYYJKYpOOX3Xjn+AmFc7S8Vo/FbMDdK4bwFPtoGyGjz1PddG3M4KnxkmsM0n1KWWoFtXIAJDJkxrIks/lOOm6MfQ1hkmHs4Sbo6hmhfEfqiKbypGN59DSGqhQf04Z0c4kkcEgpvLZAdLRbGHxqm5hGapJYdc/2zHZjYWlbCJHLqER60rhHeMk0ZVi7LkVDDRF6N4QIpfIG30vKsNsN7HnX52Y7SqOChv1Z5bTtrKXRG+agcYosfakkYWoyEomkiPZnyHWmUR/XWkTi9uM2a6S7MsYbWM5PFUObD4LkdZEYTFMMSmY7QcO9tY5cVU6CnfiW91mFNUokaZrRlDWUKBSoi9Fst9YQFTNKlavmZ4tQeLdKVSrgtlpZtwHK4l1JundGiYdzOAb66R8ToD9L/aS6E2x96lOrF4Tky6rpX97hO4NA1hcZvp2GHcU5TJ5VIsCKkbWojNK2Lu0k1hbip4tIaoXFDPQGCIT0ejaOEDZzADF0z30b42SCWXJRHNMvKyartcGiPWkcOmgqgoTLq4iG8sx0BhBVxVSwQwlM32UTvHT9EQ7pSd5SYfTxHsyFDd4KZ3mY+vfWxh/bgXRjiSxngRlM4xF286N/ThP1ekzddAR62B/xX5WLg0W/gCublNxOp3U1tYybdo05syZwyc/+UnKysqO6s+VEEIIcTh2u33E3CuRSLBp0ybWr1/PunXrWL9+PTsz28jpOdbtV6mjjtmXzGbC9Crsdjsv3/0a6QEVb50TdCfxniSqWRkMaglTt7CUUHOceGcSs9OEdbB8XPWpJQw0Rcgm82QSOfRojuIpHswOE5lojlQog5bTcZTa8A2WrM1njcw/rko7Vq+F6GB2I8Wk4Klx0LfDCBCyesxUzAnQtS5oBCopoAxOa+LdKdxVDlSLgqfGiafKQdeGIL2DWS7NDhMVcwP0bYuQCmYwO0z46p1Y3Ba61xuBMn07jTLCB5eES/ansTjNhVJmKIPBTaqR1UjLGuVr9ZyOu8phBFgn84XSdUYAjlFaTTUreKqdpMIZ0qEsJpuKrhvbc8m8EVilKuiaTj6TN0quDZZ5M9lU0KF/h1Fez+wwYfNZCEz00LVuAHRIh7OUzfSTieeI7k8QG5y/Bia4cVc5aHulD4vTRCaaJZ/S0C06uqZjdprIRHIUT/YUgpVSAxky8Ry+sS6Cu6KkQkawd9ksP12vBcmnjMAlm8+CzWc1xhXOYvVYsHjMlDT46N4UJB3OYnYaZekq5gbIRHMkelPYi22EW+LoQNkMP7HuJOlQFm+di94dYewlVtxVDuJdSbK2DObaPBPOmU6uNsarr75Kx84OoukopMGX91E5+TRuuukmampqOPPMM5k6dSqK8vpagEIcn2644YbRHkJBcXExvb29I7b39xtZf0tK3pu72JcsWcKSJUtobGzk5ptvfk/OKYQQQhyKqipMWVzHmHkVrP3HLhpfbAUdgq1Rnvx/rzLxzGrm/cdknL53N5BXvP/87W9/Y8uWLSxatIjx48fT39/PI488wk033cSdd97JuHHjDntsW1sbqqpyySWXUFRURDQaZenSpXz+85/nJz/5SaEqRkdHB3fccQdz587l6quvxul0smbNGv7nf/6Hbdu2HXE2y2ORlHoTQgghRocEKYljmqqqnHXWWZx11lmFbZqmsXbtWh5//HHWrl1LY2Mju3fvZtu2bYU21les+P1+bIqD6kA10Y5iKqZVkOnUsPmsTLy0msaHW5l2TT0ArSv7URWoX1RO58YByqYHCO2PYfFYyCfz5JM6Ey+qxmvgbB8AAILmSURBVFFip+u1AaLtSWrPLsXms2J2mdByGv56F71bgziLHRRP9aIPZkJSzSr+sS7Cg3ey27xmiiZ5CO6N0rclQt1ZpZisKut/s5vmZV3UnFmMyWoiFcpi81sIjPfQv8tYdCue7qVsRoDO1f2EmuNMvKgaLacZAUxOlWkfrSfalmDXI+2kBjKMO7eCxn+2oZoVak4vRUfHWWSjZ3OQ8llFtK/uw1lqw1vvonxWgC1/aQYNbH4LRZN8dK4xgpLGX1CJrul0r+vHN9ZDzWklaLk8wT1xrG4zZoeJ7vVBou1JiiZ66U2H8NQ4jOAsi0rjg62kQhmqFhRj81noWj9AKpxl4qU19G0NMbArSjqSZeJF1cS6k+z5VwdlM4rQNZ3OdQPY/VbqFpXhKLPR/HQX3monnmonoT0xws1x6haWMv68KjbdvZf0QBZHiY0pV9Wz9d5mUv1ZvFVOFBW8VS60nIaj1EasI4m33knVvGIGmmLEOhLk0nkq5hbhrXUR3BMdzE7gY//zXUYg1awiop0JbH4b9oAFHRh7QRk9wS72d7Vh8mus391DR0cH6XQafZle+D4uKSlh3LhxzJkzh0WLFnHeeedJQJIQQohjjtPpHBG4lEql2LJlC5s2bWLr1q1s3bqVu+66i+5uo4SrxWJhQngC1bXVdPUNUGmtwJF345vgJB3JFUqvZaI5KuYV0b0hSN/OCIHxLhxFNrSMhtVrMYJ58hq5vgygMPnyanq3hMhEc2QTeSrmBIwMkYpRHlbLaEZAzEw/nmon4f0JUv0ZvPUuHCU20oOl4Pzj3JisKqG9cex+C/ULy9j/Ui+RlgQ6UDWvmI5X+/CPc6NaFCxOM5mYcWzVKcVE2xKE9saweiyUzw7QvTGIntcpmuimuMHHvqVdRiagSR5UsxHkrOd1KuYWkehLY/WYifekcJXa6XxtAE+NE/9YF5HWJKG9RmYkb60RCJWJZHFXOag42QiySoeylE73oVoUVIuJ7vUDVJ5czMCuCIm+NI4SG45iG+hQPMWLu9JOrDNJ/87oYLBWEX3bQwR3RXFXOfBUO2hd3kuiL423xoG32kF/Y5RETwpvvZPg7hh6Xqe4wYt/rJsd/9iPxWnGP94NKvRsCBHrSlF3Vinx3hTxjhR6HqrmFZGNZol3p7A4zDjL7VQtKCLYFMNb5yLemSSbzBnzZ4+Fni0hsrEcmqZTOa8IPQedr/Uz7vwqQnujpKNZAuM8+Me7aV7WRfWCYjKJHO4KB6oP2tvbyBYnieVD2LGxN7GXnp4e6IGlm//F5MmTqaqq4sMf/jDz589nxowZ1NTUvK/v8BXiaNmyZQtPP/00u3fvJh6P43K5mDhxIh/84AeZMWPGezKGCRMmsGHDhsL5h2zfvr2wXwghhDgR2b1Wzrx5OpMX1bDynm30NRt/E256uZ19r3Vz8lUTmbpESsCJA6666iq++93vDiul+4EPfIAbbriBv/71r3znO9857LEXXnghF1544bBtl112GR/5yEd48MEHC0FKRUVF3HvvvYwdO7bQ7pJLLuHHP/4xTz31FNddd937MiOtpum0bZIgJSGEEGI0SJCSeN9RVZUFCxYUJslDYrEYzz33HE8//TSbN29m3759dPV10NrdMuxY1w4XpaWllE8t55/3bmLagqmUjy8j2Zoj0hbDVWJj/4oeSqZ6SfansHqtOEvtxPsyRPYnsLjMWDwmTGaVXC5Hri9L77YIJVO9VM0rRbUoBHfH6NsWxlFqpe7sMlIDGTrX9IMK7nI7yWCa0B4jo05oXwyL3fhRtPks2Nw2Wnf14a93g6az56kO4n1p/ONdoINqUoi0JUCDzrX9jD2ngvK5Abo3BOnZFCQ/WH4j1BwnNZCh5oxSTFaF9lV96BrYPBbC++Mk+zMkB4xMTOb1QRxFVjAOJRPJEmqOFp633U92kBzIoOUg2hpn33M5NF0n3Z/B7DTjH+eifnE5u5/oYP8L3aTCWRQVI9NTUxRN05h8YR2h5ijtq8IkutOMPbeCfCZPvMtYzGp5rofARDdFE9xY3WasbrORXUADi8NEvCdF59oBAFKhDFavmVQwi5bTCDXH8I1xUzLNQ6Q1SetLvfjGuWj4jzF0bRygc90AqVAGi9tM6VQfkdY4VqeZ/vYkwd1RtJxOYIKHgaYIaLD/5W58Y93oCoSaotjLLOR9GV54cjnuejvd3d10r+smkUiQSCTQdSMYyWq14na7GTduHOPGjWPixInceOONTJ8+/d35YRBCCCHeA3a7nXnz5jFv3rxh23t7e9m8eTPr1q1j9+7dbN++nf3Z3WzduB4Ak8nEmDFjqPfUE2gIMGfmTP7965eonlSJLWsm2W9kZNTRCe2NUjG3iIHdcTzVDhJ9aXq3hon3pHAW29HyxiQlE8uRiWTJRLIoqkLtWWWkBtK0vdJLKpzFVWXHVWqjd0vYCBhXQdd0woOl49KDZeQyUaOUmbvMmJehKkYg0744wd1xI2DKpKPldEw2E6kBoyxZvDtF6XQf7Sv7ibYnMTvMRuk0jBKyqlmhfFaA3m1hujcGyac1FLOCltVI9qbR8zrtK/uwus3kc8ZxWloj2pEkGzeyUsa7UzT/u4tM1Hjc3xhFz+uYbCrZRJ7ujUGKJnmw+a2E9sRID2azzCZzBPfGSPSk8Y1x4a520LM5SCaaQ7WolEzzEWqO4Si2EmtPGtksx7kxWdTBTE5qISNTNp6jd0sYdOM5T0eyhfGkgxkjE2iNk0zYyECpmhU8tU4cpXZSoQzhlhiuMjuOUuNO70w8h8VhItwcw+q14CwzAqt0TScVyhLZn6BoipfwvhjpcBZXjYXeYA+7X9lF/ZIKumP7aQ+207i5kURiMINWh0J5eTmnTD2FxYsXU1xczPz585k/f/6wP9ALIQ741a9+xcMPP1x4/6IoCrqu09jYyL/+9S+uvPJKPve5z73r41i4cCH3338/jz/+ONdccw1glHp76qmnaGhooLy8/F0fgxBCCHEsK5vg5+IfnMbO5/az7oEm0nGjBNyqPxkl4E67fhoVkwOjPUxxDDi4LNuQ2tpaxowZQ0tLyyGOeGN2ux2fzzesHK7f78fv949oe+aZZ/LUU0/R0tLyvgxS6tsTIh3LYnWaKZvoH+3hCCGEECcUCVISxw23280ll1zCJZdcMmx7T08PS5cuZc2aNWzbto3m5mZ6enrYt28fmqax58UdAJjNZpTXVMpKSykpLWX7Go3K6kpqxlQRbElTNrWYVDCNalZxltpIhjLE2pJUnVyCDnhqXAR3R0EDk1WlZKoXb62LeE+K7g1BFFVlzKIy/OPd9G4Pk0to2Iut+OpcRAazLKUG0mh5HXToeLWfiZdUk0vlUc0qtWeU0fRkO7GOFPpgMFHpjAD9jVH6t4VBg2h70gjswcgaYPOYaVvRi8mqFkq5pfqNz9lkHs1YayKXyJMkXXjOtKxOJmosUpntKtGOZCGAyRawFsrYAeRSGboGMsS7U5gdJkpn+tn7TCdmu4lkf5rwXmNRsOPVfvwT3ZhsJqxeMx1r+slnNOoXlYOu07qil7LpftpW9JKJ5FAsCsm+FADpaBaLzUTxFC/tK/vo3xHFU+1i4mXVhJqitDzfQ91CKJsRwD/WAyp0vTZA+awAzhK7sUgWsJDPQag5hsVlRsvpFE30YPNaiHeniEajpMsivLx8JwTybN47QFdnF6pVIRo1Aq0A1L0qVqsVn8/HhAkTqKmpYdGiRZx99tnMmTMHVZU7mYQQQpwYSktLWbx4MYsXLy5s03WdtrY2du3axa5du2hqamLXrl1s2rSJxx57jFwuBz1GYO/EiRMZ2BChuKQYu91Jz6sdVE2qIJEAk9UoUesssZPPaVg9FkLNcWxeCxaXGZvPQqI3RTqSIdKawDeYPcnsMBFpTxJsiuKtdeKpc6DnNSItCRRVwTfWmItkBrMsZeI5UIy5ULglQfFkL13rg5RM86JlNTpf7QfFmNtZ3GYUk0L/jgi6ppOJ5Uj2pdE1HUUF3xgX4eY43RuN8mWvZ7IemCNk4jkUVRl8ziCfyqPnjTmcrumFgCDVbJSIy6Xy5JLG3CwdztK3LUw+q+Grd5GJDgZuRXOgQy6ZJ9ZhzNVclQ5SoQiKqtP52gDoOhVzjGxW9iIrqqoQaU1g9VrQshrpsHFeRVFwlNow7zWRS+aJ7o8TGOdGVRXiXSl6t4ZxV9qpPLmIWFeS9GDQmK5p+Ma4ibUruMod9O0MYfOZMdlMmBzGZ6vHQnBfFFutQltnK1lLilQgwbY9A0TSYbKWFOHd4cJzte0pLw0NDZx00kksWLCA+fPnM3v2bCZNmoTT6Txq389CHO+efvppHnroIWpra7n++uuZPXs2RUVFBINBNmzYwD333MNDDz3EhAkTOO+88972eR5++GFisVihdNsrr7xiZDoDrrjiCtxuNw0NDSxatIi77rqLUChEdXU1zzzzDF1dXXz9618/Ktd7JJYtW8ayZcuGLcIJIYQQxwpVVWg4p56xCypYe/8udr3YBsBAS5Qnv7+aiWdVM/+ayTikBJx4HV3XCQaDjBkz5ojax+Nxstks4XCYZ599lubmZj7+8Y+/6XEDA8YNxT6f7w3b9fX1FeaGwNsKnno3DJV6q55RItnJhBBCiPeYBCmJ415ZWRkf/ehH+ehHPzpiX1NTE8uXL+e1115j27ZttLS00NfXR2dfJ5qmsaN7MxjJADBtMBXuGggEAuRaNSprKsm1xwn4isnGsgTGuUhHstj9NkL7Y2iaRiqcpn5hGYn+NDafheCeGNlYnnEXVOIstaHloX9HGHuplZqzyrD5zIW72M0uE75xLrpeC9Lp6WfMEiNb0dgl5WSTefRs3gggAlyVdqrmF5PoSxPZn0BRQDErZGM5sgBmGP/BKuLdSbrWBxm7pIJoe4K2FX0UTfZQNb+YnQ/vJ5fQhj1H1aeVYPVYaHqsHavPzNhzKuh4tZ9ET5r6JeW0reg1gnxakzhKrahmBbNdxe63GuVJbCodr/QTbY3jG+vEUWplzKJy9jzTQcl0L5ig+alOvGNdOEqt5AfL5FmcJrw1TsItSeI9ScJtCUobfLgr7YT3xoh2JDBbFcpnBghM9JCOZNF1nWQkQ2Ccm5LpPlxlDnQtgWpVCGVDJLUYPeFe1KxOKBQiGAwSCoXIZrNkswcWE1VVxWQy4fV6qaiooKamhjPOOIMFCxYwb968Q945IoQQQggjuKW2tpba2tphwUsAuVyOffv2DQteaqoyPu9s32oEMK012nq9Xmr0GrxeL5WVlUyYMIHVj67HZ/ZhzthwmPxYnGacpXb0nI4tYCHWkcRsM2FxmKicX4TVbSHRnSKf17EXWfFMc2AvshJqjqGaVOx+IxvkUECPrms4y+1YPWZ6N4com+XHXeUgFcxQNstvlELL6YUApMB4N55aJ8mBNFpWRzUpaHmdXMwIfLJ5LRRN8tCzOYQ9YKVokoeO1UaQdsXcItKhDMHdwxfGTTaVqgXF9G0Lk+zPGEHnfgudawbwjXFhcZvp2xYmmzDmiopZASPWCU+VA4vbTO+WMPl0nnQki8lmZFBSFBjYFaV8doC+7SHSkSylJ3nJDwas63kde7GVkmle+rdHiLQmcZbYqJgXINWfIR3OEm4xslxZ3GYcRVZCe6LYvFYUE3hrnWTjOcwOE5lYDnNApS/cT7oyzq7eVmpml9E1OO9qa2yjr68PrfXAnNPr9TJhwgRm1DUQCAQ466yzaGhooL6+ntLSUgkCF+IoeOyxxygtLeV3v/sdbre7sL2oqIjFixezYMECrr/+eh599NF3FKT0j3/8g66ursLjl156iZdeegmAc889t3Dub33rW5SXl/Pss88Si8UYN24cP/nJT5g1a9bbPvdbtWTJEpYsWUJjYyM333zze3ZeIYQQ4q1weG2c9cmTmLywhpX3bqe3JUxHdZBdPZ2s+Pl2Lj59AdOW1EuQhShYunQpvb293HjjjUfU/r/+679Ys2YNYJRzv/jii7n22mvf8JhsNsuDDz5IZWUlU6ZMecO2jz/+OPfee++I7c3NzeTz+SMa47th1+pOAEyl2ULZ4XdDLBZ7V/s/1pxo1wsn3jWfaNcLJ941n2jXCyfeNb+b19vQ0HBE7SRISZzQJk6cyMSJE7nppptG7Ovo6GDt2rVs3LiRnTt3sm/fPjo7O+nr66OlpYVcLsfGXQfam0wmnE4nDocDl8uF3+/Hp/sorihGzWVIpJP4cn7sZQ7849ygKCQHUti8Vspm+fGN8ZDP5oh1JgmMd+OuduIutxPtTGJ1m1HNCt5aJ6XTvHS8OkDdB0rJJTW0vMaUq+pIDKTIZTS61g9gtqvY/Ba89S6s3iDuCgflcwKEBkuAoEHrih4SvUZWpUhLHNWkkEtpI56Hni0hrC6jZEYmnKP15R7CzQlQIdGTorjBS9W8Ipoe76B8hh+r04TZZkbLanRtCFI63Y+r3E42kiPSkqD2zFK6NgZJBbNUzCkmE8tgdptRzSpmq4nxF1QQ2hsnst+4q79+cRnpcA6zTSXWEcc7xo1qUbEHrPR3BBlIxHEWOQjlewn3h4mkI4RWhUgmk0RXRYnFYmSz2UJJAzDebDmdTux2O2PHjqWoqIgpU6Ywf/58pk2bxuzZs7Hb7Uf5u00IIYQ4sZnNZiZMmMCECRNG7Mvn83R1ddHS0sL+/fvZt28fra2t7N27l+3bt7Ns2TKi0eiwvoqKivDH/VRWVlLkL8JeYaeksgifz0dpaSkrHn4VzQpFdT4SPSmcxTYibQncFXacJTasHouRTbIvTWCCG984NxaHCR2jxJujxIa3xsnuf3US2R+npMFH1/oBiqZ4MVkVLC4L/TsigIJiBovbjKfGQbApRsWcAJlojlQwQz6tEe9KkU/nD5Tl3RsrBKUPex4yGgO7oqSC2UI7s9MEGKXq0HWqTy2hf2eEXDKPu9KBltaMcsN7opTNCBCY6Mbms9D12gA2rwXFpBiZj6odBCa6CbfEjaxOioKv3kE+lSfZnybekcBZasOzpJxIaxwd0DIa7moH3joXyWiKjDlNTIky6YxpuKdZCIVC6JUJ9nTtoTfeS7wnTjAYHPZamUwmdof9jB07lqlTp3LyySdTUVHBqaeeSl1dHRUVFRQVFR3F7zQhxKE0Nzdz4YUXDgtQOpjb7ebss8/mySeffEfneeCBB46onc1m45ZbbuGWW255R+cTQgghThTlkwK4b3Pzy93PMmA6cLPDU9FNXPDbWdz0wXMpnyQl4E50LS0t/OIXv2DatGlHHHj+qU99iquvvpqenh6eeeYZcrncmwYP/e///i/79u3jJz/5CWbzGy8zXnzxxZx++unDxnj77bczduxYJk+efERjPNoSoTQrO42MTvMvmInzXcxItn379iNesD0enGjXCyfeNZ9o1wsn3jWfaNcLJ941HwvXK0FKQhxGVVXVIcvHDUkkEqxfv54NGzYUsjB1dHQQDAbp7++nvb2dXC5XKBN2MLPZjNPpxGazFQKbHK0O8lmNQLEfq9dKQvXQv8eCzWxjzFXF2B12dFXHUWHDP9GDu9KBalbo2RYkFc5QOtVHX2OUypOLcZTacBZbCe6JEZjoAUXHUWwluAci+xPUnlWKo8RKJpyj7ZVexpxTQfuqPtBAPagUiWpWSfZmKJ3mx+I2kw5nqD6tFP/EJH2bIvRuDjPpyhoSfSlKZvhI9Gcomupl0hXV6FloXt6Fu9JOKpIhsj9B+ckBnOU2iqd4cJbZ0BUdq8/ExP+oYKA9SFtnK7F4nJw7SzgYpnmbRjKVJJ1Jk0wmSafTJFYmiMfjZDKZEc+toiiYTCZsNhuBQIDi4mIaGhooLi6moqKCc845h3nz5lFXV3d0v1mEEEII8Y6YTCaqq6uprq7mtNNOO2SbUCjE/v37aWlpobW1lfb2dlpaWujv76e5uZm2tjb6+/uHBSYDWLdY8Xq9uN1uiouLceVd2Ow2BvaEsVltWH1WPEVukpEwHtWNa7IJf3UAq81CLq5RPM2Lw2+haJKbdCRDvCtFyTQvNp+F3q0hKk8uQrWDyWwi3BzHVWFHURU8dU7aXu7F5rPgrnFgD1jp3RTC5rVgspsI7YkVSr4BKCYFPW+UkSs9yUfv1jBFkz2Y7CbSwSyhvTHsfguOIisWhwmL00QmkqV8bgB3rYNEdxpN1ymb4adnUxCz3UTZTD/pmFGKLZ/JoZgVKk7zk0mliUdixAaC5MqyxCxxQlqOVEeKTC5NoNJPf38/0WiU+L44sVhsWODRY68Znx0OB1VVVXi9XsrKypg+fTp1dXWoqkpDQwPTp0+nqqrqTf9oLYQ4NiiK8uaNjiNS7k0IIcT7ybLgZr7a/Cd00/DtMXeaB059leh9SS6omcu8j0zC4ZUScCei/v5+vv71r+NyufjBD36AyWR684MwbuQecu6553LTTTfxox/9iB/84AeHbP/3v/+dJ554gk984hOceuqpb9p/SUkJJSUlR3YR75G2TUapt5Jxvnc1QEkIIYQQhyZ/LRbibXI6nZxxxhmcccYZh22jaRodHR00Njaye/du9u7dS2dnJ52dnfT29hIOh4lGowwMDJDP50mn0296l4LZbMZms2EymbBarVgsFmwbbdh22FBVFYvFgqnbhMViIZvNYrVaMZvN7N+kolk0TGeaaLWEUCIKiqqgnKXQrifRF+i4zWYURWFV48v4yn24xrnQNI1erZW8I0++Ks/2rk5MJhOZqRlyuRxrtu9HVVWyziyZTIZdqxQURSGTyZC2pdn1r3XG1+k0qX0pNE0jk8mQyWTIPp09ZBDXEIvFgsViKVzXUGaEKVOm4PV68Xq9zJ49mwkTJlBVVcXMmTNxOp1v+zUVQgghxLFrqOzujBkzDtsml8vR29tLb28v3d3ddHd309/fT2dnJ+3t7USjUXp7e+nq6iIcDhOLxYjH44ftz2KxYLVasdls2HbZcDgcmCwmbC02zGYzgZkBGjP70TM6VqsV10wX2WyWaC6Hx+nBe5GVXC5FLBPBWlREbYOPWCyGoujMvmwsqVSKWCxGOh1h0swybDYbiUSC/v5+qmY6sVhU+vp6yZZn8cywYnPmaOrahjZRw2QykXM42NPWZ4y1zEImk2HjOiOLpBbQWP/UclKplDHvymZJv5YeEcQ1ZCgrqN/vJ2/J4XA4KCoqYuLEidTV1ZHNZqmvr2fSpEkUFRVRVlZGICB3agvxfjF27FiWL1/OJz7xiUO+Z0okEixfvpyxY8eOwuhGh5R7E0II8X6R1zV+2voIh5zJK4AOLy9qZNzdZexb08XJV09iyuI6VPXECkA+kcViMb72ta8Ri8X49a9//baDgiwWC6effjp//etfSafT2GzDA3iefvppfve733HJJZdw3XXXHY2hj4rWjUaQUu2s0lEeiRBCCHFikiAlId5FqqpSU1NDTU0NixcvPqJjNE2jp6eH5uZmWltb6ejoYN++fcad7PEDJTTS6QPZhXK5HMFgkFwuh6IoaJqGruvkcjlUVUXTNDRNKwRADX39RgFChzOUrUhVVRTFCEgym82oqoqu64WAIjBKt9hsNmy2wYW8QAC73Y7NZsPlcuF2uwvbx4wZQ1FREUVFRcydO5f6+nopuSaEEEKIt8RsNlNZWUllZeURH5PNZgmHwwwMDBAMBunr66O3t7ewva+vj1gsRiqVIhKJ0NfXRzabJZFI0NHRQSqVKsy7Dv4Y6ntozjX08VYoioKqqqiqislkwjwYUK4oihGobrOhaVohk+RQ4MFQRkmHw4GmaVRVVVFWVlboZ+zYsVRUVABG9tDKykpcLtcJl0VFiBPJxRdfzE9+8hM+85nPcMMNNzBr1iz8fj+hUIiNGzdyzz330Nvby4033jjaQxVCCCGOC3/ufpG/dC8/Kn1ltByh/OFvrkCBmDfNHz+9HFNeBZ5HfUXF5jKjmtXDH/cmPl5+NteWL3zbx4v3Rjqd5hvf+Aatra38z//8D2PGjHnH/em6TiKRGBak9PLLL/PTn/6Us846iy996UvvcNSjR8tptG8xbvaRICUhhBBidEiQkhDHGFVVqaiooKKi4ojSpb5VQ4tjuVyOTCZDNBolGo0WFuHi8ThtbW14PB6KioooLS3FbrejqmqhnIemaVitVqxW61EfnxBCCCHEe8lisbyr6ed1XR8WxJTJZEilUiSTSeJxo5RaJpPB7/djtVrxeDzouo7D4cDj8RQCh4YCjIQQ4u244IILaGpq4p///Cff+973ACMQcii7mq7rXH755Zx//vmjOEohhBDi+BHPp+jJht/Tc6ac2WGPozqQPXTbIxHPp97ZgMS7Lp/P873vfY9t27bxwx/+kOnTpx+y3dDf/aurqwvluIPB4IjsuNFolOXLl4/InLtx40a+//3vM2PGDL7zne+gqm8/+G20dTeFyCRy2D0WSsb5Rns4QgghxAlJgpSEOMEMvYEYCjJyu91vKduAEEIIIYQ4ckOZj4bmXlKaVggxWr7whS+wcOFCnn76aXbv3k08HsflcjFx4kTOO+88Zs6cOdpDFEIIIY4bLpOdMsvRCYB400xKg/wmF2ZNJR3PouUPFIdTFAWr04zZ9tZuenCZJMv9se43v/kNr7zyCqeddhrRaJR///vfw/afe+65ANx1110888wz/OMf/yisBXz1q1+ltLSUhoYGAoEA3d3dPPXUU/T39xeC2gG6urr41re+haIoLFy4kBdffHHYOcaPH8/48ePf1es8moZKvdXMLJWSiEIIIcQokSAlIYQQQgghhBBCiBPAzJkzJRhp0LJly1i2bBmxWGy0hyKEEOI4dG35wqNWKi2va5y/5Qf0ZMPoh9ivAGUWP0+f9J+YFBUtr7H93/tZ99Aussl8oV3pOB+n3dBA6Xj/URmXGH27d+8GYOXKlaxcuXLE/qEgpUO54IILeP7553nggQeIxWJ4PB4aGhr47ne/O2y+2NnZWZgv/eIXvxjRz/XXX/++DFKSUm9CCCHE6JEgJSGEEEIIIYQQQghxQlmyZAlLliyhsbGRm2++ebSHI4QQQhyWSVH5Wu1l3Lb3XhQYFqg0lAfma7WXYlKMDPqqSWX6+WMYd0oFa/7eyO4VHQD07g3z2HdXMeUDtZx81STsHut7eh3i6PvlL395RO2+9a1v8a1vfWvYtssvv5zLL7/8TY+dPXs2L7300tsa37Em3p8k2BpFUaD6pHen5LsQQggh3tz7t3CsEEIIIYQQQgghhBBCCCHEcW5JYAY/G3f9iBJyZRY/Pxt3PUsCM0Yc4wzYWXjLTD70nQUEatzGRh12PtfKg195iZ0vtKJrh8rNJMTxqXVTHwClE/wSpCeEEEKMIsmkJIQQQgghhBBCCHGcy2azvPzyy+zcuZNYLIamaYds941vfOM9HpkQQgghjsSSwAwW+aezPraXvmyEEouXOe5xhQxKh1M5tYjLfng6255tYf3DTWRTedKxLCv+sJXG51s5/YZplIzzvWEfQhwPpNSbEEIIcWyQICUhhBBCCCGEEEKI41hXVxdf/vKX6ejoQNcPnzFBURQJUhJCCCGOYSZFZZ5nwls+TjWrnPShsYw7rZI1f93JnpWdAPTuCfPod1YydXEdc6+aiN0t2WXE8SmfzdOx1cikJEFKQgghxOiSICUhhBBCCCGEEEKI49ivfvUr2tvbOffcc/nQhz5EaWkpJpNptIc1qpYtW8ayZcuIxWKjPRQhhBDiPeMK2Fn0uVlM/kAtK+/ZTqg9BjrsWLaf5lc7mfeRyUw6uwZFVUZ7qEIcVV2NQbKpPA6/jeJ672gPRwghhDihSZCSEEIIIYQQQgghxHFsw4YNzJ07l29/+9ujPZRjxpIlS1iyZAmNjY3cfPPNoz0cIYQQ4j1V1VDM5T86na3P7GP9w7vJpfOkolle/sNWdr4wWAJurJSAE8ePQqm3mSUShCeEEEKMsjcuViyEEEIIIYQQQggh3tc0TWPixImjPQwhhBBCHENUs8qMC8fx4Z+dybhTKgvbe3eHeew/V7Lynm2kY9lRHKEQR08hSElKvQkhhBCjToKUhBBCCCGEEEIIIY5jDQ0NtLS0jPYwhBBCCHEMchU7+MCtszj/W/PwVbkA0HXYvnQ/D972EruWt6Fr+iiPUoi3L9KdINwRR1EVqk8qGe3hCCGEECc8CVISQgghhBBCCCGEOI596lOfYv369bz44oujPRQhhBBCHKOqp5dw+Y/PYN5HJmG2mQBIRTK89PstPPH/VtO/L3LUzpXXNdZGd/P0wHrWRneT17Wj1rcQr9e2yciiVD45gNVpGeXRCCGEEMI82gMQQgghhBBCCCGEEEfPvffeO2Lb7Nmz+d73vsfMmTOZNGkSLpdrRBtFUbjuuuvegxEKIYQQ4lhkMqvMvHg840+v4tW/7KR5TRcAPbtCPPrtV5h6bj1zr5yIzfX2Az2WBTfz09ZH6M6GC9vKLT6+VnsZSwIz3vE1CPF6UupNCCGEOLZIkJIQQgghhBBCCCHEceSee+457L6NGzeycePGQ+47kYKUli1bxrJly4jFYqM9FCGEEOKY4y52sPiLs2nb3MuqP+0g3Bk3SsA920Lz6k7m/8cUJpxRhaIob6nfZcHN3Lb3Xl5fPK4nG+a2vffys3HXS6CSOKpymTwd2/oBCVISQgghjhUSpCSEEEIIIYQQQghxHLnjjjtGewjHvCVLlrBkyRIaGxu5+eabR3s4QgghxDGpZkYpl/+4iK1P72PDI3vIpfMkwxmW37mZnc+3cvoN0yiq8xxRX3ld46etj4wIUALQAQX4aeujLPJPx6SoR/MyxAmsc/sA+ayGq9hOoMY92sMRQgghBBKkJIQQQgghhBBCCHFcmTVr1mgPQQghhBDvc3/ufpG/dC83HowB/Qs6mUSOXCZ/oNHex7B0mLE6TPAmWZUyWo5QPn7Y/TrQnQ3xgU3/hVU9OktXS2f811HpR7x/HVzq7a1m/hJCCCHEu0OClIQQQgghhBBCCCGOQ1u3buUPf/gDO3fuRFEUGhoauOmmm2hoaBjtoQkhhBDiGBfPp+jJhodvtA1+DJOG3NE7bygfh/ybtxPizei6TuvGHkBKvQkhhBDHEglSEm+ou7ubUCg02sMQQrxH/H4/5eXloz0MIYQ4YcncS4gTi8y9xLtpz549fPGLXySbzRa2rVu3jq1bt/L73/+esWPHjuLohBBCCHGsc5nslFl8h92fTebIpnLoB9VvM5lVrC4Lqmlkxpo3y6Q0xG9yHbVMSuLEFu6ME+1JopoVqqYVj/ZwhBBCCDFIZnrisLq7u/nw5R8G02iPRAjxXrHb7fzlL3+RxTIhhBgFMvcS4sQjcy/xbvrrX/9KNpvl4x//OFdccQUAjzzyCH/605/429/+xre//e1RHqEQQgghjmXXli/k2vKFb9gm2ptk9X07aFnbXdimqArTzqtnzuUTsDothe15XeP8LT+gJxtGP0RfClBm8fP0Sf+JSVGPzkWIE1rbJqPUW+XUIix2WQ4VQgghjhXyW1kcVigUAhOYd/lRU2ZARVEVo7b04Ieiqsa7B0U1tr1u/+E/Bo9RFWDosXLQYwVU48uhx/rQtsH2Bz/WlQN96EPvX4b6HGo77PPQcYPtDjpGH+pn8GYPXQFdPeg45UDf+rBjGHbMsPNz4LhC29cdW/jgjdsPO+Yw297068I2fdg2fVif+rDHxvn1Ecczos/BduqB/YpivO1UlKHHQy/jQfsHPxu7DrRTFX3weP2gx0Yb41tAB0UvbFcV3djH67YpOirGh6Log9+qg9uUg9oPfi58oKOgoQ6eS1W0wX2goqEoOqbB85kUbfCzjqJoxvbC/oMfa4W+VUUrjMFM/hD7NFRAHepv8DxD16KiDzuP0XZwrINfm1BQAJMCCsrg4wOfVRRURaW13cL/9ys/oVBIFsqEEGIUjNrcS1GPqXlX4fExPPfS1YOOPRbmXa9rcyzOvUzqsTXvMjF4vMy9xHFs8+bNnHTSSdx0002FbTfeeCMbNmxg48aNozcwIYQQQhw3PKUOzvnSHFo39rLqT9uJdCfQNZ2tT+1j78pOFnxsCuNOrURRFEyKytdqL+O2vfeiwLBApaG3N1+rvVQClMRR07rRCFKSUm9CCCHEsUWClMSbUhJm1KQVlKGFMrWwIGYslCmgHlgoUw7aP2xf4fHQ1+rIhTX1oIUxnWH7dGXwrYoytJRyoI1+0KqRPthmaJHrwCLcwY9f97WqjFgEG7YANBikNLSAd7gFtJGflRGLYYdr+2aLYodq96b7ebO2h1gse/0+Dt73+sUxfcQ+Zejr1wcpDftstFGGFr1ev1B20D698LU+7DiVoXMPLqQd9KFw4JjXL3yph92mjXhsOnjBamghauhrRTcWsQ5a/BpawDIpGqqiFNobnxlsZyxcGccbi1fq4AKbRdEwoRX6Ng0+HurTWAjTDnw9eO4DX+sHnetA/yaUwa+NRTHT4OKY8Vgd/Nr4LIQQYvS913MvXVWPrXnXsLYck3OvQpDSsTLvKozh2J17mVXtmJp3HWgvcy9x/AoGgyxevHjE9oaGBnbs2DEKIxJCCCHE8ap2VimVDWew5clmNj62h3xWIxFK88KvN7Hz+VZOu76BQI2HJYEZ/Gzc9fy09RG6s+HC8WUWP1+rvZQlgRmjeBXieJJN5ejcMQBAzUwJUhJCCCGOJRKkJIQQQgghhBBCCHGcyeVyOByOEdvtdju5XG4URnRsWbZsGcuWLSMWi432UIQQQojjgtlqYvblE5hwRhWr/rKD/et6AOjcPsA/v/kK088bw+zLJ7AkMINF/umsj+2lLxuhxOJljnucZFASR1XHtn60nI6nzIGv0jXawxFCCCHEQSRISQghhBBCCCGEEEKcUJYsWcKSJUtobGzk5ptvHu3hCCGEEMcNT5mTc78yl/3re1j1p+1Ee5PoeZ0t/2pmz8oOFnxsKuNOqWCeZ8JoD1Ucxw6UeitDUSSLrRBCCHEskSAlIYQQQgghhBBCiOPQv//9b7Zt2zZsW3t7OwBf/epXR7RXFIWf/vSn78nYhBBCCHF8q5tTRtX0YjY9vpfNT+w1SsAF07zwq400Pl/Mqdc3EKh2j/YwxXFI1/WDgpSk1JsQQghxrJEgJSGEEEIIIYQQQojjUHt7eyEo6fXWrFkzYpvcZS6EEEKIo8lsNTH3yolMPLOKVX/aUQgc6djWzz+/sYKTLhjD7MsmYLHLUpU4eoJtMeL9KUwWlcqGotEejhBCCCFeR2Z+QgghhBBCCCGEEMeZf/zjH6M9BCGEEEIIALzlLs796mAJuD/vIDZYAm7zE83seaWTBR+bwtgFFRIwLY6KoWC4qmnFmK2mUR6NEEIIIV5PgpSEEEIIIYQQQgghjjMVFRWjPQQhhBBCiAJFUaifW071SSXDSsDFB1I8/8uNVE0v5rTrG/BXSQk48c5IqTchhBDi2CZBSuJN6c4cmgqgoqgKKAc+FFUFBVBUY9vr9h/+Y/AYVQGGHisHPVZANb4ceqwPbRtsrw/1g4LO0B0WCjpg/MNQB8Z+7cAx+tBxg6crtB96XOh78LGqHLTP2M3QXR3K6z44uN3g+Q7aNnTOoW36IY5/o/bDjjnMtjf9urBNH7ZNH9anPuyxcX59xPGHvn598LXSB58H4wlWlKHHg8/PwfsHPyscvB1URR88Xj/o8eCrXuhDP2hsOjr64LXpaIVrMbbr6GiKPvitqqOiG32+7nPhAx0FDVVhsK02uA9UNBRFx4RxnEnRBj/rKIpmbC/sH/5YHfx2Nj4rqAqYUTHB4HkVVEUxPgPqUH+D51HRCx/D+i30eeBrEwoKYFJAQRl8fOCzcS6V1nb5lSCEEMeC93zupajH1ryrMN4DH8fa3EtXDzr2WJh3va7NsTj30tVja95lGpwFydxLCCGEEEKI99ZQCbgJZxgl4No2DZaA29rPP7++gpM+NJZZl46XEnDibckksnQ3BgGomSlBSkIIIcSxSGZ54rA0TcNsNpObFBrtobw9Ogctmh055XWfxfvP0EuvjfZA3tDQaqI62gMZxmw2o2nH9jMnhBDHq/f13EvmXSe0Y3/udWzOu0DmXkIIIYQQ4sTlq3Dxwa/NpeW1Hlb/ZQexviRaXmfT43vZ/UoHp3x8KmPmlUsJOPGWtG/pQ9d0fFUuvOXO0R6OEEIIIQ5BgpTEYamqSi6X4z//8z+pr68f7eEIId5lLS0t3H777ajqsbeAJ4QQJwKZewlxYpG5lxBCCCGEONEpisKYeeXUzChh42N72PzkXrScTrw/xXP/u4GaGSWcel0DvkrXaA9VvE9IqTchhBDi2CdBSuJN1dfXM3ny5NEexvvaSy+9xOOPP866detYv349kUiE6667jnvvvXe0hzbCfffdx8svv8y6devYsmULmUyGe+65h+uvv360h/aOZLNZHn/8cR5//HHWrFlDa2sriqLQ0NDA9ddfzyc/+UlMJtNoD1MIIYSQudc7JPOu0SfzLiGEEEIIIcRbYbaZOPmqSUw8s5pVf9pO2+Y+ANo29/Hw119mxoXjmHXJeMw2eR8hDk/XdFo3Gd87EqQkhBBCHLskSEmI98D//d//8ac//Qmn00ldXR2RSGS0h3RY//mf/0lLSwslJSVUVlbS0tIy2kM6Kvbs2cOVV16J2+1m8eLFXHzxxYTDYZ544gluueUWnnrqKR5//HFJHyyEEEK8z8m8a/TJvEsIIYQQQgjxdvgqXXzw6yezb203q/+yg3h/Ci2ns/HRPexe0c4pH2+g/uQyeS8hDqm/JUIylMZiN1ExOTDawxFCCCHEYUheeSHeA5/73OfYunUrkUiEe+65Z7SH84buvvtu9u3bR29vL5/+9KdHezhHjcfj4Te/+Q1dXV08+uij/OQnP+F3v/sdu3bt4uSTT+bJJ5/koYceGu1hCiGEEOIdknnX6JN5lxDi/WDZsmV84xvf4Fe/+tVoD0UIIYQQB1EUhbHzK7jyv89k5sXjUE1GQFKsL8WyX6zn2Z+uI9wVH+VRimPRUKm3quklmCySdUsIIYQ4VkmQkjis4uJirr/+eoqLi0d7KKPq4Ycf5uyzz6asrAy73U5VVRVLlizh4YcfPuI+Tj75ZKZNm/aOy1pomsbdd9/N/PnzKSoqwuFwUFNTw0UXXcSLL75YaPfiiy+iKArf+973WLlyJeeeey5+v/+I7jBZsmQJ9fX172icQzKZDL/4xS+YN28eHo8Ht9tNQ0MDX/7ylwkGg4V2Y8aMYcyYMYTDYT7zmc9QWVmJy+XirLPOYv369QB0dHTwsY99jLKyMhwOB+eeey5NTU1HPJbq6mpuueUWXK7h9ctdLhdf/vKXAVi+fPlRuOr3L/mZF0KI0SX/D8u8652Qedf7j/zMCzG6lixZwo9//GM+//nPj/ZQhBBCCHEIFruZeR+ZzOU/OYPqkw7Mmds29fLw115m3YO7yKXzozhCcawZClKSUm9CCCHEsU3KvYnDKikp4cYbbxztYYyqO++8k1tuuYXKykouu+wyiouL6erqYs2aNTzyyCNcccUV7+l4vvnNb/LTn/6U8ePH8x//8R94PB7a29tZsWIFy5YtY+HChcPar1y5kh/+8IcsWrSIT37yk+zfv/89G2symeScc87hlVdeYeLEidxwww3YbDaampr4/e9/z7XXXksgcCDlaiaT4ZxzziGVSnH11VfT3d3NAw88wJIlS1i5ciUf/OAHqays5GMf+xi7d+/miSee4EMf+hA7dux4x4uQFosFALP5xP4vUX7mhRBidJ3o/w/LvOvtk3nX+9OJ/jMvhBBCCCHEkfBXuTnvG/PYt6aL1X/ZSXzAKAG34ZE9NK3o4NRrp1I/t3y0hylGWSqaoXd3CIDamSWjOxghhBBCvCH5y7AQb+Duu+/GarWyceNGysrKhu3r7+8flfFUVVWxefNmnE7nsH0DAwMj2i9dupT/+7//44Ybbnivhljwne98h1deeYWPf/zj3HPPPcMWtMLh8IgFrs7OTs444wz+9re/FRatZs+ezde//nVOPfVUbrjhBn7+858XshLccsst3HnnnTz22GNcfvnl72is//d//wfAueee+476EUIIIcTbJ/Out0/mXUIIIYQQQojjmaIojF1QSc3MUjY8spstT+1Dz+vEepMs/fl6ameXcuq1U/GWu968s+PIjh07eOaZZ9iwYQNdXV14vV6mTZvGTTfdRG1t7Rseu3HjRu6//36ampoIh8O43W4mTJjAddddx0knnTSi/ZYtWwplvF0uF4sWLeLmm28e8X55tLRv6UPXoajOg6vYMdrDEUIIIcQbkHJvQrwJi8VSuOP7YKNVlsFqtR7yDvaioqIR2+bMmTMqC2W5XI677roLn8/HHXfcMWK8Pp8Pt9s94rif/exnw+6qv+aaawr93X777cPKpgzt27Rp0zsa61133cXTTz/NBz7wAS644IJ31JcQQggh3hmZd711Mu8SQgghhBBCnCgsdjPzr5nC5T8+g6ppB94ntm7o5eGvrWDdQ03kMidOCbi//e1vLF++nLlz53Lrrbdy0UUXsWnTJm666Sb27t37hse2tbWhqiqXXHIJX/ziF7n66qsZGBjg85//PK+++uqwtk1NTXzpS18ilUrxuc99jg996EM88cQT/Nd//de7eXlvSfuWPkBKvQkhhBDvB5JJSYg38JGPfISvfe1rTJ8+nf/4j/9g0aJFnHHGGXi93mHt/vd//5dQKDRs2/XXX8+YMWOO+nh++9vfMn36dD7ykY+waNEiTj31VByOQ98ZMG/evGGPQ6EQ//u//zui3fe+972jOs6dO3cSjUZZsmTJsNIibyQQCFBXVzdsW2VlJQATJ04ccUfG0L6Ojo7CtnvvvZd9+/YNa3fppZcya9asQ57zySef5HOf+xz19fXcd999RzROIYQQQrw7ZN719si8SwghhBBCCHGiCVS7Of9b82h+tYvVf9lBIpgmn9XY8M/d7F7RzqnXNVA3u+zNO3qfu+qqq/jud7877GafD3zgA9xwww389a9/5Tvf+c5hj73wwgu58MILh2277LLL+MhHPsKDDz7IggULCtvvuusuPB4Pv/zlL3G5jGxVlZWV/PSnP2XNmjXMnz//KF/ZW3f6J6Yz4YxqXMX20R6KEEIIId6EBCkJ8QZuu+02iouLufPOO/n5z39euOP8Qx/6EL/4xS8YO3YsYCyWtbS0DDt24cKFR32x7I477mDs2LHcc8893H777dx+++3Y7Xauuuoqfv7zn1NSMrzWcnn58FrcoVCI73//+yP6PdqLZeFwGIDq6uojPub1C5BA4e7+N9qXzWYL2+69916WL18+rN2YMWMOuVj21FNPceWVV1JeXs7zzz9fWHwTQgghxOiQedfbI/MuIYQQQgghxIlIURTGnXKgBNzWp40ScNGeJP/+73XUzS3j3K/MHe1hvqsOVZattraWMWPGjHjffCTsdjs+n49YLFbYFo/Hee2117jqqqsKAUoAH/zgB/nVr37FCy+8cEwEKZnM6rDsWkIIIYQ4dkmQ0nEikUhw//33s337dnbs2EE0GuWb3/wm559//lE/V29vL7/+9a9Zu3YtmqYxe/ZsPv/5z1NVVTWs3VlnnXXI4z/5yU/ysY997KiP692gKAo33ngjN954I/39/bz88sv8/e9/54EHHqCpqYnNmzdjMplG3EX+bjGbzdx2223cdtttdHR0sHz5cu655x7+/Oc/09XVxbPPPjti/AcbM2YMuq6/6+P0+/0AtLe3v+vnOtiLL754RO3+9a9/ccUVV1BSUsILL7zAuHHj3tb5MpkMf/zjH/n3v/9NNBpl/Pjx3HTTTSMyKRzKkf4cgZF54P7776erq4vS0lKuvPJKrrjiirfVZ3d3N0899RSrVq2ira0Nk8nE2LFjufbaazn55JOH9bdu3TqWLl3K5s2b6e3tpaioiDlz5vCJT3xixMKspmk88cQTPPbYY7S3t2O325k0aRLXXnvtsDfLP/zhD3nmmWcO+7w8/PDDlJYeSMmbzWa5//77efbZZ+nq6sLlcjF58mRuu+02ysoO3A3V2NjIH/7wB7Zu3Yqu60ybNo3PfOYzTJw48Q1eBSGEePtk7nX0ybzr7TlR5l1Dmpubueeee2hsbGRgYAC73U59fT3XXHMNp59++psev3btWu6991527dqFxWJh7ty53HLLLYcMnFqxYgX33HMPLS0t+P1+LrjgAq699tphZfJuvfVWNm7ceMhzmUwmXnjhhWHbEokEf/rTn3jhhRfo7+/H5/Mxbdo0vv3tb2O3299Wn+/Uli1b+N3vfseuXbtwuVwsWrSIm2++eVhGrQ0bNvCFL3zhkMffeeedTJs27aiOSQghhBBCiCNldZhZ8B9TmHRWNSvv3U7n9gEA9q/rGeWRjQ5d1wkGg0d8I088HiebzRIOh3n22Wdpbm7m4x//eGH/3r17yefzTJ48edhxFouFiRMn0tTU9Ib99/X10d/fX3j8doKnhBBCCHF8kSCl40Q4HObee++lvLycCRMmsGHDhnflPIlEgi984QvE43E+9rGPYTabeeCBB/j85z/P//3f/+Hz+Ya1P/nkkznvvPOGbXu/Bg0UFxdz6aWXcumll9LX18fzzz/P7t27R0zO3ytVVVVcc801XH311UyePJlly5aRTCYPW4LkvTR58mS8Xi9r164lGAwecemR98LQQllRUREvvPACEyZMeNt9/ehHP+LFF1/kwx/+MDU1NTz99NN87Wtf44477mDGjBmHPe6t/Bw99thj/PznP+fss8/m6quvZvPmzdxxxx2kUik++tGPvuU+V6xYwd/+9jfOPPNMzjvvPPL5PM8++yxf/vKX+cY3vsEFF1xQ6PN3v/sdkUiEhQsXUltbS0dHB//85z9ZtWoVf/zjHykuPnBnym9/+1seeOABzj33XC699FJisRiPP/44t956K7/5zW9oaGgA4OKLLx4RDKXrOj//+c+pqKgYFqCUy+X4+te/ztatW7nwwgsZP3480WiUHTt2EI/HC+0aGxv57Gc/S1lZGddffz26rvPII49w66238vvf/35EORshhDgaZO717pJ515E7UeZdQ7q6ukgkEpx33nmUlJSQSqVYvnw53/zmN7ntttu4+OKLD3vsypUr+da3vsWkSZP41Kc+RTwe56GHHuJzn/scf/zjHwsBXwCrV6/m29/+NrNmzeILX/gCe/fu5c9//jPBYJCvfOUrhXYf//jHR5RISCaT/PznPx8RuB6Lxbj11lvp7e3loosuorq6mlAoxObNm8lms4UgpbfS5zvV1NTEl770Jerr6/nc5z5HT08P//jHP2hra+O///u/R7S/4oormDp16rBtbyWLlxBCCCGEEO+WQI2HC749n72rOnn1vp0kQunRHtKoWLp0Kb29vdx4441H1P6//uu/WLNmDWAEHl188cVce+21hf1DAUYH/y14SHFxMZs2bXrD/h9//HHuvffeEdubm5vJ5/NHNMb3s1gsxvbt20d7GO+ZE+164cS75hPteuHEu+YT7XrhxLvmd/N6h9aD34wEKR0niouLeeSRRyguLmbnzp188pOffFfO8+ijj9LW1sbvf//7wh+nFyxYwPXXX88//vGPEeetra3l3HPPfVfG8l548cUXOfvss4fdGZ/NZhkYMO7GGFpIeC+k02nWrVvHaaedNmx7PB4nFothsVhQVfU9G88bMZvNfOpTn+K///u/+cIXvsA999yDyWQq7A+Hw5hMJtxu93s6rqeffporrriCQCDACy+88I4Wbbdv385zzz3HZz7zGa655hrASHF7/fXXc+edd3LnnXce9tgj/TlKp9PcfffdnHrqqfzgBz8A4KKLLkLTNP785z9z8cUX4/F43lKfc+bM4cEHHxy2CHfJJZdw44038sc//nFYkNJnP/tZZsyYMez7av78+dx6663885//5OabbwaMYKLHHnuMhQsX8p//+Z+FtgsXLuQjH/kIS5cuLfxSmj59OtOnTx/2fGzevJlUKsU555wzbPsDDzzAxo0b+fWvf/2Gv9T++Mc/YrPZuPPOOwuL9eeccw4f/ehHueuuu7j99tsPe6wQQrxdMvc6+mTe9facCPOug5166qmceuqpw7Zdfvnl3HzzzTzwwANvGKT0u9/9jsrKSn7zm99gsVgAOP3007npppu47777+NznPldo+9vf/pbx48fz85//vJA5yel0ct9993HllVdSX18PcMigoX//+98AI+Y2d911F11dXdx9993DMqEdHHj+Vvt8p+666y48Hg+//OUvC6UbKisr+elPf8qaNWtGlG2YOXMmCxcuPKpjEEIIIYQQ4mhRFIXxp1VRO6uU9f/cPdrDec+1tLTwi1/8gmnTpo24gelwPvWpT3H11VfT09PDM888Qy6XGxY8lE4bwV5D76EOZrVayWQyb9j/xRdfPCzrbUtLC7fffjtjx44dtRuR3kvbt28/4gXb48GJdr1w4l3ziXa9cOJd84l2vXDiXfOxcL0SpHScsFqth4xkP5TVq1dz3333sWvXLhRFYebMmXzmM59h7Nixb3rsiy++yJQpU4bdPVtfX8+cOXN44YUXDrlANzSJtdlsR3g1x45LL70Ur9fLKaecQn19PdlslqVLl7J9+/ZhixNvZsWKFdx9992AUbJlaNv1118PQElJCT/72c/esI9kMsnpp5/OpEmTmDt3LnV1dcRiMZ588km6urq47bbbjspzfPfdd7NixQrAKP0wtG2opMcZZ5zBTTfd9Kb9/L//9/9YvXo1f/nLX1i9ejXnn38+NpuNvXv38swzz7BixQpmzZr1jsd7pHbu3Mlll11GOp1m4cKF/P3vfx/RZsyYMYXX5M0sX74ck8k0bCHMZrPxoQ99iLvuuovu7m7Ky8sPeeyR/hytX7+ecDjMpZdeOuz4yy67jKVLl7Jq1arCQvSR9nmon3Or1copp5zCAw88QCKRKJT2ONTrM2vWLLxe77C0vPl8nnQ6PSJzQyAQQFXVN/2+XLZsGYqisGTJksI2TdN46KGHOPPMM2loaCCXy5HL5Q65QL1582YWLFgwLJtISUkJs2bNYtWqVcOuSQghjhaZex19Mu+SedfbZTKZKCsrY+fOnYdtE4lE2LdvH9dcc82wP65PmDCB+vp6nn/++UKQ0r59+9i3bx9f+tKXhpV2u+yyy/jLX/7Ciy++yHXXXXfYcy1duhSHw8EZZ5xR2BaNRnnqqae44oorqKqqIpvNous6Vqv1iK7xUH3CgTnTk08+SUdHBy6XizPOOINPf/rThWD2w4nH47z22mtcddVVhQAlMALvf/WrX/HCCy+MCFICI8Ob1Wod9twIIYQQQghxLLE6LZzysalv3vA40t/fz9e//nVcLhc/+MEPht288kYOvqHk3HPP5aabbuJHP/pR4abZofe+2Wx2xLGZTOZN39OUlJRQUlJypJchhBBCiBOA/FXxBPPss8/ywx/+kPnz5/OpT32KdDrNo48+ymc/+1n++Mc/UllZedhjNU1j7969wzKtDJk6dSpr164dEQzwzDPP8Oijj6LrOvX19Vx77bVH/e7fd9OPfvQjnnnmGdasWcMTTzyBy+Vi/Pjx3HnnnXziE5844n52797Nn/70p2Hb9uzZw549ewBjsfHNFstcLhc/+clPeO6553j55Zfp6ekhEAgwefJkfvSjH/GRj3zkrV/gIaxYsWLEWF955RVeeeWVwuMjWSyz2+0sXbqUX//619x333384Q9/wGQyUVdXx6c//ekjrol9tHR1dRUWbe+///5Dtjn77LOPeLGsqamJmpqaYQs6QGEReffu3YcMUnorP0dD9bynTJkyrN3kyZNRVZVdu3Zx7rnnvq2fzdcbGBjAbre/6YJrIpEgmUwOCwiy2Ww0NDTwzDPPMG3aNGbOnEksFuNPf/oTHo/nDTMa5HI5XnjhBaZPnz7s/599+/bR19fH+PHj+e///m+eeeYZstks48aN49Zbb2XOnDmFttls9pBvhu12O9lslubmZqZNm/aG1yWEEO8WmXsdOZl3GWTedWSSySTpdJp4PM4rr7zCq6++yqJFiw7bfuju3kPNdWw2G83NzfT391Nc/P+3d+dxUVb7H8A/7LIJiMguiguxiLiA5YIsaoqKJkFaqZRL7qaYllct07LSVFwT03BLQUtNAmRxwfUahLkgSldB0AQhQfZlmN8fvGZ+DjPAgAyLfN6vV69755zznOd75vEwDzzfOccQ9+7dAwCpb/V27NgRRkZG4ns0WXJzcxEfHw8PDw+J7QBv3ryJsrIyWFhYYOXKlbh48SIqKythb2+PRYsW1brSVE19AsCGDRsQEREBLy8v+Pj44J9//sHx48eRkpKCHTt21JpIdP/+fQgEAqlxqqmpoUePHjLHuW7dOhQXF0NFRQWOjo6YPXu21L0qERERERE1rYKCAixduhQFBQXYtm1bg5OC1NTUMGjQIBw6dAilpaXQ0NAQf0FLtO3bi3JycpiARERERPXGJKU2pKioCIGBgRgzZgw++eQTcfnIkSPx/vvv4+DBgxLl1T1//hxlZWU17j0MANnZ2ejcuTOAqm2d3N3dYWpqipycHPz6669Ys2YNCgsLpVaGaalmz56N2bNnv3Q//v7+L/1NcTU1NSxduhRLly6ts62bmxuEQmGDzhMcHCxzj+iG0NDQQEBAAAICAmptl5qaWmNdTePo0qVLvcb4Mu+JLKKHWNW9OBdkqc88ysnJgYqKitQKRWpqamjfvr34F8P6zs3qMjIyEBcXB3d39zq/YXP06FGUl5fDw8NDonzFihX44osvJLZWMzMzw/bt2yW2M6nu2rVryMvLk3qAnpGRIT6frq4ulixZAgA4cOAAPvnkEwQFBaFbt24AqrY2SkpKgkAgEMdfXl4u3k9VtIoGEVFT471X/fC+6+W8yvddsmzfvh2//fYbAEBZWRmurq5YtGhRje07dOgAHR0d8YpVInl5eeIVIrOzs2FoaCi+x6pp7sn647xIbGwsBAJBjfc2QUFBMDMzw/Lly1FYWIjg4GB8/PHH2LdvX41/3K+pzxs3biAsLAwrV66UqOvbty+WLFmCs2fP1pqkWNc4//rrL/FrVVVVDB06FK+//jr09PSQmpqKkJAQzJs3Dzt27EDPnj1rPA9RU0hJScGmTZtw//596OnpYfLkyRgzZkxzh0VERESkcKWlpfj000+Rnp6OjRs3vvSXVEpLSyEUClFUVAQNDQ107doVKioquHv3rsTfhMvLy5GSklLrl0WIiIiIZGGSUhsSHx+PgoICeHp6Ijc3V1yurKwMW1tb/Pnnn7UeX9fewy+2AYAdO3ZItPHy8sL06dMRFBQk3oKCqLUqLS2Vey5UPw6Qbx6VlpbW+O13dXV1iXby9lldSUkJPv/8c2hoaOCjjz6S2Ubk+vXrCA4Ohru7O/r16ydRp6Wlha5du8Le3h79+vXDv//+i0OHDmH58uXYtm0b9PX1ZfYZExMDVVVVqV9mi4uLAVQ94P/xxx/Fq1L17dsXkyZNws8//4yVK1cCqNp65fvvv8e3336Ld999F5WVldi/f7/4wVtd+6ITESkK772IFMfX1xdubm7Izs7G2bNnIRAIZG4/IKKsrAxvb2/8/PPP2LVrF7y8vFBUVISdO3eKjxPNJ9G9g6yVGtXV1VFUVFTjeWJiYqCvr4/+/ftLlIvubQBg06ZN4hXQevTogdmzZ+P48eOYMWNGvfo8e/YsdHR04OzsLPEzpmfPntDU1ERiYmKtSUp1/Yx58R6qV69e6NWrl/j14MGD4ebmhg8++ABBQUF1rk5GpGhr166Fu7s7tm3bhpSUFCxYsAAODg5NvpIcERERUVMSCAT44osvcPv2bXz99ddwcHCQ2S47OxuFhYUwNzcX/7352bNnUl+Ozc/Px/nz59GpUydxnY6ODvr374+oqChMnTpV/LvM6dOnUVxczCQlIiIiqjcmKbUhom/vfvzxxzLrRdtWlZaWoqCgQKLO0NCwzr2HAdnbJ4ioqalhwoQJ+P7773H37l04OjrWewxELYWGhkaD5kJ95pGGhgYqKipk9lNWVibRTt4+XyT6JTY1NRXfffddrUvzpqWlYcWKFbC2tsayZcsk6ioqKrBo0SL06dNH4udLv379MHXqVBw+fFjmyhhFRUW4ePEiXFxcJLaPezFeBwcHiW3zjI2N0atXL9y6dUtcNm7cOGRlZeHw4cOIjIwEULVF3qRJk3DgwAGpbVGIiJoK772IFMfKygpWVlYAqlYnW7x4MT799FPs2rULSkpKMo+ZNm0a8vLycPjwYRw6dAgA4OzsjNGjR+PkyZPiewZRcpKsROcX78Gqe/z4MW7fvo0JEyZIJZqL+hw0aJDEFo329vYwNTWVuLeRt8+MjAwUFBTUuLXus2fPAFRt/fBiQqNoVc66fsbIStJ6kYWFBQYPHoy4uDiJFS2JmsOTJ0/g6ekJZWVl2NjYwMrKCg8fPmSSEhEREb3Stm/fjkuXLmHgwIHIz89HVFSURP2IESMAVK3oGhkZiZCQEPG285988gmMjIxgZ2cHAwMDZGZmIjw8HDk5Ofjiiy8k+pk+fTrmzp2L+fPnw9vbG1lZWQgJCYGzszMGDBjQJGMlIiKiVweTlNqQyspKAFXbMnXo0EGqXvRH5TNnzmDdunUSdXFxcWjfvj3U1dVr3HsYQJ37D3fq1AlA1fYlRK2ZoaGhzG3E6poL9ZlHhoaGEAgEUt9qKS8vx/Pnz8VbczR0bq5fvx5XrlzBypUrpVZGelFmZiYCAgKgra2Nb7/9VuLBGgD89ddfePDgAebNmydRbmlpCSsrqxoful28eBElJSUyv+EvGpusn1UGBgZISUmRKJsxYwYmTpyIBw8eQFtbG926dUNQUJA4DiKi5sB7L6Km4+bmhg0bNiA9Pb3GLW7V1NSwbNkyzJgxA+np6ejQoQMsLS3x5ZdfQllZGebm5gD+/z4kJydHIllaVGZrayuz/+joaACQeW8jmqvVv6ksKqueqChPn0KhEAYGBuLVJasTrWS5ZcsWcSI3ADg5OWHLli0S46wuJyenzp8vQNXPmPLycpSUlIgTL6ntKioqwpEjR5CUlIQ7d+4gPz8fn332GUaNGiXVtqysDHv27EFUVBTy8/PRrVs3TJ8+Hc7Ozg06t4+PD6KjozFlyhTcu3cPWVlZsLOze9khEREREbVof//9NwDg8uXLuHz5slS9KElJFi8vL5w5cwahoaEoKCiArq4u7OzssGrVKvTu3VuirY2NDTZu3IgffvgBW7duhZaWFkaPHl3nyvxEREREsjBJqQ0R/dFd1lYBL3J2dsbGjRulypWVlWFtbY3k5GSpuqSkJJiZmUklL1T3+PFjcQxErVn37t2RmJiIwsJCiQcySUlJ4npZ6jOPevToAQBITk7GG2+8IW6XnJyMyspKcX1D5uaOHTsQHh6O+fPnY9iwYTWOMy8vDwEBASgvL8emTZtkPqwSfUtf9DD+RRUVFRAIBDL7jo6OhqamJgYNGiRV161bN6iqqspMBMvOzpb5M0RXV1dilZD4+HgYGRnV+KCSiEjReO9F1HREKwXVlOzzog4dOogTBwUCARITE2Frayt1D3b37l2JJIfs7Gw8ffq0xpWLYmJiYG5uDnt7e6k6GxsbcR/VZWdn13i/UlufZmZmSEhIQK9evWpdVe3dd9+VeDihq6sLAOjatStUVFRw9+5deHh4iOvLy8uRkpIi17YNjx8/hrq6OleuJABVvzsEBwfD2NhY/PtSTdatW4dz587B19cXFhYWiIiIwNKlSxEYGNiglf8GDBiAr776CgcOHAAALF26VK5EOyIiIqLWbMuWLXK1W758OZYvXy5RNmHCBEyYMEHuczk6OkptM09ERETUEMrNHQA1HRcXF2hra+PgwYMyt5DKzc0FUPUt3/79+0v8JzJ06FAkJydLPCx7+PAhEhMT4ebmJtXXi4qKinDs2DHo6emJ/0hP1Fq5ublBIBDgt99+E5eVlZUhPDwcdnZ24m/dZ2ZmIi0tTeJYeedR37590b59e5w8eVLi+JMnT6Jdu3YSiUvy9gkAhw8fxpEjRzB58mT4+vrWOMbi4mIsXboU2dnZ+O6772pckUhUHhsbK1F+9+5dpKenix/0vSg3Nxfx8fFwdXVFu3btpOq1tLTw+uuv4/bt2xLvX2pqKm7fvl3rw35RLMnJyfD19YWyMj/qiKh58N6LqPGJkqNfVFFRgdOnT0NDQ0O8tVN2djbS0tJq3DpX5MiRI8jJycE777wjLuvatSs6d+6MU6dOSSRbnzhxAkpKShg6dKhUP/fu3UNaWlqNyd+dO3dG9+7dcfHiRYn5eu3aNWRlZclcPaauPj08PCAQCLBv3z6puoqKCuTn5wMAunTpIvHzRfTzQEdHB/3790dUVBSKiorEx54+fRrFxcUSSUqyfsb8/fffuHTpEpydnXm/RQCqViE7fvw4jh49KnO7Z5GkpCTExsZi5syZmDNnDry9vbF582aYmJhg586dEm3nzp0LV1dXmf/t3r0bQNVqgcuWLcOcOXMQExODH3/8EUFBQbh7965Cx0tERERERERERPXHlZReIb/88gsKCgrEy/VfunQJWVlZAKqWPtfR0cHixYvx1VdfYdq0afD09IS+vj4yMzNx9epVODg4YNGiRbWe46233kJYWBiWLVuGiRMnQkVFBaGhoTAwMMDEiRPF7X799VdcvHgRAwcOhLGxMXJychAeHo7MzEz85z//gZqamuLeCKImYGdnB3d3dwQFBSE3Nxfm5uaIjIzEkydPsGzZMnG7r776CtevX0dcXJy4TN55pKGhgWnTpmHTpk1YtWoVXFxc8NdffyEqKgozZsxA+/bt691nXFwcdu7cCQsLC1hZWUntU96/f3/xygJr1qzBnTt34OXlhbS0NIlkIU1NTQwZMgRA1coA/fv3R2RkJAoLC+Hi4oKcnBz88ssv0NDQkJkIFRsbC4FAIHPrEpGZM2ciISEBH3/8MXx8fABU/ZzT1dXF5MmTxe2uX7+Offv2wdnZGe3bt0dSUhIiIiIwYMAAvP322zX2T0T0snjvRdT0NmzYgMLCQvTu3RtGRkbIyclBdHQ0Hj58iLlz54pXQwoKCkJkZCRCQkJgamoKAIiKisL58+fRu3dvaGpqIj4+HmfPnsWYMWOkkrrnzJmDzz77DAEBAfD09MT9+/dx/PhxjBkzRpwI9aLatmUTmTdvHgICAjBv3jx4e3ujoKAAoaGhsLS0xLhx4+rdp5OTE7y9vXHw4EGkpKTA2dkZqqqqyMjIwLlz57BgwQKpcVU3ffp0zJ07F/Pnz4e3tzeysrIQEhICZ2dnDBgwQNzu888/h4aGBhwcHGBgYIDU1FScOnUK7dq14xYPJKauri7eRrA258+fh4qKisSqZBoaGhg9ejSCgoKQmZkp/tLH9u3b6+zv0aNHaNeunfjfe7du3eDg4IC//vqLSbpERERERERERC0Mk5ReISEhIXjy5In4dVxcnDgxYsSIEdDR0cHw4cPRsWNHHDp0CEeOHEFZWRmMjIzg6OgILy+vOs+hpaWFwMBAbNu2Dfv370dlZSX69OmDefPmSWwj0qtXL9y6dQthYWF4/vw52rVrB1tbWyxbtgz9+vVr9LETNYfly5fD2NgYp0+fRkFBAaytrfHtt9/Cycmp1uPknUdA1cNpVVVVhISE4NKlS+jUqRPmzZsnlfgjb5+ifcozMjKwdu1aqdgCAwPFSUqituHh4QgPD5doZ2JiIk5SAqq2azhy5AhiY2Nx7do1qKmpwdHREdOmTZO5fUlMTAwMDAxq/XnQpUsXbNmyBbt27cKBAwegpKSEvn37Yvbs2TAyMhK3MzIygrKyMg4fPozi4mKYmJhg2rRpeOedd6Cqyo85IlIc3nsRNT0PDw/8/vvvOHnyJPLy8qClpQUbGxvMmjULgwcPrvVYCwsLPH/+HPv27UNpaSk6d+6MgIAAmdu3DRw4EGvXrkVwcDACAwOhp6eH999/H/7+/lJtKysrcebMGfTs2bPWbWb79u2L9evXY8+ePQgKCkK7du0wZMgQzJo1S2rrRnn7XLJkCWxsbPDbb79h9+7dUFFRgYmJCYYPHw4HB4da3w+gKtl848aN+OGHH7B161ZoaWlh9OjRUolHQ4YMQXR0NEJDQ1FYWAh9fX24urrC398fFhYWdZ6H6EUpKSmwsLCQ2DYbAGxtbQFU/R4iSlKSh6WlJUpLS3HhwgUMHjwYaWlpuHHjhszkP6BqpTVRgrHofACkVsCtycOHD6GioiJ3fETUOnBuE726rKysZK7kTs1DtFW3vPderV1b+3xpa+MF2t6Y29p4gbY35rY2XqDtjVnR45Xn3ktJKBQKFRYBERERERERERG1KcnJyZg5cyY+++wzjBo1SqJu6tSpMDAwwObNmyXKU1NTMWXKFAQEBNSYYFSTa9eu4YcffsCjR4/Qvn17jB8/Hu+9957Mtnv37kVwcHC9+iciIqLWa/369RKrhFLzioqKkvnlWSIiIno17N69u86VrbnEBBERERERERERNYnS0lKZ25Cqq6uL6+vLxcUFLi4ucrX19vbGoEGDxK/z8/OxZcsWfPLJJ+IYapKWloa1a9dixYoVsLKyqnecbc3WrVsxf/785g5DLs0Zq6LP3dj9v2x/DT2+IcfJewzndv1wbreMc78qc7shx9Z3bmtqajYoLlIMFxcXrFixAqampnXee7V2be3zpa2NF2h7Y25r4wXa3pjb2niBtjfmphivPP0ySYmIiIiIiIiIiJqEhoYGysvLpcrLysrE9YrUsWNHdOzYUaLMzMwMvXr1krsPKyurOr8VSICOjk6reZ+aM1ZFn7ux+3/Z/hp6fEOOq+8xnNvy4dxuGed+VeZ2Q46tb3tF31tQ/ejr62PEiBHNHUaTamufL21tvEDbG3NbGy/Q9sbc1sYLtL0xN/d4lZvtzERERERERERE1KYYGhoiJydHqlxUVj2BqCkMGzasyc/ZFrSm97U5Y1X0uRu7/5ftr6HHN+S41vRvsDVpTe8r53bT9fcyx9f32Nb0b5CIiIiIpDFJiYiIiIiIiIiImkT37t2RkZGBwsJCifKkpCRxfVPjw07FaE3vKxMZmq4/Jim1fq3pfeXcbrr+mKRERERERPJikhIRERERERERETUJNzc3CAQC/Pbbb+KysrIyhIeHw87ODsbGxs0YXe0MDQ3h7+8PQ0PD5g6FiBoR5zbRq4lzm5pbW/s32NbGC7S9Mbe18QJtb8xtbbxA2xtzSxmvklAoFDZrBERERERERERE1Or98ssvKCgoQE5ODk6cOAFXV1f06NEDAODj4wMdHR0AwOeff464uDj4+fnB3NwckZGRuHPnDjZt2gQnJ6dmHAERERERERERESkSk5SIiIiIiIiIiOil+fn54cmTJzLrQkJCYGpqCgAoLS3Fnj17EBUVhYKCAlhbW2P69OlwcXFpynCJiIiIiIiIiKiJMUmJiIiIiIiIiIiIiIiIiIiIiIgUSrm5AyAiIiIiIiIiInoVlJWV4ZtvvsHbb7+NkSNHYtasWbh161Zzh0VEjWD9+vUYP348Ro4cialTp+LSpUvNHRIRNZJbt25h6NCh2LdvX3OHQkRERPTK40pKREREREREREREjaC4uBghISEYNWoUjIyMcPbsWWzevBkhISHQ0tJq7vCI6CWkpaXB1NQU6urquHPnDhYvXowjR45AT0+vuUMjopdQWVmJOXPmQCgUYuDAgZg6dWpzh0RERET0SlNt7gCIiIiIiIiIiIheBZqamvD39xe/9vT0xLZt25Ceng4bG5vmC4yIXpqVlZX4/yspKaG8vBzZ2dlMUiJq5U6dOgVbW1sUFhY2dyjUCty5cweRkZFITEzEkydP0L59e9jb22P69OmwtLSs9diIiAisW7dOZt3x48dhaGioiJBfSmJiIhYuXCizbufOnbC3t6/1+KdPn2Lbtm34448/UFlZiT59+mD+/PkwMzNTRLiN4uuvv0ZkZGSN9b/88guMjIxk1u3duxfBwcFS5erq6oiJiWmsEF9KUVERjhw5gqSkJNy5cwf5+fn47LPPMGrUKKm2qamp2LZtG27evAlVVVW88cYbmDdvHvT19eU618WLF/HTTz8hLS0N+vr68PLywpQpU6Cq2nTpCfKMt7KyEqdPn8b58+eRkpKC/Px8mJqawsPDAxMnToSGhkad51mwYAGuX78uVe7i4oINGzY05pDqJO81runfeufOnXHw4EG5ztVarjEAuLq61thH//79sXHjxlrP4+fnhydPnkiVe3t7Y8mSJQ0LvgHq8znUkucwk5SIiIiIiIiIiKhNqs8f6cvKyrBnzx5ERUUhPz8f3bp1w/Tp0+Hs7Fxj/+np6cjPz4e5ubkih0FE1Shqbm/cuBHh4eEoKyvD66+/Dmtr66YYDhFBMfM6Ly8PR48exc6dO7F169amGgq1Yj///DNu3rwJd3d3dOvWDTk5OTh+/DimT5+OnTt3yvW5MG3aNJiamkqU6ejoKCrkRuHj4wNbW1uJsrrub4uKirBw4UIUFhbi/fffh6qqKkJDQzF//nzs3bu3xSb5ent7o3///hJlQqEQ33//PUxMTGpMUHpRQEAANDU1xa+VlZUbPc6GysvLQ3BwMIyNjdG9e3ckJibKbJeVlYX58+dDR0cHM2bMQHFxMY4cOYL79+9j165dUFNTq/U8V69exX/+8x84OTlh4cKFuH//Pvbv349nz54hICBAEUOTSZ7xlpSUYN26dbC3t8e4ceNgYGCA27dv46effsKff/6JzZs3Q0lJqc5zGRkZ4aOPPpIoa47kQ3mvMVCVQLd06VKJMm1tbbnO05quMQCsWLFCqiw5ORnHjh2r9Xf6F/Xo0QPvvPOORJmFhUX9g34J8n4OtfQ5zCQlIiIiIiIiIiJqk+rzB9x169bh3Llz8PX1hYWFBSIiIrB06VIEBgbC0dFRqn1paSnWrl2L9957r8U/eCJ61Shqbi9evBgLFy7E9evXcf/+fbkeWBFR41DEvN69ezd8fX2hq6vbFEOgV4Cfnx9WrVol8XDXw8MDH3zwAQ4dOoSVK1fW2ceAAQPw2muvKTLMRte7d2+4ubnV65gTJ04gIyMDu3btEic4DRgwAP7+/ggJCcHMmTMVEOnLc3BwgIODg0TZjRs3UFJSguHDh8vVx9ChQ+VeqaSpGRoailfuSk5OrvE6HDx4ECUlJfjxxx9hbGwMALC1tcXixYsREREBb2/vWs+zY8cOdOvWDd9//7141RUtLS0cPHgQb7/9tsQKlYokz3jV1NSwfft29OrVS1w2duxYmJiYYO/evUhISJBKXJNFR0cHI0aMaNT4G0LeawwAKioqDY65NV1jADLHmZiYCCUlJXh6esp1ro4dOzb7NZb3c6ilz+GWk7pJRERERERERETUhER/0Dx69Chmz55dY7ukpCTExsZi5syZmDNnDry9vbF582aYmJhg586dUu0rKiqwatUqmJubS2z/RkRNQ1FzG6h6mNOvXz8kJCTgypUrihoCEVXT2PP63r17SE5OxpgxY5oifHpF9OrVS2r1CUtLS3Tp0gVpaWly91NUVASBQNDY4SlUUVERKioq5G5/7tw5vPbaaxIrMFlZWaFv3744e/asIkJUmJiYGCgpKWHYsGFyH1NYWAihUKjAqBpGXV1drtV9zp8/j4EDB4qTG4CqLbEsLS3rvH6pqalITU3F2LFjJbaFeuuttyAUCnHu3LkGx19f8oxXTU1NIkFJZMiQIQBQr7ldUVGBoqKi+gXZyOS9xiICgaDeW562tmssS1lZGc6fPw8nJyd06tRJ7uPKy8tRXFxc7/M1Fnk/h1r6HOZKSkRERERERERE1CbV54/0KioqEt821NDQwOjRoxEUFITMzEzxH/8qKyuxdu1aKCkpYfny5VxphagZKGJuVycQCPDo0aNGi5mIatfY8/r69etIT0+Hj48PAKCgoAAqKip4/PgxPvvsM4WNg149QqEQz549Q5cuXeRqv3DhQhQXF0NNTQ3Ozs6YO3cuLC0tFRvkS1q3bh2Ki4uhoqICR0dHzJ49u9bVoCorK3H//n14eXlJ1dna2uKPP/5AUVERtLS0FBl2o6ioqMDZs2fh4OAgtU1fTd555x0UFxdDU1MTgwcPxty5c9GhQwcFR9p4nj59imfPnsHGxkaqztbWFlevXq31+Hv37gGA1PEdO3aEkZERUlJSGi9YBfr3338BQO6tCdPT0/Hmm2+ivLwcHTp0wJgxY+Dv7y+R5NHSlJSUYNSoUSgpKYGuri48PT0xa9asOufmq3CNr169ioKCArlXSAOAP//8EyNGjIBAIICJiQl8fX3h6+urwCjlU/1zqDXM4ZY7K4iIiIiIiIiIiFqAlJQUWFhYQFtbW6Jc9M3wv//+W5zIsGHDBuTk5GDDhg0t+g/SRCT/3C4oKMCVK1cwaNAgqKur48KFC0hMTGyxW9UQtWXyzmtvb2+J7V22bNkCU1NTvPfee00aL7V+0dHRePr0KT788MNa22loaGDUqFHo06cPtLW1cffuXYSGhmLOnDkS2/G0JKqqqhg6dChef/116OnpITU1FSEhIZg3bx527NiBnj17yjzu+fPnKCsrk5lYKCrLzs5G586dFRp/Y7h27Rry8vLkSmTQ1dXFhAkTYG9vDzU1Ndy4cQPHjx/HnTt3sHv3bqmfSy1VTk4OANR4/UTXV11dvUHHi+pbusOHD0NbWxsDBgyos62ZmRn69OkDa2trlJSU4Ny5c9i/fz/S09OxevXqJoi2/gwNDTFp0iT07NkTQqEQ//3vf3HixAn873//Q2BgYK2/y74K1zg6Ohrq6uoYOnSoXO2tra3h6OgIS0tLPH/+HBEREdi6dSuys7NrXeGxKVT/HGoNc5h/KSEiIiIiIiIiIqpFTk5OnQ9ZAODJkycICwuDurq6xAoO3333HXr37t00wRKR3OSd20pKSggLC8OmTZsgFAphbm6OlStXokePHk0aLxHVTd553a5dO7Rr105cr6GhAU1NTejq6jZNoPRKSEtLw6ZNm2Bvb4+RI0fW2tbDwwMeHh7i10OGDIGLiwvmz5+PAwcOYMmSJYoOt9569eolsQ3W4MGD4ebmhg8++ABBQUHYsGGDzONKS0sBQGpLIgDih+KiNi1dTEwMVFVV4e7uXmfb6iuquLm5wdbWFmvWrMHx48fx/vvvKyrMRiXv9aspwaGsrEyibfXjm3s7NHkcOHAA8fHxWLx4sVyfC59++qnE6zfffBPr16/HqVOn4OfnB3t7e0WF2mAfffSRxGtPT09YWlpi9+7dOH/+vEQib3Wt/RoXFhbiypUrGDBggNyf+998843Eay8vL3zyyScIDQ2Fj49PvbaMa0yyPodawxxmkhIREREREREREVEtSktL5XrIYmJigri4uCaNjYgaTt65ra2tjcDAwCaNjYgaRt55Xd3y5csVGhe9enJycrBs2TJoa2tjzZo1UFFRqXcfjo6OsLOzQ0JCggIiVAwLCwsMHjwYcXFxEAgEMsetoaEBACgvL5eqEz38FrVpyYqKinDx4kW4uLjIveVXdcOHD8f27duRkJDQapKUXvb6iX7eitpWP76lX/vY2Fj8+OOPGD16NMaPH9/gft555x2cOnUK8fHxLTJJSRY/Pz/s2bMH8fHxtSYptfZrfP78eZSVldVrq7fqlJSU4Ofnh2vXruH69esYMWJEI0Yon5o+h1rDHFZ+6R6IiIiIiIiIiIheYRoaGq3+IQsRSePcJnr1cF5TUygoKMDSpUtRUFCADRs2oGPHjg3uq1OnTnj+/HkjRqd4nTp1Qnl5OUpKSmTWt2/fHurq6jK3BBKVvcx71lQuXryIkpKSl0pkAFrfNRatPFfT9RNd34YeL2u1u5bijz/+wNdff4033ngDAQEBL9WXaGWd/Pz8xgitSWhoaKB9+/Z1/nttzdcYqNoeTUdHBwMHDnypfkTXuDnmd22fQ61hDjNJiYiIiIiIiIiIqBaGhoat/iELEUnj3CZ69XBek6KVlpbi008/RXp6Or755ht06dLlpfp7/Pgx9PX1GyW2pvL48WOoq6tDU1NTZr2ysjKsra2RnJwsVZeUlAQzMzNoaWkpOsyXFh0dDU1NTQwaNKjBfQiFQjx58qRVXWMjIyPo6+vj7t27UnV37txB9+7daz1etB1u9eOzs7Px9OnTFrtdblJSElasWAEbGxusXr0aqqovtyHV48ePAaBVXfuioiLk5eXVGXNrvcZAVYyJiYlwdXWtNVFHHs11jev6HGoNc5hJSkRERERERERERLXo3r07MjIyUFhYKFGelJQkriei1odzm+jVw3lNiiQQCPDFF1/g9u3bWL16NRwcHGS2y87ORlpaGioqKsRlubm5Uu2uXLmCu3fvwsXFRVEhvxRZMf/999+4dOkSnJ2doaxc9Zg5MzMTaWlpEu2GDh2K5ORkiUSlhw8fIjExEW5ubooMu1Hk5uYiPj4erq6uaNeunVS9rDHLer9OnDiB3NxcDBgwQFGhKsTQoUNx+fJlZGZmissSEhKQnp4Od3d3cVlFRQXS0tKQnZ0tLuvatSs6d+6MU6dOQSAQiMtPnDgBJSUlDB06tGkGUQ+pqalYtmwZTExM8O2339a66l5aWprE+1JYWCi1LZZQKMT+/fsBAM7OzooJ+iWUlpaiqKhIqnzfvn0QCoUS/15flWsscubMGVRWVta4Qpqs8T5//lxinKJ2hw4dgpqaGvr06aPQmF8k7+dQS5/DL5cCSERERERERERE9Ipzc3PDkSNH8Ntvv2HSpEkAqraNCQ8Ph52dHYyNjZs5QiJqCM5tolcP5zUp0vbt23Hp0iUMHDgQ+fn5iIqKkqgfMWIEACAoKAiRkZEICQmBqakpAGD27Nno2bMnbGxsoK2tjXv37iE8PBydOnXC5MmTm3ws8vj888+hoaEBBwcHGBgYIDU1FadOnUK7du3w0Ucfidt99dVXuH79OuLi4sRlb731FsLCwrBs2TJMnDgRKioqCA0NhYGBASZOnNgcw6mX2NhYCASCGhMZZI3Z19cXHh4esLa2hrq6Om7evInY2Fj06NED3t7eTRV6nX755RcUFBSIV5i7dOkSsrKyAAA+Pj7Q0dHB+++/j3PnzuHjjz/G22+/jeLiYhw+fBjW1tYYNWqUuK+nT59i8uTJGDlyJJYvXy4unzNnDj777DMEBATA09MT9+/fx/HjxzFmzJiXXn2sscerrKyMJUuWID8/HxMnTsSVK1ckjjczM5NIBJk8eTKcnJywZcsWAMC9e/ewevVqDBs2DObm5igtLcWFCxdw8+ZNjB07FjY2Nk000v9X15jz8/Mxbdo0DBs2DJ07dwYAXLt2DVevXsWAAQMwePBgcV+vwjXW0dERt42OjkbHjh1rTCySNd5Lly5h//79GDp0KExNTZGfn4/o6Gg8ePAAM2fObNLt7eT9HGrpc5hJSkRERERERERE1GbJ8wdNOzs7uLu7IygoCLm5uTA3N0dkZCSePHmCZcuWNWf4RFQDzm2iVw/nNTW3v//+GwBw+fJlXL58Wape9HBYFg8PD1y9ehV//PEHSkpKYGhoiLFjx8Lf3x8dOnRQWMwvY8iQIYiOjkZoaCgKCwuhr68PV1dX+Pv7w8LCotZjtbS0EBgYiG3btmH//v2orKxEnz59MG/evFax/VVMTAwMDAzQr18/uY8ZPnw4bt26hfPnz6OsrAzGxsaYNGkSpkyZInM1puYSEhKCJ0+eiF/HxcWJk61GjBgBHR0dGBsbY8uWLdi2bRt27doFVVVVvPHGG5g7d65cW2QNHDgQa9euRXBwMAIDA6Gnp4f3338f/v7+ihpWjeoaLwDxZ8muXbukjh85cmSNq9UAgLGxMXr37o24uDj8+++/UFZWhpWVFQICApotOU2eazxw4ED88ccfiIyMRGVlJczNzTFz5kxMnDhRvEpabVrTNRYlKT18+BB3796Fn5+fXGMUsba2hpWVFaKjo5GbmwtVVVX06NEDq1evlliVqCnI+znU0uewklAoFDZKT0RERERERERERK2Mn5+fxB80X/Tit99LS0uxZ88eREVFoaCgANbW1pg+fXqL3Z6DqK3j3CZ69XBeExEREbV+TFIiIiIiIiIiIiIiIiIiIiIiIiKFkn8dKyIiIiIiIiIiIiIiIiIiIiIiogZgkhIRERERERERERERERERERERESkUk5SIiIiIiIiIiIiIiIiIiIiIiEihmKREREREREREREREREREREREREQKxSQlIiIiIiIiIiIiIiIiIiIiIiJSKCYpERERERERERERERERERERERGRQjFJiYiIiIiIiIiIiIiIiIiIiIiIFIpJSkREREREREREREREREREREREpFBMUiIiIiIiIiIiIiIiIiIiIqJmkZiYCFdXVyQmJjZ3KESkYExSIiIiIiIiIiIiIiIiIiIiekVERETA1dUVycnJAIArV65g7969zRwVcPz4cURERDR3GETUjJikRERERERERERERERUh9DQUHh4eOCff/4Rl4keALaUh21hYWFwc3PD//73v+YOhYiIiFqQq1evIjg4uLnDwIkTJ2TeN/Xu3RvR0dHo3bt3M0RFRE2JSUpEREREREREREREbcw///wDV1fXWv/z8/Nr7jBbjPz8fOzfvx9eXl4wNTVV6LmuXbsGV1dXBAQE1Nn2yy+/hKurK6KjowEAI0eOhLGxMXbu3KnQGImIiIiEQiFKS0sbpS9lZWVoaGhAWZnpC0SvOtXmDoCIiIiIiIiIiIiImoe5uTmGDx8us05HR6eJo2m5QkND8fz5c0yaNEnh5+rfvz+MjY2RkJCAzMxMGBsby2xXUFCACxcuQEdHB66urgAAVVVV+Pn5ITAwEDdv3kSvXr0UHi8RERG1bF9//TUiIyMBQHzPAABxcXEAgMrKShw7dgxhYWF4/PgxtLW1MXjwYMyaNQu6urri9n5+fujatSt8fHywe/duPHjwADNnzoSfnx/Cw8Nx+vRpPHjwAIWFhTAzM4OPjw/Gjx8vcfyTJ08k4nBycsKWLVuQmJiIhQsXIjAwEH369BEfc/bsWRw6dAipqanQ1NSEi4sLZs2aBSMjI4nxnT9/HgcPHsSmTZuQkJAAdXV1jBw5ErNmzYKKikrjv6lE1GBMUiIiIiIiIiIiIiJqo8zNzfHhhx82dxgtWkVFBcLCwtCrVy+Ym5sr/HzKysoYNWoUgoODERkZialTp8psFxMTg9LSUnh5eUFDQ0Nc7unpiW3btuHkyZNMUiIiIiJ4e3sjOzsb8fHxWLFihVT9hg0bEBERAS8vL/j4+OCff/7B8ePHkZKSgh07dkBV9f9TCh4+fIjVq1fD29sbY8aMQefOnQFUbePWtWtXDBo0CCoqKrh8+TI2btyIyspKTJgwAQAwf/58bN68GZqampgyZQoAwMDAoMa4IyIisG7dOrz22muYOXMmnj17hmPHjuHmzZvYs2ePRAKVQCDAkiVLYGtrizlz5iA+Ph4hISEwNzeXSJQioubHJCUiIiIiIiIiIiIiqpOrqyucnJzwxRdfYOfOnbh69SqKi4vRvXt3fPTRRxLfehcpKirCkSNHcO7cOTx+/Bjq6uqwtbXF1KlT4ejoKNF2wYIFuH79OqKjo7F//37ExsYiMzMTkydPFidSib4l/+DBA2hra2PQoEGYPXs2pk2bBqBqxSMAWLNmDaKjo/HDDz/Azs5OKq49e/Zg3759WLVqFYYNG1bruK9du4acnBy8++67cr9XWVlZ+OSTT/Do0SOsWLECbm5uAIBnz57h4MGDuHz5MrKysqClpYXevXvjww8/hLW1tfh4Ly8v7Nu3DxEREZgyZQqUlJSkzhEeHg4AGD16tES5vr4++vTpg3PnzmHx4sXQ0tKSO24iIiJ69Tg4OMDS0hLx8fEYMWKERN2NGzcQFhaGlStXSqyu2bdvXyxZsgRnz56VKH/06BE2bNgAFxcXiX62bt0qkTTt4+ODJUuWIDQ0VJykNGTIEPz444/Q09OTiqO6iooK/PDDD+jatatE346Ojli2bBmOHj0qkWhfVlYGDw8PcXL3uHHjMG3aNPz+++9MUiJqYbipIxERERERERERERHJpaCgAHPnzkVqaipGjBgBV1dX3L17F0uWLMH9+/cl2j5//hyzZ89GcHAwdHV1MW7cOLi6uuLevXtYuHAhLly4IPMcK1euRGRkJPr06YO3334bpqamAIDff/8dK1euREZGBt58802MHDkSt2/fxuLFi1FRUSHRh7e3t/iY6gQCAcLDw6Gnpyex5UlNEhISAAD29vZ1v0EAUlNTMWfOHGRlZWH9+vXiBKVHjx5h+vTpOHr0KMzMzDBhwgS8/vrruHbtGmbPno2kpCRxHyYmJujXrx8eP36MxMREqXPcv38fycnJ6NGjB3r27ClVb29vj7KyMty6dUuumImIiKhtOnv2LHR0dODs7Izc3Fzxfz179oSmpqbUfYipqalUghIAiQSlgoIC5ObmwsnJCY8fP0ZBQUG940pOTsazZ8/w1ltvSfT9xhtvoHPnzrhy5YrUMePGjZN47ejoiMePH9f73ESkWFxJiYiIiIiIiIiIiKiNevToEfbu3Suzzt7eHgMGDJAo+/vvvzF+/Hh8/PHHUFau+g5s37598d133+HXX3/FkiVLxG03b96MBw8eYOnSpRgzZoy4/NmzZ5gxYwbWr18PFxcXiQdPAJCTk4OffvoJ7du3F5fl5+djy5Yt0NTURFBQECwtLQEAM2bMwJIlS3D37l2YmJiI2/fu3RtdunRBbGws5s2bB01NTXHdtWvX8PTpU/j6+kJdXb3O9+jmzZtQVlZG9+7d62x7+/ZtLFu2DKqqqti6davEMV999RX+/fdfqdUHpkyZghkzZuC7775DcHCwuHz06NGIj49HeHg4+vbtK3GemlZRErGxsQEA3Lp1S+aDRCIiIiIAyMjIQEFBgTjBu7pnz55JvBYlj1d38+ZN7N27F7dv30ZJSYlEXWFhIXR0dOoVV2ZmJgCI7/leZGVlhRs3bkiUqaurQ19fX6JMV1cX+fn59TovESkek5SIiIiIiIiIiIiI2qhHjx5JJMa86O2335ZKUtLU1MSsWbPECUoAMHLkSHz//fdITk4Wl+Xm5uLs2bPo27evRIISABgYGGDSpEkIDAxEQkICBg4cKFH/wQcfSCQoAcDFixdRXFwMHx8fiYdVqqqqmD59OubMmSMVv7e3N7Zs2YLY2FiJGMLCwgAAY8eOlTnu6p4+fQodHZ06E5quXLmCzz//HIaGhvj+++9hZmYmrrt37x5u3boFLy8vqaQhS0tLjBkzBqGhobh//75427chQ4ZAT08P58+fx6JFi6CtrQ2gavuTqKgoqKurS2y/8qIOHToAqNp2joiIiKgmQqEQBgYGWLlypcz66ok/1ZPLgar7yUWLFqFz586YO3cuOnXqBDU1NVy9ehWhoaGorKxUROgSVFRUFH4OImocTFIiIiIiIiIiIiIiaqNcXFywYcMGudtbWFhAS0tLokxVVRUdOnSQ2MojOTkZAoEA5eXlMldqysjIAACkpaVJJSnZ2tpKtf/f//4HoGrbjurs7OxkPph68803sWvXLoSFhYmTlP79919cvnwZDg4O6NKlSx2jrfL8+XMYGRnV2ubs2bP4448/0K1bN6xfvx4GBgYS9aKt3J49eybz/Xj48KH4f0VJSqIkpGPHjiEmJka8hcmlS5eQm5uLYcOGQVdXV2Y8ovK8vDy5xkhERESvNiUlJZnlZmZmSEhIQK9evWQmIMnj0qVLKCsrw7p162BsbCwul7VlrbxE/aSnp6Nfv34SdQ8fPpRYQZOIWhcmKRERERERERERERGRXESr+VSnoqIi8S3558+fA6ja+uPmzZs19ld9OxDg/1cBelFhYSEASCX/AICysjL09PSkynV1deHu7o7IyEjxCkUREREQCARyr6IEVK0YUFZWVmub27dvQyAQwNHRUWaMovfjypUruHLlSo39FBcXS7wePXo0jh07hvDwcHGSUl1bvQEQx9uuXbta4yYiIqK2QXRPkJ+fL5Hk7OHhgRMnTmDfvn2YOXOmxDEVFRUoLi6uMSlaRJQsLhQKxWUFBQXie5YXaWpqSiS21+S1116DgYEBTp48CS8vL/GKllevXkVaWhr8/f3r7IOIWiYmKRERERERERERERFRoxIlM73zzjuYO3duvY6V9U1/UX/Pnj2TqqusrEReXp7M1Y7GjRuHyMhInDp1CgsXLsTvv/8ObW1tuLu7yx2Pnp4enj59WmubmTNn4uLFizh27BhUVFSkxiyKf+HChfDx8ZH73N26dcNrr72GO3fu4MGDB9DV1cW1a9dgamqKvn371nicKCmq+hYtRERE1DbZ2NgAALZs2QJnZ2eoqKjA09MTTk5O8Pb2xsGDB5GSkgJnZ2eoqqoiIyMD586dw4IFC+Dm5lZr387OzlBTU8Onn34Kb29vFBcXIywsDAYGBsjJyZFo27NnT5w8eRL79u2DhYUF9PX1pVZKAqpW6pw1axbWrVuHBQsWwNPTE8+ePcOxY8dgYmICX1/fRntviKhpMUmJiIiIiIiIiIiIiBrVa6+9BiUlJdy+fbtR+uvWrRuAqpWZqicY3blzBwKBQOZx9vb26NatG6Kjo/HGG28gIyMD48ePr9cKQ9bW1nj06BEyMzMltjB5kbq6Or766iusXLkSISEhEAqFmDdvnrhetIXd7du365WkBFStmJScnIzff/8dBgYGEAgE8PLyqnHbFuD/t48TbR1HREREbZurqyt8fHwQGxuLqKgoCIVCeHp6AgCWLFkCGxsb/Pbbb9i9ezdUVFRgYmKC4cOHw8HBoc6+O3fujC+//BI//vgjduzYgQ4dOmD8+PHQ19fHN998I9HW398fmZmZOHz4MIqKiuDk5CQzSQkARo0aBQ0NDRw6dAi7du1Cu3btMGTIEMyaNavO1Z2IqOVikhIRERERERERERERNSpDQ0O4u7vjzJkzOHz4MCZOnCiVVJOUlARra2u5EoYGDx4MTU1N/P777/Dx8YG5uTmAqm1I9uzZU+ux3t7e2LRpk/gh2ZgxY+o1FicnJ1y4cAFJSUk1JikBVYlKa9euxcqVKxEaGgqhUIj58+cDAOzs7GBnZ4fY2FgMGjRI/FBQpLKyEjdu3ICTk5NUv8OGDcP27dsRFRUFXV1dKCsrY+TIkbXGfOfOHXHsRERE1PaMGjUKo0aNEr9WUVHBwoULsXDhQpntx44dW+d2uKGhoTXWDRo0CIMGDZIq9/LyknjdoUMHfPvtt1Lt+vTpg7i4OKlyDw8PeHh41BrX8uXLsXz5cqnyDz/8EB9++GGtxxJR02OSEhEREREREREREVEb9ejRI+zdu7fG+vfeew8aGhoN6nvx4sVIT0/Hzp07cfr0adjb20NHRwdPnz5FcnIyMjIycPz4cbmSlHR1dTFv3jysX78eM2bMgIeHB7S1tXH16lWoq6ujY8eONa4sNGLECPzwww/Izs6GjY0NevbsWa9xDB48GNu3b0d8fHyd28SpqalhzZo1WLVqFY4ePQqhUIgFCxYAAFatWoWPP/4Yq1evxrFjx9CjRw9oaGggKysLt27dQl5eHmJiYqT61NbWxtChQ3H69Gnk5uZiwIABtSZLCYVCJCQkwMrKCpaWlvUaKxERERERkSIxSYmIiIiIiIiIiIiojXr06BGCg4NrrPf19W1wklL79u2xY8cO/Prrrzhz5gxiYmJQWVmJDh06oHv37pg6dSr09PTk7m/s2LHQ1dXFgQMHEBkZCW1tbQwaNAizZs2Cr6+veHWl6rS1tTFkyBBERUXVexUlADA1NYWzszPOnTuHhQsXQl1dvdb2okSlzz//HMeOHYNQKMTChQthZmaGPXv2ICQkBBcuXEBERASUlZVhaGiI3r17w83NrcY+R48ejdOnTwOQXpGgur/++guZmZniVZyIiIiIiIhaCiWhUChs7iCIiIiIiIiIiIiIiBoiIyMD7777Ltzd3bF69WqZbaZOnYonT57g119/hba2dr3PkZCQgEWLFmHFihUYMWLEy4asUGvWrMF///tfHD58GLq6us0dDhERERERkZhycwdARERERERERERERFSX/Px8lJWVSZSVlpZi27ZtAIAhQ4bIPO7q1at48OABhg0b1qAEJQDo168fBgwYgP3796OysrJBfTSF9PR0nDlzBlOmTGGCEhERERERtTjc7o2IiIiIiIiIiIiIWrzr16/j22+/hbOzMzp16oS8vDz8+eefePLkCfr27QsPDw+J9idOnEBWVhbCwsKgrq6O995776XOv2DBAkRHR+Pp06cwNjZ+qb4UJSsrC/7+/njrrbeaOxQiIiIiIiIp3O6NiIiIiIiIiIiIiFq89PR07NmzB7du3UJubi4AwNzcHB4eHpg4cSI0NDQk2vv5+eHp06ewtLTErFmzMHDgwGaImoiIiIiIiESYpERERERERERERERERERERERERAql3NwBEBERERERERERERERERERERHRq41JSkREREREREREREREREREREREpFBMUiIiIiIiIiIiIiIiIiIiIiIiIoVikhIRERERERERERERERERERERESkUk5SIiIiIiIiIiIiIiIiIiIiIiEihmKREREREREREREREREREREREREQKxSQlIiIiIiIiIiIiIiIiIiIiIiJSKCYpERERERERERERERERERERERGRQv0f3kJvXNdXFKcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "title = [\"100-158.489 keV\",\n", + "\"158.489-251.189 keV\", \n", + "\"251.189-398.107 keV\", \n", + "\"398.107-630.957 keV\", \n", + "\"630.957-1000 keV\", \n", + "\"1000-1584.89 keV\", \n", + "\"1584.89-2511.89 keV\", \n", + "\"2511.89-3981.07 keV\", \n", + "\"3981.07-6309.57 keV\", \n", + "\"6309.57-10000 keV\"]\n", + "\n", + "position = {\"l\":184.600, \"b\": -5.800}\n", + "\n", + "i_iteration = 19 # ==>20th iteration\n", + "th = -5\n", + "\n", + "fig = plt.figure(figsize=(30, 15))\n", + "gs = GridSpec(nrows=3, ncols=4)\n", + "\n", + "ax0 = fig.add_subplot(gs[0, 0])\n", + "ax1 = fig.add_subplot(gs[0, 1])\n", + "ax2 = fig.add_subplot(gs[0, 2])\n", + "ax3 = fig.add_subplot(gs[0, 3])\n", + "ax4 = fig.add_subplot(gs[1, 0])\n", + "ax5 = fig.add_subplot(gs[1, 1])\n", + "ax6 = fig.add_subplot(gs[1, 2])\n", + "ax7 = fig.add_subplot(gs[1, 3])\n", + "ax8 = fig.add_subplot(gs[2, 0])\n", + "ax9 = fig.add_subplot(gs[2, 1])\n", + "\n", + "axes = [ax0, ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9]\n", + " \n", + "ax_spectrum = fig.add_subplot(gs[2, 2])\n", + "ax_likelihood = fig.add_subplot(gs[2, 3])\n", + "#ax_background = fig.add_subplot(gs[1, 3])\n", + "\n", + "#plt.subplots_adjust(wspace=0.4, hspace=0.5)\n", + "\n", + "image = all_results[i_iteration]['model_map']\n", + "\n", + "for i_energy in range(image.axes['Ei'].nbins): \n", + " plt.axes(axes[i_energy])\n", + "\n", + " data = image.contents[:,i_energy]\n", + " data[data < 10**th * image.unit] = 10**th * image.unit\n", + "\n", + " hp.mollview(data, norm = 'liner', min = 10**th, title = title[i_energy], hold=True, unit = \"s-1 sr-1 cm-2\")\n", + " hp.graticule(color='gray', dpar = 10, alpha = 0.5)\n", + " hp.projscatter(theta = position[\"l\"], phi = position[\"b\"], lonlat = True, color = 'red', linewidths = 1, marker = \"*\")\n", + "\n", + "### \n", + " \n", + "plt.axes(ax_spectrum)\n", + "\n", + "energy_band = image.axes['Ei'].centers\n", + "\n", + "err_energy = image.axes['Ei'].bounds.T - image.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux = get_differential_flux(image)\n", + " \n", + "plt.plot(energy_truth, flux_truth, label = 'truth')\n", + "\n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "plt.xlim(90, 10000)\n", + "plt.ylim(1e-8, 2e-3)\n", + " \n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {iteration+1}\")\n", + "plt.grid()\n", + "plt.legend()\n", + " \n", + "### \n", + " \n", + "plt.axes(ax_likelihood)\n", + "\n", + "iterations = [_['iteration'] for _ in all_results]\n", + "loglikelihoods = [_['loglikelihood'] for _ in all_results]\n", + "\n", + "plt.plot(iterations, loglikelihoods, linewidth = 1.5)\n", + "plt.plot([iterations[i_iteration]], [loglikelihoods[i_iteration]], markersize = 10, marker = \".\")\n", + "\n", + "plt.xlabel(\"Iteration\", fontsize = 12)\n", + "plt.title(\"Log-likelihood\")\n", + "plt.grid()\n", + "\n", + "###\n", + "# plt.axes(ax_background)\n", + "\n", + "# plt.plot(iterations, background_normalizations, linewidth = 1.5)\n", + "# plt.plot([iterations[i]], [background_normalizations[i]], markersize = 10, marker = \".\")\n", + "\n", + "# plt.xlabel(\"Iteration\", fontsize = 12)\n", + " #plt.ylabel(\"Background Normalization\", fontsize = 12)\n", + "# plt.ylim(0.7, 1.4)\n", + "# plt.title(\"Background Normalization\")\n", + "# plt.grid() \n", + "\n", + "# plt.savefig(f\"fig_{i:03}.png\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "fa21f679", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.html b/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.html new file mode 100644 index 00000000..fbb25bdd --- /dev/null +++ b/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.html @@ -0,0 +1,2264 @@ + + + + + + + GRB image analysis (miniDC2) — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

GRB image analysis (miniDC2)

+

updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)

+

Using the GRB simulation data created for miniDC2, an example of the image analysis will be presented.

+

If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits.

+

Note that it is not necessary to run the following cell when the headline is inside parentheses. These cells are prepared for readers to understand the code more clearly

+
+
[3]:
+
+
+
from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy import BinnedData, Band_Eflux
+from cosipy.image_deconvolution import DataLoader, ImageDeconvolution, CoordsysConversionMatrix
+from cosipy.util import fetch_wasabi_file
+
+from histpy import Histogram, HealpixAxis, Axis
+from mhealpy import HealpixMap,HealpixBase
+
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord, ICRS, Galactic, FK4, FK5
+from astropy.time import Time
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from astromodels import Band
+from threeML import Band, PointSource, Model, JointLikelihood, DataList
+from astromodels import Parameter
+
+#Other standard libraries
+import numpy as np
+from scipy import integrate
+import matplotlib.pyplot as plt
+import healpy as hp
+import os
+import pprint
+
+%matplotlib inline
+
+
+
+
+
+

0. Data reduction

+

Before running the cells, please download the files needed for this notebook. You can get them from wasabi.

+

From wasabi - cosi-pipeline-public/ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip (please unzip it) - cosi-pipeline-public/ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5 - cosi-pipeline-public/ComptonSphere/mini-DC2/grb_binned_data.hdf5 - cosi-pipeline-public/ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5

+

From docs/tutorials/image_deconvolution/GRB - 20280301_first_2hrs.ori - grb_dataIO_config.yml - imagedeconvolution_parfile_GRB_miniDC2.yml

+

You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files

+
+
[ ]:
+
+
+
# Background file:
+# wasabi path: ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5
+# File size: 194M
+fetch_wasabi_file('ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5')
+
+
+
+
+
[ ]:
+
+
+
# Source file:
+# wasabi path: ComptonSphere/mini-DC2/grb_binned_data.hdf5
+# File size: 101K
+fetch_wasabi_file('ComptonSphere/mini-DC2/grb_binned_data.hdf5')
+
+
+
+
+
[ ]:
+
+
+
# Source+Background file:
+# wasabi path: ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5
+# File size: 194M
+fetch_wasabi_file('ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5')
+
+
+
+
+
[ ]:
+
+
+
# Response file:
+# wasabi path: ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip
+# File size: 119M
+fetch_wasabi_file('ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip')
+
+
+
+
+
[ ]:
+
+
+
os.system("unzip FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip")
+
+
+
+

If you receive an error in the above cell, please try to unzip the response file by opening the directory where it is and uncompress it directly, e.g., double-clicking it.

+
+
+

1. Read the response matrix

+

please modify “path_data” corresponding to your environment.

+
+
[3]:
+
+
+
path_data = "path/to/data/"
+
+
+
+
+
[4]:
+
+
+
response_path = path_data + "FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5"
+
+response = FullDetectorResponse.open(response_path)
+
+
+
+
+
+

2. Read binned GRB files (source and background)

+
+
[5]:
+
+
+
%%time
+
+#  background over 2-hour observation
+bkg_data = BinnedData(path_data + "grb_dataIO_config.yml")
+bkg_data.load_binned_data_from_hdf5(path_data + 'bkg_binned_data_full.hdf5')
+
+#  GRB + background around the event
+grb_data = BinnedData(path_data + "grb_dataIO_config.yml")
+grb_data.load_binned_data_from_hdf5(path_data + 'grb_bkg_binned_data.hdf5')
+
+# only the GRB signal around the event (we don't use it in the analysis)
+signal_data = BinnedData(path_data + "grb_dataIO_config.yml")
+signal_data.load_binned_data_from_hdf5(path_data + 'grb_binned_data.hdf5')
+
+
+
+
+
+
+
+
+CPU times: user 10.8 s, sys: 1.09 s, total: 11.9 s
+Wall time: 12 s
+
+
+
+

Check that the duration of bkg_data is 7200 sec = 2 hours

+
+
[6]:
+
+
+
bkg_data.binned_data.axes['Time'].hi_lim - bkg_data.binned_data.axes['Time'].lo_lim
+
+
+
+
+
[6]:
+
+
+
+
+7200.0
+
+
+
+
+

Check that the duration of grb_data is 2 sec

+
+
[7]:
+
+
+
grb_data.binned_data.axes['Time'].hi_lim - grb_data.binned_data.axes['Time'].lo_lim
+
+
+
+
+
[7]:
+
+
+
+
+1.999995231628418
+
+
+
+
+

Defne the scale factor for the background data

+
+
[8]:
+
+
+
ratio_bkg_to_grbdata = (bkg_data.binned_data.axes['Time'].hi_lim - bkg_data.binned_data.axes['Time'].lo_lim) / (grb_data.binned_data.axes['Time'].hi_lim - grb_data.binned_data.axes['Time'].lo_lim)
+ratio_bkg_to_grbdata
+
+
+
+
+
[8]:
+
+
+
+
+3600.0085830893113
+
+
+
+
+

The start and stop times of the GRB binned data

+
+
[9]:
+
+
+
grb_start_time = int(grb_data.binned_data.axes['Time'].lo_lim)
+grb_stop_time = int(grb_data.binned_data.axes['Time'].hi_lim)
+
+print("GRB start time:", grb_start_time)
+print("GRB stop time:", grb_stop_time)
+
+
+
+
+
+
+
+
+GRB start time: 1835481433
+GRB stop time: 1835481435
+
+
+
+
+

Modify the axis

+

Here the time axis in the data and background files are modified as a single time bin. This is because the current code requires the same time intervals in both files.

+

The background files is renormalized because the background is 2-hour data while the source data is 2-s duration.

+

Such a procedure might be confusing, but it will be improved in the future, for example, by introducing a user-friendly background generator.

+
+
[10]:
+
+
+
%%time
+
+grb_data.binned_data = Histogram.concatenate(Axis([grb_start_time, grb_stop_time], label = 'Time'), [grb_data.binned_data.project('Em', 'Phi', 'PsiChi')])
+bkg_data.binned_data = Histogram.concatenate(Axis([grb_start_time, grb_stop_time], label = 'Time'), [bkg_data.binned_data.project('Em', 'Phi', 'PsiChi')/ratio_bkg_to_grbdata])
+
+
+
+
+
+
+
+
+CPU times: user 21.1 s, sys: 1.47 s, total: 22.6 s
+Wall time: 22.8 s
+
+
+
+

(View the events in Compton Data Space)

+
+
[11]:
+
+
+
h = grb_data.binned_data.project('Em', 'Phi', 'PsiChi').slice[{'Em':2, 'Phi':3}].project('PsiChi')
+m = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents.todense())
+
+_,ax = m.plot('orthview', ax_kw = {'rot':[0,90,0]})
+#_,ax = m.plot('mollview')
+
+ax.scatter(0, 70, transform=ax.get_transform('world'), color = 'red')
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.collections.PathCollection at 0x2ca5d9bd0>
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_28_1.png +
+
+
+
+
+
+

2. Calculate the coordinate conversion matrix

+

CoordsysConversionMatrix.spacecraft_time_binning_ccm can produce the ccm for the time binning.

+

Here we calculate the dwell time map on each sky pixel and each time bin, and then combine them as a coordinate conversion matrix (ccm).

+

The ccm \(C^{lb, \nu\lambda}_{t}\) is a three-dimensional matrix with the axes of ‘lb’, ‘Time’ and ‘NuLambda’.

+

\(C^{lb, \nu\lambda}_{t}\) is the exposure time on the pixel \(\nu\lambda\) on the detector coordinate for the model pixel \(lb\) (in the galactic coordinate) during the time bin \(t\).

+

By multiplying \(C^{lb, \nu\lambda}_{t}\) with the model map, it can be converted into the detector coordinate for each time bin.

+
+

Read the orientation file and extract the orientation information around the GRB event

+
+
[12]:
+
+
+
ori = SpacecraftFile.parse_from_file(path_data + "20280301_first_2hrs.ori")
+
+#Set the GRB duration
+Timemin = Time(grb_start_time,format = 'unix')
+Timemax = Time(grb_stop_time,format = 'unix')
+grbori = ori.source_interval(Timemin, Timemax)
+
+
+
+
+
+

Calculate the coordinate conversion matrix

+
+
[13]:
+
+
+
%%time
+
+time_intervals = grb_data.binned_data.axes['Time'].edges
+
+coordsys_conv_matrix = CoordsysConversionMatrix.time_binning_ccm(response,
+                                                                 ori,
+                                                                 time_intervals,
+                                                                 nside_model = response.nside)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 5.3 s, sys: 192 ms, total: 5.49 s
+Wall time: 5.47 s
+
+
+
+

(you can save/load the ccm as follows)

+

If you save the coordsys conversion matrix, you can load it and do not have to calculate it again, which may save your time.

+
+
[14]:
+
+
+
coordsys_conv_matrix.write("coordsys_conv_matrix.hdf5", overwrite = True)
+
+
+
+
+
[15]:
+
+
+
%%time
+
+coordsys_conv_matrix = CoordsysConversionMatrix.open("coordsys_conv_matrix.hdf5")
+
+
+
+
+
+
+
+
+CPU times: user 3.89 ms, sys: 1.75 ms, total: 5.63 ms
+Wall time: 4.74 ms
+
+
+
+
+

(calculate the dwell time map, not mandatory)

+
+
[16]:
+
+
+
# Simulating a 2 second GRB at l = 51, b = -17 in Galacti coordinates.
+coord = SkyCoord(l = 51*u.deg, b = -17*u.deg,
+                 frame = 'galactic', attitude = Attitude.identity(frame = 'galactic'))
+
+
+
+
+
[17]:
+
+
+
# Initiate a SpacecraftPositionAttitude object with the coordinates of the source
+#SCPosition = SpacecraftPositionAttitude.SourceSpacecraft("GRB", coord)
+
+# From the orientation, get the attitude and define the source movement in the spacecraft FOV
+dts = grbori.get_time_delta()
+
+src_movement = grbori.get_target_in_sc_frame("GRB", coord)
+
+
+
+
+
+
+
+
+Now converting to the Spacecraft frame...
+Conversion completed!
+
+
+
+
[18]:
+
+
+
dwell_time_map = grbori.get_dwell_map(response = response_path, dts = dts, src_path = src_movement)
+
+
+
+
+
[19]:
+
+
+
dwell_time_map.plot()
+
+
+
+
+
+
+
+
+Failed to transform from 'spacecraftframe' to 'icrs'. Rasterizing in 'spacecraftframe' frame. ERROR: Spacecraft coordinates need attitude to transform from ICRS
+
+
+
+
[19]:
+
+
+
+
+(<matplotlib.image.AxesImage at 0x2ca4a26e0>, <Mollview: >)
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_41_2.png +
+
+
+
+
+
+

4. Imaging deconvolution

+
+

Brief overview of the image deconvolution

+

Basically, we have to maximize the following likelihood function

+
+\[\log L = \sum_i X_i \log \epsilon_i - \sum_i \epsilon_i\]
+

\(X_i\): detected counts at \(i\)-th bin ( \(i\) : index of the Compton Data Space)

+

\(\epsilon_i = \sum_j R_{ij} \lambda_j + b_i\) : expected counts ( \(j\) : index of the model space)

+

\(\lambda_j\) : the model map (basically gamma-ray flux at \(j\)-th pixel)

+

\(b_i\) : the background at \(i\)-th bin

+

\(R_{ij}\) : the response matrix

+

Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.

+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \delta \lambda_{j}^{k}\]
+
+\[\delta \lambda_{j}^{k} = \frac{\lambda_{j}^{k}}{\sum_{i} R_{ij}} \sum_{i} \left(\frac{ X_{i} }{\epsilon_{i}} - 1 \right) R_{ij}\]
+

We refer to \(\delta \lambda_{j}^{k}\) as the delta map.

+

As for now, the two improved algorithms are implemented in COSIpy.

+
    +
  • Accelerated ML-EM algorithm (Knoedlseder+99)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \delta \lambda_{j}^{k}\]
+
+\[\alpha^{k} < \mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k})\]
+

Practically, in order not to accelerate the algorithm excessively, we set the maximum value of \(\alpha\) (\(\alpha_{\mathrm{max}}\)). Then, \(\alpha\) is calculated as:

+
+\[\alpha^{k} = \mathrm{min}(\mathrm{max}(- \lambda_{j}^{k} / \delta \lambda_{j}^{k}), \alpha_{\mathrm{max}})\]
+
    +
  • Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)

  • +
+
+\[\lambda_{j}^{k+1} = \lambda_{j}^{k} + \alpha^{k} \left[ w_j \delta \lambda_{j}^{k} \right]_{\mathrm{gauss}}\]
+
+\[w_j = \left(\sum_{i} R_{ij}\right)^\beta\]
+

\(\left[ ... \right]_{\mathrm{gauss}}\) means that the differential image is smoothed by a gaussian filter.

+
+
+

4-1. Prepare DataLoader containing all neccesary datasets

+
+
[20]:
+
+
+
dataloader = DataLoader.load(grb_data.binned_data,
+                             bkg_data.binned_data,
+                             response,
+                             coordsys_conv_matrix,
+                             is_miniDC2_format = True)
+
+
+
+

DataLoader is a data container for the image deconvolution. It also calculates several auxiliary matrices for the analysis.

+
+
+

4-2. Load the response file

+

The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size.

+

So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work.

+
+
[21]:
+
+
+
%%time
+
+dataloader.load_full_detector_response_on_memory()
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+CPU times: user 17.1 s, sys: 15.4 s, total: 32.4 s
+Wall time: 32.8 s
+
+
+

Here, we calculate an auxiliary matrix for the deconvolution. Basically, it is a response matrix projected into the model space (\(\sum_{i} R_{ij}\)). Currently, it is mandatory to run this command for the image deconvolution.

+
+
[22]:
+
+
+
dataloader.calc_image_response_projected()
+
+
+
+
+
+
+
+
+... (DataLoader) calculating a projected image response ...
+
+
+
+
[23]:
+
+
+
dataloader._modify_axes()
+
+
+
+
+
+
+
+
+... checking the axis Time of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Em of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis Phi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+... checking the axis PsiChi of the event and background files...
+    --> pass (edges)
+    --> pass (unit)
+...checking the axis Em of the event and response files...
+    --> pass (edges)
+...checking the axis Phi of the event and response files...
+    --> pass (edges)
+...checking the axis PsiChi of the event and response files...
+    --> pass (edges)
+The axes in the event and background files are redefined. Now they are consistent with those of the response file.
+
+
+
+
+
+
+
+
+WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.
+
+
+WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.
+
+
+
+
+
+

4-4. Initialize the instance of the image deconvolution class

+

First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation.

+

please modify this parameter_filepath corresponding to your environment.

+
+
[24]:
+
+
+
parameter_filepath = path_data + "imagedeconvolution_parfile_GRB_miniDC2.yml"
+
+
+
+
+
[25]:
+
+
+
image_deconvolution = ImageDeconvolution()
+
+# set dataloader to image_deconvolution
+image_deconvolution.set_data(dataloader)
+
+# set a parameter file for the image deconvolution
+image_deconvolution.read_parameterfile(parameter_filepath)
+
+
+
+
+
+
+
+
+data for image deconvolution was set ->  <cosipy.image_deconvolution.data_loader.DataLoader object at 0x2ca361990>
+parameter file for image deconvolution was set ->  /Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/miniDC2/example_notebook//imagedeconvolution_parfile_GRB_miniDC2.yml
+
+
+
+

Initialize image_deconvolution

+

In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.

+

I describe parameters in the parameter file.

+
+

model_property

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

coordinate

str

the coordinate system of the model map

As for now, it must be ‘galactic’

nside

int

NSIDE of the model map

it must be the same as NSIDE of ‘lb’ axis of the coordinate conversion matrix

scheme

str

SCHEME of the model map

As for now, it must be ‘ring’

energy_edges

list of float [keV]

The definition of the energy bins of the model map

As for now, it must be the same as that of the response matrix

+
+
+

model_initialization

+ + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the method name to initialize the model map

As for now, only ‘flat’ can be used

parameter_flat:values

list of float [cm-2 s-1 sr-1]

the list of photon fluxes for each energy band

the length of the list should be the same as the length of “energy_edges” - 1

+
+
+

deconvolution

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Name

Unit

Description

Notes

algorithm

str

the name of the image deconvolution algorithm

As for now, only ‘RL’ is supported

parameter_RL:iteration

int

The maximum number of the iteration

parameter_RL:acceleration

bool

whether the accelerated ML-EM algorithm (Knoedlseder+99) is used

parameter_RL:alpha_max

float

the maximum value for the acceleration parameter

parameter_RL:save_results_each_iteration

bool

whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration

parameter_RL:response_weighting

bool

whether a delta map is renormalized based on the exposure time on each pixel, namely +\(w_j = (\sum_{i} R_{ij})^{\beta}\) (see Knoedlseder+05, Siegert+20)

parameter_RL:response_weighting_index

float

\(\beta\) in the above equation

parameter_RL:smoothing

bool

whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20)

parameter_RL:smoothing_FWHM

float, degree

the FWHM of the Gaussian in the filter

parameter_RL:background_normalization_fitting

bool

whether the background normalization factor is optimized at each iteration

As for now, the single background normalization factor is used in all of the bins

parameter_RL:background_normalization_range

list of float

the range of the normalization factor

should be positive

+
+
[26]:
+
+
+
image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 100.0
+- 200.0
+- 500.0
+- 1000.0
+- 2000.0
+- 5000.0
+nside: 8
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 0.01
+  - 0.01
+  - 0.01
+  - 0.01
+  - 0.01
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 10.0
+  background_normalization_fitting: false
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 100
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 2.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

(You can change the parameters as follows)

+

Note that when you modify the parameters, do not forget to run “initialize” again!

+
+
[27]:
+
+
+
image_deconvolution.override_parameter("deconvolution:parameter_RL:iteration = 30")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:background_normalization_fitting = True")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:alpha_max = 5")
+image_deconvolution.override_parameter("deconvolution:parameter_RL:smoothing_FWHM = 4.0")
+
+image_deconvolution.initialize()
+
+
+
+
+
+
+
+
+#### Initialization ####
+1. generating a model map
+---- parameters ----
+coordinate: galactic
+energy_edges:
+- 100.0
+- 200.0
+- 500.0
+- 1000.0
+- 2000.0
+- 5000.0
+nside: 8
+scheme: ring
+
+2. initializing the model map ...
+---- parameters ----
+algorithm: flat
+parameter_flat:
+  values:
+  - 0.01
+  - 0.01
+  - 0.01
+  - 0.01
+  - 0.01
+
+3. registering the deconvolution algorithm ...
+... calculating the expected events with the initial model map ...
+... calculating the response weighting filter...
+... calculating the gaussian filter...
+
+
+
+
+
+
+
+
+
+
+
+
+
+---- parameters ----
+algorithm: RL
+parameter_RL:
+  acceleration: true
+  alpha_max: 5
+  background_normalization_fitting: true
+  background_normalization_range:
+  - 0.01
+  - 10.0
+  iteration: 30
+  response_weighting: true
+  response_weighting_index: 0.5
+  save_results_each_iteration: false
+  smoothing: true
+  smoothing_FWHM: 4.0
+  smoothing_max_sigma: 10.0
+
+#### Done ####
+
+
+
+
+
+
+

4-5. Start the image deconvolution

+

With MacBook Pro with M1 Max and 64 GB memory, it takes about 40 seconds for 30 iterations.

+
+
[28]:
+
+
+
%%time
+
+all_results = image_deconvolution.run_deconvolution()
+
+
+
+
+
+
+
+
+#### Deconvolution Starts ####
+
+
+
+
+
+
+
+
+
+
+
+
+
+  Iteration 1/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+
+
+
+
+
+
+
+
+WARNING RuntimeWarning: invalid value encountered in divide
+
+
+
+
+
+
+
+
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 4.5256721171422285
+    loglikelihood: 6995.070394357579
+    background_normalization: 1.9156089682929596
+  Iteration 2/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.5763136603313757
+    loglikelihood: 24101.13650415292
+    background_normalization: 1.3793746628449184
+  Iteration 3/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 4.754476734122631
+    loglikelihood: 25829.656262774864
+    background_normalization: 1.479120638470411
+  Iteration 4/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 34610.09484775503
+    background_normalization: 1.140883891972013
+  Iteration 5/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 3.4263935825449847
+    loglikelihood: 37662.53238253783
+    background_normalization: 1.1319257143160566
+  Iteration 6/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 4.668194082009493
+    loglikelihood: 38299.615754495215
+    background_normalization: 1.1295989219552447
+  Iteration 7/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 39858.418284489395
+    background_normalization: 1.0799082948115535
+  Iteration 8/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.8684961126184034
+    loglikelihood: 40363.58462270266
+    background_normalization: 1.0818626699366012
+  Iteration 9/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 40570.94251969077
+    background_normalization: 1.0738451636325703
+  Iteration 10/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 41080.54992554475
+    background_normalization: 1.066440377077784
+  Iteration 11/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 41138.27262775572
+    background_normalization: 1.0595887797500194
+  Iteration 12/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 39847.17913641907
+    background_normalization: 1.0709417721994
+  Iteration 13/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.641716609686848
+    loglikelihood: 36816.09679192316
+    background_normalization: 1.043498291472631
+  Iteration 14/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 30229.09255082757
+    background_normalization: 1.1553698114239597
+  Iteration 15/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 41537.200529306385
+    background_normalization: 1.0033923366898276
+  Iteration 16/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 3.7585896423313874
+    loglikelihood: 40430.5509247969
+    background_normalization: 1.0328992830046098
+  Iteration 17/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 36053.06814056434
+    background_normalization: 1.0799429722914526
+  Iteration 18/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 41759.14057063087
+    background_normalization: 1.043171038622194
+  Iteration 19/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 3.110837759570481
+    loglikelihood: 41535.22859804242
+    background_normalization: 1.0672547025579957
+  Iteration 20/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 39393.39610815875
+    background_normalization: 1.083620371401302
+  Iteration 21/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 41974.71796854968
+    background_normalization: 1.077260302610239
+  Iteration 22/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 2.658680215314738
+    loglikelihood: 42005.25984799916
+    background_normalization: 1.0927078821997471
+  Iteration 23/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 41313.415314215395
+    background_normalization: 1.0965179439302204
+  Iteration 24/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.1069742422022726
+    loglikelihood: 42167.76054529962
+    background_normalization: 1.0924953496158092
+  Iteration 25/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 42195.94131658095
+    background_normalization: 1.1032397527185536
+  Iteration 26/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 3.6880846888173346
+    loglikelihood: 42216.08916197458
+    background_normalization: 1.1050458594984143
+  Iteration 27/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 42218.889833384645
+    background_normalization: 1.1044301502208802
+  Iteration 28/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0176671300651505
+    loglikelihood: 42250.46201818339
+    background_normalization: 1.1080259897693703
+  Iteration 29/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> continue
+--> registering results
+--> showing results
+    alpha: 1.0
+    loglikelihood: 42256.80433165385
+    background_normalization: 1.1098973588984038
+  Iteration 30/30
+--> pre-processing
+--> E-step
+... skip E-step ...
+--> M-step
+--> post-processing
+... calculating the expected events with the updated model map ...
+--> checking stopping criteria
+--> --> stop
+--> registering results
+--> showing results
+    alpha: 5
+    loglikelihood: 42278.085994665526
+    background_normalization: 1.11037784844894
+#### Done ####
+
+CPU times: user 1min 56s, sys: 50.1 s, total: 2min 46s
+Wall time: 36.1 s
+
+
+
+
[29]:
+
+
+
pprint.pprint(all_results)
+
+
+
+
+
+
+
+
+[{'alpha': <Quantity 4.52567212>,
+  'background_normalization': 1.9156089682929596,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d4e0>,
+  'iteration': 1,
+  'loglikelihood': 6995.070394357579,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56cac0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56ed40>},
+ {'alpha': <Quantity 1.57631366>,
+  'background_normalization': 1.3793746628449184,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d0c0>,
+  'iteration': 2,
+  'loglikelihood': 24101.13650415292,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56c9a0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56fa60>},
+ {'alpha': <Quantity 4.75447673>,
+  'background_normalization': 1.479120638470411,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e650>,
+  'iteration': 3,
+  'loglikelihood': 25829.656262774864,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e9b0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56fb20>},
+ {'alpha': 1.0,
+  'background_normalization': 1.140883891972013,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56fc10>,
+  'iteration': 4,
+  'loglikelihood': 34610.09484775503,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56f820>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56dcc0>},
+ {'alpha': <Quantity 3.42639358>,
+  'background_normalization': 1.1319257143160566,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d7e0>,
+  'iteration': 5,
+  'loglikelihood': 37662.53238253783,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56fdc0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e740>},
+ {'alpha': <Quantity 4.66819408>,
+  'background_normalization': 1.1295989219552447,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56ded0>,
+  'iteration': 6,
+  'loglikelihood': 38299.615754495215,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d090>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56de10>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0799082948115535,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56f790>,
+  'iteration': 7,
+  'loglikelihood': 39858.418284489395,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56fac0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56f0d0>},
+ {'alpha': <Quantity 2.86849611>,
+  'background_normalization': 1.0818626699366012,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d180>,
+  'iteration': 8,
+  'loglikelihood': 40363.58462270266,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56eec0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e680>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0738451636325703,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56f7f0>,
+  'iteration': 9,
+  'loglikelihood': 40570.94251969077,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56c130>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56eb60>},
+ {'alpha': 5,
+  'background_normalization': 1.066440377077784,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56cdc0>,
+  'iteration': 10,
+  'loglikelihood': 41080.54992554475,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56dbd0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56ee30>},
+ {'alpha': 5,
+  'background_normalization': 1.0595887797500194,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d960>,
+  'iteration': 11,
+  'loglikelihood': 41138.27262775572,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e500>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56ccd0>},
+ {'alpha': 5,
+  'background_normalization': 1.0709417721994,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56c6d0>,
+  'iteration': 12,
+  'loglikelihood': 39847.17913641907,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56c0d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56f370>},
+ {'alpha': <Quantity 2.64171661>,
+  'background_normalization': 1.043498291472631,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d210>,
+  'iteration': 13,
+  'loglikelihood': 36816.09679192316,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56ce20>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e890>},
+ {'alpha': 5,
+  'background_normalization': 1.1553698114239597,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e800>,
+  'iteration': 14,
+  'loglikelihood': 30229.09255082757,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56f9d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e4970>},
+ {'alpha': 1.0,
+  'background_normalization': 1.0033923366898276,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56c970>,
+  'iteration': 15,
+  'loglikelihood': 41537.200529306385,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56c670>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6590>},
+ {'alpha': <Quantity 3.75858964>,
+  'background_normalization': 1.0328992830046098,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56e380>,
+  'iteration': 16,
+  'loglikelihood': 40430.5509247969,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56ffd0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6620>},
+ {'alpha': 5,
+  'background_normalization': 1.0799429722914526,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e5360>,
+  'iteration': 17,
+  'loglikelihood': 36053.06814056434,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e52d0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e7040>},
+ {'alpha': 1.0,
+  'background_normalization': 1.043171038622194,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56d870>,
+  'iteration': 18,
+  'loglikelihood': 41759.14057063087,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca56fd30>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6170>},
+ {'alpha': <Quantity 3.11083776>,
+  'background_normalization': 1.0672547025579957,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e5f00>,
+  'iteration': 19,
+  'loglikelihood': 41535.22859804242,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e7c40>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6260>},
+ {'alpha': 5,
+  'background_normalization': 1.083620371401302,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e7670>,
+  'iteration': 20,
+  'loglikelihood': 39393.39610815875,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6140>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e74c0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.077260302610239,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6770>,
+  'iteration': 21,
+  'loglikelihood': 41974.71796854968,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6530>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e58d0>},
+ {'alpha': <Quantity 2.65868022>,
+  'background_normalization': 1.0927078821997471,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e5840>,
+  'iteration': 22,
+  'loglikelihood': 42005.25984799916,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e7d90>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e4940>},
+ {'alpha': 5,
+  'background_normalization': 1.0965179439302204,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca426e60>,
+  'iteration': 23,
+  'loglikelihood': 41313.415314215395,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca426440>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e50c0>},
+ {'alpha': <Quantity 1.10697424>,
+  'background_normalization': 1.0924953496158092,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff34f0>,
+  'iteration': 24,
+  'loglikelihood': 42167.76054529962,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff3220>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff00d0>},
+ {'alpha': 1.0,
+  'background_normalization': 1.1032397527185536,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e5990>,
+  'iteration': 25,
+  'loglikelihood': 42195.94131658095,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e7730>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e6560>},
+ {'alpha': <Quantity 3.68808469>,
+  'background_normalization': 1.1050458594984143,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff3a60>,
+  'iteration': 26,
+  'loglikelihood': 42216.08916197458,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff0100>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff3b80>},
+ {'alpha': 5,
+  'background_normalization': 1.1044301502208802,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca418700>,
+  'iteration': 27,
+  'loglikelihood': 42218.889833384645,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca41a680>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff3250>},
+ {'alpha': <Quantity 1.01766713>,
+  'background_normalization': 1.1080259897693703,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff2920>,
+  'iteration': 28,
+  'loglikelihood': 42250.46201818339,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff2e60>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff2f50>},
+ {'alpha': 1.0,
+  'background_normalization': 1.1098973588984038,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff3a30>,
+  'iteration': 29,
+  'loglikelihood': 42256.80433165385,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2c9ff0310>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e70d0>},
+ {'alpha': 5,
+  'background_normalization': 1.11037784844894,
+  'delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e5000>,
+  'iteration': 30,
+  'loglikelihood': 42278.085994665526,
+  'model_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e7ac0>,
+  'processed_delta_map': <cosipy.image_deconvolution.modelmap.ModelMap object at 0x2ca3e7400>}]
+
+
+
+
+
+

5. Analyze the results

+

Examples to see/analyze the results are shown below.

+
+

Log-likelihood

+

Plotting the log-likelihood vs the number of iterations

+
+
[30]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['loglikelihood'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("loglikelihood")
+
+
+
+
+
[30]:
+
+
+
+
+Text(0, 0.5, 'loglikelihood')
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_65_1.png +
+
+
+
+

Alpha (the factor used for the acceleration)

+

Plotting \(\alpha\) vs the number of iterations. \(\alpha\) is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts.

+
+
[31]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['alpha'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("alpha")
+
+
+
+
+
[31]:
+
+
+
+
+Text(0, 0.5, 'alpha')
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_67_1.png +
+
+
+
+

Background normalization

+

Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1. In this case, the background is slightly off from one, which may be because the background events are extracted from different time intervals of the GRB events.

+
+
[32]:
+
+
+
x, y = [], []
+
+for result in all_results:
+    x.append(result['iteration'])
+    y.append(result['background_normalization'])
+
+plt.plot(x, y)
+plt.grid()
+plt.xlabel("iteration")
+plt.ylabel("background_normalization")
+
+
+
+
+
[32]:
+
+
+
+
+Text(0, 0.5, 'background_normalization')
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_69_1.png +
+
+
+
+

The reconstructed images

+
+
[33]:
+
+
+
def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['model_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the reconstructed images in all of the energy bands at the 20th iteration

+
+
[34]:
+
+
+
iteration = 19
+
+plot_reconstructed_image(all_results[iteration], source_position = (51 * u.deg, -17 * u.deg))
+
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_0.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_1.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_2.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_3.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_73_4.png +
+
+

You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures.

+
+
[ ]:
+
+
+
for result in all_results:
+    plot_reconstructed_image(result, source_position = (51 * u.deg, -17 * u.deg))
+
+
+
+
+
+

Delta image

+

checking the difference between images before/after each iteration

+
+
[36]:
+
+
+
def plot_delta_image(result, source_position = None): # source_position should be (l,b) in degrees
+    iteration = result['iteration']
+    image = result['delta_map']
+
+    for energy_index in range(image.axes['Ei'].nbins):
+        map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)
+
+        _, ax = map_healpxmap.plot('mollview')
+
+        _.colorbar.set_label(str(image.unit))
+
+        if source_position is not None:
+            ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')
+
+        plt.title(label = f"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})")
+
+
+
+

Plotting the difference between 19th and 20th reconstructed images.

+
+
[37]:
+
+
+
iteration = 19
+
+plot_delta_image(all_results[iteration], source_position = (51 * u.deg, -17 * u.deg))
+
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_0.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_1.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_2.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_3.png +
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_79_4.png +
+
+

You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures.

+
+
[ ]:
+
+
+
for result in all_results:
+    plot_delta_image(result, source_position = (51 * u.deg, -17 * u.deg))
+
+
+
+
+
+

Integrated flux over the sky

+

Define the actual GRB spectral model

+
+
[38]:
+
+
+
alpha_inj = -1.
+beta_inj = -3.
+E0_inj = 1000. * u.keV
+K_inj = 5. / u.cm / u.cm / u.s / u.keV
+Emin_inj = 10. * u.keV
+Emax_inj = 5000. * u.keV
+
+spectrum_inj = Band_Eflux(alpha=alpha_inj,
+                          beta=beta_inj,
+                          E0=E0_inj.value,
+                          K=K_inj.value,
+                          a=Emin_inj.value,
+                          b=Emax_inj.value)
+
+spectrum_inj.E0.unit = E0_inj.unit
+spectrum_inj.K.unit = K_inj.unit
+spectrum_inj.a.unit = Emin_inj.unit
+spectrum_inj.b.unit = Emax_inj.unit
+
+
+
+

Calculate the integrated photon flux in each energy band

+
+
[39]:
+
+
+
integrated_flux_each_band_truth = []
+integrated_flux_truth = 0.0 / u.cm**2 / u.s
+
+for energy_index in range(all_results[0]['model_map'].axes["Ei"].nbins):
+    emin, emax = all_results[0]['model_map'].axes["Ei"].bounds[energy_index]
+
+    integrated_flux_each_band_truth.append(integrate.quad(spectrum_inj, emin.value, emax.value)[0] / u.cm**2 / u.s)
+
+    print(emin, emax)
+    print("    truth:", integrated_flux_each_band_truth[energy_index])
+
+    integrated_flux_truth += integrated_flux_each_band_truth[-1]
+
+
+
+
+
+
+
+
+100.0 keV 200.0 keV
+    truth: 0.7418347986463156 1 / (cm2 s)
+200.0 keV 500.0 keV
+    truth: 0.8192020113325374 1 / (cm2 s)
+500.0 keV 1000.0 keV
+    truth: 0.420663133134687 1 / (cm2 s)
+1000.0 keV 2000.0 keV
+    truth: 0.21068821854253272 1 / (cm2 s)
+2000.0 keV 5000.0 keV
+    truth: 0.07024548561978913 1 / (cm2 s)
+
+
+

Plotting the integratd flux in each energy band vs the number of interations

+
+
[40]:
+
+
+
iteration = []
+integrated_flux = []
+integrated_flux_each_band = [[],[],[],[],[]]
+
+for result in all_results:
+    iteration.append(result['iteration'])
+    image = result['model_map']
+    pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr
+
+    integrated_flux.append(np.sum(image) * pixelarea)
+
+    for energy_band in range(image.axes['Ei'].nbins):
+        integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)
+
+plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')
+plt.plot(iteration, np.full(len(iteration), integrated_flux_truth), color = 'black', linestyle = "--")
+plt.xlabel("iteration")
+plt.ylabel("integrated flux (ph cm-2 s-1)")
+plt.yscale("log")
+
+colors = ['b', 'g', 'r', 'c', 'm']
+for energy_band in range(5):
+    plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = "energyband = {}".format(energy_band))
+    plt.plot(iteration, np.full(len(iteration), integrated_flux_each_band_truth[energy_band]), color = colors[energy_band], linestyle = "--")
+
+plt.legend()
+
+
+
+
+
[40]:
+
+
+
+
+<matplotlib.legend.Legend at 0x343707eb0>
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_88_1.png +
+
+
+
+

Spectrum

+

Plotting the gamma-ray spectrum at 20th interation. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixel at each energy band.

+
+
[41]:
+
+
+
def get_differential_flux(model_map):
+    pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr
+
+    differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths
+
+    return differential_flux
+
+
+
+
+
[42]:
+
+
+
iteration = 19
+
+result = all_results[iteration]
+
+model_map = result['model_map']
+
+differential_flux = get_differential_flux(model_map)
+
+energy_band = model_map.axes['Ei'].centers
+
+err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers
+err_energy[0,:] *= -1
+
+differential_flux_truth = [ integrated_flux / width for integrated_flux, width in zip(integrated_flux_each_band_truth, model_map.axes['Ei'].widths)]
+
+plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')
+plt.errorbar(energy_band, [_.value for _ in differential_flux_truth], xerr=err_energy, fmt='o', label = 'truth')
+plt.xscale("log")
+plt.yscale("log")
+
+plt.xlabel("Energy (keV)")
+plt.ylabel(r"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)")
+plt.title(f"Spectrum, Iteration = {result['iteration']}")
+plt.grid()
+plt.legend()
+
+
+
+
+
[42]:
+
+
+
+
+<matplotlib.legend.Legend at 0x34597f250>
+
+
+
+
+
+
+../../../_images/tutorials_image_deconvolution_GRB_miniDC2-GRB-ImageDeconvolution_91_1.png +
+
+
+
+

Find the location with the maximum flux

+

As an example, here it calculate the location of the maximum flux at the 20th iteration’s map at the highest energy bin

+
+
[43]:
+
+
+
idx_iteration = 19
+idx_energy = 4
+
+argmax = np.argmax(all_results[idx_iteration]["model_map"].contents[:,idx_energy:idx_energy+1])
+nside = all_results[idx_iteration]["model_map"].axes["lb"].nside
+coordsys = all_results[idx_iteration]["model_map"].axes["lb"].coordsys
+
+theta, phi = hp.pix2ang(nside, argmax)
+
+l, b = phi * 180 / np.pi, 90 - theta * 180 / np.pi
+
+c = SkyCoord(l, b, unit="deg", frame = coordsys)
+
+print(f"The source position is around (l ,b) = ({c.galactic.l.deg} deg., {c.galactic.b.deg} deg.) in galactic")
+print(f"The source position is around (ra, dec) = ({c.icrs.ra.deg} deg., {c.icrs.dec.deg} deg.) in icrs")
+
+
+
+
+
+
+
+
+The source position is around (l ,b) = (50.62499999999999 deg., -19.47122063449069 deg.) in galactic
+The source position is around (ra, dec) = (308.30194136772735 deg., 5.913074059175163 deg.) in icrs
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.ipynb b/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.ipynb new file mode 100644 index 00000000..afa8d16e --- /dev/null +++ b/tutorials/image_deconvolution/GRB/miniDC2-GRB-ImageDeconvolution.ipynb @@ -0,0 +1,2623 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3edcfe0b-24d7-4321-b355-a6dc730c155d", + "metadata": { + "tags": [] + }, + "source": [ + "# GRB image analysis (miniDC2)\n", + "\n", + "updated on 2024-02-22 (the commit f27cd0bee26c56a93d34a06f2c0af88cb1f59f6e)\n", + "\n", + "Using the GRB simulation data created for miniDC2, an example of the image analysis will be presented.\n", + "\n", + "If you want to know about the other analysis, e.g., the spectral analysis, you can see the notebooks in docs/tutorials/spectral_fits." + ] + }, + { + "cell_type": "markdown", + "id": "2bc243c8", + "metadata": {}, + "source": [ + "**Note that it is not necessary to run the following cell when the headline is inside parentheses. These cells are prepared for readers to understand the code more clearly**" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "938d0c1c", + "metadata": {}, + "outputs": [], + "source": [ + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy import BinnedData, Band_Eflux\n", + "from cosipy.image_deconvolution import DataLoader, ImageDeconvolution, CoordsysConversionMatrix\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "from histpy import Histogram, HealpixAxis, Axis\n", + "from mhealpy import HealpixMap,HealpixBase\n", + "\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord, ICRS, Galactic, FK4, FK5\n", + "from astropy.time import Time\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from astromodels import Band\n", + "from threeML import Band, PointSource, Model, JointLikelihood, DataList\n", + "from astromodels import Parameter\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "from scipy import integrate\n", + "import matplotlib.pyplot as plt\n", + "import healpy as hp\n", + "import os\n", + "import pprint\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "id": "00f20cda-81f8-4685-b9c4-f9423e5ebcf7", + "metadata": { + "tags": [] + }, + "source": [ + "# 0. Data reduction\n", + "\n", + "Before running the cells, please download the files needed for this notebook. You can get them from wasabi. \n", + "\n", + "From wasabi\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip (please unzip it)\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/grb_binned_data.hdf5\n", + "- cosi-pipeline-public/ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5\n", + "\n", + "From docs/tutorials/image_deconvolution/GRB\n", + "- 20280301_first_2hrs.ori\n", + "- grb_dataIO_config.yml\n", + "- imagedeconvolution_parfile_GRB_miniDC2.yml" + ] + }, + { + "cell_type": "markdown", + "id": "379ba895", + "metadata": {}, + "source": [ + "You can download the data and detector response from wasabi. You can skip this cell if you already have downloaded the files" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c8892ed0-b1ed-4c58-8e06-31f8b4aaadab", + "metadata": {}, + "outputs": [], + "source": [ + "# Background file:\n", + "# wasabi path: ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5\n", + "# File size: 194M\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/bkg_binned_data_full.hdf5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e92034e2-3449-4b1d-8a35-07c3f215f029", + "metadata": {}, + "outputs": [], + "source": [ + "# Source file:\n", + "# wasabi path: ComptonSphere/mini-DC2/grb_binned_data.hdf5\n", + "# File size: 101K\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/grb_binned_data.hdf5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0559f7ef-4a90-4f72-91c8-ff12eb0f84fc", + "metadata": {}, + "outputs": [], + "source": [ + "# Source+Background file:\n", + "# wasabi path: ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5\n", + "# File size: 194M\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/grb_bkg_binned_data.hdf5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2084adee-2f03-4c21-8941-cc72e6eef7f3", + "metadata": {}, + "outputs": [], + "source": [ + "# Response file:\n", + "# wasabi path: ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip\n", + "# File size: 119M\n", + "fetch_wasabi_file('ComptonSphere/mini-DC2/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "9cf7f129-0daf-4186-9e91-e83514301050", + "metadata": {}, + "outputs": [], + "source": [ + "os.system(\"unzip FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5.zip\")" + ] + }, + { + "cell_type": "markdown", + "id": "c12da4eb-575b-4606-8ac5-980fa12d4429", + "metadata": {}, + "source": [ + "**If you receive an error in the above cell, please try to unzip the response file by opening the directory where it is and uncompress it directly, e.g., double-clicking it.**" + ] + }, + { + "cell_type": "markdown", + "id": "6c259412", + "metadata": {}, + "source": [ + "# 1. Read the response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "573a7c60", + "metadata": {}, + "source": [ + " please modify \"path_data\" corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "fada24bc", + "metadata": {}, + "outputs": [], + "source": [ + "path_data = \"path/to/data/\"" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "98a778c2-73cf-467b-96b6-affc42f17102", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = path_data + \"FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5\"\n", + "\n", + "response = FullDetectorResponse.open(response_path)" + ] + }, + { + "cell_type": "markdown", + "id": "26d6eb3a", + "metadata": {}, + "source": [ + "# 2. Read binned GRB files (source and background)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "04e15347-6b38-42de-a7c5-cd99b2ae66ac", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 10.8 s, sys: 1.09 s, total: 11.9 s\n", + "Wall time: 12 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# background over 2-hour observation\n", + "bkg_data = BinnedData(path_data + \"grb_dataIO_config.yml\")\n", + "bkg_data.load_binned_data_from_hdf5(path_data + 'bkg_binned_data_full.hdf5')\n", + "\n", + "# GRB + background around the event\n", + "grb_data = BinnedData(path_data + \"grb_dataIO_config.yml\")\n", + "grb_data.load_binned_data_from_hdf5(path_data + 'grb_bkg_binned_data.hdf5')\n", + "\n", + "# only the GRB signal around the event (we don't use it in the analysis)\n", + "signal_data = BinnedData(path_data + \"grb_dataIO_config.yml\")\n", + "signal_data.load_binned_data_from_hdf5(path_data + 'grb_binned_data.hdf5')" + ] + }, + { + "cell_type": "markdown", + "id": "4703e7fc", + "metadata": {}, + "source": [ + "## Check that the duration of bkg_data is 7200 sec = 2 hours" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "1ae08e20", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "7200.0" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bkg_data.binned_data.axes['Time'].hi_lim - bkg_data.binned_data.axes['Time'].lo_lim" + ] + }, + { + "cell_type": "markdown", + "id": "225c4fa5", + "metadata": {}, + "source": [ + "## Check that the duration of grb_data is 2 sec" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "e0432bed", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.999995231628418" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "grb_data.binned_data.axes['Time'].hi_lim - grb_data.binned_data.axes['Time'].lo_lim" + ] + }, + { + "cell_type": "markdown", + "id": "edccd223", + "metadata": {}, + "source": [ + "## Defne the scale factor for the background data" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "23a2f1da", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3600.0085830893113" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ratio_bkg_to_grbdata = (bkg_data.binned_data.axes['Time'].hi_lim - bkg_data.binned_data.axes['Time'].lo_lim) / (grb_data.binned_data.axes['Time'].hi_lim - grb_data.binned_data.axes['Time'].lo_lim)\n", + "ratio_bkg_to_grbdata" + ] + }, + { + "cell_type": "markdown", + "id": "42646818", + "metadata": {}, + "source": [ + "## The start and stop times of the GRB binned data" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a6362fbb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "GRB start time: 1835481433\n", + "GRB stop time: 1835481435\n" + ] + } + ], + "source": [ + "grb_start_time = int(grb_data.binned_data.axes['Time'].lo_lim)\n", + "grb_stop_time = int(grb_data.binned_data.axes['Time'].hi_lim)\n", + "\n", + "print(\"GRB start time:\", grb_start_time)\n", + "print(\"GRB stop time:\", grb_stop_time)" + ] + }, + { + "cell_type": "markdown", + "id": "26f17d4c", + "metadata": {}, + "source": [ + "## Modify the axis\n", + "\n", + "Here the time axis in the data and background files are modified as a single time bin. This is because the current code requires the same time intervals in both files.\n", + "\n", + "\n", + "The background files is renormalized because the background is 2-hour data while the source data is 2-s duration.\n", + "\n", + "\n", + "Such a procedure might be confusing, but it will be improved in the future, for example, by introducing a user-friendly background generator." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "8a51d2bc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 21.1 s, sys: 1.47 s, total: 22.6 s\n", + "Wall time: 22.8 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "grb_data.binned_data = Histogram.concatenate(Axis([grb_start_time, grb_stop_time], label = 'Time'), [grb_data.binned_data.project('Em', 'Phi', 'PsiChi')])\n", + "bkg_data.binned_data = Histogram.concatenate(Axis([grb_start_time, grb_stop_time], label = 'Time'), [bkg_data.binned_data.project('Em', 'Phi', 'PsiChi')/ratio_bkg_to_grbdata])" + ] + }, + { + "cell_type": "markdown", + "id": "96a87ccd", + "metadata": {}, + "source": [ + "### (View the events in Compton Data Space)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "83d37c4e-cb5d-4a50-9b05-64d74ccfae9a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAJsCAYAAAC23Hq9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOy9d7RsaVnn/33eHSqefO65sXMkNQ3dJMEwMuIgIgrMqCzHmd9CWSOGkdFRDIO4RlAYEB1FVGhHgmtAF6FVmhkaaBiBppuGTtB9b4fb4d5zw8mh8t77fX5/vFV1qupUrv3uCuf9rFXrnlunar/vqdp7v9/3icTMDIPBYDAYDAaNiGFPwGAwGAwGw+RjBIfBYDAYDAbtGMFhMBgMBoNBO0ZwGAwGg8Fg0I4RHAaDwWAwGLRjBIfBYDAYDAbtGMFhMBgMBoNBO0ZwGAwGg8Fg0I4RHAaDwWAwGLRjBIfBYDAYDAbtGMFhMBgMBoNBO0ZwGAwGg8Fg0I497AkYDIbo8H0f29vbyOVyyOVyyOfzyOfz1Z8r/wZBgCAI4Pt+03+FELAsC5ZlNf05Ho8jkUggkUggHo8jmUxWf04kEpiensbU1BRs29yCDIaDgrnaDYYxx/d9rK+vY2VlBSsrK1hdXcXm5ia2t7extbVV928mkxn2dOuYmprCzMzMvsfi4iIOHTpUfSwsLBhxYjCMOWTa0xsMo00QBFhZWcHZs2dx9uxZLC8vV8XFysoKNjY2IKXs/oAMQAoQC0BaICkAFiBp7T3PpB4gEJN6D/aeKz8BEKufSR2Yqfy8kGCSgAjAQgIk1b9CgikArB7mC0AIgfn5+aoQOX78OI4fP44TJ07g+PHjOHToECzL6umYBoMhWozgMBhGhGw2i9OnT+P06dM4c+ZMVVycO3cOnue1f7MEyLNBJQsoWiBPgHwL8ATIFyDPAvzyz+RCxOLdT8y2QXb7xZwLxe6PByDIZABbgh2p/rUDsF3+2QmAmATH1M9sex2jzRzHwdGjR6sC5Iorrqg+kslkT3MzGAx6MILDYIgY3/fx9NNPV8VF5XHhwoXWb5IAlRxQ0YHIW6CSDSrZQIHUv54AKTND6JBjA2XrAV1yFCA1Dm1nILd3APQuOHqBwUqIxCUQC8CuDxnzwfEAHPPAbntBcuTIEVx55ZVVAXLVVVfhsssuMy4agyFijOAwGDQipcSZM2dw8uRJPPzwwzh58iQee+wxlEqlpq+nkg0quEpYFNW/lCWgWCMoZASXrCDQNVfse5oTjvKqACBPgryg/m27WQTnLuqfHwAINREGAwkGJyTY9cAxDzJRhIyXACdo+lbXdXHNNdfg+uuvrz4uueQSCGES9wwGXRjBYTCEyNbWFh588EF897vfxcmTJ3Hq1Clks9n9LwwIohAD5V2IggsqxNS/gQVICS51cKGEgdiziIh0CvLyo3W/Zqv3xZcYQE08CXkB+NQTey+ISiy5LgCArQAyXgLHS5Dxovo3UWoaQ5JMJnHdddfh+uuvx3Oe8xzccMMNmJ6e1j9fg+GAYASHwTAAq6ureOCBB3D//ffj/vvvxxNPPLHvNbFYDN4GgXIxiFwcIhdT7hFQ3eLMvq9/Qa5ZjOnSYwhSrt7xGrCeugjO5QHodcNUIMeuuoAAAEKAwWDXg0wWIZMFcLIIZ55RLO6fzxVXXIHnPve5uOGGG3DDDTdgaWlJ+5wNhknFCA6DoQfW19dxzz334N5778X999+P5eXlfa+hgguRVcJC5OLKRVIbXyElUL7s2PO1z1mkEoBTFhkxF/6xee1jdoI8CXF2pfp/3t0FB71lrvSMIFAlk4UIqHGfMFhZP8oiRKby4Ph+K9ORI0dw44034gUveAFuvvlmzM3N6Z2zwTBBGMFhMLShWCziO9/5Du6++27cfffdePzxx+tfwADlYxDZOKxMAiKbAHkEBE1iB4RQwZdBUGfZCANmrrOOkGNDHFoAAMiZFGTcCXW8sLHXdtXnUvIQrG1oH4/auYvK3xPbPmSqgCCVh0wVwIkiGuNyr7nmGtx88814wQtegOc85zmIxWJ6J24wjDFGcBgMDZw9exZ33nkn7r77btx33337TO2Ui8HaSUDsuBCZmKpjUUOzxV/9UL+rDpWy1YQqmReWBZpOq1+Ng+A4twH2PCAIILd3hz2dpoKEhYRMFyFnSwimcuBEfeCv67p47nOfixe96EV42ctehmPHjkU1XYNhLDCCw3DgkVLi5MmT+OpXv4qvfvWrePLJJ+tf4FkQ23FY23GInbiqbwG0jbcgS1RTSbWJjMpYRDVjNUmNtW1Qwxx4dgrBVA+1OELEevTsPguQLBajCSgNg0p2jB1AThcQzBTAMwVVP6SGK664Ai972cvw0pe+FNdff73JgDEceIzgMBxISqUSvv3tb+OrX/0qvva1r2F9fX3vlwyInRjEVhxiOw7KO93XuBCkrAwRLC7kDmC1qA2ktCzIS+qDIbmZcOn20A3CQWSL4CfO7B1bd6zGEGAwOOFDzhQg5/KgOdVzpsLCwgK+53u+By972ctw0003wXWjDdY1GEYBIzgMBwbf93HPPffgi1/8Iv7lX/4FuVxu75cBQWzFYW0mILYSoKAHwVBenHULDaqIBMtqbskIET66BFgEFgLsdP6biAEqqiBLsbKJYH1T6/xGHbYCyNkCgrk85GwBsPZus+l0Gt/7vd+Ll7/85Xj+859vCpAZDgxGcBgmmiAI8MADD+ALX/gCvvKVr2BnZ2fvlyUL1lYCYqPsKuHeFnGyxF4gqEaqQsOJfmEi1wXP7dWikKlYtfCXKHigQjmTQ0rIp/Zn7BgAJi67XnKQ8wUgtmfhmZmZwfd93/fhB3/wB3HjjTeafjCGicYIDsPEwcw4efIkbr/9dtxxxx317hLPgrWRhLWZBG334CqpIVKhIUj7OL1AM9NAvqDqWeTykJkmRc0MLWEwZCqPYCEPuZAH3L3b7/z8PP7Vv/pX+Df/5t/g2muv3ROaBsOEYASHYWLY3NzE5z//edx22231Bbh8AWsrCbGWhNiNgfoMIYhKaAAV98zoLDicL4DL5djZL9cOqfRUsUc7A2ZUYQ4gp4sI5nOQCwXA2bsVX3nllfiRH/kR/NAP/ZCp9WGYGIzgMIw1vu/jzjvvxOc+9znceeede4F6kmBtp2BtpECbLqh5S43uqASCAvozTkZJaEhGsLWlfu7mNkFkxEefMAIE6RzkUh5yoVhtRmdZFl784hfjR37kR/DiF78YjmM+X8P4YgSHYSw5c+YM/vEf/xGf//znsbm5F6BI2Rjs9SlYWykgP3g2BLlONBknoyI0yhkmwdZWdyKjGcLaq+hp6AkOAjB5kIcKuObVJ/Dwww9XfzczM4NXvvKVeM1rXoPjx48PcZYGQ38YwWEYG4IgwJ133olPf/rT+OY3v7n3C8+CvTkFaz0NUXB77knSWOSpUrhrXx+OMBFitGI0PB9cKkEWCqEetmoZohGqQRGBsGsUXBwEPZ2T7KtgXBn3IA/nESwVAHdPQL/oRS/Cj//4j+PFL36xCTQ1jA1GcBhGnq2tLfzzP/8zbr31Vly8WG59zoDYTcJen4HYSYICqbqstqnx0EpAkOvuFXMqqWqXOnuckGOrhXgIWSe1cMmrViiVtSnCOhBqUYzM8lHrBtv3uwgsVjEXIAGy1d/LhWLTcvdcKrU9ZyvCg1lCzpcgj+Qg50rVEuuHDx/Gj/3Yj+FVr3oV5ueH3yPHYGiHERyGkeXhhx/GJz/5Sdxxxx3wvHL6pS9gb0zDWp+BKJX92Z6376ZN8dj+KP829Su4UASY9QoNSyhxE0EdjbZ4PmSxqIJAo778NQWakuvUi5lOliPJALcXqKHMy7ZVpVe7+VxUOff6OXCxuO88ZN/ba/gX9xEcySM4nK8Gmtq2jR/4gR/AT/7kT+K6667T8JcYDINjBIdhpJBS4s4778THP/5x3H///dXnKReDvTYDaysN4vIO1fNQOX1FoqFMdw87ac4XtHdtJUuAEomhx2nI7R1l3h/2ZU+kLAB9WjxEKlH/RL+WE8l7WTeaICIgEd9XXr4VLGW9+8UrQWbzSiDVzJWJIRcLCI7mwdN7nW2f97zn4Sd/8ifx4he/2JRTN4wURnAYRoJisYjbb78dH//4x/H000+rJxmwNqdgr81A5GsERRCo5mSuo27MfS7iXPLULl9zDw+RThmh0Qay7Y4xHlXBViHszzMIIim5LlLJ3uOCar4zZobc2AJ79Y3jZMpDcDwHOupVM7UuvfRS/ORP/iRe8YpXmC62hpHACA7DUNne3sZnPvMZfOpTn6pmm6RSKRSfcGCvTIO8Gj98EIBSycEHlay6kubDDZCso7wgimRyeGIjCMCFYuiBoLqoCo/KZ5eIRxtQG6XoAAYOSOZSSQnJWquHGyA4lkP8OkI2q4qyzc7O4id+4ifwute9DtPT060OZzBoxwgOw1DY2NjAJz7xCXzmM59BPp8HAFDJhr06C2s1pVq+l4NAKwW3qNFt0g9BoMzTuhAEsqzhB4UGAYKdjPpZDlKEJCJqgkqHbhEqu9d03hrJEqB4PBTRwYViNTOrGmQqAgSH8wiO5YC4ElGJRAKvfe1r8e/+3b8zxcQMQ8EIDkOkrK2t4eMf/zhuvfVWFItFAOX4jJUZWOuqn0ntLlPdmGOD73TLu1cuFAc7TgcoHhusi+ugNAmGrHUbNZrih0pNobDaeicjky7s+dpFBywL5DiDC498vl5IswRLVqXU53MITmTBaSWkYrEYXvOa1+CnfuqnsLi4ONC4BkMvGMFhiISVlRX87//9v/FP//RPKJVLZFM2BufcDMR2HGDUx1IIgojFwll4Ku4T3bEaifjwrBplN1Hby1nuBR2y5w/N8kHleAIiAtpUzhxm07oqmkUHoFxJFB88xoJLpaYWPA4CJTzm8ghOZMBT6hxwXRevetWr8IY3vAGHDx8eeHyDoRNGcBi0sra2ho985CP47Gc/W01tFZkYrOVp1aG1hcs8NLN6BGKD4rHhVgrtJ9MiqvobNZDjqlooPQpIJUyGKDqiyGRpDIrtF2ZwodDSbcgcQM4U4R/fqWa22LaNV7/61fjZn/1ZLCwsDD4Hg6EFRnAYtLC7u4u/+7u/wyc/+cmq60TsxmGdnYLYibXs0ipSidBM6TKT1W7VINcJZXfaL1zyOr+oHVEID2HtpS0PkKZZcUEMi4E/6y4g11G1WgahfEuXO7st070ZDDlVgH9sGzyr/q54PI7Xv/71+Omf/mlMTU0NNgeDoQlGcBhCpVAo4JOf/CT+7u/+DpmMClqkXRf2mRlYu22CPisulDB2srK8gOq0ajh2OEGs/aLJ1K8CEL3B02eJyhk64deBGDtrUo+Q64QS1wGU06E71JgJpgvwT2yBp5TwSKfTeMMb3oDXv/71iMeHeI4bJg4jOAyh4Ps+PvvZz+Jv//Zvsb6+DgCgnAP7zAzEVrylRQNA1cw+cLBlJY6hQ7noQZlUsVEL5/NgyT3HeZBdKduuN3B2qNaOiEQHhNWyQmkvyEy2Y7l+FeNRgH98C5xSr5ufn8d//I//ET/6oz8Ku1WZeIOhB4zgMAwEM+OrX/0qPvCBD+Ds2bMAACpasM/OQKwl2woNIMSsDslNS0KHzVBdKOUGYJFdslKq4mhB0FF4kKP60QzsDugBskRd3Y5IiUB0AKonC4Ug3lhKcCbb0S3EYMjFHPzj2+D4XgGxN7/5zXjJS16yv12AwdADRnAY+ubxxx/Hn/3Zn+Hb3/62esITsJenYa2kQdz5xhRmVgdnc/qtGq4zvF11BFaNlgQBICVksbjP1UKOqxZ+zRaNdgzNxVJJNW4iPEQ6Fc4QmWw4cR0oi47dTFeinIkRLGXgH98BHHVd3XzzzfilX/olXHnllQPPxXAwMYLD0DNbW1u45ZZb8E//9E+QUgKSYF2Ygr08pQp2daB6A+1xkeBsrvWiqzNeY5h9UCKqftkVtQGmwoKIx1ScwYj064is/kmDdYOIQNNT9TEXYZ0rlfPa91Wjt0Ysq+seLQBUFgsz5NZ2V9cMWxL+sW2Iy4rwPA9CCLz61a/GG9/4RszOznY/rsEAIzgMPeB5Hj71qU/hwx/+cDUgVGwmYT81A1HszlLRMv6h4eYnM9mB5xsKgkLbrfbMKImNClJCZrN7mScjIjYqhC46uvwOyLZB0+lwx26kWGouOhoRlrI61dLoCmFGsLnVtVCXbgn+JVuQiyrjLJVK4Wd/9mfxute9Dm6EbjTDeGMEh6ErvvnNb+JP/uRPcObMGQAA5Vw4T85AtMs8aaAqNsrVMKtI1tvXpE/IEuH0bumHURMb5YZgtemzZNvKUjVCVg6gDxdLzaI7SFwGuQ5Ic+8cLhTVfHsJ5iVSn0nDcywleHunp/MsSOXgX75drVp66aWX4i1veQtuuumm7udjOLAYwWFoy9raGt7//vfji1/8onrCs+Ccm4O40D7zpBZybHAQqLRXqJu67uDOQRlaJkqT0uRDpVydlEullqmywwgY7UTbgNIGwRvmZ00xNxL3GxeKwCBBqxUB4vsqkNTzuv4cZOBDLmbhX54BXPWef/2v/zV+8Rd/0RQOM7TFCA5DU4IgwGc+8xl86EMfUl0nGbBWp+EszwA+9RQzQY498gKjFnJsVX476piNUbNqSFmu0trdbpocd6hF0BohKpfFr3yPZSuN7s+YXAcUhRuuWxdLJ4iUeCHRvSuTJSQF8C/ZhjyaB0i5WX7u534OP/7jPw5r2H1wDCOJERyGfZw6dQrvec97cOrUKQCquZr79CJo19JeuXPYDEtskOuq2hcjIjhkNqesAL3eHoQF4TpDzVqpIwhUYCVRpFk+kcR0IARLRy0NcR6cL3ROow0CyGQB/lU71R4t1157LX7t134Nz3jGM8KZl2FiMILDUCWXy+GDH/wgPv3pT6vsk0DAOb8AazUNlMbHQtEvw4rZIMcBYu6emJMScmc38nlUx+7BqtEKEY+XrQtDiO2oaVJX+Uxru9FGxbiKjmrdD96r+SI3tlqPHwRg6UMeySN+IyOTyYCI8NrXvhZvetObkAijR4xhIjCCwwAAuOeee/Dud78bFy5cAABYm2k4Z+eBAibeqgFgeNkoHTqFcjYHlDz9u/NKka+Q29eLVEr/Qi+VVYh9v+25OhTREZF7hXODi8QqlSDTJkW+uFBsaYlj3wPbPn7gvz0fn//85wEAR48exW/8xm+YoFIDACM4DjyZTAYf+MAH8E//9E8AACrZcM4swdqJd7yBTwpDy0bpoS05VxrR6QgorQSGlpvshY1IJvUUTCvHZEB2+ZmI8kIategYl0DSWiqptS0qi6pCe4GygtTEZ1X68MjZIryrd4C4+l5e/epX4xd+4ReQTuu3+BhGFyM4DjB33XUX3v3ud2N1dRUAYK3NwDm/API77xYnhaHFbFTcKL0SSHCxBBSLoVg9uFRShaxCtmzUQSqDhSwrHOFRCf7sJxDZiI7u6SA61IAMzuXrMs8qpfDZkvAvz6igUgCHDh3Cr//6r+MlL3lJOPMzjB1GcBxAdnd38ed//uf43Oc+BwCgYtmqkU3u+b+N2NA0Zrk8+qBNufwACAIV3NknXCjqFRqNVKqT9is6yiXWB7bwCKrJYIlOeIxd9gpQH9PRBvb3+u3InUxd/x05U1LWjoT6/w//8A/jV37lVzA1NRXOHA1jgxEcB4xvfetbeOc736msGly2alxYAEmhdrvAwRAbwyhX3oMLpWsCCfh+z8KDSyVtLpS29NO2vkkQaCgMoXbI2AeSdjN2WXzI7Z09t4tgBJdlIE/kwcxYWlrC7/zO7+B5z3teOHM0jAVGcBwQSqUSPvShD+ETn/gEmBlUdOA8vQQrpyLIK6b1g8DQs1E0wdmccrd0et2wxEYNXQWTRmBtm9jslTCtHEDPogNA1d0S7O5W06vlVAnetcraQUT4qZ/6KbzxjW805dEPCEZwHACeeOIJ/Pf//t/x2GOPAQCs9Wk45xZVozUpR6/glEbGIUB0UHgn0zy4tNL1tTACZeSJIBKJ/WXRyxknkZ2Tw4rpiKoMelhWDqBt9kongrWNakApWxL+FbuQR9R5ePXVV+O//bf/hiuuuCK8uRpGEiM4Jhhmxqc+9Sl84AMfQKlUAnwL7plDsHbKuysjNqIZV7NloymSwZnsnivC80ZDaDRAdiWOprzgB0H0VWknOZA0bEtHN4GkLeB8HkFZDIMZwXwB/jU7gMNwXRf/6T/9J7z2ta+FGKG+PIZwMYJjQtnc3MQ73/lO3HXXXQAAsZOEe2YJ5Jd7KBwwsQEAIpXQk57ZhqGIjQqBBHseOJNVHV5HFLLtanOxoZ2PQxIdYnpq8ADiToyK6GAGF5U7jz0f7JXATgDvmh3wvHIFvuhFL8Lv/M7vYHZ2Nrz5GkYGIzgmkPvuuw+///u/j/X1dUASnHMLsNZn6pqtHaSYDaBswo64zwe5LhB2u/Qe4UIRcmtbicswzeshIZJJUCoFCFLzHOY5OQTRQbatMld0By+XvL2g8DDoJ6YD2BMdvg+URVBQyEMeycO/MgMIxqFDh/C2t70Nz33uc8Obr2EkMIJjgpBS4mMf+xj+5m/+BlJKUMGF++RhiGL9QjtKYkNHWqbyM+8tGsPo/DpUy0aFkodgY3Pvu2Y5UqJDxOMQhxb3Fls/QLCyNuRJDUF0WAI0M13/pB/sxbOERG3qaiiEITqAsqU1QGBl4F+/DU4GsCwLb3zjG/GGN7zBuFgmCCM4JoStrS38wR/8Ae6++24AgLUxBWf5kAoMrTCkGhuR1npohAhk790URQS7yZEQG20W79oaCUNBWLAvOdb8d40iaUhEkb1Clthz8fW7ePcAe17LLCYlsvq4LgaY974S6VJCenl8/+8+p1oa3bhYJgsjOCaABx54AL//+7+vamtIgnP2EOzNhh2TrpgNrj/eKO2gAdUyvRMiEa+/2ZLoX5QIC5SM1pqyj5KHYG2j7UuGIToqlifryFL7z7dYgtzaHm580YA1OqgxvsGyOp9TUYiOUqljB9jqdCxRZylsOv8BMleAJqIDgMznECxk4F+1CwjG4uIi3va2t+HGG2/sawzD6GAExxjDzPj4xz+Ov/7rv0YQBKCCA/epIxCFhliFMMUGS3Dt7nOYO+VONFg3un6bsxfECABw7NYvbnzvsOM2iiUEm1tdWwiiEh5k27AWF7q2/HChCN7eGW4QaY+l2OtERg/nTM0BBlq8u6UX0dEIWTUCpNY6M4joKBT3b1SkRCAy8K7ZACd9WJaFX/iFX8C//bf/dr+YM4wNRnCMKYVCAe9+97vxhS98AUClu+tSvQsFCEVsqGqB5fePy+kiLLVghACVBQQ5dtsFaNhio99FWrfo6FVsVKgGvA7LvdKF6KguwINYxeoOGI3okJnBs5YaxQc5Tn/zbozpqPuVh9LxFchDqh/LK17xCvz6r/864vEhWxENfWEExxhy4cIF/M7v/A4effRRgAFneXFfFkqFfgNEx1JkVAhRbNQft9yDQ4h9QagUj+tPb2zHoG6IiuUqZOFhHV4CCdG/EOvCPaSVJkGk1T4s5d+HTgSig/0AHHJdlooAoUSijwm1ER2Bj2BxG/KKHQRBgGuuuQbveMc7cOTIkUGnbIgYIzjGjG9/+9v4vd/7PWxvb6tCXk8egZVtfoH3KjaGGtwZIo1ZKlooLzTkuirlNpEArCFF04cYaFmpBhkG9tEj4Vh8hpy9UrFsUYTWq76tBT2gQ3QADa4l1+k+LoUZXCi0FM1BMovEzTlsb29jZmYGb3/723HTTTeFMGNDVBjBMSYwMz75yU/i/e9/v4rXyMXgPnkEwmtyMfeQjTL0jIWw0WXd6ALr8CH1A1F0TeEkI7iwEuohBxYdRLAPL4WbqTNkS8fQisaNqehohqhU+e3wNzULJK0gHQ+X/XgMjzzyiInrGEOM4BgDSqUS/viP/xi33XYbgHLK69lDIG6xo/a81qb1mqySUcsoGZg+g0RDn0Y8ptJv+0017AEuFCE3tsI/rl8OKuzl9kAqs0NMT4efqeMHkJtb0Zc9r2EookNzUzP2A6BYRFTLABEBMRXU3q5aabsYEyYJ78QqgvldAMCP/MiP4Nd+7dfgaM7wMQyOERwjzs7ODn73d38X9913n4rXOLcIa615vAaA1tYNTT76kWKI1o1miFRCNW3T1L+FcwUVVKmRXqwd1tyc3i6oJU+1PB+W6BCkhGSU2LaKgdFI1KKjArlOy1TgTpk0DEawuA3v2BpAwPOe9zz8wR/8AaampnRO2TAgRnCMMGfPnsVv/uZv4syZM0Ag4D51GNZumxteE7FR3akC4xf82SPd1NwYBpWdMYW4WHE2B7mbiSSDoxvRYS0uRNMYb8iig+KxSGM5oqjNAbR3Y+immoJu26CawOtu0nflTA7iGZvI5/O49NJL8a53vQvHjx/XOV3DABjBMaI8+OCD+O3f/m1sb2+DSjbcJ47ur6/RQG2Q6MTFZnQgkkDRQShnO1A6NXBPlyjFRnXMNqLDOnQo2mJnfoBgbX1o6bKRiw5h1S3EOmApgXwhcitHLVSOfaJ4XLlamFV11A6ig5Mepl+ax8rKCmZmZvCOd7wDN9xwQ0SzNvSCERwjyBe+8AX84R/+ITzPg8jH4Z4+stfltQVVsTFi/TKiYFQtG00px3RYhxb7ymoZZm2KZllMkYuNChqCZbtlGI0AI3GtZHNDFRy1EJGymHUpOuAEKF55ATKeh+M4eOtb34of+qEfimayhq4xgmOEYGZ85CMfwS233AIAsHbScJ5cah0cWnlfqTSy3UCjYKwERw1kCYjFhZ6yWjibg9ze1TyzNuNXRAcRrPm5UN1EvSIvrg7PDTCBVg5gtEQHUA4sjcVUjEmn79oGSpetIEjvAAB+/ud/Hj/zMz9jMlhGCCM4RoQgCPCnf/qn+MxnPgMAsNfmYS/PtQ4OBapVRGWxOPHxGa0YeVdKF4hEHJRMAI7TVngMW2xU5xEEsGam9QaIdoNkyI3Nvst0D0rkWSsRWDnADJnN6R2jT4iosxiyLfjHNuDNrQIAXve61+GXf/mXTcfZEcEIjhGgVCrhHe94B+644w6ViXLhMOyVNtHWNeXKJ6VYV1+MSBpsWIh0qvUiPkQXQiPk2BCHFoY9DUWxhGB9cyhDR+5aEVbbVNJQaFPxc9hUS6lLbis8yLbhL+2gdOgcAOAHf/AH8du//dtwNacYGzpjBMeQyeVy+N3f/V3cc889ABPcs0dhbbSJ9vc8dbEdYBcKgIkTGxVEIq4yWhqEB29uQ+ajKdDUiZESHJLB2ztD+2xEOhVdkTcgmo6yUoJzea1j9AsRqcZ4snwPbLF8kSUQLBYQnDgH3/dx88034w/+4A+QTEaQSWVoiREcQ2Rrawu/8Ru/gZMnTyKRSEA+vAix3WLHVBEalWDBAxgcWseI1dwIlXLTMEqlQMk45MYWuFAc9qyqjJTgAJRrZWt7KJ8RWSKadODaMXXv1LsN1BwSdbEzklveB4kIcjEAXXUe+Xwe119/Pd71rndhbm4uopkaGjGOrSFx4cIF/OIv/iJOnjyJmZkZyO8sNRcbUqouoIE0YqMC0eSKDUDdRD1/bxENDk56c18Iqu9cGiHDCFplT7MQKFeMrdbHGDVqa7AIUq6tJnNlZog1C/zIcczMzODkyZN485vfjPPnz0c4WUMtRnAMgaeffhq/+Iu/iDNnzoA8G8V75iEyDWZSKZXYaLLLONBiAxj7INFeCFZWIXM5FavDw8nIGFkkA4EESh4okRia6JCZbLRpyszRBIkPqxlhByou5ToqdW4a4luYGWJboPTAEZDnYHl5Gb/8y7+Ms2fPRjhjQ4XRPKMmmCeffBK/8iu/gtXVVVDRRezJy0G5ht16WWg0NWmaRWeyrRttYN8H+x44CFRht4OI5L2H74+G9UcyuBitOyeKTQc5ztBEXEeaCTyh4jsa58yBBOUE4svXgEoxrKys4Jd/+Zfx5JNPRjNXQxUTwxEhjz/+ON7ylrdga2sLVIgh/vSloBLtmWUr2Se1sRo1jFL10H21Lyq9WsKGZf1ubpJjN5rQtqw4UdXaE+VnMpQYjso1wqyukybIza2h1eWAIIhYTAU0RgGRCi6uSfdkDems7PugRLw+M6bkjUStjmoAaTPKQrRyPlTreTgB8kdPg2MFzM7O4n3vex+uuuqqqKZ84DGCIyJOnTqFX/u1X8POzg5EPo7Y05eCvL0Lgkvl9NY2i/bAbcP7gGKx5oVzLAuozW1v16F2UGqsOtWAOSmHt7hESNffeSWuJQJ3U6SCwy8L7BYio5ahCg5ElyZLiQQAFcvBNV1VdQV5ivnZemEjZfP7lFeK/POnTh2ZK9WXA6mqlyYTYCtA4dhpyFge09PTeO9734vrrrsuukkfYIzgiICHHnoIv/7rv45MJgORSyB25pL9YqODdSAq64ZINakc2aloThBE0kyLXGdvLo0LEPNQW5frol+RqbP6qnbBUXGX9Pq2IQsOLVYOoqrAqB2nAm/vQGb1prCSJSDmZju/sOE8Zd8HF/XXCeqq4mu5blGlZDqLAIWjpyHjOaTTabz73e/Gs5/9bO1zPegYwaGZBx98EP/1v/5X5HK5PbHhi71y5F3cILWJDWGpug91z/WxQx6G4OhANyJuHBjIqqWpVolWwTHALn3oggPlOir9CI4aKyLFYkCXZcx5J6OCVjVjLcwNXnBMYxXTrsvMl+9TlEqCKUDh6BOQiSwSiQTe85734DnPeY6W+RkURnBo5KGHHsJb3vIW5PN5iGxSiQ0WaoEudNEboEwYgoNsGywZIh4Ltxxzi0ya0ClHofctiCrBhWMmQkJzowkLJCgUl0uogkNyNSNr4EONgODoya1SG4PTZwM8zhUgd3a0n9ddWzl6gAtF5S7tUDm0Gzq6VmrxfCARBwmhRMeRJyGTGaRSKbzvfe/D9ddfP9BcDK0xgkMTjzzyCH71V39VuVFqxAaXvJ7iHQYRGyIeVwt0Oa9eS2R7RIKjF+tGW8o1DFoF5o4aocfthCA8QhEclfM/xCyTURAcQOceK9VKobYdSuppFIXhdAiOCux5VRfaIN9fT6JDMijmAkRgksq9kshiamoKf/Inf4Jrrrmm73kYWmMEhwZOnz6N//yf/zO2t7eVG+XpS5XYKBR7Xpx77ZVCtg1RLt9LyYS6oHSVKpblAmQR7K72BakOitzLflGibjQvA22BwgMEmQ4kODQIjQqjIjjIsVVmR91zzp4ICbvra7GEYHNL7zksCCKZ1BMUW65sCqAa5An0Lj7aZq00f0O5+SMpS8cxFdMxMzOD//k//yeuuOKKnsY3dGZEk6zHlzNnzuC//Jf/osRGPr5n2ehHbPjdv95amIe1uAAxNwdKJVW5ZSK1WOnsMxHFQi1EuGKjckzLUqmFtg2KKp1xVGDeq+vRw3nWF5JVtokfKKExCrUzNFIXz2TbKugz5iqhoaPFfMzV34Jd8l4mXdgQKWsPoCwUtddlk2JerWhaEKz9G8C5PNgPQGwhfv5KiEIC29vbeMtb3oKnn366jz/G0A4jOELk3Llz+NVf/VVsbGyACjFl2SgyZCbbn9uhw85WJJOwDi/BOrykShE7DqjJDU2XEWtUey30TFl8kOscSOGhdpglPcXESmVzeUhxGuMCOQ4onVIWgSiKZ0XQfp1LHjgfYVM3QXvFvFyn+8DQXnBscDaLYGMTFAglOopxbGxs4Fd/9VexvLwc/pgHGONSCYmVlRX80i/9Ei5cuAAquog/dRmogL67WDZ1pZSDzMiyYC3Od3UcnRHsUTTLIksAmrtj1hFRxk23DKX2SmW32cLd0pVLxQ8iFxiRulQE1e+8HUd1jq1FxwLZhuDcRe1jiERcW7M6lrK7dOg2DduAGhdsL2OXs2doZhqwJfLHHwe7BRw5cgR/8Rd/gcXFxZ6OZ2iOERwhsLu7i1/6pV/CE088ASo5SmzkqX+x0bjICEvd5KfSPbWm1tpmOqpUWMcON6umE0ZwVGklPFoKDlnu8TEkl4luwVG7w6ZEvPO1GLHgiCR41C1bbjRYVLhcabmn870cf9W4jPUUQFpG7mRU/M1UGuwEKBx7DOyWcOWVV+LP/uzPMDU11dPxDPsxLpUBKRaLeOtb36rEhmcj9vhxINe/ZaOxlLdIpWDNTMOan+tJbADQGrsRSS+Pij/XMBRUjIevvut2PXwqTdRGpbdJSJAlIFKJvcf0VPXR87UYAWJ2RvsYXPL6KsrWDSRE70HMllXtn1Jnceqj5xS5DtjzwbsZUMZH/NyVmJ+fx+nTp/Fbv/VbKEbcL2cSMYJjAHzfx9vf/nY8+OCDQCAQe+IYkJED7TIq/Uis6WlYc3Pq5hZBueSeGOGsDoMGpKpjsi+4tBoMOllCQ0ynIabToKkp1YW2/DAoOF9Q1ohRoiI8ykGm/Vi6KB6rig6ZzQObJeTuW0AqlcIDDzyAt7/97fAPeqfuATGCo0+YGe9973vxta99Da7rIvbUMWAbgy3ELCEScViHDoGSiYGEBpdK+oJFI1pcqiZ9w/CpCS4FsFd+fNQWnj4gx4aYnak+yHXVQ0dGiU4EQczPah+GPX2p8GSJwSqaVoJMbbtaVbSn8WuCxrnkgdZ8BI8cgeu6+NrXvob3vOc9I9G4blwxd/Q+ueWWW/DZz34WQgjg0UXQKgHo/0QkS4DSU9W88IEZ9x2noEgi7w29w6WSNrO6dmr8+mJ2Zs8MrzutNCJ0xFZESljfgyBA9LG8WRYoHqtaqdnzQRdtkDgKcfwMbrvtNszPz+NNb3pTOPM8YIz52TkcPv3pT+MjH/kIAMA+swhxoc+dkCDlJ55Oq0AsxwnlguOSxq6NnmfcKYaxgiyhHvEYrPm56oPKVXgnRWxEidza1hbMPOz4GCKqb5Dn+RAXLNgXjgIAPvaxj+HWW28d1vTGGiM4euTOO+/En/7pnwIAnIsLEGf7dHsIqk8xi6Ct+DihvZDRONAQQGxoD7l7HXIrAoPiMeUqmZvdn7Y6iQihp17FQcKx1blUKzpKHqzzCTjrSwCAP/mTP8Hdd989rBmOLWaV64HHH38cb3/72yGlhLUxDfF0H/nogtRNMBGvy8AIy19cTS3TgZTR+S9HMAsgathYknqCUkmIdAoilQClU+rndOpgWTBsC5TUUyejEW0p98Be5dEhQa6zb9PDhSKss1Owd+YQBAHe9ra34fHHHx/SDMcTIzi6ZH19Hb/5m7+pOr9mErBPz4B69FqIRFxZNVynPt0zzItLsj53ypg0PDMcPLhUAufzyqqRSAzdLH8QkBrTREchFqVp0H6hBPv0LEQ+hVwuh7e+9a1YX1+PfnJjyvC/1TGgUCjgt3/7t7GysgIqOnAemQf1aEQQibhqLNSkrkRoFxczuKCxb0pEGJOwoSuYwdmcepTKHZiNC2rPgjruDDtLzbKau+GKPtxHFnDJJZfg4sWL+K3f+i0UJuC+GwVGcHRASol3vvOdePjhhzE9PQ3n4QWQ1/3HRq4DMZ1u2cUwzJ2YSdcyTDSV1Nx8HjKThczmwLy/yuSBR9QHPWpF42c/EnFcrT7LAmPl/zCmp6dx8uRJvOMd74CcgBRx3RjB0YFbbrkFX/7ylwEmFL4Rgyh2JxDIUsFbbWtphH1B6XR3SDlSJb8NBweWUj08T4mMEWhBbwAgWWWr6GQERIdoERNDGULhnhTAhK985Su45ZZbIp7Z+GEERxu+9KUv4aMf/SgAwDk9B7HbnZmSHFu1iO9UuMuywrugJsSdYjBUYD8Ae55qIZ7LT053YkN30Oi0NmjVRVps2nDOHAIAfPSjH8VXvvKVKKc1dhjB0YLHH38cf/RHfwQAsM5NwVrrnFJHjl0OWpsA/2kjUVUXjaKVdyukjKyKqqEFzOBCURVeKhbBxSZdk8eFIVpiKJGI5Fri8vc10QhqW/XYOh+DtTINAHjnO9+J06dPRzWzscN0i23C7u4u3vSmN2F5eRliOwbn5CEQ2lsiyBKq30K3vlNhDV7GtwbO5/s2NZPrtA/Qkoxgba3PmTWMZbd3SUXeHbYWKUdqF81BAMjRE0Bk27AOhd+um/P5pp0/e0GkkiNhhgegKuUOsTy6XNtofz6XawENPlD7dvEAIKan+vteuJx1N+zrQDK4WGzpVmYwnvULS/j2t7+N48eP46//+q9Nd9kmGMHRQBAEeOtb34q77roLVLDgfvcwyG9z0xCkfHy9BmkJK9ReDTKT7ep1FI833/m0uxkww79wsc+ZdTMpqgoRcp3hlTQ3gqMrwhYcXCgCQRBK8KcRHHtUBUflHtWMMIJLPb9zd+wm44jp6a7ugeyPxnXAJa+tNYftAHOvkrhw4QJe9KIX4Y/+6I9gjYhLaFQwLpUG/uZv/gZ33XUXIAnOo4udxUY61ftFS6StMRQR1T1EpRhS+UG2tVfOufYxTMpNwdgrgSxLBdu6jmneNskwqyDQTBbs+ybTJAwkAyWv+qBEXHW+rdyjmj2inFvDQ25tI1jbqD44m9sLEC4/RglynZaxHABAvoWNLwKxWAx33XUXPvShD0U4u/HA3NFr+MpXvlIfJJpzm79QlBf0EWpZXVmcdbSyH5ofXVDrmhySm8aVmIVrdGEpq5lUJsC5C1plnY1a47yKeBkwS07mC0CNpYQsAaRTKhYmSnHUDssCEbW0hIqMg+ChNHBVEX/3d3+H6667Dj/wAz8Q7RxHGONSKXPmzBn83M/9HPL5PKzzaThPzzV/oSC1C4/F+r8IbHuwYl/M9WWFE3Gtlfn88xe0HbsRa3q6Zc2SrpCsepA00FV8i3GpdEXPLhUu+/hLnnZBOJYuFcnN61kMGMDMnhdZIbRO7oZBoXhszxVMYqgChBwHnMu3diMJgn/pFvzDO0ilUvjQhz6E48ePRzvJEcW4VAAUi0W8/e1vRz6fB+3EYD892/K1ZFnKmtDvCU/UtziQmSzk5haCzS0EOzvVx9i3og8TUU6la3iQbdc/hpkNc4BQGScFcLFkrE8V/KDh4atruPFh2CMIwIFUD98HvPJjCHAgQckERKqFhVsyrDMzEJkYstksfu/3fg+l0hhnW4WIuesCeP/7349HH30U8ATcx+ZbZqRUe6BEqK7ZDxCsriFYXYPc3YUsFMA1PQzE1JSJdeiGRt91ExFiCA8uFJVP3vcPdqEuyfsFhpT1D0NHlLVv77OqVJjlkhe9+JCB2jjG4y1FBwWA88QS4As88sgj+Iu/+Ivo5jfCHHjB8eUvfxmf+cxnAADO4/Mgr0UJ8nL2BA1YjKZjKfNy+eZKZkiwuqpu2i38tmGm1racz6TSIELIsavBq+yVmrpmDO056IGg7AeqkVyppDYGvm8ERhi0iQ+pEx8RWYbY8/ZERyLedBNKOcB9SrWz/9SnPqUqVh9wDrTgWF5exrve9S4A5eJe2/vVaqWYVzVVU5d1gxnsB5A7u/AvXFRpqCNwww7WouuEKJLJweI3QoZ9v06AcBAoEVJ5GKqwlGqxHedCXd1Ssylgz9sTGKXSSMXckONEFs/SKYMjKjhQcVhc8vS2eqicA0SgVBLW/FzTv9/aTuANb3gDAOBd73oXlpeX9c1pDDiwgqNUKuHtb387stksaNeFfWZm32uaFqEaJK9a7H8vl0rK/JzLI1hdhczl+j++QS8yqFqb2PeN+ECN0MjlJzfzhLk+XdPzqo9R2BQYmsO+vyc8NIiPRquzmJnel1XHno9P/frXIbJxZLNZvO1tbzvQ8RwHVnD81V/9FU6dOgX4Au5jC/viNpqJjUEDDWvfz54HubOLYGMTweamCv7s9XiOO/wWzgeYWvHBvgcOgj0ryITDUqodfb4wkUKD/aDm4SvXSOVhGA59ukuqGwTPD93l0lgrREyl95cm8AK4Tx0BfIFHH30UH/zgB0OdwzhxIAXHN7/5TfzDP/wDgHLcRql+0W5ZXjuEqnEsJYKNTcitbchsdqAdEjl2qO3tDQPArMzpVSuIB/ZHJ8U2TFiy6nMSQZprlFStNZXKlpXHBP2N48ygwcdcKZMelvDgJpaTcrHFRtFBOYZ75jAA4BOf+AS+9a1vDT7+GHLgBMfOzg7+8A//EABgXUzD2qqP29DWy8O2EaxvIlhdVzX5zU5psqn6+BtiQCYBlhOTeVLnHvH9PZFhmFgqwkNbnEcT0cHMsHZSsNb2mrzt7u6GP/aIc6AEBzPjve99L9bW1kB5G/bT9XEb7cRGy4qX3YxbKCJYWVWZD+ZmdnCRgcmAGSYVEViTSVIbAGo4eLDvDyY6ZNC8BDupthfVdUMy4Hlwzi+Cig5WV1fxnve8Z6IshN1woATH7bffjjvuuANgwHl8AST3/nwtlg3Ph9zJKCWt4cTSXTuC/UCZzw2hU5sBc9ADT7XSmFHieUb06yKKjBgdacWDXntt7pFieqoqOpgZ5APuU4dhWRbuuOMO3H777YONPWYcGMFx4cIFvO997wMA2GenIbJ7fVI6iY2eF3ZPRUdXSt/q8OWT44JSLTpAhgTv7pqbcwRUA08PUNCpVmqzSnx/T2gYtKLKB+gVHTpc0QO7BzvE+YjpKfXZlPs/iXwcdFZZ19/3vvfh/Pnzg40/RhwIwREEAd7xjndUU2Ctc9PV34Vq2QgCcKEIWSxq7StgmFAagk6F6ZjbE2SJavnrakbJATNZG0aTSkwHMwNSwl6Zq6bKvvOd74Q8IAXhDoTg+OQnP4n7778fCEi5UsopsN2IDbK6bBQUBJD5gv6CM4aDATPgOBBzc7AW5mHNtWgmeMAhor3S9JZlgj4NQ4E7idtKIKnrAswgEJynDyORSOD++++vVruedCZecJw7dw4f+tCHAAD207MQxXIb90pflBCQmaxynzQRGspEbgSIoT/ItkCuC4rHYB1eUt10DQDK17Bj75WnNxj6ZOAu0d3c48uiA0SAlBAlB/6jKQCqLtS5c+cGm8MYMNGCg5nx7ne/G4VCAWInBmtFfbnk2HulyttAlmgrSjibg9zJaKtk1w7T7fTgQUKAUknYR4/APnpE7epHpRV7RJBtqzLaA2SNGcYYySPbj6arOCEiFdNRLoNurc9AZOLI5/P4H//jf0x81spEr1r//M//jG9/+9uAJNinVRfYUGI2gkB1whxWLQIiiLnZ4YxtGBmsQ4uwlg6pAGLHnUjxQUTqYYlyA8XJ+xsNvTEJNYwokQCkVK6VM0uAJHzrW9/CP//zPw97alqZWMGxsrKC97///QAA+8wMRNHuXWzQ/o+HC0XIbH5iCh8ZxhsSAtbivHrMzqoGeBNARWTAsdVDRzE+gyFkmtbkaAFZlspaKbmwz88DAN7//vfj4sWLuqY3dCZScFQKfOVyOZWVciGtdkY93LSI9vuFuRIU2vVETH0FQ3RQPAYxMw1rdgbW7MxYig+yxJ4r04gMQ5SEUQm4h2NQMlGtPmyvzYKyMeRyObz3ve+dWNfKRAqO22+/HXfeeScgAeeJsitlgPRCLhSVC8Xrw5Q3oSeOYXShRAKUSEBMT8FaXFDulhGnLtPEsozrxBA5kVuty9VI4XkgENwzh+G6Lr7xjW/gC1/4QrRziYiJExy7u7v48z//cwCAvTwDkS8HmHURJNoMLpSbVBkXimHcIAI5DqyFOdhHDo9kjEddbIYRGYaDhrDU2hIEEEUX//7f/3sAyrUyib1WJk5wfPCDH8TW1hYoZ8M6P9W/2LAsJTQGTZcaMaoVGLt4QIjqzrOfxygucAcSIoAI9pHDsA4dAoQ19O+GiEJNTTeMBlVXdDePSaRcQr9byLYgptPKeh4E+Lv//GVceuml2NjYqJZzmCQmqozhww8/jFtvvRUA4Dw9D2H3JzbIEpCZ7MDzGVYfEpaypS+Rc/muXUNifhaioc1yT/PIFcDZ7j9HU1WzhkrQZNiHtS3Yhw+B83lVqK4YXUVcqogcx3zPkdGjZXbQDBBKJdGtlOBCsaXLuS/3dRhIHlwMlRsEkt2bmGbPB8HGhTt84CrgM5/5DF75ylfi+uuvH2w+I8TEXPlBEOCP//iPwcwQq0lYmQTg9L57ItcBwjrZI6p4qC7cvRsLl3u5DBtKxkHJeNev50IR6LQAHpAdMbmuSp3TdfxEAlYiUU7vDiB7EIZ9jWcJlfU1qTvbIcB+AHil9q8ZYVcwtdvMWPX3Ly6Voql1FASAGHBZlAx4RTBi3YkOYYEcW923PR9WJglrM41gLoP3vve9+Mu//EtYE3LfmxjB8Y//+I84deoU4BOcs3N9LUzkOiDHQbCT0TDDEGGus8BEdjHqRnLHGyS1+jt7zEIyKCiVBDGDXBdcLELmcuEev2K1MkKjL1hKcC7f/JdB0NESMEj82jBpLOxGlti7xwkCSIxuPQ5BYJ+BbBaYSoM6fP5kW4Bt732Xngfn3CKC6RxOnTqFW2+9Fa997WsjmLh+JkJwbGxs4IMf/CCAcs0NxHq6yMgSQCymTL5jEndwUJvDtUwXC7ip+ZiIjAm/E0SgeAwUc0GpFOTm5uCmdSM0eoMZcmu7+a9G2EoRGZYFVPYT5f45qLR9byXIhgx7PrC9AxYCYqZ9SwJKJkC+snBwIEF5Aef8ArwTq/jgBz+I7//+78fCwkJEM9fH+EnfJnzgAx9AJpMBZRzYW3M9iw1KJJQKJTJprBMGM1eDf2sfobnNJgkikG3BWlzoO6vFZJ00gbn6YCkRbGzuf2xuVTvdNj4MTSBSpf6FgEglqw+KjVYKOAcS7PmQm1sdm7vVXm8cSFgXEqBcDNlsFn/913+tf7IRMPaC46GHHsL//b//F2AVKEqih+JeZbFRS6tdhmGyaCZEAKgMjsrjoFKb1bK40FXGkck6KVNZOMqfFxeKCNY3qw+5sbXXe6nxYeiPms+cHAcinYJIp9T9vVwaP/IpNfT74UBC7mbaViKlhmtH1eZQVo3Pfe5zKmRgzBlrwcHM1ZobYj0Fq5jq+r3NxEaYcBhV6wyRwoGENTdTfYh4HBSLVR8HUYSQ46ieLVNTTUVHVWgcVLdVrUAVlkoJd1QsGCwrlGw3Q39QIgFKJYFEXH0vXQgPZn3ij0seOJNtKToolazLTONAQuw6sDbSAIA/+7M/G/sKpGMtOL70pS/hO9/5DhAQ3PMLXbtSyLZB8e6zJ/oiogwVgz4olazulkQ6BSudgkgmqw+K9Z8yPG5QKglrZhpiamrvuUqvk4OEbdc9yLbqHuMSA3aQICFURkysHKfUqdOwxnYUFdHRyr3SuAnmQMI5M4N4PI4HHngAd9xxh7a5RcHYCo5isYi//Mu/BADYF2dAsjvfHdm28vM1uTFwPj/2CtKgEccGJeLVh0gmIaamqo9JhxIJJbzm5/bKkE86wqpaLMhxqnEDlYdhfCC7/F26Lige7yw8Bh3PdZvGMXHJg9zZbSo6mqYKFwT8J5QQ+cu//EsUI6ydEzZje8X8/d//PS5evAgqWbBXZrt6D1mipdgAylHFxpdq6BZBVV8tuQ6subnqY5KtH+RMdpv4OoFRsVqMUQaboTMV8VEJNtWCaB0/wp7fU7ygdS6FQ4cO4cKFC/j7v//7sGYYOWMpONbX1/Gxj30MAGCfXwRRZ7NuNWbD3DQMuqgp2yzSKVgL8+oxN2cWrFGk8p0IS+16yw8jMA4INd+zSKdUlkuE3zkHEnJ7Z5+lQ8zP7nst+YStbyhXz8c+9jGsra1FMcXQGUvBccsttyCfz4MyLqytdMfX6w4QrcO0pDc0IgjW/Bys+TkV+1HpNXMAg1CHTm1GQyXAs8cS1IYJhUgFmTpuOK3qu4A9v2P2SgWxkQRlY8jn8/hf/+t/RTC78Bk7wfHUU0/htttuAwA45w+BOlTu7zZAlP1gsJOMJTgIwL4/uhXwDEOHEnGImWmImWlYM9MHOgMmMipZJDUZJOQ4xoJhaI7vQ2bzqrjioPV6nM5xIo3ZK9XMrwZIAs6ZWQDAbbfdhjNnzgw2tyEwdoLjlltugZQSYjsFK9featEuQHQfxeJARXY4CExmiqE3yq6XagZMSmXBGEKAaH8miQnyNPQAlzzV4HCAvlTVInhdjFXNXiECJZpvksW2C7GdRBAEuOWWW/qe17AYqyvw1KlT+PKXv6yKfF2Yb/vansTGALDvgb2SqVBqGAzHVuXFE3FY09Ow5maBFjcdQ2u2f/CaspvENpkkhlDgQhGczWmvTlzNXumAfWYaYFUWYtyKgY3V1Vjpl2JtpiEKrbMAOmWjhIERGuFDybhpUQ+o2ha2DTmVgFyag1zqrVz/gaHsKik953JcfN11uPi665BfECbgsww5tjlvQoIDCZkvqEJuGjMZq2XQ2yCyDsSasu5/6EMf0jYXHYzN3f2+++7D3XffDTBgX2zdxEZ7gChLsOQDITTkxhaspUXABNUNh5pFUx6aVU8VPdBuLrKgtlGEkknAsXHulcfQGMJF/uRfl10Tseg6EJsFqTp1i3S5qrWG9HAOJJDLQ6QSkNnmjens5VkER0q46667cN999+HGG28MfR46GAv5y8z4q7/6KwCAtTYNUWoRiCNlX2KDpexcirwmKNTEahiGBcccyMUZcDoJxFz1OABQPA6+5Aj4kiNYffklOPcj+8WGwRAVMpOFzJWFfweLR2OPlG5gz4fMF1oKGlG0wWeVlf+v/uqvxqZg5VhI0jvvvBPf/e53AUlwVlrHbvTzxQIAfL9tYJAJCDWMGpyKgwGAGZRV5z0VPWDCMqS8Z1wKdgS8lI2dy8fidmU4KEiGzOZBjl3ONGsuDigRB3uZ0Id3zs8Clwf47ne/i2984xt4yUteEvoYYTPyVzAzV3OO7YtTIL/FlD0PNDsT8uBly8eYqEfDAYQInC5b9WKusvLtZIEu8vpHmeCaE8gdTSB7RIAtY8owjC6qQrUEhGiZXdIXkkGWAAs0taKQZ8F73AJOAB/+8Ifx4he/eCidcXth5F0qd999t4rEDQj22lzzFwUBOJDhmpVYKvfJiIoN9vtP1TJMJuxYyuUyNw2emx72dPpjbgbrr7oOazekkDluGbFhqKdcsG3U4ECCPV9ls4SJEG3/XvviNFzXxUMPPYR77rkn3LE1MHrfXA3MjA9/+MMAAHs1DZJNYjeCQCnMMIN3KmLDYBhHbAGGAC8pgS52ckDJG02rh7BAlsDaK66ElwRAMCLD0J4R3sVzIIF8IVxLhxAg12nq9iffgf+EDRwv4cMf/jBuvvnmkbZyjLSF495771Xt5yXBXm+SmSKVqgQAMZUePOeeJdgrGbFhmAzK6aFyJqWyXFxndDq8CguYn0XuhZfj3OuvQmmawDYZsWEYe9jzIXcyAxUMqz1W1V3TorutfWEakMADDzyA++67b+AxdTLSgqNi3bBWU81jN8JMDTRWDcOEI+emIOengHhMVeEc1jwuPwrvmSdw/oePYPsKvS3CDYZhwYViKKKjjiaWfPIsiAsqjutv//Zvwx0vZEbWpfLggw/i3nvvBSRgrzSJ3fC8gUqRV2ApwdmcERuGg4EQkDMpUMkH/ACUzUfmapFXHENxIY6tq9wR3+oYDOHAhWJ411c5nkOVZqiJLSQBezmN0pE87r33XjzwwAO44YYbwhkzZEb2sv/IRz4CALDWUhCyoapoSGIDzODtHchCYfBjGQxjBLs2OBkDz6TBs1N6B1uYw/bLr8XajVPYusaIDcPBgkseIAhkhXDiV4JIGywd5DkQF5WV46Mf/ejg42hiJC/9Rx99FHfddRfAgHVuf7R9YzaKSCX6ilyWW9vja9lg7lyszGDoALu2ymw5NKuKiYWJsLD6Y9dh5fuXkFsSCOImPsMwGKOYodI1ltWX6FAWjZoNthBNA0Pts0mAgbvuugunT58eZKbaGEnB8fd///cAALGRgMU1lUOlBJdK+3OSSfQWucwMubkVjpVkmHAE85dSfd79PAzjgxDgVBzy8Lyq59FvALZtgxIJbL7iWpz/t9fATxGCmBEaE4+U6n7U772i23vHCGdgdEQIwHF6Fx3NPg+nvgstWRbIi0GsKW/AJz7xiUFmqo2Rk4urq6v4whe+AACwz9eYeqXsqoxsJ1hKcCY71mKDYmUXUwSLerC20df7yHUgpvsw1VsCJBxA8vhan8YcOZsGAIjNXXWOdfM9CAs4NIfCiWlsXnswyq2PIrW9pCK9foIAMsQASZFq0aKikqkRyPHtJ+Q4IAweFkCuu28Dbi2nIA8Vcfvtt+Pnf/7nsbi4OOhsQ2XkBMenPvUpBEEA2onBKiSAShYf82BfEDO4WAKXSuFHDuuECCKdrntKzM8CADibg9zu3M54GHDJ60usWEeWwHFXlezezXY3Vq55gyPDYMi5KcCXELmCquPR4gYvrzyOIGlj7TkamyYecEQqAUqlOr/QdeAfUm5o66mLY3tttGpaRpcfV/+WfFChtPcLZqBQjGJq4VAWHQAGWtfItqvrGQmCyDi44YYb8MADD+BTn/oU3vSmN4Uy3bAYKcGRy+Vw6623AgDsC2lVM0AI5UppcbOjcivvTshsTkUMjwnW7Ez577dAyRCLyIwLRMB0uvPrAAjHaV0RNgggw67+d5CwBeR0Ut3gd7L7RId//aVYf3YC0hljU/cIQJYAnTja8vccjyFImhTiCuzaYLfmvs9crVNBucJ49BRyHNWKAF2IjiBo7uYUQpU/D2Q1tOChjz8FPBP4zGc+g5/5mZ9BMhlybNYAjJTg+NznPodMJgMq2BCbCaBsmd2XBlSLZYE6tE+XO7ujb9UQFuylGvPXAekC2ojc2IQ4fAjcg5+TE7E2v2SIePPfc74wtjvAqGHXBs9OgaQEbWyDjy5h6zmzKE2RERs9IK65vGkcAhOFKiisjQyQP0DZd0TghLpnsmODKhsQPwDthN84LTTKIqKT6OBAglqdHpZV936xEcOJEydw9uxZ3HbbbXj9618f7pwHYGQERxAE+Id/+AcAgHU+rXatZevGILEKoy42rMNLIMdRN6Eey7NTKglR8lQb4wkh9O+KCOy0OM3tFERqT/3LqQRWnz+LuUfysB9ZbpiYHNm+OpFRLpnuX3EE6zckjdCo0GTnef7HLoPwgcV7duqeD5xo4vSp6EFO2Pkqrr4MXf1Ftth7nWOBY7Pq/Ts5oFhq9a49ogjGr6Vy/nCfwfZCqPcGEmQ7gFfChS9vA1erBIyf+ImfgDUiFYZHRnB8/etfx7lz5wBPwFpLqdgNKftfgJiVG2XUxIZQX7w1nQbNhNBgK8weMgcNqi+lzbaAdIH1ZyeAZ19d99L0coD0g+f3npAMzh1QV404wFYNywLXujiJcObVS2qL2oCdBzgigXEg6Ddzqvy+ajD02rZ6nnlfUS72vJbxI1oRomkQaNdUrByVVh8rCUw/n3DhwgV84xvfwEtf+tJw59snIyM4Pv3pTwMolzGXArAGiLJmBufyIxWzQY4LsgTE4UPDnoqhDzLHLWSOn6j+X5SAxW9t1r2Gzq0aK8iEwbNTCKb2BIY3G8Pqcw+mu3NSkIszAMqBp7kC4Pn7hMewGFR0VGKsSBKyD/nACRXLYQRHDWfOnME999wDIoJ1Ma127d2cAIL2N7Qpi42RcDMIC1ZaRZbTVBroEGtiGB+kC6y8pL7k/typJCjYu1G4Z9bBuyPsPzbso3TtUfjxves0e9RB/tABteZMOCrwNA3KqfLjJBnwhm8RJ9tWXdAbYzqCoGPzRbIssLAAGcC6kIC8JI+77roLy8vLOH78uMZZd8dICI5KZgptxCBKNiDK1UQ7qDyyLJBbv9sYlWwUEY+DZqZBLQIWDZPH5nX133X8yFHYeXUOO1kf7gNPDmFWhrYk4th84ZHqf7NHBKRJBukNKfdVfx4nOKmuW2aGYAbl8lXXxFBoEUjKQQDqFIthWRDxGGQuByrYoHUHPF/Crbfeije/+c0aJ90dQxccxWIRn/vc5wAA1ko5DbLPINFRCBClWEwJIds2YuOAU5jf8zlTYME5em31//NfeRpsevgMhezzLsHuCXXrYwF4U8aCMRD9BjuOGkTguKvu4a6jrOTD+ru6zF5pSo0oEeeTkPMl3HbbbXjjG9+IWGy4a9LQBceXvvQl7O7uAkULYiuu3CREPX/IwxYbZNt7FUD7DW4yTCxsAaWahe3iKy9DJZR++qkS4g+e2XvxONQQGHWE2LsOBeHsj19SDexkSwkNwxgRVXC85PJYFkQ6BUiGzHRXgDB0BsheIccFeyWITRcoCOxgB1/60pfwyle+UsNEu2fogqNa6GslDSrfEXoVGyyHmLLYpBIoUHYJ7WRAXRav6nv4mWmQ5w/dsmPoDa6xjG5f5WL7qqsAACSBpTsugGMuZNyGKBjx0QveNIHnZ5C/ZBprzzG+kUlBXHoc7GiOgfMl0FgdWRDEdFoVEByGxaPcqI27SwiuQq4D9kogEKwLSQSXZ/DpT3/6YAuORx55BA899BAgAWslVW7ha4Fl9zfZam+UqH1uRAAJiMQBrAJq0AYL4OLLjyBwCXaOkb6gzuv4udxeMSNDHaUpwJtWn83CjSs4w4eHPCPDxGFZELEY2PdV1esohUel90qP1z/ZNtj3YV1IILg0g5MnT+KRRx7Btdde2/nNmhiq4PjsZz8LABCbCZBvgXpUsBwEQCYb7e6eCGQ7qqT6iBRTmTR4ZxeYmxn2NIZOfomQX1K79OnpKRAD7k6AxLkhmXhHCCZg+xlKjLkLBVy2qFKU856xaoiCNxKB8xOHY6v7fskbrEZUX2M7oF6b1ZVLnZMvINZjkIdUvOSBFBylUqnaFdZaTasvkqin2htkWZG7EkQiYYSGZuT2LsQQBIfIlZBeDpA5Pnrf787lyp9rFQXc4+qzWbg/A1Ea046ZfbJzlQQtFQFiXH14fdjTaQ0Ds48Nx81J+ZIJSNZItRSDENEKu17WHSHUmgqAfQ9iJQF5qIgvfOELePOb3wzHGY4wH5rg+PrXv66CRUsWxHYMcMtBQV2aqvbV39CMqDTA6eFLZ98HcoWD2XxtHPEDuLse9loUjx5BDMjH1LVy4aVTAAPuNmPx3u0hz0wfQQywvk/51o/GSkg4ox+vRAy4Gwdg0W/TWHPcoNXeuluT6yi3RbE43DTaVtT07BGbLhYXF7G2toavfe1r+IEf+IGhTGlosdrVVNjV5F7flC6piI0orBsUi0GkUkpo9GPZiKIuv8mKOZD4ccBPALkjhDP/ZhZn/s0siktJSHd0BVM3sAACF8i+NIuZHzuH+R8+h8V0Fovp7FiIjQOH7ngGQU0b3oVOP9lhgkCJOMR0GtRDw8koIdsBkcArXvEKAHtr7zAYioVjbW0Nd999NwDA2kj3djJFlR5VidVwR7+MsZifRXBhZTJy4Q19weXL4uJNLohdHL5bmXqtgg8rNx6LdLFcuDV/1MfV151v/2LDgcE6sgSZHP2aRpRKAlnVX6kx05KiEEwd+Idf+7/ATcDdd9+NtbU1LC4udn5TyAxFcNx+++0IggC068Ly4oBVk2/cDkGq7Guli2wYkFAN1eSeWZBsG5RIhHP8QKrHiKpfw+TBBFx4kbpBJ9ZcJFcCJM7nRzbeI7/E8BPAJTeegy1Go6eF4WBBuXBiMSiVVBu/fL5edAwpZkK1CWGQ7UDkGbTjIJj2cPvtt+Onf/qno59O1AMyM/7P//k/AABrvd660dYPVis2NEKOG57YQDmOwxRyMgyJ/CJh/Zk2Np6Vxuazp7FzzdSwpwRAuYO2bvCwdYOH5I0buOL5Z43YMAyPzZ3wjiUIFI8N38UiRH0pdGHBuqjiCW+77bahlKOP3MLxyCOP4IknngAkwd5MdS0giEir2CDbVoLGZKAYJpDcEQJAEAGQX5jB1NkAybPDaSy3+z05uK6Pq+cmN9DVcMCxLFAiAWI5Go1EobI6xVoc7rOKeOqpp3D69GlcVS44GBWRS7AvfelLauCtOAhdmpkEaRUCwnVUWfIeg1cN+uALq8OewkQiLaA4R9h4po3ll88iSLngCPzLTMDWcz04r1zFZUsbOG7EhhZEwQNWI0oXjroWxbhRXreqGY4jgCAX/jl1vX/xi1+MfvwoB2Nm3HHHHQAAa6NL64YgFbipSQhQPAYxO6NVaMhsDvD1+s87dhEcNyYk1W5UkZbKBFn+viSWXz6DIOloKR3tJ4DMCcbCa87iyisuYiZegCAT3KwN2Uezr1EmggwVsbpVF8MX/gAUeRmHlpCAWFNulS9+8YuRu1UiFRwPPfQQLly4AAQEKzdd/8sWCwzZerw+5DoQiTjE/KyW40eNOLQw7CkYxhTpAMvfn8LajWkUl5KhCI/iLJA7zFj64bO4/AVnIYiN0DD0jJidgZzV248qKsi2h5Ot0pDZae0kgYBw/vx5PPzww5FOJdIYjop1Q2wmQA3tGpsVj9EVdCMScdDM9N4XYdsgS2jdGXCxCLJHx7RmMDSSXyTkF11MnbFh5xlTj+/2fIzSNFBYkpi5chMLqZyGWRoM4UFFr6fq1gMhCBA2KAiis0JZFkjKuuZvJAXEhgt5qIgvfelLeOYznxnNXBChhUNKWRUc9nZnxUqWUHEbIbs6RCIOmp6qV32WABy99Ta4WDJ1Mgxjwe4lApvXWli/cQa7V3eX1SJtYOumIuTzdnHlc5aN2DCMBZQvRp9FaFnaLPddQQJiTWVi3nHHHZBhlZjogsgEx3e+8x2srq4CPkFkuzCRCRG62KB4TImNYacrGQxjQPYoYftKC5krO4sO/3u3cfWlKzgxv6V/YgbDuFMp8zCs4bcSgC+wurqKBx98MLpxoxqokp1i7aT2uVMaqVo3QoQcW8VrDFFs8HaIud5NsJairxynDSk7F4LTgHN+B+lzJmC1grSAzWstnP2hWXhzcbClLINM6nfbLywg+aMXcGxW77k9bhy+Jz+UcSnCa0a3K0Ik4uAj+mLTKFcEZ4bYeXmIokMIG2JDFQf88pe/HN24UQzCzPh//+//AQCszVT7FwsKvSobOfZIBFVqjwgegfK5YcGBBFaG0A2UGWRcX3UwKZfJ+RfHcfZfz8CbcrB7pcTSj53BVcdXkTT9TfZBXvSZIhRI8NPnohswiutE5z2NeSibmjqGKTrWlVvlq1/9amTZKpEIjkceeQRra2tAQBDZJoJDyurJG3YUL8VjEAvznV9niWgiiE3eumGMYQGc+14bV96wPOypGAz9IyVoVDq8CtJblbRFaIKVSQCScPHiRTz22GP6xq+dShSDfO1rX1OD7SabulMqpjly7FCtGyIRh6jNRmlHzI2kyihnTTCdwWAwDBPyJXh3OJV2m6IzkNSymq6BJAXEtqrJ8dWvflXP2A1EKjis7Q5poSEu+KMaIMrM4EI4jYL2QQQxPRk56waDYYTxNFtqBQFHDuk5NjNoe4TERoUhuFcqcRxRCQ7tf93Fixfx6KOPAgxYu60XwzArsZHrlKuHjmhMQ8kD4v23W24bfCpZe1U7sbQITuhvF525ZhbL/7bzjU0WLTzjjza0z8dgGAa540lcfEHnjZNVIFyxuxTBjADazYJ1plNKBtY3QS3CuGgq3X9BMGZwYTT6m+yjLDqiqg1ibSUhxQ4effRRXLx4EYcPH9Y6nnbB8fWvfx0AILJxUKDfZUGODbHYOWajKVEIFCnBpRJ4Y0vfGJr7wbBjg139StyPC8zPZhGzO198q+/rbT4bj83j2r9tLtz8uEDgqnPBKpkAUkN3sFAPAJAxC9TkfiJjFp58dW8bAiYAXXTSJRaAY6tAyMZ4tGbPNR2sxesan7csaL1bEkO2EQW8vgka5B7qDLEORiciFB3kW3j2s5+NBx54AF/72tfw2te+Vut42j/1avzGTuvsFHL7KLolBMh16poHDZqNQukUsLmtJ2K3vBuozJcsEXo2zqQxc2oH5764iNgPX+j42m5ESS1Hr1/B7h81/13C2cWspY53+vYrQC3u9cIH3B0jSA4MBJSmW3/f3okSnnm5yhL57iWXgIJWS7KGc4aBK//3pvq51+D3bsTICGbA9XufHpm+Ju2IUHQ89E9PAZcpt8pYC45cLod7770XgKq/0ZQgUCfzgLvyahO2UaKmlgQHwcRUGqV8EZxwR/ImFDZX/tATLX93bmcaOw/vt6bZWULy4mDfNUlABKrWhaF7zl2cRYfE+84QkD3RpBaLBTzzWU8PevToqAiJWkHRTFzU/r+ba9rztaeTRlZufJQpZ6+EUQadiOrKm9cNs5UALtvGfffdh3w+j0QiMfB4rdAqOO699154ngcqOhDFJlaMIIDM5yFisYEER9Ny5cOmHFQ1UZ0by8itbWAmDdgj9HmHiBdYcETQsdnYsekd4EX73TIXM1NYW64XvyJnYfZk95+X8BmiRJD6rv2JJPlwvKfXSwfIX9sQxE2MZ152vu85PLE+D5IjcG3Uio3Kv7WColF8NAqTyjEafkclr2qx1QUXS1qPPzZYFojE4ALMcUAiADdJBaaCjSNHjuDChQu477778JKXvGSwsdqgVXDcc889AACx2/yuyUEwsFIOOxuFptLgnd6bVlXxPGXq62DNYGZQEESSimvoDV8KSKa+u5seTu/i8HX151Ded7B8vF6EeEUbs1/tbYE09I83xbCeVS8QLUvimbNboY6T20xg5BrjVkRH5edWNBMmte8ZdqGsARlqD5N+Ccu9YlnKOtUAgbD63RywAHzzm98cX8HxzW9+EwBg7TZJhw0CcHGw9FBybNBUyJYNewAB4HndWzQkA0ZrdGa8729VEraHq5fW6p6TTNj+iXrBkb3tCEQlUHUENsnjBteslZmrPRy/dC/NwRYSaVdTSvqo0Uw4tHOlVP4/5oKiI6NkBe+FkERHY9xj9fCbLoKFvTVbF9oEx8WLF/H0009DCAGRaWLhGNQkJyVYyqaR4INCRN0HJJXjNJqZqiYZCgKwrb/GydGvbOPxY4dx+IaL2seKGkGMuXh9z42Zn3iy+vPDp48h+ZjeLsbjji8FvJrst8te8WT1534tVOPI1Z8o1vdRaWXF6DYLpfJc7bEq/9ctSiZd9PSLRrEkduIQQuCpp57Smh6rbcWouFN41wE1Rr5J2TblqSs0npQ0M935RVKWU1y9Ayc2AIDPXojkxkDME2Pl6AZBXH2AVSZM5WFQbBfi2MglsJFL4NzGDM49eqj6qLjCDpLYANC9GGjlGmkMLm18vvw7KpS0t2fg3HAa3x0IhFAVvRugQAC7anNTWbt1oM3CUZl0M3dKM5NOTwQq+GVo6U1SKtPWoFknUoaSoWM4GNSKDhaoc7nwmFqKu8GXAhe29jYBhfUEyJvgP7hfeqm/0UxgtBIbE5KNFkmvrHGASFlLGtYvsZuATBXwzW9+E6961au0DK1FcEgp9wJGM00EhzdABHJQE2kbBOBcAZQMOfBOECge31+NTko1ZhdBod3AgQSZoFFDH9TVBiFUxUeTVkVjy5n1WXglGywJ2N7bXJhlowe6TYdtpDEGZBLcHON+rw3Lki4EyLLAsv54YjcJHNnEPffcAyklhIaNsJbb0+OPP47t7e1yd9h6MSAHaV4W1Kf1cCCBQcRLG5pZT9j31ZgTUk9jXDjxJQ8X1kesxsoowUqAVGp3iAAti5WNOpmSi8eeOIzHnjiM4loCvOnWiQ3DfpbuIliZYnsB0S4gtPb5VpksEVkHuFSKrFX6uBHq51KxclSQDLFtAQFhZ2cHTzzRuv7QIGixcNx///0AAJFNgGr3I1ICPMCdUHPudyu4VDIiowl09iL4kiPax4lfzCEoRVuQIue5SLvF8YsFqKwXvCc62Bpdl4ssT+z0k0uAJ5R4almhc/Q5de4wqBDtTjq+GYB82ToYFGj/u3bUWkb8AMhr7kFi7rPRIMS+YmAEgsjFIafyuP/++3HVVVeFP2zoRwTwwAMPqIM3Wjfyhf5Nc0EQbREt2wIlE6qAl8aLgCMooqONoEk1xglBjuoK3QcUjF7Qac5zkPMcPLUyjycePgrKWyCfxlpsAAAzDSfIudb1Ufuo/V0ttS6TVtkplfdOgMWBLDG+KbG6cJx9n0klo7SyhodN6BYOZq4RHCHtSqWMPhNEcvQix2DQSFV0ULnR2BDuvxu5BLzAQuZMF5lghu6pFRDtUlw7BYG2CjCNAB7UAj4KVDanYypuKmv2/fffr4pThvzdhy44lpeXsbGxAUiCyNW0MPe8/k+mNjtp9nyQHwxWsGvfeLLc40WlEB3EtNeukAzK5MFp/e6OmXtjKC1ZcK3JtapEBiurR9W+SXrFR85zsLatWomXNuMmwyREEuctONs9FDNrV9q82XM1pdFJczosKjFy40rNBpVsO1zRocma3Bg8KnIxQBLW19exvLyMEydOhDpe6C6VqnUjH1PtkstwIPszzXWo3sklb+CKpXVUxAYAsq1oSuGOqWuCmYHtTCRjHf1/Wyh6Y1iWeISpBJpSOcg07HAVyYTHlw/h3PI8vJUEvBWTzho26bMMZzPfPr210fpReU031oxaV82Y9jchIoD0p2/VrlOhlE1ocexQacjcIRYQeWUo0OFW0Sc4MjXxG57XXypsL6XCByWQKihqCIv/WKt6w0RQER4ipNP/9LlFnD59GNh2QLkxT0ccJxo3dZ1qbdTGekwyQ3BxsO8PXnMqAhozMitrdyX5I0xC3zLWZqhU6CudR8ro0qPK8RrNoGQC5Pv63SpSjmcBMJYTVRyolkwphumY5qj8UYP3Yj1kj3cHL7CwspNG4WJKuW0OwDpWy5Mb85CbQyxF36nWRq+1OGrfpzl7hP1gLBbnlrRZH7jkDa9IZQ9wIEEiKK/dW6Nv4djc3MTy8rK6aVUyVPpt0hYE3Z/kg9TGkAy0a4hDFEnBmIE7AQ4JLpYg1ve3aNfBzmo6knEqTFKmSj8IvzuLR6bkYiOXwNOnDqNwPgVIHKhy9BWYEenfLYoEuxDSgI2WjobNHu1E4zrVQpNS3lEz0mJKiD1BJCVETq3dy8vLqp5WmEOFebCTJ08CAKjYpH9KL/Ro3ZCZbHvR0PKNHcRGGZFOjW3U8SRx3V8fMGvDKFC2eLQqJLaRS+DCkwvYfHIu2nkZkFoWmPnu5t4TzVJYu01xbRbjERXMgBzPODYAe9WnO+H1GdcRcdICBRaOHz8OADh16lSoxw5VcFQmV1FIqrlZj7EbYfUp6UQgexIpIrm/RLvBcFCoBpiWhcduMYYnLy5gY3kW5BsxPhY0y0AZgfgNZh5tC0A7ZPfuJmbuzXIfMWTtyYFnPOMZAICHH3441DG0WDgqUa5AH66CCPyFtZko3UIxzb5ZySp1eAzhbA6UCzFTyDCSVASHVSBcXJ5DsB4zWSejQjPLRLOOsM1e28wKUvMc5cbXsqg9y5B7s8ZXRceoIURdDOFXPnwfgL01PbRhwjxYxcJBtfU3ekFKcJ9fhtzc6k6o9CE2AABEEDNTvb/vAMB+uRaKbnyJ4MNL+sepIVPq81yeYMgHqDCGAc4aWc8nkVtJRTaesy1w9Ku7e0+0SnHtlPra7DWNz41zHSKdrnDJfWUY9mTR6dZdEzJUNhqMrOBYW1vD+vq68vmWJyuz2Z6Oocp89/fhdqzzIRkoeYOpS8vSegKrLrRjmiIbwbyJGbGtaHcHwwwcfdbVy8gfGdPzYQgcu2YVthjO5xVIEalriQKCyJXd1c3ue/0sUmEdp8cxOZfXO8aIwiWvs5iL0v1iWarcOdQaLoTA+vo6VldXQxsiNMFR8fVQwQWx6L0kqu4FK4QsEBICYkpjpkSb9NxRR65vgorj6RIyTAZj12gvLMIqR96kRgft5sZ2E6Q7FTWMzEJmHkkLEkmByy+/HEC4Vo7QBEc1YLQSv9FDKikHMpSgIS608DWGqRLL5c4Nw8HOB1g+vTjsaRgMw0MSpp5sY41oTG+tjcnopkV9hQgyVca1HEDoG8Nma9SQg0uf+qaybIyk4Hj00UfVAfuI3+g3bqMRub27/8kes1E6QbY1FkVcJhVnq4BDd5vKlYaDi/CBQ3dv1D9Z0/OkaQnzTl1fh1S4j8e0XHqY1aFbZq/0GJAaNqKg1vLTp0+Hd8ywDvTEE08AAKgQ67kVMOmKi+g3QLQTsZg20THWcRyrG+M79xZIJuR9IzANrSkGNlbPzQ53Eq0qinZqU19LY7GvfHFsr2et2SkaXCDMPHLWHsqrzMzK2h4GoQiObDaLCxcuqAMW3N4a5Qgr1MY6cnVd/aBLbEDFcmgrQy5HIze+HyLbrXC0hSwDaTIyDK2RTNFm7TA6WyvaFfhqeswmVUY1b344P57BojqtDtXQgj4zYMKkYuE4d+4ccrlcOMcM4yBPPvmk+sGzQMGQzd1SRhJ8KdKpukIpBgX5+i+Shfu3sfWVI9rHMRhGkWs+ttNaODSrw9HstY0CY9KauumymkcQ4DkqRdAosDA/Pw+gZo0fkFBWzIrJRRR6LI5FBAq5TwkzgwvRFKEiV08xMPb8sTVl8pnzw56CwTD5dBIDtbEbnY5TG/tReW/J09qOnisbQw1oL/YVAaPiXtl6SlmhworjCEVwVCZDBben+I2wxQYAZYoKyfzTCUolIRLxSMYyDA/JBN+4VQwtOLs+G/2ggwR5NoqL2n+jsmqUvKEGRPaF54/fnAeEykaEkRIcexaOHjJUiEKN3RgWlExoOe6oKNx+EGvhdhhsxuKDPpbPR9MwTDLBG6QZoWGi8Vb13AOasXiPALpxW/abkUIESDm2NXWISI87RfKBExvAXpmL0RUcXVottFg3yrDvR+ZWARHEtIZiYCPa4KcbOKvfwpQ8mwHtTH72yOFnrcA3fQM7Ej+aRdqd/H4+M08WQO06wlZoFpPRjGbHCrmUwL4h/UDfhkpT7MY4bwAHoRImEVYMx8DOrt3dXWxsqJxwUXSBbnWETutG1BU7hQbxJEipdV3CrEs/56P/9WoEh3u7kbMv4J5zoLvwo1UALnxXX2+Vqau3EHfVTi+QAsXAHqjUuU0SjtXbeTkXz2N9/A2B2om7Xl+VRkNJeQ72zonUGYH4uqYTn4CLNyXAtmaLilS1Pnrl8N1ZOGfWuzj+mMWnjfHmb1CoqK6PjY0NZLNZpFKD9QsaWHAsLy+rHzwLJEVXgoMczZ1XoYJHqVn0tQbItiBmpsD5QmjpsnR0CZxwsXrzbCjHa2T9ezw4qc5BYYRs7ydJDCidYDjn9X7PFAAAAZq+4sypOWRq/r/wAGPmkd76A9Wy9rw08j/UpDhdA5YlcdncZt/jHHSKgY3lzZmOrwsCgcvfO9hisn1NCoes2hNQ3+JUWCAEEfQSFAzIPnTY+ZemALRfkCgA5h71kTq51t/k2h3bD4BCEewHAIckagJ5YK0bAEDSAjwBOBLLy8u49tprBzpeaIJDFJ3uzFkRVbTjQhHsOtoySRqhWAyYnQZibvM0s060SE2L7TKKU+F/ZrPfcpH9vvGs8jeuLN6bAe7t/F2W5pL47mv23HTz5xh2TcmC0hQdeDdLbNUC1awpO6U5bCaUyHA3LVx+a6bFO2s5uDvXYRHbYi1iA0DVckK2he5N7e1hPw8iOpDxGxVEyYV0Cjh79uzoCA4qOV2Z/3XGbjTChSJg26pQl05sW4mtZhHfrXLguxAkFDDST+dQfFZ0ba/DQjgSQZJh5fQKTGJgiA1dteBuFnHt3+79X+Q8UMUMTYTSUgrFufotaGFGoLA4YR9EmanHrX3aYOZJH8Lfe9LZ8SGKk7sTDWKAjCDbk8bM21GFy93Aw8ayAAugA5ihUoGKDpAq7HkzBiA8wVHswgYXclXRTnDJA0kOsYB7A5alhEPZskN+ALat/fnvzXLdG0VHxL0MLI9Bj6XAV/fvImh7fDuAF5ewcpoFpoS+77eBncsFkisxOFtDCE6sOT/clSzclfpfp5IuvOk9a14QF1h/5vgF1Vo5gdlT9c+lLo5mxkRhKQHWVWCqgSBGYy84hAfMPRxNyYIwYL8m3sqx1VoSBAdOeFTW9rNnzw58rHAtHB3Q1jNlGFgW0FhptFLMxmr4OxvFRCcLSA0iU8LUWRe7J0JePCTgbhEmP64/PLxpRuAKjMQy3iBiRa6EWK5U/R0LgWOr9TM9/7Ip8Ihl96bOWJh+cm+VIylh58djm+0n9MUPTSIUAPZa5ximvo6d13Ana4wDEQQIW48lZYSprO0jZeEQMrpc9F6QW9uwFubCsyAIAdit79pULIET5ciuZhX86l7cIDxqlXP5d8QM4elR1LFNhvdICvJaPVYOZ6YIvxSHndFrgqAAI7eQaqdDuWpihpXdEyAgwvHP73UY3b1+Brsn1IfWT4Bgz0gqB/kCx75ac06zvz/Ns1c69RYZc/w4UJrSP47QmdjHwLEvrOo7fsiZLyrwtPk5VWncOSolyHUjRsXCkc/nsb6u0qBEqUNwZsTulFrY90FOCHfVDmJDDdahf0Ez60YzQVLze1EKYHlAoGFhIKlxi0YMdssurfHYtHakOCMQX6NIU+Vk0tknHlrSqmsosLewM2P6oU1MP6Rev/I982ACpEvwQ943ONvqmk9eIMw8oecGbecDiFKEafAA2LEic6dMjBVFUzMyGlKTM7LtA5HBUpsam8/nkUj0f5MYSAFcvHhR/RAIlT7ThmG6U+R2CGa8bsRGhVp13KxzY+Oi0axRUs3vnc084ht6bqh2FvBy+jJ5nNkCpB3B4hzRPWf9uQQZG6I5pVuxUfv/yjlYe07WxBktfX0Dh7+2gYXvFJBelhAhJC/F1iwkly0cvdPH0Tt9bWJjWBQWXQQx/fc0FohkHBFAa9JO6rzUZ4UKu+cLc3dptYImom9LJ0hagK/OwdXVwaxUA31alcHJ67D1HoEy5pzPg/pVZs3iNdpAJQ/s1Hy0rRaCVv+vUCNMYhtFFGcS8OPh3nxiG4z8pg0kxzhFltUmcHKN6m3oNguqXcvyMu5qFu5qFonjUwhiAoFL2L6ye3Fl5QXST6lxUxeDsYnFGGVYAN74JantY+47etodkIZGl9xLp9yy6Jh0SweVLLDtY3V1FZdeemnfxwlHcPijr/K4UOxdcAhRfoSwyLdqAd0Y51FLzXP2dgGWl4CvoVdc+imB7Vm3q0Jg/SCXShDnYhPjVhkJ2p1PtT+3iyFqdkwA8WVlEWSLEF9PInvMReZ4e8G9+C0Bq8SIbU/2jXcSIYZWtT7/sA8qaLJw+dG60ppSY+mYVOFBJQuc9LGystL5xW0YyOywJzjaWzjIHn5cPwcSMtNDcGTFhdKn2KB8cU8lNwsKBXpeCHSZJO0sV01mWo7vRnARcnQ1BM68fMgdghuFRe1zlX9bxQXV/ttIQzo3BQx3NYvZ727j+Je24WT2v2/uOwLHvgwkV33Etkfg5h8B3mwMxWn9bjUmIH8oAle0ZtOgu1Uan3LmzP31kRE00S4WKqnzfVCXSkiCo/mHbM1F082za2SXfsRe4jVa0ezm3k5YdCEqZh7agqVpo0Ce0FpBa5KarQbRFK+tQybd9k26WsUKNb629rlurgVmkC8h8h6O/L8N2FnAKgGiIDBzysLUWR92YXiLiShKWNlo40OYEFkgJ495Hx3hQ9Wv0AAVSqH3zBq4xsakio6y4BiqhWNtTZWoFa1iOAR13r1HCJc8cKHQ/kVhiA1A3ajzxf1FwFrRbkdas5t1M3pu7vP3CgS+vrsbHc93flEYRBHIQaro09BodT41nmutXC6dLGttxPLRr6zj+Be3cOLLkxcI2g1sCUg3GhUQRd8U0mwZnHvEg72qofZGL3EWvRwzDJfIBIqOSpzmaFg4vNYf7ii4U2phzwe3Mu+FJTbqBmzYUTa7SNo912Aynzq1pa0Lq7Wsz1VAxPCnNO+EJSITHBdfMIQbSjMx2vhzK9qV2W+TIdV1m/MDgoxZKMxFY64rzo+3O8XJMNwtPaKU/CDajuC9MmGiQ7BSv6MhOMYgaLQCl7zmKlaX2KgNamq3M2120+9mNxoi049rPDgxaFZ/JozuALih0ot7rp2IqD1W5Rxr567p9JwhdErTFEmPIJ3WjdgWw17Z0TdAyHDY9TwmSHRUjApDExy+72Nra0tNRoPg4CDEFsONx87m6q0cOsQGoG7ijdaUdqKj8b0tdpOzj0TknggZy5bw5jXvSiISG0GMsXpTuvMLQ4IJkLEGa2G7InMdKpG2tJZU/t+tJW6YSMDORpcVwJZA9mg0ATw6stEa0VpZVCMUSMDT8L1LDR9IxKKDeijf0NNxfbU+7u7uIhjAstT37HZ3y345BhDoWKz1SW8OJOTWtrqB6hIbZcgPurs4Gm/ytdaNhhu9lfX07EwkkLhL4yJKDDhjEq3eCQF46Yh3+1bD+dCvtaGT9aPyXKeg0yFDjMirTEongmJfUZ1WGr9Kd4cxd9+6noM328gNekhPYzxSlKJDV72rsuCQUiKTyfR9mL5nt71dLuQiLVC7kO0+0kqVdUPzja0SOa1RbABo7muv/bfyaBZc2iLrQJR8zJ3S03VRlAC/qPHiEKw98p40V02sIG1AxoZkMm0VG9TNddNYebSVsBgxgTFsOKJg0eIsRdPfRhcM2DnoqZHBDBTGsOWkIGV9iCA9uNLrJdRjgqqlE6prfx8MLDiog3VDJJO9H7xs3dBZRIWcCKvDVdJxmxViauVDb1WwqbxQCE/CyYe/GFgFRvJhffZcJ+HBn4nAlhvBOlmaY2w8Ywg1ORrPmdr/t7KMNQaNNsYHdSqL3vj8AWTnUv3ftbQRSSNCofHWJ3xg4RsXtRybdImYCIQ1BxJcLGoTHWTtFakkHdepp+TCUATHzo4KBqKwUylZY839MuTYoFhsf1CnrvE8f69xUavdZbtS1E16YIhcCYkVTc2wcoC3qTFjJRFo38FFVQSssEAozUWQvwgARGCrQTQ0Fv6q0Kw4WCsaLW6N7xlRkWEVogtCKM3HI6m94cdJezqsriy3CjNPaFQzYfdNgd6NbRXJ4EIR7PtaRUcVJ3zLa2Wtr8Ru9sPgLpWQ4ze4ISCF/fAXVbLtqhLkYhGIoM0weX79Db2b7JPG1zQsHO5WEbHd8O8edpbhbujbZtlxD9KdDFN9aY5RnI3GrcIEsNXwvbSzRLQSs+0q3kaYFTUQDFi56OqARJUKGwW6xXj65IaW41JBg9iIqAKq3N0Fe2r+7Puhb6qJSPX8qn0u5ABSGqaFo1uXSs90qpY4IOQ69eovInNaNWe80XzdbQ2FyntrEHkPVknPBZM6A/jr+opbicUiWPM6TWMahd81rc6dZudLu9oa7Y7V7e8NAxO4gDeldwzSXKvmyN15fbt3HceVEblTGqwoMq/xc6oQdgDpKFg4qBTeH1VRgLogxwbF99sr2fOisXLkCq13l+2ET6PpvObn1GM7cHLhXzDCA6hI2kLmhRWArclYxFafR8rkHjXdlMpvfK7TOdZJgI+K8IhwGtlLktFkpwiMdSlzCgBrR889nArh92NhKfWkwjYQbGw2GZwhs1m9oqMSqBoCXCiCSuoaqIRT9DWlft9YTY0JOhxCEESii5txmzTYMIQIOTaozTy4VNqLs9BFp5t5O8tHC7M3MWvzyc59l+Bl9QVbiOM5vX5xjsjKIYDSdP+N/nqBHQF2rObnUTt3SKtMqGbvr7y+22MPgdhmNJkKbIv6uBlNSEvFA+lEdxnzpXsLEBlNNYJ0CF1NPV5qCTa3285d5nLhVExtFbMRlpWDJRCo8zOf7/877ns2hXJPEpIhKahOgTsD1OXoJDaqRBA8RPmaG2WzwLxuCi41ZB+424E20eGsOdqsHADgpyPwoUawG165mcCaiu70RLsg5HbvaQxMNgAAivMx+HH9n4efiOAz11x3Q1cTPQo0JBIw67dueH7ndYsZslAcSHS0tWKEaOWAHKLgqA4qo7k5NQaT9kJXYgNl14qGKOiWtGqu1ex1rbIRiJB8ekfbTn76UUCGJCqbIRY071RZf1R+1LBFYFH+Trop4tXsdbXPt0ulHUGsvIxkdxoVTEBpRu8Yuq0bqYsBrM2snoMHwfi0t6/g+Qgy2e6uIRkMtL41BovqgoZp4dgTHF0cwrJAbdJ0uvqwmfv6UprFbLQdxvPAugvLtIoX6bZRVpPUxdnH9JU7jz+oMXiUGN6CZssSIxIrx/mX9FFzpg/YEurK7ZT62lhYrvE5oLWYbeZeiSrAugNWMZpo4CDloDSl32pVnNO/adPaM2WTkXxKj9igQGopXaA1FTYIlNjowYKiXPp9rG/dVDANy60yGi6VLi6WTm3qNZUxp3isv6prOrsQMjc3ETbbqTYuJo270ZrFwtouaNvJxzZYn1uFGBQPtMdyRCE4igsRL8a150czQdHYALDynnZFvlo9300MyIQhLYokWDSKNvQ6z3+rCL2xG2FbN3QLZ9mHu4ZZxXP0+rd2EzcmKJxCYGNj4WgD+56WL59cp/8Sr8zgXCHcCdUSNPRXaeVKqdBs4Wh4HzFj4cH+a9y3gwIgcXdKy7EBwI758Bb1Wjl0pwMCAFvAmVdozmssI+MOuLFybSdR0K5IWO2/zei2iJhmnIwP8vRbOGTMRvaY/kZt+UXSnpmis6qonQUW7lrRcmwKpJYy5lr7pgQBggGyOLRlroRQCKziUsnl+m+rMTJBo10hu+wgK0g1ZRtwLC4UtfmK66wcYfWs8PWUOwdUmqyX1XgDtlh/SecI1krpAN5sRJVHrSbWi9qfG+MxOpUr72YXNEwLhwQQRCN4goR+v7i0xzsNFgzEtzRWhtax8OoUzJ6PYKv/olhVurSwR9mFFkA1I3WoLpVug0bJapI22IcrpZs4DnLdcBrY+L7yrekQHUHQ2TfZKWOlsRBYyUf6jJ74EyvPSJzWJzicZAmB5oyVKMqdBwnG+rOiaWHesXFcu2Jf3VgsusmYihCrKCFKEcRvCEL2iP7uaV5af5M2ndYNksDcN/VYN8A8VmXMueQNZNmoRRYKQAcrDBH1nIY/cLZKea2vrv190PcMisVi3SQ64thKdNTA/VR5Y24vVASF2y1PQxnaCuTXRF+3yk5pRpv5WLmS2nVowN3RW30UaW8ieqyUZoDciWgCSAH0lkrdS1ZLL+fkBJE/rL+IW+Dqj93Qfa7PP6zPNUHF8I/NUp81hgfY9TdDdipE2U9myqDZLOWPLhggxrFvwSGr5q4+b0Dcf5W3diq1qyJjvY6nK1W22RfXrNpjt4sEAFHwkT6d0dNjJcewd/XZgO2YD7Y176AjEBx+klGYicZWLuN2e2HQmKXSGLvRrvJop9dECPkMKx9Nd+coMlOkrR460Z0OnnwqBPdBE6hQ0lMTSZN7nPOF8C0nFZd+E/qxblTfO4AbhkZCcPTwHVIirrUao0in9OQkywCc7T9Qph2UL+5PU6w82lWTrNDkNaLkQ/h6Lq6p04C3oW8HKA4XtMdyRFF9dPs6IH9MozWoQrN6HK0KebU7n7oRFUMUH8TluCfNZC5LgjVXjA1coDSruaqo5iDpo1/P1Qe+h4mG2A1dZcy5UFTZJRpgr6Rc+o0Mcn4O8t5ypuJQBEdlUGICR9CHpJF95c51l5VmVqIjbJXcTX+LVuKj9ncNv586tQW7oCH7JwCsvNCWJktCQjq600n0m5tZAF5SaD8vmZpYOVqJjGbnUWPgcu251Kxq6TBcKhJwtvSXMo+ijDkLIH+IdBbv1Y4oAaKoR2zo6JkCQIt1g0ueyirRiaxPC27WFVY3XCqVO9yq/w9VcPRLKCaomlgOodl6osZjLZkrdeXO9/2yiUWjcSFosQjEdqQWs+rsQwR5LqFNdFjHcggS+kWH7qyVtRsJ21dFEMtBpFJkgf2CoV2J80ZR0mhda1bDYwgWDl0dkWuRroXs8TgCV7N1I4IEJpL6BLWdA5a+lYPY1rCr12RB02Hd4JIHubsb6jGbjuOV6j+TENa4vt0qwxIcslaB9rjokBteBH9FtJBjI/RWvK3QlS7bSzW9Tj77MqnT29oW1dmHCKxxm0ZL+kueR5Emu/5c/T1WWBA4bivR0VgYrvqiNtaLTiX2h+hKsfIS9q7+dgPetAM/of8eUpjXb9rQXcLcuRhONkYj5PnhF11kDv1ezYViJGKjOl6pxuoTsXWjfiLq3GXmvkVHCIKjt/eS66hiXyFCsVgknTqrhC06mEElb3/J835rJdQw86S+hds+qW/3LoSEN6c32IIiEh0rN+srmlaBBam6HHVPtjl/WvVOaRWsPKTslCgCRWXCVt1+NVPUHLcBAELjJePsMtJPaYpl01nCPETrBucL+t0ojWP6PrhYDK/uRgiVR/utxdHXX1CvbvqYeJi7JdF/xO5AyADBymqoipwSCYiZ6dCOBwBusYTdlx8J9ZhViOGv6guMTFywcNk/b2o7PgD4UzFIV+9iIwIJ6/Q5rWMAiMwKQURI6UyPrkHOT+01qtOEEAFim/qFTWnahaXRcBfEgOkfvKBvAADbryH0nZnYhtXvHsF1f7YMINxrsdvGnd3CeY0VqNuN6/vhrnOCei+iVzO832dIRMSlyjQgGVzywq290c2wO5n9gasDQLYNkUqGblJ8/D8cgdRUh0raDPL1iD07S7jiI0/rSY8rw6kE7Ah27nT6LHgEUktDJSpxM50CNPczoYIPhwgyrld4zj9cxNqzY3t25cpH2Pjncc1zjT9XXs/732cXgNX7DuPGlz0S5rTrmLKLmHfD3+EXDz2NL2y/AFd85Ey4B5YSHEJZ7wp07DDozDlwUX8Qcy0ilQpvnfN8yHxBHasXMV9zybt9hkb0tXWwav1I5ahEmenuJAw2QtyxlhcLLhT1NlyrRTJkJhuq2AAA69Bi6GZreWgWrEmHaY2yZyC2SVrFBoQYvPx9F5AXTJ7YiJILq5H0TlGtBjSPIbk+c6xiLGgct1FgND7f+HMFBkSRsF7Q58KTIEgNF39M+CguSMipkOfOrAoshgURxKXHlRs/IkQyGeq9iplVym0391cpwU3Sn4cuOIYB2XurabMPRQecz4eubkVcT12Lp390XkuvBiaALdZhWQUATD0hcMnHn9Rz8AqODU7qvWlQvgQs6zVxHwhWNrQPIUoBrIKvXXTMPF6zUek0Vq33opU1pOH1sS3gzD3HcSEbrmu2QtZ3seUltYiO137fXVh74Vzox9UR9CwuOaaEgG4aN6FhrHMhNK+z+gxe7Ws5IqL6AXV232uFaCiTXvK0VZKrIDNZVec+ZMTsTOjHzD33Evi6UkuFPrEBAMc+v6InF7+CEOCE/h0Kbe+CIyhWNfGwBGX1+85FwQdpbg5HEoivVTKEsPdvN+IDXbyOgcRFwvLqbL9T7MiuH4OnqTrf2veWECyGLJaYQWGvDUQQhw9BTOntDk2uW5eZwoNm3UjueQ0jUcl+U+MKIfoOOu17/2uXI2aZuOubKmdzoSnNxr4sAEKvZ1+L3Mlo8dtZ03p2IltXOpAa1lQWrNWdcuROgHJ6FxeenQLH9Mb8UCYP1iBODyTM2s+JClbe02rlIGakz5WQWK2p1NwkHqP6u30HqHm+1e8BuI8msJwJfyNTYaOU0mLleP1zvw1vVoPFV0MfFbYtiMV5iJQmF5awmmem9NH0tBlcKnUXilApOVH+usUA7p2BBUcvLpWw6s23Sg/iQGopQR52gGgdrhN67Mbuiy5F9hKdd01Nx2Ugea6gN3YDADv6UyDJ8411I0S4WITY0ZOSWQv5+r+zaixHRWh0cz01iozKe5uJD1aNFvMlfaK6JPVdQ4n/dg4cD3m3pKtpm20pS0fYbnGicjHL/Us0B7JvK0ewtVVzoP6yVIYiOKoulcrFInloKUO16AjQY00BqdbsDMgJ96ZQvP4Yzr/E0tKPhAlaYkIqHP06w31cb8yDPDSr9fgAQNkC5MaW9nEOFMx63Ww12Nv6MxDi6x7i67U1T7p8I6FepDTLWCk/5395ATslfX2PlguzWo77jOkLSN8Sfjo8eXo6f7Mlwi/IRR2C2vuxcjTrzt7umpKyrm0JC/XefgNGgQgtHJzNhWLhILtDVVEZYs8TyZA7GS1Nf6CjJr5to7Dg6LNAkL7YDStPcHc0ZyPYLTqrhgmzurEZwieQkYkO0tT8sBa7yHuNBLu1cjRYMpq+txIiwsCZzdkBZtgeyYSippa3U3YRuWeEXz8o9FiOynGPHQ7PtSIsVSKhDf1YOeqsG2VkodD9NVUWHPEBrDl9Cw6nsjMfYpZKKziQzbvs9YKm9NcKIpkMtcw7AMiZNC6+UI8JQmWmaDk0AGDqKSDx4Fl9AwDg6ZR2wUFeALmut1jZQYVzOZX5oxlihpXTP05itQQ7Vyk13/DLZlYLtHiukZrnra/PaIm1qLBWTGs57rybxfabNZRQ11g+gY4dDiUmT3RbrCykWI6usYYoOJLllCC2IvyjhdV9z5Qg6P/k0iw2IKzQK+DBsrDyUg0pZRWEPmHp7BLmv6sv4BcAEI9p7wQKZtCmnj4TBgXlCkAEcRaQgCjqr/+RWJfKytHNqdkum6VFIClJ4FsPX9H3/DohQdjx9bhtrp5fw7kfvST044Zal6ORpQVYc/3fh8lxu6650UuMGOcLg7uThmnhqAgOiL0/moNgKK3qm8GBhMwX+nataBMbUBk2YcdugAg7V4V7yFp0ZqZYedIeu8G9VtXrk24L4Bn6gwsFUARuFWKOJIA0tuXtb7bWrLpo4/ONtInpSDylL3hUMiEf6Dn+ZckNbD1bg3tSZyE+IlAHd0jLt8Zi2ipm92PxbwyB4GFaOBIJ1UuBa3e+snlgF5e8wetXEDVNhW2LZMhc75HtzXxdoUEEayF8S8QT/+HS0I9ZQdoaYzeKhMs/obnPSCIOjusvfU9PmyJfk4QoBZFYOeYeKdXHZzRzmzSKjU6NB2t+Z+eBb919zeATbUEhcLDl6SmC9YqbHsTZ14Zs5Qi7+mjj4eMurMWFnt5DjqviE3vcFHWzwe8UP9lyjWzcrA/TwlERHIjSpdIPsodCKZJV6XWtCliEHkfAUykEuop86YQBe5cAzdlNbIX/mTclqvL6B52La5EFj0bRTVh4EqLVutEoQmrrdnSydpRfSwxYBULG01fsTrKekufTdgGFeR6bNFkA6l4zN9Oba0WQNgtsx8zNbj+LUXCpsGi48AethNaC2jLmvSIz2a4WA7m7q/dEBCA0mMzO/PhhSE0beJ3WDQCqQZtOXAec0pcaWIGKo+FKNIRLFD1WAGDu0VLzbJNW1163ZdHL70+sEh4+dWKQKbZl148hr6lL5I+96hvYet5i+AfW3eNoca6rnivkuAMlELS1cvSy4a57XxNPxSgEjaJBcLDn1y/uklVztUEQg6dHyHyhfR16zwdrLo0OAGJuVvsYYaG1QRuAuYdJfwnzsHdGrVjdME3aIkRkoqn5I0pBNMXAAoa71ZCx0uhCqTzXZ4d4Z8PSWn00HzhaM2JChVmJSc2IDlkrFIuBwrhHtVi7uFTqKh6xMcajqQvGVmOkBkj/HdzCQR2CelgOHIDZc+xGMyRDFovNRYfnI8hk9dTbqEFHGfPMTZeiNDWePVMO3bWpV3AQgRN6dl21iJ0cMCLB0gcF3tmNbCyrGGi3cpBkJNfK959eLB2taDLfxCphdUtPGiugGrsF/S8pbVn78RzkXMh9SzQ0ddvH7BTsI4eb/koFiYZ0f2pmwQ8CtdHugk5BpWRZYFvdq6cHWMf6PjuqKqfRpQKohT0Ca0HPVERHw5fDQaBdbAAAwk6FBZA9Yo1lz5Rj/8IQmxl9AwCQs3obK1XJF4x1Y4IhLwBF8P3auQCJlRoXTrs+K71SPpbzQFpbJ1kAWClMabFyvObaBxEkQ/Yb62jq1myY9P6AWhGPh16HaR+S+1vXvCaNUEkAjnpuKIJjdnYWAMBOkz8oxC+RnJC/lEafludDZvWnMloL86CQg4IyN1+K7atDPWQ9mgQHBUBs09PeMwW2/jRYwxCJUuRFEKNKkiEql0QrodGi3kbng6uHnQOyGnus+Bp7Hxx57xPhV2cOAv3nERHsyxoybUJeC5h5XyhDsNNfTaBWm6ehWjhmZmbqJjFOVOM5BvhSeoIo/CwJ10FxWgzwDbZGd8+UpXuA2EnNqbAtGvyFjdjKmNobw4AZdGE9suHs3WI0GSs+q7oczVJgKyKksU5Hs3k1a+xW/tf/0iJyvr7dta4eK4fcDApX9JZu2g2RWDlcB/ZRVapdxOPhC6dGdGTMlS0clbW/Hwa2cMBpLjgqQScDFQLTmMoo8wWVihQB1tRU6IW+vBMLWH+uLhOEvtgNO0OIr+mPd5Bz+nzVe4NIoKi/BLZhNBCe/s1VfMODu12zANYW9GrVqK2bYmCof90j55cGnms78kH4gkYQY+ptGtofRJXOLoQSG2EXfaxQI5x63khXLCTtYupi6gSamurfVT24S8Vu/mVxodh34a0KoQSLtju+40Ak9RSs0Uo8hvVnJbQcWnfPlMQKIfHdZX0DACpWJoK6G1TwjHXjACFy0QQGx7cDiFod2yyItLECabNeLI3UiJXYt0NqNNYEyYQtT8/9aSGWxfJrwi93rh1mtfnWJTZQdoUM0LVdFsrxja0yXsr+vuFaOCwGj2ADt06ItGrkJaanwuvy1wSKxYAucrF7gV0HO7piNzT2TIkKjrvRFPoyGDTgbvsQrbrVNpYwr/zceLo3O/0jvCR8Flp6rMy7WRReFn6Gktb+KgCwuQ0etNp2l8h8+H2pmLha5HMoMRzpdHqvRX2zwFG0KZk6ZEQ6BYqVTX5EEFNpbZYOsiyQHaLJQAg8+e/0mUN1Zqa42wLH/u9FfQNEiS+BlbVhz+JgEwQQm9GlxxIzrGyE6c+N2Sq1AqNd8GinsucAhA/c+7VrB59jCyQTSppa13//5Y/h9P8XspVDZ3r+2mZkPcbalTDv/GbZuiFceY23LGs4LhUi6hw4OmAwzkAfXisEAY2lrokgZqa7qgrXC+S4ENPhp2Z66TG0QjBgFQDa1euC4KkU2I0mYLSXbo0GDTADEX8HUQQYAsDsoyXVRbY6MNq3q2+cVhcbBztLWoNHAWgrd+5Nhf+9U7vCkP3ADGxs6VnHIqaSjTo/Pw9rgFCHgXIR5ufn6ybTjIHTWjncE0sk4i0DOK357krR9kTIpv3g6Hyox6tFZxlz4RMu+/BpPQevDiKUmIwAMoW+DiYR1W4gZth53p+Rsm8+lTe0+LnV6wG4u8DD375s8Mm2IOu7yAR6Kv0GMz6CRX31RAaFAgls7Qynezr1dw9sGzMZVyfOoUOH+jp2hYHuzpXBOd5CcAiCtTjYAhmmOiRLdEyXtObnVCRxGONpKKv91I9OaxEFuisSzzyq9/gAVN+UmP6usADA51ciGWfkCAIgCFRQ+AFsVkcBQ+Sj2bHOnC5HjrZypRD2Cw00+RkNz9eIDidDeHon/O7VFUrShqchCv31z/8WLrxUQ5n2EGpyUCDBu1nwkDLYRKqP8ABhtQ0r4Cm1bi4sDJaWPJDgWFpSsQTsNr/xiKlwUhM5rBubZXWVnipmZwaP6SBSgakhsvuiSxG441nG/PAXNNfdMOgnCMCeDy6VILPZrpsi6oQ9D5Sf8NTkRiHRaPVod902i/WoHIOB2Cbh4vnZkCa6n6zvwpd60t5y35OBdyLEuhxh9FdhBu/sRhYgGiqWBXKab8jZVpaaoVo4OgkOSiQA24Y1O6ASlcHAooMsAepWRISQvWLNh79r2L7CBkcTnjB+WBZkSk8qXiMiwoJTI0EQlJtA1e/s2fcR7GQgtyMontcK34/cvUWehChF0NCNGVNnerjvtSoAVvtvs9+NKa+59kEUDoUcgzKo6NjcHpplYxCsdKoc39hcHLKtrv3FxcG69oYiOOC2MTEKAsIoTx5CLEdP2SLl7BXr8BKoj6qVYRf6CrsUbi26+6Zc+ZkiMGjH4E4QRVbKfCx3L/0g5Z7QaBW3IAMlPDY2hys8IoSiaPpVxsm2ue81KwLW+PsuSJ90cXJNX+bbWimlxa0CACxCruLc73e7tQtcXBtOzEYTerbQt7BsVBgLC0cdg54UzANZOfpqC08EEgLWocXeRIeGGhBrL78MuaOabnJ9trvulkhSCSMKFp1opNwTGYWiunl2GyDJrITH+gaC9Y3e3mtoC/noKtW1jh5eK3wgCPRdP5JJW9v6m37nWwjC7iLbC8zATgZcGLEGjr2sQV28dqQsHOwG4DZnOCXjsAbI3a3Sp5WD3MGtDdbiQtcZN9biYqiig6dSKKX1XLAsWGvflNiGABU0B9kJATkbQSlzAFRqs9sfV8qBoMp1Eo5QkLu7CDbL9Qc8f+ixHmFDkiPprWIVA0ydDeo3Be3cJLW0y1ZpeG9uK4FSoM9fe6EwrUV0OBRg47nT4W7ypOzOrcIMyuTAufALbUWJVSni2QIGgx3lJjpy5MhAYw2cpUJEKuCwUxO3RBwQA5rVmMF+77vlUIJXiSDmZ8NPm+2C3NXzyFw+novc0j0exPrWsKcRHqubo7WT6Rcp90SG56uHhpoWcncXwc4OZCYLzhf6LrvclpKnCrFFiCj4oCjHbBb82e407EaU1Lx/+jsutorRxECFzQt/8dvRD1oWGzI7msUtAXRllSfH7dxTzJGAYFiWhcOHDw80p4EEh+M41TQZjrXfxVI8BhGCpaFX0SFCDCQkISBmZ2DNzrT8MkUqpdJvxwDdXWHTTwskn9bv1+f0GPbDGQaeV32w71eFRhSw70Pmcuqxozrsykw2FJ83FwoTXRfFzgVwd8rqoJvU1wqdRErD+88+cESb6wMAtrwxuk6lbBnLQbtZYDsz0mIDQoDczhb5btZHjqt7xNLS0l518X6nNdC7AZw4caJuUpHQyw7TCbevBgkBSiQg5uaaWmzIDXc8uTSHizdrrC2hMXYjvs6gjW19A5TheDS1N8aKSixG7SOQ1ccw3ULslcDFIrhYhMxkEGxuVx9yJzO0eY0qVkmqImC1dFHYq2XflRbvSS0LrYIjq6GDLADEhIeH3z5YMOM+2ogNmc0dnMBxALJsTDh+/PjAxwpNcMguBIc4tDi4W6UMe8NNPSLbgr20COvwXnS3SNX0aAkJdm34mkqZs6Vv0SEZXRnoqBDrO6NzoykHeFYf5WJc1UclFqP2MYowAzKoPtgrVQNPK49Rxcp6kcRxAAB12xG2yyqj+/5f/llX/xNABY9eLIYf4CmIccWJ1dCPW9vQjQol4OLaaFs1ekSkUi3TYGupGBOOHTs2+JiDHqAnC4egcNwqZTqJDjGdDrdxWiPVLJZDgLBUadgwg5eEQGlGY68DjdaN5DmBhS8+qW+AMnJhNrrOsBHGbpAlqo994sLzwKWGR0SukWHQKECC9Y29QNTygzwfVCo/vGgCVIlZpchGQPJiCe52eazaKqMVGpu7oeF3jVVJa1Nqa4715P+5ItR5NyI1+XBjlg//aMi1j5hBfgAqeZBb25MRu1VLl6UWOEQLx8Bydk9wdOdDFYcPQT51ZtBh92DZtHY8NTZo0wjZFuzDIZv0ACDm4swr9AgOnoA29OMGEXXMdy+/EFRTnphX1ydaUPRDsFMfG0SZbPU+QK4DOtpdXQlOj1mgZKvKoo3io7EiaeN7e61YGhKSCUVpIybCPZ+fNXMen/rFw7j+d6Hu+yHd+zkzxu4TywLFYuDi/hpIIh7vOnszTAvHwILjkktUm2CO+2AwqIuz1pqe3nfD6Bf2fRXA2SA6yHXDL74VMblrFuFu6rkL5C4Lynba9lDBAvUYjC+KhPmHIgjii8cAS99dkh2rWhBNlAIlBJL9L1AkBBCihc/QHC554KeWu3qtNeBGwcm4dSmUweI0/LSe7zi+LeGlrb1qw60sGs1iN5qJj0ZY1fz49lOX4vmXPd3z/C5kp5H3Ov/t9+ZPoJAJfyPlXHThH52DtbYb3mZzdgq0Q2Of+loHUVcBpRUqvdJGQnAcO3YMRAS2y6mxfmcXBs1MAyEJDqC16Bh3di91EN8I3xLBBBSe6XW1o5EO9+5J2LaR/MZj2t3bvDALmdC3gHNttlEpAARpachnGB7BxcF9/7WuXbE2BTek5o+NuAD8f30VvJRmU8T9CTyc7D39sVhwuiogRufjmH1Kz99QOBRHaj3cwGNKJiZKcJBldWdpBcB2ANgBiKhqXBiEgQVHLBbD0tISLl68CI77oEwXMROCYB06hGA1vEAf9v1qYS5y7IF2opPO1nNk1xsA0U0V2QbYtULt8tsS0SAKJhDeyYTXvHCCGZVNh9zdBXZ3tR3fLlwJ6egVHKIIZLL6hLU8VEJhN4b46MYD18GWgJiegtzR971GBhFED0U4ZVJZqo8ePYp4CEI6lKuzonxkonszupZgzkol0hB9eMNi/Qcv11Yjo2Ii03JsSbj+7Y9pO34FOryIYErPTrIpwwoYC4LRzTAxRE7y1ntAgd7zIbbFiJ3Ut2EjW0JTaxXsXGrDOxZy23oirb2sdEKuW18zikTnQl81cHlNv/zyy0OZTyif4lVXXQUA4GQPfnvXgbUwH8bwVdj3AZbKZDTmcA8nRS/4SdIfHBZFEaYIBaUoBRBbpj6EoTndtjwIBanf2kWMnuO2eiWIaWqpQABruDdw3IWYnlKB32OMNdebGKsIjiuuCCd7KVTBIXsRHFAdVfvpxNoODoKxd6fIpTnoSoffvSroy03SLanvxCcvfcxgOGDYOUBmNdbkOFGAr6nwaHHO6TpGoRc4GY8s6FuHsOlHGHNSucZHSnBceeWVAJQaatfEbR8xF5QIXxyw74NltL0VwiRz1TRkhJumMLn0f/ce3d4rFI9Djls6o8EQEnPf0V+9N77BcDb0CQ6dZI5b2oLJKZHQbuUgS3RVkKtXRDrV0+sZjPRxFcszUi6Vyy67DJZlqSYvTm+7ZzE9FapJ0pqaUv72IBhr0aGD3FEC0uNfz4FiLmTSpJcaDib80OPDnkIoZC/3IcfM+83xLpqdDQDZthIbgkLtySWSyd7n7Ujs7OxACIHLLrssnHmEcZBYLLYXONqjWwW2Fe4XWDGllUXH0IL9+qR43THkF/QEKPlxBnXq6jsAl33EAm/rb9YWKZJhrU3Y32QIn5BaNowS048BckefsBfp7lLz+2H1pmm1tmiA5kOuaFo5rm1rEzP9hC5UkkCOHj2KWEhd0kNb2apulV4FBwBr6VA4F2yjqYsZ7HljJTqkTVqCqaRF2iLDKzg7pWjiN3SWq2+GsZQZOkAad737YAmrpP86szyApN6/S2rSM9LVWBCw0nIgRMjqLXukF8TUVF+xJ5xS9WWuvfba8OYS1oH6DRwFAC4UQ8kssWZnmx/fm9zW1d1SXAD46JiW6K2BYi684+FmNxkM4wT7Pma/8OiwpxEK2eeM6T1pMbx7EBE1j9mwrIHjRYgIlO6uSVsj3/sfng9gRAXH1VdfDWBPFfU8kel0WFNpyjjEc3A6idLseAZq2U/EYW1khz0Ng8EQIvGLFjgYz1TQ/KUh1+NogMKqKKuzjEMiruJO+uDUqVMAgOuvvz606YQmOJ7xjGcAKPdUsdTizqXexIdIasqTAgDfB/ujHUgqZ1Na4jf8OCF/VG+w6KH7Jfj8itYxDhzFUs/X0EHGVGQNn6mnGOzrK3pFgpG5RI97aPtKjYHlRKDUYJlyZAm9cRuWACV6EEVBAJS9AWwFOHfuHIARtXDMzs7i6NGjAAGyYuXosbw1JeJ9i46uonBlMJaBpIMiHUBMj79biYggLz8a6Zj22vDKGbPngYPRFcgjxzCva4quOzUAyK1tzH13MoKZ/YXxvDexbfWcalqhNhulLX3WEyEi0NwsuJf3S67eb2RKfSfHjh3DVA+l0DsRqnStmF76dasA/UXT9vS+EQ0k5akU1p6r162ki9S3E5i+IxqfsoxF63Ii0xa+HqF6MYhUfzfaiSbCPi7s+xA70TQUW7hzPFPQ2SKsv7j3JnRd0yr2otPberRq9BXHIQg8QHD9//e+nwAAXHfddX0foxmhXiEVt4pM7wkOzvUYFOTYkdzMRk50kJ4sEiZoLyImfNUS3DDBCIJIp9SOrtw111qYB4WULmcYXYTuS5uAQNM9SlfF5gqciEGkurfK68xGqRvj0EJvb5IMmd9bqx955BEAYyg4+oHisd5uZKK/Wh4jJzo0wBah8MzJaK1M0+GZ9gxdIgjk2BCJeNNrTKRToFgs9BYFhs5QrgAnN/4uNxELkLlijONvbLsrK0TfFUR7XNvCqBNy8uRJACMuOK699loIIQA3ADtlUzRLwO/9ZCLX7donKuKxviN9R6IMuhDIX6GnmIxu5I6D+YeKkYzlXbIYyTgGBbkORCymAs/aXF8inYKYmYaIx6NtZHbA8ZfPIXU2ms2EdSbCzswhIh3AO6I3W4UTsY6xFgOVK+/hfRSP99X4szY4nV0fFy5cgBCiakQIi1AFRyKRqDZ5kekSOF9QMRM9Bo8C6mYXiU90FMqgE2HnMj07xJ1r9P5dzpaF2F2PaB1jWNhbk2EZ6hWKxyAScVC884207n2pJEQqoQoNTWDlzU6QoEgDR6OCGJh6Uu8YnApQ6NEL0A3SJeSO6nf7UTrV0spRDRCNAErG+zoHa13iFQ/F1VdfjWTImaOhr+jPetazAAByqgiuBNwFQV9WDktzbY4qFdExgS4Wnjdplf1C+eLEnQ/tIMdWLhJ3gG6blgVyHVjTaVizeneWI0eEQaOThnAD+InxvdbYdfa5PnSnvTYiUsneslLKcDZX9385pSzWz3nOc0KZVy2hXyHPfe5zAexNGoC6afdjQbAsWHNduBrC2FUwDy2DZeWHLo10vDARXjQXk+4OjQcWQSogdDqtXCdh3RwtS12/C/PK4mHQAvkSvTTo7hsGWHOZc13kDgnkr9JgPmlD1YUSkdigeBw8lerPutGw3lXW7htuuCGUudWiTXBwyqsWAAPKPqJ+agoIartTolhMmX5DhH2/KkCiQEfvFADwk5r7IGRtXPGeB7WOUR3rmksiu3gnnnInSpFK7GWeaIRcB9bCvMpqcdwD6W7RBd/zHSRX9adu2wUgfZ/eOA7psp6sElLZeto5tKDqX/SZLtsOatMLhWwbmO1P1HM2B8i9dY4tWe2HNhYWjqWlJRw7dkwVAEuHFExIItoo+LKlI5JGZBrZeYYHEuP9NxjCgxxbPVwXlEpG5leuRUynYc3NgBzXiA9DPUtFlKaHPYn+oUJJuSL7dUf2O24svEBtmS4CpDrELi6GH6SvZW9ddatM1wuOvpuolWsARCo6iECOA2ges3TtUe1dXA0HG3JslWqeiKtHH50jw0ZMp5X4SKdUlWDjMjNopLBgQaYHK0XeDsoXwds7Kl4xQkQ6pVwp/eD5TdwpKuZPhzsF0CQ4brzxRgANcRyAKnUu+9xxW1bEgkMAlSIttq1NeGSOx4Axvdde/bHJrcJpbRfGuy29IOUySSWU23EEREZTHBuUiMOamlIVTHX2U4qAMLpejyruDkOcHc/02OKsQJAK/xqgkgdsboN3dsHMkbci4AH6uXCT9VhnwCig2cJhzUnIQn0ELOf7TzWkRGI4BYbKgXW6rR1hsn01IBJ6BYHznSe1Hr8CHTs8nJLmY+hSE4m4istIJquBm2MR++LYINdR4mNuDtbc3HgWExtCpkr8yw/CLug/V60SYOf0nkuFK4rwx0TTkOeDN7fBxdJQ3O9ifrZ/y6Dn72WRlmEhIebUczfddNOAs2uOliv66NGjOHToEFZXVyGSeQhZs2thVqqqn5ugIIiZacjtHaXORP/Nc9pCpPKZm4wP11HBr2GYzlxHWzCTdHlyrNS2ZUzujdRcP2RZvXWFHHXKf5uYKTv0JSPY2tr7/RgKQZ3IQqH8mYz/NSIcqWkbDLBTbrA36PnDDL641jo5yPO1xHGQ61TrZYjZGZWK2yfNBJKcLiIIAhw9ehTHjx/v+9jt0PLVEhGe//znAwDk9P5eKoNYOQB1Ixrq7qea8jTYx5e54Si89PjfJAzRQJaoPqqWjHRqssRGMwTBmp+rPiql1FWNg8l1YRjCZf1ZcXCi/wBLCqSyfK5thDirHudAatPN8QECRYMAXNif0CFn1HM333xz/8fugDb73wtf+EIAQDDTQlz0UQisFp25/V2JGUuonXcIwiNsSlMEjun1JSbvS6iy9QZ9CFVEq/pIJauPYWSYjArVUuoz07Cm00qAxHrsv2ToCyej0uF1UpjnaNJYu4UZlCuAd3Yh1zc7xmlwxYqvA9dRpdQHoNGVUiEKwaHtzHnBC14AIgInPbDtgfwa8w8zuOSBBmifq4LiNAWY9ZJmZJXFRkD9FzgLmeI8Q6T1tni85NYLkQRIiXQKQfIA9eco1leGDbvGzMRhNbhVayweXCg03clNIjP3r2H9RUvavSqJNUbuqA1O6YsPkycKwLlENAXNOkC7WXAglduqF1gCCHlTQARKJQf7WCQ37ezNTgBOlEBEeN7znjfICG3RJjhmZ2dx7bXX4tSpU/BjO3D8hkpvLIGSp2Ii+mSkIu8rwsPHSIiOiSERh3QndzfPuYYbmRzjrpkjQG3sFcVcIL33ebIfQG5tD2Na2gkeeRx40dKwpzFZ7GQgcyPUT4nEQHEbQOtwBjmrhPk111yD2dnZgcZoh1ZfQMWtItPZ/b+MsJJnL9CgaXm21ZWIKl11BNkjk7uQGhoIJDib2/eADOofhvCwhLoWyw9KxmEdWap/LJkOxAeJlRfPdgxAp1wBuLgGHkBscCD1uVUGoJVV+uVvfgEAve4UQKOFA1BulY9+9KMIpvLgiwxqsPex501ujwzXUSdci065bAstJc2lRWBL74kuMw4okKNg8dSCtV0AdWuKb3ZTkRLcqwnWEA6dMuAafycsWMcO7z/MxdWmb+/GjUiOC/Ymt2mi8IBAc1JMEANsDcYF6eyfNFW+UylVjEZYg+lwqwyAzDTZ+ANgMO666y4Aas3WiVbB8exnPxvJZBK5XA4yXoBV2F+khEuTe2FW02gBlUobQYxHaRaQx/Uudld9wodcXdc6xsjQboEJgsk+f8cQzudVUO2AiMOH9j8pub1LJghaBuRNEnMngZU5B2JKX5xY9tkFzHxTb/YVlcsb8E5GlVmYZPKFlhYXnvKwubmJVCqlrcJoBa2Cw7Zt3HTTTfiXf/kXyORuU8ExUuhsJVwTXMrJOAoLIxR/MqKQ60Cm9dx0KJAQ+eY3TCoUVXwRJlwQG3pDkCq21IqSVz1fyHWbZ68FAfwLF7VMb+bxHLavHu9KrVGQv2IOyQfOgv1AryVScrgGDpagktdzHAd5PmSbulHBrDIlvfCFL4Tj6F2XtBezeOlLX4p/+Zd/gT+dgbMx2kFNpPnDBgBYApyMIXAJ7k5/xrvS9IS6oRog14U/1YXgYIa9mev8uloCCSq2EBPFUv99fwwHl3L6MgAES7NNUzuJASvdmyigbB7++QsdX2fd9yhw9XN7Ova4IjyG1WcCUn7RRryFeyFMmBnUb5HL5gdUWWy9Bo56fttClZe9bBGnT+/gpS996YAT7Ix2wfE93/M9EEJAJoqQtgfhm509pGxZipiYweW4lsrPVBNcy0QQfmuhwiSQ39SbRpo5RkjffI3WMQBAFAPYF7vLKqADYMo2jD9MQDCf7uk9NJOEWJjt/EIBzDzao/Duk9UXxmFZ+tzDAQTc7db3OWIG9Tm88CY1+mw/VPLAxdbKTLo+Tp8+AyEEXvSiF2mfj3bBMTs7i2c/+9l44IEHECS3IXYOdlQ4uw6yV6iSzbXi4v9v773jHLnr+//nZ2ZUt/e96itu5244d5+NMTZnG4OptgPmi3Ew2ICBGMKPluAQIAESDHzBX0oCJCRf4EsSQsehN2NcAPtsXO/sO1/du63qM/P5/P4YSavVSlpJq5G0u5/n46HHSlM/qxnNvOZd8/MLPufERvEyRol7q1AKO2owfbRCOP5ZQLp2GYSmHJyo/8FQltJCQqNRpoGKLhxhLhSYZdyEjeaYf5E8/qYAVtCf36dpuRw612X0l42PrJeWIHXe8YR//UjDt912yMrZoLInBnjxlj09Pb4PpyklMrdt2waA2+u/GatumpQto0JBVNbEVigkRJmTolhslN1udjm/W90LWX6sGo1mZWBkmpDCbfh0nRFetooIL++WACJjoxKJium5csQzEzXDnQJNEhznn38+ADKaQBntWWtABAKzgZ2+7UQQP7p77qTszbucsCh1cy+eJpTSIkDTPFy3Mc0LNZoWkekysI9f6/t+Wpb9ohQqG6eiMpmS6dzKcJBRzwV37rnnNmVYTREca9asYdOmTSDA7Zhuxi7bmuKYjErzS1FqnWotIUsGCYGJNqryp8kLDWU7qFTaKxvehsWNVjLKXGbXAU1diOTCEbVuTwKEYv369axfv74Jo2qS4IBZK4cTXZ6lhashvcGLXykWB4UWiuJA0eKg0WJrRj7GQ8DkMf4ezuCkQfRgc55shVQYk7Gm7GsOrlz+Ofm1IhXYDsqV+Scl5UpUxkYlk6ikLnJWjDHVnODNQpSgqY0kR77vb3C60eEwebR//09qKIgYLVFvZYkjEqmF032VRI548T7Pfe5zm1aAs2ln5wUXXACANeq2rVvFb+xOq6wlIh+DIebHd1Ryt8wGlkKmx9+iYkYGAoll3iemTUvutwypUI7jdcAsgXKlZ/GIN/8G286IEg2ylhvdT/obk2daLna3f9cbJyxQ0eXXHLFUc7ZipHAxBryyABdddJHfQ8rje5ZKjmOOOYZ169axZ88eLHGQIKubtevq8PvJoEw78bmiYW46bKnlSgmRZedO0bQFxReuXpnkMvsxTnb2E5EZkgT4ozHCD4xNTLoR1HQMEQzoDreaJYOyDAwhygrqJYVSiFgCtVBPJiWR/Qkcx2HDhg1s3LixOeOjiYJDCMHFF1/Ml770JeRgCvwptlcXIhDwmq75SPLowTl1/IsFRCWxUbyORuMbWYtGIUHlcFPqbi6xnyDA3CfOZ7sHuM59kDuNTXzGfDZ2xhMqIhxCmEZZoa3RtANTx3XRP96HOjzu2z5Uxm5KZ3ORKlGwsExarBz0Yjyaad2AJrpUwPMVAYghB+muTL/vQlknhcKjkGLrRjGJ4aYeSs1yw3W9OI0SYuNvE//D5fZj88RGjgCSK+QTfMj5KUHlra9SaWQ8uWCVQ42mEm6nJL1CKisvBuHK0o1CS/T3kcLFGPZ+k8tacGzYsIGjjz4a13VxohPN3HVLkX1dXt53gYWi2hiNaqYBzGzE1+6NmmVKTmi4sqRZ+abU3ZzqHliwg6YCTlWHuMm9f850mUwhkykvo0ULD02NBHpTJIf9vbClNg0irKYZ+xuPUpBIVt2OQfZ57pSNGzeyYcMGf8dWRNMfiy+++GIA3P7EioludzqDuEGjooWiWotGq1wqZlLQs7N5AaORPTp92lcWEBoAfTLBJfYTwMJaNjf/UrmTXlWUziwVKmN7wkMHl/pOs1JjhS3p+WFHU/blJ4mRgNe40yd8zYRRCmbiVYsN5djIYc+dkvM4NJOmC47cP6l6Mkhj5XbiLJnaWmaZ4rTZctvxE+FCMNakJ1TlpXZpfCB7868kNHJstx8v60YpRwDJdrmz/L5diYzFtfDwCSVoWtVkoRSd+5Z/Nk69GIP9cNQa/zNhakjjVwEH1efddy+55BK/RlSWpguOVatWceKJJ4IAp3tq+Vs5DAPM+XEZ1bhUFrJw6OqimmpRGdt71XBxOtlZuENpKU6VC0SE54THdAw5HfPiPHQBMU0LaXRmldHfi+zpAMvHW6xSMFnZElz4UKHsDO5wCqUUp556KqtXNz9TtCWRhs9//vMBkCMppNvii40Qvj4RuANdpPu8COVq3CGlLBgLuVe08NDMQ6rZgl111oSI0Jz1ZDKFjMVnS6Zr8aFpMuPnN6bMuYhGMHp7kH1dBRMFItjYImnClTAVq1wzyHW92CkAJVEo1lzQD8D27dsbOp5qaYnguPjiiwkGg6gOBxmItzaYTBjgc8pSLUGhtcRo5MRIfMRE+dXoSLO0kMq70DhOxYJd1ZCkvt9FvevJeBIZT3rVSzO2Fh4aANIDEjva/hHxRk83atUgcqB73jw50NvYnSVTsFC9jQKU66I6HXbv3k0oFOI5z3lOY8dTJS0RHF1dXfnKo+5IErlAR7vlQqnA0IUar1WK7cjNi6/xv0uspo3JWjJyaa2lGjXVw4PWaF3r/dEYWdR+lSu9Xi3pNCqX4aJZsVgjCezO9hUcRncXYqS00GgoQkA4hLAdlFOb2EAprni/d8+94IIL6OhoTbBvy4o3XHHFFQDIoRRSLs/AIxUNkxqJLNgRtlRV0YrbbXKminBhYMfyF4RLjkKRoVTDqyX+IHAMdo2XCBuDHxibGrJ/ZTveK2Oj4gkv0NTWfW7aidB4mo5fdbZ6GA0hfc5xNS0vggHEulXIgW5UZ8T/YF1hgBCoeLIm6wZKooTixz/+MdA6dwq0UHCcfvrpjI6OgqWQAynciWVYl8MwkIHKBbvKlTCvJDqaHrOhRPMyVIAFiz74hVSodJs/TeeyTDK2LyKjkAkjyv8EjgYWPiS5+Xcam5gUkYaPJdc4LhfvIWP+9vFYNEphjreg+WCTEbZLaHIZ9FcSYHdWZyYWQiBMA7V2BBW0mtcwT7qomVjVYkPGk3nrhuxPMzMzw9DQEM961rN8Hmh5WiY4DMPgsssuA8Ad8TJV3PEaRYfrtn2WS63WiGr6oyz3TJXo44db10Ct3b7PbPBnPVkmjeCO8Fn80Rytqg7HH8UwnzGf7f+gst9JLstFpdKzQbJthGjReJQhdJt6HxCmgQgGUOtXozasaVr6MeCd77F49dcnqUDJvDhxV3m1cbZv347ZwnYDLa2HnTPtqN4MKpRVbTWaTJXtzF5wlgC1VA+ttNxCbhrN0kUEg14hopy7pMkio5CMsHhv9BK+Gzi2rHvFxuC7xtG827oIWzT/YqYy9qzVo4XflWb5IiwLhgZQ60b9TXUthet6cY41orL3RBl2UL0ZhBBceeWVjR5dTbS0nuuqVavYunUr9957L+5oAuvpLmQigdFTW/CNytiIgAW0UeSkYWAPRudNLrZOLNQjpdy6OZKDBm5jM640zcayvAaCWVQkhEhlkIlkhZWaR0ZYfDJyHv8Sehbb7cc4pVS3WB/cKPUgkynMGq8fmvYnvlYSmhCYtn8PltISiPWrUbv3zZlu9PeiggFUR9i3fVci/0BtVP9wqTKZvHVDZq0b55xzjhfG0EJaXkD+qquuygqOJObuznzucK2FWFQqjeiYf4NvFco0SPcF5sVkFBf8KtWevqrtZ5dNDQhkaBn4UFcYorNj1iRrGCiz/ZvvTRoRvho6la8GTq67todGUw/G2gTyTx2YPp520oLk2i7Cu7P7HOxHBSyk35VCK5CL1aqVnEVEGQp32BMcL3rRixo6tnpoueA499xzGR4e5tChQ8jBFOZYpK66HMqVqFgco7O9avuXi8koFiCl2tOXc5voNvVLEMuaI4iXgsDQaFYiRncXqrcLaRnNjdMoxnayloo6rDrZe4ccSEFAMTIywplnntngAdZOy696lmXxwhe+EIBjX+xVe1NOnS2tc4E1bYCwHTr/NI5hKwx7fq2Napqz5ZYpFbvRTFb9RltQqiJXtTb7El2d0Nfjvbo7UaaRf2k0y4Xeh2YI3bt0U2OFC4YDVlIR2TmOHOpFBczWig3XRSZTc8SGqNb1XmB9PP6l6wG48sorWxosmqPlFg6AF7zgBXzpS1/i4YcfJtDRjxH3fLFGNFrZb2WaGJGwd2BySIWKJxCRSE0+Lz8Q0zE67/NS4+xNozgdFk50ftfYWiwWrbBstCravq0RAop/wF0dcy5S+lvTrASEUogl+ExiOGCmJZ1PTCFiWRdEoA1uia6LjM+P36oqZMB2kDHvniOjNjt27MA0zXzdq1bTBt8u9Pf385znPIcf/ehHuKsTGI/3eDOUpJ5AUOVKSKcRoVDLRUeOwM4DBIDMZi9ox41a2B3e/7ZQ23rtPmkDDBNhFZyLhoGKtiaITKPR1E/ksJfJFJhMYx2cbO1girGduQ/QtSDn1uVxV3siatu2bQwMDDRidIumLQQHwItf/GJ+9KMfIYdSqF1dCDzhIGD+k2QVqGx6bctER5ny0sEnvQ6cqjNKsDtCajSKGyxvYq8U+7Eca3C0AyIQgEBRPxDTaI+nH41GUxeRQzZWwiGwb6JsPQvhSrBdz6XSZLxaO5n6Vs72UMpvKyCx1ksyGXj5y1/eoBEunra5gp500kkcc8wxPP7447ijScReE2GaKEDU6XtStgNStiZ7ZYEYFBFLYMYSRKeTYJmooEVsk5fOV8mqUTg9MWSS7tWio15UNIzsmI1AF47EMI0lkzXSKkTA0lkqVSLsuQ8eKqDPq3o5stVl5FcGooZLnplWdD3htXAX8RRioTpPUoLjQrMFx2ICRLMopbwUWqVwRxO4mQxbtmzhpJNOauBAF0fbCA4hBC9/+cv50Ic+hLs6gbm3QCTYDtT5dNmu2Ss5cr5DYRh0T80GvMa3jCBD5TNYANzQ8kuJjTwTQ9TQmAioGNylggGcgTIBbWLuusKS2XoumlIIy/KshTqmp2rmWSHt8r/XhooRw0BJuaysoIHeNFCh3kv2X+16Kol1JFtWXilEu4tj20GmF1G8Uqp8cUDluiih6Do1wOQkvOIVr6g62LQZtNXV9eKLL+bzn/88Y2NjyOEU5lQETBOllKdMS90MAhbCDVR+4spmrywYhNpKpIT0rDmt4w97AM/1kji20P+mFuzPspQRjvTMnUJU3aPAHu1pbUT5CiAvNjSLomKPpEx5oa3M6n8PSniv5Xy0hAuGO/tdmmlF54MHZhdYCkIrW368mpiNSg/M+UrE0hOzb/3v1/CRj3yE4eFhLrzwwoYMtVG0leAIBAK87GUv44477sBdE8c4GPZSeRrRHCcrOkTAaqtg0oUQsQQd988ta5vasgYEmP0GZnr+/yFNUFZrf3DSEjiR2o9bOBLAsINgGjj97WmVWikIIbzfSRuk0610hKuqKhWghEBk+6gk13bghGu7zhkudO6cqWuMjcS1559zSglC0xKU16U2sHe8BSNrEGUyUWqmwCqiMjZKOvy///f/AHjpS1+KZbXVLb69BAd4+cJf/vKXSZBA9mUwsw/9Fa0cNaBsx6uRUGMl03Yi/Ke9AChzLen++XXN3RC4jUqgEJAcMGtOe3NDkOqvXdQFYlFCobY7LVcUWmgsXYRS4Hg3oT2XCiKrF+5Yq5RAZAMj7IxF7Je9Ne83sUqhbBPpNMYtJOLW/LxyBZ07DuSf5JcsuRobi6XAlZJD9WbYtesQkUiEF7zgBYvfR4Npuyt7Z2cnV155JV/72tdw18ax/tTh1dSggaIjY3u+vcjyTGs005S0fNSDtCAx0pBNadocLTSWP4XiIkfhZyvgkrl4asF1iqeFgMR4FJHSQbEVWWy8Rg7X9co/FH52bJw1njX8iiuuoKura3H78IG2PDte9rKXYZomqsfGDc81O5WqKy+CQUSNWQXKdlDx2jvwtQtyqJeJY3TXNk1jEJblCXktNpYVShWl1WdFQvH04vnVbKvSdnxBwO6Xr2ne/hqN69YlNoxIeH4IQNE2lOsiOzKovgymabZVKmwhbSk4RkZGeN7zngeAuzY+z4Q2L0C0zngM5UpUHW1/2wEVtHDap1edZokiLAsRDCyZmCZNbZQTEJWERbllS4mVWrbTCFIDSyAYtBilEFLOK1VeNcW/Tdct+eDtrvPcZ5deeimrVq2qZ6S+05aCA+Daa68FQA1lcNTUvPmNqgOgMjby4Bgq0QCfmkazRBCmoYXGCiAnDqq1RFRaPjdNCFXSxaKZj7BdeHQX8vGnGpNOXuxKyU5zrRhyIIMQgle96lWL349PtK3g2LRpExdccAFKKdx1ZRqyLVTEpQZUKuUVTdFolilCiFmhoV0nK4Ji60SOcoJCCFUyZqPUNqqdt1IRaRu1e998gbAIym3LXedZ6i+66CLWrVvXsP01mrYVHACvec1rAFDDaaQ53/WhlMqrRhEMLvppTSWSqIQWHprlRU5o6BgNTY5KgmIh8aCtGZURtotxZBr2Hlz0vUQELBDZ23SptGgpcY04asjbz3XXXbeo/flNWwuOo48+mm3btqGUwh6ZKLmMchxPdDSoQqRKpfLCQ6NZygjL0sGgmgWpVUBoa0YFpIR9h3APHGpI6mu+4J7tlLVuOKtnUEpx3nnnsXnz5kXv00/aWnAAvPrVrwZADiZxjdKulbzoaCBt7WKJhDl4VnerR6FpU+YEguoYDc0ClBMQSomyYqRVVg43rNj7wvZ1GbBrLzJWJgSgXmynZJAogOtOI1Z5xara3boBS0BwHHfccZx77rkgwFk1P3g0R3EBlEagEknk+KTXzKeNUIbQGSqaeehAUE0xxaKhWCiUExW5OI5KWS61BqQ2BENhl2mN1DKUQuw5gPrTkw1/SFVOebEBcNF7no3rupx55pmccMIJDd23H7S94IDZWA45kEAGypupjGh9d2EvFqR8YI+cnvFERwODfzSaxSKE8F7BgA4E1ZSlUDSUKvq1UIBoOVFSbczHskUpRNpG7DuMnI413MouggHPpVIGGUhy5513AvC6172uofv2iyUhOI4//njOOeecrJWjdCwHeGpQBAO170CqBZv9yOkZ1PSM12BNCw9NCxFCzMZm6O62mgpUIwZKWT2Kt7FQwbCVhjGdwDgyjXziaeRkecv7olCqonXjzNdvQinFhRdeyHHHHefPGBrMkhAcADfeeCNCCNy+ODJUvumNCIe8ymw+oJRCxhNehdIVIDrUkjk7lj/CNLxXTmhot4mmQVQqdb7QsoWYUWcJ3VHqxzgyjbt3P+7BMd/2IRYI9HYDM/zyl79ECMENN9zg2zgazZI5PTZv3pyvPmqvqdAl0HYQ0YhvogOyfrVYDDW9cGOkJU2T72nRA4pArPGxOEuVnCVDWNmLj2lqoaGpmrU/UqTTdVh8C6jFohEKZ1DG8nWvGFNxxJ4DuIfGGu4+KWQhsQHgrPM6+l566aVs2LDBt7E0miUjOABuuOEGLMtCdiVxOyuUJBcCEY342hFWudITHhNTy194NIlAUmHYy99yVBGlYHIGlUzOWjK0yKgJFU94rs8VTsfTMZRb/txZyJUC9blklhsi48DjTyP3H/QlVmPOvqqIxZLdGWRXAsuyuP76630bix8sKcGxevVqXvSiFwGw6Ypu1Lz+xVmUAiEwOjuqj+mos+WxUipr8Yj7eiJqlinKix8SsQSMT8LEFEh3wZgiTQWUQtk2KhbXv8sSLBQEWrjcQtsoV5V0WSAlwnaRTz6NytgNrRhaChGwwKh8S1YojrnSK4nwghe8gNWrV/s6pkazpAQHeHU5IpEIjzzyCLKvdPVRlZrNZDG6u6oSHcqVpSu5VYnK2MjJKS8tqs3SaDXtg3AlwnG9V8b2BMbEFCqjn8j9QiUSnvhIpLzYq9xrBVHccK2aQNBqYjmWo9gQtoNIpL2aGo/taopgrcaNgpTIvgQ7duwgHA7na1QtJZac4Ojr6+Pqq68GwF41Xt7KUYDR3eWre6UQlUh6abSGsaBa1awcRCqDSGUgkURlM55UowsEaSojXVQymX+RsVdMuvti+qDUI0iWLOkManwCuWtP0wo/ViU2ACUkA2d576+99loGBwd9HlnjWZJ3xGuuuYa+vj5UII07WiJ+QipUkZXB6Ij6Gkg6D8vMvhY2k2mWH95TUsp7xRLeU3YigbIb0+VYs3hUJpOtKJzyYj5yrxVOqbTYWpZfiqhEChVPeFmIDepEXg3Vig0AZ3CK/fv3Mzg4yDXXXOPzyPxhSd4Jo9Eof/7nfw6APXQYIsXBT8rzgxfShEDSkhhiVnhUKOKiWfqImThMx2A6hoon8zcz7S5pc3IxH7lXIpV/rRT3aGFcR62t55espSNjo6a9bEOVSqGaLDZrKdYnZZLQcd74Xve61xGJRPwcmm8sScEBcPnll3P00UeD4WIPHaluJSEwOqJlYzqU7dQdPLoguWyDYEALj2WCsJ18DAYTU571wnG8V7HgXUbIRIUMseWAdPMvlU6jsrV3lntDx0plzKFyb5UlhVSoiSlkLO4F/PvQFmMhvBYE1d9+L7vtDOLxOMceeyzPf/7zfRyZvyxZwWGaJrfccgsATu84qnuuUFAZu7T5WoiqA0kXRSW/cE541HjSaZqLcOXcVy6TJPtSM7F8lsmyzyqRyjM5+5wW2HYUHl/p5jNf8hkwrvS+j9xrCVBr+muh5aOa5doSqVDTMeT4pBfcX+73KqV/D51ZqslGKRyPa8T59re/DcAb3/hGjCV8z1i6IwdOO+00LrzwQhCQWTUGoSIRUeFG4LfoUNMz1S1ombPCYwmfSMsBaRle7EX2paZnUFPTs6+V6BqRCtxssOUKCK6sFZVMzsbnJBKzrQ9c78Ylg+3X32Yhl0mtMRy1Ltc0HNdzmyRSnsioxpKhlK/neS0xG0iJdGycdRO4rsu2bds4/fTTfRtbM1jytv2bbrqJu+66iwwzyIEMxr6CzogZGywLIUorb6Or0wsSKoxGdt3W3Pit7EkojVmRtIg0XU1llCVwQ/N/+GpGF3HLoTI2SNnUILqljrJtyFpWRSRCpi+ElSj4HSuFFWsv4bpQafPiWhttXXvDcfPCQiXKt8BoBTWJDQClkD0JZG+KQCDAG97wBv8G1ySWvOBYvXo1V199Nf/6r/9KpvcZItPHoGJV+lqzMR1KCGTSW0e5EuGzt6UihiBfU7xQKDXB1LccUZbAjpY4zQ1wg3OFZSCuBR5khYbrejFNmkWhLIHdXXD+KUpaPYRUBCb9ixEpJRKqFQ7lBEm7CA8VT8x5SGtHS1zNYkNKpLJxNniN4a655hrWrVvn0+iax5IXHACvfOUr+f73v8/hw4exB48QVEPIeDawLZmCaGTuzbuQbPaKEQqh4vH2usgWlrQ2TKD9zLPtgrIEma4SSlGAtLI+aKVQJc6DctNXHLbjpYq24QV72SDAjZS2oLqh6LxphqMIHln8k3opkVCLcMgtU2r93PymkrG9WirQ1uerCFjevacWq7n02mY4a6ZQQYfR0VGuu+46/wbZRJaF4IhGo9xyyy381V/9FQweRiYGECqCSiRRSi3cg0wIhGUiuru8VsNStn08Rf8js8Joer2FW1BiRBUYSZYaFa9bQpAeqGx+KhYOoiCGp5yoUELMWW7FIZWXebJEgh6XK8qaf366liC5uqPk8lbSxZpcuDhVJetGLVaOwmWLU2gbbekQztzvYuRuiB7wXFFWPIFcAkXzarZqZFEZGxm2EeuT4MAtt9xCONzEGlI+siwEB8CFF17IWWedxd13343b9zTh+AaEEPmW8kZn6R/tHITA6OtFTk03ZlCuBNMf4SIKbg49T831sSf7LdJ9pW+uMtC8tvPKBFXDGZbpEphDc+uk1Gp9yAmH3DqF6+a2VWqbK87CkT1/lpvQKBevtaQp8y85URMnOt8qUohSLo5T/Q/esuSC6bHF77391O5eseIGoowXc/2dKYRTZhx2+7s+6xUbSIlCcdL1q7n//gOcc845nHfeeY0fYItYNoJDCMHb3vY2Xv3qV5NhBrcvhkWXV0q6xqdXo7vLK09eqymsAKUUxBOI7s661l8MkXGHyHjpeYkhC7fK2mfJIYHTUf/NyOmQ0F29i8qKhYgc9t7nREGhQKhGfJQSGMXzVpy4KMb2ag+0lfuwQYiOyjfgFcdEEDtU/WVedtmwCGtFeL+FWWVF8MEHbILTbRSQLGVjfhOGqF9sZGxkf5L777+fYDDIW97ylmUlopeN4AAvgPQ1r3kNn/vc50j37sFMnoQg4hXtsW1EoPpoUGFZyHQascxKk0fHqv9BxdZZOKtaE1Ffi1CoRogUWz5WIjrrRLMQ7sziIubX3mcTnFzZ55eoR2y4Lsp1Uaak+2w4cgRe9apXLblusAuxfO6kWa6++mqOOuooMB0yvXshFPTcKbVcZIWAUCjbk8XH6qOaklSKp8jNK/5barli0bJSxYbK2KhkCpVKa7Gh0fhJPdaNrNhAKi55/+kcOXKEtWvXcu211/ozxhay7ARHIBDg1ltvBcDpHMMNzkAwgOjqrK/7X1Z0rMiiTy2klKAoFBGFfysJiRUdDOq6XvnmVHpZuk80miVPzo0jFW53iu985zsAvPOd7yQUanLfryaw7AQHeBVIL7/8cgDS/U+hREHWSS03oFxaarZsscpkarJ2KMfxcsQ1NVGte6TS/HJBo6XWXVaiRCpkLI6cjiHjyWUVEKrR+ElLrH85V68hcTZ6gXdXXXUVp556avPH0gSWpeAAr+b84OAgKpAm070XDK/eRrU528IyMYojwAtdLNrN0hTKxXJUEgnlUmNLWUOWRQ0O182WH0956YJaZGg0LUEEg9UvXFBcz1k7hQq7DA8P8/rXv96n0bWeZSs4urq6eMc73gGA7B3DDcbAMhffnl6qfCXGVokOIRWB2Mo1kReLhIUsFJUExZIWG7bjRbXHk8h4UrtNNMsfpTCml4HVuEBsyI40ao33P9166610dFRRwmGJsmwFB8A555zD85//fKSUnmsFmW0TX+W/bVlePnUJlCs90VGqI63fuC6Bw8vgR1eCarJJGlVDY0m6UlzXi8lIpZHZQFCNZqUgpEKOHWn1MEoiqq25VCA2lFDYm8aRUnLppZdyzjnn+DjC1rOsBQfAm9/8Zvr7+1GBFHbPPm+iVV0UsbBMLy22DMqV3iuTKS88MnZtGTIrnIUCQGsVCYXBp8XrLjXrhoonPJGRsXW2iUbTQBqSFFBNdkpRjyJnzRQq6tDb28ub3/zmxY+hzVn2gqO7u5u3v/3tANhdBzzXClRt5RDRSFkrRx6pZi0eRSilagtU1ZQVFeUyUhaK5ygsIrZkyMWrpNJeEGgs7p1jOj5Do2k8i/xdiUAV9ZqKxIbsTKPWeSXab731Vnp6ehY1hqXAshccAOeffz7Pe97zQOSyVtyqrRxlm76VQNmOZ+LWQaWLolI/lGqmL7S9tsUwwTC9wLPhAUQwmC3WpbTQ0GiWMkVVTJUhGbzEQkrJ9u3bufDCC1s4uOaxIgQHwFvf+tZs1kqKTO8z3sRqrRwV3CqlyJu8s6LDy2xp8A3DcTHS/oqa4JRAOa25WdfiOlkygqIUWYEhgkHo74HhflR/T01CV6NpBwITZtn+J43CiPlQD2mxD4eGqPx7dd15LtBLbjudffv2MTIywi233LK4/S8hVozg6O7u5t3vfjfgFQRzwpPVx3J0ROe2iq8S5Tj5dMVGWzxEKk1wItXQbRYz8LCNiLem+n1ORBT2USm3TC20S6CoiEa9V2cU1d/jiYxqrW4aTRvSv6MJ2XNP7234JpWzuDEL0yz/8FrkRgFwe5N85zvfQQjBe97zHjo7m99vq1WsGMEBsHXrVq6++mrAc61Iw666DG1V3WaLkcpzsyzl8ugNbjtd3S7nt5Qv5WYpfFVLKfFSTzBqPYhgENHTjejpRnVFvVe0qO20jvnRaJqGsKz6ep/kqGTdKCE2lOVib/IKfF199dWcdtpp9e97CbKiBAfA6173Oo4++miv10r/LlSVD8m1NH6bh1Rey3vth6+KQutGMTlxkAsCLQ4GraaSaPH2fQ0o7euBgT4Y6EN1d6IiIVSkqBZMKZGhRYdG4xtCeIUgUdLrY7KI7ZS0bpQSG3gpsAQkGzdu5IYbbqh7v0uVFSc4gsEg73vf+wgGg7iRaZzuMag2RqMOt0oO34oyLdP7UrniXguJg0IxUVzTo1KK7OIHLPIvEQ7D8ID3CgY8V0nAguI8/dz/IUo8JbVjDIchwBAY/b0LZ25pNI2mQb9ZoyPqZR8ahj8B2SXEBoA7EkP2pQgEArzvfe9blr1SFmLFCQ6AjRs3ctNNNwGQ6X0GGUguvJIQGL2LTFtapK+wGPPwNMGp5VmPodj1UUp8lHKN5P7mhEkl98xCJdIrIoQnVHOvgb68yFA9nd58w5grJgpFROH73Bhyf9tNbBgCYRoYvT2Y/X3eNNOr2itMY1FCXKOpFuvRPXWtJ4TIWzSMzo7Z36RSXtmCejEEFFu+i7JR8pM7MnC0V5Lh5ptv9qzsK5AVKTgAXvKSl3DWWWeBUKSGdqICC180hRCLerJzD4/Xve5Ko1KPk2LBUGzJKNV/pdI2qh5TIIAIh71XJAKDfbMvy5xj5ahJNFSydLQSQyDCIYzODoy+Xu+JsJhAwItN0cJD02YI00AEA4iOqPcqOn9VOrOoSr2i+LdaIhsFQJmSwUtNHMdh27ZtvOQlL6l7n0udFSs4chHCQ0NDqECK9MBu1EIXzJzfbwXR9aSJks25kaSGFXZ0YSFQbLWoVjTU2ilWRKOIrs78S3V3ono6Ub1dqO4yQcT1PjG1YcyGEY1idHZU15AqEPDSx7XoaBumNgTAas55FTpoEZ6sPxaiUeRFRjCAiERqa6ZWKznrRrbFRSnLhkJx7juOZd++fYyOjvL//X//33yhsoJYsYIDoLe3l/e///2YponbMY7TvbAFQljWohrAqanputdtBX1P2NCkBBt3OIPdUfrHWM69UgvFLpQ5bewNOHxy0AvyzL5UVxTVEcm/CFh5U2xZgZCbXyttdBEyOiIYPV21n+eG4f0+Alp4AMiBbvZua12sS3ytQpnNERyRQxCcbK17V4TDEArN1rWpgJISlV6EdSNn6XZdlOuW7ULuDsX56U9/imma/PVf/zVdXV1173M5sOIjv04++WRuvPFG7rjjDtToftxECDMTLb+C8PzZ9f6MVSqNaGAFW+vgFG64Hze8fLVjPS3kyzWBy31O9htMnjD3KBppBaEqnogWGks94kGp0nEdTUSEQ14w3WJcO1mzde4pbiX3fJEhi5PPfYKDp83eZGKpEH2fXzl1FxpFYO84ssS5JMJhz/VX6zmbLVlQN6ZZNl4jv4tIBuP4OGTgxhtv5MQTT6x/f8uEFS84AK655hr++Mc/8pvf/Iahs+JM/jqEkOVzs0UkgnBl/f4/qRr2BChsZ9llqhQLjGrERj5Q1PCsFTB3nYnjTFKrZk2+Srjz7HtG2qwcuFksCoqnFb8vtZ1S2yhertwyfpC9WBu9Da5umhMewYAXnOdXllab0xNM0RNM4SqBKRSuEqTeNTfQcNc/H0twZv4TspVsTn2YJUHB+SNMwxMaUP85q+o324pgwBMbFcS0MiXDlwd45pkMZ511Vr7+00pHCw5m4zluuOEG9u3bhzmSJLR/HYLyJ7MwDS/mo8aUKuVK5OQURn/vIkc9i5l28zdcN9J4S4c5aSEHm/ekulD8hhICNyRwwvOXm1kvSK0udXOr8oZXSWgsJB5y7pTiZQuXawfXiSHyxY5EV2fpYNCG7SsrPEzT83PnbqArrCaNmS2gZwpFh5XJCxCALa97KC9GzIJCe/f/35Mx0/O/p65n3LYSIiJtYCV9GI9SGJnsQ0IwUF/xxTLblVMzi1q/koBWKOzN4zzzTJKRkRHe8573YPj5G1tCaMGRpauri9tuu403vvGNONEJ7L4IwYmhssuLSASRSqPawLwQeOYIKp5AWBbOhpE589L9oeKH/ZpZ/SvJM1ctbhv14IYEycHSP9TksCI97EOQWi2ujVICZKHtVdpPE8SICIcWHYdUN4HA7KmYEx8rTHjkKBQWZplqvs+69kGAOULEVYLf3XkSRon7nXBg6IHmu7DChwz6Hk0sejtG2kGkCiwZtgOHx7208za4YYtgoGyNjULctTPIviTBYJC//du/pbe3tzkDXAJowVHAli1beMtb3sI//MM/YPftw8iEseLlg3xERxQ1Hat9R7YN6Ux18QI1oGwb8/Fn5kyLjg7NsRhkRjraL97DUARC3o94ZkOQ1ID39O2GIT3SZFN8qQJc5URHOQtH8fxSf8ttxyfhYUTC+doZbUEggJDSe1p03RUrPAopJzyKxck5z3+w5HIzdoj7127Of1YRG2FKUAKVar8+PdZEYq6rJJlGJauoibRIVKL2fYiAJ9JVMgVlAkQB3L4U7tppUF7L+eOOO24xQ112aMFRxIte9CIee+wxvv3tb5MeegojcyyGXfoiLYJBLxajDreKSmcQDRYcJTkwNsfAEZ7pmNc/xl7VS6Z3EaXbq8VQhKPzuz0KobBM70c8PWpj97dYEBULg0KxUGn5cixU+Kvc+wYgwiFEKOilrLaDO6eQwgDTFRznAcyJ8SgnPCqtA9AVSHPhsx/Oz/vDwTWkUgFQAteaf5NUUqASzbkFBPZNgDPXIqlSaZAFcVVNGQnIZA1NLw3hFbszDFQqVTlINGQTelYSO6a46qqruOyyyxow2uWFFhwleOtb38quXbvYsWMHqZGdRPYei1ClnxCM3h7k+GTN+5CJBEYw0LAnThGJoBILmzVVLD5vmhVPEKhksoyEib66A9GARm5GC5rB1Uwlq0XxcqWsHOXml4sF8QFhGl6juHYrJlaKZSo8VFEp+2KBUEpYFE4rFh/FnwvjQor3MwehMK3S7kdVQojUjkXgyf0Vl1COU1/mlWE2NMZI1liWwBwa9FoSpDPIEtfOHMqQrHlxhF27DnDSSSfx5je/ebFDXZYItajarsuXI0eOcOONNzI2NoY500no0KbSQaRK4U5M1mUSNvp7G2riLiUmGoW7eQ0H3t2cG8H0wU6q7qrXSBR0Pmmx7nuHK7tASrlJoHSWSm75wmlVZrqI8anqq9Nms01EVxfC5zb3Ssq6zNI1U0ech9HdHimnIhKh7+txAoZ3o68kMnLzK4mLctPK8afxEcanK6T3NwhnLMLxtz3hXxq3YTb0fJYTk2VrZszu08vaKrw2q0QKOTlVcnFlgHPsBG5PjP7+fr7whS8wODjYsDEvJ9rMmd8+DAwM8Ld/+7dek7euGJmefaUXFAKju7u+nThOY33Xhn83mqYaJlr1QC5yrxJxHLm/xe6RctaQUiXOy1kaqrWolFo1W1XRiEa98uM+i42mki2bnmsat9SKiRli9sZmClVRLBQGheY+F1sqKlkyXCXmWzaahZ/PrA085spxK/dOyZXy7+6e+yDouGXFBoC7PobbE8OyLD7wgQ9osVEBLTgqsGXLFt7+9rcD4Awexg4dLr2gIbwI5hqR0zGQjSvj6WdAoDGVIPFIr2/bb0vKBXiWIld9tNBSUVyRtFwGTCkLykJDCwYwImGM7i6M7jqqgi4hcpUjhWV5PVuWMDlRUE4cVJO9Uji/UKBUa/1oFEoaDPzex+MhREPdKSqRqPiAZ3R2eFbnaHjueqnyMR/uQAxnZAKAv/zLv+Tkk09uzGCXKUv719sEtm/fzite8Qrvw6YxHDExbxlhGHVf8NVMHVkureDIBCP3NKnGeaspdoeUqqNRTiRUsnAstI9S8wp3YRoY3Z0Y3Z2Izg5Eh/8m87bCMDyrR8DKv5Ya5eIuSlGtxaJVlg3pCob++9GW7LtWVCbj9TwpgdHd6QmNMnU+ZJlMRNmZRB3v1fO47rrr2L59e2MGu4zRgqMKbrrpJs4//3wymQzpdc/gyvlFY7xOorWLDplMNc6tYghfmxU16wEq0t+E+IBKFPZLWSiOo3haIZXazheKkQXSYo3uTs+n3NU1+7TfBnUJWoZp5l85l9JSc7eUEgm1uFByn3OWjcJ5+xPdTMWXfpNJYTVQUJbpd2J0dnhNGstcu8slBEgzQeRcG8dxeM5znsMNN9zQuLEuY1bwVat6TNPkfe97H8cffzwEJOm1u5FO0U1RCIyOaH2ulbEyrpp6MH304SuQTXiaCpSJqG8qxRaKSpaKQtdJcRxHpXVz6xftN98BNxLGHOjLuhMaGzy3bDCM2aZxwYAXx5R7tSGlgkdz8RfFcRzFFAuQcu6XtGvhuv7/TpXrrzulUdlVKpOZmwqbdYGbo8OI7s6yYlWOT5ZsXyFlilUv7WRqaorjjz+ed7/73bqSaJXob6lKIpEIH/7whxkZGUFFHFKrnkY6RSejEHVVxFNKVSwmUxOm4ZuVo+sXj2P+tNeXbc/DWALJU5UCRospF6+RXV4GLWQkgNsR5NB5fRw6r4/4cUOzLbA1lTEMjK5ODl9xNIdeeDTxszd6Zdu7OtsqLbhQVBQKjYVcLMUBouWWsaWJ7TZHbG3560O+bVs06rzPZTllrcjCNDBHhzEG+ytbxaQq6YKRboaT37Sep59+mqGhIT70oQ8RDodLbEBTCi04amBgYIC///u/p6OjA9WdJj2wG5mZKzqMzg6vqmMtSIUcnx8bspLpGFx8qeRFU030fbVPYiWsHUoI7KEO7MEoU8d3MfbsLg6fPpvWObPewh3tq3XUK5bJCzaS67kYHzY5ePEaDl68BrlxNWrNMAz2t3aABVSqoVFs/SherlJF0mk7zKHJ9kgNbgeUK5GxOCJgeUHWQ1VkkGT7XRXXg5FOBueYae677778A6jOSKmNpRd11WI2bdrE3/zN3/CXf/mXuIMJMum9hCbXzPEBio4o1FLNDrzug6l0Y7INzKxJWTbeNdH/SIZdp3bQPeBfzY+2oZKlotT8cr1RCt7b/VHsLu9nJwOC+Gh7mv6XE4dP8W7AVkrRtXu2VUHgsb1eanqLWKjwV/HnYrdLrZVJG0no3k5IH/Rn441yhykFdsYLsg4GoUp3t0ql5rlSpJPB3TCDHEpimiYf+MAHOPbYYxszzhWEtnDUwRlnnJFPl3XXzJDpOjDvBK21AJFypVe4y2mASDAN34LowvftJDC2gs385brGFn8uEBvKMpg6odd7bQ4zs85iZp21NMWGaRI/cwOp845v9UhqxgkLJo4N51/xMzeQOHsz9pb1vu63VLBnpc/VbCM3rRViA2DNz2dQtj+N4hqV+qxciQiHveyTamPrHHdeUTvl2Lir47hrPKvru971Ls4888yGjHGloS0cdXLFFVcwMTHB5z73OZz1k4idJoHkUN5CUY8PUjmOlyYbCnnbWYRoEMGg1xRriRaSNQ1JoCeNPdWC+hLVNFCrVNBLCJJru4iPzp4D7jJx806fuZZkv0FiVLAqcyzBex5r9ZDqJj7sCT5jyMJaO/u02vvTnQ21fFSyWpT6DPMtGLn3lWI+0q7FE2NL3MTfgJ4/ynFBSUQkUvs1tKgbrLIzvP37f84HP/hBAG6++WYuvfTSRY1vJaMFxyJ45StfyeTkJF//+teRx0xiPywIZIY8sSEERk8XciZWfdqr9DpnCunmuybWXWvBECAMUI13qxxz+04e/vBauvv8jbMwzDaq+1HGlaKEANP7rAyDw1u7s9NpXcXURpLNAkmcuIrkoInKXsBlULHvghCcfzIbv3oQxidR6fmN+ZYC0oRMx+zBOnyZ13E1esih4/7d+el+PdGXco+UivFYyJ0iETiO/0brof+IYOx6wvf91IqSclYoijoq0zqu16Yitz07wwd/+w7e+c53AvCKV7yCa665pkGjXZlowbEIhBDcfPPNTE1N8cMf/hDrlBmc+w2MIyGvbkLAKzldqelPMSpjI0wTskWNVCwOljVb4rkWDAE+3LOVbRM4EET1JXy9pwqBl60im3znLtf7JPvX7Zg9FsmR8NJ0jVSB6u7E6e9g6pjSolcZCgzY+aphjPQIG75xCFGh58RSIRd4GltlEbtiU3768C8P5SsDi2S6YgXKSlTbhK0cpcSGqwSxMl2tG4kdDxKc9slyKrx+QDWRHUexGBSR2uuQuIe88gTKdUG6yK4M73vf+3Bdl+c973ncfPPNNW9TMxctOBaJYRi8853vZHp6mrvuuguOO0zw4SGYnsbo6vTSVE1j4YZBBSjXnVtF0XFQjpMVHdknmCpqMohwCBX35+Jw9D88xu7PjWIa/lkhggEHu9PGnfavmNlCKMMgMzy3AuHUpiBlmgcvC+RQLyoUYGJL9XFIMqTY+cohovthYMcQwSf21yS0lwKHtg3n33ftdQiNzVr4jKQNB+fX0ykVZ1FvG/rC98WfAR4/OFTbP1QHvb8PErn3EX82Lozq3ClKzfZEKeU2riPoNBeDlxcbHTb2iZPYScXWrVt517vepWttNAAtOBqAZVncdttt3HrrrTz44INkjh8j+KdhmIl5lew6OyAWr1p0qIyn1oszVlQma7IWAuFanr9zgQArEQjMrrcECQYdkpYFTTAV57D7o2R6vfgLZUJ8ZBmriwJUXzeZkU4SI0HcYH1WpcQqSKwK071pI6EZSef/PNzgUbYHM2ssZtbMNm0MJBUd+2cFWmjnGDA/y6R42kKUiuUoNe+p6YGlGq7lIURVwaIqF1RfLgOvDmuwSqSQ09MoxwalkFEH+6QJsBSnnHIKH/zgBwnoejgNQbenbyAzMzO85S1v4YknnoCMSfDhIUwn5JVgDoe8J75GttoWIl9ZtFI6rV9t62PbjmbqNfPLvDeamakIKum/Nra6MzhJi+gTQcLj7fGzGLo/hvnMmL87sSxip63GCQucyMIXfTcIsWoSO5SgY68ierg5wmP6shNJd7VH4EymRzBzcppod4pnr95TMTC0eBpUrs9Rar27nznK9/gNd1+UY780idjrQ8GvCm3olZSzRbgWuF3Vkv4KWbExMZEPsJdhB/uUCQhKjj/+eD7+8Y/T0VG6x4qmdrSNqIF0dXXxj//4j2zcuBGCLpktY7hWBpWxaxYbACq+QFCmUl6QlOOg4glv+RKBe/X4M6uhc8cY7XFbXhxWd4ZQf5JgyCbamyTTo2hVp+9mkjhlLRMXbGDivLWk+syqxEZNCEV8LRw+yeSZm07mmZtORqwaXni9ZUBitcSYDJB8potf/v54Hp8cmtdCvlwdjoXqc5Qqi94MrLjwR2yUsW4o2/ZiMxxnfuflkgO0ahIbkK25kd2+Crn0XW5CULJ582Y+9rGPabHRYLSFwwfGx8e55ZZb2L17NyJlEvzTMCJTxxO6ITDKdDCsBhGJeC4XV3oBbj4c6szJGxh7q//N1qYPdzTGrZK7WAclka7Z2imi4CKulIDfdxM53PqfRsMtHKEgzmgvk8d01J1FU7WFowRCCoQLG7+wE+W4dQdelqJdLBzTm8ENq/nfrwBlKp512pMABA2XkOnUXU8jJzR2jK0ilvA3YNSeCrHlvU/5UkwQIfKN2pQr69+HZVVfOFEqVCyOO+FVeFZBl8Grguzbt4/169fzqU99ir4+XeW30egYDh/o7+/n9ttv55ZbbuGZZ54hs2WM4MNDCNv7ukXAygYnLXCRkQoVT9SXTw751FoMExEKeUq+wbU5hNucm7IISFS9gkMoML1xhnvSGNlAV6XEHKGRX1wo7C6FnBAYTfr//Eb1dqECJuOntfYiqgyFMuDJmzYS3Q8jv57AODSBXMiat0RwQ8LL3in1c1UgHMHv7z0aAHNVgjUDXkbPus6JiqKjXPBp3AniyCYZqhstNnIBoqa5+JTjWsRGxsYdn0Cls4GiQZeRl0bYs2cPq1ev5uMf/7gWGz6hLRw+cujQIW655Rb27duHSFqepcM2vW6Fplmd6ACvBfdiS55bFiIa8SqZZlP7kHLRAaVq1TCPX99Lx2b/UyGnD3QtvFCOkJu/nhlBl1Co9gua9aserERrfx6LsnBEwtgjPQDEjorUHQhazGIsHKXo+5MiMmZjuIrAvY/XvZ12sHDE1woyvbVnbnVunMLICopV3dOMRCrHRuUEyGOTQ4z53TtFCTp/HmX0/z26+G0VZJAI0/CyTRpQZE1UawlOZ5AzMWTci2tTIZfMSRMQcRkZGeGTn/wkq1atWvR4NKXRFg4fGR4e5vbbb+fNb34zBw8eJHPCIYJ/GkI4np9RmCaYzGsSVIxyHC8rZTGt5x3HK9sbLkgxVSpvysxPStT2pCn2H2Lw/l6Sm+sfWkMQCqNj9nsMhpw5lowc5awaywrDILllFW7EJNXX/hk2E1sEE1uCCFfQO3oinfvSWPe3X2EpP4nt6sm/n+zu5PGIdy4Hgg5nrX26ZO2OZsVuKCUY/UYdFWULgtrzk4pTSxshNqrpjp3x4kFUOjNr2Qi5ZE4eh7Bk1apVfOITn2B0dHTR49GUR1s4msC+fft461vfyoEDByDtxXQYdiArOMyspWGBJ3BDeF1oFyM6DBPRGUVVqOEhinq5qFhiYVNqfy9P/q8RwidN1j+2KsjYFqkj2QDYkEsgXHCxEopAoGjsZcRFtaIjMR2m73dBRAsLntZi4chsHiU15FnCMl3+mdkbbeEoxkwKgtPe+9X/ubPqeh6ttnBkegWJUYWyGndJVQaojrk35XO2PIlluBxOdfLUkX7fs1PWfDFI5N6dCy9oWfMLd1Woq6Ecd9FuGhEOL1yTyHFRMzGUUp7rTrqosONZNsKSNWvWcPvttzMyMrKosWgWRls4msDq1av51Kc+xdve9jYvpiNr6TBSAe8HahiIYMCLlC5n7agxw6X0NrwfnujuQpXJeZ8nRnrKmGunYqCyd+KJKYJTo7g++JLl73tY9z8x771l8PSbUpimQgi1oGgoN794ejkBEulKo0QI0a65ONmnRdnXzeQpvd7Nyaemfc3EjSiSWV351PWbsJKw5osPeRNkQdGnNkMGaKjYABASxMzcy/Rv7/f6vkT3moze77lElYDd17kIo/HfTeTJI3MnlBIWUFMPlEaIjQX3KRVqajp/vqhk0ivqFXbovcxgbEyyfv16br/9dt1mvkloC0cTOXLkCH/xF3/Brl27wDY80ZEMemKj0NRo22WLhBkdkcVZOcATHFVUKq2ZwOIbL5WkoJlaeqST/Ten52WVCKEWZdEot0wmHaD75/6kFVfDPAuHZaFCnktucutIw+IyasFvC0dJsu6D0bttOh4+6NVMGJ+cs0grLRx2pyB2lGxa/5zglMG6/5nr/vTDwxLcNwnJxmUS5Vi04BACEQqVtm5IhZqZmXMNVak0ys4gIw7dl3rX4g0bNvDxj3+cgYGB+sehqQldh6OJDAwM8IlPfIJjjjkGApLMCWPIjsz8rJFAwMtLL/G0KuOLT0FV0z4V63Jl6Vbtlf5WQ4GIMdMuqYMdRbPVnL/zVy89PRfbUVGoGJJ0XxtYDQwDOdxH6pgRjpw7ypFzR1siNlqGUCAUB862ePK1a9h5/TrUcUch1raBz12AE6VpYkNICI2XmK4a+zIy7mzBrQai5CJSX7MIy5ovNqTyYjWKqzpLCUoiO20iF9kcOXKETZs28YlPfEKLjSajLRwtYGZmhr/8y7/koYceoqOjg8w9UaxU53zLRbbCXrG1Q4RDnlVkEYhodG4AaaOo1cpRTSv4IiZO6WP6ZTPZ1UVJa0epeZWHUX7ZdCpI8OFIS+pyKAG9T2Qwbcn0Ue3R474lFo4yBCcF/Y/aJAYtZABa4f1KjghSQ80L9DFswcb/9r/2jXU4hpiONXajSi2u1gZ41o1weG5bB6lQyeT8jsVSotJp3M441hlpkskkW7Zs4SMf+Qg9PT1omou2cLSArq4u/uEf/oHTTjuNeDwOp07idE7Pf5owDK8sesCaY+1QqfTCQaYLoJJJRDK98IK14pSo81H4ufi9EOWtHWWmd+1O4TzSXXJevRko5SwcSglC4Qyp4eZHjiZWCeIXxZk4PtQ2YqPdyPQqDpxlMfH8JOPb0s2/oglIDTbx3FAw8Ef/VZWRshGpBl8flPJqATVYbKh4ApVIlBQbMpnC6Y2hTouRTCbZunUrH//4x7XYaBFacLSIaDTKRz/6UbZt24Zt2zjHjWP3TZYXHZY116qx2EI5Dcp/L73dov+h0IJR7n2p7ZTBmkwSHhPZTcwPAJ3dfPl5pT4XkwtMVUpgDSdJjDbHZu5EBZPbUqgTZgiHbGbOSeZbpmvmkx52GeiNsXpkkvilMY6cu8jfRg3MbGjarvJ07vW3GaORcTEPTcEiH2pK0giDelZsqFTaCwpNZ0o+gMlEgjd+4xrcLdM4jsNFF13E3/3d3xGNRhc/Bk1daJdKi3Fdl49//ON861vfAsDc203gYD/CLJNAlC3apTJ2QwqCiXAYFfXh6bmUayV3qpWanptWaPUoXK7os7IMdr68F/P4mUWlvtYScGo/1k3n07PV0RuNNAWJC2MEAi6mMfepOZkK0Pe99ujr0E4ulUyvZNWxY3PCJxRguybjDw/S+yj+uVkETB0LMtCkarsurP6lJHzYZ8GRsjH3HVl4wRpZdNdqIbyqy1IiK8WhSYmbiHPdP7+Af/qnfwLgRS96EW9961sxFxlwr1kcWnC0AUopvvSlL/HFL34RAHOsg8CeofKiI4fresFTgfqzm0UwiOqIND67RIiFx1V46pUSGVXwp1u6iQ5WX6wsZ9UoF/dRaT0hFNzb0/BOsm5Q4IYheVqSjo7SGQGOaxD8cQ/BWGt/rsqA6U2Q6VEEp1obtKoEZIYd1hxV/uZ46PcjhA8LgpON/95mNoLT0bzjMXwPdD3d+IyROUhF4KmDjd+uUosuXy7C4cpCAzyxkUzibJpEjnpxLq95zWu4/vrrS6fyapqKdqm0AUIIrr/+em699VYMw8AdipPZeBClFviBmuZsTQKjPuWuMhkvlsMP3VlNRooQsyKj2KJRBR07A8iC+h/FVUXn725+/Y5KYqNYoGT6FNJszIVLmoL4asHUCQ7GeRNlxQaAZUpi5ydIDbT2ojl2rsMjf34H/3j5V0gP+9DIqwYyI5XFBsDw6QfpvuQAsaO84M5G4UYEqolVjAIzgkDC/1gRM+GD9SQXu1EvUnkdt6sQG9JJ4pwwjhxNIoTgLW95C6997Wu12GgTtIWjzfjlL3/JbbfdRiaTQcQDhHaOImRlt4mwLEQo6IkPqeoKyvKlNocQXupaYWDoYn74pVwvwBPvCxEIuIuqt1HLcqmnu+h5TCzKtTK9GdyIpGvddE3rzezpZuie1jwnTFyW4A/bPk/U8LKbvjrTx7t+8nJCY803UysBQ2fU9iQ+nQoRe7qHjr0GoSP1Hzw3IoivVriR5l06ex4VDD7ob2aKOZXCODLZ8O0q267vgSbba6qqW5SUSBUnc9wRVIdDKBTir/7qr9i2bVvt+9X4hrZwtBnbtm3LR1GrDpvUcfuQwcouA+U4qFQKYRhe/Q6r9gJcKpFsvJVDqblCIyc8FtpPufllYkIGvhXNzq7eUlE4rZwlpFxQaXBddaW2SzFzFIxvdQgfM1Wz2ACwhpLE1jT/aW3mhTP86vzP5MUGwDVdE9xxyZexu5r/zCI3137z7Q6nWX3cIeytM4xfkPbSaOvAidBUsRGcMOh+2ocA7yKMqQanwJKtuVErrgu2g3Jl1WLDMWZInziG6nDo7+/nk5/8pBYbbYgWHG3IySefzGc/+1mOOuooCLqI08dxOyvfnJQrvdK9QnjCw7IQgRquqI7jlStvNMVpstVkplQjlgoETO8Dk/R8vati1km5NvTl5lWycAihmNhqV13ZUQnI9AhmnpMgcNw03UOxfGfQWomEbeSzZkgONk90HL40xS/O+izD5vyg1e3RNN958T8im+hekMckGOmvXazlGOyOs3pkEvv5U0w+t7aYCDciSA43T2xYCcGq36QJTvubeWONzTQ8a01J6W2z2gcZ10Vl7OqFRpb33/l6rLNjEJJs2LCBO+64gy1bttQ5ao2faJdKGzMzM8Nf//Vfc++99yKEwHymD+twH6JCSUNhGl6eetFNW2WLiC344zdM6K2hDXw15Nwqhe4QKB8oWsZ1UnY9pUiu6+aZ/+UQCDp1Za2Uml/KKlI4L3k4Sv/vy7sTZECgDLAvnMI0ZUMLUSrA+EkfIR+CIfP7MGDsbJfHrryDgKjsNtntxLj4q+/A9DGmURngbkwxOjDV0O26SnDwyUF6HjYxM6psVosyYfJ41bSKoigIThqs+3FtHZxr348icGCqsSXMawgSrbemkELh9BxGbppBSsmzn/1s/uZv/oaurgZfvzQNQwuONsdxHD7xiU/w3//93wCY4z0EnhlEVHqaDwbKtmxWjku+6VqpQ2+YiK6Oss3d6qZQdCyUjbJASuy86dm/h7f2E39h/U++3iarr06amIrQ/UAQKzl3eTcosDsheVyarl7/bhYKED/vI7yIeIRyTB0N6UGXXVd9rup1fp2SXPeL1yHGAwRijb0rKxPstWlWj0w2dLvFjN0zQnBGlIzxsLuy/VKahHBh03/5n5ViHYkhZup3E5Yib90os09gUYGkSkjs9Ydxe73f++WXX86tt95KoBarrqbpaMGxBFBK8Y1vfINPf/rTSCkx4hGCT40gnNJ27HJWjnnbzYmP4lPAshDRSOODSP1o7lYgRuIbe9h9BUSHK188F6q9UQuJw1G6Hg0QiCti6wABdo+ka+3ihE+1pNIBer/b2PocY2dIfnvVP5Z0oVTDbWMn8C8/uYDATOOOtd2tWHX8oYZtrxKuEhz5/TAAoXFBaEKR6RXE1zSvORtA59MGI/f4a90w4xmMgyUasyyCsmIjW9SwXGPKqrdvOWQ2HkBGUxiGwc0338zLX/5ynYmyBNCCYwlx11138YEPfIBYLIawTQJPDGFmSrePr1Z0oAqiwAsvEn6IDsOYbbhUKV6jeF5xMbByf8mKjisV0cFERWFRr9goXi9xJErXIwGSo4rwMVN1x2bUiysN7Ie66X28Mds7dJ7Dd57/SU4MLq5D7j+Ob+KO7z4fswHVsZUJanOc4V4fYowW4NBEF10/iyIcmDxBoZoU9db9uMHgQ0mE49/5JFyJdWi6oa6UeV1gpcpbVBcrNABkZ5qOM+KMj4/T1dXFbbfdxtatWxe9XU1z0IJjibFnzx7e85738NRTT4GCwO5+zMnScR1CCERHDWV8C04F5UpENIxaZJO4eRSKjsL9VlFdtFoeu76P0Ma5Ofv1CIziGI7cNqQ0MO73/MRWCqyEYvL8FJ1dPpu/y2A7Ju6fuhYtOsbOlHz7BbcvWmzk+I9YN+/+2isXXZnVPHGavg7/m5WVI/7tUfoez5Dqt1ACEsMGsQ3+ulbW/FwSHvOxoqhSBPZNQHH/kcVu1rbnlERv5O3FHYyhNhzBtm02btzIhz70IdasWdOw7Wv8RwuOJUgikeDv/u7v+NnPfgaAcSBM8MAoQsx3sdQsOopQjgs9nY11hRSLjoWsHbXEewAyGuTRm0JEulMVW9NXU7Oj8K/7ZCfRfd57Mz0/biNz4TQBqzXFsFxpIH/fQ+duVfMNPtUn+OrbPsaAqep2o5RjtxPj/06dzj9/83k1j0sJCJ40RU+kNUIOYOzeEVb9xsEosDRIU6As7zzYf56JDCgvY6kRPxEF/TsEvY+nENK/S3Ng9+GGZqWoZBJlO95vu9FYYK8+jNM3CcAFF1zAu9/9bt0TZQmiBccSRSnFv//7v/P5z38eKSXHH388u76RwLCteT96IQQiWn/58sLCPSISgQKrR13BpYbhNWCqJRNl3qBKWEUKpinD4JG/6CTaU9uTsVICxzGQrieI3IxB392zAbiVbprSEiQuiBEONa95WDHO3X107KtedCQHBb/9i9vn1Nfwg7fu38r3/ucMjCofqKUF1rEz9Hf6nKFRBlcJxnYMs+5HdsXvMhe7neq3OHLK7LnqhmrPZhEudD/hf4EvpCKweyzfl6lq1NwiXHJyKh8AKgIW+NCnRIUd1l8Z5LHHHgPgta99La9+9asx/BA2Gt/RgmOJ87vf/Y7bbruNmZkZuru7SdxtEYh3eT/+gh9l1TEdZShZLVAIROfcJ2JVbV+XYtExZyM1ulLKLO/0hNl768JPcYnJCLiz64f3BogeqO9nkekSGOdP1LVuo3Du7qNzb+Xxx1cLUkOSb7/0H9kSbM6T4qufvoC7dm3C2BlBVLjXySBwVILhvgVKWfvIwfFu1n2p/uIiB58dRBXcf+1OhQxVPiahwwZrf+avwDIyLuaBiaqsG/lU+hyOg4zPF0PCNKCB2SG54E+nP0Hw+ClisRg9PT28973v5ayzzmrYfjTNRwuOZcC+fft4//vfzyOPPAKAuTeK9UwvRjDcONFRZV69iMy3pKhQoPQ+c6IDFrZkVBhXufgPGQmw68XdWFtmM0ZSe7oQRV6PzqeNeS6SenHCgumTbLqHmh/gmEMB9u/76N5V+n+KrRW85s9+yDv6n2zuwLJc/ujl7PzlUSXnyQCoo5KLKuy1WFwlmPr1CKO/a1x8w/S6AHbn3PM43Q92t6e8hCPofwh6H/fPumGkHczD0yXjNlQmk7dW5Kel056bpOJGRdkU/HoQQqACJvbwIZwBL3vmxBNP5P3vfz8jIyMN24+mNWjBsUzIZDL8n//zf/jGN74BgJixCDzWj2EHPBGQpW7RoZQXZV5Pn5ZAGcEBqL7uyoW/SoxjobGLeNKrcAqo7g4ObhsgvtpbJ3pAVXy6bgROVDC9xaZ7uHWiw3ENnD910/vY7DQ3CCfc8BBn9ezijb17WjY2V0n+euxUfj22if13rc5PVwZwTJyhntZ9bwBTPxpl6AF/W8ADpHstMp0CFHTus4nsmrWMub1RVKCxLgprbAa1v0xqsW3XlUXSKFeKEAJMExl02HxViIceegiAq6++mte//vVYVhNL2Wp8QwuOZcYvf/lLPvzhDxOLxcARWI93Y45HEFYAEfaawNUdSLoI0VGOmsqvV4kqKqcswmFmzlhLfKR5TcacsGD6tDTdfa2JQQAve0U+3EXPE97nG9/1X9zQc6Bl4ynmsBvnyh2vZuIer+aFddI0vdHWZaMAzPxglP5HbF8DNosJPzUxv/BWsLxIrwvHRU5M1l3VsxQiGGhIkKiwLDAETtc0mVUHwHTp7OzkXe96l+6HsszQgmMZcuDAAW677bb8U4KxL4L1VBdCCoxwGEwTYZp1Z6/My7VfClgWkxdtIt3TvOJA0hLMnJus2HbeTxSQyVhcv+W3vLLn96y1StdsaSUJmeGgm+G1j72SWDpEyPK/SVkpXCWI/XiEwR1NFhtPTyKm/bXoKCnnBHg2gkaIjZzQUEJy8duP4Tvf+Q4Axx13HLfddhurV69eYAuapYYWHMsUx3H4/Oc/z//9v/8XAJEwsR7twYh7FgUjGgXTxOiI1vUkVXfL6RYSP/doYqvMplaLVAKmzk/R2dlc0ZErCHbUDzyLwejHdvLF9T/DFO0V3f9QJsk1n7mVVb9O4IZNnrnRbrpLJe1YxO8aZPQe/90ohQhHEdo97rkAfUI5ric2Gshi3SjCNPLru+EkQ9scnnnmGYQQ/Nmf/Rmvfe1rdYnyZYoWHMuc3/3ud3z4wx/myJEjmKYJT0Ywn4l6hcKEwIhGEdEooo6KokvR0pE4ezMza5vrD5aWYPLZGbr7G9uvohyxXT0EZgTrfzj3RmZ8YIzjew5y+6p7mzKOSux3Yrxl94v448+O5ajvz44zNRjkmYsF1nCyKZVF045F7J5BVt3VXLFh2JLgvmlfrRvKtpEzscZaNuoUG/my49ksNoXCGTiCXDWO67oMDQ3x3ve+l9NPP71hY9W0H1pwrACmpqb42Mc+xs9//nMAxHSAwKPdiLT34xehEEZXZ13xFEtOdAhB6lkbmdrY3CcoJyyYPtHfQNLYzh4ihwxG705hZEoHACaHQ4z8xZN8Y/OPfBvHQqSVzZb/fBNHf7V83fOJYyPE1wjCZx4hGvSnrokCJn8+ysh9LbBs7J3yXWyoWLwh5cRz1CU2bBsCAc8Fk0VaNpnV+5AdXnzTRRddxNvf/nbd5XUFoAXHCkEpxZ133sntt99OPB4HV2Dt7MI4GEYgEJaF0dsDwqjN2uFDIKnvWBbpE9cxeYy/xa6Kia2D8EmTDd/u9JEOBn8doOOgQ3By4ZtzfHWIdW99nK9u/EnDx1INx33xJo76XnVuhIljI9hdgs7LGx/s6ipB+Pa+RZderwmpCD89gYj5G0ys4glkA3uk1Cw2XBeZSmMEs1lyhvCsGr2T2COHwJBEIhHe+ta3sn37dt14bYWgBccK48CBA3zwgx/kj3/8IwDGeBDriW5ExmsfL0zTEx6miaghKGzJWTosi9TJ65ja3DzRIQOCyRMdulc1pqCVAnq+3I2ZlgSnarMCpAaDXHDbXfzt8IMNGUu1bPnczaz9cbKmwExlCFKDQQ6fbDJwbuOER/prI3TtbW5V2MjjY5BqQEe7CqhMBhmLN8yVUmuAqIzFvOtIZwcIAwyBDGQ48epe7rvvPgBOPvlk3vWud7F27dqGjFGzNNCCYwXiui5f//rX+cIXvoBt20SjUTIPmBgHIp61IxDE6J7NaKhUR6OQJSc6hCBx1iZm1lhNCyRVBighmDk/QUe09huPKw1s26T3ux107U5j2PWbzGXQ4NrPfI/nRp9gY8C/DJa0snnGSbP9q+9gw7eTdVsUlCFQpuDJa016R2foCNXuCnGkQfxnwwzssBFu7X1n6kYqIk8e9l9s2DZyqnEVWqsSG1KiMjbKzh4PITD7+7zxZK0a1qYpkskkoVCIG2+8kZe85CVeTJlmRaEFxwrm6aef5u///u/ZsWMHAGIqgPV4N0bK8uI6olEwsndi4bldcu/LsWSzV1Y39+KnBEydV32H2elDnaAg+lSANb9orDk+0xvgDf/4Da7panxJ9phMccH9/4vBv29MB9ocyhI8eb13Iwx3pqvquZK0LRL3DLLqty0IEH1m0n83SqPFRiU3Sq7kuZTIVME5bJiYfT3erECGzKr9+ViNU045hXe+852sW7euYWPULC204FjhuK7Lf/3Xf/G5z32OVCpFMBjEfTSIuTeKEQrPFR05DNMraVzmyWfJWTqAxFmbmVnX3OwVNyiYOjVD92D57JWZZ7qxpg2O+mEK4fj3U53eGOaFf/lT3j34aMO26SrJqXdfx+p/8DdAd3xLhMnjoOvYibJWj4xrMnP3UGvEhs/ZKJB1ozRwH2XFhuuiXNcrhV506xCWhdHVhTLA6R/H2jCTt2q8/vWv5yUveYluurbC0YJDA3j9WD72sY9x771eyqSYsbCe6MbMdHjl0EsVCTOyF6QS4mPJiQ7DJHXq+qbGdAA4EcH0CXOzV5LJIOF7vKZ4vU86hA835yY5viXCka0un33eF7k0urjYhmfdezUTe3s4+t8yTXNbHHpWFDcCmS7F0BkH58yb/Nkow/cvv2wUAJVKIxOJxsVslBAbKpUGJVFSzf9dGyZGOIQIBnA7Mqy7xOKJJ7zytqeeeirvfOc7dayGBtCCQ1OAUorvfve7fOYzn/FKoysw9kewnu7EsCJeEFgpClwswrJmW8QvsewVEQiQOmFt07NXnIhg+uQMPX8MEppQmLaic09rqpMCHDkpwjfe/dG64zpOv+caej7bVXMga6NwQyYz67xjePiiDF1/DNH/cPOED+Blozzlb1Ev8FdsqExmtnlbud+xEJg93agA2MOHcPunUErR3d3NG97wBi6//HJt1dDk0YJDM4/Dhw/z6U9/mh//+McA9Pf3M32Xgzndg9m5wE2oML4jV9VyCYkOLIvkaeuZ3tCEOh0KIuOSnl89BaEgzkhvwxt21UtyJERstcm97/rfVVcn/dTEUXztr7cTmHEJxFpTorwYI+NiTMa9+isb+pq238hjh0p2ZW0kDc9GCVjIZLKmGCyjrxe3d4bOk1OMj3vdXbdv387NN99Mb29vQ8alWT5owaEpy3333cfHP/5xdu/eDWSDSp/sxhI9+UZwVWE7+QqDSwIhiJ+92QskbVT2igKzIEFh6Ic7UYkkxT8/ddxRKMtAma1/KlQCDpwT5fM3fYrjAmn6zNK9dx7IpPhDai3/+rorm9qHpCJSYU2n5gZqZsWwO9SD3TVrxVJW41KUhKsI7zoCDayBUYpGBogqp/ZAb7O3BxlxOOnq/rwbdv369dx66626WqimLFpwaCqSyWT4+te/zpe//GXS6bSXyvZ0iMCRYYxgjZkHtoNSKt+Keg7FgaltwGKzV4LTCjPj/byCMy6hu6oLyBTBAHLjamSofUTaE68zeekp9/OhkXsJCO87+UEixI+nT+CuD51JdL+/6Z61YMYzGBNV3oxNk8zq3vxHN2zWfS4atiS4d2p+59cGohwXlKxdbKi56dPKqdMCJQRGbxR71QRqaBrXdQkGg1x33XVce+21BIPNdUdqlhZacGiqYv/+/XzqU5/iV7/6lTchYxA40Ic50YtRy0UmKzqKEcVP9G2So588YzPTR1V34+/Z5dV2yBF+4hByfLKu/YpwGLl2GBltryZW+2612XH2v/GteJR3f+E1rP6Vv6metWLG0hiT9Qdpuv3dYM2ei27Uwg0tfC62VW+UXHBnIY1wa4aCyFUp7NFxsLztbdu2jZtvvpk1a9YsfvuaZY8WHJqauOuuu/jf//t/s2fPHgBE3CKwfxDLrsE/XkZ0FFKy1HEr3DKlyqArGLpvet6ixuN7Fvy/akFEI8i1Q8hw+4gOZQn2bosQPqwYfNDfgMhaMadSGLFEQ+vAqHAIVfT9y0gAu3v2fBCuIrRn0l/LRrneKEqi3BJiosGXdbXKxF5zBBX2LFkbN27kzW9+M1u3bm3ofjTLGy04NDXjOA7f/OY3+eIXv8jMjGfaNSZCBA+PYjil/fzzkKpms265fgtKqZJNoupFZWxvezkCAYz+3lmri1LIw+OL3k81iFAQTBNn86qqqr36iXVoGmE7XjCkaYJl4g52t9z1Y8YziHjKG1szLmemiSoUv0cmUImizrzdXYs/Xkohp2e84loZuzXB1/0BnLUTuN2emOru7uaGG27gyiuvxLLax+WnWRpowaGpm+npaf7lX/6F//iP/8B1XUzT5Morr+SHH3kI4VZ3MVKZBqVOZssrNyQWpILJuta+Eo1CBAM4x2UrNDZTeCiFOZ3GmJyZrS5ZiGGAENjrB5sviJTCSDuYR2ZaUt1Wjk96BbBKnS+Nikly3frjLRaBCrpccttZfP/730dKiWmaXHXVVVx//fV0d3c3fTya5YEWHJpFs2fPHu644458fEc4HMbZ20Hg8ABCLuz/bpjoyFZBbFSaYDlaJToAjJ5u7HWDvgfZCttFuBJz35HqVwoFcYZ7vAwbv8fnSqz9jS/FXhVSoWZmkD7X2EDJposNZSnkUSmMo1JkMl5a7/nnn8+NN97Ihg0bmjoWzfJDCw5Nw/j973/P5z73OR566CFvgmsQGB/AOtKPUAs1gKrdxVIW257v624wNbfrbiDGQB/OaK8vqbNGxgVHYh6aAFnfd6i6O5HREDJi+WL1MDIu5thUa3r2SIWKxb36F37REqFhINckCW9xvKJ/eL1PXv/613PyySc3dSya5YsWHJqGopTiN7/5DZ///OfZuXOnN9ExCRwexJrsrSw8Gik6XHe2SqJPCNPwLB0tEB5Gfy8qGMAZboB5WymsKa9uhIgnG1awSvV2gWGgLAO3s4a6LWUwMi4ibWPEUqXdOz6j4glwHH8tG80WG0ELOZrAWTWDCnj73bhxI294wxs4++yzy8ZNaTT1oAWHxheklPzkJz/hn/7pn9i7dy8AwrawjgxUFh5Zd0hDLrqu68V2+GntMLJddFvoYlGRUN3CwzocA9f1twS3aaIiIWR3pL6MG6WwJhLguIhGud9qHcJ0zF+rBvUV4KqbcAA5HMdeNQ0BT7yNjo7y2te+lksuuUS3jtf4ghYcGl9xHIfvfe97fPnLX2ZsbAzwSqXP/MnCmuirKDwaIjqkzMZ2+Cs6gJYJDyEEjA7hDHVVvY45lcKYiUMzb+CWBYbAXtNfk6vFOjjlZaC0ABVPeBVhfd6/sv1vLCcsC0IWztAM3aeQL0U+MjLCq171Ki677DJduEvjK1pwaJpCOp3me9/7Hv/2b//GoUOHAOjp6SHxeNATHuWCSxslFpoQ1wGtDSgVQqA2rcWNBOYGbWZ/4kIqrD2HvWl1xmc0hOz3o6LhWZFULECUwjoSR6Tnt0FvFiqVrrtwW0378VlsGB0dKEPiDM3QdaJkYsILq1WhoQAAGKNJREFUth0dHeW6665j+/btBALtU+tFs3zRgkPTVGzb5s477+QrX/lK3tWCa2BN9BEY7y+dTpvNPGnEqVo2jbFR5Fws0DLhAaCOXZ/fv3lkxvfeHovFHR3IV/gUaRtjyl/3RUUcLxXVb7HhiwslK9yMUAgCAZTl4AxNEt40Gwy6atWqvNDQtTQ0zUQLDk1LcByHn/zkJ/zrv/4rTz/9NADBYBD3YJTAeD9GpkSQYRUVSqvCtr3t+Cg88gGlQjRXeOSCKYXwGuwZJsJaGv545Xhjz5e5DwR8T6+dQ8ZGSYmcnPL13FCu1w+lIWJDCERBvIWIeP2NZCiDMzyBGE7iZF2T69ev58/+7M+49NJLtdDQtAQtODQtRUrJL37xC/793/+dRx55JD/diHUQODKAkYgiClu2uq4XCyAMVGoRT+0ymw3gd80O0/BunH6RjVHJUSykRMBCWBYiGml5pdJyKNt70i+ux+K5p7ybqTANCPkYX5CxkVPT/sdquO6iK4aKQHA2bsg081lSCoXsSOEMTSB7ZnvcnHLKKVxzzTWce+65GC20umk0WnBo2gKlFA8++CBf+9rX+NWvfpW3ZIhUiMB4P+ZUz6zwyN2EwiGvv0q9pcal95Tpe7EwQ3iBnY0SHrkCZzmqGLsIeDUxjO7qA0v9RkkJ6XRVsTXFHYZFd2djBiGVZ9HwOY16UVYNw8QoLNlfdB4pIXH7YjgDU6io1+tECMH555/Ptddey0knnbSYoWs0DUMLDk3b8cwzz/CNb3yD733ve6SyVoy+vj4uv/xy/uO232LY2SfdrPBgqA+Kb1oHx6oPEs2VRfeZeq0dKlMUVLgIcSRMAxEMIjqq7HnjB0p5mR+LuPQU14cQHVGoo4+OrOU8qZNarRoiFJqNA8pRwjIhgzYvvu0cvve97zE97TUTDAaDbN++nauvvpp169YtatwaTaPRgkPTtszMzPCtb32L//zP/8yn1AohEDNRrIk+zFinZ/UQAob6vZVyF+ZSp/XYBJTICMjfcJrlZglUrsDZDPEDYHR3gmV5N2+/3S3Z47FYoVEtIhhARMuLKjk+4f/3XEURLyMcnl84roLbQ6GQXQm2vmojd911V/67HB0d5cUvfjGXX345PT09ix66RuMHWnBo2h7HcfjNb37DN7/5Te699978dGF7tTysyV6EayGCQVRnFCzTu2gXntpCeJ9L3FjFkcm5NwZXgpLIZMp38dEWGAKjqxNME9FgH7/K1UFpUPXSxSCEAEN4AtP2T2wopea5Z4xgYFEuNRVwcPqmGX52mH379uWnn3nmmbz4xS/m7LPP1sW6NG2PFhyaJcWePXv41re+xfe///28Gdk0TdRkBGuqBzPWiRHpBMurblnVk3vuJ1Bsph+fwm1SG/p2QAQsRMjLDhKhYN1WD1UQyNpOQsP3EvRSeeKqQZdUJRSyO47TP43qmbUMdXR0cNlll/HiF79Yu000SwotODRLknQ6zc9+9jO++c1vzjaLA6+mx1QP5lQPpuhDWBaqI1JWVMyh0AKSC1qdSYBt4x5pUWfSFiHCIS/eI5tmWRVKeQKjgTfdxdA0oQGQtWg04v+W4TRO/zQdm1VeVAOcdtppXHHFFVxwwQVEajkuGk2boAWHZsnz1FNP8cMf/pAf/vCHHD58OD9dpINYU71YiX5EuNcLKiwUHOVESE545P5KiUjbqKlp5HTM/3+ojRABL3hRRCOIMi4BlUp7GRgNKs7WCES2jLrvNEhoyKCN2zuD2xtDRWatQkNDQ2zfvp3LLruMtWvXLmofGk2r0YJDs2xwXZf77ruPH/zgB/ziF78gU5DdcdJJJ/Hoj49gznRj9A97E8vFdRRPy/1EsjUu1J59/qfSthu5ug9CYPT1ekW60um2ERg5RB2ZKnXRgJL7ynJwe2Mcc8kwDz/8cH56IBDgvPPO44orrmDr1q06NkOzbNCCQ7MsicVi/OxnP+MHP/gBDz744GxdDyE45ZRT+NOPDmOK1QgjPFd4FFo9iqcV4krUM/v9bwzXaoy5lSyNgf68+FCpNKS9ug+ttm40zaKxyKaCynKQvQlOunItf/jDH5DZnjaGYfCsZz2Liy++mAsuuICurvapl6LRNAotODTLnrGxMX72s5/x05/+lB07duSnG4YBiQ5MewAz3YdhVrjIF8d3ZN+LeBI1NQPge/vyZiLC2eDRYADR2VHVOir3/zeqBH0F8nU4mhUMCnULDRVxcHsTHPfcYR566KE5382JJ57I8573PJ7znOcwMDDQkOFqNO2KFhyaFcXBgwfz4qPQjA0g7AhWsgfDHsAw+hG5X0apQNMSbhcxMY1yXK9y5VLCEBhFoqJakVGSjJ3viwKAdBtW86KpgaB1Ng1UKFSHjexP4XRMoULpOfOPP/54LrjgAp773OeyevXqRo5Yo2lrtODQrFj279/PL3/5S37961/zwAMP4BaWC3ctrHgXRrwLy+6Frt75waTFQadKecIjkULF4m0dYGp0RCCXAiuEv31KpIIC60A9lqDZDrxtGggaArczjuxO4nbEUObs/2uaJqeffjrbtm3jvPPOY3h4uNEj1miWBFpwaDR4VU3vvvtufvOb3/Db3/4238obvBvycccdxxO/GsOMd2AkIwgR8Eqql8OVXq8WQO7e29IAU6OnK19fY3ai0dxOrIWUiHlR0zPzbvDCNEBkC5H5PdYaYnGEZXkVP6NJXvFXF/K73/2Oxx57bM74I5EIZ511Fueffz7nnHOOjsnQaNCCQ6OZh+M4PPDAA/z617/mnnvu4amnnpozPxwOc+qpp3L/fz2JGY8gkqE5HW1FNILq655dISs2RDyJe3CsGf8CwjQwhga9D60SFrWQi5PIZHAPHpozy+zr8+1/KOfqKc52UShkOIXsiPOsKzfx4IMPkkgk5ixz9NFHc8YZZ3DWWWdx0kknEQz6aDXSaJYgWnBoNAswNjbGvffey3333ce9997L+Pjc6qPRaJTUQYURi2DEwxiJMEJVKBFu27NPw02wfMyxcAgBZpu0KC+42TsHxxbdtr0qsg3/zO7OinEgSkhPYEQTuB0JggNuvpFgjp6eHs4444z8a3Bw0NehazRLHS04NJoaUEqxc+dO7r33Xu6991527NhBPF4Uk6BAJEJ564eRCCMy1hwrCOC5XAriRpqRXitMA9HjWV9EMNh064dKpb3/2ZW4E/5XbxWWlXfLCNMo2SVXoVDBjCcwIklkJInZ7WIX9Vvp7u7m1FNPzb+OPvpoXSNDo6kBLTg0mkXgui5PPfUUDzzwQP6V62w7B8fASIYwEiGMZBiRCCHsIhGSEx9SNkV8GJEwBHLBmCYiGm78TqRCTc2W53Zjcf8tGUJgZEt/i2BgjiVDoVABGxlKzxEYmPO/776+Pk477bS8wNi4caOXSq3RaOpCCw6NpoEopTh48CAPPPAAO3bs4NFHH+WJJ56Y97QMeCIkFUSkQtm/Qe+vPbfYWFOqmhrCs3hkEUIg+mpvc65S6TkCQymFSqcrrNEYjHA4341VCAEBC2W4nrAIpVHhVP59KXERDAY55phjOOGEE9iyZQtbtmxh9erVs/U+NBrNotGCQ6PxGdu22bVrF48++iiPPPIIjz76KDt37sQpU0iqv7+fjRs38ocfPIGRCSBSFiJtITIBhGRe63O/ELlYj4KnemNotjiVmo4hZ7yiZyoniJQsXZnVB8zenqw7xEZFHGQww+U3nsOePXvYs2dPaUsTXunwDRs2cPTRR+fFxebNm7FyqbcajcYXtODQaFpAJpNh165dPPXUU+zatSv/OnDgQNl1hBAMDw8z9sQUIh3wBEgSyJiI3EtWYfI3xGxdiyowRoawR3tyg5idUXDpMO75kyc2qqTaqp3KUKigCyEXOk3oFMiAzenPO4b9+/dz4MCBufVTihgaGmLz5s1zXuvWrdPiQqNpAVpwaDRtRCKRyIuQ3bt3s3fvXvbu3cu+fftIJpMLrt/R0UHicBqRMT0h4hjey4wglIVwTUS4G3eoHwgA5vxgVp9QSMAB5WA+8TTKkF5vEZVGmQ4qICHgoiwJIUX3aJSpqYWrtobDYdauXcu6detYu3Zt/v369evp7u5ecH2NRtMctODQaJYASikmJibyAmTv3r0cOHCAw4cPMzY2xuHDh+fVhah+4wYoE4SJJ0C8v94rJ0YEIArESe6vygoJBSX+KhxQNgiX2VrxtRGJRBgeHmZkZGTe33Xr1jE4OKhjLTSaJYAWHBrNMiGRSOTFx9jYGOPj40xNTTE9Pc309PSc99PT02VjSPwmGAwSjUbp6Oigt7eX3t5e+vr68u9zn/v7+xkeHqazs1MLCo1mGaAFh0azAlFKkU6nSaVSJJPJOX9z7zOZDFLKeS/XdfNt1S3LKvkyTTMvLHKvjo4OotGojp/QaFYoWnBoNBqNRqPxHV3FRqPRaDQaje9owaHRaDQajcZ3tODQaDQajUbjO1pwaDQajUaj8R0tODQajUaj0fiOFhwajUaj0Wh8RwsOjUaj0Wg0vqMFh0aj0Wg0Gt/RgkOj0Wg0Go3vaMGh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEcLDo1Go9FoNL6jBYdGo9FoNBrf0YJDo9FoNBqN72jBodFoNBqNxne04NBoNBqNRuM7WnBoNBqNRqPxHS04NBqNRqPR+I4WHBqNRqPRaHxHCw6NRqPRaDS+owWHRqPRaDQa39GCQ6PRaDQaje9YrR6Axh+UUqRSqVYPQ6PRaGoiHA4jhGj1MDQ+oAXHMiWVSvH85z+/1cPQaDSamvjhD39IJBJp9TA0PqBdKhqNRqPRaHxHWzhWAMHfDSNUVlsKA2EIEAYYAoRAGLl52elCgCEQuWXy80R+nfwLCqYZc+d7K+anKSFmJW7BNvLTxey+Cqcp4W0mP8/wtutNF/l5uXVUdlp+Psxuw8gun5vP3H3MWSc7fGWUmDdneeaMcXaamDdv3joUjqNoPmWml9leuXHMW6fSdvPT1fz1C9bJzy/YlspOp2A9b54qGI83XxTOyy+bm6fy2xSFywuVn5c/xXLTc5vLLuOdCir/ObeOkf3szfM+59bLzxMKwex6RnZa/oXKr2cI5kz31pez65FbXmLm1sl+nt2WzG/PLNi+iTfdzG0vv6zEzG2T3Djk7PLMbtvbpsTA2783z9uemZ0mkJi59QvWMcFbD28/ue8j99nbl8q+JztPYWS/FxOBAZjZg20gstMEphAYGIjskbMzJi993Sia5Y0WHCsBV2R/+niCg6w4yF7JZ+cJMGbvrsK7e2c3krvzGMy7o8zezefe5XLbnHcHomha4T4oMa14PWaFRoHgmDetQCAUfi4e4tzlS6xjVJhX7t+YN44y/3aleeW+qnq3V7DNUmLEV8FRaj7Fn1V+24XjKNxnqXl5gULBMoXLz1tHldiXmvMqFByzIib7KjePnCjxNlkoTnLCBHLCgfwNu3CeJzjk7A1bFN6wvfeGEJ4YyP4l/17k1/O2Q3abuXXJrpedXmpewTpmViyZ+XHmBIdaUHAUbs/MfR/MnWZQOMaCY6hZtmiXikaj0Wg0Gt/RgkOj0Wg0Go3vaMGh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEfX4VgJmAqlvGI/Xl0JUfBXFBXjyv0teE/hNFXwvop5BUUZZsszlZs++1fNec+c9RSAyk2f3aZCgCK/buH8/DbmFI8oHEuJz2rOkIq+jzKv4mWrqbVRaV7V+6pyXuEuK66nFtimKjPG8oW/5tbOKJiXX7b+wl+z4yiow0H9dTgUs+spoea+8P5685gzXQoFQs5uk9y+ZEG9kOwy2flKyPz2mLP97N/cvrKfjewyub/AvGmy4Gedey8FSGbrcMjsNEG5OhwiX6zLZPaY5T4b2XWKa3tUX/hLMFv4q9TvUrPc0IJjBZA581Crh+APuet5nRTfLzWaHIWnlmzlQOqmUPFpQ7amPdBn4jJFd4rVaDQaTTuhLRzLlFAolH//3//934TD4RaORlOJVCrFi170IkAfq3ZHHyv/0d/p8kULjmWKELNOgnA4rNs9LxH0sVo66GOl0dSGdqloNBqNRqPxHS04NBqNRqPR+I4WHBqNRqPRaHxHCw6NRqPRaDS+I5RSi6hkoNFoNBqNRrMw2sKh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEcLDo1Go9FoNL6jBYdGo9FoNBrf0YJDo9FoNBqN72jBodFoNBqNxnd0e/plSCKR4Ktf/So///nPOXDgAIZhsG7dOp773Ofy0pe+lEAg0OohLnumpqb49a9/zX333cdjjz3GwYMHcV2X3t5ejjvuOLZv384FF1xQcRv6OLaWr3zlK3zuc5/Lf/7FL35Rdll9rDSahdGlzZcZBw4c4JZbbuHAgQMAhMNhpJRkMhkAjjnmGG6//Xa6urpaOcxlz0UXXYTruvnPwWAQ0zRJJpP5aWeddRYf+MAHCIfD89bXx7G17N69m9e+9rX57xvKCw59rDSa6tCCYxnhOA5//ud/zs6dOxkYGOA973kPW7duRUrJT3/6Uz760Y+SSCQ4++yz+chHPtLq4S5rLrjgArZs2cJll13GmWeeyerVqwHYv38///Iv/8J3v/tdAC699FLe+973zllXH8fWIqXkTW96Ezt27ODEE0/koYceAkoLDn2sNJrq0TEcy4gf/OAH7Ny5E4APfOADbN26FQDDMLj44ot5+9vfDsBvf/tb7rvvvpaNcyVw++2389nPfparrroqLzYAVq1axTvf+U5e+MIXAnDnnXdy8ODBOevq49ha/uM//oMdO3ZwySWXcMYZZ1RcVh8rjaZ6tOBYRvzgBz8A4PTTT+ekk06aN//iiy9m1apVc5bV+MOznvWsivOvuOKK/PtHH310zjx9HFvHvn37+MIXvkBPTw9vfvObF1xeHyuNpnq04FgmpFIpduzYAcDZZ59dchkhBGeddRYA99xzT9PGpplPMBjMv5dS5t/r49haPvrRj5JMJnnjG99Ib29vxWX1sdJoakMLjmXC008/nb9xbdy4sexyuXnj4+NMT083ZWya+fzhD3/Iv9+0aVP+vT6OrePb3/429913H1u3bmX79u0LLq+PlUZTG1pwLBMOHz6cfz80NFR2ucHBwZLraJrHzMwMX/nKVwA45ZRTWL9+fX6ePo6tYWxsjDvuuINQKJSPu1gIfaw0mtrQgmOZkEgk8u9DoVDZ5QpTMAvX0TQHKSUf/OAHOXLkCMFgkLe97W1z5uvj2Bo+9rGPEYvFuP766+cE+VZCHyuNpja04NBomsgnP/lJfvOb3wDwtre9jc2bN7d4RJo777yTu+66i2OOOYZXvOIVrR6ORrNs0YJjmRCNRvPv0+l02eVSqVTJdTT+8+lPf5r//M//BOBNb3rTnEyVHPo4Npfx8XE+9alPYZom73jHO7Cs6osv62Ol0dSGFhzLhEI/8djYWNnlCn3Iheto/OWOO+7ga1/7GgA333xz2SdpfRyby2c/+1mmpqa48sorWb9+PYlEYs7LcZz8srlptm0D+lhpNLWie6ksE4466igMw0BKya5du8qm6e3atQuA/v5+uru7mznEFctnPvMZvvrVrwJw0003cc0115RdVh/H5rJ//34AvvnNb/LNb36z4rK5zJWXvexl3HLLLfpYaTQ1oi0cy4RwOJwvPHT33XeXXEYpxe9+9zuABSsoahrDpz/96Tli49prr624vD6OSwd9rDSa2tAWjmXE9u3beeCBB/j973/Pww8/zAknnDBn/k9/+lP27duXX1bjL5/+9KfnuFEqWTYK0cexeXzyk5+sOP+f//mf+dKXvgSU7qWij5VGUz3awrGM2L59O5s2bUIpxfve975874bCRlLgdSl99rOf3cqhLnsKYzbe9KY3VS02QB/HpYQ+VhpN9ehuscuM/fv385a3vEW3ym4hBw8e5OUvfzngNfFaqET21VdfPc/Voo9je7CQhQP0sdJoqkW7VJYZq1at4ktf+hJf/epX+fnPf86BAwewLIuNGzdy8cUX89KXvpRAINDqYS5rCnujSCkZHx+vuHwymZw3TR/HpYM+VhpNdWgLh0aj0Wg0Gt/RMRwajUaj0Wh8RwsOjUaj0Wg0vqMFh0aj0Wg0Gt/RgkOj0Wg0Go3vaMGh0Wg0Go3Gd7Tg0Gg0Go1G4ztacGg0Go1Go/EdLTg0Go1Go9H4jhYcGo1Go9FofEcLDo1Go9FoNL6jBYdGo9FoNBrf0YJDo9FoNBqN72jBodFoNBqNxne04NBoNBqNRuM7WnBoNBqNRqPxHS04NBqNRqPR+I4WHBqNRqPRaHxHCw6NRqPRaDS+8/8D+C9K4sTggGAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "h = grb_data.binned_data.project('Em', 'Phi', 'PsiChi').slice[{'Em':2, 'Phi':3}].project('PsiChi')\n", + "m = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents.todense())\n", + "\n", + "_,ax = m.plot('orthview', ax_kw = {'rot':[0,90,0]})\n", + "#_,ax = m.plot('mollview')\n", + "\n", + "ax.scatter(0, 70, transform=ax.get_transform('world'), color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "a409aa7b-9bd8-443b-be46-ee5a053f8349", + "metadata": { + "tags": [] + }, + "source": [ + "# 2. Calculate the coordinate conversion matrix\n", + "\n", + "CoordsysConversionMatrix.spacecraft_time_binning_ccm can produce the ccm for the time binning.\n", + "\n", + "Here we calculate the dwell time map on each sky pixel and each time bin, and then combine them as a coordinate conversion matrix (ccm).\n", + "\n", + "The ccm $C^{lb, \\nu\\lambda}_{t}$ is a three-dimensional matrix with the axes of 'lb', 'Time' and 'NuLambda'.\n", + "\n", + "$C^{lb, \\nu\\lambda}_{t}$ is the exposure time on the pixel $\\nu\\lambda$ on the detector coordinate for the model pixel $lb$ (in the galactic coordinate) during the time bin $t$.\n", + "\n", + "By multiplying $C^{lb, \\nu\\lambda}_{t}$ with the model map, it can be converted into the detector coordinate for each time bin." + ] + }, + { + "cell_type": "markdown", + "id": "47b489df", + "metadata": {}, + "source": [ + "## Read the orientation file and extract the orientation information around the GRB event" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "40cf80b4-0767-4c61-b28d-1a96101701cc", + "metadata": {}, + "outputs": [], + "source": [ + "ori = SpacecraftFile.parse_from_file(path_data + \"20280301_first_2hrs.ori\")\n", + "\n", + "#Set the GRB duration\n", + "Timemin = Time(grb_start_time,format = 'unix')\n", + "Timemax = Time(grb_stop_time,format = 'unix')\n", + "grbori = ori.source_interval(Timemin, Timemax)" + ] + }, + { + "cell_type": "markdown", + "id": "3140000d", + "metadata": {}, + "source": [ + "## Calculate the coordinate conversion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "71a9940a", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "dbf0e25f7db540378bc848109154bf0e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00, )" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAABR10lEQVR4nO3deXxU1cH/8c+9d2aSyUIgCRD2RRBUUFQWK25FRIpatRbbWms3ql3U1qWLbbVPbd2qbfX5tc9Tl7Zq3Z66tu5oQeuCYAUFlFV2SICQkH0yM/ee3x+TmSRsQjKTmUy+79drXnPnLueeXELyzbn3nGMZYwwiIiIi0q3Z6a6AiIiIiHSeQp2IiIhIFlCoExEREckCCnUiIiIiWUChTkRERCQLKNSJiIiIZAGFOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIlnAl+4KiEjPZIwhHA7T2NhIKBQiHA4TDodpbm5OLO9rXSQSwXXdxMvzvHbve64DsCwLy7KwbTvxOb5s23Ziu+M4+P1+fD4ffr8/8fL5fAQCgcT6+Ofc3Fxyc3MJBoPt3n0+/WgVka6nnzwi0iGRSIS6ujpqa2sT722XGxoaaGxsPODLdd10fxkp4ff72wW+YDBIfn4+BQUFiVdhYWG7z21fRUVF5ObmpvvLEJFuxjLGmHRXQkTSLxKJUF1dTXV1NVVVVVRVVSWW4+vbhrempqaknTsQCBBuiIBngWdheYCx2n/24p9btgGWaVk2xF60WY5/TjDtP7ZdjhdmtRRhm9hnm3bvxgLslv1sA47B2Ib84iChUCipITUnJ4fevXu3exUVFe21rri4mJKSEnJycpJ2bhHpnhTqRLKc67pUV1ezc+fOxGvHjh3s3LmTysrKRGirq6s75LIty8KEgaiNFbVi7xEbohaWa4NrYbkWuFbLOgv2XO9aWHslrO7HxEOj0xr2cAzYBuMY8Hmx9b7Ycnxd/DOOofegXtTV1RGNRg/5/IWFhZSWllJSUkJpaWm75bbvfr8/+V+8iGQEhTqRbq6pqYmKigrKy8vZtm0bFRUV7QJcZWXlwbcgeUCkJZiFY+97LbcJcESzI5BlEkNLGPTHAp/xe7Hlfbwbv0egl49wOHxQZVuWRWlpKf3796esrGyf78FgMMVfoYikikKdSIaLRqPs2LGD8vLyRHCLL5eXl1NdXf2JZdi2jdcEVrODFbaxmp1YUGt22oU2hbTuJx4CTcCDgIvJ8VqXA7Hl/oeXsGvXLiKRyCeWV1RURP/+/RkwYACDBg1i8ODBDBo0iEGDBlFaWproYCIimUehTiQDGGOorq5m8+bN7V6bNm1i27Ztn3w7LmphhZzYq9mBZnvvAKew1qMZWlr/cjxMjovJdSHHTXzOL8ulvr7+gGUEAoG9gt7gwYMZPHgw/fr1w7L0PSaSTgp1Il0oGo2ydetW1q9fz4YNG9oFuIaGhv0eFwgEiOx2sUIOtAS3RIgLObHn10Q6yTgtgS/Hi4W+YBST6zLw6H6Ul5cf8DZ+MBhk2LBhDBs2jOHDhyeWBw4ciOM4XfhViPRcCnUiKeB5HhUVFaxbt44NGzYk3jdu3LjfW2CWZWGabKwmB7vJwWryYbW806yWNkkvg4m17AVbXrkuJhhl8IQytm7dut/AFwgEGDx4cCLojRw5ksMOO4yBAwfqVq5IkinUiXRSY2Mja9euZc2aNaxZsyYR4EKh0L4PcMFq9MVebYKb1eRgGQU36X6MZWIhLy8aewVjy/5ie7+dOILBICNHjmTUqFGMGjWKww47jJEjR5KXl9fFtRfJHgp1Iodg9+7drF69OhHgVq9ezdatW9nnfyOvTXhredkNDjQ7anWTHiHeuufltQl8+QcOe4MGDeKwww5j9OjRHH744YwdO5Y+ffp0cc1FuieFOpH9qK2tZcWKFaxYsYKVK1eyZs0adu7cue+dm23sBh9WvR+rId4Kp/CWCayJ43jpnw/xp92DePrIvumujhALeyboYvIjmPwoXn6UksN7UVlZuc/9+/fvz5gxYxg7dixjx45lzJgxFBYWdnGtRTKfQp0IEA6HWbt2LStWrOCjjz5ixYoVbNmyZa/9LMuCBjsW3Or9rUEuqmeDMoU1aTwv/eNve613jYdH64+7v9YO4ckj+nVl1eQTGJ+HyY/g5UcxBVEGT+zH5s2b99kSPmjQoETAO/LIIxkzZoxm1ZAeT6FOeqTt27ezdOlSPvroIz766CPWrl27zw4MVpODVefHqmsJcA0+9TTNMPsLcXtyjbfXOoW8zGccL9aaVxjBFEQoO6aEbdu27bWfz+fj8MMPZ9y4cYlXaWlpGmoskj4KdZL1PM9jw4YNLF26NPHasWPH3jtGLOx4gKvzqwUuk00ez8vPfHKQa2tfoW5P8ZD3YO0g/n5EWYeqJqlnfB6mIIJXEMUURug9Op+qqqq99isrK0sEvPHjxzNixAh8Pl8aaizSNRTqJOuEw2FWrVrF0qVLWbZsGcuWLdtrXlPHcfB2tw9xhPQMXCYznzqGuU8+0OHjDybUtRUPeA/XDeDRsQM7fF5JvUSHjF4RvF4RRp48iHXr1uF57f/N8/LyOProozn22GOZMGECo0ePVsiTrKJQJ91eNBpl9erVLF68mPfee49ly5bt3bPOBasugF3rx66JBTnLUytcputskGvrUENdWwp43Y9xWlrzWoJe3mD/XgN8K+RJtlGok27HGMP69esTIe6DDz7Ye3qjiIVdE8Cq9WPXBmLPwmkMuG7BnHgMc59ITpBrqzOhrq14wHu0rj8Pjx2clDIl9Qwm9mxeURhTFCFvmH+vnxt5eXmMHz+e4447jokTJ3LYYYdpgGTpVhTqpFvYsWMHixYtYvHixSxevHjv52eisRBn7w5g1QSwGnUrtbtJVZiLS1aoa8vDKNx1UwcT8oqLi5k4cSKTJk1i4sSJlJSUpKm2IgdH7cySkSKRCEuXLmXhwoUsXLiQ9evXt9/BBas2FuLsmgBWvU8hTtr5MNzE2XOvbF3R8udroHczH510f1LOYWPhWPq7uDuysLAa/NgNftgG4RUGf34gFvJ6h8kZ5FBVVcXcuXOZO3cuAKNGjWLSpElMmjSJ8ePHawgVyThqqZOMsX37dt555x0WLlzIe++9R1NTU2KbbduY3U4sxO0OxJ6J0+3UrJKMlrql4RDnzr1iPyfYe1UyAt5j9X15cMyQTpUhmcdYBtMrgte7mVHTh7Bq1ap223NycpgwYQKf+tSnOPHEEykrU29pST+FOkkb13VZtmwZb731Fu+88w4bN25sv0PYxq4OYFfnxIKchhfJembqBOY+fv8hH7c0HOLcV67YZ3BrLXz/mzoa7hToeg7j8/B6h/H6NFN8VMFes1+MHDmSqVOncuKJJzJ27Fgcx0lTTaUnU6iTLhUKhXj33Xd58803efvtt6mpqUlss20bU+0kgpzVoFuqPc2htNYlghwcOMwlCj+4OhxKwFOo65kMBpPn4vVp5qhzR7J8+fJ2w6f07t070YI3adIk8vLy0lhb6UkU6iTlqqurefvtt3nzzTd599132w83ErFiLXG7WlrjNFtDj3Ywoe6Qw1yi8EOry8GEO4U6gZZWvD7NeMXN5I1o3+HC7/dz3HHHceqpp3LSSSfRu3fv9FVUsp5CnaTE9u3bee2113jjjTdYtmxZ+7kbQzbOrlzsqhysGr9a4yRhf6Hu/eZmzn/18jY7dqTwjtfLX9TMipPv32u9Qp3sKfEsXnEzZZP7sHXr1sQ227Y55phjOO200zj55JM1jZkknUKdJM3OnTt57bXXmD9/PsuXL2+3zar3xVrjqnRbVQ6s7XN17cJcZ39SJeEnXdtw91h9Xx4cOxT0I1T2w2AwQRevpJnDZgxk9erViW2WZTFu3DhOPfVUTj31VPr375/Gmkq2UKiTTqmsrOT1119n/vz57VrkLMuC3T6cypYWuWY9NCwHx5x4DL95+J7khblEwUkqh1i4+8Wxz6uVTg6JyYniljYz9uxhfPjhh+22jR07lunTpzNt2jS14EmHKdTJIaupqWH+/PnMmzePDz74oN2tVavGj12Zi7MrByusICeHzjdiGB/9tF9yWtYqfYz46YLWsocM5qOfD+h8wYCv2sfInyz45B1F9sEEXNySZsZ9biRLly5t9wfxcccdx/Tp0zn11FMpKChIc02lO1Gok4MSDodZsGABc+fOZcGCBUSj0cQ2q9aPXZmDU5mrICed5hsxjI+u69epMvYMc3udIwnhzl/tY4RCnSSB8bt4pc2MPXdYu0dXAoEAJ5xwAtOnT+dTn/qUBjuWT6RQJ/tljGH58uXMnTuXefPmUVdXl9hm1fuwd+bGgpxurUqS+UYO56Of9D3k4z4pzO11ng6GOwU6SRWT4+L2DTHktFI2bNiQWJ+fn8+pp57KzJkzOeaYY2KPuIjsQaFO9rJt2zZefvll5s6d267nFs02zs5c7B1B7EbNMCepc6itdf5KHyN+9k7HOi1YFr7Bgw4p3CnUSaol5qbtG6L42Hx27tyZ2DZo0CBmzpzJzJkz1cFC2lGoEwCam5v597//zXPPPceSJUtaN7hW7NbqjlysmoB6rUqXOJhQF9jpY/jP34l9SMaPsZaWD9+ggXx0/cAD7qpQJ13JEBsmxe0XInekRWNjIxB7/m7SpEnMmjWLk046iUAgkOaaSrop1PVw69ev59lnn2Xu3LnU1tYCLT1Xq/w4O3Kxd+VieQpy0rUOFOoSYS6VP7os64DhTqFO0sXYBq80xLgLR/L+++8n1vfq1YszzjiDWbNmMXr06PRVUNJKoa4Hampq4rXXXuPZZ59tP55cyMbZHsTZHlSHB0mrfYW6Lglze9pPuFOok0xgcqO4/UIUH5/X7vbs2LFjOe+885g2bRq5ublprKF0NYW6HmT9+vU8/fTTvPLKKzQ0NADgOA5muw97exC7WrdXJXPEO0ukJcztqU2481f7GHFdmusj0obBYHqHOfnK43jjjTeIRCIAFBQUMGvWLM4991yGDNGYij2BQl2Wc12Xt956iyeffLL9s3JNTkurXC5WRK1yknl8I4axds7A9Ae6NnyDB7Hm8qFqpZOMZXwebv8m+p1YSHl5eWL9xIkTOe+88zjxxBPx+dTRLVsp1GWpmpoann/+eZ555hkqKiqA2LyD7PDjlAfV6UG6B8vKmECXkIl1EtmDweD1CTP5W0eyYMGCxODGffv25bOf/Syf/exn6dOnT5prKcmmUJdl1q5dy5NPPskrr7xCOByOrYxYOBVBnIo8jSknItLDmBwXt6yRwvEBdu/eDcQGNp4xYwazZ89mxIgR6a2gJI1CXRYwxvDOO+/w6KOPtusNZdX7cLblYVeqB6uISE9nrFjP2dHnDWLFihWJ9VOmTOHCCy9k4sSJGtS4m1Oo68YikQivvvoqjz32GOvXrwdaOj5U+HDK87Bq/brFKiIi7RgMpjDCp64YzxtvvJG4NTtixAi+8IUvMH36dI15100p1HVDDQ0NPPvsszz++OOt3dijLbdYt+VpOBIRETkoJjeKO7CRwGGx4a4AiouL+dznPsf5559PYWFhmmsoh0KhrhuprKzkiSee4J///Cf19fWxlWEbZ2seTkUQy7XTW0EREemWjOPhljVRPDmYaCzIz8/n/PPPZ/bs2epU0U0o1HUD27dv5+GHH+b5559PjD9kNTo4W/Oxd+RiGd1iFRGRzos/dzdkZknisZ5AIMA555zDF7/4Rc01m+EU6jJYeXk5Dz30EC+++CLRaBQAq9aPsyUPuypHz8uJiEhKGAxecTOjPjeAlStXArFnts8880wuvvhiBg8enOYayr4o1GWgrVu38re//Y2XX34Z13UBsHb78W0uwK7Rw6siItI1DAZTFGbcJSMSA9jHw90ll1zCwIH7nh9Z0kOhLoOUl5dz//33M3fu3NYwVx3Atzkfu1ZhTkRE0scrDHPcpYezcOFCIBbuZs2axSWXXKLbshlCoS4D7Nq1i4ceeoh//OMfidusdlUAZ3M+dp3CnIiIZA6vMMwx3zyM//znPwD4/X7OPvtsLr74Yvr27Zvm2vVsCnVpVFdXx6OPPsoTTzxBKBQCWlrmNhZg1/vTXDsREZH983qFGffV4YnbsoFAgAsuuICLL75YQ6GkiUJdGoRCIZ544gkeeeSRxNAkVq0/Fub0zJyIiHQjXlGYI748hKVLlwJQWFjIxRdfzOc+9zlycnLSXLueRaGuC3mex8svv8x9992XGAfIavDhbMxXb1YREem2DAavT5ghZ/dJDIXSr18/vvnNbzJjxgwcR4PidwWFui6yePFi/vjHP7JmzZrYipAda5nbmaswJyIiWcFg8PqF6DM1J9F4MXLkSL773e8yefLkNNcu+ynUpdjGjRv53//9X95+++3YiqiFszk/Np2XBg0WEZEsZGyDO6CR4HgSjxmdeOKJfO9732PIkCFprl32UqhLkbq6Ov7yl7/wzDPP4LoujuNgNgfwbSrAimo6LxERyX7G53Hub0/jqaeewnVdfD4fs2fP5pJLLiE/Pz/d1cs6CnVJFn9u7k9/+hPV1dUA2LsCOBsKsZt8aa6diIhI1/OCUY777qjEGHd9+vThW9/6Fp/5zGf0vF0SKdQl0apVq7jzzjv58MMPgdj8rL51hdi71ftHRETE7dPMgJmFbN68GYCxY8dyzTXXMGbMmDTXLDso1CVBbW0t9957L//85z8xxoBr4WzSc3MiIiJ7Mlbsebvc8YaGhgZs2+a8885jzpw5FBQUpLt63ZpCXScYY3j11Vf5f//v/7F7924A7B25+DYUYIXVnCwiIrI/xu9yys8m8OqrrwJQXFzMFVdcwbRp07AsNYh0hEJdB5WXl/O73/0u8XyA1eDg+7iX5mgVERE5BF5RM/0/U8CWLVsAmDhxIldffTWDBw9Oc826H4W6QxSNRnniiSf4y1/+EpvayyM2RMmWfN1qFRER6QBjGdzBDTijI4TDYXJycpgzZw6f//zn1ZHiECjUHYK1a9dy2223sWrVKgCsGj++tb3Uq1VERCQJTG6U8ZcN57333gPgyCOP5Cc/+QnDhw9Pb8W6CYW6gxCNRnn44Ye5//77cV0Xoha+9QXY24OaDUJERCSJDAavfxM5EzwaGhrw+/187Wtf40tf+hI+nxpRDkSh7hNs2LCBm2++mZUrVwJg78rBt7YQK6LmYBERkVQxAZfjvz+aBQsWADB69Gh++tOfcthhh6W5ZplLoW4/XNfl8ccf57777iMcDsda5z4u1FytIiIiXcRg8PqGyJsUGz7M7/dz6aWXMnv2bGxbszPtSaFuH8rLy7nppptYunQpAHZVAN/aXhqmREREJA2M32XiVYcn5lE/7rjj+OlPf0q/fv3SXLPMolC3h3/961/89re/jU1A7Fr41unZORERkXSLP2vnGx8hFApRUFDANddcw+mnn57uqmUMhboWTU1N3HXXXbzwwgsAWLV+/KuKsJrVOiciIpIpvNwoo77SjxUrVgAwY8YMrr76avLy8tJcs/RTqANWr17NjTfeyKZNm7AsC3tjHs6mfLXOiYiIZCBjGS66dxYPPvggnucxZMgQbrzxxh7fiaJHhzpjDE899RT/8z//QyQSgWYb/+oi7BrNCiEiIpLpvMIwvaf72LlzJ4FAgO9///ucffbZPXaasR4b6pqamrj99tsTc87Zu3LwremFFVVvGhERke7C+DyO+8FhvPPOOwBMnz6da6+9tkfeju2RoW7Tpk1cf/31rF+/Hgw46wtwtuXpdquIiEg3ZDC4gxphVBOu6zJkyBBuuummHjcTRY8Lda+99hq33norjY2Nsdutq4qwa3W7VUREpLtrezs2GAzy85//nJNPPjnd1eoyPSbUua7LPffcw6OPPgrE5m31ryzSzBAiIiJZxPg8jvrOYJYsWQLA1772Nb72ta/1iMGKe0Soa2xs5MYbb0wMWuhsycPZUKDbrSIiIlnIWIZzfncyTz75JABTp07l5z//Ofn5+WmuWWplfagrLy/nJz/5Sez5OQ98q3vhVAbTXS0RERFJMbdfE/a4EOFwmKFDh3LbbbcxaNCgdFcrZbK6LXLp0qVcdtllsUAXtvEvLVagExER6SGcHUHMogL69u3Lpk2b+Pa3v83y5cvTXa2UydpQN3fuXH7wgx+we/durHofgfeLsev96a6WiIiIdCG73k/Nc4YxY8ZQU1PDD37wA+bPn5/uaqVE1t1+NcbwyCOPcPfddwNgV+bgW12E5en5ORERkZ7K2IZJPxzNW2+9BcBll13GRRddlFUDFWdVqHNdlz/84Q+JByPVIUJERETiDIbP3nkKTzzxBACf/exnueqqq3Cc7BgJI2tCXXNzMzfddBOvvfYaAM66AnzbsruXi4iIiBy66IBGzOgGPM/j05/+ND/72c8IBLr/mLVZEeoaGhq47rrreP/991t6uBbhVOamu1oiIiKSodySENbRjUQiESZNmsSvf/1rgsHu3Zmy24e6uro6rr32WlasWAFRC/+K3tg13T9ti4iISGp5Rc34JjfT1NTEUUcdxW233UavXr3SXa0O69ahbvfu3VxzzTWsWbMGIhb+5X2wG9TDVURERA6OVxAh9+QIdXV1jBgxgt/97neUlJSku1od0m1D3a5du7jqqqvYsGFDbAy65X2wG33prpaIiIh0M15elF5nxLLFsGHDuPPOO7tlsOuW49Tt2LGDK6+8Mhbomm38yxToREREpGPsRh91L0G/fv3YuHEjP/jBD6iqqkp3tQ5Zt2upq6qq4oorrmDz5s0Qsgks64PVrEAnIiIinWNyoxR9xmbnzp0MGzaMu+66i+Li4nRX66B1q5a6mpoarrrqqjaBrliBTkRERJLCCvmoedGjb9++3bLFrtuEuvr6eq699trYPK7NNoHlfbCas2OwQBEREckMbYPdhg0buPbaa6mrq0t3tQ5Ktwh1jY2N/OhHP2LVqlWJThFWSC10IiIiknxWyMfuFz2Ki4tZu3Yt1113Hc3Nzemu1ifK+FAXjUa54YYbWL58eWwcug97Yzcp0ImIiEjq2CEfdf+C/Px8li5dyi9+8Qui0Wi6q3VAGR3qjDHccccdLFq0CFyNQyciIiJdx27wE14QIBAI8Pbbb/Ob3/wGz/PSXa39yuhQ99e//pUXXngBDPhWFmHXK9CJiIhI17FrA3jvB3Ech5deeol777033VXar4wNdc899xz3338/AL61hTjVOemtkIiIiPRITlUu1op8AB5++GFefPHFNNdo3zIy1L377rv89re/BcDZlI+zPS/NNRIREZGezNkR5JJLLgHg9ttv5/33309vhfYh4wYf3rp1K5deeil1dXXYO3Lxre6FhZXuaomIiEgPZzBMvf4o5s+fT69evfjTn/7E4MGD012thIwKdY2NjXznO99h/fr1WLV+/Mv6YBkFOhEREckMxjaM/EYxK1euZOjQofzpT3+ioKAg3dUCMuj2qzGGm2++OTG4sH9lkQKdiIiIZBTLs1j3QCV9+/Zl06ZN3HLLLWRK+1jGhLoHH3yQf//73+ARC3RhzRYhIiIimceKOOx+xcXv9/PGG2/w2GOPpbtKQIaEusWLF/OXv/wFAN/HvbDrAmmukYiIiMj+2fV+rrjiCgDuueeejOg4kfZn6qqrq/nGN77Brl27sCty8a8tSmd1RERERA6KwXDqL4/hlVdeobi4mD//+c+UlJSkrT5pbanzPI+bb76ZXbt2YTU6+Nb1Smd1RERERA6ahcXrv/yAESNGUFVVxU033ZTWGSfSGur+/ve/s3DhQvBiM0ZYnjpGiIiISPdheRZbnqglJyeH//znPzz55JNpq0vaQt3q1au5++67AfCtK8Ru1BRgIiIi0v3YTT6++93vAnD33XfHRvJIRz3ScdJIJMItt9yC67rYlTnYFcF0VENEREQkKf54wcNMmTKFcDjMr3/9a8LhcJfXIS2h7m9/+xsff/wxRCx8H2vGCBEREeneLCyW/PfHFBUVsWbNGv761792eR26PNStWbOGv/3tb0Bs+BIrkhGjqoiIiIh0ihVxaFgQW37sscdYs2ZNl56/SxNVNBrl1ltvbb3tWpnTlacXERERSSmnKpfTTjsN13W5/fbbcV23y87dpaHuqaeeiqXWiIXv40LddhUREZGs8/ZvlpOfn8/KlSt55plnuuy8XRbqKisrW2eN2FCIFdE0YCIiIpJ9rLDDZZddBsRmm9ixY0eXnLfLQt3dd99NY2MjVp0Pe3tuV51WREREpMv94XMPcdRRR9HU1MT//M//dMk5uyTULV26lJdffhkM6u0qIiIiWc/CYvVD5ViWxbx581i+fHnKz5nyUOd5HnfddVfsZNuD2PUaZFhERESyn93gZ9asWQD88Y9/xBiT2vOltHRg/vz5sc4RUQvfhoJUn05EREQkY7xyw0KCwSAffvgh8+bNS+m5UhrqotEo9913HwDO1jysqMakExERkZ7DijhcdNFFQKx/QSpnmkhpynr++efZunUrhG2crXmpPJWIiIhIRvrbN5+ltLSUiooKXnjhhZSdJ2Whrrm5mQceeAAAZ3M+lqdWOhEREel5LM/iy1/+MgAPPfQQkUgkJedJWdJ67rnnqKyshJCNUxFM1WlEREREMt7/XvgoJSUl7NixgxdffDEl50hJqItGo/zf//0fAL4t+VhGQ5iIiIhIz2UZK/Fs3UMPPUQ0Gk36OVIS6l5//XUqKiogYmHvUCudiIiIyN1f+j+Ki4upqKjglVdeSXr5SQ91xhgeeeQRAJxteVieWulERERELM9i9uzZADzxxBNJH7cu6aFu8eLFsXHpXAunXD1eRUREROL++vWnyMnJYc2aNXzwwQdJLTvpoe7pp5+OFbw9V+PSiYiIiLRhRW1mzJgBxFrrkimpqauyspK33noLAKdCrXQiIiIie3rpl28D8Oabb8ZGCkmSpIa6F154Add1sWr92I2+ZBYtIiIikhXsRh/jx4/H8zxeeuml5JWbrIKMMTz//PMAGpdORERE5ABWPLURgBdffDFpHSaSFuo+/PBDysvLwbWwK3OTVayIiIhI1rErcwgGg2zevJnly5cnp8yklAL861//ihW4K0fDmIiIiIgcgOXanHrqqUBrhuqspIS6aDTKvHnzYgXuVCudiIiIyCd59bfvALFJGzzP63R5SQl1y5Yto7q6OjaDxO5AMooUERERyWr27gAFBQXs2rUrKbdgkxLq3n471jXXrsrRPK8iIiIiB8EyFlOnTgXgtdde63R5SQl1CxYsiBVWlZOM4kRERER6hH/dGbsFu3Dhwk6X1elQt3nzZjZt2gQeuvUqIiIicgjs3QEcx2Hz5s1s27atc2V1tjLvvfceAFatH8vVtGAiIiIiB8tybY466igA3n333U6V1ekUtmTJklhBNWqlExERETlUkydPBtIc6owxfPDBB7GCFOpEREREDtkDVz4JwPLlyzs1u0SnQt3mzZupqqoCD6w6f2eKEhEREemRrHo/Pp+Pqqqq2OxcHdSpULdy5cpEZTSUiYiIiMihszyLww8/HKBT49V1KtStXr06Vki9rzPFiIiIiPRo8c4SK1as6HAZSQl1Vr1uvYqIiIh01NM3vQzAunXrOlxGh0OdMYa1a9cCYDWopU5ERESko+JZat26dR3uLNHhUFddXU19fT0YsBoV6kREREQ6ymryYds2NTU17Nq1q0NldDjUbd68ObbQbKuThIiIiEgnWJ7FgAEDANiyZUuHyuhwqIuf0GpSK52IiIhIZ8VDXUeHNelwqIvPT2aFnI4WISIiIiItysrKAKioqOjQ8R0OdfH7vVaz5nsVERER6awX/zAfSEOoq6qqAsCKqKVOREREpLPimSqesQ5Vp0MdYbXUiYiIiHRaJNbxtLa2tkOHdziRxU9oRRTqRERERDornqlqamo6dHyHE1lTU1NswdVwJiIiIiKdFo3Fsi5vqYuHOstTqBMRERHprHimCofDHTq+Q6HOdd3WE6qlTkRERKTzvNhbJBLp0FRhHQ51CR2bnkxERERE9sEY0/qY2yHoUKizbXWOEBEREUmVjtyC7Xw6091XERERkc4zraHK5zv0aVjVUiciIiKSYYLB4CEf0+FQFwgEYh8cPVQnIiIi0mlOrKdETk4OjnPoM3Z1uMktPz8fANNSARERERHpOOOLNZTl5eV16PgOh7rECX1qqRMRERHpNCdNoa6goABoTZUiIiIi0nHGF7v7WVhY2KHjOxzqSkpKYgt+98A7ioiIiMgnC8RCXWlpaYcO73Co69u3LwAmR8/UiYiIiHSWaQl1iYazQ9ThUBdPkSagljoRERGRzjrz26cCaQh1/fv3B8DkKtSJiIiIdNa2bdsAGDBgQIeO73CoGzp0KAAmqFAnIiIi0lmbNm0CYMiQIR06vsOhLnHCHE9j1YmIiIh0gnE8qqqqgNaGs0PV4VBXWFhIcXFxrCJqrRMRERHpsHiWKi4uTgwbd6g6NYnryJEjYxXJj3SmGBEREZEezRTEstSoUaM6XEanQt3YsWMB8AoV6kREREQ66szvnwLAmDFjOlxGp0LdEUccAYApjHamGBEREZEebdWqVUBrg1lHJKWlzuRFMbamCxMRERE5VMbxWL9+PZDGlrq+fftSVlYGFphe4c4UJSIiItIjeb0iuK7LwIED6devX4fL6VSoAzjuuONiFeqtUCciIiJyqGb/+jMATJgwoVPlJC/UFSnUiYiIiByqJUuWAK2ZqqOSFupMQRTj0yDEIiIiIgfL+N1EJ4m0h7rS0lJGjx4NFnjFzZ0tTkRERKTH8IrDGGMYM2YMpaWlnSqr06EO4KSTTopVrEShTkRERORgnfD1owGYOnVqp8tKbqjr3ayhTUREREQOgrEN//nPf4AMCnWjRo2KDW3i6BasiIiIyMHwikOEQiEGDBjQqenB4pIS6izL4owzzgDA69eUjCJFREREstqkrx8FwBlnnIFlWZ0uLymhDmgNdb3D6gUrIiIicgDG57Fo0SKgNUN1VtJC3fDhw2NTW9jg9Q0lq1gRERGRrOP2DeG6LocffjjDhg1LSplJC3UAM2fOBMAta8SgDhMiIiIiezIYBk8rBuDss89OWrlJDXVnnnkmubm5mHwX0yuSzKJFREREsoLpFWHjxo0Eg8Gk3XqFJIe6goKCROXcAY3JLFpEREQkK5z8g2MBmD59Ovn5+UkrN6mhDuC8884DYgMRm4Cb7OJFREREui2T4/L6668DrZkpWZIe6kaPHs2xxx4LNriD1FonIiIiEnfOrafiui4TJ06MTbOaREkPdQBf/vKXAXDLmjS8iYiIiAixYUyee+45AC666KKkl5+SUDdp0qTY8CaOwR2o1joRERGRi/50Fs3NzYwZM4bjjz8+6eWnJNRZltXaWjewEeOotU5ERER6LuN4PPnkk0DsjmYyZpDYU0pCHcApp5zC0KFDwWf0bJ2IiIj0aF/4n5nU1dUxdOhQTj755JScI2WhzrZt5syZA8Q6TBi/esKKiIhIz2P8Lo8//jgAl156KY7jpOQ8KQt1AKeeeipHHHEEOIbo0IZUnkpEREQkI8265SRCoRBHHXVUylrpIMWhzrIsvvOd7wDglTXh5UZTeToRERGRjGJyozz77LMAXHbZZSl5li4upaEOYMKECXzqU58CC9wR9ak+nYiIiEjGmPT9sbiuy5QpU5gwYUJKz5XyUAfw7W9/G8dx8Eqacfs0d8UpRURERNLK7dPMW2+9heM4fO9730v5+bok1I0YMYLZs2cDEB1Zh7FNV5xWREREJC2Mbeg7PQjAhRdeyPDhw1N+zi4JdQBf+9rX6Nu3LwRd3MHqNCEiIiLZ66J7ZlFeXk7fvn356le/2iXn7LJQl5eXxxVXXAGAO7hBnSZEREQkK3m5UR555BEALr/8cvLy8rrkvF0W6iA2xMnkyZPBhujoWgy6DSsiIiLZw2A4/KtlhMNhJk2axGmnndZl57aMMV2arMrLy/na175GU1MTzvoCfFvzu/L0IiIiIikTHdSAO6Ke/Px87r//fvr3799l5+7SljqAAQMGtN6GHVaPF9RtWBEREen+vGAUZ0wYiN127cpAB2kIdQBnnXUWU6ZMid2GPbxGt2FFRESkWzMYRl3cj3A4zJQpU5g1a1aX1yEtoc6yLH784x9TWFiIKYziagoxERER6ca+cPeZrFixgoKCAn70ox+ldOaI/UlLqAMoLS3l6quvBsAd0oBXpEGJRUREpPvxejfz0EMPAXDttdfGhnBLg7SFOoDTTz+dc845ByyIjKnF+N10VkdERETkkBi/S8HJFsYYzj33XKZNm5a2uqQ11AFceeWVjBw5EgIekTF6vk5ERES6B4Nh3HeGUl1dzWGHHcbll1+e1vqkPdTl5ORw4403EgwGMb0jer5OREREuoUv3jOTxYsXEwwG+a//+i9ycnLSWp+0hzqAoUOHcs011wDgDm3ALQmluUYiIiIi++eWhHjwwQcBuOaaaxg2bFiaa5QhoQ5gxowZzJ49G4Do4bV4+ZE010hERERkb15+BN+xsQ6eX/jCF5gxY0aaaxSTMaEO4Dvf+Q4TJ04ExxA5YjfG76W7SiIiIiIJxudR8pkAoVCISZMm8e1vfzvdVUro8mnCPkldXR2XXXYZW7Zswarx41/eB8t0/VgvIiIiIm0Zy3DEdwfwwQcfMGjQIO655x4KCwvTXa2EjGqpAygsLOSWW26hoKAAUxQhOrpWPWJFREQkrQyGk28YzwcffEBeXh633HJLRgU6yMCWurhFixbx4x//GNd1cbbk4duQWRdOREREeo7o8DrcwY04jsPtt98ee1wsw2RcS13c5MmT+clPfgKAO7iR6EANdSIiIiJdLzqwAXdwIwDXXXddRgY6yOBQB3DmmWdy2WWXAeCOrMct1VAnIiIi0nXc0hDuyHoAvv3tb2dMT9d9yehQB3DRRRdxwQUXABA9vAa3j+aIFRERkdRz+zRjjooFugsuuIAvfelLaa7RgWV8qLMsi8svv5xPf/rTYEP0iN14RQp2IiIikjpe72asCQ24rsv06dO5/PLLsazMHo0j40MdgOM4XH/99UydOhVsiBxZg9crnO5qiYiISBbyeoWxj28iEolw8skn89Of/hTHcdJdrU+Usb1f9yUcDvOzn/2MhQsXgmvhX94buy6Q7mqJiIhIlvAKw/hOCNHU1MQJJ5zATTfdhN/vT3e1Dkq3CnUAzc3NXHfddfznP/+BqIX/QwU7ERER6TyvMEzgxDANDQ0cf/zx3HrrreTk5KS7Wget24U6gFAoxI9+9CPef//9WIvdR72xaxTsREREpGO8omacSSFCoRATJkzgtttuIxgMprtah6RbPFO3p9zcXG677bbWeWKPqlavWBEREekQt08z1vGNhEIhJk+ezG9+85tuF+igm4Y6gGAwyC233MJJJ50U6xV75G7cEo1jJyIiIgfPLQlhjq4jHA5z8sknc/PNN5Obm5vuanVIt7z92lY0GuXmm2/m1VdfBQO+tb1wtne/dC0iIiJdy+3fiDemAc/zmD59Oj/96U/x+XzprlaHdftQB+C6Lr/97W957rnnAHA25uNszscis8eTERERka5nMLhDG3CHxqYgPeuss7j22mu7xbAlB5IVoQ7AGMO9997LQw89BIBdkYvv415YRsFOREREYoxliI6qxesfe2Trq1/9Kt/4xjcyfmDhg5E1oS7umWee4c4778TzPKyqAP5VRVhut310UERERJLE2B7HXjWShQsXYts2V199NZ/97GfTXa2kybpQB/Dmm2/yy1/+kubmZqx6H/6PemOFu3eTqoiIiHScCbgMv7iY1atXk5OTw3/913/FZqrKIlkZ6gA++ugjfvKTn7B7925otvGv6I1d3z1GhBYREZHk8QoiFE6DqqoqioqKuO222zjyyCPTXa2ky9pQB7B161auu+46NmzYAB741vTC2amesSIiIj2F27cJe3yIcDjMiBEjuOWWWxg4cGC6q5USWR3qABoaGvjVr37F22+/DYCzOQ9nY4F6xoqIiGQxg8EdVo87pBGAqVOncv3115OXl5fmmqVO1oc6iA158uc//7m1Z2xVAJ86UIiIiGQl43gcf/UoFixYAMDFF1/MnDlzsO3s/r3fI0Jd3Kuvvsqtt95KOByGJgf/yiLsBj1nJyIiki28/Ails3IoLy8nEAjwox/9iBkzZqS7Wl2iR4U6gFWrVnH99ddTUVERe87u40Ls7UHdjhUREenGDAavfxP2Uc2Ew2EGDhzIjTfeyOGHH57uqnWZHhfqAGpra7n55psTz9nZ21sGKvYU7ERERLobYxuih7UOKHziiSfys5/9jMLCwjTXrGv1yFAH4HkejzzyCPfdd19soOIGH76VRdhN3XfONxERkZ7GC0YZMruIdevWYds2c+bM4aKLLsr65+f2pceGurglS5bwy1/+kqqqKnAtfOsLsCt0O1ZERCSTGQxeWRP2kbHbrX369OEXv/gFxx13XLqrljY9L8bu4dhjj+W+++5j4sSJ4Biio+qIHlGD8XnprpqIiIjsg/F5TLluDNFRdYTDYaZMmcJf//rXHh3oQC11CZ7n8fjjj3P33XcTjUZjs1Cs7oVdk5PuqomIiEgLryhM0acdKisr8fv9XHbZZXz+85/vkbdb96RQt4fVq1dz4403smnTJgCcLXk4mwrUiUJERCSNjB0bTNgb3IQxhqFDh3LDDTf0qN6tn0Shbh9CoRB/+MMf+Oc//wmA1ejgW9MLuy6Q5pqJiIj0PF5hmLKzC9i8eTMA55xzDpdffjnBoKb+bEuh7gDeeustbr/99lgnCgPO1pYpxoxa7URERFLNWAZ3aD1mWAjP8ygtLeVHP/oRJ5xwQrqrlpEU6j5BbW0t//3f/83cuXOBlla71UXY9ZqJQkREJFW8ggiDzuvFhg0bADjzzDO58sore9zYc4dCoe4gvfHGG/z2t79t32qnZ+1ERESSytge7rAGzJBY61xxcTHXXHMNJ598crqrlvEU6g5BTU0Nd911F6+++mpsRcjG93EvnGr1kBUREekst08zJdNy2L59OwDTp0/n+9//PkVFRWmuWfegUNcBCxYs4Pe//31s/ljA3pmDb10hVsRJc81ERES6H+N3iY6sw+vbDEBZWRnXXHMNU6ZMSXPNuheFug5qamriL3/5C0888QSu60LUwrdBs1GIiIgcrPisELkTDPX19TiOw+zZs/n617+unq0doFDXSatXr+aOO+5g5cqVAFh1PnzrCjX8iYiIyAF4hWGGf76UNWvWADBmzBh++MMfaty5TlCoSwLXdXnmmWe47777aGhoAMDenotvQ4FuyYqIiLRh/C7R4fV4/UMAFBQU8M1vfpPzzjsPx9HvzM5QqEuiqqoq7rnnHl544YXYiqiFszkfZ1uexrYTEZEezVgGd0AjOeM8GhsbATjrrLO49NJL6dOnT5prlx0U6lLgo48+4s4772y9Jdvo4KwvxK4O6Hk7ERHpUQwGrzjMwJm9ElNwjh07lh/84AcceeSRaa5ddlGoSxHP83jxxRe5++672b17NwDWbj++9YXYDRq4WEREsp+XH2HcN4axZMkSAIqKirjsssuYNWsWtm2nuXbZR6Euxerq6njooYd48sknCYfDANg7cvFtLMBq1rMDIiKSfUyOS3RYPV6/2HNzgUCA2bNn8+Uvf5mCgoI01y57KdR1kYqKCu69915eeeWV2AoPnG15OJvzsVz9tSIiIt2fcTzcwQ04h0UTDRkzZsxgzpw5lJWVpbl22U+hroutXLmS//3f/000RROxcLa2dKbQlGMiItINGdvgDmwkOA7q6+sBOOaYY/je977H2LFj01y7nkOhLg2MMSxYsIA//elPiYmKCds4W/JxyoPqKSsiIt2CsQxuWRO9Jvqorq4GYMSIEcyZM4eTTjoJy9Lvs66kUJdGruvy6quv8te//pVt27bFVoZsfJvzsXco3ImISGYyGLz+IYqn5rJjxw4ABg0axNe//nVOP/10jTeXJgp1GSAajfLCCy/wwAMPsHPnztjKJicW7nbmKtyJiEhGMJbB69dEv1MLE40Rffv25atf/SqzZs3C5/OluYY9m0JdBmlubuYf//gHDz30UGIYFEI2vi352NvVciciIulhLIPXv4mSqXls374diA1P8pWvfIVzzz2XnJycNNdQQKEuIzU2NvKPf/yD//u//6Oqqiq2srnlmbvtQXWoEBGRLmFsg1vWSO9JOezatQuAkpISvvSlL3HOOecQDAbTXENpS6EugzU3N/Pss8/y6KOPtt6WDds4W/NwKoIaCkVERFLCOB7ugCYKjnGoqakBoF+/fnz5y19m1qxZapnLUAp13UA4HObFF1/k4YcfpqKiIrYyauFUBGNDoYT1QKqIiHSeCbi4AxvJHWPR0NAAwMCBA7n44os588wz8fs1I1ImU6jrRqLRKK+88gqPPvpo61AoHtiVuThb8zT9mIiIdIiXH8Ed1Ig1IILrugAMHTqUr3zlK5x++unqANFNKNR1Q57nsXDhQh577LHWQYwBqzqAb2se1u4AFnruTkRE9s9gML3DRAc3YnqHE+snTJjAF7/4RU444QTNz9rNKNR1c6tWreKxxx7jtddeS/x1ZTX4cLblxYZDUacKERFpw9gGr2+IITNKWL9+PQCO43DaaafxhS98QTNAdGMKdVmivLycJ554gueee46mpqbYyoiFsz0Ym6WiWU3nIiI9mclxcQc0kn+kj9raWgCCwSDnnHMOn//85zU3axZQqMsydXV1PPfcczzzzDOUl5fHVhqwqwOxThW6NSsi0mMYDF6fMN6ARkxJhPiv/LKyMs4//3zOPvtsCgsL01xLSRaFuizlui6LFi3iqaeeYuHChYn1VpODXR6MjXenIVFERLKS8Xm4/ZsoO6mIrVu3JtZPmjSJ888/n0996lOayisLKdT1AJs3b+aZZ57hxRdfpL6+PrbSbek1uz2IVetX652ISDdnMJjCCG5ZE/6hhubmZgAKCgr4zGc+w3nnnceQIUPSXEtJJYW6HqSpqYlXXnmFp556inXr1iXWW40O9vYgzo5crIj+chMR6U6M38XtF2LQqcVs2rQpsX7UqFGcf/75TJ8+XTM/9BAKdT2QMYaPPvqI5557jnnz5rV2rPDArsrB3h7ErtazdyIimSrxrFxZE1a/aGL0g9zcXD796U9z9tlnM27cOCxLP8d7EoW6Hq6xsZF58+bx/PPP8+GHH7ZuaLZxtgexd+ZiN6nnrIhIJvByo3j9m+hzbB6VlZWJ9UceeSRnnXUW06ZNIz8/P401lHRSqJOEdevW8fzzz/Pyyy8nursDWHU+7B1BnMpcrIg6V4iIdCXj93BLQ3j9mjCF0cT6oqIizjzzTM466yxGjBiRxhpKplCok72Ew2HeeOMNXn75Zd59991Es358aBR7Ry52lQY2FhFJFWMbvJIQXt8QVl838XPYcRwmTpzIWWedxdSpUzUXq7SjUCcHVF1dzbx585g7dy4rVqxo3eBa2JU5ODtzNfadiEgSxKftcvuFyBlmtT7vDIwdO5YZM2Ywbdo0iouL01hLyWQKdXLQNm/ezNy5c5k7d27rwMYAEQt7Vy5OZY4CnojIITAYTFEYt7SZXkfksHv37sS2gQMHMmPGDM444wwNRSIHRaFODpkxhuXLlzN37lxee+01ampqWje2DXg1ASyjgCci0paxWoNc4ZhAu5+hRUVFTJs2jRkzZnDkkUeq96ocEoU66ZRoNMr777/P/Pnz+fe//72PgJcT62ChgCciPZixDF7vMF5piPxRfurq6hLbioqKOOWUUzj11FM57rjj8Pk04oB0jEKdJE00GuWDDz5IBLy2txGIWrEx8KpyYmPgaYoyEclyxvFiY8kVN5M30tc6ow/Qp08fTjnlFE477TSOOeYYBTlJCoU6SYl4wHvttdf497//TXV1detGD6zaAM6uWMizmjWLhYhkB5Pj4hY345U0Y5e09loFKC4u5pRTTuHTn/40Rx99tOZelaRTqJOUc12XFStW8Oabb/LWW2+xcePGdtutBh92PODV+9TRQkS6jfh8q15xrEXO5EfbbR86dChTp05l6tSpHHXUUQpyklIKddLlNm/ezFtvvcVbb73FsmXL8DyvdWPYwt4du0Vr787RYMciknGM38Pr3YzXJ0zRmGC7OxGO4zB+/HimTp3KiSeeqF6r0qUU6iStampqeOedd3jzzTdZtGhRu3GZoGU2i+oc7N0BrDq/OluISJczVktrXJ9YkDMF7Vvj8vLymDJlClOnTuWEE06gV69eaaqp9HQKdZIxIpEIH374IQsXLmTRokWsWbOm/Q5RC3t3INaKVxOAkKNbtSKSdAYDuW6st2qfMDmD7b3+4Bw9ejSTJk1i8uTJjB8/XjM7SEZQqJOMtWvXLt59910WLVrEu+++2364FICQjV0TSLzU4UJEOsrkuHhF4cSLXK/d9qKiokSImzRpEiUlJWmqqcj+KdRJt+C6LqtXr2bRokX85z//4cMPPyQabX8LhCYnFvB2+2MhL6KQJyL7ZgJtQlzvCOS67bY7jsNRRx3F5MmTmTJlCqNHj8a29YyvZDaFOumWQqEQy5YtY8mSJSxevJhVq1a1GzoAwGp0sGoD2LV+7Fq/bteK9FCJ26m9IniFEUxRGJO3d4gbM2YMxx57LMceeyzjx48nGAymqcYiHaNQJ1mhoaGBpUuXsnjxYhYvXszatWvZ61s7bGPX+rFq/di1AawGnzpeiGQhYxlMfhSvVxjTK4LXKwKB9rdTLcvi8MMPT4S4o48+mvz8/DTVWCQ5FOokK9XW1vLBBx+wfPlyli1bxsqVK/e+XeuCVdcS8Or82HV+rKhur4h0N8bnxVrgekXweoUJ9LNpbm5ut4/P52PMmDGMGzeOo48+mgkTJlBYWJimGoukhkKd9AjNzc2sWrWKpUuXJoJe27kXE0J2LNzVt4S8eh+Wp6AnkimM7WEKorEQVxDBK4zu9TwcQK9evRg3bhzjxo1j/PjxjB07lpycnDTUWKTrKNRJj+R5Hps2bUqEvBUrVrBp06a9b9kasBp9sfHyWsKe1ajbtiJdIX4bNRbeYiHOKjTtByxvMWTIkESAGzduHEOHDlXHBulxFOpEWtTX17Nq1SpWrFjBypUrWbFiBTt37tx7Rw+sJl/smbx6H3aDP7asW7ciHWZ8Xuw5uPxIS5CL4hSx92MTQN++fRk7dixHHHEERxxxBIcffrhupYqgUCdyQJWVle1C3urVq6mtrd33ziG7NeDFX+pxK9JOoidqfjQW3vIjePnRvcaFiyssLGTs2LGJEDd27FhKS0u7uNYi3YNCncghMMawY8cO1q5dy9q1a1m9ejVr166lvLx83we4La16jfGXg93o0/AqkvUS4S0vislzMXnR2CsYhf0MITlgwABGjRrF6NGjOeywwxg9ejT9+/fHsvR/ReRgKNSJJEFdXR0ff/wxa9asSQS+jRs3Eg6H933AnmGvyYm9Qj4sT7/ApPswtsHkRjFBFxNsH+DYzxMJgUCAESNGJILbqFGjOOywwygoKOjayotkGYU6kRRxXZfy8nLWr1/Phg0bEq8Dhj2AkB0Ld22DXpMTu5WrDhqSBsYymNyW0BZ02y2Ts+/bphALb8OGDWP48OHtXgMGDMDn83XhVyDSMyjUiXSxtmFv48aNbNiwgS1btrB58+Z9D7MSZ4DmlnAXsrHiyy3vhG3d0pUOMRgIeLGwltMS2nK82HIwip3HPnucxhUUFDB48OC9AlxZWRmOo+n6RLqKQp1IBqmpqUkEvLbvW7Zsoamp6cAHe2A1O7Hn9ZodrOaW4Be2Y2EwbINrKfj1MAYDjsEEPAi0CWs5LiY3tkyOu99bpXHBYJDBgwczZMgQBg8e3O5VVFSk595EMoBCnUg3YIxh165dbN26lYqKCioqKigvL6e8vJyKigp27Nix19y3++RaWM12rFUv3BL8wi2tfGEbIjZWROGvO4iHNfwexu9hArEXOW7LshtrfcvxYvt9Asdx6NevH2VlZQwYMID+/ftTVlbGwIEDGTx4MMXFxQpuIhlOoU4kC0SjUXbt2tUu6G3fvp2dO3dSWVnJzp07qa+vP/gCPRIBr13Yi79HbayIFXuPtrzreb9OMZYBn4fxtXlvCWyJ4Ob3YkHNF3v/pNa1tgoKCigtLaW0tJR+/foxYMAAysrKEq+SkhI95ybSzSnUifQQTU1NVFZWJkJe28C3a9cudu/eTXV1NY2NjR07gUv7kNfyjmthuRa4LcueBVELvPj61ne8lpch41sKTaySYLfc3mx5xzEYp3UZu+3nPUJbm8/7G+bjkwSDQYqKiigpKaFv376J4FZaWtruczAYTOrXLyKZR6FORNoJhUKJgBd/r6qqSixXV1dTX19PXV0ddXV11NfXH/Ah+g7zaA15HrGWwJblePCjpXXQiv8UMy3rod12DCQyYnznxOeWHeKHWi372MQCW8uy2ce6ZOdOy7IoKCigsLCQgoICevfuTZ8+fejdu3diue3n3r17K6yJSIJCnYh0iud5NDQ0tAt58eXa2lqamppoamqisbHxE5e7648jx3EIBoOJV25ubrvP8VdeXl670Nb2vbCwkPz8fM1XKiIdplAnIhnBGEMkEiEcDhMOh9stt/0ciURobm4mGo3ieR6e52GMwXVdjDGJdZ7ntVtn2zaWZbV7j7/2XO/z+QgEAvj9fvx+/wGX4y91IhCRdFOoExEREckCaucXERERyQIKdSIiIiJZQKFOREREJAso1ImIiIhkAYU6ERERkSygUCciIiKSBRTqRERERLKAQp2IiIhIFlCoExEREckCCnUiIiIiWUChTkRERCQLKNSJiIiIZAGFOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIllAoU5EREQkCyjUiYiIiGQBhToRERGRLKBQJyIiIpIFFOpEREREsoBCnYiIiEgWUKgTERERyQK+dFdAJM4YQygUSnc1REQOSW5uLpZlpbsaIgp1kjlCoRBnnnlmuqshInJIXn75ZYLBYLqrIaLbryIiIiLZQC11kpECi/phmZa/OSwby7bAssG2wLKw7Pi2lvWWBbaFFd8nsc1KHJN4QZt1dvvtsQMT64xltf7p06aMxHqr9Vxt1xkrVkximx0rN7beSmyLH2Na1iW2Q2sZdsv+8e20P0e7Y1qqb+x9bGu3P+3q2LrO2mvbXsfQth57bGc/6/dT3v7qsdcxByo3sd7sfXybYxLb25RlWtbT5rjYNtOmPrHtVtttiX3j20yiTKvt/pZJbEt8i8XXx4tr2Sf2rWASn+PH2C2fY9tin+PHJbZZBovW4+yWdYkXJnGcbdFufex4r/U44vt7OPFjWj63luUlynPalO8QW+/Ey0vs6+HEyyReD691f1rLjpXpYRM7f2xbrDynZZ2FhxM/vs0xDsSOI3ae+PWIf46dy7Qs07LNYLdcFwcLG3Ba/rFtrJZ1Fo5lYWNjtfzLRcIOF3yrDJFMolAnmcm1Wn68Egt1tASwlt+WrdsssFsTjBVLSC2FxH+72+z1W7s1MbVPEvEy9/otzx7r2p6Dfazb8zhaw1ybULfXujYhrO3nPavYfv99HGMfYNv+voy96rGfL/tA2/Z3qTpaXpsy9xX4Uhrq9rWdPT+bRNlt69H2nPvalgiBtNmn7f57HWP2cS7T7tU21LUGxZbX/rYRD36xItsGwHj4g3g4IxGK2m6LhTqvNRRZbUNRbNm2rFjganknsWwljouVQ0uZ8WNpOa5l/b62tTnGaQmkTqKe8VBnPjHUtS3PiV8P2q+zaVvHNv+GIhlCt19FREREsoBCnYiIiEgWUKgTERERyQIKdSIiIiJZQKFOREREJAso1ImIiIhkAYU6ERERkSygceokMzkGY2IDjsbGXbPavFt7DAgcf2+zTNt1ps3yQWxrM2hZ6xCx+1vf+m7aLdPuOANg4utbyzRYYEgc23Z7oox2g6u1rcs+Ppt2Vdrjeuzntee+BzMW3YG2HfS5DnJb21Me8DjzCWWa/dRx/4MPtx9brs22xL4dH3y4tR5txqmj4+PUGVqPM5Zp/yL2HttGu/WeZcDyWsskfi6vzXh6Lfu0bDeWlyiPduW3vMfP1fLZbtkn/g7stc5r8986vuxZ4NE6Tp3Xss5if+PUWYkBgx1a/83in+2WY/Yc++7gBx+2aB18eF//L0XSS6FOMlJ48o50VyE14r8zO2jPTCIS1/Zby0tnRTqsbarWTSSRjtD/HMkYoVAo3VUQERHpttRSJxkjJycnsfyPf/yD3NzcNNamZwiFQpx77rmArnlX0PXuel1xzfXvKJlCoU4yhmW13lDMzc0lGAymsTY9j65519L17nq65pLtdPtVREREJAso1ImIiIhkAYU6ERERkSygUCciIiKSBSxjTCdGzRIRERGRTKCWOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIllAoU5EREQkCyjUiYiIiGQBhToRERGRLOBLdwUkOzU2NvLYY4/x+uuvU1FRgW3bDBkyhGnTpnHBBRfg9/s7XHZVVRWPPPIICxYsYPv27eTk5DBixAhmzpzJWWedhWVZSfxKuodUXO+dO3fy5ptvsmTJEtasWcPOnTsBKC4u5qijjuLss8/m+OOPT/aX0m2k8nt8T3fccQf//Oc/ASgrK+Pvf/970sruLlJ9vXft2sXTTz/NO++8Q3l5Oc3NzfTp04dhw4YxYcIEvvjFL+Lz6VemZDZNEyZJV1FRwZVXXklFRQUAubm5eJ5HOBwGYPTo0dx5550UFhYectmrVq3i2muvpaamBoBgMEg4HMZ1XQAmT57MLbfcktRfqJkuFdd7+/btXHjhhbT98ZCbm4sxhubm5sS6WbNm8cMf/hDHcZL01XQPqfwe39PixYu56qqrEv8WPTHUpfp6/+tf/+KOO+6goaEBgEAggN/vT3wGeP7555Py7ymSSgp1klTRaJQ5c+awbt06SkpK+NnPfsbEiRPxPI/58+dz++2309jYyAknnMBvfvObQyq7vr6eiy++mKqqKoYOHcrPf/5zxo4dSyQS4dlnn+UPf/gD0WiU8847j6uvvjpFX2FmSdX1Li8v5wtf+ALHH388Z555JhMnTqS0tBTP89i0aRP33HMPb775JgCXXHIJc+bMSdWXmHFS+T2+p1AoxNe//nW2b9/OqFGjWLlyZY8Ldam+3vPnz+eXv/wlnudxzjnnMHv2bIYPHw7EWgfXrFnDG2+8wTe/+U2CwWCSvzqR5NIzdZJUL730EuvWrQPgV7/6FRMnTgTAtm1OP/10rr32WgDeeecd3nvvvUMq+7HHHqOqqoqcnBx+85vfMHbsWAD8fj+f+9zn+MY3vgHAs88+y+bNm5P1JWW0VF3vwsJC7r33Xn7/+98zc+ZMSktLE+UOHz6cm266iSlTpgDw+OOPt2u9y3ap/B7f07333svWrVv50pe+lAgaPU0qr3dlZSV33HEHnufxve99jx/+8IftrnNeXh7HHHMMl19+uQKddAsKdZJUL730EgDHHnss48aN22v76aefzoABA9rte7BefvnlRBkDBw7ca/vnPvc5gsEgruvyyiuvHGrVu6VUXe+CggLGjBmz3+2WZTFr1iwAmpqa2Lhx46FUu1tL5fd4Wx9++CFPPvkkQ4YM4ZJLLulwOd1dKq/3k08+SV1dHaNHj+bCCy/sfGVF0kyhTpImFAqxfPlyAE444YR97mNZVqKF59133z3osjdt2sT27dsBEsfvKS8vj6OPPvqQy+6uUnm9D0YgEEgse56X1LIzVVdd83A4zK233ooxhh/+8Ifk5OR0rMLdXKqvd/wPxRkzZvTIDlaSfdSVR5Jm48aNiV/uI0aM2O9+8W1VVVXU1tbSq1evTyw7fvvlk8oeOXIkCxcuZMOGDQdZ6+4rldf7YCxZsgSI3f4eMmRIUsrMdF11zR944AE2btzI2WefzYQJEzpc3+4uldd727ZtVFZWAjBmzBg+/vhjHn74YRYvXkxdXR29e/dm3LhxfP7zn2f8+PFJ+GpEUk8tdZI08R+QAH379t3vfvHns/Y85kB27dp1SGU3NDTQ2Nh4UGV3V6m83p9k27ZtiSE2pk2bRn5+flLKzXRdcc1Xr17NI488QnFxMd/5zncOvZJZJJXXe8uWLYnlZcuWcemll/Lqq6/S0NBAIBBg586dzJ8/n8svv5wHHnigA7UX6XoKdZI0bUPUgW4X5ebm7vOYdJXdXaXrmjQ3N/OLX/yCUChEUVERl112WafL7C5Sfc2j0Si33XYbruty5ZVX9vghNFJ5vevq6hLLf/7znykpKeF3v/sdL7/8Mi+++CIPPvggxx57LMYY/vznP/P666934CsQ6VoKdSJy0KLRKDfeeCOrVq3C5/Nx/fXXt2slkc55+OGHWbNmDSeeeCLTpk1Ld3WyWtvnQI0xiZ61th37tTh8+HBuueUWiouLAbj//vvTUU2RQ6JQJ0mTl5eXWD7QEBehUGifx6Sr7O6qq6+J67r86le/4o033sBxHG644QYmT57c4fK6o1Re8w0bNvDggw8SDAa56qqrOl7JLNJVP1OOP/74ffb2zsvL4/zzzwfg448/pqqq6qDKFkkXhTpJmrYtNvEppfal7TMvB9vKU1JSckhl5+fnZ32oS+X13pPruvz6179m/vz5OI7Dz3/+c0477bQOldWdpfKa//73vycSifCVr3yFwsJCGhsb273is6YYYxLrotFoB7+S7iGV17vtfsOGDdvvfm3HrYvPaCGSqdT7VZJm2LBh2LaN53msX79+v0MQrF+/HojNIXqwvQJHjhzZ7vj9DcQa7yXbEwZqTeX1biveQjdv3rxEoDv99NM7VffuKpXXvLy8HIB77rmHe+65Z7/7bd++nZkzZwJw+eWXZ/X4aqm83sOHD8dxnERY3p+2ky5p2BPJdGqpk6TJzc1NDA66cOHCfe5jjGHRokUATJo06aDLHjJkCP379z9g2U1NTSxduvSQy+6uUnm941zX5cYbb1Sga9EV11xapfJ65+TkJMa1PNDg2fFtlmUlBjkWyVQKdZJU8RaEJUuW8NFHH+21ff78+Wzbtq3dvgfDsizOPPNMAObNm5do1Wjr6aefpqmpCcdxOOOMMzpS/W4nVdcbWlvo2t5y7cmBLi5V1/zvf/87//73v/f7ipdVVlaWWJfNrXRxqfwej8+K8t5777Fq1aq9tjc2NvL0008DcOSRR9K7d+9DKl+kqynUSVLNnDmTkSNHYozh+uuvT8zF2HbybYjNCnH88ce3O/Yvf/kLp5xyCqeccso+Q9sXv/hFiouLCYVC/PjHP078EI5EIjzzzDP8+c9/BuCcc87pMYPhpup6x5+hi7fQ3XDDDQp0LVL5PS57S+X1PuOMMzjiiCPalR3vFbthwwauu+46qqqqsG2bOXPmpPgrFek8PVMnSeXz+bjlllv4/ve/T0VFBVdddRW5ubl4nkc4HAZg9OjR3HDDDYdcdkFBAbfddhvXXnstGzZs4Fvf+hZ5eXmEw+HEA+OTJk3i8ssvT+rXlMlSdb2XLVvGv/71LyDWSnrXXXdx11137Xf/K664oseEvlR+j8veUnm9bdvm5ptv5qqrrmLDhg2Jsn0+H/X19YnzX3XVVXsFRpFMpFAnSTdgwADuv/9+HnvsMV5//XUqKirw+XyMGDGC008/nQsuuAC/39+hsseMGcMDDzzAI488wttvv82OHTvIzc1l5MiRzJw5k1mzZiXGmeopUnG92z4cHo1GP3Eoh/gv154ild/jsrdUXu+SkhLuu+8+nnrqKebNm8eWLVtobm6mrKyM4447jgsvvLBdRy2RTGaZtj+9RURERKRb6llNGiIiIiJZSqFOREREJAso1ImIiIhkAYU6ERERkSygUCciIiKSBRTqRERERLKAQp2IiIhIFlCoExEREckCCnUiIiIiWUChTkRERCQLKNSJiIiIZAGFOhEREZEsoFAnIiIikgUU6kRERESygEKdiIiISBZQqBMRERHJAgp1IiIiIllAoU5EREQkC/x/U9RFDR8v76IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dwell_time_map.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "31ec05ad-90b7-4fad-9ad0-98cfd6483d41", + "metadata": {}, + "source": [ + "# 4. Imaging deconvolution" + ] + }, + { + "cell_type": "markdown", + "id": "6e88ca7f", + "metadata": {}, + "source": [ + "## Brief overview of the image deconvolution\n", + "\n", + "Basically, we have to maximize the following likelihood function\n", + "\n", + "$$\n", + "\\log L = \\sum_i X_i \\log \\epsilon_i - \\sum_i \\epsilon_i\n", + "$$\n", + "\n", + "$X_i$: detected counts at $i$-th bin ( $i$ : index of the Compton Data Space)\n", + "\n", + "$\\epsilon_i = \\sum_j R_{ij} \\lambda_j + b_i$ : expected counts ( $j$ : index of the model space)\n", + "\n", + "$\\lambda_j$ : the model map (basically gamma-ray flux at $j$-th pixel)\n", + "\n", + "$b_i$ : the background at $i$-th bin\n", + "\n", + "$R_{ij}$ : the response matrix\n", + "\n", + "Since we have to optimize the flux in each pixel, and the number of parameters is large, we adopt an iterative approach to find a solution of the above equation. The simplest one is the ML-EM (Maximum Likelihood Expectation Maximization) algorithm. It is also known as the Richardson-Lucy algorithm.\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\delta \\lambda_{j}^{k} = \\frac{\\lambda_{j}^{k}}{\\sum_{i} R_{ij}} \\sum_{i} \\left(\\frac{ X_{i} }{\\epsilon_{i}} - 1 \\right) R_{ij} \n", + "$$\n", + "\n", + "We refer to $\\delta \\lambda_{j}^{k}$ as the delta map.\n", + "\n", + "As for now, the two improved algorithms are implemented in COSIpy.\n", + "\n", + "- Accelerated ML-EM algorithm (Knoedlseder+99)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\delta \\lambda_{j}^{k}\n", + "$$\n", + "$$\n", + "\\alpha^{k} < \\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k})\n", + "$$\n", + "\n", + "Practically, in order not to accelerate the algorithm excessively, we set the maximum value of $\\alpha$ ($\\alpha_{\\mathrm{max}}$). Then, $\\alpha$ is calculated as:\n", + "\n", + "$$\n", + "\\alpha^{k} = \\mathrm{min}(\\mathrm{max}(- \\lambda_{j}^{k} / \\delta \\lambda_{j}^{k}), \\alpha_{\\mathrm{max}})\n", + "$$\n", + "\n", + "- Noise damping using gaussian smoothing (Knoedlseder+05, Siegert+20)\n", + "\n", + "$$\n", + "\\lambda_{j}^{k+1} = \\lambda_{j}^{k} + \\alpha^{k} \\left[ w_j \\delta \\lambda_{j}^{k} \\right]_{\\mathrm{gauss}}\n", + "$$\n", + "$$\n", + "w_j = \\left(\\sum_{i} R_{ij}\\right)^\\beta\n", + "$$\n", + "\n", + "$\\left[ ... \\right]_{\\mathrm{gauss}}$ means that the differential image is smoothed by a gaussian filter." + ] + }, + { + "cell_type": "markdown", + "id": "e0a2582e", + "metadata": {}, + "source": [ + "## 4-1. Prepare DataLoader containing all neccesary datasets" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "de8055f7-4aab-4a17-8751-42493f9e88d6", + "metadata": {}, + "outputs": [], + "source": [ + "dataloader = DataLoader.load(grb_data.binned_data, \n", + " bkg_data.binned_data, \n", + " response, \n", + " coordsys_conv_matrix,\n", + " is_miniDC2_format = True)" + ] + }, + { + "cell_type": "markdown", + "id": "b23f1fbe", + "metadata": {}, + "source": [ + "DataLoader is a data container for the image deconvolution. It also calculates several auxiliary matrices for the analysis." + ] + }, + { + "cell_type": "markdown", + "id": "2a662f5e", + "metadata": {}, + "source": [ + "## 4-2. Load the response file\n", + "\n", + "The response file will be loaded on the CPU memory. It requires a few GB. In the actual COSI satellite analysis, the response could be much larger, perhaps ~1TB wiht finer bin size. \n", + "\n", + "So loading it on the memory might be unrealistic in the future. The optimized (lazy) loading would be a next work." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "0ab4b84c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "1a521607127c4c91ac231a0bf55a4a08", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Em of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis Phi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "... checking the axis PsiChi of the event and background files...\n", + " --> pass (edges)\n", + " --> pass (unit)\n", + "...checking the axis Em of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis Phi of the event and response files...\n", + " --> pass (edges)\n", + "...checking the axis PsiChi of the event and response files...\n", + " --> pass (edges)\n", + "The axes in the event and background files are redefined. Now they are consistent with those of the response file.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING FutureWarning: Note that _modify_axes() in DataLoader was implemented for a temporary use. It will be removed in the future.\n", + "\n", + "\n", + "WARNING UserWarning: Make sure to perform _modify_axes() only once after the data are loaded.\n", + "\n" + ] + } + ], + "source": [ + "dataloader._modify_axes()" + ] + }, + { + "cell_type": "markdown", + "id": "b1a0269e", + "metadata": {}, + "source": [ + "## 4-4. Initialize the instance of the image deconvolution class\n", + "\n", + "First, we prepare an instance of the ImageDeconvolution class and then register the dataset and parameters for the deconvolution. After that, you can start the calculation." + ] + }, + { + "cell_type": "markdown", + "id": "79eb910c", + "metadata": {}, + "source": [ + " please modify this parameter_filepath corresponding to your environment." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5fa73486", + "metadata": {}, + "outputs": [], + "source": [ + "parameter_filepath = path_data + \"imagedeconvolution_parfile_GRB_miniDC2.yml\"" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "a4b47308-3e13-400d-bebc-b5d1e093201d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data for image deconvolution was set -> \n", + "parameter file for image deconvolution was set -> /Users/yoneda/Work/Exp/COSI/cosipy-2/data_challenge/miniDC2/example_notebook//imagedeconvolution_parfile_GRB_miniDC2.yml\n" + ] + } + ], + "source": [ + "image_deconvolution = ImageDeconvolution()\n", + "\n", + "# set dataloader to image_deconvolution\n", + "image_deconvolution.set_data(dataloader)\n", + "\n", + "# set a parameter file for the image deconvolution\n", + "image_deconvolution.read_parameterfile(parameter_filepath)" + ] + }, + { + "cell_type": "markdown", + "id": "a2345d9d", + "metadata": {}, + "source": [ + "### Initialize image_deconvolution\n", + "\n", + "In this process, a model map is defined following the input parameters, and it is initialized. Also, it prepares ancillary data for the image deconvolution, e.g., the expected counts with the initial model map, gaussian smoothing filter etc.\n", + "\n", + "I describe parameters in the parameter file.\n", + "\n", + "#### model_property\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| coordinate | str | the coordinate system of the model map | As for now, it must be 'galactic' |\n", + "| nside | int | NSIDE of the model map | it must be the same as NSIDE of 'lb' axis of the coordinate conversion matrix|\n", + "| scheme | str | SCHEME of the model map | As for now, it must be 'ring' |\n", + "| energy_edges | list of float [keV] | The definition of the energy bins of the model map | As for now, it must be the same as that of the response matrix |\n", + "\n", + "#### model_initialization\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "| algorithm | str | the method name to initialize the model map | As for now, only 'flat' can be used |\n", + "| parameter_flat:values | list of float [cm-2 s-1 sr-1] | the list of photon fluxes for each energy band | the length of the list should be the same as the length of \"energy_edges\" - 1 |\n", + "\n", + "#### deconvolution\n", + "\n", + "| Name | Unit | Description | Notes |\n", + "| :---: | :---: | :---: | :---: |\n", + "|algorithm | str | the name of the image deconvolution algorithm| As for now, only 'RL' is supported |\n", + "|||||\n", + "|parameter_RL:iteration | int | The maximum number of the iteration | |\n", + "|parameter_RL:acceleration | bool | whether the accelerated ML-EM algorithm (Knoedlseder+99) is used | |\n", + "|parameter_RL:alpha_max | float | the maximum value for the acceleration parameter | |\n", + "|parameter_RL:save_results_each_iteration | bool | whether an updated model map, detal map, likelihood etc. are saved at the end of each iteration | |\n", + "|parameter_RL:response_weighting | bool | whether a delta map is renormalized based on the exposure time on each pixel, namely $w_j = (\\sum_{i} R_{ij})^{\\beta}$ (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:response_weighting_index | float | $\\beta$ in the above equation | |\n", + "|parameter_RL:smoothing | bool | whether a Gaussian filter is used (see Knoedlseder+05, Siegert+20) | |\n", + "|parameter_RL:smoothing_FWHM | float, degree | the FWHM of the Gaussian in the filter | |\n", + "|parameter_RL:background_normalization_fitting | bool | whether the background normalization factor is optimized at each iteration | As for now, the single background normalization factor is used in all of the bins |\n", + "|parameter_RL:background_normalization_range | list of float | the range of the normalization factor | should be positive |" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "879053e3-ac7b-4a0a-ad58-24e3fb137065", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#### Initialization ####\n", + "1. generating a model map\n", + "---- parameters ----\n", + "coordinate: galactic\n", + "energy_edges:\n", + "- 100.0\n", + "- 200.0\n", + "- 500.0\n", + "- 1000.0\n", + "- 2000.0\n", + "- 5000.0\n", + "nside: 8\n", + "scheme: ring\n", + "\n", + "2. initializing the model map ...\n", + "---- parameters ----\n", + "algorithm: flat\n", + "parameter_flat:\n", + " values:\n", + " - 0.01\n", + " - 0.01\n", + " - 0.01\n", + " - 0.01\n", + " - 0.01\n", + "\n", + "3. registering the deconvolution algorithm ...\n", + "... calculating the expected events with the initial model map ...\n", + "... calculating the response weighting filter...\n", + "... calculating the gaussian filter...\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f279be405a4e4dc5aa58bc0b1eadae2c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/768 [00:00 pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING RuntimeWarning: invalid value encountered in divide\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.5256721171422285\n", + " loglikelihood: 6995.070394357579\n", + " background_normalization: 1.9156089682929596\n", + " Iteration 2/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.5763136603313757\n", + " loglikelihood: 24101.13650415292\n", + " background_normalization: 1.3793746628449184\n", + " Iteration 3/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.754476734122631\n", + " loglikelihood: 25829.656262774864\n", + " background_normalization: 1.479120638470411\n", + " Iteration 4/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 34610.09484775503\n", + " background_normalization: 1.140883891972013\n", + " Iteration 5/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.4263935825449847\n", + " loglikelihood: 37662.53238253783\n", + " background_normalization: 1.1319257143160566\n", + " Iteration 6/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 4.668194082009493\n", + " loglikelihood: 38299.615754495215\n", + " background_normalization: 1.1295989219552447\n", + " Iteration 7/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 39858.418284489395\n", + " background_normalization: 1.0799082948115535\n", + " Iteration 8/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.8684961126184034\n", + " loglikelihood: 40363.58462270266\n", + " background_normalization: 1.0818626699366012\n", + " Iteration 9/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 40570.94251969077\n", + " background_normalization: 1.0738451636325703\n", + " Iteration 10/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 41080.54992554475\n", + " background_normalization: 1.066440377077784\n", + " Iteration 11/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 41138.27262775572\n", + " background_normalization: 1.0595887797500194\n", + " Iteration 12/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 39847.17913641907\n", + " background_normalization: 1.0709417721994\n", + " Iteration 13/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.641716609686848\n", + " loglikelihood: 36816.09679192316\n", + " background_normalization: 1.043498291472631\n", + " Iteration 14/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 30229.09255082757\n", + " background_normalization: 1.1553698114239597\n", + " Iteration 15/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 41537.200529306385\n", + " background_normalization: 1.0033923366898276\n", + " Iteration 16/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.7585896423313874\n", + " loglikelihood: 40430.5509247969\n", + " background_normalization: 1.0328992830046098\n", + " Iteration 17/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 36053.06814056434\n", + " background_normalization: 1.0799429722914526\n", + " Iteration 18/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 41759.14057063087\n", + " background_normalization: 1.043171038622194\n", + " Iteration 19/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.110837759570481\n", + " loglikelihood: 41535.22859804242\n", + " background_normalization: 1.0672547025579957\n", + " Iteration 20/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 39393.39610815875\n", + " background_normalization: 1.083620371401302\n", + " Iteration 21/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 41974.71796854968\n", + " background_normalization: 1.077260302610239\n", + " Iteration 22/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 2.658680215314738\n", + " loglikelihood: 42005.25984799916\n", + " background_normalization: 1.0927078821997471\n", + " Iteration 23/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 41313.415314215395\n", + " background_normalization: 1.0965179439302204\n", + " Iteration 24/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.1069742422022726\n", + " loglikelihood: 42167.76054529962\n", + " background_normalization: 1.0924953496158092\n", + " Iteration 25/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 42195.94131658095\n", + " background_normalization: 1.1032397527185536\n", + " Iteration 26/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 3.6880846888173346\n", + " loglikelihood: 42216.08916197458\n", + " background_normalization: 1.1050458594984143\n", + " Iteration 27/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 42218.889833384645\n", + " background_normalization: 1.1044301502208802\n", + " Iteration 28/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0176671300651505\n", + " loglikelihood: 42250.46201818339\n", + " background_normalization: 1.1080259897693703\n", + " Iteration 29/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> continue\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 1.0\n", + " loglikelihood: 42256.80433165385\n", + " background_normalization: 1.1098973588984038\n", + " Iteration 30/30 \n", + "--> pre-processing\n", + "--> E-step\n", + "... skip E-step ...\n", + "--> M-step\n", + "--> post-processing\n", + "... calculating the expected events with the updated model map ...\n", + "--> checking stopping criteria\n", + "--> --> stop\n", + "--> registering results\n", + "--> showing results\n", + " alpha: 5\n", + " loglikelihood: 42278.085994665526\n", + " background_normalization: 1.11037784844894\n", + "#### Done ####\n", + "\n", + "CPU times: user 1min 56s, sys: 50.1 s, total: 2min 46s\n", + "Wall time: 36.1 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "all_results = image_deconvolution.run_deconvolution()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "cc64ea8d", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[{'alpha': ,\n", + " 'background_normalization': 1.9156089682929596,\n", + " 'delta_map': ,\n", + " 'iteration': 1,\n", + " 'loglikelihood': 6995.070394357579,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.3793746628449184,\n", + " 'delta_map': ,\n", + " 'iteration': 2,\n", + " 'loglikelihood': 24101.13650415292,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.479120638470411,\n", + " 'delta_map': ,\n", + " 'iteration': 3,\n", + " 'loglikelihood': 25829.656262774864,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.140883891972013,\n", + " 'delta_map': ,\n", + " 'iteration': 4,\n", + " 'loglikelihood': 34610.09484775503,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1319257143160566,\n", + " 'delta_map': ,\n", + " 'iteration': 5,\n", + " 'loglikelihood': 37662.53238253783,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1295989219552447,\n", + " 'delta_map': ,\n", + " 'iteration': 6,\n", + " 'loglikelihood': 38299.615754495215,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0799082948115535,\n", + " 'delta_map': ,\n", + " 'iteration': 7,\n", + " 'loglikelihood': 39858.418284489395,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0818626699366012,\n", + " 'delta_map': ,\n", + " 'iteration': 8,\n", + " 'loglikelihood': 40363.58462270266,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0738451636325703,\n", + " 'delta_map': ,\n", + " 'iteration': 9,\n", + " 'loglikelihood': 40570.94251969077,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.066440377077784,\n", + " 'delta_map': ,\n", + " 'iteration': 10,\n", + " 'loglikelihood': 41080.54992554475,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0595887797500194,\n", + " 'delta_map': ,\n", + " 'iteration': 11,\n", + " 'loglikelihood': 41138.27262775572,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0709417721994,\n", + " 'delta_map': ,\n", + " 'iteration': 12,\n", + " 'loglikelihood': 39847.17913641907,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.043498291472631,\n", + " 'delta_map': ,\n", + " 'iteration': 13,\n", + " 'loglikelihood': 36816.09679192316,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.1553698114239597,\n", + " 'delta_map': ,\n", + " 'iteration': 14,\n", + " 'loglikelihood': 30229.09255082757,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.0033923366898276,\n", + " 'delta_map': ,\n", + " 'iteration': 15,\n", + " 'loglikelihood': 41537.200529306385,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0328992830046098,\n", + " 'delta_map': ,\n", + " 'iteration': 16,\n", + " 'loglikelihood': 40430.5509247969,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0799429722914526,\n", + " 'delta_map': ,\n", + " 'iteration': 17,\n", + " 'loglikelihood': 36053.06814056434,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.043171038622194,\n", + " 'delta_map': ,\n", + " 'iteration': 18,\n", + " 'loglikelihood': 41759.14057063087,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0672547025579957,\n", + " 'delta_map': ,\n", + " 'iteration': 19,\n", + " 'loglikelihood': 41535.22859804242,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.083620371401302,\n", + " 'delta_map': ,\n", + " 'iteration': 20,\n", + " 'loglikelihood': 39393.39610815875,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.077260302610239,\n", + " 'delta_map': ,\n", + " 'iteration': 21,\n", + " 'loglikelihood': 41974.71796854968,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0927078821997471,\n", + " 'delta_map': ,\n", + " 'iteration': 22,\n", + " 'loglikelihood': 42005.25984799916,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.0965179439302204,\n", + " 'delta_map': ,\n", + " 'iteration': 23,\n", + " 'loglikelihood': 41313.415314215395,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.0924953496158092,\n", + " 'delta_map': ,\n", + " 'iteration': 24,\n", + " 'loglikelihood': 42167.76054529962,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.1032397527185536,\n", + " 'delta_map': ,\n", + " 'iteration': 25,\n", + " 'loglikelihood': 42195.94131658095,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1050458594984143,\n", + " 'delta_map': ,\n", + " 'iteration': 26,\n", + " 'loglikelihood': 42216.08916197458,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.1044301502208802,\n", + " 'delta_map': ,\n", + " 'iteration': 27,\n", + " 'loglikelihood': 42218.889833384645,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': ,\n", + " 'background_normalization': 1.1080259897693703,\n", + " 'delta_map': ,\n", + " 'iteration': 28,\n", + " 'loglikelihood': 42250.46201818339,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 1.0,\n", + " 'background_normalization': 1.1098973588984038,\n", + " 'delta_map': ,\n", + " 'iteration': 29,\n", + " 'loglikelihood': 42256.80433165385,\n", + " 'model_map': ,\n", + " 'processed_delta_map': },\n", + " {'alpha': 5,\n", + " 'background_normalization': 1.11037784844894,\n", + " 'delta_map': ,\n", + " 'iteration': 30,\n", + " 'loglikelihood': 42278.085994665526,\n", + " 'model_map': ,\n", + " 'processed_delta_map': }]\n" + ] + } + ], + "source": [ + "pprint.pprint(all_results)" + ] + }, + { + "cell_type": "markdown", + "id": "9d32d0a8", + "metadata": {}, + "source": [ + "# 5. Analyze the results\n", + "\n", + "Examples to see/analyze the results are shown below." + ] + }, + { + "cell_type": "markdown", + "id": "f577c7ac", + "metadata": {}, + "source": [ + "## Log-likelihood\n", + "\n", + "Plotting the log-likelihood vs the number of iterations" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "445ee3d5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'loglikelihood')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAloAAAG5CAYAAABWY5pbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABq9UlEQVR4nO3deXxU1fk/8M8smewbk4UlIQuBkLAriEBYgwguVCqg9JvWDQQLVORrEfrDVpGqbbV+QUQRrNiigNWyWCVqbQgCssoSkxDCkhCWbJN1MksyM/f3xzCXGSaBJDOTmWQ+79fLkrn3zJnDcQqP5zz3ORJBEAQQERERkdNJ3T0AIiIioq6KgRYRERGRizDQIiIiInIRBlpERERELsJAi4iIiMhFGGgRERERuQgDLSIiIiIXYaDlZjqdDgUFBdDpdO4eChERETkZAy03Ky4uxrx581BcXNzs/fPnz3fwiLoGzlvbcc7ah/PWPpy39uG8tZ2754yBlofT6/XuHkKnxHlrO85Z+3De2ofz1j6ct7Zz95wx0CIiIiJyEQZaRERERC7CQIuIiIjIRRhoEREREbkIAy0iIiIiF2GgRUREROQiDLSIiIiIXISBFhEREZGLMNAiIiIichEGWkREREQuwkCLiIiIyEUYaBERERG5CAMtIiIiIheRu3sARERE1PkIggDBKMBkFGAymmAyXP/VJNz4+fo9wShAEMQ3ij8LguV/rvcnABBu9A/h+kuTAMEkwHT9V8Fk/lzzz4DJZIJgwk3Xzf+UltZCUX0VSWN6duwEXcdAi4iIyMUEQcC1vCpUX66/HnxcD1JM5gDFEiBYghPB+mdL4GISUFdbh0sBmhuBhGAfWJgDEtz0WrAKaCyDsvwiWA305nvib0Act/UYOwtDuYyBFhERUVd0NVeFY9vPovxcjVP6q4bWKf14E5PR5LbPZqBFRESdRuWFWhTuvwKD3tTs6s+NX69vWV1fCbLe2gqODEDypFgkjIiGVO66VOXyczU49ulZXP1J5bLPuJlEKoFEav5VKpVcf231j9jQ9lerOzeu3dRYKpNAIpNAKpNCKpNAKrf6Wfz1+s/X70msrkFyvScJIJGIH3zTz9dHI47P/LNEAkhkErvfl1Rm9XML169cuYy+A/o4dZ7bgoEWERF1CpoaPb569QgaNQaH+qkv1+JqrgqHw3zRf3Is+k/qjYAwXyeNEqgqqcfxfxai+FiZzfXwmCAMuDcOikAfMRiwBCgSmTlQkMql5oBBfv31TfcLzxUiOSXZNqiw+pnsafOqEN0v3G2fz0CLiMjLGBqNOJt9GcYmE0KiAxASHYDgqADIFTJ3D+2Wfvh7XtuDLAlsAhoAYh+aGj1+/OwcTu44j4SR3ZE6JQ5RfcNurLC0UV1ZA45/dg7nD16FddpTcJQ/7pzZF4mje0LqYDDkEyiDX5DCoT6oYzHQIiLyMid2nMepXeftrgeE+94IvKIDEBJ142d3/+V+6cdyXDxUCgDwDfLBvcuGw8dPZrNNZQmoxO2q66tD1ixJ6XnfFKP4WBkEATAZBZw/eA3nD15DREIIUqfEIXFUj1YHng1VOpzYcQ4Fey/bJIgHhPti2M+TkDw+xqVblOTZGGgREbWT6lIdqs9rYeovOLxS0ZEuHrrW7HVNtR6aaj1Kz1Tb3VMEyG8EYNGBiIgPRvyI7h2yXdWkM+DAh7ni67t/mYKopLB29SWRSNBzgBI9ByihrtQi/z+XUJBVAl19EwCg8mId9m3IweGPz6D/pFikTO6NoAj/ZvvS1TXi1BcXkPdNMYxNN5KtfYN8MORnfZB6T2+PXyUk12OgRUTUDupKLXb9v4MwGQVU/XgY4xcMQkh0oLuHdVu11xpQV6YBAITHBiN+RDTqyzWoK9WgrlwDXV1js+9r1BhQebEOlRfrxGvxI6KRvmRYu7faWuv4PwvRoNIBAHoOVCIpzTmP6QdF+GPEo8kY9vMkXDh0DXlfF4u/P726Cad2X8DpLy6g9/BoDJgShx6p3SCRSNCoaULOV0X4ac9FNGmNYn8+/jIMui8BA6fFQxHg45QxUufHQIuIqB1Kz1TBdH2bqKygGv9afgB3/SIZKem9PTopueRUhfhzUlpPDHkw0eZ+o6YJ9eVa1JVrUFemQX2Z+de6cg0aKrU3ajABKDpahpyvijD4/gSXjbfifA1yM4sAADIfKdKeGuD0wE6ukKHfuBj0HdsLFedqkPt1MS4eLjU/0SgAxUfLUHy0DGG9ghAzJAKF+65Ar24S3y/zkSJ1ShyGPJgIvxDmT5EtBlpERO1QW6qxeW3QG3HwwzwUHSnDuPmDWtxucrfLVoFW7JBIu/uKAB8o432gjA+xu2c0mKCu0OJafhX2b/oJAHB0awGi+oSie/9uTh+ryWDC95t+EoO7Ox5OcumqoUQiQVTfcET1DcfIDD0K/luC/O8uQVOtBwDUXFGj5or6RnuZBMkTYjBsRhICu/m5bFzUuTHQIiIIggCDzoQGlRaGRhMMTUYYG00wNFr/aoShyWT+tdH2V2OTCcqEECRPiDHXy/ECdaUN4s9xw6PFR/mv5qrw+Qvf4+5fpqDf+BiXb6u1hUFvxLW8KgBAQDdfhMcGten9MrkUoT0CEdojEOpKLU7uPA/BJOC/b5/EjFfHwD/UeSUSAOCnPUWoKq4HAHTrHYxB97lu5exmAWHmRPYh0xNRdKwMuV8Xo6zgeu6aBEga09PlgR91DQy0iLyUySSgvLAGxcfKUHysDHVlGhxBiUN9XvjhGib9Zij8Q5z7F64nqrNa0Zq4aAjKCqqx7/0cNKh0aNIa8f37P6HoaBnGzh2IgHDPWO24lqcSk7Zjh0Q6FATeMbMvys5W41peFTTVemS9cwpTl49w2kMBdWUaHP+80PxCAqTNHeiWJ/ekcikS7+6BxLt7QFVUh6t5KsQMjkB4THCHj4U6J+/4T08iAmCun3TpRDm+35iDT379X/z75UPI+fKimBztqGt5Vdj5/w6i4nyNU/rzVIIgoPb6ipYiRAa5QoZegyLw8J/S0G98L7FdyYkKfL5sP84duGo+INfNSk5Vij/HNLNt2BZSqQQTFw2F//VCn1d/UuHEv8451KeFIAg48LdcGBvNQeGAKXHtfsrQmZTxIRh0XwKDLGoTrmgRdXF6dRMunSxH8bEyXD5VCYPeaNdGIpUgqKcCyh5hkClkkCukN371sX4tg0whhVwhg9znRhtdfRO+3/QTtDV6NKh0+OLlQxjzxAAkT4x1w+/Y9fT1TWLRS/9uN54uUwT4YNz8wYgf0V2cD31DE/a+cwpFR0sx5skBblvtEwQBJSfLAZhzi3oNVDrcZ0CYLyYtHoKvVh+BIAAndpxDdL8wxAx2LIg7f+AqruSYg8LAbn64c3Y/h8dK5C4MtIi6ILVKi+Jj5uDq2pkqmyKKFjKFFDFDIhF/ZzRih0XiQsk5pKamtvszZ/xxNP6z5gTKz9bAZBDw/cafUHGhFqN+lQKZT9eqJVRXdiM/y6+b/R+jve+IwsN/SsPBzXm48IO5ZlXRkTKUnqlG2lMDED+ie4eN1aKuVIP6cvNhxN2Tw51WfqBHihLDH+mHo9vOAgKw951TmPHqGAQq2/cwgK6+EYe2nBFfj34iFQp//lVFnRe/vURdQKOmCXWlGpScqkDxsTKbWkfW/IJ90PuOKMQNj0avgRGQ+zovAAoI98P9K0fi8D/ykfftJQDAme9KUFVcj/Qlw7rUU1nWTxxar2hZ8wtWYNLioYgfEY0Df8uFXt0EXV0j/vPWCSSl9cSoX6XCN6jjai2VnLzxtKGj24Y3G/xAIkoLqlFyogK6+iZ89/ZJPLByZLtyqo58ckas5RV/VzTi7ox26liJOhoDLaJOoElngLpSi/oKLdQV5l/rK8wrFOpKrU1Nn5sFR/kjbng04odHI6pfuEsrmMvkUox+YgAi+oTiwAe5MDaZUH6uBjt+dwDpzw5DjxTnlwBwB+snDptb0bKWeHcPdE/phgMf5IpPJp7bfxVXc1UYO28QYoc6N+hpye3KOjhCIpVg/DODsfN3B6Gu1KL8bA2ObCvA3Rkpbernaq4KZ7OvAAB8/OUY9Vj7V1iJPIXHB1p///vfsWnTJiQkJOCjjz6yuZeTk4P33nsPZ8+eRWBgICZOnIh58+YhICDApl1jYyM++OADfPPNN6ivr0efPn0wd+5cjBgxwu7zXNEnUWvo6htRebH2RjBVfj2YqtC2WK27Jcr4EMQPj0bc8GiExwZ1eImBfuNi0C02GP956wTUlebxf/XqEYz8n/4YcG+cR5U8aA/rFS2/Fla0rAWE+mLyc8Nwbv9V/PCR+WBkTbUeX//5GIb8rA9GPOLaHCSD3ohr+eayDoHd/Npc1qE1/IIUmPSbofj3y4dgMgr46asidE8Ob/U2qaHRKNbmAoC75iQj0EOe1iRyhEcHWuXl5diyZQv8/e33+gsLC/Hcc88hLi4OixYtQnl5ObZv347Lly/jL3/5i03b1157DXv37sWsWbMQExODPXv2YNmyZVizZg0GDx7s0j6JbqWuTIPi42UoPl6OsoJqCKa2PZkmkQCBSn8ERfojONIfEQkhiLsz2iOKZUYkhOKh1aPx33UncfUnFQSjgEN/z0fF+VqMnTvQqduWHc2yoiWRAH7hrftjVCKRoO/YXuiZ2g3fb/wJl0+bk71P7TqPvmN7Iqyn84Mfi6tWZR1iHCzrcCtRSWG4+5cpOLg5DwCQ/V4OuvUOblWtqZM7z4tPv0b1C0P/SV3zQQryPh4daK1fvx6pqakwmUyora21uff+++8jODgYa9euRWCg+f/EPXr0wJ///GccOXIEd911FwAgLy8P3333HZ555hnMmTMHAHDvvffi8ccfx7vvvot3333XpX0SWRMEAZUX68y1q46XobpEfes3SICAcF8ERwQgOMofQRH+CI7yR3BkAIIj/RHYzc8ttYVayy9EgakvDMexTwtx+osLAMxPlFVfrsfkJXcgJDrgNj14HnNpB3NAEBThD6msbUFLoNIf974wHEe3FeD0FxcBAIX7rmDEo8lOH6vFZav8rNihES77HABIuac3SguqceGHa2jSGvDd/53Agy+PuuXhylUl9Th1/fshlUkwdu5Ajz7GiKgtPDbQOnnyJLKzs7Fp0yasWbPG5l5DQwOOHTuG2bNniwERYA523n77bWRlZYlBUXZ2NmQyGaZPny628/X1xf3334/3338fZWVliI6OdkmfRID52JJruSoUHy9H8Y9l0FTpm20X0j0AvYdFIaxnIIKiAhAc4Y+gCL9O/8SeVCbFXXOSEZkYguz3cmDQG1FVXI9dKw9iwqIhTs8XcjVdXSOatObSDiHd2xcoSiQSDLovATlfFUEwCijcfwV3zu7nkvw5QRDE8w0lMgl6DnC8rMOtSCQSpM0dCFVRHWqvNUBVXI8fPsrH2HkDmx+fScD+jT+JT8YOmZ7IOlXUpXhkoGU0GrFmzRrcf//96NOnj939CxcuwGg0IjnZ9r8AfXx80LdvXxQWForXCgsLERMTYxM8AUBKijlJ89y5c4iOjnZJn+S99A1NuHyqAsXHylFyqkL8i/lmUUlhiBsehd53RiOsZ2Cnz126lYSRPRDWKwjf/vVH1JVqoG9owtd/Pobhs/phyPTETrOCYZ2fFdK9/cev+If6InZIJC79WA5NlR5Xc1WIGeT81SZXlXW4FYW/HOlLhmHXiwdhbDShIKsE3fuHo+/YXnZt87+7hPJzNQCA0B6BGPIz+z/ziTozjwy0du3ahbKyMrz11lvN3lepVAAApdL+v8yUSiVOnTpl07aldgBQWVnpsj6bU1lZKX4WABQXF7fYljoXY5MRZ7Ov4OKRUlzLb6F2lY8UPQcoEXdnFHrfEeUxR7N0lPCYYDy0ejT2vnsal46XAwJw7NOzqLhQi/ELBnVIEOAo6ycOQ7sHANC2u6++43rh0o/mIqKF+664JNCyFCkFnP+04a10iw3GmCcHYN97OQCAA3/LRURCiM1qVUOVDke3FYiv0+YOuOUWI1Fn5HGBVm1tLf72t7/hV7/6FcLCwppto9ebt158fOz/UFYoFGhsbLRp21I7675c0Wdzdu/ejc2bN9tdv3jxIoxG+4rdarUaeXl5LfZHzevoeTM2mpC/vRx1xfb/7uV+UoT39Ue3fv4I6+MPmUIKE9QouqYGrnXYEG+rI+es11Q/CEGhKMk2514WHyvDrj/WIvUXUR6/qlf8U7X4c02jCgq1qd3zZvITIPeXwqA14eLha1COlkHu69ycuzMHysSf9cF1HfvnSQQQNTQI5SfVMOiN+OpPhzD4yR6Q+UqhVqvx9duH0KQ1/7kXNTQI1UIZqvPKbtOpd+PfCW3nyjlrTZFnjwu0Nm3ahODgYDz88MMttvH1NR9h0dRkXzuosbFRDHgsbVtqZ92XK/pszvTp0zFmzBjxdXFxMVavXo2EhAS7bUvAnHjvSLVub9WR82bZArMOsoIi/RF3ZxTi7oxG9+Rwj05Yt+jo79qAAUDJXeXIeucUGjUG1F7UIaQxErHDojpsDO1x7dsTAMwFYQfdlYIr1cUOzVvdWAnyvimGySDAtybUqccWGfRGHC4xHxQe2M0Pw8cP6fhSH0lG7P7DD6gqrodWZUDFfgMmLhqC/TuOo6rAvBroF6LAlF+PhF+Q4ja9Ef9OaDt3z5lHBVolJSX44osvsHjxYpvtt8bGRhgMBly7dg2BgYHiFp31FpyFSqVCRMSN5XelUomKiopm2wEQ27qiz+ZERETc8j51Lto6PTJfPwZVkfkvXkWAHJOfuwM9Urt5/MqMJ4gdFoWx8wbiuzUnAQBHtp1FryGRLi2q6iixtINUguBIf6D6Nm+4jb7jeiHvG3MKwdl9V5waaFmXdYgd6rqyDrciV8iQ/pth2LnyAJq0Rlz44RqUccG4+HWV2GbUr1IYZFGX5VH/mV1ZWQmTyYQ1a9bgkUceEf/Jy8tDSUkJHnnkEWzevBkJCQmQyWQoKCiweX9TUxMKCwuRlJQkXktKSsLly5fR0NBg09ayjGhp64o+qWtrqNbhy1eOiEGWX4gC9784Ej0HKBlktUH8Xd0R2ScUAFBdUo/z+6+6eUQtsy7tEBzp75SVSnPekrmGVllBNWpLG27zjtZz5bE7bRHaIxDj5t+oL3h021k01pu3DGOGRCJxVA93DY3I5Twq0EpISMAf//hHu38SEhIQHR2NP/7xj7j//vsRFBSE4cOH45tvvoFGc+MJoK+//hparRYTJ04Ur02YMAFGoxG7d+8WrzU2NuKrr75Camqq+HSgK/qkrqu+QosvVx1GzRVzHayAbr544MWRUMaFuHlknY9EIrGpIXX8s7MwNNrnK3oCbY0eBr15bO0t7XAzSyFTi3PfX3FKv4IgiPWzpDIJeg50bVmH20m4qzsGTou3uSb3lWHMk6n8DxPq0jxq6zAsLAxjx461u/7Pf/4TAGzuzZ07FwsXLsTixYsxffp0sYr7iBEjMHLkSLFdamoqJk6ciPfffx81NTXo1asXMjMzUVpaihdeeMHmc1zRJ3U9tdca8NWrR9Cg0gEwr2zc9//uQnBU5yu+6Sl6DlAiZkgELp+qhLpSh/xvL2HQ/QnuHpYdZ5V2uFlSWk8c3VYAQQAKv7+KOx7u63C5i9prDaivMOdARSeHQ+Hv/j/uR8xJRnlhjVjO4Y6ZfREcyf/fUNfm/v/ntVNycjL++te/4r333sPbb7+NgIAA3H///Zg/f75d29/97neIjo7G119/DbVajcTERPzpT3/C0KFDXd4ndS1VJfXY8+oRaGvNDz6E9gjEfb8bgUCl+4+86exGPJpsPpZGAE7uOo9+E2LgG+hZ5R7sSzs4R0C4H3oNjsTlUxVQV2pxLb/K4cKirjxEur1kcikmPzcMhz8+Ax0aMHBqnLuHRORynSLQWrt2bbPXBw8ejPXr19/2/b6+vvj1r3+NX//617dt64o+qWuovFCLPa8fhV5tfuK0W+9gTF0xAgGhLT9lSq2njAtB0pieOLf/KvTqJpz+4oJLj6VpD1etaAFAv/G9xOCo8PsrDgda1vlZscM8I9ACzEHlxEVDkZeXB6nMo7JXiFyC33KiVigtqMaXfzwiBlmRiaG4b+VdDLKc7M5ZfSGVm7fMfsosQkO1zs0jsuWqFS0A6H1HFBQB5v/2vXi4FE265k8TaI0mnQHX8s1P9QUq/RDWy3UHVhPRrTHQIrqNKz9VIvP1o+IxOt37h2Pa70bwcXQXCI4MQOo95u0kY6MJJz4/5+YR2bKsaElkEgRFOHe7WK6QiU/fGfRGXDxS2u6+ruVVwWQwn0wQO8Q9ZR2IyIyBFtEtXPqxHN/85bj4pFmvQRGY+sKITnFUTGc19Gd94ONvPoalYO9l8clOdxNMAurKzCtaIVEBLtn26jfuxtOHhfva//RhySnPKOtARAy0iFp04dA1fPvWj2LBx7g7ozDl+Tsg9+VZbK7kF6LA4AcTAZiDm2OfnnXziMw01ToYG83fBWeVdrhZZFIYQnuYc7+u5VWhvkJzm3fYEwRBzM/yhLIORN6OgRZRM85mX0bW2yfFg6H7jO6B9GeHQebDIKsjDJwaD/8wc/5b0dEylBc6WH7dCawT4UOdnAhvIZFI0Nd6VasdNbVqrzZAfb2sQ/f+3TyirAORN2OgRXSTvG+LsW9DDgRzjIV+E2Iw/tdDOsV5hV2Fj58cdzx844SFI1sLIFj+hbiJdSK8q1a0AKBvWk/gekpV4b4rbf59224b8rgvInfj3xxE1+nVTTj+z7M4+OGNU94H3BuHsXMHevTZe11V8vgYcRut9Ey1TbkCd3BlaQdrgUp/9Lq+3VdfrkVZQdtW82zqZw1lfhaRuzHQIq8mCAKu5auwd/0pfLLwvzix47x4b8jP+uDuX6U4XKGb2kcql2L4I/3E10e3FcBkct+qlitLO9zM+kies21Iircu6xAUwbIORJ6Am/fklTQ1ehTuu4yCvZdRV2qfcDz8kX4Y+rM+bhgZWYsfEY3IPqGoOF+L6hI1zu2/gn7jYtwyFsuKllQucflJAPEjusPHPxdNWiMuHr6G0Y+ltuohjKu5KrGsQwzLOhB5BAZa5DVMRhMun65EQdZlXPqxHMJNqyO+gT5ISuuJ5Imx6NY72E2jJGsSiQQj5iTjq9VHAADH/1mIxLt7QK7o2IcSBJOA+nJzoBUSHeDyrWS5rwwJI3vg7N7LaNIaUXS0FElpvW77vsunKsWfPeXYHSJvx0CLury6Mg3OZl/G2ezL0FTr7e73HKBE8sQYxA2P7vC/wOn2eqYqETPEfA5gg8o9B06rVTqxzIcr87Os9RvXC2f3XgZg3j68XaAlCIKYCC+VSdDDwSN8iMg5GGhRl2QyCDh/8CoKsi7jaq7K7n5AuC/6jY9Bv/ExCIl2bb4NOW7Eo/1w+XSF2w6cts3P6phAKzo5HCHRAagr0+BqrgpqlRZBt9iyZFkHIs/E/ydSl9KoNeDHzwpxZu9lGLSXbO5JpBL0HhaJ5ImxiBkSwQNtOxF3Hzhd20GlHaxJJBL0HdsLxz8rBATg3PdXMfShlvMGrZ/KjOHThkQeg3/TUJfy3zUn8NOeIhi0JvFaSHQARjzaD3PenoB7/vdO9L4jikFWJ2R34HRVxx04XVfm+mKlzUka21P8ufD7W9fUsq6fFcv6WUQeg3/bUJdxOacSl0+bk4ElMqDPmJ64b+VdmPXmOAyZ3gcB4X5uHiE54uYDp3/swAOn62xqaHXcVnNwZAB6pHYDANRea0B5YU2z7Zp0BpSeYVkHIk/EQIu6BMEk4OjWAvF10oMRmLhwCHqmKlkHqwsxHzhtzng4u7ekww6ctmwdynykCOzggL01R/KwrAOR52KgRV3ChcOlUBXVAQCUccGIGMAE967IL0SBIZYDpwXgaAccOG2yLu3QPaDDA/eEu7qLNbQu/HANhkajXRvr/CxWgyfyLAy0qNMzGUw4bvUX7vBHk/lf9F3YgKlxCLh+4HTx0TKUnXXtgdMNlVpxtaijSjtY8/GTI2FkdwBAo8aA4uPlNvcFQRDrZ0nlEvRkWQcij8JAizq9M1klYrJyj9RuiBnMROCu7OYDp49uc+2B07UdePROS2y2D/ddtrlXc7UB6srrZR2Su8HHjw+TE3kSBlrUqTXpDDbnE47gapZX6Deh4w6cruugw6RvpUf/bgiKMNfQunK6Eg3VN564vMyyDkQejYEWdWq5mcXQ1pirvcePiEZUUph7B0QdQirruAOnPWFFSyKViKtaggCc239VvMf8LCLPxkCLOi1dfSNOfXEBACCRAMNn97vNO6griR8RjcikUABAdYkaxcfKXPI5nrCiBQB9rWtq7TPX1GrSGVBaYCnr4I+wnu4bHxE1j4EWdVqndl9Ak9YAwLyVxNpB3kUikeCOGTdytawPVHYmy4qW3FcmJuG7Q0h0ILr3DwcA1FxRo/JC7U1lHSK4bU7kgZg1SZ2SulKLvG+KAZhrG93xcF83j4jcoUeqElKZBCajIBbsdCaT0YT66+cHhkQHuD2Q6Tu2F0rPmJ+yLNx3xWa7lNuGRJ6JK1rUKf34eSGMTeZjdgZMjUNgN1Z990ZyXxki+4QBMFdO11Q791ie+gotBKOltIP7a7MljOwOmcL8x/b5g9dQcsKcn8WyDkSei4EWdTrVl+tRuM9cIVsRIMeQB1s+aJe6vu4p3cSfr+U7d1XLOj+rI884bIkiwAfxI8w1tfQNTeJ5j937s6wDkadioEWdzrHtZ2EpmzRkeiJ8g3zcOyByK8tZgIDzAy3rJw49YUULAPpZ1dSyiB3CbUMiT8VAizqVsrPVYmXsgHBfDLg33r0DIreL7hsGicycO9XVV7QAoMcApd1WOetnEXkuBlrUaQiCgKPbbhwcfcfDfcUz4Mh7+fjJEZloLvNQe7UBmut11ZyhzmZFyzMCLalUgqSxN1a1giJZ1oHIkzHQok6j5GSF+MRVaI9A9Btvv4VC3qmHVZ6WM58+tGwd+vjJ4B+qcFq/juo3rpd4uHX88Gi3Pw1JRC1joEWdgskk4Og2q4OjZ/eFVMavL5m5IiHeaDBBbSnt0D3Qo4KZ0B6BmPK/d+DOWX1tzn0kIs/Dx1SoUzh/4CqqS+oBAJGJoYi/q7ubR0SeJLpfOCRSCQSTgGt5zgm06ss14kMXnpIIby12WBRih0W5exhEdBtcEiCPZ2wy4vg/C8XXI+bw4GiypfCXIyIhBIC5arq21vE8LU9MhCeizoeBFnm8/O9KoK40b+H0GhTBwozULOsyD87I0/LE0g5E1Pl43NbhxYsX8eGHH6KgoABVVVXw8/NDXFwc5syZgzFjxojtXn31VWRmZtq9v3fv3tiyZYvNNZPJhG3btmHnzp2oqqpCTEwMMjIyMHnyZLv3FxUVYd26dcjJyYFcLseoUaOwaNEihIWFtbtPar9GrQEnd54XX4+Yw4OjqXk9+nfD6S8uAgCu5VcjYWQPh/rjihYROYPHBVqlpaXQaDSYOnUqIiIioNPpkJ2djRUrVuD555/H9OnTxbYKhQLLli2zeX9goP0fiBs3bsTHH3+MBx98EP3798f+/fuxatUqSCQSpKeni+3Ky8uxePFiBAUFYd68edBqtdi2bRsuXLiADRs2wMfHp819kmNyvrwIXV0jACBxVA9ExIe6eUTkqaKTwyGRAIIAXMtXOdwfV7SIyBk8LtAaNWoURo0aZXPt5z//OebNm4dPP/3UJtCSyWSYMmXKLfurqKjA9u3bMWPGDDz33HMAgAceeACLFy/G+vXrMWHCBMhk5lpMW7ZsgU6nw6ZNmxAdHQ0ASElJwdKlS7Fnzx7xs9vSJ7WftlaPn74yr1BIZBLcOYsHR1PLFAE+UCaEovJCLapL1NDVNcIvpP0lGSwrWooAOfyCPae0AxF1Lp0iR0smkyEqKgpqtdruntFoRENDQzPvMtu/fz8MBgNmzJghXpNIJHjooYdQUVGB3Nxc8Xp2djZGjx4tBlkAMHz4cMTGxiIrK6tdfVL7ndh5Hk06IwCg/6RYbt/QbVnX07rmQJ6WodEItcozSzsQUeficStaFlqtFnq9Hg0NDThw4AAOHz6MiRMn2rTR6XSYNm0adDodgoODkZ6ejgULFiAg4MYyf2FhIfz9/REXF2fz3pSUFPH+4MGDUVFRgerqaiQnJ9uNJSUlBYcOHWpzn82prKyESnVjW6O4uLg10+F16so0OPOfSwAAua8Mw2awVhDdXo+Ubsj50rwKWppfhYR2lgGpL9cA10s7hHLbkIgc4LGB1jvvvIPdu3cDAKRSKcaNGydu0wGAUqnEnDlz0K9fPwiCgMOHD2Pnzp04f/481qxZA7nc/FtTqVQIDw+3+y9SpdL85FplZaXYzvr6zW3r6urQ2NgIhULR6j6bs3v3bmzevNnu+sWLF2E0Gu2uq9Vq5OXltdhfV3V2ZyVMRvPfdN1HBKHo6nngauvf763z5oiuMGcGmMSfL568itAR7eunquBGIrxeprnlvHSFeXMHzlv7cN7azpVzlpqaets2HhtozZo1CxMmTEBlZSWysrJgNBrR1NQk3p8/f75N+/T0dMTGxmLjxo3Izs4WE9L1er1NEruFQqEQ71v/eru2CoWi1X02Z/r06TZPTxYXF2P16tVISEhodjUtLy+vVf8iuxJVcR0O5ppX+nyDfDDp8RFQBNjP961447w5qqvM2fn4WqiK6qApb0Ji7yT4BbU9v+r0hQsAKgAAfQbFoW9qy8c9dZV562ict/bhvLWdu+fMY3O04uLiMHz4cEydOhV/+tOfoNVqsXz5cgiWUs3NmD17NqRSKY4dOyZe8/X1tQnQLBobG8X71r+2tm1r2jUnIiICycnJ4j83bz8SzEftXP/XPPShPm0Ossi7iXlaAlB2/WzMtmJpByJyFo8NtG42YcIEnDlzBiUlJS228fX1RUhICOrq6sRrSqUSVVVVdgGaZaswIiJCbGd9/ea2ISEh4opVa/uktqssqsXlU+aVhEClH1Im93bziKizsS5c2t5zD+vKbgRaLO1ARI7oNIGWZTuuuScPLTQaDWpra22KiyYlJUGn09klnVv2a5OSzEnWkZGRCAsLQ0FBgV2/+fn5Yru29EltV1ZQI/486L4EyBUsk0Ft0z25G3A9fbK9gZalhpZvkE+7th6JiCw8LtCqrrZf6jcYDPj666/h6+uL+Ph46PV6aDQau3YfffQRBEHAyJEjxWtpaWmQy+XYsWOHeE0QBOzatQuRkZEYOHCgeH38+PE4ePAgysrKxGvHjx9HSUmJzROPbemT2kZVfGM1MiqJxUmp7XyDfKDsHQzA/H3Sq+23+W/F0GhEg0oHgKtZROQ4j0uGf+ONN9DQ0IAhQ4YgMjISKpUK3377LS5duoSFCxciICAA165dw1NPPYXJkyejd2/z1tKRI0dw6NAhjBw5EmlpaWJ/UVFRmDVrFrZu3QqDwYCUlBR8//33OH36NF588UWbwqIZGRnYu3cvlixZgpkzZ0Kr1WLr1q1ITEzEtGnT2tUntU3VpXrzDxIgPDbYvYOhTqt7SjeoiusBASgtqELcndG3f9N11tuGzM8iIkd5XKA1adIkfPnll9i1axdqa2sREBCA5ORkLFiwQAyggoKCMHr0aBw9ehSZmZkwmUzo1asXnn76aTz66KOQSm0X6ubPn4/g4GDs3r0bmZmZiImJwcqVK3HPPffYtIuOjsbatWuxbt06bNiwQTzrcOHChWJ+Vlv7pNYzGU2oLjEHWqHdA+Hj53FfT+okeqQokZtp3tq/lt/GQItH7xCRE3nc32Tp6em3PSswODgYK1eubHWfUqkUGRkZyMjIuG3bhIQEvPnmm07tk1qn9loDjE3mOkjd4riaRe3XvX+4+HNpG/O0avnEIRE5kcflaJH3UhXXiz8r40LcOBLq7PyCFeLWs6qoDo2a1udp2a5oMdAiIscw0CKPYZ0Ib0lmJmovS5kHQQBKC1pfT8t2RYtbh0TkGAZa5DGqrFa0usVzRYscY3PAdBu2Dy0rWn4hChbLJSKHMdAijyAIgrii5Rfsg4CwlqvrE7WGTZ5WXusCrSadAZpqc80+JsITkTMw0CKPoK3RQ1dnPsKoW1yI3YHdRG3lH+KL8JggAEBlK/O0WNqBiJyNgRZ5BNUlJsKT81m2DwWTgLKzNbdtz9IORORsDLTII1RZJcKztAM5S/c25mlZJ8KHRHNFi4gcx0CLPIKqiCta5Hy2CfH2B8bfzHpFi08cEpEzMNAij6C6ZF7RkvlIEdaDKwnkHP6hvgjrZf4+VV6oQ5POcMv2NitazNEiIidgoEVuZ9AbUXfNvJIQ1isIUjm/luQ83ftb5Wndpp6WZUXLP1QBhb/HHZxBRJ0Q/0Yjt6sqqYcgmH9Wsn4WOVmPVKX4863ytBo1TdDWmp985WoWETkLAy1yO5tEeFaEJydrbeFS29IOzM8iIudgoEVuxzMOyZUCwnwRej3vr+JCbYt5WszPIiJXYKBFbmdJhAcAJUs7kAuI9bSMAsoLa5ptwycOicgVGGiRWwkmQTzjMCjSn2fLkUtYDpgGWt4+rOOKFhG5AAMtcqu6cg0MeiMAbhuS67SmcGmtdVX4aK5oEZFzMNAit2IiPHWEwHA/8UidinM1YnBvzbJ1GBDuCx8/lnYgIudgoEVuxUR46iiWPC2TUUD5uRqbe/qGJujqzYdOc9uQiJyJgRa5lcpqRUsZzxUtch2b7cM82+N4mAhPRK7CQIvcypIIrwiQIyjC382joa7sVvW0WNqBiFyFgRa5ja6+EQ1VOgDm/CyJROLmEVFXFqT0R3CUOZgvP1cDQ+ONPC2uaBGRqzDQIrepunQjP6sb87OoA1iO4zEZbPO0uKJFRK7CQIvcRlXEQqXUsXr0t87TurF9WMfSDkTkIgy0yG2sV7T4xCF1BOuE+NIzVoHW9XMOA5V+kCtkHT4uIuq6GGiR21ieOJRIJQjrFeTm0ZA3CI70R1Dk9TytQnOelk7dCL3aXNohlNuGRORkDLTILYxNRlRfUQMAwnoFchWBOozl6UNjkwkV52tvOnqH24ZE5FwMtMgtaq40QDAKALhtSB3LusxDaX6V7dE7XNEiIifjORPkFioevUNucnM9rWhTuPiapR2IyNm4okVuwUR4cpegSH8ERfgBAMoKq1F9+cZ3kStaRORsDLTILWxWtFjagTqQRCJB9+tlHoyNJpScqLh+HQiJ4ukERORcDLSowwmCINbQCgj3hX+Ir5tHRN6mR+qN7UNjkwkAEBjhD5kPH8ogIudioEUdrkGlQ6PGAIDbhuQe1nlaFszPIiJXYKBFHY6J8ORuwVEBCOzmZ3ON+VlE5Apteurw5MmT7f6goUOHtvu91LVUFVslwsdzRYs6nkQiQfeUbjh/4Kp4jStaROQKbQq0nn32WUgkknZ90N69e1vV7uLFi/jwww9RUFCAqqoq+Pn5IS4uDnPmzMGYMWNs2hYVFWHdunXIycmBXC7HqFGjsGjRIoSFhdm0M5lM2LZtG3bu3ImqqirExMQgIyMDkydPtvt8V/RJtriiRZ6gR6ptoMUVLSJyhTYFWo899phdoJWXl4cjR44gJiYGgwYNQnh4OKqrq/HTTz+hpKQEd911F1JTU1v9GaWlpdBoNJg6dSoiIiKg0+mQnZ2NFStW4Pnnn8f06dMBAOXl5Vi8eDGCgoIwb948aLVabNu2DRcuXMCGDRvg4+Mj9rlx40Z8/PHHePDBB9G/f3/s378fq1atgkQiQXp6utjOFX2SPUugJfeV8S83chvrA6YBHr9DRK7RpkDrySeftHl96tQpfPzxx/jtb3+L+++/3yYIEwQBX3zxBdauXYtf/vKXrf6MUaNGYdSoUTbXfv7zn2PevHn49NNPxUBry5Yt0Ol02LRpE6KjowEAKSkpWLp0Kfbs2SO2q6iowPbt2zFjxgw899xzAIAHHngAixcvxvr16zFhwgTIZDKX9Um2GjVNqC/XAgC6xQZDKm3fCimRo0K6ByAg3Beaaj0kUol4BiIRkTM5lAz/wQcf4O6778YDDzxgt9IlkUgwffp0jBw5Eh988IFDg5TJZIiKioJarRavZWdnY/To0WJABADDhw9HbGwssrKyxGv79++HwWDAjBkzbMb20EMPoaKiArm5uS7tk2xZFypl/SxyJ4lEgqEP9YHcV4aB98VDJuezQUTkfA4dwVNQUICZM2fesk18fDw+++yzNvet1Wqh1+vR0NCAAwcO4PDhw5g4cSIA84pSdXU1kpOT7d6XkpKCQ4cOia8LCwvh7++PuLg4u3aW+4MHD3ZJn82prKyESqUSXxcXF99yHroaVoQnT5J6TxxS0ntDwpVVInIRhwItHx8fFBYW3rLN2bNnbXKbWuudd97B7t27AQBSqRTjxo0Tt+ksgYpSqbR7n1KpRF1dHRobG6FQKKBSqRAeHm634mZ5b2Vlpcv6bM7u3buxefNmu+sXL16E0Wi0u65Wq5GXl9dif53NuZM3gsw6kwp5eepbtG6/rjZvHYFz1j6ct/bhvLUP563tXDlnrclBdyjQGjFiBLKysrBlyxY88sgjNgFVU1MTtm/fjqNHj2LSpElt7nvWrFmYMGECKisrkZWVBaPRiKamJgCAXq8HgGYDOIVCIbZRKBTQ6/W3beeqPpszffp0m6cni4uLsXr1aiQkJDS7mpaXl9emhwk83dlPDpp/kAB3jBsEHz/XnGve1eatI3DO2ofz1j6ct/bhvLWdu+fMob/lnnnmGZw+fRqbNm3CZ599hv79+yMsLAw1NTU4c+YMampqoFQqsWDBgjb3HRcXJ27NTZ06FUuXLsXy5cuxYcMG+Pqaj2yxBF7WGhsbAUBs4+vr2+p2zu6zOREREYiIiGjxfldmMppQXWLeOgztHuiyIIuIiMhTOJT9GRUVhffffx9TpkxBQ0MDfvjhB+zZswc//PADGhoaMGXKFLz//vuIiopyeKATJkzAmTNnUFJSIm7RWec6WahUKoSEhIirS0qlElVVVRAEwa4dADHocUWfZKv2WoN4rhzrZxERkTdweElBqVTid7/7HZYtW4ZLly6hoaEBgYGBiI2NbVduVkss23FqtRq9e/dGWFgYCgoK7Nrl5+cjKSlJfJ2UlIR///vfKC4uRnx8vHjdsl9raRsZGen0PsmWqpiJ8ERE5F2c9jyzXC5HYmIiBg0ahMTExHYHWdXV1XbXDAYDvv76a/j6+oqBzfjx43Hw4EGUlZWJ7Y4fP46SkhLx6UQASEtLg1wux44dO8RrgiBg165diIyMxMCBA8XrruiTbqi6ZFURnqUdiIjICzgtSSYnJweFhYXQaDQICAhA3759MWjQoDb388Ybb6ChoQFDhgxBZGQkVCoVvv32W1y6dAkLFy5EQID5PLKMjAzs3bsXS5YswcyZM6HVarF161YkJiZi2rRpYn9RUVGYNWsWtm7dCoPBgJSUFHz//fc4ffo0XnzxRZvCoq7ok25QFXFFi4iIvIvDgVZOTg5ef/11XLlyBYB5ZcdS9iAmJgbLly9v0wrPpEmT8OWXX2LXrl2ora1FQEAAkpOTsWDBAqSlpYntoqOjsXbtWqxbtw4bNmwQzyVcuHChmEtlMX/+fAQHB2P37t3IzMxETEwMVq5ciXvuucemnSv6pBssK1p+wT4ICG/5gQEiIqKuwqFA6+LFi3j++eeh0+kwfPhwDBs2TEwUP3HiBI4ePYrnn38e7733nk0u062kp6e3+qzAhIQEvPnmm7dtJ5VKkZGRgYyMDLf0SYCmRg9trfmpzG69Q9p9ODkREVFn4lCgtXnzZjQ1NeHPf/4zRo4caXPvf/7nf3D48GGsWLECmzdvxksvveTIR1EnZzlIGgCU8dw2JCIi7+BQMvzJkycxYcIEuyDLYuTIkZgwYQJOnDjhyMdQF1BVzER4IiLyPg4FWg0NDejRo8ct2/To0QMNDQ2OfAx1ATalHXpzRYuIiLyDQ4GWUqlEbm7uLdvk5eU1e34geRdLIrxULkFYz0A3j4aIiKhjOBRojRkzBidPnsSmTZvszvfT6/X429/+hhMnTtg8LUjex6A3ovaqeVUzPCYYUrnTyrcRERF5NIeS4R977DH88MMP2LJlC3bv3o2UlBSEh4ejurpaPOuwZ8+eeOyxx5w1XuqEqkrqYTmtSMn8LCIi8iIOBVqhoaF499138d577+G7777DoUOHxHsKhQLTpk3DggULEBLCnBxvVnXpRn5WNxYqJSIiL+JwwdKwsDAsX74czz//PIqLi8XK8HFxcZDLnVZ4njoxm9IOXNEiIiIv4rRISC6Xo0+fPs7qjroQ60CrG584JCIiL+JxZx1S1yKYBFRf3zoMivCHb2D7DhsnIiLqjDzurEPqWurKNWjSGQFw25CIiLyPx511SF0LE+GJiMib8axDcilVERPhiYjIe/GsQ3Ip2ycOuaJFRETehWcdkktZtg59/OUIivR382iIiIg6Fs86JJfRqRvRoNIBMG8bWh6SICIi8hY865BcpqqYifBEROTdeNYhuYxNflZvJsITEZH34VmH5DLWK1pMhCciIm/Esw7JZVSXzCtaEqkEYTFBbh4NERFRx+NZh+QSRoMJNZfVAICwnoGQK2RuHhEREVHHcygZnqglNVfUMBkFAEyEJyIi7+XwitaxY8ewfft2nDlzBmq1GoIg2LWRSCTIyspy9KOoE2EiPBERkYOB1t69e/Hyyy/DZDIhOjoacXFxkMm4RUQ3lXaI54oWERF5J4cCrY8++ggKhQKvvvoq7rzzTmeNiboArmgRERE5mKNVUlKC9PR0BllkQxAEcUUrIMwX/qG+bh4RERGRezgUaIWEhMDXl3+Jkq0GlQ76hiYATIQnIiLv5lCgNX78eBw/fhwGg8FZ46EuwGbbMI7bhkRE5L0cCrSefvppBAUF4aWXXkJZWZmzxkSdHM84JCIiMmtTMvwjjzxid81gMCAvLw/79+9HUFAQAgMD7dpIJBJs27at/aOkToUrWkRERGZtCrSaq5Elk8kQFRV1yzbNXaOu6eKRUhQfM69uyn1lCOluH3gTERF5izYFWp9++qmrxkFdQMmpCmS9fRKWuHrgtHhIpRL3DoqIiMiNeAQPOcW1/Cr8560fxWN3+o7rhTtn9nXzqIiIiNzLaYdKO0t+fj4yMzNx4sQJlJaWIiQkBAMGDMDcuXMRGxsrtnv11VeRmZlp9/7evXtjy5YtNtdMJhO2bduGnTt3oqqqCjExMcjIyMDkyZPt3l9UVIR169YhJycHcrkco0aNwqJFixAWFtbuPru6igu1+OaNYzA2mgAACXd1x9h5AyHhahYREXm5NgVamzdvhkQiwYwZMxASEoLNmze36n0SiQSPPfZYq9p+8sknyMnJwcSJE9GnTx+oVCrs2LEDc+fOxbvvvovExESxrUKhwLJly2ze31wy/saNG/Hxxx/jwQcfRP/+/bF//36sWrUKEokE6enpYrvy8nIsXrwYQUFBmDdvHrRaLbZt24YLFy5gw4YN8PHxaXOfXV315Xpkvn4UTVojACBmSAQmLBoCqYyLpURERG0KtD788ENIJBJMmjQJISEh+PDDD1v1vrYEWrNnz8bvf/97m6Bm0qRJeOKJJ/Dxxx/jxRdfFK/LZDJMmTLllv1VVFRg+/btmDFjBp577jkAwAMPPIDFixdj/fr1mDBhgng+45YtW6DT6bBp0yZER0cDAFJSUrB06VLs2bMH06dPb3OfXVldWQP2vHoUerW5OGn3/uGYvOQOyOQMsoiIiIA2Blpr1qwBAPEpQ8trZxo0aJDdtdjYWMTHx6O4uNjuntFohE6na3YlCwD2798Pg8GAGTNmiNckEgkeeughrFq1Crm5uRg8eDAAIDs7G6NHjxaDLAAYPnw4YmNjkZWVJQZabemzq2pQafHVq0ehqdEDACISQzHl+Tsh9+36ASYREVFrtSnQGjp06C1fu4ogCKiurkZ8fLzNdZ1Oh2nTpkGn0yE4OBjp6elYsGABAgICxDaFhYXw9/dHXFyczXtTUlLE+4MHD0ZFRQWqq6uRnJxs9/kpKSk4dOhQm/tsTmVlJVQqlfi6ueDR02lr9fjqtaNQV2gBAOExQZj6wnAoAnxu804iIiLv4nHJ8M359ttvUVFRgSeffFK8plQqMWfOHPTr1w+CIODw4cPYuXMnzp8/jzVr1kAuN//WVCoVwsPDIZHYJmYrlUoA5sDH0s76+s1t6+rq0NjYCIVC0eo+m7N79+5mc9suXrwIo9Fod12tViMvL6/F/jqaQWdC7j9K0VBm3i70C5ejz8OhuFByzs0js+Vp89YZcM7ah/PWPpy39uG8tZ0r5yw1NfW2bTw+0CouLsZbb72FAQMGYOrUqeL1+fPn27RLT09HbGwsNm7ciOzsbDEhXa/X2+R7WSgUCvG+9a+3a6tQKFrdZ3OmT5+OMWPG2Pz+Vq9ejYSEhGZX0/Ly8lr1L7IjNOkM2PP6UTHICujmiwf/cDeCIwNu886O50nz1llwztqH89Y+nLf24by1nbvnrE2B1vjx4+1WcVpDIpEgKyurze9TqVR44YUXEBgYiFdeeeW2CeazZ8/GBx98gGPHjomBlq+vL5qamuzaNjY2ivetf21t29a0a05ERAQiIiJu+fvwRIZGI779648oP1sDAPALUeC+FXd5ZJBFRETkKdoUaA0ZMqRdgVZ7qNVqLFu2DGq1GuvWrWtVcOLr64uQkBDU1VmdtadU4sSJExAEwWbslq1CS7+WbT/r/CnrtiEhIeKKVWv77CpMBhOy3j6Jqz+Zf3+KADmmLR+BsF5Bbh4ZERGRZ2tToLV27VpXjcOGXq/H8uXLUVJSgr/+9a92SfAt0Wg0qK2ttSkumpSUhH//+98oLi626ceyX5uUlAQAiIyMRFhYGAoKCuz6zc/PF9u1pc+uQDAJyN6Qg+Lj5QDM5xfeu2w4lPEhbh4ZERGR5/O4gkdGoxEvvfQScnNz8fLLL2PgwIF2bfR6PTQajd31jz76CIIgYOTIkeK1tLQ0yOVy7NixQ7wmCAJ27dqFyMhIm/7Hjx+PgwcPoqysTLx2/PhxlJSUYOLEie3qszMTBAEHPszF+QNXAQBSuQT3LL0D0f3C3TwyIiKizsFpyfBFRUUoLi6GTqfDvffe2+5+3nnnHRw4cACjR49GfX09vvnmG5v7U6ZMQVVVFZ566ilMnjwZvXv3BgAcOXIEhw4dwsiRI5GWlia2j4qKwqxZs7B161YYDAakpKTg+++/x+nTp/Hiiy/a5H1lZGRg7969WLJkCWbOnAmtVoutW7ciMTER06ZNa1efnZUgCDiytQBnvisBAEikEqT/Zhh6Depa26JERESu5HCglZ+fj7/85S+4cOGCeM0SaJ08eRK//e1v8Yc//MEm+LmVc+fMZQIOHjyIgwcP2t2fMmUKgoKCMHr0aBw9ehSZmZkwmUzo1asXnn76aTz66KOQSm0X6ubPn4/g4GDs3r0bmZmZiImJwcqVK3HPPffYtIuOjsbatWuxbt06bNiwQTzrcOHChWJ+Vlv77KxO7jqPnH9fNL+QAOMXDELc8Ohbv4mIiIhsOBRoXbx4EUuWLIFUKsWsWbNw6dIlHD58WLw/ZMgQhIaGYu/eva0OtFqTBxYcHIyVK1e2epxSqRQZGRnIyMi4bduEhAS8+eabTu2zsyk/V4PjnxaKr8c8OQBJab3cOCIiIqLOyaEcrb/97W8AzAcsL1y4EP3797e5L5FIMGDAAJw5c8aRj6EOVlpQLf489KE+SEnv7cbREBERdV4OBVonT57E+PHjERMT02Kb6OjoZksmkOfS1twouNpzoH2lfCIiImodhwItrVaL8PBbP4Gm1+thMpkc+RjqYNraG4FWQGjLxVeJiIjo1hwKtCIjI22S4Jtz9uxZ9OzZ05GPoQ6mqb4RaPmHMdAiIiJqL4cCLcuTf8eOHWv2/n//+1/k5eVh7NixjnwMdTDLipbMRwpFgMcfh0lEROSxHPpb9Je//CX27t2LZcuWYerUqaiqqgIA7NixA7m5ufjuu+/QvXt3zJ492ymDpY6huZ6j5R/m22FHLhEREXVFDgVaYWFhePvtt7F69Wp8+eWX4vX/+7//AwCkpqbi97//PYKCeCZeZ2FsMkKvNh+YHcBtQyIiIoc4vC/Us2dPrF+/HoWFhcjLy0NdXR0CAgKQmpqKlJQUZ4yROpC2tlH8mflZREREjnEo0Nq3bx/GjRsHAOjbty/69u3bbLu3334bixcvduSjqINorEo7cEWLiIjIMQ4lw7/yyis4derULdu8/fbb+Pzzzx35GOpA1jW0WNqBiIjIMQ4FWj179sSKFStaLPGwbt06fPbZZ60+fofcT2NVQ8s/nIEWERGRIxwKtP7yl78gICAAv/3tb1FWVmZzb/369fjnP/+JtLQ0vPzyyw4NkjoOV7SIiIicx6FAKyoqCm+88Qb0ej3+93//F7W1tQDMQdb27dsxevRovPzyy5DJZE4ZLLmedY4Wk+GJiIgc41CgBQDx8fH405/+hIqKCvz2t7/FunXrsH37dowaNQqvvPIK5HIWvOxMtEyGJyIichqHAy0AGDBgAF566SWcO3cOn332Ge6++26sXr2aQVYnJK5oSQD/EIV7B0NERNTJtSkSyszMvOX9ESNGIC8vD2PGjMF//vMfm3tTp05t++iow1mO3/ELVkAqd0ocTkRE5LXaFGi99tprzR7JIggCJBIJBEEAAPz1r3+1uSaRSBhodQKCINw4foeJ8ERERA5rU6C1fPlyV42DPIC+oQkmgzlYZn4WERGR49oUaE2bNs1V4yAPwER4IiIi52ISDolsSzswEZ6IiMhRDLRIxBUtIiIi52rT1uH48eMhlUrx97//HbGxsRg/fnyzyfE3k0gkyMrKavcgqWPYrGgxGZ6IiMhhbQq0hgwZAolEAl9fX5vX1DVoaxvFnwN4ziEREZHD2hRorV279pavqXPTVOvEn7miRURE5DjmaJHIZkWLOVpEREQOY6BFIkuOlkwhhY8/j08iIiJyVJv+Nt28eXO7PkQikeCxxx5r13up41ieOgwI9WXuHRERkRO0KdD68MMP2/UhDLQ8n7HJCH1DEwDAn4nwRERETtGmQGvNmjWuGge5mabGKj+LifBERERO0aZAa+jQoS4aBrmbtpbFSomIiJyNyfAEANBUWx+/w0CLiIjIGRx6tKysrOy2bSQSCQIDAxEYGOjIR5GLcUWLiIjI+RwKtGbPnt3qp9PCwsIwbtw4PP744+jWrZsjH0suYHugNAMtIiIiZ3Bo6/Dee+/F4MGDIQgCgoKCMHToUEyaNAlDhw5FcHAwBEHAkCFDcPfdd0OhUGDXrl2YN28eKisrnTV+chIeKE1EROR8Dq1ozZkzBwsXLsRjjz2GX/ziF/Dz8xPv6fV6fPLJJ/jss8/wzjvvoHfv3tiyZQs++OAD/P3vf8fSpUub7TM/Px+ZmZk4ceIESktLERISggEDBmDu3LmIjY21aVtUVIR169YhJycHcrkco0aNwqJFixAWFmbTzmQyYdu2bdi5cyeqqqoQExODjIwMTJ482e7zXdFnZ6Cp5YoWERGRszm0ovXuu+8iNTUVTz75pE2QBQC+vr544oknkJqaivfeew9SqRS/+tWv0L9/fxw6dKjFPj/55BNkZ2fjzjvvxG9+8xs8+OCDOHXqFObOnYsLFy6I7crLy7F48WJcuXIF8+bNw6OPPooffvgBS5cuRVNTk02fGzduxHvvvYcRI0bg2WefRXR0NFatWoXvvvvOpp0r+uwstJZkeAngH6Jw72CIiIi6CIdWtH766SfMmDHjlm369euHHTt2iK9TU1PxxRdftNh+9uzZ+P3vfw8fHx/x2qRJk/DEE0/g448/xosvvggA2LJlC3Q6HTZt2oTo6GgAQEpKCpYuXYo9e/Zg+vTpAICKigps374dM2bMwHPPPQcAeOCBB7B48WKsX78eEyZMgEwmc1mfnYVlRcsvWAGpjA+jEhEROYNDf6OaTCZcuXLllm0uX74MQRDE1zKZDApFyysmgwYNsgmyACA2Nhbx8fEoLi4Wr2VnZ2P06NFiQAQAw4cPR2xsLLKyssRr+/fvh8FgsAkIJRIJHnroIVRUVCA3N9elfXYGgiDcOH6H24ZERERO41CgNWjQIGRnZ7e4XZaVlYV9+/Zh4MCB4rXLly9DqVS26XMEQUB1dTVCQ0MBmFeUqqurkZycbNc2JSUFhYWF4uvCwkL4+/sjLi7Orp3lvqv6bE5lZSUKCgrEf6yDR3fRq5tgMpqDYQZaREREzuPQ1uGCBQuwcOFCvPLKK/jkk08waNAghIeHo7q6Gj/99BPOnTsHPz8/LFiwAABQW1uLY8eO4f7772/T53z77beoqKjAk08+CQBQqVQA0GzAplQqUVdXh8bGRigUCqhUKoSHh9uVobC81/IEpCv6bM7u3bubPZz74sWLMBqNdtfVajXy8vJa7M8ZGspvHL+jh9bln9cROmLeuhrOWftw3tqH89Y+nLe2c+Wcpaam3raNQ4FWnz59sG7dOvzf//0fcnJycO7cOZv7gwYNwrPPPos+ffoAAIKCgrBz5067xPlbKS4uxltvvYUBAwZg6tSpAMxPNAKw22IEIG5L6vV6KBQK6PX627ZzVZ/NmT59OsaMGWPz+1u9ejUSEhKaXU3Ly8tr1b9IR1wxVuIUrgEAesZHIzXVfhydTUfMW1fDOWsfzlv7cN7ah/PWdu6eM4cCLQBISkrCunXrUFZWhnPnzqGhoQGBgYFISkqyyXUCzPlZQUFBre5bpVLhhRdeQGBgIF555RUxwdzX17y9dfOTgADQ2Nho08bX17fV7ZzdZ3MiIiIQERHR4n13sCntwAOliYiInMbhQMsiOjraLrByhFqtxrJly6BWq7Fu3Tqb4MSyRWfZ7rOmUqkQEhIiri4plUqcOHECgiDYbPVZ3mvp1xV9dhZannNIRETkEk57jr+iogI//PAD/vOf/+CHH35ARUVFu/vS6/VYvnw5SkpK8PrrryM+Pt7mfmRkJMLCwlBQUGD33vz8fCQlJYmvk5KSoNPp7JLOLfu1lrau6LOz0PCcQyIiIpdwONC6fPkyli5dilmzZmHFihVYvXo1VqxYgVmzZmHp0qW4fPlym/ozGo146aWXkJubi5dfftnmiUVr48ePx8GDB20Otj5+/DhKSkowceJE8VpaWhrkcrlNLS9BELBr1y5ERkba9O+KPjsDHr9DRETkGg5tHZaVlWHRokWorq5G7969MWTIECiVSlRVVeHUqVM4fvw4Fi1ahA0bNrR6W/Gdd97BgQMHMHr0aNTX1+Obb76xuT9lyhQAQEZGBvbu3YslS5Zg5syZ0Gq12Lp1KxITEzFt2jSxfVRUFGbNmoWtW7fCYDAgJSUF33//PU6fPo0XX3zRprCoK/rsDHigNBERkWs4FGht3rwZ1dXVWLp0KaZPn25X7mDXrl3461//io8++gjLli1rVZ+WJxcPHjyIgwcP2t23BFrR0dFYu3Yt1q1bhw0bNojnEi5cuNCuIOr8+fMRHByM3bt3IzMzEzExMVi5ciXuuecem3au6LMzsARacl8ZfPw6V5BIRETkyRwKtI4cOYLRo0fjZz/7WbP3f/azn+HQoUM4fPhwq/tcu3Ztq9smJCTgzTffvG07qVSKjIwMZGRkuKVPT2ddFf7mYJmIiIjaz6EcrZqaGiQmJt6yTWJiImpqahz5GHIhQ6MRjRoDAJZ2ICIicjaHAq2wsDAUFRXdsk1RURHCwsIc+RhyIS2fOCQiInIZhwKtESNG4MCBA/j3v//d7P0vv/wSBw8exF133eXIx5ALaZkIT0RE5DIO5Wg98cQTOHjwIN544w3885//xNChQ9GtWzfxqcOioiKEhobi8ccfd9JwydlsnzhU3KIlERERtZVDgVZ0dDTeeecdvPHGGzh58qTdNuKwYcPwv//7v06tGE/OpWENLSIiIpdx+Aie2NhYrFmzplVnHZLnsSlWymR4IiIip/LYsw6pY2hqGsWf/cMZaBERETlTmwKt119/vd0ftHz58na/l1zH5qlDrmgRERE5VZsCrT179rTrQyQSCQMtD2XJ0ZJIAD8GWkRERE7VpkBr+/btrhoHuYklR8svRAGplFXhiYiInKlNgVb37t1dNQ5yA8EkQHN965A1tIiIiJzPoYKl1Lnp1U0QjAIAlnYgIiJyBQZaXsymWCnzs4iIiJyOgZYX0/CcQyIiIpdioOXFeM4hERGRazHQ8mI8foeIiMi1GGh5MS0DLSIiIpdioOXFNNw6JCIicikGWl5My2R4IiIil2Kg5cU01eZAS+4rg4+f084XJyIiousYaHkxy4oWV7OIiIhcg4GWlzI0GtGoMQBgfhYREZGrMNDyUnzikIiIyPUYaHkpPnFIRETkegy0vBSLlRIREbkeAy0vZVPagQdKExERuQQDLS9lKe0AcOuQiIjIVRhoeSkWKyUiInI9BlpeisnwRERErsdAy0tZyjtIJIBfiMLNoyEiIuqaGGh5Kc31rUO/UF9IpRI3j4aIiKhrYqDlhQSTAG1tIwDmZxEREbkSAy0vpFM3QjAKAAB/lnYgIiJyGQZaXsimWGk4Ay0iIiJXkbt7ADfTaDTYtm0b8vLykJ+fj/r6eqxYsQLTpk2zaffqq68iMzPT7v29e/fGli1bbK6ZTCZs27YNO3fuRFVVFWJiYpCRkYHJkyfbvb+oqAjr1q1DTk4O5HI5Ro0ahUWLFiEsLKzdfXoa63MOuaJFRETkOh4XaNXW1mLz5s2Ijo5GUlISTpw40WJbhUKBZcuW2VwLDAy0a7dx40Z8/PHHePDBB9G/f3/s378fq1atgkQiQXp6utiuvLwcixcvRlBQEObNmwetVott27bhwoUL2LBhA3x8fNrcpyeyPX6HTxwSERG5iscFWkqlEjt27IBSqcSZM2fw9NNPt9hWJpNhypQpt+yvoqIC27dvx4wZM/Dcc88BAB544AEsXrwY69evx4QJEyCTyQAAW7ZsgU6nw6ZNmxAdHQ0ASElJwdKlS7Fnzx5Mnz69zX16Ii3POSQiIuoQHpejpVAooFQqW93eaDSioaGhxfv79++HwWDAjBkzxGsSiQQPPfQQKioqkJubK17Pzs7G6NGjxSALAIYPH47Y2FhkZWW1q09PZHniEODWIRERkSt53IpWW+h0OkybNg06nQ7BwcFIT0/HggULEBAQILYpLCyEv78/4uLibN6bkpIi3h88eDAqKipQXV2N5ORku89JSUnBoUOH2txncyorK6FSqcTXxcXFbfxdO876nEMmwxMREblOpw20lEol5syZg379+kEQBBw+fBg7d+7E+fPnsWbNGsjl5t+aSqVCeHg4JBKJ3fsBc+BjaWd9/ea2dXV1aGxshEKhaHWfzdm9ezc2b95sd/3ixYswGo1219VqNfLy8lrsrz0qr1aJPxdfuwiZyuMWNh3minnr6jhn7cN5ax/OW/tw3trOlXOWmpp62zadNtCaP3++zev09HTExsZi48aNyM7OFhPS9Xq9TRK7hUKhEO9b/3q7tgqFotV9Nmf69OkYM2aM+Lq4uBirV69GQkJCs6tpeXl5rfoX2Ra5TZUA9PDxl2HQ0IFO7dtTuGLeujrOWftw3tqH89Y+nLe2c/ecdamljNmzZ0MqleLYsWPiNV9fXzQ1Ndm1bWxsFO9b/9ratq1p15yIiAgkJyeL/9y8/dgRLE8dMj+LiIjItbpUoOXr64uQkBDU1dWJ15RKJaqqqiAIgk1by1ZhRESE2M76+s1tQ0JCxBWr1vbpiQx6I5q0BgB84pCIiMjVulSgpdFoUFtba1NcNCkpCTqdzi7p3LJfm5SUBACIjIxEWFgYCgoK7PrNz88X27WlT09kXUPLn4EWERGRS3XKQEuv10Oj0dhd/+ijjyAIAkaOHCleS0tLg1wux44dO8RrgiBg165diIyMxMCBN3KUxo8fj4MHD6KsrEy8dvz4cZSUlGDixInt6tPT2BQr5dYhERGRS3lkMvznn38OtVotbsUdOHAA5eXlAICHH34Y9fX1eOqppzB58mT07t0bAHDkyBEcOnQII0eORFpamthXVFQUZs2aha1bt8JgMCAlJQXff/89Tp8+jRdffNGmsGhGRgb27t2LJUuWYObMmdBqtdi6dSsSExNtjgBqS5+eRlvL0g5EREQdxSMDre3bt6O0tFR8vW/fPuzbtw8AMGXKFAQFBWH06NE4evQoMjMzYTKZ0KtXLzz99NN49NFHIZXaLtTNnz8fwcHB2L17NzIzMxETE4OVK1finnvusWkXHR2NtWvXYt26ddiwYYN41uHChQvF/Ky29ulpeM4hERFRx/HIQOvTTz+9bZuVK1e2uj+pVIqMjAxkZGTctm1CQgLefPNNp/bpSTQ8foeIiKjDdMocLWo/JsMTERF1HAZaXoYHShMREXUcBlpexrKiJZFK4BusuE1rIiIicgQDLS9jWdHyD1FAKpXcpjURERE5goGWFzGZBGjrzMcEMT+LiIjI9RhoeRF9fSMEk/nYIOZnERERuR4DLS/CJw6JiIg6FgMtL8InDomIiDoWAy0vwmKlREREHYuBlhexPueQW4dERESux0DLi2iqec4hERFRR2Kg5UU0tdw6JCIi6kgMtLwIk+GJiIg6FgMtL2JJhvfxl0PuK3PzaIiIiLo+BlpexJIMz9UsIiKijsFAy0s06Qxo0hoB8IlDIiKijsJAy0tYl3YI4BOHREREHYKBlpewLu0QEM5Ai4iIqCMw0PISNsVKQxVuHAkREZH3YKDlJTQ1jeLPzNEiIiLqGAy0vATPOSQiIup4DLS8BM85JCIi6ngMtLyETTI8Ay0iIqIOwUDLS1hWtCQyCfyCmAxPRETUERhoeQlLjpZ/qAISqcTNoyEiIvIODLS8gMkkQGc5fofFSomIiDoMAy0voKtrhCCYf2YiPBERUcdhoOUFtCztQERE5BYMtLyAxqYqPAMtIiKijsJAywtoec4hERGRWzDQ8gJc0SIiInIPBlpegMfvEBERuQcDLS/AZHgiIiL3kLt7ADfTaDTYtm0b8vLykJ+fj/r6eqxYsQLTpk2za1tUVIR169YhJycHcrkco0aNwqJFixAWFmbTzmQyYdu2bdi5cyeqqqoQExODjIwMTJ48uUP6dDfrFS2WdyAiIuo4Hhdo1dbWYvPmzYiOjkZSUhJOnDjRbLvy8nIsXrwYQUFBmDdvHrRaLbZt24YLFy5gw4YN8PHxEdtu3LgRH3/8MR588EH0798f+/fvx6pVqyCRSJCenu7SPj2BZUVLESCHXCFz82iIiIi8h8cFWkqlEjt27IBSqcSZM2fw9NNPN9tuy5Yt0Ol02LRpE6KjowEAKSkpWLp0Kfbs2YPp06cDACoqKrB9+3bMmDEDzz33HADggQcewOLFi7F+/XpMmDABMpnMZX16Ass5h0yEJyIi6lgel6OlUCigVCpv2y47OxujR48WAyIAGD58OGJjY5GVlSVe279/PwwGA2bMmCFek0gkeOihh1BRUYHc3FyX9uluTToDmnRGACztQERE1NE8LtBqjYqKClRXVyM5OdnuXkpKCgoLC8XXhYWF8Pf3R1xcnF07y31X9dmcyspKFBQUiP8UFxff7rfrEJv8LK5oERERdSiP2zpsDZVKBQDNrnwplUrU1dWhsbERCoUCKpUK4eHhkEgkdu0Ac+Djqj6bs3v3bmzevNnu+sWLF2E0Gu2uq9Vq5OXltdjf7dRd0ok/a02O9dWZODpv3ohz1j6ct/bhvLUP563tXDlnqampt23TKQMtvd68SmOdnG6hUCjENgqFAnq9/rbtXNVnc6ZPn44xY8aIr4uLi7F69WokJCQ0u5qWl5fXqn+RLblQdw1AGQAgJrEnUlMT291XZ+LovHkjzln7cN7ah/PWPpy3tnP3nHXKQMvX17wF1tTUZHevsbHRpo2vr2+r2zm7z+ZEREQgIiKixfvOxmKlRERE7tMpc7QsW3SW7T5rKpUKISEh4uqSUqlEVVUVBEGwawdADHpc0acn0LKGFhERkdt0ykArMjISYWFhKCgosLuXn5+PpKQk8XVSUhJ0Op1d0rllv9bS1hV9egKt1TmHAUyGJyIi6lCdMtACgPHjx+PgwYMoKysTrx0/fhwlJSWYOHGieC0tLQ1yuRw7duwQrwmCgF27diEyMhIDBw50aZ/uxq1DIiIi9/HIHK3PP/8carVa3Io7cOAAysvLAQAPP/wwgoKCkJGRgb1792LJkiWYOXMmtFottm7disTERJvjeqKiojBr1ixs3boVBoMBKSkp+P7773H69Gm8+OKLNoVFXdGnu1m2DiUyCXyD7BP4iYiIyHU8MtDavn07SktLxdf79u3Dvn37AABTpkxBUFAQoqOjsXbtWqxbtw4bNmwQzyVcuHChmEtlMX/+fAQHB2P37t3IzMxETEwMVq5ciXvuucemnSv6dDfLilZAqC8kUsltWhMREZEzeWSg9emnn7aqXUJCAt58883btpNKpcjIyEBGRoZb+nQXk0mArs78JCQT4YmIiDpep83RotvT1epheTCS+VlEREQdj4FWF6ap5fE7RERE7sRAqwvT1jSKP/NAaSIioo7HQKsL09TcOOfQP1Rxi5ZERETkCgy0ujCbFS3maBEREXU4BlpdGIuVEhERuRcDrS6M5xwSERG5FwOtLsx6RYtPHRIREXU8BlpdmOVAaUWAHHKF5xwLRERE5C0YaHVRgiDcOH6HpR2IiIjcgoFWF9WkM8KgNwLgtiEREZG7MNDqorR84pCIiMjtGGh1URo+cUhEROR2DLS6KK3VOYcB3DokIiJyCwZaXZSm2mpFi8nwREREbsFAq4viihYREZH7MdDqomyO3+GKFhERkVsw0OqitKwKT0RE5HYMtLoozfWtQ6lMAt8gHzePhoiIyDsx0OqiLMnw/mG+kEgkbh4NERGRd2Kg1QWZjCbo6hsBMBGeiIjIneTuHgC5gESCB/9wNzQ1esh8GEsTERG5CwOtLkgqlSC6X7i7h0FEROT1uNxBRERE5CIMtIiIiIhchIEWERERkYsw0CIiIiJyEQZaRERERC7CQIuIiIjIRRhoEREREbkIAy0iIiIiF2GgRUREROQiDLSIiIiIXISBFhEREZGLMNAiIiIichEGWkREREQuInf3ALydXq8HABQXFzd7/9KlS5DJZB05pC6B89Z2nLP24by1D+etfThvbefqOYuLi4Ofn1+L9xlouVlpaSkAYPXq1W4eCREREbXVxo0bkZyc3OJ9iSAIQgeOh25SU1ODI0eOoEePHlAoFDb3iouLsXr1aqxcuRJxcXFuGmHnw3lrO85Z+3De2ofz1j6ct7briDnjipaHCwsLw5QpU27ZJi4u7pbRMjWP89Z2nLP24by1D+etfThvbefOOWMyPBEREZGLMNAiIiIichEGWh5MqVTi8ccfh1KpdPdQOhXOW9txztqH89Y+nLf24by1nSfMGZPhiYiIiFyEK1pERERELsJAi4iIiMhFGGgRERERuQgDLSIiIiIXYcFSD9TY2IgPPvgA33zzDerr69GnTx/MnTsXI0aMcPfQPNaJEyfw7LPPNnvv3XffxYABAzp4RJ5Ho9Fg27ZtyMvLQ35+Purr67FixQpMmzbNrm1RURHWrVuHnJwcyOVyjBo1CosWLUJYWFjHD9yNWjtnr776KjIzM+3e37t3b2zZsqWjhusx8vPzkZmZiRMnTqC0tBQhISEYMGAA5s6di9jYWJu2/K6ZtXbO+F2zdfHiRXz44YcoKChAVVUV/Pz8EBcXhzlz5mDMmDE2bd31XWOg5YFee+017N27F7NmzUJMTAz27NmDZcuWYc2aNRg8eLC7h+fRHn74YaSkpNhc69Wrl5tG41lqa2uxefNmREdHIykpCSdOnGi2XXl5ORYvXoygoCDMmzcPWq0W27Ztw4ULF7Bhwwb4+Ph08Mjdp7VzBgAKhQLLli2zuRYYGOjqIXqkTz75BDk5OZg4cSL69OkDlUqFHTt2YO7cuXj33XeRmJgIgN81a62dM4DfNWulpaXQaDSYOnUqIiIioNPpkJ2djRUrVuD555/H9OnTAbj5uyaQR8nNzRXGjh0rfPLJJ+I1nU4nPProo8KCBQvcODLP9uOPPwpjx44VsrKy3D0Uj6XX64XKykpBEAQhPz9fGDt2rPDVV1/ZtXvzzTeFyZMnC6WlpeK1o0ePCmPHjhV27drVYeP1BK2dsz/+8Y/ClClTOnp4Huv06dNCY2OjzbVLly4J6enpwqpVq8Rr/K7d0No543ft9gwGg/DEE08I//M//yNec+d3jTlaHiY7OxsymUyMwgHA19cX999/P3Jzc1FWVubG0XUOGo0GBoPB3cPwOAqFolVF+7KzszF69GhER0eL14YPH47Y2FhkZWW5cogep7VzZmE0GtHQ0ODCEXUOgwYNslshiI2NRXx8PIqLi8Vr/K7d0No5s+B3rWUymQxRUVFQq9XiNXd+17h16GEKCwsRExNjtwxs2Q47d+6czReFbL322mvQarWQyWQYPHgwnnnmGfTv39/dw+o0KioqUF1d3ezhqykpKTh06JAbRtU56HQ6TJs2DTqdDsHBwUhPT8eCBQsQEBDg7qF5BEEQUF1djfj4eAD8rrXGzXNmwe+aPa1WC71ej4aGBhw4cACHDx/GxIkTAbj/u8ZAy8OoVKpm/wvacq2ysrKjh9QpyOVyjB8/HnfffTdCQ0NRVFSE7du3Y9GiRVi/fj369evn7iF2CiqVCgBa/A7W1dWhsbERCoWio4fm0ZRKJebMmYN+/fpBEAQcPnwYO3fuxPnz57FmzRrI5fyj9ttvv0VFRQWefPJJAPyutcbNcwbwu9aSd955B7t37wYASKVSjBs3Ds899xwA93/XvPPfiAfT6/XNJuVZvgB6vb6jh9QpDBo0CIMGDRJfp6WlYcKECXjiiSfw/vvv44033nDj6DoPy/frdt9Bb/7Lrznz58+3eZ2eno7Y2Fhs3LgR2dnZSE9Pd9PIPENxcTHeeustDBgwAFOnTgXA79rtNDdnAL9rLZk1axYmTJiAyspKZGVlwWg0oqmpCYD7v2vM0fIwvr6+4pfDWmNjo3ifWicmJgZpaWk4ceIEjEaju4fTKVi+X/wOOm727NmQSqU4duyYu4fiViqVCi+88AICAwPxyiuvQCaTAeB37VZamrOW8LsGxMXFYfjw4Zg6dSr+9Kc/QavVYvny5RAEwe3fNQZaHkapVIrLnNYs1yIiIjp6SJ1aVFQUmpqaoNPp3D2UTsGytN7SdzAkJMRrVxjaytfXFyEhIairq3P3UNxGrVZj2bJlUKvVeOONN2z+/OJ3rXm3mrOW8Ltmb8KECThz5gxKSkrc/l1joOVhkpKScPnyZbunSfLy8sT71HpXr16FQqGAv7+/u4fSKURGRiIsLAwFBQV29/Lz8/n9awONRoPa2lqvK7xpodfrsXz5cpSUlOD111+3S+jmd83e7easJd7+XWuOZbtQrVa7/bvGQMvDTJgwAUajUUzqA8xLm1999RVSU1P5xGELampq7K6dO3cOBw4cwIgRIyCV8qveWuPHj8fBgwdtSokcP34cJSUl4lM8dINer4dGo7G7/tFHH0EQBIwcOdINo3Ivo9GIl156Cbm5uXj55ZcxcODAZtvxu3ZDa+aM3zV71dXVdtcMBgO+/vpr+Pr6isGqO79rTIb3MKmpqZg4cSLef/991NTUoFevXsjMzERpaSleeOEFdw/PY/3hD3+Ar68vBg4ciPDwcBQVFeGLL76An5+fXfKoN/v888+hVqvFJfQDBw6gvLwcgLmqflBQEDIyMrB3714sWbIEM2fOhFarxdatW5GYmNjscT1d3e3mrL6+Hk899RQmT56M3r17AwCOHDmCQ4cOYeTIkUhLS3Pb2N3lnXfewYEDBzB69GjU19fjm2++sbk/ZcoUAOB3zUpr5qyqqorftZu88cYbaGhowJAhQxAZGQmVSoVvv/0Wly5dwsKFC8WSF+78rkkEQRBc+gnUZnq9XjzrUK1WIzExEXPnzsVdd93l7qF5rM8++wzffvstrly5goaGBoSFheHOO+/E448/jpiYGHcPz2PMnj0bpaWlzd7bvn07evToAcB8ftjNZ4ItXLgQ3bp168jheoTbzVlQUBDWrFmD3NxcqFQqmEwm9OrVC/fccw8effRRr3zc/je/+Q1OnjzZ4v19+/aJP/O7ZtaaOauvr+d37SbfffcdvvzyS1y4cAG1tbUICAhAcnIyfv7zn9sFnu76rjHQIiIiInIRJq4QERERuQgDLSIiIiIXYaBFRERE5CIMtIiIiIhchIEWERERkYsw0CIiIiJyEQZaRERERC7CQIuIiIjIRRhoEREREbkIAy0i6vSuXbuGcePG4dVXX3X3UJxiz549GDduHPbs2ePuoRCRgxhoEVGX9Jvf/Abjxo1z9zCa1dUCQyJqmfedQElEXU5kZCT+8Y9/IDAw0N1DcYqxY8ciNTUVSqXS3UMhIgcx0CKiTk8ulyMuLs7dw3CaoKAgBAUFuXsYROQEEkEQBHcPgojIEdeuXcMjjzyCqVOn4ne/+12LW4aW+xbnz5/HP/7xD5w8eRJ1dXVQKpUYM2YMnnjiCYSGhjbb/y9+8Qts3LgRp06dQl1dHbZv344ePXpg3759yMrKwpkzZ1BZWQm5XI4+ffpg5syZmDBhgtjXnj178NprrzU7vjVr1mDYsGFimxUrVmDatGk2bXJycvCPf/wDubm50Ov16N69OyZNmoRf/OIX8PPzs2k7btw4DB06FC+99BLeffddHDp0CFqtFklJSZg/fz6GDRvW1qkmojbiihYRdTmPP/44MjMzUVpaiscff1y83rdvX/Hn/fv346WXXoJEIkFaWhqioqJQVFSEf/3rXzhy5Ag2bNiA4OBgm36vXLmCZ555BomJiZg6dSrq6urg4+MDAHj//fchl8sxaNAgKJVK1NTU4MCBA/j973+PZ599Fg8//DAAICkpCTNnzsRnn32GpKQkpKWlif137979lr+vrKwsrFq1Cj4+Ppg0aRLCwsJw9OhRbN68GUeOHMGaNWvg6+tr8x61Wo2FCxciKCgIU6ZMQXV1NbKysvD8889j48aNSExMbNccE1HrMNAioi7nySefxMmTJ1FaWoonn3zS7n5tbS3++Mc/IjQ0FO+8845NgPPdd9/h5ZdfxgcffIAlS5bYvC8nJwePP/54s33++c9/Rs+ePW2uaTQa/PrXv8YHH3yA+++/H35+fujbty+CgoLEQKu5vprT0NCAv/zlL5DJZHj33XfRp08fAMDTTz+NVatW4b///S+2bduGxx57zOZ9586dw0MPPYQlS5ZAKjU//3THHXfgz3/+M/71r3/h+eefb9XnE1H78KlDIvI6X3/9NRoaGvD000/brSKlp6ejX79++O677+ze161bN/zyl79sts+bgywACAgIwLRp06BWq3HmzBmHxrx//36o1Wrcd999YpAFAFKpFM888wxkMlmz5SD8/f2xYMECMcgCzFuoMpnM4TER0e1xRYuIvE5ubi4AIC8vD1euXLG739jYiNraWtTU1CAsLEy8npSUJG4V3qy6uhoff/wxDh06hLKyMuj1epv7lZWVDo25sLAQADB06FC7e9HR0ejZsydKSkqg0WgQEBAg3ouJibF5DZgfHujWrRvUarVDYyKi22OgRURep76+HgCwY8eOW7bT6XQ2r8PDw5ttV1dXh6effhplZWUYNGgQhg8fjqCgIEilUpw7dw779+9HU1OTQ2NuaGgAYF5Va45SqURJSQkaGhpsAquWSl7IZDKYTCaHxkREt8dAi4i8jiUQ2bx5c5uSwSUSSbPXv/zyS5SVleGpp56yy5HasmUL9u/f3/7BXmcJmKqqqpq9b7neVWqJEXUVzNEioi7JkpNkNBrt7qWmpgK4sYXoKMv2o/UThBanT59ucWxtWVGyPDF58uRJu3tlZWW4cuUKevbsabdNSETuxUCLiLqkkJAQAEB5ebndvfvuuw8BAQHYuHEjLl68aHdfp9O1KQizJNTn5OTYXP/2229x6NAhu/bBwcGQSCTNjq0laWlpCAoKwldffWUzZkEQsGHDBhiNRruaW0Tkftw6JKIu6Y477sDevXvx4osvYuTIkVAoFEhKSsKYMWMQFhaGP/zhD/j973+PJ598EnfddRd69+6NpqYmlJaW4uTJkxg4cCDeeOONVn3WlClT8Mknn2DNmjU4ceIEoqOjce7cOfz4448YN24c9u3bZ9M+ICAA/fv3x6lTp7B69WrExMRAIpHg3nvvbbGWVmBgIH77299i1apVWLBgASZOnIiwsDAcP34cBQUFSElJwaOPPurwvBGRczHQIqIu6YEHHsC1a9fw3//+F5988gmMRiOmTp2KMWPGAABGjRqFDz74AFu3bsXx48dx7Ngx+Pn5ITIyEtOmTcOUKVNa/VlRUVFYu3Yt3n33XRw7dgxGoxH9+vXDm2++ifLycrtACwBWrlyJt99+GwcPHkRDQwMEQcDgwYNvWbR04sSJ6NatG7Zs2YJ9+/aJleEfe+wx/OIXv7ArVkpE7scjeIiIiIhchDlaRERERC7CQIuIiIjIRRhoEREREbkIAy0iIiIiF2GgRUREROQiDLSIiIiIXISBFhEREZGLMNAiIiIichEGWkREREQuwkCLiIiIyEUYaBERERG5CAMtIiIiIhf5/zztU6k5RGmFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['loglikelihood'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"loglikelihood\")" + ] + }, + { + "cell_type": "markdown", + "id": "3f085706", + "metadata": {}, + "source": [ + "## Alpha (the factor used for the acceleration)\n", + "\n", + "Plotting $\\alpha$ vs the number of iterations. $\\alpha$ is a parameter to accelerate the EM algorithm (see the beginning of Section 4). If it is too large, reconstructed images may have artifacts." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "1695af05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'alpha')" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9i0lEQVR4nO29eZxcVZn//7m1V2/pdHcSEsgGCUkawqICA2EJYYYv6MjMICj6dQEEZceZ4WuA14wLwuDXYV7+wojIokRxGGFEFEdBUQP5CqLIJCzpJBBIOgvZeu/q2u+9vz+qz61zbt2quvs9t/u8Xy9edKprOXX73HOe8zyf53kkVVVVCAQCgUAgEEwjIkEPQCAQCAQCgcBvhAEkEAgEAoFg2iEMIIFAIBAIBNMOYQAJBAKBQCCYdggDSCAQCAQCwbRDGEACgUAgEAimHcIAEggEAoFAMO0QBlAd8vk8tm/fjnw+H/RQBAKBQCAQuIwwgOrQ39+Pq6++Gv39/Ya/f+edd3weUfgR18we4rrZQ1w3e4jrZh1xzewR9HUTBpBNCoVC0EMIHeKa2UNcN3uI62YPcd2sI66ZPYK+bsIAEggEAoFAMO0QBpBAIBAIBIJphzCABAKBQCAQTDuEASQQCAQCgWDaIQwggUAgEAgE0w5hAAkEAoFAIJh2CANIIBAIBALBtEMYQAKBQCAQCKYdwgASCAQCgUAw7RAGkEAgEAgEgmlHLOgB6Nm0aRNuvvlmw9/df//9OO644xq+/vDhw/jWt76FV155BYqi4OSTT8aNN96IefPmeTFcgUAgEAgEIYQ7A4jwkY98BCtWrGAeO/LIIxu+JpvN4uabb8bExAQ++clPIhaL4YknnsCNN96I733ve5gxY4aXQxYIBAKBQBASuDWATjzxRKxevdrSa376059i7969eOCBBzTj6bTTTsPll1+Oxx9/HJ/73Oc8GKlAIBAIBIKwwa0BBFQ8OolEArGYuWE+//zzWL58OeM5WrhwId73vvdhw4YNwgAShI7D74xg70ujKO14J5DPb+1OY/GpcxCNR3393LGDEzj49ggWfWAO4imul6ka9rx2GJGohCOP7wl6KJYoZkvof/UQCrFy0EOxzPC+DIb6x7DwA3MQS/g7V4NkYjiPfW8MYMHJs5FqTwQ9HNOMH87hrRf2Ymh0FF3RYRyxbGYg4+B2Zbn77ruRy+UQjUZxwgkn4Nprr8Xy5cvrPl9RFLz77rv44Ac/WPO7FStW4JVXXkE2m0VLS4vh6wcGBjA4OKj9u7+/3/mXEAgcMDGYw9NfeRmqrGI3RoIbx9AynPjho337PEVW8Is7/4SJwTwGL1yEv/jUiuYv4oR9bw7gV//3zwCAv7nzDMw6Ojxh95d/uA1vPb8X6e4YTvoLFZIkBT0kU5QLMv77qy+jkCnhfZcswfsuXhr0kHzjt//fJhx6ewQL3z8bf/WP7w96OKYZOzCBTT/ZAQCY2X5YGECEWCyGc845B3/xF3+BGTNmYNeuXXj88cdxww034Nvf/jaOPfZYw9eNjY2hWCyiu7u75nfksYGBASxYsMDw9U8//TTWr19f8/jOnTshy3LN45lMBn19fRa+mUBcM2sMv5ODKqtBDwPvbt6D+DF53z6vMFbGxGDl83b37UdHn71rEMR82/3CsPbzm3/Yhjn5dl8/3wl73jwIAMgNlvHm61sQjYcjSXjiUBGFTAkAsOuNfUgtL/k+hiDmmlxScOjtEQDAgR2DoVpbB3dktZ+HRr0Ze29vb9PncGcArVy5EitXrtT+feaZZ2L16tW44oor8OCDD+Kee+4xfF2hUAAAxOPxmt8lEgnmOUZcdNFFWLVqlfbv/v5+3HnnnVi8eDGWLVtW8/y+vj5TF1hQRVwza+wc34+tOAQAWHr2kVj4/jm+fbYiK/jdvZsBAAkp5evfbXDXGF7FvspnR+1/dhDzbf+vNwEYAwDM6pqN3t7Fvn6+E/6c3af9vGTxUqQ7kgGOxjzvqYN4DfsBAKlYSyBrTBBzbXjvOP6IPZV/yJFQra07hvZhOw4DAI5cMA+9vQsDGQd3BpARRx11FM4880xs3LgRsiwjGq2N8SaTlZu1VKq1/ovFIvMcI3p6etDTE66YvWBqU8pXPY+zl3Ri0Sn+GUAA8MJ3XodcVJAfK/r6ubnx6ueV8uHSo4wemNB+pv9+vFMuyihmq9e6nJeBjgAHZIE8PV8K4ZovThg7UPWilAvhmWsAUKLGG08Fp9kKh48TwOzZs1EqlZDPG7viOzo6kEgkGB0PgTwmDBxBmKA30FgAiwQRVdIbjB8UqM8rh8iIUBU1tAZQboT1jodp7PmQzhenjB6sGkBySYFSVgIcjTXo+SUMIBO89957SCQSSKfThr+PRCI4+uijsW3btprf9fX1Yd68eXUF0AIBj5Sp02w86b+ztmoAlaCq/mmR8iH1AE0M5yEXq5tQOURjz9YYQOEZe2G86vUPk+HmlDHK2AZYrwrv0PdGLIC1jcCdATQyMlLz2I4dO/Diiy/ilFNOQSRSGfLBgwdrMrXOOeccbNu2jTGCdu/ejU2bNlmuKSQQBE3QpyRiAKmKyoRHvCZPbWhhcu2P7g/vhqQ3gMJ03cMcMnXCGOUBAsJlcAe9thG40wB9+ctfRjKZxPHHH4+ZM2di165d+PnPf45UKoXPf/7z2vPuuusubN68GRs3btQe+7u/+zv893//N9auXYvLLrsM0WgUTzzxBGbOnInLLrssiK8jENimHHCcPNVeTSjIjxeRbK1NMPAC2gOkyCrksoJojLuzWg16AyhM4ZjscHhDYEzINESGm1P0BlCY/ma0oRpEeF/77MA+uQ5nnXUWnnvuOTzxxBOYmJhAZ2cnzj77bFx++eU46qijGr62paUF69atw7e+9S384Ac/0HqB3XDDDejs7PTnCwgELsEuEsGFwIDJTeaIVl8+V685KuXLiLbxX+St1gMUnhN5TQgsRGOn5wvRwkRCYDA7QS7JmBjIMY+FyfhjDncBhsC4M4AuueQSXHLJJU2fd++99xo+Pnv2bNxxxx1uD0sg8J2g3cS0AUSHpbymoPuscl4G2nz7eNuM7g/viTw7zCaXhMl7pZ+bpbyMZNvUNoDGD+egl+WFyWgVWWACgaAhjAco6f8ikdSFwPzCyAMUBvSi1DBpMmqzwMIzdn2ZhjAZAnahU+AJYTK4ywF7twnCABIIOIXVAAUbAgvWAOJ/YZfLCsYPhdgDFNI0eFVVQzlfnDJ2cKLmsTB9b6bERwCHO4IwgAQCTtEWCQmBtCUIIgRmtKGFQdswfjBbE5IIw7gJYc0CKxdkyCW2/k2YPG92MfIAhel7k7UtEpMQiQTXc04YQAIBp5A6QNGEFEhjyiA8QKW8DKWs6h7jf2EfPWBwIg9JKEYp11b7DsM1B4wN8zB5QuyizwADwvW9ibEWSQTbcFcYQAIBp5AFLZoI5jbVp8H7gVHbjTB4I0bfMw5J+FlA0i650doeiWG45oDxvAyL8eYEQwMoJAY3UBVBB7W2EYQBJBBwCsnEicSDOSUlA/AAGW9o/G/GtAconp7Ua6lgKkPzij78BYTjmgPhnS9OUMoKxg/nah4PU+YeMVKjwgMkEAiMqC4Swdym0VgEiZbKZq5PTfeKQkhP9HQNoO6F7drPYRi7sQHE/7gBYwMoTFoYO4wP5KAqFc9i26xqa6iwGH6KomoHA+EBEggENchlBYpcWeSiAXmAAP8bohppOsJwsh2dFKWmZyTQMjOlPR6GTcnIAArDNQfqGczhGLtd6PBX98IO7eewGK10eDUo77b2+YF+ukAgMIRezIIUCpJaQIWJEhTZ+3COYUiDc21DMVvS6ujMmNvKFHbjfexAbRsMIBzjBoDcmIEIOiRjtwudAUZ7G8Oi26I9dCIEJhAIaqAXsyDdxFommFoxgrzGOKTB98JOb0gVA6has4n3sQO1RRCBcIwbqOMByoVj7HahC26yHqBwfG96nEGU96ARBtA04o1f7MQv/+VPGNw9FvRQBE1gFokAT0l+1wIyTGvm/GQ7Qul/ZhzRyhR2433sABsCI2MPw7iB6ZkFRofAuigDqBwSzxftoRNp8AJfKGRK+NN/bsd7bw7ijf/eGfRwBE0oMyEwDjxAMD5tu00+E74NjRZA60NgYRDkEgNIkoC2noqolvdrTjD0GIbEeLMLMYBiySjaelKIRCtGRFg8QOU8H95tQBhA04bcWEHLHDCK+Qv4gnUTB+kB8rcWkJGRxXs4hg5JdOhCYGHYlEgj1NSMpJb1JxcVKAr/NYymWxq8IldbrnTMaYEkSdp8C4vRWirw4d0GhAE0bShmqzfHVBcJTgVKjFAwuNs06XsIrLKh0doA3jc04gGSJKBjdpoNgXG+KSmKitxo5Zq3dCZD570iczLZVjXUeb/mTpgYzGvZoR1zWgAAscm/Ge8HBQIv3m1AGEDThmKOMoCmuEhwKsCkigapAWqjDCCDKs1uQz4j3ZlEJDbp2ufYYFdVVSuC2DYrjWg8qjMi+L7X8uNFzTPc0plkOnPzrgNSFVXzGJLQHcD/NXfCKKX/6TiiYgCR+cbzfULDi3cbEAbQtKGUrZ7ep/IJaarAyyLhZwhMUVQUMqXJz01orn2eN7TcaFE7UMyY2wYAoTIiclQ4PN2ZRDwZHuOtkC1pDWjTMxJVAfcUXt+YcOucVgBAPElCYOFovcJLggcgDKBpAx0C431hE7AZHYGmwXf41w6jOFHd0FLtcepky+98Hd2f0X6eMXfyRE4bERyPHWAzwCohMNp449uQoD2SqXbaAOL7mjuBzgDTh8DC0nqlXBAhMIHP0AZQMV8OxUmBoCgqtvxqF97auDdU43YCvYgHGgLzUQNEG1iVDY14gPjdiEf3szWAAOhE0PyOHQCyI3nt55aZSUa/xPtBiZ6PFY/hdPAAGYXAwjPfAH682wAQa/4UwVSA1gCpsgqlrCAajzZ4BT+8+4f9+MP3twIAOue1YfaSzmAH5AMlTlJFE61xSBKgqt6nwdfd0AoyVEWFFAl2sTRiVFcDCKBO5ODfG6H3ANFeFd7HXtAZzFrIlHOvmxPGDlbmWzQeQetky5VYiDyOAD8JHoDwAE0biln29B4mIfShHSPaz6PvTdR/4hSCl3LxkYikZdh4HQKjN7Rke7x6slWBcpHP+Up3gTfyAPHsvQJYDVCNCJrzsbMew+p8kUsKlDL/oSCrKIqqhcA65rRoB4J4iAxugJ8ED0AYQNMGOgQG8L+40YxRp+wwjdsJJaZhYLC3KUmFNypS6Cb0hpZuT7CeFE5PtsQDFE1E0NpVeyLnfUNiPEAzU6HLYCMkKY8hwO98cUJ2KA+lzKbAAyEPgQkPkMAP6BAYwP/CTDMyHQ0gTjxAQFUHVMrJkEvezZuaDS3Jd00aRVYwPnkin3FEq3YiZ1th8DduGtoA0meB8T52fciUDT3yPXY7MALoyXAroJ9v/K/rzNom0uAFflAKqQeoXJSRGchp/y6GKHTnBF6aoQI6IXTGOyF0zYaW5DudfPxwTitKN4PakCIRSduUeNdkEAMo2RZHNBZhw3ecj71eCAwI1wHPLGwKPO0B4vugoEeEwAS+U+MByvF/owColH2nEr/CYrg5hckCC/iU5FctoNoNje9wDB2a7ZjbyvwuDCnZqqpqneBbZiYBhEvAzcyXDv49hk4ZNUiBB/QhML7/ZkB1jJIErdhpUAgDaJpQI4Lm/HRHoLNsgPAYbk4hC3g0HtGaHQYF2xDVSw+QPquH75AGK4BuYX4X19oT8DduQnGiDLlUEQu3dFYMoHiI2nho80UCkq1xxNPhMgSsMmZQBRrQG618/82A6hhjqRgkSRhAAh+oEUGHxJCoMYBCcIO7AVnA6fh+UND9wHIetsNgNEBtcV1GEn8bGlMD6AjWA1RtUMnfuAlMDaDOSQE359echqTsJ1vjiEQjoTMErEJCYJGohNbuausPNuuQ778ZUA2B0QecoBAG0DRBb/DwvrgRRqnCX0A4bnA3KHG0SNAhMC9rARHvEtnQeA+BMTWA6oTA5JICReYzJTura4MB6PUk/F1zGqIZIx7KeDI8+iWrqFQKfPvsFkSomljxkImgybyiDbegEAbQNEAuyZqrmxCWE5K+7k8xJON2Cgmd0ELgoEi3+9MOg7x3ctLg4j2bioTAkm1xJkwI6AwJTjclfRFEgDUieLzmBLmsaIc6zQCiPUAh8XCbJTtS0Npc0OEvQO+14/97ayEwDrzbwa+uTfjBD36Ahx9+GIsXL8b3v//9hs/93ve+h/Xr19c8nkgk8Jvf/MajEfKPPvwFhGeBoHUWQLgKONpFVVWuPEBJH9phKGVFm6fVDY1f134pX8bEYCWEpPf+ALUNURMt8ZrnBA1bA6hWBM2r4Qboq0BPGswhCt9ZhVSABgzCrSGqBC2XFS1zkoe1jWsD6NChQ/jhD3+IdDrd/MkU//iP/8i8JhLhw9E1un8Cbz6zC8VsCUedNAtLzzzSl881NIA4v1EAoJApMaX5gXCccJwiFxUt840HN3HKBw8QnV5fDWnw69qnBalGBlAYuqrnDDxA0XgEkACofBsROV3NKEDnAeLYe2UHpgfYHL0HKDyZe/T6zYN3O/gRNODb3/42ent7oSgKRkdHTb/unHPOQWdnp3cDs0lhooStv9kNoHLT+mYAGXh7wuAB0nt/gHCM2ynMIsHBKcmPNHh9SjPAt2vfqAcYTRiq8xppgCRJQjQhQS6o3I4bYLMRjTyGvBsCVjHqAk8IU+sV+jDAgweID9eIAZs3b8YLL7yAG2+80dbrJyYmuOscnmytbiTFCW87a9PoU+ABfk+lNIYGEOc3uBvQi3ecgzh5PB3TUvG9EkHrawABfAtyG6XAA+E4lbNZYEntZ1J4k7drTmNkMPM8X5xi1AWeEKZeYPT6zYMBxKUHSJZlrFu3Dh/60IdwzDHHWH79xz72MeRyOaTTaZx55pm4/vrr0dXV1fA1AwMDGBwc1P7d399v+XObkWipXm6jsJRXGIbAQmBIjO2vNYCUsgq5rCAa49Z2dwztvuchBCZJElLtCWRHCp5pgBhNR5tBSIOz+TpGpcDriyAC4ajOSzRA8XSUmWek8CZv15zG2GDm3+tmF6IBkqIS2npYSUgsEZ7QH61RinGwtgU/AgN+9rOf4eDBg/jmN79p6XXt7e24+OKLcdxxxyEej+P111/HU089ha1bt+Khhx5Ca2vtQkV4+umnDQXUO3fuhCzXWtWZTAZ9fX2Wxkca2QHAyOFRy6+3y8EdmZrHRofGfft8gtVrtnv7Ye3nZGcMhZHKzf3m5i2ItwR/evCKsT3Vk/noxAgSmYTvf6saEpUMlNxYAVu2bHG9gNmBt8a1nwfHB9DXl0cxU73vhgZGLF8DO/eoWfa/W52b7w3vxsEMa5APjoxpP+98px/jyQFPxuGEzFClxUysRWKukxSrrFOlfNmTv7Ub7HlnRPv50PABlPvGUByvbv5Dh4d9vWe8nGuqqmJ4f2UNT3ZEsW37tprnROISlJKKzGg2+LWiAaO7qLVtfBixTNyz8fb29jZ9DncG0OjoKL73ve/h05/+tGUdz6WXXsr8e/Xq1VixYgW+9rWv4amnnsInP/nJuq+96KKLsGrVKu3f/f39uPPOO7F48WIsW7as5vl9fX2mLrCeVxJ7IRcVRJGw9Xo7KP278A4GmcfiEf8+n2D1mm1/9PcAACki4Yil3eh/5SAA4OiFx6B9Vm3YYaqwt3wYb6LyXY+YNxvptrLvfys9O3vGkT00BKWs4thjlrnumSps3wFgCABw9LKFWNg7B6V8GX/GXgBAOt5i+RrYvUeboaoqXh15DwDQ1pPCyhOPr3mOtH83+jEMAJjTcwSW9c53fRxOKOXLeKlY8XJ3zulgrtObqQPIQYaqAMuPXY5onL/Dxsif+gBUdKHHHrcEs5d0opgt4c/YBwBI2ZgvTvBqrgEVT90fihXtaM+CTsPP2dSyH7nRIqJqLPC1ohH9uYPYQta2o+Yg2VYMdLzcxREefvhhtLe34yMf+Ygr7/dXf/VX6OrqwquvvtrweT09PVi2bJn238KFC135fD3JyXRYI12OVxRztZ/Fu5hYVVWtCGL7rDSjn5rqqfB0HJ8HNzGgzwRzf+7q22AA/Lr2C+MlFCY1fB0GAmiA/9RkWgBN638AIEI13+Ut+45gOF84LpvgBLYJap35plUe5+c+MYK+F+IcZIFxZQDt2bMHP//5z3HJJZdgYGAA+/fvx/79+1EsFlEul7F//36MjY01fyMds2fPtvU6L0i0Vv7ovhpAIdQAZYcL2s0yY14rEumpG9/XwywSHAgFAe9T4elyB+SzJLqrOkcbGiuAbrwhAXwKU+kaQGmdARSlOnTzdN1pjDRAEWq+8GQwO6VeDzAaIrrn0dimKXGWBRa8CUYxMDAARVGwbt06rFu3rub3H/vYx3DJJZfgpptuMv2eqqriwIEDWLp0qZtDtU1i0pNRyslQZAWRqPc2KG0ASREJqqJyuSjT6NOMp3KVVz1MpkQyBv9M5fqQTBvAIwPIIK0ZqCyS5YLM1XxtlgIP8J8Flh02zgADgGi8agDxetggczASlZgmqLEkf/PFKUzNqTl1DCBd6xU/9hU7sCU+Ygj6r8SVAbR48WLcddddNY8//PDDyGazuOmmmzBv3jwAwMGDB5HP55lQ1cjISI1u6Kc//SlGRkZw2mmneTp2sySpirDFXFnLePGSEmUAtcxMYmIwz/2Noj9l00YPr255tygzIbAoHwaQx7WAyHtKEYnJloynYsiNFrnaiBv1ACPwXpvFqA0GgQmBcWpIkPmSak8wIu14Kor8GJ/X3C5sCny9kCvbBy3Rwue6rvduFxo81w+4MoA6Oztx1lln1Tz+X//1XwDA/O6uu+7C5s2bsXHjRu2xSy+9FGvWrMHRRx+NRCKBN954A7/97W+xdOlSXHTRRd5/ARMwqfATJV8MIFoD1DozpZXwL+VlJFv5vFH0mwz97ynvAWLi5FHkAhwLgfbKeFELqJCZ7APWFodENXrk0bVvJgQW47iKNaBvg5Fifkd7gHi67gRVVbVCiLRnEqC1MPyN2y5aCrwEtM0y7oqgrwXEY+sVwCAEFnCpPq4MIKf81V/9Fd5880288MILKBaLmDNnDj7+8Y/j05/+NFKpVPM38IEEUwzRn41cC4FJQHpm9bRXypcZcTFPsGGGFkxQLnuevAFeoHcTB+4nhvf9wPSdvQk8uvbJ3IxEJZMbEn/zNddQA0R7gPgbe7lQbe5cM19S1HwpK4iEvF6Yqla7wLf1pOvWPwtLDaSyvhVGvsGTfSAUBtC9995r6rEvfvGLfgzHEbRlXvBJCE0MoHgqxoqJOfakkE0mloyiZWYKCfoGn+JZYDXl4mvrQfqOlyGwckHWPA01J3rOXPuqomohiY4jWhCJGNfIYcbNoTeiURYYI4Lm0AOUZ/qAsQc4tpu9jGTIDaDCeElbv+sJoAFdE1sO5xtB790O2gAK9+wIIckAqkGTXmCJlhj32SlApTP4+KFK4GfGES2QIqzQkecTjhuUplkWWD5Tm9FD4K3Mf2ZSPwfUF0ADOhE0h0YECYFF4xEmLA/wrwEyyhgkxNP8V+C2wqiJFHggPI1geWuFIQwgn0kE0A+MpNxXDCC+XfMAMH44B1WpBIdJm4HplAVW1ofAOIDWqrkdAjOq6ULgzbXPbEh19D9AxbAgWiYeN2ISAmvpTNZUeuY9C6xexiDAf/kBqzRqgkrDeL44/t5lzmqcCQPIZ+jTVsEHD5BSViAXKyfWRDrOelI4DSUZpRlPtYWtEbw1QwUqoUiix3FbBN1oQ+PNtT9mIgMMqPRPI0Y7b/O1XJS1Qo60JpAQ4bwOUEODOcn/Ac8KZmoAAfyXXSDwtrYJA8hn/PYAFSlvSY0HiFNXqVGaMW24FafAwtYI7e8isdWQg4aEp9wOgRUMitoReJuv9NzsbGAAAdVNiYdx0+RGq/qf1s7a5BBGBM3Z2AHjIoiE2BQ7KDFVoBuEXHkvu0AoT86naDzChUA9+BFMM/zWANGfUaMB4jSUZGgATasQWGXhjiWiTEp40CQnw2D58RJU1b38VVbUWl8EzcOGRs/NRiEwoDp23rwotADayANEi6B5uOZ6GmqAQhDit4LmAZIqLYHqwZtWrh5kbDEOvD+AMIB8h84C86MdBl0DKJ5mPUC8LcwEps6KYQgs/AtbI8giwYNIkIZsNqqiulrCodGGFuOspxYxgOLpGNIdjWt4aW0Z8rKrBqNTGhVBBFgPEI9rRGMNEF/zxSlaCnx3qqE3mK07xe/6SBICeFnbhAHkM6QXGAAtDu8lDT1AnBoSZJNJdSSQbKsYjHRfKF61S25B/i5ud1x3ilftMMxuaEHPV7kkY3xgMjtxbmuNeFgPGbuqqFDKiufjM0uuiQEUoUXQHG6mTNZgnUKIAN+eEDPkM0UUMpNNdxtkgAH6EBi/35uE52IcNEIFhAHkO6wHyPvFhW6DUSOC5vBGKeXLmoten2ZMxh70Rug15OQa4+SURPCqFlBYNB1jB7Na5doZDQSpBF4347B7gGjNGDkgEWIhOOCZZdxkBhjAf+VxoHIQEB6gaU40FtEmqy8hMJ0HKMbRidoIts0Ae9NrWTVTWAOkyIpWZybOySmJ4FUtoMZp8PyEbEf3U00pm+h/AH4zc+hGqGHUAOUmQ6bxVLQmLMSTx9ApZlPgAf19wuf3Lhdl7QDBi3dbGEABQFLh/WiFwWiAWmLcV1RutMlofX4KfGkq3ETfLJAn2H5g7hnvJAQWjUdqxJE8hWzN9ACjYcISHIWSmnmApIiEaLyyNfAYAiMeIL1gHgiPGNgMTM2pJh5HXr2NNPTaxot3WxhAAUDCYL57gNI6DRCHixtdZ0Wf9qlpKmRV85JMNejFi5dMCYJXIbBCnc7eAF+ufTNd4GmYsXO0KREDSIpKdZsxk7EH7XXToyiqpotJGxlAnLcgsQLTBb6JBohXbyMNbzWAAGEABQJpQFrKy56LI9kQWJy9UTgMJY002GSmQzsMtlQ8H25iAtMQNeOOAaSqqmZM6fU/AF+u/dEGxrkRvBblIxq7lhnJumUWql3V+Rk3UKmdRpy/hh6gKbRGWAuB8eltpKEP3EIEPY2hM8G8FkLrNUDReARStLLo8XhS0DxAUu1NH+c8fOcGbKl4Pk5JhJQHHeFLuTIUubKjGW1oMV1zyyAhBlBLZ5JpKlwPHjNzFFnRDE6j8BeB1yrWbMmEWoOZ9x5sViAGUEtXsqk3OBqLIMLxug4YNHnmAGEABYCfHeFpDVCiJVYp0a/VJ+HrpKCqqhb3butJGwgcp87prh70KYmXRYLghQi6UQo8wI8IujBR0jbfZgUQCTxuxrnRoiZENRJAE8jYy0VZ68vHA40E8wDrdQvaY+iEYpaab03CXwRevXYE3hqhAsIACgQ/q0HTYa5EumJ4VdPJ+ViUCfmxonY9jDpt052eeQzfuQFzSuLETUxItbmvAWq6oXGS1TNmUJyzGTyF7wjNBNAEbe6pk9k7nMAYzAaFKGNTxEtsJfxF0IxWztZ1AqNv5CS8LwygAPCzHxhtYMUnDS/tpMCZEdFMZBqGTAenlDjMlCBEYhEtg5EORTihUQ0g8pk8hGyZuTnP2okc4Ge+0inwLSY8QAA/3itAVwTRwGCORCStjhGPSR5moQ0gMzWnAKryOEd/LxoRAhMAYDvCe50JRgygWDKKyKTgkUy+coEv93ajGkDA1BI41oNnETRQ3XTcSoNv5gGiQ7ZBtjZgDCCTG1Kcw/YEbBXo2kaoBF5DSc00QAAdCuLTEDADmwFmcr6lSO+5MpdlQpjwPifebWEABQDtASp4LYKe1ADRRhebCs/PIsFuMrWn7ATnGWxuwHMaPEAZQBMlKLLzDEY6pGEkggb40DZYLYII8JmabDoExqH3CmhuMAPUAY8jw80qTA0g0xqgyTIhKrgsE8JjgocwgAKA0QB5HAIjrTAYAyhNZ6fws0g022SmgweIRzcxTZI6dZN6LE4oNAmBAVRNmiA9QJMbkhSR0D7brAeIvywwswYQj8YbwHoe6xtAU8ADRIXA2s1qgDgtu0CgD9uiDtA0xq9+YIqiaosAEUAD/FZLJR6gaDyC1p50ze+nQxp8WEJggDtCaOZEX6e7Op2SHYRrX1VVbW62z0ojGjO3bNJGBC+dyWkDqFEWGK91Zcx4gMh1l0uKK17KICAGUHpGwlTJBYDPsgs09NomRNDTGL9E0CVdDSACa0jwsbgpioqxg5VNpmNOi6ZXoqGzwIocnnDcgCkXz8kpicbtWkDN0uCB6mKpKsFUAM+OFLS/i9nwF8Bn2YbcZBFESEC6jsEJ6Is48rOZahogCUi01dEAJfkM35mllC9rWi2z4S+A34MtgUfvtjCAAoA2RrzUAOn7gBHYDA8+FuaJgRyUcuV0X6/OCu8nHDcocdwLDHC/HQZzoq+3oQVcC8hqCwwCjxvSxEglCyzdkUAkWn/5j3FSf0kPmS/J1rjhIQngs/yAFZgUeJOCe4BPg5tG1AESAACSTAjMOw8Q2wes+pk8NkRtJoAG+L/B3SBMIbCCiwZQPB1FNG68KDIn+gAMdrsGUIyzLDBVUSuFENFY/wMEf83rQdLg63kLAX4F3GaxawDx1DfPCLbEBx9rmzCAAoBJg/ewI7y+DQaBKSjIiSHB9gAzvunj0yALrBySLDDAnRCY1gi1TlNOIHhBrl0DKBKNaF3VefCi5MeLUCfbjqQbpMADwV9zI+SSrB3Y6unFAN06waEh0IwxGxlgAP+eL7bIKx9rmzCAAiASi2ibm7ceILYNBiHG4QlpzIwHKM3fuN2GRzcxTdJFETTd2bvhiT7gmjR2agARYhy1nWEywBoIoAE+N9N8prleDNCvb3yM3QpMEUSTGWAA/54vphlqgo+1TRhAAUEaonrZC4xpg8G5CJopglin0m4sGQUmw/68jNttyMIlRSVETGYb+YmbGqBmnb0JsYDrVpGidLFkFC0zG3tO9PCUkm02BR7gczM1UwQRCF4z5hQ7KfAA6zHmJeuQhvwtYskopDr6Lb/hb4WdJiQnM8E8DYEZ9AEDdAUFOYnvkxpAiZZY3dOdJEna4jbVs8DiySgkiY9FgsbNNPgwbGhKWcHYocrcnHFEi+WFm666HjRaBhiaG0A8pvCbSYEH+OkfZxdyGEy1x7V9wgy8f29iSPPk2RYGUECQWkDlggy57E1qL9MHLF0nBMaBCLpclJEZzAGoaCwabfw8VAX2EmKQ8iiABiqGO/nzONUAhWFDGz+c03QzZrvA08QoAyjotjNMDaCmImj+NlMzJRMAPkP8ZikXZGSHrKfAA/x/bzKPeFrbuDeAfvCDH+Dss8/GZz7zGVPPP3z4ML785S/jgx/8IC644ALcdttteO+99zwepXX86AcWFhH02MEsMLk3NBOZVhu58neDu4HmJubolEQjRSQtXOXYA2RyQ2Mzkvz9u5vJTmwEUw064K7qtAHU2kQDFHTY0YiCWYOZQ+PNLMTbCFjLAAN0WjlO/mY0ZEw8rW1cG0CHDh3CD3/4Q6TTtVWBjchms7j55puxefNmfPKTn8SVV16Jt99+GzfeeCNGR0c9Hq01kkwxRG9u0noiaN4KhVnZZIgni9eGf05QVZVyE/NzStJDwlVO0+CZzt4NsnqCzEiymwFG4KkWUHak2gm+WRYYKzwPfo0AgJzZkCnT6oePsZvFThNUAs9lQhRZ0YqY8tIIFQD4GYkB3/72t9Hb2wtFUUwZMD/96U+xd+9ePPDAA1ixYgUA4LTTTsPll1+Oxx9/HJ/73Oe8HrJpEj7UAqorguaspxa9yTQLM9AN/8oFmWtDwSpySdHCJDymwBMqp+8JlPIyykXZdkaHmT5ggL4Apr/zlRHn2wmB1XgjGntevIQVQdc3OIHJLB0JgMrHGgGw86WRaD7OocbRLKQaPgB0WPQ48li6gFDmtMArtx6gzZs344UXXsCNN95o+jXPP/88li9frhk/ALBw4UK8733vw4YNG7wYpm38qAZdrxAib/V0aAOos5kBNIVT4XksFW8Evfk4aYhqWtMRYIE3xyEwjqqXExF0si1et+gkQYpImheIl/uMni+N23iEd41giiA68ADxUrqAUOK0vhmXx2dZlrFu3Tp86EMfwjHHHGPqNYqi4N1338UHP/jBmt+tWLECr7zyCrLZLFpajCfVwMAABgcHtX/39/fbG7xJ/OgHVk8DpKWTq8EvygB7ym4W965J4W8i5gwT9GmVJzexHrpoYX68iNYua6nh9GsJZk/0fs9XLSOnI4FknVYdjYhxUpRPVVXNA9QsA4wQS8UqXj5O9CRm50uMswOeFZgQmFUNEMceIF4r3PMzEoqf/exnOHjwIL75zW+afs3Y2BiKxSK6u7trfkceGxgYwIIFCwxf//TTT2P9+vU1j+/cuROyXDuZMpkM+vr6TI9Pz+DIuPZz/47dyHcM236veowPZwAAkZiEbW9tY34XjUuQiyoyoxOOvocV6l2zob1jAIBEexRvv/tW4/fIjWk/b9/6NtqGG7vyw8TEoeoCn8mPa9fK6Vxzm0yhGo7e/ubb6Jwwp9HTM/DekPbz7vd2Yv+o8ckwN1g9IAwcHDR9LZxeN7moaBk58Q7J1nuNjI9oP7/z1rsYku1dK6eUc7KmwVDi5YbfhVw3Vaqse/mJAhfzb+Rw5d6XosDb726vmy1aGKtutkOHh30Zu1v36ODeEQBALBXBu7t3WHotrYkcGxnn4m9GyOyvhl/Hs6O+rG29vb1Nn8OdATQ6Oorvfe97+PSnP43Ozk7TrysUJheqeO0pLZFIMM8x4qKLLsKqVau0f/f39+POO+/E4sWLsWzZsprn9/X1mbrA9UhnDuAdVDaA7hmz0Nt7tO33qsdrykEAJSTbEjVj3dx6ANliARE15uh7WMHomuUzRbyUrXjbuufPaDqW8U3bcBAVw27+3AWYu6LLm8EGwKHECF7DfgDArCO6tWvhdK65jbxzJ/a9VNmM5nTNwzG9c229z9sYAZADJGDl+46r25xzYjiPTahkcrak2kxfC6fXbWDXKIA9AIC5x/TYeq/yO+9iLyoG47w5R2Jx7xG2x+OE4b3j+BP2AgBmHdnV8LuQ67atYwj54XGoZXObiddsLh0AAKQ7kjjuuOPqPq+YLeFV7Ks8N9Hiy9jduEfLRRkvjVXWwpnz2m293yvJfRVtpFS75gfJfmkQr6Py95s9bxZ6e5cDCH5t484Aevjhh9He3o6PfOQjll6XTFbcuqVSbTipWCwyzzGip6cHPT09lj7TCX5qgBLp2j9zxQ1ZCFzgSLt8zYhMeUvhdxNe3cR63GqIWpjUdCRb4w07kwfVCoMU5wTsCaABvTA1uPlqpQ0GgYRh5ZICpawEWplcVVUtBNYoYxDgvx5OPcYP57RyIFbDX4RYMopyQeamdAGB/jvwFN7nSgS9Z88e/PznP8cll1yCgYEB7N+/H/v370exWES5XMb+/fsxNjZm+NqOjg4kEglGx0Mgj/lp4DTD647wqqJqCy5tbBFIvLiUCzadfPQ9ayJTHtt4uEVYRNButcPQNrQGeg4guA2N7k9nNSOHwIsI2kobDAJPTUVLeRlKubJONWqcCwCRiIRoIqK9LiywTVDtGUBa5XHODodlphM8P2sbP6YYKhodRVGwbt06rFu3rub3H/vYx3DJJZfgpptuqvldJBLB0UcfjW3bttX8rq+vD/PmzasrgA4C0gsM8EYEXcqXtdOEkQFENhVVrZzwgmpOZzXNeCpngdEeAp4yJfTQJ3C6nYUV5LKieSiTDVLggckNLR6BXFJ8/Zs7TYEHjNLgg4Fug9GsBhAhpmuIaqUtg9uwbVOa6/7iqRjkYjFUXmI2A8yZwc3b2sh4tzla27gygBYvXoy77rqr5vGHH34Y2WwWN910E+bNmwcAOHjwIPL5PBYuXKg975xzzsEDDzyAbdu2YfnySoxx9+7d2LRpEz72sY/58yVMwtYBcv8mpfuAxQ1DYGymRGAGkMVCc1PZA0SfsnlyE+th+4HZM97NVvUlxFNRyCUFZR/rumhzU3J+IgeC3ZTseYD4OWzkTdaMIsSTUeTBnyekEYwBZDcENjnf5JICRVYahpb9hEmD5yi8z89IAHR2duKss86qefy//uu/AID53V133YXNmzdj48aN2mN/93d/h//+7//G2rVrcdlllyEajeKJJ57AzJkzcdlll3n/BSzAaoDc9wCxKfAGwnCdJyU9w/UhmIKcsqWohPZZzTNkEpxoKryAXST4OSXpSbrQENVsDSBCLBUDxku+bcSqqmoGUFtP2vYBgQmBBRhGsmUAcdRagTGYm2iAgOomG7ThZgUnKfAEpvVKQUaihQ8DiNfwPlcGkFNaWlqwbt06fOtb38IPfvADKIqCk08+GTfccIOljDI/iEQjiKeiKOVlT1phsEUQDUJgTLGwYAwJVVG1m75jdospkeVUDoHR3g2eRdDxVBSRmASlrDLtLKxgthEq/ZmAfxtxfqyo3UN2CiASeKnOa0cEHeOoorJVg5kkS/DmCWkEqQIdT8dMfUcj9B5Ho8NvEPCa4MHPSBpw7733mnoMAGbPno077rjD6yG5QqIlPmkAeaABqtMHjMBkUwUUSsoO57UNzeyJZ0qHwDg9JemRJAmp9gSywwUHHiCrIY3JHnAFGYqiIhIxrgHjFk57gBHYE3mAGqBJAyiejpregHiqqJwzWQSRwKsnpB5yWUHmcA5AJdxar8ZRM3jtB0aH93nSN/I9K6Y4pBq0JyGwOn3ACHEOuj2PWkyBB6Z2Gnw5JCEwoHoKL4yXbGURWvUAMYJcH+YrK4C2nzzBjwao0gi1xaQAGuDHewWY7xtH4OW6myVzOAfVYQo8oBeu8/O9RS8wQQ3JyUwwuahALrk7Wev1ASPw0A9s5L2M9rNpA4gy3IpTzgMUjlYYQNVoqQiTrc/dgtWQhs99jpgaQE5CYBxkgZXyZZRylb9R2kLrGJ56S1kPmYbLU8ymwDvwOHIUtqThNQQmDKAA8TITjK4tFDcMgQXvKrVaBBGY2hqgEqe1MoxIOqwFZDUE5ndDVMYDNM+BAUS6qiO4E7kdATTAlxeF0QCZEkHzU8PIDKNUBtgMmxmHAF9hSxrGuy1CYAKADU25bwA1CYElg1/c7OgsovEIpEn9RxhOdlYoc1orwwinqfBmG1sS/G6ISoogRuMRtHbb79/FdFUPaCPO2TSAYhxlgTEGs4mmtPGQZYu6kQIP8PU3o2E9QPysbcIAChC6I3zBZSE0qwEyCIFx4AEiBlAsGTW9MEuS5HtGkF/wWivDiJTDVHjLWT0+ijsVRdU2pI45LY4F1+RvGZQIemLYrgco+DWCQAohxtNRROPNN1BeKnCbhUmBd+IB4tTwI2ubFJUCbamih5+RTEOSjAfIZQOoSRp80AuEXFYqvW9Q8f5YyXrQqp1ONQ/QpEEXTUQ8z3JyCtMOw0Y1aGI0SRHJ0EOpx88Q2MRATuuc3uEgA4ygeYAC2ohzkwJoAEibTIEH/A87NkJrm9KkDQaBV0OgHiQFPpaMWtJp6eG1DxpZ2+LJqO0MNy8QBlCAeKkBKjXNAgtWBD1+KAtVqaQ9WBWZkkywMCxsViDfhyeRYD2ce4BIH7C4qQWRDYF5+3dnQrMOBNAEre9eQPPVDQ1QkCJoRVE1D7kZ/Q+gMwQ49xQrcvUw2HGE/RR4wP9QsVl4XduEARQgXvYDY0TQTTxAQZwUWP2PNZcv3e+GGFFTAfJ34F3/A7inATJb8M3P+epWCjyBbMZKWYVcVhy/n1WyroTAgttMi5mS1tfQ9HxJBp/lapbMQB6qXPmCTsJfAF9hSxriAeItuUMYQAFCe4AKbougJ2/6SEwyLOMftIvYSaE5HmoYeQGvi4QR9EZUsOgBKhdkyMWKIWD+RO+faJ9JgZ/b5vj9mJYSARgSrAcofHWAchZT4IHgQ/xWIOEvwFkKPMBX2JKgqiq3hzthAAUI3V3ZfQ9QxaipVwo9aBE0u8lYDYHxecpxgqKoVJycLzexESkHafBsRo/1E73XYmIn3kkjgm4pQbLAovEI43VuBtvHLLj7rMBkDJpr7RD0NbeCGz3ACLyELWnkkqJ56nlL7hAGUIB4mQZfIgaQQfgL0MXIcwGEwOjCX1Y1QBwUcXSbcohqAAHOGqLmbW1oPobAJg2gRIv9nkw0QXsjiAeopTNpSV8SjUUQiU6WnAjQi0LPl7RJj2GCk/CdGZgUeFdDYHx8b14boQLCAAoUVgTtngdIVVUtBFYvwyYSkRBNVP78QZyQSJ2VVEeC8YSZYSoWQyxzWim1HrFEVHO3W9UAWa3qC/jXmVxVVUwMVbKm2mc7E6QS4gGGJeSSjEKm8vexkgFGIH/jIEtO0PPLTM0ogN+WEEYwmjOHBhAvYUsaen/hzbstDKAAod3RBRc7wpcLVXFwo27A1XRyf2+UYq6snUrtNJoMW5l7M5Q47ZXTCGK8WPcAWasBBPgn7izlytq9kzRRcM8MsQCFqdmR6t/GigCaUE04CO4+o8ssmE+DD0+YnHiAovEIWmaa12gZwUvYkoatb8bX2iYMoAChw1NuaoDocJpRGwz95/u9QIw57LQ9FRui8loqvhFEB1TIlCxl41ltgwH415aBPohY9UzWI8jUZLoGkBUBNCGmpfDzEQKzN1/4XSMURcX4oWrRTclh/a9oLAKJg7AlDa+NUAFhAAVKJBrRNnM3O8LT4bR6GiCAXtz8XSDYNGPhAQL4bRbYCOK9URXVkoatYCMEFvNpQ6MPIm4ZQEE2RLVbA4hA5mI5X4aqBlNygjGAzGYNctDqxwwTg3koZXdS4AlxDsKWNDyvbcIAChgSonJTBN2sDxghHlB9EqeF5sIkcDQL0wg1JB4gu0JoWyGwJO3a99IDRB0eXPMABVe2wbkBVJmLqgqtOrbf2JkvkWgE0fikxpHjNYJJgXeh6CbAR9iShmfvtjCAAoacMl0NgTXpA0YIyk3sNM3YL2+An7AiaL4WiXrQGTmWDKAxOgvM3IYWTUR86apOG0BuaYCCDIHRRRCdiKCB4MTEWtsUyZpRSpIleEkHN8KtJqg0PIQtaXhthAoIAyhwiIdGLikoF92ZsEwbjAYhsHhAqfCjpO6FZM/tOxWzwEpMqihfbuJ6JG3WAspnrGs66Ca4XmYtFrwOgfksTHXsAUrS3qtgDAkyt5JtcUs98rQebJyEgozIDlU1Wm3daVfek4ewJQ2T4CGywAQ09Imm6JKexawImjYk/MoYUFVV8wC196RNdXbWMxU1QGGrAwTY7wdGnhtNRCwZe2Tx9NLoLWZoA8idxTrIOkB222AQeEirJpoxs/ofQoyzUJARhYx3Hscgw5Y0IgtMUJckXQvIpTCYWRF0EP1ycmNF7bPsCKCBqZkFxriJOTsl1cNuPzDyXKtFBsni6VcIzD0NUHBGBMkCk6KSraKOQVcWLhdl7ZpZHT8Zu1xUoMjBGwJGeBFyDVJ0bwTPNc6EARQwXlSDNi2CptPwfVqYR9+jRH82DaBEwFWsvaDEcbXUethph6GqquVGqAQ/xJ2ehMACrQNU8QClZyRspVgHXVmYbYNhzwAC+MmI0uPFfAu68rgenmucCQMoYBIe9AOzI4L263RHp8B32vUAhajImVnKIcwCs9MQtZQra52vzep/CGS+KrJ3WYtFL+oABSQkVmQFuUnBuZ0aQECw3itAlwFmsggiIWjjzQxTzeNohMgCE9SF9tC41RG+lOVXBE1ngNn1AE35EBhnbuJ6JG2EwOy0wSD4kZFUmKA8Dq5Vgg5GBJ0bKwKTGlg7+h8AiAUsgrZTBJEQhoMS0QAlWmKWBN6N4O1787y2CQMoYJIe9ANjNEAm6gAB/t0oYw5rAAFANB6tNmmcIiLoUIbAWq2HwOz0dSL4kZFEKkFLknuLNduewL8TeY4WQNtIgQeCDyPZKYJICEM/MGIAueVtBHQHBQ5CfyWOEzyEARQwdD8wv0NgQdTTISGwaDyCtm77fW/iae8zgvyEvv68LRL1iMQimoFt3gCyf6L3IyOJ3IOJ1rjjtgSEoLqqO02BB4KvqOzEYxgPyPNmFlVRtfnmlrcR4DEERid48LW2CQMoYNiO8O6KoKVoteO7EX7X01EVFWOTNYA6jnDW94acqt0qHRA0bL8cvtzEjSCbUsGHEBgr7vTKA+T+iRwIpjqvGwaQH9e8EXaqQBMYjyGHyRKlfBmkTI9b+h8g+LClHjYNnq+1TRhAAcN2hHc3BJZIxyBJ9Y2MhM8eoMJIGcqkANZu+ItAdEA8xLjdgLjoJQlaCf8woBlAEyVTqcaONjSPT7b0idzNDQnwJ4VfT5ZqhJq2bQDx5AFy4jHkb53wogYQEGzlcSPIvIkmIq7pnNwiPCvtFCXpoQeokf4H0Kfnen+j5Iaq389uDSACOZnyXOPDCuSkFktFGxqtvEHrMvKZ5gY83QbDbh0gwJsNrZirnsjdKoJIiGlViX30ADEaIHvh5qCNCCcaIMbDzYEWRo8XKfBAcC2O6kGK7PLo2eZuRDt37sQjjzyC7du3Y2hoCKlUCgsXLsTHP/5xrFq1quFrn3nmGdx9992Gv3vqqafQ3d3txZAdkXC5EKKqqpowuJH+B/C/onJuqPr9nBtArNAv0RJuW54YoGEpgkigT+WF8SJaZjT2NOSZui4Ws3o8FneyneCtFw1sRDUEJkNVVV+M3JwbITCfmtDWo+AoBBZsEcdmMB4gN0NgnKX/kzHwlgIPcGgAHThwANlsFhdccAF6enqQz+fxwgsv4LbbbsMtt9yCiy66qOl7fPazn8XcuXOZx9ra2rwasiPiTBq8cwNILilamCneIAW+8nt/3dv5QTcNINZ4a2bs8Q5xVYdFAE2w2hGerheUtuwB8vZEz9ZkcXdp1Az2yfYEsYT3f2fNAyRVCiHagRUS+7+ZkjpG0XjE8gbKex0gL6pAA94fFKxCxsBjdit3BtDpp5+O008/nXns4osvxtVXX40nnnjClAF02mmnYfny5V4N0VUiEQnxdAylXJkpwmYXs1WgAf/T4JkQmGMNEFvF2tm7BQ+5/jy6iRthtR2GszR4b0/0XoUkgNr2BL4YQJMeoFR7ApGoPQ9pLGAvCjGYk+1xy16zoMN3zfDMAOKoDpCiqFUDiEPvdijiBtFoFLNnz0YmkzH9mmw2C1kO3vo1A1ls3agDZLYPGDCZnhsj6bk+GECD1Qwbq+EPPVOpIapcprx2HJ6SGmG1HQZ5TjwdQzRmbfnx+kRf9NAA8rs9gaqoyI5WDCC7NYCAYMMpdNsUq95CIAQeIM9CYPykwfPe5Jk/k2ySXC6HQqGAiYkJvPjii/jjH/+Ic88919Rrb775ZuRyOcTjcZxyyim4/vrrMX/+/IavGRgYwODgoPbv/v5+R+O3QqI1Bgy4I4JmPUDNb6p4KoZCpuT5olwuyiiOVT6jY26LYw0Eb0I/J7Cl4rm9JQ2x2hG+2gfM+oLv9cJeoDywCRdP5ID/2VT5TFFrOWJX/wNUPNTRRARyUfF9My3lqlmjVr2FQHAtSMzihwcoaO0Tz41QAY4NoPvuuw9PP/00ACASieDss8/G3//93zd8TTKZxIUXXoiTTz4Zra2t2L59O5544glcd911ePjhhzFnzpy6r3366aexfv36msd37txp6EnKZDLo6+uz9qXqUFYrm4JcUvDm61s0r4wdRt7NaT+PTQw3H2O0kkGVy+Rd+z5GTBykNsd02fFnDY+Paj+/+/YujEYOOXq/ICmMVheJXHGi5tq4OdfcZmygmmr93q4DSPbVN4JURdVOvWpMtvydMu9VRb2H9h9GX1/jTc3qddv7bnVOHR4+CKVv3NL4GjE2UX3vt7ftQHvGvlFiBvp+KyJn6Tror5sUA1AEsuPW3scpeSppoqhY/+zCWPW+GjxsYi10gJ179ODe6oF774E9GFYPujIWuVDNih0ZGgt07aATX7L52mvk5drW29vb9DncGkCXXnopVq9ejYGBAWzYsAGyLKNUahwiWrNmDdasWaP9+6yzzsKpp56KG2+8EY8++ihuueWWuq+96KKLmCyz/v5+3HnnnVi8eDGWLVtW8/y+vj5TF9gM+2blMLa7soEfvWCJoxPbzvH96EPlveYtmIve3qMbPn9rxyAKoxmoZcm171NvXMB+AMCCFfPQ27vE0fupe/qxGyMAgCN65mJp75EORxgcw/syeBX7AABds2bW/B3cnGtuMzpzAm+isnC3JtobjjM/VsQfsBsAMHP2DMvfaWRGBq/jAACgvaWj6eutXrfMa9u1OXXMssWY1+te1mj2zbewHxWD6si583FUb49r723E3tJhvDZ5v81ddAR6e481/Vr9dXuj9RDGszlISsTXeXhoxwj+B+8BAGYfNcvyZxezJe2+SsdbPB27nXt036/+B0BF1tF7wjK0dqddGYuiqPgj9gAAktFUoGvH4K4xbJr8G3bP6eJubePWAFq4cCEWLlwIALjgggvwD//wD7j11lvxwAMPWAqfnHDCCejt7cWrr77a8Hk9PT3o6fF2UaqHviO8EwPIiggaqArTygUZiqJ6VqhqdH9W+9mpABqYWg1ReXcTNyJpQQPkpAo04H1vJ281QP6Kiekq0K0ONEBAVQfk933G1gCyETKlheccVETWw8w3i53uGxGJSIgloygX5MC/N8+NUIGQiKABYPXq1di2bRv27Nlj+bWzZ8/G2NiYB6NyB9pQcSqEpg2guBkNUNqfhZn0AAOcp8ADU0sEHcZGqIRkS7VnVrMsMCc1gADvm6GyafBuZ4H5W5SPNoDsVoEmkDkpFxUoiurovazg1GCORCNaVXUeW2GQcHAk1rhlkR20wpsBa5+YRqgc1gEKjQFUKFRuaCuZYIT33nsPnZ2dLo/IPWixcsGhEJpthGrCA+RTpsQo1QW+Y06L4/fzu4+Zl4SxESpBikiagJOu8myEmx4gb0TQtAfIozpA8EeQ60YfMEJQ3cWdVA0nxLUWJPwdkrS+c20J1wtj8vK9We82f2sbdwbQ8PBwzWPlchm/+tWvkEwmsWjRIgCVrK3+/n6Uy9ULPDIyUvPaP/zhD9i+fTtOPfVUr4bsmKSLHeGtpMED/nlSiAHU2pVyxRXK9DELuQeIaYQasiwwoLo5NQ+B2a/qC7BlG7xY2Mm9J03W5nITv7MWc0wbDKceoGCyipzOF4AK33FQEFAP8QC5HW4F2MrjQcJ6t/lb27gb0T333IOJiQmceOKJmDVrFgYHB/Hcc89h9+7duP7669HSUvEePPjgg3j22Wfx+OOPa1Wfr732Whx77LFYtmwZWltb8dZbb+GXv/wlZs+ejU996lNBfq2GuNkR3rIGyIdKr+WirN3s7bPdEfqxHqBwG0ClQnhDYEA1pb1ckFEuynWL/Dn1AAHVsg2eeIC0DalxE2E7+F1PhwmBNWlP0oygGqK6NV8A/tYIuaxoBx8vDCDiLa10BlBsF8J0CtsJnr+1jTsDaM2aNfjFL36Bn/3sZxgdHUVLSwuWLVuGa665BmeeeWbT17788st45ZVXkM/n0d3djQ9/+MO4/PLL0dXV5dM3sA5rADnzAJWYEFjzGyvmgweowGg/3BH7MZoKDuP7VqBP1TzGyZtBb06F8SJidbJZnHT2JsRT0YoB5GErDLf1P4D/7QlIJ/hka9xx1emgxMQFl+YLUNUv8dKN3KsaQAR9D7egeiWWqfnCo3ebuxGdd955OO+885o+7/bbb8ftt9/OPHb11Vfj6quv9mponkH3HSo4bIfBiKDNhMB8yKZiXNkuZTsw4+Yww8MKvLuJm6Fvh1EvnddJY0sC2YzLLv/NVUXV9HNensgB770RqqpqHiCnAmjA/yrWhJwLByd99h0vPQOZKtBeGEA6r11Q35t3DxB3GqDpSNLFjvBkEZckc+EUP0TQ+Yzzk5yeRGrqeIB4XySaYbYhqishjSTbVd0titkyMPl2nmgyfOyqXsyWIRcrxfCcCqCB4BqiEoPZTtsUAm+d0QletcEg8NIPjNU38re2CQOIAxgPkOM0+OqiYUbH4Ic400kDzHpEYlSKK2fxfauEuQ4QYL4fmPY7yX6rCc1AVKFt8m7gZQo84K+OhskAcyiABoJriOqkbQohnvRXfG4WL2tOAcFl7ukRdYAETWE0QC6FwMy6PP3IAit44AECqptK2LPASpyfkpphtiM82dCSrXHbWgyvTrZedoIH9J4Ib+drzsUaQEAwTUUVWdH+JqkO+4cmWgbAUz8w2gPkhcHNS0NU3mucCQOIAxLpGDC5H7glgjaTAQb4FAKjQx8uVjzlNcPDKmXOF4lmmG2ISowju+EvwDtPitei1JiPjTmzw9X+bG6EwILYTAuZkhaSdG2+cKQV9FwE7XPl8XrwXuNMGEAcIEUkrWaPkzR4uSRDLlXCAuYNIO9dxKz41UUPUJqPWhdOoRfmGIdu4mbQf9NCHQNILiuace5kQ4t5VA266HEIjLQnALzfiN0sggjo9Uv+bKZu6MUAXfVwjtYJP7PAgqyBxGiAOFzbhAHECWTRLTgQQVvNANM/z6uTKdMCwQMPkFxSoJTd04P4DeMmnqIhMDdSmgHvKip7WQWa4Fd7AlYDlHL8fkHUAXKjCCLATyhIj/ciaD60T+QelSRomk2e4G9E05RkC/EAlWxnt7BFEM1qgHzwAGXcWcz00KnwxRCHwYiLOhKTELGZ7RIktEajXgjMjZRmQF+Txr0NzWtRKlA1br0OSeTc9gAFsJm6UTMK4CcbSo+/mrMANUCTHsNYKup6cVE3CN9qO0UhHiClrGphLKtY7QMGsAtE0SMxMZP9Y3JcZohPkVR4skDx6CI2QywZ1U539QwgOgyadiJq9Ujb4HUWGOBfWwbXs8DoOkA+hVMKboXAONHC6PGzDlCQ4m9tbeOwCCIgDCBuSLhQC8hqHzBAFwLzaHHLT97ssXRE6xzuBlOlHQbZEMMogAYASZK07u71DKC8Sx4gr0T7XockAP+6qmcn+4DFU1FXjGo2ldyfzTTnmgHEhydET2Gi+v28KbvAx9pIjC8eBdCAMIC4gfaM2O0IX7LhAYrGIyCeSa9bYcTT7k43xjUf4lR4IiyNcXpKMgPdENUohOtWSMOrispei1IB/7wRblaBBvytYk0ouFQ7jFcNECl3kmiJedKew6tQsVXIfOHVuy0MIE6gT532PUDWRdCSJHmaTSWXZO19Yy3ungJ4OeU4QVVVKgTG5ynJDKS8gVJWDeeRa1k9HrVloOtveeUBYnQZXjUeLsjaYcAN/Q+gu+Y+bab0fHEWMg2mk30zSG00r8KtjLEdkAEklxUoslozHp5wxSyTZRmjo6MolYw37jlz5rjxMVMa2mNjNxXejggaqJySitmyJ0ZEngoteOoB4uh0ZwW5qGj1Tng9JZlB3xBVH4J1K6sn7tHJlniApKjkWUPauA+1gEgTVABo6XSeAQZUvcSq6mcWGB0ydakSdICeEBpVVbWej54Z28ngD4f0HOfVu+1oVNu3b8eDDz6I1157DeWy8UWWJAkbNmxw8jHTAjc6whdzlAbIgti4svEWPLlRaFe26x6gKaABYgqFhTAFnqBvh9E+u4X5vVtp8F6V+CcGULI17lm2SsyHtgxE/wO4I4AGKmt4LBVDKefNIcmI/Fhx8rPZXolW4TFMXsqVoU5qwPwJtwZj+JWYTvB8rm22DaC3334bN9xwA6LRKE455RS89NJLWLJkCbq6uvDWW29hZGQEJ510Eo444gg3xztlYTvCOw+BmRVBA9XGoqTBpJsbAH2Si7nuAQp/FhjvpeLNkmxSC8iLEJirGqBM1QDyCj9CSVmX22AQ4qkoSrmyjyGwyb9He8JR4gQv6eA0XqfAA3zUAQpDk2fbBtD3v/99AMB3vvMdLFq0COeccw7OOussXH755SgUCrjvvvvw/PPP49Zbb3VtsFMZpiN8ACEwAIBaWZjdDMXQG1+8xUMDKKweILoKNKduYjM0a4dBNjQpKpnWpxnhhahVUVTNO+CtAeR9yJbxALloAMW0Gkb+hsCc1g3jsRWGH4L7SCwCKSpBlY01eX4QhibPtnekN954A6tWrcKiRYu0x0j2RzKZxBe+8AX09PTgoYcecjzI6YAbHqASYwBZCIGlvTsl0enFsbTbITD+3NtWCXsfMEKzjvD0hubEw+iFqNXrNhgEPxqiut0Gg+Bn371yUdY8TU5b50SiEa1GFS/NUP0ouSBJUrXwZkDapzB4t20bQBMTE5g3b57271gshlwuV33jSAQnnXQSXn31VWcjnCa40RHemQaogtsLnH8eID4WN6swneA5XSTMwFaDrh8Cc7qheeFF8aMNBuCPLiPnchFEAhm7IquQPW4741a4lEDGzouX2A8DCAi+WTTvjVABBwZQZ2cnxsfHtX93dXVh7969zHOKxSLy+bz+pQIDXBFBEw+QZM3l6GW8mPUAuWwATQERdJlZJPh0E5uBCYGNsR6gUr5cyXaD8w0tlnA/pOFHGwxAn5HklQeout66qQHyM6vIbQMoRmkceaDoQwgMqBodgYXA6MMdp+F92zvSokWLsHv3bu3fK1euxCuvvII333wTALBr1y5s2LABCxcudD7KaQB98nRqAMVTMUvCQa9qqwB6D5C7p4AEhxkeVgl7I1QCYwBlWAPIrRR4AJCorupuufb9aIMB6I0Ib0XQ0XjEVWPOz6wiZr44qAFE4M4D5NN8I+t6OV+23V/SCWHwbts2y04//XR861vfwsDAAHp6evCJT3wCGzduxA033ID29nZkMhkoioJPfvKTbo53yhJPxQAJgOokBFatLmrts70zJOjFTHiAagmDm9gM9Em2oNMAudXXiRBLRisF/9wKgfkWkvBPBJ3uTLqazelnVpFbJRMIxPtAWpB4UXnZCnmP+4ARyN9MVQG5pDDeUz8oh6DEh+0d6W/+5m/w5JNPYsaMGQCAJUuW4Jvf/CZOPfVUzJgxA+9///vx9a9/HWeffbZrg53KSBFJS10v2PQAlWwbQJT3yW0RNNUINZZy1wCKTYE0eFYEzaeb2AyxRFRbcPUiaLfaYBDI57glgvYjKwfQV+d134iQy4pmzLkpgAb8bYiaG6OLILrgAUrT3qvgD0q+hcB8KLzZiFII1jbbo4rFYujq6mIeW7lyJb7xjW84HtR0JdkaRzFbtpUGr5QVbWGymmbMNER1WwQ9GQ5JtsZdbYQKAJHJcEjFGxD8wmYHxk3M6SnJLMn2BEr5XI0I2q1GqIS4y5oOP9pgAN7XpMl5lAEG+NsQ1XWPoa4FiZUSIV7gm8eRDrkWykjB+bW0QhjqAIleYBxB4sHFiZLlmG2RboSatnZTeeneJpuhGwuZEbzF961SmiIiaKD6Ny6MF7VKt4C7GiCgupjKJQWK7DwjyT9Nhrcncq9S4AF/G6K6PV/8aEFiBT8KIQLBN4INQx0gx6MaHBzEW2+9hfHxcSiK8WJ0wQUXOP2YaQEJXSmyCrmoWIqbFm3WAAK8q6islJVqgTkXQh9GxFMx5EaL4Q2BhUAoaBYS3lLVShiXNEh1PQSWZMMxCYflFfzakPQncrehiyCmXUyBB2qvuZe4nwZPr2/BH5TIfIvEvOs7B+gNbv+/dxi827YNoEKhgH/913/Fb3/727reCtJWQRhA5qBPn4VsyZoBZLMGEKArKOjiwkyL/chm6Dbh9wBNJQOIbohazwByL6sHqFw/pyENv+oAeX0iz41RBtAMlw0gH70JbhvMzHXnoBo03XbFq75zQPB10sJQ5NX23f7AAw/gueeew/z583Heeedh1qxZiEb5/JJhIUl3hJ8ooXWm+W7OjjxASW88QIWMuwuZEUS/pMgq5JKMaDxcc5DNlODTTWwWfTuMGXNbAbANcd3KAiO44Y3wqxI03VXdixN5frR6v6VdSB+n8aOKNYEYQNF4xBUPSYKzgqlkvnkpgAb8NVqNCEObH9uj2rBhAxYtWoSHHnoIiYS/4qqpSsJBPzCmDYZVDZBH6eSM+LUtAcD9CrL68F3YDKCp5AFK1mmHkc94GNJwYb76FZJguqp7EEais6e89AB5HwKr6gbd8JAErYWhkcuKNoZkq7f7ZszjkGszprQIOpPJ4NRTTxXGj4vQ/cCKFvuBOfEAebVAsGJG7zRAhDCGwZhTks91OtwmXachqnaiT7hzond7vmonco9DEgCdwu+BATRKh8Bc9gD5lAWmqmq1bYpLXiwv+sfZhRXce+sV8bN4pRHkWkdiEqIxPvOtbP8FFixYgOHhYTfHAgDYuXMnHnnkEWzfvh1DQ0NIpVJYuHAhPv7xj2PVqlVNXz8+Po7vfOc72LhxIwqFAlasWIHrrrsOy5Ytc32sbkN7gAoWPUC0BijuSATt3gJR0KU/Kyg0eLY9aP1SMYQGEFmYYsmo62UC/CZZpx0G+dmtsIzb4k6yKXkZ/iJU7rWCJ8Y64wHqcNsD5I8RUcyWocoVTalbh6agQ0E0RR90kQQ/i1caQa41rxlggAMP0GWXXYbf//73Nf2/nHLgwAFks1lccMEFuOmmm/DpT38aAHDbbbfh6aefbvhaRVGwdu1a/OY3v8HFF1+Ma665BsPDw7j55puxZ88eV8fpBUkH/cAYD5DVOkAe9ShiPECeiaDDXQyRhELCHv4C9Bqgyt++cqInmgeXDCDGte/sb17JVCQhCe8NIOJJKRVk19sTEA9QPBV1PZTHrhHe3WduC+YBvfdq+niAvK471YwwrG2m/wKbN29m/j1r1iyceuqp+PznP49LL70Uxx57LFpaWgxfe9JJJ5ke0Omnn47TTz+deeziiy/G1VdfjSeeeAIXXXRR3dc+//zzePPNN3HHHXdg9erVAIA1a9bgE5/4BB555BF86UtfMj2OIKBviIKjEJi1hVyiCwq6aETkdSLorAdNpMPeDoOcpnk+JZklZaABKmbLWk0gtzY0N0+2dNV1PwwgrT2BrEIpK65q1oinza3QEY1f3gS919gNgs6GovGr6jigq3/ksW7LCFLtnFcBNGDBALr55psN4+OqquKRRx5pGDt//vnnbQ2OEI1GMXv2bGzbtq3h81544QV0dXUx7Tc6Oztx7rnn4rnnnkOxWORas8SIoC32A6NDV1Y1QEDFkHC7ojKd/ZNsTwCjrr21hpd9zPygRIXAwo4+C4z+f+X37iz4brZlYKpAe7whAbUNUd0ygBSqDYbb4S9Ad809NCJor3HaLQPIw0r3VmGrQHssgg4wBKaqKhUC43dtM71TfuYzn/FcIEiTy+VQKBQwMTGBF198EX/84x9x7rnnNnzNW2+9haVLlyISYSN7K1aswM9//nPs2bMHxxxzjOFrBwYGMDg4qP27v7/f+ZewSMJBR3gnITCgMklzcHdxYzxAbXFvDKAQe4AUWYFcqrjFeM2SsALbELU0+X/3QxputmXwqwo0Qa9HSbW78765cToDzAMPkE8iaLZtiksaIJ/Cd2ZgDSCPRdA+Fq/UIxcVYDLCy/PhzvRf4Morr/RyHDXcd999muYnEong7LPPxt///d83fM3Q0BBOPPHEmse7u7sBVKpW1zOAnn76aaxfv77m8Z07d0KWaydPJpNBX19fs69hicJodQMfODBk6f2HDlcF6e/ueQfxAWuTTkbls4u5ErZs2eKKsTt8qGrxvLtnByayE65fs8ODE9rPe3btg9w37ur7e0k5X40JFsv5utfGi7nmFbFUBOW8grHBypiH3s5qvxvLj7jyPUYO5rSf9+89gESfsbjezHUbfqf6XmNZd8bXiIl8dX5u79uOllnuGCuZA5ToXMk6+h71rpsUBVQZyIx6Nx/37aiuGQOjh9DXN9Hg2eYojFXX1cFDw56M3ew9unfXiPbzwaEDKPZ5cCqcpDhe/d5Dh7353nU/e6K6Z+ZLuUDWtt7e3qbP4TY4d+mll2L16tUYGBjAhg0bIMsySqXGXpFCoWAY4iKPFQr1s5AuuugiJsusv78fd955JxYvXmyYQdbX12fqAluhmC3hVewDACSjaUvvvyMyCiAPAFh50nGIRK3p29/tHMPEgSJUBVh+7HJXXPNvlg8DKCLREsNxxx/nyTXrzx3E2xgAAHTP6EFv7xJX399LJoby+BMq4vzO7hl1r40X180r3uw8jLEDWSiFygL01uG92IbDAID5Rx+J3t6Fjj/jUGIEfTgEAOhsm+nour0z8h62Tr7XUYvmord3sePxNWLklT4ceq2yqS84chFmL+l05X33lg7jdewHAMxdOAe9vcfafq961+3V9HsoZEqIIu7ZfMy8tg3ACABgyYqjMa+32/F7Fiaq62pLosWTsZu9R0de6QNxhS/tPca1v78RxVwZf5783qm4N9+7HmMHs/gzKglSXbM6uV3bHBtAAwMD+N3vfoe3334bmUwGbW1tWLp0KdasWYOenh7b77tw4UIsXFhZLC+44AL8wz/8A2699VY88MADdb0TyWQSxWKx5nHyWDJZPzbe09PjaLxuEE/FtEqxVgshkufHklHLxg/5bIJbBQW1eh4eNUIFwl0HqBSCZoFWSbUnMHYgi2K2DKWseJLVw4SRHLr26ZCELyEwj4SpbBFE79rOFDIlj7PAqMxRt8omUNc86FIZfnWCB3QV030Wf4ehCjTg0AD6yU9+gvvvvx+lEtu9/Ne//jUeeughXHfddfi7v/s7x4MEgNWrV+Oee+7Bnj17sGDBAsPndHV1MToeAnmMhMJ4RYpISLTGUciUrBdCnKwDZEcADdQaEk4XH0VWNKPMq0aogF4DFK40eHoDnAoaIEAnhJ4oud7ZG9ALiR1mgfnUCJXglcHOFkF0XwQNVK+7l0JiLwzmSCyCaDwCuaQE3g2+6ON8i9DZvT5Xgg5DHzDAgQH029/+FuvWrcOMGTPwqU99CieccAK6urowNDSE1157DT/+8Y+1369Zs8bxQEn4KpPJ1H3O0qVL8frrr0NRFEYIvXXrVqRSKcyfP9/xOLwm0RKrGEAWRdCkFYZtAyjtrsiRPul46wEKbxbYVGqDQaAN58J40XMPkNMNzW8DyKuq67QHyIs0eIBqPFyQoSqqJ4U76QKaKRez8uKpKOSSEriXmPU4eu8Z0Qwg3z1A4VjbbBdCfOyxxzBjxgx873vfw6c//WmcdNJJWLBgAU466SR85jOfwXe/+120t7fjscces/S+RtWly+UyfvWrXyGZTGLRokUAKqG3/v5+lMvVCX3OOedgaGgIGzdu1B4bGRnBhg0bcMYZZ3CdAk8gqfCFbNl0oTRFqaYcWu0DRnD7ZJr3ywAKsweIaYTK7yJhBTrVPTemM4Bc2phjLmb1FH2sywLoQmBu9t2jG6F65AHS1ggVKBe9udfIfEm0xBBxsX0CSeMPeo0gBnc8HbMlVbBKtfWK3x6gcKxttk3Q/v5+fOhDH6qrm5k9ezbOPfdcPPPMM5be95577sHExAROPPFEzJo1C4ODg3juueewe/duXH/99VqxxQcffBDPPvssHn/8ccydOxdAJUz24x//GHfffTd27dqFGTNm4Kc//SkURfE9i80u5BSqyirKBdmUNqTkoA8Ywe1CZ0xBMw83Fq/aePgBc0riOE5uBbrid40HyKV5EI1HIEUkqIrqeGEvUHWA/NAAMdV5XdUAUSEwjzxAtPfK7NpklQLVCNVNNEMg6DR4nzrBE+IBGX6sd5vftc32yNra2pBKpRo+J51Oo62tzdL7rlmzBr/4xS/ws5/9DKOjo2hpacGyZctwzTXX4Mwzz2z42mg0im984xv49re/jSeffBKFQgHLly/HbbfdVlc3xBu0AVPMlk1NHid9wAhul033QvthRJyjMvdWYUXQ/J6SrKBvh0E2NDdP9JIkIZ6Kopgtu1oHyM9K0IC7wtTcpAdIikqefQ99LaD0DHffX5EV7e/hugFE9EsFGYqiIhJA3z1VVbUQmB9zDah6X+SS4uv3ptc2nvWNtg2gVatW4aWXXsLVV1+NWKz2bcrlMl588cWmRoue8847D+edd17T591+++24/fbbax5vb2/H2rVrsXbtWkufywv0KbSYLaG1q7GRWXkeXQTRbgjMXS1NTRFEj5Ailc2wlHe3irUf0Jt3jONTkhWSunYYXmUCxogB5FDcSTakaDyCWML7hZrNYHNRBD3pAUq3JzxrqsuIzz0Q1dJhc7cTJxjvVb5suV2QG5TystYWxi8DSN842K/vXQ6JB8j2kezaa69FOp3GP/7jP2LLli3M795880384z/+I1paWvD5z3/e8SCnE7QHqGCyHUbRjRCYy1oaL3r61ENz83rUDPXQjhHs3zroevPKsGRKWIE2dHIjharL3+UNTTvRO5yrRR87wQO6Rq4ueYBUVdU0QCmPUuAB77xXBC+qhhPiHoUercCkwPsUAvMq5NoMNrzP79pm2zT77Gc/i3K5jMHBQVx//fWIRqOYMWMGRkdHtcrJ3d3d+OxnP8u8TpIk/OhHP3I26imMnY7wTB8wG20wAP3C7IIHiAmBedz0Lx0DRgqeeIAGd4/h6S/9AQDwwX861ZXCbAQ2U4LfU5IV6I1r9EBWK4fvlaajlK90VbdbuVwz0PwKSXhgRBQnylDkyoX2og8YweuGqF4I5gleG29mKExQh0LfDO5gvjcbAuN3bbM9MlVVtSalNPpaO/pTs9un6KmGnY7wtKFkVwPEpMG7EAIrZLw7zenRNsNc2dFmaMTB7dWsxIPbhl01gMKSKWEFxgDanzF83A3Ioqoq9ruqK2VFE8UGsSG5ZUSwNYC8u9fc1gnq8VI3yEPBVL8b7wLBfe9ySNLgbRtATzzxhJvjEExipyN80WEneMB9FzG9mCXbPDaAJr1eqlppwuemMZEdrm4u2ZH6rVTsEJZaGVZItMS0DK3MQF573H1RKyvItWMAsY1Q/TmlemFEsFWg/fEAeeFNYGoAeagBCioVnj4U+hVyDep7M/pGjg933hciEFiCzQIz6wHiUATtQfpzPWjjze1S97TR47oBxHiA+HUTW0GKSIanWx43ND/bEhC8aIWRp1LgvSqCCOjrL3kcAvMoZAr4XxOHUAjEAxTM9y6HpM2PMIA4I8lkgQUjgnbjdEc2l3ja3YJmRnhZDZrxAA3nGzzTOlNRBA0Yb15uC+HpRbVsczP2OwUeqLZlANwzInKj3vcBA3TX3JMQmIcGUJI+JAXvAfLP4A5IBB2Stc30brl+/XpbHyBJEj7zmc/Yeu10hA6B2dEA2TaAXBdBk/Rnf/srub0w50aqRo+XHiCeFwmrpDoSmGxCrZH2OARmB7+rQBNiyairfamYEJiXImgXK3Ab4a0GiAcPUAAeR4+F6/VgmqH6UF7CLqZ3y0ceecTWBwgDyBq0FsFWFpgLIminYSRFUasFzTzW/wD6FH53b/IJnQbIzR5IJAQiRSXPvWR+YmT0uu0Birkg7mQ1QP4ZQPFUpd9fuEXQHoTAxjz0AHHQMqeQ8T8E5rVwvR7EuI8lo57VpXID07vlunXrvByHYBJbImgXNECRqHsdk4uZkpb+7HUNIMC7EJgiK4xbXpVV5DNF107ZZEGKJ6OuZq4FjdHm5bYnkDnR2/RGMJoMXw2gagq/G7AeoPDWASL3mhSRbB/k6uG1fskMTBq8XxogDzRnZiAeQt4926Zn2UknneThMASEeCqqZdHYEkE7WDi0jskOjQimCrTPITA34/u50aJmyBGyIwX3DKDJhZjnUvF2MDaAXPYAuR0C89EAImMvu9RVnfYApXzKAvPCA0Q0Msm2uOteA6/1S2YIQnQfVBYYCTPynAEGOEiDp5FlGaOjoyiVjDfsOXPmuPEx0wJJqpx+CpmSeRH0ZC+waCLiKJQST8WQH3fumverDxjBqxCYkeg5O1xAt0tt5cqaB4jfLAk76I1eSXI/xOSGpiPIEBihXHTeVJRUgU60xBD1MJQaY4Tn3mmAvPBixTlIgycGdyQq+WYYsIafjxogsrZxnAEGODSAtm/fjgcffBCvvfYaymXjiytJEjZs2ODkY6YdydY4CpmSBRF05do77fNCDAnHDSYz/rp6vQqBGYmec8PuCKFVVaUWCb5PSVbRhz2TbXHXmzDGXdA2sKJU/xZq5lTuQld1rQ+Yh94fwB3heT3KBblalNKDQ5PX+iUz0J3g/Qp5x1PeCteNUGQFckkBwL932/ad9/bbb+OGG25ANBrFKaecgpdeeglLlixBV1cX3nrrLYyMjOCkk07CEUcc4eZ4pwUkjFXMmqtsTDZ9u20wCGSyyiUFiqwgErV3mvQyndUIzzxABgaQW5lgcknRGiPyXCreDvq/uRcbWtwFTQdjAPkg1iew7QnKgAPDpVyUtR54XgqgATabx20dDbtmuH9oSgSUDUVT8LnvHKBrYOvT92aqQHPu3bY9uu9///sAgO985ztYtGgRzjnnHJx11lm4/PLLUSgUcN999+H555/Hrbfe6tpgpwvEk6MqKspNToiqomqVoJ0aQAndqTrZas8AKvjYBwzQeQNcbIiaNfD2uFULaKrWAAJqDSAvjGA3sluKAXmA3PBeEegaQF4WQQQq4uRYMlrx1rjsAfL60BQLWAOklBVtbfKz5EIQPdDCUgMIcFAI8Y033sCqVauwaNEi7THS5yuZTOILX/gCenp68NBDDzke5HSDSYVvEgYr5cuaUNduHzBCzKVTUp4JgfnhAfLmdGdoALnkASqF6JRkFb3R68WG5sbCTk7k0UTEVisNu7gpTKWrQHsdAgPcz2AjeG0AeRm+M0MQNYCAYOoAlUJSBRpwYABNTExg3rx52r9jsRhyuVz1jSMRnHTSSXj11VedjXAawhRDbCKEdqMPGIH1pDgwgPwWQbs0bj3ZEQMRtEsGEF29mPc4uVVqPUDuL/hxFwS5fneCJ9SEwBzgVwo8gVx3tzdTr9cMLypwWyEoAygSi0CKViQUfhl+9P3I+9pm2wDq7OzE+Pi49u+uri7s3buXeU6xWEQ+7277gOkA0w6jiQeITYF3RwQNOLtZCtRpLulHCMyjImfEAyRJ1b+JkVfIDoybmPNUUavEklFtswE8Cmm40FWdpCX7bQAx4TuHwlS2CKL3HiCyobmdBeZlI1QCmTNut8sxA5MC72MITJIkbX3xqw5QWBqhAg4MoEWLFmH37t3av1euXIlXXnkFb775JgBg165d2LBhAxYuXOh8lNMM2pPTLBOMLYLo0APkwqYCAHnqZve6ESrg3rj15Ca9PenOJFq6UgAqXiES6nUC0wiVczexVSRJYower0NgdoxeuSRDLlYyVfwUpQLu6jIYw8EHDxDZ0EiihFv4kThR9V5NnxAY4J3Xrh7lELX4sW0AnX766Xj99dcxMDAAAPjEJz4BVVVxww034MMf/jCuuOIKZDIZfPKTn3RtsNMFphp0kxBYyYU+YAS3GqKSxSyeivqirYgloyCJcm6d7hRF1U7XLZ1JtHRWTtdKWTVdnqARU1kEDbCneM89QDZCGkF05iawDSodhsCYRqg+aICSzkOPRjAGkEeGHNEK+lkRmVAIqO8cwBbe9IMw6RttG0B/8zd/gyeffBIzZswAACxZsgTf/OY3ceqpp2LGjBl4//vfj69//es4++yzXRvsdMFKPzCvNEBO+oGREJgfbTCAisch5vLpLj9aAHH0pDuTaJlZ3VzcCINN1UaohCTjAXJ/wSetWwB7xnqQJ3I3RdBMCMwXDZA3YmIv+4ARyGZcLshQFOdeXCsEUQWaQAvX3fBeNyNMa5vtHTMWi6Grq4t5bOXKlfjGN77heFDTnaSFfmBu9AEjuFFQUFVU7Wb3I/xFiKejKOXKrrl5abFz68wUc2rLjhTQNb/d0fuHqVaGHehNzCtDWGvdYuNvHlQbDMDdzuSsB8jnhAMXQyoTpLyEVDlweAFteJYLsmPJgBWCnG/kcKgqKuSS4nl3dkYDxHl4f+q0oJ5CMBqgZh4g6vdO0+DdCIEVsiXNc+JHBhjB7Tg37eWp9QA5F/aziwTfpyQ7HLFsJoDKYt95ZJsnn0EWVzuuffpEnvCxBhDgch2gSc9JNB5h7l+viHlUV2ZisHJPpWckPWvnEVRbCCA4ETTgfy0g5nDH+drGt3k2TaFFmc00QG41QgXcERPTRRD9vNETVAjMTPXsZrAeoCTjxci5kApPaz+mWhYYACz/ywXomNOCjiNaPTtpk+tmx4gINATmYk0aEgJLdSR8aa/AtlZwSW9XVrT7rXUy2cALguwHFlTfOaBWc5aCtwfTMGWBCQOIQ5KUIdO0EGLOxSwwF9LJ/W6DQdDGrqJp9Wwz0DWA0p1J5ru4owEKj5vYDpGIhKNOnOXpZ9Ap2Va7qgeblUOHYuwbEYqiano7PwTQgE4E7ZIRkR0paMVcW7u9M4DcKJ1gl0BF0D4bfuXpUAhR4B2WPECMCNqpBsh5fJ9x9fpQA4jgdkNU2shpmZnSssD0v7PLVM8C8wNmMy5aW9h50GQAzuoAFTLFqlDfBwE0oM++c2czzQxWDxttXnqAPKoXZgYeRNCAP6G/UohCYMIA4pBYMqqdZq3UAXKsAWKMiJB6gODO4kaHwFpmJhlhphvVoMNULp5XnIQ0gg1JuKPJ8FsADXjTWmFiqGoA+RUCC0oDFE9HbTeZtoubmjMzMDXOOE/wEAYQh0iSpDVnbJoGT9cBchoCS7GxYjvkGbGf/yJowB0PUI54eaTK6TqWiFarQRu0yLBKKUTl4nkl5sBjSWdX+u4BSkQBUrfKScFRpgiiPyEwN5rQ6pkYrLZQ8jIExmphgtEAJVv9WxMJfmufwuTdFgYQp5BwltkQWCQmOU5vZJqK2jQiCuPel7Q3gh67kxpGhIlJIyfdkdBObMQLlB0uOK6nwSwSnAsFecVJdgvdsDfhsyZDikiOBNwEtg2G/x4gtzRAQXiA/NQAqWq1eKrf+h+A9cL40QdtWtQB8oqtW7fi2WefxaZNm3DgwAF0dHTguOOOw1VXXYX58+c3fO0zzzyDu+++2/B3Tz31FLq7u70YsicQt3xxotQwq4kYSE71P0C1cZ4qqw5E0HQbjHB6gFRF1cILLTOrC3LLzCRG9mUglxQUs2VHnoMS0wyVu9swFMQdaGmC9AABlTB3KS87EkEzITCfNEBe1AGaoDRArd1pV97TCMZ7ZTPEb4dSXoYqVw5MQcw1JuTqg+eLfIYUlRDxqKSBW3C38j722GN44403cO655+KYY47B4OAgnnrqKVx11VW4//77cfTRRzd9j89+9rOYO3cu81hbmze1SLyCpLSrauUGqhfeKhEDyIVUY0mSkEjFUJgo2V7c6JO1rx4gF928+fGitmDR4ucWnQ7IyWJGTs/ReAQRC9lLgioxB13VyYk8lox6VnemEfFUDLnRooseIJ9CYB6IoDUDSKqUnPAKL1L4zRCk4B7wPwuMfEY8GfWlNIMTuDOAPvrRj+JLX/oS4vHqRFmzZg2uuOIK/Md//Af++Z//uel7nHbaaVi+fLmXw/Qcphp0tmRo4KiqqoXAnNYAIsRS0UkDyGYhRKYTfEAeIIcnU30RRIK+GOJMBwX+yBh5dxHzTNzBZlzUNBn+b0iAO13Vc7QGKIgQmFsG0GQIrGVG0lOPAVsI0T8PUJBFEAH/C0AS4zIM2kbu/FMrV65kjB8AmD9/PhYtWoT+/n7T75PNZiHL/je9cwu6Om29TDBS/wRwJwQGUBWVbYaRSAgslox6XnKdxs0sMH0RREJLZ8rwOXYgYxThL/vEHGg6yD3ldwYYgQhy5ZICpWyvq3owHiB3Q2ByWUF28nt4KYAGgiuEGGTGIRCcCDoMLX74HyEqno7h4WEsWrTI1PNvvvlm5HI5xONxnHLKKbj++uub6ocGBgYwODio/duKseUFCRP9wNxMgdfeh+qYbLW4HFCpTQL4G/4C3NUA0a0u6nmAcg5rAZHTs/AA2cfuib5clCGXKkZH0uc2GAQ2HCMjacPzoWWBSf713XNbBJ0dpoogeiiABpxlDTohyCKIgLODglVUtaofDcPaFgoD6LnnnsPhw4dx5ZVXNnxeMpnEhRdeiJNPPhmtra3Yvn07nnjiCVx33XV4+OGHMWfOnLqvffrpp7F+/fqax3fu3GnoScpkMujr67P8XcwyOjGq/fzO9ncxrB6oeU72cNUFni24M55iubqxv/naFkST5hdmVVW1OkBqTKkZj5fXbOxA1Wg5sO8g+voalw9oxJ63RrSfhzKH0dc3UfkMKv19zzvvIdZnLx1eVVXNACopxabXxOu5FlYGD2e1n/fufg+Y/DsR6l234nh1Eygq+UCubbZYHXvfG1uR7LC+FI8NZAAAsXQE27Zvc21sjeabUq5mP44OjTm+dmO7q/dQQcp6+rcojFb/7kOHh139rEbX7OBb49XPHT2MPpvrhl1yQ9W1cPDgkKfXWCmrWlSiKBcCXdt6e3ubPod7A6i/vx/f/OY3cdxxx+GCCy5o+Nw1a9ZgzZo12r/POussnHrqqbjxxhvx6KOP4pZbbqn72osuugirVq1iPvfOO+/E4sWLsWzZsprn9/X1mbrAttnbj90YAQDM6ZqLpb1H1jzl0NvD2Iz9AIDZc3tcGc++njxGd1Vu0GMWLWGyoJpRzJbwB2U3AKBzVnvNeLy8ZoOtY3gTBwEAHS2djj5n+I9bAFQM0GNXLsHsJZ0AgLHuCbz5g8pnpCNttj+jlC/jD6hcp46ZtddJj+dzLaTslQewHYcBAN0zutHbeyzz+3rXbXjvOP6MfZXXHdEVyLU9PPt1DG2rGEGL5x9tuWGsqqr4Y24PAKC9q8XV79Bovqmqij9G90CVVcQjScef+87Ie8DkfTt/yTz09jZPcrFLIVPCq5N/93Tcv2tWeuddvIMhAMCiYxdice8Rrn2uGbLDeWzCewCAlpT9dcsM+fEiXp5c22Z0d3C/tnFtAA0ODmLt2rVobW3F1772NUSj1l1qJ5xwAnp7e/Hqq682fF5PTw96enrsDtV1zHSEd7MRKsFJvJiuAu1nEUTAOxF0S10NkP1TXEnUAHKFuM2mokGLUgHn2VTlggy5WAnjpXxKgQcqmaLxZBTFbNkVEbRfKfBAgBqgANtgAP6G/sLUCBXgUARNyGQy+OIXv4hMJoN77rnHkXEye/ZsjI2NuTg672H7gdUxgHK0BshdETRgXUvD1ADyMQMM0BVxdGoAUcZNCyUujSWjmqHppB8YUypeiKBtYze9N8hGqASnRfmCEEATtEQJFzbTjE9FEIFKnbNovLLl+ZkGH7gB5FLrFTPQda3C0OKHSwOoUCjg1ltvxZ49e/D1r3/dtPi5Hu+99x46OztdGZtfWBVBu+YBStuvlcGkwPt8snZTBJ2bzPBKdSRq0nK1atAj9qtBh6lUPM8wzVAtzNWgiyAC+rFb35SCKIJIIBuqKx4gygBq8zgLDKDG7qMHqBiwCDoSkbTv7bXhFzbvNncGkCzL+MpXvoItW7bgq1/9Ko4//njD5w0MDKC/vx/lcvUPOjIyUvO8P/zhD9i+fTtOPfVUr4bsCXR2Sl0PkIt9wAhMvxyL1VKD9ABF45Uq1oAz97aqqpp3hy58SCCPlQuybUNLNEJ1B7shjcIE1QYj4DpAgL35yjZC9dsDVG3j4bQlDAmBSZLx/eY2bnqvzBJ0Fhjgn+EXNu82dyO877778OKLL+KMM87A+Pg4fv3rXzO/P//88wEADz74IJ599lk8/vjjWtXna6+9FsceeyyWLVuG1tZWvPXWW/jlL3+J2bNn41Of+pTv38UJtAeoUKcfmOceIIuLRFBVoAFdFWsHHqDCeAkKqQJtUJWWFoVnRwq26i8xjVBDcEriFbu6rwIPHiCHxenyY9UQmF9FEAlkY1MVFXJJcVTvi3iA0p3eFkEk0MabXxADSIpKgd3v8WQUeXjfBDZs3m3uDKAdO3YAAF566SW89NJLNb8nBpARa9aswcsvv4xXXnkF+Xwe3d3d+PCHP4zLL78cXV1dno3ZC2iDplinECKtAXK7ECJgRwRNnXR89gABFePNSRsPgC1w2MgDRJ7bOc96NWg6dBCGRYJXoolIpau6au1ky2qAOKgD5NQD5HMITF8LyK4BJJcVTcvkdRFEAl2B206dMzsQDVCyNR5Ya4iYT56vMDVCBTg0gO69915Tz7v99ttx++23M49dffXVuPrqq70Ylu/EklFEohIUWa3bEb5Ee4BcCoHFHGhpCrQHKMCux05Od2wRxNpFmTGAbAqhRQjMHSRJQjwVRSknWzrZspoM/w11QJ8FZkMEPRZgCEzXXTwFe9cwO5z3rQgiQd9A1611sxEk5BqUtxGoGiNyUYGiqJ71H2QOdyGoBM2dBkhQQZIkpiO8EYwGyKUQWMJBw0A6Dd5vDRDAVrFWFHvahHptMAhMPzCb7TDKIUsV5Rli9FoRQbOtCYLyADnrS8VkgfktgnYpnZxOgW/zOAWe4HdfLKWsaFrKoPQ/gN5r5933ZtLgQ+ABEgYQxxCjpp4HyIsQGOsBsra4BV1fxY3FjTZq0kYhMLodhk0DKGxuYp4hmSa26wC5dN9YxWkdIKYRqt8hMDqt2oGmJEMZQC2+eYD8rQVE13AL0gCK6TxfXkEfmkUWmMARZHEuZktaeXEaYhhJUamih3ABRyLoSQ9QNB4JxLPhRkNUOqxl6AGiiyEO2yuGyJ6S+HcT80xV1GrdAxRPRX0R3hrh9ERORNCxZNT3MKpbhfX8ToEHnIcerRJ0DSBC3KdaQGFb24QBxDHEPa+qxgsNCYEl0jHXxHVORNCFSRF0sj0YsV/ChVpAdBFEIw1QutOFEBgTJ+f/lMQzZJFVyipkk13ViwF3ggec3WdAVQSd9jkDDHCvISpTBToADZAftYCKHBTdBNytlN+IsGWBCQOIY5hUeINiiGSTd1PIZ/dGoRuhBqH/AZxX1wV0bTA6a79HIh3TPkeIoIPH6masqqrmAQo2JGE/FKOUFc2zkO7wVwANuHOfAawHyK8sMGbsDgummiFoWQDBLd1WM8K2tgkDiGOYatC6YoiqWs0Oc0sADdg/3ZXyslY/JxVQZo0rIbBJr06yLY5o3PgEU60GbS8EJtLg3cNqNWi5qGgdzXk5kVsRcANAbpzOAAvAA5R0R08yMZgD4F8RRKA2C8xrWME9JyJoD783/d5CBC1wRKJBNWi5pGgGh1t9wIDJGPlk9MrKCYlpg+FzEUSC03YYqqpqwmajIogEUgyxlJNtnYDD1jCQZ6yebHnZkKIx+5XL86O0ANp/D5BrWWCkCOLMJCJRf7Yit7xXZuGhCjRQzZYEvP3eohWGwDWSDfqBeVEFGqjWVgGAooUbJU+5eoPzAFVvOCtjJxQmSpBLFR1JoxOpvhiiVcLmJuaZuMVsKl5EqQCdwWbRA8Q0Qg1CA+Q821IuyZqOqa3LnxR4QC/g9sEDxMl8c0u31QxaWB6Gw50wgDiG9gAVdB4gL/qAEcgCZ+VGYWsAhdMDRKe10y0v9DgthqhdVwmuZe9NV6xmJPHQCZ6g3WcWQxJsEUT/DSCnKfwAMDFEZVv6JIAG/DMECLzMt7hP2W/kmkbjEd+8ek7gf4TTmEYd4VkPkLs3lp2GgXkmBBZODRArgG4UAnPoAZpcgOKpaGCl8acKVje0IgdFEAkxLYXfogHEeICCFUHbNSKCEEAD/mVDEXgRQTvNOjQLuaZh0TYKA4hjki31NUBsEUS3PUCTC3OubLrbc4HuBB/Qje40w4M2gIyKIBJYD5B1ITRZgMJQKp53rGo6eDmRA7Sn1fx9BgRbBBFwx4ggAmjAXw8Q472aRh4g/7LA5MnPC8faJgwgjqFFmvpq0CUvQ2Dpav0hoolpRtBtMADnCzOd1WVUBJGg7whvlbK2SITjlMQzVivc8rIhAVXjzcp9BrAiaL/bYAC6zdR2CCwgD1DaZw8QJ/PNrxYgJJwrPEACx9CencKEXgPknQeIOSWZ9KQwrl4uDCAbITCmDYY5DZCddhjVEFg4Tkk8Y7XCLS+iVEDvjTC/KeXGAg6BMdfcrgfI/yrQQAAaoMn5Fk8HV3Uc0HlKPUqDVxW1agCFxLstDCCOaeQBov/tZho8wHqUzBoSXIig0+6FwBp7gOyLoOVytQ5NGLIkeMdqa4MiJ2nwgK6GkYXNmGRPSREpECPOjUwqxgPkpwha18nea8h8C97Y9t7zVS6Gr7yHMIA4JtmgEKK3GiDrNwsr9psKHqD6BlA8HdNucKvFEMNWKp53rLY24CUkAdgPJREPULojASniv4g+EpEQjVe2DrtF9UgjVCkiId0g49Jt/NLCAJNVxzN8GEB+eL5KIVzbhAHEMdFEBJFYZYEr6kJgtIfDbQ1QzIaYmHiAIjEpsMnvNL5PwlmJlhhiifrfQZIkLQxm1QPEdksOh5uYZ6x296ZbyvC1KZmbr6qqahqgVAAp8AQ7TWhpiAeopTOJiI9GXDRWXVO91gCVC9Xq+EEdCgl+hMDo6ylE0ALHSJKkpbgXakJglCvfSw+QyZsln5lclNsSgaV2O1ncVFXFxGRGV6MaQATiISpmy4zrtxlst+RwnJJ4xmodIJ7S4O14LIsTZW1TDaIPGCGmlcqwvpmWizLyk5lsfgqgCXbqnNmhwNFci8QimrfQKxF0GL3bwgDiHHJK1XuAGBG064UQrXmAVFWlOsEHfdKZXJgtaoBKuTLkYvMq0AS7OqCyqALtKlZd+2RTiqdjgRdqs+q9AvQC6OA9QHZCYHTpCD/1PwQ7dc7swArug10X6Qr/XoX+wljhXhhAnEO8O8VcGapSrRXipQiaDiWZ2VTKBVlL4w1KAE0gY7d6k0/QRRAbCKC159hsh1ESjVBdxWpjzgInolRAJ0w1KcjN0SnwAWSAEch1LxdkKIr5GkZAcCnwBK8NAQKriwzeINAKb3ok/qbvPyGCFriCVuVZZYXP5GdJcn8jpa13Mz218kwRxHB6gNg2GBYNIAvFEGmDMiyLBM/QYcRmXdVVVaUMoOA3JKsp/ACQpzxAQRRBJLDX3ZohkQkoBZ4Qo7xXqkXjzQo8Ce4Bymj1yPCj50EYGqECwgDinnod4cnP8XTMdc2N5eq6meA7wRNIKrxcUqDI5ovL0UaMuRCYvWKIrJs4HIsEz0RjEURMdlUvF2Sok/qZoFPgAX1Gkh0PUJAhMPuF9bIBpcATmPIDFvR7VmE7wQd7MARYz5eVyuNmYUXQ4VjbhAHEOfU6wpMQmNt9wADrqcU8VIEmJJiGqOYXN7YNRvNF2W4xRMZNHJI4Oe+Y1XSwG1LwBhBzn5n0ojCNUIMUQTtoiEp7gFq7/esET3DaMscsRUYDFPy9TtYbVVEtVR43CyuCDv77mkEYQJxTryM8uXHdzgADdOnkJhYIXhr+AfbbYdBenEZFEAmuiKBD4ibmHS2k0cRY5y4kYUcETTdCDTAE5qSuDF0FOhAPkMOmyWbh1QMEeBMGC6N3WxhAnGPUEV4uVUXHnhhAFhsG8uQBshNWAMwXQSS0dNIhMPMaoFIIT0m8Ezcp7uSpCjRgMwQ2xl8IzGo2FRFBSxHJ1L3mNlarh9uFp7YrgPdVsNkSH+FY24QBxDkJg47wTAaYyynw+vc0s7jlOegET7DqvSJY1QAlWmNaNVxrGiBRB8htyMLeTNvA84ZkNgRGN0INVATtIARGOsG3zPS3CCLBaojfLgWuDW73v7cQQQtcJ9la2w6DbYTqhQbIogh6nBZB85EFBgBFCzc5MWLi6Zgpz4zdatDMIhGSUxLvaAt7k67qUykElmiJIRoPbpOxU8UamCyCOHlgCiIFHrB33e3AkzQA0GUdelANOozebWEAcQ5t4JAy/l62wQCsNztkPEBBi6DT9hZmImQ24/0hpCd1QIVMCXLJ3ILCZEqE5JTEO2a7qtNtMLg4kdvoBk9CYEHWAALs992jawC1dfkvgAasVw+3CzG4pUhw7YFovP7edBmKsKxtwgDiHMMQmIeNUIFKs0MygU2FwDLBd4InxG1kgRVzZW0RN1MDiGCnGGIYy8XzjtmQRpGzLLCYxSywclHWDj9B6n8AdoOz4k0IuggiYN3DbRet5lRbPLD2QDTei6DDt7Zx56faunUrnn32WWzatAkHDhxAR0cHjjvuOFx11VWYP39+09ePj4/jO9/5DjZu3IhCoYAVK1bguuuuw7Jly3wYvfskmBBYefL/3vUBI8SSUZQLsikjgoTApKjkiSbJCnbEmUwRRAseIKYW0HAB7bNamr5GNEN1H7MhDd5CYJGIhGgiArmomPO0jvGh/wHsGxFBZ4AB9r1XVuGlEzzBa8NPtMJwgcceewwvvPAC3v/+9+Omm27Chz/8Ybz22mu46qqr8O677zZ8raIoWLt2LX7zm9/g4osvxjXXXIPh4WHcfPPN2LNnj0/fwF2StAdowh8RNFANrZnzAFXGleLgpBNPW7/J6SwuM41Qtefa8AAJEbT7mDV6C5zVZQHoxpzN5yqTAh9wCMxqmJzAGEAceIC8EkErsqJ567gxgCy2jbGKdi0lIJrgzrQwhLtRfvSjH8V//dd/4eabb8Zf//Vf4zOf+Qz+/d//HbIs4z/+4z8avvb555/Hm2++idtuuw1XXHEFLr74Ytx7772IRCJ45JFHfPoG7kJ7gAqaB8hbETRAVw01kwU22Qk+YP0PoBNBmwyB0SJmSx6gTuu1gMhGF4lJiMa4u/1CidmMJN7S4IGqMNXMhsQWQQzYA+RGCIwLD5A3ITC6aC0P4VbA+yww4t2Op6KBH4TNwt0KvHLlSsTj7ISZP38+Fi1ahP7+/oavfeGFF9DV1YWzzz5be6yzsxPnnnsufv/736NYLDZ4NZ/EElEt3bqqAfIhBDa5SChlFXK5fmZNuSBrXdR5uNGtpvADOgPIigZopn0PUFhcxGHA7ImeSUv26OBglZjJKtYAXx4gu0ZEZjIFHgjOA+Qkhd8svFUdB5y1LzGDtraFKLTPnQFkhKqqGB4exowZMxo+76233sLSpUsRibBfa8WKFcjn8w3DYAMDA9i+fbv2XzNjy0+0jvATBh4gj0JgZhc4VgDNgwfIepl7q0UQCXQxxJzJYojktByWLIkwwMzVBgXeyKaUaIkFUn/GCOJJkYtK067q/GqALJSbIEUQo1JgRpzdFH4r8FYDCPA+/V9b20IU2g+Fqfbcc8/h8OHDuPLKKxs+b2hoCCeeeGLN493d3QCAwcFBHHPMMYavffrpp7F+/fqax3fu3AlZrp0smUwGfX19JkbvArGKhyU3nkdfXx8OvTeo/WrPgd0YUg64/pG54oT2c9/r25DqNJ4qEweqi3KuPNHwmvhxzQqj1QVt8NCwqc/bv+tw9efBvRjpO2jqs0rZ6rw4tGfQ1GcVspXrpUiy6Wvh61wLIYcGM9rPe3buRalrFEDtdcuOTW6+CXBzPQty1XB+87UtiCXrn0n37hzSfj449B5yfUN1n+sEM/OtOFGd+8MDI6av5+ihyrqSaItg27at9gfpADtrRDP012x4R9XTNZY1f328JEOt1Yf2H0Zfn7v9wEhkQlZLXKxtvb29TZ/DvQHU39+Pb37zmzjuuONwwQUXNHxuoVBAIlF7MiKPFQr1wxQXXXQRVq1axXzunXfeicWLFxtmkPX19Zm6wG7w9swR5AZHIRdULF++Avt/vRlAZdFfcfwytPW4X09j4PdvYHBrFgCweMFizDyq3fB5++QBvIb9AIAj5s9Gb2/9bDs/rllhooRXsQ8AkI63mPq8nT/5I4DKd135geNMe9VUVcWr0X1QZBWRcrzpZ6mqipdKFc9iW4e5sQH+zrUwkh7fjx2oHAp6Zs5Cb+/RANjrpqoq/pDfDQBo6zR/7b1mX3ceozsrRtCSRUsaivAP/m4zgHEAwIoTl2HG3FZPxmRmvpULMv6MvQCAVDxt6nqWizJeylXmf+ecjsD+BoUMtUYk3JkL+mu2Y2gftuIQAOCoRfPQ27vI8Wc4ZXTmBF6fXKvbW9y9/nJZwUvy5NrW2RaatY1rA2hwcBBr165Fa2srvva1ryEabexaSyaThjof8lgyWd/l2tPTg56eHmcD9gi6I3wpW/ZFA2Q2lJSnM2t4C4FZ1ADFU1FLIUVJktAyM4nMQN6UBkguKsBklCNMbmLeMZORVMqVoU6GmHjJygGshSV46QMGTGb5SABU85lUPGSAAd6LgQG26CYvGiDme7usfQprfTNuNUCZTAZf/OIXkclkcM8995gyTrq6ujA4OFjzOHmMhMLCBtMQNVti0+A9EtOabSlRYBqhBn+jR6IRTTRuPg2+YrzYacxIXpMfKzYUi+vHI0TQ7mEmI4nZkDgygKw05sxN9gGLxiOB19uSpGp1Y7ONNXnIAAOAaCyCSKyiAfNOA0S1B+LEAGLuE5e/d1jrm3FpABUKBdx6663Ys2cPvv71r2PRokWmXrd06VK8/fbbUBR2I9q6dStSqZSpQoo8kqBqlhSyJa0SdDwdheSRmNOsUJARQbcF7wECqplgZoo4lvJlzcNlJQWeQIcs6Cwd488K5ymJd8wI9nlMgQesNebMj1XmV6ojwUWaMd2E1gy8eICA6nX3zAPEWeNdwH7tJjOEtb4ZdwaQLMv4yle+gi1btuCrX/0qjj/+eMPnDQwMoL+/H+VydcE755xzMDQ0hI0bN2qPjYyMYMOGDTjjjDMM9UFhgPEATZRRmvQAJdLe3VhmW0qwfcD4uNGt1DCiQ1dWiiBqr7FQC4j2TsRCdEriHXrBre8B4i8tGTAfAlMUVcsCCzoFnkCuu9kQWGaISoEP0AMEUGuER2nwRQ49jqTyOOC+ARTWJs/cjfS+++7Diy++iDPOOAPj4+P49a9/zfz+/PPPBwA8+OCDePbZZ/H4449j7ty5AIDVq1fjxz/+Me6++27s2rULM2bMwE9/+lMoitI0g4xn6Kq1RcoD5JX+B7CQWkx3gufNA2SmtorNNhjaa2aaN4DYEFh4Tkm8E082NyLYNhj8LHumG7lmilAn9WNBF0EkxC3UMAJYD1BbwB4gcgAxWyrDKrRnnC+DOwa5WHQ/BBbSJs/8rAST7NixAwDw0ksv4aWXXqr5PTGAjIhGo/jGN76Bb3/723jyySdRKBSwfPly3HbbbViwYIFnY/Ya2gOUHytq1nbcSwMobVIEzVEneEJcV8SxUcXlrFMDiGmH0bgWUInxAIVnkeAdM12ueesDRoibbIhK9D9A8AJoApnDitz8PgP0jVCD6QRPIOtbuSBDVVTXpQQ8eoCAymEhDyGCJnBnAN17772mnnf77bfj9ttvr3m8vb0da9euxdq1a90eWmDQnp4MdYryMgRmNl5M2mBIkrceKSuw4bsyog0Ms+ww3QfMjgHENkRtRFl4gDyB6UxeZ64WM3xqgMxmJLFFEPkIgekrcEfbzBlAkagUuBeLFuqWi7LrYRsigo6noohw1PLGSuVxK4TVu83PX0ZQF3rBzgxU4+heGhwJk+nkWsfj9oRngmyrWGmI6lgDZKEdBiuC5sNYnApEIpJmBNUL13LrAaI34gahZrYNBh8eILa5ZvMNlYTAWrpSga8VXldF1tZFjsJfQPV7m6k8bgXGux2itU0YQCGA7gjvlwHE9tRq7gHi6UY3K+AGWK+NnTR4OgSWa2oAUXHyEJ2SwoBmAJnSAPE0V81txEwIjBMNkJV6OuWCrBkFQQugAXNhU7uoqlptu8LRXAO8awPCeLdDFN4XBlAIoDVAfhlAdJZSPQ1QuShrugVe9D8A2x+tqQeIMoBabYTAUu0JSFFp8r0aa4DKwgPkGWRhr6ej4bE7N2C+cCddBDHFSRaYleaatP4naAE0YL6Brh3KBRlKmb+im4DO8HNRBxRW77YwgEIAfYqYGKpu2J6mwadNZNZk+BNAA9YaopKwVTRhr7icFJHQMrkhNQ2BCRG0ZzTLSOKxOSWgO2g09ABxGAKz4AGiu8C3cOABstvN3gy8ehsBfTFE9wwgpsRHiLzbwgAKAbSnR6Xitr6lwddZIHhO9SQ09wBVTqatM1O2i8uRMFhurAhFrl8NmqmVIQwgV4k16aqubUoSLLU78RqznghaBJ3mRARtNoUf4NsD5LYGiNeaU4C1yuNWYDxAIVrbhAEUAmKJqNbegcbLNHgz5eILHKbAAzptQgMNULkoa21F7Oh/CGkSOlNZrYYe0QrDO5ppG0gl6GRLPHABLg3bn8mECFrir+Ao0DiFH9BVge4KNgUe8FYDxFSB5swAslJ53AqsvjE8a5swgEKCkdve65Nss3LxeboPGEc3Oh3KKjbSVTisAWT02kZhsLCWiw8DzbQNVVEqX4uz6TpAkx6gVFsckSgfy7YVPQlbA4gvD5DbGqAizyEwjzxfYa0DxMedJGiKUbjL67o7ZHEu1tHRMAYQRx6ghMnT3cQwnQLvwABiqkHXF0KXhQfIMxppG1RFrXqAONuQovEISOS13oakqqrmAeKlDQZgrbkmT33AAF31cBdDQQCffcAIXnm+RDNUgackW4w8QN7eXHS1VCOYG50TtzygS+FvEALLUZWbnXmAqGKIJj1AYTolhYFGrVtK+bLWRoK3kIQkSU2L05ULMuRiRVuW4iQFHtBr7ZqJoKkiiBwclqyUyrAK3yEwbzxfYfVuCwMoJBi57v3yAJULsqGwlFcPkNlaF2wbDPunUrP9wJhMiUR4FokwEGuwsBc4rQJN0FL462xIbAYYPx4gK3WAspMhsFYOiiAC+jpn3mWB8TbfvPJ8kbUtEpOatkThifCMdJqTMPAAeSmCBpobEryedMyeTLNuhcBMFkMkC04sGeViE5hKNGqIynNaMkAXcTTekHgsggiYrwNUype1vwEP4S9Anw01fbLArHjtrEDmbpjCX4AwgEKDoQbIJxE0YHyzcOsBMimCZttgONEAVRf1iQYaIHINRQ0g92mkbeDdAKI9rUYwKfA8eYBMGhGMAJqDGkCAdxWRAd41QN6KoMMU/gKEARQa9DdSLBn1PBtE31RUj5YGL/Hl6jVbCNFpGwxCqiOhCVkbeYDIQiv0P+7TSNtQ5DgkAVTHTrqq66FDYClOiiAC5vUkvAmgAe88IQDfBreV6t1WIN7tsK1twgAKCXoPkB+d1xlDwuCEp/UBa40jwlFIx2whxOykCDoajzhaqCIRSTuZmxFBiwww92mkbShw2gaDwFaDrp2vuTFOQ2Amm6GyHqDgawAB3nlCgKoHSIpItqrLe4kXoT9VVatrmwiBCbxAf3L1xQBKN/YAkUrQPIW/gMrCo+kqGmR4EA9QujNpuwo0gYTQciMFQ8G4IiuQS5XTfdjcxGGg0Yme5xM50NyTwmiAeAqBmTQiaA8QD1WgAW9bYVRLLsQcrytu40UWmFxUgMklL2xrmzCAQoJeBO11CjygX+DYRUIuK5pxwVMKPIEYb/UWN7lU7U7tRP9DICE0VWU1GwS2DUa4TklhINagKjHPmgygeUPU3BgVquXIA2SmWjxQTYEH+NEAmR27HYjBnWzj529FMOu1s0KYK9wLAygkJAMJgTU4VTNVoDm80VPEA2R8k2dHquN3UgOo+h5ULSADIXQppM0Cw0KjEz2rAeJvgW7WEJX2APFUBwhoXi0e4K8KNMHM2K2iKKrWXodHY9uL0B9zuAvZ2iYMoJCgD4H5EVtuVFE5z3SC5+9Gpxc3Va0NSbFFEJ0vykwtIAMdEFMqXmSBuU4sxGnwzXpq5Sc9QLFklLsTthZqbpgFVukEH4lJXIXLtUOSi2nwvAvuo/GIVoLDLc8XUwQxZGubMIBCQhAi6FiDbCo6BZ5LV+/k2FVF1bQ3NG61wTB6DyMDKMxu4jDQSNvAuwHUKNQMVD1AaY4ywAhaEcdGIuhBvoogEojnzc0QGK+10QiSJFUNP5c8QGFe24QBFBJqRdDe31xstdT6ugouPUBNBNxuNUI1eg/DEFhIS8WHhUbaBnIq5zErB2DHrvcAKWVFu9fSHfwIoAlk7PU8raV8WQsJ8aL/IdAeINUgccEOvBvbQHX9cU0DVBAeIIHH1GiAfFjI2eq6DTxAHLm1Cc2yPLJuG0AzaQ2QUQiMPiWFa5EIA420DcSASLTwl5UDNO7QnRunM8D4u8+0665C61dGw9YA4iMFnqCtESpQLrrjDeG5CjQhrnm+XNIAhXhtEwZQSIjGo4gmqn8ur9tgAKwXpSasME55gLgMgTVudkh7aWjjxS7N2mGURBaYpzDaBn0WGKed4AmNqljnGQE0hx6gJgeNzBB/KfCERoanXXjPOATAhMCMvHZWYZs8h2ttEwZQiKA7wvufBVbfA8RnCKyxrsJtD1B6RgKYdC4YeYBKIT4lhQFW21C91qqiopjjNysHaKxfYlLgOfQANTMiJgZz2s+8hcAaGZ52KYYiBFb53vX0kVahr13YwvvCAAoRdAqvH3WA6MWtqNPRMCcd7kNgBh6gSQMoEpVcqWMUiUa0Gi2GWWAhjpOHBXJdaSOimC1rRdp4zMoB9NV52fuMLYLI330Wa1JXhtcUeMCbooC8i6ABVtpQr/+cFdgaZ+Fa24QBFCISfnuA0vXFmfx7gJpogCa9NC0znVeBJhBPUna0UCOqDLObOCxUSx9U/95hEKWy/Zn0HiDeQ2CNjYgJDosgEryoBh0GDZDbtYDYBI9wrW3CAAoRfhtAtK6iJg0+Q4mgOdxYEg1S+JWyolVrdtIEVQ/REqmyyhiIgMgC8wO6Jg3RNhRDsCHFG/Rnohuh8ukBatxbimcPkBd9sQqc1wECdAa3C5lgwgMk8IWWzuoC6EdJ/EY1I4gIOtka97wrvR0aeYDoTcUNATSBNqb0YbByiGtlhAWt9pOsQpnsqp4PxYbUINuS00aoBNYDZBACG6w2HOapCCLQvFSGHcIWAnPHAxTetS1co53mHHfhIozsm8Dc3i7fUkrjqRiK2XJdETS3N3mDLDCmCKKbHiCdAdS9sPq7UojLxYcFI90XK0rlc7mLNQqBMR4gHkNgjbV2xAPU2pXirgSB5xogTg1ut8XfYfZuc7ciZLNZ/OhHP0JfXx+2bt2K8fFx3HbbbbjwwgubvvaZZ57B3Xffbfi7p556Ct3d3W4P11e6F3TgojtO9/UzYwaZNYqsaMXNeDvVEegssKLeA+RyBpj2XjPrF0NkMiVEGrwnGDVEDYUGqMGJnIigpYjE5fgbVbEu5qgiiJyFvwB96NFdDVAsGUU0xp9nHHDf8Auzd5u70Y6OjmL9+vWYM2cOlixZgk2bNll+j89+9rOYO3cu81hbW5tbQ5xWJHQ9tSRJ0mWA8bcoA7rKwDr39gRTA8hNDxBVDFEfAhMeIM8xErXy3psJACKxCKLxCOSSUpsFNpkGn+5IcNVGgtBIwM1zCjzQ3Htlh2oneD7nGtA45GqHMHu3uTOAuru7NW/Ntm3b8LnPfc7ye5x22mlYvny5B6ObfmhxcrWyicdTMV0GGK8eoPqLG+sBcm9hZj1ArAEU5oaBYcGoIWoYPEBAZexySWGMCFVVtUKIKQ4F0EBjITEjgObQAHI7G0pVVc3g5nmusW1j3PAAUWtbIlxrG3c+ukQi4UqoKpvNQpbd6/I7XTFaJPLjIRD6NTjluF0EUXuvBg1RiZtYikiIxrm77aYERvVNCpnq357XuQoYdyYvTpShyJVsNh77gAGNa8qwbTD4M4BY75VzT4hcVLTCgjzPNdfT4Ce9lrFklEsvZSO48wC5wc0334xcLod4PI5TTjkF119/PebPn9/wNQMDAxgcHNT+3d/f7/UwQ0FtWCGJQiZkHiBdCCzrcid4Ai1SzdXxAMVTUe7EoFOFmrmaBgoTfJdrIBh1Jue9CjTQuJYO7x4gt0NBBc5LgxDcNvzI2hZGz/aUMoCSySQuvPBCnHzyyWhtbcX27dvxxBNP4LrrrsPDDz+MOXPm1H3t008/jfXr19c8vnPnTkNPUiaTQV9fn5vD55JMbkz7eXvf22gbSuDg9nHtsaHxAfT11VY+NnwvH68Z3eNmbJj93KEDowAAKQK8u3cHpH3uGSSxlgjKWQUjh8aZz8xlJjeDqGr5GkyXueaUwZHqXN31zm6kF6kYPjShPbZzzzuIHuLT+1ZWK5tnKS9jy5YtkCQJY7urBsREady3OWBlvuWGqt7ggYNDzOv2vlM9UB4c3Y+JvkHwRGG0uvkPHhp2dH0zmQz6Dm3X/p0tTXB7z47ur86rA+8dQl9fqcGzm5OfqKz/akTham3r7e1t+pwpZQCtWbMGa9as0f591lln4dRTT8WNN96IRx99FLfcckvd11500UVYtWqV9u/+/n7ceeedWLx4MZYtW1bz/L6+PlMXOOyMb9qGg8gAABbMW4AjlnehtOMdvIMhAMDiYxdice8Rpt7L72v25/Q+lHIyYlKc+dxN+QMAKnV7jjvuOFc/c1vPEIZ2j6OcVbBixQrN2/NneV/lM9tSlq/BdJlrToke2oOdGAYAzOk5AkrbOGIoAchDikg4/qTjuPW+7ZqZQea9ioFw7DHLEE/FsHN8P97EQQDAUUfPQ2/v0b6Mxcp8y44UsAnvAQBak63M63Y//QowuXac8IFepDirY5TPFPEqJu/LRKuje6yvrw8z2+fgNewHAMw5ahZ6e/nUoQ6kR7Flcl7NaO10vLb8sbQHANDakQ7d2jalDCAjTjjhBPT29uLVV19t+Lyenh709PT4NKrwwDQVnQwl0RogHttgEOKpGEo5uSaFn9RWaXVRAE1o6UxiaPc4lLKKQqaEVHsCqqoyITCBN+jDMVHQneBj3Bo/gE6XMZlskOO8CCLQuBlqhiqCyGO2qNsVkens2BTHGiA3W4AoVEPVsNUAAjgUQXvB7NmzMTY21vyJghrojIGiJoLmXwMEUL2hqEKIubGi1hwz7aL+h8BUg57UASllResNFsY4eVigr21ZVwgx2cbvPAV0YuLJTYlthMqnCJrO+tGn8E8MVdLgeSyCCADRWASR6GSrHxfEwGFogwHUGttOYGoAhXBtmxYG0HvvvYfOzs6ghxFKmIaoeeIBosR+HG8sZOzlfFnTBOU8qgKtvedMuhZQ5QQsGqH6A+ONKJShKqpWiC/BaRVoQswgNZmpAs2pB0iKSJrhSWeBFbMl7eDBYwYYwaiBrl3CUAUaMDa27UIbUGFrhAqE2AAaGBhAf38/yuXqH3BkZKTmeX/4wx+wfft2nHrqqT6ObupglCkRHlfvZG8otbo4e1UEUXtPg35gYS4VHyaY+iZ5GeW8ov2b5w0JMK7Oy4TAOM0CA6gmtNQ85z0DjEBC/O54gKiSCxzPt5iLBSDpGkBh9ABxabI9+eSTyGQyWlr6iy++iEOHDgEAPvKRj6CtrQ0PPvggnn32WTz++ONa1edrr70Wxx57LJYtW4bW1la89dZb+OUvf4nZs2fjU5/6VGDfJ8wY9dQiHqBESwwRTsu9A7XFEOOpmGdFELX3NCiGSOsLhAfIO2I6I6Kcr2YC8rwhAcYHjTwVAuNNQEwTT0WRH2O9CWwNIH/6FtrBqPyAXZg0eI4PhpGIhGgiArmoODaAwtwIFeDUAHr88cdx4MAB7d8bN27Exo0bAQDnn39+3bYWa9aswcsvv4xXXnkF+Xwe3d3d+PCHP4zLL78cXV1dvox9qsGIoAusB4jnmxzQG29loDPJFkEMwAMUxlNSWNCLO8v5qu6EZ00GYHwqJyGwREsM0Ti/8yZOtcshZBgPEJ/6JYAtQKkqqqNCfkzV8RCsjXKx6DwEFnLvNpcG0BNPPNH0Obfffjtuv/125rGrr74aV199tVfDmpawPbVkKIqq3eg8C6AB41N11nMNUG0xRKYRaghPSWEhrmuGKueq3skweYD0ITBeBdAEsvHJJQWKrCASjTAeoDaOPUCa0awC5aLsyItRDEnbFaByEMvDZRF0CA0gfuMXAi5gw0hlFDMlLYuKZwE0YJzu6VUbDKP3nJgUQTNx8hAuEmFB3wssVBogRgRdRrkoa2UneNb/AOzYNa3dEN9tMAhuZkQRz7gUkZh1k0fIQUzfvsQqTCPUJN/f2QhhAAkaoq/zwabAc76pMDWMKjdqdlIELUlAyoOTdTQe1dzfmgeIzpQQITDPiEQjWp+1UqEcKgNI358pPxYO/Q9g3FuK907wBDokrW+ZYxVNGsB5zSmg+r3LhYpX3y7lkIfAhAEkaEhMp6PJ0xlg3IfA6nuA0jOSiHjUuI94gbIjBaiqGno3cZjQUrLzMsq5qgHEuwZI31SULYLIdwjMqCEq8QBFExGu9TBsmQ+HHqDJEBjvcw3QJQw48ALRtZ/CqG8UBpCgIcwJqVBGga4BxL0HiDXeFEXVisulPQh/EYgOSC4pKE6URR0gH6HrujAeoDa+r3tMZ6wzNYB4D4Hpxq6qqqYB4rUIIsGtqsh0zSmeDT6CWw1Rw762CQNI0BApIlUzJXK6EFioNECVsAKpyOxFBhiBTq/PjuRDf0oKE9pc1WmAeD+V60XQYUmBB2pDYKVc1ejnWQAN6HRjDjwhbLiV778X0LiFiRXCngUmDCBBU6qCOX0IjO9NJaHLAiOVmQFvagAR9O0w2EUifKekMEEW4XJRRplqgcK7BkifsZgboz1AnIfAGOOtrPUAA/jW/wC1Y7cLawDxf4/HdJ59u5RDXgdIGECCptTzAHGfBaYrhMi0wfDSAzSTrQUkssD8Q8tEUYHieHgMICYEVpDZPmCce4DiujYeYckAA2q9xHah9Wa8r4uAPgTmRAMU7rUtfCabwHfIzVLMsxqgUImgc2VMeFwEUXtvXTHEssgC8w3aDV8Yq1z3SFTi/rrHdY1cWQ1QeDxApXxZ08IA4fIAOdEAhc0D5FYIjMkC4/weM4L/v5QgcLSeWrLKFBLkXwStCyt4XATR6L2zw/nQl4sPE4xoP1NZnBOtca6FuIBBV/Wx6u94F0HHdFlgdAr/9PQA8b0uArWie7uw+sbwrW3hG7HAd+hQ0vjhan0PnhuhAuziVsyVdW0wvFuY2Y7wBV2mRPhOSWHCyMDkPfwFVLuqlwtyJYW/UNlQo/EI90X19EZEmEJgRjWM7BBmEbSjEFjIRdB831kCLqAt+8xAxQCKp6Jc9ycCajVAWboTvA9p8ACQGykwhcbC6CYOE0aLcBgMIKByT5ULMkp5GXKpsrGkOhL8e690RkS4RNDupIPTgvtEGEJgrmW/Va6ZFJG0IqRhInwjFvgOHUqSS5WTTpJz/Q9QOT2TvaNEe4Akb8MKsUQUiZbKIpgdroqgo/EIIlFxy3mJoQeIc08lQathlCtrYSTe9T9ArRFBPECxZJR745PRwriVBh8CEXSMaV/ivA5QPBXl3lA3QqzGgqYYbSq8h78AQJKqPXkqafCTVaA7Ep4bIsQLlB0paCX2RfjLe4zqLPFeA4hAPCmFiRLUSach7xlgQK2QOCxFEAHWEHAkgg6ZBsi1OkCTxlMYw1+AMIAEJjDauHnPACPQp2piAHkZ/iKQOkPlgozsZEaPqAHkPaEOgRmISHkvggiwRsTEUDXrkffwF2DcL9AOYeo7B7iZ/TbpAQqhABoQGiCBCUIdVphc4Ji6Kh4WQSTQOiC5WFkcRRVo7zFaiMOQlgwY68NCEQKjxj26P6P9zLsAGtCF75wUBMyFKw0+5kL2m6qqWtgwrNpG4QESNMXoVB02DxCNlzWACEa9xsLqJg4TRtc4LCEwI09rGEJg9DXPDIRHAA0A0VgEkWglTOdGFlgsyX9yCOBOFphSVqDKas37hQlhAAmaYpSGG2oDyJcQWO1nhNVNHCaMFuIwhCQA47nKew0gYDLZIFKr9WkLgQcIYBvo2oV4gEIz15jq3fa+d9gboQLCABKYIGEUAuO8CCLByHjzwwNkVGcorKekMBHmcK2hpzUEITBJkgzndhg8QADVP85RIcTKa8M41+x6vsJeAwgQBpDABOEOgdWO3ctGqNXPMAqBhfOUFCZCLYI2CoGFwAMEGF/3Vs47wRO0Xoc2PSHlogx10hYIS7iV9trZrX9Ea6aEB0gwZQnzqTowD5BRCCykp6QwYRRmDMumZDT2dAf/HiDAeOxh8QBVQ2AyVFVt8uxaCpmS9nNY1kXaa+eGByisCR7CABI0ZcppgHwJgRl4gEK6SISJMHuAauaHBKRCEmrWjz2WjIaiIjJArREqmMbFZmEMoJDMNYAK/dksADkVmjwLA0jQFMM6QCE56dB1Pgh+pBbHU7Gazw6rmzhMGJ1Ew7Ip6e+zVFs8NJXD9WMPQxFEAqOHsWMATYTTACJeO7vi76nQ5Dkcd5cgUAxDYCH1AKXa44jG/Jn2eq1RWN3EYSKWiALUvhuJSYgmwrHM6TViYagBRNDfZ2GoAUSg70s7epgwhsCAqtemVLAX+hMiaMG0QH+6iyWjlY0mBOjH7mUXeD36MFhYF4kwIUUkZkNLtvHfTJRQ4wEKQQ0ggn5uhyUFHmCNtz98fytG909Yen0xrB6gyb+ZKqtQykqTZ9dSZjxA4VzbhAEkaEokGmE6/YZFlwDUnkz9qAFU77PC6iYOG7QnJQxVeQn6+REWATRg4AEKiQAaAGYv6dR+3rP5MJ784v/DHx/bhmK2VP9FFPmJcHqA4g6rQYs6QIJpAy2EDkO3Y4JewG1Uodkr9N6msJ6SwgbtAQpLBhhQKyQNSwo8UBveDUsKPAAsPedInHPdCZrHVpFVvPHfO/HEP2zE9uf3QFUah4fCLoIGbBpAdBp8SMP7wgASmIKe4KH2APkYAtMbW6IOkD/QhmaYNqSaEFiIDCD93A6TB0iSJCw980hc+m9n46S/PUbzdufHivh/D76Jn/3zSziwfbju68MbAnPWB43JAgvp2iYMIIEpwusB0mmAggyBhfSUFDbo7uRh2pBiyRCLoGs8QOExgAjxVAwf+OixuORfz8KiU+dojw/sHMN/f/VlbPjWZmQGczWvC6sImv6bOQ6BhXRt485sy2az+NGPfoS+vj5s3boV4+PjuO2223DhhReaev34+Di+853vYOPGjSgUClixYgWuu+46LFu2zOORT21od2lYagABtW08/KgBVO+zhAjaH6aKBygMjVAJ+rkdJg+QnvbZLfjLL7wP720ZxMuPbsXQ7nEAwDsv7ceuPx/EiR8+Gif89dFayLIwUdReGyYDiO0Ib8MDJLLA3Gd0dBTr169Hf38/lixZYum1iqJg7dq1+M1vfoOLL74Y11xzDYaHh3HzzTdjz549Ho14ekAbEmG6ybkSQYtmqL5AL8Zh0gDVGEBh8gBRY4+noki0hH+uzzuuG3971xlYdeVx2ponFxX8z5M78F+3bMQ7f9gPVVVRmKgYD5IULjGw047wU6EOEHej7u7uxlNPPYXu7m5s27YNn/vc50y/9vnnn8ebb76JO+64A6tXrwYArFmzBp/4xCfwyCOP4Etf+pJHo5760BM8TB6gmhCYnx6gmiywcJ6SwkY8Fc4QWCQWgRSVoMoV0W2YPED0NW/tDk8RxGZEohGs+MsFOPov5mLTUzuw5df9UGUVE4N5bPj3zej79UxkBiphsURrXOuvFQbo9ejlR7di6292I92ZRHpGEi2dSaQ7K/8nP8dTUebvymaBhXNt484ASiQS6O7utvXaF154AV1dXTj77LO1xzo7O3HuuefiueeeQ7FYRCIRnkWFJ9gQWHg2lWg8ikhUgjK5qfjpAYqnY4glo5pYMKynpLDB1AEKkQEkSZUaRsVs5WQdpjpA9DUPc/irHsm2OP7iUyuwbM18/PHRrdj7+gAA4CAljg6TZxxgPYzjh3MYP1yrb6KJJaNIz0igpTOFdGcCQ7vHmN+FEe5CYE546623sHTpUkQi7NdasWIF8vl8wzDYwMAAtm/frv3X39/v9XBDBSOCDpEHCKiOPdkWRzTu340qSVLV4JIQmorEYYfWNoSlHxWBGMmxZDRUBnOM8QCFJwXeKjOPbMP/WvsBnP9/3o+OI1qY34XJ2AaABe+bjSVnzkNbTwqRWHPPVbkgY/xQDgffGsauPx1EbrSifYrGI6Fp2aInPHeYCYaGhnDiiSfWPE48SoODgzjmmGMMX/v0009j/fr1NY/v3LkTslwbH81kMujr63M24BAhd2QBANGkhKHSAYz1HbL8HkFds7b5cRS2ltC+MO7757csiGLsIDBjYQpbt2619R7Tba45pdxWOclG4sCIeggTfYMBj8g8LUdGMTEEdCxKBPY3tzPfygUF0VQEcl4BuvNTf74mgd4rerD/lXHs/X8jkAsqEnPU0H3v2avjmL16DlRVRTmvoJSRUczI1f9PKOy/MzLKebZqdMeipO3v7eXa1tvb2/Q5U8oAKhQKhiEu8lihUKj72osuugirVq3S/t3f348777wTixcvNswg6+vrM3WBpwy9wPGnjCPdkbTtmg/qmi0/VsHArjH0LOpAxKc+YNpnL1cx8O4ouhe22/Y+Tbu55pReYMX7MujftxMnfmBl0KOxxPJlCgZ2jqF7UYdvPev02J1vx/5/xyI7WkDX/HYPRsUnx68ECh8tYfNLb+LUvzwpVBogu8glGdmRInKjBcglGbOXzrQ9V4Ne26aUAZRMJlEsFmseJ48lk/X1Hz09Pejp6fFsbFOBmUeFc2GLxCJMuXtfPzsiBfbZ05mZR7Zh/2j4dAmRaHBz1SmpjkSodEtukWyLo/2o5LQwfoCKrrJ9Vhrts8If6gxn4K4OXV1dGBysdXeTx+yKqwUCgUAgEEwtppQBtHTpUrz99ttQFDZGuXXrVqRSKcyfPz+gkQkEAoFAIOCJ0BpAAwMD6O/vR7lcLcZ0zjnnYGhoCBs3btQeGxkZwYYNG3DGGWeIFHiBQCAQCAQAONUAPfnkk8hkMlro6sUXX8ShQ5Wso4985CNoa2vDgw8+iGeffRaPP/445s6dCwBYvXo1fvzjH+Puu+/Grl27MGPGDPz0pz+Foii48sorA/s+AoFAIBAI+IJLA+jxxx/HgQMHtH9v3LhR8+qcf/75aGtrM3xdNBrFN77xDXz729/Gk08+iUKhgOXLl+O2227DggULfBm7QCAQCAQC/uHSAHriiSeaPuf222/H7bffXvN4e3s71q5di7Vr13oxNIFAIBAIBFOA0GqABAKBQCAQCOwiDCCBQCAQCATTDmEACQQCgUAgmHYIA0ggEAgEAsG0QxhAAoFAIBAIph3CABIIBAKBQDDtEAaQQCAQCASCaQeXdYB4oFAoAAD6+/sNf797925Eo+HrNh0k4prZQ1w3e4jrZg9x3awjrpk9vL5uCxcuRCqVqvt7YQDVgVSivvPOOwMeiUAgEAgEAqs89NBDWLZsWd3fS6qqqj6OJzSMjIzgT3/6E+bOnVvTRLW/vx933nkn/umf/gkLFy4MaIThQlwze4jrZg9x3ewhrpt1xDWzhx/XTXiAbNLZ2Ynzzz+/4XMWLlzY0LoU1CKumT3EdbOHuG72ENfNOuKa2SPI6yZE0AKBQCAQCKYdwgASCAQCgUAw7RAGkA26u7tx+eWXo7u7O+ihhAZxzewhrps9xHWzh7hu1hHXzB48XDchghYIBAKBQDDtEB4ggUAgEAgE0w5hAAkEAoFAIJh2CANIIBAIBALBtEMYQAKBQCAQCKYdohCiBYrFIr773e/i17/+NcbHx3HMMcfgqquuwimnnBL00Lhk06ZNuPnmmw1/d//99+O4447zeUT8kc1m8aMf/Qh9fX3YunUrxsfHcdttt+HCCy+see6uXbvwrW99C2+88QZisRhOP/103HDDDejs7PR/4AFj9rr9y7/8C5599tma1y9YsAA//OEP/RouF2zduhXPPvssNm3ahAMHDqCjowPHHXccrrrqKsyfP595rphrVcxeNzHXWHbu3IlHHnkE27dvx9DQEFKpFBYuXIiPf/zjWLVqFfPcoOabMIAscPfdd+P555/HpZdeiqOOOgrPPPMMvvjFL2LdunU44YQTgh4et3zkIx/BihUrmMeOPPLIgEbDF6Ojo1i/fj3mzJmDJUuWYNOmTYbPO3ToEG688Ua0tbXh6quvRi6Xw49+9CO8++67eOCBBxCPx30eebCYvW4AkEgk8MUvfpF5rLW11eshcsdjjz2GN954A+eeey6OOeYYDA4O4qmnnsJVV12F+++/H0cffTQAMdf0mL1ugJhrNAcOHEA2m8UFF1yAnp4e5PN5vPDCC7jttttwyy234KKLLgIQ8HxTBabYsmWLetZZZ6mPPfaY9lg+n1cvu+wy9ZprrglwZPzyP//zP+pZZ52lbtiwIeihcEuhUFAHBgZUVVXVrVu3qmeddZb6y1/+suZ5//Zv/6b+5V/+pXrgwAHtsVdeeUU966yz1J/97Ge+jZcXzF63u+66Sz3//PP9Hh6XvP7662qxWGQe2717t3reeeepd9xxh/aYmGssZq+bmGvNKZfL6hVXXKH+7//9v7XHgpxvQgNkkhdeeAHRaFSzWgEgmUziQx/6ELZs2YKDBw8GODr+yWazKJfLQQ+DOxKJhKlCYC+88ALOOOMMzJkzR3vsAx/4AObPn48NGzZ4OUQuMXvdCLIsY2JiwsMR8c/KlStrTtPz58/HokWL0N/frz0m5hqL2etGEHOtPtFoFLNnz0Ymk9EeC3K+iRCYSd5++20cddRRNe5MEtrZsWMH8wcUVLn77ruRy+UQjUZxwgkn4Nprr8Xy5cuDHlZoOHz4MIaHhw0bBq5YsQIvv/xyAKMKD/l8HhdeeCHy+Tza29tx3nnn4ZprrkFLS0vQQwscVVUxPDyMRYsWARBzzSz660YQc62WXC6HQqGAiYkJvPjii/jjH/+Ic889F0Dw800YQCYZHBw0PHGSxwYGBvweEvfEYjGcc845+Iu/+AvMmDEDu3btwuOPP44bbrgB3/72t3HssccGPcRQMDg4CAB159/Y2BiKxSISiYTfQ+Oe7u5ufPzjH8exxx4LVVXxxz/+ET/96U/xzjvvYN26dYjFpvcS+Nxzz+Hw4cO48sorAYi5Zhb9dQPEXKvHfffdh6effhoAEIlEcPbZZ+Pv//7vAQQ/36bnX8QGhULBUIxF/jCFQsHvIXHPypUrsXLlSu3fZ555JlavXo0rrrgCDz74IO65554ARxceyNxqNv+m+6ZkxOc//3nm3+eddx7mz5+Phx56CC+88ALOO++8gEYWPP39/fjmN7+J4447DhdccAEAMdfMYHTdADHX6nHppZdi9erVGBgYwIYNGyDLMkqlEoDg55vQAJkkmUxqfzSaYrGo/V7QnKOOOgpnnnkmNm3aBFmWgx5OKCBzS8w/d/joRz+KSCSCP//5z0EPJTAGBwexdu1atLa24mtf+xqi0SgAMdeaUe+61UPMNWDhwoX4wAc+gAsuuAD/9//+X+RyOdx6661QVTXw+SYMIJN0d3dr7joa8lhPT4/fQwots2fPRqlUQj6fD3oooYC4h+vNv46Ojml9IrdKMplER0cHxsbGgh5KIGQyGXzxi19EJpPBPffcw6xdYq7Vp9F1q8d0n2tGrF69Gtu2bcOePXsCn2/CADLJkiVLsHfv3hp1f19fn/Z7gTnee+89JBIJpNPpoIcSCmbNmoXOzk5s37695ndbt24Vc88i2WwWo6Oj07KoX6FQwK233oo9e/bg61//eo2IV8w1Y5pdt3pM57lWDxL2ymQygc83YQCZZPXq1ZBlWRNzARUX3S9/+Uv09vaKDDADRkZGah7bsWMHXnzxRZxyyimIRMT0M8s555yDl156iSm38Oqrr2LPnj1aRoWApVAoIJvN1jz+/e9/H6qq4rTTTgtgVMEhyzK+8pWvYMuWLfjqV7+K448/3vB5Yq6xmLluYq7VMjw8XPNYuVzGr371KySTSc2IDHK+CRG0SXp7e3HuuefiwQcfxMjICI488kg8++yzOHDgANauXRv08Ljky1/+MpLJJI4//njMnDkTu3btws9//nOkUqkaweB05sknn0Qmk9HcwC+++CIOHToEoFJFu62tDZ/85Cfx/PPP4wtf+AIuueQS5HI5/Od//ieOPvpow7YZ04Fm1218fByf/exn8Zd/+ZdYsGABAOBPf/oTXn75ZZx22mk488wzAxt7ENx333148cUXccYZZ2B8fBy//vWvmd+ff/75ACDmmg4z121oaEjMNR333HMPJiYmcOKJJ2LWrFkYHBzEc889h927d+P666/XSgMEOd8kVVVVTz9hClEoFLReYJlMBkcffTSuuuoqnHrqqUEPjUt+/OMf47nnnsO+ffswMTGBzs5OvP/978fll1+Oo446KujhccNHP/pRHDhwwPB3jz/+OObOnQug0ltH3y/n+uuvR1dXl5/D5YZm162trQ3r1q3Dli1bMDg4CEVRcOSRR+Kv/uqvcNlll027tOSbbroJmzdvrvv7jRs3aj+LuVbFzHUbHx8Xc03Hb3/7W/ziF7/Au+++i9HRUbS0tGDZsmW4+OKLawzCoOabMIAEAoFAIBBMO4QIQyAQCAQCwbRDGEACgUAgEAimHcIAEggEAoFAMO0QBpBAIBAIBIJphzCABAKBQCAQTDuEASQQCAQCgWDaIQwggUAgEAgE0w5hAAkEAoFAIJh2CANIIBAIBALBtEMYQAKBwBP279+Ps88+G//yL/8S9FBc4ZlnnsHZZ5+NZ555JuihCAQCFxAGkEAg8I2bbroJZ599dtDDMGSqGWwCgaAx069Dm0Ag8IVZs2bh0UcfRWtra9BDcYWzzjoLvb296O7uDnooAoHABYQBJBAIPCEWi2HhwoVBD8M12tra0NbWFvQwBAKBS4hu8AKBwBP279+Pj33sY7jgggtw++231w19kd8T3nnnHTz66KPYvHkzxsbG0N3djVWrVuGKK67AjBkzDN//E5/4BB566CG89tprGBsbw+OPP465c+di48aN2LBhA7Zt24aBgQHEYjEcc8wxuOSSS7B69WrtvZ555hncfffdhuNbt24dTj75ZO05t912Gy688ELmOW+88QYeffRRbNmyBYVCAUcccQTWrFmDT3ziE0ilUsxzzz77bJx00kn4yle+gvvvvx8vv/wycrkclixZgs9//vM4+eSTrV5qgUBgA+EBEggEvnD55Zfj2WefxYEDB3D55Zdrjy9dulT7+fe//z2+8pWvQJIknHnmmZg9ezZ27dqFn/zkJ/jTn/6EBx54AO3t7cz77tu3D9deey2OPvpoXHDBBRgbG0M8HgcAPPjgg4jFYli5ciW6u7sxMjKCF198EV/60pdw88034yMf+QgAYMmSJbjkkkvw4x//GEuWLMGZZ56pvf8RRxzR8Htt2LABd9xxB+LxONasWYPOzk688sorWL9+Pf70pz9h3bp1SCaTzGsymQyuv/56tLW14fzzz8fw8DA2bNiAW265BQ899BCOPvpoW9dYIBCYRxhAAoHAF6688kps3rwZBw4cwJVXXlnz+9HRUdx1112YMWMG7rvvPsbw+O1vf4uvfvWr+O53v4svfOELzOveeOMNXH755Ybv+Y1vfAPz5s1jHstms7juuuvw3e9+Fx/60IeQSqWwdOlStLW1aQaQ0XsZMTExgX/9139FNBrF/fffj2OOOQYA8LnPfQ533HEHfve73+FHP/oRPvOZzzCv27FjB/72b/8WX/jCFxCJVHJR3ve+9+Eb3/gGfvKTn+CWW24x9fkCgcA+IgtMIBBwwa9+9StMTEzgc5/7XI3X5bzzzsOxxx6L3/72tzWv6+rqwqc+9SnD99QbPwDQ0tKCCy+8EJlMBtu2bXM05t///vfIZDL44Ac/qBk/ABCJRHDttdciGo0aps2n02lcc801mvEDVEKB0WjU8ZgEAoE5hAdIIBBwwZYtWwAAfX192LdvX83vi8UiRkdHMTIygs7OTu3xJUuWaCEvPcPDw/iP//gPvPzyyzh48CAKhQLz+4GBAUdjfvvttwEAJ510Us3v5syZg3nz5mHPnj3IZrNoaWnRfnfUUUcx/wYqovGuri5kMhlHYxIIBOYQBpBAIOCC8fFxAMBTTz3V8Hn5fJ7598yZMw2fNzY2hs997nM4ePAgVq5ciQ984ANoa2tDJBLBjh078Pvf/x6lUsnRmCcmJgBUvFBGdHd3Y8+ePZiYmGAMnnqlAaLRKBRFcTQmgUBgDmEACQQCLiAGwvr16y2JgCVJMnz8F7/4BQ4ePIjPfvazNRqcH/7wh/j9739vf7CTEENmaGjI8Pfk8alSC0kgmEoIDZBAIPANonmRZbnmd729vQCqoTCnkDAandFFeP311+uOzYoHhmSwbd68ueZ3Bw8exL59+zBv3ryacJdAIAgeYQAJBALf6OjoAAAcOnSo5ncf/OAH0dLSgoceegg7d+6s+X0+n7dkHBEh9RtvvME8/txzz+Hll1+ueX57ezskSTIcWz3OPPNMtLW14Ze//CUzZlVV8cADD0CW5ZqaQQKBgA9ECEwgEPjG+973Pjz//PP453/+Z5x22mlIJBJYsmQJVq1ahc7OTnz5y1/Gl770JVx55ZU49dRTsWDBApRKJRw4cACbN2/G8ccfj3vuucfUZ51//vl47LHHsG7dOmzatAlz5szBjh078D//8z84++yzsXHjRub5LS0tWL58OV577TXceeedOOqooyBJEv7X//pfdWsBtba24v/8n/+DO+64A9dccw3OPfdcdHZ24tVXX8X27duxYsUKXHbZZY6vm0AgcB9hAAkEAt/467/+a+zfvx+/+93v8Nhjj0GWZVxwwQVYtWoVAOD000/Hd7/7Xfznf/4nXn31Vfz5z39GKpXCrFmzcOGFF+L88883/VmzZ8/Gvffei/vvvx9//vOfIcsyjj32WPzbv/0bDh06VGMAAcA//dM/4d///d/x0ksvYWJiAqqq4oQTTmhYDPHcc89FV1cXfvjDH2Ljxo1aJejPfOYz+MQnPlFTBFEgEPCBaIUhEAgEAoFg2iE0QAKBQCAQCKYdwgASCAQCgUAw7RAGkEAgEAgEgmmHMIAEAoFAIBBMO4QBJBAIBAKBYNohDCCBQCAQCATTDmEACQQCgUAgmHYIA0ggEAgEAsG0QxhAAoFAIBAIph3CABIIBAKBQDDtEAaQQCAQCASCaYcwgAQCgUAgEEw7/n9G2hjBq8Vd6AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['alpha'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"alpha\")" + ] + }, + { + "cell_type": "markdown", + "id": "b3298aa5", + "metadata": {}, + "source": [ + "## Background normalization\n", + "\n", + "Plotting the background nomalization factor vs the number of iterations. If the backgroud model is accurate and the image is reconstructed perfectly, this factor should be close to 1. In this case, the background is slightly off from one, which may be because the background events are extracted from different time intervals of the GRB events." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "71ad8d7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'background_normalization')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAG5CAYAAACJLeBEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABfPUlEQVR4nO3deXxTVf4//leStknbdE1Ld9ayFVrKLrbsyqIOzgyO+3zBDREdZUYGlZ/jiIPjhqO4DAgfR1AHQUVHVEARgQqyC1IopRRKge7pnrVpcn9/hIaGtKXpTZo2eT0fDx5N7pJ7OGamL849930kgiAIICIiIvIxUk83gIiIiMgTGIKIiIjIJzEEERERkU9iCCIiIiKfxBBEREREPokhiIiIiHwSQxARERH5JIagNhgMBpw+fRoGg8HTTSEiIiIXYwhqQ2FhIR566CEUFha2uP/s2bOd3CLvwH5zHvusY9hvHcN+cx77rGM83W8MQSIYjUZPN6FbYr85j33WMey3jmG/OY991jGe7jeGICIiIvJJDEFERETkkxiCiIiIyCcxBBEREZFPYggiIiIin8QQRERERD6JIYiIiIh8EkMQERER+SSGICIiIvJJDEFERETkkxiCiIiIyCcxBBEREZFPYggiIiIin+Tn6Qb4mgadCWd/LoGhvgGhscHoNy7O000iIiLySQxBncxkMGPvf04CAHqNjmEIIiIi8hDeDutkcqW/7bWxvsGDLSEiIvJtDEGdzC9ABn+FDABgYAgiIiLyGIYgD5CHBAAADHUMQURERJ7CEOQBisshyKgxwWIRPNwaIiIi38QQ5AGKEOu8IEEAGrQmD7eGiIjINzEEeUDTSBDAeUFERESewhDkAfYhiCNBREREnsAQ5AHNQxAfkyciIvIMhiAPaJoTBAB6hiAiIiKPYAjyADlHgoiIiDyOIcgDOCeIiIjI8xiCPKD57TA+HUZEROQZDEEeoAjlI/JERESexhDkAfJgf0Bifc0QRERE5BkMQR4glUmtQQiAkXOCiIiIPIIhyEOaJkfruYgqERGRRzAEeYj88uRok74R5kaLh1tDRETkexiCPIRVo4mIiDyLIchDWCuIiIjIsxiCPIQryRMREXkWQ5CHsGAiERGRZzEEeQhHgoiIiDyLIchDGIKIiIg8iyHIQ+xvh3FiNBERUWdjCPIQOR+RJyIi8iiGIA8J5CKqREREHsUQ5CH+gX6QyKyrqPJ2GBERUedjCPIQiURimxzNkSAiIqLOxxDkQU2Tow11DRAEwcOtISIi8i0MQR7UNBJkNlnQaDR7uDVERES+hSHIgxRKrh9GRETkKQxBHqQI5WPyREREnsIQ5EFcP4yIiMhzGII8SM6lM4iIiDyGIciD7NcP45wgIiKizsQQ5EG8HUZEROQ5DEEexJXkiYiIPMfP0w1ojU6nw4YNG5CTk4NTp06hvr4ezzzzDGbOnNmu80+fPo3//Oc/OH36NPR6PeLi4nDLLbfgd7/7HWQymZtb3z4Krh9GRETkMV12JKi2thZr165FYWEhkpOTnTr39OnTWLBgAUpLS3H33XdjwYIFiI+Px1tvvYV33nnHTS12HusEEREReU6XHQlSqVT48ssvoVKpkJubi3nz5rX73M2bNwMA3n77bYSGhgIAbr31VvzpT3/Ctm3b8MQTT7ilzc7yk8vgJ5eh0WhmnSAiIqJO1mVHggICAqBSqTp0rlarRUBAAJRKpd12lUoFuVzuiua5jG39MIYgIiKiTtVlQ5AYw4cPh1arxfLly3H+/HmUlpbiq6++QlZWFu655x5PN8+OXNm0krwJgoWLqBIREXWWLns7TIxbbrkFBQUF2Lx5M7755hsAgEwmw8KFC3Hrrbe2ep5arUZlZaXtfWFhodvb2vSEmGAR0KBrhFzpf40ziIiIyBW8MgTJZDLEx8djzJgxmDRpEgICArBjxw68+eabiIyMxPjx41s8b/PmzVi7dq3D9oKCApjNjqu8azQa5OTkiGqr0aKzvT5xLAeBkd4fglzRb76GfdYx7LeOYb85j33WMe7st5SUlGseIzoEnT9/Hl988QVyc3NRX18Pi8XicIxEIsGGDRvEXqrdPv74Y3z++edYv349goKCAABTpkzBE088gTfeeAPjxo2Dn5/jX33WrFnIyMiwvS8sLMSyZcvQp08fDBw40OH4nJycdnVyW2oP50B90jrilNijJ2IGRIj6vO7AFf3ma9hnHcN+6xj2m/PYZx3j6X4TFYKOHTuGRYsWwWQyQSaTISIiosUaPILQuXNd/ve//2HEiBG2ANQkIyMD77zzDkpLS5GYmOhwXlRUFKKiojqrmQBYMJGIiMhTRIWg9957D2azGYsXL8aMGTO6TBHC6urqFkekGhsbAaDFW1ue0jwEGVkriIiIqNOIejosPz8fU6dOxc033+yxAKRWq1FYWGgLOACQmJiIw4cPo7a21rbNbDZj586dCAoKQkJCgiea2iKuH0ZEROQZokaCFAoFwsPDXdQUR5s2bYJGo7E9sbV3716Ul5cDAGbPng2lUonVq1dj27Zt2LhxI+Li4gAA99xzD5YtW4b58+fjN7/5DeRyOX744QecPn0aDz74YIvzgTxF3mwkSM8QRERE1GlEpYHrrrsOx48fd1VbHGzcuBGlpaW291lZWcjKygIATJs2zaEYYpNp06YhPDwcH3/8MT755BPodDokJSXhySefbPMReU+wvx3GEERERNRZRIWgBQsW4NFHH8WKFSvw8MMPQ6FQuKpdAIBPP/30mscsWbIES5Yscdg+ZswYjBkzxqXtcQf7RVQ5J4iIiKiziApBzz//PAIDA/Hll19i69atSEpKcngiC7A+Iv/mm2+KuZTXUgRzThAREZEniH5Evoler0deXl6Lx0kkEjGX8WpSPykCgvzQoGtkCCIiIupEokLQ7t27XdUOn6YICUCDrpGPyBMREXUir1xAtbtpmhxt1JpgaXSsb0RERESu59IQpNfroVarodfrXfmxXk/evFaQlqNBREREnUF0wRyTyYRPPvkEW7duRUlJiW17XFwcbrrpJtx5553w9/f+RUHFCAy1f0w+KEzuwdYQERH5BlEhyGg0YuHChTh16hSkUikSExOhUqlQWVmJ4uJivP/++/j555/x5ptvQi7nL/bWyLl+GBERUacTFYL++9//IicnB1OmTMH8+fMRExNj21deXo5Vq1Zhx44dWL9+Pe677z7RjfVW9ouo8nYYERFRZxA1J+jHH3/EgAED8Pe//90uAAFAjx498Nxzz2HgwIHYsWOHqEZ6O64fRkRE1PlEhaDS0lKMHj26zWNGjhxpt/QFOVLwdhgREVGnExWCFAoFampq2jympqbG5ctpeBu7EFTHEERERNQZRIWglJQU7NixAwUFBS3uP3/+PH788UcMGTJEzGW8HucEERERdT5RE6P/+Mc/4tChQ5g3bx5uvvlmpKenIyIiAtXV1Th69Ci2bt2KxsZG3Hvvva5qr1fiSvJERESdT1QISk1NxXPPPYfXXnsNX375Jf73v//Z9gmCgODgYCxZsgSpqali2+nVAoL8IJFKIFgEzgkiIiLqJKKLJU6ePBljx47Fnj17kJeXB51Oh6CgIAwYMACZmZktripP9iRSCeRKfxjqGng7jIiIqJOIDkEAEBQUhGnTpmHatGmu+DifpAgJuByCOBJERETUGbiAahfRVCuo0WhGY4PZw60hIiLyfk6NBG3btg0AMGHCBAQFBdnet8eMGTOca5mPubpWkFIV6MHWEBEReT+nQtBLL70EiUSCIUOGICgoyPa+LYIgQCKRMARdgyKUIYiIiKgzORWCnn76aQCASqWye0/isVYQERFR53IqBM2cObPN99RxzdcPY60gIiIi9xM1MfrYsWMoKytr85iysjIcO3ZMzGV8gpzrhxEREXUqUSFo4cKF2Lp1a5vHfPfdd1i4cKGYy/gE3g4jIiLqXKJCkCAI7TrmWpOniYuoEhERdTa31wm6dOkSgoOD3X2Zbq/5nCDeDiMiInI/pytGv/zyy3bvf/rpJ5SWljocZzabUV5ejuPHj2Ps2LEdb6GPuLpOEBEREbmX0yGo+RwgiUSC/Px85Ofnt3isRCLBoEGD8Nhjj3W8hT7CTy6DzF8Ks8nCOUFERESdwOkQtHHjRgDWuT533nkn/vCHP+C2225zOE4qlSIkJASBgSz61x4SiQSKkABoqwx8RJ6IiKgTOB2CYmNjba+ffvppDBgwwG4bdZwixB/aKgMM9Q2cUE5ERORmolaRZ7FE12qqFWQxCzDpGxEQ5H+NM4iIiKijRIWgJkajEbm5uVCr1TCZWp7PwrXDru3qydEMQURERO4jOgR98cUXeP/996HValvczwVU289+EVUTQmM82BgiIiIvJ6pO0O7du7FixQr06NEDCxYsgCAIyMjIwEMPPYQxY8ZAEARMnDgRTz31lKva69VYK4iIiKjziApBn332GSIiIrBy5UrcfvvtAID+/fvjnnvuwauvvopnn30WP/30EydOtxNrBREREXUeUSHo3LlzyMjIgEKhsG2zWCy21zfeeCNGjBiBtWvXirmMz+D6YURERJ1HVAhqbGxEeHi47b1cLkd9fb3dMcnJyThz5oyYy/iM5iGItYKIiIjcS1QIUqlUqKystL2PiYlxCDylpaWQyWRiLuMz5M3mBOm5iCoREZFbiQpBgwcPRl5enu392LFjceLECXz88ccoKCjAV199haysLAwaNEh0Q31BIEeCiIiIOo2oEDRp0iQ0NDSgpKQEAHDvvfciOjoa//d//4f77rsP//rXvxAYGIj58+e7pLHeTs45QURERJ1GVJ2gCRMmYMKECbb34eHh+M9//oNvvvkGxcXFiImJwfTp0xEdHS26ob5A5ieFf6AfTPpGPh1GRETkZi6pGN1cSEgI7rrrLld/rM9QhPgzBBEREXUCUbfDtm3bhl27drV5zNmzZ7Ft2zYxl/EpTU+IGbUmWCyCh1tDRETkvUSNBL300kuQSCTIzMzE3/72N8jlcodjsrKysG7dOi6b0U62x+QFoEFjsltKg4iIiFxH1EgQYJ0H9NNPP+FPf/oTqqqqXNEmn9a8VpCet8SIiIjcRnQI+u1vf4t58+YhLy8PDz/8MM6ePeuKdvms5iM/fEyeiIjIfUSHIAC45557sHTpUtTV1eHRRx/Fvn37XPGxPomLqBIREXUOl4QgAJg4cSJWrFgBhUKBJUuW4LPPPnPVR/sU1goiIiLqHC4LQQAwaNAgvPfee+jduzfeffdd/Otf/4LZbHblJbyeQsmV5ImIiDqDy+sExcTE4N1338Xzzz+Pr776ym6Febo23g4jIiLqHC4dCWoSFBSEl19+Gb/73e9gMBjccQmv1fzpMAMXUSUiInIbUSNBu3fvbnWfVCrFwoULMX36dBiNRjGX8SnNnw7jnCAiIiL3cfntsKsNHjzY3ZfwKgHB/pBIAEHgI/JERETu5JbbYdRxUqkEcqV1XhDnBBEREbmPUyNBEydOhFQqxYcffoikpCRMnDgREonkmudJJBLs3Lmzw430NfKQABjqTTBoGIKIiIjcxakQNGzYMEgkEtsaYU3vybUUIQGohRYmvRlmkxkyf5mnm0REROR1nApBb731VpvvyTXsnhDTmBAcwRBERETkapwT1AXZ1QriY/JERERuwRDUBdmNBHFyNBERkVs4dTts7dq1HbqIRCLBnDlzOnSuL1Jw/TAiIiK3cyoEffDBBx26CEOQc5qHINYKIiIicg+nQtCKFSvc1Q4HOp0OGzZsQE5ODk6dOoX6+no888wzmDlzZrs/4/Dhw/joo4+Ql5cHi8WCpKQk3HXXXZg6daobWy4e1w8jIiJyP6dCUHp6upua4ai2thZr165FTEwMkpOTcfToUafO37JlC1555RWMGjUKDz30EGQyGS5cuIDy8nI3tdh15LwdRkRE5HZuXzajo1QqFb788kuoVCrk5uZi3rx57T63pKQEb7zxBn7/+9/jiSeecGMr3YOLqBIREbmfy0KQ2WxGbW0tTKaWRy5iYmKc+ryAgACoVKoOteWrr76CxWLBAw88AMB6ay0wMLDbFHa0X0SVIYiIiMgdRIeg06dPY/Xq1fj111/R2NjY4jGdvWzGkSNH0LNnT+zfvx8rV65ERUUFQkJC8Lvf/Q73338/pNKWKwOo1WpUVlba3hcWFnZWk+34K2SQ+klgaRS4dAYREZGbiApBZ86cwWOPPQaZTIbRo0fj559/RnJyMiIjI5GXl4eamhqkp6cjNjbWVe1tl0uXLkEqleLll1/GXXfdhX79+iErKwsffvghzGYzHn744RbP27x5c4tlAAoKCmA2mx22azQa5OTkuLr5AAC/QCka6s3QVOncdg1PcWe/eSv2Wcew3zqG/eY89lnHuLPfUlJSrnmMqBC0bt06AMCqVavQu3dvTJw4EePHj8fcuXNhNBrx7rvvYteuXXj66afFXMZper0eFosFDz/8MO655x4AwKRJk1BfX4/PP/8cf/zjHxEUFORw3qxZs5CRkWF7X1hYiGXLlqFPnz4YOHCgw/E5OTnt6uSOyI2oQlV9PcwGAYMHD+42t/Law5395q3YZx3DfusY9pvz2Gcd4+l+E1UxOjs7GxkZGejdu7dtmyAIAAC5XI6FCxciKioKa9asEdVIZzUt8HrDDTfYbZ86dSqMRiPy8vJaPC8qKgoDBw60/enVq5fb29qapsnRZpMFjUbHUSgiIiISR1QI0mq1iI+Pt7338/ODXq+/8uFSKdLT03HkyBExl3Fa04TqiIgIu+1N7+vr6zu1PR0hZ60gIiIitxIVgsLDw+0CRWRkJC5dumR3TENDAwwGg5jLOK3p1pVarbbb3vQ+PDy8U9vTEYF8TJ6IiMitRIWg3r1748KFC7b3qampOHToEE6cOAEAOH/+PHbu3OnW20pqtRqFhYV2T6ZNmTIFAPDtt9/atlksFmzduhWhoaEtzu/palgwkYiIyL1ETYweN24c3nnnHajVakRFReHuu+9GVlYWHnvsMYSEhECj0cBiseDee+/t0Odv2rQJGo3G9tj63r17bRWfZ8+eDaVSidWrV2Pbtm3YuHEj4uLiAACZmZkYOXIkPv74Y9TU1CA5ORk//fQTjh8/jkWLFiEgIKDVa3YVXEmeiIjIvUSFoFtvvRWTJ09GSEgIACA5ORlvvPEGPvroIxQXF2PgwIGYPXs2xo0b16HP37hxI0pLS23vs7KykJWVBQCYNm0alEpli+dJJBK8+OKL+L//+z/8+OOP2LZtG5KSkvDss89i2rRpHWpLZ+P6YURERO4lKgT5+fkhMjLSbltqaipeffVVUY1q8umnn17zmCVLlmDJkiUO24OCgvD444/j8ccfd0lbOpuCt8OIiIjcStScIHKf5iHIyJEgIiIil3PJ2mE1NTU4f/481Gp1q0tnzJgxwxWX8hnNb4fpGYKIiIhcTlQIMhqNePPNN/H999+3uKwEYC2eKJFIGIKcJOdIEBERkVuJCkErVqzAli1b0K9fP0ycOBEqlQoymcxVbfNpfgEy+CtkMBnMnBhNRETkBqJC0O7duzFw4ECsXLmS4ccN5CEBMBn0nBhNRETkBqImRlssFgwfPpwByE2aJkcb6xsgWAQPt4aIiMi7iApBgwYNclgmg1ynaXK0IABGHUeDiIiIXElUCHrggQdw6NAh/Pzzz65qDzVj/5g8QxAREZEriZoTNHToULz++ut45plnMGDAAPTr1w/BwcEOx0kkEsyZM0fMpXxS8xCkr2tAWJxj3xIREVHHiApBtbW1eO+991BfX48jR47gyJEjLR7HENQxLJhIRETkPqIfkc/OzsZ1112HqVOn8hF5F+P6YURERO4jKgQdOHAA6enpeOWVV1zVHmpGzpXkiYiI3EbUxGhBEDBo0CBXtYWuwkVUiYiI3EdUCEpNTUV+fr6r2kJX4e0wIiIi9xEVghYsWIDc3Fxs2rTJVe2hZhS8HUZEROQ2ouYEffLJJ+jXrx/efvttbNq0qdVH5AHg6aefFnMpnyRX+gMSAAJDEBERkauJCkFbt261vS4qKkJRUVGLx0kkEoagDpDKpJAH+8OoMbFYIhERkYuJCkEbN250VTuoFYqQABg1Jo4EERERuZioEHTs2DFERkZizJgxrmoPXUUe4g+UAA26RlgaLZD6iZrGRURERJeJ+o36yiuv4MCBA65qC7XAbnK0hrfEiIiIXEVUCFKpVDCbza5qC7WAT4gRERG5h6gQlJGRgcOHD6Ohgb+c3cUuBNWxn4mIiFxFVAh66KGHoFAo8Oyzz6KgoMBVbaJmWDCRiIjIPURNjH7ggQdgMpmQn5+PgwcPIiAgAOHh4ZBIJHbHSSQSbNiwQVRDfRVvhxEREbmHqBAkCAL8/PzQo0cPh+1tvaf2ax6CWCuIiIjIdUSFoE8//dRV7aBW8HYYERGRe7DoTBcn5+0wIiIitxA1EtRcY2MjLl68CK1Wi+DgYCQlJcHPz2Uf77MCQ5uHIN4OIyIichXRKaWurg6rVq3CDz/8YPeovFwuxw033IB58+YhLCxM7GV8ln+gHyQyCQSzwJEgIiIiFxIVgurq6jB//nwUFRUhNDQUaWlpUKlUqKqqQm5uLr755hscO3YMK1euRGhoqKva7FMkEgkUIQHQ1xgZgoiIiFxIVAhat24dioqKcOedd2Lu3LkIDAy07TMYDFi3bh3Wr1+PDz/8EI899pjoxvoqRYg/QxAREZGLiZoYvWfPHqSnp+ORRx6xC0AAoFAo8PDDDyM9PR0//fSTqEb6uqbH5M0NFjQauUwJERGRK4gKQZWVlRg6dGibxwwdOhSVlZViLuPzFEo+IUZERORqokJQcHAwSktL2zymtLQUwcHBYi7j8+SsFURERORyokJQeno6du3ahcOHD7e4/8iRI9i1axfS09PFXMbn2T0mL3IR1aITamStzkblhTqxzSIiIurWRE2Mnjt3Lvbt24dFixbhuuuuw7BhwxAZGYmqqiocO3YMBw4cgFwux9y5c13UXN/kqoKJDToTfvjXLzAZzKgv1+HmZ8e6onlERETdkqgQ1KdPHyxfvhwvvfQS9u3bh3379kEikdjWCouPj8eSJUvQp08flzTWV9kvotrxgol5u4tgMlgnVldfrBfdLiIiou5MdLHEtLQ0rF+/HtnZ2Thz5oytYnT//v2RmprqsKI8Oc8V64cJFgE52wubfY4JJkMj/BWs6k1ERL7JJb8BJRIJ0tLSkJaW5oqPo6soXHA7rChbjbpSnd02jVqPiMQQUW0jIiLqrriAajfQPAQZO3g77OT3hQ7b6iv0HW4TERFRdyd6JKimpgZbtmxBbm4uNBoNzGbHYn4SiQRvvvmm2Ev5LLuRII3zI0F1ZVpcPFbhsF3DEERERD5MVAg6e/YsFi5ciPr6ettk6JZwXpA4fnIZ/OQyNBrNHXpE/tQPF4HL/3kSUlUoyrYWr+RIEBER+TJRIejdd99FXV0d/t//+3+4+eabER0dDZlM5qq2UTOKEH9ojGan5wSZDI04vfMiAEDmL8XIPwxAUfY+ANY5QURERL5KVAg6efIkMjMz8cADD7iqPdQKuTIAGrUBhnoTBEFo9+ja2Z9L0KBrBAD0HRcHVe9QSCSAIPB2GBER+TZRE6P9/PyQkJDgqrZQG5rmBQkWwRZqrkUQBOQ0mxCdMq0XZH5SBEUqAAD1HAkiIiIfJnrZjNOnT7uqLdSGjtQKKs2tRtUFa1HEHsnhiO4bBgAIiQ60fk5dA0yG9gUqIiIibyMqBC1YsADnzp3DJ5984qr2UCvsH5NvXwiyHwXqaXutjAq0vea8ICIi8lWi5gR99NFH6Nu3L9577z1s3rwZycnJra4Y//TTT4u5lM9TNFtEVd+OJ8S0VQacP1RmO7fP2FjbvqaRIMA6L4gFE4mIyBeJCkFbt261vS4uLkZxcXGLx0kkEoYgkZwtmHjqhwsQLNbn4gdPTYLM/8pTe8pmIYjzgoiIyFeJCkEbN250VTvoGpyZE2Q2mZH7o/WxeIlUgkFTe9rtD4kOsr1mrSAiIvJVokJQbGzstQ9qQVlZGUpKSpCeni7m8j5F7kTV6IIDpbaiir1HxyD48tNgTezmBDEEERGRj/LI2mFbtmzBwoULPXHpbst+EdW2b4c1XydsyPReDvuDVQo0lRliCCIiIl/FBVS7ifauJF9xtgYV+bUAgMieIYgZGOFwDGsFERERMQR1Gwpl++YE5Wy/YHudMq1Xq5WlWSuIiIh8HUNQNyH1kyIgyDqFq7VFVPV1RpzbVwIACAjyQ3JGfKufx1pBRETk6xiCupGmW2KtPSJ/euclmE0WAMDAyUnwk7e+mO3VtYKIiIh8DUNQN2ILQVoTLGaL3T6L2YJTP1y+FSYBBt/Q8+rT7bBWEBER+TqGoG5E3qxWkFFjPxpUeKQc2koDACApPRqhMUFoC2sFERGRr2MI6kbaekKs+TphQ6Y5PhZ/NdYKIiIiX8cQ1I00Xz+sea2g6kv1KMmpAgCExgYhITXqmp8VrFIArBVEREQ+zCMhKDg4GD169GjzGJ1Oh//85z9YtGgRbr75ZkyYMMFurTJnvPrqq5gwYQKeeuqpDp3fVbQ2EnTyu+arxfeCRNryY/HNyfykCI5grSAiIvJdHglBt99+Oz799NM2j6mtrcXatWtRWFiI5OTkDl8rNzcXW7duRUBAwLUP7uJaWj/MqDUhf4914Vo/uQwDJiS0+/OUrBVEREQ+zKm1w9auXduhi0gkEsyZM8epc1QqFb788kuoVCrk5uZi3rx5Tl9XEASsWLEC06dPxy+//OL0+V1NSyNBZ7KK0Gg0AwD6j09AQJB/i+e2JCQ6EGWnqwFYawVFJIa4sLVERERdm1Mh6IMPPnDY1rwisSAIDtsFQehQCAoICIBKpXLqnKt99913KCgowLJly/DII4+I+qyuoHkIMtabIFgEuwnRKdPafiz+aldPjmYIIiIiX+JUCFqxYoXDtg0bNuDw4cOYNm0a0tLSEBkZiaqqKvz666/Yvn07Ro8ejTvuuMNlDW4vnU6HVatW4d577213mFKr1aisrLS9LywsbOPoznf1SNClbDXqynQAgPghKqdDTAhrBRERkQ9zKgSlp6fbvf/mm29w7NgxrFmzBn369LHbN2PGDNx2221YsGABMjMzHc51t7Vr10Iul+P2229v9zmbN29u8ZZfQUEBzGazw3aNRoOcnBwxzXSKSX+lDeqSKlRuqra9DxksdbotNborwed87iUgQSu+ke3Q2f3mDdhnHcN+6xj2m/PYZx3jzn5LSUm55jFOhaCrffbZZ5g6dapDAGrSr18/TJ06FZ9++iluvvlmMZdyysWLF/H555/jueeec2pC9KxZs5CRkWF7X1hYiGXLlqFPnz4YOHCgw/E5OTnt6mRXESwCDkuLIFgEGCsF6GutxRGVUQpk3DoCUplz89zrVFrk/LccACAXgjrt79LZ/eYN2Gcdw37rGPab89hnHePpfhMVgoqKinD99de3eUxoaCiKi4vFXMZpb731FoYOHYpJkyY5dV5UVBSioq5dY8dTJFIJ5Ep/GOoaoK8x2rYPvqGn0wEIAIJVgdZaQQJrBRERke8R9Yh8eHg4Dhw4YDchujmLxYIDBw4gLCxMzGWccuTIERw4cAC33XYbSkpKbH/MZjOMRiNKSkqg1XbObR93aD4vCABk/lIMnJTUoc+yqxXEEERERD5G1EjQDTfcgE8++QRPP/00HnroIbt6PmfOnMGaNWtQUFCAu+66S3RD26u83Hp759lnn3XYV1FRgTvuuAOPPfaYU3OFupLmtYIAoO+4OLtK0s5SRgdCW2WAoa4BjUZzmyvPExEReRNRIei+++5DXl4e9u/fjwMHDkChUCA8PBw1NTUwGAwQBAEjR47E3LlzXdRcR2q1GlqtFgkJCfDz88OIESPw4osvOhz32muvITY2Fn/84x/Rt29ft7XH3a4eCWrPOmFtaV4rqF6tR0SCUtTnERERdReiQpBcLsfrr7+Obdu2Ydu2bTh37hzKysqgVCoxaNAgTJ8+HTNmzLCrJeSMTZs2QaPR2B5b37t3r22kZ/bs2VAqlVi9ejW2bduGjRs3Ii4uDjExMYiJiXH4rLfffhsREREYP358x//CXUDzENQjORxRfcXdanSoFcQQREREPkJUCAKsRRFnzpyJmTNnuqI9djZu3IjS0lLb+6ysLGRlZQEApk2bBqXS935hB0cpbK+dLY7YErtaQRU60Z9HRETUXYgOQe50rfXFAGDJkiVYsmSJSz6rOxg4KQnqc3VQRinQ9/p40Z+nbBaCNCyYSEREPsQlIaixsREXL16ERqNpsagg4FhokTomKFyOG/8ywmWfZz8SxBBERES+Q1QIEgQB77//Pr744gvodG3fStm1a5eYS5GbsFYQERH5KlEhaN26dfjoo4+gVCoxffp0REdHQybjI9bdSVOtIG2VgSNBRETkU0SFoC1btiAmJgZr1qzp1IKI5FrKKNYKIiIi3yOqYnRVVRXGjx/PANTNKbmaPBER+SBRISg2NrZbL0FBVs0nR3NeEBER+QpRIei3v/0t9u3bh+rqale1hzxAyVpBRETkg0TNCcrMzMTx48exYMECzJkzBwMGDEBwcHCLx7ZUxZm6hpAo1goiIiLfIyoE3XHHHZBIJBAEAS+//HKrx0kkEuzcuVPMpciNlKwVREREPkhUCJo+fXqH1wWjrkOpUrBWEBER+RxRIag9y1VQ1yfzlyEoQg5dlZEjQURE5DNETYwm7xESFQQAtlpBRERE3o4hiACwVhAREfke0ROj20MikWDDhg1iLkVudnWtoIgEpQdbQ0RE5H6iF1BtiVarhUajAQCoVCr4+blksXpyI9YKIiIiXyMqnXz66aet7ispKcE777yD6upq/Otf/xJzGeoE9rWCDB5sCRERUedw25yguLg4LF26FPX19VizZo27LkMuouTSGURE5GPcOjHaz88Po0aNYqHEbsBWKwhAvZq3w4iIyPu5/ekwo9GIuro6d1+GRGqqFQRwJIiIiHyDW0PQr7/+ih07dqBnz57uvAy5SFOtIH1tAxobWCuIiIi8m6iJ0U888USL281mM9RqNUpLSwEAc+bMEXMZ6iTK6ECU5VUDsI4GhfMxeSIi8mKiQtCxY8da3C6RSBASEoLRo0fj9ttvx+jRo8VchjpJyFUFExmCiIjIm4kKQbt373ZVO6gLUEbxCTEiIvIdXDaDbOwLJjIEERGRd3NZKefGxkZcvHgRWq0WwcHBSEpKYqXobiaEI0FERORDRKeUuro6rFq1Cj/88AMaGhps2+VyOW644QbMmzcPYWFhYi9DnUAZpbC9Zq0gIiLydqJCUF1dHebPn4+ioiKEhoYiLS0NKpUKVVVVyM3NxTfffINjx45h5cqVCA0NdVWbyU2aagXpqo0cCSIiIq8nKgStW7cORUVFuPPOOzF37lwEBl65nWIwGLBu3TqsX78eH374IR577DHRjSX3U0YHQldttNUK8guQebpJREREbiFqYvSePXuQnp6ORx55xC4AAYBCocDDDz+M9PR0/PTTT6IaSZ2H84KIiMhXiApBlZWVGDp0aJvHDB06FJWVlWIuQ51IGR1ke12vZggiIiLvJSoEBQcH26pCt6a0tBTBwcFiLkOdKISryRMRkY8QFYLS09Oxa9cuHD58uMX9R44cwa5du5Ceni7mMtSJWCuIiIh8haiJ0XPnzsW+ffuwaNEiXHfddRg2bBgiIyNRVVWFY8eO4cCBA5DL5Zg7d66LmkvuxjlBRETkK0SFoD59+mD58uV46aWXsG/fPuzbtw8SiQSCIAAA4uPjsWTJEvTp08cljSX3Y60gIiLyFaKLJaalpWH9+vXIzs7GmTNnbBWj+/fvj9TUVEgkEle0kzoJawUREZGvEBWCXn75ZfTt2xe333470tLSkJaW5qp2kQexVhAREfkCUROjf/jhB1RXV7uqLdRFcF4QERH5AlEhKD4+njWAvBBrBRERkS8QFYJuuukm7Nu3DxUVFa5qD3UBrBVERES+QNScoIkTJ+Lo0aNYsGAB7rrrLgwaNAiRkZEtToaOiYkRcynqRM1rBWk4EkRERF5KVAi68847bY/Ev/XWW60eJ5FIsHPnTjGXok7UfE4QCyYSEZG3EhWCpk+fzkfgvVCw6kqtIN4OIyIibyUqBC1ZssRV7aAuxC9AhqBwOXQ1Rk6MJiIiryVqYjR5r6Z5QfoaIxobzB5uDRERkesxBFGLQjg5moiIvJyo22F33HHHNY+RSqUICgpCz549MX78eEyZMkXMJamTKK8qmBger/Rga4iIiFxPVAgSBAFmsxlqtRoAIJPJEBYWhtraWpjN1lsoUVFRqK6uRn5+Pnbu3IlvvvkGr7zyCvz9/cW3ntym+UgQ5wUREZE3EhWC3n//fTz55JPo2bMnHnzwQaSkpNgemc/JycH7778PjUaDtWvXora2Fu+88w7279+PjRs34t5773XV34HcQMmCiURE5OVEzQlatWoVGhoa8Prrr2PIkCG2x+UlEgmGDBmC1157DQ0NDXjvvfeQmJiIpUuXIiYmBjt27HBJ48l9QpovncEQREREXkhUCNq7dy+uu+46SKUtf4xMJsN1112HPXv2AADkcjlGjBiBoqIiMZelTsBaQURE5O1EhSCtVgudTnfNY7Rare19WFiYmEtSJ2mqFQRwThAREXknUSGod+/e+OGHH1BcXNzi/uLiYuzYsQO9e/e2bSsvL0d4eLiYy1InYa0gIiLyZqImRt9777147rnncP/99+OWW27B0KFDERERgerqapw4cQLffvst9Hq9bRK0yWTCoUOHMHr0aJc0ntwrJDoQ5WdqAFhrBfExeSIi8iaiV5FfvHgx3n77bXz22Wf4/PPPbfsEQUBgYCAWLVqEiRMnAgAMBgMWL16MPn36iGs1dQrWCiIiIm8mKgQBwM0334yJEydiz549yM/Ph06nQ1BQEJKTk5GZmQml8sovzpCQEIwfP17sJamTsFYQERF5M9EhCACUSiVmzJjR6n6z2QyZTOaKS1EnYq0gIiLyZqImRn/xxRfXPMZsNmPp0qViLkMewlpBRETkzUSFoLfeegu7du1qdb/FYsHSpUuRlZUl5jLkIawVRERE3kxUCEpNTcWyZcvwyy+/OOxrCkC7d+/G7373OzGXIQ/xC5AhkLWCiIjIS4maE/Tyyy/jsccew7PPPosVK1agf//+AKwB6B//+Ad27dqF3/72t3jiiSec+lydTocNGzYgJycHp06dQn19PZ555hnMnDnzmuceOXIE27dvx/Hjx1FRUYHIyEiMGDECDzzwAKKiojr09/RlIVGB0NcYbbWC/AI4t4uIiLyDqJGg4OBgLF++HEqlEn/9619RXFwMQRDwwgsv4Mcff8Stt96KP//5z05/bm1tLdauXYvCwkIkJyc7de6qVatw9OhRjB8/Hk888QSmTp2KnTt34sEHH0RlZaXTbfF1dpOjORpEREReRPTTYSqVCq+//joeffRRPPnkk+jfvz92796NW265BX/5y186/JlffvklVCoVcnNzMW/evHaf++ijjyItLc1uPbMxY8bg8ccfxxdffIGHHnqoQ23yVSHRrBVERETeSdRIUJOkpCS8+uqrqK6uRlZWFm655Rb89a9/7fDnBQQEQKVSdejc9PR0hwVd09PTERoaisLCwg63yVdxJIiIiLyVUyNBa9eubXP/4MGDkZ+fD5VKZXesRCLBnDlzOtI+l9DpdNDr9Vy8tQNCmlWN5mPyRETkTZwKQR988EG7jlu3bp3de0+HoM8++wwmkwlTpkxp8zi1Wm03b4gjRxwJIiIi7+VUCFqxYoW72uE2x44dw9q1azF58mSMHDmyzWM3b97c4mhXQUEBzGbHVdQ1Gg1ycnJc1dQuyWyy2F6XX6hyyd/XF/rN1dhnHcN+6xj2m/PYZx3jzn5LSUm55jFOhaD09PSOtsUjCgsL8eyzz6Jv37546qmnrnn8rFmzkJGRYXf+smXL0KdPHwwcONDh+JycnHZ1cnd3PLwc+hojzJr2famuxVf6zZXYZx3DfusY9pvz2Gcd4+l+c8naYV1RWVkZnnzySQQHB+OVV15BUFDQNc+JiopiLaEWNNUK0rFWEBEReRFRT4dt3boVDz74INRqdYv71Wo1HnzwQWzfvl3MZZxWW1uLJ598EiaTCcuXL2ewEan5vCBtpcGDLSEiInIdUSFo27Zt8Pf3bzVkREVFQS6X49tvvxVzmVap1WoUFhaisbHRtk2v12Px4sVQq9V49dVXkZSU5JZr+5LmtYLqK3QebAkREZHriLoddv78eUycOLHNY5KTk7F7926nP3vTpk3QaDS2p7X27t2L8vJyAMDs2bOhVCqxevVqbNu2DRs3bkRcXBwA4B//+AdOnTqFm266CYWFhXZPeAUGBmL8+PFOt8XXKa8qmEhEROQNRIUgrVaLkJCQNo8JDg6GRqNx+rM3btyI0tJS2/usrCzbavTTpk2DUtly5eL8/HwAwJYtW7Blyxa7fbGxsQxBHcBaQURE5I1EhSCVSoUzZ860eUx+fj4iIiKc/uxPP/30mscsWbIES5Yscfo8cg5rBRERkTcSNSdo1KhROHToEA4dOtTi/oMHD+LgwYMYM2aMmMuQhyk5EkRERF5I1EjQPffcgx9//BGLFy/G9OnTMWrUKERFRUGtVuPQoUP4/vvvERQUhHvuucdV7SUP8AuQITBcDn2NkXOCiIjIa4gKQfHx8XjllVewdOlSbN26Fdu2bbPtEwQB0dHRWLp0KeLj40U3lDyLtYKIiMjbiC6WmJaWhg0bNmDPnj04deoUtFotlEolBg8ejIyMDPj7+7uineRhyuhAlOfXALDWCgqLC/Zsg4iIiERyScVof39/TJ48GZMnT3bFx1EXZD8vSMcQRERE3Z6oidHkO0JYK4iIiLyMS0aCysvLcfToUajVaphMJof9EokEc+bMccWlyEOU0XxCjDqXttqA4uxKJA2PhiIkwNPNISIvJDoE/fvf/8bnn38Oi8Vi2yYIAiQSid1rhqDurXnBRNYKIncTBAHfvXIYVRfqkTgsGjOeGuXpJhGRFxJ1O+zrr7/Gxo0bMXz4cLzwwgsQBAEzZszAc889h1mzZkEmk2HSpEl48803XdRc8hSOBFFnKs2tRtWFegBA0fEKGDWOI8xERGKJGgn6+uuvERsbi9deew1SqTVPxcbGYurUqZg6dSqmTJmCv/zlL5ww7QX8AmQIDAuAvraBc4LI7fJ2X7K9FgSg+KQafcbGebBFROSNRI0EFRYWYuzYsbYABABms9n2Oj09HePGjcOGDRvEXIa6iKbRoKZaQUTuYDI0ouBAqd22S8fVHmoNEXkz0U+HNV/IVKFQoLa21m5/UlISCgoKxF6GuoCQqCDba22lwYMtIW9WcKAUjUb7kH3puBqCIHioRUTkrUTdDouOjkZFRYXtfUJCAk6dOmV3TEFBAQIDA68+lbqh5vOCvn/9CGIHRiC6Xzii+4UhIlEJqYwVF0i8vKwi2+ugSDl0VUZoKw2oKdYiIkHZxplERM4RFYKGDh2K48eP295nZmbiww8/xGuvvYbMzEwcP34cBw4cwMSJE0U3lDwvMunKL6DaYi1qi7U4vdM6d8NPLkNUn1BbKIruFw5llML2lCBRe9SV6VB6qgoAEBYXjIFTknDwv7kAgEu/VjAEEZFLiQpB06dPR2VlJUpLSxEbG4s777wTP//8M7755ht8++23EAQBsbGxeOSRR1zVXvKgPmNjUVOsxcWj5ai6qIFguXJ7otFoRmluNUpzq23bAsMCrKEo2RqKovuGQR7MZVSodWeyrkyIHjAxAUnDonDwv9b3RcfVSL2pj4daRkTeSFQIGj58OIYPH257HxQUhFWrVmHPnj0oKipCbGwsrr/+et4O8xIyfxlG3T4Ao24fAJOhEZXn61BxthblZ2tQcbbW4akxfW0DLvxSjgu/lNu2hcYGAf5mXIzSISDQD/6X/zS9Dghq9vqqn35yGUeWvJhgEXDmJ+utMIkESB6fgKBwue2WWMmpKi7eS0Qu5ZKK0QBQW1uL/Px8aLVahISE4JZbbkFYWJirPp66GH+FH2IHRSJ2UKRtm77WiIqztai4HIoqztbCqLWv71JXqrP+vFgBZ0kkQHRyOCbMS0U4b4t4neKcSmjU1gn3CWnRCI5QAAAS06KRt+sSzCYLSnOrkJgW7clmEpEXER2CSkpK8NZbb2H//v12T29IJBKMGzcOf/rTnxAXx/oeviAwTI6eI3qg54geAKxVf+tKdag4W4Pyy+Go6kI9zA2Wa3xSywQBKD9Tg+9ePYxZ/xiHwFC5K5tPHnam2YToARMTbK8T06KQt8t6m+zScTVDEBG5jKgQVFRUhEcffRTV1dVITExEamoqIiIiUF1djRMnTmDv3r3IycnBv//9b8THx7uqzdRNSCQShMUFIywuGMmZV36pncg+ieRe/dGgb4RJ39j6T539+5piDXTVRtRX6PHDv47ipv9vNGT+vDXiDRp0JhQctNYGkgf724I0AMQPVUEisYbgItYLIiIXEhWCVq1ahZqaGjz55JP4zW9+YzdfQxAEbN68GW+88QZWrVqFF154QXRjyTtIZRIoQgOgCHVuUUxtpR5f/W0fdDVGlOVVI2v1CUxakMZ5Ql7g3P5S2whhv+vj7Ob9KJQBiOoXhor8WlRf0kBbqUewivMMiUg8UYVdjhw5goyMDMyaNcvhF5FEIsGtt96KcePG4fDhw6IaSQQAwapATFs0En5y6y/Is3uLcfTLfA+3ilwhz+6psESH/c1vgV3K5mgQEbmGqBBksVjQu3fvNo/p27ev3QrzRGJE9Q3DpAXDgMuZ+5fP83H252LPNopEqSnWoDyvBgAQkaSEqk+owzGJaVG211xCg4hcRVQIGjBgAM6fP9/mMQUFBRg4cKCYyxDZ6T06BmPuvPKdynovG2V51W2cQV2Z3YToCYkt3t6M7heGgCDr3fvi7EpYLFxCg4jEEzUn6KGHHsKf//xnfPPNN7jlllsc9m/evBkHDx7EG2+8IeYyRA5Sb+mD2lJrxWqzyYLt//oFt74wDiE9gq59MnUZlua1gaQS9Mts+QEKqUyKhKFRKDhYCqPWBPXZGvToH9GZTSXyWmaTGSajGY2Gyz+NZpgMjWhs8XXzn40wGc0QzAIEiwCLxfrT+ge21xaLAEFw3GexCGgwNqB+vBRj7xnkkb+7UyFo7dq1DtuGDx+O5cuXY8OGDUhNTUVkZCSqqqqQnZ2NS5cuYfTo0fjll1+QmprqqjYTQSKRIOO+Iagv16P4ZCUMdQ347rUjmLX0OgQEsSp1d1GUrYau2ggASBoejaCw1sseJAyLsj1Bdum4miGIqBVmkxmGugbo6xpsP62vjdDXNsBQ3wBDbdN2Y4fLlriKob7BY9d2KgR98MEHre67ePEiLl686LD94MGDOHToEObMmeN864jaIPWTYuoTw7H57/tQW6JFTZEGO1Ycw/TFI7mYazdxZrf9rbC2XD0vaMTs/m5rF5EzGnQm1F0w4IKx3DpiYhtRsY6gNI2uNP9jsnvdCMEsQCKTQCqVQiK1jn5KpBJIZRLrT6nEuv/y++b7AMCoNcFwOfQ06Bo93CPNSKz/aJVIceXv0eyP2WJGQKDL6jY7zakrr1ixwl3tIOoQudIf0xePxFd/2wejxoSibDV+XpuDjPuH8NH5Ls6oMaHwSBkAQBHij6ThbRdBVKoCEZ4QjJoiLSrya2DUmCBXctSPOp/J0Iiy09UozqlCSU4l1AV1ECwCTqDM001rPwmgCAlAYGgA5Ep/+Mn94C+XwU8hs/30k8vgL/e7sq3562bb7IKZ9ErgkUgl1/z/4ZycHKSkpHTSX9qRUyEoPT3dTc0g6rjQmGDc+JcR2PLiQVjMAnJ3XER4fDCGzuRim13Z2X3FMJusw/DJmQmQ+V179C4xLRo1RVoIAlB8Uo0+Y1mNntyvscGM8jM1KD5ZiZKcKpSfrYFgFj85XyqTwO9yoJBKpVfmz5gtECzWJ7Atl+fbCGYBwjUuGRDkB0VoAAJD5VCEWQOOIiQAgWEBUITKERh6+XVIAOQhAZBK+Q9Fz41BEblQ7KBIjJ+Xit0rjwMA9n+ci5AeQeg1MsbDLaPWNL8V1n9CQhtHXpGQFoUTW88DsN4SYwjyHYIgoEHbCH2tEfrLc1v0tfY/G/SNUIT4IyhMjsAIOYLC5AgKlyOw6U9oQLtulZtNZpTn16IkpxLFOVUoP1MNS2PrCSQiUYmAGCChT+yVERV500iKzBZ0/OV+dtul7Qj+dn1gsZ+AbDE3hSMBAUF+rKDfAQxB5DX6j09AbYkWx/53FhCAne/8it/8/TqoejvWnSHPqr5Uj4pztQAAVe9QqHq1779R3KBIyPylMJssuHRcDUEQeNvTSzQ2mFF8ohJ1ZbrLQefqkGNsM4i0y+VbQEHhV8JRULgcgWFyBIYF2B60KDtT3eZk4bC4YMSlRCIuRYW4lEgEhckv39Zx7zw12y0nt17FtzAEkVcZeVt/1JXqcG5/CRqNZny//Ahm/WOcbUVy6hryOjAKBAB+chliB0WgKLsS2koDaoq1iEhQuqOJ1AkEQUDZ6Wqc+akYBQdK3D+hV4Bt8nDVhfp2nxYSHYi4IdbAE5+iQnAk///EWzAEkVeRSCWYMD8VGrUe5fk10FYZsH35Edz8t7HwV/Dr3hVYGi3I32MNQVKZBMnXO7e4ckJaNIqyKwEARccrGIK6odpSLfL3FCN/TxHqy/VtHiuRwDrP5fJojfVn0/yW5tsC4B/oB0O9CfpaI3TV1tEjXY0R+hojdLWXf15+b2ljTk+wSoH4y6M8cSkqhERzrTpvxd8K5HX8AmS44ckR2Py3fdCo9VAX1GH3yuOY+sRw2+Ok5DkXf62AvtZaF6TnyB5OL6SbmBaFg/+1vr70q5oT4LsJg6YBBftLcWZPkW2ZlOb85DL0GRuL+CEq6/ydy+FG4eQEXn+F3zVDiyAIMGpMtpDUFIzkwf6IHRyJ0Jgg3mb1EQxB5JWCwuSY9teR+Pr5fTDpzTh/qAyHNuZhzF2tL+FiabRcrpraCNPlOh8mQ6O15oehEVI/KSJ7hiC0RxDDlAhXL5PhrIhEJYIi5dBVGVFyqgqNDWa7VefJeYIgoORUFfJ2XULhkTIIEJCfVIuw2GCExwcjLM76JzQmyKnJt+ZGCy79WoEzPxXhwi/lDnN6JBIgfmgUksfHo/eomE4brZVIJFCEWJ+SikgM6ZRrUtfEEEReKzIpBFMfH47vXjsCwSLg+NfnUHm+FhazYF/2/XLIae+kS/9AGSJ7WifzqnqHQNU7FBEJSj6Z0Q6GugZc+KUcABAYFoDEYVHXOMORRCJBYlo08nZZl0wpza2yW2Xe0wSLgFM7LkBf24ChM3p36VpG2moDzmQVIW/XJdSV6ez2lefVOIzYSCSAMioQYfHBCIsNtv68HJCCIxSQSCUQBAHqc7U481Mxzv5cDKPG5HDdiCQl+mcmoF9GPOfXkEcxBJFXSxwWjXFzBuPnD3IAwDaXRAyT3oyy09UoO31l0VapTILwRKU1GPUKvfzEUwiX8LhK/t5i21yM5MyEDlf2TkyLQt6uSwCsj8p3lRAkCAL2fXQKOd8VAgAKDpRg+uJRCInuOmvaWRotuHC0Aqd3XcSlYxUOtWcCgvwAmYCGerPDuYIA1FfoUV+hx6Vf1Xb7/OQyhMYGwdxgQW2J1uFcRWgAkjPi0X98AiJ7hfB2E3UJDEHk9VJu7AWN2oDjX5+7slEC+Ctktpoe/goZ/BR+8FdcVSG1aZtCBqO2EVWFdagsrIdGbT+Z02IWUFVYj6rCepzBlds9IT0CbaEosmcIIpNCoIwK9NnbaWeyLtleD5jY/qfCrhY/VAWJxPpLuei4+tondJLjX5+zBSAAqCnSYvNz+zD9r6MQ1TfMgy0Daoo1yNt9CWeyimxzspqLH6rCwEmJ6DUqBnn5p9G/7wDUlmpRW6JDbYnm8k8taks0MOkdA1Kj0YyqQvsnrmT+UvQaFYP+mfFISIvicjbU5TAEkU8Yc9dApN7cGxCsEydlAVJR/xI1aBpQVViPyvN1qCysQ+X5OtQUayFY7P9ZXV+uR325HucPXSmn76+QISIxBBFJIYjsqbT+TAxxeoKwuwmCgOpLGmjUesQPUYmed2PtK+svyeh+YaLmYiiUAYjqF4aK/FpUX9JAW6lHsMqzT/CcySrCoQ15tvdBEfLLTyg14Jt/HMCUP6Wj54gendomk6ERBQdLcXrnJbuRyybBkQoMmJiAARMTEdLDfrTKX+GHqN5hiOptH94EQYC+tuGqYGT9U1eug2AWEDs4Ev0z49FnbCxHQ6lLYwginxEY2voK5c5SKAMQP0SF+CEq27bGBjOqL9bbftlXnq9D1cV6NBrt/9VsMphRnl+D8vwa+/aFyxGZdDkUXf4Tnqjs1Em/umoDik5UoihbjeITldDVWFd4D4sLxvh5qYgd2PGV2/OajQI5UxuoNYlp0ajItxZcvJStxsBJSaI/s6Mu/lqBrDXZtvej7hiAQVOSsP1fv6DsdDUajWZsf/0Ixs1NQcqNvdzaFkEQUHG2Fnm7LuHsvmKHURupTIJeI2MwYHIiElKjnF46QSKR2IoNxg1W2e2zNFpgbrSwHAV1G/ymErmIX4AM0f3CEd0v3LbNYhFQV6JFZWEdqi7Uo+pivXV0pcKxNoq+xoiiGqPdvCWJBAiNDYYsTIBuUB4iEpUIj1ciLD7YJeHIZGhE6akqa/A5oUb1RU2Lx9WWaPHNC/uRMq0XRt8xwOlfcuZGC87uLQZgvUXSb5xztYFakpgWhaNf5AOwzgvyVAiqOFuDHW8eta0llXJjTwyb1RcSiQQznxmNrFXZOLe/BIIA/PxBDurL9Rhz10C33BItza3CgY9zbdW4mwtPUGLgpEQkj4936T8ImpP6SZ1eCoLIkxiCiNxIKpUgPEGJ8AQl+l1/ZXuDzoTqSxpUX6xH1UWNNRxdrHd4kkYQrAEEJUBV7tkrOyRAaI8ghMUH24JR03UCAlv/n7XFYn1yp+iEGkXZlSjPq261aJy1OnMkjPUN1l+qApDzXSEuHClH5oNDnJqMfOGXchjqrX+3XiNjXPLEVHS/MAQE+aFB14ji7EpYLEKnLwhZW6rFd68dsY329R4Tg+vmpNhutfoFyDD5sWFQRgfa5qRlf1sAjVqPiY+kuWyUr75ch4OfnEbBgVK77f4KGfpcF4dBkxMRnRzOychEV2EIIvKAgCB/xAyIQMyAK7eXBEGArsaI6qYRo8vhqKZIY1tt/crBQF2ZDnVlOlw8WmG3KzhScTkQBSMiQYnQuGDUlmhRlK1GyckqGLWOjywD1lGnqL5hSEiNQkKqCj36R0DmJ4XFIuDktvM4/GkezA0WaNR6bHv5MPpPSMDYewdBobz2XCa72kAiJkQ3J5VJET9UhfMHy2DUmqA+V4seyeEu+ez20NUase3lQzDUWScZxw6KwKQFwxyCmEQqwZi7BiKkRyB+/s9JCAJQcKAU2moDpv1lpKi5YA36Rvz61Vmc2Hre7jsSkRSCoTN7oe91cbw1RdQG/q+DqIuQSCQIjlAgOEKBxGFXRlksFgFH9x5HVGAsaoo1qL6kQU2xFjVFGof5RgCgrTJAW2VAUfa1n5oKjQlC/FAVElKjEJ+ianGERiqVIPWmPug1MgZ7/u8Eik9ab9edySrCpV8rcP19Q9BnTGyr19DVGHHxmDWoBUXKEZ/qfG2g1iQOi8b5g9ZJ55d+rei0ENSgb8R3rxy2LfkQkaTEjU+ObHNkZ/DUnlBGKrDjrWNoNJpRnleDzc/vw/TFoxAWG+zU9S0WAWeyLuHwxjy7J70UoQEYdfsADJiU2OmjYkTdEUMQURcnlUoQqPJHr5QY9EKMbbtgEaCpNKCmWIOaSxprQCqyvm5tIUq50h/xQ1RIuBx8rn4iqC2hMUGYuWQ0Tu+6hAMf58Kkb4S+tgE73jyK3mNicP3cIQgKd5xrkr+nyPbUXP/MBJf+ck5MuxKoLh1XY8Rs967iDVjnN+148xdUnq8DYF1nasbiUZAHX/sWX9LwHrjlubH4/rUj0NUYUVeqw9d/34cbnxxpNyrYlpJTldj/Ua7t+gAg9ZNg6MzeSL+1H5/GInICQxBRNyWRShASHYiQ6EAkNRs5anqEuaZIg5oiDWpLtQgMkyMhNQqq3qGiQohEIsGgyUlIGhaNvR+cxIUj1urP5w+WoeRkFcbeOwj9JyTY5p4IgnDVrTDnl8loi1IViPCEYNQUaVGRXwOjxuTWCs2CRUDWe9m2yevyYH/MeGqUU4/nR/UJw6wXxuG7Vw+j+pIGhnoTtrx4EJMeHdbmiFpdmQ4HP8m1jXw16T06BmPuHojQGOdGk4iIIYjI6zR/hLn5I/yuFBypwI1/GYFz+0uxb10ODHUNMGpNyHovG2d/LkHmg0MQEh0E9TlrHR8A6DEgHGFxrv9FnZgWjZoiLQQBKD6pRp+xcS6/RpODG07bPeV246KRHap3pIwKxG+evw4/vHEUxScrYTZZsGPFUYy9exCG3tTbbgJzg86EY1+dw4mtBXZLu6h6hWDsHwcjPsU9/42JfAGfZSSiDpFIJOg3Lg63vToe/TKuPPJelK3GpsV7cPK78zi9q3mFaNeOAjVJuOqWmLuc2FqA7G8KAFgnkU9+LF1U3aSAIH9Mf2rUlZpJAnDgv7nYt+4ULBYBFouA3J0X8elfsnD863O2AKQIDcD4h4bi1hczGICIROJIEBGJoggNwORHh6Hf9XHY+/5JaKsMaDSasW/dKdsxsgAp+o5t/VaPGHGDIiHzl8JssuDScTUEQXD5o+Bnfy7G/o9ybe+vv38Ieo+OaeOM9pH5STHh4VSERAfil03Wmkc53xeirkwLfY3RVmEbsM77Sb2pD4bN6st5P0QuwhBERC7Rc3gPxL4agYOfnEbujot2+/qMcd/yCdZ6RhEoyq6EttKAmmItIhKULvv84pOV2L3yuO398N8nY/DUni77fIlEghGz+0MZHYif1pyAYBYcFiftMyYWo+8aiNCYrrMQK5E3YAgiIpcJCPJH5gND0XdcHPasOYG6Mh0AYNAU91ZzTkiLtk1WLjpe4bIQVHm+Dtv/dcRWUHLg5CSMmJ3sks++2oAJiQiOVOCHN47CpLc+3afqHYrr/jgYcYMj3XJNIl/HEERELhefosLvX85EXtYlBIXLETvIvb/EE9OicPC/1teXjqsxdGYf0Z9ZX6HDtlcP29be6jmiBzLuT3Fr1eWEoVG49YVxyPnhAqL7hqFfRjzr/RC5EUMQEbmFn1zm9sVCm0QkKhEUKYeuyoiSnCo0NphFLUlhqGvAtpcPQ395Adke/cMx5U/pkMrc/yxJeIIS189Jcft1iIhPhxGRF5BIJLa1zMwmC0pzqzr8WWV51fjquZ+ta7YBCIsPxrRFI+End806X0TUdTAEEZFXuLp6tLMsjRYc/jQP3yzdb1sOIyhcjhlPjYYipOPrexFR18XbYUTkFeKHqiCRAIIAFDkZgmqKNdj17+NQn6u1bevRPxyTFgxDSHT7q0ETUffCEEREXkGhDEBUvzBU5FurVGsr9dc8RxAEnPrhAg78NxfmBusq7BKZBCNmJ2PYb/p2yhwgIvIchiAi8hqJadGoyLeO5lzKVgM9Wj9WV21A1upsu5o8YXHBmPToMET3DXN3U4moC+A/c4jIa7R3XtD5Q6XY9NQeuwCUcmNP/O6fGQxARD6EI0FE5DWi+4UhIMgPDbpGFGdXInaK/WKqDfpG7P8wB3m7r6xsHxgux4SHU5E0LLqzm0tEHsYQREReQyqTIn6oCucPlsGoNUFT0gAMte4rPV2N3f/+FfUVV+YK9R4dg8wHhkIRyqe/iHxRlw1BOp0OGzZsQE5ODk6dOoX6+no888wzmDlzZrvOr6+vx6pVq5CVlQWj0YjBgwdjwYIFGDhwoJtbTkSelJgWjfMHywAANWf1ME+24JdN+Ti++SwE6+oX8FfIMG5OCvpPSHBrBWgi6tq67Jyg2tparF27FoWFhUhOdm6tHovFgqeeego//PADfv/732P+/Pmorq7GE088gYsXL177A4io22o+L0ido8Pm5/bh16+uBKCYARH43UuZGDAxkQGIyMd12ZEglUqFL7/8EiqVCrm5uZg3b167z921axdOnDiBF154AZMmTQIATJkyBXfffTc++OADPPfcc25qNRF5mjIqEOEJwagp0kKvNkGvNgGwPvo+cnZ/pM3qy/W4iAhAFw5BAQEBUKlUHTp39+7diIyMxIQJE2zbwsPDMXnyZGzfvh0NDQ0ICOAcACJvlZgWjZoire19eEIwJi0Yhqg+fPKLiK7osrfDxMjLy0P//v0hldr/9QYPHgyDwdDqLTG1Wo3Tp0/b/hQWFnZGc4nIxZIz49F0pytlei/89sUMBiAictBlR4LEqKqqwrBhwxy2N40sVVZWol+/fg77N2/ejLVr1zpsLygogNlsdtiu0WiQk5MjvsE+hv3mPPaZ89Lnx0On0yE8CcjLP+3p5nQr/L45j33WMe7st5SUlGse45UhyGg0tni7q2mb0Whs8bxZs2YhIyPD9r6wsBDLli1Dnz59WnyqLCcnp12dTPbYb85jn3UM+61j2G/OY591jKf7zStDkFwuR0NDg8P2pm1yubzF86KiohAVFdXiPiIiIvIuXjknKDIyEpWVlQ7bm7Z1dMI1EREReQ+vDEH9+/fHmTNnYLFY7LafOnUKCoUCSUlJHmoZERERdRXdPgSp1WoUFhaisbHRtm3ixImoqqpCVlaWbVtNTQ127tyJ66+/no/HExERUdeeE7Rp0yZoNBrbbay9e/eivLwcADB79mwolUqsXr0a27Ztw8aNGxEXZ10scdKkSfj888/x0ksv4fz58wgLC8P//vc/WCwW3H///R77+xAREVHX0aVD0MaNG1FaWmp7n5WVZRvdmTZtGpRKZYvnyWQyvPrqq/j3v/+NTZs2wWg0YtCgQXjmmWfQs2fPTmk7ERERdW1dOgR9+umn1zxmyZIlWLJkicP2kJAQPPXUU3jqqafc0TQiIiLq5rr9nCAiIiKijmAIIiIiIp/EEEREREQ+iSGIiIiIfBJDEBEREfkkhiAiIiLySV36EXlPa1ptvrCwsMX9Fy5cgEwm68wmeQX2m/PYZx3DfusY9pvz2Gcd4+5+69WrFxQKRav7GYLa0FSocdmyZR5uCRERETlrzZo1GDhwYKv7JYIgCJ3Ynm6lpqYGBw8eRFxcnMN6Y4WFhVi2bBmeffZZ9OrVy0Mt7H7Yb85jn3UM+61j2G/OY591TGf0G0eCRAgPD8e0adPaPKZXr15tpkxqGfvNeeyzjmG/dQz7zXnss47xZL9xYjQRERH5JIYgIiIi8kkMQR2kUqkwd+5cqFQqTzelW2G/OY991jHst45hvzmPfdYxXaHfODGaiIiIfBJHgoiIiMgnMQQRERGRT2IIIiIiIp/EEEREREQ+icUSndTQ0ID3338f33//Perr69GvXz88+OCDGD16tKeb1mUdPXoUTzzxRIv7Vq5ciSFDhnRyi7oenU6HDRs2ICcnB6dOnUJ9fT2eeeYZzJw50+HY8+fP45133kF2djb8/Pwwbtw4PPbYYwgPD+/8hntQe/vsn//8J7Zt2+Zwfs+ePfHxxx93VnO7hFOnTmHbtm04evQoSktLERoaiiFDhuDBBx9EUlKS3bH8nl3R3n7jd81eQUEBPvjgA5w+fRpVVVVQKBTo1asX7rrrLmRkZNgd66nvG0OQk1566SXs2rULf/jDH5CYmIitW7di8eLFWLFiBdLS0jzdvC5t9uzZGDx4sN22hIQED7Wma6mtrcXatWsRExOD5ORkHD16tMXjysvL8ac//QlKpRIPPfQQ9Ho9NmzYgHPnzuG9996Dv79/J7fcc9rbZwAQEBCAxYsX220LDg52dxO7nPXr1yM7OxuTJ09Gv379UFlZiS+//BIPPvggVq5cib59+wLg9+xq7e03gN+15kpLS6HT6TBjxgxERUXBYDBg9+7deOaZZ7Bo0SLMmjULgIe/bwK128mTJ4Xx48cL69evt20zGAzCnXfeKcyfP9+DLevafvnlF2H8+PHCzp07Pd2ULstoNApqtVoQBEE4deqUMH78eGHLli0Ox73++uvCDTfcIJSWltq2HTp0SBg/frzw1VdfdVp7u4L29tmLL74oTJs2rbOb1yUdP35caGhosNt24cIFYerUqcILL7xg28bvmb329hu/a9fW2Ngo3HfffcI999xj2+bJ7xvnBDlh9+7dkMlktvQKAHK5HDfffDNOnjyJsrIyD7aue9DpdGhsbPR0M7qcgICAdhUM2717N66//nrExMTYto0aNQpJSUnYuXOnO5vY5bS3z5qYzWZotVo3tqjrS01NdfhXdVJSEnr37o3CwkLbNn7P7LW335rwu9Y6mUyGHj16QKPR2LZ58vvG22FOOHPmDBITEx2GNptu8eTn59v9RyR7L730EvR6PWQyGdLS0vDII49g0KBBnm5Wt1FRUYHq6uoWFxocPHgw9u/f74FWdQ8GgwEzZ86EwWBASEgIpk6divnz5yMoKMjTTfM4QRBQXV2N3r17A+D3rL2u7rcm/K450uv1MBqN0Gq12Lt3Lw4cOIDJkycD8Pz3jSHICZWVlS3+y7Npm1qt7uwmdQt+fn6YOHEirrvuOoSFheH8+fPYuHEjHnvsMfz73//GgAEDPN3EbqGyshIAWv0O1tXVoaGhAQEBAZ3dtC5NpVLhrrvuwoABAyAIAg4cOID//e9/OHv2LFasWAE/P9/+v8Ht27ejoqIC999/PwB+z9rr6n4D+F1rzbvvvovNmzcDAKRSKSZMmIA///nPADz/ffPN/yIdZDQaW5yg1fQfx2g0dnaTuoXU1FSkpqba3mdmZmLSpEm47777sHr1aixfvtyDres+mr5f1/oO+vovp6s9/PDDdu+nTp2KpKQkrFmzBrt378bUqVM91DLPKywsxBtvvIEhQ4ZgxowZAPg9a4+W+g3gd601f/jDHzBp0iSo1Wrs3LkTZrMZJpMJgOe/b5wT5AS5XG77D9dcQ0ODbT+1T2JiIjIzM3H06FGYzWZPN6dbaPp+8Tso3u233w6pVIrDhw97uikeU1lZiaeeegrBwcH4xz/+AZlMBoDfs2tprd9aw+8a0KtXL4waNQozZszAK6+8Ar1ej6effhqCIHj8+8YQ5ASVSmUbumuuaVtUVFRnN6lb69GjB0wmEwwGg6eb0i00DRe39h0MDQ316X+dO0MulyM0NBR1dXWebopHaDQaLF68GBqNBsuXL7f7/y5+z1rXVr+1xte/ay2ZNGkScnNzcfHiRY9/3xiCnJCcnIxLly45zPrPycmx7af2Ky4uRkBAAAIDAz3dlG4hOjoa4eHhOH36tMO+U6dO8fvnBJ1Oh9raWp8s/Gc0GvH000/j4sWLePnllx0m9vJ71rJr9VtrfPm71pqmW2Aajcbj3zeGICdMmjQJZrPZNsELsA7XbdmyBSkpKXwyrBU1NTUO2/Lz87F3716MHj0aUim/hu01ceJE/Pzzz3blGI4cOYKLFy/anragK4xGI3Q6ncP2devWQRAEjB071gOt8hyz2Yznn38eJ0+exNKlSzF06NAWj+P3zF57+o3fNUfV1dUO2xobG/Hdd99BLpfbgqQnv2+cGO2ElJQUTJ48GatXr0ZNTQ0SEhKwbds2lJaW4qmnnvJ087qsv//975DL5Rg6dCgiIiJw/vx5fP3111AoFA4TCX3Zpk2boNFobMPCe/fuRXl5OQBrtW2lUol7770Xu3btwsKFC3HbbbdBr9fjk08+Qd++fVtcYsPbXavP6uvr8cADD+CGG25Az549AQAHDx7E/v37MXbsWGRmZnqs7Z7w7rvvYu/evbj++utRX1+P77//3m7/tGnTAIDfs6u0p9+qqqr4XbvK8uXLodVqMWzYMERHR6OyshLbt2/HhQsX8Oijj9rKBnjy+yYRBEFw6xW8jNFotK0dptFo0LdvXzz44IMYM2aMp5vWZX3++efYvn07ioqKoNVqER4ejpEjR2Lu3LlITEz0dPO6jNtvvx2lpaUt7tu4cSPi4uIAWNfjuXqNnUcffRSRkZGd2dwu4Vp9plQqsWLFCpw8eRKVlZWwWCxISEjAjTfeiDvvvNPnHll+/PHHcezYsVb3Z2Vl2V7ze3ZFe/qtvr6e37Wr7NixA99++y3OnTuH2tpaBAUFYeDAgfj973/vEAo99X1jCCIiIiKfxMkYRERE5JMYgoiIiMgnMQQRERGRT2IIIiIiIp/EEEREREQ+iSGIiIiIfBJDEBEREfkkhiAiIiLySQxBRERE5JMYgojIbUpKSjBhwgT885//9HRTXGLr1q2YMGECtm7d6ummEJELMAQRUad6/PHHMWHCBE83o0XeFtqIqG2+t6IbEXWa6OhofPTRRwgODvZ0U1xi/PjxSElJgUql8nRTiMgFGIKIyG38/PzQq1cvTzfDZZRKJZRKpaebQUQuwlXkichtSkpKcMcdd2DGjBlYsmRJq7fBmvY3OXv2LD766CMcO3YMdXV1UKlUyMjIwH333YewsLAWP//uu+/GmjVr8Ouvv6Kurg4bN25EXFwcsrKysHPnTuTm5kKtVsPPzw/9+vXDbbfdhkmTJtk+a+vWrXjppZdabN+KFSswfPhw2zHPPPMMZs6caXdMdnY2PvroI5w8eRJGoxGxsbGYMmUK7r77bigUCrtjJ0yYgPT0dDz//PNYuXIl9u/fD71ej+TkZDz88MMYPny4s11NRB3AkSAi6jRz587Ftm3bUFpairlz59q29+/f3/Z6z549eP755yGRSJCZmYkePXrg/Pnz+OKLL3Dw4EG89957CAkJsfvcoqIiPPLII+jbty9mzJiBuro6+Pv7AwBWr14NPz8/pKamQqVSoaamBnv37sVzzz2HJ554ArNnzwYAJCcn47bbbsPnn3+O5ORkZGZm2j4/Nja2zb/Xzp078cILL8Df3x9TpkxBeHg4Dh06hLVr1+LgwYNYsWIF5HK53TkajQaPPvoolEolpk2bhurqauzcuROLFi3CmjVr0Ldv3w71MRG1H0MQEXWa+++/H8eOHUNpaSnuv/9+h/21tbV48cUXERYWhnfffdcufOzYsQNLly7F+++/j4ULF9qdl52djblz57b4ma+++iri4+Pttul0OixYsADvv/8+br75ZigUCvTv3x9KpdIWglr6rJZotVq89tprkMlkWLlyJfr16wcAmDdvHl544QX8+OOP2LBhA+bMmWN3Xn5+Pn77299i4cKFkEqtz6iMGDECr776Kr744gssWrSoXdcnoo7j02FE1GV899130Gq1mDdvnsPoy9SpUzFgwADs2LHD4bzIyEj88Y9/bPEzrw5AABAUFISZM2dCo9EgNzdXVJv37NkDjUaDm266yRaAAEAqleKRRx6BTCZr8ZH6wMBAzJ8/3xaAAOttQZlMJrpNRNQ+HAkioi7j5MmTAICcnBwUFRU57G9oaEBtbS1qamoQHh5u256cnGy7/XW16upq/Pe//8X+/ftRVlYGo9Fot1+tVotq85kzZwAA6enpDvtiYmIQHx+PixcvQqfTISgoyLYvMTHR7j1gnUgeGRkJjUYjqk1E1D4MQUTUZdTX1wMAvvzyyzaPMxgMdu8jIiJaPK6urg7z5s1DWVkZUlNTMWrUKCiVSkilUuTn52PPnj0wmUyi2qzVagFYR6NaolKpcPHiRWi1WrvQ01rZAJlMBovFIqpNRNQ+DEFE1GU0hYS1a9c6NTFYIpG0uP3bb79FWVkZHnjgAYc5OR9//DH27NnT8cZe1hRmqqqqWtzftN1baiUReRPOCSKiTtU0B8ZsNjvsS0lJAXDltphYTbfUmj/p1eT48eOtts2ZkZimJ9uOHTvmsK+srAxFRUWIj493uPVFRJ7HEEREnSo0NBQAUF5e7rDvpptuQlBQENasWYOCggKH/QaDwamA1DS5Ojs722779u3bsX//fofjQ0JCIJFIWmxbazIzM6FUKrFlyxa7NguCgPfeew9ms9mhphARdQ28HUZEnWrEiBHYtWsX/va3v2Hs2LEICAhAcnIyMjIyEB4ejr///e947rnncP/992PMmDHo2bMnTCYTSktLcezYMQwdOhTLly9v17WmTZuG9evXY8WKFTh69ChiYmKQn5+PX375BRMmTEBWVpbd8UFBQRg0aBB+/fVXLFu2DImJiZBIJJg+fXqrtYKCg4Px17/+FS+88ALmz5+PyZMnIzw8HEeOHMHp06cxePBg3HnnnaL7jYhcjyGIiDrVLbfcgpKSEvz4449Yv349zGYzZsyYgYyMDADAuHHj8P777+OTTz7BkSNHcPjwYSgUCkRHR2PmzJmYNm1au6/Vo0cPvPXWW1i5ciUOHz4Ms9mMAQMG4PXXX0d5eblDCAKAZ599Fm+//TZ+/vlnaLVaCIKAtLS0NgsmTp48GZGRkfj444+RlZVlqxg9Z84c3H333Q6FEomoa+CyGUREROSTOCeIiIiIfBJDEBEREfkkhiAiIiLySQxBRERE5JMYgoiIiMgnMQQRERGRT2IIIiIiIp/EEEREREQ+iSGIiIiIfBJDEBEREfkkhiAiIiLySQxBRERE5JP+f/Bum3WJK+5yAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "x, y = [], []\n", + "\n", + "for result in all_results:\n", + " x.append(result['iteration'])\n", + " y.append(result['background_normalization'])\n", + " \n", + "plt.plot(x, y)\n", + "plt.grid()\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"background_normalization\")" + ] + }, + { + "cell_type": "markdown", + "id": "58e0d3a6", + "metadata": {}, + "source": [ + "## The reconstructed images" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "60766c21", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_reconstructed_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['model_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "e1884c5d", + "metadata": {}, + "source": [ + "Plotting the reconstructed images in all of the energy bands at the 20th iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "37b42c10", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACwKUlEQVR4nOzdd5gT1cIG8HdmkmzLVnbpLL3JoqKAICioYAMVrwooCoi9YO/X7vVer3gtKHYUUQRUPlRQRESaVBHpvS29LNtrypzvj2yGZDc9s5vs7vt7njy7m8ycnGSTmXnnnDlHEkIIEBERERERUa2TI10BIiIiIiKihoqBjIiIiIiIKEIYyIiIiIiIiCKEgYyIiIiIiChCGMiIiIiIiIgihIGMiIiIiIgoQhjIiIiIiIiIIoSBjIiIiIiIKEIYyIiIiIiIiCKEgYyIiIiIiChCGMiIiIiIiIgihIGMiIiIiIgoQhjIiIiIiIiIIoSBjIiIiIiIKEJ0CWT79++HJEmQJAljx47Vo8gGaeDAgdr7SETkzdixY7Vtxf79+yNdHc2UKVO0ek2ZMiXS1SGdqaqKc889F5IkYfz48ZGuDlXB7x9F0uLFi7XP34svvhjp6uiqsLAQaWlpkCQJH330UY08R621kE2ZMgUvvvhivfsn+fL9999rrzk/Pz/S1aFKNpsNv/32G5566ilcfPHFaNasGWJiYmA2m9G+fXuMHDkS33//Pex2e1Dlbt68GePHj0eXLl1gNpuRnJyM7t2746mnnkJ2dnYNvRoiaoisVis++eQTXHLJJdo2rGXLlrjqqqswc+ZMCCF0f86PP/4Y69atQ2xsLJ5++mmvy+3fvx+zZs3C008/jUsvvRSNGjXSDtQGDhwY0nPruX3Nzs7GU089he7duyM5ORlmsxldunTB+PHjsWXLlpDq58/KlSsxbtw4tG/fHvHx8UhLS8O5556Lf/3rX8jJyamR54yE7t27a//rhQsXBr3+H3/8oa1/xhlnBL2+EALLly/HSy+9hMsvvxytWrVCbGws4uPj0bp1a1x77bX48ssvUVFREVS5en5mTp48iVdeeQXnnnsu0tLSEB8fj/bt22PcuHFYtWpVUGUFqqEcn1x11VXa52fy5MlBr3/gwAEoigJJkpCWloby8nIAQFJSEh5++GEAwD//+U/k5eXpWm8AgNDBvn37BAABQIwZM8bjMgMGDNCWaSjGjBmjveZ9+/b5Xb4hvke17ffffxdpaWna++zr1qtXL7F79+6Ayp0wYYIwGo1ey0pMTBTTp0+v4VdHDUWw25ba8vnnn2v1+vzzzyNdnXpr3759okePHj63X4MGDRJ5eXm6PWdJSYlo2rSpACAeeOABr8tNnDjRZ70GDBgQ9HPruX396quvhNls9lqWyWQSb775ZtB19EZVVfHwww8LSZK8PmeTJk3EwoULw36uaPj+/e9//9PqcPPNNwe9/rhx47T1X3/99aDW3bp1q2jevHlA+/dOnTqJtWvXBlSunp+ZBQsWiMaNG3stS5Ik8dhjjwX1uv2preOTRYsWaWW+8MIL4Vc8BLNmzdLq0L9//6DXf/nll7X17733XrfHCgoKRGpqqgAgnnrqKb2qrKm1I/+GGDai9aCpIfvyyy+1/0laWpoYPny4ePPNN8X06dPF1KlTxf333y+SkpK0ZVq1aiWOHj3qs8wPPvhAW95oNIpx48aJL774Qnz66afihhtu0HbEBoNBzJs3r5ZeKVHti4YDwvouLy9PdOnSRXufu3btKiZMmCCmT58uXnnlFdGqVSvtsYsuukhYrVZdnnfChAkCgFAURRw6dMjrcm+99ZbbwV5cXJw488wzQw5kem5f586dKxRF0Q58b7jhBvHpp5+KL774QowbN87toPWTTz4Jqp7ePPnkk1qZCQkJ4oEHHhBfffWV+PDDD8XgwYO1x8xms/j777/Deq5o+P4dP35cGAwGAUDEx8eLwsLCgNctKSkRiYmJ2ufM3763qmXLlrm919dcc43473//K6ZNmyamTZsmnnzySdGkSRNtmeTkZLF582afZer5mVm7dq2Ij4/Xlh88eLD48MMPxVdffSUeeOABkZCQoD32z3/+M6jX7k1tHp9EQyCzWCwiPT1dq0egJ9Wd2rdvr637559/Vnv82Wef1T5fOTk5elVbCMFAVqMYyKLPl19+Kbp37y6+/vprUV5e7nGZQ4cOiW7dumn/u9GjR3st78iRI9oG1mAwiAULFlRbxnUn2apVK1FWVqbb6yGKJtFwQFjfPfTQQ9p7fPnll1fbnpw6dcqt9ey9994L+zmtVqsW9C699FKfy86ePVvcd9994rPPPhMbNmwQNpvNrRdNMIFMz+1rSUmJW+vJlClTqi3z66+/amHCbDaLY8eOBVxXT9atW6cd8CYnJ4sNGzZUW+aFF17Q6tSrVy+hqmrIzxct379rrrlGq8fkyZMDXm/q1KnaekOHDg36eZctWybatGkjPvzwQ69BMC8vz+149MILL/Ranp6fGVVVxTnnnKOV9eKLL1ZbZv369doJYVmWxcaNGwN85Z7V9vFJNAQyIYR48MEHtXo899xzAa+3dOlSbb2srCyPy+zcuVNb5tVXX9WrykIIBrIaxUAWffLy8gLa4W3atMntDG9JSYnH5VwPjh5//HGv5d1www26HiARRaNoOSCsr44fPy5MJpN2hvb48eMel9u0aZMWBJo2bSpsNltYzzt79mzt/zp16tSg1w81kOm5fX377be1ZW644QavZT3++OPacuF2HRs2bJhW1qRJkzwuo6qq6N27t7bc3LlzQ36+aPn+ff/991o9LrjggoDXu/jii7X1Zs2aFfTzFhUVCYvF4ne548ePu7VU7d271+Nyen5mXN+T8847z+txyKRJk7Tlrr/+er+vxZfaPj6JlkC2fv16rR6tW7cO+CSHa3fZ//3vf16X69WrlxZgwzmBUlWNX0PmGsR83bz98+x2u5g5c6YYPny4aNOmjYiLixNms1l07txZ3H333X7PILiefVq0aJEQQojffvtNjBw5UrRp00bExMRUC0xWq1X88ssv4pFHHhH9+vUTGRkZwmg0CrPZLDp27CjGjBkjlixZ4vU5XYOYr5uv98qfVatWiTvuuEN06tRJmM1mER8fL9q1aydGjx4dUF/0qjvH4uJiMWHCBHHuueeKlJQUER8fL8444wzx1FNPidzcXL/l1Ueu3YI8ndlUVVW0aNFCAI6uDAcOHPBalmtXimB2UHpYsWKFuPvuu0XXrl1FcnKyiImJEa1atRLDhw/3u/P3tIHNzs4WjzzyiOjcubOIj48XycnJom/fvmLSpEkBd48qKioSb731lhg0aJBo1qyZMJlMIjU1VfTs2VM899xz4sSJEz7Xr/pdsdls4vPPPxeDBg0SzZs3F4qiiNatW1db79ixY+Lxxx8XXbt2FfHx8SI1NVX06tVLvPHGG1robt26tbYhdzVv3jztOcePHx/Q6xw/fry2zs8//xzQOoHwd7Knpv5vc+bMEUOHDhVNmjQRMTExonXr1uKmm24SK1asEEIEd0BYUVEhPv30U3HVVVeJli1bipiYGJGcnCy6d+8uHnnkEa8nsbZv364dTCUlJXk9mBJCiNzcXK1lR5Zln9vtuuCjjz7S3t/bb7/d57KXXHKJtmy41yf94x//0E5OFRUVBb1+KIFM7+1r3759tWX++OMPr2UdOHBAC7OZmZkB1dWTwsJC7fgiKSnJ60k9Idy70t9yyy0hP2eg3781a9Zo3bpMJpOYOXNmtWXCOfayWq3adVKSJIk9e/b4rXt2drb2vqenpwcUrMJx+eWXa+/VDz/84HEZPT8zN954o1bWV1995bWskpISrZUsLi5OFBcXB/fCKkXi+CTQQLZ7927Rrl07rW7err+bN2+eGDNmjOjQoYMwm80iLi5OtGvXTowZM0YsW7bMZ11cewkEsv1z7S5rMBi8nuwSwj2o//77737LDlRUB7Ldu3eLs88+2+d6siz7bJJ0DWS///67uO+++zyW47rzHzhwYMCBqqKiotpz1mQgs1qt4o477vBb9vDhw0VpaanXclx3jnv27BFnnHGG17Jat27dIFv4nGdBAIhVq1ZVe9y1Fc1b87aT3W5364oQTL/6UBUXF4sRI0b4/awMGTLEa32qbmDnzZsnUlJSvJY1ePBgr11BnX7++WefFzUDjouMve0khXD/rpw6dUr079/f4+fW1e+//65dkOvp1r17d3HgwAGvgcxut4u2bdsKACI1NdVv146ysjLt+TIzM4Xdbve5fDCCDWTh/t9sNpvP7Zosy+K///1vwAeEf/75p/ZeeruZTCbx4Ycfelz/448/1pbr27ev1xag66+/XltOr2syIum6667TXs93333nc1nnNV+A77Pj/pSXl2sB2Ff3Ll9CCWR6bl8LCgrcug76+y66dlnfsmVLQPWtas6cOVoZ/rrfnThxQls2IyMjpOcTIrBANn/+fG2ACrPZ7LEbmx7HXo888oi27PPPP++37q6DKTz44IOBvuSQubYKzZgxo9rjen9mGjVqpD1+8uRJn2UNGTJEW/ann34K7oVVisTxSSCBbN26ddp1fAaDQXz55ZfVljlx4oRba6m322233eY1uLsOLuTrshMn1+6y11xzjc9lN2zYUCOfVQNqmHNI12effVYbGnT27NnVluvSpYvb33v27EGfPn204WD79++PoUOHonXr1rDb7fjrr78wZcoU5OXl4ZVXXoEsy36H1J8wYQLmzZuHpk2bYuzYscjKyoLNZsOaNWsQExOjLVdWVgaz2YxLLrkE5557Ltq0aYPY2FgcPXoUW7ZswbRp01BSUoIvvvgCKSkpePvtt92e54EHHsCwYcMwceJELFq0CADw0UcfoXHjxm7LZWZmBvQeurrlllswY8YMAEBsbCzGjBmD888/H4qiYO3atZg8eTKKiorwzTffoKCgAPPmzfM5r1lhYSGGDBmCHTt24JprrsHll1+OtLQ07N27Fx988AEOHDiA7OxsjB49GkuXLg26vnWVxWLBrl27tL9bt25dbZnNmzdrv5977rk+y5NlGT169MCSJUugqiq2bduG3r1761fhKioqKjBo0CBtCN327dtjxIgR6Nq1K4xGI3bv3o2pU6di586d+OmnnzBs2DAsWLAAsux9Joz169djwoQJEELgrrvuQt++fRETE4O1a9fiww8/RElJCRYsWIBXX30VL7/8sscyZs2ahREjRsBut8NoNOLqq6/GwIED0aRJExQWFmLRokX45ptvUFRUhGuvvRYLFizAxRdf7PO13nzzzfjjjz9w1lln4cYbb0SbNm1QWFiIjRs3asts3boVQ4cORWlpKQCgR48euPnmm9GyZUscP34cM2fOxPLlyzFixAjYbDaPzyPLMu644w4888wzyMvLw6xZszBq1Civ9fruu++0oXFvu+02n+9tTdLj//bAAw/giy++AACYTCaMGTMG/fv3hyzLWLNmDSZPnownn3wSw4YN81uflStXYtCgQSgtLYUkSbjssstw6aWXokWLFigrK8PKlSvx5ZdforS0FHfffTdiYmKqzW95xx13YP78+Zg1axZWrlyJl156qVrdJ0+ejO+++w4A0KdPn3ox5Uow25yePXt6XC9Yy5cv1743NbnNqkrP7evWrVu1aQDOPvtsv9/Fnj17ascrmzdvDmn49WDqn5GRgdatWyM7OxsnT57EiRMnqh0v6GH69OkYM2YMrFYrMjIy8PPPP7t9TgD9jr1uvfVWvPnmmwCAqVOn4sUXX/R5LOLcvjjXrWmuQ9V72r/r+Zk5duwYTp06pT1Xenq637J++uknrawrr7wygFfkLhqPTxYtWoRhw4ahsLAQ8fHx+O6773DFFVe4LZObm4u+fftiz549AICzzjoL//jHP9ChQwfIsozNmzdjypQpOHz4MCZPngybzeZxzr2bbroJjz32GCwWC2bNmoVJkybBbDZ7rZtrGf4+f1lZWTCbzSguLsb8+fMDfwP80SPV6T3svd1u1y5+jImJEd98843H5Y4dO6adxZFl2eNoOa4tZIBjGMyCggKfz//bb7/5bF3KycnRzsjLsuy1y4zew97PmDFDe7xJkyYez8Ls37/f7cyzt/7Aru+JyWQSc+bM8fg6XctavXq139fgTUlJiZg9e7Yut7/++ivkegTKtQvJOeec43GZl156ye/ZIFejR4/Wlvd0VkhPVfuOe+qSZrFY3Or0wQcfVFvG9YwXKlt6du7cWW251atXaxc2p6amemxtOXDggHYWLjMz02uXl9WrV4vk5GQBQLRs2dLjGbCqLe8PPfSQzzOYri1o9957r8dlq24rvHV5dI6q5e9M/4UXXigAx2hhBw8e9LlssIJpIQv3/+Z6oXNKSorHoaK3b9+uDYnuvHk6Q19YWKh1IUxJSRGLFy/2+Pp27dolMjMzBeC4VsrTGeXc3FzRsmVL7T127cKyY8cObcSypKSkgLpM+bJt2zbdtl/+zo57Y7fbtf+Voih+u5nu3btX+1+0b98+pOcUQoh///vfWjnffvttSGWE0kKm5/b1iy++8HuM4ur555/Xln/llVcCqm9Vt956q8/vQlXO7QUAv92xvPHVQjZx4kStxad169Zix44d1dbX89hLCCF69uyp1cdX164lS5Zoy/Xo0SPwFxwi1y56GRkZHlvY9fzMuL6+QD7/n332mVsrUCgicXziq4Xsu+++07rwpqWlad3cq3JedylJknj77bc9LlNUVCQuvfRS7bm8jQ7p2kPis88+81rv/fv3a9+Nxo0bB9SF39mTTpIkkZ+f73f5QERlIHOdR2DixIk+l92xY4c2JOkdd9xR7XHXg6yEhARx+PDhgF6TP3v27PG7wdY7kLn2ifV1Pcrq1avdNryeNjauB04vv/yy17I++eSTgJbzx/UzEu4tkI1jOHJzc0WzZs38HoQ8/PDD2jLvvvuu33KDXT5UR44c0S78/8c//uFzWYvFovXl7tixY7XHqx7YL1261GtZo0aN8rmc83oqRVH8Du88efJkraxp06ZVe9z1u3Luuef6DGN//vmntmxWVpbPAQ5cy/UUyIRw7+riKeQI4dguOZcZMmSIz9caimADWTj/N9cR0zyNMuY0d+5ct+f0dBDqOkfRjz/+6PM1Lly4UFvW22hWixcvFrIsa/+vvLw8YbFYxLnnnhv2wYWrqmE9nJvzWuZgFRQUaGU0atRI9+W9uemmm7RyQh31LZRApuf29Z133tEee/TRR/2WFezynlx77bVaGZ5OeIa7vCfeAtk///lP7f5u3bp5nbZAz2MvIdwHqPDVbcw1vPp73nBVVFS4TcMwYcIEj8vp+Zn54YcftMeuu+46v2UFu7wnkTg+8RbIPvzwQ2073aJFC6/dgP/66y9t/UceecTnc+Xm5monbgcPHuxxmZ9++kkrz1d3a9fw6u95ne655x5tnVBPoFQVmT40fnz55ZcAHDNj33HHHT6X7dSpk9a0+uuvv/pc9rrrrkPz5s11qWO7du3QtGlTAMDq1at1KdOX/fv34++//wYAdO/evVozr6vevXtr3byys7Px119/eV1WURTcf//9Xh937S62devWYKtd59jtdowcORJHjx4FAAwZMgTXX3+9x2WLi4u132NjY/2WHRcXp/1eVFQUZk29++abb2CxWAAAjz32mM9ljUYjRowYAQDYtWsX9u/f73XZHj164IILLvD6uK/PihAC06ZNAwBccsklOPvss33Wa8SIETAYHD2q/X2v77vvPp/dSX744Qe3ZRVF8brsgw8+6PO5AODuu+/Wfv/00089LuN6/5133um3zJoUzv+toqIC8+bNAwA0adIEN998s9dyhgwZgq5du/qsi3Pb3qlTJ1x11VU+l7344ou17bW3z8CAAQPw1FNPAXBs6+6++248++yz2jZv1KhRPutcl0Rqe5Odna39npaWFnI5wdLz9UbivYuG/YPdbscdd9yBV199FQBw/vnnY9myZWjRooXH5fU+9rrxxhu11z5r1iy398SptLRU61psMplw0003BfDKQnfvvfdq3dl79OiBBx54wONy/Pzp4+WXX8bdd98NVVXRuXNnrFixwmsXYOfnT5IkPProoz7LTU1N1bpyLl26FBUVFdWWueyyy7R9yLJly7Bv375qywghMHXqVO3vQLvLpqamar+7biPDUePXkIVi2bJlAIBmzZrhl19+8bu88wArOzsbZWVlbh8sV74OSqoqLCzEtGnT8PPPP2PTpk3IyclBSUmJx2UPHToUcLmhWrNmjfb7pZde6nf5Sy+9FAsXLgTgCIze+gN36tTJ7YNVleuG23k9TCjatGmj9ceOZg8++KC2c8nMzPTYNznaOb8/gOOz+f333/tc3vX/um3bNrRp08bjcn369PFZjq/PypYtW5CbmwsASExM9FsnADCbzcjPz8e2bdt8Lufve7127Vrt94suusjnsgMHDvRbr4suugidOnXCzp078cUXX+Bf//oXjEaj9rjVatWuh2jevDmGDBnit8yaFM7/bcOGDVq4HzBggM8wCzjCtrf/V0FBgXYg1KRJk4A/AwB8fgZeeuklLFy4EKtXr8bMmTO1+9u2bYv333/f73ME4sUXX6wX16CFwvm9BWo3kFF4ysvLccMNN2jX7F955ZX49ttvER8f73UdvY+9UlNTMWzYMMyYMQMlJSX47rvvql0P+t1332kB4Oqrr0ajRo0Cfo3BmjBhAiZPngwASE5OxsyZM2EymWrs+RoyVVVx//33Y9KkSQCAXr164eeff/Z5/Zzz85eSkuJ2zOuNM4RVVFRg79691U4IKoqC0aNH47XXXoMQAl988UW17fiyZcu069V69uyJrKysgF6f6+c0nGNjV1EXyIqLi7WLH3fs2IFrr702qPXz8vK8BjJvZ4WqWrRoEW666SYcO3YsoOULCwsDrl+onC02gCNE+eO6jOu6Vfm7uNR1sJPy8nK/z1uX/fOf/9Q2Hk2aNMGCBQt8vj+uF4gG8t6UlZVpvycmJoZRU99cW7mGDx8e1Lq+NizhfFZc6zRr1izMmjVLlzoB/r/XR44c0X5v166dz2VTU1ORkpKC/Px8r8tIkoQ777wTjz32GI4fP445c+bgH//4h/b4jz/+iBMnTgBwnG3zF2JqWjj/N9f3rkOHDn6fy9cyBw8ehKqqABw7QdcTB/74+gwYDAZ8/fXXOPvss7UDO+d9SUlJAT9HtIvU9sZ50KMoitd9a03Q8/VG4r2L9P7hqaeeQkFBAQDHwEeff/651uvAk5o69rr11lu1gcimTJlSLZC5nvQcN25ctfV9nbiJj48P6AQ1AHz88cd44oknAAAJCQn4+eef0bFjR6/L8/MXnokTJ2qfv0GDBmH27Nk+B9UATh8n5OXlhfT582Ts2LF47bXXADgGl3nhhRfcBpfx9/nzxnXf4vrehSPqApnzHxgq59lcTwLZmezatQtDhgzR3uDOnTvjiiuuQMeOHZGWlubW9HvnnXfi5MmTsNvtYdU5EK5NyAkJCX6Xd/3g+2p+jtTIb9HmX//6F/79738DcBzA/vbbb36Db0pKiva7c0QqX5w7u6rr6i2c75Cv7084n5WaqhPg/3vtbNk2GAxuLVneJCQk+AxkgGMj/89//hMVFRX45JNP3ALZJ598AsAR3G677Ta/z1fTwvm/uXZ78XVm3cnXtimcz4DVavX5eHp6OtLS0rRtXbt27fyOLFbXmM1mGAwG2Gw25Ofnw2az+TzA1mt74wzsdrsdpaWlAX0O9KDn9jUS2+pI7x9cR4stKSnx20Olpo69Bg0ahJYtW+LQoUNYunQp9u/fr/XCyM7OxuLFiwE4ehN4Cle+Dsxbt27ts5u909SpU7Wu5nFxcZgzZw7OP/98n+vw8xeeYD9/QM0cJ3Tu3Bnnn38+VqxYgX379mHp0qUYMGAAAPfusrGxsbjxxhsDfj7Xuup1oirqAplrkLjwwguxZMmSWn3+//znP1oY++c//4lXXnnF61Ct/vpY68n1jIW3rpOuXA+karI1JlClpaV+rwUKVGZmJs455xxdygKA119/Hc899xwARwvJggULAmq2dg1sgewUXPsZB9LKGSrnd0iSJNhstqgI3a7f6+effx4vvfRSrT23MyTYbDZYrVa/oSyQ71ejRo1w/fXXY9q0afj1119x4MABZGZmIjs7GwsWLADgOBBp27Zt+C8gglz/b86hz33x9d65ljV69Gi3Ya7Dde+997p9v3bu3Ilnn30W//3vf3Upf/v27di+fbsuZfXv399vq6Unsiyjffv22LFjB+x2Ow4dOuS1ezGg3/bGtZtibm5urQUyPbevkdhWR3r/8J///AczZszAihUrMHv2bIwYMQIzZ870uv2rqWMvWZYxZswYvPrqq1q3sRdeeAGAY6h754H66NGja6Q3wfTp03HrrbdCCIGYmBh8//33fruuA/z8hevBBx/Etm3bMHv2bKxcuRKXXXYZ5s+f7/N41HmZgnNfqpdbb70VK1asAOBoEXMGMtfussOGDQsqiNZEV+6oC2TJycna+P61cW1WVb/99hsAoHHjxnj55Ze9hrGioiK3f0hNa9asmfa76/xY3rguo9dAJuE4ceJE0E3Q3owZM0a3a7veeustPPnkkwAcn7358+f7HXDCyTW0+Ro4BXD0p3YOyiLLst/BD8LRokULrF+/HkIIHD58GK1ataqx5wqmTk61/b1u3ry5du3S3r170blzZ6/L5uXl+W0dc7r77rsxbdo0qKqKzz77DC+++CI+++wzrVtepAfz0IPrtmP37t1+l/e1TE19BqZNm6YNGHPuueciJycH2dnZeOONN3DZZZf5nccuEDNmzNDtJMKiRYsCulbRk6ysLOzYsQOAY5vjK5C5XjsZ6HURnrRp0wbLly8H4DgIadmyZchlBUPP7esZZ5wBWZahqirWr18PVVV9nqjS470Lpv4nT57UDkAzMjJ0mYMsMTERv/zyCy6//PKAQllNHnuNHTtWG1hk6tSpeP755wG4zz1WtSujUzjXnn/77be45ZZboKoqTCYTvvvuu4C7OOr5mWnatCkaNWqEU6dO4cCBA8jJyfF5Uqa2P381cXxiNBoxc+ZMjBw5Ev/3f/8XUChr0aIF8vPzceLEiYBOngZq+PDhePDBB7UWsffeew8JCQn4/PPPtWWCnfvO9fjf0zx2oai1U+euH2R/X7ALL7wQgOPgKZCDAD0dP34cgOOCcF9fvt9++0078PImmNfsj+ugHM4z8L64tkbV5mSedcmkSZPwyCOPAHDsvObNm4devXoFvH63bt20g5MtW7b43ImtWLFCu9awX79+Ndpq6Tz7A/gfobC29OjRQ+tzvXDhQr/fHT25TnzqnKjdG2f3mUD0798f3bp1AwB89tlnsFqt+OyzzwA4Tuhcc801wVc2ypx11lnaRe9Llizx2z3bOZCQJ+np6droWqtWrdLl2tt9+/bh3nvvBeBoCZ0+fTq++uorKIoCVVUxevRot644dd1ll12m/e5vQlLXQRkuv/zykJ/T9cDOGQZrg57b16SkJG1wm4KCAqxatcprWQcPHtRGG83MzAxpUmjAMUCQs7vn0qVLfV5n4vq/DOd/VZUzlPXr1w8AMHv2bAwfPtxrF+CaOvbq0KGDNvjS3r17sWzZMixduhR79+4F4Bj90deJslB8//33uOmmm2C322EwGDBz5kwMHTo04PX1/sw4v7tCCJ/75dLSUu362ri4OLf9eTCi4fjEGcquu+46ANBCmbdtv/O1lpeXY+nSpbrUAXD8L511KC4uxqxZs7B//36tFbhly5YYNGhQUGU6B5qSJAndu3fXpZ61Fshcm8P9dQkaM2aM9rvzTEptcXbH2Lt3r9cQZbfbteuNfAnmNfvTpk0brZvehg0bfIaytWvX4vfffwfgSO7RcC2Fc5RFPW56tI598sknGD9+PIDTF/j27ds3qDIkScINN9wAwLGRfffdd70uO3HiRO135zDzNWXkyJHaQfR///vfsD97elAUBaNGjQLg6Brhbbj4muAajCZNmuQzVLzzzjtBlX3XXXcBcOyQH3roIW2nN2bMGN3O7kVSTEyMNrTw8ePH8fXXX3tddt68eX5HxHRu20tLS7ULrUNlt9sxatQobec+ceJEdOzYEf3798czzzwDADh8+DBuv/32sJ4HcIyyqNf2K9TWMcDRrcb53Z4+fbo2eExVmzdv1vYBTZs2DfmgDgDOO+887ffamOLFSe/tq+v9vr7n7777rrbvD3ZQJFdms1n77hQWFnrdbwkh8N5773mspx6coax///4AHEHFWyiryWMv1xaIKVOmuL0fwbZO+PPzzz9jxIgRsNlsUBQFX3/9NYYNGxZ0OXp+ZlzLmjhxotfjyylTpmjbtCFDhgQ0ZoAn0XJ8YjAYMGPGDG36oJUrV+Lyyy/3GMpGjx6t/f7SSy/pOj5D1c+fa3fZMWPGBHVph91u11oxu3Tpot/gUXpMZhbIxNAPPPCAtsySJUt8lme320WvXr205R988EFRUVHhdfnS0lLx+eefi+nTp1d7zHVCz0Am5Bw8eLC2/JtvvlntcYvF4jaJIXxMIPvmm29qy3zxxRd+n9vfxNAzZ87UHm/WrJnYtm1btWWys7NF+/btteXee+89j2U5Hw9kks5glq0LvvjiC23i7Pj4+JAnahVCiMOHD4v4+HgBQBgMBvHbb79VW8Z1ss5WrVqJsrKyMGofmEcffVR7zosuukgcPXrU67J2u10sWLDA4wTn3iZ69MTfsgcPHhQpKSkCgIiJifH7nTh+/Lh4+eWXxYYNG6o9FsxE80II0b9/f235e++91+NE0lUn//X2vXaVn5+v/f9db94mjNZLMBNDh/t/W7ZsmfZ4amqqx0m9d+7c6TaZOuB5Yuji4mLRunVrAUBIkiRef/11n5N65+fni3feeUcsWLCg2mPPPfec9lzXX3+922NWq1X07dtXe/yjjz7y+R7UJQ899JD2uq644opq25Pc3FzRo0cPv/uAQJWXl4uEhAQBQFxwwQUhlRHKxNBC6Lt9LSkpEc2bN9eW9TTJ+YIFC4TBYBAAhNlsFseOHfP7enxtg9atW6fta5KTkz1uy1588UWtnF69enktKxDeJoYWQoiioiK37eA111wjLBaL2zJ6HntVVVRUpH2OzGazMJvN2j64oKAgpNfryYIFC0RsbKwAIBRFEV9//XXIZen5mVFVVZxzzjlaWS+99FK1ZTZs2KBNdizLss+J2F0/f572AULU/vGJr32J1WoV119/vfZ4nz59PP7fr7vuOm2ZESNG+PxsWK1WMWvWrIC2caqqijZt2mj7niZNmmjPs2vXrqBe54YNG7R1H3rooaDW9aXWriG75JJLtBR+22234eGHH0br1q21izg7dOigDZksyzJmzZqFvn374vDhw3jnnXfwzTff4IYbbsBZZ52F5ORkFBcX48CBA1i7di0WLlyIkpISvPLKK2HXc/z48Vrr0yOPPILFixfjsssuQ6NGjbBr1y5MnToVu3btwkUXXYRdu3b5bAa+5JJLtN+feOIJnDx5Ep07d9ZGxmrRokVQTZ3Dhw/H7NmzMWPGDBw9ehTnnHMOxo4di759+0JRFKxduxaTJ0/WzjxceumlWncecpg3bx7GjRunnRkZN24c8vPz/c6JdM455yAzM7Pa/c2bN8f//vc/3HPPPbDZbLjiiiswevRoDBgwADabDfPmzdNG8TEYDPj44499TtLoes3ivn37fF4j4st//vMfrF+/HgsXLsSiRYvQrl07XHfddejbty8yMjJgsVhw7NgxrbX12LFjuOSSS/Dss8+G9HyBaNmyJWbMmIGrr74aFRUVGDNmDN58801cffXV6NixI+Li4lBQUICdO3di1apVWL58Oex2e0AXYPvz0UcfoVevXigtLcX777+PlStX4uabb0bLli1x/PhxzJw5E8uXL0ffvn1x4MABHD58OKAzZsnJyRgxYoRbX/SBAwf6HE65runfvz/uvfdevP/++8jLy0OfPn0wZswY9O/fH7IsY82aNZg8eTJKSkowbNgwn9+lhIQEfP/99xgwYAAKCwvxxBNP4KOPPsJ1112HM844A2azGYWFhdi7dy/WrFmDxYsXw2KxaBOGOv3xxx9aL4WWLVvi448/dnvcYDBg2rRpOPvss1FYWIiHH34YAwYM0L1bVCS88MIL+OWXX7B9+3bMmzcP55xzDm6//Xa0aNECu3fvxkcffYSDBw8CcHwWw72WMSYmBpdffjlmzZqFtWvXori42O/w1VW3I64jku3bt6/a4+ecc47bSKVOem5f4+Pj8fHHH+Oaa66B3W7Hrbfeip9++glXXHEFDAYDlixZgqlTp2qjw7311lto0qSJ/zfIhx49euCJJ57Af//7XxQUFOD888/H7bffjt69e2tdp5zd18xmc7XPsZ7MZjPmzZuHK6+8EsuWLcMPP/yAG264Ad9++63Wml+Tx15msxk33HADpkyZ4jbo2HXXXadbC8P69etxzTXXaMO8X3fddYiLi/O7f+/SpQu6dOlS7X49PzOSJOHjjz/GhRdeiNLSUrzwwgtYvnw5rr/+eiQkJGDNmjX49NNPtR4tTz/9dNhd4fQ+PgmHwWDA9OnTIUkSvv32W6xatUq7psz1///ZZ59h586d2LRpE2bOnIn58+dj+PDh6NmzJ1JTU1FWVobDhw/j77//xoIFC5CXlxfQaMaSJGHs2LFabwfn5UkXXHBBQFO6uHK99CGUllev9Eh1gbSQ2Ww2t7MzVW+ezsweOXJEXHLJJV7Xcb0piiI++eSTamUE20ImhBBPP/20z+fq16+fOHHihHam19eZ9BtvvNFrOVXfq0DO+lutVnH77bf7fT+uv/56UVpa6rUc53INrYWsaitIoDdPZ/tdTZgwQRiNRq/rJyYmBnQW0XUdb2e9AlVRUSHuv/9+oShKQK9x9OjR1crQs6XFaeXKlaJdu3YB1clsNns8SxhsC5kQQvz+++9aC52nW1ZWljhw4IBo0aKFACDOPPPMgMpdvXq1WznTpk0LuE6hqs0WMiEc2+9bbrnF63sny7J4/fXXfZ6hd7V9+3a3Vhxft5iYGDFv3jxt3by8PG3bK8uyz+36V199pZXTo0cPn2f765J9+/b5ff8GDRok8vLydHm+77//Xit36tSpfpcPdvvq7bjBSa/tqxCOz4SzdcbTzWQyeewd4yrQFjIhHGfmH3roIa2lzNOtcePGYuHChQHV35dAvn/FxcXiwgsv1Ja7+uqrq7WU6XHs5cmSJUuqrf/777+H+7I1rq8/mJu/baQenxmnBQsWiIyMDK9lSZIkHn30UaGqqs9yXNfxd6yg5/fHl0D2JVarVQwfPlxb7rzzzqvWClZQUCBGjBgR8P/vueeeC6h++/btq/Y9/Oyzz4J+nb179xYARGZmpt//UzBqLZAJIURZWZl47bXXRN++fUVqaqrbgaKvL8TixYvFXXfdJbp16yZSUlKEoigiKSlJnHHGGWLEiBHigw8+EEeOHPG4biiBTAgh5s2bJ4YMGSLS09OF0WgUzZo1ExdffLH45JNPhNVqFUKIgAKZzWYTH3zwgRg4cKBIT0/XmrY9vVfBHGSuXLlS3HbbbaJDhw4iISFBxMXFibZt24qbb745oA2783kYyAK7+QtkQgixadMmcd9994lOnTqJhIQEkZiYKLKyssSTTz4p9u/f73f9kpIStw38qVOndHjFQuzatUs89dRT4rzzzhMZGRnCYDCI+Ph40bZtW3HllVeKf//73167RtREIBPCsVH+6quvxPDhw0Xbtm2F2WwWBoNBpKWliZ49e4o77rhDzJw5UxQXF3tcP5RAJoQQx44dE4899pjo3LmziIuLEykpKaJnz57ijTfeECUlJUJVVREXFycAiIEDBwZUpqqqWjeTtLQ0UV5eHlSdQlHbgcxpzpw5YsiQISIjI0PExMSIzMxMceONN4oVK1YIIQI7IHRSVVX88MMPYsyYMaJTp04iKSlJKIoiUlJSxFlnnSVGjx4tpkyZInJzc93Wc91RP/XUUz6fQwghRo0apS3/6KOP+l2+rrBYLOLjjz8WF198sWjSpIkwmUyiefPmYsiQIWLGjBm6HijYbDaRmZkpAIjBgwf7XT7Y7au/QCZE+NtXV/v37xdPPPGE6Natm0hMTBQJCQmiU6dO4r777hObN2/2u34wgcxpxYoVYuzYsaJdu3YiNjZWpKSkiHPOOUe8/PLL4uTJk0HV35tAv3+eQpmnkxXhHHt5oqqq2yUVbdq00fVzWlOBTIjwPzOuTpw4IV566SVxzjnniJSUFBEbGyvatWsnxo4dq21L/QkmkAmh7/fHm0D3JTabzW077imUCeHo8vvQQw+JHj16iEaNGgmDwSDMZrPo2LGjGDZsmHjzzTfFnj17gqrjxRdfrD1vQkKCKCoqCmr9nTt3auu/+uqrQa3rjyREmMP/EZEu5s+fr42w9cADDwQ9wASFb9OmTTjzzDMBBP4/+O233zB48GAAjrlX3n777ZqsIlFEvPXWW3jkkUegKAr2799fa8PfExFFi+effx6vvPIKEhISkJ2djUaNGulWduRnjCUiAKfnwEtMTKzRa7nIO9fRzgK9du2DDz7Qfq8Pc48ReXL33XejadOmsNvteP311yNdHSKiWlVYWIhJkyYBcIw3oWcYAxjIiKKGM5A98sgjyMjIiHBt6p9ly5b5nP9s0qRJ2kX1LVq0CGjOmvXr12sXjA8aNCjkOYuIol1cXBxefPFFAMDHH3+MI0eORLZCRES1aOLEicjNzUWjRo3wxBNP6F4+uywSRYGcnBw0btwY6enp2LNnT41OHN1QdejQAeXl5bjiiivQo0cPZGRkwGq1Ys+ePZg9ezb+/vtvbdk5c+Z4DWS//PILVFXFzp078frrr+Po0aMAHCP/OSdgJaqPVFVFr169sG7dOtx///0+5zYiIqovCgsL0bZtW+Tm5uLDDz/U5iDVEwMZETUIHTp0wJ49e3wuExcXh08++USbxNoT16kJnAK93uzXX39FaWmp/8p6kJ6erk3uSkRERPUHAxkRNQirVq3CrFmzsGrVKhw+fBinTp1CaWkpUlNT0alTJwwaNAj33HOP37mHnIHMbDajU6dOuOeeezBu3LiA5i1r06YNsrOzQ6r/gAEDsHjx4pDWJSIiouhVaxNDExFFUp8+fdCnT5+wy+E5LCIiItITW8iIiIiIiIgihKMsEhERERERRQgDGRERERERUYQwkBEREREREUUIB/UgIqKQ2O12lJWVobS0VLu5/l1SUoKKigpYLBZYLBa33z39bbFYYLfboaqq20/nTVVVt8cAx6iX3m7OkS9lWYaiKDAYDDAajdrN298mkwkxMTGIi4tDbGwsYmNjER8fr/3uen9cXBzMZjPi4+NhMHCXSkREwePeg4ioARNCoKioCIWFhSgsLKz2e0FBgXaf82dJSQlKS0tRXl4e6epHlfj4eJjNZrdbYmKi299JSUlISUlBcnIyUlJSkJKSgri4OI/z2xERUcPAURaJiOoZVVVRUFCA3Nxc5OXlVftZ9Xe73R7W8ymKgvj4eLdbXFwcEhISEBsbiwVTlkISAOwSICRAlQAVkFTn7y5/CwCo/CngWN65lxKn75ec97k8DNdMI6FyQZe/JeHoqC8JCNn5t3B7TMiVhSuO2+V3XIzy8nKUlZWhrKwM5eXl2t/OnxUVFWG9fyaTSQtnrrfU1FSkp6cjPT0djRo1Qnp6OhISEhjeiIjqGQYyIqI6xG63Iy8vDydOnMDJkydx8uTJar/n5OTAZrMFVW58fDySkpKQmJiIpKQkJCUlYcnXqyDZJMAmQ7LJgFVy/LRLkOwSYHf8DhWQ0HBDgqgMcMKgAgYBKCqEQQCGyp+KwNUPXqq1OObn52s/LRZLUM8VGxurhTNnUGvUqBEaN26Mxo0bo2nTpmjUqFFAE5UTEVF0YCAjIooidrsdOTk5OHr0aLXbsWPHcOrUqYBbtJKTk5GWlobU1FSs/2UrJKsMWGVIltM/tftEww1UkSJQ2UJnFBBGFcKoAi4/B912AU6dOoWcnBzk5OSguLg4oHINBgMaN26MJk2aoGnTptV+Nm7cGEajsYZfHRERBYqBjIiollVUVODw4cM4cOAADh065Ba6jh8/7rd1S1EUNGrUCBkZGWjcuDGWfrUaqJAhWRRIlT9hYciqb4QsAJMdwqRW3uwY/s+rtJbR48ePIycnx29gl2UZTZo0QYsWLdCyZUu0bNkSLVq0QIsWLdCsWTPExMTU0isiIiKAgYyIqEaoqorjx4/j4MGD1W7Hjx+Hr02voiho2rQpmjVrhnVzt0AqV07fLLIjbDXgLoLknYAAYlSIGLt2u3L8xTh27BiOHz+OY8eO+ewmKUkSGjdurIW0Vq1aoXXr1mjTpg0aN27MrpBERDWAgYyIKAx2ux1HjhzBvn373G6HDx/2eeBrNpuRmZmJli1bYuGny08HrgrF0drFwEU1QEA4ukXG2SFi7bjxlWtw6NAhHD58GIcOHUJpaanXdWNjY5GZmYk2bdpoIa1169Zo3rw5h/wnIgoDAxkRUQCcLV779+/H3r17teCVnZ3tNXgZjUatlWHF139BKjdAKlUglRkAm8TQRVHFEdYERKwNIs6Om/41DAcPHsT+/ftx8OBBr11pDQYDWrVqhXbt2qF9+/Zo3749OnTogPT0dI4ISUQUAAYyIqIqbDYb9u/fj127dmHnzp3YtWsXdu/e7bX1ICYmBm3atMGupdmQSg2QSg2QSxWgQmHoonpBQEDE2iHibRDxdlxy5/nIzs7GgQMHUFZW5nGd5ORkt4DWvn17tGnTBiaTqZZrT0QU3RjIiKhBKysrw+7du7Fr1y7ttm/fPlit1mrLGgwGZGZmYv+qI46WrlID5FIDUM7gRQ2T85o1Nd4GEW/DRXf0we7du3Hw4EGPg4soioLMzEx07twZXbp0QZcuXdC+fXsOJEJEDRoDGRE1GDabDfv27cPWrVuxbds2bNu2Dfv37/c4wIbZbEaHDh2w6aedkEoMkIoNkMoMHLmQKABCEo7WtAQbhj1zKfbs2YPdu3ejqKio2rKKoqBdu3ZaQOvcuTPatWvH69KIqMFgICOiekkIgRMnTmDr1q1aANuxYwcqKiqqLZuWloZOnTrhz282QSoxQC42sLshkc4EBGBSoZqtGPXfYdi+fTu2b9+OgoKCasuaTCZ06NABXbt2RVZWFrKystCkSZMI1JqIqOYxkBFRvWCz2bBz505s3LgRmzZtwpYtW5Cbm1ttuYSEBHTp0gXrv98OqcgAucgIyapEoMZEpHV5NFsx/JUh2LFjB3bs2OFxEuyMjAxkZWWhe/fuyMrKQocOHdiKRkT1AgMZEdVJpaWl2LJlCzZt2oQNGzZg69at1Vq/nF2h9iw95AheRUZIZWz5Iopm2gAiiVZc88xgbNq0CXv27Kl2TVpMTIzWgta9e3d0794dZrM5QrUmIgodAxkR1QkFBQVYv349Nm7ciI0bN2L37t3VDtASExPRvXt3rJ620RHAio2QVIYvorpOyCpEog1j3rkOmzdvxpYtW6pdjybLMjp16oSzzz4bPXr0YEAjojqDgYyIolJpaSk2btyIv/76C+vWrcPu3burDb7RpEkTnNxUALnQCKnQ5Bj5kK1fRPWegHBMbp1kxaUP9seGDRtw+PBht2UY0IiormAgI6KoYLFYsHXrVqxbtw5//fUXtm7dWq0FrHXr1ji46gTkQiPkQhOkCl77RUQOwmSHmmzB5Y9eiL///ttrQOvVqxd69eqFbt26wWg0Rqi2RESnMZARUUQIIZCdnY3Vq1djzZo12LhxY7VrwJo2bYoT6/MhF5gg55s4+AYRBcxfQIuLi0OPHj3Qq1cv9O7dGy1btoQksYWdiGofAxkR1ZrS0lL89ddfWgg7duyY2+Opqako2FkKOb8ygFVwBDUi0ocw2aGmWDDw3t5Yu3Yt8vPz3R5v2rSp1np27rnnIjExMTIVJaIGh4GMiGqMEAL79u3D6tWrsXr1amzcuBE2m0173Gg04qyzzsLf32yHnB/Da8CIqFYICIgEG8Z9eAP+/PNPbNq0CVarVXtcURRkZWXh/PPPR79+/dCqVSu2nhFRjWEgIyJd2Ww2rF+/HsuWLcPy5ctx4sQJt8ebN2+OY2vzIOfFQC4wcRREIoo4IQuoyRYMe2EQ1qxZgwMHDrg93qJFC/Tr1w99+/bFWWedxfnPiEhXDGREFLaSkhKsXr0af/zxB1atWuU2qavJZEKPHj2wdvpWyLkmSOVsBSOi6CZi7Ljnq1FYvnw51q9f79ayn5CQgN69e6Nfv37o06cPkpKSIlhTIqoPGMiIKCQ5OTlYvnw5/vjjD6xbt86tu09qaioKtpVBzo11XAvGVjAiqqOEokJNsWDwI+dj5cqVbteeKYqCHj16YODAgbjggguQmpoauYoSUZ3FQEZEATtx4gQWL16MRYsWYcuWLW6PtWrVCkdWnoJ8KgZSkZGtYERU7wgIiEQrRr4xFMuXL8fevXu1x2RZxplnnokBAwbgwgsvREZGRgRrSkR1CQMZEfmUk5OjhbBNmza5PdatWzds/ykb8qkYyGW8poKIGhY11oZbP74OS5cuxfbt290e69atGwYOHIgBAwagadOmEaohEdUFDGREVM2pU6ewZMkSLFq0CBs3boRzMyFJErp3746ts/c5WsIsnBeMiAhwXHd2x5QRWLJkCTZv3uz2WLdu3TB48GBcdNFF7NZIRNUwkBERAMfAHIsXL8avv/6KDRs2QFVV7bGsrCxs+zEbSg5DGBGRP8Jkxz3TRmHp0qVYv369dlJLURT07NkTgwcPRv/+/REfHx/hmhJRNGAgI2rAbDYb/vzzT/z6669YtmwZLBaL9tgZZ5yBHXMPQMmJZQgjIgqRMNpx55cj8dtvv7l1a4yJiUH//v0xaNAg9O7dG0ajMYK1JKJIYiAjamCEENi5cyd+/fVXLFy4ELm5udpjrVu3xqElp6CcjIVUwRBGRKQnNdaGUe9dhd9++w2HDh3S7k9KSsIll1yCK6+8Ep06deIk1EQNDAMZUQORk5OD+fPnY/78+di/f792f0pKCoq2VkA+EQep2MDREYmIapiAgDDbMOzVS6qdGGvfvj2uvPJKDB48GCkpKZGrJBHVGgYyonrMbrdjzZo1mDt3LlasWAG73Q7AMVmz7bAE+UScY54wwRBGRBQJAgIixYILHzzXreu4wWBAv379cOWVV6JXr14wGDiSLVF9xUBGVA8dP34cP/30E37++WecOHFCu79bt27Y8f0ByDmxkOxyBGtIRERVCYOKe2eMwrx587Bjxw7t/vT0dFx22WUYOnQoWrRoEcEaElFNYCAjqidsNhtWrFiBOXPmYM2aNdqoXklJSSjZZoN8PA5yKc+wEhHVBWqCFde8ejEWLFiAgoIC7f7zzjsPw4YNQ58+faAovNaXqD5gICOq43JycvDjjz/ixx9/dLsOoUePHtg0Y4+jNYxdEomI6iQhCTy78H7MnTsXa9as0e5v0qQJrr76agwZMgRpaWkRrCERhYuBjKgOEkJg69atmDVrFhYvXgybzQYASE1NReHGCkdrWDlbw4iI6hMRa8M/3hiMn3/+GYWFhQAc15oNHDgQw4YNQ/fu3TlCI1EdxEBGVIdYLBb8/vvv+L//+z+3+Wy6d++Obd8egHwqhq1hRET1nJAFHpt7O77//nts3bpVu79du3a4/vrrMXjwYMTExESwhkQUDAYyojrg5MmT+P777zFnzhzk5+cDqBwp8aAM5Ug85BJOKEpE1BCpCVZc9tz5WLBgASoqKgA4ektce+21GDZsGIfOJ6oDGMiIoti+ffswY8YMLFiwQOuWmJGRgdw/y6Aci4Nk40iJREQECEXF7V/egO+++04bXddkMuGyyy7DDTfcgDZt2kS2gkTkFQMZUZQRQmDDhg2YPn06Vq5cqd1/1llnYcuM/Y5uiZy8mYiIPBCSwNO/3oOZM2e6dW0/77zzMGLECJx77rm8zowoyjCQEUUJu92OP/74A9OnT9euCZAkCdJJE5RDCZCL2S2RiIgCIyAgkqzoc18W/vjjD20qlI4dO2LUqFEYMGAAh80nihIMZEQRZrFYMG/ePMyYMQOHDx8GUHl9WLYC5XA8R0skIqKwiFgbrvrPQPz8888oKysDALRq1QqjRo3C4MGDYTTyhB9RJDGQEUVIRUUF5s6di6+//honT54EACQmJqJ0iwrlaDwkK68PIyIi/QiDilEfDcV3332HoqIiAEDjxo1x4403YujQoRyZkShCGMiIall5eTl+/PFHTJ8+HadOnQJQOVDH6nIox2IhqQxiRERUc4Si4rap12PmzJnIzc0F4BiZceTIkbj22msRGxsb4RoSNSwMZES1pKysDD/88ANmzJih7QCbNGmCU8tLIR+P4/xhRERUq4QkMP7/bsG0adNw7NgxAEBaWhpuuukmXHPNNWwxI6olDGRENcxiseDHH3/El19+iby8PABA06ZNkbOsBPIJBjEiIoosIQk8Ovc2fPHFFzhy5AgAoFGjRrj55ptx1VVXwWQyRbiGRPUbAxlRDbHZbJg/fz6mTJmC48ePAwCaN2+OE4uLIZ+MZRAjIqKoIiSBh34Yiy+++ELbb2VkZGD06NEYMmQIDAYOMkVUExjIiHSmqiqWLFmCyZMn48CBAwAcO7S8FeVsESMioqjn7Mo4depUbdCpli1b4s4778SAAQM4jxmRzhjIiHS0du1afPjhh9i5cycAIDk5GcXr7Y5RE1XuwIiIqO4QksDdM0di6tSpyM/PBwCcccYZuPvuu3H22WdHtG5E9QkDGZEO9u/fj/fffx+rVq0CAMTHx6NimwTlSDwkO0dNJCKiuksoKm76aAhmzpypzWPWt29f3HXXXWjXrl2Ea0dU9zGQEYUhLy8Pn3/+OebMmQO73Q5FUYCDJigHzJBsDGJERFR/CKMdV/6nv7bPk2UZV155Je644w6kpqZGunpEdRYDGVEIKioq8O233+Krr75CaWkpAEA+FQNlnxlyOS96JiKi+kuNtaHfY92xePFiAEBCQgLGjBmD6667DkajMbKVI6qDGMiIgiCEwPLly/Huu+/i6NGjAIBOnTph33cnIRdyWGAiImo43tzwPN59911s374dgGPgj/vvvx99+/blwB9EQWAgIwrQoUOH8M4772D16tUAKkdO/KPCMYQ9uOMhIqKGR0Dg0Z9uw0cffYTc3FwAQK9evTB+/Hi0adMmspUjqiMYyIj8KCsrw1dffYUZM2bAarXCYDBA7DNBOZgASeV1YkREREJRcf27g/Htt99q+8qRI0di9OjRiI2NjXT1iKIaAxmRD0uXLsXEiRNx4sQJAICUZ4JhbyLkMl4nRkREVJWItaHnA52xYsUKAEDTpk3x8MMPo2/fvhGuGVH0YiAj8uDkyZN4++23sWzZMgCOHUrOojLIp2LYPZGIiMiP55c8gHfeeUc7oXnhhRfigQceQOPGjSNcM6Low0BG5EJVVfzwww/46KOPUFpa6hjGfn9sZfdEBjEiIqJACVnFde8OwjfffAO73Y64uDjcdtttuO666xz7VyICwEBGpNm3bx8mTJiAzZs3AwCkQiMMuxMhl3IIXyIiolCp8VZ0GdMCmzZtAgB069YNTz31FFq3bh3hmhFFBwYyavBsNhu+/PJLfPnll7DZbIiLi4N1swHy0Th2TyQiItKBgMD42bfggw8+QGlpKUwmE8aOHYuRI0fCYOB12dSwMZBRg7Zv3z68+uqr2LlzJwBAPmWCYU8SJAu7UhAREelNmOzoMb69NoVM586d8dRTT6F9+/YRrhlR5DCQUYNkt9sxY8YMfPbZZ7BarUhMTETZWolzihEREdUwAYHHfr4dEydORHFxMRRFwa233opRo0bx2jJqkBjIqME5ePAg/v3vf2PLli0AADnXBMNutooRERHVJmG047zHumojGmdlZeHZZ59F8+bNI1wzotrFQEYNhhACc+bMwbvvvouKigrEx8fDst4A+QRbxYiIiCLB2Vr29ttvo7S0FHFxcXjwwQdxxRVXQJK4b6aGgYGMGoTCwkK8/vrrWLp0KQBAyjfBuCsJUgVbxYiIiCJNxNjR5bbm2LhxIwDHvGWPPfYYUlJSIlsxolrAQEb13oYNG/DKK6/gxIkTjr7pu+OgHI5nqxgREVEUERAYO3UYJk+eDLvdjkaNGuGFF17A2WefHemqEdUoBjKqt2w2G6ZOnYqpU6dCVVW0aNECJ34qg1zMecWIiIii1Xvb/oVXXnkFBw4cgCzLGDduHG6++WbIshzpqhHVCAYyqpdyc3Px0ksv4e+//wYAyMdjYdibCMnOjTkREVG0E7KKi146B/PnzwcA9OrVC88++yxSU1MjXDMi/TGQUb2zadMmvPDCC8jJyXFM8rzeCOVkXKSrRUREREEQEHhk7ji89dZbqKioQHp6Op5//nl2YaR6h4GM6g0hBGbNmoVJkybBbrdDKlVg2JYCucwQ6aoRERFRiNR4G5pfa0Z2djZkWca9996LG264gaMwUr3BQEb1QmlpKSZMmICFCxcCAOSTMTDsSoKksosiERFRXSdkgYte6qF1Ybz00kvx+OOPIyYmJsI1IwofAxnVeUePHsXTTz+NvXv3OkZR3BUP5UgcR1EkIiKqRwQE7v5mpNYTplOnTnj11VfRpEmTSFeNKCxsPqA6bePGjbjrrruwd+9epKWlQV6XBMMRDmlPRERU30iQ8NHwmXjzzTeRnJyMnTt34o477sD69esjXTWisLCFjOqsefPmYcKECbDZbJCKDTBuTYFk4UTPRERE9Z2IsaP1TanYtWsXFEXBo48+iqFDh0a6WkQhYSCjOsdut+Ojjz7CjBkzAAByTgwMO5MhqWwVIyIiaiiELHDh82fit99+AwDcfPPNuP322zlfGdU5DGRUp1RUVODll1/GsmXLAADKgQQoBxLYRZGIiKgBEhC48ZMr8MUXXwAALr74Yjz99NMc7IPqFAYyqjMKCwvx9NNPY9OmTTAajRCb4qDkcH4xIiKihu6Rn8bh9ddfh91uR/fu3fHqq68iJSUl0tUiCggDGdUJx48fx2OPPYbs7GyYzWZUrDBCLjRFulpEREQUJV778yk899xzKC4uRsuWLfHmm2+iadOmka4WkV8MZBT19uzZg8cffxw5OTlAhQzjllTIpZzsmYiIiNypcTY0GmLEsWPHkJGRgf/9739o06ZNpKtF5BOveqSotmnTJowfPx45OTmQShSYNqQxjBEREZFHcpkBuT/a0KZNG5w8eRLjx4/Htm3bIl0tIp8YyChq/f3333jsscdQXFwMqcAI48Y0DmtPREREPkkWBUdmlKBr164oKCjAQw89hHXr1kW6WkReMZBRVFqzZg0ef/xxlJWVQcozwbglFZKdH1ciIiLyT7LJ2PNZDs455xyUlZXh8ccfx8qVKyNdLSKPeIRLUWf58uV4+umnYbFYIOeaHBM+c44xIiIiCoJkl7H53UO44IILYLVa8eyzzzKUUVRiIKOosnTpUjz77LOwWq2OCZ+3pUASDGNEREQUPElIWP3aDgwYMIChjKIWR1mkqLFq1So888wzsNlskE/EwrAziRM+ExERUdiEJND3ma5YsmQJjEYjXn31VfTp0yfS1SICwEBGUWLdunV44oknHN0UT8bAsCOZYYyIiIh0IySBPk93wdKlS2EymfDvf/8bvXv3jnS1iBjIKPI2bdqExx57DGVlZZBPmWDYzm6KREREpD8hCZz3VGcsW7YMsbGxePPNN5GVlRXpalEDx0BGEbVz50489NBDjqHt8yoH8GAYIyIiohoiJIEej7TF6tWrkZiYiPfeew9t27aNdLWoAWMgo4g5evQo7rnnHuTm5jrmGduSytEUiYiIqMYJWaDjHRnYsmUL0tPTMWnSJDRr1izS1aIGioGMIqKwsBD33nsvDhw4AKnEAONGzjNGREREtUcYVLS40Yx9+/ahZcuWmDRpElJTUyNdLWqAeARMta6iogJPP/00Dhw4AJTLMG5JYRgjIiKiWiXZZByeWYSmTZvi0KFDeOaZZ1BRURHpalEDxKNgqlWqquLVV1/Fpk2bAJsE49ZUSBYl0tUiqnmS5LhFugwiItJIFgWn5lqRmJiILVu24LXXXgM7j1FtYyCjWvXpp59i8eLFMBqNMG5LgVxqiHSViGqeHiHKtQyGMiIi3cjlBvzrX/+CoihYuHAhpkyZEukqUQPDQEa15vfff8dXX30FABCb4yAXmCJcI6JaUDU8hRKmGMCIiGrUE+f+G48++igA4PPPP8dvv/0W4RpRQ8JBPahW7N69G/feey/Ky8uhHIqHYX9ipKtEVPO8BalgNru+whg330REurr2vYswY8YMmEwmTJo0CZ07d450lagBYCCjGpefn48777wTx44dc8w1tiUFEnjGn+o5f61agWx69SiDiIgCJiDQ84kOWLFiBZo2bYpPP/0USUlJka4W1XPsskg1ym6346WXXsKxY8eAMgXG7ckMY1T/BdLF0N8yepRBRERBkSBh7f92oXnz5jh27Bj+9a9/QVXVSFeL6jkGMqpRX331Ff766y/ExcXBuI3D21MDoPcAHrXxfEREpJHsMl555RWYTCasWrVKu/6dqKbw6JhqzIYNG/D5558DAKzrjRxRkeq3UIak97Q8AxYRUcTd2/kZPPzwwwCAyZMn46+//opwjag+4zVkVCMKCgowbtw4nDx5EvLxWBh3JUe6SkQ1J9wQ5dwMh1MON+VERLob9J+e+Omnn9CoUSNMmTIFyck8niH9sYWMdCeEwH/+8x+cPHkSUpkCwx6OqEj1mF4tWnpMGk1ERLpa8M8/kZmZiVOnTuF///sfJ42mGsFARrr76aefsGLFChiNRhi2J0NS+TGjekiSAFnRp6xoK4eIiAAAkirhueeeg6IoWLx4MebPnx/pKlE9xCNl0tXx48fx3nvvAQDUnTGQS4wRrhGRB3q0RkmVm08pvM2opOgUosKsBxEReXZ/12cxbtw4AMDbb7+No0ePRrhGVN9wD066EUJgwoQJKC0thVRohHI4PtJVInLnOvBGqKHMNYyFW53KMCbJYZbpum44rWShDExCRNQAfDHmB3Tv3h2lpaV47bXX2HWRdMVARrr5+eefsWbNGkAFDLuSON8YRRe9hqP3FJxCCFNVW8ZCDmWe1gkllLm+PwxlRERuJEjY8dkRxMTE4O+//8Yvv/wS6SpRPcJARrrIycnRuioq2WbIZRzinqKIt4AR7HxfvgJTEGHKWzfFoEOZXt0UGcCIiPySKgxa18VJkyYhPz8/shWieoOBjHTxwQcfoKSkBFKRgV0VKbrUZMtYKEXV1jVjgbaS6RFWiYgaiMk3z0KHDh1QWFiISZMmRbo6VE8wkFHY1q9fjwULFkCSJBh2s6siRZFAQoW/ZYIJY36WCySMBdRKFmh9/IWyQF47ERFpJCHhsccegyRJmD9/PtauXRvpKlE9wEBGYbHZbHj77bcBANKRWI6qSNEj2O6I3u4PtmXMy/LBtIz5DGXB1sdbKAv0/WEoIyJy82DWC/jHP/4BAHj33Xdhs9kiXCOq6xjIKCzff/899u7dC1glGLLNka4OkYMew9rLii7dFCVFCamboiRLVe+I3DVjDGVERG7mPLYUycnJ2LdvH3766adIV4fqOAYyCllRURE+++wzAIAh2wzJxo8TRVg4w7a7DocfbvCpXD/s68V0muuME0YTEelLsssYO3YsAGDy5MkoKSmJbIWoTuMRNIVs+vTpKC4uhlSiQD4WF+nqUENXDwfvkGQJkkGnbsDOUBZuYCUiIgDAB8OnIzMzE/n5+fjqq68iXR2qwxjIKCSnTp3Cd999B8AxzD0H8qCI0iks6DUCoqTo091Rt5Y2VHaBDLelzNkCyXBGRARJSLjnnnsAAN9++y1OnDgR4RpRXcVARiGZOnUqysvLIRUaIefGRLo61JDpHMaqXbsVYjlh0+t6MZx+TSFPPu2xUIYyIqIXLngLZ511FiwWC77++utIV4fqKAYyCtrRo0cxZ84cAJXXjrF1jCKlhlrGQg1l1cJYqOHHw3qhBr2qryXcwOleGL/7RNSwSZC0a8nmzp2LnJycyFaI6iQGMgrazJkzYbPZIOWbIBeYIl0daqhquJtisMHFa2DSadh8n8/htShvw/lz009EpJcne/0H3bt3ZysZhYx7ZQpKfn6+Nryr4WB8hGtDDVY0XjPmcwF9JpYO6Lm0ory/R+y6SESkH9dWsh9//BGnTp2KbIWozmEgo6DMnj0bFRUVkIoNkNg6RrVNxwElAgk2gbSSReKaMX/PGVC9GcqIiHTz9Hn/Rbdu3WCxWPB///d/ka4O1TEMZBSw8vJybSOjHErgtWNUu3Q86A8mRPlsaQomjPkKPzUwgEfAyzKUERGFTYKEkSNHAnC0klVUVES4RlSXMJBRwObPn4+CggKgTIGcw5EVqRZFKIzpXo6n8BNiIPL0/KEM2MFBPoiI9PHKRe+iadOmKCgowIIFCyJdHapDGMgoIEII/PjjjwAA5WgcW8eo9uh1kC/J+o1UGE6ocw1gYbZOudYjrGCl5yAfDGVE1EBJkHDttdcCAL777jsIISJcI6orGMgoINu2bcOuXbsAFVBOxEW6OtRQ6BnGwp1fTJYcNz1a2CRZtxAkKYour42hjIgofJNHf4eYmBjs3bsX27Zti3R1qI5gIKOAOFvH5JxYSDZ+bKiWROPZRaGGXYSkyJAUPQOQXteB8btNRBQOyS5jwIABAICff/45wrWhuoJ7X/KrvLwcixYtAgAox9g6RrVMj1AmVAhVx3AXRiiTFBmQHTddQ1kY3N4bDvJBRBSWRf/7EwCwcOFClJeXR7g2VBdEx9EARbXly5ejrKwMKJchFRojXR2i0OgdykKghTEnPUNZiEHK43vCUEZEFDKpwIhmzZqhpKQEy5Yti3R1qA5gICO/Fi5cCABQTnIwD4oQvbou6hnKgmwlqxbGnCIYyny+FwxlREQhkSBh8ODBAIDFixdHtjJUJzCQkU9FRUVYvXo1AEA+GRvh2lCDVodDmdcw5hSBUBbQe8BQRkQUkukPzQUArF69GqWlpRGuDUU7BjLyafXq1bBarZBKFMilhkhXhxq6OjjIh98wVhP8BKmIdN1kKCOiBkQqNaBVq1awWCxYsWJFpKtDUY6BjHxybkTkXE4ETVGiDg3yEVQY03uQDy+hLOjXzeHwiYiCJkHCwIEDAYDXkZFfDGTklc1mO91dkYGM6psaDmUhtYzVcCgL+fUylBERBW3GY45ui2vXroXdbo9wbSiaMZCRV1u2bEFRURFglSAVcXRFiiLReD2Zi7C6KdZQKAv7dTKUEREFRSoywmw2o6ioCNu3b490dSiKMZCRV3///TcAQM43cXRFogDpcs2Y0Qg5OVGfCukZOjlxNBFRwCRI6NmzJwBoPY6IPOHelbzSAlmBKcI1IapCrxYWSYYk61OWZDBATk6EFBfm5OmKAtmcACkmRp9QpiiQFCX8cvTGVjIiagB69eoF4PQxFZEnDGTkkcViwZYtWwAAEgMZRRO9w5gkh93yIxkMkMwJjnIMBkgxIV5zWRnGnC1sYYcyZ9iUJf1CGVvJiIgC9vbIzwAA27dvh81mi3BtKFpxz0oe7dy5ExaLBbBIkMqi8Ow6NUw1EcZc7gupKNcw5hRKKKsSxlzvD0nVlr9oDGVsJSOiek4qU5CUlISKigrs3r070tWhKMVARh7t2LEDACAXG3n9GEWeJNVsGHN5LKiiPIUxJ4MBUlyAk6l7C2M43RUyKN66YTKUERHVKgkSunXrBgDYtGlThGtD0YqBjDzatWsXAEAq5uiKFGF6HrD7CmMuywRUlK8w5iQr/lvKfIQx7bmC6bro75o4hjIiolrVtWtXAKePrYiqYiAjj3bu3AkAkIoNEa4JNWi1HcZclvX5cCBhzMlXQAogjGnPGUgoC3SAEoYyIqJaM/XxWQCAvXv3RrgmFK0YyKgam82G/fv3AwDkEraQUYREKoy5rOPx7mDCGOC9lSyIMKY9t69QFuxokQxlRES1Qi5xnNzev38/B/YgjxjIqJpjx445Nhh2ABX8iFAERDqMuazr9mewYcyp6iAfIYQxrQ6eQlmoQ/frGcr0wlBGRPVNuYLY2FhYLBYcOXIk0rWhKMSjbarm0KFDAACp3MABPaj2RUsYq1pUqGHMyRnKwghjWl1cQ1m486jpFcr0HA6foYyI6hEJElq2bAkADGTkEQMZVaMFMg53T3WZXmFMksMPY05N01E6sGtYYUyrVlwclKaNwy4HAEMZEVENa9q0KQBHLySiqhjIqJrjx48DAKRyBjKqZXoPbQ8AQg2vKJMRcpMMSHFx4ddLllHSWEFRz5ZhlyPiYiDiYqA0zgi/XtFIiEjXgIhIN85AdvTo0QjXhKIRAxlVc+rUKccvVn48qBbVRBgLtyiTEXJGI8fkzAYFUmyQkz27Sk/BqXPTABkoTQ8jlFWGMefcbLqFMj1aycIMv6fLYRgjovpl9uu/ADh90pvIFY+4qZrc3FwAgGThx4NqSU2HsRCCghbGnN0LJSn0UJaeglO90mF3rhpqKHMNY1pFoySUMYwREXklVZ7kLigoiHBNKBrxiJuqYSCjWlVbLWNBBAbJZIScnlb9Wq9QQlnVMOYUbCjzFMZc6hXRUKZXGCMiqqcYyMgXHnFTNSUlJY5fbPx4UA2r7W6KAQQHLYx5CyXBhDJvYcwp0FDmK4xVqZcugglleoYxto4RUX1lYyAj73jETdWUlZU5flE5yhnVoEhdM+YjQPgNY9qCAYSy9BSc6ukjjDn5C2WBhLFKwmjQb5CPQEIZwxgRUUAkm2MbXlxcHOGaUDRiIKNqnIFMsjOQUQ2J9AAeHoJEwGFMW8FHKHOGsdgA6+MtlAURxpx10nXkRV+hjGGMiChwlSe5rVZrhCtC0YiBjNzYbDbY7XbHHwxkVBMiHcacXAJF0GFMW9FDKAs2jDlVDWXBhjGXOtV4KGMYIyIKjnBsy202GwS3e1QFAxm54UaCalS0hDEnoYYexrS6uISyUMOYU2UoK+zdKrQw5lKnGgtlDGNERCE4vb0rKiqKYD0oGjGQkRtJrwNmopqi4zxjcnw8pOZNQg9jWp0k2Jum4viFYYQxrVKALVYKP7xKEoQ5DnLrMCeh1uqlwzxlREQNlTi9Tdd6IhFVYiAjN26BjNmM9KZDi4ikKIAkO25hkOPjgWaNAZMRwmgIqyxbeiKOn5cIS6IEa3x4XxwhA+VpMvJ7pIdVDhQZaqwJamIs5MwW4ZXlJEuQDEZ9ygL0azElIop2Lru/+Pj4yNWDohIDGbmRXeddktidiGpAGKGsWhgIMZRpYcw5TLxBCTmU2dITcaJ3ImyVLWOqESGHMiED9hgJqgEoSw8jlCky1BgjoDha2tSkOIYyIqJIkh37PkmSYDKZIlwZijYMZORGkiTExcU5/lAYyKiGhBDKvIaAIENZtTDmFEIoqxrGnEIJZc4w5uzVoiohhjLXMObEUEZEFFGi8pgqPj6el4dQNQxkVE1CQgKA0xsPohoRTCjzF7oCDGVyfDzQNMP7BMpBhDJbeiJO9KoexpyCCWVVw5hWRrChzFMYc2IoIyKKHJdARlQVAxlV4wxkMDCQUQ0LMJQFNJiEn1CmhTF/gSuAUKaFsTjfRQUSyryFMa2MoEOZj+djKCMiiozKYyqtFxKRCwYyqiYxMREAIAw6Dm9N5I2fUBbUAb+XUBZwGHPyEcoCDWNOvkKZvzCmlRFIKHO2jvkT7aGMiKgeEkbHMVVqamqEa0LRiIGMqsnIcMxdJGIYyKiWeAllIR3oVwllQYcxJw+hLNgw5uQplAUaxrQyfIUyX10VPYnmUMZWMiKqh4TJMdR9o0aNIlwTikYMZFSNM5DBxHkyqBZVCWVhHeC7hjJZCj6MOSmyFspCDWNOrqEs2DCmleEplAUbxpwYyoiIao/JcZI7PT3MKU2oXmIgo2qcGwsRw0BGtawylOlyYC/JjtaxxmHs/CQJUGRYm6WEFcZOlxd6GHNyC2WhhjGtPgxlRES1YeCYvgDYQkaeMZBRNc2aNQMAiFgGMqplkhT2hM9aUUYDpERz6K1jlYTJANUoI/5E+N8HSzKQe5Y95DDmpCqAxSzBlhofehhzkiSIOBPkpKTwynESqm7/QyKi+uLgwYMAgJYtW0a4JhSNuNekalq3bg0AEHF2CHCkRaolrmFMhHf9omQ0QEpIAOx2SCVlOlQOiD1lQ9KB0OtlSwCsnUsRm1GGwi62sOpiKBdIPGSDapRhjw0vcEo2FXJBCSSTMfxQZncJreGGsjAmECciiiYCQgtkrVq1inBtKBoxkFE1LVq0gKIojiFaTRzYg2pBlZYxoYqQQ5kWxmQJQgigvCLkUCaMCmyJMY5yVYHYHGtIocwZxmJirJBlFbHpoYcyQ7lAUrYNSoXd0QXSEHook2wq5LwiwK4CkhReKHMJY5IsOX8JrSyGMSKqT0wqysrKoCgKWrTQqYs41SsMZFSN0WhE8+bNAQAiPrwz+UR+eemmGEoocw1jWjkhhjJnGBMuXQIlVSD2VHChzDWMOWmhrHNw3y+3MKZVKrRQJtlUyPnFjjCm3RlmKHMtXw6xKyXDGBHVM85jqWbNmsFo5DQhVB0DGXnUoUMHAIBqZiCjyAkmlHkKY1o5QYYyT2FMex57cKFMKMItjDnJsurovhhgKPMYxrRKBRfKtDBm81RWCKHM7uP6umBayRjGiKgech5Lde7cOcI1oWjFQEYedenSBQAgzNUPJIl0E8AgHoGEMl9hTCsnwFDmK4xpzxdgKLMlALYO3p9PllXEBNB90WcY0yoVWCiTrHbvYUxbKIhQ5iOMBdV1kWGMiOqpfqPPAcBARt4xkJFHXbt2BQCoDGRUU4IYUVGoAsJu9x7MJMlnGNPK8RPKAglj2lP6CWU2c/Wuip4oiu9rygIKY1qlfIcyyWqHXFDiO4xpCwcQyny1jDmLCSSUMYwRUT22fft2AKdPdhNVxUBGHnXq1AmyLAOxqja7PJFuQhze3lNrmWQ0QIqPD7wML6EsmDCmPbeXUGYzA9ZO/sOYk6+BPiQVgYUxbQXPoSyoMKat5COUBRDGtGJ8hTKGMSKqx0SMHSdOnICiKOjUqVOkq0NRioGMPIqPj9c2HGqyJcK1oXolzLnGXENZIF0VPZZRJZSFEsacqoayYMOYkyyriGnkfk2ZoVwg8WAI13FWCWXOoe2DCmNaWR5CWRBhTCsm3JEXiYjqIOcxVOfOnREfxMlDali4ZySvzjnH0edZTWEgIx3pcEAuVAFJkUMKY1oZLqFMSFJIYczJGcpic0VIYcxJUU5fUxZUV0WPlXKEMtWo+L9mzG9ZLqEshDCmFVM1lLF1jIjquUEPnA8A6NGjR4RrQtGMgYy8OvfccwE4zu5wgmjSTZiTPgOOA3shBFBREV5VhAAqLJArwr9WMq+TCUMfXIKxWavCKkdRVKS3ykf5pYWhhzEnqfKmB1WFKC0FFCWsYkIeDp+IqI4REFi3bh0ABjLyjYGMvOrevTtMJpPjOrJ4XkdGOgojlEny6S6PwmIByspDL0uSAIMBUmk5jDmlIZcDALY4Cdck/Y1B5i24seNfIZeTFF+OazI3YlTHtci+I7zwKltUGHKKHd1EDWEEKbsdanEJYLc73rMwQpnbdYASwxkR1V8i3oYTJ07AZDLhzDPPjHR1KIoxkJFXsbGxp1vJ0kI/6CXSuB6Ah9NSVtnKIoQIOZRJkgQYjY6yhIBcXBpyKMvtEoNRty4AAMRKNgwyb8HwDn8HXU5SfDmGtNiCdEMR0gzFuDVrZcihTLKqMJwsgmStvAYt1FDmDGPW062IoYYyj1MYMJQRUT2lNnL04ujZsydiY2MjXBuKZgxk5FP//v0BnN6oEIXM04F3kKHMtXVMKyKEUOYWxk4XFFIoy+0SgxH3/YbLzJu1+2IlGy5L3BRUS5lrGHMKNZRJVhXGEy5hTHsgyFDmIYydLiq4UOZzPjmGMiKqhzpe1grA6WMpIm8YyMin888/H5IkQSTaOPw9hc7XAXeAoUwLYx6uQQo6lHmbtyzIUOYpjDk5W8oCDWWKJNzCmFOwocxrGNMWCCKUCeExjJ0uKrAgFcjk3gxlRFSfiBi7Nv9Ynz59IlwbinYMZORTo0aN0L17dwCAPYPdFqmGCNXnAbuvMKYVEWAoc1435qMgyMWlMB3O9xnMcrvE4Pp7f/cYxpwC7b6YFF+Oy5tv9fp4oKFMtvgJY06BhDK7HWpJAMHUTytZQGHMtV5ERPWAPd2xLzr77LORnp4e4dpQtGMgI78GDx4MAFAbM5BRCII5yPZw4B5IGNNW9xPKPHZV9FwQJIvVa2tZbldHGLsycaPfOjm7L3oLZZ66KnriDGWxLxz1GMxkS5VrxvzxFcp8dFWsXoz3rotBhTHXehER1XGtL2kMALj00ksjXBOqCxjIyK+LL74YRqMRIsEGNT784cGpAQnl4NrTAXwQQ6V7C2WSLAcWxtwL8xjKbPFSQGHMyVsoCzSMOaUZijG08UbcmrUS+11CWdBhzMlTKAsijJ0upnooCymMudaLiKiOUuOt2Lt3L4xGIwYMGBDp6lAd4KPfDpFDYmIi+vbti6VLl0JtUg55nzHSVaK6IJyDaqECkuxxEI+AVhcCsFgcU3DFxTrCmMEQ2iTSzlAGwJoej9yuMRg5ZmHQxcRKNgwtX48Lf9+J2GUWJFWUIz7VgpPnmbHtumYoSzcFXFaaoRjjslbi8zv6ovUnsqNFL9gw5uQMZTZ7SGHsdDEShKIAdnt4Ycy1Xpw4mojqILVpGQCgb9++SExMjHBtqC6QhOAej/xbuXIlnnzyScAmwbQmA5LKM9jkR7itHJIMSVFCC1FaFSRIJhOkhHjAFOaJBElCXp/muPKZxRiauCG4VctVtHopH2nflUD2kHXsBgnb/9EUfzzTAfaYwANors2MT9f3Q5dXCyFZwmy9ttmh5heEFMZcCSEgrDZdJgCvLFCfcoiIaoGQBUyXlqK4uBhvvPEGevfuHekqUR3ALosUkN69e6NZs2aAQUDl4B5UG/wM9BFQEZXdF4XFEnZ11KR4WOMlfLauX1DrSeUqOozJQfp0z2EMABSbQLdvjmLoHRuhlAc+mume0gzEbY9Fcde0oOpUjapCFBUBavghKtCRFwPCMEZEdYyaUY7i4mI0b94cPXv2jHR1qI5gIKOAKIqCa665BgBgb1YKAR4okR/hHkxLsqPrmz3M6RZkGaK8AqKgECKQUQM9UJMTkJ+VAiEByWtj8I8l9wa8bquX8pG4usLvN0YAaPFnAfr/Z09A5f5Z2BYrfzoTMbkCpRkKis5qEnCd3Kiq472xq4AshzThsythc05EHebuhWGMiOoYAYH2Q5sBAK6++mrIMg+zKTD8pFDArrzySphMJgizDSKJg3tQAEI9qHY5mA8nlEmKonWdFFYbRFl5SKFMKAqscY5ylDIRcCgznLAj7bsSR1381bXyZ5f/O4a4HN8tes4wFnvS8f6qCkIPZapwhDGnMEKZM4xJzm6moYYyhjEiqoNEshU7duxATEwMrrzyykhXh+oQBjIKWEpKCq644goAgK1VSYRrQ3VGsAfXHg7iQwllkiR5vI4t2FCmJiegoKv7RdmBhrL0b7x3U/RGsQl0nXXU5zJFthgtjGn1DCWUObsqVhVCKNNaxiqFHMoYxoiojjrr1vYAgCFDhiAlJSWylaE6hYGMgnLjjTdCURSIVAvUBLaSUYB0OMjWQlmgwcxHV5FAQ5manID8bila65grLZQtvcfr+ubVoV1v2WJNgdfH/ixsi83zO3t8LKhQ5tpV0ZMgQlnVMOYUdChjGCOiOkpNsGLt2rVQFAUjRoyIdHWojmEgo6A0b94cF198MQDAzlYyCkYgB9t+DtyFKgJqLXPtqui1rABCmTAqsMZ7L0cpE0j+M9ZrKJOLQwsYxhLPAadqV0VPAgpl/sKYUwChzFsYcwq7+yIRUR3Q/5GzADjmbm3WrFmEa0N1DfeQFLRRo0YBANRGFVDjQpz7iBomIbwHsyAO2H2FMm9dFT2W4yOUqckJKOjkf/4YLZQtqx7KVHNoIw5aE6pPEflnYVus+Nl3GNOe11coU1WIwmL/YcxJh4E+AgplbB0jojpKjbdhyZIlAICbbropwrWhuoiBjILWrl07XHDBBYAE2NsUR7o6VBfp2YWxqiBHtfIUyrSuij5ax1wpZQLJa6q3lFX0CW3uM1M/9xMdzjAWdyLw981rKFOF31ataryEsmDK8RnKGMaIqA7rPb4LVFXFgAED0L59+0hXh+ogBjIKyR133AFZlh2tZInhz/FEDZDrQXiI3dmqhrJAuip6LMcllAUbxpyqdl+Ml20wj0qBCDKTCSOQcnMqBsTv0u4rsMYGFcacqoUyb4N4BKJKKAs61MFLKGMYI6I6TE20YPny5ZBlGbfffnukq0N1FAMZhaRNmzbakK62NsWcl4xCo2NLWTBdFT2WUxnK/F035otr90UFAjFNYoHhSY7y/T2/85cRSTA2NqGDMQYD4nfhz8K22LKgU0j1AU6HsuJuTYLrquiJLDvmdQshjDm5hTKGMSKqwwQEut7SCoBjaqDWrVtHuEZUVzGQUchuvfVWxMTEQCRboaZVRLo61MAJPQ7unZMjh0EpE0jYGIvbdzqutRSvpEP0jQ1oHjLRNxbilXQAgFFSUKDG4PcNXUNqHXMlW4C4Y6WQzAlhlQNVhbDb9RmgQ6hhBWgiokhT0yqwceNGmEwm3HrrrZGuDtVhDGQUsoyMDNxwww0AAHvbYgiJZ7spSDockEuy5AgIYUwgDQCS0QApyQy5sAwpe0M/wWCPlWBJEcje1hSXbRsKxMkQ05pD3JzktfuiMMLx+NfNgVjHZvmvCgtu/WssJJuMkpYhVweGMiBtazHkonKIuBjIKcmhFaSqjpYxtfJ7Hk43U1cMZURUBwlZIOOSeADA9ddfj4yMjAjXiOoySehyWpkaqpKSEtx88804deoUlOwEGA6aI10lqis8HYiHcJCvBTInWXJ0XwxyZEDJZIKU6ggrwmiAmhgLW6IJ+e1igirHliChpKVjs2qPVWFoXIa2GbmY33UucNIGfF0IaUUZUKICCTLE+XHATUlAhvvIir+WGnHXAscZV0mVIJdJUMolJBwKqjowFQuk/Zlz+nVabVBPngquEMARyCxV5h4UwXd/FKqovh53Q0RUx9haFcPeugQZGRn48ssvER8fH+kqUR3GQEZhW7hwIV566SVABUzrGkEqrz5kN1E13lpGgghl1cKYU5ChTDIaICUnVVteGA2oaJGMgramgMqxx0oobSagmqrer6JT1iH80uWngMr5q8KCW/4ah7KT7jt4SZVgzJMDDmVa61hh2ek7hYBUVgE13/vk09VUbR1zFUQo01rHPK3DXRER1REixgb0K4LFYsGLL76ozc9KFCp2WaSwXXzxxejZsycgA7Z2RRzgg/zz1U0twAN8r2EMcAztLgLrwugtjAGO1qSYwwUBdWH0FsYAQCmXsXNzS1y+fYjfcryFMcDRRcaaqgbUhdFjGAMASQqu66KvMAYEHKB9hrHKehER1QU9H+wMi8WCnj174qKLLop0dageYCCjsEmShIcffhhGoxFqmgVqIw7wQWEKoStcNapwjCjoL5RJvic+lqw2mI4U+g1lQoHHMObkDGWXbRvqs5xT9gSPYUx7ngBCmdcw5hRoKPMXxrTyfO9K/IYxl3oREUUze6NyrFixAgaDAQ8++KCjNwZRmBjISBetWrXSZqe3tS+CMOpwQE31U6A7Lx8H7z5bx6oW46OlzDmQhz/OUJa8z/Oce/ZYCWWN/bcMK+Uydm1p4bWl7K8KCx5aP8JvOf5CmWwX3sOYk79QFmgY08rz/P8IOIy51IuIKBoJox0JfRy/33zzzRzmnnTDQEa6ueWWWxwz1JtU2NoXsusihU+vljJvocxP65jbopXdF6uGMl9dFT3x1n3RV1dFT7yFMkMZkLyzJLDK+A1lQX6Hq4SyoMOYS72IiKKJgICtfREKCgrQoUMH3HLLLZGuEtUjDGSkG5PJhGeeeQaKokBNr4CaUR7pKlG0CeVAW6huB/TBtI5pPISyQFvHXHkKZf66KnpSNZQFG8a0564SygxlQOq2YigFflrHXHkKZc7WsVBU/d+EGqoZyogoiqgZ5VDTK6AoCp555hkYjV7mMSEKAQMZ6apjx44YO3YsgMqui6bQ54WieibcA+xwW8sqQ5mw2QBZ9jqQhz+uoSzQroqeuIYyf9eN+eIaymS7CC6MObmGsmC7KnosT64+31hI5TCUEVHkCZMdcT0d27SxY8eiQ4cOEa4R1TcMZKS7UaNGoUuXLoBBwNqpgF0XyUGPYc11CGXaBNIVnq8HC4RktSHmaCHMR+1Bt465Uspl7NzSEvetGRV6IXCEMkhA0r4wWqUlCSLGCElRwgtjbhXTocspQxkRRZCAQJfbm6OoqAidO3fGqFHhba+JPGEgI90ZDAY8++yziIuLg0ixwp4Z4PUsVL/pdGDtcWLhYMiSI3yUlgGlIbQmOdnsSMguRvr68MKLXC5DHImFZAl9c2wsUNDsDxvkUitETJjzACoKpNjgJsOuSgQw3QARUV1gzyzBxo0bER8fjxdeeAEGA+daJf0xkFGNyMzMxKOPPgoAsLcqgZrMofBJB5XXJ4UTyiRJAmTZ0X0xxFAmFBkwKJDLbUjeURRyKBMuGVW2IqRQZixQ0HyJDbHHSivrpoQWylQVKCpxTKptMIQdygAEf60fEVEUUZMroLZ2bFsff/xxtGwZwCSQRCHg3pJqzKWXXoqrrroKkABr50III8+aN1g10O1MqMLREhNMMJMlt+vGwgllkB2bT2coa/m7LahgpoUx6fQ6oYQyyQotjGllBxvKVBUoLAacA3mEEcqqtY7pEcrYbZGIapkw2pE4wHHy7qqrrsIll1wS6SpRPcZARjXqgQceQLt27QCTCmuXAgiJ15NRiHzNcxVgKHO2jrmtH2Qoc7aOuZLLbYg7WBh8a5mH70MwocxYoKDZCs+jIQYVyoQ4Hca0igQfyrx2VWQoI6I6REgCnW9vhtzcXLRt2xbjx4+PdJWonpOE0ONKeyLvsrOzcdddd6G0tBTy0TgY9yRFukpUm/Q6kPZzUO93OPzKgFE1kGnrSxKk+DggPs7n8whFBkzehztWYw0o6JyInLO9v25PrWPVyjECwuQ9aBoLFDRfakPs0VKvy0hCAKoKqcLHEPZVW8eqPe4YmVKU++527Pe6MT0G+AD0GRyGiMgLAQFbhyKoTctgNpvx4YcfIjMzM9LVonqOLWRU41q3bo3nn38ekiRBbVYGe1PvB5BEHgXQwuKvpcxT65jb+gG0lAlZqtY6VpW/68oCCWOA/5Yy2QKfYczxXJLvljJ/YQzQ75oyva4nY0sZEdUgtWkZ1KZlkCQJzz//PMMY1QoGMqoV559/Pu68804AjvnJ1OTQhxwn8sZrKKty7ZjX9StDmSgs8hzM/IQ67en8DfYRYNddb6HMWKCg6aogJm6WZc+hzFNXRY/r+w5lAY+qyFBGRFFMTbZAdHac6LrrrrvQp0+fCNeIGgoGMqo1N910EwYPHuwY5KNLPkRsEAeUVDdF4MDZUyjz1zrmtr4QEBWWaq1lgbSOufIUykQIb4enUBZI65gr4RxZ0jWUOUdVDLginkNZ0EPcc+RFIopCaqwN8f1V2O12DBo0CDfeeGOkq0QNCPeMVGskScITTzzhmDTaKGDplg9h1Om6Eqq/QjiAdxuBMcDWsWplVO3CGESoc/LYUhbCwDauoSzo1rFKQpJOB+RAuip6rIh7KAt5vjEO8kFEUUQY7Ui/yoSCggJ06dIFTz75pONEHlEt4aAeVOtOnTqFe++9F0ePHoVUZIBxUyoklecG6iU9dmhhHrxLYU50LEkSpIR4iJTEoAOZkxprQH6XyoE+whhp1FAqoelqG2KPhHYdpjbIR2kFkFcQcj2cA32oJWFeD6rHQB/chRFRGISiwto9D8JsQ4sWLfD+++8jNTU10tWiBoZHwVTrGjVqhDfeeAPJyckQiTZYu3I4/HpLj4PlcA/ahQpYraGvLgREWRmkwiC691Uhl9uQsqMYaZtDLgIAoJRLiD1RHvL6QpIAFUBBcXgVAQC7HVIILY9ERNFCSMIxJY/ZhpSUFEyYMIFhjCKCgYwiolWrVvjvf/+L2NhYiFQLbB0LIcBQVi9FQSgT9jBDmV2FKCqGFGKQEZIE2AVSdpUibVNorYbGYhnpm2xQDTJgCG3TLVntkE7mAlYLEGp3Q1VAVFQ4uivKYbSAsnWMiCJIQDiOPVItiI2NxWuvvYaWLVtGulrUQDGQUcScccYZePnll6EoCtTG5bC1K2Ioq68iGcoquzyGHcqEgCgsCjmUQQbkClvIoUyyAjE5jrnAQg1lkqoCZeWAWvn/CCWUCdXt2rGQWsn0mpOMiCgEAsIx4nPjciiKgpdeeglnnHFGpKtFDRgDGUVUnz598NRTTznmKGteBnvbYoay+kqI8IOZUIM6mJeqtOAIuwphsYQczIQQEMXBtZQJSYIwng4toYQyY7GM9M3uA3AEG8okqx1Srst1Y6GEMlVAWKq8d7IUma6LbB0johAICNjbFkNt5phr7JlnnkHfvn0jXS1q4BjIKOIuu+wyPP744wAAe4tS2FszlNVrtdla5mlAEFWE1Vom7CpEcTFwIjfwYFalGsGGMtkCxJ6oqHZ/MKFMUlXHqJFuBQQRyly7KlarYBChjF0ViShCBATsrYthb+EYkOjJJ590TMdDFGEeZgolqn1Dhw6F1WrFW2+9BXurUkBIMBwwR7paVFOECH8ERqGGNQKjsKuQYAWMxpDWhb0cqKiABEAke/6sVm0dc+UMZTGFsahIkpHb3XPIMBbLaLTF+/D0qkF25D2b96DjbB3z+AyqcFwLZrf7nh6gSlfFamQJEhTfyzCMEVEE2VuVOI4xADzyyCO48sorI1wjIgcGMooa1157LaxWK9577z3YMx0j2ikHEiCBc4HUS84D63CCmY9QVrW7osfVwwhlgKMLIwqLfIYyX/0Q5AobEg4UIy7GACDeYyjz1jrmylcok6x2yDl51VvH3ArwE8o8dVX0JJBQRkRUy7SWscowdv/992PYsGGRrRSRC3ZZpKgyfPhw3H333QAAe2YJrylrCGrqurIAW88iPtgHvHdh9Nc65spb90WPXRU9FuCj+6K/1jFX3rovsnWMiCJAQMDerkgLY/feey+GDx8e4VoRuWMgo6hz00034cEHHwTguKbM1oGjL9Z7ER4aX5dQVmWwD1/dFT2RK2xI2V2GtM2nQ1kgrWOuqoayagN5+C3AQygLtHXMVdVQxjBGRBEgIGDrUAR7c8dJqYcffhgjR46McK2IqmOXRYpK1113HeLi4vD6669DbVoGmyxg2JUESbD7Yr1Vw10Y/a5qVwFhgSRJoV9XVrX7YpBVkcutSNkFQMShqK0UcOuYK9fuiwG3jrkV4NJ9UZK9D+ThjywBevVcZBgjoiAJyTHPmNq4HLIs48knn8QVV1wR6WoReSQJwT0dRa9Fixbh5Zdfht1uh5xrgmF7CiSVoaxeC3ewD0l2XD8WxoAfkiKHfF2ZpMiQEhNhT08OuQ+CGmtERaoJMacCbx2rSimzQj52KvhA5iRLgCqgVoReB6gCwhZ6y6OGuykiCoKQVdi6FEBNs0BRFDz77LO45JJLIl0tIq8YyCjqrVy5Es899xwsFgukIgOMW1MhWdnbtl7TIZQBIU5a7CRLkEym0J5ekSElJ8GenhTa+lY75JP5QGwMrE1TQipDKbMCu7JDfg+EEI4525wtZiESFkvI61apkD7lEFG9Jox2WM/Ih0i0ISYmBi+99BLOP//8SFeLyCcGMqoTNm/ejKeffhoFBQVAmQLjlhTI5exxW+/p0VoWbCARKoQqHK1sihJaKFNVQJYhxcdBio0JOpjJZVaI7MOQFAVSo9SgQ5lssUE+dBKiqBiQQpu4WQgBUVbZuibJoYUyux1CFbyGjIhqhRprg7VbPhBnR3JyMl577TV069Yt0tUi8ovNDFQnZGVl4f3330ezZs2AODusZ+VCTdTpzDtFLx1GYAx1CHahCkegCLaFR1Ud9bZaIQoKoebmQ8kpDK0OdjvEqTwYj+UHtZ5kUx1hDACECPo90FrHwuEMY0BY3Uc14YZzIqrXVLMV8ZfYgDg7mjVrhvfff59hjOoMBjKqM1q1aoUPPvgAXbp0AYwC1u55sDcqj3S1qKZFQygrrwguoKguLUJWa1ChTLLagZN5p+sQZCiTLTZIx0653xlCKHMbaVGop0dgDJCoujxDGRHVEHt6GaTexSgoKEDnzp3xwQcfoFWrVpGuFlHAGMioTklLS8M777yDvn37AjJg61oAWybnKqv3dAploQQzoVaGmVBay5yCCGWSTYUoLXWvQxChzK11zK2QwEKZ19axYEKZt+fRI5QREVUSELBlFsPWpRAWiwV9+/bFO++8g7S0tEhXjSgo3DtSnRMXF4dXX31Vm9jRnlkCW5cCCFmH61QoegkRXjCrnEC6RrswOrsrehJkS1m15w+x+6J7IQG2lHlbJsBQVq11TE9sJSMiVI6k2LUA9swSAMCNN96If//734iPj49wzYiCx0E9qE6bN28e3njjDVitVkglBhi3pkCqCGNkPaobamqwj8oBPXyv6mOwD1X1HmacjEbIaSkeB/qQrHZIR09VayFzW8bHQB9ug3n4fBGeB/rQWsf8vQZfg3y4XjvmDQf5IKIwiJjKkRQTbDAajXj88cdx+eWXR7paRCFjCxnVaVdccYXWPUEk2GA5+xTU5DDmTaK6IRquK6uB7oueuitWe35nS9nxAs/r+wtjgO+WskDeFx8tZQG1jvF6MiIKkZpSgbhBVogEm3YZA8MY1XUMZFTnZWVl4eOPP0bnzp0dg31k5cPWiteV1Xs6dGEM57qy2rqmzOPz2+0QObluoczjYB4+C3EPZUGPrOgplAXzXvJ6MiIKgoCArVUxbN0LtME7PvroI2RlZUW6akRhY5dFqjcqKiowceJEzJkzBwAg5Zlg3JEMycYDv3pPry6MAXRZdF9N0rrvSSZTYF0WXbl0X5SsdkjHcyGKSwJ/fkWBlJ4Ga5NkKKUWYFd24M+tFeLovug271hQ65/uviistuDWZddFIgqAMKiwdi6ASHWcNLr66qsxfvx4xMTERLhmRPpgIKN6Z968eXjzzTdRUVEBlMsw7kiGXBTC5L5Ut+gRymQppAEptOvKFMV9yPtAVIYykRAHkX04+OeuDGVqYlxogayScyTJkChKYNeOeXxihjIi8k41W2Htkg/EqoiJicGjjz7KLopU7zCQUb20Z88ePPfcczh06BCgAkq2GcrheEjgdSf1mg6hLKzVFQWSEkIZRiOk2Fi/14/5el7ExECUBN665kZVoVqsjmAZorBGVgw3lHE3RlTvCAjYW5QCHcpgt9vRsmVLvPLKK2jfvn2kq0akOwYyqrdKSkrw+uuvY9GiRQAquzDuSoJk4SiM9Zoegz2EEcxCDWVCCEiSo6UthJUd3QVlz6Mn+lUZyACEHMq069GCfe/YQkZEVQiTHdZOhRApji6KAwcOxBNPPAGz2RzhmhHVDAYyqteEEJgzZw7effddRxdGqwTDriQoubGRrhrVpEiEMmewkGTIJmPQTydstspr2eTgQ5kzkAGhhTKXQAYEH8qEKtyDVTDvnaicuy2c/xl3Y0T1hj2tHAl9gYKCAsTGxuKBBx7AkCFDHCesiOopBjJqELKzs/Hyyy9j165dAAD5aBwM+xIhqdzA11u13X3RJZAF20om7GqV9YMIZc7REl27DAYTylQVwmar1uUwmFDmcaTKQN8/UWUy7VD+b9yNEdV5QhawtSmC2twxuFDHjh3xwgsvIDMzM8I1I6p5DGTUYFgsFnz66aeYMWMGAEAqVWDYlcQBP+qr2mwlq9rtLshQJmxVRicMJpS5to65CjSUVWkdc69GYO+h16kDAnn/qgYyIPj/HXdjRHWammiBrVMhRJxjWzJixAjccccdMJm4f6aGgYGMGpy1a9fi1VdfxalTpwABKIfjoWSbIQm2ltU7tRHKvF0DFUQoqxbItPUDCGXeAhkQWCjzEcgc1fD/Hvqcyy2Q98/TbiiY/x13Y0R1kpAE7K2LobYqgxACGRkZePLJJ9G7d+9IV42oVjGQUYNUVFSEiRMnYv78+QAqW8t2JkMuDv7aH4pyNR3KfA1KEUAoc+uu6HF9H6HMU3fFqnyFMi/dFT1Xxfv7GNDk2t7eQ2+BTFsvgP8fd2NEdY5qtsLWqQAi3rH9uPzyyzF+/HgkJiZGuGZEtY+BjBq0P/74A2+88QZyc3MdrWWH4qEcYGtZvVNToSyQEQL9hDKPrWPV1vcSyny1jrnyFsr8tI5Vr0r197HagB6+C6h+n79ABvj//3E3RlRnCFnA3qoYonU5VFVFWloaHnvsMfTv3z/SVSOKGAYyavAKCwvxzjvvYMGCBQAqW8v2JEEuYN/1ekOv0bmqBooggoinUOazdaza+h5CWaCBDAAqw5RbMAsykDmq4v5eBtQ65l6A+9+BBDLA9/+QuzGiOkFNroC1QxFQea3YoEGD8OCDDyI5OTnCNSOKLAYyokrLli3Dm2++6bi2DIB8PNYxEqMtvMmCKUro3UoW7PxZHkKZ39axauu7hLJAuit64tpaFkIgc1Tl9HsZdCA7XUhlAQEGMm09D/9H7saIopowqLC1LYLapBwAkJ6ejoceeggXXnhhhGtGFB0YyIhcFBcX4+OPP8YPP/wAIYRj3rJ9iZBPxEICuzHWeXqGslAmNHYJZQG3jlVbvzKUBdM6VpUsQZKkgK8f814dKfRA5igg+EAGVP8/cjdGFJUEBNSMctjaFQFGAUmSMGzYMNx5551ISEiIdPWIogYDGZEHmzdvxoQJE7Bv3z4AgJRvgmFPIuQyQ4RrRrqI5ASjkhz0xMtV13d2Pwy6dayKsMKUVkgIwdRt/TBeg/P/yN0YUdRR42ywtS+CSLEAANq2bYsnnngC3bp1i3DNiKIPAxmRFzabDTNmzMCUKVNgsVhOD5F/MAGSnd0Y67RQA5lzc6lTS1s4wczZshXwBNDVC3AEsmAnwK5SRti4CyKqV4Siwp5ZAmRWwG63w2QyYezYsRg5ciQMBp7UJPKEgYzIjyNHjmDixIlYsWKF4w6LDMN+M7sx1nWhhCrXzWWEQ5nWulXZDTK4ldXqoyMGG8z0CGMAAxlRPSEgoDYuh61NMWBybB8uuOAC3HfffWjevHmEa0cU3RjIiAK0atUqTJw4EYcOHQIASIVGGPYmcu6yuizcyYcjFMo8hamgQpmzdcxDXYIpQxfcBRHVeWqC1dE9MckxSFCrVq3w4IMPcoJnogAxkBEFwWq14ttvv8UXX3yBsrIyQADyiVgYss2QLCF2HaPICjRUedtURiCUeQtTAYcyb4GsspxAy9AFd0FEdZYw2WFrUwy1sWP0xLi4OIwdOxbXX389jEaerCQKFAMZUQhycnLw4Ycf4tdff3XcoQLK4QQoh+J5fVldFO7Ew7UYynxOxBxIKPPUXdFDOQFUxP8ygeAuiKjOEYoKe8sSKO1tjmusAVx66aW46667kJGREeHaEdU9DGREYdi6dSvef/99bNy40XGHRYLhoBnysThIgteX1SneQlWgm8haCmV+R0asDFNeg5mv1jEvZXkrRxfcBRHVGUISUJuUwZZZDJgc392zzz4b9913Hzp37hzh2hHVXQxkRGESQuCPP/7Ahx9+iIMHDwIApFIFSrYZ8qkYDvxRl4Q76XANhzK/LVtVy/EUyoIJZJXleCpDN9wFEUU9AQG1UQXsrYsh4h3bj8zMTNx9993o168fpEhOJUJUDzCQEenEZrNhzpw5+Pzzz5Gfnw8AkIoMjuvL8k0MZnWBHhMO6zj5dNVgFvS8YVVDWSDdFf3UyVmObrgLIopaAgJqqsURxMyOieiTk5Mxbtw4XHXVVRzGnkgnDGREOispKcH06dPx7bffOgb+ACAVGGHINkMuNEW4duSXHpMN63W22KW1LJwgpYWyYFvHPJTlLEcX3P0QRS01yQJb62KIZMfIifHx8Rg+fDhGjBiBhISECNeOqH5hICOqIfn5+Zg2bRpmz56tXfQs5ZkcwYxD5dd/OocyPYJU2OU4y2IgI6q3VLPVEcRSHfstk8mEf/zjH7jpppuQkpIS2coR1VMMZEQ17OTJk/jyyy8xd+5c2GyOLh9yrgnKwQTIRWwxq9d0DGW6hCA9w5QeuPshihpqkgW2ViVaEFMUBUOHDsXo0aM5ciJRDWMgI6olR44cwRdffIFff/0V9spWCinfBMPBBEgFRl5jVl/Vx4vdhdDndXH3QxRRAgIi2QJbZonWNVFRFAwePBhjx45F8+bNI1xDooaBgYyolh0+fBjTpk3DvHnzTgezAqMjmHHwj/ornACjVwDSi+tuI9zXRUS1Thuso1UJRJIjiBkMBlxxxRUYNWoUgxhRLWMgI4qQ48ePY9q0afjpp59gtTp2iFKRAcrhBMg5HC6/XgolvFTdREdDMPO029DjtRFRjdKGr29Voo2aaDKZcNVVV2HkyJFo0qRJhGtI1DAxkBFFWE5ODmbMmIEffvgBFRUVjjvLFRgOx0M+HgtJ9TE5L9U9wQYXvcKPXnztMvR4bUSkOyFXTujcvBSIc/TMiI2NxbBhwzBixAg0atQowjUkatgYyIiiRF5eHmbPno3Zs2ejoKDAcadVgnIsHsqROEhWD5P8Ut0UaHDRM/zoJZBdRiB1466HqMYJox325mWwNy0FjI7vXFJSEoYNG4brr7+eoyYSRQkGMqIoU15ejl9++QUzZ87E4cOHHXeqgHwi1tGdsYwTcdYLeoWW2g5mge4y/NWLux6iGqPG22BvXgK1cTlQ2cmiRYsWuOGGG3DFFVcgLi4ushUkIjcMZERRym63448//sCMGTOwZcsW7X4pzwTlSDzkPA4AUi94Cy7BbJprM5QFu8vQ4/URkV/aQB3NSiHSLNr9WVlZGDlyJPr16wdFYU8LomjEQEZUB2zatAkzZszAH3/8Ae0rWy5DORoP5XgcJBuvM6vTPIUWvYKPnsLZXVStH3c9RLoQBhX2JmWwNy3Trg+TJAkXXnghRowYgaysrAjXkIj8YSAjqkOOHDmC77//Hj/99BOKioocdzq7Mx6Nh1xijGwFKXSugUXP4KMnPXYXzvpx10MUFjXBCnvzUqgZp7slms1mXHnllbj22mvRokWLyFaQiALGQEZUB5WXl2PhwoX4v//7P+zatUu7Xyo0QjkaBzknFpJgd8YGyzX06BXQuKsgijghCajp5bA3L4VItGn3d+zYEddeey0GDRqE2NjYCNaQiELBQEZUhwkhsHnzZsyePRuLFy+GzVa5g7ZKUE7GQj4WB7mUrWYETuBMVIep8VaoTctgzyjXRks0GAy46KKLMGzYMGRlZUGKhjkKiSgkDGRE9cSpU6cwd+5czJ07F8ePH9ful4oMUI7HQT4ZC8nOa80atFAP2LibIKp1QlGhZpTD3qTMrTWscePGuPrqqzF06FCkpaVFsIZEpBcGMqJ6xm6346+//sJPP/2EZcuWnW41s0uQc2KgHIuDVGTkCI0NGSdwJopKAgIiyQp7kzKo6eVA5aCIBoMB/fr1w5AhQ9CrVy+OlkhUzzCQEdVj+fn5mD9/PubOnYvs7GztfqlUgXwyFsqJOEgV3LE3SHpMTk1EuhAxdtgzyqE2KYOoHCkRANq0aYMhQ4bgsssu4yTORPUYAxlRAyCEwJYtWzB37lz8/vvvKC8v1x6TCoyO681yYjl8fkPECZyJIkIYVMcAHRnlEMlW7f64uDhcfPHFGDp0KM444wxeG0bUADCQETUwpaWlWLJkCRYsWIC//vrr9LxmKiDnxUA+EQs5N4ajNDY0nMCZqMYJSUBNq4DauBxqaoU2XL0kSejRowcuvfRSDBw4EPHx8ZGtKBHVKgYyogbs5MmT+O2337BgwQLs3r379AM2CXJOLJScGEj5Jl5v1pDoNR8aEQGovC4s2eLokpheARhOf686dOiAwYMH45JLLkHjxo0jWEsiiiQGMiICAOzZswe//vorfvvtN5w8efL0A1YJ8qnKcFZgYstZQyFJDGREIRIQECkW2BtVQG1UDphOf5eaNGmCQYMGYfDgwWjXrl0Ea0lE0YKBjIjc2O12rF+/Hr///juWLl2KgoKC0w9aJcinYqDkxDKcERG5EFJlS1h6OdRGFdp8YQCQnJyMCy+8EIMHD8aZZ54JWeb1ukR0GgMZEXlls9mwfv16LFq0yGs4k0/FQs5nOCOihkdIAmqKBWp6OdQ09xCWkpKCCy+8EAMHDsTZZ58Ng8EQwZoSUTRjICOigNhsNmzYsEELZ/n5+acftFcOCJLruHG0RiKqr4RBdQzMkVYBNcXidk1YWlqaFsLOPPNMhjAiCggDGREFzRnOlixZguXLl7tfcyYAqdCohTO5jAckRFR3CQiIOLsWwkSSFa7jHKWnp2shrHv37py0mYiCxkBGRGERQmDnzp1Yvnw5li9fjl27drk9LpUqjmCWFwOp0MiujUQU9YQkIJKsp0OYy2TNANCxY0f069cP/fr1Q6dOnThXGBGFhYGMiHR1/PhxLZz9/fffsNlspx+0S5DzjY7ujXkmSBVsPSOi6CBibFBTLY5bsntXRKPRiB49eqBfv344//zz0aRJkwjWlIjqGwYyIqoxxcXFWLNmDVauXIk1a9YgLy/P7XGpTIGUZ3IEtAITJJVnmYmodghZhZpihZpSAZFqqdYKlpKSgvPOOw/9+vVD7969OVkzEdUYBjIiqhWqqmL37t1Ys2YNVq9ejc2bN8NudzkAUgGp0AQ53wS5wAipyMgJqYlINwICwmxzjIqYUnktmMv4Q4qiICsrC71790bv3r3RsWNHDk9PRLWCgYyIIqKkpATr1q3D6tWrsWbNGhw7dsx9AZsEudAIqcAR0qQSAwMaEQVMQEAkOAKYSLZATbK6dUMEgGbNmmkB7JxzzkFCQkKEaktEDRkDGRFFnBACBw4cwNq1a7Fu3TqsX78eRUVF7gvZJEe3RmcLWikDGhGdJiAg4p0BzFrtOjAAMJvNOPvss3Huueeid+/eaNmyJQfkIKKIYyAjoqjj7N74999/Y926ddiwYQNKS0vdF3K2oBWaHD+LjbwGjagBEZKASLRCTbJCJFmgJlrdJmYGgPj4eJx11lno0aMHevTogQ4dOnBYeiKKOgxkRBT1bDYbdu7ciXXr1mHdunXYvHkzysvL3RdSAanYWBnSjJALTZygmqgeEUYVaqLFMRx9khXC7H4NGADExcXhzDPPRI8ePXD22WejU6dOnJyZiKIeAxkR1Tk2mw27d+/Gxo0bsXnzZmzcuBG5ubnVlpNKFUhFRshFlS1oJQbOg0ZUBwjJ0f1QJFqhJlohkqzVRkEEgLS0NHTv3h3du3dHVlYWAxgR1UkMZERU5wkhcPToUWzcuBGbNm3Cpk2bsH///uoLqnCEMteQVqbwWjSiCBIQEHF2R/gyWyESrRAJtmqtXwDQtm1bZGVlaSGsefPmvAaMiOo8BjIiqpcKCgqwdetWbNu2TbsVFhZWX9AmOQJasQFSSWUrGkMaUY0QEBCxdgizDcJcGcDMtmqDbwBAYmIiunTpgi5duiArKwtZWVlITEyMQK2JiGoWAxkRNQhCCBw5cgTbtm3D9u3bsW3bNuzYsQMWi6X6wnZo4UwLaqUGDhpCFAQhV3Y7NFuhJtggKm9Qqh92xMTEoHPnzloA69q1K1u/iKjBYCAjogbLZrNh37592LZtG3bu3Indu3djz549qKioqL6wgKPlrLgynJUqkEsNQDlb06hhExBArB1qvN0RwBIcXQ5FnB2evhomkwnt27dHx44dtfDVunVrXvtFRA0WAxkRkQu73Y5Dhw5h9+7d2LVrl/YzLy/PywqAVGaoDGkMalR/ad0N420QzvAVb4OIswFeRpJPS0tDhw4d0KFDB3Ts2BEdOnRAy5YtOfQ8EZELBjIiIj+EEDh16hR2796N3bt3Y9++fdi/fz+ys7M9d3kETge1MsXxs1w5/TuH46coJgwqRJzNEb7i7I7f4xwBzNNAG4Cj1SszMxNt2rTRWr/at2+PRo0a1W7liYjqIAYyIqIQ2e12HD16FPv27UN2dnZgQQ0ArFL1kFauQCpXHIOMsGWNaphQVEfIiq0MW87gFWuvNrmyK5PJhNatW6NNmzZo27at9nuzZs3Y5ZCIKEQMZEREOnMGtf379+PQoUM4dOgQDh48iEOHDuHkyZO+V7ZJkCoUSOUypArF0fWxQtECm2Rn6xr5JiAApbJ7YawdIsYOxNohYlSIGMd9nkY1dJWRkYGWLVtqt8zMTLRt2xZNmjRhd0MiIp0xkBER1aKysjIcOXJEC2jOn4cPH/Y4uXU1zsBWIQMWx0/J4vo7W9nqMwEBGASEyRGwYFIdv5tUIOZ06PIXuADH9V2uoatly5Zo1aoVmjdvjri4uFp4NUREBDCQERFFjYqKChw7dgzHjh3D0aNHcfToUbe/8/PzAyvIDkdAs8iVNwWwypCsUuXPyhBnVTiUfxQQEIAsAKMKYRSOcGVUIYyVPysDlyOA2b1ex1VVWloamjZtqt2aNWuGJk2aaH/HxsbW7AsjIqKAMJAREdURZWVlOH78OI4dO4acnBycPHmy2s+CgoLgCrXjdEizyoBNhmRzBDftd08/BYOcJ0IWgEGFUCp/Ghw/YRAQrj8rA5czdHkbpdCb5ORkZGRkoFGjRsjIyEB6ejoyMjKQkZGhBS8GLiKiuoGBjIioHqmoqMCpU6e0kJaTk4P8/Hzk5eVpP/Py8pCbm+t74BF/7ADsMmCXINkloPImqVKV+2TH7yoAVXLchATJ7W/H75JauZyovA9Vf3f88NcdU5xe0OWncPyU4GiNkgSE7Py98qcsIFx+hwxHsJJVxzVZiuPaLCjCEbxc/64MYIG2XnliMpmQlpaGlJQUpKSkIDU1FSkpKWjUqJEWuJy/m0ym0J+IiIiiCgMZEVEDJIRAWVmZW0jLz89HUVGRdissLERRURGKi4u1v4uLixHx3YaAe0hzC17wOBlxbZJlGWazGWazGYmJidrN+bfZbNYClzN0paSkIC4uDpLElkciooaGgYyIiAKmqipKSkpQVFSEsrIylJaWevxZ9feKigpYLBZYrVa3n57uU1W1Rl+DoigwmUwwGo3azfVv5+8mkwnx8fH/396dB1dV3/8ff50bCAkECFa+kBCgioBRoWGXtYAYFnWgCAhlBinyA1HE0TrTTmRRELFFChaUWmZ0yuaClsVRmxaEIhJ2CIyBEFZlMc1CwpYQcu/5/XFzT87NSm5CjgnPx0wm557P+XzOm0t08uJz7uej0NBQ6yskJEShoaHFzoeGhlqBq379+nK5WA0TAHBrCGQAgJ8Vt9st0zTldrvl8XhKPLZ/NwxDLpfL+u77KnreMAzVqVOHZdsBAD8rBDIAAAAAcAjPVAAAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQ+o4XQCA2s80TeXm5jpdBgBUSEhIiAzDcLoMALUcgQzAbZebm6vBgwc7XQYAVEh8fLxCQ0OdLgNALccjiwAAAADgEGbIAFSr4D3/J8Ms+LcgwyXDZUiGS3IZkmHIcPnaCs4bhuQyZPiusdoMq4/1JdnOufzbvR2tc6ZhFP6TlG0M67xReC/7OdPwDmO1ubzjes8bVpuvj1lwzmqXCsdwFVzva5f/Pfz6FJRvukpo87tefjUWnjOKtRXrI3sdRdpVyvlSxiutjmJ9yhrXOm8W72/rY7XbxjILzsvWz9tm2urxthv2NutaX5tpjWnYrzdMq836EfOd9w1XcI33R8G0Xvv6uApee9u8r339rDbDlKHCfq6Cc9aXTKufy5DfeW9/T2E/+a73KMjXp+B14Vgea7wg2/hB8p4P8o1nXetRkG9M+erwFF6vwrG9Y3rkkvf+3jbveEEF5wx5FOTrb+sTJHn7yXsf3/vhe+29l1lwrII2U66C9yVIhlySggr+sl0yCs4ZCjIMueSSUfA3dzMvSE/+v+YCgOpCIANQvdxGwa9G8gYyFYSngt90C9sMyVWYPgxvuikYxPebuUvFfuMuTDv+KcA3ZrHf0FXknP0eKuFc0X4qDGK2QFbsnC1A2V8XLdH/+hL6uMpoK+2PUayOUv7YZbWV9lYFOp5tzJLC2m0NZCW1q+hr0xrbXof9niW1WQFOtmvs1xfrY5ZwL9Pvyx7ICkNewVdpbfKFNu+Q9vDmC26SL1jJCjT2Nm8g8xQGGsMeaLzHLsPwhqWC77KODaufdxwVjOnrq4J+BedLarP1CSoIk0FWnb5AZpYbyOzjBfneD/mfc8leo+3vEACqAY8sAgAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIR9yABUryBTpundDNa7r5Zh+24U2azZ9912LPs503Z8C222TakKt+8t7Xzhd9PvWH79TEkyfecLxzRlSKasvvZ2awy/zbPstZTw2vQrqcj7UcpX0WtvZa+xstpu+V632Ga/ZZn9zHLGNEupsfSNof33DrO1WdcGvjF0YR22fcgU+D5kpgr7mYbp/yXvd2+b/M57DFMyPIVjyncvj22/tIJrCtpNw2ONJ7/xC7777lXw2lVwje+7pGLnPLb/rH3HHkPyqHAfMk/BOUOl7UNmWJs5B6nw78z32lXQp+jeZre+MbShwo2hS/rvEgBuHwIZgGqV1/1/Tpdwe/h+3w1Q0TwB+Nh/tDxOFhIweyLmwRwAKIr/MwIAAACAQwzTNCvxb7oAUD7TNJWbm+t0GXeE3NxcDR8+XJK0ceNGhYSEOFxR7cb7Xb2q+/0OCQmRYTBnDeD24pFFALedYRgKDQ11uow7TkhICO97NeL9rl683wBqCx5ZBAAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABzCKosAAAAA4BBmyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAh9RxugAAQOXk5ubq0KFDSk5O1vHjx3X8+HGlpqZKkiZOnKhJkyY5XGHtkp2dre+++0779++33mu3263w8HC1b99eQ4YMUb9+/Zwus1ZITk7Wzp07lZycrHPnzikrK0vXrl1TgwYN1KpVKz388MMaMWKEGjVq5HSpABAwwzRN0+kiAACBO3jwoF588cUS2whkVW/AgAFyu93W6+DgYAUFBSknJ8c616NHD82bN08hISFOlFhrLF68WOvXr7deBwcHq06dOrp+/bp1rnHjxlqwYIEeeughJ0oEgEpjhgwAaoGGDRuqXbt21tfSpUuVmZnpdFm1ktvtVnR0tIYOHaru3bsrMjJSknTx4kWtXLlSX375pXbv3q23335bM2fOdLjami06OlrNmzdXx44d1apVKzVs2FCSdP36dW3fvl3vvfeesrKy9Oqrr2rNmjUKCwtzuGIAqDhmyACghnO73QoKCvI7N2bMGP3000/MkN0GBw4cUOfOnUttf/vtt7Vp0yZJ0rp169SsWbPqKu2Os2fPHr3yyiuSpJkzZyo2NtbhigCg4ljUAwBquKJhDLdXWWFMkh577DHrODk5+XaXc0d78MEHreO0tDQHKwGAwBHIAACoQsHBwdaxx+NxsJLa7/Dhw9ZxixYtHKwEAALHZ8gAAKhChw4dso7vvfde5wqppfLy8pSRkaGdO3fqgw8+kOQNY7169XK4MgAIDIEMAIAqcuXKFa1evVqSrIUoUDUGDRqkvLy8Yuc7dOig2bNn+81MAkBNQiADAKAKeDwezZ8/XxkZGQoODtZLL73kdEm1yl133aW8vDzl5ORYWwx06tRJ06ZNY+EUADUagQwAgCrw17/+VTt37pQkvfTSS2rTpo3DFdUun376qXV86dIlxcfHa9WqVZo6daomTJigZ555xsHqACBwLOoBAEAlvfvuu/rnP/8pSZo+fbrfSouoek2aNNHYsWO1cOFCGYahf/zjH1YYBoCahkAGAEAlLF++XJ988okk6bnnntOYMWMcrujO8cADD6hDhw6SZO39BgA1DY8sAgAQoPfee08ff/yxJGnatGkaO3aswxXdeZo2bSpJOn/+vMOVAEBgCGQAAATg3XfftWbGpk2bpnHjxjlc0Z3pwoULkqT69es7XAkABIZHFgEAqCB7GHvuuecIY7eB2+2WaZplXrN//34dPXpUkhQTE1MNVQFA1WOGDABqgStXrsjtdluvPR6PJOnGjRvKysqyzgcHBzOTUEn2z4xNnz6dz4zdJv/73//06quvavjw4erWrZsiIiJkGIYkKTU1Vf/5z3+0atUqmaapRo0a8fcAoMYyzPL++QkA8LM3ZswY/fTTT+VeN2TIEMXFxVVDRbVTamqqRo8eLUlyuVwKDw8v8/qnnnqK2bMAXbx4UU899ZT1um7duqpfv761F5lPRESE5s2bp3bt2jlRJgBUGjNkAADcIt/Mo+84MzOzzOvtwQEVc/fdd2vu3Lk6ePCgjh49qvT0dGVnZ8vlcqlZs2Zq06aN+vTpo0cffVT16tVzulwACBgzZAAAAADgEBb1AAAAAACHEMgAAAAAwCEEMgAAAABwCIEMAAAAABxCIAMAAAAAhxDIAAAAAMAhBDIAAAAAcAiBDAAAAAAcQiADAAAAAIcQyAAAAADAIQQyAAAAAHAIgQwAAAAAHEIgAwAAAACHEMgAAH7eeecd9evXTy+88ILTpcBhV69e1WOPPaZ+/fpp+/btTpcDALVSHacLAIDa4tq1a0pJSdGxY8eUnJys5ORknT9/XqZpSpI++eQTRURE3JZ7m6apUaNGKS0tTePHj9fUqVMDGiclJUUbNmyQJE2ZMqUKK3TWqVOntGfPHh05ckSnTp1SRkaG3G63GjZsqDZt2qhnz54aMmSIwsLCnC71ZyUsLExjx47VihUrtHTpUvXo0UP16tVzuiwAqFUIZABQRWbMmKGUlBRH7n3s2DGlpaVJkvr27RvwOMuXL5fb7VaPHj3UoUOHqirPUTNmzNChQ4dKbMvMzFRmZqb27t2r1atXKy4uTt27d6/eAn/mRo0apXXr1ik1NVWfffaZxo8f73RJAFCr8MgiAFQR30yY5J1Z6NSpk+66665qufe3334rSWratKmio6MDGuPw4cPat2+fJNWqX7p9QbVhw4YaNmyY4uLitGzZMq1YsUJz585Vz549JXnDWVxcnBITE50s92cnNDRUTz75pCRp7dq1un79usMVAUDtwgwZAFSRYcOGKTw8XO3bt1dUVJQMw9CMGTOUmZl52+/tC2S9e/eWYRgBjfHRRx9JkiIiIvSrX/2qympzWlRUlCZMmKBHHnlEwcHBfm3t27dX//79tWbNGr3//vvKy8vTokWLtHLlSoeq/XmKjY3VBx98oCtXrujLL7/U6NGjnS4JAGoNZsgAoIqMGjVKgwYNUsuWLQMORYH48ccfdfbsWUmBP66YlpamhIQESdLgwYOrtf7bbeHChRo6dGixMGY3fvx4tW3bVpJ05swZnTx5srrKqxEiIiLUsWNHSdKmTZscrgYAahdmyACghvOtfud7TDIQmzdvlsfjkSQNHDjwlvrk5+frm2++0Y4dO3Ts2DFlZWXJ7XYrPDxc9957r7p27apBgwbpF7/4hV+/fv36SZKGDBmiuLg4/fDDD/rss8+0d+9epaenq0GDBmrXrp1++9vfKiYmxup348YNff3114qPj9e5c+eUm5uryMhIPfrooxo9enSlF5vo3Lmz9RnAH3/8UW3atAl4rDNnzmjjxo1KTEzUxYsXlZubq7CwMDVs2FARERHq0qWL+vTpo1atWgU0fn5+vv79739r69atOnXqlLKzs2UYhho1aqTw8HBFR0era9eu6t27t+rWrevXt+j7f+bMGa1fv1779u1Tenq6cnJyNH/+/GLhfuDAgUpMTNTZs2d17Ngx3X///YG9OQAAPwQyAKjhfI8r9uzZU3XqBPa/9Z07d0ryfs6qdevW5V5/4sQJzZ49W+fOnSvWlpaWprS0NO3evVsnT55UXFxcqeNs27ZNb775pnJzc61zN27c0K5du7R792698soreuKJJ5Senq64uDgdO3bMr//p06f197//Xbt27dKiRYsqFcry8/OtY5cr8AdINm7cqCVLlsjtdvudz87OVnZ2ts6dO6e9e/fq5MmTmjVrVoXHz8rK0u9///sSF5DxvfcpKSnatGmT1q5dq6ioqFLH+vrrr7Vo0SLl5eWVe1/7Ii87d+4kkAFAFSGQAUANlp6erqNHj0oK/HHFvLw8ff/995Kk6Ojoch9XTElJ0fTp05WTkyNJ6tSpk2JjY9W6dWvVrVtXGRkZSkpKKnffqpMnT+qbb75RkyZNNGXKFOve+/fv16pVq5Sbm6vFixcrJiZGb7zxhk6cOKERI0aoT58+Cg8P1/nz57Vy5UqdPHlShw8f1tq1a/W73/0uoPdAkg4cOGAd33PPPQGNcerUKSuMNWrUSE888YRiYmIUHh4ut9utjIwMJScna9euXQE/FrpkyRIrjHXp0kWxsbGKiIhQgwYNdO3aNZ09e1aJiYnWI6ilSU5O1ubNm9WoUSONHj1aHTp0UN26dXXmzBk1b9682PX33HOPQkNDlZOTowMHDmjSpEkB1Q8A8EcgA4AabMeOHTJNU8HBwerRo0dAY5w8edKaHWrfvn2Z1+bn52v27NlWGHvxxRetFfjsevXqpcmTJys1NbXUsVJSUtS2bVstWbJEDRs2tM4/8MADioqK0pw5c5Sfn6/p06fr8uXLWrhwobp27Wpd165dO3Xr1k0TJkxQenq6NmzYoAkTJigoKKhCf37J+9jn6dOnJXlDacuWLSs8hiRt3brVmhlbvHix9bk0u759+2ry5MnKzs6u8Pg3btywgm7fvn31xhtvFAt2MTExGj58uHJycsqc6Tt9+rSioqK0bNkyv9VAS1ulMygoSO3atVNiYqKOHz8uj8dTqZlEAIAX/ycFgBrM97hi165dFRoaGtAY9scOy1umf/PmzTp//rwk76qSJYUxu2bNmpXZ/sc//tEvjPn0799fTZs2lSRdunRJI0eO9AtjPmFhYRo6dKh13ZkzZ8q8X0nS09P1l7/8RZJkGIamTZtW4TF8fCtqhoWFlRjG7Bo3blzh8a9cuWKF55iYmDJn2UJDQ8t9hPPll1+u0NYMvmtzc3OVnp5+y/0AAKUjkAFADXX16lUdPHhQUuU2g87IyLCOGzVqVOa1vgAoSePGjQv4npL3EbjSQothGH5tsbGxpY5jv+7ChQsVqiE3N1dxcXFWkCq6kEhF+ULk1atXtXXr1oDHKU3jxo2t1SK3bNlSqT3BmjZtWmLILYv958P+cwMACByBDABqqISEBOXn5ysoKEi9e/cOeJwbN25YxyXNVtkdP35cknem5FYW/yhLef3ttZS1GqH9uooElJs3b2rmzJnWQiF9+vTR5MmTb7l/SWJjY61ZqTlz5uj555/XmjVrdPjwYesxz8qoW7euhgwZIklKSkrSmDFjtHDhQm3ZsqXCYTSQVSTtgcy+EAsAIHB8hgwAaijfbNVDDz2k8PDwgMexf+aqvNX2srKyJBXOBFVGSEhIme32x/HKehzT/jkm39L95cnPz9esWbO0Z88eSVL37t312muvBfT5M7vIyEi99dZbevPNN5WWlqYjR47oyJEjkrzv8/33369+/frp8ccfLzf8luaFF15QXl6e4uPjdfnyZX3xxRf64osvJHmDcvfu3TVs2LByZ/rKmw0tiT28B7qiJwDAHzNkAFAD5eXlaffu3ZIq97ii5P28k8/ly5crNVZNkJ+frzlz5lhL/Xft2lXz588vc+PoiujSpYs++ugjvf766xo2bJi17Lzb7db333+v5cuXa9y4cVYYrKh69eopLi5Oq1ev1jPPPKPOnTtbgTUzM1P/+te/NGPGDM2cOdMvQBUVyIIc9oVI7D83AIDA8c9bAFAD7du3z3oErrKBzL7EeXmBLDw8XKmpqTV2QQdfGPPNLnbu3FkLFiyo9KbSRQUHB2vAgAEaMGCAJO/M4v79+xUfH69du3bp8uXLmjVrltauXVts4+xb1bJlSz399NN6+umn5Xa7lZKSop07d2rjxo26dOmStm/frhUrVmj69OlV9ue6cuWKdVzegi0AgFvDDBkA1EC+QNG2bVtFRERUaiz7nls//PBDmdf6lsXPyMgo99qfm6JhrFOnTnrrrbeqPIyVJDw8XI888oj+/Oc/a8SIEZKknJwc7dixo0rG9z0OOWnSJP3tb3+zHgfdvHlzlYzvc/bsWUlSRESE6tevX6VjA8CdikAGADWMx+PRd999J8m7EEVlNWvWTHfffbckWZtMl6Zfv37W8dq1ayt97+qSn5+v1157zQpjMTEx+tOf/lTu59huh+7du1vHvs/kVaWIiAhrH7VA9jorTVZWlrXlwYMPPlhl4wLAnY5ABgA1zJEjR6xf5O0BqTJ8IeHs2bO6du1aqdcNHDjQ+mX/q6++0ueff17muGVtDF1d8vPzNXfuXGtD5dsZxv773/+WG7J8n/2TpBYtWlRo/AsXLmjfvn1lXnPx4kVrJisyMrJC45clKSnJOn744YerbFwAuNPxGTIAqCLnzp2zVtTz8e1vJUnbtm3zWw0xNDRU/fv3r/B9fLM8kZGRAS1dXpIBAwboq6++ksfj0b59+/TrX/+6xOvq1Kmj119/Xc8//7xycnL0zjvvaPv27Ro8eLBat26tunXrKiMjQ8eOHdO2bdvUvn17xcXFVUmNgZo3b562bdsmyRuAnn32WV28eLHMPk2aNFGTJk0qfK/PP/9c8+bNU5cuXdSlSxf98pe/VOPGjXXz5k2lpqZq8+bN1uxm8+bNK7xdQWpqql5++WVFRkaqd+/eio6OVrNmzVSvXj1lZ2crKSlJGzZssFbLLG/j7orYu3evJO/n43r27Fll4wLAnY5ABgBV5MiRI1qwYEGp7cuXL/d73bx580oFsqp4XNGna9euatq0qdLS0hQfH19qIJOk++67T0uXLtXs2bN14cIFHTx40NqguijfZ86cZN+g+fz583r22WfL7TNx4kRNmjQpoPvl5eUpISFBCQkJpV7TokULLViwoMzl/Mty4cIFrVu3rtR2l8ulcePG6Te/+U1A4xeVn5+vLVu2SPLOyga6ZD8AoDgCGQDUICdOnLBmdyq7uqJdUFCQRo4cqffff1+7du1SVlZWmXubtWvXTqtXr1Z8fLy+/fZbpaSkWJ9XatKkidq0aaNu3bpp0KBBVVZjTTBnzhzt2bNHiYmJOnXqlDIzM61HGBs3bqz77rtPffv2VWxsbEDL7Hfs2FHLli3Tvn37lJSUpNTUVF26dEnXrl1TSEiIIiMj1bFjRz3++ONVNnsqyfqZkKRRo0ZV2bgAAMkwTdN0uggAwK358MMP9eGHH6pJkyZav359QHtJlebq1asaO3asLl++rKlTp2r8+PFVNjZqtj/84Q9KSEhQly5dtHjxYqfLAYBahUU9AKAG8T2u2KtXryoNY5J3o19fCPv44491/fr1Kh0fNVNSUpISEhJkGIamTJnidDkAUOsQyACghrh586b69u2riRMnauTIkbflHk8++aSioqKUnZ2tTz/99LbcAzXLihUrJEmDBw9WdHS0w9UAQO3DI4sAAD9Hjx5VQkKCwsLCNGbMGKfLgYOuXr2qdevWyTRNjRw5sszPFQIAAkMgAwAAAACH8MgiAAAAADiEQAYAAAAADiGQAQAAAIBDCGQAAAAA4BACGQAAAAA4hEAGAAAAAA4hkAEAAACAQwhkAAAAAOAQAhkAAAAAOIRABgAAAAAOIZABAAAAgEMIZAAAAADgEAIZAAAAADiEQAYAAAAADiGQAQAAAIBD/j9HUbXbgxitswAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACYRElEQVR4nOzdd3QU1d8G8GdmS9qmJ4QaelGCihRBEFBBFFBREVAUEMWOWFCx99f6s6DYUUBRUBEVEBGQJlVEegk11IT0nmyZ+/6x2WFDtiXZZDbJ8zlnTzY7Zb9JNrvzzL1zrySEECAiIiIiIqJaJ2tdABERERERUUPFQEZERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGmEgIyIiIiIi0ggDGRERERERkUYYyIiIiIiIiDTCQEZERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGvFLIDt69CgkSYIkSRg/frw/dtkgDRgwQP09EhG5M378ePW94ujRo1qXo5o5c6Za18yZM7Uuh/xMURR069YNkiRh0qRJWpdD5+D/H2lp1apV6uvvxRdf1Locv8rLy0NMTAwkScJnn31WI89Ray1kM2fOxIsvvljv/kie/PLLL+rPnJOTo3U5VMZqtWL58uWYOnUqrrjiCjRp0gRBQUEwmUxo27YtRo8ejV9++QU2m61S+921axcmTZqETp06wWQyITIyEl26dMHUqVORkpJSQz8NETUkZrMZ//77Lz7//HPcfffd6NatG4xGY60ciH/++efYunUrgoOD8dRTT7lcpy68v6akpGDq1Kno0qULIiMjYTKZ0KlTJ0yaNAm7d++u1L58tWHDBkyYMAFt27ZFaGgoYmJi0K1bN7z66qvIyMiokefUQpcuXdTX4ooVKyq9/d9//61uf/7551d6e+dQ6stt1apVPu3Xn6+Z9PR0vPLKK+jWrRtiYmIQGhqKtm3bYsKECdi4cWOlf2ZfNJTjk2uvvVb9286YMaPS2x87dgw6nQ6SJCEmJgYlJSUAgIiICDzyyCMAgGeeeQbZ2dl+rRsAIPzgyJEjAoAAIMaNG+dynf79+6vrNBTjxo1Tf+YjR454Xb8h/o5q219//SViYmLU37OnW48ePcTBgwd92u/bb78tDAaD232Fh4eL77//voZ/OmooKvveUlu+/vprta6vv/5a63LqpYsvvtjj+1ZN/d4LCwtF48aNBQDx0EMPuVynLry/fvvtt8JkMrndl9FoFO+++67PvxdvFEURjzzyiJAkye1zJiQkiBUrVlT7uQLh/+9///ufWsNtt91W6e0nTJigbv/WW29Venvn34Evt5UrV3rdpz9fM8uWLRONGjVyuy9JksSUKVMq/XN7UlvHJytXrlT3+cILL1S/8CqYP3++WkPfvn0rvf3LL7+sbn///feXW5abmyuio6MFADF16lR/lazSu49qvmvVqhWEEP7YVYPm65kaqrqTJ08iKysLABATE4OBAweiV69eaNKkCSwWCzZv3ozZs2cjLy8P//zzDy6//HJs3rwZjRs3drvPTz/9FI8//jgAwGAw4Pbbb0f//v1hsViwdOlS/PTTT8jPz8ftt9+OqKgoXH311bXys1L9NXPmTHZJaqDObVlq3LgxgoKCavws98cff4zU1FTodDo88cQTLtcJ9PfXxYsXY9y4cbDZbJAkCSNGjMDgwYNhMBiwevVqfPPNNzCbzXj00UcRHh6Ou+66qxq/MbunnnoK7733HgAgLCwMd955J3r27ImCggLMnz8fy5YtQ1paGq6//nqsXbsWF110UbWfU0u33XYbnnzySVitVvz888/4+OOPER4e7tO2RUVF+PHHHwEAOp0Ot99+e7VqmTRpEq644gqP6yQlJXlc7s/XzL///ovrr78eRUVFAIBBgwbhpptugslkwubNmzFjxgwUFhbinXfeQVBQEF599dXK/9DnaGjHJ9deey3i4uKQkZGBv//+G4cOHULbtm193n7WrFnq/TvuuKPcsoiICDzwwAN49dVX8eGHH2LKlCmIjY31W+211hTTEFt/AvUsdkP2zTffiC5duojvvvtOlJSUuFznxIkTonPnzurfbuzYsW73d+rUKREaGioACL1eL5YtW1ZhHeczdi1atBDFxcV++3mIAkkgnKGv7x555BHx/PPPi19//VWcPHlSCCHECy+8UKO/d4vFIlq0aCEAiKuuusrteoH8/lpYWCiaNm2qrjtz5swK6/z5559Cr9cLAMJkMonU1FS3tfli69atastYZGSk2L59e4V1nP92PXr0EIqiVPn5AuX/7/rrr1frmDFjhs/bzZ49W91u2LBhVXpuf/4O/PmaURSlXOv2iy++WGGdbdu2iYiICAFAyLIsduzYUa36a/v4JBBayIQQYvLkyWodzz33nM/brVmzRt0uKSnJ5TrJycnqOq+99pq/ShZCCMFAVoMYyAJPdna2Tx94O3fuVP92ISEhorCw0OV6Dz/8sLre448/7nZ/N998s7reRx99VOX6iQJZoBwQNjQ1HcgWLFig7n/27Nlu1wvk99f3339fXefmm292u6/HH39cXa+6XceGDx+u7mv69Oku11EURfTs2VNdb9GiRVV+vkD5//vll1/UOi677DKft7viiivU7ebPn1+l5/bn78Cfrxnn38kll1zi9v9k+vTp6nojRoyoVv21fXwSKIFs27Ztah0tW7b0+SSHc3fZ//3vf27X69Gjhxpgq3MC5Vw1fg2ZcxDzdHP3x7PZbGLevHli5MiRolWrViIkJESYTCbRsWNHce+993o9g+D8QeXoK7x8+XIxevRo0apVKxEUFFQhMFksFvHHH3+IRx99VPTp00fEx8cLg8EgTCaTaN++vRg3bpxYvXq12+d0DmKebp5+V95s3LhRTJw4UXTo0EGYTCYRGhoq2rRpI8aOHetTX3TH8/Tv318IIURBQYF4++23Rbdu3URUVJQIDQ0V559/vpg6darIysryur/6qFOnTurvydWZTUVRRLNmzQRg7/d97Ngxt/tau3ZtlT6g/GH9+vXi3nvvFeedd56IjIwUQUFBokWLFmLkyJFeP/xdvcGmpKSIRx99VHTs2FGEhoaKyMhI0bt3bzF9+nRhsVh8qik/P1+89957YuDAgaJJkybCaDSK6Oho0b17d/Hcc8+JM2fOeNz+3P8Vq9Uqvv76azFw4EDRtGlTodPpRMuWLStsl5qaKh5//HFx3nnnidDQUBEdHS169Ogh3nnnHfWgsGXLluobubMlS5aozzlp0iSffs5Jkyap2/z+++8+beMLbyd7aurvtnDhQjFs2DCRkJAggoKCRMuWLcWtt94q1q9fL4So3MFQaWmp+PLLL8W1114rmjdvLoKCgkRkZKTo0qWLePTRR92exNq3b5961jciIkIcPnzY7XNkZWWpLTuyLHt8367LajqQ3XjjjWp4ys/P98s+a/v9tXfv3uo6f//9t9t9HTt2TG3VSkxMrPwPViYvL089voiIiHAbOoWwtyw6arv99tur/Jy+/v9t3rxZxMXFCcB+/dO8efMqrFOdYy+LxaJeJyVJkjh06JDX2lNSUtTfe1xcnDCbzT79zOfyZyDz52vmlltuUff17bffut1XYWGh2koWEhIiCgoKqlS7FscnvgaygwcPijZt2qi1ubv+bsmSJWLcuHGiXbt2wmQyiZCQENGmTRsxbtw4sXbtWo+1dO3aVa3Fl2PiwsJCER4eLgB7a2JaWprbdZ2D+l9//eV1374K6EB28OBBcdFFF3ncTpZlj02Szh9Uf/31l3jggQdc7sf5w3/AgAE+B6rS0tIKz1mTgcxisYiJEyd63ffIkSNFUVGR2/04B7JDhw6J888/3+2+WrZs2SBb+BxnQQCIjRs3VljufJbXXfO2g81mK9cVIS8vr6bKVhUUFIhRo0Z5fa0MHTrUbT3nvsEuWbJEREVFud3XoEGD3HZVcvj99989XtQM2C8y/vXXX93uw/l/JTMzU/Tt29fl69bZX3/9pV6Q6+rWpUsXcezYMbeBzGazidatWwsAIjo62mvXjuLiYvX5EhMThc1m87h+ZVQ2kFX372a1Wj2+r8myLN58802fD4b++ecf9Xfp7mY0GsWnn37qcvvPP/9cXa93797CarW6XG/EiBHqes8884zH32ldVpOBrKSkRA3A/fr189t+a/P9NTc3t1zXQW//i85dKnfv3l35H07YT1449uGt+92ZM2fUdePj46v0fEL4FkaWLl2qDlBhMplcdmPzx7HXo48+qq77/PPPe63deTCFyZMn+/ojV+CvQObv10xsbKy6PD093eO+hg4dqq67ePHiKtWvxfGJL4Fs69atIiEhQQD24PPNN99UWOfMmTPlWkvd3e688063wX3atGnqep66RTs4d5e9/vrrPa67fft2v7xWz+WXQT08cQzp+uyzz6pDgy5YsKDCep06dSr3/aFDh9CrVy91ONi+ffti2LBhaNmyJWw2G/7991/MnDkT2dnZeOWVVyDLstch9d9++20sWbIEjRs3xvjx45GUlASr1YrNmzcjKChIXa+4uBgmkwlXXnklunXrhlatWiE4OBinT5/G7t27MWfOHBQWFmLWrFmIiorC+++/X+55HnroIQwfPhzTpk3DypUrAQCfffYZGjVqVG69xMREn36Hzm6//XbMnTsXABAcHIxx48bh0ksvhU6nw5YtWzBjxgzk5+fjhx9+QG5uLpYsWeJxXrO8vDwMHToU+/fvx/XXX4+rr74aMTExOHz4MD755BMcO3YMKSkpGDt2LNasWVPpeusqs9mMAwcOqN+3bNmywjq7du1S73fr1s3j/mRZRteuXbF69WooioK9e/eiZ8+e/iv4HKWlpRg4cKA6hG7btm0xatQonHfeeTAYDDh48CBmz56N5ORkLF68GMOHD8eyZcsgy+5nwti2bRvefvttCCFwzz33oHfv3ggKCsKWLVvw6aeforCwEMuWLcNrr72Gl19+2eU+5s+fj1GjRsFms8FgMOC6667DgAEDkJCQgLy8PKxcuRI//PAD8vPzccMNN2DZsmVeL8q+7bbb8Pfff+PCCy/ELbfcglatWiEvLw87duxQ19mzZw+GDRumXkzdtWtX3HbbbWjevDnS0tIwb948rFu3DqNGjYLVanX5PLIsY+LEiXj66aeRnZ2N+fPnY8yYMW7r+umnn9Shce+8806Pv9ua5I+/20MPPaRe7Gw0GjFu3Dj07dsXsiyrF6M/+eSTGD58uNd6NmzYgIEDB6KoqAiSJGHw4MG46qqr0KxZMxQXF2PDhg345ptvUFRUhHvvvRdBQUEV5recOHEili5divnz52PDhg146aWXKtQ+Y8YM/PTTTwCAXr16NagpV/xp3bp16v+Nv96zavv9dc+ePerAYxdddJHX/8Xu3burxyu7du2q0vDrlak/Pj4eLVu2REpKCtLT03HmzJkKxwv+8P3332PcuHGwWCyIj4/H77//ju7du5dbx1/HXnfccQfeffddAMDs2bPx4osvejwW8TSYQlV9/PHHeOONN3D8+HEA9t9zjx49MHz4cIwaNQp6vftDYH++ZlJTU5GZmQnA/lqPi4vzuq/Fixer+xoyZIiXn7SiQDw+WblyJYYPH468vDyEhobip59+wjXXXFNunaysLPTu3RuHDh0CAFx44YW48cYb0a5dO8iyjF27dmHmzJk4efIkZsyYAavV6nKAq1tvvRVTpkyB2WzG/PnzMX36dJhMJre1Oe/D2+svKSkJJpMJBQUFWLp0qe+/AG/8ker8Pey9zWZTL34MCgoSP/zwg8v1UlNT1bM4siyLXbt2VVjH+cwhYB8GMzc31+PzL1++3GPrUkZGhnpGXpZlt11m/D3s/dy5c9XlCQkJLs/CHD16tNyZZ3f9gZ1/J0ajUSxcuNDlz+m8r02bNnn9GdwpLCwUCxYs8Mvt33//rXIdvnLuQnLxxRe7XOell17yejbI2dixY9X1XZ0V8qdz+4676pJmNpvL1fTJJ59UWMf5jBfKWnqSk5MrrLdp0yb1wubo6GiXrS3Hjh1Tz8IlJia67fKyadMmERkZKQCI5s2buzwDdm7L+8MPP+zxDKZzC9r999/vct1z3yvcdXl0DB/s6O7rTr9+/QQAodPpxPHjxz2uW1mVaSGr7t/N+ULnqKgosWXLlgrr7Nu3Tx0S3XFzdXY6Ly9P7UIYFRUlVq1a5fLnO3DggEhMTBQARFhYmMszyllZWaJ58+bq79i5C8v+/ftFWFiYAOzdxXzpMuXJ3r17/fb+5e3seFXUZAvZ//3f/6n7/vHHH/2yz9p+f501a5bXYxRnzz//vLr+K6+84suPVMEdd9xRqb+J4/0CgNfuWO54ah2aNm2a2uLTsmVLsX///grb+/PYSwghunfvrtbjqWvX6tWr1fW6du3q+w/sgq/D3nfs2NFlV1kHf75mnH8+b58bQgjx1VdflWsFqgotjk88tZD99NNPahfemJgYtZv7uRzXXUqSJN5//32X6+Tn54urrrpKfa4lS5a4XM+5h8RXX33ltu6jR4+q/xuNGjXyqQu/oyedJEkiJyfH6/q+CMhA5jyPwLRp0zyuu3//fqHT6QQAMXHixArLnT+owsLC1FGpquvQoUNe37D9Hcic+8R6uh5l06ZN5d54XXXncX5jevnll93u64svvvBpPW+cXyPVvfny5lgdWVlZokmTJl4PQh555BF1nQ8//NDrfiu7flWdOnVKGI1GAUDceOONHtc1m81qX+727dtXWH7ugf2aNWvc7mvMmDEe13NcT6XT6cR///3nsa4ZM2ao+5ozZ06F5c7/K926dfMYxv755x913aSkJLfd287dr6tAJkT5C6BdhRwh7O9LjnWGDh3q8WetisoGsur83ZxHTHM1ypjDokWLyj2nq4NQ5zmKfvvtN48/44oVK9R13Y1mtWrVKiHLsvr3ys7OFmazWXTr1q3aBxfOzg3r1bn5Mu9RderzdyC79dZb1X1Xd9Q3IbR5f/3ggw/UZY899pjXfVV2fVduuOEGdR+uTnhWd31X3AWyZ555Rn28c+fO4sSJEy639+exlxDlB6jw1G3MObx6e15vvv76a6HX60X//v3Fc889J2bNmiV+/PFH8fHHH4vbbrtNBAcHq88VHh7uNpT58zXz66+/qstuuukmr/uq7PquaHF84i6Qffrpp+r7dLNmzdx2A/7333/V7R999FGPz5WVlaWeuB00aJDLdRYvXqzuz1N3a+fw6u15He677z51m6qeQDmXNn1ovPjmm28A2Mf8nzhxosd1O3TooDat/vnnnx7Xvemmm9C0aVO/1NimTRt17pRNmzb5ZZ+eHD16FP/99x8AoEuXLhWaeZ317NlT7eaVkpKCf//91+26Op0ODz74oNvlzt3F9uzZU9my6xybzYbRo0fj9OnTAIChQ4dixIgRLtctKChQ7wcHB3vdd0hIiHo/Pz+/mpW698MPP8BsNgMApkyZ4nFdg8GAUaNGAQAOHDiAo0ePul23a9euuOyyy9wu9/RaEUJgzpw5AIArr7zS61w7zt1JvP1fP/DAAx67k/z666/l1tXpdG7XnTx5ssfnAoB7771Xvf/ll1+6XMf58bvvvtvrPmtSdf5upaWlWLJkCQAgISEBt912m9v9DB06FOedd57HWhzv7R06dMC1117rcd0rrrhCfb929xro378/pk6dCsD+Xnfvvffi2WefVd/zxowZ47Fm8s55frOYmJhq7Uur91ct3qsD4fPBZrNh4sSJeO211wAAl156KdauXYtmzZq5XN/fx1633HKL+rPPnz+/3O/EoaioSO1abDQaceutt/rwk7nXt29fpKSkYNWqVXj55ZcxduxYjBgxAvfddx+++eYbJCcno0ePHgDsv2dHF/pz8fXnHy+//DLuvfdeKIqCjh07Yv369W67ADtef5Ik4bHHHvO43+joaLUr55o1a1BaWlphncGDB6ufIWvXrsWRI0cqrCOEwOzZs9Xvfe0uGx0drd731xyQNX4NWVWsXbsWANCkSRP88ccfXtd3HGClpKSguLi43AvLmaeDknPl5eVhzpw5+P3337Fz505kZGSgsLDQ5bonTpzweb9VtXnzZvX+VVdd5XX9q666CitWrABgD4zu+gN36NCh3AvrXM5v3I7rYaqirkwePnnyZPXDJTExsU5Ovuv4/wHsr81ffvnF4/rOf9e9e/eiVatWLtfr1auXx/14eq3s3r1bnTA2PDzca00AYDKZkJOTg71793pcz9v/9ZYtW9T7l19+ucd1BwwY4LWuyy+/HB06dEBycjJmzZqFV199FQaDQV1usVjU6yGaNm2KoUOHet1nTarO32379u1quO/fv7/HMAvYw7a7v1dubq56XV9CQoLPrwEAHl8DL730ElasWIFNmzZh3rx56uOtW7fGxx9/7PU5fPHiiy822GvQHP+3QPUDWX14f60rSkpKcPPNN6vX7A8ZMgQ//vgjQkND3W7j72Ov6OhoDB8+HHPnzkVhYSF++umnCteDOiYmBoDrrruu2hPttmvXzuPyFi1aYMmSJUhKSkJqair27duHn376ST0xSf6hKAoefPBBTJ8+HQDQo0cP/P777x6vn3O8/qKiosod87rjCGGlpaU4fPhwhROCOp0OY8eOxRtvvAEhBGbNmlXhfXzt2rXq9Wrdu3f3OlG4g/PrtDrHxs4CLpAVFBSoFz/u378fN9xwQ6W2z87OdhvI3J0VOtfKlStx6623IjU11af18/LyfK6vqhxnFAF7iPLGeR3nbc/l7eJS58FOSkpKvD5vXfbMM8+obx4JCQlYtmyZx9+P8wWivvxuiouL1fvh4eHVqNQz51aukSNHVmpbT28s1XmtONc0f/58zJ8/3y81Ad7/r0+dOqXeb9Omjcd1o6OjERUVhZycHLfrSJKEu+++G1OmTEFaWhoWLlyIG2+8UV3+22+/4cyZMwDsZ9u8hZiaVp2/m/PvztuBjrd1jh8/DkVRANg/BJ1PHHjj6TWg1+vx3Xff4aKLLlIP7ByPRURE+Pwc5JrjoEen07n9bPWFlu+vWrxXa/35MHXqVOTm5gKwD3z09ddfexzEoqaOve644w51ILKZM2dWCGTOoXzChAkVtvd04iY0NNSnE9Tnio2NxeTJk/HUU08BABYvXlwhkPH1Vz3Tpk1TX38DBw7EggULPA6qAZw9TsjOzq7S68+V8ePH44033gBgH1zmhRdeKDe4jLfXnzvOny3Ov7vqCLhA5vgDVpXjbK4rvnyYHDhwAEOHDlV/wR07dsQ111yD9u3bIyYmplzT791334309HSXzd3+5tyEHBYW5nV95xe+p+ZnrUZ+CzSvvvoq/u///g+A/QB2+fLlXoNvVFSUet8xIpUnjg+7c7f1t+r8D3n6/6nOa6WmagK8/187Wrb1en25lix3wsLCPAYywP4m/8wzz6C0tBRffPFFuUD2xRdfALAHtzvvvNPr89W06vzdnLu9eDqz7uDpvak6rwGLxeJxeVxcHGJiYtT3ujZt2ngdWYx84wjsNpsNRUVFPr0OzqX1+6sW79Vafz44jxZbWFjotYdKTR17DRw4EM2bN8eJEyewZs0aHD16VO2F4ehaCNh7E7gKV54OzFu2bOmxm70nzr0h9u3bV2E5X3/VU9nXH1AzxwkdO3bEpZdeivXr1+PIkSNYs2YN+vfvD6B8d9ng4GDccsstPj+fc63VOVHlLOACmXOQ6NevH1avXl2rz//666+rYeyZZ57BK6+84naoVm99rP3J+YyFu66TzpwPpGqyNcZXRUVFXq8F8lViYiIuvvhiv+wLAN566y0899xzAOwtJMuWLfOp2dr5gMKXDwXnfsa+tHJWleN/SJIkWK3WgAjdzv/Xzz//PF566aVae25HSLBarbBYLF5DmS//X7GxsRgxYgTmzJmDP//8E8eOHUNiYiJSUlKwbNkyAPYDkdatW1f/B9CQ89/NMfS5J55+d877Gjt2bLlhrqvr/vvvL/f/lZycjGeffRZvvvmmX/a/b98+lwdtVdG3b1+vrZaBxLmbYlZWVqUDWSC8v2rxXq3158Prr7+OuXPnYv369ViwYAFGjRqFefPmuX3/q6ljL1mWMW7cOLz22mtqt7EXXngBgH2oe8eB+tixY2u1N4FzlzNXJ+D4+queyZMnY+/evViwYAE2bNiAwYMHY+nSpR6PRx2XKTg+S/3ljjvuwPr16wHYW8Qcgcy5u+zw4cMrFUT92ZXbIeACWWRkpDq+f21cm3Wu5cuXAwAaNWqEl19+2W0Yy8/PL/cHqWlNmjRR7zvP3+KO8zr+GsikOs6cOVPpJmh3xo0b57drD9577z08+eSTAOyvvaVLl3odcMLB+aDC08ApgL0/tWNQFlmWvQ5+UB3NmjXDtm3bIITAyZMn0aJFixp7rsrU5FDb/9dNmzZVr106fPgwOnbs6Hbd7Oxsr61jDvfeey/mzJkDRVHw1Vdf4cUXX8RXX32ldsvTejAPf3B+7zh48KDX9T2tU1OvgTlz5qgDxnTr1g0ZGRlISUnBO++8g8GDB3udx84Xc+fO9dtJhJUrV/p0rWKgaNWqFdatWwfAfhDSvHlzn7cNlPfX888/H7IsQ1EUbNu2DYqieDxR5Xzdqa/XlJyrMvWnp6erB6Dx8fF+mYMsPDwcf/zxB66++mqfQllNHnuNHz9eHVhk9uzZeP755wGUn3vs3K6MDjV17bm3FiF/vmYaN26M2NhYZGZm4tixY8jIyPB4Uqa2X381cXxiMBgwb948jB49Gj///LNPoaxZs2bIycnBmTNnfDp56quRI0di8uTJaovYRx99hLCwMHz99dfqOpWd+875+N/VPIpVUWunzp1fyN7+wfr16wfAfvDky0GAP6WlpQGwXxDu6Z9v+fLl6oGXO5X5mb1xHpTDcQbeE+fWqJqcgLgumz59Oh599FEA9g+vJUuWqKMv+aJz587qwcnu3bs9foitX79evdawT58+Ndpq6Tj7A3gfobC2dO3aVe1zvWLFCq//O/7kPPGpY6J2dxzdZ3zRt29fdO7cGQDw1VdfwWKx4KuvvgJgP6Fz/fXXV77YAHPhhRfCaDQCAFavXu21e7ZjICFX4uLi1NG1Nm7c6Jdrb48cOYL7778fgL0l9Pvvv8e3334LnU4HRVEwduzYcgdeVHnOB3b79+/3ebtAen+NiIhQB7fJzc3Fxo0b3e7r+PHj6mijiYmJVZoUGrB3iXN091yzZo3H60ycJ5e9+uqrq/R8rjhCWZ8+fQAACxYswMiRI912Aa6pY6927dqpgy8dPnwYa9euxZo1a3D48GEA9tEfPZ0oqwnOLYCuWoT8/ZoZPHgwAPuxoKfP5aKiIvX62pCQkHKf55URCMcnjlB20003AYAayty99zt+1pKSEqxZs8YvNQD2v6WjhoKCAsyfPx9Hjx5VXwPNmzfHwIEDK7VPx0BTkiShS5cufqmz1gKZc3O4ty5B48aNU+87zqTUFkd3jMOHD7sNUTabTe0P70llfmZvWrVqpXbT2759u8dQtmXLFvz1118A7Mk9EK6lcIyy6I+bP1rHvvjiC0yaNAmA/UDu999/R+/evSu1D0mScPPNNwOwv8l++OGHbtedNm2aer+mR3MaPXq0ehD95ptvVvu15w86nQ5jxowBYO8a4W64+JrgHIymT5/uMVR88MEHldr3PffcA8D+gfzwww+rH3rjxo3z29k9LQUFBalDC6elpeG7775zu+6SJUu8jojpeG8vKipSL7SuKpvNhjFjxqgf7tOmTUP79u3Rt29fPP300wCAkydP4q677qrW8wD2URb99f5Vl1rHAOCSSy5R7/s6xUsgvr86P+7p//zDDz9UP/srOyiSM5PJpP7v5OXluf3cEkLgo48+clmnPzhCWd++fQHYB8lwF8pq8tjLuQVi5syZ5X4flW2dqK6srKxyrwHH3+lc/nzNOO9r2rRpbo8vZ86cqb6nDR061KcxA1wJlOMTvV6PuXPnqtNbbNiwAVdffbXLUDZ27Fj1/ksvveTX8RnOff05d5cdN25cpS7tsNlsaitmp06d/Dd4lD8mM/NlYuiHHnpIXWf16tUe92ez2USPHj3U9SdPnixKS0vdrl9UVCS+/vpr8f3331dY5jxhpi8Tcg4aNEhd/913362w3Gw2l5vEEB4mkH333XfVdWbNmuX1ub1NDD1v3jx1eZMmTcTevXsrrJOSkiLatm2rrvfRRx+53JdjuS+zxldm3bpg1qxZ6sTZoaGh1Zqo9eTJkyI0NFQAEHq9XixfvrzCOs6TdbZo0UIUFxdXo3rfPPbYY+pzXn755eL06dNu17XZbGLZsmUuJzh3N9GjK97WPX78uIiKihIARFBQkNf/ibS0NPHyyy+7nLizMhPNCyFE37591fXvv/9+lxNJnzv5r7v/a2c5OTnq39/55m7CaH+pzMTQ1f27rV27Vl0eHR3tclLv5OTkcpP9ws0ExQUFBaJly5YCgJAkSbz11lseJ/XOyckRH3zwgVi2bFmFZc8995z6XCNGjCi3zGKxiN69e6vLP/vsM4+/g7quJieGLikpEWFhYQKAuOyyy7yuH6jvr4WFhaJp06bquq4mOV+2bJnQ6/UCgDCZTCI1NdXlvpyPeTy9B23dulX9XURGRrp8L3vxxRfV/fTo0cPtvnzhbmJoIYTIz88v9z54/fXXC7PZXG4dfx57nSs/P199HZlMJmEymdTXSG5ubpV+3nOtX79efPHFF6KkpMTtOsePHxc9e/ZUf8b27dsLi8Xicl1/vmYURREXX3yxuq+XXnqpwjrbt29XJzuWZdnjROzOrz9XnwFC1P7xiafPEovFIkaMGKEu79Wrl8u/+0033aSuM2rUKI+vDYvFIubPn+/2ONeZoiiiVatW6mdPQkKC+jwHDhyo1M+5fft2dduHH364Utt6UmvXkF155ZVqCr/zzjvxyCOPoGXLlupFnO3atVOHTJZlGfPnz0fv3r1x8uRJfPDBB/jhhx9w880348ILL0RkZCQKCgpw7NgxbNmyBStWrEBhYSFeeeWVatc5adIktfXp0UcfxapVqzB48GDExsbiwIEDmD17Ng4cOIDLL78cBw4c8NgMfOWVV6r3n3jiCaSnp6Njx47q0LPNmjWrVFPnyJEjsWDBAsydOxenT5/GxRdfjPHjx6N3797Q6XTYsmULZsyYoZ55uOqqq9TuPGS3ZMkSTJgwQT0zMmHCBOTk5HidE+niiy9GYmJihcebNm2K//3vf7jvvvtgtVpxzTXXYOzYsejfvz+sViuWLFmijuKj1+vx+eefe5yk0fmaxSNHjridE8yb119/Hdu2bcOKFSuwcuVKtGnTBjfddBN69+6N+Ph4mM1mpKamqq2tqampuPLKK/Hss89W6fl80bx5c8ydOxfXXXcdSktLMW7cOLz77ru47rrr0L59e4SEhCA3NxfJycnYuHEj1q1bB5vN5nXuMF989tln6NGjB4qKivDxxx9jw4YNuO2229C8eXOkpaVh3rx5WLduHXr37o1jx47h5MmTPp0xi4yMxKhRo8r1RR8wYADat29f7ZoDRd++fXH//ffj448/RnZ2Nnr16oVx48ahb9++kGUZmzdvxowZM1BYWIjhw4d7/F8KCwvDL7/8gv79+yMvLw9PPPEEPvvsM9x00004//zzYTKZkJeXh8OHD2Pz5s1YtWoVzGazOmGow99//632UmjevDk+//zzcsv1ej3mzJmDiy66CHl5eXjkkUfQv3//Wu8WVRP++++/CtNGOHfv+fnnnyt0N7vzzjurPMBMUFAQrr76asyfPx9btmxBQUGB2+GrA/n9NTQ0FJ9//jmuv/562Gw23HHHHVi8eDGuueYa6PV6rF69GrNnz1ZHh3vvvfeQkJDg66/Jpa5du+KJJ57Am2++idzcXFx66aW466670LNnT7XrlKP7mslkqvA69ieTyYQlS5ZgyJAhWLt2LX799VfcfPPN+PHHH9XW/Jo89jKZTLj55psxc+bMcoOO3XTTTX5rYUhLS8PEiRPx2GOPYfDgwejWrRuaNWuG4OBgZGZmYt26dfjpp5/U7qPh4eGYN2+e2+kA/PmakSQJn3/+Ofr164eioiK88MILWLduHUaMGIGwsDBs3rwZX375pdqj5amnnqp2Vzh/H59Uh16vx/fffw9JkvDjjz9i48aN6jVlzn//r776CsnJydi5cyfmzZuHpUuXYuTIkejevTuio6NRXFyMkydP4r///sOyZcuQnZ3t02jGkiRh/Pjxam8Hx+VJl112mU9TujhzvvRh+PDhldrWI3+kOl9ayKxWa7mzM+feXJ2ZPXXqlLjyyivdbuN80+l04osvvqiwj8q2kAkhxFNPPeXxufr06SPOnDmjnun1dCb9lltucbufc39Xvpz1t1gs4q677vL6+xgxYoQoKipyux/Heg2thezcVhBfb97OOr/99tvCYDC43T48PNyns4jO27g76+Wr0tJS8eCDDwqdTufTzzh27NgK+/BnS4vDhg0bRJs2bXyqyWQyuTxLWNkWMiGE+Ouvv9QWOle3pKQkcezYMdGsWTMBQFxwwQU+7XfTpk3l9jNnzhyfa6qq2mwhE8L+/n377be7/d3Jsizeeustj2fone3bt0907drVp9dAUFCQWLJkibptdna2+t4ry7LH9/Vvv/1W3U/Xrl09nu2vK5x/x77eqtNKJYQQv/zyi7qv2bNnu10v0N9fhbC/JhytM65uRqPRZe8YZ762kAlhPzP/8MMPqy1lrm6NGjUSK1as8Kl+T3z5/ysoKBD9+vVT17vuuusqtJT549jLldWrV1fY/q+//qruj61asGCBz6+5pKQkly2WrvjjNeOwbNkyER8f73ZfkiSJxx57TCiK4nE/ztt4O1bw5/+PJ758llgsFjFy5Eh1vUsuuaRCK1hubq4YNWqUz3/L5557zqf6jhw5UuH/8Kuvvqr0z+loYU1MTPT6d6qMWgtkQghRXFws3njjDdG7d28RHR1d7kDR00HDqlWrxD333CM6d+4soqKihE6nExEREeL8888Xo0aNEp988ok4deqUy22rEsiEEGLJkiVi6NChIi4uThgMBtGkSRNxxRVXiC+++EJt3vYlkFmtVvHJJ5+IAQMGiLi4OLVp29XvqjIHmRs2bBB33nmnaNeunQgLCxMhISGidevW4rbbbvPpjd3xPAxk/jlgEEKInTt3igceeEB06NBBhIWFifDwcJGUlCSefPJJcfToUa/bFxYWlnuDz8zM9MNPLMSBAwfE1KlTxSWXXCLi4+OFXq8XoaGhonXr1mLIkCHi//7v/9x2jaiJQCaE/U3522+/FSNHjhStW7cWJpNJ6PV6ERMTI7p37y4mTpwo5s2bJwoKClxuX5VAJoQQqampYsqUKaJjx44iJCREREVFie7du4t33nlHFBYWCkVRREhIiAAgBgwY4NM+FUVRu5nExMR47C7jL7UdyBwWLlwohg4dKuLj40VQUJBITEwUt9xyi1i/fr0QwrcDQgdFUcSvv/4qxo0bJzp06CAiIiKETqcTUVFR4sILLxRjx44VM2fOFFlZWeW2c/6gnjp1qsfnEEKIMWPGqOs/9thjXtcPdFoEMqvVKhITEwUAMWjQILfrBfL7q7OjR4+KJ554QnTu3FmEh4eLsLAw0aFDB/HAAw+IXbt2ed2+MoHMYf369WL8+PGiTZs2Ijg4WERFRYmLL75YvPzyyyI9Pb1S9bvj6/+fq1Dm6mRFdY69XFEUpdwlFa1atfLrAW1+fr749ddfxdSpU8UVV1whOnToIGJiYoRerxdRUVHivPPOE+PGjRO//fabx67SrlT3NePszJkz4qWXXhIXX3yxiIqKEsHBwaJNmzZi/Pjx6nupN5UJZEL49//HHV8/S6xWa7n3cVehTAh7l9+HH35YdO3aVcTGxgq9Xi9MJpNo3769GD58uHj33XfFoUOHKlXjFVdcoT5vWFiYyM/Pr9T2ycnJ6vavvfZapbb1RhKihsYUJaJKWbp0qTrC1kMPPVTpASao+nbu3IkLLrgAgO9/g+XLl2PQoEEA7HOvvP/++zVZIpEm3nvvPTz66KPQ6XQ4evRopYa/JyKqD55//nm88sorCAsLQ0pKSrn57KpL+xljiQjA2TnwwsPDa/RaLnLPebQzX69d++STT9T79WHuMSJX7r33XjRu3Bg2mw1vvfWW1uUQEdWqvLw8TJ8+HYB9vAl/hjGAgYwoYDgC2aOPPor4+HiNq6l/1q5d63H+s+nTp6sX1Tdr1gzDhg3zus9t27apAxYMHDiwynMWEQW6kJAQvPjiiwCAzz//HKdOndK2ICKiWjRt2jRkZWUhNjYWTzzxhN/3zy6LRAEgIyMDjRo1QlxcHA4dOlSjE0c3VO3atUNJSQmuueYadO3aFfHx8bBYLDh06BAWLFiA//77T1134cKFbgPZH3/8AUVRkJycjLfeegunT58GYB/5zzEBK1F9pCgKevToga1bt+LBBx/0OLcREVF9kZeXh9atWyMrKwuffvqpOgepPzGQEVGD0K5dOxw6dMjjOiEhIfjiiy/USaxdcZ6awMHX683+/PNPFBUVeS/Whbi4OHVyVyIiIqo/GMiIqEHYuHEj5s+fj40bN+LkyZPIzMxEUVERoqOj0aFDBwwcOBD33Xef17mHHIHMZDKhQ4cOuO+++zBhwgSf5i1r1aoVUlJSqlR///79sWrVqiptS0RERIGr1iaGJiLSUq9evdCrV69q74fnsIiIiMif2EJGRERERESkEY6ySEREREREpBEGMiIiIiIiIo0wkBEREREREWmEg3oQEVGV2Gw2FBcXo6ioSL05f19YWIjS0lKYzWaYzeZy9119bzabYbPZoChKua+Om6Io5ZYB9lEv3d0cI1/KsgydTge9Xg+DwaDe3H1vNBoRFBSEkJAQBAcHIzg4GKGhoep958dDQkJgMpkQGhoKvZ4fqUREVHn89CAiasCEEMjPz0deXh7y8vIq3M/NzVUfc3wtLCxEUVERSkpKtC4/oISGhsJkMpW7hYeHl/s+IiICUVFRiIyMRFRUFKKiohASEuJyfjsiImoYOMoiEVE9oygKcnNzkZWVhezs7Apfz71vs9mq9Xw6nQ6hoaHlbiEhIQgLC0NwcDCWzVwDSQCwSYCQAEUCFEBSHPedvhcAUPZVwL6+41NKnH1ccjzmtBjOmUZC2YpO30vC3lFfEhCy43tRbpmQy3aus9+unngFSkpKUFxcjOLiYpSUlKjfO76WlpZW6/dnNBrVcOZ8i46ORlxcHOLi4hAbG4u4uDiEhYUxvBER1TMMZEREdYjNZkN2djbOnDmD9PR0pKenV7ifkZEBq9Vaqf2GhoYiIiIC4eHhiIiIQEREBFZ/txGSVQKsMiSrDFgk+1ebBMkmATb7fSiAhIYbEkRZgBN6BdALQKdA6AWgL/uqE7hu8lVqi2NOTo761Ww2V+q5goOD1XDmCGqxsbFo1KgRGjVqhMaNGyM2NtanicqJiCgwMJAREQUQm82GjIwMnD59usItNTUVmZmZPrdoRUZGIiYmBtHR0dj2xx5IFhmwyJDMZ7+qj4mGG6i0IlDWQmcQEAYFwqAATl8H3nkZMjMzkZGRgYyMDBQUFPi0X71ej0aNGiEhIQGNGzeu8LVRo0YwGAw1/NMREZGvGMiIiGpZaWkpTp48iWPHjuHEiRPlQldaWprX1i2dTofY2FjEx8ejUaNGWPPtJqBUhmTWQSr7CjNDVn0jZAEYbRBGpexmw8hnrlVbRtPS0pCRkeE1sMuyjISEBDRr1gzNmzdH8+bN0axZMzRr1gxNmjRBUFBQLf1EREQEMJAREdUIRVGQlpaG48ePV7ilpaXB01uvTqdD48aN0aRJE2xdtBtSie7szSzbw1YD7iJI7gkIIEiBCLKptyGTrkBqairS0tKQmprqsZukJElo1KiRGtJatGiBli1bolWrVmjUqBG7QhIR1QAGMiKiarDZbDh16hSOHDlS7nby5EmPB74mkwmJiYlo3rw5Vny57mzgKtXZW7sYuKgGCAh7t8gQG0SwDbe8cj1OnDiBkydP4sSJEygqKnK7bXBwMBITE9GqVSs1pLVs2RJNmzblkP9ERNXAQEZE5ANHi9fRo0dx+PBhNXilpKS4DV4Gg0FtZVj/3b+QSvSQinSQivWAVWLoooBiD2sCItgKEWLDra8Ox/Hjx3H06FEcP37cbVdavV6PFi1aoE2bNmjbti3atm2Ldu3aIS4ujiNCEhH5gIGMiOgcVqsVR48exYEDB5CcnIwDBw7g4MGDblsPgoKC0KpVKxxYkwKpSA+pSA+5SAeU6hi6qF4QEBDBNohQK0SoDVfefSlSUlJw7NgxFBcXu9wmMjKyXEBr27YtWrVqBaPRWMvVExEFNgYyImrQiouLcfDgQRw4cEC9HTlyBBaLpcK6er0eiYmJOLrxlL2lq0gPuUgPlDB4UcPkuGZNCbVChFpx+cReOHjwII4fP+5ycBGdTofExER07NgRnTp1QqdOndC2bVsOJEJEDRoDGRE1GFarFUeOHMGePXuwd+9e7N27F0ePHnU5wIbJZEK7du2wc3EypEI9pAI9pGI9Ry4k8oGQhL01LcyK4U9fhUOHDuHgwYPIz8+vsK5Op0ObNm3UgNaxY0e0adOG16URUYPBQEZE9ZIQAmfOnMGePXvUALZ//36UlpZWWDcmJgYdOnTAPz/shFSoh1ygZ3dDIj8TEIBRgWKyYMybw7Fv3z7s27cPubm5FdY1Go1o164dzjvvPCQlJSEpKQkJCQkaVE1EVPMYyIioXrBarUhOTsaOHTuwc+dO7N69G1lZWRXWCwsLQ6dOnbDtl32Q8vWQ8w2QLDoNKiYitcujyYKRrwzF/v37sX//fpeTYMfHxyMpKQldunRBUlIS2rVrx1Y0IqoXGMiIqE4qKirC7t27sXPnTmzfvh179uyp0Prl6Ap1aM0Je/DKN0AqZssXUSBTBxAJt+D6pwdh586dOHToUIVr0oKCgtQWtC5duqBLly4wmUwaVU1EVHUMZERUJ+Tm5mLbtm3YsWMHduzYgYMHD1Y4QAsPD0eXLl2wac4OewArMEBSGL6I6johKxDhVoz74Cbs2rULu3fvrnA9mizL6NChAy666CJ07dqVAY2I6gwGMiIKSEVFRdixYwf+/fdfbN26FQcPHqww+EZCQgLSd+ZCzjNAyjPaRz5k6xdRvScg7JNbR1hw1eS+2L59O06ePFluHQY0IqorGMiIKCCYzWbs2bMHW7duxb///os9e/ZUaAFr2bIljm88AznPADnPCKmU134RkZ0w2qBEmnH1Y/3w33//uQ1oPXr0QI8ePdC5c2cYDAaNqiUiOouBjIg0IYRASkoKNm3ahM2bN2PHjh0VrgFr3LgxzmzLgZxrhJxj5OAbROQzbwEtJCQEXbt2RY8ePdCzZ080b94cksQWdiKqfQxkRFRrioqK8O+//6ohLDU1tdzy6Oho5CYXQc4pC2ClHEGNiPxDGG1QoswYcH9PbNmyBTk5OeWWN27cWG0969atG8LDw7UplIgaHAYyIqoxQggcOXIEmzZtwqZNm7Bjxw5YrVZ1ucFgwIUXXoj/ftgHOSeI14ARUa0QEBBhVkz49Gb8888/2LlzJywWi7pcp9MhKSkJl156Kfr06YMWLVqw9YyIagwDGRH5ldVqxbZt27B27VqsW7cOZ86cKbe8adOmSN2SDTk7CHKukaMgEpHmhCygRJox/IWB2Lx5M44dO1ZuebNmzdCnTx/07t0bF154Iec/IyK/YiAjomorLCzEpk2b8Pfff2Pjxo3lJnU1Go3o2rUrtny/B3KWEVIJW8GIKLCJIBvu+3YM1q1bh23btpVr2Q8LC0PPnj3Rp08f9OrVCxERERpWSkT1AQMZEVVJRkYG1q1bh7///htbt24t190nOjoauXuLIWcF268FYysYEdVRQqdAiTJj0KOXYsOGDeWuPdPpdOjatSsGDBiAyy67DNHR0doVSkR1FgMZEfnszJkzWLVqFVauXIndu3eXW9aiRQuc2pAJOTMIUr6BrWBEVO8ICIhwC0a/Mwzr1q3D4cOH1WWyLOOCCy5A//790a9fP8THx2tYKRHVJQxkRORRRkaGGsJ27txZblnnzp2xb3EK5MwgyMW8poKIGhYl2Io7Pr8Ja9aswb59+8ot69y5MwYMGID+/fujcePGGlVIRHUBAxkRVZCZmYnVq1dj5cqV2LFjBxxvE5IkoUuXLtiz4Ii9JczMecGIiAD7dWcTZ47C6tWrsWvXrnLLOnfujEGDBuHyyy9nt0YiqoCBjIgA2AfmWLVqFf78809s374diqKoy5KSkrD3txToMhjCiIi8EUYb7pszBmvWrMG2bdvUk1o6nQ7du3fHoEGD0LdvX4SGhmpcKREFAgYyogbMarXin3/+wZ9//om1a9fCbDary84//3zsX3QMuoxghjAioioSBhvu/mY0li9fXq5bY1BQEPr27YuBAweiZ8+eMBgMGlZJRFpiICNqYIQQSE5Oxp9//okVK1YgKytLXdayZUucWJ0JXXowpFKGMCIif1KCrRjz0bVYvnw5Tpw4oT4eERGBK6+8EkOGDEGHDh04CTVRA8NARtRAZGRkYOnSpVi6dCmOHj2qPh4VFYX8PaWQz4RAKtBzdEQiohomICBMVgx/7coKJ8batm2LIUOGYNCgQYiKitKuSCKqNQxkRPWYzWbD5s2bsWjRIqxfvx42mw2AfbJm60kJ8pkQ+zxhgiGMiEgLAgIiyox+k7uV6zqu1+vRp08fDBkyBD169IBez5FsieorBjKieigtLQ2LFy/G77//jjNnzqiPd+7cGft/OQY5IxiSTdawQiIiOpfQK7h/7hgsWbIE+/fvVx+Pi4vD4MGDMWzYMDRr1kzDComoJjCQEdUTVqsV69evx8KFC7F582Z1VK+IiAgU7rVCTguBXMQzrEREdYESZsH1r12BZcuWITc3V338kksuwfDhw9GrVy/odLzWl6g+YCAjquMyMjLw22+/4bfffit3HULXrl2xc+4he2sYuyQSEdVJQhJ4dsWDWLRoETZv3qw+npCQgOuuuw5Dhw5FTEyMhhUSUXUxkBHVQUII7NmzB/Pnz8eqVatgtVoBANHR0cjbUWpvDSthaxgRUX0igq248Z1B+P3335GXlwfAfq3ZgAEDMHz4cHTp0oUjNBLVQQxkRHWI2WzGX3/9hZ9//rncfDZdunTB3h+PQc4MYmsYEVE9J2SBKYvuwi+//II9e/aoj7dp0wYjRozAoEGDEBQUpGGFRFQZDGREdUB6ejp++eUXLFy4EDk5OQDKRko8LkN3KhRyIScUJSJqiJQwCwY/dymWLVuG0tJSAPbeEjfccAOGDx/OofOJ6gAGMqIAduTIEcydOxfLli1TuyXGx8cj659i6FJDIFk5UiIREQFCp+Cub27GTz/9pI6uazQaMXjwYNx8881o1aqVtgUSkVsMZEQBRgiB7du34/vvv8eGDRvUxy+88ELsnnvU3i2RkzcTEZELQhJ46s/7MG/evHJd2y+55BKMGjUK3bp143VmRAGGgYwoQNhsNvz999/4/vvv1WsCJEmClG6E7kQY5AJ2SyQiIt8ICIgIC3o9kIS///5bnQqlffv2GDNmDPr3789h84kCBAMZkcbMZjOWLFmCuXPn4uTJkwDKrg9L0UF3MpSjJRIRUbWIYCuufX0Afv/9dxQXFwMAWrRogTFjxmDQoEEwGHjCj0hLDGREGiktLcWiRYvw3XffIT09HQAQHh6Oot0KdKdDIVl4fRgREfmP0CsY89kw/PTTT8jPzwcANGrUCLfccguGDRvGkRmJNMJARlTLSkpK8Ntvv+H7779HZmYmgLKBOjaVQJcaDElhECMiopojdArunD0C8+bNQ1ZWFgD7yIyjR4/GDTfcgODgYI0rJGpYGMiIaklxcTF+/fVXzJ07V/0ATEhIQOa6IshpIZw/jIiIapWQBCb9fDvmzJmD1NRUAEBMTAxuvfVWXH/99WwxI6olDGRENcxsNuO3337DN998g+zsbABA48aNkbG2EPIZBjEiItKWkAQeW3QnZs2ahVOnTgEAYmNjcdttt+Haa6+F0WjUuEKi+o2BjKiGWK1WLF26FDNnzkRaWhoAoGnTpjizqgByejCDGBERBRQhCTz863jMmjVL/dyKj4/H2LFjMXToUOj1HGSKqCYwkBH5maIoWL16NWbMmIFjx44BsH+gZa8vYYsYEREFPEdXxtmzZ6uDTjVv3hx33303+vfvz3nMiPyMgYzIj7Zs2YJPP/0UycnJAIDIyEgUbLPZR01U+AFGRER1h5AE7p03GrNnz0ZOTg4A4Pzzz8e9996Liy66SNPaiOoTBjIiPzh69Cg+/vhjbNy4EQAQGhqK0r0SdKdCIdk4aiIREdVdQqfg1s+GYt68eeo8Zr1798Y999yDNm3aaFwdUd3HQEZUDdnZ2fj666+xcOFC2Gw26HQ64LgRumMmSFYGMSIiqj+EwYYhr/dVP/NkWcaQIUMwceJEREdHa10eUZ3FQEZUBaWlpfjxxx/x7bffoqioCAAgZwZBd8QEuYQXPRMRUf2lBFvRZ0oXrFq1CgAQFhaGcePG4aabboLBYNC2OKI6iIGMqBKEEFi3bh0+/PBDnD59GgDQoUMHHPkpHXIehwUmIqKG493tz+PDDz/Evn37ANgH/njwwQfRu3dvDvxBVAkMZEQ+OnHiBD744ANs2rQJQNnIiX+X2oewBz94iIio4REQeGzxnfjss8+QlZUFAOjRowcmTZqEVq1aaVscUR3BQEbkRXFxMb799lvMnTsXFosFer0e4ogRuuNhkBReJ0ZERCR0CkZ8OAg//vij+lk5evRojB07FsHBwVqXRxTQGMiIPFizZg2mTZuGM2fOAACkbCP0h8MhF/M6MSIionOJYCu6P9QR69evBwA0btwYjzzyCHr37q1xZUSBi4GMyIX09HS8//77WLt2LQD7B0rGymLImUHsnkhEROTF86sfwgcffKCe0OzXrx8eeughNGrUSOPKiAIPAxmRE0VR8Ouvv+Kzzz5DUVGRfRj7o8Fl3RMZxIiIiHwlZAU3fTgQP/zwA2w2G0JCQnDnnXfipptusn++EhEABjIi1ZEjR/D2229j165dAAApzwD9wXDIRRzCl4iIqKqUUAs6jWuGnTt3AgA6d+6MqVOnomXLlhpXRhQYGMiowbNarfjmm2/wzTffwGq1IiQkBJZdesinQ9g9kYiIyA8EBCYtuB2ffPIJioqKYDQaMX78eIwePRp6Pa/LpoaNgYwatCNHjuC1115DcnIyAEDONEJ/KAKSmV0piIiI/E0Ybeg6qa06hUzHjh0xdepUtG3bVuPKiLTDQEYNks1mw9y5c/HVV1/BYrEgPDwcxVskzilGRERUwwQEpvx+F6ZNm4aCggLodDrccccdGDNmDK8towaJgYwanOPHj+P//u//sHv3bgCAnGWE/iBbxYiIiGqTMNhwyZTz1BGNk5KS8Oyzz6Jp06YaV0ZUuxjIqMEQQmDhwoX48MMPUVpaitDQUJi36SGfYasYERGRFhytZe+//z6KiooQEhKCyZMn45prroEk8bOZGgYGMmoQ8vLy8NZbb2HNmjUAACnHCMOBCEilbBUjIiLSmgiyodOdTbFjxw4A9nnLpkyZgqioKG0LI6oFDGRU723fvh2vvPIKzpw5Y++bfjAEupOhbBUjIiIKIAIC42cPx4wZM2Cz2RAbG4sXXngBF110kdalEdUoBjKqt6xWK2bPno3Zs2dDURQ0a9YMZxYXQy7gvGJERESB6qO9r+KVV17BsWPHIMsyJkyYgNtuuw2yLGtdGlGNYCCjeikrKwsvvfQS/vvvPwCAnBYM/eFwSDa+mRMREQU6ISu4/KWLsXTpUgBAjx498OyzzyI6Olrjyoj8j4GM6p2dO3fihRdeQEZGhn2S520G6NJDtC6LiIiIKkFA4NFFE/Dee++htLQUcXFxeP7559mFkeodBjKqN4QQmD9/PqZPnw6bzQapSAf93ijIxXqtSyMiIqIqUkKtaHqDCSkpKZBlGffffz9uvvlmjsJI9QYDGdULRUVFePvtt7FixQoAgJweBP2BCEgKuygSERHVdUIWuPylrmoXxquuugqPP/44goKCNK6MqPoYyKjOO336NJ566ikcPnzYPorigVDoToVwFEUiIqJ6REDg3h9Gqz1hOnTogNdeew0JCQlal0ZULWw+oDptx44duOeee3D48GHExMRA3hoB/SkOaU9ERFTfSJDw2ch5ePfddxEZGYnk5GRMnDgR27Zt07o0omphCxnVWUuWLMHbb78Nq9UKqUAPw54oSGZO9ExERFTfiSAbWt4ajQMHDkCn0+Gxxx7DsGHDtC6LqEoYyKjOsdls+OyzzzB37lwAgJwRBH1yJCSFrWJEREQNhZAF+j1/AZYvXw4AuO2223DXXXdxvjKqcxjIqE4pLS3Fyy+/jLVr1wIAdMfCoDsWxi6KREREDZCAwC1fXINZs2YBAK644go89dRTHOyD6hQGMqoz8vLy8NRTT2Hnzp0wGAwQO0Ogy+D8YkRERA3do4sn4K233oLNZkOXLl3w2muvISoqSuuyiHzCQEZ1QlpaGqZMmYKUlBSYTCaUrjdAzjNqXRYREREFiDf+mYrnnnsOBQUFaN68Od599100btxY67KIvGIgo4B36NAhPP7448jIyABKZRh2R0Mu4mTPREREVJ4SYkXsUANSU1MRHx+P//3vf2jVqpXWZRF5xKseKaDt3LkTkyZNQkZGBqRCHYzbYxjGiIiIyCW5WI+s36xo1aoV0tPTMWnSJOzdu1frsog8YiCjgPXff/9hypQpKCgogJRrgGFHDIe1JyIiIo8ksw6n5hbivPPOQ25uLh5++GFs3bpV67KI3GIgo4C0efNmPP744yguLoaUbYRhdzQkG1+uRERE5J1klXHoqwxcfPHFKC4uxuOPP44NGzZoXRaRSzzCpYCzbt06PPXUUzCbzZCzjPYJnznHGBEREVWCZJOx68MTuOyyy2CxWPDss88ylFFAYiCjgLJmzRo8++yzsFgs9gmf90ZBEgxjREREVHmSkLDpjf3o378/QxkFLI6ySAFj48aNePrpp2G1WiGfCYY+OYITPhMREVG1CUmg99PnYfXq1TAYDHjttdfQq1cvrcsiAsBARgFi69ateOKJJ+zdFNODoN8fyTBGREREfiMkgV5PdcKaNWtgNBrxf//3f+jZs6fWZRExkJH2du7ciSlTpqC4uBhyphH6feymSERERP4nJIFLpnbE2rVrERwcjHfffRdJSUlal0UNHAMZaSo5ORkPP/ywfWj77LIBPBjGiIiIqIYISaDro62xadMmhIeH46OPPkLr1q21LosaMAYy0szp06dx3333ISsryz7P2O5ojqZIRERENU7IAu0nxmP37t2Ii4vD9OnT0aRJE63LogaKgYw0kZeXh/vvvx/Hjh2DVKiHYQfnGSMiIqLaI/QKmt1iwpEjR9C8eXNMnz4d0dHRWpdFDRCPgKnWlZaW4qmnnsKxY8eAEhmG3VEMY0RERFSrJKuMk/Py0bhxY5w4cQJPP/00SktLtS6LGiAeBVOtUhQFr732Gnbu3AlYJRj2REMy67Qui4iIiBogyaxD5iILwsPDsXv3brzxxhtg5zGqbQxkVKu+/PJLrFq1CgaDAYa9UZCL9FqXRERERA2YXKLHq6++Cp1OhxUrVmDmzJlal0QNDAMZ1Zq//voL3377LQBA7AqBnGvUuCIiIiIi4Ilu/4fHHnsMAPD1119j+fLlGldEDQkH9aBacfDgQdx///0oKSmB7kQo9EfDtS6JiIiIqJwbProcc+fOhdFoxPTp09GxY0etS6IGgIGMalxOTg7uvvtupKam2uca2x0FCRzenoiIiAKLgED3J9ph/fr1aNy4Mb788ktERERoXRbVc+yySDXKZrPhpZdeQmpqKlCsg2FfJMMYERERBSQJErb87wCaNm2K1NRUvPrqq1AUReuyqJ5jIKMa9e233+Lff/9FSEgIDHs5vD0REREFNskm45VXXoHRaMTGjRvV69+JagqPjqnGbN++HV9//TUAwLLNwBEViYiIqE64v+PTeOSRRwAAM2bMwL///qtxRVSf8RoyqhG5ubmYMGEC0tPTIacFw3AgUuuSiIiIiCpl4OvdsXjxYsTGxmLmzJmIjOTxDPkfW8jI74QQeP3115Geng6pWAf9IY6oSERERHXPsmf+QWJiIjIzM/G///2Pk0ZTjWAgI79bvHgx1q9fD4PBAP2+SEgKX2ZERERU90iKhOeeew46nQ6rVq3C0qVLtS6J6iEeKZNfpaWl4aOPPgIAKMlBkAsNGldEREREVHUPnvcsJkyYAAB4//33cfr0aY0rovqGgYz8RgiBt99+G0VFRZDyDNCdDNW6JCIiIqJqmzXuV3Tp0gVFRUV444032HWR/IqBjPzm999/x+bNmwEF0B+I4HxjREREVC9IkLD/q1MICgrCf//9hz/++EPrkqgeYSAjv8jIyFC7KupSTJCLOcQ9ERER1R9SqV7tujh9+nTk5ORoWxDVGwxk5BeffPIJCgsLIeXr2VWRiIiI6qUZt81Hu3btkJeXh+nTp2tdDtUTDGRUbdu2bcOyZcsgSRL0B9lVkYiIiOonSUiYMmUKJEnC0qVLsWXLFq1LonqAgYyqxWq14v333wcASKeCOaoiERER1WuTk17AjTfeCAD48MMPYbVaNa6I6joGMqqWX375BYcPHwYsEvQpJq3LISIiIqpxC6esQWRkJI4cOYLFixdrXQ7VcQxkVGX5+fn46quvAAD6FBMkK19OREREVP9JNhnjx48HAMyYMQOFhYXaFkR1Go+gqcq+//57FBQUQCrUQU4N0bocIiIiolrzycjvkZiYiJycHHz77bdal0N1GAMZVUlmZiZ++uknAPZh7jmQBxERETUkkpBw3333AQB+/PFHnDlzRuOKqK5iIKMqmT17NkpKSiDlGSBnBWldDhEREVGte+Gy93DhhRfCbDbju+++07ocqqMYyKjSTp8+jYULFwIou3aMrWNERETUAEmQ1GvJFi1ahIyMDG0LojqJgYwqbd68ebBarZByjJBzjVqXQ0RERKSZJ3u8ji5durCVjKqMgYwqJScnRx3eVX88VONqiIiIiLTl3Er222+/ITMzU9uCqM5hIKNKWbBgAUpLSyEV6CGxdYyIiIgIT13yJjp37gyz2Yyff/5Z63KojmEgI5+VlJSobzK6E2G8doyIiIgI9lay0aNHA7C3kpWWlmpcEdUlDGTks6VLlyI3Nxco1kHO4MiKRERERA6vXP4hGjdujNzcXCxbtkzrcqgOYSAjnwgh8NtvvwEAdKdD2DpGRERE5ESChBtuuAEA8NNPP0EIoXFFVFcwkJFP9u7diwMHDgAKoDsTonU5RERERAFnxtifEBQUhMOHD2Pv3r1al0N1BAMZ+cTROiZnBEOy8mVDREREdC7JJqN///4AgN9//13jaqiu4JE1eVVSUoKVK1cCAHSpbB0jIiIicmfl//4BAKxYsQIlJSUaV0N1AQMZebVu3ToUFxcDJTKkPIPW5RAREREFLCnXgCZNmqCwsBBr167VuhyqAxjIyKsVK1YAAHTpHMyDiIiIyBMJEgYNGgQAWLVqlbbFUJ3AQEYe5efnY9OmTQAAOT1Y42qIiIiIAt/3Dy8CAGzatAlFRUUaV0OBjoGMPNq0aRMsFgukQh3kIr3W5RAREREFPKlIjxYtWsBsNmP9+vVal0MBjoGMPHK8ichZnAiaiIiIyBcSJAwYMAAAeB0ZecVARm5Zrdaz3RUZyIiIiIh8NneKvdvili1bYLPZNK6GAhkDGbm1e/du5OfnAxYJUj5HVyQiIiLylZRvgMlkQn5+Pvbt26d1ORTAGMjIrf/++w8AIOcYOboiERERUSVIkNC9e3cAUHscEbnCQEZuqYEs16hxJURERER1T48ePQCcPaYicoWBjFwym83YvXs3AEBiICMiIiKqtPdHfwUA2LdvH6xWq8bVUKBiICOXkpOTYTabAbMEqVindTlEREREdY5UrENERARKS0tx8OBBrcuhAMVARi7t378fACAXGHj9GBEREVEVSJDQuXNnAMDOnTs1roYCFQMZuXTgwAEAgFTA0RWJiIiIquq8884DcPbYiuhcDGTkUnJyMgBAKtBrXAkRERFR3TX78fkAgMOHD2tcCQUqBjKqwGq14ujRowAAuZAtZERERERVJRfaT24fPXqUA3uQSwxkVEFqaqr9DcMGoJQvESIiIqIqK9EhODgYZrMZp06d0roaCkA82qYKTpw4AQCQSvQc0IOIiIioGiRIaN68OQAwkJFLDGRUgRrIONw9kX/JOsjBwVpXQUREtaxx48YA7L2QiM7FQEYVpKWlAQCkEgYyIr8zGBjKiIgaGEcgO336tMaVUCBiIKMKMjMz7XcsfHkQ+Y2sgxxSFsQYyoiIGpQFb/0B4OxJbyJnPOKmCrKysgAAkpkvDyK/cIQx2el/iqGMiKjBkMpOcufm5mpcCQUiHnFTBQxkRH7kKow5MJQRETUIDGTkCY+4qYLCwkL7HStfHkTV4imMOTCUERHVf1YGMnKPR9xUQXFxsf2OwiHviarMlzDmwFBGRFSvSVb7MVVBQYHGlVAgYiCjChyBTLIxkBFVSWXCmANDGRFR/VV2kttisWhcCAUiBjIqx2q1wmaz2b9hICOqvKqEMQeGMiKi+knYj6msViuEEBoXQ4GGgYzK4ZsEUTVUJ4w5MJQREdVDZ4+v8vPzNayDApFe6wIosEgSW8WIqkLS6yGHhvrnpEZ1Ah0REQUecfb4Su2JRFSGn/pUTrlAxmxG5BNHGINOB0lXvbdVSZIgGQ2Qw8L8VB0REWnO6VxdaGiodnVQQGIgo3Jk5zPzErsvEnnjHMbsD8hVDmWSJAGyZN+HQc9QRkRUX8j2YypJkmA0GjUuhgINAxmVI0kSQkJC7N/oGMiIPKkQxtQFlQ9lzmFM3QdDGRFRvSDKjqlCQ0N5eQhVwEBGFYSVHQAKBjIi92Sd6zDmUIlQViGMOe+DoYyIqO5zCmRE52IgowocgQx6BjIiVyS9HjpTmPswpq7oPZS5DWPO+2AoIyKq28qOqdReSEROGMiogvDwcACA0CsaV0IUeNx2U3S7gftQ5jWMOe+DoYyIqM4SBvsxVXR0tMaVUCBiIKMK4uPjAQAiiIGMyFmlw5i6YcVQ5nMYc94HQxkRUZ0kjPah7mNjYzWuhAIRAxlV4AhkMHKeDCKHKocxdQdnQ1mlw5jzPhjKiIjqHqP9JHdcXJzGhVAgYiCjChxvFiKIgYwI8EMYc95XVcOYugOGMiKiumbAuN4A2EJGrjGQUQVNmjQBAIhgBjIiSBKEIiDM5urvKjwctvNbVT2MqTuSAVkGOHQyEVGdcPz4cQBA8+bNNa6EAhEDGVXQsmVLAIAIsUGAIy0SAYBitkAUF1d5e8kUhuLzGqM0Jgi2ji2qV4zNdrYWhjIiooAmINRA1qJFNd//qV5iIKMKmjVrBp1OZx+i1ciBPagBk8p3LaxqKHOEMZtRhpCl6oUymw1KURGEzakFm6GMiChwGRUUFxdDp9OhWbNmWldDAYiBjCowGAxo2rQpAECEWjWuhkgjkuvrvCobyiRTGIo7JsBmPLuvKocyV2HMuV4iIgo4jmOpJk2awGAwaFwNBSIGMnKpXbt2AADFxEBGDZCbMOZQqVCmk2ELrjgYSKVDmacw5sBQRkQUcBzHUh07dtS4EgpUDGTkUqdOnQAAwmTRuBKiWuYljDn4EsokUxiK28W7Xe5zKPMljKlPylBGRBRI+oy9GAADGbnHQEYunXfeeQAAhYGMGhIfw5iDp1CmdlV00TrmzGsoq0wYU5+coYyIKFDs27cPwNmT3UTnYiAjlzp06ABZloFgRZ1dnqheq2QYc3AVynwNYw6eQpkQonJhTC2CoYyISGsiyIYzZ85Ap9OhQ4cOWpdDAYqBjFwKDQ1V3ziUyOrPv0QU0KoYxhycQ1llw5iDy1DmPLx9VTCUERFpynEM1bFjR4SGhmpcDQUqBjJy6+KL7X2elSgGMiJvFLMF0OurFMYcyoWyqnRVdIWhjIhIMwMfuhQA0LVrV40roUDGQEZudevWDYD97A4niKZ6TVT/9S1dfB4OfNAMR26qWhhTS5ElZHcKw5FHk6ofxoiISDMCAlu3bgXAQEaeMZCRW126dIHRaLRfRxbKA0Oq50T1JkG3hRlwYYsT6NjxJI4Nrfp+ChN0KLw2D+E90nHs+d7VqgmAX8ImERFVngi14syZMzAajbjgggu0LocCGAMZuRUcHHy2lSymRONqiGqYEFUOZdLF5+HkJPuIpCZDaZVDWWGCDkXX5KNxZD7Cg0oR3jMdx56rRihjGCMi0owSWwoA6N69O4KDgzWuhgIZAxl51LdvXwBn31SI6rUqhDLp4vNwbCpwfkKq+lhVQpkjjDWJylMfCw8qRfglVQxlDGNERJpqP9g+SJPjWIrIHQYy8ujSSy+FJEkQ4VYOf08NQyVCmasw5lDZUKYYUC6MOaihrDLdFxnGiIg0JYJs6vxjvXr10rgaCnQMZORRbGwsunTpAgCwxbPbIjUQQgCKzWMwky4+DylPSi7DmIOvoawwQYeSgflul1eq+yLDGBGR5mxx9mOmiy66CHFxcRpXQ4GOgYy8GjRoEABAacRARg2Mm9Yyqdv5SHlSQufGp73uwlsoc9VV0RVHS1ny593dBzOGMSKigNDyykYAgKuuukrjSqguYCAjr6644goYDAaIMCuUUIvW5RDVLhehzBpm8CmMOZgMpejQ4RSODSn/eGGCDoVXF3gNYw7hQaVo0zrN9XVlDGNERAFBCbXg8OHDMBgM6N+/v9blUB2g17oACnzh4eHo3bs31qxZAyWhBPIRg9YlEdUuIQAogCRD6nY+Tj5gQVQldxFuLEHP+APoKR1D//WHESybkddYj31KY/x+TRKyY8J831dQKVAWyhJf2VDJSoiIqCYpjYsBAL1790Z4eLjG1VBdIAnB06rk3YYNG/Dkk08CVgnGzfGQFEnrkohqndStM44+KSOpie+tYwBgLLViwvvrcMWS/dBbK3aBtOhl/DG4Mz588HJYjL6fJ8svDULBxni0eGV9peohIqKaIWQB41VFKCgowDvvvIOePXtqXRLVAeyySD7p2bMnmjRpAugFFA7uQQ2RrIMuNRumZaZKbWYsteLZxxbjqoV7XYYxADBYFVy7eCfemvozjKW+dwvOyAxH4qJcyJzfhogoICjxJSgoKEDTpk3RvXt3rcuhOoKBjHyi0+lw/fXXAwBsTYogwIZVakBkHXSmMIjCQiT8cRxHZ7f3edMJ769D0rbTXv9jBICLtp/Ag9NX+bTfI6fi0OG9UsiHjgMGA0MZEZHGBATaDmsCALjuuusgyzzMJt/wlUI+GzJkCIxGI4TJChHBwT2o4ZBkCZDt3XRFfr7PoSwqswhXLNlv34e35yj7evXS3YjOKvS47pFTcejwQVkYAyBJEkMZEZHGRKQF+/fvR1BQEIYMGeJ9A6IyDGTks6ioKFxzzTUAAGsLzweMRPWGrIMcGlruIV9D2ZWL3HdTdMdgVTBkyS6P64gSHeQDx8s9xlBGRKStC+9oCwAYOnQooqKitC2G6hQGMqqUW265BTqdDiLaDCWMrWRUz8k6yGGhauuYM0coO/KN+1DWeVvlBv9wuHD7CbfLjpyKQ8fPi10uYygjItKGEmbBli1boNPpMGrUKK3LoTqGgYwqpWnTprjiiisAADa2klE9J8kSJJ37t0mRn4/GS9yHspCiqp20CC0yu3z8yKk4dJhmhpx8zO22DGVERLWv76MXArDP3dqkSRONq6G6hoGMKm3MmDEAACW2FEqIVeNqiGqIrIMUEuJ1NU+hrDi0anP2FYUaKzzmSxhzYCgjIqo9SqgVq1evBgDceuutGldDdREDGVVamzZtcNlllwESYGtVoHU5RP5X1lXRU+uYM0coO/eashM9oqv09KH9y7eQVSaMOTCUERHVjp6TOkFRFPTv3x9t27bVuhyqgxjIqEomTpwIWZbtrWThrrtXEdVJlQxjDucO9NE8NAcX3ZkKUclGMmEAWo2VManlX2cfK9ZVKow5MJQREdUsJdyMdevWQZZl3HXXXVqXQ3UUAxlVSatWrdQhXa2tCjgvGdUb3q4b88R5oI9Q2YymTSOBkRH2Zd62ddwZFYGQhBBcFZKFSS3/sg/i8WXVJ2NnKCMiqhkCAufd3gKAfWqgli1balwR1VUMZFRld9xxB4KCgiAiLVBiSrUuhyggiPx8NF5+Gj//1tf+/StxEL2DfZqHTPQOhnglDgAQKhtx1ByHVrMlyPtTqleUokAxc1RUIiJ/UmJKsWPHDhiNRtxxxx1al0N1GAMZVVl8fDxuvvlmAICtdQGExFYyqvuEzQaluOotUjAYIXQyEpcWot139wIhMsScphC3RbjtvigMsC//rikQbH9bnpHbGPNeuxrBJ/MgRUdWuRz151FsVd4HERGVJ2SB+Cvtc1SOGDEC8fHxGldEdZkkhOBRNFVZYWEhbrvtNmRmZkKXEgb9cZPWJRFVnyRB0ukAnQ5ySCW7+gUFATH2AGWNCkVWUihyOgocvPVTIN0KfJcHaX0xUKgAYTLEpSHArRFAvL7cbl5I74x/buls/0YIwGKFZLVBZOVUqhxhs0Ep5BQVRET+ZG1RAFvLQsTHx+Obb75BaGio1iVRHcZARtW2YsUKvPTSS4ACGLfGQirRe9+IqC6QJEhGo++hzGAEosIBva7cw9boUBy+KQQHb/nUp93MyG2ML18ZjuhtWeUXCAGpqAQiO9en/bB1jIjI/0SQFeiTD7PZjBdffFGdn5WoqthlkartiiuuQPfu3QEZsLbJ5wAfVH8IAWE2+9aF0U0YAwB9dhHazC9Gu+/v9bqbz3Obug5jACBJEKHBPnVhZBgjIqoZ3Sd3hNlsRvfu3XH55ZdrXQ7VAwxkVG2SJOGRRx6BwWCAEmOGEssBPqge8TWUyZLLMOaghrLvPIeyoyVxrsOYgw+hjGGMiKhm2GJLsH79euj1ekyePNk+ki1RNTGQkV+0aNFCnZ3e2jYfwqBoXBGRH3kLZQYjEOH9+kl9dhHa/Oy+pezz3Kb4651LvdfjS0sZwxgRkV8Jgw1hvez3b7vtNg5zT37DQEZ+c/vtt9tnqDcqsLbNY9dFql/chTIPXRVdcdd98fPcpvjq1esQ85+H1jFnbkJZtUeJJCKiCgQErG3zkZubi3bt2uH222/XuiSqRxjIyG+MRiOefvpp6HQ6KHGlUOJ5UEj1jKtQ5qWroiuOUNZ2rj2UzchtjK9eq0QYczgnlLGrIhFRzVDiS6DElUKn0+Hpp5+GweBmHhOiKmAgI79q3749xo8fD6Cs66KRB4ZUzziHMh+7Krqizy5C25/soexQSSPEbK1kGHM4t6WMYYyIyK+E0YaQ7vZeP+PHj0e7du00rojqGwYy8rsxY8agU6dOgF7A0iGXXRep/ikLZSgtrXTrmDN9dhHa/liMlW/5cN2YJ5IE6HTsqkhE5GcCAp3uaor8/Hx07NgRY8aM0bokqoc4DxnViGPHjmHixIkoLi6G7lgY9Mc4YTTVQ7IOupgoID6m6vtQBGCzAbJc9XBntkCcOA2lhIGMiMifrIkFsCUWIjQ0FF9++SWaN2+udUlUD7GFjGpEYmIiHnvsMQCArUUhlEgOhU/1kGKDLSsHSK9id8OyMCYpAlAUwFqF7oYMY0RENUKJLIXSsggA8PjjjzOMUY1hIKMac9VVV+Haa68FJMDSMQ/CwGtbqB4qC2Xi2KnKBTPnMAZUOZRJimAYIyLyM2GwIby/DCEErr32Wlx55ZVal0T1GAMZ1aiHHnoIbdq0AYwKLJ1yIST2kKV6SLFBKSysdGuZI4yV+74yocxsgZJ6phKFEhGRN0IS6HhXE2RlZaF169aYNGmS1iVRPcdryKjGpaSk4J577kFRURHk0yEwHIrQuiSimuPLdWXntI6dS8iS92vKzBaIU2lQioqqVy8REakEBKzt8qE0LobJZMKnn36KxMRErcuieo4tZFTjWrZsieeffx6SJEFpUgxbYx5AUj3m7boyL2EM8K2lTLIpDGNERH6mNC6G0rgYkiTh+eefZxijWsFARrXi0ksvxd133w3APj+ZEmnWuCKiGuQllHkKY+XWcRfKzBYoaenVLJKIiJwpkWaIjvYTXffccw969eqlcUXUUDCQUa259dZbMWjQIPsgH51yIIKtWpdEVHNchTLHEPc+chfK2DpGRORfSrAVoX0V2Gw2DBw4ELfccovWJVEDwkBGtUaSJDzxxBP2SaMNAubOORAGReuyiGqOi1DmS+uYswqhjK1jRER+JQw2xF1rRG5uLjp16oQnn3wSkiRpXRY1IBzUg2pdZmYm7r//fpw+fRpSvh6GndGQFJ4boHpM1kEXHQlER1Y6kDkIWYJktUE5k8HWMSIiPxE6BZYu2RAmK5o1a4aPP/4Y0dHRWpdFDQyPgqnWxcbG4p133kFkZCREuBWW8zgcPtVzig227FwgM6fKu5AUAVhtUIqL/VcXEVEDJiRhn5LHZEVUVBTefvtthjHSBAMZaaJFixZ48803ERwcDBFthrV9HgQYyqiekiRAKFDy8yGyc6u2D4sVSlY2IMn2/RERUZUJCPuxR7QZwcHBeOONN9C8eXOty6IGioGMNHP++efj5Zdfhk6ng9KoBNY2+QxlVH9JMoQiqh7KhIBSUqrui6GMiKhqBIR9xOdGJdDpdHjppZdw/vnna10WNWAMZKSpXr16YerUqfY5ypoWw9a6gKGM6pdzglOVQpmjdazcfhnKiIgqS0DA1roAShP7XGNPP/00evfurXVZ1MAxkJHmBg8ejMcffxwAYGtWBFtLhjKqZ6Tyb7WVDmXOrWPn7pehjIjIJwICtpYFsDWzD4z05JNP2qfjIdKYXusCiABg2LBhsFgseO+992BrUQQICfpjJq3LIqoeD2HJEcokqxWSXg8pOtL1iq5ax8o9hwxAAThgLhGRR7YWhfZjDACPPvoohgwZonFFRHYMZBQwbrjhBlgsFnz00UewJRYCAHTHwiCBLQBUh0nuOyIIRUAUFkGSJciA61DmrnWswnMwlBERuaK2jJWFsQcffBDDhw/XtigiJ+yySAFl5MiRuPfeewEAtsRCXlNGDYLbLozeWsecsfsiEVEFAgK2NvlqGLv//vsxcuRIjasiKo+BjALOrbfeismTJwOwX1NmbcfRF6kOqmQ4UkNZbp7Tgz60jpV7ToYyIiIHAQFru3zYmtrnb3zkkUcwevRojasiqkgSgn1cKDD9/vvveOutt6AoCuQzwdAfiIAkeLBJdYQkeeyu6HYzWYIcGQEpNBRKZlblApmDYPdFImrYhGSfZ0xpVAJZlvHkk0/immuu0bosIpcYyCigrVy5Ei+//DJsNhvkLCP0+6IgKQxlVAdUMZAB9lAmGY1VC2MODGVE1EAJWYG1Uy6UGDN0Oh2effZZXHnllVqXReQWAxkFvA0bNuC5556D2WyGlK+HYU80JAt721KAq0YgU8OUP/ZBRNSACIMNlvNzIMKtCAoKwksvvYRLL71U67KIPGIgozph165deOqpp5CbmwsU62DYHQW5hIOEUh1QlVDlHKaquz0RUQOhBFth6ZwDhNgQGRmJN954A507d9a6LCKv2MxAdUJSUhI+/vhjNGnSBAixwXJhFpRws9ZlEXknhD0gabU9EVEDoJgsCL3SCoTY0KRJE3z88ccMY1RnsIWM6pSsrCxMnToV+/btAxRAvz8Susxgrcsi8s7Xli53rVvV3Z6IqJ6yxRVDvqAEZrMZHTt2xJtvvomYmBityyLyGVvIqE6JiYnBBx98gN69ewMyYD0vF9ZEzlVGdQBbyoiI/EpAwJpYAGunPJjNZvTu3RsffPABwxjVOWwhozrJarXi008/xQ8//AAAkDOCoE+OgKTwHAMFOG8tXd5auKq7PRFRPSBkBdaOeVBi7aPR3nLLLbj77ruh0+k0royo8hjIqE5bsmQJ3nnnHVgsFkiFehj2REEq5ZsxBTh3ocrXMFXd7YmI6jARVDaSYpgVBoMBjz/+OK6++mqtyyKqMgYyqvN27dqFZ599FllZWYBFgmFfJOTcIK3LIvLMVaiqTKCq7vZERHWQElWK0D4Cubm5iImJwauvvoqkpCStyyKqFgYyqhfOnDmDZ555Bvv37wcEoDsWBt3xMEjgJNIUwM4NVZUNVM7bM4wRUT0mIGBrUQilVRGEEOjYsSNeffVVJCQkaF0aUbUxkFG9UVpaimnTpmHhwoUAACnbCMP+SEhWXldGAcwRqqoaqKq7PRFRgBN6BZaOuRDR9ulurrvuOkyaNAlBQewNQ/UDAxnVO0uWLMG7776L0tJSoESGYX8k5Hyj1mURuSeVteRW9e24utsTEQUoxWSBpVMOEKwgKCgIjz32GK8Xo3qHgYzqpUOHDuG5557DiRMnAAXQpZigOxnKLoxERER1gICArVkR0K4YNpsNzZs3xyuvvIK2bdtqXRqR3zGQUb1VWFiIt956CytXrgRQ1oXxQAQkM0dhJCIiClTCaIOlQx5ElL2L4oABA/DEE0/AZDJpXBlRzWAgo3pNCIGFCxfiww8/tHdhtEjQH4iALitY69KIiIjoHLaYEoT1BnJzcxEcHIyHHnoIQ4cOhSSxhwvVXwxk1CCkpKTg5ZdfxoEDBwAA8ukQ6I+EQ1L4Bk9ERKQ1IQtYW+VDaVoMAGjfvj1eeOEFJCYmalwZUc1jIKMGw2w248svv8TcuXMBAFKRDvoDERzwg4iISENKuBnWDnkQITYAwKhRozBx4kQYjfx8poaBgYwanC1btuC1115DZmamfc6yk6HQpZggCbaWERER1RYhCdhaFkBpUQwhBOLj4/Hkk0+iZ8+eWpdGVKsYyKhBys/Px7Rp07B06VIAZa1lyZGQCwwaV0ZERFT/KSYLrB1yIULtrWJXX301Jk2ahPDwcI0rI6p9DGTUoP3999945513kJWVZW8tOxEK3TG2lhEREdUEIQvYWhRAtCyBoiiIiYnBlClT0LdvX61LI9IMAxk1eHl5efjggw+wbNkyAGWtZYciIOey7zoREZG/KJGlsLTLB8quFRs4cCAmT56MyMhIjSsj0hYDGVGZtWvX4t1337VfWwZATgu2j8RolTWujIiIqO4SegXW1vlQEkoAAHFxcXj44YfRr18/jSsjCgwMZEROCgoK8Pnnn+PXX3+FEMI+b9mRcMhngiGB3RiJiIh8JSCgxJfA2iYfMAhIkoThw4fj7rvvRlhYmNblEQUMBjIiF3bt2oW3334bR44cAQBIOUboD4VDLtZrXBkREVHgU0KssLbNh4gyAwBat26NJ554Ap07d9a4MqLAw0BG5IbVasXcuXMxc+ZMmM3ms0PkHw+DZGM3RiIionMJnQJbYiGQWAqbzQaj0Yjx48dj9OjR0Ot5UpPIFQYyIi9OnTqFadOmYf369fYHzDL0R03sxkhERFRGQEBpVAJrqwLAqAAALrvsMjzwwANo2rSpxtURBTYGMiIfbdy4EdOmTcOJEycAAFKeAfrD4Zy7jIiIGjQlzGLvnhhhAQC0aNECkydP5gTPRD5iICOqBIvFgh9//BGzZs1CcXExIAD5TDD0KSZIZp3W5REREdUaYbTB2qoASiP76IkhISEYP348RowYAYOBJyuJfMVARlQFGRkZ+PTTT/Hnn3/aH1AA3ckw6E6E8voyIiKq14ROga15IXRtrfZrrAFcddVVuOeeexAfH69xdUR1DwMZUTXs2bMHH3/8MXbs2GF/wCxBf9wEOTUEkuD1ZUREVH8ISUBJKIY1sQAw2g8fL7roIjzwwAPo2LGjxtUR1V0MZETVJITA33//jU8//RTHjx8HAEhFOuhSTJAzgzjwBxER1WkCAkpsKWwtCyBCbQCAxMRE3HvvvejTpw8kiZ9zRNXBQEbkJ1arFQsXLsTXX3+NnJwcAICUr7dfX5ZjZDAjIqI6RUBAiTbbg5jJCgCIjIzEhAkTcO2113IYeyI/YSAj8rPCwkJ8//33+PHHH+0DfwCQcg3Qp5gg5xk1ro6IiMg7JcIMa8sCiEj7yImhoaEYOXIkRo0ahbCwMI2rI6pfGMiIakhOTg7mzJmDBQsWqBc9S9lGezDjUPlERBSAFJPFHsSi7Z9bRqMRN954I2699VZERUVpWxxRPcVARlTD0tPT8c0332DRokWwWu1dPuQsI3THwyDns8WMiIi0p0SYYW1RqAYxnU6HYcOGYezYsRw5kaiGMZAR1ZJTp05h1qxZ+PPPP2Gz2S+KlnKM0B8Pg5Rr4DVmRERUqwQERKQZ1sRCtWuiTqfDoEGDMH78eDRt2lTjCokaBgYyolp28uRJzJkzB0uWLDkbzHIN9mDGwT+IiKiGqYN1tCiEiLAHMb1ej2uuuQZjxoxhECOqZQxkRBpJS0vDnDlzsHjxYlgs9g9EKV8P3ckwyBkcLp+IiPxLHb6+RaE6aqLRaMS1116L0aNHIyEhQeMKiRomBjIijWVkZGDu3Ln49ddfUVpaan+wRAf9yVDIacGQFFnbAomIqE4TctmEzk2LgBB7z4zg4GAMHz4co0aNQmxsrMYVEjVsDGREASI7OxsLFizAggULkJuba3/QIkGXGgrdqRBIFp22BRIRUZ0iDDbYmhbD1rgIMNgP9yIiIjB8+HCMGDGCoyYSBQgGMqIAU1JSgj/++APz5s3DyZMn7Q8qgHwm2N6dsZgTcRIRkXtKqBW2poVQGpUAZZ0smjVrhptvvhnXXHMNQkJCtC2QiMphICMKUDabDX///Tfmzp2L3bt3q49L2UboToVCzuYAIEREZKcO1NGkCCLGrD6elJSE0aNHo0+fPtDp2NOCKBAxkBHVATt37sTcuXPx999/Q/2XLZGhOx0KXVoIJCuvMyMiaoiEXoEtoRi2xsXq9WGSJKFfv34YNWoUkpKSNK6QiLxhICOqQ06dOoVffvkFixcvRn5+vv1BR3fG06GQCw3aFkhERLVCCbPA1rQISvzZbokmkwlDhgzBDTfcgGbNmmlbIBH5jIGMqA4qKSnBihUr8PPPP+PAgQPq41KeAbrTIZAzgiEJdmckIqpPhCSgxJXA1rQIItyqPt6+fXvccMMNGDhwIIKDgzWskIiqgoGMqA4TQmDXrl1YsGABVq1aBau17APaIkGXHgw5NQRyEVvNiIjqMiXUAqVxMWzxJepoiXq9HpdffjmGDx+OpKQkSBJPwhHVVQxkRPVEZmYmFi1ahEWLFiEtLU19XMrXQ5cWAjk9GJKN15oREdUFQqdAiS+BLaG4XGtYo0aNcN1112HYsGGIiYnRsEIi8hcGMqJ6xmaz4d9//8XixYuxdu3as61mNglyRhB0qSGQ8g0coZGIKMAICIgIC2wJxVDiSoCyQRH1ej369OmDoUOHokePHhwtkaieYSAjqsdycnKwdOlSLFq0CCkpKerjUpEOcnowdGdCIJXyg52ISEsiyAZbfAmUhGKIspESAaBVq1YYOnQoBg8ezEmcieoxBjKiBkAIgd27d2PRokX466+/UFJSoi6Tcg32680ygjl8PhFRLRF6xT5AR3wJRKRFfTwkJARXXHEFhg0bhvPPP5/XhhE1AAxkRA1MUVERVq9ejWXLluHff/89O6+ZAsjZQZDPBEPOCuIojUREfiYkASWmFEqjEijRpepw9ZIkoWvXrrjqqqswYMAAhIaGalsoEdUqBjKiBiw9PR3Lly/HsmXLcPDgwbMLrBLkjGDoMoIg5Rh5vRkRURUJCIhIs71LYlwpoD972NWuXTsMGjQIV155JRo1aqRhlUSkJQYyIgIAHDp0CH/++SeWL1+O9PT0swssEuTMsnCWa2TLGRGRFwICIsoMW2wplNgSwHj2UCshIQEDBw7EoEGD0KZNGw2rJKJAwUBGROXYbDZs27YNf/31F9asWYPc3NyzCy0S5Mwg6DKCGc6IiJwIqawlLK4ESmypOl8YAERGRqJfv34YNGgQLrjgAsgyr9clorMYyIjILavVim3btmHlypVuw5mcGQw5h+GMiBoeIQkoUWYocSVQYsqHsKioKPTr1w8DBgzARRddBL1er2GlRBTIGMiIyCdWqxXbt29Xw1lOTs7ZhbayAUGy7DeO1khE9ZXQK/aBOWJKoUSZy10TFhMTo4awCy64gCGMiHzCQEZEleYIZ6tXr8a6devKX3MmACnPoIYzuZgHJERUdwkIiBCbGsJEhAXO4xzFxcWpIaxLly6ctJmIKo2BjIiqRQiB5ORkrFu3DuvWrcOBAwfKLZeKdPZglh0EKc/Aro1EFPCEJCAiLGdDmNNkzQDQvn179OnTB3369EGHDh04VxgRVQsDGRH5VVpamhrO/vvvP1it1rMLbRLkHIO9e2O2EVIpW8+IKDCIICuUaLP9Flm+K6LBYEDXrl3Rp08fXHrppUhISNCwUiKqbxjIiKjGFBQUYPPmzdiwYQM2b96M7OzscsulYh2kbKM9oOUaISk8y0xEtUPICpQoC5SoUohoc4VWsKioKFxyySXo06cPevbsycmaiajGMJARUa1QFAUHDx7E5s2bsWnTJuzatQs2m9MBkAJIeUbIOUbIuQZI+QZOSE1EfiMgIExW+6iIUWXXgjmNP6TT6ZCUlISePXuiZ8+eaN++PYenJ6JawUBGRJooLCzE1q1bsWnTJmzevBmpqanlV7BKkPMMkHLtIU0q1DOgEZHPBAREmD2AiUgzlAhLuW6IANCkSRM1gF188cUICwvTqFoiasgYyIhIc0IIHDt2DFu2bMHWrVuxbds25Ofnl1/JKtm7NTpa0IoY0IjoLAEBEeoIYJYK14EBgMlkwkUXXYRu3bqhZ8+eaN68OQfkICLNMZARUcBxdG/877//sHXrVmzfvh1FRUXlV3K0oOUZ7V8LDLwGjagBEZKACLdAibBARJihhFvKTcwMAKGhobjwwgvRtWtXdO3aFe3ateOw9EQUcBjIiCjgWa1WJCcnY+vWrdi6dSt27dqFkpKS8ispgFRgKAtpBsh5Rk5QTVSPCIMCJdxsH44+wgJhKn8NGACEhITgggsuQNeuXXHRRRehQ4cOnJyZiAIeAxkR1TlWqxUHDx7Ejh07sGvXLuzYsQNZWVkV1pOKdJDyDZDzy1rQCvWcB42oDhCSvfuhCLdACbdARFgqjIIIADExMejSpQu6dOmCpKQkBjAiqpMYyIiozhNC4PTp09ixYwd27tyJnTt34ujRoxVXVGAPZc4hrVjHa9GINCQgIEJs9vBlskCEWyDCrBVavwCgdevWSEpKUkNY06ZNeQ0YEdV5DGREVC/l5uZiz5492Lt3r3rLy8uruKJVsge0Aj2kwrJWNIY0ohohICCCbRAmK4SpLICZrBUG3wCA8PBwdOrUCZ06dUJSUhKSkpIQHh6uQdVERDWLgYyIGgQhBE6dOoW9e/di37592Lt3L/bv3w+z2VxxZRvUcKYGtSI9Bw0hqgQhl3U7NFmghFkhym7QVTzsCAoKQseOHdUAdt5557H1i4gaDAYyImqwrFYrjhw5gr179yI5ORkHDx7EoUOHUFpaWnFlAXvLWUFZOCvSQS7SAyVsTaOGTUAAwTYooTZ7AAuzdzkUITa4+tcwGo1o27Yt2rdvr4avli1b8tovImqwGMiIiJzYbDacOHECBw8exIEDB9Sv2dnZbjYApGJ9WUhjUKP6S+1uGGqFcISvUCtEiBVwM5J8TEwM2rVrh3bt2qF9+/Zo164dmjdvzqHniYicMJAREXkhhEBmZiYOHjyIgwcP4siRIzh69ChSUlJcd3kEzga1Yp39a4nu7H0Ox08BTOgViBCrPXyF2Oz3Q+wBzNVAG4C91SsxMRGtWrVSW7/atm2L2NjY2i2eiKgOYiAjIqoim82G06dP48iRI0hJSfEtqAGARaoY0kp0kEp09kFG2LJGNUzoFHvICi4LW47gFWyrMLmyM6PRiJYtW6JVq1Zo3bq1er9JkybsckhEVEUMZEREfuYIakePHsWJEydw4sQJHD9+HCdOnEB6errnja0SpFIdpBIZUqnO3vWxVKcGNsnG1jXyTEAAurLuhcE2iCAbEGyDCFIgguyPuRrV0Fl8fDyaN2+u3hITE9G6dWskJCSwuyERkZ8xkBER1aLi4mKcOnVKDWiOrydPnnQ5uXUFjsBWKgNm+1fJ7HyfrWz1mYAA9ALCaA9YMCr2+0YFCDoburwFLsB+fZdz6GrevDlatGiBpk2bIiQkpBZ+GiIiAhjIiIgCRmlpKVJTU5GamorTp0/j9OnT5b7PycnxbUc22AOaWS676QCLDMkilX0tC3EWHYfyDwACApAFYFAgDMIergwKhKHsa1ngsgcwm9vruM4VExODxo0bq7cmTZogISFB/T44OLhmfzAiIvIJAxkRUR1RXFyMtLQ0pKamIiMjA+np6RW+5ubmVm6nNpwNaRYZsMqQrPbgpt539VUwyLkiZAHoFQhd2Ve9/Sv0AsL5a1ngcoQud6MUuhMZGYn4+HjExsYiPj4ecXFxiI+PR3x8vBq8GLiIiOoGBjIionqktLQUmZmZakjLyMhATk4OsrOz1a/Z2dnIysryPPCINzYANhmwSZBsElB2kxTpnMdk+30FgCLZb0KCVO57+31JKVtPlD2Gc+/bv3jrjinOruj0Vdi/SrC3RkkCQnbcL/sqCwin+5BhD1ayYr8mS2e/Ngs6YQ9ezt+XBTBfW69cMRqNiImJQVRUFKKiohAdHY2oqCjExsaqgctx32g0Vv2JiIgooDCQERE1QEIIFBcXlwtpOTk5yM/PV295eXnIz89HQUGB+n1BQQE0/9gQKB/SygUvuJyMuDbJsgyTyQSTyYTw8HD15vjeZDKpgcsRuqKiohASEgJJYssjEVFDw0BGREQ+UxQFhYWFyM/PR3FxMYqKilx+Pfd+aWkpzGYzLBZLua+uHlMUpUZ/Bp1OB6PRCIPBoN6cv3fcNxqNCA0NRUhIiHoLDg5GSEhIhcdDQkLUwBUaGgpZ5miYRETkGwYyIiIKKDabDUII2Gw2KIri8r7zV0mSIMuy+tVxO/dxSZKg1+s5bDsREQUUBjIiIiIiIiKNsE8FERERERGRRhjIiIiIiIiINMJARkREREREpBEGMiIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQaYSAjIiIiIiLSCAMZERERERGRRhjIiIiIiIiINMJARkREREREpBEGMiIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQaYSAjIiIiIiLSCAMZERERERGRRhjIiIiIiIiINMJARkREREREpBEGMiIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQaYSAjIiIiIiLSCAMZERERERGRRvRaF0BE9Z8QAiUlJVqXQURUKcHBwZAkSesyiKieYyAjohpXUlKCwYMHa10GEVGlLF26FCEhIVqXQUT1HLssEhERERERaYQtZERUq4ybG0ESZeeCJBmSLAGSDMgSIEmQZMeyssclCZAlSI511GWSuo16A5wek8svt2+oPiYk6ewpKad9qI9LZ5/L+TEh2XejLpPt+7U/LqnLHNuIssfU5cDZfchl6zuWo/xzlNumrHwhu1hWbn2Uq/HsY1KFZRW2gXMd5yyHm8fd7M9dHRW28bRf9XFRcXunbdTlTvsSZY/DaTv7MuFUj3255LxMXdexTKj7lJzXl4S6TH2JOR537K5sHftLQajfO7aRy763L7N/79hOXSYJSDi7nVz2mHqDULeTJZR73L69cnY7ONZXoHNsU/b92X0p6v50TvvXwf64zrE/dV0FOsc+4ahDObs+zu7bvk8FMuzPb19m35+u7DEJCnSO7Z220QH27WB/Hsfvw/G9/blE2X2ULROQy34vOkiQAejK/tgypLLHJOgkCTJkSGV/OYtZh5smNgYRUW1hICOi2mWTyg6NYA9kKAtPZUe6Z5dJgHw2fUj2dFO2E8eRuYwKR9xn0075FODYZ4UjdJzzmPNzwMVj526Hs0HMKZBVeMwpQDl/f26J5dd3sY3sYZm7H6NCHW5+bE/L3P2qqro/p326Cms1GshcLce53wt13851OD+nq2VqgIPTOs7rV9hGuHguUe7mHMjOhryym7tlcIQ2+y6dw5sjuAGOYAU10Dgvswcy5WygkZwDjf2+LEn2sFT2Fep9Sd3Ovh+U7dOxLcq2K3vc1TKnbXRlYVKn1ukIZMJrIHPen87x+0D5x2Q41+j0NyQiqgXsskhERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGmEgIyIiIiIi0ggDGRERERERkUY4DxkR1S6dgBD2yWDt82pJTl+lcyZrdnx1ug/nx4TTfR+WOU1KdXb6XnePn/0qyt1Hue0EAAjH42f3KSABAuq2zsvVfZSbPMu5Fhffi3IlnfP7cHM7d11f5hrztMzn5/JxmfNTetxOeNmncFOj+4mhy88d5rRMXbfqE0OfrcNpHjJUfR4ygbPbCUmUv8H+1b4M5R5XJAFIytl9wvFcitN8aWXrlC0XkqLuD+X2X/bV8Vxl38tl6zi+AqjwmOL0b+24r0iAgrPzkCllj0lwNw+ZpE7mrMPZv5nje7lsm3PnNvN9YmgJZyeGdvV/SURUcxjIiKhWmXue0bqEmuE43q2ic/MEkYPzS0vRspAqc07E7JhDRHQuvjMSERERERFpRBJCVOOcLhGRd0IIlJSUaF0GBYiSkhJcf/31AIBff/0VwcHBGldEWgn010JwcDAkiW3WRFSz2GWRiGqcJEkICQnRugwKQMHBwXxtEAC+Foio4WKXRSIiIiIiIo0wkBEREREREWmEgYyIiIiIiEgjDGREREREREQa4SiLREREREREGmELGRERERERkUYYyIiIiIiIiDTCQEZERERERKQRBjIiIiIiIiKNMJARERERERFphIGMiIiIiIhIIwxkREREREREGmEgIyIiIiIi0ohe6wKIiKj+W7JkCV5//XWv67377rvo3r17LVRENaWkpATbtm3D/v37kZycjOTkZKSlpQEAxo8fjwkTJnjdR1ZWFr777jts2LABaWlpCAoKQuvWrXH11Vdj6NChkCSppn8MIqJaw0BGRES1RpZlREVFuV1uMBhqrxiqEXv37sUTTzxR5e3379+PKVOmIDc3FwAQEhKCoqIi7NixAzt27MCqVavw+uuv87VCRPUGAxkREdWaRo0a4YcfftC6DKph4eHh6NChg3r78MMPkZWV5XW7goICPPnkk8jNzUViYiKeffZZdOrUCRaLBQsXLsRHH32EzZs348MPP8Sjjz5aCz8JEVHNYyAjIiIiv7nggguwePHico999tlnPm07d+5cZGVlISgoCG+99RaaNm0KwN5yeuONN6KoqAiff/45Fi5ciJtvvhktWrTwe/1ERLWNg3oQERGR3+h0uipvu3TpUgDAlVdeqYYxZzfeeCNCQkJgs9mwbNmyKj8PEVEgYSAjIiIizR07dkwd/OOSSy5xuU5oaCguuOACAMA///xTa7UREdUkdlkkIqJak5OTg7vuugvHjx+HzWZDbGwskpKSMGzYMHTt2lXr8khDhw8fVu+3bt3a7Xpt2rTBpk2bcPTo0Vqoioio5rGFjIiIak1JSQmSk5Oh1+shhMDp06exbNkyTJ48GW+88QasVqvWJZJGMjMz1fvx8fFu14uLiwMAFBYWoqioqMbrIiKqaWwhIyKiGhcbG4vx48ejf//+aNGiBYxGI2w2G/bs2YOvv/4aW7Zswe+//47g4GA8/PDDWpdLGnAOV0FBQW7XCw4OLrdNaGhojdZFRFTT2EJGREQ1rmfPnpgwYQLatm0Lo9EIwD74Q5cuXfDOO++gb9++AIBffvkFx48f17JUIiKiWsVARkREmpJlGffffz8AQFEUrF+/XuOKSAvOLV2lpaVu1yspKXG5DRFRXcVARkREmmvevDkiIyMBAKdOndK4GtJCbGysej89Pd3tehkZGQCAsLAwBjIiqhcYyIiIiEhzbdq0Ue8fOXLE7XqO0RhbtWpV0yUREdUKBjIiItLcyZMnkZubCwBo0qSJxtWQFlq0aIGEhAQAwKZNm1yuU1xcjB07dgAAevToUWu1ERHVJAYyIiKqUUIIr8s//vhjAPbryS699NLaKIsCjCRJGDx4MADgr7/+wunTpyuss2DBAhQXF0On02HQoEG1XSIRUY1gICMiohqVmpqKu+++G7/++itOnTqlBjRFUbB79248/vjjWLt2LQDguuuuQ2Jiopblkh/k5+cjJydHvSmKAsA+WIfz4+fOIzZ69GjExMSgpKQETz75JPbv3w8AsFgs+OWXXzBjxgwAwLXXXosWLVrU7g9FRFRDJOHt1CUREVE1nD59GqNGjVK/NxqNCAkJQXFxMcxms/r4kCFDMGXKFOj1nCKzrhs5ciRSU1O9rnf11Vfj6aefLvfY/v37MWXKFLULa2hoKMxmszppeI8ePfD666+r0ycQEdV1/NQjIqIaFRMTg8mTJ2P37t04ePAgcnJykJ+fD6PRiMTERCQlJWHo0KHo0qWL1qVSAOjYsSNmzZqF7777DuvXr8eZM2cQHByMNm3a4Oqrr8aQIUMgy+zgQ0T1B1vIiIiIiIiINMJTTERERERERBphICMiIiIiItIIAxkREREREZFGGMiIiIiIiIg0wkBGRERERESkEQYyIiIiIiIijTCQERERERERaYSBjIiIiIiISCMMZERERERERBphICMiIiIiItIIAxkREREREZFGGMiIiIiIiIg0wkBGRERERESkEQYyIiIq54MPPkC/fv0wadIkrUshjRUUFGDo0KHo168f1qxZo3U5RET1kl7rAoiI6ovCwkIcOHAA+/btw/79+7F//36cPHkSQggAwLx589CkSZMaeW4hBEaMGIH09HSMGTMG99xzT5X2c+DAAfzyyy8AgLvvvtuPFWrr8OHD2Lx5M3bu3InDhw8jMzMTNpsN4eHhaNu2LXr37o2rr74aJpNJ61IDislkwujRo/HFF1/gww8/xCWXXIKgoCCtyyIiqlcYyIiI/OShhx7CgQMHNHnuffv2IT09HQBw2WWXVXk/n3zyCWw2Gy655BJ06dLFX+Vp6qGHHsK2bdtcLsvKykJWVhb++ecffPvtt3j66afRs2fP2i0wwI0YMQI//vgj0tL+v717j6m6/uM4/iRCJREOFVMQM1NBuhgKWoqYt1CZLsPLMjc1c2bTbLO22pmKdy1n2nIzc8vNFFvqvC2Nhkpqgoo6ZCKKKCjiGKCAKBcP+PuDne/voFzkcOx07PX468j5ft/fD2eM8fLz+bw/+ezYsYNJkyY5e0giIk8VLVkUEXEQ60wY1M4s9OrVi+eff/4fefbRo0cB8PPzIyQkxK4a586dIyUlBeCp+qPbGlTbtWtHdHQ0ZrOZdevWsXHjRhYvXky/fv2A2nBmNptJTU115nD/dTw9PRk7diwAcXFx3Lt3z8kjEhF5umiGTETEQaKjozGZTAQHBxMYGIibmxtz5szh1q1bT/zZ1kAWERGBm5ubXTW2bdsGgL+/P2+++abDxuZsgYGBTJ48maFDh9KqVas67wUHBzNo0CC2bt3Khg0bqKqqYvXq1WzevNlJo/13ioqK4ueff+bOnTv8/vvvjB8/3tlDEhF5amiGTETEQcaNG8ewYcPo1KmT3aHIHtevXycnJwewf7liQUEBSUlJAAwfPvwfHf+TtmrVKkaOHPlIGLM1adIkunfvDkB2djZZWVn/1PBcgr+/Pz179gRg7969Th6NiMjTRTNkIiIuztr9zrpM0h4JCQnU1NQAMGTIkMe6x2KxcOjQIY4dO0ZGRgbFxcVUV1djMpl45ZVXCA8PZ9iwYbzwwgt17hs4cCAAI0aMwGw2c+3aNXbs2MGpU6coLCykbdu2BAUF8eGHHxIaGmrcV1lZyYEDB4iPjyc3N5eKigoCAgJ49913GT9+fIubTfTu3dvYA3j9+nW6du1qd63s7Gz27NlDamoqN2/epKKiAi8vL9q1a4e/vz9hYWEMGDCAl156ya76FouFP//8k8OHD3PlyhVKSkpwc3PD29sbk8lESEgI4eHhRERE4OHhUefehz//7Oxsdu3aRUpKCoWFhZSXl7Ns2bJHwv2QIUNITU0lJyeHjIwMevToYd+HIyIidSiQiYi4OOtyxX79+vHss/b9Wj9+/DhQu8+qc+fOTV5/+fJlFixYQG5u7iPvFRQUUFBQwIkTJ8jKysJsNjdYJzExkeXLl1NRUWF8rbKykuTkZE6cOMGXX37J6NGjKSwsxGw2k5GRUef+q1ev8tNPP5GcnMzq1atbFMosFovx+pln7F9AsmfPHtauXUt1dXWdr5eUlFBSUkJubi6nTp0iKyuL+fPnN7t+cXExX3zxRb0NZKyffWZmJnv37iUuLo7AwMAGax04cIDVq1dTVVXV5HNtm7wcP35cgUxExEEUyEREXFhhYSEXLlwA7F+uWFVVxfnz5wEICQlpcrliZmYms2fPpry8HIBevXoRFRVF586d8fDwoKioiPT09CbPrcrKyuLQoUP4+voyY8YM49mnT5/ml19+oaKigjVr1hAaGsrSpUu5fPkyY8aMYcCAAZhMJm7cuMHmzZvJysri3LlzxMXF8dFHH9n1GQCcOXPGeN2lSxe7aly5csUIY97e3owePZrQ0FBMJhPV1dUUFRVx8eJFkpOT7V4WunbtWiOMhYWFERUVhb+/P23btuXu3bvk5OSQmppqLEFtyMWLF0lISMDb25vx48fzxhtv4OHhQXZ2Nh06dHjk+i5duuDp6Ul5eTlnzpxh2rRpdo1fRETqUiATEXFhx44d48GDB7Rq1Yq33nrLrhpZWVnG7FBwcHCj11osFhYsWGCEsc8//9zowGerf//+TJ8+nfz8/AZrZWZm0r17d9auXUu7du2Mr7/66qsEBgYSGxuLxWJh9uzZlJaWsmrVKsLDw43rgoKC6NOnD5MnT6awsJDdu3czefJk3N3dm/X9Q+2yz6tXrwK1obRTp07NrgFw+PBhY2ZszZo1xr40W5GRkUyfPp2SkpJm16+srDSCbmRkJEuXLn0k2IWGhvLee+9RXl7e6Ezf1atXCQwMZN26dXW6gTbUpdPd3Z2goCBSU1O5dOkSNTU1LZpJFBGRWvpNKiLiwqzLFcPDw/H09LSrhu2yw6ba9CckJHDjxg2gtqtkfWHMVvv27Rt9/+uvv64TxqwGDRqEn58fALdv3yYmJqZOGLPy8vJi5MiRxnXZ2dmNPq8+hYWFfPfddwC4ubnx6aefNruGlbWjppeXV71hzJaPj0+z69+5c8cIz6GhoY3Osnl6eja5hHPu3LnNOprBem1FRQWFhYWPfZ+IiDRMgUxExEWVlZVx9uxZoGWHQRcVFRmvvb29G73WGgABJk6caPczoXYJXEOhxc3Nrc57UVFRDdaxvS4vL69ZY6ioqMBsNhtB6uFGIs1lDZFlZWUcPnzY7joN8fHxMbpFHjx4sEVngvn5+dUbchtj+/Nh+3MjIiL2UyATEXFRSUlJWCwW3N3diYiIsLtOZWWl8bq+2Spbly5dAmpnSh6n+UdjmrrfdiyNdSO0va45AeX+/fvMmzfPaBQyYMAApk+f/tj31ycqKsqYlYqNjWXWrFls3bqVc+fOGcs8W8LDw4MRI0YAkJ6ezoQJE1i1ahUHDx5sdhi1p4ukbSCzbcQiIiL20x4yEREXZZ2tev311zGZTHbXsd1z1VS3veLiYuD/M0Et0aZNm0bft12O19hyTNt9TNbW/U2xWCzMnz+fkydPAtC3b18WLlxo1/4zWwEBAaxcuZLly5dTUFBAWloaaWlpQO3n3KNHDwYOHMioUaOaDL8N+eyzz6iqqiI+Pp7S0lL27dvHvn37gNqg3LdvX6Kjo5uc6WtqNrQ+tuHd3o6eIiJSl2bIRERcUFVVFSdOnABatlwRavc7WZWWlraoliuwWCzExsYarf7Dw8NZtmxZowdHN0dYWBjbtm1j0aJFREdHG23nq6urOX/+POvXr2fixIlGGGyu1q1bYzab2bJlCx9//DG9e/c2AuutW7f4448/mDNnDvPmzasToB5mT0MO20Yktj83IiJiP/33loiIC0pJSTGWwLU0kNm2OG8qkJlMJvLz8122oYM1jFlnF3v37s2KFStafKj0w1q1asXgwYMZPHgwUDuzePr0aeLj40lOTqa0tJT58+cTFxf3yMHZj6tTp05MmTKFKVOmUF1dTWZmJsePH2fPnj3cvn2bI0eOsHHjRmbPnu2w7+vOnTvG66YatoiIyOPRDJmIiAuyBoru3bvj7+/folq2Z25du3at0WutbfGLioqavPbf5uEw1qtXL1auXOnwMFYfk8nE0KFD+fbbbxkzZgwA5eXlHDt2zCH1rcshp02bxo8//mgsB01ISHBIfaucnBwA/P39ee655xxaW0Tkv0qBTETExdTU1PD3338DtY0oWqp9+/a8+OKLAMYh0w0ZOHCg8TouLq7Fz/6nWCwWFi5caISx0NBQvvnmmyb3sT0Jffv2NV5b9+Q5kr+/v3GOmj1nnTWkuLjYOPLgtddec1hdEZH/OgUyEREXk5aWZvwhbxuQWsIaEnJycrh7926D1w0ZMsT4Y3///v3s3Lmz0bqNHQz9T7FYLCxevNg4UPlJhrG//vqryZBl3fsH0LFjx2bVz8vLIyUlpdFrbt68acxkBQQENKt+Y9LT043Xb7/9tsPqioj812kPmYiIg+Tm5hod9ays51sBJCYm1umG6OnpyaBBg5r9HOssT0BAgF2ty+szePBg9u/fT01NDSkpKbzzzjv1Xvfss8+yaNEiZs2aRXl5Od9//z1Hjhxh+PDhdO7cGQ8PD4qKisjIyCAxMZHg4GDMZrNDxmivJUuWkJiYCNQGoJkzZ3Lz5s1G7/H19cXX17fZz9q5cydLliwhLCyMsLAwXn75ZXx8fLh//z75+fkkJCQYs5sdOnRo9nEF+fn5zJ07l4CAACIiIggJCaF9+/a0bt2akpIS0tPT2b17t9Ets6mDu5vj1KlTQO3+uH79+jmsrojIf50CmYiIg6SlpbFixYoG31+/fn2df3fo0KFFgcwRyxWtwsPD8fPzo6CggPj4+AYDGUC3bt344YcfWLBgAXl5eZw9e9Y4oPph1j1nzmR7QPONGzeYOXNmk/dMnTqVadOm2fW8qqoqkpKSSEpKavCajh07smLFikbb+TcmLy+P7du3N/j+M888w8SJE3n//fftqv8wi8XCwYMHgdpZWXtb9ouIyKMUyEREXMjly5eN2Z2Wdle05e7uTkxMDBs2bCA5OZni4uJGzzYLCgpiy5YtxMfHc/ToUTIzM439Sr6+vnTt2pU+ffowbNgwh43RFcTGxnLy5ElSU1O5cuUKt27dMpYw+vj40K1bNyIjI4mKirKrzX7Pnj1Zt24dKSkppKenk5+fz+3bt7l79y5t2rQhICCAnj17MmrUKIfNngLGzwTAuHHjHFZXRETA7cGDBw+cPQgREXk8mzZtYtOmTfj6+rJr1y67zpJqSFlZGR988AGlpaV88sknTJo0yWG1xbV99dVXJCUlERYWxpo1a5w9HBGRp4qaeoiIuBDrcsX+/fs7NIxB7UG/1hD266+/cu/ePYfWF9eUnp5OUlISbm5uzJgxw9nDERF56iiQiYi4iPv37xMZGcnUqVOJiYl5Is8YO3YsgYGBlJSU8Ntvvz2RZ4hr2bhxIwDDhw8nJCTEyaMREXn6aMmiiIjUceHCBZKSkvDy8mLChAnOHo44UVlZGdu3b+fBgwfExMQ0uq9QRETso0AmIiIiIiLiJFqyKCIiIiIi4iQKZCIiIiIiIk6iQCYiIiIiIuIkCmQiIiIiIiJOokAmIiIiIiLiJApkIiIiIiIiTqJAJiIiIiIi4iQKZCIiIiIiIk6iQCYiIiIiIuIkCmQiIiIiIiJOokAmIiIiIiLiJApkIiIiIiIiTqJAJiIiIiIi4iQKZCIiIiIiIk6iQCYiIiIiIuIk/wPEnt5b2BreSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHiCAYAAABLBzXPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACXIElEQVR4nOzdd3xT5f4H8M85SZqOdFBaShll7w0CshEQGSpOUFFBEPWnFwd6vbhxXL2OKyqOKy7AgagoqIjsLXvJ3rSsUqB7Jjnn+f2R5pDSJE3btKdNP+/XK6+mOSPftBnnk+c5zyMJIQSIiIiIiIioWpP1LoCIiIiIiIjKj+GOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAKAX8LdyZMnIUkSJEnC+PHj/bHLGmngwIHa35GIyJPx48dr7xUnT57UuxzNrFmztLpmzZqldznkZ6qqolu3bpAkCZMnT9a7HLoCX38UKAI5VyiKglatWkGSJDzzzDMVch+V1nI3a9YsTJs2DdOmTausu9TdggULtMecnp6udzlUyG63Y/ny5Zg6dSoGDRqE+Ph4mM1mWCwWNGvWDHfccQcWLFgARVFKtd+9e/di8uTJaN26NSwWCyIjI9GhQwdMnToViYmJFfRoiKgmSUlJwZw5czBhwgR06dIFUVFRMJlMqF27Nrp3744nn3wSBw4cqJD7njlzJnbs2IHg4GCPByXTpk3TDsp8ufj65YQ/318TExMxdepUdOjQAZGRkbBYLGjdujUmT56Mffv2lWpfvtq4cSMmTJiAZs2aITQ0FNHR0ejWrRtee+01XLx4sULuUw8dOnTQ/rcrVqwo9fbr16/Xtm/btm2Zajh37hx+++03TJs2Dddffz3i4+O1fTZu3LhM+/Tnc+bChQt49dVX0a1bN0RHRyM0NBTNmjXDhAkTsGnTplLtKycnB++++y769OmDOnXqIDg4GI0aNcKYMWOwZMmSUu3LV3q8fvQwefJk7XnzwgsvlHr73NxcREZGQpIkGI1GnD17FgBgMBjw/PPPAwDeffddHD161K91AwCEH5w4cUIAEADEuHHj3K4zYMAAbZ2aYty4cdpjPnHiRInr18S/UWVbuXKliI6O1v7O3i7du3cXR48e9Wm/b7/9tjCZTB73FR4eLubOnVvBj45qitK+t1SWr776Sqvrq6++0rucgDN58mRhMBhKfO+SZVk8+eSTwm63++2+c3JyRN26dQUA8eijj3pc76WXXvLp/bU0z19/vr9+8803wmKxeNxXUFCQePfdd339s5RIVVXxxBNPCEmSPN5nXFycWLFiRbnvqyq8/v773/9qNdx9992l3n7ChAna9m+99Vapt//111+9Pt8aNWpU6n368zmzbNkyUadOHY/7kiRJPPXUUz7ta8eOHaJp06ZeH+/YsWNFQUFBqR+zJ5X1+vElV1S07du3azUkJCQIVVVLtf2cOXO07UeMGFFkmd1uFy1bthQAxB133OHPsoUQQlRaiqiJwaWqHoDVZF9//bX2P4mOjhajR48W7777rpg7d66YM2eO+Mc//iEiIiK0dRo2bCjOnTvndZ+ffPKJtr7JZBITJkwQs2fPFp9//rm4/fbbtQ91o9EoFi9eXEmPlKjyVYWDy0A2ePBg7e/brl07MXnyZDFz5kzxww8/iA8//FAMHz68yIHW/fff77f7fvvttwUAYTAYxOnTpz2u5xruXn31VfHLL794veTk5Hi9X3++v/7+++9aOJYkSdx+++3i888/F7NnzxYTJkwoEiA/++yzMv2drvSvf/1L22dYWJh49NFHxTfffCP+97//iWuvvVZbZrFYxM6dO8t1X1Xh9Xf+/HlhNBoFABEaGioyMzN93jYnJ0eEh4drz7OSPnvd+eWXX4q8Bkwmk+jSpUuZw50/nzPbtm0ToaGh2vrXXnut+N///ie++eYb8eijj4qwsDBt2XPPPed1XydPnhRxcXHa+j169BAffPCB+O6778QzzzwjateuXa6QXdF/i5JUhXAnhBAdO3bU6li+fHmpth00aJC27Y8//lhs+eeffy4Ax5dx+/bt81fJQgiGuwrFcFf1fP3116JDhw7iu+++E/n5+W7XOX36tGjXrp32v7v33ns97u/s2bPam7XRaBTLli0rto7rB27Dhg1FXl6e3x4PUVVSFQ4uA9nQoUPF2LFjxbZt2zyu8+OPP2oH1wD80iJks9lEw4YNBQAxdOhQr+u6hrtVq1aV6379+f6ak5Mj6tWrp607a9asYussXbpU+9tZLBaRnJxcrvp37Nihhc/IyEixe/fuYuu4/r26d+9e6tYBV1Xl9Tdq1Citji+++MLn7VxbOq6//voy3feGDRvEpEmTxP/+9z+xdetWrdWqLOHOn88ZVVVF165dtX1Nmzat2Dq7du3SvlyWZVn8/fffHmu76aabtH1NmDBBKIpSZPnJkydFQkKCts7vv//u8+N2p7JfP1Ul3E2fPl2r45577vF5u8TERO21X7t2bbetpxkZGSI4OFgAEJMmTfJn2Qx3FYnhrupJS0vz6cNzz5492v8uJCTE47fLjz/+uLbeP//5T4/7u/3227X1PvzwwzLXT1SVVZWDy0CVmprq03pPPvmkT19O+cq1NWTOnDle1/VnuPPn++t7772nrXP77bd73Nc///lPbT1fu8d54noA/tFHH7ldR1VV0aNHD78chFeV19+CBQu0Ovr16+fzdq4tHfPnz/drTWUJd/58zrj+TXr27OnxOOSjjz7S1rvtttvcrrNr1y5tnYSEBI9faCxatEhb76qrrirh0XpX2a+fqhLuUlJStBbJsLAwkZWV5dN2r7zyilb/5MmTPa7nfO8KCQkpVSt3SSr8nDvXUOft8tJLL7ndt6IoYt68eWL06NGicePGIiQkRFgsFtGqVSvx0EMPef1mQwj3HzTLly8Xd9xxh2jcuLEwm83FwpfNZhN//vmnmDJliujTp4+IjY0VJpNJWCwW0aJFCzFu3DixZs0aj/fpGuq8Xbz9rUqyadMmMWnSJNGyZUthsVhEaGioaNq0qbj33nt9+qbWeT8DBgwQQgiRnZ0t3n77bdGtWzcRFRUlQkNDRdu2bcXUqVN9PqAINK1bt9b+Tu6+cVVVVdSvX18Aji4KSUlJHve1bt26Mn3Y+cNff/0lHnroIdGmTRsRGRkpzGazaNiwoRg9enSJBxKrVq0q9hpNTEwUU6ZMEa1atRKhoaEiMjJS9OrVS3z00UfCZrP5VFNWVpaYPn26GDJkiIiPjxdBQUGiVq1a4qqrrhIvvPCCSElJ8br9la8Vu90uvvrqKzFkyBBRr149YTAY3H6IJycni3/+85+iTZs2IjQ0VNSqVUt0795dvPPOO1qAb9SokduDgMWLF/v0Zu1q8uTJ2jZ//PGHT9v4oqQvjirq//bbb7+J66+/XsTFxQmz2SwaNWok7rrrLvHXX38JIUp3cFlQUCA+//xzccMNN4gGDRoIs9ksIiMjRYcOHcSUKVM8fiF28OBBrTUnIiJCHD9+3ON9pKamai1Osix7fd8OJJs2bdL+D126dCn3/m655RbtAKSkgxt/hTt/v7/26tVLW2f9+vUe95WUlKR9456QkFDm+jMzM7Xji4iICK/dT11PFyhN68CVfH39bdmyRcTExAjAcY7UvHnziq1TnmMvm82mnVcmSZI4duxYibW7tnTExMQIq9Xq02P2VVnCnT+fM3feeae2r2+++cbjvnJycrTWu5CQEJGdnV1snWeeeUbb12uvveZxX6qqiubNm2vr+vJ/8KSyXz++hruUlBRx1VVXaes+8cQTboNzeY6Dbr75Zm3/vrZEN2vWTNtmx44dHtdzDf1ffvmlT/v2RZUOd0ePHhWdO3f2up0sy+KFF17wWJvrB83KlSvFI4884nY/rgcSAwcO9DmcuWtqrchwZ7PZxKRJk0rc9+jRo0Vubq7H/biGu2PHjom2bdt63FejRo1qZMtj9+7dtb/Bpk2bii13bd1r3769130pilKku4U/v6HxJDs7W4wZM6bE58rIkSM91nNlSFi8eLGIioryuK9rr73WY3dXpz/++MPrCeWAY4CEhQsXetyH62vl0qVLom/fvm6ft65WrlwpatWq5fE+O3ToIJKSkjyGO0VRRJMmTQQAUatWrRK71+bl5Wn3l5CQUKzbTHmUNtyV9/9mt9u9vq/JsizefPNNnw8ut27dqv0tPV2CgoLE//73P7fbz5w5U1uvV69eHgcOue2227T1SjqHJZDs27dPe9ytW7cu177y8/O1MN2/f/8S1/dXuPPn+2tGRkaR7pElvRZdu+WX9VyY3377TdtHSV0MU1JStHVjY2PLdH9C+BbulixZog2IYbFY3HZ19cex15QpU7R1X3zxxRJrd23peOyxx3x9yD7z9Lngib+fM67nwF24cMHrvkaOHKmtu2jRomLLu3Xrpi331kVbCFHkmNdT63FJ9Hj9+BLuTpw4oQ1KAkC88cYbxdbxx3GQ6yA9vrwHrl27Vlu/U6dOXtdNT0/X/rajRo0qcd++MqKCOYf5ff7557UhUn/55Zdi67Vu3brI78eOHcPVV1+tDRHct29fXH/99WjUqBEURcH27dsxa9YspKWl4dVXX4UsyyVOs/D2229j8eLFqFu3LsaPH4/27dvDbrdjy5YtMJvN2np5eXmwWCwYPHgwunXrhsaNGyM4OBjnzp3Dvn378O233yInJwezZ89GVFQU3nvvvSL38+ijj+Kmm27CBx98gFWrVgEAPv30U9SpU6fIegkJCT79DV3dc889+P777wEAwcHBGDduHHr37g2DwYBt27bhiy++QFZWFn744QdkZGRg8eLFXufNy8zMxMiRI3Ho0CGMGjUKw4YNQ3R0NI4fP45PPvkESUlJSExMxL333ou1a9eWut7qymq14siRI9rvjRo1KrbO3r17tevdunXzuj9ZltGlSxesWbMGqqriwIED6NGjh/8KvkJBQQGGDBmiDavcrFkzjBkzBm3atIHJZMLRo0cxZ84cHD58GIsWLcJNN92EZcuWQZY9z46ya9cuvP322xBC4MEHH0SvXr1gNpuxbds2/O9//0NOTg6WLVuGf//733jllVfc7mP+/PkYM2YMFEWByWTCjTfeiIEDByIuLg6ZmZlYtWoVfvjhB2RlZeHmm2/GsmXLMGjQIK+P9e6778b69evRqVMn3HnnnWjcuDEyMzPx999/a+vs378f119/PXJzcwEAXbp0wd13340GDRrg/PnzmDdvHjZs2IAxY8bAbre7vR9ZljFp0iQ8++yzSEtLw/z58zF27FiPdf30009IS0sDAEycONHr37Yi+eP/9uijj2L27NkAgKCgIIwbNw59+/aFLMvYsmULvvjiC/zrX//CTTfdVGI9GzduxJAhQ5CbmwtJknDddddh6NChqF+/PvLy8rBx40Z8/fXXyM3NxUMPPQSz2VxsnqNJkyZhyZIlmD9/PjZu3IiXX365WO1ffPEFfvrpJwDA1VdfXaOm4XF9b3L33lUaGzZs0F43pX3PevHFF3HmzBmcOXMGQUFBiIuLw9VXX43Ro0fj+uuv9/rZ5M/31/3790MIAQDo3Llzia/Fq666Sjte2bt3b5mG5C9N/bGxsWjUqBESExNx4cIFpKSkFDte8Ie5c+di3LhxsNlsiI2NxR9//IGrrrqqyDr+Ova677778O677wIA5syZo02R4Ynz/cW5rd78+ZxJTk7GpUuXADhejzExMSXua9GiRdq+RowYoS1TVRX79+8HABiNRnTq1KnEfTm5PidLQ4/XT0n27NmDYcOG4ezZszAYDJg5cyYmTJhQZB1/HQcNHz4ccXFxOH/+PNatW4fjx4+jadOmHmtznWOypOdyZGQkWrdujQMHDmDFihVQFAUGg6GUfw03/JEQ/T0VgqIo2omnZrNZ/PDDD27XS05O1r5dkmVZ7N27t9g6Vw7L3LdvX5GRkeH1/pcvX+611evixYtaS4Esyx67Bfl7KoTvv/9eWx4XF+f2G5GTJ08W+Ubc0/kHrn+ToKAg8dtvv7l9nK772rx5c4mPwZOcnJwSR03z9bJ9+/Yy1+Er124yXbt2dbvOyy+/XKR1pCT33nuvtv7XX3/t54qLuvJcFXfd7qxWa5GaPvnkk2LruLYAobAF6vDhw8XW27x5s3Yida1atdy2AiUlJWnfrickJHjs1rN582YRGRkpAIgGDRq47Z5zZY+Axx9/3Ou3ia4tew8//LDbda98r/DUrdPZ/97ZpdmT/v37C8Ax6tupU6e8rltapWm5K+//zfVbyKioKLffFB88eFAbJt95cddykJmZqXWTjIqKEqtXr3b7+I4cOaINBhAWFub2m+7U1FTRoEED7W+8bt06bdmhQ4e0keciIiLK1R1JCCEOHDjgt/evkr619wfXUTU/+OCDcu3r9ddf1/blbsS3K/k6FULPnj3FyZMnPe7Hn++vs2fPLvEYxdWLL76orf/qq6+WuL479913n9fXwpWc7xcAijyXS8Nby90HH3ygtRA0atRIHDp0qNj2/jz2EkIU6S63cuVKj3WvWbNGW88f3Yjd8fa+7o4/nzOuj6+kzw0hhPjyyy+19SdOnFhkWWJiYqkey8qVK7X1Bw8eXOL67ujx+vGWK9atW6f1RAkODhYLFixwuw9/HQcJIcRTTz2lreOtJdp1xFeTyeTT+/348eO1fbs7BagsqmS4mz9/vs8fTIcOHdKGZnU32ozrB01YWJg4c+aMT4+pJMeOHSvxyevvcOc6nK+383c2b95c5E3cXZcl1w/ZV155xeO+PvvsM5/WK4nrc6S8l4o+uTY1NVXEx8eXeEDzxBNPaOvMmDGjxP2Wdv2yOnv2rAgKChIAxC233OJ1XavVqs2T06JFi2LLrwwJa9eu9bivsWPHel3Pef6ZwWAoccjvL774QtvXt99+W2y562ulW7duXoPd1q1btXXbt2/vde4v1/16+uB0HbzBXWASwvG+5Fxn5MiRXh9rWZQ23JXn/+Y68p27EdKcfv/99yL36e6A1nUOrF9//dXrY1yxYoW27r///W+366xevVrIsqz9v9LS0oTVai3SbckfX6SUdu42b5fyDjJSkrlz52r3FRcX5/acndK46667tP2VdI67EI6/VXBwsBg+fLh45ZVXxNdffy3mzZsn3n//fXHLLbcUmaevXr16HqdV8Of76/vvv68te/LJJ0vcV2nXd8f1PB13X56Wd313PIW75557Tru9Xbt2Hv/m/jz2EqLo4CDeBvZxDcLl/TLCk5Le16/kz+fMwoULtWW33nprifvytv7u3buLfPaVpLTru6PH68dTrli4cKEICQkRgKOLqKfzqP15HCRE0a7ujRs39jggjmsQLul+nd58802/fl4JIYQ+/YRK8PXXXwMAIiIiMGnSJK/rtmzZUut+sXTpUq/r3nrrrahXr55famzatCnq1q0LANi8ebNf9unNyZMnsXPnTgBAhw4dMHz4cI/r9ujRQ+vKlpiYiO3bt3tc12Aw4B//+IfH5a5d4pxdAQKZoii44447cO7cOQDAyJEjcdttt7ldNzs7W7seHBxc4r5DQkK061lZWeWs1LMffvgBVqsVAPDUU095XddkMmHMmDEAgCNHjuDkyZMe1+3SpQv69evncbm354oQAt9++y0AYPDgwejcubPXusaMGQOj0dFrvKTX9SOPPOK1m8jChQuLrOuty8Njjz3m9b4A4KGHHtKuf/75527Xcb39gQceKHGfFak8/7eCggIsXrwYABAXF4e7777b435GjhyJNm3aeK3F+d7esmVL3HDDDV7XHTRokPZ+7ek5MGDAAEydOhWA473uoYcewvPPP6+9540dO9ZrzYFm//79RZ5vM2bMQFhYWLn2mZiYqF2Pjo4ucf3bbrsNZ86cwR9//IEXXngBd999N0aPHo1HH30U8+fPx+7du9G8eXMAwNmzZ4t1uXXy5/urHu/VVeHzQVEUTJo0Cf/+978BAL1798a6detQv359t+v7+9jrzjvv1B77/Pnzi/xNnHJzc7Xu00FBQbjrrrt8eGQVr6o+/2rqcxkAvvzyS9xyyy3Iy8tD3bp1sWbNGvTv39/tuv4+Dmrbtq32fD958iTWrFnjdl+l6ZLpVKtWLe266/tteVT4OXdlsW7dOgBAfHw8/vzzzxLXdx6sJSYmIi8vr8gTy5W3A5wrZWZm4ttvv8Uff/yBPXv24OLFi8jJyXG77unTp33eb1lt2bJFuz506NAS1x86dChWrFgBwBE+PZ0r0bJlyyJPrCu5fgg4zx8qi8aNG2t9tquyxx57TPugSkhIKPJCrS6crx/A8dxcsGCB1/Vd/68HDhxA48aN3a539dVXe92Pt+fKvn37kJqaCgAIDw8vsSYAsFgsSE9Px4EDB7yuV9Lretu2bdr1a665xuu6AwcOLLGua665Bi1btsThw4cxe/ZsvPbaazCZTNpym82mnT9Sr149jBw5ssR9VqTy/N92796tfUAOGDCgxHMBBg8e7PH/lZGRoZ0HGRcX5/NzAIDX58DLL7+MFStWYPPmzZg3b552e5MmTfDxxx+XeB++mDZtWpU/Zy85ORk33HCDdjD18MMP4/bbby/3fp2vW8C3cNe+fXuvy9u1a4c///wT7du3R35+PpYvX47NmzejZ8+e5a6VLsvPz8ftt9+ujXEwYsQI/PjjjwgNDfW4jb+PvWrVqoWbbroJ33//PXJycvDTTz8VC/M//fST9py98cYbUbt2bZ8fI9Ucb775pvZFXrNmzbB06VKv571VxHHQhAkTtGPxWbNmFTteSExMxOrVqwEAdevWxbBhw7zep5Prc748x9muqly4y87O1k48PXToEG6++eZSbZ+WluYx3Hn6tupKq1atwl133YXk5GSf1s/MzPS5vrJytiQBjkBWEtd1XLe9Ukkn9roONJOfn1/i/VZnzz33HD766CMAjoPPZcuWef37OA88Ad/+Nnl5edr18PDwclTqneu3TqNHjy7Vtt7eWMrzXHGtaf78+Zg/f75fagJKfl2fPXtWu+7twwBwHIxERUUhPT3d4zqSJOGBBx7AU089hfPnz+O3337DLbfcoi3/9ddfkZKSAsDxzZ1fTo4uh/L831z/ds7WFm+8rXPq1CmoqgrA8cHr+uFbEm/PAaPRiO+++w6dO3fWDhKdt0VERPh8H9VZamoqhg4diuPHjwNwtJ598MEHftl3QUEBAMeBvKfP1tJq1qwZxo0bh08//RQAsGjRomLhzp/vr3q8V+v9+TB16lRkZGQAcAw69dVXX2m9IdypqGOv++67TxsEbtasWcXCnesXqFcOiAHA60F5aGioT192l0VVff7VxOfyggULtC9MO3XqhCVLliAuLs7rNhVxHHTHHXfgiSeeQF5eHn766Sd8+OGHRf42s2fP1hox7r33Xq+vN1eun1Ouf7vyqHLhzvlmVFbOb5nd8eWD6ciRIxg5cqT2B27VqhWGDx+OFi1aIDo6ukiT9AMPPIALFy5AUZRy1ewL16ZtX7rZuD7hvDWL6zWCX1Xz2muv4fXXXwfgOBhevnx5iSE6KipKu+4cWcwb5wfnldv6W3leQ95eP+V5rlRUTUDJr2tni7vRaCzSwuZJWFiY13AHAOPHj8dzzz2HgoICfPbZZ0XC3WeffQbAEQInTpxY4v1VtPL831y743j7xt/J23tTeZ4DNpvN6/KYmBhER0dr73VNmzYtcYTCQJGRkYGhQ4diz549AIAbbrgB3333nd++VHCGf0VRkJub69PzwBcDBw7Uwt3BgweLLffn+6se79V6fz64jvqbk5NTYs+Zijr2GjJkCBo0aIDTp09j7dq1OHnypNYq4trSUa9ePbdBzVvIbNSokddTCcqjqj7/avpzOS8vz6dj7oo45oiMjMTNN9+M7777Djk5OZg/fz7GjRsHwHHqyZw5c7R1SzPiq2ut/voCrcqFO9dQ0r9/f4/9WivKG2+8oQW75557Dq+++qrH4XtL6pPuT67ffnjqHurK9aCsIluJfJWbm1viuVO+SkhIQNeuXf2yLwB466238MILLwBwtNwsW7asxK5FQNHWUV8+YFz7UvvS+lpWzteQJEmw2+1VIsC7vq5ffPFFvPzyy5V2387AYbfbYbPZSgx4vry+ateujdtuuw3ffvstli5diqSkJCQkJCAxMRHLli0D4DioadKkSfkfgI5c/2/O4fC98fa3c93XvffeW2To8/J6+OGHi7y+Dh8+jOeffx5vvvmmX/Z/8OBBtwGkLPr27Vtia6qvsrKycN1112nnGF533XX48ccfffoSw1euXTFTU1P9Fu5cuyK5+zLFn++verxX6/358MYbb+D777/HX3/9hV9++QVjxozBvHnzPD43KurYS5ZljBs3Dv/+978hhMDs2bPx0ksvASje0qF3LwdXVfX516BBA4SEhCAvLw9nzpyB3W732kIUCM/l2267DREREZgxYwYOHz6Ma665BqtWrfI6hkZFHQfdd999+O677wA4Wp2d4W7dunU4duwYAMepEFdO7+ZNabu++6LKhbvIyEhYLBZkZ2dXyrlsV1q+fDkAoE6dOnjllVc8BrusrKwi/5CKFh8fr113nX/NE9d1/DWITHmkpKSUupuHJ+PGjfPbuXDTp0/Hv/71LwCO596SJUtKHOzDyTUAehu0BnDMTeMcEEeW5RIHniiP+vXrY9euXRBC4MyZM2jYsGGF3VdpanKq7Nd1vXr1tHO9jh8/jlatWnlcNy0trcRWO6eHHnoI3377LVRVxZdffolp06bhyy+/1Loe6j2Qij+4vnccPXq0xPW9rVNRz4Fvv/1WG6ynW7duuHjxIhITE/HOO+/guuuuK3GeRF98//33fvtCYtWqVT6d21mS7OxsDB8+XBvQa9CgQViwYEGRbrb+0LhxY2zYsAGA4yCkQYMGftlvSd/u+/P9tW3btpBlGaqqYteuXVBV1evBnut5ur580edOaeq/cOGCdkAcGxvrlznuwsPD8eeff2LYsGE+BbyKPPYaP368NqjLnDlz8OKLLwIoOredp4F19DpX35/Pmbp166J27dq4dOkSkpKScPHiRa9f8HjblyzLaNu2LbZv3w673Y7du3d77aXgj+eyHq+fK33wwQeQJAkffPCBTwGvoo6DBg0ahISEBCQlJWHNmjVaS/RXX32lrVPaeRpds0R55yV1qrSv9F2fCCW9WJ2j3xw/ftynAwp/On/+PADHyfjenrzLly/XDuI8Kc1jLonrgCjOlgFvXFvJKnKy7Orso48+wpQpUwA4PggXL16M7t27+7x9u3bttAOdffv2ef1A/Ouvv7RzM/v06VOhrakDBgzQrvurtbS8unTpovUrX7FiRYmvHX9yncR11apVXtd1dhHyRd++fdGuXTsAjlG8bDYbvvzySwCOL4dGjRpV+mKrmE6dOiEoKAgAsGbNmhK7wzgHcXInJiZGm8x206ZNfjlX+cSJE3j44YcBOFpo586di2+++QYGgwGqquLee+8tEiICRW5uLq6//notdPXv3x+//fabTyPZlZbrwdmhQ4f8tl/XliF33+778/01IiJCG1goIyNDm9TYnVOnTmmjxiYkJJR5AuaBAwdqQXvt2rVez6VZsmSJdt3XQRh84Qx4ffr0AQD88ssvGD16tMduzhV17NW8eXNt4Kvjx49j3bp1WLt2rXaOaO/evb1+6aYHfz9nrrvuOgCOY0Fvn8u5ubna+cghISFFPs+v3BdQ9LlzJSGEX55berx+3Hn//fe1Ea0PHz6MgQMHFjkv3FVFHQc5W6KBy10xnYMFAY7/mXPkTV+5DhjWsWNH/9Tpl734wLXJv6RuT84/HADtG57K4uxycvz4cY+BTFEU7fwsb0rzmEvSuHFjrSvi7t27vQa8bdu2YeXKlQAc3wJUhXNPnKNl+uPij1a7zz77DJMnTwbgOCj8448/0KtXr1LtQ5IkbTQ6IQRmzJjhcV3XwQ1K+8IvrTvuuEM7IH/zzTfL/dzzB4PBgLFjxwJwdNnwNIVARXANWR999JHXgPL++++Xat8PPvggAMcH2uOPP64dgI4bN86vXeP0YjabMWLECACOL76c3VHcWbx4cYkjmzrf23Nzc/Gf//ynXLUpioKxY8dqB/UffPABWrRogb59++LZZ58FAJw5cwb3339/ue4HcIyW6a/3r/K22uXn52PUqFFaOOrTpw8WLVrkt+6SV3Id6MRf0/4cO3asSKuN8znmyt/vr663e3udz5gxQ/vsL+1ADK4sFov2uDIzMz1+bgkh8OGHH7qt0x+cAa9v374AHINTeAp4FXns5dqaMWvWrDINGV/Z/Pmccd3XBx984PH4ctasWdp72siRI92ex+x6H59++qnHQU4WL16shfSrrrqqxAHFvKns148n7733Hh5//HEAjh5qngJeRR4HjR8/XuvVN2fOHPz444/aqVC33HILIiMjS7U/5/tqeHi4/8KwPybL82US80cffVRbx9Okg06Kooju3btr6z/22GOioKDA4/q5ubniq6++EnPnzi22zHXyWV8mj7322mu19d99991iy61Wa5EJN+FlUsx3331XW2f27Nkl3ndJk5jPmzdPWx4fHy8OHDhQbJ3ExETRrFkzbb0PP/zQ7b6cywcMGFBiXaVZtzqYPXu2Nsl7aGhouSYVPnPmjAgNDRUAhNFoFMuXLy+2juvEsg0bNhR5eXnlqN43Tz75pHaf11xzjTh37pzHdRVFEcuWLROvvvpqsWWuk2G/9NJLXu+zpHVPnToloqKiBABhNptLfE2cP39evPLKK2L37t3FlpX0WrlS3759tfUffvhht5OeXzlRtS+T3aanp2v/f9eLp8nN/aU0k5iX9/+2bt06bXmtWrXcTkB/+PBhER8fX+Rv4G4S8+zsbNGoUSMBQEiSJN566y2vE9Cnp6eL999/XyxbtqzYshdeeEG7r9tuu63IMpvNJnr16qUt//TTT73+DaqLgoICMWLECO1x9ezZU2RkZFTofebn54uwsDABQPTr18/rur/++qv48ccfhd1u97jO3r17RfPmzbXHMHDgQI/r+vP9NScnR9SrV09bd9asWcXWWbZsmTAajQKAsFgsIjk52e2+XI95vL0H7dixQ/usiYyMdPteNm3aNG0/3bt397gvX3iaxFwIIbKysoq8D44aNUpYrdYi6/jz2OtKWVlZ2vPIYrEIi8WifQZX9HNYiNJPYi6Ef58zqqqKrl27avt6+eWXi62ze/duERkZKQAIWZbF33//7bG2m266SdvXxIkTi72PJiYmioSEBG2d33//3eO+nO/J3o6T/fm38EVJueLxxx/Xlrdo0UKcPn262Dr+Og5yx/UYxPWzz917lDfp6enae8RNN91Uqm29qbRz7gYPHqx9uzZx4kQ88cQTaNSokXYCbfPmzbVhtGVZxvz589GrVy+cOXMG77//Pn744Qfcfvvt6NSpEyIjI5GdnY2kpCRs27YNK1asQE5ODl599dVy1zl58mStVWzKlClYvXo1rrvuOtSuXRtHjhzBnDlzcOTIEVxzzTU4cuSI164igwcP1q4//fTTuHDhAlq1aqWd/Fq/fn106NDB59pGjx6NX375Bd9//z3OnTuHrl27Yvz48ejVqxcMBgO2bduGL774QvvWZ+jQoVqXJXJYvHgxJkyYoH2zNGHCBKSnp5c4B0rXrl2RkJBQ7PZ69erhv//9L/7v//4Pdrsdw4cPx7333osBAwbAbrdj8eLFWnO90WjEzJkzvXadcj3H88SJEx7nnCvJG2+8gV27dmHFihVYtWoVmjZtiltvvRW9evVCbGwsrFYrkpOTtVbg5ORkDB48GM8//3yZ7s8XDRo0wPfff48bb7wRBQUFGDduHN59913ceOONaNGiBUJCQpCRkYHDhw9j06ZN2LBhAxRFKXFuOl98+umn6N69O3Jzc/Hxxx9j48aNuPvuu9GgQQOcP38e8+bNw4YNG9CrVy8kJSXhzJkzPp2AHRkZiTFjxhTpbz9w4EC0aNGi3DVXFX379sXDDz+Mjz/+GGlpabj66qsxbtw49O3bF7IsY8uWLfjiiy+Qk5ODm266yetrKSwsDAsWLMCAAQOQmZmJp59+Gp9++iluvfVWtG3bFhaLBZmZmTh+/Di2bNmC1atXw2q1apMrO61fv17rPdGgQQPMnDmzyHKj0Yhvv/0WnTt3RmZmJp544gkMGDCgynX9Kq3x48fjjz/+AOD4lvf//u//tF4a3tx0001lvk+z2Yxhw4Zh/vz52LZtG7Kzs4v0SnF17NgxPPHEE4iNjcWwYcPQuXNn1K1bFyaTCefPn8fq1auxcOFCbfS7evXqeR1Yx5/vr6GhoZg5cyZGjRoFRVFw3333YdGiRRg+fDiMRiPWrFmDOXPmaLVNnz69xOHWS9KlSxc8/fTTePPNN5GRkYHevXvj/vvvR48ePZCdnY358+drXcYsFkux57E/WSwWLF68GCNGjMC6deuwcOFC3H777UUG4KnIYy+LxYLbb78ds2bNKjLg26233ur3KUv++9//ehzOPj09vdjnXJMmTdyObOzP54wkSZg5cyb69++P3NxcvPTSS9iwYQNuu+02hIWFYcuWLfj888+1FqZnnnnG6/Hhe++9h40bN+L8+fP44osvsHfvXtxzzz2oXbs29uzZg08//VTrkj527Nhyz7eqx+vHm+nTp0OSJEyfPl07Jl+1alWRc7sr8jjovvvu03pPOKcba9SoUanP8V69erV2PFqe9+li/JEQfWm5s9vtRb41uvLi7hvjs2fPisGDB3vcxvViMBjEZ599VmwfpW25E0KIZ555xut99enTR6SkpGjfdnj7JujOO+/0uJ8r/1a+tEbYbDZx//33l/j3uO2220Rubq7H/TjXq2ktd1e2zvh6cdcK4ertt98WJpPJ4/bh4eE+fbvpuo27FpnSKCgoEP/4xz+EwWDw6THee++9xfbhzxYgp40bN4qmTZv6VJPFYnH77WVpW+6EEGLlypVay6G7S/v27UVSUpKoX7++ACA6duzo0343b95cZD/ffvutzzWVVWW23AnheP++5557PP7tZFkWb731lteWA1cHDx4UXbp08ek5YDabxeLFi7Vt09LStPdeWZa9vq9/88032n66dOnitRWiOnD9hr00l/JasGCBtq85c+Z4XG/69Ok+19SvXz9x8uRJn+7fX++vQjieE85WI3eXoKAgt712XPnacieEo8Xm8ccf176dd3epU6eOWLFihU/1e+PL6y87O1v0799fW+/GG28s1oLnj2Mvd9asWVNs+5UrV5b3YRdT2tdJScc2/njOOC1btkzExsZ63JckSeLJJ58UqqqWuK8dO3aU+Fl61113lfi+50vLXUX8LbzxJVcIIcSUKVO09Zo3b16sBc8fx0HuZGdnF/s7vPjii6V+nKNHjxYAREhIiMjMzCz19p5UWrgTQoi8vDzxn//8R/Tq1UvUqlWryB/b2wHI6tWrxYMPPijatWsnoqKihMFgEBEREaJt27ZizJgx4pNPPhFnz551u21Zwp0QQixevFiMHDlSxMTECJPJJOLj48WgQYPEZ599Jmw2mxBC+BTu7Ha7+OSTT8TAgQNFTEyM1mTt7m9VmgPWjRs3iokTJ4rmzZuLsLAwERISIpo0aSLuvvtunz4kfH1TK+26VV1FhTshhNizZ4945JFHRMuWLUVYWJgIDw8X7du3F//61798OojJyckp8gZ56dIlPzxiIY4cOSKmTp0qevbsKWJjY4XRaBShoaGiSZMmYsSIEeL111/32P2jIsKdEI4vKb755hsxevRo0aRJE2GxWITRaBTR0dHiqquuEpMmTRLz5s0T2dnZbrcvS7gTQojk5GTx1FNPiVatWomQkBARFRUlrrrqKvHOO++InJwcoaqqCAkJEYD37mKuVFXVutJER0eL/Pz8UtVUFpUd7px+++03MXLkSBEbGyvMZrNISEgQd955p/jrr7+EEL4dXDqpqioWLlwoxo0bJ1q2bCkiIiKEwWAQUVFRolOnTuLee+8Vs2bNEqmpqUW2GzNmjHYfU6dO9XofQggxduxYbf0nn3yyxPWrMr3Cnd1u17p4XXvttR7Xu3jxovjhhx/EE088Ifr16yeaNWsmIiMjtdd2p06dxIMPPlimrvDlfX91dfLkSfH000+Ldu3aifDwcBEWFiZatmwpHnnkEbF3794Sty9NuHP666+/xPjx40XTpk1FcHCwiIqKEl27dhWvvPKKuHDhQqnq98TX15+7gOcuAJTn2MsdVVWLnDbSuHFjn0JMafk73AlR/ueMq5SUFPHyyy+Lrl27iqioKBEcHCyaNm0qxo8fr72X+io7O1v897//Fb169RIxMTHCbDaLhg0bittvv73Il2LelCbcCeHfv4UnvuYKIYp2v3QX8IQo33GQJxMmTCgSyo8fP16q7TMyMrTjjUmTJpVq25JIQug0ziwRFbFkyRJtNKtHH3201IN7UPnt2bNHG63K1//B8uXLce211wIAHnvsMbz33nsVWSKRLqZPn44pU6bAYDDg5MmTfpsSgYioJvryyy8xceJESJKEvXv3+nVkUf1nNyYiAJfnWAwPD6/Qc9/IM9dR63w91++TTz7RrgfC3HZE7jz00EOoW7cuFEXBW2+9pXc5RETVluv76JgxY/wa7ACGO6IqwxnupkyZgtjYWJ2rCTzr1q3zOr/eRx99pA1oUL9+fVx//fUl7nPXrl3aACJDhgzx+xs0UVUREhKCadOmAQBmzpzpcX4pIiLybu7cuTh06BCCgoL8Mhjkldgtk6gKuHjxIurUqYOYmBgcO3asQic5r6maN2+O/Px8DB8+HF26dEFsbCxsNhuOHTuGX375BTt37tTW/e233zyGuz///BOqquLw4cN46623tJGy1q9fr00WTBSIVFVF9+7dsWPHDvzjH//wOvccEREVpygK2rVrh0OHDmHq1Kl44403/H4fDHdEVCM0b94cx44d87pOSEgIPvvsM23CdXdcp6tw8vX8vKVLlyI3N7fkYt2IiYnRJiImIiIicofhjohqhE2bNmH+/PnYtGkTzpw5g0uXLiE3Nxe1atVCy5YtMWTIEPzf//1fiXPzOMOdxWJBy5Yt8X//93+YMGGCT/PiNW7cGImJiWWqf8CAAVi9enWZtiUiIqKaodImMSci0tPVV1+Nq6++utz74fdhREREVFWx5Y6IiIiIiCgAcLRMIiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAB1QhIqIKZbVakZub6/GSl5eHgoICWK1W7afr5crb7HY7FEWBoihQVdXtT+d152nlkiRpI5rKsgxJkopdZFmGwWBAUFAQjEYjTCYTjEZjkd+dF6PRCLPZjODgYISEhCA4ONjtdefvoaGhsFgsCA4OdjudBhERkT8w3BERUYmsVisyMzO1S1ZWltvrzt+zsrK08Ga32/Uuv8owGAywWCywWCwIDw/XrrtewsPDERkZiaioKERFRSEyMhKRkZEwGvmRTURE3nG0TCKiGqqgoACpqalIS0sr9vPK27Kzs8t9f2azGaGhoW4vZrMZf36+CpKQAFUCVACqBMnluvMiCQBCAgQcF1zxu3C0jEnO3wsbygQuX4d2XbhcL/wpC0ASEHLhTq74qd1uEIAsIAwC147vj/z8fOTn5yMvL6/Yz7y8PCiKUq6/X3h4uBb4XC+1a9dG7dq1ERMTg5iYGERHR8NkMpXrvoiIqHpiuCMiCkB5eXm4ePEiUlJSkJKSggsXLhS5pKSkICMjo1T7NBgMCA8PR0REhPYzIiICy79cB9glSHYZsEuAXYbk/KlIQOFFQs3tjijgCIIwCgijAIwqhMHxE0YBYXD8HP7QIGRmZiI9PR3p6enIyMhAZmZmqedXjIqKQkxMTJHQFxMTgzp16iAuLg5169ZFaGhoBT1aIiLSC8MdEVE1lJeXh3Pnzrm9pKSkICsry6f9BAUFoVatWqhVqxaio6Ox6ecdkGwGwCpDsjkuzuuw1+yApheBwlBoUgGTWuSnMKnoe0d3XLp0CZcuXcLFixd97gYbHh6OunXrIi4uTgt8zuvx8fGIjIzk+YFERNUMwx0RURUkhEBaWhpOnTqFU6dO4cyZM0UCXHp6eon7CAkJQZ06dRAbG4s6depgyf/WQCqQAasBUoEMyWpgYAswWhAMUoAgFcKsQgQpuOGxa7UW2+TkZJ/Cf2hoKOrXr48GDRqgfv36Ra7Xrl2bwY+IqApiuCMi0lFeXp4W4E6fPo2kpCTteknnuYWHhyM+Ph7x8fFY/+1WSPkGoMAAqaAwvCmc7YbcE4bC4GdWALMCEaxgwL1X4/z580hOTsalS5e8bh8cHKwFvvr166Nx48Zo1KgRGjVqhLCwsEp6FEREdCWGOyKiSpCTk4OTJ0/ixIkTOH78OE6ePInExERcuHDB4zaSJKFu3bpo2LAh6tevj1/fXQYp33D5wvBGFURIAiJYgQhRIILtuGHKEJw5cwZnzpxBcnIyVFX1uG1sbKwW9Jyhr3HjxoiKiqq8B0BEVEMx3BER+VF+fj4SExNx4sSJIkHu/PnzHreJiopCw4YN0bBhQyz5aK0juOUZIeUZHKNHElUhQhIQZmfwU3DjU0OQlJSEkydPem3xi4yMROPGjdGsWTM0b94czZo1Q5MmTRAcHFyJ1RMRBTaGOyKiMkpPT8eRI0eKXE6dOuVxZMOYmBg0adIEOxbsg5RrhJRbGOLsbIGjwCAMKkSoHSJUgQixo/ttHZGYmIjk5GS3rwtZltGgQYMiga9Zs2aoU6cOz+kjIioDhjsiohIIIZCSkoLDhw8XCXIpKSlu14+MjETTpk2xe9FByLlGR5DLMbIbJdVYQhYQIXZH8Auzo8tNbXHs2DGkpaW5XT88PBwtWrRAq1at0KZNG7Rq1Qp169Zl4CMiKgHDHRHRFTIzM3HgwAHs378fBw4cwIEDBzzOCVe/fn20bNkSa7/aCjm7MMTZDJVcMVH1JEwKRJgdapgd10y6GseOHUNSUpLbCd8jIyPRunVrtGrVCq1bt0br1q0RExOjQ9VERFUXwx0R1WhWqxVHjx7Vwtz+/ftx5syZYusZDAY0btwYLVq0wLKPN1wOcmyNI/IrIQlHC5/FhuFTBuLQoUM4duyY28AXExODVq1aoV27dujQoQNat24Ns9msQ9VERFUDwx0R1ShpaWnYs2cP/v77b+zZswdHjx6FzWYrtl79+vXRtm1brPrfJkhZJkeQ4+AmRLoQkoAIcwS+ayf3xcGDB5GYmFhs1E6DwYCWLVuiffv22iU2NlanqomIKh/DHREFLCEEzp49i7///lsLc0lJScXWc3b32vbDXshZJkjZJg5yQlTFCVlAWGxQw23oO74b9uzZg9TU1GLrxcXFaUGvU6dOaNq0KWSZr28iCkwMd0QUMFRVxYkTJ7Br1y4t0Lkbmr1Jkybo0KED/nh7NeQsE5BvgAS2yhFVZwICMKtQI6y4Yepg7N27F8eOHSvWuhceHo7OnTujc+fO6NKlC8MeEQUUhjsiqraEEDhz5gx27NiB7du3Y+fOnUhPTy+yjtFoRKtWrXBwyQlImUGQM9kqR1RTCFmFCLdDjbCi2+3tsGfPHuTl5RVZh2GPiAIJwx0RVSsXL17Ejh07tEB35eTgwcHB6NChA3b8tB9yRpCji6XKVjkiunzunhppxVV3tMPff/9dLOxFRESgS5cu6N69O7p37474+HidqiUiKj2GOyKq0goKCrBz505s3rwZW7duLXbOnNFoRNu2bbHvt2OOMJdl4sAnROQTX8JegwYN0KNHD3Tv3h1dunRBaGioTtUSEZWM4Y6IqhQhBE6fPo1NmzZh8+bN2LVrF6xWq7ZckiS0bNkSR1ecgpweBCkziC1zROQXQiocpCXKinY3NMO+ffuKTMFgMBjQvn17rVWvVatW7MJJRFUKwx0R6S4vLw87d+7Epk2bsGXLFpw9e7bI8tjYWFx99dVY/NZaR+scz5kjokogDCrUSCuuf/YabN26tdgcmFFRUejVqxd69eqFHj16sFWPiHTHcEdEurh48SI2bNiA9evXY+fOnUVa54xGIzp27Ijd8w9DTjNDyuVolkSkPxFshxplRa/7OmPHjh3IycnRlplMJnTu3Bm9e/dG7969ea4eEemC4Y6IKoUQAomJiVi/fj3Wr1+P/fv3F1keFxeHnj174o//rHG0zilsnSOiqktIAiLChptfvRYbNmwo1qrXpEkTLei1a9eO3TeJqFIw3BFRhVEUBfv378e6deuwfv16nD59usjytm3b4tAfSZBT2TpHRNWXgIAIUaBGF6D9Tc2wd+/eIufqRUdHo3///hgwYAA6deoEo9GoY7VEFMgY7ojIrxRFwd9//41Vq1ZhzZo1SEtL05aZTCZ07doV27/d7wh0VoOOlRIRVQxhVKHWKsDAR3pg06ZNyM7O1pZFRkaiX79+GDBgALp27QqTyaRjpUQUaBjuiKjcVFXFnj17sGrVKqxevRqpqanaMovFgl69emHVB1sco1uyuyUR1SBCElCjrLju6T5Yv349MjIytGUWiwV9+vTBgAED0L17d5jNZh0rJaJAwHBHRGWiqir27duHlStXYs2aNbh48aK2LDw8HP369cOyt/6ClBHEeeeIiFDYfTPSipEvDMTatWuLfBEWFhaGAQMGYMiQIejSpQsMBvZsIKLSY7gjolI5duwYlixZghUrVuDChQva7RaLxRHo3tnoaKFjoCMi8kjAMSDLqFcGY82aNUXeT6OjozF48GAMGTIErVu3hiTx/ZSIfMNwR0QlunjxIpYvX46lS5fi6NGj2u2hoaHo168fVry7mYGOiKiMnEFv+PP9sHr1amRmZmrLGjRogCFDhuDaa69Fw4YNdaySiKoDhjsicisvLw/r1q3D0qVLsW3bNqiqCsAxB13v3r3x16e7HYOiMNAREfmNkATUWlYMmNwN69evR0FBgbasdevWGD58OIYMGYLw8HAdqySiqorhjog0Qgjs2rULixcvxpo1a5CXl6cta9++PQ4uSIR8MRiSnYOiEBFVNGFQoUYXoNu9bbBt2zZteoWgoCD0798fw4cPR7du3TiHHhFpGO6ICKmpqVi8eDF+//33IhPxxsfHI2VzJgwpwZDyOS8TEZFehEmFEpuHRkPq4Pjx49rtcXFxGD58OIYNG4Z69erpWCERVQUMd0Q1lKqq2LZtG3777TesX79e+0Y4JCQEQ4YMwZ+vrYeUZeLE4kREVYiAgLDYMXJafyxfvrzIHHpdunTByJEjMWDAAE6rQFRDMdwR1TAXLlzAH3/8gUWLFiE5OVm7vW3btji88DTkC2ZIKrv4EBFVdUIWUKPz0fnulti+fTuch3SRkZEYMWIERo0axdY8ohqG4Y6oBhBCYMeOHfj555+xYcMGbXAUi8WC6667Dr8+twpyrknnKomIqKyEWcHYj2/AokWLkJKSAgCQJAk9e/bEzTffjB49enDuPKIagOGOKIDl5eVh6dKl+Pnnn3HixAnt9k6dOmHfDycgXwqGpLLbJRFRoBAQUKML0GVcS2zdulW7vW7durjxxhtx/fXXIyoqSr8CiahCMdwRBaAzZ87gl19+wR9//KGdjxESEoLrrrsOi15YBzmPg6MQEQU6NdiOW94egj/++ANZWVkAAJPJhGuuuQajR49Gy5Ytda6QiPyN4Y4oQAghsHXrVsyfPx+bNm3Szr2oX78+ktdlwnA+GJLCc+mIiGoaIQuoMflofmM9HDx4ULu9S5cuGDNmDK6++mpOp0AUIBjuiKo5u92OFStWYO7cuUWGx+7Zsye2f3kIcloQR7wkIiIAgGqxYcBTXbFq1SptlOSGDRti9OjRuO666xAcHKxzhURUHgx3RNVUbm4ufv/9d/zwww/ayfMhISEYMWIEfn1mNWTOS0dERB6IIAW3Tr8Wv/32m9Z9PyIiAqNGjcLNN9+MmJgYnSskorJguCOqZi5duoT58+djwYIF2gdydHQ0MnZYYTgXwq6XRETkM2FQodbJR51+4Th79iwAwGg0YtiwYbjrrrvQoEEDnSskotJguCOqJk6dOoXvv/8ef/75J2w2GwAgISEBZ1ekQ04JhiTY9ZKIiMpGQECtXYA2oxOwZ88eAIAsyxg0aBDGjh2LZs2a6VwhEfmC4Y6oiktMTMTXX3+N5cuXa/PTtW/fHgd/OAU51czz6YiIyK/UcCu6PdgKmzZt0m7r06cP7rnnHrRt21bHyoioJAx3RFXUiRMnMGfOHKxcuVIb+bJ3797Y+skByFlBOldHRESBTg2zoe+UTli9erX2OdStWzfcd9996Nixo87VEZE7DHdEVcyxY8cwZ86cIh+m/fr1w6YP9kHOMelcHRER1TRqiB3XvtATS5Ys0UbY7N69OyZMmIB27drpXB0RuWK4I6oikpKS8MUXX2DVqlXabQMGDMBf7+1hqCMiIt0Js4Jhr/bGokWLtJB39dVXY8KECWjdurXO1RERwHBHpLvz589j1qxZ+PPPP6EoCiRJwsCBA7H+v39DzuV0BkREVLUIs4IhL/Uo0pLXp08fTJw4Ec2bN9e5OqKajeGOSCdpaWn4+uuvsXDhQm30yz59+mDLjAOQc9lSR0REVZsItuOa567CsmXLoKoqJEnC0KFDMXHiRNStW1fv8ohqJIY7okqWm5uLuXPn4ocffkBeXh4AoEuXLtg76yQHSiEiompHDbGj3z87YeXKlQAAk8mEW265BXfffTciIyN1ro6oZmG4I6okiqJg8eLF+Pzzz5GamgoAaN26NY79mAwpI4hTGhARUbWmWmzoMKExduzYAQCwWCwYO3YsbrvtNpjNZp2rI6oZGO6IKsGWLVvw8ccf4/jx4wCA+vXr4/zybMiXOE8dEREFDgEBEWVFwqjaOHbsGAAgNjYWDz30EIYMGQJJ4mceUUViuCOqQCdOnMDHH3+MzZs3AwDCw8ORu1vAcC4UkuAHHBERBSYBATU2H7X7h+D8+fMAgPbt22Py5Mlo06aNztURBS6GO6IKkJWVhS+//BILFiyAoigwGo24+eabsfDJ1ZDsst7lERERVQohCYyffRO+/vpr7Tzz4cOHY9KkSYiJidG5OqLAw3BH5EeqqmLJkiX43//+h7S0NACFE5BP3w85n9MaEBFRzSSCFFzzQjcsWbIEABASEoJ77rkHo0ePRlAQBxMj8heGOyI/OXToEN577z3s27cPAJCQkIBzf2RCTudJ5ERERIBj0JUWd9XF/v37ATg+K6dMmYKuXbvqXBlRYGC4IyqnrKwsfPbZZ1i4cCGEEAgJCYF1vwGGszyvjoiI6ErO8/Eiehm10aOHDh2Khx9+GNHR0TpXR1S9MdwRlZEQAmvWrMF7772nfTgNGTIEa1/fBclq0Lk6IiKiqk0YVIx8qy8WLFgAIQQsFgsefPBB3HDDDZBlnp9OVBYMd0RlkJKSgunTp2PDhg0AgIYNGyL5j2zIGTxvgIiIqDRUiw1NRsfg8OHDAIA2bdrg6aefRrNmzXSujKj6YbgjKgVFUbBgwQJ89tlnyM3NhdFohDhuhuFUGLtgEhERlZGAgBqfh6AOivb5es899+Duu++GyWTSuzyiaoPhjshHSUlJeOONN7QBU9q1a4fDXydDzuUomERERP4gghT0mNIa69evBwA0a9YMU6dORatWrXSujKh6YLgjKoGqqvjpp58wc+ZMWK1WhIaGwrrHAPlcCCSwtY6IiMifBATUmAKE9QQyMjJgMBhw5513Yty4cTCbOQI1kTcMd0RenD17Fm+88QZ2794NALjqqqvw98cnOWAKERFRBRNGFX2f7YCVK1cCABo1aoTnn3+erXhEXjDcEbkhhMCvv/6Kjz/+GHl5eQgJCYFtjxFyMlvriIiIKpNSOx8RfQxITU2FwWDAxIkTceedd8Jg4BetRFdiuCO6QlpaGl5//XVs3rwZANCxY0cc/OIMpAKeW0dERKQHYVRx9dNtsHbtWgCOz+Znn30W9erV07kyoqqF4Y7IxZYtW/D6668jNTUVQUFBUA4GOSYjZ2sdERGRrgQE1Dr5MHWyIS8vD6GhoXjssccwbNgwSBI/p4kAhjsiAIDNZsPnn3+OuXPnAgCaNGmC0/MzIOdy+GUiIqKqRJjtaDWhHvbs2QMAGDx4MP75z38iNDRU58qI9CfrXQCR3k6dOoVHHnlEC3Y33XQTznybw2BHRERUBUkFRhz65DwmTZoEg8GAFStW4P7778fRo0f1Lo1Id2y5oxpt9erVeOONN5CXl4fw8HDkbZZhSA3WuywiIiLygRpuRdQQIy5cuICgoCBMnjwZN954I7tpUo3FcEc1kt1ux6effop58+YBKBw05fOznOKAiIiomhFGFd2eaI6NGzcCAIYMGYKnnnqK3TSpRmK4oxrn0qVLmDZtmjZ3neF0KAwnLRw0hYiIqJoSEFDq5wLN86AoChISEvD6668jISFB79KIKhXDHdUou3fvxksvvYTU1FSEhobCut0EwyV2wyQiIgoErt00w8LC8OKLL6JXr156l0VUaRjuqMZYuHAh3nvvPSiK4hgN86dMyHmcu46IiCiQCJOC1pPq4e+//4YkSZgwYQLuueceyDLHEaTAx3BHAc9ut+Ojjz7C/PnzATiGTF736h5IKrthEhERBSIhCYx4uzcWLFgAAOjfvz+effZZnodHAY/hjgJaVlYWpk2bhq1btwIADCctMJzmpOREREQ1gRKXC6ltPmw2G5o2bYo333wTcXFxepdFVGEY7ihgnTp1Cs888wySkpIQHBwM+04zz68jIiKqYdRwK8KvkZCamoqYmBj85z//QcuWLfUui6hCsPMxBaQ9e/bg//7v/5CUlITY2FgoG0MZ7IiIiGogOSsI2UtkNGnSBBcvXsTkyZPx119/6V0WUYVguKOAs27dOjzxxBPIzMxEmzZtkPG7gJxj0rssIiIi0olUYMCZ77Jx1VVXIS8vD88++yx+/vlnvcsi8jt2y6SAsnDhQkyfPh2qqqJ3797Y9s5RDpxCREREABwDrVz7encsWrQIAHDXXXfhwQcfhCTxWIECA8MdBQQhBL766ivMmjULACAnB8N4NIIDpxAREVERAgJKg1wojbMBADfccAOmTJkCg8Ggc2VE5cdwR9WeqqqYPn06Fi5cCAAwJIXBkBTGYEdEREQeKXG5UFvlQFVVXHPNNXjuuecQFBSkd1lE5cJwR9Waoih488038eeff0KSJBiOWGBI5hw2REREVDKldj6kjrmw2Wzo3r07XnvtNYSEhOhdFlGZMdxRtWW32/Haa69h5cqVMBgMkPaFwXCRb8hERETkOzWqAMbuBcjLy0O7du3wzjvvICwsTO+yiMqE4Y6qJavVipdffhnr1q2D0WgE9oRxqgMiIiIqEzXciuC+dmRlZTHgUbXGcEfVjtVqxfPPP49NmzYhKCgI6s5QGNLMepdFRERE1ZgaZkNwfxuysrLQvn17vPPOOwgN5akeVL1wnjuqVux2O15++WVs2rQJZrMZYjuDHREREZWfnGNC/loTLBYL9u7di6eeegq5ubl6l0VUKgx3VG0oioLXX38d69atc7TYbQuBnMFgR0RERP4h55hQsC5IC3j//Oc/kZeXp3dZRD5juKNqQVVVvPPOO1i+fDkMBgPUnaEMdkREROR3co4JBesdAW/Pnj144YUXYLPZ9C6LyCcMd1TlCSEwY8YMLFq0CLIsQ9prYVdMIiIiqjBytgkFG0wIDg7Gli1b8Prrr0NVVb3LIioRwx1Ved999x3mz58PAJAPWjgqJhEREVU4OSsIyrZgGI1GrFixAu+//z44DiFVdQx3VKUtXboUn376KQDAcCwchhTOY0dERESVQ043A3vDIEkSfvnlF8yaNUvvkoi8YrijKmv79u34z3/+AwAwnA6F8RyHIyYiIqLKZbgYDMMRCwDgq6++wuLFi3WuiMgzhjuqko4dO4bnn38edrsd8gUzDCctepdERERENZQhORSGJMek5m+//TZ27dqlb0FEHjDcUZWTlpaGqVOnIicnBx07doTxcCQkSHqXRURERDWYISkM11xzDex2O55//nmcPn1a75KIipEEzwylKsRut+OJJ57A7t270aBBA6T8VADJzu8giIiISH9CFmg6IRoHDx5EQkICPvnkE4SHh+tdFpGGR81UpcyYMQO7d+9GaGgozi/MY7AjIiKiKkNSJRyffRGxsbFISkrCyy+/DEVR9C6LSMMjZ6oyfv/9d/zyyy8AAOs2E+Q8o84VERERERUl2QxIX6rAbDZjy5YtmD17tt4lEWkY7qhK2L9/P6ZPnw4AMCSGwZDKueyIiIioapJzTFD+NgMAZs+ejc2bN+tcEZEDwx3pLisrC9OmTYPNZkO/fv1gOBWmd0lEREREXhkuhGDUqFEQQuDVV19FcnKy3iURcUAV0pcQAtOmTcOqVasQHx+PSz/bISn8zoGIiIiqPiEJNJ3oGGCldevW+PDDDxEUFKR3WVSD8SiadPXbb79h1apVMBgMuLi4gMGOiIiIqg1JSDj+9UVERETg4MGD+PLLL/UuiWo4HkmTbo4fP44PPvjA8cvREMjZJn0LIiIiIiolqcCA3M2O+Xjnzp3LCc5JVwx3pAu73Y7XXnsNVqsVPXr0gOFMqN4lEREREZWJ4VIwRowYASEEXn/9dWRnZ+tdEtVQDHeki2+++QZHjx5FREQEds04DgmS3iURERERldnyF7aiXr16SE5Oxvvvv693OVRDMdxRpTt69Kg2J0zuFsd8MURERETVmaTIuLA4D7IsY8mSJVi3bp3eJVENxHBHlcput+ONN96AoiiQL5khX+R8dkRERBQY5KwgSImOY5v33nsPubm5OldENQ3DHVWquXPn4siRI4iIiIDxaDi7YxIREVFAMZyyoH79+rhw4QI+++wzvcuhGobhjipNcnIy5syZAwDI3crumERERBR4JFVCyp85AICff/4ZBw4c0LkiqkkY7qjSfPjhhygoKEDnzp0hX2B3TCIiIgpMcoYZQ4cOhRACb7/9Nux2u94lUQ3BcEeVYsuWLVi7di0MBgP2fXmK3TGJiIgooK1+ZSciIiJw9OhRLFq0SO9yqIZguKMKZ7PZLk9WnmSGnGvUtyAiIiKiCibZZeTuFACAL774Ajk5OTpXRDUBwx1VuAULFiApKQnR0dEwJIXpXQ4RERFRpZCTQ5CQkID09HR88803epdDNQDDHVWo3NxcfP311wCAzM02SAqfckRERFQzSELC2T8zAQA//vgjzp07p3NFFOh4pE0V6scff0R6ejrq168POSVE73KIiIiIKpWcGoSuXbvCarXi888/17scCnAMd1RhMjIy8P333wMAzq/IhiQ4iAoRERHVLBIk7PniJABgxYoVOHXqlL4FUUBjuKMK89133yEnJwctWrSAfNGsdzlEREREupBzTOjduzdUVdXm/CWqCJIQQuhdBAWerKws3HbbbcjLy4NxXxQMaQx3REREVHOpFhtsnVNhMBjw9ddfo0GDBnqXRAGILXdUIRYuXIi8vDw0adIEclqQ3uUQERER6UrONuHqq6+GoijaYHNE/saWO/K7goICjBkzBqmpqTAeioDhAgdSISIiInJtvfvhhx8QGxurd0kUYNhyR363dOlSpKamok6dOpAvButdDhEREVGVIGeb0LFjRyiKggULFuhdDgUghjvyKyEE5s2bBwC4tCmXI2QSERERudg/LxEA8Ouvv6KgoEDnaijQMNyRX+3evRtJSUkICQmB4Ty7YxIRERG5ki+ZERcXh4yMDCxfvlzvcijAMNyRX/36668AgIITgKTw6UVERETkSoKEi5tyAAC///67ztVQoOHRN/lNeno61qxZAwAwnGOrHREREZE7hpRgGAwG7Nu3DydPntS7HAogDHfkNytWrIDNZoOUbYScY9K7HCIiIqIqSbIZIFKMAIDFixfrXA0FEoY78htnv3E5ha12RERERN7I5x0jii9ZsgSKouhcDQUKhjvyi7Nnz2Lfvn2QZRmGC2a9yyEiIiKq0uQ0M8LDw5Gamoo9e/boXQ4FCIY78ouVK1cCAESqEZLNoHM1RERERFWbJCTkHLUBAFatWqVzNRQoGO7IL9atWwcAbLUjIiIi8pF80dE1c82aNeyaSX7BcEfllpqaigMHDgAA5FSGOyIiIiJfyOlBsFgsSE1Nxf79+/UuhwIAwx2V28aNGwEAUha7ZBIRERH5ShISck84umZu3bpV52ooEDDcUbk5wx1b7YiIiIhKR053HD9t2bJF50ooEDDcUbmoqopdu3YBcIz6RERERES+k9OCAAAHDhxARkaGztVQdcdwR+Vy4sQJZGZmIiQkBFKOUe9yiIiIiKoVyWpA48aNIYTA7t279S6HqjmGOyoXZ6td/lkFkpD0LYaIiIioGkraeB4AsG/fPp0roeqO4Y7K5e+//wYAyBlBOldCREREVD3JWSYAwN69e3WuhKo7hjsql8OHDwMA5Cx2ySQiIiIqCznTEe4OHToEq9WqczVUnTHcUZllZWXhzJkzAAApx6RzNURERETVVL4B4eHhsFqtSExM1LsaqsYY7qjMjh496riSL0Oy86lEREREVBYSJGSfzgcAHD9+XOdqqDrjETmV2bFjxwAAMlvtiIiIiMrFOeo4wx2VB8MdldmpU6cAAFKuQedKiIiIiKo3meGO/IDhjsrs9OnTAAApn4OpEBEREZWH83jq7NmzOldC1RnDHZWZFu7y2HJH5HcS540kIqpJpHzH8dT58+ehqqrO1VB1xXBHZaKqKlJSUgBcfjMiIj9jwCMiqjkKZBgMBlitVqSmpupdDVVTDHdUJpmZmVAUxfGLjU8jIr9yDXUMeERENYIECUqOAOBovSMqCx6VU5lcunTJccUmQRI8+CTyG3dhjgGPiKhGkAq/MM/IyNC5EqquGO6oTJzdBSQrn0JEfuMtxDHgEREFPjvDHZUPj8ypTHJychxXOHk5kX/4Et4Y8IiIAhpb7qi8eGROZZKXl+e4ovBgk6jcShPaGPCIiAKX3fEen52drXMhVF0x3FGZOMOdpPJAk6hcyhLWGPCIiAKS87jKZrPpXAlVVwx3VCYFBQWOK2y5Iyq78oQ0BjwiosDjGCyT4Y7KjOGOykQIoXcJRNWbP8IZAx4RUUBR6uUCAH766SedK6HqiuGOykTiQSVR2fH1Q0RERBWA4Y7KRAt3PEYlKh3ZAEiy40JEROTCcD4EADBo0CCdK6HqikcXVCayXPjUkdg9k8hnsqHo7/4IeGwFJCIKHIUDqtSuXVvnQqi6YrijMgkNDXVcMTDcEfnkymDnxIBHRESFROFxVVhYmM6VUHXFcEdl4nzTEQx3RCXzFOycGPCIiAjQvjQPCQnRuRCqrhjuqEy0b5SMDHdEXpUU7JwY8IiIqDDcaT2kiEqJ4Y7KJDw8HAAgjKrOlRBVYb4GOycGPCKiGk2YHMdVtWrV0rkSqq4Y7qhMYmNjHVeCVAiw9Y6omNIGOycGPCKiGksEKQA4oAqVHcMdlUmtWrVgMBgcUyEEsfWOqIiyBjsnBjwiohpHQGjHVDExMTpXQ9UVwx2VicFgQHR0NABAMNwRXVbeYOdPDHhERNWHSQVkx1zCzmMsotJiuKMyi4+PBwCIELvOlRBVIapS7l3IQSYY/PWtLQMeEVG1IEIcnx9xcXEwmUw6V0PVFcMdlVmjRo0AXH4zIqJC5Qh4cpAJcmwMpLAQ/wQ8wXNiiYiqA+fxVMOGDXWuhKozhjsqMy3chbLljqiYMgQ8Z7CD0QBIUvkDHoMdEVG14ewJlZCQoHMlVJ0x3FGZOd982C2TyINSBLwiwc6pPAGPwY6IqFpxflnOcEflwXBHZda8eXMAgAhVIGQeSBK55WvAk+Wiwc6pLAGPwY6IqFoREFAtjnDXqlUrnauh6ozhjsosJibGMd+dBAiLTe9yiKquEgKeHGSCXNvLyGilCXgMdkRE1U+QCgSpMBgMaNasmd7VUDXGcEfl0rp1awCAynBH5J2HgOe2O6Y7vgQ8BjsiompJDXccRzVt2hRms1nnaqg6Y7ijcmnTpg0AQEQw3BGV6IqA53Owc/LHICtERFTlOI+jnMdVRGXFcEfl0qlTJwCAGmmFAFsNiEokVABlCHZOngIeW+2IiKotNdIKAOjSpYvOlVB1x3BH5dKmTRuEhIQAJgERxlEziUokBCSTsWzBzunKgMdgR0RUbQmjCoQ7enZ07txZ32Ko2mO4o3IxGo1FWu+IyDtDmxY49kpXJN1RzqGuJQn2FvVw8YGr/VMYERHpQo20QgiBRo0aoXbt2nqXQ9Ucwx2VW7du3QAAai2GO6KSqKFBUOvlI7u1FUm31S/zfmz1auHkjaFIa6fi4oO9/FghERFVJjW6AADQvXt3nSuhQMBwR+XWu3dvAICItEIYVJ2rIaq6DG1a4MjYcACAHKSUOeDZ6tXCyRtCYItSIIKEI+A9wIBHRFTdCAiotRzhrk+fPjpXQ4GA4Y7KrWHDhmjcuDEgX/72iYiKMrRpgUOTagOxl18jZQl4rsHOSQQJpLVnwCMiqm5EuA0IErBYLNppLkTlwXBHftGvXz8AgFqb4Y7oSu6CnVNpA54aJBcJdk5awGMXTSKiasN53NSzZ08YjUadq6FAwHBHftG/f38AgFqrgF0ziVx4C3ZOvgY8W71aSLrO8+S27KJJRFR9CAgosfkAgEGDBulcDQUKhjvyi5YtWyIhIQEwAGoMW++IAMDQtmWJwc6ppIDnrjumO84WvKQXezPkERFVYSLSBphVhIeHo2fPnnqXQwGC4Y78QpIkXHfddQAAJTZP52qIqgY1xORTsHPSAt6tRQOerV4tnLy+5GDnJIIE8uvZeR4eEVEV5jxeGjhwIIKCgnSuhgIFwx35zbXXXgvA8U2UMPt2EEoUqAxtWuDoXeGl3q5OXgbGH/0Tz6u/4d0z3+HV1AUYHrYBkYb0Uu+LA60QEVVNwqBCLfzyb+jQoTpXQ4FEEkIIvYugwDFlyhRs27YNhlOhMCaW/sCWKBAY2rTA4ftrQ9TxvdXObLXhpa9/x61rdyJIKf7liNVgwI+9r8LLY25EgclUqnokq4Rae2XEzNxYqu2IiKhiKHVzYW+ehUaNGmHOnDmQJEnvkihAsOWO/Ormm28GACh18yAkfm9ANZM4nYx663wfWMhstWHWW7Nx56ptboMdAAQpCsau24zZH3wBs9VWqnqC0mXUXXqmVNsQEVHFEBBQ4h1dMkeNGsVgR37FcEd+1atXL9SpUwcwCagx+XqXQ1T5JAlqdjbCVhxA/fm+tbC99PXvuPrgCZT0dYgA0Ovwcbz0w68+l2M+b0SzL8/AfjLJ522IiKjiiAgbRJgdZrNZG6+AyF8Y7sivjEYjbrzxRgCAUj8XosTDVaLApGZnw7LyYIkBLyY9C7eu3QkAKOm7W+fy2//ahpjMrBJrMKcY0GwWgx0RUVWi1M8B4DjXLjycp7CQfzHckd+NGjUKISEhEBY7RJRV73KIKs8VXWuUrKwSW/DGrPHcFdOTIEXBmPVbS1xPLpBgP5FYqn0TEVHFUUPtUGtbIUkS7rjjDr3LoQDEcEd+FxkZiRtuuAEAYG+Yo3M1RJXEwzkTJbXg9Txwskx3d/XhY16Xm1MMaPIdz7MjIqpKnK12/fv3R8OGDXWuhgIRwx1ViDFjxsBoNEJE2qCGs/WOajYlK8tjwAvL931ETVcWL9uZUwxo9tVZttoREVUhwqxAqucYEOuuu+7SuRoKVAx3VCFiY2MxbNgwAGy9oxrAh5HOnAGv3s9FJ6rNCTaX6S4j6+a6vd1xnt05BjsioirG3iAHiqKga9euaNOmjd7lUIBiuKMKc9ddd8FgMEBEW6FGsPWOAlQphrBWsrIQfsU5eJvbNC7T3dbrb8Wk3muK3GY+b3QEu+Mny7RPIiKqGGqwHVIDx7HQhAkTdK6GAhnDHVWYBg0aXD73rkkWR86kwFOGuYmu7KK54qbWUEs3JzmECTCPjcYj0buKBDxDARjsiIiqIKVRNhRFQa9evdCxY0e9y6EAxnBHFWrcuHGOkTPD7VBrl+3cIqJA49pFMzfODGl0BAD4NM8dAGBMBBBrRKQcgkeid2Fi77Uwnzei8fdnK7JsIiIqA9VigxpbAEmS8MADD+hdDgU4hjuqULVr18aYMWMAAErjbAiJrXdEQGEXzdWHcenP+hCvxkD0CvZpnjvRKxji1Rjttkg5BADQ9IdLbLUjIqpiBATsjbMBOOa1a9asmc4VUaBjuKMKd8cddyAqKgoiRIES734QCKJqSZT9ywrJaAJkCQ1+T0Gr7x+B+LYexN0REB66aAoTHMu/qwcEX37rnpHWCCue7gecSYYcGlrmeoiIyP/U2gUQUVYEBQXxXDuqFEa9C6DAFxoaigceeABvvfUWlEY5MFwMhmQ16F0WkX84A15pz7+TJUA2AKkZaDYH6LX3YaS2l3Bo+wyI7zIh/ZUH5KhAmAzROwS4y9EV80on82sjZPNRQJIhBZkgG8IBRYGayy9SiIj0JGQV9qZZAByDzMXHx+tcEdUEkhDl+OqZyEeqquKRRx7Bvn37IF8ww3QoSu+SiPzPx4AnGU2QIyyOcOcqOhJHx8Xi8PhPfNrPR+kN8eOTwxC66WjRBUKFsNoY8IiIdGRvnAWlQS7i4+MxZ84cmM1lm/qGqDTYLZMqhSzLePLJJyHLMtTYAqhRHFyFApAP35V5DHYAkJqB5rMvoOWs/ytxPzPSGrkPdsDlVjx20yQi0oUaYgcaOY51HnvsMQY7qjQMd1RpmjdvjltvvRUAYG+WBSGz0ZgCUEkBz9kd05PCgNfqK+8B71h+rPtg58SAR0SkCwEBe/NMKIqCPn36oHfv3nqXRDUIwx1VqgkTJiA2NtYxuEqjbL3LIaoYHgKeZPQxbKVmoNkczy14M9IaYdcLXUreDwMeEVGlU+rlQkTaEBISgscee0zvcqiGYbijShUWFoann34aAKDUz4UaYdW5IqIKckXAk4wmyJYwwOjjOFYeumjOSGuE+f8citCNXlrtitwxAx4RUWVRQ+xQCqc++Mc//oG6devqXBHVNAx3VOl69uyJG264AQBga5kJYVB1roiogrgGPFnyPdg5pWag+dcX0XK2I+DNSGuE+U+XItg5MeAREVU4AQF7i0xABrp3747rr79e75KoBuJomaSL3NxcjB8/HsnJyZDPhcB0LELvkogqjGQKKl2r3ZVionD03hiMGLoVh4eEl70QjqJJRFRh7A1yoDTORlhYGGbNmoW4uDi9S6IaiC13pIvQ0FBMnToVAKDG50Gpna9zRUQVrKzBDgAupqP5rAvY9aIP59l5I8mAgXNMEhH5mxpuBZrlAQAmT57MYEe6Ybgj3XTt2hV33nknAMDeIhPCbNe5IqKKIew2iJyc8u3kUhpCNxwGRDm6MSsK1By22hER+ZMwqrC1yoCiKBgyZAiGDx+ud0lUgzHcka4mTZqEdu3aAUYBW+sMCIm9hCkACQE1L6/sAU+ogN1e9PfSUhQo2TmAqpStBiIiKkY7zy5YRf369fHkk09CkiS9y6IajOGOdGU0GjFt2jRERERAhF8eYYoo4BQGPDU9o3Qh78pg53p7qe5eMNgREfmZUi8Pau0CmEwmTJs2DWFhYXqXRDUcwx3pLi4uDs8++ywAx/QISgzPv6MAJQSEzVq+Vrwi+/Mx4LE7JhGR36kRVqCF47314YcfRqtWrXSuiIjhjqqI3r17Fzn/Tg2z6VwRUQXytZump1a7K9fxht0xiYj8TpgV2NqkQ1EUDB48GLfccoveJREBYLijKuSBBx5Az549AYOArW06hIkHoxTASgp4vgQ713U93g27YxIR+ZOQBWxt0gGTQMuWLfGvf/2L59lRlcFwR1WGwWDAiy++iISEBMCswtaGA6xQgCvvQCtF9uUm4LE7JhGRXzkGUMmAsNhRq1Yt/Pvf/0ZwcLDeZRFpGO6oSgkPD8cbb7wBi8UCEWGDvXkmBBjwKIC5C3ilabUrsq+iAY+tdkRE/qUk5ECNLYDRaMSrr77K+eyoymG4oyqnYcOGmDZtGmRZhhqXDyXBD60aRFVZRbTgsdWOiMivlLhc7ZhkypQp6Nixo84VERXHcEdVUo8ePTBlyhQAjm/JlLo8SKUA5wx4WVlla7Vz3ZXdzkFUiIj8SIkugL15FgBg/PjxuP7663WuiMg9hjuqsm688UaMHz8eAGBvlgWlNqdIoAAnBNT8fKh55XyuqyqDHRGRn6gWG+ytMgAJGDFiBO677z69SyLyiOGOqrT77rsPN9xwAyAB9lYZjjlliAKcsFrLHPCEokIUFPi5IiKimkkNscPWLg0wCPTs2RNPPfUUR8akKo3hjqo0SZLwxBNPoE+fPoAM2NqmQ7VwDjwKcEKUPeCpKkQ5u3USEREggu2wtU8DTAKtW7fGyy+/DKPRqHdZRF4x3FGVZzQa8dJLL6FTp06AUcDWPo2TnFPgK0PAY6sdEZF/CLMCa/s0wKyiSZMmeOuttxAaGqp3WUQlYrijaiE4OBhvvvkm2rVrdznghbJ1ggJcaQMeW+2IiMpNBBUGu2AVCQkJmD59OqKiovQui8gnkhCCk4hRtZGdnY0pU6bg4MGDgFWGaU8tyHnsIkEBTpIgGQyAwQA5xP1kuUJRIfLyGO6IiMpBmBTYOqRBhCqoV68eZsyYgdjYWL3LIvIZW+6oWrFYLHjnnXfQokULIEiFrQNb8KgGEALCbvfeisdWOyKichFBl4NdnTp18N577zHYUbXDcEfVTkREBP773/+iadOmhQEvlefgUc3goZsmz7UjIiofYbbD2jEVIlRB3bp18f7776Nu3bp6l0VUagx3VC1FRUXhgw8+QJs2bQCTcLTgcZoEqgncBTy22hERlZkaYoe1o+Mcu/r162PGjBmoX7++3mURlQnDHVVbERERmD59Ojp37uwYZKVdOtRItl5QDeAS8NhqR0RUdmqYDbYOjlExGzdujBkzZiAuLk7vsojKjAOqULWXn5+PF154AZs3bwZUwHgoEoZL7gedIAoohQOtsNWOiKj01EgrbG3SAaNAixYt8N///pejYlK1x3BHAcFms+HVV1/F6tWrAQEYTlhgPBumd1lERERUBSkx+bC3zABkoGPHjnjjjTcQHh6ud1lE5cZwRwFDURTMmDEDP//8MwDAcCYUhhMWSJB0royIiIiqAgEBpX4ulCbZAICBAwfiueeeg9ls1rkyIv9guKOAIoTA999/j08++QQAIF80w3g4EpLKgEdERFSTCQgoTbKh1M8FANx66634xz/+AYPBoHNlRP7DcEcBacWKFXj99ddhs9kgZZpgOhAJycY3byIioppIGFTYW2ZAre0YWfvhhx/GmDFjIEn88pcCC8MdBaydO3fiueeeQ3Z2NpAvw3QgCnKOSe+yiIiIqBIJsx22tukQYQqCgoLwzDPPYPDgwXqXRVQhGO4ooCUlJeGZZ57BqVOnAEWC8XAER9IkIiKqIdSIwhExTQK1a9fGv//9b7Rt21bvsogqDMMdBbysrCy8/PLL2LJlCwDAkBQGQ1IYB1ohIiIKYEpcLuzNswAJaNWqFV5//XXExsbqXRZRhWK4oxrBbrfj008/xbx58wAA8iUzjIcjICmyzpURERGRPwlJwN4sC2rdPADAoEGDMHXqVAQHs+cOBT6GO6pRFi9ejHfeeQc2mw3IM8B0MJLn4REREQUIYbbD1iYDwmKHJEmYOHEi7rnnHg6cQjUGwx3VOAcPHsSLL76I5ORkQAWMxyIgnw9mN00iIqJqTIkucExMbhSIjIzEiy++iO7du+tdFlGlYrijGikzMxP//ve/sXHjRgCAfD4YxmMRnA+PiIiomhEQUBplQ2nomL+ubdu2ePnllxEXF6dzZUSVj+GOaixVVfHdd9/h888/h6qqkHKMMB6KhJxr1Ls0IiIi8oEwK7C1zICItAFwTEz+8MMPw2TiKRdUMzHcUY23c+dOvPzyy0hNTXV00zwRDvlcCLtpEhERVWFKTD7szTMBo0BoaCj++c9/cv46qvEY7ogApKam4o033sDmzZsBAHJqEIxHIiHZOJomERFRVSJk1TEaZlw+AKBdu3Z44YUXUK9ePZ0rI9Ifwx1RISEEfv75Z3zyySewWq2AVYbpcATkdLPepREREREA1WKDvVUGRIgCSZJwzz33YPz48TAaeUoFEcBwR1TMsWPH8Morr+DEiRMAAPlsCIwnLZBUtuIRERHpQUgCSsMcKA1zAAmIjY3FCy+8gM6dO+tdGlGVwnBH5EZBQQE++eQT/Pzzz44b8g0wHYmAnBGkb2FEREQ1jBpmg71lJkSYHYBjUvIpU6YgIiJC58qIqh6GOyIvtm/fjv/85z84f/48AGcrXjinTCAiIqpgQhJQGuRASXC01kVGRmLKlCm45ppr9C6NqMpiuCMqQW5uLj7++GP8+uuvjhvyClvxMtmKR0REVBHUMBvszTMhwh2tdf369cOTTz6J6OhonSsjqtoY7oh8tHXrVrz55ptISUkBAMjJITCesEBSeC4eERGRPwhZQEnIhlI/F5CA8PBwPP744xgyZAgkib1miErCcEdUCjk5Ofj444/x22+/OW6wyjAet0C+GMx58YiIiMpBjSqArXkWEKwAAAYMGIDHHnsMMTExOldGVH0w3BGVwe7du/HOO+8gMTERACClBcF0NBxSAYdiJiIiKg1hUmFvkgW1jmPeutjYWDzxxBPo27evzpURVT8Md0RlZLVaMXfuXHz99deOefFUwJBkgeFMKCTBVjwiIiJvBATUunmwN8oGTAKSJOHWW2/F/fffj9DQUL3LI6qWGO6IyunUqVN45513sHPnTgCAlGeA4Xg4DGmc/JyIiMgdNdwKe7MsCItjwJTmzZvjqaeeQtu2bXWujKh6Y7gj8gMhBJYuXYpPPvkEqampAAA5NQjG4+GQ8tlVk4iICACESYG9cTbUOEcXTIvFgokTJ2LUqFEwGvl5SVReDHdEfpSTk4PZs2fjxx9/hKIojq6aZ0JhOBUGSeWomkREVDMJSUCJz3XMWWd0dMEcMWIEHnjgAdSqVUvv8ogCBsMdUQVITEzEjBkzsGXLFscNBTKMSRbI5zmqJhER1RwCAmrtAiiNsyFCHKNgtm7dGo8//ji7YBJVAIY7ogoihMCGDRvw4Ycf4uzZswAAKccI4wkL5HSej0dERIFNtdhgb5IFEWkDAERHR+P+++/HiBEjIMvszUJUERjuiCqY1WrFzz//jDlz5iA7OxuAY+oE40kL5ByTztURERH5lzArsDfOghpbAAAwm8248847cccdd3AUTKIKxnBHVEkyMzMxZ84c/PLLL7DZbIAA5JRgGJMskAoMepdHRERULsKkQmmQAyU+F5ABSZIwfPhwTJw4EbGxsXqXR1QjMNwRVbKzZ89i5syZWLlypeMGFZCTQ2A8FQbJxpBHRETVizCoUOrnQqmfCxgch5VXXXUVHn74YTRv3lzn6ohqFoY7Ip3s378fM2fOxI4dOxw3KBIM50JgOB0Gyc5zEYiIqGoTsoBSLxdKA8cImIBjsJT7778f3bt3hyRxADGiysZwR6Sz7du34/PPP8e+ffscN9glGM6GwnAmFJLCkEdERFWLkAWUuDwoDXOAIBUA0KRJE0ycOBH9+vVjqCPSEcMdURUghMCmTZvw+eef48iRI44bbYUh7yxDHhER6U/IKpT4PEf3y8JQV69ePUyYMAGDBw+GwcBTC4j0xnBHVIWoqoq1a9fiiy++QGJiouNGe2F3zTPsrklERJVPGJyhLgcwOQ4b4+LicPfdd2PEiBEwmTjyM1FVwXBHVAUpioK1a9dizpw5OHbsWOGNEgzJITCcDuXAK0REVOGEUXWcU1cvVzunrn79+hg7diyuu+46hjqiKojhjqgKU1UVGzZswJw5c3Do0KHCGwH5fAgMZ0Ih5xv1LZCIiAKOMCmFoS5PG/0yISEB9957LwYNGgSjkZ89RFUVwx1RNSCEwJYtWzB79mzs3bu38EZAvmR2hLysIH0LJCKiak8NtUOpnwM1Nh8oPAugWbNmuPfee9G/f3+eU0dUDTDcEVUjQgjs3r0bc+fOxcaNG7XbpUyTI+RdMkMCRykjIiLfCAiISCvs9XMhoq3a7e3bt8edd96JPn36QJZ5vjdRdcFwR1RNnTx5EvPmzcPSpUths9kAAFKewRHyUkIgqQx5RETknpAE1Jh8KPVzISx2AIAsy+jXrx/GjBmD9u3b61whEZUFwx1RNXfp0iX8/PPPWLBgAbKyshw32iQYzofAcC4UUgG70RARkYMwqlDq5kGJzwXMjukMgoODMXLkSNx+++2oV6+ezhUSUXkw3BEFiNzcXCxevBg//PADzp0757hRAHKqGYZzIZDSg9hlk4ioBhIQEOE2KPF5UGMun08XHR2NW2+9FaNGjUJERIS+RRKRXzDcEQUYRVGwceNG/Pzzz9i2bZt2u5RrgHwuFIaUYE6KTkRUAwhZQI3NhxJ/ueslALRu3Ro333wzBg8ejKAgDshFFEgY7ogCWFJSEn755RcsXrwYubm5jhsVCXJKMAznQiDnco4iIqJAI4Ltjq6XcXnapONBQUEYNGgQbr75ZrRp00bnComoojDcEdUAubm5WLp0KX7++WecPHlSu13KMsKQHAL5IlvziIiqMyEJqLXzodTNh4i6POpl3bp1cdNNN2HEiBGIiorSr0AiqhQMd0Q1iBACu3btwi+//IL169fDbi/spqNIkC+aYUgOgZRl4rl5RETVhBpmgxKX55ibrrCVTpIk9OjRAzfffDN69uzJ+emIahCGO6IaKj09HUuWLMHvv/+OxMRE7XYp1wD5fAgMKSGQbGzNIyKqaoRBdZxLVzevyLl0derUwYgRIzB8+HDEx8frWCER6YXhjqiGE0Jg7969WLRoEVauXIn8/HzHAhWQ08yQU4Ihp5ohCbbmERHpRUBARFmh1MkvMuKl0WhEv379MHLkSHTr1o2tdEQ1HMMdEWlycnKwcuVK/P777zhw4MDlBXYJ8sVgx0ibmey2SURUGQQEhMXuaKWLzQeCVG1ZkyZNMHLkSAwdOpTn0hGRhuGOiNw6ceIEli5dimXLliElJeXygnwZhgvBkC+EQM416lcgEVGAEma7o4UuNh8iVNFuj4yMxDXXXINhw4ahTZs2kCR+0UZERTHcEZFXqqpi9+7dWLp0KVavXo2cnBxtmZRthHwhGIaLwZAK2BWIiKishEl1jHZZJx8iwqbdHhQUhL59+2Lo0KHo3r07TCZOYUNEnjHcEZHPCgoK8Ndff2Hp0qXYtGkTFOXyN8pSltHRdZNBj4jIJ8KkQK1dACUmHyLSBmePd1mW0bVrV1x77bXo378/wsLC9C2UiKoNhjsiKpP09HSsXr0aq1atwu7du6Gql88FuRz0zJAK2HWTiMhJBLkEuojLgQ4AWrdujcGDB2Pw4MGIiYnRr0giqrYY7oio3FJTU7F27Vr3QS/bEfTkS2ZIeQYOxkJENY4IUqDEFECtXTzQtW3bFgMGDMDAgQM5fQERlRvDHRH5VWpqKtatW4dVq1Zh165dRYNengHyJbNjagWOuklEAUpAQITZodYugBpdUGQuOgBo3749Bg4ciAEDBiAuLk6nKokoEDHcEVGFSUtLw9q1a7Fu3Trs2LEDdrvLAY5NgpzqCHpyWhAklROmE1H1JSQBNcoKNdoR6GC+/MWWLMtaoOvfvz/q1KmjY6VEFMgY7oioUuTk5GDLli3YsGEDNm7ciKysrMsLVUBOD7oc9HieHhFVA8KkQK1ldbTQRRUALmNJhYSEoHv37ujTpw969erFueiIqFIw3BFRpbPb7di7dy/Wr1+PDRs24MyZM0WWS3kGR8hLM0POCIKksvsmEelPSAIiwga1VgHUKGux7paxsbHo06cP+vTpg86dO8NsNutUKRHVVAx3RKQrIQQSExOxfv16bN68GXv37i0yxQJUQMoIcrTspZkh5XJQFiKqPCLY7midq1UANdIGGIoeNrVq1Qq9e/dGnz590KJFC04sTkS6YrgjoiolJycHO3bswObNm7F582acP3++6AoFsiPopQc5WvWsnFOPiPxHGFWokVbH+XNRViBEKbI8Ojoa3bt3R48ePdC9e3d2tySiKoXhjoiqLCEEkpKSsHnzZmzZsgW7du2C1Wotso6UZ4BUGPTkDBMkG8MeEflOGBxhTkTaHF0tw4p2tTQajejQoQO6d++Onj17olmzZpBlDgBFRFUTwx0RVRsFBQXYvXs3tm/fjp07d+Lw4cNFploAACnH4GjRyyhs2bPzIIyILhMGFWqEDaKwdU6E2XFlT+8mTZqgS5cuuOqqq9C1a1eEhobqUywRUSkx3BFRtZWVlYXdu3dj586d2LlzJ44ePVpsHSnXACkzCHKmCXKmCcjnOXtENYkIUhxhLsLq+OkmzCUkJKBLly7apVatWvoUS0RUTgx3RBQw0tPTsWvXLuzYsQM7d+5EYmJi8ZWsMuRME6RME+TMIEg5RkiCYY8oEDgnDxfhNqgRNqgRViBYLbZe/fr1i4S5mJgYHaolIvI/hjsiCljp6enYu3cv9uzZgz179uDgwYNFJ1IHAAWQskyQs02On1kmwCqzdY+oGhAmFarF5ghz4Y6fMBY9rJFlGc2aNUPHjh3Rvn17dOjQgZOIE1HAYrgjohqjoKAAhw4dwt9//409e/Zg7969RSdTd7LKkLNMkLKMWuiTFJ67R6QnYVAhLPbLYc5ic9sqFxoairZt26JDhw7o0KED2rZty3PmiKjGYLgjohpLVVUkJiZi3759OHDgAA4ePIjjx48XnWevkJRncIS8bCPkHJOjOycHayGqEMKgQoTaL4c5iw0iVCl2rpwkSWjYsCHatGmDNm3aoEOHDmjatCkMBo6aS0Q1E8MdEZGL/Px8HDlyRAt7Bw4cwJkzZzysLEPOMUIqDHtytgkoYJdOIl8JCCBIhRpmdwS4MLvjElL8CxYAiIuLQ+vWrdG6dWu0adMGrVq1QlhYWCVXTURUdTHcERGVICMjA4cOHcKBAwdw5MgRHD16FGfPnnW/sl1yBL0cI6Rclwtb+aiGE7IKEao4WuTC7I5AF2YDTO4PQ2JjY9GsWTMtzLVu3RrR0dGVXDURUfXCcEdEVAbZ2dk4duwYjh49iiNHjuDIkSM4efIkbDab+w2sMqRcI+Rcw+XAl2PkuXwUcIRBhQhRClvg7BChdqihdrfnxwGAwWBAQkICWrRogebNm6NFixZo1qwZoqKiKrdwIqIAwHBHROQnNpsNSUlJOHz4MI4fP46TJ0/i5MmTOH/+vOeNCmTH+Xx5Rkj5hT/zDI7rnKKBqigBAQQrEMGKI8iF2KGGOFrlYHYf4gAgOjoajRo1QpMmTbQw17hxY5jN5kqsnogocDHcERFVsNzcXC3onThxQvuZkpLieSMBx4Tr+QbIeZdDH/INkAoY/KjiCQjArDpa31xCnCgMdfDS6Fy7dm00adIEjRo1QuPGjbVLZGRk5T0AIqIaiOGOiEgnOTk5SExMRFJSEk6fPo1Tp07h9OnTOH36NPLy8jxvKODo5ukMetpPx22wMvxRybTwZi5sgSvyUwWCvAe4oKAg1K9fHw0aNECDBg3QsGFDLcyFh4dX3gMhIiINwx0RURUjhMClS5e0oOcMfadOncK5c+dQUFBQwg7g6O5pNUAq/Amr7AiAVhlSgcwAGOCE5BiFUgQpEEEqhNkR1hzXHQEOZrXY1AJXMplMiI+PLxLgnNdjY2MhyzxnlIioKmG4IyKqRoQQSE9Px7lz55CcnKz9dL1utVp925lN0gIgrDIkmwzYHD8l6+XrsHF6h6pAQABGARGkAiYVwnT5pzCpgLkwvAWpQJDn895cmUwmxMXFoW7duoiPj0fdunURFxenXa9duzYDHBFRNcJwR0QUQFRVRVpaGpKTk3HhwgWkpKTg4sWLuHjxIi5cuKD99DkAAo6WQLt0OfDZZcAuQ7JLxX/aLv8ORWIodENAAIbCoGZUXX6qEEZR9KfJNciJElvaXJlMJtSuXRsxMTGIjY1FTEyMdnGGuejoaIY3IqIAwnBHRFTDCCGQlZWFCxcuaIEvNTUVaWlpSE9PR1pamnY9IyMDqupbK1DxOwKgSI6QV/jz8vXC8KdecbsqASoA4bguqXDcJi4vk5y/i8L7AC7/Xni/voRK4dzAuaoEQCq8TRaAXNi9US68Xb58XTivy47bhaEwsLleNxRelwVgUB3XjYXLypF5IyIiEBUVhVq1aqFWrVqIiopCVFRUkQAXGxuLiIgIBjciohqG4Y6IiDxSFAVZWVlIS0vTAmBmZiaysrKKXTIzM5GdnY2srCzk5+frXfrl8Of8lCsS4nSpqIigoCCEh4drF4vFUuT38PDwYgEuMjISRqNR79KJiKiKYrgjIiK/s1qtyMrKQnZ2NvLz85Gbm4u8vDzk5eV5vW61WmGz2Yr8dHebx8ni/SgoKAgmk0m7uP7uej04OBihoaEICQkpdgkODkZISIi2PDQ0VAtynNuNiIj8jeGOiIiqHSEEFEWBEAKqqrq9rigKVFWFEAJCCMiyDFmWIUmS9tNgMBT53bmO0WiEJFWB5j0iIqJSYLgjIiIiIiIKADzTmoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIiIiIiIAgDDHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAY9S6AiMhJCIH8/Hy9yyAiKpXg4GBIkqR3GUREDHdEVHXk5+fjuuuu07sMIqJSWbJkCUJCQvQug4iI3TKJiIiIiIgCAVvuiKhKCtpSB5KQAUmGJEuAVPhdlCwBkgRJlgGp8HZndyhZgiTJ2jqQJMd14PLvztuc21y5PopuIyTJ8TWY6/ZAsdu137XtHLuCJEHIKPwFhbdLgIQi2wjttiu21x4zii/HFbc5f5fdLHPdvsgy159SsWVut0HR5a6/O2vwdF9Frnuo48p9arxuI4rVdeX+IAk3NYnL+3a3r8LtoD09RNF9wrnM5Wfh/pzrS5Jwfepo9+H411xeDgAyRJHb5MLrl5ddvq3IMklAwuXbZZfbZUlAhvN2FF2mbaNqvzvvS5ZUGLRt1cvbufxucNk3ABjgvF11WU8tXFa4T+2nqtXh3E6Gc9vCbbRljvUNkoCkLXPc5tzGAFzeDo77kQq3NxSpURT+XlhT4b/F8bsEGYBBkiBDgqHwHy1DKrxNhgQJBkmGtcCAmyfVARFRVcJwR0RVkyI5DrMkx8GUFu4Kj5odyyRAluGaBiTIVxzhu2znNl1csb7kuszdddff3d3ubju4hElo4U77CdfbrrheuKxIUCmynZttij1kqXiZkruL5HmZx218/FOVc58lB0I/hzupeLhzXXZluLt8+5X7E26XXQ6BLsuL/C6Kbl/svkTRZS7hznkBcPl3T8uuCH1auLviNtdQaHD53RHuVO37EAMkR0iSXEJS4fPKAECWJJefUuF9ObZz7AswSJefwgbJuZ3jp9tl2vXL9TtCoSgMjsKncHfl/uTCmlHkNmeNl++LiKgqYbdMIiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKABwnjsiqpoMAkKohfO2uczr5pxwXJtAHC7zs7nOH+e8CJdlV1yAwrnCXG8rOqGa8DB525W3X/7dud0V14VzO+c2hfsoXFGg6PIiM2gJ131f3r7YbeKKRa7z1/k0v5zkeRm8bO/rMm/7LOH+JJS0jbv56q7cn3CzD8+TmF+5nb8nMb+8b3HF/so2z50o3FYUXgBo1wWct6PoMgiokgAktXBfrvelFj4e1+WOZUJSHftx2fflZUVvd84vJwrnmnP9CUC7rha+rJ0/UXhdheNlrxb+7vxTFZ/nzjHxOFA4bx4cf3Pn9ctz8RWdO690k5hLkAqvWwvcvQ6JiPTFcEdEVZK1R4reJVQM1+PnMpCu+Enk5HxqqXoXUmbO1MxORUREZcV3UCKqMvLz8/UugYiIiKjaYssdEVUZZrNZu75w4UIEBwfrWA1R1ZGfn49Ro0YB4GujKuL/g4iqCoY7IqoyJOlyZ8Pg4GCEhIToWA1R1cTXBhERecJumURERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiACAJIcox4xIRERERERFVBWy5IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAMOpdABFRbm4uvv/+e6xZswbJycmQZRkNGzbEoEGDcOutt8JkMuldIpHf5efnY9euXTh06BAOHz6Mw4cP4/z58wCA8ePHY8KECSXuIzU1Fd999x02btyI8+fPw2w2o0mTJhg2bBhGjhwJSZIq+mEQEVEVIgkhhN5FEFHNlZycjEcffRTJyckAgODgYKiqCqvVCgBo0aIF3nvvPYSHh+tZJpHf7dy5E4899pjbZb6Eu0OHDuGpp55CRkYGACAkJARWqxWKogAAevTogTfeeINfjhAR1SDslklEurHb7Zg6dSqSk5NRu3ZtvPvuu1i6dCmWLl2Kl156CaGhoThy5AheffVVvUslqhDh4eHo1q0b7rzzTrz00kuIjo72abvs7Gz861//QkZGBhISEjBz5kwsWbIES5cuxeOPPw6j0YgtW7ZgxowZFfwIiIioKmG3TCLSzZ9//onjx48DAF599VW0b98eACDLMgYPHgwhBF555RVs2rQJ27dvR7du3fQsl8ivOnbsiEWLFhW57dNPP/Vp2++//x6pqakwm8146623UK9ePQCAyWTCLbfcgtzcXMycORO//fYbbr/9djRs2NDv9RMRUdXDljsi0s2ff/4JAOjSpYsW7FwNHjwY8fHxRdYlChQGg6HM2y5ZsgSA4zXiDHaubrnlFoSEhEBRFCxbtqzM90NERNULwx0R6SI/Px979+4FAFx99dVu15EkCT179gQAbN26tdJqI6rKkpKStIFXnK+PK4WGhqJjx44A+NohIqpJGO6ISBeJiYlQVRUA0KRJE4/rOZelpqYiMzOzUmojqsqcXZkB76+dpk2bAgBOnjxZ0SUREVEVwXBHRLq4ePGidj02NtbjejExMW63IaqpLl26pF335bWTk5OD3NzcCq+LiIj0x3BHRLpwPdg0m80e1wsODna7DVFNxdcOERF5wnBHREREREQUABjuiEgXoaGh2vWCggKP6+Xn57vdhqim4muHiIg8YbgjIl24nkt34cIFj+u5nmfnug1RTVW7dm3tui+vnbCwMIY7IqIaguGOiHTRqFEjyLLjLejEiRMe13Mui46ORkRERKXURlSVOUfBBLy/dpyjajZu3LiiSyIioiqC4Y6IdBEcHKxNXL5582a36wghsGXLFgBA9+7dK602oqqsYcOGiIuLA+D5tZOXl4e///4bAF87REQ1CcMdEelm2LBhAICdO3di//79xZavWrUKZ8+eLbIuUU0nSRKuu+46AMDKlStx7ty5Yuv88ssvyMvLg8FgwLXXXlvZJRIRkU4Y7ohIN8OGDUPTpk0hhMALL7yA7du3AwBUVcWqVavw9ttvAwB69uyJbt266VkqUYXIyspCenq6dlFVFYBjoBTX26+cyuCOO+5AdHQ08vPz8a9//QuHDh0CANhsNixYsABffPEFAOCGG25Aw4YNK/dBERGRbiQhhNC7CCKquc6dO4fHHnsMycnJABzdNVVVhdVqBQC0aNEC7733HsLDw/Usk6hCjB49WnvuezNs2DA8++yzRW47dOgQnnrqKWRkZABwjIhptVpht9sBOLpjvvHGGwgKCvJ/4UREVCUZ9S6AiGq2+Ph4zJo1C99//z3WrFmD5ORkGI1GNGnSBIMHD8att94Kk8mkd5lEVU6rVq0we/ZsfPfdd/jrr7+QkpKC4OBgNG3aFMOGDcOIESO0QYuIiKhmYMsdERERERFRAOBXekRERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIioTN5//330798fkydP1rsU0ll2djZGjhyJ/v37Y+3atXqXQ0RUYxn1LoCIqKbJycnBkSNHcPDgQRw6dAiHDh3CmTNnIIQAAMybNw/x8fEVct9CCNx22224cOECxo4diwcffLBM+zly5AgWLFgAAHjggQf8WKG+jh8/ji1btmDPnj04fvw4Ll26BEVREB4ejmbNmqFXr14YNmwYLBaL3qVWKRaLBXfccQc+++wzzJgxAz179oTZbNa7LCKiGofhjoiokj366KM4cuSILvd98OBBXLhwAQDQr1+/Mu/nk08+gaIo6NmzJzp06OCv8nT16KOPYteuXW6XpaamIjU1FVu3bsU333yDZ599Fj169KjcAqu42267DT/++CPOnz+Pn376CWPHjtW7JCKiGofdMomIKpmzhQ5wtHh06dIF0dHRlXLf69atAwDExsaiTZs2ZdrH33//jW3btgFAQB3AO0NveHg4RowYgWeffRYffvghPvvsM7zyyivo1asXAEfQe/bZZ7F79249y61yQkJCcOuttwIAvvvuO+Tm5upcERFRzcOWOyKiSjZixAhERUWhVatWaNCgASRJwqOPPorU1NQKv29nuOvTpw8kSSrTPubOnQsAiI+PR6dOnfxWm94aNGiAe++9F//f3r3HVF3/fwB/IoKSCIcVA44QmQLShR0BKeUSIB3U6TISF7mpETObVJu11c4ENC9YjKTlZuaWmym1zCm6NBoIGXFAUIfMIwqHi3IZ4yD3OMABfn+w8/kdFM7xXJCvh+fjr4983p/X583ZmduT923lypWwt7cfd8/Pzw+RkZE4deoUjh49isHBQWRmZuLEiRPT1Nv/TVKpFD/99BN6enrwxx9/ID4+frq7REQ0o3DkjojoCduwYQNiYmLg5eVlcsAyxf3799HQ0ADA9CmZbW1tkMvlAIDY2Ngn2v+plpGRgdWrVz8S7HRt2rQJPj4+AID6+noolcon1b2ngoeHBwICAgAA58+fn+beEBHNPBy5IyKaIbS7GGqngpoiLy8PIyMjAIDo6OjHekaj0eDy5csoKipCVVUVOjs7MTw8DJFIhBdffBHBwcGIiYnBs88+O+65iIgIAMCqVasgk8lw7949/P777ygrK4NKpcK8efPg6+uL9957DxKJRHhuYGAAly5dQm5uLhobG6FWqyEWi/Hmm28iPj7e7I0+AgMDhTWT9+/fx6JFi0yuVV9fj5ycHFRUVKClpQVqtRqOjo6YP38+PDw8EBQUhLCwMDz//PMm1ddoNPjrr79QUFCA2tpadHV1wcbGBk5OThCJRPD390dwcDBCQ0NhZ2c37tmHP//6+nqcPXsW5eXlUKlU6O/vx/79+x/5Q0F0dDQqKirQ0NCAqqoqLFmyxLQPh4iIjMZwR0Q0Q2inZC5fvhyzZ5v2339xcTGAsXVp3t7eBtvX1NQgNTUVjY2Nj9xra2tDW1sbSktLoVQqIZPJJq1TWFiIAwcOQK1WCz8bGBhASUkJSktL8fnnn2PdunVQqVSQyWSoqqoa93xdXR1+/PFHlJSUIDMz06yAp9FohOtZs0yfAJOTk4OsrCwMDw+P+3lXVxe6urrQ2NiIsrIyKJVKpKSkGF2/s7MTn3322YSb92g/++rqapw/fx7Z2dnw9PSctNalS5eQmZmJwcFBg+/V3WCnuLiY4Y6I6AliuCMimgFUKhVu374NwPQpmYODg7h16xYAwN/f3+CUzOrqaiQnJ6O/vx8AsHTpUkilUnh7e8POzg7t7e1QKBQGz0VTKpW4fPkyXFxcsG3bNuHd165dw88//wy1Wo1Dhw5BIpFg3759qKmpwfr16xEWFgaRSISmpiacOHECSqUSN2/eRHZ2Nt5//32TPgMAuH79unC9cOFCk2rU1tYKwc7JyQnr1q2DRCKBSCTC8PAw2tvbcefOHZSUlJg89TUrK0sIdkFBQZBKpfDw8MC8efPQ19eHhoYGVFRUCNNsJ3Pnzh3k5eXByckJ8fHxePXVV2FnZ4f6+nq4u7s/0n7hwoVwcHBAf38/rl+/jsTERJP6T0RExmO4IyKaAYqKijA6Ogp7e3u89tprJtVQKpXCqJWfn5/ethqNBqmpqUKw+/TTT4WdFHWtWLECSUlJaG1tnbRWdXU1fHx8kJWVhfnz5ws/f+mll+Dp6Ym0tDRoNBokJyeju7sbGRkZCA4OFtr5+vpi2bJl2Lx5M1QqFc6dO4fNmzfD1tbWqN8fGJvaWldXB2As4Hp5eRldAwAKCgqEEbtDhw4J6/h0hYeHIykpCV1dXUbXHxgYEEJzeHg49u3b90hIlEgkeOutt9Df3693BLKurg6enp44fPjwuF1dJ9tt1dbWFr6+vqioqMDdu3cxMjJi1ggnERE9Pv5vS0Q0A2inZAYHB8PBwcGkGrpTKw0d3ZCXl4empiYAY7uDThTsdLm5uem9/+WXX44LdlqRkZFwdXUFAHR0dCAuLm5csNNydHTE6tWrhXb19fV63zcRlUqFb7/9FgBgY2ODjz76yOgaWtqdUR0dHScMdrqcnZ2Nrt/T0yMEcYlEonf0z8HBweA01Z07dxp1XIe2rVqthkqleuzniIjIPAx3RERWrre3Fzdu3ABg3sHl7e3twrWTk5PettowCQAJCQkmvxMYm+Y3WQCysbEZd08qlU5aR7ddc3OzUX1Qq9WQyWRCKHt4ExdjaQNpb28vCgoKTK4zGWdnZ2HXz/z8fLPOnHN1dZ0wMOuj+/3Q/d4QEdHUYrgjIrJycrkcGo0Gtra2CA0NNbnOwMCAcD3RKJquu3fvAhgbwXmcjVf0MfS8bl/07Sqp286YsDM0NIRdu3YJm7SEhYUhKSnpsZ+fiFQqFUbL0tLSsGPHDpw6dQo3b94UprKaw87ODqtWrQIAKBQKbNy4ERkZGcjPzzc62JqyG6huuNPdBIeIiKYW19wREVk57SjaK6+8ApFIZHId3TVqhnZN7OzsBPD/I1TmmDt3rt77ulMO9U051V33pT3OwRCNRoOUlBRcvXoVABASEoLdu3ebtF5Pl1gsxsGDB3HgwAG0tbWhsrISlZWVAMY+5yVLliAiIgJr1641GKQn8/HHH2NwcBC5ubno7u7GhQsXcOHCBQBjoTskJARr1qwxOAJpaJR2Irp/CDB1Z1YiIjIeR+6IiKzY4OAgSktLAZg3JRMYWx+m1d3dbVatp4FGo0FaWppw/ENwcDD279+v95BzYwQFBeGXX37Bnj17sGbNGuEoguHhYdy6dQtHjhxBQkKCECyNNWfOHMhkMpw8eRIffPABAgMDhfD74MED/Pnnn/jkk0+wa9eucWHsYaZshqK7CYzu94aIiKYW/5xGRGTFysvLhWl+5oY73W3vDYU7kUiE1tbWp3YzDW2w0456BgYGIj093ewD0B9mb2+PqKgoREVFARgb8bx27Rpyc3NRUlKC7u5upKSkIDs7+5FD3h+Xl5cXtmzZgi1btmB4eBjV1dUoLi5GTk4OOjo6cOXKFRw7dgzJyckW+716enqEa0Ob5RARkeVw5I6IyIppw4mPjw88PDzMqqV7ptu9e/f0ttUeldDe3m6w7f+ah4Pd0qVLcfDgQYsHu4mIRCKsXLkS33zzDdavXw8A6O/vR1FRkUXqa6d8JiYm4ocffhCmvObl5VmkvlZDQwMAwMPDA88884xFaxMR0eQY7oiIrNTIyAj+/fdfAGObgJjLzc0Nzz33HAAIB6JPJiIiQrjOzs42+91Pikajwe7du4VgJ5FI8PXXXxtc9zcVQkJChGvtGkZL8vDwEM7pM+Usvcl0dnYKx2C8/PLLFqtLRESGMdwREVmpyspKIRTohi1zaANHQ0MD+vr6Jm0XHR0tBIeLFy/izJkzeuvqO8T8SdFoNPjqq6+Ew7+nMtj9/fffBgObdq0kACxYsMCo+s3NzSgvL9fbpqWlRRhhE4vFRtXXR6FQCNevv/66xeoSEZFhXHNHRPSENTY2CjsjamnPTwOAwsLCcbtaOjg4IDIy0uj3aEefxGKxSdvZTyQqKgoXL17EyMgIysvL8cYbb0zYbvbs2dizZw927NiB/v5+fPfdd7hy5QpiY2Ph7e0NOzs7tLe3o6qqCoWFhfDz84NMJrNIH021d+9eFBYWAhgLU9u3b0dLS4veZ1xcXODi4mL0u86cOYO9e/ciKCgIQUFBeOGFF+Ds7IyhoSG0trYiLy9PGHV1d3c3+giL1tZW7Ny5E2KxGKGhofD394ebmxvmzJmDrq4uKBQKnDt3Ttj11NAh88YoKysDMLaecPny5RarS0REhjHcERE9YZWVlUhPT5/0/pEjR8b9293d3axwZ4kpmVrBwcFwdXVFW1sbcnNzJw13ALB48WJ8//33SE1NRXNzM27cuCEcpv4w7Rq96aR7mHhTUxO2b99u8JmtW7ciMTHRpPcNDg5CLpdDLpdP2mbBggVIT0/Xe8SDPs3NzTh9+vSk92fNmoWEhAS8/fbbJtV/mEajQX5+PoCx0WJTj3EgIiLTMNwREVmhmpoaYdTJ3F0yddna2iIuLg5Hjx5FSUkJOjs79Z6d5+vri5MnTyI3Nxf//PMPqqurhfVdLi4uWLRoEZYtW4aYmBiL9fFpkJaWhqtXr6KiogK1tbV48OCBME3T2dkZixcvRnh4OKRSqUlHLwQEBODw4cMoLy+HQqFAa2srOjo60NfXh7lz50IsFiMgIABr16612KguAOE7AQAbNmywWF0iIno8NqOjo6PT3QkiIrKs48eP4/jx43BxccHZs2dNOqtsMr29vXj33XfR3d2NDz/8EJs2bbJYbXq6ffHFF5DL5QgKCsKhQ4emuztERDMON1QhIrJC2imZK1assGiwA8YOpdYGul9//RX//fefRevT00mhUEAul8PGxgbbtm2b7u4QEc1IDHdERFZmaGgI4eHh2Lp1K+Li4qbkHe+88w48PT3R1dWF3377bUreQU+XY8eOAQBiY2Ph7+8/zb0hIpqZOC2TiIhMcvv2bcjlcjg6OmLjxo3T3R2aRr29vTh9+jRGR0cRFxendx0mERFNHYY7IiIiIiIiK8BpmURERERERFaA4Y6IiIiIiMgKMNwRERERERFZAYY7IiIiIiIiK8BwR0REREREZAUY7oiIiIiIiKwAwx0REREREZEVYLgjIiIiIiKyAgx3REREREREVoDhjoiIiIiIyAow3BEREREREVkBhjsiIiIiIiIrwHBHRERERERkBRjuiIiIiIiIrADDHRERERERkRX4PyA76xcGk2L4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACbL0lEQVR4nOzdd3wT9f8H8Nddkrbpnqwyyt6yRRQF2YqDr0xFQXF+cSHuiYgTFddXUVyAoIDyEwUZgoBskL2hQgerhdK90iT3+f2R5kjaJk3btNfxej4eeTTNfe7yTptc7nWfu89JQggBIiIiIiIiokKy1gUQERERERFR9cKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkxCtBMT4+HpIkQZIk3Hvvvd5YZJ3Uv39/9e9IROTKvffeq64r4uPjtS5HNXfuXLWuuXPnal0OeZmiKOjRowckScLjjz+udTlUiTZu3Kh+ll9//XWtyyGqEPt7uX///lqX4nWDBg2CJEm48847K2X5VdajOHfuXLz++ut1aoWzbNky9TWnp6drXQ4VslgsWLduHV544QUMGDAADRs2hK+vLwIDA9GyZUuMGzcOy5Ytg9VqLdNyDx8+jMcffxzt2rVDYGAgQkJC0LlzZ7zwwgtISEiopFdDRHWF2WzG+vXr8d5772HUqFHo0qULoqOj4efnh4CAAMTExGDEiBH4/vvvkZeX5/XnnzNnDvbu3Qs/Pz+8+OKLLtvFx8dj6dKlePHFFzFkyBBERERUeEPNm+vXhIQEvPDCC+jcuTNCQkIQGBiIdu3a4fHHH8eRI0fKtKxLly5hxowZ6NGjB8LDw+Hv74+WLVti0qRJ2LFjR5mW5am68l1z6623qu+bb7/9tszzJyYmQqfTQZIkhIeHIz8/v8zL2LdvH9577z3ceuutaN68Ofz9/eHn54fo6GjcfPPN+Pzzz5GVlVWmZXrzPZOTk4NZs2bhuuuuQ7169eDn54dmzZph7NixWLNmTZmWZTab8fXXX2PgwIHqdlHjxo1x6623YvHixRBClGl5ntDi86OFDz/8UH0v33PPPeVaRuvWrdVl7Ny5U3182rRpAIBFixZh06ZNXqnXifCCuLg4AUAAEBMnTiyxTb9+/dQ2dcXEiRPV1xwXF1dq+7r4N6pq69evF+Hh4erf2d2tV69e4t9///Voue+//74wGAwulxUUFCR++umnSn51VFeUdd1SVb7//nu1ru+//17rcmqdY8eOebTuAiBiYmLE1q1bvfbcOTk5okGDBgKAeOKJJ1y2+/TTT93W1a9fvzI/tzfXrwsWLBCBgYEul+Xj4yNmzZrl0bLWrl0r6tWr53JZkiSJZ555psyv152q+q7ZsGGDusxp06ZVvPByWLp0qVpD3759yzz/G2+8oc4/efLkMs17+fJl0bJlS48+aw0bNhRr1qzxaLnefM/s3btXtGjRwm1t48ePFyaTqdRlxcXFiW7durld1qBBg0RaWppHtXmiKj8/FVn/eENSUpLQ6/UCgPD39xeZmZllmn/Tpk3qa+jQoUOx6QMGDBAARJ8+fbxVsqrKEkldDEHVdWOuLvvhhx/U/0l4eLgYM2aMmDVrlvjpp5/E/PnzxWOPPSaCg4PVNk2aNBEXLlxwu8zZs2er7Q0Gg5g0aZKYN2+e+Oabb8To0aOFJEkCgNDr9WLVqlVV9EqJqh6DYuWyB8UWLVqIO++8U7z55pti/vz54pdffhHff/+9mDp1qoiOjlb/B/7+/uLQoUNeee73339fABA6nU6cPXvWZbuPPvrIaWPPaDSKq666qtwbat5cv65YsULodDp1I3T06NHim2++EfPmzROTJk1yCmBff/2122Xt3r1b+Pv7q+0HDx4svvzyS7FgwQLxxBNPiICAAHXayy+/XKbXXBV/i9JUh6BYUFAgIiMj1To83XFr5xj0/vnnnzLNe+bMGaedB0OHDhUzZswQ8+bNEz/99JN4/fXXRfPmzZ3arF+/3u0yvfmeiY+PF/Xr11fbX3311eLTTz8VP/74o3jxxRdFRESEOu3uu+92u6y0tDTRrl07tX379u3F+++/L3766ScxY8YM0aRJE3XajTfeKMxmc5n+lpX9t/CE1kFRCCFuu+02tY5vvvmmTPNOmjRJnff9998vNn3dunXqdG9vZzIoViIGxernhx9+EJ07dxY//vijyM/PL7HN2bNnRceOHdX/3YQJE1wu7/z58+rKTq/Xi7Vr1xZr47jx3KRJE5GXl+e110NUnTAoVq7s7Gxx+vRpt21yc3OdNkiGDRtW4ec1m83qxuKQIUPctv3111/Fo48+Kr777jtx4MABYbFYnI46KsuGmjfXrzk5OaJRo0Zq27lz5xZr8+eff6p7/QMDA0VSUlKJy1IURXTv3l1d1uuvv16szf79+9WdjrIsi4MHD3r8uktS1d811SEoCiHEk08+qdbx6quvejyfYw9Mp06dyvy8Z86cEfXq1RMzZ84Uly5dKrFNXl6eGDt2rPo8LVq0cBmivP2eGTFihLqsSZMmCavV6jQ9Pj5eNG3aVG2zYsUKl8uaMmWK0/qi6Pvm8uXLTr2N//vf/1wuyxNafH6qQ1D89ddf1Tquv/56j+fLyckRQUFB6me/pPWS1WoVjRs3VkO3NzEoViIGxeonLS1NKIpSartDhw457RHPyckpsZ3jCvbZZ591ubzRo0d7bSVLVF0xKFYPFy9eVHvO9Hq9R4eeueO4gTN//vwyz1/eoOjN9evHH3+sthk9erTLZT377LNqO1eHvS1btkxt07t3b5ffKZ9//rnabtSoUW5eaemq+rumugTF/fv3q3U0a9bMo+9vIZx7YD788MMyP6/JZBLZ2dmltsvLy1M30AG47FX05nvG8W/StGlTlzsE/vjjD7Vdz549S2yTnJwsfHx8BAAREBAgkpOTS2x36NAhtce6QYMGwmKxlNjOE1p8fqpDUCwoKBBRUVECsB3RcOrUKY/mmz9/vlr/rbfe6rKd47rr5MmT3irbO0HR3TmKjgHR3c3VishqtYrFixeLMWPGiJiYGGE0GkVgYKBo27ateOSRR0rdyzBt2jT1OTZs2CCEsHXRjhs3TsTExAhfX99iQc5sNovVq1eLqVOniuuuu05ERUUJg8EgAgMDRevWrcXEiRPF33//7fI5HQOiu5u7v1VpduzYIR588EHRpk0bERgYKPz9/UWLFi3EhAkTxF9//VXq/EU/NNnZ2eL9998XPXr0EKGhocLf31906NBBvPDCCyI1NbXU5dVGjodiHDhwoNh0RVHUw7wkSRKJiYkul7V58+Zy7Unyhm3btolHHnlEtG/fXoSEhAhfX1/RpEkTMWbMGLd7GYUoeWMhISFBTJ06VbRt21b4+/uLkJAQ0adPH/H55597fEhKVlaW+Oijj8SgQYNEw4YNhY+PjwgLCxM9e/YUr776qrh48aLb+Yt+ViwWi/j+++/FoEGDRKNGjYROpxPNmjUrNl9SUpJ49tlnRfv27YW/v78ICwsTvXr1Eh988IG6M6BZs2bqRomjVatWqc/5+OOPe/Q6H3/8cXWelStXejSPJ0rbCVVZ/7fly5eLW265RdSvX1/4+vqKZs2aibvuukts27ZNCFG2oGgymcQ333wjbr31VtG4cWPh6+srQkJCROfOncXUqVNd7lw7fvy42rMSHBzstoctNTVV7QmTZdnteru2sZ9PCECcO3euQsu644471J1mWVlZZZ6/PEHR2+vXPn36qG22bNniclmJiYnqBnHTpk1LbHPnnXeqy1qwYIHLZeXk5Ki9Ikaj0aPgURItvms8DYr//vuvep6cJEkuz+9ctWqVmDhxomjVqpUIDAwURqNRtGjRQkycOFFs3rzZbS2OvVmebN8U7YFxFX685ZFHHlHr++STT0ps4833zIsvvqgu680333S5LEVRRKtWrdS2JQWTr776Sp3+wAMPuH2dAwcOLNP/wZWq/vwI4VlQzMnJETfffLPadsyYMSXuZDt8+LB46qmnRJcuXURYWJjw8fERjRo1ErfeeqtYsGBBsd5dR0899ZS6fE97yO3nHwIQ//d//+eyneMOhNdee82jZXuiWgfFf//9V3Tt2tXtfLIsu/1jOwbF9evXi0cffbTE5ThulPTv39/joFfSm6gyg6LZbBYPPvhgqcseM2aMyM3Ndbkcxw/NqVOnRIcOHVwuq1mzZnWyR7RXr17q32DHjh3Fpjv2OpZ2aIvVanU6jKKsJzKXR3Z2ttNhMa5uw4cPd1lP0Y2FVatWidDQUJfLGjx4sMtDeu1Wrlzp9gR2wDYgw2+//eZyGY6flcuXL4u+ffuW+L51tH79ehEWFubyOTt37iwSExNdBkWr1aqekxIWFlbqYV15eXnq8zVt2tTtl0dZlTUoVvT/ZrFY3K7XZFkW7733nsdB8Z9//nE6v6ekm4+Pj/jyyy9LnH/OnDlquz59+rjcuz1q1Ci1nbfOE6sJ0tPT1fPtDAZDhQ5BzM/PV4P5DTfcUK5llCcoenP9mpGRoYa/kJCQUj+LjqceHDlypNh0x/O/XB2WaDd8+HC17R9//OG2rStafNd4EhT37t2rnien1+vFDz/8UKzNxYsXnTZ0Xd3uv/9+UVBQUOLzOA6Q5O5UEDvHHpjbb7+9LC+7XBx7ct59990S23jzPdOjRw91+u7du90uy3Gb9/PPPy82feTIker0X375xe2y7OcpA+57tUtT1Z8fIUoPipcvXxbXXHON2u7RRx8ttp4wm83iiSeeELIsu30v9+7d2+XYFgcPHlTbxcTElNpDnpCQoK67IiMjXX5G7OyDNXbp0sVtu7LQo5K9+eabSElJwSuvvKIOO/3rr78Wa9euXTun30+dOoVrrrkGKSkpAIC+ffvilltuQbNmzWC1WrFnzx7MnTsXaWlpmDFjBmRZLvXSG++//z5WrVqFBg0a4N5770WnTp1gsViwa9cu+Pr6qu3y8vIQGBiIgQMHokePHoiJiYGfnx8uXLiAI0eOYOHChcjJycG8efMQGhqKjz/+2Ol5nnjiCYwYMQKffvopNmzYAAD46quvUK9ePad2TZs29ehv6Oiee+7BokWLAAB+fn6YOHEirr32Wuh0OuzevRvffvstsrKysGTJEmRkZGDVqlVur8uYmZmJ4cOH48SJE7j99tsxbNgwhIeH4/Tp05g9ezYSExORkJCACRMmVM6wu9VUQUEBYmNj1d+bNWtWrM3hw4fV+z169HC7PFmW0a1bN/z9999QFAXHjh3D1Vdf7b2CizCZTBg0aJA6vHTLli0xduxYtG/fHgaDAf/++y/mz5+PkydP4o8//sCIESOwdu1ayLLrK+bs378f77//PoQQePjhh9GnTx/4+vpi9+7d+PLLL5GTk4O1a9firbfewhtvvFHiMpYuXYqxY8fCarXCYDDgtttuQ//+/VG/fn1kZmZiw4YNWLJkCbKysvCf//wHa9euxYABA9y+1rvvvhtbtmxBly5dcOeddyImJgaZmZk4ePCg2ubo0aO45ZZbkJubCwDo1q0b7r77bjRu3BjJyclYvHgxtm7dirFjx8JisZT4PLIs48EHH8RLL72EtLQ0LF26FOPHj3dZ1y+//IK0tDQAwP333+/2b1uZvPF/e+KJJzBv3jwAgI+PDyZOnIi+fftClmXs2rUL3377LZ5//nmMGDGi1Hq2b9+OQYMGITc3F5IkYejQoRgyZAiio6ORl5eH7du344cffkBubi4eeeQR+Pr6Frs+74MPPog1a9Zg6dKl2L59O6ZPn16s9m+//Ra//PILAOCaa66pM5dmslgseOyxx2A2mwEAN998M/z8/Mq9vK1bt6qfm8pcZxXlzfXr0aNH1aH9u3btWupnsWfPnur2yuHDh9GhQwd1WlJSEi5fvgzA9r0QGRlZ6rL++OMPdVk333yz2/YlqY7fNRs2bMCIESOQmZkJf39//PLLL7jpppuc2qSmpqJPnz44deoUAKBLly6444470KpVK8iyjMOHD2Pu3Lk4d+4cvv32W1gslhKvv3rXXXfhmWeeQUFBAZYuXYrPP/8cgYGBLmtzXMZ9993nldfrjuP/p6RtBW++ZxRFwdGjRwEAer0eXbp0KXVZJdVZ0mOlvbdKW5YntPj8lObMmTMYOnQojh07BsB2uYmi3xdCCIwZM0bNLw0bNsS4cePQpUsX+Pv7IyEhAYsWLcKePXuwc+dODBw4EP/88w/8/f2dltO5c2f06NEDe/bsQXx8PDZu3Igbb7zRZW3z5s1T11133303DAaD29fSu3dvrFq1CgcOHEBSUhIaNGhQ1j9Hcd5Im96+PIbValVPdPX19RVLliwpsV1SUpLa4yjLsjh8+HCxNo49ioBtiOWMjAy3z79u3Tq3vXEpKSlqD4Ysyy4PffL25TEWLVqkTq9fv36Jezrj4+Od9tS7OkfB8W/i4+Mjli9fXuLrdFzWzp07S30NruTk5Ihff/3VK7c9e/aUuw5POY6O2r179xLbTJ8+vdQ9ro4mTJigti9pz6s3FT2fpaRDCwsKCpxqmj17drE2jnuVAVvPWEnHvu/cuVMdBCIsLKzE3qnExER1T3fTpk1dHja+c+dOERISIgCIxo0bl7gHreiRClOmTHHbS+DY4zh58uQS2xZdV7g6dNXeU1Naz8gNN9wgANsokWfOnHHbtqzK0qNY0f+b46AQoaGhJe7BPn78uNOhjkDJPYqZmZnqoaChoaFi48aNJb6+2NhYdSCGgICAEvc6p6amqucG6XQ6p8PXTpw4oY6aFxwc7PG5IK4cO3bMa+uv0vage8pqtTot94cffhAvvfSS00iPMTExIj4+vkLP8/bbb6vL+/nnn8u1jPL0KHpz/Tpv3rxSt1Ecvfbaa2r7GTNmOE37+++/y/RavvvuO6des/LQ4rvGXY/iL7/8op62Ex4erh56XpR9wBVJksTHH39cYpusrCwxZMgQ9blcjdjoeHTAd99957Lu+Ph4tQemXr16Xhmh0524uDh1HWowGERKSkqxNt58zyQkJLj9jipq/fr1avuBAwc6TbNarWrtOp2u1L/V6dOn1WW1bNmy1OcuiRafHyFc9ygePXrU6fSEL774osT5Hc9xvvvuu0sct0JRFPHSSy+p7Z5//vkSl/W///1PbeOuh1xRFKf1eUmnQBX1+uuvq+3dHZVVFtUyKDpeO+fTTz912/bEiRPqSfsPPvhgsemOG38BAQEVPlfD7tSpUy6/SOy8HRQdj9N3d77Tzp071RVls2bNSjwsy3GD7o033nC5rK+//tqjdqVxfI9U9ObJF31FpKamioYNG5a6ceR4rPlnn31W6nLL2r68zp8/r56cfscdd7htW1BQoJ5f0rp162LTiwaOTZs2uVzW+PHj3bazn6+n0+nEvn373Nb17bffqstauHBhsemOn5UePXq4DYn//POP2rZTp05uT8J3XK6rL2HHwSJcnTB+4sQJtc3w4cPdvtbyKGtQrMj/7fbbb1enlzRSpN2KFSucnrOkoPjhhx+q03///Xe3r/Gvv/5S27711lslttm4caN6GFCzZs1EWlqaKCgocDo0yxs7ZYruRKjIzX6ufEXl5eW5fI7AwEAxadIkr4TSu+66S11ueUceLE9Q9Ob69ZNPPlGnPf3006Uuy1373377TZ02cuTIUpdV1vYl0eK7xlVQ/PLLL9XPXHR0dIk7rIUQYs+ePer8U6dOdftcqamp6s5BVyM2Og7M4u4QaMdQXdrzVpSiKGLYsGHq8z366KMltvPme+bAgQNO332lcdc+IyNDnRYREVHqssraviRafH6EKDkobt++XT1U08fHx2WnVF5ennq6TK9evUo9dP36668XgG0nZUmH/aempqo7WgICAlye9+0Yql11WBS1ePFidR5X2aSstDkWqhQ//PADACA4OBgPPvig27Zt2rRRD6v4888/3bYdOXIkGjVq5JUaW7RooXbp7ty50yvLdCc+Ph779u0DYOu6LnqIh6Orr75aPVwvISEBe/bscdlWp9Phsccecznd8bA/++EOtZnVasW4ceNw4cIFAMDw4cMxatSoEttmZ2er9z05tMtoNKr3s7KyKlipa0uWLEFBQQEA4JlnnnHb1mAwYOzYsQCA2NhYxMfHu2zbrVs3XH/99S6nu3uvCCGwcOFCAMDAgQPRtWtXt3WNHTsWer3tyPjSPtePPvqo20PJfvvtN6e2Op3OZdsnn3zS7XMBwCOPPKLe/+abb0ps4/j4Qw89VOoyK1NF/m8mkwmrVq0CANSvXx933323y+UMHz4c7du3d1uLfd3epk0b3HrrrW7bDhgwQF1fu3oP9OvXDy+88AIA27rukUcewSuvvKKu88aPH++25tqqa9euGDBgAEJCQiq8rISEBPV+eHh4hZfnKW+uX6vrsjxVXb5r3njjDTzyyCNQFAVt27bFtm3bnA7LdWT/rEuShKefftrtcsPCwtRDCjdt2gSTyVSszdChQ9X1webNmxEXF1esjRAC8+fPV3+v7MNO33zzTaxevRoA0KRJE5eH7lfX919dfi+vXr0aAwcORGpqKgIDA/HHH39g9OjRJbZds2YNLl68CAB46qmnSj103f6dk5mZqZ7+4ygsLAy33347ACAnJ0c9RaKo8hxCHRYWpt53XHdXRKWfo1gemzdvBmA7Btj+IXTHvuGXkJCAvLw8pzeWI3cbS0VlZmZi4cKFWLlyJQ4dOoSUlBTk5OSU2Pbs2bMeL7e8du3apd4fMmRIqe2HDBmCv/76C4AtyLo6R6FNmzZOb6yioqOj1fv2863KIyYmRj3Oujp78skn1Y3Spk2blni+RHVn//wAtvfmsmXL3LZ3/L8eO3YMMTExJba75ppr3C7H3XvlyJEjSE1NBQAEBQWVWhMABAYGIj09XT1vwJXSPte7d+9W77s7FwAA+vfvX2pdN954I9q0aYOTJ09i3rx5ePPNN53OGzCbzer5fI0aNcLw4cNLXWZlqsj/7cCBA+pOh379+rkN2YBtJ4Cr/1dGRoZ63mj9+vU9fg8AcPsemD59Ov766y/s3LkTixcvVh9v3rw5vvjii1KfwxOvv/56tTvH0c/PT12nCiGQlpaG/fv345tvvsFPP/2ELVu2YM6cOfjll18QFRVV7uexf26Bqg2KVH0oioLHHnsMn3/+OQCgV69eWLlypdvzy+zfQ6GhoU7bL67Yw6HJZMLp06eL7XTS6XSYMGEC3n33XQghMG/evGKfyc2bN6vnQ/bs2ROdOnXy+DWW1eLFizFt2jQAtvO2f/zxR34+aogFCxZg0qRJMJvNiIqKwsqVK53OvyzKcZsqLS2t1O+uc+fOqfePHTtW4nbFpEmTsGTJEgC2QFj0PPzc3Fw1QPr6+uKuu+4q5VXZREREONXqDdUuKGZnZ6snup44cQL/+c9/yjR/Wlqay6DouEHkzoYNG3DXXXchKSnJo/aZmZke11de9h4uwBbuSuPYxnHeoko7kdhxkJ/8/PxSn7cme/nll9Uvwvr162Pt2rVu/z6OJ9N78rfJy8tT7wcFBVWgUvccewXHjBlTpnndrVgq8l5xrGnp0qVYunSpV2oCSv9cnz9/Xr3fokULt23DwsIQGhqK9PR0l20kScJDDz2EZ555BsnJyVi+fDnuuOMOdfrvv/+u7n287777Sg1Xla0i/zfHv12rVq1KfS53bc6cOQNFUQDYvngdv3xL4+49oNfr8eOPP6Jr167qHmf7Y8HBwR4/R00mSRLCw8MxYMAA9fbggw9i06ZNuPXWW7F9+3a3g5q5Y9+A1+l0Lr9bK4M316/VdVme0vq75tNPP0VGRgYAYNCgQfj111/dDiYDXFnnp6WllWs7riT33nsv3n33XQDA/PnzMW3aNKf3teOO3UmTJhWb/88//1QHZiqJJ4NxAcAff/yBe+65B0II6HQ6/Pjjj+jbt6/L9tX1/VcX38t79+7FhAkTIIRA06ZNsXbt2lK3qR23Xx599NEyPZ+r9/LgwYPRuHFjnD17Fps2bUJcXByaN2+uTv/ll1/U77Pbb7/d450Qjt95jn+7iqh2QdG+Miov+97vknjyJRcbG4vhw4erf+C2bdvipptuQuvWrREeHu7UVf7QQw/h0qVLsFqtFarZE45d7gEBAaW2d/wwuuuu12okxurmzTffxNtvvw3AtmG9bt26UlceoaGh6n376Lzu2HeAFJ3X2yryGXL3+anIe6WyagJK/1zbjwTQ6/WljhgG2D5f7oIiYNtgefnll2EymfD11187BcWvv/4agG3j/f777y/1+SpbRf5vjocJFR29rSTu1k0VeQ/YR/B0JTIyEuHh4eq6rkWLFqWO4FebPfDAA1i0aJHa07p69Wq3pyu4Y9+RYLVakZub69H7wBu8uX6trsvylNbfNY4jQefk5Hh0dFBlrPPbtm2La6+9Ftu2bUNcXBw2bdqEfv36AXDugfHz88Odd95ZbP6HHnrI7eF4nryudevWYdSoUTCbzZBlGfPmzcPIkSPdzlNd33+BgYHQ6/WwWCxIT0+HxWJRT/ko67I8pfV72Wq1qv/n/Px8l6OcO6qM97Isy5gwYQLefvtt9ZBpew81UP6Rex1r9daOvWoXFB0Dzg033IC///67Sp//nXfeUUPiyy+/jBkzZrjcE1va+ZPe5LgnxdUhsI4cN/Aqs/fKU7m5uaWea+appk2bonv37l5ZFgDMnDkTr776KgBbj9LatWs9OmTFMUi6O7fPzvELypNe4fKyf4YkSYLFYqkWOwMcP9evvfYapk+fXmXPbQ8vFosFZrO51LDoyecrIiICo0aNwsKFC/Hnn38iMTERTZs2RUJCAtauXQvAtufdcQ9hTeT4f3O3J97O3d/OcVkTJkxQD8/1hsmTJzt9vk6ePIlXXnkF7733nleWf/z4cRw/ftwry+rbt2+pvbzeMGzYMPX0g40bN5Y7KDruyU5NTa2yoOjN9Wt1XZantP6uefLJJ3Hs2DH8+uuv2L59O4YOHYo1a9a43bawnzpgXy96y3333Ydt27YBsG1M24OiYw/MiBEjKmVn7MaNG3HbbbchPz8fkiThm2++cXuJJDtv/v8aN24Mo9GIvLw8nDt3rtRw525ZsiyjZcuWOHHiBKxWK86ePevy1JPSluUprd/LvXr1wi233IJnn30WFy9exI033ogNGza4PNcWcP7uOn36tNe+1++99161g2L+/Pl47bXXIEmSetkMwHbE1ODBgz1eZmWcKlDtgmJISAgCAwORnZ1dJef+FbVu3ToAQL169fDGG2+4DIlZWVlO/5DK1rBhQ/W+4/X9XHFs460BfCri4sWLZT78xJWJEyd67dzBjz76CM8//zwA23tvzZo1pQ60YucYJt0NGATYzvGwD0Yky3Kpg35URHR0NPbv3w8hBM6dO4cmTZpU2nOVpSa7qv5cN2rUSD037vTp02jbtq3LtmlpaaX2Jto98sgjWLhwIRRFwXfffYfXX38d3333nXp4pdaD2HiD47rj33//LbW9uzaV9R5YuHChOlBSjx49kJKSgoSEBHzwwQcYOnRoqdfh9MSiRYu8tnNjw4YNHp0LW1GOG/GevqdLEhMTg61btwKwbYQ0bty4oqV5xJvr1w4dOkCWZSiKgv3790NRFLc70BzPay6607BBgwaIiIjA5cuXkZiYiJSUFLfB392yPKX1d43BYMDixYsxbtw4/N///Z9HYTE6Ohrp6em4ePGiRzvoPDVmzBg8+eSTag/i//73PwQEBOD7779X27jqgfEkmLiyZcsW3HLLLcjLy4MkSZg9e7bHPT3efM/IsowOHTpgz549sFgsOHDggNujJ0p7/3Xq1AknTpwAYHtvuQuK3ngva/H5KeqZZ56BJEl45pln1LC4fv16dOzYscT2Rb+7vBUUW7dujb59+2LLli04ffq02kPueO3ECRMmlOn0FcdcUtI1PcujyroaHFfKpXXv33DDDQBsG3WebJx4U3JyMgDbQAjuvkjWrVunbhC6UpbXXBrHwWjsPRbuOPbeVeVFkmuSzz//HFOnTgVg26hatWoVevXq5fH8HTt2VDeajhw54nbjd9u2beq5rNddd12l9vLa97ACpY8YWlW6deumHjv/119/lfrZ8SbHk9Q3bNjgtq19L54n+vbtq36xfPfddzCbzfjuu+8A2HY02Uc1q8m6dOkCHx8fAMDff/9d6mH29h6skkRGRqp7bXfs2OGVc7vj4uIwefJkALae459++gkLFiyATqeDoiiYMGGC06FLdYnjd2dFejAdN87sG5RVwZvr1+DgYHVQp4yMjBJHIrQ7c+aMOvpv06ZNS+xpGDp0KADb97q7dWxubq56Lq7RaHRaN5dFdfiusYdF+2GW9rDo6nNsf635+fnYtGmTV2oAbP9Lew3Z2dlYunQp4uPj1aPPGjdujEGDBnnt+QDb+urmm29Wj5j49NNP8fDDD5dpGd58z9iXBdhG5HRFCOE0fdiwYeVeFgCnwSVLWpanqvrzU5Knn34aH374IQBbR8aAAQNw5MiREttW5jaV484Ge0B0HLm36CA3pXEc+O2qq66qcH1AFQZFx67b0g7tmjhxonr/tddeq7SaSmI/rOb06dMuw53ValW7i90py2suTUxMjHq45YEDB9yGxd27d2P9+vUAbHsUqsO5OvZRT71x80Zv4tdff43HH38cgG0Dc+XKlejTp0+ZliFJkjqcshACn332mcu2n376qXrffjmKyjJu3Dh14/69996r8HvPG3Q6nXqITkJCgsvLSlQGx8D2+eefuw07n3zySZmWbd9YOHPmDKZMmaJuwE2cONFre9C15Ovrqw5bn5ycjB9//NFl21WrVpU6Qq193Z6bm6sOSlFeVqsV48ePVzdUP/30U3UP7UsvvQTANvrcAw88UKHnAWyjnnpr/VUVvYnZ2dlO/6trr7223Mvq3bu3er8qLgVl5+31q+Pj7j7nn332mfrd72owMMdlffrppy63FebOnau+P4cPH+7R+AIlqS7fNXq9HosWLVIvGbV9+3YMGzasxLA4YcIE9f706dO9OpaD48b13LlznXpgJk6c6NXTLfbs2YNhw4aph7XOmjXL7SXFXPHme8bxffnVV1+5HBRm1apV6g6jnj17ljiY24gRI9TthZ9++kkdiK2ow4cPq9uVDRo0qFBoq+rPjytTp07FrFmzALgPizfffLO6s+2LL75wO0BkWY0ZM0Z9Xb/88gtWr16N06dPA7Dt6Cnr4baO62ivdRJV9EKMQjhfTNfVxdCfeOIJtc3ff//tdnlWq1X06tVLbf/kk08Kk8nksn1ubq74/vvvxU8//VRsmuOFkj250PHgwYPV9rNmzSo2vaCgQNx3331OFzd2dWHuWbNmqW3mzZtX6nM7Xuy7JI4X0mzYsKE4duxYsTYJCQmiZcuWarv//e9/JS7LPt2Tix+XpW1NMG/ePCFJkgAg/P39K3QB7HPnzgl/f38BQOj1erFu3bpibb7//nv1b9ikSZMSL8DqbU8//bT6nDfeeKO4cOGCy7ZWq1WsXbu2xIuzurrocklKa3vmzBkRGhoqAAhfX99SPxPJycnijTfeEAcOHCg2rbTPSlF9+/ZV20+ePLnEC+YWvai6q8+1o/T0dPX/73g7efKkR3WV18SJE9XniouLKzbdm/+3zZs3q9PDwsLEvn37irU5efKkaNiwodPf4Pvvvy/WLjs7WzRr1kwAEJIkiZkzZ7q9eHF6err45JNPxNq1a4tNe/XVV9XnGjVqlNM0s9ks+vTpo07/6quv3P4Naoo33nhDHD582G2bpKQkMXDgQPW1t27d2u33Z2ny8/NFQECAACCuv/76ci3DcRuhLN8j3ly/5uTkiEaNGqlt586dW6zN2rVrhV6vFwBEYGCgSEpKKnFZiqKI7t27q8uaPn16sTYHDhxQLyIvy7I4ePCgy9fp+Lkp6fPs7b+FJ9ytF8xmsxg1apQ6/ZprrhEZGRnFljFy5Ei1zdixY0ts47jMpUuXutxmcaQoioiJiVHXI/Xr11efJzY2tsyv1ZUDBw6oF2QHIN57771yL8vb75kRI0aoy7r//vuLrUcTEhJE06ZN1TYrVqxwuawpU6ao7W666aZi75vU1FTRrVu3UrcrhXD+bi7pO6Ay/haecLf++eijj9TpUVFRJa5jP/vsM7XNVVddVep3/I4dO8Szzz7rUW2O3+eO36PffPONR/M7sr9fu3btWuZ5XamycxQHDhyo7um6//778dRTT6FZs2bqsbetWrVSh1aXZRlLly5Fnz59cO7cOXzyySdYsmQJRo8ejS5duiAkJATZ2dlITEzE7t278ddffyEnJwczZsyocJ2PP/642ls3depUbNy4EUOHDkVERARiY2Mxf/58xMbG4sYbb0RsbKzbQ0AGDhyo3n/uuedw6dIltG3bVj3xODo6Gp07d/a4tjFjxuDXX3/FokWLcOHCBXTv3h333nsv+vTpA51Oh927d+Pbb79V98AMGTJEPSyLbFatWoVJkyape7AmTZqE9PT0Uq+L0717dzRt2rTY440aNcKHH36I//73v7BYLLjpppswYcIE9OvXDxaLBatWrVJHYtPr9ZgzZ47bi8w6nhMbFxfn9nwBd9555x3s378ff/31FzZs2IAWLVpg5MiR6NOnD6KiolBQUICkpCS1dzopKQkDBw7EK6+8Uq7n80Tjxo2xaNEi3HbbbTCZTJg4cSJmzZqF2267Da1bt4bRaERGRgZOnjyJHTt2YOvWrbBaraVe+9ATX331FXr16oXc3Fx88cUX2L59O+6++240btwYycnJWLx4MbZu3Yo+ffogMTER586d82ivdEhICMaOHet0fkz//v3RunXrCtdcXfTt2xeTJ0/GF198gbS0NFxzzTWYOHEi+vbtC1mWsWvXLnz77bfIycnBiBEj3H6WAgICsGzZMvTr1w+ZmZl47rnn8NVXX2HkyJHo0KEDAgMDkZmZidOnT2PXrl3YuHEjCgoK1It3223ZskU9qqNx48aYM2eO03S9Xo+FCxeia9euyMzMxFNPPYV+/fq5PT+1Jli6dClee+01dOnSBTfccAM6dOiA8PBwCCGQnJyMnTt34rffflOPIggMDMS8efPUHoPy8PX1xbBhw7B06VLs3r0b2dnZpV4aoeh6xHEkvri4uGLTu3fv7jRysJ0316/+/v6YM2cObr/9dlitVtx33334448/cNNNN0Gv1+Pvv//G/Pnz1VEQP/roI9SvX7/EZUmShDlz5uCGG25Abm4upk2bhq1bt2LUqFEICAjArl278M0336j/hxdffLFM3/Ul8fZ3TUXo9Xr89NNPkCQJP//8M3bs2KGes+g4PP93332HkydP4tChQ1i8eDHWrFmDMWPGoGfPnggLC1MHZNm3bx/Wrl2LtLQ0j0aKliQJ9957r9rTbz9l6Prrr/foMj6eOHv2LAYPHqye89W/f3+0adOm1G0FV4Ptefs98/HHH2P79u1ITk7Gt99+i8OHD+Oee+5BREQEDh06hK+++ko97H78+PFur+c7bdo0rF69GsePH8eqVavQvXt3PPDAA4iOjsa///6Lr776CmfOnFH/DhU9/16Lz487U6ZMgSRJmDJlCi5duqSes+h42P1jjz2Gf/75B/Pnz8fBgwfRoUMH3HbbbbjhhhvQsGFDWK1WXLp0CYcOHcJff/2FuLg4tGzZEjNnziz1+e+77z51cDd7b6W/v3+ZL2924MAB9f3q6aVePOKNtOlJj6LFYnHaq1/0VtKe7PPnzzvtGXV30+l04uuvvy62jLL2KAohxIsvvuj2ua677jpx8eJFdc+4u56HO++80+Vyiv6tPOklMZvN4oEHHij17zFq1CiRm5vrcjn2dnWtR7For5GnN1d7xuzef/99YTAYXM4fFBRUYo93UY7zuNqz7CmTySQee+wxodPpPHqNEyZMKLYMb/ZM2W3fvl20aNHCo5oCAwNL3JNY1h5FIYRYv3692qNZ0q1Tp04iMTFRREdHq3sNPbFz506n5SxcuNDjmsqrKnsUhbCtv++55x6XfztZlsXMmTOdejTcfWaOHz/utIfa3c3X11esWrVKnTctLU1d98qy7Ha9vmDBAnU53bp1q1DPWnXQpUsXj9dZXbt2FXv27PHK8y5btkxd7vz580ttX9b1q6vtBjtvrV+FsL0nAgMDXS7Lx8enxKOJSrJ27VoRFRXlclmSJImnn35aKIri8d+rtPW+N/8W7niyXjCbzWLMmDFqu969exfrNczIyBBjx471+L3w6quvelRfXFycemSQ/fbdd99V9GWrHF+/N9/L3nrPCCHE3r17S/0uveuuuzxa78XFxZW6Th40aJBIS0tzuxxPehQr429RGvsy3W3HfvLJJ2q7qKgocejQIafpiqKIGTNmCF9fX4/eC55uMyuKUuz/WNL2WGmee+45dX5v9qxXWVAUQoi8vDzx7rvvij59+oiwsDCnDVh3GzMbN24UDz/8sOjYsaMIDQ0VOp1OBAcHiw4dOoixY8eK2bNni/Pnz5c4b3mCohBCrFq1SgwfPlxERkYKg8EgGjZsKAYMGCC+/vprYTabhRDCo6BosVjE7NmzRf/+/UVkZKR6WEtJf6uybPxu375d3H///aJVq1YiICBAGI1G0bx5c3H33XeLv/76q9T5y/JGLuubvjqrrKAohBCHDh0Sjz76qGjTpo0ICAgQQUFBolOnTuL5558X8fHxpc6fk5PjtLFy+fJlL7xiIWJjY8ULL7wgevfuLaKiooRerxf+/v6iefPm4uabbxZvv/22y8M6KiMoCmHbwFiwYIEYM2aMaN68uQgMDBR6vV6Eh4eLnj17igcffFAsXrxYZGdnlzh/eYKiELbD8p555hnRtm1bYTQaRWhoqOjZs6f44IMPRE5OjlAURRiNRgFA9O/f36NlKoqiHiITHh4u8vPzy1RTeVR1ULRbvny5GD58uIiKihK+vr6iadOm4s477xTbtm0TQgiPg6IQtr/bb7/9JiZOnCjatGkjgoODhU6nE6GhoaJLly5iwoQJYu7cuSI1NdVpPseNzhdeeMHtcwghxPjx49X2Tz/9dKntq7MLFy6IuXPnigcffFBcffXVIioqShgMBuHj4yMiIyNFjx49xEMPPSTWrFnj9pDesrJYLOphbIMHDy61vbc3roWo+PrVUXx8vHjuuedEx44dRVBQkAgICBBt2rQRjz76aKmH9hZ18eJFMX36dNG9e3cRGhoq/Pz8RIsWLcS9996rfi5K4/i38GQHoTf/Fq54ul6wWCxOn8mSwqIQtlAzZcoU0a1bNxERESH0er0IDAwUrVu3FiNGjBCzZs0Sp06dKlONAwYMUJ83ICBAZGVllfVlulRZQVEI77xn7LKzs8WHH34o+vTpIyIjI4Wvr69o0qSJGD16tNMONk8UFBSIOXPmiAEDBoj69esLHx8f0ahRIzF8+HCxaNEijwJbWYKiEN79W7jj6Xbsp59+6jYsCmHrxHrjjTdEv379RIMGDYSPj4/w8/MTjRs3FoMGDRKvvvqq2L59e5nqe+ONN5zeR2U9JUpRFNGkSROP19FlIQlRweE4icgr1qxZo44k9sQTT5R5YBWquEOHDqkjhXn6P1i3bp16naMnn3wSH3/8cWWWSKSJjz76CFOnToVOp0N8fHyVXSaDiIjcW79+vXq626pVqyo0Km1R2l+Jm4gAXLmGZ1BQUKWeK0iu/e9//1Pve3pu5OzZs9X7teHaiUQleeSRR9CgQQNYrVaPzrshIqKqYT9nv0+fPl4NiQCDIlG1YQ+KU6dORVRUlMbV1D6bN292e/3Gzz//XB0UJTo6Grfcckupy9y/f786uMGgQYNKvOYaUW1gNBrx+uuvAwDmzJmD8+fPa1sQERFhy5Yt6jWMK3rZqZLw0FOiaiAlJQX16tVDZGQkTp065bWLJNMVrVq1Qn5+Pm666SZ069YNUVFRMJvNOHXqFH799Vfs27dPbbt8+XKXQXH16tVQFAUnT57EzJkz1VHKtmzZguuuu65KXguRFhRFQa9evbB371489thjbq/nR0RElW/QoEH466+/MG7cOPz0009eXz6DIhHVCa1atcKpU6fctjEajfj6668xfvx4l20cL2Fi5+n5jH/++Sdyc3NLL7YEkZGR6Nu3b7nmJSIiIiorBkUiqhN27NiBpUuXYseOHTh37hwuX76M3NxchIWFoU2bNhg0aBD++9//urx2mp09KAYGBqJNmzb473//i0mTJnl03cWYmBgkJCSUq/5+/fph48aN5ZqXiIiIqKz0WhdARFQVrrnmGlxzzTUVXg73rREREVFdwB5FIiIiIiIicsJRT4mIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJxzMhoiINKcoCvLz85Gbm6vecnJykJubi7y8PPVnQUGBejOZTC5/N5vNsFqtsFqtUBRFve/4u6Io6n3ANqKtq5t9VFtJkqDT6WAwGKDX6+Hj4wO9Xq/+bjAYit38/PzUm9FodHnfaDQiICAAgYGB0Ov59UxERNriNxEREXmFEAI5OTnIzMxUb1lZWSXet98cwyBdYTQaERgY6PYWHByM0NBQp5u/v3+J1/okIiIqK456SkRELgkhkJmZibS0NKSmppb4034/PT0dBQUFFXo+WZbh7+8Po9EIf39/BAQEqL8bjUasm78ZkgJAkRxugFTkdwjJ1g4SIFB4K7wPh/sCkOyPOUyGY9aSUNjQ4XdJ2E7ekARE4U/HxyADwv67TgCywE0PD0B+fj7y8vKQn5/vdN/xZ0UYDAaEhIQ4hceQkBCEh4cjMjISERERiIyMRGRkJIKCghgqiYjIJQZFIqI6SlEUpKen49KlS7h48SIuXbrkdLM/VtbwZzQaERQUhODgYPXn5sW7IFkkwCzbflpkSBYZsEiAVYJklQCrbAt9qLvhRUAAegHoFQid7b7QK7afOtvPEU8NQ1ZWFjIyMpCRkYH09HSkp6cjPz+/TM/l4+OjBkjHEBkVFYX69eujQYMGiIiI4GGwRER1FIMiEVEtJYTA5cuXceHChRJvKSkpsFgsHi0rKCgIYWFhCA8Px8G1xyCZZaBAtv006yCp92Vb7x5VOSELwKDYgqVBgSi8waBg6MP9kZKSgpSUFFy+fBkZGRkeLVOn0yEyMlINjiX99PX1reRXRkREWmBQJCKqwcxmM86fP48zZ87g7NmzOH/+vBoEk5KSSu0NlCQJERERiIqKQlRUFLYu+gcwFQY/kw6SSQYKdJAEw19tIiQB+CgQPlYIHwXwUTD2tduQkpKCixcvIjk5GRcvXix1R4IkSYiKikJ0dDQaN26M6Oho9X6jRo1gNBqr6BUREZG3MSgSEVVzQgikpKTgzJkz6i0xMRFnzpxBUlKSOmpnSWRZRr169dCwYUMcWH0MUr7uys2ks/UAMgRSCQQKw6Sv1XbzU3DrlEFISkpCcnIykpKSSj2nMjIyUg2PTZo0QbNmzdCsWTM0atQIOp2uil4JERGVB4MiEVE1oSgKkpOTER8fj9OnTyMuLg5xcXE4e/as2w1yo9GIJk2aoHHjxvh73k5I+bIaBtkbSJXFfj6lMFog/Ky4+507cPbsWZw7dw7nzp1DZmamy3l9fHzQuHFjxMTEoFmzZurPxo0bw8fHpwpfBRERucKgSERUxeznDp4+fdopFMbHx7sMhDqdDg0bNkTTpk2x8+f9kPJ0kPL0kPJ0tnMF6/AAMFQ9Cb0C4WeF8LNgwsxRSExMREJCAhITE2EymUqcR6fToVGjRmjevDlatWqFli1bomXLlmjYsCFHaCUiqmIMikRElchqteLMmTOIjY11urnqbdHr9WjWrBnitp+DlKuHlKuz/TSxZ5BqBwEB+CpQ/C0Q/hYMffQGJCQkICEhAdnZ2SXOExAQgJYtW6JFixZo1aoVWrVqhebNm/McSCKiSsSgSETkJSaTCXFxcU6B8NSpUyVetkCWZTRu3Bhn9ybbgmCO3vYzn4GQ6ib1nEijBUqABYMn98WpU6cQHx8Ps9lcrL0kSWjcuDHatm2Ltm3bol27dmjdujX8/f01qJ6IqPZhUCQiKgdFUZCYmIhjx47h6NGjOHbsGE6dOlXiwDJ+fn5o2bIljq09DTlHDynbYAuFDIREpRJS4XmQARaMfn04/v33X5w6dQqpqanF2sqyjGbNmqnhsX379mjZsiUv4UFEVA4MikREHrh8+TKOHTumBsPjx48jJyenWLvg4GC0bt0a+387BilbDynHYDufkOcQEnmVMFghAiyY+PEonDhxAsePH8elS5eKtdPpdGjRogXat2+PTp06oVOnToiOjuY5j0REpWBQJCIqwmq1Ii4uDgcOHMChQ4dw5MgRJCcnF2vn6+uLtm3b4sjKfyFlGSBnGwATB5Yh0oowWKEEWXD3zBE4duwYjh8/joyMjGLtQkND1dDYqVMntG3blr2ORERFMCgSUZ1nMplw/PhxHDx4EAcPHsSRI0eKDaohSRKaNWuGxJ1JkLMMkLIMtvMKGQqJqi114JxAM0ZNvwmHDx/GiRMnip3zqNfr0aZNGzU4du3aFaGhodoUTURUTTAoElGdk5ubiwMHDqjB8Pjx48U2HI1GIzp27Ih9S49BzjTYziu0yhpVTETeIiQBEWjGg1/dicOHD+Pw4cMlnu/YvHlzdOvWDV27dmVwJKI6iUGRiGo9k8mEI0eOYO/evdizZw+OHz9ebNCZ8PBwpJ/MgZTpAzmDvYVEdYWt19EKJdiMW54fgAMHDiAuLq5YOwZHIqprGBSJqNaxWCw4efKkGgwPHTqEgoICpzaNGjVC0r5UyBk+kDINtstSMBgSEQChV6CEFOC2lwdi3759LoNjr169cPXVV+Oqq66Cn5+fBpUSEVUeBkUiqhUuXLiAnTt3YufOndi/f3+xEUnDw8ORfjwXcoYP5HQfSCadRpUSUU1TWnD08fHBVVddhV69eqFXr15o2bIlR1UlohqPQZGIaiSTyYQDBw6o4TAxMdFpemBgIHITzLZQmO7DS1QQkdcIvQIltABDn+6LXbt2FbssR3h4uBoae/bsifDwcI0qJSIqPwZFIqoxzp07hx07dmDXrl3Yt28f8vPz1Wk6nQ4dO3bEkd9P28JhNs8xJKLKJyAgjFb8d954/PPPP8XWTQDQrl07XHvttbj22mvRunVr9jYSUY3AoEhE1ZbVasXRo0exZcsWbNmyBWfOnHGaHhERgbQjOZDTfG3hkKOSEpHGhCQggs0Y8+7N+Oeff3Dy5Emn6VFRUejTpw+uu+46dO/enddvJKJqi0GRiKoVk8mEPXv2YPPmzdi2bRvS0tLUaTqdDp07d8ahZf9CTvPhyKREVO0JgxVTlk7Ctm3bsHv3bqfeRl9fX/To0UPtbYyMjNSwUiIiZwyKRKS5jIwMbN++HVu2bMGuXbucNqQCAwORe9oCOdXXFg7Za0hENZSQBJTQAtzycn9s27YNFy9eVKdJkoROnTqhX79+6NevH+rXr69hpUREDIpEpJH09HRs2rQJGzZswP79+52uaxgVFYXLB7Khu+wLKdMHkmCvIRHVLgICIsCCiZ/fgW3btuHo0aNO09u1a6eGxsaNG2tUJRHVZQyKRFRlMjMz1XC4d+9ep3DYsmVLxG9IgnzZl4eUElGdI3ys+O/C8di4cSMOHjwIx82zVq1aqaExJiZGuyKJqE5hUCSiSpWVlYUtW7Zg/fr12L17t1M4bNOmDU6tOQ9dii8kk17DKomIqg9hsOLxJRPx999/Y9++fcV2qg0aNAiDBg3i4alEVKkYFInI60wmE7Zu3Yo///wTu3btgsViUae1atUKceuSbOEwn+GQiMgdoVcwddn92LhxI3bv3u20Pr3qqqswePBg9O/fHyEhIRpWSUS1EYMiEXmFoig4ePAg/vzzT2zYsAE5OTnqtBYtWiBhQzLkFD/IeQyHRETlIfQKnlx6L9atW4f9+/erh6fqdDr07t0bgwcPxrXXXguj0ahxpURUGzAoElGFJCYmYs2aNVi7di2SkpLUx+vXr4+Uf7IhX2I4JCLyNuFjxf3fj8a6desQGxurPm40GnHDDTdg+PDh6NKlCySJ53sTUfkwKBJRmWVlZWHt2rVYs2YNjh07pj7u7++P/NMKdBeNkDINHJCGiKgKKEYLxn18M9atW4cLFy6oj0dHR2PYsGEYNmwYz2ckojJjUCQijwghcODAAaxYsQIbN25EQUEBANshT+KSDvJFI+RUX0gKwyERkRYEBESQGUNfvg5//fUX8vLyANiu0dirVy/cfPPN6Nu3L3x8fDSulIhqAgZFInIrPT0dq1evxooVK5CYmKg+3qJFCySsuwjdJT9IZp2GFRIRUVFCFnhmxQNYuXIl9u/frz4eHByMQYMG4dZbb0XLli21K5CIqj0GRSIqRlEU7N27F8uXL8fmzZvVUfaMRiNMcQK6JH9I2bzWIRFRTSD8LBj7yc1YvXo1Ll26pD7euXNnjBgxAv369WMvIxEVw6BIRKqsrCysXLkSy5Ytw7lz59TH27Vrh3+Xn4Oc4gfJKmtYIRERlZeAwNs7nsOKFSuwefNm9fqMoaGhGD58OG677TY0bNhQ4yqJqLpgUCQixMXFYenSpfjzzz+Rn58PAAgICEBerAJdshFyjkHjComIyJuEwYp75tyO33//Xe1llCQJffr0wYgRI3D11VdDlrljkKguY1AkqqOsViu2bt2KpUuXYt++ferjLVq0QOKaS5AvGTkwDRFRLScg8NrGJ7Bs2TLs3r1bfbxhw4YYOXIkhg8fjoCAAA0rJCKtMCgS1TGZmZlYsWIFli1bpl73UJZl4KIBuvP+vKwFEVEdpfhZ8J+ZA7Fy5UpkZ2cDsF326JZbbsGoUaPQoEEDjSskoqrEoEhUR1y4cAFLlizBypUr1SHTQ0JCkH3YbBucxsSRS4mIyDZi6hP/NwFLlixRR7vW6XTo168fxowZgw4dOmhcIRFVBQZFolouNjYWP/30EzZs2KAOXNCqVSvEr7xoG5yGh5cSEVEJBATe3PYMlixZ4nRYaufOnTFmzBj07dsXOh13MhLVVgyKRLWQEAJ79uzBTz/9hH/++Ud9XErzgf6sP6QMHx5eSkREHlMCzBj0Um+sXbtWvWRSdHQ07rrrLgwdOpSX1yCqhRgUiWoRq9WKjRs34scff0RsbCwA2+FC4oIBunP+HL2UiIgqRBisGPf5zVi2bBkyMzMBAFFRURg7dixuvfVWGI1GjSskIm9hUCSqBSwWC9avX4/58+er55P4+fnBfFqC7lwAzz8kIiKvErLAQz+OweLFi9XLa4SEhGDUqFG44447EBQUpHGFRFRRDIpENZjFYsHatWsxf/58nDt3DgAQHByMnENW6C74Q7LwGlhERFR5hCQw5bd7sXDhQvV7yN/fHyNHjsTYsWMRHByscYVEVF4MikQ1kNlsxpo1a7BgwQKcP38eQOEIpges0F0wQrIyIBIRUdUREHjhz0fwww8/IC4uDgAQEBCA0aNHY/To0exhJKqBGBSJahCr1Yp169bhu+++w4ULFwAAoaGhyNpnsQVEhQGRiIi0IyAw7e8n8d133+HUqVMAgMDAQIwdOxajRo1CQECAxhUSkacYFIlqACEENm/ejG+++Qbx8fEAgPDwcGTsLrBdA5GXuCAiompEQOCV9Y/hu+++U7+3goODMW7cOIwcOZKD3hDVAAyKRNWY/TIXc+bMwfHjxwEAQUFByD0obOcgMiASEVE1JiDw4tr/4vvvv1cHW4uIiMCkSZNw0003Qa/Xa1whEbnCoEhUTR0/fhyzZ8/Gvn37AABGoxEFJ2TozvnzHEQiIqpRBASeXfWg06kTTZs2xcMPP4y+fftCkrjjk6i6YVAkqmaSk5Px9ddf488//wQAGAwGKPEG6M76QzLzMhdERFRzCUng4UVjMX/+fGRkZAAAOnXqhP/+97/o3LmzxtURkSMGRaJqIjc3FwsXLsTixYtRUFAAAJAv+kGfEMjrIBIRUa0idArGfjEMS5YsgclkAgDccMMNmDx5Mho1aqRxdUQEMCgSac5isWDlypX47rvvkJqaCgCQMgzQxwVBzjZoXB0REVHlET5WDJ3RBytXroTVaoWPjw/GjBmDu+++G/7+/lqXR1SnMSgSaejgwYP4+OOP8e+//wIAoqOjkbw2G3KqLyTwfA0iIqob5pyaic8++wy7d+8GYBvw5qGHHsLQoUMhyzwvn0gLDIpEGkhJScGXX36pnocYFBSE3AOwXQtRMCASEVHdIyDw+qYp+Pzzz3Hu3DkAQLt27fDkk0+iY8eOGldHVPcwKBJVIYvFgv/7v//Dd999h9zcXEiSBOmCH/TxgZAs3GNKREQkJIH7F4zEvHnzkJubCwC49dZb8fDDDyM4OFjj6ojqDgZFoiqyf/9+fPTRR4iLiwMASFl66E8F8zxEIiKiEgiDFQNf74VVq1YBAEJDQzF58mQMHTqUl9MgqgIMikSVLCsrC7Nnz8aKFSsAACEhIcjZrUBONvI8RCIiolJ8sO8VzJo1S93R2rVrV0ydOhUxMTHaFkZUyzEoElUSIQQ2bNiATz/9VB3NVL5gtF3ugoeZEhEReUxIAvfN/w/mzp0Lk8kEvV6PO++8ExMmTICvr6/W5RHVSgyKRJUgOTkZH330EbZt2wYAkHJ10P8bDDnTR+PKiIiIai7ha0XPJ9uo36/NmjXDCy+8wMFuiCoBgyKRFwkh8Ntvv2H27NnIy8uDXq+HOO0L3ZkAjmZKRETkJa9seAwfffQRUlNTIUkSRo8ejQceeAB+fn5al0ZUazAoEnlJcnIy3nvvPfUaUFKmAfrYYMh5eo0rIyIiqn2EXsGN07pjzZo1AGzXIn7++efRtWtXbQsjqiUYFIkqSAiBVatW4bPPPkNOTg58fHxgPe4L3XkOVkNERFTZ3tg6FR988AEuXboEABg5ciQeeeQRnrtIVEEMikQVkJKSgg8++ODKuYjsRSQiIqpyQqdg6NvXYPny5QCAmJgYvPLKK2jTpo3GlRHVXAyKROW0efNmvPfee8jMzITBYIBy0he6c/7sRSQiItLIjG1P491330Vqair0ej3uv/9+jBs3DjqdTuvSiGocBkWiMjKZTPj888+xbNkyAICUrYf+ZDDkXIO2hRERERGEXkHvZ9th8+bNAICrrroKL7/8Mho2bKhxZUQ1C4MiURmcPn0a06dPVy/6qzvrD11CIEc0JSIiqkYEBJ5afh8+/fRT5OXlISAgAM8//zz69++vdWlENQaDIpEHhBD4/fff8dlnn6GgoADh4eHI2qRATueJ8kRERNXV3DMf480338SRI0cAAHfccQcmT54MHx9e15ioNAyKRKXIzc3Fe++9hw0bNgAApFQfGGKDIZl5vgMREVF1JySBkf8biJ9++gkA0LZtW7z++uuIjo7WuDKi6o1BkciN+Ph4vPLKK0hMTLSdCP+vkQPWEBER1UBvbJ2Kt956C5mZmTwUlcgDDIpELqxfvx7vvfce8vLyAJMMw/EQyFk8VIWIiKimEj5WtJnUAIcPHwYAjBs3Dg899BD0el7WiqgoBkWiIiwWC2bPno2ff/4ZACClG2A4EQrJLGtcGREREVVU0UNRe/bsiddffx3BwcEaV0ZUvTAoEjnIyMjAa6+9hn379gEAdGcKRzXloaZERES1ykt/TcY777yD/Px8NGrUCG+99RZatmypdVlE1QaDIlGh+Ph4vPDCCzh//jyMRiPMe3ygS/XTuiwiIiKqJF/GvouXXnoJFy5cgJ+fH1588UXceOONWpdFVC0wKBIB2LFjB6ZPn46cnBwgXwfD0VDIuTxfgYiIqLYTegVXPdYMu3fvBgBMmjQJEydOhCTxaCKq2xgUqU4TQuDnn3/GF198AUVRIGUYYDgWCsnC8xGJiIjqCgGB/3x2IxYvXgwAGDZsGJ599lkYDAaNKyPSDoMi1VlWqxWffPIJli1bBgCQk/ygPxUMSXAPIhERUV30+LJ78NFHH8FqtaJbt2548803ERQUpHVZRJpgUKQ6yWQyYcaMGdi0aRMkSYJ8OoDXRyQiIiK8uf0ZTJs2Dbm5uWjatClmzpyJRo0aaV0WUZVjUKQ6JysrCy+++CIOHjwIg8EAccgfuhQOWkNEREQ2X8a+i+eeew6XLl1CWFgYPvjgA7Ru3VrrsoiqFIMi1SnJycl49tlnER8fD1gkGI6FQs7w0bosIiIiqmaEjxXNxochNjYWAQEBePfdd9GlSxetyyKqMhyxg+qMM2fOYPLkybaQaJJhOBjGkEhEREQlkgp0SJifjquuugo5OTl4+umnsX37dq3LIqoyDIpUJ5w+fRqPP/44Ll26BClXB5+D4ZBzOZIZERERuSZZZRz/MgnXXnstCgoK8NJLL2HdunVal0VUJXjoKdV6J0+exNNPP42MjAxI2XoYDofx8hdERETkMSEJ9Hu9C9auXQtJkvDMM8/g1ltv1bosokrFrWWq1Y4ePYopU6bYQmIWQyIRERGVnSQk/D3tAP7zn/9ACIH3338fy5cv17osokrFLWaqtQ4fPoypU6ciOzsbUqaBIZGIiIjKTYKEP57eilGjRgEA3n//faxYsULjqogqDw89pVrpxIkTmDJlCnJyciClG2A4GgpJYUgkIiKiihEQuO3jG/DLL78AAJ577jnccsstGldF5H3ccqZa5/Tp03jmmWdsITHDAMPRMIZEIiIi8goJEn6fsgkjR44EYOtZXLlypcZVEXkft56pVjlz5gymTp165ZzEo6GQFEnrsoiIiKgWkSBh+VObMXLkSAghMHPmTGzatEnrsoi8ioeeUq2RlJSExx57DBcvXuTopkRERFTpBAQGv9MLf/zxB3x8fDBz5kx0795d67KIvIJBkWqFzMxMPProo0hISICUq4PhUDgkM0MiERERVS4Bgd4vtsXmzZvh7++PTz75BG3bttW6LKIKY1CkGs9kMuHpp5/GwYMHAZMMnwPhkAp0WpdFREREdYSQBDo+Fo19+/YhNDQUn3/+OZo0aaJ1WUQVwi4XqtEURcHbb79tC4kWCYYjYQyJREREVKUkIeHIF2fRpk0bpKen47nnnkN6errWZRFVCIMi1WizZ8/Ghg0bAAUwHAuFnKvXuiQiIiKqgySrjPgf0tCwYUOcO3cOr7zyCgoKCrQui6jcGBSpxvr999+xePFiAIA+Nhhyho/GFREREVFdJpllvPfeewgICMDBgwfxwQcfgGd5UU3FoEg10qFDh/Dxxx8DAHTxAdBdMmpbEBERERGAB1s8i+nTp0OWZaxevRo//vij1iURlQuDItU4Fy9exKuvvgqLxQL5ki90ZwO0LomIiIhI9fI17+OJJ54AAHz11VfYunWrxhURlR1HPaUaxWQy4fHHH8fx48ch5ehhOBAOSZG0LouIiIiomJs+6INly5YhMDAQ33zzDRo1aqR1SUQeY48i1SizZs3C8ePHAbMEw9FQhkQiIiKqtlY+uw0dO3ZEdnY2Xn31VZhMJq1LIvIYgyLVGKtXr8aqVasgyzIMx0MhmXgZDCIiIqq+JCFh+vTpCAkJQWxsLD755BOtSyLyGIMi1QhnzpzBRx99BACQ4owc4ZSIiIhqhPENHsVrr70GSZKwYsUKrFy5UuuSiDzCoEjVnslkwuuvv468vDxI6QboznDwGiIiIqo5Xuo9E5MmTQIAfPLJJzh79qzGFRGVjkGRqr0vv/wSsbGxtvMST4ZAAs9LJCIioprlh/uWo1u3bsjLy8Obb74Ji8WidUlEbjEoUrW2a9cuLF26FACgPxkCqYDnJRIREVHNI0HCSy+9hMDAQBw9ehQLFizQuiQitxgUqdrKycnB+++/DwCQzxuhS/PVuCIiIiKi8ru74WN46qmnAADz5s3D0aNHNa6IyDUGRaq2Zs+ejeTkZCBfB318oNblEBEREVXYzKFzMHDgQFitVrz99tsoKCjQuiSiEjEoUrW0e/du/P777wAAQ2wwJIVvVSIiIqodNr95EOHh4UhMTOQhqFRtceubqp28vDzMnDkTgO2QU14Kg4iIiGoTySrjySefBAAsXLgQCQkJGldEVByDIlU7CxYsQFJSEpAv85BTIiIiqpXeGvg5+vTpA7PZjA8++ACKomhdEpETBkWqVs6cOYNFixYBAPSng3jIKREREdVKEiQ89dRT8PPzw4EDB7By5UqtSyJywq1wqjaEEPj0009hNpshpfpATuUop0RERFR73dPocdx///0AgDlz5iAnJ0fjioiuYFCkamPr1q3YuXMnoBT2JkLSuiQiIiKiSvX1XT+jadOmSE9P58A2VK0wKFK1YLFY8MUXXwAAdOf8IefrNa6IiIiIqPJJQsLkyZMBAD///DMuXLigcUVENgyKVC2sXLkSZ8+eBQok6M4GaF0OERERUZV5re8sdO/eHQUFBZgzZ47W5RABYFCkasBkMmHu3LkAAN3ZQEhWvi2JiIio7pAg4dFHH4UkSfjrr79w7NgxrUsiYlAk7f3f//0fUlJSgHwZugtGrcshIiIiqnKT276EIUOGAADmzZuncTVEDIqksZycHCxcuBAAoE8MhCQ4gA0RERHVTRMmTIAsy9i2bRtOnDihdTlUxzEokqaWL1+OzMxMSLk6yBf9tC6HiIiISDOTmk3FwIEDAbBXkbTHoEiaMZvN+PnnnwEAunMBvBwGERER1XkTJkyAJEnYsmULYmNjtS6H6jAGRdLMunXrcOnSJcAkszeRiIiICMADzZ/BgAEDAAA//fSTxtVQXcagSJpQFAWLFi0CAOjO+/PcRCIiIqJC48aNAwBs2LDBNuAfkQYYFEkTu3fvRlxcHGCRoEviSKdEREREdo+1fwVXXXUVrFYrli1bpnU5VEcxKJImfvvtNwCA7qIfr5tIREREVMSoUaMA2LaZTCaTxtVQXcQtdKpyKSkp2LZtGwBAvuCvcTVERERE1c+bA/6HqKgoZGRkYOvWrVqXQ3UQgyJVuT/++ANWqxVShgFynl7rcoiIiIiqHQkSbrrpJgDAypUrNa6G6iIGRapSQgisWrUKAHhuIhEREZEbi574AwDwzz//IDk5WeNqqK5hUKQqdezYMZw/fx6wSpAv85IYRERERK5I+Xp069YNQgj8+eefWpdDdQyDIlWpdevWAQDky76QFF4Sg4iIiMidwYMHAwA2btyobSFU5zAoUpWxWq1Yv349AEC+xN5EIiIiotJ8fMf30Ol0iI2NxdmzZ7Uuh+oQBkWqMseOHUNqaipgkSCn+2hdDhEREVG1J1lkdO/eHQB7FalqMShSldm+fTsAQE7zgSR42CkRERGRJ/r37w8A2LRpk7aFUJ3CoEhVxn4NIDnVV+NKiIiIiGqOT0Z/DwA4ceIE0tPTtS2G6gwGRaoSycnJOH36NCAAOY1BkYiIiMhTUoEOLVq0gBACe/bs0bocqiMYFKlK7Nu3DwAgZRkgWfi2IyIiIiqLq6++GgCwc+dOjSuhuoJb7FQl9u/fDwCQMwzaFkJERERUA/Xq1QvAlZ3vRJWNQZGqhD0oSpkc7ZSIiIiorF689l3Isozk5GRcunRJ63KoDmBQpEqXkpKC8+fP285PzGSPIhEREVFZSVYZLVu2BAAcOXJE42qoLmBQpEp38uRJAICUq4dk5VuOiIiIqDw6deoEADh06JDGlVBdwK12qnRqUMzWa1wJERERUc3Vvn17AEBsbKzGlVBdwKBIlU4Nijk87JSIiIiovN4f/SUA4PTp0xBCaFwN1XYMilTpTp06BQCQ2aNIREREVG5Srh46nQ6ZmZm4fPmy1uVQLcegSJWqoKAAycnJAAApT6dxNUREREQ1lyQkNG7cGICtV5GoMjEoUqU6f/48FEUBLBJg5tuNiIiIqCKaNGkCwLaNRVSZuOVOlers2bMAAClfBwmSxtUQERER1WwNGjQAAFy4cEHjSqi2Y1CkSqUedprPw06JiIiIKsoeFJOSkjSuhGo7BkWqVKmpqbY7BXyrEREREVXUl4/+AODKzniiysKtd6pU9hG5JAZFIiIiogqzb1NlZGRoXAnVdtx6p0pl71GUOJANERERUcVZGBSpanDrnSpVTk6O7Y6FbzUiIiKiirLvfM/OzobFYtG4GqrNuPVOlSovLw8AIFk54ikRERFRhVmubFOpO+SJKgGDIlUqe1AEgyIRERFRhUmQAGG7bzabtS2GajUGRapUJpPJdkdhUCQiIiLyCsX2g0GRKhODIlUqIYTWJRARERHVLoWXp46NjdW2DqrVGBSpUkkSexKJiIiIKgMHs6HKxKBIlYpBkYiIiKhyxMTEaF0C1WIMilSpdLrCYyOYF4mIiIi8o/AcRX9/f23roFqNQZEqldFotN3RKdoWQkRERFQLCEmoW/ABAQHaFkO1GoMiVSr7CkzoOagNERERUYXprmxTqTvkiSoBgyJVKnVPl45BkYiIiKjCCrepfHx8oNfrNS6GajMGRapUQUFBAABh4KGnRERERBVl36YKCwvTuBKq7RgUqVJFRUXZ7vgwKBIRERFVlPC1AgAiIiI0roRqOwZFqlT2oGhfqRERERFRBRTufGdQpMrGoEiVKjIyEgAg2KNIREREVGFjX7sNwJVtLKLKwqBIlaphw4YAAOFn0bgSotpF0ushF54DTEREdceZM2cAANHR0RpXQrUdgyJVqqZNm9ru+AgIPXsVibxB0ushhwRD8vVhWCQiqmPsQVHdxiKqJAyKVKmMRiPq168PABBG9ioSVZQ9JELWAZLMsEhEVIcICJw7dw4AgyJVPgZFqnT2FZnwZ1AkqginkKg+yLBIRFRXCD8rCgoK4OPjo+6IJ6osDIpU6Vq1agUAUAIZFIkqRJKdQ6LD4wyLRES1nwg0AwBat24Nna6E7wMiL2JQpErXvn17AIAIMmtcCVHNJen1kIMD3TRgWCQiqu3ueG0YAKBt27YaV0J1AYMiVbp27doBsB16KiShcTVENU+Jh5yW2JBhkYioNjt+/DgABkWqGgyKVOnq16+PsLAwQGavIlFZeRwS1RkYFomIaiMhCTUodujQQeNqqC5gUKRKJ0kSunbtCgBQQgq0LYaoBilzSFRnZFgkIqptRJAZBQUFCA8P54inVCUYFKlKdO/eHQCDIpGnyh0S1QUwLBIR1SbjZ90OAOjWrRskSdK4GqoLGBSpStiDogg2Q8g8T5HIHV3bVjj9Ri+cu7tdxRYkyZCaNkL2mGu8UxgREWlm7969AGxBkagqMChSlWjcuDHq1asHyOxVJCqN4u8LS6MCZHYw49xdrcu9HFE/AmeHRiC9lcywSERUgwm9giNHjgAAevbsqXE1VFcwKFKVkCQJ1113HQBAiTBpXA1R9aVr2wr/3hUMAJB8lXKHRVE/AueGhMMcBCgGMCwSEdVgSpgJVqsVLVq0QKNGjbQuh+oIBkWqMn379gUAKOEmCPDwU6KidG1b4eQDUVCirvS6lycsOoZEO4ZFIqKa6/pHegCAutOdqCowKFKV6dq1KwIDAwEfhZfJICqipJBoV9awKAw6p5Box7BIRFTzCFlgx44dABgUqWoxKFKVMRgMuPbaawEA1qh8jashqj7chUQ7T8OiqB+BC/1DXE5nWCQiqlmUcBPy8vLQoEEDtG/fXutyqA5hUKQqNWTIEACAEpUPIfHwUyJd+9alhkS70sKiqB+B84PDURDsfjn2sHhx8rUMjERE1dzVkzoCAAYPHszLYlCVYlCkKtW9e3eEh4cDBgEljIPaECl+Ph6FRDt7WDx/p3NY9DQkqs9rAPKjCnsXR/cuS8lERFRFhF7Bzp07AdiCIlFVYlCkKqXX6zFo0CAAgFKPh59S3aZr3xqn7vQw2TmQfBUYmqTi5lbxeCttOWZl/Y5pmUtw3/51iMjOKtOyFAOQ3lrHnkUiomrIWi8PVqsVbdq0QUxMjNblUB0jCSF4/B9Vqbi4OEycOBEQgM8/kZAKdFqXRFTldG1bIfb+KFjrle26or4FZkxbsByjtuyFj9VabLpZ1mFpt154a9h/UGAweLxc2QyExloR+PPOMtVDRESVQ0Cg/p2+OHPmDJ5++mncfvvtWpdEdQx7FKnKNW/eHF27dgUkwNogT+tyiDQhzl5Ao83Fg547vgVmzPvwe9z19z8lhkQAMChWjNuzA98smANfs+ch1JAFhG5JKFM9RERUeUSIGWfOnIG/vz8POyVNMCiSJkaMGAHAFhQ5qA3VRUpODvzXH0GTpZ73qE9bsBzXHI8r9SqkAkDvhFN4afUyj5brmwpE/3IalgtJHtdCRESV69rHrgJgGwjQ399f42qoLmJQJE3ccMMNiIiIAHwUKLxUBtVRalj8pfSwGJWehVFb9gIAShvzzj595L5/Sj1nkSGRiKj6Ufws2LRpE4ArO9eJqhqDImlCr9dj1KhRAABr4xyIUvtIiGonJScH/htKD4tjNu12ebipKwbFilF73Z9zqCsQDIlERNXMsOnXQgiBa6+9Fi1atNC6HKqjGBRJMyNGjEBgYCCEvxVKBC+VQXWXGhbdHIba+/jpci376vh/XU7zTQUarOB5iURE1YkwWLF69WoAwF133aVxNVSXMSiSZgICAvCf//wHAHsViUo7ZzEwv3w7UwIKSp7PNxWI/r94WM6dL9dyiYiocoz8eDDMZjM6d+6Mq666SutyqA5jUCRNjR49Gr6+vhBBFojQsl0mgKi2sYfFxr8WD4vZfr7lWmaOT/H5GBKJiKonYVCwbNkyAOxNJO0xKJKmQkNDcdtttwEALDHZ7FWkOk/JyUHAuuI9iwe7RZdreZeHGZ1+Z0gkIqq+bp15A/Ly8tC2bVtce+21WpdDdRyDImnunnvugb+/P0SgBUokR0AlKnoYalhEFvo/eRLCULblCANw/YNJGHjLHvUxXYFgSCQiqoaErxW//fYbAODhhx+GJJU2xjVR5WJQJM2Fhoaqh1dYYnJ4XUUiOB+GajRY0KFxADAmGAA8uo4iAGBsMEIbBGFGgw0YeMse2+A1fyRWZtlERFRO/V/uDovFgp49e6Jnz55al0PEoEjVw+jRo23XVfSzwtowT+tyiKoFJScHAeuPIfuPBgAAMSMSoo+fR9dRFH38IGZEAgDCdP4INeQi+vczsJw9V7lFExFRmSkBZqxduxaArTeRqDpgUKRqwWg04r777gMAWJtkQ+gVjSsiqgYkCSLfhOhfE9D+q8mAUYZY2Aji7mCXh6EKA2zTf2wE+NlW8R+nxWDHU71gPZ8MyO6v10hERFVLQKDdhGgIITBgwAC0bdtW65KIAACSEILH+VG1YLFY8NBDD+Hff/+FnOQHw78hWpdEpC1JguTjAwDQRUUi8+rGSOmsw7GHvwAuWYAfMyFtywNyFCBAhrjWCNwVDETpnRbzxPleONnHoR9SKBCKABRrVb4aIiIqgbVeHixtMmE0GvHDDz+gXr16WpdEBIBBkaqZw4cPY/LkyQAAw4EwyFk+GldEpBFJgqQ3ALLzgaa6qEicfqAZjj30hUeL+TgtBssfHwjD5kPFpgmrlWGRiEhDQqfA/yYz0tPT8cgjj/CSGFSt8NBTqlY6deqEW265BQBgaZXFy2VQ3eQiJAKA9VIKWnyTgPZzJpe6mFmpLVyGRACQdDoeikpEpKFb3r8e6enpaNasGUaPHq11OUROGBSp2nn44YcREhICEWCBNTpX63KItFFCSLRTw+JX7sPi6bwolyHRjmGRiEgbSlABli1bBgCYMmUKDIYyXgOJqJIxKFK1ExISgkceeQQAYG2WDcVo0bgioipk700shfVSClp867pn8eO0GBx7oZNnT8mwSERUpYQs0OCWQCiKgqFDh6JHjx5al0RUDIMiVUs333wzevfuDciApU0GD0GlusHNIaclcXUY6sdpMVj+xEAYNrnvTXR6aoZFIqIqY22WjTNnziAyMhJPPPGE1uUQlYhBkaolSZLw3HPPITAwECLIAmtjHoJKdYSHIdHOHhbbfW0Lix+nxeD3J8sWEu0YFomIKp8SXAClse2a0c8++yyCgoI0roioZAyKVG1FRUVhypQpAABr02woAWZtCyKqTB4ecloS66UUtPzaFhb/za0Pn7/LHhLVMhgWiYgqjdApqHeTP4QQuPnmm9GnTx+tSyJyiUGRqrXBgwfj+uuvtx2C2jYDQla0Lomo8pSxN9GRPSwefblzhcuQKlAHERGVTEDghle74Ny5c6hXrx4ee+wxrUsicovXUaRqLz09HZMmTUJKSgrkZD8YYkO0Lomocsg6SAZ9xZZhtQJSBfYBCgXCwgGkiIi8zVo/D5bWmdDpdPj000/RuXPFd+wRVSb2KFK1Fxoaitdeew2yLEOpnw9rvTytSyKqHIoVwlyBkKYU7vcT5ex5Z0gkIqoUir8Fuk4mAMD999/PkEg1AoMi1Qhdu3bF/fffDwCwtMyC4s+NWaqlFCtEQUHZA6MinANiecMiERF5lZAFou8IgslkQq9evXDXXXdpXRKRRxgUqcYYP348evXqBegELO3SIXTcEKZaSoiy9y6WFAzLEhbZm0hE5HUCAte93BHx8fEIDw/HK6+8Alnm5jfVDDxHkWqUtLQ0PPDAA7h06RLkVB/oj4ZCAgfeoFrMk/MWi/YmFlXaOYsMiURElcLSOAfWmGzo9Xp89NFH6NKli9YlEXmMuzSoRgkLC8Nbb70FHx8fKOEFsMZka10SUeUqrWextJAI8DBUIiINWMNNUJrnAACmTJnCkEg1DoMi1Tjt2rXDiy++CACwNs6FNYqD21At5y4sehoCXbVjbyIRkdcpRgt8ehZACIERI0bgtttu07okojJjUKQaaeDAgbjnnnsAAJbWmVCCCjSuiKiSlRQWlTKeOcCeRSKiSicMCurd5ofc3Fx06dIFTzzxhNYlEZULgyLVWPfffz/69u0LyIC5QzoUI3tFqJYrGhbLE/yKjIzK3kQiIu8RsoIWEyNw7tw5NGzYEDNmzIBeX8Hr4xJphIPZUI2Wm5uLKVOm4Pjx40C+DJ8D4ZDMOq3LIqpcsg6STlfhHkJhtdpGWCUiogoTELB0SIcSXoCQkBB88cUXaNKkidZlEZUbexSpRvP398fMmTMRHR0N+Ckwd+RlM6gOUKwQFnOFFiEUwZBIROQlAgKWVplQwgvg6+uLd999lyGRajwGRarxQkND8eGHHyIsLAwi0AJz+wwIiRvAVMsJYesRLC+lAvMSEZETa9McKA3yIcsypk2bho4dO2pdElGFMShSrdCoUSPMnDkTRqMRIrQAlnYMi1QHlDMsirIOgkNERC5ZGufA2tR2GYynnnrKNn4CUS3AoEi1Rtu2bfH222/brrEYYYKlbQYEuEFMtVx5wiJ7E4mIvMLSKEe9pvPDDz+M22+/XeOKiLyHQZFqlR49euDNN9+EwWCAEmmCpU0mwyLVfmUIi+xNJCLyDmuDXFhb2ELifffdh/Hjx2tcEZF3MShSrXPNNdfg9ddfh06ng1IvH5bWDItUBxSGxVIDI3sTiYgqzFovD5ZWWQCAu+66C/fee6+2BRFVAgZFqpWuv/56vPbaa5BlGUp9hkWqI4Rw27vI3kQiooqzNsiFpU0mAGDkyJF4+OGHIUmSxlUReR+DItVaN954I1555RVbz2L9fNs5ixzghuoCV2GRvYlERBViaZSj9iSOHDkSTzzxBEMi1VqSELyQFtVuf//9N6ZPnw6LxQI51Qf646GQFK7UqQ6QJEg6HYDC3kQGRSKichEQsDbJgbWZbXTT8ePH46GHHmJIpFqNQZHqhF27duHll1+GyWSClG6A4WgoJIUd6lQHFIZFYbFoXQkRUY0kIGBtlg1rk1wAwP33348JEyYwJFKtx6BIdcb+/fvxwgsvIDc3F1KWHoYjYZAsDItERERUMiEJWFpmQmmQDwB49NFHMXbsWI2rIqoaDIpUpxw7dgzPPvssMjMzIeXpYDgSCilfr3VZREREVM0IWYGlXQaU8ALIsoypU6fitttu07osoirDoEh1TmJiIp555hkkJSUBZgmGI2GQsw1al0VERETVhDBYYe6QDhFkga+vL6ZNm4a+fftqXRZRleJxd1TnNG3aFLNnz0bbtm0Bg4C5cxqs4flal0VERETVgOJnQeR/fCCCLAgJCcHHH3/MkEh1EnsUqc7Kzc3FtGnTsHPnTkAAurgg6M4bIYEnpxMREdVFSkgB/K61ICsrC40aNcL777+PJk2aaF0WkSYYFKlOs1gsmDVrFlasWAEAkJP8oD8VDEkwLBIREdUl1ga5EG1zYbVa0b59e7zzzjsIDw/XuiwizTAoUp0nhMCSJUswe/ZsKIoCKcMAw/FQSGYemU1ERFTbCUnA0iILSsM8AMDgwYPx3HPPwdfXV+PKiLTFoEhUaOfOnZg+fTqys7OBfBmGY6GQczjIDRERUW0l9ArM7dIhQs2QJAkPPvggxo8fz2skEoFBkchJYmIiXnzxRZw5cwawStD/GwTdJaPWZREREZGXKYFmRAzzQVJSEoxGI1599VUOWkPkgEGRqIisrCxMnz4du3btAgDIF4zQnw7ieYtERES1gICA0iAPUvt8mM1mNGrUCG+99RZatmypdWlE1QqDIlEJrFYr5s6di3nz5gEApCy97bxFk07jyoiIiKi8hCxgaZUJpZ7tsljXXXcdXnrpJQQFBWlcGVH1w6BI5MaOHTvw5ptvIjMzEzBL0J8MgS6NJ7cTERHVNIqfBZb2GRABFsiyjAcffBB33nknZJmD1xGVhEGRqBTJycl47bXXcOzYMQCA7qw/dAmBPBSViIioBhAQUOrlw9DFjLy8PISHh2PatGno1q2b1qURVWsMikQeMJvN+Pzzz/F///d/AAApWw/9iRDIeXqNKyMiIiJXhE6xHWoaZQIAdO3aFa+99hoiIyM1royo+mNQJCqDzZs347333rMdimqVoD8dCDnZCAnsXSQiIqpOlKACRAz1RVJSEnQ6HSZNmoS77roLOh3HGyDyBIMiURmlpKTgrbfewp49ewAAcoov9P8GQ7LwHAciIiKtCQhYm+QALfJhtVrRsGFDTJs2DR06dNC6NKIahUGRqBwURcHixYvx9ddfw2KxACYZ+n+DOdANERGRhhSjBZY2GRBBFgDAkCFD8NRTTyEgIEDjyohqHgZFogo4ceIEZsyYgcTERACAnOxnu+ailb2LREREVUVAwBqdC13bAhQUFCAwMBBTpkzBkCFDtC6NqMZiUCSqIJPJhG+++QZLliyBEAIwyTDEBkNOZ+8iERFRZVP8LLC0yYQINgMAevfujeeeew5RUVEaV0ZUszEoEnnJoUOH8M477+Ds2bMAADnJD/o49i4SERFVBgEBa6Nc6NrZehH9/f3x+OOP4+abb4YkcZA5oopiUCTyovz8fHzzzTf4+eef1d5F/ekgyJd9OTIqERGRlygBZlhaZ0IE2s5F7NmzJ55//nnUr19f48qIag8GRaJKcODAAbz33ntXehdTfaA/FQzJxCG5iYiIykvIAtam2RBN86EoCgIDA/Hf//4Xt9xyC3sRibyMQZGokphMJixYsAALFy60jYxqlaBLCIDuvD97F4mIiMrIGmaCpWUm4KcAAAYMGIDHH38cERERGldGVDsxKBJVsvj4eHzwwQc4ePAgAEDK1kP/bzDkbIPGlREREVV/wtcKS0wWlCgTAKB+/fqYOnUq+vTpo3FlRLUbgyJRFVAUBStXrsQXX3yB7OxsAIWX0ogPhGTm4ahERERFCUnAGp0DQzsr8vPzIcsyRo0ahUmTJsHf31/r8ohqPQZFoiqUmpqKr776CqtWrbI9YJGgSwyA7oI/JMHDUYmIiIDCw0xbZAFGKwDgqquuwpQpU9CqVSuNKyOqOxgUiTRw5MgRfPLJJzh+/DgAQMrV2UZH5bUXiYioDlP8LLC2yIISXgAAiIyMxH//+18MGjSIg9UQVTEGRSKN2A9HnTNnDtLT0wEA8mUf6OKDIOfptS2OiIioCgm9AmuTHKCpCVarFXq9HmPGjMGECRN4mCmRRhgUiTSWlZWF77//Hr/++iusVisgADnJCH1iAM9fJCKiWk1IAtZGuTB2hnoO/zXXXIPHHnsMTZs21bg6orqNQZGomkhISMBXX32FLVu22B6wStCd9YfuXAAkhYfbEBFR7SEgoESaYInJUi930apVK0yePBk9e/bUuDoiAhgUiaqd/fv344svvlDPX4RJhj4xEHKyH6+/SERENZ4SYoIlJhsiyAIAiIqKwgMPPIAhQ4ZAp+ORNETVBYMiUTWkKAo2bNiAr776CklJSQAAKU8HXUIA5BQGRiIiqnmUoAJYmmVDhJoBAEajEXfddRfGjh0LPz8/jasjoqIYFImqsYKCAvz6669YsGABMjIyAABSjt4WGFN9GRiJiKjaUwLMsDbLVkcyNRgMuP3223H33XcjPDxc4+qIyBUGRaIaIDc3Fz///DMWL16snuwvZemhTwiElO7DwEhERNWOYrTA2jQbSpQJAKDT6TBs2DDce++9qF+/vsbVEVFpGBSJapCsrCwsWrQIv/zyC/Ly8gAAUqYBujMBkNMYGImISHuKvxnWJjkQ9Qpg38wcOHAgJk2ahCZNmmhcHRF5ikGRqAZKS0vDwoULsWzZMhQU2A7lkbL0tsDIQ1KJiEgDSqAtICoRJvWxvn374r777kPr1q01rIyIyoNBkagGu3z5MhYtWoTffvsN+fn5AArPYTwTADmFgZGIiCqfElQAS5MciMJzECVJQv/+/TFhwgS0bNlS4+qIqLwYFIlqgfT0dCxZsgT/93//h9zcXACAlKuD7pw/5ItGSIKBkYiIvEdAQIQUBsTCUUx1Oh0GDRqEu+++G82aNdO4QiKqKAZFolokKysLv/zyC37++Wd10BsUyNBdMEJ3wR+SRda2QCIiqtGEJKBE5sPaOBciwHYdRL1ej2HDhmH8+PGIjo7WuEIi8hYGRaJaKCcnBytWrMDPP/+Mixcv2h60SpCT/aA/5w/JpNe2QCIiqlGEToG1QR6sjXIBXwUA4Ofnh+HDh2PcuHEcxZSoFmJQJKrFLBYL1q9fj8WLFyM2Ntb2oADky77QnQ2AnG3QtkAiIqrWhK8V1ka5sDbIA3S2TcaIiAiMHDkSt912G4KDgzWukIgqC4MiUR0ghMDevXuxaNEi7Ny5U31cyjRAd8EIOcWP5zESERGAwvMPg82wNsyF1MACq9UKAGjevDnGjRuHgQMHwsfHR+MqiaiyMSgS1TGnTp3C4sWLsW7dOlgstvNLUCBDl2SELskIqUCnbYFERKQJIStQ6uXD2jBPPf8QAHr27Ilx48ahV69ekCTuVCSqKxgUieqoy5cvY8WKFfjtt9+QkpJie9B+WOp5f0iZBl5eg4ioDlCMFigNc2Gtlw/obZuFvr6+GDx4MO644w60atVK4wqJSAsMikR1nMViwebNm/Hrr79i//796uNSjt52WOolP0hWjpZKRFSbCAgo4SZb72FYgfp4dHQ0/vOf/+Cmm25CUFCQhhUSkdYYFIlIderUKfz666/4888/kZ+fb3vQKkFO8bUdlprFXkYioppM+FlgrZ8Pa708dfRSSZLQp08f3HHHHejZsydkmTsHiYhBkYhKkJWVhVWrVmH58uVISEhQH5dydZCTjdBdNEIyc0OCiKgmELKAEpEPa/08iFCz+nhISAiGDx+O22+/HQ0bNtSwQiKqjhgUicglIQQOHz6MP/74A+vXr7/Sy6gAcmphL2O6D3sZiYiqISXADGv9PCgO5x5KkoRevXph+PDhuO666zh6KRG5xKBIRB7JycnB+vXrsWLFChw7duzKhHwZukt+kC8ZIefqtSuQiIggDFZYI01Q6udBBF4ZubRBgwa46aabcPPNN6N+/foaVkhENQWDIhGV2alTp7BixQqsXbsWmZmZ6uNSth7yJT/oLvnxMhtERFVEyAqUCBOsUfm2gWkKD/IwGAy4/vrrMXz4cPTo0YPnHhJRmTAoElG5mUwmbN++HX/++Sd27Nhx5bqMApDSfWw9jZd9OWoqEZGXCQgoYQVQovKhRJgA3ZXNufbt22PIkCEYNGgQQkJCNKySiGoyBkUi8oqMjAxs3LgRa9asweHDh69MsNrOZ5Qv+UFO84UkeD4jEVF5CAiIIDOUqHxYI02Aj6JOi46OxuDBgzF48GA0adJEwyqJqLZgUCQirzt//jzWrl2LNWvW4OzZs1cmWCRbaEzxhZzuC0lhaCQickcNh5EmWCPyAb8r4TA0NBQDBw7E4MGD0b59e0gS16lE5D0MikRUaYQQOH78ONatW4eNGzfi0qVLVybaQ+NlX1tPI0MjERGAwnAYbIYSmQ9rhEm93iEAGI1GXHfddRgyZAh69uwJvZ6DiBFR5WBQJKIqoSgKjh49io0bN2Ljxo24ePHilYkWCXKaD+QUP8jpPjynkYjqHAEBEWKGNaLwnEOHcBgQEIDrrrsO/fr1w9VXXw1fX18NKyWiuoJBkYiqnKIoOHbsGDZs2FA8NCqAlOED3WVfyKm+HD2ViGotoVOghBZAiTBBCTMBhiubZIGBgejbty/69++Pnj178nqHRFTlGBSJSFNCCDU0btmyBefOnXOaLmXrbYenpvpCytFDAg9RJaKaS/haoYSbYA03QYQUAA4HUAQHB6vhsEePHjAYDNoVSkR1HoMiEVUbQggkJCRg69at2Lp1K44cOQKnVVS+bDuvMc0XcoYPz2skompPQEAEWqCEm6BEmCACLE7TmzZtimuvvRbXXXcdOnbsyHMOiajaYFAkomorLS0N27dvx5YtW/DPP//AZDJdmVh4iKqc7mMbDCdXx95GIqoWhI/VdkhpmAlKaIHTIaWyLKNz585qOGzatKmGlRIRucagSEQ1gslkwp49e7B161bs2rULycnJRRrItgFx0nw5IA4RVSkhCYjgAihhtlvRXsPAwED07NkT1113Ha655hqEhIRoVCkRkecYFImoxhFCIDExETt37sSuXbuwf/9+FBQUODQApCyDrbcxwwdSpgGSYG8jEXmHgIAIsEAJKYAILYASUgA4jLslSRLatm2L3r174+qrr0b79u15SCkR1TgMikRU45lMJhw4cAA7d+7Ezp07kZiY6NxAAaRMH8gZtvAoZTM4EpHnBASEvxUixBYKlRDnw0kBIDw8HFdffTV69+6NHj16IDQ0VJtiiYi8hEGRiGqdpKQk/PPPP9i3bx/27t2L1NRU5wZWCVKGAXJGYY9jNkdTJaIrBASEn1XtLVRCzICP4tTGaDSic+fO6N69O3r37o0WLVpAkrgeIaLag0GRiGo1+0iq9tC4f/9+ZGRkODeySrZDVTNtNynLwHMcieoQIRUeShpcABFshhJkdrrgPQD4+Pigc+fO6NatG7p168bDSYmo1mNQJKI6RVEUnD59Gnv37sW+fftw4MABZGdnOzcSgJSjt4XGTB/bzwJdyQskohpH6BQowWaIILMtHAaZnc4xBACDwYCOHTuqwbBDhw686D0R1SkMikRUpymKgri4OBw+fBgHDx7EoUOHkJSUVLxhvgw5y9bbKGcZIOUYeB1HohrAdn6hBSLIAiXQDBFshvC3oOjR5kFBQejUqRM6d+6MTp06oX379vD19dWmaCKiaoBBkYioiIsXL+LQoUNqeDx16hQUxfkwNHuvo5RtgJyltx2umstzHYm0JCAAXyuUIIuttzDQDBFoAXTFN3Wio6PRuXNn9da0aVPIMg85JyKyY1AkIipFbm4ujh49imPHjuHYsWM4evRo8QFyAMAKW3DMNtgGyMnRQ8rTc4RVokpgC4UKlABbGFQCbYeSFh2NFLANPNO2bVu0a9cOHTt2ROfOnREeHq5B1URENQeDIhFRGQkhcOnSJTU4Hj9+HMePH0dubm7xxgpsPY3Zesg5Blt4zNFzsByiMhBS4eGjARaIQDOUANt96ItvwhgMBrRs2RLt2rVD+/bt0b59ezRp0gQ6Hc8zJiIqCwZFIiIvUBQFiYmJOHbsGE6ePInY2Fj8+++/JYdHAMjTQbaHxtzCW76OvY9Up9l7CYXRooZBEWCBMFqAEvat6PV6NG/eHK1atUK7du3Qrl07tGzZkoPOEBF5AYMiEVElURQFSUlJamiMjY1FbGwsLl265GIGQMrTXQmODJBUS6mHjfpbbD2F9pvRWmIvIWAbbKZVq1Zo3bq1+rNp06YwGAxVXD0RUd3AoEhEVMXS09Nx6tQpxMbGIj4+HnFxcYiPj0deXl7JM9gDZJ7e9jO/8GeeDjDLHECHqi2hU2wXrjdaIYyWKz/9rSUOMAMAOp0OjRs3RkxMDFq1aqXe6tWrxwvaExFVIQZFIqJqQAiB5ORkp+AYFxeHhIQE1wESACySrcfRKUjabgyRVBWErNgCoGMgLLwPH8XlfHq9Hk2aNEFMTAxiYmLQvHlzxMTEIDo6mr2ERETVAIMiEVE1pigKLl68iPj4eJw9exZnzpxRfyYnJ8PtKtwKSKbC0JivU++rj1kkBkkqldApEL5WCD8F8C0MhL6FNz9riaOMOgoLC0Pjxo3VW5MmTdC8eXNER0dDr9dX0asgIqKyYlAkIqqhTCYTLly4oIZHe4A8d+4cUlJS3IdIALBKkPJloEAHqUC2BciCwt9NMqQCHWBmmKytBASgExC+CuBjhfBRIHyshb8rahgsLQgCQEhIiFMYdLwFBARUwashIiJvY1AkIqqFCgoKcPHiRSQlJSEpKQkXLlzAhQsX1PuXL1/2bEEKgAJbaJRMsu1w1sIbzLItYBbeh5WhsjoQsgAMCkThDY4/CwMgCkMhPLxiREhICBo0aODyxjBIRFT7MCgSEdVBJpNJDZIpKSm4dOmSektJSUFKSgrS0tJK75V0ZA+V9iBpkW2Ht5b4U4ZkkWxtFDBglkBIAtArEHrnn9ALCKefCoRBQPgo6vSyCAwMRFRUFCIjIxEVFYWIiAhERUUhKioKDRs2RIMGDeDv719Jr5KIiKorBkUiIiqRxWLB5cuX1fB46dIlpKenIz09HWlpaU43twPulEYBYJEARYZklYDCW4n3FRmSFYAiAUKyhUxFKvy98HFFgqSgcHrh4yj8HbD9XvhYaQFVXGlY5Kew3ZdtP4Us1Pu2nwJCLrwvC0AubKOz3xSn34X9cbnwvl7xuLevJAaDAaGhoQgLC3P6GR4ergbCyMhIREZGws/Pr/xPREREtRaDIhERVVh+fr4aIO0/MzMzkZWV5fKWnZ0Nq9WqbeHC4af9voTiwVAjkiQhICAAgYGBCAoKcrrZHwsNDVVvYWFhCAsLg7+/Py8lQUREFcKgSEREmhBCIDc3F1lZWcjNzUVubi7y8vKQl5fn9n5+fj7MZjPMZjMKCgpgNpthMpmcfrffr+wgqtPpYDAY1JuPj4/L+/7+/vDz84PRaIS/vz+MRqPTzT7NaDSqYdDf3x86XQW6FomIiMqJQZGIiGotRVGgKAqsViuEEMXuO05XFAWyLEOSJMiyrN4cf7fflyQJer2eIY6IiGotBkUiIiIiIiJyImtdABEREREREVUvDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiIneq0LICIqCyEE8vPztS6DiKhM/Pz8IEmS1mUQEXmMQZGIapT8/HwMHTpU6zKIiMpkzZo1MBqNWpdBROQxHnpKRERERERETtijSEQ1ls+uepBE4f4uSYYkS4AkA7IEFB7iJcmy7b5U+FOWIEmF89jbFT6u3geKPOa8TNvPK9OFJF3Z7SZdWY76uMN8jo8J+1FoUuHvsu0XITnOA3UeIUmFv8NheYXzy1LhcmyT7MuwT3dcprAvV4bL5Tn9RNHHitbhYh5cecxpOtzMV8Lzuaqj2Dwulutch3Cav2iN6nSHZYnCx1GkPkjCYX6hTpOKtXecZrt/5eeV5UiSuPIWLHz8yr9GqNNlCPV3+/PJhb/bptnmUR9z/IkrzyUXvRVOs/0Op8ftzyVLivqYDAFZUqCzTyv8XZ0uKerydOpjAjrY2gCATlIc5lOgc5jPft/e3nE+GaJwXtvz26bZ57M9JkGBzj4/rjyfDrDNB9vz2f8e9t9tzyXUabJUWIt6X1I/7jpJggyp8DGp8He58C0iwVygw8gHG4CIqCZiUCSimssqXdlkk2RIKAx16hY4bNMlCZCvpCJ1HqfEIQNFk8CVFFY8xUgO8zollZIeL5Koit13aCPZA5/k0Ewq8hNF2sI5NBabDyUsE4WB1dXyXJRbYh0ubq6mufpTeTKfu3ngOkRWWlAsOr3ItKJB8crjwuk5S5pmD2dXpjlOFw7zOTxW7Lmcb45BsdjN1bTC8ATgSoCEcAqUgD0oQg1acmEdV4KiciVoFU6zBavCn5JkC3GF71P7fXt7HSSHUAropCs/dYW12ecrNg3257OHPlEYMK+EY3s4dBcUS1qejCuP2X53rNHhf0hEVMPw0FMiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInPA6ikRUc+kEhLBdZNt2XUDJ4af9Im4och1Cqch1A+03ceW+J9McLuJ35bLocPH4lZ/C6T6c5hMAINSr2alTBCRAQJ1XFJ2ncL7iij5mv3CgU0lF/h4ofkPRxyQ304o8bVmnlbZMd/PY77qdT5SyTIGSa3RxHUUUn09ycx1FyfEaiZJDW9ivX+j49nJxHUWU/zqKwv6OkQRE0VvhNFF4LUnHxxX1uZQrzwMBSIrD9R6F03QhKery7M8t1GkOdRT+Lhfet1+X0X7f8afi8LFWpCs/FVy5jqJS+JgEV9dRlCDDdn1Gnf1PVfi4/XqMOkCdJjssQ70OpLq8K8uSIam/2/4tEswFJX0uiYhqBgZFIqqxCq6+qHUJlcO+HV4BRSMqEXDlbSVgC1Q1j+M7mwdFERFVJq5liahGyc/P17oEIiIiolqPPYpEVKP4+vqq93/77Tf4+flpWA3VRPn5+bj99tsB8D1E5VOe9xDfZ0RU0zAoElGNIklXDqb08/OD0WjUsBqq6fgeoorie4iIaiseekpEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIieSEKKCV+siIiIiIiKi2oQ9ikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJ3qtCyAi8lRubi4WLVqEv//+G0lJSZBlGU2aNMGAAQMwcuRIGAwGrUukamrVqlV45513Sm03a9Ys9OzZswoqouokPz8f+/fvx4kTJ3Dy5EmcPHkSycnJAIB7770XkyZNKnUZqamp+PHHH7F9+3YkJyfD19cXzZs3x7BhwzB8+HBIklTZL4OIyKsYFImoRkhKSsITTzyBpKQkAICfnx/MZjOOHz+O48ePY+3atfj4448RFBSkcaVUncmyjNDQUJfTubOhbjp27Biee+65cs9/4sQJPPPMM8jIyAAAGI1G5Obm4uDBgzh48CA2btyId955h+8vIqpRGBSJqNqzWCx44YUXkJSUhIiICLz88svo2bMnFEXBhg0b8P777yM2NhYzZszAzJkztS6XqrF69ephyZIlWpdB1VBQUBDatGmj3j777DOkpqaWOl92djaef/55ZGRkoGnTpnjllVfQrl07mM1mLF++HP/73/+wa9cufPbZZ5g6dWoVvBIiIu9gUCSiam/16tU4ffo0AGDGjBno1KkTAFvv0MCBAyGEwBtvvIEdO3Zgz5496NGjh5blElENc9VVV+GPP/5weuyrr77yaN5FixYhNTUVvr6+mDlzJho1agTA1jt9xx13IDc3F3PmzMHy5csxevRoNGnSxOv1ExFVBg5mQ0TV3urVqwEA3bp1U0Oio4EDB6Jhw4ZObYmIPKXT6co975o1awDY1kP2kOjojjvugNFohNVqxdq1a8v9PEREVY1BkYiqtfz8fBw+fBgAcM0115TYRpIk9O7dGwDwzz//VFltRFS3JSYmqoPe2NdBRfn7++Oqq64CwPUTEdUsPPSUiKq1hIQEKIoCAGjevLnLdvZpqampyMzMRHBwcJXURzVLeno6HnjgAZw5cwZWqxURERHo1KkTbrnlFnTr1k3r8qiGsR8SD7hfP7Vo0QI7d+5EfHx8FVRFROQd7FEkomotJSVFvR8VFeWyXWRkZInzEDnKz8/HyZMnodfrIYTAhQsXsHbtWjz55JN49913YbFYtC6RapDLly+r9z1ZP+Xk5CA3N7fS6yIi8gb2KBJRtea4UeXr6+uynZ+fX4nzEAFAREQE7r33XvTr1w9NmjSBj48PrFYrjh49iu+//x67d+/GypUr4efnhylTpmhdLtUQ5V0/+fv7V2pdRETewB5FIiKq9a6++mpMmjQJLVu2hI+PDwDbACadO3fGBx98gL59+wIAli1bhjNnzmhZKhERUbXAoEhE1ZrjnneTyeSyXX5+fonzEJVGlmVMnjwZAKAoCrZt26ZxRVRTcP1ERLUZgyIRVWuO5x5eunTJZTvH8xId5yHyROPGjRESEgIAOH/+vMbVUE0RERGh3vdk/RQQEMCgSEQ1BoMiEVVrzZo1gyzbVlVxcXEu29mnhYeHc8RTIqoSLVq0UO+7Wz/ZR0eNiYmp7JKIiLyGQZGIqjU/Pz906tQJALBz584S2wghsGvXLgBAr169qqw2qj3OnTuHjIwMAMD/t3fvQVFWfxzH34SgFChoji6BpqZEqaGQ5gV+3kKi7OItzRktc6wm05myqdlJ7W7lmDo5WTndjS7WqDVZNCimJqiYISNCCEIpSFzkZou4wO8PZp/fbnKJZXHh5+c148y6z3nO892dnWU+e85zjslkcnM10lkEBwfTp08foOnvJ4vFwrFjxwB9P4lI56KgKCIdXkxMDABHjx4lPT39kuOJiYnGdEFbWxGb+vr6Fo+//fbbQMP9imPHjr0cZcn/AQ8PD6ZOnQrA7t27KSgouKTNtm3bsFgseHp6cvvtt1/uEkVEnKagKCIdXkxMDAMHDqS+vp4VK1Zw5MgRoGHhkcTERNasWQPA6NGjCQ8Pd2ep0gGdPXuWxYsXs2PHDvLz843gWFdXx/Hjx3n66afZt28fAHfffTf9+vVzZ7niJpWVlZSVlRn/6urqgIZFauyf/+f2O3PmzKFnz55UV1fzzDPPkJmZCcDFixfZvn0777//PgDTpk0jODj48r4oEZE28Khv6adWEZEOoKCggGXLlnH27FmgYUpqXV0dNTU1AAwePJj169fj5+fnzjKlAyooKOD+++83/u/t7Y2Pjw8Wi8X4/ADExsayfPlyunTRFsNXotmzZxvfL82JiYnBbDY7PJeZmcny5cuN6ctXX301NTU1WK1WoGHK6erVq42tWUREOgP9NRSRTsFkMvHRRx/xxRdf8PPPP3P27Fm6dOnCgAEDmDx5MjNmzMDLy8vdZUoH1LNnT5YtW8bx48c5efIkZWVlVFZW4u3tTb9+/Rg6dCh33nknw4YNc3ep0kmFhITw8ccfExcXx4EDB/jrr7/o1q0bAwcOJCYmhtjYWGNRLhGRzkIjiiIiIiIiIuJAP2+JiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIgDBUURERERERFxoKAoIiIiIiIiDhQURURERERExIGCooiIiIiIiDhQUBQRkXazYcMGoqKieOKJJ9xdirhZVVUVd955J1FRUezdu9fd5YiISAu6uLsAERG51Pnz58nKyiIjI4PMzEwyMzM5c+YM9fX1AHz55ZeYTKZ2uXZ9fT0zZ86kqKiIefPm8cgjjzjVT1ZWFtu3bwdg8eLFLqzQvXJycjh06BBpaWnk5ORQUlJCbW0tfn5+DBo0iDFjxhATE4Ovr6+7S+1QfH19mTNnDps3b+att95i9OjRdO3a1d1liYhIExQURUQ6oKVLl5KVleWWa2dkZFBUVARAZGSk0/1s2rSJ2tpaRo8ezbBhw1xVnlstXbqU3377rdFjpaWllJaWcvjwYbZs2YLZbGbUqFGXt8AObubMmWzdupXCwkK+/vpr5s2b5+6SRESkCZp6KiLSAdlGDqFhJGbEiBH07Nnzslx73759APTu3ZvQ0FCn+jh27BgpKSkA/1dhwBag/fz8iI2NxWw2s3HjRjZv3syLL77ImDFjgIbQaDabSU1NdWe5HY6Pjw8zZswAIC4ujr///tvNFYmISFM0oigi0gHFxsbi7+9PSEgIQUFBeHh4sHTpUkpLS9v92ragOG7cODw8PJzq4/PPPwfAZDJxyy23uKw2dwsKCmL+/PlMnjwZb29vh2MhISFMmDCBzz77jHfffZeamhrWrl3LJ5984qZqO6bo6Gg++OADKisr+f7775k1a5a7SxIRkUZoRFFEpAOaOXMmU6ZMITg42Omw5ow///yTvLw8wPlpp0VFRSQlJQEwderUy1p/e1uzZg133HHHJSHR3rx58xg8eDAAubm5ZGdnX67yOgWTycTw4cMB+Pbbb91cjYiINEUjiiIiYrCtRmmb7uqMhIQE6urqAJg0adK/OsdqtbJ79272799PRkYGZWVl1NbW4u/vz8CBA4mIiGDKlCn06tXL4byoqCgAYmJiMJvN/PHHH3z99dccPnyY4uJirrnmGoYMGcIDDzxAWFiYcd6FCxf44YcfiI+P5/Tp01RXVxMYGMjtt9/OrFmz2rzIysiRI417TP/8808GDRrkdF+5ubns2LGD1NRUCgoKqK6uxtfXFz8/P0wmE+Hh4YwfP55+/fo51b/VauWnn34iMTGRnJwcysvL8fDwoHv37vj7+xMaGkpERATjxo3Dy8vL4dx/vv+5ubls27aNlJQUiouLsVgsvPLKK5f86DBp0iRSU1PJy8sjIyODG2+80bk3R0RE2o2CooiIGGzTTseMGUOXLs79iThw4ADQcB9f//79W2x/8uRJVq5cyenTpy85VlRURFFREQcPHiQ7Oxuz2dxkP3v27OHVV1+lurraeO7ChQskJydz8OBBli9fzrRp0yguLsZsNpORkeFw/qlTp3jvvfdITk5m7dq1bQqLVqvVeHzVVc5P3tmxYwfr16+ntrbW4fny8nLKy8s5ffo0hw8fJjs7mxUrVrS6/7KyMp566qlGF06yvfdZWVl8++23xMXFERQU1GRfP/zwA2vXrqWmpqbF69ovbnTgwAEFRRGRDkhBUUREACguLubEiROA89NOa2pqOH78OAChoaEtTjvNyspiyZIlWCwWAEaMGEF0dDT9+/fHy8uLkpIS0tPTW9x3Lzs7m927dxMQEMDixYuNax85coRPP/2U6upq1q1bR1hYGC+//DInT57k3nvvZfz48fj7+3PmzBk++eQTsrOzOXbsGHFxcTz00ENOvQcAv/76q/F4wIABTvWRk5NjhMTu3bszbdo0wsLC8Pf3p7a2lpKSEjIzM0lOTnZ6eu/69euNkBgeHk50dDQmk4lrrrmG8+fPk5eXR2pqqjGVuCmZmZkkJCTQvXt3Zs2axbBhw/Dy8iI3N5e+ffte0n7AgAH4+PhgsVj49ddfWbhwoVP1i4hI+1FQFBERAPbv3099fT3e3t6MHj3aqT6ys7ON0bSQkJBm21qtVlauXGmExGXLlhkrYtobO3YsixYtorCwsMm+srKyGDx4MOvXr8fPz894/qabbiIoKIhVq1ZhtVpZsmQJFRUVrFmzhoiICKPdkCFDuPXWW5k/fz7FxcVs376d+fPn4+np2arXDw3Td0+dOgU0hOXg4OBW9wGQmJhojCSuW7fOuO/RXmRkJIsWLaK8vLzV/V+4cMEI4JGRkbz88suXBM6wsDDuueceLBZLsyOjp06dIigoiI0bNzqsztvUqrmenp4MGTKE1NRUfv/9d+rq6to08ioiIq6nb2UREQH+N+00IiICHx8fp/qwnz7a0nYeCQkJnDlzBmhY5bWxkGivT58+zR5/9tlnHUKizYQJE+jduzcA586dY/r06Q4h0cbX15c77rjDaJebm9vs9RpTXFzMm2++CYCHhwePPfZYq/uwsa1w6+vr22hItNejR49W919ZWWmE+rCwsGZHJX18fFqcivvkk0+2agsXW9vq6mqKi4v/9XkiInJ5KCiKiAhVVVUcPXoUcH7aKUBJSYnxuHv37s22tQVTgLlz5zp9TWiYythUmPLw8HA4Fh0d3WQ/9u3y8/NbVUN1dTVms9kIeP9cQKe1bOG2qqqKxMREp/tpSo8ePYzVW3ft2tWmPQ179+7daPhujv3nw/5zIyIiHYOCooiIkJSUhNVqxdPTk3Hjxjndz4ULF4zHjY3u2fv999+BhpGlf7PoTXNaOt++luZWB7Vv15rgdPHiRZ577jljgZzx48ezaNGif31+Y6Kjo41RvFWrVvH444/z2WefcezYMWO6blt4eXkRExMDQHp6OrNnz2bNmjXs2rWr1SHZmVVd7YOi/QJEIiLSMegeRRERMUb3hg4dir+/v9P92N/T19Lql2VlZcD/Rs7aolu3bs0et59W2dy0Wvv75GxbfLTEarWyYsUKDh06BMCoUaN4/vnnnbq/0V5gYCCvvfYar776KkVFRaSlpZGWlgY0vM833ngjUVFR3HXXXS2G8qY88cQT1NTUEB8fT0VFBd999x3fffcd0BDgR40aRWxsbIsjoy2NHjfG/kcFZ1fYFRGR9qMRRRGRK1xNTQ0HDx4E2jbtFBrup7OpqKhoU1+dgdVqZdWqVcaWIBEREbzyyivGlM62Cg8P5/PPP+eFF14gNjbW2J6itraW48ePs2nTJubOnWuE1Nbq2rUrZrOZLVu28PDDDzNy5EgjSJeWlvLjjz+ydOlSnnvuOYdg90/OLERjvwCP/edGREQ6Bv2EJyJyhUtJSTGmMrY1KNpvhdBSUPT396ewsLDTLmRiC4m20diRI0eyevXqNu2/2Bhvb28mTpzIxIkTgYaR2CNHjhAfH09ycjIVFRWsWLGCuLg4evXq5dQ1goODWbBgAQsWLKC2tpasrCwOHDjAjh07OHfuHHv37mXz5s0sWbLEZa+rsrLSeNzSQkUiInL5aURRROQKZws6gwcPxmQytakv+z0D//jjj2bb2rbPKCkpabFtR/PPkDhixAhee+01l4fExvj7+zN58mTeeOMN7r33XgAsFgv79+93Sf+2aa0LFy7knXfeMab1JiQkuKR/m7y8PABMJhNXX321S/sWEZG2U1AUEbmC1dXV8csvvwANC7C0VZ8+fbj22msBOHHiRLNto6KijMdxcXFtvvblYrVaef75542QGBYWxuuvv97ifZLtYdSoUcZj2z2frmQymYx9IJ3Zq7EpZWVlxtYoN998s8v6FRER11FQFBG5gqWlpRkBwz64tYUtvOTl5XH+/Pkm202aNMkIITt37uSbb75ptt/CwkKX1NcWVquVF1980diovj1D4s8//9xi+LPdWwpw3XXXtar//Px8UlJSmm1TUFBgjPwFBga2qv/mpKenG49vu+02l/UrIiKuo3sURUQ6oNOnTxsrXNrY9ucD2LNnj8PqpD4+PkyYMKHV17GNigUGBjq1xUFjJk6cyM6dO6mrqyMlJYX//Oc/jbbr0qULL7zwAo8//jgWi4UNGzawd+9epk6dSv/+/fHy8qKkpISMjAz27NlDSEgIZrPZJTU666WXXmLPnj1AQzB79NFHKSgoaPacgIAAAgICWn2tb775hpdeeonw8HDCw8O5/vrr6dGjBxcvXqSwsJCEhARjNLhv376t3taksLCQJ598ksDAQMaNG0doaCh9+vSha9eulJeXk56ezvbt243Va2fMmNHq19CUw4cPAw33X44ZM8Zl/YqIiOsoKIqIdEBpaWmsXr26yeObNm1y+H/fvn3bFBRdMe3UJiIigt69e1NUVER8fHyTQRHghhtu4K233mLlypXk5+dz9OhRjh492mhb2z2N7mS/8f2ZM2d49NFHWzznwQcfZOHChU5dr6amhqSkJJKSkppsc91117F69epmt/1oTn5+Plu3bm3y+FVXXcXcuXO57777nOr/n6xWK7t27QIaRrGd3dpDRETal4KiiMgV6uTJk8ZoWFtXO7Xn6enJ9OnTeffdd0lOTqasrKzZvRmHDBnCli1biI+PZ9++fWRlZRn3wwUEBDBo0CBuvfVWpkyZ4rIaO4NVq1Zx6NAhUlNTycnJobS01JiK2qNHD2644QYiIyOJjo52ajuO4cOHs3HjRlJSUkhPT6ewsJBz585x/vx5unXrRmBgIMOHD+euu+5y2WgzYHwmAGbOnOmyfkVExLU86uvr691dhIiIXH4ffvghH374IQEBAWzbts2pvfCaUlVVxZw5c6ioqOCRRx5h3rx5LutbOrdnnnmGpKQkwsPDWbdunbvLERGRJmgxGxGRK5Rt2unYsWNdGhKhYQN1Wzj84osv+Pvvv13av3RO6enpJCUl4eHhweLFi91djoiINENBUUTkCnTx4kUiIyN58MEHmT59ertcY8aMGQQFBVFeXs5XX33VLteQzmXz5s0ATJ06ldDQUDdXIyIizdHUUxERaTcnTpwgKSkJX19fZs+e7e5yxI2qqqrYunUr9fX1TJ8+vdn7VkVExP0UFEVERERERMSBpp6KiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIgDBUURERERERFxoKAoIiIiIiIiDhQURURERERExIGCooiIiIiIiDhQUBQREREREREHCooiIiIiIiLi4L8Op/0JyIiTJQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACYXUlEQVR4nOzdd3wT9f8H8NddkrbpbmnZlL2HskQEF1sR9StT8YsKiorIck/ALe6BKPpDQPiyHKgICggIiqDI3hVomS2U0t2mSe7z+yPNkbRZbdNe2r6ej0ceTXOfu7ybJpd73edzd5IQQoCIiIiIiIioiKx1AURERERERBRYGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJz4JSgmJSVBkiRIkoR7773XH4uskW644Qb1dSQicufee+9V1xVJSUlal6OaP3++Wtf8+fO1Lof8TFEUdO3aFZIk4dFHH9W6HKpAmzZtUj/LM2bM0LoconKxv5dvuOEGrUvxu379+kGSJNx5550VsvxK61GcP38+ZsyYUaNWOCtXrlT/5oyMDK3LoSIWiwXr16/H008/jT59+qBevXoIDg5GeHg4mjdvjlGjRmHlypWwWq2lWu7+/fvx6KOPok2bNggPD0dUVBQ6duyIp59+GsnJyRX01xARAYWFhejQoYO6QSRJEjZt2uTX55g7dy527tyJkJAQPPPMMy7bVIX1a3JyMp5++ml07NgRUVFRCA8PR5s2bfDoo4/iwIEDpVrWhQsX8PLLL6Nr166IjY1FaGgomjdvjrFjx2Lbtm2lWpavasp3zZAhQ9T38v/93/+Vev6TJ09Cp9NBkiTExsaioKCgVPM7hmVfbr7uHPPneyY3NxfvvvsuevXqhdq1ayMkJASNGzfGyJEj8csvv5RqWWazGZ9//jn69u2rfm4bNmyIIUOGYNmyZRBClGp5vtDi86OFd955R32f/Pe//y3TMlq2bKkuY/v27erj06dPBwAsXboUmzdv9ku9ToQfnDhxQgAQAMQ999zjss3111+vtqkp7rnnHvVvPnHihNf2NfE1qmwbNmwQsbGx6uvs6da9e3fx77//+rTct956SxgMBrfLioiIEEuWLKngv45qitKuWyrLl19+qdb15Zdfal1OjTJjxowS652NGzf6bfm5ubmibt26AoCYNGmSyzZVYf26aNEiER4e7nZZQUFB4t133/VpWevWrRO1a9d2uyxJksTjjz/u07J8VVnfNRs3blSXOX369PIXXgbffPONWkPv3r1LPf9LL72kzj9hwoRSz+/4Gvhy82Wd58/3zM6dO0WzZs081jR69GhhMpm8LuvEiROic+fOHpfVr18/cenSJZ9q80Vlfn7sy7z++uv9srzSSklJEXq9XgAQoaGhIisrq1Tzb968Wf0b2rVrV2J6nz59BADRs2dPf5WsqrREUhNDUKBuzNVkX331lfo/iY2NFSNGjBDvvvuuWLJkiVi4cKGYOHGiiIyMVNs0atRInDt3zuMy58yZo7Y3GAxi7NixYsGCBeKLL74Qw4cPF5IkCQBCr9eLNWvWVNJfSlT5GBS1ceDAAREUFCQAiLCwsAoJim+99ZYAIHQ6nTh9+rTLNoG+fl21apXQ6XTqRujw4cPFF198IRYsWCDGjh3rFMA+//xzj8vasWOHCA0NVdv3799ffPrpp2LRokVi0qRJTv+H5557zvOL66PK/K4JhKBYWFgo4uLi1Dp83bFg17x5c3Xev//+u9TP7/gajBw5Unz33Xceb8nJyR6X58/3TFJSkqhTp47a/qqrrhIffvih+N///ieeeeYZUatWLXXa3Xff7XFZly5dEm3atFHbt23bVrz11ltiyZIl4uWXXxaNGjVSp914443CbDaX+rWsyNfCF1oHRSGEuPXWW9U6vvjii1LNO3bsWHXet956q8T09evXq9P9vZ3JoFiBGBQDz1dffSU6duwo/ve//4mCggKXbU6fPi3at2+v/u/GjBnjdnlnz55VV3Z6vV6sW7euRBvHjedGjRqJ/Px8v/09RIGEQbHyWa1WcfXVVwsAYsiQIU7ftf4KimazWd1YHDBggNt2gbx+zc3NFfXr11fbzp8/v0SbtWvXqnv9w8PDRUpKistlKYoiunTpoi5rxowZJdrs3r1bDcWyLIu9e/e6/Tt9UdnfNYEQFIUQYvLkyWodL7zwgs/zOfbAdOjQoUzP7c/XwN/vmdtvv11d1tixY4XVanWanpSUJBISEtQ2q1atcrusKVOmqO0GDRpU4n1z8eJFp97Gjz/+uJR/vTMtPj+BEBS/++47tY5rr73W5/lyc3NFRESE+tl3tV6yWq2iYcOGauj2JwbFCsSgGHguXbokFEXx2m7fvn3q/85oNIrc3FyX7RxXsE888YTb5Q0fPtxvK1miQMWgWPk++OADtScxOTm5QoKi4wbOwoUL3bYL5PXr+++/r7YZPny422U98cQTajt3w95WrlyptunRo4fbv3n27Nlqu2HDhrl9Tl9U9ndNoATF3bt3q3U0btzYp/eXEM49MO+8806Zntufr4E/3zOOr0lCQoLbHQI//fST2q5bt24u26SmpjqNRkhNTXXZbt++fWqPdd26dYXFYvHhr3ZNi89PIATFwsJCER8fLwDbiIZjx475NN/ChQvV+ocMGeK2neO66+jRo/4q2z9B0dMxio5fWp5u7j6EVqtVLFu2TIwYMUI0adJEGI1GER4eLlq3bi0eeughr3sZpk+fXuJLc/369WLUqFGiSZMmIjg4uESQM5vN4ueffxbTpk0TvXr1EvHx8cJgMIjw8HDRsmVLcc8994jffvvN7XM6BkRPN0+vlTfbtm0TDzzwgGjVqpUIDw8XoaGholmzZmLMmDHi119/9Tp/8Q9NTk6OeOutt0TXrl1FdHS0CA0NFe3atRNPP/20SE9P97q86shxKMaePXtKTFcURTRo0ED90J88edLtsrZs2VKmPUn+sHXrVvHQQw+Jtm3biqioKBEcHCwaNWokRowY4XEvoxCuvyiTk5PFtGnTROvWrUVoaKiIiooSPXv2FLNnz/Z5SEp2drZ47733RL9+/US9evVEUFCQiImJEd26dRMvvPCCOH/+vMf5i39WLBaL+PLLL0W/fv1E/fr1hU6nE40bNy4xX0pKinjiiSdE27ZtRWhoqIiJiRHdu3cXb7/9trqx2rhxY3WjxNGaNWvU53z00Ud9+jsfffRRdZ7Vq1f7NI8vvO2Eqqj/248//ihuueUWUadOHREcHCwaN24s7rrrLrF161YhROmCoslkEl988YUYMmSIaNiwoQgODhZRUVGiY8eOYtq0aW53rh0+fFjtWYmMjBTHjx93+xzp6elqT5gsyx7X21VRUlKSeryd/bi6igiKd9xxhxrqsrOz/bLMyl6/9uzZU23z+++/u13WyZMn1Q3ihIQEl23uvPNOdVmLFi1yu6zc3Fy1V8RoNIqcnBy3bT3R4rvG15D077//qsfJSZLk9vjONWvWiHvuuUe0aNFChIeHC6PRKJo1aybuuecesWXLFo+1OPZm+bJ9U7wHxl348cafQdGf75lnnnlGXdYrr7zidlmKoogWLVqobV0Fk88++0ydfv/993v8G/r27Vuq/4M7lf35EcK3oJibmytuvvlmte2IESNcHt+5f/9+MXXqVHHFFVeImJgYERQUJOrXry+GDBkiFi1aVKJ319HUqVPV5fvaQ24//hCA+Pbbb922c9yB8OKLL/q0bF8EdFD8999/xZVXXulxPlmWPb7YjkFxw4YN4pFHHnG5HMeNkhtuuMHnoOfqTVSRQdFsNosHHnjA67JHjBgh8vLy3C7H8UNz7Ngx0a5dO7fLaty4cY3sEe3evbv6Gmzbtq3EdMe94t6GtlitVqdhFKU9kLkscnJyxMiRI72+VwYPHuy2nuJflGvWrBHR0dFul9W/f3+3Q87sVq9e7fEAdsB2Qobvv//e7TIcPysXL14UvXv3dvm+dbRhwwYRExPj9jk7duwoTp486TYoWq1W0bRpUwFAxMTEeB3WlZ+frz5fQkKCxy+P0iptUCzv/81isXhcr8myLN58802fg+Lff/+tvpbubkFBQeLTTz91Of/cuXPVdj179nS7d3vYsGFqO38dJxZIBg4cKACILl26qK+Bv4NiQUGBGsyvu+66ci/PrjLXr5mZmWr4i4qK8vpZdBwae+DAgRLTHY//unDhgsdlDR48WG37008/eWzrjhbfNb6EpJ07d6rHyen1evHVV1+VaHP+/HmnDV13t3HjxonCwkKXz/Phhx+q7TwNVbZz7IG57bbbSvNnO/FnUPTne6Zr167q9B07dnhcluM27+zZs0tMHzp0qDr966+/9rgs+3HKgOdebW8q+/MjhPegePHiRXUIPwDxyCOPlFhPmM1mMWnSJCHLssf3co8ePdwee7137161XZMmTbz2kCcnJ6vrrri4OLefETv7ycSuuOIKj+1Ko8KD4pYtW8R3333ntOJ1dRDwoUOHnOb7999/nQ5i7t27t3jjjTfEkiVLxKJFi8TUqVOdNvrcfYgdg+JNN90kAFu3+dNPPy0WLVok5s+fLyZMmCDOnj2rztOjRw8RHh4ubrvtNvHSSy+JhQsXiuXLl4sPPvhAjB8/3ukg28mTJ5d4zn/++Ud899134sYbb1TbffbZZyX+5n/++cdpPl+C4qhRo9Q2ISEh4sEHHxQLFiwQixYtElOmTFH3ogEQAwcOdPsmtLfp3LmzaNOmjZAkSdx2221izpw5YtmyZeL11193Gt9e2b1gWjOZTE4b1q4+9EuWLHH7vnfF8f+7ffv2Cqj6soKCAqeVXvPmzcWzzz4rvvrqK7F06VLxyiuviFatWqnT+/Tp43LjyfGL8rbbbhOhoaHCaDSKBx98UMyfP18sWbJEPPbYY06fCU87br7++mv1ZBIGg0EMHTpUfPTRR2L58uXiiy++EKNHj1ZPKCHLstu9lo6vpf1zfcUVV4g33nhDLF26VMydO1dMnDhRbX/gwAGnA+c7d+4s3nnnHbFs2TLx4Ycfil69eqmhw77n3lWP5GuvvaYuw9OeUCGcT+wxc+ZMj21LqzRB0R//twkTJqjtgoKCxAMPPCAWLFggvvrqK/Hoo4+qr63jcTPuguLWrVvV9pIkiUGDBol3331XLFu2TMyfP188+OCDTv8rd8tx3MBxVfsXX3yhTr/66qv9cgKGQGLfGNbpdE4bi/4Oir/++qu6PH+dgbCy169//vmn1w1FR46fr2XLljlNO3funDrN1TqiOMdtkDfffNNre1e0+K7xFpI2bNigBtLQ0FCXIyYuXrzodEKZK664QsycOVMsXrxYLFmyRDz33HPq+tbT35aWluY0PNJbr7ZjMF25cmVZ/nwhhPNr0KFDB9GxY0cRHh4uQkJCRMOGDcUtt9wi5syZ43GnvBD+fc9YrVZhNBoFYAvn3tZrjjvvHn744RLTW7du7fG7xJHj63HTTTd5/Ttc0eLzI4TnoHjy5EnRtm1bj+93RVHEf/7zH7VNvXr1xNSpU8X8+fPF8uXL1RF59unt2rVzO6Tesd2GDRs81u145t4pU6Z4/Tvt20Pu1qtlEZCXx7BareqBrsHBwWL58uUu26WkpKg9jrIsi/3795do4/gmA2yBMzMz0+Pzr1+/3uMHPy0tTe3BkGXZ7dAnf18eY+nSper0OnXquNzTmZSU5LSn3t0xCo6vSVBQkPjxxx9d/p2OyypPuMnNzfV6xjBfb8UDdkVw3Mjv0qWLyzYzZ870uGIpbsyYMWp7V3te/an48SyuvkwKCwudapozZ06JNsVPD56QkOBy7Pv27dvVk0DExMS47J06efKkumGRkJDgdtj49u3bRVRUlAAgGjZs6HIPWvGRClOmTPHYS+DY4zhhwgSXbYuvK9wNXbUHWW8bnNddd526IX/q1CmPbUurNEGxvP83x5NCREdHu9yDffjwYfXSCZ4CXlZWljoUNDo6WmzatMnl35eYmKjuqAoLC3O51zk9PV09eF+n0zkNXzty5IgagiMjI30+FsSdQ4cO+W395W0Pui/Onz+v7pWfOnWq0zR/B0XHnSMrVqwo9/KEqPz164IFC0oVtF588UW1/csvv+w07bfffvO40VncvHnz1Pbjxo3z2t4VLb5rPAXFr7/+Wj1sJzY2Vh16Xpx9x5EkSeL999932SY7O1sMGDBAfS53Z2x0HB0wb948t3UnJSWpPTC1a9cu1w4iXy+PUa9ePY8b/P58zyQnJ5cqaG3YsEFt37dvX6dpVqtVXf/rdDqvr9Xx48fVZTVv3tzrc7uixedHCPdB8eDBg06HJ3zyyScu53c8xvnuu+92GQIVRRHPPvus2u6pp55yuayPP/5YbeOph1xRFKcdLa6G6BfneJkkT6OySiMgg6LjtXM+/PBDj22PHDmi9lA88MADJaY7bvyFhYWJM2fO+PQ3eXPs2DG3XyR2/g6KjuP0PR3vtH37dnVF2bhxY5fDshxXci+99JLbZX3++ec+tfPG8T1S3psvX/TlkZ6eLurVq+d148hxrPlHH33kdbmlbV9WZ8+eVfe+3nHHHR7bFhYWqseXtGzZssT04l+Umzdvdrus0aNHe2xnP15Pp9OJXbt2eazr//7v/9RlLV68uMR0x89K165dPYbEv//+W23boUMHjwfhOy7X3Zew48ki3B0wfuTIEbXN4MGDPf6tZVHaoFie/9ttt92mTnd1pki7VatWOT2nq6D4zjvvqNN/+OEHj3+jY0/Wq6++6rLNpk2b1GFAjRs3FpcuXRKFhYVOe2z9sVOm+E6E8tz8Ed7sI0saNWpUonfF30HxrrvuUpdX3jMPCqHN+tV+wh8A4rHHHvO6LE/tv//+e3Xa0KFDvS6rtO1d0eK7xl1Q/PTTT9XPXIMGDVzusBbCNrLKPv+0adM8Pld6erq6c9DdGRsdT8ziaQi0Y6j29rzebNy4UUiSJK666irx1FNPiXnz5okVK1aIzz//XIwfP16tGbD17q1du9blcvz5ntmzZ4/Td583ntpnZmaq02rVquV1WaVt74oWnx8hXAfFP//8Ux2qGRQU5LZTKj8/Xz1cpnv37l6Hrl977bUCsO2kdHWISnp6urqjxVMPuWOodrdDrbhly5ap87jLJqUlIwB99dVXAIDIyEg88MADHtu2atUKV111FQBg7dq1HtsOHToU9evX90uNzZo1Q926dQEA27dv98syPUlKSsKuXbsAAB07dsRNN93ktu1VV12FPn36AACSk5Pxzz//uG2r0+kwceJEt9PtywGAgwcPlrbsKsdqtWLUqFE4d+4cAGDw4MEYNmyYy7Y5OTnq/ZCQEK/LNhqN6v3s7OxyVure8uXLUVhYCAB4/PHHPbY1GAwYOXIkACAxMRFJSUlu23bu3BnXXnut2+me3itCCCxevBgA0LdvX1x55ZUe6xo5ciT0ej0A75/rRx55BLLsflX2/fffO7XV6XRu206ePNnjcwHAQw89pN7/4osvXLZxfHz8+PFel1mRyvN/M5lMWLNmDQCgTp06uPvuu90uZ/DgwWjbtq3HWuzr9latWmHIkCEe2/bp00ddX7t7D1x//fV4+umnAdjWdQ899BCef/55dZ03evRojzVXRatWrcLSpUsBALNnz0Z4eHiFPl9ycrJ6PzY2tlzL0mr9GqjL8lWgfNe89NJLeOihh6AoClq3bo2tW7eiXbt2LtvaP+uSJOGxxx7zuNyYmBjcfPPNAIDNmzfDZDKVaDNw4EB1fbBlyxacOHGiRBshBBYuXKj+ft999/n2h7nRunVrHDlyBNu3b8cbb7yB++67D8OGDcP999+Pzz77DCdOnFDrtlgsuPPOO5GVlVViOYH6/qvJ7+Wff/4Zffv2RXp6OsLDw/HTTz9h+PDhLtv+8ssvOH/+PABg6tSpHrc3AKjfOVlZWdi2bVuJ6TExMbjtttsAALm5ufj6669dLmf+/PnqfV/fyzExMep9x3V3eej9shQ/27JlCwCgXr16+Pnnn722t2/4JScnIz8/3+mN5cjTxlJxWVlZWLx4MVavXo19+/YhLS0Nubm5LtuePn3a5+WW1V9//aXeHzBggNf2AwYMwK+//grAFmTtYbq4Vq1aOb2ximvQoIF6/9KlS76WW0KTJk0ghCjz/JVl8uTJ6kZpQkKC0we1qrB/fgDbe3PlypUe2zv+Xw8dOoQmTZq4bHf11Vd7XI6n98qBAweQnp4OAIiIiPBaEwCEh4cjIyMDhw4d8tjO2+d6x44d6v0bb7zRY9sbbrjBa1033ngjWrVqhaNHj2LBggV45ZVXYDAY1OlmsxkLFiwAANSvXx+DBw/2usyKVJ7/2549e9SdDtdff73HkA3YdgK4+39lZmZi7969AGyh09f3AACP74GZM2fi119/xfbt27Fs2TL18aZNm+KTTz7x+hy+mDFjBmbMmOGXZZVHdnY2Hn74YQC2HZ/ewrY/2D+3QPmDYnVYv9ZEiqJg4sSJmD17NgCge/fuWL16NeLi4tzOY/8eio6Odtp+ccceDk0mE44fP15ip5NOp8OYMWPwxhtvQAiBBQsWlPhMbtmyBceOHQMAdOvWDR06dPD5b3SlXr16HqfHxMTgm2++wVVXXYV9+/bh4sWLmDNnDp566qlyPS9VrEWLFmHs2LEwm82Ij4/H6tWr0a1bN7ftHbepLl265PW768yZM+r9Q4cOudyuGDt2LJYvXw7AFgjvvfdep+l5eXlqgAwODsZdd93l5a+yqVWrllOt/hBwQTEnJwcXL14EABw5cgT/+c9/SjX/pUuX3AZFxw0iTzZu3Ii77roLKSkpPrV3tQfJ3+x7YAFbuPPGsY3jvMV5WtEDtjeoXUFBgdfnrcqee+459YuwTp06WLduncfXx3FPvi+vTX5+vno/IiKiHJV65tgrOGLEiFLN62nFUp73imNN33zzDb755hu/1AR4/1yfPXtWvd+sWTOPbWNiYhAdHY2MjAy3bSRJwvjx4/H4448jNTUVP/74I+644w51+g8//KDufbzvvvu8hquKVp7/m+Nr16JFC6/P5anNqVOnoCgKANsXr+OXrzee3gN6vR7/+9//cOWVV6p7nO2PRUZG+vwcVcFTTz2F06dPIzIyEh9++GGlPKd9A16n07n9bvWFluvXQF2Wr7T+rvnwww+RmZkJAOjXrx++++47rz3Z9nX+pUuXyrQd58q9996LN954AwCwcOFCTJ8+HZIkqdMddzyMHTu2xPxr165FXl6e2+e9/fbbS1UnYOsVe/bZZ3HnnXcCAH766acSQTFQ33818b28c+dOjBkzBkIIJCQkYN26dV63qR23Xx555JFSPZ+793L//v3RsGFDnD59Gps3b8aJEyfQtGlTdfrXX3+tfp/ddtttPu+kc/zOc3ztyiPggqJ9ZVRW9r3frvjyJZeYmIjBgwerL3Dr1q1x0003oWXLloiNjXXqKh8/fjwuXLgAq9Varpp94djlHhYW5rW944fRU3e9ty70muKVV17Ba6+9BsC2Yb1+/XqvK4/o6Gj1flpamtfnsO8AKT6vv5XnM+Tp81Oe90pF1QR4/1zbRwLo9Xqnnj93wsLCPAZFwLbB8txzz8FkMuHzzz93Coqff/45AFugHDdunNfnq2jl+b85DhMKDQ312t7Tuqk87wGz2exxelxcHGJjY9V1XbNmzdC1a9cyP18g2rJlCz799FMAwOuvv+63wyi8se9IsFqtyMvL8+l9UJzW69dAXZavtP6usVgs6v3c3FyfRgdVxDq/devWuOaaa7B161acOHECmzdvxvXXXw/AuQcmJCREDW6Oxo8f73E4XllHPTn2GB0+fLjE9EB9/4WHh0Ov18NisSAjIwMWi0U95KO0y/KV1u9lq9Wq/p8LCgqc3tvuVMR7WZZljBkzBq+99po6ZHr69Onq9LIMOy1ea3l27DkKuKDoGHCuu+46/Pbbb5X6/K+//roaEp977jm8/PLLTnusHHk7ftKfHPekuBsC68hxA68ie698lZeX5/VYM18lJCSgS5cuflkWAMyaNQsvvPACAFuP0rp163wasuK4oePp2D47xy8oX3qFy8r+GZIkCRaLJSB2Bjh+rl988UXMnDmz0p7bHl4sFgvMZrPXsOjL56tWrVoYNmwYFi9ejLVr1+LkyZNISEhAcnIy1q1bB8C2591xD2FV5Ph/87Qn3s7Ta+e4rDFjxqjDc/1hwoQJTp+vo0eP4vnnn8ebb77pl+UfPnzY5QZgWfTu3dtrL68r8+bNgxACRqMRaWlpeOWVV1y2c3wdvvrqK/z+++8AbKMLyrLecdyTnZ6eXuqgGAjr10Bdlq+0/q6ZPHkyDh06hO+++w5//vknBg4ciF9++cXjtoX90AH7etFf7rvvPmzduhWAbWPaHhQde2Buv/32Ct0ZW5zjcD9XOxn9+f9r2LAhjEYj8vPzcebMGa/hztOyZFlG8+bNceTIEVitVpw+fdrtoSfeluUrrd/L3bt3xy233IInnngC58+fx4033oiNGze6PdYWcP7uOn78uN++1++99151B9rChQvx4osvQpIkJCUlYdOmTQBsI6b69+/v8zL9eaiAXcAFxaioKISHhyMnJ6dSjv0rbv369QCA2rVr46WXXnIbErOzs53+IRXNcax8YmKi1/aObSprz7Mn58+fL/XwE3fuuecevx3b8t5776nDRKKiovDLL794PdGKnePGjqcTBgG2YzzsJyOSZdnrST/Ko0GDBti9ezeEEDhz5gwaNWpUYc9VmprsKvtzXb9+ffXYuOPHj6N169Zu2166dMlrb6LdQw89hMWLF0NRFMybNw8zZszAvHnz1OGVWp/Exh8c1x3//vuv1/ae2lTUe2Dx4sXqiZK6du2KtLQ0JCcn4+2338bAgQOdTtZTVkuXLvXbzo2NGzf6dCxscfa94Pn5+U57nj2ZN2+eer9Dhw5l2tBq0qQJ/vjjDwC2jZCGDRv6PG+grF/btWsHWZahKAp2794NRVE87kBzPK65eKitW7cuatWqhYsXL+LkyZNIS0vzGPw9LctXWn/XGAwGLFu2DKNGjcK3337rU1hs0KABMjIycP78eZ920PlqxIgRmDx5stqD+PHHHyMsLAxffvml2sZdD4wvwaQsvPV6+fM9I8sy2rVrh3/++QcWiwV79uzxOHrC2/uvQ4cOOHLkCADbe8tTUPTHe1mLz09xjz/+OCRJwuOPP66GxQ0bNqB9+/Yu2xf/7vJXUGzZsiV69+6N33//HcePH1d7yBcsWKCu78eMGVOqw1ccc0njxo39UmeldTU4rpS9de9fd911AGwbdb5snPhTamoqANuJEDx9kaxfv17dIHSnNH+zN44no7H3WHji2Hvn7kQ2Nd3s2bMxbdo0ALZe1zVr1qB79+4+z9++fXt1o+nAgQMeN363bt2qHsvaq1evCu3lte9hBbyfMbSydO7cWR07/+uvv3r97PiT40HqGzdu9NjWvhfPF71791a/WObNmwez2axumNeuXVs9q1lVdsUVVyAoKAgA8Ntvv3kdZm8/gZYrcXFx6l7bbdu2+eXY7hMnTmDChAkAbD3HS5YswaJFi6DT6aAoCsaMGeO0EUel57hxZt+g9EUgrV8jIyPVkzplZma6PBOh3alTp9Sz/yYkJLjsaRg4cCAA2/e6p3VsXl6eeiyu0Wh0WjeXRiB819jD4tChQwFADYvuPsf2v7WgoACbN2/2Sw2A7X9pryEnJwfffPMNkpKS1NFnDRs2RL9+/fz2fL5wHPnmbmeMP98z9mUBtjNyuiOEcJo+aNCgMi8LgNPJJV0ty1eV/flx5bHHHsM777wDwNaR0adPHxw4cMBl24rcpnLcqWEPiI5n7i1+khtvHE/81qlTp3LXBwCVdh3FIUOGqG3cXTPEzvE6IHfeeWe5anO8/pUv15SKjo4WAER8fLxQFMVlG4vFIrp166Yu19311uzXjQMg9u3b5/W5vV1HsUuXLup0d9frEcJ23TjHa4t5uo6iLxc8LU3bqmLu3LnqtSbDwsKcLtZdGo7Xq3ryySfdtnO89t7HH39c1rJ9cvLkSfU6ii1bthQ5OTllXpaniy6Xtu3DDz+sTv/ss8/KXJMQpbsuq7+vo+joww8/VNtPmDBBvf/EE0+U5s8ptdJcR7G8/zf7RbMBiIULF7pdzurVq9V2gOvrKL755pvq9GeeecbLX+mZxWIRPXv2VJf3f//3f+q0F154QX389ttvL9fzVDX+vo6i4wW7fbkGoRCBuX51vDbiiBEj3C7riSeeUNs9/vjjLts4XtutR48ebrcVZs+erbYbNmyYh7/Uu8r+rnG3XjCbzWLYsGHqtJ49e4rMzMwS82/btk1tc+2113pc75aW43vyxhtvdLrI+HPPPee35/FFQUGB6NSpk/r87q756s/3zO7du9U2CQkJLq/VJ4TztSe7devmss358+fV7YXw8HCRmprqst2+ffvUz3TdunXL9f/U4vPjbjv23XffVafVrl1b7N+/v8S8OTk5Ii4uTgAQsbGx4uzZs+WqxVF2drYICwsTAERERITT92ivXr1KvbxBgwap86ekpPilxkoLipMmTVLb/Pbbbx6XZ7VaRffu3dX2kydPFiaTyW37vLw88eWXX4olS5aUmFbaoNi/f3+1/bvvvltiemFhobjvvvucNojcbVA6vgEXLFjg9bm9bfw6Buh69eqJQ4cOlWiTnJwsmjdv7vWLoiYHxQULFqgrvNDQ0HJtTJ05c0aEhoYKwHbB3fXr15do8+WXX6qvYaNGjdyu1P3psccec/oiPXfunNu2VqtVrFu3zuXFWf0ZOE6dOqXuiAkODvb6mUhNTRUvvfSS2LNnT4lppQmKQgjRu3dvp0Dn6oK5xS+q7ktQzMjIUP//jrejR4/6VFdZVWZQ3LJlizo9JiZG7Nq1q0Sbo0ePOl1E3V1QzMnJEY0bNxYAhCRJYtasWR4vXpyRkSE++OADsW7duhLTHMNg8Y0Is9nsFCLLu2OiKvF3UCwoKFA3ZK699lqv7QN1/Zqbmyvq16+vtp0/f36JNuvWrRN6vV7daHa3oaUoitOO25kzZ5Zos2fPHvWC7LIsi71797r9Ox0/N64+z/5+LXzhab1QPCxeffXVLsPi0KFD1TYjR4502cZxmd98841P4VZRFNGkSRN1PVKnTh31eRITE0v9t7qSmJgo3nrrLZGVleW2TXp6urj55pud1o+XLl1yW7M/3zOOO/DGjRtXYj2anJwsEhIS1DarVq1yu6wpU6ao7W666aYS75v09HTRuXNnr9uVQjivf1x9B1TEa+ELT9ux7733njo9Pj7eZVj86KOP1DadOnXy+h2/bds2n3cYO36fO36PfvHFFz7N7yg2NlYAEFdeeWWp53Wn0oKi4x6EFi1aiNmzZ4tVq1aJNWvWiDVr1pT4cJ88eVI0aNDA6cWbNGmS+L//+z/x9ddfi/nz54uXXnpJ3HrrreqXmKsN3dIGxR9++MFppX3rrbeK2bNni6VLl4qXX35ZtGzZUt34btiwoccNyj179qjLqVOnjnj77bfFjz/+qP7Nxd/4vmz8jho1Sm1jNBrFww8/LBYuXCgWL14spk6dKiIjI9XpAwYMcLunpqYGxdWrVwudTqf+TRMnThTfffed11tycrLbZc6ZM0ddnsFgEOPGjRMLFy4U8+bNE8OHD1c3mvR6vVizZo3H+nzZYPBFYWGh6Nu3r9N75e677xazZ88Wy5cvF4sWLRJvv/22+O9//yvq1q0rAIi+ffuWWI4/A4cQQvz888/q3ksA4oorrhAvvPCCWLhwoVixYoX44osvxJNPPimuu+469f/kqjeitEHxwIEDToGuc+fO4p133hHLli0TH374oejVq5cAbHvH7eudpk2b+rTs4juObrjhBp/mK4/KDIpCCKfe0uDgYDF+/HixcOFCsWjRIjFp0iR1Hey48eJuI2HXrl1O66nmzZuLJ598UsyfP198/fXXYt68eeL5558XAwYMUN8rX331ldMytmzZor4/GjZsKNLT00s8z/Hjx9XnCQ0NFYcPH/b4OlQX/g6KQlze4DcajR5HBAX6+nXVqlVqfZIkieHDh4t58+aJhQsXinHjxgmDwaA+1+eff+5xWTt27HBapwwYMEDMnTtXLF68WEyePFn9TADee7l8Xe/787Xwxtt6wWw2O/VeugqLmZmZomPHjmqb6OhoMX78eDF37lyxYsUKsXDhQvH666+LESNGiJiYGDX0+MKxF9F+82VHhq927dolAIiQkBAxZMgQ8dJLL4kFCxaIr7/+WnzxxRfiwQcfVIOMr6+5P98zSUlJTgG5R48e4uOPPxZLliwRzz77rKhVq5Y6bfTo0R6XdenSJdGmTRu1fdu2bcU777wjli5dKl555RXRqFEjp++3wsJCt8vyJSj6+7Xwhbft2Pfff19tEx8f73IU4JgxY5z+33fccYd4//33xbJly8T//vc/8cEHH4j7779fNG3aVP1u88WmTZtKvJdDQ0M97qRwxbGnecaMGaWa15NKC4oWi8Vpr37xm6sV0dmzZ502dj3ddDqdyxV7aYOiEEI888wzHp+rV69e4vz58+qecU89D3feeafb5RR/rXzZ+DWbzeL+++/3+noMGzZM5OXluV2Otw9NWdsGuuK9Rr7ePK3whBDirbfectrIKH6LiIhw2eNdnK8bDL4wmUxi4sSJThtunm5jxowpsQx/Bw4hhPjzzz9Fs2bNfKopPDzc5Z7E0gZFIWzDlew9mq5uHTp0cNpB1alTJ5+Wu337dqflLF682Oeayqqyg6LFYhH//e9/3b52siyLWbNmOfVoePrMHD582GkPtadbcHCw0wbYpUuX1HWvLMse1+uLFi1Sl9O5c2ePI1Oqi4oIiitXrlSX6Wn4caCvX4WwvSfCw8PdLisoKMjlaCJX1q1bJ+Lj490uS5Ik8dhjj7ndYWtXmvW+P18LT3xZL5jNZjFixAi1XY8ePVyGxZEjR/r8XnjhhRd8qu/EiRNqMLbf5s2bV94/W2UPir7cEhISfP6s+es9I4QQO3fu9Ppdetddd/m03jtx4oTXdXK/fv3c9pja+RoU/f1aeGNfpqftWMfh6a7CoqIo4uWXXxbBwcE+vS983WZWFKXE/9HV9pg3Tz75pDq/v3rWhajEoCiEEPn5+eKNN94QPXv2FDExMU4bsJ42ZjZt2iQefPBB0b59exEdHS10Op2IjIwU7dq1EyNHjhRz5sxxO2a4LEFRCCHWrFkjBg8eLOLi4oTBYBD16tUTffr0EZ9//rkwm81CCOFTULRYLGLOnDnihhtuEHFxceqwFlevVWk2fv/8808xbtw40aJFCxEWFiaMRqNo2rSpuPvuu8Wvv/7qdf7SvJFL+6YPZBW1ISOEbQz/I488Ilq1aiXCwsJERESE6NChg3jqqadEUlKS1/lzc3OdNlYuXrzoh7/YNoTm6aefFj169BDx8fFCr9eL0NBQ0bRpU3HzzTeL1157ze2wjooIikLYNjAWLVokRowYIZo2bSrCw8OFXq8XsbGxolu3buKBBx4Qy5Ytc3t8ZVmCohBCpKSkiMcff1y0bt1aGI1GER0dLbp16ybefvttkZubKxRFEUajUQC+9wwqiqLuWY6NjRUFBQWlqqksKjso2v34449i8ODBIj4+XgQHB4uEhARx5513iq1btwohhM9BUQjb6/b999+Le+65R7Rq1UpERkYKnU4noqOjxRVXXCHGjBkj5s+fX6K30HGj8+mnn/b4HEIIMXr0aLW9r8fYVWUVERQtFos6jK1///5u2wXy+tVRUlKSePLJJ0X79u1FRESECAsLE61atRKPPPKIy2Fnnpw/f17MnDlTdOnSRURHR4uQkBDRrFkzce+996qfC28cXwtfdhD687Vwx9f1gsVicfpMugqLQthCzZQpU0Tnzp1FrVq1hF6vF+Hh4aJly5bi9ttvF++++644duxYqWrs06eP+rxhYWFez39RGgUFBeLnn38W06dPFwMHDhRt2rRRt+EiIyNFixYtxKhRo8TixYtLvQPKH+8Zu5ycHPHOO++Inj17iri4OBEcHCwaNWokhg8fXupe5cLCQjF37lzRp08fUadOHREUFCTq168vBg8eLJYuXepTYCtNUBTCv6+FJ75uxzqed8Bdz+LZs2fFSy+9JK6//npRt25dERQUJEJCQkTDhg1Fv379xAsvvCD+/PPPUtX30ksvOa0HSrvuVhRF7fn1tI4uC0mIcp6Ok4j84pdfflHPJDZp0iR88MEHGldU8+zbt089U5iv/4P169er1zmaPHky3n///YoskUgT7733HqZNmwadToekpKRSXSaDiIgqzoYNG9C3b18AwJo1a8p1VtritL8SNxEBuHwNz4iICDz//PMaV1Mzffzxx+r9G2+80ad55syZo96vDtdOJHLloYceQt26dWG1WjFr1iytyyEioiKvvfYaAKBnz55+DYkAgyJRwLAHxWnTpiE+Pl7jaqqfLVu2eLx+4+zZszF37lwAtgvs3nLLLV6XuXv3bqxcuRIA0K9fP5fXXCOqDoxGI2bMmAEAmDt3Ls6ePattQUREhN9//129hvEbb7zh9+Vz6ClRAEhLS0Pt2rURFxeHY8eO+e0iyXRZixYtUFBQgJtuugmdO3dGfHw8zGYzjh07hu+++w67du1S2/74449ug+LPP/8MRVFw9OhRzJo1C+fOnQNgW1n36tWrUv4WIi0oioLu3btj586dmDhxIj766COtSyIiqtH69euHX3/9FaNGjcKSJUv8vnwGRSKqEVq0aIFjx455bGM0GvH5559j9OjRbttIklTiMV+PZ1y7di3y8vK8F+tCXFwcevfuXaZ5iYiIiEqLQZGIaoRt27bhm2++wbZt23DmzBlcvHgReXl5iImJQatWrdCvXz88/PDDqFOnjsfl2INieHg4WrVqhYcffhhjx46FLHsfyd+kSRMkJyeXqf7rr78emzZtKtO8RERERKWl17oAIqLKcPXVV+Pqq68u93K4b42IiIhqAvYoEhERERERkROe9ZSIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKT2RARkeYURUFBQQHy8vLUW25uLvLy8pCfn6/+LCwsVG8mk8nt72azGVarFVarFYqiqPcdf1cURb0P2M5o6+5mP6utJEnQ6XQwGAzQ6/UICgqCXq9XfzcYDCVuISEh6s1oNLq9bzQaERYWhvDwcOj1/HomIiJt8ZuIiIj8QgiB3NxcZGVlqbfs7GyX9+03xzBIlxmNRoSHh3u8RUZGIjo62ukWGhrq8lqfREREpcWznhIRkVtCCGRlZeHSpUtIT093+dN+PyMjA4WFheV6PlmWERoaCqPRiNDQUISFham/G41GrF+4BZICQJEcboBU7HcIydYOEiBQdCu6D4f7ApDsjzlMhmPWklDU0OF3SdgO3pAERNFPx8cgA8L+u04AssBND/ZBQUEB8vPzUVBQ4HTf8Wd5GAwGREVFOYXHqKgoxMbGIi4uDrVq1UJcXBzi4uIQERHBUElERG4xKBIR1VCKoiAjIwMXLlzA+fPnceHCBaeb/bHShj+j0YiIiAhERkaqP7cs+wuSRQLMsu2nRYZkkQGLBFglSFYJsMq20IeaG14EBKAXgF6B0NnuC71i+6mz/bx96iBkZ2cjMzMTmZmZyMjIQEZGBgoKCkr1XEFBQWqAdAyR8fHxqFOnDurWrYtatWpxGCwRUQ3FoEhEVE0JIXDx4kWcO3fO5S0tLQ0Wi8WnZUVERCAmJgaxsbHYu+4QJLMMFMq2n2YdJPW+bOvdo0onZAEYFFuwNCgQRTcYFAx88AakpaUhLS0NFy9eRGZmpk/L1Ol0iIuLU4Ojq5/BwcEV/JcREZEWGBSJiKows9mMs2fP4tSpUzh9+jTOnj2rBsGUlBSvvYGSJKFWrVqIj49HfHw8/lj6N2AqCn4mHSSTDBTqIAmGv+pESAIIUiCCrBBBChCkYOSLtyItLQ3nz59Hamoqzp8/73VHgiRJiI+PR4MGDdCwYUM0aNBAvV+/fn0YjcZK+ouIiMjfGBSJiAKcEAJpaWk4deqUejt58iROnTqFlJQU9aydrsiyjNq1a6NevXrY8/MhSAW6yzeTztYDyBBILggUhclgq+0WomDIlH5ISUlBamoqUlJSvB5TGRcXp4bHRo0aoXHjxmjcuDHq168PnU5XSX8JERGVBYMiEVGAUBQFqampSEpKwvHjx3HixAmcOHECp0+f9rhBbjQa0ahRIzRs2BC/LdgOqUBWwyB7A6mi2I+nFEYLRIgVd79+B06fPo0zZ87gzJkzyMrKcjtvUFAQGjZsiCZNmqBx48bqz4YNGyIoKKgS/woiInKHQZGIqJLZjx08fvy4UyhMSkpyGwh1Oh3q1auHhIQEbF+xG1K+DlK+HlK+znasYA0+AQwFJqFXIEKsECEWjJk1DCdPnkRycjJOnjwJk8nkch6dTof69eujadOmaNGiBZo3b47mzZujXr16PEMrEVElY1AkIqpAVqsVp06dQmJiotPNXW+LXq9H48aNceLPM5Dy9JDydLafJvYMUvUgIIBgBUqoBSLUgoGPXIfk5GQkJycjJyfH5TxhYWFo3rw5mjVrhhYtWqBFixZo2rQpj4EkIqpADIpERH5iMplw4sQJp0B47Ngxl5ctkGUZDRs2xOmdqbYgmKu3/SxgIKSaST0m0miBEmZB/wm9cezYMSQlJcFsNpdoL0kSGjZsiNatW6N169Zo06YNWrZsidDQUA2qJyKqfhgUiYjKQFEUnDx5EocOHcLBgwdx6NAhHDt2zOWJZUJCQtC8eXMcWncccq4eUo7BFgoZCIm8ElLRcZBhFgyfMRj//vsvjh07hvT09BJtZVlG48aN1fDYtm1bNG/enJfwICIqAwZFIiIfXLx4EYcOHVKD4eHDh5Gbm1uiXWRkJFq2bInd3x+ClKOHlGuwHU/IYwiJ/EoYrBBhFtzz/jAcOXIEhw8fxoULF0q00+l0aNasGdq2bYsOHTqgQ4cOaNCgAY95JCLygkGRiKgYq9WKEydOYM+ePdi3bx8OHDiA1NTUEu2Cg4PRunVrHFj9L6RsA+QcA2DiiWWItCIMVigRFtw963YcOnQIhw8fRmZmZol20dHRamjs0KEDWrduzV5HIqJiGBSJqMYzmUw4fPgw9u7di7179+LAgQMlTqohSRIaN26Mk9tTIGcbIGUbbMcVMhQSBSz1xDnhZgybeRP279+PI0eOlDjmUa/Xo1WrVmpwvPLKKxEdHa1N0UREAYJBkYhqnLy8POzZs0cNhocPHy6x4Wg0GtG+fXvs+uYQ5CyD7bhCq6xRxUTkL0ISEOFmPPDZndi/fz/279/v8njHpk2bonPnzrjyyisZHImoRmJQJKJqz2Qy4cCBA9i5cyf++ecfHD58uMRJZ2JjY5FxNBdSVhDkTPYWEtUUtl5HK5RIM255qg/27NmDEydOlGjH4EhENQ2DIhFVOxaLBUePHlWD4b59+1BYWOjUpn79+kjZlQ45MwhSlsF2WQoGQyICIPQKlKhC3PpcX+zatcttcOzevTuuuuoqdOrUCSEhIRpUSkRUcRgUiahaOHfuHLZv347t27dj9+7dJc5IGhsbi4zDeZAzgyBnBEEy6TSqlIiqGm/BMSgoCJ06dUL37t3RvXt3NG/enGdVJaIqj0GRiKokk8mEPXv2qOHw5MmTTtPDw8ORl2y2hcKMIF6igoj8RugVKNGFGPhYb/z1118lLssRGxurhsZu3bohNjZWo0qJiMqOQZGIqowzZ85g27Zt+Ouvv7Br1y4UFBSo03Q6Hdq3b48DPxy3hcMcHmNIRBVPQEAYrXh4wWj8/fffJdZNANCmTRtcc801uOaaa9CyZUv2NhJRlcCgSEQBy2q14uDBg/j999/x+++/49SpU07Ta9WqhUsHciFfCraFQ56VlIg0JiQBEWnGiDduxt9//42jR486TY+Pj0fPnj3Rq1cvdOnShddvJKKAxaBIRAHFZDLhn3/+wZYtW7B161ZcunRJnabT6dCxY0fsW/kv5EtBPDMpEQU8YbBiyjdjsXXrVuzYscOptzE4OBhdu3ZVexvj4uI0rJSIyBmDIhFpLjMzE3/++Sd+//13/PXXX04bUuHh4cg7boGcHmwLh+w1JKIqSkgCSnQhbnnuBmzduhXnz59Xp0mShA4dOuD666/H9ddfjzp16mhYKRERgyIRaSQjIwObN2/Gxo0bsXv3bqfrGsbHx+PinhzoLgZDygqCJNhrSETVi4CACLPgntl3YOvWrTh48KDT9DZt2qihsWHDhhpVSUQ1GYMiEVWarKwsNRzu3LnTKRw2b94cSRtTIF8M5pBSIqpxRJAVDy8ejU2bNmHv3r1w3Dxr0aKFGhqbNGmiXZFEVKMwKBJRhcrOzsbvv/+ODRs2YMeOHU7hsFWrVjj2y1no0oIhmfQaVklEFDiEwYpHl9+D3377Dbt27SqxU61fv37o168fh6cSUYViUCQivzOZTPjjjz+wdu1a/PXXX7BYLOq0Fi1a4MT6FFs4LGA4JCLyROgVTFs5Dps2bcKOHTuc1qedOnVC//79ccMNNyAqKkrDKomoOmJQJCK/UBQFe/fuxdq1a7Fx40bk5uaq05o1a4bkjamQ00Ig5zMcEhGVhdArmPzNvVi/fj12796tDk/V6XTo0aMH+vfvj2uuuQZGo1HjSomoOmBQJKJyOXnyJH755ResW7cOKSkp6uN16tRB2t85kC8wHBIR+ZsIsmLcl8Oxfv16JCYmqo8bjUZcd911GDx4MK644gpIEo/3JqKyYVAkolLLzs7GunXr8Msvv+DQoUPq46GhoSg4rkB33ggpy8AT0hARVQLFaMGo92/G+vXrce7cOfXxBg0aYNCgQRg0aBCPZySiUmNQJCKfCCGwZ88erFq1Cps2bUJhYSEA25AncUEH+bwRcnowJIXhkIhICwICIsKMgc/1wq+//or8/HwAtms0du/eHTfffDN69+6NoKAgjSsloqqAQZGIPMrIyMDPP/+MVatW4eTJk+rjzZo1Q/L689BdCIFk1mlYIRERFSdkgcdX3Y/Vq1dj9+7d6uORkZHo168fhgwZgubNm2tXIBEFPAZFIipBURTs3LkTP/74I7Zs2aKeZc9oNMJ0QkCXEgoph9c6JCKqCkSIBSM/uBk///wzLly4oD7esWNH3H777bj++uvZy0hEJTAoEpEqOzsbq1evxsqVK3HmzBn18TZt2uDfH89ATguBZJU1rJCIiMpKQOC1bU9i1apV2LJli3p9xujoaAwePBi33nor6tWrp3GVRBQoGBSJCCdOnMA333yDtWvXoqCgAAAQFhaG/EQFulQj5FyDxhUSEZE/CYMV/517G3744Qe1l1GSJPTs2RO33347rrrqKsgydwwS1WQMikQ1lNVqxR9//IFvvvkGu3btUh9v1qwZTv5yAfIFI09MQ0RUzQkIvLhpElauXIkdO3aoj9erVw9Dhw7F4MGDERYWpmGFRKQVBkWiGiYrKwurVq3CypUr1eseyrIMnDdAdzaUl7UgIqqhlBAL/jOrL1avXo2cnBwAtsse3XLLLRg2bBjq1q2rcYVEVJkYFIlqiHPnzmH58uVYvXq1esr0qKgo5Ow3205OY+KZS4mIyHbG1EnfjsHy5cvVs13rdDpcf/31GDFiBNq1a6dxhURUGRgUiaq5xMRELFmyBBs3blRPXNCiRQskrT5vOzkNh5cSEZELAgKvbH0cy5cvdxqW2rFjR4wYMQK9e/eGTsedjETVFYMiUTUkhMA///yDJUuW4O+//1Yfly4FQX86FFJmEIeXEhGRz5QwM/o92wPr1q1TL5nUoEED3HXXXRg4cCAvr0FUDTEoElUjVqsVmzZtwv/+9z8kJiYCsA0XEucM0J0J5dlLiYioXITBilGzb8bKlSuRlZUFAIiPj8fIkSMxZMgQGI1GjSskIn9hUCSqBiwWCzZs2ICFCxeqx5OEhITAfFyC7kwYjz8kIiK/ErLA+P+NwLJly9TLa0RFRWHYsGG44447EBERoXGFRFReDIpEVZjFYsG6deuwcOFCnDlzBgAQGRmJ3H1W6M6FQrLwGlhERFRxhCQw5ft7sXjxYvV7KDQ0FEOHDsXIkSMRGRmpcYVEVFYMikRVkNlsxi+//IJFixbh7NmzAIrOYLrHCt05IyQrAyIREVUeAYGn1z6Er776CidOnAAAhIWFYfjw4Rg+fDh7GImqIAZFoirEarVi/fr1mDdvHs6dOwcAiI6ORvYuiy0gKgyIRESkHQGB6b9Nxrx583Ds2DEAQHh4OEaOHIlhw4YhLCxM4wqJyFcMikRVgBACW7ZswRdffIGkpCQAQGxsLDJ3FNqugchLXBARUQAREHh+w0TMmzdP/d6KjIzEqFGjMHToUJ70hqgKYFAkCmD2y1zMnTsXhw8fBgBEREQgb6+wHYPIgEhERAFMQOCZdQ/jyy+/VE+2VqtWLYwdOxY33XQT9Hq9xhUSkTsMikQB6vDhw5gzZw527doFADAajSg8IkN3JpTHIBIRUZUiIPDEmgecDp1ISEjAgw8+iN69e0OSuOOTKNAwKBIFmNTUVHz++edYu3YtAMBgMEBJMkB3OhSSmZe5ICKiqktIAg8uHYmFCxciMzMTANChQwc8/PDD6Nixo8bVEZEjBkWiAJGXl4fFixdj2bJlKCwsBADI50OgTw7ndRCJiKhaEToFIz8ZhOXLl8NkMgEArrvuOkyYMAH169fXuDoiAhgUiTRnsViwevVqzJs3D+np6QAAKdMA/YkIyDkGjasjIiKqOCLIioEv98Tq1athtVoRFBSEESNG4O6770ZoaKjW5RHVaAyKRBrau3cv3n//ffz7778AgAYNGiB1XQ7k9GBI4PEaRERUM8w9NgsfffQRduzYAcB2wpvx48dj4MCBkGUel0+kBQZFIg2kpaXh008/VY9DjIiIQN4e2K6FKBgQiYio5hEQmLF5CmbPno0zZ84AANq0aYPJkyejffv2GldHVPMwKBJVIovFgm+//Rbz5s1DXl4eJEmCdC4E+qRwSBbuMSUiIhKSwLhFQ7FgwQLk5eUBAIYMGYIHH3wQkZGRGldHVHMwKBJVkt27d+O9997DiRMnAABSth76Y5E8DpGIiMgFYbCi74zuWLNmDQAgOjoaEyZMwMCBA3k5DaJKwKBIVMGys7MxZ84crFq1CgAQFRWF3B0K5FQjj0MkIiLy4u1dz+Pdd99Vd7ReeeWVmDZtGpo0aaJtYUTVHIMiUQURQmDjxo348MMP1bOZyueMtstdcJgpERGRz4QkcN/C/2D+/PkwmUzQ6/W48847MWbMGAQHB2tdHlG1xKBIVAFSU1Px3nvvYevWrQAAKU8H/b+RkLOCNK6MiIio6hLBVnSb3Er9fm3cuDGefvppnuyGqAIwKBL5kRAC33//PebMmYP8/Hzo9XqI48HQnQrj2UyJiIj85PmNE/Hee+8hPT0dkiRh+PDhuP/++xESEqJ1aUTVBoMikZ+kpqbizTffVK8BJWUZoE+MhJyv17gyIiKi6kfoFdw4vQt++eUXALZrET/11FO48sortS2MqJpgUCQqJyEE1qxZg48++gi5ubkICgqC9XAwdGd5shoiIqKK9tIf0/D222/jwoULAIChQ4fioYce4rGLROXEoEhUDmlpaXj77bcvH4vIXkQiIqJKJ3QKBr52NX788UcAQJMmTfD888+jVatWGldGVHUxKBKV0ZYtW/Dmm28iKysLBoMBytFg6M6EsheRiIhIIy9vfQxvvPEG0tPTodfrMW7cOIwaNQo6nU7r0oiqHAZFolIymUyYPXs2Vq5cCQCQcvTQH42EnGfQtjAiIiKC0Cvo8UQbbNmyBQDQqVMnPPfcc6hXr57GlRFVLQyKRKVw/PhxzJw5U73or+50KHTJ4TyjKRERUQAREJj643348MMPkZ+fj7CwMDz11FO44YYbtC6NqMpgUCTygRACP/zwAz766CMUFhYiNjYW2ZsVyBk8UJ6IiChQzT/1Pl555RUcOHAAAHDHHXdgwoQJCAridY2JvGFQJPIiLy8Pb775JjZu3AgAkNKDYEiMhGTm8Q5ERESBTkgCQz/uiyVLlgAAWrdujRkzZqBBgwYaV0YU2BgUiTxISkrC888/j5MnT9oOhP/XyBPWEBERVUEv/TENr776KrKysjgUlcgHDIpEbmzYsAFvvvkm8vPzAZMMw+EoyNkcqkJERFRViSArWo2ti/379wMARo0ahfHjx0Ov52WtiIpjUCQqxmKxYM6cOVixYgUAQMowwHAkGpJZ1rgyIiIiKq/iQ1G7deuGGTNmIDIyUuPKiAILgyKRg8zMTLz44ovYtWsXAEB3quisphxqSkREVK08++sEvP766ygoKED9+vXx6quvonnz5lqXRRQwGBSJiiQlJeHpp5/G2bNnYTQaYf4nCLr0EK3LIiIiogryaeIbePbZZ3Hu3DmEhITgmWeewY033qh1WUQBgUGRCMC2bdswc+ZM5ObmAgU6GA5GQ87j8QpERETVndAr6DSxMXbs2AEAGDt2LO655x5IEkcTUc3GoEg1mhACK1aswCeffAJFUSBlGmA4FA3JwuMRiYiIagoBgf98dCOWLVsGABg0aBCeeOIJGAwGjSsj0g6DItVYVqsVH3zwAVauXAkAkFNCoD8WCUlwDyIREVFN9OjK/+K9996D1WpF586d8corryAiIkLrsog0waBINZLJZMLLL7+MzZs3Q5IkyMfDeH1EIiIiwit/Po7p06cjLy8PCQkJmDVrFurXr691WUSVjkGRapzs7Gw888wz2Lt3LwwGA8S+UOjSeNIaIiIisvk08Q08+eSTuHDhAmJiYvD222+jZcuWWpdFVKkYFKlGSU1NxRNPPIGkpCTAIsFwKBpyZpDWZREREVGAEUFWNB4dg8TERISFheGNN97AFVdcoXVZRJWGZ+ygGuPUqVOYMGGCLSSaZBj2xjAkEhERkUtSoQ7JCzPQqVMn5Obm4rHHHsOff/6pdVlElYZBkWqE48eP49FHH8WFCxcg5ekQtDcWch7PZEZERETuSVYZhz9NwTXXXIPCwkI8++yzWL9+vdZlEVUKDj2lau/o0aN47LHHkJmZCSlHD8P+GF7+goiIiHwmJIHrZ1yBdevWQZIkPP744xgyZIjWZRFVKG4tU7V28OBBTJkyxRYSsxkSiYiIqPQkIeG36Xvwn//8B0IIvPXWW/jxxx+1LouoQnGLmaqt/fv3Y9q0acjJyYGUZWBIJCIiojKTIOGnx/7AsGHDAABvvfUWVq1apXFVRBWHQ0+pWjpy5AimTJmC3NxcSBkGGA5GQ1IYEomIiKh8BARuff86fP311wCAJ598ErfccovGVRH5H7ecqdo5fvw4Hn/8cVtIzDTAcDCGIZGIiIj8QoKEH6ZsxtChQwHYehZXr16tcVVE/setZ6pWTp06hWnTpl0+JvFgNCRF0rosIiIiqkYkSPhx6hYMHToUQgjMmjULmzdv1rosIr/i0FOqNlJSUjBx4kScP3+eZzclIiKiCicg0P/17vjpp58QFBSEWbNmoUuXLlqXReQXDIpULWRlZeGRRx5BcnIypDwdDPtiIZkZEomIiKhiCQj0eKY1tmzZgtDQUHzwwQdo3bq11mURlRuDIlV5JpMJjz32GPbu3QuYZATtiYVUqNO6LCIiIqohhCTQfmID7Nq1C9HR0Zg9ezYaNWqkdVlE5cIuF6rSFEXBa6+9ZguJFgmGAzEMiURERFSpJCHhwCen0apVK2RkZODJJ59ERkaG1mURlQuDIlVpc+bMwcaNGwEFMByKhpyn17okIiLyN0my3YgCmGSVkfTVJdSrVw9nzpzB888/j8LCQq3LIiozBkWqsn744QcsW7YMAKBPjIScGaRxRUREVKEYFinASWYZb775JsLCwrB37168/fbb4FFeVFUxKFKVtG/fPrz//vsAAF1SGHQXjNoWREREFaN4OGRYpAD3QLMnMHPmTMiyjJ9//hn/+9//tC6JqEwYFKnKOX/+PF544QVYLBbIF4KhOx2mdUlERFSZOBSVAtxzV7+FSZMmAQA+++wz/PHHHxpXRFR6POspVSkmkwmPPvooDh8+DClXD8OeWEgKNxaIiKolX8IgN2MogN30dk+sXLkS4eHh+OKLL1C/fn2tSyLyGXsUqUp59913cfjwYcAswXAwmiGRiKimY88iBbDVT2xF+/btkZOTgxdeeAEmk0nrkoh8xqBIVcbPP/+MNWvWQJZlGA5HQzLxMhhERNVWaQIgwyIFKElImDlzJqKiopCYmIgPPvhA65KIfMagSFXCqVOn8N577wEApBNGnuGUiIicMSxSgBpd9xG8+OKLkCQJq1atwurVq7UuicgnDIoU8EwmE2bMmIH8/HxIGQboTvHkNURE1VpZQx/DIgWoZ3vMwtixYwEAH3zwAU6fPq1xRUTeMShSwPv000+RmJhoOy7xaBQkcEOAiIjcYFikAPXVfT+ic+fOyM/PxyuvvAKLxaJ1SUQeMShSQPvrr7/wzTffAAD0R6MgFfK4RCIi8oJhkQKQBAnPPvsswsPDcfDgQSxatEjrkog8YlCkgJWbm4u33noLACCfNUJ3KVjjioiIqFKU95IXvGQGBai7603E1KlTAQALFizAwYMHNa6IyD0GRQpYc+bMQWpqKlCggz4pXOtyiIioMpU17DEkUoCbNXAu+vbtC6vVitdeew2FhYVal0TkEoMiBaQdO3bghx9+AAAYEiMhKXyrEhHVOAx9VE1teWUvYmNjcfLkSQ5BpYDFrW8KOPn5+Zg1axYA25BTXgqDiKgGK01YZLCkKkKyypg8eTIAYPHixUhOTta4IqKSGBQp4CxatAgpKSlAgcwhp0RExABI1dKrfWejZ8+eMJvNePvtt6EoitYlETlhUKSAcurUKSxduhQAoD8ewSGnRERk4y0sMkxSFSNBwtSpUxESEoI9e/Zg9erVWpdE5IRb4RQwhBD48MMPYTabIaUHQU7nWU6JiMiBuzDIkEhV1H/rP4px48YBAObOnYvc3FyNKyK6jEGRAsYff/yB7du3A0pRbyJ4HSwiIipGCAZDqlY+v2sFEhISkJGRwRPbUEBhUKSAYLFY8MknnwAAdGdCIRfoNa6IiIgCmj0sMjRSFScJCRMmTAAArFixAufOndO4IiIbBkUKCKtXr8bp06eBQgm602Fal0NERFUBQyJVEy/2fhddunRBYWEh5s6dq3U5RAAYFCkAmEwmzJ8/HwCgOx0Oycq3JREREdUcEiQ88sgjkCQJv/76Kw4dOqR1SUQMiqS9b7/9FmlpaUCBDN05o9blEBEREVW6Ca2fxYABAwAACxYs0LgaIgZF0lhubi4WL14MANCfDIckeAIbIiIiqpnGjBkDWZaxdetWHDlyROtyqIZjUCRN/fjjj8jKyoKUp4N8PkTrcoiIiIg0M7bxNPTt2xcAexVJewyKpBmz2YwVK1YAAHRnwng5DCIiIqrxxowZA0mS8PvvvyMxMVHrcqgGY1Akzaxfvx4XLlwATDJ7E4mIiIgA3N/0cfTp0wcAsGTJEo2roZqMQZE0oSgKli5dCgDQnQ3lsYlERERERUaNGgUA2Lhxo+2Ef0QaYFAkTezYsQMnTpwALBJ0KTzTKREREZHdxLbPo1OnTrBarVi5cqXW5VANxaBImvj+++8BALrzIbxuIhEREVExw4YNA2DbZjKZTBpXQzURt9Cp0qWlpWHr1q0AAPlcqMbVEBEREQWeV/p8jPj4eGRmZuKPP/7QuhyqgRgUqdL99NNPsFqtkDINkPP1WpdDREREFHAkSLjpppsAAKtXr9a4GqqJGBSpUgkhsGbNGgDgsYlEREREHiyd9BMA4O+//0ZqaqrG1VBNw6BIlerQoUM4e/YsYJUgX+QlMYiIiIjckQr06Ny5M4QQWLt2rdblUA3DoEiVav369QAA+WIwJIWXxCAiIiLypH///gCATZs2aVsI1TgMilRprFYrNmzYAACQL7A3kYiIiMib9+/4EjqdDomJiTh9+rTW5VANwqBIlebQoUNIT08HLBLkjCCtyyEiIiIKeJJFRpcuXQCwV5EqF4MiVZo///wTACBfCoIkOOyUiIiIyBc33HADAGDz5s3aFkI1CoMiVRr7NYDk9GCNKyEiIiKqOj4Y/iUA4MiRI8jIyNC2GKoxGBSpUqSmpuL48eOAAORLDIpEREREvpIKdWjWrBmEEPjnn3+0LodqCAZFqhS7du0CAEjZBkgWvu2IiIiISuOqq64CAGzfvl3jSqim4BY7VYrdu3cDAORMg7aFEBEREVVB3bt3B3B55ztRRWNQpEphD4pSFs92SkRERFRaz1zzBmRZRmpqKi5cuKB1OVQDMChShUtLS8PZs2dtxydmsUeRiIiIqLQkq4zmzZsDAA4cOKBxNVQTMChShTt69CgAQMrTQ7LyLUdERERUFh06dAAA7Nu3T+NKqCbgVjtVODUo5ug1roSIiIio6mrbti0AIDExUeNKqCZgUKQKpwbFXA47JSIiIiqrt4Z/CgA4fvw4hBAaV0PVHYMiVbhjx44BAGT2KBIRERGVmZSnh06nQ1ZWFi5evKh1OVTNMShShSosLERqaioAQMrXaVwNERERUdUlCQkNGzYEYOtVJKpIDIpUoc6ePQtFUQCLBJj5diMiIiIqj0aNGgGwbWMRVSRuuVOFOn36NABAKtBBgqRxNUTViCRB0nM4NxFRTVO3bl0AwLlz5zSuhKo7BkWqUOqw0wIOOyXyO0lmWCQiqmHsQTElJUXjSqi6Y1CkCpWenm67U8i3GpHfSBIkfdFZhBkWiYhqlE8f+QrA5Z3xRBWFW+9Uoexn5JIYFIn8wzEkqo8xLBIR1RT2barMzEyNK6HqjlvvVKHsPYoST2RDVH6uQqI6jWGRiKhGsDAoUuXg1jtVqNzcXNsdC99qROXiKSSqbRgWiYiqO/vO95ycHFgsFo2roeqMW+9UofLz8wEAkpVnPCUqM19CotqWYZGIqFqzXN6mUnfIE1UABkWqUPagCAZForIpTUhU52FYJCKqriRIgLDdN5vN2hZD1RqDIlUok8lku6MwKBKVWllCojovwyIRUbWl2H4wKFJFYlCkCiWE0LoEoqqpPCFRXQbDIhFRtVR0eerExERt66BqjUGRKpQksSeRqNT8ERKJiKja48lsqCIxKFKFYlAkKiVJgqTT+WdZsgRJr4dkCPLP8oiIKKA0adJE6xKoGmNQpAqls2/wMi8SeWcPiZIfVs2ypO6okXQywyIRUXVSdIxiaGiotnVQtcagSBXKaDTa7ugUbQshCnQVFBLVxTMsEhFVC0IS6hZ8WFiYtsVQtcagSBXKvgITep7UhsitCg6J6tMwLBIRVX26y9tU6g55ogrAoEgVSt3TpWNQJHKpkkKi+nQMi0REVVvRNlVQUBD0PLM1VSAGRapQERERAABh4NBTohIqOSSqT8uwSERUZdm3qWJiYjSuhKo7BkWqUPHx8bY7QQyKRE40Conq0zMsEhFVSSLYCgCoVauWxpVQdcegSBXKHhTtKzUiguYhUS2DYZGIqOop2vnOoEgVjUGRKlRcXBwAQLBHkcgmQEKiWg7DIhFRlTLyxVsBXN7GIqooDIpUoerVqwcAECEWjSshChBCQCjlP7mTHB4GuXFDPxQEQOaFTomIqopTp04BABo0aKBxJVTdMShShUpISLDdCRIQevYqEgEAFCuEtezDseUwI0TjelCiQiEllG9DQQgBUVhYrmUQEVHlsQdFdRuLqIIwKFKFMhqNqFOnDgBAGNmrSKQqY1iUw4wQTRpACdJBSChXWFRDouDla4iIqgIBgTNnzgBgUKSKx6BIFc6+IhOhDIpETkoZFh1Dol1ZwyJDIhFR1SNCrCgsLERQUJC6I56oojAoUoVr0aIFAEAJZ1AkKqE0YVGncwqJdqUNiwyJRERVkwg3AwBatmwJna7k9wGRPzEoUoVr27YtAEBEmDWuhChA+RAW5TAjRKO6bqf7GhYZEomIqq47XhwEAGjdurXGlVBNwKBIFa5NmzYAbENPhcSNUyKXPIRFOTysxJBTV7yFRYZEIqKq7fDhwwAYFKlyMChShatTpw5iYmIAmb2KRB65CItyeJjtDKdeQqKd155FhkQioipJSEINiu3atdO4GqoJGBSpwkmShCuvvBIAoETxNPxEHjmERfUyGD6GRDtXYZGXwSAiqtpEhBmFhYWIjY3lGU+pUjAoUqXo0qULAAZFIp8oVkghwT4NN3XHMSxyyCkRUdU3+t3bAACdO3eGJEkaV0M1AYMiVQp7UBSRZgiZG6tEnujatULi9PZIHhJdruUICchpVwunpnVlSCQiquJ27twJwBYUiSoDgyJVioYNG6J27dqAzF5FIm+U0CBI9QtQ0KIApwZGlHk5eQ1DcfoOC0TXLJx+5ho/VkhERJVJ6BUcOHAAANCtWzeNq6GagkGRKoUkSejVqxcAQKll0rgaosCla9cKR/8bbrtvUGxhcUDpw2Jew1Ccud2MmJgcGIMLIbpm4czTDItERFWREmOC1WpFs2bNUL9+fa3LoRqCQZEqTe/evQEASqwJAhwGR1Scrl0rHH4wFrr4gsuPGRQUtCxdz6JjSLQzBhdC6cawSERUFV37UFcAUHe6E1UGBkWqNFdeeSXCw8OBIIWXySAqxlVIVKfZexZ9DItWg+QUEu3sYZHDUImIqg4hC2zbtg0AgyJVLgZFqjQGgwHXXGPbQLW62Bgmqqk8hUS1jY9hMa9hKFJudn8csH0YKsMiEVHVoMSakJ+fj7p166Jt27Zal0M1CIMiVaoBAwYAAJT4AgiJw0+JdO1bew2JalsvYTGvYSjO3GZGTGzJ3kRH9rCY+HEPBkYiogB31dj2AID+/fvzshhUqRgUqVJ16dIFsbGxgEFAieFJbYiU0CCfQqKduxPc+BoS7YzBhYhpfIknuSEiCmBCr2D79u0AbEGRqDIxKFKl0uv16NevHwBAqc3hp1Sz6dq3RuLosNLPZ1AQXvsCbg7dhjcOLcR7if+H1498hsfW/4LYS74FRTset0hEFListfNhtVrRqlUrNGnSROtyqIaRhOBVmKlynThxAvfccw8ggKC/4yAV6rQuiajS6dq1wpHxsZBLucMkuNCMFxf8hDt+24kgq1Jiulkv4/t+nfDW+AEoDNL7vNx8UxDkHZFo8MbWUtVDREQVQ0Cgzp3BOHXqFB577DHcdtttWpdENQx7FKnSNW3aFFdeeSUgAda6+VqXQ1T5JAk4m4p6W0q3ny640Ix5byzAqA07XIZEADBYFAz7eTdmv7gUwSbfzy6cf9GIhO8vADJ33BARBQIRZcapU6cQGhrKYaekCQZF0sTtt98OwBYUeVIbqlEkCZJOByU3H5EbjqLON8E+z/rigp9w9aEkr1chFQC67T+Jxz9f59Ny089Eo+37GVAST0CSJYZFIqIAcM3ETgBsJwIMDQ3VuBqqiRgUSRPXXXcdatWqBQQpUHipDKppJNuqV8nJ9TksxmVk447fdtpm97b4op+3rd/r9ZjF9DPRaPuhLSReLo9hkYhIS0qIBZs3bwZweec6UWVjUCRN6PV6DBs2DABgbZgL4bWPhKgaKOpNdORrWByx8R+3w03dMVgU3L5uj+eSTDKUo8dLPs6wSESkmUEzr4EQAtdccw2aNWumdTlUQzEokmZuv/12hIeHQ4RaodTipTKomrOHRKnkateXsHjVoRNup3nSbd9Jt9PSz0SjzWfpbqczLBIRVT5hsOLnn38GANx1110aV0M1GYMiaSYsLAz/+c9/ALBXkWoIFyHRzltYDCsoLNNThuW5nk8dcuqiN9ERwyIRUeUa+n5/mM1mdOzYEZ06ddK6HKrBGBRJU8OHD0dwcDBEhAUiumwbwkQBz8WQU1fUsPhtybCYGxJUpqfODS05X/rZKLT9KNNrSLRjWCQiqhzCoGDlypUA2JtI2mNQJE1FR0fj1ltvBQBYmuSwV5GqHw9DTl1RcnIR+WvJnsUDXeqX6elDbnC+RIatJzELypFjpVoOwyIRUcUbMus65Ofno3Xr1rjmmmu0LodqOAZF0tx///tfhIaGQoRboMTxDKhUjZQyJNoVH4ZaOzYL109MhDCU7umFAWh1j8C0Vr9eLskklzokqvMyLBIRVRgRbMX3338PAHjwwQchSd7OcU1UsRgUSXPR0dHq8ApLk1xeV5Gql1KGRDvHYaihBjNaNwwHRkQCgE/XUQQAjIyEsY4R/wk7h8ktN9hOXjP3UpnqsWNYJCKqGDc81wUWiwXdunVDt27dtC6HiEGRAsPw4cNt11UMscJaL1/rcogCgpKTi8jfjiNlTSMAgHg5DqJniE/XURQ9QyBejgMAhMpBSLVEoeVXhWXuTbQTigAUa7mWQUREzpQwM9atWwfA1ptIFAgYFCkgGI1G3HfffQAAa6McCH3prhdHFJCEgLCWPVRJOhkQChr9dAGtv3wYMMoQi+tD3B3pdhiqMMA2/X/1gRDbKv7TjAb4fno/GM6kQ46JKXM9DIlERP4nINBmTAMIIdCnTx+0bt1a65KIAACSEILj/CggWCwWjB8/Hv/++y/klBAY/o3SuiQi/5AkQJJ9OvOp02wGPaSIcNsvsVG41LkW0ttLOHLfHOCCBfhfFqSt+UCuAoTJENcYgbsigXi903KeTe2EPXc0tf0iBGC2QBSaoVwq3TBUBkUiIv+z1s6HpVUWjEYjvvrqK9SuXVvrkogAMChSgNm/fz8mTJgAADDsiYGcXbZLAhAFJFnnc1iUdDKk8DCgePvYKPz73zgcvXeOT8uZm1kfC18Ygqh/UpwnCAGRm+9zWGRIJCLyP6FTEHqTGRkZGXjooYd4SQwKKBx6SgGlQ4cOuOWWWwAAlhbZvFwGVS+K1aehqG5DIgCkZ6LFV2loNf9hr8v5NKOB65AI2M7IGmb0aSgqQyIRUcW45a1rkZGRgcaNG2P48OFal0PkhEGRAs6DDz6IqKgoiDALrA3ytC6HyL98CYuy7Dok2hWFxdZfeg6LJ0zxrkOinQ9hkSGRiKhiKBGFWLlyJQBgypQpMBhKeQ0kogrGoEgBJyoqCg899BAAwNo4B4rRonFFRH7mISxKOhlSqNH7MtIz0XyR+57FTzMa4PfXenhfTil6FomIyD+ELFD3lnAoioKBAweia9euWpdEVAKDIgWkm2++GT169ABkwNIqk0NQqfpxERY9Djl1xc0w1E8zGuCr6bcgeoeH3kSnJ3YdFtmbSERUMayNc3Dq1CnExcVh0qRJWpdD5BKDIgUkSZLw5JNPIjw8HCLCAmtDDkGlaqh4WPQ25NSV9Ey0WHQRrRbYwuKnGQ3w1YwhvodEu2JhkSGRiKhiKJGFUBrarhn9xBNPICIiQuOKiFxjUKSAFR8fjylTpgAArAk5UMLM2hZEVBGKwqLPQ05duZiBFl/ZwuIJUzyi/z5XtuVwGCoRUYUSOgW1bwqFEAI333wzevbsqXVJRG4xKFJA69+/P6699lrbENTWmRCyonVJRP6nWCGEKH1voqOisPjHKz4cl+iJJEEKMrA3kYjIzwQErnvhCpw5cwa1a9fGxIkTtS6JyCNeR5ECXkZGBsaOHYu0tDTIqSEwJEZpXRKR/0kSZKMRUkR4ORcjAXo9YNCXbQFmC6wX0iBMpnLVQUREzqx18mFpmQWdTocPP/wQHTt21LokIo/Yo0gBLzo6Gi+++CJkWYZSpwDW2vlal0Tkf0JAyc+HyM4p52IEYLEA5jKcLZghkYioQiihFug62Nat48aNY0ikKoFBkaqEK6+8EuPGjQMAWJpnQwnlJTOoGioKi0p6RrkCY5nDohAMiUREfiZkgQZ3RMBkMqF79+646667tC6JyCcMilRljB49Gt27dwd0ApY2GRA6Hq9I1ZAQEObCcvculjosmi2wpl0s8/MREVFJAgK9nmuPpKQkxMbG4vnnn4csc/ObqgYeo0hVyqVLl3D//ffjwoULkNODoD8YDQmS1mURVQw/HLfo0zGLHHJKRFQhLA1zYW2SA71ej/feew9XXHGF1iUR+Yy7NKhKiYmJwauvvoqgoCAosYWwNinf8VxEAc0Pxy361LPIIadERH5njTVBaZoLAJgyZQpDIlU5DIpU5bRp0wbPPPMMAMDaMA/WeJ7chqqxig6LHHJKROR3itGCoG6FEELg9ttvx6233qp1SUSlxqBIVVLfvn3x3//+FwBgaZkFJaJQ44qIKlBFhkX2JhIR+ZUwKKh9awjy8vJwxRVXYNKkSVqXRFQmDIpUZY0bNw69e/cGZMDcLgOKkWdCpWqsIsIiexOJiPxKyAqa3VMLZ86cQb169fDyyy9Dry/jdW2JNMaT2VCVlpeXhylTpuDw4cNAgYygPbGQzDqtyyKqOH46wY0QAkpGJnsTiYj8REDA0i4DSmwhoqKi8Mknn6BRo0Zal0VUZuxRpCotNDQUs2bNQoMGDYAQBeb2vGwGVXP2nsWc3HIswtazyJBIROQfAgKWFllQYgsRHByMN954gyGRqjwGRaryoqOj8c477yAmJgYi3AJz20wIiR3lVL0p+QVlD4tWK5SsHEDipWWIiPzBmpALpW4BZFnG9OnT0b59e61LIio3BkWqFurXr49Zs2bBaDRCRBfC0oZhkao5oZQ9LAoBYTHb7jMsEhGVi6VhLqwJtnXx1KlTbedPIKoGGBSp2mjdujVee+012zUWa5lgaZ0JAYZFqmYcg11ZwqK9N9HdMomIyGeW+rnqNZ0ffPBB3HbbbRpXROQ/DIpUrXTt2hWvvPIKDAYDlDgTLK2yGBapeittWHTsTXTEsEhEVCrWunmwNrOFxPvuuw+jR4/WuCIi/2JQpGrn6quvxowZM6DT6aDULoClJcMiVRPuwlxRWFQyMj0HRle9ib4sn4iInFhr58PSIhsAcNddd+Hee+/VtiCiCsCgSNXStddeixdffBGyLEOpw7BINYBQIAoLPfcuuutNdMSwSETkkbVuHiytsgAAQ4cOxYMPPgiJ606qhhgUqdq68cYb8fzzz9t6FusU2I5Z5AluqLpzNxTVW2+iI27wEBG5ZKmfq/YkDh06FJMmTWJIpGpLEkJwy5mqtd9++w0zZ86ExWKBnB4E/eFoSApX6lTFlHZDRJIhG0MghYfZfrdYYE2/VLpl8OuBiAiA7TqJ1ka5sDa27YQbPXo0xo8fz5BI1RqDItUIf/31F5577jmYTCZIGQYYDkZDUtihTlVIWTZG7GHRGAIlM9v7sFNX+BVBRDWcgIC1cQ6sjfIAAOPGjcOYMWMYEqnaY1CkGmP37t14+umnkZeXBylbD8OBGEgWhkWqAsqzMSLJkHS6soVEO35NEFENJSQBS/MsKHULAACPPPIIRo4cqXFVRJWDQZFqlEOHDuGJJ55AVlYWpHwdDAeiIRXotS6LyLvyhEX7ar6sy+DXBBHVQEJWYGmTCSW2ELIsY9q0abj11lu1Louo0jAoUo1z8uRJPP7440hJSQHMEgwHYiDnGLQui8g3pQ17xVfxZQmL/JogohpGGKwwt8uAiLAgODgY06dPR+/evbUui6hScdwd1TgJCQmYM2cOWrduDRgEzB0vwRpboHVZRL4pb2gr7fwMiURUwyghFsT9JwgiwoKoqCi8//77DIlUI7FHkWqsvLw8TJ8+Hdu3bwcEoDsRAd1ZIyTw4HSqAnztGXS3ii/v/ERE1ZASVYiQayzIzs5G/fr18dZbb6FRo0Zal0WkCQZFqtEsFgveffddrFq1CgAgp4RAfywSkmBYpCrAW9jztnov7/xERNWItW4eROs8WK1WtG3bFq+//jpiY2O1LotIMwyKVOMJIbB8+XLMmTMHiqJAyjTAcDgakpkjs6kK8BT2fFm9l3d+IqIqTkgClmbZUOrlAwD69++PJ598EsHBwRpXRqQtBkWiItu3b8fMmTORk5MDFMgwHIqGnMuT3FAV4C7s+bp6L+/8RERVlNArMLfJgIg2Q5IkPPDAAxg9ejSvkUgEBkUiJydPnsQzzzyDU6dOAVYJ+n8joLtg1LosIu+Kb9SUdtVe3vmJiKoYJdyMWoOCkJKSAqPRiBdeeIEnrSFywKBIVEx2djZmzpyJv/76CwAgnzNCfzyCxy1S4HMMe2VZtZd3fiKiKkBAQKmbD6ltAcxmM+rXr49XX30VzZs317o0ooDCoEjkgtVqxfz587FgwQIAgJSttx23aNJpXBmRF/awV9ZVuyQxJBJRtSVkAUuLLCi1bZfF6tWrF5599llERERoXBlR4GFQJPJg27ZteOWVV5CVlQWYJeiPRkF3iQe3ExERVTVKiAWWtpkQYRbIsowHHngAd955J2SZJ68jcoVBkciL1NRUvPjiizh06BAAQHc6FLrkcA5FJSIiqgIEBJTaBTBcYUZ+fj5iY2Mxffp0dO7cWevSiAIagyKRD8xmM2bPno1vv/0WACDl6KE/EgU5X69xZUREROSO0Cm2oabxJgDAlVdeiRdffBFxcXEaV0YU+BgUiUphy5YtePPNN21DUa0S9MfDIacaIYG9i0RERIFEiShErYHBSElJgU6nw9ixY3HXXXdBp+P5Boh8waBIVEppaWl49dVX8c8//wAA5LRg6P+NhGThMQ5ERERaExCwNsoFmhXAarWiXr16mD59Otq1a6d1aURVCoMiURkoioJly5bh888/h8ViAUwy9P9G8kQ3REREGlKMFlhaZUJEWAAAAwYMwNSpUxEWFqZxZURVD4MiUTkcOXIEL7/8Mk6ePAkAkFNDbNdctLJ3kYiIqLIICFgb5EHXuhCFhYUIDw/HlClTMGDAAK1LI6qyGBSJyslkMuGLL77A8uXLIYQATDIMiZGQM9i7SEREVNGUEAssrbIgIs0AgB49euDJJ59EfHy8xpURVW0MikR+sm/fPrz++us4ffo0AEBOCYH+BHsXiYiIKoKAgLV+HnRtbL2IoaGhePTRR3HzzTdDkniSOaLyYlAk8qOCggJ88cUXWLFihdq7qD8eAfliMM+MSkRE5CdKmBmWllkQ4bZjEbt164annnoKderU0bgyouqDQZGoAuzZswdvvvnm5d7F9CDoj0VCMvGU3ERERGUlZAFrQg5EQgEURUF4eDgefvhh3HLLLexFJPIzBkWiCmIymbBo0SIsXrzYdmZUqwRdchh0Z0PZu0hERFRK1hgTLM2zgBAFANCnTx88+uijqFWrlsaVEVVPDIpEFSwpKQlvv/029u7dCwCQcvTQ/xsJOcegcWVERESBTwRbYWmSDSXeBACoU6cOpk2bhp49e2pcGVH1xqBIVAkURcHq1avxySefICcnB0DRpTSSwiGZORyViIioOCEJWBvkwtDGioKCAsiyjGHDhmHs2LEIDQ3Vujyiao9BkagSpaen47PPPsOaNWtsD1gk6E6GQXcuFJLgcFQiIiKgaJhps2zAaAUAdOrUCVOmTEGLFi00royo5mBQJNLAgQMH8MEHH+Dw4cMAAClPZzs7Kq+9SERENZgSYoG1WTaU2EIAQFxcHB5++GH069ePJ6shqmQMikQasQ9HnTt3LjIyMgAA8sUg6JIiIOfrtS2OiIioEgm9AmujXCDBBKvVCr1ejxEjRmDMmDEcZkqkEQZFIo1lZ2fjyy+/xHfffQer1QoIQE4xQn8yjMcvEhFRtSYkAWv9PBg7Qj2G/+qrr8bEiRORkJCgcXVENRuDIlGASE5OxmeffYbff//d9oBVgu50KHRnwiApHG5DRETVh4CAEmeCpUm2ermLFi1aYMKECejWrZvG1RERwKBIFHB2796NTz75RD1+ESYZ+pPhkFNDeP1FIiKq8pQoEyxNciAiLACA+Ph43H///RgwYAB0Oo6kIQoUDIpEAUhRFGzcuBGfffYZUlJSAABSvg665DDIaQyMRERU9SgRhbA0zoGINgMAjEYj7rrrLowcORIhISEaV0dExTEoEgWwwsJCfPfdd1i0aBEyMzMBAFKu3hYY04MZGImIKOApYWZYG+eoZzI1GAy47bbbcPfddyM2Nlbj6ojIHQZFoiogLy8PK1aswLJly9SD/aVsPfTJ4ZAyghgYiYgo4ChGC6wJOVDiTQAAnU6HQYMG4d5770WdOnU0ro6IvGFQJKpCsrOzsXTpUnz99dfIz88HAEhZBuhOhUG+xMBIRETaU0LNsDbKhahdCPtmZt++fTF27Fg0atRI4+qIyFcMikRV0KVLl7B48WKsXLkShYW2oTxStt4WGDkklYiINKCE2wKiUsukPta7d2/cd999aNmypYaVEVFZMCgSVWEXL17E0qVL8f3336OgoABA0TGMp8IgpzEwEhFRxVMiCmFplAtRdAyiJEm44YYbMGbMGDRv3lzj6oiorBgUiaqBjIwMLF++HN9++y3y8vIAAFKeDrozoZDPGyEJBkYiIvIfAQERVRQQi85iqtPp0K9fP9x9991o3LixxhUSUXkxKBJVI9nZ2fj666+xYsUK9aQ3KJShO2eE7lwoJIusbYFERFSlCUlAiSuAtWEeRJjtOoh6vR6DBg3C6NGj0aBBA40rJCJ/YVAkqoZyc3OxatUqrFixAufPn7c9aJUgp4ZAfyYUkkmvbYFERFSlCJ0Ca918WOvnAcEKACAkJASDBw/GqFGjeBZTomqIQZGoGrNYLNiwYQOWLVuGxMRE24MCkC8GQ3c6DHKOQdsCiYgooIlgK6z182Ctmw/obJuMtWrVwtChQ3HrrbciMjJS4wqJqKIwKBLVAEII7Ny5E0uXLsX27dvVx6UsA3TnjJDTQngcIxERASg6/jDSDGu9PEh1LbBarQCApk2bYtSoUejbty+CgoI0rpKIKhqDIlENc+zYMSxbtgzr16+HxWI7vgSFMnQpRuhSjJAKddoWSEREmhCyAqV2Aaz18tXjDwGgW7duGDVqFLp37w5J4k5FopqCQZGohrp48SJWrVqF77//HmlpabYH7cNSz4ZCyjLw8hpERDWAYrRAqZcHa+0CQG/bLAwODkb//v1xxx13oEWLFhpXSERaYFAkquEsFgu2bNmC7777Drt371Yfl3L1tmGpF0IgWXm2VCKi6kRAQIk12XoPYwrVxxs0aID//Oc/uOmmmxAREaFhhUSkNQZFIlIdO3YM3333HdauXYuCggLbg1YJclqwbVhqNnsZiYiqMhFigbVOAay189Wzl0qShJ49e+KOO+5At27dIMvcOUhEDIpE5EJ2djbWrFmDH3/8EcnJyerjUp4OcqoRuvNGSGZuSBARVQVCFlBqFcBaJx8i2qw+HhUVhcGDB+O2225DvXr1NKyQiAIRgyIRuSWEwP79+/HTTz9hw4YNl3sZFUBOL+plzAhiLyMRUQBSwsyw1smH4nDsoSRJ6N69OwYPHoxevXrx7KVE5BaDIhH5JDc3Fxs2bMCqVatw6NChyxMKZOguhEC+YIScp9euQCIigjBYYY0zQamTDxF++cyldevWxU033YSbb74ZderU0bBCIqoqGBSJqNSOHTuGVatWYd26dcjKylIfl3L0kC+EQHchhJfZICKqJEJWoNQywRpfYDsxTdEgD4PBgGuvvRaDBw9G165deewhEZUKgyIRlZnJZMKff/6JtWvXYtu2bZevyygAKSPI1tN4MZhnTSUi8jMBASWmEEp8AZRaJkB3eXOubdu2GDBgAPr164eoqCgNqySiqoxBkYj8IjMzE5s2bcIvv/yC/fv3X55gtR3PKF8IgXwpGJLg8YxERGUhICAizFDiC2CNMwFBijqtQYMG6N+/P/r3749GjRppWCURVRcMikTkd2fPnsW6devwyy+/4PTp05cnWCRbaEwLhpwRDElhaCQi8kQNh3EmWGsVACGXw2F0dDT69u2L/v37o23btpAkrlOJyH8YFImowgghcPjwYaxfvx6bNm3ChQsXLk+0h8aLwbaeRoZGIiIAReEw0gwlrgDWWib1eocAYDQa0atXLwwYMADdunWDXs+TiBFRxWBQJKJKoSgKDh48iE2bNmHTpk04f/785YkWCfKlIMhpIZAzgnhMIxHVOAICIsoMa62iYw4dwmFYWBh69eqF66+/HldddRWCg4M1rJSIagoGRSKqdIqi4NChQ9i4cWPJ0KgAUmYQdBeDIacH8+ypRFRtCZ0CJboQSi0TlBgTYLi8SRYeHo7evXvjhhtuQLdu3Xi9QyKqdAyKRKQpIYQaGn///XecOXPGabqUo7cNT00PhpSrhwQOUSWiqksEW6HEmmCNNUFEFQIOAygiIyPVcNi1a1cYDAbtCiWiGo9BkYgChhACycnJ+OOPP/DHH3/gwIEDcFpFFci24xovBUPODOJxjUQU8AQERLgFSqwJSi0TRJjFaXpCQgKuueYa9OrVC+3bt+cxh0QUMBgUiShgXbp0CX/++Sd+//13/P333zCZTJcnFg1RlTOCbCfDydOxt5GIAoIIstqGlMaYoEQXOg0plWUZHTt2VMNhQkKChpUSEbnHoEhEVYLJZMI///yDP/74A3/99RdSU1OLNZBtJ8S5FMwT4hBRpRKSgIgshBJjuxXvNQwPD0e3bt3Qq1cvXH311YiKitKoUiIi3zEoElGVI4TAyZMnsX37dvz111/YvXs3CgsLHRoAUrbB1tuYGQQpywBJsLeRiPxDQECEWaBEFUJEF0KJKgQczrslSRJat26NHj164KqrrkLbtm05pJSIqhwGRSKq8kwmE/bs2YPt27dj+/btOHnypHMDBZCygiBn2sKjlMPgSES+ExAQoVaIKFsoVKKch5MCQGxsLK666ir06NEDXbt2RXR0tDbFEhH5CYMiEVU7KSkp+Pvvv7Fr1y7s3LkT6enpzg2sEqRMA+TMoh7HHJ5NlYguExAQIVa1t1CJMgNBilMbo9GIjh07okuXLujRoweaNWsGSeJ6hIiqDwZFIqrW7GdStYfG3bt3IzMz07mRVbINVc2y3aRsA49xJKpBhFQ0lDSyECLSDCXC7HTBewAICgpCx44d0blzZ3Tu3JnDSYmo2mNQJKIaRVEUHD9+HDt37sSuXbuwZ88e5OTkODcSgJSrt4XGrCDbz0Kd6wUSUZUjdAqUSDNEhNkWDiPMTscYAoDBYED79u3VYNiuXTte9J6IahQGRSKq0RRFwYkTJ7B//37s3bsX+/btQ0pKSsmGBTLkbFtvo5xtgJRr4HUciaoA2/GFFogIC5RwM0SkGSLUguKjzSMiItChQwd07NgRHTp0QNu2bREcHKxN0UREAYBBkYiomPPnz2Pfvn1qeDx27BgUxXkYmr3XUcoxQM7W24ar5vFYRyItCQgg2AolwmLrLQw3Q4RbAF3JTZ0GDRqgY8eO6i0hIQGyzCHnRER2DIpERF7k5eXh4MGDOHToEA4dOoSDBw+WPEEOAFhhC445BtsJcnL1kPL1PMMqUQWwhUIFSpgtDCrhtqGkxc9GCthOPNO6dWu0adMG7du3R8eOHREbG6tB1UREVQeDIhFRKQkhcOHCBTU4Hj58GIcPH0ZeXl7JxgpsPY05esi5Blt4zNXzZDlEpSCkouGjYRaIcDOUMNt96EtuwhgMBjRv3hxt2rRB27Zt0bZtWzRq1Ag6HY8zJiIqDQZFIiI/UBQFJ0+exKFDh3D06FEkJibi33//dR0eASBfB9keGvOKbgU69j5SjWbvJRRGixoGRZgFwmgBXOxb0ev1aNq0KVq0aIE2bdqgTZs2aN68OU86Q0TkBwyKREQVRFEUpKSkqKExMTERiYmJuHDhgpsZAClfdzk4MkBSNaUOGw212HoK7Tej1WUvIWA72UyLFi3QsmVL9WdCQgIMBkMlV09EVDMwKBIRVbKMjAwcO3YMiYmJSEpKwokTJ5CUlIT8/HzXM9gDZL7e9rOg6Ge+DjDLPIEOBSyhU2wXrjdaIYyWyz9DrS5PMAMAOp0ODRs2RJMmTdCiRQv1Vrt2bV7QnoioEjEoEhEFACEEUlNTnYLjiRMnkJyc7D5AAoBFsvU4OgVJ240hkiqDkBVbAHQMhEX3EaS4nU+v16NRo0Zo0qQJmjRpgqZNm6JJkyZo0KABewmJiAIAgyIRUQBTFAXnz59HUlISTp8+jVOnTqk/U1NT4XEVbgUkU1FoLNCp99XHLBKDJHkldApEsBUiRAGCiwJhcNEtxOryLKOOYmJi0LBhQ/XWqFEjNG3aFA0aNIBer6+kv4KIiEqLQZGIqIoymUw4d+6cGh7tAfLMmTNIS0vzHCIBwCpBKpCBQh2kQtkWIAuLfjfJkAp1gJlhsroSEIBOQAQrQJAVIkiBCLIW/a6oYdBbEASAqKgopzDoeAsLC6uEv4aIiPyNQZGIqBoqLCzE+fPnkZKSgpSUFJw7dw7nzp1T71+8eNG3BSkACm2hUTLJtuGsRTeYZVvALLoPK0NlIBCyAAwKRNENjj+LAiCKQiF8vGJEVFQU6tat6/bGMEhEVP0wKBIR1UAmk0kNkmlpabhw4YJ6S0tLQ1paGi5duuS9V9KRPVTag6RFtg1vdflThmSRbG0UMGC6ICQB6BUIvfNP6AWE008FwiAgghR1emmEh4cjPj4ecXFxiI+PR61atRAfH4/4+HjUq1cPdevWRWhoaAX9lUREFKgYFImIyCWLxYKLFy+q4fHChQvIyMhARkYGLl265HTzeMIdbxQAFglQZEhWCSi6ubyvyJCsABQJEJItZCpS0e9FjysSJAVF04seR9HvgO33ose8BVRxuWGxn8J2X7b9FLJQ79t+Cgi56L4sALmojc5+U5x+F/bH5aL7esXn3j5XDAYDoqOjERMT4/QzNjZWDYRxcXGIi4tDSEhI2Z+IiIiqLQZFIiIqt4KCAjVA2n9mZWUhOzvb7S0nJwdWq1XbwoXDT/t9CSWDoUYkSUJYWBjCw8MRERHhdLM/Fh0drd5iYmIQExOD0NBQXkqCiIjKhUGRiIg0IYRAXl4esrOzkZeXh7y8POTn5yM/P9/j/YKCApjNZpjNZhQWFsJsNsNkMjn9br9f0UFUp9PBYDCot6CgILf3Q0NDERISAqPRiNDQUBiNRqebfZrRaFTDYGhoKHS6cnQtEhERlRGDIhERVVuKokBRFFitVgghStx3nK4oCmRZhiRJkGVZvTn+br8vSRL0ej1DHBERVVsMikRERERERORE1roAIiIiIiIiCiwMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIid6rQsgIioNIQQKCgq0LoOIqFRCQkIgSZLWZRAR+YxBkYiqlIKCAgwcOFDrMoiISuWXX36B0WjUugwiIp9x6CkRERERERE5YY8iEVVZQX/VhiSK9ndJMiRZAiQZkCWgaIiXJMu2+1LRT1mCJBXNY29X9Lh6Hyj2mPMybT8vTxeSdHm3m3R5OerjDvM5Pibso9Ckot9l2y9CcpwH6jxCkop+h8PyiuaXpaLl2CbZl2Gf7rhMYV+uDLfLc/qJ4o8Vr8PNPLj8mNN0eJjPxfO5q6PEPG6W61yHcJq/eI3qdIdliaLHUaw+SMJhfqFOk0q0d5xmu3/55+XlSJK4/BYsevzyv0ao02UI9Xf788lFv9um2eZRH3P8icvPJRe/FU2z/Q6nx+3PJUuK+pgMAVlSoLNPK/pdnS4p6vJ06mMCOtjaAIBOUhzmU6BzmM9+397ecT4Zomhe2/Pbptnnsz0mQYHOPj8uP58OsM0H2/PZXw/777bnEuo0WSqqRb0vqR93nSRBhlT0mFT0u1z0FpFgLtRh6AN1QURUFTEoElHVZZUub7JJMiQUhTp1Cxy26ZIEyJdTkTqPU+KQgeJJ4HIKK5liJId5nZKKq8eLJaoS9x3aSPbAJzk0k4r9RLG2cA6NJeaDi2WiKLC6W56bcl3W4ebmbpq7l8qX+TzNA/chssKCYvHpxaYVD4qXHxdOz+lqmj2cXZ7mOF04zOfwWInncr45BsUSN3fTisITgMsBEsIpUAL2oAg1aMlFdVwOisrloFU0zRasin5Kki3EFb1P7fft7XWQHEIpoJMu/9QV1Wafr8Q02J/PHvpEUcC8HI7t4dBTUHS1PBmXH7P97lijw/+QiKiK4dBTIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJzwOopEVHXpBISwXWTbdl1AyeGn/SJuKHYdQqnYdQPtN3H5vi/THC7id/my6HDz+OWfwuk+nOYTACDUq9mpUwQkQECdVxSfp2i+koo/Zr9woFNJxV4PlLyh+GOSh2nFnra007wt09M89rse5xNelingukY311FEyfkkD9dRlByvkSg5tIX9+oWOby8311FE2a+jKOzvGElAFL8VTRNF15J0fFxRn0u5/DwQgKQ4XO9ROE0XkqIuz/7cQp3mUEfR73LRfft1Ge33HX8qDh9rRbr8U8Hl6ygqRY9JcHcdRQkybNdn1NlfqqLH7ddj1AHqNNlhGep1INXlXV6WDEn93fZvkWAudPW5JCKqGhgUiajKKrzqvNYlVAz7dng5FI+oRMDlt5WALVBVPY7vbA6KIiKqSFzLElGVUlBQoHUJRERERNUeexSJqEoJDg5W73///fcICQnRsBqqCgoKCnDbbbcB4HuGvKuo9wvfd0RU1TAoElGVIkmXB1OGhITAaDRqWA1VNXzPUGnw/UJENRmHnhIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyIkkhCjn1bqIiIiIiIioOmGPIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjIiV7rAoiIfJWXl4elS5fit99+Q0pKCmRZRqNGjdCnTx8MHToUBoNB6xIpABQUFGD37t04cuQIjh49iqNHjyI1NRUAcO+992Ls2LEaV0iBJjMzE3/88Qf++ecf9f1itVoRHR2N1q1bY9CgQbjuuuu0LpOIqFJJQgihdRFERN6kpKRg0qRJSElJAQCEhIRAURQUFhYCAFq2bIn3338fERERWpZJAWDXrl2YPHmyy2kMiuTKjTfeCKvVqv4eFBQEnU6H/Px89bEePXrg5ZdfRkhIiBYlEhFVOg49JaKAZ7FY8PTTTyMlJQW1atXCu+++i7Vr12Lt2rWYPn06QkNDkZiYiJdfflnrUilAREREoGvXrrjzzjsxffp0xMbGal0SBTCr1Yq2bdti2rRpWLp0KdavX49ffvkFy5Ytw+DBgwEA27dvx9tvv61xpURElYc9ikQU8FatWoVZs2YBAD755BN06NDBafr69evx0ksvAQDee+89dO3atdJrpMBhtVqh0+mcHhsxYgRSUlLYo0gu7dy5E126dHE7/e2338YPP/wAAFixYgXq1KlTWaUREWmGPYpEFPB+/vlnAEDnzp1LhEQA6Nu3L+rVq+fUlmqu4iGRyBtPIRGA2qsIAEeOHKnocoiIAgKDIhEFtIKCAuzfvx8AcPXVV7tsI0kSevToAQD4+++/K602IqoZgoKC1PuKomhYCRFR5WFQJKKAlpycrG6YNW3a1G07+7T09HRkZWVVSm1EVDPs3r1bvd+sWTPtCiEiqkQMikQU0NLS0tT78fHxbtvFxcW5nIeIqDyys7OxaNEiAECnTp2QkJCgcUVERJWDQZGIAlpeXp56Pzg42G07x1PWO85DRFRWiqLg1VdfxcWLFxEUFISpU6dqXRIRUaVhUCQiIiJy4cMPP8TWrVsBAFOnTkXz5s01roiIqPIwKBJRQAsNDVXvm0wmt+0KCgpczkNEVBazZ8/Gt99+CwCYOHGi05lPiYhqAgZFIgpojsceXrhwwW07x+MSHechIiqtOXPmYNmyZQCACRMmYMSIERpXRERU+RgUiSigNW7cGLJsW1WdOHHCbTv7tNjYWERGRlZKbURU/XzyySdYsmQJAODhhx/GqFGjNK6IiEgbDIpEFNBCQkLQoUMHAMD27dtdthFC4K+//gIAdO/evdJqI6LqZfbs2Vi6dCkAW0i88847Na6IiEg7DIpEFPAGDRoEANi1axcOHjxYYvrGjRtx9uxZp7ZERKUxe/Zsp+GmDIlEVNMxKBJRwBs0aBCaNWsGIQReeOEF/PPPPwBsp67fuHEj3nrrLQBAjx490LVrVy1LpQCRnZ2NjIwM9aYoCgDbCZEcH+elVAhwPiZx4sSJHG5KRARAEkIIrYsgIvLm3LlzmDx5MlJSUgDYhqQqioLCwkIAQMuWLfH+++8jIiJCyzIpQIwYMUJ9r3gyaNAgPPvss5VQEQWq1NRUDB8+HAAgyzKio6M9th85ciR7G4moRtBrXQARkS/q1auH+fPnY+nSpfjtt9+QkpICvV6Ppk2bom/fvhg6dCgMBoPWZRJRFWPvbbbfT09P99g+Pz+/oksiIgoI7FEkIiIiIiIiJzxGkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiERFVmA8++ADXXXcdHn30Ua1LIY3l5ORg8ODBuO6667B582atyyEiIi/0WhdAREQl5ebmIjExEYcPH8aRI0dw5MgRnDlzBkIIAMCyZctQr169CnluIQSGDRuGCxcuYPTo0XjwwQfLtJzExESsXLkSADB+/Hg/Vqit48eP46+//sK+fftw/PhxXLx4EVarFREREWjevDl69uyJQYMGITw8XOtSA0p4eDhGjRqFzz//HB999BF69OiB4OBgrcsiIiI3GBSJiALQpEmTkJiYqMlzHz58GBcuXAAAXHvttWVezpw5c2C1WtGjRw907NjRX+VpatKkSdi9e7fLaenp6UhPT8fff/+NRYsW4dlnn8VVV11VuQUGuGHDhmHFihVITU3F119/jdGjR2tdEhERucGhp0REAcjecwjYemI6d+6M2NjYSnnuLVu2AADi4+PRtm3bMi1j79692LFjBwBUqzBgD9ARERG4+eab8eyzz+Ljjz/G559/jpdeegk9e/YEYAuNzz77LPbs2aNluQHHaDRi6NCh+P/27j2m6vqP4/iTEJVEOMycHsTMVJAuhoKWIuYtvEyX4WWZm5o5s2m2WVuNqWhey5m23MzccjPFljlvS6OhkpkHFXXIRBRRUMQxDgqIcvGAvz/Y+f7OKTjE4SA6X4+/vvH9fN/fD2dnthefG0BCQgL3799v4R6JiEh9NKIoIvIYGjt2LCaTidDQUIKDg/Hy8mLBggXcvn272d9tD4pRUVF4eXm5VWPnzp0AmM1mXnvtNY/1raUFBwczffp0RowYQevWrZ3uhYaGMnToUHbs2MHmzZupqqpi3bp1bNu2rYV6+3iKiYnhxx9/5O7du/z2229Mnjy5pbskIiJ10IiiiMhjaNKkSYwcOZKuXbu6HdbccePGDXJzcwH3p50WFhZisVgAGDVq1CPtf3Nbu3YtY8aM+VdIdDRt2jR69eoFQE5ODtnZ2Y+qe08Es9lMnz59ANi/f38L90ZEROqjEUURETHYd6O0T3d1R1JSEjU1NQAMHz78Pz1js9k4cuQIx48fJzMzk+LiYqqrqzGZTLz44otERkYycuRIOnTo4PTckCFDABg9ejRxcXFcv36dX3/9ldOnT2O1WmnXrh0hISG89957hIeHG89VVlZy6NAhEhMTycvLo6KigqCgIN566y0mT57c5E1W+vXrZ6wxvXHjBj169HC7Vk5ODvv27SMtLY1bt25RUVGBn58f7du3x2w2ExERweDBg3n++efdqm+z2fjjjz84evQoV69epaSkBC8vL/z9/TGZTISFhREZGUlUVBQ+Pj5Oz/7z88/JyWHPnj2kpqZitVopLy9n5cqV//qjw/Dhw0lLSyM3N5fMzEx69+7t3ocjIiLNRkFRREQM9mmnAwcOpFUr9/4XceLECaB2HV+3bt0abH/lyhWWLFlCXl7ev+4VFhZSWFjIyZMnyc7OJi4urt46ycnJrFq1ioqKCuNnlZWVpKSkcPLkST777DPGjx+P1WolLi6OzMxMp+evXbvGDz/8QEpKCuvWrWtSWLTZbMb1M8+4P3ln3759bNiwgerqaqefl5SUUFJSQl5eHqdPnyY7O5vFixc3un5xcTGffvppnRsn2T/7rKws9u/fT0JCAsHBwfXWOnToEOvWraOqqqrB9zpubnTixAkFRRGRx5CCooiIAGC1Wrl48SLg/rTTqqoqLly4AEBYWFiD006zsrKYP38+5eXlAPTt25eYmBi6deuGj48PRUVFZGRkNHjuXnZ2NkeOHCEwMJA5c+YY7z5z5gw//fQTFRUVrF+/nvDwcFasWMGVK1eYMGECgwcPxmQycfPmTbZt20Z2djbnz58nISGB999/363PAODs2bPGdffu3d2qcfXqVSMk+vv7M378eMLDwzGZTFRXV1NUVMSlS5dISUlxe3rvhg0bjJAYERFBTEwMZrOZdu3ace/ePXJzc0lLSzOmEtfn0qVLJCUl4e/vz+TJk3n11Vfx8fEhJyeHzp07/6t99+7d8fX1pby8nLNnzzJr1iy3+i8iIs1HQVFERAA4fvw4Dx8+pHXr1rz++utu1cjOzjZG00JDQ122tdlsLFmyxAiJn3zyibEjpqNBgwYxe/ZsCgoK6q2VlZVFr1692LBhA+3btzd+/tJLLxEcHEx8fDw2m4358+dTWlrK2rVriYyMNNqFhITQv39/pk+fjtVqZe/evUyfPh1vb+9G/f5QO3332rVrQG1Y7tq1a6NrABw9etQYSVy/fr2x7tFRdHQ0s2fPpqSkpNH1KysrjQAeHR3NihUr/hU4w8PDefvttykvL3c5Mnrt2jWCg4PZuHGj0+689e2a6+3tTUhICGlpaVy+fJmampomjbyKiIjn6V9lEREB/j/tNDIyEl9fX7dqOE4fbeg4j6SkJG7evAnU7vJaV0h01KlTJ5f3v/jiC6eQaDd06FA6duwIwJ07d4iNjXUKiXZ+fn6MGTPGaJeTk+PyfXWxWq188803AHh5efHRRx81uoadfYdbPz+/OkOio4CAgEbXv3v3rhHqw8PDXY5K+vr6NjgVd+HChY06wsXetqKiAqvV+p+fExGRR0NBUUREKCsr49y5c4D7004BioqKjGt/f3+Xbe3BFGDq1KluvxNqpzLWF6a8vLyc7sXExNRbx7Fdfn5+o/pQUVFBXFycEfD+uYFOY9nDbVlZGUePHnW7Tn0CAgKM3VsPHz7cpDMNO3bsWGf4dsXx++H4vRERkceDgqKIiGCxWLDZbHh7exMVFeV2ncrKSuO6rtE9R5cvXwZqR5b+y6Y3rjT0vGNfXO0O6tiuMcHpwYMHLFq0yNggZ/DgwcyePfs/P1+XmJgYYxQvPj6eefPmsWPHDs6fP29M120KHx8fRo8eDUBGRgZTpkxh7dq1HD58uNEh2Z1dXR2DouMGRCIi8njQGkURETFG91555RVMJpPbdRzX9DW0+2VxcTHw/5Gzpmjbtq3L+47TKl1Nq3VcJ2c/4qMhNpuNxYsXc+rUKQAGDBjA0qVL3Vrf6CgoKIg1a9awatUqCgsLSU9PJz09Haj9nHv37s2QIUMYN25cg6G8Ph9//DFVVVUkJiZSWlrKgQMHOHDgAFAb4AcMGMDYsWMbHBltaPS4Lo5/VHB3h10REWk+GlEUEXnKVVVVcfLkSaBp006hdj2dXWlpaZNqPQlsNhvx8fHGkSCRkZGsXLnSmNLZVBEREezcuZNly5YxduxY43iK6upqLly4wKZNm5g6daoRUhurTZs2xMXFsX37dj744AP69etnBOnbt2/z+++/s2DBAhYtWuQU7P7JnY1oHDfgcfzeiIjI40F/whMRecqlpqYaUxmbGhQdj0JoKCiaTCYKCgqe2I1M7CHRPhrbr18/Vq9e3aTzF+vSunVrhg0bxrBhw4DakdgzZ86QmJhISkoKpaWlLF68mISEBDp06ODWO7p27cqMGTOYMWMG1dXVZGVlceLECfbt28edO3c4duwYW7ZsYf78+R77ve7evWtcN7RRkYiIPHoaURQRecrZg06vXr0wm81NquV4ZuD169ddtrUfn1FUVNRg28fNP0Ni3759WbNmjcdDYl1MJhMjRozg66+/ZsKECQCUl5dz/Phxj9S3T2udNWsW33//vTGtNykpySP17XJzcwEwm808++yzHq0tIiJNp6AoIvIUq6mp4e+//wZqN2Bpqk6dOvHcc88BcPHiRZdthwwZYlwnJCQ0+d2Pis1mY+nSpUZIDA8P56uvvmpwnWRzGDBggHFtX/PpSWaz2TgH0p2zGutTXFxsHI3y8ssve6yuiIh4joKiiMhTLD093QgYjsGtKezhJTc3l3v37tXbbvjw4UYIOXjwILt373ZZt6CgwCP9awqbzcaXX35pHFTfnCHxzz//bDD82deWAnTp0qVR9fPz80lNTXXZ5tatW8bIX1BQUKPqu5KRkWFcv/HGGx6rKyIinqM1iiIij6G8vDxjh0s7+/l8AMnJyU67k/r6+jJ06NBGv8c+KhYUFOTWEQd1GTZsGAcPHqSmpobU1FTefPPNOtu1atWKZcuWMW/ePMrLy/n22285duwYo0aNolu3bvj4+FBUVERmZibJycmEhoYSFxfnkT66a/ny5SQnJwO1wWzu3LncunXL5TOBgYEEBgY2+l27d+9m+fLlREREEBERwQsvvEBAQAAPHjygoKCApKQkYzS4c+fOjT7WpKCggIULFxIUFERUVBRhYWF06tSJNm3aUFJSQkZGBnv37jV2r504cWKjf4f6nD59Gqhdfzlw4ECP1RUREc9RUBQReQylp6ezevXqeu9v2rTJ6b87d+7cpKDoiWmndpGRkXTs2JHCwkISExPrDYoAPXv25LvvvmPJkiXk5+dz7tw5zp07V2db+5rGluR48P3NmzeZO3dug8/MnDmTWbNmufW+qqoqLBYLFoul3jZdunRh9erVLo/9cCU/P59du3bVe/+ZZ55h6tSpvPPOO27V/yebzcbhw4eB2lFsd4/2EBGR5qWgKCLylLpy5YoxGtbU3U4deXt7Exsby+bNm0lJSaG4uNjl2YwhISFs376dxMRE/vrrL7Kysoz1cIGBgfTo0YP+/fszcuRIj/XxSRAfH8+pU6dIS0vj6tWr3L5925iKGhAQQM+ePYmOjiYmJsat4zj69OnDxo0bSU1NJSMjg4KCAu7cucO9e/do27YtQUFB9OnTh3HjxnlstBkwvhMAkyZN8lhdERHxLK+HDx8+bOlOiIjIo7d161a2bt1KYGAge/bscessvPqUlZXx7rvvUlpayocffsi0adM8VluebJ9//jkWi4WIiAjWr1/f0t0REZF6aDMbEZGnlH3a6aBBgzwaEqH2AHV7OPz555+5f/++R+vLkykjIwOLxYKXlxdz5sxp6e6IiIgLCooiIk+hBw8eEB0dzcyZM4mNjW2Wd0ycOJHg4GBKSkr45ZdfmuUd8mTZsmULAKNGjSIsLKyFeyMiIq5o6qmIiDSbixcvYrFY8PPzY8qUKS3dHWlBZWVl7Nq1i4cPHxIbG+ty3aqIiLQ8BUURERERERFxoqmnIiIiIiIi4kRBUURERERERJwoKIqIiIiIiIgTBUURERERERFxoqAoIiIiIiIiThQURURERERExImCooiIiIiIiDhRUBQREREREREnCooiIiIiIiLiREFRREREREREnCgoioiIiIiIiBMFRREREREREXGioCgiIiIiIiJOFBRFRERERETEiYKiiIiIiIiIOPkfX1csUOO4GI0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_reconstructed_image(all_results[iteration], source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "0cc8b065", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "94ab604d-12d9-4f81-b8d1-7dcbe793b6e8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_reconstructed_image(result, source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "dc5d9f13", + "metadata": {}, + "source": [ + "## Delta image\n", + "checking the difference between images before/after each iteration" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "04af53e9", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_delta_image(result, source_position = None): # source_position should be (l,b) in degrees\n", + " iteration = result['iteration']\n", + " image = result['delta_map']\n", + "\n", + " for energy_index in range(image.axes['Ei'].nbins):\n", + " map_healpxmap = HealpixMap(data = image[:,energy_index], unit = image.unit)\n", + "\n", + " _, ax = map_healpxmap.plot('mollview') \n", + " \n", + " _.colorbar.set_label(str(image.unit))\n", + " \n", + " if source_position is not None:\n", + " ax.scatter(source_position[0]*u.deg, source_position[1]*u.deg, transform=ax.get_transform('world'), color = 'red')\n", + "\n", + " plt.title(label = f\"iteration = {iteration}, energy_index = {energy_index} ({image.axes['Ei'].bounds[energy_index][0]}-{image.axes['Ei'].bounds[energy_index][1]})\")" + ] + }, + { + "cell_type": "markdown", + "id": "a8664171", + "metadata": {}, + "source": [ + "Plotting the difference between 19th and 20th reconstructed images." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "95ae9307", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADPnklEQVR4nOydd5zUdPrHP0lmZnvfpfeugAoCiqJYwIYFG1gBu+fZu57d836eeJ7l7A1RFE45VFRERBEEAVHp0ntn2V5nJvn+/pidMLObZNJ2k5l53q/Xvlh2kifPpH7f+TaOMcZAEARBEARBEARBtDi80wkQBEEQBEEQBEEkKyRkBEEQBEEQBEEQDkFCRhAEQRAEQRAE4RAkZARBEARBEARBEA5BQkYQBEEQBEEQBOEQJGQEQRAEQRAEQRAOQUJGEARBEARBEAThECRkBEEQBEEQBEEQDkFCRhAEQRAEQRAE4RAkZARBEARBEARBEA5BQkYQBEEQBEEQBOEQJGQEQRAEQRAEQRAOQUJGEARBEARBEAThECRkBEEQBEEQBEEQDmGLkG3btg0cx4HjOEyYMMGOkEnJKaecIu9HgiAINSZMmCDfK7Zt2+Z0OjKTJk2S85o0aZLT6RA2I0kSjj32WHAch9tuu83pdIhG0PVHOMm8efPk8++JJ55wOh1bqaioQH5+PjiOw5tvvtks22ixGrJJkybhiSeeSLiDpMXnn38uf+eysjKn0yEaCAaD+P777/Hggw/itNNOQ9u2bZGSkoLMzEx0794dl112GT7//HOIomgo7urVq3HbbbehT58+yMzMRE5ODvr3748HH3wQ27dvb6ZvQxBEMhIIBPD222/j9NNPl+9hHTp0wHnnnYdp06aBMWb7Nt966y38/vvvSE1NxUMPPaS63LZt2zB9+nQ89NBDOOOMM1BQUCAX1E455RRT27bz/rp9+3Y8+OCD6N+/P3JycpCZmYk+ffrgtttuw5o1a0zlF4tffvkF1157Lbp374709HTk5+fj2GOPxd///ncUFxc3yzadoH///vKxnjt3ruH1f/75Z3n9I4880vD6jDEsXLgQTz75JM466yx07NgRqampSE9PR+fOnXHhhRfiww8/RH19vaG4dp4zBw8exNNPP41jjz0W+fn5SE9PR/fu3XHttddi8eLFhmLpJVnKJ+edd558/rz77ruG19+xYwcEQQDHccjPz0ddXR0AIDs7G3fddRcA4G9/+xtKS0ttzRsAwGxg69atDAADwMaPH6+4zPDhw+VlkoXx48fL33nr1q0xl0/GfdTS/PDDDyw/P1/ez1o/gwcPZps2bdIVd+LEiczr9arGysrKYp988kkzfzsiWTB6b2kp3n//fTmv999/3+l0EpatW7eyAQMGaN6/RowYwUpLS23bZnV1NWvTpg0DwG6//XbV5V5++WXNvIYPH25423beXz/66COWmZmpGsvn87EXXnjBcI5qSJLE7rrrLsZxnOo2W7duzebOnWt5W264/v71r3/JOVx11VWG17/22mvl9Z977jlD665du5a1a9dO1/O9V69ebNmyZbri2nnOzJkzh7Vq1Uo1Fsdx7N577zX0vWPRUuWTH3/8UY75+OOPW0/cBNOnT5dzGDZsmOH1n3rqKXn9W265Jeqz8vJylpeXxwCwBx980K6UZVqs5J+MsuHWQlMy8+GHH8rHJD8/n40ZM4a98MIL7JNPPmGTJ09mt956K8vOzpaX6dixI9u7d69mzNdff11e3uv1smuvvZZ98MEH7J133mGXXnqp/CD2eDxs1qxZLfRNCaLlcUOBMNEpLS1lffr0kffzEUccwSZOnMg++eQT9vTTT7OOHTvKn5166qksEAjYst2JEycyAEwQBLZr1y7V5f79739HFfbS0tLYUUcdZVrI7Ly/fvXVV0wQBLnge+mll7J33nmHffDBB+zaa6+NKrS+/fbbhvJU44EHHpBjZmRksNtvv5199NFH7I033mAjR46UP8vMzGR//PGHpW254frbv38/83g8DABLT09nFRUVutetrq5mWVlZ8nkW69nbmAULFkTt6wsuuID985//ZFOmTGFTpkxhDzzwAGvdurW8TE5ODlu9erVmTDvPmWXLlrH09HR5+ZEjR7I33niDffTRR+z2229nGRkZ8md/+9vfDH13NVqyfOIGIfP7/aywsFDOQ+9L9TDdu3eX1/3111+bfP7II4/I51dxcbFdaTPGSMiaFRIy9/Hhhx+y/v37s48//pjV1dUpLrNr1y7Wt29f+diNGzdONd6ePXvkG6zH42Fz5sxpskzkQ7Jjx46strbWtu9DEG7CDQXCROfOO++U9/FZZ53V5H5y6NChqNqz//znP5a3GQgEZNE744wzNJedMWMG++tf/8ree+89tmLFChYMBqNa0RgRMjvvr9XV1VG1J5MmTWqyzHfffSfLRGZmJtu3b5/uXJX4/fff5QJvTk4OW7FiRZNlHn/8cTmnwYMHM0mSTG/PLdffBRdcIOfx7rvv6l5v8uTJ8nrnnnuu4e0uWLCAdenShb3xxhuqIlhaWhpVHj355JNV49l5zkiSxAYOHCjHeuKJJ5oss3z5cvmFMM/zbOXKlTq/uTItXT5xg5Axxtgdd9wh5/Hoo4/qXm/+/Pnyev369VNcZsOGDfIyzzzzjF0pM8ZIyJoVEjL3UVpaquuBt2rVqqg3vNXV1YrLRRaO7rvvPtV4l156qa0FJIJwI24pECYq+/fvZz6fT35Du3//fsXlVq1aJYtAmzZtWDAYtLTdGTNmyMd18uTJhtc3K2R23l9ffPFFeZlLL71UNdZ9990nL2e16djo0aPlWK+++qriMpIksSFDhsjLffXVV6a355br7/PPP5fzOOmkk3Svd9ppp8nrTZ8+3fB2Kysrmd/vj7nc/v37o2qqtmzZoricnedM5D457rjjVMshr776qrzcJZdcEvO7aNHS5RO3CNny5cvlPDp37qz7JUdkc9l//etfqssNHjxYFlgrL1Aa0+x9yCJFTOtH7eCJosimTZvGxowZw7p06cLS0tJYZmYm6927N7v55ptjvkGIfPv0448/MsYY+/7779lll13GunTpwlJSUpoIUyAQYN9++y27++672YknnsiKioqY1+tlmZmZrGfPnmz8+PHsp59+Ut1mpIhp/Wjtq1gsXryY3XDDDaxXr14sMzOTpaens27durFx48bpaove+OFYVVXFJk6cyI499liWm5vL0tPT2ZFHHskefPBBVlJSEjNeIhLZLEjpzaYkSax9+/YMCDVl2LFjh2qsyKYURh5QdrBo0SJ28803syOOOILl5OSwlJQU1rFjRzZmzJiYD3+lG+z27dvZ3XffzXr37s3S09NZTk4OGzp0KHv11Vd1N4+qrKxk//73v9mIESNY27Ztmc/nY3l5eWzQoEHs0UcfZQcOHNBcv/G1EgwG2fvvv89GjBjB2rVrxwRBYJ07d26y3r59+9h9993HjjjiCJaens7y8vLY4MGD2fPPPy9Ld+fOneUbeSSzZs2St3nbbbfp+p633XabvM4333yjax09xHrZ01zHbebMmezcc89lrVu3ZikpKaxz587siiuuYIsWLWKMGSsQ1tfXs3feeYedd955rEOHDiwlJYXl5OSw/v37s7vvvlv1Jda6devkwlR2drZqYYoxxkpKSuSaHZ7nNe/b8cCbb74p79/rr79ec9nTTz9dXtZq/6SLLrpIfjlVWVlpeH0zQmb3/XXo0KHyMj///LNqrB07dsgy26lTJ125KlFRUSGXL7Kzs1Vf6jEW3ZT+6quvNr1Nvdff0qVL5WZdPp+PTZs2rckyVspegUBA7ifFcRzbvHlzzNy3b98u7/fCwkJdYmWFs846S95XX3zxheIydp4zl19+uRzro48+Uo1VXV0t15KlpaWxqqoqY1+sASfKJ3qFbNOmTaxbt25ybmr972bNmsXGjx/PevTowTIzM1laWhrr1q0bGz9+PFuwYIFmLpGtBPTc/yKby3o8HtWXXYxFi/oPP/wQM7ZeXC1kmzZtYsccc4zmejzPa1ZJRgrZDz/8wP76178qxol8+J9yyim6haq+vr7JNptTyAKBALvhhhtixh4zZgyrqalRjRP5cNy8eTM78sgjVWN17tw5KWv4wm9BALDFixc3+TyyFk2tejuMKIpRTRGMtKs3S1VVFRs7dmzMc2XUqFGq+TS+wc6aNYvl5uaqxho5cqRqU9Aw33zzjWanZiDUyVjtIclY9LVy6NAhNmzYMMXzNpIffvhB7pCr9NO/f3+2Y8cOVSETRZF17dqVAWB5eXkxm3bU1tbK2+vUqRMTRVFzeSMYFTKrxy0YDGre13ieZ//85z91Fwh//fVXeV+q/fh8PvbGG28orv/WW2/Jyw0dOlS1BuiSSy6Rl7OrT4aTXHzxxfL3+eyzzzSXDff5ArTfjseirq5OFmCt5l1amBEyO++v5eXlUU0HY12LkU3W16xZoyvfxsycOVOOEav53YEDB+Rli4qKTG2PMX1CNnv2bHmAiszMTMVmbHaUve6++2552cceeyxm7pGDKdxxxx16v7JpImuFpk6d2uRzu8+ZgoIC+fODBw9qxho1apS87Ndff23sizXgRPlEj5D9/vvvcj8+j8fDPvzwwybLHDhwIKq2VO3nuuuuUxX3yMGFtLqdhIlsLnvBBRdoLrtixYpmOVc9aGbCQ7o+8sgj8tCgM2bMaLJcnz59ov6/efNmHH/88fJwsMOGDcO5556Lzp07QxRF/Pbbb5g0aRJKS0vx9NNPg+f5mEPqT5w4EbNmzUKbNm0wYcIE9OvXD8FgEEuXLkVKSoq8XG1tLTIzM3H66afj2GOPRZcuXZCamoq9e/dizZo1mDJlCqqrq/HBBx8gNzcXL774YtR2br/9dowePRovv/wyfvzxRwDAm2++iVatWkUt16lTJ137MJKrr74aU6dOBQCkpqZi/PjxOOGEEyAIApYtW4Z3330XlZWV+O9//4vy8nLMmjVLc16ziooKjBo1CuvXr8cFF1yAs846C/n5+diyZQtef/117NixA9u3b8e4ceMwf/58w/nGK36/Hxs3bpT/37lz5ybLrF69Wv792GOP1YzH8zwGDBiAn376CZIk4c8//8SQIUPsS7gR9fX1GDFihDyEbvfu3TF27FgcccQR8Hq92LRpEyZPnowNGzbg66+/xujRozFnzhzwvPpMGMuXL8fEiRPBGMNNN92EoUOHIiUlBcuWLcMbb7yB6upqzJkzB8888wyeeuopxRjTp0/H2LFjIYoivF4vzj//fJxyyilo3bo1Kioq8OOPP+K///0vKisrceGFF2LOnDk47bTTNL/rVVddhZ9//hlHH300Lr/8cnTp0gUVFRVYuXKlvMzatWtx7rnnoqamBgAwYMAAXHXVVejQoQP279+PadOmYeHChRg7diyCwaDidniexw033ICHH34YpaWlmD59Oq688krVvD777DN5aNzrrrtOc982J3Yct9tvvx0ffPABAMDn82H8+PEYNmwYeJ7H0qVL8e677+KBBx7A6NGjY+bzyy+/YMSIEaipqQHHcTjzzDNxxhlnoH379qitrcUvv/yCDz/8EDU1Nbj55puRkpLSZH7LG264AbNnz8b06dPxyy+/4Mknn2yS+7vvvovPPvsMAHD88ccnxJQrRu45gwYNUlzPKAsXLpSvm+a8ZzXGzvvr2rVr5WkAjjnmmJjX4qBBg+TyyurVq00Nv24k/6KiInTu3Bnbt2/HwYMHceDAgSblBTv45JNPMH78eAQCARQVFeGbb76JOk8A+8pe11xzDV544QUAwOTJk/HEE09olkXC95fwus1N5FD1Ss93O8+Zffv24dChQ/K2CgsLY8b6+uuv5VjnnHOOjm8UjRvLJz/++CNGjx6NiooKpKen47PPPsPZZ58dtUxJSQmGDh2KzZs3AwCOPvpoXHTRRejRowd4nsfq1asxadIk7N69G++++y6CwaDinHtXXHEF7r33Xvj9fkyfPh2vvvoqMjMzVXOLjBHr/OvXrx8yMzNRVVWF2bNn698BsbDD6uwe9l4URbnzY0pKCvvvf/+ruNy+ffvktzg8zyuOlhNZQwaEhsEsLy/X3P7333+vWbtUXFwsv5HneV61yYzdw95PnTpV/rx169aKb2G2bdsW9eZZrT1w5D7x+Xxs5syZit8zMtaSJUtifgc1qqur2YwZM2z5+e2330znoZfIJiQDBw5UXObJJ5+M+TYoknHjxsnLK70VspPGbceVmqT5/f6onF5//fUmy0S+8UJDTc+GDRuaLLdkyRK5Y3NeXp5ibcuOHTvkt3CdOnVSbfKyZMkSlpOTwwCwDh06KL4Ba1zzfuedd2q+wYysQbvlllsUl218r1Br8hgeVSvWm/6TTz6ZAaHRwnbu3Km5rFGM1JBZPW6RHZ1zc3MVh4pet26dPCR6+EfpDX1FRYXchDA3N5fNmzdP8ftt3LiRderUiQGhvlJKb5RLSkpYhw4d5H0c2YRl/fr18ohl2dnZuppMafHnn3/adv+K9XZcDVEU5WMlCELMZqZbtmyRj0X37t1NbZMxxv7xj3/IcT799FNTMczUkNl5f/3ggw9illEieeyxx+Tln376aV35Nuaaa67RvBYaE75fAIjZHEsNrRqyl19+Wa7x6dy5M1u/fn2T9e0sezHG2KBBg+R8tJp2/fTTT/JyAwYM0P+FTRLZRK+oqEixht3Ocyby++k5/997772oWiAzOFE+0aoh++yzz+QmvPn5+XIz98aE+11yHMdefPFFxWUqKyvZGWecIW9LbXTIyBYS7733nmre27Ztk6+NVq1a6WrCH25Jx3EcKysri7m8HlwpZJHzCLz88suay65fv14ekvSGG25o8nlkISsjI4Pt3r1b13eKxebNm2PesO0Wssg2sVr9UZYsWRJ141W62UQWnJ566inVWG+//bau5WIReY5Y/dFzc7RCSUkJa9u2bcxCyF133SUv88orr8SMa3R5s+zZs0fu+H/RRRdpLuv3++W23D179mzyeeOC/fz581VjXXnllZrLhftTCYIQc3jnd999V441ZcqUJp9HXivHHnuspoz9+uuv8rL9+vXTHOAgMq6SkDEW3dRFSXIYC92XwsuMGjVK87uawaiQWTlukSOmKY0yFuarr76K2qZSITRyjqIvv/xS8zvOnTtXXlZtNKt58+Yxnufl41VaWsr8fj879thjLRcuImks61Z+wn2ZjVJeXi7HKCgosH15Na644go5jtlR38wImZ3315deekn+7J577okZy+jySlx44YVyDKUXnlaXV0JNyP72t7/Jf+/bt6/qtAV2lr0Yix6gQqvZWKS8xtquVerr66OmYZg4caLicnaeM1988YX82cUXXxwzltHllXCifKImZG+88YZ8n27fvr1qM+DffvtNXv/uu+/W3FZJSYn84nbkyJGKy3z99ddyPK3m1pHyGmu7Yf7yl7/I65h9gdIYZ9rQxODDDz8EEJoZ+4YbbtBctlevXnLV6nfffae57MUXX4x27drZkmO3bt3Qpk0bAMCSJUtsianFtm3b8McffwAA+vfv36SaN5IhQ4bIzby2b9+O3377TXVZQRBw6623qn4e2Vxs7dq1RtOOO0RRxGWXXYa9e/cCAEaNGoVLLrlEcdmqqir599TU1Jix09LS5N8rKystZqrOf//7X/j9fgDAvffeq7ms1+vF2LFjAQAbN27Etm3bVJcdMGAATjrpJNXPtc4VxhimTJkCADj99NNxzDHHaOY1duxYeDyhFtWxruu//vWvms1Jvvjii6hlBUFQXfaOO+7Q3BYA3HzzzfLv77zzjuIykX+/8cYbY8ZsTqwct/r6esyaNQsA0Lp1a1x11VWqcUaNGoUjjjhCM5fwvb1Xr14477zzNJc97bTT5Pu12jkwfPhwPPjggwBC97qbb74ZjzzyiHzPu/LKKzVzjiecut9s375d/j0/P990HKPY+X2d2HdueD6IoogbbrgBzzzzDADghBNOwIIFC9C+fXvF5e0ue11++eXyd58+fXrUPglTU1MjNy32+Xy44oordHwz89xyyy1yc/YBAwbg9ttvV1yOzj97eOqpp3DzzTdDkiT07t0bixYtUm0CHD7/OI7DPffcoxk3Ly9Pbso5f/581NfXN1nmzDPPlJ8hCxYswNatW5sswxjD5MmT5f/rbS6bl5cn/x55j7RCs/chM8OCBQsAAG3btsW3334bc/lwAWv79u2ora2NOrEi0SqUNKaiogJTpkzBN998g1WrVqG4uBjV1dWKy+7atUt3XLMsXbpU/v2MM86IufwZZ5yBuXPnAggJo1p74F69ekWdWI2JvHGH+8OYoUuXLnJ7bDdzxx13yA+XTp06KbZNdjvh6wcInZuff/655vKRx/XPP/9Ely5dFJc7/vjjNeNonStr1qxBSUkJACArKytmTgCQmZmJsrIy/Pnnn5rLxbquly1bJv9+6qmnai57yimnxMzr1FNPRa9evbBhwwZ88MEH+Pvf/w6v1yt/HggE5P4Q7dq1w6hRo2LGbE6sHLcVK1bIcj98+HBNmQVCsq12vMrLy+WCUOvWrXWfAwA0z4Enn3wSc+fOxZIlSzBt2jT57127dsVrr70Wcxt6eOKJJxKiD5oZwtct0LJCRlijrq4Ol156qdxn/5xzzsGnn36K9PR01XXsLnvl5eVh9OjRmDp1Kqqrq/HZZ5816Q/62WefyQJw/vnno6CgQPd3NMrEiRPx7rvvAgBycnIwbdo0+Hy+ZtteMiNJEm699Va8+uqrAIDBgwfjm2++0ew/Fz7/cnNzo8q8aoQlrL6+Hlu2bGnyQlAQBIwbNw7PPvssGGP44IMPmtzHFyxYIPdXGzRoEPr166fr+0Wep1bKxpG4Tsiqqqrkzo/r16/HhRdeaGj90tJSVSFTeyvUmB9//BFXXHEF9u3bp2v5iooK3fmZJVxjA4QkKhaRy0Su25hYnUsjBzupq6uLud145m9/+5t882jdujXmzJmjuX8iO4jq2Te1tbXy71lZWRYy1SaylmvMmDGG1tW6sVg5VyJzmj59OqZPn25LTkDs63rPnj3y7926ddNcNi8vD7m5uSgrK1NdhuM43Hjjjbj33nuxf/9+zJw5ExdddJH8+ZdffokDBw4ACL1tiyUxzY2V4xa573r06BFzW1rL7Ny5E5IkAQg9BCNfHMRC6xzweDz4+OOPccwxx8gFu/DfsrOzdW/D7Th1vwkXegRBUH22Ngd2fl8n9p3Tz4cHH3wQ5eXlAEIDH73//vtyqwMlmqvsdc0118gDkU2aNKmJkEW+9Lz22mubrK/14iY9PV3XC2oAeOutt3D//fcDADIyMvDNN9+gZ8+eqsvT+WeNl19+WT7/RowYgRkzZmgOqgEcLieUlpaaOv+UmDBhAp599lkAocFlHn/88ajBZWKdf2pEPlsi950VXCdk4QNolvDbXCX0PEw2btyIUaNGyTu4d+/eOPvss9GzZ0/k5+dHVf3eeOONOHjwIERRtJSzHiKrkDMyMmIuH3nia1U/OzXym9v4+9//jn/84x8AQgXY77//Pqb45ubmyr+HR6TSIvywa7yu3Vi5hrSuHyvnSnPlBMS+rsM12x6PJ6omS42MjAxNIQNCN/m//e1vqK+vx9tvvx0lZG+//TaAkLhdd911MbfX3Fg5bpHNXrTerIfRujdZOQcCgYDm54WFhcjPz5fvdd26dYs5sli8kZmZCY/Hg2AwiLKyMgSDQc0Ctl33m7Cwi6KImpoaXeeBHdh5f3XiXu308yFytNjq6uqYLVSaq+w1YsQIdOjQAbt27cL8+fOxbds2uRXG9u3bMW/ePACh1gRKcqVVMO/cubNmM/swkydPlpuap6WlYebMmTjhhBM016HzzxpGzz+gecoJvXv3xgknnIBFixZh69atmD9/PoYPHw4gurlsamoqLr/8ct3bi8zVrhdVrhOySJE4+eST8dNPP7Xo9v/v//5PlrG//e1vePrpp1WHao3VxtpOIt9YqDWdjCSyINWctTF6qampidkXSC+dOnXCwIEDbYkFAM899xweffRRAKEakjlz5uiqto4UNj0Phch2xnpqOc0SvoY4jkMwGHSFdEde14899hiefPLJFtt2WBKCwSACgUBMKdNzfRUUFOCSSy7BlClT8N1332HHjh3o1KkTtm/fjjlz5gAIFUS6du1q/Qs4SORxCw99roXWvouMNW7cuKhhrq1yyy23RF1fGzZswCOPPIJ//vOftsRft24d1q1bZ0usYcOGxay1VILneXTv3h3r16+HKIrYtWuXavNiwL77TWQzxZKSkhYTMjvvr07cq51+Pvzf//0fpk6dikWLFmHGjBkYO3Yspk2bpnr/a66yF8/zGD9+PJ555hm52djjjz8OIDTUfbigPm7cuGZpTfDJJ5/gmmuuAWMMKSkp+Pzzz2M2XQfo/LPKHXfcgT///BMzZszAL7/8gjPPPBOzZ8/WLI+GuymEn6V2cc0112DRokUAQjViYSGLbC47evRoQyLaHE25XSdkOTk58vj+LdE3qzHff/89AKBVq1Z46qmnVGWssrIy6oA0N23btpV/j5wfS43IZewayMQKBw4cMFwFrcb48eNt69v173//Gw888ACA0Lk3e/bsmANOhImUNq2BU4BQe+rwoCw8z8cc/MAK7du3x/Lly8EYw+7du9GxY8dm25aRnMK09HXdrl07ue/Sli1b0Lt3b9VlS0tLY9aOhbn55psxZcoUSJKE9957D0888QTee+89uVme04N52EHkvWPTpk0xl9daprnOgSlTpsgDxhx77LEoLi7G9u3b8fzzz+PMM8+MOY+dHqZOnWrbS4Qff/xRV19FJfr164f169cDCN1ztIQssu+k3n4RSnTp0gULFy4EECqEdOjQwXQsI9h5fz3yyCPB8zwkScLy5cshSZLmiyo79p2R/A8ePCgXQIuKimyZgywrKwvffvstzjrrLF1S1pxlrwkTJsgDi0yePBmPPfYYgOi5xxo3ZQxjpe/5p59+iquvvhqSJMHn8+Gzzz7T3cTRznOmTZs2KCgowKFDh7Bjxw4UFxdrvpRp6fOvOconXq8X06ZNw2WXXYb//e9/uqSsffv2KCsrw4EDB3S9PNXLmDFjcMcdd8g1Yv/5z3+QkZGB999/X17G6Nx3keV/pXnszNBir84jT+RYF9jJJ58MIFR40lMIsJP9+/cDCHUI17r4vv/+e7ngpYaR7xyLyEE5wm/gtYisjWrJyTzjiVdffRV33303gNDDa9asWRg8eLDu9fv27SsXTtasWaP5EFu0aJHc1/DEE09s1lrL8NsfIPYIhS3FgAED5DbXc+fOjXnt2EnkxKfhidrVCDef0cOwYcPQt29fAMB7772HQCCA9957D0Dohc4FF1xgPFmXcfTRR8ud3n/66aeYzbPDAwkpUVhYKI+utXjxYlv63m7duhW33HILgFBN6CeffIKPPvoIgiBAkiSMGzcuqilOvHPmmWfKv8eakDRyUIazzjrL9DYjC3ZhGWwJ7Ly/Zmdny4PblJeXY/Hixaqxdu7cKY822qlTJ1OTQgOhAYLCzT3nz5+v2c8k8lhaOVaNCUvZiSeeCACYMWMGxowZo9oEuLnKXj169JAHX9qyZQsWLFiA+fPnY8uWLQBCoz9qvSgzw+eff44rrrgCoijC4/Fg2rRpOPfcc3Wvb/c5E752GWOaz+Wamhq5f21aWlrU89wIbiifhKXs4osvBgBZytTu/eHvWldXh/nz59uSAxA6luEcqqqqMH36dGzbtk2uBe7QoQNGjBhhKGZ4oCmO49C/f39b8mwxIYusDo/VJGj8+PHy7+E3KS1FuDnGli1bVCVKFEW5v5EWRr5zLLp06SI301uxYoWmlC1btgw//PADgJC5u6EvRXiURTt+7Kgde/vtt3HbbbcBONzBd+jQoYZicByHSy+9FEDoJvvKK6+oLvvyyy/Lv4eHmW8uLrvsMrkQ/c9//tPyuWcHgiDgyiuvBBBqGqE2XHxzEClGr776qqZUvPTSS4Zi33TTTQBCD+Q777xTfuiNHz/etrd7TpKSkiIPLbx//358/PHHqsvOmjUr5oiY4Xt7TU2N3NHaLKIo4sorr5Qf7i+//DJ69uyJYcOG4eGHHwYA7N69G9dff72l7QChURbtun+ZrR0DQs1qwtf2J598Ig8e05jVq1fLz4A2bdqYLtQBwHHHHSf/3hJTvISx+/4a+Xet6/yVV16Rn/1GB0WKJDMzU752KioqVJ9bjDH85z//UczTDsJSNmzYMAAhUVGTsuYse0XWQEyaNClqfxitnYjFN998g7FjxyIYDEIQBHz88ccYPXq04Th2njORsV5++WXV8uWkSZPke9qoUaN0jRmghFvKJx6PB1OnTpWnD/rll19w1llnKUrZuHHj5N+ffPJJW8dnaHz+RTaXHT9+vKGuHaIoyrWYffr0sW/wKDsmM9MzMfTtt98uL/PTTz9pxhNFkQ0ePFhe/o477mD19fWqy9fU1LD333+fffLJJ00+i5zQU8+EnCNHjpSXf+GFF5p87vf7oyYxhMYEsi+88IK8zAcffBBz27Emhp42bZr8edu2bdmff/7ZZJnt27ez7t27y8v95z//UYwV/lzPJJ1Glo0HPvjgA3ni7PT0dNMTtTLG2O7du1l6ejoDwDweD/v++++bLBM5WWfHjh1ZbW2thez1cc8998jbPPXUU9nevXtVlxVFkc2ZM0dxgnO1iR6ViLXszp07WW5uLgPAUlJSYl4T+/fvZ0899RRbsWJFk8+MTDTPGGPDhg2Tl7/lllsUJ5JuPPmv2nUdSVlZmXz8I3/UJoy2CyMTQ1s9bgsWLJA/z8vLU5zUe8OGDVGTqQPKE0NXVVWxzp07MwCM4zj23HPPaU7qXVZWxl566SU2Z86cJp89+uij8rYuueSSqM8CgQAbOnSo/Pmbb76puQ/iiTvvvFP+XmeffXaT+0lJSQkbMGBAzGeAXurq6lhGRgYDwE466SRTMcxMDM2YvffX6upq1q5dO3lZpUnO58yZwzweDwPAMjMz2b59+2J+H6170O+//y4/a3JychTvZU888YQcZ/Dgwaqx9KA2MTRjjFVWVkbdBy+44ALm9/ujlrGz7NWYyspK+TzKzMxkmZmZ8jO4vLzc1PdVYs6cOSw1NZUBYIIgsI8//th0LDvPGUmS2MCBA+VYTz75ZJNlVqxYIU92zPO85kTskeef0jOAsZYvn2g9SwKBALvkkkvkz48//njF437xxRfLy4wdO1bz3AgEAmz69Om67nGSJLEuXbrIz57WrVvL29m4caOh77lixQp53TvvvNPQulq0WB+y008/Xbbw6667DnfddRc6d+4sd+Ls0aOHPGQyz/OYPn06hg4dit27d+Oll17Cf//7X1x66aU4+uijkZOTg6qqKuzYsQPLli3D3LlzUV1djaefftpynrfddptc+3T33Xdj3rx5OPPMM1FQUICNGzdi8uTJ2LhxI0499VRs3LhRsxr49NNPl3+///77cfDgQfTu3VseGat9+/aGqjrHjBmDGTNmYOrUqdi7dy8GDhyICRMmYOjQoRAEAcuWLcO7774rv3k444wz5OY8RIhZs2bh2muvld+MXHvttSgrK4s5J9LAgQPRqVOnJn9v164d/vWvf+Evf/kLgsEgzj77bIwbNw7Dhw9HMBjErFmz5FF8PB4P3nrrLc1JGiP7LG7dulWzj4gW//d//4fly5dj7ty5+PHHH9GtWzdcfPHFGDp0KIqKiuD3+7Fv3z65tnXfvn04/fTT8cgjj5janh46dOiAqVOn4vzzz0d9fT3Gjx+PF154Aeeffz569uyJtLQ0lJeXY8OGDVi8eDEWLlwIURR1dcCOxZtvvonBgwejpqYGr732Gn755RdcddVV6NChA/bv349p06Zh4cKFGDp0KHbs2IHdu3fremOWk5ODsWPHRrVFP+WUUzSHU443hg0bhltuuQWvvfYaSktLcfzxx2P8+PEYNmwYeJ7H0qVL8e6776K6uhqjR4/WvJYyMjLw+eefY/jw4aioqMD999+PN998ExdffDGOPPJIZGZmoqKiAlu2bMHSpUsxb948+P1+ecLQMD///LPcSqFDhw546623oj73eDyYMmUKjjnmGFRUVOCuu+7C8OHDbW8W5QSPP/44vv32W6xbtw6zZs3CwIEDcf3116N9+/bYtGkT3nzzTezcuRNA6Fy02pcxJSUFZ511FqZPn45ly5ahqqoq5vDVje8jkSOSbd26tcnnAwcOjBqpNIyd99f09HS89dZbuOCCCyCKIq655hp8/fXXOPvss+HxePDTTz9h8uTJ8uhw//73v9G6devYO0iDAQMG4P7778c///lPlJeX44QTTsD111+PIUOGyE2nws3XMjMzm5zHdpKZmYlZs2bhnHPOwYIFC/DFF1/g0ksvxaeffirX5jdn2SszMxOXXnopJk2aFDXo2MUXX2xbDcPy5ctxwQUXyMO8X3zxxUhLS4v5fO/Tpw/69OnT5O92njMcx+Gtt97CySefjJqaGjz++ONYuHAhLrnkEmRkZGDp0qV455135BYtDz30kOWmcHaXT6zg8XjwySefgOM4fPrpp1i8eLHcpyzy+L/33nvYsGEDVq1ahWnTpmH27NkYM2YMBg0ahLy8PNTW1mL37t34448/MGfOHJSWluoazZjjOEyYMEFu7RDunnTSSSfpmtIlksiuD2ZqXlWxw+r01JAFg8GotzONf5TezO7Zs4edfvrpqutE/giCwN5+++0mMYzWkDHG2EMPPaS5rRNPPJEdOHBAftOr9Sb98ssvV43TeF/peesfCATY9ddfH3N/XHLJJaympkY1Tni5ZKsha1wLovdH6W1/JBMnTmRer1d1/aysLF1vESPXUXvrpZf6+np26623MkEQdH3HcePGNYlhZ01LmF9++YV169ZNV06ZmZmKbwmN1pAxxtgPP/wg19Ap/fTr14/t2LGDtW/fngFgRx11lK64S5YsiYozZcoU3TmZpSVryBgL3b+vvvpq1X3H8zx77rnnNN/QR7Ju3bqoWhytn5SUFDZr1ix53dLSUvney/O85n39o48+kuMMGDBA821/PLF169aY+2/EiBGstLTUlu19/vnnctzJkyfHXN7o/VWt3BDGrvsrY6FzIlw7o/Tj8/kUW8dEoreGjLHQm/k777xTrilT+mnVqhWbO3eurvy10HP9VVVVsZNPPlle7vzzz29SU2ZH2UuJn376qcn6P/zwg9WvLRP5/Y38xLpH2nHOhJkzZw4rKipSjcVxHLvnnnuYJEmacSLXiVVWsPP60ULPsyQQCLAxY8bIyx133HFNasHKy8vZ2LFjdR+/Rx99VFd+W7dubXIdvvfee4a/55AhQxgA1qlTp5jHyQgtJmSMMVZbW8ueffZZNnToUJaXlxdVUNS6IObNm8duuukm1rdvX5abm8sEQWDZ2dnsyCOPZGPHjmWvv/4627Nnj+K6ZoSMMcZmzZrFRo0axQoLC5nX62Vt27Zlp512Gnv77bdZIBBgjDFdQhYMBtnrr7/OTjnlFFZYWChXbSvtKyOFzF9++YVdd911rEePHiwjI4OlpaWxrl27squuukrXjT28HRIyfT+xhIwxxlatWsX++te/sl69erGMjAyWlZXF+vXrxx544AG2bdu2mOtXV1dH3eAPHTpkwzdmbOPGjezBBx9kxx13HCsqKmIej4elp6ezrl27snPOOYf94x//UG0a0RxCxljopvzRRx+xMWPGsK5du7LMzEzm8XhYfn4+GzRoELvhhhvYtGnTWFVVleL6ZoSMMcb27dvH7r33Xta7d2+WlpbGcnNz2aBBg9jzzz/PqqurmSRJLC0tjQFgp5xyiq6YkiTJzUzy8/NZXV2doZzM0NJCFmbmzJls1KhRrKioiKWkpLBOnTqxyy+/nC1atIgxpq9AGEaSJPbFF1+w8ePHs169erHs7GwmCALLzc1lRx99NBs3bhybNGkSKykpiVov8kH94IMPam6DMcauvPJKefl77rkn5vLxgt/vZ2+99RY77bTTWOvWrZnP52Pt2rVjo0aNYlOnTrW1oBAMBlmnTp0YADZy5MiYyxu9v8YSMsas318j2bZtG7v//vtZ3759WVZWFsvIyGC9evVif/3rX9nq1atjrm9EyMIsWrSITZgwgXXr1o2lpqay3NxcNnDgQPbUU0+xgwcPGspfDb3Xn5KUKb2ssFL2UkKSpKguFV26dLH1PG0uIWPM+jkTyYEDB9iTTz7JBg4cyHJzc1lqairr1q0bmzBhgnwvjYURIWPM3utHDb3PkmAwGHUfV5IyxkJNfu+88042YMAAVlBQwDweD8vMzGQ9e/Zko0ePZi+88ALbvHmzoRxPO+00ebsZGRmssrLS0PobNmyQ13/mmWcMrRsLjjGLw/8RBGELs2fPlkfYuv322w0PMEFYZ9WqVTjqqKMA6D8G33//PUaOHAkgNPfKiy++2JwpEoQj/Pvf/8bdd98NQRCwbdu2Fhv+niAIwi089thjePrpp5GRkYHt27ejoKDAttjOzxhLEASAw3PgZWVlNWtfLkKdyNHO9PZde/311+XfE2HuMYJQ4uabb0abNm0giiKee+45p9MhCIJoUSoqKvDqq68CCI03YaeMASRkBOEawkJ29913o6ioyOFsEo8FCxZozn/26quvyp3q27dvr2vOmuXLl8sdxkeMGGF6ziKCcDtpaWl44oknAABvvfUW9uzZ42xCBEEQLcjLL7+MkpISFBQU4P7777c9PjVZJAgXUFxcjFatWqGwsBCbN29u1omjk5UePXqgrq4OZ599NgYMGICioiIEAgFs3rwZM2bMwB9//CEvO3PmTFUh+/bbbyFJEjZs2IDnnnsOe/fuBRAa+S88AStBJCKSJGHw4MH4/fffceutt2rObUQQBJEoVFRUoGvXrigpKcEbb7whz0FqJyRkBEEkBT169MDmzZs1l0lLS8Pbb78tT2KtROTUBGH09jf77rvvUFNTEztZBQoLC+XJXQmCIAiCSBxIyAiCSAoWL16M6dOnY/Hixdi9ezcOHTqEmpoa5OXloVevXhgxYgT+8pe/xJx7KCxkmZmZ6NWrF/7yl7/g2muv1TVvWZcuXbB9+3ZT+Q8fPhzz5s0ztS5BEARBEO6lxSaGJgiCcJLjjz8exx9/vOU49A6LIAiCIAg7oRoygiAIgiAIgiAIh6BRFgmCIAiCIAiCIByChIwgCIIgCIIgCMIhSMgIgiAIgiAIgiAcggb1IAiCIEwhiiJqa2tRU1Mj/0T+v7q6GvX19fD7/fD7/VG/K/3f7/dDFEVIkhT1b/hHkqSoz4DQqJdqP+GRL3mehyAI8Hg88Hq98o/a/30+H1JSUpCWlobU1FSkpqYiPT1d/j3y72lpacjMzER6ejo8HnqkEgRBEMahpwdBEEQSwxhDZWUlKioqUFFR0eT38vJy+W/hf6urq1FTU4O6ujqn03cV6enpyMzMjPrJysqK+n92djZyc3ORk5OD3Nxc5ObmIi0tTXF+O4IgCCI5oFEWCYIgEgxJklBeXo6SkhKUlpY2+bfx76IoWtqeIAhIT0+P+klLS0NGRgZSU1Pxzc/rwDgB4Hgg4t/Gf2PgAY4D5H8bfhR+ZxECw8mPsYh/5ScbO/zDGMBEgDFwkADW8BPxO8ckACIgiQATccHwI1BXV4fa2lrU1tairq5O/n/43/r6ekv7z+fzyXIW+ZOXl4fCwkIUFhaioKAAhYWFyMjIIHkjCIJIMEjICIIg4ghRFFFaWooDBw7g4MGDOHjwYJPfi4uLEQwGDcVNT09HdnY2srKykJ2djezsbHy/dCsY7wV4X6N/vWC8B+DCP2GBSlKYBEgBcFIAkAIAC4CTgof/xgK49PS+co1jWVmZ/K/f7ze0qdTUVFnOwqJWUFCAVq1aoVWrVmjTpg0KCgp0TVROEARBuAMSMoIgCBchiiKKi4uxd+/eJj/79u3DoUOHdNdo5eTkID8/H3l5efh13X4wPgUQUhr+TQWTf08JSRXRsoRr7KR6cKIfnFQPSH5wYujfUSd0x6FDh1BcXIzi4mJUVVXpCuvxeNCqVSu0bt0abdq0afJvq1at4PV6m/nLEQRBEHohISMIgmhh6uvrsXv3buzYsQO7du2Kkq79+/fHrN0SBAEFBQUoKipCq1atMOfXHYAnFUxIa/hJBYRUkqxEQwo2yFud/HP12f3lmtH9+/ejuLg4prDzPI/WrVujffv26NChAzp06ID27dujffv2aNu2LVJSUlroCxEEQRAACRlBEESzIEkS9u/fj507dzb52b9/P7RuvYIgoE2bNmjbti2W/HkQzJMO5skIyZYnDeBTk7uJIKEOkwCxDpxYCy5YA06swYUn98S+ffuwf/9+7Nu3T7OZJMdxaNWqlSxpHTt2ROfOndGlSxe0atWKmkISBEE0AyRkBEEQFhBFEXv27MHWrVujfnbv3q1Z8M3MzESnTp3QoUMHfLN4e0i6hHQwTzogpJFwEc0DY6FatmA1uEAVrj23P3bt2oXdu3dj165dqKmpUV01NTUVnTp1QpcuXWRJ69y5M9q1a0dD/hMEQViAhIwgCEIH4Rqvbdu2YcuWLbJ4bd++XVW8vF6vXMvw4/K9YJ5MMG8mmCcT4H0kXYS7YCzUhy1YDS5YhevO7Y+dO3di27Zt2Llzp2pTWo/Hg44dO6Jbt27o3r07unfvjh49eqCwsJBGhCQIgtABCRlBEEQjgsEgtm3bho0bN2LDhg3YuHEjNm3apFp7kJKSgi5dumDtzhowbxaYNxuSNxMQ0km6iMSASaEmkIFKcMFKnHNcR2zfvh07duxAbW2t4io5OTlRgta9e3d06dIFPp+vhZMnCIJwNyRkBEEkNbW1tdi0aRM2btwo/2zduhWBQKDJsh6PB506dcLGffUR4pVN4kUkL4wBYi34QCW4QAXOGtwOmzZtws6dOxUHFxEEAZ06dULv3r3Rp08f9OnTB927d6eBRAiCSGpIyAiCSBqCwSC2bt2KtWvX4s8//8Sff/6Jbdu2KQ6wkZmZiR49emDZpgowXw6YNxfMm0kjFxKEHpgYqk3zl+Py03tg8+bN2LRpEyorK5ssKggCunXrJgta79690a1bN+qXRhBE0kBCRhBEQsIYw4EDB7B27VpZwNavX4/6+vomy+bn56NXr174eW0JmDcHki+Har0Iwm4YA8Q68IEyXD/qCKxbtw7r1q1DeXl5k0V9Ph969OiBI444Av369UO/fv3QunVrB5ImCIJofkjICIJICILBIDZs2ICVK1di1apVWLNmDUpKSposl5GRgT59+mDJhgqwlDxIvrzQnF0EQbQ84SaP/jKMP7Mn1q9fj/Xr1ytOgl1UVIR+/fqhf//+6NevH3r06EG1aARBJAQkZARBxCU1NTVYs2YNVq1ahRUrVmDt2rVNar/CTaHW7QlASskD8+WFRjikmi+CcC+MhUZ69JfhslO7YNWqVdi8eXOTPmkpKSlyDVr//v3Rv39/ZGZmOpQ0QRCEeUjICIKIC8rLy7F8+XKsXLkSK1euxKZNm5oU0LKystC/f3/MX1MGKSUfzJsD8PQGnSDiHikIzl+KWy44EqtXr8aaNWua9EfjeR69evXCMcccgwEDBpCgEQQRN5CQEQThSmpqarBy5Ur89ttv+P3337Fp06Ymg2+0bt0aeyq9IflKKQDzZFHtF0EkA4yBC1aBqy/BBUPbYcWKFdi9e3fUIiRoBEHECyRkBEG4Ar/fj7Vr1+L333/Hb7/9hrVr1zapAevcuTO2FHOQUgogpeQDnnSHsiUIwnUEa8HXF+PCE9rhjz/+UBW0wYMHY/Dgwejbty+8Xq9DyRIEQRyGhIwgCEdgjGH79u1YsmQJli5dipUrVzbpA9amTRvsrvRBSimClFpIg28QBKGfGIKWlpaGAQMGYPDgwRgyZAg6dOgAjmrYCYJwABIygiBajJqaGvz222+yhO3bty/q87y8PBTXpx8WME+GQ5kSBJFwBGvB1x/E2QMLsGzZMpSVlUV93KZNG7n27Nhjj0VWVpYzeRIEkXSQkBEE0WwwxrB161YsWbIES5YswcqVKxEMBuXPvV4vjj76aCzeVAcppQjMS33ACIJoARgDFyjHbaP74Ndff8WqVasQCATkjwVBQL9+/XDCCSfgxBNPRMeOHan2jCCIZoOEjCAIWwkGg1i+fDkWLFiAhQsX4sCBA1Gft2vXDjsrUiCltoKUUkijIBIE4TxSEHz9IVx+SgcsXboUO3bsiPq4ffv2OPHEEzF06FAcffTRNP8ZQRC2QkJGEIRlqqursWTJEvz8889YvHhx1KSuPp8PAwYMwML11ZBSW4N5MqgWjCAIdxOsxv1j+mLhwoVYvnx5VM1+RkYGhgwZghNPPBHHH388srOzHUyUIIhEgISMIAhTFBcXY+HChfj555/x+++/RzX3ycvLQ7E/C1JaW6oFIwgivpEC4OsO4vwhhfjll1+i+p4JgoABAwbglFNOwUknnYS8vDzn8iQIIm4hISMIQjcHDhzAvHnz8OOPP2LNmjVRn3Xs2BFby1IgpbUF8+VRLRhBEIkHY+D8pbjuzC5YuHAhtmzZIn/E8zyOOuooDB8+HCeffDKKioocTJQgiHiChIwgCE2Ki4tlCVu1alXUZ3379sWKXVJIwrw0IhlBEMkFF6jCred3x/z587Fu3bqoz/r27YtTTjkFw4cPR5s2bRzKkCCIeICEjCCIJhw6dAg//fQTfvzxR6xcuRLh2wTHcejfvz9+28EgpbcFhDSHMyUIgnAJwRrcfVEv/PTTT1i9enXUR3379sXIkSNx6qmnUrNGgiCaQEJGEASA0MAc8+bNw3fffYcVK1ZAkiT5s379+mH5LkBMawd4SMIIgiA0Cdbi/jFHYP78+Vi+fLn8UksQBAwaNAgjR47EsGHDkJ6e7nCiBEG4ARIygkhigsEgfv31V3z33XdYsGAB/H6//NmRRx6JlXt4kjCCIAgriHW456Ke+P7776OaNaakpGDYsGEYMWIEhgwZAq/X62CSBEE4CQkZQSQZjDFs2LAB3333HebOnYuSkhL5s86dO2NzWTrE9A6Ah97cEgRB2AkXqMKNZ3XE999/j127dsl/z87Oxumnn45zzjkHvXr1okmoCSLJICEjiCShuLgYs2fPxuzZs7Ft2zb577m5uSgO5kPK6ADmzaXREQmCIJobxsAFynDlya2bvBjr3r07zjnnHIwcORK5ubnO5UgQRItBQkYQCYwoili6dCm++uorLFq0CKIoAghN1lwrFELK6AgptRXA8Q5nShAEkaQwBq7+IM4+Kj2q6bjH48GJJ56Ic845B4MHD4bHQ/M5EkSiQkJGEAnI/v378fXXX+Obb77BgQMH5L/37dsXy/d4IaW3A3jqr0AQBOEqRD8eGNMbs2bNwvr16+U/FxYW4swzz8S5556L9u3bO5ggQRDNAQkZQSQIwWAQixYtwsyZM7F06VJ5VK/s7GyUSIWQMjuDebMdzpIgCILQA+cvxxUnFWLOnDkoLy+X/37cccdh9OjROP744yEIgoMZEgRhFyRkBBHnFBcX48svv8SXX34Z1Q9hwIABWLqdD80XxtFDmyAIIi5hIv554xB89dVXWLp0qfzn1q1b4/zzz8eoUaOQn5/vYIIEQViFhIwg4hDGGNauXYvp06dj3rx5CAaDAIC8vDwcDBZAyugM5s10OEuCIAjCVoLVGD+8EN988w0qKioAhPqanXLKKRg9ejT69+9PIzQSRBxCQkYQcYTf78cPP/yA//3vf1Hz2fTv3x+/70mBlNaWBuhoYTgGMJvKP26NRRCEy5BEPDn+KHz++edYu3at/Odu3brhkksuwciRI5GSkuJgggRBGIGEjCDigIMHD+Lzzz/HzJkzUVZWBqBhpERPa4hZ3cB8uY7ml6xwEXdPq/LTHLHsEDK3xiIIIgTnL8NFg7MwZ84c1NfXAwi1lrjwwgsxevRoGjqfIOIAEjKCcDFbt27F1KlTMWfOHLlZYlFREfb6CyFmdAYEegPqFJzCndOsaNgVq3EcK+Lj1lgEQagg+XHXBV3x2WefyaPr+nw+nHnmmbj00kvRpUsXZ/MjCEIVEjKCcBmMMaxYsQKffPIJfvnlF/nvRx99NJbt8kFKa0PNEh1GSaAA46KhFsfOWHaIndlYduZEEIROmIR/XDcQ06ZNi2raftxxx2Hs2LE49thjqZ8ZQbgMEjKCcAmiKOLnn3/GJ598IvcJ4DgOwdS2ELN6gKXkOZwhAWhLFKBfNmLFsSuWEfmx67vFikVCRhAtAGPg/CU4vTeHn3/+WZ4KpWfPnrjyyisxfPhwGjafIFwCCRlBOIzf78esWbMwdepU7N69G0BD/zBvO4hZ3Wm0RJegR6DCxBIOvbFaKo7eWHbF0RuLIAibCFbjihNy8M0336C2thYA0LFjR1x55ZUYOXIkvF6vwwkSRHJDQkYQDlFfX4+vvvoKH3/8MQ4ePAgAyMrKQinXFmJmN+of5iKMyFgYNeEwGsuOOFry44Ro6olFEEQzIPpx85lt8Nlnn6GyshIA0KpVK1x++eU499xzaWRGgnAIEjKCaGHq6urw5Zdf4pNPPsGhQ4cANAzUEWgdGqiD9zicIRGJGRkDlIXDLrFL1DgEQbQQUgB3nt8Z06ZNQ0lJCYDQyIyXXXYZLrzwQqSmpjqcIEEkFyRkBNFC1NbW4osvvsDUqVPlB2Dr1q2xy98aUkYngKO2/G7DrIyFCUuHG+JECpDb4hAE4RBMxMNje2PKlCnYt28fACA/Px9XXHEFLrjgAqoxI4gWgoSMIJoZv9+PL7/8Eh9++CFKS0sBAG3atMHO+rCI0YiJbsSqRNkJ49whdc0RhyAIF8AkPHF1P3zwwQfYs2cPAKCgoABXXXUVzjvvPPh8PocTJIjEhoSMIJqJYDCI2bNnY9KkSdi/fz8AoF27dthe2wpSRkcSMZfiJhFLZEjIkhgOgNXrzI4YdsZJFJiER684Ah988IH83CoqKsK4ceMwatQoeDzUpJ4gmgMSMoKwGUmS8NNPP+Hdd9/Fjh07AIQeaHuC7ahGzMWQiLUsJGRJTvj4W7nuIs8hN8RJJJiEh8f2wuTJk+VBpzp06IAbb7wRw4cPp3nMCMJmSMgIwkaWLVuGN954Axs2bAAA5OTk4BA6QMzsCvDUR8xtkIQ5BwkZgcbngJnr0Y4YdsZJNJiI+y7qhsmTJ6OsrAwAcOSRR+Lmm2/GMccc42hqBJFIkJARhA1s27YNr732GhYvXgwASE9PR4WnI8Ss7gBP87u4DRIxd0BSluSoHX+j16cdcezKJVGRArhpZCtMmzZNnsds6NChuOmmm9CtWzeHkyOI+IeEjCAsUFpaivfffx8zZ86EKIoQBAH1aZ0hZveiecRcBkmY+yAhI1RFKIze61Yrjh0xjMRJZMQ6jB2SJj/zeJ7HOeecgxtuuAF5eXlOZ0cQcQsJGUGYoL6+Hp9++ik++ugj1NTUAADEtDYQc/qCeTMdzo6IhETMvZCQEQBiixAQW4b0nkt2xKF7CrhAFc7oI2LevHkAgIyMDIwfPx4XX3wxvF5qFUIQRiEhIwgDMMawcOFCvPLKK9i7dy8AoFevXlhdWgSWWuhwdkQYkrD4gISMkDFyLqhd326JkUS88+AZeOWVV7Bu3ToAoYE/br31VgwdOpQG/iAIA5CQEYROdu3ahZdeeglLliwB0DByotgRUnoHgB48roBELL4gISOiMHo+KF3vbomRTDCGJ67uizfffBMlJSUAgMGDB+O2225Dly5dnM2NIOIEEjKCiEFtbS0++ugjTJ06FYFAAB6PB3VpXUP9xHiak8UNkIjFJyRkRBPMnBONr3+3xEg2pACuGZ6LTz/9VH5WXnbZZRg3bhxSU1Odzo4gXA0JGUFoMH/+fLz88ss4cOAAAEBKLUIwtz+YN8vhzAiSsPiHhIxQxMp5wSyub0eMZL83BatxatcaLFq0CADQpk0b3HXXXRg6dKjDiRGEeyEhIwgFDh48iBdffBELFiwAEHqg7Ax0hJTWlponOgyJWOJAQkYokijnRZLfq56/eQheeukl+YXmySefjNtvvx2tWrVyODOCcB8kZAQRgSRJ+OKLL/Dmm2+ipqYmNIx9ejdqnugCSMQSE5IyQpFEOS+S/b4lBTHh5Gz897//hSiKSEtLw3XXXYeLL74YgiA4nR1BuAYSMoJoYOvWrZg4cSJWr14NAJB8eQjmHQPmy3Y4s+SGRCzxISkjFEmE84LuXwAAzl+BY1sVY9WqVQCAvn374sEHH0Tnzp0dzowg3AEJGZH0BINBfPjhh/jwww8RDAaRlpaGipQekDK7UvNEhyAJSy5IyAhVEuHcoPtZCMbw8NieeP3111FTUwOfz4cJEybgsssug8dDLVCI5IaEjEhqtm7dimeeeQYbNmwAAIipbRDMOwrwpDmcWXJCIpackJARmsT7+UH3tWiCtTi5U7k8hUzv3r3x4IMPonv37g4nRhDOQUJGJCWiKGLq1Kl47733EAgEkJWVhRJvL0jp7alWzAFIxJIbEjJCk0Q4P+geFw1jeHJcP7z88suoqqqCIAi45pprcOWVV1LfMiIpISEjko6dO3fiH//4B9asWQMAEFNbI5h/NCBQrVhLQyJGACRkhA7i/Ryhe50yYh1GdK+RRzTu168fHnnkEbRr187hxAiiZSEhI5IGxhhmzpyJV155BfX19UhPT0d5Si9IGZ2oVqyFIREjIiEhI3QR7+cJ3feUaagte/HFF1FTU4O0tDTccccdOPvss8HRs5lIEkjIiKSgoqICzz33HObPnw8AkFIKEcgfAHjSHc4suSARI5QgISN0E8/nCt3/tAnWYHDRfqxcuRJAaN6ye++9F7m5uc7mRRAtAAkZkfCsWLECTz/9NA4cOBCaVyyzD8Ss7lQr1oKQiBFakJARuon3c4XuhdowhtvOaYN3330XoiiioKAAjz/+OI455hinMyOIZoWEjEhYgsEgJk+ejMmTJ0OSJLRv3x5bg93BfHlOp5ZUkIwRsSAhIwwRz+cL3Q91Mfmxc/H0009jx44d4Hke1157La666irwPO90agTRLJCQEQlJSUkJnnzySfzxxx8AADG9I4J5/QHe63BmyQOJGKEXEjLCMPF8ztC9UR9SEOf3C2L27NkAgMGDB+ORRx5BXh69VCUSD3rVQCQcq1atwvXXX48//vgDaWlpCOQPRLBgIMlYC8ExkjFTWN1ncbzP6XwhDBPP50w8y2RLwnvw5ZoUPPjgg0hJScGvv/6K6667DsuXL3c6M4KwHaohIxIGxhimT5+OV199FaIoQvJkIlg4BMyb5XRqSUNSF6zD391MYcvKunat73AhkWrJCFPE83mTzPdLg3CBCvRM2YLt27eD53nccsstuPTSS2kURiJhICEjEoKamhpMnDgRc+fOBQCIae0RzD8G4D3OJpZEJK2MNf7eRssHdq7vhAzaCEkZYYp4P2+S9d5plEZNGM844wzcd999SElJcTgxgrAOCRkR9+zduxcPPfQQtmzZEhpFMesIiJndaBTFFiJpRQxQLkgZOe3ctj7VkhHxTDyfP8l8HzUCY7jvoi5yS5hevXrhmWeeQevWrZ3OjCAsQX3IiLhm5cqVuOmmm7Blyxbk5+ejtmAoDWnfgpCMJfH6zUBSn0+EdeL5/OEQ30LZUnAcJs7YjhdeeAE5OTnYsGEDbrjhBupXRsQ9VENGxC2zZs3CxIkTEQwGIXlzECg8DvCkOZ1WUpD0BWet76+nUBVr/8WK0Zzru6BQSDVlhCXi/fxJ9vurXoI16Je5DRs3boQgCLjnnntw7rnnOp0VQZiChIyIO0RRxJtvvompU6eG/p/WFsH8gdRfrIUgGdOxjFaB0O3ru6AwS0JG2EK8n0fJfq/VgxTEqCPq8f333wMArrrqKlx//fU0XxkRd5CQEXFFfX09nnrqKSxYsAAAEMzuBTG7DzVRbAGSXsQA/QUktdMx3tdvQUjKCFuI9/OI7ruxYQw3np6HDz74AABw2mmn4aGHHqLBPoi4goSMiBsqKirw0EMPYdWqVfB6vajJOgpSRgen00oKkl7GjH5/pUKg1Rgtub5LCrEkZYQtJMJ5lOz3YB08cdWReO655yCKIvr3749nnnkGubm5TqdFELogISPigv379+Pee+/F9u3bkZmZiZK0o8FSC51OK+FJehEDzBeEIguBZmK4aX2HICEjbCNRziW6J2vy2t2n4NFHH0VVVRU6dOiAF154AW3atHE6LYKICQkZ4Xo2b96M++67D8XFxWBCKgKFQ8F82U6nlfCQjMFa4YezYX0nc3BJAZakjLCVRDif6N6sCReoRCesxb59+1BUVIR//etf6NKli9NpEYQmJGSEq1m1ahUeeOABVFVVQfJkIVA0lEZSbGZIxBqg/eCawitJGWEriXI+0T1KnWAteqdswLZt25CTk4PnnnsORxxxhNNZEYQqNAwN4Vr++OMP3HvvvSEZ8+Uj0HoYyRjR/DBYLuhwzLrY2rG+ZbmmAp9t0IsOF0HHIvHxpGG9/wgcccQRKC8vx5133onff//d6awIQhUSMsKVLF26FPfddx9qa2shpRSFasZ4n9NpJTS2FODjmQgRs7If7NiHnMU87DqOnA1yagfxfl5aPZ5EM+CSc5toRgQflld0xcCBA1FbW4v77rsPv/zyi9NZEYQiJGSE61i4cCEeeugh+P1+iKmtESg6juYYa2aSvqAYUWC2U8bMxLK7Zs2q1JGUWcOu40E0E3Q8Ehvei18OtMNJJ52EQCCARx55hKSMcCUkZISrmD9/Ph555BEEAoHQhM+FQwBOcDqthCbpC4g21V7YWTNmNq6tNWMuxK15GSVRvkfCQMcjseEEfL81F8OHDycpI1wLDepBuIbFixfj4YcfRjAYhJjeHsH8gQBH7wyaCyoUQlPGjAwkobUv9caxGiPW8bSaB+PgisEQ4mmAD7uOCdGCxMsxofu3cZiEM7pX4KeffoLX68UzzzyD448/3umsCAIACRnhEn7//Xfcf//9oWaKae0QLBgEcPHyZIw/SMagq2bMDhGKFUfvsWjuGLHiuEXIgPgRGavnBuEQ8XBM6B5uDiZhZLdyzJ8/Hz6fD//4xz8wZMgQp7MiCBIywnlWrVqFe++9F7W1tRBT2yBYOJhqxpoJErEGdDZTtEOCtOK4JYbeOCRl+rHruBAO4fZjQvdy8zAJI7qWYcGCBUhNTcULL7yAfv36OZ0VkeSQkBGOsmHDBtx5552hoe1TikIDeFCfsWaBZAxRhRgrtRdm9mXjWG6JYTQOSVls7DouhAtw63Gh+7k1mIST2x/AkiVLkJWVhf/85z/o2rWr01kRSQwJGeEYe/fuxV/+8heUlJRASilAoPB4Gk2xGSARa8Dk4B12SFDjOG6JYSYOCVls7Do2hEtw43Gh+7p1pCAG5m7DmjVrUFhYiFdffRVt27Z1OisiSaF2YYQjVFRU4L777gvJmDcbgUIa2r45IBlrwAUjKdoxF5WdMczGccsw+IA7z2+n57AjmgE6LokJ78HvpZ3QtWtXFBcX45577kFpaanTWRFJCgkZ0eLU19fjoYcewo4dO8CEtIaaMa/TaSUcVLhrwIZJlu2aNNtNMSyLg0vOLzed5245vkQzQMclMRF8WFfXE23atMGuXbvw8MMPo76+3umsiCSEhIxoUSRJwjPPPINVq1aBcR4Eio4HPGlOp5Uw2CkPiYTj+4MxcCIDJ1lIhIXWtxTDJtzWtM7x49uAXfvFLd+HcDEuuwbjGk8adqAvsrKysGbNGjz77LOg3jxES0NCRrQo77zzDubNmwev14tA4XFg3mynU0oISMIUiKjFsVxQtvJwZgycZH37UU0NHZSyqH3ponPOLee/22SVsBEX1QwDCEkZnW+2wLyZ+Pvf/w5BEDB37lxMmjTJ6ZSIJIOEjGgxfvjhB3z00UcAgJqs/mCphQ5nlBi4pSDqKuzcJ3bKGDMhU41kzEkUZcMluQHuuRbskDK3fBdCAbcdG5IyW7j5+R9wzz33AADef/99fP/99w5nRCQTNMoi0SJs2rQJt9xyC+rq6hDM6gExt6/TKSUEVGhTQGOfGN5fjW+PRiYrV6sZ4wDG64wTQ8Z0x7GBmJLhkkKhm2qo7Lg+3fR9iEa47djQ88AWxp+YhqlTp8Ln8+HVV19F7969nU6JSAJIyIhmp6ysDDfeeCP27dsHKbUIgcKhxgq2RBNIxFSIsV907ze126Le8zZWM0U9UqajZqylhEyXFLjoknaTxJCUJQFuOz70fLAGYzi1UzEWLVqENm3a4J133kF2NnWvIJoXarJINCuiKOLJJ5/Evn37wDwZCBQMIhmzCMmYChYmeo5eSKtKSs9GdPQZi9V0UWczxZboS6ZbBlx0XrrpGqHmi0mA244PPWKtwXH4cXsu2rVrh3379uHvf/87JMlqR2CC0IaEjGhWPvroI/z2229IS0tDoHAIwPucTiluoYE7NLBrv1htMNAMA3jEojmlzLBMuOj8dNO1QlKWBLjt+NCAH9bgvXj66afh8/mwePFiuf87QTQXJGREs7FixQq8//77AICKtCNoREULUGFMBROjnqkWjvXKmNJy8rD2RhJRkCm3D+Cha0Vb07CEW/YlQFKWFLhtFEaApMwCVz3xJe666y4AwLvvvovffvvN4YyIRIb6kBHNQnl5Oa699locPHgQYnpHBAsGOp1S3EKFMBWsTmwcFctgsMhmt1ZrxcL9ySzKmJ39ySzLg8sKgW7qg0V9ypIEtx0jeo6Y5qKjgvj6669RUFCASZMmIScnx+mUiASEasgI22GM4f/+7/9w8OBBSJ4MBPOOcjqluISaKGpgtWVh1FxaJoKF17GjiWI4jsXvZFfTRVsK+3TeqkI1ZUmC244RNWE0zf+WA506dcKhQ4fwr3/9iyaNJpoFEjLCdr7++mssWrQIXq8XwYJBAO9xOqW4gwpcKtjdJMjCg5WTGISA9WQ4EfDU2VFtAgh+i3bImH190ugcJpIdugYSA96DRx99FIIgYN68eZg9e7bTGREJCDVZJGxl//79GD9+PGpqahDM6Qsxu4fTKcUdJGMq2LBfuEb9tszWVnAM4MMyxgGSYC4QJ4UkinEcxFQLr68ZwAcZwAGiz+R7tohaOmZkrrRYuOStvBub+VlqourC70NoYPV4hc8Vu+IQhrn1rFZ4++23kZ6ejvfffx9t27Z1OiUigaAaMsI2GGOYOHEiampqIPnyIGZ1dzqluINkTAGbasUay1j4b2bi8IFQU0UrzRXDMhYe3EOoN/klG2SMk0K1baZqyRo1mVTaV/GOG68ts1JFMhaH2DYSrAtySFL+M2s/+vfvj5qaGjz77LPUdJGwFRIywja++eYbLF26FIzjEcwfQPONGYD6i6lg0z6xSzAiZUyGAbxoLHakjMl/E01IWYSMHY5jUMqae2RHF53XbrzGjMoVyVgcY/b8azIIkdVECFNwHJYVt0ZKSgr++OMPfPvtt05nRCQQJGSELRQXF+M///kPAEDMPgLMm+VwRvGDGwuJrqCFZEzv/leUMTTUkhmQMiUZkz8zImUKMmYYDRmztZbMRee4G683kqwkwq5+sG4cYj8Z8GTg2muvBQC8+uqrKCsrczYfImEgISNs4fXXX0d1dTUkXy41VTSAGwuHriAeasYiP9cpRVoyJqMn3RgypquWTEfNGElZy6FHykjcEgi952Cs5eyKQ+jmxZm70KNHD1RUVODVV191Oh0iQSAhIyyzfPlyzJkzBxzHIZh3NDVV1AE1UdTAARnTOhaxZEwmRi2ZLhmDjv5kOmvGNKXMQDNFkrKWQ0u4SMYSEDf0KyOMw/G49957wXEcZs+ejWXLljmdEZEAkJARlggGg3jxxRdDv6d3BvPlOppPPODGgqBrcLBmTOm46JYxaDdd1Ctj8vJqTRcNNlNUlDITfcZIyloOJfEiGUtgrNaW2x2H0MU1z8zCRRddBAB45ZVXEAwGHc6IiHdIyAhLfP7559iyZQsY70Uw5win03E9biwAugIbR1LkRetzaXEMEPxMt4zJ6yn0L/PUSYZkTIZF/84HmPU+YwRBuA87+5URLcbHi2uRk5ODrVu34uuvv3Y6HSLOISEjTFNZWYn33nsPABDMORIQfA5n5F6oiaIGLuovFj5Oloa1l6UwolbMzPD64aaLkcPam8gnqpbMwoiKVEvWckTWiFHtWBLBVH43GsOOOERseC8mTJgAAHj33XdRXV3tbD5EXENCRpjmk08+QVVVFSRPFqSMzk6n41rcWOBLNGwbvEMChDprtVCcBHBBQKgzUSvWOFaQwVstWa4VC0uZ1XORpKzlYBzJWFJCozDGFc9N34JOnTqhrKwMH330kdPpEHEMCRlhikOHDuGzzz4DAIi5R1gbyCPBCx1UqNLApmaKtslYvQTO6mSf4RotqylFNL/kA9a/H+9nEOrs2U9G511ThQqMqlCtehzCwZ7nmV1xiOaH4/GXv/wFAPDpp5/iwIEDDidExCskZIQpJk+ejLq6Oki+PEhpbcwH4hr9SyQPdsqYxbfBYRkLxzEteA0yBhb6MV2zFWPERqNwwdA+4kSLUsYO/5tIUua2lyaRIkZSFidwKr9bjemyc5Noyt2v/YKjjz4afr8fH3/8sdPpEHEKCRlhmL1792LmzJkAgKDZ2rEke9C4rcDnOHbLmIW4UTIWEcewlEXKmPw3E1KmIDtWasm4YKNYZmsAG6+WIFIWD9cmSVkcYvYZp7ROHJyjSQ3HyX3JvvrqKxQXFzubDxGXkJARhpk2bRqCwSCklEKw1CLjAdQeLvTQSXxsHE2xiYyZiaMkY2GMSJmSjMmfGZAyDckxI2WNZQwA0NBPzhAtIQQOSIcbZUxNvkjKXIzWeWTkHLMrDtHi3PLCj+jfvz/VkhGmISEjDFFWViYP7xrM6XX4A70PiyR+qLix8Nei2D2aolo8ndvRlDEjaMmY0TgxapyMSJmijIU/M9J0UWsxm5tWJjuxpIukLE6xswkj4S7kbheHa8m+/PJLHDp0yLGUiPiEhIwwxIwZM1BfXw/JmwOWUqh/xSRrokg0wqZaMXmOsVjxYhVs9cpYrFoyvTIWq5bMgNjokTItGZOX0SNlelKK06aLbntBole2SMpchl0vI+mlZtxz64s/oW/fvvD7/fjf//7ndDpEnEFCRuimrq5OvsmI2T2b9h2zoyligj9s3FYIbBFcNHgHYKJmTE3KjNaMqUmZGaHR2KYeGZOX1ZIyIynFmZS57To0KlkkZS7B6HlkV3N9esHpDhofA47DZZddBiBUS1ZfX9/yORFxCwkZoZvZs2ejvLwczJMOKb2tvpXooZHcONlfTGF5x5spNpYykyITnry6yd8NyNjhWMqyaZg4kTK3yZhZSMriFDvPvwQ5lxOJ+9/6FW3atEF5eTnmzJnjdDpEHEFCRuiCMYYvv/wSACBmdgM4lVMnchh7sw+LBH/IJEqBMCZuGLyjYT1OAjy1knkZi6wls9pnLCxlFgWmcdNFMzIGoOkgH1aOm8ulzI3XnhWxIilzECvnUuTz0eo56cJzOilQre3kcOGFFwIAPvvsMzCrfYuJpIGEjNDFn3/+iY0bN4JxPMSMjtoL0wMiJm4sGNqKG2QsHEcKNc2z3NyRheLYM4AHs0VcOImB90vmZSwcJ9x00Y6yg0ulzI3XnB1CRVLmAG4bpMOF57YraaH99OLMbUhJScGWLVvw559/tsxGibiHhIzQRbh2TEprBwi+5t0YFTCSHlnGXBJHjmd2oufIGAzw1IngAzYEi4hpLUDoh7cods2CTSm5TVzsyseNopnQuHV/uzUvt2HHfooVg/dh+PDhAIBvvvnGhg0SyQAJGRGTuro6/PjjjwAAMbNL827MZYWm5oQKUso0kSiT+ykqDgcwwdoOj5IxM5OhN+Qk1IsN8ZhlKbPlHIrYN5xkk5TZWUvWEM8O3CJlbsmDSDBosA91OJXfm4mvllcBAObOnYu6urrm3yAR95CQETFZuHAhamtrwYR0sJT85tmIDaPnxSMJK2V2SJSVzSvEYYJ5KbOrZiwsY4fjmpeyqHOHMXOFfAVRJSlrXuzcfsLeP9xKvOzveMnTSczKq851WEoh2rZti+rqaixYsMDEhohkg4SMiMncuXMBAGJGe9M1A5okoYglBQZPFU0ZMxBLK44ZKVOVMQPXgpKMHY5vTMoYp1IQNyplGrWGJGXNA8lYHBNv+zve8m1OtPZFc+0njsPIkSMBAPPmzWumjRCJBAkZoUllZSWWLFkCAJDSO9i/AZKxxC5Y6fhuURM+2xArVhy9UsZJOmrGdEiZlowd3pY+KYt5ruiVMh1NOEnK7IVkLI6J1/0dr3nbiZ590EyTcr/z3Q4AwJIlS1BTU2NsZSLpICEjNFmyZAkCgQAkbxaYL9ve4CRjMslawDLcRFFjPxmJxWLc+Qw1UdSQMj0ydjipGB/rPUdiSZkN/ekMY7eU2YTTzRfNkKz3CsIkdL7oI9Z+MrEfmTcbHTt2hN/vx6JFi0ylRSQPJGSEJuGbiJTWxt7AcVgQIkyi8iAz3V9MIZ4ZsdNqrmc8p6axDMkYAI6p15IZLoSrSZlBGbOtlgxw7XD4LSFlNKJiHJMI+zwRvoMZjH5vu/cTx+GUU04BAOpHRsSEhIxQJRgMHm6uaJeQJengHXpI6MJWo+9m53D0ZmMpNV20NHhHhJQZlbHD228qZabPi8ZSZrJmjKTMHbET+v7gVhJpnyfSd2lOlAb7sLDv3v1uGwBg2bJlEEXjzwQieSAhI1RZs2YNKisrwXgfmC/PekASsZgkdKGr4bvZImM2xYqUMjtGUgznZEbG5PUjpMzy+RCWMovNFEnKnI2Z0PcFt5KI+zyZhsW3+j25Rv+ahPlykZmZicrKSqxbt85iUkQiQ0JGqPLHH38AAKTUIuujK5KMEQ3YO1GzTbVsNgmCVRkLw9eJSNlfbUNGIezoM2a3lNl2HrhUyuKxfxqRJCSLlFnFlnkeeQwaNAgA5BZHBKEECRmhiixkKQUOZ0IkBCxUSLXlbT8LCQKz+KKAEwHeL9lSeBbqRKTuLIentNZaTn4JnkNV4GrqkbrPupTxAQlCvU3Vf7CpdouzsdmqzYVLt9VqUe2YQyS6UCf6eeWi4zd48GAAh8tUBKEECRmhiN/vx5o1awAALLXQWjAX3RjjgYQsgLHogq6l78iimxealbImMsbMn6hCnQjf3gogEARX6zctZWEZgySFmhvW1CN1v/nhkvkgC+0vkVmWMnlkSqtNDu08v5vpWnGLlCXkvSCeSPRnV6KfXy45fs989BsAYN26dQgGgw5nQ7gVEjJCkQ0bNsDv94f6j3kyzQWhATxMk1AFsUYyFm7+auo7NpIx+c8GpUypZoxjMCVlsoyFO2wzZkrKomQsDGNA0JxIhWUsFMealDWZJsCslNk5uEszXyNOS1lC3QPimUR/hiX6eeaC48c8mcjOzkZ9fT02bdrkdDqESyEhIxRZv349AEDy5ZnrP+aCm2C8kxAFssYyFsaolLGQRNkx8IZWM0WjUtZExsKEpeyQPilTlLHwZ/V+w7VkUTIm52ROylTnbDMqZXZOf9BC14ZTUpYQ134ikejPs0Q/35w+fhyHvn37AgBWrVrlcDKEWyEhIxTZuHEjgNAIQYZx+uaXQMR1wUxNxsLolTKVWrEmi+l4caCnz5heKVOVMTkhBq4+dk2ZlozJcarrdEuZoozJsYxJWawJtHVLWYxDY0jKWviaaGkpi+trPpFJ9Odaop93Dh+/I444AsDhshVBNIaEjFBkw4YNAADmyzG2YqI/tAh9xJKxMLEkSqeMyYtrxDMygEcsKYspY3JCTHMEx5gyFhlHh5RpypgcS5+UxZSxiHiaUqazoKdLyhwqNLaUlJGMuZxEf74l+vnn4PF788tQzdiWLVucS4JwNSRkRBOCwSC2bdsGAJCMCFmiP6wcIu4KaXplLHIVpe9oUMYOx2oazMxoimpSplvGwvgDirVkumUsTAwp0yVjcixtKdMtYzajKWXxdh2ooHY9x911nqwk+nMu0c9Dh46f5M0GAGzbto0G9iAUISEjmrBv3z4Eg0EwjgeENH0rJfpDymHiprBmQsYUmy6alDF59QgpszK0fWMpMyxjgOIgH4ZlLDKWgpQZkjE5lrKUmZIxtVoyE+etopS54Py3c16xxtdz3FzfRIhEf94l+vnoxPHzZCA1NRV+vx979uxxIAHC7ZCQEU3YtWsXAIB5MvQN6JHoDyeX4PpCmxkZCxMpZRZlTE6H42yZZyy8rikZk5M5LGWmZSwyVoSUmZIxOVa0lFmqGWssZRbO1ygpc9F53xxS5vrrmlAm0Z97iX5etvQo0ByHDh06AAAJGaEICRnRhMNCpmO4+0R/KNmEnQU5V2JFxsJYnOS5STiJgQ8wW/a9pzZoXsbCMAa+qg7eXYfMy1hkrIoapG0psX4NNkgZ77fDghukzIZDydlxTjUDzVlTRsQZLjw/bYXOT1tp06YNgFArJIJojMfpBAj3sX//fgAA86THXrihRoNQJ1yA45i1ApgbC6e2wtjhmjGL5xUnMQj1DGAMjLO27zxVAXi3hB6gLFPHNaEFY2B+PzhJAktLMR2GEyWwmlpAYkhhDPWd8s3n1HBO2jdwBQdOst4PLVRbysBJnGN92pQgiSJkEv1cSPRnTgsfv7CQ7d27t2U3TMQFLnrMEW7h0KFDoV+EVH0rJPpDyQKNC7lmC72ulrGG3CwVVCNlLBzLZLxIGbOKpyoAz+a9YPV+sEAAXJWx+cCi8hIloLYOkBhYMAiutt50HFZTG6qtYxJQXoWUHSUmk4qMyyDUWaslYzx3WPAs9QGM/A+zpQmrHZCMEUmDm585duDAtTz1+3UADr/0JohISMiIJpSUhAp3TDDwBp8KKk1QkyijchUPMib/18x5oFLgNiNlajJmJq+wjMEfCP1BYqalLCxjTJQOxzIhZVEyFsaslCnsEz5oXsoiZUzehKlRMpX+6LyUkYwRUSTy+eDmZ44dOHTsmOADAJSXlzuTAOFqSMiIJpgSMiCxH1AGiSVReiUrnmRM/rOR8yBGQduIlMWqGTOSVxMZC2NCyprIWGQsA1KmKGNhmARUViNlZ6nOpNQ/MiNlSjImb8oukXJQykjGiCgS+Xxw8zMnzmE8CRmhDgkZ0YTq6urQLw03D0Mk8oNKJ3bJVjzKmPyxnvNAZwFbj5TpbaaoJy9VGQtjQMpUZSwylg4p05SxMKIITi3nqGCxFzEiZVoyJm9S71RrsXJzQMpIxogoEvl8cPMzxy6cPH4kZIQGJGREE2prG+ZL4gRnE4lD7JKoeJYxeTGtB5/BgrVWLKN9xrRiyQN4xBIbHVIWU8YiY2lImS4Za4DV1WvXkhkojOiRMj0yJm86xm7QLT4tKGUkY0QUdD7ENw4fP8Z7AQBVVVXOJkK4EhIyoglhIWOcyUE4k/ShZXriYRvitBgGc7O1P5BCLLMDeCjlFZYxVu/XF0RDynTLWGQsBSkzImMAQstVVClLmYnrUkvKjMiYnILK7jAsPi0gZSRjRBSJfj64+bljB244fg0vuQMBHS0ZiKSDhIyIIhgMQgwX/ngLNWRuuPm1IHZMPGw1TrNjMje7Rsxr3HTR6miKkXkZlrEwClJmWMYiY0VImWEZC6MkZRauRyUpMyNjciqNdotp8WlGKSMZI6JI9PPBzc8dO3DL8eNCRe5gMAhmwyjARGJBQkZEEX2TsHgXc8tNsJmxQ6LcOgmujMXcwgVcqwXosJTZNbQ94yzIWJgIKTMtY5GxgkFwVTXmZCxMpJTZcB1GSpkVGQsTPg8si08zSBnJGBFFop8Pbn7u2IGrjt/hnV1ZWelgHoQbISEjouC4qOoMx/IgXITLTgNOZPDUSrbMM+atCMDz5w7zMhZGYiEJkyTzMtY4llkZCyOKQGk5UjfYM+cNH2zY764q4NgLyRgRBZ0P8Y3rjt/hhESr93ci4SAhI6KIEjKr5V2XFeSbi4QvxNnw/TiGkEBZjMUHGTzVIrggAydaO8FCMrYNUk0NmN+ikHk84DLSAJ4Hl2pwuojG8Bw4jwDOY7IPZxjGwGpqIR0qsUXKOImBD0jwVlkvSDAOgB21whwnx7IlJ4IIQ+cDYTcR5av09HQHEyHcCAkZEQXPR54SFt70J4mMhUn4wpyF7xdZ6DYz2XMYWcYaTktOgmkpk2Wsti6UVzBoXsrCMhZ+2HoE81LGc+DC1yDHmZcyxsBq6wApVGtnVco46fB+tiplrFElvGkpC8tYRCxbciKIZDofEvW7uvF7sdDDi+M4+HwmphUiEhoSMiIKjuOQlpYW+o8UNBckyWQsTMIX6kx8P7mwHdG80IyUNZYxOb4JKWssY3JeZqSssYzJfzchZZEyFsaMlEXKWBgLUhYpY3KqJqVMedRNE1LWWMYiYtmSE5G8JOP5kGjf2aXfh2soU6WnpzfqHkIQJGSEAhkZGQAAjpkUsiQm4Qt3Br6fkoyFMSNlaoM3GJEyb6WyjMl5GZEyNRmTPzcgZUoyFsaIlCnJWBgTUqYkY2GMSpn2vHQGpExNxiJi2ZITkXwk8/mQKN/dzd+DHRYygmgMCRnRhLCQQTIxV0aS1o5FkvCFPB3fT0vGwuiVsnDtmOb2dEiZtyIAz1p1GZPz0iNlsWRMXk6HlGnJWBi9UiYxZRmTP9cvZVoyFkavlOm6JvRIWSwZi4hlS05E8kDnQ/zj9mPYUEMmt0IiiAhIyIgmZGVlAQA4o0JGMiaT8IU9je+nR8bCxJIytaaKitvVkDK1ZoqqeWlJmV4Zk5fXkDI9MhYmlpQxBlZfr/55GB1SpkfGwsSSMtuuBb0yJm/Ypu0SiU+i36/1Es/7IQ5y58TQ/TkvL8/hTAg3QkJGNKGoqAgAwAVr9a9EhZ8mJKOUGZGxMGpSZkTG5O0rSJlRGZPzUpIyozImr6cgZUZkLIyalGk1VVRCQ8qMyFgYNSkzfA2o1ZIZlbGIeIp/TvRrk9APnQvRxOP+iJOcOTH0DCooKHA4E8KNkJARTQgLGUSdBViSMVUSvuAX8f3MyFiYxlJmRsbkPBpJGSdKhmVMzitSyszKWJhIKTMjY2EaS5lRGQujIGVmZCwMH5CimpaaPvcbS5lZGYuIF/XfRL8mCf3QuaBMPO2XeMq1oUxVWFjocCKEGyEhI5oQvllwoo4aMpKxmCR8ATBq6HHzJ0RYyqzImJxSg5R5KwIQNuwwHwghKYMoWpOxMDxnTcbChKXMrIyFsWFI/EgEf0jKLJ/zYSmzKmMR8YAkuBYJ/dC5oE087J94yDGCM4d0BkA1ZIQyJGREE9q2bQsA4ILVDmdCxAV2SjkD+ACzJGNhPLUivHtKTNeOyUgMYmUlpEOllnMS87NReWJXy3EAgIkSpKpq8zIWRpLAyiuQsqfCek4cB8ZzEPw2nRQWBJ8gkpZkuGziTMYAYOfOnQCADh06OJwJ4UZIyIgmdO4ceovDBapiF4ji8KbY0pie+DbOCNVwmT8hOAkQ/AyM5yD5rN2ahHoRngMVAMeBz82xFAsAwBikqipIxSWmQ4j5mSg+NhtVbQRUDO1sLR1JglRRAYgimGhRyAQBXEY6uKpa+PZVms+J4yCm8AAXavpoScq4w7VZtl0/ViahJhKPRD0XWKN/rcZxKzbeF1oExmQh69ixYwttlIgnSMiIJrRv3x6CIITmIdPTj4ykLHlR6p9jQsrCMhaOJ3nMS1lYxrigGGral5ZqXsokBhZo6ENmQcrE/EwUD8hGMI0DE2BJypgkQSorB0Qx/AfzUiYI4LOzAEEAGDMtZZEyFvqDBSnjGjUtZIykjGgeEu1caPx9zH6/eNkvVvJksE9e9SDWoba2FoIgoH379i2wQSLeICEjmuD1etGuXTsAABfQWTgjKVMkoQt/WiPYGZCyxjIWxoyURcmYvAGTUhYpY2FMSFmkjMlhwlJ2vDEpayJjhz8wLmWRMibHMS9lTe4BkQUeAzEU+3mRlBHNRaKcC2rfw+j3i7f9YSZfB75juCzVtm1beL3elk+AcD0kZIQiPXr0AADw/jL9K5GURZHQhb4Y381wTZlKPCNSpihjYYxKmZKMybkakzIm8FEydvjvQFVb/VKmKmOHF9AvZUoyJscxJmVy7ZgCHDNQS6YmY5F5kZQRRFPirfmek9glrgYJl6V69+7dvBsi4hYSMkKRPn36AAA4I0IGkJQ1kNCFPZ3fTY+UybVjWnEExJQyTRmTN6ZTyrRkTE5Kn5SJ+Zk4dFSmepiwlMVovhhTxg4vGFvKtGRMjqNPypo0VWyygM6mi7FkLDIvkjLCbuL1PNBbC23XMm5Fb+6xlmvGfXDa0aHphEjICDVIyAhFjjjiCAAGa8jCJLmUJXQhz+B305IytaaKTWNwkDwcxFReXcwkpi1j8kZjSJkeGZMT05YypaaKimFi9CnTLWOHV1CXMj0yJsfRlrKYMiYvGEPK9MpYZF4kZYTdxNt5YGdTxHj77krYJVvNtC/WrVsH4PDLboJoDAkZoUivXr3A83xoLrKgjvnIGtNool8iATD5oFKSMr0yFhWH5xSbMAr1IjzFBvo8qUmZERmTk1KWMr0yJofRkjKJ6ZcxOaCClBmRMTmOspTpljF5BRUpMypjkXmRlBF2Ey/ngZ2DdcTLd9aDW/vRBWtw4MABCIKAXr162RycSBRIyAhF0tPT5RsHX19sPlCSSRkV7JSJlDIzMhYVK6IJo66miko0ljIzMiYnFC1lYn4mio/RL2NyGIWBPuTh7U3lFSFlZmRMjhMtZYZlTI5jw3D4jfOi642wG7efU3YOZ+/272oHLviOfF2oDNW7d2+kp6c7nA3hVkjICFUGDhwIAODrDloLlCRSRoVDbRgX2kdWZCwUJzR0PMeYORkLY3VI/KikQlIGxkIylm7upI/sU2a4qaJiwJCQmZYxOU6DlB2oNidjcpwIKTNbO9Y4LzuuO6olIyJx67lgZ15u/Y5WsUs4bdw/5w1pDQAYMGCAfUGJhIOEjFDl2GOPBdDwdifWBNGE9cKlm7GrUoMLSYf1QKF/pByLbxs5DlxqCviMNOspnXA0uEkBeC629gKDCUBJbwFb/trdmoxFBbXhAHoEiFkp8NRZzKlByjiL81k3B3ZJGUeCRwD6B91oadyYk53Ytd9ticHw+++/AyAhI7QhISNU6d+/P3w+HzixVv98ZEok+s0/goSUMpsLqZLAgXksxBEZhLpQaV7M8EIsyDIfTJKAoAguNRVCdrb5OAACmR5c3nYpru6yBKlnHzAdx58DeI4rRfaxxdj+tyGWcoIggMvMAGMMCAbNx/F6ECzKBhN4cAEJnloLUsYBkpdrEDPzYUKxGprB2niPsRorcn2SsjjGjU0DE/H54nas3g8CFThw4AB8Ph+OOuooe3IiEhISMkKV1NTUw7VktXvNBUnCAklCSplFuIZaEblmy6qUNdT4MJ4LSVm++tDyqjTIGCQpVFOWnmZaytgJR6P1Y1sAALlCDa7usgS+s4zXlPlzAO+gUhRmViMrpR5ZQw6alzJBAJ+VKTdVZMzE4CDAYRnzhuJwDOalrEHGWER/QtNS1nigGCv3mkbXrNlYSuuRlMUxdg6eYRf0fGl5LBxPvnYfAGDQoEFITU21KSEiESEhIzQZNmwYgMM3FUIfCSNlNhQsGstYGDNSxkkMQn10CZ7xHMRMn7GaskgZk4ObkzJ2wtHIn7gT5xWukP+WK9RgfNfFhmrKImUsjGkpayRjcq6SZEzKGslYGFNS1kjG5D+bkTK1qRTMnK8q16rRWFrLk5TFMXaN0GfnOZAoz5ckoF/b0L/hshRBqEFCRmhywgkngOO40HxkRoe/T/JCCLNj0AInaYEO5EakjJNCTRU5hf5Qck2ZUSlrshFjUqYkY2HCNWV6pYx5ECVjYQxLmYqMyduRJP3NFzmuiYzJH4VFW1ccZRmTP7ZSU6aQl/6FbYxFEHbNhUW4DzPHLlgjzz92/PHH25sPkXCQkBGaFBQUoH///gAAoWaX/hXpwSMTl1JmZ7+xGIV2SeAg+bTFTEvGwuiWsnDtmOrGGqSssEBTzNgJRyP3uV2KMhZGb/NFfw7gO6ZU9XPdUhZDxuTc9TRf9HoQLIyxL0UWu5YshozJi+mVshhxdKMzjB4ps2sZwqXoOXZ6jy/1J4tfDB47oWY3AOCYY45BYWFhMyREJBIkZERMRo4cCQDgqw0IGRFFXEqZRdSaKirBOPXasvAgHloyJseJJWVKTRUVk+fAeb2qtWXsxGOQ+9wuXFC0PGZO4eaLalKm1FRRibCUrX/jGGUx0yljYTSbL6o0VWxMzKaLOmVMXjyWlOmNE+tUMXg92tUckaQsjtE6dk4d1yR8rsQTvfLrAABnnHGGw5kQ8QAJGRGT0047DV6vF3ygApy/PPYKVOhQJG6krBn7jcVCVcoMDNuuOtCHXhmL2rByE0Z/tleXjIVRkzJ/DuDRIWNhslLq0a3LgVBt2cMRUmZQxsIoSplOGQujKmUGZUxeTU3KjMZRO2VMXod2DdhBUhbHKB07M8eT+pPFL3pbafsrsGXLFni9XgwfPrx5cyISAgvjnBHJQlZWFoYOHYr58+eDr94J0WfDRLpJSnhyZNfigolHJYEDDwYu2FA7Vm+8c1F4oA9wWRAOVZqTsTBhKQMgVlSAnXgMCh/eajhMrlCDm7Pmw18m4Jgf9yFdqkdNkYC1u9vim7P7oTQ/Q3esrJR64LhQE8bOzywFx3GmJ35mkhQq0wmCYRkLwzEAAQkeAME0wbSMyfEaDhMLvzI0G4c1ehFisfAaGc/KddwkLyI+sTrxMJ0DCQtftR0AMHToUGRlWZiahUgaOMZoxl8iNr/88gseeOABMM4Lf/szAF7D5emMiokrpczufmMW4wl+Bk+1aKh2rEkuEoNQ5YdQXAH4A9YSYgw1R3dE3t+24+LWvxtaVaiTMPjv29Dtf8UQgk2/T8DD49sz++KVW09FwKf/PVllfQoqfy1C1/+sNy1kYTifD8G2eYZlLBLGAczLI5guQPRZb4DBeIAJ1kutjINthV87X6qQlBG2SZkbnymJjNZxk4IoKPsJVVVVeP755zFkiMX5JImkgJosEroYMmQI2rZtC44FwDd0VCXM4UoZcyGShwtNIGwBxnMQ032QsvTXPqnGYgzpGw5i0xc9Da0n1Ek47fp16Pnfg4oyBgDeoITzvl6F5x78H3z1+sXxUEkmOn1bZV3GvF6IhTkAb21/Gxp5MWawhh+73hna+MKBIFwFnZMtS4zbJF+zG1VVVWjXrh0GDRrUMjkRcQ8JGaELQRBwwQUXhH6v3KpeSKIHQ3xiZ2GVMcs1EhwD+CAD83CWalo4iYETJUiZPojtCsDyzTW3DQ8Vz8oq0HH6LvzzrbG61x38921os7RS14jYx6zYhVtfnacr7tY9hejxqghhq7U5AjmvF1JhDpiXBxr2l1kYzyGY5gEYwAestOlrqB0Ln0MWpCyqFspl9yeSO8LyOUnnUMuh57nGGPoVhaYIOv/888HzVMwm9EFnCqGbc845Bz6fD3ygHFz9IafTiUsSvgAWUXA2K2VcuDDPAMZxpqWMkxi4QEguGM9BSvFAzEoxLWVoqPlh5ZW6pSz1oB/d/lccyidWvg3/njV7DfJKtAf52La3AD1ety5joQ1zkHwRNWwmpYzxHIIZHrnfFycxc1LWWMbsJtGvQSJ5oHO55dA7TUZ9MdavX4+UlBScc845zZsTkVCQkBG6yc3Nxdlnnw0A8FRsbLoAPRzik2ZsymVUyiJl7HAM81LWJB+eMyxlShMp65WyHp+pN1NUwxuUcM6s1ZrLSHUeeLbsNRRXCc7rhVSgMNeaQSlrLGNyfKNSpiVjJmrJVKXORfeqhH9JQ8TG6DnATKxDmMfAM+yETn4AwKhRo5Cbm9s8+RAJCQkZYYjLL78cgiCArzsAzl/mdDpxhSsLXjY3VVTchBEpUylohKUsmKZvsIjI2rEmsQxImSxjCv2iWHklOv5vN559W13KWi+tiLkNJY5eoT7n37a9Bej5nt9U3EjCTRWjasci0SllajImb0evlOmpGTMy/UHMpkW6QzU7rrw3EC1LS08sTcTG6AtFfxmWLVsGQRAwdqz+Zu0EAZCQEQZp164dTjvtNACAUB5RS0YPieQmRkFZj5SF+42px+DA+Ni1ZVoyJscyUlOmMUgFK6tAp+nqUuatNtcfK71GWbi27S1A99cky7VjMWUsTAwpiyVj8vZ0SpmuZop6JgiPw9ELScqImNA50nKYuIeceUToRnjaaaehbdu2NidEJDokZIRhrrzySgCAULsHXKDS4WziA1cWtlp41DnWUAOi9KBTaqqoHseeJoyxpEypqaLicmEpe6eplAUyzOVYk+5r8rdtewvQ/fUWlLEwWlLGI6aMydvVkjJOfxwAmlJmSMZcdl268j5BtBxax5/OjZbDTN9nfwV++uknAMAVV1xhc0JEMkBCRhimW7duOOmkkwAAQtlah7MhTGHrBNDGginWlhnsE6EmZZzEwBnos6UmZVpNFRXjlFWg02dNa8oqj0vVnUsk6cOja8i27ikMydhm6/3GmgzioQcFKZNHVDSyaSUpMzuIh8J5Z6pmjAq6hJtQOh/pHG0ZLIwOfGp3PyRJwvDhw9G9e3db0yKSAxIywhQ33HADeJ6HULsPXF2J0+m4mkR+6232u0VKWaymiuoxoqVMljGjgthIyozKmBynUfPFAqEKra/mwbyGwoB5gS7jeNzW+YfDf6sTbJEx1UE89BAhZXqbKirmECllVkdUbDyqp1lcdI0m8v2CMAgN3tFyWJmmpf4QFi5cCJ7ncf3119uXE5FUkJARpujSpYs8pKunbI19k7cSzU8LDOShKw154l/zOTWpKTOZT5OaMpOTG0c2X/RyQWS3yQTGhARIzzxkAICx2UhrnYYz0kpwS6d5oUE8PtA/WbQahpsqKiGFhNesjMm5SCw0z5wdw9uH572ziotuYSRlSQ6JWMti6WUOw6DWocGbzjnnHHTu3NmenIikg4SMMM0111yDlJQU8P4S8HU2zIdEJCWcRZlnHAcmhAb8sBSH58C8gmkZk+OUVaDjN4dww7ehN6Xs6UKwoam65iFjQ1PBni4EAKTzPojgkLMwFZ5NeyzlBImB1fvBl2vPbxYTnoOUIoCzuI/AAUwAOPNzUEfE4uwTGCoEE0RyYfFlDl+7DytXroTP58M111xjT05EUkJCRpimqKgIl156KQBAKFsDMNHhjNyH6950250PZ/5pxrFQgTwkVBZSYOHaFhN9oyLg64PgD1UAPAcI5m+NXEY6AoXpaDsP6PrVDUAaDzalHdhV2arNF5kXoc8/bgekhrb9dU0qHvnsCvBBoOZYC29dJQYwCWASWFUNPAfNDcUPnoOY5gHjOXAiM9XMFADAAZKn4bxhAG/lthFx/iWSlMXjKJEEEZdYud4lEZ28OwEAl1xyCYqKiuzJiUhKOMaorRlhnurqalx11VU4dOgQgtl9IOb0djolV5HoQhb1/QzeSjgGcGLk/0OjLHIGC+icxMD7pcP5sPDfjAUSagLg9hYf/kNYZAxMkAwAXE4Wavq0BgAEMnmU9RBQ3S2Aree+DRwMAh9XgFtUC1RLQAYPdkIacEU2UBQ9QMa75W3w6ksXAgD4IOCrZPBVikj/bbuhfOTvEc4vJQXB9gXGYgBgAg8x/XCOjAMkMyNdcoDkPWwcjOMgGRsbJCJWtLnYJjIOCxEJGUG0ICYHAxLK18FTsR5FRUX48MMPkZ6ebntqRPJAQkZYZu7cuXjyySfBOB7+NqcBngynU3IFiS5jkcjfVeftJFw7ppQTJzHdUsaxhgEiGjWhC8mefinj64MQDpSD+RXm/xJF3VLGZaTD371Vk9EH/Vk89pwhYeuot3XF+bYmBbd/ei0yG7kXHwQy9wT1S1kjGQslyYPLTEewyMDgHhG1Y5EwgTtc26WHcO1YxCqMC/1fMlq5qVI7G+9SRjJGEC2M4RFeAQSrkXVoPvx+P5544gl5flaCMAs1WSQsc9ppp2HQoEHgmARP6Soa4CMJkQuRRpowqpwmjNfXhFFNxsL5MEFfE0ZNGQMAQdDVhFFNxgDAVymh3Xc8un59Q8w4X9ekKsoYAEgeoKqdR18TRiUZA4w3XVSRMQDGmi4qyBhwuGbUUNNFjfMsnpsukowRhAPovdYjBls5tWsN/H4/Bg0ahFNPPbW5MiOSCBIywjIcx+Guu+6C1+uFULcffK0NcyUR9tIChUu9UibXjmnF0iNlDJoDcOiVMk5k6jIWRo+UeQTNeblkKftKW8p2B/IVZSyMLilTk7EweqVMQ8bC6JIyFRmTPzYiZTqkPx6ljGSMIFxMxL2Ar9mNRYsWwePx4I477gBnoS81QYQhISNsoWPHjvLs9J7SFYBY73BGzuK65oothO6aMh37R0vKwgN56MlHS8rkgTz0oCFlXEY6/J1j98vyVUpoN0e9puzrmlQ8//kFMeMYqilTI5aU6ZCxMJpSFkPG5MX0SJmBgk88SRnJGEG4lMZTEIh1KAxuBABcddVVNMw9YRskZIRtXH311ejevTs4yR+SMmq66A5a+DBESVmjArSe2rGoWGpSFqN2rHE+alKmq3YsEgUp02qqqIRa88Wva1Jx16fXaNaORaIqZbFqxyLRkDLGGZtKQFHKdMqYvLiWlJl4Cx0PUkYyRhAuQOkab/w3xuApXYny8nL06NEDV199dUtkRiQJJGSEbfh8Pjz88MMQBAFC7V7wNbudTolwCMY1rS3TGshDMxbPgXkgi5ne2rEm+TSSMkO1Y5E0lrIYTRWVkKXsm9BcZV/XpOKuz/TLWBhZygY2SJkRGQujJGU8BynV+BQCalJmKIaSlFmcXsGtkIwRhAtRmZibr9kNoXYvBEHAww8/DK9XZR4TgjABCRlhKz179sSECRMAAJ7SlUCw1tmEHMDNBcCWpkkTRpP7JlxbwwQYqh1rnAsTOIipntCQxVoDecSiQcr0NlVUwlcpod1sAV2/uT7Ub2ybuVQkD1DVPkLKzBApZQaaKiohS1nkfGNGY5gZ6KO5sfm6JhkjCBeidp0Ha5Ef2AAAmDBhAnr06NFyORFJAQkZYTtXXnkl+vTpA44F4C35nZouJjnhgqctBVAOloYjZxzAeID5eLD0VGu5CALg8xquHYvEVymh7fce/HvqaEupSB6gPlcITWptFiYBdfXgAqJpGYvOSX9TRSXkeekS8PZBMkYQLkTtXsMkDC7ah8rKSvTu3RtXXnlli6ZFJAckZITteDwePPLII0hLSwNfXwyhYr3TKbUoritsuSQfjoVkyGo+jOfMTUgczkMCOL8EKSsVyDUwF5cS9X6k7qm0FMJXKSJvvQRvjfkY3mogb2VpaLQvwXhTQxnGwAVEeCpN1hwidP6LFo7P4TgNQpdgQua6+wNBEJoIFeuxcuVKpKen4/HHH4fHY/4lHEGoQUJGNAudOnXCPffcAwDwVKwHV3fQ4YxaFtcVuizWLFmmobYDaNg3JnIJ15gwPtwfzNztK9QHTQI4zrKUsWCoH5pZKWM8EEzjQ00o/cyUlHmrgYLfS8CVlAMcZ17KBAEsJwuQAL4uYF7KIgdisdBEFRH9EDkTTVQPxzK9ajQ2xHHdfYEgCE24ugPwVoZGVbzvvvvQoUMHhzMiEhUSMqLZOOOMM3DeeecBALyHfgPEOoczalmiBrZwCw7kwyk0OzMrZfL6fLg/mGBIzDgJ4OsiOibZKGVpmw8ZEjPGA8F0HpJwuH+d4GfwGOx2yQdZSMbCmJEyQQBys8G8DW9+TUqZYu2Y0UFcGslYOIYZKXOTjBEEEWeIdWgjrgdjDOeddx5OP/10pzMiEhgSMqJZuf3229GtWzdwUj28h5YZHwEuAUh6KYuoHYv6swEp4xRihKTMWG2ZXDsW9Ud7pAwVVcZqyzgcljE5EOCp119TFm6q2DS2MSnjeP6wjIUxKGWMA8RUQX2aAgMoXjMGpcxtMua6+wBBEOowCYMK9qCkpARdu3bFbbfd5nRGRILDMUYjLhDNy/bt23HTTTehpqYGYkYXBPOPdjolR3Dl4ATNnBMXLkRrbIdTGWI4epkYMaSG0f386sLPSYBQG2wqZGEYA19ZB5SZGAo/cjseD6SCbNS1y1JdpkntWJMgQDCFQzBNfTtRTRVVN8TAGANEjeEKG9eONYYHpFQvglk+9c1oyVgYHUKiWDumECfWoCMkYwRBmIYxeEpXQKjejszMTLzxxhvo1KmT01kRCQ7VkBHNTufOnfHYY4+B4zgI1dvAV211OiVHSMomjDFECjg88qFaLrFkDNDXr0yxdixqAes1ZUDsfmUxZQyQa8q0mi82aaqoRKyaslgyBuirKVObwDuSmOeBDhlriKNVU+a2a8xt+RAEoQ1ftQ1C9XZwHIfHHnuMZIxoEUjIiBbhhBNOwI033ggA8JauSrpBPiJxXQHNJfnY1a9MScqa9B1To0HKWOv85hvsQ6mpomIQdSlTbaqohIaUKTZVVEJDygyNqqjiUbplLEYcW6FBPAgi6eDqipFauQYAcNNNN+H44493OCMiWSAhI1qMK664AiNHjgTA4D30KxCocjolx3BdbVkzjMKoNJhHLJpLymLWjkUtzIGleJtlBEZ5VEXdQZSlTFftWCRKUiYIYNmZ+mMoSJmupoqNaTLAi0EZa0CplsxNTRVddX0TBBETLlCFIv9qiKKIESNG4PLLL3c6JSKJICEjWgyO43D//feHJo2WAvAVLwbEeqfTchTXFdrszEdHU0PF1SKkTE9zxSbrNxqBUXftWGOaY1h8vbVjUUGipcxQ7VgkYSkD9DVVVCJCykzJWBilUTdNxIiUMpIxgiBMI9ahM7cW5eXl6NOnDx544IHD90uCaAFoUA+ixTl06BBuueUW7N27F5I3B4FWwwCeJlp01aAfNuTCsdBAG1bWNzvcuRxDAoR6Cb5SC+Jvw2AfnMcDsVUeqrpnGhcyOQjABxiy1peDP1RmLkbDIB8cz0MqyDUXAwB4QMxIQV2rFPMxAHmADksCY0ZyNWJZhWSMIOIMKQDvgYXgA+Vo3749XnvtNeTl5TmdFZFkUA0Z0eIUFBTg+eefR05ODvhAObyHliblcPiuxq4mjFaaH4ZzsNiEUfJyENMtCH+4piw/x3wewSCEg2XI2GFi5mc5COCpk8CXmZuEGkColsznsyZjAMDzYB4eQp2F69bGEQxd9TKDIIj4gUnwHloGPlCO3NxcTJw4kWSMcAQSMsIROnbsiH/+859ITU0FX3cQnpI/Qk3cCHdhsdDMeM56DM58jNBw+IDo5U1LGeMA5uEhWpQyBIPw7C1F1tZqU6t76iSkb6sAjE76HBXEAyk/CyzNC+Y1G4NHMNMH5uHM14CG58LmOEu1sSz8BGPMHimzqWaYIIg4gDF4Sv4AX3cAqampePbZZ9GhQwensyKSFBIywjGOPPJIPPXUUxAEAULNLnjKVpKUuRGnpYyzIGUMoWZ6AmdRyjgwwQYpCwTg2VNiSsr4IANX0bCeWSnjOTBfwz7w8KaljHlDjw5OgulaMhbRP8MemaJ7B0EQOmEMntKVEGp2QRAEPPnkkzjyyCOdzopIYkjICEc5/vjj8eCDD4bmKKvaBqFsDRWs3IjlpoOc5lxjerbPOM6Q3HFSSGLkHBqkLJjp1S1mjAMQMQmxWSmL6hxuoqZMrh2LDmpMyjweSLmNRlU0KmUNtWNyCoyBDzBjUqZ0/MyMyKnw9KJaMoIgYsIYhLLVEKq3geM4PPzwwxg6dKjTWRFJDgkZ4Thnnnkm7rvvPgCAp2ozhPI/Scrcil4ZUjp8RoWqcYwGKdRdW9ZQOxb1J4GD6OMN1ZaxRiNthaWMtSkwX1sWCBiSsqjasUiMSFlk7VgkeqUs3FTRqzClgF4pi2yq2BgDUqYkY6EPqOkiQRAaMAah/E94qrYAAB544IGG6XgIwllIyAhXcO655+Kuu+4CAHgqN0KoWO9wRoQqNtSWOdaEMZyD1SaMAg8x3aertkx16OQGKctdrS1mirVj0RuILWVKtWNRn8eWMsZxTWRMTsGAlCnKmPxhbJFRlTF5AZukjCCIhEOo2ABP5UYAwN13341zzjnH4YwIIgQJGeEaLrzwQtx6660AAE/FeqopczsuaMKotn7j5oqKOcSQssbNFZVjWOxXFgiAO1SmWVumWjsWiZaUhQfyUKodi1pOQ8o8PMQMr3YKsaRM77E20XyxaQwb7htUS0YQiQNjEMrWwlOxDgBw6623YvTo0c7mRBARkJARrmLMmDG4+eabAQCeig3Up8ztWKrpUm/CqKsgq9WvTKG5ohKxpSz2F7RtsA8FKYtZOxaJmpSpNVVUQkXKtGrHolJQkzKtpopKqBy6mLVjUbnoX9ZoHgRBxBENfcbCNWO33HILxowZ43BSBBENCRnhOq644grccccdAEJ9yjylK0jK3IyTTRiN9itT2r7F5ouhGMpSptpcUYmwlG0/PFeZrtqx6A1GS1mspopKNJYyHbVjUSmoSJluGZPjRP/fiIyFVnBH00U35EAQSQtj8JSukPuM3XXXXbjsssscToogmmJhtlSCaD4uvvhipKWl4bnnngOqtwNMRDB/AMDROwTXwsF0jQLjucMFaDMxOICBAwdman0mcBDBg2V6wUkMfG0wZnPFpjFCUiYAQEm58SSAkJTtLkGWxFDbNg1p201MAh2WMlE0VjsWiYcHQ0iulAbyiJkCY+CDgAiYl23WcEpxJmRMjtFwVlipyWWwPPUDx2AtB4IgjMMkeEr+gFCzCzzP44EHHsDZZ5/tdFYEoQjHGFU9EO7lxx9/xFNPPQVRFCGmtkawYBDAJ+Z7hIR4k25D/x9OYuDMTW0V2r7EINQz07WqnMggBCRwfnNJcKIEobIOXKnOpoZKeL1gWengKmtiL6uGwEPKyTAnZBEEM/XXjkXCOA6Sj4eYyhmuHYuCAySTc1jLuRiUa7U8LOVAQkYQLYcUhOfQrxDqDkAQBDzyyCM4/fTTnc6KIFSh6gbC1Zx66qn4xz/+AZ/PB6FuP7wHFwJivdNpNQsJUWDjrH8PZiUGFyp8S14OzGMuCBM4BFMFayMw5qRBKswztX4YKcULKc9gc8PIPDwCxMwU8+sLHPw5PkgGa8fCcIyBC5o168axrKzsjgsrIV64EEQ8INbBe+BnCHUHkJKSgmeeeYZkjHA9VENGxAWrV6/GQw89hPLycjAhHYGioWBe84VVt5IQhbaG72Dpu0Q0XzQVhx3uy8TFGG2xCRwH1lAjI9RJEGqCxrffIIZCXRCcPwj+QKmx9VNT4O+QH6rtq6oHX1plbH2vB8FW2ZBSBHBBBt4vGlsfgOTh4c8NTQLNiwx8wJhcMZ6DmMpD8nCH+/kZRR4MxHyzRVtqxyJysUJCvHQhCBfDBargPfgLOLEGOTk5ePbZZ9G3b1+n0yKImFANGREX9OvXD6+99hratm0LTqyB98ACcPUlTqdFaGCppguHC+FmYzDOfE0Z40LN7MRUE4N9cKFaMtYwkXIwO9V0bRnjOYiZKYZrypjAQ0z1hL6Hh4PkM9bmjwkcghmHv7dRqYmSMUAWZCuYEnM7a8doGHyCcDVcfQmKapeBE2vQtm1bvPbaayRjRNxAQkbEDR07dsTrr7+OPn36gJP88B5cCL5mt9NpETEwLFSNCu5OSVl4fTGVRyDba0jMmHB4e8zDI5hrQMq8XoiF2YfXNyplXg/EgsPLmpGy0H7jI/4Pw00Xpcb73KiURaxuqraUsziYB0EQcQNfvQuZZUtQXl6O3r174/XXX0fHjh2dTosgdENCRsQV+fn5eOmllzB06FBwTIL30DII5esSZlj8RC1AWu5XZkTKGg+X3iBlko83XVsmeXlztWXhGEakzCNATI3ejhEpC9eORf3NgJQ1rh0LIwmcLikL145ZQm1uOgOXebNcS1RLRhDugjEI5X/CW/Ib/H4/hg4dipdeegn5+flOZ0YQhqA+ZERcEgwG8cYbb+C///0vAEBMa4tg/sCEGIEx7gtsMfKP+f00bkm6ako0PovZr6yh/5hafyeOMe1+ZeHmioLK+kEJnrI68MUafcrSUuFvryxuevqUsVQf/O1zVfOP1acssu+YErH6kzGeQyBTQ/z09CdT+ZjJ885pr96stWPUl4wg3IEUhKfkNwi1+wAAl19+OW688UYIgsVhWQnCAUjIiLhm1qxZeP755xEIBCB5sxEoPA7wpDudliUSXciAWEIVOwAnacSIKYQaUsZxTZvaKayvKmUcYtZCaUqZ1wuxdW6TGq6o9bWkrGEwD831NaSMCRwCmd6YNWFqUtak75hqEhpSFmPVmFLWEk0VScoIwlmCNfAWLwEfqIDX68V9992Hs846y+msCMI01GSRiGvOPvtsuXkCH6iAb/9P4OoOOJ0WEQPLA364oF9ZszRfVGiu2GR9jeaLSs0Vmyyj0Xyxcd8xNdSaLzJOoe+YYhIq/cl0rKpZS0r9xggi4eFqD6BVzVLwgQq5GwPJGBHvkJARcU+/fv3w1ltvoXfv3uAkP3wHf4FQvj5u+5UlU4HSspSZFDM7+pW1WJ8ypfWVpKzRYB6a6ytImVrfMTUaSxnjOUgpLfNIUetP1mLXDvUlI4iWhzEI5euQcmixPHjHm2++iX79+jmdGUFYhposEglDfX09Xn75ZcycORMAIKW2QiB/ICCYnxzXKeK6sGYi96jva+KWFNWE0ei0Y5FNGHU0WVRbV6gN6mqyGLV+ZPNFrxdiqxyIaV7960c0X9TqO6aVf7j5Yqy+Y2qEmy9KAodghsG+G5FNFw3KVJOmiy1dO0bNFgmi5RDr4S35HXxDC5jzzz8ft912G1JS4u/5ThBKkJARCcesWbPwwgsvoL6+HkxIQ6BgEFhKfI24FNdCBpiuQQjVfJhbWZYyU0LYIFaiziZ3CusLdRJ4v6Q6oIfqumEpq65VHcxDc/0GKeNq/YaFDGhoOigBYgpveGj70PoAH5D09R1TDNAgZaZqOiFPwu2I3JCUEUSzw9WXwnvoV3BiLVJSUnDPPfdQE0Ui4SAhIxKSzZs349FHH8WuXbsAcAjmHAkxq7u9E8U2M3EtZRZytyxl6gMA6lg/JGVm4YMMQp3xAFxQglAvQkwxPzoYx4zPFRaG8RyC6QI40eR+Z4CYYvLa4kLNH82e77r7rTUHJGQE0XwwBqFyE1Kq1kMURXTo0AFPP/00unfv7nRmBGE7JGREwlJdXY3nnnsOP/74IwBASilCoGAAIKQ5nJk+4lrIAOtSBphvvmhGyhqav/EiA6cyqn3M9QVAqDMhZQ0TL8cakl4VgUMwzQMuKIFXG9JfA8ZzCGQJ4ESYkzIeEH0hGeQko21GDwuVmePmmJDZtEkSMoJQQKyF99Dv4OuLAQCnnHIK7r//fmRm6usnSxDxBgkZkdAwxjBz5ky88soroSaMvA/B/GMgpbV1OrWYkJBFxjIWzLCUcYebv4GZkLIGGWMcBz7A4K0yZnSM5yCm8KHmf37JuJQ1CBkAU1LGeA6BbCE0eqFRKeMAyceB8Zx8zA1JmYJQGTl2jgiZjZsjISOIaPjavSgMrEd5eTlSU1Nx++23Y9SoUeDiqIULQRiFhIxICrZv346nnnoKGzduBACIGV0QzO3r+omkScoax9MXkGsQC/0bC43YKP9XAni/OakI9SczUEvGhWqXGB9e36CUcSGZY57DX8CQlHFAMF2A5G0o7BiVMj7U/0zGqJSpCJVeKWtxIbN5UyRkBNGAFISnfA2Eqm0AgJ49e+Lxxx9Hp06dnM2LIFoAEjIiafD7/XjnnXcwdepUAIDkyUQwf4CrB/xIZiEDtCZ/1jl5tJ5CfWTtmBzfQC1ZRO2Y/CcDUhauHYsKaUTKImrHomLolDK5dizqjwakrLGQNawP6JQyDaHSc/xaVMiaaTMkZUSyw9WXwFPyO/hgNQBg7NixuOGGG+DzGR/5lSDiERIyIulYtmwZnnnmGRw6dAgAh2BWd4g5fQDO/IAKzUXcCxlgfy1ZVGztBWJKmZKMybF1SJmCjMkf6ZQyJSELra9TylSEDNAnZYpCBuiXMiUha1gf0CFlOoRK6xi2mJA14yZIyIikhYkQytfBW7UZjDEUFRXhgQcewJAhQ5zOjCBaFBIyIimprKzEyy+/jNmzZwMI15YNBEsxN1Fvc5HsQgYY2AcqtzJNKWvUVLFpzBhSFkMGYkpZo+aKTdePIWUKzRWbLKIlZY2bKzaGNew7piFmakLWsL68KTUx0ylUasew2YWsBWSJhIxIRrj60oZasSoAwFlnnYXbbrsNWVlZDmdGEC0PCRmR1Pz88894/vnnUVJSAgAIZvWEmNPbVbVlyS5lhr9/o1uaan8yrdqxqHgqUqZROxa9fXUpU6sdi15fQ8o0aseiYqhImWrtWJMFVWrLOEDycrHnXtOqLTMgVEpS1qxC1oKiRFJGJA2SCKFiPXzVmyFJEvLz83Hvvfdi2LBhTmdGEI5BQkYkPRUVFXjppZcwZ84cAIDkyUAw72iw1CKHMwuR7EIGmNwHEbe2JrVkemVMjqUgZUZEQknKYtSORa+vImU6hQxokCGJRYmZbiEDlKVMq3ZMYX05j6jEjAtV5LFsNiFrYUEiISOSAa7uILylK8A19BUbMWIE7rjjDuTk5DicGUE4CwkZQTSwYMECvPDCCw19ywAxvWNoJEYhxdG8EkLIAGekDJDFLErKYjVVVNp+5MiLOmvHotZvJGV6asei128kZTqaKyrGiagtMyRkQFMpMyJkDevLeUiH96UZoQofS9uFzCExIiEjEhqxHp6yNRBqdgIACgsLceedd+Lkk092ODGCcAckZAQRQVVVFd566y188cUXYIyF5i3L7QspvSPg4BwoJGU27APGQlLGDNaOyetH1JKZlYiwlNWLumvHotePkDIDtWNN4gQl8CLT7j+mRmS/MsaMCVlEDCC0viRw1iSI2ShkDkoRCRmRkDAGvmYXPGWrwUl+cByH0aNH48Ybb0RGRobT2RGEayAhIwgFVq9ejYkTJ2Lr1q0AACmlEMG8o8C8znQ2JiE7jKV9wZjF9Rtq2hgzVDsWCcdYqKbNZB4cCwkVAMO1Y1EwBjHNyvqhfWFY6CLWB0I1jVaRYvVh04MLhIikjEgkuEAFPKWrwNcXAwC6du2K+++/H3379nU4M4JwHyRkBKFCMBjE1KlTMWnSJPj9foSGyO8GMbs3wHtbPB+SssM4KmXA4VoiC/BBBk7v5M2NaRhMg5MAPmAuBmtobshZeAQwngPjrB0PqUHIzMZgHAzXNCrisAyRjBEJgxSAUL4eKbXbIIoifD4fJkyYgMsuuwwej7lafYJIdEjICCIGe/bswcsvv4xFixYBABifgmDukS3ejDFhhCwSC7VE1rZrXsrCBWfdE08r0RCDD5iUsnDfLRYSO6NSxjhA8jWMjhjRfNAokidyfcOrh2JE1JCZiRHvQkYiRiQMjIGv2QlP2VpwUj0A4KSTTsJf//pXtGvXzuHkCMLdkJARhE4WL16Ml19+Gbt27QIASL48BPP6g/laZu6yhBSyMCa+mxNS1rjwbErKGsUwLGVhmQpLiAkpYzwgpjZqrsiMS5ncdytysA6D+1RSaLJoJEY8CxnJGJEocP4yeEpXgveXAgA6duyIO+64gyZ4JgidkJARhAECgQA+/fRTfPDBB6itrQXQMBpjzhGAJ63Zt5/QUgYYFrOWljKlArRhKVOIYUjKlEY2NChlikLWEMeIlDUZTMNEbZmSkBmJEa9CRjJGJATBWnjK10KoCb2oTEtLw4QJE3DJJZfA6235pv0EEa+QkBGECYqLi/HGG2/gu+++AwAwjoeY2R1ids9m7V+W8EIWxkiFUQtJmVYBWreUacTQJWWNa8eiEtQnZVHNFRUX0C9liqMbGqwtUxMyvTHiUchIxoi4RwpAqNiI9PrtDX2sgTPOOAM33XQTiorcMYcnQcQTJGQEYYG1a9fitddew8qVKwEgNEx+dm9ImV0AzsIIdiokjZBFEstR7NgnMaRMTwFal5TFiBNTymLN+8VC83tpDfahWjvWKA6gLWaM57TnctNZWxZLyGLFiCchIxEj4h4mga/aDk/FOnBSSMSOOeYY/PWvf0Xv3r0dTo4g4hcSMoKwCGMMP//8M9544w3s3Bma9FLyZEDMORJSWlvbB/5ISikDNMWsuaVMb0FaU8p0xlCVMq3ascZo1JbpErKIOGpSpmvuLx21ZXqETCtGvAgZyRgR1zAGvnYvhPI/wQerAACdOnXCzTffjBNPPBGcg/N0EkQiQEJGEDYRDAYxc+ZMvP/++ygrKwMASN4cBHOOAEttZZuYJa2QRaLkK83UdNFoQVpRyozGEBsmsY4Us1i1Y41RkLKYzRVV4gBNxczQZMwqtWWMNycqkXFsEzKgWaSMRIyIaxgDX3cgJGKBcgBATk4Orr32Wpx33nk0jD1B2AQJGUHYTHV1NT755BN8+umn8sAfki+/QcwKLccnIYug0b6wW8rMFqabSJnJOHJtmZHasUgaSZmh2jGFWJFSZkjIGtYPE97HRmrHGhOO4WYhIxkj4hmurhie8j/B+0sAAOnp6RgzZgzGjh2LjIwMh7MjiMSChIwgmomysjJMmTIFM2bMkDs9SylFITFLsTZUPkmZAhbnwzocJyRlVgvTspRZjMMHGDiJGasdiySiXxknMvNCFo7FWOz+YzFiAKHjZEXIokK6UMhIxoh4hasvhadiHfi6AwAAn8+Hiy66CFdccQVyc3OdTY4gEhQSMoJoZg4ePIgPP/wQX331FYLBIABATG0FMbs3WEq+6bgkZQrYKGV2wEl29W+DLbLAScwWeTEtY3KAhn8EzpZ97bY+ZCRjRDzC1R+Cp3w9+PqDAABBEHDuuedi3LhxNHIiQTQzJGQE0ULs2bMHH3zwAb777juIoggAkFIKEczuDZZSYLqPmdkCf7jQmHBiZ2czRiu3x4bjGa6dMp0Ch5AsMOvHivHW44SaCNpz3hye3NrafrZFgEjIiGSEMXD1xfBUrAdffwhASMRGjhyJCRMmoF27dg4nSBDJAQkZQbQwu3fvxpQpUzBr1qzDYubLD4lZalGLiVnjQmNCiZmdg36YvUU2iALHIDeDNCpmsozJf2gIbVbCwzVbFuKEhSyMJblrXLNlZl/bIWTUd4xINsKDdVSsB+8vBQB4PB6cffbZuPLKK0nECKKFISEjCIfYv38/pkyZgq+//hqBQAAAIHlzIWb3aBgu31y7MCMFZKWCY8KImZ3D5Bu9TSpIAseM15Y1ETL5A5MC3jiWmTgqIyOakju1poZG9rcVIWtGcSIpI1xJePj6ig3yqIk+nw/nnXceLrvsMrRu3drhBAkiOSEhIwiHKS4uxtSpU/HFF1+gvr4eAMCEdASzukPK6ATw5oYV1lNA1io0JoSY6fgOur+nDZJgRMpUZUxewKB8q/m9gdqyxrVjjTEudzGsRc8+NyNkNAk0kWxIQfDVO+Cp3AxOrAEApKamYvTo0Rg7diwKCgocTpAgkhsSMoJwCaWlpZgxYwZmzJiB8vLQm0vGeyFmdIGY1Q0QUk3H1ioo6yk4xrWcGfEoPcvGumXGEAS9UhZTyADdMqU3lp44egb00P0yQE/zXIv7O3pZncvZAAkZ4QrEOgiVWyBUbwMnhVpiZGdnY/To0bjkkkto1ESCcAkkZAThMurq6vDtt99i2rRp2L17NwCAgYeU0QFiVg8wb5bp2FYnPo5bMTPTNUlrHbXbpk45iCVlugQqaoUY0q239WsMwdMrZFoxDudkdB4za/u8JWUMICEjnIULVECo3Ay+ehc4hG407du3x6WXXoqzzz4baWlpDmdIEEQkJGQE4VJEUcTPP/+MqVOnYs2aNfLfpdRWEDO7QkptbdsAIGYKj3EnZ1YG8lNat/Gt02DTOa3BPgwLGaAqZbbGUuk/poWq3Jkdqt7ofndQjEjKiBYlPFBH1RZ5DjEA6NevHy677DKceOKJEASbJv8jCMJWSMgIIg5YtWoVpk6dip9//hnhS5YJ6RAzu0DM6AwIPtOxrU6CHFdiZkOuUd838vZpcnCJxrVlpgRKzic6R7tjWZl/rMlLAKtzh4X3vdp+d4EMkZARLYLoh1C9A0LVVrl/GMdxOPnkkzF27Fj069fP4QQJgogFCRlBxBF79uzB559/jq+//hqVlZUAAMbxkNI7QMzsCubLdTS/uJAzG3MM13JZHXo9LGV2TQAdruGyJGQRseRfrU4IjQjBs2My5wai9r2LJIiEjGhOOH8ZhKqt4Gt2gWOhNzqZmZk455xzcOGFF6J9+/YOZ0gQhF5IyAgiDqmrq8PcuXPxv//9Dxs3bpT/LvnyQs0Z09sBnLNNU1wvZzblZ7WGMTJOuNbHrn0nz4NmUyxbMdncVglbxLMZICEjbIeJ4Gv2hJol+svkP/fs2RMXXnghRowYgdRU8wNAEQThDCRkBBHHMMawevVqzJgxA/PmzUMwGAz9nff+f3v3Hh1lfeB//PPM5DYhgRCIEAxyDZcuUBCEKkIR5CJK66J2dd2DLvVnu6eW7ul6FpdTxdZWbD1WPHqO23oW3VbRrvYI1aoggngLdwSUW7iFWxJzISGXmSQz8/z+mMyTmdwzuTyZ4f06Z87MPN/n+32+MxPCfPJ9nu9XvuQs+fsMk5nQz7b+XSmhrCuFXlvWGdYshl0U8sJGtDr730YXhjGpa0buuguhDF3BqC2Xo+qsnNXnrNkS4+LidNNNN+n222/XhAkTZHTxvysAPYdABsSIkpISvfvuu3r33XdVWFhobfcnpMnXZ5j8yVdLjvge71evD2VSrwtmnQ1lwTAWDANdEfL8TqOhLetAETZIIAPa5q+To/q8nJVn5agrszZfddVV+t73vqfbbrtN6enp9vUPQJchkAExxufzae/evfr73/+uTz/9tGHUzHDK7xoiX8owmQnpXf6luDVREcqCeklfrfesg0GqcRgLay/C0TLT0UJ71g4dWzS7qxHIEDNMU0ZNiZxVZ+VwX5Rh+iQFRsNmzpypW2+9Vddddx2zJQIxhkAGxLCysjJt2rRJ7777rvLy8qzt/riUwEQgfbKkuD7d3o+oCmShekG/Ozq6FZgNseUUEMloWXB0rMX2pPaHsisskEmEMrSDt1rO6vNyVJ2Vw1tlbR4+fLhuvfVWLVy4kEWcgRhGIAOuAKZp6uuvv9a7776rrVu3yuPxWGX+hHT5+gyV3zWkU9PntyVqQ1kom15De0fLWhoda7a9DoyWtRbImrTR1n8pBDIgwFcrh/uinFXn5KgttTa7XC7NnTtXt912m771rW9xbRhwBSCQAVeY6upqbd++XR9++KH27t3bsK6ZDPldg+RPHiq/a1C3zNIYE6EsyIbX0tboVlujYy21Zz1urs1mTldstT2rYgsNEshwJTN9crgL5ag+J4e7UEb9LxLDMDRlyhQtWLBAc+bMUXJyss0dBdCTCGTAFayoqEhbtmzRhx9+qBMnTljbTSNO/uSr5UseIjNxoGR03TfemAploXrodbU0Wtbe0bEW22whmLU1OtZqH6WmwewKDGQSoeyKZvoD14VVn5ej+qIM02sVjR49WvPnz9e8efN01VVX2dhJAHYikAGQJJ08eVKbN2/Wli1bVFRUZG03HQnyuzK7NJzFbCgL6oHX1+TarU4uTm21GRLMOjI61mJ7QfULaHcHAhl6HdMvo6ZYzuqLcrjzZfhrraJBgwbp5ptv1vz58zVy5EgbOwmgtyCQAQjj8/n05ZdfauvWrfrkk09UXl5ulQXC2WD5XFfLTIo8nMV8IGusG19v8L3syi/8Xd1m45G8rv78oyGQSYSymGf6ZXiK5XRfkMNdEBbC+vXrp9mzZ2v+/PmaNGmSHI4o+aEF0CMIZABa5PV69eWXX2rbtm3NhLN4+V2ZgVtSRkTXnF1xwUzqFTM39hZd8fkHTtXsfDs9gUAWg0yfHJ5iOdzBkbA6qygtLU2zZ8/WnDlzNHnyZMXFxdnYUQC9GYEMQLt4vV4dOHDACmdlZWVWmWk45U+6Sn7XYPmTBknOxA63f8WFsyvt9baiM599NAUyiVAWE3w1cngK5XAXyOH5xlorTJLS09OtEDZp0iRCGIB2IZAB6LBgONu+fbs+//zz8GvOJJkJ6YFw5hosMz61w+1fMeHsSnmdHdDhRasJZOhupinDWxkIYO4CGbWlYT9yAwcOtELYxIkTWbQZQIcRyAB0immaOn78uD7//HN9/vnnys3NDSv3x6XUj5xdJTNxQETXncV8QIv11xeBjiyEHU2BTCKURQXTL6OmtH4UrCBssWZJys7O1syZMzVz5kyNGTOGtcIAdAqBDECXKiwstMLZ/v375fU2TPFsGk75EzPqT2+8Sorr0+H2YzqcxfJr64S2F8Pusa50CQJZL+WtksP9jRyeb+SoKQo7FTE+Pl5TpkzRzJkzdcMNN2jQoEE2dhRArCGQAeg2lZWV2rVrl3JycrRr1y5dunQprNwf10dm0lWBgJY4UHJ0/HqLmAtosfZ6ulBzn3U0BjKJUNYr+L1y1BQHrgPzfNNkFCwtLU0zZszQzJkzNX36dBZrBtBtCGQAeoTf79eJEye0a9cu7dy5U1999ZV8voa/QJtyyExMlz8pQ/7EgTIT0q7s0xtj5XV0k7Cp+aMw3BDIbGD6ZdSW1YewIhk1JTJC/qE5nU5NmDBB06dP1/Tp05Wdnc309AB6BIEMgC2qqqq0b98+7dy5U7t27VJBQUFYeeD0xoEyEwfKnzRQZny/iBYWjomAFguvoTtFabghlHUz05RRVy6Hp1hGTbEcNSUyTG/YLpmZmVYAu/baa9WnT8dPowaAziKQAbCdaZo6e/as9uzZo3379unLL79URUVF+D5GvPxJAwIBLTEjMHtjBwMa4awFRje12/gY6objRHmoIZR1IdOUUXdZjppiGZ5gAKsL2yUlJUWTJ0/W1KlTNX36dGVlZTEhBwDbEcgA9DrB0xv379+vffv26cCBA6qurg7bxzTi5U9MD5zmmDhAZnya5GjfdNMEs0ZCv492V+BrTlccKwa+S0dDKAs7RbS3tG/66k9BLAnMiFhbGrYwsyQlJyfr29/+tqZMmaIpU6Zo9OjRTEsPoNchkAHo9bxer44fP659+/Zp3759+uqrr+TxeML2MWXITEgLhLPEdPkT0ltdoDomQpnU+VDT2hfgngxMkR4rCsJMW3pbIGtx8hS7j+GrkaOmVEZtaSCE1ZaFXQMmSS6XS5MmTdKUKVM0efJkjRkzhsWZAfR6BDIAUcfr9erEiRM6ePCgvvrqKx08eFClpaVN9vPHpchM6C9/Qn+ZCWkyE/pKRsNfx2MmlEmRBZruDksdOUakx+tlYSZSdoWytv4NdEW/IjqG6ZdRd1lG7SU5ai4FQlijWRAlKT09XRMnTtTEiRM1YcIEAhiAqEQgAxD1TNNUfn6+Dh48qEOHDunQoUM6c+ZM0/3kkJnQNzykxaXIiJVv9VL7w0ykL7mnw1Jbx4ulj66bX0tH/wARSX8iOoZpyvBWBsJXbZmM2ksyai/LkL/J/iNGjNCECROsEDZkyBCuAQMQ9QhkAGJSeXm5Dh8+rCNHjli3y5cvN9nPNOJkBsNZfD/54/tKcSkRzejYq7T2m72rXpodYanxMaP8Y2qsq0JZZ0Z/29uHiI5hmoEFmOvKpbqy+gBW1mT2Q0lKTU3VuHHjNG7cOE2YMEETJkxQampqBAcFgN6NQAbgimCapi5evKgjR47o6NGjOnLkiI4dO6ba2tqm+xpOmfF9Zcb3C9wS+smMS41o4epeIfhbvjvDS4wHpZ7UkVDWlafdmkagveaOH9Fx/N7AaYd1l2XUldffLsswfU12TUxM1NixY60ANn78eEa/AFwxCGQArlher1enT5/WkSNHdPz4cZ04cUInT55UTU1Nk31NSYpLkT++X31YSw1Mve/sE/2jaeiVQoNRT1zvGAxkHa9oSr5qGXUVVgBz1JVL3spmc3lCQoJGjRql7OxsK3wNGzaMa78AXLEIZAAQwufz6fz58zpx4oRyc3Ot+0uXLjW7vymHFc7MuFSCGmJX/emGhrciEL6s+8pmR72kwKQbo0eP1ujRo5Wdna3Ro0crKyuLqecBIASBDADaYJqmSkpKdOLECZ04cUKnT5/WmTNnlJeX1+wpj1JIUIvrI8WlyIzrIzMuRWZciuRM6OFXAHSArzYQsrxVMryVISGsstmJNqTAqNc111yj4cOHW6Nfo0aN0oABA3q48wAQfQhkABAhn8+n/Px8nT59Wnl5ee0KapJkOuLrw1kgpCmuT+Cxs4/kiGdkDd3PX2eFLtUHL6OuPoSZdS1WS0hI0LBhwzR8+HCNGDHCepyZmckphwAQIQIZAHSxYFA7c+aMzp8/r/Pnz+vcuXM6f/68ioqKWq1rGnEy45IlZ7LMuGSZzmSZcS7J2Sew3RHfQ68CUcs0JbNOhrc6cG2X1y3DVx3yvLrZWQ1DZWRkKCsry7pdc801GjFihAYNGsTphgDQxQhkANCD3G63Ll68aAW04P2FCxeaXdy6sYbAliTT6ZLpTJKcLpmOJGsbo2wxzDQDo1s+t+TzyPB7Avc+twyfR/K52xW4pMD1XaGhKysrS0OHDtWQIUPkcrl64MUAACQCGQD0GjU1NSooKFBBQYHy8/OVn58f9rysrKxd7ZhyNApsiTIdifX3CZIjUaYzUXIkRu9U/rHENCXTJ/lrZPhqJH+tDH+N5KuR4a9tFLg8LV7H1Vh6eroGDx5s3TIzMzVo0CDreVJSUje/MABAexDIACBKuN1uFRYWqqCgQMXFxSoqKmpyX15e3qE2TcMZCGiOhPrAFi85EgL3RshjR7xVFhiB47S1Zpk+yV8bGMXy1zXcm8HHtQ33vppA8PLXtjhLYUv69eunjIwMDRgwQBkZGRo4cKAyMjKUkZFhBS8CFwBEBwIZAMSQmpoalZSUWCGtuLhYZWVlunTpknV/6dIllZaWtjrxSFtMwykZcZIRJ9PR8FiOuPqQV19Wvy0Q4BwyDUfgseEI3BR4bgaf1+/XcMqlUf84eFPbp2Na/62ZslasNusfm35J/sC96Zdh+gMhKmSbTL8M+QKP/V7J9AYCU5PHvvrn3sBzf127R6+ak5CQoPT0dKWlpSktLU39+/dXWlqaBgwYYAWu4OOEBGbqBIBYQSADgCuQaZpyu91hIa2srEwVFRXW7fLly6qoqFBlZaX1vLKyUnb/txE4en1AM4yGsFVfavfVcw6HQykpKUpJSVFqaqp1Cz5PSUmxAlcwdKWlpcnlcsng2j8AuOIQyAAA7eb3+1VVVaWKigq53W5VV1c3e9/4cU1NjWpra1VXVxd239w2vz/yUab2cDqdSkhIUHx8vHULfR58nJCQoOTkZLlcLuuWlJQkl8vVZLvL5bICV3JyshwOR7e+BgBA7CCQAQB6FZ/PJ9M05fP55Pf7m30cem8YhhwOh3UfvDXebhiG4uLimLYdANCrEMgAAAAAwCacUwEAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANiGQAQAAAIBNCGQAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANomzuwMAYp9pmvJ4PHZ3AwA6JCkpSYZh2N0NADGOQAag23k8Hi1cuNDubgBAh2zatEkul8vubgCIcZyyCAAAAAA2YYQMQI9K2HWVDLP+b0GGQ4bDkAyH5DAkw5DhCJbVbzcMyWHICO5jlRlWHesmhWxzhJcHKlrbTMNo+JNUSBvWdqPhWKHbTCPQjFXmCLQb2G5YZcE6Zv02q1xqaMNRv3+wXOHHCKtT333T0UxZ2P4K62PDNqNJWZM6Cu1Ho3K1sL2F9lrqR5M6rbVrbTeb1g+pY5WHtGXWb1dIvUCZGdKfQLkRWmbtGywzrTaN0P0N0yqzfsSC24PN1e8T+FEwrefBOo7654GywPNgPavMMGWooZ6jfpt1k2nVcxgK2x6o72+op+D+fjmDdeqfN7Tlt9pzhrTvVGC7M9ieta9fzmCbCvbD37C/GtoOtOmXQ4HjB8oC7TnrtxnyyxmsH1LHKQXqKXCc4PsRfB44lln/WPVlphz174tThhySnPUftkNG/TZDTsOQQw4Z9Z9cXa1Td/y/wQKAnkIgA9CzfEb9VyMFApnqw1P9N92GMkNyNKQPI5Bu6hsJfjN3qMk37oa0E54Cgm02+YauRttCj6FmtjWup4YgFhLImmwLCVChzxt3MXz/Zuo4Wilr6WU06UcLL7u1spbeqkjbC2mzubDWrYGsuXI1fm5abYf2I/SYzZVZAU4h+4Tu36SO2cyxzLBbaCBrCHn1t5bKFAxtgSZDw1swuEnBYCUr0ISWBQKZvyHQGKGBJvDYYRiBsFR/L+uxYdULtKP6NoN1VV+vfntzZSF1nPVh0mn1MxjIzDYDWWh7zuD7ofBtDoX2MeQzBIAewCmLAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE0IZAAAAABgEwIZAAAAANiEQAYAAAAANmEdMgA9y2nKNAOLwQbW1TJC7o1GizUH70MeK3SbGfK4HWUhi1I1LN/b0vaGezPsscLqmZJkBrc3tGnKkExZdUPLrTbCFs8K7Uszz82wLjV6P1q4Nd63PWuNtVbW7mO1syz0kK3WM9to02yhjy0vDB2+dlhImbVv5AtDN/QjZB0yRb4OmamGeqZhht8UuA+UKWy73zAlw9/QpoLH8oesl1a/T325afit9hTWfv198Fj1zx31+wTvJTXZ5g/5Zx187DckvxrWIfPXbzPU0jpkhrWYs1MNn1nwuaO+TuO1zdq/MLShhoWhm/t3CQDdh0AGoEfVTv/G7i50j+D33Qg1zhNAUOiPlt/OjkQsNBFzYg4ANMZvRgAAAACwiWGaZif+pgsAbTNNUx6Px+5uxByPx6Pvf//7kqSNGzcqKSnJ5h6hNXxe0ScpKUmGwZg1gO7FKYsAup1hGHK5XHZ3I6YlJSXxHkcRPi8AQBCnLAIAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2YZZFAAAAALAJI2QAAAAAYBMCGQAAAADYhEAGAAAAADYhkAEAAACATQhkAAAAAGATAhkAAAAA2IRABgAAAAA2IZABAAAAgE3i7O4AAFwJqqur9cYbb2j79u0qKCiQw+HQ0KFDNXfuXN1xxx2Kj4+PuO3S0lKtX79eOTk5KiwsVGJiokaMGKFFixbp1ltvlWEYrda/cOGC1q9fr927d6u0tFQul0tjxozRkiVLNGfOnIj7Fc164+dVUlKiAwcO6Pjx49bt8uXLkqTnnntOU6ZMibhPAAD7GKZpmnZ3AgBiWUFBgVasWKGCggJJUlJSkvx+v2prayVJ2dnZWrt2rVJTUzvc9rFjx/Twww+rvLxckuRyuVRbWyufzydJmj59utasWdNigMjJydHq1avl8XgkSX369JHb7Zbf75ckLV68WCtXrmwz1MWS3vp5rVu3Tq+88kqz7RLIACB6ccoiAHQjr9erRx55RAUFBRowYIB+//vfa/Pmzdq8ebNWr16t5ORk5ebm6oknnuhw25WVlVq5cqXKy8t1zTXX6I9//KM2bdqkzZs369///d8VFxenXbt26fnnn2+2/sWLF/X444/L4/Fo4sSJeu211/T+++/rvffe0/333y9Jeu+99/T666935i2IKr358zIMQ1dddZVuvPFG/fCHP9R//ud/dvblAgB6AQIZAHSjDz74QKdOnZIkPfHEE5o2bZokyeFwaN68eXr44YclSTt27NDevXs71PYbb7yh0tJSJSYm6ne/+53GjRsnSYqPj9fSpUu1fPlySdI777yjc+fONam/bt06ud1upaen66mnntLQoUMlScnJyVq+fLmWLFkiSfrzn/+sioqKCF599OnNn9eyZcv01ltv6cknn9R9992nqVOnRvw6AQC9B4EMALrRBx98IEmaMmWKJkyY0KR83rx5yszMDNu3vTZt2mS1MWTIkCblS5culcvlks/n04cffhhW5na7tX37dknS7bff3uzpd//yL/8iSaqqqtKnn37aob5Fq976eUmS0+ns0PEAANGBQAYA3cTj8eirr76SJH3nO99pdh/DMDRjxgxJ0u7du9vd9tmzZ1VYWChJVv3GkpOTNWnSpGbbPnTokGpqalqtn5mZqWHDhnW4b9GqN39eAIDYRSADgG6Sl5dnTY4xYsSIFvcLlpWWllqz5rUleFpdW22PHDlSknTmzJkW6wf3aa3+6dOn29WvaNabPy8AQOwikAFANykuLrYeZ2RktLjfwIEDm63TmpKSkg61XVVVperq6ibHSU1NVWJiYpv1Q48Xq3rz5wUAiF0EMgDoJqFfqFsLPUlJSc3W6c623W53k/LW6l8J4aA3f14AgNhFIAMAAAAAmxDIAKCbJCcnW4+DE2g0J7goc+M63dm2y+VqUt5a/fb2K5r15s8LABC7CGQA0E1CrzUqKipqcb/Q65BC67RmwIABHWq7T58+YV/wg8epqKhoNSAE64ceL1b15s8LABC7CGQA0E2GDRsmhyPwa7a1WQqDZenp6erbt2+72g6dGbG1toOz+w0fPrzF+qEzALZUv7WZAWNFb/68AACxi0AGAN0kKSnJWlx4586dze5jmqZ27dolSbruuuva3fbQoUM1aNCgVtt2u906ePBgs21PnDjRmlwiePzGCgoKlJeX1+G+Rave/HkBAGIXgQwAutGiRYskSfv379fhw4eblG/btk0XL14M27c9DMPQwoULJUlbt25Vfn5+k33efvttud1uOZ1OzZ8/P6zM5XLpu9/9riRpw4YNqqysbFJ//fr1kgLXMs2aNavdfYtmvfXzAgDELgIZAHSjRYsWaeTIkTJNU48++qj27t0rSfL7/dq2bZuefvppSdKMGTM0derUsLrr1q3T7NmzNXv27Ga/wN99991KT0+Xx+PRypUrdezYMUlSXV2dNmzYoP/5n/+RJC1ZskRDhw5tUn/58uVyuVwqKSnRI488onPnzkkKjNS88sor2rhxoyRp2bJlSk1N7aJ3pHfrzZ+X3+9XWVmZdauoqLDKKisrw8pqa2u75g0BAHQ7wzRN0+5OAEAsy8/P189+9jMVFBRICpwa5/f7rS/N2dnZWrt2bZPQs27dOr3yyiuSpL/85S/KzMxs0vaxY8f08MMPq7y8XFJgNKu2tlZer1dS4NS3NWvWKCEhodm+5eTkaPXq1dbsfikpKXK73fL5fJKkxYsXa+XKlTIMo5PvQvTorZ9Xfn6+/umf/qldr+G//uu/dMstt7TvBQMAbBVndwcAINZlZmbqlVde0RtvvKHt27eroKBAcXFxGjFihObNm6c77rhD8fHxEbU9duxY/e///q/Wr1+vL774Qt98842SkpI0cuRILVq0SIsXL7YmqmjO9ddfr5dfflnr16/X7t27VVpaqpSUFGVnZ+t73/ue5syZE+Grjl69+fMCAMQeRsgAAAAAwCb8GQ4AAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwCEee655zR79mz99Kc/tbsrsFllZaVuvfVWzZ49W5988ond3QGAmBRndwcAIFZUVVUpNzdXR48e1bFjx3Ts2DFduHBBpmlKkv7yl78oMzOzW45tmqbuvPNOFRUV6d5779WPfvSjiNrJzc3Vhg0bJEkPPvhgF/bQXqdOndKuXbt06NAhnTp1SiUlJfL5fEpNTdWoUaN0/fXXa9GiRUpJSbG7q71KSkqK7r77br300kt6/vnnNWPGDCUmJtrdLQCIKQQyAOgiK1asUG5uri3HPnr0qIqKiiRJs2bNiridF198UT6fTzNmzNDEiRO7qnu2WrFihb788stmy0pLS1VaWqrdu3fr1Vdf1apVqzR9+vSe7WAvd+edd+rNN99UYWGh3nrrLd177712dwkAYgqnLAJAFwmOhEmBkYUpU6YoPT29R4796aefSpIyMjI0fvz4iNo4ePCg9uzZI0kx9aU7GFRTU1O1ePFirVq1Si+88IJeeukl/epXv9L1118vKRDOVq1apQMHDtjZ3V7H5XLpjjvukCStX79e1dXVNvcIAGILI2QA0EUWL16stLQ0jR07VllZWTIMQytWrFBpaWm3HzsYyGbOnCnDMCJq4/XXX5ckZWZm6tvf/naX9c1uWVlZWrZsmebNm6eEhISwsrFjx2rOnDl67bXX9Ic//EG1tbV65pln9Kc//cmm3vZOCxYs0Lp161RRUaG///3vuuuuu+zuEgDEDEbIAKCL3Hnnnbr55ps1dOjQiENRJM6dO6e8vDxJkZ+uWFRUpJycHEnSwoULe7T/3e3pp5/WLbfc0iSMhbr33nuVnZ0tSTpz5oxOnjzZU92LCpmZmZo0aZIk6W9/+5vNvQGA2MIIGQBEueDsd8HTJCOxZcsW+f1+SdLcuXPbVcfr9Wrr1q367LPPdPToUZWVlcnn8yktLU0jR47UtGnTdPPNN2vAgAFh9WbPni1JWrRokVatWqWzZ8/qrbfe0u7du1VcXKw+ffpozJgx+ud//mdNnjzZqldTU6P3339fmzZt0vnz5+XxeDRkyBDNnz9fd911V6cnm7j22mutawDPnTunUaNGRdzWmTNntHHjRh04cED5+fnyeDxKSUlRamqqMjMzNXXqVN1444265pprImrf6/Vq8+bN2rZtm06dOqXy8nIZhqG+ffsqLS1N48eP17Rp0zRz5kzFx8eH1W38/p85c0Zvv/229uzZo+LiYrndbv3mN79pEu7nzp2rAwcOKC8vT0ePHtW4ceMie3MAAGEIZAAQ5YKnK15//fWKi4vs1/oXX3whKXCd1bBhw9rc/8SJE3rsscd0/vz5JmVFRUUqKirSzp07dfLkSa1atarFdj7++GM9+eST8ng81raamhrt2LFDO3fu1MMPP6wlS5aouLhYq1at0tGjR8Pqnz59Wn/84x+1Y8cOPfPMM50KZV6v13rscER+AsnGjRu1du1a+Xy+sO3l5eUqLy/X+fPntXv3bp08eVKPPvpoh9svKyvTf/zHfzQ7gUzwvc/NzdXf/vY3rV+/XllZWS229f777+uZZ55RbW1tm8cNneTliy++IJABQBchkAFAFCsuLtaRI0ckRX66Ym1trb7++mtJ0vjx49s8XTE3N1cPPfSQ3G63JGnKlClasGCBhg0bpvj4eJWUlOjw4cNtrlt18uRJbd26Vf3799eDDz5oHXvv3r3685//LI/Ho2effVaTJ0/Wr3/9a504cUK33367brzxRqWlpenChQv605/+pJMnT+rgwYNav369/vVf/zWi90CS9u3bZz0eMWJERG2cOnXKCmN9+/bVkiVLNHnyZKWlpcnn86mkpETHjh3Tjh07Ij4tdO3atVYYmzp1qhYsWKDMzEz16dNHVVVVysvL04EDB6xTUFty7NgxbdmyRX379tVdd92liRMnKj4+XmfOnNHgwYOb7D9ixAi5XC653W7t27dPy5cvj6j/AIBwBDIAiGKfffaZTNNUQkKCZsyYEVEbJ0+etEaHxo4d2+q+Xq9Xjz32mBXGfvazn1kz8IW64YYb9MADD6iwsLDFtnJzc5Wdna21a9cqNTXV2v6tb31LWVlZWr16tbxerx566CFdvnxZTz/9tKZNm2btN2bMGF133XVatmyZiouLtWHDBi1btkxOp7NDr18KnPZ5+vRpSYFQOnTo0A63IUnbtm2zRsaeffZZ67q0ULNmzdIDDzyg8vLyDrdfU1NjBd1Zs2bp17/+dZNgN3nyZH3/+9+X2+1udaTv9OnTysrK0gsvvBA2G2hLs3Q6nU6NGTNGBw4c0PHjx+X3+zs1kggACOA3KQBEseDpitOmTZPL5YqojdDTDtuapn/Lli26cOGCpMCsks2FsVCDBg1qtfyRRx4JC2NBc+bMUUZGhiTp0qVLWrp0aVgYC0pJSdEtt9xi7XfmzJlWj9ec4uJi/f73v5ckGYahf/u3f+twG0HBGTVTUlKaDWOh+vXr1+H2KyoqrPA8efLkVkfZXC5Xm6dw/vznP+/Q0gzBfT0ej4qLi9tdDwDQMgIZAESpyspK7d+/X1LnFoMuKSmxHvft27fVfYMBUJLuueeeiI8pBU6Baym0GIYRVrZgwYIW2wnd7+LFix3qg8fj0apVq6wg1XgikY4KhsjKykpt27Yt4nZa0q9fP2u2yI8++qhTa4JlZGQ0G3JbE/rzEfpzAwCIHIEMAKJUTk6OvF6vnE6nZs6cGXE7NTU11uPmRqtCHT9+XFJgpKQ9k3+0pq36oX1pbTbC0P06ElDq6ur0i1/8wpoo5MYbb9QDDzzQ7vrNWbBggTUqtXr1av3kJz/Ra6+9poMHD1qneXZGfHy8Fi1aJEk6fPiwfvCDH+jpp5/WRx991OEwGskskqGBLHQiFgBA5LiGDACiVHC0asKECUpLS4u4ndBrrtqaba+srExSw0hQZyQlJbVaHno6XmunY4ZexxScur8tXq9Xjz76qHbt2iVJmj59uh5//PGIrj8LNWTIED311FN68sknVVRUpEOHDunQoUOSAu/zuHHjNHv2bN12221tht+W/PSnP1Vtba02bdqky5cv65133tE777wjKRCUp0+frsWLF7c50tfWaGhzQsN7pDN6AgDCMUIGAFGotrZWO3fulNS50xWlwPVOQZcvX+5UW9HA6/Vq9erV1lT/06ZN029+85tWF47uiKlTp+r111/XL3/5Sy1evNiadt7n8+nrr7/Wiy++qHvuuccKgx2VmJioVatW6dVXX9UPf/hDXXvttVZgLS0t1QcffKAVK1boF7/4RViAaiySCTlCJyIJ/bkBAESOP28BQBTas2ePdQpcZwNZ6BTnbQWytLQ0FRYWRu2EDsEwFhxdvPbaa7VmzZpOLyrdWEJCgm666SbddNNNkgIji3v37tWmTZu0Y8cOXb58WY8++qjWr1/fZOHs9ho6dKjuu+8+3XffffL5fMrNzdUXX3yhjRs36tKlS/rkk0/00ksv6aGHHuqy11VRUWE9bmvCFgBA+zBCBgBRKBgosrOzlZmZ2am2QtfcOnv2bKv7BqfFLykpaXPf3qZxGJsyZYqeeuqpLg9jzUlLS9O8efP0u9/9Trfffrskye1267PPPuuS9oOnQy5fvlz//d//bZ0OumXLli5pPygvL0+SlJmZqeTk5C5tGwCuVAQyAIgyfr9fn3/+uaTARBSdNWjQIA0cOFCSrEWmWzJ79mzr8fr16zt97J7i9Xr1+OOPW2Fs8uTJ+u1vf9vmdWzdYfr06dbj4DV5XSkzM9NaRy2Stc5aUlZWZi158A//8A9d1i4AXOkIZAAQZQ4dOmR9kQ8NSJ0RDAl5eXmqqqpqcb+5c+daX/bfe+89/fWvf2213dYWhu4pXq9Xv/rVr6wFlbszjG3fvr3NkBW89k+Srr766g61f/HiRe3Zs6fVffLz862RrCFDhnSo/dYcPnzYevyd73yny9oFgCsd15ABQBc5f/68NaNeUHB9K0n6+OOPw2ZDdLlcmjNnToePExzlGTJkSERTlzfnpptu0nvvvSe/3689e/bou9/9brP7xcXF6Ze//KV+8pOfyO1267nnntMnn3yihQsXatiwYYqPj1dJSYmOHj2qjz/+WGPHjtWqVau6pI+ReuKJJ/Txxx9LCgSgH//4x8rPz2+1Tv/+/dW/f/8OH+uvf/2rnnjiCU2dOlVTp07V8OHD1a9fP9XV1amwsFBbtmyxRjcHDx7c4eUKCgsL9fOf/1xDhgzRzJkzNX78eA0aNEiJiYkqLy/X4cOHtWHDBmu2zLYW7u6I3bt3SwpcH3f99dd3WbsAcKUjkAFAFzl06JDWrFnTYvmLL74Y9nzw4MGdCmRdcbpi0LRp05SRkaGioiJt2rSpxUAmSaNHj9bzzz+vxx57TBcvXtT+/futBaobC15zZqfQBZovXLigH//4x23Wuf/++7V8+fKIjldbW6ucnBzl5OS0uM/VV1+tNWvWtDqdf2suXryoN998s8Vyh8Ohe+65R//4j/8YUfuNeb1effTRR5ICo7KRTtkPAGiKQAYAUeTEiRPW6E5nZ1cM5XQ6tXTpUv3hD3/Qjh07VFZW1uraZmPGjNGrr76qTZs26dNPP1Vubq51vVL//v01atQoXXfddbr55pu7rI/RYPXq1dq1a5cOHDigU6dOqbS01DqFsV+/fho9erRmzZqlBQsWRDTN/qRJk/TCCy9oz549Onz4sAoLC3Xp0iVVVVUpKSlJQ4YM0aRJk3Tbbbd12eipJOtnQpLuvPPOLmsXACAZpmmadncCANA+L7/8sl5++WX1799fb7/9dkRrSbWksrJSd999ty5fvqwf/ehHuvfee7usbUS3lStXKicnR1OnTtWzzz5rd3cAIKYwqQcARJHg6Yo33HBDl4YxKbDQbzCEvfHGG6quru7S9hGdDh8+rJycHBmGoQcffNDu7gBAzCGQAUCUqKur06xZs3T//fdr6dKl3XKMO+64Q1lZWSovL9f//d//dcsxEF1eeuklSdLChQs1fvx4m3sDALGHUxYBAGGOHDminJwcpaSk6Ac/+IHd3YGNKisr9eabb8o0TS1durTV6woBAJEhkAEAAACATThlEQAAAABsQiADAAAAAJsQyAAAAADAJgQyAAAAALAJgQwAAAAAbEIgAwAAAACbEMgAAAAAwCYEMgAAAACwCYEMAAAAAGxCIAMAAAAAmxDIAAAAAMAmBDIAAAAAsAmBDAAAAABsQiADAAAAAJsQyAAAAADAJv8fIZe1+sWt2RQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2QAAAHiCAYAAACHng8kAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACgZUlEQVR4nOzdd3xTVR8G8Cez6R60QKEtZa9WNrJBpggKKgIKAg7cilvcghs3ihsElFdQEJUlS/aUvSmrZbbQvTPP+0fIJaVJmrZpb9o+Xz75NOSO/NImN/e559xzFUIIASIiIiIiIqp0SrkLICIiIiIiqqkYyIiIiIiIiGTCQEZERERERCQTBjIiIiIiIiKZMJARERERERHJhIGMiIiIiIhIJgxkREREREREMmEgIyIiIiIikgkDGRERERERkUwYyIiIiIiIiGTCQEZERERERCQTBjIiIiIiIiKZMJARERERERHJhIGMiIiIiIhIJh4JZImJiVAoFFAoFJgwYYInVlkj9enTR/o9EhE5M2HCBGlbkZiYKHc5ktmzZ0t1zZ49W+5yyMMsFgs6dOgAhUKBJ598Uu5y6Dr8/JGc1q9fL73/3nrrLbnL8ajs7GyEhYVBoVDgu+++q5DnqLQWstmzZ+Ott96qdn8kV/7880/pNWdmZspdDl1lMpmwZs0aTJ48GX379kVkZCR8fHwQEBCAxo0bY/To0fjzzz9hNptLtd5Dhw7hySefRIsWLRAQEIDg4GDEx8dj8uTJSEpKqqBXQ0Q1icFgwO7du/H999/joYceQocOHaDVaitlR/z777/Hnj17oNPp8PLLLzucpypsX5OSkjB58mTEx8cjODgYAQEBaNGiBZ588kkcPny4VOty17Zt23D//fejcePG8PPzQ1hYGDp06IB33nkHqampFfKccoiPj5fei2vXri318ps3b5aWb9WqVamXtw+l7tzWr1/v1no9+Z65cuUK3n77bXTo0AFhYWHw8/ND48aNcf/992P79u2lfs3uqCn7J7feeqv0t505c2aplz979ixUKhUUCgXCwsJQWFgIAAgKCsIzzzwDAHj11VeRkZHh0boBAMIDzpw5IwAIAGL8+PEO5+ndu7c0T00xfvx46TWfOXOmxPlr4u+osv37778iLCxM+j27unXq1EmcPHnSrfV+9NFHQqPROF1XYGCg+PXXXyv41VFNUdptS2X56aefpLp++uknucupltq3b+9yu1VRv/e8vDxRt25dAUA89dRTDuepCtvXX375RQQEBDhdl1arFZ9++qnbv5eSWCwW8cwzzwiFQuH0OevUqSPWrl1b7ufyhs/fJ598ItUwduzYUi9///33S8tPmzat1Mvb/w7cua1bt67EdXryPbN69WpRu3Ztp+tSKBTi+eefL/XrdqWy9k/WrVsnrfPNN98sf+FlsGjRIqmGHj16lHr5qVOnSss/9thjRaZlZWWJ0NBQAUBMnjzZUyVL1M6jmvtiY2MhhPDEqmo0d4/UUNlduHAB6enpAICwsDD0798fXbp0QWRkJIxGI3bu3Im5c+ciOzsb//33H2666Sbs3LkTdevWdbrOb7/9Fi+88AIAQKPR4N5770Xv3r1hNBqxcuVKLFy4EDk5Obj33nsREhKCm2++uVJeK1Vfs2fPZpekGur6lqW6devCx8enwo9yf/3110hOToZKpcKLL77ocB5v374uW7YM48ePh9lshkKhwIgRIzBo0CBoNBps2LABP//8MwwGA5599lkEBgbiwQcfLMdvzOrll1/GZ599BgDw9/fHAw88gM6dOyM3NxeLFi3C6tWrkZKSgmHDhmHTpk1o27ZtuZ9TTmPHjsVLL70Ek8mEP/74A19//TUCAwPdWjY/Px+///47AEClUuHee+8tVy1PPvkk+vbt63KeuLg4l9M9+Z7ZvXs3hg0bhvz8fADAgAEDcOeddyIgIAA7d+7EzJkzkZeXh48//hg+Pj545513Sv+ir1PT9k9uvfVWhIeHIzU1FZs3b8apU6fQuHFjt5efM2eOdP++++4rMi0oKAiPP/443nnnHXz55Zd4/vnnUatWLY/VXmlNMTWx9cdbj2LXZD///LOIj48X//vf/0RhYaHDec6fPy9at24t/e3GjRvndH0XL14Ufn5+AoBQq9Vi9erVxeaxP2IXHR0tCgoKPPZ6iLyJNxyhr+6eeeYZ8cYbb4i//vpLXLhwQQghxJtvvlmhv3ej0Siio6MFADFw4ECn83nz9jUvL0/Uq1dPmnf27NnF5lm1apVQq9UCgAgICBDJyclOa3PHnj17pJax4OBgsX///mLz2P/tOnXqJCwWS5mfz1s+f8OGDZPqmDlzptvLzZ07V1pu6NChZXpuT/4OPPmesVgsRVq333rrrWLz7Nu3TwQFBQkAQqlUigMHDpSr/sreP/GGFjIhhJg0aZJUx+uvv+72chs3bpSWi4uLczhPQkKCNM+7777rqZKFEEIwkFUgBjLvk5GR4dYX3sGDB6W/na+vr8jLy3M439NPPy3N98ILLzhd31133SXN99VXX5W5fiJv5i07hDVNRQeyxYsXS+ufO3eu0/m8efv6+eefS/PcddddTtf1wgsvSPOVt+vY8OHDpXXNmDHD4TwWi0V07txZmm/p0qVlfj5v+fz9+eefUh09e/Z0e7m+fftKyy1atKhMz+3J34En3zP2v5Mbb7zR6edkxowZ0nwjRowoV/2VvX/iLYFs3759Uh0NGjRw+yCHfXfZTz75xOl8nTp1kgJseQ6gXK/CzyGzD2Kubs7+eGazWSxYsECMHDlSxMbGCl9fXxEQECCaN28uHnnkkRKPINh/Udn6Cq9Zs0aMHj1axMbGCh8fn2KByWg0in/++Uc8++yzonv37iIiIkJoNBoREBAgmjZtKsaPHy82bNjg9Dntg5irm6vfVUm2b98uJk6cKJo1ayYCAgKEn5+faNSokRg3bpxbfdFtz9O7d28hhBC5ubnio48+Eh06dBAhISHCz89PtGrVSkyePFmkp6eXuL7qqEWLFtLvydGRTYvFIurXry8Aa7/vs2fPOl3Xpk2byvQF5Qlbt24VjzzyiGjZsqUIDg4WPj4+Ijo6WowcObLEL39HG9ikpCTx7LPPiubNmws/Pz8RHBwsunbtKmbMmCGMRqNbNeXk5IjPPvtM9O/fX0RGRgqtVitCQ0NFx44dxeuvvy4uX77scvnrPysmk0n89NNPon///qJevXpCpVKJBg0aFFsuOTlZvPDCC6Jly5bCz89PhIaGik6dOomPP/5Y2ils0KCBtCG3t2LFCuk5n3zySbde55NPPikts3z5creWcUdJB3sq6u+2ZMkSMXToUFGnTh3h4+MjGjRoIO655x6xdetWIUTpdob0er348ccfxa233iqioqKEj4+PCA4OFvHx8eLZZ591ehDr2LFj0lHfoKAgcfr0aafPkZ6eLrXsKJVKl9vtqqyiA9kdd9whhaecnByPrLOyt69du3aV5tm8ebPTdZ09e1Zq1YqJiSn9C7sqOztb2r8ICgpyGjqFsLYs2mq79957y/yc7n7+du7cKcLDwwVgPf9pwYIFxeYpz76X0WiUzpNSKBTi1KlTJdaelJQk/d7Dw8OFwWBw6zVfz5OBzJPvmbvvvlta1y+//OJ0XXl5eVIrma+vr8jNzS1T7XLsn7gbyE6ePCkaNWok1ebs/LsVK1aI8ePHiyZNmoiAgADh6+srGjVqJMaPHy82bdrkspZ27dpJtbizT5yXlycCAwMFYG1NTElJcTqvfVD/999/S1y3u7w6kJ08eVK0bdvW5XJKpdJlk6T9F9W///4rHn/8cYfrsf/y79Onj9uBSq/XF3vOigxkRqNRTJw4scR1jxw5UuTn5ztdj30gO3XqlGjVqpXTdTVo0KBGtvDZjoIAENu3by823f4or7PmbRuz2VykK0J2dnZFlS3Jzc0Vo0aNKvG9MmTIEKf1XL+BXbFihQgJCXG6rgEDBjjtqmSzfPlylyc1A9aTjP/66y+n67D/rKSlpYkePXo4fN/a+/fff6UTch3d4uPjxdmzZ50GMrPZLBo2bCgAiNDQ0BK7dhQUFEjPFxMTI8xms8v5S6O0gay8fzeTyeRyu6ZUKsWHH37o9s7Qf//9J/0und20Wq349ttvHS7//fffS/N17dpVmEwmh/ONGDFCmu/VV191+TutyioykBUWFkoBuFevXh5bb2VuX7Oysop0HSzps2jfpfLw4cOlf3HCevDCto6Sut9dvnxZmjciIqJMzyeEe2Fk5cqV0gAVAQEBDruxeWLf69lnn5XmfeONN0qs3X4whUmTJrn7kovxVCDz9HumVq1a0vQrV664XNeQIUOkeZctW1am+uXYP3EnkO3Zs0fUqVNHANbg8/PPPxeb5/Lly0VaS53dHnjgAafBffr06dJ8rrpF29h3lx02bJjLeffv3++R9+r1PDKohyu2IV1fe+01aWjQxYsXF5uvRYsWRf5/6tQpdOnSRRoOtkePHhg6dCgaNGgAs9mM3bt3Y/bs2cjIyMDbb78NpVJZ4pD6H330EVasWIG6detiwoQJiIuLg8lkws6dO+Hj4yPNV1BQgICAAPTr1w8dOnRAbGwsdDodLl26hMOHD2PevHnIy8vDnDlzEBISgs8//7zI8zz11FMYPnw4pk+fjnXr1gEAvvvuO9SuXbvIfDExMW79Du3de++9mD9/PgBAp9Nh/Pjx6NatG1QqFXbt2oWZM2ciJycHv/32G7KysrBixQqX1zXLzs7GkCFDcPz4cQwbNgw333wzwsLCcPr0aXzzzTc4e/YskpKSMG7cOGzcuLHU9VZVBoMBJ06ckP7foEGDYvMcOnRIut+hQweX61MqlWjXrh02bNgAi8WCo0ePonPnzp4r+Dp6vR79+/eXhtBt3LgxRo0ahZYtW0Kj0eDkyZOYO3cuEhISsGzZMgwfPhyrV6+GUun8Shj79u3DRx99BCEEHn74YXTt2hU+Pj7YtWsXvv32W+Tl5WH16tV49913MXXqVIfrWLRoEUaNGgWz2QyNRoPbbrsNffr0QZ06dZCdnY1169bht99+Q05ODm6//XasXr26xJOyx44di82bN6NNmza4++67ERsbi+zsbBw4cECa58iRIxg6dKh0MnW7du0wduxYREVFISUlBQsWLMCWLVswatQomEwmh8+jVCoxceJEvPLKK8jIyMCiRYswZswYp3UtXLhQGhr3gQcecPm7rUie+Ls99dRT0snOWq0W48ePR48ePaBUKqWT0V966SUMHz68xHq2bduG/v37Iz8/HwqFAoMGDcLAgQNRv359FBQUYNu2bfj555+Rn5+PRx55BD4+PsWubzlx4kSsXLkSixYtwrZt2zBlypRitc+cORMLFy4EAHTp0qVGXXLFk7Zs2SJ9bjy1zars7euRI0ekgcfatm1b4mexY8eO0v7KoUOHyjT8emnqj4iIQIMGDZCUlIQrV67g8uXLxfYXPOHXX3/F+PHjYTQaERERgeXLl6Njx45F5vHUvtd9992HTz/9FAAwd+5cvPXWWy73RVwNplBWX3/9NT744AOcO3cOgPX33KlTJwwfPhyjRo2CWu18F9iT75nk5GSkpaUBsL7Xw8PDS1zXsmXLpHXdcsstJbzS4rxx/2TdunUYPnw4srOz4efnh4ULF2Lw4MFF5klPT0fXrl1x6tQpAECbNm1wxx13oEmTJlAqlTh06BBmz56NCxcuYObMmTCZTA4HuLrnnnvw/PPPw2AwYNGiRZgxYwYCAgKc1ma/jpLef3FxcQgICEBubi5Wrlzp/i+gJJ5IdZ4e9t5sNksnP/r4+IjffvvN4XzJycnSURylUikOHTpUbB77I4eAdRjMrKwsl8+/Zs0al61Lqamp0hF5pVLptMuMp4e9nz9/vjS9Tp06Do/CJCYmFjny7Kw/sP3vRKvViiVLljh8nfbr2rFjR4mvwZm8vDyxePFij9x2795d5jrcZd+FpH379g7nmTJlSolHg+yNGzdOmt/RUSFPur7vuKMuaQaDoUhN33zzTbF57I944WpLT0JCQrH5duzYIZ3YHBoa6rC15ezZs9JRuJiYGKddXnbs2CGCg4MFABEVFeXwCNj1Le9PP/20yyOY9i1ojz32mMN5r99WOOvyaBs+2Nbd15levXoJAEKlUolz5865nLe0StNCVt6/m/2JziEhIWLXrl3F5jl27Jg0JLrt5ujodHZ2ttSFMCQkRKxfv97h6ztx4oSIiYkRAIS/v7/DI8rp6ekiKipK+h3bd2E5fvy48Pf3F4C1u5g7XaZcOXr0qMe2XyUdHS+Limwhe++996R1//777x5ZZ2VvX+fMmVPiPoq9N954Q5r/7bffduclFXPfffeV6m9i214AKLE7ljOuWoemT58utfg0aNBAHD9+vNjyntz3EkKIjh07SvW46tq1YcMGab527dq5/4IdcHfY++bNmzvsKmvjyfeM/esr6XtDCCFmzZpVpBWoLOTYP3HVQrZw4UKpC29YWJjUzf16tvMuFQqF+Pzzzx3Ok5OTIwYOHCg914oVKxzOZ99DYtasWU7rTkxMlD4btWvXdqsLv60nnUKhEJmZmSXO7w6vDGT21xGYPn26y3mPHz8uVCqVACAmTpxYbLr9F5W/v780KlV5nTp1qsQNtqcDmX2fWFfno+zYsaPIhtdRdx77DdPUqVOdruuHH35wa76S2L9HyntzZ+NYHunp6SIyMrLEnZBnnnlGmufLL78scb2lnb+sLl68KLRarQAg7rjjDpfzGgwGqS9306ZNi02/fsd+48aNTtc1ZswYl/PZzqdSqVRi7969LuuaOXOmtK558+YVm27/WenQoYPLMPbff/9J88bFxTnt3nb9eh0FMiGKngDtKOQIYd0u2eYZMmSIy9daFqUNZOX5u9mPmOZolDGbpUuXFnlORzuh9tco+vvvv12+xrVr10rzOhvNav369UKpVEp/r4yMDGEwGESHDh3KvXNh7/qwXp6bO9c9Kk99ng5k99xzj7Tu8o76JoQ829cvvvhCmvbcc8+VuK7Szu/I7bffLq3D0QHP8s7viLNA9uqrr0qPt27dWpw/f97h8p7c9xKi6AAVrrqN2YfXkp63JD/99JNQq9Wid+/e4vXXXxdz5swRv//+u/j666/F2LFjhU6nk54rMDDQaSjz5Hvmr7/+kqbdeeedJa6rtPM7Isf+ibNA9u2330rb6fr16zvtBrx7925p+Weffdblc6Wnp0sHbgcMGOBwnmXLlknrc9Xd2j68lvS8No8++qi0TFkPoFxPnj40Jfj5558BWMf8nzhxost5mzVrJjWtrlq1yuW8d955J+rVq+eRGhs1aiRdO2XHjh0eWacriYmJ2Lt3LwAgPj6+WDOvvc6dO0vdvJKSkrB7926n86pUKjzxxBNOp9t3Fzty5Ehpy65yzGYzRo8ejUuXLgEAhgwZghEjRjicNzc3V7qv0+lKXLevr690Pycnp5yVOvfbb7/BYDAAAJ5//nmX82o0GowaNQoAcOLECSQmJjqdt127dujZs6fT6a7eK0IIzJs3DwDQr1+/Eq+1Y9+dpKTP9eOPP+6yO8lff/1VZF6VSuV03kmTJrl8LgB45JFHpPs//vijw3nsH3/ooYdKXGdFKs/fTa/XY8WKFQCAOnXqYOzYsU7XM2TIELRs2dJlLbZte7NmzXDrrbe6nLdv377S9trZe6B3796YPHkyAOu27pFHHsFrr70mbfPGjBnjsmYqmf31zcLCwsq1Lrm2r3Jsq73h+8FsNmPixIl49913AQDdunXDpk2bUL9+fYfze3rf6+6775Ze+6JFi4r8Tmzy8/OlrsVarRb33HOPG6/MuR49eiApKQnr16/H1KlTMW7cOIwYMQKPPvoofv75ZyQkJKBTp04ArL9nWxf66/H95xlTp07FI488AovFgubNm2Pr1q1OuwDb3n8KhQLPPfecy/WGhoZKXTk3btwIvV5fbJ5BgwZJ3yGbNm3CmTNnis0jhMDcuXOl/7vbXTY0NFS676lrQFb4OWRlsWnTJgBAZGQk/vnnnxLnt+1gJSUloaCgoMgby56rnZLrZWdnY968eVi+fDkOHjyI1NRU5OXlOZz3/Pnzbq+3rHbu3CndHzhwYInzDxw4EGvXrgVgDYzO+gM3a9asyBvrevYbbtv5MGVRVS4ePmnSJOnLJSYmpkpefNf2+QGs780///zT5fz2f9ejR48iNjbW4XxdunRxuR5X75XDhw9LF4wNDAwssSYACAgIQGZmJo4ePepyvpI+17t27ZLu33TTTS7n7dOnT4l13XTTTWjWrBkSEhIwZ84cvPPOO9BoNNJ0o9EonQ9Rr149DBkypMR1VqTy/N32798vhfvevXu7DLOANWw7+3tlZWVJ5/XVqVPH7fcAAJfvgSlTpmDt2rXYsWMHFixYID3esGFDfP311yU+hzveeuutGnsOmu1zC5Q/kFWH7WtVUVhYiLvuuks6Z/+WW27B77//Dj8/P6fLeHrfKzQ0FMOHD8f8+fORl5eHhQsXFjsf1HZhYgC47bbbyn2h3SZNmricHh0djRUrViAuLg7Jyck4duwYFi5cKB2YJM+wWCx44oknMGPGDABAp06dsHz5cpfnz9nefyEhIUX2eZ2xhTC9Xo/Tp08XOyCoUqkwbtw4fPDBBxBCYM6cOcW245s2bZLOV+vYsWOJFwq3sX+flmff2J7XBbLc3Fzp5Mfjx4/j9ttvL9XyGRkZTgOZs6NC11u3bh3uueceJCcnuzV/dna22/WVle2IImANUSWxn8d+2euVdHKp/WAnhYWFJT5vVfbqq69KG486depg9erVLn8/9ieIuvO7KSgokO4HBgaWo1LX7Fu5Ro4cWaplXW1YyvNesa9p0aJFWLRokUdqAkr+XF+8eFG636hRI5fzhoaGIiQkBJmZmU7nUSgUeOihh/D8888jJSUFS5YswR133CFN//vvv3H58mUA1qNtJYWYilaev5v9766kHZ2S5jl37hwsFgsA65eg/YGDkrh6D6jVavzvf/9D27ZtpR0722NBQUFuPwc5ZtvpUalUTr9b3SHn9lWObbXc3w+TJ09GVlYWAOvARz/99JPLQSwqat/rvvvukwYimz17drFAZh/K77///mLLuzpw4+fn59YB6uvVqlULkyZNwssvvwwAWLZsWbFAxvdf+UyfPl16//Xv3x+LFy92OagGcG0/ISMjo0zvP0cmTJiADz74AIB1cJk333yzyOAyJb3/nLH/brH/3ZWH1wUy2x+wrGxHcx1x58vkxIkTGDJkiPQLbt68OQYPHoymTZsiLCysSNPvQw89hCtXrjhs7vY0+yZkf3//Eue3f+O7an6Wa+Q3b/POO+/gvffeA2DdgV2zZk2JwTckJES6bxuRyhXbl931y3paeT5Drj4/5XmvVFRNQMmfa1vLtlqtLtKS5Yy/v7/LQAZYN/Kvvvoq9Ho9fvjhhyKB7IcffgBgDW4PPPBAic9X0crzd7Pv9uLqyLqNq21Ted4DRqPR5fTw8HCEhYVJ27pGjRqVOLIYuccW2M1mM/Lz8916H1xP7u2rHNtqub8f7EeLzcvLK7GHSkXte/Xv3x9RUVE4f/48Nm7ciMTERKkXhq1rIWDtTeAoXLnaMW/QoIHLbvau2PeGOHbsWLHpfP+VT2nff0DF7Cc0b94c3bp1w9atW3HmzBls3LgRvXv3BlC0u6xOp8Pdd9/t9vPZ11qeA1X2vC6Q2QeJXr16YcOGDZX6/O+//74Uxl599VW8/fbbTodqLamPtSfZH7Fw1nXSnv2OVEW2xrgrPz+/xHOB3BUTE4P27dt7ZF0AMG3aNLz++usArC0kq1evdqvZ2n6Hwp0vBft+xu60cpaV7TOkUChgMpm8InTbf67feOMNTJkypdKe2xYSTCYTjEZjiaHMnc9XrVq1MGLECMybNw+rVq3C2bNnERMTg6SkJKxevRqAdUekYcOG5X8BMrL/u9mGPnfF1e/Ofl3jxo0rMsx1eT322GNFPl8JCQl47bXX8OGHH3pk/ceOHXO401YWPXr0KLHV0pvYd1NMT08vdSDzhu2rHNtqub8f3n//fcyfPx9bt27F4sWLMWrUKCxYsMDp9q+i9r2USiXGjx+Pd999V+o29uabbwKwDnVv21EfN25cpfYmsO9y5ugAHN9/5TNp0iQcPXoUixcvxrZt2zBo0CCsXLnS5f6o7TQF23epp9x3333YunUrAGuLmC2Q2XeXHT58eKmCqCe7ctt4XSALDg6WxvevjHOzrrdmzRoAQO3atTF16lSnYSwnJ6fIH6SiRUZGSvftr9/ijP08nhrIpDwuX75c6iZoZ8aPH++xcw8+++wzvPTSSwCs772VK1eWOOCEjf1OhauBUwBrf2rboCxKpbLEwQ/Ko379+ti3bx+EELhw4QKio6Mr7LlKU5NNZX+u69WrJ527dPr0aTRv3tzpvBkZGSW2jtk88sgjmDdvHiwWC2bNmoW33noLs2bNkrrlyT2YhyfYbztOnjxZ4vyu5qmo98C8efOkAWM6dOiA1NRUJCUl4eOPP8agQYNKvI6dO+bPn++xgwjr1q1z61xFbxEbG4stW7YAsO6EREVFub2st2xfW7VqBaVSCYvFgn379sFisbg8UGV/3qm755RcrzT1X7lyRdoBjYiI8Mg1yAIDA/HPP//g5ptvdiuUVeS+14QJE6SBRebOnYs33ngDQNFrj13fldGmos49L6lFyJPvmbp166JWrVpIS0vD2bNnkZqa6vKgTGW//ypi/0Sj0WDBggUYPXo0/vjjD7dCWf369ZGZmYnLly+7dfDUXSNHjsSkSZOkFrGvvvoK/v7++Omnn6R5SnvtO/v9f0fXUSyLSjt0bv9GLukD1qtXLwDWnSd3dgI8KSUlBYD1hHBXH741a9ZIO17OlOY1l8R+UA7bEXhX7FujKvICxFXZjBkz8OyzzwKwfnmtWLFCGn3JHa1bt5Z2Tg4fPuzyS2zr1q3SuYbdu3ev0FZL29EfoOQRCitLu3btpD7Xa9euLfGz40n2Fz61XajdGVv3GXf06NEDrVu3BgDMmjULRqMRs2bNAmA9oDNs2LDSF+tl2rRpA61WCwDYsGFDid2zbQMJORIeHi6NrrV9+3aPnHt75swZPPbYYwCsLaG//vorfvnlF6hUKlgsFowbN67IjheVnv2O3fHjx91ezpu2r0FBQdLgNllZWdi+fbvTdZ07d04abTQmJqZMF4UGrF3ibN09N27c6PI8E/uLy958881lej5HbKGse/fuAIDFixdj5MiRTrsAV9S+V5MmTaTBl06fPo1NmzZh48aNOH36NADr6I+uDpRVBPsWQEctQp5+zwwaNAiAdV/Q1fdyfn6+dH6tr69vke/z0vCG/RNbKLvzzjsBQAplzrb9ttdaWFiIjRs3eqQGwPq3tNWQm5uLRYsWITExUXoPREVFoX///qVap22gKYVCgfj4eI/UWWmBzL45vKQuQePHj5fu246kVBZbd4zTp087DVFms1nqD+9KaV5zSWJjY6Vuevv373cZynbt2oV///0XgDW5e8O5FLZRFj1x80Tr2A8//IAnn3wSgHVHbvny5ejatWup1qFQKHDXXXcBsG5kv/zyS6fzTp8+Xbpf0aM5jR49WtqJ/vDDD8v93vMElUqFMWPGALB2jXA2XHxFsA9GM2bMcBkqvvjii1Kt++GHHwZg/UJ++umnpS+98ePHe+zonpx8fHykoYVTUlLwv//9z+m8K1asKHFETNu2PT8/XzrRuqzMZjPGjBkjfblPnz4dTZs2RY8ePfDKK68AAC5cuIAHH3ywXM8DWEdZ9NT2qyq1jgHAjTfeKN139xIv3rh9tX/c1ef8yy+/lL77Szsokr2AgADps5Odne30e0sIga+++sphnZ5gC2U9evQAYB0kw1koq8h9L/sWiNmzZxf5fZS2daK80tPTi7wHbH+n63nyPWO/runTpzvdv5w9e7a0TRsyZIhbYwY44i37J2q1GvPnz5cub7Ft2zbcfPPNDkPZuHHjpPtTpkzx6PgM17//7LvLjh8/vlSndpjNZqkVs0WLFp4bPMoTFzNz58LQTz31lDTPhg0bXK7PbDaLTp06SfNPmjRJ6PV6p/Pn5+eLn376Sfz666/FptlfMNOdC3IOGDBAmv/TTz8tNt1gMBS5iCFcXED2008/leaZM2dOic9d0oWhFyxYIE2PjIwUR48eLTZPUlKSaNy4sTTfV1995XBdtunuXDW+NPNWBXPmzJEunO3n51euC7VeuHBB+Pn5CQBCrVaLNWvWFJvH/mKd0dHRoqCgoBzVu+e5556TnvOmm24Sly5dcjqv2WwWq1evdniBc2cXenSkpHnPnTsnQkJCBADh4+NT4mciJSVFTJ061eGFO0tzoXkhhOjRo4c0/2OPPebwQtLXX/zX2efaXmZmpvT3t785u2C0p5TmwtDl/btt2rRJmh4aGurwot4JCQlFLvYLJxcozs3NFQ0aNBAAhEKhENOmTXN5Ue/MzEzxxRdfiNWrVxeb9vrrr0vPNWLEiCLTjEaj6Nq1qzT9u+++c/k7qOoq8sLQhYWFwt/fXwAQPXv2LHF+b92+5uXliXr16knzOrrI+erVq4VarRYAREBAgEhOTna4Lvt9HlfboD179ki/i+DgYIfbsrfeektaT6dOnZyuyx3OLgwthBA5OTlFtoPDhg0TBoOhyDye3Pe6Xk5OjvQ+CggIEAEBAdJ7JCsrq0yv93pbt24VP/zwgygsLHQ6z7lz50Tnzp2l19i0aVNhNBodzuvJ94zFYhHt27eX1jVlypRi8+zfv1+62LFSqXR5IXb795+j7wAhKn//xNV3idFoFCNGjJCmd+nSxeHf/c4775TmGTVqlMv3htFoFIsWLXK6n2vPYrGI2NhY6bunTp060vOcOHGiVK9z//790rJPP/10qZZ1pdLOIevXr5+Uwh944AE888wzaNCggXQSZ5MmTaQhk5VKJRYtWoSuXbviwoUL+OKLL/Dbb7/hrrvuQps2bRAcHIzc3FycPXsWu3btwtq1a5GXl4e333673HU++eSTUuvTs88+i/Xr12PQoEGoVasWTpw4gblz5+LEiRO46aabcOLECZfNwP369ZPuv/jii7hy5QqaN28uDT1bv379UjV1jhw5EosXL8b8+fNx6dIltG/fHhMmTEDXrl2hUqmwa9cuzJw5UzryMHDgQKk7D1mtWLEC999/v3Rk5P7770dmZmaJ10Rq3749YmJiij1er149fPLJJ3j00UdhMpkwePBgjBs3Dr1794bJZMKKFSukUXzUajW+//57lxdptD9n8cyZM06vCVaS999/H/v27cPatWuxbt06NGrUCHfeeSe6du2KiIgIGAwGJCcnS62tycnJ6NevH1577bUyPZ87oqKiMH/+fNx2223Q6/UYP348Pv30U9x2221o2rQpfH19kZWVhYSEBGzfvh1btmyB2Wwu8dph7vjuu+/QqVMn5Ofn4+uvv8a2bdswduxYREVFISUlBQsWLMCWLVvQtWtXnD17FhcuXHDriFlwcDBGjRpVpC96nz590LRp03LX7C169OiBxx57DF9//TUyMjLQpUsXjB8/Hj169IBSqcTOnTsxc+ZM5OXlYfjw4S4/S/7+/vjzzz/Ru3dvZGdn48UXX8R3332HO++8E61atUJAQACys7Nx+vRp7Ny5E+vXr4fBYJAuGGqzefNmqZdCVFQUvv/++yLT1Wo15s2bh7Zt2yI7OxvPPPMMevfuXendoirC3r17i102wr57zx9//FGsu9kDDzxQ5gFmfHx8cPPNN2PRokXYtWsXcnNznQ5f7c3bVz8/P3z//fcYNmwYzGYz7rvvPixbtgyDBw+GWq3Ghg0bMHfuXGl0uM8++wx16tRx99fkULt27fDiiy/iww8/RFZWFrp164YHH3wQnTt3lrpO2bqvBQQEFHsfe1JAQABWrFiBW265BZs2bcJff/2Fu+66C7///rvUml+R+14BAQG46667MHv27CKDjt15550ea2FISUnBxIkT8dxzz2HQoEHo0KED6tevD51Oh7S0NGzZsgULFy6Uuo8GBgZiwYIFTi8H4Mn3jEKhwPfff49evXohPz8fb775JrZs2YIRI0bA398fO3fuxI8//ij1aHn55ZfL3RXO0/sn5aFWq/Hrr79CoVDg999/x/bt26Vzyuz//rNmzUJCQgIOHjyIBQsWYOXKlRg5ciQ6duyI0NBQFBQU4MKFC9i7dy9Wr16NjIwMt0YzVigUmDBhgtTbwXZ6Us+ePd26pIs9+1Mfhg8fXqplXfJEqnOnhcxkMhU5OnP9zdGR2YsXL4p+/fo5Xcb+plKpxA8//FBsHaVtIRNCiJdfftnlc3Xv3l1cvnxZOtLr6kj63Xff7XQ91/+u3DnqbzQaxYMPPlji72PEiBEiPz/f6Xps89W0FrLrW0HcvZV01Pmjjz4SGo3G6fKBgYFuHUW0X8bZUS936fV68cQTTwiVSuXWaxw3blyxdXiypcVm27ZtolGjRm7VFBAQ4PAoYWlbyIQQ4t9//5Va6Bzd4uLixNmzZ0X9+vUFAHHDDTe4td4dO3YUWc+8efPcrqmsKrOFTAjr9vvee+91+rtTKpVi2rRpLo/Q2zt27Jho166dW+8BHx8fsWLFCmnZjIwMadurVCpdbtd/+eUXaT3t2rVzebS/qrD/Hbt7K08rlRBC/Pnnn9K65s6d63Q+b9++CmF9T9haZxzdtFqtw94x9txtIRPCemT+6aefllrKHN1q164t1q5d61b9rrjz+cvNzRW9evWS5rvtttuKtZR5Yt/LkQ0bNhRb/t9//y3vy5YsXrzY7fdcXFycwxZLRzzxnrFZvXq1iIiIcLouhUIhnnvuOWGxWFyux36ZkvYVPPn5ccWd7xKj0ShGjhwpzXfjjTcWawXLysoSo0aNcvtv+frrr7tV35kzZ4p9DmfNmlXq12lrYY2JiSnx71QalRbIhBCioKBAfPDBB6Jr164iNDS0yI6iq52G9evXi4cffli0bt1ahISECJVKJYKCgkSrVq3EqFGjxDfffCMuXrzocNmyBDIhhFixYoUYMmSICA8PFxqNRkRGRoq+ffuKH374QWredieQmUwm8c0334g+ffqI8PBwqWnb0e+qNDuZ27ZtEw888IBo0qSJ8Pf3F76+vqJhw4Zi7Nixbm3Ybc/DQOaZHQYhhDh48KB4/PHHRbNmzYS/v78IDAwUcXFx4qWXXhKJiYklLp+Xl1dkA5+WluaBVyzEiRMnxOTJk8WNN94oIiIihFqtFn5+fqJhw4billtuEe+9957TrhEVEciEsG6Uf/nlFzFy5EjRsGFDERAQINRqtQgLCxMdO3YUEydOFAsWLBC5ubkOly9LIBNCiOTkZPH888+L5s2bC19fXxESEiI6duwoPv74Y5GXlycsFovw9fUVAESfPn3cWqfFYpG6mYSFhbnsLuMplR3IbJYsWSKGDBkiIiIihI+Pj4iJiRF333232Lp1qxDCvR1CG4vFIv766y8xfvx40axZMxEUFCRUKpUICQkRbdq0EePGjROzZ88W6enpRZaz/6KePHmyy+cQQogxY8ZI8z/33HMlzu/t5AhkJpNJxMTECABiwIABTufz5u2rvcTERPHiiy+K1q1bi8DAQOHv7y+aNWsmHn/8cXHo0KESly9NILPZunWrmDBhgmjUqJHQ6XQiJCREtG/fXkydOlVcuXKlVPU74+7nz1Eoc3Swojz7Xo5YLJYip1TExsZ6dIc2JydH/PXXX2Ly5Mmib9++olmzZiIsLEyo1WoREhIiWrZsKcaPHy/+/vtvl12lHSnve8be5cuXxZQpU0T79u1FSEiI0Ol0olGjRmLChAnStrQkpQlkQnj28+OMu98lJpOpyHbcUSgTwtrl9+mnnxbt2rUTtWrVEmq1WgQEBIimTZuK4cOHi08//VScOnWqVDX27dtXel5/f3+Rk5NTquUTEhKk5d99991SLVsShRAVNKYoEZXKypUrpRG2nnrqqVIPMEHld/DgQdxwww0A3P8brFmzBgMGDABgvfbK559/XpElEsnis88+w7PPPguVSoXExMRSDX9PRFQdvPHGG3j77bfh7++PpKSkItezKy/5rxhLRACuXQMvMDCwQs/lIufsRztz99y1b775RrpfHa49RuTII488grp168JsNmPatGlyl0NEVKmys7MxY8YMANbxJjwZxgAGMiKvYQtkzz77LCIiImSupvrZtGmTy+ufzZgxQzqpvn79+hg6dGiJ69y3b580YEH//v3LfM0iIm/n6+uLt956CwDw/fff4+LFi/IWRERUiaZPn4709HTUqlULL774osfXzy6LRF4gNTUVtWvXRnh4OE6dOlWhF46uqZo0aYLCwkIMHjwY7dq1Q0REBIxGI06dOoXFixdj79690rxLlixxGsj++ecfWCwWJCQkYNq0abh06RIA68h/tguwElVHFosFnTp1wp49e/DEE0+4vLYREVF1kZ2djYYNGyI9PR3ffvutdA1ST2IgI6IaoUmTJjh16pTLeXx9ffHDDz9IF7F2xP7SBDbunm+2atUq5Ofnl1ysA+Hh4dLFXYmIiKj6YCAjohph+/btWLRoEbZv344LFy4gLS0N+fn5CA0NRbNmzdC/f388+uijJV57yBbIAgIC0KxZMzz66KO4//773bpuWWxsLJKSkspUf+/evbF+/foyLUtERETeq9IuDE1EJKcuXbqgS5cu5V4Pj2ERERGRJ7GFjIiIiIiISCYcZZGIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQf1ICKiMjGbzSgoKEB+fr50s/9/Xl4e9Ho9DAYDDAZDkfuO/m8wGGA2m2GxWIr8tN0sFkuRaYB11EtnN9vIl0qlEiqVCmq1GhqNRro5+79Wq4WPjw98fX2h0+mg0+ng5+cn3bd/3NfXFwEBAfDz84Naza9UIiIqPX57EBHVYEII5OTkIDs7G9nZ2cXuZ2VlSY/Zfubl5SE/Px+FhYVyl+9V/Pz8EBAQUOQWGBhY5P9BQUEICQlBcHAwQkJCEBISAl9fX4fXtyMiopqBoywSEVUzFosFWVlZSE9PR0ZGRrGf1983m83lej6VSgU/P78iN19fX/j7+0On00Fr/gNaDaDVCmg1Qvrpo0WR/2s0gEopoFJd+6lUAkqlgEppva9SXbsPAEJcu1kEAKGAAHC1AQ0Wi3Wa2aKAyQQYjQoYTYDJpIDBdPUxk/00BQxGBQoLFSjUK1CoHInCwkIUFBSgoKAAhYWF0v9tP/V6fbl+f1qtVgpn9rfQ0FCEh4cjPDwctWrVQnh4OPz9/RneiIiqGQYyIqIqxGw2IyMjA5cvX8aVK1dw5cqVYvdTU1NhMplKtV4/Pz8EBQUhMDAQQUFBCAoKQoBqKYICBAIDLAgKsCAwwILAAAF/Pwv8dAJ+vgJ+vhZoNUBNzghGE5CXr0RungK5eUrk5iuQe93/88Q4qcUxMzNT+mkwGEr1XDqdTgpntqBWq1Yt1K5dG7Vr10bdunVRq1Ytty5UTkRE3oGBjIjIi5jNZqSmpuLSpUvFbsnJyUhLS3O7RSs4OBhhYWEIDQ1FqO8WhAabERpiQViwBaHBFoSGmK0/gy3QsAN7pRMCKNArkJWtRKbdzfb/DP2dSEtLQ2pqKlJTU5Gbm+vWetVqNWrXro06deqgbt26xX7Wrl0bGo2mgl8dERG5i4GMiKiS6fV6XLhwAWfPnsX58+eLhK6UlJQSW7dUKhVq1aqFiIgI1K5dG+F+SxBRy4KIMDMiallvtUIs4BgT1UuhHkjLUCEtQ4nUDBXS0lVINz4stYympKQgNTW1xMCuVCpRp04d1K9fH1FRUYiKikL9+vVRv359REZGwsfHp5JeERERAQxkREQVwmKxICUlBefOnSt2S0lJgatNr0qlQt26dREZGYm6wRsRWceEyNpm1I0wo3YtayuXij3SyAGTGUjLUCLligrJV9RISVXhct49SE5ORkpKCpKTk112k1QoFKhdu7YU0qKjo9GgQQPExsaidu3a7ApJRFQBGMiIiMrBbDbj4sWLOHPmTJHbhQsXXO74BgQEICYmBlFRUYgMWoS6tc2IrG1GZG0TwsMYuKhiCAGkZypxIVmFC8lqXMx9EufPn8eFCxdw/vx55OfnO11Wp9MhJiYGsbGxUkhr0KAB6tWrxyH/iYjKgYGMiMgNthavxMREnD59WgpeSUlJToOXRqORWhmiwlYgOtKE6HomRNczIzjQUqMHwiDvIwSQmX0trF3IeQrnzp1DYmIizp0757QrrVqtRnR0NBo1aoTGjRujcePGaNKkCcLDwzkiJBGRGxjIiIiuYzKZkJiYiBMnTiAhIQEnTpzAyZMnnbYe+Pj4IDY2FrF196JhtAmxUSbE1DehToSZLV1ULZjMwKUUFRLPq3H2ghpJaSOQlJSEs2fPoqCgwOEywcHBRQJa48aNERsbC61WW8nVExF5NwYyIqrRCgoKcPLkSZw4cUK6nTlzBkajsdi8arUaMTExaBh5GLHRJjSMNqJhtAl1azN4Uc1ksQCX01RIOq/GqSQ1Tl++AydPnsS5c+ccDi6iUqkQExOD5s2bo0WLFmjRogUaN27MgUSIqEZjICOiGsNkMuHMmTM4cuQIjh49iqNHjyIxMdHhABsBAQFo0qQJmtTbjKYNTWja0IiYeiaOXEjkBr0BV0OaBqeuPIhTp07h5MmTyMnJKTavSqVCo0aNpIDWvHlzNGrUiOelEVGNwUBGRNWSEAKXL1/GkSNHpAB2/Phx6PX6YvOGhYWhWbNmaFJvNZrGWsNXZG0zz/Ei8iAhgCtpSpxI1CAh5RkcO3YMx44dQ1ZWVrF5tVotmjRpgpYtWyIuLg5xcXGoU6eODFUTEVU8BjIiqhZMJhMSEhJw4MABHDx4EIcPH0Z6enqx+fz9/dGiRQu0jNmAlk0NaNHYiFqhFhkqJiIhgJRUFY6f0uB48uM4fvw4jh8/7vAi2BEREYiLi0N8fDzi4uLQpEkTtqIRUbXAQEZEVVJ+fj4OHz6MgwcPYv/+/Thy5Eix1i9bV6iWsfvQsqkRrZoYEV3PBF5Kich7WSzAxRQVjp3S4OiFB3Hw4EGcOnWq2DlpPj4+UgtafHw84uPjERAQIFPVRERlx0BGRFVCVlYW9u3bhwMHDuDAgQM4efJksR20wMBAxMfH44ZG/6BVMwOaNTRCx7ECiKq8/EIFjp/U4PDFl3Do0CEcPny42PloSqUSzZo1Q9u2bdGuXTsGNCKqMhjIiMgr5efn48CBA9i9ezf27NmDkydPFht8o06dOohvmoj4Fgbc0NKABvXZ+kVUE1gswLmLahxK0ODw2Xuwf/9+XLhwocg8DGhEVFUwkBGRVzAYDDhy5Aj27NmD3bt348iRI8VawBo0aIC2zY8gvoUB8S0MqBPOc7+IyOpymhL7j2ix/8y92Lt3r9OA1qlTJ3Tq1AmtW7eGRqORqVoiomsYyIhIFkIIJCUlYceOHdi5cycOHDhQ7BywunXron2r02gfp0e7OANqhTCAEZF7Sgpovr6+aNeuHTp16oTOnTsjKioKCg6tSkQyYCAjokqTn5+P3bt3SyEsOTm5yPTQ0FC0a3kR7eP1aB9nQL06xS8sS0RUFpfTlNh7yAf/HR+BXbt2ITMzs8j0unXrSq1nHTp0QGBgoDyFElGNw0BGRBVGCIEzZ85gx44d2LFjBw4cOACTySRN12g0aNOmDW5s9S863KBHw2gTr/1FRBXOYgFOJamx6/Rr+O+//3Dw4EEYjUZpukqlQlxcHLp164bu3bsjOjqarWdEVGEYyIjIo0wmE/bt24dNmzZhy5YtuHz5cpHp9erVQ+f4E7ixnR5tWxngq+MmiIjkVVCowP4jWuw6+RB27tyJs2fPFplev359dO/eHV27dkWbNm14/TMi8igGMiIqt7y8POzYsQObN2/G9u3bi1zUVavVWs/TaLkKN7bVIyrSzFYwIvJqly6rsP3Eu9iyZQv27dtXpGXf398fnTt3Rvfu3dGlSxcEBQXJWCkRVQcMZERUJqmpqdiyZQs2b96MPXv2FOnuExoaiq7tLqBHx0K0j9fzWmBEVGXlFyjw334fbD96D7Zt21bk3DOVSoV27dqhT58+6NmzJ0JDQ+UrlIiqLAYyInLb5cuXsX79eqxbtw6HDx8uMi06Ohrd2x1Fj06FaNnUCBWvB0ZE1YzZAhw7qcH2489gy5YtOH36tDRNqVTihhtuQO/evdGrVy9ERETIWCkRVSUMZETkUmpqqhTCDh48WGRa69at0a3NNvToVIgG9TkiIhHVLOcvqbDx8GvYuHEjjh07VmRa69at0adPH/Tu3Rt169aVqUIiqgoYyIiomLS0NGzYsAHr1q3DgQMHYNtMKBQKxMfHo0/HTejVuRDhYbwuGBERYD3vbPPRKdiwYQMOHTpUZFrr1q0xYMAA3HTTTezWSETFMJAREQDrwBzr16/HqlWrsH//flgs18JWXFwc+nTcgt5dChHBEEZE5NKVdCU2H30PGzduxL59+6SDWiqVCh07dsSAAQPQo0cP+Pn5yVwpEXkDBjKiGsxkMuG///7DqlWrsGnTJhgMBmlaq1atcFPH7ejdpQC1wxnCiIjKIi1DiXUH38aaNWuKdGv08fFBjx490L9/f3Tu3BkajUbGKolITgxkRDWMEAIJCQlYtWoV1q5di/T0dGlagwYNMLDbQfTtXojI2jwnjIjIk85dVGHtvhexZs0anD9/Xno8KCgI/fr1wy233IJmzZrxItRENQwDGVENkZqaipUrV2LlypVITEyUHg8JCUG/rhcwoFcBmjcy8hphREQVTAjg+GkN1u55tNiBscaNG+OWW27BgAEDEBISIl+RRFRpGMiIqjGz2YydO3di6dKl2Lp1K8xma6uXVqtF9w5ZGNCrAJ3b6KFWy1woEVENZbYAew5q8c/2kUW6jqvVanTv3h233HILOnXqBDU31ETVFgMZUTWUkpKCZcuWYfny5bh8+bL0eOvWrTG4h3VwjkB/fvSJiLxJdq4C/x74ACtWrMDx48elx8PDwzFo0CAMHToU9evXl7FCIqoIDGRE1YTJZMLWrVuxZMkS7Ny5UxrVKygoCAN7XMSQfgVoGG2SuUoiInLHyUQ1/tn5KFavXo2srCzp8RtvvBHDhw9Hly5doFKpZKyQiDyFgYyoiktNTcXff/+Nv//+u8h5CO3atcOQnv+iZ+dC+GhlLJCIiMrMYAS2n/oBS5cuxc6dO6XH69Spg9tuuw1DhgxBWFiYjBUSUXkxkBFVQUIIHDlyBIsWLcL69ethMllbvkJDQ3Fzr3MY0jcfUZEcJZGIqDq5kKzCkq1PYfny5cjOzgZgPdesT58+GD58OOLj4zlCI1EVxEBGVIUYDAb8+++/+OOPP4pczyY+Ph6399uInp0LoeF530RE1ZreAGw48iX+/PNPHDlyRHq8UaNGGDFiBAYMGAAfHx8ZKySi0mAgI6oCrly5gj///BNLlixBZmYmAOtIiX27ZeKOm/PQrBHPDSMiqokSTqvx9+b7sHr1auj1egDW3hK33347hg8fzqHziaoABjIiL3bmzBnMnz8fq1evlrolRkREYHj/UxjSrwAhQRaZKyQiIm+Qk6vAil1TsXDhQml0Xa1Wi0GDBuGuu+5CbGysvAUSkVMMZEReRgiB/fv349dff8W2bdukx9u0aYM7+q1H906FUHNgLSIicsBkAjYd/xYLFiwo0rX9xhtvxKhRo9ChQweeZ0bkZRjIiLyE2WzG5s2b8euvv0rnBCgUCvS6MR+jb8tDyyZGmSskIqKqQgjg4HENfl99OzZv3ixdCqVp06YYM2YMevfuzWHzibwEAxmRzAwGA1asWIH58+fjwoULAKzdTG7unYGRQ/M4WiIREZXLhWQV/tjwKJYvX46CggIAQHR0NMaMGYMBAwZAo9HIXCFRzcZARiQTvV6PpUuX4n//+x+uXLkCAAgMDMTtAy/i9pvzERrM88OIiMhzsnMVWLzpZSxcuBA5OTkAgNq1a+Puu+/G0KFDOTIjkUwYyIgqWWFhIf7++2/8+uuvSEtLA2AdqGPUkJO4pW8B/HT8SBIRUcXJL1BgyfYpWLBgAdLT0wFYR2YcPXo0br/9duh0OpkrJKpZGMiIKklBQQH++usvzJ8/X/oCrFOnDu65NQGDb8qHlj1GiIioEukNwKq9H2PevHlITk4GAISFheGee+7BsGHD2GJGVEkYyIgqmMFgwN9//42ff/4ZGRkZAIC6deti7G3HMKhPAS/kTEREsjKZgLUHp2POnDm4ePEiAKBWrVoYO3Ysbr31Vmi1WpkrJKreGMiIKojJZMLKlSsxe/ZspKSkAADq1auHe4cdwYCeBVAziBERkRcxmYBV+z7DnDlzpO+tiIgIjBs3DkOGDIGaX1xEFYKBjMjDLBYLNmzYgJkzZ+Ls2bMArn6h3X4Cg/swiBERkXczmoB/dn+MuXPnSoNORUVF4aGHHkLv3r15HTMiD2MgI/KgXbt24dtvv0VCQgIAIDg4GPfcdg7DB+XBhz0+iIioCtEbgGU738fcuXORmZkJAGjVqhUeeeQRtG3bVtbaiKoTBjIiD0hMTMTXX3+N7du3AwD8/PwwckgK7hqSB38/fsSIiKjqyi9Q4Ld1k7FgwQLpOmZdu3bFww8/jEaNGslcHVHVx0BGVA4ZGRn46aefsGTJEpjNZqhUKgwfmI1778xBSBA/WkREVH2kZSrx8/KHpe88pVKJW265BRMnTkRoaKjc5RFVWQxkRGWg1+vx+++/45dffkF+fj4AoEenQjw8JhvR9cwyV0dERFRxzl1UYeafI7F+/XoAgL+/P8aPH48777wTGg2v4UJUWgxkRKUghMCWLVvw5Zdf4tKlSwCAZs2a4bF7tqFtK4PM1REREVWew1f+wJdffoljx44BsA788cQTT6Br164c+IOoFBjIiNx0/vx5fPHFF9ixYwcA68iJE0edQP8eBVAqZS6OiIhIBhYLsHr/dHz33XdIT08HAHTq1AlPPvkkYmNj5S2OqIpgICMqQUFBAX755RfMnz8fRqMRarUaI4dmYuwdufDT8eNDRESUl6/AvFXP4vfff5e+K0ePHo1x48ZBp9PJXR6RV2MgI3Jh48aNmD59Oi5fvgwA6NRGjyfvy0IMzxMjIiIq5kKyCjPmD8fWrVsBAHXr1sUzzzyDrl27ylwZkfdiICNy4MqVK/j888+xadMmANYvlMfHHkGPTnqwWzwREZFrW07MwhdffCEd0OzVqxeeeuop1K5dW+bKiLwPAxmRHYvFgr/++gvfffcd8vPzoVKpcPdtWRh7Rw50PnJXR0REVHXkFyrw84pn8Ntvv8FsNsPX1xcPPPAA7rzzTqhUKrnLI/IaDGREV505cwYfffQRDh06BABo2dSAFx7OQqMYk8yVERERVV2nz6rx2Zy+OHjwIACgdevWmDx5Mho0aCBzZUTegYGMajyTyYSff/4ZP//8M0wmE3x9fTHx7mQMG5gPFUdPJCIiKjeLBVj238f45ptvkJ+fD61WiwkTJmD06NFQq9Vyl0ckKwYyqtHOnDmDd999FwkJCQCAbh0K8fQDWagdbpG5MiIiourncqoSn8y5TbqETPPmzTF58mQ0btxY5sqI5MNARjWS2WzG/PnzMWvWLBiNRgQGBmLSfWfRr3shB+0gIiKqQEIAq/d/ienTpyM3NxcqlQr33XcfxowZw3PLqEZiIKMa59y5c3jvvfdw+PBhAECX9oV4/qEshIexVYyIiKiypGUo8fkvI6QRjePi4vDaa6+hXr16MldGVLkYyKjGEEJgyZIl+PLLL6HX6+Hn54cnx1/EzX0K2CpGREQkA1tr2eeff478/Hz4+vpi0qRJGDx4MBT8cqYagoGMaoTs7GxMmzYNGzduBAC0j9PjxUezUDeCF3gmIiKS26XLKrz/fX8cOHAAgPW6Zc8//zxCQkLkLYyoEjCQUbW3f/9+vP3227h8+TJUKhUm3p2BkUPzoOQIikRERF7DbAEW/PsmZs6cCbPZjFq1auHNN99E27Zt5S6NqEIxkFG1ZTKZMHfuXMydOxcWiwX169fH60/sR4vGRrlLIyIiIidOZC3F22+/jbNnz0KpVOL+++/H2LFjoeSRVKqmGMioWkpPT8eUKVOwd+9eAMCgXvmY9EA2/Hz5diciIvJ2+YUKfDFvPFauXAkA6NSpE1577TWEhobKXBmR5zGQUbVz8OBBvPnmm0hNTYWvry+effAiBvQslLssIiIiKgUhgJV7v8Bnn30GvV6P8PBwvPHGG+zCSNUOAxlVG0IILFq0CDNmzIDZbEaD+kZMfS4TDaJMcpdGREREZXTmnBpvTe+IpKQkKJVKPPbYY7jrrrs4CiNVGwxkVC3k5+fjo48+wtq1awEAN3UrwAuPZMFPx7c3ERFRVVdQqMDndl0YBw4ciBdeeAE+Pj4yV0ZUfgxkVOVdunQJL7/8Mk6fPg2VSoVH703HnYPzeW0xIiKiakQIYPGW96WeMM2aNcO7776LOnXqyF0aUbkwkFGVduDAAbz22mvIzMxEWFgYpjydgPgWHEWRiIioutp/6Te88cYbyMrKQkhICKZOncrzyqhKYyCjKmvFihX46KOPYDKZ0LShEe++mI7atSxyl0VEREQVLPmKCq9/3h0nTpyASqXCc889h6FDh8pdFlGZMJBRlWM2m/Hdd99h/vz5AIBeNxbg5cez4MvzxYiIiGqMQj3w8Zx7sWbNGgDA2LFj8eCDD/J6ZVTlMJBRlaLX6zF16lRs2rQJADDuzhxMuCsX3PYSERHVPEIAs5dPxpw5cwAAffv2xcsvv8zBPqhKYSCjKiM7Oxsvv/wyDh48CI1Gg8mPXka/Hry+GBERUU23cu90TJs2DWazGfHx8Xj33XcREhIid1lEbmEgoyohJSUFzz//PJKSkhAQEIB3nk9C21YGucsiIiIiL7H3wny8/vrryM3NRVRUFD799FPUrVtX7rKISsRARl7v1KlTeOGFF5CamorwMDOmvZKORjG82DMREREVlXRejZemxSM5ORkRERH45JNPEBsbK3dZRC4xkJFXO3jwIF566SXk5uYiNsqIaa+ko3Y4R1IkIiIix66kK/HCBzciMTERwcHBmDZtGlq2bCl3WUROMZCR19q7dy8mT56MgoICxDU34P2X0hEYwLcrERERuZaVo8Dkj2/C0aNH4evri/fffx/t27eXuywihzg2HXmlnTt34oUXXkBBQQE6xOvx8WtpDGNERETkluBAgU8mr0P79u1RUFCAF154Adu2bZO7LCKHGMjI62zZsgUvv/wyDAYDurQvxHsvpUPH0WuJiIioFPx8Bd5/dhl69uwJo9GI1157jaGMvBK7LJJX2bhxI958802YzWb06lyA15/OhEYtd1VERERUVZlMwNvfjcaGDRug0WjwzjvvoGvXrnKXRSRhICOvsX37drzyyiswmUzo170ALz+RCbVK7qqIiIioqrs+lL377rvo0qWL3GURAWAgIy+xZ88evPjiizAYDLipawFem5QJFTvUEhERkYeYTMDUb0dh48aN0Gq1eO+999C5c2e5yyJiICP5HTx4EM8//zwKCgrQrUMhpj6XATW7KRIREZGHmUzAlG9GYtOmTdDpdPj0008RFxcnd1lUwzGQkawSEhLw9NNPIzc3Fx1v0OPdF9Pho5W7KiIiIqqujCbgtS+GY8eOHQgMDMRXX32Fhg0byl0W1WAMZCSbS5cu4dFHH0V6ejpuaKnHtFc4miIRERFVvIJCBZ7/sB8OHz6M8PBwzJgxA5GRkXKXRTUUz9IhWWRnZ+OFF15Aeno6Gjcw4v2XMhjGiIiIqFL46gTef24tGjZsiNTUVDz33HPIyMiQuyyqoRjIqNLp9Xq8/PLLOHv2LGrXMuODl9Ph78eGWiIiIqo8QQEC017ajrp16+L8+fN45ZVXoNfr5S6LaiAGMqpUFosF7777Lg4ePAh/Pws+fCUdEWEWucsiIiKiGigizIKPJh9AYGAgDh8+jA8++AA8m4cqGwMZVaoff/wR69evt16Y8YUMNIw2yV0SERER1WDR9cx45513oFKpsHbtWsyePVvukqiGYSCjSvPvv//il19+AQC88PAVtGttkLkiIiIiIqBN5Eg899xzAICffvoJa9askbkiqkkYyKhSnDx5Eh988AEAYNStuRjYq0DmioiIiIiuuaXjMxg9ejQA4IMPPsDx48dlrohqCgYyqnCZmZl45ZVXUFhYiE5t9HhoTI7cJREREREVM3H4Z+jWrRsMBgNef/11ZGdny10S1QAMZFShzGYzpkyZguTkZNSrY8IbkzKg4ruOiIiIvJBKCbw88Q/Uq1cPycnJeOedd2CxcPAxqljcNaYK9csvv2D37t3w9fXFuy9mIDCAIxcRERGR9wr0F3j77beh1Wqxfft26fx3oorCQEYVZv/+/fjpp58AAM88cIkjKhIREVGV0DjwFjzzzDMAgJkzZ2L37t0yV0TVGQMZVYisrCxMnToVFosFg3rlcxAPIiIiqlIGd3gaQ4YMgRAC77zzDrKysuQuiaopBjLyOCEE3n//fVy5cgVRkSZMepAnxBIREVHV8+ToHxETE4O0tDR88sknvGg0VQgGMvK4ZcuWYevWrdBoNHjz6Qz46bjxIiIioqpH5wO8/vrrUKlUWL9+PVauXCl3SVQNMZCRR6WkpOCrr74CADwwKg1NG/K8MSIiIqq6mgYPxf333w8A+Pzzz3Hp0iWZK6LqhoGMPEYIgY8++gj5+flo1dSAu4bmyV0SERERUbmN7jcV8fHxyM/PxwcffMCui+RRDGTkMcuXL8fOnTuh0Qi89FgmrzdGRERE1YJKCbz80Fr4+Phg7969+Oeff+QuiaoR7jKTR6Smptp1VcxBg/pmmSsiIiIi8px6dcxS18UZM2YgMzNT3oKo2mAgI4/45ptvkJeXh5ZN2FWRiIiIqqc7e76BJk2aIDs7GzNmzJC7HKomGMio3Pbt24fVq1dDoVDg6Qez2FWRiIiIqiW1Gnj++eehUCiwcuVK7Nq1S+6SqBrgrjOVi8lkwueffw4AuLV/Lpo34qiKREREVH21CBuGO+64AwDw5ZdfwmTivg+VDwMZlcuff/6J06dPIyjAggdG58hdDhEREVGFmzB0BoKDg3HmzBksW7ZM7nKoimMgozLLycnBrFmzAAAP3p2D4EAOAUtERETVX6C/wIQJEwAAM2fORF4ez5+nsmMgozL79ddfkZubi9hoI4b0y5e7HCIiIqJKc+uNkxETE4PMzEz88ssvcpdDVRgDGZVJWloaFi5cCAB4cHQOB/IgIiKiGkWtBh599FEAwO+//47Lly/LXBFVVdyNpjKZO3cuCgsL0aqpAd076uUuh4iIiKjSdWk0AW3atIHBYMD//vc/ucuhKoqBjErt0qVLWLJkCQBg4t05UChkLoiIiIhIBgoFpHPJli5ditTUVHkLoiqJgYxKbcGCBTCZTGgfr0e7OIPc5RARERHJpm290YiPj2crGZUZAxmVSmZmpjS865jhuTJXQ0RERCQv+1ayv//+G2lpafIWRFUOAxmVyuLFi6HX69GsoRHt2TpGREREhPZR96B169YwGAz4448/5C6HqhgGMnJbYWGhtJG5e1guzx0jIiIigrWVbPTo0QCsrWR6PQc8I/cxkJHbVq5ciaysLNSrY0LPGwvlLoeIiIjIa3Rr+iDq1q2LrKwsrF69Wu5yqAphICO3CCHw999/AwBuH5QPtUrmgoiIiIi8iEoJ3H777QCAhQsXQgghc0VUVTCQkVuOHj2KEydOQKMRGNQnX+5yiIiIiLzOLZ3ehI+PD06fPo2jR4/KXQ5VEQxk5BZb61ifLgUICuARHyIiIqLrBQYI9O7dGwCwfPlymauhqoKBjEpUWFiIdevWAQBu7c/WMSIiIiJnBnf5FQCwdu1aFBbynHsqGQMZlWjLli0oKChA3QgT4lsY5S6HiIiIyGu1aWVAZGQk8vLysGnTJrnLoSqAgYxKtHbtWgBA/x6FHOqeiIiIyAWlEhgwYAAAYP369fIWQ1UCAxm5lJOTgx07dgAA+nYvkLkaIiIiIu/XO/4TAMCOHTuQn8/TPcg1BjJyaceOHTAajYiNMqJRjEnucoiIiIi8XqMYE6Kjo2EwGLB161a5yyEvx0BGLtk2It068orzRERERO5QKIA+ffoAAM8joxIxkJFTJpNJ6q7YrQNHCSIiIiJyV5fmnwEAdu3aBbPZLHM15M0YyMipw4cPIycnB0GBFrRsytEViYiIiNzVvLERAQEByMnJwbFjx+Quh7wYAxk5tXfvXgBAx3g9VHynEBEREblNrQI6duwIAFKPIyJHuJtNTtkCWZtWBpkrISIiIqp6OnXqBODaPhWRIwxk5JDBYMDhw4cBAG0ZyIiIiIhKLS7yRQDAsWPHYDJxtGpyjIGMHEpISIDBYEBIkBkx9bkBISIiIiqt6HomBAUFQa/X4+TJk3KXQ16KgYwcOn78OACgZRMjFAqZiyEiIiKqgpRKoHXr1gCAgwcPylwNeSsGMnLoxIkTAIBmjTi6IhEREVFZtWzZEsC1fSui6zGQkUMJCQkAgKYNGciIiIiIyqph2McAgNOnT8tcCXkrBjIqxmQyITExEQDQJJbnjxERERGVVcMY675UYmIiB/YghxjIqJjk5GSYTCZoNQK1a/HK8kRERERlVa+2GTqdDgaDARcvXpS7HPJCDGRUzPnz5wEA9euaoOQ7hIiIiKjMlEogKioKABjIyCHublMxtkAWFcnWMSJPyrcYcNaU67H1mYXFY+siIqKKU7duXQDWXkhE12Mgo2JSUlIAAJG12c+ZCLAGH0+EHwssyLSoccZY/lBmq4ehjIjI+9kC2aVLl2SuhLwRAxkVk5aWBgCoFcodPSL7wFOe8JNvMSDJJGARCuQIdblayq6vg6GMiMi71fGbBeDaQW8iewxkVEx6ejoAICyEXRapZnMUdMoSfvItBpwxmWEU1k2uRSiQaSlbKHP2/AxlRETeKyTYuk+VlZUlcyXkjRjIqBhbIAsN5g4e1VyuAk5pws/1YcymLKGspOdlKCMi8k5BgQIAAxk5xkBGxeTl5QEAggK4c0c1kzvBxp15nIUxG1soc+ecMoYtIqKqK/jqPhUDGTnCQEbFFBQUAAB0OiFzJUSVrzTBx9W8JYUxG3fOKfNUTUREJI+Aq4EsN9dzI+1S9cFARsXYApkvAxnVMGUJM46WcTeM2bjqvuipmoiISD5ajXWfymg0ylwJeSMGMirCZDLBbLaeeKrTMpBRzVGeEGO/bGnDmI2jUOapmoiISF4atfWnyWSCENy/oqIYyKgI+42Egu8OqiE8EV7MwlLmMGZjf06Zp2oiIiL5WewyWE5OjnyFkFfiLjcVoVAopPvcl6OawFOhJVfocdSIMocxG4tQwAhFyTO6iaGMiEh+KruvBltPJCIbBjIqokggk7EOospgFhZYPPBOzxV6HDeqkSe0KBTq8tUEBdLNOiQYC8tdlwUCFgiGMiIimamU175r/Pz8ZKyEvBEDGRWhVF57S5hMnjtKT+Rt7MNYeUKZLYwVCg0AwABVmUOZGQoUCrU1lFnKF8rsXxNDGRGRvAxG6z6VQqGAVquVuRryNgxkVIRCoYCvry8AIL+QgYyqJ0ctY2UJZdeHMZuyhDJbGLNX1lDm6LUwlBERySe/wLpP5efnV6Q3EhHAQEYO+Pv7AwDy87nBoOrHVTfF0oQyZ2HMpjShzFEYsyltKHP1GhjKiIjkYTvIze6K5AgDGRVjC2R5+Xx7UPXizjlj7oSyksKYjTuhzFUYsylv90V7DGVERJUvv8C6T2XrhURkj3vcVExgYCAAICuXbw+qPkozgIer+dwNYzauQpk7YczGnVBWmtfHUEZEVHkysqz7VKGhoTJXQt6Ie9xUTEREBAAgNZ1vD6oeyjKaoqP5SxvGbByFstKEMRtXoawsr4+hjIiocqSlqwAAtWrVkrkS8kbc46ZibIHsSppK5kqIPKOsoyjaL1fWMGZjH8rKEsZsHIWy8rw+hjIiooqXmmHd5Q4PD5e5EvJGDGRUjG1jwUBG1UF5A4cFotxhTKoFinKFMRv7UFbe66gxlBERVbzU/GEA2EJGjjGQUTGRkZEAgIspDGRUtXniws8WWMNKhFJf7npOGWrj65S+5V4PAOiFCnph8si6PHFxbCIicu7cuXMAgKioKJkrIW/EQEbFNGjQAABw9qIagvtpVIWpFEoo4ZnLN4SpVIhW5ZZ5+URDOOac74ZjmbXx4+Xe5apFpzChgdoMCywwCnO51gXAY78jIiIqTohrgSw6OlrmasgbMZBRMfXr14dKpUJ+gVLq80xUVZUnlF0feMoaymxhLEfvA6NZhYTMiDKHMp3ChEZqEzQKpcMaS0sJBVQKfs6JiCpKWoYSBQUFUKlUqF+/vtzlkBfitzAVo9FoUK9ePQBA0vnynetC5A3KEspsQcd8XXe+0oYy+zBmU9ZQdn0Yu77W0mIYIyKqeGfOWfelIiMjodGU71xkqp74TUwONWnSBABw/DQ3HFQ9lCaUOQtjNqUJZYVCWySM2ZQ2lDkLY9fX7C6GMSKiypFwdV+qefPmMldC3orfxuRQixYtAADHTzKQUfXhTigrKYzZuBPKEg3h+P1iB6fT3Q1lJYUxG3dDGcMYEVHlOX5hKAAGMnKO38jkUMuWLQEAx05pZa6EyLNchTJ3w5iNq1CWaAjHzxe6IqtQ53IdJYUyd8OYTUmhjGGMiKhyHTt2DMC1g91E1+O3MjnUrFkzKJVKXE5T4XIa3yZUvTgKZaUNYzaOQpm7YczGVShTQbgdxmychTKGMSKiypV8RYXLly9DpVKhWbNmcpdDXorfzOSQn5+ftOHYd7j4+S9EVZ19KCtrGLOxD2WlDWM2tlA263Iv6THb8PZlcX0oYxgjIqp8+w5bexo1b94cfn5+MldD3orfzuRU+/btAQB7DrHbIlVP9qGsrGHMJkylgkUoyxTGbIxmlXSdstJ2VXTEcvUfwxgRkTz2nR4NAGjXrp3MlZA34zc0OdWhg3Uwgj0HfXiBaKq2rKGs/JvCGelt8fz7D+Py0vJd9NNoVmHTqSYYufipcoUxGzM/vEREshAC2LNnDwAGMnKNgYycio+Ph1arxeU0FRJ5PTKqpszC2oKkU5TvPZ5sCELoiULUOmyAfk1EmdeTmhaI8OU+iNwicMOip8tVkxJK+Fx9XWZhKde6iIiodE6fVePy5cvQarW44YYb5C6HvBgDGTml0+mkVrLN/5WtCxaRN7MPKWqoyhzKZqS3xfYvOwIAVHpzmUNZalogaq/UQpdhhrrAgnobBW74Y1KZarIPYzYMZURElWfLLuu+U8eOHaHTcT+KnGMgI5d69OgBANjyHwf2oOrFUTgpSyibkd4Wf37SF8GJhdJjZQll9mFMqqfAgnobUOpQ5iiM2TCUERFVjq37OwG4ti9F5AwDGbnUrVs3KBQKHDulxeVUvl2o+itNKHMUxmxKG8qEUVkkjEn12EKZm90XXYUxG4YyIqKKlZKqlK4/1qVLF5mrIW/HPWxyqVatWoiPjwcA/LvVV+ZqiDyjpECihgp+Cq3LYPZtxg3481PHYczG3VCWmhaIOuucP5e73RfdCWM2DGVERBVn7WbrPlPbtm0RHh4uczXk7RjIqEQDBgwAAKzayEBGVZ+7QUQJhdPWshnpbbHok/4IPuM8jNmUFMpS0wJRe5UWunTX1xuztZR1/+RZh8GsNGHMhqGMiKhirNneFgAwcOBAeQuhKoGBjErUt29faDQanD6rwakkjrZIVVdZAoijUHZRH+JWGLNxFsrcDWNSLQUWhB43FjuvrCxhzIahjIjIs06fVeP06dPQaDTo3bu33OVQFcC9aypRYGAgunbtio0bN+Kf9b54fHyO3CURlVp5goc1lAGFwoQZ6W2xc0Z7BMP9QAZYQ1mTPWm4acc+dM4/Cm2OGYY8XxwIaohl0Z2Q4RPofj0FFtTboMQNmIQDd3xR2pdTjFlYeOFoIiIPWbbWDwDQtWtXBAa6v22nmkshBK8aSiXbtm0bXnrpJQT4W7Dw2xToOOgiVTGeaAn6IqMJfv1kEEJOly6Mac1GPH5yKQYl74VGFG8NMypUWBHdAdNb3QaDSuP2ek2+SlzsA5y445tS1eMIAxkRUfkVFCpw12NNkJubi48//hidO3eWuySqAvgNTG7p3LkzIiMjkZunxL9beC4Z1Ty5Qo8mPsnIGpRXquW0ZiPePzAHQy/tchjGAEAjzLjt7E58tHMWtGaj2+vOr63Evb02I9GUX6qaiIioYqzbqkNubi7q1auHjh07yl0OVREMZOQWlUqFYcOGAQD+XOkPtqtSVaNSKMvcCpQr9DhpVCFElY+p7ZYg6VH3zvkCgMdPLkXbrDMo6SMjALRLP42njvzt1nqzG6hxy8ObMSRoHzIt2nKFMraOERGVnxDAX+tuBADcdtttUCq5bSX38J1Cbrvlllug1WqRcEaD/Ue1cpdDVCZlCR8WIZAnrO/5epoMt0NZqD4Hg5L3AgAUJcxrmz743G6E6l2fp2kLY7cF7wEAmKFApkWLs2wpIyKSzd7DWhw/fhw+Pj645ZZb5C6HqhAGMnJbSEgIBg8eDACYt9hf5mqIyq40oSxX6HHaVHT8I3dD2eBk590UndEIM4ac+8/lPCZfhRTGbMxQIL0MLWVsHSMi8oz/LR8EABgyZAhCQkLkLYaqFH4TU6ncfffdUKlU+G+/DsdPc5BOqrrcCSK2roq21jF7Uih7xPlgIW0yE8tUW7u0006nZTdQY+i9mx1OK21LGcMYEZFnJJxWY9euXVCpVBg1apTc5VAVw29jKpV69eqhb9++AID//RkgczVE5VNSILHvquhIPU0Gprb/22ko8zPry1SXr8nxctkN1Lj5oS0YHrLb6bK2lrKSQhnDGBGR5/y6ciQA67VbIyMjZa6Gqhp+I1OpjRkzBgCwcYcOSefZSkZVm7Ng4qiroiP1NBl4s/1Sh6EsX1W260MUqIsvl91AjQEPbXMZxmxKCmUMY0REnnPmnBobNmwAANxzzz0yV0NVEb+VqdQaNWqEnj17QggFfviVFzykqu/6gOKqq6Ij0Zo0h6HsoF9Mmeo5bK5d5P+2MHZniOtzy+y521JGRETl8+Mfw2GxWNC7d280btxY7nKoCmIgozKZOHEilEolNv+nw6Hj7l/Ilshb2UJZacOYTbQmrUj3RVWeESszwmEscXzFooxQYFlWOPyPpEiPmfwUpQpjNo5CGVvHiIg85+AxDbZs2QKlUokHH3xQ7nKoiuI3M5VJbGysNKTrt78E8bpkVC2oFMoSzxtzxb77osJkQVqBBasQCwBuXYcMAFYiFplCA/P5i/A/koLsBmoMHru1TPUARUMZwxgRkecIAfyw0Hpe/S233IIGDRrIXBFVVfx2pjK777774OPjg0PHtdiyq2znyhBVN9GaNDzbZg1O3BsEAPgabbEf4W5dh2w/wvE12gIAhMkEc61AxIw+XabWMXsahQURKjXMwvmIkEREVDpbd/vgwIED0Gq1uO++++Quh6owBjIqs4iICNx1110AgG9+DoLeIHNBROVkFhb4KTVopM4t8zpyLDpkmf3Qs/thnHmvKwwKFV5BTyxFQ6fdF41QYCka4mX0hFGhAgAo27TE5TdNaBNyHvsKy37UVacwo5Ea8FVYW/0YyoiIyk9vAL76uTUAYMSIEYiIiJC5IqrKFEKwsxmVXV5eHsaOHYu0tDTcPzIH40aUfUeWSG62sGKCGfkWI/KEBadNpbu8Q7o5ALvyGgIALhSGYEtiQ+C0Pxq+sg0hohCDcQZtcAW+MKEAauxHBFagITIVuiLrsfRoi05fWi/+rFGaEaAqRKCyEO19E0tVj7/ChBaaoi3Y7LpIRFQ+s38PwOzfAxEREYGff/4Zfn5+cpdEVRgDGZXb2rVrMWXKFGg0ArM/uYL6dc1yl0RUao5ajkww44pZ73Yoy7HocKggGjnmouHqQmEItq6NQ+yr29xaj7JNSyRPFRgcc6TI4xqlGfW1GWirS3JrPde3jtljKCMiKpuLKSpMeC4KBoMBb731lnR9VqKy4jcylVvfvn3RsWNHGI0KfPkTB/igqsdZNz41VIhQ+bjVhdFZGAOA+rpMdOt3CInvdi1xPc7CGAAYLSpcMIS61YXRVRgD2HWRiKisvvp1OAwGAzp27IibbrpJ7nKoGmAgo3JTKBR45plnoNFosH2vDht2FN8hJaqq3A1lRqF2GMZsbKHszHuuQ5kpSOcwjEnP40YoKymM2TCUERGVzvptOmzduhVqtRqTJk2CQlG6S5sQOcJARh4RHR0tXZ3+8x+DkJHFtxZVDe6EkpJCWY5Fh+OFkSWup74uE937Om8pU7ZpicvPFZa4npJCmQqixDBmw1BGROSe9EwlPpsVCwAYO3Ysh7knj+FeM3nMvffei8aNGyMzW4XPfmDXRapenIUyV10VHXHWfVHZpiUuTgGGNDjs1nqchTKdwowG6tIdsWUoIyJyTQjgsx+DkZWVhSZNmuDee++VuySqRhjIyGO0Wi1eeeUVqFQqbNzpi7Vb2HWRvFtpg4gtlMXahbKSuio6IoWyd6yhTNmmJS6UIoxJz31dKHO3q6IjDGVERM6t3aLDpp06qFQqvPLKK9BoNHKXRNUIAxl5VNOmTTFhwgQAwOczg3ElnW8x8k5lDSBqqFDnakuZu10VHamvy0S3/tZQZgrSYWgpw5iNfSgrTVdFRxjKiIiKu5KuxBc/xQAAJkyYgCZNmshcEVU33FsmjxszZgxatGiB3Dwl3v0yBGbu41E1Y2spq6/KKnXrmL36ukz06H8Q6S/mlaseo0UFvUVT6q6KRETkmskMvP31AOTk5KB58+YYM2aM3CVRNcRARh6nVqvx2muvwdfXF/sO+2DuwtJdWJeoMpT3OlxKKNFEIzAw6GC51hPjm44xDXchQKUv8zrCNbkYFni4XK1jRERU3JzfA3DgwAH4+fnhzTffhFqtlrskqoYYyKhCxMTE4LnnngMAzF0UgN0HuaNI3qesocwC64g1PgoN2msLyxzKVAoL/K4GMZ3SWKZQFq7JxYigA6iv8itTDUXr4VcCEZHNrgNa/LI4CADwwgsvICoqSuaKqLrity9VmIEDB+LWW2+FEAq8Mz0EaZl8u5H3KW8IsYWycaHbSxXMVAoLAlSFUOHacKRlCWU+SiPDGBGRh6VlKvHe100hhMCtt96Kfv36yV0SVWP8BqYK9dRTT6FRo0bIyFJh6mchMJnkroiouNKEEQuKX8/BR6FBQ7WuVK1lSogiYcymNKEsXJOLWwOOujUvERG5x2gC3vqyP9LT09GwYUM8+eSTcpdE1RwDGVUoHx8fTJkyBX5+fth/1AfTfwqSuyQihzzRQuRuF0b7roqOuBPK2FWRiMjzhAC+mBmMgwcPIiAgAG+//TZ0Ol7GhyoWv4WpwjVo0ABvvPEGFAoF/l7tj79WlX8HkqgilBRMHLWOXa+kUOaoq6IjJYUydlUkIvK8v1b5YelaPygUCrzxxhuIiYmRuySqAfhNTJWiW7dueOihhwAAX8wKwt5DHOSDvJNKofTYeWWOQpmzroqOOAtl7KpIROR5ew9r8eXsMADAww8/jC5dushcEdUUDGRUae655x4MGDAAFosCb34aivPJKrlLInLq+lDmTuuYPUehrKSuio44CmVsHSMi8qxzF1V46/NGMJvN6N+/P+6++265S6IahN/GVGkUCgVefPFFtGjRAtm5Srz4bhgysvgWJO/l6Zay0rSO2bMPZZ5qHWMYIyKySstU4sUP2yArKwstWrTASy+9BIVCIXdZVIMohBCl3zsgKoe0tDQ89thjuHTpEpo1MuDzt9Lhp+PbkLyXWVhK3UJmTy+M2G/QYmt+0zIFMpsAVSFu9k9g6xgRkYfkFyjw9Fu1kHBGg/r16+Prr79GaGio3GVRDcNvZKp0tWrVwscff4zg4GAknNbizU9CYeRw+OTFVAollCj70VIfhQZttAb09EsoVx3+Sj3qqHzKtQ6AYYyICABMJuDNT0OQcEaDkJAQfPTRRwxjJAt+K5MsoqOj8eGHH0Kn0+G//T746NtgWCxyV0XkXHlDmRJKNNfo0c3vRJmWD1PnoosuCUZhhgnmMtfBMEZEBFgswLRvg/Hffh10Oh0++OADREVFyV0W1VD8ZibZtGrVClOnToVKpcKqjX6YPisI7EBL3qysocxy9Z9GUfZQplGYUUelBoByhzIioppMCOCzH4OwaqMfVCoVpkyZglatWsldFtVgDGQkqy5dumDy5MlQKBT4c5U/vp4byFBGXq0socxs96a2hbIb/U66vbytdcxeWUIZW8eIqKYTApgxJxBL1vhDoVDglVdeQdeuXeUui2o4fjuT7AYNGoQXXngBAPD7sgD88CtDGXk3lUIJjULlVjCztY7Z0yiUaKUpdDuU2beO2WNLGRGR+4QAfvw1EAuXBwAAXnrpJQwYMEDmqog4yiJ5kcWLF+Ozzz4DAIwfkYP7RubKXBFRyUoagdEozMUC2bVpFiSbgSyLD7bmN3U4T5g6Fz19TzsMZDYahQpquL6uH1vHiKimm7MwAD/9FggAePbZZzF8+HB5CyK6it/Q5DVuv/12PPHEEwCAOQsDMWtBAFvKyOu56sLoqHXMnkahRLTadRdGZ61j9kpqKWMYI6KaTAjgh/8FSmHsiSeeYBgjr8JvafIqI0eOxCOPPAIAmLsokOeUUZVQ3hEYnXVhdHTumDPsvkhEVJwQwFezgzDvT2s3xcceewwjR46UuSqiohjIyOvcc889mDRpEgDrOWWffB8MM4fEJy/nKJSZS3E0wVEoc6d1zJ6jUMbWMSKqqcwW4JPvg7FohT8A4JlnnsHo0aNlroqoOJ5DRl5r+fLlmDZtGiwWC/r3KMDkxzKhdn/flEgWtnPKLLDAKErfYmUUFhwx6nDCULfEc8ecsT+njIGMiGoikwn48JtgrN7kB6VSiZdeegmDBw+WuywihxjIyKutW7cOU6dOhdlsRtf2hXjj6Uz46viWJe9mFhbohcnl+WOuGIUF6RZLmcKYjUahgo9CU+bliYiqqvxCBaZ8FoIde3VQqVR47bXX0K9fP7nLInKKgYy83rZt2/D666/DYDCgZRMD3nspA6HB7MNI3s0ozNALY5mWVUIJH4UaFohyrcNPqS3TskREVVV6phKTPwhFwmktfHx8MGXKFHTr1k3usohcYiCjKuHQoUN4+eWXkZWVhXp1TJj2SjqiIjmAAXk3W/fF0oYq+zBVlmBnC3TsrkhENcn5Syq8+F4YLqaoERwcjA8++ACtW7eWuyyiEjGQUZVx7tw5PP/887h06RKCAi14/6V0tG5WttYDospU2lB1fetWeZcnIqrujpzQ4OVpjZGVlYXIyEh8/PHHiI6OlrssIrcwkFGVkp6ejsmTJ+PYsWPQagReeSITfboWyl0WUYncDVXOWrfKuzwRUXW1drMOH35bBwaDAc2bN8eHH36IsLAwucsichsDGVU5BQUFeOutt7Bt2zYAwPgRORg/IhdK7n+Sl3MnVLkajMOd5dk6RkQ1hcUCzPotAL/8Yb3gc9euXfHmm2/Cz89P5sqISoeBjKokk8mEb7/9Fr/99hsAoGfnQrz8RCb8OAIjebmSQlVJoyOWtDwDGRHVBPmFCrz3ZQg2/6cDANx999146KGHoFKpZK6MqPQYyKhKW7FiBT7++GMYjUY0ijHi3RczEFmbg32Qd3MWqtztblje5YmIqrLkKyq8Oi0Up5I00Gg0eOGFF3DzzTfLXRZRmTGQUZV36NAhvPbaa0hPT0dwoAWvT8pAxxsMcpdF5JKjUFWaa4c5Wp6tY0RU3e3cp8W7MxohKysLYWFheOeddxAXFyd3WUTlwkBG1cLly5fx6quv4vjx41AoBO67Kxdj7+B5ZeTdrg9Vpb2Ys/3ybB0jourMYgHmLgrAnIVBEEKgefPmeOedd1CnTh25SyMqNwYyqjb0ej2mT5+OJUuWAAA6tSnEq09mIiSIb3HyXrZQVdZAZb88W8eIqDrKzFbg3S9D8N9+6/lit912G5588kn4+PjIXBmRZzCQUbWzYsUKfPrpp9Dr9ahdy4w3n8ng9crIqxmFGRZYStU6dv3yRmFmICOiaufoSQ3e/CQUl9NU8PHxwXPPPcfzxajaYSCjaunUqVN4/fXXcf78eahVAhPvycFdQ/LYhZG8lllYytXdsLzLExF5E4sFWLDEHz/OD4XZbEZUVBTefvttNG7cWO7SiDyOgYyqrby8PEybNg3r1q0DAHS8QY/Jj2UiPMwic2VERETkTGq6Eu99FYI9h6xdEvv06YMXX3wRAQEBMldGVDEYyKhaE0JgyZIl+PLLL6HX6xEUaMFLj2aie0e93KURERHRdbbs8sG07xoiKysLOp0OTz31FIYMGQKFQiF3aUQVhoGMaoSkpCRMnToVJ06cAAAMG5iHR+/Nho7nAxMREcmuUA98+3MQ/lzlDwBo2rQp3nzzTcTExMhcGVHFYyCjGsNgMODHH3/E/PnzAQDR9UyY/FgmB/wgIiKS0aHjGnzwdQjOX1IDAEaNGoWJEydCq+VARVQzMJBRjbNr1y68++67SEtLg1IhMOrWPEwYmQMfbveJiIgqjd4AzFoQiN+WBkIIgYiICLz00kvo3Lmz3KURVSoGMqqRcnJyMH36dKxcuRIA0KC+EZMfz0LLJmwtIyIiqmhHT2rw/owQnL1gbRW7+eab8eSTTyIwMFDmyogqHwMZ1WibN2/Gxx9/jPT0dCgVAqOH5WH8CLaWERERVQS9AZizMBDz/w6CxWJBWFgYnn/+efTo0UPu0ohkw0BGNV52dja++OILrF69GgAQHWnCsxOz0C7OIHNlRERE1cfug1p88n0wLqZYW8X69++PSZMmITg4WObKiOTFQEZ01aZNm/Dpp58iLS0NAHBzn3w8MjYbIUH8iBAREZVVZrYC38wNwsqNfgCA8PBwPP300+jVq5fMlRF5BwYyIju5ubn4/vvv8ddff0EIgaBACx4fl42BvQrAS6AQERG5Twhg9SZffDUnCNk5SigUCgwfPhwPPfQQ/P395S6PyGswkBE5cOjQIXz00Uc4c+YMAKB9nB6THshCg/pmmSsjIiLyfonn1Zg+Kwh7Dlkv+NmwYUO8+OKLaN26tcyVEXkfBjIiJ0wmE+bPn4/Zs2fDYDBApRK4c3Aexo/Ihb8fPzZERETXy81XYM7vAfjjn2CYzWZotVpMmDABo0ePhlqtlrs8Iq/EQEZUgosXL2L69OnYunUrACA02IyHx+RgYK8CKJUyF0dEROQFLBZr98RvfwlERpYKANCzZ088/vjjqFevnszVEXk3BjIiN23fvh3Tp0/H+fPnAQCtmhrw1P3ZaNGY1y4jIqKa6/hpNabPCsbhBOs1Y6KjozFp0iRe4JnITQxkRKVgNBrx+++/Y86cOSgoKIBCITCwZwEeGJ2D2uEWucsjIiKqNJdTlfhxfiBWXR090dfXFxMmTMCIESOg0Whkro6o6mAgIyqD1NRUfPvtt1i1ahUAQKsRGDk0D3cP4/llRERUveXlK/C/PwPw+/IwGAzWa3YOHDgQDz/8MCIiImSujqjqYSAjKocjR47g66+/xoEDBwAAIUFmjB+Ri1v754PnLhMRUXViMgFL1/ph9u8ByMy2nifWtm1bPP7442jevLnM1RFVXQxkROUkhMDmzZvx7bff4ty5cwCA6EgTJt6Tg56dC3n9MiIiqtIsFmDjTh1mzg/EuYvWo40xMTF45JFH0L17dyj4RUdULgxkRB5iMpmwZMkS/PTTT8jMzAQANGtkwAOjc9G5jZ7BjIiIqhQhgJ37fPDj/ECcOGM9Jyw4OBj3338/br31Vg5jT+QhDGREHpaXl4dff/0Vv//+OwoKCgAA8S0MeGB0Dtq2MshcHRERUcn2H9Hih18Dcei4deREPz8/jBw5EqNGjYK/v7/M1RFVLwxkRBUkMzMT8+bNw+LFi6WTnjveoMcDo3PQsgmHyiciIu9z9KQGsxYE4L/9OgCAVqvFHXfcgXvuuQchISHyFkdUTTGQEVWwK1eu4Oeff8bSpUthMpkAADe2K8S4O3PRuhmDGRERye/AUQ3mLgrErgM+AACVSoWhQ4di3LhxHDmRqIIxkBFVkosXL2LOnDlYtWoVzGYzAKB9nB733pmLtq0MPMeMiIgqlRDAnkNazF0UgP1HrgWxAQMGYMKECahXr57MFRLVDAxkRJXswoULmDdvHlasWCEFs/gWBtx7Rw46tWEwIyKiiiUEsGOvD+YuCsCRE9ZzxNRqNQYPHowxY8YwiBFVMgYyIpmkpKRg3rx5WLZsGYxGa9fF5o0NGH1rHnreWAi1SuYCiYioWjFbgM07dZi3OAAJV0dN1Gq1uPXWWzF69GjUqVNH5gqJaiYGMiKZpaamYv78+fjrr7+g1+sBAJG1TbhrSB5uvqkAfjp+RImIqOwKChVYsd4XC5f542KKdah6nU6H4cOHY9SoUahVq5bMFRLVbAxkRF4iIyMDixcvxuLFi5GVlQUACPS3YNjAfNw+OA+1QiwyV0hERFVJWoYSi//xx1+r/JCTpwQABAUFYfjw4RgxYgRHTSTyEgxkRF6msLAQ//zzDxYsWIALFy4AADRqgQG9CjBqaB4aRJlkrpCIiLzZmXNq/L7UH6s3+cJosp6YXL9+fdx1110YPHgwfH19Za6QiOwxkBF5KbPZjM2bN2P+/Pk4fPiw9HinNoW4/eZ83NhOD5VSxgKJiMhrWCzAzn0++OMfP+zcp5Mej4uLw+jRo9G9e3eoVDw5mcgbMZARVQEHDx7E/PnzsXnzZtg+snUjTBg+KB+Db8pHcCA/xkRENVF2rgLL//XD36v9pPPDFAoFevXqhVGjRiEuLk7mComoJAxkRFXIxYsX8eeff2LZsmXIyckBAGg1Av17FGD4oDw0a8TujERENcHx02r8+Y8/1m7xhcFo7ZYYEBCAW265Bbfffjvq168vc4VE5C4GMqIqqLCwEGvXrsUff/yBEydOSI+3bmbA8EF56HVjIXy0MhZIREQepzcAG7b7YvE/fjh68tpGvmnTprj99tvRv39/6HQ6F2sgIm/EQEZUhQkhcOjQISxevBjr16+HyWRtIQv0t2BAzwIM6ZePxg3YakZEVJWdSlJj+b9+WL3JF9m51pOH1Wo1brrpJgwfPhxxcXFQKBQyV0lEZcVARlRNpKWlYenSpVi6dClSUlKkx1s0NuCWvgXo170A/n78uBMRVQW5+Qqs3eyL5et8cfzUtdaw2rVr47bbbsPQoUMRFhYmY4VE5CkMZETVjNlsxu7du7Fs2TJs2rRJajXT+Qj06VqAIX3zEdfcCB5MJSLyLkIAB45qsfxfX6zf7gu9wbqhVqvV6N69O4YMGYJOnTpxtESiaoaBjKgay8zMxMqVK7F06VIkJSVJj0fXM2FAzwIM6FmAyNpmGSskIqJLl1VYu1mHfzb44fwltfR4bGwshgwZgkGDBvEizkTVGAMZUQ0ghMDhw4exdOlS/PvvvygsLJSmxbcwYEDPAvTpWoCgAG4OiIgqQ3auAuu3+WL1Jl8cPHatS6Kvry/69u2LoUOHolWrVjw3jKgGYCAjqmHy8/OxYcMGrF69Grt375aua6ZWCXRpr8eAngXo0p6jNBIReZreAGzbo8Pqjb7YsdcHJrM1bCkUCrRr1w4DBw5Enz594OfnJ3OlRFSZGMiIarArV65gzZo1WL16NU6ePCk97u9nQZ8uhbipWwHatjZAzdMViIjKxGQG9h/RYu1mX2zYrkNegVKa1qRJEwwYMAD9+vVD7dq1ZaySiOTEQEZEAIBTp05h1apVWLNmDa5cuSI9HhRoQc9OhejTtQDtWhugVrtYCRERwWQG9h3WYsN2HTbt1CEz+9pRrTp16qB///4YMGAAGjVqJGOVROQtGMiIqAiz2Yx9+/bh33//xcaNG5GVlSVNCwq0oEenQvTpUoD2cQxnREQ2JhOw55AW67f7YvN/OmTnXGsJCw4ORq9evTBgwADccMMNUCqVLtZERDUNAxkROWUymbBv3z6sW7eueDgLsIaznjcWon2cnuecEVGNYzACew76YMN2HTb/p0NO3rWgFRISgl69eqFPnz5o27Yt1DyCRUROMJARkVtMJhP2798vhbPMzExpms7Hgk5tDOjWsRBd2+sREmSRr1AiogqUma3A9j06bN3tg//2+6Cg8FoICwsLk0LYDTfcwBBGRG5hICOiUrOFsw0bNmDLli1FzjlTKgRaNzeie8dCdOtYiJh6vM4ZEVVdQgBnL6qwdZcOW3frcPi4BhZxbSj68PBwKYTFx8fzos1EVGoMZERULkIIJCQkYMuWLdiyZQtOnDhRZHp0PRO6dShEl3Z6xLUwQMMDxkTk5Ywm4NBxLbbt9sHW3boiF2sGgKZNm6J79+7o3r07mjVrxmuFEVG5MJARkUelpKRI4Wzv3r0wmUzSNJ2PBe3jDOjcVo/ObfWoV4etZ0TkHS6mqLBzn7Ub4p5D2iJdETUaDdq1a4fu3bujW7duqFOnjoyVElF1w0BGRBUmNzcXO3fuxLZt27Bz505kZGQUmR4VaUKnNtZw1raVAb46bo6IqHLkFyqw75AWO/dbQ9iF5KKtYCEhIbjxxhvRvXt3dO7cmRdrJqIKw0BGRJXCYrHg5MmT2LlzJ3bs2IFDhw7BbL7WQqZRC8S3NKB9az3axRnQvLGRF6QmIo8xmYGE0xrsPazFrv0+OHhMC5P5WldDlUqFuLg4dO7cGZ07d0bTpk05PD0RVQoGMiKSRV5eHvbs2YMdO3Zg586dSE5OLjLdV2dBm5YGtG1tQPs4PRrHmqDivhERuclsAU4mqrH3kA/2HdbiwDEt8guKbkQiIyOlANa+fXv4+/vLVC0R1WQMZEQkOyEEzp49i127dmHPnj3Yt28fcnJyiswT4G9B21YGtLvaghYbZQIPXhORjcUCnDmnxp5DWuw77IP9R7XIzSu6kQgICEDbtm3RoUMHdO7cGVFRURyQg4hkx0BGRF7H1r1x79692LNnD/bv34/8/Pwi8wT4WxDX3ID45gbEt7B2ceTFqYlqDr0BOH5Kg4PHtTh0TIvDCVpk5xYNYH5+fmjTpg3atWuHdu3aoUmTJhyWnoi8DgMZEXk9k8mEhIQE7NmzB3v27MGhQ4dQWFhYZB61SqB5Y6M1pLUwIK65kReoJqpGMrKUOHRcg0PHtTh4TIuE05oi54ABgK+vL2644Qa0a9cObdu2RbNmzXhxZiLyegxkRFTlmEwmnDx5EgcOHMChQ4dw4MABpKenF5svup4JrZoa0LKJES0aG9GogRFajQwFE1GpGE3A6bNqHDupxdGT1hB2/bXAACAsLAzx8fGIj49HXFwcAxgRVUkMZERU5QkhcOnSJRw4cAAHDx7EwYMHkZiYWGw+jVqgSawRLZoYrSGtiQFRdc08F41IRhYLcO6iGsdOaay3kxqcTNLAaCx+blfDhg0RFxcnhbB69erxHDAiqvIYyIioWsrKysKRI0dw9OhR6ZadnV1sPn8/C1o0NqJ5YyOaxFpv9euaOaIjUQWwWIALySqcTNQg4bQ1gCWc1iCvoPgHLjAwEC1atECLFi0QFxeHuLg4BAYGylA1EVHFYiAjohpBCIGLFy/i6NGjOHbsGI4ePYrjx4/DYDAUm1fnY0GjGBOaNrSFNBMaRhuh85GhcKIqqlAPnD6rwclEDU4mqnEqSYNTSWoU6ouHLx8fHzRv3lwKYC1btmTrFxHVGAxkRFRjmUwmnDlzBkePHkVCQgJOnjyJU6dOQa/XF5tXqRCIrmeSwllstAmx0SZE1mZrGtVsZguQfFmFpPNqnDmnxskkawg7f0kFIYoHKq1Wi8aNG6Np06ZS+GrQoAHP/SKiGouBjIjIjtlsxvnz53Hy5EmcOHFC+pmRkeFwfq1GIKa+CbFR1qDWIIpBjaonswW4lKJC4nk1Es+pkXheg6QLapy9oIbe4LglKywsDE2aNEGTJk3QtGlTNGnSBFFRURx6nojIDgMZEVEJhBBIS0vDyZMncfLkSZw5cwaJiYlISkpy2OURuBbUoiNNiIo0ISrSfPWnCcGB3OyS98rKUeD8JTUuJKtx/pIK5y+prcHrotrhQBuAtdUrJiYGsbGxUutX48aNUatWrUqunoio6mEgIyIqI7PZjEuXLuHMmTNISkpyK6gBQFCABfUjTYiqa0J0pBn1I02oX9eMyNomBAUI8LQZqmg5eQpcSFbjwiUVztsFr/OX1MjJc960q9Vq0aBBA8TGxqJhw4bS/cjISHY5JCIqIwYyIiIPswW1xMREnD9/HufPn8e5c+dw/vx5XLlyxeWyfr4W1I0wo26EGZG1rT/r1jah7tX7gf7cZJNrQgC5eQokX1FZb5fV1+5fveXlu+5PGxERgaioKOkWExODhg0bok6dOuxuSETkYQxkRESVqKCgABcvXpQCmu3nhQsXHF7c+nr+ftbAFh5mRnioBRG1rPcjwizWx8LMbGWrxoQAsnMVSE1XWW8Zyqv3lbiSrsLlVGvgyncwjPz1wsLCioSuqKgoREdHo169evD19a2EV0NERAADGRGR19Dr9UhOTkZycjIuXbqES5cuFfl/ZmamW+vRasTVkGZGrVALQkMsCA0yIyTYgtBgC0KCrD9Dgy3w1fErQG5CAAV6BTKzlMjMViIzS4mM7Gv3UzNUUuhKzVA5PY/remFhYahbt650i4yMRJ06daT/63S6Cn5lRETkDgYyIqIqoqCgACkpKUhOTkZqaiquXLlS7GdWVlap1qnzuRbQQoIsCAywINBfXP1pQWCAQID/tfuB/hYE+Fvgo62gF1nF6Q1ATq4SuflK5OQqkJOnRG6eErl51vu2x7Ky7UOXyukohc4EBwcjIiICtWrVQkREBMLDwxEREYGIiAgpeDFwERFVDQxkRETViF6vR1pamhTSUlNTkZmZiYyMDOlnRkYG0tPTXQ48UhIfrYCfr7WFzXaz/7+f9LgFfr4CWq2AVmNtvdNqBDQa6/810v1r09VqAaUSUCpg/am8+v+rj5XUHVMIwCIAYbn6UwBmiwLCAhhNgNGkgNFovRlMkO4bTYDBqIDBqIDRaL1fUKhAQaHy6s+it0L9tWn5Bdag5W7rlSNarRZhYWEICQlBSEgIQkNDERISglq1akmBy3Zfq2UiJiKqLhjIiIhqICEECgoKioS0zMxM5OTkSLfs7Gzk5OQgNzdX+n9ubi7k/tpQKIoGtuvDl6OLEVcmpVKJgIAABAQEIDAwULrZ/h8QECAFLlvoCgkJga+vLxQ8+Y+IqMZhICMiIrdZLBbk5eUhJycHBQUFyM/Pd/jz+vt6vR4GgwFGo7HIT0ePWSyWCn0NKpUKWq0WGo1Gutn/33Zfq9XCz88Pvr6+0k2n08HX17fY476+vlLg8vPzg1LJq4ITEZF7GMiIiMirmM1mCCFgNpthsVgc3rf/qVAooFQqpZ+22/WPKxQKqNVqDttORERehYGMiIiIiIhIJuxTQUREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQMZERERERGRTBjIiIiIiIiIZMJARkREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQMZERERERGRTBjIiIiIiIiIZMJARkREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSCQMZERERERGRTBjIiIiIiIiIZMJARkREREREJBO13AUQUfUnhEBhYaHcZRARlYpOp4NCoZC7DCKq5hjIiKjCFRYWYtCgQXKXQURUKitXroSvr6/cZRBRNccui0RERERERDJhCxkRVSrtztpQiKvHghRKKJQKQKEElApAoYBCaZt29XGFAlAqoLDNI01TSMtIN8DuMWXR6dYFpceEQnHtkJTdOqTHFdeey/4xobCuRpqmtK7X+rhCmmZbRlx9TJoOXFuH8ur8tuko+hxFlrlavlA6mFZkfhSp8dpjimLTii0D+zqumw4njztZn7M6ii3jar3S46L48nbLSNPt1iWuPg675azThF091ukK+2nSvLZpQlqnwn5+hZCmSW8x2+O21V2dx/pWENL/bcsor/7fOs36f9ty0jSFgALXllNefUy6QUjLKRUo8rh1ecu15WCb3wKVbZmr/7+2Lou0PpXd+lWwPq6yrU+a1wKVbZ2w1WG5Nj+urdu6TguUsD6/dZp1faqrjylggcq2vN0yKsC6HKzPY/t92P5vfS5x9T6uThNQXv29qKCAEoDq6h9bCcXVxxRQKRRQQgnF1b+c0aDCnRPrgoiosjCQEVHlMiuu7hrBGshwNTxd3dO9Nk0BKK+lD4U13VxdiW3PXIlie9zX0k7RFGBbZ7E9dFz3mP1zwMFj1y+Ha0HMLpAVe8wuQNn///oSi87vYBmli2nOXkaxOpy8bFfTnP2qyro+u3U6CmsVGsgcTcf1/xfSuu3rsH9OR9OkAAe7eeznL7aMcPBcosjNPpBdC3lXb86mwRbarKu0D2+24AbYghWkQGM/zRrILNcCjcI+0FjvKxUKa1i6+hPSfYW0nHU9uLpO27K4utzVxx1Ns1tGdTVMqqQ6bYFMlBjI7Nensv0+UPQxJexrtPsbEhFVAnZZJCIiIiIikgkDGRERERERkUwYyIiIiIiIiGTCQEZERERERCQTBjIiIiIiIiKZMJARERERERHJhIGMiIiIiIhIJrwOGRFVLpWAENaLwVqvq6Ww+6m47mLNtp9292H/mLC778Y0u4tSXbt8r7PHr/0URe6jyHICAITt8WvrFFAAAtKy9tOldRS5eJZ9LQ7+L4qUdN3vw8nt+nndudaYq2luP5eb0+yf0uVyooR1Cic1Or8wdNFrh9lNk+Yt+4Whr9Vhdx0ylP06ZALXlhMKUfQG60/rNBR53KIQgMJybZ2wPZfF7nppV+e5Ol0oLNL6UGT9V3/anuvq/5VX57H9BFDsMYvdx9p236IALLh2HTLL1ccUcHYdMoV0MWcVrv3NbP9XXl3m+mubuX9haAWuXRja0eeSiKjiMJARUaUydL4sdwkVw7a/W0bX5wkiG/u3lkXOQsrMPhGzYw4R0fW4ZSQiIiIiIpKJQghRjmO6REQlE0KgsLBQ7jKqvMLCQgwbNgwA8Ndff0Gn08lcEZWEf7OqTafTQaFgmzURVSx2WSSiCqdQKODr6yt3GdWKTqfj77SK4d+MiIgcYZdFIiIiIiIimTCQERERERERyYSBjIiIiIiISCYMZERERERERDLhKItEREREREQyYQsZERERERGRTBjIiIiIiIiIZMJARkREREREJBMGMiIiIiIiIpkwkBEREREREcmEgYyIiIiIiEgmDGREREREREQyYSAjIiIiIiKSiVruAoiIyLH8/HzMnz8fGzZsQHJyMpRKJaKjo9G3b1/ceeed0Gg0Hn2+jz/+GH///TcAoG7duvjtt988uv6aoKL+ZleuXMHmzZuxd+9enDhxAleuXAEAhIWFoXXr1hg6dCg6dOjgyZdCRESVRCGEEHIXQURERSUnJ+Opp55CcnIyAED3//buPKiq8w7j+BdZBAVFE0YhWDXGLU0sCmrcqIpFQpJp6jaxzpjEOppM1IxpMs0wCol7yhh14oyNzMTWKkljbDSZqjgoRq2gohapBEUQEkUZFgUXFu/l9g/mnl6URS4XLuDz+evIec/vvHAY4PF9z/t6elJdXU1VVRUAAwcOZOPGjfj4+DjkfmfPnmXp0qVYfyUokDVdSz2zgoICZs2ahe2va09PTywWC5WVlcbHIiMj+eCDD3B1dXXAZyMiIq1FUxZFRNoYk8nEhx9+yI0bN3jiiSf49NNPOXjwIAcPHiQmJoYuXbqQlZXFypUrHXK/iooKYmNjcXV1ZciQIQ6p+bhpyWdWXV2NxWIhODiYqKgo/vnPf3Lw4EESEhLYvn0748ePB2Dfvn1s27bN0Z+aiIi0MAUyEZE25sCBA+Tk5ACwcuVKQkJCAOjUqRNhYWG8//77AKSkpHDmzJlm3y8uLo5r164xe/Zs+vXr1+x6j6OWfGY+Pj7ExcWxYcMGIiIiePLJJ43a/fr1Y/Xq1YwePRqAXbt21Ro1ExGRtk+BTESkjTlw4AAAw4cP57nnnnvofFhYGP7+/rXa2uvChQvs3r2bPn36MHfu3GbVepy15DPz9vZm8ODB9Z53cXEhMjISgPLycvLy8ppUX0REnEuBTESkDamoqOC///0vAC+88EKdbVxcXIwRkdOnT9t9r6qqKtatW4fFYuGDDz6gc+fOdtd6nLXmM6uPh4eHcVxdXe3w+iIi0nIUyERE2pC8vDzjD+r+/fvX2856rqSkhLKyMrvu9be//Y28vDxeeuklgoKC7KohrfvM6nPu3DkA3N3d6dOnj0Nri4hIy1IgExFpQ4qKioxjPz+/ettZ3yN68JpHdenSJeLj4+nZsydvv/12k6+X/2utZ1af/Px8Y7uCyZMn07VrV4fVFhGRlqdAJiLShty7d884bmgKoaenZ53XPAqTycQnn3yC2WxmyZIlDls6/3HVGs+sPpWVlcTExFBRUUH37t1ZuHChQ+qKiEjr0cbQIiLNtH//ftauXWv39bGxscb7Ra1h586dZGVlMXbsWCZPntxq921L2tszq4vJZGLFihVcvHgRNzc3li9fXmsUTkRE2geNkImItCFdunQxjhtavryioqLOaxqTm5vL9u3b8fLyYunSpfZ1Umpp6WdWF7PZzMqVKzl27Biurq5ER0czatSoZtUUERHn0AiZiEgzhYWFMWbMGLuv9/b2No5tRzgKCwsZMGBAndfYvoPUlFGRDRs2cP/+fd588018fHwemjpnNpsBsFgsxjkPDw/c3DrWr4v29MweZDabWbVqFUlJSbi6urJs2TImTpxodz0REXGujvUbVkTECTw8PGotO94cffv2pVOnTlRXV3PlypV6l1G/cuUKAD179qRbt26PXP/69esAbN26la1bt9bbrqCggIiICAAWLVrErFmzHvke7UF7ema2rCNjhw8fNsJYWFiY3X0XERHn05RFEZE2xNPT09hY+OTJk3W2sVgsnDp1CoCRI0e2Wt+kbq31zMxmMytWrFAYExHpYDRCJiLSxkRERHD+/HnOnTtHRkYGzz77bK3zSUlJ5OfnG22b4uuvv27w/Jo1azhw4AC9e/dutK38X0s+M/j/yJjtNEWFMRGRjkEjZCIibUxERARPP/00FouF5cuXc+bMGQCqq6tJSkoiNjYWgNGjRxMcHPzQ9V988QWhoaGEhoYaUxSlZbXkM7O+M2YdGYuOjlYYExHpQDRCJiLSxri5ubF27Vreffddbty4wdKlS/H09KS6upqqqioABg4cSHR0tJN7KlYt+czS09M5dOgQAC4uLmzatIlNmzbV237x4sUKbCIi7YgCmYhIG+Tv789f//pXvvrqK3744Qdu3LiBm5sb/fv3JywsjOnTp+Pu7u7sboqNlnpmFovFODaZTJSUlDTY3hoARUSkfXCx2P6kFxERERERkVajd8hEREREREScRIFMRERERETESRTIREREREREnESBTERERERExEkUyERERERERJxEgUxERERERMRJFMhEREREREScRIFMRERERETESRTIREREREREnESBTERERERExEkUyERERERERJxEgUxERERERMRJFMhEREREREScRIFMRERq2bRpE6GhoSxevNjZXREnu3PnDi+99BKhoaEcPXrU2d0REemQ3JzdARGRjuLu3btkZWWRmZnJxYsXuXjxIteuXcNisQDwj3/8A39//xa5t8ViYcaMGRQWFjJnzhwWLlxoV52srCz27NkDwIIFCxzYQ+fKycnh1KlTpKenk5OTQ3FxMWazGR8fHwYMGMCYMWOIiIjA29vb2V1tU7y9vXnttdeIi4vjs88+Y/To0XTu3NnZ3RIR6VAUyEREHGTJkiVkZWU55d6ZmZkUFhYCMGHCBLvrbNmyBbPZzOjRo3n++ecd1T2nWrJkCf/5z3/qPFdSUkJJSQmnT59mx44dREVFMWrUqNbtYBs3Y8YMdu3aRUFBAd988w1z5sxxdpdERDoUTVkUEXEQ60gY1IwsDB8+nJ49e7bKvY8dOwaAn58fQ4cOtavG+fPnSU1NBehQf3Rbg6qPjw+RkZFERUWxefNm4uLiWLFiBWPGjAFqwllUVBRpaWnO7G6b4+XlxfTp0wGIj4/n3r17Tu6RiEjHohEyEREHiYyMxNfXl8GDBxMYGIiLiwtLliyhpKSkxe9tDWTjxo3DxcXFrhpffvklAP7+/vzqV79yWN+cLTAwkLlz5xIWFoaHh0etc4MHD2bixIns3LmTzz//nKqqKtavX8/27dud1Nu2KTw8nC+++ILbt2/zr3/9i5kzZzq7SyIiHYZGyEREHGTGjBlMmTKFPn362B2K7PHzzz+Tl5cH2D9dsbCwkOTkZACmTp3aqv1vabGxsbz44osPhTFbc+bMYeDAgQDk5uaSnZ3dWt1rF/z9/Rk2bBgA3333nZN7IyLSsWiETESknbOufmedJmmPxMREqqurAZg8efIjXWMymTh8+DDHjx8nMzOTW7duYTab8fX15emnnyYkJIQpU6bwxBNP1LouNDQUgIiICKKiovjpp5/45ptvOH36NEVFRXTt2pVBgwbx+9//nqCgIOO6yspK9u/fT0JCAlevXqWiooKAgAB+85vfMHPmzGYvNjFixAjjHcCff/6ZAQMG2F0rNzeXvXv3kpaWxvXr16moqMDb2xsfHx/8/f0JDg5m/Pjx/OIXv7Crvslk4uDBgyQlJZGTk0NpaSkuLi5069YNX19fhg4dSkhICOPGjcPd3b3WtQ9+/XNzc/n2229JTU2lqKiI8vJyVq9e/VC4nzx5MmlpaeTl5ZGZmcmQIUPs++KIiEgtCmQiIu2cdbrimDFjcHOz78f6iRMngJr3rPr27dto+8uXLxMdHc3Vq1cfOldYWEhhYSEnT54kOzubqKioeuscOXKENWvWUFFRYXyssrKSlJQUTp48yfvvv88rr7xCUVERUVFRZGZm1rr+ypUrbN26lZSUFNavX9+sUGYymYzjTp3sn0Cyd+9eNm7ciNlsrvXx0tJSSktLuXr1KqdPnyY7O5vly5c3uf6tW7f44x//WOcCMtavfVZWFt999x3x8fEEBgbWW2v//v2sX7+eqqqqRu9ru8jLiRMnFMhERBxEgUxEpB0rKirixx9/BOyfrlhVVcWFCxcAGDp0aKPTFbOysli0aBHl5eUADB8+nPDwcPr27Yu7uzvFxcVkZGQ0um9VdnY2hw8fpkePHixYsMC495kzZ/j73/9ORUUFGzZsICgoiFWrVnH58mVeffVVxo8fj6+vL9euXWP79u1kZ2dz/vx54uPjefPNN+36GgCcPXvWOO7fv79dNXJycoww1q1bN1555RWCgoLw9fXFbDZTXFzMxYsXSUlJsXta6MaNG40wFhwcTHh4OP7+/nTt2pW7d++Sl5dHWlqaMQW1PhcvXiQxMZFu3boxc+ZMnn/+edzd3cnNzaV3794Pte/fvz9eXl6Ul5dz9uxZ5s2bZ1f/RUSkNgUyEZF27Pjx41gsFjw8PBg9erRdNbKzs43RocGDBzfY1mQyER0dbYSxd99911iBz9bYsWOZP38+BQUF9dbKyspi4MCBbNy4ER8fH+Pjzz77LIGBgcTExGAymVi0aBFlZWXExsYSEhJitBs0aBAjR45k7ty5FBUVsWfPHubOnYurq2uTPn+omfZ55coVoCaU9unTp8k1AJKSkoyRsQ0bNhjvpdmaMGEC8+fPp7S0tMn1KysrjaA7YcIEVq1a9VCwCwoK4re//S3l5eUNjvRduXKFwMBANm/eXGs10PpW6XR1dWXQoEGkpaVx6dIlqqurmzWSKCIiNfSTVESkHbNOVwwJCcHLy8uuGrbTDhtbpj8xMZFr164BNatK1hXGbPXq1avB8x9++GGtMGY1ceJE/Pz8ALh58ybTpk2rFcasvL29efHFF412ubm5Dd6vLkVFRXz66acAuLi48Pbbbze5hpV1RU1vb+86w5it7t27N7n+7du3jfAcFBTU4Cibl5dXo1M433vvvSZtzWBtW1FRQVFR0SNfJyIi9VMgExFpp+7cucO5c+eA5m0GXVxcbBx369atwbbWAAgwe/Zsu+8JNVPg6gstLi4utc6Fh4fXW8e2XX5+fpP6UFFRQVRUlBGkHlxIpKmsIfLOnTskJSXZXac+3bt3N1aLPHToULP2BPPz86sz5DbE9vvD9vtGRETsp0AmItJOJScnYzKZcHV1Zdy4cXbXqaysNI7rGq2ydenSJaBmpORRFv9oSGPX2/alodUIbds1JaDcv3+fZcuWGQuFjB8/nvnz5z/y9XUJDw83RqViYmJ455132LlzJ+fPnzemeTaHu7s7ERERAGRkZDBr1ixiY2M5dOhQk8OoPatI2gYy24VYRETEfnqHTESknbKOVj333HP4+vraXcf2navGVtu7desW8P+RoObw9PRs8LztdLyGpmPavsdkXbq/MSaTieXLl3Pq1CkARo0axUcffWTX+2e2AgICWLduHWvWrKGwsJD09HTS09OBmq/zkCFDCA0N5eWXX240/NZn8eLFVFVVkZCQQFlZGd9//z3ff/89UBOUR40aRWRkZKMjfY2NhtbFNrzbu6KniIjUphEyEZF2qKqqipMnTwLNm64INe87WZWVlTWrVntgMpmIiYkxlvoPCQlh9erVDW4c3RTBwcF8+eWXfPzxx0RGRhrLzpvNZi5cuMCWLVuYPXu2EQabqnPnzkRFRbFjxw7+8Ic/MGLECCOwlpSUcODAAZYsWcKyZctqBagH2bMgh+1CJLbfNyIiYj/995aISDuUmppqTIFrbiCzXeK8sUDm6+tLQUFBu13QwRrGrKOLI0aMYO3atc3eVPpBHh4eTJo0iUmTJgE1I4tnzpwhISGBlJQUysrKWL58OfHx8Q9tnP2o+vTpw+uvv87rr7+O2WwmKyuLEydOsHfvXm7evMnRo0eJi4tj0aJFDvu8bt++bRw3tmCLiIg8Go2QiYi0Q9ZAMXDgQPz9/ZtVy3bPrZ9++qnBttZl8YuLixtt29Y8GMaGDx/OunXrHB7G6uLr60tYWBh//vOfefXVVwEoLy/n+PHjDqlvnQ45b948/vKXvxjTQRMTEx1S3yovLw8Af39/unTp4tDaIiKPKwUyEZF2prq6mn//+99AzUIUzdWrVy+efPJJAGOT6fqEhoYax/Hx8c2+d2sxmUx89NFHRhgLCgrik08+afQ9tpYwatQo49j6Tp4j+fv7G/uo2bPXWX1u3bplbHnwy1/+0mF1RUQedwpkIiLtTHp6uvGHvG1Aag5rSMjLy+Pu3bv1tps8ebLxx/6+ffvYvXt3g3Ub2hi6tZhMJlasWGFsqNySYeyHH35oNGRZ3/0DeOqpp5pUPz8/n9TU1AbbXL9+3RjJCggIaFL9hmRkZBjHL7zwgsPqiog87vQOmYiIg1y9etVYUc/Kur8VwJEjR2qthujl5cXEiRObfB/rKE9AQIBdS5fXZdKkSezbt4/q6mpSU1P59a9/XWc7Nzc3Pv74Y9555x3Ky8vZtGkTR48eZerUqfTt2xd3d3eKi4vJzMzkyJEjDB48mKioKIf00V4rV67kyJEjQE0Aeuutt7h+/XqD1/To0YMePXo0+V67d+9m5cqVBAcHExwcTL9+/ejevTv379+noKCAxMREY3Szd+/eTd6uoKCggPfee4+AgADGjRvH0KFD6dWrF507d6a0tJSMjAz27NljrJbZ2MbdTXH69Gmg5v24MWPGOKyuiMjjToFMRMRB0tPTWbt2bb3nt2zZUuvfvXv3blYgc8R0RauQkBD8/PwoLCwkISGh3kAG8Mwzz/DZZ58RHR1Nfn4+586dMzaofpD1nTNnst2g+dq1a7z11luNXvPGG28wb948u+5XVVVFcnIyycnJ9bZ56qmnWLt2bYPL+TckPz+fXbt21Xu+U6dOzJ49m9/97nd21X+QyWTi0KFDQM2orL1L9ouIyMMUyERE2pHLly8bozvNXV3RlqurK9OmTePzzz8nJSWFW7duNbi32aBBg9ixYwcJCQkcO3aMrKws432lHj16MGDAAEaOHMmUKVMc1sf2ICYmhlOnTpGWlkZOTg4lJSXGFMbu3bvzzDPPMGHCBMLDw+1aZn/YsGFs3ryZ1NRUMjIyKCgo4ObNm9y9exdPT08CAgIYNmwYL7/8ssNGTwHjewJgxowZDqsrIiLgYrFYLM7uhIiIPJpt27axbds2evTowbfffmvXXlL1uXPnDq+99hplZWUsXLiQOXPmOKy2tG9/+tOfSE5OJjg4mA0bNji7OyIiHYoW9RARaUes0xXHjh3r0DAGNRv9WkPYV199xb179xxaX9qnjIwMkpOTcXFxYcGCBc7ujohIh6NAJiLSTty/f58JEybwxhtvMG3atBa5x/Tp0wkMDKS0tJSvv/66Re4h7UtcXBwAU6dOZejQoU7ujYhIx6MpiyIiUsuPP/5IcnIy3t7ezJo1y9ndESe6c+cOu3btwmKxMG3atAbfKxQREfsokImIiIiIiDiJpiyKiIiIiIg4iQKZiIiIiIiIkyiQiYiIiIiIOIkCmYiIiIiIiJMokImIiIiIiDiJApmIiIiIiIiTKJCJiIiIiIg4iQKZiIiIiIiIkyiQiYiIiIiIOIkCmYiIiIiIiJMokImIiIiIiDiJApmIiIiIiIiTKJCJiIiIiIg4iQKZiIiIiIiIkyiQiYiIiIiIOMn/AOQoVmneyOISAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3cAAAHiCAYAAABLBzXPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACYyUlEQVR4nOzdd3hTZf8G8PucJE3TpoPSUkqh7D1kIxsBkaHiQFBRQRDXKw4cL84X98/xiorjdTNUREVARGRvGbL3hpZVCnTPjPP8/khzSGmSpm3KadP7c125muaMfNNmnDvPc55HEkIIEBERERERUZUma10AERERERERlR/DHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAL+Eu5MnT0KSJEiShLFjx/pjl9VSv3791L8jEZEnY8eOVd8rTp48qXU5qunTp6t1TZ8+XetyyM8URUGnTp0gSRImTpyodTl0Bb7+KFAEcq6w2+1o3rw5JEnC888/XyH3cdVa7qZPn44pU6ZgypQpV+suNTd//nz1Maenp2tdDhWy2WxYvnw5Jk+ejP79+yMuLg5GoxFmsxmNGzfGnXfeifnz58Nut5dqv3v37sXEiRPRokULmM1mREREoG3btpg8eTISExMr6NEQUXWSkpKCmTNnYty4cejQoQMiIyNhMBhQs2ZNdOnSBU8//TQOHDhQIff95ZdfYvv27QgODvZ4UDJlyhT1oMyXi69fTvjz/TUxMRGTJ09G27ZtERERAbPZjBYtWmDixInYt29fqfblq40bN2LcuHFo3LgxQkJCEBUVhU6dOuGNN97AxYsXK+Q+tdC2bVv1f7tixYpSb79+/Xp1+1atWpWphnPnzmHhwoWYMmUKbrzxRsTFxan7bNCgQZn26c/nzIULF/D666+jU6dOiIqKQkhICBo3boxx48Zh06ZNpdpXTk4OPvjgA/Ts2RO1atVCcHAw6tevj1GjRmHJkiWl2pevtHj9aGHixInq8+bll18u9fa5ubmIiIiAJEnQ6/U4e/YsAECn0+Gll14CAHzwwQc4evSoX+sGAAg/OHHihAAgAIgxY8a4Xadv377qOtXFmDFj1Md84sSJEtevjn+jq23lypUiKipK/Tt7u3Tp0kUcPXrUp/2+9957wmAweNxXWFiYmD17dgU/OqouSvvecrV89913al3fffed1uUEnIkTJwqdTlfie5csy+Lpp58WNpvNb/edk5MjateuLQCIxx9/3ON6//nPf3x6fy3N89ef76/ff/+9MJvNHvcVFBQkPvjgA1//LCVSFEU89dRTQpIkj/cZGxsrVqxYUe77qgyvv//+979qDffcc0+ptx83bpy6/bvvvlvq7X///Xevz7f69euXep/+fM4sW7ZM1KpVy+O+JEkSzzzzjE/72r59u2jUqJHXxzt69GhRUFBQ6sfsydV6/fiSKyratm3b1BoSEhKEoiil2n7mzJnq9kOHDi2yzGaziWbNmgkA4s477/Rn2UIIIa5aiqiOwaWyHoBVZ7NmzVL/J1FRUWLkyJHigw8+ELNnzxYzZ84Ujz32mAgPD1fXqVevnjh37pzXfX7++efq+gaDQYwbN07MmDFDfP311+KOO+5QP9T1er1YvHjxVXqkRFdfZTi4DGQDBgxQ/76tW7cWEydOFF9++aX4+eefxSeffCKGDBlS5EDrgQce8Nt9v/feewKA0Ol04vTp0x7Xcw13r7/+upg3b57XS05Ojtf79ef76x9//KGGY0mSxB133CG+/vprMWPGDDFu3LgiAfKrr74q09/pSv/+97/VfYaGhorHH39cfP/99+J///ufuP7669VlZrNZ7Nixo1z3VRlef+fPnxd6vV4AECEhISIzM9PnbXNyckRYWJj6PCvps9edefPmFXkNGAwG0aFDhzKHO38+Z7Zu3SpCQkLU9a+//nrxv//9T3z//ffi8ccfF6GhoeqyF1980eu+Tp48KWJjY9X1u3btKj7++GPx448/iueff17UrFmzXCG7ov8WJakM4U4IIdq1a6fWsXz58lJt279/f3XbX375pdjyr7/+WgCOL+P27dvnr5KFEAx3FYrhrvKZNWuWaNu2rfjxxx9Ffn6+23VOnz4tWrdurf7v7rvvPo/7O3v2rPpmrdfrxbJly4qt4/qBW69ePZGXl+e3x0NUmVSGg8tANmjQIDF69GixdetWj+v88ssv6sE1AL+0CFmtVlGvXj0BQAwaNMjruq7hbtWqVeW6X3++v+bk5Ig6deqo606fPr3YOkuXLlX/dmazWSQnJ5er/u3bt6vhMyIiQuzatavYOq5/ry5dupS6dcBVZXn9DR8+XK3jm2++8Xk715aOG2+8sUz3vWHDBjFhwgTxv//9T/zzzz9qq1VZwp0/nzOKooiOHTuq+5oyZUqxdXbu3Kl+uSzLsti9e7fH2m655RZ1X+PGjRN2u73I8pMnT4qEhAR1nT/++MPnx+3O1X79VJZwN3XqVLWOe++91+ftEhMT1dd+zZo13baeZmRkiODgYAFATJgwwZ9lM9xVJIa7yictLc2nD889e/ao/zuTyeTx2+Unn3xSXe/ZZ5/1uL877rhDXe+TTz4pc/1ElVllObgMVKmpqT6t9/TTT/v05ZSvXFtDZs6c6XVdf4Y7f76/fvjhh+o6d9xxh8d9Pfvss+p6vnaP88T1APzTTz91u46iKKJr165+OQivLK+/+fPnq3X07t3b5+1cWzrmzp3r15rKEu78+Zxx/Zt069bN43HIp59+qq43YsQIt+vs3LlTXSchIcHjFxqLFi1S1+vcuXMJj9a7q/36qSzhLiUlRW2RDA0NFVlZWT5t99prr6n1T5w40eN6zvcuk8lUqlbuklT4OXeuoc7b5T//+Y/bfdvtdjFnzhwxcuRI0aBBA2EymYTZbBbNmzcXDz/8sNdvNoRw/0GzfPlyceedd4oGDRoIo9FYLHxZrVbx119/iUmTJomePXuKmJgYYTAYhNlsFk2bNhVjxowRa9as8XifrqHO28Xb36okmzZtEhMmTBDNmjUTZrNZhISEiEaNGon77rvPp29qnffTt29fIYQQ2dnZ4r333hOdOnUSkZGRIiQkRLRq1UpMnjzZ5wOKQNOiRQv17+TuG1dFUUR8fLwAHF0UkpKSPO5r3bp1Zfqw84e///5bPPzww6Jly5YiIiJCGI1GUa9ePTFy5MgSDyRWrVpV7DWamJgoJk2aJJo3by5CQkJERESE6N69u/j000+F1Wr1qaasrCwxdepUMXDgQBEXFyeCgoJEjRo1ROfOncXLL78sUlJSvG5/5WvFZrOJ7777TgwcOFDUqVNH6HQ6tx/iycnJ4tlnnxUtW7YUISEhokaNGqJLly7i/fffVwN8/fr13R4ELF682Kc3a1cTJ05Ut/nzzz992sYXJX1xVFH/t4ULF4obb7xRxMbGCqPRKOrXry/uvvtu8ffffwshSndwWVBQIL7++mtx0003ibp16wqj0SgiIiJE27ZtxaRJkzx+IXbw4EG1NSc8PFwcP37c432kpqaqLU6yLHt93w4kmzZtUv8PHTp0KPf+brvtNvUApKSDG3+FO3+/v3bv3l1dZ/369R73lZSUpH7jnpCQUOb6MzMz1eOL8PBwr91PXU8XKE3rwJV8ff1t2bJFREdHC8BxjtScOXOKrVOeYy+r1aqeVyZJkjh27FiJtbu2dERHRwuLxeLTY/ZVWcKdP58zd911l7qv77//3uO+cnJy1NY7k8kksrOzi63z/PPPq/t64403PO5LURTRpEkTdV1f/g+eXO3Xj6/hLiUlRXTu3Fld96mnnnIbnMtzHHTrrbeq+/e1Jbpx48bqNtu3b/e4nmvo//bbb33aty8qdbg7evSoaN++vdftZFkWL7/8ssfaXD9oVq5cKf71r3+53Y/rgUS/fv18DmfumlorMtxZrVYxYcKEEvc9cuRIkZub63E/ruHu2LFjolWrVh73Vb9+/WrZ8tilSxf1b7Bp06Ziy11b99q0aeN1X3a7vUh3C39+Q+NJdna2GDVqVInPlWHDhnms58qQsHjxYhEZGelxX9dff73H7q5Of/75p9cTygHHAAkLFizwuA/X18qlS5dEr1693D5vXa1cuVLUqFHD4322bdtWJCUleQx3drtdNGzYUAAQNWrUKLF7bV5ennp/CQkJxbrNlEdpw115/282m83r+5osy+Kdd97x+eDyn3/+Uf+Wni5BQUHif//7n9vtv/zyS3W97t27exw4ZMSIEep6JZ3DEkj27dunPu4WLVqUa1/5+flqmO7Tp0+J6/sr3Pnz/TUjI6NI98iSXouu3fLLei7MwoUL1X2U1MUwJSVFXTcmJqZM9yeEb+FuyZIl6oAYZrPZbVdXfxx7TZo0SV33lVdeKbF215aOJ554wteH7DNPnwue+Ps543oO3IULF7zua9iwYeq6ixYtKra8U6dO6nJvXbSFEEWOeT21HpdEi9ePL+HuxIkT6qAkAMTbb79dbB1/HAe5DtLjy3vg2rVr1fWvueYar+ump6erf9vhw4eXuG9f6VHBnMP8vvTSS+oQqfPmzSu2XosWLYr8fuzYMVx77bXqEMG9evXCjTfeiPr168Nut2Pbtm2YPn060tLS8Prrr0OW5RKnWXjvvfewePFi1K5dG2PHjkWbNm1gs9mwZcsWGI1Gdb28vDyYzWYMGDAAnTp1QoMGDRAcHIxz585h3759+OGHH5CTk4MZM2YgMjISH374YZH7efzxx3HLLbfg448/xqpVqwAAX3zxBWrVqlVkvYSEBJ/+hq7uvfde/PTTTwCA4OBgjBkzBj169IBOp8PWrVvxzTffICsrCz///DMyMjKwePFir/PmZWZmYtiwYTh06BCGDx+OwYMHIyoqCsePH8fnn3+OpKQkJCYm4r777sPatWtLXW9VZbFYcOTIEfX3+vXrF1tn79696vVOnTp53Z8sy+jQoQPWrFkDRVFw4MABdO3a1X8FX6GgoAADBw5Uh1Vu3LgxRo0ahZYtW8JgMODo0aOYOXMmDh8+jEWLFuGWW27BsmXLIMueZ0fZuXMn3nvvPQgh8NBDD6F79+4wGo3YunUr/ve//yEnJwfLli3Dm2++iddee83tPubOnYtRo0bBbrfDYDDg5ptvRr9+/RAbG4vMzEysWrUKP//8M7KysnDrrbdi2bJl6N+/v9fHes8992D9+vW45pprcNddd6FBgwbIzMzE7t271XX279+PG2+8Ebm5uQCADh064J577kHdunVx/vx5zJkzBxs2bMCoUaNgs9nc3o8sy5gwYQJeeOEFpKWlYe7cuRg9erTHun799VekpaUBAMaPH+/1b1uR/PF/e/zxxzFjxgwAQFBQEMaMGYNevXpBlmVs2bIF33zzDf7973/jlltuKbGejRs3YuDAgcjNzYUkSbjhhhswaNAgxMfHIy8vDxs3bsSsWbOQm5uLhx9+GEajsdg8RxMmTMCSJUswd+5cbNy4Ea+++mqx2r/55hv8+uuvAIBrr722Wk3D4/re5O69qzQ2bNigvm5K+571yiuv4MyZMzhz5gyCgoIQGxuLa6+9FiNHjsSNN97o9bPJn++v+/fvhxACANC+ffsSX4udO3dWj1f27t1bpiH5S1N/TEwM6tevj8TERFy4cAEpKSnFjhf8Yfbs2RgzZgysVitiYmLw559/onPnzkXW8dex1/33348PPvgAADBz5kx1igxPnO8vzm215s/nTHJyMi5dugTA8XqMjo4ucV+LFi1S9zV06FB1maIo2L9/PwBAr9fjmmuuKXFfTq7PydLQ4vVTkj179mDw4ME4e/YsdDodvvzyS4wbN67IOv46DhoyZAhiY2Nx/vx5rFu3DsePH0ejRo081uY6x2RJz+WIiAi0aNECBw4cwIoVK2C326HT6Ur513DDHwnR31Mh2O129cRTo9Eofv75Z7frJScnq98uybIs9u7dW2ydK4dl7tWrl8jIyPB6/8uXL/fa6nXx4kW1pUCWZY/dgvw9FcJPP/2kLo+NjXX7jcjJkyeLfCPu6fwD179JUFCQWLhwodvH6bqvzZs3l/gYPMnJySlx1DRfL9u2bStzHb5y7SbTsWNHt+u8+uqrRVpHSnLfffep68+aNcvPFRd15bkq7rrdWSyWIjV9/vnnxdZxbQFCYQvU4cOHi623efNm9UTqGjVquG0FSkpKUr9dT0hI8NitZ/PmzSIiIkIAEHXr1nXbPefKHgFPPvmk128TXVv2Hn30UbfrXvle4albp7P/vbNLsyd9+vQRgGPUt1OnTnldt7RK03JX3v+b67eQkZGRbr8pPnjwoDpMvvPiruUgMzNT7SYZGRkpVq9e7fbxHTlyRB0MIDQ01O033ampqaJu3brq33jdunXqskOHDqkjz4WHh5erO5IQQhw4cMBv718lfWvvD66jan788cfl2tdbb72l7svdiG9X8nUqhG7duomTJ0963I8/319nzJhR4jGKq1deeUVd//XXXy9xfXfuv/9+r6+FKznfLwAUeS6XhreWu48//lhtIahfv744dOhQse39eewlhCjSXW7lypUe616zZo26nj+6Ebvj7X3dHX8+Z1wfX0mfG0II8e2336rrjx8/vsiyxMTEUj2WlStXqusPGDCgxPXd0eL14y1XrFu3Tu2JEhwcLObPn+92H/46DhJCiGeeeUZdx1tLtOuIrwaDwaf3+7Fjx6r7dncKUFlUynA3d+5cnz+YDh06pA7N6m60GdcPmtDQUHHmzBmfHlNJjh07VuKT19/hznU4X2/n72zevLnIm7i7LkuuH7Kvvfaax3199dVXPq1XEtfnSHkvFX1ybWpqqoiLiyvxgOapp55S15k2bVqJ+y3t+mV19uxZERQUJACI2267zeu6FotFnSenadOmxZZfGRLWrl3rcV+jR4/2up7z/DOdTlfikN/ffPONuq8ffvih2HLX10qnTp28Brt//vlHXbdNmzZe5/5y3a+nD07XwRvcBSYhHO9LznWGDRvm9bGWRWnDXXn+b64j37kbIc3pjz/+KHKf7g5oXefA+v33370+xhUrVqjrvvnmm27XWb16tZBlWf1/paWlCYvFUqTbkj++SCnt3G3eLuUdZKQks2fPVu8rNjbW7Tk7pXH33Xer+yvpHHchHH+r4OBgMWTIEPHaa6+JWbNmiTlz5oiPPvpI3HbbbUXm6atTp47HaRX8+f760UcfqcuefvrpEvdV2vXdcT1Px92Xp+Vd3x1P4e7FF19Ub2/durXHv7k/j72EKDo4iLeBfVyDcHm/jPCkpPf1K/nzObNgwQJ12e23317ivrytv2vXriKffSUp7fruaPH68ZQrFixYIEwmkwAcXUQ9nUftz+MgIYp2dW/QoIHHAXFcg3BJ9+v0zjvv+PXzSgghtOknVIJZs2YBAMLDwzFhwgSv6zZr1kztfrF06VKv695+++2oU6eOX2ps1KgRateuDQDYvHmzX/bpzcmTJ7Fjxw4AQNu2bTFkyBCP63bt2lXtypaYmIht27Z5XFen0+Gxxx7zuNy1S5yzK0Ags9vtuPPOO3Hu3DkAwLBhwzBixAi362ZnZ6vXg4ODS9y3yWRSr2dlZZWzUs9+/vlnWCwWAMAzzzzjdV2DwYBRo0YBAI4cOYKTJ096XLdDhw7o3bu3x+XenitCCPzwww8AgAEDBqB9+/Ze6xo1ahT0ekev8ZJe1//617+8dhNZsGBBkXW9dXl44oknvN4XADz88MPq9a+//trtOq63P/jggyXusyKV5/9WUFCAxYsXAwBiY2Nxzz33eNzPsGHD0LJlS6+1ON/bmzVrhptuusnruv3791ffrz09B/r27YvJkycDcLzXPfzww3jppZfU97zRo0d7rTnQ7N+/v8jzbdq0aQgNDS3XPhMTE9XrUVFRJa4/YsQInDlzBn/++Sdefvll3HPPPRg5ciQef/xxzJ07F7t27UKTJk0AAGfPni3W5dbJn++vWrxXV4bPB7vdjgkTJuDNN98EAPTo0QPr1q1DfHy82/X9fex11113qY997ty5Rf4mTrm5uWr36aCgINx9990+PLKKV1mff9X1uQwA3377LW677Tbk5eWhdu3aWLNmDfr06eN2XX8fB7Vq1Up9vp88eRJr1qxxu6/SdMl0qlGjhnrd9f22PCr8nLuyWLduHQAgLi4Of/31V4nrOw/WEhMTkZeXV+SJ5crbAc6VMjMz8cMPP+DPP//Enj17cPHiReTk5Lhd9/Tp0z7vt6y2bNmiXh80aFCJ6w8aNAgrVqwA4Aifns6VaNasWZEn1pVcPwSc5w+VRYMGDdQ+25XZE088oX5QJSQkFHmhVhXO1w/geG7Onz/f6/qu/9cDBw6gQYMGbte79tprve7H23Nl3759SE1NBQCEhYWVWBMAmM1mpKen48CBA17XK+l1vXXrVvX6dddd53Xdfv36lVjXddddh2bNmuHw4cOYMWMG3njjDRgMBnW51WpVzx+pU6cOhg0bVuI+K1J5/m+7du1SPyD79u1b4rkAAwYM8Pj/ysjIUM+DjI2N9fk5AMDrc+DVV1/FihUrsHnzZsyZM0e9vWHDhvjss89KvA9fTJkypdKfs5ecnIybbrpJPZh69NFHcccdd5R7v87XLeBbuGvTpo3X5a1bt8Zff/2FNm3aID8/H8uXL8fmzZvRrVu3ctdKl+Xn5+OOO+5QxzgYOnQofvnlF4SEhHjcxt/HXjVq1MAtt9yCn376CTk5Ofj111+Lhflff/1Vfc7efPPNqFmzps+PkaqPd955R/0ir3Hjxli6dKnX894q4jho3Lhx6rH49OnTix0vJCYmYvXq1QCA2rVrY/DgwV7v08n1OV+e42xXlS7cZWdnqyeeHjp0CLfeemuptk9LS/MY7jx9W3WlVatW4e6770ZycrJP62dmZvpcX1k5W5IARyAries6rtteqaQTe10HmsnPzy/xfquyF198EZ9++ikAx8HnsmXLvP59nAeegG9/m7y8PPV6WFhYOSr1zvVbp5EjR5ZqW29vLOV5rrjWNHfuXMydO9cvNQElv67Pnj2rXvf2YQA4DkYiIyORnp7ucR1JkvDggw/imWeewfnz57Fw4ULcdttt6vLff/8dKSkpABzf3Pnl5OhyKM//zfVv52xt8cbbOqdOnYKiKAAcH7yuH74l8fYc0Ov1+PHHH9G+fXv1INF5W3h4uM/3UZWlpqZi0KBBOH78OABH69nHH3/sl30XFBQAcBzIe/psLa3GjRtjzJgx+OKLLwAAixYtKhbu/Pn+qsV7tdafD5MnT0ZGRgYAx6BT3333ndobwp2KOva6//771UHgpk+fXizcuX6BeuWAGAC8HpSHhIT49GV3WVTW5191fC7Pnz9f/cL0mmuuwZIlSxAbG+t1m4o4Drrzzjvx1FNPIS8vD7/++is++eSTIn+bGTNmqI0Y9913n9fXmyvXzynXv115VLpw53wzKivnt8zu+PLBdOTIEQwbNkz9Azdv3hxDhgxB06ZNERUVVaRJ+sEHH8SFCxdgt9vLVbMvXJu2felm4/qE89YsrtUIfpXNG2+8gbfeeguA42B4+fLlJYboyMhI9bpzZDFvnB+cV27rb+V5DXl7/ZTnuVJRNQElv66dLe56vb5IC5snoaGhXsMdAIwdOxYvvvgiCgoK8NVXXxUJd1999RUARwgcP358ifdX0crzf3PtjuPtG38nb+9N5XkOWK1Wr8ujo6MRFRWlvtc1atSoxBEKA0VGRgYGDRqEPXv2AABuuukm/Pjjj377UsEZ/u12O3Jzc316HviiX79+arg7ePBgseX+fH/V4r1a688H11F/c3JySuw5U1HHXgMHDkTdunVx+vRprF27FidPnlRbRVxbOurUqeM2qHkLmfXr1/d6KkF5VNbnX3V/Lufl5fl0zF0RxxwRERG49dZb8eOPPyInJwdz587FmDFjADhOPZk5c6a6bmlGfHWt1V9foFW6cOcaSvr06eOxX2tFefvtt9Vg9+KLL+L111/3OHxvSX3S/cn12w9P3UNduR6UVWQrka9yc3NLPHfKVwkJCejYsaNf9gUA7777Ll5++WUAjpabZcuWldi1CCjaOurLB4xrX2pfWl/LyvkakiQJNputUgR419f1K6+8gldfffWq3bczcNhsNlit1hIDni+vr5o1a2LEiBH44YcfsHTpUiQlJSEhIQGJiYlYtmwZAMdBTcOGDcv/ADTk+n9zDofvjbe/neu+7rvvviJDn5fXo48+WuT1dfjwYbz00kt45513/LL/gwcPug0gZdGrV68SW1N9lZWVhRtuuEE9x/CGG27AL7/84tOXGL5y7YqZmprqt3Dn2hXJ3Zcp/nx/1eK9WuvPh7fffhs//fQT/v77b8ybNw+jRo3CnDlzPD43KurYS5ZljBkzBm+++SaEEJgxYwb+85//ACje0qF1LwdXlfX5V7duXZhMJuTl5eHMmTOw2WxeW4gC4bk8YsQIhIeHY9q0aTh8+DCuu+46rFq1yusYGhV1HHT//ffjxx9/BOBodXaGu3Xr1uHYsWMAHKdCXDm9mzel7frui0oX7iIiImA2m5GdnX1VzmW70vLlywEAtWrVwmuvveYx2GVlZRX5h1S0uLg49brr/GueuK7jr0FkyiMlJaXU3Tw8GTNmjN/OhZs6dSr+/e9/A3A895YsWVLiYB9OrgHQ26A1gGNuGueAOLIslzjwRHnEx8dj586dEELgzJkzqFevXoXdV2lqcrrar+s6deqo53odP34czZs397huWlpaia12Tg8//DB++OEHKIqCb7/9FlOmTMG3336rdj3UeiAVf3B97zh69GiJ63tbp6KeAz/88IM6WE+nTp1w8eJFJCYm4v3338cNN9xQ4jyJvvjpp5/89oXEqlWrfDq3syTZ2dkYMmSIOqBX//79MX/+/CLdbP2hQYMG2LBhAwDHQUjdunX9st+Svt335/trq1atIMsyFEXBzp07oSiK14M91/N0ffmiz53S1H/hwgX1gDgmJsYvc9yFhYXhr7/+wuDBg30KeBV57DV27Fh1UJeZM2filVdeAVB0bjtPA+toda6+P58ztWvXRs2aNXHp0iUkJSXh4sWLXr/g8bYvWZbRqlUrbNu2DTabDbt27fLaS8Efz2UtXj9X+vjjjyFJEj7++GOfAl5FHQf1798fCQkJSEpKwpo1a9SW6O+++05dp7TzNLpmifLOS+p01b7Sd30ilPRidY5+c/z4cZ8OKPzp/PnzABwn43t78i5fvlw9iPOkNI+5JK4DojhbBrxxbSWryMmyq7JPP/0UkyZNAuD4IFy8eDG6dOni8/atW7dWD3T27dvn9QPx77//Vs/N7NmzZ4W2pvbt21e97q/W0vLq0KGD2q98xYoVJb52/Ml1EtdVq1Z5XdfZRcgXvXr1QuvWrQE4RvGyWq349ttvATi+HBo+fHjpi61krrnmGgQFBQEA1qxZU2J3GOcgTu5ER0erk9lu2rTJL+cqnzhxAo8++igARwvt7Nmz8f3330On00FRFNx3331FQkSgyM3NxY033qiGrj59+mDhwoU+jWRXWq4HZ4cOHfLbfl1bhtx9u+/P99fw8HB1YKGMjAx1UmN3Tp06pY4am5CQUOYJmPv166cG7bVr13o9l2bJkiXqdV8HYfCFM+D17NkTADBv3jyMHDnSYzfnijr2atKkiTrw1fHjx7Fu3TqsXbtWPUe0R48eXr9004K/nzM33HADAMexoLfP5dzcXPV8ZJPJVOTz/Mp9AUWfO1cSQvjluaXF68edjz76SB3R+vDhw+jXr1+R88JdVdRxkLMlGrjcFdM5WBDg+J85R970leuAYe3atfNPnX7Ziw9cm/xL6vbk/MMBUL/huVqcXU6OHz/uMZDZ7Xb1/CxvSvOYS9KgQQO1K+KuXbu8BrytW7di5cqVABzfAlSGc0+co2X64+KPVruvvvoKEydOBOA4KPzzzz/RvXv3Uu1DkiR1NDohBKZNm+ZxXdfBDUr7wi+tO++8Uz0gf+edd8r93PMHnU6H0aNHA3B02fA0hUBFcA1Zn376qdeA8tFHH5Vq3w899BAAxwfak08+qR6Ajhkzxq9d47RiNBoxdOhQAI4vvpzdUdxZvHhxiSObOt/bc3Nz8X//93/lqs1ut2P06NHqQf3HH3+Mpk2bolevXnjhhRcAAGfOnMEDDzxQrvsBHKNl+uv9q7ytdvn5+Rg+fLgajnr27IlFixb5rbvklVwHOvHXtD/Hjh0r0mrjfI658vf7q+vt3l7n06ZNUz/7SzsQgyuz2aw+rszMTI+fW0IIfPLJJ27r9AdnwOvVqxcAx+AUngJeRR57ubZmTJ8+vUxDxl9t/nzOuO7r448/9nh8OX36dPU9bdiwYW7PY3a9jy+++MLjICeLFy9WQ3rnzp1LHFDMm6v9+vHkww8/xJNPPgnA0UPNU8CryOOgsWPHqr36Zs6ciV9++UU9Feq2225DREREqfbnfF8NCwvzXxj2x2R5vkxi/vjjj6vreJp00Mlut4suXbqo6z/xxBOioKDA4/q5ubniu+++E7Nnzy62zHXyWV8mj73++uvV9T/44INiyy0WS5EJN+FlUswPPvhAXWfGjBkl3ndJk5jPmTNHXR4XFycOHDhQbJ3ExETRuHFjdb1PPvnE7b6cy/v27VtiXaVZtyqYMWOGOsl7SEhIuSYVPnPmjAgJCREAhF6vF8uXLy+2juvEsvXq1RN5eXnlqN43Tz/9tHqf1113nTh37pzHde12u1i2bJl4/fXXiy1znQz7P//5j9f7LGndU6dOicjISAFAGI3GEl8T58+fF6+99prYtWtXsWUlvVau1KtXL3X9Rx991O2k51dOVO3LZLfp6enq/9/14mlyc38pzSTm5f2/rVu3Tl1eo0YNtxPQHz58WMTFxRX5G7ibxDw7O1vUr19fABCSJIl3333X6wT06enp4qOPPhLLli0rtuzll19W72vEiBFFllmtVtG9e3d1+RdffOH1b1BVFBQUiKFDh6qPq1u3biIjI6NC7zM/P1+EhoYKAKJ3795e1/3999/FL7/8Imw2m8d19u7dK5o0aaI+hn79+nlc15/vrzk5OaJOnTrqutOnTy+2zrJly4RerxcAhNlsFsnJyW735XrM4+09aPv27epnTUREhNv3silTpqj76dKli8d9+cLTJOZCCJGVlVXkfXD48OHCYrEUWcefx15XysrKUp9HZrNZmM1m9TO4op/DQpR+EnMh/PucURRFdOzYUd3Xq6++WmydXbt2iYiICAFAyLIsdu/e7bG2W265Rd3X+PHji72PJiYmioSEBHWdP/74w+O+nO/J3o6T/fm38EVJueLJJ59Ulzdt2lScPn262Dr+Og5yx/UYxPWzz917lDfp6enqe8Qtt9xSqm29uWrn3A0YMED9dm38+PF46qmnUL9+ffUE2iZNmqjDaMuyjLlz56J79+44c+YMPvroI/z888+44447cM011yAiIgLZ2dlISkrC1q1bsWLFCuTk5OD1118vd50TJ05UW8UmTZqE1atX44YbbkDNmjVx5MgRzJw5E0eOHMF1112HI0eOeO0qMmDAAPX6c889hwsXLqB58+bqya/x8fFo27atz7WNHDkS8+bNw08//YRz586hY8eOGDt2LLp37w6dToetW7fim2++Ub/1GTRokNpliRwWL16McePGqd8sjRs3Dunp6SXOgdKxY0ckJCQUu71OnTr473//i0ceeQQ2mw1DhgzBfffdh759+8Jms2Hx4sVqc71er8eXX37pteuU6zmeJ06c8DjnXEnefvtt7Ny5EytWrMCqVavQqFEj3H777ejevTtiYmJgsViQnJystgInJydjwIABeOmll8p0f76oW7cufvrpJ9x8880oKCjAmDFj8MEHH+Dmm29G06ZNYTKZkJGRgcOHD2PTpk3YsGED7HZ7iXPT+eKLL75Aly5dkJubi88++wwbN27EPffcg7p16+L8+fOYM2cONmzYgO7duyMpKQlnzpzx6QTsiIgIjBo1qkh/+379+qFp06blrrmy6NWrFx599FF89tlnSEtLw7XXXosxY8agV69ekGUZW7ZswTfffIOcnBzccsstXl9LoaGhmD9/Pvr27YvMzEw899xz+OKLL3D77bejVatWMJvNyMzMxPHjx7FlyxasXr0aFotFnVzZaf369Wrvibp16+LLL78sslyv1+OHH35A+/btkZmZiaeeegp9+/atdF2/Smvs2LH4888/ATi+5X3kkUfUXhre3HLLLWW+T6PRiMGDB2Pu3LnYunUrsrOzi/RKcXXs2DE89dRTiImJweDBg9G+fXvUrl0bBoMB58+fx+rVq7FgwQJ19Ls6dep4HVjHn++vISEh+PLLLzF8+HDY7Xbcf//9WLRoEYYMGQK9Xo81a9Zg5syZam1Tp04tcbj1knTo0AHPPfcc3nnnHWRkZKBHjx544IEH0LVrV2RnZ2Pu3LlqlzGz2VzseexPZrMZixcvxtChQ7Fu3TosWLAAd9xxR5EBeCry2MtsNuOOO+7A9OnTiwz4dvvtt/t9ypL//ve/HoezT09PL/Y517BhQ7cjG/vzOSNJEr788kv06dMHubm5+M9//oMNGzZgxIgRCA0NxZYtW/D111+rLUzPP/+81+PDDz/8EBs3bsT58+fxzTffYO/evbj33ntRs2ZN7NmzB1988YXaJX306NHlnm9Vi9ePN1OnToUkSZg6dap6TL5q1aoi53ZX5HHQ/fffr/aecE43Vr9+/VKf47169Wr1eLQ879PF+CMh+tJyZ7PZinxrdOXF3TfGZ8+eFQMGDPC4jetFp9OJr776qtg+SttyJ4QQzz//vNf76tmzp0hJSVG/7fD2TdBdd93lcT9X/q18aY2wWq3igQceKPHvMWLECJGbm+txP871qlvL3ZWtM75e3LVCuHrvvfeEwWDwuH1YWJhP3266buOuRaY0CgoKxGOPPSZ0Op1Pj/G+++4rtg9/tgA5bdy4UTRq1Minmsxms9tvL0vbcieEECtXrlRbDt1d2rRpI5KSkkR8fLwAINq1a+fTfjdv3lxkPz/88IPPNZXV1Wy5E8Lx/n3vvfd6/NvJsizeffddry0Hrg4ePCg6dOjg03PAaDSKxYsXq9umpaWp772yLHt9X//+++/V/XTo0MFrK0RV4PoNe2ku5TV//nx1XzNnzvS43tSpU32uqXfv3uLkyZM+3b+/3l+FcDwnnK1G7i5BQUFue+248rXlTghHi82TTz6pfjvv7lKrVi2xYsUKn+r3xpfXX3Z2tujTp4+63s0331ysBc8fx17urFmzptj2K1euLO/DLqa0r5OSjm388ZxxWrZsmYiJifG4L0mSxNNPPy0URSlxX9u3by/xs/Tuu+8u8X3Pl5a7ivhbeONLrhBCiEmTJqnrNWnSpFgLnj+Og9zJzs4u9nd45ZVXSv04R44cKQAIk8kkMjMzS729J1ct3AkhRF5envi///s/0b17d1GjRo0if2xvByCrV68WDz30kGjdurWIjIwUOp1OhIeHi1atWolRo0aJzz//XJw9e9bttmUJd0IIsXjxYjFs2DARHR0tDAaDiIuLE/379xdfffWVsFqtQgjhU7iz2Wzi888/F/369RPR0dFqk7W7v1VpDlg3btwoxo8fL5o0aSJCQ0OFyWQSDRs2FPfcc49PHxK+vqmVdt3KrqLCnRBC7NmzR/zrX/8SzZo1E6GhoSIsLEy0adNG/Pvf//bpICYnJ6fIG+SlS5f88IiFOHLkiJg8ebLo1q2biImJEXq9XoSEhIiGDRuKoUOHirfeestj94+KCHdCOL6k+P7778XIkSNFw4YNhdlsFnq9XkRFRYnOnTuLCRMmiDlz5ojs7Gy325cl3AkhRHJysnjmmWdE8+bNhclkEpGRkaJz587i/fffFzk5OUJRFGEymQTgvbuYK0VR1K40UVFRIj8/v1Q1lcXVDndOCxcuFMOGDRMxMTHCaDSKhIQEcdddd4m///5bCOHbwaWToihiwYIFYsyYMaJZs2YiPDxc6HQ6ERkZKa655hpx3333ienTp4vU1NQi240aNUq9j8mTJ3u9DyGEGD16tLr+008/XeL6lZlW4c5ms6ldvK6//nqP6128eFH8/PPP4qmnnhK9e/cWjRs3FhEREepr+5prrhEPPfRQmbrCl/f91dXJkyfFc889J1q3bi3CwsJEaGioaNasmfjXv/4l9u7dW+L2pQl3Tn///bcYO3asaNSokQgODhaRkZGiY8eO4rXXXhMXLlwoVf2e+Pr6cxfw3AWA8hx7uaMoSpHTRho0aOBTiCktf4c7Icr/nHGVkpIiXn31VdGxY0cRGRkpgoODRaNGjcTYsWPV91JfZWdni//+97+ie/fuIjo6WhiNRlGvXj1xxx13FPlSzJvShDsh/Pu38MTXXCFE0e6X7gKeEOU7DvJk3LhxRUL58ePHS7V9RkaGerwxYcKEUm1bEkkIjcaZJaIilixZoo5m9fjjj5d6cA8qvz179qijVfn6P1i+fDmuv/56AMATTzyBDz/8sCJLJNLE1KlTMWnSJOh0Opw8edJvUyIQEVVH3377LcaPHw9JkrB3716/jiyq/ezGRATg8hyLYWFhFXruG3nmOmqdr+f6ff755+r1QJjbjsidhx9+GLVr14bdbse7776rdTlERFWW6/voqFGj/BrsAIY7okrDGe4mTZqEmJgYjasJPOvWrfM6v96nn36qDmgQHx+PG2+8scR97ty5Ux1AZODAgX5/gyaqLEwmE6ZMmQIA+PLLLz3OL0VERN7Nnj0bhw4dQlBQkF8Gg7wSu2USVQIXL15ErVq1EB0djWPHjlXoJOfVVZMmTZCfn48hQ4agQ4cOiImJgdVqxbFjxzBv3jzs2LFDXXfhwoUew91ff/0FRVFw+PBhvPvuu+pIWevXr1cnCyYKRIqioEuXLti+fTsee+wxr3PPERFRcXa7Ha1bt8ahQ4cwefJkvP32236/D4Y7IqoWmjRpgmPHjnldx2Qy4auvvlInXHfHdboKJ1/Pz1u6dClyc3NLLtaN6OhodSJiIiIiIncY7oioWti0aRPmzp2LTZs24cyZM7h06RJyc3NRo0YNNGvWDAMHDsQjjzxS4tw8znBnNpvRrFkzPPLIIxg3bpxP8+I1aNAAiYmJZaq/b9++WL16dZm2JSIiourhqk1iTkSkpWuvvRbXXnttuffD78OIiIiosmLLHRERERERUQDgaJlEREREREQBgOGOiIiIiIgoADDcERERERERBQAOqEJERBXKYrEgNzfX4yUvLw8FBQWwWCzqT9fLlbfZbDbY7XbY7XYoiuL2p/O687RySZLUEU1lWYYkScUusixDp9MhKCgIer0eBoMBer2+yO/Oi16vh9FoRHBwMEwmE4KDg91ed/4eEhICs9mM4OBgt9NpEBER+QPDHRERlchisSAzM1O9ZGVlub3u/D0rK0sNbzabTevyKw2dTgez2Qyz2YywsDD1uuslLCwMERERiIyMRGRkJCIiIhAREQG9nh/ZRETkHUfLJCKqpgoKCpCamoq0tLRiP6+8LTs7u9z3ZzQaERIS4vZiNBrx19erIAkJUCRAAaBIkFyuOy+SACAkQMBxwRW/C0fLmOT8vbChTODydajXhcv1wp+yACQBIRfu5Iqf6u06AcgCQidw/dg+yM/PR35+PvLy8or9zMvLg91uL9ffLywsTA18rpeaNWuiZs2aiI6ORnR0NKKiomAwGMp1X0REVDUx3BERBaC8vDxcvHgRKSkpSElJwYULF4pcUlJSkJGRUap96nQ6hIWFITw8XP0ZHh6O5d+uA2wSJJsM2CTAJkNy/rRLQOFFQvXtjijgCILQCwi9APQKhM7xE3oBoXP8HPJwf2RmZiI9PR3p6enIyMhAZmZmqedXjIyMRHR0dJHQFx0djVq1aiE2Nha1a9dGSEhIBT1aIiLSCsMdEVEVlJeXh3Pnzrm9pKSkICsry6f9BAUFoUaNGqhRowaioqKw6bftkKw6wCJDsjouzuuwVe+AphWBwlBoUACDUuSnMCjodWcXXLp0CZcuXcLFixd97gYbFhaG2rVrIzY2Vg18zutxcXGIiIjg+YFERFUMwx0RUSUkhEBaWhpOnTqFU6dO4cyZM0UCXHp6eon7MJlMqFWrFmJiYlCrVi0s+d8aSAUyYNFBKpAhWXQMbAFGDYJBdiBIgTAqEEF23PTE9WqLbXJysk/hPyQkBPHx8ahbty7i4+OLXK9ZsyaDHxFRJcRwR0Skoby8PDXAnT59GklJSer1ks5zCwsLQ1xcHOLi4rD+h38g5euAAh2kgsLwZudsN+Se0BUGP6MdMNohgu3oe9+1OH/+PJKTk3Hp0iWv2wcHB6uBLz4+Hg0aNED9+vVRv359hIaGXqVHQUREV2K4IyK6CnJycnDy5EmcOHECx48fx8mTJ5GYmIgLFy543EaSJNSuXRv16tVDfHw8fv9gGaR83eULwxtVECEJiGA7hMkOEWzDTZMG4syZMzhz5gySk5OhKIrHbWNiYtSg5wx9DRo0QGRk5NV7AERE1RTDHRGRH+Xn5yMxMREnTpwoEuTOnz/vcZvIyEjUq1cP9erVw5JP1zqCW54eUp7OMXokUSUiJAFhdAY/O25+ZiCSkpJw8uRJry1+ERERaNCgARo3bowmTZqgcePGaNiwIYKDg69i9UREgY3hjoiojNLT03HkyJEil1OnTnkc2TA6OhoNGzbE9vn7IOXqIeUWhjgbW+AoMAidAhFigwixQ5hs6DKiHRITE5GcnOz2dSHLMurWrVsk8DVu3Bi1atXiOX1ERGXAcEdEVAIhBFJSUnD48OEiQS4lJcXt+hEREWjUqBF2LToIOVfvCHI5enajpGpLyALCZHMEv1AbOtzSCseOHUNaWprb9cPCwtC0aVM0b94cLVu2RPPmzVG7dm0GPiKiEjDcERFdITMzEwcOHMD+/ftx4MABHDhwwOOccPHx8WjWrBnWfvcP5OzCEGfVXeWKiaomYbBDhNqghNpw3YRrcezYMSQlJbmd8D0iIgItWrRA8+bN0aJFC7Ro0QLR0dEaVE1EVHkx3BFRtWaxWHD06FE1zO3fvx9nzpwptp5Op0ODBg3QtGlTLPtsw+Ugx9Y4Ir8SknC08JmtGDKpHw4dOoRjx465DXzR0dFo3rw5WrdujbZt26JFixYwGo0aVE1EVDkw3BFRtZKWloY9e/Zg9+7d2LNnD44ePQqr1Vpsvfj4eLRq1Qqr/rcJUpbBEeQ4uAmRJoQkIEIdge/6ib1w8OBBJCYmFhu1U6fToVmzZmjTpo16iYmJ0ahqIqKrj+GOiAKWEAJnz57F7t271TCXlJRUbD1nd6+tP++FnGWAlG3gICdElZyQBYTZCiXMil5jO2HPnj1ITU0ttl5sbKwa9K655ho0atQIsszXNxEFJoY7IgoYiqLgxIkT2Llzpxro3A3N3rBhQ7Rt2xZ/vrcacpYByNdBAlvliKoyAQEYFSjhFtw0eQD27t2LY8eOFWvdCwsLQ/v27dG+fXt06NCBYY+IAgrDHRFVWUIInDlzBtu3b8e2bduwY8cOpKenF1lHr9ejefPmOLjkBKTMIMiZbJUjqi6ErECE2aCEW9DpjtbYs2cP8vLyiqzDsEdEgYThjoiqlIsXL2L79u1qoLtycvDg4GC0bdsW23/dDzkjyNHFUmGrHBFdPndPibCg852tsXv37mJhLzw8HB06dECXLl3QpUsXxMXFaVQtEVHpMdwRUaVWUFCAHTt2YPPmzfjnn3+KnTOn1+vRqlUr7Ft4zBHmsgwc+ISIfOJL2Ktbty66du2KLl26oEOHDggJCdGoWiKikjHcEVGlIoTA6dOnsWnTJmzevBk7d+6ExWJRl0uShGbNmuHoilOQ04MgZQaxZY6I/EJIhYO0RFrQ+qbG2LdvX5EpGHQ6Hdq0aaO26jVv3pxdOImoUmG4IyLN5eXlYceOHdi0aRO2bNmCs2fPFlkeExODa6+9FovfXetoneM5c0R0FQidAiXCghtfuA7//PNPsTkwIyMj0b17d3Tv3h1du3Zlqx4RaY7hjog0cfHiRWzYsAHr16/Hjh07irTO6fV6tGvXDrvmHoacZoSUy9EsiUh7ItgGJdKC7ve3x/bt25GTk6MuMxgMaN++PXr06IEePXrwXD0i0gTDHRFdFUIIJCYmYv369Vi/fj32799fZHlsbCy6deuGP/9vjaN1zs7WOSKqvIQkIMKtuPX167Fhw4ZirXoNGzZUg17r1q3ZfZOIrgqGOyKqMHa7Hfv378e6deuwfv16nD59usjyVq1a4dCfSZBT2TpHRFWXgIAw2aFEFaDNLY2xd+/eIufqRUVFoU+fPujbty+uueYa6PV6DaslokDGcEdEfmW327F7926sWrUKa9asQVpamrrMYDCgY8eO2PbDfkegs+g0rJSIqGIIvQKlRgH6/asrNm3ahOzsbHVZREQEevfujb59+6Jjx44wGAwaVkpEgYbhjojKTVEU7NmzB6tWrcLq1auRmpqqLjObzejevTtWfbzFMbolu1sSUTUiJAEl0oIbnuuJ9evXIyMjQ11mNpvRs2dP9O3bF126dIHRaNSwUiIKBAx3RFQmiqJg3759WLlyJdasWYOLFy+qy8LCwtC7d28se/dvSBlBnHeOiAiF3TcjLBj2cj+sXbu2yBdhoaGh6Nu3LwYOHIgOHTpAp2PPBiIqPYY7IiqVY8eOYcmSJVixYgUuXLig3m42mx2B7v2NjhY6BjoiIo8EHAOyDH9tANasWVPk/TQqKgoDBgzAwIED0aJFC0gS30+JyDcMd0RUoosXL2L58uVYunQpjh49qt4eEhKC3r17Y8UHmxnoiIjKyBn0hrzUG6tXr0ZmZqa6rG7duhg4cCCuv/561KtXT8MqiagqYLgjIrfy8vKwbt06LF26FFu3boWiKAAcc9D16NEDf3+xyzEoCgMdEZHfCElAqWFB34mdsH79ehQUFKjLWrRogSFDhmDgwIEICwvTsEoiqqwY7ohIJYTAzp07sXjxYqxZswZ5eXnqsjZt2uDg/ETIF4Mh2TgoChFRRRM6BUpUATrd1xJbt25Vp1cICgpCnz59MGTIEHTq1Ilz6BGRiuGOiJCamorFixfjjz/+KDIRb1xcHFI2Z0KXEgwpn/MyERFpRRgU2GPyUH9gLRw/fly9PTY2FkOGDMHgwYNRp04dDSskosqA4Y6omlIUBVu3bsXChQuxfv169Rthk8mEgQMH4q831kPKMnBicSKiSkRAQJhtGDalD5YvX15kDr0OHTpg2LBh6Nu3L6dVIKqmGO6IqpkLFy7gzz//xKJFi5CcnKze3qpVKxxecBryBSMkhV18iIgqOyELKFH5aH9PM2zbtg3OQ7qIiAgMHToUw4cPZ2seUTXDcEdUDQghsH37dvz222/YsGGDOjiK2WzGDTfcgN9fXAU516BxlUREVFbCaMfoz27CokWLkJKSAgCQJAndunXDrbfeiq5du3LuPKJqgOGOKIDl5eVh6dKl+O2333DixAn19muuuQb7fj4B+VIwJIXdLomIAoWAgBJVgA5jmuGff/5Rb69duzZuvvlm3HjjjYiMjNSuQCKqUAx3RAHozJkzmDdvHv7880/1fAyTyYQbbrgBi15eBzmPg6MQEQU6JdiG294biD///BNZWVkAAIPBgOuuuw4jR45Es2bNNK6QiPyN4Y4oQAgh8M8//2Du3LnYtGmTeu5FfHw8ktdlQnc+GJKd59IREVU3QhZQovPR5OY6OHjwoHp7hw4dMGrUKFx77bWcToEoQDDcEVVxNpsNK1aswOzZs4sMj92tWzds+/YQ5LQgjnhJREQAAMVsRd9nOmLVqlXqKMn16tXDyJEjccMNNyA4OFjjComoPBjuiKqo3Nxc/PHHH/j555/Vk+dNJhOGDh2K359fDZnz0hERkQciyI7bp16PhQsXqt33w8PDMXz4cNx6662Ijo7WuEIiKguGO6Iq5tKlS5g7dy7mz5+vfiBHRUUhY7sFunMmdr0kIiKfCZ0CpVY+avUOw9mzZwEAer0egwcPxt133426detqXCERlQbDHVEVcerUKfz000/466+/YLVaAQAJCQk4uyIdckowJMGul0REVDYCAkrNArQcmYA9e/YAAGRZRv/+/TF69Gg0btxY4wqJyBcMd0SVXGJiImbNmoXly5er89O1adMGB38+BTnVyPPpiIjIr5QwCzo91BybNm1Sb+vZsyfuvfdetGrVSsPKiKgkDHdEldSJEycwc+ZMrFy5Uh35skePHvjn8wOQs4I0ro6IiAKdEmpFr0nXYPXq1ernUKdOnXD//fejXbt2GldHRO4w3BFVMseOHcPMmTOLfJj27t0bmz7eBznHoHF1RERU3SgmG65/uRuWLFmijrDZpUsXjBs3Dq1bt9a4OiJyxXBHVEkkJSXhm2++wapVq9Tb+vbti78/3MNQR0REmhNGOwa/3gOLFi1SQ961116LcePGoUWLFhpXR0QAwx2R5s6fP4/p06fjr7/+gt1uhyRJ6NevH9b/dzfkXE5nQERElYsw2jHwP12LtOT17NkT48ePR5MmTTSujqh6Y7gj0khaWhpmzZqFBQsWqKNf9uzZE1umHYCcy5Y6IiKq3ESwDde92BnLli2DoiiQJAmDBg3C+PHjUbt2ba3LI6qWGO6IrrLc3FzMnj0bP//8M/Ly8gAAHTp0wN7pJzlQChERVTmKyYbez16DlStXAgAMBgNuu+023HPPPYiIiNC4OqLqheGO6Cqx2+1YvHgxvv76a6SmpgIAWrRogWO/JEPKCOKUBkREVKUpZivajmuA7du3AwDMZjNGjx6NESNGwGg0alwdUfXAcEd0FWzZsgWfffYZjh8/DgCIj4/H+eXZkC9xnjoiIgocAgIi0oKE4TVx7NgxAEBMTAwefvhhDBw4EJLEzzyiisRwR1SBTpw4gc8++wybN28GAISFhSF3l4DuXAgkwQ84IiIKTAICSkw+avYx4fz58wCANm3aYOLEiWjZsqXG1REFLoY7ogqQlZWFb7/9FvPnz4fdboder8ett96KBU+vhmSTtS6PiIjoqhCSwNgZt2DWrFnqeeZDhgzBhAkTEB0drXF1RIGH4Y7IjxRFwZIlS/C///0PaWlpAAonIJ+6H3I+pzUgIqLqSQTZcd3LnbBkyRIAgMlkwr333ouRI0ciKIiDiRH5C8MdkZ8cOnQIH374Ifbt2wcASEhIwLk/MyGn8yRyIiIiwDHoStO7a2P//v0AHJ+VkyZNQseOHTWujCgwMNwRlVNWVha++uorLFiwAEIImEwmWPbroDvL8+qIiIiu5DwfL7y7Xh09etCgQXj00UcRFRWlcXVEVRvDHVEZCSGwZs0afPjhh+qH08CBA7H2rZ2QLDqNqyMiIqrchE7BsHd7Yf78+RBCwGw246GHHsJNN90EWeb56URlwXBHVAYpKSmYOnUqNmzYAACoV68ekv/MhpzB8waIiIhKQzFb0XBkNA4fPgwAaNmyJZ577jk0btxY48qIqh6GO6JSsNvtmD9/Pr766ivk5uZCr9dDHDdCdyqUXTCJiIjKSEBAictDUFu7+vl677334p577oHBYNC6PKIqg+GOyEdJSUl4++231QFTWrdujcOzkiHnchRMIiIifxBBdnSd1ALr168HADRu3BiTJ09G8+bNNa6MqGpguCMqgaIo+PXXX/Hll1/CYrEgJCQElj06yOdMkMDWOiIiIn8SEFCiCxDaDcjIyIBOp8Ndd92FMWPGwGjkCNRE3jDcEXlx9uxZvP3229i1axcAoHPnztj92UkOmEJERFTBhF5BrxfaYuXKlQCA+vXr46WXXmIrHpEXDHdEbggh8Pvvv+Ozzz5DXl4eTCYTrHv0kJPZWkdERHQ12WvmI7ynDqmpqdDpdBg/fjzuuusu6HT8opXoSgx3RFdIS0vDW2+9hc2bNwMA2rVrh4PfnIFUwHPriIiItCD0Cq59riXWrl0LwPHZ/MILL6BOnToaV0ZUuTDcEbnYsmUL3nrrLaSmpiIoKAj2g0GOycjZWkdERKQpAQGlVj4M11iRl5eHkJAQPPHEExg8eDAkiZ/TRADDHREAwGq14uuvv8bs2bMBAA0bNsTpuRmQczn8MhERUWUijDY0H1cHe/bsAQAMGDAAzz77LEJCQjSujEh7stYFEGnt1KlT+Ne//qUGu1tuuQVnfshhsCMiIqqEpAI9Dn1+HhMmTIBOp8OKFSvwwAMP4OjRo1qXRqQ5ttxRtbZ69Wq8/fbbyMvLQ1hYGPI2y9ClBmtdFhEREflACbMgcqAeFy5cQFBQECZOnIibb76Z3TSp2mK4o2rJZrPhiy++wJw5cwAUDpry9VlOcUBERFTFCL2CTk81wcaNGwEAAwcOxDPPPMNumlQtMdxRtXPp0iVMmTJFnbtOdzoEupNmDppCRERURQkI2ONzgSZ5sNvtSEhIwFtvvYWEhAStSyO6qhjuqFrZtWsX/vOf/yA1NRUhISGwbDNAd4ndMImIiAKBazfN0NBQvPLKK+jevbvWZRFdNQx3VG0sWLAAH374Iex2u2M0zF8zIedx7joiIqJAIgx2tJhQB7t374YkSRg3bhzuvfdeyDLHEaTAx3BHAc9ms+HTTz/F3LlzATiGTF73+h5ICrthEhERBSIhCQx9rwfmz58PAOjTpw9eeOEFnodHAY/hjgJaVlYWpkyZgn/++QcAoDtphu40JyUnIiKqDuyxuZBa5cNqtaJRo0Z45513EBsbq3VZRBWG4Y4C1qlTp/D8888jKSkJwcHBsO0w8vw6IiKiakYJsyDsOgmpqamIjo7G//3f/6FZs2Zal0VUIdj5mALSnj178MgjjyApKQkxMTGwbwxhsCMiIqqG5KwgZC+R0bBhQ1y8eBETJ07E33//rXVZRBWC4Y4Czrp16/DUU08hMzMTLVu2RMYfAnKOQeuyiIiISCNSgQ5nfsxG586dkZeXhxdeeAG//fab1mUR+R27ZVJAWbBgAaZOnQpFUdCjRw9sff8oB04hIiIiAI6BVq5/qwsWLVoEALj77rvx0EMPQZJ4rECBgeGOAoIQAt999x2mT58OAJCTg6E/Gs6BU4iIiKgIAQF73VzYG2QDAG666SZMmjQJOp1O48qIyo/hjqo8RVEwdepULFiwAACgSwqFLimUwY6IiIg8ssfmQmmeA0VRcN111+HFF19EUFCQ1mURlQvDHVVpdrsd77zzDv766y9IkgTdETN0yZzDhoiIiEpmr5kPqV0urFYrunTpgjfeeAMmk0nrsojKjOGOqiybzYY33ngDK1euhE6ng7QvFLqLfEMmIiIi3ymRBdB3KUBeXh5at26N999/H6GhoVqXRVQmDHdUJVksFrz66qtYt24d9Ho9sCeUUx0QERFRmShhFgT3siErK4sBj6o0hjuqciwWC1566SVs2rQJQUFBUHaEQJdm1LosIiIiqsKUUCuC+1iRlZWFNm3a4P3330dICE/1oKqF89xRlWKz2fDqq69i06ZNMBqNENsY7IiIiKj85BwD8tcaYDabsXfvXjzzzDPIzc3VuiyiUmG4oyrDbrfjrbfewrp16xwtdltNkDMY7IiIiMg/5BwDCtYFqQHv2WefRV5entZlEfmM4Y6qBEVR8P7772P58uXQ6XRQdoQw2BEREZHfyTkGFKx3BLw9e/bg5ZdfhtVq1bosIp8w3FGlJ4TAtGnTsGjRIsiyDGmvmV0xiYiIqMLI2QYUbDAgODgYW7ZswVtvvQVFUbQui6hEDHdU6f3444+YO3cuAEA+aOaomERERFTh5Kwg2LcGQ6/XY8WKFfjoo4/AcQipsmO4o0pt6dKl+OKLLwAAumNh0KVwHjsiIiK6OuR0I7A3FJIkYd68eZg+fbrWJRF5xXBHlda2bdvwf//3fwAA3ekQ6M9xOGIiIiK6unQXg6E7YgYAfPfdd1i8eLHGFRF5xnBHldKxY8fw0ksvwWazQb5ghO6kWeuSiIiIqJrSJYdAl+SY1Py9997Dzp07tS2IyAOGO6p00tLSMHnyZOTk5KBdu3bQH46ABEnrsoiIiKga0yWF4rrrroPNZsNLL72E06dPa10SUTGS4JmhVInYbDY89dRT2LVrF+rWrYuUXwsg2fgdBBEREWlPyAKNxkXh4MGDSEhIwOeff46wsDCtyyJS8aiZKpVp06Zh165dCAkJwfkFeQx2REREVGlIioTjMy4iJiYGSUlJePXVV2G327Uui0jFI2eqNP744w/MmzcPAGDZaoCcp9e4IiIiIqKiJKsO6UvtMBqN2LJlC2bMmKF1SUQqhjuqFPbv34+pU6cCAHSJodClci47IiIiqpzkHAPsu40AgBkzZmDz5s0aV0TkwHBHmsvKysKUKVNgtVrRu3dv6E6Fal0SERERkVe6CyYMHz4cQgi8/vrrSE5O1rokIg6oQtoSQmDKlClYtWoV4uLicOk3GyQ7v3MgIiKiyk9IAo3GOwZYadGiBT755BMEBQVpXRZVYzyKJk0tXLgQq1atgk6nw8XFBQx2REREVGVIQsLxWRcRHh6OgwcP4ttvv9W6JKrmeCRNmjl+/Dg+/vhjxy9HTZCzDdoWRERERFRKUoEOuZsd8/HOnj2bE5yTphjuSBM2mw1vvPEGLBYLunbtCt2ZEK1LIiIiIioT3aVgDB06FEIIvPXWW8jOzta6JKqmGO5IE99//z2OHj2K8PBw7Jx2HBIkrUsiIiIiKrPlL/+DOnXqIDk5GR999JHW5VA1xXBHV93Ro0fVOWFytzjmiyEiIiKqyiS7jAuL8yDLMpYsWYJ169ZpXRJVQwx3dFXZbDa8/fbbsNvtkC8ZIV/kfHZEREQUGOSsIEiJjmObDz/8ELm5uRpXRNUNwx1dVbNnz8aRI0cQHh4O/dEwdsckIiKigKI7ZUZ8fDwuXLiAr776SutyqJphuKOrJjk5GTNnzgQA5P7D7phEREQUeCRFQspfOQCA3377DQcOHNC4IqpOGO7oqvnkk09QUFCA9u3bQ77A7phEREQUmOQMIwYNGgQhBN577z3YbDatS6JqguGOrootW7Zg7dq10Ol02PftKXbHJCIiooC2+rUdCA8Px9GjR7Fo0SKty6FqguGOKpzVar08WXmSEXKuXtuCiIiIiCqYZJORu0MAAL755hvk5ORoXBFVBwx3VOHmz5+PpKQkREVFQZcUqnU5RERERFeFnGxCQkIC0tPT8f3332tdDlUDDHdUoXJzczFr1iwAQOZmKyQ7n3JERERUPUhCwtm/MgEAv/zyC86dO6dxRRToeKRNFeqXX35Beno64uPjIaeYtC6HiIiI6KqSU4PQsWNHWCwWfP3111qXQwGO4Y4qTEZGBn766ScAwPkV2ZAEB1EhIiKi6kWChD3fnAQArFixAqdOndK2IApoDHdUYX788Ufk5OSgadOmkC8atS6HiIiISBNyjgE9evSAoijqnL9EFUESQgiti6DAk5WVhREjRiAvLw/6fZHQpTHcERERUfWlmK2wtk+FTqfDrFmzULduXa1LogDEljuqEAsWLEBeXh4aNmwIOS1I63KIiIiINCVnG3DttdfCbrerg80R+Rtb7sjvCgoKMGrUKKSmpkJ/KBy6CxxIhYiIiMi19e7nn39GTEyM1iVRgGHLHfnd0qVLkZqailq1akG+GKx1OURERESVgpxtQLt27WC32zF//nyty6EAxHBHfiWEwJw5cwAAlzblcoRMIiIiIhf75yQCAH7//XcUFBRoXA0FGoY78qtdu3YhKSkJJpMJuvPsjklERETkSr5kRGxsLDIyMrB8+XKty6EAw3BHfvX7778DAApOAJKdTy8iIiIiVxIkXNyUAwD4448/NK6GAg2Pvslv0tPTsWbNGgCA7hxb7YiIiIjc0aUEQ6fTYd++fTh58qTW5VAAYbgjv1mxYgWsViukbD3kHIPW5RARERFVSpJVB5GiBwAsXrxY42ookDDckd84+43LKWy1IyIiIvJGPu8YUXzJkiWw2+0aV0OBguGO/OLs2bPYt28fZFmG7oJR63KIiIiIKjU5zYiwsDCkpqZiz549WpdDAYLhjvxi5cqVAACRqodk1WlcDREREVHlJgkJOUetAIBVq1ZpXA0FCoY78ot169YBAFvtiIiIiHwkX3R0zVyzZg27ZpJfMNxRuaWmpuLAgQMAADmV4Y6IiIjIF3J6EMxmM1JTU7F//36ty6EAwHBH5bZx40YAgJTFLplEREREvpKEhNwTjq6Z//zzj8bVUCBguKNyc4Y7ttoRERERlY6c7jh+2rJli8aVUCBguKNyURQFO3fuBOAY9YmIiIiIfCenBQEADhw4gIyMDI2roaqO4Y7K5cSJE8jMzITJZIKUo9e6HCIiIqIqRbLo0KBBAwghsGvXLq3LoSqO4Y7Kxdlql3/WDklI2hZDREREVAUlbTwPANi3b5/GlVBVx3BH5bJ7924AgJwRpHElRERERFWTnGUAAOzdu1fjSqiqY7ijcjl8+DAAQM5il0wiIiKispAzHeHu0KFDsFgsGldDVRnDHZVZVlYWzpw5AwCQcgwaV0NERERUReXrEBYWBovFgsTERK2roSqM4Y7K7OjRo44r+TIkG59KRERERGUhQUL26XwAwPHjxzWuhqoyHpFTmR07dgwAILPVjoiIiKhcnKOOM9xReTDcUZmdOnUKACDl6jSuhIiIiKhqkxnuyA8Y7qjMTp8+DQCQ8jmYChEREVF5OI+nzp49q3ElVJUx3FGZqeEujy13REREROUh5TuOp86fPw9FUTSuhqoqhjsqE0VRkJKSAuDymxER+ZEkaV0BERFdTQUydDodLBYLUlNTta6GqiiGOyqTzMxM2O12xy9WPo2I/MoZ7BjwiIiqDQkS7DkCgKP1jqgseFROZXLp0iXHFasESfAAlMhvrgx0DHhERNWGVPiFeUZGhsaVUFXFcEdl4uwuIFn4FCKqcAx4RETVg43hjsqHR+ZUJjk5OY4rnLycyH+8hTgGPCKigMeWOyovHplTmeTl5Tmu2HnASeQXvoQ3BjwiosBmc7zPZ2dna1wIVVUMd1QmznAnKTzYJCq30oQ2BjwiooDlPK6yWq0aV0JVFcMdlUlBQYHjClvuiMqnLGGNAY+IKDA5BstkuKMyY7ijMhFCaF0CUdVXnpDGgEdEFHDsdXIBAL/++qvGlVBVpde6AKqaJB5YEpUdXz9ERERUAdhyR2WihjseoxKVDoMdERF5oDtvAgD0799f40qoqmK4ozKR5cKnjsTumUQ+Y7AjIiJvCgdUqVmzpsaFUFXFcEdlEhIS4riiY7gj8om/gx3PeyUiCjii8LgqNDRU40qoqmK4ozJxvukIhjuikjHYERGRLwqPq0wmk8aFUFXFcEdlon6jpOdBJpFXDHZEROSrwnCn9pAiKiWGOyqTsLAwAIDQKxpXQlSJMdgREVEpCIPjuKpGjRoaV0JVFcMdlUlMTIzjSpACAR5wEhXDYEdERKUkguwAOKAKlR3DHZVJjRo1oNPpHFMhBLH1jqgIBjsiIiolAaEeU0VHR2tcDVVVDHdUJjqdDlFRUQAAwXBHdBmDHRERlYVBAWTHXMLOYyyi0mK4ozKLi4sDAAiTTeNKiCoRP4QxKSgIuqgaDHZERNWIMDm6ZMbGxsJgMGhcDVVVDHdUZvXr1wdw+c2IiAqVI5Q5g51kMkFXk9/cEhFVF87jqXr16mlcCVVlDHdUZmq4C2HLHVExZQh4aoudXg9IEgMeEVE14uwJlZCQoHElVJUx3FGZOd982C2TyINSBLwiwU69kQGPiKi6cH5ZznBH5cFwR2XWpEkTAIAIsUPIPDeIyC0fA54kSUWD3eUFDHhERAFOQEAxO8Jd8+bNNa6GqjKGOyqz6Ohox3x3EiDMVq3LIaq8Sgh4UlAQ5BqRXlZgwCMiCmhBChCkQKfToXHjxlpXQ1UYwx2VS4sWLQAACsMdkXceAp7b7phuV2TAIyIKVEqY4ziqUaNGMBqNGldDVRnDHZVLy5YtAQAinOGOqERXBDyfg526AQMeEVEgch5HOY+riMqK4Y7K5ZprrgEAKBEWCPC8O6ISFQa8Ugc7JwY8IqKAo0RYAAAdOnTQuBKq6hjuqFxatmwJk8kEGAREKEfNJPKFpDeULdipO2DAIyIKFEKvAGGOOe7at2+vbTFU5THcUbno9foirXdE5J2ueROcmNIJp+9sVL4dSRKURvG4NL67fwojIiJNKBEWCCFQv3591KxZU+tyqIpjuKNy69SpEwBAqcFwR1QSYQqCJc6KzOY2nB5R9rmMbHE1cOJmM9JbCQY8IqIqTIkqAAB06dJF40ooEDDcUbn16NEDACAiLBA6ReNqiCovXfMmOHp3hOOXIMUR8G4vfcCzxdXAyZvMsEYqUIIEAx4RURUlIKDUcIS7nj17alwNBQKGOyq3evXqoUGDBoB8+dsnIipK17wJjoyPgS3aZWTZIAWZLUrXguca7JwY8IiIqiYRZgWCBMxms3qaC1F5MNyRX/Tu3RsAoNRkuCO6kttg5+RswfMx4ClBuiLB7vLtDHhERFWN87ipW7du0Jd1kC0iFwx35Bd9+vQBACg1Ctg1k8iFrnkTHBnnIdg5+dhF0xZXA0k3mDwuZ8AjIqo6BATsMfkAgP79+2tcDQUKhjvyi2bNmiEhIQHQAUo0W++IAJdgF+Ml2Dk5u2h6CHi2+Khi3THdcQa808/3YMgjIqrERIQVMCoICwtDt27dtC6HAgTDHfmFJEm44YYbAAD2mDyNqyGqHJQQo2/BzslDwLPFRyFxaGiJwU693yCBvDp2pLcSSB3HgEdEVBk5j5f69euHoKAgjauhQMFwR35z/fXXA3B8EyWMdo2rIdKWrnkTHLszvNTbRedl4L7jS/Ay/sQHyT/hjYyFGBK6EeG6jFLvSwkSSGvNbppERJWN0ClQYhw9nQYNGqRxNRRIJCGE0LoIChyTJk3C1q1boTsVAn1imNblEGlC17wJjtwfA1st31vtjBYrpvy4ECPWb0OQvfiXIxadDr9e2xmvjhiOAoOhVPXIFgk19kmI+nZjqbYjIqKKYa+dC1uTLNSvXx8zZ86EJElal0QBgi135Fe33norAMBeOw9C4vcGVD2J0+dQZ73vrddGixUzPvgWd6/Z4jbYAUCQ3Y67N2zGjE+/htFSiq6eAILSZdRacbpU2xARUcUQELDHObpkDh8+nMGO/Irhjvyqe/fuqFWrFmAQUKLztS6H6OqTJCi5uQhZcwAJv/n2Fjvlx4XofugESvo6RAC49uhx/GfuAp/LCU7RoeHMU7AlnvJ5GyIiqjgi3AoRaoPRaFTHKyDyF4Y78iu9Xo+bb74ZAGCPz4Uo8XCVKDAp2dk+BbyYjCyMWL8NAFDSd7fO5SM2bUV0ZlaJNTDYERFVPvb4HACOc+3CwngKC/kXwx353fDhw2EymSDMNohIi9blEF09V3St8SXgjVr7j8eumJ4E2e0YuXFLievJVjDYERFVIkqIDUpNCyRJwp133ql1ORSAGO7I7yIiInDTTTcBAGz1cjSuhugq8XDOhBrw5rl/u+126ESZ7u7aI8e8Lg9O0aH+TzzPjoioMnG22vXp0wf16tXTuBoKRAx3VCFGjRoFvV4PEWGFEsbWO6relOxshKx2H/DM+QVl2qe37YJTdGg46zRsJ5PKtG8iIvI/YbRDquMYEOvuu+/WuBoKVAx3VCFiYmIwePBgAGy9o2rAh5HOPAW87GBjme4yvHCktSsx2BERVU62ujmw2+3o2LEjWrZsqXU5FKAY7qjC3H333dDpdBBRFijhbL2jAFWKIazdBbzNzRuW6W7j+xRgTJ91RW5jsCMiqpyUYBukuo5joXHjxmlcDQUyhjuqMHXr1r187l3DLI6cSYGnDHMTXRnw/rqlJZTSzUkOYQCMo6PwZM1tRQKebAGDHRFRJWSvnw273Y7u3bujXbt2WpdDAYzhjirUmDFjHCNnhtmg1CzbuUVEgcY14OXGGiGNDAcAn+a5AwCMCgdi9IiQTXiy5jbc22e9YwCVn89UZNlERFQGitkKJaYAkiThwQcf1LocCnAMd1ShatasiVGjRgEA7A2yISS23hEBjoAXuu4QspfUhng9GqJ7sE/z3InuwRCvR6u3RcgmyBBo8OsF2E4kVmjNRERUOgICtgbZABzz2jVu3FjjiijQMdxRhbvzzjsRGRkJYbLDHperdTlE/iPK/mWFpNMBAOL/SEbz2f+C+KEOxD3hEB66aAoDHMt/rAMEX37rnpZWH6uf6wFxOhlycHCZ6yEiIv9TahZARFoQFBTEc+3oqtBrXQAFvpCQEDz44IN49913Ya+fA93FYEgWndZlEfmHM+CV9vw7SQZ0OiA1HY1nAD32PopLbSQc2jYN4sdMSH/nATkKECpD9DABdzu6Yl7pZH5NmDYeBiQJwmCArNMBdjuU/Hw/PDgiIiorISuwNcoC4BhkLi4uTuOKqDqQhCjHV89EPlIUBf/617+wb98+yBeMMByK1LokIv/zMeBJOh1kc6gj3LmKisSxsbE4dP/nPu1nWlp9/Pb0IJj+PlTkdiEEYLUy4BERacjWIAv2urmIi4vDzJkzYTSWbeobotJgt0y6KmRZxtNPPw1ZlqHEFECJ5OAqFIB8+K7MY7ADHK1408+j+XePlLifD9MauA12ACBJEmAwsJsmEZFGFJMNqO841nniiScY7OiqYbijq6ZJkya4/fbbAQC2xlkQMhuNKQCVFPCc3TE9cQa8b70HvON5MW6DnXo3DHhERJoQELA1yYTdbkfPnj3Ro0cPrUuiaoThjq6qcePGISYmxjG4Sv1srcshqhgeAp6k00EONZW8fWo6Gs/w3II3La0+dr/cvsTdMOAREV199jq5EBFWmEwmPPHEE1qXQ9UMwx1dVaGhoXjuuecAAPb4XCjhFo0rIqogVwQ8r90x3fHQRXNaWn3MfWYQQjZ4brUrcr8MeEREV41issFeOPXBY489htq1a2tcEVU3DHd01XXr1g033XQTAMDaLBNCp2hcEVEFcQ14JXXHdCc1HY1npKDZdEfAm5ZWH3Of9T3YqXfNgEdEVOEEBGxNMwEZ6NKlC2688UatS6JqiKNlkiZyc3MxduxYJCcnQz5nguFYuNYlEVUYSa8vXavdlWrWwNGxtTB40FYc7e9Dt04POIomEVHFsdXNgb1BNkJDQzF9+nTExsZqXRJVQ2y5I02EhIRg8uTJAAAlLg/2mjzYpABX1mAHAJfS0OS789j9SvtylSBJUvnqICIit5QwC9A4DwAwceJEBjvSDMMdaaZjx4646667AAC2ppkQRpvGFRFVDGGzQeTklm8nF9NgWncQ5elsIex2KHn8IoWIyJ+EXoG1eQbsdjsGDhyIIUOGaF0SVWMMd6SpCRMmoHXr1oBewNoiA0JiL2EKTEp+ftkDniIAu139tSwBTw12ir3klYmIyCfqeXbBCuLj4/H00087ekkQaYThjjSl1+sxZcoUhIeHQ4RdHmGKKBAp+flQMjJLF/IKg92Vga5MLXgMdkREfmWvkwelZgEMBgOmTJmC0NBQrUuiao7hjjQXGxuLF154AYBjegR7NLuNUeASNlupW/E8BTlfAx67YxIR+Z8SbgGaOt7LH330UTRv3lzjiogY7qiS6NGjR5Hz75RQq8YVEVUsnwLeFd0x3Skp4LE7JhGR/wmjHdaW6bDb7RgwYABuu+02rUsiAsBwR5XIgw8+iG7dugE6AWurdAgDD0YpsHkNeB66Y7pT4joMdkREfiNkAWvLdMAg0KxZM/z73//meXZUaTDcUaWh0+nwyiuvICEhATAqsLbkACsU+JSCAo8BrzTn1blbl90xiYj8yzGASgaE2YYaNWrgzTffRHBwsNZlEakY7qhSCQsLw9tvvw2z2QwRboWtSSYEGPAogAlRvAXPh+6Y7nfl5rXCVjsiIr+xJ+RAiSmAXq/H66+/zvnsqNJhuKNKp169epgyZQpkWYYSmw97Qo7WJRFVuCsDXlnns3Nux1Y7IiL/ssfmqsckkyZNQrt27TSuiKg4hjuqlLp27YpJkyYBcHxLZq9dzgmgiaoAJT8fSnZOmVrtXHEQFSIi/7JHFcDWJAsAMHbsWNx4440aV0TkHsMdVVo333wzxo4dCwCwNc6CvSZbISjwiYKC8re4CcFgR0TkJ4rZClvzDEAChg4divvvv1/rkog8YrijSu3+++/HTTfdBEiArXmGY04ZogAnbFaI/IKybawoUMq6LRERFaGYbLC2TgN0At26dcMzzzzDkTGpUmO4o0pNkiQ89dRT6NmzJyAD1lbpUMycA48CnBBlD3hstSMi8gsRbIO1TRpgEGjRogVeffVV6PV6rcsi8koSZT1rn+gqys/Px7PPPotdu3YBNgmGPTUg5xi0LouoYkkSJL0BUrDRt/UVhefaERH5gTDaYWmbCgQraNiwIT766CNERkZqXRZRidhyR1VCcHAw3nnnHbRu3RrQC1jbpEEJsWldFlHFKm0LHlvtiIjKTQTZYWmTBgQrSEhIwNSpUxnsqMpgyx1VKdnZ2Zg0aRIOHjwIWGRHC14eu0hQgJMkSDodIMmeW/HYakdEVG7CYIe1bRpEiB116tTBtGnTEBMTo3VZRD5jyx1VKWazGe+//z6aNm0KBCmwtmULHlUDQkDYbN5b8dhqR0RULiLocrCrVasWPvzwQwY7qnIY7qjKCQ8Px3//+180atSoMOClQgnlICtUDXjqpskRMomIykUYbbC0S4UIsaN27dr46KOPULt2ba3LIio1hjuqkiIjI/Hxxx+jZcuWgEE4WvA4TQJVB+4CHlvtiIjKTDHZYGnnOMcuPj4e06ZNQ3x8vNZlEZUJwx1VWeHh4Zg6dSrat2/vGGSldTqUCLZeUDXgGvDYakdEVGZKqBXWtmmAUUGDBg0wbdo0xMbGal0WUZlxQBWq8vLz8/Hyyy9j8+bNgALoD0VAdylY67KIKp4kAZLMVjsiojJQIiywtkwH9AJNmzbFf//7X46KSVUewx0FBKvVitdffx2rV68GBKA7YYb+bKjWZREREVElZI/Oh61ZBiAD7dq1w9tvv42wsDCtyyIqN4Y7Chh2ux3Tpk3Db7/9BgDQnQmB7oQZEiSNKyMiIqLKQEDAHp8Le8NsAEC/fv3w4osvwmj0MM0MURXDcEcBRQiBn376CZ9//jkAQL5ohP5wBCSFAY+IiKg6ExCwN8yGPT4XAHD77bfjscceg06n07gyIv9huKOAtGLFCrz11luwWq2QMg0wHIiAZOWbNxERUXUkdApszTKg1HSMrP3oo49i1KhRkCR++UuBheGOAtaOHTvw4osvIjs7G8iXYTgQCTnHoHVZREREdBUJow3WVukQoXYEBQXh+eefx4ABA7Qui6hCMNxRQEtKSsLzzz+PU6dOAXYJ+sPhHEmTiIiomlDCC0fENAjUrFkTb775Jlq1aqV1WUQVhuGOAl5WVhZeffVVbNmyBQCgSwqFLimUA60QEREFMHtsLmxNsgAJaN68Od566y3ExMRoXRZRhWK4o2rBZrPhiy++wJw5cwAA8iUj9IfDIdlljSsjIiIifxKSgK1xFpTaeQCA/v37Y/LkyQgOZs8dCnwMd1StLF68GO+//z6sViuQp4PhYATPwyMiIgoQwmiDtWUGhNkGSZIwfvx43HvvvRw4haoNhjuqdg4ePIhXXnkFycnJgALoj4VDPh/MbppERERVmD2qwDExuV4gIiICr7zyCrp06aJ1WURXFcMdVUuZmZl48803sXHjRgCAfD4Y+mPhnA+PiIioihEQsNfPhr2eY/66Vq1a4dVXX0VsbKzGlRFdfQx3VG0pioIff/wRX3/9NRRFgZSjh/5QBORcvdalERERkQ+E0Q5rswyICCsAx8Tkjz76KAwGnnJB1RPDHVV7O3bswKuvvorU1FRHN80TYZDPmdhNk4iIqBKzR+fD1iQT0AuEhITg2Wef5fx1VO0x3BEBSE1Nxdtvv43NmzcDAOTUIOiPRECycjRNIiKiykTIimM0zNh8AEDr1q3x8ssvo06dOhpXRqQ9hjuiQkII/Pbbb/j8889hsVgAiwzD4XDI6UatSyMiIiIAitkKW/MMCJMdkiTh3nvvxdixY6HX85QKIoDhjqiYY8eO4bXXXsOJEycAAPJZE/QnzZAUtuIRERFpQUgC9no5sNfLASQgJiYGL7/8Mtq3b691aUSVCsMdkRsFBQX4/PPP8dtvvzluyNfBcCQcckaQtoURERFVM0qoFbZmmRChNgCOScknTZqE8PBwjSsjqnwY7oi82LZtG/7v//4P58+fB+BsxQvjlAlEREQVTEgC9ro5sCc4WusiIiIwadIkXHfddVqXRlRpMdwRlSA3NxefffYZfv/9d8cNeYWteJlsxSMiIqoISqgVtiaZEGGO1rrevXvj6aefRlRUlMaVEVVuDHdEPvrnn3/wzjvvICUlBQAgJ5ugP2GGZOe5eERERP4gZAF7Qjbs8bmABISFheHJJ5/EwIEDIUnsNUNUEoY7olLIycnBZ599hoULFzpusMjQHzdDvhjMefGIiIjKQYksgLVJFhBsBwD07dsXTzzxBKKjozWujKjqYLgjKoNdu3bh/fffR2JiIgBASguC4WgYpAIOxUxERFQawqDA1jALSi3HvHUxMTF46qmn0KtXL40rI6p6GO6IyshisWD27NmYNWuWY148BdAlmaE7EwJJsBWPiIjIGwEBpXYebPWzAYOAJEm4/fbb8cADDyAkJETr8oiqJIY7onI6deoU3n//fezYsQMAIOXpoDseBl0aJz8nIiJyRwmzwNY4C8LsGDClSZMmeOaZZ9CqVSuNKyOq2hjuiPxACIGlS5fi888/R2pqKgBATg2C/ngYpHx21SQiIgIAYbDD1iAbSqyjC6bZbMb48eMxfPhw6PX8vCQqL4Y7Ij/KycnBjBkz8Msvv8Butzu6ap4Jge5UKCSFo2oSEVH1JCQBe1yuY846vaML5tChQ/Hggw+iRo0aWpdHFDAY7ogqQGJiIqZNm4YtW7Y4biiQoU8yQz7PUTWJiKj6EBBQahbA3iAbwuQYBbNFixZ48skn2QWTqAIw3BFVECEENmzYgE8++QRnz54FAEg5euhPmCGn83w8IiIKbIrZClvDLIgIKwAgKioKDzzwAIYOHQpZZm8WoorAcEdUwSwWC3777TfMnDkT2dnZABxTJ+hPmiHnGDSujoiIyL+E0Q5bgywoMQUAAKPRiLvuugt33nknR8EkqmAMd0RXSWZmJmbOnIl58+bBarUCApBTgqFPMkMq0GldHhERUbkIgwJ73RzY43IBGZAkCUOGDMH48eMRExOjdXlE1QLDHdFVdvbsWXz55ZdYuXKl4wYFkJNN0J8KhWRlyCMioqpF6BTY43Nhj88FdI7Dys6dO+PRRx9FkyZNNK6OqHphuCPSyP79+/Hll19i+/btjhvsEnTnTNCdDoVk47kIRERUuQlZwF4nF/a6jhEwAcdgKQ888AC6dOkCSeIAYkRXG8Mdkca2bduGr7/+Gvv27XPcYJOgOxsC3ZkQSHaGPCIiqlyELGCPzYO9Xg4QpAAAGjZsiPHjx6N3794MdUQaYrgjqgSEENi0aRO+/vprHDlyxHGjtTDknWXIIyIi7QlZgT0uz9H9sjDU1alTB+PGjcOAAQOg0/HUAiKtMdwRVSKKomDt2rX45ptvkJiY6LjRVthd8wy7axIR0dUndM5QlwMYHIeNsbGxuOeeezB06FAYDBz5maiyYLgjqoTsdjvWrl2LmTNn4tixY4U3StAlm6A7HcKBV4iIqMIJveI4p65OrnpOXXx8PEaPHo0bbriBoY6oEmK4I6rEFEXBhg0bMHPmTBw6dKjwRkA+b4LuTAjkfL22BRIRUcARBnthqMtTR79MSEjAfffdh/79+0Ov52cPUWXFcEdUBQghsGXLFsyYMQN79+4tvBGQLxkdIS8rSNsCiYioylNCbLDH50CJyQcKzwJo3Lgx7rvvPvTp04fn1BFVAQx3RFWIEAK7du3C7NmzsXHjRvV2KdPgCHmXjJDAUcqIiMg3AgIiwgJbfC5ElEW9vU2bNrjrrrvQs2dPyDLP9yaqKhjuiKqokydPYs6cOVi6dCmsVisAQMrTOUJeigmSwpBHRETuCUlAic6HPT4XwmwDAMiyjN69e2PUqFFo06aNxhUSUVkw3BFVcZcuXcJvv/2G+fPnIysry3GjVYLuvAm6cyGQCtiNhoiIHIRegb12HuxxuYDRMZ1BcHAwhg0bhjvuuAN16tTRuEIiKg+GO6IAkZubi8WLF+Pnn3/GuXPnHDcKQE41QnfOBCk9iF02iYiqIQEBEWaFPS4PSvTl8+mioqJw++23Y/jw4QgPD9e2SCLyC4Y7ogBjt9uxceNG/Pbbb9i6dat6u5Srg3wuBLqUYE6KTkRUDQhZQInJhz3uctdLAGjRogVuvfVWDBgwAEFBHJCLKJAw3BEFsKSkJMybNw+LFy9Gbm6u40a7BDklGLpzJsi5nKOIiCjQiGCbo+tlbJ466XhQUBD69++PW2+9FS1bttS4QiKqKAx3RNVAbm4uli5dit9++w0nT55Ub5ey9NAlmyBfZGseEVFVJiQBpWY+7LXzISIvj3pZu3Zt3HLLLRg6dCgiIyO1K5CIrgqGO6JqRAiBnTt3Yt68eVi/fj1stsJuOnYJ8kUjdMkmSFkGnptHRFRFKKFW2GPzHHPTFbbSSZKErl274tZbb0W3bt04Px1RNcJwR1RNpaenY8mSJfjjjz+QmJio3i7l6iCfN0GXYoJkZWseEVFlI3SK41y62nlFzqWrVasWhg4diiFDhiAuLk7DColIKwx3RNWcEAJ79+7FokWLsHLlSuTn5zsWKICcZoScEgw51QhJsDWPiEgrAgIi0gJ7rfwiI17q9Xr07t0bw4YNQ6dOndhKR1TNMdwRkSonJwcrV67EH3/8gQMHDlxeYJMgXwx2jLSZyW6bRERXg4CAMNscrXQx+UCQoi5r2LAhhg0bhkGDBvFcOiJSMdwRkVsnTpzA0qVLsWzZMqSkpFxekC9DdyEY8gUT5Fy9dgUSEQUoYbQ5Wuhi8iFC7OrtERERuO666zB48GC0bNkSksQv2oioKIY7IvJKURTs2rULS5cuxerVq5GTk6Muk7L1kC8EQ3cxGFIBuwIREZWVMCiO0S5r5UOEW9Xbg4KC0KtXLwwaNAhdunSBwcApbIjIM4Y7IvJZQUEB/v77byxduhSbNm2C3X75G2UpS+/ousmgR0TkE2GwQ6lZAHt0PkSEFc4e77Iso2PHjrj++uvRp08fhIaGalsoEVUZDHdEVCbp6elYvXo1Vq1ahV27dkFRLp8LcjnoGSEVsOsmEZGTCHIJdOGXAx0AtGjRAgMGDMCAAQMQHR2tXZFEVGUx3BFRuaWmpmLt2rXug162I+jJl4yQ8nQcjIWIqh0RZIc9ugBKzeKBrlWrVujbty/69evH6QuIqNwY7ojIr1JTU7Fu3TqsWrUKO3fuLBr08nSQLxkdUytw1E0iClACAiLUBqVmAZSogiJz0QFAmzZt0K9fP/Tt2xexsbEaVUlEgYjhjogqTFpaGtauXYt169Zh+/btsNlcDnCsEuRUR9CT04IgKZwwnYiqLiEJKJEWKFGOQAfj5S+2ZFlWA12fPn1Qq1YtDSslokDGcEdEV0VOTg62bNmCDRs2YOPGjcjKyrq8UAHk9KDLQY/n6RFRFSAMdig1LI4WusgCwGUsKZPJhC5duqBnz57o3r0756IjoquC4Y6IrjqbzYa9e/di/fr12LBhA86cOVNkuZSnc4S8NCPkjCBICrtvEpH2hCQgwq1QahRAibQU624ZExODnj17omfPnmjfvj2MRqNGlRJRdcVwR0SaEkIgMTER69evx+bNm7F3794iUyxAAaSMIEfLXpoRUi4HZSGiq0cE2xytczUKoERYAV3Rw6bmzZujR48e6NmzJ5o2bcqJxYlIUwx3RFSp5OTkYPv27di8eTM2b96M8+fPF12hQHYEvfQgR6uehXPqEZH/CL0CJcLiOH8u0gKY7EWWR0VFoUuXLujatSu6dOnC7pZEVKkw3BFRpSWEQFJSEjZv3owtW7Zg586dsFgsRdaR8nSQCoOenGGAZGXYIyLfCZ0jzIkIq6OrZWjRrpZ6vR5t27ZFly5d0K1bNzRu3BiyzAGgiKhyYrgjoiqjoKAAu3btwrZt27Bjxw4cPny4yFQLACDl6BwtehmFLXs2HoQR0WVCp0AJt0IUts6JUBuu7OndsGFDdOjQAZ07d0bHjh0REhKiTbFERKXEcEdEVVZWVhZ27dqFHTt2YMeOHTh69GixdaRcHaTMIMiZBsiZBiCf5+wRVSciyO4Ic+EWx083YS4hIQEdOnRQLzVq1NCmWCKicmK4I6KAkZ6ejp07d2L79u3YsWMHEhMTi69kkSFnGiBlGiBnBkHK0UMSDHtEgcA5ebgIs0IJt0IJtwDBSrH14uPji4S56OhoDaolIvI/hjsiCljp6enYu3cv9uzZgz179uDgwYNFJ1IHADsgZRkgZxscP7MMgEVm6x5RFSAMChSz1RHmwhw/oS96WCPLMho3box27dqhTZs2aNu2LScRJ6KAxXBHRNVGQUEBDh06hN27d2PPnj3Yu3dv0cnUnSwy5CwDpCy9GvokO8/dI9KS0CkQZtvlMGe2um2VCwkJQatWrdC2bVu0bdsWrVq14jlzRFRtMNwRUbWlKAoSExOxb98+HDhwAAcPHsTx48eLzrNXSMrTOUJeth5yjsHRnZODtRBVCKFTIEJsl8Oc2QoRYi92rpwkSahXrx5atmyJli1bom3btmjUqBF0Oo6aS0TVE8MdEZGL/Px8HDlyRA17Bw4cwJkzZzysLEPO0UMqDHtytgEoYJdOIl8JCCBIgRJqcwS4UJvjYir+BQsAxMbGokWLFmjRogVatmyJ5s2bIzQ09CpXTURUeTHcERGVICMjA4cOHcKBAwdw5MgRHD16FGfPnnW/sk1yBL0cPaRclwtb+aiaE7ICEWJ3tMiF2hyBLtQKGNwfhsTExKBx48ZqmGvRogWioqKuctVERFULwx0RURlkZ2fj2LFjOHr0KI4cOYIjR47g5MmTsFqt7jewyJBy9ZBzdZcDX46e5/JRwBE6BcJkL2yBs0GE2KCE2NyeHwcAOp0OCQkJaNq0KZo0aYKmTZuicePGiIyMvLqFExEFAIY7IiI/sVqtSEpKwuHDh3H8+HGcPHkSJ0+exPnz5z1vVCA7zufL00PKL/yZp3Nc5xQNVEkJCCDYDhFsdwQ5kw2KydEqB6P7EAcAUVFRqF+/Pho2bKiGuQYNGsBoNF7F6omIAhfDHRFRBcvNzVWD3okTJ9SfKSkpnjcScEy4nq+DnHc59CFfB6mAwY8qnoAAjIqj9c0lxInCUAcvjc41a9ZEw4YNUb9+fTRo0EC9REREXL0HQERUDTHcERFpJCcnB4mJiUhKSsLp06dx6tQpnD59GqdPn0ZeXp7nDQUc3TydQU/96bgNFoY/Kpka3oyFLXBFfipAkPcAFxQUhPj4eNStWxd169ZFvXr11DAXFhZ29R4IERGpGO6IiCoZIQQuXbqkBj1n6Dt16hTOnTuHgoKCEnYAR3dPiw5S4U9YZEcAtMiQCmQGwAAnJMcolCLIDhGkQBgdYc1x3RHgYFSKTS1wJYPBgLi4uCIBznk9JiYGssxzRomIKhOGOyKiKkQIgfT0dJw7dw7JycnqT9frFovFt51ZJTUAwiJDssqA1fFTsly+Diund6gMBASgFxBBCmBQIAyXfwqDAhgLw1uQAgR5Pu/NlcFgQGxsLGrXro24uDjUrl0bsbGx6vWaNWsywBERVSEMd0REAURRFKSlpSE5ORkXLlxASkoKLl68iIsXL+LChQvqT58DIOBoCbRJlwOfTQZsMiSbVPyn9fLvsEsMhW4ICEBXGNT0istPBUIviv40uAY5UWJLmyuDwYCaNWsiOjoaMTExiI6OVi/OMBcVFcXwRkQUQBjuiIiqGSEEsrKycOHCBTXwpaamIi0tDenp6UhLS1OvZ2RkQFF8awUqfkcA7JIj5BX+vHy9MPwpV9yuSIACQDiuSwoct4nLyyTn76LwPoDLvxfery+hUjg3cK4qAZAKb5MFIBd2b5QLb5cvXxfO67LjdqErDGyu13WF12UB6BTHdX3hsnJk3vDwcERGRqJGjRqoUaMGIiMjERkZWSTAxcTEIDw8nMGNiKiaYbgjIiKP7HY7srKykJaWpgbAzMxMZGVlFbtkZmYiOzsbWVlZyM/P17r0y+HP+SlXJMRpUlERQUFBCAsLUy9ms7nI72FhYcUCXEREBPR6vdalExFRJcVwR0REfmexWJCVlYXs7Gzk5+cjNzcXeXl5yMvL83rdYrHAarUW+enuNo+TxftRUFAQDAaDenH93fV6cHAwQkJCYDKZil2Cg4NhMpnU5SEhIWqQ49xuRETkbwx3RERU5QghYLfbIYSAoihur9vtdiiKAiEEhBCQZRmyLEOSJPWnTqcr8rtzHb1eD0mqBM17REREpcBwR0REREREFAB4pjUREREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIiIiIiIAgDDHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAGO6IiIiIiIgCAMMdERERERFRAGC4IyIiIiIiCgAMd0RERERERAGA4Y6IiIiIiCgAMNwREREREREFAIY7IiIiIiKiAMBwR0REREREFAAY7oiIiIiIiAIAwx0REREREVEA0GtdABGRkxAC+fn5WpdBRFQqwcHBkCRJ6zKIiBjuiKjyyM/Pxw033KB1GUREpbJkyRKYTCatyyAiYrdMIiIiIiKiQMCWOyKqlIK21IIkZECSIckSIBV+FyVLgCRBkmVAKrzd2R1KliBJsroOJMlxHbj8u/M25zZXro+i2whJcnwN5ro9UOx29Xd1O8euIEkQMgp/QeHtEiChyDZCve2K7dXHjOLLccVtzt9lN8tcty+yzPWnVGyZ221QdLnr784aPN1Xkese6rhynyqv24hidV25P0jCTU3i8r7d7atwO6hPD1F0n3Auc/lZuD/n+pIkXJ866n04/jWXlwOADFHkNrnw+uVll28rskwSkHD5dtnldlkSkOG8HUWXqdso6u/O+5IlBTp1W+Xydi6/61z2DQA6OG9XXNZTCpcV7lP9qah1OLeT4dy2cBt1mWN9nSQgqcsctzm30QGXt4PjfqTC7XVFahSFvxfWVPhvcfwuQQagkyTIkKAr/EfLkApvkyFBgk6SYSnQ4dYJtUBEVJkw3BFR5WSXHIdZkuNgSg13hUfNjmUSIMtwTQMS5CuO8F22c5surlhfcl3m7rrr7+5ud7cdXMIk1HCn/oTrbVdcL1xWJKgU2c7NNsUeslS8TMndRfK8zOM2Pv6pyrnPkgOhn8OdVDzcuS67Mtxdvv3K/Qm3yy6HQJflRX4XRbcvdl+i6DKXcOe8ALj8u6dlV4Q+NdxdcZtrKNS5/O4Id4r6fYgOkiMkSS4hqfB5pQMgS5LLT6nwvhzbOfYF6KTLT2Gd5NzO8dPtMvX65fodoVAUBkfhU7i7cn9yYc0ocpuzxsv3RURUmbBbJhERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIiIiIgoADDcERERERERBQCGOyIiIiIiogDAcEdERERERBQAOM8dEVVOOgEhlMJ521zmdXNOOK5OIA6X+dlc549zXoTLsisuQOFcYa63FZ1QTXiYvO3K2y//7tzuiuvCuZ1zm8J9FK4oUHR5kRm0hOu+L29f7DZxxSLX+et8ml9O8rwMXrb3dZm3fZZwfxJK2sbdfHVX7k+42YfnScyv3M7fk5hf3re4Yn9lm+dOFG4rCi8A1OsCzttRdBkEFEkAklK4L9f7Ugofj+tyxzIhKY79uOz78rKitzvnlxOFc825/gSgXlcKX9bOnyi8rsDxslcKf3f+qYrPc+eYeBwonDcPjr+58/rlufiKzp1XuknMJUiF1y0F7l6HRETaYrgjokrJ0jVF6xIqhuvxcxlIV/wkcnI+tRStCykzZ2pmpyIiorLiOygRVRr5+flal0BERERUZbHljogqDaPRqF5fsGABgoODNayGSiM/Px/Dhw8HwP9dVcP/Xfnxb0ZElQXDHRFVGpJ0ubNhcHAwTCaThtVQWfF/V3Xxf0dEVLWxWyYREREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKABIQohyzLhERERERERElQFb7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUAPRaF0BEgSc3Nxc//fQT1qxZg+TkZMiyjHr16qF///64/fbbYTAYyrzv1NRU/Pjjj9i4cSPOnz8Po9GIhg0bYvDgwRg2bBgkSfLjI6l+KuJ/9+2332L69Oklrvfjjz+ibt26Zaia8vPzsXPnThw6dAiHDx/G4cOHcf78eQDA2LFjMW7cuHLfB197RESVH8MdEflVcnIyHn/8cSQnJwMAgoODYbVacfDgQRw8eBDLli3Dhx9+iLCwsFLv+9ChQ3jmmWeQkZEBADCZTMjNzcXu3buxe/durF69Gm+//Xa5wmN1VpH/OwDQ6/UIDw/3uFyn05VpvwQcOHAAzz33XIXtn689IqKqgeGOiPzGZrNh8uTJSE5ORs2aNfHiiy+ic+fOUBQFq1atwnvvvYcjR47g9ddfx7vvvluqfWdnZ+Pf//43MjIykJCQgJdeegktWrSA1WrFwoUL8cknn2DLli2YNm0aJk2aVEGPMHBV5P/OqU2bNvj444/9XDk5hYWFoVmzZupl2rRpSE1NLfd++dojIqo6eM4dEfnNX3/9hePHjwMAXn/9dXTu3BkAIMsyBgwYgGeeeQYAsGnTJmzbtq1U+/7pp5+QmpoKo9GId999Fy1atAAAGAwG3HbbbWq3s4ULF+LUqVP+ekjVRkX+76jitWvXDosWLcLUqVPxyCOPYMCAAQgKCvLLvvnaIyKqOhjuiMhv/vrrLwBAhw4d0KZNm2LLBwwYgLi4uCLr+mrJkiXqPurUqVNs+W233QaTyQS73Y5ly5aVtvRqryL/d1TxKrJLK197RERVB8MdEflFfn4+9u7dCwC49tpr3a4jSRK6desGAPjnn3983ndSUpI6OIRz+yuFhISgXbt2pd43Vez/jqo2vvaIiKoWnnNHRH6RmJgIRVEAAA0bNvS4nnNZamoqMjMzvQ6w4eTsLljSvhs1aoTNmzfj5MmTPlZNQMX+71ydOHECY8aMwdmzZyHLMqKjo3HNNdfglltuQbNmzcr+AKjC8LVHRFS1sOWOiPzi4sWL6vWYmBiP60VHR7vdxptLly6Vat85OTnIzc31ad9Usf87VxkZGUhMTITRaITFYsGpU6fwxx9/YMKECfjqq69KvT+qeHztERFVLWy5IyK/cD2gMxqNHtcLDg52u01F7DskJMSn/Vd3Ffm/A4C6devikUceQa9evRAXFwe9Xg+r1YodO3bgq6++wqFDhzBr1iyEhYXhzjvvLNuDoArB1x4RUdXCljsiIqpQgwYNwl133YV69epBr3d8p2gwGNC1a1d88skn6uiL3333HbKzs7UslYiIqEpjuCMiv3D9pr6goMDjevn5+W630WrfpO3f12g04sEHHwQA5OXlcZqFSoavPSKiqoXhjoj8wvV8rAsXLnhcz/VcLddtvKlZs2ap9h0aGsoDzFKoyP+dL1q3bq1eP3v2rN/2S+XH1x4RUdXCcEdEflG/fn3IsuMt5cSJEx7Xcy6LioryebTFRo0aFdveHefIfg0aNPBpv+RQkf87qtr42iMiqloY7ojIL4KDg9XJrzdv3ux2HSEEtmzZAgDo0qWLz/uuV68eYmNjve47Ly8Pu3fvLvW+qWL/d77Yv3+/et05UTpVDnztERFVLQx3ROQ3gwcPBgDs2LGjyAG706pVq9Rud851fSFJEm644QYAwMqVK3Hu3Lli68ybNw95eXnQ6XS4/vrry1J+tVZR/zshhNflFotFnQbBZDKhU6dOPu+bKh5fe0REVQvDHRH5zeDBg9GoUSMIIfDyyy+rg2MoioJVq1bhvffeAwB069at2EH8t99+iz59+qBPnz5uDyDvvPNOREVFIT8/H//+979x6NAhAIDVasX8+fPxzTffAABuuukm1KtXryIfZkCqqP/drl278NRTT2HJkiVISUlRb7fZbNi2bRsee+wxNUyOGTMGYWFhFfkwA1pWVhbS09PVi3Ni+oKCgiK3XzmNBV97RESBQxIlfa1KRFQK586dwxNPPIHk5GQAji5/iqLAYrEAAJo2bYoPP/yw2EH8t99+i+nTpwMA5syZ47Z73qFDh/DMM88gIyMDgGNUPovFApvNBsDRJeztt99GUFBQRT28gFYR/7sdO3bgiSeeUH83Go0IDg5GTk6O+n+TZRmjR4/GhAkTKvLhBbyRI0eq/ztvBg8ejBdeeEH9na89IqLAwUnMiciv4uLiMH36dPz0009Ys2YNkpOTodfr0bBhQwwYMAC33347DAZDmfbdvHlzzJgxAz/++CP+/vtvpKSkIDg4GI0aNcLgwYMxdOhQdWAQKr2K+N81atQIjz76KPbt24fjx48jIyMD2dnZCA4ORoMGDdCuXTvcdNNNaNy4cQU9KvIHvvaIiKoGttwREREREREFAH7NRkREREREFAAY7oiIiIiIiAIAwx0REREREVEAYLgjIiIiIiIKAAx3REREREREAYDhjoiIiIiIKAAw3BEREREREQUAhjsiIiIiIqIAwHBHREREREQUABjuiIiIiIiIAgDDHRERERERUQBguCMiIiIiIgoADHdEREREREQBgOGOiIjK5KOPPkKfPn0wceJErUshjWVnZ2PYsGHo06cP1q5dq3U5RETVll7rAoiIqpucnBwcOXIEBw8exKFDh3Do0CGcOXMGQggAwJw5cxAXF1ch9y2EwIgRI3DhwgWMHj0aDz30UJn2c+TIEcyfPx8A8OCDD/qxQm0dP34cW7ZswZ49e3D8+HFcunQJdrsdYWFhaNy4Mbp3747BgwfDbDb/f3v3HpNl/f9x/EmESqJAxRTEzFSQSkNBzAN+PYWH6TI8THNTM2c2jTZrq91T8azlTJtuZmy5mWJLnael0VBJTVBQQyaiiIIHHOMgIMrBG/z9we7rd6Mc5AYhb16Pvy65Ptf7+nCPMV98Ts3d1f8UFxcXpk6dSkREBJs2baJ///60bt26ubslItLiKNyJiDSxsLAwUlNTm+XdKSkpZGdnAxAcHGxznS1btlBeXk7//v3p1atXY3WvWYWFhfHvv/9Wey8vL4+8vDzi4+PZsWMHJpOJoKCgpu3gf9ykSZPYvXs3WVlZ7Nmzh+nTpzd3l0REWhxNyxQRaWKWETqoHPHo06cPr776apO8++TJkwB4eHjg5+dnU42LFy+SkJAAYFf/gbeE3nbt2jF27FhMJhObN28mIiKC5cuXM2DAAKAy6JlMJhITE5uzu/85zs7OTJw4EYDIyEgePnzYzD0SEWl5NHInItLExo4di5ubG76+vnh7e+Pg4EBYWBh5eXnP/d2WcDdo0CAcHBxsqrFr1y4APD09ee+99xqtb83N29ubGTNmMGLECFq1alXlnq+vL0OHDmXnzp1s3bqVsrIy1q9fz/bt25upt/9NISEh/PLLL9y/f58//viDyZMnN3eXRERaFI3ciYg0sUmTJjFy5Eg6d+5sc8Cyxa1bt8jIyABsn5KZnZ1NbGwsAKNGjWrS/j9v69atY8yYMU8FO2vTp0+nR48eAKSnp5OWltZU3XsheHp60rt3bwAOHjzYzL0REWl5NHInItJCWHYxtEwFtUV0dDQVFRUADB8+/JmeMZvNHDt2jFOnTpGSkkJ+fj7l5eW4ubnx1ltvERgYyMiRI3nttdeqPDdkyBAARo8ejclk4ubNm+zZs4f4+HhycnJo27YtPj4+fPzxx/j7+xvPlZaWcuTIEaKiorh9+zYlJSV4eXnxwQcfMHny5AZv9NG3b19jzeStW7fo1q2bzbXS09M5cOAAiYmJ3L17l5KSElxcXGjXrh2enp4EBAQwePBg3njjDZvqm81m/vrrL44fP87169cpKCjAwcGB9u3b4+bmhp+fH4GBgQwaNAgnJ6cqzz75+aenp7Nv3z4SEhLIycmhuLiYVatWPfWHguHDh5OYmEhGRgYpKSn07NnTtg9HRETqTeFORKSFsEzJHDBgAC+/bNuv/9OnTwOV69K6dOlSZ/tr166xZMkSbt++/dS97OxssrOzOXPmDGlpaZhMphrrxMTEsHr1akpKSoyvlZaWEhcXx5kzZ/j6668ZP348OTk5mEwmUlJSqjx/48YNfv75Z+Li4li/fn2DAp7ZbDauX3rJ9gkwBw4cYOPGjZSXl1f5ekFBAQUFBdy+fZv4+HjS0tJYvHhxvevn5+fz1VdfVbt5j+WzT01N5eDBg0RGRuLt7V1jrSNHjrB+/XrKysrqfK/1BjunT59WuBMRaUIKdyIiLUBOTg6XL18GbJ+SWVZWxqVLlwDw8/Orc0pmamoqCxYsoLi4GIA+ffoQEhJCly5dcHJyIjc3l+Tk5DrPRUtLS+PYsWO4u7szd+5c493nzp3j119/paSkhA0bNuDv78/KlSu5du0aEyZMYPDgwbi5uXHnzh22b99OWloaFy9eJDIykk8++cSmzwDg/PnzxnXXrl1tqnH9+nUj2LVv357x48fj7++Pm5sb5eXl5ObmcuXKFeLi4mye+rpx40Yj2AUEBBASEoKnpydt27blwYMHZGRkkJiYaEyzrcmVK1eIjo6mffv2TJ48mV69euHk5ER6ejodO3Z8qn3Xrl1xdnamuLiY8+fPM3v2bJv6LyIi9adwJyLSApw6dYrHjx/TqlUr+vfvb1ONtLQ0Y9TK19e31rZms5klS5YYwe7LL780dlK0NnDgQObMmUNWVlaNtVJTU+nRowcbN26kXbt2xtfffvttvL29CQ8Px2w2s2DBAgoLC1m3bh2BgYFGOx8fH/r168eMGTPIyclh//79zJgxA0dHx3p9/1A5tfXGjRtAZcDt3LlzvWsAHD9+3Bix27Bhg7GOz1pwcDBz5syhoKCg3vVLS0uN0BwcHMzKlSufCon+/v58+OGHFBcX1zoCeePGDby9vdm8eXOVXV1r2m3V0dERHx8fEhMTuXr1KhUVFQ0a4RQRkWen37YiIi2AZUpmYGAgzs7ONtWwnlpZ19EN0dHR3LlzB6jcHbS6YGetQ4cOtd7/9ttvqwQ7i6FDh+Lh4QHAvXv3CA0NrRLsLFxcXBgzZozRLj09vdb3VScnJ4cffvgBAAcHBz7//PN617Cw7Izq4uJSbbCz5urqWu/69+/fN4K4v79/raN/zs7OdU5TXbhwYb2O67C0LSkpIScn55mfExGRhlG4ExGxc0VFRVy4cAFo2MHlubm5xnX79u1rbWsJkwDTpk2z+Z1QOc2vpgDk4OBQ5V5ISEiNdazbZWZm1qsPJSUlmEwmI5Q9uYlLfVkCaVFREcePH7e5Tk1cXV2NXT+PHj3aoDPnPDw8qg3MtbH++bD+uRERkedL4U5ExM7FxsZiNptxdHRk0KBBNtcpLS01rqsbRbN29epVoHIE51k2XqlNXc9b96W2XSWt29Un7Dx69IhFixYZm7QMHjyYOXPmPPPz1QkJCTFGy8LDw5k/fz47d+7k4sWLxlTWhnBycmL06NEAJCcnM2XKFNatW8fRo0frHWxt2Q3UOtxZb4IjIiLPl9bciYjYOcso2rvvvoubm5vNdazXqNW1a2J+fj7w/yNUDdGmTZta71tPOaxtyqn1ui/LcQ51MZvNLF68mLNnzwIQFBTE0qVLbVqvZ83Ly4u1a9eyevVqsrOzSUpKIikpCaj8nHv27MmQIUMYN25cnUG6Jl988QVlZWVERUVRWFjIoUOHOHToEFAZuoOCghg7dmydI5B1jdJWx/oPAbbuzCoiIvWnkTsRETtWVlbGmTNngIZNyYTK9WEWhYWFDar1IjCbzYSHhxvHPwQGBrJq1apaDzmvj4CAAHbt2sWyZcsYO3ascRRBeXk5ly5dYsuWLUybNs0IlvXVunVrTCYTO3bs4NNPP6Vv375G+M3Ly+PPP/8kLCyMRYsWVQljT7JlMxTrTWCsf25EROT50p/TRETsWEJCgjHNr6Hhznrb+7rCnZubG1lZWS/sZhqWYGcZ9ezbty9r1qxp8AHoT2rVqhXDhg1j2LBhQOWI57lz54iKiiIuLo7CwkIWL15MZGTkU4e8P6vOnTszc+ZMZs6cSXl5OampqZw+fZoDBw5w7949Tpw4QUREBAsWLGi07+v+/fvGdV2b5YiISOPRyJ2IiB2zhJMePXrg6enZoFrWZ7rdvHmz1raWoxJyc3PrbPtf82Sw69OnD2vXrm30YFcdNzc3RowYwffff8+ECRMAKC4u5tSpU41S3zLlc/bs2fz000/GlNfo6OhGqW+RkZEBgKenJ6+88kqj1hYRkZop3ImI2KmKigr++ecfoHITkIbq0KEDr7/+OoBxIHpNhgwZYlxHRkY2+N1NxWw2s3TpUiPY+fv7891339W57u95CAoKMq4taxgbk6enp3FOny1n6dUkPz/fOAbjnXfeabS6IiJSN4U7ERE7lZSUZIQC67DVEJbAkZGRwYMHD2psN3z4cCM4HD58mL1799Zat7ZDzJuK2Wxm+fLlxuHfzzPY/f3333UGNstaSYBOnTrVq35mZiYJCQm1trl7964xwubl5VWv+rVJTk42rt9///1GqysiInXTmjsRkSZ2+/ZtY2dEC8v5aQAxMTFVdrV0dnZm6NCh9X6PZfTJy8vLpu3sqzNs2DAOHz5MRUUFCQkJ/O9//6u23csvv8yyZcuYP38+xcXF/Pjjj5w4cYJRo0bRpUsXnJycyM3NJSUlhZiYGHx9fTGZTI3SR1utWLGCmJgYoDJMzZs3j7t379b6jLu7O+7u7vV+1969e1mxYgUBAQEEBATw5ptv4urqyqNHj8jKyiI6OtoYde3YsWO9j7DIyspi4cKFeHl5MWjQIPz8/OjQoQOtW7emoKCA5ORk9u/fb+x6Wtch8/URHx8PVK4nHDBgQKPVFRGRuinciYg0saSkJNasWVPj/S1btlT5d8eOHRsU7hpjSqZFYGAgHh4eZGdnExUVVWO4A+jevTubNm1iyZIlZGZmcuHCBeMw9SdZ1ug1J+vDxO/cucO8efPqfGbWrFnMnj3bpveVlZURGxtLbGxsjW06derEmjVraj3ioTaZmZns3r27xvsvvfQS06ZN46OPPrKp/pPMZjNHjx4FKkeLbT3GQUREbKNwJyJih65du2aMOjV0l0xrjo6OhIaGsnXrVuLi4sjPz6/17DwfHx927NhBVFQUJ0+eJDU11Vjf5e7uTrdu3ejXrx8jR45stD6+CMLDwzl79iyJiYlcv36dvLw8Y5qmq6sr3bt3Jzg4mJCQEJuOXujduzebN28mISGB5ORksrKyuHfvHg8ePKBNmzZ4eXnRu3dvxo0b12ijuoDxMwEwadKkRqsrIiLPxuHx48ePm7sTIiLSuLZt28a2bdtwd3dn3759Np1VVpOioiKmTp1KYWEhn332GdOnT2+02vJi++abb4iNjSUgIIANGzY0d3dERFocbagiImKHLFMyBw4c2KjBDioPpbYEut9++42HDx82an15MSUnJxMbG4uDgwNz585t7u6IiLRICnciInbm0aNHBAcHM2vWLEJDQ5/LOyZOnIi3tzcFBQX8/vvvz+Ud8mKJiIgAYNSoUfj5+TVzb0REWiZNyxQREZtcvnyZ2NhYXFxcmDJlSnN3R5pRUVERu3fv5vHjx4SGhta6DlNERJ4fhTsRERERERE7oGmZIiIiIiIidkDhTkRERERExA4o3ImIiIiIiNgBhTsRERERERE7oHAnIiIiIiJiBxTuRERERERE7IDCnYiIiIiIiB1QuBMREREREbEDCnciIiIiIiJ2QOFORERERETEDijciYiIiIiI2AGFOxERERERETugcCciIiIiImIHFO5ERERERETsgMKdiIiIiIiIHfg/WMsRcAA+unYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACbhklEQVR4nOzdd3xT1QIH8N+9Sdqmu6Vllb2nbBFFQbbi4AkCioLixoW4t7ieos+BA0VFQBFQeeIDQQQB2SDIngU6WC2U7pUmuef9keaStEmatklvx+/7+eTTNPfk5KS9ubm/e849VxJCCBAREREREREVk7VuABEREREREVUvDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE58EhQTExMhSRIkScJdd93liyrrpIEDB6p/RyIid+666y51W5GYmKh1c1Rz585V2zV37lytm0M+pigKevXqBUmS8Oijj2rdHPKj9evXq5/l1157TevmEFWKfV0eOHCg1k3xuSFDhkCSJNx2221+qb/KehTnzp2L1157rU5tcJYuXaq+58zMTK2bQ8UsFgvWrFmD5557DoMGDUKjRo0QGBiI0NBQtG7dGuPHj8fSpUthtVrLVe+BAwfw6KOPokOHDggNDUVERAS6du2K5557DklJSX56N0RUV5jNZqxduxbvvvsuxowZg27duiEuLg5BQUEICQlBixYtMGrUKHz77bcoKCjw+evPnj0b//zzD4KCgvD888+7LZeYmIglS5bg+eefx7Bhw1CvXr1K76j5cvualJSE5557Dl27dkVERARCQ0PRoUMHPProozh48GC56rpw4QLeeOMN9OrVC9HR0QgODkbr1q0xefJkbNu2rVx1eauufNfceOON6nrzzTfflPv5ycnJ0Ol0kCQJ0dHRKCwsLHcdu3fvxrvvvosbb7wRLVu2RHBwMIKCghAXF4frr78en332GXJycspVpy/Xmby8PHzwwQe46qqrUL9+fQQFBaF58+YYN24cVq1aVa66zGYzvvrqKwwePFjdL2rSpAluvPFGLF68GEKIctXnDS0+P1r4z3/+o67Ld955Z4XqaNu2rVrH9u3b1cdfffVVAMCiRYuwYcMGn7TXifCBhIQEAUAAEJMmTXJZZsCAAWqZumLSpEnqe05ISCizfF38G1W1tWvXiujoaPXv7OnWp08fcfz4ca/qfe+994TBYHBbV1hYmFi4cKGf3x3VFeXdtlSVb7/9Vm3Xt99+q3Vzap3Dhw97te0CIFq0aCE2b97ss9fOy8sTDRs2FADEY4895rbczJkzPbZrwIAB5X5tX25fv//+exEaGuq2roCAAPHBBx94Vdfq1atF/fr13dYlSZJ46qmnyv1+Pamq75p169apdb766quVb3gFLFmyRG1D//79y/38119/XX3+lClTyvXcixcvitatW3v1WWvUqJFYtWqVV/X6cp35559/RKtWrTy2bcKECcJkMpVZV0JCgujRo4fHuoYMGSIyMjK8aps3qvLzU5ntjy+kpKQIvV4vAIjg4GCRnZ1drudv2LBBfQ+dOnUqtXzQoEECgOjXr5+vmqyqskRSF0NQdd2Zq8u+++479X8SHR0txo4dKz744AOxcOFCMX/+fPHII4+I8PBwtUzTpk3FuXPnPNY5a9YstbzBYBCTJ08W8+bNE19//bW49dZbhSRJAoDQ6/Vi5cqVVfROiaoeg6J/2YNiq1atxG233SbefPNNMX/+fPHzzz+Lb7/9VkybNk3ExcWp/4Pg4GCxf/9+n7z2e++9JwAInU4nTp8+7bbchx9+6LSzZzQaxWWXXVbhHTVfbl+XL18udDqduhN66623iq+//lrMmzdPTJ482SmAffXVVx7r2rlzpwgODlbLDx06VHzxxRfi+++/F4899pgICQlRl7344ovles9V8bcoS3UIikVFRSImJkZth7cHbu0cg97ff/9drueeOnXK6eDB8OHDxRtvvCHmzZsnFi5cKF577TXRsmVLpzJr1671WKcv15nExETRoEEDtfzll18uZs6cKX744Qfx/PPPi3r16qnL7rjjDo91ZWRkiA4dOqjlO3bsKN577z2xcOFC8cYbb4imTZuqy6699lphNpvL9bf099/CG1oHRSGEuOmmm9R2fP311+V67uTJk9Xnvvfee6WWr1mzRl3u6/1MBkU/YlCsfr777jvRtWtX8cMPP4jCwkKXZU6fPi06d+6s/u8mTpzotr6zZ8+qGzu9Xi9Wr15dqozjznPTpk1FQUGBz94PUXXCoOhfubm54uTJkx7L5OfnO+2QjBgxotKvazab1Z3FYcOGeSz7yy+/iIcffljMmTNH7N27V1gsFqdRR+XZUfPl9jUvL080btxYLTt37txSZf744w/1qH9oaKhISUlxWZeiKKJnz55qXa+99lqpMnv27FEPOsqyLPbt2+f1+3alqr9rqkNQFEKIxx9/XG3Hyy+/7PXzHHtgunTpUu7XPXXqlKhfv76YMWOGuHDhgssyBQUFYty4cerrtGrVym2I8vU6M2rUKLWuyZMnC6vV6rQ8MTFRNGvWTC2zfPlyt3VNnTrVaXtRcr25ePGiU2/jp59+6rYub2jx+akOQfGXX35R23H11Vd7/by8vDwRFhamfvZdbZesVqto0qSJGrp9iUHRjxgUq5+MjAyhKEqZ5fbv3+90RDwvL89lOccN7NNPP+22vltvvdVnG1mi6opBsXo4f/682nOm1+u9GnrmieMOzvz588v9/IoGRV9uXz/66CO1zK233uq2rqefflot527Y29KlS9Uyffv2dfud8tlnn6nlxowZ4+Gdlq2qv2uqS1Dcs2eP2o7mzZt79f0thHMPzH/+859yv67JZBK5ublllisoKFB30AG47VX05Trj+Ddp1qyZ2wMCv/32m1qud+/eLsukpqaKgIAAAUCEhISI1NRUl+X279+v9lg3bNhQWCwWl+W8ocXnpzoExaKiIhEbGysA24iGEydOePW8+fPnq+2/8cYb3ZZz3HYdO3bMV832TVD0dI6iY0D0dHO3IbJarWLx4sVi7NixokWLFsJoNIrQ0FDRvn178eCDD5Z5lOHVV19VX2PdunVCCFsX7fjx40WLFi1EYGBgqSBnNpvF77//LqZNmyauuuoqERsbKwwGgwgNDRVt27YVkyZNEn/99Zfb13QMiJ5unv5WZdm2bZu47777RLt27URoaKgIDg4WrVq1EhMnThR//vlnmc8v+aHJzc0V7733nujVq5eIjIwUwcHBolOnTuK5554T6enpZdZXGzkOxdi7d2+p5YqiqMO8JEkSycnJbuvauHFjhY4k+cKWLVvEgw8+KDp27CgiIiJEYGCgaNq0qRg7dqzHo4xCuN5ZSEpKEtOmTRPt27cXwcHBIiIiQvTr10989tlnXg9JycnJER9++KEYMmSIaNSokQgICBBRUVGid+/e4uWXXxbnz5/3+PySnxWLxSK+/fZbMWTIENG4cWOh0+lE8+bNSz0vJSVFPP3006Jjx44iODhYREVFiT59+oj3339fPRjQvHlzdafE0cqVK9XXfPTRR716n48++qj6nBUrVnj1HG+UdRDKX/+3ZcuWiRtuuEE0aNBABAYGiubNm4vbb79dbNmyRQhRvqBoMpnE119/LW688UbRpEkTERgYKCIiIkTXrl3FtGnT3B5cO3LkiNqzEh4e7rGHLT09Xe0Jk2XZ43a7trGfTwhAnDlzplJ13XLLLepBs5ycnHI/vyJB0dfb1379+qllNm3a5Lau5ORkdYe4WbNmLsvcdtttal3ff/+927ry8vLUXhGj0ehV8HBFi+8ab4Pi8ePH1fPkJElye37nypUrxaRJk0SbNm1EaGioMBqNolWrVmLSpEli48aNHtvi2Jvlzf5NyR4Yd+HHVx588EG1fR9//LHLMr5cZ55//nm1rjfffNNtXYqiiDZt2qhlXQWTL7/8Ul1+7733enyfgwcPLtf/wZ2q/vwI4V1QzMvLE9dff71aduzYsS4Psh04cEA88cQTolu3biIqKkoEBASIxo0bixtvvFF8//33pXp3HT3xxBNq/d72kNvPPwQg/vvf/7ot53gA4ZVXXvGqbm9U66B4/Phx0b17d4/Pk2XZ4x/bMSiuXbtWPPzwwy7rcdwpGThwoNdBz9VK5M+gaDabxX333Vdm3WPHjhX5+flu63H80Jw4cUJ06tTJbV3Nmzevkz2iffr0Uf8G27ZtK7XcsdexrKEtVqvVaRhFeU9krojc3FynYTHubiNHjnTbnpI7CytXrhSRkZFu6xo6dKjbIb12K1as8HgCO2CbkOHXX391W4fjZ+XixYuif//+LtdbR2vXrhVRUVFuX7Nr164iOTnZbVC0Wq3qOSlRUVFlDusqKChQX69Zs2YevzzKq7xBsbL/N4vF4nG7JsuyePfdd70Oin///bfT+T2ubgEBAeKLL75w+fzZs2er5fr16+f26PaYMWPUcr46T6wmyMzMVM+3MxgMlRqCWFhYqAbza665pkJ1VCQo+nL7mpWVpYa/iIiIMj+LjqceHDx4sNRyx/O/3A1LtBs5cqRa9rfffvNY1h0tvmu8CYr//POPep6cXq8X3333Xaky58+fd9rRdXe75557RFFRkcvXcZwgydOpIHaOPTA333xzed52hTj25Lzzzjsuy/hynenVq5e6fOfOnR7rctzn/eyzz0otHz16tLr8559/9liX/TxlwHOvdlmq+vMjRNlB8eLFi+KKK65Qyz388MOlthNms1k89thjQpZlj+ty37593c5tsW/fPrVcixYtyuwhT0pKUrddMTExbj8jdvbJGrt16+axXHno4Wdvvvkm0tLS8NJLL6nTTv/yyy+lynXo0MHp9xMnTuCKK65AWloaAKB///644YYb0Lx5c1itVuzatQtz585FRkYG3njjDciyXOalN9577z2sXLkSDRs2xF133YUuXbrAYrFgx44dCAwMVMsVFBQgNDQUgwcPRq9evdCiRQsEBQXh3LlzOHjwIBYsWIC8vDzMmzcPkZGR+Oijj5xe57HHHsOoUaMwc+ZMrFu3DgDw5Zdfon79+k7lmjVr5tXf0NGdd96JRYsWAQCCgoIwadIkXHnlldDpdNi5cye++eYb5OTk4Mcff0RWVhZWrlzp8bqM2dnZGDlyJI4ePYqbb74ZI0aMQHR0NE6ePIlZs2YhOTkZSUlJmDhxon+m3a2mioqKEB8fr/7evHnzUmUOHDig3u/Vq5fH+mRZRo8ePfDXX39BURQcPnwYl19+ue8aXILJZMKQIUPU6aVbt26NcePGoWPHjjAYDDh+/Djmz5+PY8eO4bfffsOoUaOwevVqyLL7K+bs2bMH7733HoQQeOCBB9CvXz8EBgZi586d+OKLL5CXl4fVq1fjrbfewuuvv+6yjiVLlmDcuHGwWq0wGAy46aabMHDgQDRo0ADZ2dlYt24dfvzxR+Tk5OBf//oXVq9ejUGDBnl8r3fccQc2bdqEbt264bbbbkOLFi2QnZ2Nffv2qWUOHTqEG264Afn5+QCAHj164I477kCTJk2QmpqKxYsXY/PmzRg3bhwsFovL15FlGffddx9eeOEFZGRkYMmSJZgwYYLbdv3888/IyMgAANxzzz0e/7b+5Iv/22OPPYZ58+YBAAICAjBp0iT0798fsixjx44d+Oabb/Dss89i1KhRZbZn69atGDJkCPLz8yFJEoYPH45hw4YhLi4OBQUF2Lp1K7777jvk5+fjwQcfRGBgYKnr8953331YtWoVlixZgq1bt2L69Oml2v7NN9/g559/BgBcccUVdebSTBaLBY888gjMZjMA4Prrr0dQUFCF69u8ebP6ufHnNqskX25fDx06pE7t37179zI/i71791b3Vw4cOIBOnTqpy1JSUnDx4kUAtu+FmJiYMuv67bff1Lquv/56j+VdqY7fNevWrcOoUaOQnZ2N4OBg/Pzzz7juuuucyqSnp6Nfv344ceIEAKBbt2645ZZb0KZNG8iyjAMHDmDu3Lk4c+YMvvnmG1gsFpfXX7399tvx1FNPoaioCEuWLMFnn32G0NBQt21zrOPuu+/2yfv1xPH/42pfwZfrjKIoOHToEABAr9ejW7duZdblqp2uHitr3SqrLm9o8fkpy6lTpzB8+HAcPnwYgO1yEyW/L4QQGDt2rJpfGjVqhPHjx6Nbt24IDg5GUlISFi1ahF27dmH79u0YPHgw/v77bwQHBzvV07VrV/Tq1Qu7du1CYmIi1q9fj2uvvdZt2+bNm6duu+644w4YDAaP76Vv375YuXIl9u7di5SUFDRs2LC8f47SfJE2fX15DKvVqp7oGhgYKH788UeX5VJSUtQeR1mWxYEDB0qVcexRBGxTLGdlZXl8/TVr1njsjUtLS1N7MGRZdjv0ydeXx1i0aJG6vEGDBi6PdCYmJjodqXd3joLj3yQgIEAsW7bM5ft0rGv79u1lvgd38vLyxC+//OKT265duyrcDm85zo7as2dPl2WmT59e5hFXRxMnTlTLuzry6kslz2dxNbSwqKjIqU2zZs0qVcbxqDJg6xlzNfZ9+/bt6iQQUVFRLnunkpOT1SPdzZo1cztsfPv27SIiIkIAEE2aNHF5BK3kSIWpU6d67CVw7HGcMmWKy7IltxXuhq7ae2rK6hm55pprBGCbJfLUqVMey5ZXeXoUK/t/c5wUIjIy0uUR7CNHjjgNdQRc9yhmZ2erQ0EjIyPF+vXrXb6/+Ph4dSKGkJAQl0ed09PT1XODdDqd0/C1o0ePqrPmhYeHe30uiDuHDx/22farrCPo3rJarU71fvfdd+KFF15wmumxRYsWIjExsVKv8/bbb6v1/fTTTxWqoyI9ir7cvs6bN6/MfRRHr7zyilr+jTfecFr2119/leu9zJkzx6nXrCK0+K7x1KP4888/q6ftREdHq0PPS7JPuCJJkvjoo49clsnJyRHDhg1TX8vdjI2OowPmzJnjtt2JiYlqD0z9+vV9MkOnJwkJCeo21GAwiLS0tFJlfLnOJCUlefyOKmnt2rVq+cGDBzsts1qtatt1Ol2Zf6uTJ0+qdbVu3brM13ZFi8+PEO57FA8dOuR0esLnn3/u8vmO5zjfcccdLuetUBRFvPDCC2q5Z5991mVdn376qVrGUw+5oihO23NXp0CV9Nprr6nlPY3KKo9qGRQdr50zc+ZMj2WPHj2qnrR/3333lVruuPMXEhJS6XM17E6cOOH2i8TO10HRcZy+p/Odtm/frm4omzdv7nJYluMO3euvv+62rq+++sqrcmVxXEcqe/Pmi74y0tPTRaNGjcrcOXIca/7JJ5+UWW95y1fU2bNn1ZPTb7nlFo9li4qK1PNL2rZtW2p5ycCxYcMGt3VNmDDBYzn7+Xo6nU7s3r3bY7u++eYbta4FCxaUWu74WenVq5fHkPj333+rZbt06eLxJHzHet19CTtOFuHuhPGjR4+qZUaOHOnxvVZEeYNiZf5vN998s7rc1UyRdsuXL3d6TVdB8T//+Y+6/H//+5/H9/jnn3+qZd966y2XZdavX68OA2revLnIyMgQRUVFTkOzfHFQpuRBhMrc7OfKV1ZBQYHb1wgNDRWTJ0/2SSi9/fbb1XorOvNgRYKiL7evH3/8sbrsySefLLMuT+V//fVXddno0aPLrKu85V3R4rvGXVD84osv1M9cXFycywPWQgixa9cu9fnTpk3z+Frp6enqwUF3MzY6TsziaQi0Y6gu63UrS1EUMWLECPX1Hn74YZflfLnO7N271+m7ryyeymdlZanL6tWrV2Zd5S3vihafHyFcB8WtW7eqQzUDAgLcdkoVFBSop8v06dOnzKHrV199tQBsByldDftPT09XD7SEhIS4Pe/bMVS767AoafHixepz3GWT8tJmLFQZvvvuOwBAeHg47rvvPo9l27Vrpw6r+OOPPzyWHT16NBo3buyTNrZq1Urt0t2+fbtP6vQkMTERu3fvBmDrui45xMPR5Zdfrg7XS0pKwq5du9yW1el0eOSRR9wudxz2Zx/uUJtZrVaMHz8e586dAwCMHDkSY8aMcVk2NzdXve/N0C6j0ajez8nJqWRL3fvxxx9RVFQEAHjqqac8ljUYDBg3bhwAID4+HomJiW7L9ujRA1dffbXb5Z7WFSEEFixYAAAYPHgwunfv7rFd48aNg15vGxlf1uf64Ycf9jiU7Ndff3Uqq9Pp3JZ9/PHHPb4WADz44IPq/a+//tplGcfH77///jLr9KfK/N9MJhNWrlwJAGjQoAHuuOMOt/WMHDkSHTt29NgW+7a9Xbt2uPHGGz2WHTRokLq9drcODBgwAM899xwA27buwQcfxEsvvaRu8yZMmOCxzbVV9+7dMWjQIERERFS6rqSkJPV+dHR0pevzli+3r9W1Lm9Vl++a119/HQ8++CAURUH79u2xZcsWp2G5juyfdUmS8OSTT3qsNyoqSh1SuGHDBphMplJlhg8frm4PNm7ciISEhFJlhBCYP3+++ru/h52++eab+P333wEATZs2dTt0v7quf3V5Xf79998xePBgpKenIzQ0FL/99htuvfVWl2VXrVqF8+fPAwCeeOKJMoeu279zsrOz1dN/HEVFReHmm28GAOTl5amnSJRUkSHUUVFR6n3HbXdl+P0cxYrYuHEjANsYYPuH0BP7jl9SUhIKCgqcVixHnnaWSsrOzsaCBQuwYsUK7N+/H2lpacjLy3NZ9vTp017XW1E7duxQ7w8bNqzM8sOGDcOff/4JwBZk3Z2j0K5dO6cVq6S4uDj1vv18q4po0aKFOs66Onv88cfVndJmzZq5PF+iurN/fgDburl06VKP5R3/r4cPH0aLFi1clrviiis81uNpXTl48CDS09MBAGFhYWW2CQBCQ0ORmZmpnjfgTlmf6507d6r3PZ0LAAADBw4ss13XXnst2rVrh2PHjmHevHl48803nc4bMJvN6vl8jRs3xsiRI8us058q83/bu3evetBhwIABHkM2YDsI4O7/lZWVpZ432qBBA6/XAQAe14Hp06fjzz//xPbt27F48WL18ZYtW+Lzzz8v8zW88dprr1W7cxyDgoLUbaoQAhkZGdizZw++/vprLFy4EJs2bcLs2bPx888/IzY2tsKvY//cAlUbFKn6UBQFjzzyCD777DMAQJ8+fbBixQqP55fZv4ciIyOd9l/csYdDk8mEkydPljropNPpMHHiRLzzzjsQQmDevHmlPpMbN25Uz4fs3bs3unTp4vV7LK/Fixfj1VdfBWA7b/uHH37g56OG+P777zF58mSYzWbExsZixYoVTudfluS4T5WRkVHmd9eZM2fU+4cPH3a5XzF58mT8+OOPAGyBsOR5+Pn5+WqADAwMxO23317Gu7KpV6+eU1t9odoFxdzcXPVE16NHj+Jf//pXuZ6fkZHhNig67hB5sm7dOtx+++1ISUnxqnx2drbX7asoew8XYAt3ZXEs4/jckso6kdhxkp/CwsIyX7cme/HFF9UvwgYNGmD16tUe/z6OJ9N787cpKChQ74eFhVWipZ459gqOHTu2XM/1tGGpzLri2KYlS5ZgyZIlPmkTUPbn+uzZs+r9Vq1aeSwbFRWFyMhIZGZmui0jSRLuv/9+PPXUU0hNTcWyZctwyy23qMv/97//qUcf77777jLDlb9V5v/m+Ldr06ZNma/lqcypU6egKAoA2xev45dvWTytA3q9Hj/88AO6d++uHnG2PxYeHu71a9RkkiQhOjoagwYNUm/33XcfNmzYgBtvvBFbt271OKmZJ/YdeJ1O5/a71R98uX2trnV5S+vvmpkzZyIrKwsAMGTIEPzyyy8eJ5MBLm3zMzIyKrQf58pdd92Fd955BwAwf/58vPrqq07rteOB3cmTJ5d6/h9//KFOzOSKN5NxAcBvv/2GO++8E0II6HQ6/PDDD+jfv7/b8tV1/auL6/I///yDiRMnQgiBZs2aYfXq1WXuUzvuvzz88MPlej136/LQoUPRpEkTnD59Ghs2bEBCQgJatmypLv/555/V77Obb77Z64MQjt95jn+7yqh2QdG+Maoo+9FvV7z5kouPj8fIkSPVP3D79u1x3XXXoW3btoiOjnbqKr///vtx4cIFWK3WSrXZG45d7iEhIWWWd/wweuqu12omxurmzTffxNtvvw3AtmO9Zs2aMjcekZGR6n377Lye2A+AlHyur1XmM+Tp81OZdcVfbQLK/lzbRwLo9foyZwwDbJ8vT0ERsO2wvPjiizCZTPjqq6+cguJXX30FwLbzfs8995T5ev5Wmf+b4zChkrO3ueJp21SZdcA+g6c7MTExiI6OVrd1rVq1KnMGv9rs3nvvxaJFi9Se1t9//93j6Qqe2A8kWK1W5Ofne7Ue+IIvt6/VtS5vaf1d4zgTdF5enlejg/yxzW/fvj2uvPJKbNmyBQkJCdiwYQMGDBgAwLkHJigoCLfddlup599///0eh+N5877WrFmDMWPGwGw2Q5ZlzJs3D6NHj/b4nOq6/oWGhkKv18NisSAzMxMWi0U95aO8dXlL63XZarWq/+fCwkK3s5w78se6LMsyJk6ciLffflsdMm3voQYqPnOvY1t9dWCv2gVFx4BzzTXX4K+//qrS1//3v/+thsQXX3wRb7zxhtsjsWWdP+lLjkdS3A2BdeS4g+fP3itv5efnl3mumbeaNWuGnj17+qQuAJgxYwZefvllALYepdWrV3s1ZMUxSHo6t8/O8QvKm17hirJ/hiRJgsViqRYHAxw/16+88gqmT59eZa9tDy8WiwVms7nMsOjN56tevXoYM2YMFixYgD/++APJyclo1qwZkpKSsHr1agC2I++ORwhrIsf/m6cj8Xae/naOdU2cOFEdnusLU6ZMcfp8HTt2DC+99BLeffddn9R/5MgRHDlyxCd19e/fv8xeXl8YMWKEevrB+vXrKxwUHY9kp6enV1lQ9OX2tbrW5S2tv2sef/xxHD58GL/88gu2bt2K4cOHY9WqVR73LeynDti3i75y9913Y8uWLQBsO9P2oOjYAzNq1Ci/HIxdv349brrpJhQWFkKSJHz99dceL5Fk58v/X5MmTWA0GlFQUIAzZ86UGe481SXLMlq3bo2jR4/CarXi9OnTbk89Kasub2m9Lvfp0wc33HADnn76aZw/fx7XXnst1q1b5/ZcW8D5u+vkyZM++16/66671A6K+fPn45VXXoEkSeplMwDbiKmhQ4d6Xac/ThWodkExIiICoaGhyM3NrZJz/0pas2YNAKB+/fp4/fXX3YbEnJwcp3+IvzVq1Ei973h9P3ccy/hqAp/KOH/+fLmHn7gzadIkn507+OGHH+LZZ58FYFv3Vq1aVeZEK3aOYdLThEGA7RwP+2REsiyXOelHZcTFxWHPnj0QQuDMmTNo2rSp316rPG2yq+rPdePGjdVz406ePIn27du7LZuRkVFmb6Ldgw8+iAULFkBRFMyZMwevvfYa5syZow6v1HoSG19w3HYcP368zPKeyvhrHViwYIE6UVKvXr2QlpaGpKQkvP/++xg+fHiZ1+H0xqJFi3x2cGPdunVenQtbWY478d6u0660aNECmzdvBmDbCWnSpEllm+YVX25fO3XqBFmWoSgK9uzZA0VRPB5AczyvueRBw4YNG6JevXq4ePEikpOTkZaW5jH4e6rLW1p/1xgMBixevBjjx4/Hf//7X6/CYlxcHDIzM3H+/HmvDtB5a+zYsXj88cfVHsRPP/0UISEh+Pbbb9Uy7npgvAkm7mzatAk33HADCgoKIEkSZs2a5XVPjy/XGVmW0alTJ+zatQsWiwV79+71OHqirPWvS5cuOHr0KADbuuUpKPpiXdbi81PSU089BUmS8NRTT6lhce3atejcubPL8iW/u3wVFNu2bYv+/ftj06ZNOHnypNpD7njtxIkTJ5br9BXHXOLqmp4VUWVdDY4b5bK696+55hoAtp06b3ZOfCk1NRWAbSIET18ka9asUXcI3SnPey6L42Q09h4LTxx776ryIsk1yWeffYZp06YBsO1UrVy5En369PH6+Z07d1Z3mg4ePOhx53fLli3quaxXXXWVX3t57UdYgbJnDK0qPXr0UMfO//nnn2V+dnzJ8ST1devWeSxrP4rnjf79+6tfLHPmzIHZbMacOXMA2A402Wc1q8m6deuGgIAAAMBff/1V5jB7ew+WKzExMepR223btvnk3O6EhARMmTIFgK3neOHChfj++++h0+mgKAomTpzoNHSpLnH87qxMD6bjzpl9h7Iq+HL7Gh4erk7qlJWV5XImQrtTp06ps/82a9bMZU/D8OHDAdi+1z1tY/Pz89VzcY1Go9O2uTyqw3eNPSzah1naw6K7z7H9vRYWFmLDhg0+aQNg+1/a25Cbm4slS5YgMTFRHX3WpEkTDBkyxGevB9i2V9dff706YmLmzJl44IEHylWHL9cZe12AbUZOd4QQTstHjBhR4boAOE0u6aoub1X158eVJ598Ev/5z38A2DoyBg0ahIMHD7os6899KseDDfaA6Dhzb8lJbsriOPHbZZddVun2AVUYFB27bssa2jVp0iT1/iuvvOK3NrliH1Zz8uRJt+HOarWq3cWelOc9l6VFixbqcMu9e/d6DIs7d+7E2rVrAdiOKFSHc3Xss5764uaL3sSvvvoKjz76KADbDuaKFSvQr1+/ctUhSZI6nbIQAp988onbsjNnzlTv2y9H4S/jx49Xd+7ffffdSq97vqDT6dQhOklJSW4vK+EPjoHts88+8xh2Pv7443LVbd9ZOHXqFKZOnaruwE2aNMlnR9C1FBgYqE5bn5qaih9++MFt2ZUrV5Y5Q619256fn69OSlFRVqsVEyZMUHdUZ86cqR6hfeGFFwDYZp+79957K/U6gG3WU19tv6qiNzE3N9fpf3XllVdWuK6+ffuq96viUlB2vt6+Oj7u6XP+ySefqN/97iYDc6xr5syZbvcV5s6dq66fI0eO9Gp+AVeqy3eNXq/HokWL1EtGbd26FSNGjHAZFidOnKjenz59uk/ncnDcuZ47d65TD8ykSZN8errFrl27MGLECHVY6wcffODxkmLu+HKdcVwvv/zyS7eTwqxcuVI9YNS7d2+Xk7mNGjVK3V9YuHChOhFbSQcOHFD3Kxs2bFip0FbVnx93pk2bhg8++ACA57B4/fXXqwfbPv/8c48TRJbX2LFj1ff1888/4/fff8fJkycB2A70lHe4reM22medRJW9EKMQzhfTdXcx9Mcee0wt89dff3msz2q1ij59+qjlH3/8cWEymdyWz8/PF99++61YuHBhqWWOF0r25kLHQ4cOVct/8MEHpZYXFRWJu+++2+nixu4uzP3BBx+oZebNm1fmazte7NsVxwtpNmrUSBw+fLhUmaSkJNG6dWu13KeffuqyLvtyby5+XJ6yNcG8efOEJEkCgAgODq7UBbDPnDkjgoODBQCh1+vFmjVrSpX59ttv1b9h06ZNXV6A1deefPJJ9TWvvfZace7cObdlrVarWL16tcuLs7q76LIrZZU9deqUiIyMFABEYGBgmZ+J1NRU8frrr4u9e/eWWlbWZ6Wk/v37q+WnTJni8oK5JS+q7u5z7SgzM1P9/zvejh075lW7KmrSpEnqayUkJJRa7sv/28aNG9XlUVFRYvfu3aXKHDt2TDRq1Mjpb/Dtt9+WKpebmyuaN28uAAhJksSMGTM8Xrw4MzNTfPzxx2L16tWllr388svqa40ZM8ZpmdlsFv369VOXf/nllx7/BjXF66+/Lg4cOOCxTEpKihg8eLD63tu2bevx+7MshYWFIiQkRAAQV199dYXqcNxHKM/3iC+3r3l5eaJx48Zq2blz55Yqs3r1aqHX6wUAERoaKlJSUlzWpSiK6Nmzp1rX9OnTS5XZu3evehF5WZbFvn373L5Px8+Nq8+zr/8W3vC0XTCbzWLMmDHq8iuuuEJkZWWVqmP06NFqmXHjxrks41jnkiVL3O6zOFIURbRo0ULdjjRo0EB9nfj4+HK/V3f27t2rXpAdgHj33XcrXJev15lRo0apdd1zzz2ltqNJSUmiWbNmapnly5e7rWvq1Klqueuuu67UepOeni569OhR5n6lEM7fza6+A/zxt/CGp+3Phx9+qC6PjY11uY395JNP1DKXXXZZmd/x27ZtE08//bRXbXP8Pnf8Hv3666+9er4j+/ravXv3cj/XnSo7R3Hw4MHqka577rkHTzzxBJo3b66OvW3Tpo06tbosy1iyZAn69euHM2fO4OOPP8aPP/6IW2+9Fd26dUNERARyc3ORnJyMnTt34s8//0ReXh7eeOONSrfz0UcfVXvrpk2bhvXr12P48OGoV68e4uPjMX/+fMTHx+Paa69FfHy8xyEggwcPVu8/88wzuHDhAtq3b6+eeBwXF4euXbt63baxY8fil19+waJFi3Du3Dn07NkTd911F/r16wedToedO3fim2++UY/ADBs2TB2WRTYrV67E5MmT1SNYkydPRmZmZpnXxenZsyeaNWtW6vHGjRvjP//5Dx566CFYLBZcd911mDhxIgYMGACLxYKVK1eqM7Hp9XrMnj3b40VmHc+JTUhI8Hi+gCf//ve/sWfPHvz5559Yt24dWrVqhdGjR6Nfv36IjY1FUVERUlJS1N7plJQUDB48GC+99FKFXs8bTZo0waJFi3DTTTfBZDJh0qRJ+OCDD3DTTTehbdu2MBqNyMrKwrFjx7Bt2zZs3rwZVqu1zGsfeuPLL79Enz59kJ+fj88//xxbt27FHXfcgSZNmiA1NRWLFy/G5s2b0a9fPyQnJ+PMmTNeHZWOiIjAuHHjnM6PGThwINq2bVvpNlcX/fv3x5QpU/D5558jIyMDV1xxBSZNmoT+/ftDlmXs2LED33zzDfLy8jBq1CiPn6WQkBAsXboUAwYMQHZ2Np555hl8+eWXGD16NDp16oTQ0FBkZ2fj5MmT2LFjB9avX4+ioiL14t12mzZtUkd1NGnSBLNnz3ZartfrsWDBAnTv3h3Z2dl44oknMGDAAI/np9YES5YswSuvvIJu3brhmmuuQadOnRAdHQ0hBFJTU7F9+3b8+uuv6iiC0NBQzJs3T+0xqIjAwECMGDECS5Yswc6dO5Gbm1vmpRFKbkccZ+JLSEgotbxnz55OMwfb+XL7GhwcjNmzZ+Pmm2+G1WrF3Xffjd9++w3XXXcd9Ho9/vrrL8yfP1+dBfHDDz9EgwYNXNYlSRJmz56Na665Bvn5+Xj11VexefNmjBkzBiEhIdixYwe+/vpr9f/w/PPPl+u73hVff9dUhl6vx8KFCyFJEn766Sds27ZNPWfRcXr+OXPm4NixY9i/fz8WL16MVatWYezYsejduzeioqLUCVl2796N1atXIyMjw6uZoiVJwl133aX29NtPGbr66qu9uoyPN06fPo2hQ4eq53wNHDgQ7dq1K3Nfwd1ke75eZz766CNs3boVqamp+Oabb3DgwAHceeedqFevHvbv348vv/xSHXY/YcIEj9fzffXVV/H777/jyJEjWLlyJXr27Il7770XcXFxOH78OL788kucOnVK/TtU9vx7LT4/nkydOhWSJGHq1Km4cOGCes6i47D7Rx55BH///Tfmz5+Pffv2oVOnTrjppptwzTXXoFGjRrBarbhw4QL279+PP//8EwkJCWjdujVmzJhR5uvffffd6uRu9t7K4ODgcl/ebO/ever66u2lXrzii7TpTY+ixWJxOqpf8ubqSPbZs2edjox6uul0OvHVV1+VqqO8PYpCCPH88897fK2rrrpKnD9/Xj0y7qnn4bbbbnNbT8m/lTe9JGazWdx7771l/j3GjBkj8vPz3dZjL1fXehRL9hp5e3N3ZMzuvffeEwaDwe3zw8LCXPZ4l+T4HHdHlr1lMpnEI488InQ6nVfvceLEiaXq8GXPlN3WrVtFq1atvGpTaGioyyOJ5e1RFEKItWvXqj2arm5dunQRycnJIi4uTj1q6I3t27c71bNgwQKv21RRVdmjKIRt+33nnXe6/dvJsixmzJjh1KPh6TNz5MgRpyPUnm6BgYFi5cqV6nMzMjLUba8syx63699//71aT48ePSrVs1YddOvWzettVvfu3cWuXbt88rpLly5V650/f36Z5cu7fXW332Dnq+2rELZ1IjQ01G1dAQEBLkcTubJ69WoRGxvrti5JksSTTz4pFEXx+u9V1nbfl38LT7zZLpjNZjF27Fi1XN++fUv1GmZlZYlx48Z5vS68/PLLXrUvISFBHRlkv82ZM6eyb1vl+P59uS77ap0RQoh//vmnzO/S22+/3avtXkJCQpnb5CFDhoiMjAyP9XjTo+iPv0VZ7HV62o/9+OOP1XKxsbFi//79TssVRRFvvPGGCAwM9Gpd8HafWVGUUv9HV/tjZXnmmWfU5/uyZ73KgqIQQhQUFIh33nlH9OvXT0RFRTntwHramVm/fr144IEHROfOnUVkZKTQ6XQiPDxcdOrUSYwbN07MmjVLnD171uVzKxIUhRBi5cqVYuTIkSImJkYYDAbRqFEjMWjQIPHVV18Js9kshBBeBUWLxSJmzZolBg4cKGJiYtRhLa7+VuXZ+d26dau45557RJs2bURISIgwGo2iZcuW4o477hB//vlnmc8vz4pc3pW+OvNXUBRCiP3794uHH35YtGvXToSEhIiwsDDRpUsX8eyzz4rExMQyn5+Xl+e0s3Lx4kUfvGMh4uPjxXPPPSf69u0rYmNjhV6vF8HBwaJly5bi+uuvF2+//bbbYR3+CIpC2HYwvv/+ezF27FjRsmVLERoaKvR6vYiOjha9e/cW9913n1i8eLHIzc11+fyKBEUhbMPynnrqKdG+fXthNBpFZGSk6N27t3j//fdFXl6eUBRFGI1GAUAMHDjQqzoVRVGHyERHR4vCwsJytakiqjoo2i1btkyMHDlSxMbGisDAQNGsWTNx2223iS1btgghhNdBUQjb3+3XX38VkyZNEu3atRPh4eFCp9OJyMhI0a1bNzFx4kQxd+5ckZ6e7vQ8x53O5557zuNrCCHEhAkT1PJPPvlkmeWrs3Pnzom5c+eK++67T1x++eUiNjZWGAwGERAQIGJiYkSvXr3E/fffL1atWuVxSG95WSwWdRjb0KFDyyzv651rISq/fXWUmJgonnnmGdG5c2cRFhYmQkJCRLt27cTDDz9c5tDeks6fPy+mT58uevbsKSIjI0VQUJBo1aqVuOuuu9TPRVkc/xbeHCD05d/CHW+3CxaLxekz6SosCmELNVOnThU9evQQ9erVE3q9XoSGhoq2bduKUaNGiQ8++ECcOHGiXG0cNGiQ+rohISEiJyenvG/TLX8FRSF8s87Y5ebmiv/85z+iX79+IiYmRgQGBoqmTZuKW2+91ekAmzeKiorE7NmzxaBBg0SDBg1EQECAaNy4sRg5cqRYtGiRV4GtPEFRCN/+LTzxdj925syZHsOiELZOrNdff10MGDBANGzYUAQEBIigoCDRpEkTMWTIEPHyyy+LrVu3lqt9r7/+utN6VN5TohRFEU2bNvV6G10ekhCVnI6TiHxi1apV6kxijz32WLknVqHK279/vzpTmLf/gzVr1qjXOXr88cfx0Ucf+bOJRJr48MMPMW3aNOh0OiQmJlbZZTKIiMiztWvXqqe7rVy5slKz0pak/ZW4iQjApWt4hoWF+fVcQXLv008/Ve97e27krFmz1Pu14dqJRK48+OCDaNiwIaxWq1fn3RARUdWwn7Pfr18/n4ZEgEGRqNqwB8Vp06YhNjZW49bUPhs3bvR4/cbPPvtMnRQlLi4ON9xwQ5l17tmzR53cYMiQIS6vuUZUGxiNRrz22msAgNmzZ+Ps2bPaNoiIiLBp0yb1GsaVveyUKxx6SlQNpKWloX79+oiJicGJEyd8dpFkuqRNmzYoLCzEddddhx49eiA2NhZmsxknTpzAL7/8gt27d6tlly1b5jYo/v7771AUBceOHcOMGTPUWco2bdqEq666qkreC5EWFEVBnz598M8//+CRRx7xeD0/IiLyvyFDhuDPP//E+PHjsXDhQp/Xz6BIRHVCmzZtcOLECY9ljEYjvvrqK0yYMMFtGcdLmNh5ez7jH3/8gfz8/LIb60JMTAz69+9foecSERERlReDIhHVCdu2bcOSJUuwbds2nDlzBhcvXkR+fj6ioqLQrl07DBkyBA899JDba6fZ2YNiaGgo2rVrh4ceegiTJ0/26rqLLVq0QFJSUoXaP2DAAKxfv75CzyUiIiIqL73WDSAiqgpXXHEFrrjiikrXw2NrREREVBewR5GIiIiIiIiccNZTIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJJ7MhIiLNKYqCwsJC5Ofnq7e8vDzk5+ejoKBA/VlUVKTeTCaT29/NZjOsViusVisURVHvO/6uKIp6H7DNaOvuZp/VVpIk6HQ6GAwG6PV6BAQEQK/Xq78bDIZSt6CgIPVmNBrd3jcajQgJCUFoaCj0en49ExGRtvhNREREPiGEQF5eHrKzs9VbTk6Oy/v2m2MYpEuMRiNCQ0M93sLDwxEZGel0Cw4OdnmtTyIiovLirKdEROSWEALZ2dnIyMhAenq6y5/2+5mZmSgqKqrU68myjODgYBiNRgQHByMkJET93Wg0Ys38jZAUAIrkcAOkEr9DSLZykACB4lvxfTjcF4Bkf8xhMRyzloTigg6/S8J28oYkIIp/Oj4GGRD233UCkAWue2AQCgsLUVBQgMLCQqf7jj8rw2AwICIiwik8RkREIDo6GjExMahXrx5iYmIQExODsLAwhkoiInKLQZGIqI5SFAWZmZm4cOECzp8/jwsXLjjd7I+VN/wZjUaEhYUhPDxc/blx8Q5IFgkwy7afFhmSRQYsEmCVIFklwCrbQh/qbngREIBeAHoFQme7L/SK7afO9nPUEyOQk5ODrKwsZGVlITMzE5mZmSgsLCzXawUEBKgB0jFExsbGokGDBmjYsCHq1avHYbBERHUUgyIRUS0lhMDFixdx7tw5l7e0tDRYLBav6goLC0NUVBSio6Oxb/VhSGYZKJJtP806SOp92da7R1VOyAIwKLZgaVAgim8wKBj+wECkpaUhLS0NFy9eRFZWlld16nQ6xMTEqMHR1c/AwEA/vzMiItICgyIRUQ1mNptx9uxZnDp1CqdPn8bZs2fVIJiSklJmb6AkSahXrx5iY2MRGxuLzYv+BkzFwc+kg2SSgSIdJMHwV5sISQABCkSAFSJAAQIUjHvlJqSlpeH8+fNITU3F+fPnyzyQIEkSYmNjERcXhyZNmiAuLk6937hxYxiNxip6R0RE5GsMikRE1ZwQAmlpaTh16pR6S05OxqlTp5CSkqLO2umKLMuoX78+GjVqhL2/H4ZUqLt0M+lsPYAMgeSCQHGYDLTabkEKbpw6BCkpKUhNTUVKSkqZ51TGxMSo4bFp06Zo3rw5mjdvjsaNG0On01XROyEioopgUCQiqiYURUFqaioSExNx8uRJJCQkICEhAadPn/a4Q240GtG0aVM0adIEf83bDqlQVsMgewPJX+znUwqjBSLIijv+fQtOnz6NM2fO4MyZM8jOznb73ICAADRp0gQtWrRA8+bN1Z9NmjRBQEBAFb4LIiJyh0GRiKiK2c8dPHnypFMoTExMdBsIdTodGjVqhGbNmmH7T3sgFeggFeghFehs5wrW4QlgqHoSegUiyAoRZMHEGWOQnJyMpKQkJCcnw2QyuXyOTqdD48aN0bJlS7Rp0watW7dG69at0ahRI87QSkRUxRgUiYj8yGq14tSpU4iPj3e6uett0ev1aN68ORK2noGUr4eUr7P9NLFnkGoHAQEEKlCCLRDBFgx/+BokJSUhKSkJubm5Lp8TEhKC1q1bo1WrVmjTpg3atGmDli1b8hxIIiI/YlAkIvIRk8mEhIQEp0B44sQJl5ctkGUZTZo0wel/Um1BME9v+1nIQEh1k3pOpNECJcSCoVP648SJE0hMTITZbC5VXpIkNGnSBO3bt0f79u3RoUMHtG3bFsHBwRq0noio9mFQJCKqAEVRkJycjMOHD+PQoUM4fPgwTpw44XJimaCgILRu3RqHV5+EnKeHlGuwhUIGQqIyCan4PMgQC259bSSOHz+OEydOID09vVRZWZbRvHlzNTx27NgRrVu35iU8iIgqgEGRiMgLFy9exOHDh9VgeOTIEeTl5ZUqFx4ejrZt22LPr4ch5eoh5Rls5xPyHEIinxIGK0SIBZM+GoOjR4/iyJEjuHDhQqlyOp0OrVq1QseOHdGlSxd06dIFcXFxPOeRiKgMDIpERCVYrVYkJCRg79692L9/Pw4ePIjU1NRS5QIDA9G+fXscXHEcUo4Bcq4BMHFiGSKtCIMVSpgFd8wYhcOHD+PIkSPIysoqVS4yMlINjV26dEH79u3Z60hEVAKDIhHVeSaTCUeOHMG+ffuwb98+HDx4sNSkGpIkoXnz5kjengI5xwApx2A7r5ChkKjaUifOCTVjzPTrcODAARw9erTUOY96vR7t2rVTg2P37t0RGRmpTaOJiKoJBkUiqnPy8/Oxd+9eNRgeOXKk1I6j0WhE586dsXvJYcjZBtt5hVZZoxYTka8ISUCEmnHfl7fhwIEDOHDggMvzHVu2bIkePXqge/fuDI5EVCcxKBJRrWcymXDw4EH8888/2LVrF44cOVJq0pno6GhkHsuDlB0AOYu9hUR1ha3X0Qol3Iwbnh2EvXv3IiEhoVQ5BkciqmsYFImo1rFYLDh27JgaDPfv34+ioiKnMo0bN0bK7nTIWQGQsg22y1IwGBIRAKFXoEQU4aYXB2P37t1ug2OfPn1w+eWX47LLLkNQUJAGLSUi8h8GRSKqFc6dO4ft27dj+/bt2LNnT6kZSaOjo5F5JB9yVgDkzABIJp1GLSWimqas4BgQEIDLLrsMffr0QZ8+fdC6dWvOqkpENR6DIhHVSCaTCXv37lXDYXJystPy0NBQ5CeZbaEwM4CXqCAinxF6BUpkEYY/2R87duwodVmO6OhoNTT27t0b0dHRGrWUiKjiGBSJqMY4c+YMtm3bhh07dmD37t0oLCxUl+l0OnTu3BkH/3fSFg5zeY4hEfmfgIAwWvHQvAn4+++/S22bAKBDhw648sorceWVV6Jt27bsbSSiGoFBkYiqLavVikOHDmHTpk3YtGkTTp065bS8Xr16yDiYBzkj0BYOOSspEWlMSAIi3Iyx71yPv//+G8eOHXNaHhsbi379+uGqq65Cz549ef1GIqq2GBSJqFoxmUzYtWsXNm7ciC1btiAjI0NdptPp0LVrV+xfehxyRgBnJiWiak8YrJi6ZDK2bNmCnTt3OvU2BgYGolevXmpvY0xMjIYtJSJyxqBIRJrLysrC1q1bsWnTJuzYscNpRyo0NBT5Jy2Q0wNt4ZC9hkRUQwlJQIkswg0vDsSWLVtw/vx5dZkkSejSpQsGDBiAAQMGoEGDBhq2lIiIQZGINJKZmYkNGzZg3bp12LNnj9N1DWNjY3Fxby50FwMhZQdAEuw1JKLaRUBAhFgw6bNbsGXLFhw6dMhpeYcOHdTQ2KRJE41aSUR1GYMiEVWZ7OxsNRz+888/TuGwdevWSFyXAvliIIeUElGdIwKseGjBBKxfvx779u2D4+5ZmzZt1NDYokUL7RpJRHUKgyIR+VVOTg42bdqEtWvXYufOnU7hsF27djix6ix0aYGQTHoNW0lEVH0IgxWP/jgJf/31F3bv3l3qoNqQIUMwZMgQDk8lIr9iUCQinzOZTNi8eTP++OMP7NixAxaLRV3Wpk0bJKxJsYXDQoZDIiJPhF7BtKX3YP369di5c6fT9vSyyy7D0KFDMXDgQERERGjYSiKqjRgUicgnFEXBvn378Mcff2DdunXIy8tTl7Vq1QpJ61IhpwVBLmA4JCKqCKFX8PiSu7BmzRrs2bNHHZ6q0+nQt29fDB06FFdeeSWMRqPGLSWi2oBBkYgqJTk5GatWrcLq1auRkpKiPt6gQQOk/Z0L+QLDIRGRr4kAK+759lasWbMG8fHx6uNGoxHXXHMNRo4ciW7dukGSeL43EVUMgyIRlVtOTg5Wr16NVatW4fDhw+rjwcHBKDypQHfeCCnbwAlpiIiqgGK0YPxH12PNmjU4d+6c+nhcXBxGjBiBESNG8HxGIio3BkUi8ooQAnv37sXy5cuxfv16FBUVAbANeRIXdJDPGyGnB0JSGA6JiLQgICDCzBj+4lX4888/UVBQAMB2jcY+ffrg+uuvR//+/REQEKBxS4moJmBQJCKPMjMz8fvvv2P58uVITk5WH2/VqhWS1pyH7kIQJLNOwxYSEVFJQhZ4avm9WLFiBfbs2aM+Hh4ejiFDhuDGG29E69attWsgEVV7DIpEVIqiKPjnn3+wbNkybNy4UZ1lz2g0wpQgoEsJhpTLax0SEdUEIsiCcR9fj99//x0XLlxQH+/atStGjRqFAQMGsJeRiEphUCQiVU5ODlasWIGlS5fizJkz6uMdOnTA8WVnIKcFQbLKGraQiIgqSkDg7W3PYPny5di4caN6fcbIyEiMHDkSN910Exo1aqRxK4moumBQJCIkJCRgyZIl+OOPP1BYWAgACAkJQUG8Al2qEXKeQeMWEhGRLwmDFXfOvhn/+9//1F5GSZLQr18/jBo1CpdffjlkmQcGieoyBkWiOspqtWLz5s1YsmQJdu/erT7eqlUrJK+6APmCkRPTEBHVcgICr6x/DEuXLsXOnTvVxxs1aoTRo0dj5MiRCAkJ0bCFRKQVBkWiOiY7OxvLly/H0qVL1eseyrIMnDdAdzaYl7UgIqqjlCAL/jVjMFasWIHc3FwAtsse3XDDDRgzZgwaNmyocQuJqCoxKBLVEefOncOPP/6IFStWqFOmR0REIPeA2TY5jYkzlxIRkW3G1Mf+OxE//vijOtu1TqfDgAEDMHbsWHTq1EnjFhJRVWBQJKrl4uPjsXDhQqxbt06duKBNmzZIXHHeNjkNh5cSEZELAgJvbnkKP/74o9Ow1K5du2Ls2LHo378/dDoeZCSqrRgUiWohIQR27dqFhQsX4u+//1YflzICoD8dDCkrgMNLiYjIa0qIGUNe6IvVq1erl0yKi4vD7bffjuHDh/PyGkS1EIMiUS1itVqxfv16/PDDD4iPjwdgGy4kzhmgOxPM2UuJiKhShMGK8Z9dj6VLlyI7OxsAEBsbi3HjxuHGG2+E0WjUuIVE5CsMikS1gMViwdq1azF//nz1fJKgoCCYT0rQnQnh+YdERORTQha4/4exWLx4sXp5jYiICIwZMwa33HILwsLCNG4hEVUWgyJRDWaxWLB69WrMnz8fZ86cAQCEh4cjb78VunPBkCy8BhYREfmPkASm/noXFixYoH4PBQcHY/To0Rg3bhzCw8M1biERVRSDIlENZDabsWrVKnz//fc4e/YsgOIZTPdaoTtnhGRlQCQioqojIPDcHw/iu+++Q0JCAgAgJCQEt956K2699Vb2MBLVQAyKRDWI1WrFmjVrMGfOHJw7dw4AEBkZiZzdFltAVBgQiYhIOwICr/71OObMmYMTJ04AAEJDQzFu3DiMGTMGISEhGreQiLzFoEhUAwghsHHjRnz99ddITEwEAERHRyNrZ5HtGoi8xAUREVUjAgIvrX0Ec+bMUb+3wsPDMX78eIwePZqT3hDVAAyKRNWY/TIXs2fPxpEjRwAAYWFhyN8nbOcgMiASEVE1JiDw/OqH8O2336qTrdWrVw+TJ0/GddddB71er3ELicgdBkWiaurIkSOYNWsWdu/eDQAwGo0oOipDdyaY5yASEVGNIiDw9Mr7nE6daNasGR544AH0798fksQDn0TVDYMiUTWTmpqKr776Cn/88QcAwGAwQEk0QHc6GJKZl7kgIqKaS0gCDywah/nz5yMrKwsA0KVLFzz00EPo2rWrxq0jIkcMikTVRH5+PhYsWIDFixejqKgIACCfD4I+KZTXQSQiolpF6BSM+3wEfvzxR5hMJgDANddcgylTpqBx48Yat46IAAZFIs1ZLBasWLECc+bMQXp6OgBAyjJAnxAGOdegceuIiIj8RwRYMfyNflixYgWsVisCAgIwduxY3HHHHQgODta6eUR1GoMikYb27duHjz76CMePHwcAxMXFIXV1LuT0QEjg+RpERFQ3zD4xA5988gl27twJwDbhzf3334/hw4dDlnlePpEWGBSJNJCWloYvvvhCPQ8xLCwM+XthuxaiYEAkIqK6R0DgtQ1T8dlnn+HMmTMAgA4dOuDxxx9H586dNW4dUd3DoEhUhSwWC/773/9izpw5yM/PhyRJkM4FQZ8YCsnCI6ZERERCErjn+9GYN28e8vPzAQA33ngjHnjgAYSHh2vcOqK6g0GRqIrs2bMHH374IRISEgAAUo4e+hPhPA+RiIjIBWGwYvBrfbBy5UoAQGRkJKZMmYLhw4fzchpEVYBBkcjPcnJyMGvWLCxfvhwAEBERgbydCuRUI89DJCIiKsP7u1/CBx98oB5o7d69O6ZNm4YWLVpo2zCiWo5BkchPhBBYt24dZs6cqc5mKp8z2i53wWGmREREXhOSwN3z/4W5c+fCZDJBr9fjtttuw8SJExEYGKh184hqJQZFIj9ITU3Fhx9+iC1btgAApHwd9MfDIWcHaNwyIiKimksEWtH78Xbq92vz5s3x3HPPcbIbIj9gUCTyISEEfv31V8yaNQsFBQXQ6/UQJwOhOxXC2UyJiIh85KV1j+DDDz9Eeno6JEnCrbfeinvvvRdBQUFaN42o1mBQJPKR1NRUvPvuu+o1oKRsA/Tx4ZAL9Bq3jIiIqPYRegXXvtoTq1atAmC7FvGzzz6L7t27a9swolqCQZGokoQQWLlyJT755BPk5eUhICAA1iOB0J3lZDVERET+9vrmaXj//fdx4cIFAMDo0aPx4IMP8txFokpiUCSqhLS0NLz//vuXzkVkLyIREVGVEzoFw9++AsuWLQMAtGjRAi+99BLatWunccuIai4GRaIK2rhxI959911kZ2fDYDBAORYI3Zlg9iISERFp5I0tT+Kdd95Beno69Ho97rnnHowfPx46nU7rphHVOAyKROVkMpnw2WefYenSpQAAKVcP/bFwyPkGbRtGREREEHoFfZ/ugI0bNwIALrvsMrz44oto1KiRxi0jqlkYFInK4eTJk5g+fbp60V/d6WDokkI5oykREVE1IiDwxLK7MXPmTBQUFCAkJATPPvssBg4cqHXTiGoMBkUiLwgh8L///Q+ffPIJioqKEB0djZwNCuRMnihPRERUXc099RHefPNNHDx4EABwyy23YMqUKQgI4HWNicrCoEhUhvz8fLz77rtYt24dAEBKD4AhPhySmec7EBERVXdCEhj96WAsXLgQANC+fXu89tpriIuL07hlRNUbgyKRB4mJiXjppZeQnJxsOxH+uJET1hAREdVAr2+ehrfeegvZ2dkcikrkBQZFIjfWrl2Ld999FwUFBYBJhuFIBOQcDlUhIiKqqUSAFe0mN8SBAwcAAOPHj8f9998PvZ6XtSIqiUGRqASLxYJZs2bhp59+AgBImQYYjkZCMssat4yIiIgqq+RQ1N69e+O1115DeHi4xi0jql4YFIkcZGVl4ZVXXsHu3bsBALpTxbOacqgpERFRrfLCn1Pw73//G4WFhWjcuDHeeusttG7dWutmEVUbDIpExRITE/Hcc8/h7NmzMBqNMO8KgC49SOtmERERkZ98Ef8OXnjhBZw7dw5BQUF4/vnnce2112rdLKJqgUGRCMC2bdswffp05OXlAYU6GA5FQs7n+QpERES1ndAruOyR5ti5cycAYPLkyZg0aRIkiaOJqG5jUKQ6TQiBn376CZ9//jkURYGUZYDhcCQkC89HJCIiqisEBP71ybVYvHgxAGDEiBF4+umnYTAYNG4ZkXYYFKnOslqt+Pjjj7F06VIAgJwSBP2JcEiCRxCJiIjqokeX3okPP/wQVqsVPXr0wJtvvomwsDCtm0WkCQZFqpNMJhPeeOMNbNiwAZIkQT4ZwusjEhEREd7c+hReffVV5Ofno1mzZpgxYwYaN26sdbOIqhyDItU5OTk5eP7557Fv3z4YDAaI/cHQpXHSGiIiIrL5Iv4dPPPMM7hw4QKioqLw/vvvo23btlo3i6hKMShSnZKamoqnn34aiYmJgEWC4XAk5KwArZtFRERE1YwIsKL5hCjEx8cjJCQE77zzDrp166Z1s4iqDGfsoDrj1KlTmDJlii0kmmQY9kUxJBIREZFLUpEOSfMzcdlllyEvLw9PPvkktm7dqnWziKoMgyLVCSdPnsSjjz6KCxcuQMrXIWBfNOR8zmRGRERE7klWGUe+SMGVV16JoqIivPDCC1izZo3WzSKqEhx6SrXesWPH8OSTTyIrKwtSrh6GA1G8/AURERF5TUgCA17rhtWrV0OSJDz11FO48cYbtW4WkV9xb5lqtUOHDmHq1Km2kJjDkEhERETlJwkJf726F//6178ghMB7772HZcuWad0sIr/iHjPVWgcOHMC0adOQm5sLKdvAkEhEREQVJkHCb09uxpgxYwAA7733HpYvX65xq4j8h0NPqVY6evQopk6diry8PEiZBhgORUJSGBKJiIiocgQEbvroGvz8888AgGeeeQY33HCDxq0i8j3uOVOtc/LkSTz11FO2kJhlgOFQFEMiERER+YQECf+bugGjR48GYOtZXLFihcatIvI97j1TrXLq1ClMmzbt0jmJhyIhKZLWzSIiIqJaRIKEZU9sxOjRoyGEwIwZM7Bhwwatm0XkUxx6SrVGSkoKHnnkEZw/f56zmxIREZHfCQgM/Xcf/PbbbwgICMCMGTPQs2dPrZtF5BMMilQrZGdn4+GHH0ZSUhKkfB0M+6MhmRkSiYiIyL8EBPo+3x4bN25EcHAwPv74Y7Rv317rZhFVGoMi1XgmkwlPPvkk9u3bB5hkBOyNhlSk07pZREREVEcISaDzI3HYvXs3IiMj8dlnn6Fp06ZaN4uoUtjlQjWaoih4++23bSHRIsFwMIohkYiIiKqUJCQc/Pw02rVrh8zMTDzzzDPIzMzUullElcKgSDXarFmzsG7dOkABDIcjIefrtW4SERER1UGSVUbidxlo1KgRzpw5g5deeglFRUVaN4uowhgUqcb63//+h8WLFwMA9PHhkLMCNG4RERER1WWSWca7776LkJAQ7Nu3D++//z54lhfVVAyKVCPt378fH330EQBAlxgC3QWjtg0iIiIiAnBfq6cxffp0yLKM33//HT/88IPWTSKqEAZFqnHOnz+Pl19+GRaLBfKFQOhOh2jdJCIiIiLVi1e8h8ceewwA8OWXX2Lz5s0at4io/DjrKdUoJpMJjz76KI4cOQIpTw/D3mhIiqR1s4iIiIhKue79fli6dClCQ0Px9ddfo3Hjxlo3ichr7FGkGuWDDz7AkSNHALMEw6FIhkQiIiKqtlY8vQWdO3dGbm4uXn75ZZhMJq2bROQ1BkWqMX7//XesXLkSsizDcCQSkomXwSAiIqLqSxISpk+fjoiICMTHx+Pjjz/WuklEXmNQpBrh1KlT+PDDDwEAUoKRM5wSERFRjTCh4cN45ZVXIEkSli9fjhUrVmjdJCKvMChStWcymfDaa6+hoKAAUqYBulOcvIaIiIhqjhf6zsDkyZMBAB9//DFOnz6tcYuIysagSNXeF198gfj4eNt5icciIIHnJRIREVHN8t3dy9CjRw8UFBTgzTffhMVi0bpJRB4xKFK1tmPHDixZsgQAoD8WAamI5yUSERFRzSNBwgsvvIDQ0FAcOnQI33//vdZNIvKIQZGqrby8PLz33nsAAPmsEbqMQI1bRERERFRxdzR6BE888QQAYN68eTh06JDGLSJyj0GRqq1Zs2YhNTUVKNRBnxiqdXOIiIiIKm3G8NkYPHgwrFYr3n77bRQVFWndJCKXGBSpWtq5cyf+97//AQAM8eGQFK6qREREVDtsfHMfoqOjkZyczCGoVG1x75uqnYKCAsyYMQOAbcgpL4VBREREtYlklfH4448DABYsWICkpCSNW0RUGoMiVTvff/89UlJSgEKZQ06JiIioVnpr8Gfo168fzGYz3n//fSiKonWTiJwwKFK1curUKSxatAgAoD8ZxiGnREREVCtJkPDEE08gKCgIe/fuxYoVK7RuEpET7oVTtSGEwMyZM2E2myGlB0BO5yynREREVHvd2fhR3HPPPQCA2bNnIy8vT+MWEV3CoEjVxubNm7F9+3ZAKe5NhKR1k4iIiIj86qvbf0KzZs2QmZnJiW2oWmFQpGrBYrHg888/BwDozgRDLtRr3CIiIiIi/5OEhClTpgAAfvrpJ5w7d07jFhHZMChStbBixQqcPn0aKJKgOx2idXOIiIiIqswr/T9Az549UVRUhNmzZ2vdHCIADIpUDZhMJsydOxcAoDsdCsnK1ZKIiIjqDgkSHn74YUiShD///BOHDx/WuklEDIqkvf/+979IS0sDCmXozhm1bg4RERFRlZvS/gUMGzYMADBv3jyNW0PEoEgay8vLw4IFCwAA+uRQSIIT2BAREVHdNHHiRMiyjC1btuDo0aNaN4fqOAZF0tSyZcuQnZ0NKV8H+XyQ1s0hIiIi0szk5tMwePBgAOxVJO0xKJJmzGYzfvrpJwCA7kwIL4dBREREdd7EiRMhSRI2bdqE+Ph4rZtDdRiDImlmzZo1uHDhAmCS2ZtIREREBODelk9h0KBBAICFCxdq3BqqyxgUSROKomDRokUAAN3ZYJ6bSERERFRs/PjxAIB169bZJvwj0gCDImli586dSEhIACwSdCmc6ZSIiIjI7pGOL+Gyyy6D1WrF0qVLtW4O1VEMiqSJX3/9FQCgOx/E6yYSERERlTBmzBgAtn0mk8mkcWuoLuIeOlW5tLQ0bNmyBQAgnwvWuDVERERE1c+bgz5FbGwssrKysHnzZq2bQ3UQgyJVud9++w1WqxVSlgFygV7r5hARERFVOxIkXHfddQCAFStWaNwaqosYFKlKCSGwcuVKAOC5iUREREQeLHrsNwDA33//jdTUVI1bQ3UNgyJVqcOHD+Ps2bOAVYJ8kZfEICIiInJHKtSjR48eEELgjz/+0Lo5VMcwKFKVWrNmDQBAvhgISeElMYiIiIg8GTp0KABg/fr12jaE6hwGRaoyVqsVa9euBQDIF9ibSERERFSWj275FjqdDvHx8Th9+rTWzaE6hEGRqszhw4eRnp4OWCTImQFaN4eIiIio2pMsMnr27AmAvYpUtRgUqcps3boVACBnBEASHHZKRERE5I2BAwcCADZs2KBtQ6hOYVCkKmO/BpCcHqhxS4iIiIhqjo9v/RYAcPToUWRmZmrbGKozGBSpSqSmpuLkyZOAAOQMBkUiIiIib0lFOrRq1QpCCOzatUvr5lAdwaBIVWL37t0AACnHAMnC1Y6IiIioPC6//HIAwPbt2zVuCdUV3GOnKrFnzx4AgJxl0LYhRERERDVQnz59AFw6+E7kbwyKVCXsQVHK5mynREREROX1/JXvQJZlpKam4sKFC1o3h+oABkXyu7S0NJw9e9Z2fmI2exSJiIiIykuyymjdujUA4ODBgxq3huoCBkXyu2PHjgEApHw9JCtXOSIiIqKK6NKlCwBg//79GreE6gLutZPfqUExV69xS4iIiIhqro4dOwIA4uPjNW4J1QUMiuR3alDM47BTIiIioop679YvAAAnT56EEELj1lBtx6BIfnfixAkAgMweRSIiIqIKk/L10Ol0yM7OxsWLF7VuDtVyDIrkV0VFRUhNTQUASAU6jVtDREREVHNJQkKTJk0A2HoVifyJQZH86uzZs1AUBbBIgJmrGxEREVFlNG3aFIBtH4vIn7jnTn51+vRpAIBUqIMESePWEBEREdVsDRs2BACcO3dO45ZQbcegSH6lDjst5LBTIiIiosqyB8WUlBSNW0K1HYMi+VV6errtThFXNSIiIqLK+uLh7wBcOhhP5C/ceye/ss/IJTEoEhEREVWafZ8qKytL45ZQbce9d/Ire4+ixIlsiIiIiCrPwqBIVYN77+RXeXl5tjsWrmpERERElWU/+J6bmwuLxaJxa6g24947+VVBQQEAQLJyxlMiIiKiSrNc2qdSD8gT+QGDIvmVPSiCQZGIiIio0iRIgLDdN5vN2jaGajUGRfIrk8lku6MwKBIRERH5hGL7waBI/sSgSH4lhNC6CURERES1S/HlqePj47VtB9VqDIrkV5LEnkQiIiIif+BkNuRPDIrkVwyKRERERP7RokULrZtAtRiDIvmVTlc8NoJ5kYiIiMg3is9RDA4O1rYdVKsxKJJfGY1G2x2dom1DiIiIiGoBIQl1Dz4kJETbxlCtxqBIfmXfgAk9J7UhIiIiqjTdpX0q9YA8kR8wKJJfqUe6dAyKRERERJVWvE8VEBAAvV6vcWOoNmNQJL8KCwsDAAgDh54SERERVZZ9nyoqKkrjllBtx6BIfhUbG2u7E8CgSERERFRZItAKAKhXr57GLaHajkGR/MoeFO0bNSIiIiKqhOKD7wyK5G8MiuRXMTExAADBHkUiIiKiShv3yk0ALu1jEfkLgyL5VaNGjQAAIsiicUuIahdJr4dcfA4wERHVHadOnQIAxMXFadwSqu0YFMmvmjVrZrsTICD07FUk8gV7SJQCDAyLRER1jD0oqvtYRH7CoEh+ZTQa0aBBAwCAMLJXkaiy1J5EnQxIEsMiEVEdIiBw5swZAAyK5H8MiuR39g2ZCGZQJKoMp5CoPsiwSERUV4ggK4qKihAQEKAeiCfyFwZF8rs2bdoAAJRQBkWiStO52GwzLBIR1Qki1AwAaNu2LXQ6ncatodqOQZH8rmPHjgAAEWbWuCVENVeZk9cwLBIR1Xq3vDICANC+fXuNW0J1AYMi+V2HDh0A2IaeCklo3BqimsflkFOXBRkWiYhqsyNHjgBgUKSqwaBIftegQQNERUUBMnsVicrL65CoPoFhkYioNhKSUINip06dNG4N1QUMiuR3kiShe/fuAAAlokjbxhDVIOUOieoTi8NiSIh/GkZERFVOhJlRVFSE6OhoznhKVYJBkapEz549ATAoEnlN1lUsJNpJEqSgQPYsEhHVEhM+uBkA0KNHD0iSpHFrqC5gUKQqYQ+KItwMIfM8RSJPdO3bIHH65Th7R8fKVSRJkJo0RN6Yvr5pGBERaeaff/4BYAuKRFWBQZGqRJMmTVC/fn1AZq8iUVmEMQBFjczI6mTB2dsqMWFB/Xo4MywWGW11DItERDWY0Cs4ePAgAKB3794at4bqCgZFqhKSJOGqq64CACj1TBq3hqj60rVvg+PjI2y/GBRkdbLg3PgKhMX69XBmaAzMYYDQAZltGBaJiGoqJcoEq9WKVq1aoXHjxlo3h+oIBkWqMv379wcAKNEmCHD4KVFJuvZtEH93LCwxDrMDGxRkdi5nz6JDSLRT9AyLREQ11dUP9gIA9aA7UVVgUKQq0717d4SGhgIBCi+TQVSCy5BoV9yz6G1YFAF6p5Box7BIRFTzCFlg27ZtABgUqWoxKFKVMRgMuPLKKwEA1thCjVtDVH3o2rV2HxLtvB2GWr8ezg6IdLuYYZGIqGZRok0oKChAw4YN0bFjJSc5IyoHBkWqUsOGDQMAKLGFEBKHnxLp2rdB/OT6nkOiXfEwVLdhsUFMqSGnrtjDYtoD/RgYiYiqucsndwYADB06lJfFoCrFoEhVqmfPnoiOjgYMAkoUJ7UhEsYA70KinbuwWL8ezg6uV2ZItFP0QEGsxN5FIqJqTOgVbN++HYAtKBJVJQZFqlJ6vR5DhgwBACj1OfyU6jZd+zY4YZ/htDwMCvRNMzCydTLeyvwNH+Yuxys5P+PufWtQLzenXFVxKCoRUfVlrV8Aq9WKdu3aoUWLFlo3h+oYSQjB8X9UpRISEjBp0iRAAAF/x0Aq0mndJKIqp2vfBsfvjoW5PL2JAAKLzHht4TKM2bwLAVZrqeVmWYf/du+Dt4b/C0V6g9f1yhYg8rgVIT9vL1d7iIjIPwQEGtwWiFOnTuHJJ5/EzTffrHWTqI5hjyJVuZYtW6J79+6ABFgbFmjdHCJNiNPn0HijpVzPCSwyY95Hc3D7hh0uQyIAGBQrxv2zDV//MBuB5iKv6zbkABGbk8rVHiIi8h8RYcapU6cQHBzMYaekCQZF0sSoUaMA2IIiJ7WhukjJy4Nx/SE0/8X7iQleW7gM/Y4mlHkVUgHg8qQTeOGPpV7VG5gONP7vSVjOpXjdFiIi8q8rH7kMgG0iwODgYI1bQ3URgyJp4pprrkG9evWAAAUKL5VBdVR5wmJsVg7GbN4FACirtH35LXv+LvOcxcB0oPEvDIlERNWJEmTBhg0bAFw6uE5U1RgUSRN6vR5jxowBAFib5EGU2UdCVDt5GxbHbfzb7XBTdwyKFWP2eD7nUGcWDIlERNXMiOlXQgiBK6+8Eq1atdK6OVRHMSiSZkaNGoXQ0FCIYCuUerxUBtVd9rDYbKn7TXLfowkVqvvypONulwWmAw2WV6xeIiLyD2Gw4vfffwcA3H777Rq3huoyBkXSTEhICP71r38BYK8ikZKXh+B1B92GxdDCih1MCTG5fh6HnBIRVU+jPxoKs9mMrl274rLLLtO6OVSHMSiSpm699VYEBgZChFkgIr2foZGoNvIUFnODAitUZ15g6ecFZgCNf01kSCQiqmaEQcHSpUsBsDeRtMegSJqKjIzETTfdBACwtMhlryLVefawWPKcxT094ipU34URzjPlBaYDjZcmwnLmbIXbSERE/nHjjGtQUFCA9u3b48orr9S6OVTHMSiS5u68804EBwdDhFqgxHAGVKKSE9yEx+Rh4OPHIAzlq0cYgGvuO4eBN/+jPqYzC4ZEIqJqSARa8euvvwIAHnjgAUiS95dPIvIHBkXSXGRkpDq8wtIij9dVJILzBDfGADO6NA0GxoYDgFfXUQQAjAtHZMMwvNVwLQbe/I9t8poVSf5sNhERVdDAF3vCYrGgd+/e6N27t9bNIWJQpOrh1ltvtV1XMcgKa6MCrZtDVC0oeXkI/uswTCvqAwDEGzEQ/YK8uo6i6BcE8UYMACBKF4xoQx4aL0tmbyIRUTWkhJixevVqALbeRKLqgEGRqgWj0Yi7774bAGBtmguhVzRuEVE1IEkQhSY0/iURHb+cAhhliAWNIe4IdzsMVRhgW/5DYyDIton/KKMFtj3RB9ZzKYCsq8I3QEREZREQ6DAxDkIIDBo0CO3bt9e6SUQAAEkIwXF+VC1YLBbcf//9OH78OOSUIBiOR2jdJCJtSRKkgAAAgC6mHrIvb4q0y3Q4/MDnwAUL8EM2pC0FQJ4ChMgQVxqB28OBWL1TNY+d7YNj/Yr7IYVS/EMAirVK3w4REZVmrV8AS7tsGI1GfPfdd6hfv77WTSICwKBI1cyBAwcwZcoUAIBhbxTknACNW0SkEUmCpDcAsvNAU11MPZy8rwUO3/+5V9V8lNECyx4dDMPG/c4LhMKwSESkMaFTEHydGZmZmXjwwQd5SQyqVjj0lKqVLl264IYbbgAAWNrk8HIZVDe5CYkAYE27iFZfJaLj7CllVvNBeivXIREAJBmSLHEoKhGRhm5472pkZmaiefPmuPXWW7VuDpETBkWqdh544AFERERAhFhgjcvXujlE2nAREu3UsPil57B4siDWdUi0Y1gkItKMElaEpUuXAgCmTp0Kg6Gc10Ai8jMGRap2IiIi8OCDDwIArM1zoRgtGreIqArZexPLYE27iFZfu+9Z/CC9FQ4/18WL12NYJCKqakIWaHhDKBRFwfDhw9GrVy+tm0RUCoMiVUvXX389+vbtC8iApV0Wh6BS3eBhyKkr7oahfpDeCr89fi0MGzz0Jjq9LsMiEVFVsjbPxalTpxATE4PHHntM6+YQucSgSNWSJEl45plnEBoaChFmgbUJh6BSHeFlSLSz9SwmocNXtrD4UUYLLJ9ajpBox7BIRFQllPAiKE1s14x++umnERYWpnGLiFxjUKRqKzY2FlOnTgUAWJvlQgkxa9sgIn/ycsipK9YLaWj9lS0sHs9vgIC/yhkS1TYwLBIR+ZPQKah/XTCEELj++uvRr18/rZtE5BaDIlVrQ4cOxdVXX20bgto+C0JWtG4Skf+UszfRkT0sHnrei/MSPbGHRSIi8ikBgWte7oYzZ86gfv36eOSRR7RuEpFHvI4iVXuZmZmYPHky0tLSIKcGwRAfoXWTiPxD1kEy6Cv+fEUAovhgilTB44BCgbBwAikiIl+zNiiApW02dDodZs6cia5du2rdJCKP2KNI1V5kZCReeeUVyLIMpUEhrPULtG4SkX8oVghzBUOaY0gEnO97iyGRiMgvlGALdF1MAIB77rmHIZFqBAZFqhG6d++Oe+65BwBgaZ0DJZg7s1RLKVaIoqLyBcaSIdGuImGRiIh8SsgCcbeEwWQyoU+fPrj99tu1bhKRVxgUqcaYMGEC+vTpA+gELB0yIXTcCaZaSojK9S461eXl54S9iUREPicgcNWLnZGYmIjo6Gi89NJLkGXuflPNwHMUqUbJyMjAvffeiwsXLkBOD4D+UCQkcOINqsXKOm/RXW9iSZ7OWWRIJCLyC0uTPFhb5EKv1+PDDz9Et27dtG4Skdd4SINqlKioKLz11lsICAiAEl0Ea4tcrZtE5F+eeha9DYkAh6ESEVUxa7QJSss8AMDUqVMZEqnGYVCkGqdDhw54/vnnAQDWJvmwxnJyG6rl/DkMlb2JREQ+pxgtCOhdBCEERo0ahZtuuknrJhGVG4Mi1UiDBw/GnXfeCQCwtM2GElakcYuI/KxkWCxPb6Ij9iwSEfmVMCiof1MQ8vPz0a1bNzz22GNaN4moQhgUqca655570L9/f0AGzJ0yoRjZK0K1nK97FtmbSETkU0JW0GpSPZw5cwaNGjXCG2+8Ab2+EtfHJdIQJ7OhGi0/Px9Tp07FkSNHgEIZAXujIZl1WjeLyL8kCZKucuu5UGwzqxIRkW8ICFg6ZUKJLkJERAQ+//xzNG3aVOtmEVUYexSpRgsODsaMGTMQFxcHBCkwd+ZlM6gOEALCypBHRFRdCAhY2mRDiS5CYGAg3nnnHYZEqvEYFKnGi4yMxH/+8x9ERUVBhFpg7pgFIbGjnGq5SoRF9iYSEfmWtVkelIaFkGUZr776Kjp37qx1k4gqjUGRaoXGjRtjxowZMBqNEJFFsHRgWKQ6gD2LRESaszTJg7WZ7TIYTzzxhG3+BKJagEGRao327dvj7bfftl1jsZ4JlvZZEGBYpFqunGGRvYlERL5jaZynXtP5gQcewM0336xxi4h8h0GRapVevXrhzTffhMFggBJjgqVdNsMi1X7sWSQiqnLWhvmwtrKFxLvvvhsTJkzQuEVEvsWgSLXOFVdcgddeew06nQ5K/UJY2jIsUh0gBITF4jEwsjeRiMg3rPULYGmTAwC4/fbbcdddd2nbICI/YFCkWunqq6/GK6+8AlmWoTRgWKQ6hL2LRER+ZW2YD0u7bADA6NGj8cADD0CSJI1bReR7DIpUa1177bV46aWXbD2LDQpt5yxyghuqC1yERfYmEhFVnqVxntqTOHr0aDz22GMMiVRrSUII7jlTrfbXX39h+vTpsFgskNMDoD8SCUnhRp3qAEmCpNMBYFAkIqoMAQFr0zxYm9tmN50wYQLuv/9+hkSq1RgUqU7YsWMHXnzxRZhMJkiZBhgORUJS2KFOdYAkAZLMkEhEVEECAtbmubA2zQcA3HPPPZg4cSJDItV6DIpUZ+zZswfPPfcc8vPzIeXoYTgYBcnCsEhERESuCUnA0jobSsNCAMDDDz+McePGadwqoqrBoEh1yuHDh/H0008jOzsbUoEOhoORkAr1WjeLiIiIqhkhK7B0yIISXQRZljFt2jTcdNNNWjeLqMowKFKdk5ycjKeeegopKSmAWYLhYBTkXIPWzSIiIqJqQhisMHfKhAizIDAwEK+++ir69++vdbOIqhTH3VGd06xZM8yaNQvt27cHDALmrhmwRhdq3SwiIiKqBpQgC2L+FQARZkFERAQ++ugjhkSqk9ijSHVWfn4+Xn31VWzfvh0QgC4hDLqzRkjgyelERER1kRJRhKArLcjJyUHjxo3x3nvvoWnTplo3i0gTDIpUp1ksFnzwwQdYvnw5AEBOCYL+RDgkwbBIRERUl1gb5kO0z4fVakXHjh3x73//G9HR0Vo3i0gzDIpU5wkh8OOPP2LWrFlQFAVSlgGGI5GQzByZTUREVNsJScDSKgdKowIAwNChQ/HMM88gMDBQ45YRaYtBkajY9u3bMX36dOTm5gKFMgyHIyHncZIbIiKi2kroFZg7ZEJEmiFJEu677z5MmDCB10gkAoMikZPk5GQ8//zzOHXqFGCVoD8eBt0Fo9bNIiIiIh9TQs2oNyIAKSkpMBqNePnllzlpDZEDBkWiEnJycjB9+nTs2LEDACCfM0J/MoznLRIREdUCAgJKwwJIHQthNpvRuHFjvPXWW2jdurXWTSOqVhgUiVywWq2YO3cu5s2bBwCQcvS28xZNOo1bRkRERBUlZAFLm2wo9W2XxbrqqqvwwgsvICwsTOOWEVU/DIpEHmzbtg1vvvkmsrOzAbME/bEI6DJ4cjsREVFNowRZYOmYBRFigSzLuO+++3DbbbdBljl5HZErDIpEZUhNTcUrr7yCw4cPAwB0p4OhSwrlUFQiIqIaQEBAqV8IQzczCgoKEB0djVdffRU9evTQumlE1RqDIpEXzGYzPvvsM/z3v/8FAEi5euiPRkAu0GvcMiIiInJH6BTbUNNYEwCge/fueOWVVxATE6Nxy4iqPwZFonLYuHEj3n33XdtQVKsE/clQyKlGSGDvIhERUXWihBWh3vBApKSkQKfTYfLkybj99tuh03G+ASJvMCgSlVNaWhreeust7Nq1CwAgpwVCfzwckoXnOBAREWlNQMDaNA9oVQir1YpGjRrh1VdfRadOnbRuGlGNwqBIVAGKomDx4sX46quvYLFYAJMM/fFwTnRDRESkIcVogaVdFkSYBQAwbNgwPPHEEwgJCdG4ZUQ1D4MiUSUcPXoUb7zxBpKTkwEAcmqQ7ZqLVvYuEhERVRUBAWtcPnTti1BUVITQ0FBMnToVw4YN07ppRDUWgyJRJZlMJnz99df48ccfIYQATDIM8eGQM9m7SERE5G9KkAWWdtkQ4WYAQN++ffHMM88gNjZW45YR1WwMikQ+sn//fvz73//G6dOnAQByShD0CexdJCIi8gcBAWvjfOg62HoRg4OD8eijj+L666+HJHGSOaLKYlAk8qHCwkJ8/fXX+Omnn9TeRf3JMMgXAzkzKhERkY8oIWZY2mZDhNrORezduzeeffZZNGjQQOOWEdUeDIpEfrB37168++67l3oX0wOgPxEOycQpuYmIiCpKyALWZrkQzQqhKApCQ0Px0EMP4YYbbmAvIpGPMSgS+YnJZML333+PBQsW2GZGtUrQJYVAdzaYvYtERETlZI0ywdI6GwhSAACDBg3Co48+inr16mncMqLaiUGRyM8SExPx/vvvY9++fQAAKVcP/fFwyLkGjVtGRERU/YlAKywtcqDEmgAADRo0wLRp09CvXz+NW0ZUuzEoElUBRVGwYsUKfP7558jNzQVQfCmNxFBIZg5HJSIiKklIAta4PBg6WFFYWAhZljFmzBhMnjwZwcHBWjePqNZjUCSqQunp6fjyyy+xcuVK2wMWCbrkEOjOBUMSHI5KREQEFA8zbZUDGK0AgMsuuwxTp05FmzZtNG4ZUd3BoEikgYMHD+Ljjz/GkSNHAABSvs42OyqvvUhERHWYEmSBtVUOlOgiAEBMTAweeughDBkyhJPVEFUxBkUijdiHo86ePRuZmZkAAPliAHSJYZAL9No2joiIqAoJvQJr0zygmQlWqxV6vR5jx47FxIkTOcyUSCMMikQay8nJwbfffotffvkFVqsVEICcYoQ+OYTnLxIRUa0mJAFr43wYu0I9h/+KK67AI488gmbNmmncOqK6jUGRqJpISkrCl19+iU2bNtkesErQnQ6G7kwIJIXDbYiIqPYQEFBiTLC0yFEvd9GmTRtMmTIFvXv31rh1RAQwKBJVO3v27MHnn3+unr8Ikwx9cijk1CBef5GIiGo8JcIES4tciDALACA2Nhb33nsvhg0bBp2OI2mIqgsGRaJqSFEUrFu3Dl9++SVSUlIAAFKBDrqkEMhpDIxERFTzKGFFsDTPhYg0AwCMRiNuv/12jBs3DkFBQRq3johKYlAkqsaKiorwyy+/4Pvvv0dWVhYAQMrT2wJjeiADIxERVXtKiBnW5rnqTKYGgwE333wz7rjjDkRHR2vcOiJyh0GRqAbIz8/HTz/9hMWLF6sn+0s5euiTQiFlBjAwEhFRtaMYLbA2y4USawIA6HQ6jBgxAnfddRcaNGigceuIqCwMikQ1SE5ODhYtWoSff/4ZBQUFAAAp2wDdqRDIGQyMRESkPSXYDGvTPIj6RbDvZg4ePBiTJ09G06ZNNW4dEXmLQZGoBsrIyMCCBQuwdOlSFBXZhvJIOXpbYOSQVCIi0oASaguISj2T+lj//v1x9913o23bthq2jIgqgkGRqAa7ePEiFi1ahF9//RWFhYUAis9hPBUCOY2BkYiI/E8JK4KlaR5E8TmIkiRh4MCBmDhxIlq3bq1x64ioohgUiWqBzMxM/Pjjj/jvf/+L/Px8AICUr4PuTDDk80ZIgoGRiIh8R0BARBQHxOJZTHU6HYYMGYI77rgDzZs317iFRFRZDIpEtUhOTg5+/vln/PTTT+qkNyiSoTtnhO5cMCSLrG0DiYioRhOSgBJTCGuTfIgQ23UQ9Xo9RowYgQkTJiAuLk7jFhKRrzAoEtVCeXl5WL58OX766SecP3/e9qBVgpwaBP2ZYEgmvbYNJCKiGkXoFFgbFsDaOB8IVAAAQUFBGDlyJMaPH89ZTIlqIQZFolrMYrFg7dq1WLx4MeLj420PCkC+GAjd6RDIuQZtG0hERNWaCLTC2jgf1oYFgM62y1ivXj2MHj0aN910E8LDwzVuIRH5C4MiUR0ghMA///yDRYsWYfv27erjUrYBunNGyGlBPI+RiIgAFJ9/GG6GtVE+pIYWWK1WAEDLli0xfvx4DB48GAEBARq3koj8jUGRqI45ceIEFi9ejDVr1sBisZ1fgiIZuhQjdClGSEU6bRtIRESaELICpX4hrI0K1PMPAaB3794YP348+vTpA0niQUWiuoJBkaiOunjxIpYvX45ff/0VaWlptgftw1LPBkPKNvDyGkREdYBitEBplA9r/UJAb9stDAwMxNChQ3HLLbegTZs2GreQiLTAoEhUx1ksFmzcuBG//PIL9uzZoz4u5eltw1IvBEGycrZUIqLaREBAiTbZeg+jitTH4+Li8K9//QvXXXcdwsLCNGwhEWmNQZGIVCdOnMAvv/yCP/74A4WFhbYHrRLktEDbsNQc9jISEdVkIsgCa4NCWOsXqLOXSpKEfv364ZZbbkHv3r0hyzw4SEQMikTkQk5ODlauXIlly5YhKSlJfVzK10FONUJ33gjJzB0JIqKaQMgCSr1CWBsUQESa1ccjIiIwcuRI3HzzzWjUqJGGLSSi6ohBkYjcEkLgwIED+O2337B27dpLvYwKIKcX9zJmBrCXkYioGlJCzLA2KIDicO6hJEno06cPRo4ciauuuoqzlxKRWwyKROSVvLw8rF27FsuXL8fhw4cvLSiUobsQBPmCEXK+XrsGEhERhMEKa4wJSoMCiNBLM5c2bNgQ1113Ha6//no0aNBAwxYSUU3BoEhE5XbixAksX74cq1evRnZ2tvq4lKuHfCEIugtBvMwGEVEVEbICpZ4J1thC28Q0xYM8DAYDrr76aowcORK9evXiuYdEVC4MikRUYSaTCVu3bsUff/yBbdu2XbouowCkzABbT+PFQM6aSkTkYwICSlQRlNhCKPVMgO7S7lzHjh0xbNgwDBkyBBERERq2kohqMgZFIvKJrKwsrF+/HqtWrcKBAwcuLbDazmeULwRBzgiEJHg+IxFRRQgIiDAzlNhCWGNMQICiLouLi8PQoUMxdOhQNG3aVMNWElFtwaBIRD539uxZrF69GqtWrcLp06cvLbBIttCYFgg5MxCSwtBIROSJGg5jTLDWKwSCLoXDyMhIDB48GEOHDkXHjh0hSdymEpHvMCgSkd8IIXDkyBGsWbMG69evx4ULFy4ttIfGi4G2nkaGRiIiAMXhMNwMJaYQ1nom9XqHAGA0GnHVVVdh2LBh6N27N/R6TiJGRP7BoEhEVUJRFBw6dAjr16/H+vXrcf78+UsLLRLkjADIaUGQMwN4TiMR1TkCAiLCDGu94nMOHcJhSEgIrrrqKgwYMACXX345AgMDNWwpEdUVDIpEVOUURcHhw4exbt260qFRAaSsAOguBkJOD+TsqURUawmdAiWyCEo9E5QoE2C4tEsWGhqK/v37Y+DAgejduzevd0hEVY5BkYg0JYRQQ+OmTZtw5swZp+VSrt42PDU9EFKeHhI4RJWIai4RaIUSbYI12gQRUQQ4DKAIDw9Xw2GvXr1gMBi0aygR1XkMikRUbQghkJSUhM2bN2Pz5s04ePAgnDZRhbLtvMaMQMhZATyvkYiqPQEBEWqBEm2CUs8EEWJxWt6sWTNceeWVuOqqq9C5c2eec0hE1QaDIhFVWxkZGdi6dSs2bdqEv//+GyaT6dLC4iGqcmaAbTKcfB17G4moWhABVtuQ0igTlMgipyGlsiyja9euajhs1qyZhi0lInKPQZGIagSTyYRdu3Zh8+bN2LFjB1JTU0sUkG0T4mQEckIcIqpSQhIQ4UVQomy3kr2GoaGh6N27N6666ipcccUViIiI0KilRETeY1AkohpHCIHk5GRs374dO3bswJ49e1BUVORQAJByDLbexqwASNkGSIK9jUTkGwICIsQCJaIIIrIISkQR4DDvliRJaN++Pfr27YvLL78cHTt25JBSIqpxGBSJqMYzmUzYu3cvtm/fju3btyM5Odm5gAJI2QGQs2zhUcplcCQi7wkIiGArRIQtFCoRzsNJASA6OhqXX345+vbti169eiEyMlKbxhIR+QiDIhHVOikpKfj777+xe/du/PPPP0hPT3cuYJUgZRkgZxX3OOZyNlUiukRAQARZ1d5CJcIMBChOZYxGI7p27YqePXuib9++aNWqFSSJ2xEiqj0YFImoVrPPpGoPjXv27EFWVpZzIatkG6qabbtJOQae40hUhwipeChpeBFEuBlKmNnpgvcAEBAQgK5du6JHjx7o0aMHh5MSUa3HoEhEdYqiKDh58iT++ecf7N69G3v37kVubq5zIQFIeXpbaMwOsP0s0rmukIhqHKFToISbIcLMtnAYZnY6xxAADAYDOnfurAbDTp068aL3RFSnMCgSUZ2mKAoSEhJw4MAB7Nu3D/v370dKSkrpgoUy5Bxbb6OcY4CUZ+B1HIlqANv5hRaIMAuUUDNEuBki2IKSo83DwsLQpUsXdO3aFV26dEHHjh0RGBioTaOJiKoBBkUiohLOnz+P/fv3q+HxxIkTUBTnYWj2Xkcp1wA5R28brprPcx2JtCQggEArlDCLrbcw1AwRagF0pXd14uLi0LVrV/XWrFkzyDKHnBMR2TEoEhGVIT8/H4cOHcLhw4dx+PBhHDp0qPQEOQBghS045hpsE+Tk6SEV6DnDKpEf2EKhAiXEFgaVUNtQ0pKzkQK2iWfat2+PDh06oHPnzujatSuio6M1aDURUc3BoEhEVE5CCFy4cEENjkeOHMGRI0eQn59furACW09jrh5ynsEWHvP0nCyHqByEVDx8NMQCEWqGEmK7D33pXRiDwYDWrVujQ4cO6NixIzp27IimTZtCp+N5xkRE5cGgSETkA4qiIDk5GYcPH8axY8cQHx+P48ePuw6PAFCgg2wPjfnFt0Idex+pTrP3EgqjRQ2DIsQCYbQALo6t6PV6tGzZEm3atEGHDh3QoUMHtG7dmpPOEBH5AIMiEZGfKIqClJQUNTTGx8cjPj4eFy5ccPMEQCrQXQqODJBUS6nDRoMttp5C+81oddlLCNgmm2nTpg3atm2r/mzWrBkMBkMVt56IqG5gUCQiqmKZmZk4ceIE4uPjkZiYiISEBCQmJqKgoMD1E+wBskBv+1lY/LNAB5hlTqBD1ZbQKbYL1xutEEbLpZ/BVpcTzACATqdDkyZN0KJFC7Rp00a91a9fnxe0JyKqQgyKRETVgBACqampTsExISEBSUlJ7gMkAFgkW4+jU5C03RgiqSoIWbEFQMdAWHwfAYrb5+n1ejRt2hQtWrRAixYt0LJlS7Ro0QJxcXHsJSQiqgYYFImIqjFFUXD+/HkkJibi9OnTOHXqlPozNTUVHjfhVkAyFYfGQp16X33MIjFIUpmEToEItEIEKUBgcSAMLL4FWV3OMuooKioKTZo0UW9NmzZFy5YtERcXB71eX0XvgoiIyotBkYiohjKZTDh37pwaHu0B8syZM0hLS/McIgHAKkEqlIEiHaQi2RYgi4p/N8mQinSAmWGythIQgE5ABCpAgBUiQIEIsBb/rqhhsKwgCAARERFOYdDxFhISUgXvhoiIfI1BkYioFioqKsL58+eRkpKClJQUnDt3DufOnVPvX7x40buKFABFttAomWTbcNbiG8yyLWAW34eVobI6ELIADApE8Q2OP4sDIIpDIby8YkRERAQaNmzo9sYwSERU+zAoEhHVQSaTSQ2SaWlpuHDhgnpLS0tDWloaMjIyyu6VdGQPlfYgaZFtw1td/pQhWSRbGQUMmC4ISQB6BULv/BN6AeH0U4EwCIgARV1eHqGhoYiNjUVMTAxiY2NRr149xMbGIjY2Fo0aNULDhg0RHBzsp3dJRETVFYMiERG5ZLFYcPHiRTU8XrhwAZmZmcjMzERGRobTzeOEO2VRAFgkQJEhWSWg+ObyviJDsgJQJEBItpCpSMW/Fz+uSJAUFC8vfhzFvwO234sfKyugiksFS/wUtvuy7aeQhXrf9lNAyMX3ZQHIxWV09pvi9LuwPy4X39crXvf2uWIwGBAZGYmoqCinn9HR0WogjImJQUxMDIKCgir+QkREVGsxKBIRUaUVFhaqAdL+Mzs7Gzk5OW5vubm5sFqt2jZcOPy035dQOhhqRJIkhISEIDQ0FGFhYU43+2ORkZHqLSoqClFRUQgODualJIiIqFIYFImISBNCCOTn5yMnJwf5+fnIz89HQUEBCgoKPN4vLCyE2WyG2WxGUVERzGYzTCaT0+/2+/4OojqdDgaDQb0FBAS4vR8cHIygoCAYjUYEBwfDaDQ63ezLjEajGgaDg4Oh01Wia5GIiKiCGBSJiKjWUhQFiqLAarVCCFHqvuNyRVEgyzIkSYIsy+rN8Xf7fUmSoNfrGeKIiKjWYlAkIiIiIiIiJ7LWDSAiIiIiIqLqhUGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIREREREREThgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkRK91A4iIykMIgcLCQq2bQURULkFBQZAkSetmEBF5jUGRiGqUwsJCDB8+XOtmEBGVy6pVq2A0GrVuBhGR1zj0lIiIiIiIiJywR5GIaqyAHfUhieLjXZIMSZYASQZkCSge4iXJsu2+VPxTliBJxc+xlyt+XL0PlHjMuU7bz0vLhSRdOuwmXapHfdzheY6PCfsoNKn4d9n2i5AcnwP1OUKSin+HQ33Fz5el4npsi+x12Jc71ins9cpwW5/TT5R8rGQ73DwHlx5zWg4Pz3Pxeu7aUeo5bup1bodwen7JNqrLHeoSxY+jRPsgCYfnC3WZVKq84zLb/Us/L9UjSeLSKlj8+KV/jVCXyxDq7/bXk4t/ty2zPUd9zPEnLr2WXPJWvMz2O5wet7+WLCnqYzIEZEmBzr6s+Hd1uaSo9enUxwR0sJUBAJ2kODxPgc7hefb79vKOz5Mhip9re33bMvvzbI9JUKCzPx+XXk8H2J4H2+vZ/x72322vJdRlslTcFvW+pH7cdZIEGVLxY1Lx73LxKiLBXKTD6PsagoioJmJQJKKayypd2mWTZEgoDnXqHjhsyyUJkC+lIvU5TolDBkomgUsprHSKkRye65RUXD1eIlGVuu9QRrIHPsmhmFTiJ0qUhXNoLPU8uKgTxYHVXX1umuuyHW5u7pa5+1N58zxPz4H7EOm3oFhyeYllJYPipceF02u6WmYPZ5eWOS4XDs9zeKzUaznfHINiqZu7ZcXhCcClAAnhFCgBe1CEGrTk4nZcCorKpaBVvMwWrIp/SpItxBWvp/b79vI6SA6hFNBJl37qittmf16pZbC/nj30ieKAeSkc28Ohp6Doqj4Zlx6z/e7YRof/IRFRDcOhp0REREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE54XUUiajm0gkIYbvItu26gJLDT/tF3FDiOoRSiesG2m/i0n1vljlcxO/SZdHh5vFLP4XTfTg9TwCAUK9mpy4RkAAB9bmi5HOKn1daycfsFw50alKJvwdK31DyMcnDshIvW95lZdXp6Tn2ux6fJ8qoU8B1G91cRxGlnyd5uI6i5HiNRMmhLOzXL3RcvdxcRxEVv46isK8xkoAoeSteJoqvJen4uKK+lnLpdSAASXG43qNwWi4kRa3P/tpCXebQjuLf5eL79usy2u87/lQcPtaKdOmngkvXUVSKH5Pg7jqKEmTYrs+os/+pih+3X49RB6jLZIc61OtAqvVdqkuGpP5u+7dIMBe5+lwSEdUMDIpEVGMVXX5e6yb4h30/vBJKRlQi4NJqJWALVDWP45rNQVFERP7ErSwR1SiFhYVaN4GIiIio1mOPIhHVKIGBger9X3/9FUFBQRq2hrRQWFiIm2++GQDXgbqopv7/a0o7iYjsGBSJqEaRpEuDKYOCgmA0GjVsDWmN60Ddxv8/EZH/cOgpEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicSEKISl6ti4iIiIiIiGoT9igSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJzotW4AEdVd+fn5WLRoEf766y+kpKRAlmU0bdoUgwYNwujRo2EwGCpcd3p6On744Qds3boVqampCAwMRMuWLTFixAiMHDkSkiT58J1QRfljHZgzZw7mzp1bZrkffvgBTZo0qUCrqbIKCwuxZ88eHD16FMeOHcOxY8eQmpoKALjrrrswefLkSr8GtwFERJXDoEhEmkhJScFjjz2GlJQUAEBQUBDMZjOOHDmCI0eOYPXq1fjoo48QFhZW7rqPHj2Kp556CllZWQAAo9GI/Px87Nu3D/v27cP69evx73//u1JBlCrPn+sAAOj1eoSHh7tdrtPpKlQvVd7hw4fxzDPP+K1+bgOIiCqPQZGIqpzFYsFzzz2HlJQU1KtXDy+++CJ69+4NRVGwbt06vPfee4iPj8cbb7yBGTNmlKvu3NxcPPvss8jKykKzZs3w0ksvoUOHDjCbzVi2bBk+/fRT7NixA5988gmmTZvmp3dIZfHnOmDXpUsXzJw508ctJ18JCwtDu3bt1Nsnn3yC9PT0StfLbQARkW/wHEUiqnK///47Tp48CQB444030Lt3bwCALMsYPHgwnnrqKQDAtm3bsGvXrnLVvWjRIqSnpyMwMBAzZsxAhw4dAAAGgwG33HKLOqRt2bJlOHXqlK/eEpWTP9cBqv4uu+wy/Pbbb/jwww/x0EMPYfDgwQgICPBJ3dwGEBH5BoMiEVW533//HQDQo0cPdOnSpdTywYMHo1GjRk5lvbVq1Sq1jsaNG5dafsstt8BoNMJqtWL16tXlbTr5iD/XAar+/Dnsl9sAIiLfYFAkoipVWFiIAwcOAACuuOIKl2UkSULfvn0BAH///bfXdScnJ6sTYtifX1JwcDAuu+yyctdNvuPPdYDqNm4DiIh8h+coElGVSkpKgqIoAICWLVu6LWdflp6ejuzsbI+TktjZhzKWVXerVq2wfft2JCYmetlq8iV/rgOOEhISMGnSJJw9exayLCMmJgbdunXDqFGj0K5du4q/Aaq2uA0gIvId9igSUZVKS0tT78fGxrotFxMT4/I5nly8eLFcdefl5SE/P9+rusl3/LkOOMrKykJSUhICAwNRVFSEU6dOYfny5bjvvvvw1Vdflbs+qv64DSAi8h32KBJRlXLcKQsMDHRbLigoyOVz/FF3cHCwV/WTb/hzHQCAJk2a4KGHHkL//v3RqFEj6PV6mM1m7N69G1999RWOHj2K7777DmFhYRg/fnzF3gRVS9wGEBH5DnsUiYioVhk2bBhuu+02NG3aFHq97XiowWDA5Zdfjk8//VSdBfPbb79Fbm6ulk0lIiKqthgUiahKOR65N5lMbssVFha6fI5WdZPvaPl/CgwMxP333w8AKCgo4KU3ahluA4iIfIdBkYiqlON5ZxcuXHBbzvGcNMfneFKvXr1y1R0SEsKdRA34cx3wRufOndX7Z8+e9Vm9pD1uA4iIfIdBkYiqVPPmzSHLtk1PQkKC23L2ZdHR0V7PdtmqVatSz3fFPjNiixYtvKqXfMuf6wDVbdwGEBH5DoMiEVWpoKAg9QLr27dvd1lGCIEdO3YAAPr06eN13U2bNkWDBg081l1QUIB9+/aVu27yHX+uA944dOiQer/R/9u796Coq/+P409EFAoEKkeXMG8p0cVQSDOFvIVEOZW30ZjRMrOb6XSZqdlJ7aJZOaZNzlg5qZXRxRq1pgsNipkJKkbIiBCCUCoRFwEhcF3g9wezn+9uwiLL4uLP12PGmWX3fN6fs8vOymvP+ZxjMrm1tniWPgNERNxHQVFELrq4uDgAMjIyHP5ot0lJSTGmBNraXggvLy8mT54MwK5duyguLj6vzbZt26irq8Pb25u77rrLle6LG3TWe6Cpqcnp4xaLxdgaw8/Pj8jIyAuuLV2fPgNERNxHQVFELrq4uDgGDRpEU1MTS5YsMRYUaWxsJCUlhVWrVgEwatSo8/6Q37hxIzExMcTExLT4R+CsWbO46qqrqK+v54UXXiA3NxeAc+fOsX37dj788EMApkyZQr9+/TrzaYoTnfUeyMzM5JlnniEpKYl//vnHuN9qtXLo0CEWLlxoBNO5c+cSEBDQmU9TnDhz5gyVlZXGv8bGRqB5ERr7+/+7NYo+A0RELg6vpra+fhUR6QTFxcUsXryYv//+G2iejtjY2IjFYgFgyJAhrF279rw/5Ddu3MjmzZsB+OKLL1qcOpibm8vzzz9PVVUV0LyqocViwWq1As3TzVauXEmPHj066+nJBeiM90BGRgaLFy82fu7Zsye+vr7U1tYav/9u3bqRkJDAo48+2plPT9owc+ZM43fvTFxcHGaz2fhZnwEiIhdHd093QEQuTyaTic2bN/P555/z888/8/fff9O9e3cGDhzIxIkTmTZtGj4+Pi7VDgsL46OPPiIxMZF9+/bxzz//4Ovry6BBg4iLiyM+Pt5YTEU8pzPeA4MGDeLJJ5/kyJEjFBQUUFVVRU1NDb6+vgwYMIBhw4YxZcoUBg8e3EnPSroCfQaIiHScRhRFRERERETEgb5OExEREREREQcKiiIiIiIiIuJAQVFEREREREQcKCiKiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIgDBUURERERERFxoKAoIiKd5p133iEmJoann37a010RD6upqeGee+4hJiaGPXv2eLo7IiLShu6e7oCIiJyvtraWvLw8cnJyyM3NJTc3l5MnT9LU1ATAF198gclk6pRzNzU1MX36dEpLS0lISOCxxx5zqU5eXh7bt28HYMGCBW7soWcVFBRw4MABsrKyKCgooLy8nIaGBgICAhg8eDCjR48mLi4Of39/T3e1S/H392fWrFls2LCBd999l1GjRtGzZ09Pd0tERFqhoCgi0gUtWrSIvLw8j5w7JyeH0tJSAKKjo12us379ehoaGhg1ahS33HKLu7rnUYsWLeL3339v8bGKigoqKio4ePAgW7ZswWw2M3LkyIvbwS5u+vTpbN26lZKSEr766isSEhI83SUREWmFpp6KiHRBtpFDaB6JGT58OFddddVFOfcvv/wCQO/evQkPD3epxuHDh0lPTwf4fxUGbAE6ICCA+Ph4zGYz69atY8OGDbz66quMHj0aaA6NZrOZzMxMT3a3y/Hz82PatGkAJCYm8u+//3q4RyIi0hqNKIqIdEHx8fEEBQURFhZGaGgoXl5eLFq0iIqKik4/ty0ojhkzBi8vL5dqfPbZZwCYTCZuvfVWt/XN00JDQ5kzZw4TJ06kR48eDo+FhYUxbtw4Pv30U95//30sFgurV6/m448/9lBvu6bY2Fg2btzImTNn+O6775gxY4anuyQiIi3QiKKISBc0ffp0Jk2aRL9+/VwOa67466+/KCoqAlyfdlpaWkpqaioAkydPvqj972yrVq3i7rvvPi8k2ktISGDIkCEAFBYWkp+ff7G6d0kwmUwMGzYMgG+++cbDvRERkdZoRFFERAy21Sht011dkZycTGNjIwATJky4oGOsViu7du1i79695OTkUFlZSUNDA0FBQQwaNIioqCgmTZrE1Vdf7XBcTEwMAHFxcZjNZv7880+++uorDh48SFlZGVdeeSVDhw7lwQcfJCIiwjju7Nmz/PDDDyQlJXHixAnq6+sJCQnhrrvuYsaMGR1eZGXEiBHGNaZ//fUXgwcPdrlWYWEhO3bsIDMzk+LiYurr6/H39ycgIACTyURkZCRjx47luuuuc6m+1Wrlp59+IiUlhYKCAqqqqvDy8qJXr14EBQURHh5OVFQUY8aMwcfHx+HY/77+hYWFbNu2jfT0dMrKyqirq2PFihXnfekwYcIEMjMzKSoqIicnhxtuuMG1F0dERDqNgqKIiBhs005Hjx5N9+6u/Rexb98+oPk6vv79+7fZ/tixYyxdupQTJ06c91hpaSmlpaXs37+f/Px8zGZzq3V2797N66+/Tn19vXHf2bNnSUtLY//+/Tz//PNMmTKFsrIyzGYzOTk5DscfP36cDz74gLS0NFavXt2hsGi1Wo3b3bq5Pnlnx44drF27loaGBof7q6qqqKqq4sSJExw8eJD8/HyWLFnS7vqVlZU899xzLS6cZHvt8/Ly+Oabb0hMTCQ0NLTVWj/88AOrV6/GYrG0eV77xY327dunoCgi0gUpKIqICABlZWUcPXoUcH3aqcVi4ciRIwCEh4e3Oe00Ly+PhQsXUldXB8Dw4cOJjY2lf//++Pj4UF5eTnZ2dpv77uXn57Nr1y6Cg4NZsGCBce5Dhw7xySefUF9fz5o1a4iIiGD58uUcO3aM+++/n7FjxxIUFMTJkyf5+OOPyc/P5/DhwyQmJvLwww+79BoA/Pbbb8btgQMHulSjoKDACIm9evViypQpREREEBQURENDA+Xl5eTm5pKWluby9N61a9caITEyMpLY2FhMJhNXXnkltbW1FBUVkZmZaUwlbk1ubi7Jycn06tWLGTNmcMstt+Dj40NhYSF9+/Y9r/3AgQPx8/Ojrq6O3377jXnz5rnUfxER6TwKiiIiAsDevXtpamqiR48ejBo1yqUa+fn5xmhaWFiY07ZWq5WlS5caIXHx4sXGipj27rjjDubPn09JSUmrtfLy8hgyZAhr164lICDAuP/GG28kNDSUZcuWYbVaWbhwIdXV1axatYqoqCij3dChQ7ntttuYM2cOZWVlbN++nTlz5uDt7d2u5w/N03ePHz8ONIflfv36tbsGQEpKijGSuGbNGuO6R3vR0dHMnz+fqqqqdtc/e/asEcCjo6NZvnz5eYEzIiKC++67j7q6Oqcjo8ePHyc0NJR169Y5rM7b2qq53t7eDB06lMzMTP744w8aGxs7NPIqIiLup09lEREB/jftNCoqCj8/P5dq2E8fbWs7j+TkZE6ePAk0r/LaUki016dPH6ePv/jiiw4h0WbcuHH07t0bgNOnTzN16lSHkGjj7+/P3XffbbQrLCx0er6WlJWV8fbbbwPg5eXFE0880e4aNrYVbv39/VsMifYCAwPbXf/MmTNGqI+IiHA6Kunn59fmVNxnn322XVu42NrW19dTVlZ2wceJiMjFoaAoIiLU1NSQkZEBuD7tFKC8vNy43atXL6dtbcEUYPbs2S6fE5qnMrYWpry8vBwei42NbbWOfbtTp061qw/19fWYzWYj4P13AZ32soXbmpoaUlJSXK7TmsDAQGP11p07d3ZoT8PevXu3GL6dsX9/2L9vRESka1BQFBERUlNTsVqteHt7M2bMGJfrnD171rjd0uievT/++ANoHlm6kEVvnGnrePu+OFsd1L5de4LTuXPneOmll4wFcsaOHcv8+fMv+PiWxMbGGqN4y5Yt46mnnuLTTz/l8OHDxnTdjvDx8SEuLg6A7OxsZs6cyapVq9i5c2e7Q7Irq7raB0X7BYhERKRr0DWKIiJijO7dfPPNBAUFuVzH/pq+tla/rKysBP43ctYRvr6+Th+3n1bpbFqt/XVyti0+2mK1WlmyZAkHDhwAYOTIkbz88ssuXd9oLyQkhDfeeIPXX3+d0tJSsrKyyMrKAppf5xtuuIGYmBjuvffeNkN5a55++mksFgtJSUlUV1fz7bff8u233wLNAX7kyJHEx8e3OTLa1uhxS+y/VHB1hV0REek8GlEUEbnMWSwW9u/fD3Rs2ik0X09nU11d3aFalwKr1cqyZcuMLUGioqJYsWKFMaWzoyIjI/nss8945ZVXiI+PN7anaGho4MiRI6xfv57Zs2cbIbW9evbsidlsZsuWLTzyyCOMGDHCCNIVFRX8+OOPLFq0iJdeeskh2P2XKwvR2C/AY/++ERGRrkFf4YmIXObS09ONqYwdDYr2WyG0FRSDgoIoKSm5ZBcysYVE22jsiBEjWLlyZYf2X2xJjx49GD9+POPHjweaR2IPHTpEUlISaWlpVFdXs2TJEhITE7n66qtdOke/fv2YO3cuc+fOpaGhgby8PPbt28eOHTs4ffo0e/bsYcOGDSxcuNBtz+vMmTPG7bYWKhIRkYtPI4oiIpc5W9AZMmQIJpOpQ7Xs9wz8888/nba1bZ9RXl7eZtuu5r8hcfjw4bzxxhtuD4ktCQoKYuLEibz11lvcf//9ANTV1bF371631LdNa503bx7vvfeeMa03OTnZLfVtioqKADCZTFxxxRVurS0iIh2noCgichlrbGzk119/BZoXYOmoPn36cM011wBw9OhRp21jYmKM24mJiR0+98VitVp5+eWXjZAYERHBm2++2eZ1kp1h5MiRxm3bNZ/uZDKZjH0gXdmrsTWVlZXG1ig33XST2+qKiIj7KCiKiFzGsrKyjIBhH9w6whZeioqKqK2tbbXdhAkTjBDy/fff8/XXXzutW1JS4pb+dYTVauXVV181NqrvzJD4888/txn+bNeWAlx77bXtqn/q1CnS09OdtikuLjZG/kJCQtpV35ns7Gzj9u233+62uiIi4j66RlFEpAs6ceKEscKljW1/PoDdu3c7rE7q5+fHuHHj2n0e26hYSEiIS1sctGT8+PF8//33NDY2kp6ezp133tliu+7du/PKK6/w1FNPUVdXxzvvvMOePXuYPHky/fv3x8fHh/LycnJycti9ezdhYWGYzWa39NFVr732Grt37waag9njjz9OcXGx02OCg4MJDg5u97m+/vprXnvtNSIjI4mMjGTAgAEEBgZy7tw5SkpKSE5ONkaD+/bt2+5tTUpKSnj22WcJCQlhzJgxhIeH06dPH3r27ElVVRXZ2dls377dWL122rRp7X4OrTl48CDQfP3l6NGj3VZXRETcR0FRRKQLysrKYuXKla0+vn79eoef+/bt26Gg6I5ppzZRUVH07t2b0tJSkpKSWg2KANdffz3vvvsuS5cu5dSpU2RkZJCRkdFiW9s1jZ5kv/H9yZMnefzxx9s85qGHHmLevHkunc9isZCamkpqamqrba699lpWrlzpdNsPZ06dOsXWrVtbfbxbt27Mnj2bBx54wKX6/2W1Wtm5cyfQPIrt6tYeIiLSuRQURUQuU8eOHTNGwzq62qk9b29vpk6dyvvvv09aWhqVlZVO92YcOnQoW7ZsISkpiV9++YW8vDzjerjg4GAGDx7MbbfdxqRJk9zWx0vBsmXLOHDgAJmZmRQUFFBRUWFMRQ0MDOT6668nOjqa2NhYl7bjGDZsGOvWrSM9PZ3s7GxKSko4ffo0tbW1+Pr6EhISwrBhw7j33nvdNtoMGO8JgOnTp7utroiIuJdXU1NTk6c7ISIiF9+mTZvYtGkTwcHBbNu2zaW98FpTU1PDrFmzqK6u5rHHHiMhIcFtteXS9sILL5CamkpkZCRr1qzxdHdERKQVWsxGROQyZZt2escdd7g1JELzBuq2cPj555/z77//urW+XJqys7NJTU3Fy8uLBQsWeLo7IiLihIKiiMhl6Ny5c0RHR/PQQw8xderUTjnHtGnTCA0Npaqqii+//LJTziGXlg0bNgAwefJkwsPDPdwbERFxRlNPRUSk0xw9epTU1FT8/f2ZOXOmp7sjHlRTU8PWrVtpampi6tSpTq9bFRERz1NQFBEREREREQeaeioiIiIiIiIOFBRFRERERETEgYKiiIiIiIiIOFBQFBEREREREQcKiiIiIiIiIuJAQVFEREREREQcKCiKiIiIiIiIAwVFERERERERcaCgKCIiIiIiIg4UFEVERERERMSBgqKIiIiIiIg4UFAUERERERERBwqKIiIiIiIi4kBBUURERERERBwoKIqIiIiIiIiD/wORm36Pn6v73gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4oAAAHiCAYAAACutTLmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAChs0lEQVR4nOzdd3wT9f8H8NddkrbpbmnZlL2HoCAiOFkqoijThQqKigtxT3AL7oEo8kNAkKF+RUGQIaAggiJ7I3SwWijdK01yn98faY6kTdK0TXpp+3o+Hnk0zX3u8m6aXO51n8/dSUIIASIiIiIiIqISstYFEBERERERUWBhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicuKToJiUlARJkiBJEu655x5fLLJOuvrqq9XXkYjInXvuuUddVyQlJWldjmru3LlqXXPnztW6HPIxRVFwySWXQJIkPProo1qXQ360ceNG9bM8depUrcshqhL7e/nqq6/WuhSfGzBgACRJwm233eaX5Vdbj+LcuXMxderUOrXCWbZsmfo3Z2VlaV0OlbBYLFi3bh2ee+45XHvttWjUqBGCg4MRHh6O1q1bY8yYMVi2bBmsVmuFlrtv3z48+uij6NChA8LDwxEVFYWuXbviueeeQ3Jysp/+GiIioLi4GF26dFE3iCRJwsaNG336HLNmzcKOHTsQEhKC559/3mWbmrB+TU5OxnPPPYeuXbsiKioK4eHh6NChAx599FHs37+/Qss6d+4cXn/9dVxyySWIjY1FaGgoWrdujXHjxmHr1q0VWpa36sp3zdChQ9X38v/93/9VeP6UlBTodDpIkoTY2FgUFRVVaH7HsOzNzdudY758z+Tn5+ODDz5A3759Ub9+fYSEhKB58+YYPXo0Vq9eXaFlmc1mfPXVV+jfv7/6uW3atCmGDh2KJUuWQAhRoeV5Q4vPjxbef/999X1y1113VWoZbdu2VZexbds29fEpU6YAABYvXow//vjDJ/U6ET6QmJgoAAgA4u6773bZ5qqrrlLb1BV33323+jcnJiaW274uvkbVbf369SI2NlZ9nT3devXqJf777z+vlvvuu+8Kg8HgdlkRERFi0aJFfv7rqK6o6Lqlunz99ddqXV9//bXW5dQpU6dOLbPe2bBhg8+Wn5+fLxo2bCgAiMcee8xlm5qwfl2wYIEIDw93u6ygoCDxwQcfeLWstWvXivr167tdliRJ4qmnnvJqWd6qru+aDRs2qMucMmVK1QuvhB9++EGtoV+/fhWe/7XXXlPnnzhxYoXnd3wNvLl5s87z5Xtmx44dolWrVh5ruuOOO4TJZCp3WYmJiaJHjx4elzVgwACRmZnpVW3eqM7Pj32ZV111lU+WV1GpqalCr9cLACI0NFTk5ORUaP4//vhD/Rs6depUZvq1114rAIg+ffr4qmRVtSWSuhiCAnVjri775ptv1P9JbGysGDVqlPjggw/EokWLxPz588UjjzwiIiMj1TbNmjUTZ86c8bjMmTNnqu0NBoMYN26cmDdvnpg9e7YYOXKkkCRJABB6vV6sWrWqmv5SourHoKiN/fv3i6CgIAFAhIWF+SUovvvuuwKA0Ol04uTJky7bBPr6dcWKFUKn06kboSNHjhSzZ88W8+bNE+PGjXMKYF999ZXHZW3fvl2Ehoaq7QcOHCi++OILsWDBAvHYY485/R9efPFFzy+ul6rzuyYQgmJxcbGIi4tT6/B2x4Jd69at1Xn/+eefCj+/42swevRo8eOPP3q8JScne1yeL98zSUlJokGDBmr7Sy+9VHzyySfi22+/Fc8//7yoV6+eOu3OO+/0uKzMzEzRoUMHtX3Hjh3Fu+++KxYtWiRef/110axZM3XaNddcI8xmc4VfS3++Ft7QOigKIcRNN92k1jF79uwKzTtu3Dh13nfffbfM9HXr1qnTfb2dyaDoRwyKgeebb74RXbt2Fd9++60oKipy2ebkyZOic+fO6v9u7Nixbpd3+vRpdWWn1+vF2rVry7Rx3Hhu1qyZKCws9NnfQxRIGBSrn9VqFZdddpkAIIYOHer0XeuroGg2m9WNxUGDBrltF8jr1/z8fNG4cWO17dy5c8u0WbNmjbrXPzw8XKSmprpclqIo4uKLL1aXNXXq1DJtdu3apYZiWZbFnj173P6d3qju75pACIpCCPH444+rdbz88stez+fYA9OlS5dKPbcvXwNfv2eGDRumLmvcuHHCarU6TU9KShIJCQlqmxUrVrhd1qRJk9R21113XZn3zfnz5516Gz/77LMK/vXOtPj8BEJQ/PHHH9U6rrjiCq/ny8/PFxEREepn39V6yWq1iqZNm6qh25cYFP2IQTHwZGZmCkVRym23d+9e9X9nNBpFfn6+y3aOK9inn37a7fJGjhzps5UsUaBiUKx+H3/8sdqTmJyc7Jeg6LiBM3/+fLftAnn9+tFHH6ltRo4c6XZZTz/9tNrO3bC3ZcuWqW169+7t9m+eMWOG2m7EiBFun9Mb1f1dEyhBcdeuXWodzZs39+r9JYRzD8z7779fqef25Wvgy/eM42uSkJDgdofAL7/8orbr2bOnyzZpaWlOoxHS0tJcttu7d6/aY92wYUNhsVi8+Ktd0+LzEwhBsbi4WMTHxwvANqLh2LFjXs03f/58tf6hQ4e6bee47jpy5IivyvZNUPR0jKLjl5anm7sPodVqFUuWLBGjRo0SLVq0EEajUYSHh4v27duLBx98sNy9DFOmTCnzpblu3ToxZswY0aJFCxEcHFwmyJnNZvHrr7+KyZMni759+4r4+HhhMBhEeHi4aNu2rbj77rvF77//7vY5HQOip5un16o8W7duFffff79o166dCA8PF6GhoaJVq1Zi7Nix4rfffit3/tIfmry8PPHuu++KSy65RERHR4vQ0FDRqVMn8dxzz4mMjIxyl1cbOQ7F2L17d5npiqKIJk2aqB/6lJQUt8vatGlTpfYk+cKWLVvEgw8+KDp27CiioqJEcHCwaNasmRg1apTHvYxCuP6iTE5OFpMnTxbt27cXoaGhIioqSvTp00fMmDHD6yEpubm54sMPPxQDBgwQjRo1EkFBQSImJkb07NlTvPzyy+Ls2bMe5y/9WbFYLOLrr78WAwYMEI0bNxY6nU40b968zHypqani6aefFh07dhShoaEiJiZG9OrVS7z33nvqxmrz5s3VjRJHq1atUp/z0Ucf9ervfPTRR9V5Vq5c6dU83ihvJ5S//m/Lly8XN954o2jQoIEIDg4WzZs3F7fffrvYsmWLEKJiQdFkMonZs2eLoUOHiqZNm4rg4GARFRUlunbtKiZPnux259qhQ4fUnpXIyEhx/Phxt8+RkZGh9oTJsuxxvV0TJSUlqcfb2Y+r80dQvPXWW9VQl5ub65NlVvf6tU+fPmqbzZs3u11WSkqKukGckJDgss1tt92mLmvBggVul5Wfn6/2ihiNRpGXl+e2rSdafNd4G5L+++8/9Tg5SZLcHt+5atUqcffdd4s2bdqI8PBwYTQaRatWrcTdd98tNm3a5LEWx94sb7ZvSvfAuAs/5fFlUPTle+b5559Xl/XGG2+4XZaiKKJNmzZqW1fB5Msvv1Sn33fffR7/hv79+1fo/+BOdX9+hPAuKObn54sbbrhBbTtq1CiXx3fu27dPPPHEE+Kiiy4SMTExIigoSDRu3FgMHTpULFiwoEzvrqMnnnhCXb63PeT24w8BiP/9739u2znuQHjllVe8WrY3Ajoo/vfff6J79+4e55Nl2eOL7RgU169fLx5++GGXy3HcKLn66qu9Dnqu3kT+DIpms1ncf//95S571KhRoqCgwO1yHD80x44dE506dXK7rObNm9fJHtFevXqpr8HWrVvLTHfcK17e0Bar1eo0jKKiBzJXRl5enhg9enS575UhQ4a4raf0F+WqVatEdHS022UNHDjQ7ZAzu5UrV3o8gB2wnZDhp59+crsMx8/K+fPnRb9+/Vy+bx2tX79exMTEuH3Orl27ipSUFLdB0Wq1ipYtWwoAIiYmptxhXYWFherzJSQkePzyqKiKBsWq/t8sFovH9Zosy2LatGleB8V//vlHfS3d3YKCgsQXX3zhcv5Zs2ap7fr06eN27/aIESPUdr46TiyQDB48WAAQF198sfoa+DooFhUVqcH8yiuvrPLy7Kpz/Zqdna2Gv6ioqHI/i45DY/fv319muuPxX+fOnfO4rCFDhqhtf/nlF49t3dHiu8abkLRjxw71ODm9Xi+++eabMm3Onj3rtKHr7jZ+/HhRXFzs8nk++eQTtZ2nocp2jj0wN998c0X+bCe+DIq+fM9ccskl6vTt27d7XJbjNu+MGTPKTB8+fLg6/fvvv/e4LPtxyoDnXu3yVPfnR4jyg+L58+fVIfwAxMMPP1xmPWE2m8Vjjz0mZFn2+F7u3bu322Ov9+zZo7Zr0aJFuT3kycnJ6rorLi7O7WfEzn4ysYsuushju4rwe1DctGmT+PHHH51WvK4OAj548KDTfP/995/TQcz9+vUT77zzjli0aJFYsGCBeOKJJ5w2+tx9iB2D4vXXXy8AW7f5c889JxYsWCDmzp0rJk6cKE6fPq3O07t3bxEeHi5uvvlm8dprr4n58+eLpUuXio8//lhMmDDB6SDbxx9/vMxz/vvvv+LHH38U11xzjdruyy+/LPM3//vvv07zeRMUx4wZo7YJCQkRDzzwgJg3b55YsGCBmDRpkroXDYAYPHiw2zehvU2PHj1Ehw4dhCRJ4uabbxYzZ84US5YsEW+//bbT+Pbq7gXTmslkctqwdvWhX7Rokdv3vSuO/99t27b5oeoLioqKnFZ6rVu3Fi+88IL45ptvxOLFi8Ubb7wh2rVrp06/9tprXW48OX5R3nzzzSI0NFQYjUbxwAMPiLlz54pFixaJJ5980ukz4WnHzffff6+eTMJgMIjhw4eLTz/9VCxdulTMnj1b3HHHHeoJJWRZdrvX0vG1tH+uL7roIvHOO++IxYsXi1mzZolHHnlEbb9//36nA+d79Ogh3n//fbFkyRLxySefiL59+6qhw77n3lWP5FtvvaUuw9OeUCGcT+zx6quvemxbURUJir74v02cOFFtFxQUJO6//34xb9488c0334hHH31UfW0dj5txFxS3bNmitpckSVx33XXigw8+EEuWLBFz584VDzzwgNP/yt1yHDdwXNU+e/Zsdfpll13mkxMwBBL7xrBOp3PaWPR1UPztt9/U5fnqDITVvX7966+/yt1QdOT4+VqyZInTtDNnzqjTXK0jSnPcBpk2bVq57V3R4rumvJC0fv16NZCGhoa6HDFx/vx5pxPKXHTRReLVV18VCxcuFIsWLRIvvviiur719Lelp6c7DY8sr1fbMZguW7asMn++EML5NejSpYvo2rWrCA8PFyEhIaJp06bixhtvFDNnzvS4U14I375nrFarMBqNArCF8/LWa4477x566KEy09u3b+/xu8SR4+tx/fXXl/t3uKLF50cIz0ExJSVFdOzY0eP7XVEUccstt6htGjVqJJ544gkxd+5csXTpUnVEnn16p06d3A6pd2y3fv16j3U7nrl30qRJ5f6d9u0hd+vVygjIy2NYrVb1QNfg4GCxdOlSl+1SU1PVHkdZlsW+ffvKtHF8kwG2wJmdne3x+detW+fxg5+enq72YMiy7Hbok68vj7F48WJ1eoMGDVzu6UxKSnLaU+/uGAXH1yQoKEgsX77c5d/puKyqhJv8/Pxyzxjm7a10wPYHx438iy++2GWbV1991eOKpbSxY8eq7V3tefWl0sezuPoyKS4udqpp5syZZdqUPj14QkKCy7Hv27ZtU08CERMT47J3KiUlRd2wSEhIcDtsfNu2bSIqKkoAEE2bNnW5B630SIVJkyZ57CVw7HGcOHGiy7al1xXuhq7ag2x5G5xXXnmluiF/4sQJj20rqiJBsar/N8eTQkRHR7vcg33o0CH10gmeAl5OTo46FDQ6Olps3LjR5d939OhRdUdVWFiYy73OGRkZ6sH7Op3Oafja4cOH1RAcGRnp9bEg7hw8eNBn66/y9qB74+zZs+pe+SeeeMJpmq+DouPOke+++67KyxOi+tev8+bNq1DQeuWVV9T2r7/+utO033//3eNGZ2lz5sxR248fP77c9q5o8V3jKSh+//336mE7sbGx6tDz0uw7jiRJEh999JHLNrm5uWLQoEHqc7k7Y6Pj6IA5c+a4rTspKUntgalfv36VdhB5e3mMRo0aedzg9+V7Jjk5uUJBa/369Wr7/v37O02zWq3q+l+n05X7Wh0/flxdVuvWrct9ble0+PwI4T4oHjhwwOnwhM8//9zl/I7HON95550uQ6CiKOKFF15Q2z377LMul/XZZ5+pbTz1kCuK4rSjxdUQ/dIcL5PkaVRWRQRkUHS8ds4nn3zise3hw4fVHor777+/zHTHjb+wsDBx6tQpr/6m8hw7dsztF4mdr4Oi4zh9T8c7bdu2TV1RNm/e3OWwLMeV3GuvveZ2WV999ZVX7crj+B6p6s2bL/qqyMjIEI0aNSp348hxrPmnn35a7nIr2r6yTp8+re59vfXWWz22LS4uVo8vadu2bZnppb8o//jjD7fLuuOOOzy2sx+vp9PpxM6dOz3W9X//93/qshYuXFhmuuNn5ZJLLvEYEv/55x+1bZcuXTwehO+4XHdfwo4ni3B3wPjhw4fVNkOGDPH4t1ZGRYNiVf5vN998szrd1Zki7VasWOH0nK6C4vvvv69O//nnnz3+jY49WW+++abLNhs3blSHATVv3lxkZmaK4uJipz22vtgpU3onQlVuvghv9pElzZo1K9O74uugePvtt6vLq+qZB4XQZv1qP+EPAPHkk0+WuyxP7X/66Sd12vDhw8tdVkXbu6LFd427oPjFF1+on7kmTZq43GEthG1klX3+yZMne3yujIwMdeeguzM2Op6YxdMQaMdQXd7zlmfDhg1CkiRx6aWXimeffVbMmTNHfPfdd+Krr74SEyZMUGsGbL17a9ascbkcX75ndu/e7fTdVx5P7bOzs9Vp9erVK3dZFW3vihafHyFcB8W//vpLHaoZFBTktlOqsLBQPVymV69e5Q5dv+KKKwRg20np6hCVjIwMdUeLpx5yx1DtbodaaUuWLFHncZdNKkpGAPrmm28AAJGRkbj//vs9tm3Xrh0uvfRSAMCaNWs8th0+fDgaN27skxpbtWqFhg0bAgC2bdvmk2V6kpSUhJ07dwIAunbtiuuvv95t20svvRTXXnstACA5ORn//vuv27Y6nQ6PPPKI2+n25QDAgQMHKlp2jWO1WjFmzBicOXMGADBkyBCMGDHCZdu8vDz1fkhISLnLNhqN6v3c3NwqVure0qVLUVxcDAB46qmnPLY1GAwYPXo0AODo0aNISkpy27ZHjx644oor3E739F4RQmDhwoUAgP79+6N79+4e6xo9ejT0ej2A8j/XDz/8MGTZ/arsp59+cmqr0+nctn388cc9PhcAPPjgg+r92bNnu2zj+PiECRPKXaY/VeX/ZjKZsGrVKgBAgwYNcOedd7pdzpAhQ9CxY0ePtdjX7e3atcPQoUM9tr322mvV9bW798BVV12F5557DoBtXffggw/ipZdeUtd5d9xxh8eaa6IVK1Zg8eLFAIAZM2YgPDzcr8+XnJys3o+Nja3SsrRavwbqsrwVKN81r732Gh588EEoioL27dtjy5Yt6NSpk8u29s+6JEl48sknPS43JiYGN9xwAwDgjz/+gMlkKtNm8ODB6vpg06ZNSExMLNNGCIH58+erv997773e/WFutG/fHocPH8a2bdvwzjvv4N5778WIESNw33334csvv0RiYqJat8ViwW233YacnJwyywnU919dfi//+uuv6N+/PzIyMhAeHo5ffvkFI0eOdNl29erVOHv2LADgiSee8Li9AUD9zsnJycHWrVvLTI+JicHNN98MAMjPz8f333/vcjlz585V73v7Xo6JiVHvO667q0Lvk6X42KZNmwAAjRo1wq+//lpue/uGX3JyMgoLC53eWI48bSyVlpOTg4ULF2LlypXYu3cv0tPTkZ+f77LtyZMnvV5uZf3999/q/UGDBpXbftCgQfjtt98A2IKsPUyX1q5dO6c3VmlNmjRR72dmZnpbbhktWrSAEKLS81eXxx9/XN0oTUhIcPqg1hT2zw9ge28uW7bMY3vH/+vBgwfRokULl+0uu+wyj8vx9F7Zv38/MjIyAAARERHl1gQA4eHhyMrKwsGDBz22K+9zvX37dvX+Nddc47Ht1VdfXW5d11xzDdq1a4cjR45g3rx5eOONN2AwGNTpZrMZ8+bNAwA0btwYQ4YMKXeZ/lSV/9vu3bvVnQ5XXXWVx5AN2HYCuPt/ZWdnY8+ePQBsodPb9wAAj++BV199Fb/99hu2bduGJUuWqI+3bNkSn3/+ebnP4Y2pU6di6tSpPllWVeTm5uKhhx4CYNvxWV7Y9gX75xaoelCsDevXukhRFDzyyCOYMWMGAKBXr15YuXIl4uLi3M5j/x6Kjo522n5xxx4OTSYTjh8/Xmank06nw9ixY/HOO+9ACIF58+aV+Uxu2rQJx44dAwD07NkTXbp08fpvdKVRo0Yep8fExOCHH37ApZdeir179+L8+fOYOXMmnn322So9L/nXggULMG7cOJjNZsTHx2PlypXo2bOn2/aO21SZmZnlfnedOnVKvX/w4EGX2xXjxo3D0qVLAdgC4T333OM0vaCgQA2QwcHBuP3228v5q2zq1avnVKsvBFxQzMvLw/nz5wEAhw8fxi233FKh+TMzM90GRccNIk82bNiA22+/HampqV61d7UHydfse2ABW7grj2Mbx3lL87SiB2xvULuioqJyn7cme/HFF9UvwgYNGmDt2rUeXx/HPfnevDaFhYXq/YiIiCpU6pljr+CoUaMqNK+nFUtV3iuONf3www/44YcffFITUP7n+vTp0+r9Vq1aeWwbExOD6OhoZGVluW0jSRImTJiAp556CmlpaVi+fDluvfVWdfrPP/+s7n289957yw1X/laV/5vja9emTZtyn8tTmxMnTkBRFAC2L17HL9/yeHoP6PV6fPvtt+jevbu6x9n+WGRkpNfPURM8++yzOHnyJCIjI/HJJ59Uy3PaN+B1Op3b71ZvaLl+DdRleUvr75pPPvkE2dnZAIABAwbgxx9/LLcn277Oz8zMrNR2nCv33HMP3nnnHQDA/PnzMWXKFEiSpE533PEwbty4MvOvWbMGBQUFbp932LBhFaoTsPWKvfDCC7jtttsAAL/88kuZoBio77+6+F7esWMHxo4dCyEEEhISsHbt2nK3qR23Xx5++OEKPZ+79/LAgQPRtGlTnDx5En/88QcSExPRsmVLdfr333+vfp/dfPPNXu+kc/zOc3ztqiLggqJ9ZVRZ9r3frnjzJXf06FEMGTJEfYHbt2+P66+/Hm3btkVsbKxTV/mECRNw7tw5WK3WKtXsDccu97CwsHLbO34YPXXXl9eFXle88cYbeOuttwDYNqzXrVtX7sojOjpavZ+enl7uc9h3gJSe19eq8hny9PmpynvFXzUB5X+u7SMB9Hq9U8+fO2FhYR6DImDbYHnxxRdhMpnw1VdfOQXFr776CoAtUI4fP77c5/O3qvzfHIcJhYaGltve07qpKu8Bs9nscXpcXBxiY2PVdV2rVq1wySWXVPr5AtGmTZvwxRdfAADefvttnx1GUR77jgSr1YqCggKv3gelab1+DdRleUvr7xqLxaLez8/P92p0kD/W+e3bt8fll1+OLVu2IDExEX/88QeuuuoqAM49MCEhIWpwczRhwgSPw/EqO+rJscfo0KFDZaYH6vsvPDwcer0eFosFWVlZsFgs6iEfFV2Wt7R+L1utVvX/XFRU5PTedscf72VZljF27Fi89dZb6pDpKVOmqNMrM+y0dK1V2bHnKOCComPAufLKK/H7779X6/O//fbbakh88cUX8frrrzvtsXJU3vGTvuS4J8XdEFhHjht4/uy98lZBQUG5x5p5KyEhARdffLFPlgUA06dPx8svvwzA1qO0du1ar4asOG7oeDq2z87xC8qbXuHKsn+GJEmCxWIJiJ0Bjp/rV155Ba+++mq1Pbc9vFgsFpjN5nLDojefr3r16mHEiBFYuHAh1qxZg5SUFCQkJCA5ORlr164FYNvz7riHsCZy/L952hNv5+m1c1zW2LFj1eG5vjBx4kSnz9eRI0fw0ksvYdq0aT5Z/qFDh1xuAFZGv379yu3ldWXOnDkQQsBoNCI9PR1vvPGGy3aOr8M333yDzZs3A7CNLqjMesdxT3ZGRkaFg2IgrF8DdVne0vq75vHHH8fBgwfx448/4q+//sLgwYOxevVqj9sW9kMH7OtFX7n33nuxZcsWALaNaXtQdOyBGTZsmF93xpbmONzP1U5GX/7/mjZtCqPRiMLCQpw6darccOdpWbIso3Xr1jh8+DCsVitOnjzp9tCT8pblLa3fy7169cKNN96Ip59+GmfPnsU111yDDRs2uD3WFnD+7jp+/LjPvtfvuecedQfa/Pnz8corr0CSJCQlJWHjxo0AbCOmBg4c6PUyfXmogF3ABcWoqCiEh4cjLy+vWo79K23dunUAgPr16+O1115zGxJzc3Od/iH+5jhW/ujRo+W2d2xTXXuePTl79myFh5+4c/fdd/vs2JYPP/xQHSYSFRWF1atXl3uiFTvHjR1PJwwCbMd42E9GJMtyuSf9qIomTZpg165dEELg1KlTaNasmd+eqyI12VX357px48bqsXHHjx9H+/bt3bbNzMwstzfR7sEHH8TChQuhKArmzJmDqVOnYs6cOerwSq1PYuMLjuuO//77r9z2ntr46z2wcOFC9URJl1xyCdLT05GcnIz33nsPgwcPdjpZT2UtXrzYZzs3NmzY4NWxsKXZ94IXFhY67Xn2ZM6cOer9Ll26VGpDq0WLFvjzzz8B2DZCmjZt6vW8gbJ+7dSpE2RZhqIo2LVrFxRF8bgDzfG45tKhtmHDhqhXrx7Onz+PlJQUpKenewz+npblLa2/awwGA5YsWYIxY8bgf//7n1dhsUmTJsjKysLZs2e92kHnrVGjRuHxxx9XexA/++wzhIWF4euvv1bbuOuB8SaYVEZ5vV6+fM/IsoxOnTrh33//hcViwe7duz2Onijv/delSxccPnwYgO295Sko+uK9rMXnp7SnnnoKkiThqaeeUsPi+vXr0blzZ5ftS393+Sootm3bFv369cPmzZtx/PhxtYd83rx56vp+7NixFTp8xTGXNG/e3Cd1VltXg+NKubzu/SuvvBKAbaPOm40TX0pLSwNgOxGCpy+SdevWqRuE7lTkby6P48lo7D0Wnjj23rk7kU1dN2PGDEyePBmArdd11apV6NWrl9fzd+7cWd1o2r9/v8eN3y1btqjHsvbt29evvbz2PaxA+WcMrS49evRQx87/9ttv5X52fMnxIPUNGzZ4bGvfi+eNfv36qV8sc+bMgdlsVjfM69evr57VrCa76KKLEBQUBAD4/fffyx1mbz+BlitxcXHqXtutW7f65NjuxMRETJw4EYCt53jRokVYsGABdDodFEXB2LFjnTbiqOIcN87sG5TeCKT1a2RkpHpSp+zsbJdnIrQ7ceKEevbfhIQElz0NgwcPBmD7Xve0ji0oKFCPxTUajU7r5ooIhO8ae1gcPnw4AKhh0d3n2P63FhUV4Y8//vBJDYDtf2mvIS8vDz/88AOSkpLU0WdNmzbFgAEDfPZ83nAc+eZuZ4wv3zP2ZQG2M3K6I4Rwmn7ddddVelkAnE4u6WpZ3qruz48rTz75JN5//30Ato6Ma6+9Fvv373fZ1p/bVI47NewB0fHMvaVPclMexxO/devWrcr1AUC1XUdx6NChaht31wyxc7wOyG233Val2hyvf+XNNaWio6MFABEfHy8URXHZxmKxiJ49e6rLdXe9Nft14wCIvXv3lvvc5V1H8eKLL1anu7tejxC268Y5XlvM03UUvbngaUXa1hSzZs1SrzUZFhbmdLHuinC8XtUzzzzjtp3jtfc+++yzypbtlZSUFPU6im3bthV5eXmVXpaniy5XtO1DDz2kTv/yyy8rXZMQFbsuq6+vo+jok08+UdtPnDhRvf/0009X5M+psIpcR7Gq/zf7RbMBiPnz57tdzsqVK9V2gOvrKE6bNk2d/vzzz5fzV3pmsVhEnz591OX93//9nzrt5ZdfVh8fNmxYlZ6npvH1dRQdL9jtzTUIhQjM9avjtRFHjRrldllPP/202u6pp55y2cbx2m69e/d2u60wY8YMtd2IESM8/KXlq+7vGnfrBbPZLEaMGKFO69Onj8jOzi4z/9atW9U2V1xxhcf1bkU5vievueYap4uMv/jiiz57Hm8UFRWJbt26qc/v7pqvvnzP7Nq1S22TkJDg8lp9Qjhfe7Jnz54u25w9e1bdXggPDxdpaWku2+3du1f9TDds2LBK/08tPj/utmM/+OADdVr9+vXFvn37ysybl5cn4uLiBAARGxsrTp8+XaVaHOXm5oqwsDABQERERDh9j/bt27fCy7vuuuvU+VNTU31SY7UFxccee0xt8/vvv3tcntVqFb169VLbP/7448JkMrltX1BQIL7++muxaNGiMtMqGhQHDhyotv/ggw/KTC8uLhb33nuv0waRuw1KxzfgvHnzyn3u8jZ+HQN0o0aNxMGDB8u0SU5OFq1bty73i6IuB8V58+apK7zQ0NAqbUydOnVKhIaGCsB2wd1169aVafP111+rr2GzZs3crtR96cknn3T6Ij1z5ozbtlarVaxdu9blxVl9GThOnDih7ogJDg4u9zORlpYmXnvtNbF79+4y0yoSFIUQol+/fk6BztUFc0tfVN2boJiVlaX+/x1vR44c8aquyqrOoLhp0yZ1ekxMjNi5c2eZNkeOHHG6iLq7oJiXlyeaN28uAAhJksT06dM9Xrw4KytLfPzxx2Lt2rVlpjmGwdIbEWaz2SlEVnXHRE3i66BYVFSkbshcccUV5bYP1PVrfn6+aNy4sdp27ty5ZdqsXbtW6PV6daPZ3YaWoihOO25fffXVMm12796tXpBdlmWxZ88et3+n4+fG1efZ16+FNzytF0qHxcsuu8xlWBw+fLjaZvTo0S7bOC7zhx9+8CrcKooiWrRooa5HGjRooD7P0aNHK/y3unL06FHx7rvvipycHLdtMjIyxA033OC0fszMzHRbsy/fM4478MaPH19mPZqcnCwSEhLUNitWrHC7rEmTJqntrr/++jLvm4yMDNGjR49ytyuFcF7/uPoO8Mdr4Q1P27EffvihOj0+Pt5lWPz000/VNt26dSv3O37r1q1e7zB2/D53/B6dPXu2V/M7io2NFQBE9+7dKzyvO9UWFB33ILRp00bMmDFDrFixQqxatUqsWrWqzIc7JSVFNGnSxOnFe+yxx8T//d//ie+//17MnTtXvPbaa+Kmm25Sv8RcbehWNCj+/PPPTivtm266ScyYMUMsXrxYvP7666Jt27bqxnfTpk09blDu3r1bXU6DBg3Ee++9J5YvX67+zaXf+N5s/I4ZM0ZtYzQaxUMPPSTmz58vFi5cKJ544gkRGRmpTh80aJDbPTV1NSiuXLlS6HQ69W965JFHxI8//ljuLTk52e0yZ86cqS7PYDCI8ePHi/nz54s5c+aIkSNHqhtNer1erFq1ymN93mwweKO4uFj079/f6b1y5513ihkzZoilS5eKBQsWiPfee0/cddddomHDhgKA6N+/f5nl+DJwCCHEr7/+qu69BCAuuugi8fLLL4v58+eL7777TsyePVs888wz4sorr1T/T656IyoaFPfv3+8U6Hr06CHef/99sWTJEvHJJ5+Ivn37CsC2d9y+3mnZsqVXyy694+jqq6/2ar6qqM6gKIRw6i0NDg4WEyZMEPPnzxcLFiwQjz32mLoOdtx4cbeRsHPnTqf1VOvWrcUzzzwj5s6dK77//nsxZ84c8dJLL4lBgwap75VvvvnGaRmbNm1S3x9NmzYVGRkZZZ7n+PHj6vOEhoaKQ4cOeXwdagtfB0UhLmzwG41GjyOCAn39umLFCrU+SZLEyJEjxZw5c8T8+fPF+PHjhcFgUJ/rq6++8ris7du3O61TBg0aJGbNmiUWLlwoHn/8cfUzAZTfy+Xtet+Xr0V5ylsvmM1mp95LV2ExOztbdO3aVW0THR0tJkyYIGbNmiW+++47MX/+fPH222+LUaNGiZiYGDX0eMOxF9F+82ZHhrd27twpAIiQkBAxdOhQ8dprr4l58+aJ77//XsyePVs88MADapDx9jX35XsmKSnJKSD37t1bfPbZZ2LRokXihRdeEPXq1VOn3XHHHR6XlZmZKTp06KC279ixo3j//ffF4sWLxRtvvCGaNWvm9P1WXFzsdlneBEVfvxbeKG879qOPPlLbxMfHuxwFOHbsWKf/96233io++ugjsWTJEvHtt9+Kjz/+WNx3332iZcuW6nebNzZu3FjmvRwaGupxJ4Urjj3NU6dOrdC8nlRbULRYLE579UvfXK2ITp8+7bSx6+mm0+lcrtgrGhSFEOL555/3+Fx9+/YVZ8+eVfeMe+p5uO2229wup/Rr5c3Gr9lsFvfdd1+5r8eIESNEQUGB2+WU96GpbNtAV7rXyNubpxWeEEK8++67ThsZpW8REREue7xL83aDwRsmk0k88sgjThtunm5jx44tswxfBw4hhPjrr79Eq1atvKopPDzc5Z7EigZFIWzDlew9mq5uXbp0cdpB1a1bN6+Wu23bNqflLFy40OuaKqu6g6LFYhF33XWX29dOlmUxffp0px4NT5+ZQ4cOOe2h9nQLDg522gDLzMxU172yLHtcry9YsEBdTo8ePTyOTKkt/BEUly1bpi7T0/DjQF+/CmF7T4SHh7tdVlBQkMvRRK6sXbtWxMfHu12WJEniySefdLvD1q4i631fvhaeeLNeMJvNYtSoUWq73r17uwyLo0eP9vq98PLLL3tVX2JiohqM7bc5c+ZU9c9W2YOiN7eEhASvP2u+es8IIcSOHTvK/S69/fbbvVrvJSYmlrtOHjBggNseUztvg6KvX4vy2JfpaTvWcXi6q7CoKIp4/fXXRXBwsFfvC2+3mRVFKfN/dLU9Vp5nnnlGnd9XPetCVGNQFEKIwsJC8c4774g+ffqImJgYpw1YTxszGzduFA888IDo3LmziI6OFjqdTkRGRopOnTqJ0aNHi5kzZ7odM1yZoCiEEKtWrRJDhgwRcXFxwmAwiEaNGolrr71WfPXVV8JsNgshhFdB0WKxiJkzZ4qrr75axMXFqcNaXL1WFdn4/euvv8T48eNFmzZtRFhYmDAajaJly5bizjvvFL/99lu581fkjVzRN30g89eGjBC2MfwPP/ywaNeunQgLCxMRERGiS5cu4tlnnxVJSUnlzp+fn++0sXL+/Hkf/MW2ITTPPfec6N27t4iPjxd6vV6EhoaKli1bihtuuEG89dZbbod1+CMoCmHbwFiwYIEYNWqUaNmypQgPDxd6vV7ExsaKnj17ivvvv18sWbLE7fGVlQmKQgiRmpoqnnrqKdG+fXthNBpFdHS06Nmzp3jvvfdEfn6+UBRFGI1GAXjfM6goirpnOTY2VhQVFVWopsqo7qBot3z5cjFkyBARHx8vgoODRUJCgrjtttvEli1bhBDC66AohO11++mnn8Tdd98t2rVrJyIjI4VOpxPR0dHioosuEmPHjhVz584t01vouNH53HPPeXwOIYS444471PbeHmNXk/kjKFosFnUY28CBA922C+T1q6OkpCTxzDPPiM6dO4uIiAgRFhYm2rVrJx5++GGXw848OXv2rHj11VfFxRdfLKKjo0VISIho1aqVuOeee9TPRXkcXwtvdhD68rVwx9v1gsVicfpMugqLQthCzaRJk0SPHj1EvXr1hF6vF+Hh4aJt27Zi2LBh4oMPPhDHjh2rUI3XXnut+rxhYWHlnv+iIoqKisSvv/4qpkyZIgYPHiw6dOigbsNFRkaKNm3aiDFjxoiFCxdWeAeUL94zdnl5eeL9998Xffr0EXFxcSI4OFg0a9ZMjBw5ssK9ysXFxWLWrFni2muvFQ0aNBBBQUGicePGYsiQIWLx4sVeBbaKBEUhfPtaeOLtdqzjeQfc9SyePn1avPbaa+Kqq64SDRs2FEFBQSIkJEQ0bdpUDBgwQLz88svir7/+qlB9r732mtN6oKLrbkVR1J5fT+voypCEqOLpOInIJ1avXq2eSeyxxx7Dxx9/rHFFdc/evXvVM4V5+z9Yt26dep2jxx9/HB999JE/SyTSxIcffojJkydDp9MhKSmpQpfJICIi/1m/fj369+8PAFi1alWVzkpbmvZX4iYiABeu4RkREYGXXnpJ42rqps8++0y9f80113g1z8yZM9X7teHaiUSuPPjgg2jYsCGsViumT5+udTlERFTirbfeAgD06dPHpyERYFAkChj2oDh58mTEx8drXE3ts2nTJo/Xb5wxYwZmzZoFwHaB3RtvvLHcZe7atQvLli0DAAwYMMDlNdeIagOj0YipU6cCAGbNmoXTp09rWxAREWHz5s3qNYzfeecdny+fQ0+JAkB6ejrq16+PuLg4HDt2zGcXSaYL2rRpg6KiIlx//fXo0aMH4uPjYTabcezYMfz444/YuXOn2nb58uVug+Kvv/4KRVFw5MgRTJ8+HWfOnAFgW1n37du3Wv4WIi0oioJevXphx44deOSRR/Dpp59qXRIRUZ02YMAA/PbbbxgzZgwWLVrk8+UzKBJRndCmTRscO3bMYxuj0YivvvoKd9xxh9s2kiSVeczb4xnXrFmDgoKC8ot1IS4uDv369avUvEREREQVxaBIRHXC1q1b8cMPP2Dr1q04deoUzp8/j4KCAsTExKBdu3YYMGAAHnroITRo0MDjcuxBMTw8HO3atcNDDz2EcePGQZbLH8nfokULJCcnV6r+q666Chs3bqzUvEREREQVpde6ACKi6nDZZZfhsssuq/JyuG+NiIiI6gL2KBIREREREZETnvWUiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCk9kQEZHmFEVBUVERCgoK1Ft+fj4KCgpQWFio/iwuLlZvJpPJ7e9msxlWqxVWqxWKoqj3HX9XFEW9D9jOaOvuZj+rrSRJ0Ol0MBgM0Ov1CAoKgl6vV383GAxlbiEhIerNaDS6vW80GhEWFobw8HDo9fx6JiIibfGbiIiIfEIIgfz8fOTk5Ki33Nxcl/ftN8cwSBcYjUaEh4d7vEVGRiI6OtrpFhoa6vJan0RERBXFs54SEZFbQgjk5OQgMzMTGRkZLn/a72dlZaG4uLhKzyfLMkJDQ2E0GhEaGoqwsDD1d6PRiHXzN0FSJECRAAW2n0Iqeazk95KbZP92ExIgUHIrCVHiwuNqu5Jm9vsqyeFrUrLfSmaUAVHy0/YYANk2Tcgl92UB6ASun3AtioqKUFhYiKKiIqf7jj+rwmAwICoqyik8RkVFITY2FnFxcahXrx7i4uIQFxeHiIgIhkoiInKLQZGIqI5SFAVZWVk4d+4czp49i3Pnzjnd7I9VNPwZjUZEREQgMjJS/blpyd+QLDJgkUp+ypAsEmCRAasEySoBVhlQAAl1N7wICEAvAL0CoSv1s+TxYZOuQ25uLrKzs5GdnY2srCxkZWWhqKioQs8VFBSkBkjHEBkfH48GDRqgYcOGqFevHofBEhHVUQyKRES1lBAC58+fx5kzZ1ze0tPTYbFYvFpWREQEYmJiEBsbiz3rDkEqlgGzDMksA8W2n5JZZ3tMqbtBT0tCLgmUBgUw2H7a7w+ecBXS09ORnp6O8+fPIzs726tl6nQ6xMXFqcHR1c/g4GA//2VERKQFBkUiohrMbDbj9OnTOHHiBE6ePInTp0+rQTA1NbXc3kBJklCvXj3Ex8cjPj4efy7ebgt+Jh2kYh0kkwwU6yAJhr/aREgCCLJCBCkQQQoQZMXol29Ceno6zp49i7S0NJw9e7bcHQmSJCE+Ph5NmjRB06ZN0aRJE/V+48aNYTQaq+kvIiIiX2NQJCIKcEIIpKen48SJE+otJSUFJ06cQGpqqnrWTldkWUb9+vXRqFEj7P71EKQinS0ElvyEWWYIJJcEBBCkQARb1dvQSQOQmpqKtLQ0pKamlntMZVxcnBoemzVrhubNm6N58+Zo3LgxdDpdNf0lRERUGQyKREQBQlEUpKWlISkpCcePH0diYiISExNx8uRJjxvkRqMRzZo1Q9OmTfH7vG0XgmCRjr2B5Df24ylFiAXCaMWdb92CkydP4tSpUzh16hRycnLczhsUFISmTZuiRYsWaN68ufqzadOmCAoKqsa/goiI3GFQJCKqZvZjB48fP+4UCpOSktwGQp1Oh0aNGiEhIQHbvtsFqVAPqVAHqUhvGypah08AQ4FJ6BWIECtEiAVjpw1HSkoKkpOTkZKSApPJ5HIenU6Hxo0bo2XLlmjTpg1at26N1q1bo1GjRjxDKxFRNWNQJCLyI6vVihMnTuDo0aNON3e9LXq9Hs2bN0fi1lOQCvQXbib2DFLtICCAYCuUUFtP5OCHr0BycjKSk5ORl5fncp6wsDC0bt0arVq1Qps2bdCmTRu0bNmSx0ASEfkRgyIRkY+YTCYkJiY6BcJjx465vGyBLMto2rQpTu5IKwmDBtvPIgZCqpvUYyKNFihhFgx8qC+OHTuGpKQkmM3mMu0lSULTpk3Rvn17tG/fHh06dEDbtm0RGhqqQfVERLUPgyIRUSUoioKUlBQcPHgQBw4cwMGDB3Hs2DGXJ5YJCQlB69atcXBdIuR8PaS8klDIQEhULiEJCKMFIsyCkVNuwH///Ydjx44hIyOjTFtZltG8eXM1PHbs2BGtW7fmJTyIiCqBQZGIyAvnz5/HwYMH1WB46NAh5Ofnl2kXGRmJtm3bYtdPhyDl6yHlG2zHEvIYQiKfEgYrRJgFd384HIcPH8ahQ4dw7ty5Mu10Oh1atWqFjh07okuXLujSpQuaNGnCYx6JiMrBoEhEVIrVakViYiJ2796NvXv3Yv/+/UhLSyvTLjg4GO3bt8f+Vf9Byg2CnGcATDyxDJFWhMEKJdyMO6cPw8GDB3Ho0CFkZ2eXaRcdHa2Gxi5duqB9+/bsdSQiKoVBkYjqPJPJhEOHDmHPnj3Ys2cP9u/fX+akGpIkoXnz5kjZlgY512AbPpqvZygkCmD24x6VCDNGTL0O+/btw+HDh8sc86jX69GuXTs1OHbv3h3R0dHaFE1EFCAYFImozikoKMDu3bvVYHjo0KEyG45GoxGdO3fGzh8OXQiGVlmjionIV4QkIMLNuP+LMdi3bx/27dvn8njHli1bokePHujevTuDIxHVSQyKRFTrmUwm7N+/Hzt27MC///6LQ4cOlTnpTGxsLLKO5EPKCYKcE8TeQqI6Qr1cR6QZNz5zDXbv3o3ExMQy7RgciaiuYVAkolrHYrHgyJEjajDcu3cviouLndo0btwYqTszIecYIOUE2S5LwWBIRACEXoESVYybXrgWO3fudBsce/XqhUsvvRTdunVDSEiIBpUSEfkPgyIR1QpnzpzBtm3bsG3bNuzatavMGUljY2ORdbgAclYQ5OwgSCa9RpUSUU1TXnAMCgpCt27d0KtXL/Tq1QutW7fmWVWJqMZjUCSiGslkMmH37t1qOExJSXGaHh4ejoJkM+SsIEjZwbxEBRH5jC04mjD4yX74+++/y1yWIzY2Vg2NPXv2RGxsrEaVEhFVHoMiEdUYp06dwtatW/H3339j586dKCoqUqfpdDp07twZ+5cfh5wVDCmPxxgSkf8JCAijFQ/NvR3//PNPmXUTAHTo0AGXX345Lr/8crRt25a9jURUIzAoElHAslqtOHDgADZv3ozNmzfjxIkTTtPr1auHzAMFkDODbT2HPCspEWlMSAIishij3r4B//zzD44cOeI0PT4+Hn369EHfvn1x8cUX8/qNRBSwGBSJKKCYTCb8+++/2LRpE7Zs2YLMzEx1mk6nQ9euXbF32X+QM4MhFbDXkIgCmzBYMen7e7FlyxZs377dqbcxODgYl1xyidrbGBcXp2GlRETOGBSJSHPZ2dn466+/sHnzZvz9999OG1Lh4eEoSLRAzgi2hUP2GhJRDSUkASWqGDe+eBW2bNmCs2fPqtMkSUKXLl1w1VVX4aqrrkKDBg00rJSIiEGRiDSSlZWFP/74Axs2bMCuXbucrmsYHx+P83vyoTsfbLt0hWCvIRHVLgICItSCu2fcgi1btuDAgQNO0zt06KCGxqZNm2pUJRHVZQyKRFRtcnJy1HC4Y8cOp3DYunVrJG1MhXw+hBe7J6I6RwRZ8dCC27Fx40bs2bMHjptnbdq0UUNjixYttCuSiOoUBkUi8qvc3Fxs3rwZ69evx/bt253CYbt27XBszWno0kN4XUMiohLCYMWjS8bi999/x86dO8vsVBswYAAGDBjA4alE5FcMikTkcyaTCX/++SfWrFmDv//+GxaLRZ3Wpk0bJP6WaguHRQyHRESeCL2CyT+Ow8aNG7F9+3an9Wm3bt0wcOBAXH311YiKitKwSiKqjRgUicgnFEXBnj17sGbNGmzYsAH5+fnqtFatWiF5w1nI50MgFzIcEhFVhtArePz7u7Fu3Trs2rVLHZ6q0+nQu3dvDBw4EJdffjmMRqPGlRJRbcCgSERVkpKSgtWrV2Pt2rVITU1VH2/QoAHSt+dBPmdkOCQi8jERZMX4OSOwbt06HD16VH3caDTiyiuvxJAhQ3DRRRdBkni8NxFVDoMiEVVYbm4u1q5di9WrV+PgwYPq46GhoShKFNCdNULKMfCENERE1UAxWjDmw+uxbt06nDlzRn28SZMmuO6663DdddfxeEYiqjAGRSLyihACu3fvxooVK7Bx40YUFxcDsA15Euf0kM+FQM4IgaQwHBIRaUFAQESYMfiFy/Hbb7+hsLAQgO0ajb169cINN9yAfv36ISgoSONKiagmYFAkIo+ysrLw66+/YsWKFUhJSVEfb9WqFZJ/OwfduRBIZp2GFRIRUWlCVvDU8vuwcuVK7Nq1S308MjISAwYMwNChQ9G6dWvtCiSigMegSERlKIqCHTt2YPny5di0aZN6lj2j0QhTEqBLNULK49BSIqKaQIRYMPqj6/Hrr7/i3Llz6uNdu3bFsGHDcNVVV7GXkYjKYFAkIlVubi5WrlyJZcuW4dSpU+rjHTp0wH8rTkNOD4FklTWskIiIKktA4K2/nsaKFSuwadMm9fqM0dHRGDJkCG666SY0atRI4yqJKFAwKBIREhMT8cMPP2DNmjUoKioCAISFhaHwPwFdmhFyvkHjComIyJeEwYq7vrwJP//8s9rLKEkS+vTpg2HDhuHSSy+FLHPHIFFdxqBIVEdZrVb8+eef+OGHH7Bz50718VatWiFlTTrkcyGQFG4kEBHVZgICr2x4FMuWLcP27dvVxxs1aoThw4djyJAhCAsL07BCItIKgyJRHZOTk4MVK1Zg2bJl6nUPZVkGzhqgOxPGy1oQEdVRSogFt0y7FitXrkReXh4A22WPbrzxRowYMQINGzbUuEIiqk4MikR1xJkzZ7B06VKsXLlSPWV6VFQU8vZboDsTCqmYZy4lIiJAyAKP/XAXli5dqp7tWqfT4aqrrsKoUaPQqVMnjSskourAoEhUyx09ehSLFi3Chg0b1BMXtGnTBkmrzkJON/K6h0RE5JKAwBt/PomlS5c6DUvt2rUrRo0ahX79+kGn405GotqKQZGoFhJC4N9//8WiRYvwzz//qI9LmUHQnwqDlB3E4aVEROQ1JdSMAS9cirVr16qXTGrSpAluv/12DB48mJfXIKqFGBSJahGr1YqNGzfi22+/xdGjRwHYhguJVAN0p8J49lIiIqoSYbBizGfXY9myZcjJyQEAxMfHY/To0Rg6dCiMRqPGFRKRrzAoEtUCFosF69evx/z589XjSUJCQmA+LkN3OhSSSa9xhUREVJsIWcGEhaOwZMkS9fIaUVFRGDFiBG699VZERERoXCERVRWDIlENZrFYsHbtWsyfPx+nTp0CAERGRiJ/n2I7QY2Fl7cgIiL/EZLApGV3Y+HCher3UGhoKIYPH47Ro0cjMjJS4wqJqLIYFIlqILPZjNWrV2PBggU4ffo0gJIzmO62QpcaCsnKgEhERNVHQOC51Q/gm2++QWJiIgAgLCwMI0eOxMiRI9nDSFQDMSgS1SBWqxXr1q3DnDlzcObMGQBAdHQ0cndZoTtjhKQwIBIRkXYEBKZsfAxz5szBsWPHAADh4eEYPXo0RowYgbCwMI0rJCJvMSgS1QBCCGzatAmzZ89GUlISACA2NhbZ/5ptPYi8xAUREQUQAYGXfnsYc+bMUb+3IiMjMWbMGAwfPpwnvSGqARgUiQKY/TIXs2bNwqFDhwAAERERKNgroDsTxoBIREQBTUDg+TUP4uuvv1ZPtlavXj2MGzcO119/PfR6nmyNKFAxKBIFqEOHDmHmzJnYuXMnAMBoNKL4iAzdqTAeg0hERDWKgMDTK+9zOnQiISEBDzzwAPr16wdJ4o5PokDDoEgUYNLS0vDVV19hzZo1AACDwQAl2QDdyTBIZp3G1REREVWekAQeWDQK8+fPR3Z2NgCgS5cueOihh9C1a1eNqyMiRwyKRAGioKAACxcuxJIlS1BcXAwAkM+GQJ8SAcnEgEhERLWH0CkYPWMwli5dCpPJBAC48sorMXHiRDRu3Fjj6ogIYFAk0pzFYsHKlSsxZ84cZGRkAACkbAP0SZGQ8wwaV0dEROQ/IsiKwa9dhpUrV8JqtSIoKAijRo3CnXfeidDQUK3LI6rTGBSJNLRnzx589NFH+O+//wAATZo0Qdq6fMgZwZDA4zWIiKhumPXfNHz66afYvn07ANsJbyZMmIDBgwdDlnlcPpEWGBSJNJCeno4vvvhCPQ4xIiICBbthu9SFYEAkIqK6R0Bg6u+PY8aMGTh16hQAoEOHDnj88cfRuXNnjasjqnsYFImqkcViwf/+9z/MmTMHBQUFkCQJ0pkQ6JMjIFm4x5SIiEhIAuO/uRXz5s1DQUEBAGDo0KF44IEHEBkZqXF1RHUHgyJRNdm1axc+/PBDJCYmAgCkXAP0x3kcIhERkSvCYEX/KT2xatUqAEB0dDQmTpyIwYMH83IaRNWAQZHIz3JzczFz5kysWLECABAVFYX8fwXkNCOPQyQiIirHeztexAcffKDuaO3evTsmT56MFi1aaFsYUS3HoEjkJ0IIbNiwAZ988ol6NlM51chhpkRERBUkJIF75w3D3LlzYTKZoNfrcdttt2Hs2LEIDg7WujyiWolBkcgP0tLS8OGHH2LLli0AAKlAB/2xKMg5QRpXRkREVHOJYAt6PtZO/X5t3rw5nnvuOZ7shsgPGBSJfEgIgZ9++gkzZ85EYWEh9Ho9xPFg6E6G82ymREREPvLS+ofx4YcfIiMjA5IkYeTIkbjvvvsQEhKidWlEtQaDIpGPpKWlYdq0aeo1oKQcA/T/RUEu1GtcGRERUe0j9AqueaUHVq9eDcB2LeJnn30W3bt317YwolqCQZGoioQQWLVqFT799FPk5+cjKCgI1kPB0J0J5clqiIiI/Oy1zU/gvffew7lz5wAAw4cPx4MPPshjF4mqiEGRqArS09Px3nvvXTgWkb2IRERE1U7oFAx+szeWL18OAGjRogVeeukltGvXTuPKiGouBkWiStq0aROmTZuGnJwcGAwGKEeDoTsVxl5EIiIijbz+52S88847yMjIgF6vx/jx4zFmzBjodDqtSyOqcRgUiSrIZDJhxowZWLZsGQBAytNDfzQKcoFB28KIiIgIQq+g91PtsWnTJgBAt27d8OKLL6JRo0YaV0ZUszAoElXA8ePH8eqrr6oX/dWdCoUuOYJnNCUiIgogAgJP/HwPPvnkExQWFiIsLAzPPvssrr76aq1LI6oxGBSJvCCEwM8//4xPP/0UxcXFiI2NRe4mATmLB8oTEREFqrkpH+KNN97A/v37AQC33norJk6ciKAgXteYqDwMikTlKCgowLRp07BhwwYAgJQZBMPRKEhmHu9AREQU6IQkMPzTa7Fo0SIAQPv27TF16lQ0adJE48qIAhuDIpEHSUlJeOmll5CSkmI7EP6/UOhO87IXREROJBkQitZVEHn02uYn8OabbyInJ4dDUYm8wKBI5Mb69esxbdo0FBYWAiYZhsPRkHM5VIWIqAxJtv2sTFisyrxEFSSCrGh3bwPs27cPADBmzBhMmDABej0va0VUGoMiUSkWiwUzZ87Ed999BwCQsoJgOMKhpkRELtmDnl1FA19V5yeqoNJDUXv27ImpU6ciMjJS48qIAguDIpGD7OxsvPLKK9i5cycAQHcyDLrkcA41JSJyp3TQAyoW9qo6P1ElvbDuIbz99tsoKipC48aN8eabb6J169Zal0UUMBgUiUokJSXhueeew+nTp2E0GmHeEQxdRojWZRERBTZXQQ/wPuxVdX6iKvjiyNt44YUXcObMGYSEhOD555/HNddco3VZRAGBQZEIwNatW/Hqq68iPz8fKNLBcCAacqFB67KIiAKbu5Bn503Y87QMhkWqBkKvoNvDCdi+fTsAYNy4cbj77rshSRxNRHUbgyLVaUIIfPfdd/j888+hKAqkbAMMh2IgWcrZ+CEiovKDIuA57FV1fiIfERC45ZOrsWTJEgDAddddh6effhoGA3caU93FoEh1ltVqxccff4xly5YBAOQ0I/THIiEJ7kEkIvKKN0EPcB/2qjo/kY89+uOd+PDDD2G1WtGjRw+88cYbiIiI0LosIk0wKFKdZDKZ8Prrr+OPP/6AJEmQj4fz+ohERBXhbcizcxX2fLEMIh97Y8uTmDJlCgoKCpCQkIDp06ejcePGWpdFVO0YFKnOyc3NxfPPP489e/bAYDBA7A2F7rxR67KIiGqWioY8wDnoVWb+0ssg8pMvjryNZ555BufOnUNMTAzee+89tG3bVuuyiKoVgyLVKWlpaXj66aeRlJQEWCQYDkZDzgnWuiwiopqnskEPsIW9qs5P5GciyIrmt0fj6NGjCAsLwzvvvIOLLrpI67KIqg3P2EF1xokTJzBx4kRbSDTJMOyNZUgkIqqMqoS8QJifyAtSsQ7J32SjW7duyM/Px5NPPom//vpL67KIqg3XtFQnHD9+HI8++ijOnTsHqUCHoD31IBfwTGZERJUSCD16DItUDSSrjENfpuHyyy9HcXExXnjhBaxbt07rsoiqBYeeUq135MgRPPnkk8jOzoaUp4dhfywvf0FE5AuVDGuSbDtxmFB8tAkSCMGVajUhCVw1pRvWrl0LSZLw1FNPYejQoVqXReRX3FqmWu3AgQOYNGmSLSTmGhgSiYh8qYoBzR4Yq4y9i+RnkpDw+9Q9uOWWWyCEwLvvvovly5drXRaRX3HNSrXWvn37MHnyZOTl5UHKMcCwP4YhkYjI1yoYFkuHQ4ZFqikkSPjlqS0YMWIEAODdd9/FihUrNK6KyH849JRqpcOHD2PSpEnIz8+HlB0Ew4FoSAo3IoiI/MbLoOYuGHIYKtUUAgI3fXgFvv/+ewDAM888gxtvvFHjqoh8j1vOVOscP34cTz31VElINMBwIIYhkYjI34RSpZDGnkWqKSRI+PmJTRg+fDgAW8/iypUrNa6KyPe4NqVa5cSJE5g8efKFYxIPxkBSfLTxQURE5fMQFssLgwyLVFNIkLB88mYMHz4cQghMnz4df/zxh9ZlEfkUh55SrZGamopHHnkEZ8+e5dlNiYi05iKsVSQIcigq1QQCAgPf6olffvkFQUFBmD59Oi6++GKtyyLyCQZFqhVycnLw8MMPIzk5GVKBDoZ9sZDMOq3LIiKq2xzCYmV6CxkWqSYQEOj9XDts2rQJoaGh+Pjjj9G+fXutyyKqMgZFqvFMJhOefPJJ7NmzBzDJCNpTD1IxQyIRUUAoCYuVHVbKsEg1gZAEOj/cGDt37kR0dDRmzJiBZs2aaV0WUZVwXB7VaIqi4K233rKFRItkO3ENQyIRUeAQSpWOPeRxi1QTSELC/pmn0K5dO2RlZeGZZ55BVlaW1mURVQnXmlSjzZw5Exs2bAAUwHAoGnKBQeuSiIjIkSRXuVdQkiXfBUYiP5GsMpIWZKJRo0Y4deoUXnrpJRQXF2tdFlGlMShSjfXzzz9jyZIlAAD90SjI2cEaV0RERO74YghplcIih55SNZDMOkybNg1hYWHYs2cP3nvvPfAoL6qpGBSpRtq7dy8++ugjAIAuORy6dKO2BRERUVmlhntqHhaJqsH9rZ/Bq6++ClmW8euvv+Lbb7/VuiSiSmFQpBrn7NmzePnll2GxWCCnh0B3MkzrkoiIyEu+CosVCozsTaRq9mKf9/DYY48BAL788kv8+eefGldEVHE86ynVKCaTCY8++igOHToEKV8Pw55YSAr3dxARBZxyTh7jq55Br4IngyJp5Pp3L8OyZcsQHh6O2bNno3HjxlqXROQ1bmFTjfLBBx/g0KFDgFmC4WA0QyIRUSDy4gyjvrrsRbmBkyGRNLTymb/QuXNn5OXl4eWXX4bJZNK6JCKvcSubaoxff/0Vq1atgizLMByOhmTSa10SERFVQbWFRSKNSELCq6++iqioKBw9ehQff/yx1iUReY1BkWqEEydO4MMPPwQASImhPMMpEVGgquD1CoUi/HeSG/YmUgC4o9EjeOWVVyBJElasWIGVK1dqXRKRVxgUKeCZTCZMnToVhYWFkLKDePIaIqJAVYWL2vOMqFSbvXDZuxg3bhwA4OOPP8bJkyc1roiofAyKFPC++OILHD16FDDLMByJggRuCBAR1UY+DYvsTaQA8824FejRowcKCwvxxhtvwGKxaF0SkUcMihTQ/v77b/zwww8AAP3RSEjFOo0rIiKiQMeeRQpEEiS88MILCA8Px4EDB7BgwQKtSyLyiEGRAlZ+fj7effddAIB8JhS6zBCNKyIiIo8CpBdPKMI2DLYKQ2GJ/OHOxo/iiSeeAADMmzcPBw4c0LgiIve4BqWANXPmTKSlpQFFOuiTwrUuh4iIvFGFsOiLnsAyw1cZFinATL/uK/Tv3x9WqxVvvfUWiouLtS6JyCWuPSkgbd++HT///DMAwHA0ktdLJCKqSQKkZ1HFsEgBZtObexEbG4uUlBQOQaWAxTUnBZzCwkJMnz4dgG3IqZzDS2EQEdU4FQyLfulNdH6CKi+fyFckq4zHH38cALBw4UIkJydrXBFRWVxrUsBZsGABUlNTgSKZQ06JiGoyL8NitZ18hmGRAsibAz5Hnz59YDab8d5770FRAqwnnuo8rjEpoJw4cQKLFy8GAOgTOeSUiKjGq6ZhqF5fWoNhkQKEBAlPPPEEQkJCsHv3bqxcuVLrkoiccG1JAUMIgU8++QRmsxlSZhDkDA45JSKqFTyERb8POXX9pFV+TiJfuKvJYxg/fjwAYNasWcjPz9e4IqILuKakgPHnn39i27ZtgALoj0dCAq+DRURUawilTGDU9HqHvHwGBYiv7vgeCQkJyMrK4oltKKBwDUkBwWKx4PPPPwcA6E6HQS7Sa1wRERH5hY+Hola4N7E0hkXSmCQkTJw4EQDw3Xff4cyZMxpXRGTDtSMFhJUrV+LkyZNAsQzdyTCtyyEiIj/TtDeRKMC8csWHuPjii1FcXIxZs2ZpXQ4RAAZFCgAmkwlz584FAOhOhkGyavy2tA9H4l5mIiL/EErVewKJahEJEh5++GFIkoTffvsNBw8e1LokIgZF0t7//vc/pKenA0UydKmh2hZTOhwyLBIR+YePwiJ7Jqm2mNjhRQwaNAgAMG/ePI2rIWJQJI3l5+dj4cKFAAD9iXBIQqMvfPYgEhFVv0AIi9V0+Q4ib4wdOxayLGPLli04fPiw1uVQHcctY9LU8uXLkZOTA6lQB/msUZsiyguIDJBERP6jZVhkSKQAM67Fk+jfvz8A9iqS9rgFTJoxm8347rvvAJQcm6jF5TAYAomItBcIPYtEAWLs2LGQJAmbN2/G0aNHtS6H6jBuJZNm1q1bh3PnzgHFMuRz1dybWNGhpgyURET+Vd1hkb2JFKDua/U0rr32WgDAokWLNK6G6jJu/ZImFEXB4sWLAQC606HVe2wiQx8RUWCqrrDIkEgBbsyYMQCADRs22E74R6QBbjGTJrZv347ExETAIlXvmU6rEhIZMImI/I/DUInwSKeX0a1bN1itVixbtkzrcqiO4pYvaeKnn34CAOjOGqvvuokMekRENYM/wyJ7E6mGGDFiBADbNpPJZNK4GqqLuOVM1S49PR1btmwBAMjV0Zvoy0tfMGwSEVUPf4RFhkSqQd7oPwPx8fHIzs7Gn3/+qXU5VAdxq5eq3S+//AKr1Qop2wC5UO/fJ/NlsBMKNzKIiLzhqx10PgqLKu7soxpEgoTrr78eALBy5UqNq6G6iGtMqlZCCKxatQoAoEvzc2+ir0MiERGVz3HdGwBhscy8DItUgyx+3BYQ//nnH6SlpWlcDdU1XFtStTp48CBOnz4NWCXI54P98yS+HGoKMCQSEXnL1bpXw7Dodh6GRaohpCI9evToASEE1qxZo3U5VMdwTUnVat26dQAAOSMYkuKHt5+vv/wZEomIvONp/atBWCy3LcMi1RADBw4EAGzcuFHbQqjO4VqSqo3VasX69esBAPK5EN8/AUMiEZE2vFn/+jAslhcCvQ6UDItUA3w0fC50Oh2OHj2KkydPal0O1SFcQ1K1OXjwIDIyMgCLBDnLx8NOedIaIqLA56Ow6NOT3DAsUoCTLDIuvvhiAOxVpOrFtSNVm7/++gsAIGcGQxI+vBAyj0ckItJORdfBvlpnuwmLlQqQDIsU4K6++moAwB9//KFtIVSncM1I1cZ+DSA5w0e9iTxpDRGRtiq7DvZTWKxSLyPDIgWwj0fNBQAcPnwYWVlZmtZCdQfXilQt0tLScPz4cUDAN8NOeTwiEZG2qroe9nFY9MlQVIZFClBSsQ6tWrWCEAL//vuv1uVQHcE1IlWLnTt3AgCkXAMkS4BsXNgxJBIRacOHYdFnGBYpQF166aUAgG3btmlcCdUVXBtStdi1axcAQM4JqvrCGOyIiLQXaOtiX52ILND+LqISvXr1AnBh5zuRvzEoUrWwB0Up2wdBEeAXORFRIKjqutgf6/KqLJPfLRTAnu87DbIsIy0tDefOndO6HKoDGBTJ79LT03H69Gnb8Ym5Bq3LKYvDjIiIKq+y4cqfoawyy2ZIpAAnWWW0bt0aALB//36Nq6G6gFvI5HdHjhwBAEgFekjWAD1LKcMiEVHlVXR9XB2hjMGPaqEuXboAAPbu3atxJVQXcOuY/E4Nivl63y+cYZGIKDB4uz6uzgAXiDURVUHHjh0BAEePHtW4EqoLuGVMfqcGxTw/DTvlFzwRUWAob32sxfo6EGsiqqR3R30JADh+/DiE8MElYYg8YFAkvzt27BgAQM734/GJvvqiZ68iEVHVBGLwcldTINZK5IFUoIdOp0NOTg7Onz+vdTlUy3GrmPyquLgYaWlpAACpUKdxNV5iWCQiqhpXAUzrUFb6+bWuh6gSJCGhadOmAGy9ikT+xC1i8qvTp09DURTAKgFmP7/deLwiEVHgcFwnB0oos9cRKPUQVUKzZs0A2LaxiPyJW8PkVydPngRg602UIPn/CfnlT0QUOIQSeOvlQKuHqIIaNmwIADhz5ozGlVBtx6BIfqUOOy2qxmGn3Aio2SSZPbre4okMiIjqHHtQTE1N1bgSqu24NUZ+lZGRYbtTXM3HJ1Y1LDJsasMxIDIsemYPiQyLRER1yhcPLwBwYWc8kb9wS4z8yn5GLsnfxye6Utmwx5CoDVfBkGHRtdLhkGGRiKjOsG9TZWdna1wJ1XbcCiO/svcoahIUK4MhURueAiHDojN3oZBhkYiobrAwKFL14BYY+VV+fr7tjlZBsSLBjyFRG94EQYZFm/LCIMMiEVGtZ9/5npeXB4vFonE1VJtx64v8qrCwEAAgKdVwxlN3vAmADInaqEgArOth0dsQyLBIRFS7WS5sU6k75In8oI5veZG/2YMirBoGRcBzEGRI1EZlgl9dDYsVDX8Mi0REtZYECShZzZvNZm2LoVqtjm51UXUxmUy2O1r2KNq5CoQMidqoSuCra2GxsqGPYZGIqPYq2XxhUCR/qmNbXFTdhHoKf23rUDkGQ4ZEbfgi6NWVsFjVsMewSERUO5Vcdezo0aPa1kG1ml7rAqh2k6SSnsQA6FBUMSBqp64EPF/wVcgTApAC6QNIRES+wpPZkD9xq438SuIGKtkxJHrPlz2B/AwSEdVaLVq00LoEqsW45UZ+pdOVjI2QOASuTvNHSKytwZMhkYiIylMyOCo0NFTbOqhWq6VbWhQojEaj7Y6OQbHO8megq21hkSGRiIjKISShbsGHhYVpWwzVarVsK4sCjX0FJhgU66bqCHK1JSwyJBIRkTcctqnUHfJEflBLtrAoUKl7uvQ8gUydU50BrqaHRYZEIiLyls62TRUUFAS9nuelJP+p4VtXFOgiIiIAAELPHsU6RYvgVlPDIkMiERFVgDDYgmJMTIzGlVBtV0O3rKimiI+Pt90JtmpbCFUfLQNbTQuLDIlERFRBIsgWFOvVq6dxJVTb1bCtKqpp7EFRBDEo1gmBENQCoQZvMCQSEVFllGxTMSiSv9WQLSqqqeLi4gBc2PtFVC0CPSwyJBIRUSWNfuUmABe2sYj8JcC3pqima9SoEQBAhLBHsdYLtHAWaPX4mGQIgq5erNZlEBFRNTtx4gQAoEmTJhpXQrVd7d6SIs0lJCTY7gQpEDzzKVUnEcDvtyr2AkqGIOjiYiGFhEAXy5MZEBHVJfagqG5jEfkJgyL5ldFoRIMGDQAAwmjRuBrym0DrvQvkkGhXybBoD4nQ6QBJYlgkIqpDBAROnToFgEGR/C/Atu6oNrKvyEQog2KtxJBYeRUMi7bhpjG2kOiwDIZFIqK6QYRYUVxcjKCgIHVHPJG/BNgWHtVGbdq0AQAo4WaNKyGfC7SQWBNVJCzKEuDq4soMi0REdYIo2ZZq27YtdI47DYn8gFt55HcdO3YEcGHlRrVEIIbEmtSb6MiLsCgZgqCLifa4DIZFIqLa7daXBwMA2rdvr3ElVBcE4JYe1TYdOnQAYBt6KiQfXhaAtMOQ6HsewqI65NRVb2KpZTAsEhHVXocOHQLAoEjVIwC39qi2adCgAWJiYgCZvYrkJzU9JNq5CIteh0SHZTAsEhHVPkISalDs1KmTxtVQXcCgSH4nSRK6d+8OAFCiirUthqou0HoTa0tItHMIixUOiQ7LYFgkIqpdRIQZxcXFiI2N5RlPqVoE2BYf1VYXX3wxAECJZlCs0RgSq4ckVT4kOi6DYZGIqNa44/2bAAA9evSAVMXr8RJ5I8C2+qi2sgdFEVEMIfM4xTpLKLU33PmQrk1LpDzTE2eGtaragiQJ1rZNcfahPr4pjIiINLNjxw4AtqBIVB0YFKlaNG3aFPXr1wdkQIkyaV0OVVZVQp7jvL4Ii7U4cApjEIoaWJHTRuDMjZUfXmRuFodjw8OQ1dXCsEhEVIMJvYL9+/cDAHr27KlxNVRXMChStZAkCX379gUAKLEMijWarwKar0JnLaNr0xJJt8QCAJQgUemwaG4Wh8RbQmGNMQMGBVldLTj34GW+LpeIiKqBEmOC1WpFq1at0LhxY63LoTqCQZGqTb9+/QDYgqIAh5/WaBUNau7aVybw1fKQmHh7Q5jqWdXHKhMW7SHREutwlmGDgsxuVoZFIqIa6IoHbIfw2He6E1UHBkWqNt27d0d4eDgQpEBE8DIZNZ63ga28drU4+FWEq5BoV9GwqATrnEOiXUlY5DBUIqKaQ8gCW7duBcCgSNWLQZGqjcFgwOWXXw4AsMYXaVwN+UR5J6fxVZisaLsaxlNItPM2LJqbxSH5hmD3DTgMlYioRlFii1BYWIiGDRuiY8eOWpdDdQiDIlWrQYMGAQCUuEIIicNPa43qODlNHQ6JduWFRZdDTl0p6VlMntqHgZGIKMBdem9nAMDAgQN5WQyqVgyKVK0uvvhixMbGAgYBJYYntalVSgc5Xx5/WEtDImA7w6k3IdHOHhZThziHRa9Dop1BgalJMTK78rhFIqJAJfQKtm3bBsAWFImqE4MiVSu9Xo8BAwYAAJT6hRpXQz5nD3Q8o6lXHM9wWhFKkIChYQ6GNDqCN8/+iPcz/4cp577BA3+tQVx2bsUWFqQwLBIRBShr/UJYrVa0a9cOLVq00LocqmMkIQTH/1G1SkxMxN133w0IIGh7PKRindYlEVU7XZuWSLytIUxx3vcmAkBwsRlTfvgJI7ZtR5C17LzFOh2+63cJXr1tKEwGg/cLLpYRs1eH+C+2VqgeIiLyDwGBBmOCcOLECTz55JO4+eabtS6J6hj2KFK1a9myJbp37w5IgLVhgdblEGlCnEpFo63FFZonuNiMeTNn4/Yt21yGRAAIslpxx+9/Y96HcxBc7P3ZhQ1ZOjRadQrgvkMiooAgoopx4sQJhIaGctgpaYJBkTQxbNgwAIC1AU9qQ3WQEFAKChC8+QBarPC+R3HKDz/hsv+Ol3sVUgGgz+FETFm83KvlBqUZ0HbWKViSUtT6iIhIW5c/3A2A7USAoaGhGldDdRGDImniyiuvRL169YAgBUocL5VBdVNFwmJ8Tg5GbNsOACjvnHf26SM3/1vuMYtBaQa0mX36Qki0Y1gkItKMEmLBH3/8AeDCznWi6sagSJrQ6/UYMWIEAMDaNA+i3D4SolqiVADzNiyO+usft8NN3QmyWjF683aPbWSTBEtisle1EhFR9bhuah8IIXD55ZejVatWWpdDdRSDImlm2LBhCA8Phwi1QonlpTKoDnATvOxhsfkv7oNg7/+OVeopLzt03O20oDQDWn1zyvMCGBaJiKqVMFjx66+/AgBuv/12jauhuoxBkTQTFhaGW265BQB7FYmUggKEbHIfFsOLKrczxd186pBTd72JjhgWiYiqzfAPB8BsNqNr167o1q2b1uVQHcagSJoaOXIkgoODISIsENEVOwMkUY3iRdhSCgoQsvmgy7CYFxJcqad1NV9QmgFt/u+MdyHRjmGRiMjvhMGKZcuWAWBvImmPQZE0FR0djZtuugkAYGmey15Fqp0qELKU/HyXYfGfixIq99SlzqiuhsTjSZVYGD+fRET+NHTalSgsLET79u1x+eWXa10O1XEMiqS5u+66C6GhoRDhFp4BlWqfSoQrJT/faRiqvn4hrn7yMIShgk9tAC6+Nw8TL9ugPiabpMqFRHWhDItERP4ggi346aefAAAPPPAAJKm8c1wT+ReDImkuOjpaHV5haZ7H6yoSwXkYanCwBT2ahQCjIgHAq+soAgBGRyKsQRgmRO/Dg71/t528ZsHpqhfHsEhE5HNXv3AxLBYLevbsiZ49e2pdDhGDIgWGkSNH2q6rGGKFtWGB1uUQBQT7MFT92mgAgHg9DqJPiFfXURR9QiBejwMARMlGFCkGtF6QXrXeRPUJuJebiMiXlDAz1q5dC8DWm0gUCBgUKSAYjUbce++9AABrszwIvaJxRUQ+UpVQJUkQJhMa/5SEjl9MBIwyxMLGEHdGuh2GKgywTf+2MRBiW8V/mtkcvz99OUTKaUjBlTspjmNNRETkOwICHe5qDCEErr32WrRv317rkogAAJIQHENEgcFisWDChAn477//IKcZYfgvSuuSiHyroqtbSYKktyVCXVwsci5rjvSuOhx88HPgnAX4NgfSlkIgXwHCZIjLjcDtkUC83mkxk870xOErHQKi1QohBISpEpfcYFAkIvIpa3whLO2yYTQa8c0336B+/fpal0QEgEGRAsy+ffswceJEAIBhTyzk3CCNKyLyMW9XuZIESacDJOeBH7r6cTh+XwscfOBzrxbzaWZz/G/yQIRsPli2FIulYmGRIZGIyKeETkHodcXIysrCgw8+yEtiUEDh0FMKKF26dMGNN94IALC0zuHlMqj28SZsuQmJAGA9m45Ws5PQ8cuJ5S7mo8wWbkMiAEh6vfdDURkSiYh87sbp/ZCVlYXmzZtj5MiRWpdD5IRBkQLOAw88gKioKIgwC6yNeWIbqoW8CovuV89qWPzCc1g8XhjvNiSqT+NNWGRIJCLyOSWiGMuWLQMATJo0CQZDBa+BRORnDIoUcKKiovDggw8CAKzNc6EYLRpXROQH7sKXvTexHNaz6Wj1f+57Fj/KbIG9L3X3rpSK9CwSEVGVCVmg4ZAwKIqCwYMH45JLLtG6JKIyGBQpIN1www3o3bs3IAOWttkcgkq1U+mw6GHIqSvuhqF+lNkCPz05ECGbDnhfiruwyN5EIiKfsybk4sSJE4iLi8Njjz2mdTlELjEoUkCSJAnPPPMMwsPDISLMsDbN17okIv8oExYrtlpWw+IsW1j8NLM5lj1VsZCoPnXpsMiQSETkc0pkMZSmhQCAp59+GhERERpXROQagyIFrPj4eEyaNAmA7dqKSqhZ24KI/EWSvB5y6or1bDpafWULi0cL68P4R8VDoloKh6ESEfmN0Cmof50RQgjccMMN6NOnj9YlEbnFoEgBbeDAgbjiiitsQ1DbZ0HIitYlEfmHJFe4N9GRrWcxGXtfvKjqpeh07E0kIvIxAYErX+qGU6dOoX79+njkkUe0LonII15HkQJeVlYWxo0bh/T0dMhnQ2A4Gq11SUT+IcmV7lVUyRIkSQIquxwhIIqLIazWqtVBREROrPULYGmbA51Oh08++QRdu3bVuiQij9ijSAEvOjoar7zyCmRZhlK/CNb6vGQG1VJC8UlAE0IAlVkOQyIRkV8ooWboupgAAOPHj2dIpBqBQZFqhO7du2P8+PEAAEurXChGHq9ItVRJWKxUWJMvDBetbFhkSCQi8i0hK2hySwRMJhN69eqF22+/XeuSiLzCoEg1xh133IFevXoBOgFLhywIHY9XpFpKKBXvXZTLHlNYobBY0ptIRES+IyDQ94XOSEpKQmxsLF566SXIMje/qWbgMYpUo2RmZuK+++7DuXPnIGcEQ38wGhJ40g2qxbw9btFFUFQXUd4xixxySkTkF5amebA2z4Ner8eHH36Iiy6q+gnHiKoLd2lQjRITE4M333wTQUFBUGJNsDbP07okIv/ypmfRQ0gEvOtZZEgkIvIta0wRlBa260BPmjSJIZFqHAZFqnE6dOiA559/HgBgbZoPa3yhxhUR+ZmnsFhOSFQX4S4scsgpEZHPKUYLgnoWQwiBYcOG4aabbtK6JKIKY1CkGql///646667AACWNtlQIrihS7WcD86I6i4ssjeRiMh3hMGK+kODUVBQgIsuugiPPfaY1iURVQqDItVY48ePR79+/QAZMHfMhGK0aF0SkX+VDote9iY6LcIxLLI3kYjIp4SsoNXYejh16hQaNWqE119/HXq9XuuyiCqFJ7OhGq2goACTJk3CoUOHgCIdgvbEQjJX8YLlRIHOfoKbSgRFJ5W9DAcREZUhIGDpmAUl1oSoqCh8/vnnaNasmdZlEVUaexSpRgsNDcX06dPRpEkTIMQKc6dMXjaDaj8fDEOFIhgSiYh8REDA0iYHSqwJwcHBeOeddxgSqcZjUKQaLzo6Gu+//z5iYmIgwi0wd8iCkNhRTrWcUCDMlRxurQgIi9m39RAR1WHWhDwoDQohyzKmTJmCzp07a10SUZUxKFKt0LhxY0yfPh1GoxEiuhiW9gyLVAdUJSwSEZFPWJrkwdrMdhmMJ554wnb+BKJagEGRao327dvjrbfesl1jsZ4JlnZZEGBYpFquomGRvYlERD5jaZQPawvbNZ0feOAB3HzzzRpXROQ7DIpUq1xyySV44403YDAYoMSZYGmXzbBItR97FomIqp21QQGsrXIBAPfeey/uuOMOjSsi8i0GRap1LrvsMkydOhU6nQ5KfBEsbXIYFqn2KwmLHgMjexOJiHzCWr8AljY5AIDbb78d99xzj7YFEfkBgyLVSldccQVeeeUVyLIMpUEhwyLVDUJh7yIRkZ9ZGxbA0tYWEocPH44HHngAklTFyxURBSAGRaq1rrnmGrz00ku2nsUGhbC0z+YJbqhucBUW2ZtIRFRllsb5sLS+EBIfe+wxhkSqtSQhBLecqVb7/fff8eqrr8JisUDOCIb+cDQkhSt1qgMkGZJBb7vPoEhEVGkCAtam+bA2t5245o477sCECRMYEqlWY1CkOuHvv//Giy++CJPJBCkrCIaD0ZAUdqhTHSDJkHQ6hkQiokoSELA2z4O1qe0SGOPHj8fYsWMZEqnWY1CkOmPXrl147rnnUFBQACnXAMOBGEgWhkWqAyTZdvwiERFViJAELK1zoDQoBAA8/PDDGD16tMZVEVUPBkWqUw4ePIinn34aOTk5kAp1trBYpNe6LCIiIgowQlZgaZ8FJbYYsixj8uTJuOmmm7Qui6jaMChSnZOSkoKnnnoKqampgFmG4UA05LwgrcsiIiKiACEMVpg7ZUKEWxAcHIwpU6agX79+WpdFVK047o7qnISEBMycORPt27cHDArMXTJhjS3SuiwiIiIKAEqIBXHDDBDhFkRFReGjjz5iSKQ6iT2KVGcVFBRgypQp2LZtGyAAXWIEdGdCIYEHpxMREdVFSpQJIX0syM3NRePGjfHuu++iWbNmWpdFpAkGRarTLBYLPvjgA6xYsQIAIKcZoT8WCUkwLBIREdUl1oYFEO3yYbVa0bFjR7z99tuIjY3VuiwizTAoUp0nhMDSpUsxc+ZMKIoCKccAw6FoSGad1qURERGRnwlJwNIyB0oj25lNBw4ciGeeeQbBwcEaV0akLQZFohLbtm3Dq6++iry8PMAkw3AwBnK+QeuyiIiIyE+EXoG5fRZEdDEkScL999+PO+64g9dIJAKDIpGTlJQUPP/88zhx4gRglaD/LxK6dKPWZREREZGPKeFm1BtsQGpqKoxGI15++WWetIbIAYMiUSm5ubl49dVX8ffffwMA5DNG6BN53CIREVFtICCgNCiE1LEQZrMZjRs3xptvvonWrVtrXRpRQGFQJHLBarVi7ty5mDdvHgBAytXDcDgakkmvcWVERERUWUIWsLTOhlLfdlmsvn374oUXXkBERITGlREFHgZFIg+2bt2KN954Azk5OYBFgv5IFHSZIVqXRURERBWkhFhg6ZAFEWaBLMu4//77cdttt0GWeVlxIlcYFInKkZaWhldeeQUHDx4EAOhOhkGXEs6hqERERDWAgIASXwTDRcUoLCxEbGwspkyZgh49emhdGlFAY1Ak8oLZbMaMGTPwv//9DwAg5emhPxINuZBDUYmIiAKV0CmwtM6BEm8batq9e3e88soriIuL07gyosDHoEhUAZs2bcK0adNsQ1GtEvSJEZDTjJDA3kUiIqJAokQUo96gIKSmpkKn02HcuHG4/fbbodPxOslE3mBQJKqg9PR0vPnmm/j3338BAHJ6MPTHoiBZeIwDERGR1gQErM3ygZaFsFqtaNSoEaZMmYJOnTppXRpRjcKgSFQJiqJgyZIl+Oqrr2CxWACTDP2xSJ7ohoiISEOK0QJL2yyICAsAYNCgQXjiiScQFhamcWVENQ+DIlEVHD58GK+//jpSUlIAAHKaEfrECEhW9i4SERFVFwEBa5MC6NqZUFxcjPDwcEyaNAmDBg3SujSiGotBkaiKTCYTZs+ejaVLl0IIAZhkGP6LgpwVrHVpREREtZ4SYoGlbTZEpBkA0Lt3bzzzzDOIj4/XuDKimo1BkchH9u7di7fffhsnT54EwN5FIiIifxIQsDYugK69rRcxNDQUjz76KG644QZIEk8yR1RVDIpEPlRUVITZs2fju+++s/UuFsvQH4+EfD6YZ0YlIiLyESXMDEubbIhw27GIPXv2xLPPPosGDRpoXBlR7cGgSOQHu3fvxrRp0y70LmYEQ388EpKJp+QmIiKqLCErsCbkQTQrgqIoCA8Px0MPPYQbb7yRvYhEPsagSOQnJpMJCxYswMKFC21nRrVK0KWEQ3c6lL2LREREFWSNMcHSKhsIUQAA1157LR599FHUq1dP48qIaicGRSI/S0pKwnvvvYc9e/YAAKQ8PfTHIiHnBWlcGRERUeATQVZYWuZCiSsCADRo0ACTJ09Gnz59NK6MqHZjUCSqBoqiYOXKlfj888+Rl5cHoORkN8nhkMwcjkpERFSakASsTfJhaG9BUVERZFnGiBEjMG7cOISGhmpdHlGtx6BIVI0yMjLw5ZdfYtWqVbYHLBJ0J8KhOxMKSXA4KhEREQBYY4pgaZkLGK0AgG7dumHSpElo06aNxpUR1R0MikQa2L9/Pz7++GMcOnQIACAV6GxnR83mtReJiKjuUkIssLbMhRJrAgDExcXhoYcewoABA3iyGqJqxqBIpBH7cNRZs2YhKysLgO3sqLqkCMiFem2LIyIiqkZCr8DaLA9oZoLVaoVer8eoUaMwduxYDjMl0giDIpHGcnNz8fXXX+PHH3+E1WoFBCCnGqE/weMXiYiodhOSgLVRAYxdhXoM/2WXXYZHHnkECQkJGldHVLcxKBIFiOTkZHz55ZfYvHmz7QGrBN3JMOhOh0FSONyGiIhqDwEBJa4IluZ5QIjtOMQ2bdpg4sSJ6Nmzp8bVERHAoEgUcHbt2oXPP/9cPX4RJhn6lHDIZ428/iIREdV4SpQJluZ5EBFmAEB8fDzuu+8+DBo0CDodR9IQBQoGRaIApCgKNmzYgC+//BKpqakAAKlQB11KOOT0EAZGIiKqcZSIYlgS8iCiiwEARqMRt99+O0aPHo2QkBCNqyOi0hgUiQJYcXExfvzxRyxYsADZ2dkAAClfbwuMGcEMjEREFPCUUDOszfPUM5kaDAbcfPPNuPPOOxEbG6txdUTkDoMiUQ1QUFCA7777DkuWLFEP9pdyDdCnhEPKCmJgJCKigKMYLbA2y4MSXwQA0Ol0uO6663DPPfegQYMGGldHROVhUCSqQXJzc7F48WJ8//33KCwsBABIOQboToRDZmAkIqIAoISaYW2WDxFvgn0zs3///hg3bhyaNWumcXVE5C0GRaIaKDMzEwsXLsSyZctQXGw71kPK09sCI4ekEhGRBpRwM6xN86DUM6mP9evXD/feey/atm2rYWVEVBkMikQ12Pnz57F48WL89NNPKCqyDe2R8vXQnQiDfJ4nvSEiIv9TIophaZYHEVOy41KScPXVV2Ps2LFo3bq1xtURUWUxKBLVAllZWVi6dCn+97//oaCgAAAgFeigOx1mu6yGYGAkIiLfERAQUcWwNM1Xz2Kq0+kwYMAA3HnnnWjevLnGFRJRVTEoEtUiubm5+P777/Hdd9+pJ71BsQzdmVDoUkMhWWRtCyQiohpNSAJKXBGsTfIhwiwAAL1ej+uuuw533HEHmjRponGFROQrDIpEtVB+fj5WrFiB7777DmfPnrU9aJUgpxmhPx0KyaTXtkAiIqpRhE6BtWEBrI0KgGAFABASEoIhQ4ZgzJgxPIspUS3EoEhUi1ksFqxfvx5LlizB0aNHbQ8KQD4fDN2pMMh5QdoWSEREAU0EW2BtXABrg0JAZ9tkrFevHoYPH46bbroJkZGRGldIRP7CoEhUBwghsGPHDixevBjbtm1TH5dyDNCdCbWd+IbHMRIREUqOP4w0w9qoAFIDM6xWKwCgZcuWGDNmDPr374+gIO5oJKrtGBSJ6phjx45hyZIlWLduHSwW2/ElKJahSzPajmMs1mlbIBERaULICpT4IlgbFajHHwJAz549MWbMGPTq1QuSxJ2KRHUFgyJRHXX+/HmsWLECP/30E9LT020P2oelngmDlGPg5TWIiOoAxWiB0rAA1vqFgN62WRgcHIyBAwfi1ltvRZs2bTSukIi0wKBIVMdZLBZs2rQJP/74I3bt2qU+LuXroUsNhXwuBJKVZ0slIqpNBASUWJOt97Dk8hYA0KRJE9xyyy24/vrrERERoWGFRKQ1BkUiUh07dgw//vgj1qxZg6KiItuDVglyegh0aUZIuexlJCKqyUSIBdb6hbbew5Kzl0qShD59+uDWW29Fz549IcvcOUhEDIpE5EJubi5WrVqF5cuXIzk5WX1cKtBBTguF7lwIJDOPZSQiqgmELKDUK4K1fqFT72FUVBSGDBmCm2++GY0aNdKwQiIKRAyKROSWEAL79u3DL7/8gvXr11/oZVQAOSMYurRQSFlB7GUkIgpASpgZ1gaFUOIvHHsoSRJ69eqFIUOGoG/fvjx7KRG5xaBIRF7Jz8/H+vXrsWLFChw8ePDCBJMM3Tkj5LMhkAsN2hVIREQQBiuscUVQ6hdChF84c2nDhg1x/fXX44YbbkCDBg00rJCIagoGRSKqsGPHjmHFihVYu3YtcnJy1MelPD3kc0bo0kN4mQ0iomoiZAVKPROs8SVDS0sGeRgMBlxxxRUYMmQILrnkEh57SEQVwqBIRJVmMpnw119/Yc2aNdi6deuF6zIKQMoKsvU0ZgTzrKlERD4mIKBEF0OJL4RSzwToLmzOdezYEYMGDcKAAQMQFRWlYZVEVJMxKBKRT2RnZ2Pjxo1YvXo19u3bd2GCFZAzQiCnh0DODIYkeDwjEVFlCAiIcDOU+CJY44qAIEWd1qRJEwwcOBADBw5Es2bNNKySiGoLBkUi8rnTp09j7dq1WL16NU6ePHlhglWCnBFsC41ZwZAUhkYiIk8EBESEGUpcEaz1itRLWgBAdHQ0+vfvj4EDB6Jjx46QJK5Tich3GBSJyG+EEDh06BDWrVuHjRs34ty5cxcmMjQSEbkkICAizbZLWpQKh0ajEX379sWgQYPQs2dP6PV6DSslotqMQZGIqoWiKDhw4AA2btyIjRs34uzZsxcm2kPj+RDIWUE8ppGI6hxbOCyGNc4EpZ7zsNKwsDD07dsXV111FS699FIEBwdrWCkR1RUMikRU7RRFwcGDB7Fhw4ayoVEBpOwg6DJCbCfC4dlTiaiWEjrFdkKa2CIoMSbAcGGTLDw8HP369cPVV1+Nnj178nqHRFTtGBSJSFNCCDU0bt68GadOnXKaLuXpbSfDyQiGlK+HBA5RJaKaSwRbocQUwRprgogqBhwGUERGRqrh8JJLLoHBwGvTEpF2GBSJKGAIIZCcnIw///wTf/75J/bv3w+nVZRJtoXGzGDI2UE8rpGIAp56ptJYE5RYE0SYxWl6QkICLr/8cvTt2xedO3fmMYdEFDAYFIkoYGVmZuKvv/7C5s2b8c8//8BkMl2YqABSTpAtNGYGQSpkbyMRBQYRZIUSbbINK412HlIqyzK6du2qhsOEhAQNKyUico9BkYhqBJPJhH///Rd//vkn/v77b6SlpZVqIEPOCrYFR54Qh4iqkZBsJ6JRYmzhsHSvYXh4OHr27Im+ffvisssuQ1RUlEaVEhF5j0GRiGocIQRSUlKwbds2/P3339i1axeKi4sdGgBSrgFydpAtNOYGQRLsbSQi3xAQEKEWKFHFENHFUKKKAd2FzSlJktC+fXv07t0bl156KTp27MghpURU4zAoElGNZzKZsHv3bmzbtg3btm1DSkqKcwP7MNVs203KMzA4EpHXBASE0QIRZQuFSlSx03BSAIiNjcWll16K3r1745JLLkF0dLQ2xRIR+QiDIhHVOqmpqfjnn3+wc+dO7NixAxkZGc4NrBKknJIex+xgSHk8vpGILhAQECFW52DocF1DwHbh+65du+Liiy9G79690apVK0gS1yNEVHswKBJRrWY/k6o9NO7atQvZ2dnOjaySbahqjgFyTkmPI49xJKozhCQgwixQIoptxxpGmssEw6CgIHTt2hU9evRAjx49OJyUiGo9BkUiqlMURcHx48exY8cO7Ny5E7t370ZeXp5zIwFI+XpbaMwtCY/FOm0KJiKfEzoFSoRZDYUi3Ox0jCEAGAwGdO7cWQ2GnTp14kXviahOYVAkojpNURQkJiZi37592LNnD/bu3YvU1NSyDYtkyLm23kY51wAp38DrOBLVAPYTz4hwsy0cRpghQi0oPdo8IiICXbp0QdeuXdGlSxd07NgRwcHB2hRNRBQAGBSJiEo5e/Ys9u7dq4bHY8eOQVGch6HZex2lPAPkPAOkXAOkAh7rSKQlAQEEW22BMNwMJdwMEW4p01sIAE2aNEHXrl3VW0JCAmSZQ86JiOwYFImIylFQUIADBw7g4MGDOHjwIA4cOFD2BDmA7VjHPL0tOOYbbEGyUM8zrBL5gRoKwywOodBc5mykgO3EM+3bt0eHDh3QuXNndO3aFbGxsRpUTURUczAoEhFVkBAC586dU4PjoUOHcOjQIRQUFJRtrMDW05hvgJxn+ykV6HmyHKIKEFLJ8NEws+2kMyU/oS+7CWMwGNC6dWt06NABHTt2RMeOHdGsWTPodDzOmIioIhgUiYh8QFEUpKSk4ODBgzhy5AiOHj2K//77z3V4BIBCHeR8PaSCkuBYoIdUpGPvI9VpAgIIUmwXs3cIhsJoAVzsW9Hr9WjZsiXatGmDDh06oEOHDmjdujVPOkNE5AMMikREfqIoClJTU9XQePToURw9ehTnzp1zMwNsQ1UL9RfCIwMk1ULqsNFQq+1C9qEXbq6OJwRsJ5tp06YN2rZtq/5MSEiAwWCo5uqJiOoGBkUiomqWlZWFY8eO4ejRo0hKSkJiYiKSkpJQWFjoegY1QOogFTn/hFnmCXQoYAmdYrtwvdFy4afRAhFqdRsIdTodmjZtihYtWqBNmzbqrX79+rygPRFRNWJQJCIKAEIIpKWlOQXHxMREJCcnuw+QAGCRbD2OhfoLPwt1kEwMkVQ9hKxAGK1lA2GItcxF6x3p9Xo0a9YMLVq0QIsWLdCyZUu0aNECTZo0YS8hEVEAYFAkIgpgiqLg7NmzSEpKwsmTJ3HixAn1Z1paGjyuwq2AZNJBKtIBJr16X33MIjFIUrmEToEItkIEW4EQq3pflNx3dZZRRzExMWjatKl6a9asGVq2bIkmTZpAr9dX019BREQVxaBIRFRDmUwmnDlzRg2P9gB56tQppKenew6RgO1yHiYdYJIhFesgFdt+Ov7OXsnaS0AAOgERZOv5E8FWiCDF+XcvgiAAREVFOYVBx1tYWFg1/DVERORrDIpERLVQcXExzp49i9TUVKSmpuLMmTM4c+aMev/8+fPeLUgBUGwPjjrbfbPtBrPzfVjZQxkIhCwAgwJRcoPBWvJTcQ6CQYrb4wRLi4qKQsOGDd3eGAaJiGofBkUiojrIZDKpQTI9PR3nzp1Tb+np6UhPT0dmZmb5vZKOFFwIj8UyYLHdJKtke9xSEiYtsm3Ya8l0KGDAdEFIAtArEHrnn9CVeswpFHof/uzCw8MRHx+PuLg4xMfHo169eoiPj0d8fDwaNWqEhg0bIjQ01E9/JRERBSoGRSIicsliseD8+fNqeDx37hyysrKQlZWFzMxMp5vHE+6UR0FJYJRsobLkpt5XZOfHFQlQJNt8ouzvUCRIDvdh/5YTAFDye8lj5QVUcaGhw09h+ykBkAUgCQgZgCRsv5fcFw73IQsIXcl0XcmQz5KftmlKqccVoArXhzcYDIiOjkZMTIzTz9jYWDUQxsXFIS4uDiEhIZV/IiIiqrUYFImIqMqKiorUAGn/mZOTg9zcXLe3vLw8WK1WbQt3DJH2+/YQCIefGpEkCWFhYQgPD0dERITTzf5YdHS0eouJiUFMTAxCQ0N5KQkiIqoSBkUiItKEEAIFBQXIzc1FQUEBCgoKUFhYiMLCQo/3i4qKYDabYTabUVxcDLPZDJPJ5PS7/b6/g6hOp4PBYFBvQUFBbu+HhoYiJCQERqMRoaGhMBqNTjf7NKPRqIbB0NBQ6HRV6FokIiKqJAZFIiKqtRRFgaIosFqtEEKUue84XVEUyLIMSZIgy7J6c/zdfl+SJOj1eoY4IiKqtRgUiYiIiIiIyImsdQFEREREREQUWBgUiYiIiIiIyAmDIhERERERETlhUCQiIiIiIiInDIpERERERETkhEGRiIiIiIiInDAoEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicsKgSERERERERE4YFImIiIiIiMgJgyIRERERERE5YVAkIiIiIiIiJwyKRERERERE5IRBkYiIiIiIiJwwKBIREREREZETBkUiIiIiIiJywqBIRERERERETvRaF0BEVBFCCBQVFWldBhFRhYSEhECSJK3LICLyGoMiEdUoRUVFGDx4sNZlEBFVyOrVq2E0GrUug4jIaxx6SkRERERERE7Yo0hENVbQ3/UhiZL9XZIMSZYASQZkCSgZ4iXJsu2+VPJTliBJJfPY25U8rt4HSj3mvEzbzwvThSRd2O0mXViO+rjDfI6PCfsoNKnkd9n2i5Ac54E6j5Ckkt/hsLyS+WWpZDm2SfZl2Kc7LlPYlyvD7fKcfqL0Y6XrcDMPLjzmNB0e5nPxfO7qKDOPm+U61yGc5i9dozrdYVmi5HGUqg+ScJhfqNOkMu0dp9nuX/h5YTmSJC68BUsev/CvEep0GUL93f58csnvtmm2edTHHH/iwnPJpW8l02y/w+lx+3PJkqI+JkNAlhTo7NNKflenS4q6PJ36mIAOtjYAoJMUh/kU6Bzms9+3t3ecT4Yomdf2/LZp9vlsj0lQoLPPjwvPpwNs88H2fPbXw/677bmEOk2WSmpR70vqx10nSZAhlTwmlfwul7xFJJiLdRh+f0MQEdVEDIpEVHNZpQubbJIMCSWhTt0Ch226JAHyhVSkzuOUOGSgdBK4kMLKphjJYV6npOLq8VKJqsx9hzaSPfBJDs2kUj9Rqi2cQ2OZ+eBimSgJrO6W56Zcl3W4ubmb5u6l8mY+T/PAfYj0W1AsPb3UtNJB8cLjwuk5XU2zh7ML0xynC4f5HB4r81zON8egWObmblpJeAJwIUBCOAVKwB4UoQYtuaSOC0FRuRC0SqbZglXJT0myhbiS96n9vr29DpJDKAV00oWfupLa7POVmQb789lDnygJmBfCsT0cegqKrpYn48Jjtt8da3T4HxIR1TAcekpEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGRE15HkYhqLp2AELaLbNuuCyg5/LRfxA2lrkMolbpuoP0mLtz3ZprDRfwuXBYdbh6/8FM43YfTfAIAhHo1O3WKgAQIqPOK0vOUzFdW6cfsFw50KqnU64GyN5R+TPIwrdTTVnRaecv0NI/9rsf5RDnLFHBdo5vrKKLsfJKH6yhKjtdIlBzawn79Qse3l5vrKKLy11EU9neMJCBK30qmiZJrSTo+rqjPpVx4HghAUhyu9yicpgtJUZdnf26hTnOoo+R3ueS+/bqM9vuOPxWHj7UiXfip4MJ1FJWSxyS4u46iBBm26zPq7C9VyeP26zHqAHWa7LAM9TqQ6vIuLEuGpP5u+7dIMBe7+lwSEdUMDIpEVGMVX3pW6xL8w74dXgWlIyoRcOFtJWALVDWP4zubg6KIiPyJa1kiIiIiIiJyIgkhqrjfmoio+gghUFRUhKKiItx8880AgJ9++gkhISEaV1Z78bWuHnydq48Wr3VISAgkiX38RFRzcOgpEdUokiTBaDQ6PRYSElLmMfIPvtbVg69z9eFrTUTkGoeeEhERERERkRMGRSIiIiIiInLCoEhEREREREROGBSJiIiIiIjICc96SkRERERERE7Yo0hEREREREROGBSJiIiIiIjICYMiEREREREROWFQJCIiIiIiIicMikREREREROSEQZGIiIiIiIicMCgSERERERGREwZFIiIiIiIicqLXugAiqv0KCgqwePFi/P7770hNTYUsy2jWrBmuvfZaDB8+HAaDodLLzsjIwLfffou//voLaWlpCA4ORsuWLXHddddhyJAhkCTJ4/ynTp3Ct99+i3/++QcZGRkwGo1o164dhg4diquvvrrSdWklEF/rkydPYvPmzdi1axeOHTuGjIwM6HQ6xMXFoVu3brjlllvQvn37StelhUB8nd15+umnsW3bNgBA9+7d8cknn1S6Ni0E+mt98uRJLFu2DP/88w/Onj0Lq9WKmJgYtG7dGr169cItt9xS6fqIiLQkCSGE1kUQUe2VmpqKxx57DKmpqQCAkJAQKIqC4uJiAEDbtm3x0UcfISIiosLLPnz4MJ566ilkZ2cDAIxGI4qLi2G1WgEAl156Kd5++223G5J//fUXpkyZgqKiIgBAWFgYCgsLoSgKAOCGG27As88+W+ENc60E4mu9d+9ePPzww06PhYaGwmw2w2w2AwBkWcZdd92F8ePHV7guLQTi6+zOqlWr8Pbbb6u/17SgGOiv9dKlSzFr1iy1npCQEEiShMLCQgBAeHg4Vq5cWeHaiIgCAYMiEfmNxWLBfffdh+PHj6NevXp48cUX0bNnTyiKgg0bNuDdd99FQUEBLrvsMkyfPr1Cy87Ly8Odd96JjIwMJCQk4KWXXkKHDh1gNpuxfPlyfPbZZ7BYLBg2bBgmT55cZv7Tp0/j3nvvRWFhIbp27YrnnnsOzZo1U3sv5s6dCwB48MEHcfvtt/vi5fCrQH2td+7cicmTJ+Pyyy/HwIED0aNHD0RFRcFqteLIkSOYMWMG9uzZAwB45plncOONN/rsNfGHQH2dXTl//jzGjh0LIQTq1auH5OTkGhUUA/21XrJkCWbMmAGdTofbbrsNN954Ixo3bgwAyM3NxcGDB/HPP/+U2VFCRFRT8BhFIvKbX3/9FcePHwcAvP766+jZsycAWw9S//798dRTTwEAtm7din///bdCy168eDEyMjIQHByM6dOno0OHDgAAg8GAW2+9FePGjQMALF++HCdOnCgz/5w5c1BYWIjY2Fi88847aNasGQBbb9e4ceMwdOhQAMA333yD3NzcSvz11StQX+smTZpg/vz5ePPNN3H11VcjKioKAKDT6dCxY0d8+OGHaN26NQBg4cKFlfzrq0+gvs6ufPDBB8jNzcXEiRMRExNToVoCQSC/1seOHcOXX34JAJgyZQomTJighkQAiIiIwKWXXsqQSEQ1GoMiEfnNr7/+CgDo0aMHunTpUmZ6//790ahRI6e23lq9erW6DMcNNLtbb70VRqMRVqsVa9eudZpWWFiI33//HQAwbNgwl8PW7rzzTgBAfn4+Nm3aVKHatBCor3X9+vXVEO6KwWDAoEGDANiOFw30UB6or3Np69evx6ZNm9C9e3cMGTKkQnUEikB+rRcsWACLxYIrrriiRh7LTETkDQZFIvKLoqIi7Nu3DwBw2WWXuWwjSRJ69+4NAPjnn3+8XnZKSgrS0tIAQJ2/tNDQUHTr1s3lsvfu3QuTyeRx/kaNGqF58+YVrk0LgfxaeyMoKEi9bz8+LBDVlNc5OzsbH3/8MYKCgvD000/XmGNsHQXya+24o8m+k4OIqDZiUCQiv0hOTlZPCtOyZUu37ezTMjIykJOT49Wy7cPRylt2q1atAABJSUlu57e38TR/YmKiV3VpJZBfa2/s3LkTAFCvXj11aGogqimv88cff4zMzEyMHTvWY29uIAvk1/rgwYOwWCwAgPbt22PPnj14/vnnMXToUAwYMACjRo3C22+/7fQ8REQ1EYMiEflFenq6ej8+Pt5tu7i4OJfzeHL+/PkKLTs/Px8FBQVlniciIgLBwcHlzu/4fIEokF/r8uzbtw+bN28GANx4440B3ftVE17nP//8E+vWrUPLli1rxEmY3Ank19rxmMUNGzbg0UcfxZ9//oni4mLodDqkpqZi1apVuO+++3jGUyKq0RgUicgvHDesPIWxkJAQl/P4c9n2U9c7Tvc0f0WCjxYC+bX2JCsrC6+99hoURUHTpk1x2223eTWfVgL9dc7Ly8P7778PWZbxzDPPQK+vuZdKDuTX2vE42i+//BJt2rTBF198gdWrV2P16tX44osv0Lp1a1gsFrz77rs4cOCAV3UREQUaBkUiIqp2BQUFeP7555GamorQ0FC89tprCA0N1bqsGm3GjBlIT0/HsGHD0LlzZ63LqbUcryoWFBSEadOmoVOnTupjnTp1wjvvvIPg4GBYrVZ88803WpRJRFRlDIpE5BeOG/32E8e4Yr/Yfel5/Llso9FYZrqn+QM9wATya+1KYWEhnn32Wezfvx9GoxHTp09HmzZtvKpHS4H8Om/fvh2//PIL4uPjMWHCBK+eM5AF8mvteH/AgAFOw1/tGjRogAEDBgAAduzYEdAnaSIicodBkYj8wnHj6dy5c27bOR5X5GqDy5V69epVaNlhYWFOG3f258nNzfW4oWif3/H5AlEgv9al2UPi7t27YTQaMW3aNPXskoEukF9n+wXnH3roIQC2HlvHm/3EMIqiqI8FcngJ5Nfa8XnsZ0Z2pUWLFgBs73lvT7RDRBRIGBSJyC+aN28OWbatYjydNdQ+LTY2FpGRkV4t2/FMpZ6WbT/roH2DzdX8ns5MaJ/m6cyIgSCQX2tH9pC4a9cuhISEYNq0aejevbtXdQSCQH6dU1NTAQCvvfYarrvuujK3PXv2AAD27Pn/9u4+purrjuP4myIKExTaGbkU69QiZZsOBbWoUJ+KyOrW+TSdiXbO2C61NHHNNKRKW1vtZpx2NXGdmdrO0gfbiG3WlgXFqgMUrCIpQhGEVqGMBwGxF/AC+4Pc3+5VHuQC3kv9vJImt9zz+/7OPSHIh3N+55w3vpaWlnZbfXMGVx7rMWPG3NZ9bJeouvImTSIiHVFQFJE+4enpaRySferUqXbbtLa2cvr0aQAmTZp027VHjBjB8OHDO61tNpuNX45vrj1u3DhjEwvr/W/27bffUlJS0u2+OYMrj7Vtmz/+8Y+cO3fOWG7an0Ii9I9x/r5w5bEODAwkICAAwPgZ0R7rsRqDBw++7RArIuJKFBRFpM/ExMQAbefktbfzX2pqKqWlpXZtb4ebmxtz584F4OjRo5SVld3S5tChQ5jNZtzd3Xn00Uft3vPy8uKRRx4BICkpifr6+luuT0xMBNqeR4qMjLztvjmLq441/D8k2i437W8h0cpVx/n48eOd/mcd79DQUONrrv597apjDTBv3jwAUlJS2j2Wo7y8nCNHjgDw8MMPG7OjIiL9iX5yiUifiYmJYfTo0bS2trJx40bOnDkDtD0nlZqayrZt2wCYMmUKYWFhdtfu3buXqKgooqKi2v1FbunSpdx77700NDSwfv168vPzAbhx4wZJSUn84x//AGD+/PntHjq+atUqvLy8qKqqYsOGDcbZaGazmf3793P48GEAVqxYgY+PTy+NSN9x1bFuaGhgw4YNRkjsjzOJtlx1nL+PXHmslyxZgr+/v3G9bZDNzc1lw4YNNDY2MmjQIFauXNk7AyIicoe5tdouohcR6WVlZWU8++yzxjNUnp6etLS00NTUBEBQUBA7d+68JYzt3buX/fv3A/Dee+9hMpluqZ2fn89zzz1HbW0t0Db719TUhMViAdqWjG3dupWBAwe227f09HQSEhKM3Q29vb0xm83GJh+xsbGsX7++3zxf5Ipj/dlnn7Flyxag7SgBb2/vTj/D5s2bGTduXDc/+Z3liuPclbi4OM6dO0doaCh//etfu3WtM7nyWJeUlLBu3TpjQxzrbsrWc1q9vLxISEhg6tSpPRkCERGn6b+n8YpIv2Aymdi/fz/vvvsun3/+Od9++y0DBgxg1KhRzJ49m4ULF+Lh4eFQ7eDgYN58800SExNJS0vjv//9L56enowePZqYmBhiY2M7XfIVERHBvn37SExMJDMzk+rqary9vQkKCuIXv/gFM2bMcPBTO4crjrXt3yKbmpqorq7u9D7WX9JdmSuO8/eVK4/1yJEjefPNN3n//fc5ceIEpaWltLS08MADDzBp0iR+/etf4+/v7+hHFxFxOs0oioiIiIiIiJ2758+SIiIiIiIiclsUFEVERERERMSOgqKIiIiIiIjYUVAUEREREREROwqKIiIiIiIiYkdBUUREREREROwoKIqIiIiIiIgdBUURERERERGxo6AoIiIiIiIidhQURURERERExI6CooiIiIiIiNhRUBQRERERERE7CooiIiIiIiJiR0FRRET6zGuvvUZUVBTPPPOMs7siTlZfX8/Pf/5zoqKiOH78uLO7IyIiXRjg7A6IiMitrl+/TkFBAXl5eeTn55Ofn8+VK1dobW0F4L333sNkMvXJvVtbW1m0aBEVFRUsX76cJ5980qE6BQUFJCUlAbBmzZpe7KFzFRUVcfr0aXJycigqKqKqqorm5mZ8fHwYM2YMERERxMTE4O3t7eyuuhRvb2+WLl3Knj17eP3115kyZQqDBg1ydrdERKQDCooiIi4oLi6OgoICp9w7Ly+PiooKACIjIx2us3v3bpqbm5kyZQrjxo3rre45VVxcHOfOnWv3verqaqqrq8nMzOTAgQPEx8czefLkO9tBF7do0SIOHjxIeXk5H3zwAcuXL3d2l0REpANaeioi4oKsM4fQNhMzYcIE7r333jty7xMnTgAwbNgwQkJCHKpx/vx5srKyAL5XYcAaoH18fIiNjSU+Pp5du3axZ88eXnrpJSIiIoC20BgfH092drYzu+tyvLy8WLhwIQCJiYl89913Tu6RiIh0RDOKIiIuKDY2Fl9fX4KDgwkMDMTNzY24uDiqq6v7/N7WoDht2jTc3NwcqvHOO+8AYDKZ+NnPftZrfXO2wMBAVqxYwezZsxk4cKDde8HBwcyYMYO3336bN954g6amJrZv385bb73lpN66pujoaPbu3cu1a9f417/+xeLFi53dJRERaYdmFEVEXNCiRYuYM2cOI0aMcDisOeKbb76hpKQEcHzZaUVFBenp6QDMnTv3jva/r23bto158+bdEhJtLV++nKCgIACKi4spLCy8U93rF0wmE+PHjwfgo48+cnJvRESkI5pRFBERg3U3SutyV0ekpKTQ0tICwKxZs27rGovFwtGjRzl58iR5eXnU1NTQ3NyMr68vo0ePJjw8nDlz5nDffffZXRcVFQVATEwM8fHxfP3113zwwQdkZmZSWVnJ4MGDGTt2LL/5zW8IDQ01rmtsbOTTTz8lOTmZy5cv09DQQEBAAI8++iiLFy/u8SYrEydONJ4x/eabbxgzZozDtYqLizl8+DDZ2dmUlZXR0NCAt7c3Pj4+mEwmwsLCmD59Og888IBD9S0WC//+979JTU2lqKiI2tpa3NzcGDJkCL6+voSEhBAeHs60adPw8PCwu/bm8S8uLubQoUNkZWVRWVmJ2WzmlVdeueWPDrNmzSI7O5uSkhLy8vJ46KGHHBscERHpMwqKIiJisC47jYiIYMAAx/6JSEtLA9qe4xs5cmSX7S9evMimTZu4fPnyLe9VVFRQUVHBqVOnKCwsJD4+vsM6x44dY8uWLTQ0NBhfa2xsJCMjg1OnTvHcc88xf/58KisriY+PJy8vz+76S5cu8fe//52MjAy2b9/eo7BosViM1/fc4/jincOHD7Nz506am5vtvl5bW0ttbS2XL18mMzOTwsJCNm7c2O36NTU1/OEPf2h34yTr2BcUFPDRRx+RmJhIYGBgh7U+/fRTtm/fTlNTU5f3td3cKC0tTUFRRMQFKSiKiAgAlZWVXLhwAXB82WlTUxNffvklACEhIV0uOy0oKGDt2rWYzWYAJkyYQHR0NCNHjsTDw4Oqqipyc3O7PHevsLCQo0eP4ufnx5o1a4x7nzlzhn/+8580NDSwY8cOQkNDefnll7l48SKPP/4406dPx9fXlytXrvDWW29RWFjI+fPnSUxM5Le//a1DYwDwxRdfGK9HjRrlUI2ioiIjJA4ZMoT58+cTGhqKr68vzc3NVFVVkZ+fT0ZGhsPLe3fu3GmExLCwMKKjozGZTAwePJjr169TUlJCdna2sZS4I/n5+aSkpDBkyBAWL17MuHHj8PDwoLi4GH9//1vajxo1Ci8vL8xmM1988QWrVq1yqP8iItJ3FBRFRASAkydP0traysCBA5kyZYpDNQoLC43ZtODg4E7bWiwWNm3aZITEZ5991tgR09bUqVNZvXo15eXlHdYqKCggKCiInTt34uPjY3z9xz/+MYGBgSQkJGCxWFi7di11dXVs27aN8PBwo93YsWOZNGkSK1asoLKykqSkJFasWIG7u3u3Pj+0Ld+9dOkS0BaWR4wY0e0aAKmpqcZM4o4dO4znHm1FRkayevVqamtru12/sbHRCOCRkZG8/PLLtwTO0NBQfvnLX2I2mzudGb106RKBgYHs2rXLbnfejnbNdXd3Z+zYsWRnZ/PVV1/R0tLSo5lXERHpffqpLCIiwP+XnYaHh+Pl5eVQDdvlo10d55GSksKVK1eAtl1e2wuJtoYPH97p+xs2bLALiVYzZsxg2LBhAFy9epUFCxbYhUQrb29v5s2bZ7QrLi7u9H7tqays5C9/+QsAbm5u/P73v+92DSvrDrfe3t7thkRbQ4cO7Xb9a9euGaE+NDS001lJLy+vLpfirlu3rltHuFjbNjQ0UFlZedvXiYjInaGgKCIi1NfXc/bsWcDxZacAVVVVxushQ4Z02tYaTAGWLVvm8D2hbSljR2HKzc3N7r3o6OgO69i2Ky0t7VYfGhoaiI+PNwLezRvodJc13NbX15OamupwnY4MHTrU2L31yJEjPTrTcNiwYe2G787Yfn/Yft+IiIhrUFAUERHS09OxWCy4u7szbdo0h+s0NjYar9ub3bP11VdfAW0zS7ez6U1nurreti+d7Q5q2647wenGjRs8//zzxgY506dPZ/Xq1bd9fXuio6ONWbyEhASefvpp3n77bc6fP28s1+0JDw8PYmJiAMjNzWXJkiVs27aNI0eOdDskO7Krq21QtN2ASEREXIOeURQREWN276c//Sm+vr4O17F9pq+r3S9ramqA/8+c9YSnp2en79suq+xsWa3tc3LWIz66YrFY2LhxI6dPnwZg8uTJvPDCCw4932grICCAV199lS1btlBRUUFOTg45OTlA2zg/9NBDREVF8dhjj3UZyjvyzDPP0NTURHJyMnV1dXz88cd8/PHHQFuAnzx5MrGxsV3OjHY1e9we2z8qOLrDroiI9B3NKIqI3OWampo4deoU0LNlp9D2PJ1VXV1dj2r1BxaLhYSEBONIkPDwcF555RVjSWdPhYWF8c477/Diiy8SGxtrHE/R3NzMl19+ye7du1m2bJkRUrtr0KBBxMfHc+DAAX73u98xceJEI0hXV1fz2WefERcXx/PPP28X7G7myEY0thvw2H7fiIiIa9Cf8ERE7nJZWVnGUsaeBkXboxC6Coq+vr6Ul5f3241MrCHROhs7ceJEtm7d2qPzF9szcOBAZs6cycyZM4G2mdgzZ86QnJxMRkYGdXV1bNy4kcTERO677z6H7jFixAhWrlzJypUraW5upqCggLS0NA4fPszVq1c5fvw4e/bsYe3atb32ua5du2a87mqjIhERufM0oygicpezBp2goCBMJlOPatmeGfj111932tZ6fEZVVVWXbV3NzSFxwoQJvPrqq70eEtvj6+vL7Nmz+fOf/8zjjz8OgNls5uTJk71S37qsddWqVfztb38zlvWmpKT0Sn2rkpISAEwmEz/4wQ96tbaIiPScgqKIyF2spaWF//znP0DbBiw9NXz4cH74wx8CcOHChU7bRkVFGa8TExN7fO87xWKx8MILLxghMTQ0lD/96U9dPifZFyZPnmy8tj7z2ZtMJpNxDqQjZzV2pKamxjga5Sc/+Umv1RURkd6joCgichfLyckxAoZtcOsJa3gpKSnh+vXrHbabNWuWEUI++eQTPvzww07rlpeX90r/esJisfDSSy8ZB9X3ZUj8/PPPuwx/1mdLAe6///5u1S8tLSUrK6vTNmVlZcbMX0BAQLfqdyY3N9d4/fDDD/daXRER6T16RlFExAVdvnzZ2OHSyno+H8CxY8fsdif18vJixowZ3b6PdVYsICDAoSMO2jNz5kw++eQTWlpayMrK4pFHHmm33YABA3jxxRd5+umnMZvNvPbaaxw/fpy5c+cycuRIPDw8qKqqIi8vj2PHjhEcHEx8fHyv9NFRmzdv5tixY0BbMHvqqacoKyvr9Bo/Pz/8/Py6fa8PP/yQzZs3ExYWRlhYGD/60Y8YOnQoN27coLy8nJSUFGM22N/fv9vHmpSXl7Nu3ToCAgKYNm0aISEhDB8+nEGDBlFbW0tubi5JSUnG7rULFy7s9mfoSGZmJtD2/GVERESv1RURkd6joCgi4oJycnLYunVrh+/v3r3b7v/9/f17FBR7Y9mpVXh4OMOGDaOiooLk5OQOgyLAgw8+yOuvv86mTZsoLS3l7NmznD17tt221mcancn24PsrV67w1FNPdXnNE088wapVqxy6X1NTE+np6aSnp3fY5v7772fr1q2dHvvRmdLSUg4ePNjh+/fccw/Lli3jV7/6lUP1b2axWDhy5AjQNovt6NEeIiLStxQURUTuUhcvXjRmw3q626ktd3d3FixYwBtvvEFGRgY1NTWdns04duxYDhw4QHJyMidOnKCgoMB4Hs7Pz48xY8YwadIk5syZ02t97A8SEhI4ffo02dnZFBUVUV1dbSxFHTp0KA8++CCRkZFER0c7dBzH+PHj2bVrF1lZWeTm5lJeXs7Vq1e5fv06np6eBAQEMH78eB577LFem20GjO8JgEWLFvVaXRER6V1ura2trc7uhIiI3Hn79u1j3759+Pn5cejQIYfOwutIfX09S5cupa6ujieffJLly5f3Wm3p39avX096ejphYWHs2LHD2d0REZEOaDMbEZG7lHXZ6dSpU3s1JELbAerWcPjuu+/y3Xff9Wp96Z9yc3NJT0/Hzc2NNWvWOLs7IiLSCQVFEZG70I0bN4iMjOSJJ55gwYIFfXKPhQsXEhgYSG1tLe+//36f3EP6lz179gAwd+5cQkJCnNwbERHpjJaeiohIn7lw4QLp6el4e3uzZMkSZ3dHnKi+vp6DBw/S2trKggULOn1uVUREnE9BUUREREREROxo6amIiIiIiIjYUVAUEREREREROwqKIiIiIiIiYkdBUUREREREROwoKIqIiIiIiIgdBUURERERERGxo6AoIiIiIiIidhQURURERERExI6CooiIiIiIiNhRUBQRERERERE7CooiIiIiIiJiR0FRRERERERE7CgoioiIiIiIiB0FRREREREREbGjoCgiIiIiIiJ2/gcK/kyk+ukYQQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "plot_delta_image(all_results[iteration], source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "5264ad17", + "metadata": {}, + "source": [ + "You can plot the reconstructed images from all of the iterations. Note that the following cell produces lots of figures." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "924732e5", + "metadata": {}, + "outputs": [], + "source": [ + "for result in all_results:\n", + " plot_delta_image(result, source_position = (51 * u.deg, -17 * u.deg))" + ] + }, + { + "cell_type": "markdown", + "id": "6175189d", + "metadata": {}, + "source": [ + "## Integrated flux over the sky" + ] + }, + { + "cell_type": "markdown", + "id": "3d8055a2", + "metadata": {}, + "source": [ + "Define the actual GRB spectral model" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "ec9921d3", + "metadata": {}, + "outputs": [], + "source": [ + "alpha_inj = -1.\n", + "beta_inj = -3.\n", + "E0_inj = 1000. * u.keV \n", + "K_inj = 5. / u.cm / u.cm / u.s / u.keV \n", + "Emin_inj = 10. * u.keV\n", + "Emax_inj = 5000. * u.keV\n", + "\n", + "spectrum_inj = Band_Eflux(alpha=alpha_inj,\n", + " beta=beta_inj,\n", + " E0=E0_inj.value,\n", + " K=K_inj.value,\n", + " a=Emin_inj.value,\n", + " b=Emax_inj.value)\n", + "\n", + "spectrum_inj.E0.unit = E0_inj.unit\n", + "spectrum_inj.K.unit = K_inj.unit\n", + "spectrum_inj.a.unit = Emin_inj.unit\n", + "spectrum_inj.b.unit = Emax_inj.unit" + ] + }, + { + "cell_type": "markdown", + "id": "8ac97cea", + "metadata": {}, + "source": [ + "Calculate the integrated photon flux in each energy band" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "68380bfb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0 keV 200.0 keV\n", + " truth: 0.7418347986463156 1 / (cm2 s)\n", + "200.0 keV 500.0 keV\n", + " truth: 0.8192020113325374 1 / (cm2 s)\n", + "500.0 keV 1000.0 keV\n", + " truth: 0.420663133134687 1 / (cm2 s)\n", + "1000.0 keV 2000.0 keV\n", + " truth: 0.21068821854253272 1 / (cm2 s)\n", + "2000.0 keV 5000.0 keV\n", + " truth: 0.07024548561978913 1 / (cm2 s)\n" + ] + } + ], + "source": [ + "integrated_flux_each_band_truth = []\n", + "integrated_flux_truth = 0.0 / u.cm**2 / u.s\n", + "\n", + "for energy_index in range(all_results[0]['model_map'].axes[\"Ei\"].nbins):\n", + " emin, emax = all_results[0]['model_map'].axes[\"Ei\"].bounds[energy_index]\n", + "\n", + " integrated_flux_each_band_truth.append(integrate.quad(spectrum_inj, emin.value, emax.value)[0] / u.cm**2 / u.s)\n", + " \n", + " print(emin, emax)\n", + " print(\" truth:\", integrated_flux_each_band_truth[energy_index])\n", + " \n", + " integrated_flux_truth += integrated_flux_each_band_truth[-1]" + ] + }, + { + "cell_type": "markdown", + "id": "43dabc45", + "metadata": {}, + "source": [ + "Plotting the integratd flux in each energy band vs the number of interations" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "d9bca0f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG5CAYAAACTEQDKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1iT1xfHv2HvvURUcIAbcBYVt7i31oqtdWLdra2jWlerdujPVffeu1Zx1oWKogLuAbhAZSp7hkByf39c8yYhgYSQMPR+nud9eNe970l4c9/znnPuOTxCCAGDwWAwGAwGo0R0KloABoPBYDAYjKoAU5oYDAaDwWAwVIApTQwGg8FgMBgqwJQmBoPBYDAYDBVgShODwWAwGAyGCjClicFgMBgMBkMFmNLEYDAYDAaDoQJMadIgfD4fUVFR4PP5FS0Kg8FgMBgMDcOUJg3y5s0bjB8/Hm/evKloURgMBoPBYGgYpjQxGAwGg8FgqABTmhgMBoPBYDBUgClNDAaDwWAwGCrAlCYGg8FgMBgMFdCraAEYDAaDwSgvhEIhCgoKKloMRgWhr68PXV1dtdszpYnBYDAYnwXZ2dmIjY0FIaSiRWFUEDweDy4uLjAzM1OrPVOaGAwGg/HJIxQKERsbCxMTE9jb24PH41W0SIxyhhCCDx8+IDY2FvXq1VPL4sSUJgaDwWB88hQUFIAQAnt7exgbG1e0OIwKwt7eHjExMSgoKFBLaWKB4AwGg8H4bGAWps+bsv7/mdLEYDAYDAaDoQJMaWIwGAwGowJYtGiRSrVKV69ejcTERJX6HDVqFFavXl1GyRjFwZQmBoPBYDAqgMWLF2tcaWJoFxYIzmAwGIzPjhYtWmhVEXFyckJ4eHixx7/77jsAgK+vL3R1dXHhwgV89913ePHiBQghmDp1KiZMmIBff/0V8fHxGDZsGIyNjbFr1y6kpKTgl19+AZ/Ph0AgwIwZMzB27FitfRaGBKY0aYBLly7h0qVLyM7OrmhRGAwGg6ECiYmJiIuLq7Drb9q0CZs3b0ZwcDCsrKwwbNgweHh44Pjx43j//j2aN28OT09PLFiwADt27MDhw4fh5eUFAEhLS8ONGzegq6uL1NRUeHt7o3v37nBxcamwz/O5wJQmDdC1a1d07doVUVFRGD9+fEWLw2B8lrx9+xZXr17F4MGDYWpqWtHiMCo5Tk5Olar/S5cu4e7duwAABwcHDBo0CJcuXcIXX3whd25KSgrGjh2L58+fQ09PDykpKXjy5AlTmsoBpjQxGIwqj1AoRLdu3fD8+XPs2LEDQUFBbGo5o0RKcp1VBkq6f7/77jv06tUL//zzD3g8Hpo1a6ZSbBSj7LBAcAaDUeUJCgrC8+fPAQDXrl3D4cOHK1giBkM55ubmyMjIAEA9Flu3bgUAfPjwAcePH0e3bt0AABYWFtx5AHXP1apVCzweD9evX8fDhw/LX/jPFKY0MRiMKs/BgwdltmfNmoW8vLwKkobBUI0ff/wR3bp1g5eXF9auXYuIiAg0adIEnTp1wrx589C6dWsAwLRp0zB+/Hh4eXnhwYMH+OOPPzBnzhx4eXlhx44d3HkM7cMjrHKhxhDHNG3duhUeHh4VLQ6D8VmQn58PR0dHmTdxAPj1118xf/78CpKKUdng8/mIjo6Gm5sbjIyMKlocRgVR1vuAWZoYDEaV5vz585zC1LZtW66e1B9//FGhs6MYDManB1OaGAxGlUbaNTd37lxMmjQJAJCbm4uff/65osRiMBifIExpYjAYVZbs7GwEBgYCAGxtbdGtWzcsWrQINjY2AIC9e/fizp07FSkig8H4hGBKE4PBqLIEBgZyAd9DhgyBvr4+bGxssHjxYu6c77//Hix0k8FgaAKmNDEYjCqLtGtu+PDh3PqECRPQoEEDAMDt27flZtcxGAyGOjClicFgVElSU1Px33//AQCqV68OX19f7pi+vj5WrVrFbc+ePRs5OTnlLiODwfi0YEoTg8Gokvzzzz8oKCgAAAwbNgw6OrLDWffu3dGrVy8AQGxsLFasWFHuMjIYjE8LpjQxGIwqSXGuOWlWrlwJPT1aLerPP//Eu3fvykU2BqOqw+PxkJ6ertVr2NnZISYmRmP9LVmyBHXq1EGdOnUwb948jfUrDVOaGAxGlSM+Ph5Xr14FANStWxfNmzdXeJ6HhwemTJkCAMjLy6u0KQhycnKQmZlZ0WIwPjEKCwsrWoRy4/r16zh48CAePXqEZ8+e4b///sOZM2c0fh2mNDEYjCrHkSNHuBlxw4cPL7G46YIFC2BrawsA2L9/P27fvl0uMqrK06dP4erqCmdnZy59AkP7tGgBuLhob2nRQrkMYWFh6Ny5M1q0aAFvb28cPXoUABATEwMrKyssXLgQzZs3R926dXH27FmV282ePRvNmjXDunXrEBkZCR8fHzRq1AiDBg2Cn58fdu3ahfj4eDg6OiI3N5fr19/fHxs3buS2V6xYAW9vb7i7u2P//v3c/hEjRqBFixZo2rQpevfujcTERJXkDgwMRIMGDdC0aVPMmjVLvX9cMRw+fBjffPMNTE1NYWhoiDFjxmhnAghhaIzIyEji6+tLIiMjK1oUBuOTplWrVgQAAUCePXum9Pz169dz57dq1YoIhcJykFI5ubm5pHHjxpxs+vr65OzZsxUt1idJXl4eefbsGcnLyyOEEFK9OiGA9pbq1UuWJy0tjXh5eZH4+HhCCCEfPnwgNWrUILGxsSQ6OpoAIMeOHSOEEHLu3Dni7u6ucrvdu3dz12nRogXZsWMHIYSQZ8+eEUNDQ7Jz505CCCH+/v5k8+bNhBBCEhMTib29PcnKyiKEEAKA/PLLL4QQQl69ekWsra1JdHQ0IYSQ9+/fc/3//vvvZMKECYQQUqLcSUlJxMbGhjx9+pQQQsjmzZsJAK5PaSIjI4mnp6fCZdSoUQq/zz59+pADBw5w22fOnCG+vr5y5xW9D0qLnubVMAaDwdAer169QmhoKADA09OTSy1QEgEBAdiwYQOePn2K0NBQHDhwAF9//bW2RVXKrFmz8OTJE267oKAAAwcOxOnTp9G1a9cKlOzTx8mpYvsPCQnB69ev0bNnT5n9UVFRqF27NoyMjDBo0CAAgI+PD169eqVSO319fe7ezszMxIMHDzBy5EgAQIMGDdCuXTuuzfTp0zF+/HgEBARg69atGD58OMzMzLjj48aNAwDUrl0b7du3x/Xr1+Hq6ooDBw5g79694PP54PP5sLOz49oUJ/ft27fRtGlTNGzYEAAwduxYTJ06VeF34+HhgQcPHpT8BVYQTGlilMjhw4dx+PBhLFiwAF5eXhUtDoOBQ4cOcevFBYAXRU9PD6tWrYKfnx8AYM6cORg4cCBMTU21IqMqnDp1CuvWrQNAHzQdO3bE+fPnkZ+fj379+uHcuXPo0KFDhcn3qRMeXrHXJ4SgUaNGCAkJkTsWExMDQ0NDzu2sq6sLoVCoUjsTExO5maTSSLuyW7VqBRMTEwQFBWHLli24dOlSiTLzeDzcuHEDa9euxa1bt+Dg4IDAwEAsWLCAO6c4uUuSoyhRUVEYNmyYwmPe3t7YuXOn3P6aNWvizZs33HZMTAxq1qxZ4udRC7XsUwyFfGruuaysLGJkZEQAEBcXF5KdnV3RIjEYpFGjRpw7KyYmplRt+/bty7VdsGCBliRUTlxcHLG1teVk2bBhAxEIBGTgwIHcPlNTU3Ljxo0Kk/FTo6xuGU2TmppKnJycyMWLF7l99+/fJ/n5+SQ6OppYWlpy+7Oysoj4cV2adoQQ0rx5c7Jr1y5CCH1GGRkZce45Qgg5ePAgcXFxIX5+fjLtAJCFCxcSQqjbzcbGhkRHR5PAwEDi6elJCgsLSX5+PunVqxfx9PTkzitO7vfv3xMbGxsSERFBCCFk69atxbrn1CEoKIg0bNiQZGdnEz6fT5o3b05OnTold15Z7wMWCM4ollu3boHP5wOgeW7++OOPCpaI8bnz+PFjPH36FADQpk0b1KpVq1TtV6xYAX19fQDAX3/9hbdv32pcRmWIRCJ8++23SElJAQAMGDAA3333HfT19XHo0CH07t0bAJ1R17NnT1Y77xPF2toaZ86cwbJly+Dp6YmGDRtizpw5EIlEGm23Z88ebNy4EY0bN8bs2bPRsmVLWFlZcceHDBmC7OxsbpapNEKhEN7e3vDz88PatWvh6uqKHj16wMPDAx4eHvD19VXZA2Fvb48dO3Zg4MCB8PT0xIsXL7gJGpqgY8eOGDZsGJo0aYIGDRqgW7du6NOnj8b65yirdseQ8KlZmn755RfurRcAMTQ0JK9fv65osRifMT///DN3P/79999q9TFjxgyuj6+++krDEirnr7/+4q7v7OxMkpOTZY7n5eURPz8/7hxLS0sSHh5e7nJ+alQ2S1N5kZWVRUQiESGEkNevXxNHR0fy9u1b7nhYWBipV69epZkcoW2YpYmhNa5fvy6znZ+fjx9//LGCpGFUBQghyMjI0Frf4ngmHR0dDB06VK1+5s+fzwWuHjp0SGFsiLYIDw/H3LlzAdCYjn379sm9bRsZGeHEiRPo3LkzACAjIwN+fn54+PBhucnJ+HQICQmBl5cXPD090bdvX6xatQo1atQAQAO9Bw0ahHXr1pUYB8WQwCOElf/WFFFRURg/fjy2bt0KDw8Pjfa9cuVKrFy5Uul5zZo1k8v10q9fP9y7d09p2xkzZmDGjBkAAD6fD0tLSwgEAujq6oIQwpl/7ezsYGhoKNP25MmTMgkGT58+je+++07pNc3MzBAZGSmzb+bMmSrl1+jduzc2b94ss69FixZczpCS+Ouvv+Dv789tR0VFoUuXLkrbATRHSrVq1bjtLVu24Ndff1Xazt3dHVeuXJHZN2LECFy7dk1p2/Hjx2PhwoUy+1xcXFSSd9++fejYsSO3ffXqVZVnjsXGxspsL168GFu3blV4bkFBAVJTU1FYWIjmzZsjvEikbefOnfH8+XOl11ywYAECAgK47YSEBLRs2RICgQAfPnwAQINNpWfsiLl8+bLMb+/AgQMK88Hk5ORw2Y719fXRtGlTOXknTJigUnK84cOHY/ny5TL76tevj+zsbJl9hBAkJSVxgbHm5uY4cOCAjAvh7t276N+/P3d+cnIyBAIBAKoo2tvbcxnOIyIiYG5uzrUt7zECALKyslSavQhU/BjB5/MRHR0NoVBYbHCyNC4uLjIKLZ/PR1RUlNJ2AJ2lZmBgwG1/+PAB8fHxStsZGRnJPTtev36NrKwspW3t7e3h7Owss09VRbt27doy91JWVhZev36tUltPT0+Z7fj4eO53WhLm5uaoXbu2zL6oqCguJKQ4HB0d4VSGqY/i+8DNzQ1GRkalbs9mz1URMjMzERcXp/Q88RuENB8+fFCprXRG4rCwMG6wLjrAJCcny7UVnysmLy9PpWtK/1DFpKWlqdQ2NTVVbl9iYqJKbaUTugE0c64q7QD57yM7O1ultpaWlnL7kpOTVWqryHqjqrz5+fly26q2VSSHKm3v3buHhw8fygyoSUlJKrUtqmwIhUK5dsV9hqIZkHNzc5Ves6CgQOEDIjU1VSV509LS5PbFx8crfdBlZWUhLy9PZp9AICj2miKRCElJSdx20ffd8h4jCCE4ePCgyvdSZRkjCgsLVcqUXTRGiBDC1TosLUKhUKW2urq6cvsKCwtVaqtIEVRV3qKfVSQSaf2zKvofFBQUKG2rLOZL2zClqZKTm5uLa9euISgoSKGFpyj29vYK91WvXl3ptSwsLLj14OBgbt3a2homJib48OEDN/BZWlrK5POQfqsCAGNjY5WuKd2H9PVUaWtjYyO3T9U3EBMTE5ltPT09la4JyA9sZmZmKrV1dHSU22dnZ6dSW0UKl6ryFr1nDA0NVW6rSA7ptoQQpKamyr0dEkIwatQohIaGcoHXjo6OKrnuit4Turq6qF69OhISErgB09nZWeGUZbEVRoyJiUmxnzU/P597AcjOzkZ2drbMtW1sbFT6nqytreX2OTs7yyh/eXl53AOcx+PBwcEBenp6MDY2lmlnYGAgd01CCD58+MA9TMQWp6Kf38LCQiV5NTFGJCUlYcKECTh58qTMcXNzc5ibmyv831SWMUJPT6/E6e5iirqreDwedy+XFl1dXZXaKjpHT09PpbaKFC5V5S36WXV0dLT+WYv+VgEqrzIrYIW7EcseVsUQo41A8LNnz3IBoQEBARrrVxndu3fnrvvy5UtCCCGhoaGEx+MRAMTCwoIkJSWVmzyMysedO3eIq6urzGSB6dOny2S4/vXXXzVyrUuXLnF9DhgwQCN9EkJI//79uX7nzZunsX6liY6OJhYWFtx19u7dW+o+UlJSiJeXF9dHjRo1NDZVu7QcOXJEJl1C0cXZ2Zns2bOn0gUWf66B4AxZynofMKVJg2hDacrOziYGBgYEAHF1deVmQWiTgoICYmZmxg2A0tccO3YsNziOHTtW67IwKh8ikYj873//I3p6ety9YG1tTU6ePEkIobNxdHV1ubIgDx8+LPM1pe+7w4cPl7k/MS9evCD6+vrc7NDS5n1SRkFBAfHx8eFkHzFihNp9ffjwQUYhdXV1lZkFpW2Sk5PJV199JaMg2dvbk/3795MffvhB5n4AQFq2bElu3rxZbvIpgylNDEKY0lSp0FbKgc6dO3MD0YsXLzTatyLCwsK46w0bNkzmWFJSEvfWzOPxSFhYmNblYVQekpOTSZ8+fWQejm3atCFv3ryROW/u3Lnc8WbNmhGBQKD2Nfl8PrGysiIAiJmZGcnJySnrx5Dhp59+4mT98ssvNdr3ggULuL7d3NxIRkZGmfpLSkoi9evX5/qsW7cuiYuL05C0xXPq1Cni5OQk838fPHiwTA2yqKgouXsDABk+fLjc/VERMKWpdAAgaWlpWr2Gra2txiymoaGhxMfHhxgbG5P+/fsXex5TmioR2lKa/vjjD24AWr9+vUb7VsT//ve/Eq+3atUq7riPj0+lM8MTQotajh49mgwdOpRcvny5XCx0nzrBwcHExcVF5oE4Z84chQoRn88nDRs25M5bsmSJ2tc9efKkRiw1xZGenk7s7e25a3Tv3p2EhISUud/r168THR0dAoDo6uqSW7duaUBaQuLj40m9evU4eevXr08SExM10ndR0tPTyejRo2X+59bW1uTAgQPF/qYuXLggk7UdADEyMiLz58/nisFWBNIPS5FIRDIzM0lycvInrUQVFBSo3baqKU3v3r0jd+7cIZs2bWJKU1VBW0rT3bt3ucGnpJtBUwwYMIC73uPHj+WOCwQC0qBBA+6cPXv2aF2m0pCTk0PatWsn5yr4559/SGFhYUWLV+UQCoVk6dKlnMtN7JY5d+5cie1CQ0M5pUFfX1/hvaQK0i6h06dPq9WHMrZv3y5nIenWrZvaZUxSU1NJjRo1uL6WLl2qUXnfvXtH3NzcuP4bNWqkccXp4sWLMp8BAOnVq5dKlq2CggKyYcMGudgnZ2dnsnv37gp50crOzib37t0jr169Ig8ePCANVjUgDn84EIc/HIjjn47EabkTcV7hTKr/r7pGluabmyuVKTQ0lHTq1Ik0b96ceHl5kSNHjhBCJOVIFixYQJo1a0bq1KlDzpw5o3K7WbNmEW9vb7Jq1SoSERFBvvjiC9KwYUMycOBA0q1bN7Jz504SFxdHHBwcZCy3w4cPJxs2bCCEEC7Oz8vLi9SrV4/s27ePO8/f3580b96cNGnShPTq1YskJCSoJPfJkydJ/fr1SZMmTcjMmTM1qjSJ2blzJ1OaqgraUpqEQiGxs7PjArDL4upQ5Vrigc7GxqbYwe3ChQvcQOjk5EQyMzO1JlNpEAgEpFevXsUGqbq7u5Nt27YRPp9f0aJqDJFIRKKjo8mJEyfI4sWLyaBBg0i3bt3Ijz/+SA4ePEhevHihtqUtMTGRdOvWTeY77Nixo8ouoTlz5nDtmjdvXuo33+zsbGJiYsLdj/n5+ep8DJXYs2ePXGA7ANK1a1cSHByscj8ikYgMGTJE5vvShrIeHR1NatasyV1HV1eXtG7dmsyePZucO3dO7d9kVlYWmTRpksx3YG5uTrZt21bq+ygtLY3MmDFDLt6pRYsW5VJXTyAQkIsXL5IJEyaQZs2akXPnzpGwsDASFhZGHP5wIFgErS3V/1dd6Xfj5eVF4uPjCSE0Zq1GjRokNjaWREdHEwDk2LFjhBBCzp07R9zd3VVut3v3bu46LVq0IDt27CCEEPLs2TNiaGjI1Z7z9/cnmzdvJoTQ37q9vT1nDQRAfvnlF0IIIa9evSLW1tacgiPtlv3999/JhAkTCCGkRLmTkpKIjY0Nefr0KSGEkM2bNxNAce25yMhI4unpqXAZNWpUid8rU5qqENosozJ8+HBuwNHmYPPkyROVrVrSFqlZs2ZpTSZVEQqFMt+Tubk5WbVqlcysI+k33uXLl5c5xqS8yc3NJaGhoWTr1q1kypQpxNfXl1haWharJIoXKysr0qVLFzJ79mxy7NgxEhMTo/QBeOnSJZk4Fh6PRxYtWlQqBSAvL0/GKrls2bJSfd4DBw5wbctj9qhAICDbt28ntWvXlvsOO3fuTK5du6a0D3EhUrGi9+7dO63J+/LlS1K9enWF/3NdXV3SqlUrMmvWLHLmzBmV7vXg4GBSp04duc9d1gD5qKgo0q9fPzkZhw0bpvHg+/z8fHL27FkyZswYGUtXrVq1OKUpPDycNF7bmDj95UQc/3TkLE6KFqe/1LNAKbM0nTlzhlhYWMgoBDVq1CCXL18m0dHRxMjIiPuNpqenE11dXZXa6evrcy+7GRkZRE9PT+Y326VLF05punPnDmnatCkhhJDffvuNTJs2jTsPkC2I3b9/f04ZW716NWnevDlp1KgRqVOnDmndujUhhJQo98mTJ0nHjh25/goLC4mBgQGzNH3OaFNp2rlzJ/fj12Z19g0bNnDXWbFiRYnnvnr1ihgaGnLul6ioKK3JpQyRSCTzdmxoaEiuXr3KHTt//jzp2LGjQmVi7ty5lS59gkgkIrGxseTMmTNk2bJlZNiwYaR+/fqcu0sTi52dHenRowf55ZdfyIkTJ0hsbCwRiUSkoKCAzJ8/n0svIbYmXrlyRa3Pcvv2bU5uAwMD8uTJE5Xb9u3bl5MhKChIreurg0AgIDt37pRTIACQTp06cfdWUSIiIjjLGABy/Phxrcv69u1bMmXKFJkYMkWLjo4OadmyJfnpp5/I6dOnSXp6OtdHbm4u+fHHH2X+58bGxuTvv//WqCvt4sWLMjMAxXJVr16dtGrVigwaNIhMmzaN/Pnnn2T//v3k6tWr5OXLl0ofcHl5eSQwMJCMHDmy2JcIDw8Pcu3aNRIfHy+n+Ofn55OkpCQSGRnJWaKKLvfv3yevX78maWlpGvlOTp8+TXx8fBQeE7u5xGRlZREApW6nSGnq2rUrpzQRQsgXX3xBrly5QmrUqCEzhitSmvbs2UOCg4NJ7dq1uTHz5MmTxNPTU6ncRZUmoVBYrNL0yVma4uLiyKlTp8iyZcvIDz/8QMaMGUMmTpxIfv75Z7J161YSFhamVRdSZUWbSlNsbCz34//iiy803r8Y6fiR0NBQpedLF/Xt1auX1uRSxvz582XesAMDAxWed/v2bTJw4ECZhwNAA1UnTZpEXr16pVU58/Pzybt370h4eDg5c+YM2bFjB/n999/J999/T4YPH046d+5MGjVqRKytrVVWflxcXEjv3r3J3LlzyeHDh0lkZCRJSEggZ8+eJb/++ivp168fqVatmkp9OTk5yczOAkD8/PzKrFTOmjWL669ly5YquelSUlK4dADOzs4VEo9WUFBAdu3aRerWrSv3XXXo0EFGkePz+TJWTbHLojxJTEwkR44cIZMnT5YLxlakRDVv3pz88MMPMtZAgM6IfP78uVZkLCgoIBs3buRCDlRdbG1tiaenJ+nVqxcJCAggixcvJhs2bCD+/v7E3NxcYRtTU1MybNgwcvToUZKSkqLSw1IgEJAPHz6Q58+fk/DwcIUK1N27d8nLly9JfHw8iY+PJ3FxcSQuLo7ExsZyy7t378i7d+/I27dvueXNmzfkzZs3JCYmhjx8+JBL2SDef+7cOfLy5UsSEhJCLCwsyLt370hsbCyJiooiAEhcXBx5+vQpcXBwIAcPHuSu+99//5HXr1+TW7duce3E127SpAn53//+R968eUOuXLlCDA0NyfLly8mbN2/Iu3fvyPr160m1atVIhw4dSGJiIklKSiIfPnwgAPUgpKWlkUePHhFra2vy5MkTcvToUdKkSROSlZVF0tPTSffu3UmTJk1Ibm4uiYiIIJaWliQvL4/k5eVx/eTl5ZG3b98SGxsb8vDhQ8Ln87kX9KioKCIQCLiloKCAWwoLC0lhYSERCoXcIhKJSrSSa1tpUrn2HCEEly9fxsmTJ/H48WNunyJ4PB7Mzc3Ro0cPDBw4UK4ezqfGpUuXcOnSJWRnZ+PRo0daqT0HAI0aNcKzZ8+go6ODlJQUWFlZabR/Qghq1KiBuLg4mJqaIj09XWHWVmlycnJQv359rkbZ6dOn0bt3b43KpYzVq1fjhx9+4Lb37NmDb775psQ2kZGRWL58Ofbu3SuTtl9HRwfDhg3D7Nmz5WoqSUMIQW5uLtLS0pCens4t0tvJyclISkrilsTERIUlN1TFwMAAjRo1gqenJ7c0bdpUruBrccTHxyM8PFxmKalGlK6uLpYsWYJZs2aVOQsvn8+Ht7c3V0Pszz//VFgTTppt27Zh/PjxAIAffvhBpbpq2qKwsBAHDhzAkiVL8OLFC5lj7du3x8KFC3H69GmsWrUKANCwYUOEhYXJZZ4vb96/f4/r16/j2rVruHr1Kp48eVLi+QYGBli6dCl++OEHhRmmNUl6ejr++usvXLhwAXFxcUhKSir2mVIazM3N0a9fPwwZMgTdu3fnsq6rU3NMKBQiIyMDaWlpyMjI0HgJj8jISKxZswYZGRkoLCyEo6MjVqxYgZSUFIwYMQJBQUEAaGWIDh06ICwsrFTtAFq77rfffkNubi5q1KiBzMxM+Pv7c/UoCwsL4efnh0WLFqF9+/Zcu5YtW2LMmDG4ceMG+Hw+xo0bh549e6KwsBDz589HZGQkLC0t0apVK9y4cQMHDhxAfHx8iXJfu3YN69atg76+Pnx8fHDy5Ens2bOn1DqCvb09atWqJbNPXD80NzcXeXl5sLW1xdy5czFp0iSZ88pae04lpenOnTvYuHEjoqOjYWlpCV9fXzRq1AgeHh6wsbGBubk5BAIBMjMz8fbtW0RERCAsLAxPnjyBnp4eBgwYgG+//VZhDaFPCW0W7AXog2P16tUAgH/++QeDBg3SaP+vX79GnTp1AAB+fn7477//VGp3+PBhfPXVVwCAevXq4fHjx0rLvWiK3bt3Y9SoUdz2mjVrMG3aNJXbx8bGYvXq1di8ebNczTM/Pz+4urrKKELS66rUr1IHY2NjODo6wt3dXUZB8vDwULu0gSIIIXj37p2cIpWWloaaNWviwIEDaNu2rcaud/v2bbRt2xYikQiGhoa4f/9+icVeu3TpwhU4Dg0NRcuWLTUmi7oUFhbi0KFD+O2334otPmxoaIjQ0FA0bdq0nKVTzocPH2SUKPELMAA0b94cu3fvRqNGjSpENoFAgISEBMTFxSE2NhaxsbFy63FxcQp/d1ZWVujfvz+GDBmCbt26KRx/yvqwFIlEyMzM1PrvX9Pk5ubC2NgYPB4PcXFxGDNmDHbv3s2VnHr27Bnmz5+Po0ePVnyJEhVxcHBAzZo11WpbLkpThw4d0KRJE/j7+6NVq1ZKrQ9iEhMTcerUKfz777/48ssvZR5unyLaVprOnTuHXr16AaAV2Ddt2qTR/nft2oXRo0cDAJYsWYJ58+ap1I4Qgo4dO+L69esAVLMiaIKTJ09i8ODBXK2ihQsXYtGiRWr1lZqaig0bNmDt2rUqVeguLaampnB0dJRbnJyc5PaZmZmpVBtLGxBCEBcXB3t7e60ovjNnzsSKFSsAAK1bt8bNmzcVWjQSEhJQvXp1EEJQp04dvHjxosK+E0UIhUJOeYqKipI5VlrFvSJJTk5GcHAw8vPzMXjwYI0q5dpAJBLh/fv3nDKVkJAANzc3dOrUSa62XVHK+rCUhhCC7OxsbuyRvjfF6yXtE/+VfvwqWle2T5XrXb58Gb/88gsAet/OnDkTw4YNg0gkwuTJk3HlyhWsWbMGnTp1gkgkAqFhO9y6on1FZShOjShJvSjpMyo7bm1trbCWpyqU+T5QxYcXHh6ulu9PTGZmZoUGCZcX2oxpIkS2pIqbm5vG+5dOYqfKLCFpHjx4wAX7mpmZaT1Lsdg3L5Z36tSpGklgmZOTQ9atW6dw6jmPxyPW1tbEzc2NNGvWjHTu3JkMGjSIjBkzhvz444/kt99+I3///TfZu3cvOX36NLl58yZ59eoVyc7O1sAn/jTIzc0l7u7u3He6fPlyheetXr2aO0c87bkyUlhYSA4cOMDFgQ0fPpwlUq2ksIzgDELY7LlKhbaVJkII6dSpE/cwERfS1RTimUIGBgZq3VATJ07kZPvmm280Kps0YWFhXG08AOTrr7/WeLK8goICcvfuXfLgwQMSExNDMjIyKmXm86rIjRs3uEB8Q0NDEhERIXdO69atuf+vOK9LZUYoFJL4+HimMFVimNLEIKTs90HVcGAyOPz8/Lj1CxcuaKzf+Ph4vHr1CgB1m6hjtvztt99gbW0NANi7dy9CQkI0Jp+YiIgI9OjRg4s/6tOnD3bs2KFxX7yenh6aNWsGT09P1KpVCxYWFlXG31/Zadu2Lb7//nsAQH5+PsaMGcO5OQAaW3fnzh0AQNOmTdGwYcOKELNU6OjooFq1apXKhchgMDSP1p4CmZmZSEpK0lb3ny3aUpqCg4O5dekZFKXB1tYWS5Ys4banTZsm8zAsK2/evIGfnx9SUlIAUDmPHDlS6eMwGPIsWbIEdevWBQDcunULa9as4Y4dOnSIWx8+fHi5y8ZgMBjFoTWlaf369dyMKobm8PLygp2dHQDgypUrGpvBIQ7iBtRXmgAgICCAmzV09+5d7Ny5s8yyAXTqdLdu3bjUBt7e3ggMDOSmEzOqFiYmJtixYwdnmZk3bx43G+3gwYPceWwMYTAYlQmt+huIBnJuMGTR0dFB165dAVBrXmhoqEb6FStNOjo68PHxUbsfPT09rF27ltv++eefkZ6eXibZMjIy0KNHDy4/jru7O86fPw9LS8sy9cuoWHx9fblZZnw+H2PGjMGjR4+4XEI+Pj5wdXWtQAkZDAZDFhakUQXRtIsuJSWFe1A1a9aszPm0OnTogGHDhgGgU5rnzJmDt2/fIicnp9SKdF5eHvr27Yv79+8DAFxcXHDhwgU4ODiUSUZG5WDp0qVcbrCbN29iyJAh3DHmmmMwKg4ej1fmF15l2NnZISYmRiN9HTp0CF5eXmjcuDEaN26M//3vfxrptyiqJVwCuIegqmRkZJRaGIZqdOvWjVu/cOGC2rmJxNy8eZNbL4trTprly5cjMDAQeXl52Lx5MzZv3gwAMDIygq2tLezs7JT+tbGxwfTp07l4Kzs7O1y8eFEuEyyj6mJqaoodO3agQ4cOAMBZE3V0dPDll19WpGgMRpWnsLBQ5byKVZ0aNWrg/PnzcHJyQkZGBpo3b47mzZtzmc81hcrfZmJiInR0dFROra/JAGCGLC4uLmjQoAEiIiIQGhqK9PT0MpVU0VQ8kzQ1atTA3LlzMX/+fJn9fD6fy+xbGszMzHDu3DnUr19fI/IxKg/t27fH1KlT8ffff3P7OnfurHbyOgZDJVq0ABITtde/kxMQHl7iKWFhYZg9ezYyMzMhFAoxd+5cDB06FDExMfDy8sL06dNx+vRpZGRkYO3atVxyY2XtJkyYgIsXL2LkyJHo0aMHRo8ejczMTHh4eCA7Oxv+/v7w8/ODt7c3oqOjuXI//v7+8PX1xcSJEwEAK1aswJkzZ5CTk4OFCxdixIgRAIARI0YgKioKAoEANWrUwPbt2+Hk5KRU7sDAQMyePRv6+vro0aOHRr9u6eoFlpaWqF+/vsasWDKomptg0KBBSqsLS7N06VLSoUOH0idBqMKUR54mMdOnT+fy2JS1knrLli25vpKTkzUkIU389/fff5MJEyaQwYMHk44dO5LGjRuTatWqcYVYVVkMDQ3JlStXNCYXo/KRnZ1Nateuzf3Pt2/fXtEiMT4x5PLzVK9OCKC9pXr1EuVJS0sjXl5eJD4+nhBCyIcPH0iNGjVIbGwsiY6OJgDIsWPHCCGEnDt3jri7u6vcbvfu3dx1WrRoQXbs2EEIIeTZs2fE0NCQ7Ny5kxBCiL+/P9m8eTMhhBZ7tre3J1lZWYQQIpNY9tWrV8Ta2ppER0cTQgh5//491//vv//OFacuSe6kpCRiY2PD5V3bvHkzAcD1KU1kZCTx9PRUuKiihzx9+pTY2NiQd+/eyR0ra54mlS1N7u7uuHPnDgQCgdJ09QBYvhIt4+fnx03TvnDhAgYOHKhWP1lZWbh37x4AWhBY1eKvqqCrq4spU6YoPEY+liFISUlBcnJysX/5fD6mTZuGTp06aUwuRuXD1NQUBw4cwNChQ1G7dm02a46hfT7WXquo/kNCQvD69Wv07NlTZn9UVBRq164NIyMjrr6oj48Pl0dPWTt9fX18/fXXAOhkoQcPHmDkyJEAgAYNGqBdu3Zcm+nTp2P8+PEICAjA1q1bMXz4cJiZmXHHx40bBwCoXbs22rdvj+vXr8PV1RUHDhzA3r17wefzwefzuRndAIqV+/bt2zJ518aOHYupU6cq/G48PDzw4MGDEr+/4oiNjUX//v2xadMmuLi4qNVHSaisNNWrVw8hISF4+fKlSsnmiIL6NAzN0aFDB+jr66OgoKBMweC3bt3iXKmacs2pAo/Hg7m5OczNzdkMKQYAmlT17du3FS0G43NBietM2xBC0KhRI4VJgGNiYmBoaMgZH3R1dblxWlk7ExOTEhPxShs0WrVqBRMTEwQFBWHLli24dOlSiTLzeDzcuHEDa9euxa1bt+Dg4IDAwEAsWLCAO6c4uUuSoyhRUVHFxlF7e3sXm8omPj4eXbt2xS+//IKhQ4eW+FnUReXZcz169MCcOXO4jM/KmDx5Mg4fPqy2YIySMTU15Xy4r1+/5rT50qKJpJYMBoPBKB1t2rRBdHS0jKLy4MEDCAQCjbWzsLCAp6cn9u3bB4AqIzdu3JA5Z/r06Rg5ciQaNGgAd3d3mWNi5SQmJgbBwcHw9fVFWloazM3NYWtrC4FAwE3yUYaPjw8ePXqEyMhIAMCOHTuK/axiS5OipTiFKSEhAV26dMHs2bPx7bffqiSTOqisNDk7O6Nnz56oVq2aSudbWlrCSdvmz88c6dQDFy9eVKsP6SBwX1/fMsvEYDAYDOVYW1vjzJkzWLZsGTw9PdGwYUPMmTMHIpFIo+327NmDjRs3onHjxpg9ezZatmwpM3FoyJAhyM7OVhhKIRQK4e3tDT8/P6xduxaurq7o0aMHPDw84OHhAV9fX3h5ean0ee3t7bFjxw4MHDgQnp6eePHihUbDQRYsWIC3b99izZo18PLygpeXl8aSK0vDI8yHpjGioqIwfvx4bN26FR4eHlq/3t27d9GiRQsAwMCBA3H8+PFStefz+bCyskJ+fj7q1KmDly9fakNMBoPBqHD4fD6io6Ph5uamVm3Nqkp2djZMTU3B4/EQHR0NHx8fhIWFoUaNGgCA8PBw+Pv7IzIy8rOor1nW+0AjCRzEZrNRo0ZpojuGinh7e8PW1hYpKSm4fPlyqXNyhIWFIT8/HwCzMjEYDManSEhICGbOnAmAWo5WrVrFKUzjxo3DhQsXsG3bts9CYdIEGlGa7t+/j927dzOlqZwRl1Q5fPgwMjMzERYWVqoSKNrIz8RgMBiMyoOfn59MKIc027ZtK2dpqj5MtazilKWkCgsCZzAYDAZDdZjSVMUpWlJFVQoLC7nyKc7Ozqhdu7bGZWMwGAwG41OCKU1VnBo1anClRe7cuaNyzb8HDx4gOzsbALUysWSkDAaDwWCUjEaUprp166J79+6a6IqhBmIXnVAoRFBQkEptWKoBBoPBYDBKh0aUJl9fX/z888+a6IqhBurENbEgcAaDwWAUB4/HQ3p6ulavYWdnp7Giuv/++y+aNm0KLy8vNGzYEPPmzdNKVRKNzJ4Tk5CQgPDwcBgYGMDX15ernMzQLqUtqSISibissDY2NiqVxWEwGAxG1aK0aWiqMl27dkX//v2ho6MDgUCAdu3aoUWLFmrXZS0Otb7NvXv34tSpU9i+fTvMzc0B0LQDc+bM4fL+7N69G5s2bYKFhYXmpGUoxMzMDG3atMG1a9fw6tUrvH79usTA7oiICKSkpACgVkKWn4PBYHxutAgPR6KSkiVlwcnAAOEfkw8XR1hYGGbPno3MzEwIhULMnTsXQ4cORUxMDLy8vDB9+nScPn0aGRkZWLt2LXr16qVSuwkTJuDixYsYOXIkevTogdGjRyMzMxMeHh7Izs6Gv78//Pz84O3tjejoaM7A4e/vD19fX0ycOBEAsGLFCpw5cwY5OTlYuHAhRowYAQAYMWIEoqKiIBAIUKNGDWzfvh1OTk5K5Q4MDMTs2bOhr6+PHj16aPT7FusiAE1gmZ+fr5VYXbWelsHBwahWrZqMkJs2bYJIJMLo0aPRv39/xMXF4ejRoxoTlFEypSmpwlxzDAbjcydRIECcFhdlCll6ejoCAgKwf/9+hIeH4+LFi/jxxx8RFxcHAMjIyEDTpk1x9+5drFu3Dj/88IPK7Ro1aoR79+7h+++/xzfffIOAgAA8ffoUS5cu5cZ/Z2dndO3alatLl5SUhEuXLuGbb77hZOTxeLh//z7Onz+PqVOncq601atXIzw8HI8ePYKvry8WLVrEtSlO7vfv32P06NH4559/8OjRI9StW5d7eS9KVFQUVwql6DJ69Ohiv9OQkBA0adIEDg4O6Ny5M/r371/i/0Ad1LI0JSYmomPHjtx2cnIyIiMjMWzYMK5Q3rt373D9+nWMHTtWI4IySsbPzw/z5s0DQOOaJkyYUOy5LAicwWB87jgZGFRo/yEhIXj9+jV69uwpsz8qKgq1a9eGkZERBg0aBIAWuxUXZVfWTl9fH19//TUAIDMzEw8ePMDIkSMBAA0aNEC7du24NtOnT8f48eMREBCArVu3Yvjw4TAzM+OOjxs3DgBQu3ZttG/fHtevX4erqysOHDiAvXv3gs/ng8/nw87OjmtTnNy3b99G06ZNuXCQsWPHYurUqQq/G3HB3tLSpk0bPH78GB8+fMDgwYMRHBysccOAWkpTbm6ujJXp4cOH4PF4aNOmDbevXr16iIiIKLuEDJVQtaQKIYRTmkxNTeHt7V3eojIYDEaFo8x1pm0IIWjUqBFCQkLkjsXExMDQ0JBzL+nq6kIoFKrUzsTEpMSQC2mXVatWrWBiYoKgoCBs2bIFly5dKlFmHo+HGzduYO3atbh16xYcHBwQGBiIBQsWcOcUJ3dJchQlKioKw4YNU3jM29tbaSFee3t79OrVC0ePHtW40qSWe87a2hqJiYncdlhYGPT19WUCigUCAcv9U47o6uqiS5cuAKh5NCwsTOF50dHRiI+PBwC0bdv2swkSZDAYjMpEmzZtEB0dLaOoPHjwAAIlbr3StLOwsICnpyfngouKiuImAYmZPn06Ro4ciQYNGsDd3V3mmFg5iYmJQXBwMHx9fZGWlgZzc3PY2tpCIBBg8+bNKn1eHx8fPHr0CJGRkQCAHTt2FPtZxZYmRUtxClNkZCREIhEAICsrC2fOnEHTpk1Vkq00qKU01a9fHzdu3EBISAjCw8MRFBQEb29vGEiZIxMSEmBra6sxQRnKUSWuicUzMRgMRsVjbW2NM2fOYNmyZfD09ETDhg0xZ84c7sGvqXZ79uzBxo0b0bhxY8yePRstW7aElZUVd3zIkCHIzs7GlClT5NoKhUJ4e3vDz88Pa9euhaurK3r06AEPDw94eHjA19cXXl5eKn1ee3t77NixAwMHDoSnpydevHihUR3h8OHDaNy4MTw9PeHj44MuXbpw7kVNwiNqJDKIiorC5MmTUVhYSDvh8bB27Vo0adIEALUyDRgw4LPL3xQVFYXx48dj69at8PDwKPfrv337FrVq1QJArUhF3ygAYMyYMZymfu3aNaY4MRiMzwI+n4/o6Gi4ubnByMioosUpN7Kzs2Fqagoej4fo6Gj4+PggLCwMNWrUAACEh4fD398fkZGRn8VM6rLeB2r5Zjw8PLBp0yb8999/AIBOnTrJuOZevHgBb29vdO3aVZ3uGWpSs2ZN1K9fH5GRkbh9+zYyMjJgaWkpc47Y0mRgYIBWrVpVhJgMBoPBKCdCQkIwc+ZMANRytGrVKk5hGjduHC5cuIBt27Z9FgqTJlA7oKVu3bqoW7euwmONGjXC0qVL1RaKoT7dunVDZGQkV1JlwIAB3LH4+HhuJkPr1q0/q7ctBoPB+Bzx8/OTCd2QZtu2beUsTdWHqZafGCXFNQUHB3PrzC3HYDAYDEbpYErTJ0bHjh2hr68PQL4OHQsCZzAYDAZDfZjS9IkhLqkCAC9fvsTr16+5Y2KlSUdHBz4+PhUiH4PBYDAYVRWmNH2CdOvWjVsXu+hSUlLw5MkTAECzZs1kkpMyGAwGg8FQDlOaPkEUxTVJpx9grjkGg8FgMEoPU5o+QZo1awYbGxsA4EqqsCBwBoPBYKgKj8dDenq6Vq9hZ2fHFQHWFHl5eWjYsKHKSTdLC1OaPkF0dXW5HFnp6ekIDw+XCQKXLtjIYDAYjE8TcQLqz4nZs2ejbdu2WuufFR77ROnWrRuOHDkCADh+/Dju3bsHgObQYuVtGAzG5054i3AIEkuu81YWDJwM0CK85KLAYWFhmD17NjIzMyEUCjF37lwMHToUMTEx8PLywvTp03H69GlkZGRg7dq16NWrl0rtJkyYgIsXL2LkyJHo0aMHRo8ejczMTHh4eCA7Oxv+/v7w8/ODt7c3oqOjYWJiAgDw9/eHr68vJk6cCABYsWIFzpw5g5ycHCxcuBAjRowAAIwYMQJRUVEQCASoUaMGtm/fDicnJ6VyBwYGYvbs2dDX10ePHj00/p1funQJcXFxmDp1arH1V8tKqZSm9PR07Nq1Cw8ePICuri5atWqF4cOHw8LCQu7cnTt3Ys+ePQgKCtKYsAzVkQ4G37BhA1dpmrnmGAwGAxAkCiCI057SpIz09HQEBATg7NmzqFatGpKTk9GsWTNu9nNGRgaaNm2KxYsX4/z585g+fTp69eqlUrtGjRrhzz//BAC0bNkSkyZNwujRoxEREQFvb2/4+/vD2dkZXbt2xb59+xAQEICkpCRcunQJW7Zs4WTk8Xi4f/8+Xr9+jRYtWqBt27ZwdXXF6tWrYW9vDwD4448/sGjRImzatKlEud+/f4/Ro0cjODgYDRs2xJYtW5CSkqLwu4mKisKwYcMUHvP29lZYtDc9PR2zZs3C+fPn8ezZMzX/K8pRWWnKzs7GxIkTkZCQAHG5upcvX+L8+fNYuHChQv+hGmXtGBqiVq1a8PDwQFRUFHJycrj9TGliMBgMagmqyP5DQkLw+vVr9OzZU2Z/VFQUateuDSMjIwwaNAgA4OPjw1VzUNZOX18fX3/9NQAgMzMTDx48wMiRIwEADRo0kAnPmD59OsaPH4+AgABs3boVw4cPh5mZGXdcXPC2du3aaN++Pa5fvw5XV1ccOHAAe/fuBZ/PB5/Ph52dHdemOLlv376Npk2bciXXxo4di6lTpyr8bjw8PPDgwYMSv7+iTJkyBXPnzoWDg0PlUJr27duH+Ph49O/fH99++y309PRw5swZ7N69GzNnzsRvv/2GL774QmuCMkqPn58foqKiZPb5+vpWkDQMBoNReVDmOtM2hBA0atQIISEhcsdiYmJgaGgIHo8HgMapir0FytqZmJiUWEdO3CcAtGrVCiYmJggKCsKWLVtw6dKlEmXm8Xi4ceMG1q5di1u3bsHBwQGBgYFYsGABd05xcpckR1HUsTTduHEDN27cwE8//QQ+n4/U1FTOcKBJVA4Ev3HjBtzd3TFjxgzY2trC0tIS/v7+WLduHczNzfHLL78o/CcyKg5pFx0A1KlTB9WrV68gaRgMBoMhpk2bNoiOjpZRVB48eACBoGSXYWnaWVhYwNPTE/v27QNAlRHp9DMAtTaNHDkSDRo0gLu7u8wxsXISExOD4OBg+Pr6Ii0tDebm5rC1tYVAIMDmzZtV+rw+Pj549OgRIiMjAQA7duwo9rOKLU2KFkUKk1hG8XLo0CE0bNhQ4woTUAqlKTExUaELrl69eli3bh2sra2xYMECuX8Io+Lo2LEj9PQkxkRmZWIwGIzKgbW1Nc6cOYNly5bB09MTDRs2xJw5cyASiTTabs+ePdi4cSMaN26M2bNno2XLlrCysuKODxkyBNnZ2ZgyZYpcW6FQCG9vb/j5+WHt2rVwdXVFjx494OHhAQ8PD/j6+qo8td/e3h47duzAwIED4enpiRcvXlTJSUk8omLgUd++fdG9e3eFXywAxMfHY/r06UhLS8PChQvx8uVL7N69G1evXtWkvJWaqKgojB8/Hlu3boWHh0dFiwMA6NChA5duYMeOHRg9enQFS8RgMBjlD5/PR3R0NNzc3GBkZFTR4pQb2dnZMDU1BY/HQ3R0NHx8fBAWFoYaNWoAAMLDw+Hv74/IyMgS3XqfCmW9D1T+hpycnPDixYtijzs7O2PNmjWwtrbGokWLtDbdj1E6hg8fDgAwMTFB9+7dK1gaBoPBYJQnISEh8PLygqenJ/r27YtVq1ZxCtO4ceMwaNAgrFu37rNQmDSByoHgnp6eOH78OFJTU7ls00URK07Tp0/H06dPSwz0YpQPAQEBqFWrFlxdXeHs7FzR4jAYDAajHPHz85MprSXNtm3bylmaqo/KqmWHDh1gYWGB//77r8TzxIqTo6NjmYUrb8R5Hvz8/DBixAjcvXu3okUqMzo6OujZsycaNGhQ0aIwGAxGhcNS4XzelPX/r7KlqUmTJjhx4oRK5zo7O3PZqKsSq1atgo2NDQIDAxEeHo6FCxfiwIEDCpN3MhgMBqPqoK+vDx6Phw8fPsDe3p55Qj5DCCH48OEDeDwe9PX11eqDlVH5SG5uLoKDg3Ho0CEYGRmhXbt2qF27Nm7cuMGlgGcwGAxG1URXVxcuLi6IjY3VeJFYRtWBx+PBxcUFurq6arXXiNIUHByMmzdvYs6cOZroTiVyc3Nx6NAhPHv2DBEREcjKysLPP/8slyUVAAQCAbZv344LFy4gKysLderUwbhx49CyZUvunNjYWBgbG8PBwYHbV7t2bURHR5fL52EwGAyGdjEzM0O9evVQUFBQ0aIwKgh9fX21FSZAQ0qTuJxKeSpNGRkZ2LVrFxwdHVG3bl3cv3+/2HN///13XL16FUOHDoWLiwvOnTuHWbNmYc2aNWjatCkAIC8vD6ampjLtTE1NkZGRodXPwWAwGIzyQ1dXt0wPTcbnTZWdY2hra4t///0XR48e5SoyK+LZs2e4fPkyAgICMGnSJPTr1w+rV6+Gk5MTNm7cyJ1nbGwsU6MNAHJycmBsbKy1z8BgMBgMBqPqUGWVJgMDA5WyiV67dg26urro168ft8/Q0BC9e/fG06dPkZSUBABwcXFBXl4ePnz4wJ0nToDFYDAYDAaDUWWVJlV58eIFXFxc5Fxv4in4L1++BECTP7Zr1w47duxAfn4+QkJC8OrVK5mK0EVJTk5GVFQUt7x580Z7H4TBYDAYDEaFopGYJm9vb010oxVSUlIUWqTE+5KTk7l9M2bMwNKlS9GnTx/Y29tj0aJFJaYbCAwMxK5duzQuM4PBYDAYjMqHRpQmLy8vlYv2lTf5+fkK8zEYGBhwx8VYWVlh+fLlKvfdr18/tG3bltt+8+YNlixZUgZpGQwGg8FgVFY++TxNhoaGCqeXCgQC7ri62NnZwc7OTu32DAaDwWAwqg5qK03x8fE4duwYXr16heTkZBQWFsqdw+PxcOjQoTIJWFZsbW1lgrvFpKSkAABTehgMBoPBYKiEWkrTnTt3MG/ePBQUFEBPTw9WVlYK815Uhho/4hxOOTk5MsHgz549444zGAwGg8FgKEMtpWnTpk3Q0dHBokWL0KFDB+joVN5JeB07dsShQ4cQGBiI4cOHA6CuubNnz6Jhw4ZVsrAwg8FgMBiM8kctpendu3fw8/NDp06dNC1Pqfjnn3+QnZ3Nudpu3ryJ9+/fAwAGDx4MMzMzNGzYEJ06dcKWLVuQnp6O6tWr4/z580hMTMTs2bMrUnwGg8FgMBhVCLWUJhsbG272WUVy+PBhJCYmctvXr1/H9evXAQB+fn4wMzMDAMydOxeOjo7477//kJ2djdq1a+PPP/+stDP+GAyGGhw7BuzdC8ydC7RuXdHSMBiMTxC1lKZu3brhypUryM/PL9Pss7Jy5MgRlc4zNDTEpEmTMGnSJC1LxGAwKgSRCBg3DsjIAN6+BUqoRclgMBjqopbSNHr0aLx8+RI//fQTAgICUKdOHZiYmGhatirDpUuXcOnSJWRnZ1e0KAzG50l8PFWYAODBAyAhAahWrUJFYjAYnx48ouYUt9DQUCxevFiuyK1M5zwegoKC1BauqhEVFYXx48dj69at8PDwqGhxGIzPhxs3AF9fyfaePcA331ScPAwG45NELUvT5cuXsWTJEohEIjg7O8PW1lZhygFG1ScxOxGhcaHoVrsbjPWNK1ocBkMx0dGy2xcuMKWJwWBoHLWUpt27d8PU1BTLly/nCt8yPj2EIiE67uqIqJQoeDl54az/WVQzZy4PRiWkqNJ08SKNc6rE6VAYDEbVQ60RJSEhAZ07d2YK0ydOyLsQRKVEAQAeJD5Amx1t8DzleQVLxWAoICZGdjspCXj8uEJEYTAYny5qKU0ODg4QiUSaloVRyTgReUJmOyY9Bm13tMWd2DsVIxCDURxFLU0AddExGAyGBlFLaerTpw9CQkKQmZmpaXkYlQRCCE5EnQAA6PJ00cShCQAgOTcZnfd0xpnnZypQOgajCGKlSTq2kilNDAZDw6gV09SxY0c8efIEkyZNwsiRI1G3bl2Zum7SsDIlmmHlrZVYeWul0vOaVWuGwOGBMvv6HeyHewn3lLad4TMDM3xmAACevH+C12mvAQB6OnpIyU2Boa4h8oX5yC3IRZ+DfWBtZA0TfZpq4uRXJ9HcuTnX1+nnp/Hd6e+UXtPMwAyRUyJl9s28MBMHnxxU2rZ3vd7Y3HezzL4WW1ogMTuxmBYS/ur2F/yb+HPbUclR6LKni9J2ABA2PkwmtmvL3S349dqvStu527rjyrdXZPaNOD4C12KuKW07vtl4LOy4UGafy0oXleTdN2gfOrp25LavxlzF18e/Vqlt7IxYme3FVxdj672tStt1cO2A/YP2y+zrvLuzSu7dBR0WIKB5ALedkJWAlltbFnu+rpDg1bt46AHgN/SAUWYO8OYNEByMw6E78eON+Uqv6WTmhPCAcJl9E05NwJkXyl8OhjUeBmsja/wT8Q++b/09vvX6FvXX1Ue2QHkKkk19NqGPex9u+278XfQ/1F9pOwCImBwBc0Nzbru8xwgAyMrPQoP1qoVpsDGCjRHSqDtGFL0Hyxu1lKavvvoKPB4PhBAsW7as2PM+t5QD2iQzPxNxWXFKz6thWUNu34fcDyq1zcyXWA5PRp3k1vOF+YjPjpc7P42fhjR+GgBAIBTIHMsryFPpmuYG5nL70vhpKrVN5afK7UvMTlSpbW5Brsx2oahQpXYAICRCme1sQbZKbS2NLOX2Jecmq9Q2Iz9Dbp+q8uYX5sttq9pWkRyqtE3OTZbbl5STpFLbosqGkAhLbOeaBuh9jBYQ1HSGkbMbsHUrkJ8Pi9CHan/WVH6qSm33PdqH9zm0fNOYwDGob1cf8VnxyBJkKW2bV5Ansy0QClSWl0A2W4y6Y0R0WjSi06JLPUaIZVBVXjZGsDFCGnXHiKL3YHmjltLUvXt38Hg8TcvCKAELQwtUN6+u9Dx7E3uF+1Rpa2Fowa1LxzM5mTlBlydxe2TwM5BdIHmwmeqbQldHNuWEsb6xStc0MzCT22dtZM21FRKhzLWlsTGykdvnZOak9JoAOAuZGD0dPZXkBSAnj5mBmUptHU3lra52JnYqtbU0lB9MVZXXUM9QblvVtorkUKWtnYmd3D5HU0dk8OUH9qIUvSd0ebolXrNlYj4AOgAX1qoBdPKjShMA17DnqO6pXF5F942NkU2J180rzENaXhqnMAGAiIgw6uQoVDOrBosCi2LbiimaxsNA10Dl/w0PsmOwOmPEoSeH8O2JbyEQCmBpaKnw91j0GkVlUFVeA13Z0luaGiNKgo0Rn94YUfQeLG/UTm7JkCCdEfzRo0dVPrnlu4x3qLm6JgBqyr8bcFfmOCEEK0JWYNalWdy+QQ0GYf+g/TDSMyrz9dPy0rDt3jasD1uPNxlv8IXLF9jSZwuaODYpc98M5XzI+QArIyvo6+pXtCiqsWMHMHYsXf/7b8DfH7C3pykHGjfW+Cy6vII8/HThJ2wI38Dtq2VZCxaGFnj8nl7rR58fscJvhUavq2lW3lqJHy/8yG0b6BrgbsBdNHZoXIFSMRiVG7UsTQxZunbtiq5du3IZwTXKu3f0ofD8OdClCzBmjGb7V4C0a26AxwC54zweDzPbzoSTmRPGBI5BoagQxyOOo/u+7jgx7ASsja3Vum7EhwisvbMWex7tkTGN3469jWZbmmF229n4pf0vGlHMtEWOIAcHnxzE9vvb8Sb9DVwsXFDLqhZqWtRETUu61LKqhZqWNWFrbFtpLLYJWQk4/PQwDjw+gLD4MNSyrIW9A/fCt5av8sYVjfTMOTc3wMYGaNECCA0FnjyhJVacnTVyqYgPERh2bBinHAHA0IZDsaXvFsRnxaPZ5mbIF+Zj5a2VGFh/INrWbKuR62oSERHhpws/YdXtVTL7BUIBRv47ErfH3ZazCjEYDIpaSlNMTAzCw8PRtWtXWFlZyR1PS0vD5cuX0aJFC7i6upZRxM+cjAxg0SK6rqNTLkqTtGvu6zhbWgh15kygiPXsG89v4GjmiEGHByGnIAfX31yH705fnP/6PFwsVAtAFBERzr88jzV31uDCK/nZTg6mDnif8x6FokIsDV6KI0+PYEvfLTJBi5WBp++fYlP4Jux5tEfG556QnYCw+DCFbUz0TThFSqxUiRWqmpY1UcuylpzbU5Nk8DNwPOI4Djw5gCvRVyAikjQibzLeoOPujpjnOw8LOiyAno72368KhAU49/IcsvKz4GHnAQ9bD5lA52IpqjQBgJ8fVZoAmujy22/LJBshBNvvb8e0c9OQV0jjkIz0jLCmxxqMbzYePB4PVkZW+K3Tb5h1aRYICEadHIWH3z2Uc/NUJPmF+Rh5YiSOPJUUO5/ffj6ORxzH0w9PcT/xPpZcX4JfOykPWq5oXqW+wto7a9HAvgECmgdAh8cSmTK0j1ruuaVLl+Lu3bs4duwYdBRk3BUKhfjyyy/RokUL/PzzzxoRtCqgldpzeXmAqSlACNCqFXBHuzmS0vLSYL/cHkIihLuFGyIXp4KXkQG0awcEBytsEx4fjl77e+FD7gcAgIuFC/77+j80tG9Y7HWy8rOw++Fu/B36t9xsCVN9U4zyGoWpraaillUtLL2+FH/c/AOFokLunLHeY7G823K1rVqaIL8wH8cjjmNj+EYEv5X/buxM7JCSmyIXsKsqFoYWaFW9FXxcfPCFyxf4wuUL2BjLx2iUBn4hH2dfnMWBxwdw+vlp5Avz5c4RK6pifFx8sH/QfrhZu5Xp2iVx/c11TDozCU8/PJXZX82sGqdAedh6cOuuVq4ShbJdO+DmTbqenU1/L8HBQPv2dN+IEcC+fWrLlsHPwITTE3D46WFuXyP7Rjg05JCcK0soEsJ3py9uxd4CAExrNQ1req5R+9qaJJ2fjoGHB+JqzFUANO5mc5/NGNtsLO4l3EPrba1RKCqELk8XIWND0Kp6q4oVuBhERIT1oesx5/IcziL9ZaMvsav/LlbqiaF11FKavvzyS3h6emLevHnFnrNs2TI8evQIhw4dKpOAVQmtFex1daVTqC0tgbQ0QIsunX2P9uGbf2nNrt+rj8Kc8bskB9++BWrIz84DgJepL9FjXw+8SnsFgAZqBg4PRLua7WTOe532Gn/f+Rs7HuyQmwXhZuWGqa2mYrT3aFgZWckce/L+CQJOBXAPI4AGDa7tuRZDGw4tVzdXdFo0Nt/djB33d3CKohhjPWP4N/HHdy2+QwvnFnQ2VGYc3ma8xZuMN3ib8ZZbxNtFZ+mUhIetB75w+QI+Lj7wqeGDRvaNlFqjhCIhrr25hv2P9uOfiH8UzrKpbV0bI5qMwPDGw+Fu644/b/6JBUELuFlA5gbm2NRnk8wUbE2QlJ2EmRdnYu+jvaVqZ6BrgLo2deFh64Gdky/CMiUbAjtr5Lx9RRXpggLqpsvOBhwcgIQEtUqqhMaF4qtjXyE6XWLNmtB8AlZ2X1msBel5ynN4bvIEv5APALj67VV0cO1Q6mtrktjMWPTc3xNP3j8BQK2cR4YcQW/33tw5v177FQuv0inrHrYeuD/hfqVTQl6nvcaYk2Nw7Y38FPxW1Vvh5FcnVQ70ZjDUQS2lqWvXrhg2bFiJ8Ttbt27FkSNHcPHixTIJWJXQmtLUvbskUV9SEn0IaIkhR4bgn4h/AABPqi9Do/FzJQdXrwamTy+27fuc9+i1vxfuJtDAcSM9IxwcfBD9PfojKCYIa+6swamoU3KWl06unTC99XT0ce9TogIgIiJsDNuIny//LDOdu497H6zvtR41LWuq8YlVQygS4syLM9gUvgnnX56X+wwN7BrguxbfYaTnSDmFryQIIUjNS5VTqF6mvkRoXCgSshNKbG9mYCZnjbIzsQMhBPcS7uHA4wM49PQQ4rPkU0Y4mDpgWKNhGNFkBFpVbyWneN6JvQP/4/5cvi4A+Lrp11jfa32ZZ7AIRUJsvrsZcy/PlVHiWjq3xOAGg/Ei9QWiUqIQlRwlp5hKY1gA8JfS9dvVAZ/xQD2bemhTow0WrXoA1+sP6cH79wEvL5XlExERVoSswLwr8zgLp6WhJbb124YhDYcobb/69mr88N8PAOjLwKOJj5TOTNMWT94/Qc/9PRGbSfPp2JnY4Yz/GTlLUoGwAG13tOXcydNbT8fqHqvLW1yFiIgIG8I2YPal2TIvGcMaDcPp56eRU5ADAKhpWROnh5/+pCeN5BbkIiY9BkZ6RnCzcqs0cZGfC2opTX379oWvry9mzZpV7Dl//fUXrl27hjNnPp/M0VpTmqZOBdatAwAMtAtGmGG7Yk9t1gwIlM1bh379gHvK89Zh6g98/JZvh5yCHNiZ2OFt/kwYz5/NHQ81aItB9jcUtj15EmjenOYjGXxksCQ+SaQDvcx6KLSKkm1QaASTlyNgHz0NMbebyhyaORM4WELeOqFpLNLbTAHfVRKwbmZghqWdl2L35MlISlQeB/TXX3SSlZioKBpnL3ct4wTk1N+O3PpbIDR7J3NMX0cfgxoMgkvCRBz8s73cFPCiuLsDV2Tz1mHECOBaMXnrCAiEpu8gcLwFjy63Qarfwr2EeygQFZR4Hd2MeuARHgqt5JPEmRmYoY31INzdOQKG8Z3BIyXHKj17lYmp56Ziz8M9kv4z3WATdAAG778otl2HDsB+2bx16NyZzmcQ2Icive0kFNhLZmXy8q1gGfY7TCLHY+F8XQRIclsiIiYNHQZFocAyCoWWUSi0+vjX8gXqpQnwnP40cLAx4C+lz0wKBdafpetzW7pjnePXMEhqA4MPraBTIBsr5eQEhH/MbZmUnYSRJ0bKxNgZJPnA+soB6GW7yn3W4cOB5ctl93nUFyGmY0cIqlG3remzibC6uUGu7aZNQB9JbkvcvQv0Vy23JSIiAHOpj7FyJV2kyXe6hhS/ASCG6QAA3Yw66PDuPC4frStznniMKLCMxPtB3oAetZLZnb4Cw4RO3HkzZtBFTFYWoGoJUvEYIeb0aeA75bktYeD4GrWmjeXcigBgIaoFg3M7YBjfGQKbB0jt3hdCM6oU8gTmsLl8GEaxPdG7N7BZNrclWrQAEpXntlR5jFBEWBhQTaq2+ZYtwK8qhIm5uwOXLxMk5SThVeorvE57jeXbXuNl2isIzV+j0OIVRCYS4XVyqsEw0RcGie3h37Y91i1oJBPb5aJaaCn27QM6dpRsX70KfK1abkvEyua2xOLFXMaPEilpjCAgILp5IAZZIPqZEBlk0r/6WejRPxPff+2BltWLT3irTdSK7qxXrx6Cg4MxceJEmJvLB2pmZWUhODgY7u7uZRaQAfpL+oh18nPEoXilSZH37MMHIE6FPGUPsy4jh0ff2Pq694Xu8Rcyx1sJboLExSEe8jk4BB/z1pkZmOHU8FPo9vc4XM/YC+iIZBWmzOpA2CTgbgByc+2QqiDONy1NmbwuwPN/8cWY44hpOAWJ2YnIFmRj+vnp0G+9HwXHtgHvS37TzC3iESssBOISCgDraMD2OWDzAqh5E/A4CegWypzrYlYLk1pNwBjvMXA0c8TKlUC8Ct+vpXwaFSQnl/RZeQBqAs9rwqfFMKxcSGOS7ifcx63YW/hx1S3A5TZgKTtqCS1l/296PH30du8F/yb+6OveF9evGKNHqHJ5ARpXtXvAbnSv0x0Tz0xEZn4mhBbR+NC3HRC0GLgxByDySmqyfN46xKelIs5rHtBiM8CTele7Pwrk0p9Iz3FAOqhHTRpzPWt8uP8FgCJKGk8IN9O9AEYDAGLyvOFpY4SIjLsQCAW4UEdyaufk5/i99wK6IdIBkpoC79p8XNqCJNYCwMPFVxfxzb/fICkniZ5LeMCNORAELUaSSHEKhrQ0+X0J8ToQHNkJTGwKGOQip+FG5IQPAl53lTkvT5zbkk+VFIHASKXfKkDDHKXJzCxyLzU6AvT8BtD7+OOMawHhgTPIbSJvqebGiLj6gMXvQA9qJUtuNwrY+BjIt+CuUVQGVeUVjxFi8vKUtOWJgBYbgW6zER2Tw+3+rvl3yDn5F/aGfRw84ryA6FBgeD+gejiIQRZSuvcBzq9GaupUuW4TE1WTWeEYoeJnFcrmtkR2dpG2enzAKgawfg1Yv/r49zWSq72C6bLX3GQDAIDdx0UBItME5NU5grw6R7ARwKG/rOFbyxfta7ZH+1rtEZfgDYiUP+bz8+W3S/6shH4GPT7is/KQV5AHfiEfeYV5eJbNR5xhHqCf9/Gcj3/18+i6fh5gkI1rlpn48mgmsgRZyMzPRGZ+JqJaZKKgVRZgmAnoCBVe+QAfqPb0x6qlNA0cOBC//PILvv/+e0ydOhVeUmbvBw8eYO3atcjKysKgQYM0JefnjZTVqoVZFC4oePiKsZfPbQl7e6C6CnnKXhucAD4aMQbUHwCdl/J5ZsZYHsdOM/mByEBqhrKBrgF+qrMb93Y4I9vrT7ovyQemT6bDOHoQeEQfsAZgDZgp8FhYW6siLw9N9Qbj3OQumHNpDjbfpa+TBQ6hwHfNYPZwJizuzwdPKBuTQSCC0DQWr/EcG8Ke40XKCzxPfY6nCc+BX6KL/aGC8GD0tjdMI77DrWM94FJdoiiYman2/SqqKGRnp1pbscJlpGcEnxo0nmnlULpPaBoLgcMtCBxuQ+B4CwK7u4BOAQwSOsDkpT92zxmMft0kAeSGhqpdUxr/Jv7wcfFB+7UjEItb9Hvq8gsMGl6AddA+6OXIaut2UoO8iIiw5+EevO41EzCQaFN6KU1gdXMDDJPaAVagC+TvCV3d4uTVhXcOn9tKT/kOh/0C4FonH/cS7uHm2xuI27cI1dNy4fsWMBYAeQYAdERAtQd0aUWtPx/41dBtbyNcen2J689Y6AST83thFN8VqIZisVYwF8HZGcjOroPssL+Q0XYKlXbgWDj88xg6UkkvjY1BXe6enkBODiy2haB6ddVcS0W9MhYWku8pu9EaZPj8wCmnhm97wubyEehYmSkdI8i7aUiOPwmB81XA6i1MBn0P6+s7uGsUlUHVe8mgSBYDY+Pi2xaaRyOt/VgInCUVJWpZ1sL2ftvRpXYXzLxWtG01iP67hrRO34Dvdpz+j3tNQ0T2cxSKVsnM/nRSMeTJpEjImp6e6p+VpyNCbGY8Xqe9RnRaNK6Q1zAeEQ2heTQKzV9DZCrvLgeAfAAoVHgIAKCT6wS9zNrQzaoNkVEyBI43QAwkbxlp/DQERgUiMIq6G3g/m8IgqS0MEn1hmNAeBh9agSeUT9liaEhDBTLzM5GQnYBnuQmwbp8AoUkCRCb0r9AkASLjBAhNEjnLJQBUL1q5xwzASOXfURyAo8+K7FRcjU2OiswKrnZyy3Xr1uHo0aPg8XjQ19eHjY0NUlNTUVBQAEIIvvrqK0ycOFHT8lZqtOaei4mRTKUeMAD491/N9f0RoUgI55XOeJ/zHib6JkiemQzjGm50QDcwkLwm+voC16+r3O/9hPvQ09HTeoxB8JtgBJwOQGSypEZVXZu6mNZqGuKy4vAi9QWepzzHy9SXXICuKjiYOmCc9zgENA9ALata2hBd4+QX5qNQVAhTAxVHoFJQKCrEb9d+w5LgJVyKAisjK2ztu1VhrM/jpMeYdHYSbryVuHXNDMzwa8dfMaXVlLIn0JwzB/iTKua4cAHo1k32+IQJ1DcC4PKGmThWIwshsSF4nPS4xFmNPer2wO4Bu+FgWrb4QRERoeuergiKoQ//cd7jsLVfEd/Fhg3A5Ml03d9f3mdRyuvNvjgbK25JXnjGeI3Bpj6bSvVdx6THoOnGplzsYOBXgejr0VdtuVRFRETYHL4ZMy/O5OKUABp8v7zbcqUpKEREhHmX5+GPm39w+3rW7YlDQw5pPJN0tiAbz1OeIzotmipH6ZK/MekxcmVjVMFA1wBuVm6oY1MHta1qo7Z1bbpuXRtuVm5yv+lCUSEeJj7E9TfXcf3tdQS/CUZKXkqJ/beu3hpfuHyB/EJaHishKwEJ2QlIzE4s1aQUTWOibwJzA3NYGFpwi7nhx20DqXVDCzR1bIr2tdpXiJxlyggeEhKCf//9F5GRkcjJyYGZmRkaNGiAgQMH4osvio93+FTRmtIkFNJp1Pn5QMOGwNOnytuUkptvb6LdTur2G1h/II732AmIc3C1bw+8fw9ERtJXy7g4WYd9JSG/MB+/3/gdy4KXKY37KYqpvinq2daDu6073G3cufVm1ZqxRH8KuPH2BkYcH4G3GW+5fWO9x2JNjzUwNTBFVn4WFl1dhDV31sjU4fqy0ZdY6bcS1S3UK9Egx7BhwJGPOYeePwfq1ZM9/s8/wJCPytwPP3BBP5n5mbgTewch70IQEhuCW+9uIUuQBT0dPfze5XfM8Jmhsbw/MekxaLKxCVdT76z/WfSs11NywpgxwM6ddN3QkCbjtCl9aon8wnyMOjkKh55IZiwvaL8AizouUitYePu97Rh3ahwAOlP1yaQnCktfaIqY9BiMDRyLK9GSwL+aljWxvd92dK3dtYSW8uy8vxMBpwO4IP7GDo1xevjpMr/45Bfm4/Tz09j3eB/OPD9T6nEGoC9iblZucLN2Qx3rOqhjXYdTjpzNnct034mICBEfIhD8NhjX31zHtTfXFE4CURcTfRNUM6sGWxNbmOibwEjPCMZ6xtxfY33l60Z6RjIKkLmBOcwNzcslF5wmYGVUNIjWlCYAaNKEZjc2MKDOdl3NJj2ceWEm93a6e8BujMyvD7RuTQ+OH09t2r/9RrfXrZO8GVdCnn14hoBTAbj57qbMfn0dfdS1qUsVIht3uNtKlKNqZtXYLJRSks5Px4TTE2QSJbrbumNyy8n48+afMoN1PZt6WN9rPbrV6aaoK/Vp1YpG3fJ4NEjGULaGFtLSqK9QJAIaNaK/IQUIRUJEJkfC0shS5cSspWHL3S2YcHoCAMDZ3BlPJj6R5BgT/7bFrFkDTJtWqv4z+BkYeHggZ9HS4elgY++NCGgeoKRl8RBC0O9QP5x+fhoAMLjBYBwdelTjvxNCCDbfpdYl6WLNAc0CsNxvudoWoqsxVzHo8CCuqLiDqQMCvwpEa5fWpepHRES4+fYm9j7ai6PPjiKdn17i+Sb6JnCzcuOsQ7WtqcXIzdoNrlau5TqLkhCC6PRoaon6uIjTwkhjZWSFambVUM28Gv0rvS7119zA/LMfJ5nSpAHKo/Ycv39vGAV+nAr06hVQu7bG+iaEoN7f9fAq7RV0ebpI+ikJtsfPAd/QfE1YvpxmWPb0pNsdOwJBQcX2VxkQERHOvjiLN+lvUMemDtxt3VHTsmaVeZupKhBCsPvhbkw5O0XGnSLGSM8Iv/j+gp/a/CRXFFQjODjQKGYXF1pySBE+PsDt23Q9Nrb0AV0agBCCHvt7cDPyvvX8FrsG7AJycmigkEiSjR2NGwOPHqmcj+1V6isMOjIIj5IeAaC5wg4POawRd1pidiIab2jMuXz2DdyHEU1HlLlfMW/S32Bs4Fhcjr7M7athUQPb+23XiIL9POU5+hzogxepdHKEkZ4Rdg/YjS8bfam0bWRyJPY+3Iv9j/fjTcYbuePVzKqhe93uqGtdF27WEiXJwdShUisW8VnxeJj4EJZGlqhmVg1OZk6VLh9XZYYpTRpEG5amDzkfsDR4KZyX/Y1ZwR8H1nPngB49NNI/QEuANN5IMxt3cu2EK99eAebPB5YsoScEBtJ50fXrUxeIjg51ISiKbGZ8lrxIeQH/4/4Ijw/n9vVx74O1PdZqL5N4drZkzn0JGeuxcKFkvvfOncCoUdqRRwnvMt6h8cbGXBDrya9Ool+yLZW9KLdvSyy9xfAy9SWWBS/Dnod7OBeorbEtTvufxhcumguPOPr0KL48RpUMKyMrPJn4pMzu1az8LPx18y/879b/ZGaKjW82Hiv8Vmg0/iglNwWDjwyWSYj5W6ffMM93npxyk5SdhENPDmHvo71cvjlpTPVNMajBIHzT9Bt0duus1TJHjMoJK9ZTybn0+hLW3FmDZzZSb6JRUcU3UAPpAr39PfrLX8PDg771imNDRCLg+HGNysCo2tSzrYebY27it06/oWfdnjgx7ARODT+l1dIriImRrLuVcB0/P8n6hQvFn6dlaljWwOruq7ntCacnIOfmVckJ0nGg27YV209UchS+PfEt6q+rj50PdnIKk5uVG0LGhmhUYQKAoY2GYnjj4QCoS3Zs4Fio+65dKCrElrtbUO/velgSvIRTmGpY1MB/X/+HLX23aDxg29bEFhe+uYBRXqO4ffOD5uPbE98ivzAfuQW5OPD4AHrt74XqK6vj+/++l1GYdHg66FG3B/YN3Iekn5KwZ+AedKvTjSlMnynM0qRBtGFpEhERmm1uBpOwhwjZ8XHnpEnA+vUa6R8AWm1txWUBjp4eDVcrV5o9+eFDOs82NxfQ1wcePAC8vWmjzp2By5eL65LB0D6nTwN9P7qgFiygWfUUUVAA2NrSTIz29jRRjxolVTQBIQR9DvbB2RfU1R58uRbaBX90/Vy7Ri26WVl04kdCgkz2ymcfnmFp8FIcenJIpriylZEVfvjiB0xvPR2WRiXkIykDqXmpaLyhMZehfmPvjfiuhQqZKT9CCMH5l+cx8+JMmfqC+jr6mNJqChZ2WKg12aVl+PPmn/j5sqQeqoetB+Ky4mRiqcQ0q9YM3zT9Bl81/oqVZmFwMEtTJUeHp4Pfu/yO57aSfSINWppiM2M5hcnLyYsqTCIRdcMBNHZK/+NUZU9PoO7HTMJXr9IZdQxGRREtqQcHV9fiz9PXp0o+QOOfHj7UqlglwePxsLXvVq7Ujt2zjwqTgQG1NA2nFh3k5ACHaYHgx0mPMezYMDTe0BgHHh/gFCYbYxss7bwUb75/gwUdFmhV6bAxtsGO/ju47R8v/IiXqS9Vavso6RG67+uOXgd6yShMQxoOQcTkCKzsvlLrChNAv/s57ebg2NBjMNajMTxRKVEyClNNy5r4ud3PeDrpKe4G3MX3X3zPFCaGDExpqgL0qNsDjRq2R8rHWL3cJ/c11rc4CRoADPAYQFdiYyWpiqUtZkVddCdOaEwOBqPUSCtNJbnngErjogPo7Lm/e/4Ncz5Q/2NKnYKmjaniJFXPM2fjWgw5MgRNNzXFkadHuLxSdiZ2+KPLH4iZHoO5vnM17s4qjh51e2BCczoDMLcgF6NOjIJQVEwyWNCA47Enx8JrkxcuvpbUIG1dvTVujL6Bo0OPoo5NnWLba4vBDQfj2qhrnDJkaWiJcd7jcPXbq4ieHo1lXZahoX3DcpeLUTVgSlMVgMfj4Y8uf3DWJrOkVORlFJ/ArDSciDzBrQ+oP4CuiK1MgEwJFwDA0KGS9aNHNSIDg6EWqsY0AZVKaQKAEU1GYJpeG277sk0GjRNq3hy5DelvzvTeY0Rd/Yc7x8HUAcu7LUfM9BjMbjdbaaJHbbDCbwVqW9OZuzff3cT/bv1P7pwcQQ4WX12Men/Xw44HOzhlz9XKFYcGH8KtsbfQtmbbcpW7KC2rt0TUlCgEjw5G4k+J2NpvKzq4dtBYbi7Gpwu7Q6oIPjV8kOcmKVVx+MTSMveZzk/n8rq4WrmiqePHwrlFg8Cl8faWPKCCghQXGWMwygOxpan4OisS6tSR3Lc3blD3VwXC4/Ew21BS/fWw8SssDV6Kvof6Yaar5KVl3D3AycwJq7qvQvT0aPzU5ietZHpXFTMDM+zqv4srTj0/aD4eJz0GQHNd7bi/A/X+rodF1xZx2aUtDS2xvNtyREyOwLDGwyrNdHwLQwu0q9kORnryZUUYjOJQO2lNeHg4Dh8+jMjISGRnZyucTcHj8RBUyfP5VCUatR0ABP8NALh2YQsGDFvAxUaow9kXZ7mMuQM8BkgGs5KUJh6PWpv++otmKj9xAhg3Tm0ZGAy1EStNNWvSCQslweNRa9PmzbQk0PXrQM+eJbfRMuaPJb+zcGdgV9B8AIBVE2DFBcC4EJgQYYKAgGcwNldQ4K6C8K3lix99fsSKWysgEArwzb/f4Pcuv2PO5TlcrigA0NPRw8QWE7GgwwKtZhJnMMoTtSxNV69excyZMxEaGgpjY2M0atQInp6eckvTpk01Le9njWNzSa0d58QcLL+5vEz9KXTNASW75wBJXBPAXHSMiiE9HcjIoOvKXHNiKpmLDuE0pxXfUBcRUjqFuWMNvO3WCgBglJkL41PnKkK6Evmt829oZN8IAPAw6SF6HeglozD19+iPp5OeYm3PtUxhYnxSqGVp2r17NwwMDLBs2TI0b95c0zIxikNKgXFPASbdWY0praagmnnp68DlF+bj3Es6GNsY28jGGIgtTRYWihNYtmgB1KoFvHlD0w6kpNAp3QxGeaHqzDlpOnemqQZEoopXmlJSgNevAQC6zZqjUz0LpOSm4LsW3+Fbz29h2PwOcK4DPXfbNlrItxJhpGeEPQP3oPW21py1GgCaV2uO//n9Dx1cO1SgdAyG9lDL0vTu3Tt06dKFKUzljXi6P6jSlFuQiyXXl6jV1ZXoK9xU277ufSXlRfh8qgwBkqSWRZGeRScUAidPyp/DYGiT0sycE2NlJcmy/ewZnSVaRt6+paUYu3WjJe5atwZmzACOHaNplorlriR5on4rH1z85iLuTbiHgOYBtNyMr6/kJSkoCHip2vT+8qRZtWZY6bcSOjwd1LCogb0D9yJ0fChTmBifNGopTRYWFjAsWhiToX1MTGj8BgCPFAAE2HJvi8r5UqQp1jX38iUgjk9T5JoTIz2L7tixUl+fwSgTpZk5J420i+7ixeLPKwZCaI7XxYuBZs2owXXqVODSJWo8Cg0FVq2iPw9nZ5rm7OuvgY0baXoooXiGfrik3AxatJC/EI8nGyu4fXupZS0PplYfiNxXwxHjsAxfN/2azT5jfPKo5Z7r0KED7t69i8LCQugpC8D8DJAu2Kt13N2Bt29hkwfY5gIppoVYELQABwYfULkLERFxpVOM9YzhV0fqQVJSELg0rVoBNWrQIqmXLtFq8taVJ1iV8YkjZWl6ku2K58epZSczkyoy7u50sSiawsjPT5I5/MIFYPRopZcqKKDJuk+epGUY375VfJ6NDZCaKi9mdDSwfz/dNjenOSzXvAtDA/FJLVsq7nDkSGDuXKCwkNbM+/VXSaLZysKkSTA8dQrYsx9wqw20aaO8DYNRhVFL4wkICMCPP/6IRYsWYerUqXD8zAu3du3aFV27duXKqGgVd3eqpABolWOJc6YZOPjkIGa1nQUvJy+VurgTewdJOUkAAL86fjDRN5EclA4CL0lpErvoVq2iT5XAQODbb0v7aRgVCCH0IZ+QILskJdHntL4+nZSmzl99fZqrUdF6Scd0dWkVkaIyiZfERPp35YtodP/4Ofy+c0NxnjAnJ4kC5e4OeNRphd5mFtDNzqS/I5FIYUmVzExaF/vkSeDsWUnMeVGaNwf696dLkybU2nT7NnDzJhASQi1PfL7k/KwsauAyA7U0ZcIcHYfVg09boHFjakw2MhIvjmjWtj/sr/0DJCUhbusZCPsMgLGx5Bw9PVkPukhEsynk5NB6xqquGxlRZc7Xl35nKpGRAfz3n2R76lT6gXVZTTbGp4tKStOwYcPk9hUWFuLZs2e4ceMGzMzMYGoqnzuEx+Ph0KFDZZeSIUFKkfnBuhfO4SAAYO7luTg74qxKXRTrmgNkLU0luecA6oNYtYquHz3KlKZKAiES5aKkJTGRzr6vilRHDACAD0MkovinfGIiXa5fF+/Rwz/ogkH4F0hOxlTfB9Bt2Qzu7kC9esCLF1RRCgqi7wJF0dcHOnWiSlK/foCLi+xxOztaPq5PH7otEFB33s2bkoUkJqIGaDzVXTTH/Yc6uF9MZZfuGIfzoAkuH0zeij6TB8gc19GhCo+hIVXOxIn8y0LdukC7dlSBateOfi8KUyudPSt7A927R92IAQFlF4LBqKSopDQpysGkq6sLBweHEs9htYC1gJQi06mgOmra1cTbjLc49/IcrsVcUxqESQjBv5H/AqB17fq495E9QVppqlevZFlat6ZJBePiqKsjPZ0G2zIqBJGIhpctWCD7b/zUMDYiqJ0fDRAg1awWJo/SQbVqQLVq1P0VHU0///PndElKkm1/AX5UaQJgGnIBf4Y0K/F6lpZA795UUerenW6rioEB9WS3agX88ANVaJN23AU+hiu9sW8JXrIkjLAoF9ENb1ATtfAWPXAeLniHWEiS3IpEtJ52bq7qMinj5Uu67NpFtx0cZJUoL6+PabGOH5dvPHcutUDb2GhOIAajEqGS0nTkyBFty8FQFSmlSe/la/w6/FeMOjkKADDn8hyEjAkpMeNuZHIkXqS+AAD41vSVz6Eids+5uNBK6yWho0MHyDVr6Gv5qVPAN9+U+iMxygYhVGf9+WfgvoplCe3swCkaRRcnJ/qwLyyk/1ZFfxUeExB0PjwBtSPO4GS/7Yio1QMFBfS4QACV183NJXIoks+C/wE8J6olOLd1w99/l/xZMzKoBUmsRKXf8wNO0WN+uIA/MUeuTc2aErdb+/aaCyXi8QCnd2Hc9qh1LTCoB3DnDp3Mx+cXXXTx7NoY1LqzCLoQYUWjXdhfe77MOXl5QH4+tTiZmdGframp8nXpfUlJNFF6cDD1sEkbkN6/p/qRWEcyNQU6tMrDvzfOwgAAsbUDr3Mnam1OSaFa+7p1Mp9bJCp+EQpll8JC5fvE2yIRzYpSt27lC/difJqwKO6qRq1a9IkmEABRUfi66df4K+QvPPvwDLdjbyMwKhD96/cvtrk4ABygCehkSE6WRLKWFM8kjVhpAuigyZSmcuXWLaosXbsmu791a8DTU7HS4eiopQfMnVDgx60AgK/j/wL29dDCRQBExUjWi8ycKxCJoF8kRsnSkk5Qk0xSqw3UqQ28fo1O+jdwPTAHke9M8eKFxKrk6VmMS0oTFJk5Z2FBUxYUy7sxQK3FACEYlr0dw07MUxiHVVZ69aJ/+XwqoliJunlTNqYrJwfQD/oPBqCK6/bUAfjfuYUIxxmYIhfC9RvRevN4PIQnpxhpGz09+j7ZoAHQsCFdGjSgw5gRq5LC0CSkjKSnp5Pw8HBy7do1Eh4eTtLT08vaZZUlMjKS+Pr6ksjISO1eqGFDQgBCDA0JKSwkJyJOECwCwSKQhusbkkJhYbFNW29tzZ37KvWV7MEbN2i/ACGTJqkmi1BISLVqtI2BASEZGWX4YBomJISQ4OCKlkIrPH5MSL9+kn+XePH2JuT8eUJEogoQavx4iSBWVtoT4tAhyXX++IPbPfX5c2Jw9SpZFxurvI/vvpP0ceaMduRUhEhEiKMjva6NjerfUc+eEnn/+0+7MhahsJCQhw8JWbeOkK++IqR6dUJ24xtOnh44SwBC5mAZt+8afAkgkrs/y3vR0SGkbl1C+vYlZPZsQnbvJiQ0lJCsrHL9CjlEIvp9CgR0qZDfKaNMqG1pSkhIwNq1a3H79m2Z2CUejwcfHx9MnToV1aqVPlM1QwXc3Wlyvvx84N079PPoBx8XH9yKvYVnH55h36N9+NZLPig7Pised+LuAACaOjblqpVzKCufoggdHWDwYGqOFwioi27ECHU/mea4epVmgCaE1hv7RIJTo6OBhQuBfftk42Dq1QOWLKGGPy0YIZSTkwNIT/pIT6e5lEqTQ0lVFCS2LBSJsCEuDkIAv795g0nOziUXhvXzAzZtousXLkjMLNomLk4SZNWihermrHHj6HQ+ANi6VTbflJbR1QWaNqXL5MkAyRdA5HAKyATy9C2Q0qAz6guAc5iB717vQC3BS7RHMH52O4xLdl9BRwdyi66u/LZ40dOT3S5pP49HU0A8e0bj2IpObBCJJDFap07JHqtZk9Zx5vFK5xKU3haJ6O9Q2t1Y3LaiuDVdXeruNDGRuEpLs25mJu9uFe8zNtaitfQzRi2lKS4uDpMnT0ZaWhpcXFzQpEkTWFtbIy0tDU+ePMHNmzfx7NkzbNiwAc7OzpqWmSGt0ERFgefqij+6/oEOu2gQ+IKrC/BV469oZmEpAqMCufUBHgPk+1U1R1NRhg6VxDAcO1Y5lKb//U8ySk2bJvFXVVGSkoClS+lzXnpWl7MzsGgRMGpUBcd0HD1K59NLc/++dpQmBYktkwsKIM4bGScQIIbPh5uxcfF9dOpEn1hCYfmWVAmTxDMpTGpZHH370ojs9+/p9L737+l2BcC7dhW6mekAAOOhfRC6XzzOGAJnVnNTB5cJfsKyK33oE7wcKCyk+vSzZ3SJiJD8VRQo//Zt8Tm3yguhkKa3yMzUfN88nmwcm7RSZWJCj5fGbgfIrouvoaND/6q66OjQCBPp1BnS60W3Fa3b2gL29pr/zlRBLaVp06ZNSE9Px48//oi+ffvKvNERQhAYGIhVq1Zh06ZN+PXXXzUmLOMj0grN8+dA9+5oX6s9etbtiXMvz+FtxltsDN+I77/4XqZZiakGAPWVprZtaaBMUhJ9G87KotG8FcWbN8CZM5Lt/Hyq2N29W7FyqUFGBrBiBc3skJMj2W9tTScqTZ5MB5IKR1HG6vv3gUGDNH8tBXXnkorkB7iWnl6y0iQuqRISQp+q797RZK3aRlkm8OLQ16ea8V9/Ua15zx7gp580Lp5KSM+aK/r/7d2bLmfOUKvasmV0KQf09KjFtV49GsAvRiSi/96iytSzZ4rzb/F4ii1b0tvi9aIWNLFSoMo2ITSIX5wzKzeX/pXO61UWCKF5uLKz5WeQVnXGjwe2bKmYa6ulNN29exdt27ZFv3795I7xeDz0798ft2/fRrj0AMHQHNKWJimX2rIuy7givEuDl2KM9xhYGNKUyBn8DFyJvgIAqGlZU3EiTHFfhoZcuRaV0NWlLroNG6iCcvo0MHx4qT6SRtm2TfI6JA6af/ECmDCBpmauAjbrvDxqvPvjD9ks0yYmdOr6Tz9VouwOUVE0ahiQKM+A6lP5SotYaTI1pdMAASQV8ctcz8jAKGXhAX5+VGkCaMbJMWM0Lak86ipNAHXR/fUXXd+2Dfjxx/K/l4VC4MQJum5kBPRQEOy/ahX9PgUCavEdM0ambmZ5o6ND58/UqgX07CnZL1YqiroHK8S9LYVQKEkjUVShkl5ycyXJSaX/Kton/pufX7GfTVNU5IuiWkqTSCSCq5LK4rVr18Z9bQ2anzvFKE1eTl4Y3ng4Dj45iOTcZKy8tRKLOi4CAJx7eQ4FIvo2PsBjgHy8h1AoKQpat27ps/oOGUKVJoC66CpKaSoooA8UgH6Gy5fpm29mJnDwIHXLaDtru4oUFNCX8bdv6Zuw2F3w7h01iiUmSs7V1we++w6YN4/qJZWKHTsk67Nm0eCqtDTtKE0ikaSgtJsbpzTIKU3p6cr78vOjvk2Auui0rTQRIlGaHB3lM2Mqo149oEMHOlUyKopOa2vXTvNylsStWxKluEcPxWlJ6tWjVYv/+IMqTt9/T1+kKhk8XuU0POvqUrm0IVthoUTpAkrnVhM/MsTr0q47ccyWKotIRG8LcbqMoukzituWXhfX3a4I1FKa3N3dESMdV6CA6OhoeJTGxcNQHXt7amZIT5fLYvhrp19x9NlRFIoK8b9b/8OklpPgYOqg3DUXEyOJolTn/9a+vSTm4uxZ+lpTTrEMMpw8KdE2+venD5Xt2yUFhsXxTU2balUMQmgGB2llqKhylJBQfFJDMTweLfi6eLF2woPKTEEBsHs3XdfToyknTp+mKbXj4+kDVpNaXkKC5D6VenErqjS94vMRl5+P6iUVFm/ZkuYYyMiglhGhULslQKKjJWbD0gSBSzN+vCS/xNat5a80leSak2bePGDvXvpWcOYMXXr31r58jBLR06O3fGkStDJkUcsQOX78eNy5cweni3l7CAwMRGhoKMZJV+lmaA4eT2JtevtWpnZCXZu6CGhGZ4plC7KxLHgZ8gvzcfYFLbFibWQN31q+8n2qM3NOGl1dySDK51PFqSIQz4gCqGkGoFawyZPpOp9PFaiiQcsa5MYNWofMwYHWJhs4EJg+nXoqjhyhtcni40tWmAwNgQEDgEePaPhKpVSYABrDJrY89OtHFXpvb8lxTVubFMycA4D3CmqeKLU26ekBXbrQ9dRU7bkTxZTFNSdm0CCJX/boUfriVF4QIlGa9PQktWIUYWYGLF8u2f7++8rnG/rwgSr3QqHycxmMj6gd0+Tt7Y0VK1bg0KFDaNKkCWxsbJCamorHjx8jNjYWLVu2xN27d3H37l2uHY/Hw7esPplmcHenqXsJAV69otU+P/JL+1+w6+Eu5BbkYmP4RjSwa4AsAVUS+rj3gZ6Ogn+7ukHg0gwZIlFajh4FvvxSvX7U5flz6o4DqItR/EAEaDT1rVu0Ptbz58DEifRNWIMxIXl59AV79WrlFiRHRxo2Jr3UqCFZt7ev+NgKlZAOAB87lv4tqjQpintRFwUz5wB5SxNA45qGK7Ny+flJFIELF9RXZlRBWmlq2VK9PoyNqelx3Tp6wx04AEyapBn5lHH/vsQ12rkznY1QEl99RceD69ep63/lSpqJtTKQnU0rFL9+TdNNnDjBUoozVEItpWnnzp3c+rt37/Du3Tu5c0JDQxEaGiqz71NVmi5duoRLly4hOzu7/C4qrdhERckoTdXMq+H71t9j2Y1lEAgFmHpuKndMoWtO3IeivktDhw40MDc5mVqacnKUl2LRJJs3S9YnTJDVOoyMgMOHgWbNqJVp/34a3yR+0JeRW7fo5CZpg13TptQTWFQhcnGhlqQqT0KCZJZi9eq0MBtQfpamEtxzAJ1BpxTpfEcXL9IpidpCOt1A8+bq9zN+vCTFx7Zt5ac0qeqaE8PjAWvX0t+cSERj3b75pvSxXNrg99+pwgTQsWr0aGrSrRJvKoyKRC2laY24bAYDANC1a1d07doVUVFRGF9eQcbFBIOLmdl2JjaGb0QaP40LADfSM0L3Ot0V91dW9xxATfYDB9JYi9xc6roZMkS9vkpLXh4gVuYNDakGU5S6delDZtgwuj1lCq2k2qSJ2pfl82myyRUrJOUiDA3p8+GHH7QbIlPh7NkjcW2MGiX5sB4e1CKSl1du7jlxygE9Hg/eZmYIy8pCRG4u3gsEcDAwKL4/Nzd6X7x8SQOrtRWLJxLR6H6AKg1OTur31bQptVSFhdHv9+7dsilhqiJWmng82Tn9JeHpSa2669fTMWHWLGodq0iio6mvXJr9++kL36pVVWJ2LaMCqeiU5J8S5VZGhRBC7t+XTEgYNUrhKX/d+IsrmYJFIH0P9C2+v+rVaV+2tmWT68IFiVxfflm2vkrD7t2S6379dcnnTpwoObd+fbVrKoSGEtKggezckFatCHn2TK3uqhYiESHu7pIP/qpISZ7WrSXHNFlap1MnSb9padzuajdvEgQFEeebN8nMly8JgoIIgoLIP+/fK+9z0iRJn6dPa05WaSIjJdcYMKDs/W3ZIunvu+/K3p8ynj2TXK9du9K1TUmh44q4/bVr2pFRVQYPlsjStSshurqS7SVLKlY2RqWH2SKrKvXqSdaLzKATM6XVFFQ3r85tF+uay86ms1wA9V1zYjp2BGxs6PqZM4pT8WoDRQHgxbFyJeDlRdcjI6l7Q1kQkhT5+TR2yceHJsoDaDqo33+nxooGDUonepXkxg2JdbJTJ6B2kZI80i66hw81d12xpcnKiguIFhGC9x/dc44GBmgvNTWo1C46bWUH10Q8kzRffSVxfR84IJv5VBv8+69kvbQJS21saDp7MVOn0rnvFUFQEPDPP3Td0ZGub90qOf7LL7JufgajCCopTU+fPi3TRfLy8hAtbVZnlB1TU0lsgAL3HAAY6xtjTY810NPRg5uVGwY1KGawe/FCsq6ua06Mvj510QF0ID9/vmz9qcLDhzSoCKCutjZtSj7fyIhOYxO7YfbuBXbtUulS9+7RWOFlyySeqebNqYdkzhzqofwskM7NpCi/kTbimgoLac4GQMY1lypVQsXRwADtLC0hdrBcV5TyuSgdO0pci9pSmtQtn1Ic5uZUcQJoDrKjR8veZ0lIxzOJf9+lYdw4GtsE0CmhFaGYFBbSWXxili0DLCxoPJM4aShA3YnHjpW7eIyqgUpK06RJkzBr1iw8ePCgVJ2npqZi3759GDZsGK6Jc4swNIdYwUlJoYsCBjccjHc/vMPjiY9hZWSluB9NBIFLIx3HVB6DT1ErkyoxCfXqyb5hTp4MlPByIBDQ2KVWrYAnT+g+fX3gt9+oviYVh//pk5lJlU6AJnwZPFj+HGml6d49zVw3NlaiqSqIZwIAR319WOnrw/OjQvwwOxvpCtIRyGBpSWdSAdTyqI2CZNKWJk3FH0mndBEndNUGb95I4rGaNZMJwFcZXV3g778l2/Pn0wkj5cm2bVRhA+j/QDruceZMugDU6jxihGQmLoMhhUpK05IlSxAXF4fvv/8eX375JdavX4+goCDEx8cj72OOIKFQiPT0dDx69AiHDh3CTz/9hCFDhmDHjh3o2LEjBgwYoM3P8XmiJBhcjJOZE0wNSpjFJt1WE0pTly6S6cinTsnkkdI4WVnAvn103dSUTsdWla++orPsACrj0KEK3RwPH9JZcL/+Knlme3lR48Evv3yGM5UPH5a4Xf39Fdc0aNJEYr3RlKVJhZlzjh+DvsUuOgLghirWJmkXndh9oykKCyXfgZsbrTaqCVq3lmjrN2/SYmraoCyuOWnatKGz5wCaMX7evLLJVRrS0uiPVcyaNfIz5f78k1qdAPqWNGCArLLLYEBFpcnX1xe7d+/GzJkzYWVlhSNHjmDx4sXw9/dHz5490blzZ3Tp0gUDBgzAtGnTsHHjRjx9+hR9+vTB7t27MWPGDFhVmkJZnxBFC/eqi7SlqazuOYBqEeLZNdnZ2q0iv38/vQZA3w4tLErXftUqSXbwiAhJEkzQZNdLltAQFLGRVU+PWpzu3KETgz5LFOVmKoqRkSS469kzzSQ2LC6xpSKlSWq8UclFJ84YD9BKoKWIcVNKRIREySwmnuktn4/npY3/4/FkrU2KiiZrgtKmGiiJP/+U1AfZulVzVkhl/PqrxBo/fDgtMl4UHo/+78U1VbOzabG6YmJGGZ8nKgeC6+npoXfv3tiyZQt27dqFKVOmoEOHDmjYsCGcnZ1Rp04dNGvWDEOGDMHSpUtx/PhxzJgxAzXKo3L454qKlialiAcFHR3NFdaUfghpK96CkNIFgCvC2Fg2vmn3bsQs2oVt22ig9/z5VHkCqPHkzh1arqykWeyfNE+f0i8BoFqjOE5FEWIXXWGhxKdZFopLbCnlfnP4aPaTDgZXqQ5dgwaA78dM+ZGRkgLEmkBJJvBXeXmoe+cO6oeGqiarNF9/LbkZd+7UvMsrKUnyXdSvX/ZZDtWqAQsW0HVCaFC4JhVURURESPJaGRtTxa049PSAQ4doWSiAfp9+ftQ1zGBAzTxNbm5ucHNzw5DyysHDUIy00qTu2xAhEoXL1VVzWRe7dpXU9QoMpAmNjIw007eYO3ckM7NatZKNo1EBPh94/Bi4d88Dui03Y1zQCACAw+JJWIWWeIZGAKiXac4cqkB9Ekkpy0JRK1NJ8WPe3jTIHqDuqbLG8pTCPWdvYIAGJiaIyM1FeFYWsgsLYaYsSn/CBCA4mK5v3ixRosqKEqXpv9RUFHxUHLYmJMhYyZRia0tdpLt2URfU7NmatTidPClRaspqZRIzbRqNL4qKAkJCqHtd7LbTNITQhGni2XqzZ9NMsyVhbEzHrA4d6Pjy9i1N3Hr9uuZcq4wqC0s5UJVxdZUE1KhraUpMlNRh04RrToyBgcRFl5VFp/lrmo0bJesTJ5Z4am4urfm2fj191nt5US9Bq1bUQDU+yB9bQBOTmiAPR/AlTJCDBg1ooPeSJUxhgkAgUYIMDKg7tCQ0PYOuFEoTAHT4qHwIAdzKzFTe/+DBknQZx44VO7mi1CgJAn8pFfN3JiUFBeIsqaoingUG0FmNmrSSadI1J8bAgGYKFzNrFp1coA3OngX++4+u16ghCfZWhqUlnfkrTqXx7Bmttaft1A6MSg9TmqoyenpAnTp0/cULSUrq0qDpmXPSTJggsUTMnw9cvaq5vlNTaUAyQPP1FKlzRwhNX/Ptt9StZmFB3W1TptDnysOH8qlivscaRBnS7OCN8Awve07Fo0eaSavzSXDqlMT9M3CgRMEoDnEuLEAzSpPYPefgIFOepzilScZFp0pck5ERvWEAGoMlVhDLgkAgCYjz8FAYc/dCSmlKKyxEsCqySlOtmmwepIkTJT7lspCeLplBVqtWya7Y0uLnJ3mpSkykAdgKSuGUCYEAmDFDsr18OWBionp7JycajymuX3j7NlWsNS0no0rBlKaqjtg6xOer53fX9Mw5adq0kcQviER0tlpCgmb63r1bElw8apTcYLhnDzWE7NlDw2mKFjLX0aETj779lk6kuXEDeJ9lDI8HR7gHcrVzO6G3cysYH1ElAFwaKyvJm/rDh2WrJp+fD8TH0/UiU97FMU06AOykpjJKu7lUSnIJ0LpuYjZvLnu8zZMnkodsMfmZXhQJAD+pTlzSxIkSK9aTJ7RqdFk5fVryZjFokObLi6xaJZl5efw4vQafr7n+162TjG/t2qlXQLxOHWqpEivg//1Hxxt1XlAZnwRMaarqFC3cW1o0PXOuKPPnA9260fWkJDpzpazZgIsGgIvTBnwkJQX48UfJtp4eNXqMGUPdc7duUY/h48c0FGTaNDqZxswMNNhVuu+AAPoWXNoA3YpAIKDuiPHjaSB+WSYHFCU2VuLmqFWLppVQBbGLLjdXNolqaXnzRqLASAWBAxJLk52+PnSlHuzVDQ1R52Mc3Z3MTPBVUdoaNJAEAWsiIFxJPFOhSITXRRSFk8nJIKVV1nR16X0r/vyLFpU935Q2XHPSuLnRdAbiWMczZ4C+fTXjAnv/Hli8mK7zePTNSF2lz9OTWlnFch48SJNkajuAnVEp+VzyF1dZ8oRCPMzORsS//6Lenj1oV/RBKD3AfPklDV4NDJQ9p1+/4qf2SsdtXLsm+zDMylJ9tszJk7LxGqdPS2aziUTUtCMS0WvY2EjcFGZm9OEkzcyZdGAqjvx8iZuoY0eq6Ihp0QI6EYl48PHl3dgYsLEGeB8A/PdxAWgGYH9/SbuoKNnPbmoq+W537aKuGmtrGtgUFkZdImK2bKFTmpXh7g5cuSK7b8QI+p0oY/x4mutAGhcXOnDn59M8U3l5sgP58eOAvT2dDdSxo2T/1auq57MSWy937ZK8XaemAjVrltyuQweaDsLbW5L3aPBgOjFAGQsWUGVVTEKC7BTxs2e5bPgEQNLOnYC+PhxfvaJFV6VeJNqnpuKViQkEhCDUzw/ti3uxcHKSKDgBATToF6ABwMrckMOHU9ePNPXr0ynr0sr2smW0srMUbzdvRoGpbA61N/n5eNi2LbyUKT0REZLp+wCV2cSE3re5ufR7UBS43KyZ8jGCEIllT0dHkn18xgxZl5cmxggzM3oPEwJcukS/bzs7iZKjzhiRni75/Y4ZI+tabNGCugSVIT1G+PrSIr/ilCR//02t3dLfvzSVaYwoSkEBfcHS1aUxsbq6NBi/rGOEmMWLZRMHF4d4jJCmc2flL3tF78FyhilNlZyH2dnwuX8fcHXFBC8vtAsKKv7k9HTgwwf5/R8+SGrLlUTRNzFCVGsHyPv58/KKb5uVJQk+VzTopKWpft0iAeD5bxNhnRsHa06Oj0tRiubEKSws+ZpCoURRy8iQHRCla/eVhFSMDUdysmptpZWN7GyqOChrJxJR696bN7L78/NV/37F/UiXTZH+/xWH+LuSDgZPSlItuFqcd0uM9Hdf5PqZpqYQfHTJOb5/L2fFbJ+VhZ0fXbfXqldH+6IPJEUMHkzNj6mpJd/HYtLS5PfFx8t/Rwp+my+kYo/s9PWR/HH7ZL168BKXBiqOopaOzEzZlyg+X7HsimaPlTRGiESSY0UDtrUxRggEEoUNKNsYoacnG+8FUIVJlbZFx4gOHWS3MzOLD2AvatUs7zFCjKr/m0mTqGLYtCkNAlX1msXJoUpbRW7opCTlbbU1aUBFmNJUyakvFasTWa8eUL267AkikSROyNCQWhaKYm8v306M+AbV15f/wfJ44Lu6IrJaNTR59w66JZmjiyYuMjaWv2Z2tuSHzePRAEtFg4S1dfHySn9eIyOatfcjBQXAy2wniHu0spSkX5KjaEConp7iawqFdICWTs7YtSsNlurcmW6bmRUvrzTigFJp7OxUa2toSN8G//mHzupRFPvB49Hv3ciIDixiBWLOHGpFE791Ghqqdk0xV69KZq7VqaNa3ImdHf0rrTSJRKpdt+g/TVeX7hMrU3Z23FTGJCcn7jTH/Hy54n/Sj7nrLVvKv8WLkeqHCwhftYpuW5Z0I0GS/V4aZ2eqNIkf/np6Cv//L6WyqU92dsbijwruyU6dsFBZGY+iLzkWFvT7zcujCh9AvztHR9lzVRkjxAojIPN9ywWy83iq30vKxoiCAvogFVs09fXptRUlrC1pjPjwQaKgNW8u/71L/69LorgxQnocK4qODv3Ox42jvxUXF9omNpbKoatbspuwLGOE9FiakkLdncbG9PeqzJUYESGpPi5GbInS06N/xYsqcqgir3iMkMbRUbk1urQJjDUNUYO4uDiVzgsJCVGn+ypLZGQk8fX1JZGRkRrt1+nmTYKgIOJw44b8QZGIEAsLQgBC3NxK13FEBG0HEDJsmIKuReSLu3cJgoLIzJcv1ZS+iKyDBkmu2aIFIXx+6fpYskTS/uefZQ4tXy451Lw5IYWFZReZk3vTJkJMTSUXAAiZPJmQ7GwNXUQBycmEbN9OSK9ehOjry15bvNjaEjJmDCFnzxKSny9pm5hIiIeH5Dx3d0ISEtSTw99f0s/hw6Vv7+hI29rY0O9SHYYNk8jw/Dm3+3paGkFQEEFQEPnhxQu5ZiKRiLiEhBAEBRGTa9eIQChU7XrPnkmuV7++enLfvi3pY9QohadMf/6ck/9qWhppHhbGbb/Jyyv9NQmhsnbpIrn27Nmla8/nS8YUKyvZ+0rbPH4suV8AQho0IETF5w0hhJAjRyRt69XTnuyzZin+PaqyWFoS0qgRId27EzJhAiF//EF/V2Fh9Dev7m/kxQtCVqwgpH17QnR0FF/b0JCQ3r0JWb2akF9+IaRfP0JcXVWXXV+fkCZNCBk4kJCvvyYkIICQ778nZO5cOjavXEnHyj17CDl2jI5LV68SEhpKyJMnhLx+TcemnBz1P2cFo5alaezYsfjhhx/gJ12vSYqCggJs2LAB//77L65qcpr5Z0p9ExMkCgR4X1CA1IIC2Ehr+zwe9YOHh9Mp2fn5qicUkvYdKwgCTxQIcPujKXRTfDwWu7rCWFxPTB14PMl8/1evqMwzZtDobFUQCmlsgLgvqbiXt28l7nwej8bElkVUObknTKDTpMeMkaROWL8eOHeOxvtoKhHiq1f0DfHUKSAoSPGMM0dHGpg7eDB1GShK2ujoSKeLd+hA+3z+nFqbrl5VbGkojrQ0SUySjY1kmnhp8Pam1rHUVODdO+XxUIoQW7p4PJn2xaUbEMPj8dDe0hIH3r9HrkiEu1lZ+EKRdbMo4oDw69clAeGl/R+HhUnWi8lbIZ1uoJ6xMfrb2eHuR4vayeRkTFUUk6IMHg/YsIG6WQQCGovzzTdAo0aqtb9yReIC6du3fNPfN25Mv/MuXah1JiKC/h8uX6YTEEoiLw/46SfJ9sqV2pP9jz+AXr1ogt3YWGqxF/9NSCh5dl1GBl2KKxBubk5nnbq5SRbxtqurxAImFAKhoTRWLDBQ3lIkxs6O5pjq14+OYUVi6ADQ//eTJ3R2zKNHkr9FrT4FBfTY48dKvyKl6OpSq5F4MTeX3S5pv4uLeuOIBlBLaTIxMcGyZcsQGhqKGTNmwETKjBkTE4Nff/0Vr169gudnW5xLszQwMcHVjwGlkbm5aFN00PfwoAoIIcDLl6oPjkpyNEVI+fSzhEKcTU3F4NI8cBVhaUkTB/r4ULPxhg00yFc6KLs4zp2TzAjq2VNm6vn06ZIQhEmTip3dXTbc3OjgvX49zSyclwe8fk0Vk++/p7ETiorXloRAQB/IZ87QpbhAZRcXqiQNHkxTOaiiEVavTh+A7dvTuKZnz+igefmy8uBmMQcPSlyTX3+tXoZPsdIE0HxNZVGanJ1lZJAuoeJYjOugg5UVDrx/D4Dma1JJaQJkA8LVyRCuZOYcIFGaTHR0UM3AAP3t7LDgYz4qtZUmgL4EzZlDg48LC2ns37Vrqs0g0/asOWW4u0sUp+hoqvSLFaeSyjytWCEZH7p3B3r31p6MPB793ReNcwLo952UJK9MFf1bnJs7K4u+WIqrHRTF0ZGORa9f01mCivDwoEpSv350rFU2XlhY0HGlTRvJPkKorNJK1OPH9CWirDOgAUnog6KYQGWMGaO9WotKUEtp2rlzJ/744w9cvHgRT58+xfz589GwYUOcPHkSGzZsQEFBAcaOHYtvtJUav5Jx6dIlXLp0CdlFA1g1hExckyKlqWgNOi0oTQBw6P37sitNAJ3/v26dpNhoQAB9sCqbhSOdCkAqADwwEDhxgq47OcnHfWoUHR1aL6tHD5qvJSSEDi6rVlGlZ/du4IsvSu4jMZEqgGfO0OR5xQVVu7kBQ4ZQRallS/mq7KpQs6bE4hQXRxMt9ugBXLyoOJ6sKKXNzaQI6ZlL9++X3lqVkyMJoi4m3QCg2NIEyNehm6Wq0iYdEH7sGJ22XpoyGmKlSU9PUhRaikKRCNEfH5x1jY3B4/HQxNQUrkZGiOHzcS0jA+kFBbBSJY5EET//TGcnvXpFy8Ps3k3v2ZIQCiU/JhMTqmRXBG5uEsXp+XOqDLVvT2fXNWwof35sLLX+AFRBWLlS83mlVEUc+1RSXA8hNH4rJoYqP9HRdBGvv3lTvGKSlEQXaXg8+vIpVpQ0kXOPx6OTBmrUkFVA8/Pp7zEvj76plnbJyaFxYeJAevEiZXVVSgXGNamlNFlYWGDZsmX4999/sXHjRkyZMgUeHh6IiIiAk5MTFixYgIaKbuxPlK5du6Jr166IiorCeOnkeBqiQRGlSQ51C/cqcc89K5Iv5XRKCjILC2GhrIaXKowZQy0su3bRH9GQIdTUrMh0DNDB5exZul6jBrU0gTadOlVy2sqVqukCZaZePTqor14NzJtHB5Lnz+nA9dNPdNqtOK+LSATcvSuxJklbIKTR1aVver1706VRI80M/HXqSBSnpCTqNurVi+ZdKinA+cEDyTT0Fi0UPvhVoqzlVIop1AuopjR5mJjAQV8f7wsKEJyRASEhMvmcikU6IDw/nwb///CDajJnZ0vcJU2aKKy7GMPno/BjgG69jxZKHo+HAXZ2WB0bi0JCcDY1Ff6KgoNVwciIWnK7d6fbP/1E3W0lKX43bkhmNfXsWboM2prGxYX+xrp2pa6jhAR6D1+8KJttHqBWNfHYOHmyYsWqMsHjUTe5vb1i161QSF9yFClU0dH0uzAxof/bfv3oeKGJF1pVMDRUnMqgrBQW0hfIosqUon2KLHzlRVmDoo4dO0bat29P2rdvT/r27UtSUlI0EWtVJdFWIPjbvDwuOLTPo0fyJ9y9KwnUGz1a9Y4dHGgbJyeFhzvdv89dV7zsVTeYWBE5OTSoUCz7iBHFBwfOnSs577ffuN2zZ0t2d+1aQbGFERGEtGolGzDZsCEh27bRAGDpwFZFgdxff03IwYOEpKZqV84nTwixs5Ncu2NH+j8ojilTJOdu3Kj+dYVCSWCxi0vp2586JZFj/nyZQ/0fPeLuzdgSJhUMefKEO+9eZqbq11Y3IPz6dUm7gACFp5xLTuZkmvPqFbc/KDWV2z/0yRPVZS2OL7+UyDJuXMnnTpsmOXf//rJfWxMkJxPSrJlELisrQu7ckRy/eVP296Tt31FlIC+PkIKCipbis0TtjOBCoRCbN2/GunXrYGxsjCZNmiAjIwPff/89Xr16pUm97rPHxdAQph9dMxqzNKWnS/zhxZhyxe456Xfyg8X50NXBxIS6PcR5WPbvlwR6SyMQSNxEenqcm+jJExrjCtB4z/XrK8giX78+cPMm8PvvksDTZ8+o+3HXLnlTupcXtU6FhNBje/fS5IGKpq5rkkaN6Fu6uLzI1au0hpyi2Ao+X5J4ztiYJnBUFx0diWUgNlZxfpaSKMnSJBXT5FCCG6vUdejEFM0QHhysWrtSxDMBEksTALSztITNR2vuudRU5Je1ZMeqVZLf2LZt9L5TBCGSeCZ9fe3GBJUGW1tqKfXxodvp6dT6FBxMrbjTp0vO/e037f+OKgNGRoongDC0jlpKU3x8PCZPnowDBw7A3d0dO3bswLp16zBx4kTEx8djwoQJOHLkiKZl/Wzh8XhcXNPrvDz5chBmZjRAFlBdaVLimksrKEDiR9dHO0tLuHwMvr2QloYUTRQDlb62dNzMtGnUlSXNiRMSxWPAAKBaNYhENKxJ7Pb/+WftVIFRGT096iK4e1e+sKmpKY3j2bKFKg337wNLlqgWoKlpvLxoHJX4IXrhAi25UjTx4L//SgI0hwwpu8+zLC46cRA4IKc0vf8ot42eHvRLiPlSqw6dGOns5IqUekWUQWnS09FBn48utGyhEEHqBMpK4+xM7zcx332nuKBveLgku3PXruXk51YRKyt6r4qzVmdlUdfU5MmS77pJE9nagQyGFlBLaRozZgyioqIwYsQIrF+/Hs4fH9hfffUVNmzYACcnJ2zYsAEzZ87UqLCfM2KlSQTgpaKAObHG8OGDarMRShEE3sjUFF85OAAACgnBP4qyjpeFoUOpsgTQh/fQobKfQToA/GNplt27JWXB6tal+kqloHFjWg19zRpa6uG//2iiuRMn6IBemqSS2qJlSxqILo4fO31aviagdAbwMWPKfk1NKU1Fi/V+VJoclEwtb2JqCquPb+bX09NLV9tt8GDJbMNjx1TLai5+kBsa0ntCAcUpTQDQXyrx3wl1CvgWZdIkyf/g8WNg7Vr5cyp61pwyzMxoXGOPHnQ7L092bFi9mllfGFpHLaXJ1NQUK1euREBAAPSK3KTu7u7Ytm0bev6/vTMPb6JA//h3kjRp0vu+KdDS0kKhIIJyiCgieK2K94kIeKLoev9c8Vpl1V1FBVZYFW9wVVBXQTlVDuWWAqW0lJbS+25zNOf8/phkOknTdnI1KX0/z8NDMplJ3k4mM995z1mzsFfYp4TwCMcKui4IhY8Yb5MLoilHpeJFE8BV0Xmd118HJkzgHp86xVX5sCwXErGNjsnKAi66CI2NnB6xsXy50zxb/xEUxInA117jqo/cKdP3NZMmcWLJtuO++Qa44w4uAbWsjKtSArgkcm8kXXoimmzhOanULgFVYzZDYw1dddduwIaEYTDF6jlpNJm6VIb2iC0hHOhMCO+JlpbO32B+frddlIutNoRKpV2S2GdERUFhjTV/19gIiysizxkymf1A38WLuZ5ZNli2sx+XRMIlF4vAZLHg56YmVAo75vsSpZK7ARFMAgDAhZltHfoJwoe4JZo+/PBDjBGeBB0IDg7Gk08+iRdsU6YJj8kRVJU5PeG7mtfUS3iuUFA5l6NSYWxoKH83vL2lBVXePknK5cCXX3be0X/3Hdd35b33Ote55x6AYfDkk503+zfdBFxyiXdNGTBceCHXGM92wf7iCy4PSxgunTvXO4liOTmd4tFdT9OgQXaeBDGVc0KEeU0eh+h6EjHCwbfdhOaMFgvKHNoNCAmVyTDdmptTbTBgX2+z/sQwfnznEG2Nxj4X6NgxoLiYezxlCiC4SeqJF8rLcenhwxi/fz/avdG7RwwKBXeusOXZhYV1GYRMEL7CLdEULrJHwlR/lgWeZfTqaXJVNNk8TTJZlzwRoKuniWEY3tvEAvivt0N0AHdR/Oyzzov0009ziasAd6KcMwc7dnRe08PDuRYDhAfMmMF5GGxiZPVq4JVXuMcSSaeHxVOCgjrDVCdOdB3K2x0tLdw/oNvQHCBONE0V5DW5lAwOcMn+YhPCReQznerogC0z0TE0Z+NqQYjuW2+E6ADuu7UJonXrOG8j4HZo7hvreaDKYMCHNTXesVEMQUHcuWLrVk6EDx3ad59NDGjcrp4j+pZMpRK2lGGnniZhiK27rtI2LJbOu8qMDKfhg2PWzwiTSpFi9RAIQ3RfOFaEeYuZM4Fnn+Uem82dF9cbb4QxLFrY0xJ//zuQlOQbMwYUV1wBrFnTmZRuq9aaNcu7OVg27zTLct2FxeBhjya7jw8N5atQXc5rAsQnhIsYn1LSQz6TjStjY/nKVa/kNQFcQrXwTmPhQq6/kVA0XXONqLdqNhr58wQAvH3mDMyehhFdgWGAadO4cxhB9BFuZc1NnTq1izvZGQzDYJstH4XwCIVEgqFKJYp1OhRptbCwLCTC72DwYM5bYDL17mk6c6az+6qT0JzWbEa5NXRg8zIBQG5ICEaFhOCwRoM/2ttxSqfDEFfHhohh8WKuLFo45f3ee/HWW1ybAYAbXi4UUISHzJ7NtT649dbO0JO7HcC7w7EzuHBkQ3f0UDknZoSKEJlEgkkREfi5uRlVBgNO6nTIdKV5o9gO4TZPk0rFeaic0FMSuI0EuRznhYdjd1sbjmm1KNFqXbO3O265hUv037qVE6Xz5nGNTAFO5KWliXob21xKGyc7OvC/xka7JHaCONtwy9M0evRop/8yMjKgUCjAsiwyMjIwyt0OwoRTbCE6rcWCM445RUFBnS7q4uKeB0b2kgRepNXCdr+Y43CSvtnXCeEA5/H4/PPONgoTJqA86Tw8/zz31OsDeQmOm2/myhIjIrhEsSuu8O77C/MghXk/PSGicg4Q52kCPAzRiUkIt43GADiR2M1BWizw0AzrQQgJBci3Yqr2xGAb6CvMZbPhQmhut4NoAoC3bC0LCOIsxS1P09vOylWtdHR04L333sMff/yBf9o6DxJeIUelwvfWE2ehVotBjiVj2dmcl0mr5Vrwd3fHKPRE9VY55zDW5Mb4eDxtvZCtqavD071NHneX+HguzLFuHXDttXj4PsZuSoJPBvISwO23c94md+bcWeniBbUxahT3vhaL+GRwL4bngK5z6Oa6Gt9dsIBrFglwIbpFi+wT5YU9xno4SMV4mgAur+mp0lIAXF7TX0V6gXolOxt44gn7/k2AS6Jpl0B0JsnlqDYYsL2lBYfa25Fv6wNGEGcZXs9pCg4OxsMPP4zQ0FCsWLHC228/oPFaMrjQ09TLzLlch7vgIUolzrMWAhzWaLrMp/MqycnAAw/g2z1J+PZbblFiYtfzPOFl3BRMLMvitmPHELVjh/PEZZWqU6QfOdK1oaYzempsKQzPiRRN54aHI9j69/3iqqcJ6D0hXEQ+E9ApmsKkUsT1EFrMVqmQbRVVO1tbUS9mn4nlmWfsE6hHjBDdIdZkseAPa0VfqkKBvwlunsjbRJzN+CwRfNSoUdi9e7ev3n5AIgyVFToTK+6IJhE9mhzxec8mARpNZ99LgLvJD6RGxUQnRzUafFZXhzazGcsrK52vZAvRGY1cmXtv2ESTQsEpZgFCT1NPI1SEKCQSXvSXdXTgtLMRMr1xzz2djx0TwkVUzhksFj5ncJiTdgOO2EJ0FnBDs72GUsnNHrJx222iNz2i0UBtnUxwfng47khMRJS1AvOLujrU9FXfJoLoY3wmmlpaWqBz1rmacJtsVzxNPVXQ2QRVRITTfiw20aRgGKeJ3jfExfFVPV/U1bleheQCL74InD7NPb7kEuDGG332UYSH/Czo4l7enRhxpckly3aG59LTu3jAbKIpTCqF0oUEN2GI7jd3vE3XXtuZAO7YIdwmmsLDuVb1TjjV0QFbxmFPoTkbPmk9YGPmTK7L9rJlwGOPid5slyCfaWJ4OEKkUiywhjoNLIsVVVXetZMgAgSviyaLxYKffvoJW7duRWY3Jw3CPaKCgvgqIbe7gut0QHk59zgrq0vjQqPFwocOslQqSJ3cBScpFLjQmlBbotPhgNieOy5SUNBZHa1Q+HEgLyGKn5ua+Men9XrnYtoV0dTQwLkaAae9xGyiSWxozoZHc+iA7hPCq6u5XEKA8zJ1E+YUmwRuY0J4OP+7/7m5GVrH2ZOeMmsWN2bFhREkwnymiVYR+mBKCt8WZUVVVdcZmQRxFuBWIviN3dzum81mtLS0wGQyQSaT4R6hG5vwCjkhIahtaUGt0YhmoxFRwrBEYiI3n0mt7l40lZR0lpQ7Cc2V6HQwWV93zGcScnN8PLZZLzhf1NbiHC8nfrIsdx4XDuQdNsyrH0F4kQ6z2a4aTWexoMFoRJyjoHFFNPVQOddhNqPVelEW025AyPnh4ZAxDEwsi1/dEU0AN0fQpuhtCeEiQnOA+CRwGxKGwZWxsfhPdTV0Fgs2NTf7vazfVjkXLJEgPzQUAJAaHIzr4+Oxpq4O9UYjPq+rcz3RniACHLc8TSzLOv0nk8kwZMgQXHnllVi1ahXy8/O9bC7RYzI4w3SG6E6d4u6CHeltfEoPlXNCro2Lg8zq9llbX+/5bCwHPv/cfiDvk0+6tj3LslheWYm3Kir6tuHeAGVnWxt0Dm0uTjs7/qKjuc7vANcbqKfWGD1UzrmTBG5DJZXiXKvIL9Lp3Mu/cZYQ7iPRBAB/EfSD8nqIzkVq9HqUWsOv54aFQS7wqD0imA341pkzPg3dE4Q/cMvT9OWXX3rbDkIkdsngWi3Od8yKzs7meuBYLEBpKTfzS4iHSeA2YoKCcGlUFH5oasIZvR47W1sxRRD28IT2dvuBvO+84/pA3q/r6/GAtet5u9mMvzl4KgjvIgzN2Tjd0eHcAzl2LJeoplZzns/uKrZ6amzpRrsBIRdERPDekt9aW3G9yFlrdtxzD/Drr9zjlSsBQU6Xt0XTxVFRCJFIoLFY8H1jI8ws6zR03hcI+zOd7zBSa3x4OM63NuQs0GiwtaUFF1tn6BHE2QCNUelneNx2oDfR5DCotyfsxqp4sYru5Ze59BCAG7Y+c6br77FWMBvv1dOnu09MJryCMAnchlNPEyA+ROflxpZCPGpyacMxIXzXLu5xTEwXe4XYcpoipFLEiAwtKqVSXGodZt1gNNrlFPU1dkngTkpZhd6mNysq+sQmgugrSDT1M1wSTc4q6IRCykmivm2WlARcInhP/CU2lu9589/6eph6CrWIpKios3egQtH52BU6zGZsFHg+dBYL/lpS4rFthHPqDAYcshYDyAXeD48r6HpqbOniCBVHJkVE8Cc/t5LBga4J4bb3GTeu24oFvcXCi8lhghFFYviLL6voXEAo2Bw9TQBwTWwsBlnnVf7Q1IQTzs5TBNFPERWeW7Jkidsf8NRTT7m9LdGVVIWCd9P3OrjX0dPEsp1CKi0NcMhZsrAsL8QylEooemlyGCaT4cqYGPy3vh4NRiO2tLTwd8PuwLJcPq3tevj44+4NL9/a0sL3kLHxdUMDNjU14RIP7COcs1ngZbomNpb38nXbA8lVT1NICOCQ+FznoacpXCbDmNBQ7FerUaDRoMloRLQb4ssuIdxGD6G5Up2OH1EkNjRn4/KYGEgBmMGNVHk9I8Ml0eUN9BYL9lubWmYqlYh3su9lEgkWpqTgcWsn86VnzmCZyKaZBBHoiBJNGzZscOvNGYYh0eRlJAyDbJUKB9RqlOp00Fss9uJGWGLmKJoaGjrzLpyE5k53dPDJvL2F5mzcFB+P/1ovkmvq6jwSTd9/D2zcyD1OS+Mq5txBeBd+bWwsvrE+f6ikBH+OG2eXuEp4jjCf6a6kJPy3vh4W9BCeS0nhRFBDAyeaWLarZ8Zi6fQ0DR7c5XW7xpZuiCaAaz2w3+oh29HaiqvcqUgbPhyYOhX45ZfOZV7OZ7IRExSEKZGR2N7SghKdDoVaLXJ7KNbwBQfb26G3JndPdOJlsjEvKQnPl5VBY7FgdU0NXh4yxL7SlyD6KaJE09q1a31tR79m8+bN2Lx5M9Q+6lfkSI5VNFnA5UeMtJb8AuCa6iUmAjU1XUWTK5VzIkXTZdHRCJNK0W4245v6eqwYNgzBbkzS7egAHnmk8/k//8lN3XAVC8viO2uzwWCJBB8NH47qw4exu60Nx7VavH3mDB6zVW8RHsOyLJ/PpJRIcGFkJJIVCpzR67v3NDEM523atAmorweqqjghJaSmpnPMirMeTR6G5wAuGfxN68iPX1pa3BNNADePTiiaRIxPAVwXTQBXRbfdGgZc39DQ56Kpt3wmG5FBQbgrKQnvVlZCa7FgVXU1ngiw352ZZdFmMpGYI1xC1C13SUkJjEYjEhMTXf43EJg+fTqWLFmChQsX9snn9ZrXZPMi1dYCwoTRXpLAjwneS+zJOFgqxTXWi02bQy6RK7zxBlfsBwDTpgHXXefW22BPWxtqrBfbGVFRCJXJ8O6wYXwH8xfKy1FFIx68xjGtFtXW/T01MhIKiYTPZ6k1GrtvcNhbiK6HyjnA80RwAHbVnm4ngwP2CeGpqdzMxG5wtbGlI/7Oa+otn0nIQykp/O/uncpKGL2Q8+gtLCyLyw4fRvTOnXjNNnKAIEQgSjQ9++yz2LJlC//8xhtvxFdffeUzo4iecbuCzouVc0Ju9rCK7vRp4JVXuMdSKddiwN1UjW8FIy1sF5ixYWG4x3ohU5vNeOLkSffenOiCMDQ3w1paPkjQH+KMuxV0PVTOAZ2iSSmRINQNzybAhbtGWm8ODrS3o93WSdVVgoOBTz/lOmuvXNnjwSv0NGW64WkaolRilNXmPe3tfXoDwLIs72kKk0oxopcbq2EqFa6wiskzej0fJg8EtrW08B7SZ0pLsU/gQSOInhAlmmQyGUyCE0pNTU2fhaKIrgibTjpNBu9ONLkQnhvugmi6OCoKMdYRDN83NkLt4sXnsce46S4A8OCD3LB1d1lvPTFLAFwpaAj48pAhiLba+FldnfudoAk7hK0GZljz2WyeJgAod1c09VA5B9iPUPEkGdo2h84CYKcn3ibbDLdZs3pczSaaomQy0e0GHBF6m77rQyFyWq/nvYrnhYeL6hO1yKHZZaDwnmA2nhnA3KIiGALIE0YELqJEU3x8PAoKCmAWuNr7umqD6CRTqeS/uF5n0Am9S7bHCkVnV2YrLMvyoilVoUCYC3OogiQSvjmgzmLhc4rEsHUr8N//co/j4oDnnxe9aRdOaLX8/pgYEWE3wiMmKAivCErxFhYXe6VFwkCmw2zmy/WT5XJ+7I7Q09RtXtOwYZ3VmwcOdH29h/Cc0WJBo1WYu5vPZMMr/ZpEojObUWFrN+CGl8mGXYjOhd+ap9jNm+slNGdjWmQk7xn7va0Nv/uxv5SNWoMB6xzEZoFGgyUUpiNEIOrKOH36dHz00Ue44oorEG79sXz55Zf48ccfe9yOYRisWbPGcysJOxQSCTKUShTrdDiu1cLCspAIRawzT5PZzHVfBrgLlkNIo9ZgQLP1QtTTzLnuuCk+Hv+23r2tqavDLQkJvW5jNAIPPdT5fMkSwJOm4sIcD+HYCRvzkpKwsqoKB9RqHNZo8O+qKjwouBMmXGOXYHTKJVFR/I2U0NPUbQWdRALk5wM7d3IDpJuauBErNnoIz9V7MELFkSmCZGZfex9LBQLSE9E0NjQUqdZk+63NzWg3mVy6yXEXsUngQhiGwaLUVMy13rC9deYM1ojc1lesrqnh52teERODDY2NMAN4ubwc18bG2hfWEIQDojxNd9xxB+bPn48Ma18QhmG6nT8n/GehO3mfYQufaS2WrnkjQ4Z0iiKbaCor62yA5KXKOSFTIiKQbL2AbWxqQpPgwtYdy5cDR49yj8ePB+bMcflj7VgvFE1OKqGkDIN3BS0Z/lZWZtfvh3ANu3wmgeBJF+NpAuxDdIcO2b9mC89FRnZR0t5IAreRpFDwAmZPezu03SWuewFPk8BtMAzD3xQYWNbt4gtXsXmaGAATRHqaAC7nMd7qEfyqvr7nY8LHWFgWKwWhubcyM/Gk1etuZFnMLSoiDzTRI6JuT2QyGW677TbcdtttAICpU6fihhtuwBxPr3KE2wxXqfC91TVfqNXahUQgl3PCqaSEE03CppZA7zPn3ChjljAMboyPx5tnzsDIsljX0IC7e5hwXlcHLF7c+fyddzjng7vUGgz8TKxclarbi9L5ERGYk5iI1TU1aDGZ8ExpKf4zfLj7HzyAEeYzTRfMFxPlaQK65jVddBH32GTiqgMAp/lMwmG98V4oF58aGYlinQ5GlsUfbW2Y5qNZaZ62GxDyl9hYLLNe/Nc3NLg3O88F1CYT/rTmsY4ICUGEC56tYKkU9yUn44XycpgBLKusxD8yMnxkac9saW7mPX6XREUhQ6nE39LT8U1DA45rtdjb3o43z5zB4wHWHoEIHNy6TM2ZMwf5+fleNoVwhRyxbQc0Gq4PjjAJ3INBvT1hV0VXW9vjuk8/3dkNYe5cztPkCd83NPCdlq/upd/OkqFDEW71xL1fU4M9VDnjMnUGAw5aL6JjQkPtGkxGyGQIs+7fHmf+dZcMfuYMF04GeqycAzz3NAGdyeCAb/OavCmapkZG8sfwj01NPi/n39veDpsPTmw+k5D7UlL4ETsrq6tdLhbxFsIE8AXWm7pgqRQfZGfz7RGeKyuj0S9Et7glmu666y4STX2MYxTJ5bYDQk+Tk/DcMUG7AXdymgBgXFgYMqwer20tLajpxsuwZw/wwQfc44gI4NVX3fo4O5y1GuiOBLkcLwo8GA8UF8PCsj1sQTiyReBlusTBM8MwDO9tOt3RAba7fTtiBGDzFAlFk8jKOcBLokkQ/nN7Dp0IPG03IEQukeAya4iuxWTyeRL7bjfymYQkyOV8nmOLyYSPe7mp8gU1ej1/nkgICrI7T5wfEYGHrfmNHRYL5hUV0TmBcArNk+gHfPYZkJfHNUm2IRRNwv5KPI6De0WG52KDghDr5oWIYRjcZPU2WQB+vIoQi4VrK2DjhRcATyMLapMJm6x5HUlyOcaFhfW6zQPJyXyPnn3t7figutozIwYYzloNCLGFi/Usa5e4bYdc3tlf4vhxwCb++6CxpZD04GCkW0Xe7rY2n5Wel1hFU4xM5pUu1Ff3YaNLdyrnHHFsP9DXouQDQQL43KQkBDnkA7w8ZAiGWo/b31pbsULglSIIGySaApzVq4HbbuOcRZddBlhnZSIqKIgvt+617cCJE53hudhY+yolAK0mE99/xd3QnI2bBApojZNGl6tXA3v3co9HjADuv9+jjwPAXcBt87D+EhtrX0nYDTKJBO9kZvLPnyotFZW8TlhHp1hFqlIiwSQnF1GXk8EtFqCggHvcW2NLL4xQccTmbeqwWLDX9iPzIlqzmS/Y8CQJXMis6GgEWY/19Q0N3Xv0PMTCsrynKTYoyG0v2ejQUEyz7udinQ4b+iiBHeD+hlXWGyMGwHwn+ZYhUilWCc6bT548iTKBd5AgABJNAc+MGZ0tlQ4eBK6/vrMIzuZtqjUa0ex4wRd6mg4cACoruy634m4ncGeMDA3lPTi72trsclpaWgDh/OZ33umMznhCb60GuuPCqChe5DWaTHhOeLEmuuWYVosqwegUZ7MG3UoGt/Vr6uPwHGDfr2m7D0J0J72Yz2QjXCbjRUiFXo9DPmo4fEKrRZM1B+n88HCPevQ9IvA2vVlR4bFtYtnU3Iwy67loRlQUhnTzHVwUFcXnOmksFiw4ccJnYpTon5BoCnCSk4ENGzqrrn/6iZsPyrL2VW5dvE3JyZ3NA3fs6FzeSxK4NwaACr1NawXepuef5+azApz4mzbN44+CyWLB/6x5CmFSqcuVT68PHYoQq5t+RVUVDvnAy3C2sUngIXDMZ7IhqsEl4DwZXOQIFTnDINJL/YkuFIimbYLQo7fwZhK4kL4I0dn1Z3IzNGfj8pgY3lO1paUFBX00WcIuAbyH2YAA8FpGBlKton9TczNWC/MiiAEPiaZ+QG4u8N13XCNvgAtxLV7cSzI4w3R6lYS9Z3oZ1OuppwmwF022WXRHjgDvvsstUyq5Ab3eYEdrK38XPCs6GgoX+xakBgfjb9YLswXAg8XFdGfZC3b5TN2JJjGjVABg9OjOWW2OoikurlP4C7CJpngPR6gIGRoczNu8s60Nei/nNflKNF0lEE3rfSSaPE0CFyJhGDycksI/74vRKlV6PT9uJlEutxuv5IwImQzvCTzyj5SU0JBvgodEUz9hyhRuJqjtGvHSS8CpXwTJ4L1V0PWwzJvhOQDIUCpxrjUZ+5BajUKNBg891KndnnmmyxQXt3Glaq47FqWmIst6IdvZ1obP/FDZ01/QWyx8+CpJLu92aKtoT1NYGNehHuBymmwtMgCnoTmLILHcW/lMAFfEME2Q1/S7l9tQCBtbelo5JyRFoeB/a39qNDjoA0+pLQlcxjCiiix6Y05iIiKsId3Pamt93mD2g+pqvl3C3YmJXRLAnXFZTAxut1b7tZrNuJ/CdIQVEk39iOuuA/71r87n7zzuQtsBGz2E50KlUt4t7SnCnk3Pba/Dtm3c46FDuQG93oBlWf7uWsYwuMxJFZcYFBIJ3hZ0Cn+8tBRtfuojE+jsbG3lR6fMEIxOcSRZLudPLj3mNAGdITq9Hvj5Zy72DDgVTY1GI2w+oHgv5TPZEIZ2vR2iKxF6mryUCG5jbmIi/9jbFV/NRiPviR4TGgqVk/w1VwmVyTDfGiLTsyw/fskXmFkW/xEmgPcSmhPyZmYm3zz128ZGfOmkGpgYeIhKCJg6dapbbnCGYbDNdrUkvMKiRUBFBSeeLDUKoEMCBFuce5ocBZJEAjh04tWZzThl9QTkqFReC3fcEB+Pv548CRbA+rY6AIMBMHjzTUDYvNwTCjQaPrnzwshIRHrgebg0OhpXx8ZifUMDagwGvFhWhjcE1XUExyZhf6YeRGqQRIIUhQIVen3vYzPGjAHWruUef/NN5/I+aGwpZJowr6mlBc978b1t4bm4oCCXummL4daEBDxRWop2sxmf1dbitaFDPfotCBF63M73MJ9JyIMpKfhXRQUsAJZXVuLJQYNcDq2L4eemJj48PDM62q6qszdigoKwPCsL11lnPT1YXIyLIiPtBoETAw9Rv97Ro0d3uZi2t7fj5MmTkEgkiI+PR3R0NJqamlBXVweLxYKMjAyEecGVS3Tl9de5Yri1axngtArIUqNUp4PeYrE/8Th6mgYP7kyMslKk1fKdtB1DcwYDsHQp8OOPXEudiAjuX3h418eOy6IjFLggIgK/tLbClKQDctswc1AErrzSe/vB3aq57vhXRgY2NjWhw2LB0spKzE1K8kpi/NmEcN7c9F6S7gdZRVOd0Qid2Qxld14KYTL49993PnZWOeeDdgM2BgUHIyM4GCc7OrC7rQ1as9krnhWN2cxXG3ozn8lGmEyGOxISsKyqClqLBR/X1uIhLw2idmdIrxjSg4MxOy4O/62vR63RiE9ra3scu+QuwgTwe1zwMtmYHReH2bGx+LqhAQ1GIx4uKcHnubneNJHoZ4gSTW+//bbd87q6OjzwwAOYPn06FixYgATBRPva2lq89957OHLkCJYsWeJdawkAnMPoo4+4Zpe/WEWTBcCeSh2mpAku8oKQEwCXxqfs2MFV6RUWum+n9MoE4FHrkM/7T+Kt6WO85skCeh/Q6ypDlEo8NWgQni8rg4ll8VBxMTY5uWEYqNQbDDhgrXbKDw3t1dMzKDgYO60X3Qq9HlndhaWEoknY2bqP2g0ImRYVhZPV1TCyLHa1tmK6myFfISU+SgIXcl9KCj+LbnllJRampHjluN3thaaW3bEoNZVvgPvEyZO4NCoKqd5yQwOo1Ov5ytpkuRyXu/ldvjtsGLa2tKDZZMIXdXW4KT7eLgGfGFi45Q9dvnw5YmJi8Le//c1OMAFAQkICnnvuOURHR2PFihVeMZLoikIBrFsHxOs6L0RzX9DALkoXGWnfbttZErjDoN7mZk4sTZnimWACAPOGROA0d5FgR7Rhf2TXZpfuUtHRwV/Ax4aGIs1LJ9sn0tIw2PpeW1pa8DXlMfBsFlE1J8SuV1NPIbq4OEBQUcXTx+E5ALjIIUTnDYRJ4N7OZ7IxIiQEU62eoCKdziu2mywW/GFNLE9VKLz2G7MxMSIC18XFAQCaTCbcfvw4zF5Mtn5fmACelASZm+G/RIUCSwWh+ntPnEALNcIdsLh1FO3fvx/nnHNOj+uMHTsW+/btc8soQhxRUcAL8zpPwiV6LW66iRsSzyP0LvXiaSrdpkJODrBqVefr557L9RxsbuZ6Dh4+DPz2G/DDD8DnnwMrVgD/+AdXEffAA8DttwNXXQVMnQqMyZMg8ZvOk80TJ09CI2x/4AHC0FxvA3pdQSmV4i2HE+SffdRLxhuwLIttzc1YU1vr1QsQ4JDPJEY0CSvoxCaD22AYID29y2q+Fk3Cfk1bvSWa+sDTBAD3C4TnclszWw84otFAbf29etvLZGNlVhbSrOJ6e0sL/nH6tFfeV5gALgEwz8PQ320JCZhl9VRVGwz468mTnppI9FPcykg0GAxoFJR6O6OhoQEGH5eSEsDkNBVgq5BP1+L7vwMLFwLLl1vbE2RlcSoHcN6jydpugDExePSmYNhKk0JDgVde4cac2NI6BNcTF4jBFYej8UNTEyoNBiw5fRovOQm7uIo3Wg10x1UxMbgiJgb/a2xEo8mEiw4dwubRozEmgHP0LCyLdQ0NeKW8nPfA/draiuXOKijdQDg6JVgiwWQR+S2iPU0AJ5r+97/O58nJXfLvAN/mNAFAkkKB4SoVjmu12NvWhnaTCWEeJm57c1BvT1wdG4tEuRw1BgPWNzSgUq9HigfVsLt8lAQuJCooCJ/m5GDaoUOwAHju1ClcFBmJ8zzMn9rY1IQKq1CfFR1tJ+DdgWEYvJeVhRF796LdbMYHNTW4KT6+x2II4uzELU9TVlYWtmzZgiNHjjh9vaCgAFu3bsXw4cM9Mo7onWEqVeeXmM55jf79b+DVV63L5s/nXFLnncfF3AToDBYUqbkTOntaBVi4d7rmGi40t3Bhp2DyhH9lZvIzsl4/fdrjeU4tRiPfK2hwcDDyvJyszTAMPsvJ4S8UTSYTLv7zTxwIwG7hJosFn9TUYOTevbju6FFeMAFc+flvXvKWFGq1qLSNTomIcDo6xZF0TzxN3QhrX3uagM4QnRlc81RP6YucJgCQSyS8R8UMYJWHpfx2Q3q9mATuyAWRkfg/q1fRDOCWwkK0etjyw9MEcGekBQfjdUH18fyiIqj7YWuSYxoNVlZVYWNjI4UZ3cAt0TR//nxYLBYsXLgQ//d//4c1a9bgp59+wpo1a/DMM8/goYceAgDMmzfPq8YSXVFIJBhqPRErMrQAw4Vk/u//gI8/BjBhAlBbC+zaZTfobc8eYMwVHTBLrCGc0yqkpADr13NV314qvgEAZKlUeNj6hnqWxWMeurZ/bGrip5VfHRvrk0TtcJkMP40axQ+jbbYKp31ebnroLnqLBe9VVSFrzx7ccfy4XZhV2GtrwYkTXuluLQzNzRB5dy26wSUAjB1r/9xJPhMAvhGiBFxJuC+Y5uUQnc3TlBAU5LHXqjcWJCXxJ/WV1dUwevDd2zxNwRIJ8kNDvWBd9zyXns6HAE91dHjUTLKiowM/WD3RKXI5H1bzBvOTkvjjo1yvx8KSEhRptR7t576gxWjEvysrMWH/fozYuxf3nDiBWQUFiNq5EyP27MH8oiJ8UF2N4xoNLNTEs0fc+gWPGjUKr732Gl5//XXs2LEDO3bsAMMw/EGelJSExx9/HHl5eV41lnBOjkqFEp0OeokFT/1TjyWPcheru+8GkpKASy7pvLi0tQHPPsuNNGEndnYCH5+gwuZCrkGzL3g2PR0f19SgzmjE1w0N2Nbc7PKcOBvebjXQHWEyGTaMGoXLCwrwW2srWkwmTP/zT/w8ejTG+yhc0Rsasxkrq6rwRkUFX8ZuY1J4OP4vPR2XREVh0sGD2NPejuNaLV4tL8fzHoZEfxYxb86RCJkM4VIp2szmnkepAFyL+KgoLnkO6N7TZL0zjgsKgsRHVY3enEPXbjKhxtZuwEdJ4ELSgoNxlbXfWLXBgO8aGzHbmmztCjV6Pd+/7dywMMh90ENJiEwiwWc5ORi9bx/azGZ8XleHmdHRuF3QuFMs71dX8w1Q53mQAO4MCcNgVXY28vbuhc5iweqaGqyuqYGMYZCpVGK4SoUclQrDBf/CfSyUu8PCstja3IwPamqwrqEBHd0Iu2NaLY5ptXwOWJRMhvPDw3F+eDgmRkRgfFgYQv30NwQibu+Jc845B1988QUOHz6MkpISaDQahISEIDMzE6NGjaIy7T5kuEqF7613VhfeoUX7yWAsW8YlhM+eDfz6K5Cfz1XbLVzI9XgCAAzu9E48OjvEZ4IJ4C6grw4diruLigAAD5eU4MA557h8QtNbLPjRegGPlslE5dZ4QphMhh/z8nB5QQF+bW1Fq9mMS6zCaUIfCqcWoxHvVlbirTNn0OgQEpgRFYX/S0/HBYKL/arsbJyzfz9MLItXTp/GjfHxdgOeXUE4OiVRLsdIF95nUHAwjmg0qOjogIVluxc6DMOF6LZu5Z47EU0sy/KeJl+F5gAgVi5HXkgICjQaHFSr0Ww0IspNr1ZfheaE3J+czLfjWF5Z6ZZo2u3FIb1iGaxU4r2sLNxsLdu9v7gY54eHI9MFsWmyWLyaAO6MDKUSS4YOxcMlJZ2fy7I4rtXiuFaL9Q7rJ8vldiLKJqpSFAqfXCdLdTqsrqnBRzU1TsPio0NCcGN8PKoNBuxua8PB9nYIy3OaTSb82NTEn2clAEaFhnIiyiqkhgQHD9hrvEfykWEYjB49GqNHj/aWPYQb2A3u1WmxdGk0Kiu5UFt7O3DZZVwV3HffdW6jUgHDr9HigPW5N2bO9cacxEQsr6zEfrUaBRoNVlVX4z5npeY9sK25ma/ouSImxqt3kd0RKpPhx1GjcEVBAba3tKDNKpx+GjUK5/tYtNUbDHjzzBksq6xEm0Pl4TWxsXh60CCc6+SiNio0FI+lpWHJ6dMwsizmFxXh1zFj3PLO7GpthVbE6BRnDFIocESjgd46M65HsTN+fKdoclK00GIywWD1ZvtSNAFcXlOBRgMLuIR6d4sN+qpyTsjFUVEYplSiWKfD1pYWFGo0LgtmXzW17I2bEhLwU3MzVtfUQG0245bCQuwYM0a0p2uDteAEAC6PifFq3ychC1NSkKlU4o+2Nl4sFWm10DsJbVUZDKgyGLqEekOlUmQplci2iqhslQrZSiWyVCqXm6pqzGZ8VV+PD6ur8YuTPLxomQy3JiTgrsTELgUtWrMZ+9rbsau1Fbvb2rCrrQ0NglwnC7gZoofUan5Mj0oiQbhMhlCpFKFSKUIkEv6x478QJ8vCrV7ocJkMEVIpFBJJvxFhHvvcysrKUF5ejo6ODlx66aXesIlwEaHgOa7VQirl2gFcfDGwezdQXW0vmGbN4qrrrmvQAGruTiKrD07oEobB28OGYZJ1mv2zp07hxvh4RLtwF+/LqrmeCJFK8UNeHq4sKMDWlha0m82YcfgwNo4ahUk+uKic6ejAGxUVWFldzc96A7jv6ub4eDydnt7tsFwbz6Wn4791dTjZ0YGdbW1YVV3tVlKsO/lMNtId8pp6FDuLFgFHjnCjfs4/v8vLfZEEbmNaVBSWWl2y25qbvSKafFk5J0TCMLgvORmPWnMH/11VhaWOjW57QZgEfl4fh6LfyczEztZWFOt02NvejudOncISh/FP3eGLBHBnMAyDy2JicJkgPcDMsijv6OBFVKH1/+NarZ0IsaE2m3FArbYr3rCRplB0iimrsMpWqZCqUPA3PizLYmdrKz6sqcGX9fX8zaQNCbjRMXclJuLK2Nhux9SopFJcEBnJe6pZlsVJnQ672to4EdXaiiPWGwgbWosFWi9WxwcxDMKlUi6kbxVUEUJh5SCyhqtUGOenFAmGdTPbrrCwEK+//jpKS0v5Zdu3bwcAHDp0CI8//jgWL16MyZMne8XQ/kBRURHmz5+PVatWIdvJnbIn/KuiAv+qqHD6mgVc7xAAiJHJ0GDd5w0NwKRJwIk7CoCsdkgkXNsA27m7ymAAC0AKLuzyaFoaHk1L49+33WRCzp49ouz7Ni8P5wjuYP7X0IB7T5xwum6TycQLgUiZDM0Ox8jjJ0/ii9paZ5ui2mDgf7x3JSbiA4cKzXH79vE5JD3xWkYGbhE0Zi3SanHxoUO9bseCc8//Zr2ohEgkuC85GV/U9d64M0ulwtb8fLtltx47hl8Ed6BGloXabOY9OzYk4Br0PTloEDKsX2Dqrl29fqaeZfkTdrhUisLx43FCq8VtIjuXnpk4EeP27cN+64n9sbS0br8bIVMjI/FZbi6WlJfj6VOnAAAjQ0LQLKJa57nBg7FAcMGr1utx7v79dn9LqFSKCCd341vy85EtuIn4vLYWT4goPEiUy7Fv3Dj+ebPRiOidOwFwJ/T4HoT9zQkJdlVVADD8jz+gNpvRbDLx32V8UBBfRWrj31lZuEIgyPa3t+MvBQW92gsAhePH2yWWC88RwnMCAyBJLoftk8eGheE7h3zTqwoK7KpDbd4a27nBRl+dI4wsizrBsbJ59GhcLMilc3aOMAP8b99m9+UxMXjP4Vzs63MEAOw95xwkCQoy/nX6NJZUVMDIsjCxLEwWC4wsC3MP7+EMBtxwchnDwGixwFntXrZSibuSknB7QgLG798v6n0/zcnBhYL9u7252e4cwQIwsCwMFgv0FgvM4MSVBdzvw9DHyePzkpKwysvXWLG45Wk6deoUFi1aBIlEguuvvx6nT5/GH3/8wb8+evRoREREYPv27QNKNPmSNpOJP5H1uJ7gbiM2Fti0CTjndyMa4jix0QQADm9jBneSbHPIlWEBUZ8JAAaHi7zOYhG1bYvJhCNqNUYKqnOajUZR27Y7aZRZYzCI2lbrsK2JZUX/rdvz8/FgcTF+bm6GxmLB25WVok4azga1Noj8W+cmJmKlw0lCrL2XREVhU3Mz2sxmPFRcjPnJyaK3FY5OGR0SArPI/WQTN8IKunqDwa7PUnc43jE7+0y12dxlPQB8VaUNrdks+m8VEhUUhEipFC1mM4y9/M3OhGCVwdDl+Kxzsp7O4XdjEPm7AQDHI667cwRrtcdGmhM76rs5Dm3nBuFnOL63r88RAHB7YSEOjxuHWKuA6+0cYbO7yUlLgL44R3RpLMswqBdx7EdIpcgJCcFxrRYtTmxnwQlKo5PzzciQEKzMysJ54eF8qEusvY5hRb0Lf6t+6lQYLRZorL/JZ0+dwkcibqyS5HKMCwtDm8mEVrMZbSYTyjs6RAnJcG/0wnETt0TTBx98AABYtWoVUlNT8eGHH9qJJoZhMGLECBw/ftw7VhIIl8mQ0kNIot5ohMH6YxImrg4aBJzfGoQD7fbbdlgsfEKx7a7dscqDAXr8TCGOOQdKiaTHbdvNZl7gLSopsZvxFhUU5HTbNrOZvxBFyWSIdiJCEkXa65gzIGMY0X9rqFSKb0eOxDVHj2JjUxMMLAsGXAm8ooe4vGNIqcNsRqvJBBnDdLnYM9bPCZVKIQGc5maItfeBlBQcUqtRb61czA8NFb3tluZm/uI8IzoaIVKpqG1jbcef4G47SOQ+DnX4bqTW7dRmM1oF37/KSbhB5rD/VSLtdXbcDAoORou1+Wu0TAZlN+ENZ0niyVZ7bZ5RCbiLhCOO7ynv5XcjxPFIczxHCL01Qm9ZnBN74wS/OeF+jpTJECKwsS/PEQAnvvUsi2qDAXOLivDtyJFgGMbpOULohU6UyyEF/HaOkDoch6Eij0ObN5q15gAWabV47ORJHNNqeQ+VUEopGAYqqRRKiQTXxcV1ybEUa6/jeUvhwt8KAEESCSIlEkQGBWGIUilqW5s3WshFhw7hhHWIPAuuApAF5zm1ebYujIjw6hQIV3ErPHfllVfi/PPPxzPPPAMA+PDDD/HRRx/x4TmAm0/3/fffY8OGDV4zNtDxZXiuN+4tKsJ71qqRXWPG9Jqg/GZFBZ/z8GF2Nub4oMqkJ3RmM3L37kWZtax53YgRuLqXKp8Re/bgmFYLBkD1xIk+z2vpjQ6zGbOPHuWrTJQSCf6Xl4eLeinJrzcYsLyqCssqK7vcfWYEB2NRairmJCZ6tcz389pa3Gp1t6fI5Tg2fryoUui7jx/HBzU1AIBNo0a5PMD2dEcH0n//HQCXuP7NyJEuWt7Js6Wl+Lt1zMbGUaNwqY+7Mf/Y2IjLraGy+5OTsczF7uptJhMiduwAAFwQEYFfHBt49gET9u/HHmvYTcx5AQCuO3IEX1ur7w6PG4c8H/do6olqvR6j9u3jPZfvDhuGB5wUj6yvr8c1R48C4NqQrD+L290YLBac6uhAhFSKRA86vhPu4VbpkU6nQ1QvFwa9Xg9LgDf8OpsQVscct5va6xxhM8RcL3fUFoNSKsU/BXkgj548iY4e5tIVW3uJANxIB38LJgAIlkrxzciRuMKaDKqzWHB5QQE2C3oaCSnUaLCgqAhpu3fj+bIyO8E0JSIC60aMQNGECXgwNdXrfVFujo/HpdbfbKXBgP+z5hn1BMuy+NmaBC52dIojydY7fkBEg8teEIa3fDFCxZEpERG87e4MwPVH5ZwjdvPoRHQIZ1kWO62Vc2FSqV/ODUKSFAqsFuQt/rWkBAVOEqdXWm8YAd8mgAcCcokE2SoVCSY/4ZZoiouLs0sAd8aJEyeQfJYfvIHEcIcKut6wzZxz3LYvuSY2lu+ue6qjA2+eOdPtur4a0OspCokEX40YgauswqnDYsGVR47wzSBZlsWW5mZcfvgwcvfuxarqaj5/QArgpvh4/DF2LH4dMwZXx8V1cet7C4ZhsCIriw9pLausxO5eRoQc12pxxtrn5QKRo1MckUkk/PyzXkep9IKwei6+D0RzmEzGt3Mo1GpR7aL9xYLfYV80tnTGDXFxfIjqy7o61PeSp1Le0cEnSZ8XHu6z49EVLo+JwUKr+NOzLG4+dgw6wQ1WmU6Hjdbf2yCFwuUKT4JwBbdE08SJE7F3717s27fP6etbt27FsWPHMMVh1tnZyubNm/HUU0/hnXfe8ZsNQuFT2ItoYlmWXydFLvdbx1qGYbA0M5M/CP9eXo7Kbi5M/mo1IAaFRIL/jhjBi7kOiwVXFRTgxbIyjNm3D9P//JMP4QFcEuNfU1Nx8rzz8EVubp91Fx+iVOJFa9NIFtyIFcfkXCE/e9BqQIgtGbzeaLS72LmKUDQ5y8vxBcKRKttd9Db5o92AI0qpFHOtoXcDy/Kh1u7Y5YemlmJ4behQjLJ6vY5a83xs/Ke6ms+7m5+UFBBCjzh7cUs03X777YiJicETTzyB1157DUXWLs/r1q3Dyy+/jJdeegmJiYm44YYbvGpsoDJ9+nQsWbIECxcu9JsNaQoF70XozdNUbzTyVSXudon2FnmhobjX6pHUWCx42okHs85g4PvGDFepkOWnu/aekEsk+DI3F9dahZOeZbG4rAx/Cjx66QoF/pWRgYrzz8cbmZl2PYz6iodTUnCONUfliEaD17tpYwEAmwRCb4abI28A+2RwT7xNtsq7GJkMQX3Q1BSwF02uhuj80Q3cGfcKPP7/rqrqWtklYLefmlr2RrBUii9yc/nE+eVVVfi2oQFGiwXvW4WgFOAFIkH4CrfOPJGRkXjnnXcwfPhw/PDDD9i9ezdYlsVbb72FTZs2Yfjw4XjrrbcQ6scEwoGGhGH4/jQndboeh7Ta5TMFgAB5ccgQRFm9XZ/U1uJ3h7DR/xob+aqYQArNORIkkWBNbi6uc0honxAWhi9zc1EyYQIeSUvzm2cP4MJlq7Kz+Vydl8rKcMKJyNZbLLxIcHV0iiMuDe7tBpZleU9TX+azTYqI4HsrbXVxDl0geJoArq/YTKunsKyjgw9lOcN2c8IAfTomSAy5ISF4MzOTfz73+HG8V1XFhxOvio1FMuX5ED7G7bN3cnIyli9fjuLiYhw7dgxtbW1QqVTIzc1FTk6ON20kRJKjUuGgWg0LuLvc7jpGC/OZ+mJ8Sm/EBAXhpSFD8GBxMQDgoZIS/D52LN/5tq8G9HqDIIkEn+fkYGRICCr1esxJTMT5gr4pgcCYsDA8kpaGNyoqoGdZ3HPiBLYKWj4AwG7B6JRLXByd4og3PE1qs5nvadSXokklleK88HD81tqKkx0dqOjoQJpID6FNNKXI5S6PxfA29ycn82JpRWUlLnfyO1KbTPjTmmQ9IiTEaV8xf7MgKQkbm5qwvqEBTSYTFgrmv53tCeBEYOCxj3vYsGH4y1/+gttvvx2zZ88mweRHxCaDCz1N/g7P2bgnKYn3Zuxtb8fHVpe7xmzmc2sS5fI+y//xhCCJBIsHD8bK7GxMjIgIKMFk4/nBgzHEevHf3tKCDx1yXezymTwIzQFdR6m4Q1+OUHHEnRBdi9HIl8n7KwlcyGUxMbx4/bGpCacEXjAbewWDWwMpn0kIwzD4T3Z2lz5Ag4ODcYmHxylBiMEt0XTjjTfiq6++6nGdb775BjfeeKNbRhHuYZcMLvAmOWInmgLghA5wYaO3BK73p0pL0WYyYVNTEzqsHoarYmLcGjhLdCVEKsW/BX2HHjt50k6YCOfNTffwYuQNT1NtH7cbECLsuyU2RBcI7QaESBmGz21iYT+jzYa/hvS6SkxQED7NybFr7jk/KYnODUSf4JZoqqmpgdpJrwwharUatSJaqRPew3Fwb3fYBFWMTNZnVUhiuDgqCtdYc5ZqjUb8vbw8oKvm+jszoqNxm3W2VrPJhEXWUEeDwYD91oaIo0JCPO4HI8xpKu+HnqbzwsMRbE1A3tbSAjH9gAMln0nI3UlJfH7W+zU1XfqiCVtQBKqnycaFUVFYPHgwAK6S8m5KACf6CJ+VoGg0GgQF0AV5IDBMpeK/0O7aDrQK5lPlhIQEXOjojYwMvqX/m2fOYF19PQBuDMFFgjAJ4R3+lZGBGGvuypq6OvzY2IgtLS12o1M8xTaZHHA/PFfXxz2ahCgkEl5EnNbrcUrE3xAolXNC4uVyXG8tUmgwGvGV9bcFcOMqbJVzsUFBASP0emLx4MHYO3YsDo4bFxDNbomBgehMv0MO051ramq6LAMAi8WCuro6bNq0CWmCadiE71FIJBiqVKJEp8NxrRYWlu3isj4egKE5IUOVSvw1LQ2vnD4NI8vyM7BmRke71VyR6Jk4uRz/yszEndY5kfedOIHzBF4GT/OZbAwKDkaBRoMKvd7pcdkb/gzPAVyIbqs1n2lrczOG9iIqAi08Z+O+5GR8XlcHgCvbvy0xEQBwQqvl25BMDLDChZ4YF+AeMeLsQ7Roevjhh/kfEsMw2LhxIzZu3Oh0XZZlwTAM7rnnHu9YSYhmuEqFEp0OWosFlXp9l0qfwgCrnHPG04MGYXVNjd1k9kBuNdDfuT0hAZ/U1mJzczNO6/U4bfVAuDs6xRmDFAoUaDQwsCzqDAaXQ37+DM8BXZPB5/VSqSXsBp4RQKJpUkQE8kJCUKDRYHdbGw62t2NMWJhdPtP5JEQIoltEi6Y777wTDMOAZVl89NFHyM/PR35+fpf1JBIJwsPDMWbMGAy2xpyJvmO4SoX/WfOACrXarqLJzzPnxBAqk+EfQ4fidqv3QwrgMhqN4DMYhsG/s7Iwcu9ePuke4GavKb3k3bOroNPr+51oOjcsDCESCTTW/lW2G8PusHma0hQKr+1Db8AwDO5PTsZ91vYeK6qqsDI7m+/PBAR2EjhB+BvRomnu3Ln84z///BOzZs3CzJkzfWIU4T6OyeCOOSmBWDnnjFsTEvB5XR02NDXhzsRERFF+nE/JUCrx/ODBeErQkd1boTmga4NLV1tH2M2d88OxECSRYEpkJDY2NaHaYECRVovh3dx0NAk67gdSaM7GrQkJeKK0FO1mMz6rrcVrQ4fy+UwyhsG4sDA/W0gQgYtbieBLly4lwRSg9DaDztbYMkQiQVoAd89lGAbfjRyJgnHjsEJQGk/4jkdTUzFaIAQu9aJ3T9h2oNyNtgO2nKYIqdRvuW1i+zUFaj6TjTCZDHdYqya1FguWVlbimPVcMSY01O+NOAkikOmbAU5En9FTg8sOs5mv/BmuUgV8sqdMIsHI0FDI+2jO2EAnSCLBNyNHYnZsLN7IyECeF8cgeTpKxR8jVBwRK5pKArDdgCP3paTwj18pL+cfB3qrAYLwN273ya+trcXHH3+M/fv3o6GhASarO1oIwzDYtm2bRwYSrhEdFIT4oCDUGY1dRNMJnY6f4Rao+UyEfxmqVOKrkSO9/r6eNLjUmc1ot1ZR+lM0jQkNRbhUijazGdtaWrqtAhQmgQdCN3BnjAgJwdSICPzS2gqDoO/U+ZTPRBA94tYtfFVVFebNm4cff/wRSqUSRqMR8fHxSE1NhVQqBcuyyMjIwKhRo7xtLyECm7epxmBAi6BUu7/kMxFnH8kKBT8k2FVPk7+TwG3IJBJMtXqbGoxGHO2m636gh+ds3C/wNtkgTxNB9IxbounDDz+ERqPBm2++iQ8//BAAcNlll+HTTz/F2rVrMWnSJOh0Orz44oteNZYQR3edwQNtUC8xcJAyDFKt3iZXPU11AuHvjyRwIWJCdDbRxAAYKnK4rz+4OjYWiQIRmqpQiB5GTBADFbdE0/79+3HeeefZtRywjRaIjY3F888/DwBYuXKlxwYSrtNdMnggDuolBg62vKYGoxEahxEePREonibAXjQ5m0PHsiwvmgYpFAHdkFUukWC+YPwIeZkIonfcEk2tra0YNGgQ/1wqlaJD4HKXy+UYN24cdu/e7bmFhMsIBdFxJ6IpiGGQQXeURB8jzGuqcCFEF0iiaVRoKKKtY2d+aW2F2WEOXaPRiBZbu4F+4M29NzmZH6Nzc3y8n60hiMDHLdEUERFhJ5IiIiJQU1Njt45UKu11qC/hG5xV0JksFpywPs5SKiGjijSijxnk0OBSLP4eoSJEwjC40OptajGZ8KfDOS4QB/X2RLJCgePjx+PE+PG42jqXjiCI7nHrypmamorKykr+eU5ODvbu3YuqqioAQEtLC3755Rck9zJqgPANaQoFVFZRZPMulXZ08FUyFJoj/IFdBV0/9TQBPec1BeKg3t6Ilcv7hVeMIAIBt0TThAkTcPDgQbS3twMArr/+emi1Wtx1111YsGABbrnlFjQ1NWH27NleNZYQh4RhkG09CZbqdNBbLFQ5R/gdx1EqYgk00XSRoFO6Y15Tf6mcIwjCPdwSTVdffTXefvttSK1JjmPGjMHixYuRkJCA0tJSREdH46GHHsKVV17pVWMJ8dhCdGZwd7/CQb25JJoIP+Bug8tAE005KhUfJvyttRUmwbw+Ek0EcXbjVnPLkJAQ5Obm2i2bNm0apk2b5hWjCM9xbDtAlXOEv0lzc5SKLacpRCJBSABUozHWvKa19fVoN5uxX63GBGvlma2xpQRco1CCIM4u3PI0Pfzww/jPf/7jbVsIL+KYDG6bLcWASwQniL4mXCZDpLVSyx1PUyB4mWxMcxKiE7YbSA8OpvE/BHEW4tavurCwEBaBS5oIPISi6ZhGw1fRDQkOhjIA7taJgYktGbxCr4fFoVzfGQaLBc3WEv74ABJNFzlJBq83GtFm7T9FoTmCODtxSzQNGjSoS4sBIrAYplTyX+7WlhaorSdzmjlH+BNbMriRZe1ylbqjPoDaDQjJVCqRYhVxO1pbYbBY+sWgXoIgPMMt0TR79mzs3LkTZWVlXjaH8BbBUimGWC9QNYKLE1XOEf7E1cG9gZYEboNhGD5Ep7NY8EdbGyWBE8QAwK1E8KSkJOTn5+Pee+/FVVddheHDhyM6OtrpusJRK0TfkhMSgpMOuSMkmgh/IqygK+/o4BOouyNQRRPAheg+ra0FwIXoDIKUBep7RBBnJ26JpocffhgMw4BlWaxduxYMw3S77vbt2921jfCQ4SoV/tfYaLeMRBPhT1xtcBnIosmxyaVwmDB5mgji7MQt0XTnnXf2KJSIwGC4E4FE7QYIf+LqKJVAGqHiyGClEoODg1HW0YFdra3IsAolKcCHxgmCOLtwSzTNnTvX23YQPsDRq5QslyNC5tZXThBe4WzyNAFciO6DmhoYWJbvhTY4OBhB1G6AIM5K6Jd9FuPoaaLQHOFvkhQKyKxe6v6cCG5DGKKzQZVzBHH2QqLpLCY6KMguz4JCc4S/kTIMUq3eJjGepjpBeC4+wMJzgH2TSxuUBE4QZy9uxWqmTp3aa04TwzBQqVQYNGgQpkyZgtmzZ0MhcM0TfcNwlQp1ra0AaOYcERgMUihQ1tGBRpMJGrO5x9EoNk+TnGECMrScolAgS6nECWo3QBADArc8TaNHj0ZGRgZYlgXDMEhMTEROTg4SExP5qrqhQ4ciLi4OJ0+exMqVK3HvvfdCIxgaS/QNwmaW1NiSCARcGdwrHKESqMUnjiE6Ek0Ecfbilmh69tln0d7ejksvvRRr167FmjVrsGLFCqxZswZffvklZs6cifb2drz++utYv349rrjiCpSWluKTTz7xtv1EL9yfnIyhwcG4KiYGkyMi/G0OQYhucGlmWTRYw3OBmM9kwzFER6KJIM5e3BJNy5cvR0xMDJ555hnEx8fbvRYXF4enn34asbGxWL58OVQqFR599FEMHjwYv/32m1eMJsSTFxqKk+edh2/z8iAN0Dt1YmAh1tPUYDTC1i4y0NoNCLlQ4GmSMQwGU7sBgjhrcUs07d+/H2PHju1xnfz8fOzbt4/7EIkEo0aNQq21ey5BEAOXdJGepkCvnLORIJdjkrWz+fnh4ZBRuwGCOGtxK7PSYDCg0aHTtCONjY0wCE56KpUK0h4SPgmCGBg4jlLpjv4imgDgyxEj8H1jI66MifG3KQRB+BC3bomGDRuGLVu24MiRI05fP3bsGLZu3YqsrCx+WVVVVbfz6QiCGDikiWxw2Z9EU7JCgXuSk5FMFcIEcVbjlqdp3rx5ePTRR7Fw4UJMnDgReXl5iIqKQnNzMwoKCrBr1y5IJBLcfffdAACtVos9e/Zg2rRpXjWeIIj+R5hMhiiZDM0mU8/huQAeoUIQxMDELdGUn5+PJUuW4I033sCOHTuwY8cOvtUAACQkJOCvf/0r8vPzAXA5TcuWLUNsbKzXDCcIov8ySKFAs8mEM3o9zCzrtEihTuBpig9wTxNBEAMDt7vFjR8/HmvWrMHhw4dx8uRJaDQahISEICMjA6NGjYJEkAwZHByMzMxMrxhMEET/Jz04GH9qNDCyLGoNBqdhrf4UniMIYmDgUYtdiUSC/Px83qNEEAQhBse2A05FE4XnCIIIMDyeS1BWVoby8nJ0dHTg0ksv9YZNBEGc5QgbXJbr9TjPyTo2T5MU3BxFgiAIf+O2aCosLMTrr7+O0tJSfplNNB06dAiPP/44Fi9ejMmTJ3tuJUEQZxViGlzaRFO8XA4JNWYlCCIAcKvlwKlTp7Bo0SJUV1fj+uuvx4QJE+xeHz16NCIiIrB9+3Zv2EgQxFlGb6NULCyLun4wQoUgiIGFW6Lpgw8+AACsWrUKDzzwAIYPH273OsMwGDFiBI4fP+65hQRBnHX05mlqNplgslXjUmiOIIgAwS3RdOjQIUydOhWpqandrpOQkNBr13Ai8DHUG9C4oRFmndnfphBnEUlyOYKsITdnniZXK+dYlkXpM6XYnbYbJ584SccrQRA+wS3RpNPpEOUw2dsRvV4Pi8XS4zpEYGMxWXBwykEUXFaAffn70Lanzd8mEWcJEoZBqjVE52yUiquiqfo/1Tj96mnoz+hR8XoF9o3eh5bfWrxmL0EQBOCmaIqLi7NLAHfGiRMnkJyc7JZR/mT9+vW4++67MW3aND4MOVBp3twMXZEOAKA7ocOBiQdQ9kIZLEYSw4Tn2PKamk0mtJtMdq/VCdoNxPcSnlMfVqPkoRK7ZbpiHQ5NPYTih4phUpu62ZIgCMI13BJNEydOxN69e7Fv3z6nr2/duhXHjh3DlClTPDLOH8TExOCuu+7C1KlT/W2K36n9uNZ+gRkoe74MBycfhPaE1j9GEWcNwrymCocQnVhPk0ltwtEbjsLSwQn5+JvjEX5eOPciC1S+U4l9efvQvKXZi5Z7H2OTEYZ6Q+8rEgThV9wSTbfffjtiYmLwxBNP4LXXXkNRUREAYN26dXj55Zfx0ksvITExETfccINXje0LpkyZgsmTJyM0NNTfpvgVU5sJDesaAACyaBnSn0vnGuYAaN/Tjn35+1C5opIfnUMQrjKoh8G9YkVT8QPFvDc0ND8U2R9kY8yOMch4MwMSJXd66yjrwJ/T/0TRPUUwtQae16n191b8PvR37ErYhaM3HIX6iNrfJhEE0Q1uiabIyEi88847GD58OH744Qfs3r0bLMvirbfewqZNmzB8+HC89dZbbgsPrVaLDz74AI899hguv/xyXHDBBdiwYYPTdQ0GA1asWIFrrrkG06dPxz333IO9e/e69blEJ/Vf1dvdvQ95YQjG7hoL5TAlAMCis6D4/mIUXF4AfXX3Q1cJojvShRV0bniaqldX895QaagUuV/mQhosBSNlkLYoDeMOj0PE1IjO9VdWY+/IvWj8MXAKVPRVehy99ijMrWaABer/W499eftw9PqjUBeQeCKIQMPt5pbJyclYvnw5iouLcezYMbS1tUGlUiE3Nxc5OTkeGdXa2orVq1cjISEBmZmZOHjwYLfrvvrqq9i+fTuuv/56pKamYsOGDXjiiSewdOlSjBo1yiM7BjI1H9fwjxPvSAQAhI8Px7iD43DyiZOoWl4FAGja0IS9eXuR/V424mbH+cVWon/SU9uB3kaoaI5pUPxAMf88a2UWVMNUduuoMlXI35qPqveqUPpEKcxqM/Rn9Ci4vAAJdyQg881MBEX7r52BucOMI9ccgaHaKhAZAFbHbf1X9aj/qh6xs2Mx+LnBCB01sD3fBBEoeDxGZdiwYRg2bJg3bOGJiYnBunXrEBMTg+PHj2PBggVO1zt27Bi2bNmC++67DzfffDMAriv5nDlzsGLFCqxYsYJf94EHHkBBQYHT97n99tsxf/58r/4N/RldmQ6tv7QCAJTZSoSdG8a/Jg2RImtZFmKuiEHR3CIYagwwNZpw9LqjSLgjAcPeHgZZhMeHFTEAcBylIsTmaWIAxDqIJrPWzOUxaTlPaNL8JCTcnOD0MxgJg5T7UhBzWQyKFhSh+Wcut6n241o0/dSErBVZiLum78U+y7I4ce8JtO9pBwAo0hUY8+sY1H9dj9P/OA1jLScaG75uQMPXDYi91iqeRpN4Igh/4lZ47sYbb8RXX33V4zrffPMNbrzxRreMksvliImJ6XW9X375BVKpFFdddRW/TKFQ4PLLL8fRo0dRW9uZyLxs2TL8+uuvTv+RYLKn9tPO/ZZ4RyIYJyMsYmbFYFzBOMTOju3c7uNa7B21Fy2/tPSFmUQ/J01ETlNsUBBkEvvTVPFDxdAe5QoRQkaGIHNpZq+fFZwejFEbRyH7/WxII7jkPGOtEUevPYqjNx7t8yTsyrcrUfsR9zuTKCUYuX4kggcFI+2RNJxXeh4y3syAPLEzLNnwTQP25e/DkWuPoP1Qe5/aShBEJ26JppqaGqjVPcfb1Wq1nWjxBcXFxUhNTUVISIjdclt4sKSkxNlmPWIymfgeU2azGXq9Hmaz80Z5DQ0NKCoq4v+Vl5e7/kcEGCzL2lXNJdzm/A4eAOSxcoz47wgM/3g4pOHchUh/Wo9D0w7h5OMnYdFTawKie0JlMkTLOK+kMKeJZVleNDnmM9V+Voua97nQsUQl4fKYlFJRn8cwDJLmJmH80fGIuaLzpqz+y3rszd2L2jW1fVLY0LylGSV/7Tw3DV89HGH5Am+uSoq0RWmYUDoBmW9l2oundQ3YP2Y/jlxD4okg/IHP4igajQZBPh5/0NjY6NQjZVvW0NDg8nt+/PHHWL16Nf/8k08+wdNPP41Zs2Z1Wfe7776zW/dsoO2PNuiKuWqkyGmRCB4U3OP6DMMg8fZERF4QicI7C7mwHgtUvFGBpp+akPNpjl/yMbTFWpQ8VAJTiwkRUyMQdXEUIiZHiL7AEn3DoOBgNKnVOKPXw8yykDIM2sxm6K3iRdijSXtCi6J7ivjnWSuyEJIT0uU9e0ORosDI70ai7os6FC8shqnJBGODEYU3F6J+bT2yP8hGUJRvzl26Uh2O3nAUsN6HDXp6EOJviHe6rlQpRerDqUhakITqVdU4veQ0n//UsL4BDesbEPOXGAxePBhhY8KcvocvYc0sKt6owOnXTkORrED0ZdGIuTwG4eeHQxLk1v04QQQ8okXToUOH7J7X1NR0WQYAFosFdXV12LRpE9LS0jy1r0f0er1TYSa33p3qnYxn6I25c+di7ty5ota96qqrMGnSJP55eXk5Xn75ZZc/M5Cw8zLd0b2XyZHg9GDkb83HmTfPoPSZUrAGFpoCDfafux9DXhqC1EdTIZH5/kTKsixqP6nFiftPwKLhPF1tv7eh4h8VYOQMIiZxAiry4kiEjQvrE5sGGizLOg3pOiNdocAhtRomlkWNwYAUhQJ1TirnzB3WPCbrd5o4J5EvUHAHhmGQcEsCoi6OQvGDxaj/qh4AJ0Y0RzUY+d1IhAx3XZD1hEltwpGrj8DUxLU9iL48GkNeGtLrdlKlFKkPpSJpfhLf+dwmnhq/bUTjt42IuSoGQ14a0mc3KLqTOhTeUYi2XdyUAFOTCZojGlS8VgFphBTRl0Yj5rIYRM+KhjyeBi4TZw+iRdPDDz/MnwgZhsHGjRuxceNGp+vaTpr33HOPd6zsBoVCAaOgysaGwXrSVQhyJnxBbGwsYmNje1+xn2DRW1C3pg4Al2fhajUcI2GQ9tc0RM2IQuFthdAc1oA1sCh9shT1/61H9n+yfZrIamoz4cR9J1D3eZ3T11kDi5ZtLWjZ1gI8C0jDpYicGomo6VGIujgKqlyV6Is9YY/FaEH9f+txZukZaI9pkTQ/CenPpSMosmePjbCCrryjAykKhdN2AycfOQnNnxoAgCpHhWHveqf4RJ7AhZjrvqrDiXtPwNRogq5YhwMTDiB3TS5iZvWeWykGlmVxfM5xaAq4v0GZrUTuZ7lgpOKPN6lSitSFDuKpyiqevmtE4/8akXxfMoa8NMRnnjKWZVG9qholj5bwAha2P8Ea2TS3mlH/ZT3qv+SEaNi5YbwXKuycMDAS+o0R/RfRounOO+8EwzBgWRYfffQR8vPzkZ+f32U9iUSC8PBwjBkzBoMHD/aiqV2JiYlBfX19l+W2QcFnk6DpCxp/aISpmbsLjr02FrIw96K3oXmhOGfPOTi1+BQqXqsAWKB9Xzv2j9uPtCfSkP63dEiDvRsma9vThmM3H0NHaWdCceLdiUh/Nh3tf7SjeXMzmrc0o+NU5+vmNjMav29E4/fc8SJPlCPyokhEXRyFqOlRvYYmCa6TddXKKlS+WwlDZafYOfPmGdR+UovBLw1G0rykbj16jg0uJ0ZEdGk3UPdlHar+zbW4kCiteUwh3j1+4q+LR9i4MBz5yxFoDmtgbjOj4PICDP3HUKQ9luaxmC7/ezkavubSBaThUuR9m+d2lak0WIrUB1ORNC8JNe/XoPzVcm7fW4CqZVWoX1uPIa8OQdLcJK8KFH2NHkXzitD0QxO/LHhoMHI+zoEyS4mmn5rQ9EMTmn5q4s8jANC+tx3te9tR/kI5guKDED2L80JFzYjqVVQTRKAh+lcrDFn9+eefmDVrFmbOnOkTo8Ri6+Gk0WjsksGPHTvGv06Ix1lvJneRKCTIWJKB2L/EomheEbTHtGBNLE6/chr1X9Uje2U2IqdGemgxwFpYVLxegVPPngJr4m51peFSZK/MRvyNXK6IcrCSf6w7pUPzlmY0b25Gy9YWGOs7L9CGGgPqPq/jPVXKTCUipkYgYjL3T5mhJE+UFW2RFmeWnkHNRzV86T+PBIAFMDYYUXxfMaqWVSHzrUxEXdx1yPcgJw0uhZ6mlCqgaF5nHtOwd4YhdKRvvJXKwUqM2TkGx+88joZvGgAWKH2iFJrDGmStynJb6Dd814Cyv5VxTxgg9/NcqLJVPW4jBmmwFCkPpCDx7kRULq1E2UtlsGgsMDYYcWL+CVSvrMawd4chfHy4x58l9MTZSJqfhIx/ZUAWyl1GEm9LROJtibCYLGj7vQ1NPzah8YdGaA5r+G2MdUbUflTLVQ5KgYhJEXwYLyQvpE9/X8YmIzpOdUCRpkBQXBD9tglRuHWrs3TpUm/b4RYXXngh1qxZg++++47v02QwGPDjjz8iNzcXCQnic3IGOoYGA38HKU+SO73AuUPE+REYd2AcTi85jfK/l4M1stCd0OHQhYeQtCAJQ/8x1O27TX21HsfvOI7mzZ1zxcLPC0fOFzlQDlY63UY5RAnlPCWS5yWDtbDQHNF0iqhfWjpDDgB0JTroSnR8tVZQQhAvoCKnRCJkdEhA5URZTBaYGk0w1HFeB9VwFSQK79nHsixatrag4s0KO28DAIABYv8Si9RHUhE8OBilT5Wi7gtOfGqOaPDn9D8Rc1UMMv6ZAVVmp2BwNkrFJpqCDEDKw9Uwt3NZ0/G3xCNxrmdivjdkoTKM+O8IlL9UjrLnyzh7Pq2F9oQWI9eNhCLZtZC/plCDwtsK+edD/j4EMZd7J+RnQxosxaAnByH+1niUPl7Kh9jb97bjwIQDSJybiKGvDnUrt8jYYkTJwhK7NiRBCUEY/v7wbv8OiUyCyMmRiJwciaGvDEXHmQ5OQP3YiObNzZ2/MTPQ+msrWn9tRelTpZAnyRF9aTSiZ0Yj6pIorzceNevMaN3ZynmdNzdDfUDNhxSl4VIohymhzFRCNUzFP1YOUyIolgQV0QnDelhjq9PpoFarYbE4Ly93V7h8/fXXUKvVaGxsxPr163HBBRfwTTRnz57Nj2hZvHgxfv31V9xwww1ISUnBxo0bUVhYiDfffNNp+NCXFBUVYf78+Vi1ahWys7P79LM95cy7Z1CykCuDTns8DRmvZXj9MzTHNCiaV4S23W38MnmSHMOWDXO5wWDjj404fudxGBusniIGGPTMIAxePNjtyh2L0YL2Pe28iGr7vQ2ssfufhyREgojzOz1RYRPC+Ltub8CyLMztZhjqDDDWGbn/a432zwX/GxuN/EUAABgZg5CRIQg9JxRh54QhbGwYQkaFuFxBaNFbUPt5Lc68dcbOawBw+yDp7iSkPpQKZYa9UG3d1YqSh0vQvq+zNJ4JYpD6cCrSn02HLEKGar0eybt3AwCujInBd3l5uLeoCO9VV2Ph28C167jtlFlKnLPvHLdDxu5Q/3U9Cu8o5D1p8iQ5Rq4fKdpzY2w24sCEA3w1atyNccj9ItfnF+Dm7c0oWVgCzZHO70oaIcWQF4cg+f5k0UK/eUszjt91HPqKzoKa2NmxyPp3FuSx7iV3W/QWtPzawnuhbPumCxJuAkHUpVGInhmN8HPDXcr/ArjqvvYD7bxIat3ZClbv+uVOGiHlhJRVRNkJqhgSVAMNt0XT//73P6xduxYVFRXdvznDYNu2bW4ZdsMNN6Cmpsbpa2vXrkVSUhIArkLu/fffx88//wy1Wo2hQ4di3rx5GD9+vFuf6wn9WTTtH78f7Xu5i9u4gnE+C4GwFhZVK6pQ+hQ31sJG7LWxGPbuMCiSer6Tt+gtOPnkSVQureSXyZPlyPk0B1HTvOMds2HWmtG+tx2tO1q5f7taYW5z3rMLACAFwsaEdYbzspWwaC0wq80wt5u5/9VmmNpN/GPhcrt12rgyeHdO8j0iBUJGhCBsbBgvpkJHh0Kq6iqkDHUGVP27CpXLKmGssy+4UAxSIGVhCpLmJfXoKWQtLGo/rUXpU6Wd40IABMUFYcjLQ5AwNxHKnb/ByLIYHRKCQ+eei2uOHEHDuga89By3LqNgMPb3sXa9jPoK9Z9qFPylAPpyPW9L9qpsJN7es8eLNbMouKIATRs5j1zI6BCM3TnW67lY3WExWVC1vAqn/nbK7pgNGRmCzHcyEXVh978Vs86M0qdL7X5j0nAphr07DAm3JXhVJGiLtWja2ISmjU1o2dYCi875zbcsSoaoGVGcJ+rSaKceP5ZloSvW8fmLLVtbYGrpfkBzyKgQhJ0TBn2lHrpiHTrKOwBXW8sxXCoCo2AgUUj4f4y883m3rwVLIA2XQhYpgyxC8C9SBmmElH8uDZWKyk1jLSxMLSYYG7kbKFOjCcYmweNGI4xN3GNTiwmMjIEk2GpfsIS3yfF//nXhsiAGjLTzH6Rw6XmXzwyWgJEx/UKAuiWa1q9fjzfffBNSqRR5eXmIi4uDVOr8ZPD00097bGR/ob+KJk2hBntzuSHHoWNCMe7AOJ9/ZsfpDpy47wSafuwM80gjpMh4IwNJdyc5/fFoi7Q4dtMxqA91NlaNuSoG2e9nu33n6wqsmQvn2URUy28tdsnP/kKilECeIEdQfBDk8dz/rJG7y9YWanu/EEi4ijSbN0qZpUT91/Wo/bS2i2gLPy8cqY+kIvbaWJdCkya1CaeXnEbFGxV27xkyOgSLFxiwIdeISJkMzZMn47L/7cN9N6sRZv2ahy0fhpT7UkR/lrcx1Btw9LqjaP21lV+W9ngahr46tFvvx8knT3JFEACCYoMwdu/YbkPGvsRQa0Dp06Wo+dD+BjT+pngMfX0oglPtix3a9rXh+O3HoT2u5ZdFXhSJ4R8O93lhhLnDjNYdrbyIsnV9d0bIqBBEX8qF8Yz1Rt6bJPSKOaJIV3CVstOjEHVRVJdwpUVvQUdZB7TFWuiKddy/El2noPJ931PnSABZuEBIWUUWa2a5HmM2kdRs8p+N3kCCLkLKUazZ/kXPjEbyPcl+MdMt0XTrrbeivb0dy5Yt83kvpv7A5s2bsXnzZqjVahw+fLjfiabSZ0px+tXTAICMNzOQtqhvvlOWZVG3tg4lD5XYJWRHXhhpN4CVZVnUfFiD4oXFfKiEUTDI/Gcmku9P9tvdCcuy0J/Wd3qidrTahUTcggGkoVJIQ6UIig2yE0LC/4UiqSfvhVljhvqwGu3726E+wP2vOarhmyuKQgrEzY5D6iOpiDgvwqM/T1em41pQfGlf9frrFODf9wLHrp6Ib87djaHHuNNS3PVxyF3r+5BWb1gMFhQ/VIzq96r5ZdGzopHzeU4XT1vt57UovNWaxyQFRm8e3aNnpy9o/b0VxQ8WQ72/84ZDEiJB+rPpSHskDZACp185jfKXyvmCCkmwBEOXDEXKwhS/tAnoONOB5p+aORG1qQnmVlcOWkAWLUPURVG8UAoeGuz2cWTRW6Ar7RRRNkFlajXBorfAoreA1bP8Y9tz274MOATDofsjyfcnI2tZll8+2y3RNH36dFx++eV45JFHfGFTv6U/eppYC4vf03+H/owekAITKydCntC3zeiMjUaUPFpi11hTEizB4OcHI/HuRK754NrOi6wqR4XcNbkBOfnd2GxE2+42tO5ohaHGwAmgMCkvhOweh0ohC5PZPZeoJD4XCGadGZoCDdr3t3Niar8amiOaLid4aYQUyfOTkbIwxetehpbfWlCyqIRLxrViCAJU54TC9Du3rD6FwTVHJwXUAOjKFZUoeaiE31fKbCXyvsuDKosT+O0H2nFw0kFYOjhxP+zdYUh5wH9eMiGsmUX1B9UofbrUrgpOOUwJWaSMD88DQOg5ocj5JMetjuu+wGLi8g1tXqj2fe1dLvqSYAkipkTwIik0P9TvPaFYCwuLwbmgMuvMMLeZYWo1wdRqgrnVDFOLiX/e3TJH7680QoqgmCD+nyxGhqBowWPb8ujOx9IwKcByNwOWDqt9HVb7Oiz2j/VO1jFYADN3TNn+ufKcF5kdFvt/eovTZazB/m9OfTQVmf/0T3W8W6LphhtuwIQJE/DXv/7VFzb1W/qjaGre2ow/L/4TANeheNT/RvnNlqafm3DinhPoKOvspcQEMXbJ2EkLkpD5ZqbTHBzCfSx6C9QFaqgPqKEt1EKZpUTCbQk+TbxmLSxqVtfg8JPFUDTYxxCNMuCD1SH44tZzffb57tK8rRlHrz/KCw9phBQj1o5A6JhQ7B+3nw8RJd6diOxV2X73kjlibDLi1HOnULWiqmvoVgqk/1860p9ND+hRKIYGA5o3NaP1t1Yu3+niKIRPDPd6/7dAxNxh5rxuEi7XK5AqeH0Fa2HtBJUkWOKzBq694dYZcebMmdi4cSN0Oh2Uyr6P0xPew5u9mTwlekY0xhWMQ9lzZTiz9AxgAS+YZJEyZK3KQvx1zud0EZ4hUUgQPi4c4eM87+kjFkbCDdD9cbIZv79Qguv/C8itUdp/3wtI8z3vZeQLoqZF4Zy95+DIVUegOaKBudWMw5cdhnKokhdM4eeHI2tZVsAJJgAIig5C1rtZSJqXhOIHi9G2k6tmVWYpkfNxDsIn9N0x4C7yWDkSbk5Aws0Dr62MNFg6IMShEEbCQKqUBsTsULck6h133IHhw4fj0UcfxaFDh6DVdp+wRwQuZo2Zn7kljZAi5krv9o9xB1moDJn/ysTY3WMRkseFBiImR2DcoXEkmM5S0mJV+M98YM5qYOccBf71CPDNtZ0jVAIR5RAlxuwag9irrVMHLFxfL4Cr5hzx9Qiv9sjyBWH5YRjz2xiM/HYkhq0YhnEHx/ULwUQQ/sQtT9P06dMBcImwixYt6nY9T1oOEL6nfl0932gu/ob4gFDxNsLHh2PcoXHoON2B4HT3EziJwMfW4LI6GXhtrgm2CvkEJ8O4AwlZmAwjvh6BshfKUP5iOQCuQGHkupG9ts4IFBiGQexVNG6KIMTilmgaNWoUXcTOAoSJ1wl3BJ6bm5EwfinTJvqWNMEolTZzZ4VUIHuabDASBkNeGIKwc8NQt6YOSfOSvDK2hCCIwMQt0fT222972w6ij9FX6vnxI8FDghExybNScoJwlxCpFDEyGRpN9o0I+4NoshF7RSxiryCPDUGc7QR20J3wGbWf1fIluwl3eLfLL0G4inBwr43+JJoIghgYkGgagLAsi5qPBFVzvYyEIAhfk+5ENMUHeE4TQRADD1HhuSVLlgAAFixYgOjoaP65GJ566in3LOtHCDuC9wfUB9XQHuMqHsMnhXcZtEoQfY0tGVwIeZoIggg0RImmDRs2gGEY3HrrrYiOjsaGDRtEvTnDMANCNE2fPh3Tp0/nm1sGOoHUm4kggK7huVCpFKpu5lkSBEH4C1Giae3atQCA2NhYu+dE/8NitKDu8zoAXHl03PVxfraIILp6mgK93QBBEAMTUaIpMTGxx+dE/6HppyZ+OG7sVbF+a0VPEEIcPU0UmiMIIhChRPABRqD3ZiIGJumOniYSTQRBBCAkmgYQxmYjGr5rAAAExQUh+tJoP1tEEBzxcjnkgrYXJJoIgghESDQNIOr/Ww9WzzVnir8lPqCnmBMDCwnDIE3gbaKcJoIgAhG6ag4gqGqOCGSEeU3kaSIIIhAh0TRA0J3UoW1nGwBANUKF0DGhfraIIOwRVtDFk2giCCIAIdE0QKj5xN7LRGNTiEBjTFgY/3iESuVHSwiCIJzj1sBeon/Bsmxn1RwDJNxKVXNE4DE/KQlqsxlDgoMxPCTE3+YQBEF0gURTP6HiXxWo+FdFr+uFjQ1D3nd5dssOTjmIjlMdAABGzmD/hP1Ot017NA1pj6bxz03tJuzJ2SPKvrxv8xB2TqenoOF/DThx74let5OGSjHh+AS7ZScfP4naL2q72aKTmMtjkP1ett2yfeP2wVBj6HXbjNcykHBLp3jUFmlx6OJDvW4HAOfsPQeKpM5QUtXKKpS9WNbrdqosFfK35tstO3brMbT80tLrtsnzkzF48WC7ZbtSd4mwFsj5NAdRF0bxz5u3N6PwtkJR2048M9HuedkLZahaVdXrdpFTI5H7Wa7dskMXHYL2hLbH7aYBGPzcYGBB5zJ9tR77z3V+zDqSvyUfquxOL1Xt57U4+cTJXreTJ8oxbt84u2VF9xSh8YfGXrdNuDkBGa9n2C37Y/gfMKvNvW6b9e8sxF4Ryz9v39+Ogr8U9LodAIwvHA9ZWOcp3JNzRMFVBWg/0N7rtnSOONTrdgCdI3x5jnA8BvsaEk1eoC9mz5naTDBU9v5DN6YZuyzTFev4x6ye7fZ9TG0m+wUsRH0mAFgMFvvnOouobaVhXUdlGJuNorY1NZm6LDPUGERta9baX9BYU/f7xRHWzNq/l9osaltZRNefm7FB5N/a6uRvFWuvnu3yXOy2zuwQdRw2dD0ODbUivxsHscGaXfhuTA7fjVbcd+MMU5PIv7XZyd9aZYC5vXfRZNE5/G4M4n43AAD7P9Wjc4SxXuRxSOeIXrcD6Bzhy3NEl2OwjyHR5AX6YvacLFwGeUrvybFBcfal2madGcYm68HJAPIkOdBNOpMs3OFwYCDqMwFAIrdPj5MoJaK2lYZ2PSEGRQWJ2lYW3fXwlSeKs1eqsv9cRsaI/lsZqf0OlIZKRW0rT+i6TlCsyL/VyclUtL0Kpstzsds6s0PUcRjbtWWAPEHu9MTuiOMxwUhd+G5kDt+NSuR34+S4kUWL/FuddNWXJ8tFeZokSoffjVzc7wZAl9+xu+cI2zJRxyGdI0RtS+cI350juhyDfQzDsizb+2qEGGyiadWqVcjOzu59gz6gcnklih8oTuy/mwAAE1BJREFUBgAk3JmAnNU5fraIIAiCIPonVD13lsKyLCr+WYHiB4v5ZdSbiSAIgiDch8JzZyGsmUXJohJUvlvJL0ual4TIaZH+M4ogCIIg+jkkms4yzBozjt1yDI3fdVb9DH5+MNKfS6feTARBEAThASSaziL0NXocufII2vdxpcOMjEH2f7KReCeF5QiCIAjCU0g0nSVoCjUouKwAHWVcPyZpuBQjvxmJqIujetmSIAiCIAgxkGg6C2j5pQVHrj4CUwtXqqlIUyDvhzyE5tF8OYIgCILwFiSa+jm1n9fi+F3HwRq4zhGh+aHI+yEPimRFL1sSBEEQBOEKJJr6KSzL4vSS0zj1zCl+WfTMaOR+mWs3WoEgCIIgCO9AV9d+iMVkQfH9xaheVc0vS1qQhGHLhkEio9ZbBEEQBOELSDT1M0ztJhy74RiaNjbxy4a8OgSDnhxELQUIgiAIwoeQaPICfTGwFwD0VXoUXF4A9SHucxg5g+GrhyPh5oRetiQIgiAIwlNINHmBvhjYqy5Qo+CyAujP6AEAsigZRq4ficgLIn3yeQRBEARB2EOiqR/QtLkJR2cfhbmNm5oePDgYeRvyEDI8xM+WEQRBEMTAgURTgFP3VR0Kby4Ea+JaCoSdG4a87/MgT5D72TKCIAiCGFhQqVWAE5ofCmmEFAAQc1UM8rflk2AiCIIgCD9AnqYAR5WpQt53eaj/uh4Zr2WAkVKFHEEQBEH4AxJN/YCIiRGImBjhbzMIgiAIYkBD4TmCIAiCIAgRkGgiCIIgCIIQAYkmgiAIgiAIEZBoIgiCIAiCEAGJJoIgCIIgCBGQaCIIgiAIghABiSaCIAiCIAgRkGgiCIIgCIIQAYkmgiAIgiAIEVBHcC+wefNmbN68GWq12t+mEARBEAThI0g0eYHp06dj+vTpKCoqwvz58/1tDkEQBEEQPoDCcwRBEARBECIg0UQQBEEQBCECCs95Eb1eDwAoLy/3syUEQRAEQbhKeno6goODu32dRJMXqampAQC8/PLLfraEIAiCIAhXWbVqFbKzs7t9nWFZlu1De85qWlpasGfPHiQlJUEul9u9Vl5ejpdffhnPPvss0tPT/WRh/4L2mXvQfnMP2m/uQfvNdWifuUdf7DfyNPUhkZGRmDFjRo/rpKen96hiia7QPnMP2m/uQfvNPWi/uQ7tM/fw536jRHCCIAiCIAgRkGgiCIIgCIIQAYmmPiImJgZz5sxBTEyMv03pN9A+cw/ab+5B+809aL+5Du0z9wiE/UaJ4ARBEARBECIgTxNBEARBEIQISDQRBEEQBEGIgEQTQRAEQRCECEg0EQRBEARBiICaW/oYg8GA999/Hz///DPa29uRkZGBefPm4dxzz/W3aQHJwYMH8fDDDzt9bcWKFRgxYkQfWxSYaLVarFmzBseOHUNhYSHa29vx9NNPY9asWV3WLSsrw7vvvouCggLIZDKcf/75ePDBBxEZGdn3hvsRsfvslVdewcaNG7tsP2jQIHz66ad9ZW5AUFhYiI0bN+LgwYOoqalBeHg4RowYgXnz5iEtLc1uXTrOOhG73+hYs+fUqVP48MMPUVRUhKamJgQHByM9PR0333wzJk2aZLeuv443Ek0+5tVXX8X27dtx/fXXIzU1FRs2bMATTzyBpUuXYtSoUf42L2CZPXs2cnJy7JalpKT4yZrAo7W1FatXr0ZCQgIyMzNx8OBBp+vV1dVh4cKFCA0Nxfz586HT6bBmzRqUlpbivffeQ1BQUB9b7j/E7jMAkMvleOKJJ+yWhYSE+NrEgOPzzz9HQUEBpk2bhoyMDDQ2NmLdunWYN28eVqxYgaFDhwKg48wRsfsNoGNNSE1NDbRaLWbOnInY2Fh0dHTgl19+wdNPP43HHnsMV111FQA/H28s4TOOHj3KTpkyhf3888/5ZR0dHexNN93E3nvvvX60LHA5cOAAO2XKFHbbtm3+NiWg0ev1bENDA8uyLFtYWMhOmTKF/fHHH7us989//pOdPn06W1NTwy/bu3cvO2XKFPbbb7/tM3sDAbH77O9//zs7Y8aMvjYvIDl8+DBrMBjslp0+fZq9+OKL2RdffJFfRseZPWL3Gx1rvWMymdi77rqLvfXWW/ll/jzeKKfJh/zyyy+QSqW8OgYAhUKByy+/HEePHkVtba0frQt8tFotTCaTv80ISORyuagGb7/88gsmTpyIhIQEftm4ceOQlpaGbdu2+dLEgEPsPrNhNpuh0Wh8aFHgk5eX1+WuPS0tDYMHD0Z5eTm/jI4ze8TuNxt0rHWPVCpFfHw81Go1v8yfxxuF53xIcXExUlNTu7habWGnkpISuy+d6OTVV1+FTqeDVCrFqFGjcN9992H48OH+NqtfUV9fj+bmZqeDLXNycvD777/7war+QUdHB2bNmoWOjg6EhYXh4osvxr333guVSuVv0/wOy7Jobm7G4MGDAdBxJhbH/WaDjrWu6HQ66PV6aDQa7Ny5E3/88QemTZsGwP/HG4kmH9LY2Oj0zta2rKGhoa9NCnhkMhmmTp2K8847DxERESgrK8PatWvx4IMPYvny5cjKyvK3if2GxsZGAOj2GGxra4PBYIBcLu9r0wKamJgY3HzzzcjKygLLsvjjjz+wfv16nDx5EkuXLoVMNrBPm5s2bUJ9fT3mzp0LgI4zsTjuN4COte5YtmwZvvvuOwCARCLBBRdcgEceeQSA/4+3gfmN9BF6vd5pQprty9Tr9X1tUsCTl5eHvLw8/vnkyZNx4YUX4q677sLKlSvxxhtv+NG6/oXt+OrtGBzoFzNH7rnnHrvnF198MdLS0rBq1Sr88ssvuPjii/1kmf8pLy/Hm2++iREjRmDmzJkA6DgTg7P9BtCx1h3XX389LrzwQjQ0NGDbtm0wm80wGo0A/H+8UU6TD1EoFPwXLcRgMPCvE72TmpqKyZMn4+DBgzCbzf42p99gO77oGPScG264ARKJBPv27fO3KX6jsbERTz75JEJCQvDSSy9BKpUCoOOsN7rbb91BxxqQnp6OcePGYebMmfjHP/4BnU6Hp556CizL+v14I9HkQ2JiYnhXohDbstjY2L42qd8SHx8Po9GIjo4Of5vSb7C5r7s7BsPDwwf03b8rKBQKhIeHo62tzd+m+AW1Wo0nnngCarUab7zxht25i46z7ulpv3XHQD/WnHHhhRfi+PHjqKio8PvxRqLJh2RmZuLMmTNdqiKOHTvGv06Io6qqCnK5HEql0t+m9Bvi4uIQGRmJoqKiLq8VFhbS8ecCWq0Wra2tA7JRo16vx1NPPYWKigosWbKkSyIzHWfO6W2/dcdAPta6wxaSU6vVfj/eSDT5kAsvvBBms5lPaAM49+GPP/6I3NxcqpxzQktLS5dlJSUl2LlzJ84991xIJHTIusLUqVOxa9cuu/YW+/fvR0VFBV+NQnSi1+uh1Wq7LP/oo4/AsiwmTJjgB6v8h9lsxvPPP4+jR4/ihRdewMiRI52uR8eZPWL2Gx1rXWlubu6yzGQy4aeffoJCoeCFpz+PN0oE9yG5ubmYNm0aVq5ciZaWFqSkpGDjxo2oqanBk08+6W/zApLFixdDoVBg5MiRiIqKQllZGb7//nsEBwd3SZoc6Hz99ddQq9W8m3rnzp2oq6sDwHVUDw0NxW233Ybt27dj0aJFuO6666DT6fDFF19g6NChTkeunO30ts/a29tx9913Y/r06Rg0aBAAYM+ePfj9998xYcIETJ482W+2+4Nly5Zh586dmDhxItrb2/Hzzz/bvT5jxgwAoOPMATH7rampiY41B9544w1oNBqMHj0acXFxaGxsxKZNm3D69Gk88MADfBsGfx5vDMuyrE8/YYCj1+v52XNqtRpDhw7FvHnzMH78eH+bFpB89dVX2LRpEyorK6HRaBAZGYlzzjkHc+bMQWpqqr/NCyhuuOEG1NTUOH1t7dq1SEpKAsDNc3Kc0fTAAw8gOjq6L80NCHrbZ6GhoVi6dCmOHj2KxsZGWCwWpKSk4JJLLsFNN9004ErAH3roIRw6dKjb13/99Vf+MR1nnYjZb+3t7XSsObBlyxb88MMPKC0tRWtrK1QqFbKzs3Httdd2EZH+Ot5INBEEQRAEQYiAEkQIgiAIgiBEQKKJIAiCIAhCBCSaCIIgCIIgRECiiSAIgiAIQgQkmgiCIAiCIERAookgCIIgCEIEJJoIgiAIgiBEQKKJIAiCIAhCBCSaCIIgCIIgRECiiSCIgKG6uhoXXHABXnnlFX+b4hU2bNiACy64ABs2bPC3KQRBeAESTQRBBDQPPfQQLrjgAn+b4ZSzTeQRBNEzA28iIEEQAUtcXBw++eQThISE+NsUrzBlyhTk5uYiJibG36YQBOEFSDQRBBEwyGQypKen+9sMrxEaGorQ0FB/m0EQhJdgWJZl/W0EQRAEwIW7brzxRsycORPPPPNMt2E52+s2Tp48iU8++QSHDh1CW1sbYmJiMGnSJNx1112IiIhw+v633HILVq1ahT///BNtbW1Yu3YtkpKS8Ouvv2Lbtm04fvw4GhoaIJPJkJGRgeuuuw4XXngh/14bNmzAq6++6tS+pUuXYsyYMfw6Tz/9NGbNmmW3TkFBAT755BMcPXoUer0eiYmJuOiii3DLLbcgODjYbt0LLrgA+fn5eP7557FixQr8/vvv0Ol0yMzMxD333IMxY8a4uqsJgnAD8jQRBBGwzJkzBxs3bkRNTQ3mzJnDLx82bBj/eMeOHXj++efBMAwmT56M+Ph4lJWV4ZtvvsGePXvw3nvvISwszO59Kysrcd9992Ho0KGYOXMm2traEBQUBABYuXIlZDIZ8vLyEBMTg5aWFuzcuRPPPfccHn74YcyePRsAkJmZieuuuw5fffUVMjMzMXnyZP79ExMTe/y7tm3bhhdffBFBQUG46KKLEBkZib1792L16tXYs2cPli5dCoVCYbeNWq3GAw88gNDQUMyYMQPNzc3Ytm0bHnvsMaxatQpDhw51ax8TBCEeEk0EQQQsc+fOxaFDh1BTU4O5c+d2eb21tRV///vfERERgWXLltmJlS1btuCFF17A+++/j0WLFtltV1BQgDlz5jh9z9deew3Jycl2y7RaLe6//368//77uPzyyxEcHIxhw4YhNDSUF03O3ssZGo0Gr7/+OqRSKVasWIGMjAwAwIIFC/Diiy9i69atWLNmDe6880677UpKSnD11Vdj0aJFkEi4Gp6xY8fitddewzfffIPHHntM1OcTBOE+VD1HEES/5aeffoJGo8GCBQu6eHcuvvhiZGVlYcuWLV22i46Oxu233+70PR0FEwCoVCrMmjULarUax48f98jmHTt2QK1W47LLLuMFEwBIJBLcd999kEqlTlsUKJVK3HvvvbxgArgwpVQq9dgmgiDEQZ4mgiD6LUePHgUAHDt2DJWVlV1eNxgMaG1tRUtLCyIjI/nlmZmZfDjOkebmZnz22Wf4/fffUVtbC71eb/d6Q0ODRzYXFxcDAPLz87u8lpCQgOTkZFRUVECr1UKlUvGvpaam2j0HuMT56OhoqNVqj2wiCEIcJJoIgui3tLe3AwDWrVvX43odHR12z6Oiopyu19bWhgULFqC2thZ5eXkYN24cQkNDIZFIUFJSgh07dsBoNHpks0ajAcB5u5wRExODiooKaDQaO5HUXRsGqVQKi8XikU0EQYiDRBNBEP0Wm6hYvXq1S4nQDMM4Xf7DDz+gtrYWd999d5ecok8//RQ7duxw31grNvHT1NTk9HXb8rOlVxVBnE1QThNBEAGNLYfHbDZ3eS03NxdAZ5jOU2whPmElnI3Dhw93a5srnh5b5d+hQ4e6vFZbW4vKykokJyd3CcURBOF/SDQRBBHQhIeHAwDq6uq6vHbZZZdBpVJh1apVOHXqVJfXOzo6XBJUtmTygoICu+WbNm3C77//3mX9sLAwMAzj1LbumDx5MkJDQ/Hjjz/a2cyyLN577z2YzeYuPZ0IgggMKDxHEERAM3bsWGzfvh1/+9vfMGHCBMjlcmRmZmLSpEmIjIzE4sWL8dxzz2Hu3LkYP348Bg0aBKPRiJqaGhw6dAgjR47EG2+8IeqzZsyYgc8//xxLly7FwYMHkZCQgJKSEhw4cAAXXHABfv31V7v1VSoVhg8fjj///BMvv/wyUlNTwTAMLr300m57NYWEhODxxx/Hiy++iHvvvRfTpk1DZGQk9u/fj6KiIuTk5OCmm27yeL8RBOF9SDQRBBHQXHHFFaiursbWrVvx+eefw2w2Y+bMmZg0aRIA4Pzzz8f777+PL774Avv378e+ffsQHByMuLg4zJo1CzNmzBD9WfHx8Xj77bexYsUK7Nu3D2azGVlZWfjnP/+Jurq6LqIJAJ599lm888472LVrFzQaDViWxahRo3pscDlt2jRER0fj008/xa+//sp3BL/zzjtxyy23dGlsSRBEYEBjVAiCIAiCIERAOU0EQRAEQRAiINFEEARBEAQhAhJNBEEQBEEQIiDRRBAEQRAEIQISTQRBEARBECIg0UQQBEEQBCECEk0EQRAEQRAiINFEEARBEAQhAhJNBEEQBEEQIiDRRBAEQRAEIQISTQRBEARBECIg0UQQBEEQBCGC/wcOwH2oeT8A1gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = []\n", + "integrated_flux = []\n", + "integrated_flux_each_band = [[],[],[],[],[]]\n", + "\n", + "for result in all_results:\n", + " iteration.append(result['iteration'])\n", + " image = result['model_map']\n", + " pixelarea = 4 * np.pi / image.axes['lb'].npix * u.sr\n", + "\n", + " integrated_flux.append(np.sum(image) * pixelarea)\n", + "\n", + " for energy_band in range(image.axes['Ei'].nbins):\n", + " integrated_flux_each_band[energy_band].append(np.sum(image[:,energy_band]) * pixelarea)\n", + " \n", + "plt.plot(iteration, [_.value for _ in integrated_flux], label = 'total', color = 'black')\n", + "plt.plot(iteration, np.full(len(iteration), integrated_flux_truth), color = 'black', linestyle = \"--\")\n", + "plt.xlabel(\"iteration\")\n", + "plt.ylabel(\"integrated flux (ph cm-2 s-1)\")\n", + "plt.yscale(\"log\")\n", + "\n", + "colors = ['b', 'g', 'r', 'c', 'm']\n", + "for energy_band in range(5):\n", + " plt.plot(iteration, [_.value for _ in integrated_flux_each_band[energy_band]], color = colors[energy_band], label = \"energyband = {}\".format(energy_band))\n", + " plt.plot(iteration, np.full(len(iteration), integrated_flux_each_band_truth[energy_band]), color = colors[energy_band], linestyle = \"--\")\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "718b60f4", + "metadata": {}, + "source": [ + "## Spectrum\n", + "\n", + "Plotting the gamma-ray spectrum at 20th interation. The photon flux at each energy band shown here is calculated as the accumulation of the flux values in all pixel at each energy band." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "b05459a3", + "metadata": {}, + "outputs": [], + "source": [ + "def get_differential_flux(model_map):\n", + " pixelarea = 4 * np.pi / model_map.axes['lb'].npix * u.sr\n", + " \n", + " differential_flux = np.sum(model_map, axis = 0) * pixelarea / model_map.axes['Ei'].widths\n", + " \n", + " return differential_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "81f5ab8c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHTCAYAAADs2/aTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABa7klEQVR4nO3deVxU1f8/8NfMyL4KKLiQgiiKqahpmIoo44KYWy5lpWbikrmkZlqWWvbJzBLTT1p+Sz7aoqWkpeACCmpqqEGiLG6IWywiIItsM/f3hz8mkWEb7jALr+fj4SO598w97xlofHHumXMkgiAIICIiIqI6k+q6ACIiIiJDxSBFREREpCEGKSIiIiINMUgRERERaYhBioiIiEhDDFJEREREGmKQIiIiItIQgxQRERGRhhikiIiIiDTEIEVE1AhIJBL4+fnpugwio8MgRaQFCoUCW7duxYABA+Dg4AATExM0b94cXbt2xfTp0/Hbb7/pusRqRUVFQSKRYOXKlboupUH5+flBIpEgKiqqwvG2bduibdu2OqmptgyhxoZSUFCAH374AZMmTULHjh1hZWUFGxsbPPPMM/j8889RUlJS5WMTEhIwYcIENG/eHObm5vD09MSKFSvw8OHDBnwGZEia6LoAImOjUCgwYsQIHDx4EPb29ggMDETr1q1RUlKCS5cu4ccff0RSUhJGjhyp61KpEUlMTISlpaWuy2gQJ06cwCuvvAIHBwcMHDgQo0ePRnZ2Nn777TcsXrwYoaGhiIyMhLm5eYXH/fnnnxg0aBBKS0sxbtw4uLq64ujRo/jwww8RGRmJyMhImJmZ6ehZkb5ikCIS2U8//YSDBw+iW7duiI6Ohp2dXYXzhYWF+PPPP3VUHTVWHTt21HUJDcbFxQXff/89xo8fD1NTU9XxdevWwc/PD6dOncJ///tfLFq0SHVOoVDgtddeQ2FhIfbt26f6RUepVGLChAnYs2cP1q9fj6VLlzb48yE9JxCRqGbPni0AENavX1/rx2zbtk0AIGzbtk3Yv3+/0KdPH8HS0lKwt7cXXnjhBeHy5ctqH1dQUCD85z//Ebp16yZYWloKVlZWgo+Pj/Djjz9W2dehQ4eEESNGCM2aNRNMTU2F1q1bCyNHjhSOHDkiCIIgTJkyRQCg9s+xY8cq1RseHi4MGDBAsLW1FcrfUlJSUgQAwpQpU9TWMGDAAOHJt59jx44JAIQVK1YIZ8+eFYYOHSrY2toK9vb2wtixY4WbN28KgiAI165dEyZOnCg4OTkJ5ubmgp+fnxAXF1fr17o65XWVP8/ymtT9efK5JSYmClOmTBFat24tmJiYCM2bNxdeeuklISkpqVI/5a/xtWvXhC+//FLo0qWLYG5uLgwYMEAQBEEoLi4WNm7cKAQEBAhPPfWUYGpqKjRt2lTw9/cXwsLC1L5uNdUIQHX9x+Xk5AhLly4VOnToIJiZmQn29vbCkCFDVD8P6vpasWKFEBsbKwwfPlyws7MTLCwsBF9fX+GPP/6o0+utCz/88IMAQBgxYkSF45GRkQIAwdfXt9Jjrl27JgAQ2rRpIyiVyoYqlQwER6SIRObo6AgAuHz5cp0fGxoaivDwcIwZMwZ+fn6Ii4vDnj17cOzYMZw6dQqenp6qtjk5ORg0aBBiY2PRo0cPTJs2DUqlEocOHcKkSZNw6dIlrF69usL1V6xYgQ8//BDW1tYYPXo0XF1dcffuXZw6dQrff/895HI5Ro8eDQD43//+hwEDBlSYoPzkHJzdu3fj4MGDCAgIwKxZs5Camlrn5/yks2fP4tNPP8WAAQMQFBSE+Ph4hIaG4uLFi9i3bx/69euHjh07YvLkyUhNTUVoaCgGDx6M69evw9raut79P65t27ZYsWIFgoODAQALFixQnfP29lb9/eDBgxg7dixKS0vx/PPPw8PDA7dv30ZoaCgOHDiAY8eOoUePHpWuP3/+fJw4cQKBgYEYPnw4ZDIZAOD+/fuYP38+nnvuOQwePBjNmjXDP//8g99//x3Dhw/H1q1bMX369DrVqE5OTg769u2LhIQE9OrVCwsWLMC9e/fw888/Y8iQIdi8eTNmzpxZ6XHnzp3D2rVr0adPH0yfPh03b97Enj174O/vj7i4uAo/p/rGxMQEANCkScV//o4ePQoAGDZsWKXHuLu7o0OHDrh8+TKuX7+Odu3aab9QMhy6TnJExuavv/4STExMBIlEIrzyyivCnj17hBs3blT7mPIRHgDC77//XuFccHCwAEAYNGhQhePloxqffvppheMPHz4Uhg4dKkgkEiE2NlZ1/NChQwIAwc3NTbh9+3alGm7duqX6++MjD9XVK5FIhPDw8Ern6zMiBUD4/vvvK5ybNm2aAEBo2rSpsHr16grnPvzwQwGAEBwcrLavunhyRKpcmzZthDZt2qh9zP379wV7e3vB0dFRuHTpUoVz8fHxgpWVldC9e/cKx8u/dy1bthSuX79e6ZpFRUUVvh/lcnJyhM6dOwtNmzYVCgsLa12jIKgfkZoxY4YAQJgxY0aFkZbLly8Ltra2gqmpqZCSkqI6/vj3aNu2bRWutWXLFgGAMHv27CpreNL69euFFStW1PrPr7/+WutrV2XYsGECAGHLli0Vjo8bN04AIOzevVvt4wIDAwUAlUYEiRikiLRg165dgouLS4XbLA4ODsLo0aOF3377rVL78mDyZFgSBEEoKysT2rVrJwBQBbJ79+4JMplMeOaZZ9T2HxcXJwAQ3n77bdWxESNGCACE0NDQGuuvbZAaPXq02vP1CVL9+vWr1D46OloAILRt21YoKyurcO7GjRsCAGHq1Kk1Pq+aaBKkyoPupk2b1J5fsGCBAKBCyCoPUpqEv88//1wAIERHR9e6RkGoHKSKi4sFS0tLwdraWsjKyqrUfvny5QIAYdWqVapj5d+jvn37VmpfUlIiNGnSROjZs2etn0ubNm2qvC2p7k9VP0+1tXHjRgGA4O3tLZSUlFQ4N3jwYAGA2luagiAIkyZNEgBUe9ucGife2iPSggkTJmDMmDE4duwYTp48idjYWJw8eRJ79+7F3r17MXnyZISEhEAikVR43IABAypdSyaToV+/frh27RpiY2PRpk0bnD17FgqFosolCkpLSwE8+qRWuTNnzkAikai9daGp3r17i3atcs8880ylYy1btgTw6FZV+e2vcq1atQIA3L59W/RaauP06dMAgL///lvt96L8Fm9iYiK8vLwqnKvu9bt06RI+++wzHD9+HP/88w+KiooqnL9z50696k5OTkZhYSH69u0LBweHSucHDRqE1atXIzY2ttI5dd8jExMTODs7Izs7u9Y13Lhxo04110doaCgWLFgAFxcX7NmzR3WLj6i+GKSItMTExARDhgzBkCFDADz6VNCePXswbdo0bN++HWPGjFHNRyrn7Oys9louLi4AgNzcXABAVlYWgEfzic6ePVtlDfn5+aq/5+TkoGnTprCwsND4OVVVl5ie/JQj8O98lurOlYfHhlb+vdi6dWu17R7/XpSr6vU7c+YMBg0ahLKyMvj7+2PkyJGwtbWFVCpFXFwc9u3bh+Li4nrVXf6z1KJFC7Xny4/n5ORUOmdvb6/2MU2aNIFCoahXXdqwd+9evPjii2jevDmOHTsGd3f3Sm3Kf7bKX5cnlR+v6rlT48UgRdRAZDIZJkyYgPj4eKxevRpHjx6tFKTS09PVPjYtLQ3Av2/25f9966238MUXX9Sqf3t7e2RlZeHhw4eihaknR9TKSaWP1votKytTe17dP86Gqvx78ffff6Nr1651emxVr9/q1avx8OFDHDt2rNJq5J988gn27dunUa2PK6+7/GfrSf/880+FdtoQHBxcp58Fb2/vSv/P1OSXX37BpEmT4OLigqNHj6J9+/Zq25VPkK/qQyJXrlwBAHTo0KFO/ZPxY5AiamA2NjYAAEEQKp2Ljo6udEyhUODkyZMAgO7duwN4dEtIKpXixIkTte7Xx8cH+/fvx8GDBzFmzJhq25bfPtN0dKFp06YAgFu3blU69+DBA40+0ahLMpmsytWwfXx8sGfPHpw4caLOQaoqV69ehYODg9otXdT9jNRUozqenp6wtLTE33//jZycnEojLceOHQMAtZ82FEtwcHCdPuk5ZcqUOgWpH374AVOmTEGrVq2qHIkqN2jQIHz88cc4ePAgli1bVuHc9evXcfnyZbRp06baa1DjxC1iiET2008/4ciRI1AqlZXOpaWlqW4B+fr6Vjp/9OhR7N+/v8KxTZs24dq1axg4cCDatGkDAGjevDlefvllnDt3Dh999JHawHPt2jWkpKSovp47dy4AYNGiRWrn1zx+rHwJh5s3b9b4fNWxsbFBx44d8ccffyAhIUF1XKFQYOHChQ2y3caNGzcgkUhE2TbF0dERmZmZaut+7bXXYG9vj1WrViEmJqbSeaVSWWnLmZq0bdsW9+/fx4ULFyoc//bbb3Ho0KE616iOqakpXn75ZeTl5eH999+vcO7atWv48ssvYWJigldffbVOtdfFjRs3IDz60FOt/oSEhNT62v/73/8wefJkPPXUUzh+/HiNAWjAgAHo1KkTjh8/XmELJ6VSiXfeeQcAMGvWrCpHEanx4ogUkcj+/PNPbNiwAS4uLujXrx/c3NwAACkpKThw4AAePnyIUaNGYdy4cZUe+/zzz2PMmDEYM2YMPDw8EBcXh/DwcDg4OOCrr76q0HbTpk24cuUKPvjgA+zYsQP9+vWDs7Mz7t69i8TERJw9exY//fSTqv8hQ4Zg+fLlWL16NTp16qRaRyo9PR0nT56Ej4+P6h8qT09PtGrVCjt37oSJiQnatGkDiUSCV199VRXmavL222/j9ddfR9++fTF+/HiYm5vj2LFjKC0tRbdu3fD333/X41WuWXmQfXK9IE34+/vj7NmzGDZsGHx9fWFmZoZu3brh+eefh6OjI3bv3o0xY8bAx8cH/v7+6Ny5MyQSCW7duoXTp08jKyur0mTx6ixYsACHDh1Cv379MGHCBNjZ2eHcuXM4efIkxo0bh927d9epxqqsWbMGJ06cwKZNm3D27FkMHDhQtY5UXl4eNm3apPr5MSTHjh1Tras2cOBAbNu2rVIbe3v7CmtuyWQybNu2DYMGDcK4ceMwbtw4PPXUU4iMjMS5c+fQt29fvPXWWw34LMhg6ObDgkTG6+bNm8KmTZuE0aNHCx06dBBsbGwEExMTwcXFRQgICBB27NghKBSKCo95fKXw33//XfDx8REsLS0FOzs7YezYsUJycrLavspXwO7Tp49q3R9XV1dh0KBBwvr164V79+5VesyBAweEoUOHCk2bNlWtbD569GghMjKyQruYmBhh0KBBgq2trSCRSKpc2bw6//d//yd4eXkJpqamgrOzszBjxgzh3r17Na5s/qSallOAmjWS9u7dKwAQ3nvvvWprfFxVyx/k5+cLs2bNElq1aiXIZDK1taSkpAhz5swRPDw8BDMzM8HGxkbw9PQUXnnllUrrH5Uvf/D4Gk1P+v3334Vnn31WsLa2Fuzs7ITBgwcL0dHRVb72NdWo7jUSBEHIzs4WlixZInh4eAimpqaCnZ2dIJfLhUOHDlVqW9OyGDUtwdBQHl+Xrao/VdV56dIlYdy4cYKjo6NgamoqtG/fXvjggw8qrdtFVE4iCGomahBRgwoJCcFrr72Gbdu2YerUqbouxygsXLgQX3/9NVJTU+Hk5KTrcojISHGOFBEZpejoaAQFBTFEEZFWcY4UERml8+fP67oEImoEOCJFREREpCHOkSIiIiLSEEekiIiIiDTEIEVERESkIQYpLSsqKkJycnKdFuMjIiIiw8AgpWWpqakICgqq035StXXt2jXRr0lExoXvE0TaxSBlwIqLi3VdAhHpOb5PEGkXgxQRERGRhhikiIiIiDTEIEVERESkIW4RQ0REVEcKhQKlpaW6LoNEYGJiAplMpvHjGaS0JCIiAhEREcjPz9d1KUREJKL8/Hzcvn0b3BjEOEgkErRu3RrW1tYaPZ5BSkvkcjnkcjmSk5MRFBSk63KIiEgECoUCt2/fhqWlJZo1awaJRKLrkqgeBEFAZmYmbt++jfbt22s0MsUgRUREVEulpaUQBAHNmjWDhYWFrsshETRr1gw3btxAaWkpgxQREVFDqOtIlFIpIC3pPh7mFMPC3gwuHR0glXI0Sx/Ud1SRQYqIiEiLUmLScGZ7Igru/7tVmJWDOXwmd4JbbxcdVqY9K1euxNKlS2Fubi7qdUNCQuDj44OOHTvW+bGbNm3CuXPnEBISImpNXP6AiIhIS1Ji0hAZHFshRAFAwf0iRAbHIiUmTdT+ysrKRL2eplatWlXlHrP1qTEkJARJSUkaP14bGKS0JCIiAkuXLsXGjRt1XUqDUwhKnM27ivD7f+Fs3lUoBKWuSyIianBKpYAz2xOrbXNmRyKUyvp9+k8ikWDFihXo1asXli1bhry8PAQFBaF3797o2rUrZsyYgZKSEgDAnTt3MG7cOHTp0gVdu3bF+++/DwDIyMjA2LFj0aVLFzz99NP4+uuvVddv27YtPvjgA/Tp0wdubm5YvXq16tzq1avRqVMneHt7w9vbG6mpqZg1axYAoH///vD29kZGRgamTp2KadOmwdfXF08//bSq7pycHNW1nJyccOPGDQBAYmIihg4diq5du6Jr167YsmUL/u///g/nzp3DW2+9BW9vb4SFhQEA1q1bh969e6NHjx4YNmyYam/bvLw8TJw4EZ6enujXrx/i4+Pr9TpXhbf2tKSxfmovIvsC1t76FemluapjziZ2WOI6BvKmXXVYGRFRwzodcqnSSNSTCrKK8MPsSHiPbIcugW4a9yWTyXD27FkAwIwZM9C/f39s3boVgiAgKCgIGzZswNtvv41XXnkFQ4YMwe7duwEAmZmZAIC5c+fC09MToaGhyMjIQM+ePdGtWzf4+PgAAHJycnD69Gncu3cP7dq1w2uvvQZLS0usW7cO//zzDywsLFBYWAipVIotW7bg66+/xokTJ2Bvb6+q8fz58zh58iRsbGyqfS5lZWUYNWoUVq1ahZdeegkAcO/ePTg5OeH777/HggULMHr0aADAjz/+iOTkZJw+fRoymQw7duzAG2+8gQMHDuDDDz+EmZkZkpKS8ODBA/j4+ODZZ5/V+DWuCoMUiSYi+wIWXw/Bk79bZZTmYvH1EKxzn8owRUSNRmFuSa3aFeeVouRh/W7JTZs2TfX3vXv34vTp0/jiiy8AAA8fPoRMJkN+fj5OnjyJQ4cOqdo2a9YMwKO7KOfPnwcANG/eHGPHjkVERIQqSE2aNAnAo1Ejd3d3pKSkoE+fPmjfvr0qnAUGBqJ169ZV1jh+/PgaQxQAJCcno6ioSBWiyvtVZ+/evTh79ix69uwJ4NHyFOUiIyOxfv16SCQS2NnZYdKkSbh27VqN/dcVgxSJQiEosfbWr5VCFAAIACQA1t7ai4H2T0Mm4R1lIjJ+lnamtWpnZmMCU4v6/XP8+GKSgiBgz5496NChQ4U2dVkg+slPsj0+aVwmk6GsrAwymQxnzpzBqVOnEBUVBR8fH/z000/o379/jTWWX+fx4FPVnKrqCIKAZcuWYcaMGTW21daaXwxSBuxAaTzmX/hF12UAAEqUZchRFFR5XgCQXpqDQX+vgKlUP37sXnUegMnOfroug4iMVJ+pnXHzr8xqb+9ZOZpj4gY/UZdCGD16ND799FN8/fXXaNKkCbKzs5GVlQUPDw/4+vri888/x7JlywA8urXXrFkzyOVybN26FR9//DEyMzMRGhqKX36p/t+XvLw85OXloX///ujfvz8uXbqE2NhY9O/fHzY2NsjNza1wa+9JHh4e+PPPPzF8+HCEhoaioODRvyGenp6wtLTETz/9VOnWnq2tLXJz/506Mnr0aHz++ecYN24cHBwcUFpaiosXL6J79+6Qy+XYtm0bfH19kZeXh59++gm9evWq56tbmX78i0YaeYgSZDw2F8kQ5CgKAEXN7RpCgaLuv/0QEdWWVCqBz+ROiAyOrbKNz6udRF9Pav369Vi6dCm8vb0hlUrRpEkTrF27Fh4eHtixYwfmzp2Lzp07w8TERDUX6csvv8Ts2bPRpUsXCIKA9957r8b5RLm5uRg3bhwKCgogkUjQvn17TJkyBQCwaNEiDB48GJaWljh8+HCVdc6bNw/Lly9HYGAgHB0dAQBNmjTBvn37MHfuXPznP/+BVCrFG2+8gZkzZ2LGjBlYtGgR1q9fj//85z94+eWXkZWVhYEDBwJ4NL9q2rRp6N69O95//31Mnz4dHTt2RLNmzdCvXz8UFxeL+Eo/IhG4WZBWlU8237p1Kzw9PUW99md/78JhiX58DLSmEaly9jIrjkgRNaCEhAR4eXnpugyjUVRUhJSUFLi5udV6jSS160g5msPnVeNdR8qQaPI9fZx+/ItGGgk06YK3vSbqugwAj+ZIBcR/hIzSXLXzpCQAmpvYI7zLcs6RIqJGxa23C9o848yVzY0Ug5SWREREICIiok6T+wyZTCLFEtcxWHw9BBKgQpgqf6tY4jqaIYqIGiWpVIKWXo66LoO0gP+qaYlcLseaNWswd+5cXZfSYORNu2Kd+1Q0N7GrcLy5iT2XPiAiIqPEESkSlbxpVwy0fxp/5V/HvdIHcDKxRQ9rd45EERGRUWKQItHJJFL0svHQdRlERERax2ECIiIiIg1xRIqIiEjLFIKSUx6MFIMUERGRFjXEZu4rV67E0qVLNVoHKTg4GC+++CJcXFxU18rJyUFwcLAotRk7xmEiIiItKd/MPf2JXSjKN3OPyL4gSj+rVq1Su1ddWVnNmyEHBwcjLS1NlDoaI45IERERaUFDbeY+a9YsAED//v0hk8nQsmVLuLi44OrVq8jIyEBSUhIkEgmys7NVe985OTnh3Llz2L59O+7evYuJEyfCwsICISEhAIB//vkHzz//PK5duwYXFxfs3r0bDg4OGtdozDgipSURERFYunQpNm7cqOtSGpxSKeBuQhaunbqLuwlZUCq5CxERNT5rboZWGol63OObuW9Pj9K4ny1btgAATpw4gbi4ODRv3hznz5/HgQMHkJRU/TZiH3zwAVq2bIldu3YhLi4O3t7eAIA///wTISEhSEhIQPPmzfH1119rXJ+x44iUlsjlcsjlctVee42F2j2lHMzhM5l7ShFR45JVllerdjmKAtE3UR8/fjxsbGw0fvywYcNUmwj36dMH8fHxYpVmdDgiRaJJiUlDZHBshRAFAAX3ixAZHIuUGN6DJ6LGw7FJ7YKMvcwKVrK6TxKvjrW1dYWvZTIZFAqF6mt186ke9/ikdZlMVqu5Vo0VgxSJQqkUcGZ7YrVtzuxI5G0+Imo0lj41Fs4mdqhqa2IJAGcTexzttgqTnf3q1ZeNjQ1yc6u+jejh4YE///wTABAaGoqCggLVOVtb22ofS9XjrT0DdvfMA8R9dVTXZQAAFKVKFOeVVtumIKsIP8yOhMxEP/J7lwA3dAl003UZRGSkGnIz90WLFmHw4MGwtLREy5YtK51fv3495s2bh+XLlyMwMFB12w4A5s2bh6CgIFhaWqomm1PtSQRB4BCBFpXPkdq6dSs8PT1FvfbBzadw+wR/i9BU97Ee6Dmuva7LINKqhIQEeHl56boMo1FUVISUlBS4ubnVes0m9etI2WOJ62hu5q4HNPmePo4jUgasiZkUlg5mui4DQO1GpADAzMZEb0akTC34409E2sfN3I0b/yUxYC19bCGf5qPrMgA8miO1a15UpYnmj7NyNMfEDX6QSquaMUBEZJy4mbvxYhwmUUilEvhM7lRtG59XOzFEERGRUWGQItG49XaB/4LusHKoeI/ZytEc/gu6cx0pIjIanF5sPOr7veStPRKVW28XtHnGGWlJ9/EwpxgW9mZw6ejAkSgiMgomJiaQSCTIzMxEs2bNIJHwvc2QCYKAzMxMSCQSmJiYaHQNBiktiYiIQEREBPLz83VdSoOTSiVo6eVYc0MiIgMjk8nQunVr3L59Gzdu3NB1OSQCiUSC1q1bQyaTafR4BiktaaxbxBARGTtra2u0b98epaU1f1KZ9J+JiYnGIQpgkCIiIqozmUxWr398yXiIEqT++usvnD9/HhcvXkRGRgZyc3Nhbm4Oe3t7uLu7w9vbG3369KmwkioRERGRodM4SD18+BB79uzB77//jvT0dNWsd1NTU9ja2qK4uBgpKSm4du0ajhw5giZNmuC5557DhAkT0KVLF9GeABEREZGuaBSk9u3bh23btiE7Oxvt2rXD66+/js6dO6Njx46wtLRUtRMEAbdv30ZCQgLOnj2LkydP4sSJE+jbty/mzJmjdj8gIiIiIkOhUZAKDg6GXC7HSy+9BHd39yrbSSQSuLq6wtXVFUOHDkVxcTGOHDmC77//HocPH8bUqVM1rZuIiIhI5zQKUtu3b4erq2udH2dmZoYRI0YgICAA6enpmnRNREREpDc0WtlckxD1OJlMxtt6REREZPC4RQwRERGRhhikiIiIiDQkapDKy8vDwYMHxbwkERERkd4SNUilp6djzZo1Yl6SiIiISG/V6VN7NX3S7t69e/Uqxpg05k2LiYiIGos6BakJEyZAIpFUeV4QhGrPNybctJiIiMj41SlI2djY4PXXX4e3t7fa86mpqVi5cqUIZRERERHpvzoFqQ4dOiAvLw9ubm5qzysUCtWee0RERETGrk5BavTo0SgqKqryvLOzM5YuXVrvooiIiIgMQZ2ClK+vb7XnbWxsEBAQUK+CiIiIiAwFF+QkIiIi0lC9g5Sfnx9u3bolRi1EREREBqXeQYqTy4mIiKix4q09IiIiIg0xSBERERFpiEGKiIiISEMMUkREREQaYpAiIiIi0hCDFBEREZGG6h2kJk2aBFtbWzFqISIiIjIoddoiRp2ZM2eKUQcRERGRwdE4SJWUlMDU1FTMWoxKREQEIiIikJ+fr+tSqBFQCEr8lX8d90ofwMnEFj2s3SGT8M49EZG2aRykxowZA7lcjuHDh8PT01PMmoyCXC6HXC5HcnIygoKCdF0OGbGI7AtYe+tXpJfmqo45m9hhiesYyJt21WFlRETGT+NfWUtKSrB3717MnDkTr7/+OkJDQ5GXlydmbURUg4jsC1h8PaRCiAKAjNJcLL4egojsCzqqjIiocdA4SO3btw8LFy6Ep6cnrl69ii+//BJjx47Fhx9+iPPnz4tZIxGpoRCUWHvrV6jb7bL82Npbe6EQlA1ZFhFRo6LxrT1LS0uMGjUKo0aNwo0bN3DgwAEcOXIEkZGROHr0KJo3b47AwEAMGzYMzs7OYtZMJIrt6VHYkR6t6zI0VqIsQ46ioMrzAoD00hwM+nsFTKX1/lyJzrzqPACTnf10XQYRkVqivLu2bdsWc+bMwaxZs3Dq1CkcOHAAMTEx+O677xASEoJnnnkGgYGB6NevH5o0Mdw3dDIuBYoiZDxxS8wY5SgKAIWuq9BcgaJI1yUQEVVJ1FQjk8nQv39/9O/fH/fv38ehQ4cQFhaGmJgYnD17Fra2tvjtt9/E7JJIY1YyczQ3sdN1GRqraUSqnL3MyqBHpKxk5rougYioSlp7d3VwcMBLL72E3r17Y/369YiPj8eDBw+01R1RnU129jPoW0YKQYmA+I+QUZqrdp6UBEBzE3uEd1nOpRCIiLREK0GqsLAQR44cwYEDB3D58mUIggBzc3MMHDhQG90RNUoyiRRLXMdg8fUQSIAKYUry//+7xHU0QxQRkRaJGqT++usvhIWF4cSJEyguLoYgCPDy8kJgYCAGDRoES0tLMbsjavTkTbtinfvUSutINTexxxLX0VxHiohIy+odpDIyMhAeHo7w8HCkpaVBEATY29tj5MiRCAwMRNu2bUUok4iqIm/aFQPtn+bK5kREOqBxkIqMjERYWBj++usvKJVKSKVS9OrVi5/OI9IBmUSKXjYeui6DiKjR0TjtfPjhhwCAFi1aICAgAAEBAWjevLlohRERERHpO42DlL+/PwIDA9GzZ08x6yEiIiIyGBoHqQ8++EDMOoiIiIgMjmgTmcrKyhAaGoqIiAjcvHkTxcXFOHbsGADgypUr+P333zF+/Hi4urqK1SURERGRTokSpIqLi7Fo0SJcvHgRdnZ2sLKyQlHRv9s6tGjRAmFhYbCxsUFQUJAYXRIRERHpnCifj96xYwfi4+MxY8YM7N27F4GBgRXOW1tbw9vbG2fPnhWjOyJ6glIp4G5CFq6duou7CVlQKtWtdU5ERGITZUTq6NGj6N69OyZNmgQAkEgkldq0bNkSV65cEaM7InpMSkwazmxPRMH9f0eBrRzM4TO5E9x6u+iwMiIi4yfKiFRGRgY8PT2rbWNhYYGCgpo3WCWi2kuJSUNkcGyFEAUABfeLEBkci5SYNB1VRkTUOIgSpCwsLJCTk1Ntm7t378LOzk6M7ogIj27nndmeWG2bMzsSeZuPiEiLRLm117lzZ5w6dQp5eXmwsbGpdD49PR1nzpxB//79xeiOSBTxB1IQH56i6zI0pihVojivtNo2BVlF+GF2JGQmhrtdTJcAN3QJdNN1GUREaokSpF588UUsWLAAb731FubPnw+FQgEAKCoqwqVLlxAcHAyFQoGJEyeK0R2RKEoelqHwfrGuy9C6msKWvit5WKbrEoiIqiRKkPL29saCBQvw5ZdfYu7cuarjw4YNAwBIpVIsXLiwxnlUxiQiIgIRERHIz8/XdSlUBVOLJrB0MNN1GRqrzYgUAJjZmBj0iJSpBfftJCL9JREEQbQJFDdu3MC+ffuQmJiIBw8ewMrKCp06dcKYMWPg5tY4h+aTk5MRFBSErVu3ih4kExIS4OXlJeo1yXAolQJ2zYuqNNH8cVaO5pi4wQ9SaeVP0lLjwPcJIu0S9Ve9tm3bYv78+VWeVygUkMlkYnZJ1GhJpRL4TO6EyODYKtv4vNqJIYqISItEGe8PDQ2tsY1CocCqVavE6I6I/j+33i7wX9AdVg7mFY5bOZrDf0F3riNFRKRlooxIffnll3BwcICfn5/a80qlEqtWrcLx48fF6I6IHuPW2wVtnnFGWtJ9PMwphoW9GVw6OnAkioioAYgSpLp06YLVq1fD1tYWPXr0qHCuPERFR0dj7NixYnRHRE+QSiVo6eWo6zKIiBodUW7trVmzBq6urli+fHmFbWCUSiU++ugjREVFYfTo0dXOnyIiIiIyNKIEKSsrK6xbtw7W1tZ4++23cffuXQiCgA8//BBHjx7FqFGj8NZbb4nRFREREZHeEG1xGUdHR3z++edQKpVYtGgRVqxYgWPHjmHEiBFYuHChWN0QERER6Q1RV+lzdXXF2rVrkZ2djePHj2PEiBF4++23xeyCiIiISG9oNNk8JCSk2vOdOnXC1atX4ejoWKGtRCLBlClTNOmSiIiISO9oFKS2bdtWq3b/+9//KnzNIEVERETGRKMgtWHDBrHrICIiIjI4GgUpb29vkcsgIiIiMjyGuyU8ERERkY4xSBERERFpiEGKiIiISEMMUkREREQaYpAiIiIi0hCDFBEREZGGGKSIiIiINFTnIKVUKnH9+nXcu3ev0rmysjLExcWJURcRERGR3qvTgpxpaWlYsmQJUlNTIZFI4OPjg2XLlsHOzg4A8ODBAyxYsABRUVHaqJWIiIhIr9RpRGrz5s1wcnLCzp07sXXrVhQXF2POnDkVRqcEQRC9SCIiIiJ9VKcg9ffff+ONN95AixYt0L59e3z++efo2rUr3nzzTaSnpwN4tDExERERUWNQpyBVVFQEExOTfx8slWLJkiXo1asX5s6dizt37oheIBEREZG+qlOQeuqpp5CcnFzp+KJFi+Dj44OlS5eKVhgRkT5TKgXcTcjCtVN3cTchC0olpzUQNUZ1mmzu6+uLI0eOYMiQIZXOLVy4EACwb98+cSojItJTKTFpOLM9EQX3i1THrBzM4TO5E9x6u+iwMiJqaHUakXrllVfw2WefVXl+4cKFiI6OrndRRET6KiUmDZHBsRVCFAAU3C9CZHAsUmLSdFQZEekCF+QkIqolpVLAme2J1bY5syORt/mIGpE63dojImpo8QdSEB+eousyAACKUiWK80qrbVOQVYQfZkdCZqIfv6c272EJLy9dV0FkvOodpPz8/LBjxw64urqKUQ8RUQUlD8tQeL9Y12XUSU1hqyGVFZvrugQio1bvINUYFuD87LPP8Mcff6CoqAjOzs6YMWMG+vbtq+uyiBoFU4smsHQw03UZAGo3IgUAZjYmejMi1cRMP+ogMla8tVcLEyZMwPz582FqaorExEQsXLgQO3fuVG2NQ0Ta0yXQDV0C3XRdBoBHc6R2zYuqNNH8cVaO5pi4wQ9SqX4sTpyQkKDrEoiMGn9VqYU2bdrA1NQUwKOV20tLS9Vu2kxExk0qlcBncqdq2/i82klvQhQRaZ/BjEgVFhZi586dSEhIQGJiIvLy8rBs2TIEBARUaltSUoJvv/0Whw8fRl5eHtq1a4fp06ejV69eGvf/xRdfICwsDCUlJfDx8YG7u3t9ng4RGSi33i7wX9C98jpSjubweZXrSBE1NgYTpHJzcxESEgJnZ2d4eHggNja2yraffPIJoqKiMH78eLRu3Rrh4eFYsmQJNmzYgK5du2rU/8KFCzF//nzExcXh+vXr3FOQqBFz6+2CNs84Iy3pPh7mFMPC3gwuHR04EkXUCBlMkHJ0dMSvv/4KR0dHJCUlYcaMGWrbJSQkIDIyErNnz8ZLL70EABg6dCimTp2KzZs3Y/Pmzaq2c+bMQXx8vNrrvPrqqwgKCqpwTCaToWfPnvjll1/QunVr9OnTR6RnR0SGRiqVoKWXo67LICIdM5ggZWpqCkfHmt+0oqOjIZPJMHLkSNUxMzMzBAYG4ptvvkF6ejqcnZ0BAP/97381qkWhUHCDZiIiIqr/ZPNJkybB1tZWjFpEceXKFbRu3RpWVlYVjnfq9GiC6NWrV+t0vfz8fBw5cgSFhYUoKyvDsWPHEBsbi27duolWMxERERmmeo9IzZw5U4w6RJOVlaV25Kr8WF0/bSeRSLB//36sX78egiCgVatWeP/999G+fXu17e/du4esrCzV16mpqXXqj4iIiAyHwdzaq63i4mKYmJhUOl6+fEFxcd1WSLayssKGDRtq3f63335DSEhIpeMpKSlQKBR16rsm+fn5XCOGiKrF9wkizXnVYn8lUYOUQqFAZmYm7t27h7KyMrVtvL29xeyyEjMzM5SWVl55uKSkRHVem0aOHFlh1fPU1FSsXr0abm5u8PT0FLWvhISEWn2Tiajx4vsEkXaJEqSUSiV27NiB3bt3Iy8vr9q2UVFRYnRZJUdHR2RmZlY6Xn67zcnJSav9Ozk5ab0PIiIi0g+iBKmvv/4aO3fuRNOmTREQEABHR0fIZDIxLl1n5WtMFRQUVJhwXj607eHhoZO6iIiIyPiIEqQOHToEV1dXfPPNN7C0tBTjkhrz8/PDzp078dtvv6nWkSopKUFYWBi8vLxUSx8QERER1ZcoQerhw4cYPHiw1kPUnj17kJ+fr7pN98cffyAjIwMA8MILL8Da2hpeXl4YOHAgvvnmG+Tk5KBVq1Y4ePAg0tLS8M4772i1PiJqPBSCEn/lX8e90gdwMrFFD2t3yCTcvpSosRElSLm7u1f4yL+27Nq1C2lpaaqvjx8/juPHjwMAhgwZAmtrawDAu+++C2dnZxw6dAj5+flwd3fHp59+qvWJ7o+LiIhAREQE8vPzG6xPImoYEdkXsPbWr0gvzVUdczaxwxLXMZA31WwbKiIyTBJBEIT6XuT06dP44IMPsGnTJtE/mWbokpOTERQUhK1bt/JTe0RGICL7AhZfD8GTb5zlu+ytc5+qV2GK7xNE2iXKiFSfPn2wbNkyLFmyBH379kW7du0qrSxebtiwYWJ0SUTU4BSCEmtv/VopRAGAgEdhau2tvRho/zRv8xE1EqIEqZKSEpw6dQq5ubk4cOAAgEcrgj9OEARIJBIGKSKqk+3pUdiRHq3rMgAAJcoy5CgKqjwvAEgvzcGgv1fAVKof6x0PETrCCxyRItIWUf5P37RpE44cOYJ27dphwIABOl3+gIiMS4GiCBmPzUUyBDmKAkDcjQw09rBJia5LIDJqogSpqKgoeHp64quvvkKTJvrxWxgRGQcrmTmam9jpugwANY9IlbOXWenNiJSFYKrrEoiMmmi39rp3784QRUSim+zsh8nOfrouA8CjOVIB8R8hozRX7TwpCYDmJvYI77Jcb+ZIcZ89Iu0SJfl4enri9u3bYlzKaHD5AyLjI5NIscR1DBZfD4EEqBCmymeFLnEdrTchioi0T5T/24OCghATE4NTp06JcTmjIJfLsWbNGsydO1fXpRCRiORNu2Kd+9RKtxubm9jr3dIHRKR9ooxInTt3Dt7e3nj33XfRo0ePKpc/kEgkmDJlihhdEhHpjLxpVwy0f5ormxOROEFq27Ztqr+fP38e58+fV9uOQYqIjIVMIkUvG26CTtTYiRKkNmzYIMZliIiIiAyKKEGqIfewIyIiItIXvKFPREREpCFRglR8fDw2bdqErKwstefv3buHTZs24dKlS2J0R0RERKQXRLm1t2vXLly7dg1vvvmm2vNOTk44deoUMjMzsWrVKjG61HtcR4qIiMj4iRKkkpKS0LNnz2rbdOvWDefOnROjO4Mgl8shl8uRnJyMoKAgXZdDREREWiDKrb2cnBw4OTlV28bBwQHZ2dlidEdERESkF0QJUtbW1sjIyKi2TXp6OiwsLMTojoiIiEgviBKkvLy8cPz4caSnp6s9n56ejhMnTuDpp58WozsiIiIivSBKkJowYQKKi4sxZ84cHDx4EPfu3QPw6NN64eHheOONN1BSUoKJEyeK0R0RERGRXhBtQc45c+bgq6++wpo1awA82g5GEATV3+fOncuFO4mIiMioiBKkAGD8+PHo0aMH9u3bh6SkJOTn58Pa2hqdOnXCqFGj4O7uLlZXRERERHpBtCAFAO3atcPChQvFvCQRERGR3hI1SNG/uCAnERGR8WOQ0hIuyElERGT8uGkxERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiINMUgRERERaUjUIJWXl4eDBw+KeUkiIiIivSVqkEpPT1dtEUNERERk7Oq0jlR6enq158s3KyYiIiJqDOoUpCZMmACJRFLleUEQqj3fmHBlcyIiIuNXpyBlY2OD119/Hd7e3mrPp6amYuXKlSKUZfi4sjkREZHxq1OQ6tChA/Ly8uDm5qb2vEKhgCAIohRGREREpO/qFKRGjx6NoqKiKs87Oztj6dKl9S6KiIiIyBDUKUj5+vpWe97GxgYBAQH1KoiIiIjIUHBBTiIiIiINMUgRERERaajeQcrPzw+3bt0SoxYiIiIig1LvIMVP6REREVFjxVt7RERERBpikCIiIiLSEIMUERERkYYYpIiIiIg0VKcFOan2uGkxERGR8WOQ0hJuWkxEVDWlUkBa0n08zCmGhb0ZXDo6QCqV6Losojqrd5CaNGkSbG1txaiFiIgagZSYNJzZnoiC+//u3WrlYA6fyZ3g1ttFh5UR1V2950jNnDkTdnZ2YtRCRERGLiUmDZHBsRVCFAAU3C9CZHAsUmLSdFQZkWa0OtlcEATcunUL6enp2uyGiIgMgFIp4Mz2xGrbnNmRCKWSCz2T4RBljlR0dDROnjyJefPmwcbGBgDwzz//YOnSpUhNTQXwaCuZ999/HzKZTIwuiYioFu6eeYC4r47qugwAgKJUieK80mrbFGQV4YfZkZCZ6MeHyrsEuKFLoJuuyyA9JkqQ2rdvH+7fv68KUQCwadMm3LhxAz169MCDBw8QFRWFnj174vnnnxejSyIiqoWyYiUK7xfruow6qSlsNaSSh2W6LoH0nChB6saNG3j22WdVXxcWFuL06dMYNGgQVqxYgbKyMrz++usICwtjkCIiakBNzKSwdDDTdRkAajciBQBmNiZ6MyJlasEPt1P1RPkJefDgARwcHFRfX7hwAQqFAv7+/o86adIEzzzzDI4cOSJGd0REVEstfWwhn+aj6zIAPJojtWteVKWJ5o+zcjTHxA1+XAqBDIYokd/KygoPHjxQfR0bGwupVIpu3bqpjjVp0gRFRVX/z0NERMZNKpXAZ3Knatv4vNqJIYoMiihB6qmnnsKpU6eQm5uLvLw8REREoEOHDhXmTKWlpaFp06ZidEdERAbKrbcL/Bd0h5WDeYXjVo7m8F/QnetIkcER5dbeCy+8gBUrVuCFF15QjTxNnz69QpuEhAR06NBBjO6IiMiAufV2QZtnnLmyORkFUYKUn58f3nrrLRw4cAAAMGjQIAQEBKjOx8XFoaCgAL179xajOyIiMnBSqQQtvRx1XQZRvYn2cYTRo0dj9OjRas95e3sjLCxMrK6IiIiI9IJ+fL6UiIiIyAAxSBERERFpSKMgtXjxYiQmVr9fUlUePnyI77//HqGhoRo9noiIiEhfaDRHKicnB7Nnz0a3bt0wdOhQ+Pr6wtrautrHXLp0CYcPH8bRo0dRXFyMd999V6OCDUVERAQiIiKQn5+v61KIiIhISySCIGi0zXZ4eDhCQkKQlpYGqVQKV1dXeHp6omnTprC2tkZJSQkePHiAW7duITk5GYWFhZBKpfD398f06dPh7Ows9nPRS8nJyQgKCsLWrVvh6ekp6rUTEhLg5eUl6jWJyLjwfYJIuzT+1F5AQACGDRuGM2fOICwsDHFxcTh8+HCldlKpFO7u7vD19UVgYCCcnJzqVTARERGRvqjX8gcSiQR9+vRBnz59ADzavDgzMxMPHjyAqakp7O3t4ebmVuNtPyIiIiJDJOq21m3btkXbtm3FvCQRERGR3uLyB0REREQaYpAiIiIi0hCDFBEREZGGGKSIiIiINMQgRURERKQhBikiIiIiDYkSpI4dO1ZjG4VCgc2bN4vRHREREZFeECVIrVy5Ep9++imKiorUnr99+zZmz56NXbt2idEdERERkV4QJUj17t0bYWFhmD59Oq5cuVLhXHh4uOr4K6+8IkZ3RERERHpBlCD12WefYc6cOUhLS8Ps2bOxc+dO5OXlYdWqVfj0009hY2OD4OBgTJ8+XYzuiIiIiPSCaFvETJgwAd27d8eHH36ILVu24LvvvkNJSQl8fX3x9ttvw8bGRqyuiIiIiPSCqJ/a8/DwwHPPPQdBEFBcXAxbW1tMmzaNIYqIiCpQCEqczbuK8Pt/4WzeVSgEpa5LItKIaCNS6enp+Oijj3Dx4kV4eHjAx8cHP/30E2bMmIE5c+Zg1KhRYnVFREQGLCL7Atbe+hXppbmqY84mdljiOgbypl11WBlR3Ym2/MG0adNw8eJFjBs3Dlu2bEFQUBA2bdoEBwcHrF+/Hu+99x4ePHggRndERGSgIrIvYPH1kAohCgAySnOx+HoIIrIv6KgyIs2ItvyBiYkJ1q5dizfffBMmJiYAAC8vL3z33XeQy+U4efIkXnvtNTG6IyIiA6QQlFh761cIas6VH1t7ay9v85FBEeXW3rPPPotly5ahadOmlc5ZWlpi+fLl6N27N4KDg8XojoiIaulAaTzmX/hF12UAAEqUZchRFFR5XgCQXpqDQX+vgKlUtJkn9fKq8wBMdvbTdRmkx0T5SV27dm2NbYYMGYIuXbqI0R0REdXSQ5Qg44nbaPouR1EAKHRdxSMFCvULTROVa9DI36JFi4bsjoio0bOAKZqb2Om6DAA1j0iVs5dZ6c2IlJXMXNclkJ7Tj59UIiLSikCTLnjba6KuywDwaI5UQPxHyCjNVTtPSgKguYk9wrssh0wi6uo8RFojSpAKCQmpVTuJRIIpU6aI0aXei4iIQEREBPLz83VdChGRXpBJpFjiOgaLr4dAAlQIU5L//98lrqMZosigiBKktm3bVu15iUQCQRAaVZCSy+WQy+VITk5GUFCQrsshItIL8qZdsc59aqV1pJqb2GOJ62iuI0UGR5QgtWHDBrXH8/PzcfnyZezZswfPPPMMxowZI0Z3RERkwORNu2Kg/dP4K/867pU+gJOJLXpYu3MkigySKEHK29u7ynP9+vXD4MGDMX36dPj6+orRHRERGTiZRIpeNh66LoOo3hok/ru6usLX1xc//vhjQ3RHRERE1CAabBzV3t4eN2/ebKjuiIiIiLSuQYJUSUkJYmJiYG1t3RDdERERETUIUeZIHTx4UO1xhUKBe/fuITIyEjdv3sQLL7wgRndEREREekGUIPXJJ59AIpFUOi4Ij1YJkUgk8Pf3x8yZM8XojoiIiEgviBKkli5dqva4VCqFjY0NOnToACcnJzG6IiIiItIbogSpgIAAMS5DREREZFC4+hkRERGRhjQakVqzZo3GHVZ1G5CIiIjI0GgUpMLDwzXqTCKRMEgRERGR0dAoSO3atUvsOoiIiIgMjkZBysXFRew6iIiIiAyOxpPNCwoKUFpaKmYtRERERAZF4yAVGBhYaRPihIQE7N69u95FERERERkCjYOUIAiqlcvL/fnnn9i0aVO9iyIiIiIyBFxHioiIiEhDDFJEREREGmKQIiIiItIQgxQRERGRhuq1afHhw4dx6dIl1dd37twBALz99ttq20skEqxdu7Y+XRIRERHpjXoFqTt37qjC0+NiYmLUtpdIJPXpjoiIiEivaBykuE0MERERNXYaByluE0NERESNHSebExEREWmIQYqIiIhIQwxSRERERBpikCIiIiLSEINULV28eBEDBgzA//73P12XQkRERHqCQaoWlEolNm3ahI4dO+q6FCIiItIj9VqQs7H4/fff0alTJxQUFOi6FCIiItIjBjEiVVhYiO+++w6LFy9GYGAgfH19ER4errZtSUkJNm/ejDFjxkAul2PmzJk4e/asxn3n5ubil19+wbRp0zS+BhERERkn0UakSktLceLECSQlJSE/Px9KpVJtu6VLl9b52rm5uQgJCYGzszM8PDwQGxtbZdtPPvkEUVFRGD9+PFq3bo3w8HAsWbIEGzZsQNeuXevc99atWzF+/HjY2NjU+bFERERk3EQJUmlpaVi4cCHu3r0LQRCqbCeRSDQKUo6Ojvj111/h6OiIpKQkzJgxQ227hIQEREZGYvbs2XjppZcAAEOHDsXUqVOxefNmbN68WdV2zpw5iI+PV3udV199FUFBQbh8+TKSkpLw1ltv1blmIiIiMn6iBKmNGzfizp07GDJkCAIDA9GsWTPIZDIxLg0AMDU1haOjY43toqOjIZPJMHLkSNUxMzMzBAYG4ptvvkF6ejqcnZ0BAP/9739rvF5cXBxu3bqFF154AQCQn58PmUyGu3fvYtmyZRo+GyIiIjIWogSp2NhY9OzZE++9954Yl9PYlStX0Lp1a1hZWVU43qlTJwDA1atXVUGqNkaOHAl/f3/V119++SVatGiBl19+WZyCiYiIyKCJEqSUSiXat28vxqXqJSsrS+3IVfmxe/fu1el65ubmMDc3V31tZmYGCwuLaudL3bt3D1lZWaqvU1NT69QnERERGQ5RgpSXl5deBIbi4mKYmJhUOm5qaqo6Xx/vvvtujW1+++03hISEVDqekpIChUJRr/6flJ+fj4SEBFGvSUTGhe8TRJrz8vKqsY0oQWrmzJmYO3cuoqKi4OfnJ8YlNWJmZobS0tJKx0tKSlTntW3kyJHo27ev6uvU1FSsXr0abm5u8PT0FLWvhISEWn2Tiajx4vsEkXaJEqROnz6N7t27Y+XKlejWrRs6dOhQaZ4S8OhTe1OmTBGjS7UcHR2RmZlZ6Xj5rTYnJyet9V3OycmpQfohIiIi3RMlSG3btk3197i4OMTFxaltp+0gVb7GVEFBQYUgVz6s7eHhobW+iYiIqPERJUht2LBBjMvUm5+fH3bu3InffvtNtY5USUkJwsLC4OXlVadP7BERERHVRJQg5e3tLcZlqrVnzx7k5+erbtP98ccfyMjIAAC88MILsLa2hpeXFwYOHIhvvvkGOTk5aNWqFQ4ePIi0tDS88847Wq+RiIiIGheD2bR4165dSEtLU319/PhxHD9+HAAwZMgQWFtbA3j0yTpnZ2ccOnQI+fn5cHd3x6efftogYe9xERERiIiIQH5+foP2S0RERA1HIlS3p0sdxcfHIzw8HFevXlXNU2rfvj2GDh2q0T53xiA5ORlBQUHYunUrP7VHRA2O7xNE2iXaiNTGjRuxZ88e1V57EokEgiAgOTkZBw4cwLhx4/Dmm2+K1R0RERGRzokSpMLDw7F79264urpi6tSp6N69OxwcHJCdnY3Y2Fhs27YNu3fvhoeHB4YNGyZGl0REREQ6JxXjIvv27UOzZs2wZcsWyOVyODo6QiKRwMHBAf7+/tiyZQucnJywd+9eMbojIiIi0guiBKmUlBQMGDBANeH7SdbW1hgwYABSUlLE6I6IiIhIL4gSpGpDIpE0VFdEREREDUKUOVJubm6Ijo7G66+/DktLy0rnCwsLER0dDTc3NzG6Mwhc/oCIiMj4iTIiNXLkSGRmZmL27NmIiopCTk4OACAnJwdRUVGYPXs2MjMzMWrUKDG6MwhyuRxr1qzB3LlzdV0KERERaYkoI1LDhw/HlStXEBoaipUrVwL4d/kDABAEAWPHjkVAQIAY3RERERHpBdHWkZo/fz78/PzULsg5bNgwdOvWTayuiIiIiPSCKEEqPT0d1tbW6NatW5WBqbCwEHl5edw4mIiIiIyGKHOkJk6ciF9++aXaNrt378bEiRPF6I6IiIhIL4gSpGqzXZ+IW/oRERER6YUGW0cqMzNT7dIIRERERIZK4zlSISEhFb6OjY1V206pVCIjIwORkZGNagdyriNFRERk/DQOUtu2bVP9XSKRIC4uDnFxcVW2d3JywqxZszTtzuDI5XLI5XIkJycjKChI1+UQERGRFmgcpDZs2ADg0dynBQsWICAgAMOGDavUTiqVwtbWFk899RSk0ga7k0hERESkdRoHKW9vb9Xfp06diu7du1c4RkRERGTsRFlH6rXXXhPjMkREREQGRbSVzQEgPj5e7crmQ4cORdeuXcXsioiIiEjnRAtSGzduxJ49e1TrRZXvtZecnIwDBw5g3LhxePPNN8XqjoiIiEjnRAlS4eHh2L17N1xdXVXzpRwcHJCdnY3Y2Fhs27YNu3fvhoeHh9oJ6URERESGSJSP0e3btw/NmjXDli1bIJfL4ejoCIlEAgcHB/j7+2PLli1wcnLC3r17xeiOiIiISC+IMiKVkpKCESNGwNraWu15a2trDBgwAPv37xejO4PABTmJiIiMn6iTzasjkUgaqiu9wAU5iYiIjJ8ot/bc3NwQHR2NwsJCtecLCwsRHR0NNzc3MbojIiIi0guiBKmRI0ciMzMTs2fPRlRUFHJycgAAOTk5iIqKwuzZs5GZmYlRo0aJ0R0RERGRXhDl1t7w4cNx5coVhIaGYuXKlQD+Xf4AeLSNzNixYxEQECBGd0RERER6QbQ5UvPnz4efn5/aBTmHDRuGbt26idUVERERkV4QdbJ5t27dGJiIiIio0RBljhQRERFRY8QgRURERKQh0W7tlZaW4sSJE0hKSkJ+fj6USqXadkuXLhWrSyIiIiKdEiVIpaWlYeHChbh7967qk3rqSCQSBikiIiIyGqIEqY0bN+LOnTsYMmQIAgMD0axZM8hkMjEubbC4RQwREZHxEyVIxcbGomfPnnjvvffEuJxR4BYxRERExk+UyeZKpRLt27cX41JEREREBkOUIOXl5YXU1FQxLkVERERkMEQJUjNnzsRff/2FqKgoMS5HREREZBA0miMVEhJS6Vj37t2xcuVKdOvWDR06dICVlVWlNhKJBFOmTNGkSyIiIiK9o1GQ2rZtW5Xn4uLiEBcXp/YcgxQREREZE42C1IYNG8Sug4iIiMjgaBSkvL29RS6DiIiIyPDUax2pixcvYuvWrUhKSoJEIoGXlxemT58OLy8vseojIiIi0lsaB6lr165hwYIFKC0tVR07f/48Ll68iK+//hpubm6iFEhERESkrzRe/uCHH35AaWkpXn31Vezduxd79+7FlClTUFxcjB9//FHMGomIiIj0ksYjUhcuXECXLl0wffp01bFp06YhNja2yk/tERERERkTjYNUdnY2/P39Kx338vJCYmJivYoyBty0mIiIyPhpHKTKyspgYWFR6bi5uTnKysrqVZQx4KbFRERExk+ULWKIiIiIGqN6LX9w+PBhXLp0qcKxO3fuAADefvvtSu0lEgnWrl1bny6JiIiI9Ea9gtSdO3dUwelJMTExlY5JJJL6dEdERESkVzQOUrt27RKzDiIiIiKDo3GQcnFxEbMOIiIi0iKlUkBa0n08zCmGhb0ZXDo6QCrlnaL6qtetPSIiItJ/KTFpOLM9EQX3i1THrBzM4TO5E9x6c2CkPvipPSIiIiOWEpOGyODYCiEKAAruFyEyOBYpMWk6qsw4MEgREREZKaVSwJnt1S+SfWZHIpRKoYEqMj68tUdERFSF+AMpiA9P0XUZGlOUKlGcV1ptm4KsIvwwOxIyE8McW+kS4IYugW46659BioiIqAolD8tQeL9Y12VoXU1hS5+VPNTtbioMUkRERFUwtWgCSwczXZehsdqMSAGAmY2JwY5ImVroNsowSBEREVWhS6BubxvVl1IpYNe8qEoTzR9n5WiOiRv8uBSChgwzfhIREVGNpFIJfCZ3qraNz6udGKLqgUGKiIjIiLn1doH/gu6wcjCvcNzK0Rz+C7pzHal64q09LYmIiEBERATy8/N1XQoRETVybr1d0OYZZ65srgUMUloil8shl8uRnJyMoKAgXZdDRESNnFQqQUsvR12XYXR4a4+IiIhIQwxSRERERBpikCIiIiLSEIMUERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiINMUgRERERaYgLchIRETUCCkGJv/Kv417pAziZ2KKHtTtkEo6n1BeDFBERkZGLyL6Atbd+RXppruqYs4kdlriOgbxpVx1WZvgYRYmIiIxYRPYFLL4eUiFEAUBGaS4WXw9BRPYFHVVmHBikiIiIjJRCUGLtrV8hqDlXfmztrb1QCMqGLMuo8NYeERFRFbanR2FHerSuy9BYibIMOYqCKs8LANJLczDo7xUwlRpmJHjVeQAmO/vprH/DfNWIiIgaQIGiCBlP3BIzRjmKAkCh6yo0U6Ao0mn/DFJERERVsJKZo7mJna7L0FhNI1Ll7GVWBjsiZSUz12n/hvmqERERNYDJzn46vW1UXwpBiYD4j5BRmqt2npQEQHMTe4R3Wc6lEDTEV42IiMhIySRSLHEdA+BRaHpc+ddLXEczRNUDXzkiIiIjJm/aFevcp1a6RdncxB7r3KdyHal64q09IiIiIydv2hUD7Z/myuZawCBFRETUCMgkUvSy8dB1GUaHUZSIiIhIQwxSRERERBrirT0tiYiIQEREBPLz83VdChEREWkJg5SWyOVyyOVyJCcnIygoSNflEBERkRbw1h4RERGRhhikiIiIiDTEIEVERESkIQYpIiIiIg0xSBERERFpiJ/a07Li4mIAQGpqqujXvnnzJmQymejXJSLjwfcJovpp06YNzM3NqzzPIKVlaWlpAIDVq1fruBIiIiKqq61bt8LT07PK8xJBEIQGrKfRycnJQUxMDFq0aAFTU9Nq227cuBFz586t1XVTU1OxevVqLF++HG3atBGj1EanLq+3vtGH2huqBm30I9Y163MdTR/L94mGpQ//r2lKH2pviBq0/R7BESkds7e3x5AhQ2rV1trautrUq06bNm3q/Bh6RJPXW1/oQ+0NVYM2+hHrmvW5jqaP5ftEw9KH/9c0pQ+1N0QNun6P4GRzPSKXy3VdQqNiyK+3PtTeUDVoox+xrlmf62j6WH343jcmhvx660PtDVGDrt8jeGvPQJVvPVPTvVsiarz4PkGkfRyRMlCOjo6YOnUqHB0ddV0KEekpvk8QaR9HpIiIiIg0xBEpIiIiIg0xSBERERFpiMsfGLGSkhJ88cUXOHfuHPLz89G2bVu8+eabePrpp3VdGhHpic8++wx//PEHioqK4OzsjBkzZqBv3766LovIYHCOlBF7+PAhdu3ahYCAADRr1gzHjh1DcHAwdu3aBUtLS12XR0R6IDU1VbVgcGJiIhYuXIidO3fCzs5O16URGQTe2jNiFhYWmDp1KpydnSGVSuHv748mTZrg1q1bui6NiPREmzZtVLsuSCQSlJaW4t69ezquishw8NaeHiksLMTOnTuRkJCAxMRE5OXlYdmyZQgICKjUtqSkBN9++y0OHz6MvLw8tGvXDtOnT0evXr2qvP6tW7eQl5eHVq1aafNpEJGWaOs94osvvkBYWBhKSkrg4+MDd3f3hng6REaBI1J6JDc3FyEhIUhNTYWHh0e1bT/55BP8/PPPGDx4MObNmwepVIolS5bgwoULatsXFxdj9erVePnll2Ftba2N8olIy7T1HrFw4UIcOnQI69evR69evSCRSLT1FIiMDoOUHnF0dMSvv/6KX375BbNnz66yXUJCAiIjIzFjxgy88cYbGDlyJIKDg+Hi4oLNmzdXal9WVoYPPvgArVq1wtSpU7X4DIhIm7T1HgEAMpkMPXv2xPnz53H69GltPQUio8MgpUdMTU1rtQJxdHQ0ZDIZRo4cqTpmZmaGwMBAXLp0Cenp6arjSqUSq1evhkQiwbvvvsvfNIkMmDbeI56kUChw584dUeolagwYpAzQlStX0Lp1a1hZWVU43qlTJwDA1atXVcfWrVuHrKwsrFq1Ck2acEocUWNQ2/eI/Px8HDlyBIWFhSgrK8OxY8cQGxuLbt26NXjNRIaK/7IaoKysLLW/lZYfK//ETVpaGvbv3w9TU9MKv5muXbuWb5RERqy27xESiQT79+/H+vXrIQgCWrVqhffffx/t27dv0HqJDBmDlAEqLi6GiYlJpePlH2EuLi4GALi4uOD48eMNWhsR6V5t3yOsrKywYcOGBq2NyNjw1p4BMjMzQ2lpaaXjJSUlqvNE1HjxPYKo4TBIGSBHR0dkZWVVOl5+zMnJqaFLIiI9wvcIoobDIGWAPDw8cPv2bRQUFFQ4npCQoDpPRI0X3yOIGg6DlAHy8/ODQqHAb7/9pjpWUlKCsLAweHl5wdnZWYfVEZGu8T2CqOFwsrme2bNnD/Lz81VD8H/88QcyMjIAAC+88AKsra3h5eWFgQMH4ptvvkFOTg5atWqFgwcPIi0tDe+8844uyyciLeN7BJF+kQiCIOi6CPrXhAkTkJaWpvbcrl270KJFCwCPPnVTvo9Wfn4+3N3dMX36dPTu3bshyyWiBsb3CCL9wiBFREREpCHOkSIiIiLSEIMUERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiINMUgRERERaYhBioiIiEhDDFJEREREGmKQIiIiItIQgxQRkY78/PPPGDRoEP755x/VsfDwcPj6+iI8PFyHlf1r//798PPzw7Vr13RdCpFeYpAiIlH8888/8PX1rfbPhAkTdF2m3sjLy8P27dsxfPhw1f542hITEwNfX18sWrSoxrYffvghfH19ceTIEQDAsGHD4OzsjM2bN2u1RiJD1UTXBRCRcWnVqhUGDx6s9py1tXUDV6O/fv75Zzx48AAvvfSS1vt65pln4OzsjPPnzyM9PR3Ozs5q2+Xn5+PEiROwtraGr68vAKBJkyaYMGECNmzYgPj4eHTp0kXr9RIZEgYpIhJVq1atMG3aNF2XodfKysqwf/9+dOnSBa1atdJ6f1KpFAEBAQgJCcHBgwcxZcoUte0iIiJQXFyM4cOHw8zMTHXc398fmzZtwr59+xikiJ7AW3tEpDO+vr6YN28e7t+/j48//hjPP/885HI5Zs2ahdjYWLWPKSwsxHfffYfJkydDLpdj+PDhWLRoES5cuFCp7bx58+Dr64vi4mJs3boVL774IgYOHIjvvvtO1SY6OhpBQUGQy+UYNWoU1q5di7y8PEyYMKHCrciPPvoIvr6+SEhIUFvXt99+C19fX0RERNT4vGNiYpCVlQU/P78a25bLyMjAlClTIJfLERUVpTqenZ2NjRs34qWXXoK/vz+ef/55LF++HNevX6/w+OHDh0MikSA8PByCIKjtIywsDAAQGBhY4bi9vT26d++OqKgoFBYW1rpmosaAQYqIdCo/Px9z5szBjRs3MGTIEPj6+iI5ORmLFy+uFAYePHiA2bNnIyQkBDY2Nhg1ahR8fX1x+fJlzJ8/HydOnFDbx/vvv4+DBw+ie/fuGDdunGpO0oEDB/D+++/j9u3bGDp0KIYNG4ZLly5h4cKFKCsrq3CNkSNHqh7zJIVCgbCwMNjZ2aluiVXn/PnzAIDOnTvX/AIBuHHjBt544w1kZGTgs88+UwWwO3fuYPr06fjll1/QsmVLjB07Fj4+PoiJicHs2bMrhD4XFxf07NkTd+/eVRtSr1+/jqSkJLRv3x4dOnSodL5z584oKSnBxYsXa1UzUWPBW3tEJKo7d+5UGPF5XOfOnfHss89WOHb16lWMHj0aCxYsgFT66He7Hj16YO3atQgNDcXixYtVbYODg5GSkoIlS5ZgxIgRquPZ2dkICgrCZ599ht69e1e4LQUAWVlZ2LZtG2xtbVXH8vLy8OWXX8LCwgLffPMNXF1dAQBBQUFYvHgxkpOT4eLiomrfrVs3tG3bFpGRkXjzzTdhYWGhOhcTE4PMzEyMHz8epqamNb5G8fHxkEql8PDwqLHtpUuX8M4776BJkybYuHFjhcd8/PHHuH//PtatW4fevXurjk+ePBlBQUFYu3YtQkJCVMcDAwNx7tw5hIWFoUePHhX6qWo0qpynpycA4OLFixX6ImrsOCJFRKK6c+cOQkJC1P75888/K7W3sLDArFmzVCEKePRJMZlMhqSkJNWxnJwcHDt2DD169KgQogCgadOmeOmll5CTk6Ma7Xnca6+9ViFEAcDJkyfx8OFDDB8+XBWigEeTq6dPn672uY0cORKFhYWIjIyscHz//v0AgOeff76ql6WCzMxMWFtb1xi6Tp8+jbfeegs2Njb46quvKoSoy5cv4+LFixg6dGilYOPq6ooRI0bg+vXrFUb1+vfvDzs7O0RHR6OgoEB1vKysDIcPH4apqWmVHxRwcHAA8OgWIxH9iyNSRCSq3r17Y926dbVu37p1a1haWlY41qRJEzg4OCA/P191LCkpCQqFAqWlpWpHvG7fvg0ASE1NxXPPPVfhXKdOnSq1L18XqWvXrpXOeXl5QSaTVTo+dOhQfP3119i/f78qzN2/fx+nTp3C008/jbZt29bwbB958OABmjVrVm2bY8eO4ezZs2jXrh0+++wzNG3atML58tt22dnZal+Pmzdvqv7r7u4OAKqgtHv3bkRERGDUqFEAgD/++AM5OTmQy+WwsbFRW0/58dzc3Fo9R6LGgkGKiHTKyspK7XGZTAalUqn6+sGDBwAe3RaLj4+v8npFRUWVjpWPpjyufETmyYACPPqUm52dXaXjNjY2GDhwIA4ePIjr16/D3d0d4eHhUCgUtR6NAgAzMzOUlJRU2+bSpUtQKBTo2rWr2hrLX4/Tp0/j9OnTVV7n4cOHFb4ODAzE7t27ERYWpgpSNd3WA6Cq19zcvNq6iRobBikiMgjlgWvixImYM2dOnR4rkUiqvF52dnalc0qlErm5uWpHjUaNGoWDBw/i999/x/z583HgwAFYWVlh4MCBta7Hzs4OmZmZ1baZMWMGTp48id27d0Mmk1V6zuX1z58/Hy+88EKt+27Xrh06duyIxMREpKSkwMbGBjExMWjRokWleVOPKw9u9vb2te6LqDHgHCkiMggdO3aERCLBpUuXRLleu3btAEDt6FZiYiIUCoXax3Xu3Bnt2rXDkSNHEBMTg9u3b2Pw4MF1Gqlxd3dHSUkJ0tPTq2xjamqKjz/+GH369MGuXbuwadOmCufLb1dq8nqUjzwdOHAAhw4dgkKhUC2PUJXyW4XltwmJ6BEGKSIyCI6Ojhg4cCAuXryIn376Se1aSAkJCWpv7anTr18/WFhY4MCBA7hz547qeFlZGb799ttqHzty5Eg8ePAAa9asAYBKk99r4u3traq3Oqampli9ejWee+45/Pzzz9i4caPqnJeXF7y8vBAZGVlp8jvwaFQtLi5O7XXlcjnMzc1x+PBhhIWFQSqVYtiwYdXWkpiYWKF2InqEt/aISFTVLX8AAC+//HKl5Qlqa+HChbh16xY2b96MQ4cOoXPnzrC2tkZmZiaSkpJw+/Zt/Prrr7UaHbKxscGbb76Jzz77DEFBQRg0aBCsrKxw5swZmJqawsnJqcoRmiFDhmDLli24d+8ePD091a67VJ1+/frhv//9L86dO1fjLUETExN89NFH+OCDD/DLL79AEATMmzcPAPDBBx9gwYIFWLVqFXbv3o327dvDzMwMGRkZuHjxInJzc9UuEGplZYUBAwbg0KFDyMnJwbPPPlvltjEAIAgCzp8/jzZt2lT4hCMRMUgRkcjKlz+oyvjx4zUOUra2tvjqq68QGhqKo0ePIiIiAkqlEg4ODvDw8MCUKVPUThKvyvPPPw8bGxvs2LEDBw8ehJWVFfr27YtZs2Zh/PjxVW7fYmVlhf79++Pw4cN1Ho0CgBYtWqBXr16IiorC/Pnza1wGoTxMrVixArt374YgCJg/fz5atmyJb7/9Frt27cKJEycQHh4OqVQKR0dHdOvWrdqV0wMDA3Ho0CEAj1Y9r87ff/+N9PR0zJ07t87PlcjYSYSq9gogImqkbt++jUmTJmHgwIFYtWqV2jZTpkxBWloaQkNDq/zkYXXOnz+Pt956C8uXL8eQIUPqW7JWffTRR/jzzz/x008/Vbk8AlFjxTlSRNRo5eXlVVqGoLi4WDWxu3///mofd+bMGaSkpEAul2sUogCgZ8+eePbZZ7F9+/YKyzzom1u3buHo0aOYPHkyQxSRGry1R0SNVlxcHD799FP06tULzZs3R25uLv766y+kpaWhR48eGDRoUIX2e/fuRUZGBvbv3w9TU1O8/PLL9ep/3rx5OHLkCDIzM6udo6RLGRkZmDp1KsaMGaPrUoj0Em/tEVGjdevWLXz77be4ePEicnJyAACtWrXCoEGD8OKLL1aayzVhwgRkZmbC1dUVs2bNqrSCOhE1PgxSRERERBriHCkiIiIiDTFIEREREWmIQYqIiIhIQwxSRERERBpikCIiIiLSEIMUERERkYYYpIiIiIg0xCBFREREpCEGKSIiIiIN/T9/KLALnYCymwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "iteration = 19\n", + "\n", + "result = all_results[iteration]\n", + "\n", + "model_map = result['model_map']\n", + "\n", + "differential_flux = get_differential_flux(model_map)\n", + "\n", + "energy_band = model_map.axes['Ei'].centers\n", + "\n", + "err_energy = model_map.axes['Ei'].bounds.T - model_map.axes['Ei'].centers\n", + "err_energy[0,:] *= -1\n", + "\n", + "differential_flux_truth = [ integrated_flux / width for integrated_flux, width in zip(integrated_flux_each_band_truth, model_map.axes['Ei'].widths)]\n", + " \n", + "plt.errorbar(energy_band, differential_flux, xerr=err_energy, fmt='o', label = 'reconstructed')\n", + "plt.errorbar(energy_band, [_.value for _ in differential_flux_truth], xerr=err_energy, fmt='o', label = 'truth')\n", + "plt.xscale(\"log\")\n", + "plt.yscale(\"log\")\n", + "\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(r\"Photon Flux (s$^{-1}$ cm$^{-2}$ keV$^{-1}$)\")\n", + "plt.title(f\"Spectrum, Iteration = {result['iteration']}\")\n", + "plt.grid()\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "be10a7cd", + "metadata": {}, + "source": [ + "## Find the location with the maximum flux\n", + "As an example, here it calculate the location of the maximum flux at the 20th iteration's map at the highest energy bin " + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "ce7a856e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The source position is around (l ,b) = (50.62499999999999 deg., -19.47122063449069 deg.) in galactic\n", + "The source position is around (ra, dec) = (308.30194136772735 deg., 5.913074059175163 deg.) in icrs\n" + ] + } + ], + "source": [ + "idx_iteration = 19\n", + "idx_energy = 4\n", + "\n", + "argmax = np.argmax(all_results[idx_iteration][\"model_map\"].contents[:,idx_energy:idx_energy+1])\n", + "nside = all_results[idx_iteration][\"model_map\"].axes[\"lb\"].nside\n", + "coordsys = all_results[idx_iteration][\"model_map\"].axes[\"lb\"].coordsys\n", + "\n", + "theta, phi = hp.pix2ang(nside, argmax)\n", + "\n", + "l, b = phi * 180 / np.pi, 90 - theta * 180 / np.pi\n", + "\n", + "c = SkyCoord(l, b, unit=\"deg\", frame = coordsys)\n", + "\n", + "print(f\"The source position is around (l ,b) = ({c.galactic.l.deg} deg., {c.galactic.b.deg} deg.) in galactic\")\n", + "print(f\"The source position is around (ra, dec) = ({c.icrs.ra.deg} deg., {c.icrs.dec.deg} deg.) in icrs\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c517885b", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/index.html b/tutorials/index.html new file mode 100644 index 00000000..a51aef88 --- /dev/null +++ b/tutorials/index.html @@ -0,0 +1,240 @@ + + + + + + + Tutorials — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Tutorials

+

This is a series of tutorials explaining step by step the various components of the cosipy library and how to use it. Although they are rendered as a webpage here, these are interactive Python notebooks (ipynb) that you can execute and modify, distributed as part of the cosipy repository. You can download them using the links below, or by cloning the whole repository running git clone git@github.com:cositools/cosipy.git.

+

If you are interested instead of the description of each class and method, please see our API section.

+

See also COSI’s second data challenge for the scientific description of the simulated data used in the tutorials, as well as an explanation of the statistical tools used by cosipy.

+

List of tutorials and contents, as a link to the corresponding Python notebook in the repository:

+
    +
  1. Data format and handling (ipynb)

  2. +
+
+
    +
  • Data format, binned and unbinned

  • +
  • Binning the data in both local and galactic coordinates

  • +
  • Combining files.

  • +
  • Inspecting and plotting the data

  • +
+
+
    +
  1. Spacecraft orientation and location (ipynb)

  2. +
+
+
    +
  • SC file format and manipulation it —e.g. get a time range, rebin it.

  • +
  • The dwell time map and how to obtain it

  • +
  • Generate point source response and export to the format that can be read by XSPEC

  • +
  • The scatt map and how to obtain it

  • +
+
+
    +
  1. Detector response and signal expectation (ipynb)

  2. +
+
+
    +
  • Explanation of the detector response format and meaning

  • +
  • Visualizing the response

  • +
  • Convolving the detector response with a point source model (location + spectrum) + spacecraft file to obtain the expected signal counts. Both in SC and galactic coordinates.

  • +
+
+
    +
  1. TS Map: localizing a GRB (ipynb)

  2. +
+
+
    +
  • TS calculation

  • +
  • Meaning of the TS map and how to compute confidence contours

  • +
  • Computing a TS map, getting the best location and estimating the error

  • +
+
+
    +
  1. Fitting the spectrum of a GRB (ipynb)

  2. +
+
+
    +
  • Introduction to 3ML and astromodels

  • +
  • Likelihood analysis.

  • +
  • Mechanics of background estimation.

  • +
  • Fitting a simple power law, assuming you know the time of the GRB

  • +
  • Plotting the result

  • +
  • Comparing the result with the data

  • +
+
+
    +
  1. Fitting the spectrum of the Crab (ipynb)

  2. +
+
+
    +
  • Analysing a continuous source transiting in the sky.

  • +
+
+
    +
  1. Extended source model fitting (ipynb)

  2. +
+
+
    +
  • Obtaining the extended source response as a convolution of multiple point sources

  • +
  • Pre-computing a response in galactic coordinates for all-sky

  • +
  • Fitting an extended source

  • +
+
+
    +
  1. Image deconvolution (ipynb)

  2. +
+
+
    +
  • Explain the RL algorithm. Reference the previous example. Explain the difference with a TS map.

  • +
  • Scatt binning and its advantages/disadvantages

  • +
  • Fitting the 511 diffuse emission.

  • +
+
+
    +
  1. TODO: Source injector

  2. +
+
+
    +
  • Nice to have: allow theorist to test the sensitivity of their models

  • +
+
+
+

Warning

+

Under construction. Some of the explanations described above might be missing. However, the notebooks are fully functional. If you have a question not yet covered by the tutorials, please discuss issue so we can prioritize it.

+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/other_examples.html b/tutorials/other_examples.html new file mode 100644 index 00000000..9ebbd1d3 --- /dev/null +++ b/tutorials/other_examples.html @@ -0,0 +1,125 @@ + + + + + + + Other examples — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Other examples

+
+

Warning

+

Under construction.

+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/response/DetectorResponse.html b/tutorials/response/DetectorResponse.html new file mode 100644 index 00000000..9c6a6849 --- /dev/null +++ b/tutorials/response/DetectorResponse.html @@ -0,0 +1,798 @@ + + + + + + + Full detector response — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Full detector response

+

The detector response provides us with the the following information: - The effective area at given energy for given direction. This allows us to convert from counts to physical quantities like flux - The expected distribution of measured energy and other reconstructed quantities. This allows us to account for all sorts of detector effects when we do our analysis.

+

This tutorial will show you how to handle detector response and extrat useful information from it.

+
+

Dependencies

+
+
[1]:
+
+
+
%%capture
+import numpy as np
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.io import fits
+from astropy.time import Time
+
+import matplotlib.pyplot as plt
+import matplotlib.pyplot as ply
+
+from mhealpy import HealpixMap, HealpixBase
+import pandas as pd
+from pathlib import Path
+
+from scoords import Attitude, SpacecraftFrame
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy import test_data
+from cosipy.util import fetch_wasabi_file
+from histpy import Histogram
+import gc
+
+from threeML import Model, Powerlaw
+
+from cosipy.response import FullDetectorResponse
+
+
+
+
+
+

File downloads

+

You can skip this step if you already downloaded the files. Make sure that paths point to the right files

+
+
[2]:
+
+
+
data_dir = Path("") # Current directory by default. Modify if you can want a different path
+
+ori_path = data_dir/"20280301_3_month.ori"
+response_path = data_dir/"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5"
+
+# download orientation file ~684.38 MB
+if not ori_path.exists():
+    fetch_wasabi_file("COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori", ori_path)
+
+# download response file ~839.62 MB
+if not response_path.exists():
+
+    response_path_zip = str(response_path) + '.zip'
+    fetch_wasabi_file("COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip",response_path_zip)
+
+    # unzip the response file
+    shutil.unpack_archive(response_path_zip)
+
+    # delete the zipped response to save space
+    os.remove(response_path_zip)
+
+
+
+
+
+

Opening a full detector response

+

The response of the instrument in encoded in a series of matrices cointained in a file. you can open the file like this:

+
+
[3]:
+
+
+
response = FullDetectorResponse.open(response_path)
+
+print(response.filename)
+
+response.close()
+
+
+
+
+
+
+
+
+SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5
+
+
+

Or if you don’t want to worry about closing the file, use a context manager statement:

+
+
[4]:
+
+
+
with FullDetectorResponse.open(response_path) as response:
+
+    print(repr(response))
+
+
+
+
+
+
+
+
+FILENAME: '/Users/imartin5/software/cosipy/docs/tutorials/response/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'
+AXES:
+  NuLambda:
+    DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+  Ei:
+    DESCRIPTION: 'Initial simulated energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Em:
+    DESCRIPTION: 'Measured energy'
+    TYPE: 'log'
+    UNIT: 'keV'
+    NBINS: 10
+    EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]
+  Phi:
+    DESCRIPTION: 'Compton angle'
+    TYPE: 'linear'
+    UNIT: 'deg'
+    NBINS: 36
+    EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]
+  PsiChi:
+    DESCRIPTION: 'Location in the Compton Data Space'
+    TYPE: 'healpix'
+    NPIX: 768
+    NSIDE: 8
+    SCHEME: 'RING'
+
+
+
+

Although opening a detector response does not load the matrices, it loads all the header information above. This allows us to pass it around for various analysis at a very low cost.

+
+
+

Detector response matrix

+

The full –i.e. all-sky– detector response is encoded in a HEALPix grid. For each pixel there is a multidimensional matrix describing the response of the instrument for that particular direction in the spacefraft coordinates. For this response has the following grid:

+
+
[5]:
+
+
+
with FullDetectorResponse.open(response_path) as response:
+
+    print(f"NSIDE = {response.nside}")
+    print(f"SCHEME = {response.scheme}")
+    print(f"NPIX = {response.npix}")
+    print(f"Pixel size = {np.sqrt(response.pixarea()).to(u.deg):.2f}")
+
+
+
+
+
+
+
+
+NSIDE = 8
+SCHEME = RING
+NPIX = 768
+Pixel size = 7.33 deg
+
+
+

To retrieve the detector response matrix for a given pixel simply use the [] operator

+
+
[6]:
+
+
+
with FullDetectorResponse.open(response_path) as response:
+
+    print(f"Pixel 0 centered at {response.pix2skycoord(0)}")
+    drm = response[0]
+
+
+
+
+
+
+
+
+Pixel 0 centered at <SkyCoord (SpacecraftFrame: attitude=None, obstime=None, location=None): (lon, lat) in deg
+    (45., 84.14973294)>
+
+
+

Or better, get the interpolated matrix for a given direction. In this case, for the on-axis response:

+
+
[7]:
+
+
+
with FullDetectorResponse.open(response_path) as response:
+
+    drm = response.get_interp_response(SkyCoord(lon = 0*u.deg, lat = 0*u.deg, frame = SpacecraftFrame()))
+
+
+
+

The matrix has multiple dimensions, including real photon initial energy, the measured energy, the Compton data space, and possibly other:

+
+
[8]:
+
+
+
drm.axes.labels
+
+
+
+
+
[8]:
+
+
+
+
+array(['Ei', 'Em', 'Phi', 'PsiChi'], dtype='<U6')
+
+
+

However, one of the most common operation is to get the effective area and the energy dispersion matrix. This is encoded in a reduced detector response, which is the projection of the full matrix into the initial and measured energy axes:

+
+
[9]:
+
+
+
drm.get_spectral_response().plot();
+
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_23_0.png +
+
+

You can further project it into the initial energy to get the effective area:

+
+
[10]:
+
+
+
ax,plot = drm.get_effective_area().plot();
+
+ax.set_ylabel(f'Aeff [{drm.unit}]');
+
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_25_0.png +
+
+

Get the interpolated effective area

+
+
[11]:
+
+
+
drm.get_effective_area(511*u.keV)
+
+
+
+
+
[11]:
+
+
+
+
+$6.3406481 \; \mathrm{cm^{2}}$
+
+

Or the energy dispersion matrix

+
+
[12]:
+
+
+
drm.get_dispersion_matrix().plot();
+
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_29_0.png +
+
+
+
+

Point source response and expected counts

+

Once we have the response, the next step is usually to get the expected counts for a specific source. However, it is not trivial for the case of a spacecraft because the response we have here is the detector response. This response records the detector effects to given points viewed from the reference frame attached to the spacecraft (SC).

+

A source with a fixed position on the sky is moving from the perspective of the spacecraft (detector). Therefore, we need to convert the coordinate of a source to the reference frame, which results in a moving point viewed the spacecraft. By convolving the trajectory of the source in the spacecraft frame with the detector response, we will get the so-called point source response.

+

See the spacecraft file tutorial for a discussion of the SC attitude history, transformations to/from galactic coordinates, and the dwell time map.

+
+
[13]:
+
+
+
# read the full oritation
+ori = SpacecraftFile.parse_from_file(ori_path)
+
+# define the target coordinates (Crab)
+target_coord = SkyCoord(184.5551, -05.7877, unit = "deg", frame = "galactic")
+
+# get the target movement in the reference frame attached to the detector
+target_in_sc_frame = ori.get_target_in_sc_frame(target_name = "Crab", target_coord = target_coord)
+
+# Get the dwell time map
+dwell_time_map = ori.get_dwell_map(response = response_path, src_path = target_in_sc_frame)
+
+
+
+
+
+
+
+
+Now converting to the Spacecraft frame...
+Conversion completed!
+
+
+

We can now convolve the exposure map with the full detector response, and get a PointSourceResponse

+
+
[14]:
+
+
+
with FullDetectorResponse.open(response_path) as response:
+    psr = response.get_point_source_response(exposure_map = dwell_time_map, coord = target_coord)
+
+
+
+

Note that a PointSourceResponse only depends on the path of the source, not on the spectrum of the source. It has units of area*time

+
+
[15]:
+
+
+
psr.unit
+
+
+
+
+
[15]:
+
+
+
+
+$\mathrm{cm^{2}\,s}$
+
+

Finally, we convolve a spectrum to get the spected excess for each measured energy bin:

+
+
[16]:
+
+
+
index = -2.2
+K = 10**-3 / u.cm / u.cm / u.s / u.keV
+piv = 100 * u.keV
+
+spectrum = Powerlaw()
+spectrum.index.value = index
+spectrum.K.value = K.value
+spectrum.piv.value = piv.value
+spectrum.K.unit = K.unit
+spectrum.piv.unit = piv.unit
+
+expectation = psr.get_expectation(spectrum)
+
+
+
+
+
[17]:
+
+
+
ax, plot = expectation.project('Em').plot()
+
+ax.set_ylabel('Expected counts')
+
+
+
+
+
[17]:
+
+
+
+
+Text(0, 0.5, 'Expected counts')
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_39_1.png +
+
+

Try changing the spectrum and se how the expected excess changes.

+
+
[18]:
+
+
+
spectrum.index.value = -1
+
+expectation = psr.get_expectation(spectrum)
+
+ax, plot = expectation.project('Em').plot()
+
+ax.set_ylabel('Expected counts')
+
+
+
+
+
[18]:
+
+
+
+
+Text(0, 0.5, 'Expected counts')
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_41_1.png +
+
+
+
+

Point source response in inertial coordinates

+

In the previous example we obtained the response for a point source as seen in the reference frame attached to the spacecraft (SC) frame. As the spacecraft rotates, a fixed source in the sky is seen by the detector from multiple direction, so binnind the data on the spacecraft coordinate, without binning it simultenously in time, can wash out the signal. As shown in this section, we can instead rotate the response and convolve it the attitude history of the spacecraft, resulting in a point +source response with a Compton data space binned in inertial coordinates.

+

We use a scatt map, which tracks the amount of time the spacecraft spent in a given orientation. See spacecraft file tutorial for more details.

+
+
[19]:
+
+
+
scatt_map = ori.get_scatt_map(nside = 16, coordsys = 'galactic')
+
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 7979956 of "dubious year (Note 3)"
+
+
+
+

Now we can let cosipy perform the convolution with the scatt map and get the point source response:

+
+
[20]:
+
+
+
%%time
+
+from astropy.coordinates import SkyCoord
+
+coord = SkyCoord.from_name('Crab').galactic
+
+with FullDetectorResponse.open(response_path) as response:
+    psr = response.get_point_source_response(coord = coord, scatt_map = scatt_map)
+
+
+
+
+
+
+
+
+CPU times: user 46 s, sys: 5.45 s, total: 51.4 s
+Wall time: 54.3 s
+
+
+

This is how a slice of the response looks like in galactic coordinates:

+
+
[21]:
+
+
+
psichi_slice = psr.slice[{'Ei':4, 'Phi':4}].project('PsiChi')
+
+ax,plot = psichi_slice.plot(ax_kw = {'coord':'G'})
+
+ax.scatter([coord.l.deg], [coord.b.deg], transform = ax.get_transform('world'), marker = 'x', color = 'red')
+
+
+
+
+
[21]:
+
+
+
+
+<matplotlib.collections.PathCollection at 0x12eac1220>
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_48_1.png +
+
+

And here in ICRC (RA/Dec), the default coordinates for plot()

+
+
[22]:
+
+
+
ax,plot = psichi_slice.plot()
+
+ax.scatter([coord.icrs.ra.deg], [coord.icrs.dec.deg], transform = ax.get_transform('world'), marker = 'x', color = 'red')
+
+
+
+
+
[22]:
+
+
+
+
+<matplotlib.collections.PathCollection at 0x12eb2ce20>
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_50_1.png +
+
+

You can also used it the same way as a point source response obtained from a exposure map. e.g.

+
+
[23]:
+
+
+
expectation = psr.get_expectation(spectrum)
+
+ax, plot = expectation.project('Em').plot()
+
+ax.set_ylabel('Expected counts')
+
+
+
+
+
[23]:
+
+
+
+
+Text(0, 0.5, 'Expected counts')
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_52_1.png +
+
+

Lastly, you can obtain the response for multiple coordinstes at once. This can be useful for e.g. imaging

+
+
[24]:
+
+
+
%%time
+gal_grid = HealpixBase(nside = 16, coordsys = 'galactic')
+
+gal_coords = gal_grid.pix2skycoord(range(gal_grid.npix))
+
+with FullDetectorResponse.open(response_path) as response:
+    response.get_point_source_response(coord = gal_coords[10:12], scatt_map = scatt_map)
+
+
+
+
+
+
+
+
+CPU times: user 55.8 s, sys: 10 s, total: 1min 5s
+Wall time: 1min 6s
+
+
+

You can see that the time is takes to perform this conversion is not lineas with the number of coordinates, so it’s better to do it in parallel if you have enough memory.

+
+
+

XSPEC support

+

You can also convert the point source response to XSPEC readable files (arf, rmf and pha) if you want to do spetral fitting or simulation in XSPEC. See the SpacecraftFile class functions get_arf(), get_rmf() and get_pha(), respectively.

+

Note: This functionality will be moved to the DetectorResponse class in the near future.

+
+
[25]:
+
+
+
ori.get_psr_rsp(response = response_path);
+
+
+
+
+
+
+
+
+Getting the effective area ...
+Getting the energy redistribution matrix ...
+
+
+
+
[26]:
+
+
+
ori.get_arf()
+ori.plot_arf()
+
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_60_0.png +
+
+
+
[27]:
+
+
+
ori.get_rmf()
+ori.plot_rmf()
+
+
+
+
+
+
+
+
+
+WARNING VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
+
+
+
+
+
+
+
+../../_images/tutorials_response_DetectorResponse_61_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/response/DetectorResponse.ipynb b/tutorials/response/DetectorResponse.ipynb new file mode 100644 index 00000000..71000116 --- /dev/null +++ b/tutorials/response/DetectorResponse.ipynb @@ -0,0 +1,1033 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a3e92e8e-7c4e-41ae-9fea-040dada717b2", + "metadata": {}, + "source": [ + "# Full detector response" + ] + }, + { + "cell_type": "markdown", + "id": "693f2144-561f-4699-9624-1122b9f730e3", + "metadata": {}, + "source": [ + "The detector response provides us with the the following information:\n", + "- The effective area at given energy for given direction. This allows us to convert from counts to physical quantities like flux\n", + "- The expected distribution of measured energy and other reconstructed quantities. This allows us to account for all sorts of detector effects when we do our analysis.\n", + "\n", + "This tutorial will show you how to handle detector response and extrat useful information from it." + ] + }, + { + "cell_type": "markdown", + "id": "9ec5eb17-f83d-4a9c-b45c-42c7d71bd6a8", + "metadata": {}, + "source": [ + "## Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "366b09f0-aff2-47cd-93ee-2dcff45185e5", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "import numpy as np\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.io import fits\n", + "from astropy.time import Time\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.pyplot as ply\n", + "\n", + "from mhealpy import HealpixMap, HealpixBase\n", + "import pandas as pd\n", + "from pathlib import Path\n", + "\n", + "from scoords import Attitude, SpacecraftFrame\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy import test_data\n", + "from cosipy.util import fetch_wasabi_file\n", + "from histpy import Histogram\n", + "import gc\n", + "\n", + "from threeML import Model, Powerlaw\n", + "\n", + "from cosipy.response import FullDetectorResponse" + ] + }, + { + "cell_type": "markdown", + "id": "ba883bb8-fa61-4f9c-a551-25e8c4649bad", + "metadata": {}, + "source": [ + "## File downloads" + ] + }, + { + "cell_type": "markdown", + "id": "2d7fca99-a643-4a09-b60e-f09bf0145049", + "metadata": {}, + "source": [ + "You can skip this step if you already downloaded the files. Make sure that paths point to the right files" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "89945d9d-7d38-4871-bf20-4000ca93c06b", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you can want a different path\n", + "\n", + "ori_path = data_dir/\"20280301_3_month.ori\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "\n", + "# download orientation file ~684.38 MB\n", + "if not ori_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", ori_path)\n", + "\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " \n", + " response_path_zip = str(response_path) + '.zip'\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\",response_path_zip)\n", + " \n", + " # unzip the response file\n", + " shutil.unpack_archive(response_path_zip)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(response_path_zip)" + ] + }, + { + "cell_type": "markdown", + "id": "d2a3629d-b7a0-4c2e-bfc5-786b17ed06f8", + "metadata": {}, + "source": [ + "## Opening a full detector response" + ] + }, + { + "cell_type": "markdown", + "id": "a571dd15-b4f7-4f3e-9ab1-ac399afb6c3c", + "metadata": {}, + "source": [ + "The response of the instrument in encoded in a series of matrices cointained in a file. you can open the file like this:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "a7c37c72-a197-4e87-849a-93bf491eac88", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\n" + ] + } + ], + "source": [ + "response = FullDetectorResponse.open(response_path)\n", + "\n", + "print(response.filename)\n", + "\n", + "response.close()" + ] + }, + { + "cell_type": "markdown", + "id": "02ab5663-6255-47f6-938a-be52dbb1ba2e", + "metadata": {}, + "source": [ + "Or if you don't want to worry about closing the file, use a context manager statement:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "f5921a20-9560-4bfd-be91-29490aac144a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FILENAME: '/Users/imartin5/software/cosipy/docs/tutorials/response/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5'\n", + "AXES:\n", + " NuLambda:\n", + " DESCRIPTION: 'Location of the simulated source in the spacecraft coordinates'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + " Ei:\n", + " DESCRIPTION: 'Initial simulated energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Em:\n", + " DESCRIPTION: 'Measured energy'\n", + " TYPE: 'log'\n", + " UNIT: 'keV'\n", + " NBINS: 10\n", + " EDGES: [100.0 keV, 158.489 keV, 251.189 keV, 398.107 keV, 630.957 keV, 1000.0 keV, 1584.89 keV, 2511.89 keV, 3981.07 keV, 6309.57 keV, 10000.0 keV]\n", + " Phi:\n", + " DESCRIPTION: 'Compton angle'\n", + " TYPE: 'linear'\n", + " UNIT: 'deg'\n", + " NBINS: 36\n", + " EDGES: [0.0 deg, 5.0 deg, 10.0 deg, 15.0 deg, 20.0 deg, 25.0 deg, 30.0 deg, 35.0 deg, 40.0 deg, 45.0 deg, 50.0 deg, 55.0 deg, 60.0 deg, 65.0 deg, 70.0 deg, 75.0 deg, 80.0 deg, 85.0 deg, 90.0 deg, 95.0 deg, 100.0 deg, 105.0 deg, 110.0 deg, 115.0 deg, 120.0 deg, 125.0 deg, 130.0 deg, 135.0 deg, 140.0 deg, 145.0 deg, 150.0 deg, 155.0 deg, 160.0 deg, 165.0 deg, 170.0 deg, 175.0 deg, 180.0 deg]\n", + " PsiChi:\n", + " DESCRIPTION: 'Location in the Compton Data Space'\n", + " TYPE: 'healpix'\n", + " NPIX: 768\n", + " NSIDE: 8\n", + " SCHEME: 'RING'\n", + "\n" + ] + } + ], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + "\n", + " print(repr(response))" + ] + }, + { + "cell_type": "markdown", + "id": "f6750d71-cc53-4aef-b023-835a646a2ff2", + "metadata": {}, + "source": [ + "Although opening a detector response does not load the matrices, it loads all the header information above. This allows us to pass it around for various analysis at a very low cost." + ] + }, + { + "cell_type": "markdown", + "id": "b7b4c8fa-4565-4a51-932f-3feecafa42d4", + "metadata": {}, + "source": [ + "## Detector response matrix" + ] + }, + { + "cell_type": "markdown", + "id": "c69e16d8-4822-43ec-bc4e-135abe25d6fd", + "metadata": {}, + "source": [ + "The full --i.e. all-sky-- detector response is encoded in a HEALPix grid. For each pixel there is a multidimensional matrix describing the response of the instrument for that particular direction in the spacefraft coordinates. For this response has the following grid:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "cad81d6b-7c7b-41d5-9868-da58d25d4a3d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NSIDE = 8\n", + "SCHEME = RING\n", + "NPIX = 768\n", + "Pixel size = 7.33 deg\n" + ] + } + ], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " \n", + " print(f\"NSIDE = {response.nside}\")\n", + " print(f\"SCHEME = {response.scheme}\")\n", + " print(f\"NPIX = {response.npix}\")\n", + " print(f\"Pixel size = {np.sqrt(response.pixarea()).to(u.deg):.2f}\")" + ] + }, + { + "cell_type": "markdown", + "id": "5c18a7b2-0190-4027-afe7-2f631fc245e1", + "metadata": {}, + "source": [ + "To retrieve the detector response matrix for a given pixel simply use the `[]` operator" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "d4972c53-f653-4694-8190-8524362b6ef7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pixel 0 centered at \n" + ] + } + ], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " \n", + " print(f\"Pixel 0 centered at {response.pix2skycoord(0)}\")\n", + " drm = response[0]" + ] + }, + { + "cell_type": "markdown", + "id": "9bf2f221-0300-4dd1-8dc7-eb4e0e694997", + "metadata": {}, + "source": [ + "Or better, get the interpolated matrix for a given direction. In this case, for the on-axis response:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "5a621225-5619-4d43-9670-b4bd03b1d801", + "metadata": {}, + "outputs": [], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " \n", + " drm = response.get_interp_response(SkyCoord(lon = 0*u.deg, lat = 0*u.deg, frame = SpacecraftFrame()))" + ] + }, + { + "cell_type": "markdown", + "id": "05e40223-2d93-4a82-95b3-c30d00499742", + "metadata": {}, + "source": [ + "The matrix has multiple dimensions, including real photon initial energy, the measured energy, the Compton data space, and possibly other:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6680c76c-3483-462e-bb40-5a00b282cdba", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Ei', 'Em', 'Phi', 'PsiChi'], dtype='" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "drm.get_spectral_response().plot();" + ] + }, + { + "cell_type": "markdown", + "id": "f37ad594-0be7-41f0-b7ec-16e2251a78b8", + "metadata": {}, + "source": [ + "You can further project it into the initial energy to get the effective area:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a20f628e-b891-4dcb-b305-8a94c01f2d4a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG7CAYAAADTx9GGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0TklEQVR4nO3dd3xU9Z7/8fekTEgBggmEgFICSFVBadJ7E3LhUgRFjQUsF0QBaVddkSh6RSmirODFCK4Xoly4lIBKl6YQQVGKUZYBxQAJLYX0+f3hZn7GhMNkMpOZCa/n48FjH/Mt53wOu0fe+z3fOWOyWq1WAQAAoEQ+7i4AAADAkxGWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWyigrK0vHjx9XVlaWu0sBAAAuQFgqI4vFojFjxshisbi7FAAA4AKEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAOEJQAAAAN+7i4AAOA8J/b9psRPk5SblefuUkrFv5KfWg9vpPrtIt1dClAMYQkAKpDET5N0+UyGu8twQLYOfJJEWIJHIiwBQAVSuKJkMkmB1QLcXI19rl7MltUqr1sNw42DsAQAFVBgtQDdt7CHu8uwy8fjtirzQra7ywCuiQ3eAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABvzcXQAAAJJ09WK2Ph631d1llIp/JT+1Ht5I9dtFursUuBBhCQDgVv6V/CRly2qVMi9ku7ucUsrWgU+SCEsVHGEJAOBWrYc30oFPkpSblefuUkrl6sXfA5631Y3SIywBANyqfrtIr1yZ+XjcVi9cCYMj2OANAABgwCNXljIzM7VixQodOXJER48eVVpamqZPn67+/fsXGffqq69q06ZNxebXqVNHH330kV3n2rVrlz744ANZLBaFhoZqwIABevDBB+Xn55F/NQAAoJx5ZCK4fPmy4uLiFBERoYYNG+rgwYPXHGs2mzVlypQibcHBwXadZ9++ffr73/+uli1basKECTpx4oSWLVumixcvatKkSWW6BgDe78S+35T4qXftpbl6kcdCgLN5ZFgKCwvT6tWrFRYWpmPHjmns2LHXHOvr66s+ffo4dJ53331XDRo00JtvvmlbSQoKCtJHH32kYcOGqW7dug4dF0DFkPhpki6fyXB3GQ75/RtmAJzBI+8ms9mssLAwu8fn5+crKyvL7hUlSTp58qROnjypZ599tsgjtyFDhmj58uXavn27HnrooVLVDaBiKVxRMpmkwGoBbq7GfoXv/gHgHB4ZlkojKytL/fv3V1ZWlipXrqyePXvqiSeeUFBQkOG8H3/8UZLUuHHjIu3h4eGqXr26kpKSSpyXkpKi1NRU22eLxVLGKwDg6QKrBei+hT3cXQYAN/HqsBQWFqZRo0bp1ltvldVq1VdffaU1a9bo559/1vz58w03aRcGnpJWsMLCwooEoj9au3at4uLinFI/AADwfF4dlh5//PEin3v27KlbbrlFS5Ys0Y4dO9SzZ89rzs3JyZH0+yO/PzObzcrMzCxxXnR0tDp27Gj7bLFYFBsb60j5AADAC1S49yyNGDFCPj4+OnDggOG4wpBUGJr+KCcnRwEBJe9PCA8PV+PGjW1/2AQOAEDFVuHCUkBAgKpUqaIrV64Yjit8/FbS47bU1NRSbTAHAAAVV4ULS5mZmbp8+bJCQ0MNxzVq9Ps3RY4fP16kPSUlRefPn7f1AwCAG5vXhqXs7OwS9xV9+OGHslqtateuna0tLy9PFotFKSkptrb69eurTp06WrdunfLz823ta9askclkUteuXV17AQAAwCt47AbvVatWKT093faYbPfu3Tp37pwkaejQoUpLS9Ojjz6qXr16qU6dOpKkr7/+Wvv27VO7du3UqVMn27HOnz+vBx54QP369dOMGTNs7U899ZSmT5+uSZMmqWfPnjpx4oRWr16tgQMHql69euV3sQAAwGN5bFhauXKlkpOTbZ937typnTt3SpL69OmjkJAQdejQQfv379emTZtUUFCg2rVra+zYsRo5cqR8fK6/aNahQwfFxsYqLi5O8+fPV9WqVTV69GjFxMS46rIAAICX8diwFB8ff90xzz//vF3HioyMtAWtP+vcubM6d+5cqtoAAMCNw2v3LAEAAJQHwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABP3cXAACAN7t6MVsfj9vq7jLs5l/JT62HN1L9dpHuLsVrEJYAAHCAfyU/SdmyWqXMC9nuLqcUsnXgkyTCUikQlgAAcEDr4Y104JMk5WblubsUu129+Hu486aaPQFhCQAAB9RvF+l1qzMfj9vqZatgnoEN3gAAAAYISwAAAAYISwAAAAYISwAAAAY8boN3ZmamVqxYoSNHjujo0aNKS0vT9OnT1b9/f9uYgoICffbZZ9qxY4eSkpKUlpamyMhI9ejRQyNHjlRAQMB1z/P000/r0KFDxdrbtm2rOXPmOPOSAACAF/O4sHT58mXFxcUpIiJCDRs21MGDB4uNycrK0uzZs9W8eXP95S9/UbVq1fTDDz/ogw8+0DfffKN58+bJZDJd91zVq1fX448/XqQtLCzMadcCAAC8n8eFpbCwMK1evVphYWE6duyYxo4dW2yMv7+/3nnnHd122222tkGDBqlmzZpaunSpEhMT1bp16+ueKyQkRH369HFq/QAAoGLxuD1LZrP5uqs7/v7+RYJSoc6dO0uSLBaL3efLy8tTZmZm6YoEAAA3DI9bWSqLCxcuSJKqVq1q1/jTp0+rb9++ys3N1U033aSBAwcqJiZGfn7X/mtJSUlRamqq7XNpghkAAPA+FSos/etf/1JwcLDatWt33bG1atVSq1atFBUVpaysLG3fvl3Lli3T6dOnNXPmzGvOW7t2reLi4pxYNQAA8GQVJiwtX75cBw4c0MSJE1W5cuXrjp82bVqRz3379tUbb7yhdevWacSIEWrevHmJ86Kjo9WxY0fbZ4vFotjY2LIVDwAAPFaFCEtbtmzR+++/r3vuuUeDBw92+Dj33nuv1q1bpwMHDlwzLIWHhys8PNzhcwAAAO/icRu8S2v//v169dVXdffdd2vSpEllOlaNGjUkSWlpac4oDQAAVABeHZaOHDmi559/Xo0bN9bMmTMNN2bb48yZM5Kk0NBQJ1QHAAAqAq8NSydPntTUqVNVs2ZNvf7664Zv7bZYLDp79qztc0ZGhnJycoqMsVqtWrZsmSSpTZs2rikaAAB4HY/cs7Rq1Sqlp6fbvqK/e/dunTt3TpI0dOhQ+fj4aPLkyUpLS9PIkSO1d+/eIvNr1aqlFi1a2D4/8MADatmypRYsWCBJ+vHHHzVz5kz16tVLtWvXVnZ2tr788ksdPnxYgwYNUuPGjcvpSgEAgKfzyLC0cuVKJScn2z7v3LlTO3fulCTbG7cLw9N7771XbH6/fv2KhKU/i4iI0B133KGdO3fqwoUL8vHxUd26dTVp0iRFR0c781IAAICX88iwFB8ff90xheHJHn8eW6tWLcN3KQEAABTy2j1LAAAA5YGwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYMAjf0gXQMVzYt9vSvw0SblZee4uxW5XL2a7uwQAHoCwBKBcJH6apMtnMtxdhkP8K/GfSuBGxn8BAJSLwhUlk0kKrBbg5mrs51/JT62HN3J3GQDciLAEoFwFVgvQfQt7uLsMALAbG7wBAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAM+Nkz6LXXXivziTp16qROnTqV+TgAAADlya6wtHHjxjKdxGQyqWbNmoQlAADgdewKS5I0fPhwDRs2rNQnsFqtGjlyZKnnAQAAeAK7w1JISIhq1qzpyloAAAA8jl1haeLEiWrSpInDJynrfAAAAHexKyz95S9/KdNJyjofAADAXXh1AAAAgAG79yyVp8zMTK1YsUJHjhzR0aNHlZaWpunTp6t///7Fxp48eVILFy7U4cOH5efnp7vvvlvjxo1TaGioXefatWuXPvjgA1ksFoWGhmrAgAF68MEH5efnkX81AACgnJU6EWzfvl3ffvutfH191bZtW7Vt27bEcRs3btSmTZs0f/78Uhd1+fJlxcXFKSIiQg0bNtTBgwdLHHfu3DmNHz9eISEhGjNmjK5evaoVK1boxIkTeu+99+Tv7294nn379unvf/+7WrZsqQkTJujEiRNatmyZLl68qEmTJpW6bgAAUPHYHZYKCgr097//XXv37pXVapUkffrpp7rzzjv1/PPP66abbioyPjk5Wd9++61DRYWFhWn16tUKCwvTsWPHNHbs2BLHffTRR8rKytL777+viIgISVLTpk01ceJEbdy4UdHR0Ybneffdd9WgQQO9+eabtpWkoKAgffTRRxo2bJjq1q3rUP0AAKDisHvP0rp167Rnzx7deuutevHFFzVz5ky1adNGiYmJeuqpp5ScnOy0osxms8LCwq47bseOHerQoYMtKElS69atdcstt2jbtm2Gc0+ePKmTJ09q0KBBRR65DRkyRFarVdu3b3e4fgAAUHHYvbK0ceNGhYeH6+2331ZAQIAkqVu3blq7dq3mz5+vp59+WvPmzVOtWrVcVuwfnT9/XhcvXlTjxo2L9TVt2lT79u0znP/jjz9KUrH54eHhql69upKSkkqcl5KSotTUVNtni8VS2tIBAIAXsTssnTx5Un369LEFpULR0dEKDw/Xiy++qAkTJmj+/PnlEpgKA0tJK1BhYWG6cuWKcnJyZDabHZr/x0D0R2vXrlVcXJyDVQMAAG9jd1iyWq0KDg4usa9Dhw6aNWuWXnjhBY0fP17z5s1zVn3XlJ2dLUklbuIuDEjZ2dnXDEs5OTlFxv55fmZmZonzoqOj1bFjR9tni8Wi2NjY0hUPAAC8ht17lmrUqKFTp05ds//uu+/WrFmzdPnyZU2YMEGnT592SoHXUrjClZubW6yvMAj9eRXsjwpDUuHYP8+/1tzw8HA1btzY9odN4AAAVGx2h6UmTZrom2++sa3olKQwMF25ckVbt251SoHXUvj4rKTHZampqapSpco1V5XsmW/PBnMAAFDx2R2WOnbsqMzMTG3atMlw3N13363Y2FiXv9SxevXqCg0N1fHjx4v1HT16VA0bNjSc36hRI0kqNj8lJUXnz5+39QMAgBub3WGpU6dOWr58eZH9OtfSvn17LV261OV7l7p27ao9e/bo7NmztrbExESdPn1a3bt3t7Xl5eXJYrEoJSXF1la/fn3VqVNH69atU35+vq19zZo1MplM6tq1q0trBwAA3sHu5R8/Pz/VqVPH7gPXqVOnVOP/bNWqVUpPT7c9Jtu9e7fOnTsnSRo6dKhCQkI0evRobd++Xc8884yGDRumq1ev6l//+peioqKK/DTK+fPn9cADD6hfv36aMWOGrf2pp57S9OnTNWnSJPXs2VMnTpzQ6tWrNXDgQNWrV8/h2gEAQMXhsT+AtnLlyiIvuty5c6d27twpSerTp49CQkIUERGhBQsWaOHChXrvvfdsvw33t7/9zXC/UqEOHTooNjZWcXFxmj9/vqpWrarRo0crJibGVZcFAIDbXb2YrY/HuXZvsTP5V/JT6+GNVL9dpFvO73BYyszM1Pr16/Xzzz8rJSVFeXl5xcaYTCaHH8XFx8fbNa5+/fp68803DcdERkbagtafde7cWZ07dy51fQAAeBv/Sn6SsmW1SpkXrv2FLc+TrQOfJHlXWDp69KimTJmitLQ02+/ElcRkMjlcGAAAcK7WwxvpwCdJys0qvsDhqa5e/D3cubNmh8LSggULlJ6erscff1w9e/ZUWFiYfH19nV0bAABwovrtIt22OuOoj8dtdfsqmENhKSkpST169NCoUaOcXQ8AAIBHsfvVAX9UpUoVhYaGOrkUAAAAz+NQWOrUqZO++eYbFRQUOLseAAAAj+JQWHr88cfl5+enWbNm6fz5886uCQAAwGM4tGcpODhYkydP1sSJE7Vt2zZVrlxZQUFBxcaZTCatWLGizEUCAAC4i0MrS4mJiRo3bpzS09Pl6+srs9ksq9Va7A+P6QAAgLdzaGXpv//7v2W1WvXSSy+pW7duvE8JAABUWA6FpZMnT6pPnz5FfqwWAACgInLoMVxoaKgCAgKcXQsAAIDHcSgs9e7dW/v27VN2tjf9rgwAAEDpORSWHn74YUVFRWny5Mk6fPiwMjMznV0XAACAR3Boz1Lv3r0lSVarVePHj7/mOJPJpG3btjlWGQAAgAdwKCzdfvvtfAMOAADcEBwKSwsWLHB2HQAAAB7JoT1LAAAANwqHwtK5c+e0a9cupaWlldiflpamXbt28btxAADA6zkUlpYtW6bXXnvtmu9aCggI0Ouvv66PPvqoTMUBAAC4m0Nh6ZtvvlGbNm1kNptL7DebzWrTpo0SExPLVBwAAIC7ORSWUlJSVLNmTcMxERERPIYDAABez6Gw5Ofnp4yMDMMxGRkZvF4AAAB4PYfCUlRUlPbs2aOcnJwS+7Ozs7V7925FRUWVqTgAAAB3cygsDRgwQOfPn9f06dN15syZIn2//vqrZsyYodTUVA0cONApRQIAALiLQy+lHDBggPbt26cdO3Zo9OjRioyMVHh4uFJSUvTbb78pPz9fPXr00IABA5xdLwAAQLlyKCxJ0syZM/Xvf/9ba9as0alTp/TLL79IkurVq6chQ4Zo8ODBzqoRAADAbRwOSyaTSUOHDtXQoUN19epVZWRkKDg4WIGBgc6sDwAAwK0cDkt/FBgYSEgCAAAVEr8NBwAAYMCusDRkyBCtXLnS4ZOUdT4AAIC72BWWLly4oKtXrzp8krLOBwAAcBe79yx9+eWXSk5OdugkvMkbAAB4K7vD0k8//aSffvrJlbUAAAB4HLvCkjP2G4WEhJT5GAAAAOXNrrBUs2ZNV9cBAADgkXh1AAAAgAHCEgAAgAGnvMHbXV599VVt2rTpmv2rVq1S9erVS+xbunSp4uLiirWbzWZt3rzZWSUCAAAv59VhKTo6Wq1bty7SZrVa9eabb6pmzZrXDEp/NGnSpCI/1eLjw2IbAAD4/7w6LLVo0UItWrQo0vbdd98pKytLvXv3tusYXbt2VWhoqAuqAwAAFYFdyyi7du3S6dOnXV2LU2zevFkmk0m9evWye05GRoasVqsLqwIAAN7KrrD0/PPPa8uWLbbP9957rz799FOXFeWovLw8bdu2TS1atFBkZKRdc+699171799f/fr106xZs3ThwgXD8SkpKTp+/Ljtj8VicUbpAADAQ9n1GM7Pz095eXm2z8nJyUpPT3dZUY76+uuvdfnyZbsewVWuXFl//etf1bx5c/n7++u7777T6tWrdfToUS1ZskTBwcElzlu7dm2JG8MBAEDFZFdYqlGjhg4fPqz8/Hz5+vpK8szfe9u8ebP8/PzUvXv3644dPnx4kc/dunVT06ZNNWvWLK1evVqjR48ucV50dLQ6duxo+2yxWBQbG1u2wgEAgMeyKyz16tVLH374oQYOHKgqVapIkuLj45WQkGA4z2QyacWKFWWv0g6ZmZnatWuX2rZtq6pVqzp0jN69e+udd95RYmLiNcNSeHi4wsPDy1IqAADwInaFpQcffFBms1n79u1TSkqKTCaTrFbrdTdFl+em6V27dpXqW3DXUqNGDV25csVJVQEAAG9n956l0aNH21ZbunbtqhEjRigmJsaVtZXKF198ocDAwCKPyErLarUqOTlZjRo1cmJlAADAmzn06oCYmBi1bNnSVTWV2qVLl3TgwAF16dJFlSpVKtZ/9uzZYt9au3TpUrFxa9as0aVLl9SuXTtXlQoAALyMXStLzz//vGJiYmwrSZs2bVLlypU9JjBt2bJF+fn513wE98orr+jQoUPauXOnrW348OHq0aOHoqKiZDabdfjwYW3ZskWNGjVSdHR0eZUOAAA8XIV4dcDmzZtVrVo13XXXXXbP6d27t77//nvt2LFDOTk5ioiI0KhRo/Tggw+WuDoFAABuTBXi1QGLFi0y7F+wYEGxtilTpriqHAAAUIFUmFcHAAAAuEKFeXUAAACAK1SYVwcAAAC4gl2vDvgzT3t1AAAAgKvYtbL0Zw8//LCz6wAAAPBIDoUlScrLy9O///1vbd68WadOnVJ2dra2bdsmSUpKStK6des0fPhw3XLLLU4rFgAAoLw5FJays7M1adIkff/996pataqCg4OVlZVl64+MjFRCQoIqV66sMWPGOK1YAACA8ubQnqXly5fr8OHDGjt2rNasWaN77rmnSH9ISIhatmyp/fv3O6VIAAAAd3EoLG3dulWtWrXSfffdJ5PJVOILKmvVqqWzZ8+WuUAAAAB3cigsnTt3To0bNzYcExgYqIyMDIeKAgAA8BQOhaXAwEBdunTJcMyZM2dUtWpVRw4PAADgMRwKS82bN9eePXuUlpZWYv/Zs2e1b98+3XHHHWUqDgAAwN0cCksjR45UWlqann32WdsP7EpSVlaWEhMTNXnyZOXn5+vee+91arEAAADlzaFXB7Rs2VLPPPOMFixYoPHjx9va+/XrJ0ny8fHRxIkTr7uvCQAAwNM5/FLKwYMHq2XLlvrPf/6jo0eP6sqVKwoODlbTpk01ZMgQ1a9f35l1AgAAuIXDYUmS6tWrpwkTJlyzPycnR2azuSynAAAAcCuH9ixdz/Hjx/XWW2/pr3/9qysODwAAUG7KtLL0R2lpafr888+VkJCgn3/+WVarVQEBAc46PAAAgFuUOSwdOHBAGzZs0K5du5Sbmyur1armzZtrwIAB6tGjhzNqBPAnJ/b9psRPk5SblefuUux29WK2u0sAAIc4FJbOnj2rjRs3KiEhQefOnZPValV4eLhSUlLUv39/TZs2zdl1AviDxE+TdPmMd74h37+S0xa0AaBc2P1frby8PH355ZfasGGDEhMTVVBQoEqVKql3797q27ev7rzzTnXv3l2+vr6urBeAZFtRMpmkwGre87jbv5KfWg9v5O4yAKBU7A5LQ4YMUVpamkwmk1q1aqW+ffuqS5cuCgwMdGV9AAwEVgvQfQt53A0ArmR3WLpy5Yp8fHw0fPhw3XfffQoNDXVhWQAAAJ7B7lcH9O/fX2azWfHx8Ro6dKimTZumbdu2KTc315X1AQAAuJXdK0vTpk3T008/ra1bt2rDhg3au3ev9u3bp6CgIHXv3l19+/Z1ZZ0AAABuUaqvpQQFBWngwIEaOHCgTp48qfXr1+uLL77Q+vXrtWHDBplMJp06dUrJycmqWbOmq2oGAAAoNw6/wbtevXoaN26cVq1apZkzZ6pNmzYymUz67rvvNGrUKD3zzDP67LPPnFkrAABAuSvzC0/8/PzUrVs3devWTefOndPGjRu1ceNGHTx4UIcOHeLxHAAA8GpOfTtcjRo19NBDD+mhhx5SYmKiNmzY4MzDAwAAlDuXvUr3rrvu0l133eWqwwMAAJQLh/csAQAA3AgISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAZc9p6l8nDw4EFNmDChxL5FixapefPmhvPPnz+vhQsXav/+/SooKFCrVq00fvx41apVyxXlAgAAL+TVYanQ0KFD1bRp0yJttWvXNpyTmZmpCRMmKCMjQ6NHj5afn5/i4+M1fvx4LV26VFWrVnVlyQAAwEtUiLB0xx13qFu3bqWas2bNGv3yyy967733bEGrXbt2iomJ0cqVKzV27FgXVAoAALxNhdmzlJmZqby8PLvHb9++XU2aNCmyIlW3bl3deeed2rZtmytKBAAAXqhCrCzNnj1bV69ela+vr26//XY9+eSTatKkyTXHFxQU6MSJExowYECxvqZNm2r//v3KzMxUUFBQsf6UlBSlpqbaPlssFudcBAAA8EheHZb8/PzUtWtXtW/fXlWrVtXJkye1cuVKjRs3Tu+++65uvfXWEudduXJFOTk5CgsLK9ZX2JaSkqI6deoU61+7dq3i4uKceh0AAMBzeXVYuu2223TbbbfZPnfq1EndunXTww8/rMWLF2vOnDklzsvOzpYk+fv7F+szm81FxvxZdHS0OnbsaPtssVgUGxvr8DUAAADP5tVhqSQ333yzOnXqpJ07dyo/P1++vr7FxgQEBEiScnNzi/Xl5OQUGfNn4eHhCg8Pd2LFAADAk1WYDd5/VKNGDeXm5iorK6vE/ipVqshsNhfZe1SosI1ABAAApAoals6cOSOz2azAwMAS+318fBQVFaVjx44V6zty5Ihq1apV4uZuAABw4/HqsHTp0qVibT/99JN2796tNm3ayMfn98s7e/ZssW+tde3aVceOHSsSmE6dOqWDBw+W+p1NAACg4vLqPUv/9V//pYCAALVo0ULVqlXTyZMntW7dOlWqVEmPP/64bdwrr7yiQ4cOaefOnba2IUOGaP369Zo6dapGjhwpX19fxcfHq1q1aho5cqQ7LgcAAHggrw5LnTt31hdffKH4+HhlZGQoNDRUXbp0UUxMjG6++WbDuUFBQZo/f74WLlyoZcuW2X4bbty4cQoNDS2fCwAAAB7Pq8PSsGHDNGzYsOuOW7BgQYntNWrU0Msvv+zssgAAQAXi1XuWAAAAXI2wBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYMDP3QU46ujRo9q0aZMOHjyo5ORkValSRc2bN9djjz2mW265xXDuxo0bNXv27BL7Vq9erbCwMFeUDAAAvJDXhqWPP/5Yhw8fVvfu3dWgQQOlpqZq9erVeuyxx7Ro0SJFRUVd9xiPPvqoIiMji7SFhIS4qmQAAOCFvDYsjRgxQi+++KL8/f1tbT169NDDDz+s//mf/9ELL7xw3WO0a9dOTZo0cWWZAADAy3ntnqXbbrutSFCSpFtuuUX16tWTxWKx+ziZmZnKz893dnkAAKCC8NqVpZJYrVZdvHhR9erVs2v8hAkTdPXqVfn7+6tNmzb629/+dt39TikpKUpNTbV9Lk0wAwAA3qdChaUvvvhC58+f1yOPPGI4LiAgQP3791erVq0UHBys48ePKz4+Xk899ZTef/99RUREXHPu2rVrFRcX5+TKAQCAp6owYclisWju3Llq3ry5+vXrZzi2R48e6tGjh+1z586d1bZtW40fP17Lly/X5MmTrzk3OjpaHTt2LHLe2NjYsl8AAADwSBUiLKWmpmrq1KkKDg7WrFmz5OvrW+pj3H777WrWrJkSExMNx4WHhys8PNzRUgEAgJfx2g3ehdLT0zVlyhSlp6drzpw5ZQoyNWrU0JUrV5xYHQAA8HZevbKUnZ2tadOm6fTp03rrrbfs3th9LWfOnFFoaKhTagMAABWD164s5efn66WXXtIPP/ygmTNnqkWLFiWOS0lJkcViUV5enq3t0qVLxcbt3btXx48fV9u2bV1VMgAA8EJeu7L0zjvvaPfu3erQoYPS0tL0+eefF+nv06ePJGnx4sXatGmTVq5caXtb95NPPqlbb71VjRs3VnBwsH788UclJCSoRo0aeuCBB8r9WgAAgOfy2rD0008/SZL27NmjPXv2FOsvDEsl6dGjh/bt26f9+/crKytLYWFhGjRokGJiYnTTTTe5rGYAAOB9vDYsLViwwK5xM2bM0IwZM4q0jRkzRmPGjHFFWQAAoILx2j1LAAAA5YGwBAAAYMBrH8MBznJi329K/DRJuVl51x/sIa5ezHZ3CQBwwyAs4YaX+GmSLp/JcHcZDvGvxC0MAK7Gf2lxwytcUTKZpMBqAW6uxn7+lfzUengjd5cBABUeYQn4P4HVAnTfwh7XHwgAuKGwwRsAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMCAn7sLQMVyYt9vSvw0SblZee4uxW5XL2a7uwQAgAcjLMGpEj9N0uUzGe4uwyH+lbgdAADF8a8DnKpwRclkkgKrBbi5Gvv5V/JT6+GN3F0GAMADEZbgEoHVAnTfwh7uLgMAgDJjgzcAAIABwhIAAIABwhIAAIABr96zlJOTo3/+85/6/PPPlZaWpgYNGuixxx5TmzZtrjv3/PnzWrhwofbv36+CggK1atVK48ePV61atcqhcgAA4C28emVp9uzZio+PV+/evfX000/Lx8dHU6ZM0XfffWc4LzMzUxMmTNChQ4c0evRoPfLII0pKStL48eN1+fLlcqoeAAB4A69dWTpy5Ii2bNmiJ598UqNGjZIk9e3bVzExMVq0aJEWLVp0zblr1qzRL7/8ovfee09NmzaVJLVr104xMTFauXKlxo4dWy7XcD284BEAAPfz2rC0Y8cO+fr6Kjo62tYWEBCge+65R4sXL9bZs2cVERFR4tzt27erSZMmtqAkSXXr1tWdd96pbdu2eUxY4gWPAAC4n9f+i5aUlKSbb75ZwcHBRdoLA9BPP/1UYlgqKCjQiRMnNGDAgGJ9TZs21f79+5WZmamgoKASz5uSkqLU1FTbZ4vFUpbLMMQLHgEAcD+vDUupqakKCwsr1l7YlpKSUuK8K1euKCcn57pz69SpU+L8tWvXKi4uzsGqHcMLHgEAcB+vDUvZ2dny9/cv1m42m23915onyaG5khQdHa2OHTvaPlssFsXGxtpfeCkEVQ0o8j8BALjReMK/hV4blgICApSbm1usPScnx9Z/rXmSHJorSeHh4QoPDy91vY4Y/ErH6w8CAKAC84R/C7321QFhYWFF9g4VKmy7VqCpUqWKzGazQ3MBAMCNx2vDUsOGDfXLL78oI6Pot8WOHDli6y+Jj4+PoqKidOzYsWJ9R44cUa1ata65uRsAANx4vDYsdevWTfn5+Vq7dq2tLScnRwkJCWrWrJntm3Bnz54t9o21rl276tixY0UC06lTp3Tw4EF169atXOoHAADewWv3LDVr1kzdu3fX4sWLdenSJdWuXVubNm1ScnKypk6dahv3yiuv6NChQ9q5c6etbciQIVq/fr2mTp2qkSNHytfXV/Hx8apWrZpGjhzpjssBAAAeymvDkiTNmDFDERER+uyzz5Senq6oqCi9/vrratmypeG8oKAgzZ8/XwsXLtSyZctsvw03btw4hYaGlkvtAADAO5isVqvV3UV4s+PHj2vMmDFasmSJGjdu7O5yAACAk3ntniUAAIDyQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAw4NUvpfQE2dnZklTsJ1UAAIDnq1u3ripVqmQ4hrBURsnJyZKk2NhYN1cCAABKy56XSvMG7zK6dOmSvv76a61Zs0YTJkywe97bb7+t8ePHG46xWCyKjY3V888/r7p165a11ArBnr83d3FHba44p7OOWZbjODK3tHO4Bx3jyfegVP71uep8N8J9aO9YV9+HrCyVg9DQUPXp00dbt24t1c+dhISE2D2+bt26/JTK/ynN31t5c0dtrjins45ZluM4Mre0c7gHHePJ96BU/vW56nw3wn1Y2uO78z5kg7eT9OrVy6Xj8TtP/ntzR22uOKezjlmW4zgyl3uwfHj631t51+eq890I96Gn/9/SH/EYzoPxI72Ae3EPAu7nCfchK0seLCwsTDExMQoLC3N3KcANiXsQcD9PuA9ZWQIAADDAyhIAAIABwhIAAIABwpIXy8nJ0WuvvaZhw4apX79+euKJJ/T999+7uyzghvLGG29o8ODB6tevnx566CHt3r3b3SUBN6zvv/9eXbt21YcffujU47JnyYtdvXpVK1euVP/+/VW9enVt27ZN8+bN08qVKxUUFOTu8oAbgsViUWRkpMxms44ePaqJEydqxYoVqlq1qrtLA24oBQUFeuqpp2S1WtWhQwc99NBDTjs2K0teLDAwUDExMYqIiJCPj4969uwpPz8/nT592t2lATeMunXrymw2S5JMJpNyc3OVkpLi5qqAG8+6devUtGlTl7zlmzd4l6PMzEytWLFCR44c0dGjR5WWlqbp06erf//+xcbm5OTon//8pz7//HOlpaWpQYMGeuyxx9SmTZtrHv/06dNKS0tT7dq1XXkZgNdy1T341ltvKSEhQTk5OWrfvr2ioqLK43IAr+SK+/Dy5cv65JNPtGjRIr399ttOr5mVpXJ0+fJlxcXFyWKxqGHDhoZjZ8+erfj4ePXu3VtPP/20fHx8NGXKFH333Xcljs/OzlZsbKzuv/9+hYSEuKJ8wOu56h6cOHGiPvvsM82dO1dt2rSRyWRy1SUAXs8V9+GSJUs0fPhwVa5c2TVFW1FusrOzrSkpKVar1Wo9evSotXPnztaEhIRi43744Qdr586drR9//LGtLSsryzpy5EjrE088UWx8bm6udcqUKdaZM2daCwoKXHcBgJdz1T34R1OnTrXu2bPHuYUDFYiz78Pjx49bH330UWteXp7VarVaX3nlFWtcXJxTa2ZlqRyZzWa73kC6Y8cO+fr6Kjo62tYWEBCge+65Rz/88IPOnj1ray8oKFBsbKxMJpNmzJjB/0cLGHDFPfhn+fn5+vXXX51SL1AROfs+PHTokE6fPq2hQ4dq8ODB2rp1qz7++GPNnj3baTWzZ8kDJSUl6eabb1ZwcHCR9qZNm0qSfvrpJ0VEREiS5syZo9TUVM2ZM0d+fvyvE3AGe+/B9PR07d27Vx07dpTZbNaXX36pgwcPauzYse4oG6hQ7L0Po6Oj1bNnT1v/ggULFBkZqfvvv99ptfCvqwdKTU0tMXUXthV+0yY5OVnr16+X2Wwukrz/8Y9/6I477iifYoEKyN570GQyaf369Zo7d66sVqtq166tF154QY0aNSrXeoGKyN77sFKlSqpUqZKtPyAgQIGBgU7dv0RY8kDZ2dny9/cv1l749eTs7GxJUs2aNbVz585yrQ24Edh7DwYHB2v+/PnlWhtwo7D3PvyzGTNmOL0W9ix5oICAAOXm5hZrz8nJsfUDcB3uQcD9POk+JCx5oLCwMKWmphZrL2wLDw8v75KAGwr3IOB+nnQfEpY8UMOGDfXLL78oIyOjSPuRI0ds/QBch3sQcD9Pug8JSx6oW7duys/P19q1a21tOTk5SkhIULNmzWzfhAPgGtyDgPt50n3IBu9ytmrVKqWnp9uWEXfv3q1z585JkoYOHaqQkBA1a9ZM3bt31+LFi3Xp0iXVrl1bmzZtUnJysqZOnerO8gGvxz0IuJ+33Ycmq9VqLdcz3uBGjBih5OTkEvtWrlypyMhISb/v8i/8PZz09HRFRUXpscceU9u2bcuzXKDC4R4E3M/b7kPCEgAAgAH2LAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAHweiNGjNCIESPsGrtx40Z16dLF9uell14q0v/000+rS5cuLqjSMU888USReg8ePOjukoAbjp+7CwCAP/rtt9907733Go6pWbOm4uPjy3SeTp06qWHDhoqKiirTcezx8ssva/PmzXrxxRfVq1eva47LyMjQ4MGD5e/vr9WrVysgIEADBw5U27ZtdejQIR06dMjltQIojrAEwCPVrl1bvXv3LrEvJCSkyOe5c+eW+vidO3dW//79HaqttO655x5t3rxZCQkJhmFp8+bNys7OVr9+/RQQECBJGjhwoCRp6dKlhCXATQhLADxS7dq19cgjj9g91pPdeeedioyM1DfffKOzZ88qIiKixHEJCQmSfg9XADwHe5YAeL3S7Fly1JYtW9SzZ089/PDDSklJsbUfOnRI06ZN06BBg9SzZ0+NGjVKS5YsUVZWlm2MyWTSgAEDVFBQYAtEf/a///u/Onr0qBo0aKAmTZq49FoAlA5hCQCuY9WqVXr55ZfVrFkzvf322woPD5ckrVmzRhMmTNDhw4fVvn17DR06VDVq1NDy5cs1ceJE5ebm2o7Rr18/+fj4aOPGjbJarcXOwaoS4Ll4DAfAI/36669aunRpiX3NmzdXu3btyqWOJUuWaPny5ercubNefPFF216ikydPav78+WrQoIHmzp2rqlWr2uZ89NFHWrx4sVatWqWRI0dKkiIiItSmTRt99dVX+uabb3TXXXfZxufl5emLL76Q2WxWnz59yuW6ANiPsATAI/3666+Ki4srsW/YsGEuD0v5+fmaM2eONmzYoEGDBmnixIny9fW19f/nP/9Rfn6+JkyYUCQoSdJ9992n+Ph4bdmyxRaWpN9Xjb766itt2LChSFjau3evLly4oO7du6tKlSouvS4ApUdYAuCR2rZtqzlz5rjt/C+88IJ27dqlBx54QGPGjCnWf+TIEUnS119/rcTExGL9fn5+OnXqVJG2Tp06KTQ0VF9++aXS09Nt3+rbsGGDJB7BAZ6KsAQAJfj2229lNpvVvn37EvuvXLkiSVq+fLndx/Tz81OfPn0UHx+vzZs3a/DgwUpNTdVXX32liIgItW7d2im1A3AuwhIAlGDu3LmaOHGinnvuOb3xxhu67bbbivQHBwdLkjZt2qSgoCC7jztw4EDFx8drw4YNGjx4sD7//HPl5+erf//+8vHhOzeAJ+LOBIAS3HrrrZo3b578/f313HPP6fDhw0X6mzVrJkn64YcfSnXcevXqqXnz5jp+/Lh+/vlnJSQk2F4tAMAzEZYA4BoaNmxoC0yTJ0/Wd999Z+sbPHiwfH19NX/+fJ09e7bY3LS0NP34448lHrdwb9Jbb70li8Wiu+66SzVr1nTNRQAoMx7DAfBIRq8OkKT777/f9jV+V2rQoIHmzZunZ599Vs8995z+8Y9/6I477lBUVJQmTpyot956S/fff7/at2+v2rVrKzMzU2fOnNG3336rfv36afLkycWO2aNHD7399tu21So2dgOejbAEwCMZvTpAkoYPH14uYUkqGpimTJmi119/XS1bttSgQYPUsGFDxcfH69tvv9WePXsUHBysiIgIDR8+XP369SvxeEFBQerevbsSEhJUpUoVde7cuVyuA4BjTNaSXiULABXUxo0bNXv2bE2fPr3cfkjXGZYuXaq4uDjNnz9frVq1cnc5wA2FPUsAbkizZ89Wly5d9NJLL7m7FENPPPGEunTpYrjKBsC1eAwH4IbSsGFDxcTE2D5HRUW5rxg7DBw4UG3btrV9ZiM4UP54DAcAAGCAx3AAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAGCEsAAAAG/h/4fuzU5Zo38gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax,plot = drm.get_effective_area().plot();\n", + "\n", + "ax.set_ylabel(f'Aeff [{drm.unit}]');" + ] + }, + { + "cell_type": "markdown", + "id": "64edb047-2d80-4011-9fa3-665a1bdd282e", + "metadata": {}, + "source": [ + "Get the interpolated effective area" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "6ad17044-46a6-4646-b5d2-1cec399228f2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$6.3406481 \\; \\mathrm{cm^{2}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "drm.get_effective_area(511*u.keV)" + ] + }, + { + "cell_type": "markdown", + "id": "983b731f-1dad-434a-8430-544c76b0e862", + "metadata": {}, + "source": [ + "Or the energy dispersion matrix" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2003abb9-c2a5-487f-b869-f0e4b46bc053", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHECAYAAAAnGhD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5gklEQVR4nO3de3yU5Z3///fkiBAPNOiASRsfIRaIXcXaIB6AUIKAwZQuQkHXmmWBlbTilgoIa22lYSnKchA1u6h8sXRbCVJalHAaWsHS/jxUIkowQtUU0ESIJWaIZsLM/fsjzZQ4SZiZO5mZi7yej8c8Hua6r+uez2Bu5sN1dFiWZQkAAMAgcdEOAAAAIFQkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDgkMAAAwDjdLoF5++23NWLECD377LPRDgUAAISpWyUwPp9Pjz/+uAYOHBjtUAAAgA0J0Q4gkl544QUNGjRIp0+fjnYoAADAhpjsgWloaNDatWt1//33Kz8/X8OHD9e2bdvarOvxeFRSUqJvf/vbysvL07//+7/rtddeC6hXV1enjRs3atq0aV0dPgAA6GIxmcDU1dVp3bp1qqqqUlZWVod1lyxZotLSUo0ePVqzZ89WXFyc5s2bpwMHDrSq99RTT2nSpEm68MILuzJ0AAAQATGZwKSmpmrz5s3auHGjZs2a1W69iooK7d69WzNnzlRRUZEKCgq0cuVK9e3bVyUlJf567777rt555x2NHz8+EuEDAIAuFpNzYJKSkpSamnrOenv27FF8fLwKCgr8ZcnJycrPz9eaNWtUU1Mjp9Op8vJyHT16VBMnTpQkud1uxcfH68MPP9SCBQu67HMAAICuEZMJTLAOHz6s9PR09erVq1X5oEGDJElHjhyR0+lUQUGBRo0a5b/+2GOPqV+/frrzzjsjGi8AAOgcRicwtbW1bfbUtJSdPHlSktSjRw/16NHDfz05OVkXXHBBu/NhTp48qdraWv/PjY2N+uyzz3TNNde0ug8AANFSU1OjU6dO2b7PJZdcIqfTaT+gCDM6gWlsbFRiYmJAeVJSkv96WxYuXNjhfbds2aJ169YFlCfu/5LiTge+HwAgsk7dfUO0Q+jQa/9vTpfev6amRnf9y0R93mh/KmuPHj20fv1645IYoxOY5ORkNTU1BZR7PB7/9XAUFBTopptu8v9cVVWl4uLi8IIEAKCTnTp1Sp83xmnhvX/TV9LOhH2fvx5P0H+t7q1Tp06RwERSamqqTpw4EVDeMvzTp0+fsO7bp0+fsNsCABApX0k7o69mBv5DvjuIyWXUwcrKytKxY8cCdtatqKjwXwcA4Hzls3zy2nj5LF+0P0LYjE5gcnNz5fV6tWXLFn+Zx+NRWVmZsrOzjesOAwAgFD5Ztl+mitkhpE2bNsntdvuHg/bt26ePP/5YkjRx4kSlpKQoOztbI0eO1Jo1a3Tq1CmlpaVp+/btqq6u1vz586MZPgAA6EIxm8Bs2LBB1dXV/p/37t2rvXv3SpJuueUWpaSkSGpeUeR0OrVjxw653W5lZmZq6dKlGjx4cDTCBgAgYixZ8in8YSCLHpjOV1paGlS95ORkFRUVqaioqIsjAgAgtnhlyWuFn4R4SWDOTy6XSy6XS263O9qhAACAs5DAdCAvL095eXmqrKzUjBkzoh0OAACtWDYn4jKEBAAAIs4ry9YwkMlDSEYvowYAAN0TPTAAABiKISQAAGAcryV7q5DMzV9IYAAAMJUl2dgFRgb3vzAHBgAAGIgeGAAADNWdVyGRwAAAYCifZW8ei8/c/IUEpiPsxAsAQGwigekAO/ECAGKZT/Ym8dppG20kMAAAGMonh7xy2GpvKlYhAQAA49ADAwCAoXyWvYm4TOIFAAAR55NsDiGZiyEkAABgHHpgAAAwlNfmJF47baONBAYAAENZlkM+K/wkxLLRNtpIYAAAMFR37oFhDgwAADAOPTAd4CgBAEAsa97ILvy+CJM3siOB6QBHCQAAYplP9ubAmJzAMIQEAACMQw8MAACG6s5nIZHAAABgKK8VJ68V/mCKnbbRZm7kAACg26IHBgAAQ1lyyGejL8JiCAkAAERad97IjgQGANCm6jk3RjuEdl32+mfRDgFRRgIDAIChfDYn8foMnsRLAgMAgKF8srcU2td5oUQcCQwAAIbyKU5eWbbam4oEpgOchQQAQGwigekAZyEBAGJZ8xwYGz0wzIEBAACR5rO5D4zJRwmYm3oBAIBuix4YAAAM5bMc8lo2ViHZaBttJDAAABjKqzh5bbY3lbmRAwCAboseGAAADGXJYWslEYc5AgCAiPPa3MjO5MMcGUICAADGoQcGAABDNa9CstfeVCQwAAAYqnkjOw5zBAAABmk+SsBO+86LJdKYAwMAAIxDDwwAAIZqHkKy095cJDAdcLlccrlccrvd0Q4FAIAA9o8SMHcMiQSmA3l5ecrLy1NlZaVmzJgR7XAAAMDfkcAAAGCo5o3swu+Bad4Ez8yBJBIYAAAMZVkOW3u5GDyCxCokAABgHnpgAAAwlFcOeW30RXgNHT6SSGAAADCWpTibp1GbiyEkAABgHHpgAAAwVPMQkp1VSBzmCAAAIqx5FZKNISSDlyGRwAAAYKho9MB4PB4988wz2rlzp+rr69W/f39Nnz5dOTk552z7+uuva/369Xrvvffk9XqVnp6uiRMnasyYMSHHwRwYAAAQtCVLlqi0tFSjR4/W7NmzFRcXp3nz5unAgQMdtvvDH/6gH/7wh2pqalJhYaGmT5+u5ORkLV68WKWlpSHHQQ8MAACGsiybq5BCHEKqqKjQ7t27NWvWLE2dOlWSNGbMGBUWFqqkpEQlJSXttv31r3+t1NRUrVy5UklJSZKkgoIC3XXXXdq2bZsmT54cUiz0wAAAYCiv5ZDXirPxCm0Iac+ePYqPj1dBQYG/LDk5Wfn5+Tp48KBqamrabdvQ0KALL7zQn7xIUkJCgi6++GIlJyeH/NlJYAAAQFAOHz6s9PR09erVq1X5oEGDJElHjhxpt+3gwYP1/vvv6+mnn9axY8d0/PhxPfvss6qsrPT35oSCISQAAAxlySGfjUm81t/bVlVVtSpPTU1Vnz59AurX1tYqNTU1oLyl7OTJk+2+1913362PPvpI69ev189//nNJUo8ePbRo0SINGzYs5NhJYAAAMFTLUJCd9pJUXFzcqrywsFDTpk0LqN/Y2KjExMSA8pZhocbGxnbfKzExUV/+8peVm5ur4cOHy+v16oUXXlBxcbGWL1+uq666KqTYSWAAAOjmHnzwQWVkZPh/bquXRWqe79LU1BRQ7vF4/Nfbs3LlSlVUVOjpp59WXFxz4vTNb35T3/3ud/XYY4/pf//3f0OKmQSmAy6XSy6XS263O9qhADgPfTjvxmiH0KF+f2yIdgjtSjxaG+0QYoIlh3whTsT9YntJysjI0IABA85ZPzU1VSdOnAgor61t/v/R1rCTJDU1NWnr1q264447/MmL1DyJ9/rrr9fmzZvV1NTUZu9Oe0hgOpCXl6e8vDxVVlZqxowZ0Q4HAIBW7J9GHVryk5WVpf379+v06dOtJvJWVFT4r7elrq5OXq9XXq83MAavVz6fTz5faCdjswoJAAAEJTc3V16vV1u2bPGXeTwelZWVKTs7W06nU5JUU1PTamJw7969lZKSopdffrnVEFRDQ4P27dunr3zlKyEvpaYHBgAAQzWfhWRjCCnEttnZ2Ro5cqTWrFmjU6dOKS0tTdu3b1d1dbXmz5/vr7d48WKVl5dr7969kqT4+HhNmTJFTz/9tO655x6NGTNGPp9PW7du1YkTJ/Tggw+GHDsJDAAAhvIpTj4bgynhtF24cKGcTqd27Nght9utzMxMLV26VIMHD+6w3Xe/+13169dPzz//vNatW6empib1799fixYtUm5ubshxkMAAAGAon6WQd9P9YvtQJScnq6ioSEVFRe3Weeyxx9osHz16tEaPHh36m7aBOTAAAMA49MAAAGAon805MHbaRhsJDAAAhvLZPI3aTttoMzdyAADQbdEDAwCAoXxyhLwZ3Rfbm4oEBgAAQ/kse/NYwlmFFCsYQgIAAMahBwYAAENZsjeJ1zK4H4MEBgAAQ/nksDWPxeQ5MOamXgAAoNuiBwYAAEP5LIfNowTM7YEhgQEAwFDNO/Ha2ciOBAYAAERYdz5KgDkwAADAOPTAAABgKMvmKiTL4FVIJDAAABiKISQAAACD0APTAZfLJZfLJbfbHe1QAAAIYMneKiSGkM5TeXl5ysvLU2VlpWbMmBHtcAAAaIUhJAAAAIPQAwMAgKG681lIJDAAABjKsjmEZDGEBAAAEDn0wAAAYCifZW8irs/qxGAijAQGAABDdechJBIYAAAM5ZNDDjs9MAZP4mUODAAAMA49MAAAGMonhxwsowYAACbpznNgGEICAADGoQcGAABD+SyH1E3PQiKBAXDeOvrQjdEOoUP9/uiJdggdSvzwVLRDaF/TmWhHEBMsm/vAWAbvA8MQEgAAMA49MAAAGMpn2dsHxuRJvCQwAAAYypK9OTCWwcuoGUICAADGoQcGAABDWXLY7EUxtweGBAYAAEPZXUYty2HsUAwJDAAAhrIs2UxgOi2UiDM18QIAAN0YPTAAABiqM4aQ4jsvnIgigQEAwFSWw9ZeLnb2kIk2hpAAAIBx6IEBAMBQPtnsgWEZNQAAiDTLsnkgI6uQAAAAIoceGAAADGXJIZ+NYaA4hpAAAECkNQ8h2TmNuhODiTCGkAAAgHHogemAy+WSy+WS2+2OdigAAATwWY7mzezCZfA+MCQwHcjLy1NeXp4qKys1Y8aMaIcDAEArdlchmTyERAIDAICx7O0DI4Mn8TIHBgAAGIceGAAADGXZPAvJXu9NdJHAAABgKLuTeDnMEQAAIILogQEAwFCsQgIAAOaxuRMvhzkCAABEED0wAAAYyrK5D4xl8D4wJDAAABjKkr1RIINHkEhgAABA8Dwej5555hnt3LlT9fX16t+/v6ZPn66cnJyg2u/evVvPP/+8/vKXvyghIUEZGRmaPn26rrvuupDiIIEBAMBQ0djIbsmSJXrppZc0adIkpaena9u2bZo3b55WrVqlq6++usO2a9eu1bPPPqvc3FyNHTtWZ86c0fvvv6+TJ0+GHEdQCczPfvazkG/8RTfffLNuvvlm2/cBAAB/F+ExpIqKCu3evVuzZs3S1KlTJUljxoxRYWGhSkpKVFJS0m7bgwcP6tlnn9X3vvc9TZ482UbQzYJKYLZt22brTRwOh/r27UsCAwBAJ4p0D8yePXsUHx+vgoICf1lycrLy8/O1Zs0a1dTUyOl0ttl248aN+tKXvqTbb79dlmXps88+U8+ePcOOPeghpEmTJun2228P+Q0sy9KUKVNCbgcAAGLL4cOHlZ6erl69erUqHzRokCTpyJEj7SYwf/7zn/W1r31Nzz//vNavX6+6ujp96Utf0l133aWJEyeGHEvQCUxKSor69u0b8hsAAIAuYnMn3pYhpKqqqlbFqamp6tOnT0D12tpapaamBpS3lLU3l6W+vl51dXV6++239cYbb6iwsFBOp1Pbtm3TqlWrlJCQoG9961shhR5UAjNnzhwNHDgwpBt3ZnsAABCos/aBKS4ublVeWFioadOmBdRvbGxUYmJiQHlSUpL/elsaGhokSXV1dfrxj3+sUaNGSZJyc3NVWFion//8512TwIR6085uDyB2VS26MdohtOvyfU3RDqFDPar+Fu0QOtboiXYE7fN6ox3BeeXBBx9URkaG/+e2elmk5vkuTU2Bz5XH4/Ffb6+dJCUkJCg3N9dfHhcXp29+85tau3Zth/Nn2hL0ENLu3bs1fPjwNjMvAAAQBZakTjgLKSMjQwMGDDhn9dTUVJ04cSKgvLa2VpLaHHaSpIsuukhJSUlKSUlRfHx8q2u9e/eW1DzMFEoCE/RZSIsWLdI///M/a9WqVTpy5EjQbwAAALpGy2nUdl6hyMrK0rFjx3T69OlW5RUVFf7rbYmLi9OVV16purq6gB6clnkzl1xySUixBJ3AjBo1So2Njfr1r3+t6dOna+bMmfrtb38rt9sd0hsCAAAz5ebmyuv1asuWLf4yj8ejsrIyZWdn+3tQampqAiYGjxw5Ul6vV9u3b/eXNTY2ateuXbriiiva7b1pT9BDSA899JBOnz6tXbt2qaysTJWVlXr33Xf1xBNPaPjw4crPz9e1114b0psDAAAbIryRXXZ2tkaOHKk1a9bo1KlTSktL0/bt21VdXa358+f76y1evFjl5eXau3evv+xb3/qWtm7dqhUrVujo0aNyOp3asWOHampqtGTJkpBDD+kogV69emnChAmaMGGC3n//fW3dulW7du3Srl275HK51K9fP916660aO3asLr300pCDAQAAwYvGUQILFy70Jx9ut1uZmZlaunSpBg8e3GG75ORkrVy5UiUlJSorK9Pnn3+urKwsLV26VEOGDAk5Dodl2VpBrjNnzmjfvn0qKyvTq6++Kp/Pp7i4OOXk5Cg/P18jRoywc/uYUFlZqRkzZihx/5cUd5pJzMDZWIUUvgve+yTaIXSs4bNoR9C+M2eiHUGHtn30RJfev+V7qfqfb1TTpReHfZ/EE3Xq++s/6qmnngpqEm8ssX2YY0JCgkaMGKERI0aotrZWO3bsUFlZmV555RW99tpr+v3vf98ZcQIAgLbY6oYwV6eeRl1fX6+//e1v/om9Njt3AABAB6IxhBQrbCcwDQ0N2r17t8rKynTo0CFZlqUePXpozJgxys/P74wYAQBAWyI8iTeWhJ3AlJeXa+vWrdq7d68aGxtlWZYGDhyo/Px85eXl2TphEgAAoCMhJTAnTpzQtm3btG3bNn300UeyLEsXXXSRxo8fr/z8fGVmZnZVnAAAIIDj7y877c0UdAIzd+5cvf766/L5fHI4HLruuuuUn5+vYcOGcbwAAADRwBDSub366qtyOp0aN26cbr311pDOKwAAAOhMQScwy5Yt0ze+8Q05HOZ2NwEAcF6hB+bccnJy2iz/4IMPVFVVpc8//1xjxozptMAAAMA5WA6bp1Gb2ykR9iqkQ4cO6dFHH9V7773nL2tJYMrLyzV37lz9+Mc/1s0332w/SgAAgLMEfRr12d5//339x3/8hz766CNNmjRJ119/favr11xzjS6++GK99NJLnREjAABoh2WF/zJZWAnM2rVrJUlPPfWUvve972ngwIGtrjscDl111VV655137EcIAADaZnXCy1BhJTDl5eUaMWKE0tPT263jdDpVW1sbdmAAAOAcLP1jHkxYr2h/gPCFlcB89tln6t27d4d1Ghsb5fP5wgoKAACgI2FN4r300ktbTd5ty7vvvqvLL788rKAAAEAQLMnRTZdRh9UDc+ONN+q1117T66+/3ub13/3ud6qoqNCwYcNsBQcAADrQjefAhNUDc9ddd+mll17SvHnzNHbsWH3yySeSpM2bN+vgwYPavXu3+vbtq8mTJ3dqsAAAAFKYCcwll1yi1atXq7i4WFu3bvWXr1y5UpKUnZ2thx56SCkpKZ0SJAAAaIvNjey6w2GOX3T55ZfrySef1OHDh1VRUaFPP/1UPXv2VHZ2tgYNGtSZMQIAgLZwlEBo9u7dq+HDh0uSrrzySl155ZVt1lu9erXuvffe8KMDAABoQ1iTeH/605/qzTff7LDO6tWrtWnTprCCAgAAQejGk3jDSmAuv/xyLViwoN2l1I8//rief/75mDoH6dFHH9WECRM0duxY3X333dq3b1+0QwIAwB4SmNA8+uij6tmzp+bOnauamppW15588klt3LhRN998sx5++OFOCbIzTJ48WaWlpdq+fbseeOABFRcXq66uLtphAQCAMISVwFx22WVatmyZGhsb9cMf/tCfCDz55JPasGGDbrzxRj388MOKj4/v1GDtyMjIUFJSkqTms5qampp08uTJKEcFAIANto4RsLuCKbrCXoV0xRVXaOnSpZozZ47mzp2rq6++Whs3btQNN9ygn/70p0pICPvWamho0HPPPaeKigodOnRI9fX1WrBggcaNGxdQ1+Px6JlnntHOnTtVX1+v/v37a/r06crJyQmou3z5cpWVlcnj8Wjo0KHKzMwMO0YAAKLNIXs78ZqbvoTZA9Piqquu0k9+8hMdOXJEzz//vIYOHari4mJbyYsk1dXVad26daqqqlJWVlaHdZcsWaLS0lKNHj1as2fPVlxcnObNm6cDBw4E1J0zZ4527NihFStWKCcnRw6Hyf/rAADdXjeeAxNUprF9+/YOr+fk5KiiokI33XSTXC5Xq2tjx44NOajU1FRt3rxZqampeueddzRz5sw261VUVGj37t2aNWuWpk6dKkkaM2aMCgsLVVJSopKSkoA28fHxuu6667Rx40alp6frhhtuCDk+AAAQXUElMEuWLGmzt8KyLDkcDllWcwq3fPnyVmUOhyOsBCYpKUmpqannrLdnzx7Fx8eroKDAX5acnKz8/HytWbNGNTU1cjqdbbb1er06fvx4yLEBAIDoCyqBeeCBB7o6jrAcPnxY6enp6tWrV6vylp2Ajxw5IqfTKbfbrT/96U+66aablJSUpJdffln79+9vt2cHAAATOGyeRm3rJOsoCyqBaWvybCyora1ts6empaxllZHD4dCLL76oFStWyLIspaWl6Uc/+lG7OwifPHlStbW1/p+rqqq6IHoAABAue7Nto6yxsVGJiYkB5S3LpRsbGyVJvXr10qpVq4K+75YtW7Ru3bpOiRGw671lsT1P6/KXvdEOoV09jn8a7RA65vFEO4KO+XzRjgDnYncp9Pm+jLqpqUnx8fGKiwtv0ZLd9u1JTk5WU1NTQLnn738pJCcnh3XfgoIC3XTTTf6fq6qqVFxcHF6QAAB0lW58mGNQGcXo0aO1fv36sN/Ebvv2pKamthrqadFS1qdPn7Du26dPHw0YMMD/ysjIsBUnAADoXEElMJZl+VcahcNu+/ZkZWXp2LFjOn36dKvyiooK/3UAAM5r3XAPGCmEOTDbtm3T/v37w3qTrtowLjc3V88995y2bNni3wfG4/GorKxM2dnZ7S6hBgDgfMAqpCBUV1erurq6K2NpZdOmTXK73f7hoH379unjjz+WJE2cOFEpKSnKzs7WyJEjtWbNGp06dUppaWnavn27qqurNX/+/IjFCgAAIiuoBGbPnj1dHUeADRs2tEqY9u7dq71790qSbrnlFqWkpEiSFi5cKKfTqR07dsjtdiszM1NLly7V4MGDIx4zAAAR1Y0n8cbsMurS0tKg6iUnJ6uoqEhFRUVdHBEAADGGBAZtcblccrlccrvd0Q4FAIAAzIFBm/Ly8pSXl6fKykrNmDEj2uEAAIC/I4EBAMBYNnfi1Xm+Ey8AAIhB3XgOTOfu7Q8AABAB9MAAAGAqm5N4Te6BIYEBAMBU3XgIyVYCc/jwYR05ckS1tbU6c+ZMwHWHw6G7777bzlsAAAAECCuB+dvf/qZFixb5z0Zq76BGEhgAALoO+8CEaMWKFXrjjTc0dOhQjRo1SqmpqYqPj+/s2AAAwLkYnITYEVYC8+qrr+raa6/V0qVLOzuemMJOvAAAxKawEpiEhAQNGDCgs2OJOezECwCIaUziDc3VV1+tw4cPd3YsAAAgBN15DkxYG9nNnDlTlZWV2rRpU2fHAwAAcE5h9cBcccUVevzxx/X9739fmzZtUv/+/dWrV6826z7wwAO2AgQAAPiisBKYDz/8UAsXLpTb7Zbb7dbx48fbrOdwOEhgAADoKsyBCc2qVav04Ycf6lvf+pby8vJYRg0AQBR05zkwYSUwb775pm688UbNmTOns+MBAAA4p7ASmMTERH35y1/u7FgAAECoDO5FsSOsBCYnJ0dvv/12Z8cCAABC0Y3nwIS1jLqoqEi1tbV68skn1djY2NkxxQyXy6UHHnhAq1evjnYoAADgLGH1wPz0pz9VSkqKSktL9cILLyg9PV09e/YMqOdwOLRy5Uq7MUYNO/ECAGIZk3hDVF5e7v/vhoYGvfvuu23WczgcYQUFAACCEIUhJI/Ho2eeeUY7d+5UfX29+vfvr+nTpysnJyek+8yZM0evv/66vv3tb+sHP/hByHGElcDs2bMnnGYAAMBwS5Ys0UsvvaRJkyYpPT1d27Zt07x587Rq1SpdffXVQd1jz549OnjwoK04wpoDAwAAYoD1j2GkcF6h9sBUVFRo9+7dmjlzpoqKilRQUKCVK1eqb9++KikpCeoejY2NeuKJJ3THHXeE/nnP0mUJTFNTk06fPt1VtwcAANI/hpHCeYVoz549io+PV0FBgb8sOTlZ+fn5OnjwoGpqas55j1/96leyLEtTpkwJPYCzBJ3AfOc739Hzzz/fquzVV1/V448/3mb9X/ziF8rPz7cVHAAA6ICd5CWMJObw4cNKT08POP9w0KBBkqQjR4502L6mpkb/93//p3vuuUfJycmhvfkXBJ3AVFdXy+12tyo7ePBgQFIDAADMUlVVpcrKSv/r5MmTbdarra1VampqQHlLWXvtWjzxxBO68sorNWrUKNsxhzWJFwAARF9nLaMuLi5uVV5YWKhp06YF1G9sbFRiYmJAeVJSkv96e9544w3t2bNH//M//xN+wGchgUG3d/j/fSPaIXSo3/bY3qih5wf10Q6hXY6GGN9o04rt/7dKCvyiihltfIl2S520jPrBBx9URkaGv7itXhapeb5LU1NTQLnH4/Ffb8uZM2e0atUq3XLLLf7hJrtIYAAA6OYyMjI0YMCAc9ZLTU3ViRMnAspra2slSX369Gmz3Y4dO3T06FHdf//9+uijj1pda2ho0EcffaTevXurR48eQcdMAgMAgKkivJFdVlaW9u/fr9OnT7eayFtRUeG/3paamhqdOXNG3/ve9wKu7dixQzt27NDixYs1bNiwoGMhgQEAwFAO2ZwDE2L93NxcPffcc9qyZYumTp0qqXn4qKysTNnZ2XI6nZKaE5bPP//cPyw1atQoXXnllQH3+8///E8NHTpUt912W8hDSyElMDt37my1c97x48clSXPnzg2o23LNZC6XSy6XK2D1FQAA3VF2drZGjhypNWvW6NSpU0pLS9P27dtVXV2t+fPn++stXrxY5eXl2rt3r6TmIaqz59icrV+/fiH1vLQIKYE5fvx4m4nJq6++2mZ9089C4jBHAEBMi8JZSAsXLpTT6dSOHTvkdruVmZmppUuXavDgwTYCCV3QCcyGDRu6Mg4AABCiaJxGnZycrKKiIhUVFbVb57HHHgvqXi09NOEIOoHp27dv2G8CAADQmZjECwCAqaIwhBQrSGAAADAVCQwAADCNQ6Evhf5ie1MFfZgjAABArKAHBgAAkxk8DGQHCQwAAKayuYza5OSHISQAAGAcemAAADAVq5AAAIBxunECwxASAAAwDj0wHeA0agBALIvGWUixggSmA5xGDQCIaQwhAQAAmIMeGAAADOWQzSGkTosk8khgAAAwVTceQiKBAQDAUN15Ei9zYAAAgHHogQEAwFQMIQEAAON04wSGISQAAGAcemAAADAUy6gBAIB5GEICAAAwBz0wAACYyrLksGx0o9hpG2UkMAAAmIohJAAAAHPQAwMAgKEcNntgTD5KgAQGAACTGZyE2EEC0wGXyyWXyyW32x3tUAAACEAPDNqUl5envLw8VVZWasaMGdEOp2OO2J7OdGZXerRDaFe/p2P7MbjocH20Q+hQnPuzaIfQvjNnoh1Bx7y+aEfQsVheoXLGG+0IEGWx/Tc3AABoXzdehUQCAwCAobrzEFJsjzsAAAC0gR4YAABMxRASAAAwjUOyN4TUWYFEAUNIAADAOPTAAABgKsuyt9w9lpfKnwMJDAAAprJsriQyN39hCAkAAJiHHhgAAEzFKiQAAGAahyXJzokUJDAAACDiunEPDHNgAACAceiBAQDAUHbPQjK5B4YEBgAAU3XjfWAYQgIAAMahBwYAAEMxhAQAAMxkcBJiB0NIAADAOPTAAABgKIaQAACAebrxKiQSmA64XC65XC653e5ohwIAAM5CAtOBvLw85eXlqbKyUjNmzIh2OAAAtMIQEgAAMA8JDAAAMJHDzhSYzgsj4lhGDQAAjEMPDAAApvLJXheMr9MiiTgSGAAATNWN58AwhAQAAIxDDwwAAIZyWPZGkGSF3gnj8Xj0zDPPaOfOnaqvr1f//v01ffp05eTkdNhuz549+t3vfqd33nlHn3zyiS677DLdcMMNuvvuu3XhhReGHDo9MAAAGMv6x2684bzCGENasmSJSktLNXr0aM2ePVtxcXGaN2+eDhw40GG7ZcuWqaqqSrfccovuu+8+DRkyRJs3b9asWbPU2NgYchz0wAAAgKBUVFRo9+7dmjVrlqZOnSpJGjNmjAoLC1VSUqKSkpJ22y5atEjXXnttq7IBAwbov/7rv7Rr1y6NHz8+pFjogQEAwFAtQ0h2XqHYs2eP4uPjVVBQ4C9LTk5Wfn6+Dh48qJqamnbbfjF5kaThw4dLkj744IPQAhEJDAAA5rI64RWCw4cPKz09Xb169WpVPmjQIEnSkSNHQrpfbW2tJOmSSy4JLRAxhAQAQLdXVVXV6ufU1FT16dMnoF5tba1SU1MDylvKTp48GdL7/vKXv1R8fLxGjBgRUjuJBAYAAGM5LEsOy85ZAs1ti4uLWxUXFhZq2rRpAdUbGxuVmJgYUJ6UlOS/Hqxdu3Zp69atmjp1qr785S+HErUkEpjQOOKaXzHo1rf/Fu0QOrTpPzteXhdNF//lVLRD6JCjzh3tEDr2eeirByLF8jRFO4SO2fniiQRfDG/TGhebfxdHnCV7u+n+/VfwwQcfVEZGhr+4rV4WqXm+S1NT4HPl8Xj814Px5ptvaunSpRoyZIhmzJgRYtDNSGAAADCUw7LksLOd7t+T6IyMDA0YMOCc1VNTU3XixImA8pa5LG0NO33RkSNHtGDBAmVmZmrRokVKSAgvFSGFBQAAQcnKytKxY8d0+vTpVuUVFRX+6x05fvy47r//fvXu3VuPPPKIevbsGXYsJDAAAJgqwquQcnNz5fV6tWXLFn+Zx+NRWVmZsrOz5XQ6JUk1NTUBE4Nra2v1wx/+UHFxcVq2bFlYK4/OxhASAACmCnM33dbtg5edna2RI0dqzZo1OnXqlNLS0rR9+3ZVV1dr/vz5/nqLFy9WeXm59u7d6y+bO3euPvzwQ02dOlVvvfWW3nrrLf+13r17n/Mogi8igQEAAEFbuHChnE6nduzYIbfbrczMTC1dulSDBw/usF3LHjG/+tWvAq4NHjyYBAYAgG7Dkhx2mofReZOcnKyioiIVFRW1W+exxx4LKDu7N6YzkMAAAGCyWF+O30WYxAsAAIxDDwwAAIZy+OwNITkkY7sySGAAADCV3VVIttpGl6F5FwAA6M7ogQEAwFTmdqDYRgIDAICh7J6FZOscpSgjgQEAwFiWvWXUDnMTGObAAAAA49ADAwCAqXyyNw/GzhrsKCOBAQDAUA7LksPGEBJzYM5TLpdLLpdLbrc72qEAAICzkMB0IC8vT3l5eaqsrNSMGTOiHQ4AAK1Z6rZnIZHAAABgLFYhAQAAGIMeGAAATOX7+6sbIoEBAMBQtlchGTx/hiEkAABgHHpgAAAwlWVzEq/BPTAkMAAAGMtmAsNGdgAAIOLs7gNjbv7CHBgAAGAeemAAADCV3WXUHOYIAAAizuYyapMn8TKEBAAAjEMPDAAAxmIVEgAAMI3Pan7ZaW8ohpAAAIBx6IEBAMBU7MQLAACM0403siOBCcET29/RVzPPRDuMNo2Z+N1oh9ChC997P9ohtMtX7452CB2yzsTm71wLK5bH0C07G2QAiGUkMAAAGItVSAAAwDTdeBUSCQwAAKayfPaGSg0eZmUZNQAAMA49MAAAmIpVSAAAwDiWzTkwBu8DwxASAAAwDj0wAACYip14AQCAcbpxAsMQEgAAMA49MAAAmKob98CQwAAAYCrLknx2NrIzN4FhCAkAABiHHhgAAEzFEBIAADAOCQwAADAOO/ECAACYgx4YAABMZVmyrO65CokEBgAAU/lsDiHZaRtlDCEBAADj0AMDAICpWIUEAACMY/ls7sRro22UMYQEAACMQw8MAACmsmRzCKnTIok4EhgAAAxl+XyybAwh2WkbbQwhAQAA49ADAwCAqViFdH7zeDxavny5Xn/9dbndbl1xxRX6/ve/r6997WvRDg0AgPBxFtL5zev1qm/fvnriiSdUVlamSZMmacGCBWpoaIh2aAAAhM+ympdCh/0igYlpF1xwgQoLC+V0OhUXF6dRo0YpISFBR48ejXZoAAAgDDE5hNTQ0KDnnntOFRUVOnTokOrr67VgwQKNGzcuoK7H49EzzzyjnTt3qr6+Xv3799f06dOVk5PT7v2PHj2q+vp6paWldeXHAACgS1k+S5aNIaRw2obzvdvixIkTevzxx/Xaa6/J5/Pp2muv1b333qvLL7885Dhisgemrq5O69atU1VVlbKysjqsu2TJEpWWlmr06NGaPXu24uLiNG/ePB04cKDN+o2NjSouLtadd96plJSUrggfAIAIsTN85GtuH6JQv3dbNDQ06L777lN5ebn+5V/+RdOmTdPhw4d17733qq6uLuQ4YjKBSU1N1ebNm7Vx40bNmjWr3XoVFRXavXu3Zs6cqaKiIhUUFGjlypXq27evSkpKAuqfOXNGDz30kNLS0lRYWNiFnwAAgPNPqN+7Z/vNb36jY8eO6Wc/+5nuuOMOTZ48Wf/93/+tTz75RBs2bAg5lphMYJKSkpSamnrOenv27FF8fLwKCgr8ZcnJycrPz9fBgwdVU1PjL/f5fCouLpbD4dDChQvlcDi6JHYAACKluSPFsvEK7f1C+d79opdeekkDBw7UoEGD/GUZGRn6+te/rt///vchf/aYTGCCdfjwYaWnp6tXr16tylv+cI4cOeIvW7ZsmWpra/Xwww8rISEmp/4AABAaWyuQWoaRghfK9+7ZfD6f3nvvPQ0cODDg2qBBg3T8+PGQVwYb/U1eW1vbZk9NS9nJkyclSdXV1XrxxReVlJTUKmt85JFHdM011wS0P3nypGpra/0/t/wPqToe36nxdyafPo12CB3yJn8W7RDaZZ1pjHYIHfN6ox1Bh+xMIOx65m6TDrNVVlYqIyNDPXr06NL3sXqesfVbbvU8I0mqqqpqVZ6amqo+ffoE1A/2e/eLPv30U3k8nnO2/cpXvhJ07EYnMI2NjUpMTAwoT0pK8l+XpL59+2rv3r1B33fLli1at25dQPni1b3DCzQS4v+/aEfQoabgfycBwHgzZszQo48+quuvv75L7n/JJZeoR48e+nyA/X+8JiQkqLi4uFVZYWGhpk2bFlA32O/dttpJCqttu3GHVDvGJCcnq6mpKaDc4/H4r4ejoKBAN910k//nQ4cOafny5Zo/f/45V0WdL1avXq1777032mFIikwsnfkedu8VTvtQ2nRm3aqqKhUXF+vBBx9URkZGUPc0Gc9F9O7V1c9FKPWDfS4uuOCCoN87VE6nU+vXr9epU6ds38vn8ykurvWMkvbmoYb7vdtS3pnf2UYnMKmpqTpx4kRAecvwT1vdX8Ho06dPm22zsrI0YMCAsO5pmpSUlJj5rJGIpTPfw+69wmkfSpuuqJuRkREzvy9diecievfq6ucilPrB1gv3H9HBcjqdcjqdXfoeXxTu9+5FF12kpKSkVtMzgm3bHqMn8WZlZenYsWM6ffp0q/KKigr/dYQnLy8v2iH4RSKWznwPu/cKp30obbqqbncQS38ePBed3ybY+rH0exBp4X7vxsXFKTMzU++8807AtYqKCl1++eXq2bNnSLEYncDk5ubK6/Vqy5Yt/jKPx6OysjJlZ2dHPDM9n8TSA8pf1J3bhgQmfLH058Fz0fltSGDOLdjv3ZqamoCJwSNGjNA777zTKon561//qv379ys3NzfkWGJ2CGnTpk1yu93+rqV9+/bp448/liRNnDhRKSkpys7O1siRI7VmzRqdOnVKaWlp2r59u6qrqzV//vxOiyU1NVWFhYVB7U0DdCc8G0Cg8/m5CPZ7d/HixSovL2+1gObb3/62XnzxRc2fP19TpkxRfHy8SktL1bt3b02ZMiXkWByWFZtHUU6ePFnV1dVtXtuwYYP69esnqXnWcsuZDG63W5mZmZo+fbqGDBkSyXABAOgWgvnenT17dkACI0kff/xxwFlI3//+95Wenh5yHDGbwAAAALTH6DkwscTj8ehnP/uZbr/9do0dO1b33HOP3n777WiHBUTdo48+qgkTJmjs2LG6++67tW/fvmiHBMSMt99+WyNGjNCzzz4b7VCMQw9MJ/nss8+0YcMGjRs3Tpdeeql+//vfa+XKldqwYUPIM6uB80lVVZX69eunpKQkHTp0SHPmzNFzzz2niy++ONqhAVHl8/lUVFQky7J044036u677452SEahB6aTXHDBBSosLJTT6VRcXJxGjRqlhIQEHT16NNqhAVGVkZHh32nT4XCoqamp3e3Gge7khRde0KBBg7rFJpBdIWZXIXW1hoYGPffcc6qoqNChQ4dUX1+vBQsWaNy4cQF1PR6Pf8JSfX29+vfvr+nTpysnJ6fd+x89elT19fVKS0vryo8BdKquei6WL1+usrIyeTweDR06VJmZmZH4OECn6Irnoq6uThs3blRJSYlWr14dqY9yXum2PTB1dXVat26dqqqqzrnh3ZIlS1RaWqrRo0dr9uzZiouL07x583TgwIE26zc2Nqq4uFh33nmnUlJSuiJ8oEt01XMxZ84c7dixQytWrFBOTo4cDkdXfQSg03XFc/HUU09p0qRJuvDCC7sy9POb1U01NjZaJ0+etCzLsg4dOmQNGzbMKisrC6h38OBBa9iwYdYvf/lLf9nnn39uTZkyxbrnnnsC6jc1NVnz5s2zHn74Ycvn83XdBwC6QFc9F2ebP3++9cc//rFzAwe6UGc/F5WVlda//du/WWfOnLEsy7IWL15srVu3ros/xfmn2/bAJCUlBbXJ0J49exQfH6+CggJ/WXJysvLz83Xw4EHV1NT4y30+n4qLi+VwOLRw4UL+lQnjdMVz8UVer1fHjx/vlHiBSOjs56K8vFxHjx7VxIkTNWHCBP3ud7/TL3/5Sy1ZsqTLPsP5qNvOgQnW4cOHlZ6erl69erUqHzRokCTpyJEj/q2Tly1bptraWi1btkwJCfzR4vwV7HPhdrv1pz/9STfddJOSkpL08ssva//+/Zo5c2Y0wga6VLDPRUFBgUaNGuW//thjj6lfv3668847Ixqv6fiWPYfa2to2M++WspbVFNXV1XrxxReVlJTUKvt+5JFHdM0110QmWCBCgn0uHA6HXnzxRa1YsUKWZSktLU0/+tGPdOWVV0Y0XiASgn0uevTooR49evivJycn64ILLmA+TIhIYM6hsbFRiYmJAeUty0IbGxslSX379g3YMhk4XwX7XPTq1UurVq2KaGxAtAT7XHzRwoULuzSu81W3nQMTrOTkZDU1NQWUezwe/3Wgu+G5AALxXEQWCcw5pKam+k/EPltLWZ8+fSIdEhB1PBdAIJ6LyCKBOYesrCwdO3ZMp0+fblVeUVHhvw50NzwXQCCei8gigTmH3Nxceb1ebdmyxV/m8XhUVlam7Oxs/wokoDvhuQAC8VxEVreexLtp0ya53W5/996+ffv08ccfS5ImTpyolJQUZWdna+TIkVqzZo1OnTqltLQ0bd++XdXV1Zo/f340wwe6BM8FEIjnIvZ069OoJ0+erOrq6javbdiwQf369ZPUPHO85WwLt9utzMxMTZ8+XUOGDIlkuEBE8FwAgXguYk+3TmAAAICZmAMDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDAACMQwIDnOcmT56syZMnB1V327ZtGj58uP/1k5/8pNX12bNna/jw4V0QZXjuueeeVvHu378/2iEBiJCEaAcAIHgfffSRvvOd73RYp2/fviotLbX1PjfffLOysrKUmZlp6z7BWLRokVwulx566CHl5eW1W+/06dOaMGGCEhMTtXnzZiUnJ2v8+PEaMmSIysvLVV5e3uWxAogdJDCAgdLS0jR69Og2r6WkpLT6ecWKFSHff9iwYRo3blxYsYUqPz9fLpdLZWVlHSYwLpdLjY2NGjt2rJKTkyVJ48ePlyStXbuWBAboZkhgAAOlpaVp2rRpQdeNZV//+tfVr18/vfHGG6qpqZHT6WyzXllZmaTmhAcAmAMDnOdCmQMTrt27d2vUqFH613/9V508edJfXl5ergceeEC33XabRo0apalTp+qpp57S559/7q/jcDh06623yufz+ZOUL3r//fd16NAh9e/fXwMHDuzSzwLADCQwAGzZtGmTFi1apOzsbK1evVp9+vSRJP3mN7/Rfffdp7feektDhw7VxIkTddlll2n9+vWaM2eOmpqa/PcYO3as4uLitG3bNlmWFfAe9L4A+CKGkAADHT9+XGvXrm3z2lVXXaXrr78+InE89dRTWr9+vYYNG6aHHnrIPzflgw8+0KpVq9S/f3+tWLFCF198sb/NL37xC61Zs0abNm3SlClTJElOp1M5OTl65ZVX9MYbb+i6667z1z9z5ox27dqlpKQk3XLLLRH5XABiHwkMYKDjx49r3bp1bV67/fbbuzyB8Xq9WrZsmbZu3arbbrtNc+bMUXx8vP/6b3/7W3m9Xt13332tkhdJuuOOO1RaWqrdu3f7ExipuXfllVde0datW1slMH/605/0ySefaOTIkbrooou69HMBMAcJDGCgIUOGaNmyZVF7/x/96Ef6wx/+oLvuukszZswIuF5RUSFJevXVV/XnP/854HpCQoL++te/tiq7+eabdckll+jll1+W2+32r6baunWrJIaPALRGAgMgZG+++aaSkpI0dOjQNq9/+umnkqT169cHfc+EhATdcsstKi0tlcvl0oQJE1RbW6tXXnlFTqdT3/jGNzoldgDnBxIYACFbsWKF5syZo7lz5+rRRx/VP/3TP7W63qtXL0nS9u3b1bNnz6DvO378eJWWlmrr1q2aMGGCdu7cKa/Xq3HjxikujjUHAP6BvxEAhOyrX/2qVq5cqcTERM2dO1dvvfVWq+vZ2dmSpIMHD4Z03yuuuEJXXXWVKisr9Ze//EVlZWX+ZdYAcDYSGABhycrK8icx999/vw4cOOC/NmHCBMXHx2vVqlWqqakJaFtfX6933323zfu2zHVZvny5qqqqdN1116lv375d8yEAGIshJMBAHS2jlqQ777zTv6S5K/Xv318rV67UD37wA82dO1ePPPKIrrnmGmVmZmrOnDlavny57rzzTg0dOlRpaWlqaGjQhx9+qDfffFNjx47V/fffH3DPb37zm1q9erW/V4fJuwDaQgIDGKijZdSSNGnSpIgkMFLrJGbevHlaunSpBg8erNtuu01ZWVkqLS3Vm2++qT/+8Y/q1auXnE6nJk2apLFjx7Z5v549e2rkyJEqKyvTRRddpGHDhkXkcwAwi8Nqa9tLAN3Stm3btGTJEi1YsCBihzl2hrVr12rdunVatWqVrr322miHAyACmAMDIMCSJUs0fPhw/eQnP4l2KB265557NHz48A57owCcnxhCAuCXlZWlwsJC/8+ZmZnRCyYI48eP15AhQ/w/M9kX6D4YQgIAAMZhCAkAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABiHBAYAABjn/wd5LNJINnmjcwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "drm.get_dispersion_matrix().plot();" + ] + }, + { + "cell_type": "markdown", + "id": "aac9aaff-8b5b-4ce6-a84e-5552ea0ac5ad", + "metadata": {}, + "source": [ + "## Point source response and expected counts" + ] + }, + { + "cell_type": "markdown", + "id": "efb6da4d-1c70-473a-8137-05a9bb2ba063", + "metadata": {}, + "source": [ + "Once we have the response, the next step is usually to get the expected counts for a specific source. However, it is not trivial for the case of a spacecraft because the response we have here is the detector response. This response records the detector effects to given points viewed from the reference frame attached to the spacecraft (SC).\n", + "\n", + "A source with a fixed position on the sky is moving from the perspective of the spacecraft (detector). Therefore, we need to convert the coordinate of a source to the reference frame, which results in a moving point viewed the spacecraft. By convolving the trajectory of the source in the spacecraft frame with the detector response, we will get the so-called point source response.\n", + "\n", + "See the spacecraft file tutorial for a discussion of the SC attitude history, transformations to/from galactic coordinates, and the dwell time map." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "cd6dd9bd-02c3-4116-b291-b8eaba8a05cc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n" + ] + } + ], + "source": [ + "# read the full oritation\n", + "ori = SpacecraftFile.parse_from_file(ori_path)\n", + "\n", + "# define the target coordinates (Crab)\n", + "target_coord = SkyCoord(184.5551, -05.7877, unit = \"deg\", frame = \"galactic\")\n", + "\n", + "# get the target movement in the reference frame attached to the detector\n", + "target_in_sc_frame = ori.get_target_in_sc_frame(target_name = \"Crab\", target_coord = target_coord)\n", + "\n", + "# Get the dwell time map\n", + "dwell_time_map = ori.get_dwell_map(response = response_path, src_path = target_in_sc_frame)" + ] + }, + { + "cell_type": "markdown", + "id": "17277018-0380-4daf-bf41-fe1fac44d0ab", + "metadata": {}, + "source": [ + "We can now convolve the exposure map with the full detector response, and get a PointSourceResponse" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "f6edcf60-c017-40d9-92b5-e85f612d7eeb", + "metadata": {}, + "outputs": [], + "source": [ + "with FullDetectorResponse.open(response_path) as response:\n", + " psr = response.get_point_source_response(exposure_map = dwell_time_map, coord = target_coord)" + ] + }, + { + "cell_type": "markdown", + "id": "e7ce6363-066e-4a2b-9fdc-bf2ca03d0d89", + "metadata": {}, + "source": [ + "Note that a PointSourceResponse only depends on the path of the source, not on the spectrum of the source. It has units of area*time" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "62b557b0-c988-4859-b5c7-f3709e47a9ae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$\\mathrm{cm^{2}\\,s}$" + ], + "text/plain": [ + "Unit(\"cm2 s\")" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "psr.unit" + ] + }, + { + "cell_type": "markdown", + "id": "5b014e8e-21ca-4d97-8436-2292b2a5c132", + "metadata": {}, + "source": [ + "Finally, we convolve a spectrum to get the spected excess for each *measured* energy bin:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "9976cfa6-fec0-4ef5-b448-20aee8678946", + "metadata": {}, + "outputs": [], + "source": [ + "index = -2.2\n", + "K = 10**-3 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + " \n", + "expectation = psr.get_expectation(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0c929b25-4b09-475f-bcdd-ac7dfba10e84", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Expected counts')" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHOCAYAAABwyLYDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCH0lEQVR4nO3deViVdf7/8RegLAKKQpKpaaKxVJJlOqUpYiVmOaVpVpZWauaS1bcRpbJNs8XJLMsyTVrGCZfRrBSXVCjMskYrRVwTcUEFAdk8IJzfH/04MwyLcDiHc+B+Pq6rK89nuc/7NHNfvfrcn/u+Xcxms1kAAAAG4uroAgAAAOobAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABhOE0cX0BAUFBToiy++UHJysvbu3avc3FxNnz5dAwcOrNNxf/75Z3322Wfav3+/SktL1b59e913333q37+/jSoHAACVIQDVQE5OjmJjYxUYGKjOnTtr586ddT7m2rVr9frrr6t79+4aO3as3NzcdPToUZ0+fdoGFQMAgOoQgGrA399fq1atkr+/v1JSUjRu3Lg6He/kyZOaO3euhgwZoilTptioSgAAUFMEoBpwd3eXv79/jcZu375dn3/+ufbv3y8XFxeFh4fr8ccf1xVXXGEZ8+WXX6q0tFSPPvqopD8vsXl5ecnFxcUu9QMAgPLYBG1D69evV3R0tLy8vPTYY49p1KhROnLkiCZOnKiTJ09axv3yyy+6/PLLtX37dg0dOlRRUVG64447tGjRIpWWljrwFwAAYAysANlIQUGB5s2bpzvuuEN/+9vfLO1RUVEaOXKkPv/8c0v7sWPH5Orqqtdee0333XefgoKClJiYqE8//VQlJSV67LHHHPUzAAAwBAKQjfz888/Ky8tT//79lZ2dbWl3dXVVaGio/v3vf1vaCgsLVVpaqscee0wPPPCAJCkiIkK5ublasWKFHnzwQTVr1qy+fwIAAIZBALKRY8eOSZKefPLJSvu9vb0tf/bw8FBhYaFuueWWcmP69++vH3/8Ufv379e1115rr1IBADA8ApCNlO3dee6559SqVasK/W5ubpY/+/v769ixY2rZsmW5MWWfc3Nz7VgpAAAgANlI27ZtJUl+fn7q3r17tWODg4N17NgxZWRk6LLLLrO0Z2RkWI4BAADsh7vAbKRHjx7y9vbW559/rgsXLlTo/+99QZGRkZKkb775xtJWWlqqdevWqXnz5goODrZ7vQAAGBkrQDW0cuVK5eXlKTMzU5KUlJRkeWrz0KFD5ePjo6efflqzZs3So48+qv79+8vPz0+nTp3S9u3bdfXVV+upp56SJPXu3VvXX3+9Pv/8c2VnZ6tz58767rvv9Ntvv+mZZ56Ru7u7w34nAABG4GI2m82OLqIhGD58uNLT0yvti4uLU5s2bSRJO3fu1D/+8Q8lJyerqKhIl1xyibp27aohQ4aUW9kpKCjQokWLtHnzZuXm5qp9+/a6//77ddttt9XL7wEAwMgIQAAAwHDYAwQAAAyHAAQAAAyHAFSF8+fPa9++fTp//ryjSwEAADZGAKpCamqqxo4dq9TUVEeXAgAAbIwABAAADIcABAAADMfpH4T46aefatGiRbriiiv0ySefXHT8mTNnNH/+fO3YsUOlpaXq1q2bJk+eXO6VEwAAwNicegXo9OnT+vzzz+Xl5VWj8QUFBZoyZYp27dqlkSNH6pFHHtGBAwc0efJk5eTk2LlaAADQUDj1CtD777+vsLAwlZaW1ijArF69WseOHdOHH36o0NBQSVLPnj01evRoxcXFady4cfYuGQAANABOuwK0a9cuJSQkaPLkyTWes3XrVoWEhFjCjyR16NBB1113nbZs2WKPMgEAQAPklAGopKRE8+bN06BBgxQUFFSjOaWlpTp8+LBCQkIq9IWGhur48eMqKCiwdakAAKABcspLYF9++aVOnTqluXPn1njOuXPnVFRUJH9//wp9ZW0ZGRm6/PLLK52fkZFhedO7JJ7/AwBAI+Z0ASgnJ0cff/yxHnroIfn5+dV4nslkkiQ1bdq0Qp+7u3u5MZVZs2aNYmNja1UrAABomJwuAC1atEi+vr4aOnRoreZ5eHhIkoqLiyv0FRUVlRtTmcGDB6tXr16Wz6mpqZo5c2atagAAAA2DUwWgtLQ0ffXVV5o8ebIyMjIs7UVFRbpw4YJOnjwpb29vNW/evMLc5s2by93dvdxlrDJlbQEBAVV+d0BAQLX9AACg8XCqAJSRkaHS0lLNmzdP8+bNq9B/77336p577tETTzxRoc/V1VWdOnVSSkpKhb7k5GRddtllatasmV3qBgAADYtTBaArrrhCs2bNqtC+aNEiFRQU6IknnrA80fnUqVM6f/68OnToYBnXt29fffjhh0pJSbHcDXb06FHt3LlT9957b/38CAAA4PScKgD5+fnp5ptvrtC+fPlySSrXN2vWLO3atUuJiYmWtrvvvltff/21oqOjNWLECLm5uWnZsmVq2bKlRowYYf8fAAAAGgSnCkB11axZM82bN0/z58/Xp59+ankX2KRJk2p1RxkAAGjcXMxms9nRRTijffv2aezYsfroo48UHBzs6HIc6vD2k/plxQEVn7/g6FJqpalnE3Uf1kVX9Gzj6FIAAE6mUa0AwT5+WXFAOSfyHV2GFUz6efkBAhAAoAICEC6qbOXHxUXyaln1s5ScSWGWSWazGtyqFQCgfhCAUGNeLT10//xIR5dRI0snbVbB2aqf/A0AMDanfBkqAACAPRGAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4TRxdAH/648//tCSJUu0b98+nT17Vp6enurQoYPuu+8+9erVq9q569at0+zZsyvtW7Vqlfz9/e1RMgAAaGCcLgClp6eroKBAUVFRCggI0Pnz55WQkKDp06frmWee0eDBgy96jEcffVRt2rQp1+bj42OvkgEAQAPjdAHoxhtv1I033liubciQIRo7dqyWLVtWowDUs2dPhYSE2KtEAADQwDWIPUBubm5q3bq18vLyajynoKBAJSUldqwKAAA0VE63AlSmsLBQJpNJ+fn5SkpK0o8//qh+/frVaO6UKVNUWFiopk2b6oYbbtDEiRPVvn17O1cMAAAaCqcNQO+9957WrFkjSXJ1dVWfPn301FNPVTvHw8NDAwcOVLdu3eTt7a19+/Zp2bJlmjBhghYtWqTAwMAq52ZkZCgzM9PyOTU11TY/BAAAOB2nDUDDhg1TRESEMjIytGXLFpWUlKi4uLjaOZGRkYqMjLR8vvnmm9WjRw9NnjxZn332mZ555pkq565Zs0axsbG2Kh8AADgxpw1AHTp0UIcOHSRJUVFRevrppzVt2jR9+OGHcnFxqfFxunbtqrCwMP3yyy/Vjhs8eHC52+xTU1M1c+ZM64oHAABOzWkD0P+KiIjQnDlzlJaWpssvv7xWc1u3bq2jR49WOyYgIEABAQF1KREAADQQDeIuMEkymUySVKs7wcqcOHFCfn5+Nq4IAAA0VE4XgLKysiq0XbhwQevXr5eHh4c6duwo6c9Ny6mpqbpw4YJlXHZ2doW5P/zwg/bt26cePXrYq2QAANDAON0lsDlz5ig/P1/h4eG65JJLlJmZqY0bN+ro0aOaOHGimjVrJklauHCh4uPjFRcXZ3nq8+OPP64rr7xSwcHB8vb21v79+7V27Vq1bt1aDz74oCN/FgAAcCJOF4AiIyP1zTff6Msvv1ROTo6aNWum4OBgjR8/Xr17977o3O3bt2vHjh06f/68/P39deedd2r06NFq1apVPf0CAADg7JwuAPXv31/9+/e/6LiYmBjFxMSUaxs7dqzGjh1rr9IAAEAj4XR7gAAAAOyNAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAyniaML+F9//PGHlixZon379uns2bPy9PRUhw4ddN9996lXr14XnZ+bm6sPPvhAiYmJMplMCg0N1YQJExQcHFwP1QMAgIbA6VaA0tPTVVBQoKioKD3xxBN66KGHJEnTp0/XmjVrqp1bWlqq6Ohobdq0SUOGDNH48eOVlZWlKVOmKC0trT7KBwAADYDTrQDdeOONuvHGG8u1DRkyRGPHjtWyZcs0ePDgKudu3bpVu3fv1ssvv6yIiAhJUmRkpO6//34tWbJEM2bMsGfpAACggXC6AFQZNzc3tW7dWikpKdWOS0hIUKtWrdSnTx9Lm5+fn/r166eNGzeqqKhI7u7u9i4XTqQwy6SlkzY7uowaa+rZRN2HddEVPds4uhQAaNScNgAVFhbKZDIpPz9fSUlJ+vHHH9WvX79q5+zfv19dunSRq2v5K3uhoaH66quvlJaWpqCgIHuWDSfR1LOJJJPMZqngrMnR5dSCST8vP0AAAgA7c9oA9N5771n2/Li6uqpPnz566qmnqp1z9uxZhYeHV2j39/eXJGVmZlYZgDIyMpSZmWn5nJqaam3pcALdh3XRz8sPqPj8BUeXUmOFWX8GtoZUMwA0VE4bgIYNG6aIiAhlZGRoy5YtKikpUXFxcbVzTCZTpZe4ytpMpqpXAtasWaPY2Ng61QzncUXPNg1uFWXppM0NbLUKABoupw1AHTp0UIcOHSRJUVFRevrppzVt2jR9+OGHcnFxqXSOh4eHioqKKrSXtXl4eFT5fYMHDy53m31qaqpmzpxZl58AAACclNMGoP8VERGhOXPmKC0tTZdffnmlY1q1alXuMlaZsrayS2GVCQgIUEBAgG2KBQAATs3pngNUlbLLV3l5eVWO6dKliw4cOKDS0tJy7Xv37pWnp6fat29v1xoBAEDD4HQBKCsrq0LbhQsXtH79enl4eKhjx46S/ty0nJqaqgsX/rNhtG/fvjp79qwSExMtbdnZ2dqyZYtuuukmboEHAACSnPAS2Jw5c5Sfn6/w8HBdcsklyszM1MaNG3X06FFNnDhRzZo1kyQtXLhQ8fHxiouLU5s2f252jYiI0IoVKzR79mwdOXJELVq00OrVq1VaWqpHHnnEkT8LAAA4EacLQJGRkfrmm2/05ZdfKicnR82aNVNwcLDGjx+v3r17VzvXzc1Nb7zxht5//32tXLlSJpNJISEhmj59epX7hgAAgPE4XQDq37+/+vfvf9FxMTExiomJqdDu6+ur6OhoRUdH26M8AADQCDjdHiAAAAB7IwABAADDsWkAMpvNSktL06lTp2x5WAAAAJuyag9QQkKCvv/+ez3xxBPy9fWVJJ08eVLTpk2zvEMrIiJCzz//vNzc3GxXLQAAgA1YtQL05Zdf6sCBA5bwI0nz58/XkSNH1K1bNwUFBWnr1q1au3atzQoFAACwFasC0JEjRxQaGmr5XFBQoB9++EGRkZGaO3euPvzwQ3Xo0IEABAAAnJJVAejcuXNq1aqV5fNvv/2mkpISy+3rTZo0Uffu3XX8+HHbVAkAAGBDVgUgb29vnTt3zvJ5586dcnV1VXh4uKWtSZMmOn/+fN0rBAAAsDGrAtDll1+ubdu2KScnR7m5udq0aZOuvPLKcnuC0tPT1bJlS5sVCgAAYCtWBaChQ4cqIyNDQ4cO1bBhw5SZmam77rqr3Jjk5GR17tzZFjUCAADYlFW3wUdEROipp57SN998I+nP93cNHDjQ0r9r1y7l5+erR48etqkSAADAhqx+F9hdd91VYdWnzLXXXssdYAAAwGlZdQksNjZWu3btqnbMb7/9ptjYWGsODwAAYFdWBaAlS5ZcNADt2rWLAAQAAJyS3V6GeuHCBbm68q5VAADgfKxOKC4uLlX2FRcX69dff+U2eAAA4JRqvAn63nvvLfd52bJllW50Li0tVU5OjoqKinTHHXfUvUIAAAAbq3EAMpvNlj+7uLjIbDaXa7McsEkTdezYUdddd51GjRplmyoBAABsqMYBaNmyZZY/9+3bV8OHD9fo0aPtURMAAIBdWfUcoLi4OPn4+Ni6FgAAgHphVQC69NJLbV0HAABAvbH6SdDZ2dlau3atUlJSlJeXp5KSkgpjXFxc9Pbbb9elPgAAAJuzKgAdOnRITz75pHJzcyvdCF2mulvlAQAAHMWqAPTee+/p3LlzeuihhzRo0CBdcsklcnNzs3VtAAAAdmFVANqzZ4969+6tRx991Nb1AAAA2J1VT4Ju0qSJ2rZta+taAAAA6oVVAejaa6/Vvn37bF0LAABAvbAqAE2YMEGHDx/WP//5T1vXAwAAYHdW7QH67LPP1KlTJ3344Ydas2aNOnfuLG9v70rHTps2rU4FAgAA2JpVAWjdunWWP584cUInTpyodJyLi0utA9DevXsVHx+vnTt3Kj09Xc2bN9dVV12lMWPGqH379heta/bs2ZX2rVq1Sv7+/rWqBQAANE5WvwrDXpYuXarff/9d/fr1U1BQkDIzM7Vq1SqNGTNGCxYsUKdOnS56jEcffVRt2rQp18arOwAAQBmnexXG8OHDNWPGDDVt2tTSFhkZqYcfflj/+Mc/9Pzzz1/0GD179lRISIjdagQAAA2bVZug7emaa64pF34kqX379urYsaNSU1NrfJyCgoJKX88BAABg1QpQfHx8jcdGRUVZ8xXlmM1mZWVlqWPHjjUaP2XKFBUWFqpp06a64YYbNHHixIvuHwIAAMZhVQCaPXv2Rd/zZTab5eLiYpMAtHHjRp05c0aPPPJIteM8PDw0cOBAdevWTd7e3tq3b5+WLVumCRMmaNGiRQoMDKxybkZGhjIzMy2fa7PaBAAAGharAlBVd3bl5+dr//792rRpk3r16qWbbrqpTsVJfwaRuXPn6qqrrrpomIqMjFRkZKTl880336wePXpo8uTJ+uyzz/TMM89UOXfNmjWKjY2tc70AAMD5WRWABg4cWG3/4MGD9eSTT+quu+6y5vAWmZmZio6Olre3t1555RWrXrjatWtXhYWF6Zdffql23ODBg9WrVy/L59TUVM2cObPW3wcAAJyfVQHoYq6++mr16tVLixcv1vXXX2/VMfLy8jR16lTl5eVp/vz5CggIsLqe1q1b6+jRo9WOCQgIqNN3AACAhsNud4FdeumlOnTokFVzTSaTpk2bprS0NL322ms13vxclRMnTsjPz69OxwAAAI2HXQKQ2WzWr7/+Knd391rPLSkp0Ysvvqg9e/bopZde0tVXX13puIyMDKWmpurChQuWtuzs7ArjfvjhB+3bt089evSodS0AAKBxsuoS2K5duyptLykpUUZGhtavX6+UlBQNGDCg1sd+7733lJSUpJtuukm5ubnasGFDuf7bbrtNkrRw4ULFx8crLi7O8tTnxx9/XFdeeaWCg4Pl7e2t/fv3a+3atWrdurUefPDBWtcCAAAaJ6sC0JQpU6q9Dd5sNuuaa67RpEmTan3sgwcPSpK2bdumbdu2VegvC0CViYyM1Pbt27Vjxw6dP39e/v7+uvPOOzV69Gi1atWq1rUAAIDGyaoANGrUqEoDkKurq3x8fBQaGqqwsDCrCnrnnXdqNC4mJkYxMTHl2saOHauxY8da9b0AAMA4rApAF3sgIQAAgDNzuneBAQAA2FudngN08uRJbdy4UQcPHlR+fr68vb3VuXNn3XrrrZaNyQAAAM7G6gC0fPlyffDBByopKZHZbLa0JyQk6JNPPtH48eM1bNgwmxQJAABgS1YFoG3btmn+/Plq0aKFhg8frm7dusnf319nz57Vv//9by1btkzvvfee2rVrpxtvvNHWNQMAANSJVQEoLi5OzZs316JFi9S6dWtL+6WXXqqwsDDdeuutGjNmjOLi4ghAAADA6Vi1CfrAgQPq169fufDz3wIDA9WvXz/t37+/TsUBAADYg1UBqLi4WF5eXtWO8fLyUnFxsVVFAQAA2JNVAah9+/ZKSkoq9x6u/3bhwgVt27ZN7du3r1NxAAAA9mBVABowYIDS0tL0zDPPaN++feX6UlJSNHXqVKWlpSkqKsomRQIAANiSVZug77nnHv36669KSkrSY489Jg8PD7Vs2VJZWVkymUwym83q3bu37rnnHlvXCwAAUGdWBSA3Nze9+uqrio+PV3x8vA4ePKhTp07J29tbYWFhioqKsupN8AAAAPWhTk+CjoqK4jIXAABocHgXGAAAMByrAtC2bdv07LPPKiMjo9L+jIwMPfvss9q+fXudigMAALAHqwLQqlWrdOLECQUEBFTaHxAQoPT0dK1atapOxQEAANiDVQHo4MGDCgsLq3ZMaGioDh48aFVRAAAA9mRVAMrNzZWfn1+1Y1q0aKGcnBxrDg8AAGBXVgWgFi1aKC0trdoxaWlp8vX1taooAAAAe7IqAIWHh2vbtm06dOhQpf0HDx5UUlKSrr322rrUBgAAYBdWPQfogQceUGJioiZOnKgRI0aoe/fuuuSSS3TmzBnt2LFDcXFxcnFx0ciRI21db4N3ePtJ/bLigIrPV/4eNWdUmGVydAkAANiUVQEoKChIzz33nGbPnq3Y2FjFxsZa+sxms7y8vPTCCy8oKCjIVnU2Gr+sOKCcE/mOLsMqTT3r9NxMAACchtX/RouIiFB4eLjWrVunlJQU5eXlydfXVyEhIRo4cOBFN0kbVdnKj4uL5NXSw8HV1FxTzybqPqyLo8sAAMAm6vSf9C1bttT9999vq1oMxaulh+6fH+noMgAAMCRehQEAAAyHAAQAAAyHAAQAAAyHAAQAAAyHAAQAAAzH6R7ssnfvXsXHx2vnzp1KT09X8+bNddVVV2nMmDFq3779Refn5ubqgw8+UGJiokwmk0JDQzVhwgQFBwfXQ/UAAKAhcLoVoKVLlyohIUHXX3+9nnjiCd1555369ddfNWbMGB0+fLjauaWlpYqOjtamTZs0ZMgQjR8/XllZWZoyZcpF310GAACMo0YrQKdOnbL6CwIDA2s1fvjw4ZoxY4aaNm1qaYuMjNTDDz+sf/zjH3r++eernLt161bt3r1bL7/8siIiIixz77//fi1ZskQzZsyw6jcAAIDGpUYBaPjw4XJxcan1wV1cXLRly5ZazbnmmmsqtLVv314dO3ZUampqtXMTEhLUqlUr9enTx9Lm5+enfv36aePGjSoqKpK7u3ut6gEAAI1PjQLQgAEDKgSgEydO6LfffpOPj486d+6sVq1a6ezZszp48KDy8vLUtWtXXXbZZTYp0mw2KysrSx07dqx23P79+9WlSxe5upa/shcaGqqvvvpKaWlpvJ8MAADULADFxMSU+/zHH39o4sSJGjlypEaOHCkvLy9LX2FhoT777DOtXr1a//d//2eTIjdu3KgzZ87okUceqXbc2bNnFR4eXqHd399fkpSZmVllAMrIyFBmZqbl88VWmwAAQMNl1V1gCxYsUEhIiMaOHVuhz8vLS+PGjVNKSoo++OADvfbaa3UqMDU1VXPnztVVV12lqKioaseaTKZKL3GVtZlMpirnrlmzptxb7QEAQONlVQDavXu37r777mrHhIaGatWqVVYVVSYzM1PR0dHy9vbWK6+8Ijc3t2rHe3h4qKioqEJ7WZuHR9VvXx88eLB69epl+ZyamqqZM2daWTkAAHBmVgWg0tJSHT9+vNoxx44dk9lstqooScrLy9PUqVOVl5en+fPnKyAg4KJzWrVqVe4yVpmytrJLYZUJCAio0XcAAICGz6rnAIWHhyshIUHffvttpf2bNm1SYmJipftxasJkMmnatGlKS0vTa6+9dtHNz2W6dOmiAwcOqLS0tFz73r175enpWaMHKQIAgMbPqhWgxx9/XL/99pteeeUVLV26VNdcc41atmyprKws/f777zp06JCaNWum8ePH1/rYJSUlevHFF7Vnzx69+uqruvrqqysdl5GRofz8fLVt21ZNmvz5M/r27autW7cqMTHR8hyg7OxsbdmyRTfddBO3wAMAAElWBqCOHTvqvffe09tvv61ff/1VBw8eLNcfHh6up556qsYrN//tvffeU1JSkm666Sbl5uZqw4YN5fpvu+02SdLChQsVHx+vuLg4tWnTRpIUERGhFStWaPbs2Tpy5IhatGih1atXq7S09KJ3kAEAAOOw+l1gnTp10jvvvKNTp07p0KFDysvLk4+Pj4KCgmr99Of/Vhamtm3bpm3btlXoLwtAlXFzc9Mbb7yh999/XytXrpTJZFJISIimT5+uyy+/3OqaAABA41Lnl6EGBgbWKfD8r3feeadG42JiYio8n0iSfH19FR0drejoaJvVBAAAGpc6BaDi4mL9/PPPOnr0qM6fP69Ro0ZJ+nMTc0FBgVq0aFHhqcwAAACOZnUA+v777zVnzhxlZ2fLbDbLxcXFEoAOHTqkCRMm6Nlnn9Wtt95qs2IBAABswarlmd9//93yxvbJkyfrlltuKdcfFhamtm3bKiEhwSZFAgAA2JJVK0CffPKJfHx89NFHH8nPz0/nzp2rMCY4OFh79+6tc4EAAAC2ZtUKUHJysnr37i0/P78qx7Ru3Vpnz561ti4AAAC7sSoAFRcXq1mzZtWOycvLk4uLi1VFAQAA2JNVAeiyyy5TSkpKtWP27NnDs3cAAIBTsioA9e3bV7t379batWsr7f/nP/+pP/74Q5GRkXUqDgAAwB6s2gQ9YsQIJSQk6I033tCmTZtUVFQkSVqwYIH27Nmj3bt3q3PnzhoyZIhNiwUAALAFqwJQs2bNNH/+fM2dO1dbtmyxvH39iy++kIuLi/r166enn36al48CAACnZPWDEH19fTVjxgxNmTJFKSkpOnfunLy9vRUSEqJWrVrZskYAAACbqvO7wFq0aKGePXvaohYAAIB6YdUm6IiICH3yySfVjvn000/Vr18/q4oCAACwJ6sCkNlsltlsrtE4AAAAZ2O3V7VnZ2fLw8PDXocHAACwWo33AMXHx5f7fODAgQptklRaWqrTp09r/fr1uuKKK+peIQAAgI3VOADNnj3b8moLFxcXJSUlKSkpqcK4ssteHh4eevjhh21UJgAAgO3UOABNmzbN8ufXXntNvXv3Vu/evSuMc3Nzk6+vr66++mr5+vrapkoAAAAbqnEAGjhwoOXPu3bt0s0331xpAAIAAHB2Vj0HaPr06bauAwAAoN5YdRfYtm3b9OyzzyojI6PS/oyMDD377LPavn17nYoDAACwB6sC0KpVq3TixAkFBARU2h8QEKD09HStWrWqTsUBAADYg1UB6ODBgwoLC6t2TGhoqA4ePGhVUQAAAPZk1R6g3Nxc+fn5VTumRYsWysnJsebwgKEVZpm0dNJmR5dRK009m6j7sC66omcbR5cCADViVQBq0aKF0tLSqh2TlpbGbfBALTT1bCLJJLNZKjhrcnQ5tWTSz8sPEIAANBhWBaDw8HAlJibq0KFDCgoKqtB/8OBBJSUlqU+fPnUuEDCK7sO66OflB1R8/oKjS6mVwqw/Q1tDqxuAsVkVgB544AElJiZq4sSJGjFihLp3765LLrlEZ86c0Y4dOxQXFycXFxeNHDnS1vUCjdYVPds0yBWUpZM2N8AVKwBGZ1UACgoK0nPPPafZs2crNjZWsbGxlj6z2SwvLy+98MILla4OAQAAOJpVAUiSIiIiFB4ernXr1iklJUV5eXny9fVVSEiIBg4ceNFN0gAAAI5idQCSpJYtW+r++++3VS2SpIKCAn3xxRdKTk7W3r17lZubq+nTp5d7FUdV1q1bp9mzZ1fat2rVKvn7+9u0VgAA0DDVKQCVOXfunAoLCxUYGFjnY+Xk5Cg2NlaBgYHq3Lmzdu7cWetjPProo2rTpvxeCh8fnzrXBgAAGgerA1BeXp4WL16szZs3KycnRy4uLtqyZYskKTk5WUuWLNGYMWMUHBxcq+P6+/tbVmtSUlI0bty4WtfWs2dPhYSE1HoeAAAwBqueBH3u3DmNHz9e//rXv9S6dWt16NBBZrPZ0h8UFKTdu3dr48aNtT62u7u7TS5VFRQUqKSkpM7HAQAAjY9VAWjJkiVKS0vTCy+8oI8++kgRERHl+j08PBQeHq5///vftqix1qZMmaKoqCjddtttmjZt2kUf2ggAAIzFqktgSUlJuvHGGxUZGVnlmDZt2mjPnj1WF2YNDw8PDRw4UN26dZO3t7f27dunZcuWacKECVq0aFG1e5QyMjKUmZlp+ZyamlofJQMAAAewKgBlZmZWG34kqWnTpiosLLSqKGtFRkaWq+vmm29Wjx49NHnyZH322Wd65plnqpy7Zs2acs8zAgAAjZdVAah58+Y6ffp0tWOOHj3qFLedd+3aVWFhYfrll1+qHTd48GD16tXL8jk1NVUzZ860d3kAAMABrH4XWFJSkk6fPq3WrVtX6D9y5Ih+/PFH3X777XUu0BZat26to0ePVjsmICBAAQEB9VQRAABwJKs2QT/44IMqKSnRxIkTtWHDBuXk5Ej6M/h8/fXXevLJJ+Xu7q4RI0bYtFhrnThxgidTAwAAC6vfBfbiiy9q1qxZevXVVyX9+Q6w0aNHy2w2q1mzZnrxxRfVvn17mxb73zIyMpSfn6+2bduqSZM/f0Z2dnaFoPPDDz9o3759Gjp0qN1qAQAADYvVD0Ls3bu34uLiFB8fr+TkZJ07d07e3t4KCwur87vAVq5cqby8PMtdWWWX2yRp6NCh8vHx0cKFCxUfH6+4uDjLU58ff/xxXXnllQoODpa3t7f279+vtWvXqnXr1nrwwQetrgcAADQudXoVRvPmzTV8+HBb1WIRFxen9PR0y+fExEQlJiZKkm677bYqX2sRGRmp7du3a8eOHTp//rz8/f115513avTo0WrVqpXN6wQAAA2TTd4FduHCBRUWFsrLy8tyOaouli1bdtExMTExiomJKdc2duxYjR07ts7fDwAAGjer00pJSYlWrlypdevW6ciRIzKbzXJxcVHHjh01cOBADRkyxCZhCAAAwNasSigFBQV65plnlJycLBcXF7Vu3VqtWrXS2bNndeTIEb3//vtKSEjQnDlz5OXlZeuaAQAA6sSqAPTxxx9rz549uuWWWzRu3Lhyr5g4deqUPvzwQ3377bdavHixJk2aZLNiAQAAbMGq5wBt2bJFwcHBev755yu8XyswMFAzZsxQcHCwtmzZYpMiAQAAbMmqAJSTk6Pu3btXO+b666/XuXPnrCoKAADAnqwKQO3atVNWVla1Y7Kzs9W2bVurigIAALAnqwLQPffco82bN+uPP/6otP/QoUPavHmzhg0bVqfiAAAA7MGqTdDt2rXTddddp7FjxyoqKkpdu3ZVy5YtlZWVpV9//VXr169Xjx491LZtW+3atavc3GuvvdYGZQMAAFjPqgA0ZcoUubi4yGw266uvvtLXX39t6TObzZKkbdu2adu2bRXmbt261bpKAQAAbMSqADRq1Ci5uLjYuhYAAIB6YVUAeuSRR2xdBwAAQL2xahN0TZWWltrz8AAAAFaxKgC99dZbKioqqnbMyZMneQo0AABwSlYFoC+//FLjxo2r8jb4b7/9Vo8++qj27t1bp+IAAADswaoANHbsWKWlpWncuHH617/+ZWkvLCzUq6++qldeeUUeHh568803bVYoAACArVi1CXrkyJG67rrr9Morr+idd97RTz/9pCFDhujtt9/W8ePHdeONN2ratGny8/OzcbkAAAB1Z1UAkqSwsDAtXrxYc+fO1YYNG7R9+3a5u7vrySef1N13323LGgEAAGyqTneBFRQU6PTp05L+fACiq6urPD09bVIYAACAvVgdgL7//ns9/PDD2rVrl/76179qzpw58vX11euvv66XXnpJ+fn5tqwTAADAZqy6BPbWW29pzZo18vX11axZs9S7d29J0pIlS/Tmm29q8+bN2rNnj55//nldc801Ni0YAACgrqy+Db5bt25asmSJJfxIko+Pj1566SX97W9/U05OjqZMmWKzQgEAAGzFqhWgcePG6f7776/yfWB33HGHwsPD9fLLL9epOAAAAHuwKgA98MADFx3Tvn17LViwwJrDAwAA2JXd3gVWXFwsk8lkr8MDAABYrcYB6N5779WKFSvKtf3000+aP39+peM///xzDRo0qG7VAQAA2EGNA1B6erry8vLKte3Zs6dCKAIAAHB2drsEBgAA4KwIQAAAwHAIQAAAwHCsfhmqvRQUFOiLL75QcnKy9u7dq9zcXE2fPl0DBw6s0fzc3Fx98MEHSkxMlMlkUmhoqCZMmKDg4GA7Vw4AABoKp1sBysnJUWxsrFJTU9W5c+dazS0tLVV0dLQ2bdqkIUOGaPz48crKytKUKVOUlpZmp4oBAEBDU6sVoA0bNmjPnj2Wz8ePH5ck/e1vf6swtqyvtvz9/bVq1Sr5+/srJSVF48aNq/HcrVu3avfu3Xr55ZcVEREhSYqMjNT999+vJUuWaMaMGVbVBAAAGpdaBaDjx49XGmx++umnSsdX9aqM6ri7u8vf37/W8yQpISFBrVq1Up8+fSxtfn5+6tevnzZu3KiioiK5u7tbdWwAANB41DgAxcXF2bMOm9i/f7+6dOkiV9fyV/ZCQ0P11VdfKS0tTUFBQQ6qDgAAOIsaB6BLL73UnnXYxNmzZxUeHl6hvWxFKTMzs8oAlJGRoczMTMvn1NRU+xQJAAAczunuAqsLk8lU6SWusrbq3k22Zs0axcbG2qs0AADgRBpVAPLw8FBRUVGF9rI2Dw+PKucOHjxYvXr1snxOTU3VzJkzbV8kAABwuEYVgFq1alXuMlaZsrbqNlcHBAQoICDAbrUBAADn4XTPAaqLLl266MCBAyotLS3XvnfvXnl6eqp9+/YOqgwAADiTBhuAMjIylJqaqgsXLlja+vbtq7NnzyoxMdHSlp2drS1btuimm27iFngAACDJSS+BrVy5Unl5eZZLV0lJSTp9+rQkaejQofLx8dHChQsVHx+vuLg4tWnTRpIUERGhFStWaPbs2Tpy5IhatGih1atXq7S0VI888ojDfg8AAHAuThmA4uLilJ6ebvmcmJhoWdW57bbb5OPjU+k8Nzc3vfHGG3r//fe1cuVKmUwmhYSEaPr06br88svrpXYAAOD8nDIALVu27KJjYmJiFBMTU6Hd19dX0dHRio6OtkdpAACgEWiwe4AAAACsRQACAACGQwACAACGQwACAACGQwACAACG45R3gQFoeAqzTFo6abOjy6ixpp5N1H1YF13Rs42jSwHgAAQgAHXS1LOJJJPMZqngrMnR5dSCST8vP0AAAgyKAASgTroP66Kflx9Q8fkLFx/sJAqz/gxsDalmALZFAAJQJ1f0bNPgVlGWTtrcwFarANgam6ABAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhEIAAAIDhNHF0AZUpKirS4sWLtWHDBuXm5iooKEhjxozRDTfcUO28jz/+WLGxsRXa3d3dtWnTJjtVCwAAGhqnDECzZ8/W1q1bNWzYMLVr107r1q3T1KlTNW/ePHXt2vWi8//v//5PXl5els+urix0AQCA/3C6AJScnKxvv/1Wjz/+uO677z5J0oABAzR69GgtWLBACxYsuOgx+vbtKz8/PztXCgAAGiqnWxpJSEiQm5ubBg8ebGnz8PDQoEGDtGfPHp06dapGx8nPz5fZbLZXmQAAoAFzuhWgAwcOqF27dvL29i7XHhoaKkk6ePCgAgMDqz3Gvffeq8LCQnl5eal3796aOHGiWrVqZbeaAQBAw+J0ASgzM1P+/v4V2svaMjIyqpzr6+urIUOG6KqrrlLTpk3122+/adWqVdq7d68++uijCqHqv2VkZCgzM9PyOTU1tQ6/AgAAODOnC0Amk0lNmzat0O7u7m7pr8qwYcPKfY6IiFBoaKheeeUVrVq1SiNHjqxy7po1ayq9gwwAADQ+TheAPDw8VFxcXKG9qKjI0l8bt956q9577z398ssv1QagwYMHq1evXpbPqampmjlzZq2+CwAANAxOF4D8/f115syZCu1ll6cCAgJqfczWrVvr3Llz1Y4JCAiw6tgAAKDhcbq7wDp37qxjx44pPz+/XHtycrKlvzbMZrPS09O5LR4AAFg4XQCKiIhQSUmJ1qxZY2krKirS2rVrFRYWZrkD7NSpUxU2KmdnZ1c43urVq5Wdna2ePXvatW4AANBwON0lsLCwMPXr108LFy5Udna22rZtq/j4eKWnpys6OtoybtasWdq1a5cSExMtbcOGDVNkZKQ6deokd3d3/f777/r222/VpUuXcs8VAgAAxuZ0AUiSYmJiFBgYqPXr1ysvL0+dOnXS66+/rmuvvbbaebfeeqt2796thIQEFRUVKTAwUPfdd58eeugheXp61k/xABqMwiyTlk7a7OgyaqypZxN1H9ZFV/Rs4+hSgAbPKQOQh4eHJkyYoAkTJlQ55p133qnQNnXqVHuWBaCRaOrZRJJJZrNUcLbqR2s4H5N+Xn6AAATYgFMGIACwp+7Duujn5QdUfP6Co0upscKsPwNbQ6oZcGYEIACGc0XPNg1uFWXppM0NbLUKcG5OdxcYAACAvRGAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4RCAAACA4TRxdAEAgJorzDJp6aTNji6jxpp6NlH3YV10Rc82ji4FKIcABAANQFPPJpJMMpulgrMmR5dTCyb9vPwAAQhOhwAEAA1A92Fd9PPyAyo+f8HRpdRYYdafga0h1QzjIAABQANwRc82DW4VZemkzQ1stQpGwiZoAABgOAQgAABgOAQgAABgOAQgAABgOAQgAABgONwFBgCwKx7eCGdEAAIA2AUPb4QzIwABAOyChzfCmTllACoqKtLixYu1YcMG5ebmKigoSGPGjNENN9xw0blnzpzR/PnztWPHDpWWlqpbt26aPHmyLrvssnqoHABQhoc3wpk5ZQCaPXu2tm7dqmHDhqldu3Zat26dpk6dqnnz5qlr165VzisoKNCUKVOUn5+vkSNHqkmTJlq2bJkmT56sjz/+WC1atKjHXwEAaKjYt9T4OV0ASk5O1rfffqvHH39c9913nyRpwIABGj16tBYsWKAFCxZUOXf16tU6duyYPvzwQ4WGhkqSevbsqdGjRysuLk7jxo2rl98AAGiY2LdkHE4XgBISEuTm5qbBgwdb2jw8PDRo0CAtXLhQp06dUmBgYKVzt27dqpCQEEv4kaQOHTrouuuu05YtWwhAAIBqsW/JOJwuAB04cEDt2rWTt7d3ufayUHPw4MFKA1BpaakOHz6s22+/vUJfaGioduzYoYKCAjVr1sw+hQMAGryGvG+Jy3a143QBKDMzU/7+/hXay9oyMjIqnXfu3DkVFRVddO7ll19e6fyMjAxlZmZaPqempta6dgAA6huX7azjdAHIZDKpadOmFdrd3d0t/VXNk2TVXElas2aNYmNja1suAAAO1RAv25UFNUfW7HQByMPDQ8XFxRXai4qKLP1VzZNk1VxJGjx4sHr16mX5nJqaqpkzZ9a88Bpq1sKj3N8BAKiLhnjZbvWzSSrIMTn034VOF4D8/f115syZCu1ll6cCAgIqnde8eXO5u7uXu4xV07llfdX128pds3pdfBAAAI2YM/y70Olehtq5c2cdO3ZM+fn55dqTk5Mt/ZVxdXVVp06dlJKSUqEvOTlZl112GRugAQCAJCcMQBERESopKdGaNWssbUVFRVq7dq3CwsIsd4CdOnWqwkblvn37KiUlpVwIOnr0qHbu3KmIiIh6qR8AADg/p7sEFhYWpn79+mnhwoXKzs5W27ZtFR8fr/T0dEVHR1vGzZo1S7t27VJiYqKl7e6779bXX3+t6OhojRgxQm5ublq2bJlatmypESNGOOLnAAAAJ+R0AUiSYmJiFBgYqPXr1ysvL0+dOnXS66+/rmuvvbbaec2aNdO8efM0f/58ffrpp5Z3gU2aNEl+fn71UjsAAHB+Lmaz2ezoIpzRvn37NHbsWH300UcKDg52dDkAAMCGnG4PEAAAgL0RgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOEQgAAAgOE45ZOgnYHJZJKkCu8bAwAAzq9Dhw7y9PSssp8AVIX09HRJ0syZMx1cCQAAqK2LvcmBAFSFHj16qHPnznrqqafk7u5eoznvvvuuJk+eXO2Y1NRUzZw5U88995w6dOhgi1IbvJr8c3Ok+q7PXt9nq+PW5TjWzK3NnJqO5TysyJnPQ85B2x3H3udgTcfXxzl4seMSgKrg5+en1q1b65prrqnxHB8fnxq/N6xDhw68Y+z/q80/N0eo7/rs9X22Om5djmPN3NrMqe3xOQ//w5nPQ85B2x3H3udgbcc78hxkE3Q1brnlFruOx5+c/Z9bfddnr++z1XHrchxr5tZmjrP/f8mZOfM/O85B2x3H3uegtd/hCLwNvp7xlnnA8TgPAcdyhnOQFaB65u/vr9GjR8vf39/RpQCGxXkIOJYznIOsAAEAAMNhBQgAABgOAQgAABgOAcjJFBUV6bXXXtM999yjqKgojR8/Xrt373Z0WYDhvPnmm7rrrrsUFRWlUaNGKSkpydElAYa0e/du9e3bV5988olNj8seICdTWFiouLg4DRw4UJdccom2bNmit99+W3FxcWrWrJmjywMMIzU1VW3atJG7u7v27t2rp59+Wl988YVatGjh6NIAwygtLdWECRNkNpt10003adSoUTY7NitATsbLy0ujR49WYGCgXF1d1b9/fzVp0kRpaWmOLg0wlA4dOlieAu/i4qLi4mJlZGQ4uCrAWL766iuFhoba5WnRPAm6jgoKCvTFF18oOTlZe/fuVW5urqZPn66BAwdWGFtUVKTFixdrw4YNys3NVVBQkMaMGaMbbrihyuOnpaUpNzdXbdu2tefPABo0e52Hb731ltauXauioiL95S9/UadOnerj5wANjj3OwZycHC1fvlwLFizQu+++a/OaWQGqo5ycHMXGxio1NVWdO3euduzs2bO1bNky3XrrrXriiSfk6uqqqVOn6rfffqt0vMlk0syZM/XAAw/Ix8fHHuUDjYK9zsOnn35a69ev19y5c3XDDTfIxcXFXj8BaNDscQ5+9NFHGjZsmHx9fe1TtBl1YjKZzBkZGWaz2Wzeu3ev+eabbzavXbu2wrg9e/aYb775ZvPSpUstbefPnzePGDHCPH78+Arji4uLzVOnTjW/9NJL5tLSUvv9AKARsNd5+N+io6PN27Zts23hQCNh63Nw37595kcffdR84cIFs9lsNs+aNcscGxtr05pZAaojd3f3Gj3JMiEhQW5ubho8eLClzcPDQ4MGDdKePXt06tQpS3tpaalmzpwpFxcXxcTE8F+dwEXY4zz8XyUlJTp+/LhN6gUaG1ufg7t27VJaWpqGDh2qu+66S5s3b9bSpUs1e/Zsm9XMHqB6cuDAAbVr107e3t7l2kNDQyVJBw8eVGBgoCRpzpw5yszM1Jw5c9SkCf8TAbZS0/MwLy9PP/zwg3r16iV3d3d999132rlzp8aNG+eIsoFGo6bn4ODBg9W/f39L/zvvvKM2bdrogQcesFkt/Nu1nmRmZlaajsvayu4uSU9P19dffy13d/dyCfmNN95QeHh4/RQLNFI1PQ9dXFz09ddfa+7cuTKbzWrbtq2ef/55denSpV7rBRqbmp6Dnp6e8vT0tPR7eHjIy8vLpvuBCED1xGQyqWnTphXay26zNZlMkqRLL71UiYmJ9VobYBQ1PQ+9vb01b968eq0NMIKanoP/KyYmxua1sAeonnh4eKi4uLhCe1FRkaUfgH1xHgKO5UznIAGonvj7+yszM7NCe1lbQEBAfZcEGA7nIeBYznQOEoDqSefOnXXs2DHl5+eXa09OTrb0A7AvzkPAsZzpHCQA1ZOIiAiVlJRozZo1lraioiKtXbtWYWFhljvAANgP5yHgWM50DrIJ2gZWrlypvLw8yxJeUlKSTp8+LUkaOnSofHx8FBYWpn79+mnhwoXKzs5W27ZtFR8fr/T0dEVHRzuyfKBR4DwEHKuhnYO8Dd4Ghg8frvT09Er74uLi1KZNG0l/7m4ve/9JXl6eOnXqpDFjxqhHjx71WS7QKHEeAo7V0M5BAhAAADAc9gABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABAADDIQABaPT69OlT7i+TyWTpW7dunfr06aN169Y5sML/+PLLL8vV+uqrrzq6JKBR4m3wAGzm5MmTuvfee6sdc+mll2rZsmX1VFH5742KipIkubm52fW7fvrpJz3zzDO64YYb9Pe//73asS+//LI2bdqk559/XrfeequCg4M1evRo5eXlacWKFXatEzAyAhAAm2vbtq1uvfXWSvt8fHzquZo/XXrppXrkkUfq5bu6d++uwMBA/fLLLzp16pQCAwMrHZeXl6fvvvtOPj4+6tOnjyQpJCREISEhOnnyJAEIsCMCEACba9u2bb2FDWfk6uqqgQMHKjY2VvHx8Ro1alSl4zZt2iSTyaTbb79dHh4e9VwlYGzsAQLgUH369NETTzyhM2fO6OWXX9add96pAQMGaOrUqTpx4oQk6ciRI4qJidGgQYM0YMAAPf/88zp79qxd6zp9+rRGjRqlW265RVu3brW0Z2Vl6d1339V9992n/v37684779Rzzz2nw4cPl5t/++23y8XFRevWrZPZbK70O9auXStJGjRokN1+B4DKEYAAOFxubq4mTpyokydPasCAAerWrZu2b9+up59+WocPH9aECRNUWFio22+/XSEhIUpISNBLL71kt3qOHDmiCRMm6PTp03rzzTcVEREhSTp+/LjGjBmj5cuX67LLLtOQIUP0l7/8RT/99JMef/xxJScnW45x6aWX6vrrr9eJEye0c+fOCt9x+PBhpaSkqEuXLrryyivt9lsAVI5LYABs7vjx4/r4448r7bvqqqvUs2fPcm2HDh3S8OHDNWnSJEvbW2+9pdWrV2vSpEl6+OGHNWzYMEmS2WxWdHS0tm/frn379ik4ONimte/Zs0fR0dFq0qSJ3n33XXXu3NnSN2vWLJ09e1Zz5sxRjx49LO0PPfSQxo4dqzfeeEOxsbGW9kGDBunnn3/W2rVrdd1115X7HlZ/AMdiBQiAzR0/flyxsbGV/vXjjz9WGO/l5aUxY8aUa+vfv78kqUWLFrrnnnss7S4uLpa+Q4cO2bTuH374QU899ZR8fX31/vvvlws/+/fv1+7duzVgwIBy4UeS2rdvrzvuuEOHDx8udyns5ptvVosWLZSQkKD8/HxL+4ULF7Rhwwa5u7tXuVkcgH2xAgTA5nr06KE5c+bUeHy7du3k6elZrs3f31+S1KlTJ7m4uFTal5GRUcdK/2PLli3asWOHgoKC9Oabb6ply5bl+ssub2VlZVW6unX06FHL3zt16iRJloCzYsUKbdq0SX/9618lSUlJScrOztYtt9wiX19fm/0GADVHAALgcN7e3hXayp7VU13fhQsXbFbDnj17VFJSoq5du1YIP5J07tw5SX+uEv3www9VHqewsLDc50GDBmnFihVau3atJQBx+QtwPAIQAEgaN26cvv/+e61YsUJubm6aOHFiuf6yIDZlyhQNHTq0xscNCgpSSEiI9u7dqz/++EO+vr766aef1KZNmwr7ggDUH/YAAYD+vFw1a9Ys3XjjjYqLi9P8+fPL9YeGhkr6c6WotspWer755hutX79eJSUlltvkATgGAQgA/j93d3fNnDlTN910k5YtW6Z3333X0hcWFqawsDB9++23+vbbbyvMLS0t1a5duyo97i233CJPT09t2LBBa9eulaurq+W1HAAcg0tgAGyuutvgJemBBx5w2icfN23aVK+88opmzJih5cuXy2w264knnpAkzZgxQ08++aReeuklrVixQl26dJGHh4dOnz6t3bt3KycnR5s2bapwTG9vb/Xt21fr169Xdna2evbsWeXrMQDUDwIQAJsruw2+KsOGDXPaACT9JwS98MILWrFihcxms6ZMmaLLLrtMixcvVlxcnL777jutW7dOrq6u8vf3V3h4uOWBiZUZNGiQ1q9fL+nPp0QDcCwXc1XPaAeARqJPnz669tpr9c477zi6lBo7efKk7r33XkVFRSkmJsbR5QCNDitAAAxh165dljeub9y40WlXoL788kv9/e9/d3QZQKNHAALQ6I0ePbrc57LnCDmj4ODgcvV26dLFccUAjRiXwAAAgOFwGzwAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADAcAhAAADCc/weRG/bT0ARYxgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax, plot = expectation.project('Em').plot()\n", + "\n", + "ax.set_ylabel('Expected counts')" + ] + }, + { + "cell_type": "markdown", + "id": "c8f64def-a29b-4277-aa6c-9d9561117acb", + "metadata": {}, + "source": [ + "Try changing the spectrum and se how the expected excess changes." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "766ea3af-1282-4c0d-a22f-2192a7dcb938", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Expected counts')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHOCAYAAACIKE30AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGUUlEQVR4nO3deVyVdd7/8Te7CK6gSGgmSgg1Lo1L7vuuTKbYZumUOrmklaVp25SaLTaN1WRjOTJO44haLjXuKyPqbZZkiihqkqmgoGyCrOf3hz/OzAm4hMOBc8DX8/HwMZ3vdj5XM9ft+76u77kuJ5PJZBIAAABK5GzvAgAAABwZYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMCAq70LqEmysrK0atUqxcbG6sSJE8rIyNCcOXM0ZMgQq9abPn26YmJiSuxzcXHR7t27K1AtAAAoC8KSDaWlpSkiIkJ+fn5q1aqVjhw5UqH1Hn/8cQ0fPtyiLTs7W++//746duxYobUBAEDZEJZsyMfHR+vWrZOPj4/i4uI0adKkCq1XUiDatm2bJGnAgAEVWhsAAJQNYcmG3N3d5ePjU6axBw8e1BdffKFTp07JyclJbdu21eTJk9WiRQvDedu3b5enp6e6d+9ui5IBAMAtsMHbDrZu3arZs2fL09NTf/jDHzRu3DidO3dOU6dO1aVLl0qdl5qaqsOHD6t79+7y9PSswooBALh9EZaqWFZWlhYvXqzhw4frvffe06hRo/Too4/q008/lSR98cUXpc7duXOnCgoKuAUHAEAV4jZcFTt8+LAyMzPVr18/paammtudnZ0VEhKi77//vtS5O3bsUP369dWhQ4cqqBQAAEiEpSr3yy+/SJKeffbZEvu9vLxKbL948aKOHz+uBx98UK6u/NcGAEBV4W/dKlZYWChJeuWVV9SwYcNi/S4uLiXO2759uyR+BQcAQFUjLFWxgIAASSr37bQdO3YoICBA99xzT2WVBgAASsAG7yrWqVMneXl56YsvvlB+fn6x/v/dx1Tk1KlTSkhIUP/+/augQgAA8L+4smRjX375pTIzM5WSkiJJio6O1uXLlyVJo0aNkre3t55//nktWLBATz31lPr166f69esrKSlJBw8e1L333qvnnnvOYk1uwQEAYD9OJpPJZO8iapIxY8YoMTGxxL7IyEj5+/tLko4cOaJ//vOfio2NVW5urho1aqQ2bdrowQcfVHBwsHlOYWGhwsPD1aBBA33++edVcgwAAOC/CEsAAAAG2LMEAABggLAEAABggLBUQTdu3NDJkyd148YNe5cCAAAqAWGpghISEjRx4kQlJCTYuxQAAFAJHPLRAVlZWVq1apViY2N14sQJZWRkaM6cORoyZMgt506fPl0xMTEl9rm4uGj37t3mz6X9ci0sLEwvvPCC1fUDAICawyHDUlpamiIiIuTn56dWrVrpyJEjZZ77+OOPa/jw4RZt2dnZev/999WxY8di44OCgvTQQw9ZtDVt2tS6wgEAQI3jkGHJx8dH69atk4+Pj+Li4jRp0qQyzy0pEG3btk1SyQ919PX11cCBA60vFgAA1GgOuWfJ3d1dPj4+Nltv+/bt8vT0VPfu3Uvsz8vLU3Z2ts2+DwAA1BwOeWXJllJTU3X48GH17dtXnp6exfq///57DRw4UAUFBWrSpInCw8MVHh5e6nrJycnmV5lIYmM3AAA1XI0PSzt37lRBQUGJt+ACAwPVpk0bNWvWTOnp6dq8ebM++ugjJScna/LkySWut3HjRkVERFRy1QAAwFHU+LC0Y8cO1a9fXx06dCjW9/bbb1t8Hjp0qF588UWtXr1ao0aNUuPGjYvNCQsLU7du3cyfExISNH/+fNsXDgAAHIJD7lmylYsXL+r48ePq27evXF1vnQudnJw0ZswYFRQUlPr4AV9fXwUHB5v/NG/e3MZVAwAAR1Kjw9L27dsllfwruNIUXU1KT0+vlJoAAED1UqPD0o4dOxQQEKB77rmnzHMuXrwoSapfv34lVQUAAKqTah2WkpOTlZCQoPz8/GJ9p06dUkJCgvr371/i3PT0dBUUFFi05efn65///Kfc3NzUvn37SqkZAABULw67wfvLL79UZmam+Wf60dHRunz5siRp1KhR8vb21tKlS7VlyxZFRkbK39/fYv6tbsFFR0drxYoV6tWrl/z9/ZWRkaHt27frp59+0qRJk2z6nCcAAFB9OWxYioyMtHhvW1RUlKKioiRJAwcOlLe3d6lzCwsLtWvXLt1999268847SxwTGBio5s2ba/v27UpNTZWrq6uCgoL0xhtvqE+fPrY9GAAAUG05mUwmk72LqM5OnjypiRMn6rPPPlNwcLC9ywEAADZWrfcsAQAAVDaHvQ0HVJWzBy/pu7XxyrtR/IcCjsytlqs6hAepRWf/Ww8GAFiNsITb3ndr45V28bq9y7BCjg6viScsAUAlIyzhtld0RcnJSfJs4GHnasom+1qOTCZVu6thAFAdEZaA/8+zgYce/bivvcsok5XTdinrao69ywCA2wIbvAEAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAy42rsAANbLvpajldN22buMMnOr5aoO4UFq0dnf3qUAQJkRloBqyK2Wq6QcmUxS1tUce5dTDjk6vCaesASgWiEsAdVQh/AgHV4Tr7wb+fYupcyyr90Md9WpZgCQCEtAtdSis3+1uzqzctquanYVDABuYoM3AACAAYe8spSVlaVVq1YpNjZWJ06cUEZGhubMmaMhQ4bccu7mzZu1cOHCEvvWrVsnHx8fi7Z9+/Zp+fLlSkhIUP369TV06FA98cQTcnV1yH81AACgijlkIkhLS1NERIT8/PzUqlUrHTlypNxrPPXUU/L3t7xN4e3tbfH54MGDevnll9WuXTvNmDFDZ8+e1YoVK3Tt2jXNnDmzQscAAABqBocMSz4+PuarQHFxcZo0aVK51+jcubNat25tOOaTTz5Ry5Yt9f7775uvJNWuXVtffPGFRo8erebNm1tVPwAAqDkccs+Su7t7sdtl1sjKylJBQUGJfefOndO5c+c0YsQIi1tuI0eOlMlk0p49eyr8/QAAoPpzyCtLtjBjxgxlZ2fLzc1NHTt21NSpU9WsWTNz/6lTpyRJwcHBFvN8fX3VqFEjxcfHV2m9AADAMdW4sOTh4aEhQ4aoffv28vLy0smTJ7V69WpNmTJFn3/+ufz8/CRJKSkpklTiFSwfHx9z/68lJydb9CUkJFTCUQAAAEdR48JS37591bdvX/PnHj16qFOnTnrmmWf0j3/8Qy+88IIkKTc3V9LNW36/5u7urqysrBLX37hxoyIiImxfOAAAcEg1LiyVpE2bNgoNDdV3331nbisKSUWh6X/l5ubKw8OjxLXCwsLUrVs38+eEhATNnz/fxhUDAABHcVuEJUlq3Lixfv75Z/PnottvKSkp5ltzRVJSUhQSElLiOr6+vvL19a28QgEAgENxyF/DVYaLFy+qfv365s9BQUGSpJMnT1qMS05O1pUrV8z9AADg9latw1JycrISEhKUn//fF3OmpqYWG3fgwAGdPHlSnTp1Mre1aNFCd955p77++muLxwusX79eTk5O6tWrV6XWDgAAqgeHvQ335ZdfKjMz0/zLs+joaF2+fFmSNGrUKHl7e2vp0qXasmWLIiMjzU/rnjx5su6++24FBwfLy8tLp06d0qZNm9S4cWM9/vjjFt8xZcoUzZkzRzNnzlS/fv109uxZrVu3TsOHD9ddd91VpccLAAAck8OGpcjISCUmJpo/R0VFKSoqSpI0cODAYq8uKdK3b18dPHhQ3377rW7cuCEfHx+NGDFC48ePV8OGDS3Gdu3aVfPnz1dERIQWL16sevXqaezYsRo/fnylHRcAAKheHDYsrV69+pZj5s6dq7lz51q0TZw4URMnTizz9/To0UM9evQod30AAOD2UK33LAEAAFQ2whIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABV3sXgJrl7MFL+m5tvPJu5Nu7lDLLvpZj7xIAAA6MsASb+m5tvNIuXrd3GVZxq8XpAAAojr8dYFNFV5ScnCTPBh52rqbs3Gq5qkN4kL3LAAA4IMISKoVnAw89+nFfe5cBAECFOVxYysrK0qpVqxQbG6sTJ04oIyNDc+bM0ZAhQ24597vvvtP27dt19OhRXblyRQ0bNtR9992np556Sr6+vhZjp0+frpiYmGJrdOrUSYsWLbLV4QD4lexrOVo5bZe9yyizoquOLTr727sUAHbicGEpLS1NERER8vPzU6tWrXTkyJEyz/3000+Vnp6u3r17q1mzZrp48aK++uorHThwQMuWLZOPj4/F+EaNGukPf/iDRduvxwCwjZt7wnJkMklZV6vTpvocHV4TT1gCbmMOF5Z8fHy0bt06+fj4KC4uTpMmTSrz3KlTp6pNmzZydv7vExE6deqk6dOn66uvvtLEiRMtxnt7e2vgwIE2qx1A6TqEB+nwmur3S0mTSdWqZgC253Bhyd3d3eqrO+3atSuxrW7dukpISChxTn5+vnJzc1W7dm2rvhNA2bTo7F/trs6snLarml0FA1AZHC4s2VpWVpays7NVr169Yn3nz5/XoEGDlJeXp4YNG2r48OEaP368XF1L/9eSnJyslJQU8+fSQhgAAKgZbBqWTCaTfvnlF7m7u8vPz8+WS1ttzZo1ysvLU9++lr/MuuOOO9S+fXsFBgbqxo0b2rNnj1asWKHz58/rjTfeKHW9jRs3KiIiopKrBgAAjsKqsLR3717t27dP06dPV506dSRJly5d0ksvvWS+0tK7d2+9+uqrcnFxsV215RQTE6OIiAj16dNHv/3tby36XnrpJYvPgwYN0nvvvaevv/5aY8aM0T333FPimmFhYerWrZv5c0JCgubPn2/74gEAgEOw6t1wGzZsUHx8vDkoSdLHH3+sc+fOqX379mrZsqX27NmjTZs22azQ8kpISNArr7yiwMBAzZ49u0xzHnroIUnS4cOHSx3j6+ur4OBg85/mzZvbpF4AAOCYrApL586dU0hIiPlzVlaWDhw4oL59++qDDz7QX//6VzVv3txuYSkpKUkzZ86Ul5eX3nnnnTJv3m7cuLEkKSMjozLLAwAA1YhVYSk9PV0NGzY0fz569KgKCgrUr18/SZKrq6s6dOigCxcu2KbKckhLS9PMmTOVl5enRYsWFXsYpZGLFy9KkurXr19J1QEAgOrGqrDk5eWl9PR08+cjR47I2dlZbdu2Nbe5urrqxo0bFa+wFMnJyUpISFB+/n+ff5Kdna1Zs2YpOTlZ7777rpo1a1bi3OvXrys3N9eizWQyacWKFZKkjh07VlrdAACgerFqg/edd96p/fv3a8KECXJ2dtaOHTt09913W+xhSkxMVIMGDawq6ssvv1RmZqb5J/rR0dG6fPmyJGnUqFHy9vbW0qVLtWXLFkVGRsrf/+azW+bNm6cTJ05o6NChSkhIsPhZv6enp3r06CFJOnXqlN544w31799fAQEBysnJ0X/+8x/9+OOPGjFihIKDg62qGwAA1DxWhaVRo0bp9ddf16hRo8xXkCZMmGAxJjY2VnfffbdVRUVGRioxMdH8OSoqSlFRUZKkgQMHytvbu8R5p0+fliRt2rSp2H6pJk2amMOSn5+f2rZtq6ioKF29elXOzs5q3ry5Zs6cqbCwMKtqBgAANZNVYal379567rnn9O9//1uS1LdvX4sX3cbExOj69evq1KmTVUWtXr36lmPmzp2ruXPnlnuedPMZS0bPUgIAAChi9UMpH3jgAT3wwAMl9rVr186ujw0AAACwFas2eEdERCgmJsZwzNGjR3nSNQAAqPasCkvLly+/ZVgqeno2AABAdWZVWCqL/Px8OTtX2vIAAABVwuo04+TkVGpfXl6efvjhB6sfHQAAAOAoyrzBu+i9aUVWr15d4ibuwsJCpaWlKTc3V8OHD694hQAAAHZU5rBkMpnM/+zk5CSTyWTRZl7Q1VV33XWX7rvvPo0bN842VQIAANhJmcPS/z7DqFevXhozZozGjx9fGTUBAAA4DKuesxQZGVnqU7QBAABqEqvCUpMmTWxdBwAAgEOy+gneqamp2rRpk+Li4pSZmamCgoJiY5ycnPTnP/+5IvUBAADYlVVh6cyZM3r22WeVkZFR4ibvIkaPFwAAAKgOrApLf/nLX5Senq4nnnhCw4YNU6NGjeTi4mLr2gAAAOzOqrB0/Phxde/eXU899ZSt6wEAAHAoVj3B29XVVQEBAbauBQAAwOFYFZbatWunkydP2roWAAAAh2NVWJoyZYrOnj2rf/3rX7auBwAAwKFYtWfpH//4hwIDA/XXv/5VGzduVKtWreTl5VXi2JdeeqlCBQIAANiTVWFp8+bN5n++ePGiLl68WOI4JycnwhIAAKjWrH7dCQAAwO2A150AAAAYsGqDNwAAwO3CqitLW7ZsKfPYwYMHW/MVAAAADsGqsLRw4cJbvvfNZDLJycmJsAQAAKo1q8JSab9wu379uk6dOqUdO3aoW7du6tq1a4WKAwAAsDerwtKQIUMM+8PCwvTss8/qgQcesGZ5AAAAh1EpG7zvvfdedevWTcuWLauM5QEAAKpMpf0arkmTJjpz5kxlLQ8AAFAlKiUsmUwm/fDDD3J3d6+M5QEAAKqMVXuWYmJiSmwvKChQcnKytm7dqri4OA0aNKgitQEAANidVWFpxowZho8OMJlM+s1vfqNp06ZZXRgAOIrsazlaOW2XvcsoM7daruoQHqQWnf3tXQpQI1gVlsaNG1diWHJ2dpa3t7dCQkIUGhpa4eIAwJ7carlKypHJJGVdzbF3OeWQo8Nr4glLgI1YFZaefPJJW9cBAA6nQ3iQDq+JV96NfHuXUmbZ126Gu+pUM+DorApLAHA7aNHZv9pdnVk5bVc1uwoGOL4KhaVLly5p+/btOn36tK5fvy4vLy+1atVKAwYMkL9/9fo/MAAAACWxOiytWbNGn376qQoKCmQymczte/fu1d///nc9/fTTCg8Pt2rtrKwsrVq1SrGxsTpx4oQyMjI0Z86cWz45vEhGRoY+/fRTRUVFKScnRyEhIZoyZYqCg4OLjd23b5+WL1+uhIQE1a9fX0OHDtUTTzwhV1cuugEAACvD0v79+/Xxxx+rXr16GjNmjNq3by8fHx9dvXpV33//vVavXq2//OUvatq0qbp06VLu9dPS0hQRESE/Pz+1atVKR44cKfPcwsJCzZ49W2fOnNHDDz+sevXqaf369ZoxY4Y+++wzNWvWzDz24MGDevnll9WuXTvNmDFDZ8+e1YoVK3Tt2jXNnDmz3HUDAICax6qwFBkZqbp16+rzzz9X48aNze1NmjRRaGioBgwYoAkTJigyMtKqsOTj46N169bJx8dHcXFxmjRpUpnn7tmzR8eOHdObb76p3r17S5L69u2rRx99VMuXL9drr71mHvvJJ5+oZcuWev/9981XkmrXrq0vvvhCo0ePVvPmzctdOwAAqFmseoJ3fHy8+vTpYxGU/pefn5/69OmjU6dOWVWUu7u7fHx8rJq7d+9eNWzYUD179jS31a9fX3369NG+ffuUm5srSTp37pzOnTunESNGWNxyGzlypEwmk/bs2WPV9wMAgJrFqrCUl5cnT09PwzGenp7Ky8uzqqiKOHXqlIKCguTsbHloISEhunHjhs6fP28eJ6nYPiZfX181atRI8fHxVVMwAABwaFaFpWbNmik6Olr5+SU/xyM/P1/79++32B9UVa5evVriVamitpSUFIv/LG1sUf+vJScn6+TJk+Y/CQkJtiodAAA4IKv2LA0aNEiffPKJXnjhBU2ePNni6kxcXJyWLl2q8+fPa8qUKTYrtKxycnJKfIFvUVtOzs3njxTdjittbFZWVonrb9y4URERETaqFgAAODqrwtLo0aP1ww8/KDo6Wn/4wx/k4eGhBg0a6Nq1a8rJyZHJZFL37t01evRoW9d7Sx4eHuYg9L+K2jw8PCT9NySVNrZo3K+FhYWpW7du5s8JCQmaP39+hesGAACOyaqw5OLiorfeektbtmzRli1bdPr0aSUlJcnLy0uhoaEaPHiwBg0aZOtay6Rhw4Yl3kL79W23/70t5+fnV2xsSEhIiev7+vrK19fXliUDAAAHVqEnLw4ePFiDBw+2VS02ERQUpKNHj6qwsNBik/eJEydUq1Yt8z6qoKAgSdLJkyctXvqbnJysK1euKCwsrGoLBwAADsmqDd6OIjk5WQkJCRYbzXv16qWrV68qKirK3Jaamqrdu3era9eu5ttvLVq00J133qmvv/5aBQUF5rHr16+Xk5OTevXqVXUHAgAAHJbVT/D+97//reeee67EW1LJycn64IMPNGLECN1///1WFfbll18qMzPTfPssOjpaly9fliSNGjVK3t7eWrp0qbZs2aLIyEjzu+h69+6ttWvXauHChTp37pz5Cd6FhYV68sknLb5jypQpmjNnjmbOnKl+/frp7NmzWrdunYYPH6677rrLqroBAEDNYlVYWrdunZKTk0vdu+Pr66vExEStW7fO6rAUGRmpxMRE8+eoqCjz1aKBAwfK29u7xHkuLi5699139cknn+jLL79UTk6OWrdurTlz5ujOO++0GNu1a1fNnz9fERERWrx4serVq6exY8dq/PjxVtUMAABqHqvC0unTp9W1a1fDMSEhITpw4IBVRUnS6tWrbzlm7ty5mjt3brH2OnXqaPbs2Zo9e/Yt1+jRo4d69OhhVY0AAKDms2rPUkZGhurXr284pl69ekpLS7NmeQAAAIdhVViqV6+e+bUhpTl//rzq1KljVVEAAACOwqqw1LZtW+3fv19nzpwpsf/06dOKjo5Wu3btKlIbAACA3Vm1Z+mxxx5TVFSUpk6dqocfflgdOnRQo0aNdOXKFX377beKjIyUk5OTxo4da+t6AQAAqpRVYally5Z65ZVXtHDhQkVERFi8K81kMsnT01Ovv/66WrZsaas6AQAA7MLqJ3j37t1bbdu21ebNmxUXF6fMzEzVqVNHrVu31pAhQ265ARwAAKA6qNDrTho0aKBHH33UVrUAAAA4nGr9uhMAAIDKRlgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwUKbnLCUlJVn9BX5+flbPBQAAsLcyhaUxY8bIycmp3Is7OTlp9+7d5Z4HAADgKMoUlgYNGlQsLF28eFFHjx6Vt7e3WrVqpYYNG+rq1as6ffq0MjMz1aZNG91xxx2VUjQAAEBVKVNYmjt3rsXnn376SVOnTtXYsWM1duxYeXp6mvuys7P1j3/8Q+vXr9fMmTNtWy0AAEAVs+rdcEuWLFHr1q01ceLEYn2enp6aNGmS4uLi9Omnn+rtt9+ucJEAgPLJvpajldN22buMMnOr5aoO4UFq0dnf3qUAxVgVlo4dO6aRI0cajgkJCdG6deusKgoAYB23Wq6ScmQySVlXc+xdTjnk6PCaeMISHJJVYamwsFAXLlwwHPPLL7/IZDJZVRQAwDodwoN0eE288m7k27uUMsu+djPcVaeacXuxKiy1bdtWe/fu1c6dO9WvX79i/Tt27FBUVJQ6d+5c4QIBAGXXorN/tbs6s3Larmp2FQy3G6vC0uTJk3X06FHNmzdPK1eu1G9+8xs1aNBA165d048//qgzZ86odu3aevrpp21dLwAAQJWyKizddddd+stf/qI///nP+uGHH3T69GmL/rZt2+q5557TXXfdZYsaAQAA7MaqsCRJgYGB+vDDD5WUlKQzZ84oMzNT3t7eatmyJU/tBgAANYbVYamIn58f4QgAANRYFQpLeXl5Onz4sH7++WfduHFD48aNkyTl5OQoKytL9erVk7Mz7+oFAADVl9Vhad++fVq0aJFSU1NlMpnk5ORkDktnzpzRlClT9PLLL2vAgAE2KxYAAKCqWXXZ58cff9Rrr70mNzc3PfPMM+rfv79Ff2hoqAICArR3716bFAkAAGAvVl1Z+vvf/y5vb2999tlnql+/vtLT04uNCQ4O1okTJypcIAAAgD1ZdWUpNjZW3bt3V/369Usd07hxY129etXaugAAAByCVWEpLy9PtWvXNhyTmZkpJycnq4oCAABwFFaFpTvuuENxcXGGY44fP64777zTqqIAAAAchVVhqVevXjp27Jg2bdpUYv+//vUv/fTTT+rbt2+FigMAALA3qzZ4P/zww9q7d6/effdd7dixQ7m5uZKkJUuW6Pjx4zp27JhatWqlBx980KbFAgAAVDWrwlLt2rX18ccf64MPPtDu3btVWFgoSVq1apWcnJzUp08fPf/883J3d7dpsQAAAFXN6odS1qlTR6+99ppmzJihuLg4paeny8vLS61bt1bDhg0rVFRubq6WLVumbdu2KSMjQy1bttSECRPUsWNHw3ljxoxRYmJiiX0BAQH617/+Zf7cs2fPEsdNmjRJY8eOtb54AABQo1T43XD16tVT586dbVGL2cKFC7Vnzx6Fh4eradOm2rx5s2bNmqXFixerTZs2pc575plnlJ2dbdGWmJiozz//vMSg1aFDBw0ePNiiLSgoyDYHAQAAagSrwlLv3r31+9//3vx6k5KsWLFCy5cv1+7du8u1dmxsrHbu3KnJkyfrkUcekSQNGjRI48eP15IlS7RkyZJS5/bo0aNY29///ndJKvG1K82aNdPAgQPLVR8AALi9WPVrOJPJJJPJVKZx5bV37165uLgoLCzM3Obh4aFhw4bp+PHjSkpKKtd6O3bskL+/v37zm9+U2J+Tk6OcnJxy1wkAAG4PFb4NV5rU1FR5eHiUe158fLyaNm0qLy8vi/aQkBBJ0unTp+Xn51emtU6dOqWEhAQ9/vjjJfZv2bJF69evl8lkUvPmzfXEE0/c8sW/ycnJSklJMX9OSEgoUy0AAKB6KnNY2rJli8Xn+Pj4Ym2SVFhYqMuXL2vr1q1q0aJFuQtKSUmRj49PsfaituTk5DKvtX37dkkl34K799571adPH/n7+yslJUVfffWV5s2bp+vXr+uBBx4odc2NGzcqIiKizDUAAIDqrcxhaeHChebXlzg5OSk6OlrR0dHFxhXdevPw8NDvf//7cheUk5MjNze3Yu1FjyEo6y2zwsJC7dq1S0FBQbrrrruK9X/yyScWn4cOHaoJEyZo6dKlGjJkSKlXxcLCwtStWzfz54SEBM2fP79MNQEAgOqnzGHppZdeMv/z22+/re7du6t79+7Fxrm4uKhOnTq69957VadOnXIX5OHhoby8vGLtRQ++LOutvZiYGF25ckXh4eFlGu/m5qYHH3xQ77//vk6ePFnqr+58fX3l6+tbpjUBAED1V+awNGTIEPM/x8TEqEePHiWGpYry8fHRlStXirUX7RMqa1DZvn27nJ2d1b9//zJ/d+PGjSVJ6enpZZ4DAABqNqs2eM+ZM8fWdZi1atVKR44c0fXr1y02ecfGxpr7byU3N1d79+5Vu3btynUV6OLFi5Kk+vXrl69oAABQY1n16ID9+/fr5ZdfLnWzdXJysl5++WUdPHiw3Gv37t1bBQUF2rhxo7ktNzdXmzZtUmhoqPmXcElJSaX+Eu3gwYPKzMws9ZdtqampxdqysrK0du1a1atXT8HBweWuGwAA1ExWXVlat26dkpOTS71q4+vrq8TERK1bt073339/udYODQ1Vnz59tHTpUqWmpiogIEBbtmxRYmKiZs+ebR63YMECxcTEKCoqqtga27dvl7u7u3r16lXid3z11Vfat2+funbtKj8/P6WkpGjTpk1KSkrSyy+/XOIGcwAAcHuyKiydPn1aXbt2NRwTEhKiAwcOWFXU3Llz5efnp61btyozM1OBgYF655131K5du1vOvX79ug4cOKD7779f3t7eJY75zW9+o2PHjumbb75Renq6atWqpZCQEM2ePVu//e1vraoZAADUTFaFpYyMjFvu66lXr57S0tKsWV4eHh6aMmWKpkyZUuqYDz/8sMR2Ly8v7dixw3D9jh073vKlvAAAAJKVe5bq1aun8+fPG445f/68VY8OAAAAcCRWhaW2bdtq//79OnPmTIn9p0+fVnR0dJlumwEAADgyq27DPfbYY4qKitLUqVP18MMPq0OHDmrUqJGuXLmib7/9VpGRkXJyctLYsWNtXS8AAECVsiostWzZUq+88ooWLlyoiIgIi3elmUwmeXp66vXXX1fLli1tVScAAIBdWBWWpJvPQ2rbtq02b96suLg4ZWZmqk6dOmrdurWGDBnCgx0BAECNYHVYkqQGDRro0UcftVUtAAAADseqDd6/lp6erqSkJFssBQAA4FCsvrKUmZmpZcuWadeuXUpLS5OTk5N2794t6eZ73JYvX64JEybw6hAAAFCtWXVlKT09XU8//bS++uorNW7cWM2bN5fJZDL3t2zZUseOHdP27dttVigAAIA9WBWWli9frvPnz+v111/XZ599pt69e1v0e3h4qG3btvr+++9tUSMAAIDdWBWWoqOj1aVLF/Xt27fUMf7+/rpy5YrVhQEAADgCq8JSSkqK7rrrLsMxbm5uys7OtmZ5AAAAh2FVWKpbt64uX75sOObnn3+Wj4+PVUUBAAA4Cqt+Dde2bVtFR0fr8uXLaty4cbH+c+fO6f/+7/80dOjQChcIALg9ZF/L0cppu+xdRrm41XJVh/Agtejsb+9SUImsCkuPP/649u3bp6lTp2rixIlKS0uTdDMkHTt2TJ9//rnc3d318MMP27RYAEDN41bLVVKOTCYp62qOvcsppxwdXhNPWKrhrH433B//+EctWLBAb731lqSb74QbP368TCaTateurT/+8Y9q1qyZTYsFANQ8HcKDdHhNvPJu5Nu7lHLJvnYz4FW3ulF+Vj+Usnv37oqMjNSWLVsUGxur9PR0eXl5KTQ0lHfDAQDKrEVn/2p5ZWbltF3V8EoYrFGhd8PVrVtXY8aMsVUtAAAADscm74bLz89XRkaG8vO5FAkAAGoWq68sFRQU6Msvv9TmzZt17tw5mUwmOTk56a677tKQIUP04IMPytW1QheuAAAA7M6qNJOVlaUXXnhBsbGxcnJyUuPGjdWwYUNdvXpV586d0yeffKK9e/dq0aJF8vT0tHXNAAAAVcaqsPS3v/1Nx48fV//+/TVp0iT5+fmZ+5KSkvTXv/5VO3fu1LJlyzRt2jSbFQsAAFDVrNqztHv3bgUHB+vVV1+1CEqS5Ofnp9dee03BwcHavXu3TYoEAACwF6vCUlpamjp06GA45re//a3S09OtKgoAAMBRWBWWmjZtqmvXrhmOSU1NVUBAgFVFAQAAOAqrwtLo0aO1a9cu/fTTTyX2nzlzRrt27VJ4eHiFigMAALA3qzZ4N23aVPfdd58mTpyowYMHq02bNmrQoIGuXbumH374QVu3blWnTp0UEBCgmJgYi7nt2rWzQdkAAABVw6qwNGPGDDk5OclkMunrr7/WN998Y+4zmUySpP3792v//v3F5u7Zs8e6SgEAAOzAqrA0btw4OTk52boWAAAAh2NVWHryySdtXQcAAIBDssm74UpTWFhYmcsDAABUOqvC0p/+9Cfl5uYajrl06RJP7wYAANWeVWFpw4YNmjRpUqmPDti5c6eeeuopnThxokLFAQAA2JtVYWnixIk6f/68Jk2apK+++srcnp2drbfeekvz5s2Th4eH3nvvPZsVCgAAYA9WbfAeO3as7rvvPs2bN08ffvihDh06pAcffFB//vOfdeHCBXXp0kUvvfSS6tevb+NyAQAAqpZVYUmSQkNDtWzZMn3wwQfatm2bDh48KHd3dz377LMaOXJkhYrKzc3VsmXLtG3bNmVkZKhly5aaMGGCOnbsaDjvb3/7myIiIoq1u7u7a8eOHcXav/nmG61atUqJiYlq1KiRRo8erVGjRlWodgAAULNYHZYkKSsrS5cvX5Z082GUzs7OqlWrVoWLWrhwofbs2aPw8HA1bdpUmzdv1qxZs7R48WK1adPmlvNnzpwpT09P82dn5+J3Gzds2KD3339fvXr10kMPPaSjR49q8eLFunHjhh577LEKHwMAAKgZrA5L+/bt0zvvvKP09HT97ne/U48ePfTuu+/qnXfe0aFDh/TCCy/Iy8ur3OvGxsZq586dmjx5sh555BFJ0qBBgzR+/HgtWbJES5YsueUavXr1MrwFmJOTo88//1xdunTRvHnzJEkjRoxQYWGhVqxYobCwMNWpU6fctQMAgJrH6kcHvPLKK5KkBQsW6Pnnn1fHjh21fPly9erVS7t27dLvf/97/fjjj+Vee+/evXJxcVFYWJi5zcPDQ8OGDdPx48eVlJRUpnWuX79ufvXKr33//fdKS0vTAw88YNE+cuRIZWdn68CBA+WuGwAA1ExWPzqgffv2Wr58ubp3725u9/b21htvvKEXX3xRaWlpmjFjRrnXjo+PV9OmTYtdlQoJCZEknT59+pZrPPTQQxoyZIgGDx6sefPm6erVq8W+Q5Jat25t0R4cHCxnZ2edOnWq3HUDAICayarbcJMmTdKjjz5a6vvhhg8frrZt2+rNN98s99opKSny8fEp1l7UlpycXOrcOnXq6MEHH9Q999wjNzc3HT16VOvWrdOJEyf02WefmQNYSkqKXFxc1KBBA4v5bm5uqlu3rlJSUkr9juTkZIv+hISEch0fAACoXqwKS2XZAN2sWbMy7S/6tZycHLm5uRVrd3d3N/eXJjw83OJz7969FRISonnz5mndunUaO3aseQ1X15IP3d3d3fA7Nm7cWOIv7gAAQM1UoV/DGcnLy1Nubm6poaQ0Hh4eysvLK9Ze9HoVDw+Pcq03YMAA/eUvf9F3331nDkseHh7Kz88vcXxubq7hd4SFhalbt27mzwkJCZo/f365agIAANVHmfcsPfTQQ1q7dq1F26FDh/Txxx+XOP6LL77QsGHDyl2Qj49PibfBitp8fX3LvWbjxo2Vnp5u8R0FBQW6du2axbi8vDylp6eXeBuwiK+vr4KDg81/mjdvXu56AABA9VHmsJSYmKjMzEyLtuPHjxcLUBXVqlUr/fLLL7p+/bpFe2xsrLm/PEwmkxITEy0eJRAUFCRJiouLsxgbFxenwsJCcz8AAECl3YazVu/evbVq1Spt3LjR/Jyl3Nxcbdq0SaGhofLz85MkJSUl6caNGxZXdlJTU4s9X2n9+vVKTU1V586dzW333Xef6tatqw0bNqhLly7m9g0bNqhWrVoWbQAAGMm+lqOV03bZu4wyc6vlqg7hQWrR2d/epVQbDheWQkND1adPHy1dulSpqakKCAjQli1blJiYqNmzZ5vHLViwQDExMYqKijK3hYeHq2/fvgoMDJS7u7t+/PFH7dy5U0FBQcWe2/TUU0/pgw8+0GuvvaZOnTrphx9+0LZt2zRx4kTVrVu3So8ZAFD9uNVylZQjk0nKulr6D4McT44Or4knLJWDw4UlSZo7d678/Py0detWZWZmKjAwUO+8847atWtnOG/AgAE6duyY9u7dq9zcXPn5+emRRx7RE088Uew1LCNHjpSrq6siIyMVHR2txo0ba9q0acV+UQcAQEk6hAfp8Jp45d0o+QdDjij72s1wV51qdgQOGZY8PDw0ZcoUTZkypdQxH374YbG2WbNmlet7RowYoREjRpS7PgAAWnT2r3ZXZ1ZO21XNroI5Bque4A0AAHC7KNeVpW3btun48ePmzxcuXJAkvfjii8XGFvUBAABUZ+UKSxcuXCgxBB06dKjE8aW9DgUAAKC6KHNYioyMrMw6AAAAHFKZw1KTJk0qsw4AAACHxAZvAAAAA4QlAAAAAw75nCXcdPbgJX23tvo98AwAgJqEsOTAvlsbr7SL12890AHdfA0AAADVH3+jObCiK0pOTpJnAw87V1N2RS9pBACgJiAsVQOeDTz06Md97V0GAAC3JTZ4AwAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGCAsAQAAGHC1dwElyc3N1bJly7Rt2zZlZGSoZcuWmjBhgjp27Gg4b+/evdq1a5fi4uJ09epVNW7cWF26dNG4ceNUp04di7FjxoxRYmJisTXCwsL0wgsv2PR4AABA9eWQYWnhwoXas2ePwsPD1bRpU23evFmzZs3S4sWL1aZNm1LnLVq0SD4+Pho4cKD8/Px05swZrVu3TgcPHtSyZcvk4eFhMT4oKEgPPfSQRVvTpk0r5ZgAAED15HBhKTY2Vjt37tTkyZP1yCOPSJIGDRqk8ePHa8mSJVqyZEmpc9988021b9/eoi04OFhvvfWWtm/fruHDh1v0+fr6auDAgbY/CAAAUGM43J6lvXv3ysXFRWFhYeY2Dw8PDRs2TMePH1dSUlKpc38dlCSpZ8+ekqRz586VOCcvL0/Z2dkVKxoAANRYDndlKT4+Xk2bNpWXl5dFe0hIiCTp9OnT8vPzK/N6KSkpkqT69esX6/v+++81cOBAFRQUqEmTJgoPD1d4eLj1xQMAgBrH4cJSSkqKfHx8irUXtSUnJ5drvZUrV8rFxUW9evWyaA8MDFSbNm3UrFkzpaena/Pmzfroo4+UnJysyZMnl7pecnKyOYBJUkJCQrnqAQAA1YvDhaWcnBy5ubkVa3d3dzf3l9X27dv173//W4888oiaNWtm0ff2229bfB46dKhefPFFrV69WqNGjVLjxo1LXHPjxo2KiIgocw0AAKB6c7iw5OHhoby8vGLtubm55v6y+OGHH/TOO++oU6dOmjhx4i3HOzk5acyYMTp06JBiYmJK3fgdFhambt26mT8nJCRo/vz5ZaoJAABUPw4Xlnx8fHTlypVi7UW3vnx9fW+5xunTpzVnzhwFBgbqzTfflKtr2Q6z6GpSenp6qWN8fX3LVAMAAKgZHC4stWrVSkeOHNH169ctNnnHxsaa+41cuHBBL7zwgho0aKB3331XtWvXLvN3X7x4UVLJm8EBAKgpsq/laOW0XfYuo8zcarmqQ3iQWnT2t8v3O1xY6t27t1atWqWNGzean7OUm5urTZs2KTQ01PxLuKSkJN24cUPNmzc3z01JSdHMmTPl7OysRYsWlRp60tPT5eXlJRcXF3Nbfn6+/vnPf8rNza3ERxAAAFDdudVylZQjk0nKulr2PcD2l6PDa+IJS0VCQ0PVp08fLV26VKmpqQoICNCWLVuUmJio2bNnm8ctWLBAMTExioqKMre9+OKLunjxoh555BH9+OOP+vHHH819DRo0ML8uJTo6WitWrFCvXr3k7++vjIwMbd++XT/99JMmTZpU4q/xAACo7jqEB+nwmnjl3ci3dyllln3tZrizZ80OF5Ykae7cufLz89PWrVuVmZmpwMBAvfPOO2rXrp3hvNOnT0uS/vWvfxXra9eunTksBQYGqnnz5tq+fbtSU1Pl6uqqoKAgvfHGG+rTp4/NjwcAAEfQorO/3a7OWGvltF12vwrmkGHJw8NDU6ZM0ZQpU0od8+GHHxZr+9+rTEaCg4OLPToAAACgJA73uhMAAABHQlgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAwQFgCAAAw4GrvAkqSm5urZcuWadu2bcrIyFDLli01YcIEdezY8ZZzr1y5oo8//ljffvutCgsL1b59ez3zzDO64447io395ptvtGrVKiUmJqpRo0YaPXq0Ro0aVRmHBAAAqimHvLK0cOFCrV69WgMGDND06dPl7OysWbNm6ejRo4bzsrKyNGPGDMXExGjs2LF68sknFR8fr2eeeUZpaWkWYzds2KB3331XLVq00IwZM3Tvvfdq8eLF+uc//1mZhwYAAKoZh7uyFBsbq507d2ry5Ml65JFHJEmDBg3S+PHjtWTJEi1ZsqTUuevXr9cvv/yiv/71rwoJCZEkde7cWePHj1dkZKQmTZokScrJydHnn3+uLl26aN68eZKkESNGqLCwUCtWrFBYWJjq1KlTyUcKAACqA4e7srR37165uLgoLCzM3Obh4aFhw4bp+PHjSkpKKnXunj171Lp1a3NQkqTmzZvrvvvu0+7du81t33//vdLS0vTAAw9YzB85cqSys7N14MAB2x0QAACo1hwuLMXHx6tp06by8vKyaC8KQKdPny5xXmFhoc6ePavWrVsX6wsJCdGFCxeUlZVl/g5JxcYGBwfL2dlZp06dqvBxAACAmsHhbsOlpKTIx8enWHtRW3Jyconz0tPTlZube8u5d955p1JSUuTi4qIGDRpYjHNzc1PdunWVkpJSan3JyckW/QkJCbc+KAAAUG05XFjKycmRm5tbsXZ3d3dzf2nzJJVpbk5OjlxdSz50d3f3Ur9DkjZu3KiIiIjSDwAAANQoDheWPDw8lJeXV6w9NzfX3F/aPEllmuvh4aH8/PwS18nNzS31OyQpLCxM3bp1M39OSEjQ/PnzSx1fEbXreVj8JwAAtxtH+LvQ4cKSj4+Prly5Uqy96NaXr69vifPq1q0rd3f3Em+h/Xquj4+PCgoKdO3aNYtbcXl5eUpPTy/xVl4RX1/fUmuwtQcWdLv1IAAAajBH+LvQ4TZ4t2rVSr/88ouuX79u0R4bG2vuL4mzs7MCAwMVFxdXrC82NlZ33HGHateuLUkKCgqSpGJj4+LiVFhYaO4HAABwuLDUu3dvFRQUaOPGjea23Nxcbdq0SaGhofLz85MkJSUlFdtc3atXL8XFxVmEoJ9//llHjhxR7969zW333Xef6tatqw0bNljM37Bhg2rVqqUuXbpUwpEBAIDqyOFuw4WGhqpPnz5aunSpUlNTFRAQoC1btigxMVGzZ882j1uwYIFiYmIUFRVlbhs5cqS++eYbzZ49Ww8//LBcXFy0evVqNWjQQA8//LB5nIeHh5566il98MEHeu2119SpUyf98MMP2rZtmyZOnKi6detW6TEDAADH5XBhSZLmzp0rPz8/bd26VZmZmQoMDNQ777yjdu3aGc6rXbu2Fi9erI8//lgrVqwwvxtu2rRpql+/vsXYkSNHytXVVZGRkYqOjlbjxo01bdo0hYeHV96BAQCAasfJZDKZ7F1EdXby5ElNnDhRn332mYKDg+1dDgAAsDGH27MEAADgSAhLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABhzyCd7VSU5OjiQVe08dAABwfM2bN1etWrUMxxCWKigxMVGSNH/+fDtXAgAAyqssb+DgdScVlJqaqkOHDmn9+vWaMWNGmed99NFHeuaZZwzHJCQkaP78+XrllVfUvHnzipZaI5Tl35u92KO2yvhOW61ZkXWsmVveOZyD1nHkc1Cq+voq6/tuh/OwrGMr+zzkylIVqF+/vgYOHKhdu3aV691w3t7eZR7fvHlz3jv3/5Xn31tVs0dtlfGdtlqzIutYM7e8czgHrePI56BU9fVV1vfdDudhede353nIBm8b6d+/f6WOx02O/O/NHrVVxnfaas2KrGPNXM7BquHo/96qur7K+r7b4Tx09P8t/S9uwzmwkydPauLEiWW6nwrA9jgHAftzhPOQK0sOzMfHR+PHj5ePj4+9SwFuS5yDgP05wnnIlSUAAAADXFkCAAAwQFgCAAAwQFiqxnJzc/X2229r9OjRGjx4sJ5++mkdO3bM3mUBt5X33ntPDzzwgAYPHqxx48YpOjra3iUBt61jx46pV69e+vvf/27TddmzVI1lZ2crMjJSQ4YMUaNGjbR79279+c9/VmRkpGrXrm3v8oDbQkJCgvz9/eXu7q4TJ07o+eef16pVq1SvXj17lwbcVgoLCzVlyhSZTCZ17dpV48aNs9naXFmqxjw9PTV+/Hj5+fnJ2dlZ/fr1k6urq86fP2/v0oDbRvPmzeXu7i5JcnJyUl5enpKTk+1cFXD7+frrrxUSElIpT/nmCd5VKCsrS6tWrVJsbKxOnDihjIwMzZkzR0OGDCk2Njc3V8uWLdO2bduUkZGhli1basKECerYsWOp658/f14ZGRkKCAiozMMAqq3KOgf/9Kc/adOmTcrNzdX999+vwMDAqjgcoFqqjPMwLS1Na9as0ZIlS/TRRx/ZvGauLFWhtLQ0RUREKCEhQa1atTIcu3DhQq1evVoDBgzQ9OnT5ezsrFmzZuno0aMljs/JydH8+fP12GOPydvbuzLKB6q9yjoHn3/+eW3dulUffPCBOnbsKCcnp8o6BKDaq4zz8LPPPlN4eLjq1KlTOUWbUGVycnJMycnJJpPJZDpx4oSpR48epk2bNhUbd/z4cVOPHj1MK1euNLfduHHD9PDDD5uefvrpYuPz8vJMs2bNMr3xxhumwsLCyjsAoJqrrHPwf82ePdu0f/9+2xYO1CC2Pg9Pnjxpeuqpp0z5+fkmk8lkWrBggSkiIsKmNXNlqQq5u7uX6Qmke/fulYuLi8LCwsxtHh4eGjZsmI4fP66kpCRze2FhoebPny8nJyfNnTuX/48WMFAZ5+CvFRQU6MKFCzapF6iJbH0exsTE6Pz58xo1apQeeOAB7dq1SytXrtTChQttVjN7lhxQfHy8mjZtKi8vL4v2kJAQSdLp06fl5+cnSVq0aJFSUlK0aNEiubryXydgC2U9BzMzM3XgwAF169ZN7u7u+s9//qMjR45o0qRJ9igbqFHKeh6GhYWpX79+5v4PP/xQ/v7+euyxx2xWC3+7OqCUlJQSU3dRW9EvbRITE/XNN9/I3d3dInm/++67atu2bdUUC9RAZT0HnZyc9M033+iDDz6QyWRSQECAXn31VQUFBVVpvUBNVNbzsFatWqpVq5a538PDQ56enjbdv0RYckA5OTlyc3Mr1l708+ScnBxJUpMmTRQVFVWltQG3g7Keg15eXlq8eHGV1gbcLsp6Hv7a3LlzbV4Le5YckIeHh/Ly8oq15+bmmvsBVB7OQcD+HOk8JCw5IB8fH6WkpBRrL2rz9fWt6pKA2wrnIGB/jnQeEpYcUKtWrfTLL7/o+vXrFu2xsbHmfgCVh3MQsD9HOg8JSw6od+/eKigo0MaNG81tubm52rRpk0JDQ82/hANQOTgHAftzpPOQDd5V7Msvv1RmZqb5MmJ0dLQuX74sSRo1apS8vb0VGhqqPn36aOnSpUpNTVVAQIC2bNmixMREzZ49257lA9Ue5yBgf9XtPHQymUymKv3G29yYMWOUmJhYYl9kZKT8/f0l3dzlX/Q+nMzMTAUGBmrChAnq1KlTVZYL1Dicg4D9VbfzkLAEAABggD1LAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAAAABghLAPD/9ezZ0+JPTk6OuW/z5s3q2bOnNm/ebMcK/2vDhg0Wtb711lv2LgmosVztXQCA28+lS5f00EMPGY5p0qSJVq9eXUUVWX7v4MGDJUkuLi6V+l2HDh3SCy+8oI4dO+r99983HPvmm29qx44devXVVzVgwAAFBwdr/PjxyszM1Nq1ayu1TuB2R1gCYDcBAQEaMGBAiX3e3t5VXM1NTZo00ZNPPlkl39WhQwf5+fnpu+++U1JSkvz8/Eocl5mZqf/85z/y9vZWz549JUmtW7dW69atdenSJcISUMkISwDsJiAgoMqCiSNydnbWkCFDFBERoS1btmjcuHEljtuxY4dycnI0dOhQeXh4VHGVANizBKBa6Nmzp6ZPn64rV67ozTff1IgRIzRo0CDNmjVLFy9elCSdO3dOc+fO1bBhwzRo0CC9+uqrunr1aqXWdfnyZY0bN079+/fXnj17zO3Xrl3TRx99pEceeUT9+vXTiBEj9Morr+js2bMW84cOHSonJydt3rxZJpOpxO/YtGmTJGnYsGGVdhwASkdYAlBtZGRkaOrUqbp06ZIGDRqk9u3b6+DBg3r++ed19uxZTZkyRdnZ2Ro6dKhat26tvXv36o033qi0es6dO6cpU6bo8uXLeu+999S7d29J0oULFzRhwgStWbNGd9xxhx588EHdf//9OnTokCZPnqzY2FjzGk2aNNFvf/tbXbx4UUeOHCn2HWfPnlVcXJyCgoJ09913V9qxACgdt+EA2M2FCxf0t7/9rcS+e+65R507d7ZoO3PmjMaMGaNp06aZ2/70pz9p/fr1mjZtmn7/+98rPDxckmQymTR79mwdPHhQJ0+eVHBwsE1rP378uGbPni1XV1d99NFHatWqlblvwYIFunr1qhYtWqROnTqZ25944glNnDhR7777riIiIsztw4YN0+HDh7Vp0ybdd999Ft/DVSXA/riyBMBuLly4oIiIiBL//N///V+x8Z6enpowYYJFW79+/SRJ9erV0+jRo83tTk5O5r4zZ87YtO4DBw7oueeeU506dfTJJ59YBKVTp07p2LFjGjRokEVQkqRmzZpp+PDhOnv2rMXtuB49eqhevXrau3evrl+/bm7Pz8/Xtm3b5O7uXupGeACVjytLAOymU6dOWrRoUZnHN23aVLVq1bJo8/HxkSQFBgbKycmpxL7k5OQKVvpfu3fv1rfffquWLVvqvffeU4MGDSz6i26xXbt2rcSrZj///LP5PwMDAyXJHIbWrl2rHTt26He/+50kKTo6Wqmpqerfv7/q1Kljs2MAUD6EJQDVhpeXV7G2omchGfXl5+fbrIbjx4+roKBAbdq0KRaUJCk9PV3SzatPBw4cKHWd7Oxsi8/Dhg3T2rVrtWnTJnNY4hYc4BgISwBQDpMmTdK+ffu0du1aubi4aOrUqRb9RaFtxowZGjVqVJnXbdmypVq3bq0TJ07op59+Up06dXTo0CH5+/sX28cEoGqxZwkAysHd3V0LFixQly5dFBkZqY8//tiiPyQkRNLNK1DlVXQF6d///re2bt2qgoIC86MFANgPYQkAysnd3V3z589X165dtXr1an300UfmvtDQUIWGhmrnzp3auXNnsbmFhYWKiYkpcd3+/furVq1a2rZtmzZt2iRnZ2fzq1cA2A+34QDYjdGjAyTpsccec9gnVru5uWnevHl67bXXtGbNGplMJk2fPl2S9Nprr+nZZ5/VG2+8obVr1yooKEgeHh66fPmyjh07prS0NO3YsaPYml5eXurVq5e2bt2q1NRUde7cudRXoACoOoQlAHZT9OiA0oSHhztsWJL+G5hef/11rV27ViaTSTNmzNAdd9yhZcuWKTIyUv/5z3+0efNmOTs7y8fHR23btjU/vLIkw4YN09atWyXdfLo3APtzMpX2fH0AuM307NlT7dq104cffmjvUsrs0qVLeuihhzR48GDNnTvX3uUANRJXlgDgf8TExKhnz56SpO3btzvsla0NGzbo/ffft3cZwG2BsAQA/9/48eMtPhc9p8kRBQcHW9QbFBRkv2KAGo7bcAAAAAZ4dAAAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAIABwhIAAICB/wckGElmhP4XwAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "spectrum.index.value = -1\n", + "\n", + "expectation = psr.get_expectation(spectrum)\n", + "\n", + "ax, plot = expectation.project('Em').plot()\n", + "\n", + "ax.set_ylabel('Expected counts')" + ] + }, + { + "cell_type": "markdown", + "id": "86bac761-903c-4c72-8138-130c2194e876", + "metadata": {}, + "source": [ + "## Point source response in inertial coordinates" + ] + }, + { + "cell_type": "markdown", + "id": "ad7b53cf-f02c-4e29-9079-d96f73f929b3", + "metadata": {}, + "source": [ + "In the previous example we obtained the response for a point source as seen in the reference frame attached to the spacecraft (SC) frame. As the spacecraft rotates, a fixed source in the sky is seen by the detector from multiple direction, so binnind the data on the spacecraft coordinate, without binning it simultenously in time, can wash out the signal. As shown in this section, we can instead rotate the response and convolve it the attitude history of the spacecraft, resulting in a point source response with a Compton data space binned in inertial coordinates.\n", + "\n", + "We use a scatt map, which tracks the amount of time the spacecraft spent in a given orientation. See spacecraft file tutorial for more details." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "cb7f52de-e3fb-4568-adaf-ccca8e55d215", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", + "\n" + ] + } + ], + "source": [ + "scatt_map = ori.get_scatt_map(nside = 16, coordsys = 'galactic')" + ] + }, + { + "cell_type": "markdown", + "id": "dfac4b7b-227f-4c4b-977b-5cc4cebc9ee5", + "metadata": {}, + "source": [ + "Now we can let cosipy perform the convolution with the scatt map and get the point source response:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "48573091-7569-4ab4-9ee6-f8e996e5b11b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 46 s, sys: 5.45 s, total: 51.4 s\n", + "Wall time: 54.3 s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "from astropy.coordinates import SkyCoord\n", + "\n", + "coord = SkyCoord.from_name('Crab').galactic\n", + "\n", + "with FullDetectorResponse.open(response_path) as response:\n", + " psr = response.get_point_source_response(coord = coord, scatt_map = scatt_map)" + ] + }, + { + "cell_type": "markdown", + "id": "36326805-b595-4110-8001-08980308718d", + "metadata": {}, + "source": [ + "This is how a slice of the response looks like in galactic coordinates:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "07c397d6-63f5-4162-8cd4-536f3a5a2a6e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADKKklEQVR4nOz9ebwkVX3/j79OVS+37zr7zjADDDPAsDoDCiKKCAouGEWjEjW/oGhcYtT4NRo/LkFMPiafT8wnxqBGTcQlEVwiS0CCyL4oyLAMs8AMMwyz3zt3v7e7q87vj+pTt7q6lrN1d/Wd83w85jH39u1616nqqlPPfp+NUEopDAaDwWAwGAwdjdXuAhgMBoPBYDAY1DFSZzAYDAaDwTALMFJnMBgMBoPBMAswUmcwGAwGg8EwCzBSZzAYDAaDwTALMFJnMBgMBoPBMAswUmcwGAwGg8EwCzBSZzAYDAaDwTALMFJnMBgMBoPBMAswUmcwGAwGg8EwCzBSZzAYDAaDwTALMFJnMBgMBoPBMAvItbsABoPh6IRSinK5jImJCUxNTaFcLqNcLmN6etr/Oeq1SqUCx3H8f67r1v0ffg0ACCEghMCyLP939rNlWf7fbdtGPp9HLpdDPp/3/+VyORQKBf919ntXVxe6urpQKpXq/s/lTNVqMBhaj6l5DAaDFJVKBaOjoxgZGfH/D/48Pj6OiYmJxH+O47T7MJpCPp+vE75SqYSenh709vb6//r6+up+D/4bGBhAV1dXuw/DYDB0GIRSSttdCIPB0H4qlQqGhoYwNDSEwcFBDA4O+j+z14PyNjk5qW3fhUIB5Ykq4BIQlwAuav9I6DUCUAJQABQglHgBKOpeB4I/exDbnnmBBP5E2A/U+5lQwPJ+poGf2euUoPYaBSwX1KbomVvC1NSUVkktFouYM2dO3b+BgYGG1+bNm4f58+ejWCxq27fBYOhMjNQZDLMcx3EwNDSEgwcP+v8OHDiAgwcP4tChQ760jY6OCscmhIBWCEjVAhwLpGrVfrZBHOK95liemDkW4BAQ13svqgCdqnqvzZhV0yC5fFPjUyaFtgsQB9SigF0TQZsCtguacwGb1v53QXP1r89Z1ofR0VFUq1Xh/ff19WHBggWYP38+FixYUPdz8P98vrnnwWAwtA8jdQZDhzM5OYl9+/Zh7969ePHFF7Fv3746gTt06BB/BskFULVBKrYnaBXvZ+81C6Rqe3Lmy5vFJWSUUtByWe1AFWm21KVCXb63gc6IX94FzTmgeRfIuaB5t/bzzGv5fhtlznNLCMGCBQuwePFiLFmyJPL/UqmkcpQGg6GNGKkzGDJOtVrFgQMHsHfvXl/c2M979+7F0NBQagzLskCnCFC2Qco5T9bKOZCy7YlaxRM4XkmL2AFIaHAAk7i2Ch2pDYywSF35qMMnWNqLU4gXSzo9LRXTl8CCA5p3gILr/0wLDmjBxeI183D48GFUKpXUeAMDA1i8eDGWLl2K5cuXY8WKFVi+fDmWL1+OBQsW+ANMDAZD9jBSZzBkAEophoaGsHv37rp/u3btwosvvpjeHOdYIFM5kHIO1nSjuKFiyzdxRghb5DEkiFvTxY4ki0ZY6uJopuwlCR0vsuIH1OQvXxO+ogNarAZ+dtCzuIixsbHEGIVCoUH0VqxYgRUrVmDRokUgpPnN6AaDIR4jdQZDC6lWq9izZw927NiBnTt31gnc+Ph47HaFQgGVEQpSzsMq50HK+Zqw5UDGAeLY8oXilLYwMpKmTe5SJK7x7XxSF0aH5OmQOV5UpA8AqO2ClmpZv2IVtKsCWqxi2foF2Lt3b2IzfqlUwrHHHotjjz0Wq1at8n9etmwZbFvh+jQYDNwYqTMYmoDruti3bx+ee+457Ny50///+eefj20CI4QAUzZIuQBrugAynYc1nQeZLoBUcnWZNkopwNGU5iMpbkGE95kQR0jsBAUuOoSc1EUhInqtFLo0hIUvJGIUtJbVq4B2VX3pW3HaIuzZsydW+AqFAlasWOGL3nHHHYfjjz8ey5YtM025BoNmjNQZDIpMTExg+/bt2LZtG7Zt2+YL3NTUVPQGLoE1VQCZYvJW8OStnAehyQ+5RLHSIG5C+1OMmyh2GkSuPpw+qQuSJHhZEro0EoWPI8tGCfUkr1QB7arArf2fn0tiB3GUSiUcd9xxOOGEE3DCCSfg+OOPx3HHHYfu7m7ZwzAYjnqM1BkMAhw5cgRbt271BW7r1q3Ys2cPIm8jl3jZtqliQOKKXpOpYP82X66aIG6x+2ryPuqkTrPEhWmW1IUJSl4nSV0SvvBJNKH62b2uyozwdZcTZW/58uU4/vjjsWbNGpx44olYt24d5s6dq3IIBsNRg5E6gyGGkZERbN68GZs3b8YzzzyDbdu24eDBg5HvJeUcyFQR1qQncNZUEWQ6rzb/mkWAXA4oN1ewYBFPqqgLWqkCLVjlgVLq7atFENsGsVvY1NfCPmTEtr39sc+vmdSaS1X7RVJQrwm3uwy3uwJaKmPeCb04dOhQ5PsXL16MtWvXYt26dVi3bh3Wrl2Lvr4+pTIYDLMRI3UGA4ByuYzt27dj8+bNePrpp7F582a88MILDe/z+r3lPHkL/COOQhbIIkC+UP8adfXLHJO30H5iRUCz3LVS5EiEVLVM6lokdFHHGLn/ZsheTF84ZdnLOV7TbXcZbncZK85agN27d0dmwpcvX+4L3sknn4y1a9eaVTUMRz1G6gxHJfv378emTZvw9NNP4+mnn8b27dsjBzCQcgHWZAnWVBesyS5YYzlvRQRZogQuCHWBahVwFW7LKHmL2A/Xg15R7FolcrGCU/ee2SN1PMebWg4dsscx0EFZ9CwXdIDC7Z4CLU1j8Sn9ePHFFxvel8vlcOKJJ2L9+vX+vwULFijt22DoNIzUGWY9ruti586d2LRpk//vwIEDjW+s2rCmSrAnS7CmSrAmSyBu7cFIKSD6AEwTuDAyQscjcKF9CD/IBcUuSyJX//4WSF1WhC6IyPtlrg+JEawyokcKM/cStR24pWm43VNwu6cxZ3URg4ODDdssWbLEF7xTTz0Vq1evRq4FfSsNhnZhpM4w6yiXy9iyZQs2bdqEJ554Ak888UTDuqa2bYOO5WFNds8IXCWiDxyvzIkKXN0+ajIHJAudqMCF9qEkWilil1WRq9+286VO5fhVysYlYYrTk/CKXlDu/G1BQQtVT/J6JrH6pYvw3HPPwXXrRyd3d3fjtNNOw5lnnokzzjgDa9asMZJnmFUYqTN0PNVqFVu3bsWjjz6K3/3ud3jiiScaR9a5xBO4yRLsiW5Yk92p04fECp2KwNXFT5A5FYEL7UObbEWIXStkTklk6uI0WeqyLHRBNMWJlTCNc8/F7SNK7Bq2tdya5E3B7Z5CaSlpmODbSJ5htmGkztBxUEqxY8cOX+Ief/zxxuWNqjbsyW5YNYGzprrERqIGhU6XxNXFDzS16hK4UHztslWTuk4SufqYRurqaEJ5fQlr0qTCQcnjEbu6bUFBu8pweyfh9E6iezlpqDe6u7tx6qmn4qyzzsKGDRtw/PHHmwmSDR2FkTpDR3DgwAE8/PDDePTRR/Hoo4829p9xLNgTPbDGe2BPdIOUi2rTiTRr3jTqAs1cTL6Z01pQCndKbRmqNJohczOxm/SZWhbQ5DVPm3lemi2jNG3d4jbBI3nz5s3Dhg0bsHHjRmzYsAHz589vU2kNBj6M1BkySaVSwaZNm/DQQw/hoYcewo4dO+rf4BJYE92eyE30iGfighALJDczIEL7ou40EK9ZQtfkOcpooJmYap7qhFgk+IvW2HUE9tPUheebKqZNFLB8oNlRZfR1FIFzTzVO1RP+HFUeZ/WSN4HiEorJycm695xwwgnYuHEjNm7ciFNPPdVMoWLIHEbqDJlh//79ePDBB/HQQw/hd7/7XV2FalkWMN4Fa6IX9pg3OjW1T1wcQYkLokvoaESMTpe5IBrErk7k6v+gFDeRmH12ouC1TO6C6BC9iM9AVfKSPj8lySMUbvck3IEpHP/yhdiyZUvd34vFIs444wy87GUvw7nnnoslS5ZI78tg0IWROkPbcBwHTzzxBO677z48+OCDeP755+v+Tqo52BN9tX+9gGPLzZsWJ3EMFZmLErgwzRC6dsgcQ0HqYmWu/k1SsVNJ2beRuxBxcseQlTyOa0BG9Hg+P9nHHbEtULsKp3cCTu8E5q4pNKx+cdxxx+G8887Dueeei3Xr1sFu4aoiBgPDSJ2hpUxNTeGRRx7Bvffei/vvvx/Dw8P+31g2jomcNV3ym1QppfxClyZxQUSFjkfiGB2YnePu/yQodlwyN/Nm/veKIFCGpglep8ldmtgFEZU8gc+DV/JEPzeRx1+wT6a3pm0ZTt84Trp4GZ588sm66VPmzJnjZ/A2btyI7u5uoXIZDLIYqTM0naGhIdx///2499578cgjj9RPN+LYyI33wR7vhz3ZC+I2PkS4hE5E5GYC8wmdiMgxOiw7J9yZnVPqhGRuZiPxbXiQKIuRuxoichckTfQkPpM0wZP9zHgehXGDbajtwOkdh9M3jtIKWjfgIp/P46yzzsIFF1yAl7/85ZgzZ45U+QwGHozUGZrC/v37cdddd+Gee+7BE088UVdhkkoe9vgAcuP9sCZ7Ugc4REqdjMTVB40XOhmJC9KEgRaZkbkgCWInJXMzG8tvm4RKmdAkwTta5A6IFzzFzyVK8nR8VlGPRp4R1BQUbs8knL4xLD69B3v27PH/ZlkWTj/9dLzyla/E+eefb5YxM2jHSJ1BGwcPHsRdd92FX//613jyySfr/mZNdcEeH4A93g+rzD9StU7oVEVuJuiM0KkKXJgOETot00xESJ2SzNUH0hMniKayHfVypyJ2QYKSp+u6wYzk6fyc6r6UCkyN4610UYEzMIrV58/H1q1bZ+IQgvXr1+OCCy7ABRdcgMWLF2srr+HoxUidQYlDhw7hN7/5DX7961/XZeQIISAT3ciN1USuKj55L6UUcKkekZsJ6gnd0ShzVP90JEzstMkcI8NSxzByp3nlBTYRt06a8YWIUuk5D918GU7/GE68aDGeeuqpur+tW7cOF110ES688EKTwTNIY6TOIMzw8DB+/etf484778Tjjz9e9y3WmuxGbmwO7LEBWE5ebgeEeA833QJCqb6JUJl06J5MmLpNmQsOAOA4SlM8NOBS/XLM0Cl1rIwspm5xgGbBa9JkxtrFziLNkVCrFtPVeA+w86lxjjzYttL17+YqcPrHcPLrlmHTpk11X4jPOussXHTRRbjgggvQ29urq8SGowAjdQYuyuUyHnjgAdx+++144IEHUA3IkTXVjdzoAOzxAamMHIAZkQuiU2x0CF1YNHQIXfCh0ESZq9ul6i3fTJljaFr3NjGmkTs9NEPurFA8HYIXPpeqghc+ZoV7guaqqPaPYe3Fi+q6rhQKBbz0pS/FRRddhJe97GVmsmNDKkbqDLFQSvHkk0/i9ttvx5133onR0VH/b9Z0CbnxebDH58CalqzQwyLHKl2R6Ut4kBW6JLFQEbqoyr8ZQpcQT+q2b4XMBZEVu7gyxsUzcqdOK8QuiKzkxZ1HWcGLO2aVDF434PQdwfKN3di5c6f/ek9PDy644AK89rWvxemnn97ceRUNHYuROkMDL774Im677TbcfvvtdSO3SDWP3Pg85MbmwaqUvBdFBSxO5BjtFro0kZCRubQKvsVCBwhKXatljiEqdWllTIt3FMpd5sUOSJY7QFzw0s6hqOClHbPovZP3Wju8ufCmUO0bxtx1BAcPHvTfsnz5crz2ta/Fa1/7WjPAwlCHkToDAGB6ehp33303brrpJjz22GMzf3At5CbmeCI31Vc/apVXwNJETjQeL7xCxysPIkLHU5G3QeaCpN767ZI5Bs/nIlI+EUnM8qCKo1Hu0sSOwSt4vOePV/B4j5f3es3Xd2OhoHBLE6j2H0Fx2TQmJiYAeNfVxo0bcemll+LlL385CgXJ7i+GWYORuqOcHTt24Je//CVuv/12jIyMAPAqCmuiF7mxebAn5oDQuCaGBAnjFTmeWDKkCZ1MFihJ6ETlp81CB6RIXbuFDkhv/tYZLw6NcmfETjWmYLw0wRM9f2mCJ3q8SddwPl7OKHHh9A3j5NctxO9//3v/9f7+frzmNa/BpZdeijVr1oiVxTBrMFJ3FDI5OYm77roLv/zlL+s65ZJqHrnRBciNzYflpHzji5wQWFDk0uLJEid0Kn20ooROVnp0C51CrIbbPwsyx4j6vFTKpjL4wsidOFkQO0ac4MmeuyjBUznWqOs6QewYbn4a1f4jmHsS6ppn161bh8svvxwXXnghurq65Mtl6DiM1B1F7NixAz/72c/wq1/9CuPj4wDgLTo90ovc2ALYk/3ckwLXSVhQ5mQqyWZm6VRHUYaFTlV4MiR0DL8KyJLQMYJTx+iKpUIW5c6InRhBwdNx3oKCp3qsweucQ+r8zUDhdo/hvPccj3vuuQeVilem3t5eXHrppXjTm96EY445Rq1sho7ASN0sx3Ec3Hfffbjxxhvr+sqRSgG5MZaVE5xPjlLAdeWzcuFYuoVO17xxTOh0CEUGmlvjaMpkzLoglr6y6Zr7Lqv97TTLXaabY1XFjuE6eoW4XNF3nNQVEjt/M7uK6sAQFpxmYe/evf7rGzZswOWXX45zzz0XuZzmiaMNmcFI3SxleHgYN998M37+859j3759ALx1B8loP/KjCxoHPfBiWzOZKx2Voe5mV11C5zr6yqVT6GqrQuha25JWqlpXg6Au1RKP1paQ0lU2v1w6JzXWdd5c+RUKwvgT2Op6aFOqLRalFKQgOSF5FLrEDvA+S133KLEAXZOcA4Dk+ffWoB3DS962HA888IB/bSxcuBBvfOMb8cY3vhFz587VV05DJjBSN8vYvn07brzxRvzqV79CuVz2XnRs5EcXIDe6ML2vXBzBh07cwtyi6BC6wOWrLHQsI6SjXG6wXHqFjqEidkzoAD3iRAPHqxKPhq4t1bLFlktHszyLo3r+gmVUlLu6NUpVZUxjrLpyZVnsGKr3bPD6UhU8DVLt5sqozhlE7/FVHDlyBIA3sfHFF1+MK664AqtXr1behyEbGKmbBVBK8eCDD+JHP/pR3Wgoa7qE3Ogi5MbnglCJh0XUAyYLQhdxyUoLXbhpT6VcEeemWULHEBW7oMz5MTRKmGy8qDiyseLiRcbSNcGxitxFlVVS7qKqcykh0xUHMWXqBLFjyN7DUdeWrODpyrzmCJzeYRz3yh5s3rzZf/mcc87B2972NmzYsMFMatzhGKnrYCqVCu644w78+Mc/xo4dOwCwgQ99yI8sgjXdI9/EGke7pC7hMhUWurg+WjJCl3A+tAhdjMwxRCrgKKHz42gUMZF4STFE4iiXSddEx6Jyl1ReQbFLqsqFhUxjrLhydZTYMYQmWk/4/ETlTmMfOJKzvabZ4gTOfucy3HPPPf5ntHr1arz97W/HRRddZOa861CM1HUg4+Pj+OUvf4mf/OQnM8PYXQu50QWezOloYo2iHUKXcnlyC11aZ3uRMnGch1YIHYNH7JKEDhCTpzQR442nK47WWCITUSfF4D2fPOXmlLu0qpxbxjgeCbyxUsvUiWIH8NcVPNcTr+BpEjuSqz9Pbm4alYFDyC8dx+TkJABg3rx5+IM/+AO8+c1vRl9fn5b9GlqDkboO4tChQ7jhhhvwX//1XxgbGwMAkGoOuZFFyI8tAHElbnqRbIAOqeORJ4FLMlXqeEZO8pSJ89ib3dwaRZLUpclcXRxNIpYWizcGTyxdZQq9MfnvvKNxeeSOt+wp96lINZ4qZJyx0uIIlUmX3OkSO5Fsa9p9yvtFIU3uNGfrwlDLQaX/MOasq/rJgp6eHrz5zW/GFVdcYQZVdAhG6jqA/fv34wc/+AFuvvlmf/4hUi4iP7IYubF5IBBsOiJEvP9PK7J0gpdirNCJTIGRVB7BY26H0DGixE5E6IDWiJhoHJ2xhJuY4x7GokuTJe1X9Bhi5E60Go8VMk1xZB4rHS12QMLqOhL9I+MEr0nZuiAUFE7vESx7qe136ykUCnjDG96AP/zDPzRrzWYcI3UZZu/evbj++utx6623olq7ya2pHuSHF8OeHBDvLycjc4xmZekkL78GoZOZyyyqPJLH2U6hAxqlTlTo/DgR14eMiIVjycaIKpOO8ghuWP+77BJl4f3LHkdI7GSr8Eghk5GxiDjSZep0sWM0rLYjOSAnLHctkDoGBYXTPYLVr+rCM888A8Drs33JJZfgyiuvxIoVK7SUxaAXI3UZZM+ePfj+97+P2267DU6tcrAme1EYXgp7SqJ/g4rMAc0ROoXLjupY4SFcHoVjbGX/uSQIIdIy58fQJGIslmoMFkdXeRQDoFYQtRisHKrHU5M71SrclzJNcZTLM1vEDqivY1Sm0QnKXQvFDqjNd1caw0mXDfgT2DO5e/e7341ly5ZpKY9BD0bqMsTevXvxve99D7fffntA5vpQOLIU9nSveEBVmWPokjoNE3JSXXPbOY6W48qK0PmhFIQO0CdQOtEth4pB1KSOxbCIluuP2JayRAE1IdPxKNC0mkKmxE7jJNPKVKstl7ogTnEcp79lPh566CEAntxdeumlePe7322aZTOCkboMcPjwYVx//fX4xS9+4Tez2hP9yA8vkZM52/KWDHJVMgq1ikx1Ql/28KpELIAtUR6qGocRtSC3AJQtlaZKLY6W29BxsiNj1FWf4FdnHGiSOt2oHpumYyKEeHWGeiAtcQghQF6DvGQhWxdGl8wr1s0yUsdwiuNYf/kc/Pa3vwUA5PN5vP71r8eVV16JhQsXKpXLoIaRujYyOjqKH/3oR7jhhhswNTUFALCm+lAYXAa73CMWzLZmviWrCAchM0JHqbzUWaReDGVkLPiAcF01oQs2nSkInX+7aBS6htgy1DJ9mZC6YCZLRVqCqzZoIJNSB6gdn06pA9SELNivUyFOXf9Q21Y/xiyKHaAkd8F+lSpypyJ2AOB0jeGk1/f7zbKFQgFvectbcOWVV5qpUNqEkbo2MDU1hRtuuAE//OEP/alJrOkeFIaXw54QzMwFZY4hI3VBmWMxZCoLKxRHRujC3/ZVhC74wJQUuoZbpAlCF7kfXkJNt20Vu6iVFtoRI4LMSh0gf4wajqlh5LSskGmIEzk9T7B+kz3erIodoG/AjER9rSp1DKd7HCde0o1NmzYBAPr6+nDllVfiD/7gD1AsFrXsw8CHkboW4roubrvtNnz729/25wEilZInc1NzQCjERCpK6AAxqQvLXDAGb1nCIscQFbq4phtRqYt6QEoIXeytoSp1CZ+P0O0Y0w+vLVKXtMJCO+JEhsiw1DFEjlN3lq4hvkBZNMSILUdUHSdz7FnqXxeHwL0bO72NwDNEl9TBsrzRsqURLHsZ9adCWbRoEf7kT/4EF198sbfakaHpGKlrEY8++ii+/vWvY9u2bQAAUi2gMLwC9uS8malJeEUqTuZYDB7piJM5kXLEyRyDR+rS+uCICF3SvGKcQpd6OzRR6LjLAKQOFmmp2KWtrqAaQyROYogOkDqA/1ibkaVr2AdHWXTESCtLkhCInIdOEDtAy6TUvHKnRewCnzEFRbV3EAMnT/rJi+OOOw5/+qd/irPPPlt9X4ZEjNQ1meeffx7f+MY3cP/993svuDbyI0uRH1vcOGlwmkwlyVwwRpI0JMkcbznSZA5IFzqeDtU8QsfzAOSQOq7boAVCx1UWjpGyLZE6kZUVVOMcTVLHSDvmVkgdkH6faojBVY60uo/nfGS5GTaKtLWROVYESpM73VLn75e4qPQfRHHliN/N6Nxzz8WHPvQhHHPMMer7NERipK5JjI6O4jvf+Q5+/vOfw3Ec2LYNMjwfhZFlIG7EcP0kkeKRuWCcKHHgkbm0svDIHCNO6kRGxyVJnUgGKEbohC79FgndzNtjyiYw9UlTxU50VYVmxRCg46QOiD/uVgmdv7+YcmiIIVQO3now6fx0SrYuSMy9zLsuMBAvdzqbYCP3a1Vx2SfX4ac//Skcx0Eul8MVV1yBd7/73ejpERwQaEjFSJ1mWL+5f/mXf8HQ0BAAwJ6cg8LwCljVUvyGUSIlInMsRlgcRGQurhwiMgdEC53oVAdxQifycI8ROuFLvsVC520SUUbBueyaJnWi87TF9XFUjSFIR0odEH3srZY6IPr+1RBDuBwidWLceepEsQMi5U5E7IBouWtWti6Im5/CaW/p9+e4mzt3Lt73vvfhda97nelvpxEjdRrZsmUL/uEf/gFPPfUUAIBUulA8shL29ED6xkGZEpW5YAwmD6IyF1UOUZljBKVOZt6qKKGT6XAfEjqpS70NQjezaaC8kpMTaxc72SWyVLYPx5CkY6UOaDx+xWMRFil/v4FyaIghXQ7R+jHqfHWq2AF1cicqdYyg3LVC6hjV0jAWbaxg9+7dAIB169bhE5/4BNauXateBoOROh2MjIzgW9/6Fv7rv/6rNimthcLIMuSi+s3FwT4GlW8slHr/ZCtKJnSyMgfMCJ3KJKRM6lTnOCtX1OZ+a6PQeZvXyq6w2oQ2qVNdGktXDAU6WuoYUWvIyoSRvb+BmftaQwylcsjWlez8dbLUMWr3t6zYAZ7ctVLqAIDCRbX/EPIrj2B8fByWZeHyyy/HVVddhd5eiQn3DT5G6hSglOKOO+7A//t//w9HjhwBANgT81A4cgwstyAWTDazVl8gte11xKAUqCoseeW6oCrbA4DrgCquGMHKIo2GFSd0LImmRepUl8XSgZG6GTQ0VSnJlK4yqMZQ3d4is0PsoOHz9IKobS/xJd61Kzjv/7cEd9xxBwBg3rx5+MhHPoILL7xQzzEdhRipk2Tv3r34P//n//j9A0ilC8WhY2GX+8UC6ZA5hspHqesykF17lJ0H11UTMgWhY5WIL1MqGU8dQudSZaFSlrosCB2gReq8MGr3GnVp++UwC9k6QE2qdGTqLDJTBtnrXIPYsSyZyqOUEKK8VKCWz1O1dcK2pZ4lTtcIFmycxgsvvAAA2LBhAz7+8Y9jxYoVauU5CjFSJ0i1WsUNN9yA73znO97SXpQgP7oM+ZEl/E2tAEAIaK0yIAoPXlqr3IlL2yd1rDJxXfEsXVBq2yR0wcqwITsmWlEG1nKVrWR9ofNfUGjCVZE6VaFj15SuLy2axM4LJV6m4Llsq9ix89DJYqfary547MEyyFzvGsUOkJM7ws4HpdJyp/WzlJW7YAzB46DERWXuQZCFh1Aul1EsFnHVVVfhrW99qxlIIYCROgG2b9+Ov/3bv8WWLVsAANZ0H4pHVsOqdoldwAGhA+SkjgYqNWWhA+S2Dy8rJpKlC2coVYUOEJa6cCUY2dwpIXU0EEO0om0QOqA92TpdQgdkUuq8cIKfTdTIw1bLneYBE0CbxE6n1EWVQeSa19QM27Bsl2CdSoLNlxJyp6W5suE8CtYDUUtWipCz4eamcPLri/jd734HADj55JPx6U9/GqtWrRKLdZRipI6DarWKH/zgB/je974Hx3EA10ZhZCVyEwu9pb14T2FI5vyXBSogGlGJtzxLF1V58Gbp4pqbW5ili6r8EvuviczvV8vSJe0rfvMIofP/2KJsnY7m1vD1lFGpmwnLV76489hSsWvSvHUtFTvVaU3ijjWqDLzXvuZsXRDeRyyJ6pMmKHdN+xx55S5ppSNecra3KkXPIeSPOYTx8XHk83m8973vxTve8Q7kcjn+WEchRupS2LlzJ6699lo888wzAAB7ci4Kw6tmBkJQDqGKkTn/z5wVT5TQ+du3QuqSlhVLy9Il9R1skdAlVXipgxJ4VuEICR3Pfuv2n3QdtELqmiF0DC0duZsjdV5ojs8o4Ty2TOySzkGniJ3KJMRJx5i0f557oIliB/DJXaTYeRvzbd/Mz5BH7HhWPEojMBLXtcs44y09eOCBBwAAa9aswWc+8xkcf/zx6XGOUozUxeA4Dn7yk5/g29/+NsrlMuDaKA6vgj05f2atViBd6jQIXZzM+ds3u+k1raJIytLxDARpotRxC1XaKNOkOAlCx1OGVKHz39hEsdPZ3BpFxqXOC5/yOXF8Rk2XuyYvHdZ0sVNdLizt+HjEMu5zbLLUMZIeubFSN7Nx8vbNaIINkyZ3qmIXml6FgsLpHkRx9WGMjIwgn8/j/e9/P6644gpYstNmzWKM1EWwd+9efPnLX8amTZsAAPbUAApHjouepiRO6lJkzn9bwoMiSebqtm9Wlo6ngojL0vGO6m2S0PFWbkLThkTFTBG6tPJwCx3QPKlrttABHSF1M7uJ+ax4F1lvltjxHn+WxY7jIRy7f97j4s0YRn2eLRI7IF7uUsXO21j6S2Qq3OcvbllLgSUto4iZM49aFZxxRY+/jvpZZ52Fz3zmM1i0aBHf/o4SjNSF+J//+R/8/d//vbcAsWuhMHKs13cOMTdKlNRxCh0QL3U8Qudv3wyp460Ywlk60SlaNEudcB820XngwoNDOIQurmxCQgc0R+paIXRAR0mdt6uIfpcCn1VTxE7k+LModgJZlYb9ix6PSB+/4OfaQqljhOsPLqnzNpTu7pGI0LmLqD9El7YMkzARMutrZy3bj6mpKfT29uITn/gEXv3qV/Pvc5ZjpK7G5OQkvva1r+GWW24BAFjlXhSHjofldCVvGJQ6AZljhKWOV+bqtpf9CGMyjELbB7N0bRQ6mYpMh9RRge0bpk5p8ajUBilpldABHSd13u5CEi74eWkXO9Hjz5LYCTaTtVTqGOzz7SSx8zZu3L7VK3UE5U52iUsGx+oWbm4Kqy50sHnzZgDAxRdfjI9//OPo7u4W3/cswzRIA9i6dSve97734ZZbbgEh3rxzXYdOThe6IBJCF6alQtcQTFDIgPp5yCxL3yhHHmpCRwhpndB5G878LzjcP1Pfn1opdDLvzwDUpUrz/Gldd1dGaBX3387rtW7fMnIqc29bxPvnUsBVXNVGENl6rLYxiGXpW4FB6twpqoRg2a1qF56/vYT3vve9sCwLt99+O973vvfh2WefVSvHLOCoztRRSvHTn/4U//zP/4xKpQLi5FEcOkF4VQhRGQtCXCq9vVapE4VSr9lVtiLRkKWTXb1Cx/JbIs2uQfyZ49swKbAvGa0WOobqQ6fFmbr6XRMlSVPO2qkcezszdrat9MAnhKiVX2nVi9Zm64JQSsWydY0B5LcF1M6b66ptL3jenMIo+tYP4uDBgygUCvizP/szvP71rz9qlxk7aqVucnISX/3qV/015+zJuSgeWQ1C80JxpIWOXXAKp7+tUgfIr/FKKWilIi82CkIHwGsyVTlvkkI3s33rhc7blLZP6ICOljodKImd6rGrfPFU/dzyYnVqw/4VW0DaJnaWQvYNUF+2S+VeVV3BQbnpXrD52qrgtLeU8OCDDwIALrroInzyk588Kptjj0qp27VrFz73uc9hx44dACUojByD3PiS+MEQIahVa27kmaMuCtbUqbA9cVzpbantlZ04khUGK7uM1FEKVKty2SrqAo7r/S8pRn4fONnLvlbJSt827RQ61qSkWuG2Q+zaLXTs3CuUQ3lpMh0L2EsiLScs26RY9raJHTtumc+dLeEoe+78dW0l73t27mVbJVQ+sxZLHeANoqj07YM7fx8cx8ExxxyDL3/5y0fdShRHndTddddd+Ju/+RtMTEzUmlvXwC73cW3ryxwh3o0msxJDMEMnK4SAuNSF+/zJSF145KeI1NVkzvtRUegAKTmqG9Qgc+4DlavwbaPav0qX0AGdJ3VZETpGC8Uu3OTbcWIXbkJUKH9bxC54zApi54VSHOwhKnfhcy8qdx2WrWMEm2NLpRL+6q/+Cueff75aWTqIo0bqHMfBN7/5TfzoRz8CAFjlPhQHT4ieey5EncwxRKQuahCCqNSFtheSuqhBHKJSp0novF8lpvIICh0gtH3kCFWRcx9RmQrdNlkSOkYnid0skjpvc84WgbhlyTpJ7KL6hXVS1i58vIojkFsqdlHnXkTsOlTqAK85du3rLTz22GMAgPe+973+oIrZzlEhdRMTE/jSl77kT1qYG1+KwvAxqc2tkTIH8Atd3IhSEaGL2Z5LyOJG5IoIXVz5eaQuJHMzL3NKHZM59nMQ3qXV4iox3vMfU4ly3zZZFDqgc6Qua0LHaIHYJS5L1iliF/cQ7RSxiztWxYmguc+h6lqsceefR+7YrAYqtFPs4OJ1H1uNG2+8EQBw3nnn4a/+6q/Q09OjVqaMM+ulbu/evfj0pz8d6D93AnKT89NXckiaoiNN6tKmB+GVupgYXFm6pClWBKQwbvtUqYsROu9PHFIXlZ0LwrO8WlLFxXP+EypOrtsmq0LHyLrYZVXoGE0UO64lyTpB7JKkoBPELuk4eT7/pCUeec6h6lqsSeefR+w6OFsHALSQR7XrALBwN8rlMlauXIm//du/xfLly9XKlWFmdS5y06ZNuPrqqz2hc/IoDp7CJ3S2rdChW2K+N50xCAHN2Wpz5qnsn1KgUokVuvTtXW/bJKFLC+E4QpMCR5JSYaZWyFkXuqzTbqHjQXEkseo8durXuMIcfDxCn5blUSw/lR3oFdy/ShmofB0FeOdQKadiWWqZNNtWl7aMQ8oV5KYWgexdi4ULF2LXrl34wAc+gCeffLLdRWsaHVBzynH77bfjYx/7GI4cOQJS6UHX4Kmwq/EDIqjlyRDXYsZxKzHwTMCblKVrt8yxMsiSkJ3j2z6QnVMQOi6SsrAq0wgAR4/QqV4rWUZ16hfu3TSeBxHZy7zYpaFB7LTInVIhFOVe9TyqNpE2U+5Uj031s61hV3sx9vRKrF27FsPDw/jYxz6GX//611piZ41Z1/xKKcUPf/hDXHfddQAAe2oeCsMngMBmb6jL1KU2tYYJS52oiEVJneD2DU2noqtZxMQQ2b6u+VVQ5iKbX9OaW6MIL7EmWjmHPwfVFSJ0rCDQaqHLYhNsu7N0op+BhvIGm2JlMniZbIoVlY2sNcfqGNAjukpQeJ+i5yRch4l+BuE6tMP71QFeE6z/Mxyc9Qd53HfffQCAq6++Gu985ztn1UTFs0rqHMfBP/3TP/kdI3PjS5EfO3ZmQERA6IRljsGkTjarFpY6wRh1/elklyYLSp3sMTCpk8jO1Uld0mCINIJyrrLkFyCVnau7dTpR6AD1ChfQK3btFjpA7nPQ1L9OadWKLImdrAhkSex0zKkocU7rzqXs+WD1meznEKxPO7xfHRAWO4rLPrQCN9xwAwDgjW98I/78z/8c9ixpip41Ujc9PY0vf/nLuOuuuwAA+dFVyE8srX8TO1TZdUpVhY6VgcWQwJc6WaGrlYE4rmK/uap0U6svdTLZuSAuVWt+YteDQnOr8pJfgJ6+WSpNru3M1gX336lCx9Agdqr97NopdkBASFT7eqmUQYMEKPWrBmauBVVRVl2uS+VzYHVru6UO0JqtY1RKe+HM2QXXdfGqV70Kn/3sZ1EopE9xlnVmhdSNj4/jL//yL/H73//eG+E6fAJy0wvq32RZ3oWh0kav61S185SHmp+lcBxguixfBMedEUKV7JTCUmEA1PvSQENn7XYLHZCNbF2nCx0jA8eRCbHT0c9LEWW5y+WUy6AsqDrK0G7Y6ksqqEpdbzcQsdZ4tXgYdOEOVCoVbNy4Eddccw1KpZLSvtpN+2sgRUZHR/Hxj3/cEzrXRnHopOYInaVhVCsgf3ETAuTUFsfW0j+CxVHBIt7nofIQVc6OUeVzofx9SIfQ6RAR5ePQ0PyqvCZtRoSsRQMs4iAWUS+Djq4EqoONFNGSrVP9wqajOU91hK4OVGd0UGiZ8kPkc6B5ecEl45NARLYuNz0f1oETUCqV8Mgjj+DjH/84RkZGVIradjpa6o4cOYKPfexj2Lx5M+Dm0DV0MuzKwMwbLAu0WFC6GLw4ihe16k1BiNo3FSaEOvomKH6LVxYhV0dzp+JUEsGpCGTPh06ha2cnX51ZZ9lzwrbLithlgU4WO7YMYxZwXG0jMGXw65p2ix2g1l2Hba9B7mTLQAnxxC4kd3Z5DtwXjkdfXx+eeuopfOQjH8Hhw4eVytlOOrYGO3z4MD760Y9i27ZtIE4eXYOnwKr2en/UKXNM6BTXapVCh4ypCmEAFaFTnpMJ0DQYQV3o1MuQkQxdXVCJ49LVl06F8HnIgti1KVvXMJlxG8SuYcCEipzpmF5IF20UOwDZEjsd87CKbjI1091HJWtHCYmUO7vah8qO4zB//nzs2LEDH/vYxzpW7DpS6g4cOICPfvSj2LlzJ4hTQHHoFFhOd3Nkjl2AohXcLMrOAepCp0zE+RfqOyQr5XUhMix0rc7WNUvotDQnZ0AEslAGoLMzdrq2lyFK7LMidlmRO9Xt29gkGyV3ltON8S0rsWjRIjz//PP42Mc+hsHBQaUytoOOk7rBwUH8+Z//OXbv3g3iFGtCV/KELuYDJi5nCj1K5kTRIXPNzM7ZljfJMifUIu0VumY3t3L2q0s8Dt7zk8UMXd0OOM9zszN0vMfYzHPRYf3rEteS7SSxS5oUnBMt/eniMM2xM7R79aQavHJnjU00bhuUOwCW04WRp5dj4cKFeP755/Fnf/ZnHSd2HSV1w8PD9UI3eAos2g0U8vr6zakKmQqzLDs3G5pbvRDtn4OOOk56jFYM5MlCkyuQfi6y0AyrqxwpJAqdrnJwfLlKXzqvAzN2cZis3Qw67mkNMVIdIKHuCmbtLKcLo5tnxK7TMnYdI3VjY2P45Cc/iR07doA4eRSPnAIr1+tZusoFEczOyZL17Jwgqdk5ywKK8fP5cEmQbSdPGcApdIlNsFkQOtX1IZudnROhlUKXdMytzOR1iNhxoaMcql+0VPvJtULseD/zJLFrwUS2JmvXiK4mWcvu98Vu586d+OQnP4nR0VGlsrWKjpC6iYkJfOpTn8KWLVsAN4/i2Okgdp8+mev0ptYWZ+dojARry87paG4VKUdEE6zwsUSdt3Y0tzYrW9eODF3UsYuej1kudlxZOt3liOrfKrMyT2MQ+W1ZiGY2vUbR5uZYIINZu1kid5bdj9HtqzBv3jxs374df/mXf4np6WmlcrWCzEtdtVrF//pf/wtPPvkk4OZQHDsNhPaoBZ0NTa26YtRoe985wDS31m1+lGboEsvRxvORYbETJgsZO2D2jIwFMiF2mcnaAZ3TJJu0LSEgtBsTO1ehp6cHmzZtwuc//3lUJVdSahWZljpKKf7u7/4ODz/8MEAtFMdPheX2ygecLU2tLE4G+s4Bs0Toatk6pWNh57HdQqczW9fuBWdmy2jYJiCcpQuiUeyUFkNnYiYbIyB2Lc/ShWmz2AEZmvoEmBVZOwAgbh+q+45HoVDA/fffj//9v/833Cx9oQiRaan77ne/i1tuuQWgQGH8ZFhOv1wgoqGpVceKEjpEzNLUZFtDWugIAXI5NQli/epUhU7HMjSuazJ0YdotdAzFfol+jCyQlXIAsyNjp2P7IMpzFNKW9KdLLkKGmmOBWZG1s5y5wOAa2LaN//7v/8a3vvUt5fI0i8xK3U033YTvfe97AID85BrY1fnCMdzuPMqLeuD0FZX6zVHLUltSimUIFTNiWrAs0GIOtKsgLXTE0dD04dYqnizMHaeLrFSiWTknOr6p64IqynKWZKwG1ZLdVjwui6jfgzq+lAHq6zAD3pdllS/MrE+wjs9GBzqEV8c9rPr8swhodxG0uygfgxAMnzIHw6fMkdrcri6ANXICAOAHP/gBbr31VvmyNJFMSt0jjzyCv//7vwcA5KZWIldeJrQ9k7lqXwHUgvyACkJAbaJ2lrIgckBtHj/bOx4FtAmdhodk3cNEpfmmdjxKzUgahE7PQzojDxNCvKxHFpbdCjYlt1vOsnA+wui+F+WDyG0X+MJNHVde7oKj8VXEjmWW2y12/sT5CnU2O7e6vqCpPA9rZVARO2p5/2TlLldZgne/+90AgK9+9avemvMZI3M1zJ49e/CFL3wBjuMA9nLkplYJbe925wMyJ1mIWnZOSYCykpkDPKHTIHOkUtUvdIQAEmnxhoeITCZVV7ONbqGTffBnTej839tYzYTPiYzY6RLBJpwHLV8EvEDi24TqNymxC9+3mq5hbVk7lW2yIHZBZkvWjqhn7YJyJ8p//uNOvOpVr0K1WsVf/dVf4YUXXpAuRzPIlNRNTEzgM5/5DEZHR+EW5oIUTgUB34dfl51TlTkyS7JzgDahi6wQbAskn298PQq/uTUjWYGYCk4oW6ep30rkg1lUALIqdP7rGapqRM5VhoWO0VaxC4fQlbHjjZPwZa5tYldXCHd2NseK1JNx51BT1k5V7kSzdgQEt27vxrp16zAyMoJPf/rTGBsbky6DbjJT01JKce2112LHjh2gdhHlhRtBCF+HU23ZOSZzsmcla9m5hOZWmrPqFjSOI2vNrYkPDQ3zXHGjqf/crGxyzQpJ54Xnemx3U60ALRe7hHqOW+zSsuut7GeXNBG6aj+7FjfHcq3sMYuydjqbZLmxcvj96LFYuHAhdu3aha985SuZ6d+dmRr43//933H33XcDxEJ54dlAroTJBTlML4mfk85k52LQ1dxadVojdBxNsFw3DE8TLMfxpFaKrRI6HkHKSEXCJXStFD6e5c50rFrBQ4uOu2VixzNBua7rUse6zbqmGkkTu7S/t7I5lke42pG1i0P1+dnCrN3w+trfc114wT4J+Xwe99xzD3784x9L71snmZC6Rx99FN/5zncAAJW5p4EW5wGoZd0iPuzGgRCSOxbIzlE2v1yYDsrO8eJn57iW+4ppgm1Xc2tSBdOJGbokIegkofPf24Iqh/e8tGLgRIszlx3TFCvSB7bZGbukLF2Y2dgcG1cvinxGzczaWQTuAMeCAy0aSOEGNIAW5+IjH/kIAOCb3/xmJgZOtF3qhoaG8Nd//deglKLauxJO37GJ79c6EEIkOxf1vqzIHCCVnYtqgm1bcyshkfM7CX/jj6qIJJobIrN1mvrPHfVNrs0UHdHzEiV2HdCPLommip1gnadl6UAvUKgc4udWaWRskCixE5G9JjbHSo/gz0pzLBB9jYnEbvFAimtv2I7XvOY1cBwHX/jCF3D48GHp/eqgrVLnui6uvfZaHD58GG6+F9W5p8a/t7eg3tQK6Ok7B3S80IVpaXNrHDpG0wH1FUBWR7iKEJaDTha6ZiJ7XoJi10H96JJoitjpWkZQds7PZoyMFcnSBdGxekWzmmPbLXbB/cueJw3NsapZO4CzSZYQ/PKZAlavXo3BwUF8+ctfbuuKE22tkf/zP/8TDz30ECixUFmwEbCibzC3t4BqT146O+d051AdKOnrO5cVoWtHc2sUrAlWx/JWtq3+7Z49NBRvLP9bbxbmoGPyNFuELksyCOhvis3A8WWpKRbQODJWZSJ4FkbnRMWqgyiy0hQLzLRqqJ7jLAyiqJWDZe2Gz1wkFYIra2fl8Mz0ahSLRfz2t7/FjTfeKFdeDbSt5tm6dSuuu+46AEB17qmghcYlwI6caGHfxprQKXy2bo54TY2K2TlPCDVc7BlZNkVbLJcC1ap65a/rwappdJeudRS1PVx1kZVVHgzJ6OjXlrVrTwdZWblFF1kTOyBTzbHlY8RXk2ooByE4eIZaeZjYHfenW6L/nu/Dn/7pnwIArrvuOuzYsUNpf7K0ReoqlQq+8pWvwHEcOKWlcHob+9EdOdGCvX4YNCffd47aBG7RAs0pZufc2j9Vghe5ygWv4WYhDgWZqgBVxQrSpV4FQAiIbFMG4AmdropNsdKnlIJWq9kSOm39vDR9oVBeIzODzZw6s6C61qrNktgpxvEz36rCQIi+aTmqVfUYqhBLX+uPri9sOs6vrmOyCar9Xaj2dymFoTZw+DSCw6cqdCOwgQXFsVix+8qNz+Kcc85BuVzGNddcg3K5LL0vWdoidd///vfx7LPPgloFVOafXnchHllLcORN47DXD8O25S8qahNP5lTR9ezR9jANxKEUxBGvaIlDgUoVQpN8RsGETvXmDwodsUBkmzMcB6hUFIuiJzsHNEnodH0ZUFg6L7NCp+Mey4LYNWHghtK1GPy8tQmi5DGFP2PJOHV1TLWaDbnLGqxub2P/MJ9aK5uy2Fk1uVMQO2BG7BrkjhD8Zs8cDAwMYNu2bfjud7+rtB8ZWi5127Ztw/e//30AQGXeaYA905HxyFoC+5QRFApVX+jIqSPYfzZ/Z8e67FyASq/Xr44bndm5DDW31gldDWpbkSNPE4kSOtFsHaWAE9H0ICN2lYpy5ZN5oWPIXAtR24jGybLQMWaL2DUhjtQ1GfV5S8SJHJWpSxZ0xWmH2GnM0imtXR1HlsQO8MVOVO6eu2JO3e9M7ITkjgCrPzQjcQuKY9FZO7sLBwtrAQA//vGPsW3bNqGyqtJSqatWq/ibv/kbr9m1eync7mUAPJkbeuME7FNGGrJzuZwDl3MlqtTsHO/RJs1JKtKvLu0m470JdTa3hoROGJd6TbaqN7rO5lbF7BzQQULHEBzir0wnCB2jk8WuyRMiC12bSZ+3QJxE2RCpQzTFSfzC2MkZu2b2lRWt7zWJamR/Opa16+NP9kQ5BLXFs3YLio3LgUVl7dzupXjlK18Jx3Hw1a9+1VvLvkW0VOp++tOfYtu2bV6z67zTAEL87FyxWGl/c2sWs3NpcTiaYHmaW7mydcHsXNwNzpOt4xE63mzd0Sh0Iuj4YtFJQsfoRLFr0dJlWeljNxPnKM3YZT1LF6YdWbukmR1YXzsBuYtCV3NsOGv339sK6OnpwTPPPIOf//znSvFFaJnUHTp0yF81ojrnZBw5uRSbnQuT1AQb19wqTJb6zmmME9XcKkUz+s+pcrQLXSsywZ0odIxOEjtd2TzuEBqWqANS72Vu2UirVzTF4e7W0WkZu1aNaM9gcyxsok3sYuUu1PQaR13WLlfC1VdfDcBbbeLAgQNKZeSlZVJ33XXXYWJiAm5hDg6/5Fih7FxcE6xodq7SE9OvTvD6jG2CbVdfp5hsnajQxWbrRIUuLlsnKnRJ2bqjXegYcdeKTH+5qNc6VegYnSB2MueomWIn+pnHxBHOHiVk/3XEEe6n20yx67QsXZjE5cXaMJVJgtg999Y5XCHSmmOjml7j3regOIZVf7oV196wHaeccgomJyfxz//8z1zbq9ISqdu0aRNuu+02UACDl58Ie/2oWlNrzpLLzhHUH3EnNrfyhMli/7moAREyaBrhqnPKEj3Lfrl6BEjXtQhkYgJdQ3PRdv3qWs9UVxZI55QnWc/atWveyWZn7UQn1Y9pjnULYmGkBlFEsKg4ilUf2oZ9F02AEII777wTTz75pFJMHppea7uui6997WsAgKn1y2Ct7JYSOtYES3MWqOBAzSB+tk61FZFl67Iic7Vsnep0JX62jqf/XBIsW6fa3BrM1h1NI1xFYNeO6jWkax5FRruzdIwsZ+tUzpHG8+tfy6oiX4ujnD1i97mmONLTJDF0il2nZ+mChJ8Rmo6rskJywuFQcyxvli5MXdaOAMd+aKtUnEXFUSxfXcGll14KAPj617+uZ2WVBJoudb/+9a+xbds2uAUbU69YJR2nv3sK5QGqJHQAGrN1swnX1dN/jurpP0d19p/T1pla0/qRWRE6hs6+nLOh2TVMFsVOxznK2nkG9N3zuvoV67o3dH3+Wpeja7PUMXRm7IiGQY+1rJ1oli4MtYHD6wn+Ytl/K8V57uxHUSqV8NRTT+HOO+9UK1QKTdWbarWKb3/72wCAqY3HgHbLneHuQgUDxSlPyBQgDmBPuSBltYuPUAqislZqM9GQ8dO1viIA9YWvqatnnUZAX5ysLemTNXQ+tFQnyA6iM5OZJTScb8IyLLrWedV0r2lD25cwDXGIpaU8hJDsPYMc1/ungDvQA3ukDHtEcTUGC3CWTMNZMq0UhtpAN6niPfPvk46RH7Dxzne+E4A3vqCZK000Vepuvvlm7NmzB939Lk69TC6GL3QAlp6+D3vPlVuKijiAVXEBCjilHNxeOcEkOh8yulF56FAKUqmCVB0tx0f95hOFBa+DQmdJTJAcDBWsaBSyUNqFLqv91lRXQ9BxnwS3b7fYZVXoGFpFOgNip3Cv1xH8cqpy7wbLo3ItNmN1jqw8k4L3iMpnT4iXOKFUSey2X5kDsSmITZXE7l/e+k0A6mLXd/bfYcGCBdi3bx9uueUW6ThpNO2JMj09jX/7t38DAJz/hnEUS2IXXXehgsV9Y77QAUApV+GeiJjBsnNM6BhUopLOtNAxLIHJkRmUzsgcOz6LABJruVLXnRE6FkeGZmfoJGSqaRm6rIqdKEGh81+TPGdR27VL7LIudAxJGSNR92g7xU6j0DU0vWYpYwdIDzCJbFJu57Mp6pmjof5WETurNNMPkomdjNwts0f9n5nYychdX1cF73rXuwAA119/PSoaZnCIomlPk5tuugmHDh3CwHwHZ71qUmhblp2z0HiRimTrgtm5cCiRbF2mm1vDyEyHEpedExQ7GtenQiRbR13QajX6YSCRreuYJtcsip3M3Gk67pGkGK0Wu04ROoagjEUKnWSs2DAi96AuoUNCXzrRezmuTKJf8luxQke7nlFxZRKsf905vY2ha2InInfbr2x8bslk7b7+lm83vNZNqtJZu+71n8X8+fNx4MAB3HrrrcLb89CUJ0m1WsV//Md/AADOvWwCuTxw2dzfY+OS3anbBptbo+DN1tUJXQw82bqOyM6F4c3WJQmdCJTGCx0rD1ccjuycgNilxuIUqaO6D53IKgdx15HI9dXKe63ThI0XThlLFDrBWKlhWt3HLq3+472neeoanVk7HbT6eZV2rjn72blzemPvSdHm2GCWriGWgNgdkxuO/ZuI2F0y5wkAQK4Av2/d9ddfj2oTpstpitT95je/wb59+9Dd5+L0l3tZui5SQdGOP4Co5lYZ4ppbo3C77MRsXUcKHeDdGGlixyt0adk6SvmGaKdl63Q2t1LKHytF7FoqdFnM1gHJD3beDB3PNcJ7r+m8J9NW0+hUUmSMS+g4Y3GHSbsnm9nsGoWuufWA9Guy1St0ZPHLUeqXbL4kS5rYbX9XeuuSSnNsEN7m2C4y09Tac9rnMG/ePOzbtw+/+tWvlPYfhfanCKUUP/zhDwEAGy+aQD4wD2Bcti6puTWKuCbYpObWyLISEpmt66jm1jjibhCZARFxYscrdCxGnNiJCl1Cto7qmuQYbcrQdZLYiTa56mxWbbbYdbLQMTpp8EQrml3jiLvPRcsUd022a4WOViQlRPtvx3z+7kAPd4i05lirmy/7ldYcG9X0GkVacyzL0jHyBeCKK64AANxwww3a563T/gR59NFHsW3bNuQLFBsuqu9LF5WtS2tujSKqCZanuTWKcLauY7NzUYSzdVEDImQREbpgeRriSGboIsROOtMXUem2tck1q2IXRLYPnc4BEM26T2eD0DEiZEwoS5cSSypMM5tiZadiCt/vspKZtaZYoLnPM5l7Ja6/tMhuY5pjebJ0DbFixC6p6TWKOLELZukYfaddg2KxiG3btuHxxx8X2k8a2p8eP/vZzwAAp58/ie7exovpsrm/xzlLdyk3twazdbJCB9Rn62aV0AH1N5xq/zmWrav1n5P+dhHM1qk2uQbETvlBURMpbcsmqZJFsfNFTnFQhM6pSnQPnJhNQscIyJi00EXEUgoTvF9b3ewaB7vvVcsTvCZV7uNA87DyBMrNeK6pzGUa6GcnkqULExY73ixdQ5yQ2P2/t3xHKk64OTacpWOUeikuvvhiAF62TidanxyHDh3Cffd5B/OSC6NHvHaRChYXR4SaW6Mo5SpY8JL92L8xLy10DLfLhtudz5bQ6RLMWiWubUCEagzWDGuRzE0qbOBA5yhXXbR7DrtOgLrqQheIpSWM4+oTOkr1rByhs4+dri9mWRxAoWuJTMdVnuieUAp7rCyVpauLUxO7T7/xZzg2NyQdJ9gcG5WlYyx76fcAAPfeey8OHTokvb8wWqXulltugeM4WHFCGYtWRK+v6VALG3p24LS5e5T25YKgYDtwClRJ6OxpB7kj07DKDqjqKgqUehepjuyDrhvZcUEcV8MailTP+oeOA1TKgONoWR+SVqt61hvU2P9I28OTWPoeDLq+JOiI0wx5ypJkZhRdGWjqUlBd6ydrHP2nJZZF9KwNbWnsI6i6Ko8fSPN9p+Oey+dAxsSmPIti+zv6AIfAHRWcyDYEsSmW54ewuzqgXKY/3/p2fH7bm2L/vmiFg1NPPRWu6+K//1ttGbIg2qSOUoqbb74ZAHDWqxqbVB1qoUJzcGF5fess+RvQBUHVtUApwZzTD+HF84vpG0VgTzuwx8t6BkUERcxVePDpilN1QKbKejJ0AaFTEjHH8eLoGHXGhI6hIlIam6fY9trEzgumtr0u4dERJ3z96HzQGLFLhrrKYhfcXovYuVRdxgKfu1Ks4D2rSVpV0SZ0Ogn105Ymz7pPucpi53TPDJBUEbvPb/glAMCFpSx24+U8Jis5fH7bm2LlbtXZXsvmrbfeqm3AhLYr5qmnnsLevXuRL1KcvLFe6hxqwQ3tSiZb54Kg7Nq+0AFAd74Cpyh+MpjQ1V2UNhHP1rHsnI5vwVEZOhmxqzrRAyJkMpFM6AJxpMQuKHQBpGKFhU4FjR3JtYpcY3C57cLXTjsHJcR91kbsWoeC2EVt13axi/i8tdUNssemKUunVeh03WNRzxAN9xwTOxm52/aukHwpiN2i3MzqEUzsZOTu6i3v8n+erOR8uQtz0sZplEol7N69G08++aRUmcNou2r+53/+BwCw7iXTddOYRAkdAOFsXTA7x4SOIZqtixQ6GZKaSUVlTFeTa1DoohARuwihYwjJWIzQScVKEjpRqUpochUVtKj3a5c8EbFLaiZtx/QhaZ+xEbvWQV1QxxGSu6T3tk3sEj5n4Vhx96rosWlsdtVGK/qKit5z+agpyVyprJ3TE/EZSYgdy9IFcWFJZe3Gy437jhK7YoniggsuADDjUKpokbpqtYo777wTAHDKS2eydHFCx+DN1gWFLorufAV9Zx/kErtUoePN1vFIGK/YpcXijZMmdAye2dbLlVihEyJF6BipYue6oOVyemUtsHpFGjxSRiyS+L62iF3WJvptx5JcRuzS4czacb1Ho9hxCRnH58stdmn3qOPwyd1s70eX9tzgvecihC6IiNg1ZOnqygO4Y3xi97kNN9dl6cKIiN0Ht74z9m9RYjfn5B8D8BZtcJNWZuJEy5XzxBNPYGhoCKVeF8edUq7rP5dEF6ngvL5tiWKXJnSMtGZYe9pBfmiKL0OXJna6smoiTbdpYscrdDz7YTKXEitVxDiFLr1Mgs2taZW0pkERvMLW1GbZMKLZYV2xdDGbR6BmEQ397PxQmsROSz+7Gtq+BAIt62eX+X50SWgakMUjdtveNRCdpQviehm7NLlbwjEnHY/YfXDrOzE6nbymfLif3XGnlNHb24vDhw9raYLVcvXcf//9AIA1Z0wDdnJ2LkxSMyyv0DHimmGbNiCChzgZ0znCVUboom7ShObWOGLFTkLoImPJ9p+Lq6w1LXiuo3lWmrhsncy1rauJNg4ZSdMldiZbx0eC2IkKn65RsYliJ/i5auuuAcSL3WzuRydD3GeUkqULkiZ2qULnlwWe3MWI3ec23MxdpjSxSxM6RrCfnZ0DzjvvPADAXXfdxV2WOLRcQQ888AAA4PjTK0JCxwg3w0YNiOAhqhlWuv9cOFunMiAiLHayQhcliCoZuuDxSQgdo0HGFDJ0dbF0DogApDN0YSHLxECKsNipCIyuwRRhVB4qRuxaS4TYSQ+oaKbYSX6eWuuR8PHN9n50slN9hT8rAaFjxA2gSGx2jSNC7D634WauLF19mOgBFEnNrnFMVnL44vY3ov/E/wAAPPTQQ8IxwihL3e7du7Fr1y5YNsWq9XI3TrAZNmlABA/d+QqcLu9iUh4QwcROZ1ZNNRYTO11TlliWktA1oKHJlRCiR+iCEqXY5NqUqUpUYWKna/45XbEAPQ8VI3atJSB2ylOfNEPsFD9HbVMgATNid7T3o0tDV1NsIGvH1ewaR0jsRIVuJkz9AAqeZtc4xst5/EfXRbBtG7t378aLL74oFYehfBX97ne/AwCsOLGKYkk+ThepwCJUODsXxZzTDmHfOUU9I1wBPULnKmT6wsRNWSJVLleL0HkiRrX0oaNUX58aL2Br+9A1O0bTmM3yM5uPTSca+9jpnNBbV3+2pmbsFOjofnRpUCqVpQtDHBdkfEpe6Bg1sRNpdo0P5YmdrNAxxq0STjnlFADAI488ohRL+VN77LHHAADHrotfDoOHLlLBZQO/x9kLnleK88KhORh8egGqPRRDp/QrxSJVF2S67ImPKq4LUqmqx3JrK0RokVXXG+WqCHVc0OmylhUnKKVARb1MdWRsHVXtyzWpfjMnZOafKrriAHpFLIsDMHSt8qEb6uoVMlVcb3lCLdk/29Y2ySuIBbg6Vp8g3vG1cqR5K7EsPc9QQjC0YRHm/V49O3rNq27EcYUD6Lam09+cwtV3vQeDu+coxzn77LMBtFnqKKV4/PHHAQC/m3+qdJwuUkG3NY0eUsZlA7/HOQt3SsV54dAckF0l2GUABHAK8hc4qdaEh1W8shdlTeZIbX1S4rhqsXQKXTVQIUlWBtRhmT71B0FQ6LSs4xhktold+FzLni+dKzxkdUqSLD7own1sdcTTLYgK9zNhazzrIHCvKIldYJ1Z5fWi2bG5VI/Y1VASuyw1uwbjsM/PVXj2EYKhs5fAKRDY01AWu2Pyh/2fVcTug7/5I5AJG6RKMPjCHKUyffm5zQCAJ598Uuk6UPrkdu/ejcHBQVDLwjPD6/DPe14ltH0XqWCePYZuaxp2bQHXHlJGt1UWLgsTOitwf40dSzC0XrxDZZ3QMWTEjkmYDpohdOHjEawU6oQuiISwRGXo1NeGDZ2r2SJ2urIoOld4MELHT9xoeB3xMiB2zRI6hpTY2Y0SIC124WNTEbuo45P5DLModED0s0D0OVoTumpxJpaK2F3z6hsbXpMVOzI+UwZS8cRORu6Gds5FpW8ucrkcBgcHsXfvXqnyAIpS98wzzwAAynPmgDg5PPnEsdxix7JzNqgvdIxX9T2Ncxc+x12OKKEDADdPMbzGwtCp/GIXKXQMEbFLEDrhbF0rhE6QWKFjCAhLUpOrtNjp6hfUZITFLukhK3KudK7wYISOn6Tj0zUlTRvFrtlCx9A1EIM6rpjcxR2bjNglHV+7muW1Cl1CLN7nT4TQMWTE7ppX31iXpQsiKnYf/M0fNbxGKsSXO16Gds4FqRBQ28aJJ54IAErz1Sl9glu3bgUAlOd60kTKBOOV9A6DQaGLooeU8dqBTVxiFyd0DDdPMXyClZqxI1UXZGI6XuhE4MjQcYudLqFj/efShI7jQZgqdAwOYeHpQye2jFjK6OKMZesAAbHjebjynCudKzwYoeNH50ofae9tg9i1Suh8eMUgIksXhkvs0o5NROx460Yemrmuq0qstGPk/PyihI7BxI5H7r544U9jhY7BK3Yf/M0f1WXpwoiIHanMHB8bLLF582aubaPQI3Vz5viv7XhmaWK2Lk3oGDxilyZ0DDdPE/vXNfSfSyItWyfQ5JoqdjqFjskcz42UUElwCx0j7dso56AILrHjzc5lUOxSEWkGSzpXog8AnbGSMEIn9l7dgshD2jXYSqED+AZPcAidH09HVxkesRNtxUgii9c6j9AxUhIMQ2cvSQ1hT/Nl7VYVDnEVKU3s0oSOwSN2Qzvn1v3+L89tBwA89xx/S2UY6buQUort270CVAZmsmCkTGKbYXmFjsHELmrgxAsH53IJHSOuf11ic2sccWIn0YcuVuyaIXRCBYvqyyIodIy4fiM6R7mKNrdmTOwSs3UyfeiiKntdgylUYjWbrJZLFF1ZuBaJnbYR3TJx4uo2AaFjxIqdSH2RJHay/Y0jy5TBfnQiQseI+vwSml3jSBK7L174U6EixYndB+/mEzpGktixZtcglX5vxo7nnntOugle+pMcGhrC2NgYKIBKX2/d36LETlToGFEDJ144OBdkdxe30AGB/nUBsZMSOkZY7FQGRYT3326hYwQqDWmhYwRHsEkKXWy2Trb/XCeIncqgiOD50jHtia5YYbI04XEzkD0+Xf3lmix22ppdJcWQRn3JlhA6P164Hpc5tiixUxDfhgd8FoUOkD/G4OcnIXSMKLH74oU/5c7SBYkSOzImfl1FiV2U0AFAtb8PlmVheHgYhw8nNxXHIf1p7t69GwDgdHdH3kDB/nWyQsd4Vd/TOGfhTrxwaA5e2LREWOgYwYETSkLHYJWJ4ihX4gYqpawInV84oi50AVQzdA1ipzogIstip2OUq85543TGYhih499e51JwqtSuTa396BSoEzsFofPjsfpc5diaNd1JZoVOMZbrKgkdw54G5j3uXQOyQsfotqZ9ufvg3Y0DI3gJi12U0AEAtW0sXboUAPDCCy9I7Uv6U2A7rPb2xL5nxzNL8e295ysJHeBl69448CiOXTQIe5pICR3DzVNUugncQk7b/FA6pi0h5QrIxJQeoas6gKZJk6mrT+gAaGly9cVO1wjXDDyUgmhfdSJjx+eTRaHTKT+6YmV1kmKg5f3oktA+YlTXSkKuo+X4gDaOik2DED3H6LpKQsewp4DXbdykJHRB/uKJt0hl6YIwsQv3owvDpE52WhPpO5KtT1btiZc6a5rg0d8fj//9wutkdwMAsEExx5rG51bfhAUv2a8Uq/tFgoHnynB68nD7upViEZfqWSXCqUlYpaK+wkPVAZ2a9obqq05b4rrA9LQ2oaOOk41Uf3B79k/Hw0m3POksU9bELstCp3Mt3dmMjnqBTVquQaD8L3sapjvRGQsu1bJyD0O1Xq9D00oPALxlMBWhPSXMe3pMOc5x79+ChYVRPDC+RjnWhze9A1OTBZB54vPnhll8n4VFDybXWUuWeIND9u3bJ7UP6ZqetfdWS12RfycUgEtgTVl49PfH4ysvXCq1HxsUeeJdLAvtcXx5zc+lxa77RYK5W6ZhV1zAJkpjf4lLZ254lRUnmNAxqlWgIrncVtUBLQdiuVS6AvCFThMzzRlEi9j5la6s2DUrG6ZBnurW3lSJF942K2KXZaGL+10lVhZoUvO00nxxQSnUJHZ+PaxQroYuHrrWeJ2NYtdwruRj0d5uUJuATFeUxW5tr+cIE25BSew+vOkdmJwoAgAsiyqJ3aKHCXKTFLkpioWPxr/v+toI2JZL3eDgIADA7aqXOkIB4gJwZz5sWbELCh1DVuzqhK6GU8qD9paE4gAhoWPIiF1Y6BgyYseETkPF2BShC3WEbavYRb1fJVunUZ4iF1OXiRe3TbvFrhOELu11mVjtpJn9DakrJ3ZRWT4FsasTMQWxix2MZcSukdhzJR6LCZ0fWkHsjnv/lrrfZcUuKHQMWbFjQsfITXpiFyV3zKmYY4miLHVOceagWXYOtPHDZmL3t3v4mmKjhI6x0B7HQHGKu6xRQufthKDaWxASu0ihY4iIneMk3+DVav3arEkkCZ1gtq7pQsdol9glvU9G7DTKU6TQycRLe2+7xC6LwpPFPnQ6acUAElGxS2q2lRC7SBGTELvUuTCN2M2Qeq4EnjkhofN3MV3B3M1iYrfqfVv9LF0QGbELCx3DsijIXH6xW/iIVSd0jNwk9eUuiFPwBpiOjIzwFzZYPqmtAjt0i14BfKFL2tmUhd8+dkJqxi5J6BifWvnfWMiRrYsVOn9nntjx9K9LFDoGj9gxoUt7CFQq6Rk7ngwdp9i1TOgYrRY7HvETETuN8pQodCLx2p2JiyOLkwvrnMA3i0LXSnjFjqcfnoDYJYqYgNhxr1pjxI7//uMQuzihY1hT/GK36n1bcVJffJOliNh9ZNM7Ev9u2Xxit/ARC/mJ5PMQFjvmVMPDw+kFjSqb1FYAJicnvQLkclxC5+9wysJwOT4zxiN0gJetuyalGTZV6PydEjg9yU2xXELHSBI7XqHjQaTJNUXsWi50DN1iF4dIEy2P2OkSP3AKHU88ndk8nXSq0PG+N6tC1+ppXtLETmRgBYfY8a0yo97HrgEjdvwkiF2a0DF4xG7lVdsShY7BI3Yf2fQOTMRk6erKxSF2aULHCIqd265MHZM62DluoWM8+/SyyGwdr9AxkvrXcQudv/P4plghoWNEiZ2M0MX1r5PpQxcjdm0TOoYmsQMQ319OJo6uptWE9wsJXVI8nf3udNLpQpe2jRG6euLETmakbILYia0HnSx2QrEYR6vYSZ2riGcOp9AxksRu5VXbcEo///QfSWLHK3R+uRLEbuEjYvUrEztam2exXJYblCFVqzuO4++Qkpz4TiMGTogKHSNK7ISFzi9Eo9hJCR0jKHYqGbqw2KkMigiJXduFjqFB7CKbYVVGuUaJna7BFJAUuqh4OkfI6mS2CF3ctkboogmLncrUJxFiJyVhMWInFYtxtImd0rkKPHMEhY4RJXaiQseIEjtRofPLFSF2PM2uUeQmKeY96dXJlUpFal5CaaljUMkHcXDghKzQMRba4/jSml9gwUv2ywsdIyB2SkLHoLU5ilSbXNnACR2jXGtilxmhY+gWOx3TlgTFTlWAAtsrCV0wXhbn1wNmn9CFYxihS4aJna657Gr3i5KEhcROKRbjaBE7LefKlRY6RlDsZIWOERQ7WaHzyxUQO1mhY+SmvGudUjrTIipSFpmdWnUPXvnKzZqy8NT+Jfjd1LHSMRhL7DFsXLgL5X7ICx3DJqA5C1TnXGY6HgKVirZpS+A4nijqIrjUWZshhPj/tKBzKaSsDmTQSRaFTidZFboMQmr9g7TEyom3CjVQq6O01Q060djvT6vYaURF6BjWVAVT84mS0DEm3AJ2V+YrCR2D2BRL7idKQhdGpglWw0ypCtsun8RJi/bj4dHVeERR7H42cibu3nM8pk+dwL6N4nPPBbEmq7Amyt4agqrrCDIB01CJ+KlYVdkMfnvWuMwP0bDmopZzDngZP8vSK3Y6CK6ZmRV0LQEHZFfojhYR03CcxLbV72ViweryHpTKMkYskELeu6dVy6UjRhgdMsbqg6yJHUvgaLp/rOFx5Rj7zp8HagM/vukVyrGWF4ZQoTb+eP0DSnEogAW3dCE/7sKq6luPPCdx7yhn6npkZXn5JM445gX05adRdnN4YOR4abH72ciZ+OnO0zFdyaFYrGDyLHmxsyarsMem/T4ANJ+TrwTcwJqNtq30kGpoW5eVAvYADwpiVsSOXVeqFW8wk5wlsQvJUybEzgjd7EPheIP3r/S9HBA6AN49KCt2QaGrxZKuG2rbNiVLpyJjFqm/3rMiduGuMDruI8dVErt9589DtTb7WOEIURK75YUhFIjXWrWsMCQtdkzoisO1L+wulMQuNznz+ZdK4h4jLXWFWlq9f+c0el4UvEkCQseQFbug0DFkxS4sdAwpsQsKHUNS7GI7S4pKQVjognHaLXbhCkS28o7qk5cFsYuRp7aKnRG62YvEcUfdt8L3cljoGDJiFxa6QCzhuqGZQseQkbGw0KnEikFK7OL6NrdR7IJCx5AVu6DQMWTELix0DFmxy026gOuVq1gswpZ4Bko/yXt6erwA0xUMPFcVErtczqkTOoao2P1s5Ez87PnT6oSOISp2cULHoDmBZsEooWMoZuwa4JWCOKELxmmX2MVVIDqbStopdiny1BaxM0I3+xE4/qT7lfteJhasQj7+7yJiFyd0gVjcdUMrhI4hImNxQicTKwUhsdM1vVQSgmIXJXQMUbGLEjqGiNjFCR1DdOxnbtL1tqHe597dnb4gQhTSn97MDquwpym/2C2fxPql8W22TOwenFydGIYJ3VQ5vhLhFbs0oQMAEMIndklCxxAQO64hzWlSkCZ0wTitFru0CqTTxY5TnjLRFCuDEbqOh+c+TX0Py9Bx3M+pYpcmdIFYqXVDK4WOwSNjaUInEosTLrHjETpd9xan2CUJHYNX7JKEjsEjdmlCx7CqFN2V9CVNc5Muusss0eWVr+VS19vb6/1AvaHYXGIX0ewaRdnNpQ6eGK6WEoWOkSZ2XELHSBM7HqFjcIid0Bw1cVLAK3TBOK0SO95vhLxixxOvlWInmA1rmdjpytIZocs+KedCJKMe+960DF2YJLHjFbpArNi6oR1Cx0iSMV6h44klSKLYiWToWiR2+16eLnSMwhGCH90cL3Y8QsdYVhiK/RsFMP/WUqrQAcDSsUF8//b/g3ds/U3se3KTLt7+7N347r3/F0smBgHqjXjt6+vjKmsY6af3/PnzvR/ojIUysVvykNsod5xCx0hqiv3ZyJm4cw//4rxxYickdIw4sRMROkaC2MlMOhgvdoKxWiF2oin+NLETidcKsZMUp6aLnRG6o4+YcyLT97VhGyZ0Evdzg9iJCl0gVkPd0E6hY0TJmKjQJcXSiUyTa5PFbt/L56HaIxaqOBQtdiJCx3jP+gcbXmNC13Uk/fNYMjGIf7zvOiydHMJHNt3UIHa5SdcXug89czOWTg7hHx7+JvqnBwEACxYsECovQ/rJvXDhQu8Htz61aE9T5Mfc+qydoNAxosSOp9k1imKxgskzJ+vEzptcWG71gzqxkxE6RoTYSQkdIygFKg/wZoqdbJ+NOLGTiddMsVMUp6aJnRG6o5fQuVEZpe5vKyt0jKDYyQpdTNy2Cx0jKGOyQhcVS4GGbJ3KOW+S2MkIHaN4pP4cywgdAKwoDNaJnYjQlapTvtAxgmLH+s8xoWMsnRzCa/Z4+/QTZ4JIf5q+RdLo9mKWtSMUUkLHCIqdrNAxil1lX+z8uehkCYqd6oUdEDsloWNYRLzZNS6ObrFTrbTDYqcSrxlip3MAgk6yWC4jdK2ldo50zCfpx9BwP5NCQV3oWL2QJaFjOI660GnGFzsdEq1T7EYmlITOKw/8bJ2s0DGY2IkIHQBM5rpw4+pzG17/yKab8K6n7gJxgbftqBc6f9uXbgAgL3XSs0IuXrzY+4FOxL5nesBGfpRg055lOG/VDtldoezmYMG7CGWFjlHsKqPSVwK1LbksXRBCQK3aygU6xA4AcRw9k0YSC3A1TYrpWupSoGMVjCCtGKElA9FwrnSTxZGuRujagpYJwoFalk7HEnUzWXzlL7SWBWJb+uoa29Y3sbBLAQ2rKcBxtA0co64LoqsepVTPBPvdXWpCV6N4hODErn2oUPVztaIwCGe4wC10jP844QIAwIefrhe3D22+GW977h4snB5p2Obr6y7Di/PmAbt2YenSpVLllf5EV65c6f3gjsW+x80BxAGsLb24//nk0axJnNP/HF7TvRPvnvNb/PtZ38VrV22WjlXe1o8FmxxU+/Jw5sqNLvFxXRDHBWxL/YImtW9ytq3nRrMIYOkaNaoxY6cLHVLQrCWDFM+VlnVhZ4JpjGWEri1oyybrEzpiW+pfrIimVWhYOLu2FrKulW0somEFiyZk8HX2r9MZS/FepP09oJaFpffHJ4q4IMBr//AB5EkV3Zba2uZfeuj1+NJDrwepEuw9T/xa+I8TLsA/nXxZw+txQvefq1+BXbt2AQCOOeYY8QJDQer8HdJpUNq4GPHEohwmF3oXtD0NkGfkxa7PnsKAVcACq4CT8sCfLbxbSuzK2/qx+BEX+XEX1CKo9Bfkxc51QapOYMUIDWIHzE6xC0iKskAFs5g6Fvf2Q6mWK1ShSZ4rI3QCHE1Cp3reLFtPX80mCp3KPegLHUNFxpjQAWpiFz7fqi1DdbE09a+jtPmDMHjKURM6ALCHp+TFriZ0G3uf81+SFbsvPfR6YDTv/SNAtUfu8/uPEy7A19c1il0QJnSUVjA46A2U8BNngkjfmX19fZg3b573SyhbN7Eoh4klBMHMp6zYndP/HC4sPV/32gKrICx25e39WPxbT+gYvtgNCC7FERY6xmwXO0BcViIkRbryjmqWlokV07wtX64YuRA8V0boBDiahC7ud146QOhm/iRezgahY8jIWFDoGDJiF3W+qTv7xU7ivqR93b7QMaTELkLoGKJi96WHa0IXQiZbZ1Uo/nPV+ThY7I/8+8FiP/5zdW3Ebs2l5s2bNzNtnOj+pLaqcdxxx9UKMpNKZELnRvTWY2J3304+sTun/zm8qXcLBqxCw99Exc6eIsiPNd5Q1CKozCnyZ+zihM7fkYTYRb0/i2LHKipeWUmQFK1NniKxUvorCpcrTcTa0WydRaHTSRbLpJu461D0+uwgoZt5C395Y4WOISJjUULHEDmHSe/NstjpQiAW7esGjfmMhMQuQehE+dLDrwdGIvru17J1ImJnVbyZMd624+7IJlfAa4p92467vV9qLnXCCScIl9vfp/SWANatW+f94BzxX3NziBQ6hj3N18duQ//OWKFj8IpdeXs/FjwRf/GzjN308oF0uaM8K0YIiF3S+3SLXS6nLne8YseRdRISqLTBIzyxOAegcJeLN7PGIXbasnRZFTpdEn80Cx3v3xkdKHQzb00vd6rQMXjOQZLQBd+jY18ZFbtW969LEjqGPZyyGgMBLv7DB3Hx2x9MFTqebF2s0AX2V+1xsffc9GshKHQf2nJL4ns/9MzNeNuOu3HZRV6T69q1a1Pjx+5XeksAJ510kveDewSAl6WbWpB+Uac1xZ7T/xz+oHdzotAx0sTO70cXkaULQi0Ct2Al97NjAyN44BE7nspZp9gBerJ2aWInIChcAsU7GpgNNtFAarlEJSzh4WOEjhMjdPzv62Chm9kkvvzcQgekZ/J4hA5Ib4YVOd+6xU4D2vvXJdyvPELHWPJATLaOABe//UGc0/cszul7litWktilCl1gv9XeZLFLE7qoptgPPXMzttxzD4BAwkwCPZk6dwwTCxDb7BoFE7t771rf0BzLBkbwEid25W21fnQpQhckdgBFWrNrFEliJ/Kg6ySxkxCURIGSmd4lKp5EnNhyyUpYxMNFaz86XRihaw86um0As0LoZjZtPA4hoWNEnQ8mc6JNq5EToEucb51il8X+dXH7EBA6AMgdiWiGDQidKFFixy10gf1Xexs/O6tCU4Xu62svxVtf9Rl8fe2lda9P2DZ2DA8DaGOmbuHChViyZAkAikppkFvoGPY0UBghsLb2+GIXNTCChyixs6ej+9Gl0SB2MkLnF8ICcunrvKbSSWInQaRAqczXF4ynEKehXKoSFjhXmRwYkUWhOxqQPVfh7WaR0M2EmDkeKaEDvG2C54U3OxdFWOxUzncGpzpp1sAJ2tctLHQMe3hqJmOnIHRR/PUjl4kJXYBgto7JHChFqTqNP3j+/ob3f33tpf6giP9c/Yo6sdvU3w+HECxbtgyLFi2SKg+gKHUAcNZZZwEAcqMHpWPYU57YvTg+kNqPLgkmdt8963sgBIn96NJgYuf2l+SFLohtef8AtQr8aBE7LRMwt6gpVjigZYROhNmepdM1x2XWhA5ozjx00gEssebWJJjY6TjfGexfp3vgBJM5GaFj5I5MYcmDk1qErotU8NePXIa/fuQy0GE53wg2w/pCV2MyV8THzn4/9nbN8V8LCh0jKHaPDQwAAM444wy58tTQJnWFIXmpAzyxOzTRjQnFa2mBVcD9E2swOV7A6DFqFQq1CNy85a0+oQohXiWZU6zksip2bB47xUrOFyhdx8fOuw409n3Ttr6rzm/6ukTMCB0fOvuA2pqEDqjdzxqELpfTIz0slo6R5MEv1zpi6cAi2bzOdWXrCAGZVJsEmDG+rKgsdDYoXtfzIr573nflhS4Ybyr689vXPc8XuyihYzCxe6yWnWNOJYs2qbPHj8Ael//gyusncPUJ92J3tR97HYU1WQEcKPeDOhZG1lYxeJL8smK58SrskWkgn/PWeVXFXzVC4bSz0be1xbBV5Y4QonfKE0Wxq/uGmBGx0/qtNYC2h7BOdGSNDOloPE86s2F+s6Jiplyn0CGfE+/7FkWw3tWSHbW8GQWUyhT47HTVM4pfPgkhM1+uVcWOPfM0ZCNHTp4Dp0jwxe+9SzqGDYqLuvdjwCrhFV2KBaJA8ZANqwIMnhwth/u65+GPX/7nsULH+M7LzsOWLq9AbZe6BQsWYM2aNSAAug7sgyXhY+X1E/iLM2/HqvxBlKmN3dV+bCrbUnL3zeET8dNtpwMASJcjLXa58SpyQ5Mg7KLO50CLBTm5C1YgKmIXNZ2KZUmLHbtxsyJ2kfLUZrHzy9SkEarKYteMefB09e9SJYvZCx1kXehQu+4lxa5B6FSu8XxImmRj6cqqATNCB6iJnc7PLgh1peuryK4msmIXykRbY3KrRIycNICRk+eg2uXF6n2B4gv/Ji52QaFjfO/S68QLVJO54mFP6ACgWooXu8lcMTHc6Io8yPR+UEqxdu1aLFiwQLxMAbRc6S9/+csBAPnhvchNQVjsenumsCo/03xbpjZG3C7hrN03h0/Evzx1PsoTMydXVuyIS2eEjmER8axd1DI/OjJ2deUSF7vwzdtusUvMhrVJ7JotdIxZIXZG6PjoAKFjyIhdbIZO5hoPC51srLh6VuazCAqd/5qE2MV9drquewmx0z4hfDie4wqL3cjJc1AtWb7QMXpfEDu2KKEDgFd0CYodhSdz5UbPqQouTAV4QucUCS5e1QMAOO+888SDhNAqdbnRA0C1itwUkB/lk7vKqeP44Il3R/6NZe14xW5veU6d0DGY2O26xOaSu9x4NXnSQ1mxC79GiNfHjkfu0iY9VsjYzRQpGxm76Hhtyti1aA65WSF2upitQqeRZgsdQ6TrQWqTq8g1Hid0oqTVraJTS2np15fy2ekUO05ShY43W8eea3HxBJphg9m5ht1QcGXrbFBc0r0vUugY3M2wAaGLIy5bF2Z0Rd4XOrhV/Pa3vwWQIak74YQTsGTJEhDqID+yD3AB4iA1a1deP4GPn35HXZau4T2cYvfN4RPxi22nxv6ddDmgcyupWbuGZtc4eMSOZ/JhnqwdzyoWALfYJU7qycRO1+oTHGLH/eCw9IzI4xE7vaO/OFey6FSxMwMj+NA4KEIbPLE4snXcfejS3pPP8Qkd1yoRvJMT89bTCfF4s3W892gL+9dxZ+jSnolpQleDJ1s3ctJArNAx+nYnN8MGs3NxQsf4zuu+lVwgDqEDkpthGUzmnKJ3fPnhvZiamsLSpUuVlgdjaHkKEELwmte8BgCQH9o98wc3Wex6e6ZwXOFAavw0sYtqdo0ta0pzbGSzaxxJYhfV7BpbKI3NsSlix7X8Dusoq2tkbILYSclTk8VOa7Or4OjUjhM7I3R8ZE3o2NQeHKQ1wwoPioh7r2h2LmmfonVp0iTxhHMqlTSx09lywUtKM6y2JleRkdwpzbAjJw2gWuL7/OKaYeOaW+N4ZcmNFztOoWMkNcP62bkAr17huchrXvMaLZ+HticAk7rc6H6QamAUbIzYlddP4Oo193DHTxpAEdfsGkec2KU2u0aRNIBCOLUfIXa8WbogMWInesE0W+yUsmFNEjvt/egk0CJ2uuUurguBLozQpYfRKXSCxImdtlGuss2tkStFaOyqIXofxYmdjNA1uX+dlEBEJTxkpuaJaIYdOWlASOiAWjPsv9dn60SFjvHKUqhMwQERguMEorJ1UUJHqtN4+OGHAcw4lCraav5Vq1Zh7dq1IKDIH3mh/o81sQv2s+PN0gWJGkCR1uwaR5TYCWXpgoQHUKiMHgyKnYzQ+WXK2JQnuvvYAdrFrlUDI3jQNYmsVsKDfXRhhC49TBuFjhEWOyWhC26n2n+ubqUIlcmJQ9e3rvtHpd5rQv+6uilLZAg+IxXmWgxm65jMiQgdo3f3zDmSFTqGn61LGBDBQzBbV9d/LkT+yAtwHAcnnngijj32WKkyh9Fa67/2ta8FABQO72i8GAP97CZPnBbK0oUJNseKZumC+AMoLrYxvConnqULk8+BsgpKl9ipUsvaqdzE2sVO10zsgP6MXQaEjpFZsTNCx8csEjoGEzstGbral2Ft6JokXlXoWLaOZcxVz5PG/nVNH+EqguPCGp8Uzs41FIMCX/j+u/Ca0l4loQNq2TrB5tY4Bk8qNPSfq4NSrMsPAwBe//rXq+0sgNYa/5JLLkFXVxfs6VHY44ej3+QCxHbRZ6sJVJnauG9yFabdHOYvGJWOQ7ocFEYs9O+qghY1TjCsI4ampXpgq68964udKoEY2pffyhLN6NsmC3u4ZKlMgBE6rjgas0W6vrDo+lKm83rU1uSq6T4htZUrMjbBONUwCTB1XNBqVcs1Tm257FxdDAJMLXLwuiferSR0AHD3FPBHr7hXWegAYOTEarTM1bDHD+P5559HqVTS1vQKaJa63t5ev3CFw89FvufI+iouPHErXijPw9PTy3HQ6Zfa1+7KfDw1uQIuJThtwYtKYmdPArkJB053AW63wrIhrvyEnXWwZlcdYsduPEWx8xd5VpVWl9b18dAidqriy7IPfkYyOw9kXatO+HGyInZG6Dji1LoFqMpY8DNXXW0gl/PuNx1lUu47yjfaUqhMOiGWvrKp3i+ajs2XQpeCluXNhxbzoMU8QAjmPjUiH4cAhza4QH8FBw7KuQTj7ingiNONl3TvwGvf8qB0nIkVVUysqAJFF8Pr4rtzvXGV1/XroosuQk9Pj/T+wmiv4S+//HIAQH74RZBy4wgX0lPFsaXDqFAbY04XXijPkxK7KZrHpOOdlJ7ctLTYFXcWMf+pKgCA2kRN7CgFaUYH+wxl7HxUxa4uVBvFLtxPKDjyVwcZEDu2fWbEzggdRxyNmacwsqsNMKEDa4aV/Bx1CZ1OmnVPtPteiyiDbLauYTvJz5/JHPsMrVG5Vrug0DFe9vhbpGLdN+XiiNPt/35B/zNScZjMoeidK9oTLXWkPI7f/OY3AGacSRfar7g1a9bgzDPPBAFF8dD2ur8dWV/Fq9dtqXutQm1hsdtdmY9d0/PrXpMVO3sSyI9V/d+Z2FXn9YjJne4sXUNBJcQuquJjUxkIVIp+lo4nfhIsSxdBJjJ2AWaL2IW3a7vYGaHjiNP42Uhl6zR+xkGhY0iJ3dEkdH78NmXrNHa5iBNB0WydL3R1L1LMfZr/uU0JcHCj2yB0ALD/wIBQeQBP6A47vQ2vv+YtDwvF8YUuRFS27o9P6YPjONiwYQPWrFkjtJ80mnI1v+td3hDjwuDOuulNWJYuTIXaeLEyh7s5NpilC8LE7qzjn+eSu+LOIuY/XW14ndoEbt4Sy9o1K0sXxLa8FShU5YUQbrGLFbpgLB5Cza7RoVosdmnzb80SsYuN02qxM0LHESf+MxESu7TPViBWlND5ZRIRu6wJXav6mbajGTbluHizddRxk98rcB1FCl0Na2SSL0YwOxcSOgZvtu6+KTdW6ADgwv6nueIEm1sjyxzK1pHqNG666SYAwDvf+U6ufYjQlCt648aN3vQmroPCoWcBAMOnOA1ZuiDTbh5jThderMyR7mcHeGK3rDTMlbWzJ4H8aKPUMbibY5udpQvC08+Ot5+JruZYEbFLDaVJ7NLkjnNdy04Wu6T3tlzsjNBxxEn/LLjEjvcz5bkfE4TOLxPPZ5tFoWslrdwf577SxI5b/FKydcH+c0mkZeuimluj4MnWMZmLEzpews2tcQSzdR89exGmp6exdu1avOQlL1HafxRNudIIIX62rnj4OcCpAL2VyCxdmGk3nyh2UU2vUaQ1x8Zl6cL4zbFzu6PlzvUyWU3P0oVpQT+71CxdkKQbNqHZNTqU4jxKDE3NsZ0odkLvyUK/n06lDX3oEsVO9LNMypxzCB1PnKNe6Pz9tiBb1+Tm1kgSPvtw/7n4N1JYI5ORYkcJcHCDi0MvSRc6xnmb/iD2b0nZuTCv/oNHYv+WlJ0L42frnApuvPFGAF6LZjNmgGja1f2KV7wCK1euBHEqKB7cnr5BACZ2Uc2xcU2vUSQ1x6Zl6YJQm8At2NFZO13NrjITDTdR7ISEjpF080qco6aJHWeWrqEsHSJ2Utm8Zj7oZmuWrhMGRfAQtdqAiNAhoRnWCF1z9h11T0nEj5I3mYEUUdk6nuxc/Qa0oRmWEngyN1Dx/nGyd/+chtfSmlujuGjgqYbX0ppbk/jwWXMxOjqKlStX4vzzzxfenoemXeGWZeGqq64CABQGt+GCZY0nJ4mo5ljeLF2QqOZY3ixdGOXRsc0g3M9OtgKUGEARSzCGYJauMZRmsZMQurqyZFzsZPrdNVXsjNClxJE75w3ZuiYPiuChQeyM0EWUoQnz1mnqG5jafy6J0PUoLHRR5QkKnQTBbJ1Kc2swW8fb3BrF6LHj+MlPfgIAeP/73w9b16TiIZp6lV9wwQU46aSTYFUdVO7cJxUj2BwrkqULE8zaVXpd7ixdmLrm2K5C6/rSJaFrouLgAAqZ5dLCsYDUwRF8oUxTbHyIDA+eMEKXEkdx0lV2X+n4zNi8kZJC55eJBspkhK4RnYMmWDxFlGQuGKdc5u4/l8TczWMzza2SQgd42TqZ7FwYlq2bXO5IyRzjw3Y3pqamcMoppzQtSwc0WeoIIfjgBz8IANhzXxnj++VEgYndULUHFpF/ULCsndPjwi0oVFy15ljYTfjWpYLOpbfa3SQUDpOh1SeyKHbsX6bI0GemDcvWc01rlWcNXyzBrmsN5dKxhJhOdJ1rXV+gcpqWRsuKqAZRnQyaJTgEm1ujWLdyn5bBEKcUDmByuQPaJZ/oyI2M45e//CUA4Oqrr27q86zpV8UZZ5yBl73sZaAusOsXY9JxxpwujDpdyBNHSexu2bIeCx+y4RQsJbGzp6qwxqcBQkBVbnbVLF0wjoZvW/7qCrYmsbOIljUnAUWxC2ZUFR9cfjYiQ2KnCg03m+kiK2KnY+WB4NrHqmuDaqBO4hXFjrBMv2KGnhQLerJRGcmG+lh6JiUnbDkzVbFTXYdbN2yC8wm15T/d/hJozsKyX8q1yDFOPGY/FnSN4c6Rk5XinFI4gD6L4NqL/lMpztv2VeA4Ds455xycccYZSrHS0Liacjwf+MAH8PDDD2PP7x2csXU/+k7uxqFqn1AMh1pwqXfh5IkDFwQOZl7jjjOSR+mwAxB4YpcjsKoUVlmw47xDgWqtAiQE1CatmauuFdSkhdgWKCVy/eKComoRALVKSPWhUavsuaZRSCxTrXJVbT5nlbyupZw0ZV2UIVZ2yqJKUBAImRXNwtqa3ZlkKH7RIcVaP2N2HRMLoBL3egZlDpipdwghoJAY9MXOM4sDSERBZmWOQaty3Zrcfm/NVmpbgEvR88IkZPTkxGP2AwAWlbz+84Pl7qS3x3JK4QAAoK92fBd2vyAV570b7sehJ8q4775x2LaND33oQ1JxRGhJimD16tW44oorAAD3/iCPBXQYC3Lya7UCgEWocNaOZel8SK2PnGDWzp6qwhqL+EYimrXLaJYuCCFET9aOranajqxdkrgJPsxiZbKDs3bKa4umkZVsnQpRD1OZz6qpo4wFv5iy7Fz4HhD84jWTnQvFEf3cMyh0kdMrCd7rXv0ZkSkWzdZlXOgYotk6t78Ealue0AVYepNYtu7EY/ZjUWnUFzqGaLaOZef6FOv09264H6fnn8OhX3gDPd/2trdh1apVSjF5aNkT5L3vfS8WLlyI4YM2fndLDkvywzihuJ9L7irURoVGX9B54nDLnZ+lC8OydpxiV5ela/ijYnNsu4mRFiGxSxLVVosdE7rEMnFO1pkm4B0odlrnPEuiXWIXtV/RsiQ9TEXOUTOaXcNwih1JG1jFKXa+0EX+UaAZNqNCF7kLgbL6QtcYROyLaYcIHSCQrSPEF7oGXIre3XyrTAAzQhcFb7bulMIBX+ii+MrLb+SK894N9+O9G+7Hhp7ncOT+P8fevXuxcOFCvOc97+HaXpWWPT26u7vxkY98BADw8M1dGN3vos+exJJ8etYu2PQahUzWroGa2FW7baW+dl4s4n3zaIXcNTFLF6Zj+9nxZEN1rRvbQWKndXUCHlotdkn74y0Lz8OU5xy1QugYKWKXKnS8ZUkSOv9NPOcmY/dMgtAF35NanDihC8KTrcuS0LEWFxVqMuf2dUULnQAnHrM/Ueh44cnO8TTBMpnb0PMcBvdZ+OEPfwgA+PCHP4zubrmmYFFa2tZzwQUX4Oyzz4ZTJfjv73TDdYE8qQpl7ZLQIXZpzbGxTa+R8RKydrqaXnXCUR5iW7VpT2IuHd5jaoXYifaXS3jQCfXh6yCx46ITxY5nP6kPboHrM+kctVLo0mKICF1Cto5L6Pw3a5Dr1H20UOiQ/mWSS+jSsnWWnT2h4yS2CZYQX+Z4hC6pCTauuVWUpOwcL+/e8ADeveEBbOh5DoD36Hnw++eiXC5j48aNeOUrX6kUX4SWPjUIIfjEJz6BUqmEPVvz+N1tRQCe2MVl7ZKaXqOIa469ZespWPAwZ5yErF1i02tkrBZm7WQRnJBXaz87NumxIrGVo6g4HyUZO+F+dJ0kdiLx494r8zCNOkftErqIbJ1Uhi5C7ISEDohvhu1QoQu+v6EotsUndEGisnVZkjlAuD5raIKVyc7FNMHKZOei+tWlNbdGcc3Lf9bw2rs3PICze57F2T3P+q/99rYinnrqKfT09OBTn/pUS6fkankqYOnSpX4z7D0/LeHQnpkiRGXt0ppeo4hqjnWGC+g+JCJjcoMo4uM1oa+drqZXFkuQBrGTyTxqHEBR16lZZVRr6MEnNdIWyKzYSQ+M6ASxk4nb0BFe0wO13Rm6gNgpNbkGxE5Y6PwNFQdR8MaVoVYHiT54w1OcxA6ISA4SMRAjQ0Knq7lVIDuXhGx2LtyvTnYwxGu6d/k/s+xcUOYA4PCLFh742RwAXrPr4sWLhfahSlvady677DKcc845cCoEt367B27AtZKydqKIDKKIRXdfO4tks+lVkkz3s1M5x7VRgdJC58fJ0MNLB1kWO5V4bFvVB2pwSg8NtLzJNSmOrND5AUj9/0qF0VfvRI5w5S0Gm6JENDsXhmXrsiZ0CpCJqTqhU2HNigPa+s7pam4NZ+cAwHWAB77/UpTLZZxzzjm49NJLlfYjQ1ueFIQQ/H//3/+Hvr4+7NuRw/2/6Gp4D8va5YmDkWrj33lhWTuofIa1rJ1Vdr0Jh1WoNcdmapoHxbnaZvrZKR6TRrHThZ4lyozYNR0topCtz0nLXHQW0SN0Or68ZfC60XF/Kwsdk0odQqdtVSENcRxHi9AtuaWAxd0jLRkMkcZdk8sis3OMA3d9FJs3b0Zvb2/Lm10ZbbvLFixYgI9//OMAgAd+2YWdTzX2K8iTKmziYrhSUhK7m55djzmbcqiWLDgF+ZPs96fTMTu9juVUdMQBasuC6fr2rBCHTXKsI+UP6Dkmy1K+MbO0rJi2Oem0LSOXkc85Y2gROvYFSfVLm65lrair/lmxVg4dE2NnpZ9zYLJ3JSSakGPRVE+oCh1cit5d/FObNG5u4bF9K/DYvhV4/7Z3KhXlrsll2F+ZEyt0O57M4frrrwcAfPKTn8TChQuV9idLW786vfrVr8Yb3vAGgBLcfF0Pxo5EX5BV18JwpYS9UwNScjc1UkTXkAvXBtw8URK7OmRT9m5IyFRuRH8hdk1iJxsnuLi4ropFstKlwc7dbRa74Ez07RY77ZMMZ0HsdAtdBlbR0Cp0qPUJlRQ7ElzHVXK1AK8QmqZdivpZKWSbu8Ho2L9kn8BmwsqSOzDctjK41MLj+5dhcrKAyckCnj8wTyrOXZPLfKGLY+wIwf/860pQSvGmN70JF154oWSp1Wl7PvyjH/0ojjvuOEyMWLj5up7YuqfqWphycspZO0o8sVPN2vmI3kjhm7jdYhdeOktH1k5G7OKEQ1fGToP0amuK1XJMbb91Pdopds16iLVR7HQLHUNGXuqEDvDOi6jYUVe/0AVjq6DzS47qsoWyRPUJbGMGsqEsU4rdlSRg2TkmdCowmUsSOtcFHvr3CzE0NITjjz8eH/7wh5X2qUrbnwzFYhFf+tKXUCqVsGtzHvf/PFnYVLN2QE3sBLN2uXEHuaGYNHCrm2OjKoOg2LW4OTbygUEsr4+ISFniKmmBSoomzYTfYrELv5dVeNqydgJC1dSlwLKQsZsFNEvofESmLQoLHUNEpHTJcZz8dGq2LmGgnFATbEx2rl1NsM3KFBJK8fS3T+F6bzg7JwtPdo5x8K4/w6OPPopSqYQvfOELKBaL0vvVQdulDgBWrlyJT3ziEwCAB/6rhC2PeBMObptegmcnGtulg1k7ZbnjzNpZFRekXEkOqEvsZOMEs0CtbI5NW2oqLQZP5aGt6TIjGTugZWLX9LVdOcvBF4fznDRbAFucrWu60IG/GTZW6Bg82bpmC52u/bQ6WzfLm1ubgksx/6nxlLfoyc4FZS5O6PYFXt/ycB7//u//DgD4xCc+gWOPPVZ637rIhNQBwMUXX4wrrrgCAHDrt3qw/3kbY04XRivx1qujSVYma5eIaqZMd3NsUpzUtUxb2BzLUzmnNF0mZunqytN8seP+u2mKldhPix5mLRK7VggdIy0rlSp0QHozbKuEjvc9XLtqwRefZjW3xryvFahMB6MLndm5tKZWAJhwPSfZ/7yN27+zAADw9re/HRdffLH0vnWSkaeBxwc/+EFs2LABlTLBz/+xB+VRvspBW5NsC/raEd5vhlnM2kXAXRnKNMfGlqcNfSEbymCB2LZShdYKsWtJlo6jHGIxEs5Hqx8gTRa7VgqdT0y2jkvoGHHnRVf/OREBylK2LgrB44ltghXIzrVCtHj3kTs40pT9NyM7x8vECMHt3zgRU1NT2LhxIz7wgQ9I7183mZK6XC6HL37xi1ixYgVGDtvY9M0J0Cq/2OnM2mmRu7CUiX5Ta/cgiro4Mc2xMstNBWPIVqhZEDsgMmsn1e/OZOxCMSLOR7syAk0Su7YIHaK/iAkJHSOcrWvWgIhmbNMswmWZhc2twtm5Sc610jkJy1wrsnNBnArFvf96Afbt24fly5fjC1/4AuwMza+akafADH19ffjKV76C3t5eHHnWwdgNLwplG9o1kCIRnX3tZJfiCsaRpVnNsbIPg8BDiLvptaEsegaWZDFj1/IsXUw55GNk4yHWDLQInQqBbJ2U0AH19227hE7j/rU3wbayubVZhOqQdotlOwZCBKEuxejPXoHHH38c3d3d+MpXvoK+vj7pcjSDzEkdABx77LG+/U4/PoyJ/94vtH0wa7d/ug+oSM7rFWiSdfPqS4S1ta9duD+a6hJaOsTOsgENE25qQZPYqc5np0vs2ip0gXKox9CQrdaBxmydNqFTyA6wQRPSQseoVtsvdDq21z1gQqPQqWyviyz0nfv9/uXYdGBp0wdCJPHETx38z//8D2zbxjXXXINVq1ZJl6VZZFLqAODss8/Gpz/9aQDA5D2HMXnvIeEYVdfCRLUAa9JCflKu4mFZOxDoqXh03OwubW+zpc54lOp5+GtYCklLE7XS7vWJXdszQVlDda1QYoFYROm8qm5fh47mHsvKxqoKOupE5XuX1IqShS9DBMTWtJKNluIoxtFwrZJpBxMTRUxMSE4XQgn67u2WljkA2HaHg22/8jziL//yL7Fhwwa5sjSZzEodAFxyySW4+uqrAQDjN+/HM7+SW66GOEB+1EHXkCMtdwACS9SoNBPUphXQJXdZQPXBYBFlsfPmfsuA2OlC5ZzWMidtF5AMrM4AoP7a0vAFQum86FiIXsdDsrZWM3UUPiN2HKr1oSqahC4TsGPJSj2kAiHKa4JbZQdW2QGRXequJnN995XQu0+yiw6Ab113Gjb9xNv+Ax/4QGZGukaRaakDgHe+8514y1veAgCY/+sn8PRvSlJxiENhTznIj2ZA7IJxVGmz2GnLLs0GsVNcY7OBDGTsTMYPfpZOLQQJvyAXSKPQAZC/ZoPll62DdAudzJeILF3fs0HkGLatXBdbZce7PlWE7r4Sevc66N0rL3Tf/NezsPDxxwAAb3nLW/COd7xDOlYr0LRSc/MghODDH/4wBgcH8etf/xoLb3sUWw69FBMv6ceZq3aLx3Mo8qMO7CkKp4ugUpK88IIVkuzNyMROtc8Qq1TbVEERQrxmC7Z/paZh29teMstDat8OVda7rAXy/m9hc0xk049FxM5nxHkjFhHqYxcWENHt48rRFqLkiVj85YsROpFz4m+foQxdEOq4YisZRB0Hq8d4Ub2vZmN2bjag4Visck3AVGTu/hJAoSRz/3jzpSgeOICljz2CiuPgoosuwoc//OG29y1MI/NSBwC2beNzn/scyuUy7rvvPsz73UPITZyLJ3auQeXYaZy1epdQPOJQ2I4Dq0LU5C5qHVcZdMpdKyqriOZjdqH7csfzwHNjbjiLAC7ngzdmP4QQUMtSz57xjjjWnaULIip2EUiJmez2WRa64N/SypmSoeM5J4lCJyKXTRI6AN61yyt1cefUpYDNUfc0u7mVuuny3ClCJzvbQTvwW2zkv7hkSeYAYO6mQ5i793eYrlRw/vnn4zOf+Uympi6JI/PNrww2h90555wDQh30P3M/+rceRs8TXXjirjV4dMdK4ZizsklWZRCFBuqaY1Uqz9nQHCtAagdtnvOZIgg8TYhpEtMx8Fw7KdKnrck1TS7TaKbQ1UjtW8fTFzB1Sa/O6D/XksESWRjRrQtWz6oKnY6m1hflm1r/8eZL8Y83X4r+Z4E5Twxi/v7fYXp6Gi996UvxhS98AblcR+TAOkfqAKBQKOCaa67Bhg0bQFwH3c8/gK59h9H7AtDzRBce23lM5HZz1w1i3znxc9axJtlZNZAiTuxcTX35Eqgb/q5D7BTkrpPEjosm9pFTlT4A2cnSqSAgdHHvy3qTawNJD1PeY0j6MtkhQtcSWlmXNPOYmZgqypwvdDJQgr77utF3fylZ5ggw/SeDsX/+2i2ezPU/C9gTh7HowO8wOTmJl7zkJfjrv/5r5PN5ufK1gY6SOgAoFou49tprccYZZ4C4VXQ/fx/ssYMojFB0byrhid80Zu2OHRjE1MKULEYga6ckd0GxU5W7ZmTtWpjO1yZ2cVk73j5NhHgPNlW5i6uMm9n0GkXU+RSQqVk/eEJEpJowGlZY6OLe1yqhqxGZrdMx3VCrhS58L6i2GuikxV8Om9b/SzE7VydzMvVnUOZedND7Ynp27o9WPdzw2tduuRRfu+VSDGz3frfHDmLe3kcwPj6OM844A9deey2KRclpVNpEZ+QTQ3R1deFv//Zv8dnPfha//e1vUdr1ACaPORsFLEFhBCgPd+GJ3WtQXTklPJgirr/d9Jwc7Ml+5A5wrmOXtYEUs2EQBW8/u6SyqPaza0I/F6nmHsV+duH+YKKiFtmfLAtZOhkJCfZtU2x27bgMXZBw3zqZYwgPmGh3hk7ys6SU6hWirGT6VdHVd06kDiYEz10xB8CkJ3MP1PrNcYhcHF+79XUAJb7MAYA9ug9z9j2KqXIZZ599Nq655hp0dcmtStVOOlLqAKBUKuErX/kKvvjFL+Lee+9FaddDmFqxAdWB5SiMUE/ujpTwxK41qBwzLZySDModAFRKFpxSTvyE6ajUWAwdI2TbgNQgiiiY2AFKo2O1iB3Q/k7M7FzKngudgyc6VehC28oKXd25UBXLdghdDX8krOy5DA6YMCNcPWaT0LVpIIRz3KQ/EEK3zAFAbngPevc+irLj4Pzzz8fnP/95FAryK1e0E0IzMYW2PNVqFddeey3uuOMOAARTy05HZe6quveU+wkmlrvoftHC4ofFFxemNoGbt5AfLiN3kDNTFwUhII5CZ1Cg1ueu3c268n3+KCt/3MhX7jJQQHa9V78ciiKiIYby7acgdbqgGSgDAPWBNdqWnFMoh465CRUnfCWqDzMtS90pxiDqq2VoydSpxtDweFaaYBoAydW+ZEgKnTu/39tWek5Egn3nzwUA9O6RqPMJMPHHQxjeMg8D2xo/j/zgTnTv3wTXdXHRRRfhM5/5TMcMioiic0teI5fL4bOf/Sy6urpw0003oevF34NUplBeuNa/oQojFICFrsMU9lQVTpfYYc9k7RyQmlBRqQWwM+DPmrJMss0TXqYMAFUsh0W8GJKC62fsAKXKRqmyYuVQWodXvVlaFS9LpVgGkek94rZXQIvQqTa56hA61a4alsU3LUgz0SF0swHLUvriCqgLnV8O1e0l60gyMQ1AUuZqdL84ib1RQkcpCgefQfHgFrgALrvsMnzyk5/siGlLkpgVV79t2/iLv/gLXHnllQCA4sFnUHzxsbqHRGGEovugA2usjPyRKdhTVeH9OF05uL1dAKW+3B3NUErlhYRVvCoVuG3XZi6XbDJjo3R1VFoK2yotlq3S5MfQNVhANo5/Lchv3/bBG1kROkDhi1JtvVGV7hGqx2GETnl6kMyhIHSk6mB65Typ7bv3TqJ77yTs0ekIoXPR9eJjKB7cAgB4z3veg0996lMdL3TALJE6wKvQ3v/+9+PjH/84LMtC4cgulHY9CDgV/z2T82yUF/WATFek5I7mLNBCLctXEzsjdwpNiEGxk63MLaIkdt7uFcROpeMw26ZWiSs398j25ZLdVgfh/UqUgwmdSn84JTIgEnXXjsxDVPX6y0qTa6czm2ROEjIx7f2reM/m8oBYy1pQ5uzRaQyfMrf+DU4VF/XtR/7ILliWhU9+8pP4kz/5k8yvFMHLrLuCLr/8clxzzTUoFovIjR1A9857QSqTAACnC6j2eCZOHEda7nxq/dNaLnftzkpEIJ21C85Dp5q1y4LYacjaKdHGjJ1wti7uvQoxZEbxKqFDJJrR90vkXoy67kSawnVk5zIodC3tbp7R7Jzfn64V+wrIHBM6EcIyx5iaO3NtkcokXuJuxUMPPYRisYgvf/nLeOMb36il/Fkhe1eRBl7+8pfja1/7GubMmQN7ahjdz/0G1uRQ5HtF5c7pysHtK9W/KCB31FKswDL+baLtzbE6xE6mcg0+mFoldnHXmsr8aK0WO7Wdtb/ZVZVmdebnzdbFXW+8X1Kz0NyatHRZJ5BBmfNRLBvt7U59T6zMEYKp4xambh8nc2GsiUGsPPQItm7dioGBAXzta1/Deeedx3UcnUSGryY1Tj75ZHzjG9/AqlWrYFWn0L3jHuSO7MbkPBvTS/sb3h+UuySxq2uCbfgj5etvl3ExU0UpaweofXNvdz87XrFL+vvRkLFT/Tvbj8Drsu9LCKC2fbtHZ7a7yTWD2bmWktHsnE5oMbnpNC0zl9b0miZzrOk1d2Q35u55EIODg1i9ejWuu+46nHzyyRxH0HnM6itq+fLl+MY3voFzzz0XhLoo7fkd7OGnUO2OP2ziqA2mAGD629VoW3NsJ/ezYxwNYqdShpTYacJ2VAhd0v3Hc30lNcEaoVNjlstcGuF+c6IEs3NxUEIwNQco7H8KpT2/Q7lcxnnnnYdvfOMbWLZsmWTJs0/Hz1PHg+M4+Nd//Vdcf/313u/di5GvnIaufZOJ21HbBnIW3K5c3TQopOoiNzIFazR5e+/NXuUVngKFOArru7Lt2jVfneuCCnbGDj5A/Lnq0gg+VGTL6jhK50lpPjv/c4rYnrdSd91oORY5pqiHM+9DUXGqlMg57EQfyBHb80pZ1OTKR4XQMaJG84l8YYjcvoOErt3Z0PD2ojKnMhenjvnpFOST9nY3ZOrYFCWpMldreg1n6kr7vHlmcyPp880On9SDV6w+ggceeAAAcOWVV+Kqq66CNcuF+qiQOsYdd9yBv/mbv0G5XIab60EOZ6Jrf/p2UXKXGyvDPjzKv/OQ3BFXceLadk5CXJt8WPTSqVtZQkZKpMtbEwvJ80WT5Cx94+htRSqWKLETPRYVsdItdopSRwSmHcic1LVaMiyrXixEM8Dhc91OoZM571mSuhYKHaBB6gpqi9i782e6OXHLnL8BwciZS/1fRWQOAIbXEKzMb8XevXtRKBTwqU99ChdffDFnyTubo0rqAGDLli343Oc+h3379gGwUBg7Dvb0YhCk37xBuXNzFn+2LkhA7pSzde1cWUIiW1e/vaSUqJS5XVm7YJnZ9qIVfFjsZI4jsL6p9LaS+GInK0QKa7OqrHHbQCcJHcOeWRFAXAoDzegq5W9Xc2s7pU61G0YHSx3L0gnLHAAQgunVCzA9Jy8scxQU1eJ+kDk7US6XsWzZMnzpS1/CiSeeKHwMncpRJ3UAMDIygmuvvRb3338/AMCeWoTC+PEg4MsAMLkj5SrIZHybfiLshm9Xtq7dUgeoZZs6uTlWFiZ2SjKvQaykNlWUutr+RbJ04f13crOrklzYtlofTcX+qW3tP9duqVNp6muj1Kk2vbrz++X7zBGCytLaAAdOmQMACgfl7u1wil7z27nnnovPfvaz6OvrEy9DB3NUSh0AuK6LH/7wh/j2t78N13VBqt0ojq2D5aQPwZ4J4q0/SlS+EbmufKXXgU2w9TFkhVQxa9dOsfMCyG/runqW/pFBR7ZOkbZNYdKpQgcA+bxajLzCapLtHhDRrvOuKnQK62sDbW56dV3QnpL0IAjaVQQE58dzrXEsO3MIzz33HCzLwlVXXYV3vvOds77/XBRHrdQxHnvsMXzxi1/E4OAgQC3kx1cjN72EqzkWAFB1Zi5emUogKFai22egCZbFkb6MVMSuTU2xSn3sZoLIbVfbp1SlzR5wqpk+DcgIXkcKXbv7dKlm6Vjzq8xx6BA6i6gtWyaz23Y2uboaupmgTVLHyp7LKV33PHPb+e8FRbWwF2TuLpTLZcydOxef//zncdZZZ0nvv9M5+jQ2xJlnnolvf/vb2LBhA0BcVHqfRblvMyippG/MYHKkKjai2xOi3iyiZTZ3AiL74FBZL7JNExUT1YrbCyK3XW2fxG6faOigIyYNTprYloeMCJ0ymkReCFmRZEhsq7QGsxdAfu4511X7kqgRqbolWHbZz80VS1JQUsGGNwKVnu0ol8s455xz8N3vfveoFjrAZOp8XNfFT37yE1x33XWoVqsgbgGFsRNhV+Ykb1h1QMoBAWSVAm/lQCnAvlUFbwaR7VWzdUm/pxGuiFqZtdMxKlZlyoA2N8MCgt/Iw5Wt6ghaDYhk7Foqgp00bUkUEUInNUjC31hQsnSUP4jotSpQVm0jXFWzc4xOytJF1X9SWb6ZY6b9Palvd3JH0Lf6RRw6dAj5fB5XX3013vrWtx6Vza1hjNSF2Lp1K770pS9h165dAIDc5HLkJ1bGD6IISx2DNwMWlDqGJSCGqlLHYvC8FkWc1LRK7o7WZtjAfrkq8biHnOp8dxrgFbuWSd0sFDrhuFHHwDtIRVezaxCR65R3RZGsyRyjU6QurvxCUth4rElSR+GgUtoJp/QiKKVYuXIl/tf/+l9H1ejWNIzURTA1NYV/+qd/wn/9138BAIhTQmFsDexq4/JisVIH8GXtoqQO4M/aNUvqkl4PkyQ1zZa7Nk910jFil/Sg4z32JjbD8Yhd06VOxyoFGRU6odhxx8Ajdc0QOgbPdcpx/jMrc0DbhQ7gkLq0uo5bCqOPNU7qHHsEi045jN27dwMA3vCGN+DDH/4wSqVS5PuPVozUJXDffffhq1/9am0QBZCbWo78xLEgwa6ISVLHSMvaxYkdwCd3zRS7tL8BfELTTLlTzdYBs1/s0h52POe4BSTJXVOlrtOzcwBXH7rU/SQdR1oTbDOFjpF0nSZsq+X8NlPmGO3O0tlWvLzzlJ9nkERKXROWOgoXldLzcLv3wHVdLFiwAJ/61Kfw0pe+NL08RyFG6lIYGRnBP/7jP+L2228HAJBqyetr59TmvuGROiA5a5ckdYykJtlmSx3Pe3iFphlypyNbp6N/HZBNseMVjqRrqIWd5ePErmlSd5QIXeq+eI4j7oHfCqEDhKWuY2QOUP9iiiY2vfIeQ2qWL/0Yg1Ln2KNYetoQdu7cCQC45JJL8NGPfvSom3tOBCN1nNxzzz34+7//+1DWbiWIa3lTmvAKQZTc8UgdEJ+1a5XUJb1XVGZ0y11WVpwAsid2ItKRJs4toinLezUGVI/RbqELrBahtD/e44iSr1YJHSPqGg2vrd1JMsfIYtOr6DHESiHfsdFSEcjn/L5zbvdeuK6LefPm4ROf+ATOP/98sfIchRipE2B4eBhf+9rXcMcddwAAiFNEYfx42JMDfNm6IMEmWV6pY0TJXavFLur9kktoaZO7NjfDAhpGxHpB5LeNEjsZ8Yg6t21A6xJfQdqcnQPaN2VJw35FjyWYrdOVZRQleH0Gyt/WtVoZqksJSqK16VW2DmuQQrHjov09cHKHMeeEQ9i/31sZ4qKLLsKf/dmfYWBgQK5MRxlG6iR44IEH8H//7/+trR8L2FPzUTi8HJZbEAsUrEBUJpNltFrqwtspZqi0rE4xG/rXeYHktw2KnYp8BM9pG9GyxBdjNmTnAKU56Or2LzWpcC2zpiUbJjkfHbs2a9u2ffAD0L4MPQuho+lVtd4KSp1gHeraFZQXvQincAgAsGTJEnziE5/AOeeco1amowwjdZJMTk7iO9/5Dm644QY4jgO4NgpHliM3vpB/NYowKjOna1iCSbliyYrcGbGbETvl9WZp26VOG7NB6CxrZpJb1XKoHEtOYekwvxCKEwxjFsgckAmhA+Ct96qCbQO2JZ6dA0W19xAKxw5ibGwMtm3jiiuuwB//8R+bka0SGKlTZOvWrfi7v/s7PPPMMwAAq9yNwtBK2OVe8WC6xExlLVnZJcuCMVj/QskY1HW9c6EyM7mq2CkOnGCiTRUX5QYgfxyBh40WUZaFWNkQwzauDgEwkbLkJUCD0M2shqJwPLoydYpSp0Xo2ihztLa9ynHMfIFUuL+t2koaqudTQvSd4hiOOd/Ftm3bAABr167FX/zFX5h55xQwUqcBx3Hw85//HN/+9rcxPj4OAMiNz0f+yApYrtpEjMIEP06ZtWTDl4PUerQuqOvOVFYSMWi1Wv8QFq38XQq4ikKl0r8usM5qx4td8BzIyBn7HNstdrJSp1PoAHEZYDLHflYpgx9T8piCItau/nTQ2IQtioalvGgohsyx6JI5vww6VmIQkDrXqqAy9wVUewcBAL29vfiTP/kTXH755bAlrwmDh5E6jQwODuKb3/wmbrnlFu8F10JhZBlyo4vq57aLo1lNqCKVRjDTFrzRBWPQajWwqfhDgLpufaaMPZBFpudoVzNsRF/HtohdxANI+HZPGmnMS1im2iV3olKnczBE8F4SEQOdza0NsQWPLwsjX6FxZKvIOW2CzHnFEDsW3TLnl6NFUkdBUe07gNyKQUxMTAAALrvsMrz//e/H3Llz1ctgMFLXDJ5++mn8wz/8g98kSypdKBxZAXtqILm/XbP7xfEuOxYewSkqd4FsXf3uxeSuQewAMblrl9hFla0dYhfzIBK65XVMcRIlU+1aJJ4X3dm5ILyC0EyhAwTXco2RrxZnzFoudE2SuZmicNaFTZI5vww6zmuC1FFQOKVhLN5Q8ZfgXLduHT72sY/h5JNPVt+3wcdIXZNwXRe33norrrvuOhw5cgQAYE31eXJXiVnbTofUAekP/rQbOJitCyIid6FsXf3uOeUuIQa33LVa7FKW42qZ2KU8jLhvex0TEifJVCvljkfqmpWdC8IjCs0WOn8/HMebhZUk0GKha7LMeUVJP55mypxfDh1ZOtuOvQ6cwjhOurSExx57DAAwMDCAq6++GpdeeiksHfs21GGkrsmMjo7i+uuvx4033ohyuQwAsMfnoTC8HJZTbNyglaNYk5YdS5IPHrmLydbV7z5d7iKzdXVBOPrd6ehfB6SLHWf2sCVix/lQSrz9dawJyyNSrRK7tLI0MzsXJu7zaUb/uSTSjplHuFowtYkWoQOSs4IaRA5IlzlG0jG1Qub8cjSp6dW1yyjP2QOn1m+uUCjgiiuuwLve9S709koMJDRwYaSuRezbtw/f+ta38Ktf/cp7gRLkRxcjP7IEhAZuiHZMTRKuXKKaYKNIk7ukTFvd7knwl8YwaWLnbxuTvdOVrQOSxU6gv19TxU7w4RRbBYhci3FiJtLk2Wy5iytLK7JzYaI+o1Zl5xr2G/N+kf5uTWyG1SZ0qs3hCfCK3ExRoo+plTLnl0Nz0yu1qqj07wdZOOgnMi6++GJcddVVWLJkifq+DIkYqWsxzzzzDL7xjW/4qWi4NvIjS5AfWwRC7dY1wUbRsHQZp3iEK8q6VS6Ss3WNRYjI3nHK4UyQiOydLrGLm+pEYnSuFrEDGo9J4iEVWQ3IXIthMRMdnNBMsQuXRdOExtzZuSDhPqs65kuDpAA1DH4QHJQ0s3PxfYf328z1W2UHqyQgKnMzxZk5prp7r0Uy55dDV/NnLgdKHFT6DqB4zAjGxsYAAKeffjo+9KEPYd26dXr2Y0jFSF0boJTigQcewL/8y7/4CxXDyaEwshS5kQV8I2XTdyK/LSH82bow4eydhNh5m9bLHXe2riFQ4AHVrP51CvPpaRc7hYeVtodLUMxkpxFphtypTJETFU5FxNjnpCk7V1ceGfxpShTmjmtCM6x2oWuzzHnFqdVpOrJygNpcfxquO2oTVPsPo+f4MQwNDQEAVq9ejauuugovf/nL9WVaDVwYqWsjjuPgjjvuwHe/+128+OKLAABSLSA/vAS5sQXyK1MAepoavULKbReqLIQybQEavtHKlif4QNcpdqpyoLspVkdTkpZ1hF15oQvG0ImGFQz8UJpErC3NrVFYRM/50Sh22oROF7V7TOWRSQjJhMyxsqicH296kkHMWV/GgQMHAADLly/HH//xH+PVr361mW+uTRipywDVahW33HIL/u3f/g0HDx4EAJBK0ZO78flycscybaqVmqossBn0VZf/Qq1CdFw9D3sdl72uJbR0Zuw0xdGx7JBWVM+z7iWpVIWunc2tUeQ1LPsFaJM6YmtqFtRRHg11F4CZL4FtljlATegoXFT7hrDgDNdPRixcuBDvec97cOmllyKnYwk5gzRG6jLE9PQ0fvGLX+D666/3p0GZydzNF2uWZVkt9tBot9yFYikvW+XHarPgZUXsgs1LqmJXE3ElsQv2ZdSF6lJlOpak0pWd0xDLX79V9RznczNdJdQKBOUl4TKYpVNpatV6/TN0La0mOvExcVHtG8Tc9VXs378fgDc9yR/90R/hTW96E4rFiNkcDC3HSF0GmZiYwC9+8Qv8x3/8BwYHveHgpJpHfqTWLEsFRtgF++4As0vugJlKs51ypyJ2wSW0asciLHdhOWCfjWrTeS2OlNwFHzy6H2yyS5XJdCRvRnZOMV7D+q2y55dl58IDpMQLVPs/1MVBOE6GhI59No4jV0c1Q+YAaaFrOKciq/sQB9X+QfStncbhw4cBAPPnz8c73vEOvOENb0CpVJIqk6E5GKnLMNPT0/jlL3+JH/3oR36zLJwc8iOLkR9d6I2WTSKqD1oW5a4Wr6Ozd7JiF7WElmjWLmmSW1VBrMURFruYVTW0IrqqhehUDwzdMqcQ18/OhRE9tyw7F0ZmOiQdK4ZkReiCn4mo0DVL5ILoWlKNZ+Jj4qAycAjdx01ieHgYALBo0SK8613vwqWXXmoycxnFSF0HUC6Xceutt+IHP/gB9u3b573oWsiNLkR+dBEspxC9YdLAAt1yB6gLnoaOyF452iR4omIXN5BAROzSxEBU7FJWQeCSO55VPnTCc85lVi3Q2dQaB+c+GrJzYUTOaZzQAWJSFyd0fiyBFUfaKXRRn4GI0LVC5gD5LyXRb4j9k2uXUR04hMKKCYyPjwMAli1bhiuvvBKXXHIJ8vk8dzkMrcdIXQdRrVbxq1/9Cj/60Y9mpkKhBPb4XORHFsOudDduFGyCjUJ0XdckdGXvApdkpppnAY6VHDj3lzYylFfsRFYv0BQrVex41+XVCc/5TlsuqRn95tLg2Fdsdi5M2jmNam6NgueeSxM6P1bKaiO142q50KWc99TR+q0SuSC8128asct5TaIy5yAwZwROra5YuXIl/uiP/givfvWrzQCIDsFIXQfiui4eeugh/PjHP56ZxBiANdmH/MgS2FN9MyNmZSYRNtk7PtKW2FJdZSFN7GQmvOVd/i0tDhKydiJNRK2SuwSpa3l2LkjC/lKzc2GSzmVSdi4Mz9rRqiuF6MzOBcuVBs/nm5Sla4fMAXqXUAtOEwUKpzSKypyDcLvH/NfPOOMM/OEf/iFe+tKXmvVZOwwjdR3Oli1b8OMf/xh33XWX/+3KKpeQG12E3Pg8b1BFWrYujC65A7KdvQOaK3hxYif6QIwbQCE76W3kihhysSLFTmJ1De1ErWwRKldbZS5lv9zZuTBR51JE6BhR13PUgAiuWNGfRcuETuSzjRK6dolcEF0rbbCJj4mLau8Qlp+Tx44dOwAAtm3jla98Jd7+9rebFSA6GCN1s4S9e/fihhtuwE033YTJyUnvRcdGfmwBcqMLYE1LpM6b0TQLHF2CFxY7lRUWglk7FQmJao6VjRfO2qnModVMuYtr6muXzAUJlEE4OxcmeA55m1ujCN9Xotm5hnj1n0PThU7mcw0KXRZEjqFxhQ03X0a1/zBKx05jZGQEAFAqlfCGN7wBb33rW83arLMAI3WzjNHRUdx00034+c9/jr1793ovUsCe6ENueAHsyT65yYybkb0Djg7BY2KnY4UFV9NEqEB91k5Vbpjc6ZqktQnUTWibBZljWJa6zDHYuZPJzoVhn6Wq0AXRKXSapogB4Ald1ibcZiieMwoKp3sU1YHDcHvH/Ht0yZIlePOb34zXv/716Ovr01VaQ5sxUjdLcRwHDz/8MH7605/ioYce8l8n5QLyIwuQG50H4kos46JT7gBIrS+bFAuaxUK33CnHmSmPlocQO/eaqgFtK2MA2uWO2Fa2ZA6YETpNy5f5GUkdZbRtT/qzLHSKnyetVmdWqtGBji9vQRTOGbWqqPYPYeHpFvbs2eO/vnHjRrz5zW/Gy172MrOU1yzESN1RwO7du/Hzn/8ct956K8bGap1hXYLc+BzkRubBmuoRz97pbprVJXbBmMhY9k530w5VXPUBCK1FqWFNXNfVl0n0Y+qJR3QshaVZ6LyQGqSOPZx1lc+2Z64NTctaaRU6BZmrG9mq+YsWgLZKMAWF2zWBav8g7IUTmJ6eBgD09vbida97HS6//HIcc8wxespnyCRG6o4iJicn8atf/Qo//elP8dxzz/mvk3IRudF5yI/OBXEE5iAKV6wqlXYzxI7F9X9UWDGiIa5CWVUflMGVBBTELvzAoOwzUJoEOpBJzJjcKUlds2TOf00hvm3rLV9N6BhKYteM/nMSQlcncsFsskofV2DmXmbZUVWhk+w/R+0KKn1DWHpWAbt27fJfP+GEE/DmN78ZF110kVn54SjBSN1RCKUUTz/9NG666SbceeedMwMrKGCPDyA3Og/2BEffu6TKVWa0XTOkLrwP/0eJFSNi40qUW/ZBGX74BwZiiMhd3ANDKWsX8/llRe6kpK7ZMlf3d8F9NSE754VrjCe7VFw7hS5W5Px4CqN4w+fDIoCl0JQpMbrV7yvXPwgMjPuzH3R1deFVr3oVXv/612P9+vV6PwND5jFSd5QzMTGBO++8EzfffDOeeuop/3VSzSM3Ohe50bmwKl3xAXgqWZH5sZotdsF9+T9qnjmeV/JkxC5pRQGBrF3qA0Mma5fy2bVb7oSkTveDMDgYIvY9AvtscnYujHC2rk1ClypyfjyBuSL9eAnzMspk6STnnnPz06j2DWLgRIpDhw75r5988sm47LLLcOGFF6Knp0esLIZZg5E6g89zzz2Hm2++Gbfddps/3B0ArKkScmNzkRub09g8K9oUwjObfavELrhP/8eU20FUwtIET6SfHc/yWxxZO96HrXDWjuNza1p1w3H+UqWuGRmNtOxc3Xs53tPC7FwYLrHT3X/OC5ZYz3CLnB+PYzUXPx7H6ikiQscp7g1dI+wqqr1HUO0bgts16b8+MDCASy65BJdddhlWr17NVwbDrMZInaGBcrmMe+65B7fddhseeeQRP63vT40yNhf2+IA3sTEg32k5af3JVotdcN/+j02YVT5O8tIemKKrNCRk7YQ7Xwc/j9hzIvZ5tUPuYqWu3TJXt13M+3XLXC2m3LUQc46bNf9cRP0iLHJ+zIT1lv14nNcyr9AJNquzc0iJC6dnGNW+I0D/hF8P27aNDRs24LLLLsN5551n1mI11GGkzpDI0NAQ7rzzTtx+++3YvHnzzB9cC7nxAa95drpfbu67IOGHQTvFLliGhpdCEwsrxQ8dX9wDU3ZlgYisndJ8V0lyJ/lZtVLuGqQuSzLnbx/arkky54WUnCoj6jptcnNrw1qsMlPnhOVLRuQYaUInOfCFgsLtGUe1bwiFRdMz/Z0BrFu3DhdffDEuvPBCzJs3Tyq+YfZjpM7Aze7du3H77bfj9ttvn5nYGAAc25seZXwOrCnJyY2DEJINqQsTlcXTOZcaDTRzsrg6JqNlDy9NZW2QOw2fUyvkjqissJCGqszVxSJ655tjKMpckPAKIs0QOulsXGTMmnypiFyQqIERKiJXGofTN4zeY10cOXLE/9uyZctw8cUX4zWveY2ZisTAhZE6gzCUUjz55JO4/fbbcdddd2F4eHjmj46N3MQc2ONz5FevYLC+XLofwjpihgWvGXLHpkrQAZM7jeWsG0yhScCbWR2RnIZ56sLolDnA+7x1D4IApJpak2CfUzNi+uiYyNpx6+VYxyTDwSydish1j6HaO4zelW5dHTowMIALL7wQF198MU4++WQzetUghJE6gxLVahW///3v8etf/xp33323XsGLaurTvUyZjpjBiY41TiwcjK0FzVm7yObYDMuddqnjGdHKHasWR3eGjmWodDePaqDhMw6vkyxLUNx0rfAQlDdCZprFBaBw4XaPo9o7jO4VVYyOjvp/GxgYwCte8QpccMEFOOuss5BrxhcQw1GBkTqDNqrVKh5//HFf8ILNCHBs2JP9yE0MeILnclZatUwQpbTxoaQ42XFkTJW44VUsdM1Wr22t10AcDXJHozJ0GuSuWVVSM6QOUMxWBWUuiK0oIgGZq3u5jWIXKXH+HxVkLpx989czVpwMOCoLJyh01HLgdI/C6RlBaZkzs6IPgLlz5+IVr3gFXvnKV+L00083ImfQgpE6Q1NggnfXXXfh7rvvxtDQ0MwfKWBN9XpZvIl+WNVicjDXBQ1JghYZq4md1rhJy5PJCpSOrF3cviXlLlLo6t9Qiyv+sO4YqQPks3VxMhf8u0zcGJmre0sLxY5rYJGo0MVJXBAZoeNpSuW4htxcGU7PCJzeEZC+qZnZAwDMmzcPr3jFK/CqV70Kp512mll71aAdI3WGpuM4DjZv3ox7770X9913H55//vm6v1vTXbCZ4JW7G5tpA9m6OKSzeM2Iy7PurIzgycodz74E5S5V6mbeWIvL/+Ce1VKXJnNBRLJ1HDLnv7VJUif1RYZX6IIil9bXTkToRPrExWTpvPVWJz2R6xkBLU7X/X3lypU477zzcN555+GUU04xImdoKkbqDC1n9+7duO+++3DffffhiSeegBt84Ds52JN9yE3015ppa3MwcYgdQzjb1oy4zV6xQmilB4H3csgdt9DVb1SL274JitsqdSIyF9wmLbaAzNVtpmMEbFJzKleAhGuBJxsXRZrQyQ48Cgkdtates2r3GPqPJXUtEbZt49RTT8V5552Hc88914xaNbQUI3WGtjI8PIwHH3wQ9957Lx5++OG6eZkAwJouwZ7s97J4kyUQKv7Q55IxnuwaT9xwbIm4PjzrzepeASMcP2J7Kamb2bgWt0XrxAZoy+hXGZkLEpetk5S5uhAyEw8HUb22GFEjUkVHvsadZx2jxwkBtQnc0gSc7jE43aOgXVN1b+nu7sY555yD8847Dy996UvR39+vvl+DQQIjdYbMUKlU8NRTT+Ghhx7Cww8/jG3bttW/wbVgT/TBnuiFNdEDUilITZmSKHmcWTuh2AGUbreoh2iS3OkaqBGIpSR0dXGDfa3cwMsdJnVAY7aubqSk4oCHcLZOg8wFibtetfYJrQvsymfh4ghm5zSdFwoKmq/A6R2H2zuBwsJKwxfONWvWYOPGjTj77LNx6qmnmpUdDJnASJ0hsxw+fBiPPPIIHn74YTzyyCP106UAIJU8rMkeT/Ime2BVC1L7aVhnUeMt0czYAKJHEOqeNy8Qm1aqKW+UiT2TvetYqQtm1HRMoVEXPzDRra55C9PQef3oWA0iDtvWdk7cXAVuzzic7gm4PeOg+fpyDwwM+BK3ceNGzJ8/X8t+DQadGKkzdASO42Dr1q14+OGH8dvf/hZPPfUUqqGHBSkXfMmzJ3tAHMVvzuzhozDJaCLBB6fuSYYBPROtBnGcwHQtmmPXMoDhlQp00nSp0y1zwMx5sPTJi49u8QcANyBsLL5Giaub9FhR6NxcBW73BJyecbjdE6CFSt3fbdvGKaecgrPPPhvnnHMO1qxZA0t2nWuDoUUYqTN0JFNTU3jiiSfw2GOP4dFHH8WWLVvqpg4AAFIuwprshj3ZA2uqW7y51nFmskjhJjAdD9iggEUJgco+miB3Detv+vvS0xwbmwXU1dTYzHnALEtffA3zoyWiS+bcCFljsTWtXhL3eCK2JTZfXK051e2egFuahNM9AVos173Htm2sXbsWZ555Js4880yceuqpKJVKSuU3GFqNkTrDrGB8fBybNm3Co48+ikcffRTbt29vfCBUc7Anu2FN9cCa7IY1XUqXvKDYBWmY6kRS9IIPwYZ9aBA9XXJHA1m0yP2oxKagjsMnASoDA5otdarZurRjU83WqUhWksAFUZjUmvdRxCN03jQjU3USh1zoSx8hOPHEE32JO+2009DT0yNcboMhSxipM8xKRkZG8Pjjj+PJJ5/EE088gWeeeaahuRYugTXV7TXZTpVgTXeDOBEPfiZGabeKiuglyV04ZhiefajIXZrQRe5P4P1JWbokRKfxaPaM/TLZOlFJkxE7UcHiFbggMvMcCuL3W4yaK86uwu2a8vrDlSaRn+dgerp+vrhcLoe1a9di/fr1OO2003DGGWegr69PuBwGQ5YxUmc4KpiensaWLVuwadMmX/SCay8ySCXvid5Uyft/uguE1h4icVm7JERFT2b9SxHRE5U7GaGr21/KtiJZuiR4Jt1thdTxZOtUm5N5xY7nnMoIXJiUplYdj5hgdo4S18vClSa9f11TDf3hAKC/vx/r16/H+vXrceqpp2LdunUoFlNWrzEYOhwjdYajEtd1sWvXLl/yNm/ejF27djU+gChAyl2wpkqwp7phTRRApgsgVKGZLU30eLN2iftIWH6K7SNN7lSFLkyU4Mlm6dKIkJ6mSx0Qn63TPcghSeyiBCtK3uLey0tEdk7344QSCtpdgdtT9gWOdFfqJyyvccwxx/gCt379eqxcudIMbDAcdRipMxhqjI2NYcuWLdi8eTOeeeYZbN68GQcPHmx8IwXIdBHWVBcs9v9UF4ir0JE9diJjS03uouKFCcZ33JnpS3SPng3CVgjRkaXjwSKtkzqWrWv29COEzOwn+EWgWXPMMWqZOe0CZztwu6ZBS2W4pWm4pWnYfW5jtwkACxcuxLp163DSSSfhpJNOwoknnmiaUg0GGKkzGBI5dOhQneRt3boVIyMjke8llZwndwHZI5W81ATJM0HJzEPacbyHuMiaoNz7qcV0HW/qkmYKXQ1aLrdG6IDWSV0NYttAvkX7C14jTZifkGVSCWv+VHxkUFDQQhW0NA23y5M3WiqDFqIztn19fVi3bp0vcevWrcOCBQuUymAwzFaM1BkMAlBKceDAAWzfvh3bt2/H1q1bsX37duzduzd6A5d48+dNF2FNF70M33RRXPZ4+trpFD4mdbqbYBmuC1pu7AfVNFoldYEpcEhXk/pvNVHcov9e25/glCqevFVAuypeBq5YgdtVBu0qA1b0MSxduhQnnHAC1qxZg+OPPx5r1qzB4sWLtaxVazAcDRipMxg0MDo6imeffRbbtm3zhe/5559HuVyO3iAse+UCrHIBpJzSX4/JnVtrugwSXtkgiIrwNUPwKpWWZAN9miV1CdUnKeSzM7dcirhFzUHIMnOp04cQF7RY8aSt6Emb21UGLVZi5a1QKGD16tW+uJ1wwgk4/vjj0dvby39MBoOhASN1BkOTcBwHe/fuxY4dO7Bz507/X6LswWvGrZO84M8IDXSIkrsodAmfDsFrtdABeqVOoMpUEjuJUaii4hZFlMxRUsu6FctwawLn/V6JbTYFPHk79thjsWrVqrp/S5cuRa6FzeEGw9GCkTqDocUEZe/555/Hzp078cILL2D37t2R06z4UG/KFfbPE70cyJQNUskBU0Su/16S8AHx0hcUMx7Jc5z6pcBaiazU6ZiOI5fzBjOIyF3MxL5pI4V5xa1hO1CQLsAtVEG7XE/YCtXa/xWQkhs54pTR29uLFStWNAjckiVLYOvKVhoMhlSM1BkMGWJ4eNgXvOD/L7zwAiYnJ5M3dmvSN53zZK+c87J+FbuW/ct5zb6i4pcmfYzgyNqw5LUjOxeEV+qaWB0mZu1c6g0cSUFG2igoYFHQggNacIB81fu5WPX+FRwv25byEZdKJaxYsQLHHHMMVqxYUfdvYGDA9HszGDKAkTqDoQOglOLw4cPYs2cP9u3bh3379mHv3r3Yu3cv9u3bhwMHDjSsfRuJQ+pFr2L78oeqDVK1QSq2uPxFiJ8vca7bshG1SZBCfuaXdlR7rgvk8/W/BxAVNl/W8g6Qcz05y3uCRvMO4P/uAHb68dq2jUWLFmHJkiVYunQpFi9ejCVLlmDZsmVYsWIF5s2bZ8TNYMg4RuoMhllAtVrF4cOH60Rv//79OHjwIA4dOoSDBw9ibGyMP6ALkKrtiV6lJnvs96oNUrUAxwZxrNrPVvqEzBHS2UrRI62aYgSInGg5raqlhAK2C5pzPUmzXdCcA+S9/2neBXI1Ucu5QN5Jza4F6e3txYIFC7BgwQIsWrQIS5cuxZIlS/x/8+fPN/3cDIYOx0idwXCUMDk5iUOHDvmSFxS+w4cP48iRIxgaGsLExITcDlwCVC1P9BzbE72qBbjea3AJiGt52ULXex0VOvM3xwIoAVwCWnXV5veLQLfUUdQGqzAZs2b+p5YLWC6o7WXT6v5uz0gbctT/PW6kaBqlUgkDAwOYP38+Fi5c6IvbggUL6n4vlUpaj99gMGQPI3UGg6GOqakpX/DY/4ODg/7PQ0NDGBsbw+joKEZHRzE2NpbYiV4aF54oUgJS+7/ud7ZLWpM/GvF74GdiEfieSGpSFvRGQv2/gVCAUC97ZtGZ39nPFnuP3kMmhKC3txd9fX3o7e3FnDlzMHfuXMyZM8f/Ofj7nDlzjKwZDAYfI3UGg0EJ13UxPj5eJ3ns55GREUxOTmJychITExOpP3dqdWTbNkqlkv+vq6ur7nf2r7u7u07agv/39fWhp6fHrFdqMBikMVJnMBgyAaUUlUoF5XIZ5XK57ufg75VKBdPT06hWq3Bdb6oNSikcxwGl1H/Ndd261yzLAiGk7n/2L/x6LpdDoVBAPp9HPp9P/Jn9M4MIDAZDuzFSZzAYDAaDwTALMHl+g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhllArt0FMBgYlFJMTU21uxgGg8EgRFdXFwgh7S6GwWCkzpAdpqamcMkll7S7GAaDwSDEbbfdhlKp1O5iGAym+dVgMBgMBoNhNmAydYZMUnh4EQitfecgFohFAGIBFgEIAbHY32qvEwJYBIS9x/8b8bfx/wGB16z6v3sb+q9RQma++gRi+K+TmX0FX6PEC+P/zfLieq8T/29sG1p7zf87MBPDqr2f/R31+6jbplZ8akX8re79qCvjzGuk4W8N2yBYjtDfEfN6TLy4cjRskxTXf502bh/Yxv97IBatvY7Adt7faKA83t9J8G/+e9nfqB+TBN9PqP83/xJjr7Nwtfd4lwL1f2fbWLXfvb95v7Pt/L8RCoKZ7azaa/4/UH87i6DudW97d2Y7sPe7sNk2td9nYrl+PDsQ34b3us3i+e91YbOYYOVwZ96PmdheTBcWvP17f/Pi2bXXCFzYbPvANjbgbQdvP+x8sN+9fdHaz6j9jcKqnRcbBBYAu/ZhWyC11whsQmDBAql9cpWyjbe8bwkMhixhpM6QTRxSq17hSR1qAlZ7Ws78jQDWjMEQz5BqQdjT3ULDU3vGmOpNgsVseMoj9FpwH4h4LbwdZmQuIHUNrwUkLPh7uIj174/Yxkr4W9xhNJQj5rCT/hZ3qmTjBWJGCV9TpS7q7wj/Tv3YwXIE9xn1N18CEXhP8P0N29CIfdG6f0GpmxHF2r+4v4GJnxcyKIBM/gAmZ/ClKPg3T+rcGSkiQSnyfrYI8YSr9j/8n4m/nRcHtZhsW9S2q70e9bfANnZNSG2/nEzqaKrUBePZ7Hyg/jULwTIGPkODISOY5leDwWAwGAyGWYCROoPBYDAYDIZZgJE6g8FgMBgMhlmAkTqDwWAwGAyGWYCROoPBYDAYDIZZwP+/vfuPqbL8/zj+PByFc/gxBZPUCYItdVPUTaFsmS5rOhRs/KFYzTHWD+sfW9Kw1iasP9CWtmZrbi1ktUjcKlGiNbeWuWmp5U/aUPuhTkRLAg9wjijnfP843rf3gfOD/NQXuHk9NnbOfV/X+z4X1yWe9+77uq9bSZ2IiIiIDSipExEREbEBrVMnQ5MzQCAQXHA0uO6aw/Lq6LMgsPFqeY91X8DyfgBllkXL7i4RG2n/3ddAyHtC4gIAAWP/3WMGcEAAM9Zabh4jZHE1a1vCbAdCmtSnPyL89K07kLXoopUN+LMGWGb9yKhxgRjHDERoY+TFh0PXlrOUmXXvffHhu+2wrFPHva9TF+BuXMARCP0h+BosI2S/3xEAh//uMTE+y29ZT+9OnTvlAYffPB4hx7/zanzWne24O3WMV6DfPr/lz9p473eAn7vr1Pnv7HMQaZ06h7lgsJO7Y2Zsx92J6bv23cAXH3Zwd/HhcH+XIoNLSZ0MST151wa7Cf8N4zvzHvXNSUQM1n9a/sFsyD2zZtW6iCRyL/SXIyIiImIDjkAgoGedyJAQCATw+XyD3QyJwefzsXLlSgDq6+txuVyD3CL5N2l8/zmXy4XDoXPnMvh0+VWGDIfDgdvtHuxmyD/gcrk0Zjam8RUZXnT5VURERMQGlNSJiIiI2ICSOhEREREbUFInIiIiYgO6+1VERETEBnSmTkRERMQGlNSJiIiI2ICSOhEREREbUFInIiIiYgNK6kRERERsQEmdiIiIiA0oqRMRERGxASV1IiIiIjagpE5ERETEBkYNdgNEJLavv/6aqqqqmPW2bdvG/Pnzw5ZdvnyZ2tpajh49SltbG263m2nTplFQUMDixYtjHru5uZndu3dz4sQJ2tvbSUlJYebMmRQVFTFv3ryY8T///DOff/45TU1NeDwexo4dy9y5c1m1ahXTp0+PGX/gwAH27t3LuXPn6O7uJi0tjdzcXNasWcPkyZNjxg8mn8/HiRMnaG5u5uzZs5w9e5arV68CUFJSQmlpacxjtLW1UVtby+HDh7l69SoJCQlkZ2ezbNkyli9fjsPhiBqv8RexPz0mTGQYMJK6uLg4xo4dG7FeZWUlc+bM6bf/8OHDbNq0CZ/PB0BSUhJerxe/3w9Afn4+5eXlERODhoYGtm7dSm9vLwDJycl0dXVh/PcRKzGprq6mpqYGAIfDQVJSEp2dnQA4nU42bNjAihUrwsYGAgG2bNlCY2MjAHFxcbjdbrq6ugBwuVxUVlayYMGCiJ8/2I4fP8769evDlg0kqWtubqasrIyOjg4A3G43PT095njk5eVRVVXF6NGjw8Zr/EVGBp2pExlG0tPT2b179z+KaWlpoaKiAp/PR05ODhs3biQjI4Pu7m527dpFTU0NjY2NZGZm8vTTT/eLP3PmjPmFvnDhQtavX096ejodHR18+OGH7N27l5qaGrKysnj88cf7xX/77bfmF3phYSHPP/88Y8aM4dq1a7z33nscPHiQrVu3kpWVxaxZs/rFf/bZZ+YXeklJCcXFxSQmJnLx4kU2b97MmTNnqKioYOfOnUyaNOkf9c3/p5SUFKZNm2b+bN++nba2tphxnZ2dlJeX09HRQWZmJm+++SYzZszg1q1b7Nu3j/fff58jR46wfft2Xn311X7xGn+RkUNz6kRsrrq6Gq/XS1paGps3byYjIwOAxMRESktLKSgoAOCTTz7B4/H0i9+xYwe9vb1MnTqVyspK0tPTARgzZgxlZWXk5eWF1LPq7e1lx44dADz00EOUlZUxZswYIJigVlRUkJ2dHVLPyuPx8PHHHwPBhKC0tJTExEQAMjMz2bJlC2lpaXi9Xqqrq//nvvqvzJ49m6+++op3332Xl156iSVLlhAfHz+g2F27dtHW1kZCQgJvv/02M2bMAGD06NEUFRWZZ8j27dvHpUuX+sVr/EVGDiV1Ijbm9Xo5cOAAAE899RQpKSn96jz77LMAdHV1cfDgwZCylpYWTp06BUBxcTGjRvU/uW/Et7a2cvLkyZCyEydO0NraCsAzzzzTL3b06NEUFxcDcOrUKVpaWkLKv//+e7q7u0M+xyolJYWVK1cCwTlXXq+3X52hwOl03nPsN998A8CSJUvCnokqKirC7XbT29vL/v37Q8o0/iIji5I6ERs7ffo0N2/eBIJnSsKZOHEiU6ZMAeDo0aMhZdbtSPE5OTnm2ZO+8ceOHQOCZ4VycnLCxj/88MNhP88an5WVxYQJE8LGG+26efMmp0+fDltnuLp48aJ5Q0Wk/k9MTGT27NlA//7T+IuMLErqRIaR9vZ2nnvuOZYuXcoTTzzB6tWreeuttzh+/HjY+r/99pv5furUqRGPa5T9/vvvIfuN7dTUVFJTU8PGOp1OMjMzo8ZPmTIl4tmq1NRU8+aPP/74I2z7s7OzY7Y93OcPd9bxG0gfROo/a51o8Rp/keFNSZ3IMOLz+Th79iyjRo0iEAhw5coV9u/fz/r169m8eTO3b98Oqf/XX38BwctUCQkJEY973333AXD9+vWw8UZ5JOPHj/9X4o36BuN4Rnk4LpeL5OTksPHDnbU/o/WB0b9dXV3m5UrQ+IuMNLr7VWQYGDduHCUlJSxatIiMjAzi4+Pp7e3ll19+YefOnRw7dozGxkZcLhevvPKKGWfMMXK5XFGPb5RbEwLrdqx4I2H4r+KjJSTG8Ts7O/vFD3fW3ydaH1j7t7u727wcqvEXGVl0pk5kGMjLy6O0tJQHHnjAvGvS6XSSk5PDO++8w6OPPgrAnj17wt4BKSIi9qekTmSYi4uL4+WXXwbA7/dz6NAhs8ztdgOYi85GYpQbZ3gMxnaseGMy/n8Vb5RHEqn9w53194nWB9b+tcZo/EVGFiV1IjYwefJkc/0v67IQxlwmj8cT9YvRmIs0bty4kP1GfKy5Sn/++ee/Et937pVxPKM8HJ/PZz6dINbcreHG2p/R+sDo36SkpJDERuMvMrIoqROxMeudgdY7IfuKdJehsf3333/T3t4eNra3t5eLFy9Gjb9w4UK/hWkN1mNnZWWFbX+0uxoHeofocDTQOzuNPojUf9Y60eI1/iLDm5I6ERu4fPmy+VzQiRMnmvtzcnLMSeZHjhwJG9va2sqFCxcAyM3NDSmzbv/4449h40+fPm1OUO8bP3/+fCA44f3MmTNh463HjRR/4cIFc722vozfKyEhIeJaaMNVRkYG999/PxC5/71er7lAcN/+0/iLjCxK6kSGOOOh6dHKP/jgAyA4v+6RRx4xy9xuN4sWLQKCN1EYl6msamtrgeB8pIULF4aUTZo0yVzYtq6urt+SKQCffvopABMmTGDOnDkhZXPnzjUXjTXqWd2+fZu6ujog+Citvk9MeOyxx0hMTCQQCISN93g81NfXA7Bo0SJzDpldOBwOli5dCgSfoXrlypV+db788ku8Xi9Op5Mnn3wypEzjLzKyKKkTGeJaW1t54YUXqK+vp6WlxUzy/H4/TU1NvPbaa+bjnQoLC82FYA2lpaW43W6uX7/Oxo0bzbtjvV4vNTU15pfi2rVrwz5G6sUXX8TpdHL+/HkqKirM+U03btxg27Zt5pmWdevW9Vtg1ul0sm7dOgB++OEHtm3bxo0bN4DgPKmKigp+/fXXkHpWKSkprF27FoD6+npqamrMZTouXbrE66+/zvXr13G73eYzUIcqj8dDe3u7+eP3+4HgTQDW/X2X5SguLiYtLQ2fz0d5eTnNzc0A3Lp1iz179vDRRx8BUFBQYD7X1UrjLzJyOAKxTgOIyKC6cuUKq1evNrfj4+Nxu914vV56enrM/fn5+ZSVlYV9Pufhw4fZtGmTeZdgcnIyXq/XnOeUn59PeXk5DocjbBsaGhrYunWrWT85OZmuri4zwSwpKYn6pVpdXU1NTQ0QPPuUlJRknjVyOp1s2LCBFStWhI0NBAJs2bKFxsZGs77b7TbjXS4XlZWVLFiwIOLnDwWrVq0yn4MazbJly3jjjTdC9jU3N1NWVmZeYk9MTKSnp8c8c5abm0tVVZW53E1fGn+RkUFJncgQd/PmTRoaGmhqauL8+fO0t7fj8XiIj49n/PjxzJo1i+XLl8ecT3T58mVqa2s5evQobW1tuN1uHnzwQQoLC1m8eHHMdjQ3N1NXV8fJkydpb28nJSWFmTNnUlRUxLx582LG//TTT3zxxRc0NTXh8XgYO3Ysc+bMYfXq1UyfPj1m/HfffcfevXs5d+4cXq+XtLQ0cnNzWbNmDZMnT44ZP9j+l6QOoK2tjdraWg4dOsS1a9eIj49n6tSpLFu2jPz8fOLiol940fiL2J+SOhEREREb0Jw6ERERERtQUiciIiJiA0rqRERERGxASZ2IiIiIDSipExEREbEBJXUiIiIiNqCkTkRERMQGlNSJiIiI2ICSOhEREREbUFInIiIiYgNK6kRERERsQEmdiIiIiA0oqRMRERGxASV1IiIiIjagpE5ERETEBpTUiYiIiNiAkjoRERERG1BSJyIiImID/wdRBzfxdvdYzAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "psichi_slice = psr.slice[{'Ei':4, 'Phi':4}].project('PsiChi')\n", + "\n", + "ax,plot = psichi_slice.plot(ax_kw = {'coord':'G'})\n", + "\n", + "ax.scatter([coord.l.deg], [coord.b.deg], transform = ax.get_transform('world'), marker = 'x', color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "f8d9aa2e-345f-4b89-a298-06a2071ee1ea", + "metadata": {}, + "source": [ + "And here in ICRC (RA/Dec), the default coordinates for plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "ff08be37-22eb-422a-810f-a1f9f2f47abf", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAC2iUlEQVR4nOydd5wcxZn3f9U9cYN2tbvKAQWERBDIWAKMyNEmGBxwwNwd5+PM+ZwNZ+P0Gny2gbPx2a/PPmP7xZyNMbbBJmPCkZMAEySBUDBKSLvSavPu5O56/+jp2Z6enpnu6uows/X9fEbaCV3V0/E7T1U9RSilFAKBQCAQCASChkYKegUEAoFAIBAIBO4RUicQCAQCgUDQBAipEwgEAoFAIGgChNQJBAKBQCAQNAFC6gQCgUAgEAiaACF1AoFAIBAIBE2AkDqBQCAQCASCJkBInUAgEAgEAkETIKROIBAIBAKBoAkQUicQCAQCgUDQBAipEwgEAoFAIGgChNQJBAKBQCAQNAGRoFdAIBBMTSilyOVySKVSyGQyyOVyyOVyyGazpb+tXsvn81AUpfRQVbXsf/NrAEAIASEEkiSVnut/S5JUel+WZUSjUUQiEUSj0dIjEokgFouVXtefJxIJJBIJJJPJsv8jEXFpFQgE/iOuPAKBgIl8Po+xsTGMjo6W/jf+PTExgVQqVfOhKErQX8MTotFomfAlk0m0traira2t9Ghvby97bnx0dHQgkUgE/TUEAkGDQSilNOiVEAgEwZPP5zE0NIShoSEMDg5icHCw9Lf+ulHe0uk0t7pjsRhyWRWgEggkgEoAJJDi/xXPQbQHJQAAoj8vvQ7Dcx1a/jcxv06L/6oAoQBU7TUlDxAKCqq9TrTXKVG1v4mClmkxZDIZrpIaj8fR2dlZ9ujo6Kh4raurC93d3YjH49zqFggEjYmQOoGgyVEUBUNDQ+jv7y899u/fj/7+fhw4cKAkbWNjY47LJoSAKjIIjYDQCKBGQGi0+LcMQmWA6v9HtP+hfR5yFNCfl8lXCFEBksnW/AgFhSaLSkn4KFE08ZMUUKKAkkLx78n/qaQAxf87ZyQxNjaGQqHgeBXb29vR09OD7u5u9PT0lP1t/D8ajTJuBIFAEHaE1AkEDU46nUZfXx96e3uxd+9e9PX1lQncgQMH7EeQKAGhUUCNgqgxEDWqSZrhb9AIiFqUOBqxL2SEgEZCMjZLBUg253gxkssbnhDQiMxxpTSoLoZSAVTKA8X/aen/fFEKtdeiLVrfRFvrTwh6enowa9YszJ492/L/ZDLJ/TsJBAJ/EFInEIScQqGA/fv3o7e3tyRu+t+9vb0YGhqqW4YkSaD5CIgaLwqa8f8oCNWkzZGk2YVwKo8QUNlBWYziVnc1jGJnawFv5E9nUgJzoHJe+19/yNprMxe2YWBgAPl8/XXv6OjArFmzMGfOHMybNw/z58/HvHnzMG/ePPT09JQGmAgEgvAhpE4gCAGUUgwNDWH37t1lj127dmHv3r31m+NUGURNQFISRVGLVwqc302cvGSuTh1UJp4JXNVqnYpd1YK8Fb4yVBWQClDlLKicBZVzk39HcmiZLmF8fLxmEbFYrEL05s+fj/nz52PmzJkgfuxzgUBQFSF1AoGPFAoF7NmzB9u3b8eOHTvKBG5iYqLqcrFYDPmUBKImIakJECVukLiE1hQaFoK8sVMKFPwbUctN7ioK9kf2iFp++aekMCl7kSxUOQMayWDOwe3o7e2t2YyfTCZx0EEH4aCDDsKiRYtKf8+dOxey7JO4CgRTHCF1AoEHqKqKvr4+vPXWW9ixY0fp/507d1ZtAiOEAPkYpEICREmC0BZIalL7W42HfzBBmKI0PsqdZ2JnWZkme0SlQIrf6GO9bCSrp1GhoKByFmokAypnoEayoJEM5h0yDXv27KkqfLFYDPPnzy+J3pIlS7B06VLMnTtXNOUKBJwRUicQuCSVSmHbtm3YunUrtm7dWhK4TCZjvYAqQSokIRWSIPkEJCUJoraAKAktnYcb/GrKMxMmoTPjg+D5KXbUYhSup82eVqNlo+WRYQpVi+xF0qUHjaYRaS1UHcSRTCaxZMkSHHzwwTj44IOxdOlSLFmyBC0tLV58C4FgSiCkTiBwwPDwMLZs2VISuC1btmDPnj2wPI0ogZRPghSSkPLJosi1AEh6F3XzW+rCLHNmPJY7P8TOSuiq4Zno2U2JEo0YonuToqdGUoi0VZe9efPmYenSpVi2bBkOOeQQrFixAtOnT+f4BQSC5kVInUBQhdHRUWzatAmbNm3Cm2++ia1bt6K/v9/ys0SJQsq1Qsq3aI+C1mwKL/sSBRWVAxpL5ow0uNg5kTozgUueARqVQSNpqNEU1EgKajSF6fOjOHDggOXnZ82aheXLl2PFihVYsWIFli9fjvb2drdrLhA0HULqBAIAuVwO27Ztw6ZNm/DGG29g06ZNePvttys+RwgBcvFJecu3Qs63aOlACAGVPeojFKTAmWlUoTNSRe5I3nnS34py64mdJDHvTzdSZyZMkqdD47QkeUp0AvNWtGL37t2WkfB58+aVBO+www7D8uXLxawagimPkDrBlGTfvn1Yv3493njjDbzxxhvYtm2b5QAGUohDyrVBzrVCymuROG1WBHgncWERuGaQNysoBcnkyp5b/u0G1ohdHeHjKXVmPJE8DrNXUKJAbclCjU5AiY1j1tIE9u7dW/G5SCSCQw45BEcccUTp0dPT47p+gaCREFInaHpUVcWOHTuwfv360mP//v2VH1QikPOtkHJtkHKtkHNtk6lCmk3gwiBsilr5mhfb2CxxVqgW6+IWnk2xRdnzUurMhFXyAIBKBaixFJRkGmp0Ah3zCAYHBys+N3v27JLgrVy5EosXL0YkEqL0PwIBZ4TUCZqOXC6HzZs3Y/369diwYQM2bNhQMa+pLMug6cRkFC7XpuV+Mw5g8ELkxEAGa5mzws22tyNyZsIudkWoOaLsUw447pLHcQ5aCgoqZaAmJqAk01i0ahreeustqKZ92tLSgiOPPBLveMc7sGrVKixbtkxInqCpEFInaHgKhQK2bNmCl19+GX/961+xYcOGypF1qlQUuDbIuXZN4qjpZtjoEhdGgTNiV+assLNfWETOCt5yx1nsKqTOjA+SRwgBdbA/Sb39x1Hw9P1HiQI1PgElkYKaTCHRXahI8C0kT9BsCKkTNByUUmzfvr0kca+99lrl9EZKBHKuHXKuDVK2XesLZ84B1+gSZ6SZhc6McZ/xEjkzPMXOb6mzwo3oqRTI19jGRAI4iRCRJX6CZ9qHFBRqLA01OQElOY7kjELFdaOlpQUrV67E0UcfjdWrV2Pp0qUiQbKgoRBSJ2gI9u/fjxdeeAEvv/wyXn755cr+M6oMOTut+GgHKVjkgiMEVCIgHAWjbConIXSV8JQ5I5S6H6laj2YTOyN2JK+ezFnBUfBKSAQkFmNfvsp+LEleYlyTvJlKheR1dXVh9erVWLNmDVavXo3u7m729RAIfEBInSCU5PN5rF+/HuvWrcO6deuwffv28g+oUjEKp4mclG+dlDjzIc1RemzNxymaXL2ROT9EzkxIxc611JkxSx6L0JnxQvB0WESvzr4sl7wxxLrzSKfLp2I7+OCDsWbNGqxZswYrV64UKVQEoUNInSA07Nu3D88//zzWrVuHv/71r2UXVEmSgHSLFonLTIOUa609pRYn2WGeVN0PsZsqQheEzBmZKmKnQyT3QletXC/7q9kVPZv7k0ItDrwYw5JjO7F58+ay9+PxOFatWoV3vetdOP744zF79myWtRYIuCKkThAYiqJgw4YNeOaZZ/D8889j586dZe8TJQI501F6lNKLWOF3NM4OXopdGIWu2WTOiFkEsuzSY3XJJQz9tjyTOkoBfbtLHh1nXgueTi3RcyjrVMpDSY5DSY6ic7FUMfvFkiVLsHbtWhx//PFYsWIFZJ9GJQsERoTUCXwlk8ngxRdfxNNPP41nn30WIyMjpfdK0biixGmDG2rcVIKOxtWCEG9yrull+4Gi2v8OPIUuLDJnzgnH8VLp9LJbTfq4i51R6Mw0uuAB1pLHEImloKDRDAotozj0lB5s3LixLH1KZ2dnKYK3Zs0atLS0uF1zgcAWQuoEnjM0NIRnn30WTz/9NF588cXydCOqjEi6E3KmE3JmWu1oHBBukTPfeL24CfISOkq1flMuyyCmqbaoRNhHWgYpc3aT+nK6XHK57KoUoPyjo1Wlzownx7ePggeUS56LZnYqFaAkR1FoGUFydvmo2mg0iqOPPhonn3wyTjjhBHR2drpcaYGgOkLqBJ6wb98+PP7443jqqaewYcOGspsYKcQgp6cjkumElG2vHY0DuIiMLxJX9l5IhY6HzBXLMQtd1Y/aET0/hY5SV82noRO7gmm7uUzabFvqjDSD4OnVxtylVKGgUBPjKLSMYNZhMezZs6f0niRJOOqoo3DKKafgxBNPFNOYCbgjpE7Ajf7+fjz++ON47LHHsHHjxrL3pFwL5HQn5Mx0SHmLdCNm3AqMV9N62e37FEapC0DoLBc3Sp5fMudW5KzK41KMy3KspM4Ku+cCq9QZ4X3sByR3ehSUuBjhqjXTZlFIDmHxu6Zhy5YtpfcIITjiiCNw8skn4+STT8asWbNcr7JAIKRO4IoDBw7giSeewGOPPVYWkSOEgGRaEUl1Qc50QlJsXBjDKHKsiUdZb2yEgJrqJJS6lwiPmluZUVWtyZMQIOFRWghKQSfKU1IQnhHbRhM7I9XOEx5SZ4TlPKhznFJKtSnL/EgnYtG8zSx5igI1koXSNoplJ3fh9ddfL3t7xYoVOOOMM3DaaaeJCJ6AGSF1AseMjIzgsccew6OPPorXXnut7KYkZdsQSXdBTk2HpNrMI8Uqc0FH46ou7+D7WEhc2dvNLHRGeMqdhcyVVRUysQtE6szo5xFvqTNS7bxgPDbN281T0avRd9GR5CmT55Aq56C0jeLQM2Zg/fr1ZT+Ijz76aJxxxhk4+eST0dbWxrzagqmHkDqBLXK5HJ577jk89NBDeO6551Aw3ESkbKsmcunp9iJygOuonC2Zs1sH72mAqt286ghcxcebTeisZM6MG7mrI3Nl1Qixq47CSd59ota24y56Ngam1JU8i+2rynkobSM45NSusq4rsVgMxx13HM444wy8613vEsmOBXURUieoCqUUGzduxEMPPYRHH30UY2NjpfekXIvWtJruCpfI2a3Xq/kcjULnUOKMTEmhM2JX7hyIXEUVzSR2PKWOqqDFFDXEo/Q51Cg2ksSlHjvbj5vk2Rx1XFXwaoizGsmh0D6Mee9MYMeOHaXXW1tbcfLJJ+Pd7343jjrqKM/2jaCxEVInqGDv3r148MEH8dBDD5WN3CKFKCLpbkQmuiEVquRdMouERNgFqjhXKxeIi/Wwi0RAOSQcDYXQBSVzZqrJnQuZKyuel9gFLXUAV7GjNcpxKxO0ViSQg+A52Y6uJM9hOpkKwasTEdWmLctAaR9G5yHaQDSdefPm4d3vfjfe/e53iwEWgjKE1AkAANlsFk8++STuvfdevPLKK5NvqBIi6emIpHrK04/UkoawiJzVOvD8dSsR0GhRCjilCxNCVwVd7jjJXFnRzSJ2PkmdEacCVlPozPgseEDx+0gEiDqYV5YxV2BJ8mxsEy1NygQK7cOIzckglUppZRCCNWvW4JxzzsEJJ5yAmNP5cAVNh5C6Kc727dtxzz334KGHHsLo6CgA7UIhpdsRSXVDTk8HUSV7khAGmatXv1upM4qcEQ5SJ4SuNqVLFY+0LCaYxI5S0EyG+7pYfj/JZkSJk9jZlTojdgTMkdTpBCV3gH3Bc5kEmjhI2UKJikLbCA47uxuvvvpq6fVp06bhzDPPxDnnnINly5a5Wh9B4yKkbgqSTqfx+OOP45577inrlEsKMUQmehAZ64ak2PzF1wgiZ6rTWdlVJM5IWKJ0utBRypwdn7gVJg9kDrC4Kfstdl4JnBVOv5tR+HhF6wz96liwkjAmoTPjQvCYxa6s/jqS50buiHYdIw76DquRLArThtC5nJY1z65YsQIXXnghTjvtNCQSCfZ1EjQcQuqmENu3b8ef//xnPPzww5iYmAAAbdLpsXZExnq0abrqJQXWYZW5IETOVH/tcm1InBE/hY4Q0EiV761QEBcyRVRqb9RjrT6DXkbnqtbJ9/JFIrK/AlcNl9+rlB7DRdJelmidFboccZE6I4yCx0XuSutQRfJY5Y6YclTaFDwKCqVlHGsvWYynnnoK+eKcwG1tbTjnnHNwwQUXYMGCBWzrJGgohNQ1OYqi4JlnnsEdd9xR1leO5GOIjM9AZLwbkupgWpwgZY7XQAfzRdqpyBnxotm1lrxZ4ZfQVUOWuQudo8sSl1ky1Ml9EIaUHpykzoyjZj5eo2l1FIVvn1adMMgdUCl4HKJ2ZS/ZFTypgPy0QfSsJOjt7S29vnr1alx44YU4/vjjEQlihg6BLwipa1JGRkZw33334c4770RfXx8Abd5BMjYN0fEZkDI25lw1EpTM8R6xaugrwyxyOi6FjkZlKG0xREZdRIWCFjpgsskX0P53WR7TJYlFgowiZ6aJxc5MNdHzROrKKg6H4HGXu9K6FCWPU9Su7C0bgqdF78bwzg/OxXPPPVf6njNmzMB73/tevPe978X06dPZ1k0QWoTUNRnbtm3DHXfcgYcffhi5XHGuS0VGdHwGImMz7PeVA5pH5HRkyb3IGXFwraZxGfmO8r4tUl5tbKFTae0mY4eCxyWlR91KaoicmQYXO9btWZI8l/3qKqi1PUMgeI5ToThaF8I2f20NsSt9xIbgqZEcCh2DaF2cw/DwMAAtsfFZZ52Fiy66CIsXL3a+boJQIqSuCaCU4vnnn8fvfve7stFQUjaJyNhMRFJdINSBKAUhc16InJ6ewPDcUbNmLerc66wkzkjTC50RG3LH9TJkJUJOZM5I0GLnU7TOc5xsR7eCV+c712uC9lzuAGeCZ0PsSh+tI3iUUChtI1hySis2bdpUev3YY4/Fhz70IaxevVokNW5whNQ1MPl8Ho888ghuu+02bN++HUBx4MNoO6JjsyBlW0PRxFptRCV1M3K2xrqYRa6sTh5SZyF09STOjCupayShM1JF7jy5BKmUXeTMNLDYud62xQ73ALRzlTW5Nus2dCIYbiOTZUX5IHY6dgTPgdiVFrESPH3QCijUeArHXDwXTz31VOn7Ll68GB/+8IdxxhlniJx3DYqQugZkYmIC99xzD/74xz9ODmNXJUTGejSZc9LECtiXOWOHfhczNFgKoBu5qyNyZXVzkjqnEmdkSgqdGUr599ky0yxzoQYdrTOKnY5TwXO7DeuJE+fbmC56nsldrRaNapLHIHalRY2CZ1pPNZJFvuMAonMmkE5rib27urrw/ve/H+973/vQ3t7OXK/Af4TUNRAHDhzA7bffjrvvvhvj4+MAAFKIIDI6E9HxGSDUYZ8Ns8zZTKvBVebK1sdhvjmbIleq34XQ0XgUmZkJQAXkLHs/oyCbXUMjdIC2vygFtRIGngix80bqzNiRPF7b0Hyu+3ELcyCwoZe7KutHJQX5aQPoXFEoBQtaW1vxvve9DxdddJEYVNEgCKlrAPbt24ff/va3uO+++0r5h0gujujoLEQmukHg8CRn6ffGKHOO+9jVqoNB5MrWxYHUqYkosjMsInEupE4Inb4ylTdlT+VOiJ07sXO6b6oJHu/tV/xh4DmWSYhrX0u4iZ2OWfBciF2piCrJtikolLZhzD1OLnXricViOP/88/GRj3xEzDUbcoTUhZje3l7ccssteOCBB1Ao3pikdAuio7MhZzqd9ZfTcSpZfsmcEcnUVOBC5MrWqY7UVRW50gcCjNI1g9DZaELzTO7CIHYqdZ6AV5Imm87CHq2zwih4XkixPnOKVyPm7VxvatTNXe6AScHjIHZAHblrGcXiUxN48803AWh9ts8++2xccsklmD9/Ppf6BXwRUhdC9uzZg9/85jd48MEHoRQvhFK6DbHBWZDzHWxi0wgypyPL3EROx0ro6kpc2YeF0LnC7j5sZrFjkToHdZM6Hdt9jdZVg6d8VZsKj2cdTNda06wQXoidjp15aauh588zyKGV4FFQqMlxHHpuRymBvS53f//3f4+5c+eyr4OAO0LqQkRvby9uvvlmPPTQQ5Myl2pDbGiKyJxet0S4563Spc6RyBkJqtlVF7pYFPnuVkeLkoKKyOBE5RuqCpKzcZP2W+iMeCV3PMTO72idy7p12QuF1BlxK1/15jd2Wz6Pa5BhHRwlLXaCLmUsefDMiZH1+WerRO+U+ASO+kA31q1bB0CTu3POOQd///d/L5plQ4KQuhAwMDCAW265BXfddVepmVWeaEd0aBbkwrTJviNe/uILSuaq1etgUut6qC0xZGYlXRTgbZQuM7sVe0+snKotNkwwe13aUJD9OkleRWTAQujqoQtfkEKnE1ax09OluFjeb7EDyqWuXlTPEq8iqCzyVU/oeNTBO1+b09kunFxbjU2xTuXO6liuE71T4hM44sJOvPTSSwCAaDSK8847D5dccglmzJjhrH4BV4TUBcjY2Bh+97vf4fbbb0emOIG4lGpDbHA25GyrdiEiDqNWPsicZyJnxKXUqfEo8l0JUJlAjbpcX05RusycNuw9odqItsqXYsMEs19IV75hA5KrEqWzA6WTkTxKAdZZBXjdFL2QuyDFLiCpA2pH6+qKntcjlQH71yKnUue0fI8T8BK7o2lZxU7HruDVOpZrRO+UxDgOPW9aqVk2FovhAx/4AC655BKRCiUghNQFQCaTwe23345bb721lJpEyrRoMpdun5Q5wDuh81vmnNbHIHW6yOlQAlCZgEZcrDej0I0siWHi7HGom9vK37C5KrERU5TOAcxROqBc6Kq8b0vyOAqdHjHkntfOTXlNEK2rR4Xk+SF1RmpdL1ilzm75Ps+qUFPyWJtjzdQSPDvHch25O+Q9rVi/fj0AoL29HZdccgne//73Ix6P1y9bwA0hdT6iqioefPBB/PKXvyzlASLZhCZzqWkgkixkTsem1FmJXOlvt0IH2JK6kSUxJD64r+w1iVAMjLeg8OY0x1XGhglmvZgBYTg1PRU6i89XCJ4HMlf2Mk+xE9E625QEz2+xA6yvHzykrlb5AU2VxU3uao2MrSZ3do/lKk2z2mjZMcw9HqVUKDNnzsQ//dM/4ayzztJmOxJ4jpA6n3j55Zfxk5/8BFu3bgUAkHxMk7nxYmoSr5ta/ZQ5FwmKS9SQuloiZ8SrKN3I0hgSH5iUOIlQSKT8NDow3orcm9NAHJ5droSOV5Mrw7JQVM+FrvS2EDsNH6J1FagUkEhw84Pq1xWeUmcuPyRzn1oKHi+x0zELntNj2SJ6R0FRaB9Cx+GZUvBiyZIl+Nd//Vccc8wxzsoXOEZIncfs3LkT//3f/41nn31We0GVEB2ahehIDwiV2JpawyhzPETOiEnq7IqcEVdSZxC64YNjSL6/tsQZYRU6gL0fXWBCp6Pve0qBggtRsTOrCdyJnVFIKKWN2wzrc7QOQGWuvAAET193z+sNUWSpTPB4ix1QLncsx7OV3BEV+Y4DiB80VupmdPzxx+NTn/oUFixY4LwOgS2E1HnE2NgYbrrpJtx5551QFAWyLIMMdiI2OBtEjXjfb84PmeMtckZkiUnkSp91IXTDS6KY/t49yCvaBaqexJnpH2v1tdk1NEJnKteR3NmUubJFHMpYNQkIVOwaNVpnhU+CZ153nnWWjRA2lxsSySPmPJ51F3BwjY5E3P1IsZI7qYBzv3QY/vSnP0FRFEQiEVx00UX4+7//e7S2OkvTJKiPkDrO6P3mfvazn2FoaAgAIE9MQ2xgDqR8UVDC1tTqtCmDEFDZ4YTeNqHJGHLdk+lHnIhcWTkOpW54SRTdF7xdeq6obLI6pZpdgfrHmR25YxC60qI2ZMzOTb9hxS5MUmfGI8mrOYLXzYwzdbZJGCWPRG2ObmWZfcJNBgILuVOjGRx5UWcpx9306dPxz//8z3jPe94j+ttxREgdRzZv3owf/vCHeP311wEAJBdH/MA8bUQr4F9Tq6rWv5ES4vykNYgolQjfi5pEQGUZNBFBrtPdaCk7Qje8NIru975d9lqEaDdlFaQUpXPClGt2tfvDoZbYuRC6UhFVZMzJDX6qSR3AsQnWDhwFz856O62LafBIiCTPltyxTivGWe4KLaOYeUwBu3fvBgCsWLECV1xxBZYvX85ej6CEkDoOjI6O4he/+AXuvvtu7eKgSogNzkJkpAdEzxjLOzrnJjmsU6Grst6uxa4ocmVleih1QwdH0XP+pMjpEmeEVeiAKdbsytLsbpY7DkJXKsogZKzyMNXEzpdonRkOcud0vevVx+sWWFZPWAXPzXyxLHJnqk+XOwoVhY4BRA8awcTEBCRJwoUXXojLLrsMbW1tViUJbCKkzgWUUjzyyCP48Y9/jOHhYQCAPNaJ2MBcSEpxhgC30Tlemf31+jnInA6T1FmIXFmZnKXOjsgZYZW6/rFW5Dc3SLOrV/3oHNSPfIHfca0XWyjwEQZWsasldXUkKKgpvHyN1pUqndxGhGFqK9Z1rtmnkiOW9QQgeVXlzo3Y6di9j1SpS5c7Vc5j7WVz8cgjjwAAurq68JnPfAannXZacCOsGxwhdYz09vbiBz/4Qal/AMnFEe+fDzlj+JXBEp3zYndwljkjtsSujsiVledS6qhMMLgi5kjkdIKK0vna7Bq00BXXwVYXASfoU+m5GXQATtG6ICJnjGIXtNQZsSt4PG5ZFSOgOVJXRsIgeDzEDrB3X6lRly53SnIMPcfk8Pbb2nV79erV+OIXv4j58+dzWc2phJA6hxQKBdx+++246aabtKm9KEF0cBaiwzMqm1qB6nKkqpMXf8K5f5qOhzKnU1PqHMgcoAldviPONDhiZEkM2XePIior6GpN2RY5I35G6fLzcrjq2AfwnxtPd+zxuf4WHHSP/e8nZxXE9o5qT4JodjVibHJ1m/5Ex3jMNrDY+S11gTS/AraaqGsJXphvWY6jSz4LXpnc8RI7oPZ9xkY9JCJrKVA694PMHkIul0M8Hsdll12GD37wg2IghQOE1Dlg27ZtuP7667F582YAgJRuRbx//uSoVqB6dM4ocToNLHM6FVLnUOTKynIYpdNFTicZy6MrmWKq2wuhy8/P4o8n/cxyuVczC/Gfm5wLXWp/Kw66h4LBWTW56xubfEGlINmc/QJ4Cp35dRa5q3bMBi12DRSt0/oAF+t0mtLIY7EDrOWO6y3L+B3czmkNl+lVfBSXktzxFDvA+r7joA4SkaFGsjjs/a3461//CgA47LDDcNVVV2HRokWcVrK5cd6hYQpSKBTw29/+FjfffDMURQEUGbGBOYiMdWmzQegYhc5K4oyEQehcyFwZLkTOKSNLY8ierYtcBpLkUWZ5BxAK5Bdk8ccTywVOBkW0in3JRGUf58LwlaWciti+cdOLBDRpkOhakue2D12tL0sIEJGdiV2t41Y/t1yKHTMSARBg/axYSRoH0XFD2QAYhv53NTF/X1a55YXxePH4ekrzhu1qnuPXDfq0gcZ7EFVtix0tKCCFCDb9IY9Y+3xEFw/hjTfewD/90z/h0ksvxUc/+lFEeB8HTYaI1NVhx44d+O53v4s333wTACCPT0PswPzJgRDA5A3PzkW8iWSOSqSURoXazZdUq7wqkbqRpTFkztJETqvO2mriEYUpUuc0SrewfRD/OusxSERFDCpykCCDIkHs3cT/mlmA7206C6rqbB+k+otROoeuIOVUxPvGnPXXNAqeVxE6q8/ZScXjpF43ETNFYe/j2khNsA7yzpXhQ6SuKjyuofXW36HceZYE2SeJ4Sp3Ovo9iTEiSOMKVn20E8899xwAYNmyZfjqV7+KpUuX8lrDpkNIXRUURcEf//hH/PKXv0QulwMUWcs5V5yrleqROCKBOJEp3kLns8yVRM4IB6kz96ezK3I6rEIH1Jc6XeKMRItmZVfkjLyYOQjfe/1MR8uk9rfioHudCx1QlLre0fofNKNSkLzLuVGdpi2pJXYsx67DJlRqJYJC7PjjVup03FxPnXxnG4LndR6+hpY7N+sekaC0DSO+bBijo6OIRqP4xCc+gYsuugiSVzMaNTBC6izo7e3Fd77zHaxfvx4AIE+0I7pvHqSc4QBqJJnTP++m31ytZTlJXa4zXpI5OyJnhGeUrpbEGWEROuYo3b5WLLrb+anKFKXTcSt1rHnorMSO9YZpI1pnKXLmMliYClJnlDMn0RheUmfE6TWWMYlyNXxNruyD4HGXO6oCURdlxlWsurizNI/60Ucfja9+9auYOXMmpxVsDoTUmfjf//1f3HDDDdoExKqE2L5ZkEc6y/vONZLQeSlzOi6lrtCZQN/xLVCPHXEsc4D7KN2clhFbEmfGqdQxCx1jlK4hhc64vC52bm+WVaStrsyZy2ChAcSOm9QZsSN4XogdYP966zY6aRI8HlLHNLNFowieokxuM0a5o6BQpo9AWngAmUwGbW1tuOKKK3D66ae7X78mQfQ4LJJOp/GjH/0I999/PwBASiUR650HKW86+OwKXYPKnG2Rc0mhM4HxhZOjhqkEyLJ/gx7mto7gwz0voFPSZNCOxBlhidKpkBwLHQCAgqnZVVu2AYUOmBw8oXA4JkwDJxzJ3BSAEAIqgU1yiGQtZ6wRPB7YGXDAo7k56IEVRfTBJF7KHc1p/WtdyZ1x8FK+2F/XodwREESGOkEzbTj0bIJNmzbhmmuuwXPPPYcvfvGLaGlpYV+/JkFE6gBs2bIF3/rWt7Br1y4QQiD3dyN6YEZ4onNhlzkHkTqjzOn958bnS8CxI8wjWe1E6ua3DuOC7pdLz2WiIkHy6JScJ/4FmjhKFwahA/gmJi6VWXAndI0SrQuyCbYexDQq0i/M12OP+hDavkdYwG26sjBH7szngYvIHQXFh69dg1//+tdQVRULFizAt771rSk/iGJKSx2lFH/605/w05/+FPl8HiQfQax3HuRUa/kHmzQ6xy0qV0fqKqJypirHF0iQjhtiqrqW0BlFTiYqZEwe6lFSQLuUKXvNLmEfHBFYs2uYhQ7QpM5NUmGAeZtOySbYMKJfn30aGOJE8njeiktNwR6nRmGSO6tzgUXuqAoUClDac5i2egL9/f2IxWL43Oc+h/POO2/KTjM2ZZtf0+k0vve975XmnJPH2hHrnQOiVk6nEojQOZU5QMuNZwdJAo14e7LXEzmvqCVyZliEjoW/Zhbghk1nOF+wEZtd3eJRhE6HRCLuxc4pDZC3zlUTLCPUUBfxqwnTuA98aBamhu4DbqJ4zOjf1yO549IsC0wed/mcM7FTKeSRKMYfb8dx/7QUzz//PL73ve/hlVdewZVXXjklm2OnpNTt2rUL3/jGN7B9+3aAAtH9sxAZMiUSBsIhdJTW71dESOD9OnSsmle9Qo/SORE5YDJKx4JffelS+1tx0H0uRrs6xa3Q2f1BUQ07xzkLvAVOn2PWJY6iMm63rddU61dXdzFSErtABE9fZ5/6/FHT8W28t3gSpTMSJrmrlRhcpUz97Ygi47WfH0B09kyocwbwyCOPYPPmzfjOd74z5WaimHLNr48//jiuu+46pFIprbl173zIaZPN+y1z+gTnOsa5Y+vtHqepTQx1cInWSRLyM9qYo3Ks/ekWdg7jk/Mfg0IlWyJnJEoK4e9Lx5DCJNDRrm7Fg3eEro7MuYrWOUziXDZAgwXWbWtVX42ygmiCpTXq803uyiv1v06A249yR02OHjbN1pU7O1HrWk2yVAWqzGGttKQx7V1Z9Pf3I5lM4utf/zpOPPHE+vU1CVNG6hRFwc9//nP87ne/AwBIqRbE98wHUXxsbjXLWzWcJFQMUuoMQscalXPSn27R9CFcPu9xAFrTqQQVKpx/d1apc9OXbnH3IG5eerutZZ5Iz8GVz1wE2BTByEAU8x8tVM7tapcpJnQ6nohdnf5zvoqd3boMZTOLnQdSZ8R3wfNb7ozbz4VsMfUjC0ru7HZHkEil2NWQOgCgcgErLunEK6+8AgC49NJLcemll06JZMVTQupSqRS+9a1vlZIWRga6Ee2fydbcalfm7AqcFWGWOknSUk0UyXe1YGxh5dRedrEjdbrMaXOpajdihUrMQufVAIkdhen404HVpedLW/rxqa5XkacqZBDEib3eDo+kO/H5Zz5qe70oBSL7YjjoL1kQ4/RCeRWRoTr5+6ao0AGcpM7hIIhQSp2pHmr8brbr8lbqdJpS7mptOwfC5XpggEdyV1XsnPQxNUft6kgdoI2OPeeao3DHHXcAANauXYuvf/3raG1trblco9P0Utfb24urrrqq2H+OILZ3LiJjHeUfchudUxRQ881JIiAsvwqcLuOH1JlEjhouHoXpSU+kzhyV02VOx43UuY3SmeXNiGr4obC0pR9f7FrvqJ7HMtPw2ec+Cqo4+25SfwyL7suWvUZMp7al5LmRujAJHaOgMYudorqbV9YpPJtg69RTdf3qCRiD2DmVOiNNI3h2tpsN4eI22tNPuXN6Dun7PBKpK3U6hemjwNIh5HI5LFy4ENdffz3mzZvnrN4Goqmlbv369fj617+O4eFhoBBB/O0FkDPJ8g+xCJ2VxJkJu9QV66opdgaZo1UuGG6kztyfbsn0QfzzvCcAWIucERapY43S7cj34P7BI8teU81RXhOLkgP4fPdfEYX9C6QboTvogRxInRtkRRRvYCK4KB3PgREuIm6OpY4xQldeRIijdbWkruKzps/5LHU6DS93TrebhXR5kr7DD7ljHREuEUeRZCWZwbTjM+jv70dHRweuvfZaHHHEEWx1h5ymHf360EMP4brrrkOhUADJJBB/ewGkQrT8Q3abWwFN4rzKn8WKG6GrRo2oHHeKU4JZNa/WgjVKB9RPY3L36Dtwy2OTnWppZx6nrthcV+Iq6iGqI6EDtO/lWOgORHHQX+oLHVC+LwkAUApaPH6IU8EKi9C5/E1qK8WJVR0NkKaECUkCsSt2RplilDPjCFhWfB85G+RsGYC9GTNcQikt/Vjincy4bKRsrZGwtcrITLZK2BlxK6cTGH8iguXv68LmzZvx+c9/Hl/72tdw6qmnOq477DSd1FFKceutt+LGG28EAMij7Yj1zgOhppOvhtBRRZ389S8RQPI2p1sosBGV48nwIRI+eMFTeFfbVtsy5xVlIqcCRJn8/qpCHAvdouQAPtP1CuAwSveF5z/sqB4AACUgCuuIxcnlqOFcqCt4PFJs8EgNoi/PeGOwXT5nCCFcU1jUqcyz7xFGdMFrmLQobhM368c9R/EyH5teTUNWJncuzl+ay9kSO1KIYNftBaz9l7V45pln8M1vfhN79+7FxRdf3FSJiptK6hRFwX/913+VOkbaHRBRJnGA6URrXqGjsgTEJqOXXsvc8CES1p6t9TGLSApapBwSxPmURiwYc9P9eeSd+N3jayffpAAp8PvufkfpnCLlFEQOjFd9nzl6ZwfjDcONcPDM62WO1oVVgiQpvDnrJAKEKGg5laJ3VKUVCbY9qcdDuSMuI4528+QRKuHl/96HD37rg7j99ttx4403ore3F1/4whcgezz7hl80jdRls1l85zvfweOPPw4AiO6bhehQd/mHDDJXJnK1fi3pvyCaNFrnRuQKnQmML6jfn06XuYikIC5p23x2bBSrW95yXCdr0+tdQ0fjvqffqT2xKXHK9DzeteJvjuphidIxwylKV/UjVnLnttlVR+8TwyJ2Vp/nEa1zuh4ummB9jdb5BWMSYq9puOgdU5WGY8mFfNk5JrnInemcocXndmemILFYSeTKyrERtSMguP//vIZo9wwoCwZw9913Y2xsDF/72tcQczszRghoCqmbmJjAV77yFbz66qs1R7gCAM0WD4QQXnwaDkKq5qczR+V0mTMiE2/3wV9GVuLuZ95ZlJ/yZlVbECAuO2sWZonSsTS9Sv0xT6J0VlBZAigFcdOntFq/NKdiV+tzbsSOSAANUaiJJ07F2Um/urLlwhWtMzMV5E6rtrjfPIqslepxWr6Nc5PHtGN2y4gOdILkZdBlA3jssccwPj6Ob3/720gmkzWXCzsNL3VjY2O48sorsWnTJkCREN+zAHKqmIdGUScPvBBNpVUVP/LTeczwcoK1Z22oKnJecv/wkbj32aMnX9BljsJ2Il8dP6N0LE2vhMJxlK4kdCwRIkK86Z/lROw8iGyZp25yjN8DJsLcBMsIj8ESTghN0yyHwEKt7WaWO6C2gLFGjm3JncPzw24/ObdlREbboWyWkTx8EC+++CK++MUv4vrrr8e0adNc1R0kDS11w8PDuOKKK7B161ZAkZHYtRBSKg5acB7BELAztILghDM3AKgeleOBVdNrmcgVJY4LIY/SLXyQ8RhnvHATRS0XOyfl1PusHbGzW5/NaJ2lzEkyoPoXamrKJlhGdLnyU+6M9fkevfMRO02zPI7DqnLHmvqHU9Su3vLyeAuU9RLajx7G66+/js985jP4wQ9+gO7u7prLhZWGlbqBgQF84QtfwI4dO0AKMmJ/mwuSkUFhfSOmlIKoCH+0roEYODyBoy7diAhRkZTtSwZrfzoj9w8fiXufOxpQa4scS5TOT3yP0jFQMWDC7rzEdj8D1BY7zuLjOjonqI7LfnVTRu4Cwo+mWVooTJbLIYLtVu5siV06gfxL09F9fAzbt2/H5z//efzwhz9sSLFrSKnbv38/vvCFL2D37t1ATkbsrXmQso3fwbERKHQmMDE/AQBIzQXaIxmmclj6090/chTufrY42KGOzLmBten1U9NfhpNTqlGidJbYidqx9MmqSGjLsM41onV1hY4lWtcIOesarF+dUa6aumnWBW62S0XTLOeRn7RQABSFqzSa5azaYIlqy+rLVEPKxjHxjISZJ8nYuXMnPv/5z+NHP/oRurq63K24zzSc1A0ODpaEjuQiiP1tHqRctP6CjYSdEak+59UpdCYwMS8BEJQGR5hT/3nBy+lFuGPXOzAykUR2b6tnIlcGY9Or3blddRoySlfxAQdRO9uVMjTxmjGJXVijc0xNsCz96mrNRR3ySc5F9M47qEq176efK5zkjhZnqqHFqbykGJ97tNdROykXxeiTScw4cQZ27tyJz33ucw0ndg01TdjIyAg++9nPYvv27ZrQbZsHKW//YGEeLCHLzlKasEwRJknORI3DwA8ajYAmqqckKYkcUCZzADC0QsKJ737NUbOrzuzYKI5t3Vb1fV3kAEClBIpKMDaehNLrbFQS8wCJQ//mSOoWJQfw2a6XkKEq3sh31F8AwIDShmfHliGtOLvYPb93Eab/vA2RlH27lXIKIv1jjurRsZ2rzixhbi4rag0BcULxRsUkdCx96xinDvNlLthaUmdFURyZ1s2HiKXfggeET+54bQPL7+VC7miNqQd5yR3gLFJntWwtChhHx+kF9Pf3Y9GiRfjhD3/YMGLXMJG68fFxXHnlldi+fTuQl7UInQOhY8ap0DUBVlE5M1SmzEJXrT+dLnO6yAWCjSjdpsFZGHl+Zun54wtzOOHUzQC06JsdVCpBpcTRoJLn+haj/ZZpoDJFvr381CUKtRQ9T6N0ZR82ROzCIHTFdao7R7PAmpCPsA0ieleqi6quk+VyWxeXVBVVxshdLaEDADWX5x61Y122mtip2SwkRDHyv8CM02dgx44duPLKK/GjH/0I7e3tzHX6RUNIXSqVwpe+9CVs3rwZyEuIh7zJ1fGUI06jdEDxlze4DfyoFZXjjbE/nVVULky8PjAbY+tmlL1GKCAZXaEg2ZY5NygqgZy1vphTmZSJXpnk+TklFaDN68pyXPIUOgDUTVlO+9a5iE75MgqWkKZMhxIUpWS5TTILQVU4N8sCmtgB7FE7NZuteE2K10+Cb8ZK7IxlS1lN7LpO6cK2bdvwla98BTfccAPiDHX5SeibXwuFAq666iq88MILQEFC7M2ZkHNJpoOMqfmVIVJHZIeSxiJ1gOsmWBqNID+7o25UzorBwwnOfvdLjuvUm16dROXGJhJQelsAh0eq0+ZXqQBEJkhZX0GtD1v1ZVILCvj+6behXUrbrmdQacPz40uhOtjgz/QuRvJ/pleVumrIaQWJXcOOxY5pijBKAWNkzOmxyUPqVLXsu1JKmSebryt11USOob5QNsGWFnO4bir1LXVHEM2w1b6bn4LH43szNSfX+I71onTVsCt3VjJXURaDcOliV618NZlD9NgxTExM4Pjjj8e3v/1tRDxK6MyDUPeQpZTi+9//viZ0CkFsywxIaR9HufqcCdw3JAk0GoHS046J+QlQydvInM6ixAC6IuP42ub34Y87j0ZekexF5ijxTOjiQwTznlAw7wkF3Ru0tDdSYfJRd2AGgSOh03EidABAafUoXTXkrIrE7hHtiT5a1c8BNk5uPB4InWcoSrhHugZNyPqe+QVVlFIEz9N6ghBZHQ+OfT1yV/MzNoTOyeeM1GvGldIx5F9qRSwWw7PPPov/+I//gBriiHd4dRPAr371K9x///0ABaJ/64E04XHYs1klTkeSSvN5AgCtMc0XTxYlBnBa6yZIhOLZ1FLkHY745El8iKBnvSHDOqUlcfNlZK3fWElOnRGrXKJ0Oiqtf5P3UOgIKUZeWW6E5iZYIXL20a+lU3A6xinRNGtqlmWN0unUapJ1Kmr6551E7dRUqmYUUhpPQHl9GuQVQ/jLX/6C7u5uXH755Y7Wyy9CK3X33nsvbr75ZgBAZGcX5BEP5mNrdokDKkTOL3SRAwCJUESh4tn0Ety8412+r4tR5IwS55bUggK+f9ptjpbRm16d8EzvYrT8uhNOwpVlUbpq8EpHUk3odGqJXSNE6HyQuaadXYLztFiB4+A7GKN2YRM8biN5PYra6XLHEnkrlZXN2hI7fSaMsu9isb/k4RZgqwplySB++9vfYuHChXjPe97DvH5eEUqpe/HFF3HDDTcAAOS90xDpb+NX+FQQOcBTmRtaIeGEM9ZbvmeMykVRfgHMU9lxlG5sIgGlz5nQxwckzHjNOhpXjdw0GSNLHG6vEDe9AtAGLNjBIHdMUTo72InYMZVbX+iYo3UqY1OTVRJlL3A68CHowRLNJngO4BW9C7TptQa8RyOruTyXY6Se2NFClQhjlQEi8kAbPnr1efj1r3+N733ve5gzZw5WrVrlej15EjrD2bNnD66++mooigLpQAsie+zl/aoFIYQ9R12YMXcCL/aVo9GIp9E5KlO0RiZ/QS1KDODj3U/j491P44y2NxAnSoXQsVdmrz9dbFjCrHXArHVA15sKpAItPexE5igBEMLDYzJKZx9bUbpqsHS+Z00b4jZK52WETrW+qE9FHI/mt1WoNPkIAqpOPvysttjvzo++dzXXwyM5JBLhFwXkdHyo2Sx7xM9iP/3+M4/h1FNPRaFQwNe//nW8/fbbLteQL6GSulQqha9+9asYGxsDGY8huqMbhPFOq4ucJxekMCH7I3JW6DKnixxXmbNBucipkyLncMYFFlIL/Wl69TxKN1kRiN4vxqtIjvFGElahUxW2xMOCcpzc2F3cvLkIhF9yp+dwLD6CFjyq0iknd0aqRunMmAaHEBA8+/2tWLFiBUZHR3HVVVdhfJwtF6gXhEbqKKX47ne/qyUXzsmIbesBcdBMZZS4QEVO8nmEoc9kpkuQV4x5E5WzSXxIqhA5p1NnGWFreqW+NL0GhqrWly6WKB2PmwiD0NmK1POUOYYbWtP/AK1H0F1j/I7cWQhezY97JGANJXcucdNHzyh3RJWw/bYxzJgxA7t27cK1114bmj6xoZG6X//613jyyScBlWhCl6/f3S8UEmciTOvCk8x0CQNHEkwspJBl1bHMPZU+2PEgibGJBJR9Wn86XeRmrQOmb1arihxRAclhZCusTa/P9S1G8jedjpZhano1RunMeBG1U2wIo5/Ui86JJtipRQDNsmGI3nktd5wKci13ajbrbi5oXezyMkaekBCNRvHUU0/httuctdx4RSik7uWXX8ZNN90EAIjsnF41dQmRZZBYDCQSaVp5ChtGmXOTz06lxPEgifxQArOeKxe5elE5QqmWoy5kDCpteHF8saNlFJUgkvGh6bUeVlE71r50rqcRU0EZ5yS1jNaFralVVScjAnYelNr/rMAZQfS7C0HzrFdyF5YmWRKJTpbBSvGckibi+MxnPgMA+PnPf45XX32VvUxOBC51Q0ND+Pd//3dQSiH3tyJyoHyka0nkYjF3v5glEnx43wrW2SQ8RBc5HjLHwngqgaFd05HYF+HSvMqb1MICrj/1D46Xy9MGj/gEHV0rCh2/8oIXHeONm+qS5hWKUtqHlNKyh6AOAUbvdMHzex2aXe5Ky7tBUfCTj/4RZ555JhRFwdVXX42BgQF3Zbok0JQmqqriu9/9LgYGBkDSEUR2TQdQHPYtmjx8JzNdwsQCChBaVeJiB4/iF0f9hnvd46kE8geKqUsotHltbVxPWvIZpKKJup9LFrJIRyojwNkOGaOLnfen65RSZS+NqUlsy86qukieyohL9hN0svS94970aoWqaj9C/I7SWQgdpZQtYs8ic7LsPNplkdok6FGPJczrZXEKiNYQC/TjN8htYxQ7HwIVRrHjJmOGsriIo81k16UoHcOyVctUVDz5nY1Y/OHF2L59O77zne/g+9//PiQpmCBSoFL3hz/8AevWrdP60W2fBSlS/+bc8FjtaEoDvUjYkTkdWVbRIbnobGrAUuQcMHtiED954me4/eC1+N0hJ1f93Ie2P4n373wWnz/mE+hr6ap43+qGZgVRgOg4kBuO4JX0orL3FCpBrdExT7FbSZHn+xchckcX8q3lFzyiApF0jQ3lVZ45I35H7DhF6ErzwBLiz3RiYJA4H9etDIsbq8NDdmph3Ed2rt1e7dOABK8R5c5S6MzLsoqdKmHPnycQPzaOl156CXfccQcuuugiprLcEthpu2XLFtx4440AgOieHkh5D2aMcItEtKmCnHy+5vshukrKMtJzEoE0serNq/n+JKBAezAK3ZzUED6z/l58dMsTloMkPrT9SXzqzfswJz2EH77wc8xODdoqXyoAsZHyR3QcmnzSYiJlw6Oe0I0rzqa4U1QJck6TbONDlYF8q1R6FJIujimnUbriMkwjWN32pXMJZV1vVlSf6/MC/TtUewg0Aj62J9cjgCZiXhApHM2yLsRYykTxr//6rwCAG2+8UcvkEQCBWEY+n8e1116rJRgeboU8OC2I1WBDIiCyZP3QJ0yXJOtHGJBl0JY4xg7rxr7Vki8yp08PViFzNa4/8UEZXZusP9CSz5SETkcTu8fLBknoQqeji12yUB5ptBK4yARKAmd8TCyguPCs551uAq5YSR6VgMSOofoLBwHnZtfyouuX65vQBSU8QV1bhOCV45XcOW3F8XiAB88onalgz+SubpTOvAwjP/3w73Hssccil8vh29/+NnK5HHNZrARyNfjNb36Dv/3tb0BBQmzPDEcJhn3t50EsBK4R+5kURY62xEHjEYAQUBnwo99+ikbwyvhB2L+925bMlaCoOjgiFU3g9oPXVrz+6Y334UPbnwRQKXQ6fzroeK1vXfECLOdpVYGzXC0CdESc56dzwrP7F0P9wwzbny9JuT5K1eu5UP2CQ7OrpdARxsFJ1fr5CrGxjuI12ww+djEmGQ6aRojemSXKA7kjThPzM4gdicchxRN47Ze96OjowNatW/GrX/3KcTlu8b1P3datW/Gb32gd7aN7ZoAUQjL9rFVTa6NflGRZkzjA9z57KRrBgNIKFRLyVNJkjiN6H7rPrL+37PVPvXkfPrT9KczIjlYs85Pl5+APi04sXWwLLTImZkq2BmT4iaJKbLNIGNFvKnr02OJ9X5pefbi5VRsw4XmEzkbZRJbDMzjCT/RtQ9VwZh3wizCIHcCt751nUTrryor/FUdsM57LUkyL0hFZcpafzu7gC9PcsqQQQfqVBLBkBLfddhtOO+00LFu2zNE6u8HXs61QKOC6666bbHYdbqu/kFdIBIhEJh9O+s6FGYuonF9Cl6IR7C50YHehA/1KO1SPD6/fHXIyfnzkeRWvVxW6xSeVv0gA6vFFiqU/HVcobczoncsonadC1wyROT9vzgHNs9oUeHHtDtO+sCOYLiJ3utC5wmIdSTxeelghj7TilFNOgaIo+N73vgfFxx92vkrdn/70J2zdupWp2dU1RAq3xLm94eoyZxQ5n2VOFzmvZc5INbEzYil0TUQ0paLtTRsDQMLSJFQPBqEz9q2zJXQsTbB+yZwP521g3UjCJBRTnUaTbQ7Nso6bYfXlDBJXTeTMPP/jt9Da2oo333wTd955J1O9LPh29z1w4EBp1ojoni7vm11lGYhFJx8+T3bvC4SARixkzifMMhcUty07Gf1x68E2/fFp3IRuYn7wgySqYveXYDFyR5ymPglp02tllR6Kl0RE/kxeVBOKqdxUGyQ25I570yvrvrYpd9WidKxi5xRSiODyyy8HoM02sX//fl/q9e0MuvHGG5FKpUAm4pCHO/hXMBUkTscobz5H5QDvZS4+KGP6m3UuMBSQcxRyjuKjmx63bHIFtKZYffCEW6jkzyAJ5Y/2B0kwE/TsEB7ge9oSAR8aLWLUzDTSfqghd1yaXTnw07/7Mw4//HCk02n89Kc/9aVOX8xn/fr1ePDBBwEKxN7u5tPsOpUkDghE3owoSRXKnCy6W1PeR+YoIBUqb85GkZPy2vsf3vYEPv1G5ShXI5/afD83sfMaRZXY5nt1APFLfFiidE0omwIHUNWzSeUFDjDJXWiidNXKMsidnXX1LVoHgm13DIMQgkcffRQbN270vE7Pv5mqqvjRj34EAJAH2iGl2GaNILIEEosC0cjUkDggcJEDJmUOnXnMnzWETx/0mKPl7x8+Eg+9vJK5fiuR06kmdFZNsWaxK4189RA/BklE0zb707khgAgY8SP3GmtqE6fViCZbx3g172hDEYb0WdTdyFNfKeWks9e1yy+xk9JxnHPOOQCAn/zkJ57Ptez5t3rssce0wRGKhOjeyimaaqGLHIlFJ/uyhOFA9xKHIkdyeZAUn2m7jBhljkgURKKIygpaHU4RllUjIDnn+0yXObPI6VQTup8sPwcfPPWr+MnycyreKxM7H0a++gKF8zlJ/YBl6jtTlM4XsWsWJAmU0tKjWdDlriGkosnhth9C1G/SL7H73+s2IJlM4vXXX8ejjz7qaV2efqNCoYBf/vKXAIDIvg4QpfYvVqPElYncVIA1Iqfy64yuJFUos7NQZpfLnF/QGIXUnUOhtbrMAUCykMEHtj9b8bpxlOsfFp9kKXbv3/lsxYwSU44wNnHyWqdmEHUOGAWv2qPRCIXcNXtQwYyFgIViP1SBRdL8EDtSiODiiy8GoI0v8HKmCU+/zX333Yc9e/YAeRmR/srBEVNa4qwI6EKryxw68yAy1R4ByJzcngchtO60ZelIAp9dezl6k9NLr1mlLTGLXW+iE58/5hPajBIh5Nn9i6Hc7u0gCcf96dw2vbq8CYYuWidGwAZO4FIRcJeYsMC0HzyM0rmRs1rLEk6DLn77mf9FT08P+vr6cP/993Mp0wrP8opks1n8z//8DwAguq8TEokCMcPFsBF+UavaRPe+5HRiaa5yiZJUgY48QOCrxOnQGIXcngcAEOKs/r6WLnx27eX4v8/ciD8tOh5/OOhEy8/povf+nc/i88d8An0tzroA6EzMp3jvmevQJmewKHbA3jrmO7BpfLntOvqH27BgRw5qTEJmekjEgRA4nnLD/OOEEFc/WIgkOctbJxExCnYKUBKKoGat0K/XDRj1tIXNbWoUO19nnGgwCJXwsY99DD/60Y9wyy234Nxzz0U0yn+UrmdSd++99+LAgQMguQgiI9PLf92KHR8oNCoj0ykBnVnfZc4ocoBzmTPS19KFfzj1C8hIcRCL0bI6f1h8Eu5ZcKzjCF2+HZhYrE2l1TpzAidO2wIJKmRiTzAkQlFQ7d9sqCqBqBRyVkHLvvI6rETPl0ESvKgldl40Bwux8wZ9RGSI+kUBCHa9vJA7Nz/wjevhc6BAFzxLuQtplM5YhqNpxBj4+SfuQ/dJ3di/fz8eeOABvPe97+VehydbuVAo4Pe//z0AIHKgG8T/KWaDQ5+WKWTQqIxCexyF9jiUZFSLQAbYxKo/3JKO2BtNXU/o8tOA4SMLZY+JJXkgqgJRFVFZQZQUbAudK6jWTGp8aKKXLz0SQ4o/gyRYkhR7gCfNsLTBpk4LE2HNLRfkOoUgW0EFrAnAXQpYRdNsyIWuWlksTa8kGqn+wGTfultuuQWFgsP5t23giW098cQT6OvrAwoyIl4kGhbYhkZlKInibBMB/IidFslA6tY6hfKQOF5kp0kYPtJwQhEKRMKzfhVQgBguznJWQXSsODMEIfZH8gb5g8MqWudgfUQzbEjhNFk8V4KOKAbVNFutvoCid6XInYe9SSilXLtIuY7YqbRmv9tffvJBdJ3Qhb6+Pjz88MN4z3vew16XBdyPeEopbr31VgBAdHA6CA3JSW4HiVQ+GhQ9Mqcko4Dsr9BJUNEiZbWHnHMUlaO9Ccxex188ctNk9K+KlR6ji0kpCoeoyl3o+vKdeHzQfn86x1BMXqgpBVHUuoMgfEs6XHMlQnJOhT1KF5bt5JSwRfDCtC5hQY/eVTv+OYswkUj4jos6lPLislKjBYVQCRdddBEA4Pbbb+c+Ep17pO7ll1/W8tKpBJHB6fUXCAqbwhbYxNcMlKJyQCCROQkqElK+/gdroRLIWT4nfm6ajNHF2i8mKmkPACi0UORm8g97G1EgIaf6PNiBUhCFOovc1cKrplc9YscQNRTRugbCMDtE4B3owxhNDAP6OevnfY5nFLV4XPGO1rFSlmhcUapG7H79hUcRPyqOrVu34rXXXsOqVau4rQP3o/vPf/4zACAyVD8vnS8Us0yDSE0RgbMkFi2PygUUmXMtdBzIdURw4KgYDhwVw8hSGWoEUCOTQgcAIADkJr7R65E7G9G7RsR1/7qwR+makFAlERb7vxJj5I5jRK2mzLuN3nl5H+eVtqhKxI4oMs466ywAWrSOJ1wjdQcOHMAzzzyjFTzkUZSuVuoPK/MPQuD0KATLzcduahPj9yJFkfMZLpE5DmQ7ZIzP17a1MSIngCZ4qg+zZzi9SRKinR9+9PET0bpQEZoUGEFEqezAuj68RdXP6CaH6F1YonUVVInYPfyfG4GDgaeffhoHDhxAT08Pl+q47qn7778fiqJASiUhZT1O8GqMwFlF4hoxImfnpAzB9wpDZC7VI2PPyRL2nCxh4EhiHZETaBQjd44u+h4P7Qel2sWO9UbEKmkiShMqQhG9Yx0h2mzUEiKGiBqTsNuN3jVClM6IRcROysaxcuVKqKqKv/zlL9yq4nYLpJTivvu0uTgjg528itUgBJDkyYePAheK6XRCIKlqXsJYNh68zM3QZG5wJYWaKD7CPGrVJht752DurTFvK1HDJTSs5xYtKM6bbHidOyoN51y7DU4ommfDInf1BjIEiU3p4hKBrVZPowldDTb/pR8A8MADD3BzDW7Nr6+//jp6e3u1ju6j7bU/rFLrHUOI6MSqE5Ioo5qXgEywfSNTM2QMHaYd8FSioLEQXuxcohRkRMe9HbxROu94zl7CciGik2JEKQUBnK2PfqGvdh2pV7dAUIswNcv6lYqEpWy/0sY4aAYOsgmW1BNCi2ZYebQdyYNHsHv3bmzcuBErV650vR7c9sb//u//AtBW0lYaE3P0TY/ATWX0xJUhEDo1L0Edi2pCRwGnM0XxoBSVO2IyKteMQucrpamVamxHHxIOG3+VUgdRCVowRMmo6m9fORGlm1qELVpWK4LnZj3dSpApouZZP0mv/cCPKJ3p+kFUGSeffDKASYdyC5etVCgU8OijjwIAIqMd1k2jjdzXjQW7KRtCloU8aJlTuvOlvnK6zAmR4wxvEXLSrEutxci22JmbYxok75XnqCoIIZYPgUtYhclLIQxjE21R7oLuI8nUjOlns6uilLnQYz9/HYA2aYPKYeAYF6nbsGEDhoaGgIIMaaKVR5HNTchEDghe5nqmj+GTRz6Jdy7bIaJyNpByCiL7R+0vYHWxcHtDMN5UHIidq750Vti5iagUUBskylbrZq2q1o8aCNFrcoKM0lWUV8xCwLuPpJdROg5CV7fp1Ux+squNNNGKtrY2DAwMYOPGja7XhUufumeffRYAII+3gUBcMCzx8EJKJtKIEIJCd9LxsmV95gJwqJ7pY7howSuIEgXtchotkZz/K8GRjBpDX6EDD/cfhrfuWlr5/kyKI9dudV8RhTai1S7mi2u1/nVOm16NQqGn8WE81uv2r6sWlaMqAI9/afvd9BrC+aMFgppUES/XCajN5droSxva9CYWEBCsXbsWDz74IB5//HEceeSRrsrjInXPPfccAE3qfIOlkzQjTAeInofLjwOL0rJ5QetB8ip6Xh2HlG/DgWMU32VuZtcoPjD/VQAoyVzYKagSduRm2PqsSiVklAiiE5UbVt5FsKX/kIrXO4YpYv2DoFEZ+c6E6/W1hRcDJ2qJXZWm1/KPWItd1Shdqd4a14NGitIJnEMk0QzPgs/SE5r8hGZqzPzgKfkCENUU7LH/txGYD6xbt851sa6lbvfu3di1axdACeSp2vRqdXKwZr2nFFDhibCSvAoprYV9CaWIpqmvQqfLXNhFrmfWKH5y+G/LXhtTE3gjM9912ZJCIY1Xvh5Na30wSY4i1j9R9p6noscqdoz9eZiH7de7aVMVUCVvfuiJARIaYRYnPZpjZx3D1A+tWXDYPGpb8BogGbHjplcjRbGTJ1ohyzJ2796NvXv3Yu7cucxFupa6v/71rwAAKZUEcTLXJaUA1MYa8VrtAHE7bZHHmGXOb8IsczNmj+C/Dru17LUEUTBbLr+J9/l1U7eQJaPo6YKnxmUUZkxDpN9Gv7p6TXm62LlpejW/bo7W2YjSTX6UIc0JYN0MG4IoXShyXU4VnMjdVIan7Li8h1cVvFrl8m6pCypaBwD5Akg0gsMPPxzr16/Hiy++iAsuuIC5ONdS98orrwAA5FSL26ICw5bN682pTuHZtOWQoGVuUGlDi5TDRxb8NVQyl5udx+9P+28AQCspYIYc/A0g10YwckQXOjYOVr5pEL2S4FEKkrHZ/9DuQAK7+bnsROksxM6J3BjFrm7Ta1m9HnTLEFG6xiMMcqcf+0LqbVPqf8dJsBxF64IUOwDHHHNM8FJHKcVrr70GAA016tVyJ9vZ8azzufqIUeSA4GTujfQ8qCChiM6lFhbwmRMeKT2fGx3CorANyCCAGrVxDOpCpajaRciLUdR2fojY6cjPYeCE9n0d3JiN0bqwROnEoIfgCFLuSpGmYt3NKHdetbRRG614PvarrwVVFPcSmi/gN19/GFgEbNy40VXTsSup2717NwYHBwGVQMr41LnbiJud2iAjY2yTL0Ae1UTFK5Hrf7sT34xdgGuW3mX5vlHm8lQ7yKPE2U31+I6/YXRlEus3LHK1rkaRa5GymBsdKr3XKadclR0qvMp+zyvCrAZwQ+N5sc97PMuHwB/CJHdAcwieR0LHexCFH9E6HmInjUUQiUQwODiI3t5e5n51rqTuzTff1FYmk7A3i4TAOxyOgGVCIZjIlc9P2l+Yhs2ZOQBQJnOsJKQ8psXYInu1RM7ImJrAW3kFS6IZ5vUMFbUEzG6UqFqWenO5rAlPCWG/kTkd3agPmhBROoEZIsGXyJmV8JS9FmD0LsQBjVCNivUZQiUccsgheOONN7Bx40ZmqXNlYlu2bNEKYY3SOW1a4YSTaYkE1vQXpuHp8eXYlJmLLI0gSyOuhY4VeUEKl178IL580n04ON6Hg+N9VYUOABQqIedxXrNTZ2yBdP6Ap3WUUTVZLYcEwxVl+nzOSgxzQvO4rjRplE6TTe+vf0HPLFAXu10XvJAgIhUf4UtEbwsPonQVQmfnHPbiGGPsQ0s59L09/PDDAQCbNm1iLsNVpM611E0VWNJFeJTWxC0TmRieHl/OJSrnho4FI/j9qv8HAEipEewqTA9sXaxokXLobplAP7r9qTBMk5BXgUgSqJ9C6CY66BIRpWsgghzQYBW9A8IddPBD6DjjV3oTt82wd/3gSWAB8NZbbzGXwSx1lFJs27YNwBSTupAOliD5ApDOgSZj9T/MQGxIRttOYHhFO7IHc8lZzUTnwmHcdtRNaCEU8yNasuv9ygR2NWdQxRpFBcnlK1/3un8dhwg3s9hJRGtSbfZUFWG+mTc7QY9WDUvzbC0aKQWZGwIaCStltPv3W2+9xSyizHfnoaEhjI+Pa9MV5bwRCVuEZARM4HgUGdBljqiAlAekvP/bWhc5AGUyN6WpdrFnETs7Nw7jHK8u8VXsWKN1LppeXUfppmqEz7hfvRxVWY+g5Q6wHlwBuF+nEEbyXUfpbDpAI0TrSCYGSZIwMjKCgYEB9PT0OC6DWep2796trUQ+6m6QREBJiJkTnHqJz+vS/tYE8sk2HFhT2RfALHOsZNQoBgtt6IpYTKNQh86Fw/jtkb9Cu6TWFLluKYlV8f14NTuTfUXrMEMq4NiWbViXOtizOrjRAH1GfW+KFbjD6wipuXw/BK8eYbg3VHz3AJtog2h2tZPaxCtcROtYBZJQCXPmzMGePXvw9ttv+yt1b7/9trYSuShrEQIg0AuHlFO06akM8JI5Had97ySouHjGOnzlvL/UlTkdmUhIeLwdZUKQcJieJXC86EQsy8Em4/UjWhfWARJW3T5U1VZS50aZ3NwSfV8HdXMPU3/Van3wAP9H87ou0v/t6Vi2WMVOVZmFUJe63t5erFq1yvHyzFK3d+9eAICUjU69JlCWfnXGwRJhuDiY4C1zTpGgIlGsuFNK4dBY485Qwkq+lWD08C5Me91iVokwwUnsGrZ/Xb1rXd7FtnE6c40k2doXTTFVWaPIXVgii7z2eZMInd+wRutmz54NAOjr62Oql1nqBga0dA0kz6HTvNsmWEap9LUJNqTD1hODBXS9FgVRgpe5RubevpU48PsFZa9JeaCtX0FyX2XevXx7DMPLyvuiUglQYj4fI6wX/qDFznFFNqN1Qf9A9UO+Gj2dSaPIXdCY18+4vZptwJGX5y1rInbGaN2Dv3wOmB2A1A0OatEEkg8urUXT4+GBSvIKkM0h0hqDnLHfhN6xDfjNUyfg70582lX9tWSuT+nAq9kBrIrHXdVRC6cJiJ/NzMIXnvwIutZZbys5B7SMVF4opQKFlKqckiyWzWPGmMVUZYUGutgGKXZeRetclkeVBtp/jY4fcldLsoOUO7fHfYCjWB1H6Tj3q3McQXPRlMoyaEJ3Kt2xnOJe6gqRyQzuDRhSDeWACUbspDXRZY7oE7g7jAxIOUAeZz/B7ETmclRGhnqbNqVWAuJnM7NwzRvnlb1WUCVIoxG09PO5aROFgljInvYmh/xqfiV+baSIXb3tymObufkOLPtcDDYRkbsGwrNmV+Ocz42Oon2P0dFRpsWZ75ylCguydjF0uz19bIKtsHSn/VjCSo1UChUy5zNhbmZ9Kj0H3950Tul5XpGRsYhe0u4c9h0Tx6wXfJAPwHo/VctRFyRBDZ7gHa1rwChdU/SV40U9ufN8BK+ezzHAEZshxluhQzibYOE8WkcK2mdHRkaY6mOWunRa6ydEVP0GFI5oXWhHeQX0a66ezEX6xzAtJmP0IG+aOp/Ytwy9L8yBsiSN767+syd1AM7SmvQXpuGv44twINuKbYM9yCsy0un6uRaliAol4dNNtJbYhfFGzkHsCCHOJcWp2Hk5y0SzRs38TmfCq7wgxKp0bAUcPTQT8Hp4LnSlv+3Jk59NsIAzsSNBRep0qYNaPFhUCkhNFAJtYHSRA1A3MkcKCqQc/yjLE/uWoXfdHEh5glgaGJ/wNvVNvbQmfYVOvDq+EACQV2VkVRkj2SRGx5OerpeSIMjObkO8z3mePs+ToPIu163YEQKCgKJPQc9T6td3Dvp7+kmzyl2DDXLwRej8wEW0zhHFQFkuV6V7Th2YpE5RlFKFROV5sAaTiLjUbBnGJlgnIWWVak1zihpYNMcsc0FiJXJGuhMTyPZE8PaBTs/WgRICNeriuApDdnsnBCV2xGUzbAM2vTZtZJA3QUpQWCN3jYa5SbvaPnVwvwxrtI5QbZ3y+TxTWhRmqStRPGYppYBSHHQQwJxpAACVgkohboL1CmM0Tin+76GgdvwN+M3TJ+DvTpgcAas3s0p5gljKfR1uRsDqMmclckYikoK4HNJEs0a8Ejsvfnn63beOJfJkboJtxAESCHd/Oj0642lqE6/huX3NcgcIwWOllqR7PWDCr2gdtPM7nU6jpcVZzlYmqZO8jGgFFa3zA5796mo1q6oU8HDzSTlAHtMqeKzvEOx7cTY3mdNxOgL2oVQU39r2dziye29dmXMD7c5h35o4Zr3o869/L/qC6dHpsP0I8jta14hRugahKeSOJ2XHtE+C10z30qCbnl1G65ySy+X8kboySPnFlypqY0brwtwEaySg0atm2t4muO2ek7jLnBMeSkXxbxs/CADIF2Rk01FMZGNYOXOvZ3VKERVK0tn2d9WvzogX8tVsYuegfO2cb8woHRMs35XTTdTYr6pM8IK+SYeFoNOyNAIeHCtMsz54PRKWTpYdiThXtPBF6oDmjtax4LHIORkBGx9T0fJ2CplZSRSS9g+flu1RfK31ffgOhxGwf0nF8eWN70e+ICMzUT5qNVcI30Ad1/3qAEBVQdJZe8eBnZu3UUR4iR3vptd6Ymf1PZ1G6xo1StfA/enKondu+0I2G7RO9E5sK76oFJAdXvc8j9ZNXteSSecD+ZilLhaLIZfLgUoqiKmtr2GjdWHDmBzYw+9iZwSsLnNEUUHyCkgh4agOKQ8Uxt2NgK0lc6ywDJbwpQlWl7hSpaaoktsRZWYpCGvEjgW7oqBLBStUDUyuwtyfzi5EIlO3WdbOeVZP8ATW2B0sEdCxVy9aR2VtveLxOGQGh2Jufm1tbS1KnQLCoRW3gmaN1tWTNPMsDyxNwhybkksyp1KQ3OSggsT+FDq3tWH4YO/EXR8s0adM4y5zOhFJQSLiLJmvZ02wZpGrFQXyItFmGMWuWrSuGWQg7E2vgvDAGqFrtvunHewMlnB7PrgZMFHvvJe0fe20L50Os421tLRgaGgIVLY+2KiigpAAkxGzROuC6ldnJXJucTlYoprM6ZC8Ajnj7Uijm/euxRvPLUHk4DHbMpdJxbBh/1xP+9WxULUJ1onIVSwbIrHzctQrS/86r5v1qBpYGhPfonQeN/VRlYa7ObHR0gkJ7GESOpZ+dVRRQBj6u+nHUq1oHQ1K6tra2rQ/qkgdAPfDi5s5WlcReagVlfE+ghI5MI5pMRnZrmhNmXNDcmcUX//rhfj2O++s+plbe4/D3+5bCgCQskA8CkzMsR+doypx3K+uK57C/J5hT/PVleFG5CrKCpHY+QWPqBMPIQtqgATPAQ/Ndm31AiF3zYPVucPSr44F4/FT41iiEe0Hcnt7O1M1zFLX3d1dXIHqN37Rt05fjxD/Gi1C8gXEekcRGU9wlzkdOQekx6wFTZc5KQu0DE0e8KmZ3u87liZYY7+6SEpBcsewjYUoSL6gndA8ozxTQezCFK1rtChd3bxeJoToWdOIcldr3zfzfra6JnLqglA6BxXFE7fRnaqnp4dpeWapmzFjhrYCUY+Tt/odrePRBBsGiXPyPfT1VRRHQsejX92tvcdh2/1LIWfKZa5UxyCFsiWBzCEZ5jq4sTeBhQ9Nbh85nUF0/5gma1m2KV244dVk1nb6jvidcNgtUy1K5xSqgqrUu+md3GDcdkH94HArd2H5odTMQm9uJaxz3thtgi1L30aLky3YWp/K+qs1wdKodj3VA2dOYZY63SJrSR0hpDjCrF7HQA8P8mK0rhrMUTxVDccFphb1+tW5lE83/epu6X0X3rp/CeQM0GohczpSAZCzVd+2hKVfXUUTrEngAEDK5RAdNCXlkwhIyuEKFpfjfoO2PerL4X7nnUXdhxHdJXhH6xotSucC88hUnpLHpT+dj9n9LWnEyN1UxFaKp/pNsMznX7Xlqrx+1j8eh/vvv99/qZs1a5a2XjEbkR3zvG1m6m10CXAVratxs7PcUZSC2NiB+rJET2Tq5QWGZ3NYlZs6yReANAFN8h1haqTz1ShuePpiZKaTmjLnBpZ+dRFJwdsHOrHwZu2UkLNZRIZsTF7rZn94IXYFpX50lkXmOR7fpfMGsF8mpXykZqpF6RjEqVqaEeProYni+fkDoRpC7lzjSWSY47W16rWnXhOsw2OCUoq9e7VgxJw5cxwtq8MsdQsXahOlqwkbzU4qdTdI0q+OjAac3ECYslIHgZ2bkYcXpvggRfeGcajxCAD7ee68aoJ9fucizLx9Mrnj/JSKeN8Y1zrqwkPszImEAfcjuK2W5yF2PI4vp9uMV7QuqChdCNEFT8idgUaXu4CaXsOeq7CWCzhqgrVa3qIJdteuXQCABQsWMJXJLHWlCqOKlqvONNdmheS47VTotm+dV32OwgylxciNd9/bTr+6+CBF16YUSEGFlMoXpc4+PJtgjSI3J0OR2F/enEqjMkjefh8xGpGARBwkw9AE6wYrkTM/9yI1j1nsHPans+yTUu9GbBWlY5HhoKN0LuoMa7JhL5toKyuzsQ3CLneN8OPfR8IkdFbBGVfnnZPjtVgXlVQMDg4CmAycOYVZ6trb29HV1YXBwUHQRB4kZUPY6jXD1qLUPyzEKU7C1ARbdkB5OBtFjX518UGKrjfTIHkFUmpydGlkNIPWvRIm5nrXzGtugn1+5yLMuCOJOelKkSuDZf/JbqNiNgWllshV+6wfYueqKJti1ww0cNOr0+VryZ0v+enCJHdA40bvPMRzoXPqG6YWQdtCZxWwYmh2BQAa11o+u7q6JtPGOcTVVBBLlizB4OAg1EQWUspGc1oDNsPaJTRNsC4vHjz61SUGKKZvrpS5EgqFnHV2UWdpgs2+NQ1/u+1QAKgvcy6gEodoXS2x0wXNaZQobGJX5dhkFju7MkxVPjdVlZZvSz+idiGO0tUiNP3vwiB3Yai/Hj4HSsIUobPCcfer8hec1aVM9oNWW7R7yMEHH+yoDCOu9uSKFSvKVsQWbtMfUB9+5TUaejLjKoM+HDc7OTwotSZYBfFBijnPptC1cRzySMZa6Bhx0gQr98ax4PYIFjySR9vOFNp2ppDYb2PQAwAqEdCow18eEtxH64DyZnJVrXyw4GbZelQ75qp+vHbflGrHb80LrBNhkAj7w2r9Jan2w/Q9mPEpSucVVKXub+JuxdbhseoZta7VU4RmEjqLhV3VfdblxwAAli9fzlyGq0jdoYdqURC1pTx6Ujdi5bYZljVa12z96kJyYZBSObS/OYiW9gRXkXOC3BvH3Ge0HwxSLo/YkIuoGcOvatfROpU6a151VLYHEbtiSh+ezaehbYpVKduPUeP2zuerv1e1Xn+jdF7fbEvlBymcYYncAeFaF58QQmfCtO83b94MYDJgxoIrqdMrpokcqKSCqDZvGm6bYf1OSOwEv/rVeQjJF4CMBJqI1vmcApIqCr0kQXIwEIalX11ikELZmkBm2eSPCF3mXIucASoRwOGACeZonS5zXjfleSB2pX4gdmTM5gWvrCy7aUxqNcNyanp1dbG3EsJa+7usibexo3ShJUxCFfZ8p5wIu9C5QrGRSsqMeVCGpGL79p0AAozUzZgxA7Nnz0ZfXx/U1jTksVb7C7sZDRvSQROh6VdnRm+CdSIddSSjJHR6065KQTJZ0ETcXvkM/eqkAiAXfc4LmSvDy2idMSrn52hKu3UxiF89sWvEfmEA2KN0ZWWw9YWk1KJlwaMbY6hvuF4eO0EnMDYThOB5fA8N9bFlxM9WPIt9q7amoSgK5s6di5kzZzIX7XpvHn300doKtdnrs1S5BtX7sNRE1fsmOL1gNsgBVosApyEjeQXSyES50AEApSAO++5p0Tpn02u17VGx4PYI5j+WR2Jf2huhg0d969RiiplCwZ/onBG9H4+ieHaTrNovjrEcRyJodc0Ia5TODTb6/oWaMEYR/erj5rSORv0h1Ii4OHe4BHJUFR/42ikAgFWrVrkqipvUKSxSR9XqkmWz83IoB040wclICgpIZrIfEMkrkEZTkzLHI+eXg2hdbFzF9A2j6HxjBC07Rz2TuTIYo3Vl0cqSyBlkzk9qDaDxpDqL+hjqopRO6R9gzdSXrmEI2wCGMEUQWaBq+O7NVvgtdFWWeeWVVwBMOhUrrppfjStAk1lQWYGk2iyyJGUqoEruf2UaD54Am2R9a4J12rfOaRMs1ZoISV4BSWftjaItKM6aYG0QG1fRun0cRFFA0sWoXqx2Xz9euOpb51dfOSvs3phYm57M8x5XFFveFMskKHouMyfXBmPfOh5ROrdNr7yjdHapdv1rhBusmSAkK0z97byG573S6vgKUfcoS0IidDRSwObN2wGEQOp6enqwbNkybN26Fcq0CUjDHW6LdI755lRP8PwYBRu2vhpOUSlINg/kC/ajcsUmWCeX4chY1nLAhKXM6eQLkDIEap2BHFywsQ9JQQWZMESqgxI6lhsg43FaT9Rcj2TVz2FqndjaL1xFzPyO0tWLuJmvhcVtrOeR8yUZrFP0ebWDgKfchal5l8v3acAfCEZc3v95Ch0AKNNSoJRi+fLl6OnpcbFmHJpfAeCEE07QVqxjgq2AWs2wbtFDwMaHxzRsp3CgGJ1QDX2wPN5eBbWsCVZvZm3bNgJpPF0pdEBRHv3Zxua+daSgQhqZKHuQsZShiVUJpq9cgLmVqhdLQc2pPOxgvhY4uTZIJBxROr9huX6aJI9IpPQIFYQE+wM5iGZZL7+vm+/TKE2qOlbr6pXQ1bru19mfx35MyySydu1a1tUqwVXq1PYUKGHc4V6KXZB1eYlTeagnaSqHi1exCdYJkbEspm8ary9zASDlFMgDY9UFrpbEeZl6hveNxqubFmWQI/OF2On5yqnJJ4gBEmH5Qchd8HiIwFSUOy9xep443YdhbHoNWYQOAKik4qWXXgLAR+pcN78C2pQWemoTZdoEIiPtbAW56V8XxubOMK6TFTxkToehCZZk85BGJkAjDprZPGyClXLaCF8AmrAVXERsJIlv5K4R0zvoYseawgiwf21QKaC6TUESQBoTV3W5iLrYwCh2oRhUoR+jjSJYYWp6DSm+RIeDGOFqYzmlI4V8JoM5c+a4mh5Mh4tKE0Jw5plnAgAKnaPuCmuSKJpvv7jd3DyMTa08sRmtI4oCabw4opZhuD/PJlgppyDSP4pI/yikoTEgl9ceboSuVDiH08yQ5sPTYyvoiF2tc99upECl7h5FCCEVD1s0QpTOzyY0r+oK6gdzM0TsGiHYwJOQCh0ArP7oUgDAmWeeyWWQJbf4qC516rQUqFzgVawznJxoTSKPjtGbYL2QOUMdtXLWlcmcopbkkjgVqHwBUsbdtGS6zEnD43xFrqIixlOtisx5IQClOnj1JSuYrgN2yq4nALXOWR5ROqDmOtoSvUaI0jULQTbJeiV3fnwfr5tew0SIhY7KCl544QUAkw7lFm5St2jRIm1qCwIUOsfcFdZMwhXGX3QBrZOlzLlZL8ZonZRTENk3XC5zeR9+iNgVO8Pgh1qROR5iR6sJYzWxqZPOxEaFNcq2Ua4b6fOIMrlr4ihdKJpeqxEGufMxH6TvdTglDP3piORqPbwWOgBQusahKAoOOeQQHHTQQWz1meC65d/97ncDAApdo1Ddmn0TiF1DNMF6hakJlihKdZnT8Thap8ucdGAEyOb8k7mylahxyplEzs7xw3qM1Su/lti5Pq6rle2kedUreEQpJany4QWNcH30O8LT6IMpfInSTYGmV5dS6YfQUVDMXdsGADjvvPPY6rOA69Xm7LPPRiKRAE3moLZmOFz8Ve0i6+TiFcYm2DD+kvJ6nYpNsGXROVuRGP7RugqZ05sFwyLDLvvLOVnGSR1cm2IrC2cv2+q85dX0ykjdbVVD8kSUzgMaXe68pNmbXsMQJbSB2pbBzp07kUwmuTW9Apylrq2trbRySs8IAE4XLBa5CwlTOlqXL9SPzpnhGK2rKnM6QV109Zu6X4Mf4EzmzMv5InZOz22rG00jXR/cRvEa4buGQQaaPSoVRnEMUqoaROgA4ITLDwUAnHHGGWhtbeVWLvctcOGFFwIAlI5xqFF3ndgr8ELumqCZlxmvR1HWy4tXa1mHnzdG6+rKnBG/ZVhVQXN50IICqqjcZK6atPEQRiaxq7XNywvXymYRAP289WGARC20eWoZI2D69cyXFoMpEqUzE3TUzi5TtOmVSzoTl/3n/EaN5fHEE08AmHQmXnDfCsuWLcM73vEObcDEjGEAHkSrdLmrJnhh/PUSxnXyAnOzA0szBGO0Th5O2Zc54/r5IXYGmSt/ne9xYeyPx/O88yxip1JQvX+j45Uy7LegxYN1WxvXu0Z6lYrPOF4/n4UuDFE6M40id17SjE2vtb5T2GZHKXLe/zkGiqJg9erVWLZsGdeyPVHbj33sYwAApXsUVNZuBJ41LzVA0+yUaILl3YfEQVlEUUHGJkDGJkAzWftRIoa6HFNN5so+w7H+WkLgEkopqBfHmFqMWLKInaI0dpSuHlaSZzX1oY/TIDY8zSJ3YQwU+B0ta6DonA6NUtx7770AgIsvvph7+Z5skTVr1mjpTSRaitYBHsuNOXonBkzYg8dIxnpleBStI4oKMp4C0hlQVXUnHLxlxY7MlX3e5X6wEjlex7RKNVHWH/p5xhNWsaNUG8Gsr5PVw2t4ROls12XjOOUkek0VpbMiTHInml5ZFua3In4hSfjI909GNpvF8uXL8c53vpN/FdxLhDYcWI/WFbpHQKXJk9yXqJUuabXyB/mM4+/Nut5+TyYfQPlEUbUBGFVkjukY49UM61Tmypb1QA7ciJ0uc+ZIWKm/pPvpuKgxqsoidvlCRZNzRfNzPdELa5RuKhHkNTqEslMXlu3VLE2vDdZ/roQkgUoK7rjjDgBaiyaPGSQqquFeYpGTTjoJCxcuBCIqCjOGyt7TLoY+nMTGZgtaR/KCjtZVWz9fJNgH4eQQrSuTuUKBf1Mgc8RF1daHVebKynKwDnabWZ0e19VkzgwXsVMrntsWOxv9Bu2InivBCluUjhOBROmC/AEeZNTOryhdvWb7EDfjU5Vqx6QPMueFaOmj3C/6jxMwNjaGhQsX4sQTT+RfDzyUOkmScNlllwHQBkzQSHk/p5LYeSVS5oPS3DfFLFE+XExKNxSv6/YqWhfERbeggBQUbdoxBzLHHBG2u+10kdPXh3e/uHrvs4ia3c856aPmxQAKu2LHmDi6TPKK606LckdtSp7vUbpGEDrmCmnt534SpibZRsMD4SrJXKNiSFtEIwX88Y9/BAB84hOfgCzL3lTpSalFTj75ZBx66KGATJGfNVjxfumXs19D+o1YTuZt6JNnY8JvFpibBr2mVh28ZI6lHFWTOb2p1Vl1nJthrUTOq2O3Wplum1NrvWcnOmcFi9iZm14r3q8jdpxH91YUb0fw/IzS+QlrpIaneAbdbSbMcheC7kQ8qNefzixzXFKf+IkpB+W7v7YKmUwGhx9+uGdROsBjqSOE4JOf/CQAbSSsGstZfs4zuXN6kSlF8OqEpDmLnifwitYFdQFRVdBcThMoRXXfrOkEo9j5KXJmrNJd8CxTf84qc0aYxK7ePK418vjxmN7N5jliFrwpE6VzInes6+jFICueeC13U3SARC2qRucaqR+dSejUWB733HMPAODyyy/3polXr9qzkousWrUK73rXuwAC5OcO1PxsoJE7u3Doe9AQ0TqvLqZ2yi2KVGCRUUAbgBGEyJnxol7eSXt1dLFzmlKmHuZoncdRulpoyYJVpibnUqLhkEJVan09C0P/qmaXO7uENUrHQbgavqlVx2KWmNWXzYeiKDj22GOxatUqb6v3tPQi//Iv/wJZlqF2TEBpn6j7ea5yxxqtc0oYD0aWaIIfF89qdRiic1UTrzJVZ385rZ9VwCLnNVTlE50zoxabS/MFPpE0wLoZ1sconSWlqc3U8kfdOll+zPk5mr1GXbV+wHoVpQsjPOVuCkfpjE2pTSVzFkKntE/gmWeegSzL+NSnPuX9anheA4DFixfjoosuAgDk5/WDEpvNHo0QuQOaI1rn5ObkQd1lMudVio4alMlcM0PVYvMyx++p0lKuuLJRprzFDgg0SgegdoSuxjnUUM2utT9Yvl5+C11YRFCXu5BKU9jRRc7uccfUn87PPnhV5nCmREX3Wu3vD33oQ1i0aJH3q+J5DUUuvfRSzJgxAzReQGHmkKNlfZe7qRSts7oJ+SF2erSOY1Nr7eqsy55SMqcq5ULn9jtbyFxZldXErt4giWroUUC3+DQtXNm5FeLjq2qza+2FgmuWDbop1oxfYhem72zEj75uYe5PZxQ604+3j/zgJPT29mLGjBn4h3/4B39Wx5daALS0tOAzn/kMAKAwc7jqoIlalMmdowX9kJQGi9bVi8r5ceMrDkDwLD2HCeP2njIyB5RH56wGSrCg0qoyV1Z1VbFz2i1CBVUUqNmsFtXN5YA8w7RibmBNUqwoWtRAf9hayB9hYhI615VyOufCJHdOxW4KN702FVUidACgxnK49dZbAQCf/vSn0dLS4s8q+VJLkZNPPhnHHHMMIFHkF+wHhYubs9c342aM1gXZxGqGw2wELEwpmQPsNbc62Ram6JytVdDFzmWUrSyiq2r7URc825Ln87FvuY2cCp6XhGEQhFvCJHZeNcmG5Tua8SMZcBjOEytqCB0FxcEfbEcul8OaNWtwyimn+LZahPrcQaW3txeXXnop0uk0Inu7Ee2fzlQOIQwXRacHoMRwghLJ8XoxDW/261dYjQOXCQuZY5Z0p/t/qogcMClzgP3vXW97GqJzrBBCAFnWJMwh1M4sE8XvQAgBotHy93gMjnAI07byaQqxho7SVSNs0Smr78uyjk63m1/bwQ+pY03SyyiDtu7Hde6L+dmjKMwdQGtrK26++WbMmjWLaV1Y8L2hes6cOZPNsLMHocadX9wBEa1rSLjPPGBzO4dpoI0fEZpaza21qPV5DkIHFM9blnQgdvvgmaJ4XJpo/RQ6lU7ObenhHJdNKXR6HWFrlnUbvQvLdxFo1BE6NZGDtGgMgNbs6qfQAQFIHQCce+65OPbYYwGJIrdwH3MzrGNE3zrn8GiusppE3QBT1FWnnrSETOYIIe6+bz14jG616nfHQeigqkA+PznS2YkssXwfcxMty+CMMNxQzZLnUvYCEbogCJPcAf6Nlm2iKB0zXl1f6wgdBcWSD0xDLpfDsccei3POOceb9ahBIHuFEIIvf/nLaG9vB23JojCzdlJi7jjZ4WGO1oVZ7PQErTZv3NzFLizRObPMFeEudlajW92gbz+H/eeql1dM5mwYWGE3asckY2V1G/rh6YNzbC/LOHOEH9cMhptqYEIXpFyFTe6cELb19jiCXFldSJrTq+SgM3PRf56ITZs2oa2tDV/60pc8nTmiGoGpdk9PD774xS8CAAqzh6G0jju+gDKPhFVpeWdl3geOX9E6bUG25bxEVZnWi5vohFjmjJS+L4/vTCTtFzrP726cFssNetoaC2yJHe+cenblzu9mV8cVObxeBnVehOUa1YhyZ2y+9SrSV0vQfOgKUL1qEo5ooM1+5Up7CrfccgsA4Morr8SMGTO8XKuqBLrFTj/9dJx//vkAAXIH7QeNcJ5eqBbmE8UsecYbrU/RukCTqtbDVsZ8LTpHi8liff0+YZkBwobMGeHaHEskQC4+3GIQGrvfxZIaQqdDKa3aHOs6Sld1verIXZjPRcCd0AVwgw4VjSh3RqxEz630cW7idwORSLgidDagkQJaj8mBUooLLrgAp512mscrVp3Az+zPfvazWLJkCRBVkVu0H9Th1EXM0TrzSW11chgFz+nJwtjE0ZD960wyZ8Tp9/G0v5mXOJQ5M1zFjrgUuyoRKsffy4bQGbGM2vkxGMogd6X1DXOzKy/8uHGHWZ7CvG5+ESK5D5XMAfaFDhSHXToDQ0NDWLp0KT796U97vGK1CXyPxuNxfOtb30IymYTankFh9pA/udTsXEjd/vrRm3rtro9+gwmz2JlRVUuZc0NDiZ1LmTPC9Xuzil2dJkfb39Gh0OkYxc6zKJ0VxkgvYx/Chm129UruGkGaGj1q1wRwlzm3ZdnsP6fzoR+ehJdffhnJZBJXX3014vG4u/pdErjUAcDChQtxxRVXAAAKc4ahdIxrb9iUO27ROi/Qxa7eo1EwJjIuRufqEepmZVY4ypyRQMXOwaCWmt+ZUeh0dLELopNxqf7i/44SLPuBl/3opnKz7FSUu4D3dV2ZC2D9nF5zlM4J/PrXvwYAXHHFFTjooIO8WC1HhOYMPuuss3DRRRcBAHKL+qEms5NvehW5C6tMhT1aV6WptRZN0wzrkcwZCUTsGAYFWH5/l0JXhiSB8Ogf6KjOyu+kyx13cQvjdIcAH7lrVEGainLnI7rIhaqZtYjT67mazEI6bBQA8OEPfxhnnXWWF6vlmNBIHQB88pOfxOrVq7X8dUv2gUbM/Wuqy13oo3VOYRU7L6GUe1NrLUIldj7InBFPxK6aILlICl22PTgLnf4/kX2SOxvb20ruwtqPztVoVzcCGbbrFgtC7rgSVpED2AaC0YiC6aeqyGQyWLNmDf7lX/7Fo7Vzju/ThNVjbGwMl19+Od5++21I4wnEts0BoTU2uKHtm/lGKMs+JYV0Pk1ZWKYQs9PMageW7+PL7CHVME475TOlU5Pnd6cqoBj2JadZPiilTFN/WaGdxxbniqpq8/Z6gZ83nDD0o+NYV/myobqd8CVsU5C5JczztrpZNwd1Wl7X6yUYJhTLL+3Aa6+9hnnz5uHnP/852tvbna6lZ4QqUgcA7e3tuPbaa9HW1ga1LYP8wv7aM04YonfMk7WLZtiaZfESOq04hjQvAQqdX5G5euvBDWNzLMdp24gsQYrHQWIx94VVu6h6FbUTQsdcV/myIb2O8qKZondTte9kkZrX9Rr3OwqKtVcuxWuvvYaWlhZce+21oRI6IISROp0XXngBX/7yl6EoCiL7OhDd221vweINobTD7F6wwxqtA4KJ2HmcZ67e9/EkSmWXAKNzQA3x9SJix0vs9Em3qTo57yoDVaN0ZnhF7fxuEvKhHx2z1LntsxfOW4l3BP1jzw1hnxGCdf1s1Gfrul7lGpSfN4jCrBHIsozvfe97WnexkBFaXT/mmGNw1VVXAQAKs0ZQmDHsaPlS3xe7I0zDGq3zC8NE2H70m6tVftl+8xOf+81ZUXO78xIQ/eYtS5My5gbjehHJXdTObioBPWoXjTivo1RGyIWOASF0PmK4ZjYUYRc6j3B7XS/MHEFh1ggA4Ctf+UoohQ4IsdQBwNlnn43LL78cAJCfP4hC53j9hUyh07KRa7UErxkHTdhZxiBxvs8CUbEqhv3kNyGQOVvb3u20YubjT5aAaIRd7qym8iGaLDqVO8fbXtKmRiPRiHO5awSh86vZVQidexpV8MKIB9Lp6rpOCArTJ5CfPwgA+Jd/+ZfQjHS1ItRSBwAXX3wxPvCBDwAA8ov2Q5mWYi6rquDpF0O/ZCJosdNFzseRrFYY6w5DdC4ImEWaRUqqHXeEsEXt6s3NaJK7uoLnIOFneT2kJHe2EEI3WQePNClezUkq4I8TYXJxfIQlSuf6hzohUKZNQD14AADwgQ98AB/96Ec5rZ03hF7qCCH49Kc/jVNPPVWbI3bxPijtdcTOZkLcCslTFKBQaN5fWz6nJLHDVI/OucLuhdPuxdlp1M7uDaIod2bBM4oel31gJ2onhI6pDlsIuWvc769fI4wPwP8BFRzrc3VNUVVN6NpToCsGoSgKzjjjDHz6058OfuBcHUI7UMJMoVDAN77xDTzzzDOAShD722zI48nqC7D+6oc2kq/s4GKZ+9VWRd4OmmiIXRvwyNYwwGU/VduOrDfveoMo6kXpnCARLaF1Lu982Wr7UJ8VIm/Im9cIQgd4L3V+JDFuhGsPb0JyPakKkZzve8ZzPJBUJgCf63rRHZT2DMgRg8hmszjxxBNxzTXXIBJx0YfXJxpG6gAgl8vha1/7GtatWwcoBLG/zYE8kai+AKPYWea7Mx9svESPo9g10K6cvOH5/Ysw4JGtxcrLn/Pqy2i+ufPoK6VHsI3wFDq9PJWCZrP1P2um3n6kFJRj6hbb+Ny/zbbY+TUrRam+BromuSXsUucUF+d4UPnpXF3XDb6gtmQgvWMY6XQaxx13HL7zne8gGo2yl+0jDSV1AJDNZvGVr3wFL730EqBIiG+bDSlVRezcROvsJDK2OgBZcmgxil3DolLrm4vXYhd0dK5W3TwHqVTbvqwY5c4LodNhidbZ2Z961M5PuQtLk2hZ8ZyPC9sVN9Qtho1mEzqgcaJ0hvqYr+8GV1BaM4gePYqJiQm8853vxHXXXYd4PM5WbgA0nNQBQCaTwZe+9CW8+uqrWsTurRpNsV6LXcVCDidRNy7nlEYTO3N0zgqvxC5IobNbr2EieVfVSZImibym7DLDc1YH4zHMEq1zsk/9krugRqHaqsLGOehZ5Q13q7GHEDrToj5KnakuphH0BpT2NKSVw8hkMli1ahWuv/56JJM1unmFkIaUOgBIp9P42te+pkXsVILYWzMhj7ZYn2A8m2FtLSgxyCBjBKRRxM5JlMCDSFAgQsdap4uoHZGkyeO9KC/c5E7fL/p+dCt3Vseuk2idi+0LeCB3Qc3kwFRdAHLXmLea+gipMyzmZqSpgzqr1ONG6pRpKeCwIeRyORxzzDH49re/jUSiRveukNKwUgdoTbHXXHMNnn76aYACse0zIQ+3am8ad67f0TpAiB1QfpPzqYNuGX5H58yjRt1Mr8YgdmVCZ0RR3Iud1f5wK3fVjlu7Yud23/KUuwYSuvKqfW6SbdzbjTVC6EyLehylq1G+K6HrnICybACKouDEE0/EN7/5TcR4THkYAA0tdYA2Kva73/0uHnnkEYAC0V09iAyY5mKzO/VQFZibYVmkTl/WKWESO143iiA7zTqlWhoQl2Kn/Vf/FK0qdDpuonb19oNxX9sVvHrHqx2x47V/3cpdgwrd5Cr4HLVr7FvOJM0odEA4o3S8pv8CKq6The5RKIuHoKoqzjjjDHz1q19tiFGu1Wh4qQMARVFwww034N577wUARPZ2ItLXCQLzCFY2uWuIaB0QDrHj+cu/EaTOTk43N2IH1IzaEf14tntcO43aOd0HdgTP7nFaT+x4719jMmy7gtfgQmdERO0c0oxSF0SUrla9Dsqse703XSMpKApzhlGYMwwAOPfcc3HllVdC5jF1YoA0hdQBWjTjF7/4BW655RYAgHygDdFdPdZip+NA8HwTu0aN1nl1Q3ApuJ6KndOTn3PUrm50rhp2o3Zum8CtjgdFdXacVhM7r2+odqJ3TSR0OiJqZ5NmFDogmCidVb0M5dW81lsIXX7hASg92tSj//AP/4CPf/zjocld6oamkTqdO++8Ez/84Q+hqiqkkSRi22eCqIYdWm2n2bg5imZYC/z6de9iW3hyorL+muMUtWMWOiP15M6LkcgscyxbiZ1fF99qcteEQgeY8t2JqJ01TXDjtyToKJ3Le5fldd7iGkklFUddPhvr1q2DJEn44he/iPe+972u6g4TTSd1APD000/jmmuuQTabBUnFEP/bLJC8oY3cYZh2cjGfm2H1ZZ3ih9gFkfPK5bbgInc8QvMcxM5tP9EyrOTO65yBqsP+a2ax8/vGamyazbsYdNIoQjf5oo8r0CC3IiF1psVcbg9OzZ3ERiscjRaw8ANJbNmyBfF4HFdffTXWrl3Lpf6w0JRSBwBvvPEGrrrqKgwPDwM5GfG3ZkFKGRIIOjkxDQfIlBe7oBKY6gTZHMtTpAD3cgfwXR9d7njmoTNTnD3CsdQBk2IX9E3VELWzva1CLHOAjRkpvF7/RrkNBX3seUWQI1453KtK1/Ua10O1JYPW47MYHBxER0cHrr/+ehx22GGu6w4bTSt1ALBnzx585StfwY4dOwCVILqzB5GhNu1NF5mnp9zAiaBFzkwQYscpRU4FPMQO4LdOqjo5MIP3vLz68aiXyyh2gMtomVuMl0zD/qsqeGE6d0w4mjfWq+/RiLegZpI7v4XOPK+6C+xE5wCgMH0cZPkIcrkcFi9ejGuvvRZz5851VXdYaWqpA4CJiQn8+7//O5599lkAQKSvA5G907UBFG7Fruw1m2X5OXACYD9pwiZyVvjVz45jQuuqhEHuVOv+blwEz3wcuhG74rEZmNhVu2RaCV6IzyFHQle+IMeVaJLbTyNLnh9Sx2F0a1lxdvvPgaIwdwiF2SMAgLVr1+Ib3/gGWlpamOptBJpe6gAt5cn/+3//rzQyVhpJIrZjBojqIheNldiVvV/lPb+bYWutixm9WSzMFyjj4cohWXNduWPsf8lEkGJXReiMuJI7q2OQpRnWoiO/73Jn55KpquVpaPycd7YOzDJXXoj7MoDmkbpahPl66rXQccg/V1ackxGusoJ3/Ms8PPfccwCASy65BJdddhkk3j/IQ8aUkDqdRx55BNdddx1yuRxIJoLY9pmQMi6mAakndpbLkPCIndVNVb/gSy4imV5Q7TDl0DxddR8yJrN0jd9yZ0PozDgSvGrHOku0rkpnfl/Fzua2qpvrLgDR4yJ0k4W5XH7K3Hrs4/c11wup4zA7REWRDq/FajKLrtMoent7EYvF8KUvfQlnnXWW7foamSkldQCwefNmfOMb30BfX5/Wz253N+TB9sp8dnZhETtgUu6sXq8Gq9jVSiNR6yIfFrGrd4jyFjsXzfJc4CV1OvXWi5NcWIpevQu3U7Grdrz6GbXjJXVGPM4Px1XmJgt1seyUuu3Yo5GFzqPBfE7vrVQiULrHQZaNIpfLYe7cufjWt76FQw45xPn6NShTTuoAYHR0FN/97ndL/ezkgTZEd/eAUFYxYBQ7oPLA9uBXDgB3zWZBip3dw5PTSGHCQ8x4lMFb7ADr9WKI0tnF9qXFrtjZOYb9itqxNMHW/Kx3Axa4C52QOf4EcY3lIXUuZ/2pWj7D9qCSivxBQ1C6tYTCxx9/PL72ta+hvb29zpLNxZSUOgBQVRW33norfvnLX0JVVZB0TGuOzTJM4utG6gD2kbR+EYTYsR6WLvrZEcLxe4Y1agdMrpuHQgc4kDrAXv86u3LiR9SOd7SuUaROCJ03NFKUjtc0Whb3Pdb7qJrIYd57k3jrrbcgSRIuu+wyXHzxxU3ff86KKSt1Oq+88gquueYaDA4Oas2xb3dDHmBojhVixwceh6NTsTPPE8vze4ZZ7nw49blF61jEhKraKNQAt10YpE5bJODBEVP7NlObBhC6suZWHvcdTknhKSiUGeMgy8aRy+Uwffp0fPOb38TRRx/tfh0blKmnsSbe8Y534Je//CVWr14NSNp8cLnF+0Blp6PyHDS1WC7PdtPyDZV6f2HmVT51kI7FLHSl5Tmti6qWP1jh+YuT5/fjhX6RlzhOpk30nJIcplTzGkdpjthuyq4y/wuh84Yw9Fm2QD9eKo4bjoEEQiyuvQ6gsoI1XzgI+YMGkcvlcOyxx+JXv/rVlBY6QETqSqiqij/+8Y+48cYbUSgUgLyM2M4ZkMcc5rMRETvneHUI1utnZyV01crggT69F+A+nxxr/QHguBkWKI/YuYkyGWd/0NeDR+TOy8EStgpm/w6+JhwWt5fqhKwfHZcUJXZXQ3ZXjtKewbS1Cg4cOIBoNIrLL78cH/zgB6dkc6sZIXUmtmzZgm9961vYtWsXACCyrwOR3unOBlEIsbOHX4eeVXOsHaEzl+EG83flMeWYEzkJ8DR3fIkxi52bJLkWy3KRuwaWOm1xe4NOXCNuL9aEROgcRW95RukYpY4SFYX5I1Bmj4FSioULF+L//J//M6VGt9ZDSJ0FmUwG//Vf/4W7774bAEAyUcR2zoCUspnTLgipAxpL7Pw+7Ixi51TozOU4pVaOPcB7uQvBKc4kdlQF3MxDW0eoXMmd7b6CHo2ABbwTOx4yp59relkhOAZDRUBS56oJntf9hfH6q7blMPPMCHbv3g0AOP/88/HpT38ayWSSz3o1CULqavDMM8/ge9/7njaIggKR/Q6idlNB7ABncmfOY8Zrblq7FMXObejf0QXZzunlpdyF6PR23Ayr51dkjdTZjJIxyZ2D7xLWaJ1WBDW/4K7AatefWrkypxpTWejgMEonSVp0bs4w1LljUFUVPT09+NKXvoTjjjuO2zo1E0Lq6jA6Oor/+3//Lx566CEAAElHEdvlIGoHuEtQzEKYxM58UzbeNFhm1nADIYAsu5NtY1n1cHpq8WiSBSblxKdTm1Jqa5sySZ22IFsUy+EyjuSrSaSuVBSPBNT1rjtC7BpT6Ipl8MKW1OkzQ7RmMefsGHbs2AEAOPvss/HZz352yuWec4KQOps89dRTuOGGG8qjdn3TQdR6F7Li5jWfzHZFr1HFzngjrnXz8UvsdKGTJL43lloy66Y8HgMpQiZ1+mfrYhS6yQUn37MDg6Q0nNQB3MSOWm1zJ9i93kzl5tiARrq6zivH+V5SU+qK1z0qU+TnDIHO1qJzXV1duOKKK3DiiSdyXZdmREidA0ZGRvCjH/0IjzzyCACAZCOIvt0DebTOCNl6fap0qoleo4idGbs3Ca/Fzih0RrySO1659gDncudxQmEzpanBHPSTqXvJqSUYdqN2Quocwyx2LNeZqRa1Cyp1SciidICF1BmvcYRAmZbC9OMp9u3bBwA444wz8LnPfQ4dHR1c16NZEVLHwHPPPYf//M//1OaPBSAPtSL6djdIIVJ9IafTXRmRXPQD81LsrJq43AooT7krypxWfLW+PiE//O3Knc/ROa0qg2A57Pxc9bJjRyzsiJ1DqdO+S4P1qQO456p0JHZury1TSeycSl21Fh5HdYZP6ACD1OnXtOJ3pJEC8vMHoEyfAADMnj0bV1xxBY499lju69DMCKljJJ1O46abbsLtt98ORVEARUJ0bxfkAzVmo3CzqauE0LXkqvVyrXE4MZ32UXIjdzzErlp0rhphPw1qyZ3P0TnAJHQ6PMTOrlTUao71uj+dsX4vym4EseN1TSn9HfLzLwhcRve4TOflhdRFi8EPXeZAofSMIX5oBuPj45BlGRdddBH+8R//UYxsZUBInUu2bNmC73//+3jzzTcBACQVQ2x3T/WBFG42N2NH+tKNlkWW3CR+DUrsnAqdTiOcCka5CyA6p1VXI1LmphmWpfnPal28bnrV6/Wq7IClTiuyyr7gLXMV7zXAOegHbptrXUbpqEq15b2Quli09LfSmsFB57Zi69atAIDly5fj3/7t30TeORcIqeOAoii488478ctf/hITE1roWB5oQ3Rvl3WTrFuxA5g70nMZ+emEIJpjJVmTC9bBBo1wShASyHrWFDqAPVrnpqO+eZ2E1HGhQuy8FrrSZxrg/POSAITOKmchl0ifBSQW1Zpa5w5C6R4HALS1teGf/umfcOGFF0L2qN6pgpA6jgwODuLnP/857r//fu0FhSDSNx2R/g4QajG/qBtcpr/wVe7c5kdylPXclGTYzShScWpUQO0kA2YRO7ejL/V9pShM0WUvpc7xvNAhmgfa0ZRi9Qtz+Pkpev752I+u2v71KkpHCYUyN4XYIRmkUikAwLnnnotPfOITmD59Ovf6piJC6jzgjTfewA9/+MPJJtlMFNE93ZBGk+X97aaS2AHeNsdWm+e1uFxTR+18wpbQ6ThthnUrdVpB4ZQ6lvKbSezE/LH28aEfnZ39yTtKR0GhdmYw58yW0hScK1aswOc//3kcdthhXOua6gip8whVVfHAAw/gxhtvxPDwMABAGktocpeOT35QiJ09ajXHWs3talGviNqxQxVVuznb/fXuVOrcJr81i6EDEXE88lWvz8nH/ZA6wJtBE+4K4LMiQPOfgx41uzrdh7yjdGpLDof//Vy88sorAICOjg5cfvnlOOeccyDxSLYuKENInceMjY3hlltuwR133IFcLgcAkAdaEdnTCakQ49M3aqqIHVAetasWnatTb9jlzkkyXz8oCR3g7GJvQ+y4R+nM2LihMc2m0ORSx6XZ1aPIYVPKHUehc7vveEXpaKyA/IIRqD1aM2ssFsNFF12Ej33sY2hra+NSh6ASIXU+0dfXh1/84hd4+OGHtRdUAnlfG6J9nSCK4UbJKhwcpphqGLkjEiBL7L8m3cidx6eL+XQMWu7KhE6Hk9hxEzqtsNrRvho3uqaSOsDV9gy1zFXU0yS3Lg5CxwseUToqqyjMHYW8KFsKZJx11lm47LLLMHv2bB6rKaiBkDqfefPNN/Hf//3fpVA0ChIie9sh97eDqNVmlLB5kjW72OlROjvNrTbrdiR2PkXprPB7v5T6z7lNa1FP6njMOepEDi2kpemkDmASq4YSuop6G/Q2xmUeap7zsrJH6aikQpk9jsShCsbHtVGtRx11FD71qU9hxYoVvFZRUAchdQFAKcVzzz2Hn/3sZ6WJipGXEOmdBnl/e8VI2YqbYi0R4TB3aCDRoWpyZ25u5T0iy27ULkChM+LHvrGMzlWsiDux8zVKZ4VBYEIpdYBvYtfQMleqvwFvY00idJRQKDPH0f4OgqGhIQDA4sWLcdlll+GEE04IvLVhqiGkLkAURcEjjzyCX/3qV9i7d6/2YlZGZG8H5IHWyjQoRaqeJKY59Bpa7HhH5WzWbSl3IRE6I17tH9vRM6f7xCB23IWOtSyVsg2S0Ot18vEQSh23dCVBC52ZMN/SeJ63Lq+LFYMqHJZHQaHMmEDXcVHs378fADBv3jz84z/+I04//XSRby4ghNSFgEKhgPvvvx//8z//g/7+fgAAyUQg906rKXdmLCN6jSR3en8OP2XOah1gkDufTg83pyGvfeRYthjFjluzK8AWpTMubk7TYkfwGPZVIFIHWO5LrrnnatQTGvy8xfl1vWS8NhLzD2cGKKFQeiYw84RkKRgxY8YM/MM//APOOeccRCI15kAXeI6QuhCRzWZx11134ZZbbimlQSFZWZO7A2225c4IqSV1NoXPU7Ez/5rzsqnVCbrc+dHcyekUZF3Xsvr1G76HYsctSgfwlzoj1QSvkaQOKG1rT2SuSl2hhsf5FmSTosNzjofIAUWZmzGO7uPi2LdvHwAtPcnf/d3f4YILLkA8Hq9TgsAPhNSFkFQqhbvuugu///3vMTg4qL2Yk7U+dwdaQVSHJ7Wd5trqC5c+60pwqoXiaw2UcJqyhDcOZ0ZgxYtTkHn+VcDbaB1VtZsqj+3KoRnXdkJlo+A1mtQBAFX9kbpiXaGFR/qooKlzzrltVjVDJRXKzAl0HC1jYGAAANDd3Y2PfvSjOP/885FMJl2VL+CLkLoQk81mcc899+B3v/tdqVkWeQmRvmmQ+9vKU6HYgFlQ9GZcuBgdJcsuUpgEI3dE9qc+r09Bq/1es06vonWqSWzc3iDdNuPqfeocLaP6J3UAV7FjXgemykIodk0qdLwlTofKKpRZ42g9AhgZGQEAzJw5Ex/72MdwzjnniMhcSBFS1wDkcjk88MAD+O1vf4u+vj7tRYVA7m9DZF87SM5+HwZXkaei3DGLnbHPHAt+Nsk2cJSOC7zFzix0peVcbONCgX1ZOIjSmWGQozBIna/ROkOdoaCJhM4ridOhcQWFWWNIHKxiYmICADB37lxccsklOPvssxGNRrnWJ+CLkLoGolAo4OGHH8bvfve7yVQoFJAGWhDpmwYpHbNVDg+xA1xE7dzInddRuwbsS2cb/YZud7s7bdqstU+qSR3AfsPM5V3NTsIsdfl85Wt1ujKEQuqAqSd2jd5/Tl8F47XWi2ufRKAmcyjMHgWZlYVSPF4XLlyIv/u7v8Ppp58uBkA0CELqGhBVVbFu3Trcdtttk0mMAUgjCch97ZBGEyCofyEKXO7C1iTrU3ROx7dTz+ombme784rW1RK60rIOt7uilkfMGI4jrlJnhS56qsq+rz0aqeq72BXr9be+JhI6L0SOqqCgUKfnocwehdqRLb21atUqfOQjH8Fxxx0n5mdtMITUNTibN2/Gbbfdhscff7z064qkopD3tUMebKk7qMK1xDRLk2yzCV29m7Zf0To7Qlda1sH2z1lFyxwsz9KfTseu1BkIldQBwYldsW7v62iC5lZwFjrDdtfSkqSw4Izp2L59OwBAlmWccsop+PCHPyxmgGhghNQ1Cb29vbj99ttx7733Ip1Oay8WJMj7WyEfaIeUrR465yV2QAM3yfrY7Ap4JHVOb9JeROuAyf3gROhKy9pYJ3OUzoyN78UcpQP8lTqgOcWuWD//MpsjOqdDIi77r5m2sRovQJk1gdYVEkZHRwEAyWQS559/Pj74wQ+KuVmbACF1TcbY2Bjuvfde3Hnnnejt7dVepIA0nIC8rw3SSLFp1uLGF3jUDgi+SdYHufPslPNC6ozlOr0Js37PetveKkpnRY3v52qQBMMMFKGTOmPUJkixm1wJDmU0mdCxROmskk2DQu3MQpk1DtqVKx2Ls2fPxvve9z6cd955aG9v57HKghAgpK5JURQFL7zwAv70pz9h3bp1pddJWoa8vx1yf2tlShQeTZBBR+2A0MtdaKQO8K4ZFnB3k6223etF6awwf0efm14BDvvc4ym9ghQ7IpHy+v08zspWhKWVQJ95hm/U0bbQ1aiXylp+uVnHt2PPnj2l19esWYP3ve99eNe73iWm8mpChNRNAXbv3o0777wTDzzwAMbHx7UXFQJpMIHI/laQsRgIKT+5iSxpUTPWuTGF3Fni6enmtdQBwYodi9AZKc5m4WofBCV1ALvY2dhnQUldRXoOWKxLrfX3IzpX4/pRElKOUldX6GqJHChoWw7KzBQiCxRks9rgh7a2NrznPe/BhRdeiAULFnBbV0H4EFI3hUin03j44Yfxpz/9CW+99VbpdZKOQN7fAvlAC0i+KGBFmSKEVJ8Nwo7w8WiSDbq/nb4OcCd3pblVXaThqAnrjTnMYgdM7kO7za51mDJS53A/+Sl2VjJXjZrrpc9QwoJk75pUa119ETo7Uh5VoPSkMPfETuzatav0+sEHH4z3ve99OOOMM8TMD1MEIXVTEEop3njjDdx777149NFHJwdWUEAaSkDe3wppOK71vSMSSDRiLXb1hE6XPh5RO6C+3Ln4xe1oHeBc7kqnmfkGxUvw3N6Qwy52qsvZI0qr4XI9GKWOS91A/f3sUjC8FjsnMmcX1nV2uy6eCZ3NMrW+chkoM1MgM/Kl7AeJRAKnnnoqzjvvPBxxxBG+juoXBI+QuilOKpXCo48+ivvuuw+vv/765BtZGXJ/C+QDSUjZuNYcK0nVo3ZWWEmfPoesmwuqLnasFyuOcgfYE7xSlM5mmY7xS+r0ulhuZiyXGr0uTrLRlFLnwShSL+TOC6ELAsr6w8YCEjMkjLf5o0VNFKDMmMD0oxI4cOBA6fXDDjsM5557Lk477TS0tra6XjdBYyKkTlDirbfewn333YcHH3ywNNwdAMh4FPKBFsgDrZBo1LncWVASOw793QKVO8N6VJO7qlE6G2XahsdN2OtoHeBc7MwC6fJ7urrcMY585VK3eT18gJfYNYvMAe6jc2USh8mWC6ooNfcrjShQetJQelKgbZM/LDo6OnD22Wfj3HPPxeLFi5nXS9A8CKkTVJDL5fDUU0/hwQcfxIsvvlgK62upUeKQB1ohj7WDSO7nAGxGudNWRfubSehqlFsVv6TOzSjF0nI217XaDZTxu7pLK+JykIbb+svWhW+zXy3ciF0zyRzgXOjMAgdYdz+pJnRUUqFOz0DpSYH0FErXYVmWsXr1apx77rlYu3atmItVUIaQOkFNhoaG8Oijj+Khhx7Cpk2bJt9QCOShFshD7ZBSrbamJatFU8mdcV0A/nnGrG6WvOqodiPmIXNG6l127NxAHX7nppE6wLdoHeBc7JpS5rQ/an6uWhSubvm53OTfoFA7slB6UogvxGR/ZwArVqzAWWedhdNOOw1dXV02114w1RBSJ7DN7t278dBDD+Ghhx6aTGwMAHkJ8kgr5JF2SONJV4IXCrkDvJlrsVGwyOsGgH90qNalx0lUxIZ0uM8TFzKp8zFap1NP7ppN5gDr6JxVBA5gGwRGFQVUKUCdloXanUb78hiGh4dL78+dOxdnnXUWzjzzTJGKRGALIXUCx1BKsXHjRjz00EN4/PHHMTIyMvlmQYI80gZ5uM2V4Am5c4jVDZ7nunslEFaXHxZhqSMcTSd1QCBiB1TKXTPKHKB9TxKtnF7R1Qh+vWxQqO1pKNPG0HZItOwa2tHRgdNOOw1nnXUWDjvsMDF6VeAIIXUCVxQKBbz66qt47LHH8OSTT1oL3kgrpLEWJsELjdwB4RY8pzd3l9nquWK8BLkRlRpi15RSB/jaDNvUGETN2B+Wh8DpUFIUuc4JtCwmGBsbK73X0dGBk046CSeffDKOPvpoRCLV5+oWCGohpE7AjUKhgNdee60keMZmBCgS5NEWSKOtkEdbQFRnF0uucqcVyF5OGOUugIgNV/TLEA9JMckdl0ucy5Gv3NbDTBDROqvjvxGOvxqCxlPejFBJhdKRgtqZRnIBJmf0ATB9+nScdNJJOOWUU3DUUUcJkRNwQUidwBN0wXv88cfx5JNPYmhoaPJNCkjjScijrZBGWiHl7Y/e4iJ3QPNF7xrhploPPZcfr+9SlLswROl0GjZax2Fiec+pI2ZeiZsZNZbXRq1OmwDpzE1mDwDQ1dWFk046CaeeeiqOPPJIMfeqgDtC6gSeoygKNm3ahKeffhrPPPMMdu7cWfY+Sccgj7ZBHm0FScVsNdOW+pmI6J1Go0sdryZYM27negXCL3VeRuv8Oq6par+uKn34/JI2M1SWQFuyUKZNQJk2AZrMlb2/cOFCrF27FmvXrsXhhx8uRE7gKULqBL6ze/duPPPMM3jmmWewYcMGqMZmrYIMeayl9CBKeZOE+XAti9y5TSPSyNG7Rpa6aoMlAPffi0dTbNilDuAvdh7kbqyJjTmRJ3/IBfgDSk8WHClAaUtDbU9h2tJIWUuELMtYuXIl1q5di+OPP16MWhX4ipA6QaCMjIzg+eefx9NPP40XXnihLC8TAEipOKSxFshjrZBSiepRPGPEzu1oPJ6jzfwQvGYTOiNhGDjBoT8dU71OcSueXuVpdElgMmeIqFFCobZkoE5LQWlLgbZkyz7a0tKCY489FmvXrsVxxx2HadOm+buuAkERIXWC0JDP5/H6669j3bp1eOGFF7B169byDygS5PGkJnjjSZBctFLyzM2xruaY5ZxKwAvBo6omRo2Y9sDJzBIA9zQnk6tRK18evyhd3brcwiLAvI/JRpQ5q1keQIF4AUpbCmp7CrHZasUPzmXLlmHNmjU45phjsHLlSjGzgyAUCKkThJaBgQG8+OKLeOGFF/Diiy+Wp0sBQHIRbcDFRAuk8WTlgIuwRu8AfjdTXeoqyg+55DE1g/JNSFyNiktio0TqAPvbKKRROcBjmbMQOL0+NZqH2paG0pqC2pYGjRXKPtfR0VGSuDVr1qC7u5v/+gkELhFSJ2gIFEXBli1b8MILL+Cll17C66+/jkKh/KJLstGS5MnjSZBCsT8ez+gdEC7BqyZ1lvWEQPRcD1qwGbXjODUbVRT3620sy2uqiV0jROUAPjJXZTCCsR41UoDaltL6xrWmQOPl1xNZlnH44YfjmGOOwbHHHotly5ZBCrI/n0BgAyF1goYkk8lgw4YNeOWVV/Dyyy9j8+bNZakDAIBkopAmkpBTSUgTCa25VpLCLXiAs5uvE6mrWp8H38GPiBRgLS+c59rlJmKU+iN1AP/5hnXCFJWrmXeuvDyqqqCxvNYvrjUNpS0NGs+bipOxfPlyvOMd78A73vEOrFy5Eslk0vl6CQQBIqRO0BRMTExg/fr1ePnll/Hyyy9j27ZtlU1deRnyRBJSKgFpIgkpmwAhhhtDowkeD6FrdMxyx1voKOXW9AoAUBRPm2DNU0pRPfefW4KSOQfiZoSCQk1mNIlrSUFpyQBR048+QnDIIYeUJO7II49Ea2ur7e8gEIQRIXWCpmR0dBSvvfYaNm7ciA0bNuDNN9+saK6FSkqCJ6cTkDKGFCphFDygXPKE1E2iNzmGNUpXKpB/tK5m06Wqlkukk+3jlcgBk+tZN2GwvQgelRWoyTSUYiQu2qUimy0foRqJRLB8+XIcccQROPLII7Fq1Sq0t7c7+g4CQdgRUieYEmSzWWzevBnr168viZ5x7kUdkotASicgpZPaI5MAgctkoX72ZZuqp7MHETvuUTqtUNdSVzHBu92mS7PgAZXbiZPIlSUCrhGVsyttRqikQk1kJiNxySxoLF/xuWnTpuGII47AEUccgZUrV2LFihWIx+OO6xMIGgkhdYIpiaqq2LVrV0nyNm3ahF27dlXe9ChAsnFI6QTkdLHJNhsHoS46TPs9YKHZT3ErgeMgd570f2OQOmaJq0dR8ryYiYEY5zF1IYqUUKjxbFHetAdpKZQnLC+yYMGCksAdccQRWLhwoRjYIJhyCKkTCIqMj49j8+bN2LRpE958801s2rQJ/f39lR/URS+TgKT/n0mAqJxujn5IXzOc9naEzTiQwoHgeRKl0wquKXUVAgfwT+3hlSTCNH2fQ6isQE1kDY8M5Ha1stsEgBkzZmDFihU49NBDceihh+KQQw4RTakCAYTUCQQ1OXDgQJnkbdmyBaOjo5afJfmIJncG2SN5iwTJLAjRm4Q1+mYeKVtrxgmvRqkapM4XgdPhnTKkrGhj2fWPUwqqjUQtyhvV/49VyhsAtLe3Y8WKFSWJW7FiBXp6enitvkDQVAipEwgcQCnF/v37sW3bNmzbtg1btmzBtm3b0Nvba72ASkByMU3ysnEtwpeNu5e9qdhPj3eajirpULhF6arJUz5f+30eeBiN04qvL3IleYvnQOM5TeKKf0Oy3pdz5szBwQcfjGXLlmHp0qVYtmwZZs2aZS3AAoGgAiF1AgEHxsbG8Le//Q1bt24tCd/OnTuRy+WsFzDLXi4GKRcDycXY++s1Y189r/KtVYNTyhFCSHXZUfhOPVassPy5B8JYTeQoUcvlLZ6HGs/WlLdYLIbFixeXxO3ggw/G0qVL0dbWxn29BYKphJA6gcAjFEVBb28vtm/fjh07dpQeNWUPWjNumeQZ/3Ya3WvkZltCJsv2Q+6czpvKikpBLfqJOcJniaNEBU0UoMYLoLGcJnExTeJotPp3icViOOigg7Bo0aKyx5w5cxAxDqYQCARcEFInEPiMUfZ27tyJHTt24O2338bu3bst06yUoNCabYsPKRcre04KEfvS12jNWV7LnV9Cp1eXL7ib3o23xEVk0EgBNJoDjeaL0lYo/U0SiuWIU522tjbMnz+/QuBmz54N2YPRtQKBwBohdQJBiBgZGSkJnvH/t99+G+l0uvbCuvQVZU/SRa8QKUkfVKm2+IVd9ryQO5+FrlStoqddKSaRrrbtHQocMUXAKCggqUVpK2j/x/JQo3lN2oriVu/3QDKZxPz587FgwQLMnz+/7NHR0SH6vQkEIUBInUDQAFBKMTAwgD179qCvrw99fX3o7e1Fb28v+vr6sH///oq5by1RyWRUzyB7ZQ9Fri5/Yblx10uia7ucAITOKnKlKM7m/IVB1mQFNKKARvKatMVU7e9IMdIWKQBS/e8pyzJmzpyJ2bNnY86cOZg1axZmz56NuXPnYv78+ejq6hLiJhCEHCF1AkETUCgUMDAwUCZ6+/btQ39/Pw4cOID+/n6Mj4/bL1Almtwpk6Kn/R8tvi6DKJL2uiIBquwuIbNbWCTPK6Gr19woWb9PiQpIiiZpkgrICqhcjKzpfxef6+9VG4hgRVtbG3p6etDT04OZM2dizpw5mD17dunR3d0t+rkJBA2OkDqBYIqQTqdx4MCBkuQZhW9gYADDw8MYGhpCKpViq0AXQXVS+KDKIKqkRf7K/pdBVGJ6LgGUlB6uUr5Uu6zpc8Q6xULUKIp1SKomYcUHlcnka2TyPe1/BVRSQOWitEnK5P8OBM1IMplER0cHuru7MWPGjJK49fT0lD1PJpNM5QsEgsZBSJ1AICgjk8mUBE//f3BwsPT30NAQxsfHMTY2hrGxMYyPj9fsRM+MahA8SgAqaeJoED+AQHMrTQCJ/rf5fxBoT4qXO2K47BX/psbXCQUIBS3+D0l/rpbe0x58vzIhBG1tbWhvb0dbWxs6Ozsxffp0dHZ2lv42Pu/s7BSyJhAISgipEwgErlBVFRMTE2WSp/89OjqKdDqNdDqNVCpV9+9GvRzJsoxkMll6JBKJsuf6o6WlpUzajP+3t7ejtbVVzFcqEAiYEVInEAhCAaUU+XweuVwOuVyu7G/j83w+j2w2i0JBm9hdLU5MrxQTB+uvqapa9pokSSCElP2vP8yvRyIRxGIxRKNRRKPRmn/rDzGIQCAQBI2QOoFAIBAIBIImQMT5BQKBQCAQCJoAIXUCgUAgEAgETYCQOoFAIBAIBIImQEidQCAQCAQCQRMgpE4gEAgEAoGgCRBSJxAIBAKBQNAECKkTCAQCgUAgaAKE1AkEAoFAIBA0AULqBAKBQCAQCJoAIXUCgUAgEAgETYCQOoFAIBAIBIImQEidQCAQCAQCQRMgpE4gEAgEAoGgCRBSJxAIBAKBQNAECKkTCAQCgUAgaAKE1AkEAoFAIBA0AULqBAKBQCAQCJoAIXUCgUAgEAgETYCQOoFAIBAIBIImQEidQCAQCAQCQRMgpE4gEAgEAoGgCRBSJxAIBAKBQNAECKkTCAQCgUAgaAKE1AkEAoFAIBA0AULqBAKBQCAQCJqASNArIBDoUEqRyWSCXg2BQCBwRCKRACEk6NUQCITUCcJDJpPB2WefHfRqCAQCgSMefPBBJJPJoFdDIBDNrwKBQCAQCATNgIjUCUJJ7IWZILT4m4NIIBIBiARIBCAERNLfK75OCCAREP0zpfdIaZnSAzC8JpW/ry1Yeo0SMvnTx1BG6XUyWZfxNUq0YkrvSVq52uuk9J6+DC2+VnofmCxDKn5efx/ldZQtU1x9Klm8V/Z5lK3j5Guk4r2KZWBcD9P7qPJ6lfKqrUfFMrXKLb1OK5c3LFN631AWLb4Ow3Lae9SwPtr7xPhe6bP6e7RUJjF+ntDSe6VDTH9dL674Ge1QoKXn+jJS8bn2nvZcX670HqEgmFxOKr5WeoCWlpMIyl7Xllcnl4P+eRWyvkzx+WRZaqk82VC+DO11WS+v9FkVsl4m9PVQJz+PybK1MlVI0OrX3tPKk4uvEaiQ9eUNy8iAthy0evTtoT/X6qLFv1F8j0IqbhcZBBIAubizJZDiawQyIZAggRT3XD4n4wP/PBsCQZgQUicIJwopXl6hSR2KAla8W06+RwBp0mCIZkjFQvS7u4SKu/akMZWbhF5mxV0epteMdcDiNfNymJQ5g9RVvGaQMONz8yqWf95iGanGe9W+RsV6VPnatd6rtqlYyzOUaSV8nkqd1fswP6elso3rYazT6r2SBMLwGePnK5ahFnXRsodR6iZFsfio9h508dOKNAqgLn+ALmcoSZHxPU3q1EkpIkYp0v6WCNGEq/g/Sn+T0nJaOSiWqS+L4nLF163eMywjF4VULq2nLnW0rtQZy5P17YHy1yQY19GwDwWCkCCaXwUCgUAgEAiaACF1AoFAIBAIBE2AkDqBQCAQCASCJkBInUAgEAgEAkETIKROIBAIBAKBoAkQUicQCAQCgUDQBAipEwgEAoFAIGgCRJ46QTiRKSjVEo5qedeI4X9iSgis/2/4G8bXqOFvG+8ZkpZNpoit9vrk/7Tsb5QtRwGA6q9PlklBAIrSssb3S2WUJVczrovFc1q2SqbtUeVh/qydXHS13rNdl833jFXWXI7WKZNWWcfqyYfLc8sZ3it9lj358OR6GPLUgT1PHcXkcpTQ8ge0/7X3UPa6SihA1MkyodelGvLpFT9TfJ8StVQeysov/q/XVXwuFT+j/w+g4jXVcFrrf6sEUDGZp04tvkZQLU8dKSUMljG5z/TnUnEZc+47+8mHCSaTD1udlwJBsAipE4SS3DH7g14Fb9DvmYyYnUQg0DEeWmqQK8KM0apFI5JAwII4cwQCgUAgEAiaAEIpFXOdCEIBpRSZTCbo1RDUIZPJ4IILLgAA3HXXXUgkEgGvkYAnYv86J5FIgBAROxcEj2h+FYQGQgiSyWTQqyFwQCKREPusiRH7VyBoLETzq0AgEAgEAkETIKROIBAIBAKBoAkQUicQCAQCgUDQBAipEwgEAoFAIGgCxOhXgUAgEAgEgiZAROoEAoFAIBAImgAhdQKBQCAQCARNgJA6gUAgEAgEgiZASJ1AIBAIBAJBEyCkTiAQCAQCgaAJEFInEAgEAoFA0AQIqRMIBAKBQCBoAoTUCQQCgUAgEDQBQuoEAoFAIBAImoBI0CsgEAjq88ADD+Daa6+t+7kf/OAHWL16teV7e/bswa233ooXX3wRg4ODSCaTOOSQQ3D++efjlFNOqVv25s2b8Yc//AGvvvoqhoeH0d7ejsMPPxzvf//78c53vrPu8i+//DLuuOMOvP766xgbG0NnZydWrVqFD33oQ1i+fHnd5Z944gncfffd2Lp1K1KpFLq6urBmzRp89KMfxfz58+suHySZTAavvvoqNm/ejC1btmDLli3Yt28fAODSSy/Fxz/+8bplDA4O4tZbb8Vzzz2Hffv2IR6PY/HixXj3u9+Nc889F4SQmsuL/S8QND9imjCBoAHQpU6SJHR2dlb93DXXXIOjjjqq4vXnnnsO3/zmN5HJZAAAra2tSKfTUFUVAHDOOefgy1/+clUxuPfee3HDDTdAURQAQFtbGyYmJqBfPuqJyU033YSbb74ZAEAIQWtrK8bHxwEAsizjiiuuwHnnnWe5LKUU119/Pe6//34AgCRJSCaTmJiYAAAkEglcc801eNe73lW1/qB55ZVX8LnPfc7yPTtSt3nzZlx55ZUYGRkBACSTSeRyudL+OOaYY3DttdciGo1aLi/2v0AwNRCROoGggZg5cyb+8Ic/OFpm7969uPrqq5HJZLBy5UpcddVVWLBgAVKpFG677TbcfPPNuP/++7Fw4UJcfPHFFctv3LixdEM/8cQT8bnPfQ4zZ87EyMgIfvGLX+Duu+/GzTffjEWLFuG0006rWP7RRx8t3dDf+9734p//+Z/R0dGB/fv340c/+hGeeuop3HDDDVi0aBGOOOKIiuV/97vflW7ol156KT7ykY+gpaUFu3btwnXXXYeNGzfi6quvxq9+9SvMnTvX0bbxk/b2dhxyyCGlx49//GMMDg7WXW58fBxf/vKXMTIygoULF+LrX/86VqxYgXw+j3vuuQf/9V//hRdeeAE//vGP8cUvfrFiebH/BYKpg+hTJxA0OTfddBPS6TS6urpw3XXXYcGCBQCAlpYWfPzjH8f5558PAPjNb36DsbGxiuV/9rOfQVEULFmyBNdccw1mzpwJAOjo6MCVV16JY445puxzRhRFwc9+9jMAwLHHHosrr7wSHR0dADRBvfrqq7F48eKyzxkZGxvDr3/9awCaEHz84x9HS0sLAGDhwoW4/vrr0dXVhXQ6jZtuusn1tvKKI488Evfddx/+8z//E5/85Cdx+umnIxaL2Vr2tttuw+DgIOLxOP7jP/4DK1asAABEo1G8//3vL0XI7rnnHuzevbtiebH/BYKpg5A6gaCJSafTeOKJJwAAF154Idrb2ys+c8kllwAAJiYm8NRTT5W9t3fvXqxfvx4A8JGPfASRSGVwX1++r68Pr732Wtl7r776Kvr6+gAAH/vYxyqWjUaj+MhHPgIAWL9+Pfbu3Vv2/pNPPolUKlVWj5H29nZccMEFALQ+V+l0uuIzYUCWZeZlH3zwQQDA6aefbhmJev/7349kMglFUfDwww+XvSf2v0AwtRBSJxA0MRs2bEA2mwWgRUqsmDNnDg466CAAwIsvvlj2nvF5teVXrlxZip6Yl3/ppZcAaFGhlStXWi5/3HHHWdZnXH7RokWYPXu25fL6emWzWWzYsMHyM43Krl27SgMqqm3/lpYWHHnkkQAqt5/Y/wLB1EJInUDQQAwPD+Oyyy7D2WefjTPOOAMf/vCH8e///u945ZVXLD//1ltvlf5esmRJ1XL197Zv3172uv58+vTpmD59uuWysixj4cKFNZc/6KCDqkarpk+fXhr8sWPHDsv1X7x4cd11t6q/0THuPzvboNr2M36m1vJi/wsEjY2QOoGggchkMtiyZQsikQgopejt7cXDDz+Mz33uc7juuutQKBTKPn/gwAEAWjNVPB6vWm5PTw8AYGBgwHJ5/f1qzJgxg8vy+ud19PL0961IJBJoa2uzXL7RMW7PWttA374TExOl5kpA7H+BYKohRr8KBA1Ad3c3Lr30Upx88slYsGABYrEYFEXBG2+8gV/96ld46aWXcP/99yORSODzn/98aTm9j1EikahZvv6+UQiMz+strwuDV8vXEhK9/PHx8YrlGx3j96m1DYzbN5VKlZpDxf4XCKYWIlInEDQAxxxzDD7+8Y9j6dKlpVGTsixj5cqV+P73v48TTjgBAHDnnXdajoAUCAQCQfMjpE4gaHAkScK//uu/AgBUVcWzzz5bei+ZTAJAKelsNfT39QiPjv683vJ6Z3yvltffr0a19W90jN+n1jYwbl/jMmL/CwRTCyF1AkETMH/+/FL+L2NaCL0v09jYWM0bo94Xqbu7u+x1ffl6fZX6+/u5LG/ue6WXp79vRSaTKc1OUK/vVqNh3J61toG+fVtbW8vERux/gWBqIaROIGhijCMDjSMhzVQbZag/HxoawvDwsOWyiqJg165dNZffuXNnRWJaHWPZixYtslz/WqMa7Y4QbUTsjuzUt0G17Wf8TK3lxf4XCBobIXUCQROwZ8+e0rygc+bMKb2+cuXKUifzF154wXLZvr4+7Ny5EwCwZs2asveMz9etW2e5/IYNG0od1M3Lr169GoDW4X3jxo2WyxvLrbb8zp07S/nazOjfKx6PV82F1qgsWLAAs2bNAlB9+6fT6VKCYPP2E/tfIJhaCKkTCEKOPml6rfd/+tOfAtD61x1//PGl95LJJE4++WQA2iAKvZnKyK233gpA64904oknlr03d+7cUmLb3//+9xUpUwDgt7/9LQBg9uzZOOqoo8reW7VqVSlprP45I4VCAb///e8BaFNpmWdMOOmkk9DS0gJKqeXyY2NjuOuuuwAAJ598cqkPWbNACMHZZ58NQJtDtbe3t+Izf/7zn5FOpyHLMs4888yy98T+FwimFkLqBIKQ09fXh0984hO46667sHfv3pLkqaqK119/Hf/2b/9Wmt7pve/9/+3dvUsrSwDG4dezsLiagATsrASxULCQFHaWIX4UFkabIDamNxC1MVZiYf4DJVXARlSCtZUKYmGRIhgrEUFIWLLIagQ9hdzBc67XFLc4Muf3wBY7zLALU+zL7HxMm41g/7G4uCjP81Sv17WysmJWx4ZhqGKxaD6K6XT602OklpaW5DiOarWa8vm8md/UbDZVKBTMSEsmk/nXBrOO4yiTyUiSzs/PVSgU1Gw2Jb3Pk8rn87q5ufml3kfRaFTpdFqSdHh4qGKxaLbpuL291erqqur1ujzPM2egfldBEMj3fXO9vr5Kel8E8LH892055ubmFIvF9PT0pFwup2q1Kkl6eXnRwcGBdnZ2JElTU1PmXNeP6H/g79Hx1m4YAMAfdX9/r1QqZe5d15XneQrDUK1Wy5Qnk0lls9lPz+c8OzvT+vq6WSUYiUQUhqGZ55RMJpXL5dTR0fHpO5TLZW1vb5v6kUhEj4+PJmAuLCx8+VHd3d1VsViU9D761N3dbUaNHMfR8vKyJicnP2379vamra0tHR8fm/qe55n2nZ2d2tjY0NjY2H8+/zuYnZ0156B+JZFIaG1t7ZeyarWqbDZrfrF3dXWp1WqZkbN4PK7NzU2z3c3v6H/g70CoA7655+dnlctlVSoV1Wo1+b6vIAjkuq56e3s1PDysiYmJtvOJ7u7uVCqVdHFxoUajIc/zNDAwoOnpaY2Pj7d9j2q1qr29PV1dXcn3fUWjUQ0NDWlmZkajo6Nt219eXmp/f1+VSkVBEKinp0cjIyNKpVIaHBxs2/7k5ERHR0e6vr5WGIaKxWKKx+Oan59XX19f2/Z/2v8JdZLUaDRUKpV0enqqh4cHua6r/v5+JRIJJZNJ/fjx9Y8X+h+wH6EOAADAAsypAwAAsAChDgAAwAKEOgAAAAsQ6gAAACxAqAMAALAAoQ4AAMAChDoAAAALEOoAAAAsQKgDAACwAKEOAADAAoQ6AAAACxDqAAAALECoAwAAsAChDgAAwAKEOgAAAAsQ6gAAACxAqAMAALAAoQ4AAMACPwGAQuvaG7D/PAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax,plot = psichi_slice.plot()\n", + "\n", + "ax.scatter([coord.icrs.ra.deg], [coord.icrs.dec.deg], transform = ax.get_transform('world'), marker = 'x', color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "fa7196b6-5981-4951-88ce-16be5f7abbe6", + "metadata": {}, + "source": [ + "You can also used it the same way as a point source response obtained from a exposure map. e.g." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "393d7309-64f4-4e1d-86a0-82a3ee2f4ea7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Expected counts')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHOCAYAAACIKE30AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGVUlEQVR4nO3deVyVdd7/8Te7CK6gSGgmSgg1auaSW+67cueCtlg6pU4uaWVpOi13qdli41hNNpYT4zSOqGVaua+MqLdZkinimmQqKCibIOv5/eGPM3PicAnHA+eAr+fj0WM63+18Lue+bt9zXd9zXS4mk8kkAAAAWOXq6AIAAACcGWEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAAGEJAADAgLujC6hOsrOztXLlSsXHx+vYsWPKzMzU7NmzNXDgQJvWmzZtmuLi4qz2ubm5aefOnbdQLQAAKAvCkh2lp6crKipKAQEBatGihQ4dOnRL6z3++OMaMmSIRVtOTo7ee+89tW/f/pbWBgAAZUNYsiM/Pz+tXbtWfn5+SkhI0MSJE29pPWuBaMuWLZKkvn373tLaAACgbAhLduTp6Sk/P78yjd2/f78+//xznThxQi4uLmrdurUmTZqkZs2aGc7bunWrvL291bVrV3uUDAAAboIN3g6wefNmzZo1S97e3vrDH/6gsWPH6uzZs5oyZYouXrxY6ry0tDQdPHhQXbt2lbe3dyVWDADA7YuwVMmys7O1ePFiDRkyRO+++65GjBihRx99VB9//LEk6fPPPy917vbt21VYWMgtOAAAKhG34SrZwYMHlZWVpd69eystLc3c7urqqrCwMP3www+lzt22bZvq1q2rdu3aVUKlAABAIixVul9//VWS9Oyzz1rt9/Hxsdp+4cIFHT16VMOHD5e7O/+1AQBQWfhbt5IVFRVJkl5++WXVr1+/RL+bm5vVeVu3bpXEr+AAAKhshKVKFhQUJEnlvp22bds2BQUF6Z577qmo0gAAgBVs8K5kHTp0kI+Pjz7//HMVFBSU6P/vfUzFTpw4ocTERPXp06cSKgQAAP+NK0t29sUXXygrK0upqamSpNjYWF26dEmSNGLECPn6+ur555/X/Pnz9dRTT6l3796qW7eukpOTtX//ft1777167rnnLNbkFhwAAI7jYjKZTI4uojoZNWqUkpKSrPZFR0crMDBQknTo0CH985//VHx8vPLy8tSgQQO1atVKw4cPV2hoqHlOUVGRIiMjVa9ePX366aeVcgwAAOA/CEsAAAAG2LMEAABggLAEAABggLB0i65fv67jx4/r+vXrji4FAABUAKf8NVx2drZWrlyp+Ph4HTt2TJmZmZo9e7YGDhx407nTpk1TXFyc1T43Nzft3LnT/Lm0zdgRERF64YUXylRrYmKiJkyYoE8++cRiYzYAAKgenDIspaenKyoqSgEBAWrRooUOHTpU5rmPP/64hgwZYtGWk5Oj9957T+3bty8xPiQkRKNHj7Zoa9y4sW2FAwCAascpw5Kfn5/Wrl0rPz8/JSQkaOLEiWWeay0QbdmyRZL15xT5+/urX79+thcLAACqNafcs+Tp6Sk/Pz+7rbd161Z5e3ura9euVvvz8/OVk5Njt+8DAADVh1NeWbKntLQ0HTx4UL169ZK3t3eJ/h9++EH9+vVTYWGhGjVqpMjISEVGRjqgUgAA4IyqfVjavn27CgsLrd6CCw4OVqtWrdSkSRNlZGRo48aN+uCDD5SSkqJJkyZZXS8lJcX8KhPpxgZvAABQfVX7sLRt2zbVrVtX7dq1K9H31ltvWXweNGiQXnzxRa1atUojRoxQw4YNS8xZv369oqKiKqpcAADgZKp1WLpw4YKOHj2q4cOHy9395ofq4uKiUaNG6cCBA4qLi7O68TsiIkJdunQxf05MTNS8efPsWjcAAHAe1Tosbd26VZL1X8GVpvhqUkZGhtV+f39/+fv733pxAACgSnDKX8PZy7Zt2xQUFKR77rmnzHMuXLggSapbt24FVQUAAKqSKh2WUlJSlJiYqIKCghJ9J06cUGJiovr06WN1bkZGhgoLCy3aCgoK9M9//lMeHh667777KqRmAABQtTjtbbgvvvhCWVlZ5l+excbG6tKlS5KkESNGyNfXV0uXLtWmTZsUHR2twMBAi/k3uwUXGxur5cuXq3v37goMDFRmZqa2bt2qn3/+WRMnTrTrc54AAEDV5bRhKTo62uK9bTExMYqJiZEk9evXT76+vqXOLSoq0o4dO3T33XfrzjvvtDomODhYTZs21datW5WWliZ3d3eFhITo9ddfV8+ePe17MAAAoMpyMZlMJkcXUZUdP36cF+kCAFCNVek9SwAAABWNsAQAAGDAafcsAZXlzP6L+n7NSeVfL/mrSmfmUcNd7SJD1Kxj4M0HAwBsRljCbe/7NSeVfuGao8uwQa4Orj5JWAKACkZYwm2v+IqSi4vkXc/LwdWUTc7VXJlMqnJXwwCgKiIsAf+fdz0vPfphL0eXUSYrpu5Q9pVcR5cBALcFNngDAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYICwBAAAYcHd0AQBsl3M1Vyum7nB0GWXmUcNd7SJD1KxjoKNLAYAyIywBVZBHDXdJuTKZpOwruY4upxxydXD1ScISgCqFsARUQe0iQ3Rw9UnlXy9wdClllnP1RrirSjUDgERYAqqkZh0Dq9zVmRVTd1Sxq2AAcINThqXs7GytXLlS8fHxOnbsmDIzMzV79mwNHDjwpnM3btyoBQsWWO1bu3at/Pz8LNr27Nmjzz77TImJiapbt64GDRqkJ554Qu7uTvlHAwAAKplTJoL09HRFRUUpICBALVq00KFDh8q9xlNPPaXAQMv/5e3r62vxef/+/frjH/+oNm3aaPr06Tpz5oyWL1+uq1evasaMGbd0DAAAoHpwyrDk5+dnvgqUkJCgiRMnlnuNjh07qmXLloZjPvroIzVv3lzvvfee+UpSzZo19fnnn2vkyJFq2rSpTfUDAIDqwymfs+Tp6VnidpktsrOzVVhYaLXv7NmzOnv2rIYOHWpxy23YsGEymUzatWvXLX8/AACo+pzyypI9TJ8+XTk5OfLw8FD79u01ZcoUNWnSxNx/4sQJSVJoaKjFPH9/fzVo0EAnT56s1HoBAIBzqnZhycvLSwMHDtR9990nHx8fHT9+XKtWrdLkyZP16aefKiAgQJKUmpoqSVavYPn5+Zn7fyslJcWiLzExsQKOAgAAOItqF5Z69eqlXr16mT9369ZNHTp00DPPPKN//OMfeuGFFyRJeXl5km7c8vstT09PZWdnW11//fr1ioqKsn/hAADAKVW7sGRNq1atFB4eru+//97cVhySikPTf8vLy5OXl5fVtSIiItSlSxfz58TERM2bN8/OFQMAAGdxW4QlSWrYsKF++eUX8+fi22+pqanmW3PFUlNTFRYWZnUdf39/+fv7V1yhAADAqTjlr+EqwoULF1S3bl3z55CQEEnS8ePHLcalpKTo8uXL5n4AAHB7q9JhKSUlRYmJiSoo+M+7ptLS0kqM27dvn44fP64OHTqY25o1a6Y777xTX3/9tcXjBb766iu5uLioe/fuFVo7AACoGpz2NtwXX3yhrKws8y/PYmNjdenSJUnSiBEj5Ovrq6VLl2rTpk2Kjo42P6170qRJuvvuuxUaGiofHx+dOHFCGzZsUMOGDfX4449bfMfkyZM1e/ZszZgxQ71799aZM2e0du1aDRkyRHfddVelHi8AAHBOThuWoqOjlZSUZP4cExOjmJgYSVK/fv1KvLqkWK9evbR//3599913un79uvz8/DR06FCNGzdO9evXtxjbuXNnzZs3T1FRUVq8eLHq1KmjMWPGaNy4cRV2XAAAoGpx2rC0atWqm46ZM2eO5syZY9E2YcIETZgwoczf061bN3Xr1q3c9QEAgNtDld6zBAAAUNEISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAYISwAAAAbcHV0Aqpcz+y/q+zUnlX+9wNGllFnO1VxHlwAAcGKEJdjV92tOKv3CNUeXYROPGpwOAICS+NsBdlV8RcnFRfKu5+XgasrOo4a72kWGOLoMAIATcrqwlJ2drZUrVyo+Pl7Hjh1TZmamZs+erYEDB9507vfff6+tW7fq8OHDunz5surXr6+2bdvqqaeekr+/v8XYadOmKS4ursQaHTp00MKFC+11OLct73peevTDXo4uA04o52quVkzd4egyyqw4SDfrGOjoUgA4iNOFpfT0dEVFRSkgIEAtWrTQoUOHyjz3448/VkZGhnr06KEmTZrowoUL+vLLL7Vv3z4tW7ZMfn5+FuMbNGigP/zhDxZtvx0DwD5u3ObMlckkZV+pSvvEcnVw9UnCEnAbc7qw5Ofnp7Vr18rPz08JCQmaOHFimedOmTJFrVq1kqvrf37k16FDB02bNk1ffvmlJkyYYDHe19dX/fr1s1vtAErXLjJEB1dXvc3/JpOqVM0A7M/pwpKnp6fNV3fatGljta127dpKTEy0OqegoEB5eXmqWbOmTd8JoGyadQyscldnVkzdUcWuggGoCE4XluwtOztbOTk5qlOnTom+c+fOqX///srPz1f9+vU1ZMgQjRs3Tu7u1f6PBQAAlFG1TwWrV69Wfn6+evWy3Gx8xx136L777lNwcLCuX7+uXbt2afny5Tp37pxef/31UtdLSUlRamqq+XNpV6wAAED1YNewZDKZ9Ouvv8rT01MBAQH2XNomcXFxioqKUs+ePXX//fdb9L300ksWn/v37693331XX3/9tUaNGqV77rnH6prr169XVFRURZUMAACcjE1haffu3dqzZ4+mTZumWrVqSZIuXryol156yXylpUePHnrllVfk5uZmv2rLITExUS+//LKCg4M1a9asMs0ZPXq0vv76ax08eLDUsBQREaEuXbpYfM+8efPsUjMAAHA+NoWldevW6cqVK+agJEkffvihzp49q7Zt2yojI0O7du3S/fffr6FDh9qt2LJKTk7WjBkz5OPjo7fffrvMm7cbNmwoScrMzCx1jL+/f4lnNgEAgOrLphfpnj17VmFhYebP2dnZ2rdvn3r16qVFixbpr3/9q5o2baoNGzbYrdCySk9P14wZM5Sfn6+FCxeWK9hcuHBBklS3bt0Kqg4AAFQ1NoWljIwM1a9f3/z58OHDKiwsVO/evSVJ7u7uateunc6fP2+fKq1ISUlRYmKiCgr+8/yTnJwczZw5UykpKXrnnXfUpEkTq3OvXbumvLw8izaTyaTly5dLktq3b19hdQMAgKrFpttwPj4+ysjIMH8+dOiQXF1d1bp16/8s7O6u69ev21TUF198oaysLPOvzmJjY3Xp0iVJ0ogRI+Tr66ulS5dq06ZNio6OVmDgjWe3zJ07V8eOHdOgQYOUmJho8Us1b29vdevWTZJ04sQJvf766+rTp4+CgoKUm5urf//73/rpp580dOhQhYaG2lQ3AACofmwKS3feeaf27t2r8ePHy9XVVdu2bdPdd99tsYcpKSlJ9erVs6mo6OhoJSUlmT/HxMQoJiZGktSvXz/5+vpanXfq1ClJ0oYNG0rcAmzUqJE5LAUEBKh169aKiYnRlStX5OrqqqZNm2rGjBmKiIiwqWYAAFA92RSWRowYoddee00jRowwX0EaP368xZj4+HjdfffdNhW1atWqm46ZM2eO5syZU+550o1nLBk9SwkAAKCYTWGpR48eeu655/Ttt99Kknr16qWBAwea++Pi4nTt2jV16NDBPlUCAAA4iM0PpXzooYf00EMPWe1r06aNQ34JBwAAYG82/RouKipKcXFxhmMOHz7Mk64BAECVZ1NY+uyzz24alopfNQIAAFCV2RSWyqKgoECurhW2PAAAQKWwOc24uLiU2pefn68ff/zR5kcHAAAAOIsyb/AePXq0xedVq1ZZ3cRdVFSk9PR05eXlaciQIbdeIQAAgAOVOSyZTCbzv7u4uMhkMlm0mRd0d9ddd92ltm3bauzYsfapEgAAwEHKHJb++4GP3bt316hRozRu3LiKqAkAAMBp2PScpejo6FJfOQIAAFCd2BSWGjVqZO86AAAAnJLNT/BOS0vThg0blJCQoKysLBUWFpYY4+Lioj//+c+3Uh8AAIBD2RSWTp8+rWeffVaZmZlWN3kXM3q8AAAAQFVgU1j6y1/+ooyMDD3xxBMaPHiwGjRoIDc3N3vXBgAA4HA2haWjR4+qa9eueuqpp+xdDwAAgFOx6Qne7u7uCgoKsnctAAAATsemsNSmTRsdP37c3rUAAAA4HZvC0uTJk3XmzBn961//snc9AAAATsWmPUv/+Mc/FBwcrL/+9a9av369WrRoIR8fH6tjX3rppVsqEAAAwJFsCksbN240//uFCxd04cIFq+NcXFwISwAAoEqz+XUnAAAAtwNedwIAAGDApg3eAAAAtwubrixt2rSpzGMHDBhgy1cAAAA4BZvC0oIFC2763jeTySQXFxfCEgAAqNJsCkul/cLt2rVrOnHihLZt26YuXbqoc+fOt1QcAACAo9kUlgYOHGjYHxERoWeffVYPPfSQLcsDAAA4jQrZ4H3vvfeqS5cuWrZsWUUsDwAAUGkq7NdwjRo10unTpytqeQAAgEpRIWHJZDLpxx9/lKenZ0UsDwAAUGls2rMUFxdntb2wsFApKSnavHmzEhIS1L9//1upDQAAwOFsCkvTp083fHSAyWTS7373O02dOtXmwgDAWeRczdWKqTscXUaZedRwV7vIEDXrGOjoUoBqwaawNHbsWKthydXVVb6+vgoLC1N4ePgtFwcAjuRRw11SrkwmKftKrqPLKYdcHVx9krAE2IlNYenJJ5+0dx0A4HTaRYbo4OqTyr9e4OhSyizn6o1wV5VqBpydTWEJAG4HzToGVrmrMyum7qhiV8EA53dLYenixYvaunWrTp06pWvXrsnHx0ctWrRQ3759FRhYtf4fDAAAgDU2h6XVq1fr448/VmFhoUwmk7l99+7d+vvf/66nn35akZGRNq2dnZ2tlStXKj4+XseOHVNmZqZmz5590yeHF8vMzNTHH3+smJgY5ebmKiwsTJMnT1ZoaGiJsXv27NFnn32mxMRE1a1bV4MGDdITTzwhd3cuugEAABvD0t69e/Xhhx+qTp06GjVqlO677z75+fnpypUr+uGHH7Rq1Sr95S9/UePGjdWpU6dyr5+enq6oqCgFBASoRYsWOnToUJnnFhUVadasWTp9+rQefvhh1alTR1999ZWmT5+uTz75RE2aNDGP3b9/v/74xz+qTZs2mj59us6cOaPly5fr6tWrmjFjRrnrBgAA1Y9NYSk6Olq1a9fWp59+qoYNG5rbGzVqpPDwcPXt21fjx49XdHS0TWHJz89Pa9eulZ+fnxISEjRx4sQyz921a5eOHDmiN954Qz169JAk9erVS48++qg+++wzvfrqq+axH330kZo3b6733nvPfCWpZs2a+vzzzzVy5Eg1bdq03LUDAIDqxaYneJ88eVI9e/a0CEr/LSAgQD179tSJEydsKsrT01N+fn42zd29e7fq16+vBx980NxWt25d9ezZU3v27FFeXp4k6ezZszp79qyGDh1qcctt2LBhMplM2rVrl03fDwAAqhebwlJ+fr68vb0Nx3h7eys/P9+mom7FiRMnFBISIldXy0MLCwvT9evXde7cOfM4SSX2Mfn7+6tBgwY6efKk1fVTUlJ0/Phx8z+JiYkVcBQAAMBZ2HQbrkmTJoqNjdWECROsboQuKCjQ3r17LfYHVZYrV66odevWJdqLr1SlpqaqefPmSk1NtWj/7dji/t9av369oqKi7FcwAABwajaFpf79++ujjz7SCy+8oEmTJllcnUlISNDSpUt17tw5TZ482W6FllVubq7VF/gWt+Xm3nj+SPHtuNLGZmdnW10/IiJCXbp0MX9OTEzUvHnzbrluAADgnGwKSyNHjtSPP/6o2NhY/eEPf5CXl5fq1aunq1evKjc3VyaTSV27dtXIkSPtXe9NeXl5mYPQfytu8/LykvSfkFTa2OJxv+Xv7y9/f397lQsAAJycTWHJzc1Nb775pjZt2qRNmzbp1KlTSk5Olo+Pj8LDwzVgwAD179/f3rWWSf369a3eQvvtbbf/vi0XEBBQYmxYWFgFVwoAAKqCW3ry4oABAzRgwAB71WIXISEhOnz4sIqKiiw2eR87dkw1atQw76MKCQmRJB0/ftzipb8pKSm6fPmyIiIiKrdwAADglGz6NZyzSElJUWJiogoK/vPCyO7du+vKlSuKiYkxt6WlpWnnzp3q3Lmz+fZbs2bNdOedd+rrr79WYWGheexXX30lFxcXde/evfIOBAAAOC2bn+D97bff6rnnnrO6fyclJUWLFi3S0KFD9cADD9hU2BdffKGsrCzz7bPY2FhdunRJkjRixAj5+vpq6dKl2rRpk6Kjo83vouvRo4fWrFmjBQsW6OzZs+YneBcVFenJJ5+0+I7Jkydr9uzZmjFjhnr37q0zZ85o7dq1GjJkiO666y6b6gYAANWLTWFp7dq1SklJKXWjs7+/v5KSkrR27Vqbw1J0dLSSkpLMn2NiYsxXi/r16ydfX1+r89zc3PTOO+/oo48+0hdffKHc3Fy1bNlSs2fP1p133mkxtnPnzpo3b56ioqK0ePFi1alTR2PGjNG4ceNsqhkAAFQ/NoWlU6dOqXPnzoZjwsLCtG/fPpuKkqRVq1bddMycOXM0Z86cEu21atXSrFmzNGvWrJuu0a1bN3Xr1s2mGgEAQPVn056lzMxM1a1b13BMnTp1lJ6ebsvyAAAATsOmsFSnTh3za0NKc+7cOdWqVcumogAAAJyFTWGpdevW2rt3r06fPm21/9SpU4qNjVWbNm1upTYAAACHs2nP0mOPPaaYmBhNmTJFDz/8sNq1a6cGDRro8uXL+u677xQdHS0XFxeNGTPG3vUCAABUKpvCUvPmzfXyyy9rwYIFioqKsnixrMlkkre3t1577TU1b97cXnUCAAA4hM1P8O7Ro4dat26tjRs3KiEhQVlZWapVq5ZatmypgQMH3nQDOAAAQFVwS687qVevnh599FF71QIAAOB0qvTrTgAAACoaYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMAAYQkAAMBAmZ6zlJycbPMXBAQE2DwXAADA0coUlkaNGiUXF5dyL+7i4qKdO3eWex4AAICzKFNY6t+/f4mwdOHCBR0+fFi+vr5q0aKF6tevrytXrujUqVPKyspSq1atdMcdd1RI0QAAAJWlTGFpzpw5Fp9//vlnTZkyRWPGjNGYMWPk7e1t7svJydE//vEPffXVV5oxY4Z9qwUAAKhkNr0bbsmSJWrZsqUmTJhQos/b21sTJ05UQkKCPv74Y7311lu3XCQAoHxyruZqxdQdji6jzDxquKtdZIiadQx0dClACTaFpSNHjmjYsGGGY8LCwrR27VqbigIA2MajhrukXJlMUvaVXEeXUw65Orj6JGEJTsmmsFRUVKTz588bjvn1119lMplsKgoAYJt2kSE6uPqk8q8XOLqUMsu5eiPcVaWacXuxKSy1bt1au3fv1vbt29W7d+8S/du2bVNMTIw6dux4ywUCAMquWcfAKnd1ZsXUHVXsKhhuNzaFpUmTJunw4cOaO3euVqxYod/97neqV6+erl69qp9++kmnT59WzZo19fTTT9u7XgAAgEplU1i666679Je//EV//vOf9eOPP+rUqVMW/a1bt9Zzzz2nu+66yx41AgAAOIxNYUmSgoOD9f777ys5OVmnT59WVlaWfH191bx5c57aDQAAqg2bw1KxgIAAwhEAAKi2biks5efn6+DBg/rll190/fp1jR07VpKUm5ur7Oxs1alTR66uvKsXAABUXTaHpT179mjhwoVKS0uTyWSSi4uLOSydPn1akydP1h//+Ef17dvXbsUCAABUNpsu+/z000969dVX5eHhoWeeeUZ9+vSx6A8PD1dQUJB2795tlyIBAAAcxaYrS3//+9/l6+urTz75RHXr1lVGRkaJMaGhoTp27NgtFwgAAOBINl1Zio+PV9euXVW3bt1SxzRs2FBXrlyxtS4AAACnYFNYys/PV82aNQ3HZGVlycXFxaaiAAAAnIVNYemOO+5QQkKC4ZijR4/qzjvvtKkoAAAAZ2FTWOrevbuOHDmiDRs2WO3/17/+pZ9//lm9evW6peIAAAAczaYN3g8//LB2796td955R9u2bVNeXp4kacmSJTp69KiOHDmiFi1aaPjw4XYtFgAAoLLZFJZq1qypDz/8UIsWLdLOnTtVVFQkSVq5cqVcXFzUs2dPPf/88/L09LSpqLy8PC1btkxbtmxRZmammjdvrvHjx6t9+/aG80aNGqWkpCSrfUFBQfrXv/5l/vzggw9aHTdx4kSNGTPGproBAED1Y/NDKWvVqqVXX31V06dPV0JCgjIyMuTj46OWLVuqfv36t1TUggULtGvXLkVGRqpx48bauHGjZs6cqcWLF6tVq1alznvmmWeUk5Nj0ZaUlKRPP/3UatBq166dBgwYYNEWEhJyS7UDAIDq5ZbfDVenTh117NjRHrVIuvFYgu3bt2vSpEl65JFHJEn9+/fXuHHjtGTJEi1ZsqTUud26dSvR9ve//12SrD5JvEmTJurXr5+dKgcAANWRTRu8e/ToYQ4hpVm+fLl69uxZ7rV3794tNzc3RUREmNu8vLw0ePBgHT16VMnJyeVab9u2bQoMDNTvfvc7q/25ubnKzc0td50AAOD2YFNYMplMMplMZRpXXidPnlTjxo3l4+Nj0R4WFiZJOnXqVJnXOnHihBITE0u8jqXYpk2b1K9fP/Xt21ePP/64tm7dWu56AQBA9XbLt+FKk5aWJi8vr3LPS01NlZ+fX4n24raUlJQyr1Ucfqzdgrv33nvVs2dPBQYGKjU1VV9++aXmzp2ra9eu6aGHHip1zZSUFKWmppo/JyYmlrkeAABQ9ZQ5LG3atMni88mTJ0u0SVJRUZEuXbqkzZs3q1mzZuUuKDc3Vx4eHiXai39ZV9ZbZkVFRdqxY4dCQkJ01113lej/6KOPLD4PGjRI48eP19KlSzVw4MBSg9769esVFRVVphoAAEDVV+awtGDBAvPrS1xcXBQbG6vY2NgS44pvvXl5een3v/99uQvy8vJSfn5+ifbiZzmV9WpVXFycLl++rMjIyDKN9/Dw0PDhw/Xee+/p+PHjpf7qLiIiQl26dDF/TkxM1Lx588r0HQAAoOopc1h66aWXzP/+1ltvqWvXruratWuJcW5ubqpVq5buvfde1apVq9wF+fn56fLlyyXai299+fv7l2mdrVu3ytXVtdT9StY0bNhQkpSRkVHqGH9//zLXAAAAqr4yh6WBAwea/z0uLk7dunWzGpZuVYsWLXTo0CFdu3bNYpN3fHy8uf9m8vLytHv3brVp06ZcwebChQuSpLp165avaAAAUG3Z9Gu42bNnV0hQkm48lqCwsFDr1683t+Xl5WnDhg0KDw9XQECAJCk5ObnUzdX79+9XVlaW1Y3d0o3N57+VnZ2tNWvWqE6dOgoNDb31AwEAANWCTb+G27t3r7799ls999xzVq/cpKSkaNGiRRo6dKgeeOCBcq0dHh6unj17aunSpUpLS1NQUJA2bdqkpKQkzZo1yzxu/vz5iouLU0xMTIk1tm7dKk9PT3Xv3t3qd3z55Zfas2ePOnfurICAAKWmpmrDhg1KTk7WH//4R6sbzAEAwO3JprC0du1apaSklHqLy9/fX0lJSVq7dm25w5IkzZkzRwEBAdq8ebOysrIUHByst99+W23atLnp3GvXrmnfvn164IEH5Ovra3XM7373Ox05ckTffPONMjIyVKNGDYWFhWnWrFm6//77y10vAACovmwKS6dOnVLnzp0Nx4SFhWnfvn02FeXl5aXJkydr8uTJpY55//33rbb7+Pho27Zthuu3b9/+pi/lBQAAkGzcs5SZmXnTTdB16tRRenq6LcsDAAA4DZvCUp06dXTu3DnDMefOnbPp0QEAAADOxKaw1Lp1a+3du1enT5+22n/q1CnFxsaWaY8RAACAM7Npz9Jjjz2mmJgYTZkyRQ8//LDatWunBg0a6PLly/ruu+8UHR0tFxcXjRkzxt71AgAAVCqbwlLz5s318ssva8GCBYqKirJ4V5rJZJK3t7dee+01NW/e3F51AgAAOIRNYUm68fDI1q1ba+PGjUpISFBWVpZq1aqlli1bauDAgTwFGwAAVAs2hyVJqlevnh599FF71QIAAOB0bNrg/VsZGRlKTk62x1IAAABOxeYrS1lZWVq2bJl27Nih9PR0ubi4aOfOnZJuvPT2s88+0/jx43nPGgAAqNJsurKUkZGhp59+Wl9++aUaNmyopk2bymQymfubN2+uI0eOaOvWrXYrFAAAwBFsCkufffaZzp07p9dee02ffPKJevToYdHv5eWl1q1b64cffrBHjQAAAA5jU1iKjY1Vp06d1KtXr1LHBAYG6vLlyzYXBgAA4AxsCkupqam66667DMd4eHgoJyfHluUBAACchk1hqXbt2rp06ZLhmF9++UV+fn42FQUAAOAsbPo1XOvWrRUbG6tLly6pYcOGJfrPnj2r//u//9OgQYNuuUAAwO0h52quVkzd4egyysWjhrvaRYaoWcdAR5eCCmRTWHr88ce1Z88eTZkyRRMmTFB6erqkGyHpyJEj+vTTT+Xp6amHH37YrsUCAKofjxruknJlMknZV3IdXU455erg6pOEpWrO5nfD/e///q/mz5+vN998U9KNd8KNGzdOJpNJNWvW1P/+7/+qSZMmdi0WAFD9tIsM0cHVJ5V/vcDRpZRLztUbAa+q1Y3ys/mhlF27dlV0dLQ2bdqk+Ph4ZWRkyMfHR+Hh4bwbDgBQZs06BlbJKzMrpu6oglfCYItbejdc7dq1NWrUKHvVAgAA4HTs8m64goICZWZmqqCAS5EAAKB6sfnKUmFhob744gtt3LhRZ8+elclkkouLi+666y4NHDhQw4cPl7v7LV24AgAAcDib0kx2drZeeOEFxcfHy8XFRQ0bNlT9+vV15coVnT17Vh999JF2796thQsXytvb2941AwAAVBqbwtLf/vY3HT16VH369NHEiRMVEBBg7ktOTtZf//pXbd++XcuWLdPUqVPtViwAAEBls2nP0s6dOxUaGqpXXnnFIihJUkBAgF599VWFhoZq586ddikSAADAUWwKS+np6WrXrp3hmPvvv18ZGRk2FQUAAOAsbApLjRs31tWrVw3HpKWlKSgoyKaiAAAAnIVNYWnkyJHasWOHfv75Z6v9p0+f1o4dOxQZGXlLxQEAADiaTRu8GzdurLZt22rChAkaMGCAWrVqpXr16unq1av68ccftXnzZnXo0EFBQUGKi4uzmNumTRs7lA0AAFA5bApL06dPl4uLi0wmk77++mt988035j6TySRJ2rt3r/bu3Vti7q5du2yrFAAAwAFsCktjx46Vi4uLvWsBAABwOjaFpSeffNLedQAAADglu7wbrjRFRUUVuTwAAECFsyks/elPf1JeXp7hmIsXL/L0bgAAUOXZFJbWrVuniRMnlvrogO3bt+upp57SsWPHbqk4AAAAR7MpLE2YMEHnzp3TxIkT9eWXX5rbc3Jy9Oabb2ru3Lny8vLSu+++a7dCAQAAHMGmDd5jxoxR27ZtNXfuXL3//vs6cOCAhg8frj//+c86f/68OnXqpJdeekl169a1c7kAAACVy6awJEnh4eFatmyZFi1apC1btmj//v3y9PTUs88+q2HDht1SUXl5eVq2bJm2bNmizMxMNW/eXOPHj1f79u0N5/3tb39TVFRUiXZPT09t27atRPs333yjlStXKikpSQ0aNNDIkSM1YsSIW6odAABULzaHJUnKzs7WpUuXJN14GKWrq6tq1Khxy0UtWLBAu3btUmRkpBo3bqyNGzdq5syZWrx4sVq1anXT+TNmzJC3t7f5s6trybuN69at03vvvafu3btr9OjROnz4sBYvXqzr16/rscceu+VjAAAA1YPNYWnPnj16++23lZGRof/5n/9Rt27d9M477+jtt9/WgQMH9MILL8jHx6fc68bHx2v79u2aNGmSHnnkEUlS//79NW7cOC1ZskRLliy56Rrdu3c3vAWYm5urTz/9VJ06ddLcuXMlSUOHDlVRUZGWL1+uiIgI1apVq9y1AwCA6sfmRwe8/PLLkqT58+fr+eefV/v27fXZZ5+pe/fu2rFjh37/+9/rp59+Kvfau3fvlpubmyIiIsxtXl5eGjx4sI4ePark5OQyrXPt2jXzq1d+64cfflB6eroeeughi/Zhw4YpJydH+/btK3fdAACgerL50QH33XefPvvsM3Xt2tXc7uvrq9dff10vvvii0tPTNX369HKvffLkSTVu3LjEVamwsDBJ0qlTp266xujRozVw4EANGDBAc+fO1ZUrV0p8hyS1bNnSoj00NFSurq46ceJEuesGAADVk0234SZOnKhHH3201PfDDRkyRK1bt9Ybb7xR7rVTU1Pl5+dXor24LSUlpdS5tWrV0vDhw3XPPffIw8NDhw8f1tq1a3Xs2DF98skn5gCWmpoqNzc31atXz2K+h4eHateurdTU1FK/IyUlxaI/MTGxXMcHAACqFpvCUlk2QDdp0qRM+4t+Kzc3Vx4eHiXaPT09zf2liYyMtPjco0cPhYWFae7cuVq7dq3GjBljXsPd3fqhe3p6Gn7H+vXrrf7iDgAAVE+39Gs4I/n5+crLyys1lJTGy8tL+fn5JdqLX6/i5eVVrvX69u2rv/zlL/r+++/NYcnLy0sFBQVWx+fl5Rl+R0REhLp06WL+nJiYqHnz5pWrJgAAUHWUec/S6NGjtWbNGou2AwcO6MMPP7Q6/vPPP9fgwYPLXZCfn5/V22DFbf7+/uVes2HDhsrIyLD4jsLCQl29etViXH5+vjIyMqzeBizm7++v0NBQ8z9NmzYtdz0AAKDqKPNln6SkJGVlZVm0HT16VGvWrLHrC3NbtGihQ4cO6dq1axabvOPj48395WEymZSUlKSQkBBzW/G/JyQkqFOnTub2hIQEFRUVWYwFAMBIztVcrZi6w9FllJlHDXe1iwxRs46Bji6lyqiw23C26tGjh1auXKn169ebn7OUl5enDRs2KDw8XAEBAZKk5ORkXb9+3eLKTlpaWonnK3311VdKS0tTx44dzW1t27ZV7dq1tW7dOouwtG7dOtWoUcOiDQAAazxquEvKlckkZV8pfa+r88nVwdUnCUvl4HRhKTw8XD179tTSpUuVlpamoKAgbdq0SUlJSZo1a5Z53Pz58xUXF6eYmBhzW2RkpHr16qXg4GB5enrqp59+0vbt2xUSElLiuU1PPfWUFi1apFdffVUdOnTQjz/+qC1btmjChAmqXbt2pR4zAKDqaRcZooOrTyr/uvU9sM4o5+qNcFeVanYGTheWJGnOnDkKCAjQ5s2blZWVpeDgYL399ttq06aN4by+ffvqyJEj2r17t/Ly8hQQEKBHHnlETzzxRInXsAwbNkzu7u6Kjo5WbGysGjZsqKlTp5b4RR0AANY06xhY5a7OrJi6o4pdBXMOThmWvLy8NHnyZE2ePLnUMe+//36JtpkzZ5bre4YOHaqhQ4eWuz4AAHD7sOkJ3gAAALeLcl1Z2rJli44ePWr+fP78eUnSiy++WGJscR8AAEBVVq6wdP78eash6MCBA1bHl/Y6FAAAgKqizGEpOjq6IusAAABwSmUOS40aNarIOgAAAJwSG7wBAAAMEJYAAAAMEJYAAAAMOOVDKXHDmf0X9f2aqvcofQAAqhPCkhP7fs1JpV+45ugybHLjBZMAAFR9/I3mxIqvKLm4SN71vBxcTdl51HBXu8gQR5cBAIBdEJaqAO96Xnr0w16OLgMAgNsSG7wBAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMEJYAAAAMuDu6AGvy8vK0bNkybdmyRZmZmWrevLnGjx+v9u3bG87bvXu3duzYoYSEBF25ckUNGzZUp06dNHbsWNWqVcti7KhRo5SUlFRijYiICL3wwgt2PR4AAFB1OWVYWrBggXbt2qXIyEg1btxYGzdu1MyZM7V48WK1atWq1HkLFy6Un5+f+vXrp4CAAJ0+fVpr167V/v37tWzZMnl5eVmMDwkJ0ejRoy3aGjduXCHHBAAAqianC0vx8fHavn27Jk2apEceeUSS1L9/f40bN05LlizRkiVLSp37xhtv6L777rNoCw0N1ZtvvqmtW7dqyJAhFn3+/v7q16+f/Q8CAABUG063Z2n37t1yc3NTRESEuc3Ly0uDBw/W0aNHlZycXOrc3wYlSXrwwQclSWfPnrU6Jz8/Xzk5ObdWNAAAqLac7srSyZMn1bhxY/n4+Fi0h4WFSZJOnTqlgICAMq+XmpoqSapbt26Jvh9++EH9+vVTYWGhGjVqpMjISEVGRtpePAAAqHacLiylpqbKz8+vRHtxW0pKSrnWW7Fihdzc3NS9e3eL9uDgYLVq1UpNmjRRRkaGNm7cqA8++EApKSmaNGlSqeulpKSYA5gkJSYmlqseAABQtThdWMrNzZWHh0eJdk9PT3N/WW3dulXffvutHnnkETVp0sSi76233rL4PGjQIL344otatWqVRowYoYYNG1pdc/369YqKiipzDQAAoGpzurDk5eWl/Pz8Eu15eXnm/rL48ccf9fbbb6tDhw6aMGHCTce7uLho1KhROnDggOLi4krd+B0REaEuXbqYPycmJmrevHllqgkAAFQ9TheW/Pz8dPny5RLtxbe+/P39b7rGqVOnNHv2bAUHB+uNN96Qu3vZDrP4alJGRkapY/z9/ctUAwAAqB6cLiy1aNFChw4d0rVr1yw2ecfHx5v7jZw/f14vvPCC6tWrp3feeUc1a9Ys83dfuHBBkvXN4AAAVBc5V3O1YuoOR5dRZh413NUuMkTNOgY65PudLiz16NFDK1eu1Pr1683PWcrLy9OGDRsUHh5u/iVccnKyrl+/rqZNm5rnpqamasaMGXJ1ddXChQtLDT0ZGRny8fGRm5ubua2goED//Oc/5eHhYfURBAAAVHUeNdwl5cpkkrKvlH0PsOPl6uDqk4SlYuHh4erZs6eWLl2qtLQ0BQUFadOmTUpKStKsWbPM4+bPn6+4uDjFxMSY21588UVduHBBjzzyiH766Sf99NNP5r569eqZX5cSGxur5cuXq3v37goMDFRmZqa2bt2qn3/+WRMnTrT6azwAAKq6dpEhOrj6pPKvFzi6lDLLuXoj3DmyZqcLS5I0Z84cBQQEaPPmzcrKylJwcLDefvtttWnTxnDeqVOnJEn/+te/SvS1adPGHJaCg4PVtGlTbd26VWlpaXJ3d1dISIhef/119ezZ0+7HAwCAM2jWMdBhV2dstWLqDodfBXPKsOTl5aXJkydr8uTJpY55//33S7T991UmI6GhoSUeHQAAAGCN073uBAAAwJkQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAy4O7oAa/Ly8rRs2TJt2bJFmZmZat68ucaPH6/27dvfdO7ly5f14Ycf6rvvvlNRUZHuu+8+PfPMM7rjjjtKjP3mm2+0cuVKJSUlqUGDBho5cqRGjBhREYcEAACqKKe8srRgwQKtWrVKffv21bRp0+Tq6qqZM2fq8OHDhvOys7M1ffp0xcXFacyYMXryySd18uRJPfPMM0pPT7cYu27dOr3zzjtq1qyZpk+frnvvvVeLFy/WP//5z4o8NAAAUMU43ZWl+Ph4bd++XZMmTdIjjzwiSerfv7/GjRunJUuWaMmSJaXO/eqrr/Trr7/qr3/9q8LCwiRJHTt21Lhx4xQdHa2JEydKknJzc/Xpp5+qU6dOmjt3riRp6NChKioq0vLlyxUREaFatWpV8JECAICqwOmuLO3evVtubm6KiIgwt3l5eWnw4ME6evSokpOTS527a9cutWzZ0hyUJKlp06Zq27atdu7caW774YcflJ6eroceeshi/rBhw5STk6N9+/bZ74AAAECV5nRh6eTJk2rcuLF8fHws2osD0KlTp6zOKyoq0pkzZ9SyZcsSfWFhYTp//ryys7PN3yGpxNjQ0FC5urrqxIkTt3wcAACgenC623Cpqany8/Mr0V7clpKSYnVeRkaG8vLybjr3zjvvVGpqqtzc3FSvXj2LcR4eHqpdu7ZSU1NLrS8lJcWiPzEx8eYHBQAAqiynC0u5ubny8PAo0e7p6WnuL22epDLNzc3Nlbu79UP39PQs9Tskaf369YqKiir9AAAAQLXidGHJy8tL+fn5Jdrz8vLM/aXNk1SmuV5eXiooKLC6Tl5eXqnfIUkRERHq0qWL+XNiYqLmzZtX6vhbUbOOl8V/AgBwu3GGvwudLiz5+fnp8uXLJdqLb335+/tbnVe7dm15enpavYX227l+fn4qLCzU1atXLW7F5efnKyMjw+qtvGL+/v6l1mBvD83vcvNBAABUY87wd6HTbfBu0aKFfv31V127ds2iPT4+3txvjaurq4KDg5WQkFCiLz4+XnfccYdq1qwpSQoJCZGkEmMTEhJUVFRk7gcAAHC6sNSjRw8VFhZq/fr15ra8vDxt2LBB4eHhCggIkCQlJyeX2FzdvXt3JSQkWISgX375RYcOHVKPHj3MbW3btlXt2rW1bt06i/nr1q1TjRo11KlTpwo4MgAAUBU53W248PBw9ezZU0uXLlVaWpqCgoK0adMmJSUladasWeZx8+fPV1xcnGJiYsxtw4YN0zfffKNZs2bp4Ycflpubm1atWqV69erp4YcfNo/z8vLSU089pUWLFunVV19Vhw4d9OOPP2rLli2aMGGCateuXanHDAAAnJfThSVJmjNnjgICArR582ZlZWUpODhYb7/9ttq0aWM4r2bNmlq8eLE+/PBDLV++3PxuuKlTp6pu3boWY4cNGyZ3d3dFR0crNjZWDRs21NSpUxUZGVlxBwYAAKocF5PJZHJ0EVXZ8ePHNWHCBH3yyScKDQ11dDkAAMDOnG7PEgAAgDMhLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABggLAEAABhwyid4VyW5ubmSVOI9dQAAwPk1bdpUNWrUMBxDWLpFSUlJkqR58+Y5uBIAAFBeZXkDB687uUVpaWk6cOCAvvrqK02fPr3M8z744AM988wzhmMSExM1b948vfzyy2ratOmtllotlOXPzVEcUVtFfKe91ryVdWyZW945nIO2ceZzUKr8+irq+26H87CsYyv6POTKUiWoW7eu+vXrpx07dpTr3XC+vr5lHt+0aVPeO/f/lefPrbI5oraK+E57rXkr69gyt7xzOAdt48znoFT59VXU990O52F513fkecgGbzvp06dPhY7HDc785+aI2iriO+215q2sY8tczsHK4ex/bpVdX0V93+1wHjr7/y39N27DObHjx49rwoQJZbqfCsD+OAcBx3OG85ArS07Mz89P48aNk5+fn6NLAW5LnIOA4znDeciVJQAAAANcWQIAADBAWAIAADBAWKrC8vLy9NZbb2nkyJEaMGCAnn76aR05csTRZQG3lXfffVcPPfSQBgwYoLFjxyo2NtbRJQG3rSNHjqh79+76+9//btd12bNUheXk5Cg6OloDBw5UgwYNtHPnTv35z39WdHS0atas6ejygNtCYmKiAgMD5enpqWPHjun555/XypUrVadOHUeXBtxWioqKNHnyZJlMJnXu3Fljx46129pcWarCvL29NW7cOAUEBMjV1VW9e/eWu7u7zp075+jSgNtG06ZN5enpKUlycXFRfn6+UlJSHFwVcPv5+uuvFRYWViFP+eYJ3pUoOztbK1euVHx8vI4dO6bMzEzNnj1bAwcOLDE2Ly9Py5Yt05YtW5SZmanmzZtr/Pjxat++fanrnzt3TpmZmQoKCqrIwwCqrIo6B//0pz9pw4YNysvL0wMPPKDg4ODKOBygSqqI8zA9PV2rV6/WkiVL9MEHH9i9Zq4sVaL09HRFRUUpMTFRLVq0MBy7YMECrVq1Sn379tW0adPk6uqqmTNn6vDhw1bH5+bmat68eXrsscfk6+tbEeUDVV5FnYPPP/+8Nm/erEWLFql9+/ZycXGpqEMAqryKOA8/+eQTRUZGqlatWhVTtAmVJjc315SSkmIymUymY8eOmbp162basGFDiXFHjx41devWzbRixQpz2/Xr100PP/yw6emnny4xPj8/3zRz5kzT66+/bioqKqq4AwCquIo6B//brFmzTHv37rVv4UA1Yu/z8Pjx46annnrKVFBQYDKZTKb58+eboqKi7FozV5YqkaenZ5meQLp79265ubkpIiLC3Obl5aXBgwfr6NGjSk5ONrcXFRVp3rx5cnFx0Zw5c/hftICBijgHf6uwsFDnz5+3S71AdWTv8zAuLk7nzp3TiBEj9NBDD2nHjh1asWKFFixYYLea2bPkhE6ePKnGjRvLx8fHoj0sLEySdOrUKQUEBEiSFi5cqNTUVC1cuFDu7vzXCdhDWc/BrKws7du3T126dJGnp6f+/e9/69ChQ5o4caIjygaqlbKehxEREerdu7e5//3331dgYKAee+wxu9XC365OKDU11WrqLm4r/qVNUlKSvvnmG3l6elok73feeUetW7eunGKBaqis56CLi4u++eYbLVq0SCaTSUFBQXrllVcUEhJSqfUC1VFZz8MaNWqoRo0a5n4vLy95e3vbdf8SYckJ5ebmysPDo0R78c+Tc3NzJUmNGjVSTExMpdYG3A7Keg76+Pho8eLFlVobcLso63n4W3PmzLF7LexZckJeXl7Kz88v0Z6Xl2fuB1BxOAcBx3Om85Cw5IT8/PyUmppaor24zd/fv7JLAm4rnIOA4znTeUhYckItWrTQr7/+qmvXrlm0x8fHm/sBVBzOQcDxnOk8JCw5oR49eqiwsFDr1683t+Xl5WnDhg0KDw83/xIOQMXgHAQcz5nOQzZ4V7IvvvhCWVlZ5suIsbGxunTpkiRpxIgR8vX1VXh4uHr27KmlS5cqLS1NQUFB2rRpk5KSkjRr1ixHlg9UeZyDgONVtfPQxWQymSr1G29zo0aNUlJSktW+6OhoBQYGSrqxy7/4fThZWVkKDg7W+PHj1aFDh8osF6h2OAcBx6tq5yFhCQAAwAB7lgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgAAAAwQlgDg/3vwwQct/snNzTX3bdy4UQ8++KA2btzowAr/Y926dRa1vvnmm44uCai23B1dAIDbz8WLFzV69GjDMY0aNdKqVasqqSLL7x0wYIAkyc3NrUK/68CBA3rhhRfUvn17vffee4Zj33jjDW3btk2vvPKK+vbtq9DQUI0bN05ZWVlas2ZNhdYJ3O4ISwAcJigoSH379rXa5+vrW8nV3NCoUSM9+eSTlfJd7dq1U0BAgL7//nslJycrICDA6risrCz9+9//lq+vrx588EFJUsuWLdWyZUtdvHiRsARUMMISAIcJCgqqtGDijFxdXTVw4EBFRUVp06ZNGjt2rNVx27ZtU25urgYNGiQvL69KrhIAe5YAVAkPPvigpk2bpsuXL+uNN97Q0KFD1b9/f82cOVMXLlyQJJ09e1Zz5szR4MGD1b9/f73yyiu6cuVKhdZ16dIljR07Vn369NGuXbvM7VevXtUHH3ygRx55RL1799bQoUP18ssv68yZMxbzBw0aJBcXF23cuFEmk8nqd2zYsEGSNHjw4Ao7DgClIywBqDIyMzM1ZcoUXbx4Uf3799d9992n/fv36/nnn9eZM2c0efJk5eTkaNCgQWrZsqV2796t119/vcLqOXv2rCZPnqxLly7p3XffVY8ePSRJ58+f1/jx47V69WrdcccdGj58uB544AEdOHBAkyZNUnx8vHmNRo0a6f7779eFCxd06NChEt9x5swZJSQkKCQkRHfffXeFHQuA0nEbDoDDnD9/Xn/729+s9t1zzz3q2LGjRdvp06c1atQoTZ061dz2pz/9SV999ZWmTp2q3//+94qMjJQkmUwmzZo1S/v379fx48cVGhpq19qPHj2qWbNmyd3dXR988IFatGhh7ps/f76uXLmihQsXqkOHDub2J554QhMmTNA777yjqKgoc/vgwYN18OBBbdiwQW3btrX4Hq4qAY7HlSUADnP+/HlFRUVZ/ef//u//Soz39vbW+PHjLdp69+4tSapTp45GjhxpbndxcTH3nT592q5179u3T88995xq1aqljz76yCIonThxQkeOHFH//v0tgpIkNWnSREOGDNGZM2csbsd169ZNderU0e7du3Xt2jVze0FBgbZs2SJPT89SN8IDqHhcWQLgMB06dNDChQvLPL5x48aqUaOGRZufn58kKTg4WC4uLlb7UlJSbrHS/9i5c6e+++47NW/eXO+++67q1atn0V98i+3q1atWr5r98ssv5v8MDg6WJHMYWrNmjbZt26b/+Z//kSTFxsYqLS1Nffr0Ua1atex2DADKh7AEoMrw8fEp0Vb8LCSjvoKCArvVcPToURUWFqpVq1YlgpIkZWRkSLpx9Wnfvn2lrpOTk2PxefDgwVqzZo02bNhgDkvcggOcA2EJAMph4sSJ2rNnj9asWSM3NzdNmTLFor84tE2fPl0jRowo87rNmzdXy5YtdezYMf3888+qVauWDhw4oMDAwBL7mABULvYsAUA5eHp6av78+erUqZOio6P14YcfWvSHhYVJunEFqryKryB9++232rx5swoLC82PFgDgOIQlACgnT09PzZs3T507d9aqVav0wQcfmPvCw8MVHh6u7du3a/v27SXmFhUVKS4uzuq6ffr0UY0aNbRlyxZt2LBBrq6u5levAHAcbsMBcBijRwdI0mOPPea0T6z28PDQ3Llz9eqrr2r16tUymUyaNm2aJOnVV1/Vs88+q9dff11r1qxRSEiIvLy8dOnSJR05ckTp6enatm1biTV9fHzUvXt3bd68WWlpaerYsWOpr0ABUHkISwAcpvjRAaWJjIx02rAk/Scwvfbaa1qzZo1MJpOmT5+uO+64Q8uWLVN0dLT+/e9/a+PGjXJ1dZWfn59at25tfnilNYMHD9bmzZsl3Xi6NwDHczGV9nx9ALjNPPjgg2rTpo3ef/99R5dSZhcvXtTo0aM1YMAAzZkzx9HlANUSV5YA4L/ExcXpwQcflCRt3brVaa9srVu3Tu+9956jywBuC4QlAPj/xo0bZ/G5+DlNzig0NNSi3pCQEMcVA1Rz3IYDAAAwwKMDAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADBCWAAAADPw/UrlFIdys1ZIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "expectation = psr.get_expectation(spectrum)\n", + "\n", + "ax, plot = expectation.project('Em').plot()\n", + "\n", + "ax.set_ylabel('Expected counts')" + ] + }, + { + "cell_type": "markdown", + "id": "e4df5bfb-a811-4686-90a2-58651392085e", + "metadata": {}, + "source": [ + "Lastly, you can obtain the response for multiple coordinstes at once. This can be useful for e.g. imaging" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "f94057d8-98a9-47e4-871c-f5a4b6182952", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 55.8 s, sys: 10 s, total: 1min 5s\n", + "Wall time: 1min 6s\n" + ] + } + ], + "source": [ + "%%time\n", + "gal_grid = HealpixBase(nside = 16, coordsys = 'galactic')\n", + "\n", + "gal_coords = gal_grid.pix2skycoord(range(gal_grid.npix))\n", + "\n", + "with FullDetectorResponse.open(response_path) as response:\n", + " response.get_point_source_response(coord = gal_coords[10:12], scatt_map = scatt_map)" + ] + }, + { + "cell_type": "markdown", + "id": "339d7bd8-4c05-4638-ba1a-728d54b8c189", + "metadata": {}, + "source": [ + "You can see that the time is takes to perform this conversion is not lineas with the number of coordinates, so it's better to do it in parallel if you have enough memory." + ] + }, + { + "cell_type": "markdown", + "id": "925a766d-e677-4df6-88e8-eb4df1cd1fd3", + "metadata": {}, + "source": [ + "## XSPEC support" + ] + }, + { + "cell_type": "markdown", + "id": "145c3988-a437-42df-90c6-ac25384dd849", + "metadata": {}, + "source": [ + "You can also convert the point source response to XSPEC readable files (arf, rmf and pha) if you want to do spetral fitting or simulation in XSPEC. See the `SpacecraftFile` class functions `get_arf()`, `get_rmf()` and `get_pha()`, respectively." + ] + }, + { + "cell_type": "markdown", + "id": "6ba9dcf2-4372-4e95-8dec-7c8135931837", + "metadata": {}, + "source": [ + "
\n", + "Note: This functionality will be moved to the DetectorResponse class in the near future.
" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "3c260ffd-fb4c-43cb-8795-94781b5efdb7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Getting the effective area ...\n", + "Getting the energy redistribution matrix ...\n" + ] + } + ], + "source": [ + "ori.get_psr_rsp(response = response_path);" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "e5a5d7a2-5a80-443d-bd10-4ac17bc59c1e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHXCAYAAABUEeVQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABIm0lEQVR4nO3de3RNd/7/8ddJIhG5Vo5rRIKQoirtt+53UUXbjBl3NYMpqkWRdpSZdsqMll6ValV1pgxtUb2gQ1AlWur6o+JatEJpkBASyTm5nd8fVs40TaLJyU5OkvN8rJW1nM/+7M/nfdLu5WXvz97bZLPZbAIAAHAhbs4uAAAAoLwRgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAFCkxMVEjR45UgwYN5O7uLpPJpJSUFEnSjRs39OSTTyosLEweHh4ymUw6dOiQU+uVJJPJpO7duzu7DAAVnIezCwBQPkwm02/22bZtW77wMGrUKG3evFnDhg1TeHi4TCaTqlevLkmaNm2aFi9erIceekh//OMf5e7urrp165ZV+XZhYWGSpLNnz5b5XACqLhPvAgNcQ14Aev7554vsM2rUKHvAyMzMlLe3t6KiorR58+YCfRs0aCAfHx+dPHmyTOotym8FoBMnTqhGjRpq2LBh+RUFoNLhDBDgYmbOnFmsfomJicrNzVX9+vUL3X7x4kV17drVwMqMceeddzq7BACVAGuAABQQFham0NBQSdKyZctkMplkMpk0atQode/eXSaTSTabTXFxcfZtv153s2nTJvXr109ms1leXl5q0qSJ/vKXv9jXEP3aTz/9pCeffFJNmzaVt7e3atasqbZt2+qf//ynJGn79u0ymUxKSEhQQkKCfd68uvL8upbx48fLZDJp7dq1hc67Z88emUwmDRw4MF97enq65syZo8jISPn4+MjX11cdOnTQRx99VKLf5bZt2zRu3Di1aNFC/v7+8vb21l133aVZs2bJYrEU6D9z5kyZTCZt375dH374odq1aydfX1/7ma+S1paZmamFCxeqX79+Cg0NlZeXl2rWrKlevXpp48aNJfouQFXCJTDAReRdAivOIf/GG2/o7Nmzmj9/vlq3bq3+/ftLkiIjI5WSkqKzZ89q1qxZCg0NtYePsLAw+59nzZqlmTNnqmbNmnrooYdUu3ZtHT58WJs3b1aLFi307bffyt/f3z7f/v379cADD+jq1avq2rWr2rdvr/T0dB07dkzbt29XTk6Ozp49q6VLl+qNN96QJE2ZMsW+f2RkpL1Gk8mkbt26afv27ZKkb7/9Vh07dtQf/vAHffLJJwW+6xNPPKFFixZp/fr1euihhyRJKSkp6tmzpw4ePKh7771XHTt2VG5urjZt2qQzZ87ob3/7m2bPnl2s33ufPn104sQJdezYUcHBwbJYLNq5c6cOHjyo7t2768svv5S7u7u9/8yZMzVr1iw99NBD2rJlix5++GE1adJE169f16JFi0pcW2JiooKDg9WxY0dFRESoVq1a+vnnn7V+/XpdvXpVS5Ys0ZgxY4r1XYAqxQbAJUiySbI9//zzhf7MmTMnX/8ff/zRJsk2cuTIIsfr1q1bgfavvvrKJsnWoUMH27Vr1/Jte//9922SbFOmTLG3Wa1WW1hYmE2S7YMPPigw3vnz5/N9Dg0NtYWGht72e/66rmbNmtk8PT1tycnJ+dotFovtjjvusNWuXduWlZVlbx85cqRNku2ll17K1z8jI8P2wAMP2Ewmk+3gwYNF1vBLZ86cseXm5hZof/bZZ22SbCtXrszX/vzzz9sk2WrUqGH7f//v/xXYr6S1WSyWAr9Dm81mS0lJsbVs2dJ2xx132NLT04v1XYCqhAAEuIi8AFTUT0BAQL7+jgag/v372yTZjhw5Uuh+kZGRtlq1atk/r1mzxibJFh0dXazv4UgAeuGFF2ySbAsXLszX/vHHH9sk2aZOnWpvS0pKsrm7u9vuu+++Qsc/dOiQTZLtL3/5S7HqLUpycrJNkm306NH52vMC0C9DYlnV9tprr9kk2eLi4kr+BYBKjkXQgIuxlfFV72+//VbVqlXTxx9/rI8//rjA9szMTF25ckXJyckKCgrS7t27JUl9+/Yts5r+9Kc/6bnnntOyZcs0YcIEe/uyZcskKd8aon379iknJ0cmk6nQBeNZWVmSpOPHjxdr7ps3b2r+/Pn67LPP9P333ys1NTXff4MLFy4Uul/btm0LtDla29GjR/XKK69ox44d+vnnnwusPSqqBqAqIwABMFRycrKys7M1a9as2/ZLS0tTUFCQfVF0cHBwmdXUoEEDRUVFacuWLTp+/LiaN2+uy5cvKzY2VpGRkbr77rvz1S/dChv79u27bf2/JSsrSz179tTevXt11113aciQIapVq5aqVasm6dZaKavVWui+hT1TyZHadu/erZ49eyo7O1tRUVGKjo6Wv7+/3NzcdOjQIa1du7bIGoCqjAAEwFABAQHKzc3V1atXi9U/MDBQUtmfhRg5cqS2bNmiZcuWae7cufrggw+UnZ2tkSNH5usXEBAgSZo6dapef/31Us25du1a7d27V6NGjdL777+fb9vPP/9825BY2IMrHalt9uzZysjIKPCQS0maM2dOkXfHAVUdt8EDMFT79u117do1HT16tNj9JRX7lmx3d3fl5OSUuK4//OEP8vf314oVK5Sbm6tly5bJw8NDw4cPz9evbdu2cnNz09dff13iOX7t9OnT9rl/LS4ursTjOVLb6dOnVbNmzUJfD+JIDUBVQQACYKipU6dKksaOHauLFy8W2H7z5k37uh9JevjhhxUWFqZ169YV+hybn376Kd/noKAgXblyRRkZGSWqy9vbW4MHD9aFCxc0b948fffdd+rXr59q166dr1/t2rX1yCOPaP/+/frnP/9ZaNg6c+aMfvzxx9+cM+/ZPXm35Of54Ycf9Mwzz5SofkdrCwsL09WrV3X48OF8/f71r39p06ZNJa4BqCq4BAa4mNs9Cbp///6KjIws1fhRUVGaO3euZsyYoaZNm6pfv35q1KiR0tLSlJCQoLi4OHXu3FmxsbGSJE9PT3388cfq3bu3hg8frsWLF6t9+/ayWCw6fvy4tm7dquzs7Hzj79u3T3369FHXrl3l5eWl1q1b6+GHH/7N2kaOHKn33ntPM2bMsH8uzMKFC3Xq1Cn9/e9/1/Lly9W5c2fVqVNHFy9e1PHjx7Vv3z599NFHatSo0W3ne/jhhxUeHq7XX39d8fHxuueee3Tu3Dl98cUXevDBB3Xu3Lni/lodrm3KlCnatGmTOnfurMGDBysgIED79+/XN998o4EDB2rNmjUlrgGoEpx9GxqA8qHfuA1eku3999+393f0Nvg8X3/9tW3QoEG2evXq2apVq2Yzm8221q1b26ZOnWrbt29fgf4JCQm2xx9/3BYWFmarVq2arWbNmra2bdvaXnjhhXz90tLSbOPHj7cFBwfb3N3dC9T4W3WFh4fbJNlq1qxps1qtRfazWq22N99809ahQwebv7+/zdPT0xYSEmLr2bOnbd68ebakpKQi9/2lc+fO2YYPH26rX7++rXr16rYWLVrYXnrpJVtWVlahtebdBr9t2zbDalu/fr2tXbt2Nl9fX1tAQIDt/vvvt8XFxdmfy/TL/+6Aq+BJ0AAAwOWwBggAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwAqhMVi0cmTJwu8MRkAAFQNBKBCJCQkaOzYsUpISHB2KQAAoAwQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5Xg4uwAAlVtaUoYsqZnOLqNEqvt5ytfs7ewyADgRAQiAw9KSMrTmL18r25rj7FJKxMPLXQNf6UIIAlwYAQioQCrb2ZSUC2nKtuao+xN3KzDY19nlFEvKhTRtf/uwLKmZBCDAhRGAgAqiMp9NqXtnTcIEgEqFAARUEJbUzEp3NkViPQ2AyqlSBKAff/xR77//vk6ePKmrV6+qevXqCg0N1bBhw9SpUyd7vxdffFGxsbEF9m/YsKFWrFhRniUDDgsM9pW5UYCzywCAKq1SBKDExESlp6erT58+MpvNslgsiouL04wZM/T0008rOjra3tfT01PTpk3Lt7+Pj095lwwAACqwShGAOnTooA4dOuRr+8Mf/qCxY8dq9erV+QKQu7u7evfuXd4lAgCASqTSPgjR3d1dtWvXVlpaWoFtOTk5unnzphOqAgAAlUGlOAOUJyMjQ1arVTdv3tTOnTu1Z88e9ejRI18fi8Wivn37ymKxyM/PT1FRURo/frxq1KhR5LhJSUlKTk62f05ISCiz7wAAAJyvUgWgt956S+vWrZMkubm5qWvXrpo6dap9e1BQkIYNG6ZmzZrJZrNpz549+vzzz3XmzBnNnz9fHh6Ff91169Zp6dKl5fEVAABABVCpAtCgQYPUvXt3JSUladu2bcrJyVFWVpZ9+2OPPZavf1RUlEJCQrRkyRLFxcUpKiqq0HGjo6Pz3U2WkJCg2bNnl82XAAAATlep1gCFhobqvvvuU58+ffTSSy8pIyND06dPl81mK3KfwYMHy83NTfv37y+yj9lsVkREhP0nNDS0LMoHAAAVRKUKQL/WvXt3nThxQufPny+yj5eXl/z9/XXjxo1yrAwAAFRklToAWa1WSSr0TrA86enpun79ugIDA8upKgAAUNFVigB07dq1Am3Z2dnatGmTvLy8FBYWJqvVqvT09AL9li1bJpvNpnbt2pVHqQAAoBKoFIugX331Vd28eVOtW7dWrVq1lJycrC1btujcuXOaMGGCatSooZ9//lmPPvqoevXqpYYNG0qS9u7dq927d6tdu3bq3Lmzk78FAACoKCpFAOrZs6f++9//au3atbp+/bpq1KihiIgIjR8/3h5sfH191bFjR+3bt0+xsbHKzc1VcHCwxo0bp6FDh8rNrVKc7AIAAOWgUgSgqKioIm9hz+Pn56dnn322nCoCAACVWaUIQABgtJQLRd88URFV9/OUr9nb2WUAVQYBCIBLqe7nKQ8vd21/+7CzSykRDy93DXylCyEIMAgBCIBL8TV7a+ArXWRJzXR2KcWWciFN298+LEtqJgEIMAgBCIDL8TV7EyQAF8etUQAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuh5ehospKS8qodG/8BgCUDwIQqqS0pAyt+cvXyrbmOLuUEvHwcld1P09nlwEAVR4BCFWSJTVT2dYcdX/ibgUG+zq7nGKr7ucpX7O3s8sAgCqPAIQqLTDYV+ZGAc4uAwBQwbAIGgAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDL4W3wAFBJpFxIc3YJJVLdz1O+Zm9nlwEUigAEABVcdT9PeXi5a/vbh51dSol4eLlr4CtdCEGokCpFAPrxxx/1/vvv6+TJk7p69aqqV6+u0NBQDRs2TJ06dcrX9+zZs1q4cKHi4+Pl4eGhDh06aOLEiQoMDHRO8QBQSr5mbw18pYssqZnOLqXYUi6kafvbh2VJzSQAoUKqFAEoMTFR6enp6tOnj8xmsywWi+Li4jRjxgw9/fTTio6OliRdvnxZkyZNkq+vr8aOHauMjAytXLlSP/zwgxYvXqxq1ao5+ZsAgGN8zd4ECcBAlSIAdejQQR06dMjX9oc//EFjx47V6tWr7QFoxYoVslgseu+991SnTh1JUvPmzRUTE6ONGzfa+wEAANdWae8Cc3d3V+3atZWW9r9FgXFxcerYsaM9/EjSfffdp5CQEG3bts0ZZQIAgAqoUpwBypORkSGr1aqbN29q586d2rNnj3r06CFJunLliq5du6aIiIgC+zVv3ly7d+8uctykpCQlJyfbPyckJBhfPAAAqDAqVQB66623tG7dOkmSm5ubunbtqqlTp0qSPcAEBQUV2C8oKEg3btxQZmamPD09C2xft26dli5dWnaFAwCACqVSBaBBgwape/fuSkpK0rZt25STk6OsrCxJktVqlaRCFzrnhR6r1VpoAIqOjs53N1lCQoJmz55dFl8BAABUAJUqAIWGhio0NFSS1KdPH8XExGj69OlavHixvLy8JMkeiH4pM/PWraN5fX7NbDbLbDaXUdUAAKCiqbSLoCWpe/fuOnHihM6fP2+/9PXLtTx5kpOT5e/vX+jZHwAA4HoqdQDKu+yVlpamWrVqKTAwUCdPnizQ7/jx4woPDy/v8gAAQAVVKQLQtWvXCrRlZ2dr06ZN8vLyUlhYmCSpW7du2rVrly5dumTvd+DAAZ0/f95+txgAAEClWAP06quv6ubNm2rdurVq1aql5ORkbdmyRefOndOECRNUo0YNSdKIESO0fft2TZkyRQMHDlRGRoY++ugjNW7cWH379nXytwAAABVFpQhAPXv21H//+1+tXbtW169fV40aNRQREaHx48erc+fO9n516tTRggULtHDhQi1evNj+LrAJEyaw/gcAANhVigAUFRWlqKioYvVt1KiRXnvttTKuCAAAVGaVYg0QAACAkQhAAADA5RCAAACAyyEAAQAAl+PQIughQ4aUeuJBgwZp4MCBpR4HAACgpBwKQImJifLx8ZGvr69Dk16+fFlpaWkO7QsAAFBaDt8GP3jwYI0aNcqhfbt16+botAAAAKXGGiAAAOByHDoDtHz5cgUEBDg8aWn3BwAAKA2HAlDDhg1LNWlp9wcAACgNLoEBAACXQwACAAAup8QBKDc3Vz/88IOSkpIKbMvOztahQ4eMqAsAAKDMlGgNUGJioqZNm6aEhASZTCa1b99eM2bMsC9ovnHjhqZMmaLt27eXRa0AAACGKNEZoEWLFslsNmvlypVasmSJrFarJkyYkO9skM1mM7xIAAAAI5UoAH333Xd64oknVK9ePTVt2lSvvfaa7r77bk2cOFGXLl2SJJlMpjIpFAAAwCglCkAWi0XVqlX7385ubpo2bZratGmjSZMm6cKFC4YXCAAAYLQSBaCGDRvq5MmTBdqfeuoptW/fXtOnTzesMAAAgLJSogDUtWtXbdmypdBtMTExioqKYg0QAACo8EoUgEaMGKFXXnmlyO0xMTGKi4srdVEAAABliQchAgAAl+PQu8AK8+2332rv3r1KT09XnTp1FB4ermbNmqlu3bpGTQEAAGAIQwLQBx98oCVLluRb/5N3O7yvr689DDVr1ky9evUyYkoAAACHGRKAPv/8c/n4+Gj69Olq0qSJEhMTdfr0aZ06dUqnTp3S4cOHdfDgQZlMJgIQAABwOkMC0I0bN9SvXz916dJFklS/fn3de++99u1ZWVn64YcfdOrUKSOmAwAAKBVDAlB4eLgsFkuR26tVq6aIiAhFREQYMR0AAECpGHIX2KBBg7Rr1y5dv37diOEAAADKlCEBqHv37oqKitL06dN15coVI4YEAAAoM4bdBl+/fn1t3LhRI0aMUPv27XXvvfeqadOmCg8Pl6enp1HTAAAAlJohAWjRokVatWqV/Tb47du3a/v27TKZTHJzc1PDhg3VrFkzRUREaMCAAUZMCQAA4DBDAtCmTZsUGBioF154QU2aNNGVK1d06tQpff/99/Zb4Tdt2qTNmzcTgAAAgNMZEoAsFosefvhhtWzZUpIUEhKikJAQ9ezZ097n0qVL3AYPAAAqBEMCUEREhFJSUm7bp06dOqpTp44R0wEAKomUC2nOLqHEqvt5ytfs7ewyUMYMCUAjRozQ888/r8uXL6t27dpGDAkAqMSq+3nKw8td298+7OxSSszDy10DX+lCCKriDAlACQkJioyM1NNPP61Zs2apUaNGRgxrd/z4ccXGxurgwYNKTEyUv7+/WrZsqTFjxigkJMTe78UXX1RsbGyB/Rs2bKgVK1YYWhMAoGi+Zm8NfKWLLKmZzi6lRFIupGn724dlSc0kAFVxhgSgN998UyaTSTabTX/+85/VsmVL3XvvvfYXoJb2rNCHH36o+Ph49ejRQ02aNFFycrI+++wzjRkzRosWLVLjxo3tfT09PTVt2rR8+/v4+JRqfgBAyfmavQkRqLAMCUCzZs3SqVOn7C9AjY+PV3x8vP2N8AEBAWratKkiIiI0duzYEo8/ePBg/f3vf1e1atXsbT179tTo0aP1wQcf6LnnnrO3u7u7q3fv3qX/UgAAoMoyJAB1795d3bt3t39OSUmx3/6eF4oOHDig/fv3OxSAWrVqVaAtJCREYWFhSkhIKLAtJydHFouFMz8AAKBQhj0J+pcCAwPVpk0btWnTxt5mtVp15swZw+aw2Wy6du2awsLC8rVbLBb17dtXFotFfn5+ioqK0vjx41WjRg3D5gYAAJWbIQHoxx9/1JUrV9SqVSt5exd+vdfLy0stWrQwYjpJ0pYtW3TlyhX9+c9/trcFBQVp2LBhatasmWw2m/bs2aPPP/9cZ86c0fz58+XhUfjXTUpKUnJysv1zYWeVAABA1WFIAFq+fLl27NihlStXFhmAjJSQkKB58+apZcuW6tOnj739sccey9cvKipKISEhWrJkieLi4hQVFVXoeOvWrdPSpUvLsmQAAFCBGPI2+CNHjqhdu3Yym82Fbj9//ryeffZZxcfHl3qu5ORkPfPMM/Lx8dE///lPubu737b/4MGD5ebmpv379xfZJzo6WkuWLLH/PPvss6WuEwAAVFyGnAG6evVqvufx/FpISIjOnj2rNWvWFLqgubjS0tI0bdo0paWlaeHChUUGrl/y8vKSv7+/bty4UWQfs9lcrLEAAEDVYMgZIB8fH6Wnp9+2z1133aVjx445PIfVatX06dN1/vx5zZ07t8Di56Kkp6fr+vXrCgwMdHhuAABQtRgSgO68807t3r1bubm5RfYJDAzUtWvXHBo/JydHM2fO1NGjRzVr1izdddddBfpYrdZCQ9iyZctks9nUrl07h+YGAABVjyGXwB566CE9++yzWrhwoZ588slC+1y8eFGenp4Ojf/WW29p586d6tixo1JTU7V58+Z823v37q2rV6/q0UcfVa9evdSwYUNJ0t69e7V79261a9dOnTt3dmhuAABQ9RgSgLp06aIePXrok08+0YULF/TYY4/lez3FgQMH9M033ygyMtKh8U+fPi1J2rVrl3bt2lVge+/eveXr66uOHTtq3759io2NVW5uroKDgzVu3DgNHTpUbm6GnOwCAABVgGEPQnzuuefk6+ur9evXa8+ePapbt67q1q2ra9eu6dy5c7LZbBo2bJhDYy9YsOA3+/j5+XH3FgAAKBbDApC7u7uefvpp3X///fr444+1f/9+/fzzz5Kk+vXra9y4cfmeDA0AAOAshr8Ko3Xr1mrdurWkW7et22w2+fn5GT0NAACAw8rkXWB5fH19y3J4AAAAh7AyGAAAuByHAtA//vEPxcXFOTxpafcHAAAoDYcC0NatW/Xjjz86PGlp9wcAACgNh9cAnTp1SrGxsUbWAgAAUC4cDkDffPONdu7cWeL9bDabo1MCAAAYwqEANH369FJP3LRp01KPAQAA4AiHAlDfvn2NrgMAAKDccBs8AABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXI7DT4IuSk5Ojq5fv66srKxCt9epU8foKQEAAErEsAB08uRJvfvuu/ruu++UnZ1daB+TyaRt27YZNSUAAIBDDAlAp06d0sSJE+Xu7q42bdpo165dCg8PV82aNfX9998rJSVFkZGRqlu3rhHTAQAAlIohAWjZsmWSpHfeeUdhYWHq1q2bunTpolGjRslqteqtt97S9u3bDXmHGAAAQGkZsgg6Pj5enTp1UlhYmL0t763vXl5emjJlisxms5YsWWLEdAAAAKViSAC6efOm6tevb//s4eGhjIyM/03i5qbIyEgdOHDAiOkAAABKxZAAFBgYqNTUVPvnmjVr6qeffsrXJzMzUxaLxYjpAAAASsWQABQWFqZz587ZP7dq1Ur79u3TkSNHJElnz57Vtm3bFBoaasR0AAAApWLIIugOHTpo4cKFSkpKktls1vDhw7Vjxw5NnDhRfn5+SktLU25urkaMGGHEdAAAAKViSAD63e9+px49esjPz0+SFB4ernnz5mn58uW6ePGiIiIiNGDAAHXo0MGI6QAAAErFkADk4eGhmjVr5mtr1aqVXn75ZSOGBwAAMBTvAgMAAC7HsFdhZGdn69NPP9WXX36pc+fOyWq12l97cerUKa1fv16DBg1SSEiIUVMCAFAmUi6kObuEEqnu5ylfs7ezy6hUDAlAVqtVTz31lI4cOaKAgAD5+Pjku+W9Xr162rBhg/z8/DR27FgjpgQAwHDV/Tzl4eWu7W8fdnYpJeLh5a6Br3QhBJWAIQFo+fLlio+P12OPPaZhw4bp/fff13/+8x/7dl9fX0VGRmrfvn0EIABAheVr9tbAV7rIkprp7FKKLeVCmra/fViW1EwCUAkYEoC++uor3XPPPRo+fLikW299/7X69evr1KlTRkwHAECZ8TV7EyRcgCGLoC9fvqyIiIjb9vH29tbNmzeNmA4AAKBUDDkD5O3trZSUlNv2uXjxogICAoyYDk6QlpRR6U4JAwBQFEMCUMuWLbVr1y6lpqbaH4b4S5cuXdLu3bvVpUsXh8Y/fvy4YmNjdfDgQSUmJsrf318tW7bUmDFjCtxVdvbsWS1cuFDx8fHy8PBQhw4dNHHiRAUGBjo0N26FnzV/+VrZ1hxnl1IiHl7uqu7n6ewyAAAVkCEBaOjQoZoyZYqmTp2qyZMnKyfn1l+UFotFR48e1RtvvKGcnBwNGTLEofE//PBDxcfHq0ePHmrSpImSk5P12WefacyYMVq0aJEaN24s6daluEmTJsnX11djx45VRkaGVq5cqR9++EGLFy9WtWrVjPi6LseSmqlsa466P3G3AoN9nV1OsXFbKACgKIYEoMjISE2ZMkULFizQpEmT7O19+vSRJLm5uSkmJuY31wkVZfDgwfr73/+eL8D07NlTo0eP1gcffKDnnntOkrRixQpZLBa99957qlOnjiSpefPmiomJ0caNGxUdHe3oV4SkwGBfmRtxGRMAUPkZ9iDE/v37KzIyUmvXrtXx48d148YN+fj4qHnz5vr973+vRo0aOTx2q1atCrSFhIQoLCxMCQkJ9ra4uDh17NjRHn4k6b777lNISIi2bdtGAAIAAJIMDECSFBYWpsmTJxs5ZJFsNpuuXbumsLAwSdKVK1d07dq1Qs8yNW/eXLt37y6XugAAQMVnyG3w3bt31z/+8Q8jhiq2LVu26MqVK+rZs6ckKTk5WZIUFBRUoG9QUJBu3LihzMzC72JKSkrSyZMn7T+/PKsEAACqHkPOANWoUUO1a9c2YqhiSUhI0Lx589SyZUv7OiOr1SpJhS509vT0tPfJ+/MvrVu3TkuXLi27ggEAQIViSABq3ry5zpw5Y8RQvyk5OVnPPPOMfHx89M9//lPu7u6SJC8vL0lSVlZWgX3yzvzk9fm16OhoderUyf45ISFBs2fPNrp0AABQQRgSgEaPHq3JkycrNjbWfkamLKSlpWnatGlKS0vTwoULZTab7dvyLn3lXQr7peTkZPn7+xd69keSzGZzvrEAAEDVZkgA2r9/vyIjIzV37lx9+umnuvPOO3XHHXcUeCeYyWTSyJEjHZrDarVq+vTpOn/+vF5//XX74uc8tWrVUmBgoE6ePFlg3+PHjys8PNyheQEAQNVjSAB6//337X/OW0hcGEcDUE5OjmbOnKmjR4/qxRdf1F133VVov27duik2NlaXLl2y3wp/4MABnT9/XoMHDy7xvAAAoGoyJADNnz/fiGGK9NZbb2nnzp3q2LGjUlNTtXnz5nzbe/fuLUkaMWKEtm/frilTpmjgwIHKyMjQRx99pMaNG6tv375lWiMAAKg8DHsSdFk6ffq0JGnXrl3atWtXge15AahOnTpasGCBFi5cqMWLF9vfBTZhwoQi1/8AAADXY+iDEMvKggULit23UaNGeu2118qwGgAAUNkZHoBycnJ0/fr1Qm9Hl5TvNRUAAADOYFgAOnnypN5991199913ys7OLrSPyWTStm3bjJoSAADAIYYEoFOnTmnixIlyd3dXmzZttGvXLoWHh6tmzZr6/vvvlZKSosjISNWtW9eI6QAAAErFkAC0bNkySdI777yjsLAwdevWTV26dNGoUaNktVr11ltvafv27Zo+fboR0wEAAJSKIS9DjY+PV6dOnfI9nNBms0m69fqJKVOmyGw2a8mSJUZMBwAAUCqGBKCbN2+qfv369s8eHh7KyMj43yRuboqMjNSBAweMmA4AAKBUDAlAgYGBSk1NtX+uWbOmfvrpp3x9MjMzZbFYjJgOAACgVAwJQGFhYTp37pz9c6tWrbRv3z4dOXJEknT27Flt27ZNoaGhRkwHAABQKoYsgu7QoYMWLlyopKQkmc1mDR8+XDt27NDEiRPl5+entLQ05ebmasSIEUZMBwAAUCqGBKDf/e536tGjh/z8/CRJ4eHhmjdvnpYvX66LFy8qIiJCAwYMUIcOHYyYDgAAoFQMCUAeHh6qWbNmvrZWrVrp5ZdfNmJ4AAAAQxmyBggAAKAyIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcgx5DpAkZWdn69NPP9WXX36pc+fOyWq1atu2bZKkU6dOaf369Ro0aJBCQkKMmhIAAMAhhgQgq9Wqp556SkeOHFFAQIB8fHzyvfi0Xr162rBhg/z8/DR27FgjpgQAAHCYIZfAli9frvj4eI0bN06ff/65HnzwwXzbfX19FRkZqX379hkxHQAAQKkYEoC++uor3XPPPRo+fLhMJpNMJlOBPvXr19elS5eMmA4AAKBUDAlAly9fVkRExG37eHt76+bNm0ZMBwAAUCqGBCBvb2+lpKTcts/FixcVEBBgxHQAAAClYkgAatmypXbt2qXU1NRCt1+6dEm7d+9W69atjZgOAACgVAwJQEOHDlVqaqqmTp2q+Ph45eTkSJIsFosOHDigp59+Wjk5ORoyZIgR0wEAAJSKIbfBR0ZGasqUKVqwYIEmTZpkb+/Tp48kyc3NTTExMb+5TggAAKA8GPYgxP79+ysyMlJr167V8ePHdePGDfn4+Kh58+b6/e9/r0aNGhk1FQAAQKkYFoAkKSwsTJMnTzZySAAAAMPxLjAAAOByDAlAEydO1Pr164u8CwwAAKAiMeQS2NGjR3XkyBHNnz9fHTp0UO/evdWhQwd5eBh6hQ0AAMAQhiSUzz77TFu2bNHmzZu1Y8cOff311/Lz81OPHj10//33q1WrVkZMAwAAipByIc3ZJZRIdT9P+Zq9nTa/IQEoMDBQgwYN0qBBg5SQkKDNmzdry5YtWrt2rdatW6d69eqpd+/euv/++9WgQQMjpgQAALoVJDy83LX97cPOLqVEPLzcNfCVLk4LQYZfowoNDdXYsWM1duxYHTp0SJs3b9b27du1bNky/ec//9G2bduMnhIAAJfla/bWwFe6yJKa6exSii3lQpq2v31YltTMqhOAfikyMlK1a9dWQECAVq9ebX9CdEmlp6dr5cqVOnbsmI4fP67U1FTNmDFDffv2zdfvxRdfVGxsbIH9GzZsqBUrVjg0NwAAFZ2v2dupl5MqozIJQDdu3NBXX32lzZs369ixY5KkGjVqqEePHg6Nd/36dS1dulR16tRReHi4Dh48WGRfT09PTZs2LV+bj4+PQ/MCAICqybAAlJWVpZ07d2rz5s3au3evsrKy5OHhoQ4dOuiBBx5Qx44d5enp6dDYQUFB+uyzzxQUFKQTJ05o3LhxRfZ1d3dX7969Hf0aAADABRgSgF566SXFxcUpPT1dNptNzZs3V+/evRUVFaWAgIBSj+/p6amgoKBi98/JyZHFYuHMDwAAKJQhAWjDhg2qW7euBgwYoN69eyskJMSIYR1isVjUt29fWSwW+fn5KSoqSuPHj1eNGjWcVhMAAKhYDAlAb775pu6++24jhiqVoKAgDRs2TM2aNZPNZtOePXv0+eef68yZM5o/f36RD2ZMSkpScnKy/XNCQkJ5lQwAAJzAkABUEcKPJD322GP5PkdFRSkkJERLlixRXFycoqKiCt1v3bp1Wrp0aTlUCAAAKgKHAtDcuXMlSePGjVPNmjXtn4tj+vTpjkzpsMGDB+tf//qX9u/fX2QAio6OVqdOneyfExISNHv27PIqEQAAlDOHAtDGjRtlMpn0yCOPqGbNmtq4cWOx9jOZTOUegLy8vOTv768bN24U2cdsNstsNpdjVQAAwJkcCkCrVq2SJHtoyPtcEaWnp+v69esKDAx0dikAAKCCcCgA1a1b97afncFqtSonJ6fA3V7Lli2TzWZTu3btnFQZAACoaAxZBH3p0iX5+vre9rk76enpSk1NVZ06dRya45NPPlFaWpr9bq2dO3fq8uXLkqQBAwYoNTVVjz76qHr16qWGDRtKkvbu3avdu3erXbt26ty5s0PzAgCAqseQADRkyBCNHj1aI0eOLLLPmjVr9O9//1vbt293aI5Vq1YpMTHR/nnHjh3asWOHJKl3797y9fVVx44dtW/fPsXGxio3N1fBwcEaN26chg4dKjc3N4fmBQAAVY8hAchms8lms/1mn9JYvXr1b/Z59tlnSzUHAABwDeV2WuTKlSs8jRkAAFQIDp8B+vWDA4t6Q3tubq4uX76srVu3qkWLFo5OBwAAYBiHA9D7779v/7PJZNKhQ4d06NChIvubzWaNHz/e0ekAAAAM43AAmj9/vqRba3umTJmivn37qk+fPgX6ubm5yd/fXw0bNmQhMgAAqBAcDkCRkZH2P48aNUr33HNPvjYAAICKypBTMvfdd5+++eabfG9U/6WkpCQtXLhQR48eNWI6AACAUjEkAK1atUo7d+5UUFBQodvNZrN27dpVrFvZAQAAypohAejEiRO6++67b9undevWOnbsmBHTAQAAlIohASglJeU336Zes2ZNXbt2zYjpAAAASsWQAOTr62t/L1dRLl26JG9vbyOmAwAAKBVDAlCLFi20Y8cOXbp0qdDtly5d0tdff6277rrLiOkAAABKxZAANHjwYFmtVk2YMEGxsbFKSkqSdOvur40bN+qJJ55QZmamhgwZYsR0AAAApWLIy1AjIyM1YcIEvf3225o7d66kW0+HznsBqslk0qRJk3hOEAAAqBAMCUCSNGjQIN17771au3atTpw4obS0NPn6+qp58+b63e9+p8aNGxs1FQAAQKkYFoAkqUmTJoqJiTFySAAAAMPxci4AAOByDDsDlJ2drU8//VRffvmlzp07J6vVqm3btkmSTp06pfXr12vQoEEKCQkxakoAAACHGBKArFarnnrqKR05ckQBAQHy8fGRxWKxb69Xr542bNggPz8/jR071ogpAQAAHGbIJbDly5crPj5e48aN0+eff64HH3ww33ZfX19FRkZq3759RkwHAABQKoYEoK+++kr33HOPhg8fLpPJJJPJVKBP/fr1i3xQIgAAQHkyJABdvnxZERERt+3j7e2tmzdvGjEdAABAqRgSgLy9vZWSknLbPhcvXlRAQIAR0wEAAJSKIQGoZcuW2rVrl1JTUwvdfunSJe3evVutW7c2YjoAAIBSMSQADR06VKmpqZo6dari4+OVk5MjSbJYLDpw4ICefvpp5eTk8C4wAABQIRj2LrApU6ZowYIFmjRpkr29T58+kiQ3NzfFxMT85johAACA8mDYgxD79++vyMhIrV27VsePH9eNGzfk4+Oj5s2b6/e//70aNWpk1FQAAACl4lAA+uabbxQaGlrgqc5hYWGaPHmyIYUBAACUFYfWAD377LPaunWr/fOQIUO0Zs0aw4oCAAAoSw4FIA8PD2VnZ9s/JyYmKi0tzbCiAAAAypJDAah27dr57vaSVOjTnwEAACoih9YA9erVS8uWLdNDDz0kf39/SdLq1au1YcOG2+5nMpm0cuVKR6YEAAAwjEMB6E9/+pM8PT21e/duJSUlyWQyyWazyWaz3Xa/39oOAABQHhwKQB4eHhoxYoRGjBghSerWrZsGDx6sUaNGGVkbAABAmXBoDdA333yj8+fP2z+PGjVKkZGRRtUEAABQpgy5DT42NlanT582rCgAAICy5PAlsPK8DT49PV0rV67UsWPHdPz4caWmpmrGjBnq27dvgb5nz57VwoULFR8fLw8PD3Xo0EETJ05UYGBgmdUHAAAql0pxG/z169e1dOlSJSQkKDw8vMh+ly9f1qRJk3ThwgWNHTtWQ4cO1bfffquYmBhlZWWVWX0AAKByqRS3wQcFBemzzz5TUFCQTpw4oXHjxhXab8WKFbJYLHrvvfdUp04dSVLz5s0VExOjjRs3Kjo6usRzAwCAqsehM0B/+tOfNHbsWDVp0kQmkynfbfC3+8nNzXWoSE9PTwUFBf1mv7i4OHXs2NEefiTpvvvuU0hIiLZt2+bQ3AAAoOqpMrfBX7lyRdeuXVNERESBbc2bN9fu3budUBUAAKiIHApAv1YRboNPTk6WpELPFAUFBenGjRvKzMyUp6dnge1JSUn2/SUpISGh7AoFAABOZ0gAGj169G/2ycrKUmZmpnx8fIyYsgCr1SpJqlatWoFteaHHarUWGoDWrVunpUuXlkldAACg4nFoDZAkDRkyRGvWrMnXtnfvXi1cuLDQ/itWrNCDDz7o6HS/ycvLS5IKvdsrMzMzX59fi46O1pIlS+w/zz77bJnVCQAAnM/hM0CFPfvn6NGjWrNmjSZOnFjqwkoq79LXLy9l5UlOTpa/v3+hZ38kyWw2y2w2l2l9AACg4nD4DFBFU6tWLQUGBurkyZMFth0/fvy2zw8CAACupcoEIOnW3Wi7du3SpUuX7G0HDhzQ+fPn1aNHDydWBgAAKhJDFkGXh08++URpaWn2S1w7d+7U5cuXJUkDBgyQr6+vRowYoe3bt2vKlCkaOHCgMjIy9NFHH6lx48aFvjYDAAC4pkoTgFatWqXExET75x07dmjHjh2SpN69e8vX11d16tTRggULtHDhQi1evNj+LrAJEyYUuf4HAAC4nkoTgFavXl2sfo0aNdJrr71WxtUAAIDKrFQBaPPmzTp69Kj984ULFyRJf/nLXwr0zdsGAADgbKUKQBcuXCg02Ozdu7fQ/mX5xngAAIDicjgArVq1ysg6AAAAyo3DAahu3bpG1gEAAFBuqtRzgAAAAIqDAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC7Hw9kFuKK0pAxZUjOdXUaxpVxIc3YJAAAYigBUztKSMrTmL18r25rj7FJKxMPLXdX9PJ1dBgAAhiAAlTNLaqayrTnq/sTdCgz2dXY5xVbdz1O+Zm9nlwEAgCEIQE4SGOwrc6MAZ5cBAIBLYhE0AABwOQQgAADgcqrUJbCDBw9q8uTJhW5btGiRWrZsWc4VAQCAiqhKBaA8AwYMUPPmzfO1BQcHO6kaAABQ0VTJANS6dWt1797d2WUAAIAKqsquAUpPT1d2drazywAAABVQlTwDNGfOHGVkZMjd3V133323Hn/8cd15553OLgsAAFQQVSoAeXh4qFu3bmrfvr0CAgJ09uxZrVq1ShMnTtTbb7+tZs2aFbpfUlKSkpOT7Z8TEhLKq2QAAOAEVSoAtWrVSq1atbJ/7ty5s7p3767Ro0fr3Xff1auvvlrofuvWrdPSpUvLqUoAAOBsVSoAFaZBgwbq3LmzduzYoZycHLm7uxfoEx0drU6dOtk/JyQkaPbs2eVZJgAAKEdVPgBJUu3atZWVlSWLxSIfH58C281ms8xmsxMqAwAAzlBl7wL7pYsXL8rT01Pe3rzMEwAAVLEAlJKSUqDt9OnT2rlzp9q0aSM3tyr1dQEAgIOq1CWw559/Xl5eXrrrrrt0xx136OzZs1q/fr2qV6+uxx57zNnlAQCACqJKBaAuXbpoy5YtWr16tW7evKnAwEB17dpVo0aNUoMGDZxdHgAAqCCqVAAaOHCgBg4c6OwyAABABceiGAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDL8XB2AUbLzMzUv/71L23evFmpqalq0qSJxowZozZt2ji7NAAAUEFUuTNAc+bM0erVq3X//ffrySeflJubm6ZNm6bDhw87uzQAAFBBVKkAdOzYMW3dulXjxo3TE088oejoaL3xxhuqW7euFi1a5OzyAABABVGlAlBcXJzc3d0VHR1tb/Py8tKDDz6oo0eP6tKlS06sDgAAVBRVKgCdOnVKDRo0kI+PT7725s2bS5JOnz7tjLIAAEAFU6UWQScnJysoKKhAe15bUlJSofslJSUpOTnZ/jkvKCUkJBheY8rFNCVnJurM2dNKzvQ1fHwAACq6sv67MDQ0VNWrV79tnyoVgKxWq6pVq1ag3dPT0769MOvWrdPSpUsLtM+ePdvQ+n7pv8+X2dAAAFQKZfV34ZIlSxQREXHbPlUqAHl5eSkrK6tAe2Zmpn17YaKjo9WpUyf759TUVCUkJGjr1q2aPHlysed/8803NWnSpNv2SUhI0OzZs/Xss88qNDS02GNXZcX5vTmLM2orizmNGrM04ziyb0n34Rh0TEU+BqXyr6+s5nOF47C4fcv6OCzOmFUqAAUFBenKlSsF2vMub5nN5kL3M5vNBbbdd9992rdv328myF/y9fUtdv/Q0NASjV2VleT3Vt6cUVtZzGnUmKUZx5F9S7oPx6BjKvIxKJV/fWU1nyschyUd35nHYZVaBB0eHq6ffvpJN2/ezNd+7Ngx+/aS6NWrV5n2xy0V+ffmjNrKYk6jxizNOI7syzFYPir676286yur+VzhOKzo/y/9kslms9mcXYRRjh07pvHjx+vxxx/XsGHDJN26/DVy5EgFBATonXfecXKF0smTJzV27NhiXZ8EYDyOQcD5KsJxWKUugbVo0UI9evTQu+++q5SUFAUHBys2NlaJiYl65plnnF2epFuX6UaNGlXo3WoAyh7HIOB8FeE4rFJngKRbd3rlvQssLS1NjRs31pgxY9S2bVtnlwYAACqIKheAAAAAfkuVWgQNAABQHASgCiYzM1Nz587VwIED1adPH40fP15HjhxxdlmAS3nllVfUv39/9enTRyNHjtTOnTudXRLgso4cOaJu3bpp2bJlho7LJbAKJiMjQ6tWrVLfvn1Vq1Ytbdu2TW+88YZWrVqlGjVqOLs8wCUkJCSoXr168vT01PHjxxUTE6OVK1cqICDA2aUBLiU3N1dPPPGEbDabOnbsqJEjRxo2NmeAKhhvb2+NGjVKderUkZubm6KiouTh4aHz5887uzTAZYSGhtpfoWMymZSVlVXkuwQBlJ3169erefPmZfK06Cp1G7wzpKena+XKlTp27JiOHz+u1NRUzZgxQ3379i3QNzMz036HWmpqqpo0aaIxY8aoTZs2RY5//vx5paamKjg4uCy/BlBpldUx+Prrr2vDhg3KzMxU+/bt1bhx4/L4OkClVBbH4fXr1/Xxxx9r0aJFevPNNw2vmTNApXT9+nUtXbpUCQkJv/mk6Tlz5mj16tW6//779eSTT8rNzU3Tpk3T4cOHC+1vtVo1e/ZsPfLII/L15c3xQGHK6hiMiYnRpk2bNG/ePLVp00Ymk6msvgJQ6ZXFcbhkyRINGjRIfn5+ZVO0DaVitVptSUlJNpvNZjt+/LitS5cutg0bNhTod/ToUVuXLl1sH374ob3NYrHYhg4dahs/fnyB/llZWbZp06bZZs2aZcvNzS27LwBUcmV1DP7SM888Y9u1a5exhQNViNHH4cmTJ22PPvqoLTs722az2WwvvPCCbenSpYbWzBmgUvL09CzWkyzj4uLk7u6u6Ohoe5uXl5cefPBBHT16VJcuXbK35+bmavbs2TKZTPrrX//KvzyB2yiLY/DXcnJydOHCBUPqBaoio4/DQ4cO6fz58xowYID69++vr776Sh9++KHmzJljWM2sASonp06dUoMGDeTj45OvvXnz5pKk06dPq06dOpKkV199VcnJyXr11Vfl4cF/IsAIxT0G09LS9O2336pTp07y9PTU119/rYMHD2rcuHHOKBuoUop7HEZHRysqKsq+fcGCBapXr54eeeQRw2rhb9dykpycXGg6zmvLu8MkMTFRX3zxhTw9PfMl5JdfflmtW7cun2KBKqi4x6DJZNIXX3yhefPmyWazKTg4WM8995yaNm1arvUCVVFxj8Pq1aurevXq9u1eXl7y9vY2dD0QAaicWK1WVatWrUB73q22VqtVklS3bl3t2LGjXGsDXEFxj0EfHx/Nnz+/XGsDXEVxj8Nf++tf/2p4LawBKideXl7Kysoq0J6ZmWnfDqDscAwCzleRjkMCUDkJCgpScnJygfa8NrPZXN4lAS6FYxBwvop0HBKAykl4eLh++ukn3bx5M1/7sWPH7NsBlB2OQcD5KtJxSAAqJ927d1dOTo7WrVtnb8vMzNSGDRvUokUL+x1gAMoGxyDgfBXpOGQRtAE++eQTpaWl2U/h7dy5U5cvX5YkDRgwQL6+vmrRooV69Oihd999VykpKQoODlZsbKwSExP1zDPPOLN8oNLjGAScr7Idh7wN3gCDBw9WYmJiodtWrVqlevXqSbq1uj3v/SdpaWlq3LixxowZo7Zt25ZnuUCVwzEIOF9lOw4JQAAAwOWwBggAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAFCEjRs3qmvXrvafmTNnFtpvyZIl6tq1q+Lj48u3wF9JSEjIV+/gwYOdWg9QkXk4uwAAFcfPP/+sIUOG3LZP3bp1tXr16nKqqGLo3LmzwsPD1bhx40K3f//993Jzc1PTpk0Nm3PDhg2aO3euHn30UY0cObLIflarVX/84x915coVzZs3T6NGjZIkrVmzxrBagKqIAASggODgYN1///2FbvP19S3napyvS5cu6tu3b5HbT506pZCQEFWvXt2wOfPC1g8//HDbfitXrlRiYqL69++vyMhIRUZGSpJiY2MNqwWoighAAAoIDg7Wn//8Z2eXUSkkJSXp6tWr+r//+z9Dx23UqJHc3Nz0448/3nbuDz/8UP7+/hozZoyh8wNVHWuAADjs4MGD6tq1q/7973/rxIkTiomJ0QMPPKC+ffvqb3/7m37++edC9zt06JCmT5+uhx9+WFFRURo2bJiWLFkii8VS5Pjx8fGKiYlRv3791LVrV3uf7OxsrVixQkOHDlWvXr00bNgwrVixQhcvXlTXrl314osv2vvu379fXbt21euvv15oXRcuXFC3bt301FNPFft3cOrUKUlSs2bN8rUnJCToT3/6kx544AFt3brV3p6Tk6P//ve/mjRpkvr27atevXppzJgxiouLy7e/l5eXgoOD9dNPPyk7O7vQuRcvXqyMjAyNGTNG/v7+xa4ZAAEIgAFOnDihSZMmycPDQ9HR0YqIiNDXX3+tmJgYWa3WfH0///xzTZ48WfHx8Wrfvr0GDBig2rVra/ny5YqJiVFWVlaB8Y8cOaLJkyfLZDLp4YcfVs+ePe3bXnrpJb377ruSpP79+6tt27ZavXq1FixYUGCc//u//1NwcLC+/PLLAmFLkr744gvZbDY9/PDDxf7uhQWgrVu3aty4ccrOztaiRYsUFRUl6dZ6naefflovvfSS0tPT1bdvX/Xt21eXLl3Sc889p82bN+cbu3HjxsrOzlZCQkKBeY8dO6bNmzcrPDy8RPUCuIVLYAAKuHDhgv79738Xuq1ly5Zq165dvrbdu3fr+eeft/9FL0kvvPCCNm3apG+++cbefvbsWc2fP19NmjTRvHnzFBAQYO+/YsUKvfvuu/rkk080dOjQfOPv379f06dPV79+/fK1HzhwQJs2bVLTpk311ltv2dfg/PGPfyz0klBegHrnnXe0bdu2fOt6srOzFRsbqzvuuEOdO3cuzq9J0q0F0CaTSU2bNlV2drbeeustffLJJ+rUqZP+9re/5Vsz9dJLL+nAgQOaPHmyBgwYYG8fOXKkRo8erffee0+9e/e2tzdp0kRxcXE6e/asmjRpkm/eN998UzabTZMnT5a7u3ux6wVwC2eAABRw4cIFLV26tNCfPXv2FOjfunXrfOFHkj2sHD9+3N62du1a5eTkaPLkyfnCjyQNHz5cgYGB+S4X5WnWrFmB8CPJfsZk5MiR+RYgm81mDRw4sNDv1q9fP1WrVk3//e9/87V/++23Sk5OVp8+feThUfx/G546dUr169fXzZs3NWnSJH322Wd69NFH9eKLL+YLPwcOHNCXX36p6OjofOEnr9727dsrMTFRKSkp9vaiFkJv2bJFR48eVVRUlFq3bl3sWgH8D2eAABTQtm1bvfrqq8XuHxERUaCtVq1akqS0tDR727FjxyRJe/fu1YEDBwrs4+HhoXPnzhVov/POOwud9/Tp05Kku+++u8C2u+66q9B9AgMD1bVrV23dulUJCQkKDQ2VJHsgeuihhwrdrzCpqan6+eefFRwcrDFjxshms+nll19W27ZtC/T99NNPJUm5ubmFnl3Lu8yVm5trb8s76/PLhdAWi0XvvPOOvL299fjjjxe7VgD5EYAAlFqNGjUKtOVdlvnlX+g3btyQJC1fvrxE49esWbPQ9vT0dLm5uRU4m3S7fSQpOjpaW7du1RdffKEJEyYoKSlJe/bsUWRkpEJCQopdV976n9TUVN24cUMjR44sNPxIty7jSbfWGRXF09NTgYGB9s/169eXt7d3vgD04Ycf6sqVKxo7dqxq165d7FoB5EcAAlBufHx8JN16Rk1hoamkatSoodzcXF2/fj1fcJCkq1evFrnfPffco4YNG2rTpk0aN26cNmzYoJycnBKd/ZH+F4CmTZumjz76SCtWrFCLFi3UoUOHfP1SU1OVkZGhzp0757sr7beYTCaFhYXp5MmTslgsunHjhlauXKng4ODffGAlgNtjDRCActOiRQtJ0tGjRw0ZLzw8XJIKfQXFkSNHbrtvdHS0UlJS9PXXX2vDhg3y8/NTt27dSjR/XgBq0aKFXnzxRdWqVUszZ860X5r7tevXr5dofOnWZbDc3FydPXtW77zzjiwWiyZOnChPT88SjwXgfwhAAMpN//795e7urvnz5+vSpUsFtqempur7778v9nh5T6teunRpvtvtk5OTf/NVEH369JGnp6cWLlyoixcvqnfv3vLy8ir23NKtO8Bq1qwps9msO+64Q3PnzpWbm5ueeeYZJSUl2fv5+fmpQYMGOnbsWKFrn7KysooMbHkLob/44gt9+eWXateunTp16lSiOgEUxCUwAAXc7jZ4SXrkkUdKHBakW3+Zx8TE6PXXX9cjjzyi9u3bKzg4WOnp6bp48aK+++479enTR08//XSxxrvvvvvUq1cvffnllxo1apQ6d+6srKwsbdu2Tc2bN9euXbvk5lb4v/P8/f3Vo0cPbdq0SZJK/Cwdq9Wq8+fP53sCdOPGjfX8889rxowZmj59uhYuXGi/O+3xxx/Xc889p6eeekrt27dXaGioLBaLrly5ovj4eLVt27bQhdt5C6HXrVsnDw8PTZo0qUR1AigcAQhAAXm3wRdl0KBBDgUg6VbQCA8P1+rVq/Xdd99p165d8vHxUZ06dTRo0CD16dOnROP99a9/VWhoqDZs2KBPP/1UtWrV0qBBg3Tvvfdq165dt11r1KdPH23atEktW7Ys8kWnRTlz5oxycnLsl+HytG/fXhMnTtT8+fP1j3/8Q7Nnz5abm5u6dOmiN954Qx999JGOHj2qPXv2yN/fX7Vr11a/fv2KfNfYL+saOHCgGjZsWKI6ARTOZLPZbM4uAgCM9sUXX+jll19WTEyM+vfvX2ifjz76SIsWLdIzzzyjBx98sMD2jRs3as6cOZoxY8ZtX4ZaEQ0ePFiStHr1aidXAlRMrAECUKklJyfr1/+Ou3Lliv7zn//I3d29wB1ZeaxWqz777DP5+fkVeIjjr82ZM0ddu3bVzJkzjSq7TCQkJKhr167q2rWrEhMTnV0OUKFxCQxApfbBBx/o22+/VevWrRUYGKjLly9r165dSk9P1+jRo1WnTp18/Q8fPqxDhw5p7969SkxM1Lhx4/I9RfqXwsPDNWrUKPvnkl4mK28BAQH56v3lk6gB5MclMACV2p49e7Rq1SqdOXNGqamp8vT0VJMmTdS/f3/7XWK/9O9//1tLly5VQECAHnjgAY0fP75Er74AUDUQgAAAgMthDRAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5fx/mXPbp8glsIcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ori.get_arf()\n", + "ori.plot_arf()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "45ce929d-2a45-442c-b3b7-249677521675", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAHXCAYAAAC7045uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdu0lEQVR4nO3de1yTdf8/8Nc4bCIj0UGoqJjgAbxLzCzTRFA0iOLWG83U/EmmpCRqdt+esjvrtjzU17Np2oGyO8HybIgGHjDRUsMjiGiJmoGCggyTwXb9/iB2t8Zh27Wxsb2ej8ced/tch8/7Guzm7ecoEQRBABEREZGDcbJ2AERERETWwCSIiIiIHBKTICIiInJITIKIiIjIITEJIiIiIofEJIiIiIgcEpMgIiIickhMgoiIiMghMQkiIiIih8QkiMhI8+fPh0QiwcGDB3XKJRIJQkNDrRITAHTs2BEdO3bUKUtMTIREIkFiYqJVYqph7c/GHtX28yYi4zAJoiZHIpHovJydndGqVSuEhoYiMTERTXEnmCtXrkAikSA2NtbaoZiEf5CN09R/3kT2wsXaARCZ6q233gIAVFZW4tKlS9i2bRsOHTqEEydOYPXq1Y0eT05ODpo3b97o9dZIT0+3Wt0NsfZnY49s+edN1FQwCaIma/78+Trvjxw5gpCQEHz44Yd4/fXX8dBDDzVqPN26dWvU+v7K39/fqvXXx9qfjT2y5Z83UVPB7jCyG/369UO3bt0gCAJOnjypd/yHH37A8OHD0bp1a0ilUrRv3x6vvPIKbty4Uev9Tp48iYiICHh4eOCBBx5AeHg4jh49Wmf9tY17KSsrw3/+8x/87W9/wwMPPAAPDw/4+/tj5MiR2hjnz5+vTdg+//xzna6+mrE8Bw8ehEQiwfz58/Hjjz8iKioKrVq1gkQiwZUrVwA03CX17bffom/fvnB3d0fLli0xfPhw5OXl6Z0XGhoKiURS6z3+OsaoJq78/Hzk5+frxP7nrp66xgSVlpZizpw56Nq1K5o1a4aWLVvi6aefRlpamt65f/4MTp06haioKHh6eqJ58+YYMGAAMjMz63z2v/pzd9Tly5cxfPhwKBQKeHh4YMiQITh37hwA4NatW4iLi0ObNm3QrFkz9O7dGwcOHNC7340bN/DOO++gX79+2t+vtm3bYvTo0cjOztY511I/7zt37qBjx46QyWR6v/8ajQZhYWGQSCTYuHGjwZ8Tkb1jSxDZJVdXV533n376KeLi4iCTyRAdHY327dsjLy8PH3/8MXbt2oVjx46hQ4cO2vMzMzMRHh4OlUqFf/zjHwgICMCpU6cQGhqKgQMHGhSDIAiIiIhAZmYmnnzySUyYMAEuLi64fv06Dhw4gP79+6NXr14IDQ1FSUkJVqxYgR49emDo0KHaewQHB+vc8+jRo1i4cCGeeuopjB8/HkVFRZBKpQ3GsnXrVuzZswfDhg1DaGgoTp06hS1btuDAgQPIzMxE165dDXqmv+rYsSPeeustLF++HAAwffr0OmP/q5KSEvTr1w/Z2dno3bs3pk+fjqKiImzevBlDhgzB2rVr8corr+hdd+LECSxZskT7mV69ehVbtmzBoEGDcOrUKaOe5cqVK3jiiScQGBiI2NhYXLlyBdu2bUNoaCiOHj2KiIgIPPDAAxg5ciRu376NpKQkREZG4uLFizq/LxkZGVi0aBHCwsIQExMDuVyOvLw8fPPNN9i5cyeOHDmCHj16AIDFft4tW7bEpk2bEBISgpEjRyIrKwseHh4AgLfffhsHDx5EbGwsxo4da/DnQ2T3BKImBoBQ26/uoUOHBCcnJ0EqlQo3btzQlufm5gqurq6Cv7+/cP36dZ1r0tLSBCcnJ2Ho0KHaMo1GI3Tt2lUAIGzfvl3n/OXLl2vrP3DggF5cAwYM0L4/c+aMAEDn3jXUarVw+/Zt7ftffvlFACCMGzeu1mc+cOCAtt5169bVeo6fn5/g5+enU/bZZ59pr9u1a1etzzJw4ECd8gEDBtT6+f75fp999lmDdf/ZXz8bQRCEuLg4AYAQFxcnaDQabfnFixeFBx54QJBKpcIvv/yiLf/zZ/DX+tetWycAECZPnlxnDH9W83kDEBYsWKBz7J133hEACC1bthReeeUVQa1Wa4998cUXAgBh+vTpOtcUFhYKd+/e1avn1KlTgru7uxAREVFr/eb+eQuCICxevFgAILzwwguCIAjC/v37BScnJyEwMFAoLy+v9V5EjopJEDU5NX8c3nrrLeGtt94S5s6dKzz//POCq6urIJFIhJUrV+qcP336dAGAsHv37lrvN3ToUMHZ2Vn7R+z7778XAAghISF651ZVVQn+/v5GJUGjRo1q8JkM/aMYHBxc5z3qS4L+muj89VmuXLmiLW+MJKiiokJo3ry5IJfLheLiYr3z582bJwAQ3n77bW1ZzWfQr18/vfNVKpXg4uIi9OrVq84Y/qzm8+7YsaNQVVWlcyw/P18AIDRv3lwvsamqqhJcXFyE0NBQg+oRBEF47rnnBJlMJqhUKr36zf3zFoTqJD4iIkIAILz33ntCmzZtBDc3N+HMmTMGx0zkKNgdRk3W22+/rfNeIpHgk08+wUsvvaRTXjOO59ChQzh+/LjefW7evAm1Wo2LFy+iV69e+OmnnwAAAwYM0DvX2dkZTz31FC5fvtxgfEFBQQgODsamTZuQn5+Pv//973jqqafw2GOPGdSFVZvHH3/cpOsaepasrCz4+fmZdG9T5Obm4t69e+jXrx9atWqld3zgwIFYsGABsrKy9I499thjemWurq7w8fHBnTt3jIojODgYzs7OOmVt27YFAHTp0kXbnVTD2dkZPj4+uH79ut69vv32W6xbtw4nTpxAUVERqqqqdI4XFRWhTZs2RsVnys9bIpHgiy++QHBwMObOnQsA+Oijj/Dwww8bfS8ie8ckiJos4Y/1gMrLy3H06FG8/PLLmDRpEvz8/HTG7RQXFwMA3n///Xrvp1QqAVQP1gUAHx+fWs9r3bq1QfE5Oztj//79eOedd/DNN99g1qxZAAAPDw+MGzcOCxcuhFwuN+hextb9Vw09S80zN5aa+upKCmrKS0pK9I55enrWeo2LiwvUarVRcbRo0aLW+9R1rOZ4ZWWlTtmKFSswffp0tGzZEoMHD0aHDh3QvHlzSCQSbN++HadPn0ZFRYVRsQGm/7y9vb0REhKCpKQkKBQKjgMiqgOTIGry3N3dER4ejl27duHRRx/FuHHjkJubq12XpuaPWWlpKR544IEG71dzfmFhYa3HCwoKDI6tZcuWWLZsGZYtW4ZLly7h0KFD+Oijj7B69WqUlJQYPVOnrllbDWnoWf78B9/JqXrSaFVVlTYhqFFbUmKKmvrq+ix/++03vbhsVVVVFebPn4/WrVvjp59+0kvs6ptR2BBTf95JSUlISkqCl5cXioqKMHXqVGzYsMHkOIjsFafIk9145JFHMHHiRFy/fh3Lli3Tlvfp0wcAcPjwYYPu8+ijjwKo7j77K7Vaje+//96k+AICAvDyyy/j0KFDkMvl2LFjh/ZYTZeMsS0ZhmroWXr27Kktb9myJQDg2rVretecOHGi1vs7OzsbFXvXrl3RvHlznD59utbEqmYaes3PwpYVFRWhpKQEffv21UuAlEqltnv1zyz587506RLi4uLg7e2NrKwshISE4OOPP0ZSUpLZ6yJq6pgEkV2ZN28eZDIZPvjgA+34kClTpsDV1RWvvfYaLl68qHeNSqXSSZD69u2Lrl27IiMjQydRAYDVq1cbNB4IAH755Rf8/PPPeuV37txBRUUF3NzctGUtW7aERCLB1atXDbq3sfbv34/du3frlNU8S1hYmM54oJpxKH9tOUhPT8emTZtqvb9CocCtW7fw+++/GxSPVCrFmDFjUFZWhjfffFPn2OXLl7Fy5Uq4uro2iW6cBx98EM2bN8fJkye1XapA9Urm06ZNQ1FRkd41lvp5q1QqvPDCC1Aqlfj888/Rrl07fPXVV1AoFHjllVcM/t0lchTsDiO74uvri0mTJmHFihVYsmQJFi5ciG7duuHTTz/F+PHj0b17d0RERKBLly6orKzE1atXcfjwYXh7e+PChQsA/jfAevDgwYiJidFZJyg9PR0RERFITU1tMJbTp0/jH//4B3r37o3AwEC0bdsWt27dwo4dO1BZWakdIwQAcrkcTzzxBA4fPowxY8agS5cucHZ2RnR0NB555BHRn8tzzz2HYcOGYdiwYdpn2bNnD1q1aoUPP/xQ59yXXnoJ77//PhYuXIjTp08jKCgIFy9e1K4ztGXLFr37Dxo0CMePH0dERARCQkIgk8nQo0cPPPfcc3XGtGjRIhw+fBirV6/G8ePHERYWpl0nqKysDKtXr270Vb9N4eTkhKlTp2LRokV4+OGH8fe//x0qlQoHDhzA7du3ERYWprfAoqV+3jNnzsTJkycxY8YMREZGAqj+TiQmJuK5557DyJEjkZmZafLAfCK7Y+3padZ29uxZISQkREhMTLR2KGQg1LFOUI2CggKhefPmQvPmzYWCggJt+ZkzZ4Rx48YJHTp0EKRSqdCyZUuhe/fuQlxcnJCenq53nxMnTghPP/20IJfLBblcLgwaNEjIzMwU3nrrLYOmyF+7dk2YM2eO0LdvX8HHx0eQSqWCr6+vEBERIaSkpOjVl5eXJzz77LNCq1atBIlEojMVvWbK9FtvvVXnc9c3Rf6zzz4Tdu3aJfTp00do3ry50KJFC+Ef//iHkJubW+u9zp07J0RGRgpyuVxwd3cXBgwYIBw8eLDOKfJKpVKYNGmS4OvrKzg7O+tN//7rZ1Pjzp07wsyZM4WAgABBKpUKLVq0EMLDw4W9e/fqndvQZ9DQNP0/a2iKel3x1lVPZWWl8H//939CYGCg0KxZM8HHx0d48cUXhStXrgjjxo0TAOiseSQI5v9579y5UwAgPPbYYzrT8Wu89tprAgBh6tSpdd6TyNFIBKEJbrltJhqNBvHx8RAEAX379sW4ceOsHRIRERE1EofuDtu1axcCAwNRXl5u7VCIiIiokTWJgdH37t3Dp59+in/+85+IiopCSEgI9uzZU+u5KpUKa9euxbBhwxAeHo5XXnml1gXySktL8fXXX2P8+PGWDp+IiIhsUJNIgkpLS5GYmIj8/HwEBATUe+7ChQuxefNmDB48GFOnToWTkxNmzpyJM2fO6Jy3YcMGjBgxQm9FWCIiInIMTSIJUigU2LZtG77++mtMnjy5zvOys7ORnp6OuLg4xMfHIzo6GsuXL0fr1q2xdu1a7XkXL17EhQsX8OyzzzZG+ERERGSDmsSYIKlUCoVC0eB5hw4d0k4zrSGTyRAVFYX169ejsLAQPj4+OHXqFK5du4aYmBgA1QuaOTs748aNG5gzZ47FnoOIiIhsR5NIggyVl5eHdu3awd3dXac8MDAQQPVKqj4+PoiOjsagQYO0x1euXIk2bdpgzJgxjRovERERWY9dJUHFxcW1thjVlNWs3NqsWTM0a9ZMe1wmk8HNza3O8UFFRUXaTTgBoKKiAr///jt69Oihcx8iIiJrKSwsNMv+fp6ennVuumxv7CoJqqiogKurq155zeqode3iPHfu3Hrvu3PnTiQmJuqVb9iwAV27djU+UCKiJmiw0whrh1Cnt385ae0Q6tXXT38LHXMqLCzE2BdjcL9C/FDfZs2aYePGjQ6RCNlVEiSTyVBZWalXrlKptMdNER0djX79+mnf5+fnY8GCBaYFSUREZGYlJSW4X+GEuQl30MG3yuT7XP3VBe+taomSkhImQU1NzSaOf1XTleXl5WXSfb28vEy+loiIqLF08K1Cl076jQFUO7tKggICApCVlYXy8nKdwdHZ2dna40RERPZKI2igFjSirgeAVatWQS6XIzw8HOHh4eYKz+Y0iXWCDBUaGgq1Wo2dO3dqy1QqFVJSUhAUFOQQTXtEROS4NBBEvwAgISEBixYtsusECGhCLUFbtmyBUqnUdm0dOXIEN2/eBADExMRALpcjKCgIYWFhWL9+PUpKSuDr64vU1FQUFBRg1qxZ1gyfiIiIbEyTSYKSk5NRUFCgfZ+RkYGMjAwAwJAhQyCXywFUz/Ty8fHB3r17oVQq0alTJyxevBjBwcHWCJuIiKjRCBCggendYcIfLUGOoskkQZs3bzboPJlMhvj4eMTHx1s4IiIiItuihgC1YHoio2YSRHVJS0tDWloalEqltUMhIiKyGEcZGM0kyAg1vwy5ubmYOHGitcMhIiLSIfxpcLOp1wPVA6MdYTFgJkFERER2Qg1BVJeWo3WH2dUUeSIiIiJDsSWIiIjITpirO8xRMAkiIiKyE2oB4maH/XEpB0YTERFRkyIAIlYJgrYdyFEGRnNMEBERETkktgQRERHZCc4OMw6TICIiIjuhEf43rsfU6x0JkyAjcMVoIiJyBBwYTXq4YjQREdkyDcQNjK651lEGRjMJIiIishMaSKCGRNT1joSzw4iIiMghsSWIiIjITmgEcYObOTCaiIiImiQNILI7zLGwO4yIiIgcEluCiIiI7IRa5MDomms5RZ6IiIiaFEGQQCOYngQJf1zLKfJERETUpJirJchRcEwQEREROSS2BBmB22YQEZEtq14s0fT2DUdbLJFJkBG4bQYREdkyDcSNCXK0JIjdYUREROSQ2BJERERkJ7h3mHGYBBEREdkJteAEtWB6J0/NtVwniIiIiBwS1wkiIiKiJkWABBoRw30FdocRERFRU8TFEo3DJIiIyEZEPjTD2iHU64Mrx6wdQp0O3+ts7RDq1dfaAVCtmAQRERHZCY3IgdEaEdc2RUyCiIiI7IQG4qa5a8wXSpPAJIiIiMhOaOAENQRR1zsSJkFG4N5hRERE9oNJkBG4dxgREdmy6jFBIlqCOCaIiIiImiKNyHWCuG0GEREROTRum0FERERNikaQQC2ImB32x7XcNoOIiIiaFDWcoBZ5vSNxrKclIiIi+gNbgoiIiOyEAImoGV7cQJWIiIiaJLXIxRIdbQNVdocRERGRQ2JLEBERkZ2onh0m7npHwiSIiIjITlQvlsgNVA3FJIiIiMhOVG+bIeZ688XSFHBMEBERETkktgQRERHZieruMDHXOxYmQUZIS0tDWloalEqltUMhIiLSI37bDMfqD2MSZISajeRyc3MxceJEa4dDREREIjAJIiIishPViyWa3hJUvdCihrvIExERUdMiCBJRa/3U9IY5yi7ynB1GREREDoktQURERHZCDQnUIto31A42P4xJEBERkZ0Q4CRyF3nHwu4wIiIickhsCSIiIrIT1d1hYmaHcQNVIiIiaoKqZ4eJ6A7jYolERETUFLElyDgcE0REREQOiS1BREREdkIQRM4OY3cYERERNUVqQQK1iCRILTjWOkHsDiMiIiKHxJYgIiIiOyFAAo2Iwc2Cgw2MZhJERERkJ9SCk8juMMfqIDIqCRo5cqToCkeMGIHhw4eLvg8RERGRGEYlQQUFBXB3d4dcLjepsps3b0KpVJp0rS1IS0tDWlpak34GIkc2pM871g6hXv+XsdnaIdRrr7K7tUOoU9bdDtYOoV5TGqkeARJoBHaHGcro7rDnn38esbGxJlU2YMAAk66zFeHh4QgPD0dubi4mTpxo7XCIiIh0iN9FvmklQdu3b8euXbvw888/Y+zYsRg/frxR1ztW5x8RERHZDYVCgZdeesnkRhajWoI2btyIO3fumFRRzfUtWrQw+XoiIiKqW/XeYSK6w0Rcaw39+/cHABw7dsyk641Kgjp06IDY2FhER0fj5ZdfhoeHh1GVdehg2322RERETZkGTtCI6OQx5dp79+4hKSkJ2dnZyMnJQVlZGebMmYPIyEi9c1UqFT755BPs27cPZWVl8Pf3x4QJE9C7d2+TYxbD6Kf18vLCtm3bMHr0aOzcudPhltgmIiKyVRqhZtVo014aE/6kl5aWIjExEfn5+QgICKj33IULF2Lz5s0YPHgwpk6dCicnJ8ycORNnzpwx8YnFMXpg9JdffolNmzbhq6++wtKlS7Fz505MmzYNDz/8sCXiIyIiIhumUCiwbds2KBQKXLhwAXFxcbWel52djfT0dEyePBmjRo0CADz99NOIjY3F2rVrsXbtWu25r776Ks6ePVvrfcaOHWu2yUlGJ0FSqRTjxo1DVFQUPvroI3z33XdISEjAoEGDMHnyZHh5eZklMCIiIjKORuSYIFOulUqlUCgUDZ536NAhODs7Izo6Wlsmk8kQFRWF9evXo7CwED4+PgCANWvWGB2HKUzuOPTy8sIbb7yBDz/8EIGBgUhLS8OLL76I//73v6iqqjJnjERERGQAzR+7yIt5WUpeXh7atWsHd3d3nfLAwEAAwKVLl4y+Z1VVFSoqKqDRaKBWq1FRUQG1Wm3w9aKfNigoCGvXrsW8efPg7u6ODRs2YNy4cTh69KjYWxMREZEV5OfnIzc3V/sqKioSfc/i4uJaW4xqykyp44svvsDgwYOxe/dubNy4EYMHD8a+ffsMvt5se4cNHjwYISEh+O9//4vk5GTMmTMHTzzxBBISEtCuXTtzVUNERER10EAiasHDms1XFyxYoFMeGxtr9EKEf1VRUQFXV1e9cqlUqj1urPHjx4uKy6wbqMpkMowfPx7PPvss1q1bh/T0dJw8eRLDhw/HpEmTzFkVERER/YVGMG1cz5+vB4B58+bBz89PW27ImJ+GyGQyVFZW6pWrVCrt8cZmkc6/Fi1aYOTIkYiOjkZlZSWSk5MtUQ0RERFZgJ+fH7p27ap9mWPSk0KhQHFxsV55TZk1JlaJaglSq9W4evUqfvnlF/zyyy/4+eef8csvv+C3337TWT+IawkRERFZngBxg5sFC+6mFRAQgKysLJSXl+sMjs7OztYeb2xGJ0FffPGFNuH59ddftTPBahKdZs2aoWvXrvD390enTp20/0tERESWpYFEO67H1OsBYNWqVZDL5dqNw80hNDQUSUlJ2Llzp3adIJVKhZSUFAQFBWmnxzcmo5OgTz75BADg5OQEX19fnUTH398fbdu2NXuQRERE1HgSEhLQtWtXg8/fsmULlEqltmvryJEjuHnzJgAgJiYGcrkcQUFBCAsLw/r161FSUgJfX1+kpqaioKAAs2bNsshzNMToJGj27Nno1KkTOnbsaJVBTERERFQ7zR/bX4i53hTJyckoKCjQvs/IyEBGRgYAYMiQIZDL5QCAuXPnwsfHB3v37oVSqUSnTp2wePFiBAcHmxyzGEYnQbVtiEZERETWV71itIgNVE1MgjZv3mzQeTKZDPHx8YiPjzepHnMz2xT50tJSCIIAT09Pc92SiIiIjGCubTMsMSbIFolOgtLS0vDxxx9rm8GkUqlRqzUSERGRbTF2TFBTJWouXEZGBv7zn//g3r17GDJkCLp06aJd9AgAzp8/j3fffRf5+fmiAyUiIqL6CX/MDjP1JYiYWdYUiUqCNm7cCE9PTyQmJmLu3Ll48skndY537doVx44dQ2pqqqggiYiIqGE13WFiXo5EVBL0yy+/YMCAAWjVqlWtx11cXPDII4/g5MmTYqohIiIiMjtRY4KkUql247O6eHt74/z582KqsRlpaWlIS0uDUqm0dihERER6BIibHSZYcLFEWyQqCQoICMDp06frPUcmk6GsrExMNTaj5pchNzcXEydOtHY4REREOsw1O4wDow3w9NNP4+LFi9i2bVud5+Tn5+vsEUJERERkC0S1BEVGRiItLQ0rVqzAL7/8ArVarXP8p59+wg8//IAnnnhCVJBERETUMHPtHeYoRCVBTk5OWLx4MRYtWoQdO3ZAIqn+8N544w2UlpZqd4YdPXq0+EiJiIioXoLI7jDBwWaHiV4sUSqV4t///jeioqKwdetWnDx5Et9//z0AoF27dpg0aRIeeeQR0YESERFR4+DAaCP16tULvXr1AgAolUoIggAPDw9z3Z6IiIgaoBFM3/+r5nqAA6MNsn///lrL5XI5EyAiIqJGJohcKNHRusNEJUFLlizBlStXzBQKERERiaGByBWjHWxgtKgk6MEHH8S8efNw7969Os+pqKjAG2+8IaYaIiIiIrMTlQT95z//QVFREd59991ajxcXF2PKlCk4cuSImGqIiIjIAGI2TxU7vb4pEpUE+fn54V//+he+//57fPnllzrHLl++jEmTJuHSpUuYOnWqqCCJiIioYRwTZBzRs8MGDRqEc+fO4ZNPPkG3bt3w2GOP4dixY3j77bchkUiwaNEiLpZIRETUhHCKfC3Onz+PgIAAyGQynfJXX30VFy5cwNtvv41hw4Zh48aNePDBB7Fo0SI89NBDZg2YiIiIaqcRJAD3DjOYUUlQfHw8nJyc0KFDB3Tp0gWdO3dGly5d0KVLF7z99tuYMGECvvjiCwQFBeG9996Dp6enhcImIlsVGrnE2iHU6aOv11k7hHqllgdZO4R6Zd3tYO0Q6lRS4WbtEGyCIHKdIEEwYzBNgFFJ0Isvvoi8vDzk5eVh37592LdvHyQSCSQSCdq0aQO5XA5BEDBq1ChoNBpLxUxEREQkmlFJ0MSJE7X/XVxcrE2ILl68iLy8PPz2228AgDfffBMA0LJlSwQEBKBLly461xIREZH5aQQJJNw7zGAmD4xWKBRQKBTo06ePtkypVGoTo5rk6MSJEzh+/DiTICIiIgsTIG5MkOBgU+TNtncYUL1dRs+ePdGzZ09tWUVFBS5fvmzOaoiIiIhEM2sSVBuZTIagINse7EdERGQPBEhEtuY4VkuQUYslvvPOOzh06JDJlYm9noiIiOomat+wP15A9TpBs2fPRlpampWfyLKMaglKT09Hhw4dMGDAAJMqE3s9ERER1U0QIGpMEP6YIs91guqQl5eH1NRUS8RCRERE1GiMToK+//57kzZEFRxtBSYiIqJGJnbFaAgSOJsvHJtnVBI0e/Zs0RV27txZ9D2IiIioFiI3QRWzxlBTZFQSFBkZaak4iIiIiBqVxafIExERUePQQGRLkINNkWcSREREZCcEQeQmqA42fNeodYKIiIiI7AVbgoiIiOyEAAk0Irq0nNgdRkRERE1RdXeYmF3kzRhME8AkiIiIiHSsWrUKcrkc4eHhCA8Pt3Y4FsMkyAhpaWlIS0uDUqm0dihERER6/rz/l0n+uNZRts0QNTD6X//6FzIyMqBWq80Vj00LDw/HokWLkJCQYO1QiIiI9NTMDhPzciSiWoJ+/PFHHD9+HJ6enoiMjERUVBTatWtnrtiIiIjIKOLWCYKDDYwW1RK0adMmjBo1Ck5OTvjqq6/w4osvYvr06UhPT0dlZaW5YiQiIiIyO1EtQW3btsUrr7yCCRMmIDMzE99++y1++OEHnDp1Ch4eHnj66afx7LPPomPHjmYKl4iIiOoiiNw7TFwrUtNjloHRzs7O6N+/P/r374+ioiKkpKRgz549+Oabb/DNN9+ge/fuePbZZzFw4EDIZDJzVElERER/IXZgtKNtoGr2FaO9vLwwevRoxMXFQaFQQBAEnDt3DosXL8bw4cOxadMmaDQac1dLREREZBSzTpG/du0adu/ejb1796KkpASurq4YMmQIIiIicPHiRWzbtg0fffQR7ty5g/j4eHNWTURE5PDEzvDi7DAjVVRU4ODBg9i9ezfOnj0LQRDQoUMHjB49GpGRkfDw8AAA9OrVCzExMZgxYwb27t3LJIiIiMjcRK4Y7WgbqIpKgpYtW4a0tDSUl5fDxcUFAwcORHR0NIKDg2s9XyqV4vHHH8e5c+fEVEtEREQkmqgkaPv27Wjbti1efPFFREZGwtPTs8FrevbsiXHjxomploiIiGohiFwnSHCwdYJEJUFLly5Fr169jLrm4YcfxsMPPyymWiIiIqqFAHE9Wg7WGyZudpixCRARERGRrRDVErRo0aIGz5FIJHB3d0f79u3Rt29feHt7i6mSiIiI6sDFEo0jKgnas2cPJJLqD0yoZV6dRCLRKV+xYgXGjRvHMUFERESWYKb+sFWrVkEulyM8PBzh4eHmiMwmiUqCNm3ahFWrViEnJwfDhw/Hww8/jFatWuH27ds4e/YstmzZgsDAQIwdOxaXL1/GF198gc8++wzt2rXDoEGDzPUMREREBPO1BCUkJKBr167mCstmiUqC9u/fj5ycHHz66ado1aqVtrx9+/bo0aMHIiMj8fLLLyMrKwujR4/GE088gf/3//4ftm/fziSIiIiIrErUwOhvv/0WYWFhOgnQnykUCoSGhmLXrl0AAG9vbzz55JO4fPmymGqJiIioNsL/Vo025eVo08NEtQTdunULrq6u9Z4jlUpx69Yt7XsfHx+oVCox1RIREVEtuE6QcUQlQd7e3jh8+DBefvnlWneHr6iowOHDh3VmhN25cwdyuVxMtUQO7cnR/2ftEOr1xYbl1g6hTinKIGuHUK+f7vpZO4R63VU1s3YIdbqvNutWmOQgRHWHRUVF4caNG5gyZQq+//57lJaWAgBKS0vx/fffY8qUKfjtt9/wzDPPaK85c+YMAgICxEVNRERE+gQAgkTEy9oP0LhEpc6jRo1Cfn4+9u3bh3nz5gHQnRYvCALCw8MxZswYAMDt27fx5JNP4oknnhAZNhEREf0Vd5E3jqgkyNnZGW+88QYiIiKwb98+XL58GeXl5XB3d0dAQAAGDx6ss6p0q1atkJCQIDpoIiIiIrHM0onaq1cvbqFBRERkbdw8zCiixgSFhobinXfeMVcsREREJELNYoliXo5EVBLUvHlzPPjgg+aKhYiIiKjRiOoOCwwM5MKHREREtsTBurTEENUS9NJLL+Gnn35CamqqueIhIiIiE7E7zDiiWoJOnDiB4OBgLFq0CFu3bkW3bt3QsmVL7c7yNSQSCXeOJyIisjQOjDaKqCTos88+0/53bm4ucnNzaz2PSRARERHZGlFJ0IoVK8wVBxEREYkm+eMl5vqmQaVSYenSpThx4gSUSiU6duyIKVOm4G9/+5vB9xCVBAUHB4u5nIiIiMzJgbrD1Go1WrdujTVr1sDb2xsHDhzAnDlzkJycjObNmxt0D1EDo4mIiIiswc3NDbGxsfDx8YGTkxMGDRoEFxcXXLt2zeB7iF4xuqqqClu3bkVaWhquXr2KiooKHDhwAACQl5eHXbt2YcSIEWjfvr3YqoiIiKg+VmgJunfvHpKSkpCdnY2cnByUlZVhzpw5iIyM1DtXpVLhk08+wb59+1BWVgZ/f39MmDABvXv3FhF0tWvXrqGsrAy+vr4GXyOqJaiiogLTp0/Hhx9+iMLCQri7u2s3TwWANm3aICUlhVPoiYiIGoOoHeT/eBmptLQUiYmJyM/PR0BAQL3nLly4EJs3b8bgwYMxdepUODk5YebMmThz5oypTwygOh9ZsGABxowZA7lcbvB1opKgjRs34uzZs4iLi8P27dsRFRWlc1wulyM4OBjHjx8XUw0RERHZKIVCgW3btuHrr7/G5MmT6zwvOzsb6enpiIuLQ3x8PKKjo7F8+XK0bt0aa9eu1Tn31VdfRUhISK2vDRs26JxbVVWFf//73/D19UVsbKxRsYvqDtu/fz969uyJ0aNHA4De+kAA0LZtW+Tl5YmphoiIiAwkNPLgZqlUCoVC0eB5hw4dgrOzM6Kjo7VlMpkMUVFRWL9+PQoLC+Hj4wMAWLNmjUF1azQaLFiwABKJBHPnzq01D6mPqJagmzdvomvXrvWe4+bmhvLycjHVEBERkSEEM7wsJC8vD+3atYO7u7tOeWBgIADg0qVLRt/zgw8+QHFxMd5++224uBjfriOqJcjNzQ0lJSX1nnPjxg20aNFCTDVERERkCAEmjevRuR5Afn6+TrFCoYCXl5fp9wVQXFxca4tRTVlRUZFR9ysoKMDu3bshlUp1WpeWLFmCHj16GHQPUUlQ9+7dkZmZibKyMnh4eOgdLywsxLFjx9C/f38x1RAREVEjWrBggc772NhYjB8/XtQ9Kyoq4OrqqlculUq1x43RunVrZGRkiIpJVBL0wgsvYPr06Xjttdcwbdo0qNVqAMD9+/dx/vx5LF++HGq1GiNHjhQVJBERERlAACRmmCI/b948+Pn5aYsNGfPTEJlMhsrKSr1ylUqlPd7YRK8YPX36dKxcuRIJCQna8oiICACAk5MTZsyY0eC4ISIiIjIDM60T5OfnZ/a/3QqFArdu3dIrLy4uBgDR3W2mEL1Y4tChQxEcHIwdO3YgJycHd+/ehbu7OwIDAzFs2DA89NBD5oiTiIiImrCAgABkZWWhvLxcZ3B0dna29nhjE50EAUDHjh0xbdo0c9yKiIiITGbagoc61wNYtWoV5HI5wsPDER4ebpbIQkNDkZSUhJ07d2LUqFEAqrvCUlJSEBQUpJ0e35jMkgQRERGRDTBTd1hCQoJR3WFbtmyBUqnUdm0dOXIEN2/eBADExMRALpcjKCgIYWFhWL9+PUpKSuDr64vU1FQUFBRg1qxZIoI2HZMgIiIiEiU5ORkFBQXa9xkZGdqZW0OGDNFuZTF37lz4+Phg7969UCqV6NSpExYvXozg4GBrhC0+CaqsrMThw4dx4cIFKJVKaDSaWs+bPXu22KqIiIioPlbYQBUANm/ebNB5MpkM8fHxiI+PN60iMxOVBBUUFGDGjBm4ceOGzsapfyWRSGwuCXr//fdx5MgR3L9/Hz4+PoiLi0O/fv2sHRYREZHpzJQEWWJMkC0SlQStWrUKv/76K4YMGYKoqCh4e3vD2dnZXLFZ1PPPP49p06ZBKpUiJycHM2bMQFJSEle3JiIih2fsmKCmSlQSlJWVhV69euGNN94wVzyN5s+LQEkkElRWVqKoqIhJEBERNV2CyNlhomaWNT2ikiCNRoPOnTubK5Y63bt3D0lJScjOzkZOTg7KysowZ84cREZG6p2rUqnwySefYN++fSgrK4O/vz8mTJiA3r176527dOlSpKSkQKVSoU+fPujUqZPFn4WIiMhSJBC3YrRjpUAid5EPCgrS22TNEkpLS5GYmIj8/PwGF1NauHAhNm/ejMGDB2Pq1KlwcnLCzJkzcebMGb1zZ8yYgb1792LZsmXo3bs3JBJH+/ETEZFdseFd5G2RqCTolVdewU8//YSDBw+aKZzaKRQKbNu2DV9//TUmT55c53nZ2dlIT09HXFwc4uPjER0djeXLl6N169ZYu3Ztrdc4OzujV69eOHnyJI4ePWqpRyAiImoyVq1ahdmzZyMtLc3aoViUqO6wo0ePomfPnpg/fz569OiBLl266CyFXUMikWDcuHEm1yOVSg3avO3QoUNwdnZGdHS0tkwmkyEqKgrr169HYWFhnStSqtVq/PrrrybHSEREZC84MNoAn332mfa/T506hVOnTtV6ntgkyFB5eXlo166dXiIWGBgIALh06RJ8fHygVCpx9OhR9OvXD1KpFIcPH0ZWVhbi4uIsHiMREZGlSETuIi9qB/omSFQStGLFCnPFYRbFxcW1thjVlBUVFQGoTsp2796NZcuWQRAE+Pr64s0336xzkHdRUZF2KXAAjTIOioiIiCxLVBJkrWWu61JRUQFXV1e9cqlUqj0OAO7u7kYlcDt37kRiYqJZYiTb9+jkZdYOoV5bl3xg7RDqlVLezdoh1Om80tfaIdTrXpXU2iHUS2PD06edHK0Joy6cIm8Uu9o7TCaTobKyUq9cpVJpj5siOjpaZzXp/Px8LFiwwLQgiYiILMVK22Y0VaKToKqqKmzduhVpaWm4evUqKioqcODAAQDVY3R27dqFESNGoH379qKDbYhCocCtW7f0ymu6sry8vEy6r5eXl8nXEhERNTXcNsMAFRUVeP3113Hu3Dm0aNEC7u7uuH//vvZ4mzZtkJKSAg8PD0ycOFF0sA0JCAhAVlYWysvLdQZHZ2dna48TERHZNTO05jjK7DBR6wRt3LgRZ8+eRVxcHLZv346oqCid43K5HMHBwTh+/LioIA0VGhoKtVqNnTt3astUKhVSUlIQFBRU5/R4IiIie1AzO0zMy5GIagnav38/evbsidGjRwNArSsut23bFnl5eWKqAQBs2bIFSqVS27V15MgR3Lx5EwAQExMDuVyOoKAghIWFYf369SgpKYGvry9SU1NRUFCAWbNmiY6BiIiI7IeoJOjmzZvo379/vee4ubmhvLxcTDUAgOTkZBQUFGjfZ2RkICMjAwAwZMgQyOVyAMDcuXPh4+ODvXv3QqlUolOnTli8eLHNzWQjIiIyOw6MNoqoJMjNzQ0lJSX1nnPjxg2z7My+efNmg86TyWSIj49HfHy86DqJiIiaFCZBRhGVBHXv3h2ZmZkoKyuDh4eH3vHCwkIcO3aswdaipiItLQ1paWlQKpXWDoWIiEiPuVaM5uwwA7zwwguYPn06XnvtNUybNg1qtRoAcP/+fZw/fx7Lly+HWq3GyJEjzRKstdX8MuTm5jbKbDciIiJrcJTZYaJXjJ4+fTpWrlyJhIQEbXlERAQAwMnJCTNmzHCID5KIiMj6RK4YDa4YbZShQ4ciODgYO3bsQE5ODu7evQt3d3cEBgZi2LBheOihh8wRJxERETWEY4KMYpZtMzp27Ihp06aZ41ZEREREjcKu9g4jIiJyaGIXPGRLEBERETVJ7A4ziqhtM4iIiIiaKrYEERER2QmuE2QcJkFERET2hLvIG4xJkBG4YjQREZH9YBJkBK4YTURENo0Do41iVBK0aNEikyuaPXu2ydcSERFRw8w1JshRGJUE7dmzp9ZyiUQCQdD/5GrKJRIJkyAiIiKyKUYlQcnJyTrvNRoNVq5ciezsbAwfPhyPPPIIWrVqhdu3b+P06dPYsmULunfvrrOvGBEREZEtMCoJat26tc77L7/8Ejk5Ofj000/h5eWlLe/QoQOCg4PxzDPP4OWXX8bBgwcxevRo80RMREREteOYIKOIWizx22+/RVhYmE4C9Gfe3t4ICwvDrl27xFRDREREBqgZEyTm5UhEJUG3bt2CVCqt9xypVIpbt26JqYaIiIjI7EQlQd7e3jh8+DAqKipqPX7//n0cPnwY3t7eYqohIiIiQwkiXg5GVBL07LPP4saNG3j11Vdx+PBhlJaWAgBKS0tx+PBhvPrqqygoKMBzzz1nlmCJiIioHmISoD8lQqtWrcLs2bORlpbWuPE3MlGLJY4aNQrXrl3Dnj178OabbwLQnS4vCAIiIyMxatQo8ZHaAK4YTUREjoDbZhjAyckJs2fPRkREBFJTU3H58mUolUrI5XL4+/vj6aefRs+ePc0Vq9VxxWgiIrJlXCzROGbZNiM4OBjBwcHmuBURERGZilPkjSJqTBARERFRUyW6Jaiqqgpbt25FWloarl69ioqKChw4cAAAkJeXh127dmHEiBFo37696GCJiIioHmLX+nGwliBRSVBFRQVef/11nDt3Di1atIC7uzvu37+vPd6mTRukpKTAw8ODY2iIiIgag4MlMmKI6g7buHEjzp49i7i4OGzfvh1RUVE6x+VyOYKDg3H8+HFRQRIREZEBzDRF3lGISoL279+Pnj17YvTo0ZBIJJBIJHrntG3bFoWFhWKqISIiIjI7UUnQzZs3G1xHwM3NDeXl5WKqISIiIgNw7zDjiBoT5ObmhpKSknrPuXHjBlq0aCGmGrJD3ecss3YIdUqf9761Q6jXDmUXa4dQr5zyttYOoU6/q12tHUK9XJzU1g6hXp6yKmuHUCepk+3G1qg4Rd4oolqCunfvjszMTJSVldV6vLCwEMeOHUOPHj3EVENERERkdqKSoBdeeAFlZWV47bXXcPbsWajV1f+KuX//Pk6ePIl//vOfUKvVGDlypFmCJSIionpwYLRRRHWHBQcHY/r06Vi5ciUSEhK05REREQCqt9WYMWOGQ+w/QkREZG0SiNw2w2yRNA2iF0scOnQogoODsWPHDuTk5ODu3btwd3dHYGAghg0bhoceesgccdoEbqBKRERkP8yyd1jHjh0xbdo0c9zKpnEDVSIismlmGhi9atUqyOVy7d89eyUqCQoNDcXAgQPx73//21zxEBERkYnMtYt8QkKCQwxlETUwunnz5njwwQfNFQsRERFRoxHVEhQYGIjLly+bKxYiIiISg+sEGUVUS9BLL72En376CampqeaKh4iIiEzFKfJGEdUSdOLECQQHB2PRokXYunUrunXrhpYtW+rtISaRSDBu3DhRgRIREVH9JBA3zZ1T5I3w2Wefaf87NzcXubm5tZ7HJIiIiIhsjagkaMWKFeaKg4iIiMzBwbq0xBC9YjQRERHZCLE7wTtYAiVqYDQRERFRU2WWFaOJiIjIBnCKvFFEJUGJiYkGnceB0URERI2ASZBRzDY7rDYSiQSCIDAJIiIiIptjkdlhSqUSFy9exJYtW/DYY49h2LBhYqqxGdxFnoiIbJm59g5zFBabHfbUU09h8ODBmDBhAkJCQsRUYzO4izwREdk0docZxaKzw9q3b4+QkBB89dVXlqyGiIiIyGgWnx3m6emJq1evWroaIiIihyeByO4ws0XSON5//30cOXIE9+/fh4+PD+Li4tCvXz+Dr7doEqRSqfDjjz9CLpdbshoiIiICHK477Pnnn8e0adMglUqRk5ODGTNmICkpCS1atDDoelFJUF27x6vVahQVFSE9PR1Xr15FTEyMmGqIiIjIAI42MNrPz0/73xKJBJWVlSgqKmqcJGjhwoV6O8YDgCAI2oAGDRqEV155RUw1REREZKPu3buHpKQkZGdnIycnB2VlZZgzZw4iIyP1zlWpVPjkk0+wb98+lJWVwd/fHxMmTEDv3r1Nrn/p0qVISUmBSqVCnz590KlTJ4OvFZUEzZ49u9ZyJycneHh4oEuXLvDy8hJTBRERERnKCt1hpaWlSExMhI+PDwICApCVlVXnuQsXLsTBgwcxYsQItGvXDnv27MHMmTOxYsUKPPLIIyaFPGPGDEybNg2nTp3Czz//XGvjTF1EJUG1ZXlERERkJVZIghQKBbZt2waFQoELFy4gLi6u1vOys7ORnp6OyZMnY9SoUQCAp59+GrGxsVi7di3Wrl2rPffVV1/F2bNna73P2LFj9ZapcXZ2Rq9evfD111+jXbt2ePLJJw2K3SIDowVBwPXr1yGVSuHj42OJKoiIiMgGSKVSKBSKBs87dOgQnJ2dER0drS2TyWSIiorC+vXrUVhYqM0Z1qxZY1IsarUav/76q8Hni1on6NChQ3j33XdRVlamLfvtt98QGxuLsWPHYuTIkZg/fz7UarWYaoiIiMgANVPkTX5ZMLa8vDy0a9cO7u7uOuWBgYEAgEuXLhl1P6VSie+++w737t1DVVUVDhw4gKysLPTo0cPge4hqCdqxYwdu374NDw8Pbdnq1atx5coVPProo7h79y4OHjyIXr164bnnnhNTFRERETXETN1h+fn5OsUKhUL0GN/i4uJaW4xqyoqKioy6n0Qiwe7du7Fs2TIIggBfX1+8+eab6Ny5s8H3EJUEXblyBU888YT2/b1793D06FEMHDgQb731FqqqqvDyyy8jJSWFSRAREVETsWDBAp33sbGxGD9+vKh7VlRUwNXVVa9cKpVqjxvD3d29zj1MDSUqCbp79y5atWqlfX/mzBmo1WoMGjSo+uYuLnjsscfw3XffiQqSiIiIDCAIkAgimoL+uHbevHk6a/AYMuanITKZDJWVlXrlKpVKe7yxiUqC3N3dcffuXe37rKwsODk56fTHubi44P79+2KqISIiIkOYqTvMz88PXbt2NUdEWgqFArdu3dIrLy4uBgCrLKkjamB0hw4dkJmZidLSUpSVlSEtLQ1dunTRGSNUUFCAli1big6UiIiImq6AgABcv34d5eXlOuXZ2dna441NVBIUExODoqIixMTEYMSIESguLsbQoUN1zsnOzrbKgxERETkaUTPD/rTlxqpVqzB79mykpaWZLbbQ0FCo1Wrs3LlTW6ZSqZCSkoKgoCCrLKkjqjssNDQUr732Gr799lsAwMCBA3UWUDx16hTKy8vx+OOPi4uSiIiIDGOG/b8SEhKM6g7bsmULlEqltmvryJEjuHnzJoDqBhO5XI6goCCEhYVh/fr1KCkpga+vL1JTU1FQUIBZs2aJD9oEohdLHDp0qF7rT43g4GCkpKSIrcJmpKWlIS0tDUql0tqhEBER6ZGIHBNk6gaqycnJKCgo0L7PyMhARkYGAGDIkCGQy+UAgLlz58LHxwd79+6FUqlEp06dsHjxYgQHB5setAgWWTHaXoWHhyM8PBy5ubl6S3bbGv8Pllo7hHplJSy3dgh12lRm+BoT1nDh9zbWDqFeSrXU2iHUqUoQNQLA4qo0ztYOoV62/PkphcafWUT/s3nzZoPOk8lkiI+PR3x8vIUjMozZkiC1Wo3S0tJap78B4PYZRERElmam2WGrVq2CXC7X/uPfXolOgnJzc7F+/XqcPn0aVVVVtZ4jkUhw4MABsVURERFRPczVHWbsmKCmSlQSlJeXhylTpsDZ2Rm9e/dGZmYmAgIC0KpVK1y8eBElJSUIDg5G69atzRUvERERkVmISoI+//xzAMC6devQsWNHDBgwAP3790dsbCwqKiqwZs0aHDx4ELNnzzZLsERERFQPM3WHOQpRo9zOnj2Lfv36oWPHjtoy4Y8lt2UyGaZPnw4vLy9s2LBBVJBERETUMFveRd4WiWoJKi8vR9u2bf93MxcX/P7779r3Tk5OCA4ORnp6uphqiIiIqBFxYLQBPD09UVZWpn3fqlUrXL9+XecclUrFvcOIiIgagyBoN0E1+Xo4zsBoUd1hHTt2xNWrV7XvH374YRw/fhznzp0DAFy5cgUHDhzQ2YmWiIiILETslhkONiZIVEvQk08+idWrV6OoqAheXl4YPXo0MjIyMGXKFHh4eECpVEKj0eDFF180V7xEREREZiEqCfr73/+OsLAw7a7xAQEBWLZsGTZu3IgbN26ga9euiImJwZNPPmmWYImIiKgenB1mFFFJkIuLC1q1aqVT9vDDD2PJkiWigiIiIiLjSQQAGhE3YBJERERETRK3zTCK6CSoqqoKW7duRVpaGq5evYqKigrtFhl5eXnYtWsXRowYgfbt24sOloiIiCzPUWaHiUqCKioq8Prrr+PcuXNo0aIF3N3ddabDt2nTBikpKfDw8LD5XdeJiIiaOtEzvBysO0zUFPmNGzfi7NmziIuLw/bt2xEVFaVzXC6XIzg4GMePHxcVJBERERmgZp0gMS8HIioJ2r9/P3r27InRo0dDIpFAItFfcLtt27YoLCwUUw0RERGR2YlKgm7evNlgn6GbmxvKy8vFVENEREQGELVvWM2CiQ5E1JggNzc3lJSU1HvOjRs30KJFCzHVEBERkaHMkMhwdpgBunfvjszMTJSVlWkXTPyzwsJCHDt2DP379xdTDRERETUiR5kdJqo77IUXXkBZWRlee+01nD17Fmq1GgBw//59nDx5Ev/85z+hVqsxcuRIswRLREREdWN3mHFEtQQFBwdj+vTpWLlyJRISErTlERERAAAnJyfMmDHDIbJJIiIiqzPTLvKOQvRiiUOHDkVwcDB27NiBnJwc3L17F+7u7ggMDMSwYcPw0EMPmSNOm5CWloa0tDQolUprh0JEREQimWXbjI4dO2LatGnmuJVNqxkglpuby8UfiYjI5nCxRONw7zAiIiJ7wSTIKEYnQaYMcpZIJEhKSjL6OiIiIjKOmMHNDpYDGZ8EFRQUwMnJCc7OzpaIh4iIiKhRmNwd1rNnTzzzzDPo378/XFzYq0ZERGR1GohrCtJU/w8XS6zDF198gd27d+O7777D22+/DQ8PDwwZMgTPPPMM/P39LREjERERGcJMY4IcZbFEo5MgPz8/vPrqq5g0aRIyMzPx7bffYtu2bdiyZQs6d+6MqKgohIeHQy6XWyJeIiIiIrMwuR/L2dkZ/fv3R//+/XH79m3s2bMHe/bswbJly/Dhhx+if//+iIuLg4+PjznjJSIiojqIXvVZcKzB0aK2zajRqlUrjBkzBl9++SWWLl0KDw8PpKenIy8vzxy3JyIiIoMI/1s12pSXQ6VAZlwnKCcnBykpKUhPT0d5eTm8vLzg7e1trtsTERERmZWoJKikpAT79u1DSkoKrly5AmdnZ/Tt2xdRUVF4/PHH4eRkloYmIiIiMgC7w4xjdBKk0Whw7NgxfPvttzh27Biqqqrw0EMPIT4+HkOGDIGnp6cFwiQiIqIGccVooxidBMXExODOnTtwd3dHVFQUnnnmGXTr1s0SsRERERFZjNFJ0O3bt+Hi4oKAgAD89ttv+OSTTxq8RiKRYMmSJSYFSERERIaRCAIkgph9MxyrKcikMUFVVVU4deqUwedLJBJTqrF5z36biMofWlg7jFpdevFja4dQr6W3u1s7hDpdu9/K2iHU68Z92/ydq6GslFo7hDqV23BsAFCltu3tiCo1HOdp8wRoV302+Xpwxeg6JScnWyIOIiIiEkkiCJCIGdjzR0sQV4yuQ+vWrS0RBxEREVGj4s6nRERE9kLskB7HGhLEJIiIiMhuiF312cEGRnOUGxERETkktgQRERHZCwEQMx/bwRqCmAQRERHZFUfLZERgdxgRERE5JLYEERER2QmJRlx3mARwqOYRJkFERET2QuzsMAebI+9A+R4RERHR/7AliIiIyF44VkOOaEyCiIiI7ITYvcNE7TvWBDEJIiIishuCuCnyEiZBRERE5MBWrVoFuVyO8PBwhIeHWzsci2ESREREZC80EDcu6I/59QkJCejatas5IrJpTIKIiIjshEQQIBHRHcYxQVSntLQ0pKWlQalUWjsUIiIiEolJkBFq+kZzc3MxceJEa4dDRESkSwD3DjMCkyAiIiK7wdlhxuCK0UREROSQ2BJERERkLzR/vMggTIKIiIjshOjZYQ42nojdYUREROSQ2BJERERkLwSRA6MdrCWISRAREZHdEJkEcbFEIiIiapLErhPkWDkQxwQRERGRY2JLEBERkb0QO0VeYq5AmgYmQURERPZC5BR5RxsYze4wIiIickhMgoiIiOyG8L9p8qa8mujI6HPnzmHAgAH4/PPPjbqO3WFERET2QiNUv8Rc38RoNBqsXr0a3bp1M/paJkFERETUZO3atQuBgYEoLy83+lp2hxEREdkLMV1hJq42fe/ePXz66af45z//iaioKISEhGDPnj21nqtSqbB27VoMGzYM4eHheOWVV3D8+HGTH7e0tBRff/01xo8fb9L1TIKIiIjsRc1iiSa/jK+ytLQUiYmJyM/PR0BAQL3nLly4EJs3b8bgwYMxdepUODk5YebMmThz5oxJj7thwwaMGDECHh4eJl3P7jARdvXZgS6dqqwdRq1eujrA2iHU63p5C2uHUKerRa2sHUK9Kn93tXYI9RIqbXehEUmVjf+7T8z6Lo1BY7s/W0ia3lgWe6FQKLBt2zYoFApcuHABcXFxtZ6XnZ2N9PR0TJ48GaNGjQIAPP3004iNjcXatWuxdu1a7bmvvvoqzp49W+t9xo4di4kTJ+LixYu4cOECXnvtNZNjZxJERERkNxp/7zCpVAqFQtHgeYcOHYKzszOio6O1ZTKZDFFRUVi/fj0KCwvh4+MDAFizZk2D9zt16hSuXbuGmJgYAIBSqYSzszNu3LiBOXPmGBQ7kyAiIiJ7YabZYfn5+TrFCoUCXl5eYiJDXl4e2rVrB3d3d53ywMBAAMClS5e0SZAhoqOjMWjQIO37lStXok2bNhgzZozB92ASREREZC8ETfVLzPUAFixYoFMcGxtr8uDjGsXFxbW2GNWUFRUVGXW/Zs2aoVmzZtr3MpkMbm5uRo0PYhJEREREOubNmwc/Pz/te0O6uxpSUVEBV1f9MY1SqVR7XIy5c+cafQ2TICIiIntRMztMzPUA/Pz80LVrV7OEVEMmk6GyslKvXKVSaY83NiZBRERE9kIQOSbIghuoKhQK3Lp1S6+8uLgYAESPOTIFkyAiIiLSsWrVKsjlcoSHhyM8PNws9wwICEBWVhbKy8t1BkdnZ2drjzc2G180g4iIiAxmphWjExISsGjRIrMlQAAQGhoKtVqNnTt3astUKhVSUlIQFBRk1Mwwc2FLEBERkb0wcesLnetNsGXLFiiVSm3X1pEjR3Dz5k0AQExMDORyOYKCghAWFob169ejpKQEvr6+SE1NRUFBAWbNmmV6zCIwCSIiIiJRkpOTUVBQoH2fkZGBjIwMAMCQIUMgl8sBVM/g8vHxwd69e6FUKtGpUycsXrwYwcHB1gibSRAREZHdMFNLkLFjgjZv3mzQ7WUyGeLj4xEfH296jGbEJIiIiMheCAKgEbNY4v/GBJl7irwt4sBoIiIickhsCSIiIrIXVhoY3VQxCSIiIrIXTIKMwiSIiIjIXphpxWhLLJZoi5gEERERkQ5HGRjNJIiIiMheCAIEQfzsMEfBJIiIiMheaER2h4m5tgniFHkiIiJySGwJIiIishecHWYUJkFERET2QtCIXDG6+lrODiMiIiKHxNlhRERE1LQIENkdZrZImgQmQURERHZC0GggiOgOE3NtU8TZYUREROSQ2BJERERkLzg7zCgOmQSpVCosXboUJ06cgFKpRMeOHTFlyhT87W9/s3ZoREREpjPT3mGOwiGTILVajdatW2PNmjXw9vbGgQMHMGfOHCQnJ6N58+bWDo+IiMg0gqCd5m7y9eAUebvm5uaG2NhY7ftBgwZh9erVuHbtmkNMCSQiIqoPp8jbkHv37iEpKQnZ2dnIyclBWVkZ5syZg8jISL1zVSoVPvnkE+zbtw9lZWXw9/fHhAkT0Lt37zrvf+3aNZSVlcHX19eSj0FERGRRgkaAIKI7TMy1TVGTmB1WWlqKxMRE5OfnIyAgoN5zFy5ciM2bN2Pw4MGYOnUqnJycMHPmTJw5c6bW8ysqKrBgwQKMGTMGcrncEuETERE1Ek11d5ipL3CKvM1RKBTYtm0bvv76a0yePLnO87Kzs5Geno64uDjEx8cjOjoay5cvR+vWrbF27Vq986uqqvDvf/8bvr6+Ot1jREREZP+aRBIklUqhUCgaPO/QoUNwdnZGdHS0tkwmkyEqKgrnz59HYWGhtlyj0WDBggWQSCSYO3cuJBKJRWInIiJqLNUNOoKIl7WfoHE1iTFBhsrLy0O7du3g7u6uUx4YGAgAuHTpEnx8fAAAH3zwAYqLi/HBBx/AxcWuPgYiInJU2m4tEdc7ELv6619cXFxri1FNWVFREQCgoKAAu3fvhlQq1Wk1WrJkCXr06KF3fVFREYqLi7XvL126BADI/9XZrPGbU0XBfWuHUC/hd9v91XMpsd3YAAAVNh5flQ23qqptODbA9odjaGz485PY9oDe3Nxc+Pn5oVmzZhatR2heJerXSGheZbZYmgIb/39T41RUVMDV1VWvXCqVao8DQOvWrZGRkWHwfXfu3InExES98ndXtTQt0EZxzdoBNFne1g6AiOzOxH0ZeP/99/HEE09Y5P6enp5o1qwZ7ne9K/pezZo1g6enp/igmgC7SoJkMhkqKyv1ylUqlfa4KaKjo9GvXz/t+5ycHCxduhSzZs1qcLaavVi1ahUSEhKsHQaAxonFnHWIvZcp1xtzjTnPzc/Px4IFCzBv3jz4+fkZdM+mjN8L693L0t8LY8439Hvh5uZmcN3G8vHxwcaNG1FSUiL6Xp6entqhI/bOrpIghUKBW7du6ZXXdGV5eXmZdF8vL69arw0ICHCIxaQAQC6X28yzNkYs5qxD7L1Mud6Yayxxrp+fn838vlgSvxfWu5elvxfGnG/oeab+Q9xQPj4+DpO8mEuTmB1mqICAAFy/fh3l5eU65dnZ2drjZBpbWja9MWIxZx1i72XK9cZcY6lzHYEtfR78Xpj/GkPPt6XfAzKOXSVBoaGhUKvV2Llzp7ZMpVIhJSUFQUFBzJBFsKUvOf/P3rzXMAkynS19HvxemP8aJkH2r8l0h23ZsgVKpVLbtXXkyBHcvHkTABATEwO5XI6goCCEhYVh/fr1KCkpga+vL1JTU1FQUIBZs2aZLRaFQoHY2FiD1i4iciT8bhDp4/fCdkkEQbDteYV/eP7551FQUFDrseTkZLRp0wZA9Qywmr3DlEolOnXqhAkTJuDxxx9vzHCJiIjIxjWZJIiIiIjInOxqTBARERGRoZgEWYhKpcKiRYswfPhwREREYNKkSTh37py1wyKyuvfffx9Dhw5FREQExo0bhyNHjlg7JCKbce7cOQwYMACff/65tUNxCOwOs5Dff/8dycnJiIyMhLe3Nw4cOIDly5cjOTkZzZs3t3Z4RFaTn5+PNm3aQCqVIicnBzNmzEBSUhJatGhh7dCIrEqj0SA+Ph6CIKBv374YN26ctUOye2wJshA3NzfExsbCx8cHTk5OGDRoEFxcXHDtGrezIMfm5+en3cpGIpGgsrJSu68fkSPbtWsXAgMDHWK1dVvRZKbIW9q9e/eQlJSE7Oxs5OTkoKysDHPmzEFkZKTeuSqVSjsDraysDP7+/pgwYQJ69+5d5/2vXbuGsrIy+Pr6WvIxiMzKUt+LpUuXIiUlBSqVCn369EGnTp0a43GIzMIS34vS0lJ8/fXXWLt2LVatWtVYj+Lw2BL0h9LSUiQmJiI/P7/BlaUXLlyIzZs3Y/DgwZg6dSqcnJwwc+ZMnDlzptbzKyoqsGDBAowZMwZyudwS4RNZhKW+FzNmzMDevXuxbNky9O7dGxKJDe9OTvQXlvhebNiwASNGjICHh4clQ6e/EkgQBEGoqKgQioqKBEEQhJycHKF///5CSkqK3nnnz58X+vfvL3z11Vfasvv37wsvvPCCMGnSJL3zKysrhZkzZwpvv/22oNFoLPcARBZgqe/Fn82aNUvIzMw0b+BEFmTu70Vubq7w8ssvC1VVVYIgCMK7774rJCYmWvgpSBAEgS1Bf5BKpQat5nno0CE4OzsjOjpaWyaTyRAVFYXz58+jsLBQW67RaLBgwQJIJBLMnTuX/9qlJscS34u/UqvV+PXXX80SL1FjMPf34tSpU7h27RpiYmIwdOhQ7N+/H1999RUWLlxosWegahwTZKS8vDy0a9cO7u7uOuWBgYEAgEuXLmn3KPvggw9QXFyMDz74AC4u/KjJfhn6vVAqlTh69Cj69esHqVSKw4cPIysrC3FxcdYIm8iiDP1eREdHY9CgQdrjK1euRJs2bTBmzJhGjdcR8S+zkYqLi2v9F0BNWc0sl4KCAuzevRtSqVTnXwFLlixBjx49GidYokZi6PdCIpFg9+7dWLZsGQRBgK+vL95880107ty5UeMlagyGfi+aNWuGZs2aaY/LZDK4ublxfFAjYBJkpIqKCri6uuqV10z5raioAAC0bt0aGRkZjRobkbUY+r1wd3fHihUrGjU2Imsx9HvxV3PnzrVoXPQ/HBNkJJlMhsrKSr1ylUqlPU7kaPi9INLH74XtYxJkJIVCgeLiYr3ymjIvL6/GDonI6vi9INLH74XtYxJkpICAAFy/fh3l5eU65dnZ2drjRI6G3wsiffxe2D4mQUYKDQ2FWq3Gzp07tWUqlQopKSkICgrSzgwjciT8XhDp4/fC9nFg9J9s2bIFSqVS21R55MgR3Lx5EwAQExMDuVyOoKAghIWFYf369SgpKYGvry9SU1NRUFCAWbNmWTN8Iovg94JIH78X9oG7yP/J888/j4KCglqPJScno02bNgCqR/TX7AWjVCrRqVMnTJgwAY8//nhjhkvUKPi9INLH74V9YBJEREREDoljgoiIiMghMQkiIiIih8QkiIiIiBwSkyAiIiJySEyCiIiIyCExCSIiIiKHxCSIiIiIHBKTICIiInJITIKIiIjIITEJIiIiIofEJIiIiIgcEpMgogb89ttvCAkJwXvvvWfRa8j27dmzByEhIdrX/Pnz9c7ZsGEDQkJCcPbs2cYP8C/y8/N14n3++eetHRKRTWESRE1OTYLxz3/+09qh2JSsrCyEhITg008/tXYodu+pp55CbGwsQkND9Y5dvHgRTk5O6Ny5s1nrTElJQUhICD7//PN6z6uoqMDzzz+PsLAw3LlzB7GxsYiNjYVcLjdrPET2wMXaARDZOm9vb2zcuBHu7u7WDoVsRP/+/REZGVnrsby8PLRv3x7NmjUza52dOnUCAPz888/1npeUlISCggIMHToUwcHBCA4OBgCkpqaaNR4ie8AkiKgBLi4u8PPzs3YY1AQUFRXh9u3b6NWrl9nv/dBDD8HJyQm//PJLvfV/9dVXeOCBBzBhwgSzx0Bkb5gEkV3IysrCtGnTEBsbi759+2L9+vU4f/48nJyc8Oijj2LKlClo06ZNrdeeOnUKmzdvxvnz56FUKuHp6Ylu3bph5MiReOSRR/Dbb79h5MiRiIiIwNy5c3WuVavVSEpKwu7du3Hr1i14e3sjKioKAwcOrDPWU6dOISkpCefPn8e9e/fw4IMPYuDAgRg7dqxO64Exz/Tpp58iMTERAJCYmKj9bwBITk6u89ktHZc56ujduzc+++wzXLhwAUqlEhkZGQCAqqoq7WdfVFSk89m/8MIL2p/XiRMnMGPGDAwdOhQzZszQi+nXX3/F6NGj8dhjj+H//u//Gvyc6pOXlwcA6NKli055fn4+3nzzTRQWFmLmzJkYNGiQ9pharUZqaipSU1Nx6dIlVFZWomPHjhg7diwGDBigPU8mk8HX1xfXr19HVVUVXFz0/+/7o48+wu+//47JkyfjgQceEPUsRI6ASRDZlQsXLmDTpk3o2bMnoqOjkZeXh8OHD+Pnn39GYmIiZDKZzvlff/01Vq9eDZlMhv79+8PHxwe3bt3C2bNncfDgQTzyyCP11vf+++8jJSUFbdq0wdChQ6FSqZCcnIxz587Vev727duxbNkyyOVy9O3bFy1btkRubi42btyIrKwsrFixAq6urkY/U8+ePVFQUIDU1FSdLhAABo0FsVRcYus4d+4cvvzyS/Ts2RPPPfccCgsLtccWL16MvXv3om3bthg6dCgqKyuxefNmvc++V69e8PX1RVpaGuLj4/W6qXbv3g1BEPDcc881+Dk1pLYkKD09HUuWLIFCocDatWu13VpA9fid2bNn4+TJk+jcuTMiIyNRWVmJgwcP4s0338S8efMwZMgQ7fmdOnXCtWvXkJ+fD39/f526s7OzsW/fPgQEBJjlWYgcAZMgsivHjh3DW2+9pfMv7XfffRd79+7F999/r1N+6dIlrFmzBgqFAmvWrNFpvRAEAcXFxfXWlZWVhZSUFAQEBGDNmjVwc3MDAIwdOxbjx4/XO//KlStYsWIF/P39sWzZMrRo0UJ77Msvv8T69euxZcsWvPDCC0Y/U8+ePQFAmwTVVn9dLBmX2DpOnDiB2bNn45lnntEpP3nyJPbu3YvOnTtjzZo12sRm7Nixet1AEokEzz33HNatW4cDBw7ojOWpqqpCamoqWrZsiaeeesrgz6wuFy9ehEQiQefOnVFVVYU1a9Zgy5Yt6NevH9544w29hHTx4sU4efIkpk2bhpiYGG35uHHj8NJLL+Hjjz/WSYL8/f1x6NAhXLlyRS8JWrVqFQRBwLRp0+Ds7Cz6WYgcAWeHkV3p0aOHzh9fANo/oDk5OTrlO3fuhEajwYQJE/S6byQSCby8vOqta+/evQCq/2DVJEBA9UDq4cOH652/Y8cOqNVqTJs2TScJAIDRo0fD09MT6enpop7JFI0Rl6l1dOnSRS8BAoB9+/YBqP7s/9yy4+XlVetn/8wzz8DV1RXffvutTvnRo0dRXFyMiIiIWruXjJWXl4e2bduivLwcCQkJ2LZtG15++WW89957egnQyZMnkZaWhujoaJ0EqOY5+vTpg4KCApSUlGjL6xoc/d133+H8+fMYNGgQevToIfo5iBwFW4LIrnTt2lWvzNvbGwCgVCp1ymv+UPfu3dukui5dugQAtf7Rqa0sOzsbAPDjjz/i5MmTesddXFxw9epVvXJjnskUjRGXqXV069at1phrPvvauiv/9re/6ZV5enoiJCQE6enpyM/P1w50r0mKnn322VrrMUZZWRl+++03+Pr6YsKECRAEAUuWLMHjjz9e6/lbt24FAGg0mlqXNcjPz9cer1HT+vPnwdH379/HunXr4ObmhsmTJ4t+DiJHwiSI7Erz5s31ymq6Bv78xwSo/kMtkUigUChMqqu8vBxOTk56LRsA0LJlS72yu3fvAgA2btxoVD3GPJMpGiMuU+to1apVreX37t2r87Ov65ro6Gikp6dj9+7dePXVV1FUVIQffvgBwcHBaN++vVFx1aZmPFBZWRnu3r2LcePG1ZkAAdVdfUD1mKS6SKVSeHp6at+3bdsWbm5uOknQV199hVu3bmHixIl48MEHRT4FkWNhEkQOy8PDQzv2p6YFwxju7u7QaDQoLS3V+UMFAHfu3Kn1fKB63E5tCYS1NEZc5q6jefPmdX72t2/frvWanj17okOHDti7dy/i4uKQkpICtVptllYg4H9J0MyZM7Fp0yZ8+eWXCAoKwpNPPql3bllZGX7//Xc89dRTRq0qLpFI0LFjR+Tm5uL+/fu4e/cukpKS4Ovri5EjR5rlOYgcCccEkcOq6Wo5fvy4SdcHBAQAAE6fPq13rLayoKAgAMD58+dNqq8hTk7VX2djW4csHZcl6qj57GvbmqKumXlAdWtQSUkJDh8+jJSUFHh4eOhMQxejJgkKCgrCe++9B29vb8yfP1/bdVeb0tJSo+vx9/eHRqPBlStXsG7dOty/fx9TpkyBVCo1OXYiR8UkiBzW3//+dzg7O+Pjjz9GQUGBzjFBEFBUVFTv9TWzdj7//HP8/vvv2vJbt27hm2++0Tt/6NChcHZ2xooVK3SmetcoKyvDxYsXTXkUANCuC3Pz5k2jrrN0XJaoY/DgwQCq10SqqKjQlhcXF9f62deIiIiAVCrF6tWrcePGDQwZMkRvKr+pLl68iFatWsHLywstW7bEokWL4OTkhFmzZun9Lnl4eKBdu3bIzs6udYxUZWVlnclczeDo3bt3Iy0tDU888QT69etnlmcgcjTsDiOH5e/vjylTpmDlypUYN24cnnrqKbRu3RrFxcU4ffo0nnzySUydOrXO6x999FE888wzSElJQWxsLPr374/Kykrs378f3bt3R2Zmps75nTp1wowZM7B06VKMGTMGffr0ga+vL+7du4cbN27g9OnTiIiIMHlPtA4dOsDLywv79++Hq6urdnxITExMvWsFWTouS9Tx2GOPITw8HGlpaYiNjcVTTz2FyspKHDhwAIGBgcjMzNS2jP3ZAw88gLCwMO3MPnOtp1NRUYFr167prBTdqVMnvPXWW5gzZw5mz56N1atX68xkmzx5Mt588028/vrr6NOnD/z8/HD//n3tOlWPP/54rYO8awZH79y5Ey4uLkhISDDLMxA5IiZB5NBiYmLQqVMnJCcn44cffsDvv/8OT09PBAUFISwsrMHr//Wvf6Fdu3bYvXs3tm3bBm9vb4wcORJhYWF6SRBQ/Uc3ICAAmzdvxunTp5GZmQl3d3f4+PhgxIgRiIiIMPlZnJ2dsWDBAqxbtw7p6em4d+8egOoWq4YWTLRkXJaqY+7cufDz80NKSgq2bt0Kb29vjBgxAo8++igyMzPrHHsUERGBvXv3onv37joLF4px+fJlqNVqbTddjT59+mDKlClYsWIF3nnnHSxYsECbnPXv3x/Lly/Hpk2bcP78efzwww944IEH8OCDD+KZZ56pc2+yP8c8fPhwdOjQwSzPQOSIJIIgCNYOgojIXHbv3o0lS5Zot8r4q02bNmHt2rWYNWsWoqKijLr3nj17sHDhQsyZM6fOJMVWPf/88wCAzZs3WzkSItvBMUFE1CQVFxfjr/+Gu3XrFr744gs4OzvXOiuroqIC27Ztg4eHh95Cj8ZYuHAhQkJCMH/+fJPv0Rjy8/MREhKCkJAQvXFvRMTuMCJqov773//i6NGj6NGjBzw9PXHz5k1kZmbi3r17eOmll+Dj46M998yZMzh16hR+/PFHFBQUIC4uTm8PMUMEBAQgNjZW+95c3WmW0qJFC514DdlHjsiRsDuMiJqkH374AcnJybh8+TLKysoglUrh7++PoUOHameP1fj000+RmJiIFi1a4Omnn8akSZPMsk0GETVtTIKIiIjIIXFMEBERETkkJkFERETkkJgEERERkUNiEkREREQOiUkQEREROSQmQUREROSQmAQRERGRQ2ISRERERA6JSRARERE5JCZBRERE5JCYBBEREZFD+v+x70usC72tEQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ori.get_rmf()\n", + "ori.plot_rmf()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "10c4fd3c-8b6f-4c63-b270-2f9dd9aced49", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cosi_nomegalib]", + "language": "python", + "name": "conda-env-cosi_nomegalib-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/response/SpacecraftFile.html b/tutorials/response/SpacecraftFile.html new file mode 100644 index 00000000..69573557 --- /dev/null +++ b/tutorials/response/SpacecraftFile.html @@ -0,0 +1,488 @@ + + + + + + + Spacecraft file: attitude and position — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Spacecraft file: attitude and position

+

The spacecraft is always moving and changing orientations. The attitude –i.e. orientation– vs. time is handled by the SpacecraftFile class. This allows us to transform from spacecraft coordinates to inertial coordinate –e.g. galactics coordinates.

+

Note: In future versions, the SpacecraftFile class will handle the spacecraft location –i.e. latitude, longitude, and altitude– in addition to its attitude. This will allow us to know where the Earth is located in the field of view, which we are currently ignoring for simplicity.

+
+

Dependencies

+
+
[1]:
+
+
+
%%capture
+import numpy as np
+import matplotlib.pyplot as plt
+from matplotlib.cm import get_cmap
+import astropy.units as u
+from astropy.io import fits
+from astropy.coordinates import SkyCoord
+from mhealpy import HealpixMap
+import pandas as pd
+from astropy.time import Time
+from pathlib import Path
+from scoords import Attitude, SpacecraftFrame
+from pathlib import Path
+import shutil
+import os
+
+from cosipy.response import FullDetectorResponse
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.util import fetch_wasabi_file
+
+
+
+
+
+

File downloads

+

You can skip this step if you already downloaded the files. Make sure that paths point to the right files

+
+
[2]:
+
+
+
data_dir = Path("") # Current directory by default. Modify if you can want a different path
+
+ori_path = data_dir/"20280301_3_month.ori"
+response_path = data_dir/"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5"
+
+
+
+
+
[3]:
+
+
+
# download orientation file ~684.38 MB
+if not ori_path.exists():
+    fetch_wasabi_file("COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori", ori_path)
+
+# download response file ~839.62 MB
+if not response_path.exists():
+
+    response_path_zip = str(response_path) + '.zip'
+    fetch_wasabi_file("COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip",response_path_zip)
+
+    # unzip the response file
+    shutil.unpack_archive(response_path_zip)
+
+    # delete the zipped response to save space
+    os.remove(response_path_zip)
+
+
+
+
+
+

Orientation file format and loading

+

The attitude os the spacecraft is specified by the galactic coordinates that the x and z axes of the spacecraft are pointing to. The y-axis pointing can be deduced from this information (right-handed system convention).

+

The following diagram shows the relation between the spacecraft –i.e. local– and galactic –i.e. inertial– reference frames.

+

Xnip2023-03-02_10-55-29.jpg

+

Currently, this information is stored in a text file with a filename ending in “.ori”, a format inherited from MEGALib. Each line contains the keyword “OG”, followd by: time stamp (GPS seconds), x-axis galactic latitude (deg), x-axis galactic longitude (deg), z-axis galactic latitude (deg), z-axis galactic longitude (deg).

+
+
[4]:
+
+
+
with open(ori_path) as f:
+    for i in range(10):
+        print(f.readline())
+
+
+
+
+
+
+
+
+#Type OrientationsGalactic
+
+OG 1835487300.0 68.44034002307066 44.61117227945379 -21.559659976929343 44.61117227945379
+
+OG 1835487301.0 68.38920658776064 44.642124027021296 -21.610793412239364 44.642124027021296
+
+OG 1835487302.0 68.3380787943012 44.67309722321497 -21.661921205698793 44.67309722321497
+
+OG 1835487303.0 68.28695666554313 44.70409195030112 -21.713043334456863 44.70409195030112
+
+OG 1835487304.0 68.2358402243372 44.73510829054615 -21.764159775662804 44.73510829054615
+
+OG 1835487305.0 68.18472949353415 44.76614632621641 -21.81527050646584 44.76614632621641
+
+OG 1835487306.0 68.13362449598479 44.79720613957824 -21.8663755040152 44.79720613957824
+
+OG 1835487307.0 68.08252525453989 44.82828781289802 -21.91747474546011 44.82828781289801
+
+OG 1835487308.0 68.0314317920502 44.859391428442066 -21.968568207949804 44.859391428442066
+
+
+
+

Note: The orientation (.ori) file format will change in the future, from a text file to a FITS file. However, the file contents and the capabilities of the SpacecraftFile class will be the same.

+

You don’t have to remember the internal format though, just load it using the SpacecraftFile class:

+
+
[5]:
+
+
+
ori = SpacecraftFile.parse_from_file(ori_path)
+
+# Let's use only 1 hr in this example
+ori = ori.source_interval(ori.get_time()[0], ori.get_time()[0] + 1*u.hr)
+
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 1 of "dubious year (Note 3)"
+
+
+WARNING ErfaWarning: ERFA function "taiutc" yielded 1 of "dubious year (Note 4)"
+
+
+
+

You can plot the pointings to see how the zenith changes over the observation. In this example, we’ll plot only 1 hr:

+
+
[6]:
+
+
+
import matplotlib
+
+# Get a time range interval
+ori = ori.source_interval(ori.get_time()[0], ori.get_time()[0] + 1*u.hr)
+
+# Plot
+fig,ax = plt.subplots(ncols = 3, figsize = [20,5], subplot_kw = {'projection':'mollweide'})
+
+# Use color to represent time
+cmap = get_cmap('viridis')
+time_sec = (ori.get_time() - ori.get_time()[0]).to_value(u.s)
+time_color = cmap(time_sec/np.max(time_sec))
+
+# Plot the galactic coordinate of each SC axis
+for n,(label,pointing) in enumerate(zip(['x','y','z'], ori.get_attitude().as_axes())):
+
+    ax[n].scatter(pointing.l.rad, pointing.b.rad, color = time_color)
+    ax[n].set_title(f"Pointing {label}")
+
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 3601 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+../../_images/tutorials_response_SpacecraftFile_18_1.png +
+
+
+
+

Calculate the source movement in the SC frame

+

This converts a fixed coordinate in the galactic frame to the coordinate in the SC frame as a function of time:

+
+
[7]:
+
+
+
# define the target coordinates
+target_coord = SkyCoord(71.334998265514, 03.0668346317, unit = "deg", frame = "galactic")
+
+# get the target path in the Spacecraft frame
+target_in_sc_frame = ori.get_target_in_sc_frame(target_name = "CygX1", target_coord = target_coord)
+
+
+
+
+
+
+
+
+Now converting to the Spacecraft frame...
+Conversion completed!
+
+
+
+
[8]:
+
+
+
fig,ax = plt.subplots(subplot_kw = {'projection':'mollweide'})
+
+ax.scatter(target_in_sc_frame.lon.rad, target_in_sc_frame.lat.rad, color = time_color)
+
+
+
+
+
[8]:
+
+
+
+
+<matplotlib.collections.PathCollection at 0x107e0f190>
+
+
+
+
+
+
+../../_images/tutorials_response_SpacecraftFile_22_1.png +
+
+
+
+

The dwell time map

+

Since the response of the instrument is a function of the local coordinates, we need to calculate the movement of the source in the spacecraft frame. This is achieved with the help of a “dwell time map”, which contains the amount of time a given source spent in a particular location of the COSI field of view. This is then convolved with the instrument response to get the point source response.

+
+
[9]:
+
+
+
%%time
+dwell_time_map = ori.get_dwell_map(response = response_path, src_path = target_in_sc_frame)
+
+
+
+
+
+
+
+
+CPU times: user 7.68 ms, sys: 3.33 ms, total: 11 ms
+Wall time: 10.3 ms
+
+
+

Plot the dwell time map in detector coordinates. The top is the boresight of the instrument. Note that in this plot the longitude increases to the left.

+
+
[10]:
+
+
+
plot, ax = dwell_time_map.plot(coord = SpacecraftFrame(attitude = Attitude.identity()));
+
+
+
+
+
+
+
+../../_images/tutorials_response_SpacecraftFile_27_0.png +
+
+

The dwell time map sums up to the total observed time:

+
+
[11]:
+
+
+
np.sum(dwell_time_map)
+
+
+
+
+
[11]:
+
+
+
+
+$3600 \; \mathrm{s}$
+
+
+
+

The scatt map

+

As the spacecraft rotates, a fixed source in the sky is seen by the detector from multiple direction. Convolving the dweel time map with the instrument response, without binning it simultenously in time, can wash out the signal. Since the spacecraft can have the same orientation multiple times, we avoid performing the same rotation multiple times by creating a histogram that keeps track of the attitude information. This is the “spacecraft attitude map” —a.k.a scatt mapp— which is a 4D matrix +that contain the amount of time that the x and y SC axes were pointing at a given location in inertial coordinates -e.g. galactic.

+
+
[12]:
+
+
+
# It's recommended that the scatt map pixel size be finer than the response, in order to mitigate error
+scatt_map = ori.get_scatt_map(nside = 16, coordsys = 'galactic')
+
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 3601 of "dubious year (Note 3)"
+
+
+
+

This is a how the 2D projections looks like

+
+
[13]:
+
+
+
from matplotlib import pyplot as plt
+
+fig,axes = plt.subplots(ncols = 2, subplot_kw = {'projection':'mollview'}, figsize = [10,5])
+
+scatt_map.project('x').plot(axes[0])
+scatt_map.project('y').plot(axes[1])
+
+
+
+
+
[13]:
+
+
+
+
+(<MollviewSubplot: >, <matplotlib.image.AxesImage at 0x1324a9fd0>)
+
+
+
+
+
+
+../../_images/tutorials_response_SpacecraftFile_34_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/response/SpacecraftFile.ipynb b/tutorials/response/SpacecraftFile.ipynb new file mode 100644 index 00000000..a3f7b7c1 --- /dev/null +++ b/tutorials/response/SpacecraftFile.ipynb @@ -0,0 +1,580 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "772df3c7-6834-4069-9639-dff9c93068f2", + "metadata": {}, + "source": [ + "# Spacecraft file: attitude and position" + ] + }, + { + "cell_type": "markdown", + "id": "cc657b2f-2276-45f1-8fcc-d089e9c69288", + "metadata": {}, + "source": [ + "The spacecraft is always moving and changing orientations. The attitude --i.e. orientation-- vs. time is handled by the SpacecraftFile class. This allows us to transform from spacecraft coordinates to inertial coordinate --e.g. galactics coordinates." + ] + }, + { + "cell_type": "markdown", + "id": "072d15e5-87da-4ecf-8d06-f363a242ca67", + "metadata": {}, + "source": [ + "
\n", + "Note: In future versions, the SpacecraftFile class will handle the spacecraft location --i.e. latitude, longitude, and altitude-- in addition to its attitude. This will allow us to know where the Earth is located in the field of view, which we are currently ignoring for simplicity.
" + ] + }, + { + "cell_type": "markdown", + "id": "c9f731fa-3886-4db9-9f75-7bf19f6c3c60", + "metadata": {}, + "source": [ + "## Dependencies" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "cefc80ac-578b-4ced-bd0a-f44fa27cfc05", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [], + "source": [ + "%%capture\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from matplotlib.cm import get_cmap\n", + "import astropy.units as u\n", + "from astropy.io import fits\n", + "from astropy.coordinates import SkyCoord\n", + "from mhealpy import HealpixMap\n", + "import pandas as pd\n", + "from astropy.time import Time\n", + "from pathlib import Path\n", + "from scoords import Attitude, SpacecraftFrame\n", + "from pathlib import Path\n", + "import shutil\n", + "import os\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.util import fetch_wasabi_file" + ] + }, + { + "cell_type": "markdown", + "id": "65616e72-8099-4f6c-b0a0-19c5823af3e6", + "metadata": {}, + "source": [ + "## File downloads" + ] + }, + { + "cell_type": "markdown", + "id": "74d85d9a-42c4-4f69-9ddf-965af635a65d", + "metadata": {}, + "source": [ + "You can skip this step if you already downloaded the files. Make sure that paths point to the right files" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "26f552dd-5f3d-4b0b-a6b0-794d87431664", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you can want a different path\n", + "\n", + "ori_path = data_dir/\"20280301_3_month.ori\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "3f10956b-e690-4de0-b872-9a391c9d2bf8", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# download orientation file ~684.38 MB\n", + "if not ori_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", ori_path)\n", + "\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " \n", + " response_path_zip = str(response_path) + '.zip'\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\",response_path_zip)\n", + " \n", + " # unzip the response file\n", + " shutil.unpack_archive(response_path_zip)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(response_path_zip)" + ] + }, + { + "cell_type": "markdown", + "id": "680b4ec4-2c3e-4e88-9f14-654e51088952", + "metadata": {}, + "source": [ + "## Orientation file format and loading" + ] + }, + { + "cell_type": "markdown", + "id": "0e3f5bfd-2a14-4684-855b-c58fb80c0d6d", + "metadata": {}, + "source": [ + "The attitude os the spacecraft is specified by the galactic coordinates that the x and z axes of the spacecraft are pointing to. The y-axis pointing can be deduced from this information (right-handed system convention).\n", + "\n", + "The following diagram shows the relation between the spacecraft --i.e. local-- and galactic --i.e. inertial-- reference frames." + ] + }, + { + "attachments": { + "04c01833-6f41-4b2a-812f-56ce5790948d.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAkACQAAD/4QB0RXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAKgAgAEAAAAAQAACaagAwAEAAAAAQAAA9AAAAAA/+0AOFBob3Rvc2hvcCAzLjAAOEJJTQQEAAAAAAAAOEJJTQQlAAAAAAAQ1B2M2Y8AsgTpgAmY7PhCfv/iDSBJQ0NfUFJPRklMRQABAQAADRBhcHBsAhAAAG1udHJSR0IgWFlaIAfnAAMAAgAKABAAIWFjc3BBUFBMAAAAAEFQUEwAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtYXBwbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWRlc2MAAAFQAAAAYmRzY20AAAG0AAAB6mNwcnQAAAOgAAAAI3d0cHQAAAPEAAAAFHJYWVoAAAPYAAAAFGdYWVoAAAPsAAAAFGJYWVoAAAQAAAAAFHJUUkMAAAQUAAAIDGFhcmcAAAwgAAAAIHZjZ3QAAAxAAAAAMG5kaW4AAAxwAAAAPm1tb2QAAAywAAAAKHZjZ3AAAAzYAAAAOGJUUkMAAAQUAAAIDGdUUkMAAAQUAAAIDGFhYmcAAAwgAAAAIGFhZ2cAAAwgAAAAIGRlc2MAAAAAAAAACERpc3BsYXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtbHVjAAAAAAAAACYAAAAMaHJIUgAAABIAAAHYa29LUgAAABIAAAHYbmJOTwAAABIAAAHYaWQAAAAAABIAAAHYaHVIVQAAABIAAAHYY3NDWgAAABIAAAHYZGFESwAAABIAAAHYbmxOTAAAABIAAAHYZmlGSQAAABIAAAHYaXRJVAAAABIAAAHYZXNFUwAAABIAAAHYcm9STwAAABIAAAHYZnJDQQAAABIAAAHYYXIAAAAAABIAAAHYdWtVQQAAABIAAAHYaGVJTAAAABIAAAHYemhUVwAAABIAAAHYdmlWTgAAABIAAAHYc2tTSwAAABIAAAHYemhDTgAAABIAAAHYcnVSVQAAABIAAAHYZW5HQgAAABIAAAHYZnJGUgAAABIAAAHYbXMAAAAAABIAAAHYaGlJTgAAABIAAAHYdGhUSAAAABIAAAHYY2FFUwAAABIAAAHYZW5BVQAAABIAAAHYZXNYTAAAABIAAAHYZGVERQAAABIAAAHYZW5VUwAAABIAAAHYcHRCUgAAABIAAAHYcGxQTAAAABIAAAHYZWxHUgAAABIAAAHYc3ZTRQAAABIAAAHYdHJUUgAAABIAAAHYcHRQVAAAABIAAAHYamFKUAAAABIAAAHYAEwAUwAyADcAQQA4ADAAMABVAAB0ZXh0AAAAAENvcHlyaWdodCBBcHBsZSBJbmMuLCAyMDIzAABYWVogAAAAAAAA89gAAQAAAAEWCFhZWiAAAAAAAACHXQAAP3v///+7WFlaIAAAAAAAAEf8AACv/AAADs5YWVogAAAAAAAAJ34AABCJAADEpGN1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANgA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCjAKgArQCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//cGFyYQAAAAAAAwAAAAJmZgAA8qcAAA1ZAAAT0AAAClt2Y2d0AAAAAAAAAAEAAQAAAAAAAAABAAAAAQAAAAAAAAABAAAAAQAAAAAAAAABAABuZGluAAAAAAAAADYAAK4AAABSAAAAQUAAAK4AAAAmgAAAD0AAAFBAAABUQAACMzMAAjMzAAIzMwAAAAAAAAAAbW1vZAAAAAAAAEwtAABxoTBCVkvcujOAAAAAAAAAAAAAAAAAAAAAAHZjZ3AAAAAAAAMAAAACZmYAAwAAAAJmZgADAAAAAmZmAAAAAjMzNAAAAAACMzM0AAAAAAIzMzQA/8AAEQgD0AmmAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/bAEMAAQEBAQEBAgEBAgMCAgIDBAMDAwMEBgQEBAQEBgcGBgYGBgYHBwcHBwcHBwgICAgICAkJCQkJCwsLCwsLCwsLC//bAEMBAgICAwMDBQMDBQsIBggLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLC//dAAQAm//aAAwDAQACEQMRAD8A/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvd3lpYWz3l9KkEMYyzyMFVR6knAFfiV/wXQ/4LH+DP8AgkL+zRa+LNMsrfxB8S/GTzWfhTRrhiIGeEKZru62sr/ZrcOm5VIaR3RAVBZ0/ie/4J1fsE/8FEP+Dm/4neJf2g/2zvjFrNr8M/DWorZ3d2586N75lExstLsFZLS38qN0aSTYFQSIdsjMcAH+oFoXifw14ot3u/DOoW2oxRtsZ7WZZlDDsShIB9q1ri4t7O3ku7uRYoolLu7kKqqoySSeAAOpr+Lzxz/wZlfs/wDgvQY/E/7Gfx28d+CvH1gvm2mpanJbXEHnpyuPsMNjPCCwHzrK5TrtYjFfz6/t2/8ABT7/AIL+/wDBObwt45/4Jbftr+Ko9Zg8S6PNp8Wu6jAt/eXei3qvA81hqYEck0c6b0Mlwsk8Zyp8t1wAD/VIsL+x1Syh1PTJo7m2uEWSKWJg6OjDIZWGQQRyCODVuvzQ/wCCMl9/aP8AwSY/ZwuM52/Drw9F/wB+rOJP/Za/S+gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivnz9q79pr4W/safs5eMP2ofjTcyWvhnwXp0moXphXfNJtIWOKJcgGSaRkijBIBdhkgZIAPoOuRs/iB4D1HVv7A0/W7Ce/6fZo7mNpv++A279K/x0f2//wDgsl+3d/wVg+ObaT8Q/GN94a8FazqSWeleEdLuZINJsreeTZGJo0Kfa5VVvnmm3MSW2hEIQe0/8HE3/BNH4Df8EpP2xfA/wQ/ZmfXDpOpeCNP1q5vdWnEzzal9ru7eV4pERAuVt43ZAMIz8YUgAA/186K/jI/4M5v22v2tP2mPgN8Uvg3+0Bq2o+KvDfw5udIXw5rOqSPcTxC/S486x+0SEtIkIhieNSSYlkK5CGNR+vP7S3/BZnwT8IP+Cs3wd/4JVfDnSrbxFr/jdpZPFV605X+xInt3ntI1VQQ88qxmR1YrsiaNud4wAft9RRRQAUUV/Oz/AMHRn7U/x3/ZP/4JP694o/Z81G70PV/E2uad4cu9VsHMV1Y2F4JXmeKRSGjaTylg3r8wEp2kHBAB/QdZeIdA1LULjSNOvre4u7THnwxyq8kWem9QSV/EVsV/g3fAT9ob4z/sw/GLRfj78CfEV54c8WaBdLd2moWkrJJvU5ZZMHEkcg+WWN8pIpKsCCRX+6j8JvFWs+OvhX4Z8beI7M6dqGs6VZX11aHgwTXEKSPHzn7jMV69qAPQKKKKACiiigAooooAKKKKACivxE+Pv/BZrwN8M/8Agr18I/8Agk/8O9Jt/EWs+MI7qbxXqBuCh0TNnLdWcKIoYPNIsXmSK20LE8ZGS/y/t3QAUV/mof8ABzp8Df2nv+CXvxx8FfEn9n/9oj4o3Hhr4vya5ePpl/4mvD/Zt7Yy28kscBgeFRbMt4ghjKlkCEFmGMfmP/wRJ/bm/bX8ef8ABWP4C+DPHXxh8ba1o+p+K7W3vLC/8QX9zbXEThgySRSTMjqe4YEUAf689FFFABRRRQAUUUUAFFFFABRRRQAUV/Ot/wAFrf8Ag4d/Z5/4JS2Evwi8EW0Hj/40XUKSQ+HklKWulxyqGSfUpU5QMpDR26fvZAQT5aMJK/gg1f8A4KB/8Ft/+C5n7Stp+zz4O8b67qeoeK5JBD4W8O3T6LoNraxgtI88cTonkQrktLdPI/bczFQQD/XX8Q/ET4f+EZ1tvFeu6fpcj/dS7uo4WP0DsDXTWN/Y6naJf6bNHcQSjKSRMHRh6gjINfwk/s2/8GSXw3PhOw1X9sT4z6rc6/OnmX1j4RtoYbaGQ9Uju71Jnmx/fa3jz/d7nT+Mf/Bod8bP2c4pfin/AMEpf2jPEPh3xVp4822sNXnfTZp2UZwupaaYtjHAChrYoSfmdRzQB/ddWZpGt6N4gshqWg3cN9blmQS28iypuQ4YblJGQRgjsa/yvfiz/wAHDH/Bf79iLS/F/wCwv+1DqEFl4xtbdtOk1LX9Kj/t7To5Uws1rdWzxwTblO6K5kS43Ah1c8Gv7FP+DT52k/4IofD13JZm1jxESTySTqU9AH9INFFFABRRRQAUV8p/tnfso6X+2h8Cr74F6v418WeAIryeG5XWPBepHStVieAllVZwj/u2P30K4YCv8hX9tP8AaF/4KHfsgftc/En9ly9/aD+IWqHwD4j1HREvf+Ek1KM3MVnM0ccxT7QdpkQK5XJwTjJ60Af7S1FfxHf8GY/7Qfx8+Pfgv9oO4+OnjjxB40k0u98NLZtrup3Oom3E0eoFxEbiR9gfau7bjO0Z6Cv7caACiiigAooooAKKKKACiiigAoqpf39hpVhPqmqTx21tbRtLNNKwSOONBlmZjgBQBkknAFfi1/wSb/4LFeFP+Crfxj+P/h74X6HFZeCvhPrGmafoOsCZnl1m2vRdK1y8ZUCJWa1LxAHPluNwDA0AfthWRrHiDQfD0CXPiC+t7GORgiNcSLErMegBYjJ9q16/xcf+C4H7Vfx7/ao/4Kb/ABh1H456peTr4T8Waz4c0bS55GMGladpl3JbRQQxZKIdsQaUoB5kpZzktQB/tGghgGU5Bpa/iW/4Ms/2q/j58X/2f/i5+zv8TNTvNa8K/Da70SXw5LeSNKbJNUS7E9nG7kkQp9ljkjjX5Yy79Nwr+2mgAooooAKKKKACiivzQ/bv/wCCYngb9vHW9O8U678UviX8ONS0qwewgfwL4kl0eBwzs6yTQBZIpJFZjhioJX5ScAYAP0vor/Gp/wCCj3xE/wCCjn/BPT9t34hfsc67+0V4/wBdk8E38cEOoJ4j1KL7Ta3UEV1byMn2ltjtBMhdQSFbIBI5rX/4Jj+Mv+Chn/BSD9uLwP8AsXWf7TPj/wAISeNG1FRq765qV8tt/Z9hcXxzAL2EvvFvs/1i43Z5xggH+x/RX8Tuof8ABsD/AMFPY4GbSv8AgoL4zmlxwsq6tEpPuRrLkfka/GL/AIKM/wDBJr/g4c/4J9+BdT+NFv8AG3xh8TvAmkRme+1Pwz4p1ZrqygH3pbmyllWVY16u8XnIi/M7KAcAH+n/AEV/C9/wZg/tJ/tE/H27/aMsvjt498ReNYtITwm9iuvapc6kLVrg6oJTF9okfy/MEab9uN2xc5wK/uhoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKxdc8SeHfDFr9u8S39tp0H/AD0uZViT83IFfxs/8HJP/BxT43/Yk8Vz/sI/sOXkNt8RzaxzeJvEhRJzocdygeK2tUfchu5I2Eju6lYY2XaDI2Yvzd/4Jmf8Gy/xd/4KjfCPSP28P+Cn/wAXPFUa+PbZdT0eyguBea1c2Fwd8V1cXl8LhI1nQ+ZFEsTkxsrFlPyUAf6LFlfWWp2kd/p0yXEEo3JJGwdGHqCMgioNR1fSdHSKTV7qG1WeVIIzM4QPLIcKi7iMsx4AHJPSv4hvjT/wap/tD/sa2Vx8b/8Agi9+0F4t0HxfpaGZND1m9S0k1EKNxiW9s0toMvgKIri2MLk4d0XJr8DtR/4LN/8ABT/9rb9sL9nn9jD9vO9t4JPhp8YfDV1qdv8A2Ymm6lNqun6ikH+nCPbHuhDyKFjijXJ3EMQpAB/q90UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVjp4h0CTWW8OpfW51BE8xrUSqZgnHzFM7scjnHevzE/4Ld/tF/F79k7/glT8aPj38BppLXxZouixRWF3CMy2hvrqC0kuU9Ht45nmU9mQHBxiv8AGZ0j4r/FHQPiVF8ZtE8SapaeL4L3+0o9biu5U1Fb0tvM4uQwl80sdxfduJ5zQB/vc0V8J/8ABML46fEn9pr/AIJ4fBj4/fGFMeKPFvhHS9R1OTYIxPcSwrunCr8qif8A1oAAAD4AAr7soAKKKKACiiigAooooAKKK/EX/gpt/wAFmfA37Av7UXwF/Y88MaTb+KvHPxi8U6Vp17aSXBhGk6Jf3aWZvG2hiZHlciBCNreXISRgbgD9uqKK/gh/4OtP2bv2gf2LdM0r9v79nb49/EnSLX4geKxo2r+G18RXUWm2dzcWk1xC1hHA0XkxbbWQPG2/5iCpAyKAP73qK/xR/wBlb/goL+3rqn7UHw303U/jd4+uba48U6PFLDN4k1GSORHu4gysrTkMpBwQRgjg1/tcUAFFFFABRRRQAUUUUAFFFFABRXgH7U/7THwl/Y4/Z58W/tOfHK/OneFvBunyX97IoDSvtwscMSkgNNNIyxRLkbpHUZGa/wAyjxp+35/wVW/4OWP26rL9k34N+JLjwB4I1iSeaHw9p91LbaXpmj23+tutSkh2yXkioQDvyrSsEiRN2KAP9TK08Z+D7/WH8PWOq2c2oRjLW0c6NMoHqgO4flXSV/Ft4Y/4Mmv2INP8Cx23iT4v+PLjxakS/wDExshYWtiJwOXFo1tLKF3chftWQON2ea/Mv9rGP/gvj/wbOy2Ov+AfivL8WvgRezix0661uB9RsLWVgxjtrm2nkefT3IUsn2a4EEnTcWygAP8ARsstX0nUri5tNOuobiWzfyrhI3DtE5AO1wCSpwQcHBwa0a/jy/4NC/2hPiV+1F8M/wBpX45/GK+Go+KPFvxCj1rUp1URo097agsEQcIi7dqKOFUADgV/YbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVymteO/A/hq7Ww8R6zY6fO+NsdzcRxOc9MBmBNf5rX/Bwn/wcc/tCfGf4/8AiX9j79hnxbfeDPhp4SuZtI1PV9Ika01HXb6BmjuSLlCJY7NGBjjSMr5wBdyysiJ8D/F7/gl78GPDn/BvH4F/4Kvahea7rHxS8d+NJ7W7ne482yt9PW7vrLbKhUsSXs1fzS+7zJQnTAoA/wBcSKWKeJZ4GDo4DKynIIPQg+lSV/lHf8GsP7cP7XXws/4KX+BP2WfAOs6nrPw78dve2ut+HZJZJ7K3iitZZxexRsSlvJC0al5FA3x5Q5yuP9Af/gsv/wAFWPh9/wAEkv2SJvjtrdnDr/ivWLtNM8MaBJMYft923zSM7KCywwRBpJHA67EyGkWgD9aqK8s+BfxCu/i38EvB3xWv7ZLOfxPoen6tJbxsWSJ72BJiik8kKXwCeSBXqdABRRXwd+3L+wB4H/bw0fQNK8YePvH3gGTw6101vc+BPEEuhTS/axGGE+xXSYL5SmPeh2Etj7zZAPvGiv8AIj/4LM6b/wAFAv8AglX+3Rrn7LOmftJfEbxJof2K11nRb+48SahHcvYXu7Yk6rOE82N0eNmQBX27wq7tq/HH7Hv7R3/BQr9rT9qz4c/sv237RXxA0KT4g+I9N8PrqLeIdSuRaHUJ0h80xC7j8zZu3bN67sY3DrQB/tR0V/FFd/8ABr//AMFNkiJsf+ChHjWR+wkj1VB+Y1pv5V+XH7dn/BEP/g4k/ZE8Eah8Vfhb8fPFvxh8O6VA1zdx+H/E2rxavFFHyz/YJZsygDnbbySydfkwM0Af6UlFf51H/Bnp+1Z+1N8bv2/viR4K+OHxH8U+L9LtvAFxdx2Wu6vd6hBHcx6lYxrIsdxK6q6rI67gAcMR3Nf6K9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAsX/g8d8f+KvE//BWSx8G6w8g03w14J0mDT4if3e25luJ5ZFHqzvtY9TsA6AV9hf8ABpl/wWY/Z3/ZQ0DX/wDgn3+1Lq0HhOx8U682u+G/EF9IsVgL25hht5rO5lbCwbhBG8MjnYWLqzKdm77J/wCDxz/gmB4/+KWieGP+ClXwb0yXVP8AhENM/sDxjb2yM8sOmpK81rfbVzmOF5ZY7huqq0bH5FZl/wA7agD/AH8re4gu4EurV1lilUOjodysrcggjggjoa/nj/4Oa/8Agn54O/bU/wCCY/jL4h2ukJdePfhHZTeKNAvUX9/Hb2u2TUYMjlo5rRHby+hljjbqor/Pa/4Jtf8ABfr/AIKI/wDBNCWx8KfDjxOfF3w/tmUP4R8SF7uwSLutq+4TWZxkqIXEe45eN+lf6Lf/AASl/wCDhT9h3/gqjHB8N9NmbwB8TpIv3vhHXJULXRAy/wDZ9x8qXigZyu2OYAFjEFG6gD6L/wCCFV9/aP8AwR9/Z3uM52+C9Pi/79KU/wDZa+8j+01+zcpKt8QfDQI7f2ta/wDx2vaLW1tbG3S0so1hijGFRAFVR6ADgV/l3f8AB2P/AMEwf2Uf+CfPxi+E3j79k3w2vhDS/iTZayuoaXbzSy2ou9Ie1PnRCZ5DH5iXihkUhBsBABLZAP8AS+0L4+/AnxRq8GgeGvGug6jf3TbIba11K3mmkbrhUSQsxx2Arxb9or/goR+w1+yPqsfh/wDaY+LXhTwTqksYmTT9V1SCC9aNuji2L+cUP94Jj3r/ABYv2N/iV8f/AISftP8Agvxt+yrG8vxIj1BbPw2sUQnlOpX6taw+VG3ytKGlBjDArvxuBGQf7DPjD/wZx/tPeIP2Y9a/aE8TfGVvF3x9urWbXNR0O4tXuLa/vWHmy2o1F5mmkuGO4LO8W2STCkKp8wAH963wC/as/Zk/aq0O48S/s0fELw74+sbMqtzLoGpW+oC3ZxlVmEDuYmIBwrhT7V79X+Ef+zF+1H+0B+xV8b9I+PX7O3iG88LeK9AnDxzQMVWRVYF4LiM/LLC+NskUgKsOCK/2Xv8AglV+394R/wCCmX7Dngv9rDw5FFZahqsDWevadCSVsNYtMJdQDcS2zdiSLcSxhdCeTQB+iVfL/wAeP22/2Of2XZFtv2jvip4T8DXDgFLfXNXtbKdwRkbIpZFkbjn5VPFfyp/8HV//AAW1+OX7Fl1oH7CH7IurzeGPFnirSP7b8Q+IbQhbuz024kkggtrSTJMM0zRSvJKoEkaBPLYFyV/Hf/g2M/4J4f8ABMD/AIKjp8Uk/bptNX8e/FzSbwagunXmrXdpbyaPcLGv21ZLWWG4muBdGRJzJKyKHhIXLE0Af3dfDn/gr7/wS1+LOvxeFfAP7QXgK91K5lWCC1fXLW3mnlY4VIlmkQyMTwAgJPav0ZVlZQynIPIIr/Hx/wCDib/gl/8ACX/gld+3bZ/CX4BXd5P4L8W+HbbxJpttfP509gZZ7i2ltjKfmlVXt96Ow3bZApLFSzfvX/wZ7/8ABU345+I/i7qn/BNH4xavc+IPC39iXGs+EpLyQyzaXLZOnn2kbN8xt5Y5DIqElYmjOwAO2AD/AEJKo6nqem6Lp0+r6zcRWlpao0s08ziOONFGWZmYgKAOSScCq3iDX9E8KaDfeKfE13FYabptvLdXd1cOI4oIIVLySOxwFVVBLE8ADNf5GH/Bc7/gud8cf+CqHxy1T4d/DrVL7Rfgdo94bfQfD8DtENT8lyEv75BgyzSnDxxPlYF2qo373cA/0uvEP/BZX/glB4W8Sf8ACJa3+0V8P474SGJlTXrSWNHXgh5I5GjQg8Hcwwa+3fhJ8bfgx8fvCa+PfgT4u0XxroTyGJdR0G/g1G0Mi4JXzrd5E3DIyM5Ga/hr/bP/AODY79k/9mT/AIIW658WLfQ7yT9oLwN4Zt/FOs6/9vuJEe4g2T6jafZhJ9l+zQwmVI2WISfu1dnOWDfxsf8ABPD/AIKJftIf8E0/2itH/aB/Z71ie3+y3Ef9raM0zrp+sWYJD213Ep2urKW2MQWifDoQwBoA/wBwqsvW9c0Xw1pFz4g8R3kGn2FnG0txc3MixQxRryWd2IVVA6kkAVwlp8Yvh9N8GIvj/f6glj4UbRV8QSX1z8iQ6eYPtJlk/uhYvmb0Ar/JM/4LUf8ABbz9or/grX8eL3wL4Lvr/Rvg5Y3/ANm8NeFrdmi+3BX2xXd/GpxNdSnDIjZSAHYg3b3cA/0z9S/4LO/8EmtJ8T/8Iff/ALRfw/W9DmNtuu2rwqwOCGnVzEuD6uK/RDwj4w8JeP8Aw1Z+M/AeqWet6PqMYltL6wnS5tp4z0aOWMsjqfVSRX8jFz/wac/sT2n/AASzf4U3Ph5/+GgYfDLagfFq307Sf8JIIfOMAiEn2drLzh9nCeUT5Pzg+b89fyB/8EGf+Cz3xa/4JdftOaL4a8U6zc3vwV8V38Vr4o0WaQvb2izsE/tG2U5EU0GQ8mzAmjUo3OxkAP8AYGrO1fV9J8P6Xca3r11DZWVpG0s9xcOscUUajLM7sQqqBySSAKyvEnjPwn4Q8HX/AMQvE+o29joWl2Uuo3d/LIFt4bSBDLJMz9AioCxbpgZr/In/AOC2P/Bbn9oH/grT8fL7wL4Hv7/R/g1p9+Lbw14Xgdo1vij7Y729RcebczH5kRsrApCJ8293AP8ATP1v/gsz/wAEnfDviQeE9V/aL+HyXu8xsE160liRl4IeVJGjTB4O5hX3L8KPjN8H/jx4Rj+IHwO8V6P4z0GZ2jTUtCvoNRtGdMblE1u7oSMjIByK/hf/AOChP/Bsv+yP+yX/AMEONZ+LXhrRbub49+ANDsNf1vxB/aFxLHdzJJGdSt/s3mfZVtoopJfJMcSyYiQu7Hfu/j3/AOCbP/BSP9or/gmP+0jo3x6+BerXCWUNzGNc0IzOLDWLHOJILiIEKx2FvKkILRPh1IIoA/2yfF3jnwV8P9MTWvHmsWOiWckghWe/uI7aJpGBIQNIygsQpIGc4B9K84/4ab/Zt/6KF4a/8G1r/wDHa8m/ak/ZE/ZO/wCCl37O9l8Mf2kfDsfi/wAGar5GtWKPLLbSQzvA6w3MTxOjpKsc77Tnjccg1/iZftEfDG2+Cf7QHjr4M2U73UPhHxDqeixzS4DyLYXMkAZsYGWCZOBjNAH+7b4R8ceCvH+mNrXgPWLHW7NJDC09hcR3MQkUAlS0bMAwBBIznBHrXxz8WP8AgqH/AME5fgV8ST8HvjB8cPBXh3xRHKIJ9Mvdato7i2kP8Nwpf9wef+Wuyv8AMn/4Ju/8FGf2uvAX/BOjWf8AglZ/wTh0XWNQ+Mvxe8dalqdze6MjfbLLQ/7NsYSLWQEeXLM0E3mTll+zwxlshnV0/C/49/Ar41/s1/FnWfgz+0P4dv8Awt4v0acx3+n6lGUnR25DZOQ6ODuSRSyOpDKxBBoA/wB42xvrLVLKHU9MmS4trhFliliYOkiOMqysMggg5BHBFZHirxd4U8C6DceKvG+p2mjaXaLvnvL6ZLe3iX1eSQqqj3Jr8Gf+CbPxz8TfsAf8G7Hw/wD2hv2rrW+e4+H3gGfWJrGYlLuSzEssmmWo8w/Iz2720KBsBMgEADFf5wXxq/4KUfEb/gqJ+3B4V8d/8FQPG2tL8L7rxBbDUdL0FzHaaJpEkoEosLUh41aOIkNKySTuBljI2AQD/VN8Qf8ABaP/AIJL+GNZ/sDVv2i/AH2neYz5GuW1wisOoaSJ3RcdyWAr7U+Cn7RHwB/aT8Lv42/Z38b6D470eKTypL3w/qNvqVukmM7Ge3d1VvVSQR6V/Hn/AMFc/wDg2i/4Jg+Bf+CbHjb9pn9i/R7vwj4j8BeHJfE9rfw6td6pa6vaWcXnyrMl3PMn72EMySQeWA204K5U/wAEH7Gn7aX7Rf7BHx30j9oj9mbxDPoOvaVKpkRWLWt9b5+e2uoc7ZoJBwyt0+8pVwrAA/3Tq/k+/wCDtX9of4fT/wDBI/Xvh34H8ZaTc6hq/ivRbC+061v4JbiWKCV7ho2iVy/ySwI7DHGznpX9In7Kfx60j9qf9mL4eftLaDatYWfj/wAOaZ4hjtXbe1uNRt0n8pmAALRl9hOOSK/zxf8Ag4O/4N6Phh+wj8CfGX/BQrw58SdU8Q6p4l8aBpNHubGKGCL+2p5pnxKrlj5Z4GV570Afx+/CidLX4peGrqRgix6rZsWY4AAmU5J9BX+3H8Yfgf8A8E/f+Cg1hbeEPjLoPgr4tJoZa4t4bpbTVJbLzMKzxsC8kQfADFSobABzgV/h++EtC/4SjxVpnhnzfI/tG7htfM27tnnOE3YyM4znGRmv9bj/AIJF/wDBvb8OP+CSHjzx38Qvh58T9Z8T33jbQxom64soLU2QEnmiaMq0gZwwG0MNoxyDQBwH/BWX/grT+xd/wQU/Zu/4Z0/ZN8NeHbL4lanBI+geDdDtobWy003A/wCQjqEUAUJHnDKpxLcsMAhQ8ifwa/8ABET44eIviD/wXZ+Efx9+P/iQ3mra14nv9T1nWdVnVPMuLi0uS8ksjkKuWbA6AcAADAr37/g4z/4JEJ/wS/8AiR4A8cap8Vdb+K+vfF6TXb/VdS16BY7rz9Pa0+dpPNlaVpTdHcWIxtHrX5Nf8E0f2Q9G/b1/bo+HX7IfiHWpvDtl44v5bOXUreFZ5bcR28s25Y2ZQxJjxgkdaAP9rrw78d/gf4v1mDw74T8ZaFqmoXJIhtbTUbeeaQqCx2okhY4UEnA6AmvVq/k4/wCCc/8AwanfCP8A4J3/ALZ3gn9sjw38YdX8TXvgqW8li0y50qG3in+2Wc9oQ0iTMy7ROWGAckYr+segAr49/aosf2Jv2hfhd4n/AGWf2qtX8N6l4f16AWer6NqWpQ28mMrIh/1qSxSIwWSN1KujBWUggGvsKv4hP+Duf/gmD+ylpf7Juqf8FFvAPhtdF+KCeJdMi1vVLeaUrqlreIbXbPCzmIOjLCVkRFbCkHIPAB9Nfs5f8G4f/BBL9nz47ad8bl8fTeNn0m7S8sND8R+JtNuNLjnjO6MvFbw28kwRwCElkdGxh1cZB/rO1nWtH8OaVca74hu4bCxtUMk9xcSLFFGi9Wd2IVQO5JAr/Aar/el+JXwk+HPx5+D+q/Bn4vaVFrvhjxNpzafqenzlhHc20y7XRihVgCO6kEdjQBhf8NN/s2/9FC8Nf+Da1/8Ajtdl4O+K3wu+IlxNafD/AMS6VrstsoeZNPvIbpo1Y4BYRuxAJ6E1/jb/APBdX9jj4UfsF/8ABUr4n/s0/Aq1lsfB2lS6de6TazSvO1vBqVjb3bQiSRmdlikldELszbVG4k5Ju/8ABG23/wCCi/xO+O/iH9kj/gm1qLaB4n+LOkDStc1yN3t30vRLeZJric3aZa1jBCq8kamVsiOL53AYA/1hPjX/AMFSv+CcX7OfjOT4c/G743+DPDfiC3cRz6bd6xbi7gYnGJolcvF/20C19VfCP40fB/4/eCLb4mfAvxVpHjLw7eFlg1PRL2G/tJGThlWWBnQsp4YZyDwa/wAkn/gtZ/wQZ+L3/BHnTfA/jnxP45tPiHoXjl7i2e/t7N7CS01KBVkeF43lmLq6sWjlDAtsbciHGdz/AINov2+vih+xx/wU98AfDXSNTn/4Qr4u6taeFNe0nf8A6PPNqDeRYz7TkLLBcyIQ4G7yy6Zw5oA/15aKKKACv55f+C63/Bef4O/8Ep/hfc/Dn4e3Fp4n+OOvWrDSNDDiSPS0lX5b7UApyka53RQnDzngYTc6/wBAPiPS7vXPD1/othezabPeW8sEd3b7fNt3kUqJE3AruQncuQRkcgiv8lv/AIOKf+CRsP8AwS7+KngTxLqHxS1r4q638WBrOpapqeuwCO6+0WUltl3k82VpWlNwSzMc8d80AeR/8EIfjVrfjX/gu98JPjt8evEn2rU9Y1/V9S1jWtWuFQy3Fzp94XlllchQWdu5AyQB2Ff64vhz46/BHxjrUPhvwj4y0PVdRud3k2tnqNvPNJsUs21EcscKCTgcAE9BX+Kh/wAEwf2OdF/4KA/t3/Dz9j7xFrk/huy8bXd1bS6lbQrcS24t7Sa5BWNmVWyYgvJHBzX+iP8A8E2v+DVn4Sf8E4/21PBX7Z3hn4v6v4ovvBh1AxaZdaXDbRT/ANoWNxYndIkzMuxbguMKclcd6APzj/4Pk/8AkUP2a/8Ar88Wf+gaZX8pX/BB7/lMP+zx/wBjjZf+zV/Vr/wfJ/8AIofs1/8AX54s/wDQNMr+HP8AY7+Lfxt+BX7UPgb4rfs2WY1D4gaTq0B8PW/2Y3jSalMfKgVYB/rX3uNiHIZsAgjIIB/tfftG/tw/sdfshxW7/tP/ABO8M+BJLxS9tBrOpQWtxOozlooXcSyAY5KqQK0/2df2x/2T/wBrrS7rWP2X/iP4c8fQ2Gz7WND1GC9ktt/3fOjjdniLdg6rmv8AN7/4KNf8G23/AAUG+GX7GPij/gp9+1b8Vrbxr8SLaOLWvF2gziW6uoLeZ0RyNRaUpNJbhxviSJYlRCIncBQf5rf2Sv2rvjd+xL+0B4c/aV/Z71mbRfE3hu5WeKSNiI54sjzbedAcSQTLlJEbhlPrg0Af7tNFeT/AX4taP8ffgZ4L+Ovh2Iw6f410LTteto2bcUh1K3S4RScDOFkAzjmv5jv+Dm7/AILneLP+Cc3gPTP2TP2WL1LX4ueObBr251QKHbQtHdniWaMHj7VcOjrCSD5aozkBjGaAP6EP2hv2+/2I/wBky+TSf2lvix4U8EX8qeZHZavqtvbXjpjO5bdn81hjuEIqz+zn+3d+xf8Atdyz2v7MXxT8L+Orq1TzJ7TR9TgubqJOPmkgV/NRefvMgGe9f53X/Bsb/wAElvhv/wAFUPjB8Sf2vf29LW88eeF/DE8dmkGo3s7NrGvXwMsst1MrieUW8W12BkG95kJLBWU/Jv8AwcCfsGaX/wAEYP8AgpV4e8VfsP6jqPgzQfEOmQeJ/DTWd5N9q0e8ileC4ghuGYzFFZBIpd2OyXYSQOQD/Wnor8Kv+Dfb/gqzff8ABVf9h+Lxv8SDBH8SvA90uh+KkhCxrczBA8F8kagBEuo85UAKJo5QoCha/dWgAr8mv+C1f/BSXSP+CXH7BHif9oa1aGbxffFdE8JWcw3LPrN4reUzL/FHbor3Eg4DLGUyCwr9Za/zqP8Ag93+Oeu6h8d/gl+zTFPs0zSdBv8AxNLCp/1k+o3H2WNnHfYto4T03t60AfxK/Ev4lePfjJ8Qda+K3xT1a517xH4ivJtQ1LUbxzJPc3M7F5JHY9SxP0HQcV/p5f8ABoj+wB4f/Z0/4J9/8NeeKNOh/wCE0+MlzLcw3TIDPb6DaSGG2gDYJVZpY5LltpAcPFuGUGP8tav90D9gL4Z6Z8Gf2F/g38KNHj8qDw94J0GwA7lobKJWZv8AaZgWY9yTQB9cUUUUAfzo/wDByL/wSY8K/wDBRr9ijV/ib4H0tD8XPhdY3GreH7uJf399aQAy3WmuQMusyKzQKfu3AXBVXk3ZX/Bp3/yhN+Hn/YX8Rf8Apxnr+kOvPPhZ8I/hV8DfBVt8N/gt4a0vwj4es3lkg0zRrSKxs4nndpZGSGFURS8jM7ED5mJJ5NAHodeJfGr9pf8AZ0/Zt0VfEX7Q3j3w94FsHBKT6/qdvpyPj+6bh03HPGBk54r8Ov8Ag5M/4K7eO/8Aglf+yVolh8BjHD8Tvidd3On6HezxpNHp1tZJG15eCN8rJLH50SRKylN8m9gQmxv4mv8AggT8Gf2Pv+Crn/BRnXfBf/BV7XfEXj3xd4j02S98PRX+q3CR6veW2+W6iubqORbrekAMsCRyxptSTJ4VSAf6L2if8Fpv+CSniHWj4f079oz4frcAgZn121t4iT6SyukZ/Bq/STQte0PxRo1r4j8M3kGo6ffRLPbXVrIs0M0TjKujoSrKw5BBIIr/AC+v+DoL/gip+y3/AMEybv4c/Gz9j+G80Twz44uL7TL3Qbq5lvY7S6tFSWOSCed3mKSI7KySO+0oCG+YgeWf8GvX/BU345/spft3eDf2QNS1e51P4W/FfVE0afRp5C8Njql3lbW8tQ2fKczbY5guFkRssCyIQAf6ttf4tX/Bdf8A5TB/tEf9jpf/AMxX+0rX+LV/wXX/AOUwf7RH/Y6X/wDMUAf1i/8ABjf/AMiN+0j/ANf/AIW/9F6lX96FfwX/APBjf/yI37SP/X/4W/8ARepV+yX/AAcpf8FefHv/AASx/ZQ0LRvgE0dv8TvihdXVhot/NGk0em2lisbXl2I3yryp50KQq6lN0m9gQm1gD9z/AI1/tM/s5fs2aOviH9ofx94d8C2LglJ9f1O305Hxx8puJE3HPGBk54r420L/AILSf8ElfEetHw/pv7Rnw/FwCBmfXbW3iJPpLK6Rn8GNf51H/Bv/APBH9jf/AIKuf8FEPEPgv/gq1rfiLx74x8Q6c994dhv9VuUj1i7tg8t3Hc3Uci3ZkjgHmwIkqIUSXceFU+1/8HQX/BFn9l7/AIJjat8OPjJ+yDDeaL4Y8dzX+nXmg3VzLex2d3ZCOVJIJ52eYpKkjBkkdipjBDHdgAH+ohomt6L4l0e18Q+HLyDULC9iWa3ubaRZYZonGVdHUlWVgcggkEVqV/lQf8GuP/BU345/ss/t1+D/ANjfVtXudU+FnxW1EaRLo88heKw1S5BFtd2obPls0oWOZVIWRGywZkQj/VfoACQBk1+efxT/AOCtf/BMX4KeJZvBnxP+PfgXStXtZfJuLJtbtpbiCT+7LHG7tGR3DgY71/CL/wAHM3/BfP4o/Hv42eJf+Cf37JHiGfRPhl4Snm0nxLqGmzGOXxFqEZ2XEJlTDfYoHDReWp2zsGZt6eWB9yf8Eqv+DY39lD9ob/gjynxv/aF0O81D4wfFLQrvXPDWoJqFxbrosc0b/wBl+VDFIkE3mr5c8v2hJMiTYNu3NAH9s3wK/ar/AGYv2odNudX/AGbfiJ4a8f21ls+0v4e1W21IQeZnaJfs8jmMnBwHAPBr3mWWOCNppmCIgLMzHAAHUk1/g8/s/ftD/HT9kv4v6V8bP2f/ABHf+EfFmgzrJBeWUjROCjAtFKvSSJ8bZIpAyOuVZSCRX+tLN4T8Qf8ABwH/AMEZfAGpwePtV+EUvxN060vfEFx4bTcJntvNtr+wKyOrG0kuFfK+ZkqihiylgwB/NT/wcvf8HFXhz4q6Frn/AATm/YL1tb3QbgtZ+NPF1hLuhvkHD6dYyJ9+Ani5nU7ZQDEmYy5fo/8Agyd+KHw0+HPhn9o5PiF4i0zQWu7rwoYBqN3FamUImp7tnmsu7buGcZxketfxz/8ABQn9l3Sf2Kf21/iT+yjoWrza9Z+BNam0qLUJ4hDJcLEAd7IpYKTnoCa/XT/ggZ/wQw8A/wDBZTSfilqXjb4g6h4GPw9m0aKFbGxjvPtP9qLdli3mSJt2fZhjGc7j6UAf6sMXx8+BVxos3iSDxroL6dbSpBLdLqVuYI5ZASiM/mbQzBSQCckA46V/PH/wUM/4Ih/8ES/+CjnxvuP2jPiR4+Twb4v1Pyzq154U8RadapqTRhUElxFcxXUfm7FCmSNY2bGX3Hmux/Ya/wCDZv8AY0/Za/Zw+IH7LPx21Gf4zeE/H2q6drEtvqlu2mNaXWmxTwxvE9pOJA+24fDBwRX+Xx+3Z8CNF/Ze/bW+Lf7OHhmWWfS/AvjDWtCsZZzmV7Swu5YYWcj+Jo1Ut7mgD/ZG/wCCbX7Hn7D/AOw58AP+FGfsLfYZ9Agujc6lewXyald3t/Iiq013OhO6VkVQFAVFUAIqrxX6DV/DJ/wY+/8AJAPj5/2MGi/+k09f0Wf8Fo/+Cpng7/gk3+xnqPx3uraDV/GGsTf2R4T0eZiEu9SlUt5koUhvs9ugMspGN2FjDK0imgD9B/jd+0h+z3+zR4aXxl+0T450DwJpMjbI7vX9Rg06F3/uo07oGbkfKuTXyT4E/wCCwX/BK74l65/wjXg39oXwBcX5kEUcEmvWlu8rngLF50ieYT22bs1/maf8EvPgP8Zv+Dgv/grhp1p+2v4q1bxbZC1uvEfi28e48uZdIsCqra2wUBbeGS5mhgCQqgiSRmQAivfP+DpD/glP+zh/wTP/AGkPh1qv7JWgzeGPBHxB0S6f+zXu7i9jh1LS5UW4MUt1JLNteO4gYozsFbJGAQAAf6tUckc0ayxMGRgCrA5BB6EGn1/nX/8ABnx/wVF+Ol18f77/AIJr/FnW7nX/AAdqWjXWreFxfSvPNpV5p+xpLWBmJ2WssHmP5X3UkjBQAu+7/RQoAKKKKAP8gP8A4Oi1Vf8Agut8cwoxz4aP5+H9Nqv/AMGvv/KdL4F/7/iP/wBMOo1Z/wCDo3/lOt8c/wDuWf8A1H9Nrzv/AINyvin8Mfgr/wAFmvgz8TvjJ4j0vwl4a0ttfN7q2tXkVhY24l0S/iQyzzskab5HVF3MMswA5IoA/wBj+vir9jT9uD4M/t7aF8SdS+E1nfLYfDjxzrPw91M6jHEI7u+0cRGaaDZJIHtpVnQxs+1iM7kHf8WP+Cq//Bzl+wf+yZ8B9e0b9kvx1pPxT+K2pWsltokGgSrqGm2U8q4W7uruPNuY4c7xFG7ySMAuFUs6+Gf8GXuqalrf/BMX4j61rM8l1eXnxa1ieeaVi8kkkmk6OzMzHJLMSSSeSaAPWf8Agg/+wF4t/YB/4KN/tx+A7Lwdqfhz4d6lrXhq48HXlxZzRadd2Ev9pXXk2Vw6iOdbRbmOGTy2YxkBXw1f0Uy/tLfs4wSNDN8QPDaOhKsraraggjqCPNr22v8ALj/4O0f+Cav7LX7Bn7QHww+In7LWgDwrY/E2w1eTVNLglkktRe6ZLbkzxCVnaMyrdAOikJlAVUEsSAf6Y/hz46/BDxhrMPhzwj4y0PVdRud3k2tnqNvPNJtUs21EcscKCTgcAE1g/Hz9p39nP9lfwknjz9pTx1oXgPR5nMUV3rt/DYxzSAZ2R+ay+Y+OdiZbHav8Yn/glH+1r4L/AGEv2/fAH7XHxBtJ9Q0vwO2p3zWdtxLczNp9zFBCpwQvmzOiFyCEDbjwK90/4Ke6b/wVa/aknsv+CnP7dfg/xDZ+E/iFJt8PajcwPHpNnZOPMtrW1jLMba3ZG3QGRV+0fNIGkYuxAP8AXv8A2cv2tP2Y/wBr3wnceOf2X/Hmh+PNKs5RBcz6Lex3Yt5WG4JMqEtE5HIVwpI5xivoav8ANj/4Mk/DHxZl/bQ+LvjPS47pfAsHgtLLUpAGFq2rS31u9krfwmQQJdlepClum7nuP+DpT/guh+0VD+0rr3/BN/8AZW8RXvg7wr4Rigt/Feo6ZIbe91XULmJZmt1uEIkjtYY3VHRChkk8wPuQKKAP7kvjf/wUe/YB/Zs1iTw38efjR4L8KarESH0/UdatYrxdvXNuZPNGP9ysj4Hf8FPP+Cdf7SniS18F/Ar43eCvE2uXzbLbS7TWbY387DtHbM4mf/gKGv41/wDg3a/4I1/8EZf+Ckn7AV18R/i9oWreMPijY6hc6b4o+06vd2J0q4Z2e2a0itJYUaKW3KMJJ1lLSCReApUfyZ/8FZP2L9I/4Jy/8FFviX+yJ4N1W41TS/B1/ayaZeXGFuTaahaQX9uJCmAZI47hUZ1ChmUsFXO0AH+27XE+MviV8Ofh0lvJ8QfEGm6Et2WEB1G7itRKUxu2eay7tuRnGcZFfyb/APBpD/wVH+N37anwA8a/su/tG6pP4i174SjTpNJ1q8fzLq50i+EsaQTufmke2eAgSuSzJIqkkpk/tb/wVz/4Ju/sxf8ABRb9lXX9A+PugDUda8K6LrF54X1SOaWG40u/lt9wlj8t1VwXhi3xyBkYLgigD7h/4ab/AGbf+iheGv8AwbWv/wAdrvB8SPh23gmT4lLr+nHw5FE8z6r9qi+xLHESruZ93lhVIIYlsAgg1/gd1/Vb/wAEpP8Agnj/AMFMf+C3H7Jvh79lePx5/wAKz/Zm+FFzeRR3RtpJoNT1a9upL6X/AEVJYvt1xCZ8bnkjit02hf3juWAP9B23/wCCy/8AwSeuvFn/AAhMH7Rfw+N+X8sf8T60EBbOMCcyeSTn0ev0g0zU9N1rToNY0a4iu7S6jWWGeFxJHJG4yrKykhlIOQQcEV/iYf8ABVT/AIJwfEX/AIJXfth6x+yh8QdXg8RrbWltqel6xbxG3S/0+7B8uUwl5DEwdJI3Qu2GQ4Zlwx/Rn/gkv/wVq/4KteDvgnqP/BKD9hRJ/EHiL4jahDB4SvHk33XhqNxI2oGz8zMcMci4laWRhHa7ZJVG9y6gH+n3+0R/wUP/AGE/2S9XXw3+0p8XfCfgvVXQSLp2qapBDelD0b7Nv87ac/e2Yr0L9nz9rf8AZc/ay0S58Rfsx/EPw74+s7FlS6fQdRgvjbs4yqzLE7NGxHIDhSa/zPf+Cs3/AAbOftJ/sBfsaXf7fXxI+LVt8Sdbgv7V/GlqLSZHt5NUmEP2iO+nneS9zcyxo7SQwufM344Ir8D/ANhD9tL4w/8ABP79qbwn+1H8FNQmtNR8PXkT3dtHIUi1GwLqbiznA4aKdAVYHocMuGVSAD/c5orI8Pa7pfinQLHxNoconstRt4rq3kHR4plDo34qQa/io/4Ojv8AgvV8R/2U9YP/AATu/Yw1qTRPG17ZR3Pi/wARWjFLvSra7QPBZ2kgIMVzNERLJKPmiidPLIdyyAH9Snx+/wCCk3/BP/8AZZ19/CP7Q3xl8IeEtZjGX03UNWt0vkHq1sHMwHoSmDXpf7PP7Yf7KX7Wml3Gsfsx/Ebw549gs8faf7D1KC9e3z081InZ489t6jNfwJ/8GvX/AARD/Z0/b1+F/jv9tv8Abz8PSeN9JutUk0Lw/p95dzxRzXEaiW+vpmhdJZX3SpFES+AwlYgtsZfxz/4Ks/s/ePf+CEn/AAV61XTf2KvEup+FLfTls/EvhG8huGa4t7C/BJtZWfPnxRzJLAVl8wTRKPN3FmoA/wBgeivyz/4I3f8ABR7Rf+CpP7B/hf8AacW3h0/xGjyaP4nsIDmO11myC+cEBJIjmR47iJSSVjlVSSQTX6mUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/hj/APBQfx/4q+Kf7d/xm+Ifjd5H1XVvG2uz3AlPzIxvZQI/YRgBFA4AAA4Ff6XP/BuB/wAFoP2cP2yf2SPAX7IPizWbbw78Xvh1odl4ffR72VYm1e00yFYILuyLbRMWhjUzRL+8jcMSuza5/jR/4Obv+CYHj/8AYZ/b/wDE3x20TTJZPhl8YdTudf0nUY0YwW+pXjGa+sZW6JIsxeWJejQMu3JRwv8AODp2o6ho+oQavpE8lrd2sizQzQsUkjkQ5VlZSCrKQCCDkGgD/frr+Hz/AIOav2CvB3gH9tv9mT/gpT8N9JSxvdY+IOh+HPF88C4FzcR3EM2nXEgHHmCKCeF5DyyrEvYZ/EH/AIJof8HZP7dH7IUmn/Dn9q/f8bPAcG2HzNRm8vxDaRDjMV8QftG0ZJW6Ds3CiVBX+hz+wP8A8FKP2Lf+Co3woHxK/Zi8Qwaz9j8ttS0S/RYdW0qY/dW6tWLFOQQkqF4nIOx2wcAH6EUUV/naf8HSH/Bej4pXnxg1v/gmr+xz4iuNA0Hw2TZ+N9a02Vobu/vyD5umxyoQyW8AIS42kNLLujPyIRIAf2m/GP8A4Ksf8E1v2f8AxJP4M+MXx18E6HrNq2y40+bWbZ7uFs4xJDG7SIfZlFe3fAL9sb9kz9qmG4l/Zo+Jnhfx8bNFkuY9A1a21CW3VuAZY4JHePP+2BX+fb/wa7f8EK/2S/8AgoH8F/HP7Wv7bWhz+LNDs9YbwzoOii8ubCDzoIIp7q6ke0khmc4uIo4QJAqlZCwY7Sv5lf8ABeL/AIJ+H/gin/wUc0l/2O9c1fw14d1/TIPEvha7t72VL/S5BJJBPbLdKVlbypI9yMSW8uRVZmYEkA/116838XfGP4Q+ANTXRPHfirR9EvXjEy29/fQ20pjYkBgkjqdpIIBxjIPpX85P/Btf/wAFvdf/AOCofwg1j4HftI3VsfjJ8P4I57meGMQjWtIYrGt95a4VZo5SI7kIFTLxsoG8quJ/wdL/APBN39mL48/sA/EH9t3W9AEfxX+HOkWH9l67DNKrmwhvl8y1liDiKSMpcTMpKb0cghsZUgH9FP8Aw03+zb/0ULw1/wCDa1/+O16BrXxD8AeG/DUPjPxFrmn2Gj3IjaG+ubmOK2kEoyhWVmCEOOVweR0r/A3r/aH+Av7H37Of7c3/AAR8+Bf7P/7UnhuLxT4Uvvh54QuHs5JpbcrPDpcHlypJA8ciOm47SrCgD9Af+Gm/2bf+iheGv/Bta/8Ax2vQfB/xC8A/EO0mv/AGuafrkFu/lyyafcx3KI5GdrGNmAOOcHnFf4Xv7Xfwe079nj9rD4n/AAA0eWSe08DeLdb8PwSTY8x49MvJbZWbHG4iME+9f6B3/Bkb/wAmb/Gb/sc7b/0hjoA/sh8YfFv4U/Dy9i03x/4n0nQ7idPNji1C9htndM43KsjqSMgjI4zXI/8ADTf7Nv8A0ULw1/4NrX/47X4wf8HE/wDwTV/Za/a//YI+KH7RnxI0AH4ifC3wXqer+H9fglkjuLZNJjkvmtyobypIZdroyyI2A5ZSrAEf5C1AH++/b+I/D134fXxZaX9vLpTwfalvElVrcwbd3mCQHaU2/NuzjHOcV8UfD3/gqJ/wTk+LPxch+A3wx+OHgnX/ABfdS+RbaZYa1azzXE3P7uHZIVlk4PyRlm46V/m+/EH9rT/got/wVS/YX+Gv/BNj/gnR4K8Sa58Ovgt4G0oeOf7GiZW1XUooN7RztuXdBEUZLe1BLXEqNIEk2x7P52Pg74I+Meu/Hjwz8PvhFZX6+PptbtLPSLa2V472PVROqwqo4ZJElx6FSOcYoA/3ma8E+PH7VP7M37Lmiw+Iv2k/iD4d8BWVySsEuv6nb6cJmHUR+e6Fz7KCa/LL/gvF/wAFdNN/4JJfsfR+MvDqW2p/FDxq8ul+E7Cb/VCeNAZ76VM5aC0DISmfnkeNCQGLD+Bb/gif+xz4y/4Ly/8ABUbUvFn7duv6v420LRNPl8SeLru6vHS4v1R0htbFZUIaGKSRx8kPlhII3WMxnaQAf6Ufwx/4K2/8EwPjJr0XhX4b/H7wHqOqTzC3gs/7dtIbieVjgLFHLIjSkk4GwNntX6HV/kb/APBzN/wTM+Bf/BND9unQvCX7L+kTaF4B8aeGLbWLOwluZrtLS8immtrmGOW4eSZlxHFL+8kYhpSAcAAfvf8A8Gd3/BUX46/FjxZ4r/4Jz/HDW7nxHpWg6E/iPwrd38rz3VlDbTQW89iJHJJgxOkkKH/VbXA+UgKAf3s186/tAftefsr/ALKWmQax+0x8RvDfgKC6Gbc69qdvYNPjj90kzq0h46ID0r8nv+DgL/gsTaf8ElP2VbXUvh/Hb6h8VfH0k9h4VtLlfMgtxAFNzfTJkbo7cSIFT+OV0BBQPj+E/wD4IWfsS+KP+C6H/BTbWfiH+3ZrOreOvDnhmxbxD4sur68k8/UZXcRWdiZVO+OKRyzbYigWGFkQplSAD/S7+AH/AAUu/wCCff7VHiZfBP7PPxl8IeLdcfJTTLDVYGvpAvUpblxK4GOSqECvuCv8wj/g6S/4JE/AL/gmj4/+GP7TP7Eumy+C/Dvi6a5sbvTbW6ndLDV9P2TQ3FtJK7yx+cjMSofCNDlQN2B/Rz/wa1/8FkvH3/BQ34Ha9+zJ+0xqjat8T/hhb280WqzsDc6zokp8pJpe7z20gWKeQ8yCSJmLOXYgH9X1FFFAHg3xo8Wfs1ax4c1j4L/H3WvD39na/YS2WpaRrN5bxrc2V2jRukkUrqSkikjpgiv5bdE/4Nlv+DfbRvjMvxSm+IF7faRHdfaV8K3Pi2xbSMbtwhLLGt80QGBg3ZcjqxzXu/8Awc8/8Ewf2Ufjz+wf8Tv23tS8NrbfFvwJo9pdWPiCCaVZXtLO4QPbTRB/KkjMMkgUlNyNgg8EH/KboA/30/DkXg/QfB1hD4TFpaaBZWcS2QtdiWkVnGg8vy9nyLEsYG3b8oXGOK80/wCGm/2bf+iheGv/AAbWv/x2vmT/AIJj6JpPif8A4JRfs9+G9fgW6sdQ+E3hO2uYX+7JFLo9srqfZlJBr/M7/wCDnP8A4J8/s8f8E6/+CiWm/Dn9lzR28PeEvFvhGx8SJpgmlnitLqW6u7WZImmd5Nh+zLIFLEKXIXCgAAH+sJ4U+NHwd8ear/YXgfxZo2s32wyfZ7G/guJdi4y2yN2bAyMnGBXz1+0N/wAFGf2DP2TddXwp+0j8X/Cfg3WGUP8A2dqWqQRXoRsYY2+8zBTnhimDX+PP/wAEuPHf7bPhH9r3SPDH/BPKNz8VvG1neeGNKmiQNNbJqMe2eeN2ISFooldzO+VhQNJwVDD9Vv8AgsX/AMG6v7Tn/BNT9nHSf20Pir8TrP4mXWu6tHZ+KfLgnSez1C/DyCUXNxK73kbujK8rpFJvZSUIJIAP9SL4DftM/s6/tSeE5PHX7NvjrQfHmjwyeTNd6DqEGoRRSkZ8uQwu/lvjna+Gx2r3Cv8AEz/4JJft9fFD/gnP+3P4H+PPgLU57XSJNStdP8S2KPiHUdFuJVW5hkU/KSEJeJiDslVWHIr/AGzKACiiigD8gP8Agr7/AMFj/wBnL/gkn8DpfFvj2eHXvH+sQuPDPhKCYLd30vIE02MtDaIw/eTEc42oGcha/wAtf4D/ALWHxX/a2/4LG/Cv9qz9pbXRf+IPEPxQ8MahqN7O3lW9vEmpW22NAx2xW8EShI1zhI1Azxmv23/4Oe/+CPMv7GENt+3Z4o+L/iD4m+Ivif4wnsJ4tdgQPawPBNcRIsyyMWWFY1iRAiIqABVUACv5bv2Wfg9ZftDftOfDn4A6lfPplv458UaR4flvIkEj26andxWzSqhIDFBJuAJAJGM0Af7kGl/tD/ADXNTt9F0Txz4fvLy7kWGCCDU7aSWWRyAqIqyEszEgAAEk9K/lv/4PTf8AlFZ4J/7KjpP/AKa9Wri/2Vv+DPP4L/st/tN/Dz9pbSfjdrer3Xw+8SaX4jhsZtIgijuZNLuY7lYmdZyVVzHtLAEgHOK7T/g9N/5RV+Cf+yo6T/6a9WoA/wA3z9kj/k6z4Y/9jZov/pZFX+3t8f8A9qv9mb9lPw7D4s/aX8f+H/AenXLFIJtd1GCxE7DqsQldTIwz91ATX+Fv8OfGes/Dj4haD8Q/Dkcc2oaDqNrqNrHMpeN5rWVZUDqpVipZQCAQSOhFf2IftFf8G7v/AAVa/bY/Zd8Xf8FTf22fifFN8VJ9HuPEkXgrUbeSS4j02CNrkWvnCRYbGRYwfKs44WRCQrtG+8KAf39fs4/t+/sR/tfX8+j/ALMPxX8LeOdQtYzPPY6RqcFxeRRA43vbhvOVM8bigXPevryv8Ef4VfFX4j/A74jaL8XfhDrV34d8TeHbuO+03UrGQxT288RyrKw/Ig5DAkEEEiv9sj/gmF+1nf8A7dH/AAT/APhT+1brUMcGp+MNBhn1JIeIhqFuzW93sHZDcRSFR2XA7UAfeFfN37QX7Y37J/7J9jBqH7TPxJ8NeAkuxm3XXdTt7GScc/6qOV1eTofuA9K/IT/g4W/4LLD/AIJNfsx2Nl8K1t7z4t/EI3Fp4ahuEEsNjDbhftOoTRnhhD5iLCjcPKwyGRJBX8RH/BAn9gvVf+C3/wDwUb8TfFj9u3VNV8d+GfCNkNc8UXF/eytcape3L+VZWckwYSrE+2VyI2XEcBjUqCKAP9Kv9nz/AIKSfsB/tW+If+EO/Zz+MXhLxfrRBZdN0/VYJL5lXJLLblhKygDJIQgV9sV/l1f8HQ//AASc+CP/AAS9+NPwx/aJ/Yksp/Bfhvxt9rjfT7S7nb+zNY0oxSLNbSyO0sYmSUMqhz5bxMV2ghR/T9/wa+/8Fi/HH/BSD9nbW/gN+0hqP9pfFP4WpbCXUpSBNrOkXG5IbmQDG6eF18q4fHzZjdiXdqAP6l6KKKAP5Av+D0bx/wCKvDP/AATK8F+DNDeSHT/EvxAsYdRZDhZIrayvZ44X9Q0qJIPeIV/E5/wQc/4KUeFv+CWf/BQbR/2g/iPZT3vg/WdNufDXiH7Iu+4gsL54pPPjT+MwzQRSMgwzIrKOSK/00P8AgvH/AME6tZ/4Kbf8E4/FXwF8CrG3jTR7iDxL4XEzbEk1TTw4EJJwAbi3lnt1ZiFVpAzcA1/jbeKvCvifwL4m1DwX410650jWNJuJbO9sbyJoLi2uIWKSRyxuAyOjAhlYAgjBoA/3f/gd8ePgz+0v8MdL+M3wB8Taf4u8LazGJbTUtMmWeFx3Ukco69HjcB0bKsAQRVP9ob9n/wCE37VPwS8S/s8/HTSItc8J+LbGSw1Gzl/ijfkMjdUkjYK8ci4ZHVWUggGv8Tv9i/8A4KFftj/8E+PH3/CxP2SfHeo+E7mVla8tInE2n3yr0W6tJQ8EwxkAuhZc5Uqea/vz/wCCWP8Awd7fs+/tE3+lfBn/AIKFaXbfC7xZdFLeLxLaMzeG7qU8Az+YzS2BY4GXaWEcs0sY4oA2f+DSz4FeKP2U/EP7Xn7K3jPcdS+H/j2z0mV2G3zRbpdRJMo/uypGsinurA1/Wf4n+N3wX8Eau/h/xn4v0XSL+MKz217qEFvMoYZUlJHVgCORxyK7fRn0C/tV8Q+HjbzQakiTrc2+1kuEZco4deHBU5VskEHiv5PP+Dqb/gmD+yj8TP2EPiT/AMFBYfDa2Xxe8IR6PMuuQTSq93aC7t7J4J4t/ksqwSko2zerIuGxkEA/pr/4ab/Zt/6KF4a/8G1r/wDHal+L/wC0n+zz+z74Di+KXx18daB4O8Nz7PJ1TWdRgsrSUyDKCOWZ1Vyw5UKSW7V/g5V/b3+xN/wb/wD7ZP8AwXD+BHh/9tX9vP4vXngnSJ9FtdI8AaRFp/24w6LYRLBbyrA88KW9swj3Ii5kuMmZmG8M4B/c78Bf+Cl//BPj9qHxRH4G/Z9+NHg7xXr0zOsWl2Gr2z38uwEsY7YuJnUAEllQjHOa+4K/w2P26f2N/jT/AME1/wBsHxP+y98UbgR+I/Bl5FJbalYM8cdzBKqz2t3btwyh42Vh/Ej5Uncpr/RP/wCDWD/gsr48/b9+Deufsl/tOav/AGv8TfhnaQ3Vlqc5JutY0ElYRLOxJMk9rKUjllODIssTNufzHIB/WxXmvxS+M/we+BvhpvGfxr8V6P4P0dM7r7W76HT7YY5OZZ3ROPrX5p/8Fvv+Clcn/BK79gXXv2jvDtnFqPizUruDw94Yt7kbrc6tepI6STAEFo4YoZZioOXKBMjduH+bB/wTd8afCv8A4Ktf8FZfCmlf8FkvHHiPxbY+OJ5LCzme9aGObWLhlFnZOyYNraTOTEkdqI9sjRquxSxAB/prRf8ABa3/AIJHza4PDyftG/D8XDdHbXLZYP8Av8XEQ/77r9Dfh/8AEb4e/FnwjZfED4V69p3ibQdSTzLTUtKuo72zuE/vRzQs8bj3ViK/z0f+DmL/AIIDfsRfsIfsn6R+2H+xVpd54OFnrtro2r6HJfXOo2k8F8kmyeOS8lmnjkjkjAK+YyOshOFK8/z9/wDBEv8A4KnfHP8A4Jnfti+GNb8Javcy/D/xPqlpp/i3w+8hNpeWU8ixtOIzlVubcN5kUq4bK7CdjMpAP9mSiiv4OP8Ag6U/4L3fEz4OeOLv/gmz+xVr82gara28b+N/EmnS+Xdwm5TemmW0q/NE3lsslxKhDjcsasuJQQD+uX47f8FMv+Cen7MniGfwd8fPjV4N8La3bf67TL3WLZb+P/ftg5mX8Uru/gD+3J+xl+1Xdvpv7NXxW8J+O72KIzy2eh6xa3t1FECAWkgikaVACQMso61/Cv8A8G2f/Bvv+yR+3P8Asb+If2v/ANu7QLzxOni3UbvS/C9tHqFzYrbW1ifLmvg1rJEzzNc+ZGolLxgRElG31/Ht8ZPCXxJ/Yd/bC8Y/DrwVrmoaH4n+F/inU9HttVsZ3tL2KfS7mS3EscsRVkY7MgqRweOKAP8AdYor8WP+CAP/AAUI8ef8FKP+Ca/hf46fF1opvGmj3l34b1+5hTy0urzT9hW42j5VeaCSKSQLhfMZtoVcKP5sP+Doz/gvv8UvAPxK1T/gmn+xTr8/h59KiSPxz4j0+Rorxp5kWQabazoQYkSNlN1Ih3szeTlQsgcA/sE+N/8AwVH/AOCcn7N3iibwP8cvjd4M8Oa5bNtn0261i3N5Cc4xJAjtJHz/AHlFe9/AT9qL9m39qfw1L4x/Zr8e6B480yBgk1xoOoQX6Qu2cLL5LsY2OD8rgHiv4Xv+DZ3/AIID/sj/ALWv7GWq/tnft4eET40/4Tm/vNP8NWNxeXFtBBp1i5gnugbaWGQzy3SzRhmY7FiDLgsTX86n7Wui/Hn/AIIDf8FgPG3g39kfxbfaRdeBNUhn0e6Z963mj6jDFeQW16g2pcp5MqxTqy7WdCwCkAgA/wBkOivhT/gmp+3L4K/4KO/sVeBv2uvBUC2H/CTWZXUdPD7zYalauYbu3J6kJKjeWxALxlXwN1fx/wD/AAdJf8F8fid8OviJqH/BNX9irxBP4fn02JB458RabKY7sy3CbhpltKnzRBY2VrmRCHLMIsqFkDgH9gXxy/4Kd/8ABO39mnxHP4M+O/xs8GeGdbtDifTLzWLYX0X+/bq5mX8UFek/AH9tv9jn9queWz/Zp+KfhTx5dQRefNa6Fq9rfXMMeQN0kMUjSRjJAy6jrX8M3/BuL/wby/sgftt/sLav+11+3RoF54jl8dX19p/haKHULiyWxsrBzbyXqG2kjL3DXazIBN5kYWEHYdzV/Gf490v4rfsT/tWeJfCPgrXdQ8PeLvhp4k1HSYtU06d7O8gutMuJLdnSSJldGyh6H2oA/wB2C9vbPTbObUdRmS3t7dGkllkYIiIgyzMxwAABkk8AV4x/w03+zb/0ULw1/wCDa1/+O1+Y3/BE39tTU/8AgrB/wSt8P/E79oSzttR1zUItR8J+LYkj8u3vZbYmCRygwB9ptnjkkVMKryMFAAAH+eH/AMHMv7AH7Pv/AATs/wCCkUXwv/Zj0ttB8J+KvCmn+J4dK86SeKymuLi6tJY4WlZ5PLZrQyBWZtpcquFCqAD/AFnfCXxk+EPj/U20TwJ4q0fW71IzK1vYX0FzKI1IBYpG7NtBIBOMZI9a8q/aQ/bU/ZH/AGP9OtdT/aj+JPhzwEl+GNomtahDaTXIT7xhidhJLt77FbHev8hH/gjV/wAFEtO/4JfftK+Kf2ohpR1zXE8F6rpHh/TyGMU+rX0lutv5xXBEMe1pZMEFlQopDMK83/4KQfBH/gptonxGtf2of+Ck/hjxNp2ufFHdqNrqviCIoLkf88VAytv5S4C2hEbRR7cRqm2gD/Z3+CHx++CH7S/w/t/it+z34t0nxr4buneKLUtGu47y2Mkf30LxMwDrn5kOGXuBXrZIAyeAK/hO/wCDH3wx8WbH4SfH/wAW6zHcx+CNR1TQbfSmkDfZ5NStorw3piydu5YpLUSkDn5AT8tfjN/wcY/8F0/2jf2s/wBqXxx+yB8E/El74X+DvgbU7rw/JZadKbd9du7F2hubi7kjO6WBpVcQwlvK8sK7LvPAB/oo/Fz/AIKp/wDBNb4EaxN4b+Lfx38DaLqdv/rrGXXLR7uMj+/CkjSL+Kiu6/Z//wCCgv7C/wC1XrA8Nfs3/F7wh411YxtN/Z2kaxbXN8I16ubZZDMFHclABX8nX/BIb/ggT/wRD/4KD/8ABLrwb8Y7bRtb1zxhrmn/AGTxBr51i6tr/TNfgQLeQxW0cgs1jjlJaASwSF4WjZi2c1/BL+0r8J/E37GP7YHj74HaHrc51X4YeLNU0S31e1LWszy6RdyQJcRlG3RM3lh1w2Vz14oA/wB1+vnj9of49/Db4O/D7xHN4g8XaP4f1q00W7vrWO/vYLeUFIpDHIElcErvU4OMEgj1r8X/APg2b/4KXfFb/gpH/wAE/wCbU/2gLo6n46+HWrv4c1LVGwJNTgEMc1tcyBQB5pRzFIcfO0Zc8uceX/8ABbf/AIN6Phh/wU9+MM37Y/i74k6p4Uv/AAt4NGkx6bZ2MVzDMunSXd2rtI7qwLmcqQBwFB70Af5Qt1dXN9cyXt7I000zF5HclmZmOSSTySTyTX+r3/wbj6v+zL8T/wDgg/8AB39nX42XfhnXotaXxFY3vhrWZbW4+1CbxBqDRxSWcxO/flWVShzwR2r/ACfa/vP/AODeH/g3g+Ffxw+DvwA/4K1ar8SdVsdasvEEviBfD0VjC1q0nh7WLi3jjM5fftl+yKzHbkbiB2NAH9WPxVtv+CS//BDD4J+Iv2oo/BXhT4WW0sTW5bRNOt4NX1ibl47G2wFlmd2GRHuEaAF3KIrMP8rX/gq//wAFQvjZ/wAFXf2p7/8AaB+KYOl6NaK1j4a8PxymS30nTg2RGpwA80h+eeXaDI/QKioi/wBnv/B0j/wR3vfiD8Lvin/wVV8afGHXtSPg2y0pND8F3Fsj6Zp8E1xZ2MsUEhlzGJHka4ciMFnODng1/nGUAf7fX7HX7SH7PGn/ALI3wssL/wAe+HIJ4PCGhxyRyapbK6OtlCCrAyZBB4IPIr75gnguoEurV1kikUMjqcqynkEEcEEdDX8CXwN/4Mvvgh8XPgp4P+K158ddcspvE+iafq0lumjW7rE17AkxQMZwSFL4BI5xX94vgHwpD4D8C6L4Ht5jcR6NYW1isrDaZBbxrGGIGcE7c4oA62iiigD/ACzv+DytVH/BWrRyB1+Hmjk/+Bd/X4wf8Ebf+Usf7N//AGUfw3/6XRV+0H/B5b/ylq0b/snmj/8ApXf1+Hv/AASc8YeEvh9/wU6/Z/8AHPj3VLTRNE0jx/4fvL/UNQnS2tbW3hvImklmlkKpHGiglmYgADJNAH+3lXxf+zr+3R8IP2nP2hfjP+zd8O7bUE1n4Happ2k65c3KRraXE+pW7Tr9mZJGdhGUeOTeiEOvAI5r8yf2/P8Ag5N/4Jj/ALHHwi1bxD8NviJonxZ8bfZ5Bo+geFLxNTjuLogiP7Rd25e3ghVsGRjJ5m3OxHbAr8h/+DNf4t+Ovj7rX7Wvxw+J12b/AMReL/Euh6xqVwePMur3+0pZCBk4G5jtHQDAFAH3F+wj/wAE+vE37Iv/AAcmftDfFXwP4L1LSPhd4/8Ah+NX0/VUspV0j+1NRvdPlvLWO52eR5xuIriYQK25I24UKBX9HeqftD/ADQ9TuNF1rxz4fs7y0keGeCfU7aOWKSMlWR1aQFWUggggEHrXsNf513/B4X/wTV/Za/Z40zwX+238DtAHhzxT8QfFGpWviryJZHg1K7vEe9+1NHIzLHN5iy7jGFD7+RkA0Af346T+0L8Ate1O30TQ/HPh+9vbuRYYLeDU7aSWWRzhVRFkLMxPAABJNXvjF8cPgz+zz4HuPiZ8efFmkeC/DtqypLqWt3sNhaq7/dUyzMi7m6Kuck9BX+H7+w38W/CPwB/bW+D/AMd/H7SroPgnxv4f17UmgTzJRaabfw3ExRONzeXG21c8niv1K/4KsfEj/gqn/wAFR9OvP+Cpfxp8A+IrH4Fi8ksfCxWNm0fSLFpCibF4Lb2QLPemMJLP8m4YSNQD/Vj/AGav24f2Pv2x4dRl/ZY+JXh3x62kbft0WjX8VzNbByQrSxK29FYg7WZQrYOCa+p6/wApj/g0F8MfFnVv+CvmneIvAcdz/YGk+GNZbxLLEGEAsp4gkCSkYX5rzyGRTkkpkD5SR+4f/B1l/wAFwfj5+zR4+sf+Cdv7IOuXPhLU7vSo9T8XeILFvKv1ivc/Z7K1mB3wEovmzSpiQh41R1HmBgD+vT47/t4fsT/sv3n9l/tFfFrwj4JvT0tNZ1m1tLpuM/LDJIJDx6Ka8j+FP/BWr/gmL8bvEVv4Q+F/x88C6rq95MLe2sRrdrFdXErHASGKV0eRiegQHPav4d/+DZX/AIJh/wDBJz/gp58H/iJq/wC11pmreOfi7oepl9QsbzVruxhh069X/R7u3NnLDJM7yiVZmmd9rhcoAyl/xA/4L4/8E3/h1/wS7/4KFar+z38Hb67vPCOq6TZ+ItHjvmElxa2960sZt3k48zy5YZAjkBim0NlgWIB/sp1yvi/x34I+H2mx6x491mx0O0lkEKT6hcR20bSEFggaRlBYhScZzgE9q/hk/wCDPL/gqb8c/jLr/in/AIJyfHTV7nxHp/hnQD4i8J317IZbiytLa4ht7ixMjZeSLNzFJAGJ8pVdQdmxV/sH/ba/YR/Ze/4KH/BZvgH+1l4bHiTw8l0NQtUE8ttNaXyRSwx3MMkLoyyxpNIFzlTuIZSOKAPTv+Gm/wBm3/ooXhr/AMG1r/8AHa9B8P8AxC8A+LPD83izwtrmn6npVtvEt7aXMc1vH5Y3PukRio2g5bJ4HJr/AAcPih4Lk+G/xM8RfDuWUzNoGp3enGQjaXNrK0W7HOM7c4r+gz/gjb+yd/wUw/4Kq/APWv8AgnL+z74r/wCFffAXTNfuPE3jLWzHIIbm+v7e3gitZRG6teEJaK8dqGSNSWklbPlYAP8ASJ1//gsj/wAEpPC/i5/A+u/tEeAINSidopE/t21aON1OGV5VkMSEHghnBBr9BvCPjDwl8QPDVl408B6pZ63o+pRCe0v7CdLm2uIm6PHLGWR1PYqSDX+Nb/wWc/4JCfEP/gjz+0Ro/wAHfE3ieDxtoXifS/7V0fW4bU2DTKkhimiltjLN5ckTgZxI6srqQckqvqX/AASC/wCCwn/BQn9hjSfFf7Jf7HFpJ4tv/issWneGdJmDXI0vxBcypGl7Z25DI8rxFkaNtsbP5ckm5YijAH+r9+0V+3B+x1+yMlv/AMNO/E/wx4Elu1L28GtanBaXE6jqYoXcSSAdyqmov2cv25/2Nf2vWuYf2X/ij4Y8eXFlGJbm20XU4Lq5gjY4DSwI5ljUngFlAzX+d/8At+/8GwX7cnw4/Yt8af8ABSX9pT4xQeNvinplofEXirQZoZbqX7Ou03DDVZJz501vFlmTyBGQhWNyAu7+U/4CfHn4tfsw/GLw98e/gZrdx4e8V+F7tL3T762Yq6SJ1Vh0eN1JSRGyroxVgVJFAH+81RXz3+yV8d7L9qL9ln4cftJWEKW0fj3wzpXiDyEJZYW1G2jnaPJ5/ds5Tnniv5yf+Dmn/guV4p/4Ju/DvS/2WP2XbxLb4vePLF7yXUtoc6Fo7M8QuEB4+1TyI6QZDBAjuRny8gH9An7Q37e/7E37Jd5Hpf7S/wAV/Cvge+lTzI7LV9Vt7a7dMZ3Lbs/msMdwhHNP/Zz/AG8/2K/2u55rL9mP4qeF/HN3bJ5k1po+pwXN3En954FfzVXn7zIBX+dj/wAGyn/BJ/4ff8FWfjl8Sf2t/wBvS3vfHnhbwrJFb+TqV7Oz6zr1+GkeS6nVxPKLeIB3BkG95YySyhlPzH/wcI/sBaJ/wRn/AOCj3hnxl+w/f6j4L8P+JdMi8SeHDZXswutGvreV4biGC4ZjMUUqkiFnZgJShJA5AP8AWdor8G/+Dev/AIKval/wVW/YkHiv4ntCvxN8BXSaJ4pWFVjW6cpvtr9Y1AWNbpAwZQAomjlCgIFFfvJQAUUUUAf/0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5u51Xwhreo3ngK8ubO8u/soku9Od0kk+zT7kDSQkk+W+GUFhtbBHrX8XH/BVv/g0C+E/xu1PU/jd/wAE19TtPh/4hume4uPB+olhoVxIeT9jlRXksmY5xEVkgyQF8lBWh8Vv25vD/wCxb/wd1XOk/EG9Sx8LfFTwbovg6+nmfZDb3N1FHLYytngf6TEkJYkBVmZjwK/tboA/wrP2sv2J/wBqv9hj4kSfCf8Aaw8D6n4L1kbjCt7Fm3ukQ4MltcIWguI88b4Xdc8ZzXzbomt6z4a1m08R+HLubT9QsJo7m1uraRopoJomDJJG6kMrqwBVlIIIyK/3cP2jf2Y/gB+118K9Q+Cf7SvhPTvGXhfUlxNY6jEJFVsECSJxh4ZVz8ksbLIh5Vga/wAkL/gvn/wSYg/4JLftlR/DnwHfT6p8PPGdkda8MXF0Q1zDCJDHNZzsAA8lu4GHA+eN42PzFgAD/QQ/4Nr/APgqp4o/4Kb/ALDktt8aL03/AMT/AIY3UWjeIrtlCm/gnVnsr0hQFDzRo8cmOssLvgBgK/CX/g+d/wCbXf8Audv/AHC1yH/Bjnp3i3/hPf2i9Wt9y6ENP8NQ3GR8r3fmX5hwehKp5ufTcPWuv/4Pnf8Am13/ALnb/wBwtAH8x/8Awb7xxy/8Fmf2fFlUMB4mBwRnkW8xB/AjIr/Zsr/GW/4N9P8AlM3+z7/2Mv8A7bzV/s00Af4d/wDwU++H2m/Cn/gpF8fPhxokaw2GjfELxJbWkaDCpbpqE/lKB2wm0V/a7/wY9/FvWtV+EH7QHwJvJ86foWsaFrtpCe02qw3VvcMPqtjAD+Ffxm/8Fd/Ell4t/wCCqH7Rmvac2+CX4keJkjcdGWLUJoww9jtyPav7If8Agx2+GGraf8Nv2hvjPd25Fhq+p+HtFtZz0M2nRXk86D3C3cBP1FAH3Z/wcH/8G5XxE/4KnfF7RP2qv2XvFek6D44sdJi0TVNM8QGaGwvra2eSSGaOeCKd4508xo2Vo2SRdnzRlTv+H/8AgmJ+xV+zv/wa/ap4t/a//wCCpPxk8Nw+PvFehNoWieFvDTzahdNp8k8VxMyRNFFPNJJLbwoHEKQQ7TulO/5Puz/g5O/4L6+Kf+CbGlad+yb+yZLAPi/4osRqF5qk8Inj0HTJSyRyIjgxvdzMreWHDLGilnU7kz/JR/wQO/4J4al/wW2/4KFeIfiN+2d4h1PxV4c8HwReIfFU99dyT32tXM8uy2tJJ3JkEcpRzKwIYRRlEKlgygHhH/Bfz/gqTov/AAVl/ag8L/H7wN4E1XwV4U0fQG0TRpdXdWuNUghu55HuCI18pMPIYzHHLMFKHL5OB79/waTyOn/BaTwaqnh9A8QA/T7G5/mK+uv+DzXwZ4Q+HX7aPwY8CfD/AEq00PRNJ+G8NrY6fYQpbWttBHqF4EjiijCoiKOAqgAV8hf8GlX/ACmm8F/9gHxB/wCkT0Af3Vf8HN/x71/4Bf8ABGT4sXvhWd7XUfFi2HhdJUOCINUuY47pT6iS0E0Z/wB6v8kr4J3Gj2nxm8I3fiFd2nxa1YPcg94VnQuP++c1/q3f8HXHwv1n4j/8EXPH2p6JEZ38Karomtyov3vJjvEt5GA77FnLt6KpPav8kOgD/fP8c+CfCfxL8E6x8OPHthFquheILG403UbKcborm0u42imicd1dGZWHoa/jY07/AIMof2NrT46x+NLz4r+JrrwDHeC4/wCEZa1gW7eENu+ztqKsPkI+UsLYPt6MG+Yf0Qf8EfP21fD/AO37/wAE6Phh+0Tpt39q1W40iHTPECs2ZIda05RBeK46jfIplTPJjkRu9fphQB/O7/wc5fFS4/Z0/wCCI/xE8O/D9Rpo8Qf2R4Tt1hOxYbO6uYhNGoH8LWsckWOm1q/yf/gR410X4bfHDwZ8RfElhJqmnaBrunaldWUJCyXMNrcJK8SEggM6qVBIxk1/qw/8HX/w4n8ef8EVfiBrdrG0r+FNW0HWAqjJ2/borRjgdlW5LH0AJ7V/kq6bqN9o+o2+raXK0FzayJNDIhwySIdysPcEZFAH+n1/xFVeMP8AozD4s/8AgK//AMjV/nPap+xt+2Bf6ncX1v8ACHxlBHNK8ixjQr47AxJC58kZx0zgV/tYfsU/tTfD/wDbX/ZR8B/tTfDK6S60rxnpEF98vWC5xsuYHAJxJBOskTjJwyHkjmvfPGnjPwl8OfCGqfEDx7qVto+h6JaTX2oX95IsNvbW1upeSWR2IVURQWZicACgD+Rf/gqb+038Xvhh/wAGovg/UPFkN/ovjLxx4P8AB/hHUheRPbXaNcRwrfCWOQK4M8FvMjAgZWUnpX+cX+y5caPaftNfDq78Qru0+LxPpD3IPeFbuIuP++c1/p3f8HTdh4f/AGmv+CGWp/Gn4NalaeJfDulaz4f8T2+oadMtzb3FjNMbQTRPGSrp/pakkHAXJ7V/lPRyPE6yxMVZSCCDggjuKAP98D4kfDvwX8Xvh5rvwo+JGnxat4e8Tafc6VqdlMMx3FpeRtFNG2MHDoxU455r+Ofwx/wZSfsbaL8eYPHGt/FXxLqvgK3vRc/8IxJaQR3MsKtuFvLqCMMoRhXZLdHK5wysQw/pC/4JU/to+HP+CgH7AXw0/ad0S6FxfaxpENtrSZBeDWbIeRfRsOo/fozJkAtGytjDCv0LoAq2NjZ6ZZQ6bp0SwW9uixRRoMKiIMKoA6AAYAr/AAy/+CgX/J+fxt/7H7xL/wCnGev9z6v8MH/goF/yfn8bf+x+8S/+nGegD+1j/gyI/Zv8Pf2D8bv2utUto5tVNzp/hHTZyP3kECoby8UH0mZrUn/rlX9x3j74C/A34q63p/ib4oeC9C8SalpJBsbvVdOt7ye2IJIMUkyM0eCSflI5r+UD/gyiijH/AATU+JEwA3t8TL1Se5A0rTMflk1/YvQB8uftsfsp+CP24v2UPHn7JnxEuZrHSfHOlS6dJd24DS20hIeGdFbhmilVJAp4bbg4zX+eU3/BmT+2Z4R+I0978Xfi78P9C+F2mStcaj4ma5ukuYdOjJLSm1mto4UlCDLK90Il/wCepxz/AKMH7T/7SHws/ZB/Z98W/tM/Gy8ax8L+DNOk1G/kjTzJWVMBY4143SSuVjjXIy7AZHWv8hD/AIKs/wDBbX9sj/gq58RLtPiJq0/h/wCHMN0W0bwXpsrJYQRq37p7kDBu7kDBMsoIVifLWNTtoA/re/4Kr/8ABxB+wX4Z/Yz8Y/8ABMb9gnTdV+MV5e+Br/wc2sadldJ03To9Pe2luftBRnuzbQKZWaKIQFVLecADX+chX+pb4H/4I2/BT/glH/wQV/aBs49OttS+LPiP4S+JJ/FniKRFec3EmlzM9lbSYylpA3yqox5rL5j8kBf8tKgD/au/4IiyPL/wSJ/ZzaQ5I8B6OPwECgfpX5b/APB4F/yh4vP+xx0P/wBrV+ov/BEH/lER+zp/2Imkf+iRX5df8HgX/KHi8/7HHQ//AGtQB/ls/Cb/AJKp4Z/7Ctl/6OSv97iv8Ef4Tf8AJVPDP/YVsv8A0clf73FAH+fT/wAHyv8AyMX7M/8A17eL/wD0LSq/nH/4N1P+U1XwB/7Dlz/6Q3Nf0c/8HywP/CQ/szN2Nv4v/wDQtKr+cb/g3U/5TU/AH/sOXP8A6Q3NAH+ydRRRQAV/ND/wds/8oXPGH/YweH//AEsWv6Xq/mh/4O2f+ULnjD/sYPD/AP6WLQB/ky1/v1aZ/wAg23/65J/IV/gK1/v1aZ/yDbf/AK5J/IUAf5I//B1v/wApu/if/wBg7w5/6arWv0m/4MkAP+G1vjEe/wDwhMP/AKXw1+bP/B1v/wApu/if/wBg7w5/6arWv0n/AODI/wD5PV+MX/Ykw/8ApfDQB+qv/B7XEh/YW+EcxHzL47ZQfY6fc5/kK/gx/wCCZE8lr/wUk/Z7uYTh4/iX4TZSOxGqWxFf3pf8HtX/ACYj8JP+x9P/AKb7qv4J/wDgmh/ykd/Z/wD+yk+FP/TpbUAf7j1FFFABX+ej/wAHx/8AyUH9nD/sHeJ//Rmn1/oXV/npf8Hx4P8AwsD9nBux0/xR/wCjNOoA/n2/4NuP+U2/wE/7Cmpf+my8r/Y2r/HJ/wCDbj/lNt8BP+wpqP8A6bLyv9jagD+Cf/g+T/5FD9mv/r88Wf8AoGmV/KT/AMEHwD/wWH/Z4BGf+Kxsv/Zq/q2/4Pk/+RQ/Zr/6/PFn/oGmV/KV/wAEHv8AlMP+zx/2ONl/7NQB/qdf8FxIkm/4JC/tFJIMgeBtVb8ViJH6iv8AFar/AGqf+C4H/KIf9ov/ALEXVv8A0Sa/xVqAP9uP/gkHcy3X/BKb9myWY5I+GXhVOfRNNt1H6Cv8pT/gvZ8bNc+PX/BYP4/+LNcmaT+yfFl54bt1LFljg0AjTkVR0AIt9xA/iYnqSa/1Y/8Agj1/yii/Zt/7Jp4X/wDTfBX+TZ/wW2+HE/wq/wCCuP7RPhW4jaLzvHWr6oisMHy9WmN8mM9is4I9qAP3f/4N6/8AgtTcf8E4v2MfEfwT8Pfs9eOPipNqni+71q51jw3EZbWNprSzgW3YrDJh0WAOQT0cHHNfO3/BfX9sT4/f8FiviD8OPGnw8/Zt+IfgpfA+nX9lONR0u5uXuTeSRSKV8q3UKE8s9Sc7u2Of08/4MmP2t/B2h678Xv2JPE9+LbV9caz8V6DbucLcfZka3v1Uk/6xVNs4UZLIHbohr/QeoA/zyP8AgzN8A/tL/BT9rD4w+BviZ4K8ReGfDviHwla37z6rplzZ20l7pt4kcKCSaNVMnl3cxVc5KhiBgGv9DevKrD46fBnVfjJqH7PGm+KtKn8d6VpkWs3nh9LqNtRh0+d/LS4e3DeYIi+F3YwCy5xuXPqtABX+Z7/wey+CbnT/APgoF8K/iKwbyNW+H0enLn7u+w1G8kbHvi6XNf6YVfyw/wDB2b/wTx8Tftkf8E/LP46/CzTTqXi74KXlxrTRRrunl0K4jC6ikYA5aPy4bgjP3IXABYgEA/ypa/3hf2X/ABFF4w/Zo+Hfi2Aho9U8M6RdqV6ET2sTjHtzX+D1X+xN/wAG3/7WHh79q/8A4JD/AApu7G+F1rHgCwHgvWIScyW8+ihYoFb/AH7P7PKD6P6g0AfulX8q37Xn/Byf8ZP2EXFz+1T+xt8QfCOmS3Rs4NVub62k02ebkhEu4o3t2dlUsEEm4gE44Nf1U1+Fn/Byzomma7/wRF+OsOpwrKLex0q5i3DJSWHVbNlYehBHUdjQB+IH/Eb/APs6/wDRBvEf/g3tf/jVfYf7JH/B0F48/bp1270X9lT9kLx940XTHhTULrTr63e1svPJ2edO0SxRlgGKqzhmCkgHBr/LWr/WZ/4NJvDWiaJ/wRe8H6tpdtHBcazr+v3V5IihWmmS8eBWcjliI4kQE/wqB2oA9b/4L/8A/BE+7/4LE/BjwlD8OvE1p4V+IPw8uL2XRZ9TR2066g1FYhcW9w0SvLHloInSVEk2bWXYd+V/ne/4Jyf8EK7D/giF+0fov/BSb/grV8ZvBPhDw/4D+2PoWm6XeXF1NqN/PbyW/IltoJZPLjlaRIbaOaV2A3BVUhv6Uf8AgvT/AMFj9B/4JEfsxWWv+FrODWvih45kuLLwnpt0GNsptghuby52lSYbYSx/IGDSSOijC72X/OL/AGOfh7+07/wcDf8ABU3wp8N/2pPiDqes33iaa4u9Z1e5cM1hpFijXE8dlDjyYAQvlwxxxiJZHDFcbqAP0P8A+Djn/guF8JP+CsfhPwn8Of2bvBGuWfgbwFrs8/8AwlWrqIVv7u4gKCFLdA4iXYpkXzJhKy9Y0wa/FP8A4JDSPF/wVY/ZsaM4J+J3hQfgdTtwf0r+vn/g7h/Zl+Bf7H//AATn/Z4+AH7OXhy08L+FdB8T3sVtZ2iBdzCyw0sr/elmkI3SSuS7tyxJr+QP/gkT/wApVv2a/wDsp/hP/wBOdvQB/t0V/i1f8F1/+Uwf7RH/AGOl/wDzFf7Stf4tX/Bdf/lMH+0R/wBjpf8A8xQB/WL/AMGN/wDyI37SP/X/AOFv/RepV+4f/BwF/wAESb7/AILE/B/wg3w18TWnhX4hfDye9fR5tTVzp13b6iIhcW9w0KvLH80ETxyqkm3DLsO/cv4ef8GN/wDyI37SP/X/AOFv/RepV++X/Be//gspon/BIn9max1fwhaW+s/FLx29xZ+FNOulZrWP7ME+03tyFKkxW4kQBAwaSR1UYXeygH83v/BOD/ghtpf/AAQ3/aN0f/gpR/wVr+M3grwjofgZb06BpmlXdxdTajf3FvJbElZLaCWTy45WkSC2jmkdtpbaqkN+bn/Bxz/wW++E/wDwVl8OeD/AX7OPgjW7HwN4B1u6lXxTq6iEahd3MIQQpAgcRDYpkXfN5jKeY0wa/P8A/Yr+GX7S/wDwcDf8FTvC/wAOv2pviBqms3niOS4vtc1i5kDPZaRYo080VnDjyYA2PKhjjjESPIGK4Br+k7/g7q/Zq+B37Iv/AAT8/Zz+AX7Ovhyz8LeFdB8RajDa2VmgUEizQNLK33pZpCN0krlndsliSaAP5Hf+COsjxf8ABV/9m5ozgn4leGR+B1CEH9K/2Fv+Cg/xx1b9mf8AYT+MX7QPh1zHqfg7wbrerWDDHF5bWkj2/Xj/AFoWv8eb/gjz/wApXv2bf+yl+GP/AE4QV/rsf8FXfhfrXxn/AOCZnx8+GXhuI3Gpar4D15LOEdZLlLSSSJBjuzqFH1oA/wARC5ubm9uZLy8kaaaZi7u5LMzMckknkknkk1/uCf8ABLe40e6/4Jmfs73Hh9dti3wz8JmBf7qf2XbYB9x0PvX+HpX+sd/wahftq+H/ANp//glfoPwaurvzPFfwZuZfDmpQu2ZDYyu8+nTAdozAxt1z1a3ftigD5T/av/4M3/2R/wBoT9pXWvjl8N/iXrXw/wBD8SajLqeoeHbbT4LyKKW5cySrZzM8fkRliSiPHMEzgfKAo/qg/Zj/AGcvhd+yJ+z94R/Zn+C1rJZ+F/BemxaZYJM/mTMkQ+aSV8DdJI5aSRgAC7EgAcV7tRQB/i7/APBef/lMV+0N/wBjfd/+gpX9Vf8AwY1/8iv+0t/19eEv/QNUr+VX/gvQCv8AwWL/AGhgf+hvuv8A0FK/qq/4Ma/+RX/aW/6+vCX/AKBqlAH97tf4mv8AwWZ/5SzftH/9lF8Rf+lstf7ZVf4mv/BZn/lLN+0f/wBlF8Rf+lstAH9l/wDwY+/8kA+Pn/YwaL/6TT1+YH/B6X8e9f8AGn/BQXwD+z8J3Oi+BvB0d8kBPyi/1m5lM7gf7UNvbDnn5a/T/wD4Mff+SAfHz/sYNF/9Jp6/Hn/g8s+F+teEP+CqGh/EK4iP9n+LvA2mzQTD7pls57m3lT/eULGx9nFAHrn/AAZNXGjr/wAFB/inazr/AKe/w8leE+kK6lYiUfizR/lX9uX/AAVo/wCCSX7Pn/BXX4E6d8IvjRe3mgar4dvG1DQte05Ue5sZpF2SoUkBWSCZQvmR5UsUQhgVBr/MP/4N5P21fD/7C3/BVr4c/Evx3d/YfCviR5vCmtzltqRWurgRxSyE8COG6EEshPREJr/ZDoA/nG/4I8f8G3/7PP8AwSX+Lup/tDReNNS+Ivji7sJdLsry7tI9PtbG1nZWlMVujzEyybApkaUgJkKo3En+jmiigAooooA/yBP+Do3/AJTrfHP/ALln/wBR/Ta+ZP8Aghz+yd8F/wBuP/gqT8Lv2Wv2hrGfUfB/io6yuoW9tcPayt9j0m9uoissZDLtmhRuDyBg5BIr6b/4Ojf+U63xz/7ln/1H9Nqt/wAGvv8AynS+Bf8Av+I//TDqNAH7/wD/AAVW/wCDPnwB8PPgvr3x7/4Jv+ItYutS8N2M2oXPg7XGS9e/igBeQWNzGkbrMEB2QyJJ5rcB1JAP6Ef8GVP/ACiy8ff9lV1X/wBNGj1/X7X45/8ABGT/AIJ8+O/+Ccfw3+Nvwp8VxWEGkeK/i94j8WeF4rCUyqnh+/hs4bJZQVXy5VW3IaMZC4HJzQB+xlf59H/B8r/yMf7M/wD17eLv/QtKr/QXr/Po/wCD5X/kY/2Z/wDr28Xf+haVQB/If/wS8/Z30b9rD/gol8GP2efE8K3Gj+J/FumW+qQv0l0+OYS3acf3oEkUe5r/AG5dc8IeE/E/hqbwX4k0u01DR7mIQS2FzAkttJEMfI0TgoV4HykYr/Hj/wCDcKKOX/gtl8A1lAYDV79sH1XTbsj8iK/2PqAOD+HPws+GPwe8ODwf8JPDml+FtIEjSiy0izisbYSPjc3lQqibjgZOMnFfxQ/8Frf+DVL48/tnfti+I/2wv2L/ABh4ftT45ljvNb0PxJLPaeRfKiRvLazwW9wHSbb5jpIqFHLYZgQq/wBzVfwaf8HKv/Bxf8XPgh8VdX/4J5fsEa0/h7VdGjEHjHxZajF7BcyqG+w2Eh/1TRowM1wv7xXOyNkZGJAPYP2EPEH7C/8Awaifs5eMvBv7aHxVsPG/xr8e3drqGo+FvBitfXEMVlG62sCLL5JjB82WQz3f2ZX3BUU7Mt/Ex/wV0/bL1H/goL/wUA8cftfah4OuvAieMo9KmtdHvZDNNHaW2n21vbys5ji3faIYknBVduHG1mXDH+g//g1W/wCCRHw0/b6+JPiv9v8A/a9i/wCEv8P+B9aWx07SdQP2mLVNeeNbmae+8zd50cCSxOI2yJZJMvlUKv8Amr/wdKwQ23/Bcf4yW1sixxx2/hlVVRhVUaFp4AAHQCgD9fP+DIORx+0z8dIQflbwxpZI9xdvj+Zr/Qm+NH/JHfFn/YGv/wD0Q9f563/BkJ/yc78c/wDsV9M/9K3r/Qp+NH/JHfFn/YGv/wD0Q9AH+ClX+uv/AMGqoA/4Id/CXH/P54k/9PN7X+RRX+uv/wAGq3/KDv4S/wDX54k/9PN7QB/IZ/wehxJH/wAFWvCTqMF/hlpLH3P9paoP5CvPv+DO8A/8Ffue3gjW/wD0O2r0X/g9G/5SseD/APsmOk/+nLVa87/4M7/+Uvv/AHJGt/8Aoy2oA/t6/wCDmSFLj/gh38eEk6Cz0VvxXWbAj9RX+PDX+xH/AMHL3/KD748f9eOj/wDp4sa/x3KAP92r9jq7m1D9kX4V39ycyT+ENDkY/wC01lCTX+Kp/wAFBPjZrn7R/wC3N8Xvjn4hmaa48T+LtXvV3MW8uB7mQQxKT/DFEEjT0VQK/wBqH9iz/kzj4Tf9iZoP/pDDX+Jb+2L8OJ/g7+1x8UvhJcxtE/hfxdreklWGCPsd5LF3/wB2gD+wv/giB/wXsn/YV/4J3eFf2bPDP7NPj/4jNo1/qs15r3h+Iy2NxPd3ck4VSsD4aOJ40YFs5GehFflB/wAF1fjl+0R/wVu/a+0L9pf4efs8fEHwbaaX4Ss/Ds1nqGk3VxLJNa3d5cGUNHAAFKXKqARnKH1Ff0tf8GV37W/g7xX+yd8Q/wBivU78DxT4R8QSeJrO1c4Mmj6nFBCzRjOWEN1E3m8fKZ4/71f2yUAfw6f8GXHhT9oX4VeD/j/8LfjH4T17wzpJvPD2q6Z/a2nXFlHJcTJeQ3WwzIgZtkVvkLkgAZ7V/cXXlXhH46fBnx/8RfE/wh8EeKdL1bxV4Ka2TX9ItLqOW9003iebB9ohVi8fmp8ybgNwBx0Neq0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB88fG74Jfs2ftufBbXPgl8Z9J0rx74M1dpLK/s5HWeIT27YO2SNt0U8Ljh0ZZInGQQwr/P0/4Ke/8ABnj8ePhLdal8Vv8Agm1qrfEHw0N058KarLHBrtqvUrbzEJBeKozgMYZsYULK3J/Tf/g1C/bm8P3nxM/aG/4J5+L71IdWsfGWreMfDscr/NcW1xN9nvoowf8Ani8cMu0ZJ8526Ka/tboA/wADn4g/Dvx/8JvGWofDr4paJf8AhvxBpMpgvdN1O3ktLu3lHVZIpVV0b2IFez/sg/te/Hv9hb4/aF+0n+zdrkuheJtCl3KykmG6gYjzba4j6SwSgbXRuvBGGCkf7FH/AAUt/wCCSn7HX/BUv4V3Hgj9oXw/DD4it7d49F8VWUax6vpcpyVMcuAZIt3L28m6J/QNhh/jkftcfsz+Pv2Nf2mvHH7LXxPMb654G1e40q5mhz5U4hb93PHnny5oysiZAO1hkA8UAf7PfwC/bz+H/wC0b/wTq0z/AIKF+Abdho2o+ErrxKbOVvmgmsYpDc2ztgZMM8MkLMBglcjgiv8AEh8beMvEvxF8Z6v8QfGd29/rGu3txqN9cynLzXN07SSyMe5Z2JJ9TX+qT/wbm/Crxn8Tv+DdHRfhPrzeXH4vsPGWnaWJshUtb+8vYQT32mZpGz3ByK/yota0bVfDusXfh/Xbd7S+sJpLe4glG14pYmKujDsVYEEetAH+sJ/waSaDDpH/AARd8I6hEPm1XxDr90/1W7aH+UQr8Gv+D4iwt4/jD+z1qagebNo3iCJj32xz2ZX9XNfvv/waZa1a6p/wRU8CWNv9/Tdb8Q20v++1/LN/6DIK/n2/4Pg9Xim+PHwB0EMN9toGt3BHcCe4t1B/Hyz+VAH4e/8ABtN8btf+CH/BZz4OzaRc+RaeK7u78NahGfuz2+pW0iojfS4EMg/2kFf6Q/8AwcIf8oYv2gv+xbH/AKUwV/mlf8G6fwp1r4vf8FnfgToukQmRdI1qXXbl8ErFDpNtNdFmPbLRqgJ/iZR3r/S6/wCDgqGSf/gjJ+0EkYyR4a3fgtxCT+goA/xla/3Hv+CaH/KOL9n/AP7Jt4U/9NdtX+HDX+45/wAEznWT/gnB+z86HIPw28KEH2/su2oA/wAdn/gqr/ylB/aR/wCypeMP/TtdV/dB/wAGRv8AyZt8Zv8Asc7b/wBIY6/hf/4Kq/8AKUH9pH/sqXjD/wBO11X90H/Bkb/yZt8Zv+xztv8A0hjoA/pY/wCCt/8Ayis/aU/7Jd4u/wDTVc1/iI1/t3f8Fb/+UVn7Sn/ZLvF3/pqua/xEaAP9db/g1q/Zv8PfAD/gjl8PPENlbRxax8RZ7/xTqsyD5pXuLh4LbJ6nbaQwjHQHOOpJ/cq0+AvwN0/4kyfGWw8F6FB4wmDK+ux6dbrqTBxtYG6CecQQcHLcjivgT/gh1FHF/wAEhP2dViAUHwNpTYHq0QJ/Mmv1ToA/yrf+DwX496/8T/8AgrRN8Irqd/7M+GnhjStNtrfP7tZ9Qj/tCaUDszrcRIx7iNfSv0F/4MebjR1+NX7QVpOv/EwfRNBeE+kKz3QlH4s0dfln/wAHbPwv1rwD/wAFovGHi3U4jHb+N9A0DWbNu0kMNmmnE/hJZOPwrjf+DXL9tXw/+xz/AMFXfDWneOrv7F4d+KVjN4Ku5nbEUVzfSRS2Ttnjm6hii3EjasrHpmgD/RA/4LA/8EXf2d/+Cwnw28P+HPinqt74U8T+EJp5dE8QabHHNLCl1sE8E0UmBNDJsRtu9GV1BVgCyt4V/wAEZ/8Ag30/Z9/4I++KPEfxY0DxZqPj/wAd+JLAaQ+rXlsljBa6cZEmeGC2R5SDLLHG0jvK5PloFC/Nv/oAooA/ykv+Dvb42a58TP8AgsBqvw2vpmNj8OvDOjaPawhjsU3kP9pSPt6BmN2AT1KouegrN/4Nvv8Agqf/AMOzL74vXGmfBfxX8XtQ8Zpoa58MRmQ6fDp5vCfNCxSEec042ngfuzWD/wAHa3w4n8D/APBaXxl4mmjZF8Y6B4f1hCRwyxWaWGR7ZsyPqDXtn/Bnt+1v4O+AH/BSnVvgn4+vxYWnxc8PPpGnM5xHJrNnMlxbRsSQB5kQuETu0jIg5agD3D/gvN/wU8+NX/BX/wDZ48G/BXwB+y78SPB134Y8Rf2295qOnXFwkkf2aaAxKsVuCCTIGyTj5cY548L/AODWH4S/tY/Ab/gsP4OvPFPw+8U6DoHiPQ9e0jVb2+0i7trVIPsb3cYllkjVEDXFtCF3HlyoHJFf6mteVeIfjn8GfCXxW8PfAvxR4q0rTvGfiyC6utF0S4uo47/UIbFQ1w1vCzB5BEp3NtBwoY9FYgA9VooooA/Ij/gvf/yhx/aF/wCxSuP/AENK/wAX6v8AaB/4L3/8ocf2hf8AsUrj/wBDSv8AF+oA/wBwL/glV/yi+/Zu/wCyW+D/AP002tfwLf8AB69/yko+G3/ZM7L/ANOmp1/fT/wSq/5Rffs3f9kt8H/+mm1r+Bb/AIPXv+UlHw2/7JnZf+nTU6APlf8A4NFwD/wWZ8OZ7eGde/8ARAr+yT/g7diST/gi94tdhyniLQGH1+1qP5Gv43P+DRb/AJTMeHf+xY17/wBECv7J/wDg7a/5QueL/wDsYPD/AP6VrQB/k0KzIwdDgjkEV/v22crT2kUz9XRWP1Ir/AQr/fr03/kHW/8A1zT+QoAu0UUUAfxcf8Htf/Jifwk/7Hw/+m+6r+Cn/gmf/wApHv2fv+yk+FP/AE6W1f3r/wDB7UD/AMMI/CRuw8en/wBN91X8FH/BND/lI9+z9/2Unwp/6dLagD/cdr+Q7/g9N/5RV+Cf+yo6T/6a9Wr+vGv5Dv8Ag9N/5RV+Cf8AsqOk/wDpr1agD/N7/ZJAb9qv4ZKwyD4s0X/0sir/AHCf2lYkn/Zy8fwyDKv4b1VSPY2slf4e/wCyR/ydZ8Mf+xs0X/0sir/cM/aQ/wCTd/Hv/Yuap/6TSUAf4N9f6/f/AAa6XMtz/wAELPgc0x3FP+ElQE+i6/qQH5Div8gSv9fT/g1t/wCUFfwQ/wB7xN/6f9SoA/hr/wCDtX42a78Uv+CzHi/wJqErPY/DrQ9D0KyTdlFSe0TUpCB0BMt64PrtHpXbf8G33/BVx/8AgmZo/wAXrfRfgj4u+Ll94zm0Np5fC8ZlFjFYLeCNZgsUhBladyucZ2HrivGP+DrD4cT+Av8Agtj8S9YaNo4PFWn6BrEGRwVOnQWrkeoMtu/45HavsT/gze/a38G/A7/goP4p/Z58c34sIvi5oK2ullziObVtKkM8MTEkAF4Hudmer4QcsKAOr/4L2/8ABSn42/8ABYT4MeBPhd8P/wBl/wCI/g258Ia1Pqsl1qOnXFysqTQGHy1WK3BByQxJPbpzxxn/AAahfCn9q34Cf8FcNKn8XeAPFGgaB4m8L61pOpXl/pF3bWqRLGl3H5kkkaouZraMKSRliAOTX+obXlWtfHT4M+HPi5onwC8QeKdKsvG/iSzudQ0rQp7qNNQvLWzx50kMBYO6pnJKg8Bj0ViAD1WiiigDG1fxH4e8PvZxa/f29i2oXC2lqLiVYjPcOCVij3Eb3YKSFXJIB44r8Ef+CvP/AAbt/sff8FUWuvipCzfDv4t+SETxRpsKyR3xjULGmo2uVW4CqAqyK0cygAb2RQlfC3/B3V8aPFH7OPwX/Zs/aB8E4/tjwP8AFaz16zBJVWn0+3lnRWI/hYphvYmv6hf2cPj98N/2qPgL4R/aM+EN6t/4b8Z6Xb6rYyqQSI51BMb4+7JG2Y5F6q6sp5BoA/x5/wDgo5/wRA/4KDf8ExtRuNT+O/hFtV8GLJsg8XaDuvdHkBOF82QKslszHgJcpGWP3dw5r8iq/wB+rVNL0zW9NuNG1q3ivLO7jaGeCdBJFLG4wyOrAhlYEggggiv87L/g6M/4IIfAz9l/4aP/AMFFv2L9Ii8LaCmowWfi7w1ajbYW7X7+XBe2adIEMzLDLAv7sGRDGqAOCAXv+DQj/grf8QtN+MI/4JbfHHWLjVPDuu2lzeeBGuCZG069s0e5ubJGPIgmgWSZFJ2xyREKMymv6j/+DkL/AJQl/Hz/ALBWn/8ApztK/wA1T/g3007xbqf/AAWb/Z9t/BW77YniXzpNoyfskVvM9107fZ1kz7V/pV/8HIX/AChL+Pn/AGCtP/8ATnaUAf44tf7o37BEccP7C3wWhhUIieBPDgVQMAAafBgAV/hc1/uk/sGf8mNfBj/sRfDv/pvgoA/z3P8Ag9Z+H2m6F/wUM+G3xFsY1jl8QeAore42jHmSWN/dYdvU7JVX6KK/OH/g14+LetfCn/gtX8J7TT7jybLxWmr6DqCdpYbmwnkjQ/S5ihf6rX6kf8HtviSyuv24PhB4QjbNxY+BpLx19Eu7+4RT+Jgb8q/KX/g2H+GGrfE3/gth8HWsbczWvh19W1q9cdIYrXTrkI59jO8SD3YUAf6S/wDwWk/4JbaH/wAFbv2MZ/2b5deHhjX9K1S38QaBqbxGaCLULaOWEJOi4ZoZYp5EbacoSrgNs2N/HR+yV/wa7/E/9gf9ojwx+2Z/wU2+MHgDwX8K/hhrVnr09xY6lcNJqFxp8q3FvAGu7W1SNJZEAbDNMwyiRlmDD+1D/grX/wAFLfhr/wAEqP2N9Z/ab8dW39q6pJMuk+HNIBKnUdYuEd4YmYA7IlWN5Zn7Ro23LlVP+VV4w/aI/bo/4Lyft8+Bvhr8d/Gsmoaz451+20fSrVt0Wj6JDeSBXNtaK21I4o8s5GZZQnzu7c0Af0Ff8HEf/Bwf+zb/AMFEv2ZtZ/Y2/Y68La34k8O6fq+n6lqnja6iazsYxbSERLDbsjTFJnYKJLj7OcjARsg1/FB4YkeHxLp80Zwy3MRB9w4r/SF/4L6/8E/P2bP+Cbn/AAb0T/s8fs16LHY2Vr4n8PtqGpSIp1DVrwSPvuryVQDJIxJwPuxrhECoAo/zd/Dn/Iw2H/XxF/6EKAP98zW9Xs/D+jXevaidtvZQyXEpHZI1LN+gr/B2+P3xk8V/tEfHPxj8e/HUzT6z4z1q+1u8d23Hzr6Z5mGfQFsADgAYHFf7vHjLw9F4u8Iar4TnbamqWc9ox9BOhQn9a/wUPGnhHX/h/wCMdW8B+K4Da6pol5PYXkLdY7i2cxyKf91lIoA/14/+DYS40e4/4Ia/A3+xl2okWvpKO/nDW9Q8wn6tkj2Ir5G/4Kdf8Gp/7MP/AAUM/ae1X9qzwj4+1P4Z694nkjn1+1tbCLULK8uEVUaeNGkgaGWUKDKdzq7/AD7QxYn46/4Mtv21fD/jX9mPx7+wh4hu8eIfBGqv4l0qF25l0jUxGkwjHXFvdqWkP/TynvX9t1AHwH+wb+w98CP+CVP7G1j+zr8GHu7nQ/DUd3ql/f37q13f3cgMs9xKVVUBYKFVVUBUVV5xk/4pXxi+KPij43/FvxR8Z/G8pn1nxbq17rN9IzFi1zfTNNIcnk/M5r/eQ8W+HLHxl4U1Pwhqefs2q2k1nNjrsnQo36Gv8EbxT4c1Xwd4n1HwjrsZhvtKuprO4jIwVlgco4IPowIoA/vX/wCCTf8AwcOXf7I3/BPD4Yfs4+Ev2WviL43s/Cun3Ft/bmiwtJY3sz3U0szxMsDjAld1I3EhgQeRX89//BZPxn+0v/wU9/br179rnwP8APHvhOw1fT9NshYXukXdxMGsYFhLs0cCr823gDPA61/aB/wZ4/tb+Dfi/wD8E0J/2XRfg+JvhJrV7HNZOfnGm6zNJe28y88o0z3CH+6yc4BXP9adAH8a3/BodefGj4C/8E+PjL4X+PXhjW/Dmm+FvE0uvWcer2M1k0kU+nxmcQ+eibgptgSBwrPk/er/ADd/jF8U/F3xz+Lfij41eP7hrvXPF2rXms6hMxyXub6VppTn3ZzX+5BqHxD+DX7UHg74lfBb4WeLNJ17U9HjvfDOvW9jdxzyaZfXEDIYblYyWicBuVYA8EdQQP8ACw8Q6BrHhTX77wt4ht2tNQ024ltbmBxho5oWKOh91YEGgD/YW/4NrrjR7n/giJ8BZNDXbCNO1RGA/wCeyarerKfxkDGvg/8A4KVf8Gn37L37ff7UWs/tVeC/iBqnwz1fxZcC81+xtrCLULO6uyAJJ4VaSBoZJsb5SWkVpCX2gk5+cf8AgzD/AG1fD/xF/Y+8Y/sOa7d48R/DnV5db02B2/1mi6uQW8sdT5N4JTKeg8+Pua/tIoA+Lf8Agn5+wn8Fv+Cb/wCyv4d/ZO+BH2qbRdC86aW8v3V7u9u7lzJNcTFVVdzscAKoVVCqBgV/no/8HqX/AClQ8Cf9ks0r/wBO2r1/qAV/l/8A/B6l/wApUPAn/ZLNK/8ATtq9AH5t/wDBtr+zf4e/aa/4LGfCTw14xto7zR/DVxd+KLqGUbld9Ht3ntsjoQLsQEg8EA5z0r/Xz8efDv4f/FPw3N4N+J2haf4j0e4IMtjqlrHeW0hXpuilVkOO2RX+W3/wZ4RRyf8ABX4M4BKeCNbZSex32w/kTX+qrQBzPg3wV4N+HXhq18GfD7SLLQtHsVKW1jp1ulrbQqSSQkUaqijJJwAOTX+fz/wUc/4M8f2n/ij+1l4s+Mf7Ffjbwq3hDxpq1zq507xLPdWV3pc19K0ssStb2tyk0COx8t8pIEIUoxUu3+hZX+a1/wAHDv8Awci/HD4qfGTxT+xB+wj4juPCfw+8N3E2j674g01mg1HW7yFjHcxxTgh4bNHBjHlFWnwxLGJgtAH6y/s8ftzf8E4v+DXn9ib/AIYs8cfEAfGP4wvql5rmvaJ4QUTCPVrtIojFJK7CK0iijghjImf7Q2DIIPm2D/Ps/bg+M2v/ALRf7Y/xR+Pvirw7N4R1Lxp4o1TW7nRLhmeXT5L64eY27s8cTM0e7aSY0JIztHSv7ZP+DSf/AII2fBnxz8NIv+CpP7RmnQeJdVm1O6s/Bem3iLNaWf2F/Km1F0YEPc+erxwZGIdhkGXZDH/I7/wWR/5Sx/tIf9lI8Sf+l01AH9pP/BkFI5/Zo+OsJPyr4n0sge5tXz/IV/Zt8cv+SKeMP+wJqH/oh6/jG/4Mgv8Ak2v47f8AYzaV/wCkslf2c/HL/kinjD/sCah/6IegD/BZr/X5/wCDXD/lBT8Df+5m/wDUg1Kv8gav9fn/AINcP+UFPwN/7mb/ANSDUqAOo/4OYP8AlB78eP8Ary0b/wBPFjX+O9X+xF/wcvAt/wAEPvjwB/z5aP8A+nixr/HdoA/3Yv2L/wDkzv4T/wDYm6F/6RQ19LV80/sX/wDJnfwn/wCxN0L/ANIYa+lqACiiigD/ACz/APg8t/5S1aN/2TzR/wD0rv6/Af8A4JyfBXwF+0f+358F/gF8U4Jbrw14y8aaJo+qwQytDJLZ3l3HHMiyL8yFkYjcpDDOQQcGv34/4PLf+UtWjf8AZPNH/wDSu/r8X/8Agjb/AMpY/wBm/wD7KP4b/wDS6KgD+0T/AIKBf8GZv7PmtfDXUfGf/BO3xRq2geLtPglng8P+IbhL7TtRZBlYI7jZHLbSN0WSRpkJwGCDLjmP+DI/Qta8LeGf2m/DPiS0lsNR07WPDlrdW06GOWGaFNRR43U4KsrAhgeQRiv7s6/HL/gnV/wT58d/sbftvftb/Gm/isIfCHxs8UaR4i0BbWUtNvENxJfmePaPLJurhyuC24c8dKAP2Nr+LP8A4PbP+TGfhF/2Pbf+m+5r+0yv4s/+D2z/AJMZ+EX/AGPbf+m+5oA/zpvgb8ML/wCNvxs8HfBjS5fJuvF2t6fosMhGdkl/OkCt+BcGv92bwT8Lfh/8PPhdpPwW8J6Vb23hbRNLg0az03YGgSwt4hAkOw5BQRqFwcgjrX+Jr/wS0ijm/wCCnH7OcMoDI/xP8IKwPQg6rbZr/cJoA80+GnwW+DnwXsbrTPg74T0bwnbX0vnXMWjWEFgk0vPzusCIGbk8kE81/Jn/AMF/P+DaT4q/8FKv2jIv2xf2S/FmjaR4rv8AT7bT9d0fxE00Frc/YkMcNxBcQQzssnlhI2jeMKQgYODkH+xev45f+Dlr/g4L8dfsE6pF+w9+xfdxWnxP1KyS78Qa88QlOhWl0uYIrZXBQ3cyHzN7KywxlSAXcGMA+fP+Ca37O/7Kv/BrB4a8bfHT/gpd8YdCvvij470+Cy0/wn4UMuoXS6fBIZf3cTpDNI88gUGWWOG3j2Y8xt2R/KL/AMF2v+CkVr/wVQ/bO079qLQfA2o+BdAHhm10fRodUkElxf2VpdXbC8JVFjG+WSSMrG0qq0RHmMQcfev/AAbh/wDBMbTf+Cw37a/jL9oP9s7VL3xd4X+HbWWra9FqNzJc3WvarqLy/ZYbqaQmR4SLeV5zu3MFWPo5I6//AIPHPD2geEv+CoXgzwv4VsbfTNM074X6LbWlpaRLDBBDFfakqRxxoAqIqgBVUAADAoArf8Gbkjp/wVw1FVPD+ANZB+n2myP8xX+p5X+WB/wZvf8AKXK//wCxB1n/ANKLKv8AU/oA/wAIn9rT/k6r4mf9jXrX/pZLX+kP/wAGWYH/AA6r8an/AKqhq3/pr0mv83j9rT/k6r4mf9jXrX/pZLX+kP8A8GWn/KKrxp/2VDVv/TXpNAH5T/8AB8REg+MX7PUwHzNo3iBSfYT2mP5mvwk/4NoAD/wXC+A+f+f3Wf8A0z31fu//AMHxP/JXf2ef+wP4h/8AR1nX4Q/8Gz//ACnC+A//AF+6z/6Z76gD/UV/4K5Qpcf8Eq/2lEk6D4X+LW/FdLuSP1Ff4idf7eP/AAVr/wCUV37Sv/ZLfF//AKarmv8AEOoA/wBp3/ghjdzXv/BID9naac5ZfBOmxj/djTaP0Ar/AC7P+DgD42a58eP+CxXx78T63M0g0bxPP4btkLErFBoKrp6qo6KCYC5A/iZj1Jr/AFCf+CEv/KHv9nf/ALEyw/ka/wAsX/guZ8OJ/hX/AMFfv2ifDFxG0bXPjfU9XAYYO3WH+3qeexFwCPY0AfuF/wAG8v8AwWlm/wCCcH7Hvin4MaB+z543+K1zq/i+51q51fw1EZbaIS2dpAlu+2GTDoIC/J6SV4Z/wX3/AGzPj7/wWM8afDTxV8O/2bPiJ4KHgSy1O0uBqOl3Ny1z9ukgddvlW6hQnlHOc53dsV+kH/Bkz+1v4N8OeMvi9+xR4pvxbat4kWy8UaBA5wtwbJZIL9VJPMgRrdwoySiO3RDX+hhQB/nb/wDBmj8P/wBpj4J/tjfFvwR8S/BXiPwz4c8ReDYb57jVNLubO2kvdNvoY4E8yaNUMnl3c5Vc5KhiOAa/0SK8qs/jp8GdQ+Mt5+ztY+KtKm8eadpcetXPh9LqM6lFp0snlLctb7vMERfC78YBK5xuXPqtABRRRQB//9P+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK5vxl4v8PfD7whqvj3xdcfZNJ0Sznv72fY0nlW9shkkfagZ22opOFBY4wATQB/lYf8HX/h/wAR+Kv+C3WveHfCFjc6lqd34f8AD8dta2cTTTyyfZuAiICzN6ADNftT/wAEc/8Ag6z8M+BPCWnfsj/8Fcf7S0LxB4dRNPtPG8trNM08cY2omrQKpuEnUYX7QkbiT70oRg0j/oxpn/Baf/g2A0n9sDUv29bb4jQv8WNV0mPQ5dem8P8AieV0sYgqhIYXsGghYqoVpI41dlypYgkGD9qL/gsn/wAGqv7aunJp37VXiXw943aFPLhutR8Ga617An92G6XTFuIge4jkXNAH61+KP+C33/BInwj4Ib4gap+0V4EnsVhabybLV4b2+Kqu7As7dpLrdjonlbieAM8V/nVf8FeP20fi1/wcS/8ABSTw94B/Yb8Eatrmj6BZHQ/CtgItt5cxvJ5l1f3QLGO2jZyAWd1SOGNGkKsWA/bb+1P+DF/+0xqmYtyuXEfkeO/K3HH8GzBHHC/dGTxzX6vfs1/8Fyv+DYH9jrwrL4K/Zb8Z6F4E064KtcJo/gzXbd7hlGA08q6X5kzAcBpGZsd6AP0V/wCCJ3/BLTw5/wAEnP2KtO+BMl1Dq3jPW7g614s1SAHyrjUpkVPKhLYbyLeNVijyBuIaTapkKj+X3/g+d/5td/7nb/3C1+/3/EUb/wAEKP8Aouf/AJbPiH/5WV/IF/wda/8ABUf9hP8A4KUf8KF/4Yp8c/8ACaf8IX/wlP8AbP8AxLNQ077N/aP9l/Z/+P8Atrffv+zy/wCr3bdvzYyuQD+az9iD4oftBfBH9rHwN8Yv2V9Ok1fx94X1JdU0ixitjeNcvaI0kkRgX5pFeJXVlTDlSdpDYI/0KH/4PM/2Gbr9kq+8fJ4U1+w+MEVg0cHhKW3Etk2plMKRfqwQ2gk5ZmVJtoIEWcZ/hY/4I7/tAfCP9lf/AIKafB39oT486t/YXg/wrrn2zVL/AMia68iHyZU3eVbxyzP8zAYRGPPSv7b/ANpL9sL/AIMwv2tfG918SfjnJoV/r1/IZru/0/w54q0ee6lY7mknbTrO286Rj955NzN3NAH+en4B+H3xx/bA+Pdr4F+HGlXnjDx7471RzDaWqb7i7vbtzJIx6KoyWd3YhEUFmIUEj/ZC/wCCNv8AwTw03/gmH+wF4O/ZjleK48SBX1jxPdQndHPrV8FNxsPG6OEKlvG2BujiViMk1+O/7Jn/AAV4/wCDUb9ha2u4v2S/Euh+CZr9RHc3ln4S8QvfTxjGEkuptOkuHQEZCNIVzzjJJr7S/wCIo3/ghR/0XP8A8tnxD/8AKygD+Hz/AIO3fgX8Wvhx/wAFffE/xa8a21yfDXxC0nSL3w9eSDMDRWNjBZ3EKMPlDRTwuzJwwEisRhwT+VP/AATA/wCCi37Zv/BOP9oM+P8A9isx6hr3ie3Gi3GhXNm+o22qrI4aKI20TLK8qyAGIxMsgJKglWZW/wBHL47f8HAH/BtV+1B4JPw2/aN8f6L450EyicWGueC9bvoEmUECRFm0pgkgBIDrhhk4NeN/s5/8FfP+DTz9kbVX8Q/s0av4V8F6pIpjbUNM8Da1FelDnKm5/sozbTk/Lvx7UAfxk/8ABcX4Lf8ABYPVrz4e/tzf8FWLbyLr4jWk9lo9hEgiXQobRvNSxnt40EVpJIsrTJEZHmYBzKRIjgfHH/BIb9uzxT/wTl/bx8JftOeDvBsnxAv7SG+0uLw/BM1vNfSapbvbRpE6RTtvErowURMXxtABII/0fvi3/wAHFP8AwbmfHzwLefDD44fEzSvF/hzUAPtOmaz4O1y9tJSvKloptKZCVPKnGQeRg18ufAP/AIKn/wDBox+y740HxI/Z+u/CPhXxChbytTsvAutC8h3/AHhFM2ll4ge4jKjFAH7/AHwN8N/GD9sX/gn7YeDv+Ci/g3TPD3if4jeG7qy8W+HNLeRra2h1JZI/JBlLukot3TzF3P5U24KzBQx/yL/+CrP/AAS0+P8A/wAEq/2mdT+C/wAVrGe68N3U8s3hfxGsZFpq+n7j5bhwNqzouBPDndG/qjI7f6X/APxFG/8ABCj/AKLn/wCWz4h/+VleU/Gf/g4Y/wCDb/8AaM8B3Pwu+PvxH0jxp4cvCGl03WvBuuX1szrna/lzaUyh1ydrjDKeQQaAP88f/glP/wAFmf2uP+CR/jvU9a+A8tprfhjxEYzrPhnWBI9hdPHwsyeW6PDcKpKiVDyMB1cBQP6NNP8A+Cxn/BYP/g4o14fsIfsZ+DrH4SeEtXSOLxv4j0yWe5ez0uY7ZfPvpPLEMUi7gIIUE8+CgcoXFfTcfxK/4Mc4tc/4SJbbSjcb9+w6T4zMGf8ArgYDFj22Y9q/Wn4Mf8HDH/BuB+zn4CtPhd8BPiRpPg3w7ZD9zp2jeDtcs7dTgAsUi0tQXbHzOcsx5JJoA/Yzw9+wz8DtE/YUg/4J6X0N1qvgJPCZ8HzfbpjPdTWb25geRpGziU5LggAI+NgUAAf44X/BRn/gnZ+0P/wTN/aU1j9nb4/aZLF9nlkfR9YSJlsdYsM/u7m2kIwwKkeYgJaJ8o+GBr/UH/4ijf8AghR/0XP/AMtnxD/8rK8P+P3/AAX2/wCDaP8Aaq8DP8NP2kvH2i+OdCdi4s9a8Ga5eRxyEY8yPzNLJjkAPDoVcdiKAP4Vf+CRH/BwH+1z/wAEk9P1D4ceEbKz8d/DnU52u5PDWrSPCttdvt3zWlwgZ4GcKA6lXjb72zd81fvRoP7eP/BSD/g6o+Jdl+x58NfCUfwc/Z4068tLz4h31hdSXk0tnHIJBbS3zxQrJJJszb2scC5ceZKWjTK+6WHxM/4MdNN1tfEFvbaU06MWCy6T4zlgy2M5heBoiOBgFMDnHU5/Xr4Vf8HGP/Bup8C/Atj8MPgv8UNN8J+HNMTZaaZpHg/XLO1hXvtii0tVBPUnGSeTzQB+2fi79k34D+MP2Ur/APYputChtPhzfeG38KDS7YBEg0xoPsypETna0aYKPyVYBuor/G4/4Kh/8Exf2hf+CWn7S+qfAv4z2E02jyzSzeHPEKRkWWs6eGPlyxtyqyhcCeHJaJ+DlSrN/psf8RRv/BCj/ouf/ls+If8A5WV5F8bv+Dg//g23/aV8Bz/C/wDaE+Imj+NfDtywd9O1rwbrl7b+YoIVwkulMFdcna64ZeoIoA/z4P8AglD/AMFq/wBrv/gkb4t1W4+B72ev+EvETpLq/hjWBI9jPNGNqzxGNleC4C/L5iEhlAEiuFXb/RPpP/BWr/gr9/wcheIx+wx+yX4Ts/hB8P8AUfKj8eeItLkmuXtdLmbbKs99J5YRJVDBLWFFmuMFC5i8zH0tb/Er/gxztdcHiGK20ozqxcI+k+M3gycf8sWgMRHHA2YHYV+uHwf/AODiL/g3H/Z98CWfwv8AgX8S9K8H+HLAYt9N0fwdrllbIeMkRxaUq7jj5mILMeSSaAP11u/Gf7I3/BK/9kHwxoHxZ8a2fgv4feBdMtNAsdR8R3372f7JAfLjDOd9xcyJE7iKJWd9rbEwMD/FK/aV+JOn/GX9ozx/8X9IVktPFfiTVdYhVxhhHfXUk6gjsQHGa/1NfjP/AMHCH/Btl+0d4Tj8A/tDePtB8eaFDcpeR6d4i8D6xqlotzGrKkohudJkQSKrsocLuAYgHBNfLX/Dyv8A4M2/+hc+FX/hp7r/AOUdAHwl/wAGdX/BQb9kX4Lfs6+Pv2R/jZ480jwd4w1bxmutaRb63dx2Eeox31pa2ix20szKkk4lt8eSDvO9dobnH99VfyK6L/wVF/4M8/DesWniLw7o/wAMLDULCaO5tbq2+FV3FNDNEwZJI3XQwyurAFWBBBGRzX3Z/wARRv8AwQo/6Ln/AOWz4h/+VlAHSf8AByl8C/i1+0H/AMEbviz4L+DFtc6jqtgum6zNp9oN0t3ZaXew3NyoUct5cSNPtGSxiAAJIFf48Nf6/X/EUb/wQo/6Ln/5bPiH/wCVlfnR4w/4KK/8GcXj/wCIs3xY8Z2fgTUdfupnuLi5m+HurkXEztuaSaP+yfLldm5Z3RmJPJoA/C/9n39rz/g4+/4Lafsc6z+yf8KfJf4d6N4furDX/FrWLWU+uQWtuw/s6W+PmfaLm5AWFo7WNXfeDOwRnY/x739hf6Vfz6XqkEltc20jRTQyqUkjkQ4ZWU4IYEYIIyDX+un4a/4OZ/8AggH4M0C08K+D/jFbaTpdhGIbazs/CevQW8Ma9FjjTSwqqOwAAr4X+Mf/AAUw/wCDP79oL4gz/Ff4zHwb4h8SXcvnXWo3PgPWvtF1J03TsulKZm95NxoAyf8Ag1+/4KRftiftafCzwL+zHo/wostH+Dvwb8KtoeueNbq5maa/1WJgLKGyXYkW4Q83MR8wqMOZI8pHJ4//AMHcn/BRz9jXx7+wra/sg/Cb4haH4w8eXvi+0nvdN0O9i1BtOg0tZxP9raBnWCRZWSMRSFZCScLhWI/Uf4e/8HI//BvN8JfB1j8PPhX8VtP8NaBpcflWem6V4Q1yztLdOu2OGLSlRBnnCgV8leIP+Cpn/Bnz4t1++8VeKtK+GWp6pqdxLd3l5d/Cu8muLi4mYvJLLI+hlnd2JZmYksSSTmgD/MK8L60/hrxLp3iKNd7afdQ3IX1MThsfpX+4t+yR/wAFAv2M/wBunwzB4k/ZX+I+heMJHsor+506yvYm1OxilwB9rs932i3IY7SJUX5uK/nH/wCHlf8AwZt/9C58Kv8Aw091/wDKOvb/AIIf8Fxv+DWz9mXVb7Xf2btf8H/D6+1OJYLy48NfD3VNJluIkO5Ule10eNnUNyFYkA80AfL/APweVfsPfGD9of8AZV+HP7UXwn0ybWrf4PXmrDXrW1QyTQ6ZrCWxa8KjkxW8lmglwCVWXecIrsP8/P8AYD/ax1L9hj9sz4c/tbaZpi603gXWYdRlsGfyvtNvgxzRB8HYzxO4ViCFYgkEDFf6nT/8HRf/AAQlkUo/xyDKRgg+GPEBBH/gsr83PE3/AAUD/wCDNPxl42k+InibTfAN3q00jTTSt8PNXCTSOdzPJEukiKRmPJZ0JJ69aAPob/gmB/wUe/bc/wCC0H7dFl+078L9G1T4T/ssfDPTb6xks7sxTS+LdcvUCCOZ9pXbaAiUeQT5LIAzkzEL/U7X88fhf/g5k/4IA+CPDtn4Q8F/GG10jSdOiWC0srLwnr1vbwRIMKkccelqiKB0VQAK3v8AiKN/4IUf9Fz/APLZ8Q//ACsoA/f6v4z/APg7y/b5/Zag/YPv/wBiPw7400vWPibqviTS3vPD9hcJc3enW1nm5eS8WMn7Pn90ESUrI/mAqpUMR+mX/EUb/wAEKP8Aouf/AJbPiH/5WV8c/En/AIK9f8Gkvxm8b3/xM+MC/D3xX4k1Vle91bWPhlf319csiCNTLPPoryOVRVUFmOFAHQCgD/LLr/bq/ZE/4KbfsSftW/swD9oz4dfE3w7No2gaLZ6l4oabUIIJPD4miLEakkjq1pho5QDKFVvLYqWAzX4If8PK/wDgzb/6Fz4Vf+Gnuv8A5R16v4B/4LSf8Gpnwp8JeJvAPwu1DwP4b0LxpbpaeIdN0r4cajZ2mrW8YkCRXsMOjKlxGolkCrKGADtgfMcgH8JP/BwT+1R8IP2yv+CtPxU+OXwD1ePX/CFy+l6fp+pQgiK6Gm6fbW00ke4AtGZ45NjdHXDDgiv0G/4NJ/20/wBnr9kD/goB4rsf2kPFNh4N0nxz4Tk0uw1PVJltrIajFd280cUsz4ji8yNZdryMq7gFzllB/pZ/4eV/8Gbf/QufCr/w091/8o6ntf8Agpr/AMGcljcx3tloHwshmhYPHInwoulZWU5BBGh5BB5BFAH55/8AB6B+2z+zx8QvBvw4/Yy+HPiey17xp4Y8RXWseIbGxlE50sJbGCKK5Zcqk0hmY+UTvVVywAZc/wARv7JPxS0f4G/tWfDL41+It40/wf4s0XW7ry13P5On3kU77QOp2ocDvX+lT8Qv+CuP/Bo58W/GmofEj4rRfDvxP4i1eXzr7VNW+GN9e3t1JgLvlnm0RpJGwAMsxOAK43/h5X/wZt/9C58Kv/DT3X/yjoA/qS/Z/wD2kPgJ+1Z8NbX4wfs3+L9K8beGbxjGmoaRcpcxCVQC0T7STHKgYb43CuuRuAr2uv5q/g5/wcLf8G3H7OvhA/D79n74gaF4F0AzvdHTfD3gjWdMszPKAHk8m20mOPewVQzbckAZPAr1b/iKN/4IUf8ARc//AC2fEP8A8rKAP3+r+Ln/AIPM/wBh74wfHv8AZq+Gv7V/wp0ybWLL4SXGrQ+Ibe1QyTQadq62zC8KjnyreS12ykAlRKHOEVmH6kf8RRv/AAQo/wCi5/8Als+If/lZTJP+Dor/AIISSxtFL8cQysCCD4Y8QEEHsf8AiWUAf5an/BPP9ru//YL/AG1vhz+13p+lDXP+EH1ZL2bTzJ5RubZ0aGeNXwdjtDI4RiCFbBII4r/SZ/4Jbf8ABRT9t7/gsx+3HD+1b8PtI1T4Ufsr/DjS77TYtOuzFNL4t1y8VUxO+zG20GJR5DHyXRULt5zqvzb4h/4KAf8ABmh4r8ayfEPxDpngG51WaRpZZG+HmriOWRzuZ5IRpIidmPJZkJJPNfoZ4b/4OaP+CAng3QLPwp4Q+MdtpWl6fEsFrZ2fhTXoLeCJBhUjjTSwqKo4CqABQB/L9/weT/ty/s0ftKfEz4PfAX4A+L9O8Xap8OT4ik8RtpUy3VvZ3N81lFFbtNHmMzIbWbzY1YtHwGwTiv5mP+CWnx88C/su/wDBRn4LftAfE+5Nl4b8LeLtMvNVulRpPs9l5oWaXYgLMI42ZyqgsQMAE4Ff6DWvf8FSv+DPfxVrt74o8UaT8MdS1PUp5Lq7u7r4V3c09xPMxeSSSR9DLO7sSzMxJYkknNZP/Dyv/gzb/wChc+FX/hp7r/5R0AfV3/Bfb/gpt+xNoX/BILx5aeGPiToPiDUPjF4an07wha6Tex3suqpczC2mmhERb9zBiUSyNhFeMxk+ZhD/AJK1f6mHiP8A4K6/8GkHjHw3oXg3xdH8PNV0jwtBLa6NY3nwxvp7bToJ5GmljtYn0UpAjys0jrGFDOSxGSTXFf8ADyv/AIM2/wDoXPhV/wCGnuv/AJR0Afo7/wAG837cf7Nn7Tv/AATW+EXwl+Gni/Tb/wAa/D7whp2j6/4fE6rqdi2motp5kluSJPJcopSUAo24DduyK/Av/g7y/wCCQnxK+Jeu6d/wU2/Zy0GTWf7P02PS/HdlYRNJdJDaZ+zal5agtIkcZ8m4YcxxxxNjYJGX9RPgh/wXD/4Naf2ZtYvfEP7N+u+Dvh9qGpQi3u7nw18PNT0ma4hVtwjke10eNnQNyFYkZ5619In/AIOjP+CE5GD8csg/9Sz4h/8AlZQB/k0/s+/tAfGH9lj4zeH/ANoL4Ba7P4b8X+F7kXem6hbYLxSbSjAqwZXR0ZkkR1KOjFWBUkV/ZJ4d/wCD079s3xb8OLX4Y+FfgVoOqfE/UxFY2Op2l3dzWs15LhF2aUkZlkd3PyxrdjkgYPSv0E+OH7Vn/Blb+0T4vl8efFCHw5Jqtw4lnn0vwx4o0fzpM7i8iafZWySMx5ZmUlv4ia9u/ZQ/4Kd/8GjH7DutN4p/ZZ1jQPCmstH5P9qR+E/Ed1qCxngqt3c6fNOqtn5grgN3zgUAffv/AAQj/wCCb3xz/Ze8F+MP2zf29Lxtd/aP+ONymo+Jby4ZZZtNsFANvp4ZBsQr96VIsRKRHEoKwoT/AEBV+AP/ABFG/wDBCj/ouf8A5bPiH/5WUf8AEUb/AMEKP+i5/wDls+If/lZQB+/1RzQxXETQTqHRwVZWGQQeoI7g1+Av/EUb/wAEKP8Aouf/AJbPiH/5WUf8RRv/AAQo/wCi5/8Als+If/lZQB/O1/wXQ/4NT/Gcfi3W/wBrX/gl1pKajp2oyNeat8PbcCOe1lbmSXSskK8THLG0yGjPEO9SsafgF/wR+/4K5/tHf8EP/wBpnWdB8Y+Hr+78HaxcR2njTwbfxtZ3sctvkJPCswVoLyAMRtcBZFJR8HY6f6EX/EUb/wAEKP8Aouf/AJbPiH/5WV8l/tKf8FnP+DVj9sW0Ft+1B4j8N+OJEUJHdap4J1ua8iUdorn+yxPGP9yRaAPuP9nr/g5E/wCCOX7QvhSy8QW3xh0/wbe3K5m0vxYj6TdWz90keQG2Yj+9FPIh7N1r8r/+DgP/AILh/wDBLv4vf8E1vij+yn8FvitYeNPG3jKytLbT7TRIJ7uDMN7bzO0l0sf2ZAEjbgylicYBr4l8QXP/AAYxeIdRbU5pxau5yy2kHjqCM/RFjCr/AMBAr0HwD8Uf+DHb4bX66l4ettIuZUxgaro/jLVYzj1jvbedD+K0Af5+fw++G/xE+Lfi208A/CrQdR8Ta7ftsttO0q1lvLuZvRIYVZ2P0Br/AF8v+DcL9mz46fsn/wDBJfwD8HP2jPDV34R8U297rF5Npl9tW4ihvL2WaEyKrNsZkYHY2GXOGAPFfOHwa/4OBf8Ag2q/Z08P/wDCJ/s/+PNB8D6YQAbXQfBGs6dE2O7LBpKAn3OTXsf/ABFG/wDBCj/ouf8A5bPiH/5WUAfzi/8AB7j8C/i3J8Uvgz+0lDbXNz4GTSLvw7JOg3W9nqnntcAPj7j3MTfLn7wgOPu1/Gp+yD+1p8c/2HP2h/Dn7Tv7OOqDSfFnhqZ3tpHjE0MscyNFLDNGeJIpY2ZHXg4OQQwBH+pj8RP+Dkb/AIN5fi94L1D4b/Ff4raf4m8PavEYL7TNV8Ia5eWdzGSDtlhl0tkdcgHDAjIr40+Df/BTf/g0B/Z98bJ8Sfg0fBfh/X4ZDLBqFv4B1k3Fu55zA7aUxh9vL24oA/mJ/wCCt0H/AAXd/by/Yu0P/go1+39oaeHvhZomqwWWk+HLazk057VdRRgNUayYSSrbyMqQCe6m3lpYxEvlvur+fT9lb46X37L/AO078Of2lNNsF1W4+H3ifSfEkdk8nlLctpd1HciIuAxUSeXtLbTjOcGv9WXxJ/wc0f8ABAXxloF54U8X/GO21XS9Rhe3u7O88Ka9PbzxSDDJJG+llXVhwVYEEda/P3wL/wAFDv8Agzf+Gnj2H4neBbPwLp2uW0omt7mP4f6wRBKvR4UbSjHEw6hkVSD0oA/Yr9hL/gpX8R/iF+xJfft2f8FMND8Pfs8eFta1aWXwzBq2otby/wBhyhfsjXjXfl5uZmD+WEVDMm10iUMM/wCUN/wU/wDj54I/ak/4KIfGj9oP4Zztd+G/Ffi7VL7Srh0aIz2TTMIJdjgMvmRhX2sAwzggHIr/AEu/i/8A8HDv/Bt9+0J4Nb4dfHz4h6J448PvNHcNpniDwTrOp2ZmizscwXOkyRllydrbcjPFfKP/AA8r/wCDNv8A6Fz4Vf8Ahp7r/wCUdAH4s/8ABnV+3z+y3+yr46+M/wAFv2k/GuleCLjx0ugXehXWtXKWVncS6ebyOeE3EpWJZD9piMaswL4bGSMV67/we3/Av4tH4yfBv9pOO2ubjwN/Ylz4cadRut7TVEuHudr4+49xC425++IGx901+qVl/wAFOP8Agzn028h1HTtC+FtvcW7rJFLH8KLpHR0OVZWGh5BBGQRyDX2B8Rv+DkP/AIN4/jB4K1D4bfFn4q6d4n8O6tF5N9peq+D9cvLO5jznbLDLpTI4yAcMp5FAH+Wt+x5+1z8dv2F/2ifDv7Tv7N+qDSvFnhyV2t3kjE0E0cyGKWCaI8SRSxsysvB5ypVgrD95f+Cutn/wXa/bp/Y20D/go7/wUF0NPD3wv0fVYbDSPDltZyac9muoo2NTeyYSSpbysiQCe7m3lpIxGvluGP8AT78Gf+CnP/BoH+z141T4kfBc+C/D2vwyGWDUbbwDrJubdzzmCRtKZof+2ZXFfcPib/g5m/4IB+NfD154S8ZfGK21bStRha3u7K98J69cW88LjDJJG+llHVhwVYEEUAf5Uf7Jvx7vf2V/2o/hz+0zp2nrq03w+8TaV4iWxeTyluv7MuY7jyS4DFBJs2btp25zg4r/AGR/+CVX7U37Wn7av7MLftH/ALWfw3s/hd/wk+p3Nz4X0SOWaW8/4R5gv2WW9EyqRNId5DKqLJHtcRoGAr8FfAX/AAUR/wCDOH4X+Pofif4BtPA2ma7bSie3uo/h/rB+zyr0eFG0opEw6hkVSD0r9G/+Io3/AIIUf9Fz/wDLZ8Q//KygD+DP/g4X/wCCLfxG/wCCaP7T+s/FX4b6LNc/BDxxfy3ug6jbxloNKmuDvfTLgqMRGJiRbFuJYQMFnWQL+W3/AAT6/wCCiP7Tn/BM34/W37Q/7L+rR2epCFrS/sLxGm07U7NyC0F1CrIXTcAylWV0YBlYGv8ATw8Zf8HLP/Bvv8RfC1/4G+IPxds9d0TVIWt73T9R8Ja7dWtzE3VJYpdLZHU91YEGvxz8UfFr/gx78XeJZvFmq2mixXU7l2Sy0TxhY2wJIb5ba2to4FGR0WMDGRjBIoA+RoP+DoT/AIK2/wDBTaex/Yy/4J//AAk0rwz8RPFqNayavpUs1/c20JwJLiEzhILJEB+e4n8wRg5BVtrD+1T/AIJW/sJL/wAE6f2LfDP7OOqa9deKPESvPq/iPV7qeW4+2a1qLebdyRmUlli3nagwCyrvcGRnJ/IH9mf/AILj/wDBsB+xt4Rk8DfsteNNE8C6bOwadNJ8Ha7BJcMOjTyjS/NmYZwGkZiBwDivpT/iKN/4IUf9Fz/8tnxD/wDKygD+F7/g6d/Ye+MH7NX/AAVC8Y/HvXtMmfwP8W54tZ0TVlQ/Z3uBBGl3as4yFmilVm2E5MbIw6nHBf8ABAf/AILf6N/wRw8QfFGHxl4HuvHGkfESx08xQ2FyltcQ6jpJuPs4LOrL5MoupFkIDMpClVbkH+5v4qf8HGP/AAbp/HPwRefDP40/E7S/F3h3UABdaXrPg3W76zm2nI3wzaU6Ng8gkcHkV8g/Bv8A4KZ/8Gf37PnjmH4m/Bn/AIQvQPENrL59tqNv4C1k3NtJ/egkfSmaE+nl7cUAfod/wTY/ab/aN+EP7HHin9vb/gtB49sPhunxM8QPrOieHtemh0+08M6VJEFs7CLzcTGeZI2l+zszy4AJQTGXP+V5/wAFDPjd4T/aU/by+M37QPgGR5tA8Z+Ndd1jS5JEMbvY3d5LJbsyMAVZoipKkZB4Nf6cPxi/4OGP+Dbn9ojwf/wr39oD4g6H460Dz0uv7M8Q+CNZ1Oz8+LISTybnSZI96hjtbbkZODzXyr/w8r/4M2/+hc+FX/hp7r/5R0Afkb/wZxft8/st/s33Xxe/Z5/aG8a6V4K1TxheaLf6A+s3KWVtfSRC4gmhSeUrGJgXh2Rlg0m47QcGv6V/+Djb/gkXq/8AwVO/Y8tbr4PQRv8AFb4azT6n4bjkZYxfwzqou7AyNwhnWNHiZiF86NAxVWZh8T6b/wAFPv8Agzs0bUbfWNH0T4XWl3aSJNBPD8KbuOSKSMhldGXQwVZSAQQcg8ivvL/iKN/4IUf9Fz/8tnxD/wDKygD/ACKfGHg7xb8PPFWoeBvHul3Wi61pM72t7YX0L29zbzxnDxyRuAyMp4KsARX9TX7Av/B3B+3H+x18DdL+AfxT8LaT8WdN8PWyWek6jqdzNZ6pFbxjbHFPOnmLcLGoVULRiTaMM7cEf0jftZf8FSf+DSH9ubUE1z9qvWtA8XaqiLGNUl8JeIrbUvLQYVDeW2nRXJRR0QybR2FeBfBH9qj/AIMq/wBnfxba+OvhfF4ej1WxcS28+p+GfFOseVIowrouoWVwqsvUMBkHkc80Ad1/wSI8Df8ABSb/AILEftf+F/8Agrf/AMFE2n8HfDHwFHNP8NPCOnGXT7K6vLlTGbxYS7TSQLGSWnmYm5cqqfuFKV/ZvX8/6f8AB0V/wQljQRx/HEKqjAA8MeIAAB/3DKd/xFG/8EKP+i5/+Wz4h/8AlZQB+/1fMPx//bY/Y8/ZSljtP2mPin4U8BXU1sbyC117V7Wwup4ASu+GCaRZZRuVlHlq2WBAya/J/wD4ijf+CFH/AEXP/wAtnxD/APKyvmz43f8ABcH/AINZ/wBpnWrPxJ+0hrng74g6jp0BtrS68S/DzU9WnggLFjHG91o8jIhYltqkDJz1oA/z4v8AgtZ+1v8ADb9uj/gqJ8Xf2oPg7JLceFvEOo2kGmXEyGJri20uyt7BJgjfMqzC38xAwDBWG4A5Ar/8EXP2tvhr+wv/AMFPvhH+1H8YpJoPC3hvUrqLU57eMzPBbalZ3Fi82xfmZYhceYyqCxVTtBOAf7uf+Hlf/Bm3/wBC58Kv/DT3X/yjo/4eV/8ABm3/ANC58Kv/AA091/8AKOgD+lz9n79t39jj9q6ZrL9mf4qeFPHl3Fai+mtNC1e1vruC3JVd80EUjSxAMyqfMRcMQDgnFfUNfy1/BL/gt9/wayfsz67eeKP2cNb8G/D/AFPUIPst1d+G/h3qekzzwbg/lySWujxs6bgG2sSMgHGRX0t/xFG/8EKP+i5/+Wz4h/8AlZQB+/1f5kP/AAeF/t0/s0ftY/tBfCX4X/s5eMNM8a/8K703WDq95o9wt3Zw3Wpy24EAnjJieRFtcuEZtu4A4OQP64P+Io3/AIIUf9Fz/wDLZ8Q//Kyvgu//AOCnX/BnTql9Nqep6F8Lrm5uXaWWWX4U3TvI7nLMzHQySSTkk8k0Afwbf8EYf2kfhh+yL/wVE+DX7QvxovjpnhXw/rZGp3gRpBbQXcEtsZWVQWKRmUM+0E7QcAniv9mb4M/HX4KftGeBofid8APF2jeNvDtw7RR6noV9DqFoZExvTzYHdQ65G5CdynggV/Kv/wAPK/8Agzb/AOhc+FX/AIae6/8AlHX1b8H/APg4b/4NvP2evBy/Dv4A/EPRPA/h9ZnuBpnh/wAE6zplmJpcb5BDbaTHHvbA3Ntycc0Af0oV/iqf8FsfgX8Wv2f/APgqp8dPC3xitrmK+1fxhq+vWNzcj/j903VrqS6tLhG+6yvFIoO0kK4ZDgqQP9K3/iKN/wCCFH/Rc/8Ay2fEP/ysr5i/aT/4Ldf8GuP7Yul2ej/tS+K/D3j2LTt4s21rwTrd1Na+Zjf5Er6X5kW7A3bGXOBnpQB/Ct/wR1/4Ki/8FPf2J/FWr/s9/wDBO3Tk8YXnxGmjYeG59Mk1bN9GuwXVvFE6PHIsfEjFvKKKDICEUr5n/wAFmP2Z/wDgoj8AP2um8Yf8FMbr+1viL8R9LtPEU2pxOJoJFdBD9mWSONIA9n5YgeKDMcYVQhKFSf7/AH9nb/guH/wa7fsj6bcaT+zD4r8OeAorwAXLaJ4H1qzluMYx5skelB5MYGN7Gtr9oP8A4Lzf8Gyv7WHhOLwN+0z440Lx5pNtIZoLbXPBet3qwSkYLxebpTGNyONyEHHGaAP4Zf8AggR/wUb/AGjv2B/2i/FXhb9lL4YL8VvHnxZ0eLw7oWlNLJGkOopOssM8qRLukgjXzDMnmQgL8xljVWNf6bX7fX7dnwd/Yi/Yb1L4g/tneJ9D8I+K9X8K3iQaRBdGVtQ1kWgEttpsbhZ7lVnkVA/ljarK0mwEkfj9+zX/AMFkf+DU/wDY7ubnUP2Xdf8ADPga9vU8q4vNJ8Ea3Bdyx5zse4GlmVkzztLkZ7V6J8cf+C8//BsZ+07a6dY/tKeLfC/xDg0d5JLCPxN4B1bVktXmCiRoRdaRIIy4VQxXG7aM9BQB/k+1/p/f8GmX7f37LGof8E1dF/ZH8Q+N9I0bx94EvteubjRtRuo7W5k02SeXUGu4llKiSGNJX81kJ8rYxfauCWf8PK/+DNv/AKFz4Vf+Gnuv/lHXd/Dz/gr7/wAGlHwi12XxR8J/+FfeGNTntZ7GS70n4ZX9lO9rdIY5oWkh0VWMcqEpIhO11JBBFAH8f/8AwdH/ALaP7P8A+29/wU7Hjf8AZr8QW/irw54V8J6b4cbVrJvMs7m6gnurqUwSDiSNftQTePlLK20kYJ4L/g2j/bB+B/7Ff/BVPw38Sf2iddg8MeFtZ0fU9Cn1a8JW1tJbtFeFpnwdkbSRKhc4VNwZiqhiP7Av+Hlf/Bm3/wBC58Kv/DT3X/yjo/4eV/8ABm3/ANC58Kv/AA091/8AKOgDt/8Ag6N/4KO/sg6T/wAEqPFf7OPhbx9o2v8AjX4sWugXOg6dpV3HeyTaW97bX4vj5JcLay28DeTMSFlLLsLDOP8ALNr/AFL/ABr/AMFdP+DR/wCJUumT/EWP4d6++iadbaPpzal8Mb66Npp1kuy3tYTLojeXBCvyxRJhEHCgCuL/AOHlf/Bm3/0Lnwq/8NPdf/KOgD9ov+CN/wC3H+zX+2d+wt8N2+CHi/Tdc1zwv4R0Kx8SaTBOv2/Sb2O1WF47m3OJIwZYZRG5XZKELIWHNfxm/wDB25/wSE+JXgL9oS8/4KZ/AvQZdR8D+L4YF8YCxiaRtK1aBPK+1zIo+S2uolj3S/dE4beQZU3f0HfAz/gu1/wa/wD7MDam/wCzT4n8KfDw60IRqJ8M/D/VdIN2Lff5XnfZdHj8zy/MfZvzt3NjGTXu1/8A8HP/APwQa1Sxm0zU/jbHc21zG0UsUvhfxA6SI4wysp0wgqQcEHgigD/Ky/Y4/bI/aD/YL+P2jftK/sza42h+J9GLKGKiW3ubeTHm29xEfllhlAwynB4DKVdVYf19/wDEYl+31+0t4XsP2dv2WvgRpNv8XfFcg0zTtRsrufVAbm4+VWtdNaJf3ik7lMtxLGuMurKCD9mfFP8AaB/4MkfjH4pn8ZeM7Tw/FfXTM8v9k+HfFejwszAgnyLC0t4QTnOQnXnrzX13+yh/wVy/4NQP2GhdS/sn+ItB8FXV6gjuL2z8I+IHvpYx0R7qXTZLhk77DIVzzjNAH6cf8ER/+CaPiX/gnd+zPqOpfHq/HiL43fFHUX8S/EDXHl+0yz6hOWZLfzzzIluHbLZIaZ5XU7WAH7OV+Pv7MH/Be/8A4JNftl/HTQv2a/2bPiv/AMJJ418Sm4XTdO/sLWbPzzawSXMv766sYYV2wxO3zyLnGBliAf2CoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivib9t3/got+xt/wTk8G6L8QP2zPGP/AAhukeIb1tP0+f8As++1HzrlEMhTbY29w64QE5ZQvbOaAP8AHn8O/Er9p74Dft8+Kf2j/wBkwarB4r8BeKdU1SO+0u2kuRaoLmVHM6orL5EiM0cqyfI6MytkEiv9FL/gmv8A8HXH7AP7WHgjT/Dn7Wur23wX+IscaR3sOqFxoV1KOGltb3DJEh6mO6MbJnaGkA3nM/ZK/wCC0/8AwbAfsM+H/EPhr9l34jQ+GIPFmrTa5q7jw/4nup7y+n+88k1xYSSFRzsj3bEydqjJz4B+0z+3z/wZyftg+IJvF37QU/hzV9ZuWL3GpWvhPxJpd9Ox6tNcWOn280p93diKAP1//au/4OGv+CSv7K3w3vvHEvxg0Dx9qEMebTRPBl7Drd7dykErGptneGLOOXmkjVe5zgH/ADqf2bv2LP2zv+DjL/go94y+Nei6M2gaH4s8Qyap4q8ReW76XoNnM2Ut0d8efOkIWOCEHe+AzbEDuv8ARv4K8a/8GN3gLX4vEukJY3VzAVKJqWneNdQt/lAADQXMMsLjjnehyeTmv2d+HX/ByH/wbx/CDwbY/Dr4T/FXTvDHh/S4/Ks9M0rwfrlnaW6f3Y4YtKVEHsAKAP3W+AHwN+HP7MvwR8Kfs9/CKy/s/wAM+DdLttI02AncywWqBFLtxudsbnY8sxJPJr/N7/4OlP8AgiZ8Rv2dP2h/EP8AwUM/Z60ObVPhh49un1LxGllGZG0LWbglriSZFBK2t0+ZVlPypM7xttBi3/1yf8RRv/BCj/ouf/ls+If/AJWVWvP+DoH/AIIOajZy6fqHxuSe3nRo5YpPC/iBkdGGGVlOmEEEcEHgigD+ev8A4NOv+CyH7Iv7Nf7N/iv9iX9rfxnp3gG6tNdn8Q6BqetSi1sLq2vIokntzO+I45YpYfMAkZfMEuFyUIr8Uv8Ag5W/4KJfDH/gpp/wUZsrv9mO5k8Q+EPBWjW3hbSby3icjVLszyzTzQIRvZGkmWGP5RvEYZQQwJ/o/wDix+0R/wAGSnxq8TT+LvG9p4dhvrklpDpHhvxVosTMc5bytPs7aLcc5J2ZJ5617l+y1/wUa/4M/f2LfEMfjH9mq/8ADvh3XIDmHVX8JeI7/UIDjB8q6vNPnniyOux1z3zQBs/8GsX/AARQ8e/sI+ANW/bV/ao0p9I+JXj7T0sNK0a5Urc6Norssz/aEIBjurp0jZ4z80MaKrYd5EX+j/8A4KBfs43/AO15+w/8WP2Y9Gljg1Hxx4W1PSbCWY4ijvZ4GFsznn5Fm2FvYGvzA/4ijf8AghR/0XP/AMtnxD/8rKP+Io3/AIIUf9Fz/wDLZ8Q//KygD/I6+I/w48efCDx7rHwt+KOkXWg+IvD93LY6jp17GYri2uIWKvG6HkEEf1HFf2Ofstf8HUX7UmmfsFfD7/gnb+y98Hptc+N2n6LaeCtB122nN3G0drGLa1ni05YWeW6SBVBV5fK8xfNbcmYq/Zb9rj/gpL/waG/t2+KYPHX7Ves6L4q163RYxqh8MeJrK+kjTG1Jbi0sYJZUXGFWRmVRkAAE10X7Iv8AwVQ/4NKv2D7mfU/2Tde0PwfqNyhil1KHwp4judRaJsZj+2XOnzXPlnAJTzNpIyRmgD/NW/aF8HfFT4d/H7xz8P8A46zSXHjfQvEGp6f4hlmn+1SPqtrcyR3bPPlvNYzK5MmTvPOTmv7c/wDgzK/bj/Zs+Eeg/E39kn4ueL9N8MeLPF3iDSr7w3aanOtsNWlnja1a3tnchXuBIsQWHPmSeYNithsfqV4u/wCCrX/BoP8AEDxVqXjrx5YfDXW9c1m6lvtQ1G/+Ft7c3d3dXDF5ZpppNEZ5JJHJZ3YlmYkkkmjwj/wVa/4NB/h/4r0zx34DsPhromuaLdQ32n6jYfC29tru0urdg8U0M0eiK8ckbgMjoQysAQQRQB+hX/BwP+3T+zP+y5/wTe+MHwo+J/jDTNP8afEHwVq2i6B4fadW1O+bVYZLISR2ykyeSjOxeUqI12kFs8V/jsV/qz/G7/guD/wa0ftM6zZeI/2kNd8HfEHUdNhNtaXXiX4eanq00ELMWMcb3WjyMiFiWKqQMnPWvE/+Hlf/AAZt/wDQufCr/wANPdf/ACjoA+1/+Dc3/goP+yL8eP8AgnN8G/2cfBvjzSD8R/CPh5NH1HwtcXccOrq+mgq8kdq7CWWExgSCWMMgU4YhgQP6Jq/lN+En/BZT/g09+APjWH4k/Am58B+CvEVtHJFDqug/DXUNNvY45l2uqz2+ipIFdThgGwRwa+tP+Io3/ghR/wBFz/8ALZ8Q/wDysoA+f/8Ag5y/4I6eLP8AgpV+zVpPxo/Z5sPt3xY+Fq3ElnYJgSaxpU+GuLNScZnRkEtsCcE+YgG6UEf5Ter6RrnhbW7nQ9etZ9O1LT5mhuLe4RoZ4JoiQyOjAMjqwwQQCCK/15P+Io3/AIIUf9Fz/wDLZ8Q//Kyvzt/au/4KSf8ABoN+29r7eL/2n9T8P+JtckAEurDwp4jsdSlCjaoku7TT4LiQKOFDyMF7YoA/Ab9jv/g8R/br/Z0+Cen/AAf+Mvg7Rfirc6JapaWGuahcz2eovFEoWP7Y6eYtyygAGTbHI/V2ZiWP9C//AARZ+CX/AAUa/wCCif7Vtj/wWc/4Kd3F14c03SNOuLX4XeDrXzLCygg1JGjnvBaFy4gaFisbXBeW5LCQny4od3jf7P37ZX/BmH+y94yt/iF8GD4dstbs5DNbXl/4X8T6rLbyE53wm/sbjymB+6ybSvQECv1Y/wCIo3/ghR/0XP8A8tnxD/8AKygD41/4Orv+CR3xA/b2/Zy0D9pv9m/RW1r4jfCpLlbnTbVC95quhT4eWKBVBMs1tIvmxRDlleULucqrf5e3h3xD4v8Aht4zsfFXhi7utF17QL2K7tLmBmgubS8tXDxujDDJJHIoIIwVYeor/XT/AOIo3/ghR/0XP/y2fEP/AMrK/M39qD9vv/gzo/bK8Uz+O/2irrw9revXbM1zqlv4V8S6ZfXLt1ae4sbC3llb0aRmI7GgD8ivgP8A8Hqv7XngL4NW/gX4zfCnQ/Hvi+ztBbReIlv5NMFxKows11aRwSJI54LiF4FY52hc4H9BP/BC79i39sD40/G7xB/wWo/4KmxY+KnjrTl07wVocsRhXw5oEuWPl2zFjbGZW2RRkmVYjI0rNJO+Pl79m39ur/gzc/ZH8a2/xI+AU/h7SPEFk5ktdRufC3ibUrm2cnO+GS9sZ2iYdmjKkDgHHFfp/wD8RRv/AAQo/wCi5/8Als+If/lZQB+/1FfgD/xFG/8ABCj/AKLn/wCWz4h/+VlH/EUb/wAEKP8Aouf/AJbPiH/5WUAeaf8ABzH+31+yz8Cv+Ca/xX/Zn8U+NNL/AOFl+N9Ht9O0vwvDcJLqkiXk8eZ5LdSXigWJZH82UKjbNqkuQp/yUK/1UfjH/wAFov8Ag1L/AGifF4+IP7QN/wCB/HWviBLUal4h+G+o6neeRESUj8650aSTYpZiq7sDJwOa8p/4eV/8Gbf/AELnwq/8NPdf/KOgD9J/+CDv/BQv9kr9pD/gm/8ACP4c+BvHmjS+L/hz4A0rTvEmhS3ccOo6euhW0NlPcTW7sJFttyKRPjysOvzZOK/hB/4Osv20/wBnn9tb/gpPo/iH9mbxPZeMPD3g/wAF2Hh+41TTZBPZTXyXl7dSiCZfklRUuY13oWQsGAJxX9d3wj/4LSf8Gpn7P+sX/iL4D6h4H8E6hqtjJpl7daB8ONR02a5spmVpLeV7fRo2eF2RS0bEqSoJGQK8o/4eV/8ABm3/ANC58Kv/AA091/8AKOgD+Nb/AINw/wBrL4Nfsa/8FZPAXxW/aA1uDw14TvLTVdHvNVuzttrR721kWF5m52RmYIjOflTduYhQSP68/wDg7o/b7/ZZuv8Agndafsp+DPGuleIPG3jfVdE1i303S7lLt00dAbtL2RoiypDMPK8ksQZQ4ZAyhiO2/wCHlf8AwZt/9C58Kv8Aw091/wDKOu58f/8ABXv/AINJfixq1tr/AMUx8PfEt9ZWdvp1vc6r8Mr+8mis7RBHBAjzaKzLFEgCxxghUUYUAUAf5Zdf7lP7Cn7cX7Nn7efwG0j4ufs5eL9N8Tw/YrM6nb2k6vdabdTRBzBdw58yCUHcNsijOCVyOa/nR/4eV/8ABm3/ANC58Kv/AA091/8AKOvoz4H/APBe7/g2S/Zj06/0j9m3xf4Z+HtpqsiTXsHhrwFq2kx3MkYKo0q2ukRh2UEhSwJAPFAH9ONFfgD/AMRRv/BCj/ouf/ls+If/AJWUf8RRv/BCj/ouf/ls+If/AJWUAeO/8HWH7D/xf/bQ/wCCZK3vwL0ybW9e+GfiG38VS6baoZbm70+K3uLa6WFBy0kazrPtGWZImCgsQK/yuPgj8U9c+BHxq8IfG3w5DHPqXg3W9P1y1imz5bz6dOlwivjB2lkAOOcV/rU/8RRv/BCj/ouf/ls+If8A5WV+enxW/wCCk3/Bnn8cPH0/xS+K8fgnW/EN3Mbi6v5/AOsCa6mbq9wV0pfPY9zLuJoAt/sSf8Fev20/+C537a/w6h/Y/wDDOr/B34E/C27TXPiFrFxJDdy6xdeUwi0cP5flmKUsQyr+82Ezny2SMH5L/wCDzL9uX9mjxn+zX4O/Yh8A+L9O1z4g6T44g1zWtLsJluJNMt7KwvINl0UysMrvdoViciQgE7cc1+vXw2/4OPv+Dd74NeC7H4cfCL4pab4W8PaYnl2mmaR4P1yys4E9I4YdKRFGfRRXzb8Qv+CuX/Bo78XPGmofEj4rxfDvxP4i1aTzr7VNW+GN9e3tzJgLvlnm0R5JGwAMsxOABQB/mMfBzxrb/DX4u+FfiNdo0sWgaxY6k6Jjcy2sySkDPGSF4r/YR/bJ/wCCvv8AwT10D/gmr4t/am8PfFXQNW0HxNoGraf4eW0ulkutR1Y2h22Mdt/rhcK0sXmxuimAOGl2LzX5Rf8ADyv/AIM2/wDoXPhV/wCGnuv/AJR12t3/AMFdf+DSDUPAFl8J7+P4eT+FtNvJtRtNGk+GN82n295cKqSzx250TyklkREV5FUMyqoJIAoA/wAs+v8AUx/4NLP24/2bPHX/AATV8F/sX23i/TYPiZ4Ku9dE3hy4nWLUJrW5vp79biCJiGmiCXOHaMNsKkNjiuJ/4eV/8Gbf/QufCr/w091/8o69Q+EH/BZv/g1E/Z88ZJ8RfgHeeBfA/iGOKS3TVPD/AMNtR0y8WKXAdBPbaNHIFYAbl3YPegDzv/g7A/4JF/ET9uD4G+Hf2vf2a9EfXPH/AML4Li21PTbSMyXup6DK3m4gRQWlls5d8iRDlkll27nCqf8AMl8HeMPGnws8c6X488EX9zofiHw9fQ31jeWzGG5tLy1cPHIjDDK8bqCD1BFf65v/ABFG/wDBCj/ouf8A5bPiH/5WV+Yn7TP7d/8AwZv/ALYPi2fx/wDtBXHh7V9evGaS61K18K+JdLvLmRzkvPNY2FvJM5/vSMze9AH5OfBf/g9Z/a78H/ByDwR8VvhJoPjbxpb2q20PiFL6XTo7iZRtE1zYxwyK7scF1hlgUnO0ICAP6Gf+CFH7Dn7XHjn4r+KP+Cx//BUlDJ8ZfiVZJY+GNInjMX/CN+Hm+cRpbtn7K0wKqkWTLHEG8xjLNKK+Tv2Zv29v+DOX9j3xlb/EX9nq68P6J4gsyWtdTn8LeJdRu7dic7oZr2wneJu26MqwHGcGv02/4ijf+CFH/Rc//LZ8Q/8AysoA/f6ivwB/4ijf+CFH/Rc//LZ8Q/8Ayso/4ijf+CFH/Rc//LZ8Q/8AysoA/K3/AIPbf+THvhB/2PMn/pBcV/Pj/wAEPv8Agu/8ef8Agjo9p8B/2qfCuuaz8EPE8n9o2du8Dw3+lPOcvdaaJ/LSeCUndLBvVS37xGVi4k/qt/ar/wCC1H/BsD+25B4Qs/2pPiPD4utfA2tReIdItrnw/wCJ0t47+EFVeWKKwRJ0wSGimDxMOGUivZ/iz/wcS/8ABuR8evBdx8OPjf8AEnSPGHh+6/12m614M1u+tXI4BMU2lOmRng4yO1AH3L8Kv+C6/wDwSD+L/gZPH3h39oPwZptq0Yka21zUo9GvkOMlTa3xhnLDOPlQg9iRzX8jv/BzH/wX4/Z4/bF+Cqf8E6/2E76TxrZazqlpP4k1+3hkFnOLORZbezsQdr3DNcBHeQJ5f7tVjMm8lPcPFvi7/gxr8Z6s+tamtnbTSliy2Fh43sYvm6gRW8Mcaj02qMdsV9g/so/8FHf+DQH9iHWovFX7MWo+H/DetW4YQ6s/hTxJqGpRBuojvLzT57hAe4WQA96AOJ/4Naf+CE/xJ/Y6e5/4KAfti6PJonjzXNPew8MeHrpdt1pNhc4M1zdKeY7m4UBEiOHhiLB/nkKx/sd/wchf8oS/j5/2CtP/APTnaV5//wARRv8AwQo/6Ln/AOWz4h/+Vlflj/wWy/4L/wD/AASP/a5/4JcfF39nP9nn4tf8JD4y8UafZwaZp/8AYOs2nnyRX1tMw825sIoUxHGzZeRQcYHJAoA/zU6/0SP+CWP/AAdI/DT9mL9n/Qv2RP8Agqt4a1/wf4t8B6NZWmmaxZ6a00WpaUtuhsTNbrtkjma3MeyRFeGdMSbkzg/529f6UTf8FPf+DW39qH9kj4UfC39u/W9E8UeIfCPhDRdInku/C2v/AG+ymtLSJJoIr+109ZgglDZEU3lseRng0AfxX/8ABZv/AIKMyf8ABUj9vnxT+1FpdhPpPhsw2+j+HbG6INxDpViCIzLtJUSTSNJO6gsEaQoGYLuP9t//AAaTf8Eh/iF+yX8Ntf8A29f2kNFm0Pxf8RLCPTfDmnXYKXNpoDslxJPLGeUe8lSIqjAMscSn/loQOb/Zv/bF/wCDMT9kzxnafET4GSaFp+u6fJ5tpf6h4b8U6vPbSZyHhfULK5Mbj+Fkwy9iK/V3/iKN/wCCFH/Rc/8Ay2fEP/ysoA/Lz/g9R+Bfxb8f/sYfDH4y+C7a5vfDPgTxFdjX0gG5LddThjitrmUDkIkkbRB+gaYA/eFf5xnwj+LHxD+BHxR8PfGj4S6pLovifwrqFvqml30OC8F1auJI3AYFWAYDKsCrDIIIJFf60et/8HOX/BA7xLo914d8R/GeHUNPv4Xt7m1ufCuvywzRSAq6OjaYVZWUkMpBBBwa/Pbwh/wUP/4M3PAPjpfiT4Q0/wABWOsxyCaKdPh5qxWGRejRRnSTHEw6goqkHkUAfz7/ALZvxV/4ODv+Cx3/AATj8Q/tT/HXQ7bRPgX8PYLbWnsNP0+TSz4g2OsbXtvCwmnuo7VHaeWQvHaoiuyZdNo/kvt55bW4S5hOHjYMp9CORX+vY/8AwdBf8EHZLQ2EnxuRoGTyzGfC/iAoUIxtx/ZmMY4x0xX5wT/8FAP+DNK68en4mXGm+Am1gzfaDIfh7q/lGUtuLmD+yfJLbuclM5oA/W7/AIIsf8FG/wBr/wD4KffDnxL+0n8avhPZfDD4b3LWUHg1vtM1xf6m6RkX87GRI0e183aIJEjQfeT94UL1/Hb/AMHVP/BFr4i/An9obXf+Cjv7P+izan8OPHlx9u8UJZx7zomtS/66aVVGRbXjfvfNOVWdnViu6IN/WBYf8HP3/BBnSrGHS9L+NkdtbW0axQwxeF/ECRxxoMKqqNMACgDAAGAKW+/4OgP+CDep2U2m6l8bUuLe4RopYpfC/iB0dHGGVlOmEEEHBB4IoA/yk/2V/wBqb45fsXfHfw/+0j+znrkvh/xZ4bn861uY/mR0YbZIZoz8skMqEpJGwIZT+Nf156J/weD/APBS39ovw/pn7PX7OnwW8PS/FjxMU06wvtMW71BnupRt322nOSBIDl182WWNcZdWUGvu/wCKHx9/4Mjvi/4rm8aeMLTw/DfXDFpBpPh3xXo9uWYEE/Z7C0t4QTnPCdeevNfZH7Kf/BX/AP4NSf2Hra5i/ZQ8SaD4JmvF2XF5Y+EPEBvpk4wkl1Jpr3DoMZCtIVB5xkmgD9K/+CI//BPn40/sOfs4614t/a08S3viv42fFrVD4n8b3d1eNdxw3jrsitoyCYz5MfEjxjDOSqkxJEB/EB/wdQf8EhPiV+y5+114g/bs+E2gyXfwp+J13/aOoXFlEzx6Prk+PtSXO0YjS7mJnikJ2s8jx8FV3f2Qf8RRv/BCj/ouf/ls+If/AJWVj+IP+Dmz/ggR4t0K88L+KvjLb6npmoQvb3Vpd+FNemgnhkG1kkjfSyrqwJBVgQR1oA/y+v8Agn//AMFB/wBpX/gmn+0LY/tHfsx6sljqkUZtL+yuU82x1OxdleS1uosgtG5RTlWV0YBkZWANf1kXv/B2N/wUj/b703TP2Pv2EfglYeH/AIseNSdNg1axvpNUliMoO+a1t5YYY7YxrlzNcSzRxKC7AAZH1j49+NX/AAZB/EnxLceK/EdnoUF3cv5jppmg+LtLtw2Qflt7K1ghQcdFQDtjBNfd/wCyv/wWd/4NYP2ItGutD/ZQ8V6H4Gjv8fa5tN8H6+t1cgYwJrhtMaaQDHAdyAemM0AfrN/wR8/4JwaR/wAEyv2N9L+DOq3aa3481yeTXvGuuhmlfUtcvMGZvNkAkeOIYiiLAFlXewDu9fwu/wDB01/wRa+In7Nn7SGv/wDBQj4DaLNqXwv+IV42o+IPskZf+wtbuCTO0yqMrbXcmZUlPyrM7xttzHv/AK8f+Io3/ghR/wBFz/8ALZ8Q/wDysqlqX/Bz3/wQX1nTrjR9Y+Ncd3aXcbwzwTeFtfkjkjcFWR1bTCGVgSCCMEUAf5Uf7JP7Wvx5/Ye+Pmg/tKfs3a5JoPirw/KWhmUb4ponG2SCeM/LLDKvyujcEcjDAEf116T/AMHfH/BTf9qHRdM/Zw/Ze+C3h8fFnxQV06xv9MFzqLtcSLgyW1hISqsvLgzSyxIBl1ZQa+5PiV8d/wDgyK+LHiqbxl4rtNAgvbhi7rpPh7xZpFuSeCRb2FpBAPwQc89a+1/2VP8AgsV/wao/sQWFzZfsoeJtB8EPejbc3Wn+D9f+2TqMYWW6k0155FGMhWkKg8gZNAH6R/8ABG79hXx7/wAE5v2Rdc8X/tg+MZtd+KXj6+uPGfxC1rU9QM1rbXbR5aMSu3lBLaFf3swwGfcd3liML/n1f8HTv7ZvwC/bX/4KdQeMP2b/ABJZ+LvDvhLwhpvhttV05/Os57mG5vLuXyZR8sqL9qC70JQsDgnrX90Wtf8ABzp/wQP8SaPd+HfEXxohv9Pv4ZLa6tbnwrr8sM0MqlXjkRtMKsjKSGUggg4PFfCf/Dyv/gzb/wChc+FX/hp7r/5R0AfyD/8ABs3+2B8B/wBiz/gqdoPxJ/aO16Dwv4Z1nRNT0J9VuzttbWe7CPC079I42eIIZD8qlgWIXLD/AFwvh78Rvh78XPBen/Ej4U69p3ifw7q0fnWOqaTdR3tlcxgld0U8LNHIuQRlWIyCK/k1/wCHlf8AwZt/9C58Kv8Aw091/wDKOvsr4df8HIn/AAbx/B/wVp/w1+EvxU03wt4c0mMxWOlaR4O1yxsraMsWKxQQ6UkcalmLEKoGST1NAH9Fd5DJc2ktvDIYXkRlWRcEoSMAjPGR1r/B7/aQ+CPxW/Zu+PPi34FfHGxuNP8AFnhfVLiw1OK5B3meNzmQE53rKMSI4JDqwYEgg1/rHf8AEUb/AMEKP+i5/wDls+If/lZXx1+0n/wWE/4NRP2wtWtfEP7T+ueGPHGp2UawwX+q+CNbmvI4lJYRi4/ssS+WCSdm/bknjmgD+Pf/AII0/wDBUX/gtH8L/Cdz/wAE9f8Agmjp0fi7/hILqS8sba40sahLoclzhZrmKaRlgtoC2HkN0Ht1fLYBdt35gf8ABS39mf8Aas/ZO/bU8b/Cr9tS6OqfESa8/tfVNWEkk0OqPqY+0G7imkjjMqyM7AsFADqy9VIr/Sf+BX/Bfn/g2i/Zg8KHwN+zl460LwLpDsHe00LwTrVhFI4/icQ6Uu9ufvNk+9cP+0p/wWv/AODWj9sW0s7T9qXxR4d8ef2cGW0l1nwTrdzPbK/3hFM2l+ZGCeSEYAnk0Afymf8ABtP/AMFIv2xP2b/FniT9iX9i34UWXxH8XfFXW9Hvo73UrmaCw0azsS0d9cXggQt5PkOMS+YnlOAdsxZYm/0H/wDgpn/wUc/Y1/Yh+AHje1+PvxC0PRfEsvhq8n07w5JexHWr83EcsUHkWIYzukkylBIE8tSGLMArEflN+zl/wXJ/4NfP2QtEufDv7L3i/wAP+ArW+KtdDRPBOt2j3JX7pmkTSg8pHYuzY7VR+NX/AAWw/wCDVf8AaT8UweOf2itV8FePtbtbVbKHUPEfw51LVbqO2RndYVlutGkdY1d3YIDtDMxxkmgD/Klr/UQ/4NWP+Cjv7G03/BM74dfsZeJ/iLoOg/ErwzquraZH4f1W9isb6+fVNSuLy3+xxzMhujILkIFh3sHBUgcZyv8Ah5X/AMGbf/QufCr/AMNPdf8Ayjrp/BX/AAVi/wCDQ74a+LtN8f8Aw6s/hvoGvaNcR3dhqWm/C69tbu1uIjuSWGaLRFkjdSMqysCDyDQB+4H/AAVu/ZU8Yftt/wDBNz4v/swfDwofEPifQXGlRyMESa+s5Eu7eIsSAollhWPcThd2TwK/xRfG3gnxh8NfGGp/D74g6XdaJrui3Mtlf2F7E0FxbXELFZI5I3AZXVgQQRkGv9dL/iKN/wCCFH/Rc/8Ay2fEP/ysr4t/aM/4K5/8Gmv7XOvp4u/aW1Xwr4z1mNEiGpal4G1qS+8uP7qG5/soTFB2UuVHpQB+X37KX/Bdj9ub/gph8AvhB/wSu/4J4+C7/wAEfE6DT9J0nxf8Q0lWe10bRtJEUM9/bptxGZUQF/NOQWMMQeSRHX/QE021uLHTreyurh7yWGNEeeUKHlZQAXYIFUFjydqgZPAA4r+Zz4C/8F8v+DZz9lnwpJ4H/Zs8c6D4D0ieQSzWug+CdasI5pAMb5BDpS+Y+ONz5bHevcv+Io3/AIIUf9Fz/wDLZ8Q//KygD9/q8F+On7VP7Mf7L9lY6j+0p8RfDPw+g1TzvsT+I9WtdLF19n2eaIftMkfmFN6bgmSNy56jP49/8RRv/BCj/ouf/ls+If8A5WV4L8cv+C8n/BsR+09Bptr+0r4r8LfEOLRmlbT08TeAdW1ZbRp9olMIutIkEZcIm8rjdtGc4FAH8OH/AAcmftzfA/8Ab8/4Kd6z8Uv2dNS/tvwn4e0Ww8N2uqKpWG+eyaWSWWHdgmLzJmRGIG8LuHykE/lx+wt8ddB/Zf8A21fhJ+0f4qhmuNJ8CeMdE16+itgGmktdPvIppljBIBcxowUEgZxk1/oo/wDDyv8A4M2/+hc+FX/hp7r/AOUdH/Dyv/gzb/6Fz4Vf+Gnuv/lHQB/RR+zX/wAFHf2DP2wTptn+zX8XvCni7U9VtjdwaRZapbnVhEq7mMlgzi6jKDlw8Sle+K+1a/lS+EP/AAWa/wCDUP8AZ88ZJ8RvgJeeBfBHiGOKS3TVNA+G2o6ZerFKMOgnttGjkCsB8y7sHvX1f/xFG/8ABCj/AKLn/wCWz4h/+VlAH7/V/n2/8HmP7dP7NHxZ8E/Dj9kL4R+MNM8T+LvCviXUNQ8R2ml3C3X9kyWsJtRBcvGSkdwZHkVoSfMjMZ3quVz/AEKf8RRv/BCj/ouf/ls+If8A5WV8SeMf+Crv/BoV8RPFmpePfiBY/DbXdd1m5lvdQ1HUPhde3V3d3M7F5JZppNEZ5JHYlmdiWYkkkmgD/N7/AGKPi34a+AP7ZXwk+O/jMyDR/BXjTQdevjCu+QW2m30NxLtUfebZGcDua/23v2df2rP2av2uvBJ+I37MPjvQ/HmioyRzXOi3sV2LeV1DiKdUYvDLtIJjlVXAPKiv5gf+Hlf/AAZt/wDQufCr/wANPdf/ACjr6U+CP/Bfj/g2b/Zm0W88N/s3+NPDfw+07UZxc3dr4a8CavpME84UKJJEtdIjV3CgLuYE4GOlAH9NNf5D/wDwdFfAv4tfCL/gsh8TfF/xHtrk6Z48/s/W9A1CYZju7EWcFuVjbp/o8kTwFeqhAcYZSf74v+Io3/ghR/0XP/y2fEP/AMrK8H/aC/4L1f8ABsx+1f4Qj8BftMeOdC8eaPBIZ4LXXPBet3qQSkbfMi83SmMb4JG9CrY4zQB/nl/8Eof+ClP7d3/BOv4230n7CcKa5rPj6KHSrnw5Pp8mqRapLGzG2220DJM08TO/lGNg3zsCCrEH6B/4Li/AH/gq94e+J3gn9rP/AIKqjzvEfxT0hpNPSIKItJgs5X26YyRIIIJIkkWbyUZzibLsZfMx/bj+zj/wWS/4NTv2QriXUP2Yte8L+B724Ty5b3SfA2tQXkif3XuBpXnMvszkV7D8af8Ag4U/4Nu/2j/As/wx/aA+IukeNfDty6ySabrfgzW762Mifdfy5tKZQ6/wsAGHYigD/PF/4Isf8FAviL/wTf8A23LP43fCnwFL8S9e1vSL7wzZeH4JZIprm51Ly/I8vyopndhPHHmNU3OuVBBII/1k4f20dO/Ze/Yl8KftH/8ABUzWPDXwl8QXOnW5162ju2NlHqskTzNZ2YcvLPPsRyIIjM5KOEMirvP4Q/s7/wDBWP8A4NKf2TPFLeO/2b9S8KeD9dZWQanp/gbW0vUR/vKk50syorZwVVgCO1fQHxp/4OC/+Da39pLwrD4F/aJ8eaB4+0O2ukvodO8R+BtY1W0juo1dFmWG60mRBIqSOocDcFZgDgmgD/Ko+MHjSD4k/FrxT8RLVGji1/V77UUR8blW6meUA44yA3OK/v8Af+DMz9ub9m7wd+zj4z/Yf8feLdO0Px9qnjaXXdE0zUJ1t5dTgvrG0g2Wm/AmlR7Ny0SEvhgcY5r65/4eV/8ABm3/ANC58Kv/AA091/8AKOuz+Hn/AAVy/wCDR34ReNNP+JHwoi+HfhjxFpMnnWOqaT8Mb6yvbaQgruinh0RJI2wSMqwOCRQB/OH/AMHfH7dP7NH7XX7VHw18Afs3+KrHxlF8PNH1GDVtQ0qVbmyS8vp0/cJMhKSPGsALlCyjeBncGA/Fj/gif+0x8M/2Pv8Agqd8Gv2h/jLfjSvC2haxLFqd6VZ1toL+1ms2mcKGbZH5+58AkKCQDX93F3/wU2/4M5b+6lvr7QfhbNPM7SSSSfCi6Z3djksxOh5JJ5JPWq//AA8r/wCDNv8A6Fz4Vf8Ahp7r/wCUdAH3N/wW+/4Kj/sOeAv+CT/xI/sn4meH9evvjB4J1jRvCFrpF/FfS6t/aUcuntNAIGfMELs4llOERo2QneNtf5D1f6l/iP8A4K6f8Gj/AIx8O6F4P8XR/DvVdJ8LwS2ujWV58Mb6e206CeRppI7WN9FKQo8rNIyxhQzsWIySa4v/AIeV/wDBm3/0Lnwq/wDDT3X/AMo6APtX/g2k/bj/AGa/2hP+CZvwr/Z/8D+L9NuPiH4A8PvZa54aadU1O1isrhoVuDbkh2t3V4SJkDRgyKjMHyo/Gb/g7x/4JCfEr4r6jpf/AAUx/Zw0GTWZdI0xdK8c2NhE0l0La1JNtqQjQFpFiRjDcMOY40ibGxZGX9KPgn/wW2/4NXv2afEl14y/Zy1jwX4A1e9tjZXF94b+HWp6VczWzMrmJ5bXRo3aMuisUJK7lBxkCvps/wDB0b/wQnPB+Of/AJbPiH/5WUAf5MfwD+PXxd/Zf+MXh/4/fAbXLjw34u8L3QvNN1G2xvhkAKkFWDK6OjMjo6lHRirAqSD/AGT+GP8Ag9R/bK8S/DW2+Gmg/AvQNW+JuoLFZWWp2t3dyWs13JhFK6UkZlkd3PyxpdjJIAzX6FfHP9rH/gyx/aN8YS+PfipF4cl1a5fzZ7jTPDHijRzNJncXlXT7K3WRmP3mcEt/ETXs37KH/BTT/g0T/Ye10+K/2W9X0DwrrXl+SNUTwn4ju9QSM8FUurrT5p1DfxBXG7vnAoA++P8AghF/wTh+PX7Nfhbxl+29+39dtrf7SHxxnS+8Q3NwyyTaXpyBTb6eCgCRsMBpY4sRJtiiUbYVJ/oLr8fv2Xv+C9v/AASb/bO+Ouhfs1fs1fFf/hJPG3iU3I03Tv7C1mz882lvJdS/vrqxhhXbDDI/zyLnGBliAf2BoAKKKKAP/9T+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8k+P3gLWPip8CfGvww8PSQw3/iTQdS0u2kuCywpNeW8kSGQqrMEDMCxCsQOgPSvW6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmr+Xf9ob4M+HPgR8QpfAHhz4g+GviQkEYabU/Cp1BrBJckGLfqFlYyOy4yWSNo+eHJyB/vB15JcfAD4EXdw91deCdBlllYu7vptuzMzckklMkk9TQB/g4aZaQX+pW9jdXUVlFNKkb3EwcxQqxALuI1dyqjk7EZsDgE8V/R5+yJ/wAGyf7TP7efgq/+In7I3x0+D3jbR9LuEtLye01HXYjBO6CQRyJPocbqxQg4K8V/qm/8M8fAD/oRvD//AILLb/43XceFfA3gnwLay2XgjR7HRoZ23yR2NvHbq7AYywjVQTjjJoA/zLf+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/zBP+IKn/gqb/0P3wq/8Gur/wDymo/4gqf+Cpv/AEP3wq/8Gur/APymr/T7ooA/zBP+IKn/AIKm/wDQ/fCr/wAGur//ACmo/wCIKn/gqb/0P3wq/wDBrq//AMpq/wBPuigD/ME/4gqf+Cpv/Q/fCr/wa6v/APKaj/iCp/4Km/8AQ/fCr/wa6v8A/Kav9PuigD/ME/4gqf8Agqb/AND98Kv/AAa6v/8AKaj/AIgqf+Cpv/Q/fCr/AMGur/8Aymr/AE+6KAP8wT/iCp/4Km/9D98Kv/Brq/8A8pqP+IKn/gqb/wBD98Kv/Brq/wD8pq/0+6KAP8wT/iCp/wCCpv8A0P3wq/8ABrq//wApqP8AiCp/4Km/9D98Kv8Awa6v/wDKav8AT7ooA/g5/wCCOX/Brx+35/wT1/4KQ/Db9sH40eL/AIf6n4Z8HPqjXttouoajPfSC+026s4/KSfTLeM4knUtulXCgkZOAf7xqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr+eH/g4o/4JKftHf8FcfgH8P/hZ+zfrXhvRNQ8KeIJtVu5PEtzdW0LwyWzQhYza2l2xfcwJDKox3zxX9D1FAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TUf8AEFT/AMFTf+h++FX/AINdX/8AlNX+n3RQB/mCf8QVP/BU3/ofvhV/4NdX/wDlNR/xBU/8FTf+h++FX/g11f8A+U1f6fdFAH+YJ/xBU/8ABU3/AKH74Vf+DXV//lNR/wAQVP8AwVN/6H74Vf8Ag11f/wCU1f6fdFAH+YJ/xBU/8FTf+h++FX/g11f/AOU1H/EFT/wVN/6H74Vf+DXV/wD5TV/p90UAf5gn/EFT/wAFTf8AofvhV/4NdX/+U1H/ABBU/wDBU3/ofvhV/wCDXV//AJTV/p90UAf5gn/EFT/wVN/6H74Vf+DXV/8A5TUf8QVP/BU3/ofvhV/4NdX/APlNX+n3RQB/mCf8QVP/AAVN/wCh++FX/g11f/5TV+J3/BSP/glT47/4JfeLz8Lfjp8U/AWv+N4/s7z+GvDU2rXV/Bb3KeYk0j3Ol2tqqFccfaPMORhCM4/2rK8/8TfCb4V+NdSGseMvDOlatdhBGJ72yhnk2LkhdzqTgZOBnHNAH+CPX7A/8E+v+CPHjT/gpVe6T4Q/Z8+NnwxtPGuqw3M48J63d6zaavClruaQuE0eW2YBBvzFPIu0jJDAqP8AYW/4Z4+AH/QjeH//AAWW3/xut3w78IPhL4P1Rdc8JeF9I0u9QMq3FpZQwSgMMEB0QMARweeaAP8ANI/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP8AME/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKav9PuigD/ME/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymr/T7ooA/wAwT/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApq/0+6KAP8wT/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKav9PuigD/ADBP+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmr/T7ooA/zBP8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pq/0+6KAP4Pf+CNv/Br3+33/wAE8v8AgpH8Nv2w/jT4v+H+qeGfBzasb220TUNRnv5Pt+mXdlH5ST6ZbxHEk6Ft0q4QEjJwD/eFRRQAUUUUAf/V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqhqd1JZWEl1EAWQZAPSgC/RRRQAUUVRsrqS5edXAHlSlBj0AB/rQBeooooAKKz7q6kgvLW3QDbMzK2evCk8flWhQAUUVHM5jheReqgn8qAJKKqWE73VjDcyABpEVjjpkjNW6ACiiqMV1I+ozWhA2xojA98tnP8AKgC9RRRQAUVQ1G6ktIUkjAJaWNDn0ZgD/Or9ABRRRQAUVQ026kvLYzSgAh3Xj0ViB/Kr9ABRRVCS6kTU4rIAbXjdye+VKgfzoAv0UUUAFFU9RuHtLCa6jALRozDPTIFW1OVBoAWiiigAoqhaXUk9zcwuBiFwq49CoPP51foAKKKoXt1Jby2yRgETS7Gz6bSePyoAv0UUUAFFIeBmqWmXMl7p0F3KAGlRWIHTJFAF6iiigAoqgt1I2pvZEDasSuD3ySR/Sr9ABRRWfqd1JZWZuIgCwZF56fMwB/nQBoUUUUAFFFUNPupLtJWkAGyV0GPRTgUAX6KKKACiqE91JFf29qoG2UOT6/LjH86v0AFFFVryZre0luEwWRGYZ6ZAzQBZoqG3kaa3jlfqygnHuKmoAKKKoW11JNe3NswG2EqFx1+YZ5oAv0UUUAFFZ9/dyWpgEYB82VYzn0Oa0KACiiigAoqhpl1Je2KXMoAZs5x04JHvV+gAoorP+1Sf2p9hwNnlb8985xQBoUUUUAFFUdTupLOxkuYgCyAYz061eoAKKKKACis7T7uS7a4EgA8qZoxj0AHX860aACiiqNxdSQ3lvbqBtmLA568DNAF6iiigAoqKdzFC8i9VUnn2qGwne6sYbmTAaSNWOOmSM0AW6KKKACiqEN1JJqM9owG2JYyD3+bOf5VfoAKKKo39zJapG0YB3yohz6McGgC9RRRQAUUVQ026kvLXzpQAd7rx0wrED+VAF+iiigAoqi91IupR2YA2vG7k98qVH9avUAFFFUdTupLLT5ruIAtGhYA9MigC9RSA5ANLQAUUVRs7qS4nuYnAAhkCDHptB5/OgC9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKypH1zzG8qOApk7cuwOO2flrVooAxt/iD/nnb/8Afbf/ABNZOvPr/wDZE/7u36D+NvUf7NdfWPr/APyB5/oP5igAL+IO0dv/AN9t/wDE0b/EH/PO3/77b/4mtiigDH3+IP8Annb/APfbf/E1kaU+v+befu7f/j4P8bf3V/2a6+sjSv8AW3n/AF8H/wBBWgBN/iDvHb/99t/8TRv8Qf8APO3/AO+2/wDia2KKAOP1B9f/ALSsP3dv/rH/AI2/uN/s1sb/ABB/zzt/++2/+JpNQ/5Cdh/10f8A9AatmgDH3+IP+edv/wB9t/8AE1Bcv4g+zSZjt/un+NvT/drfqC6/49pP90/yoA5zR31/+ybX93b/AOqT+NvT/drS3+IP+edv/wB9t/8AE1No3/IItf8Arkn8hWlQBj7/ABB/zzt/++2/+JrIt38Qf21dfu7f/Vxfxt/tf7NdfWRb/wDIbuv+ucX82oATf4g/552//fbf/E0b/EH/ADzt/wDvtv8A4mtiigDj9bfxB9mizHb/AOvh/jb++P8AZrY3+IP+edv/AN9t/wDE0muf8e0P/XxD/wChitmgDH3+IP8Annb/APfbf/E0b/EH/PO3/wC+2/8Aia2KKAOP0N9f+wtiO3/1sv8AG398/wCzWxv8Qf8APO3/AO+2/wDiaND/AOPE/wDXWX/0Nq2KAMff4g/552//AH23/wATWPM+v/27b/u7f/Uy/wAbeqf7NdhWPN/yHrf/AK4S/wDoSUAG/wAQf887f/vtv/iaN/iD/nnb/wDfbf8AxNbFFAHJ62/iD+xrr93b/wCqf+NvQ/7NaSv4g2D93b9P77f/ABNTa5/yBrr/AK5P/KtJPuD6UAZIfxB3jt/++2/+Jo3+IP8Annb/APfbf/E1sUUAcfpz6/8Abb7Edv8A61f42/uL/s1sb/EH/PO3/wC+2/8AiaNN/wCP6+/66r/6AtbFAGPv8Qf887f/AL7b/wCJrH1R9f8AtFjmO3/4+P77f3G/2a61pERgrMAW4AJ61larj7RY/wDXx/7I1ABv8Qf887f/AL7b/wCJo3+IP+edv/323/xNbFFAGMz+IMH93b/99t/8TWVoT6//AGLafu7f/VJ/G3p/u1satrelaL9mXVJhCbydLaHIJ3yvnaowD1wfbijQf+QLaf8AXJP5VKnFtxT1W43FpJtaDN/iD/nnb/8Afbf/ABNLv8Qf887f/vtv/ia2KKoRx8cniD+3pR5dv/qE/jb+83+zWxv8Qd47f/vtv/iaI/8AkPy/9cE/9CatigDH3+IP+edv/wB9t/8AE1ja8+v/ANmtmO3+/F/G399f9muxrG1//kGN/wBdIv8A0NaAFL+IO0dv/wB9t/8AE0b9f/552/8A323/AMTWxRQBj7/EH/PO3/77b/4msjRn1/yZ8R2//HxL/G394/7NdfWPov8Aqp/+viX/ANCNABv8Qf8APO3/AO+2/wDiaN/iD/nnb/8Afbf/ABNbFFAHIXb6/wD2xZ/u7f7sv8bei/7Na+/xB2jt/wDvtv8A4mi7/wCQxZ/7sv8AIVsUAY+/xB/zzt/++2/+JrntZ1y8tpP7DuDbLdXVvPLFHvfLJEAHP3ccb1/Ou5rwfxzdeX8ZPDtrn/WaRq5/L7PXJjMQ6NNTXWUF/wCBSUf1OjDUVVk4vopP7ot/oerWT+IPscP7u3+4v8ben+7Vrf4g/wCedv8A99t/8TV6x/48of8AcX+VWq6znMff4g7R2/8A323/AMTWPYvr/wDal9iO3+9H/G390f7NdhWPY/8AIVvv96P/ANBFABv8Qf8APO3/AO+2/wDiaN/iD/nnb/8Afbf/ABNbFFAHHau+v7rTdHb/APHwn8beh/2a2d/iD/nnb/8Afbf/ABNJrH3rT/r4T+RrZoAx9/iD/nnb/wDfbf8AxNG/xB/zzt/++2/+JrYooA4/QH8Qf2RDiO3/AIv429T/ALNbG/xB/wA87f8A77b/AOJo0D/kEQ/8C/ma2KAMff4g7x2//fbf/E1jb9f/AOEhH7u3/wCPf++397/drsaxv+Zh/wC3f/2agA3+IP8Annb/APfbf/E0u/xB/wA87f8A77b/AOJrYooA5DXn1/8Asif93b9B/G3qP9mtffr/APzzt/8Avtv/AIml17/kEzfQfzFa9AGPv8Qf887f/vtv/iaTf4h/552//fbf/E1s0UAcboz6/vvMR2//AB8v/G3oP9mtrf4g/wCedv8A99t/8TTNF+/e/wDXy/8AIVY0vWNP1lJpNPfetvNJbucEYkiOGHPXB4yOKlzimot6sai2m7aEW/xB/wA87f8A77b/AOJrIvn8Qf2nZYjt/vSfxt/dP+zXX1kX3/IUsv8Aek/9BNUITf4g/wCedv8A99t/8TRv8Qf887f/AL7b/wCJrYooA5+6fX/ssuY7f7h/jb0/3araQ/iD+ybXEdv/AKlP42/uj/Zrobv/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFAEG/xB/zzt/++2/+JoL+IO0dv/323/xNbFFAHH2r69/bV3+7t/8AVw/xt/tf7NbG/wAQf887f/vtv/iaS1/5Dd5/1zh/9mrZoAx9/iD/AJ52/wD323/xNZOrvr/lwfu7f/Xxfxt/e/3a66snV/8AVwf9d4v/AEIUAN3+IP8Annb/APfbf/E0b/EH/PO3/wC+2/8Aia2KKAMff4g7x2//AH23/wATWRob6/8AYOI7f/WS/wAbf32/2a6+sfQv+Qf/ANtZf/Q2oAN/iDvHb/8Afbf/ABNG/wAQf887f/vtv/ia2KKAOQlfX/7dhHl2/wDqJP42/vJ/s1r7/EH/ADzt/wDvtv8A4mll/wCQ7D/1wk/9CStegDHL+IO0dv8A99t/8TWRrz+IP7Fuv3dv/q2/jb0/3a6+sjX/APkC3X/XNv5UAMV/EG0fu7fp/fb/AOJp2/xB/wA87f8A77b/AOJrXX7opaAMff4g/wCedv8A99t/8TWXpL64b+8EscATzxkh2zjYmcfLXWVkab/x933/AF2H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9f+/iiiigAoopGZVUsxwBySaAFopqOkqCSMhlYZBHIINOoAKKKKACio1mid2iRgWTG4A8jPTNSUAFFFFABRUbyxRlVkYKXOFycZPoKkoAKKKKACigkAZNMjkjmjEsTBlYZBByCKAH0UUUAFFFRiWJpDCrAuoBK55APtQBJRRRQAUUUySWKLBlYLkgDJxkntQA+iiigAooooAKKZHLHMgkhYMp6EHIp9ABRRRQAUVGJYjKYAw3gZK55x64qSgAooooAKKjklihXdKwUZAyTjk1JQAUUUUAFFFRxyxTLvhYOMkZByMigCSiiigAooqPzYvN8ncN+M7c849cUASUUUUAFFFRySxQp5kzBFHcnAoAkooooAKKKKACio45opgWhYOAcHBzyO1SUAFFFFABRUZliEghLDeRkLnkge1SUAFFFFABRTJJI4kMkrBVHUk4FPBBGRQAUUUUAFFFRpLFIWEbBtpwcHOD6GgCSiiigAooqNpYlkWJmAZugJ5OPSgCSiiigAoopryJEhkkIVR1JOAKAHUUisrKGU5B6EUtABRRRQAUUxJY5CyowYqcEA9D70+gAooooAKKjaWJHWN2AZvugnk/SpKACiiigAoprusal3IAHJJ4AoR0kUPGQynkEcg0AOooooAKKKjWWJ3aNGBZfvAHkfWgCSiiigAooqN5Yo2VZGCljhQT1PtQBJRRRQAUUUhIUFmOAKAFopqSJKgkjIZT0IOQadQAUUUUAFFRrNC0jQqwLr1UHkZ9RUlABRRRQAUUx5YoseYwXccDJxk+lPoAKKKKACignHJpkcscyCSFg6noQcigB9FFFABRRUYmhMphDAuoyVzyAfagCSiiigAoopkkkcQBlYKCcDJxyaAH0UUUAFFFFABRUcUsUyeZCwdemVORxUlABRRRQAUVH5sXm+RuG/G7bnnHripKACiiigAoqOWWKBPMmYIuQMscDJqSgAooooAKKKZHLFKC0TBgCRkHPI60APooooAKKKYZYxIIiw3kZC55wPagB9FFFABRRTJJY4UMszBFHUk4AoAfRRRQAUUUUAFFRxyxS58pg20lTg5wR2+tSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWVJrmkRSNFLcorKSCCehFAGrWPr/wDyB5/oP5ij/hINE/5+o/8AvqsjXtf0U6RP/pUf3R39xQB19FY//CQaJ/z9R/8AfVH/AAkGif8AP1H/AN9UAbFZGlf628/6+D/6CtJ/wkGif8/Uf/fVZOl6/oglvP8ASo/+Pg9/9laAOuorH/4SDRP+fqP/AL6o/wCEg0T/AJ+o/wDvqgBNQ/5Cdh/10f8A9AatmuP1DX9F/tKwP2qP/WP3/wBhq2P+Eg0T/n6j/wC+qANioLr/AI9pP90/yrO/4SDRP+fqP/vqobnX9FNvIBdR/dP8XtQBc0b/AJBFr/1yT+QrSrltH1/RRpNqPtUf+qTv7CtH/hINE/5+o/8AvqgDYrIt/wDkNXX/AFzi/m1J/wAJBon/AD9R/wDfVZFvr+if21df6VH/AKuLv7tQB19FY/8AwkGif8/Uf/fVH/CQaJ/z9R/99UAGt/8AHtF/13h/9DFbFchrWv6J9mi/0qP/AF8P8X+2K1/+Eg0T/n6j/wC+qANiisf/AISDRP8An6j/AO+qP+Eg0T/n6j/76oAXQ/8AjxP/AF1l/wDQ2rXrkNE1/RRZHN1H/rZe/wDtmtf/AISDRP8An6j/AO+qANiseb/kPW//AFwl/mlH/CQaJ/z9R/8AfVY82v6J/btuftUf+pl7+6UAdhRWP/wkGif8/Uf/AH1R/wAJBon/AD9R/wDfVAEmuf8AIGuv+uT/AMq0k+4PpXK63r+if2Pdf6VH/qn/AIvY1pJ4g0TaP9Kj6f3qANqisf8A4SDRP+fqP/vqj/hINE/5+o/++qADTf8Aj+vv+uq/+gLXK/FDx/afDXwdceJpoWu7jckFpap9+4upjtiiX3Zjyewye1aena/ogvb7/So/9avf/YWvBb7WtN+If7RUOn3U6HSPA9ol1gn5X1K9BCH38qEEj0L15ma4mpSpRp0XapUahHybu2/+3YqUrdbW6ndgKEJ1HOr8EFzS80tEvm2o+V7mno37PGi+I9Ok134yk614lv13S3IkZFsieRHaAEeUsZ6MPmYjcT2ruPhxqmrat4C8PXOuyme8jka3mlbrI9v5kRc+7Fcn3Nejf8JBon/P1H/31XDaSugeF9M03RIL5JVju5X3nAJMpkkPH1bFRhMqpYWtGVCNlytSfWTvFpye8n8Wrvu+5VfHTr0pKrK7uml0Ss7pLZLbRdl2PUaKx/8AhINE/wCfqP8A76po8R6C0hhW7iLgZK7hkD1xXrHnnk/xynNjD4T1I8JB4k08P9JS8Q/VxXrmhcaLaD/pkn8q+d/2o9f0uH4Q3GrWtwjSadfafdrg85huomz+Fe4aH4i0I6LbSC6j2mJT97tivIw0rZjiaf8Adpy+/nj/AO2HoVo3wdGfnNfdyv8A9uOuor530b49z+Jxca14X0Ga+0KGZ4o7xbiJJbkRna0kMLEF0yCFJYFscD13vhb8e/APxbg1O68MyyJFpl2bRmnXy/MIAO5RnO05xzg8dK1o5vhKs4U4T1nflumuZLVuN0uZW1urq1tdURUy7EU4ynKGkbc2qdr7J2ej8nr9zPU4wf7elP8A0wT/ANCaq/iLxNpPhe2gudVZh9pnjtoURS7ySyH5VUDkngk9gASeBXzZ8I9a0Lx941134ravOrv9rls9J3OQIrO1ZocqAcfvXDuc9ePSuB+Ifin42weJfBml6gug3s41eaS3nS5ljjkdYJtvmJ5ZKBUbsWOQPXNefic9cMJHFQpu02lFpOWjkoptJJrmvdL5Xu7HZRypSxDoSmrxXvJtR1SbaV97Ws3+FtT7tlDmJhH97Bx9a8s8H6odW+GdhLPIZLmERQXQc5dbiJwsqtnnIYHr9elcT4b034k6lrsGvfEvxbaJb27+YmmaPGYoGYdPNmkJlkA/u4QHuK6H/hKfhvdaxr0ui3SxXtlNbQ6jyUjLkJIrEH5SwQgFxzjgngY7aWJnUqQqzg6ad4qMmk5ac10k3tyvR2drt2trzToRhCcIy5mrO8b2WtrNtLvutL2Wtz2uivmjQPHni74qTT+JPDWrweH/AA+kjxWLPbie4vQhwZm3kBImI+QAbmHzEjIFe72mu6bHaxpe3sMkwUB3X5VZsckDJwCe2TiunB42OJj7SnF8j2k7Wku61vbs2ldarQwxGGdF8s5Lm6rW68npa/o3bZ6nQVj6L/qp/wDr4l/9CNH/AAkGif8AP1H/AN9VkaNr+iiGf/So/wDj4l7/AO0a7DmOi1LUtP0fT5tV1WZLa2tkaSWWRgqIijJJJ4AAryDw/wCOfH3xC/4nngrT7ey0Jj/o9zqQkE12n/PSOJcFIz/Czncw52gYrzjX9SsPjb8T7jwbfzqvhHwrJE18hPy6jfsA6Qt6xQjDOvRnIB4FfTS67oaqES5jAHAANeNSq1cbVlKnJxoxbV1vOSdnr0jF3Wmsmm78qXN6VSnDDQiprmqSSeu0U9V6ya17JPvsXWf7Yss9dsv8hXluq/EPxnqHj3Vfh14I0q3NzpVtbXT3V/M0cDrc78BVRGYkFCM9Px4rvLvX9F/tiz/0qP7svf2FeL6d4i0yD9p/VITcJ5Vz4ctXznjdFcSj+T1pmlWcXQjCbipTUW1a9nGXdO2ttSMBCMvaylFNxjdXva9128rnR6B8V/EFh4ytfh78VdJTR7/Ulc6fdW83n2d40Yy6KxVWSQDnYy8joTXPeO5jL+0R4cs1/wCWWg6tKfozQr/OsP8AaQ1zR9SufA3hzTpkk1G58S2U8O0/NHFbbnmk9QAnBPvXlPx2+Jq+Gfi/rGr6DMkl/b+FItOsAOf9M1O72rgd9oTefYV81meZSw0KlLETc406lN3sr2SVRxdkk5JR0sldON9dX7eBwSrShUpR5XOE1bW1/gUle7Sbeuu6fTRff1l/x5xf7i/yqzXw54OsbH4HfGbw74c0nVri70bxTps8V0Lq4ecf2jahZBMC5O0yqWBAwOOlej/tH+Mp/wDhENO8FeF9RFpdeKdTt9Ja5jb54IJsmZ1PY7FIB7ZzXuQztrCV69alyzpPlcE7+9ZOKTsr8ylHWy1fkeXLLE69KlTneM1dStbS7TbWu3K/uPavDvxD8B+LtUu9F8L6zZ6jd2Bxcw28ySPEc4+YKSRzx9a2bD/kK33+9H/6CK+QPgFZeBrr4hax428IxQWHh3RrVPD2kbAB9oWFt9xOW/jDSYUMc52k11nx1/aB8OfCjw/qzabIL/XL2Mixs4TuckR5Mr45WOMAsze2BWeEzxRy2WYY5xjFc2qvZpOycb6vm+z/ADaNLWxeIyu+Njg8Ldt20drptXd+it17ap7XPoHwj428MeO7O51DwpdLeQWl1LZyOoIUTQHDgEgZwe4yDVvxV4q8P+CfD134r8U3SWdhZIZJpn6KB+pJPAA5J4Ffmp+z3bXfxV8BaX8PdI1SfQvCGjwI2q3Fs5iudU1G4HmyxrIOVjjLYcjljx06Y/xGsvBHwk+OWjeCDcajqHgLbFrV7psYkvUguYt8cbtuLOYi+1nXkZ7HivBXGGJ/s6ljnRjyz5Y87laKnLS/La7pxekpXTdm4px1PW/1cofXZ4VVXzRu+W13yrpfZTktUrNapNp6H0L4x/aF+Kul+Fx8W5PB8dp4QtJopc3tyY9RlgZtokWEKVTO7IVjnFfbUUizRLMnRwCPoa/P74pfFbQf2lm0z4SfDuO4k0a6vYJtX1SeF4LeOCFt/lJ5gBaRyMYA4/PH3Wuu6EihEuYwAMAbq9nIMTUr1q0o13WopRSm1Gzn7znycqScUuRbuzurtpnm5vQhSp0k6Sp1G5Xjd3Ufd5ea7fvX5u2lna1jaorH/wCEg0T/AJ+o/wDvqj/hINE/5+o/++q+nPCDQP8AkEQ/8C/ma2K4/QNf0UaTCPtUf8X8Xua2P+Eg0T/n6j/76oA2KwILi3utdE1q6yIbcjcpyMh8Hkeh4p8viDRvKbbdR5wcfNX53/DrX5/iR4e8KfBvTNQbT7JdMku/EFzC2yUwfaHVbdGHKtMwJdgc7M+teNmWbrCVadFQ5pTUuVX3knBJenvXb6JNnpYLL/rFOdTmsotXfZNSbf8A5LZLq2kfpDZ6hYagrtYTxziNijGNg21h1Bx0PtVuvhS/bUPhR8Zz4b+AOi6YLbVdEjlminuPstssltMy+YQqszPtcKeMngk8V0WvfGL4q+EbWNvi1Y6fa6Leypay6noN20k1k0p2rIyTR8ruIBYZxnOK5IcRRhGaxVOUXBtSajJwVuvPypWs023pHq7Js6JZNKbj7Caakk0m4qT/AO3bvW90lu+h7b8Zdan0zw9p+m2rmOTVtUs7PKnB2M/mSAEesaMK9cr4D+LXgazbxv4S0U+M9cnjuZ7u5Z3u0Pkm3hOGTEQ2sS+M88Eive/D3hPwD8M7m48ca54o1LUmtYHBn1a/aaOGM4LFUG1ATgc7SewNPCY/FzxVdzo2hFqLbmrRSipN6Xv8Xku7QsRhKEaFLlqXk02kovVuTj5fy/8AAPoGivHtA+MVhrxium0m/s7C5YLDczqgLBvus0Qcyop7FlGB1ArutN8aeEtYtvtuk6jb3MO9o98UgZdyHawyMjIIIPoa9uhi6VZJ05b7bq67pO11rvseZVoVKfxr9flp18i5oxAa9J/5+X/kK4H4IXLah8OLTWHOWv57u7P/AG3uJHH6EV57421Xx1p9pr3iHwn4o060sYBNMbe6sjOy+XHltrrLH1x/EpwfauW+Cvg3V3+Gnh0+KPGl19m/s+2lSxs1js1j3oG2PIoMr4zgncua8atjq39pQpQw8naE9bwS1lCz+Ju2j6X8tz0qeFp/UpVJVVrKPSV9FK6+G19V1t5n2JWRff8AIUsv96T/ANBNcX48+LXgf4ceGZfE3iC73RRlY44oR5k00r8LHGvVnY9B+J4ryvRP2g4NU8YaNoPi/wAO6j4cfU3lWzkuzC6SMqFtp8qR2RsDOGAHvXo181wtGsqFSdpu3Ru3M7Ru0rR5nortXexx0sBXqU3VhH3VftrZXdle7stXa9lufT9FcB4v+KHgfwNocniDxBfIkKEKqJl5ZZG+6kaD5ndjwFAya4PQ9T8Q+PiNZ8Z3H9g6Y4zDpUMu25ZT0a5lU5Ukf8sozgfxM3QXWxsI1VQguapvZdF3k+i7dXrZOzIp4aTh7WTtDa76vsl1f4Lq1dHud3/x6y/7jfyqto//ACCbX/rin/oIrLk1nw/bac1vDcxqkcZVRu6ADAqPSNf0T+ybX/So/wDUp/F7Cu1eZzHU0Vj/APCQaJ/z9R/99Uf8JBon/P1H/wB9UAJa/wDIbvP+ucP/ALNWzXH2uv6KNavD9qj/ANXD3/3q2P8AhINE/wCfqP8A76oA2KydX/1cH/XeL/0IU3/hINE/5+o/++qytX1/RPLg/wBKj/18Xf8A2hQB1tFY/wDwkGif8/Uf/fVH/CQaJ/z9R/8AfVAGxWPoX/IP/wC2sv8A6G1H/CQaJ/z9R/8AfVZGh6/ogsP+PqP/AFsvf/bagDr6Kx/+Eg0T/n6j/wC+qP8AhINE/wCfqP8A76oAWX/kOw/9cJP/AEJK165GXX9E/t2H/So/9RJ3/wBpK1v+Eg0T/n6j/wC+qANisjX/APkC3X/XNv5Un/CQaJ/z9R/99Vk69r+inRbrF1H/AKtu/tQB1q/dFLWMviDRNo/0qP8A76pf+Eg0T/n6j/76oA2KyNN/4+77/rsP/QFpP+Eg0T/n6j/76rM0nW9HlvryKK5jZnnAAB5JKLQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0P7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBW0P/AJAtp/1xT/0EVqVl6H/yBbT/AK4p/wCgitSgAooooA57TP8AkOal9Yv/AEGuhrntM/5DmpfWL/0GuhoAKKKKAMHWf+Pqw/6+B/6C1b1YOs/8fVh/18D/ANBat6gAooooAjm/1TfQ1leHv+QHa/8AXNa1Zv8AVN9DWV4e/wCQHa/9c1oA2aKKKACues/+RjvP+uUX82roa56z/wCRjvP+uUX82oA6GiiigArB177lr/18xfzrerB177lr/wBfMX86AN6iiigApr/cP0p1Nf7h+lAGL4b/AOQLD/wL/wBCNblYfhv/AJAsP/Av/QjW5QAUUUUAc/F/yM83/Xun/oRroK5+L/kZ5v8Ar3T/ANCNdBQAUUUUAYPiPH2BM/8APaP/ANCFb1YPiP8A48E/67R/+hCt6gAooooAQ9DWH4d/5Bv/AG0k/wDQjW4ehrD8O/8AIN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8AIJk+q/zrdrC8Sf8AIJk+q/zoA3B0FLSDoKWgAooooA5/w7/x7T/9d5P510Fc/wCHf+Paf/rvJ/OugoAKKKKAMCf/AJGS3/64v/MVv1gT/wDIyW//AFxf+YrfoAKKKKAMXxD/AMgebHpWrB/qU/3RWV4hONHm+lasH+pT/dFAEtFFFABWBof+tvf+vhv5Ct+sDQ/9be/9fDfyFAG/Xiv7QHxfi+B3w1ufHjWovZUmht4YGbYJJJ3CKM4OOvpXtVfnt/wUJvzN4Y8D+D1P/IY8U2EbL6rG+7+lc2MqunRlOO9j2eH8FTxeY0KFVXg3r6LV/gj7+0+ea6sILq4TypJI1ZkznaSMkZ9qy73/AJDtn/uv/Kt5RhQK+J/j9+1vovwr8f2ngDwVod3408UR28lzNpunuqfZ4AMmSaRsqgwMgEZNaVa0KUeao7I5MDl2Ixtb2OFhzS1fRJLu27JJd20j7Zoryv4J/FjRfjh8MNJ+KPh+CW2ttWi8wQzY3xsCVZTjg4IPI616pVwmpRUovRnPiKFShVlRqq0otprs1o0FZOu/8gi4/wBw1rVk67/yCLj/AHDVGJcsf+POL/cH8qtVVsf+POL/AHB/KrVABRRRQBiaV/x+Xv8A11/pW3WHpX/H5e/9df6VuUAFFFFAGDqX/IVsf95/5VvVg6l/yFbH/ef+Vb1ABRRRQBQ1X/kGz/8AXNv5U3SP+QZBn+4Kdqn/ACDZ/wDrm38qbpP/ACDIP9wUAaNFFFABWBpf/IWv/wDeT+Vb9c/pf/IWv/8AfT+VAHQUUUUAFYGsf8fth/11/pW/WBrH/H7Yf9dT/KgDfooooAKr3f8Ax6y/7jfyqxVe7/49Zf8Acb+VAFPRP+QTB/uCtSsvRP8AkEwf7grUoAKKKKAOdsf+Rhvf9yOuirnbH/kYb3/cjroqACiiigDB13paf9fC/wAjW9WDrvS0/wCvhf5Gt6gAooooAZJ/q2+hrG8N/wDIFg+lbMn+rb6Gsbw3/wAgWD6UAblFFFABXO23/Iy3P/XKP+tdFXO23/IzXP8A1yj/AK0AdFRRRQAVia7/AMe8P/XZP51t1ia7/wAe8P8A12T+dAG3RRRQAUUUUAYHhn/kEr/vyf8AoRrfrA8M/wDIJX/fk/8AQjW/QAUUUUAYB/5Gf/t2H/oRrfrAP/Iz/wDbsP8A0I1v0AFFFFAGB4l/5BZ/66Rf+hit4dBWD4l/5BZ/66Rf+hit4dBQAtFFFABWF4fH+iS/9d5f/QjW7WF4fx9kl/67y/8AoRoA3aKKKACsOX/kYof+uD/+hCtysOX/AJGKH/rg/wD6EKANyiiigArC8Tf8gK5/3f6it2sLxN/yArn/AHf6igDcHQUtIOgpaACiiigDB0Hpef8AX1L/AErerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/AOQPP9B/MVsVj6//AMgef6D+YoA2KKKKACsjSv8AW3n/AF8H/wBBWtesjSv9bef9fB/9BWgDXooooAxtQ/5Cdh/10f8A9AatmsbUP+QnYf8AXR//AEBq2aACoLn/AI9pP90/yqeoLr/j2k/3T/KgCpo3/IItf+uSfyFaVZujf8gi1/65J/IVpUAFZFv/AMhu6/65xfzatesi3/5Dd1/1zi/m1AGvRRRQBj63/wAe0X/XeH/0MVsVj63/AMe0X/XeH/0MVsUAFFFFAGPof/Hif+usv/obVsVj6H/x4n/rrL/6G1bFABWPN/yHrf8A64S/zStiseb/AJD1v/1wl/mlAGxRRRQBl65/yBrr/rk/8q0k+4PpWbrn/IGuv+uT/wAq0k+4PpQA6iiigDH07/j+vv8Arqv/AKAtfP37N8g1i58deL35fUPE15GD38u0CQoPwCmvoHTf+P6+/wCuq/8AoC180fsr39rp9t4u8AXriPVdK8RahLNbtw4huZPMjkA7qwPB6V4WPklmWDjLb95b/Fyq3z5XL5XPVwkf9ixLjv7l/S7v8rqP4H0V4w8Vab4I8M3nivWEmktrGPzJFt42mlI6YVFBJPP+RXzH4Y/ax8J+PfEOk2Vpo+o2dldaitkt3ciNQty6OUSSMOZE34O0kYNfYNfmF4x8TeFvjF+294d0DwvdRmy0JVa+mRgEuLm0Z5EQH+MoxCjGerY4rzuJ8xxeDnh54eslzzjBQcVeTb1fM3okt7Lz5tkduR4PD4mNaNam3yxlLmu7RSXa27e2vyPtf45ePNX8E+EYLTwqFbXddu4dL00OMqs9wceYw7rGoZyO+Md6+Wv2krPwf+z58IreXQd8vi69mjEWqMxN/I6EPcXDSZ3YCg5H3RuAxivf/j14P8e6xq3hLxr4BsIdXuPDOoSXclhLOLYzLJE0fyyMCoZSc815L4o+CXxB+IHgfxn48+JEMbeKdX0mey0vTbd/NisIANyxI/AaWVgC7Dr0HFeZxHDGYieLo0qUnPltTk4vljHl5pSi9ueUvcST5k1F2UU2duTSw9GOHqVKiUOa81dc0nzWUWt+VL3m3pq1vZHq37UUT6n+zP4mkX5m/s4Tj6oVf+lc38WPHl/pP7L9jdaE5/tLxFZ2Gm2RXr51+qJkf7qlm/Cus8Lp4s+Kv7Pd3p/jDTG0q71XTp7WO1lBEyoYzGjSA9HY/NjsCO9fEWnfGHw9rXg34R6JrpltofC2qWsWtXE8bR21rPbI8cSPIwC7iV3ew5JFZZ3mkacpVlLk+sUIxi3o7qdm9dU4xquWuyTb2ZpleBc0qbjzexqttLVfDe2nRunbzbS6n3h491HS/gR+z/d/2WNkeiaYtpaKvBabaIogPdnI/Ovnb9mTRJPhbo/xK0GMbZdGa3Z+/wC+WxR3P4vk12p1mD9pr4o2MPh1vP8AA/hC5F1cXQH7rUdST/VRxno8cP3mboWwPQ16rpfwcvdF+Imv+K7HV92k+KMNqOmy24Ys6xeUDHMGBUYxkFW/rXVKhUxuOoY3BRvRpN04NW2cJxlNXavHmcI6a+42k1YwVWGGwtXC4mVqlRKck7780XGL0dpcqk9f5knZ3OB/Zu1TR/Bv7POh+I9dnW2tLfRVvbmVjwod5JHY+vJPuTWn8VNZtr7xt8K/EMW6O1u9VdlMqlGBuLSTYGBwQxzjB5zxXDeHP2V9TstRsvBfiTxbd6p4Q0cxz2ukNCkYcI7NHHNIvMiI3OCBn2r6G+L/AMNIfin4Kfw3HcmwvIJoruxu0GWt7q3bdG4HcA8EehNdGGw2YyytYeVDkdKNNRi3FucqbUnqm0ovlSjez1baRjWr4OOPdaNXmVSU7tJ2jGaaWjSbavd206K56g7pEhkkIVVGSTwABX5taJrOrfED4D/GHx14MSSefW9VuktBEMyPDEkUSlB1JKAlR617LremftSfELR/+FY+KrDTNHsrsiHUdbsbsu0lt/y0WGBkDI8g+XLNhcmuk+A/wt1b4QfDK/8AC+qRpAH1me4t4o33hLd5lEQz67QCe9Ti5V81xlKlClOFFQqXlKLi1OUeVWT/AJVJ67NvRuzHh1SwGGqVJTjKq5QtFNNOKfM7td2lpuktbXRsfDT46/Aa78Labovh/wARWFstpbRQLa3Eq28sflqF2skhVgRjB4r1LwB480P4keG18U+HSxtHmngUtj5jBI0ZIwSCCVyDnpUPiD4X/DbxZI0vifQNO1B25LXFtHIx/EqTXTaLoejeG9Lh0Pw/axWVnbrtiggQRxoPQKAAK9/AUcwpzjDESg6ajb3U029LaNtJJX0u9/I8nF1MHOLlRjLnbv7zTSWt9Ule7t0WxqVj6L/qp/8Ar4l/9CNbFY+i/wCqn/6+Jf8A0I1655x4lrP7PVhdeItQ8SeFvE2u+HpNUmNzdQafcqsDzEAF9kiOAzADOK+SPH/inw34T+Ip+G7eO/GGq3tntN5HbXeJSzjKQwRwQhpJWyMk7UUdWzxX6eVmRaLo1vqMmsQWkKXcwAknWNRIwHAywGT+Jr5XNOGKdeKWEaptyvJvmaa1bSipRSbfXtfqe9gc7lSbeJTmkrLZO/S7cW7Jfp6Hy1+z74O+KGh61ceI/Hd9qSWOoIRYaXql39uubdUAzJJKQArv/cXhR1JNcH8dvHfir4d/HG913wPpc2r6xL4WS3s7eGNpf3sl5gOyrztXkn3wMjNfbl3/AMhmz/3Zf5CvmvUdWtNP/bN07T7gkSX/AIXljiwMgtHcFzn04BrmzXLFhcvw+DoVpRftIpTerTk3qum70SSS0SRvgMc6+Lq4mrTT9xtxWiailp32Wr3e9zE/Zs+CHjHQbxviv8Zrh7rxNdxssMMj+b9kSU5kJPTzZCBu2/KqgKOBXkPiPQb3xl+3dc2jqWsNE0631KYY43wwusX5PMSPcV+ktYl/punQx3uqRW8a3M0BSSYKBI6oDtBbGSBk4BPFdFThSh9Ww2EpSfLTqRqSb1lNxT+J922r9LKyVrGMM/q+2r4ipFc04OCS0UU7bLsle3nrufOX7R1pqunaL4R+Jek2k15/wi2r215dR2yGSX7G6mOYqo5OFbJA7V4p8W9V139ryOx8MfBG2ubO30eZryXW75JbOFZPLZBDGCu9mYMdzAfKK/Qmy5soT/sL/KrQAHArXMuHXjKlWLrONGry88UtW46K0r+7dJX91vTRojBZysPCm1TvUp35W3ok+8ba2u7a211TPjPw1J+1HoHhey+HnhLwZoegw2cS28V49+Z7eJF43CJUEjHvgnk9ao6v8BNU0T4b+OLq2ll8U+OdZ097d7+fakjmVMeVECdsUYzwoPOOTX21WNY/8hW+/wB6P/0EVa4ZoOnyVqk52i4x5uX3E1a8YxjGKaW0nFtbXtcn+3Kqnz0oRjdpytf3rO/vNtytfdJpeVzhPgl8OrX4U/CzRfA1ugWSzt1+0EY+ad/mkOR1y5P4V5f8WfB/xE8NfEyx+O/wvs01q4gsW0zUdKZxE89sX8wNC54Dq3Y9RX1JRXbWyehPCU8HBuChy8jja8XH4WrprTs001dNWOWlmVWOIniZJScr8yezUt0+v3O66Hxpeftd/D6y+zWvizRNe0C5imVpIbnTZPlxnOCgIP171738JvH2qfEvw9ceKrvS5dLs5bqRLBbhSk01quAsrowBTed2B6YNdvrHW0/6+E/ka2aWDwePhVUsRiVOCT0UFFt+b5ne3ZKOv3DxGIwkqbVGg4yfVyuvkrL8Wwooor1zzjH0D/kExf8AAv5mtisfQP8AkExf8C/ma2KAAjPFfnf+wdoktrP4z1q4JZn1SWyjJ7R2zEhR7AyGv0Qrxr4VfDHTPhS13oOlzvcreT3WoO8gAO+5l3beOyjAB9q8PHZbOtmeDxaXu0lUv6yUUv1PVwuNjSwOJw99ajh90W2/0Od1mcQ/tSaFExx5/hy/A9yk8Bx+ANYn7WN5Hqfw7g+GFh+81bxZe21lZwjliEkWSWQ+ixopLHtx616B8UvhK/xAvdL8SaDrFx4f13RTL9kvrdFkwkwAkR43G10bA4PQisr4efBH/hFvFEnxC8ba3c+KfETxG3jvLpEiS3hPJSGJBtjDH7xHJ/n5uLwWMq/WsAqX7utLWpeNlCUYxkrX5ufSSWnLqm3ujsw+Jw0PYYpz9+mvgs7uSk3F3tbl1Tet9GrdTnfiedvxx8Fwv90afqxH+9th/pVj4tP/AMJn8UvCXwhnOdPn8/WtQj7SxWJQRRt6q0zqWHfbXVfGP4eXPi+z0/xJoF7/AGbregytPZTsu+NhINskUq8Fo5BwcEEYBFcL40+Hvxi1HxHofxc8IyaXbeJ9Ns59Pu7K4aSSyngmcN8kgVXUgqGGR3wenJmNHERWJpqk5RnUhN2s7wSpxnHff3XeP2ovS7ukYOrRl7GTqKMowlHXS0nzuL9PeVn0a1toz2T4n+PNL+GfgLU/GurOFSyhZkXvJKeI0UdyzEAD3r59/YYa5k/Z30+4vARLLeXzvnruadyf1zW5pHwh+I/jvxPZeLvj9qNncRaU/nWGj6ajC0jn7TStJ80jr/CCNoPNd58A/hrrPwj+HEHgPWruG9a0nuHilhRkzHLIXG4MT83zHOOP50UI47E5xSxs6ThQjTqRSdua7lTd5K+nNZ2W65bu3NZFV4WhltTDQqKVVzg21e1kpqydtbX1e2ul7XOX/aB1R9I+Afjm5jOGkt7i3H1uFWL/ANmr3Lw7YNpfhmw0uLCm3tYohxwNiAD+VeF/Hzwv4j8ZfBzxHoHhS1N7fS3UTpArBWkEcsTsAWIGdoPWvcvC99rOpaDbX2v2H9l3ci5e1MqzGLngF1+UnGM44B4yetepTUv7Wq80Xb2ULOzt8VTmV9r/AA6Xv1OGdv7Pp2avzyurq/wwtpvbfW1j4S8S6P8AGn4q/tGWng3UNX0uxbwZZjUo57e1klj827OxH8qVyPNRQSpLFVznk19DaJ8LvB3ww1iP4heLNUuNV1REl8/V9XmBMUe07gg+WOFD6Ko9M1meOvhF8SY/ihL8V/g/rNlp97qFnHZX1vqMDTQyLCSUdShDBhnBpuk/BXWNS8Saf4j+NutHxTeRyM8Fp5Qg062ZVyGSAZ3uP78hJ9MV89gcsq0cTVlLDSnVdRyU5zvBLaEvib5lFJaQ5rq10tT2MVjadShTUa6jTUEnGMbTb3ktkrOTb1la3RvQy/i/Y+L9S8W+D/jL4G0v/hK9K0iO4lOnpIIpS1yqhLiISfKzKuQAeeeOtTwftd/DewmFn490/WfC8/Rl1LT5VQH/AH0DqR75r6jmk8mFpQpbYpOB1OOwrzfQfij4M8R/DGD4o6hMljpE9uZ5WuioEQUkMr9RlWBGB1PSvWr4SrQxE6mHxShKfvyjKClH3VGLktYySS5b3m0uh59LEU6tGEK1ByjD3U4ytL3nKST0km9/sps6PQfF/hfxv4dPiDwhfwalZyKwWa3cOuQOhx0I7g81s6P/AMgm1/64p/6CK+TP2dLb/hI/EPjL4u6Bp39jeHPEDwpptvs8r7QLZGVrox4AXzSeOMkDmvrPR/8AkE2v/XFP/QRXpZNjp4zCQxE0k3fa9mk2lJX1tJJSV+j3e5xZlhY4bESoxe1t902k3F20vF6PzXTY0aKKK9M4TGtf+Q3ef9c4f/Zq2axrX/kN3n/XOH/2atmgArJ1f/Vwf9d4v/QhWtWTq/8Aq4P+u8X/AKEKANaiiigArH0L/kH/APbWX/0Nq2Kx9C/5B/8A21l/9DagDYooooAyJf8AkOw/9cJP/QkrXrIl/wCQ7D/1wk/9CStegArI1/8A5At1/wBc2/lWvWRr/wDyBbr/AK5t/KgDWX7opaav3R9KdQAVkab/AMfd9/12H/oC1r1kab/x933/AF2H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9H+/iiiigAqpf8A/HjN/wBc2/lVuqWoOgspwSP9W38qAK+h/wDIFtP+uKf+gitWsjQ5I/7FtPmH+pT/ANBFanmR/wB4fnQA+imeZH/eH51+Gn7c/wDwWdf4D/tQaf8AsIfsbfDHVPjv8Zp7RtR1HR9JnjtrXSbULuDXdzJ8iOwwdpwACNxBZQQD9rdN/wCQ5qX1i/8AQa6Gvyp/4Jw/8FIdK/bW17xv8MviP4L1T4VfFnwJLbx+I/B+tlTcQRyAiO5gkX5Z7aTGFkXjPsQT+qfmR/3h+dAD6+e/Ef7Wv7Lfg/x5/wAKt8V/EXw3pviQYB0y61S3iuwT0BiZwwJ9CK7n4yT/ABBj+EfiiT4QQwXXiwaTeHRobiQRQyX/AJTfZ1d+dqmTaGOOBX8O37Pf/Bul+z38Tf2lrD9mb9su5u/EfxNk8NT/ABC+JPiG3v3EjXmtzS29pYWGPlAhlV55p5FbftCqu1sqAf3ZanPDcyabcW7iSN5wyspyCCrYINdFX8o3/BB7xR8b/wBmj9rn4/8A/BIj4peMLvx/4d+CWoabeeFtXvMmaGw1GHzRbOzEkbUkj+QEqrh9vykV/Vt5kf8AeH50APopnmR/3h+dHmR/3h+dACTf6pvoayvD3/IDtf8ArmtaU0kflN8w6HvWV4ekj/sO1+Yf6te9AG5RTPMj/vD86PMj/vD86AH1z1n/AMjHef8AXKL+bVveZH/eH51z9m6f8JHecj/VRfzagDo6KZ5kf94fnR5kf94fnQA+sHXvuWv/AF8xfzrb8yP+8PzrC16RNlrhh/x8xd/egDoKKZ5kf94fnR5kf94fnQA+mv8AcP0pPMj/ALw/OmvJHtPzDp60AZHhv/kCw/8AAv8A0I1uVgeG5E/sWH5h/F3/ANo1ueZH/eH50APopnmR/wB4fnR5kf8AeH50AYUX/Izzf9e6f+hGugrnIpE/4SaY7h/x7p3/ANo10HmR/wB4fnQA+imeZH/eH50eZH/eH50AYniPmwT/AK7R/wDoQrernfEcif2enI/10f8A6EK3/Mj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAcehrD8O/8g3/tpJ/6Ea2TJHg/MPzrD8OyR/2b94f6yTv/ALRoA6CimeZH/eH50eZH/eH50APrzjxt4x0H4fQ3vjTxPL5Nhp1k80zgZO1SOg7k9hXonmR/3h+dfCH/AAUC1UaZ8AdanVvv/ZIz7h7mMY/WscRV9nSnUXRNno5Rg1i8dQwstpyjH72kfbmg6vFr+iWmuQRSwJeQpMscy7JFDgEBl5weeRWtWfBeWkWmpdSyKkSxByzEABQM5PoMVw/w/wDjB8MPiql7J8OdctNYXT5fJuDbSB/Lcdjj+fQ1pzJNRb1Zy+wnJTqwg+SO7s2lfa7/AKuekVheJP8AkEyfVf51teZH/eH51h+I5EOkyYI6r/OqMDeHQUtRiSPA+YfnS+ZH/eH50APopnmR/wB4fnR5kf8AeH50AYXh3/j2n/67yfzroK5zw7In2af5h/r5O/vXQeZH/eH50APopnmR/wB4fnUZubYYBkXn3oCxjz/8jJb/APXF/wCYrx39qH4o6z8Hfgrq3jnw75Yv4PKitzKu5BJK4UEjIz16Zr1+eRP+Ekt/mH+pfv7ivif/AIKTXy237L15sYZfU9OH4eeua5sbUcKFScd0mezw7hYYnNMLQqK8ZTimu6bR9zaJNc3Gi2dxesHmeCNpGAwCxUEkDtz2rUr5M/aE+LfjH4bfBzTD8MIILrxNrnkWWmpOcRiWRMlj1ztHIHSvzz1T9tf4kav+yrpPxXgkZPHXhjXl0m9tt2yO7lYlCGjTAYN6Y4IrGvmFKi3CV7pX/rz62PSy3hHG4+mq9GyjKfItdbu9m10i2uW/c/aXxD/yCJvpXj3jr9o/4OfD3xJa/DrxF4jsbDxDfxj7LazsT8zcJvKghAT/AHiM1+X37P8A8ePj14A+L3j3wJ+0Lr7601voA17Yx/dWshG7yoxxtABwQOK/P34XftL6hrnjzULjVbCDULr4gakkWs6ldRGRrS1dwIY4eQFI4OT6Yrgr53FRjyqzbas+ltOn9L5H1GWeG1apWr+2nz06cYSTg9Jc6utZLZJNtWu3ZK17r+g3wN/w2nc3Udx47bwnb23ntvitxcvL5IPBDZC5I9uK8H/bQ/a0+Edj8HPGngTQvE8Nn4n091s2tPMMN1vJViY1OGYbT95ePevsv4efFPwh4q13VPAOgzm4n8Ox26SzblZJRIpwylSehXDA4INfGX/BS7wV4Cj/AGd9Y8ZnR7FtXM1sn23yE8/G8fx43dPeunF88cLOVKV9He+vfbbU8XIfYVs8w9LHUOVuUOVQSitWmnJO90153Of0T9vO/wDibbaR8Lf2V/D194n1ySCCG41W7heHTrPCgPJI7YZ8c8cZ9a+4NY+Jnhf4ReE38R/FPUYrRDdRW0kwU7XuJdqgKoyeW6egrxj4q/HDw7+zH+yZB8RLOG2juY9Nt0srcKFSW5kjG0ELjPPJr8T/ANpv9p/xx8ePAfw+staEX2u3kj1jWfsqlIUklkCRcEsRkDgEnmuavj3hYS55807JpWsl09fP5Hs5dwtHO69L6rh/Y4VTlGUnLmnJpOTd2kraJJJJJvqz+lnxX428KeB/C1x428W30VhpVpH50tzKcIqevr+lflj+1l8V/A3xb+InwO1P4eanDqumXXiRZBNCeCYxggg4II9CAa3v+CkHjSHTv2aPCWhXMwhtte1HT4p3J4ESAO2fbFfmNqHjKDxF+1F4G+N12INH8ItrqWOnk4hh8qzAR5m6LlzyW71lmuYNS9glp7t/m739Fp952cEcKxdFZpJvmtWS2s7QcUu7k2299FF6an9Fvx8+NHhX4B/C/U/iP4snEUVpEwhUgkyTEfIgwDyTX4d/Bn4larrPhK9sPh9GPEnxb+Ks073skZ3rpVhKdqmZ+Quxc4TI7V+if/BTvXLBf2PtWaAxzpfy2yROMOuHYEMp+nQivbf2bPhx4A+HXw58KReCtKs9Na706OW4e2iWNpXaMEs5AyxJ9TXViKdSvi/ZqVoxjfz97TTzst+lzx8oxWEyzIHi6lJzq1avLa9otU0pJS0vy80k3FfE4pNpHrHwU+Gdj8HPhXonw109/NTSbVIS+Mb36s34sSa9Rry3RPjT8NPEfxG1D4U6Fqkd3rmlQrPdwRgsIlY4AZwNob/Zzn2r0/zI/wC8Pzr1aXJyqMNlp9x8JjfrDrSqYpNTn7zurN82t/R3uh9ZOu/8gi4/3DWn5kf94fnWTrskf9kXHzD7h71ochfsf+POL/cH8qtVSsZI/scXzD7g7+1WvMj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAx9K/4/L3/AK6/0rbrB0qRBeXuSP8AW+vtW35kf94fnQA+imeZH/eH50eZH/eH50AYmpf8hWx/3n/lW9XP6k6HVbHBH3n/AJVu+ZH/AHh+dAD6KZ5kf94fnR5kf94fnQBT1T/kGz/9c2/lTdJ/5BkH+4KTVJI/7Nn+Yf6tu/tSaTIg0yDLD7goA06KZ5kf94fnR5kf94fnQA+sDS/+Qtf/AO8n8q3PMj/vD86wNLkj/ta/+YfeTv7UAdFRTPMj/vD86PMj/vD86AH1gax/x+2H/XX+lbnmR/3h+dYOsSJ9tseR/rfX2oA6GimeZH/eH50eZH/eH50APqvd/wDHrL/uN/KpfMj/ALw/Oq93In2WX5h9xu/tQBW0T/kEwf7grUrI0WSP+yoPmH3B3rU8yP8AvD86AH0UzzI/7w/OjzI/7w/OgDAsf+Rhvf8Acjroq5qxkT/hIb35h9yP+VdF5kf94fnQA+imeZH/AHh+dHmR/wB4fnQBi67/AMun/Xwv8jW7XP65In+icj/j4Xv7Gt3zI/7w/OgB9FM8yP8AvD86PMj/ALw/OgAk/wBW30NYvhv/AJAsH+7WvJJH5bfMOh71jeG5I/7Fg+YdKAN+imeZH/eH50eZH/eH50APrnbb/kZrn/rlH/Wt/wAyP+8PzrnbeRP+ElueR/qo/wCtAHS0UzzI/wC8Pzo8yP8AvD86AH1ia7/x7w/9dk/nWx5kf94fnWJrskf2eH5h/rk7+9AG9RTPMj/vD86PMj/vD86AH0UzzI/7w/OjzI/7w/OgDD8M/wDIJX/fk/8AQjW/XO+GZI/7JX5h99+/+0a3/Mj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAwz/yM/wD27D/0I1v1zpkT/hJ/vD/j2Hf/AGjW/wCZH/eH50APopnmR/3h+dHmR/3h+dAGH4l/5BZ/66Rf+hit4dBXPeJZE/ss/MP9ZF3/ANsVvCSPA+YfnQBJRTPMj/vD86PMj/vD86AH1heH/wDj0l4/5by/+hGtrzI/7w/OsPQJIxaScj/Xy/8AoRoA36KZ5kf94fnR5kf94fnQA+sSX/kYYf8Arg//AKEK2PMj/vD86xJZE/4SGHkf6h//AEIUAb1FM8yP+8Pzo8yP+8PzoAfWF4m/5AVz/u/1FbXmR/3h+dYXiaSP+wrn5h9319xQBvjoKWoxJHgfMPzpfMj/ALw/OgB9FM8yP+8Pzo8yP+8PzoAxNB6Xn/X1L/St6ue0GRMXnzD/AI+pe/0re8yP+8PzoAfRTPMj/vD86UOrcKQaAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVkyaZPJI0gvJ1DEnAK4Gew+WgDWrH1//AJA8/wBB/MUn9k3H/P8AXH5r/wDE1ka9pM/9jz5vrj7o7r6j/ZoA7Cisb+ybj/n+uPzX/wCJo/sm4/5/rj81/wDiaANmsjSv9bef9fB/9BWm/wBk3H/P9cfmv/xNZGl6VP5t5/ptx/x8Huv91f8AZoA7Cisb+ybj/n+uPzX/AOJo/sm4/wCf64/Nf/iaADUP+QnYf9dH/wDQGrZrjtQ0q4/tKw/024/1j91/uN/s1sf2Tcf8/wBcfmv/AMTQBs1Bdf8AHtJ/un+VZv8AZNx/z/XH5r/8TUNzpVwLeQ/brj7p7r6f7tAF3Rv+QRa/9ck/kK0q5XR9Kn/sm1/064/1Sd19B/s1o/2Tcf8AP9cfmv8A8TQBs1kW/wDyG7r/AK5xfzam/wBk3H/P9cfmv/xNZFvpU/8AbV1/ptx/q4u6/wC1/s0AdhRWN/ZNx/z/AFx+a/8AxNH9k3H/AD/XH5r/APE0AGt/8e0X/XxD/wChitmuO1vSrgW0X+m3H+vh7r/fH+zWx/ZNx/z/AFx+a/8AxNAGzRWN/ZNx/wA/1x+a/wDxNH9lXH/P9cfmv/xNAFS01HT9I0ObU9VnjtraF5mkllYIiKHPJY4AH1rX07UbHV7GLU9MlWa3nUPHIpyrKehFfJXxnlOn6l8OtM1O6mfTtS8XrBcB9pRnEVy8CkbcHMyoQDxuAr6kmsDbQvcXGoTRxxqWZmZAqqOSSSvAArOM7yku3/DnZWwvs6NKp1nd+Vk2ret191jerHm/5D1v/wBcJf8A0JK8R8BfHj4OfE/xM/hDwH4tOo3yxPMixqQk0cbBXaGRowkoUkZMbNjNeqzaVcf27b/6dcf6mXuvqn+zThUjNXg7ryMsRha2Hn7OvBxlvZpp/czsaKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJqzAl1z/kDXf8A1yf+VaSfcH0rlNb0m4/sa6/064/1T919D/s1pJpNxsH+nXHT1X/4mgDborG/sm4/5/rj81/+Jo/sm4/5/rj81/8AiaAF03/j+vv+uq/+gLXk3xL+BHhz4g61B4y068u/D/iO0Ty4tU05xHMY/wC5ICCsiezD8a9B07Sp/tt9/ptx/rV7r/cX/ZrX/sm4/wCf64/Nf/ia5cZgqGKp+yxEOaO/o1s09010a1XQ3w2Jq0J+0oys/wBOz6NPqnofNc37PnxM8QQnR/HnxL1TUNKkG2W2traGyeVe6tLHlsEcHGM13+ifA74S+Ate03XvCeg2tnexBLVJ1XLrEiPgAknBPdh8zdya9V/sm4/5/rj81/8AiayNU0qcXFjm9uP+Pj1X+4/+zXFh8hwNGaqKnzTW0puU5L0lNya+TR1Vs1xVSPI52i91FKKfqopJ/M7Cisb+ybj/AJ/rj81/+Jo/sm4/5/rj81/+Jr1zzjYPQ1y9nomjax4Xh0zVrSG6tp4lMkUsaujnA5KkYP41fbSbjB/064/Nf/iaytC0mf8AsW0/064/1Sd19P8AdqZRUlaSuhxk07p6nQ6bpem6NYx6Zo9vHa20QwkUKBEUegUYAq9WN/ZNx/z/AFx+a/8AxNH9k3H/AD/XH5r/APE04xUUkloDbbu9xY/+Q9L/ANcE/wDQmrYrj49Kn/t6Ufbbj/UJ3X+83+zWv/ZNx/z/AFx+a/8AxNMRs1ja/wD8gxv+ukX/AKGtH9k3H/P9cfmv/wATWRrmk3J04hb24JMkXGV/vr/s0AdhRXnXivxR4N8CWR1Pxx4ng0a2UgGW+uYbdAT0+aTaP1r4017/AIKZ/wDBPvQtT/sSL41aJrF9uZPsuiXSaxPvTqvl2KTtuGPu4zQB+iFY+i/6qf8A6+Jf/QjX51R/8FGfhRrojb4ZeFPih4wSZSUl0zwdqMcLFf4fNvLa2jU/7zAe9Y2i/te/tNa/YG68Cfs2fEaRZbiTJ1q+8P6SVBY8lW1GV8f8Az7UAfqNRX5uW3xe/wCCkOsXbQWHwQ0jSoWHyS6n40iYg/7aW2nS/jtY/Wqjap/wVvvppUt/DPwt0+In9283iDVblgP9pV0uMH8GFAH6LXf/ACGbP/dl/kK5K9+GPh2/+KNl8Wrgy/2nYWMlhEoI8vy5W3EkYzu6gc4wa/OO/wDDv/BZm91y1aHxB8H9NjCyYDWetXjHOM/8trccetdnbeCP+CuDoPt3jz4WI3fy/D2qt/PVBWNbD06ySqxvZpq/Rp3T+TNKVadNtwdrpp+j0a+Z+l1UdT/5Btx/1yf+Rr85pPA3/BWdVzB4/wDhe7f7XhzVAP01WuM1jwr/AMFm7eKVrbxZ8H7uDYwZZNK1m2bGOu5byb/0E1sZn6oWP/HlD/uL/KrVfmJaS/8ABXnTdNjB0v4UavIFXDLq2r2QIx6Gwnx+dbFz8R/+Cm+g2aHUPhJ4V1yc43DSvGMkCj1x9q0pTQB+kdY9j/yFL7/ej/8AQRX53D9p79srRZ9njH9m/wAWPEi7pJdC8QaDqC59FWe5tJGP/ARWJpP/AAUBstPu5rj4i/Cb4v8AhUzyKrfafC76isYVcFnk0tr6MLxnO6gD9RKK/Ni1/wCCov7BYmitvE/xPbwtLMzKq+JbK60LlOuTf20CgD1JxX1V8N/jr8BfjJZRal8IviPo3im3mQSRyaRqdpeqyH+IGFnyPegD2TWPvWn/AF8J/I1s1x2r6VPutP8ATbj/AI+E7r6H/ZrY/sm4/wCf64/Nf/iaANmisb+ybj/n+uPzX/4mj+yp/wDn9uPzX/4mgBdA/wCQTF/wL+ZrYrjtB0qc6TD/AKbcfxd19T/s1sf2Tcf8/wBcfmv/AMTQBs1jf8zD/wBu/wD7NR/ZNx/z/XH5r/8AE1j/ANlT/wDCQY+23H/Hv6r/AHv92gDsaKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJoAdr3/IJm+g/mK164/XtKuP7Im/0246DuvqP9mtf+yrj/AJ/rj81/+JoA2aKxv7JuP+f64/Nf/iaP7JuP+f64/Nf/AImgBui/fvf+vl/5CtuuM0fSpy95i9n/AOPl+6+g/wBmtr+ybj/n+uPzX/4mgDZrIvv+QnZf70n/AKCab/ZNx/z/AFx+a/8AxNZN7pU/9p2X+nXH3pO6/wB0/wCzQB19fLkX7H/wb/t5tXv4728tftL3kemT3Ttp8c0jbiVg4XG45wcivor+ybj/AJ/rj81/+Jo/sm4/5/rj81/+JrhxuWYTGcv1qlGfLtzJO33+i+46sNjsRhub2FRxvvZ2L00UUFg0EKhESMqqqMAADgAVDo//ACCbX/rin/oIqhdaVOLWX/Tbj7jd19P92qukaVP/AGTa/wCm3H+pTuvoP9mu45TqqKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJoALX/AJDd5/1zh/8AZq2a4610qf8Atq8H22f/AFcPdf8Aa/2a2P7JuP8An+uPzX/4mgDZrJ1f/Vwf9d4v/QhTP7JuP+f64/Nf/iaydX0m48uD/Trj/Xxd1/vD/ZoA6+isb+ybj/n+uPzX/wCJo/sm4/5/rj81/wDiaANmsfQv+Qf/ANtZf/Q2pP7KuP8An9uPzX/4msfQ9KuPsH/H9cf62Xuv99v9mgDsaKxv7JuP+f64/Nf/AImj+ybj/n+uPzX/AOJoAdL/AMh2H/rhJ/6Ela9chLpU/wDbsP8Aptx/qJO6/wB5P9mtb+ybj/n+uPzX/wCJoA2ayNf/AOQLdf8AXNv5U3+ybj/n+uPzX/4msnXtKnGi3X+m3H+qbuvp/u0Adcv3RS1irpNxtH+nXH5r/wDE0v8AZNx/z/XH5r/8TQBs1kab/wAfd9/12H/oC03+ybj/AJ/rj81/+JrL0jTJ47+8kN5OwWcHBK4OEXg/LQB1tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0v7+KKKKACsDWNF0q7t7i4uYVd2jbJPfAxW/VS//AOPGb/rm38qAOb0Tw5oh0a0P2Zf9Snr/AHR71qf8I5of/Psv6/41Pof/ACBbT/rin8hWpQB86ftMfEbwX+zj+z341+POvwRraeEdGvNVffwp+zRM4U8j7xAH41+C/wDwbD/syy237E+q/t5/GiE6l8Sv2gdavvEOpaldjdc/YEneO2iDn5vLYq8wAO3a6jHyiv1T/wCCvnwY+Jv7Q/8AwTK+NXwV+DWmvrHifxF4Yu7TTrGMgPcTEA+WuSBuYAgDPJ4r+Uf9nv8A4Khf8FNYf+CfngT/AIJZfsX/ALMvjbQ/izpGhW3hS48T61Zvb6fpyxr5U12pkjVUIBJUysFT73zYwQD9MPDf7ZP7LH7SP/BYnw98Xf2cYZ7fVvBniO++Dvi+5kVRBrFreWc91ayRFGPmJBeWbKjPggFiBgiv6D/iV+0R+yX8G/GFh8Pviz428O+Gtc1NQ1rY6lqMNrPKp4BCSOpwSMA9CeBzX8T3/Btn+wfN8O/26fjz+zj8U9fe/wBc+CXi7RdakvLNf3V7qFnHe27qfMy3lk3DHdwzbQeM19M/8FoP+CHfwk+Pn/BU/wCGHxw8beMr6/h+PWvw+GLzw88JD2kdjYSSyXNrdK42CKODeI3jYFieQOKAP7QLfQ/Dl3Al1axRyRyKGV1OVYHoQQeQa/C7/gpD/wAEuv2wPih+0fpf7cX/AATT+LNv8L/iXb6IvhzVbLVLYXOlarp6SNLHvGyXEkbOcbo2B4wUIJPyH/wb/fG34+/s1ftDfFv/AIIiftVay/iHVvgyqan4P1SUlnuPD0zJsTJ52oJoWQEnYHKAlVFf1XUAfht/wSh/4JOa5/wT907xb8Tv2hfGZ+Jfxf8AixrEWpeKddKssBaJZDHDBvw5RS7EsQueAFUKBX7Xf8I5of8Az7L+v+NM1n/j6sP+vgf+gtW9QBif8I5of/Psv6/40f8ACOaH/wA+y/r/AI1dtNU02/nntrG4jmktX8uZUYMY3IB2sAeDgg4PY1epRkmrpjaa0ZgS+HNEETf6MvQ+v+NZfh7w5oh0O1P2Zf8AVr6/41183+qb6Gsrw9/yA7X/AK5rTEN/4RzQ/wDn2X9f8aP+Ec0P/n2X9f8AGtuigDE/4RzQ/wDn2X9f8awLTw9op8RXgNsv+qi9fVq7ques/wDkY7z/AK5RfzagCb/hHND/AOfZf1/xo/4RzQ/+fZf1/wAa26KAMT/hHND/AOfZf1/xrC13w7ogS1H2Zf8Aj5i9fX613FYOvfctf+vmL+dADm8PaEoLNboAOuf/ANdA8O6ERkW6EH6/414N+07rU1v4V0jwlDI0Y8R6ta6fLtOCYnbLrkcjcoIOOxr6OtraCzto7S1UJFEoRFHQKowAPoK4aONVTFVcPFfAo3fnK7tbyST36nVUwzhQp1m/ibsvJW1++/3GX/wjmh/8+y/r/jTW8OaIFJ+zL09/8a3aa/3D9K7jlOL8OeHNEOjQk2y/xev94+9bf/COaH/z7L+v+NJ4a/5AsP8AwL/0I1uUAYn/AAjmh/8APsv6/wCNH/COaH/z7L+v+NbdFAHCxeHdE/4SaYfZl/4909f7x963/wDhHND/AOfZf1/xqKL/AJGeb/r3T/0I10FAGJ/wjmh/8+y/r/jR/wAI5of/AD7L+v8AjW3SEZGBxQBw/iLw7ogsFxbL/ro/X+8Pet7/AIRzRP8An3X9f8a+Gv2d/jH4w8V/ED4l/CL4hXxvL/wxr0clmzqqt9guNpRcADIQ8Z96/QCsqFaNWHPHz/B2O/MsuqYKu8PVabtF3WzUoqSa+TRif8I5of8Az7L+v+NH/COaH/z7L+v+NX9Q1Cy0qwm1PUZVht7dDJJIxwqqoySfpX5veNv279An+OGj+Evgut343tzYXEkljokIlMtySojDyNgIijLM2cD3qa+Jp0UnN7m2V5Ni8wlJYaF1FNt9FZX1eyv0u0j61+NXia1+FHhBPGFpoh1K2huoEvfL3FoLV2Akm2qCzCNSWIA7Vb0HxL8Lf+FaTfEqC5t59Dgjmumu4W3p5SEkng9vTrWz8Ptc8ft4Lk8RfGqCw0a5kLSm3glLx20BHCyyvhWcfxEAL6V80ftYfC7VPiH+zPrEPgjXbnQY7GG7vGh05Y/LvkCsfKk4+42ckrzUVKk4wlVhrpe2zOjB4PDVa9LBV2ovns6id42dtNE7tdGtNddNT6Z8L6/8OvFnhbSvF9lsgtdZijmtRc/upHWUZUbWOckHp1rtz4c0Mcm3X9f8a/LD9gP9nX4K+JPg34W/aI8TC717xBawMUk1O5eeKxktyVAhiJ2JtUDHBIrz3Xf22vHeu/s1+NNUS/SfWdY8ST+H/DxgQIwjkbYpG3rtXLbutcscy5aUalZWurqzvolfy77ant1+D3Wx1XCZfNyVOahJyXLZyk0rau6STbb5dE3Y/YwaF4dMRnEMewAktnjA981+VP7e3xJ+EHjj9n/XYvhzq9jqc+n3llDcpayh2iZbpMhgD6gjPSvJ/wBl74ieM/hF+z18Yvgv41vpJ9Y8ERTywtI5dws8ZyVLZO3dg/jXHeMvA3gXxH+xtoXws+HWnQXvxBl8Ow6w8drBuupLeKdZZN7qM5bkqpOWI4rkxOPdbDuMVa8ZXT3vtZed7nvZPwtTy7NYVa1RyVOtTUZRXuuLSnzyvtHlceul99D7V/b2+IOk/DX9ji5v9OIttQ161gs7Zl3biZ1G7BHQ7c9xXHf8Ewvg7d6N8M9U+JvibSRpcXiJ4VsbZ12t9mt02iRunMjZbJFeieNvA7/tofsK2WheEt1pqj2Vv5CXiNEUvbLAKOGAIyykZ968Q8B/Bf8Ab3+PEdj4G/aB1WPwR4N0iGO1nttJYLdagsICgeYrMVDAfMdyj0FFTneLhXUXJcq5bbXd73fT+uwsKsPHIcRlkq0KM1Wl7Xnb5uWPLyqEErybat5W3SZ+tQ8O6Ew3LboQfr/jWJ4j8O6INJk/0Zeq+vr9a6Dw/oeneGNDs/DukKy2tjCkEQdi7BIwAMsxJJwOpOah8Sf8gmT6r/OveXmflkrXfLsKPDmiYH+jr+v+NL/wjmh/8+y/r/jW0OgpaZJif8I5of8Az7L+v+NH/COaJ/z7L+v+NbdFAHC+HvDuiG2nzbL/AK+T19frW/8A8I5of/Psv6/41F4d/wCPaf8A67yfzrZurq3sraS8u3WKKJS7uxwqqOSSfQUDSvojn9R8HeHNTsJ9Nu7ceVOjRvtZkbawwcEEEH3Ffhz+2J4A/Yb+BHhzULHRtc1i58XhCbTTbbW7qRlkPdzmQIB1w2Ca+hvHnxw+N/7ZXjW7+EH7KM7aJ4QspDBq/isqcPjho7Y9z7qcn1A5r3HwP/wTr+AXgDwFqfhvRrd59b1a2eC4128AuLzdIMM6b8qhPPQZ9Sa8TFXxicaEE0r+9L/23v67H6Tkip8PThVzLEzhOTi3Rpuzt0dV/ZVvspOdv5Tj/wDgnNc6/wCM/wBnTw5rPj/zLy5IukhnuGLySW6OAhLE5OORk+lV/wDgp9p+m6Z+zHJLawqjHU7HkZ7Sivtf4d+AND+FmjaF8PPDa4stIsPs8WepCYyx9yeTWJ+0P8A/Cf7SPw1ufhl4xnntbWeSOUTWxAkR4zkEZBFdU8NU+pOgneXLb52PDw2dYVcSLNJR5aPtueyW0ea+3p0Ph79qTxLoHg28+Cuu6sUg0/7VFNcSMcIALfuelflP4S8Paz4i8LaX4x0i3kk07WfiOWjKKSrLuYjj0+YV+/fj39jb4QfEr4KaV8DfF4vLrTtGVPst005a6Vk/i8xs5z0IIxjivYfhT8HvAXwY8B2Hw48CWS2+m6dzGr/Oxc8l2J6sT3rirZZWrVuabSjb53sk16aH0uW8aYDLcvVLDwlOrzNO6Si4KU5J31d25rS2ltz8EP21fDnizQv2svFXhvw3pdzNeeM9BisNNEEZIeRyAfm6ADHJPA71zfx9/Zx8Pfs1/sz+DPhbrs8cXjnxRrMVxdtCd8kcf3Qqsv8ACmfXk1/R94ngsl0ybULiNN8KEiQqCyr3wetfzRza94j/AG1P+CiFlCA8umadqAjhTGVhs7M5Zj6biM1w5ngoUW3fmnUdorsm7s+m4N4jxGYQhFxVPD4SCnUle7m4RcYLbRaXtrqt9j9PP2YPB3hb4d/tT+K/hPp8Ki3tPD2mMmRgyOud8h9SxOSa9n/br+CfiP4q/s46x4W+GtgLrVg0U8UCnDS+UwYquSBk9q+wYPDPh221p/ElvYwJqEkSwPciNRK0a9FL4yQPStyvfjg17CVCT0d9uzPyqvxDN5lRzOnH95Dkfva3lBJNvbex/Pf4n/Z0/ay/bP0NYvGHhyTwXpPhPShBpmnXEgVr2+RQu5t2MA4+8QABwDX0B+yz/wAE3NI/4UNrXhD9oWORNc1u5jaVrWYGW0W35jVJBuXryRyK/ZCsDQ/9be/9fDfyFc1PJqCn7Wo3KVrO/X5emh7GL8Q8ynhvqeFUaNJSUoqCd007/E227y9531b620Pzt+MH/BN/RviR8HdG+Een+MNTVNJv/tYu9T/02Voyu0xDlNoA+71xX1j4c/Zg+CGh+ANF+Hd94dsNTsdCjVbf7XAkpDr1f5gcMx5NfQFFdkMFQhJzjHVpL5I+exPEeZV6MKFSu+WMpSSVl70t3dJP/K7tufOf7Qn7N/g/48fCDUvhXOq6eLqMC3njXiGRPuEL6D0GOK/JeD9nH/gqD4Xtbf4QaJr1i+jxI1vb6iJYhIkHTh2XzhgdB1Hav30rAvf+Q7Z/7r/yrPE5fTrT5+ZxdrXi7XXZnZk/FeKy+g8MqdOrTvzJVIKajLbmjfZ/gfKH7JP7HXhf9mnwXPZ6jcf234h1VxPqWoyA5kk/urklto9zk9TX1n/wjmh/8+y/r/jW3RXTRowpQVOmrJHi5jmGIx2Ini8VLmqSd2/62S2SWyMT/hHND/59l/X/ABrK1zw5og0i4/0ZfuH1/wAa7CsnXf8AkEXH+4a1OIo2XhzRDZxf6Mv3B6+n1qz/AMI5of8Az7L+v+NaNj/x5xf7g/lVqgDE/wCEc0P/AJ9l/X/Gj/hHND/59l/X/GtuigDitL8O6Iby9zbL/rff0+tbX/COaH/z7L+v+NGlf8fl7/11/pW3QBif8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAcRqPh3RBqtji2X7z+vp9a3P8AhHND/wCfZf1/xpmpf8hWx/3n/lW9QBif8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAcrqnhzRBps/8Aoy/6tvX0+tGleHdEOmwE26/cHrW3qv8AyDZ/+ubfypuk/wDIMg/3BQBV/wCEc0P/AJ9l/X/Gj/hHND/59l/X/GtuigDE/wCEc0P/AJ9l/X/GsDTPDuiHVr/Nsv3k9fT613VYGl/8ha//AN5P5UASf8I5of8Az7L+v+NH/COaH/z7L+v+NbdFAGJ/wjmh/wDPsv6/41g6v4d0QXlj/oyf60+vpXc1gax/x+2H/XX+lAEn/COaH/z7L+v+NH/COaH/AM+y/r/jW3RQBif8I5of/Psv6/41BdeHNEFrKfsy/cb19PrXRVXu/wDj1l/3G/lQBzOi+HNEOlQf6Mv3B6/41p/8I5of/Psv6/41Pon/ACCYP9wVqUAYn/COaH/z7L+v+NH/AAjmh/8APsv6/wCNbdFAHB2Xh3RP+EhvR9mX7kfr6fWuh/4RzQ/+fZf1/wAagsf+Rhvf9yOuioAxP+Ec0P8A59l/X/Gj/hHND/59l/X/ABrbooA4jW/DmiA2mLZf+PhfX0Nbn/COaJ/z7L+v+NM13n7J/wBfC/yNb1AGJ/wjmh/8+y/r/jR/wjmh/wDPsv6/41t0UAYMnhzQ/Lb/AEZeh9f8ax/Dnh3RDo0H+jL09/8AGuzk/wBW30NY3hv/AJAsH0oAX/hHND/59l/X/Gj/AIRzQ/8An2X9f8a26KAMT/hHND/59l/X/Guft/D2inxJcr9mX/VR+vvXd1ztt/yMtz/1yj/rQBP/AMI5of8Az7L+v+NH/COaH/z7L+v+NbdFAGJ/wjmh/wDPsv6/41i654c0MW8P+jL/AK5PX1+tdrWJrv8Ax7w/9dk/nQAf8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAYn/COaH/z7L+v+NH/AAjmh/8APsv6/wCNbdFAHC+GvDmif2Sv+jL99/X+8fet/wD4RzQ/+fZf1/xqPwz/AMglf9+T/wBCNb9AGJ/wjmh/8+y/r/jR/wAI5of/AD7L+v8AjW3RQBw//CPaIPE2Psy/8ew9f7xrd/4RzQ/+fZf1/wAajP8AyM//AG7D/wBCNb9AGJ/wjmh/8+y/r/jR/wAI5of/AD7L+v8AjW3RQBw3iTw5og0s/wCjL/rIvX++Pet0eHNEwP8ARl/X/GmeJf8AkFn/AK6Rf+hit4dBQBi/8I5of/Psv6/40f8ACOaH/wA+y/r/AI1t0UAYn/COaJ/z7L+v+NYmgeHdENnJm2X/AF8vr/ePvXbVheH/APj0l/67y/8AoRoAd/wjmh/8+y/r/jR/wjmh/wDPsv6/41t0UAYn/COaH/z7L+v+NYsnh3RR4hh/0Zf9Q/r/AHh712tYkv8AyMUP/XB//QhQAf8ACOaH/wA+y/r/AI0f8I5of/Psv6/41t0UAYn/AAjmh/8APsv6/wCNYfiXw7og0K5P2Zfu+/qK7esPxL/yArn/AHf6igAHhzRMf8ey/r/jS/8ACOaH/wA+y/r/AI1tDoKWgDE/4RzQ/wDn2X9f8aP+Ec0P/n2X9f8AGtuigDh9C8O6IVvB9mX/AI+pfX2rd/4RzQ/+fZf1/wAaZoPS8/6+pf6VvUAYn/COaH/z7L+v+NWrTSdOsJDNZxCNiMEj0rRooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsfX/APkDz/QfzFbFY+v/APIHn+g/mKANiiiigArI0r/W3n/Xwf8A0Fa16yNK/wBbef8AXwf/AEFaANeiiigDG1D/AJCdh/10f/0Bq2axtQ/5Cdh/10f/ANAatmgAqC6/49pP90/yqeoLn/j2k/3T/KgCpo3/ACCLX/rkn8hWlWbo3/IItf8Arkn8hWlQAVkW/wDyG7r/AK5xfzatesi3/wCQ3df9c4v5tQBr15R8Svizpfw8u9K8PW9lcazr2uyvFp+mWm3zZfLG6SRmcqscUYILyMQBkAZJAPq9fHXwPb/hYH7Q/wATfilqH7z+xLyHwppuefJgtIknudvp5k8vzeuwegrCtNrljHdv/gv+u56eXYanNVa9ZXhTje2122oxV+13d9bJ2admex2nj7U9TvLbw/4q0G90O9lljeLzdk9vLtYFgs0LOoYDna+0kdAecdhb+P8AwnceJNY8KC7VLzQLe3ur4SAokUNyJDGxdsKQRE5OD8uOccVta2SLaLH/AD3h/wDQxX5B/tKa/J4r/bff9mTT2dbf4g2GhQau0bbT9isJbq4njyOR5sXyH1U46GscViHQjF73dvvTt+Nj0MkyqnmlerBLkUYObtqkoyjzOz1soczte7a36H2lrf7Y/hOHwzqfj7wnomo6r4X0eNprjXpAlnpzqhwfIeYiS4JPyqYo2ViQATW54V/ay8G+JvGHhvwHd6Fruh6p4nNwbWDVrFrQhLeLzi5JJVlYcDYzMD94CuE/bSsdPi8BeAfh3bQpDpereM9B02SCMBYxbRyGQR7Rxt/dKMdK8T/av+JNtof7e3wJ8NSSFUgku5J/7q/2iDaxZPbc6kc1zVsTVpSfNLROC2/metvl6ntZdk+CxtOKpUGnKNeSfM20qdNuN9LNuejsorbzPqb9pfwFqnxB/Z51y08N5GtaVIdY0p1+8t9p032iLHuzJt+jV5X4t+I9p+1Jpfw6+GHhiZo9J8d6d/wkGveWSGXSbcJvtiQcj7RO6wtyDsVxX19feMfDHgrQk1DxXeR2cVxeG1i35LSTTSlUjRRlmZieAAT36A1+dP7FXga6+H/7Ufxf8I6k+LHwkLW00lW4WDT9RlnvggP90F/wxjtWmK/jRitp6P5Xf4rmRy5I08urV5r3sPepDzc+Wm7ecJunJdte57v8co7Pw9+0p8CbHRYktlW81q1SKJQirbmwOVCjgKCqcDgcV9iTf8h63/64S/zSvhD4X6wv7Tv7Vt58a9IPneC/h1bz6LolyP8AV3up3WBeTxnoyRoBECOCeRX3fN/yHrf/AK4S/wA0rbCPm9pUWzenySX5pnmZ9B0VhcLU/iU6fvLs5TnUs/NRmrrdO6eqNiiiiuw+fMvXP+QNdf8AXJ/5VpJ9wfSs3XP+QNd/9cn/AJVpJ9wfSgB1FFFAGPpv/H9ff9dV/wDQFrYrH03/AI/r7/rqv/oC1sUAFZGqf6+y/wCvj/2R616x9V/4+LH/AK+P/ZGoA2KKKKAEPQ1laD/yBbT/AK5J/KsHx98Rvh98K/DU/jH4na5p/h3Sbcfvb3UrmO1gT6ySMqg+2a/PbR/+ClPg/wCIumJpf7HPgPxV8aLiFBEL/R7MadoPmrwVOrak1tauB1JtzNx2PFAH6e1Xu7u1sLZ7y+lSGGIFneRgqqB3JPAFfnAvhH/gp/8AGtfN8W+KvCnwT0uY5+yeHLZvE2sqhPRr2+SCzR8ddtlKoJOC2Aa0ov8AgmF+zh4q8u6/aNu/EPxku1wzN421abULNmGcn+zozDpygkn5VtQB6cCgDS8Y/wDBS39iTwd4uuNB07x3a+LdZRFg/srwlDP4jv8AzQxBQw6bHcMrDPIfGOc4waw7T9sP9qr4nW5l+A/7OviKCF+I73x3qFp4ahPoxgRr29A68NbKw449PtbwF8O/h/8ADD/ilfhroWneHdLht0EdpplrFaQINzdI4lVR+Ar0mgD847T4f/8ABUb4ibm8d/EPwP8ADi2ZiRb+FtFuNau1XceDd6lNFETtxyLIYYdCKyNZ/wCCd7eKtOaX49/Gj4meOt8kJktv7cGgWTYYAjyNEisMq2eVd3r9M6xte/5Bjf8AXSL/ANDWgD4j8M/8Eu/+Ce/hjUYtZ/4VJ4e1i/gChLzXbb+2rkFPut51+biTcOzbs+9faPhrwb4Q8F2A0vwdpVnpNqvIhs4EgjH/AAFAo/SukooAKx9F/wBVP/18S/8AoRrYrH0X/VT/APXxL/6EaANiiiigDHu/+QxZ/wC7L/IVsVj3f/IZs/8Adl/kK2KACqOp/wDINuP+uT/yNXqo6n/yDbj/AK5P/I0ASWX/AB5Q/wC4v8qtVWsv+POH/cX+VWaACsax/wCQrff70f8A6CK2axrD/kK33+9H/wCgigDQvLKz1C3a0v4UnicEMkihlIPUEHINfI3xG/4J8fsMfFq6/tH4hfCLwlqN6MYvDpNtHdjbyMTxoso/B6+wqKAPzO1f/gmP8D/DUsVz8EvFfj74bzTS7R/wj3irUDboXydwtL6S7s8joMwEAcdK2z+z3/wUB8AR7/hf8fLXxOifctfHPhu2udwyOGuNKfTn4XgHYeeTnpX37rH3rT/r4T+RrZoA/OKD44/8FG/hraZ+LfwV0XxtHCuZLvwD4hXzXAycrZavFZkE8AKLl+c84o03/gqR+zPpV0uk/Hq08TfCDUCWHleONEutMt/lJBK3wWWwccE5S5IxzxX6O1BdWtte272l7Gs0UgKujgMrA9QQeCKAPNvhF8Tvht8VvBdt4o+FviHTPEumSglLvSruK8gbk9JIWZf1r1CvgPW/+Cbn7Fnjm/8A+E8tvA9r4W8Sz7i+teFZZvD2os24nL3GnPbvIeT/AKwsOT61zTfsv/tr/CRjcfs7fHW48QWUfMei/EjTotYiwB91dQs/sd8oyPvStcHk+1AH6Q1jf8zD/wBu/wD7NX53r+2L+1J8HIWj/au+BerfZYMCTXvh5cDxTp7Du5tNlvqcYA5Ki1lx2Zq96+A/7Y37MH7Tetyf8KP8baZrl3BAVuNPEht9Rt2ByVmspxHcxEdxJEpHegD6vooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/wBfL/yFbdYmi/fvf+vl/wCQrboAKyL7/kJ2X+9J/wCgmtesi+/5Cll/vSf+gmgDXooooAr3f/HrL/uN/Kq2j/8AIJtf+uKf+girN3/x6y/7jfyqto//ACCbX/rin/oIoA0aKKKAMa1/5Dd5/wBc4f8A2atmsa1/5Dd5/wBc4f8A2atmgArJ1f8A1cH/AF3i/wDQhWtWTq/+rg/67xf+hCgDWooooAKx9C/5B/8A21l/9DatisfQv+Qf/wBtZf8A0NqANiiiigDIl/5DsP8A1wk/9CStesiX/kOw/wDXCT/0JK16ACsjX/8AkC3X/XNv5Vr1ka//AMgW6/65t/KgDWX7opaReVBpaACsjTf+Pu+/67D/ANAWtesjTf8Aj7vv+uw/9AWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKfyFalABRRSMQqlj2oA/kD/4IY3327/guF+35JFyg8Q7P+BR3cqf0NfWn/BVn4x6X8Nv+CzH7B2l+M9Th0zw9PfeMLiWW4cRxLdfYobaEszEKM/aGXn1r45/4Nx9Ws/id/wUn/bu+OOiRltM1fxoYreYcq2bu7cqD9Np/Gv6Cf8AgoX/AMEw/wBkb/gp38ONN+G/7VOiz3sei3JutN1Cwn+y39nI2A/lS4YbZAAHVlZTgHGQCAD8Ev8Agm1420X9sv8A4OTP2kv2uvg9cJqvgPwb4TtfCCapAcwXF7utlPluuVkUNbzc56AHpzX9edfHn7EX7B/7Mn/BPH4K2/wG/Za8ProeixyG4uJZHM13eXDcGW4mPMj44HQKOFAFfYdAGDrP/H1Yf9fA/wDQWrdJwCawtZ/4+rD/AK+B/wCgtW3KcRsfY0Aj49/ZNv31bVviPqkp3NL4nnGfUIiKP0FfYtfC37DExudF8bznkv4juT+arX2xqmr6Vodm2o6zcx2tun3pJWCKPqTxXzHCNdSyejVk9+d/+TyPd4iptZlUpxW3Kv8AyVF2b/VN9DWV4eIGh2mf+ea1BpHibw74nspLvw5fQX0SggtBIsgB/wCAk18lftKeLNX8GeGvAGtWFzJb26a/ZC58tiu+PnKtjqCM5B4r1MzzSng8HPGv3oxts+7S38rnBgsBPEYmOG2k77+lz7VoqB7m2SRYXkUO/Cgnk/SvmiU/HzwJ481nWYdPXxVompTLJAkd0IZrSNVxsWKQBDzkkhsmtcbjlh+RuEpRbs3FOXLpe7Su7dNFpe70Iw2FdbmSkk0rq7Svrsm7Lz1Z9OkgDJ4ArltIvLTUNburuxlSaJ4o9roQynBYcEVojUYJdFS/1ZfsKzRguk5UFC4+6xyRkdOtfA/7LfxF8L/DW68bfD/xlqlvY2uganILR55VUG3lZ2AXJ5xnPHrXJjc5pYXFYehVsoVFL3m7WcUpJO/dc33W6nRhssnXoVqtO7lBx0SvdN2b+Tt95+iNFePeAPjj4G+KGtT6V4GNzfQ26FnvVgdbXIIG0SMAGbnPGa9gBBJAPSvQwuMoYmn7XDzUo907r7+pxV8PVoT9nWi4y7PRi1g699y1/wCvmL+dbH2iAT/Zt6+YRu25+bHrisXxA6pHas5AH2mLk8d66LoysfJn7VN2y+P/AIY6fnCya/G5H+5gf1r7Tr4G/a7uDD8WfhUwPy/2szfkUr75r5fJavNmuZx7Sp/+m4s9zMoWwGCfeM//AEthTX+4fpXJ+OPHXhf4c+G7jxZ4vu0tLK2GWdupPZVHUk9gK+T9T/av8bWPhx/iI3gO7j8KqQRfT3CRStGxwHEJG7B7c16WYZ7gcFLkxE7StzNJSk1H+ZqKfLHzdl5nHg8qxWKjzUY6XtdtJN9ldq78lqfYXhv/AJAsP/Av/QjW5XL+Cr2DU/CtjqVtny7mPzUz12ucj+ddRXrJppNbHntNOzCiiimI5+L/AJGeb/r3T/0I10Fc/F/yM83/AF7p/wChGugoAKKKKAPx78TPN8Kf+CpFqAfLs/H2lIr+jSxdPbOUX86+mP8Agod8XPFvwm/Z+lfwHdPY6xrd7b6Zb3EZw8XnthmU9iFzg9q+ff8AgpfZv4I8a/Cz9oGAbF8P60tvcyekMxB5/Fauf8FTNUtpPhz8P9V3gWT+I7OZ5T90RlSwJPTGK+fq1HSpYqmnZp3XpL/g3P1jBYWnjsbkeLqRUlKPJJPVOVFuyfe8eXTseVt+1T8U/wBlH4/+G/2cPFGqDxf4e1BbSS5vNRy9/b/axtKGQEKQrcjcCcHGa+lf2qtYtvgX+0F8LPjRbxpbaVPeTaFqJjQKqxXq5VjjHRlzXx/8OPggn7dfin4t/EW11AacTq1ja6FqPl+aqLp/OQMjKsRk4P8AFX6i/G79np/j3+z8/wAJPHF9G2qm3iK6jFGUVLyEArKqZJA3DpnpSw8a9SjUcdVe8Pk9u+tl95eb18swePwirWjU5XDEpK1/aQV52S5bx52mlreOx4f/AMFOviDZeC/2TdYsy/8ApGuPFY26qeWaQ5OPX5QTXoH7HHifSfi5+yD4fjglWZm01tPuV7pLGChVs98YP4185fDD9kD9pXxh8QPDOt/ta+IdO1fRPAoDaVZ2IY/aJUG1JJ9yrkgD3z+dfpf4O03TtK0X7HpdvFbQiWUhIkCLksc8AAV24aFWpXliJrli1y2e/e/5nzWcYjA4PLKWVYeaq1YzdR1Iv3VdWUVdJvRRbfR6H4AeA/jz41/Zu+EPiv8AYkg0LUpfG1xqVxZ6MY4iYmguztWTf14HIwD1r0z9j3/gn18dvBXxc0i6+OCW6+GvCsralZRxSrIs97Kowdo5+UjncB04r903sbJ7pb14UMyjCyFRuA9j1q1WVPJoqUHVm5KHwrbTez79O2x6GL8Q6zo16eCw8acq93Vk25Nyas3Hbk0vpr8T1PkT4q/sa/DT4leKtZ8dW091pGra/pkumX7WrgQ3MbrhTLGQQzIcEEEHiuG/Y+/Y40v9lnUb64v9Yl8Q63qVssUl5Ku0JbxMNkaKSSAO/NfelYJ/5GUf9e5/9CFd/wBSoe0Vbl95X/E+UfEeZPBywDrN0pWTWm0dlfey7XtouyNxVVBhAAPanUUV1HiBWF4k/wCQTJ9V/nW7WF4k/wCQTJ9V/nQBuDoKWkHQUtABRRRQBz/h3/j2n/67yfzr4J/bV8ZeK/iD4i0L9kH4XXJt9U8Wky6pcoSDa6ZH/rDkdC44FfeOiTR22n3VxKcLHNKxPsOa+Kf2Q/DMXjrx942/ai1f99c6/fvp2ms3IisLM7MJ6BnBJrixl58tCP2t/Rb/AH7fM+k4edPDurmdVX9ilyp7OpLSF/8ADrPz5bH1t8Kfhb4P+DPgPT/h34GtVtdP0+MIoA+Z2/idj3ZjyTXotFFdcYqKUYqyR4FatUrVJVasm5Sd23u292zAn/5GS3/64v8AzFb9YE//ACMlv/1xf+YrfqjIKKKKAMPxJGsuiXETjKsuCPUHrXgfwT/ZM+CnwG8Tav42+HunPDqWuMXnlmkMhQMdxWPI+VSecdfevfvEIzpE30rVh/1Kf7orOVKEpKUldrbyOqjjsRRpVKNKo4wnZSSdlJLVXXWxLRRRWhyhWBof+tvf+vhv5Ct+sDQ/9be/9fDfyFAG/RRRQAVgXv8AyHbP/df+Vb9YF7/yHbP/AHX/AJUAb9FFFABWTrv/ACCLj/cNa1ZOu/8AIIuP9w0AXLH/AI84v9wfyq1Xz98cPjnp3wL8JaRqk9m2o3er3ttp1rbK+wvJMQCc4PCjk8V13xL+NXwy+DllYX3xO1eDR01Kdba384n55X/hGB+Z6CsnWgnJN2tv8ztp5bipxpyp02+dtRtq3y72S10v2/I9ToqKCaK5hS4gYOkihlYcgg8gipa1OIw9K/4/b3/rqP5VuVh6V/x+3v8A11H8q3KACivlj4yfEjxlffEjQ/gR8KbuOy1bUlN7qN8yCU2djGeSqHgvIflXPA619Q20Tw28cMrmVkUAucAsQOpxxzWcKqlKSXQ7MRgp0aVOpNr31dLra9k3011trfS9rWvj6l/yFbH/AHn/AJVvV83+OPjVBoP7QXhP4LWtgbm51i3uLyScybBDHFx0wdxJ9xX0hThUjJtRe2jIr4SrRjTnUVlNcy81dq/3p7hRRRVnMUNV/wCQbP8A9c2/lTdI/wCQZB/uCnar/wAg2f8A65t/Km6SMaZB/uCgDRooooAKwNM/5Ct//vJ/KvEPjP8AtW/BX4C+INJ8K/ETUzBqGsyKkEMMbSsoYhQ77Qdi5OMmvatFniudQvJ4TuRyjKR3BXIqI1YSk4xeq38jqrYLEUqVOvVptQnflbTSlbez62OkoooqzlCsDWP+P2w/66/0rfJA61gax/x+2H/XX+lAG/RRRQAVXu/+PWX/AHG/lViq93/x6y/7jfyoAp6J/wAgmD/cFalZeif8gmD/AHBWpQAUUUUAc7Y/8jDe/wC5HXRVztj/AMjDe/7kddFQAUUUUAYOu9LT/r4X+RrerB13/l0/6+F/ka3qACiiigBkn+rb6Gsbw3/yBYPpWzJ/q2+hrG8N/wDIFg+lAG5RRRQAVztt/wAjNc/9co/610Vc7bf8jNc/9co/60AdFRRRQAVia7/x7w/9dk/nW3WJrv8Ax7w/9dk/nQBt0UUUAFFFFAGB4Z/5BK/78n/oRrfrA8M/8glf9+T/ANCNb9ABRRRQBgH/AJGf/t2H/oRrfrAP/Iz/APbsP/QjW/QAUUUUAYHiX/kFn/rpF/6GK3h0FYPiX/kFn/rpF/6GK3h0FAC0UUUAFYXh/wD49Jf+u8v/AKEa3awvD/8Ax6S/9d5f/QjQBu0UUUAFYcv/ACMUP/XB/wD0IVuVhy/8jFD/ANcH/wDQhQBuUUUUAFYfiX/kBXP+7/UVuVheJf8AkBXP+7/UUAbg6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/6+pf6VvUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVJfXySMiWcjAEgMGTB9+WrVooAx/7Q1D/nxl/wC+k/8AiqyNe1C//sifNjL0H8Seo/2q6+sfX/8AkDz/AEH8xQAv9oX/APz4y/8AfSf/ABVJ/aGof8+Mv/fSf/FVsUUAY/8AaGof8+Mv/fSf/FVk6XqF/wCbeYsZf+Pg/wASf3V/2q66sjSv9bef9fB/9BWgBP7Q1D/nxl/76T/4qj+0NQ/58Zf++k/+KrYooA4/UNQv/wC0rDNjL/rH/iT+43+1Wx/aGof8+Mv/AH0n/wAVSah/yE7D/ro//oDVs0AY/wDaGof8+Mv/AH0n/wAVUN1qF/8AZ5P9Bl+6f4k9P96t6oLr/j2k/wB0/wAqAOd0fUL/APsm1xYy/wCqT+JPQf7VaP8AaGof8+Mv/fSf/FVNo3/IItf+uSfyFaVAGP8A2hqH/PjL/wB9J/8AFVk2+oX/APbV1/oMufLi/iT/AGv9quurIt/+Q3df9c4v5tQAn9oah/z4y/8AfSf/ABVfF/7JWq3Om+MPi94PuLVzfWnjW9vZI9yBhDqEccsLctyGXOD04NfdFfJXxc+AHji7+JEfx3/Z+1y38PeLTbLZX8N9C0+napbRnKJcIhDq8eTslQ7gDjBFcuIjJOFSKvZ7eTXT8D2spq0XTr4SvNQVRK0neylGSavZN2aurpOzab0ue9eKtfOk6O2q6rbtb2tq8c00skkapHGjAszEtgAAZJr8d/Acd143/wCCgfw//aBnsZkXxtZ67f2aSgK5sLSL7PaNgnjdEBJzjh6+w/FPwo/ah+OkVp4W/aHvtB0bweLmFr/TfD5uJZ9UCupEUs0wXy4SeXVAWYcE4r7Eu/hj4EvfGGjePZ9Oj/tXw/bT2mnzKSvkQ3IUSIqghcEIByOB0rnrUp4lxdrKLTV+rTTf4XS73PYy/G4fJ6daHOqlSrTqQfI7qMZQkkr6JtycZO3wqK3baXmf7Qnwnuvjt8O28HxvcaPqNrdW+o6bqEflu1re2j74pNpYbgDwwyMqTXzHb/sg+P8A4l2HivxB+0ZqMVx4u17+z4rDUdEQRJpqaU3mW8kKytneZi0kg6HOM1+klFdNXCUqkuea/wAuv+bPGwWf47CUfYYedkndOyutYtpNq6TcYtrZ282fG/wa+BPiDQfESfE74v6zfeOfE1t50FlcXMcFtbWMbMQ5t7aNiiSSY+eQkuRwCBkUz4wfsffCn41+N38e+KbPWLS7u7dLTUI9OvzaQ6hDEfkS5VGG8L0GCOOPSvoPxL40034c/DnV/HmsI8lrpEV1dSpHjeyxMxIGcDJxxk4r0K3mW4t0uFGBIoYfjzR9WouPsnG6311+d3qNZzmMKqxtOo4tpxTjaKSVm4pRskldOySV9dzi/CWg6R4C8N2fg/wZoY0zS9PjEVvbW/lpHGg7ABvxJ6k8nmrc2oX/APbtv/oMv+ol/iT+8n+1XX1jzf8AIet/+uEv80roSSVkePOcpyc5u7erb3bD+0NQ/wCfGX/vpP8A4ql/tC//AOfGX/vpP/iq16KZJyet6hf/ANjXebGX/Uv/ABJ6f71aSahqGwf6DL0/vJ/8VU2uf8ga7/65P/I1pJ9wfSgDJ/tDUP8Anxl/76T/AOKo/tDUP+fGX/vpP/iq2KKAOQ07UL/7dfYsZf8AWr/En9xf9qtf+0NQ/wCfGX/vpP8A4qjTf+P6+/66r/6AtUPGXjXwb8OvDN541+IGrWeh6Pp0Zmur7UJ0traCNerSSSFUUD1JAoAv/wBoah/z4y/99J/8VWPquo3yy2bvZSBVnySXQAAI/J+avz9H7enj34/XX9i/sBfD278d2cgOfGevM+h+Eo+waGeSNru/55H2O3eIgf65eKyNS/YD8X/Heax1D/goB8Q7/wCI0Ml0sh8KaMH0DwnGQpYI9pBI1xfKrDj7bcyo3eMdKAPQPHX/AAUn+BGjeKrn4Z/B+y1f4s+MbVtk+i+CLddVa1c9Bd3autlac9ftFxGR6GuJbS/+Cnf7QsgfxLe6P8AvDMx+a00YQ+JPFLRkY2tdz7dNtX9fLgu9v8Ln71foZ4F+H/w/+FHhS28FfDfRrDw7oliu2Cy063jtbaIf7McYVRnvxXZBlYZU5FAH57/Dz/gnd+zL4M8VxfEvxp4av/iP4xg3bPEPje9OvX8ZbBPkfanaG2HA+W2iiUelfbWgX16mh2aR2EiqsKAANGAAAOB81dcehrK0H/kC2n/XJP5UAJ/aF/8A8+Mv/fSf/FUDUL/PNjJ/30n/AMVWvXD/ABO8SReDfht4h8XTMETS9Nu7ssewhiZ8/pSk0k2zSlTlUnGnHdtJfM/OP4LftX/FO5+NcesfE1Um8D/EPUb/AEzwvKiJG1pPp88kUUMjjG77SqMyliTvGBxX6ef2hqH/AD4y/wDfSf8AxVfAHhP9nf8A4WL+w94f+Erv9k1b/hHrDUbG56NbaoC1zFKD1BErfMe4Jr134DftU+BvGXwW07xh8U9Y0/w7rVo0mnaxb31zHbGHUbQ+XOuJGHBYblH91hXnYSrKFoVpbrmTf/ky+T1Xk7dD67PsFRxTnXy+nb2c3TlGK6Jv2c7L+aKcZf3o8z1kfUX9oah/z4y/99J/8VWPr2oX/wDZrZsZf9ZF/En99f8AargvCH7Sn7P3xA8RR+EfBHjPRtV1SXdstbW8jklfaMnaoYk4Azx2r1TXv+QY3/XSL/0Na74VIzV4O68j5TEYWtQlyV4OL3s007fMd/aGoZ/48Zf++k/+KpP7Q1D/AJ8Zf++k/wDiq2KKswMf+0NQ/wCfGX/vpP8A4qsjRtQ1DyZ/9Bl/4+Jf4k/vH/arr6x9F/1U/wD18S/+hGgA/tDUP+fGX/vpP/iqP7Q1D/nxl/76T/4qtiigDkLvUNQ/tiz/ANBl+7L/ABJ6D/arY/tC/wD+fGX/AL6T/wCKpLv/AJDNn/uy/wAhWxQBj/2hqH/PjL/30n/xVUtT1DUP7NuP9Bl/1T/xJ6H/AGq6WqOp/wDINuP+uT/yNAGZZahqH2OH/QZfuL/Enp/vVZ/tDUP+fGX/AL6T/wCKq9Zf8eUP+4v8qtUAY/8AaGof8+Mv/fSf/FVkWOoX/wDal9/oMv3o/wCJP7o/2q6+sex/5Ct9/vR/+gigA/tDUP8Anxl/76T/AOKo/tDUP+fGX/vpP/iq2KKAOP1fUL/daZsZf+PhP4k9D/tVsf2hqH/PjL/30n/xVJrH3rT/AK+E/ka2aAMf+0NQ/wCfGX/vpP8A4qj+0NQ/58Zf++k/+KrYooA5DQNQv/7Jh/0GX+L+JPU/7Va/9oah/wA+Mv8A30n/AMVRoH/IJi/4F/M1sUAY/wDaGof8+Mv/AH0n/wAVXy/8dP2Wv2ef2ltVig+OXw80/wAQz28Aa2vZ440v7Zlf5Wgu42S4hYHkNHIpHY19cVjf8zD/ANu//s1AH5rR/sp/tc/AoC6/ZG+LOp32nw42+F/iSP8AhIdPZRn5ItSWSPVIPQGSa6Uf3KtH/goF4++CVutt+3R8J9b+H8UYxN4l0Q/8JJ4YwOsj3VqgurVM9TdWkSr3cjmv04ooA8U8KfGTwD8ZPh8vjv4R6nZeKNEu1DQ32lXkF3buCR0kikZc+ozkV6n/AGhqH/PjL/30n/xVfCnxl/4J3fs9eLdfuvi58Ml1D4W+O3+ZvEfgq4/sq5nYnP8ApcCg2l6uTkrdQSj0wea48ePf+Chn7L0BHxV8P2vx88K25+bWPCkUek+J4oRj5ptKmk+yXbDqxtJ4mb+CDPBAP0b/ALQ1D/nxl/76T/4qj+0NQ/58Zf8AvpP/AIqvAP2fv2wP2d/2nVvbP4Q+I4brV9JIXU9Eu0ex1jTnIHy3VjcLHcwnnALxhT2JFfS9AHG6Nf3+69/0GT/j5f8AiT0H+1W1/aGof8+Mv/fSf/FUzRfv3v8A18v/ACFbdAGP/aGof8+Mv/fSf/FVk32oX/8Aadl/oMv3pP4k/un/AGq66si+/wCQnZf70n/oJoAT+0NQ/wCfGX/vpP8A4qj+0NQ/58Zf++k/+KrYooAwLrUNQ+yy/wCgy/cb+JPT/eqtpGoX/wDZNr/oMv8Aqk/iT+6P9qugu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAQf2hqH/PjL/30n/xVH9oah/z4y/99J/8VWxRQBx9rf3/APbV5/oMn+rh/iT/AGv9qtj+0NQ/58Zf++k/+KpLX/kN3n/XOH/2atmgDH/tDUP+fGX/AL6T/wCKrK1fUL/y4M2Mv+vi/iT+8P8AarraydX/ANXB/wBd4v8A0IUAN/tDUP8Anxl/76T/AOKo/tDUP+fGX/vpP/iq2KKAMf8AtDUP+fGX/vpP/iqyND1C/wDsHFjL/rZf4k/vt/tV19Y+hf8AIP8A+2sv/obUAH9oah/z4y/99J/8VR/aGof8+Mv/AH0n/wAVWxRQByMmoX/9uQ/6DLnyJP4k/vJ/tVrf2hqH/PjL/wB9J/8AFUsv/Idh/wCuEn/oSVr0AY/9oah/z4y/99J/8VWTr2oX/wDYt1mxl/1bfxJ/8VXXVka//wAgW6/65t/KgBq6hqG0f6DL0/vJ/wDFUv8AaGof8+Mv/fSf/FVrL90fSnUAY/8AaGof8+Mv/fSf/FVmaTfXr314jWcigzqCxZMD5F54aurrI03/AI+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//U/v4ooooAK53WYtdaG4azmhWLYcB0JPTnkEd66Kql/wD8eM3/AFzb+VAHL6JD4l/sa023Fv8A6lP+Wbeg/wBqtPyfE/8Az8W//ftv/iquaH/yBbT/AK4p/wCgitSgDn/J8T/8/Fv/AN+2/wDiqwvFF34p0bwzqOrrNAzWtrNMAIzyUQkd/au9prKrqUcAgjBB6EUAfxVf8GcXim98R/Br4/mK1uLfUrzxrHqFzcz2zC1dZ4mwiS5AMituLJj5QQe9f2P67rVz4Y0yfWvEmqWFhZ2sbSzT3H7uOONBlmZmYAADkk9K5v4V/C/4b/CZ9X8OfC/QbDw7YT3Iu5LfTrdLaJ55hl5GWMAFmPU9a/h0/wCC1/xAk/bK0X9sz423PiDV4dD/AGen8NeBPCtvp+oz2tmNTvbof2q88EZWO4EgfymEgf5UGKAP7xI08RyxrLFc2zKwBBCEgg/8Cp/k+J/+fi3/AO/bf/FV+An/AASN/wCCv+tfG3xfef8ABPb9vjTYvh9+0d4HRba50+XEdtrkEaArc2bfcLNGVZo1JyDuTK52/wBDdAHBazB4m+02Gbi3/wCPgf8ALNv7rf7VbM0PiYQuTcW+MH/lm3/xVTaz/wAfVh/18D/0Fq2ZxmBx/smhjW5+ev7CJ1iXw14xeyliQDX5929Sedq9OelY+gabqv7Wvxq1m+8TTLP4S8HTi1t7Mhhb3NyCcu6g/NjGeT0x70/9h+9e08FfEWCPJkt9VuJQB15Q/wDxNdF/wTmeOf4Oapeuc3E2rTNKe5JRCM/ma/IMjaxWGyfLautKSqzkukvZy0i+65pXa2dtT9EzSLw9fMcbDScXTjF9udatdnZWv5nMePruP4O/tSeD/DPguGy0iHWrV7e6Szh8pJBMxRCyg4JVgCp7V59+0z8DvHPh/wCC/wDwmureNNQ1i2sZoJls51ARC77QykHqm7jivIP2qviSNS/avh1zTnLW/hqa0tRIPuiSNt78+xJH4Gv1A+OPhpvG37OGt6PZL5jzaa0sQHUlBvXH5VhRpYfN6OeYWKuqUpezSbSTcLaJNJrmp31ur+rNqlStl9XK68n8ajztpNv3r6tptO0ulmecfBP9nPTNHTSvijc6xda/qc9tFcwT6jLJIIjKgJ2JuwDzjJzXfftA/GDxD8DfA8fi547e+eW6htkhwyZ8w8nOT0GTVf8AY/8AGkXjb9n7QLsPumsYjZTeoaA7R+a4P418j/8ABQ34o6ZdtpXwt0oiaezmW/vmXnyR92NT6FtxP5etfQ43M8LlfC/17AWpucIuNt3OSXe93630WuiPGwuBr4/PfqmLvNRk0/KMW+1rL0tv5n6G+JfCD+PPD0nh/wAVR2d7Y3SgvDLGxB7j+LqDyCK/OX4Z/BnwNpf7XfiL4e3Ol2dzbW9il3aR3SNMkZ+TJUMxP8Xcmv0t8B+L/D/jXw1bav4du4ryPy0VzE4fY+0EqcHgjPIr4n1WVPD3/BQnTpWOxNW0cxk9MsFf+qiurimhhK0svxrhGX76muayfuy5la/a7vbvruY5DVxFOOMwqlKP7ubtdrWNne3ey+4+2VtNV0LTSts9pb21uhYJHCVVVHPABAFfIH7IGv8AjLx4vjT4k3V/5kOo6u0cKTbmRI4RxsXdhRhh09K9E/bG+Kw+F3wYvmspNuo6t/oVsM8gyD5m/wCArk/XFfFPw3+LSfCT9iIto8mNa1u+urSzUcvvchS4H+yvP1xXLn3EOHw2dUqU5Whh6VSrJLu0oxXrZuy80b5Tk9avldSpGPvVqkIJ+SvKT9NFd+TH+D/i/rPjX9usalZXga1j8/TYfveUY40IJ256FwT1r0Gyi8U/tX/FTVbzWNSkh8JeGr1LGG2gd4kupd2CzbGB7E9emMV853Pw+m/Zk+IXgDxP4lDQLeWTy3k7DIW4fdlSfVVZc/jX1b+wW6TfCC8uSQZZNfLOe54TFfG8NVcRi8espzPedWpWqQ7+5Bxi1/LeV7bPlPpM7p0cPhHmGC2jThThLt70lJrzst91c4T9qLwJd/DHX/AdzDqU1zYxasPIiuHeX7OflyFdyXKnGcEnHav04MXiU/Mtxb4/65np/wB9V8Gf8FF77RoPh1ookuUTUYdRSeCHPzuqqQxA9BkZNfbPgTxNB4u+HWmeKrFt63tjHMCP7xTn9a+9yH2OGz3MsHSslalNJdPdcWvK1lp0TXSx8lmqqVsqwWIn3qRb76pr9dfI+B4JdR/aT/aW1Cw8S3ELeHPAjfLbyA+RNcg43OuefmB69hUnxt8e6x+0F4og/Zv+F8kN7apLG+q30CEQQRREHaGyQcY5x34FeH/s4/ATwp8ftf8AGdz4u1S/srq11Jt0VnMI/MSR3zvBBzyPwr9T/hh8IPAPwd0A6D4FshbRvzLIx3yysO7seT+gHpXzvD+EzDOMJOVRRhRrzlKpPmvOcVJpU0re4kly6t2V7K7PazjE4PLsRGMG5VKUYqEbWjF2Tc27+823fbe13oWfB2meINO8MWenWtxb+Vbx+WmY2+6hIHf2rpvJ8T/8/Fv/AN+2/wDiqk8N/wDIFh/4F/6Ea3K/W0klZH54227s5/yfE/8Az8W//ftv/iqPJ8T/APPxb/8Aftv/AIqugopiOBih8S/8JLN+/t8/Z0/5Zt/eP+1W95Pif/n4t/8Av23/AMVRF/yM83/Xun/oRroKAOf8nxP/AM/Fv/37b/4qjyfE/wDz8W//AH7b/wCKroKKAPlf9qb4HXf7QHwb1H4aa5eQW/2xojDOsbExTKwKt19evtXy54F/ZF/aW8W+C0+DH7UWv6H4g8F2UH2eCGCGQ3p8sYicTYQoU4weT2Nfpb4jx9gTP/PaP/0IVvVyVcFSqVPaSWtrPXRrs11PewPEeNwmFeEotcvNzRbScoStbmhLeLdlqu3c8K+DPwR0f4CeA7b4dfDZILXTrZmf51Z5Hd+rOxPJNeq+T4n/AOfi3/79t/8AFV0FFdMIRhFRirJHj4jEVK9SVatJynJ3berbfVs54w+J8H/SLf8A79t/8VWJ4eg8Tf2bxPb/AOsk/wCWbf3j/tV3Z6GsPw7/AMg3/tpJ/wChGqMRnk+J/wDn4t/+/bf/ABVHk+J/+fi3/wC/bf8AxVdBRQBz/k+J/wDn4t/+/bf/ABVfOf7R/wAU/FHwN+HGv/FKJrW4m0nTnkiidGCvIWAUHDdM19WV+cX/AAU+u2s/2VPFMiHBaC3T/vqdBXNjKjp4epOO6Tf4Hs8O4SGKzTC4aqrxnUhFryckmeLfAD/gq74E8fw6Z4e+Kyjw5q1z+6luzCTp/mk8APvLKCP73T1r9W7G41rVLOPUNNvbS4gmUMkkallZT0IIbBFfz2/sc/CHwdomq+Fvh98ZdLi1bwr8WdIe4t1uB/qdQtnYAIwwysy9MEdfav35+Fnws8G/BnwXbfD/AMAwPbaXZljFHJK8pXccn5nJOPbOK8/J6+Jq0712n+D+fR3Wt9D6vxAyrJ8FinHLYyi220tHBq7Tad+aLjJOLjZrS9+h0nk+J/8An4t/+/bf/FVh+I4PE39kyZuLfqv/ACzb1/3q7ysLxJ/yCZPqv869k/OyMQ+J8f8AHxb/APftv/iqXyfE/wDz8W//AH7b/wCKrfHQUtAHP+T4n/5+Lf8A79t/8VR5Pif/AJ+Lf/v23/xVdBRQB5OdP8V3nhbVbO3ng3yi4RcRtnJBA715N+yN4T8b+Dv2evD3hzV4ksLu2WcSwzxMJAxmc5PI6g5/GvpHw7/x7T/9d5P510FZumnUVTqk199v8jsjjJRws8LbSUoyv5xUl/7cc/5Pif8A5+Lf/v23/wAVR5Pif/n4t/8Av23/AMVXQUVocZwU0PiUeI4Mz2+fJf8A5Zt6j/ard8nxP/z8W/8A37b/AOKpZ/8AkZLf/ri/8xW/QBz/AJPif/n4t/8Av23/AMVR5Pif/n4t/wDv23/xVdBRQBw3iCDxN/ZE2bi36f8APNv/AIqtWGHxN5KYuLf7o/5Zt/8AFVa8Q/8AIHm+lasH+pT/AHRQBieT4n/5+Lf/AL9t/wDFUeT4n/5+Lf8A79t/8VXQUUAc/wCT4n/5+Lf/AL9t/wDFVg6JD4l8y9xPb589v+Wbeg/2q76sDQ/9be/9fDfyFACeT4n/AOfi3/79t/8AFUeT4n/5+Lf/AL9t/wDFV0FFAHP+T4n/AOfi3/79t/8AFVhXsPiX+3bPM9v91/8Alm3p/vV3tYF7/wAh2z/3X/lQAnk+J/8An4t/+/bf/FUeT4n/AOfi3/79t/8AFV0FFAHP+T4n/wCfi3/79t/8VWVrkPif+yLj/SLf7h/5Zt/8VXa1k67/AMgi4/3DQB+Vv7ceqa2nxh+C3hy8miZZNXE+FUgEqABkE818W/8ABV/xJ4l+IXxft/AukyC4h8HaW2oXnlZCxlyOSMnnpiv0g/bo/Z6+KXxW0vwj8SfgokNz4j8H3IuYrWZgizIcHAJIGQe2RmvkQfs3fFjQP2dfjF8dv2i4I4fF3iqzfEKsH8iBSDj5SwAJ6AE4FfL5lSqzlWpcr5ZWlfpaMe/e6P23g7HYDD0cvxzqxdSkpU1C/vc9Sra/LvZQbd++h+oP7MviXxH42+APhLxLHcwn7RpsAJZCTlF28nPtXunk+J/+fi3/AO/bf/FV8M/sL+O7Hw3+wpoXjTXCzWukWM0su3ltkJJIHvWR4c/4Kp/sg+INRtdOk1e6sftQX97c2sixIzdmbBAx3PT3r2KOOowo0nVmk5JbvyPz7MOGswr4/GRwOHlOFOpNPli3bV228j7j0uHxN9rvcT2/+t/55t6f71ad0/iCytpLy5ubdY4lLufLPCqMn+L0pvhfUrDWY59X0qZLi1uWWSKWMhkdGGQQR1BrF+Ll6+nfCzxHfR/ej026I/79tXdKVouR8zRoudWNJ6NtL8bHwv8AsYnxH8V/iD4//aTuZoydWvzpdjvUkLaWZIAXngFufev0L8nxP/z8W/8A37b/AOKr4c/4Jiqg/ZD0OReTJcXTsfUl6/QOuTLv93hJ7tXfq9We9xc7ZviKK+Gm+SPlGHur8Efjh8dPi3ofw4/4KF6T4j+IOqW9hY6B4claWZlbb++OQoUHJY9gK+lPgh+3x8KPj349/wCFceEbq4tNSkQyW4v7NoFuFXrsO8/XBxXw14j+HPh348f8FRtYbxyiy6N4VtY7i4WU4jP2dfkDZ/hzye1bdp47sP2h/wBuk/GDwBCD4O+F+nSiW9jXZHK0ak7FPQgnhfavHp4utCpJxatKo1a2rXV76JJH6Di8hy/EYOjTqxn7SnhYyc1JKEJO7hG1nzSnKW11psftL5Pif/n4t/8Av23/AMVR5Pif/n4t/wDv23/xVfmP8Q/+Cjy+AP2fPDHxImsrO48S+LJt1ppqu2yO18zaXc9chfwJr9PfDOrnxB4dsddKeWby3jmKg5xvUHH617lHF0qsnGm7tJP79j8zzLIMdgKUa2Kp8sZSlFO+7g7St5J6X2fQzNTg8Tf2dPm4t/8AVt/yzb0/3qTSoPE39mwYnt/uD/lm3/xVdBqn/INn/wCubfypuk8aZB/uCuk8YoeT4n/5+Lf/AL9t/wDFVk69qureGtEu/EOr3dtHa2ULzysUIwiAk/xV21fn3/wUx+JyfD39lfWrC1ulgvtbKWMK7sOyyH59o6ngYP1rDE1lRpTqvomz08ly6WPx9DBQ3qSUfS71fyWp+YWpS6z8X9H1P43+JilzrnxM8Q2+keH4GUlo7C1lBZowfurgdu3ev318M6f4msmmsfPt/wBykMf+rP8ACgH96vzg/YE/Zh8bfYtC+NfxxhFvLpNglr4c0rGFs4CMmZh/z0k6881+hPjP4oeEfhY8mqeLpmjW/vbext0RS7yTTcKqqOT6n0FeblVNwpuvV05rb/e2/Vt/Kx9hxxi4YnGQy3Be+qbkly6rpFRj3UYRim+suZ7anoXk+J/+fi3/AO/bf/FUeT4n/wCfi3/79t/8VWDoHxR+H3ijxZqXgXw/q1vdaxo4U3tpG4MkG/puHau+r2IyT1TPgKtGpTfLUi07J6q2j1T+a2PEfjH8O/GnxL+HWpeEdL1k6TeToGtru13xSRTIdyHIbpkcjuK+bv2W/j94z+MGmSeCfHDQWfjDwjeGx1WBkOXKghZl+bo4GenWvv8Ar8oNegT4cf8ABUXTJNJ/dQeM9GLXSDo80PAbHrxXDipOlVp1U9G+V/PZ/J/mfS5JShjcHisDNe9CLqwfVONuZeko/jFeZ+n/AJPif/n4t/8Av23/AMVR5Pif/n4t/wDv23/xVdBRXefLHP8Ak+J/+fi3/wC/bf8AxVQXUPib7LJme3+43/LNvT/erp6r3f8Ax6y/7jfyoA5TRYPE39lQYuLf7g/5Zt/8VWn5Pif/AJ+Lf/v23/xVXNE/5BMH+4K1KAOf8nxP/wA/Fv8A9+2/+Ko8nxP/AM/Fv/37b/4qugooA8+soPE3/CQ3uLi3+5H/AMs29P8AerofJ8T/APPxb/8Aftv/AIqm2P8AyMN7/uR10VAHP+T4n/5+Lf8A79t/8VR5Pif/AJ+Lf/v23/xVdATjk1mjWdIa6+xLdRGYfwbxu/Kpckt2NRb2RymuQeJv9FzcW/8Ar1/5Zt6H/ard8nxP/wA/Fv8A9+2/+Kp2u9LTH/Pwv8jW9VCOf8nxP/z8W/8A37b/AOKo8nxP/wA/Fv8A9+2/+KroKKAOckh8T+W3+kW/Q/8ALNv/AIqsbw5D4m/sWDFxb/d/55t/8VXlXhHxbrutftDeL/D8l07abplnaLHAfuJI6ksw9zXuvhv/AJAsH0rjwONhioSnBWSlKOveMnFv0ujpxWFlQlGMnq4xl/4Ek/1I/J8T/wDPxb/9+2/+Ko8nxP8A8/Fv/wB+2/8Aiq6Ciuw5jn/J8T/8/Fv/AN+2/wDiq563g8Tf8JLc4nt/9TH/AMs29/8Aar0Gudtv+Rmuf+uUf9aAHeT4n/5+Lf8A79t/8VR5Pif/AJ+Lf/v23/xVdBRQBz/k+J/+fi3/AO/bf/FVi65B4m+zxZuLf/XR/wDLNvX/AHq7qsTXf+PeH/rsn86AIvJ8T/8APxb/APftv/iqPJ8T/wDPxb/9+2/+KroKKAOf8nxP/wA/Fv8A9+2/+Ko8nxP/AM/Fv/37b/4qugooA4Dw1B4m/slcXFv99/8Alm394+9b/k+J/wDn4t/+/bf/ABVL4Z/5BK/78n/oRrZuLiC0ge6unWOKNSzuxwFUckk+gobtqwSMXyfE/wDz8W//AH7b/wCKo8nxP/z8W/8A37b/AOKrynwj+0d8K/HHiVfDHhy7mmllkeKGY28i28skYJZUlK7GIAJ4Pavdq5cJjsPioOphqinFO14tNX+R0YjC1qElCvBxe9mrHAmDxN/wk3/Hxb5+zD/lm394/wC1W95Pif8A5+Lf/v23/wAVSn/kZ/8At2H/AKEa366jnOf8nxP/AM/Fv/37b/4qjyfE/wDz8W//AH7b/wCKroKKAOB8SQeJf7L+a4t/9ZF/yzb++P8AardEPifH/Hxb/wDftv8A4qneJf8AkFn/AK6Rf+hit4dBQB4x4w8c+JfDPivw94Rthb3Nzr08qcKR5UUKFnc884OBj3r0jyfE/wDz8W//AH7b/wCKr5u0i+bxl+11qg+9beEtHit19BPeNvY/UKMGvoLVPH3gvRdSTR9T1O3iu5MBYDIPMOf9nr+leLl+Yqr7erUmlBVHCN7L4bRfreakenjMHyeyp043k4KTt/e1X/krRfEPif8A5+Lf/v23/wAVWHoEHib7JLi4t/8AXy/wN/ePvXbTXNvbRefcOqJx8zHA54H5msjw+c2cv/XeX/0I17V+h5lhnk+J/wDn4t/+/bf/ABVHk+J/+fi3/wC/bf8AxVdBUH2q2M/2USL5uM7Mjdj6UroLGN5Pif8A5+Lf/v23/wAVXP3Da7F4mtreW7tVkkgk2KUILYIzgbucd67/ACB1r55OoWviP9pf+znww8NaNvH+zNfPz/44g/OuXF4r2Ps0ldykor56v7opv5HRh8P7Tnb2im3+S+9tI9n8nxP/AM/Fv/37b/4qjyfE/wDz8W//AH7b/wCKreV0fOwg464p1dZznP8Ak+J/+fi3/wC/bf8AxVYfiWHxN/YVzme3+7/zzb1H+1XeVheJv+QFc/7v9RQBGIfE+P8Aj4t/+/bf/FUvk+J/+fi3/wC/bf8AxVb46CloA5/yfE//AD8W/wD37b/4qjyfE/8Az8W//ftv/iq6CigDgtCh8TbbvE9v/wAfUv8Ayzb2/wBqt3yfE/8Az8W//ftv/iqdoPS8/wCvqX+lb1AHP+T4n/5+Lf8A79t/8VVyyj1hJSdQlidMcBFKnP4k1qUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFRmaEHBcZHvQBJWPr/wDyB5/oP5itPz4P76/nWPr88H9jz/OvQd/cUAbtFRefB/fX86PPg/vr+dAEtZGlf628/wCvg/8AoK1pefB/fX86yNKng828+df+Pg9/9laANyiovPg/vr+dHnwf31/OgDL1D/kJ2H/XR/8A0Bq2awdQng/tOw+df9Y/f/Yatnz4P76/nQBLUF1/x7Sf7p/lTvPg/vr+dQXM8BtpPnX7p7+1AEOjf8gi1/65J/IVpVkaPPD/AGRa5df9Unf2FaXnwf31/OgCWsi3/wCQ3df9c4v5tWl58H99fzrIt54P7auvnX/Vxd/96gDcoqLz4P76/nR58H99fzoAy9b/AOPaL/r4h/8AQxWzWFrc8H2aL51/18Pf/bFbHnwf31/OgCWiovPg/vr+dHnwf31/OgDyH4l+E5vHfwU8U+DLf/W6pYahbR/78iuq/wDjxFL+z343T4kfAvwj45U5bUtJtJZOc4l8sCQH3Dgg/SvRdDng+wn51/1svf8A22r5Z/ZCvINA0vxp8IZGCHwd4n1C2hjJ+7aXrC8gx7bZyB7CuaT5a0X3TXzWq/C57FCPtctrR605Rl/27JOMvx5D7DrHm/5D1v8A9cJf/QkrT8+D++v51jzTwf29b/Ov+ol7+6V0njm7RUXnwf31/Ojz4P76/nQBQ1v/AJA11/1yf+RrST7g+lZGuTwf2NdfOv8Aqn7+1aIubZIvMeRQqrkkngAdSaALFc14x8Z+EPh54YvfG3j7VbTRNG02Jp7u+v5kt7aCJerySSFVVR3JIFfn74x/b7vviZ4lv/hL+wF4dj+KniKxkNtf6+85tfB+jzg4ZbvUlV/tEyZ3G1slml42uYs7qn8I/sB6X488R2HxU/bq8Tv8Y/FNjKl1Z6fdwi18LaTOvQ2OkBnjZ0zxcXbXE/GQ6dAAcja/tn/Gz9pa+v8ASP8Agnv4MXVdJmkAPxB8XJNp/hpPlALWVuNt7qZGODEIbdsjFxXe+D/+CdngXXfFVv8AFL9r7xBf/GzxZbuJrY+IFRNC06Qcg2Gjx/6HCVIG2WRZrj1lNfeWlyW0d3exoyqqyKAAQAAEXgVtefB/fX86AHRxxwxrFEoVFACqBgADoAKytV/4+LH/AK+P/ZGqn4o8Y+FPBOg3HijxdqNvp2nWi7pri4kCRqO2Se5PAHUngc14vD8UfFfxDFnefDnQ3ttPebMOo63utEl+RsNHbY89lI5BcRZ7etRKpFPl69jqpYOrUg6iVoLS70V+13u/Ja+R7l4i0LQfE2iXOheKLaK80+5TbPDOoaN1HPzA8Y4zXxf8Rv2fP2VNG0CLxPp3gq81g30nlW6eGmuWeRznoYJUjReCC7sqA9TXrFr+z/pfiO5Or/GvW7rxhcu2/wCyTv5Glxeix2cZCMo6ZmMrHuaxv2ifDHjDxF4Z8OfBj4Xq2kaP4h1AWOs3lgojNjpSQySyiMqMRmYoIVbsX45xXLXjzQcpU0+2zf8AkvvZ7eV1VQxEKNDFSSbvJpyhGyV273Unov5U3stWj5d/Zq8JS+KvjDZ+MfgqNZ8O+D/D4uINZF1rE+p2mpXpBQWsCyvJGVtz80k8Z2+YNiE4LV+m+g/8gW0/65J/Ks7wr4b8LeBvDNl4P8JW8Nhpmmwrb21vFwkcaDAA/qepPJ5q5oM8H9i2nzr/AKpO/tWmFoeyhy9d32+S/rucWd5r9fxHtEmopWV3eTV27ybu23fq3ZWS0SOc+J/iPxj4S8DX+v8AgDQW8TavboDb6ak6WxmYkA/vJPlAAJY9zjA5r8VP2jf2m/2sfEfwz8ReEfjHp1p8MrbVIhYRWU2nXNyb2O6dYnA1HebVMKxLZAIUHiv3k8+D++v518aftcR2fjPWfhp8HJUS5i8R+KILi7hcB0ey0uN7qUMDwVJRFORg5x3rmzKjOdNuNRrpbo29PJ9e9vI9rg7McPQxcIVsNGbT5ud35oqC5nZO8LWi38PN2ktLcNoP7GVv4pS2i8f/ABQ8VeJ7BbOHyorS/XT7GSEZCgJaKuUwODvP1r5B+J3ww/Z4/Y6/agtYG8CweMdL8baRt0zRzGuo38esWzgDaJy7hLlW+Z2yAyk9sV2PxM1jxh+z98Y7z4YfsAu+t6hPZzXGreF2X7TpelHaxWaKRnX7PKzYxbhtrk/dHArhdQ8FfCnxH+y/r37QfgXWbvX/AIs+Fru117Vr/VV8rV7a706QPLbNAeYIQm9VjQbCO5xx5eI9m0404JTjrd67bpN/E7dOnXofbZUsXCUa2KxMpYaulFQinTa9o/dlUjCypxUkmpK/OtI3TbX2t+z5+y3qsfj2H9ob42abpmma/DE8WjaDpMMcdlo0Mow2WQDzrlhw8h4HIXjp9w6//wAgxv8ArpF/6GtU/CfijTPF3hbTfFenSKbfU7WG7iOf4JkDj9DU+vzwHTG+df8AWRd/9ta9/D0YU4Wh11v38/6/I/Ks2zHEYyu54nRx91RW0Uvspdlr3bd2222zeoqLz4P76/nR58H99fzrc8wlrH0X/VT/APXxL/6Ea0/Pg/vr+dY+jTweTP8AOv8Ax8S9/wDaNAG7RUXnwf31/Ojz4P76/nQBmXf/ACGbP/dl/kK2KwrueD+2LP51+7L39hWx58H99fzoAlqjqf8AyDbj/rk/8jVnz4P76/nVHU54P7NuPnX/AFT9/Y0AWbH/AI8of9xf5VaqjZTw/Y4cuv3F7+1WfPg/vr+dAEtY1j/yFb7/AHo//QRWp58H99fzrHsZoP7UvjvX70ff/ZFAG7RUXnwf31/Ojz4P76/nQBl6x960/wCvhP5GtmsHWJ4S1p86/wDHwnf2NbPnwf31/OgCWiovPg/vr+dHnwf31/OgDM0D/kExf8C/9CNbFYWgTwf2RD86/wAXf3NbHnwf31/OgCWsb/mYf+3f/wBmrU8+D++v51jefB/wkP31/wCPf1/2qAN6iovPg/vr+dHnwf31/OgDN17/AJBM30H8xWvWHr08H9kzfOvQd/cVr+fB/fX86APmP9oP9jX9nf8AaaltdY+J+gKPEGmrjTfEWmyyadrmnt1Btr+2aO4iwedofYT95SOK+ZpIP+Cgn7I8fmWEg/aL8DWw5hm8jS/G1pEo/hf91p+pkAdGFnKf70hr9NfPg/vr+dHnwf31/OgD5T/Zj/a6+Av7TS6vZ/DHWSNc0qc/2r4f1KGTT9b0xyANt3Y3CpPFzwGKbG/hZhzX1jXx98bv2QfgH+0zeJ4i8f2Mlj4p0SeQaR4n0e4bTtd00kD/AI9r2ErKq55MTFon/jRhxXzpN8Tf22P2LpHHxps5/jv8NbdSR4k8P2axeLdNiXHN/pkOItQQDJaewWObC/8AHsxOaAP1MrIvv+QnZf70n/oJrzv4MfHr4NftD+BofiT8EvElj4l0WdjH9pspQ/lyrw0UqHDxSoeHjkVXU8MoNd/fTw/2nZHev3pO/wDsmgDcoqLz4P76/nR58H99fzoAZd/8esv+438qraP/AMgm1/64p/6CKku54Pssvzr9xu/tVbR54P7JtfnX/Up3/wBkUAa1FRefB/fX86PPg/vr+dAGXa/8hu8/65w/+zVs1hWs0P8Abd4d6/ch7/71bHnwf31/OgCWsnV/9XB/13i/9CFaPnwf31/OsnV54PLg+df9fF3/ANoUAbdFRefB/fX86PPg/vr+dAEtY+hf8g//ALay/wDobVp+fB/fX86x9Cng/s/76/62Xv8A7bUAbtFRefB/fX86PPg/vr+dAGbL/wAh2H/rhJ/6Ela9Ycs8H9uw/Ov+ok7/AO0la/nwf31/OgCWsjX/APkC3X/XNv5VpefB/fX86yNfng/sW6+df9W3f2oA2l+6PpTqhWeDA+dfzpfPg/vr+dAEtZGm/wDH3ff9dh/6AtaXnwf31/OsjTJoTeXwDjJnHf8A2FoA3KKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBV0P/AJAtp/1xT/0EVq1l6H/yBbT/AK4p/wCgitSgAooooA+bP2iPjj4V/Zo+C3xG/aA8bTrb6X4P0efVbh3OBttoWcD6sQAPc1/CB4h+HXiLQf8Ag1S+KX7R/jmKSPxB8dPiDH4zvXkwzOl5qsEcRBz90rFuA7FjX78/8HOk3xy8Uf8ABPi4/Z6+AWi32tat8VfFuh+G50sYmlKQOxm+faDtV5I0UkkD1ryD/gvt8C9N/Zg/4NyI/wBnjSNhi8HQeEdJLIMK7211bo7j/ecFvxoA+u/+Cun/AARd8O/8FG/Bfhf48/BHWm8BfHbwHbRXPhzxFbHyvOeIB44Ll0G/aHAMcgyYyTwQSK8N/wCCbP7f3/BZvRvilof7Iv8AwUZ/Zx1e8uPtC2TeP9G2CwWFfl8+65MTDgkvFIN3ZK/pN8IEnwnpZPU2kH/oAroqAMHWf+Pqw/6+B/6C1brDcpX1rC1n/j6sP+vgf+gtW9QB+bn7MbwfDv8AaO+IXwb1rEf9pS/bLVX48xeWwPXKSf8AjtZ99+zn+0X8EPFmp3n7NV7BcaNrDFmtLl0Uwsc9nIU7c/KwOccEV9TfGL9nHQfinr1h430zUJ9A8RaYR5GoWoBbaOispxuHP9ORXv8ApdtdWem29pfTm6mijVJJioUyMowWwOBk84FfnuE4RcoPBYnmjGlOcqNWnJKSjNtuPVpq9ndWatY+wxPESUliaFpOpGMalOcbxbgklLtra61unc+DvCf7E2l3XwVvPCPxFuy2v6pd/wBpXF7Dh2inGcAE/eGCd3TOTX158MPDUvhv4b6V4Xv7yTUjbWyxNPMAGdfcD0HH0rv5v9U30NZXh7/kB2v/AFzWvqMr4ewGX2eFp2koqF7u7Sd9ejd23dq+u54WOzjF4y6rzunJytpo3pp2Vumx8Jz/ALK/xj+GviDUL39njxXHpmmanK0sljdpuWJmPO3hhx0HAOOOa7vwv+x14Wi+HWteGfHl9Lq2s+JCr6hqf/LTejbl8vdnAUgHnrX2VRXDR4NyqnNv2bcbSSi5ScI82kuWLdo3Ttp02sddXiTHzilzpPRuSSUny7c0kru3n8zyf4MfB/w38EPBEXgjwy8k0SyNNJNLjfJI+Mk44HAAAr5i/ak+HPxCvvHmjfGT4V2ov9W8MFGe1HLSxMxPA6nBGCBzg1961z1n/wAjHef9cov5tXbjchwtfL1l0FyQXLy8uji4tOLXmml69TlwubV6WM+uyfNJ35r7SUlZp7bpn50aH8M/in+1j8Rl8Z/HDSJfD/h7S7d4rSwfIZ5XGN2GAJweS2B0ArZ+E/7B134P8dWOueNdcXVdJ0WVprG0VCPnJyCwPA5AJx1Ir9H6K8ajwJlvPHEYtOrWUuZzk7OT03SsnFWVo2srHpVeK8bySo4e1Ok1yqKWiWuzd3d3d3e7ucT49+HPgz4naE/hvxvYx31qxyA/DK3qrDkH3FfnlqX7L/x3+CHiG4vP2d9ZhOlajNH/AKNdsN6MD8udw2nbn72Qcda/UOsHXvuWv/XzF/OvVzfhrBZhONeonCrHapB8s15cy3Xk9Dgy/O8Vg4SpQalTe8JLmi/k+vmj4T8N/sY614zj1PxR+0PrDavr2o27wQiJiYrTcOGXIAJHYAAD3rU/Zr+Hn7UPwq1qL4e+JzYy+ELJ5GW4Lh5XVgcLGAdyjdzhl45r72orhw/BmX4etSxOHc4VIXvJS1qXd2qjd3JNry+46q3E2MrUqlGsoyhK1k46QtouRK3LZH51/FD9kn4iaD49uvit+zjrP9mX947ST2cjbEZm5bacFSGPO1hjPeuSb4jf8FB9BB0698NQXzKMeasIcH8UfFfqDTX+4fpWNXgqhGrOrgcTVoczu4wl7t3u+Vp2b8rGtLieq4Rhi6FOryqyco+9ZbK6av8AM+Jf2WdG/aNn8Sat41+Mkn2awvoVjt7HcMLIrfeVATsGMg5OTn2r7crD8N/8gWH/AIF/6Ea3K+hyrLVgcOsOqkp6tuU3eTbd3roeNmGNeLrOs4RjsrRVkklZBRRRXpHEc/F/yM83/Xun/oRroK5+L/kZ5v8Ar3T/ANCNdBQAUUUUAYPiPH2BM/8APaP/ANCFb1YHiP8A48F/67R/+hCt+gAooooAQ9DWH4d/5Bv/AG0k/wDQjW4ehrD8O/8AIN/7aSf+hGgDdooooAK+Sf2vfgZq37R3wq1f4S6HeR2F1qEMTxzTAlAYpUfBxzzjFfW1YJP/ABUo/wCvc/8AoQrOrSjUhKnPZqzOrA4yrhMRTxVB2nBqSe+qd0fnb+0l8HZPhT+zp4G8QaP+/vPhdd2N20sa43QxkLOQOuCCTX6RaZqFrq+m2+q2LiSG5jSWNlOQVcZBH1Bqtr+haT4o0W68O67CtzZ3sTQzRN0dHGCD+FQeF/DeleD/AA7ZeFtDVks9PhWCFWYuVRBgDJyTgetZUqHs6jlH4Wl96/4H5Hfjc0eLwtOnWu6kZTd+jU7Nr5Su/wDt5m9WF4k/5BMn1X+dbtYXiT/kEyfVf510njG4OgpaQdBS0AFFFFAHDf29pvhbwxqfiTWJBFa2Jnnlc9kQZNeL/swftU+Cv2o9B1HWPC1pcafLps4jkt7oASGN8mOQAE/K4GRXDftla1caJ+yb40ktm2Ncq9tnpxMwU/zr5/8A2HtOg0H9ozxv4e09RHb2mg6KjKvA3iJTn68mvOrYqccVTpL4Xv8AO9vyPsMuyTD1cjxWOqX9pF+7rolFwUrrrf2i9LH6tUUUV6J8eeGfGCL4ytLaT/BWbS01KJHZ4tVSQxSoMfKGjIKEnvg14f8AD39sWWDxzb/CH9ozw/L4G8TXbbLRpX82wvW6fuJwACT2U819iT/8jJb/APXF/wCYr44/4KH/AA10/wAe/sz61q+zGpeHVGp2Myj545YDu4PbI4NcWLVSEXWpS1Svbo7fkz6TIZYPE1aeXY2kuWbUVUV1OLeie9pRvumr22aPuaivA/2XfiHc/FX9n7wp48vm33F/YRmVj1Lp8pJ9yRmvfK6qc1OCnHZq54eLw08NXqYep8UG4v1TszF8Q/8AIIm+la0P+pT6CsrxBj+yJs+lasP+pX6CrOckooooAKwNE/1t7/18N/IVv1gaH/rb3/r4b+QoA36KKKACsC9/5Dtn/uv/ACrfrAvf+Q7Z/wC6/wDKgDfooooAKydd/wCQRcf7hrWrJ13/AJBFx/uGgC5Y/wDHnF/uD+Vfnd+2D+0H4P1j4Z/E/wCEulq80+g6L5l7dAjyY5ZiAsXXJcjnFfojY/8AHnF/uD+VfztfE39lX9sHxJ8ZvGfwh0HSnTw3401hL+61lx+6MCH5cv2x/d6kivLzWtVhTUaUW+a60V+jt+J9xwJl+CxGMlWxlaNP2XLNczstJxcn5tRvZLd2PrX4B+CtS8Vf8Errnw1GJ0mutKu3jEPDttJYAeoOK+T7r4jfsP2X7A0PgtLbTLjxxJYCH7PHADqK6gTyS2N4wffFfvV8Lfh7pPwt+HWkfDvSMNbaVapbg4+8VHJx7nJriI/2YP2eovGP/Cfx+D9MGr7/ADftHkDO/ru2/dz74zWE8sqOnBQauocrur/NeZ6eG4zwkMTiZ141OR13WhySUbvX3ZX6NW21XY8m/YB8NeK/CP7MHh3Q/GkckN9HFvMc2d6RvygIPIwO1fW3iPQ7XxN4fvvDt9xDfwSW7kdQsilT/Om6SALu9AGAJR/KtyvWpUlCnGnukrHwWOx88TjKuMatKcnLTo276eh+NPwN8QftH/sMyX/wZ8S+ANU8X+Eo7ySbTdT0dfOdY5DnDJ3+mQRX62eCfFKeNfC1n4oSyutOF5GJPs17GYZ489nQ8g11VFY4XDOguRTbj0Ttp8z0M7zqGZT+sToRhWespRb959W4ttJvd2sr9D8Rfjf+wX+0b4w/aM8Qa74N8QWuneG/HMii+uFcrcRwJyY9uMnPscHvX6YfDL9mP4bfCf4KS/BDwnE0VhdW8kNzOcedM8q4aRj3Pp2Fe2al/wAhWx/3n/lV/VNU03RLCXVdYuI7W2hG6SWVgiKPUk8Coo5fQpTlUS1d9+l9XbsdOYcWZljqFHCTklGHLZRVuZxSUXK3xNJJLt0P55v2oP2DvCP7MvwMv/Gmsa9ceItWnvrWw0kTDYlrC8mSqLlsn1xge1fr58Sfi/P+zz+ykPijJYm/m0jS7dlty2zc5VVAJxwMnnivib9vjXk+Mfx++F37OPhyVbhJ72PVbzyzuAiUgrnHYgZFa/8AwVg1DxR4d+FPhYaLZy3ujRX5F9boGMbqqYjWQDqM8jPcV5K5MN9Znh1ZRSXfXe/yuj7yf1nOXk+GzWfPOrOdRp2XuaJRVrJc3I7Wtq79bn1n+yf+0vH+1P8ABB/iLJp39lXUckttcW4fzEDx91bAyD7ivqPTrq2t7C1inkVGlUBATgscdvWvhn/gnv8ADDVPhh+yVp9rrlubW81Xz9RkiYYKeedyjHsKz/H9zq3xX/az8DfD7wwzLZ+CYG1jVp1OAryrsii47sOcV6lDEVI4alOqrzdvLV/8DU+JzLKsLVznGUMG+ShTdRp7pRjey31u7RWvVbn3Z4ti8Uz+HLuHwTLbwaq0ZFtJdqzwq/YuqkMR9DX4J/8ABRf9nzxR4U+H+m/GD4w+J5fEvia81W3tl8pfs9haQE5KQxZJ5PVic1/QdXzb+1T+zjon7UHwpn+G+rXbafL5qXFtdKu8xSp0JXIyPXmlmeD+sUJRSvK2mul/yK4L4h/srMqNSo1GlzLnainLl6q9nK3Vpb+ZueIfjN8M/gj8JdN8X/ErVoNMso7GDaZGG+QiMfKi9WJ9ADX4jftK/tgfE7xh458JfGDTvB91aeE7O+ml0QTq3m3135eyORl6BecqOpr7J+GH/BMTHi2y8WftI+Mbvx0ulBVsrGYuLdFT7obcxOAP4Rgeua/S6y03QrR7uGe3hW0sdjRqyLsiWNeNo6DAHauedHFYqDU37NaWWjenfpbyXzPXw2ZZHkuJVShH63N83NJ3hFKSatBWu3rrJq1tEr6r8Of+Cf8AoXxB8Cftravp3xJlLa1r2ijU75GyGSS4IcK2e65r72+J3/BQz4dfD746ab8E7XTpb/7XdpZ3GqCRI7OCV+Cm89XU8Fe1fOn7El4/xt/bH+KX7QkTb7Gyf+zrTvkeg/4CAa+APiB8R9A8VfDjVPglZILnxfqvj6S4ghC5mhi3435xkbj/ACry6eKlhsKvZS3lJpvW6T2+Z9risloZznc3jqV3ClRjNRfKoSnFtydulNW026M/qQR1kUOhBVhkEdCDX5K/GnUF1D/gqH8O9IgOWs9KlkfHYNnrX6leErG60vwrpunX7Fpre1ijkJ67lUA1+Of7P2pf8Ly/4KReM/itEfNsPDiDT7duq5HyDHb+EmvazCXN7Gn1lJfhq/yPzrhKkqX9oYt/BTo1Ffzn7kfvuftdRRRXpnxIVXu/+PWX/cb+VWKr3f8Ax6y/7jfyoAp6J/yCYP8AcFalZeif8gmD/cFalABRRRQBztj/AMjDe/7kddCSAMnoK56x/wCRhvf9yOvPv2gvF9x4F+DXiHxLZNtnhtHWI+jyfKD+Gc1zYzFQw1CpiKnwwTk/RK5thqEq1aFGG8mkvm7HmM3ifxH8fvF9/wCEvB91LpvhPSZDBf38B2zXcw+9FC/8Kj+Jhz2Fey6Z8G/hdpFnHZ2ehWf7sgiR4w8pYdzI2XJz3zXMfs2eGoPC3wT8P2MS4kltUnmPdpJfmYn3JNd98QfHekfDfwtceLtcinltrbbuW3jMsnzHHCivDy6hS+qLMcws5yjzSctopq/Kr7Rivver1PVxlaf1h4PB3UU+VJbye133b/DZGtrahVtEUcCdBj2wa36+StB/a1+C/j7W7Dw3p19LaX01wgjhu4XhLHB4BIxn2zXsXxh+LXhr4M+Cp/GXiRsqnyQwqfnmkPRV/qewr0KWeZfUw08XSrxlSh8Uk00rd7bHHUyvGQrRw86UlOWyaab9D1OivzWk+KX7W1x4Kuvjfq02leH9BhQzxWNzEzSvF/COBkFu2cV9taH8Q7bWPhHF8TG2bJNON6QpO3ITdgZwevFcmW8SYbGSlFQlBqPOudct4fzJXvb1SOnG5LWwyjJyjK75fdd7S7N7X9Gz56/ZuvD4h+K/xM8Tg7kfUltlb2hXGK9r0D4y/Cq3vIPBs/iCxTUx8htzMu/d6Yz19utfn38OPiJe/C79kfX/AIi2rH+1PEepzx27d98jFdw9wATW/wCI/hx4M+DP7HFz4h1S0t7jxFrEaO13PGrzfaJyD8jEZXaM4xjpnrXxWWcSYihl8fYQi+WnKvUcr2SnKUoxVvtS1t0SWzufTY7JaVbGS9rJq840oJW1cYxTbv0jp6n6mggjI6GsLxH4n0Hwlpp1fxFdJa24IXc56segA6knsBzXA/AW+1XUvg54cvtbkaa6ksYWkdzlmO0ck15t8P7kfGL4p6x451D97pPhu4fTtMiblDMn+tnx0LZ+VT2Ar7yrmjdLD+xj+8rW5U+itzNu3SK+92V1e58nDAJVK3tH7lO92uutkl6v8LvofThvLVLdbqRwkbAMCx28H618oJ8YfB9v8eNck8Ra/b6fp2jWUEMayTqkcsk2Wdjk/MVGAPSvonxl4D8JfEDTk0rxhZre26NvVGZlw3TPykGvgX4LfA/4Oa98cfH2iajoUF1a6PdQpaRylnWMFecZPOSO+a8viDE5jDE4ShhVC057ylLVqEpWaUdtL/Fukd+UUMHKjiKtdyvGPRLS8orRt76222bPfrn9p7SfE3ia08M/BW2TxXK5b7SYneOOIAZH73YY+enzMK9Bg+I3xHHy3/ge+jbvsuLaQfmJK7iaLwd8MfC11qNpbW2l6fYxNK4iRYkCqM9BgV5F+y98Vtc+MXw5k8W68UMpvbiJNi7R5aMQvHritKc8RDFQwmKxb9tNSkowjFRUY8qfxKUt3vfXXRWInGjLDyxFDD/u4NRblJuTbu+nKum1tPM6i7+JHjm1tJL5/CF1FFCpeR5rm2jVVUZJJMvQV0GieJ28Z+DtN8TNaSWX2t43EMuNwGfUZBB6g+leafEPxbaeL/irpnwHtiSjQ/2lqZHQwRkbIj/vtgt7D3r3TWY44bOCKIBVWWMADoADXfl9SpUxFW1ZzhD3XdR+LRu1orZaPfVvaxyYyEYUad6ajKXvK1/h2W7e+/p6m9RRRXtHmBRRRQBgeGf+QSv+/J/6Ea+Tv2sfFWqa1d6B+z94WmaK98WTgXbxn547JD85H+9g/gK+sfDP/IJX/fk/9CNfEXgkjxz+3L4k1e9O5fDOnpa26noDJjJ/n+dfL8VVZSoUcDB2decab78usp29Yxa+Z72QU4qrUxUldUoOa/xaKP8A5M0/kfZ/hnwP4Y8KaDpvh3SbOJLfSkC242glCBtLA44JBOT1Oa8h+Pnxvl+GdnbeHfBscGpeK9SYCy06QnMi5+Y4H04GRmvoW5ubezge6u3WOKMFmZjgADqSa/ML4PrafH39sXXvicbhbjTPDg8uyxyG/gRh7YDH6msuIsdPCQw+X4C0ataSgrW92KXvSX+GK087adC8mwscRKtjMXdwpRcnf7Um/di/8Tevlcv+Dv2yvix4g8aT+GpPh9NdaxYxeXc21vMVdNrckoyZAyfWvVPGX7Ytz4I8LajceK/Ct5ouuQW6z2tneMu2dWbZuDKTwp68ZrkbVYb7/goRcNpICfZdJzdbONxKKPm/MV8wftY+I08feNfHPiFXzZ+G4rXSbfngyyPukx+KtXweLz7NcDl+IqvGudSNSpSjeMLNQi5OWkU7xS7tc3dH1mHyrL8VjKNNYZRhKEJu0pXTk0uXVtWbfa9j6q8P/GH9tfWNFg8WW/gjTLnTp4luEWO4CSvGwyNoMhOSOny/hXvvgn9pr4WeJ/BcHizXNSt9ElZmintbyVY5Ypo+GQgkZwe/cVyut/EG9+DX7Jll4thjDXtnpNrFCrdPOdVVSfoTn8K+T/2FvhJ4P+Jum618TPiPpkeq3xvykUlyN8ecBmIT7pOT3Br2KOY5hhMwwmXYbESrVa1PnkqtuWGl004RT6Ncvpquvm1MFhMRg8Rja9FU4U58sXTveXdNSk12d/Xc+rviT+1l8DtE8I3OpabrltqlxCUZLW1kDySEMDgf41g/An9s7wh8YfEL+EtSsJNEvzG0sKyuGSVEGWw3GCBzgjpXkvx20HQfEH7Ungn4aWllb22nadD/AGhJFFGqLI27gEADI4FXP2loPC/xQ+JGl/BH4eafB/bqbp9R1G3UJJaW6qcx7lxkuOCDwMj1pYrPc5hWq4hVoclKoqSpqL/ezaTaTbbTXNZdNG3pcMPlWWyp06Lpy5qkHPncv4cU2k2kkmna766pLU9F/ZBuv+Es1Lx58R5DuOr63IiN1/dQjauD6Yr07W9S8P8Awq8U+Hvh/wCAdKhl1LxBds9wzktIttGC0szucsx7Lk4zXxb+yx+0P8LPgh8EbvSPF96U1aC9uG+wIpNw5J+UAe+OpIAr6A/Zh1HXvjT4r1b9o/xTb/ZEuE/svSrbO4RW0TbnbPcs/U4HSq4fzihXweBwWGmnip3nK1m4Rcuao29eVt+7be7TtoGcZdVpYnFYmtFqhH3Y3ulNpcsEu6W/ay8z0T4/+MtMtdV0DwFfTpbwXU/9p6hKxwIrLTyJST7NIFX35FeO/Dr9p3xh4i+KejaSNJitvCfiWa7TTZ5CRcy+SS3m46BD0Ax+NfP/AMR9A8VftE/tgar4DsXki0iyENpfuvRLW3Idlz6ySdB3OPSvX9atbJf2uPAPgPRYhFaaBYXUqxqOFRmdQPwCiueec4/EYyriqMnClGvTpL/p5aai1/hS55ecpb+6bQyzCUcPToVYqVR0p1H/AHLxck/8TfKvJLzPqv8AaG+MFp8E/hneeLyFlvWxBZQt/wAtJ34A+g6n2Ffnt4gk1j4CaT4S+Jni6Zr/AMeeJtVju7rz5GzFaONrQhQRhfnHbqMdq639s7xrLf8Ax78F+DdPszraaaBeHT4mGZrl3OxG64wEBPsa+WvH994i+K37TmjaN4hvVv777ba284gOYIGVwzxReqx9Cf4iCa8TjHiGVTHVoUruVOUKVLspu0pz7OX2I72V3pfX0+G8nUMLTlU0jOMpz7uKuox8o/affRa20/Yb4h/ByH4l38Gsv4h1nSCkQQR6fc+TGe+Su0889c18F/A74KWHxO+JfjaS88Ta8tvp18bKG5gvTHNcJDx+8cDJxxj0zX6t8QQ+yL/Kvz2/YKk+06X4mvW5aXWrwn16Rn+tfbZ3lGDrZzgYVad+f2kpavXlgkuv94+XyzMMTTy3FShO3LyJaLS8rvp5H178PPhj4N+DmiXcOiy3BSU+fc3N9cNNI20feZ3PAAHtXzvqH7XWsa1qV03wg8G3/inSLByk+oQny4iV6+XkHdj8Kj/b317xR4d+CT3Gg3/2S3u51tLqMJlpo5QeA+Rtxt545BxXn3gr9mf46al8PNM8Hv45j0rw49uh8jTrfZKySDcQX4JJzyc81zZrmONp4z+x8noyjGnBSbgqe8m+Ve+7Rjo3J2cm9l1e+X4PCzw39pZlUUpTk0uZz+zu/dV29VZXS8+i+yfg18WtC+NPgiHxtoEUtvG8jwyRTDDpIn3hxwfqK7jxN/yArn/d/qK5z4YfDbw58JvBdn4H8LKwtbQH5nOXd2OWZj6k10fiX/kBXP8Au/1Ffc5asSsLSWMadXlXNbbmtrb5ny2NdB16jwyap3fLfe3S5uDoKWkHQUtdpyhRRRQBg6D0vP8Ar6l/pW9WDoPS8/6+pf6VvUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWc+kaVK5kktomZjkkoCST+FaNFAGZ/Ymj/8+sP/AHwv+FZGv6Lo40ef/RYeg/gHqPauqrH1/wD5A8/0H8xQBL/Ymj/8+sP/AHwv+FH9iaP/AM+sP/fC/wCFadFAGZ/Ymj/8+sP/AHwv+FZGlaJo/m3n+iw/8fB/gH91fauqrI0r/W3n/Xwf/QVoAk/sTR/+fWH/AL4X/Cj+xNH/AOfWH/vhf8K06KAOT1DRdH/tOw/0WH/WP/AP7je1bP8AYmj/APPrD/3wv+FQ6h/yE7D/AK6P/wCgNWzQBmf2Jo//AD6w/wDfC/4VBc6LpAtpD9lh+6f4B6fStqoLn/j2k/3T/KgDB0bRNH/sm1/0WH/VJ/AvoPatL+xNH/59Yf8Avhf8KXRv+QRa/wDXJP5CtKgDM/sTR/8An1h/74X/AArIt9F0f+2rr/RYf9XF/AP9r2rqqyLf/kN3X/XOL+bUASf2Jo//AD6w/wDfC/4Uf2Jo/wDz6w/98L/hWnRQBymt6Lo4tov9Fh/18P8AAP749q2P7E0f/n1h/wC+F/wqLW/+PaL/AK7w/wDoYrYoAzP7E0f/AJ9Yf++F/wAKP7E0f/n1h/74X/CtOigDldD0XRzYn/RYf9bL/Av99vavkzQtP0zwX+3Nr2gSW8S2vjbwza6lGpQbTdaVK1vJgevlSpn2Ar7F0P8A48T/ANdZf/Q2r4+/apdvBXxT+Enxniwiab4gbQ7t+32XW4jCc+wlSM/XFcuL0jGp/K0/0f4NnuZCvaVquF/5+05x+aXPFfOcYo+xv7E0f/n1h/74X/CsebRNH/t63/0WH/US/wAA9U9qlfxfoMfjKPwE0p/tOWyfUFi2nHkRusbNu6fecDHWr03/ACHrf/rhL/NK6U09jxpQlG3MrX1XoS/2Jo//AD6w/wDfC/4Uf2Jo/wDz6w/98L/hT9X1fSdA0q51zXrqKysrOJ5ri4uHEcUUUYLM7uxCqqgEkkgAda/MK4/ad+Pn7bFx/wAI5+wNHH4f8BSMUvPinrFt5lvPGDhhoFk+03zHkLeTbbNfvILjpTIPev2ov2rPgP8As6R23gfWLabxH438QxSDRfCWg2wvta1AgH5lgXiKBcfPcztHBH/FIDgH57tP2R/jv+2ERrv7eV1B4a8HTAND8MPDF032V1zkDWtTjEct+2OGtoPKtOobzxhq+o/gR+yF8GP2XPDWt3fgO2uNR8R68rz654m1iY32t6vPj791dyfOwH8ES7YYx8saIoAr6yT7g+lAHIeFvh34A8D+HLLwf4K0Sw0jSdOiENpZWVtHBbwRr0WONFCqo9AMVvf2Jo//AD6w/wDfC/4Vp1zev+K9H8NXGn2epM5m1S5W0to40aRmkYFicKDhVUFmY4Cgcmk2lqyoQlN8sVdkGnaLo/26+/0WH/Wr/Av9xfavE9Z+JN14i8QXXgv4I+HINburCZra+1O7xBpdnKv3kMgUvPKnRo4VO08M6Gvf9N/4/r7/AK6r/wCgLT9F0PR/DmnjStCto7S2V5JBHENq75WLucerMxYnuTUTjJ2Sdl+J0YarRp3lUhzPont6u1m/JXS76aPyDRvglYX1/a+IvincReI9Rs5POt4zbpBY2svZobcbvmGeJJGkcdiK9K1XRtINzZE2sWTcf3B/cf2rqqx9U/4+LH/r4/8AZGqowUdiK+IqVmnN7bLZL0S0XyRL/Ymj/wDPrD/3wv8AhR/Ymj/8+sP/AHwv+FadFUYGW2iaPg/6LD/3wv8AhWVoOi6P/YtofssP+qT+BfT6V1B6GsrQf+QLaf8AXJP5UAP/ALE0f/n1h/74X/Cvzh/aq+Dv7RfxJ/aP8GQ/Atk8O6Xp+lXqX+vPFE8duL1lSRYkbJM+xBswBjOdwGa/TGisMRQVaHJJtK6emmzuenlGaTy/EfWacIylyyS5lde8nFuz0ej2d13TPnn4Jfs9/DH4EaUfBngqxVg0SzXd3c4lury4Zm3SzSEZZ2P4DoABXBftB/sXfDT45NL4j0qWXwp4pe3e1GsaYAkksMilWiuI+EnjZSQQ/I7EV9Vx/wDIel/64J/6E1bFEsNSlT9k4rl7BRznHUsW8dCs/aveV73vunfRp9U1byPJvhD8JdH+FPwu8P8Aw03rqX9hWEFj9qljVXl8lQu4jnGcdMnHqa67XtF0caY3+iw/fi/gH99faurrnfE95Z2mnIl1KkZnnijjDsAXcuCFXPU4BOB6VrGKjFRWyOKtVqV6sqtR3lJtv1erL/8AYmj/APPrD/3wP8KP7E0f/n1h/wC+F/wrToqjEzP7E0f/AJ9Yf++F/wAK8nt/E3hvTviTZfDBtMD3GqW2oais6onlxpazRxlWHXLGUYx6V7XXyDe3uz9srwzYk/f8Ma434/bbX/Csq03FJrul97O/LsPGtOcZLaE5fOMW1+KPo3Vb7wHoWo6fpOtS2VpdarK0FlDKUR7iVVLlYweWIUEkDsK3v7E0f/n1h/74X/CvyC/aV+I2o+NP2+vhlpWjDdofgXXrPTLubPynVNXhlk8tfUpBEN3oWxX7IVlh8T7WdSKWkXb10X63XyO7N8leBoYSpOXvVYc7X8t5Oy+ceWXzOUu9F0f+2LP/AEWH7sv8A9B7Vsf2Jo//AD6w/wDfC/4VFd/8hmz/AN2X+QrYrqPCMz+xNH/59Yf++F/wqjqeiaP/AGbcf6LD/qn/AIB6H2pnjG28VXnhbULXwNdW9lrEkDrZz3cZmhjmI+VnRWUsAeoBFfn18aPiN+3R8EPhJqnxC8VS+Cb6w0G1V7lkS8W4vOVQhF3KiO5PA5AJ4rnr4hUk3KLta90etlmUTx0lTpVYKbaioydm29raW1em/wCB+hllomj/AGKH/RYfuL/APT6Va/sTR/8An1h/74X/AApug3TX2h2V68ZiaaCNyh6qWUHH4Vq10HlNNNpnkOlfEH4Xap4/v/ha/k2mv2GH+xXMYiknhZQwmgB/1sfUFkztYENiuzsdF0f+1L7/AEWH70f8A/uj2riPjP8AA/wR8cPDqaP4oSS2vbNvO07U7RvKvbC4H3ZYJR8ykEDI+6w4IIrxn9mD4peNdR8UeKvgV8Zpop/GfhCSDzLqJfLTUdPlX9xdqnRSwG2RRwr/AFrm9rKNRQqbPZ/o/O33+R67wFKvhZYnCt3glzxe6TaXPF9Y3aTW8W18S1X1r/Ymj/8APrD/AN8L/hR/Ymj/APPrD/3wv+FadFdJ45yesaJo+60/0WH/AI+E/gHofatn+xNH/wCfWH/vhf8ACodY+9af9fCfyNbNAGZ/Ymj/APPrD/3wv+FH9iaP/wA+sP8A3wP8K06KAOU0DRdHOkQ/6LD/ABfwD1PtWx/Ymj/8+sP/AHwv+FRaB/yCIf8AgX8zWxQBmf2Jo/8Az6w/98L/AIVjf2Lo/wDwkP8Ax6w/8e/9wf3vpXWVjf8AMw/9u/8A7NQBN/Ymj/8APrD/AN8L/hR/Ymj/APPrD/3wv+FadFAHK69omj/2TN/osPQfwD1HtWv/AGJo/wDz6w/98D/Co9e/5BM30H8xWvQBmf2Jo/8Az6w/98L/AIUf2Jo//PrD/wB8L/hWnRQByWjaLpBe8/0WH/j5f+Aeg9q2xoukA5FrECP9gf4VW0X797/18v8AyFbdAHwF8cf+Cf3w/wDG/jW5+O/wB1Sb4T/FOWPa3iPQ4Y2h1Dbyseq2D4ttQi7ZlUTKP9XLH1ryzQf2wtc+CnjPSPhb/wAFD/C+n+AtQu7v7FpXjLTyZvCOtSyLhALhxv024c5AtrzALcRzS5FfqhXEeOfCnhfx3pp8F+N9OtdY0fU45re8sb2JZ7e4idDuSSNwVdT3BBFAHRJo+iSIJI7aFlYZBCKQQfwp39iaP/z6w/8AfC/4V+X7/s+ftG/sKn+2/wBipp/Hvw2iZpLv4aaxeE3djExLMfD+oXDfuwuTtsLtzbkfLFJAMA/ZP7On7VHwY/ak8P32r/CvUJDfaNP9j1nRr+FrPVtJuwMmC9tJQJYZPTcNrj5kZlwaAPb7vRNH+yy/6LD9xv4F9PpVbR9E0f8Asm1/0WH/AFKfwL/dHtW5d/8AHrL/ALjfyqto/wDyCbX/AK4p/wCgigBv9iaP/wA+sP8A3wv+FH9iaP8A8+sP/fC/4Vp0UAcpa6LpH9t3g+yw/wCrh/gH+17Vsf2Jo/8Az6w/98L/AIVDa/8AIbvP+ucP/s1bNAGZ/Ymj/wDPrD/3wv8AhWTq+iaP5cH+iw/6+L+Bf7w9q6msnV/9XB/13i/9CFAD/wCxNH/59Yf++F/wo/sTR/8An1h/74X/AArTooAzP7E0f/n1h/74X/CsfQtF0c6f/wAesP8ArZf4F/vt7V1dY+hf8g//ALay/wDobUAS/wBiaP8A8+sP/fC/4Uf2Jo//AD6w/wDfC/4Vp0UAcrLomj/27D/osP8AqJP4F/vJ7Vr/ANiaP/z6w/8AfC/4VHL/AMh2H/rhJ/6Ela9AGZ/Ymj/8+sP/AHwv+FZGvaLo40W6/wBFh/1bfwD0+ldVWRr/APyBbr/rm38qAHLomj7R/osPT+4P8Kd/Ymj/APPrD/3wv+FaS/dFLQBmf2Jo/wDz6w/98L/hWVpOkaVHfXkkdtErLOCCEAIIRa6isjTf+Pu+/wCuw/8AQFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1v7+KKKKACue1jWILWC4t3jlYqjcrGzDkZ6gY/Wuhqpf/wDHjN/1zb+VAHMaJ4gtho1p+5n/ANSn/LJv7o9q1P8AhILb/njP/wB+m/8AiataH/yBbT/rin8hWpQBg/8ACQW3/PGf/v03+FH/AAkFt/zxn/79N/hW9RQBwWna9bDXNSPkz9Yf+WTf3fpX87n/AAdaeJrUf8EefFVlslVrrX9BjXejKDi8R+pA/u1/R/pv/Ic1L6xf+g1/OB/wdHWdn4z/AGLfhx8FbiQB/HHxN8N6UsROPMWSY7h+HFAH9E/hrXrWPw5p6CGf5baIf6pv7o9q2/8AhILb/njP/wB+m/wrS0+2+x2EFn/zyjVP++RirlAHB6z4gtvtVh+5n/4+B/yyb+63tW9/wkFt/wA8Z/8Av03/AMTRrP8Ax9WH/XwP/QWreoAwf+Egtv8AnjP/AN+m/wAKX/hILYf8sZ/+/Tf4Vu0UAc7N4gthC37mfof+WTf4VleHvEFt/Ydr+5n/ANWv/LJv8K7Ob/VN9DWV4e/5Adr/ANc1oAi/4SC2/wCeM/8A36b/AAo/4SC2/wCeM/8A36b/AAreooAwf+Egtv8AnjP/AN+m/wDiawLTX7YeI7z9zP8A6qL/AJZN6t7V3tc9Z/8AIx3n/XKL+bUAP/4SC2/54z/9+m/wpf8AhILb/njP/wB+m/wrdooAwv8AhILb/njP/wB+m/wrB17X7bZa/uZ/+PmL/lk3r9K7usHXvuWv/XzF/OgA/wCEgtv+eM//AH6b/Cj/AISC2/54z/8Afpv8K3qKAMH/AISC2/54z/8Afpv/AImmv4gtth/cz9P+eTf4V0FNf7h+lAHEeG/EFt/Y0I8mf+L/AJZN/ePtW5/wkFt08mf/AL9N/hS+G/8AkCw/8C/9CNblAGF/wkFt08mf/v03+FJ/wkFt/wA8Z/8Av03/AMTW9RQBwUWv23/CTTHyZ/8Aj3T/AJZN/ePtW/8A8JBbf88Z/wDv03+FNi/5Geb/AK90/wDQjXQUAYP/AAkFt/zxn/79N/8AE0f8JBbf88Z/+/Tf4VvUUAcH4j8QWxsEzDP/AK2P/lk394e1b/8AwkFt/wA8Z/8Av03+FJ4j/wCPBP8ArtH/AOhCt6gDC/4SC2/54z/9+m/wpP8AhILb/njP/wB+m/wreooAwD4gtsH9zP8A9+m/+JrD8OeIbb+zc+TP/rJP+WTf3j7V3R6GsPw7/wAg3/tpJ/6EaAE/4SC2/wCeM/8A36b/AOJo/wCEgtv+eM//AH6b/Ct6igDB/wCEgtv+eM//AH6b/CsE+ILb/hJV/cz/APHuf+WTf3h7V3lctqF5Hp+rS3833ILN5G+ikE0DSbdkXP8AhILY/wDLGf8A79N/hXgH7Svx/uPgb8MJfiBpuntdmC6toZFmVkRY5pFRmzj+EHNct+x/4r8YfFrw3qvxw8U6nPNBrt7cRadYfKLe1s7eQohUAZLvjcxJPXFd5+1l4Bj+Jf7O3izwiy7nn0+V4/aSMblP5iuSdWVTDyqUtG02v0PeoYClhM3p4TG2lGM4xna9t1zL5aq/lpoey23iixvLaO7t4p2jlVXUiJsEMMjtWT4j8QW39kyZhn6r/wAsm9fpXhn7GHxOj+JH7L3hXxbqUw86GzFrcu5xiS2/dnJPsAa93vvEega9pM/9iXsF35bKH8mRX2nPfBOK2pVY1IRmuquedj8BVwuJrYea1pycX6p2NceILbH+pn/79N/hS/8ACQW3/PGf/v03+Fbo6ClrU4TC/wCEgtv+eM//AH6b/Ck/4SC2P/LGf/v03+Fb1FAH5tft7+Ibdf2T9fbZKi/b4SxaMqAolUnkiuN/4J46tB4t1vx/8bY4pntdbu7SztWEbMDHZwhCQQO5q5/wUh+Ifh3Rf2btR+G7xve614kumjsrWEbpP3Z3NIQOdqgcmu//AGQviJ8KfhP+wfoPxAWdLbStPsXmu2JBY3AY7gcdWJwAPpXiTcXmN3JWjG79dV+TP0vD06tPhBRhTbnWrOEfOL5ZaddZU0l6M+2dY8e+HPD1hJqmvSmztoVLPJMpRVUdySBXG/D34/8Awm+K8d3L8NtYh1tbF/LuDZnzfLY9m25xXxtPoWjfHj4CN+0l+0b4bF7JZxXN9p+lfaHt4msAd0SzqXCMxAz8wxzXxX+x/wDtGaP8JLrxL8QIPAGrxS+OdQhXSbWytRDYpAPkjQTErHknqR3rWpmXJVpqVlCSv1va2+3fSxw4Tg1V8FiZU5SlXpSUbLk5Oa+sU+a7tG75rJK3U/cafxBanxHB+5n/ANS//LJvUe1eE/thePNF8Pfsz+Mr7VFljjbTZYl3xlQXkGFGSOpNeyyeM9FsvEekWPia5g0zUr+1LLZyzL5m84JVefmweMivk39qH4QfEb9pj4o6B8Iri2lsPAOmlNT1a93ALeSKfkt0GcnHVs9K68XN+xkqavJ6Jeb79vM8HIMND+0KU8VLkpwfPJvqou75e7drK19Wb37ApuPDf7JPg3T9UgnWU2hkx5bHAdiR29K+w/8AhILb/njP/wB+m/wq9pOlafoemW+jaTCsFraxrFFGgwqogwAPoK0K2oUvZ040+yS+48/NMb9cxlbF2tzylK3a7bOJ8Qa/anSJswz9P+eTf4VqQ+ILbyU/cz/dH/LJv8Ks+IDjSJvpWrD/AKlfoK1OAxf+Egtv+eM//fpv/iaP+Egtv+eM/wD36b/4mtqWaKBS8zBFHdjgV4T8UP2pv2a/gnp0ur/F7x7oHhq2g/1kmpahDbKv1LuKAPXP+Egtv+eM/wD36b/4msHRPEFr5t6RDP8A69v+WTeg9q/IH4mf8HFv/BHz4XzTWl98Y9N1aeElTHpEct/kj0MKMp/A18Rah/wdP/sY3kmoWf7P/wAP/H3xGvvOLRQ6Zo0iCRSOCDJtwPqKAP6ev+Egtv8AnjP/AN+m/wAKP+Egtv8AnjP/AN+m/wAK/lmP/BeX/gpX8U0W4/Zw/Yc8Z31rPxFcazKbMA9iQsTr/wCPCkj/AG4P+Dnb4gO9r4V/ZZ8MeGUkGY5tT1ZCVB9R5y8+vAoA/qZ/4SC2/wCeM/8A36b/AArBvdftjrtmfJn+6/8Ayyb0+lfy2/2t/wAHc+vXhVNE+F2jQS8hmlSQxg+uLliT+FfLX7XPxa/4Oa/2TfD/AIa8cfFr4h/D+2HiPXLPw/ZQ2VmsjC51BxGmQQflB5JzwKAP7Vf+Egtv+eM//fpv8KP+Egtv+eM//fpv/ia/lm/4UH/wdaNnPxb+HK/SyH/xug/AL/g6zTlfi78OW9vsQ/8AjVAH9TP/AAkFt/zxn/79N/hWVrviC2/si4Hkz/cP/LJv8K/l6Pwn/wCDsLSR5lt8QPhnqBX+F7bbn9FrGn8X/wDB2l4OWe617wj8M/E9jAvzR29wkDyj2zcZH/fNAH9FHxW/bD+AnwFFlpnxN1j7BeXUatHb+U7ylD/EVUEge5r2nwn8TPCfjnw7aeLPCUz3+nXqCSGeFGZWU++K/i0+K3xJ+LPxX8bXXjH44RpbeJ5Qkd/axEmK2ljADRR5J+VDkDnnrXvnwj/4LEfEv/gnv4Pi+FWtfALx78QtEupPtlprGhWnm2qLL95AXxnHXg4r53L86nicXOhy+6r2fXTv6n61xX4d4fJ8hoZj7Zus3HmTtyvmV7R66ervvof14/8ACQW3/PGf/v03+FH/AAkFt/zxn/79N/hX80ml/wDB1p/wT+sLmLTfiv4W8deD7s/66O/0OUiH/eKZP5CvqX4f/wDByT/wR1+IEiQR/Fy00iVyFCarbT2fJ9TJGAPxNfRH5Kfs3pXiC2+2Xp8mf/W/88m9PpW3/wAJBbf88Z/+/Tf/ABNfMPwS/bZ/ZB+Oq3WpfB34meGvEkMkowdP1KCc5I6EK5IPtX1lbXtlep5lnMkqnujBh+lAGX/wkFt/zxn/AO/Tf4Uf8JBbf88Z/wDv03+Fb1FAHCalr9sdVsf3M/3n/wCWTen0rl/i34Z0T4ufDXWfhtq6XEVvrFs9uziFiV3dDjHY16LqX/IVsf8Aef8AlW9UyipJxlszWjWnRqRq03aUWmn2a1R+Yv7If7E1n+zv4xu/iV491m58Ua80QtbOZoZNtvbjgAbwTuxx6AdK/Ra41fTruIwXdrLKh6q8LMD+BFdJRWWHw1OhD2dJWR35tnOLzLEvF4yfNPRdEklsklZJehyWp69aLpk6iGcARt/yyb0+lY/hz/hGtMD6vp+nGG7vlRriZLch5SowCzBcnA6ZrttU/wCQbP8A9c2/lSaT/wAgyD/cFb2PNUmk0nuUf+Egtv8AnjP/AN+m/wAKP+Egtv8AnjP/AN+m/wAK3qKCTB/4SC2/54z/APfpv8K+b/j+/wAQvE3wp8X+HPhHE39vX0HkQearIMOuGw2ODgnGa+rqwNM/5C1//vJ/KoqQ54uL6nRhcQ6FaFeKTcWnZ6p2d9V27nyD+xL8DLP9mX4K2nhLU7dzrd4ftOpyxxswadu27HIUcV6xp3wX+A+kfEGX4qab4Tgh8QTEs16ts2/cerDjAY9yBmvoWis6eGpwhGmo6R2OzF5zjMRia2KnVanVvzWbV79PTyOel1y0ljaF4bjDAg4ibofwr5k+DvwN+F37On2i08A298X1vUXvbqW5UvIzvk4BCr8o7DFfXlYGsHF7Y/8AXX+laSpxclNrVbfM5KeMr06M6EJtQnbmXR22v6XF/wCEgtv+eM//AH6b/Cl/4SC2P/LGf/v03+FbtFWcxg/8JBbf88Z/+/Tf4VBdeILY2sv7mf7h/wCWTen0rpar3f8Ax6y/7jfyoA+efFPxa8a+EoLOLwt4N1DX7d4QzS25VCr5+6VfB6dxXmN5+0Z8f522aN8K9QH/AF3lVf5A19YjX9F8O+G01TXruK0t4o9zySuFUAe5r4d+Jf7YuoeKrmfwP+zfZPq19tbzdRK4t4EHVgTgHA5ycD618XxHi44NupUzCcHL4acI05SflFODk/n82fTZNhpYlKEMHGVt5yc1FecmpJL+tCPwD+2x4s1n4r2/ws8aeEm066mmMDiKXzJImAJyV2jI+lfef/CQW3/PGf8A79N/hX5p/sJ/CzVNd8S6t8cvGshvbkyvb208h3F3z+8kBP5A1+pVHAmJzHFZc8VmE3Lnk3C6Sahsr8qSu9w4roYOhjfYYOCXKkpWbacutrtvTY4Cy1+2/wCEhvT5M/3I/wDlk3p9K8c/ant73xf8C9d0fRLaeS48oSBPKYFghye3pX0BY/8AIw3v+5HXQkBgVYZB6ivqMwwccXhauFm7KcXG/qrHhYPEvD16deKu4tP7nc+Vf2e/jz8O/FPw30jTrO9UX1nbRwXFuwxIkiDBBFeh+Mfj/wDCrwJYPfeKNTjt1QfcPLsfQL1Jrzzx1+xp8DvHOrSa9JYy6beSks8ljIYck9TtAx+Qqn4U/Yl+Anhi/TVLjT5dVnQ5DX0plH/fPAP418zQfEdGjHCxo0m4pJVHOVrLS7hy3v3XNbzPcqrJalR13UqJN35OVX9Obmtbzt8j8xfjB8Un+NXx50bxVBbf2TpscsItWlARvIjfc0rfXBNfZv7YFnrvjix8G+LPCOm3HiDSNMnFxcRwIzCRRtIPQ8MBjNex+Lf2R/hZrPxNi+JWspLc+ZJFGtg2BaqEGBhQBxx93pX1za2trY2yWdlGsUUShURBtVQOgAHQV8/lXBeOnSzGlmdVfv5J80dX7runy25Un/Lrpp0PXx/E+FjPB1MDB/uotcr295Wavu3599T8ovjF8evjT8X/AIcah4W8IeCrzRdKjty19cXS5Iij6qvAA/nXYeHPi54d1T9iLUNG0OV5r7SNKS2ulVGxGzEDBbGOh9a/S27tLa/tZLG9jWWGZSjowyGVhggj0IrhPDPwn+HPg/w9c+FPD2kW8Gn3pZp4du5ZC3XdnOa9N8KZisVUxDxnO6lKdOTlFK1/h5Ixskk9Xff56cP9v4N0IUVhuTkqRmlF3vb4uZu7emx+QHi29sF/Zy+HA07deabpV55+p+QN/luzBtrY7kZ61jftC/Ebxr8dPC0fiPw/p1za+D/D2yBWkXAkmfgucccYx7fjX7ReHvht4A8G6RPo3hfR7SytbglpYo4gFc+rA9fxqxoOhaJc+Eo9Fns4Hs5E2tAY18sj0K4x+leVV8PcVWw88PLFqEJwhGUYxvd048sfebT5PtONtX1PQp8YUKVaNaOH5pRlJpt9JyvLS1ubonfbocF8LfEujXXwk0g6AXuYhp6LG8SMylgmOCB618d/szftG/C34W+BtQ8IfEfUTpuq22o3cksUsbbjvkLDGAefbrX6P6PoukeH9Oj0jQraKztYRhIoVCIo9gOBXEa98HPhT4o1M6z4h8PWF5dk5MskClyfUnHP419Xjcpx98LXwc4KrSi4tSUnFqSje1mmrOKt5Hz+GzDCWr0sTCThOSkmmlJWbte6trfU+evAfx/8afGnx9Dd+AtPlsfBlgW+0Xs8JaS8fGAsYGdoB5J614X4f+Luifs8/tC+Obv4lW13b2uvSx3FpKsLMGUZ/wAa/TfT9O0/SbOPT9LgjtreIYSOJQiKPYDAFctdaNo2s+I7iLWLSG7VYoyomjWQDr03A1lX4fxtSlRq/Wr4mE3Pmcbwu4uLioJq0bPTW99Xds0pZxhYTqQ+r/uZR5bJ2lo1JNys7u610tbRHwB4w8Z+NP2r0uItOsrvRvAOnRyTzySRkTX7xqWVRjOFyBnn9a739grWLa0+CDW/2eYBb+4wVQspBbsRnp0r7uWztEtfsSRIIdu3ywAF2njGOmKztA8OaD4V05dI8N2cNjaoSwigQIoLHJOB6mpwPDFWjmVPM61fnqcs4zbVr8zjZRW0Yxs7Lzu222Vis9p1cDPA06XJDmi4pO9rXu293J3Wvl0Pzl8bePoPgb+1xefE/wAb2tyug65YR20VyIiQjIFBBBx0KnpzXs3iz9tj9n6DQf7R03VmvpY3V1t4omEjEdsMAB+NfW2ueHtB8TWJ0zxFZQX1u3JjnjEi5+jA147c/AH4K6NeQazpvhjT4rlZk2uIRwc9h0/Ss1k+cYSrXWW1qfs6k5T9+MnKLlrK1mk1fVJ+hX9pZbiKdJ42lPnhFR92SSko6K91dab2Nz4X/E6+8deCbPxXrWk3Gly3gZ1gZGchMnaSQO4wa9A/4SC2/wCeM/8A36b/AArdVVRQiDAHAApa+uw1OdOlCFSfNJJJysld9XZaK/kfPVpxnUlKEeVN6Lsu2vYwf+Egtv8AnjP/AN+m/wAKP+Egtv8AnjP/AN+m/wAK3qK2MjgvDPiC2/slf3M/33/5ZN/ePtXwl4t8OfHf4UfHPXfir8ItFGvWfiJUM0UilHjK9sHB69xmv0L8M/8AIJX/AH5P/QjW/Xj5xk1PMIU1KpKEoS5oyi0mnZrqmtU2tUelluZTwcptQUoyXLKMr2aun0s90up+a95oH7TP7RNymlfFeNvCHhlWBntLRWae5H90kZ4+uB7GvIfCsnxK/ZL+IXia38MeELvVdP1htumyIrlFCk7M8EnGeR1r9hqK+fxHBFOcoYmniqixMXdVZWlLZq1mlFKzdkktddT16PFE4xlQnQg6Elb2avFbp3undvTdt6aH59/ss/Dzxb4X8T6t8UfiskzeIvEMZlaMxMTDGzHg8cE+g6AAV8g6N+zv8cPE/j258H+JdLuLXQLjWDqN7dPGdsqjjg4+bK5wPVjmv2jP/Iz/APbsP/QjW/RiuAsBXw+Gws5y5aTbeus3LWXM7fae9raNoKHFuLpVq9eMY81RJLTSPL8PKvLp954n8SPBPhH4nfDyb4b61Fdw2UqIqtDGwdDHgqRlSOMd6v8Awx8LeEfhN4NtPBPhW2uVtbUH5njYu7NyzMQvJJ9q9dor6xZfhlifrapr2vLy83Xlve3pc+feMrOj9Xc3yX5rdL7XPzw/aM+FfxN1j4o2fxl+E10lveRWqWLpcRMCuWOGXKkHr+GK9c/Zz+EFl8GtJutU195tT8Sau/m6he+U53MTnapIB2gnPua+k/EzKul/McZliA/77Fb46CvLocM4Glj5ZhFN1G3KzbcYykkpSjHZNpWb7HfWzzFVMJHBtpQSSulZtLVJvqk3seG678M/hNrt5daxN4fjj1K6jdftiWf75WcEbwSuNwzkEjrXXeC7Hw/4D8LWPhDQba4S0sIlijzE2SB3PHUnk+9ei0V6tLAYanVdanTSm9LpJPXV/fZXPPqYutOCpzm3FdG+xxNgPDOl6hdarpummC6vmDXEsduVeVl4BcgZOPevkD4o/ArWfiH41g+J/wAPteuvDurwpLZyyCB2DRb2+6QMg84NfetYfh//AI85P+u8v/oRrDMcowuNofV68PdupaNxaad7pxs079TbB5jXwtX21KXvWtqk7razTumj4Cuf2H/hveaLAZtV1hdeV2ln1QKxeVn65U9AO2Dn1rovAn7Inw++HfxH0Px3oVxeumkwuJIpoWZ57hs4kLYwMA9AOwr73oryKfBWSU6kKsMLFSi009d4tNPffTV7vrc9CfE+aThKnKu3F3TWmz3W23ZdOljAbX7RlKtDPg8H90/+FfFfwg+DXi74K/FK4fw7rRm8NajJNdy2Utq/nZbgAMBgEHbz0IHSvvOsOX/kYof+uD/+hCvYxmVYfFVqOIqp89JtxabVr7rRq6dtU7pnm4bH1qFOpRg1yzVmmk9tnrs10aPG/jv4D0f43fDa98CXnn20kuJbebyWIjmT7pIxyOcH2NfFnhzxb+3H8I9Ki8FQ+H08QWlivlW9x5bOTGvCjIZTgD1ANfqnRXmZrw1TxeJWMo1p0a1uVyg0rx3SkmmnZ7aXO/L87nhqLw1SlGpTvdKS2fdNNNX6nzj8BNS+K9v4Ql1D41SSS6tfXDzrbxwYW2iIAWPKjnGCep69a9U8S+ILY6HcjyZ/u/8APJvUe1d1WH4l/wCQFc/7v9RXtYLCrDUIUFNy5Va8neT82+7PLxVd16sqrio36JWS8khg8QW2P9TP/wB+m/wpf+Egtv8AnjP/AN+m/wDia3R0FLXUYGD/AMJBbf8APGf/AL9N/wDE0f8ACQW3/PGf/v03+Fb1FAHCaD4gtsXn7mf/AI+pP+WTe3tW7/wkFt/zxn/79N/hRoPS8/6+pf6VvUAYP/CQW3/PGf8A79N/hVuy1SG+lMUccqEDOXRlH5kCtOigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorKkg1gyMYriJVJOAYySB/30KANWsfX/8AkDz/AEH8xS/Z9c/5+Yv+/R/+KrI16DWxpE+bmL7o/wCWR9R/tUAddRWR9n1zP/HzF/36P/xdJ9n1z/n5i/79H/4qgDYrI0r/AFt5/wBfB/8AQVpPs+uf8/MX/fo//FVk6VBrfm3n+kxf8fDf8sj/AHV/2qAOuorH+z65/wA/MX/fo/8AxdL9n1v/AJ+Yv+/R/wDiqAG6h/yE7D/ro/8A6A1bNcfqEGt/2lYf6TF/rH/5ZH+43+3Wz9n1z/n5i/79H/4qgDXqC6/49pP90/yrO+z65/z8xf8Afo//ABVRXEGti3kzcxfdP/LI+n+9QBb0b/kEWv8A1yT+QrSrltHg1s6Ta4uYh+6T/lkfQf7daX2fW/8An5i/79H/AOKoA16yLf8A5Dd1/wBc4v5tSfZ9c/5+Yv8Av0f/AIusm3t9b/tq6/0mL/Vxf8sj/tf7VAHXUVzGq2Xiy40y4g0m/gt7p42EMr25dUcjhiu8ZA9M15JrPg74v6hYST+KPHUOj2kSlpX02ySAhQOSZZ3l2j1IAxXHisVOl8FKU/RxS+fNJHTQoRqfFUUfXmv+CZ7TrZAtov8ArvD/AOhitmvzM8aaT8PrzwFrPjDTbTUdf0+xgkP/AAkGp3M+2Wb7qC2Dy5ky5ADqipnkE193+AdO8X2fgXRrPWrtWvYrG3ScyRlmMgRQ247uTnOT3NeflmcSxdWVNwSSipJxk5KzbXWMVrZ2cXJOz10OvHZcsPTU1J3vazSXS/ST7q6aTV1pqeiUVkfZ9b/5+Yv+/R/+KoFvrmebmL/v0f8A4uvcPLE0P/jxb/rrL/6G1fkZ+3zqfiDwR411vwrrt3MfDvxK0VX0qWRyY9P8R6IRNBsycRidVRTjGW57Gv1d0SDWzYnFzF/rZf8Alkf77f7deE/tTfs2W37T/wAIr34a6/exW0+5bmwuxCS1vdR52N97lSCVYf3Se+K4swoTq0JRp/F08/L5q6PpOE8zoYHMqdXFfwnpJ2u46pqS/wAMlGVuqTXU8p+FnxLt/ir+054W8W6a4aLUPhqmoyBeitd3cRx+akfhXqH7Tf7Vfwk/ZYttM1n4hz3F7q2sia00Lw9pMJvNa1q8Gwi3sbRDvlfHLNxHGvzSOigtX5E+FvG/jv8AY18a6p8Efhvq2ifEH4sw6PYaQ8shktfDfg/SUkd4bjXL1mHltLJOTDaR5ubjACKqZkX9JP2c/wBjO1+DfxAuPjX8RvEL/EL4qeILaUal4r1SAeZFCxQ/Y9NhDlLCwQ8rBFyx+aV5H+ajA+09neqrSerX9eguJ/qqxfJgZc9GKUYySaTtq7XS25rM8x0f9lf4y/tmarbfEX/goOsVh4VgmW50n4Vafcefpkew7opdcuEwNSuV4P2Yf6FEw+7MwElfqDZWVnptnDp2nQpb29uixxRRqEREQYVVUYAAAwAOAKo/Z9b/AOfmL/v0f/iqT7Prn/PzF/36P/xddp84Sa5/yBrv/rk/8q0k+4PpXLa3b63/AGNdZuYv9U//ACyPp/vVk+Fx8Qr63fUvEclvZ+cf3NosW9okGcGRw+GdhyQvyr0GepV9bFqF4uV9v6/r/hjqdbfXVtY18PJC07yxqzTkhUiz87YHLELnaMjnGTitcqpIYjkdDWT9n1v/AJ+Yv+/R/wDiqT7Prn/PzF/36P8A8XTE5aJWDTf+P6+/66r/AOgLWxXIadBrf22+/wBJi/1q/wDLI/3F/wButj7Prf8Az8xf9+j/APFUEmvWPqv/AB8WP/Xx/wCyNR9n1z/n5i/79H/4qsnU4NbFxY5uYv8Aj4/55H+43+3QB11FY/2fXP8An5i/79H/AOKpfs+t/wDPzF/36P8A8VQBrHoaytB/5Atp/wBck/lTDb65g/6TF/36P/xdZehW+t/2Laf6TF/qk/5ZH0/36AOtorH+z65/z8xf9+j/APFUfZ9c/wCfmL/v0f8A4qgD5e+N+rav4h+NXgv4H6XfXGnWuvx3WoarLZytBcNZaeuRCkqEOgllkQOykNtBAIzXrPxb8bap8Lfh9HP4TsjqmrXM9rpemW88jbZLq5dYozNIctsXO+Rs52g9zXzn4mbVD/wUA8K2cs8e4eDNSdD5Zxk3UIPG7rgetfYOreHptdtls9YNvcxJIkyq8JO2SJgyMPn4KsAQRXHTvN1bPW9vTRf8OfQYr2dCOBVSN4cnO1/M3Od7/JJei3R+e/i3w/8AEL9mb4t/D74u+LPGGpeIU8U6mfD/AIm+0yFLAPfrm1a3th8lukUy7RjLEN8zEmvpLR9bX4nfFHxD4jh/eaT4Omj0SyP8L37Mj3kg/wBwGOEHsRIO9eZ/8FB7eCf9lvXNM1qfzb69ms4dGjt4j9ofVTOhtVi+Y/NvHPoua8m+CHxm0vwZ+w5ovirwsyXWo2t9a6bqVpdAi5/tm6vUS6E5znzDJI0nI5BHauRTjRxEqTfu25/0f+fqe/KhVzDKaWOjC9dz9holFWb5k9LJaN01pZR00skfqNRXjfwu+ImofFHTtW1OxCWqaVrGoaQQ6bvMawmaEyDDDAYrkDtVH48eJ/Gnw/8Agz4m8c+H7yBLzR9PmvIi0O4ZhG8ggsQcgEfjXpurHk9otrXPi44Kq8SsJJWm5KOvRt21Pcq/LD9qv4t6n8Cf2kfCXxDsNJutXuLvQNc0rTba2iaT7RqU1xC0MJK9MkAn0UE1+lmny6xqVhBqENxEEnjWQAxHowB/v1n6VZarLHI8k0DGO5lKkw5IO48j5uKzxNF1afLGVndO++zudeT4+ngcV7WvS9pG0ouN7X5ouO9n3/4bc/Lfxz8IdU+Cnw5+C0Xi2f7X4m1P4mabrGvXXUzaheiYy8/3UDCNe2Fr9e6/Pf8Abvj1WKx+Fzyzxsw8f6Ns2xkfN+8/2jn6V9OfHPxl4m+GXwc8UfEHT7iE3Gj6Zc3UIaIkeZGhKZG7kbsZrmw8Y0Z1Utkl+R7WbVK+Y4fA1Ja1Kkqi7K7mrLySvZLoj1S7/wCQzZ/7sv8AIVsV55p48Qzro9xdXkUkj2xZ38rG5iiknAbAyea39OubzV7KLU9L1C2ubadQ8csSb0dT3DByCPpXoJnyMoNX8jyLx94/+NngLXZ7nTPBf/CW6C4Von0q6jiv4ePmV4LhkSTnJVklHHBXIyfzr+NX7THhL9pD4laH8JvEWla74d8JeF7z+0vFK3+nSs73luN1pZyC3EwVGb94xYgMAK/Qv9pf4peIfgZ8CPE3xUtXhuLnSbQtbRmMhWuJWEcQPzfd3uufavI/gBpXgn4FeCtK+Ed34ksrnxh4ot7rWbyZh5kmpXzjfcuJQ21ypYBVzu2AEDANeZiYynUVFTtHd3tbfRdHq79dlbqfbZLWo4fBvMJYW9RNwg4OSd1G85u/NFckWmmor3mpfZZ9Z+G/HXhHX/CVh4u03UYX0698tIbhj5aO7tsVRv2ncX+ULjJPGK7Ovij9tGbXdE/Zzk8Zi4jb/hHtS0XVmAjI3LZ3sEhH3jwQK+vUj1iZBNDdRFHGVPlHoen8dd0Kjc3Te6Sf33/yPl6+EjHDQxUNpSnGz1tyqD30vpPsjar87vi4i+Ff2/fhd4q0oeXP4htNV0W9K/8ALWCGAXEYb12Pkivvn7Prn/PzF/36P/xVfnl4r/tP4lf8FDvDHhrSpo5o/h7pF3quoSqh2RTajGIIY2+b7xX5sZHHNY434IrrzRt96b/C/wAj0uGk/b15v4FRrc3bWnJRv/2+4pedj9JaKyPs+t/8/MX/AH6P/wAVSfZ9c/5+Yv8Av0f/AIquw+dE1j71p/18J/I1s1x+rwa1us83MX/Hyn/LI+h/2q2Ps+uf8/MX/fo//F0AbFFY/wBn1z/n5i/79H/4ul+z65/z8xf9+j/8VQAmgf8AIIh/4F/M1sVyOgwa3/ZMP+kxfxf8sj/eP+1Wv9n1z/n5i/79H/4qgDXrG/5mH/t3/wDZqX7Prn/PzF/36P8A8VWR5Gt/8JBj7TF/x7/88j/e/wB+gDr6Kx/s+uf8/MX/AH6P/wAXR9n1z/n5i/79H/4qgBde/wCQTN9B/MVr1yOuwa2NJnzcxdB/yyPqP9qtfyNb/wCfmL/v0f8A4qgDXorH+z65/wA/MX/fo/8AxdL9n1v/AJ+Yv+/R/wDiqAI9F+/e/wDXy/8AIVt1x2jwa2XvMXMQ/wBJf/lkfQf7dbP2fXP+fmL/AL9H/wCKoA2KyL7/AJCdl/vSf+gmk+z65/z8xf8Afo//ABVZN7Brf9pWQNzF95/+WR/un/boA66vi39pH9ivwj8bfFFl8avh5q118O/ivokXlaZ4w0dF+0mEZ/0W+gbEWoWTE5a2nyAfmjaN8OPrr7Prn/PzF/36P/xdL9n1z/n5i/79H/4qgD8/vhb+2X4s8JePrP8AZl/bi0m28E+PdS3Q6HrFozN4a8UlQf8AkH3EmDDdkcvp8585esbTJ89foRpAI0q1B4IiT+QryT40/BLwN8fvhrqfws+M+laf4j8PalHi4sry33oWT5kdTvDJIjANHIhV0YBlIIBr849O8d/tEf8ABN3TLLT/AI2apffEj4EJEoi8XyxPeeIfCqHlU1dEy99YIDgXyKZ4VH+kK65moA/YeiuN8Oa5F4x0Cy8V+EtXstT0vUYUubS8tMTQTwyDcjxujlWVgcggkEVtfZ9c/wCfmL/v0f8A4qgBLX/kN3n/AFzh/wDZq2a5G1g1r+2rwC5i/wBXD/yyP+1/t1rfZ9c/5+Yv+/R/+LoA2KydX/1cH/XeL/0IUn2fW/8An5i/79H/AOKrJ1eDXPKgzcxf6+L/AJZH+8P9ugDraKyPs+uf8/MX/fo//FUn2fXP+fmL/v0f/iqANisfQv8AkH/9tZf/AENqX7Prf/PzF/36P/xVY+hwa2bDi5iH72X/AJZH++3+3QB19FZH2fXP+fmL/v0f/iqT7Prn/PzF/wB+j/8AFUALL/yHYf8ArhJ/6Ela9cjLb65/bsP+kxf6iT/lkf7yf7Va/wBn1z/n5i/79H/4qgDXrI1//kC3X/XNv5Un2fXP+fmL/v0f/iqyteg1saLdf6TEf3bf8sj/APF0AdWv3R9KdWMLfXMD/SYv+/R/+Kpfs+uf8/MX/fo//FUAbFZGm/8AH3ff9dh/6AtJ9n1z/n5i/wC/R/8Aiqy9Ig1gX14ZbiMqJxuAjIJGxf8AaoA6yiiigAooooAKKKKACiiigAooooAKKKKACiiigD//1/7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBW0P/AJAtp/1xT+QrUrL0P/kC2n/XFP5CtSgAooooA57TP+Q5qX1i/wDQa/nR/wCC8Gl6T44/as/Ye+GGtLvt9Q+LEd26nofskBZcj2Ygiv6LtM/5DupfWL/0Gv5yP+C1cn/Gx/8AYKh9fiHdtj6Qp/jQB/SxRRRQBg6z/wAfVh/18D/0Fq3qwdZ/4+rD/r4H/oLVvUAFFFFAEc3+qb6Gsrw9/wAgO1/65rWrN/qm+hrK8Pf8gO1/65rQBs0UUUAFc9Z/8jHef9cov5tXQ1z1n/yMd5/1yi/m1AHQ0UUUAFYOvfctf+vmL+db1YOvfctf+vmL+dAG9RRRQAU1/uH6U6mv9w/SgDF8N/8AIFh/4F/6Ea3Kw/Df/IFh/wCBf+hGtygAooooA5+L/kZ5v+vdP/QjXQVz8X/Izzf9e6f+hGugoAKKKKAMHxGcWCf9do//AEIVvVg+I/8AjwT/AK7R/wDoQreoAKKKKAEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAK8j+Kt82meGdd1BDgw6Rctn6CvXK8V+NFncah4J8R2VqC0kujXSqB6kVFT4JW7HTgkniKaltzL8zwv/gnQQ37IHhNx/FHOfzlavtDU7NNR0240+QZWeNozn0YEV8L/wDBNDVbfVP2P/DUcBybRriBx6Msh/xr72rmwDTwtL/CvyPX4qThneN7qrP/ANKZ/Mn8FbXx948+LUv7AL6hPpPhuHxDqN5qLW7bJJrePLeWCOQGCg496+r9R+GfhL9j/wDbr8F+DPhBHLp+heMdPlhvbQyM6vIhADncTzkg/hXjPxN1/wD4Zl/4Knr4zFibq31xkYJu2Z+2J5LNnGPlIzivb9V1hv2rf+CgsfiDwg5Ph/4bWkkL3qDKtcMcEKehw+Mf7pr5rDxjH3N6saiS7qK7eVr3/E/Zs2rVqtsR8OCq4SVSf8sqkk1d95c7jy31002Z+xviPxp4Q8G2sd54s1O102KRgiNcyrGGY8ADcRya6SOSOWNZYmDKwBBHIIPev5i/2qfhv8OR400jwqnxB1T4j+I77VWE4RzcLp1sj5dREhcl/wCEAY+lf0c/C7UbTVPh9pNxYWd3YQJbRxRQX0RhuFSMbV3o3IJAzzXv4LHSr1Z05RS5bdb/AJaH5VxFwxSy3BYbFU6rm6nNe8HBJLZq/va67pbX2tfvqa6h1KHoRjivi3xv8cvGmg/tneEvgpo7JcaPq2mXNxewhMvEyDKSbuw4xivtSu2nWjNyUejt/X3nzmMy+rho0Z1LWqR516Xa1+aZ8ofDf9ln4WeHvGWqfEm8W71nV7x54Fm1Kdrn7PDKTuSINwinOPXFfIT/APBMS5j8eNptj4xnj+G02orqcnh3acGVTu2A5xtz+nav1M8O/wDHtP8A9d5P510FYVMvw80lKG2v+d+9+tz1MHxZmuGlOVKu7ySWtnZLa10+Vxu7NWau7bnwH/wUOtPGVr+zBP4Z+G+lXF7DPPbWt1BYoXkSxDAOFUc/dGK+avCXwq/aG/at/wCEY0HxNop+Hnwu8LyW09tYTYN9eNa4MZYfw8jPYc96/Yue4t7WJp7p1jRRksxwAPqa/OP9pX/grt/wTl/ZLaez+NXxY0Gx1G3yG0+C5W5vNw/h8mIs+fwrOtl8atV1JSdmkren428jqy/iupg8CsNRox9opSkqju2nJJNpfDzJLSTu1d211Pyw/ac1PW/iF8e9b8J+IdO1C4+IP/CQW0GguA4jttPRgcx44+bqTX9LXh+2vrPQLG01R/MuYreJJmzndIqgMfxNfyreL/8Ag43T4yeLkH/BPf8AZp8dfFy/ETR2+qvppsrQljwQxV5cA9cqo96nt9c/4Oiv2yYCtlpXgr9nbQrwcS3Z+26nHG44O3MuHXvujX6UYPAuhOpNyu5eVu+/d67hxFxMszw+Fw0KPJGkn1vq1Fe7ouWPu35ddW3fU/qn1PWdI0W2a81i6itYkGWeZwigfUkV+Z37RX/BZ/8A4JkfstzT2Hxa+L2gw39tkPZWU4vbkMP4THBvYH2Ir8l9C/4Nu/ir8c1Go/8ABRv9qTx38S5ZSWm07TLg6bp7BuqFMsCM/wDTNfpX6Pfs9f8ABAr/AIJP/s3+Rd+FfhFpWt38BBF5r6nU5Sw7lZt0ZPf7legfJn53ePf+DnP4U/EppfC37DHwU8e/GK9kyiXFnpzWdkJAeAzyAvg9ciM1gyftB/8ABz1+1nbi3+Enwk8KfArSbgYW+8QXS3V5Gp5DeWSTnH/TE1/T9b+DfCHgfwu+k+C9LtNItYlCpDZQJBGoHAAVAAMCu6h5hU+woA/k/tv+CGP/AAVS/aLvft37cf7aGvGwuebjSfCVv9jjw33kWRTCFA7fu2r6F+GX/BrN/wAEt/C13FrvxZsPEPxM1hV2y3viPVZZXlPYsIynT61/R/RQB+dHwm/4JGf8EzfgkFPw7+CPhK3dQB5lzp0d6/HfNyJDn3r7T8C+C/BvhSO4s/C+kWWmQwTFI0tLeOFVUAcAIAAK9ErA0P8A1t7/ANfDfyFAG/RRRQAV/O5/wcH2t7feHP2ebO1ztk+KWjB/ThwRX9EdfCn7bv7HmiftjReA/D+taq+kf8Ij4lsvEkUkcYlMj2Db/KwSMB+mecelAH3XRRXj3xv+Onw7/Z+8FS+OPiJefZ4AfLghQb5riY/djiQcsx7AVvhsNVxFWNChFynJ2SWrbM6tWFODqVHaK3bPWLy9s9OtZL6/lSGGJSzu5CqoHUkngV89TfFqz+MfgnV5/gLqMF1JYXCW73k0Tm1YA/vPLbAEmBkZUkZr5P8AD3w5+OP7bN7F4v8Aj8lx4P8Ah3vEll4XiYx3l8gPyteuOVQ/88xjPev0Pj8O6F4S8Gjw54Ys4rCws4RFDbwIEjRF6AAcV7ONwWGy9KnOaqYhNXSs4Q8m9eeXdR91d5PRcNCvVxT5ox5aXRvSUvNL7K9dX2R8weL/ANgv9l34leLk+Inivw3HLqUu2ScxyNHHO+B8zopAJPfpnvX13o2i6T4e0m30LQ7eO1s7VBFDDEu1EReAAPSrNj/x5xf7g/lVqvmqdCnBuUIpN72W59Bis0xmJpwpYitKcYaRTk2l6J7HJa34A8CeJYJLXxHolhqEUow6XNtHKrD3DKQa+LPin/wSp/4JvfGhSPiL8E/CF4zZJeHTIbVyT3LQCMk+5NfoBRWpwn85nxB/4NgP+CSXxE1K61Hwv4P1HwVqEDnybnQtTmhaNiOGUOXAI7V806r/AMG437VfwYkW+/YY/bH8deE/LJZbLXWbUYS3uwcAD28pq/qt0r/j9vf+uo/lW5QB/JfD4N/4OqP2S2M2la54J/aA0e248q48uxvWjT0OLclm/wCB/StjSP8Ag5B+MH7PGpR+HP8Agpd+zJ4y+Gew7JtY06E6hp4I6t91Wxnpt31/VxWTrWg6H4jsH0rxDZQX9rKMPDcRrLGw9CrAg0Afk5+zr/wW4/4Jifta6vplj8KvixpEWpSsQNP1SQ6fdbmGAuy4CEt7DNfrRpmsaTrVst7o91FdQuMq8Lh1I9iCa/HX9qb/AIIPf8Er/wBqLUlufG3wp03RtSvS5fUPD4/sufdj72IQIyc85KZz1r81Na/4Nxf2jv2dpBqn/BNL9qvxl4BWFt0Wka5KdQsAB91Bj5VUf9cTQB/WNRX8lN/8cP8Ag5+/YkjH/Cxvh54W/aF8PWvDXegEw6iyLxny1KsWI5OISK9J+Gf/AAdDfAfw3rMHgr9vP4U+NfgbrDsI2l1bT3msd3fEiKHAHUlowPegD+n7Vf8AkGz/APXNv5U3SMf2ZBj+4K+LvgZ/wUW/Yd/au0lv+Gf/AIoeHfEs80LOLa1vojcAY7xFg4/EV9oaOyNpduyEEFByKANKiiigArA0z/kK3/8AvJ/Kt+sDTP8AkLX/APvJ/KgDfooooAK4Hx74q8O+Dra11zxPeRWNpDIWeSVgoAx715r8d/2gNI+D9nBpWnwNqviHUfkstPi5d2PAZgOQufzrwHQf2cfF3xM1mx8eftMX7301xJui0eJittbqRkBgOp9cfnXzePzyp7d4HLaftay+K7tCF9ueXftFXk/JantYTK4eyWKxs+Sk9uspf4V2/vPQ6TU/2yj4l1B9F+Bfhi+8VTKdv2gKYbcH/eIJP5CqTeJv28dX/wBJtPD2j6ejchJZgzD6/PX2xoegaH4a06PSfD9pFZW0Q2pHCgRQB7CtesFkOPrrmxmYTT7UlGEV6XUpP5yNnm2EpPlw2EjbvNuTf4qK+SPgpr3/AIKAHpY6EP8AgY/+LrNvdH/b91+B4Lm/0fSIyDueIKxx3xnfX6D1Xu/+PWX/AHG/lSfCaeksdiGv+vlvySf4jXEDXw4Win/gv+bZ+fXh79ijUPGXka18cvFt7r/RhaxsUhHtk/0UV9YJ8E/Aml/Dy++G/hG1XRrO+haF5LYAS4bqSxySfrXpOif8gmD/AHBWpXdgeGMtwin7KiuaSalJtyk097ybcvxOTFZ5jsQ4+0qaRd0kkoq391WX4HJeBfBWifDzwpZeD/DqbLSxjEaZ6nHUn3PU11tFFe1SpQpQjTpq0UrJLolsjzKlSU5Oc3dvVs52x/5GG9/3I66Kudsf+Rhvf9yOuirQgKKKKAMHXelr/wBfC/yNb1YOu9LT/r4X+RreoAKKKKAGSf6tvoaxvDf/ACBYPpWzJ/q2+hrG8N86LAfagDcooooAK522P/FTXI/6ZR/1roq522P/ABU1yP8AplH/AFoA6KiiigArE13/AI94f+uyfzrbrE13/j3h/wCuyfzoA26KKKACiiigDA8M/wDIJX/fk/8AQjW/WB4Z/wCQSv8Avyf+hGt+gAoor4/+IfxD8d/Ef4oTfAn4SXQ0wWESy6xqu3c0Ct0jiHTeR3PT8K87Msyp4OnGUk5Sk1GMVvKT2S2XRtt6JJtnZgsFPEzcYtJRV5N7JLq/ySWreiPpWbUdPg8VeXNPGjfZhwWAP3jXUqyuu5CCD3FfMWifsz/CrTdZEGsWs2s3LQB5Lq+nkklZyxyc7gB+Ar33wv4W0fwfpY0XQldLZWZlR5Gk27ucAuScegzTwlXGzd8TSjFeU3J/P3UvubDEQw0V+5nKT84pL/0pv70dFRXzlrn7TXgaw1XUPD/h601DXtQ0ydre4t9Ot2mKMoGckfKB269RV34YftFeEfiT4jn8GSWd5omtQJ5v2LUYvKlaP+8vJBA71zwz/LpVo4eNeLm3Zdm+19r6bXuayyjGRputKk+VK79O9t7eexyH7UerXNnd+A9LtZGjN54kttwUkbljViQcdRX1cOgr4P8A2qdcsrf4y/Dex1CZYbeyuLjUZ2Y8LHEoG4/Tmuq+FH7XWlfEz4jR+C20efT7PUUlk0q8lPy3awkhiBgY6Ejk14uGzzCUM1xVDEVbSnOEIrXdQh92skruyu7bnqVsqxFXAUKtGF4xjKUn/wBvy+/SN9Omp9j0V4X+0B8btJ+Bvgk6/cx/ar+7fyLG1X70sx6e+B3rw39lD45/Fv4r+LPEOj/ECC1+zaakRWS1UhY5nzmInJBIHX0NepiOJMFRzGnlbbdafRK6Wja5n0uk7ffscFHJcTUwU8eklTj3dm9UtF1s2j7mrC8P/wDHnL/13l/9CNedfEz48/DH4R31jpnjfUVtri/YLHGAWYAnG5gM4X3NfJPxG/aJ8eeKfGR+B/7OEaXOptLI93qOA0UCsx6HpwCMscjPAyaWZ8S4DBKSnPmqJqPJH3puUtoqPd+Y8DkmLxTi4w5YNN80tIpLd37I/RivjL4w/tl+Fvhr4iuPDHh7TLjxDcaanm6i1sQI7VAcHcxyM89OnvXybrv7Svxw+B1l4l+DHxEnbU/EBRF0q/Vf+e5GTwFyMHKcdeDVr4qeFtH+A/7OEHwwtT9s8aeOpYjeHO6Zy7BmHrtDYQepJNfFZtxxVxGGq/2delKlFuo5JOUJXcY0ktU5Tkt9Uo6rV6fT5dwtTo1qf1y1RVGlBRbtKNk5Tb0ajGL8nfyR+qPg7xRp3jbwrp/i3SdwttRt47iMNwwWQZwfcVYl/wCRih/64P8A+hCsL4ZeGn8HfDzRPC0v37Cyhgf/AHkQA/rW7L/yMUP/AFwf/wBCFfpmElUlQpyrfG0r+ttfxPh8QoKrNU/hu7el9DcoooroMQrD8S/8gK5/3f6itysLxL/yArn/AHf6igDcHQUtIOgpaACiiigDB0Hpef8AX1L/AErerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/AOQPP9B/MVsVj6//AMgef6D+YoA2KKKKACsjSv8AW3n/AF8H/wBBWtesjSv9bef9fB/9BWgDXooooAxtQ/5Cdh/10f8A9AatmsbUP+QnYf8AXR//AEBq2aACoLr/AI9pP90/yqeoLr/j2k/3T/KgCpo3/IItf+uSfyFaVZujf8gi1/65J/IVpUAFZFv/AMhu6/65xfzateuF8S+LPD/gW21bxb4quVtNPsbeOSaV+gALcDuSTwAOSeBUVKkKcHUqO0UrtvRJLdsqEJTkoQV29Ei5458deGPhx4auPFvi65FrZ2w5PVnY/dRFHLOx4VRyTXz9o/gXxj8eLuLxd8Zon07w6GEth4bzjzFHKyXxH327iH7q98nNS/Dzwh4g+Lnie3+NvxXtWtre3Jbw9o0vS0jbpcTL0M8gwQD/AKscDnp9VV8/SozzRqtiE1h/swenP/emuz+zB9NZ62jH151I4Fezou9b7Ul9n+7Hz7y76R01fyT8Spk+Ivxb0T4Q6Ui/2N4Ze21XWAo/dl9wFpb4HHXMhHoor62r57+Fnw71XwL4f1C/8VFZNb1zW3vr2ZG3B9022IA9lWIKAO3NfQldeT0KihPFV42qVXdr+WK0hH5R3/vOT6nPmNWDlGhSd4QVr93vKXze391LsFFFZ2saxpHh3SbrX9fuobGwsYnnuLm4dYooYowWd3diFVVUEliQABk17B5xBohxYMT082X/ANDavzK8VftE/Fr9tjxdqvwR/YZ1P+w/B+jXb6d4p+J3lCWJJE+Wex0AMDHdXiH5Zbsh7a1bIHmSjYvCQXXxM/4KfXb6N4SvL3wl+zVHLMt3qduzWuq+PQWYGK0cbZbPR+oe4G2e9HyxFISXf7R+J3x2+AP7EngzQ/Bt9pNzo2gWdoINPtdH012s7W3t8IsY8tRFEAMBVJFZ1asKcXOo7JdWdWDwVfF1o4fDQc5vZJXb+R8vfEj9lH4JfD3wv8Nv2HPhbpP9n+H/ABVrV5qmtSNI815fLZQPNPc3dzIWluLiedoy8srMzHvwAPoL9irxxrXiX4ZWvgrxg7N4h8Cz3vhrU9/3mksHRI5PcSRbGz35r5Og/bO8J/EL9qLTviX4P8H+LNd0/SPC8kNpBa6YTMZtRuAfN2lgBE8cO1XzhiCB0Neaaz+1v4q/Z6/aL8S/Fe9+GmtaTo/jjTUn+w6zNb6azXumriadWZ3UhodgK/fZsYBrxPrtGNZ4jm0bs9G9LK2395fiz9K/1azCtl0cp9laaiqkU5Ri/ac8uZWbW9KSb/69o/dKmSOsaNI/CqCT9BXgX7M3xk8UfHr4U2vxM8UeF5/CZv5HNra3EoleW2wCk33UKh8nAKg4GehFfQFe5TqRqRU47M/NMXhKmFrzw9ZWnFtOzT1W+qun8meLaHN438STar41113sNIltXg03S2QB9nU3M5I3CSTGEjyAifeyzEL7On3B9Kzdc/5A13/1yf8AlWkn3B9KcY2VrkV6vtJcyiktkl2/Xzb1Y6iiiqMTH03/AI/r7/rqv/oC1sVj6b/x/X3/AF1X/wBAWtigArH1Uf6RYn/p4/8AZGrYrH1X/j4sf+vj/wBkagDYooooAQ9DWVoP/IFtP+uSfyrVPQ1laD/yBbT/AK5J/KgDWooooA+Ef2oNM8W+B/i74N/aa8H6Xca1F4TjnsdasbJDLdSaXf8ADyRIOXaB1DlByRmvTvA/7ZP7PPxF1ez8O+Fdamm1G+kWKO1ewu45VduzhoQEx3LEAdzX0RH/AMh+X/rgn/oTVsVzKjONRyhKyerTV9dtNVbReZ7LzHD1cLToYmk3OmmoyjJR0bcrSThK9m3azi7O3RHyp8bfhZ40+Ifxy+F2vW9vHdeFvDF9e6jqKGVUdbsQhbSTY33wjFzgcgkHpXCfEb9iT4c698XLf4zaXqN/pKPqVnqeq6RauBYaleWrgwzSoRw6k5Zl+935yT9zVja//wAgxv8ArpF/6GtEsJSk25q93f5pW/T8x0OIMbQhThh58ijBw06pycne903d6OyatG2qTPMvgp8Mb/4V6Vr2lXtzHdJqmv6lq8BQEFIr+UzBGz/EpYg44rwb9sbxJdeMoNE/ZV8GN5uueOrmIXoTk2eiwSK93PJj7oZV8pM43MxA5Ffb9crpngjwjo3ibUvGemadBDq2riJby7Vf30ywrtRWbrtUdF6d8ZoqUL0vZQ0Wz9Ov+X4k4PNFDGvH11zTXvR7c/2W/JP3rdbW0TbXSwQxW0KW8I2pGoVQOwHArz7xNqmvaH8P/EOteFbYXmp2cN9PaQEE+bPGrNGmBydzADivRqx9F/1U/wD18S/+hGuhq6seVTmozU5K9nez6+R+Lfws8WT/ALUVz8Jfhz4Nj1XVpvDetR+LvGms6jbywxR38auxt1aQAFjK5RUQbVRVxwDX6z/HL4eXHxa+Dnib4Z2c62s+uabcWcUzjKpJIhCswHOA2M47V6oAB0pa48Pg+SEozd29H00tbz/Pc+gzbiB4nE0q2Gp+zjTbcVfmfM5ObbdorfRJRSUUl5nyR8UPiB4m+Cv7Msnjbx2sFvrujaDKjpayGWI3xRYowjMqFt0pXHyg845r2j4J+D5Ph98HvC/gifJl0rSrS2lJ6mSONQ5P1bJrT8ceDvC3jxLbw34z0+DU7CRvNa3uEEkZeFkkQkHjKuoYe4rvK3jSanzN6JWX6/oedWxsJ4X2MY2k5uUu1rJRS66Xn96MTxJ4a8P+MdBu/C/iuyh1HTr6MxXFtcIJIpEbqGUggivmzw9+xb+y18O9bj8deC/Bdhp+q6eHltbiPeTC5UruRWYqDgkDA4r6uqjqf/INuP8Ark/8jVTo05tSlFNra6MsPmOLoU5UqFaUYy3Sk0n01SdnppqeX/GH4W2Pxs+DerfCvUbp7KHWrMQNPGodozlWDBSQDggcZr1OwtEsLGGxjJZYY1jBPUhRjmlsv+PKH/cX+VWqrkXM59dv6+8weIqOlGg37ibaXm0k381Ffcct42l8Yw+EtQk+H0VrPrYhb7El67R25mP3TIyBm2jqcDJ6e9eEfsyfAk/BLTdbk8Q6i2veKdfuxqGt6q67TcXMi52oP4Yowdsa9h9cV9QVj2P/ACFb7/ej/wDQRUulFzVR7rb+u5tTx1WGGnhYaRm05d3bZN9k9bbN6u9lbYooorQ4zG1j71p/18J/I1s1jax960/6+E/ka2aACiiigDH0D/kExf8AAv5mtisfQP8AkEw/8C/ma2KACsb/AJmH/t3/APZq2axv+Zh/7d//AGagDZooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/18v/IVt1iaL9+9/wCvl/5CtugArIvv+QnZf70n/oJrXrIvv+QnZf70n/oJoA16KKKAK93/AMesv+438qp6XGkui28UqhlaBAQRkEFRwauXf/HrL/uN/Kq2j/8AIJtf+uKf+gigD8vPFnwE+Mf7DHiS++MH7D+kt4k8AX9w974l+F6SCPyy5LTXvh0thILknLyWDFbe5OfLMUpy/wB5fAf49/Cn9pX4aWPxZ+Dmqpquj3peMna0U9vcRHbLb3ELgSQXELZSWGRVdGGGAr2Kvzm+PP7KXj7wJ8StT/bB/Yea30z4i3kcZ8QeHbqXyNF8ZQ24wkd3gEW98q5W3v0XcvCTCSLhQD9ALX/kN3n/AFzh/wDZq2a+Vv2WP2oPAH7Umgal4m8Kw3Wj6zpEkWn+IPDuqIINV0TUkDGS1u4cnawzlHUtFKhDxuyEGvqmgArJ1f8A1cH/AF3i/wDQhWtWTq/+rg/67xf+hCgDWooooAKx9C/5B/8A21l/9DatisfQv+Qf/wBtZf8A0NqANiiiigDIl/5DsP8A1wk/9CStesiX/kOw/wDXCT/0JK16ACsjX/8AkC3X/XNv5Vr1ka//AMgW6/65t/KgDVX7o+lOpF+6KWgArI03/j7vv+uw/wDQFrXrI0z/AI+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKp6gyixnBP8Ayzb+VXK53WdC028guLm4Ri7RtkhmHQY7GgC5obr/AGLacj/Up/6CK1N6+orjtD8M6QdFtMo3+pT+Nv7o961P+EZ0f+43/fbf/FUAbu9fUUb19RWF/wAIzo/9xv8Avtv/AIqj/hGdH/uN/wB9t/8AFUAR6ay/25qXPeL/ANBr+bz/AILVSg/8FNf2BoAevj6+P5RRf41/RPpvhrSP7c1IeW3WL+Nv7v1r+bL/AILSaZp9r/wVO/YFsoVYCXxtqJbLE/dSD1PvQB/UVvX1FG9fUVhHwzpB52N/323+NH/CM6P/AHG/77b/AOKoATWXX7VYcj/j4H/oLVvb19RXCaz4Y0f7VYfI3/HwP42/ut71vf8ACM6P/cb/AL7b/wCKoA3d6+oo3r6isL/hGdH/ALjf99t/8VR/wjOj/wBxv++2/wDiqANmZ18puR0NZXh51/sO15H+rWq83hjRzC42N0P8bf41leHvDOj/ANh2vyN/q1/jb/GgDtt6+oo3r6isL/hGdH/uN/323/xVH/CM6P8A3G/77b/4qgDd3r6iufs2X/hI7w5H+qi/m1P/AOEZ0f8AuN/323/xVc/Z+GdI/wCEjvBsb/VRfxt6t70Ad7vX1FG9fUVhf8Izo/8Acb/vtv8A4qj/AIRnR/7jf99t/wDFUAbu9fUVg68ylLXkf8fMX86X/hGdH/uN/wB9t/8AFVg694Z0fZa/I3/HzF/G3r9aAO73r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqgDd3r6imu67DyOlYn/CM6P/cb/vtv/iqa/hnR9h+Run99v8aAH+G2UaLDyP4v/QjW5vX1FcN4b8M6P/YsP7tv4v42/vH3rc/4RnR/7jf99t/8VQBu719RRvX1FYX/AAjOj/3G/wC+2/8AiqP+EZ0f+43/AH23/wAVQAyJ1/4Sebkf8e6f+hGug3r6iuCi8M6P/wAJNN8jf8e6fxt/eP8AtV0H/CM6P/cb/vtv/iqAN3evqKN6+orC/wCEZ0f+43/fbf8AxVH/AAjOj/3G/wC+2/8AiqAE8ROv2BOf+W0f/oQre3r6iuE8R+GdH+wJlG/10f8AG394e9b3/CM6P/cb/vtv/iqAN3evqKN6+orC/wCEZ0f+43/fbf8AxVH/AAjOj/3G/wC+2/8AiqANwuuDyK5fTdU03SNCkv8AVJ47aCN5WaSRgqgBj1JqzL4X0lo2VFZSQcHe3H/j1fltH/wTw8b/ABU8R3158cfiNqGqeGZL2aaDSrQtEuwucK5PAx04BrnxFWpBJUoczfmkl6/8BM9fKcFg8RKTxuJVKMf7spSl5RS0v6tI+9PBf7TfwH+InjaX4d+CfE9lqWsQqztBBIGOF64I4OO+Ca913r6ivwz/AGbPgp8M5/8AgoRrVp8IdMFh4Z8A6d9llKOx8y7cFSSxJJYlv/HTX7X/APCM6P8A3G/77b/4qscBiKlanKVRK6bWmzsd/FWU4TL8TSpYOUnGVOE3z25k5K9nbRaWdul9zd3r6iuW1C2h1DVpbGUgpNaPGfoxAq5/wjOj/wBxv++2/wDiqwD4Y0f/AISVfkb/AI9z/G394f7Vdx80m07o/M7/AIJ3eKrT4U+PvH/7Kniudba/0zV5r3TopTtMtvMc/ID1wNvSv1t3r6ivi79oz9inwD8cJYPGGhXE3hzxhp2GstXtWPmKy8qJBn5lz+Nbn7PGk/HW2t7zwb+0Jp0EtzpoUW+s2Ux8m+Q8ZMZIZHHU8YrzsHGdD/Z5q8fstduz7Nfcz6/iCrhczvm1ColVaXtKb0fNZJyh0lGT1a+JN7Nankv7bX7Cdh+1VeaV4s8PauND8QaZ+5FwwLI8BOSCFwdw6qc17N8Bf2bvBX7MXwk/4Qfwu5uriZ1mvr2QASXMxPLHrgDsM8V9Gf8ACM6P/cb/AL7b/wCKrC8SeGdI/smT5G6r/G3r9a3hgqMazxCj776nl1+I8xrZfTyqpVboQd1HT8Xu0tbJuyP5+fiL8RPi98Fv2lfib8WNB+H0n29Ee2sb54PLs7O1xhp8qAGZ+xyMk195f8E1Pj38SvG+laz8HvizG82q+HkivPtkkvmO8d584Rs9CAwI5PFfWP7UPwCuvjh8DdZ+Gfhi7Gn3t+ieTLKzmMMjBgGGTwcY6V5F+xL+x1f/ALOnhLU7j4iXyar4j1uZZLqaFm2LHENqICcE4HWvKo4KvRxkeWTdPVva2t9PXbU+6zDiPK8w4dqKvShHErkhFLmcrQUUpXeijbnuu76vU9r8IfAxtJ/aD8SfHnxFdx3dzqVtBYadGox9mto8lwSf4mY9u1fR+9fUV+bH7b3/AAUh/YT/AOCfnhp9X/aI8XW9nqToTa6NbTG41K6bssUCMXJJ4yQB71+F1x+0Z/wWe/4K/ObD9h7wm/7OPwmuWKN4t8UBhrF3CerW0Xzbcjuqn/eFe5Tpxgmo92/vPzLFYyriZRlVd7JRXkoqyX9ddT+gr9o3/goZ+xr+xJ4UufEX7Svj/SvDY86Qx20swe6mPpHCmZGJ7ALX4far/wAF9f2vP2wPEU/gj/gk3+zhr3jO1Y7Y/FXiVG0zSlHTzMMB8vcB2Qn0r6V/Yw/4N1P2Hfgnrn/C4f2glvvjV8RmmZ7nXPFUrXEfnZBLR25JUDPTeW/Cv3u0nwH4S0DTIdF0GyjsbO3XbFBb/uokUdlVSAPwFWcx/LUf+CRP/BYD9u24/tv/AIKO/tMT+DtCux+98J+Ao/IiVCfuNMChORwSWk+lfo3+y1/wb+f8Esv2V3i1fRPhza+LNcQh21XxO39p3DSD+PbL+7BzzkJn3r9if+EZ0f8AuN/323/xVH/CM6P/AHG/77b/AOKoAxdI0Dw94W1O10jwxZW2nWiQMFhtY1ijABHRUAFdvvX1FcHP4Y0f/hJIPkb/AFL/AMbeo963/wDhGdH/ALjf99t/8VQBu719RRvX1FYX/CM6P/cb/vtv/iqP+EZ0f+43/fbf/FUAP8Qsp0iYZ7VqwOvkpyPuiuN8Q+GdI/sibCN0/vt/8VWtD4Z0jyU+Rug/jb/4qgDod6+oo3r6isL/AIRnR/7jf99t/wDFUf8ACM6P/cb/AL7b/wCKoA3d6+orA0R18295H/Hw38hTv+EZ0f8AuN/323/xVYGh+GdH829Gxv8AXt/G3oPegDvN6+oo3r6isL/hGdH/ALjf99t/8VR/wjOj/wBxv++2/wDiqAN3evqK+IP2wv2mNZ/Z58S/DHSvDmmQ6neeOvE9v4fHnyGNII5wS8hIByVUcDue9fSXjrWPht8M/DN14w8d3semabZoXlnnmKKAPqeT7V8T/FH4TeDf25/C3w6+IPgG6m0u20LxDBrtpNeRSKbiO0JDBVJyFlUnDV0rCVnR+s8j9ne3NbS+9r97dDJ1qftPZcy5rXt1t3PtPw/8a/hj4r8e33w08M6tDf6vpsfm3cUH7xYQTjDuPlDf7JOa0fFvwt+HnjvX9I8T+MNNh1C80GRprF5sssMjDBYLnaTjoSDjtWP4A+BXwp+FmmT6R8P9Hi0uC5me4mEJYGSVzkszFssST3Nd5/wjOj/3G/77b/4qta9alSrc2AlKMbWu3aTurPbZPXS700uyKdOc6dsQk32W3lvvbvpr0Ru709RWTrrr/ZFxyPuGoP8AhGdH/uN/323/AMVWTrvhnR/7IuPkb7h/jb/4quE6DqbJlFnFyPuL/KrW9fUVzFj4Z0f7HF8jfcH8ben+9Vr/AIRnR/7jf99t/wDFUAbu9fUUb19RWF/wjOj/ANxv++2/+Ko/4RnR/wC43/fbf/FUAO0plF5enI/1v9K296+orh9K8M6R9tvfkb/Wj+NvT61t/wDCM6P/AHG/77b/AOKoA3d6+oo3r6isL/hGdH/uN/323/xVH/CM6P8A3G/77b/4qgBNSdf7VseR95v5Vvb19RXCal4Z0f8AtWx+RvvP/G3p/vVvf8Izo/8Acb/vtv8A4qgDd3r6ivOPiT8IPhJ8ZNDl8M/Fnw3pfiXT51KPb6naxXUZU9RiRWFdV/wjOj/3G/77b/4qj/hGdH/uN/323/xVAH8+f7Tn/Bsn/wAEwPjLJdeMPhjol/8ACrxEA0kN/wCFrp7dY5OoYQsSuM84UqPTFfG+nf8ABMP/AIL2/sORprP7EP7SkHxR0G2QGLw741i+Zox/AJHLkHHAImUe1f1i6p4Z0f8As2f5G/1bfxt6f71JpPhnR/7Mg+RvuD+Nv/iqAP5TLH/g4J/bp/ZC12Lwl/wVI/Zc8QeG7WNtk3iLw0rXtiUHBkUEbGHc7ZWr9vv2P/8Agrh/wT9/blsY3+APxG0281FgC+l3j/Y7+Mns0E218j6V99ah4K8MatYy6Xq1ot1bTArJDNmSNweoZWJB/EV+JH7Y/wDwbnf8E1P2t7+bxnp/hmX4deL2JePW/C0pspVlPO9oh+7Y57gKfegD93UlikQSRsGVuQQcg1haY6/2tf8AI+8n8q/j+H7NX/BwV/wSfeS++CniG1/aj+F9g3yaLqLyLrcNsn9xiQ5YKMYVpcnoK+u/2Rf+DiX9hr4reNZPhX+1LpesfArxzIyRyaf4sR7a3aYDaVScnaOegfaaAP6Zd6+orjviB410v4feDdR8Y6q4ENhC0uCcbiBwPxPFU/C83gDxtosHiTwfew6pp90gkhubW482J1PQqysQQa+Qf2qtMTxb4z8IfA7RVZRrF0Lm9+diPs8RyQeT15rx8/zGWCwNStSV56Riu8pNRj+LV/I9LKcHHE4qFKbtDVyfaKV3+CNf9l74eal4t1C5/aO+Jy+drOtEtYxyci2tv4doPQkfpX2LrDr9tsOf+Wp/lVex8GaBp1lFYWsRSKFAigOwACjA71k6z4Y0g3tgPLb/AFp/jb0+tXk2VwwGFjQi7y3lJ7yk9ZSfm3+GhGZ4+WLryqtWW0V0jFbJeiO93r6ijevqKwv+EZ0f+43/AH23/wAVR/wjOj/3G/77b/4qvVOA3d6+oqvduv2WXkfcb+VZX/CM6P8A3G/77b/4qq934Z0f7LL8jfcb+NvT/eoA0dFdf7Kg5H3BWpvX1FcdonhnR/7Kg/dt9wfxt/jWp/wjOj/3G/77b/4qgDd3r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqgCKydf+EhveR9yP8AlXRb19RXAWPhnR/+Ehvf3bfcj/jb0+tdF/wjOj/3G/77b/4qgDd3r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqgA1xlP2Xkf69f5Gt3evqK4TXfDOkf6Idjf69f429D71vf8Izo/wDcb/vtv/iqAN3evqKN6+orC/4RnR/7jf8Afbf/ABVH/CM6P/cb/vtv/iqANqR18tuR0NY3ht1/sWDJH3ajk8M6P5bfI3Q/xt/8VWL4a8M6P/YsHyN93++3+NAHdb19RRvX1FYX/CM6P/cb/vtv/iqP+EZ0f+43/fbf/FUAbu9fUVztuy/8JLc8j/VR/wBal/4RnR/7jf8Afbf/ABVc7beGdH/4Sa5+Rv8AVR/xt7+9AHf719RRvX1FYX/CM6P/AHG/77b/AOKo/wCEZ0f+43/fbf8AxVAG7vX1FYuuspt4eR/rk/nTP+EZ0f8AuN/323/xVYmveGNH+zw/I3+uj/jb1+tAHcb19RRvX1FYX/CM6P8A3G/77b/Gj/hGdH/uN/323/xVAG7vX1FG9fUVhf8ACM6P/cb/AL7b/wCKo/4RnR/7jf8Afbf/ABVADfDTr/ZK8j77/wDoRrf3r6iuD8NeGdH/ALJX5G++/wDG394/7Vb/APwjOj/3G/77b/4qgDd3r6iviv4g/s8fEnT/AIj6h8WfgR4jj0vUNU2m8tLpN8MrL3zg/wAuPWvrf/hGdH/uN/323/xVH/CM6P8A3G/77b/4qvNzTKcPj6cYV7+6+aLi3GUXqrprVaNo7sDmFbCTcqVtVZppNNdmmfB114u/bX8G3smo65pmi6kIIMu6zCEeWCeeWwKk+H37RnxW/aRtm8HeDNJGhtGxi1TVfMEkcCHtD/ekYdPTrXXfG39m7xP8YviJbaa2unTfDCWytNbRbjLIwY5BycHJ6ZPHpX0T4A+DHw/+Gnh2Lwz4TtDBbx8sd7bnY9WY5GSa+Pw2T5tPHyorEVY4SOjc5RlKf+C0eaMe8nK76Wep9HXzHL44SNR0abxD1XLGSUP8V3aT8krd77HzJ8I/E/gD4Fx/ES61KT7PY6brIgTPzzTOIYwFHUu7Nn8TXH6t4sj+IP7Y/gi/8OQPDc2WmPJqcbY3wLKjEJIQSNwLLkZr5+1T4EfEn4yfGHxfP8PL2C2h0bX5QyXDkBZCBiQDByQBj14r9A/gR+zL4b+D+lTXOozvqmuagd15fMzAseu1ec7c+vJrw8ohmWZTp4KFH2eEpVObn015KkpWj1u2lHskm3dtJepmEsFgozxUqvPiKkOXl105oJXfyu+7bVrJO/w7+2hY6x8RP2m9C+HWjOyvLZw25Zf4UnclyfYDk16p+0Zo+k/A/wAZfCfxPpa+RpehymwlcdEiIUEsfcMxP0NfXfib4M/Do+Iv+FiGwzq4SK3E5kfITeO2evbNdb4q+FXgLxxor6B4r09b60kwTHIzEZHQg5yD7ivbq8F1Z/2hiOde3rTjKD1aioSjKCfq171vLex5lPianH6pR5H7KnBxktLtyTUmvk9L+fc/KX9q/wAfWf7QPxs8N+CPhRqEd59nUQxzq2IluJGyzBjwdqgHI9OK+sLrxd8Mf2I/hPD4TsZBqmvXP7wQocy3Nw/BdsZ2oDwM9hgc10Hjz9hz4O+JNGtrLwhE/hy7s2LRXNqS7En+9ubJx2OQRUfwn/Yo8CeAtb/4Szxdez+JtVU5jmushYyOhAySSOxJ49K8bDZBn9HM8Ri/ZQdetb99zXjTjZJqMGuZy0sm9HZbK6fo183yirgqOH9pP2VO/wC7taU3dtNyWiWu26162Pgr43/DDxUnwin+O/xluCfFGv30C21qxx9ntsOSu3txjj+Ee5r74/Yj+E+m/D/4S23iS5jX+1tcHnzyMPmVD9xAeuAOT6k10v7RP7NEHxw0vSdNsb/+zlsLrzZdwaQPG2AwHPBwOK9h8G+CtB0vRF022jYRW7vEg3t91CQO/pXq5DwbHBZ5VxkoNxjCKhOTu5zld1JvrzX06aOy0ODNuJXicrp4aMrSlJuUUrKMVZQivLr6rU/O/wD4KJaRp9x4x8F317iyt5vOhuL9Uy0ahkIzjrsyWA/Kui+Anwg+DeleL7f4m+KviBbeK7uzQCzE0oAiI6E72JyvYcAHmvvDxd8Jfh9470ltD8Xact9bE7gkjMdreoOcg+4r5c1f/gnr8B9RnM1mb60B/gSUMB9Nyk/rXLmvCWMhnNTNsNQp1lJxklOUouMopLZXjLa6bV7nRgOIcNLLYZfXqzpOKkm4xjJNN362ku2jtY7vW/2m9Hm+OPhz4SeBXt9VTUPON/PG+4QhVJUAjjPBJ9q+kZWX/hIojkf6h/8A0IV4R8Kv2T/hB8I7ptU8PWss18ylPtE8mXVT1C7doGe9etS+GdH/AOEih+Rv9Q/8bf3h/tV9tkdPMlTqVMzceeUrqMdVCNklG9lfVNt92fL5rPBOcIYFPlirNvRyd227dN7L0O53r6ijevqKwv8AhGdH/uN/323/AMVR/wAIzo/9xv8Avtv/AIqvbPLN3evqKw/Err/YVzyPu/1FJ/wjOj/3G/77b/4qsPxL4Z0gaFc/I33f77eo96AO4Drgcil3r6isEeGdHwPkb/vtv/iqX/hGdH/uN/323/xVAG7vX1FG9fUVhf8ACM6P/cb/AL7b/wCKo/4RnR/7jf8Afbf/ABVACaEygXnI/wCPqX+lb29fUVwmg+GdHxefI3/H1L/G3t71vf8ACM6P/cb/AL7b/wCKoA3d6+opQwPQ5rB/4RnR/wC43/fbf/FVcstHsNPlM1qpDEbeWJ4/EmgDTooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArJk1i2ikaNkmJUkHETkcehA5rWooAxv7btP+ec//fl/8KyNe1u1OkT4jn+6P+WL+o9q7CsfX/8AkDz/AEH8xQAn9t2n/POf/vy/+FH9t2n/ADzn/wC/L/4Vs0UAY39t2n/POf8A78v/AIVk6Xrdr5t5+7n/AOPg/wDLF/7q+1dfWRpX+tvP+vg/+grQA3+27T/nnP8A9+X/AMKP7btP+ec//fl/8K2aKAOO1DW7X+0rA+XP/rH/AOWL/wBxvatj+27T/nnP/wB+X/wo1D/kJ2H/AF0f/wBAatmgDG/tu0/55z/9+X/wqG51u1NvIPLn+6f+WL+n0rfqC5/49pP90/yoA5zR9btBpNr+7n/1Sf8ALF/Qe1aP9t2n/POf/vy/+FT6N/yCLX/rkn8hWlQBjDW7X/nnP/35f/CvkGXU7H9oL4xMEEk/gzwlKjSARM0d/qkZbaOAcxwZJOeC/qK7f4ueNtf8Z+Jx8APhbOYtSuow+s6jHyNNsn64P/PeUcRjqPve9exeBPB/h/wBZJ4O8LQC2sLC2hjiQdeC+ST3ZjyxPJJzXz1eX9pYh4eP8Cm/ffSclqoLuovWfnaGvvpexSX1Kj7aX8Wa91fyxe8vV7R8ry/lZ0v9t2n/ADzn/wC/L/4Uf23af885/wDvy/8AhWzRX0J45x2t63aG2i/dz/6+H/li/wDfHtWx/bdp/wA85/8Avy/+FLrf/HtF/wBd4f8A0MVV8XeLvC3gDwtqPjjxvqFvpOj6RbyXd7e3cgigt4IVLPJI7EBVVQSST0oAx/FvxJ8F+AfC2o+N/HF6ukaNpNvJd3t9eKYbe3giUs8kjsAqqoBJJNflxH4f8U/8FOtcsvGHxYsNR0H9niwniu9I8NXFvLBeeNJIjujvNUjIDR6UDh7excBrkgSXAEe2I9B4N8IeLv8AgpN4o0/4yfGfTrjR/gVpNzHe+FPCd7GYp/E80LbodW1aJuVtAwEllYuPn+WecZ2Iv6wABQFUYA6CgDi/Dmp6bZ6Slpa28sUUTyIiJAyqqqxAVQAAAAMADoK1LvUNKv7aSyvraSaGVSjxyW7MrKeoIIIIPoas6H/x4n/rrL/6G1bFA07ao/EPWtXb9kT4w/Ej49fCFbLTvCGnanpmk6h4cmRoRel7dZpDZuc+XOjzFkiACMC3Ary34u+LvHP7UXg4ftl+Jvs58N+AtTjudM8KrGLjbbW1xEt21+xGBM0fPl8AKPz+yP2a/wBmu7+JPxY8R/tK/Gsrf23/AAkWpT+GtKMhktbYxzNbvdNGVAMreSAhOcKAeuMdR+0n+y54si1/WfiV+zUltHqviTT7m18Q6BcnZYa1BIuxm7CK5AfKycBiPm75+aeFqyoykk/Zu7Ueu7albstPd+e+h+yQzzAUMfSpTmnioqEZVmtLKMYypN92k06z1TfJdQXMvvTR/Fui6xpFpq+kiV7W7hjmhZYX2mORQykYHQgitH+27T/nnP8A9+X/AMK8H/ZB8OfEHwf+zR4N8JfFK2a01zTNPS1nhd1dkWElYwxUlciMLnBNfSNfQ0puUIyas2lofkuPw8aGJq0YTUoxlJJrVNJtJp9nuclret2n9jXX7uf/AFT/APLF/Q+1aSa3abB+7n6f88X/AMKn1z/kDXX/AFyf+VaSfcH0rQ5DI/tu0/55z/8Afl/8KP7btP8AnnP/AN+X/wAK2aKAOP07W7X7dffu5/8AWr/yxf8AuL7Vr/23af8APOf/AL8v/hS6b/x/X3/XVf8A0Ba2KAMb+27T/nnP/wB+X/wrI1PWrU3FliOf/j4/54v/AHG9q7CsjVP9fZf9fH/sjUAN/tu0/wCec/8A35f/AAo/tu0/55z/APfl/wDCtmigDFOt2mD+7n/78v8A4VlaFrdp/Ytp+7n/ANUn/LF/T6V1x6GsrQf+QLaf9ck/lQAz+27T/nnP/wB+X/wo/tu0/wCec/8A35f/AArZooA4+PW7X+3pf3c/+oT/AJYv/eb2rX/tu0/55z/9+X/wpY/+Q9L/ANcE/wDQmrYoAxv7btP+ec//AH5f/CsfXdatTprYjn+/F/yxf++vtXY1ja//AMgxv+ukX/oa0AH9t2n/ADzn/wC/L/4Uf23af885/wDvy/8AhWzRQBjf23af885/+/L/AOFZGja3aiGfMc//AB8S/wDLF/7x9q7CsfRf9VP/ANfEv/oRoAT+27T/AJ5z/wDfl/8ACj+27T/nnP8A9+X/AMK2aKAOPutbtTrFn+7n+7L/AMsX9B7Vr/23af8APOf/AL8v/hS3f/IYs/8Adl/kK2KAMb+27T/nnP8A9+X/AMKpanrdqdNuP3c/+qf/AJYv6H2rpqo6n/yDbj/rk/8AI0AZdlrdqLOIGOf7i/8ALF/T6VZ/tu0/55z/APfl/wDCr9l/x5Q/7i/yq1QBjf23af8APOf/AL8v/hWPY63a/wBqX37uf70f/LF/7o9q7Gsaw/5Ct9/vR/8AoIoAP7btP+ec/wD35f8Awo/tu0/55z/9+X/wrZooA47V9btd1p+7n/4+E/5Yv6H2rY/tu0/55z/9+X/wo1j71p/18J/I1s0AY39t2n/POf8A78v/AIUf23af885/+/L/AOFbNFAHH6DrdqNJhzHP/F/yxf1PtWv/AG3af885/wDvy/8AhS6B/wAgmH/gX8zWxQBjf23af885/wDvy/8AhWP/AG3a/wDCQZ8uf/j3/wCeL/3vpXY1jf8AMw/9u/8A7NQAf23af885/wDvy/8AhR/bdp/zzn/78v8A4Vs0UAchrut2v9kzfu5+g/5Yv6j2rW/tu0/55z/9+X/wp2vf8gmb6D+YrXoAxv7btP8AnnP/AN+X/wAKP7btP+ec/wD35f8AwrZooA4zR9btQ95mOf8A4+X/AOWL+g9q2v7btP8AnnP/AN+X/wAKbov373/r5f8AkK26AMb+27T/AJ5z/wDfl/8ACsm91u1/tOyPlz/ek/5Yv/dPtXX1kXv/ACE7L/ek/wDQTQA3+27T/nnP/wB+X/wo/tu0/wCec/8A35f/AArZooA5+61u1+yy/u5/uN/yxf0+lVdI1u0/sm1/dz/6lP8Ali/oPauiu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAV/7btP8AnnP/AN+X/wAKP7btP+ec/wD35f8AwrZooA/OP9p79nDxR4y+IA/aV/ZY1EeEvjF4etIoba6uYJf7L16yUsx0zWI0XMtu5z5Uw/fWrnzIzjcj+t/ssftieE/2lPD+pafqGkX/AIR8d+FZksvFXhLUU3aho9467lDFMpNbzL89tcxkxzR8ghgyr9UWv/IbvP8ArnD/AOzV8cftWfso638Tde0z9ob9nvVIfCPxj8JQPFpGryIWtNRtGO99L1WNPmnsJ2GeP3kEmJYSGBDAH2P/AG3af885/wDvy/8AhWTq+t2nlwfu5/8AXxf8sX/vD2r59/ZR/as0P9pTQNU0jWdMl8JfEDwhOlh4s8KXrhrzSb1hlSGGBNazqPMtblB5c8RyMMGVfpvV/wDVwf8AXeL/ANCFADP7btP+ec//AH5f/Cj+27T/AJ5z/wDfl/8ACtmigDG/tu0/55z/APfl/wDCsjQ9btfsH+rn/wBbL/yxf++3tXYVj6F/yD/+2sv/AKG1ACf23af885/+/L/4Uf23af8APOf/AL8v/hWzRQBx8ut2n9uw/u5/9RJ/yxf+8ntWv/bdp/zzn/78v/hTpf8AkOw/9cJP/QkrXoAxv7btP+ec/wD35f8AwrJ17W7U6LdYjn/1bf8ALF/T6V19ZGv/APIFuv8Arm38qAGLrdptH7uf/vy/+FL/AG3af885/wDvy/8AhWuv3R9KdQBjf23af885/wDvy/8AhWXpGsW0l/eRqkwLTgDMTgcovUkcV1tZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9H+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAOe03/AJDmpfWL/wBBr+Zb/gtbJ/xts/4J+wZ6+L9WbH0W2/xr+mnTf+Q5qX1i/wDQa/l7/wCC116P+HzH/BPbS+8niTXJf++PsQ/9moA/qlooooAwdZ/4+rD/AK+B/wCgtW9WDrP/AB9WH/XwP/QWreoAKKKKAI5v9U30NZXh7/kB2v8A1zWtWb/VN9DWV4e/5Adr/wBc1oA2aKKKACues/8AkY7z/rlF/Nq6Gues/wDkY7z/AK5RfzagDoaKKKACsHXvuWv/AF8xfzrerB177lr/ANfMX86AN6iiigApr/cP0p1Nf7h+lAGL4b/5AsP/AAL/ANCNblYfhv8A5AsP/Av/AEI1uUAFFFFAHPxf8jPN/wBe6f8AoRroK5+L/kZ5v+vdP/QjXQUAFFFFAGD4jx9gTP8Az2j/APQhW9WD4j/48E/67R/+hCt6gAooooAa7KiF3OABkk18gfFH9qH4W/Db4NeIfFWn69YXd7p8Nz5UEU6O7TZIVcAk53V9ezRRzQvDKAyuCCD0INfgd/wUJ/Zu+A3gLwr4Zn8CeHINN1rxT4hW1luYnf7hZmf5SxUZxjgV5+ZV6tGhKpSS07/hY+r4OyzA4/MaeFxkpK7VuVJppXcuZtppWW6T9D2P/gnp8Tvgf8GPgZceM/ih4t0y18ReLb2XUb0S3CGcAk7QwyWB6nB9a+7vBv7Zn7PXxC8Z2ngPwVrZ1LUL1isQggkaPIGeXC7R+Jr5s+M/wJ/ZS/Zh+B1/410Pw34dtdYsrQG1fVVaZJ51HTazMSWPp3r3/wDYo+Ill8X/AID6X8R18MW3hi4uy8TwWsSxxv5ZxvTCg7T2z6Vy4N1aThhHKKaV9E3ddddLM9ziGOBx1PEZ7ClVlGc3FNyhBKTV4pRtJuKSto+lnY5r9rn9tDRP2YLnRvD1npE3iLXdbdhBYWzYk2D+LGCeTgAAc1L+yh+1roP7UGo6okek3WhaxoS+TfWN0PmjLMMYP1BBBAIry/8Aa1/Zn+Nev/GPQ/2lP2epbG58Q6PbNaNZakAYyhzh0JIAYZPcGtT9hr9mnx78D9S8R+Nfi7cwz+KfF8rXd2kB3JEN2duRwSSe3Aq41MX9dcWv3fppa2jv3v0MK2DyCPDqrQknirL7T5+fmd4uGygobS6s/RSiiivXPz8KwvEn/IJk+q/zrB+JPxP+Hnwd8HXvxA+KWtWegaLp8ZluL2+lWGGNR1JZiBX8uH7QH/BaD9qz/goH4s1H9mb/AIIleDZ9ajik+z6n8SdUiMWj2AzgvAZBtkI6hjkHsDQB++/7Y3/BQn9kX9grwO3jn9pvxlZaBEVPkWhfzLy5bssUCZkcn2Ffz2+JP28P+CwX/BXqaXwj/wAE1PBEnwZ+FV45hl8f+KUMN7PAeGa1hIyOOQVDn/dNfX/7Gv8Awb5fBfwN4yh/aU/4KCa7cfH74vXBE8+oa6Wl020kPOy3tmOwqh+7uXHfaK/oa0/TtP0ixi0zSoI7W2gUJFFEoREUdAqjAAHYCgD8KP2Hv+Df39kT9mHxGPjX8dpLr41fFS52y3fiTxYftmJRzmGGQsqgH7pbcR2xX7vwww28K29ugjjQBVVRgADoAB0AqSigDn/Dv/HtP/13k/nXQVz/AId/49p/+u8n866CgAooooAwJ/8AkZLf/ri/8xW/WBP/AMjJb/8AXF/5it+gAooooAxfEP8AyB5vpWrD/qU/3RWV4hONIm+la0P+pT6CgCSiiigArA0P/W3v/Xw38hW/WBof+tvf+vhv5CgDfoyOlcF8Trnx9aeBdQk+GFvDda6Y9tolw22IO3G5j6L1x3rn/g38Odc+Hvhto/Fut3Wv61fMJr66uG+QykcrEg+VIx0AH411xw8Pq7rSqK97KPV935Jd3u9tnbF1X7VU1F2tdvp6eb/L7jx74tfsXfDD46fE60+IfxUvdT1a0sdjQ6JJcY00SJ0dogBuJ75NfSgsLLS9R03TdOiSC3gjaOOOMBVRVGAABwABXVV8U/t5eNfi38PvgLqPif4Hxs/iOJoI4GRd7RpJKiyOFIIO1CT0qsTmWKxFKnRrVG4U1aK6JeS216vd9SaWFo0pyqU4pSlq31fzPtaiszRWnbRrRrlzLIYYy7kYLNtGTj3NadcR0BWTrv8AyCLj/cNa1ZOu/wDIIuP9w0AXLH/jzi/3B/KrVVbH/jzi/wBwfyq1QAUUUUAYelf8ft7/ANdR/KtysPSv+P29/wCuo/lW5QAUUUUAYOpf8hWx/wB5/wCVb1YOpf8AIVsf95/5VvUAFFFFAFDVP+QbP/1zb+VN0n/kGQf7gp2qf8g2f/rm38qTSf8AkGQf7goA0KKKKACvhv8Aae/YC/Y//bg0nVfCX7TPgPS/EqSBUS7lhVL2HK9Y7hAJFI/3sV9yVgaX/wAha/8A95P5UAfyO+Of+CIP/BRz/gnTrz/Ez/gjH8Zby40G3fzj8P8AxVMZrRlHPlws58sg9P8Alk3uTVv4Nf8ABeHQvBv7TOgeFv8Agq/4J1P4EePNKt306ae6tZJdGu3cgCSKcA+WpPOWyuP4q/r2r58/aL/ZS/Z0/a28Dz/Dr9o3wfpni3SZlK+XfwK7x57xycPG3oVYGubFYOliIxjWV1GSkvWLun95vQxNSi3Km7XTT9GrM9J+HXxO+Hfxd8K2vjj4X63Za/pF6gkgu7GZZ4nU9CGQkVt6wM3th/11/pX8n3xO/wCCCX7Yf7DniG7+LH/BEn4w3vhK3Z/tE/gbX5jcaZORyViZwygnp8wU/wC3Wh8L/wDg4V+Kv7NvjLSvgp/wWS+EurfCjW4pRF/wktpbvPot0Rx5mRkop65UsB610mB/WhRXifwK/aP+BX7TXgq3+InwE8Vab4q0e6UMlzp1wky89jtJIPsQDXtlABVe7/49Zf8Acb+VWKr3f/HrL/uN/KgCnon/ACCYP9wVqVl6J/yCYP8AcFalABRRRQBztj/yMN7/ALkddFXO2P8AyMN7/uR10VABRRRQBg67/wAun/Xwv8jW9WFrn/Lpj/n4X+RrdoAKKKKAGSf6tvoaxfDX/IFg/wB2tqT/AFbfQ1i+Gv8AkCwf7tAG7RRRQAVztt/yM1z/ANco/wCtdFXO23/Iy3P/AFyj/rQB0VFFFABWJrv/AB7w/wDXZP51t1ia7/x7w/8AXZP50AbdFFFABRRRQBgeGf8AkEr/AL8n/oRrfrA8M/8AIJX/AH5P/QjW/QAUUUUAYB/5Gf8A7dh/6Ea36wD/AMjP/wBuw/8AQjW/QB8o/Bz4R+OvAfxt8c+LdTlQaLr1wLi2RWBLOxJJI6gqDj3r6uoorgy3LqWBouhRvy80pau+spOT+V3odeNxtTFVPa1bXslp/dSS+dkYHiX/AJBZ/wCukX/oYreHQVg+Jf8AkFn/AK6Rf+hit4dBXecgtFFFABWH4f8A+POT/rvL/wChGtysPQP+POT/AK7y/wDoRoA3KKKKACsOX/kYof8Arg//AKEK3Kw5f+Rih/64P/6EKANyiiigArC8Tf8AICuf93+ordrC8S/8gK5/3f6igDcHQUtIOgpaACiiigDB0Hpef9fUv9K3qwdB6Xn/AF9S/wBK3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f8A+QPP9B/MVsVj6/8A8gef6D+YoA2KKKKACsjSv9bef9fB/wDQVrXrI0r/AFt5/wBfB/8AQVoA16KKKAMbUP8AkJ2H/XR//QGrZrG1D/kJ2H/XR/8A0Bq2aACoLn/j2k/3T/Kp6guv+PaT/dP8qAKmjf8AIItf+uSfyFeWfHH4mz/DTwgr6HF9r17VplsNJteplu5uFyP7qfeY9MD3r0uxu7Ww8PRX17IsUMNuryO5wqqq5JJPQAcmvmX4S21x8aPiHP8AtCayjDSLRZLHwzBIMfuc4lu8dmmIwh67B7142b4qolDB4Z2rVbpP+WK+Kf8A26nZd5OK2uell1CHvYmur04br+Zv4Y/Pr/dTZ6z8GvhZafCvwr9gmmN9q9+5utUv35kurp+WYnrtHRR2FeiW/wDyG7r/AK5xfzatesi3/wCQ3df9c4v5tXo4XC0sNRjQoq0YqyX9bvu929WceIr1K9SVWq7yer/r8l0NeiignHJroMTmfF2padouiPrOsXEVpZ2bpPPPM4jiiijYM7uzEBVVQSSTgCvy18F2usf8FQ/GFt8UvGFtLZ/s6aFdpP4c0i5Qxv42u7dgyaneRsAw0uJwGsrdx/pTATyDy/KU5Xi7UNS/4KdfEibwZosrR/s4eD9UFrrNyuQPHWr2swVrKFujaPaSKRcyDi8mXylJiSQv+v1tbW1lbR2dnGsMMKhERAFVVUYAAHAAHAAoAmVVVQqjAHAApaKKAMfQ/wDjxb/rrL/6G1bFY+h/8eJ/66y/+htWxQBFDBDbxiK3RUQZIVRgc8nge9Zk3/Iet/8ArhL/ADStiseb/kPW/wD1wl/mlAGxRRRQBl65/wAga7/65P8AyrST7g+lZut/8ga6/wCuT/yNaSfcH0oAdRXH+PvEeoeEfB2oeJ9Lsn1CWwi8828YJd0QgvtAySwTJCjkkY71qeGvEugeMdAtPFPhW8iv9Ovo1mt7iBg8ciN0II/yDweanmV+Xqa+xn7P2tvdva/nv/w3fXsyTTf+P6+/66r/AOgLWxWPpv8Ax/X3/XVf/QFrYqjIKx9V/wCPix/6+P8A2Rq2Kx9U/wCPix/6+P8A2RqANiiiigBD0NZWg/8AIFtP+uSfyrVPQ1laD/yBbT/rkn8qANaiiigDHj/5D0v/AFwT/wBCatiseP8A5D0v/XBP/QmrYoAKxtf/AOQY3/XSL/0Na2axtf8A+QY3/XSL/wBDWgDZooooAKx9F/1U/wD18S/+hGtisfRf9VP/ANfEv/oRoA2KKKKAMe7/AOQzZ/7sv8hWxWPd/wDIYs/92X+QrYoAKo6n/wAg24/65P8AyNXqo6n/AMg24/65P/I0ASWX/HlD/uL/ACq1VWy/48of9xf5VaoAKxrD/kK33+9H/wCgitmsax/5Ct9/vR/+gigDZooooAxtY+9af9fCfyNbNY2sfetP+vhP5GtmgAooooAx9A/5BEP/AAL+ZrYrH0D/AJBMP/Av5mtigArG/wCZh/7d/wD2atmsb/mYf+3f/wBmoA2aKKKAMjXv+QTN9B/MVr1ka9/yCZvoP5itegAooooAxNF+/e/9fL/yFbdYmi/fvf8Ar5f+QrboAKyL7/kKWX+9J/6Ca16yL7/kJ2X+9J/6CaANeiiigCvd/wDHrL/uN/Kq2j/8gm1/64p/6CKs3f8Ax6y/7jfyqto//IJtf+uKf+gigDRooooAxrX/AJDd5/1zh/8AZq2axrX/AJDd5/1zh/8AZq2aAPhD9rH9lPxR488TaX+05+zPf2/hj4zeEoDBY30wIsta07dvk0jVFXmS0mOTG+DJaykSxc71f0P9nP8Aac8J/tP/AA9PiDTbO40HxFoeorpfiXw7f4F/ouqQlTLbTgcEYIeKVcxzRMsiEqwr6sr84/2uf2efHPh7x7a/tu/snWaP8UNEt4rLVdGMot7Xxho0T7/7PuSfkW5iJZ7C5YZikJjY+VI4AB+jlFeJfs7/ALQXw2/af+E2mfGL4W3EkmnagHjmt7mMwXljdwMUuLS7hb5obm3kDRyxNyrA9Rg17bQAVj6F/wAg/wD7ay/+htWxWPoX/IP/AO2sv/obUAbFFFFAGRL/AMh2H/rhJ/6Ela9ZEv8AyHYf+uEn/oSVr0AFZGv/APIFuv8Arm38q16yNf8A+QLdf9c2/lQBqr90fSnU1fuj6U6gArI03/j7vv8ArsP/AEBa16yNN/4+77/rsP8A0BaANeiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0v7+KKKKACql/wD8eM3/AFzb+VW6wNYGs+RcfZDF5fltjdnPSgC3of8AyBbT/rin/oIrUrj9DHiH+xrTmD/Up/e9BWrjxD6wfrQBt0ViY8Q+sH60Y8Q+sH60AQ6Z/wAh3UvrF/6DX8xX/BWaxtvGv/Be39gLwdCf3+mzeKNTkH+wsdu6/rA1f0t6aNf/ALc1LBg6xev92v5gf2531fVP+DoD9kXR7goWsfBmt3ahc7R5i3qk/wDjgoA/q5orEx4h9YP1ox4h9YP1oAZrP/H1Yf8AXwP/AEFq3q4XWR4i+1WHMH/HwPX+61b+PEPrB+tAG3RWJjxD6wfrRjxD6wfrQBrzf6pvoayvD3/IDtf+ua1BMPEXkvgwdD61l+Hh4h/sO15g/wBWvrQB2lFYmPEPrB+tGPEPrB+tAG3XPWf/ACMd5/1yi/m1S48ResH61gWg8Qf8JFeD9x/qovX1agDu6Kw8eIvWD9aXHiH1g/8AHv8ACgDbrB177lr/ANfMX86djxF6wfrWFrw8Q7LXJg/4+YvX1+lAHc0ViY8Q+sH60Y8Q+sH60AbdNf7h+lYuPEXrB+tNceIth5g6e9ADvDX/ACBYf+Bf+hGtyuI8NjxD/YsODB/F/e/vGtzHiH1g/WgDborEx4h9YP1pMeIvWD9aAI4v+Rnm/wCvdP8A0I10FcJEPEP/AAk0wzB/x7p6/wB410GPEPrB+tAG3RWHjxF6wfrRjxF6wfrQA3xHzYJ/12j/APQhW9XC+Ih4h+wJzB/rY/X+8K38eIfWD/x7/CgDborEx4h9YP8Ax7/Ckx4h9YP1oA2z0NfI37QP7Lfg79qX4e2nhnxNd3GnXGm3r3Vnd2pxJFKCwzz1BB9q+nWHiLHWD9axPDo8Q/2b1g/1knr/AHjWdWlCpBwmrpnVgcdXwdeGJw03GpF3TXQ/Obwn/wAEs/Ax8S2viD4yeLtZ8bRWLBobW+mYxcdm3Mxx6gYzX6f6Po+leH9Lg0TQ7eO0tLVBHFDEoVERegAHAFVceIvWD9aCPEXYwfrWWHwlGhf2UbX/AK3O7Ns/zDMnF42s5KOy0SXolZL7jcry/wAW/EPwJ4E15Lnxlq9ppiNAQPtEqx5+YeprptTn8UWum3F1AIGeON2Uc8kAkV/Fr8cPH3i34m/EfV/FPju+mvNSlvbhHjlJKwojkKig8ADpj2rgzfNfqUYtRu3+h9RwFwP/AKxVqqnW9nCna9ldtu9ktVbZ3Z/a14f8R6B4r0uPWvDV5DfWkv3JoHDofxFflB/wUr/4LI/szf8ABOnS4PCeqyS+MPiTrA8vRvCWjjz764lbhS6rny03EZZse2a/Bnwb+1l/wUK8M+C4v2Mv+CevhlNU8WePrw/8T26Ym28P2oXbLcsuNo6jBJAz2J4r9j/+Can/AARO+Gf7D2q3fx4+LOor8U/jVr0hutV8W60DLLHK/LJbK2fLUEn5uuOmBxXZl+L+s4eNa1rngcU5E8nzStl7lzKDVntdNJrT5n52fC3/AIJbft0f8FffFFl+0X/wWV1y68K+BVlW60P4W6LM0EQhPzKb4gnLYxkHL9fu1+8HxM8ffso/8E5vgXY/D/wVpFnoFjAqW+laBo8KrNO64wAi8knu7c+pr7fvIPEtzay28UsMTSIVV1zlSR1H0r4D8AfsH+B/hd4tvvjH4w1Gbxt4tZzIuoaw5l+zIzFgIo+QmOx7dsV9Pk0MsUpVsylJxjtCK1m+3NtFd3q+yPjsfLF2VPCJXe8ntHztu32W3dnSfsVftr3n7VOpeJvDXiTwzN4W1bw7JGzWsz7mMEwypbIBVumRjvX35X4W/sPfFXwb4V+Ifxt/aH+I+vafo9pqHiB7KKW7lCB0tSwO0Hk4wK+r/g//AMFGfAX7QPxuj+D3wY0661yBUd7nV0iZLSEIOCS3JBPAOPpX0vFPCldY/Ezy3CSjQpxjKW7jB8kZSXNLs21a9+h5WT5zTeGpRxdZOpJtLa795pOy8vkfpHRWHjxF6wfrRjxFnrB+v+Ffn59KR+Hf+Paf/rvJ/OugrhPDo8Q/Zp8GD/Xyf3vX6V0GPEOesH60AbdFYePEWesH60Y8ResH60AMn/5GS3/64v8AzFb9cLOPEP8AwkcH+o/1L+vqK3seIvWD9aANyisPHiL1g/WjHiL1g/X/AAoAf4gIGkTZ9K1Yf9Sn0Fcd4g/4SEaRNkwdPf1+lasI8Q+UvMHQetAHQUVh48ResH614L8Z/iH8ZfDNxpvg/wCF3h/+19X1liiXbKRY2SDrJO/t1Cjlq6cJhZ4iqqULXfVtJK27beySMq1aNKDnL8NWfS1fFXjjwR8fvi58RJPD2j6sfB3g3TbxZp7q1YPf6i64OxOoii7MT8xr6r0yHxhBptvDqk1tPcpGgmkRWRWcD5iBzgE9s1n6J/wkPm3v+o/4+G/vegrXB4yWEqOpTjFy1SbV7eaT0v2unbe17NRXoKtFRk2l1Sdr+Ta1+5/gdvGnlxrHkttAGT1OKfWHjxF6wfrRjxF6wfrXCdBuVz1+qvrlmrgEFX4P0qXHiL1g/WuJ8XeIJ/CY/wCEo8SXVrZ2Gn289xczykqkcUa5ZmJ6AAZNAHqVFcD4Q8WL488L2HjPwheWl/peqQpc2tzESUlikGVZT3BHSuiA8RdzB+tAG5WTrv8AyCLj/cNQ48ResH61la4PEP8AZFxzB9w+tAHT2P8Ax5xf7g/lVquasR4h+xxcwfcH970qzjxF6wfrQBuUVh48ResH60Y8RY6wfrQAaV/x+3v/AF1H8q3K4nSh4h+2XvMH+tH970+lbWPEWOsH60AblFYePEXrB+tGPEXrB+tADdS/5Ctj/vP/ACrerh9RHiD+1LHPkfef19PpW5jxF3MH60AblFYePEXrB+tGPEXrB+tAF3VP+QbP/wBc2/lTdJ/5BkH+4KxtUHiH+zZ8mD/Vt6+n0pulf8JCdMg2mD7g9aAOsorEx4h9YP1pMeIvWD9aANysDS/+Qtf/AO+n8qfjxF6wfrWDpg8Rf2tf8wfeT19PpQB3VFYePEXrB+tBHiLsYP1oA3K8U+OHwZ+E3x28ORfD/wCMvhzT/E+i3jsktpqNuk8RBHowOD7jBr0/HiL1g/WsHWP+EhF5Y/6j/Wn19KAP5hvjv/wbseMf2dvGl9+0b/wRi+JGo/CTxcXM7+G7q4abQ7znPlbWztB7bwwHqKp/s9f8HA/xb/Zj+JNr+yx/wWo+H9x8MfFPmLb2/iqzheTRLzPCyMw3BA394My/Sv6pCPEPYwfrXhn7Qf7M/wAKf2q/h3efCn9oTwxpPinQr1Cr297Fv25/iRsbkYdmUg0AeteAPiN4D+Kvhe18a/DfV7TXNJvUEkF1ZSrNE6sMghlJFdZd/wDHrL/uN/Kv48/Gv/BH7/goj/wST8R33x4/4I2eNp/EvhLzGutR+GmuuZopIx8zLbMSAWwMLt2v/vV93f8ABP8A/wCDgf4GftZeIZP2ff2h7A/Br4v2mYLnw74g3wJNMvDeRM6qGOf4ThqAP6EtE/5BMH+4K1K43Qm16XR7aWJrdlZAQRkgg+9a2PEXYwfrQBuUVhkeIuxg/WjHiL1g/WgCGx/5GG9/3I66KuCsh4h/4SG95g+5H6+ldFjxD6wfrQBt0Vh48ResH60Y8ResH6/4UAN104+yH/p4X+RrerhtcHiEfZeYP9evr6Gt3HiL1g/WgDcorDx4i7GD9aMeIvWD9aANmT/Vt9DWL4a/5AsH+7TZB4h2NzBjB9axvDY8Q/2LBzB93/aoA7iisTHiH1g/WjHiH1g/WgDbrnbb/kZbn/rlH/WpseIfWD9a562/4SD/AISa55g/1Mfr70Ad7RWHjxF6wfrRjxF6wfrQBuVia7/x7w/9dk/nSY8ResH61i66PEP2eHmD/XR/3vWgDtqKw8eIvWD9aXHiH1g/WgDborDx4i9YP1ox4h9YP1oAZ4Z/5BK/78n/AKEa364TwyPEX9krzB99/X+8a3wPEXrB+tAG5RWHjxF6wfrS48Q+sH60ARn/AJGf/t2H/oRrfrhSPEP/AAk/WD/j2H97+8fat8jxD6wfrQBt0Vh48Q+sH60Y8Q+sH60AM8S/8gs/9dIv/QxW8OgrhvEg8QjSznyP9ZH6/wB8VvAeIcdYP1oA3KKw8eIvWD9aXHiH1g/8e/woA26w/D//AB5yf9d5f/QjS48Q+sH61heHx4h+xycwf6+X1/vH2oA7iisTHiH1g/WjHiH1g/WgDbrDl/5GKH/rg/8A6EKMeIvWD9axJR4h/wCEihwYP9Q/r/eFAHb0ViY8Q+sH60Y8ResH60AbdYfiX/kBXP8Au/1FLjxD6wfrWH4lHiH+w7jmD7o9fUe1AHbDoKWsMDxDgYMH60uPEPrB+tAG3RWHjxF6wfrS48Q+sH60AM0Hpef9fUv9K3q4bQh4hxeYMH/H1J/e9q3seIvWD9aANuisTHiL1g/WrVoNV80/bjHsxxsznP40AaNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZUmjWUsjSuZcsSTiVwOfYGtWigDH/ALCsPWX/AL/P/wDFVj69odiNHn+ab7o/5bP6j/arsKx9f/5A8/0H8xQAf2HYnvL/AN/X/wDiqP7CsPWX/v6//wAVWxRQBj/2FYdMy/8Af1//AIqsjS9CsTLeHdN/x8H/AJbP/dX/AGq6+sjSv9bef9fB/wDQVoAT+wrDOcy/9/X/APiqT+wrD+9N/wB/n/8Aiq2aKAOO1DQ7EalYDMv+sf8A5av/AHG/2q2f7CsPWX/v8/8A8VSah/yE7D/ro/8A6A1bNAGP/YVh0zL/AN/X/wDiqhudDsRbyHMv3T/y1f0/3q3qz472z1PTTeadKk8MitteNgytjI4I4PNK6vbqOztc+RvjZZnxU3hH4EaRLNH/AMJQ3makyyuSum2ih5hyTjzDtTPua+prHwpommWUOm6cjwW9uixRRpI4VEQYAADcAAV82/BHb8QPiz4n+Kr/AD2ulJF4b049RttgJLhh/vSsBn/Zr61rwsmXt6lfMH9uXLH/AAQvFW8nLmn/ANvI9XMn7KFLCL7KvL/FLV/NLlj8jH/sKw9Zf+/r/wDxVZFvodj/AG1dcy/6uL/lq/8Atf7VdfWRb/8AIbuv+ucX82r3jyRP7CsPWX/v8/8A8VX5dftA674i/bJ+L+p/sL/AvUb7S/CmiiMfE/xVY3LxvbwzKHXQrGUNkXt3GQbqRcG1tm4IllTb7P8Ati/tAfETSNa0X9k/9mBoZfiz49ikkt7qVPNt/DujxsEutZuk6MsO7ZbQsR9ouSqD5VkK/Qv7OX7Pnw+/Zf8AhFpfwe+HEcrWdj5k1zeXT+beahe3DGS5vLqXAMtxcSs0ksh6s3GBgAA29G+GHgT4ceB9G8AeAtPTR9E0RLSxsLG0ZooLe2gKpHHGinCqqgACu+/sOwznMv8A39f/AOKrxTRPjDc+PtVlh0Hw9evodvqhsE1ffD5Uk1rL5cpEe/zfLEisgcKckZxjmuB+O9zrHxf+IWm/sxeGLqazsZ4Rqniq8tZDFLFpoYrFbI68q93ICpIIIiRyOtYTxEVDmjr0Xm/669tT1KGVVJV/Y1nyJJyk9HyxW90nv0UXZuTUd2fVP9hWHrL/AN/n/wDiqUaHYjvL/wB/X/8Aiq+DfgL8XU+CPwa8eeDfiPczXs3wn1K4sIi7F7i5spcS6euTks8iSLEnqQK+uvhHoXizSPB8V94/unudd1Q/bb8FiYoJpQD5EK5wscQwi4643HJJNKjiFUSstba+XS333+5l5jlM8I6nNK8VK0X/ADppSTXlyuLfbmidBomh2JsTzL/rZf8Alq/99v8AarX/ALCsMYzL/wB/X/8AiqXQ/wDjxP8A11l/9Dateug8g8r17X/DFlpniNtMuWlvfDls01zGZZMRMYjMgbkDlcHg9DXOfCTWIfiR4G8J+P7wNHNrWjRXsqxyybA8yRuwXLE4BJxz0r4u+LXjO+h8Q/Gb4N6BOE8ReMdS0jStOGcuE1LTo0lkA6lYYYZnJ6DHNfQX7E+qLe/sx/Du8ncBYdCMJZjgAW7CPn6Ba4KWKc6/J0Sf4St+X5n1WPySOGyxYnrKVO3e06XPf0bul/hZ9Xf2FYesv/f5/wD4qoLrQIJLWWO0lkilZWCOZHYKxHBxuGcHnHetSw1Cw1S0S/0yeO5gkGUkiYOjD2IyDXJeLfiR4J8BzwReM79NMjuASk9wGS3yOoMxHlq3oGYE9s12uSSu3ofNU6VSc+SEW5drXf3HxX8bfCnx0+G3wZ1vxZq3xEYPp9oUs7fT7ARyXV5KRHCkstxLcM3mysoIQJjPFfdGn6CgsIBqDObgRr5pSWTbvx82Pm6Z6V8VfFT4s/C/4tfFvw78P7DxFps+i+HY28RahIt1GY5rpA0djAG3YLCQtMy8keWnqK+rfit8V/C3wY8FSeO/GKXcljC8cbCytpLuXMhwDsiVmx6noO9clGcE5zUvdWmrvtu9/O3yPfzGhiKlPDUJUf3023ZQUW1JpRjaKV3o5a9JI7T+w7EdGl/7/P8A/FV8anR7b9n79orTfD+nGSPwd8S5bgJbLK4Sx1yJTKWQA/Kl3GGLKOPNXPG419beB/Hfg/4leGLbxl4E1CHVNMvATFcQNlTg4IPcMDwVIBB4IzXyv+2xKNP0P4ea8nEtj470NkPtJI0bD8QxFVimvZqrHpZp+XX70ZZJTm8ZLAVU0qilCSfR2fK7dHGVn962bPqTTtCsDfX3Mv8ArV/5av8A3F/2q2P7CsPWX/v6/wD8VRpv/H9ff9dV/wDQFrYrrPAMcaHYDvL/AN/X/wDiqx9T0OxW5sfml/4+P+ez/wBxveuwrH1X/j4sf+vj/wBkagA/sKwxjMv/AH9f/wCKpP7CsP703/f5/wD4qtmigDGbQrDb1l/7/P8A/FVlaFoVh/YtpzL/AKpP+Wz+n+9XWnoaytB/5Atp/wBck/lQA3+w7D1l/wC/r/8AxVH9hWHrL/3+f/4qtiigDj49DsBr0vMv+oT/AJbP/eb/AGq1/wCwrD+9N/3+f/4qlj/5D8v/AFwT/wBCatigDG/sKw/vTf8Af5//AIqsjXtDsRpjYMv34v8Alq/99f8AarsKxtf/AOQY3/XSL/0NaAF/sOxJzmX/AL+v/wDFUf2HYesv/f1//iq2KKAMf+wrD1l/7/P/APFVj6NodiYZxmX/AI+Jf+Wr/wB4/wC1XYVj6L/qp/8Ar4l/9CNACf2FYf3pv+/z/wDxVL/YVhjGZf8Av6//AMVWxRQBx93odj/bNnzL92X/AJav6D/arY/sOw9Zf+/r/wDxVF3/AMhmz/3Zf5CtigDG/sKw/vTf9/n/APiqpanodiNNuDmX/VP/AMtX9D/tV0UsqQxNNJnagLHAycD2HJr5A8Q/tzfsu2enTW8Pib7ZdNGwFrZ2dzc3IYg/KYo4mdTnghgMHrXbg8uxeLbWFoynbfli3b1snYwr4qjRt7aajfu0vzPqGy0OwNlDzL9xf+Wr+n+9Vr+wrD1l/wC/r/8AxVfK3gj9sz4beJ/F+heALrQ/E+hz687W2nXWs6Lc2FrcTJG0nlrJMq/MUVioIGcV9g0sbl+JwkowxNNwbV1dbq9r/emvVBh8VSrpyoyTS00Mf+wrD1l/7/P/APFVj2Oh2P8Aal9zL96P/lq/90f7VdhWNYf8hW+/3o//AEEVxm4p0KwPeX/v6/8A8VSf2FYf3pv+/wA//wAVWzRQBx2r6HYhrTBl/wCPlP8Alq/of9qtj+wrD+9N/wB/n/8AiqNY+9af9fCfyNbNAGOdDsD3l/7+v/8AFUf2HYjnMv8A39f/AOKrYooA4/QdCsTpMPMv8X/LZ/U/7Va/9hWH96b/AL/P/wDFUugf8gmL/gX8zWxQBjf2FYf3pv8Av8//AMVWP/Ydj/wkGMy/8e//AD1f+9/vV2NY3/Mw/wDbv/7NQAv9hWHrL/39k/8AiqT+wrD+9N/3+f8A+KrZooA5DXtCsP7In5l6D/ls/qP9qtc6FYk53Tf9/n/+Kpde/wCQTN9B/MVr0AY39hWH96b/AL/P/wDFUf2FYf3pv+/z/wDxVbNFAHG6NodiWveZf+Pl/wDlq/ov+1Wz/YVh/em/7/P/APFU3Rfv3v8A18v/ACFbdAGN/YVh/em/7/P/APFVk32h2H9p2IzL96T/AJbP/dP+1XX1kX3/ACE7L/ek/wDQTQA3+wrD+9N/3+f/AOKo/sKw/vTf9/n/APiq2aKAOfutCsBaynMv3G/5bP6f71VtH0Kw/sm15l/1Kf8ALZ/Qf7VdDd/8esv+438qraP/AMgm1/64p/6CKAK/9hWH96b/AL/P/wDFUf2FYf3pv+/z/wDxVbNFAHH2uh2J1q8GZf8AVw/8tn/2v9qtf+wrD+9N/wB/n/8AiqLX/kN3n/XOH/2atmgDG/sKw/vTf9/n/wDiqytX0Kw8qAZl/wBfF/y1f+8P9quurJ1f/Vwf9d4v/QhQB+XP7SHww8RfsdfFbUf27vgRYXeoeGdTVW+KPhWx8ySS+tYFCrrdlEhydRso1xPGvN3bDbzLHHn9GfAut+Afib4M0r4ifD/U11jQ9ctIb6wvrW4eSG4t51DxyIwbBVlIIr0OvySt3f8A4Jn/AB3h0p96fs+/FLVyIZHcC38FeJr9+IuceVpeqTN+7H3La9bb8sc67AD9VP7CsP703/f5/wD4qsjQ9CsDYZzL/rZf+Wz/AN9v9quwrH0L/kH/APbWX/0NqAD+wrD1l/7/AEn/AMVR/YVh6y/9/pP/AIqtiigDkJdCsP7dh5l/1En/AC1k/vJ/tVrf2FYf3pv+/wA//wAVTpf+Q7D/ANcJP/QkrXoAxv7CsP703/f5/wD4qsnXtDsBot1zL/qm/wCWz+n+9XX1ka//AMgW6/65t/KgBq6FYbRzL/39k/8AiqP7CsP703/f5/8A4qthfujFLQBj/wBhWHrL/wB/pP8A4qsrSdGsor+8lQy5WcEZlcjhF7E811tZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/kK1Ky9D/5Atp/1xT+QrUoAKKKKAOe0z/kOal9Yv8A0Gv5dP2lJh4j/wCDsH9n7TRz/Y/wz1Zz7ZS/b/2av6i9M/5DupfWL/0Gv5TvGtzcax/wd5+CraEbl0n4X3jP/srJbz4/VxQB/WlRRRQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/ACA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/ACMd5/1yi/m1AHQ0UUUAFYOvfctf+vmL+db1YOvfctf+vmL+dAG9RRRQAU1/uH6U6mv9w/SgDF8N86LD/wAC/wDQjW5WH4b50WH/AIF/6Ea3KACiiigDn4v+Rnm/690/9CNdBXPxf8jPN/17p/6Ea6CgAooooAwfEf8Ax4J/12j/APQhW9WD4j/48E7/AL6P/wBCFb1ABRRRQAh6GsPw7/yDf+2kn/oRrcPQ1h+Hf+Qb/wBtJP8A0I0AbtFFfD/7d3/BQn9mb/gnd8Ipvi3+0XriWMbnyrDT4v3l7fTn7sUES5ZiT3xgdTQB9Q/E/wCKPw7+DPgbUfiR8VdXtdC0LS4Wmury8kWKKNFGSSWwPwr+Or4OeJ/+HvP7Y3jPWP2J/BN9onwtsZJPN8Xat+5sLu8ViHa3QAuyyHBAGeuTjNel/Dv9kv8Abh/4L8ePrD49f8FBI734Zfs5WVwt74e8BW8hiu9YRTlJL0jDBWXk5Hf5R3r+qn4VfCf4cfA7RNL+Ffwk0a10Dw/o9j5FnY2cYjijRSBwB1J7k5JPJNcuLwVHEw5Kyuj3Mh4jx+TV3iMBU5ZNWeiaa809PQ/kT+PmgfHL/gnb+0rFo/gnxFNDqENnBcpcW2VhnR87lZDw67h3r9sP2Mv+Cs/hD4tPp/w//aBt18M+IroBbe8Py2V2TwMMfuMT2PHoa5L/AIKZ+CPCa/tZfBPxp4otEurHUr5tJvY2GRLG7DAP0ycfWvKfB3wk+Fn7Nn7TEn7Iv7SmiWus+BfEtwb7wnqV2vzWsztnyPNGGAzgY3Yzg9zX9IUsJkGO4VwOFng/30KLlF07KbVOUoz5b/G1ZTcZbptppo/IMwzLOJZ/i8fWxF/aVPe5tY3kk43t8K+ymtrJWsf0Oo6yKHQgqwyCOhBr8xf2+v2f538EeKf2gPD/AI713wvNY6WzXdrZTZtrhYASuUJG084JU81+mdna29haRWNouyKFFRFHZVGAPyrxP9pf4WW/xs+BviL4V3V21imt2rWpnQbim/jOOM/SvxXh7MngcwpVlPlhzJSdk/cur6NNPTyeux9nmeEWIw06bjd2dtba2010P5odM+DP7K3wT/Zw8MfEf4oWd742+JfjGI3OnaAbhvK3zMdsjxoN2O5JPzV+w3/BMX9jzxV+zj4P1b4g/EEraa54xKTyaXANsNlECWVMf3ufwHFb37JH/BNT4c/s467H8QvGOpS+MfFEEaw2t5eL+7tYlGFWJCTjA6Ht2r9L6+/444++t0q2XYGvKrTqSvOcrpNXvGFOD+CEdNbKUmtdND5vh/hz2M4YrEU1CUVaMV00s5SfWT+5LzCiiivyQ+0Of8O/8e0//XeT+ddBXP8Ah3/j2n/67yfzroKACiiigDAn/wCRkt/+uL/zFb9YE/8AyMlv/wBcX/mK36ACims21S3oM1+S3xM/bx/aP8R+MdQ+G/7Mfwm1PUbq1le3/tPVUa3tgyEqWAIGV4yCSMivYyfIsXmc5RwyjaKvJylGMUu7cml+pw47MaOEipVb67JJtv0SP1R8Q86RN9KsXeo2Oj6TJqupSrDbW0RkkkY4VUUZJP0Ffy1ftNftK/t1eCLn+wPH3xJsrPxLdkCPw74fjW4ljz08x0Vwn0LE19+f8Ekf2gfjp8etE8ZeEvjzeNrUOjvHEjXUa7wXyHjfAAYexFfZZp4Z4zA5TLOJ4inOlG11Fyu02leLcUpK73V12bPCwfFlDEYxYGNKUZu+9rXSvZ2d16bn3v8AAv48eOfj94tvvEfhvRRp/gC03wWt/d5W51CZTjzIU6CEf3j97tX1pVWysrLTbSOw06FLeCFQkccahUVR0AA4AFWq+Cx+Io1qzlh6XJDZK93ZdW+rfV6LsktD6PDUpwharPml1e33LouwVgaH/rb3/r4b+QrfrA0P/W3v/Xw38hXEdBv0UUUAFfnr/wAFPtVudL/Y18cfYpWhmu9Me0jdTgg3Dqn9a/QqvnD9pj4H6T+0V4Fb4T65ey2FrfvHI80KhmHkOsmMHjkrg0AeifBjw+nhP4Q+FvDEYAGn6TZ2+AMDMcSg/wAq9LqtZ2sdjZxWUP3IUVF+ijAqzQAVk67/AMgi4/3DWtWTrv8AyCLj/cNAFyx/484v9wfyq1VWx/484v8AcH8qtUAFFFFAGHpX/H7e/wDXUfyrcrD0r/j9vf8ArqP5VuUAFFFFAGDqX/IVsf8Aef8AlW9WDqX/ACFbH/ef+Vb1ABRRRQBQ1T/kGz/9c2/lTdIx/ZkGP7gp2qf8g2f/AK5t/Km6Tj+zIMf3BQBo0UUUAFYGmf8AIVv/APeT+Vb9YGmf8ha//wB5P5UAb9FFFABWBrH/AB+2H/XX+lb9YGsf8fth/wBdf6UAb9FFFABX5cf8FFP+CRP7GX/BSHwfNbfGvQF0/wAS26brHxLpQW31S1kXlSJQPnAP8L59sda/Ueq93/x6y/7jfyoA/jH0z4u/8Fev+CBghs/jdaXX7Rn7OsJVYdYs90ms6Tb5wPN3ZYhRxh8r6NX9Kf7Df/BSD9kr/goX8O4PH/7OHim21KTaPtemSsI7+zk7pNCTuUj6YNfZ9lY2Wp+HV07UoUuLeeLZJFKodHVuCGU5BB7g1/OH+2//AMG8vgbxN8Qp/wBrH/gml4muPgX8X4GNwr6Y7R6XfydSk0K5CBj1wCnqtAH9LVFfyTfA/wD4Lq/tO/sIeObL9mb/AILh+A7jwpeu/k2PjvS4jPpV6o4Dy+WGVT0JZSRzyBX9SPwo+MHww+Ofgmy+I3wh12y8RaJqEay295YzLNE6sMjlScfQ0AdNY/8AIw3v+5HXRVztj/yMN7/uR10VABRRRQBg670tf+u6/wAjW9WDrvAtf+vhf5Gt6gAooooAZJ/q2+hrG8N/8gWD6Vsyf6tvoaxvDf8AyBYPpQBuUUUUAFc7bf8AIzXP/XKP+tdFXO23/IzXP/XKP+tAHRUUUUAFYmu/8e8P/XZP51t1ia7/AMe8P/XZP50AbdFFFABRRRQBgeGf+QSv+/J/6Ea36wPDP/IJX/fk/wDQjW/QAUUUUAYB/wCRn/7dh/6Ea36wD/yM/wD27D/0I1v0AFFFFAGB4l/5BZ/66Rf+hit4dBWD4l/5BZ/66Rf+hit4dBQAtFFFABWH4f8A+POT/rvL/wChGtysLw//AMecn/XeX/0I0AbtFFFABWHL/wAjFD/1wf8A9CFblYcv/IxQ/wDXB/8A0IUAblFFFABWH4l/5AVz/u/1FblYXiXnQrkf7P8AUUAbg6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/wCvqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVlSTayJGEUERXJwTIQSPptoA1ax9f/wCQPP8AQfzFHna7/wA+8P8A39P/AMRWRr82u/2PPm3h+6P+Wp9R/sUAdfRWP52u/wDPvD/39P8A8RR52u/8+8P/AH9P/wARQBsVkaV/rbz/AK+D/wCgrSedrv8Az7w/9/T/APEVkaXNrvm3n+jw/wDHwf8Alqf7q/7FAHX0Vj+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAJqH/ITsP+uj/+gNWzXH6hNrv9pWH+jw/6x/8Alqf7jf7FbHna7/z7w/8Af0//ABFAGX491w+GfA2s+IlO02FjcXAJ9Y0LD9RXi9l4ih+Dv7Kdr4kuPv6VoMUoB6tO8Q2j6tIwH1NL+1Bq+tad8BfEu6GNTdWwtF2yEsTdOsWANo5+euM+OVvqWuX3gT4HiGLy9QvVurpFkJBtNLQSMG+XgM+wd6+TzjGTp4iu6T/eRpRUf8VabhH/AMmgr+R9Bl2HjOlSVT4XOTl/hpxUn+Emew/s+eCv+EA+Dmg+H5hi5NstxdN3a4uP3khPvuYj8K9lrxt/iRJpWtaJ4DtrRL3VdQhWVoIZM/Z7ZR800pK4VM/Kvdm4HevTPO13/n3h/wC/p/8AiK97L4UKVFYXDu6pJQ9LJaetrXPJxkqtSo69ZazvL1u9/S5sV8vftOftHeGP2XPh7qnxL12zuNYv5mtNN0XRbEBr3V9WvGZLWyt1PWSZ+CT8qIGdsIrGve9U1q60PTLjWta+y2dnZxPPPPNPsjiijBZndioCqoBJJOABX5cfsx2Pi79tL9oBv29/HViYfBeiQSWPwr0i6LR5tJt8dz4glQr/AK7UFzHZ7gGis+es7Y7jlPpj9jP9nDxZ8ItE1n4tfHW7h1n4t/EOWLUfFWoQZMEBjUi302zzytlYIxihHV23yt88jV9q1j+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAfKn7JN0tz+zxpkTn99b6zqEM47rKmozbgfQ5r1DwZ8OvE3hT40+MfG7G0m0vxSbKcSbn+1xyWkCQCIrs2GP5WcNvzlyNvc/L2l+JJv2Z/jdrnw/8AGvlWPhnx7qqa5oV9PIUtIr+Ur9stHkK7UZ2Xzow2A25gMmvr7xv4517RNCuo/C1tZalr81lPcaXp32tUkvHiTIC7go25xls4GetcNBx9nFS3hp80rfitvU+nzSNZYyrUoq9PEq6b2tKSm9dlySVpPZOLvofmh8XB4F1j/gpj4d8J/wBoypp2pw2MmvWyJm1n1fTknn06GV+m/Z8+3vtUd+P1Wh8d+Gbjx1c/DeGctq1nYxajNEEbalvO7xoS+NoLNG2FznAzjFfnFpf7HHxdu/2YrrStfurL/haF3rQ8XrqYc/u9XRw8cbPg5VUzDlcKFPAwMn3/APZt8FfGeVfF3xQ+NmlQaT4j8ZXaK1lFciX7HZWkQhhjDqGU875OD/HzzXNg/awm7wtzvm9Fbb1vb72+57HEH1HEYWDhiFL6vFUkrq85Jq1RK13Bx5knulTim9YnyV8MPF/xD0nxH4H+NkfifVb1fHfjbUtDurC5uPM06404vceRLb2/PkeV5QxjDH5t2QRX6h2XxF0S9+JuofCpUkTUdP0+21IswGx4bmSSMbTnOVaM7sgdRivz6+Bv7J/xz8LeKPBek+ONT0i+8G/DSfUbjRVt/NS8u57ouqNchlKAwhnwVPzE17Z8Pm13xR+2V4+8XWUUbWmgaLpegM3mHY105e7kUHbyUSRN3puAowbq04xU0020tf8ADq/vT9d+ouII4LFVKk6E4yVOnKScVZWdW1OL0WqhKKa6Xt9my+l7v4XfDu48df8AC1JdGtG8SJaNZrqRjH2gQHPyB+uOSPXBx04r81fhXZR6/wD8E4NP0G4meCK8s7uxeRD8ypNqQib0zwx46Hoa/Um+u9egsZphbREpGzYEhJOB6bK/Ob9inwF4j8Zfse6N4F+Iln5dnqiamYVV3tbiK3a73xNnBIkDDerfTit69NOsoRW8Z/jy7nn5Vi3DASr1pu1Oth7a3aSVZ2in27bHuP7OHhnw74A+MnxN+Hvw9t47Dw3p0+lSRWVuNtvb3lxbFpxGg4TcBGzKuBk5xzXuvgn4i23if4aTeP8AxDElrBbvfidV+ZVjsZ5YmPPqI8msz4TfCu2+D+g3OiaAsl7LqF3Lf319fXJmuru5mwGklfYMnaFUYAAVQAOKh8F/DjU9E+Glx8N/EUNve295JqXn7JWUNFfzzSlfu5GFl2k+vStaNOcIqNrfFp0V3dL5Hn5ji8Pias6rk2701d/FJRg4yl6yaT1119TxX4Zy+Hvh98C7743/ABQgS0vPGU/9r38vk+YLVL7bHaxsQpKxwQ+UjMflUhmOBmva/iv4xtfh7qegeMddF2NHtnuI7uS0t5rryzJF+7LxwK77dwxu2kAkdM14fe/si6F/YosPFmsa94k0qwjU2+l6lq0j2QEI/dh4o44/NC4GBIWBxyDX2Gk+u7R/o8PT/nqf/iKKNOoocrVrWt116t+v+ZWYYvCSxHt4Sc7uV1blSi1aMY3u00rrVWWlk7M+dv2WPDer2OieKfHWp6dJo0XjLxBdazZ6fKnlSQWrpFDGZI/4JJRF5zr1BfB5zXnX7Ytz/wAJJ41+Efwhsvnu9Y8W22pOg5ItdJVp5Wx6DKjPqa+0PO13/n3h/wC/p/8AiK8ZHwM8NH45n9oeayMviMacNLjaS6ZoIoc5Zo4ymFdhwzDqKVXDy9kqUO6v6Xu/v/UeDzamsfPH1001GXKlr73LywTbe0dG3q3bu7ns2m/8f19/11X/ANAWtiuP06bXft19/o8P+tX/AJan+4v+xWx52u/8+8P/AH9P/wARXYfPGxWPqv8Ax8WP/Xx/7I1Hna7/AM+8P/f0/wDxFZGqTa4bixzbw/8AHx/z1P8Acb/YoA6+isfztd/594f+/p/+Io87Xf8An3h/7+n/AOIoA1z0NZWg/wDIFtP+uSfyphm13B/0eH/v6f8A4isrQptd/sW0/wBHh/1Sf8tT6f7lAHXUVj+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAEf/Ifl/64J/6E1bFchHNrv9vS/wCjw/6hP+Wp/vN/sVr+drv/AD7w/wDf0/8AxFAGxWNr/wDyDG/66Rf+hrS+drv/AD7w/wDf0/8AxFY+vTa5/ZjZt4fvxf8ALU/31/2KAOworH87Xf8An3h/7+n/AOIo87Xf+feH/v6f/iKANisfRf8AVT/9fEv/AKEaPO13/n3h/wC/p/8AiKyNGm13yZ/9Hh/4+Jf+Wp/vH/YoA6+isfztd/594f8Av6f/AIijztd/594f+/p/+IoALv8A5DFn/uy/yFbFchdTa6dYsz9nh+7L/wAtT6D/AGK1/O13/n3h/wC/p/8AiKANis7UYo47C5ljUKxjfJAwehryn4g6j+0DZSw3Pwv0rQtQhCHzoNRvZ7aQvnjY8cEq4x1yvWvkX4zftjftAfAjwTf+L/iz8Hmh0yHbALvT9etbpHmmIjjVYnSGU73YABVLe3FezgMjxWN5Y4VwcpaKPtIRk3tbllJNt+SZwYnMaOHu6ykkuvLJr70ml8zoPHN/N8Z/2zfBPwv0YF9N+GFq/ibW5xyq3t5E1vY2+ezlWkmYf3QPWv0Br8Uf2af2ndM/Zj8Haje/tMeDvFmheKfFGoTav4g1q80ieSykuJeEVZYBJthhiCogIGApOBmv1J+Ffxu8C/HDw6PFnwi1jTPEOn5AaWzud5jY8hZF2bkbH8LgH2r2OKcqxWG9nBUn9XpRUFUSvCTu5SkpLT3pyfLrfl5bnDk+Mo1eeTmvazfM431SsklbfRJX6Xuey1jWP/IVvv8Aej/9BFL52u/8+8P/AH9P/wARWRYza5/al9/o8P3o/wDlqf7o/wBivjj3Tr6Kx/O13/n3h/7+n/4ijztd/wCfeH/v6f8A4igBNY+9af8AXwn8jWzXH6vNru60/wBHh/4+E/5an0P+xWx52u/8+8P/AH9P/wARQBsUVj+drv8Az7w/9/T/APEUedrv/PvD/wB/T/8AEUAJ4f8A+QRD/wAC/ma2a4/QJtc/smHFvD/F/wAtT6n/AGK2PO13/n3h/wC/p/8AiKANisb/AJmH/t3/APZqXztd/wCfeH/v6f8A4isfztd/4SD/AI94f+Pf/nqf73+5QB2FFY/na7/z7w/9/T/8RR52u/8APvD/AN/T/wDEUALr3/IJm+g/mK165DXptd/sib/R4eg/5an1H+xWv52u/wDPvD/39P8A8RQBsUVj+drv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUAM0X797/ANfL/wAhW3XG6NNrm+8xbw/8fL/8tT6D/Yra87Xf+feH/v6f/iKANisi+/5Cll/vSf8AoJpPO13/AJ94f+/p/wDiKyL6bXf7Tsv9Hh+9J/y1P90/7FAHX0Vj+drv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUAaF3/wAesv8AuN/Kq2j/APIJtf8Arin/AKCKo3U2u/ZZf9Hh+43/AC1Pp/uVV0ibXf7Jtf8AR4f9Sn/LU/3R/sUAdTRWP52u/wDPvD/39P8A8RR52u/8+8P/AH9P/wARQAlr/wAhu8/65w/+zVs1x9rNrn9tXn7iH/Vw/wDLU/7X+xWx52u/8+8P/f0//EUAbFZOr/6uD/rvF/6EKb52u/8APvD/AN/T/wDEVk6vNrvlwf6PD/r4v+Wp/vD/AGKAOurh/iX8NfAfxj+H2s/Cr4oaVb634d8QWktjqFhdJvhnt5lKujD3B4IwQeQQQDXQedrv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUAfnR+yB8SPHHwO+Jl3/wT2/aF1K41TWNDtH1DwL4jv2Bl8S+G4yF2yOAA2oaaWWC7GA0kflXGD5j7f0X0L/kH/8AbWX/ANDavlH9r79m/XP2kvhvbQ+FriDw7488KXa654P8QBi76Zq9upEbMAoL28yloLqLOJYJHU9iIP2Mv2l9S/aT+Esusavo8Xh/xh4d1C50TxZoEkzGXSdatW/fw5KfPE4ZZbeUfLLBIjg/NQB9m0Vj+drv/PvD/wB/T/8AEUedrv8Az7w/9/T/APEUALL/AMh2H/rhJ/6Ela9chLNrv9uw/wCjw/6iT/lqf7yf7Fa/na7/AM+8P/f0/wDxFAGxWRr/APyBbr/rm38qTztd/wCfeH/v6f8A4isnXptc/sW6zbw/6tv+Wp9P9ygDrV6ClrGWfXdo/wBHh/7+n/4il87Xf+feH/v6f/iKANisjTf+Pu+/67D/ANAWk87Xf+feH/v6f/iKy9Jm1k394JYIgvnjJEhJA2L220AdZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKACql/wD8eM3/AFzb+VW657WNb0+0guLWdiHWM5wpPUUAXdD/AOQLaf8AXFP/AEEVqVxmh+JdJ/sW0yzf6mP+E+g9q1f+El0n+83/AHyf8KAN6isD/hJtJ/vN/wB8n/Cj/hJtJxnc3/fJ/wAKAG6Z/wAh3UvrF/6DX8uPwngg8d/8HZ/xF1eIBh4S+FFrET/daVoVP/o2v6cdN8R6UNc1I7m6xfwn+7X8uP7DUkN3/wAHRH7V3iuWRjDZ+CtKtBwTgyixb8MeWaAP6zKKwf8AhJdK/vN/3yf8KP8AhJdJ/vN/3yf8KADWf+Pqw/6+B/6C1b1cHrPiXSftVh8zf8fA/hP91vat3/hJtJ/vN/3yf8KAN+isH/hJdJ/vN/3yf8KP+El0n+83/fJ/woA2pv8AVN9DWV4e/wCQHa/9c1qtN4l0nyW+Zuh/hP8AhWV4e8SaUNDtRub/AFa/wn/CgDt6Kwf+El0n+83/AHyf8KP+El0n+83/AHyf8KAN6ues/wDkY7z/AK5Rfzanf8JNpP8Aeb/vk/4VgWniPSh4ivDub/VRfwn1b2oA76isD/hJtJxnc3/fJ/wo/wCEm0n+83/fJ/woA36wde+5a/8AXzF/Og+JdJH8Tf8AfJ/wrB17xJpRS1+Zv+PmL+E+v0oA7yisH/hJdJ/vN/3yaP8AhJdK/vN/3yf8KAN6mv8AcP0rD/4SXSf7zf8AfJpr+JdJ2H5m6f3TQBJ4b/5AsP8AwL/0I1uVwvhzxLpI0aEbm/i/hP8AePtW5/wkuk/3m/75NAG9RWD/AMJLpP8Aeb/vk0f8JLpX95v++T/hQA2L/kZ5v+vdP/QjXQVwMXiTSf8AhJpvmb/j3T+E/wB4+1dB/wAJLpX95v8Avk/4UAb1FYP/AAkulf3m/wC+T/hR/wAJLpX95v8Avk/4UAHiP/jwT/rtH/6EK3q4PxF4l0n7AnzN/ro/4T/eHtW9/wAJLpX95v8Avk/4UAb1FYP/AAkulf3m/wC+T/hR/wAJLpX95v8Avk/4UAbp6GsPw7/yDf8AtpJ/6EaafEulYPzN/wB8n/CvxA/4Kg/8FivBn7Cvg+x+DPwTsG8d/HDxlK9r4d8MWgLyh5XKiecLkpGpOeeWoA9j/wCCpn/BWv4U/wDBPHwnbeC/D9s3jL4u+KB9n8M+EbD97d3VxJ8qPIq5KRBurEc9BX54fsD/APBHv4y/tG/F62/4KO/8FlLoeKviNcsLnQPBzHdpPh+E8orQklTIODt5wfvZPA9b/wCCUX/BK3VfhB4xu/2+P+ChOof8J1+0P4t/0mW4uVMsGgxPyLa2ByqsgOCy/d6Dua/oR/4SXSv7zf8AfJ/woA2oYYreJYIFCIgCqqjAAHQAdhWKf+RlH/Xuf/QhR/wkuk/3m/75P+FYJ8S6V/wkq/M3/Huf4T/eHtQB4X+03+yf4Z/aZv8AwlqWuajPp03hPVI9ShaFQ3mbOqHPTPrWR+21+y3pP7UXwauPDcR+z6/pf+maPeLw8NzHyvPXDYwa+qf+El0r+83/AHyf8KP+El0r+83/AHyf8K9nCcQY/DTw06VVr2Dbh5Xd36pvdM4a2W4erGrGcP4itLzsrL7uh8Jf8E8f2n9W+OvwyufA3xIBtvHHguX+ztXgk4dzH8qy46/Njn3+tfd3iT/kEyfVf51+Mv7ZHhvxH+yr8erH9u34JQPPp8m228WadGpVZoDgebjHUDqexANfZsvijWf2jPCdt460LxOdL8I6jFHLbR6eu65mVgMiSQj5CDkEDkYrt43w0KcKedZVQc6OIfwxsvZ1N5wk27RS3j3i1ZNox4em5yngMbUUZ0vtO/vR+zJJbvo+z3PqPxj8XPht8P4DL4u1m2syB9x3G8/RRya8Iuf2rJNdYw/Crwnq3iAnhJhEYYT77nxx+FdX4U+CfwK8KXA1GHSxfXvU3N8GuJSfXL5Gfwr3CHXtDtoxDbjYi8BVQgD8AK/OHQzjEfxKsKMe0Fzy/wDApWj/AOSP1PrFVy6j8NOVR95PlX3Ru/8AyY+Vl1n9tHxWfOstK0fw7C3Ki5lM8gHvt/wFWP8AhAP2v7n95N4y0uEnqqWrECvqb/hJdK/vN/3yf8K+cf2hf2zfgR+zR4dbWviPqqx3DKTb2UY3XMzDsqdfxPFdOA4OrY2tHD061erVlslNpv5QUV+BniOIoYem6jpUoQXeKf4yu/xOQ0j4c/tYSQyNa+N9PUCVwQbQ9c81LcxftueEzm0bRvEsQ+sEn/jxAr50/Yl/bC+PH7TfjvUfFt54Wi0P4bbZRa3MpLXEs+eMHof9rAwPWv1D/wCEl0r+83/fJ/wrqzzgGeV4l4SriakKqSvy1nPlb6O7lG66q2hjl/FSxlJVoUISg9r01G/mrWduzPjpPjt+1Bo52+Ifho9wq/ee1n3fkMf1qwP2w9S0og+MfAeuacg+84i8xR+Rr69/4SXSv7zf98n/AApr+ItHkUrISQeoKE/0rxlkuZQ/hZjN/wCKFOX5Ri/xO/8AtPBS/iYOP/bspr82zw74fftF/Cf4o+JIIfDmpqlyImU29wDFKCSONrYzX0iDnkV8j/Fb4K/B/wCJ+rxG6tzp2oCJnjvbNDFKrgjB+UDOPevE1+OHxI/ZZuodF+MEp8Q+GpW8q11RfluFPZXU/eNQs2x2Aly5rTTp/wDP2mnyr/HHVx/xJuPdop5fhcWubL5tT/59zau/8MtFL0sn2ufoP4l8TeH/AAdodz4l8U3kVhYWiGSaeZgiIo6kk1+JfxQ/bO+Pf7aHjS5+Bf7Cdo9toqsYNR8USqVRFPBMbfwj0PJPYVwHiG5+On/BUL4p3HhvVvtPgz4SaHcbZkH+vvmU8AgdSe3ZR71+0Xwg+H/wk+BPgq18AfDHT003TrYD5UQ7nbuztjLMe5NftmF/srIcPTxVRwxOMmlKMU1KlTTV1KTWk59VFPlXW5+d11jMxqyox5qNCLabaanJrdJPWK7vd9D8qfGv7N/wI/4Jw/s5a78Wddk/4ST4g6lC1vBqN7+8mkvZxgCFWyRgnJblq+rf+CYPwG1H4J/szWWoeJ4mTXfFMratfFx8+ZuUB+gOfxr5/wDix8GfHn7W/wC1Z/wlHxctJ9J+HPw+kUadayqQdTueGMgH9zPGT9K+nf24f2i/Fn7Pfwc034hfDuMGCz1K0TUP3RYJZMwD4HbjjPavVzPH4rMcPQydYj2uLxUozqyb0jo/ZUk1orXu0tFJpbo4sJhqOGq1Mc6fJQopxgrav+effW1k3ulc++WZVGWOB70tfjZ/wU6/ajsNO/ZR8P8AjX4V6zJFJrWo2VxBNaSmNmiQiRlypB6cMK/TL4S/FXQfiB8L/D/ja2lLrqlhBcEgE/MyDdzjs2RXw+N4exGGy2jmVTSNSc4WtqnC2/rd/cz6ChmdKriqmFhvGMZX7qV/+B957DWBof8Arb3/AK+G/kKX/hJdJ/vN/wB8n/CsHRPEmlCW9+Zv9e38J9BXgHpHeUVg/wDCS6V/eb/vk/4Uf8JLpX95v++T/hQBvVymuahYaXqdrfanMlvCivueRgqjPA5PFXf+El0r+83/AHyf8K/HH/guD48vtD/Yxe+8PTSRAa5pC3JTch+zm7j3jIwRmgD9q1YMAynIPIpa4/RfE2kNo1oyswBgjIG09CorS/4SXSv7zf8AfJ/woA3qydd/5BFx/uGq/wDwkuk/3m/75P8AhWTrviXSv7IuPmb7h/hP+FAHVWP/AB5xf7g/lVquXsfEulfY4vmb7g/hPp9Ktf8ACS6V/eb/AL5P+FAG9RWD/wAJLpX95v8Avk/4Uf8ACS6V/eb/AL5P+FADtK/4/L3/AK6/0rcrhtK8SaULy9O5uZR/CfT6Vt/8JLpX95v++T/hQBvUVg/8JLpP95v++T/hR/wkulf3m/75P+FABqX/ACFbH/ef+Vb1cHqXiXSv7Vsfmb7z/wAJ9PpW9/wkulf3m/75P+FAG9RWD/wkulf3m/75P+FH/CS6V/eb/vk/4UAX9U/5Bs//AFzb+VN0nH9mQY/uCsPVPEmlHTZxub/Vt/CfT6Umk+JNKGmwDc33B/Cf8KAOuorB/wCEl0r+83/fJ/wo/wCEl0nONzf98n/CgDerA0v/AJC1/wD7yfypf+El0r+83/fJ/wAKwNM8SaV/a1/8zfeT+E+n0oA72isH/hJdK/vN/wB8n/Cj/hJdK/vN/wB8n/CgDerA1j/j9sP+up/lS/8ACS6V/eb/AL5P+FYGseJNKN7YHc3Ep/hPp9KAO9orB/4SXSv7zf8AfJ/wo/4SXSf7zf8AfJ/woA3qr3f/AB6y/wC438qyf+El0r+83/fJ/wAKr3fiXSvssvzN9xv4T6fSgDS0T/kEwf7grUrjdF8SaUNKg+ZvuD+E1qf8JLpX95v++T/hQB578cvgB8GP2lfh7e/Cv47eG7HxPoOoIUltL6ISLz3UnlWHZlIIr+Vn4v8A/BH/APbh/wCCTni28/aY/wCCKviq71fwwjNc6v8ADPWZTcQTxg5b7NnAJxwAMP8A71f10f8ACS6V/eb/AL5P+FH/AAkulf3m/wC+T/hQB+Nf/BLT/gsp8CP+Chl3qPgLWYJPAnxX0VEi1rwlqv7m6imj4cwhsGRM9wMjuK/bKv50v+Cpv/BHT4f/ALZPi6X9pf8AZY1d/hj8efDYS60zX9OUwLeyIMrFdbMZ3YxvIPuCK4b/AIJkf8FvfEniD4mn9gH/AIKbaMfhz8bNFAtoLm5Hl2OuCPgSRO2FDv12gkN1FAH9M1FYA8TaQwDK7EHuFNL/AMJLpX95v++T/hQAa7wLX/r4X+Rrerg9d8SaUfsnzN/x8L/CfQ+1b3/CS6V/eb/vk/4UAb1FYP8Awkulf3m/75P+FH/CS6V/eb/vk/4UAbcn+rb6GsXw3/yBYP8AdqOTxLpXlt8zdD/Cf8KxvDfiTShosHzN93+6f8KAO6orB/4SXSv7zf8AfJ/wo/4SXSv7zf8AfJ/woA3q522/5GW5/wCuUf8AWpP+El0r+83/AHyf8K5638SaUPE1z8zf6mP+E+/tQB39FYP/AAkulf3m/wC+T/hR/wAJLpX95v8Avk/4UAb1Ymu/8e8P/XZP50z/AISXSv7zf98n/CsTXfEukm3h+Zv9dH/CfX6UAdzRWD/wkuk/3m/75P8AhR/wkulf3m/75P8AhQBvUVg/8JLpX95v++T/AIUf8JLpP95v++TQAnhn/kEr/vyf+hGt+uC8NeJdJ/slfmb77/wn+8a3/wDhJdJ/vN/3yaAN6isD/hJdJ/vt/wB8ml/4SXSf7zf98mgBD/yM/wD27D/0I1v1wZ8SaV/wk2dzf8ew/hP941vf8JLpP95v++TQBvUVg/8ACS6T/eb/AL5NH/CS6T/eb/vk0AJ4l/5BZ/66Rf8AoYreHQVwfiXxLpR0sjc3+si/hP8AfHtW8PEuk4HzN/3yf8KAN+isD/hJtJ/vt/3yf8KP+Em0n+83/fJ/woA36wvD/wDx5yf9d5f/AEI0n/CS6V/eb/vk/wCFYXh/xJpQtJcu3+vl/hP94+1AHd0Vg/8ACS6T/eb/AL5P+FH/AAkuk/3m/wC+T/hQBvVhy/8AIxQ/9cH/APQhTf8AhJdJ/vN/3yf8Kw5fEuk/8JFCdzf6h/4T/eFAHdUVgf8ACTaT/eb/AL5P+FL/AMJLpP8Aeb/vk/4UAb1YfiX/AJAVz/u/1FN/4SXSf7zf98n/AArD8S+JNJOhXI3N93+6fUe1AHcjoKWsAeJdJwPmb/vk/wCFL/wkuk/3m/75P+FAG9RWB/wk2k/3m/75P+FL/wAJLpP95v8Avk/4UAGg9Lz/AK+pf6VvVweg+JdJxefM3/H1J/Cfb2re/wCEl0n+83/fJ/woA3qKwf8AhJdJ/vN/3yf8Kt2er2N/KYbYksBu5BHH+TQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY+v8A/IHn+g/mK2Kx9f8A+QPP9B/MUAbFFFFABWRpX+tvP+vg/wDoK1r1kaV/rbz/AK+D/wCgrQBr0UUUAY2of8hOw/66P/6A1bNY2of8hOw/66P/AOgNWzQB8uftZ6rpeneBdEg1y4jtbG58Q6YtzLK21Fiil85ixPQDy+a8vu4/ib8dvifB8VvhM48P6HY6dNp8GqalB5j3CyuHeW2tyQcEKFDyYBHQV9watouja/afYNdtIb2DcH8ueNZE3L0OGBGR2NWp0VLR44wFUIQAOABivmsbkE8Xi51atVqk+R2jdSvC7Xvp3STbfu2d+qtr7eGzeOHw8acKd5rm1dnG0rJ+7bV2Vtbq3Tt5T8IPhbo/w70iW+juZ9T1XVtk19qF2waedguFGQAFRBwqDgV6/Wbo3/IItf8Arkn8hXzV+2H+0lF+zF8HpPFekWH9ueLNcu4NC8KaIpIfVNcvyUtbcYyVjzmSeTpFAkkh4U172GwtLD01RoxtFdPxfm23q29W9XqeTXr1K03UqO7f9fh0XQ+Wv2qNRvf2zfjin/BPbwVPKvhHSorXV/irqFu5TGnTfvLTQldTkTant33IBBWxDAkGdK/SrSLGx0u9k0zTIUt7a2t4IooolCJGibgqqowAABgADAFfPH7HX7N8n7Mvwbi8K+I9T/4SHxhrd1NrfivXWTy31XW70hrmfbztjBAigjyRHBHGg4WvpK3/AOQ3df8AXOL+bVuZGvRRRQBw3xE8J+F/G/hpvDHjHTrfVdOupoVltrqNZY2G8dVYEfQ9RXJ/C/8AZ6+CvwWubm8+F3hyz0ee7UJLLCpLlAc7QzFiFzztBAz2r03W/wDj2i/67w/+hitiodODkptK669TphjMRClKhCpJQlvFN2fqtmFFFFWcxj6H/wAeJ/66y/8AobVLpuiaPozXL6TaxWxvJmuZzEgXzZnADO2OrEAAk88CotD/AOPE/wDXWX/0Nq2KLDUmk0mFY83/ACHrf/rhL/NK2Kx5v+Q9b/8AXCX+aUCNiiiigDL1z/kDXX/XJ/5VpJ9wfSs3XP8AkDXX/XJ/5VpJ9wfSgB1FFFAGPpv/AB/X3/XVf/QFrYrH03/j+vv+uq/+gLWxQAVj6qf9Isf+vj/2Rq2Kx9V/4+LH/r4/9kagDYooooAQ9DWVoP8AyBbT/rkn8q1T0NZWg/8AIFtP+uSfyoA1qKKKAMeP/kPS/wDXBP8A0Jq2Kx4/+Q9L/wBcE/8AQmrYoAKxtf8A+QY3/XSL/wBDWtmsbX/+QY3/AF0i/wDQ1oA2aKKKACsfRf8AVT/9fEv/AKEa2Kx9F/1U/wD18S/+hGgDYrI1/XdJ8L6Fe+JtfnW2sdOgkubiZzhY4olLOx9goJNa9flf/wAFdvi3q/gf9l9fhh4R3PrvxE1CHQ7aNPvtE53TY9dwCx/9tK9jh/KJ5pmWHy+Dt7SSTfZfafyV38jhzPGxwmFqYmX2U36vovm7I+Hvh5+2X8XPjd+2N8N/2lPF8K6J8Kr7WtS8JaJA0pVTPLCds8yk4Mjs6KHxtXBUYwSf6Ma/CH9rL9kLS9E+A/7Pv7JGl3ZspW1h7NryLg/b3s5pWmyOcG4+Y99vAr9G/wBiP496l8cPg4ln44U2vjbwlM2h+JbN+JIr+1+VnI/uzAb1PQ5IHSvuuOMLg8ZgcPmeVwUaVPmp8q6U1UmqU33crSUn/Ny31kj57h+tXoYirhMXJucrSu/5uSLnFemll2v2PsIkAZPQV+aWhh/20vjtN8T7tRL8Mfhjczw6Ch5j1fXogUlvMdGhteY4T0MmWB4r339t+L4x3n7MviXSfgVZ3F7r2oRx2hWyKi6S1mdUuXgDMoMqwltg3A55HIr5l8BftCfE/wAFfDPTvhV8Dv2d/F1vp2jWS2VsusS2mmRoka43OzSOWJPzMQuSST3rwshy+qsBVxmFcXWk3TV5wh7ONlzS9+UbOSfJF9FzvflZ6GZYqH1mGHrJ8iSk7Rk+Z30Xup6Jq78+Xpc/T618t7OKF8HdGMqecjHNea+EfgX8H/APjfUviN4H8O2Wj6zrEKwXtxZxiH7QituG9UwjMD/EV3e9fnp4q+GX/BQj45+MvCXjq4svCnw2m8N3aTRXdvf3V9ftaSFfPtpFRFgljlUDcj8ZAIIIzX6xV4+YYOWX04QpYqMnUT54wldKz0TcW4yT0a13TutE33YausTOUp0WlFrlcla91uk0mmttvnukVjWH/IVvv96P/wBBFbNY9j/yFb7/AHo//QRXhHomxRRRQBjax960/wCvhP5GtmsbWPvWn/Xwn8jWzQAUUUUAY+gf8gmH/gX8zWxWPoH/ACCYf+BfzNbFABWN/wAzD/27/wDs1bNY3/Mw/wDbv/7NQBs0UUUAZGvf8gmb6D+YrXrI17/kEzfQfzFa9ABRRRQBiaL9+9/6+X/kK26xNF+/e/8AXy/8hW3QAVkX3/ITsv8Aek/9BNa9ZF9/yFLL/ek/9BNAGvRRRQBXu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EVZu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAaNFFFAGNa/8AIbvP+ucP/s1bNY1r/wAhu8/65w/+zVs0AFZOr/6uD/rvF/6EK1qydX/1cH/XeL/0IUAa1FFFABX5SftPaRq/7JvxUtf+Cinw8tmk0MRjSPipp8CktdaBDI/2fVkRQd1zpLMWfu9k0q5zHGK/Vuue0+ys9S0ObTtRhS4t7gzxyxSKHR0dmDKynIIIOCDwRQBoaPq+leIdJtdf0K5ivLG+hS4t7iBxJFLFKoZHRhkMrKQQRwQc1o1+W37JF1efsd/G69/4J3+LZXPhe6gude+Fl5MchtHRgbvRSxPMulO4MA6tZSRgf6lyP1JoAyJf+Q7D/wBcJP8A0JK16yJf+Q7D/wBcJP8A0JK16ACsjX/+QLdf9c2/lWvWRr//ACBbr/rm38qANZfuilpq/dH0p1ABWRpv/H3ff9dh/wCgLWvWRpv/AB933/XYf+gLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//V/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntN/wCQ5qX1i/8AQa/l3/4JYTjxP/wcJftyeJQdw0+30TT89cFeMf8AkOv6iNN/5DmpfWL/ANBr+VT/AIIY2M9//wAFjv8AgoL4uDeZA/i62tFbrzHPdcfgMAUAf1mUUUUAYOs/8fVh/wBfA/8AQWrerB1n/j6sP+vgf+gtW9QAUUUUARzf6pvoayvDv/IDtf8Armtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/wAjHef9cov5tXQ1z1n/AMjHef8AXKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/wCvmL+dAG9RRRQAU1/uH6U6mv8AcP0oAxfDf/IFh/4F/wChGtysPw3/AMgWH/gX/oRrcoAKKKKAOfi/5Gab/r3T/wBCNdBXPxf8jPN/17p/6Ea6CgAooooAwfERxYIf+m0f/oQrerB8R/8AHgn/AF2j/wDQhW9QAUUV/Pb/AMFV/wDgr94k+DvjK1/YQ/4J+aX/AMLB/aD8V/6PBZ2o82DRY5Bj7RdMPlUr1Ckj1PFAHpP/AAVj/wCCvmlfsYf2d+zX+zfpbeP/AI8eNf8ARtD8P2X702zSfKLi52/djU84PJ+lecf8Efv+CQ2p/s5a/qX7cv7a2ojxz+0N42Z7jUNRn/eRaQsmQbe2zwpAO1mHAHA7k+m/8Emv+CQmkfsS2t/+0T+0Zqh+IPx68Zj7Tr3iK9PnG2aT5mt7Utnaik4LLjOOMCv2m8O/8g3/ALaSf+hGgDdooooAKwT/AMjKP+vc/wDoQrerBP8AyMo/69z/AOhCgDeooooAw/EvhzR/F/h+88L+IIFubK/heCaJxlWRxggivxf/AGPtc1j9lT4/eLf2FvG05/su5lbVvC8kh+VoZGyYlJ9B29V96/byvyv/AOCn/wADdc17wFpf7SPwxTy/Fvw8nW/jeMfvJbVTmROOTjrivtOEMVSqyq5Li5WpYlJJvaFVfw5/f7sv7smeDndGcFDH0VedLVr+aD+JfdqvNH6njoKydd1/RPDGlTa54iu4rKzt1LyTTMERVHUkkgV+VOvf8Fb/AIH6X8I9C17wzHL4j8Y6zaRldDsVLSR3JGGWQjO0BuncivDtG/ZS/bA/bz1uHxz+11rE3hDwc5EkHhyxYpI8Z5AkHbI6l8n0FbYXgevRUsRnlRYWjFtXkrzk1uqcN5eukfMirxBTm1Ty+Ptqjs9PhV+spbL038jvPjN/wUw8U/E7xTN8Ef2EdDl8Va5ITE+r7P8ARLfPBZf72P7xwK/Pb9rz9jHV/hD8K7Txr8f9fm8XfFHx1qUFja5kJhtA5Bk2/wB4gcDACiv6Tvg58CPhR8A/DEfhL4V6Nb6VaooDNGo82Uju7/eY/U1+WP7WsEfxq/4KVfCT4P58208OxyaveR9RhTuGR2yFxX2fCHEuFo5h7DJqPssNSjOpUm9atRU4uSUpbRi5JLljZa63PCzvKq1TDe0x1TnqzcYxitIRcnbRdWlfVm9ql54o/YHg+HHjK3lnuPAUdrF4f160U5jtZXwy3QHb5yQx7g1+v+manYazp0Gr6XKs9tcxrLFIhyrIwyCD6EV5b4x+G3hj4vfDXXPhx4wgW40/VvPgkVhnG7ow9CDyDX5+/sD/ABR8QfCbxvrX7B/xdndtW8LM0uhXU3/L5pzfMoBPUoD/AD9K+IrwWdZbPGRX+1ULup/fpyd+f1hJ2l/dafRnv039QxUaD/g1NI/3ZJfD6SSuvNPufrFRRXxh+1n+298Jf2UtAxr8/wDaPiG6Uix0m2O+eVzwMgfdXPc18vl2W4rH4iOFwdNzqS2S/rRd3sj18ViqOGpOtXkoxXVnX/tL/tJ/DT9l/wAPn4g/Ee7EaJBItvbKQZriXjCIvcn8hX5X/CH9n/43f8FGfiJbftGftQSXGi+BLSXzNE0CNjGZUByrN6Ajq3U9uK2v2f8A9lH4vftb/F61/ac/bejZLPBn0Tw42fKijBBUyIeg6cHlu/Ffufa2ttY20dnZxrFDEoREQBVVRwAAOABX3OJxuE4boywWXyjUxsk1UqrWNNPeFLu+kp/KJ89SoVs1qRr4lOFBO8YbOXaU/LtH5s+JvE37LGveBtXPjP8AZr1RtDu1A8zTpWLWkwHbBzgn/Jqz4a/a1k8N6pH4Q/aA0ebw1qOdv2kjdaSe4fsDX2vkZxXN+KPCHhjxrpcmjeKrGG+tpAQUlQNjPpnofcV+H1OHqmGnKtlFX2Tbu4Nc1OT/AMO8W+8WvNM/R4ZxCtFU8xp+0S0UlpNfP7XpJP1RDeatpmt+Gn1LSJ0uYJVDJJGwZSD7iovGXgjwx8R/Bt54H8ZWiX2malAYLiGQZDIwwfx9DXxf4m/Zp+InwnefxB+zzrrw2hy0mkXrF4Dz0Qnp+lbuiftcaj4Puk0D4/8Ah268Oz8KLtFMts/vuA4qqHFUsJUiszpyw809J702+jVRbf8Ab3KxVchWIi3gZqrFrWO07dnB7/8Abt0fBfjb/gjV4StdM1aW38Zapf6DYW11caVo0xzHBcMpK4bcRgewBNfSv/BJH4kzeM/2ULXwjqbf6f4Su5tLmU9RsYkf1r9CrX4g+Ada0eHU7TV7SS0vhsicyqFcsOgyevtX44/8EvrtfCn7UHxx+Flu4NtFqf2yMKcry5HHbo1fvNPP8dxFw5j/AK/V9o6PsqkHZWtzOErWSTvzJt7t7n5nPLcPlea4dYeHJz88JLXspLfa1tEfuLWBon+tvf8Ar4b+QrfrA0P/AFt7/wBfDfyFflp9eb9FFFABX54f8FOfgH4p/aY/ZX1v4R+CrdrvVLxrae3hVgpdraeOTAJ4HCmv0Pr51/aM+Pvw+/Zs8MW/xN+JU0kWnpPFZqIUMkkk104jjVVHJJYigD2/w1b3Np4c0+1vF2TRW0SSL1wyqAR+BrbqOGTzYllwV3AHB6jNSUAFZOu/8gi4/wBw1rVk67/yCLj/AHDQBcsf+POL/cH8qtVVsf8Ajzi/3B/KrVACEhRljiub8S+MfC3g6wfU/FF/BYwIMl5nCj9a+fv2vdS1/T/hSq+Grt7G7nvraJJkYqVLNjPFcf4S/Y18NXdzF4k+L2r3fiy/OHK3DkW6k+iZ/wAK+bx2b4363PA4DDqUoqLcpS5Yx5r2uleT22S+aPbwuX4X6vHFYus4xbaUVG8na3olv1ZqR/tn/s86be3fma35m+TIMcTsDx2IGKzL39vP4GxNt01r2+P/AExt2/rXveh/Cr4ZW0t1bQ+H9PCRuFUG3Q4GPcGuxs/A/grTzmw0iyhPqluin9BWDwvEUt8TRj6U5P8AOZqq+TR/5cVH6zivyifHq/t+fC0SYuNK1WKPu7QHAru9O/bY/Z31CASvrf2diOUljZSP0r6al0DQp4zDPZQOh6q0akfliuDvvgj8IdTlM194b092PU+Qo/kKn6nxHT+DF0p/4qbj/wCkzY/rOTT+LD1I+k0/zieTSftafs+ahqlm0PiS2UIzbi+VAyPU16NB+0N8EblBJB4n09gf+my1z+t/s7/BG5vLS1fwzYhJCwbbHtJ49qxJ/wBjb9na4be3h6NT/suw/rT/AOMmj/z4l/4MX+Yf8Icv+fsf/AH/AJHX337SvwH04ZuvFOnr7CYE1kw/tXfs9zSeWPFNkp9WfA/Os+z/AGQP2ebIho/DsLEf3mY/1rXm/ZZ+AU0flN4atQPYEH+dTfid62w68v3j/HQdsjWl6z/8ARZ1D9or4HS6ZMYvFGntuRsYmX0rFtf2p/2f7Gyhgn8U2RYIAdr5wfwrK1D9kD9niK0muE8OxBlQkfO/XH1rX0b9lv4BppsLf8I1asWQElgSf502+JnssOvnUYWyNdaz+UF+rOn039or4Iaum+w8T2D/APbZQf1q3ffHz4MabH5t94l0+NfUzr/jXn2pfscfs8am2+Xw/HGf+mbsv9ap2P7Fn7OtjIZV0JZD/tyMR/MUe04mXu+zoPz5p/lb9Q5Mj356vpaP53/Q6p/2p/2fEOD4rsD9JQapaT+0j8Cn1C9nHinT9jspUmYc8VLH+yh+z9GML4atvx3H+tc3bfsmfs/XmpXkc3hyHEbKFwzDqPrQnxP2w/8A5UC2R963/khs6z+11+z1ogPn+JLaYjtATKf/AB3NcBP+3r+z9CxVLy5ceogb/CvWtG/Zj+BGhNvsfDVmT6yL5n/oRNd3F8K/hnAu2Lw/pwH/AF7R/wDxNS6PE09fbUIekJy/OSH7XI46KnVl6yivyTPmE/t+fAPtPdn/ALYN/hWHqP7e3wOubm2kh+2sIpNx/cH0r7CHw2+HY6aDp3/gNH/8TWRqvgLwLFd2Qi0SwUGU5xbRjt/u0vqfEv8A0F0f/BUv/kw+s5J0w9T/AMGL/wCRPmhP+CgPwKJw/wBtT3MDVpR/t6/s/OMteXC/WBv8K+on+H3gKQYfRLA/W2j/APiaz3+FHwxkO5/D2nE/9e0f/wATR9T4mX/MXR/8FS/+TD6zkj3w9Rf9vr/5E+cx+3h+z2et/P8A9+H/AMKguf27/wBn14HjW+nJZSP9Q/f8K+jT8IfhYf8AmXdO/wDAdP8ACobj4SfC5LaRl8PacCFJ/wCPdPT6UfVeJ/8AoJo/+C5f/Jh7fI/+fFX/AMDj/wDIny7aft8fAmxs4rUPeSFFAJWBqkb/AIKC/A8dI78/9sDX1HoXw5+H0elQFNC08ZUf8u0f/wATWyPAPgQdNEsP/AaP/wCJpPBcTf8AQXR/8FS/+TH9ayT/AKBqn/gxf/Inx7J/wUF+Dw/497LUpf8AdgqBv+CgvwtB40nVT/2x/wDr19oxeC/B0P8AqdJs0/3YEH9KsDwt4ZHTTrX/AL8p/hT/ALO4je+Ppr0pf5zF9dyZbYSf/gz/AO1PhC3/AG+fhlFq1xeNpOqbZVUAeTz8v41+ZH/BUP4Q/sQ/8FPPhV/YPj3T9S8NeN9HBm8PeKLW323ljcLymWXDNHu6rnjqOa/oGs/DPhtvEF4p0+2ICx4Hkp6fStiXwX4Pn/1+k2b/AO9Ah/pR/Z3Ea1WPpv1o/wCUw+u5M98JP/wZ/wDan843/BKT9sD9sH4DeAV/Z/8A+CgN1a+KbPRP9H0bxXZSF7me2ThFuo2AYuBj5xye/Nf0J+APjD8N/idbC48F6rBeEjJjDYkH1Q8ivO/jx+yl8F/2hfhhqnws8ZaWlpa6lEUF1pwFpdwP/DJFLGAysp5Hb1r+YnwR+zl+37/wTW/apXwx8RNbn8ffC66Pn+GvFJXF3bvEcmzvdvdkyFYjDY61x4vGcQZVRljMXKnXpR1koxcJKPVrWSdlrZ2OnDYbKMwqLDYeM6VSWkW2pRb6J6Jq/fU/ro1z/l0/6+F/ka3a8e8E/Enwz8V/BWkeMfCt5FdwzyoJDEwby5QCGRsdGU8EGvYa+4pVY1IRqQd4tJr0Z8tUpyhJwkrNaMKKKK0IGSf6tvoaxfDX/IFg/wB2tqT/AFbfQ1i+Gv8AkCwf7tAG7RRRQAVztt/yMtz/ANco/wCtdFXO23/Iy3P/AFyj/rQB0VFFFABWJrv/AB7w/wDXZP51t1ia7/x7w/8AXZP50AbdFFFABRRRQBgeGf8AkEr/AL8n/oRrfrA8M/8AIJX/AH5P/QjW/QAUUUUAYB/5Gf8A7dh/6Ea36wD/AMjP/wBuw/8AQjW/QAUUUUAYHiX/AJBZ/wCukX/oYreHQVg+Jf8AkFn/AK6Rf+hit4dBQAtFFFABWH4f/wCPOT/rvL/6Ea3Kw9A/485P+u8v/oRoA3KKKKACsOX/AJGKH/rg/wD6EK3Kw5f+Rih/64P/AOhCgDcooooAKwvE3/ICuf8Ad/qK3aw/Ev8AyArn/d/qKANsdBS0g6CloAKKKKAMHQel5/19S/0rerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArNk1nSInaKS6iVlJBBcAgitKmGNDyQPyoAzf7c0X/AJ+4f++x/jWPr+uaL/Y8/wDpcPQfxj1HvXVeXH/dH5Vka9Gn9kT/ACjoO3vQBL/bmi/8/cP/AH2P8aP7c0X/AJ+4f++x/jWl5cf90flR5cf90flQBm/25ov/AD9w/wDfY/xrI0rXNF828/0uH/j4P8Y/ur711Plx/wB0flWRpUcfm3nyj/j4Pb/ZWgCX+3NF/wCfuH/vsf40f25ov/P3D/32P8a0vLj/ALo/Kjy4/wC6PyoA5TUNc0X+07D/AEuH/WP/ABj+43vWz/bmi/8AP3D/AN9j/GoNQjj/ALTsPlH+sft/sNWz5cf90flQBm/25ov/AD9w/wDfY/xqC51zRfs0n+lw/dP8Y9PrWz5cf90flUFzHH9mk+UfdPb2oAwtG1zRf7Itf9Lh/wBUn8Y9B71+Z37PGsaV+2Z+09qX7aWsXMcngPwK194Y+HELuPKu5g3k6rrYU9fNkRrK0f8A54RyOvyz11/7cXjjxd4s8P8AhP8AYg+DF9PpvjL4wJLa3Wp2bbZ9E8NWyp/auohhykgjdba1bj/SZ0IPynH3r8PPh54L+FPgPRvhj8PtOh0vQvD9lBp2n2cK7Y4La2QJGij0CgD3oA3/AO3NF/5+4f8Avsf41kW+uaL/AG1df6XD/q4v4x/tV1Plx/3R+VZFvGn9tXXyj/VxdvdqAJf7c0X/AJ+4f++x/jR/bmi/8/cP/fY/xrS8uP8Auj8qPLj/ALo/KgDldb1zRfs0X+lw/wCvh/jH98e9bH9uaL/z9w/99j/Godbjj+zRfKP9fD/6GK2PLj/uj8qAM3+3NF/5+4f++x/jR/bmi/8AP3D/AN9j/GtLy4/7o/Kjy4/7o/KgDldD1zRfsJ/0uH/Wy/xj++3vWx/bmi/8/cP/AH2P8ai0ONPsJyo/1svb/batfy4/7o/KgDN/tzRf+fuH/vsf41jza5ov9vW/+lw/6iX+Meqe9dV5cf8AdH5VjzRp/b1v8o/1Evb3SgCb+3NF/wCfuH/vsf40f25ov/P3D/32P8a0vLj/ALo/Kjy4/wC6PyoA5nXNc0X+xrr/AEuH/VP/ABj0+taSa5ouwf6XD0/vj/GjW44/7GuuB/qn7e1aSRx7R8o6elAGf/bmi/8AP3D/AN9j/Gj+3NF/5+4f++x/jWl5cf8AdH5UeXH/AHR+VAHK6drmi/br7/S4f9av8Y/uL71sf25ov/P3D/32P8ah06NPt198o/1q9v8AYWtjy4/7o/KgDN/tzRf+fuH/AL7H+NY+qa5o32ixAu4v+Pj++P7je9dV5cf90flWPqkafaLHCj/j49P9hqAJv7c0X/n7h/77H+NH9uaL/wA/cP8A32P8a0vLj/uj8qPLj/uj8qAMw65ouD/pcP8A32P8aytB1zRf7FtP9Lh/1Sfxj0rpzHHg/KPyrK0GOP8AsW0+Uf6pO3tQBJ/bmi/8/cP/AH2P8aP7c0X/AJ+4f++x/jWl5cf90flR5cf90flQByseuaL/AG9L/pcP+oT+Mf3mrY/tzRf+fuH/AL7H+NQxxp/b0vyj/UJ2/wBpq2PLj/uj8qAM3+3NF/5+4f8Avsf41j69rmi/2Y3+lw/fi/jH99feuq8uP+6PyrG1+OP+zG+Uf6yLt/trQBP/AG5ov/P3D/32P8aP7c0X/n7h/wC+x/jWl5cf90flR5cf90flQBm/25ov/P3D/wB9j/GsfRtc0XyZ/wDS4f8Aj4l/jH94+9dV5cf90flWPo0aeVP8o/4+Je3+0aAJv7c0X/n7h/77H+Nfmv8AE/4Wax8bv+CifhDxT4tgI8D/AA20M6nZzyEfZ7jWLqVlVVPQtGERyO20etfp15cf90flR5cf90flXqZVmtXL51KtFLmlCUE+sedcra8+VtfM48Zg4YmMYVHopKVu9ndJ+V7P5H50/tm6tpkvxq+ADRXEbBfGpLEMDgfZJetfSdt8Hvhlpfx1l/aA8OX7aZq+oWJsNVht5UW21JFIMMlwhBzLDghHBDbSVORgD54/bPRf+F4fs+KAOfGj/pZzV+hXlx/3R+Vetj8VVo5bgVSk1zU6kX5p1Z6Pvsn5NJrVI48NRhUxWI51e0oteT5I6/100M3+3NF/5+4f++x/jVHU9c0X+zbj/S4f9U/8Y9D710Hlx/3R+VUdTjj/ALNuPlH+qft7GvlT2ClZa5oos4f9Lh+4v8Y9Ks/25ov/AD9w/wDfY/xqzZRxmzhO0fcXt7VZ8uP+6PyoAzf7c0X/AJ+4f++x/jWPY65o39qX3+lw/ej/AIx/dHvXVeXH/dH5Vj2Mcf8Aat98o+9H2/2RQBN/bmi/8/cP/fY/xo/tzRf+fuH/AL7H+NaXlx/3R+VHlx/3R+VAHKaxrmilrT/S4f8Aj4T+Meh962f7c0X/AJ+4f++x/jUGsRputPlH/Hwnb2NbPlx/3R+VAGb/AG5ov/P3D/32P8aP7c0X/n7h/wC+x/jWl5cf90flR5cf90flQByuga5ov9kw/wClw/xfxj+8fetj+3NF/wCfuH/vsf41DoEaf2TF8o/i7e5rY8uP+6PyoAzf7c0X/n7h/wC+x/jWN/bmi/8ACQf8fcP/AB7/AN8f3vrXV+XH/dH5VjeXH/wkONo/49/T/aoAn/tzRf8An7h/77H+NH9uaL/z9w/99j/GtLy4/wC6Pyo8uP8Auj8qAOW17XNF/sib/S4eg/jHqK1/7c0X/n7h/wC+x/jUWvRx/wBkzfKOg7e4rX8uP+6PyoAzf7c0X/n7h/77H+NH9uaL/wA/cP8A32P8a0vLj/uj8qPLj/uj8qAOT0bW9GD3mbuH/j5f+Meg962v7c0X/n7h/wC+x/jVbRo033nyj/j5ft7Ctvy4/wC6PyoAzf7c0X/n7h/77H+NZF9rmi/2nZf6XD96T+Mf3T711Plx/wB0flWRfRx/2nZcD70nb/ZNAEv9uaL/AM/cP/fY/wAaP7c0X/n7h/77H+NaXlx/3R+VHlx/3R+VAGLd65ov2WX/AEuH7jfxj0qtpGuaL/ZNr/pcP+pT+Mf3R71t3ccf2WX5R9xu3tVbSI4/7JtflH+pTt/sigBP7c0X/n7h/wC+x/jR/bmi/wDP3D/32P8AGtLy4/7o/Kjy4/7o/KgDlbXW9G/tu8/0uL/Vw/xj/a962P7c0X/n7h/77H+NQWscf9t3g2j/AFcPb/erZ8uP+6PyoAzf7c0X/n7h/wC+x/jWTq+uaL5UH+lw/wCvi/jH94e9dR5cf90flWTq8aeXB8o/18Xb/aFAEn9uaL/z9w/99j/Gj+3NF/5+4f8Avsf41peXH/dH5UeXH/dH5UAZv9uaL/z9w/8AfY/xrH0LXNF/s/8A4+4f9bL/ABj++3vXVeXH/dH5Vj6HGh0/lR/rZe3+21AHyT+2n8EW/aF+EsQ+G2sW2jfELwffQ+IvB2rOwItNYsw2xZO5t7mNpLW5X+KCVx1wa7X9lb9p7wl+078D9H+LFrEdF1CfzLPWNHunUXOlatZsYbyzmGfvwTKyZ6MuHGVYGvpny4/7o/Kvy78ZQW37Fn7btp8U7ZFtvhx8fbu30jXwMLDp3jGJBHp96R0VdThUWczY5nit8klzQB+jcuuaL/bsP+lw/wCok/jH95Petf8AtzRf+fuH/vsf41FLHH/bsPyj/USdv9pK1/Lj/uj8qAM3+3NF/wCfuH/vsf41ka/rmi/2Ldf6XD/q2/jHp9a6ny4/7o/KsjX40/sW6+Uf6tu3tQA9dc0XaP8AS4en98f407+3NF/5+4f++x/jWisce0fKPypfLj/uj8qAM3+3NF/5+4f++x/jWXpOsaRLfXkcd1EzNOAAHBJJRa6by4/7o/KsjTET7XfYA4mHb/YWgDaooooAKKKKACiiigAooooAKKKKACiiigAooooA/9b+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAOc0/jW9TP/XL/ANBr+W3/AINxLiHxD+1Z+3d4xk+e4m+K80G//ZSW84/Sv6krD/kMan/2y/8AQa/lR/4NeY3f4i/tr6i5yZvjBfqT67Zro/8As1AH9aNFFFAGDrP/AB9WH/XwP/QWrerB1n/j6sP+vgf+gtW9QAUUUUARzf6pvoayvD3/ACA7X/rmtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/Ix3n/XKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/6+Yv50Ab1FFFABTX+4fpTqa/3D9KAMXw1/wAgWH/gX/oRrcrD8N/8gWH/AIF/6Ea3KACiiigDn4v+Rnm/690/9CNdBXPxf8jNN/17p/6Ea6CgAooooAwfEf8Ax4J/12j/APQhW9WD4i/48E/66x/+hCvy9/4K4/8ABTzwN/wTW/Z6fxJAi618Q/EzHTvCXh+L57i+v5BhDsX5vLQkFjj26mgD5c/4LLf8FTfHn7O1xon7EP7ENh/wlf7QHxJP2TTbS3Hm/wBk28nDXc6jO3aDlAcdMngV7x/wSY/4JMeAf+Cd/gO68c+Nrn/hL/jL4wBuvFXiq6JluJ55TueKJm5WJTxxjdj0wK8F/wCCK/8AwTN8cfAu31n9vT9tGc698fvisBf6lPcDd/ZFrKNyWkOc7CFIDgdMbfWv6BaAEPQ1h+Hf+Qb/ANtJP/QjW4ehrD8O/wDIN/7aSf8AoRoA3aKKKACsE/8AIyj/AK9z/wChCt6sE/8AIyj/AK9z/wChCgDeoorzn4sfFPwj8GPAV/8AEXxvMYNP09NzlVLMxPCqoHJLHgCtaNGpWqRpUotyk7JLdt7JEVKkYRc5uyWrZ0Pi/wAZeF/APh658WeMr6HTdOs0Mk087hEVR6k1+KPxP/aO/aK/b41e8+Ff7J1rLoHgONzBqPii5QqJ0zgrFkdD2xyfatzRPBnir/gojND8av2jNT/4Rr4U2t2Y9L0FJfKe7dX2hrp84GW4C/lX66WfhDwt4D8CweFPBdjDp2m2aJHBBAoVFUYx06/Xqa+8isFw4r1IKtjl0avSpNfhUqLqvhi+7PnW6+aaRk6eH8tJzX/tsX978j8DPhR8HtF/4JhftfaVZ/EW2h1nwj4vhS2tPENzCN9neHqMnITLfjg+1f0ZQyxXESzwMHRwGVgcgg9CK8D/AGlv2efBn7Tfwl1D4XeMkwlyu+2uF+/bzrykinsQevtX5mfszftuT/sw2Gv/ALNX7ZV0bHVfA8LNp2oSAkajZp9wKT958Yx6jjtXXmbxHFmFjmFK88dSSjUgt5xvaNSK7q/LNLylbcwwnssmrPDT93DzbcH/ACvrFv8AGLfmj9siQBk9BX4pfsgyj4zf8FJfi38ZJf3lt4ejTR7Ruwx8pA/Jq8ln+KH7Y/7dyaz8SNA1K4+Gvwo0eKeaOaIbLy8SFSeG6nd7YArl/wDgn98Dfib4l/Y/134w/CzVLi08XyeIG1Swd3O28+yAjypv76yhiDnvzXtZdwvHKMrx7xeKgq9RU6LSu1SdSXM1OS0vaHvJX5Vv2ODFZu8bi8MqFGTpxcpp7c/KrXit7Xel9+h/Qh4d/wCPaf8A67yfzr83P+Cj/wAD/E1xoOmftVfBsG38a+AHF0rR8NcWanMkbeoA5xXrfwI/bQ+Ffir4KX3xF+IV9B4bvtEmkh1uyu3CSWtyn3l2nkgkfLgc1+fPjD4t/H//AIKeeMpvhZ8B0ufC3wrt5Nuo65IjRyXiA8qh44bso696+e4TyLM8FmcsVWSpUqDtVlP4OV6Sh/f54uyjG973Wmp6edZhhK+EVGnec6i9xR+K/SX93le7exoa9/wU3+LH7Smi6T8Lf2MPDk9z4s1O1Q6lfSp+40524bBPHB53HjHrXNeAv2Z/F/7MPxLn+Kvxy8LT/EzxTcxpPFqkrtNBFMeWwpBAI7ccdq5vxX4M8Qf8EivjjpvjX4axy698PfFUcdpf2bspulnj6svT6g9Oxr+gzw5q6+I/Dtjr3ktAL63jn8qT7yCRQ20+4zg1XiHGph8BRhwpWeGwla7VWFnUqPaVOpzapRvpFWWzu7lcKzpzxVSWdUlWrU7LkldRj1UoW6vv6qx+att+3n4jvNaiC+B7prhUaMRIxJJP/Aa4fxz8Zv20vF2o507Rr7w/p0x+Vba1MjhT6kgnP4Cv1Tk0+wj8UQSxwRq5hclgoB6jviuqr+e6/Cma4mn7PFZrO1/sRjD72tX96P1Oln+X0J8+Hy+N/wC9Jy+6+n4M/Kf4f/CL9s3UBJ43j8SXFlKgLwW+oH5psdmjGQoPavpv4Q/tK3mq+Ih8L/jLYHw/4nThFfiG594ye59K+va8J+O/wP0P4yeGjA3+i6vZ/vLC9Th4pRyORzjPUVpS4bxWVUlVyuvOc1rKFSXNGp3tf4JdmtO9zOedUMfUdPH0oxi9pQVnD7viXdP5HrniA/8AEom+lJqugaJ4l0k6Vr9pFeW0i4aOZQykEehr4/8Agt8ctW1O0vPg78Wh9j8VaSPLBk+UXca9HQnqcdcda+14f9Sn0FfTZbmOHzLDKtT1i9HFrVPrGS6NdV+h4mNwdbBV/Zz3Wqa2a6NPsz8xv2h/+Cbngv4k6Yw8A3UmmlJDOlm0jiJZf70bA5Rq+dP2UPhD4l/YJ8T+INb8UeEtX1mfW9qS6jE4uAsaHOB3PPUk5r9yKQgMMMMilTwmNwmGqYPKMbUw9GfxU4tSpPW/8OV1HXV8nLfrc0ljMPXqwr5hhoVpx2m9Jrp8as3p/Nc+QtK/bc+CN5iPWJrrSpOhW6gZMfU4xXZ+Ff2jvgdqMlybfxNYjzZiyh5ApIIHrXs2qeDPCOuKU1jTLW6B6+bCrfzFeGyfsx/AjxNLenVPDVpuEzANGDGQMDptIFeXKlxDTXuVaNT/ABRnB/hKS/A7FUyeb96FSHpKMvzUT2iy+IHgbUY/NsdXtJV9VmX/ABrQHirwwemo23/f1f8AGvlu6/YW/Z7uG3xWFxCf+mc5Aqif2DfgVn5Fv1+lyf8ACo+ucQrR4Sk/SrJfnTH9Xyd7Yiov+4a/+TPrX/hJ/DZ6X9v/AN/V/wAa/KH/AIKq6NpXxN0X4Q+EYLlJ7eb4iaHJdLG4I8qKQuS2DwoIGc8V9TH9gz4H9m1Ef9vJ/wAKxbz9hH4InVLW1c37K25uZycFehHHFH17iD/oDp/+DX/8rD6rk/8A0Ez/APBa/wDkz7S/4Sbw5/z/ANv/AN/F/wAaUeJfDp4F/b/9/F/xr5CP7BXwSP8Ay11L/wACT/hTD+wT8Fj0uNTH0uT/AIUfXuIf+gKn/wCDn/8AKw+qZP8A9BM//Ba/+TPsMeItAPS9gP8A20X/ABr5W+Lvgr4wyapdeL/hF4wjWOZcy6bd7XhOP7hHIz6ZrD/4YJ+Dg+5eaqv0uT/hXhvxv+BHwV+B+gC9fWdam1G5ylnYxXTF5X+g7epryM7xmaPCynjsLGEI680a7i16NQV/TW+1mejleGwP1hRwtdylLS0qSafreX46W7nrfhP9qD4heCvEWneC/j94eOmjUHWC21C3O6B3PA/P2NfeYIIyOhr8x/2fP2X/ABx4pudO8dfG27uTZWL+fp2mTSmRlJ5DOT0+nWv05AAGBXpcG1cyq4adTH83I2vZ89ufltrzWS67XSdtzi4kp4KnXjDCW5kvf5b8l76ct2+m9na+x8jftlS+V8NtP99WtP8A0MV9X2P/AB5Q/wC4v8q+Q/21n2/DbTB66vaf+hivruw/48Yf+ua/yrswL/4Wsav7lL/3Ic2KX/CZhn/eqf8Atp4Xp/xIvE+P918LRGht2sftm/8Aj35xj6Yr3+vgLT7+ST9va6tlPyppIU/iM195X19Z6ZZy6hqEiwwQqXd3OFVR1JNbZJj5YhYp1HpCrOPoo2M80wkaPsFBaypxl83ct0V5V4D+Nvwv+JmoXGleCtXhvri2+/Gh+bA4yPUVR+MPxu8I/BnS4LvXhJc3d4/l2tnbjdNM3oB/Wu6WbYOOGeMdaPslvJNNdt1fW+lt7nLHL8S66w3s37R9LWf4noupf8hWx/3n/lW9Xzn4C+Ndn8QvENpo2p6Te6DqShpVtr5NpePH3lIyD719GVtg8bRxVJVqErx/rRp6p+TMsThqtCfs6qs/6+TCmSyCKJpW6KCfyp9UdUO3TLhvSJ/5GumTsmzGKu0j5o/Z9+Iniz4neE/EXiLxLcRyRx39zb20aJt8uOIlQCe+a+lNJ/5BkH+4K+Ff2Hbw3Hwt8TQHrFqt1/48Sa+6tI/5BkH+4K+e4TxM8RlGHrVZOUpK7b1bd2exxBQjRzGtSgrJPRLtZGjRRRX0R4w13WNS7kADkk9K4/w1rWkaxqupNpV1FciORVbynDYIHQ4NfLfxa8S+JfjF8UV/Z+8D3T2Wn2iCbXLyI4cRnpEp7E9663wD8JdN+EXj/WNb8IW4tdFh01EeMOSZJowWLNnPJHevnoZ1VrYmUcNS5qMJcsp36215VbVRekm2tdFex7Mssp06ClWqWqyXNGNunS7vo3ulZ6avc+qaK+DfFf7QnxiufhQ3xq8I2FhZ6PajdJFcuZJpQG2nbt4H419TRfFPwtYfDuy+Iniq6j060ubeOYmQ4wXGcD1NbYTiDB4icoxbSUVO8lypxd7STfTTrYyxOT4mjGMpJNuTjZO7UlbR266nplc/rP8Ax+WP/XU/yrxzQP2oPg54iuktbTUWi8w7UeeJ40YnphmAHP1rqPih8RPD/gNNFvtWZpPt97HbwJENzO0vAIHoM5PtXVTzfA1KUq8K0XCO7TTS9TCeXYqFSNKdKSk9k09T1uisXX/EOj+FtFn8Qa/OttaWyF5JHOAAK+CdX/bL8bH/AIrnw/4ZL+DVu0tReTPsklLnGUXvXNmvEGBy7lWKnZu7sk5Oy3k0k7RXVvQ2y/KMVjbuhHRaXbSV3sk3u30R+iFV7v8A49Zf9xv5UyzvI7uxivx8qSIJOewIzzXydrP7RPiHXNa1eL4Y6MuraL4fDDUL1pNoZh95YRj5io5NdOOzXDYSMHWl8WySbbsrt2V3ZLVvoYYXAVsQ5Kmvh3baSXRavS7ei7n1Ron/ACCYP9wVqVzXhnVLO88KWmso2IJIFl3HspGefpVHTviH4K1aWyt9O1KCWTUVZ7ZFcFpFXqQOuBXW8RSXLeaV9td/T7195gqNR3tF6b+X9WOzoqmNR08ymETx716ruGR+Gar6Vreka7A1zo1zHdRo5RmiYMAy9Rx3FX7SN1G6uRySte2h5/408b6P8OdP1zxnrrbbext1kI7sccKPcnivKPg78X/iV4g1uy074m6XDYQ69bNeaa8ROQinmOTP8YBBryf9sK8m1jxD4a+GEWSuvanB5yjvFFj9OTX154h8ESajf+HbrTmSIaJNuOepjKbSo+vFfK1cTi8TmdWGHm1Ch7NOKtaTnrK/+GDVrdWe/Chh6OBpyrRTlV52m/sqOit6yvfyPR68y+M3g+Hx58Ltc8LyqHNzaSeXkZ+dRuXHvkV2kniHRo9cTw29wn26SMzCHPzbAcZx6ZrXdFkQxt0YYP419JXpU8TRqUJappxfzVmvxPFpTnQqQqrRppr5M/hh139p39qT/gkh+1Mv7VrWl14h/Zw8b6nDZeLrSHMn9jamoCG6Vf4Ny/Mez896/tY+EXxc+HXx3+G+kfFv4T6rb634f122S6s7y2cPHJHIMggjv6jsa/MD4V/CP4efGGf4q/sy/FXS4dX8Ma3dNDd2cwBVo5d6HGejDGVI5BGa/CX4P/EH40/8G1P7XUX7NnxsubzxF+yh8RdQY+G9bkzI2gXEzf6uU/woCQGHTHzDvXzfA1eVTJMPGbvKF4P/ALck4/kj2uKaUYZnWlFaStL/AMCSl+p/bDRWH4a8S6B4x0Cz8U+F7uK/06/iWe3uIWDxyRuMqykcEEVuV9afPDJP9W30NYvhr/kCwf7tbUn+rb6GsXw3/wAgWD/doA3aKKKACudtv+Rluf8ArlH/AFroq523/wCRmuf+uUf9aAOiooooAKxNd/494f8Arsn8626xNd/494f+uyfzoA26KKKACiiigDA8M/8AIJX/AH5P/QjW/WB4a/5BK/77/wDoRrfoAKKKKAMA/wDIz/8AbsP/AEI1v1gH/kZ/+3Yf+hGt+gAooooAwPEv/ILP/XSL/wBDFbw6CsHxL/yCz/10i/8AQxW8OgoAWiiigArD8P8A/HnJ/wBd5f8A0I1uVh+H/wDjzk/67y/+hGgDcooooAKw5f8AkYof+uD/APoQrcrDl/5GKH/rg/8A6EKANyiiigArD8S/8gO5/wB3+orcrD8S/wDICuf93+ooA2x0FLSDoKWgAooooAwdB6Xn/X1L/St6sHQel5/19S/0reoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArH1//AJA8/wBB/MVsVj6//wAgef6D+YoA2KKKKACsjSv9bef9fB/9BWtesjSv9bef9fB/9BWgDXooooAxtQ/5Cdh/10f/ANAatmsbUP8AkJ2H/XR//QGrZoAKxPE2uaL4Y8N6h4l8S3cVhp2nW0tzdXM7BIoYIVLvI7HgKqgkk9AK26/Mj9vae6/aB8ZeDv8Agnn4edvs3j3zNa8byRkgweDtMdPtMJZeVbUrhorNf70TTn+CgA/4J46B4i+LsniP9v8A+Jdk1nqnxQS3tvDFpN/rdN8G2Bb+zYj12yXheS/mAPWdEPMYx+m9Y/h62tbPQLGzsokhhigjSOOMBURVUAKoHAAHAFbFABWRb/8AIbuv+ucX82rXrIt/+Q3df9c4v5tQBr0UUUAY+t/8e0X/AF3h/wDQxWxWPrf/AB7Rf9d4f/QxWxQAUUUUAY+h/wDHif8ArrL/AOhtWxWPof8Ax4n/AK6y/wDobVsUAFY83/Iet/8ArhL/ADStiseb/kPW/wD1xl/mlAGxRRRQBl65/wAga7/65P8AyrST7g+lZuuf8ga7/wCuT/yrST7g+lADqKKKAMfTf+P6+/66r/6AtbFY+m/8f19/11X/ANAWtigArH1T/j4sf+vj/wBkatisfVf+Pix/6+P/AGRqANiiiigBD0NZWg/8gW0/65J/KtU9DWVoP/IFtP8Arkn8qANaiiigDHj/AOQ/L/1wT/0Jq2Kx4/8AkPS/9cE/9CatigArG1//AJBjf9dIv/Q1rZrG1/8A5Bjf9dIv/Q1oA2aKKKACsfRf9VP/ANfEv/oRrYrH0X/VT/8AXxL/AOhGgDYooooA/PX9s0Z+O/7PY/6nOX/0imr9Cq/PX9s7j47fs9t/1Ocg/Oymr9Cq+jzf/kXZd/gn/wCnZnmYL/ecT/ij/wCkRCqOp/8AINuP+uT/AMjV6qOp/wDINuP+uT/yNfOHpktl/wAecOf7i/yqzVay/wCPOH/cX+VWaACsex/5Ct9/vR/+gitisax/5Ct9/vR/+gigDZooooAxtY+9af8AXwn8jWzWNrH3rT/r4T+RrZoAKKKKAMfQP+QRDj/a/ma2Kx9A/wCQRD/wL+ZrYoAKxv8AmYf+3f8A9mrZrG/5mH/t3/8AZqANmiiigDI17/kEzfQfzFa9ZGvf8gmb6D+YrXoAKKKKAMTRfv3v/Xy/8hW3WJov373/AK+X/kK26ACsi+/5Cll/vSf+gmtesi+/5Cdl/vSf+gmgDXooooAr3f8Ax6y/7jfyqto//IJtf+uKf+girN3/AMesv+438qraP/yCbX/rin/oIoA0aKKKAMa1/wCQ3ef9c4f/AGatmsa0/wCQ3ef9c4f/AGatmgArJ1f/AFcH/XeL/wBCFa1ZOr/6uD/rvF/6EKANaiiigArH0L/kH/8AbWX/ANDatisfQv8AkH/9tZf/AENqANivGP2iPgZ4M/aX+CPiX4FeP1b+y/Elk9q8sfEtvLw8NxEf4ZYJVSWJuquintXs9FAHwd+wp8cvGfxa+H8vgb4zsi/Ez4a3Nx4V8XxoNiy39oImjvY1P/LG/t2iu4uwEpXqpr7xr8s/2lph+yd+2Z4M/bEsYo4PCXjuK28CePpS2wQNJNjQ9RboCIrqZ7OVmPEdyh6JX6mUAFZGv/8AIFuv+ubfyrXrI1//AJAt1/1zb+VAGsvQUtNX7o+lOoAKyNM/4+77/rsP/QFrXrI03/j7vv8ArsP/AEBaANeiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9f+/iiiigArndY0a3uobi5kklUlDwrkDgY6V0VVL/8A48Zv+ubfyoA5fRPDtodGtD5s/wDqU/5aH0Faf/COWg/5az/9/DVzQ/8AkC2n/XFP5CtSgDnx4ctP+es//fw0Dw5af89Z/wDv4a6CigDz2z0Kzj1bU3Mk3yeUf9Yey1/LL/wawaRBrnhz9q7xVI8g+3fGHVQCrEZ2Avz/AN/K/qt3FbvWmHaND/44a/lw/wCDS9RL+zd+0Nfn783xk1vJ+lvan+tAH9T3/COWneWf/v4aP+EctP8AnrP/AN/DXQUUAcFrPh20+02A82f/AI+B/wAtD/dat3/hHLT/AJ6z/wDfw07Wf+Pqw/6+B/6C1b1AHP8A/COWn/PWf/v4aP8AhHLT/nrP/wB/DXQUUAc3L4ctPKb97P0P/LQ1l+H/AA7aHRLU+bP/AKtf+WhrtJv9U30NZXh7/kB2v/XNaAIP+EctP+es/wD38NH/AAjlp/z1n/7+GugooA5//hHLT/nrP/38NYFp4etD4hu182f/AFUX/LQ+rV39c9Z/8jHef9cov5tQAv8AwjlpjHmz/wDfw0f8I5af89Z/+/hroKKAOf8A+EctP+es/wD38NYeu+HbQJbHzZ/+PiL/AJaH1rvKwde+5a/9fMX86AG/8I5af89Z/wDv4aP+EctP+es//fw10FFAHP8A/COWn/PWf/v4aa/hy0KH97P0/wCehroqa/3D9KAOF8OeHbQ6LCfNn/i/5aH+8a3P+EctP+es/wD38NSeG/8AkCw/8C/9CNblAHP/APCOWn/PWf8A7+Gj/hHLT/nrP/38NdBRQBwEXh20/wCElmHmz/8AHun/AC0P941v/wDCOWn/AD1n/wC/hoi/5Geb/r3T/wBCNdBQBz//AAjlp/z1n/7+Gj/hHLT/AJ6z/wDfw10Fea/GH4vfDv4C/DPWfi/8V9Ug0bw/oFrJeXt3cMESOKMZPJ7+g7mgD5e/b0/aj+CP7Cn7Nut/tD/GvU5LXTNHCNFCJf3t1cE/u4Yl6s7tgAD61+FH/BKv9if4uf8ABQj9og/8Flf+ChdhNb3VwSvw38K3GTHpWnA5iuWVv426rxyfm7CvFPgR8OviX/wcIftdW/7b3x9srrTP2YvhzqXk+C/Dd0GRdeuo2AN1MnRkDDPPb5R3r+yOxsbLS7KHTdNhS3t7dFjiijUKiIgwqqBwABwAKAMn/hHLT/nrP/38NH/COWn/AD1n/wC/hroKKAOePhy0x/rZ/wDv4axPDvhy0/s3/Wz/AOsk/wCWh/vGu7PQ1h+Hf+Qb/wBtJP8A0I0AM/4Ry0/56z/9/DR/wjlpnPmz/wDfw10FFAHP/wDCOWmc+bP/AN/DWGfDtn/wkgHmzf8AHuf+Wh/vCu8rBP8AyMo/69z/AOhCgBv/AAjlpn/Wz/8Afw184ftc6jpHw8/Zz8WeL7vfMbSwkMSynevmsMIcHIyCRivq+vze/wCCpOtNa/s1ReF4mIfX9b02wwP4ledSw/75Br3eGMIsTm+EoS2lON/S+v4HnZtW9lgq1RbqL++2h7j8Mf2fPA+rfszeHvhZ4ytWubGbSrb7VAXIDSuokZuOQd5JyOc16rf6Z4VtLR/B+nXshuLCCEmDziZEiztUnvzjGT1r0vSrRdO0q2sF4EESR/8AfIAr8t/2yP2svhT+z18QRrPg2c+IPHeo2f8AZ39h2f70y4bdE0pX7mxvxIJFbYDB4zOsXPD0eaUpOU0ltzN6t9IpreTt0u7GeIr0MBQjVqWSSUW+tl0Xf09bH1b+0p8e/hJ+y54Am8c/EXUJVbG21tElJnuZT0VF6nPc9q/DDx/+yz+1D+3n4Z1v9rXxzANFi0+1M3hrRJE3yTwxndtYnBwwHU9T04r7X/Zg/Y08Z/tB+M7f9rT9szUY9evZ2Mul6Grb7SzAPAZfu5U8bfUc+lfs9HbwQwLawoqRKoVUAAUKOMAdMV9ZRzrC8JzVLK3GrjE/3lW14xXWnTT3vtKfXaPc8aeArZzFzxicKH2YdX2lL81H7z4B/Yy+Ifw4/ar/AGYbS1MBtHt7U6Rq+mRt5YglRdjqFH3Qw5FfPXxK/aH+En7HenWH7KX7Jmh3XivxVGWSDTLWVpEt3kOd07qOue1ZfxN/Zy+K37NX7W1r8Yf2dpoLbwt49l+xa5YSzCGOKebI81FJAJydwxzn619i/sefszfDD4AaPqFlp11ba74ya4d9c1UHfcPNKSwVicsg2kfLxV4tZPhfaZgpyrYarapCgpNJTfMmqrWypvRdZKSs9xUXjq3LhnFQqwvGVSy+HRrk85LXsrPyPxE+K37BX7QS6Tc/tgfG63t9euBqCXmt+GbIlAbSP72WX7zKOvU+9fvD+zt4l+FXjj4ZeF9V+BVi0fhe/t22/ZnWOOzZB/q3TOd27g/nXrfgHw3rsD69J4o1L+1LXUbt/ItWiCx28OMFO5bd1JNflT4ug17/AIJn/H5/iBo6ST/BzxtdBb+1jBK6VeSHiRR0VCfT6VdfOKvFOH/s6rKPt6SboxjeNOUeXWmo6e/H7D+1ZxbehNPAwyer9agn7Oek27OSd/ib191/aXS99NT279vbw1ofirxH8M/g/BCZtQ8T6/DG8rnc8VlD+8mweoDYANfo3F4YsIY1hikmVEAVQJDwB0r4G1K60j4pft+eDNc064S70zSPC1zqVpIjBkdrp1RWX8DX6OV8jnrdLB4DBv7MHN/4pzf/ALbGJ7eXJTr4iv3kor0jFfq2cDN4dtB4jgHmzf6l/wDlofUVvf8ACOWn/PWf/v4aWf8A5GS3/wCuL/zFb9fMHrHPjw5aD/lrP/38NA8OWn/PWf8A7+GugooA+Wfj3+zr4c+I+jDXLGeWx17Txus71WyysOgPqM1434B+O2seA9ai+Gv7SUM+l3vCW+phz9muB2JPQGvvDxDxo830H86wPGnw88H/ABK8Onw/4ysY723kTA3j5lJHVT1Br5vMMkqqu8flk1Trv4k/gqW2U137SWq81oe3g80puksJjoc9JbNfFD/C+3eL0fkaNro+lX9sl3ZXMssUgDK6S5BB9DVj/hHLP/nrP/38NfA9z4a+NP7JF8+reEHm8U+Ct2ZLJiWuLZf9n2H5V9WfC/8AaC+GHxYsUm8OajGl0R+8tJiEmQ+hU/0p5dxFSrVfqmMj7HEL7Env5wltJemvdInG5NOnD6xh5e0o/wAy6eUlvF+unZnpg8OWf/PWf/v4awdE8O2hlvf3s3+vb/lofQV3oIIyKwdE/wBbe/8AXw38hX0Z4wg8OWg/5az/APfw0Dw5af8APWf/AL+GugooA5//AIRy0/56z/8Afw1hXnh20GuWY82b7r/8tD6V2lxeWlope6lSMDqWYD+dfkr8dPjfeeGv+ClHw2muNYeLwLZeGdYfUZIZC1sL1iohWXbxuIztBrmxGMw+HjzV6kYrzaX5m1HDVqz5aUHJ+Sb/ACP1T/4Ryz/56z/9/DR/wjlp/wA9Z/8Av4a+RdY/bu+E0Ept/C1nqGtydP8ARoDjP1NY6/tS/GjxMB/wgvw21B1b7sl0fLWvAlxllHNy0q3tH/cjKf8A6Smj2I8NZjbmnT5F/eaj/wClNH2l/wAI5Z4/1s//AH8NeVeOfgj4K1ya58WyJIusLbGGC7Ll2hHYqDkAivAD4h/br8Tj/QdI0rQ0bvM3mMP1FY+q/Bn9sDxBZSTeKfHlvaQ4y0dtGR+RA/rXLic+WJiowy6tUV7q8FFX6Nc8k0+ztdG9HKXQlzSxlOD8pOWnb3U0/Qi8SfDX9qTwVpMmsaT47tr23tojII7tNjsqjO3PAzXrn7L3xPX45eA5dW1gSW+p2Ext7pI5Dt3DoR9a+Efjh8FdS0W/0n4fL4o1PxN4n1tk2QM5EMMR6swyeK/UH4G/CDRPgt4CtfCelqpnwHupgMGWU9Sfp0FeFw1UzCec1KcIzhQpxanGdV1feesUnraSWrSk9HrqerncMJHLYTnKMqs3eLjDk91bt7XT6XS12Pn/APbS0m2svhzpbxvI2dXtB8zk9XFfXFj4etHsYW82bmNf+Wh9K+WP24Dj4b6T/wBhe0/9DFfYunH/AIl8B/6Zr/IV9VgP+R3jf8FH/wByHg4v/kV4X/FU/wDbT87fAGk2+r/txeJyHkMdlZKm4Mc5Ix1r1L9rR9PX4X6p4J0W8lbW722aWG1VyzvFHy5wO2K89/ZdP9t/tI/EnxG3zBJlhU/Rq67Sddguf22dW03Uyu2LR0jiD4xjq2M+vevk8FW58pnSvb61Xqwv2UpTV/W0dD6DFUuXMI1LX9hSpyt3cVF2+96nyl4H0/wJoXjz4Ua98Oz9nfVo2tNRETYYyAHcG9DkV7ZoWkW3xQ/bT1JNRZ5rHwpahYAzFtsp/iH41ix6R4N8cftmabp3w1s4orHw2Hur6S3GIzOfpxntXW/s6t/Z/wC1h8RdNu+JZdjKD1IBrxMrouNajhZcvsnikvd+GTp0t0vOcb+q3e56ePqp06tdX9oqDevxJTqdfSL+4+pfiFp/g/wytv408SySJFpSyzea0hyo28gfXpivmjwBrfx3+PzSeMfB13H4Y8OBylqbhWnmuAp+9jIwDWn/AMFAtQuLX4O21lA5QXl7HC5HHynrXa+Lvi14N/Z7+A+nQ2s0TXosY4rK1jILvKyjBwOwJya+xzXMIvMq1GtVdLD0aanNxfK5yldJNqzslHZO7bS8j5zL8JJYKnUpU1OtVm4RurqKVm3Z6Xbe72R5N8Hvix428S/tJ6v8J/Fl6k1rYW7Kn2ZiFaWLG5gTzznkdq+6L3w3aNZTKss2TGw/1h7ivxs+FlprvwH+Onhr4g/FCX7LH4mgluJpZOBH5x6MT36V+mnwl+LmsfGHxRqeqaBbLH4Usx5EFy4O+5mB+Zl/2BXDwTxDKtRnhcdKXt3UlaL1kotKSv2ST3fpvodPE+Txp1I18LFeyUI3ktIuSbi7eba2+Z8ofsQwQXGleONElkkU21/I2Fcr1yK/QfSvDtm2mwN5s/3B/wAtDX5z/soSy+Gfjj8RvA97+7kkaSZEPGQGJ4/A1+m+k/8AIMg/3BXrcAVHLJaUHvCU4vyanI4OLo2zOc1tJRl98UUD4ctP+es//fw0v/COWmQfNn4/6aGt+ivsz5k/Knw34q8Tfs+fELxY3jfwvq2oyavfGeK8s/mVouwz3rudM/aE8NfGLRdf8M+AbfULfWbmJl8q5PEUYQh5GIyPlHb1r6T/AGkdH+MniTwhB4a+DzxwTX0pju7hm2tHCR1U/wA8VxXwk+A2hfBb4e+INOjf7Vqk9rIbq8P32ZoySATyADX5nTy7N8Ni55fhKr+qJScnKEV8V5csJLWUrt3k1ZebPt54zL6+HjjMRBfWG4qKjJv4bK8k9EtNEt/I/PP4d6hr/wAZfCnh79m3wv5whjuJJdWuMnYsKuePTkfqa+j/AAd4R0/4+/Hm88P3zSSeEfAqpbwWxYlJZ0GMn8s12f7AHgvTtM+HWqeL7di93qN1JG2QPlEZIGD15714v8Bvjf4R+Ba/EKbxjJs1T+0XeG2x+8mbkAD8etfJ5Zh4UMNl1fNanuVtZX+FU6MG6cPNX95rqz6HHVZ1a+NpYCHv09I235qkvfl93up9EfSfxB+Imi6P8d/D3wG0ywivLXUEzeBjnyhglcDGO1cfrkVr47/bD07wSrO+m+FbXzihbIE8g4I9MDivl79nzxDqN/8AtWQ+O/i2xsLvVInuLYTgruM2BGF/DpX0B8HNShj/AGx/G51aRYp3kCoHOCVBPTNetgM8nmkqTrO0KmKsouycYQhzRi/WSTs+p5+LyqOAjNU1eUKF21qnKUuWTXonbQs/tBfa/i58cNH/AGb9CuZV0+Pbd6q28nKjnb+X6ms3x1oekfE344aB+zz4IVl8P+F9lzqBRsoGj6L6ZB/XNfPXi/4peJfCP7UnjC/8F2xvdY1Ivp9ls+bYzkDcPoOlfpF+zN8Ef+FP+EHvfETi48Qas32i/uGOW3Nztyew/nWeWSlnmYYmik2nVftZdFSpu1Okv8TV5W6XvuXjlHK8HQqN6qmvZx6uc179R/4U7Lz9Dl/2q/Esvw7+G8Wi+GJZv7V16dNOtB5h+XzOGb8Aa9O+GfwY8PfDv4a2/hK38zItybkhseZI4+cn6k189/HfHiv9qz4e+EJCGt7ZJLwr1BcE4P6Cvsvx14w8PeBPC154m8T3C21pbxsWZjyTjgD1J7Cvt8BUhWzPHY2u0oUbU432SUVOb+bav5RR8vi4Tp4HC4WkveqXm7bt3cYr5JO3qfHn7TvjbQ/gr8C00nRZZI77U4ja2kQkPyqR8zfQD+dfPVh4Wh+BP7PWl+P7B5Lrxj4nEVrZSyMc26zfwoOwGfzNfNfxQ1/xt8ePjhp2h67C9sJ5YYLS2P8Ayzgcg5x6leTX3D+2ZcWnw/v/AIcXN3Ex0jR7ndKEGR+6C4H1OK/N8Zm/9o1swzWK5aWHUaVJtW5XKSUp26NLVdUrH2mHy76lTwmXyfNUrOVSa/m5Y3Ub9U3p5u55R8ffAXgn4C/C+znvtQv7zxtq6BvPF064J5dyoP3R0HrXvn7E/gX/AIRn4RweKfEOryRxa1K0iW7MEQOScENnJLDtXz9dfDnxv+0X4W8X/tBeIbSQs9s0Oh2ZByI0IywH+6Dj15r6z/Z903wF8Yv2dNO8A61DI502NILmMhopIZ05BU8EEdiK7OHcOpZ6sVQoqEPZN0E2481nbmk9W3JJt3u+VptHNnNa2VfV6tRyl7Re1as+W6vZLoo7dNU0eY/EvT9P1f8AbS8JaIZmeGztHuWLSZwcHv26ivtPX9Y8AeFrNtR8Q6ylpCvVpLkAfzr8y1+APhbUf2upfhidQ1E2NtYed5puCZwSB8ofrt5r7t0j9k34H6LGJZtKbUpUBIe+leck/Rjj9K+j4dxWa1auPq0qEE5VpXcpvRxjGNrKGqVt9LnjZzQy+EMJCpVk0qaslFaptyvdy0vfzPj7wP8AtKfDHS/Hni3xXrb32o3V5d+RYLaK0h+yRDCgMOACcmvqP4MfFe/+L2v3lofDmq6RpsEYeK7u2Khz0249a85/Yh0zw82j+KLX7JB9otNZnTlFLIvYDIyB6V9zajq2laLFHJqk8dskjrEhc7QXboo9zXTwnRzGphKOMr4tKm3KTioLVuUr80229+yXYx4hqYOGIqYalh25pRSk5PRJK1opLp3ufl58HdNhi/bC8baTG8ixGbPysQThz3/GvrH9qP8AY7+B37YvwV1n4CfHfTTrGga1EUdJGy0Un8MsZ/hdTyCK+XPh3/xL/wBu3xTZtx54Lj8wf61+o9dnA+mCrx7Vqy/8nZzcVf7zSl3pU/8A0lH8T/wO+On7SX/BvH+0FY/sh/tqXl/4q/Zs8R3fk+E/GILMdJMjfLDOecIucEE/L1HFf2O+ELvwb498MWPjPwZqZ1PStThS4tbq3n3xSxOMqysMggiuB/ad/Zg+Cv7YPwa1f4EfHzRINc8P6xE0ckUygtG5BCyRt1R1zlWFfyY/AL4x/tG/8G6P7VOnfshftT6lc+Kv2YfG94YfCPiWbLtokkjfLBM5+6gyAy9B1HFfZnzJ/ZY/hy0CN+9n6f8APQ1j+HPDtodGgPmz/d/56Gum0rWdK8Q6LBruh3CXVneRLNBNEwZJI3GVZSOCCDUHhv8A5AsH0oAjHhy0/wCes/8A38NH/COWn/PWf/v4a6CigDn/APhHLTvLP/38Nc/b+HrQ+JblfNm/1Uf/AC0PvXoFc7bf8jNc/wDXKP8ArQA7/hHLT/nrP/38NH/COWn/AD1n/wC/hroKKAOf/wCEctP+es//AH8NYuueHLMW8P72f/XR/wDLQ+td1WJrv/HvD/12T+dAEQ8OWg/5az/9/DR/wjlp/wA9Z/8Av4a6CigDn/8AhHLT/nrP/wB/DR/wjlp/z1n/AO/hroKKAOB8NeHbQ6Sv72f77/8ALQ/3jW9/wjlp/wA9Z/8Av4aXwz/yCV/35P8A0I1v0Ac//wAI5aYx5s//AH8NH/COWn/PWf8A7+GugooA4E+HbT/hJdvmz/8AHsP+Wh/vGt7/AIRy0/56z/8Afw0p/wCRn/7dh/6Ea36AOf8A+EctP+es/wD38NH/AAjlp/z1n/7+GugooA4HxJ4dsxpZPmz/AOsi/wCWh/vCt0eHLTA/ez/9/DTvEv8AyCz/ANdIv/QxW8OgoAwP+EctD/y1n/7+Gj/hHLT/AJ6z/wDfw10FFAHP/wDCOWn/AD1n/wC/hrE0Dw7Zmzk/ez/6+X/lof7xru6wvD//AB5yf9d5f/QjQAz/AIRy0/56z/8Afw0f8I5af89Z/wDv4a6CigDn/wDhHLT/AJ6z/wDfw1iS+HbT/hIYR5s/+of/AJaH+8K7usOX/kYof+uD/wDoQoAj/wCEctP+es//AH8NB8OWh/5az/8Afw10FFAHP/8ACOWn/PWf/v4axPEnh2zGh3P72f7v/PQ+oru6w/Ev/ICuf93+ooAiHhy0wP3s/wD38NKPDlp/z1n/AO/hrfHQUtAHP/8ACOWn/PWf/v4aP+EctP8AnrP/AN/DXQUUAcFoXh20IvP3s/8Ax9Sf8tD7Vu/8I5aH/lrP/wB/DTtB6Xn/AF9S/wBK3qAOf/4Ry0/56z/9/DVyy0mCxmM0TyMSNuHbcK1KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsuTT7p5GdbyZQSSAAmB7crWpRQBkf2Zd/8/035J/8TWPr+mXf9jz/AOnTfdHZPUf7NdfWPr//ACB5/oP5igBf7Mu85+3Tfkn/AMTSf2Zd/wDP9P8Akn/xNbFFAGR/Zl3/AM/035J/8TWRpWm3fm3n+nTf8fDdk/ur/s111ZGlf628/wCvg/8AoK0AJ/Zl3/z/AE/5J/8AEUv9mXf/AD/Tfkn/AMTWvRQBx+oabd/2lYD7dN/rH7J/cb/ZrZ/sy7/5/pvyT/4mm6h/yE7D/ro//oDVs0AcrrU1r4d0e78Qa7qz2ljYQyXFxPKY1jiiiUs7sSuAqqCSewr85/8Agn14X8QfFXSPGH7e3jpLqw1r4yzx3GkW9yqedY+EtP8AMj0aDBU7DNE73sqg/wCtuSDyK3P+Ch9/ffFe38FfsH+FruS3vvjHqDw629u2JbfwnpYWfV5MggoJ0MVgG7NdDHI4/RO306w0fRk0jSoUtrW1hEMMUahUjjRdqqoHAAAAAHagDJ0fTLs6Ra/6dN/qU7J6D/ZrS/sy7/5/pvyT/wCJqXRv+QRa/wDXJP5CtKgDI/sy7/5/pvyT/wCJrIt9NuzrV1/p03+ri7J/tf7NddWRb/8AIbuv+ucX82oAP7Mu/wDn+m/JP/iaP7Mu/wDn+m/JP/ia16KAOP1vTbv7NF/p03/HxD2T++P9mtj+zLv/AJ/p/wAk/wDiKTW/+PaL/r4h/wDQxWzQBkf2bd/8/wBN+Sf/ABNH9mXf/P8ATfkn/wATWvRQByGiabdmxP8Ap03+tl7J/fP+zWx/Zl3/AM/035J/8TSaH/x4n/rrL/6G1bFAGR/Zt3/z/Tfkn/xNY82m3Y163H26b/US9k9U/wBmuvrHm/5D1v8A9cJf5pQAv9mXf/P9N+Sf/E0f2Zd/8/035J/8TWvRQBymt6ZdjRrr/Tpv9U/ZPQ/7NaSaZd7B/p03T0T/AOJqXXP+QNd/9cn/AJGtJPuD6UAZX9mXf/P9N+Sf/E0f2Zd/8/035J/8TWvRQByGnabd/bb7/Tpv9avZP7i/7NbH9m3f/P8ATfkn/wATSab/AMf19/11X/0Ba2KAMf8Asy7/AOf6f8k/+JrJ1PTbsXFjm+m/4+PRP7jf7NddWPqv/HxY/wDXx/7I1AC/2Zd/8/035J/8TR/Zt3/z/Tfkn/xNa9FAGMdMu8H/AE6f8k/+JrL0HTbv+xLT/Tpv9UnZPT/drrD0NZWg/wDIFtP+uSfyoAT+zLv/AJ/pvyT/AOJpP7Mu/wDn+n/JP/ia2KKAOQj0y7/t6X/Tpv8AUJ2T+83+zWx/Zl3/AM/035J/8TSR/wDIel/64J/6E1bFAGR/Zl3/AM/035J/8TWPr2m3Y0xv9Om+/F2T++v+zXX1ja//AMgxv+ukX/oa0AO/sy7/AOf6b8k/+JpP7Mu/+f6f8k/+JrYooAyP7Mu/+f6b8k/+JrI0bTbswz/6dN/x8Tdk/vH/AGa66sfRf9VP/wBfEv8A6EaAF/sy7/5/pvyT/wCJo/sy7/5/pvyT/wCJrXooA/OD9tO0uLT4y/s/zyXUrj/hNwmWC8GS1lA6L/Ov0I/sy7/5/pvyT/4mvz9/b/JtvEvwM1ROGh+I+kx59pg6H+dfozX0ea65Xl8v7tRfdUb/APbjy8H/AL3iV5xf/kqX6GR/Zl3/AM/035J/8TVHU9Muxptx/p03+qfsnof9mulqjqf/ACDbj/rk/wDI184eoZtlpt39ji/06b7i9k9P92rP9mXf/P8ATfkn/wATV2x/48of9xf5VaoAx/7Mu/8An+n/ACT/AOIrIsdNu/7Uvv8ATpvvR9k/uj/Zrr6xrH/kK33+9H/6CKAHf2Zd/wDP9N+Sf/E0f2Zd/wDP9N+Sf/E1r0UAcfq+m3YNp/p03/HwnZPQ/wCzWz/Zt3/z/Tfkn/xNN1j71p/18J/I1s0AY/8AZl3/AM/0/wCSf/EUv9mXf/P9N+Sf/E1r0UAchoGm3f8AZMP+nTfxdk9T/s1sf2Zd/wDP9N+Sf/E0mgf8gmL/AIF/M1sUAY/9mXf/AD/T/kn/AMTWP/Zt3/wkGPt03/Hv6J/e/wB2uwrG/wCZh/7d/wD2agB39mXf/P8ATfkn/wATSf2Zd/8AP9P+Sf8AxNbFFAHI69pl3/ZE/wDp03Qdk9R/s1r/ANm3f/P9N+Sf/E0a9/yCZvoP5itegDI/sy7/AOf6b8k/+Jo/sy7/AOf6b8k/+JrXooA47R9Nuy97/p03/Hy/ZPQf7NbP9mXf/P8AT/kn/wATTNF+/e/9fL/yFbdAGP8A2Zd/8/0/5J/8TWTe6bd/2nZf6dN95+yf3T/s111ZF9/yFLH/AHpP/QTQAf2Zd/8AP9N+Sf8AxNH9mXf/AD/Tfkn/AMTWvRQBgXWmXf2WT/TpvuN2T0/3aq6Rpl3/AGTa/wCnT/6lOyf3R/sV0N3/AMesv+438qraP/yCbX/rin/oIoAg/sy7/wCf6f8AJP8A4ml/sy7/AOf6b8k/+JrXooA5C1027/tu8/06b7kPZP8Aa/2a1/7Mu/8An+n/ACT/AOJpLX/kN3n/AFzh/wDZq2aAMj+zLv8A5/pvyT/4msnV9Mu/Lg/06b/Xxdk/vD/ZrraydX/1cH/XeL/0IUAJ/Zl3/wA/035J/wDE0n9mXf8Az/T/AJJ/8TWxRQBkf2Zd/wDP9N+Sf/E1j6Hpl2dP/wCP6b/Wy9k/vt/s119Y+hf8g/8A7ay/+htQAv8AZl3/AM/035J/8TR/Zl3/AM/035J/8TWvRQB4D8cPgZ4Q/aB+H2v/AAQ+Jjy32geKtHvNMvYjsB8q4CqWU7cq6EhkYcqwBGCK8B/YA+JPxF8f/BW5+Gnxn1KV/iH8L9Sn8IeJXAUfabiwCm3vV3KTsvrN4LoH1lK9VNfcsv8AyHYf+uEn/oSV+b3xnaP9lz9vTwZ+0LCWt/Cvxljg8A+J9v8Aqo9bg3y6FeOOzSZnsGbuZIFP3VwAfpD/AGZd/wDP9N+Sf/E1ka9pt5/Yt1/p03+rbsnp/u111ZGv/wDIFuv+ubfyoAaumXZUf6dN09E/+Jp39mXf/P8ATfkn/wATWqv3R9KdQBj/ANmXf/P9P+Sf/E1maTp90l9eO15MwE4JBCYOEXjha6usjTf+Pu+/67D/ANAWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAONkOJ9cJ7RL/6LNfy7/8ABpMN/wCyh8erodJPjJrpH/gNZ/41/UFesUGvt6Qg/wDkM1/Md/waR2pT9hv4samf+X74r67Nn1/c2q/0oA/qpooooAwdZ/4+rD/r4H/oLVvVg6z/AMfVh/18D/0Fq3qACiiigCOb/VN9DWV4e/5Adr/1zWtWb/VN9DWV4e/5Adr/ANc1oA2aKKKACues/wDkY7z/AK5RfzauhrnrP/kY7z/rlF/NqAOhooooAKwde+5a/wDXzF/Ot6sHXvuWv/XzF/OgDeooooAKa/3D9KdTX+4fpQBi+G/+QLD/AMC/9CNblYfhv/kCw/8AAv8A0I1uUAFFFFAHPxf8jPN/17p/6Ea6Cufi/wCRnm/690/9CNdBQBBc3NvZ28l3dOI4olLuzHAVRySTX8dX7RXjD4if8HDf7clx+xt8GNRn039mP4Tagr+NdYgyg1zUIHx9kiboyAggdurdhX1j/wAFyf26PjF4s8a+Gv8Agkd+whKbn4r/ABXHk6xe2rZbQ9Hc4llcr/q2ddxDH7qgn0r9kP8Agnv+w18Kf+Cef7L/AIf/AGcfhZApXT4Vl1K+K/vr+/cAzTyN1JZs4z0GBQB7/wCD/hf4C+Cnwu0X4VfC7TING0DQUgtLGzt12xxRRkAAD9SepPNeuVg+IziwQj/ntH/6EK3qACiiigBD0NYfh3/kG/8AbST/ANCNbh6GsPw7/wAg3/tpJ/6EaAN2iiigArBP/Iyj/r3P/oQrerBP/Iyj/r3P/oQoA3q/KT/go5qEOvfEn4NfCuZ18rUfEiXs6k4AitRksT6DNfq3X5N/t4/sPfGH9qz43+C/EXhPWotI0DSIJobyZXK3EYlI37AOpZRj2r6/garhKWbwq4ysqcIxqPmfR8klHRbu7Vl1PE4hhWngpQoQc5Nx0XbmV/wOR+KH7TPx1/bH8eX3wJ/YkkGnaHp0hg1rxXIMInOCkB7nryOvavpX4FfsE/Bf9nPRZtfSFtf8VXXN3rWofvbh3f7xXdnYD7c+9eS+KPDSf8E4b7R/Gvw40+S5+GUkEWn+ILdAXmtZFPyXvHXOSJPbFfo5H4n0Hxp4It/Ffhe6jvdPv445oJozlXR8EEGvU4gzKph8DTo5OuTAT0uvjnJfEqslrzdVD4VFppPc48swsauIlUx3vYiPR/DFPbkXb+9ve9zzX4W6BD8BtFXwL4l1SGSxvdTlTRiQVk23DGQRP2LBicEdRXvOoahZ6TYTanqMiwwW6NJI7HAVVGST9BXm/wAYvAHhz4h+BbjS/Ec72SWpW8hu4jtktpYPnWRT/skfiK/F79qf9qL41/HzxZ4e/Y2+Bktvd2/i+zT7drUB/eyWrna8mwHMIwCTk8jpXm5PkVXPq/tIzUXdurKWkYxSu5X2bte63bV9turHZlDLafK43Wiglq29rffbXa34+yfCnX/EP/BQL9qf/haUgeP4W/Di6ZdMjbhdQ1FOPNI7qvUf/Xr9X/Cfw/8AB/ge41K78L2MdpNq9ybu8kXJaaYjG5ieTxwPSuS+BHwY8I/s/wDwr0j4V+C4hHaaZCqM+MNLIfvu3qWPNecftL/tffCD9l7Qftvje88/VLgYs9Ltvnurh+wVBzgnuaWaYurm+OjgMopy9jFKFOC3cU780u7k7yk3s/JFYOjDBYd4nGyXO/elJ9G+i8ktEl+p7rZavpehaLeatrVxHa2sEsrySysERVHUkngV+S37SX7bGhftIwap+zB+zH4Sb4jXuoo1vdXUqFdOt+28ydyvUEHrXMeFfgV+09/wUBuv+Eq/aJvJ/BHw6aZpbXw9aMY7q5UnI85vQj1/Kv1w+EvwX+GfwN8KQeDPhhpMGl2MChcRqN7kd3bqx9zXfTo5XkElUxEvrGMi7qEZWp02v5prWck/swaSf2mc0qmLzJONJeyoP7TXvyXlF/Cn3evkfiR+xv8A8E6/2rvgf+0t4W8dfEjVI7zQNIs3B8q7ZhFuBIgCE5KhjnH3a/oIoorw+JuKMZnuJjisaoqUY8vuqytdvbvdnoZTlFDLqTo4e9m76u72S/QwJ/8AkZLf/ri/8xW/WBP/AMjJb/8AXF/5it+vnD1AooooAxfEP/IHm+g/nWrB/qU/3RWV4i/5A830rVg/1Kf7ooAeyq6lHAIPBB6GvmL4ifsjfB/x9dtrMNo+j6kTuF1YsYn3epA4/lX0/RXDj8swmNp+yxdJTj5q9vTt8jqwmOxGFnz4eo4vyf59z4OP7L/x00UeT4T+Jd2sI+6tym4gfXmsjT/gX+1a73C2nxGjXZKVbMR5OBz92v0IrA0P/W3v/Xw38hXhPg3L9oSqRXZVaiX/AKUer/rJi/tKDfnTh/8AInxN/wAKI/a76f8ACyIf+/R/+JoX9nv9qm6/d3/xKCoevlxHP/oNffFFSuDMD1qVX/3Gqf8AyQ/9ZMV0hT/8Fw/+RPhGH9ieXWnEvxE8a6vq395FcxIfyP8ASt2z/Yp+Ami+K9Hv4dOlla081mSWUukxIwPMB646j3r7RrAvf+Q7Z/7r/wAq6sPwlk9GXOsNGUu8vff3yuzGtxDmNRcrrtLtH3V90bEOi+DfCfh1Fj0LTba0C9PKiVT+YGa6WiivoKdOEFywSS8jx5zlN80ndhWTrv8AyCLj/cNUvFXi3QPBWjvrviScW9tGQCxBPJ6AAc8180+Lf2nbI6PczeGvDWrahbKvzXLQ+TCAeh3PjiuDG5xg8I+XEVEna9tW7d7JN287HXhcuxOIV6MLrvsvvdkeoeEvg5oGj/EG/wDitdyNeanqEaRxmQcW8SjG1Pr3r2mvmf4WfHq/8X+NP+Fc+ItAuNHvVs1u0Lurq0R6E4PGe1fTFRlFXBVKMp4Fe65Svo0+Zu8rp639Ssxp4mFRRxXxWVtU1y20tbSx8V/tyHHw20n/ALC9p/6GK+xdPBOmQAd4l/lXxx+3N/yTTSj6ava/+hivsjS+dMtz/wBMk/kK87Af8jvHf4KP/uQ7sX/yK8L/AIqn/tp8Gfsr6L4k8F/GPx1oviPS7qE6hdmeK5KfuSg7bvU5r1n43/sseHPjDr8Hi+11G40XVok8pri2PLp6HkV9G6V/x+3v/XUfyrbp4bhfCRy/+zcQvaU+ZyV9Gryct11Tb10ZNfPsRLGfXaPuTsk7ap2SXXvbY8S+CvwG8FfA/RpNP8NI011cHNxdy8yyn3PYe1eP/GP9nzx1c/EeL4z/AAQ1GLTtd2eVcxTD91Ovqf619m0V1Yjh3A1cHDBKHJCDTjyvlcWtnFrVPz69TCjnOLp4mWKcuacrqXNqpJ9Gux8Fa98I/j38YILPwl8drrSl0p5C7LZIwn3KOCrZIFdR8PP2Ivhj4J8QxeJNXubrXZrUg263rbkjx04yc4r6v1L/AJCtj/vP/Kt6uSnwjlvtY18RB1ai2lUbk9Nt9NOmmh0S4ixvs3Roy9nB7xguVef39Tzf4i/CT4f/ABW0qPRvHOnJeQwndH/CyH/ZIwRXVeGfDOheDtDt/Dnhu2S0srVQkcaDAAreor3Y4OhGtLERppVGrOVldpdG97HkyxNWVNUXN8id0r6J+hxV54M8K2eo3ni+1sIY9TnhaOS5VcSMuOhNdJpP/IMg/wBwU7VP+QbP/wBc2/lTdJ/5BkH+4K2hShC6hFK7vp3fX1M5zlKzk79DRoooqyQrzrX8nRvEn/XvJ/6LNei1w99Abq1122HJkiZR+MZrKur0pLyf5GlF2nF+aPkH/gn/AOI9IvPhheeG4J1a9s7yWSWIfeVXY7SfrX0R4i/Zz+DPivxavjfXtDgn1EMHMhyAzDoWUHBP1r4R/wCCc9lc2vi/xmsqFVj8uM57MHbiv1cr4fgilSzDh7CrGUoyUbpJq/wyaT166H1PFM6mDziu8NUa5rNtO3xJNrTocld+AvBd/rNr4hvdLtpb2yUJBM0YLRqOgH07V82fHH9lTwH8UfFNt4rW4uNI1S4bZLcWjbS4A4JHHPvX2BXP6z/x+2B/6an+VfVY7JsDjKTo4mjGUW7vTr3utb+e54GFzLFYaoqtCo1JK2/Tt6eR+eetfsA3+iXVt4h+Fnime01aHJee6BYsT3DDJBrqtA/ZK+MGpyB/iT8RL2aLvFZsy5Hpk4xX6BUV4NPgPJqc+anTlFfyqc1Fvu4p2PWnxZmU48s5pvu4xcvvaPz9+LXwR+J/g7x74X+I/wAGrca02g2htGhu5cyMOfmLHk5zVrRPg38Y/jL4jj8YftGvFa6Zp/7y10a3bMZccgyeuPevviq93/x6y/7jfyrZ8IYN15VHOfs5SUnTv+7ckkk2rXa0WjdtNjP/AFjxPsowUY86Tip299Jtuyd7Ld6pXPAND/Z6+Hg+I0HxlaFjqnkKiqT+7UgbdwHrjivZvEvhPw14xsP7L8U2MN/bhgwjmUMAR3q7on/IJg/3BWpXvUcuwtKNSFOkkptykrKzb3b73PIqY2vUlCU5tuKSWuyWyRUsrCy020jsNPiWGCJQqIgwqgdgKW2sbKy3fY4Ui3nc2xQuT6nFWqjlRpImRDtJBAPpXXypWstjn5m93ufnl4dYP+3/AKwD/Dpq/wDoK1+iNfj/APsu3Ovz/th64nie4kubyGO5hZ5D82EYAD8BX7AV8RwFifrGExNe1uavVdnurvY+p4toexxFCle9qUFfvofnb4/+GPxh+BXxQv8A4ufA23Gq6Xqx83UNM77+5UfyIrjr/wAafGH9qHx94a8M3Hhm58P6Xo94l9fPOCFLR8jkgfgPev1DowK1r8HKU5U6OJnDDylzSpKzi3fmaTesU3ulpv3M6XEjUVOrQjKtFcsZ6ppWsrrZtLZtH5d2kYtP+ChN5HH0kt0z/wB+1r9RK/L9vl/4KGT5726f+i1r9QKXBWkMcv8AqIq/mg4m+LCP/pzT/JhXyf8Atr/sb/Bn9vD9nbX/ANnL44ael7pWswMsUxX97aXIB8ueJuqujc8dRwa+sKK+1PmT+Rr/AIIy/tffGP8AYP8A2lNY/wCCIf7e+oPLrOhl5fAOu3Dlo9S01stHAHbqVTBQHnGV6iv6yfDYxosA9q/Cz/gvB/wTR1r9sr4G2P7Qn7Pn/Et+NXwkk/tvw3fQDbNcC2PmPbEry27blAe/HevYf+CJ/wDwUv0D/go/+yXaeIdajGmfEDwk/wDZHirSn4kgvoRgvtPOyTG4enTtQB+x1FFFABXO23/Iy3P/AFyj/rXRVztt/wAjNc/9co/60AdFRRRQAVia7/x7w/8AXZP51t1ia7/x7w/9dk/nQBt0UUUAFFFFAGB4Z/5BK/78n/oRrfrA8M/8glf9+T/0I1v0AFFFFAGAf+Rn/wC3Yf8AoRrfrAP/ACM//bsP/QjW/QAUUUUAYHiX/kFn/rpF/wChit4dBWD4l/5BZ/66Rf8AoYreHQUALRRRQAVheH/+POT/AK7y/wDoRrdrC8PjFnL/ANd5f/QjQBu0UUUAFYcv/IxQ/wDXB/8A0IVuVhy/8jFD/wBcH/8AQhQBuUUUUAFYfiX/AJAVz/u/1FblYfiX/kBXP+7/AFFAG2OgpaQdBS0AFFFFAGDoPS8/6+pf6VvVg6D0vP8Ar6l/pW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFZUmoXaSMi2crAEgEFMHHflqANWsfX/+QPP9B/MUf2nef8+M35p/8VWRr+p3f9kT/wCgzfdHdPUf7VAHX0VjnU7z/nxm/NP/AIqj+07z/nxm/NP/AIqgDYrI0r/W3n/Xwf8A0FaT+07z/nxm/NP/AIqsnS9SvBLef6DN/wAfB7p/dX/aoA66isf+07z/AJ8ZvzT/AOKo/tO8/wCfGb80/wDiqAE1D/kJ2H/XR/8A0Bq2a4/UNSvP7SsD9hm/1j90/uN/tV8jft/fHDxl8Jv2ZdXt/hxBNB418ZT23hHwttKbxrOuSC1t5ByeLfe1w56BImJ4FAHnP7HEa/tA/tF/FH9t++Al02W6bwD4OfqP7F0GZhe3CHoRean5xyPvRQRGv0ouv+PaT/dP8q8V+Avwr8Ofs6fBXwr8CPAOnTJo/hHS7XSrUkpudLaMJvb5sl5CC7E8liSeTXqdzqV2beQGxm+6e6en+9QBc0b/AJBFr/1yT+QrSrltH1K8/si1xYzf6pO6eg/2q0f7TvP+fGb80/8AiqANisi3/wCQ3df9c4v5tSf2nef8+M35p/8AFVkW+p3n9tXX+gzf6uLun+1/tUAdfRWP/ad5/wA+M35p/wDFUf2nef8APjN+af8AxVABrf8Ax7Rf9d4f/QxWxXH61qd4baL/AEGb/Xw90/vj/arY/tO8/wCfGb80/wDiqANiisf+07z/AJ8ZvzT/AOKo/tO8/wCfGb80/wDiqADQ/wDjxP8A11l/9DatiuQ0TUrwWJ/0Gb/Wy90/vt/tVr/2nef8+M35p/8AFUAbFY83/Iet/wDrhL/NKP7TvP8Anxm/NP8A4qsebUrz+3bc/YZv9TL3T1T/AGqAOworH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoAk1v/kDXX/XJ/5GtJPuD6Vyuuanef2Ndf6DN/qn7p6f71aSanebR/oM3T1T/wCKoA2qKx/7TvP+fGb80/8AiqP7TvP+fGb80/8AiqADTf8Aj+vv+uq/+gLWxXH6dqd39tvv9Bm/1q90/uL/ALVbH9p3n/PjN+af/FUAbFY+q/8AHxY/9fH/ALI1H9p3n/PjN+af/FVkanqV2bixzZTD/SPVP7j/AO1QB19FY/8Aad5/z4zfmn/xVH9p3n/PjN+af/FUAa56GsrQf+QLaf8AXJP5Uw6nebT/AKDN+af/ABVZWhand/2LaYsZv9UndPT/AHqAOuorH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoAI/+Q9L/wBcE/8AQmrYrkI9Su/7el/0Gb/UJ3T+83+1Wv8A2nef8+M35p/8VQBsVja//wAgxv8ArpF/6GtL/ad5/wA+M35p/wDFVj69qV4dMb/QZvvxd0/vr/tUAdhRWP8A2neZx9hm/NP/AIqj+07z/nxm/NP/AIqgDYrH0X/VT/8AXxL/AOhGj+07z/nxm/NP/iqyNG1K7EM+LKb/AI+Je6f3j/tUAdfRWP8A2nef8+M35p/8VR/ad5/z4zfmn/xVAH59f8FFT5dv8H5/+efxI0E/+RGr9Ha/Mz/go1f3LaJ8KppLWWMRfEPQmyxXnEp44bvX6OHUrz/nxm/NP/iq+kzH/kT4D1q/nE8rCf79if8Atz8ma9UdT/5Btx/1yf8Akaq/2nef8+M35p/8VVLU9SvDptwDYzf6p+6eh/2q+bPVNux/48of9xf5VarnrLU7v7HCBYzfcXunp/vVZ/tO8/58ZvzT/wCKoA2KxrH/AJCt9/vR/wDoIpf7TvP+fGb80/8AiqyLHUrv+1L7/QpvvR90/uD/AGqAOvorH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoATWPvWn/Xwn8jWzXH6vqV2WtP8AQpv+PhO6eh/2q2P7TvP+fGb80/8AiqANiisf+07z/nxm/NP/AIqganeE/wDHjN+af/FUAGgf8gmL/gX8zWxXH6Dqd3/ZEP8AoM38XdP7x/2q2P7TvP8Anxm/NP8A4qgDYrG/5mH/ALd//ZqX+07z/nxm/NP/AIqsf+07v/hIP+PGb/j39U/vf71AHYUVj/2nef8APjN+af8AxVH9p3n/AD4zfmn/AMVQAuvf8gmb6D+YrXrkNe1O8/sif/QZug7p6j/arX/tO8/58ZvzT/4qgDYorH/tO8/58ZvzT/4qj+07z/nxm/NP/iqAGaL9+9/6+X/kK2643RtSuw95iymP+kv3T0H+1W1/ad5/z4zfmn/xVAGxWRff8hOy/wB6T/0E0n9p3mf+PGb80/8AiqyL7U7v+0rL/QZvvSd0/un/AGqAOvorH/tO8/58ZvzT/wCKo/tO8/58ZvzT/wCKoA0Lv/j1l/3G/lVbR/8AkE2v/XFP/QRVG61O8NtIDYzD5G7p6f71VdI1O8/si1/0Gb/Up3T+6P8AaoA6misf+07z/nxm/NP/AIqj+07z/nxm/NP/AIqgBLX/AJDd5/1zh/8AZq2a4+11K7/tq7IsZv8AVw90/wBr/arY/tO8/wCfGb80/wDiqANisnV/9XB/13i/9CFN/tO8/wCfGb80/wDiqydX1O78qA/YZv8AXxd0/vf71AHXUVj/ANp3n/PjN+af/FUf2neZ/wCPGb80/wDiqANisfQv+Qf/ANtZf/Q2oGp3n/PjN+af/FVj6Hqd5/Z//HjN/rZe6f32/wBqgDsKKx/7TvP+fGb80/8AiqP7TvP+fGb80/8AiqAFl/5DsP8A1wk/9CSvD/2sPgNZftNfs7+K/gncXJsLrWrJhp98v37HUYCJrO6T/at7hI5V91r1iXU7z+3Yf9Bm/wBRJ3T+8n+1Wv8A2nef8+M35p/8VQB84/sW/H68/aX/AGa/DXxT162Gn+IHil07X7HobPWtNka1v4COo8u5ikAB524Pevo/X/8AkC3X/XNv5V+afws1G8/Zy/4KHeNvg7PZSw+G/jXp48c6GoKhE13TRFZ6zAPm2hpoTZ3SgH5m85scE1+iuvandnRbrNjMP3bd09P96gDrV+6M0tYy6nebR/oM35p/8VS/2nef8+M35p/8VQBsVkab/wAfd9/12H/oC0n9p3n/AD4zfmn/AMVWVpGo3T394jWcqgzgFiVwMovP3qAOtooooAKKKKACiiigAooooAKKKKACiiigAooooA//0f7+KKKKACue1mXWlguFtIomj8tsFmIPSuhqpf8A/HjN/wBc2/lQBzGiTeI/7FtMQwf6lP4j6CtTzvEf/PGD/vo/4Va0P/kC2n/XFP8A0EVqUAYPneI/+eMH/fR/wo87xH/zxg/76P8AhW9RQB5JrF3rtvZ+I7iWKHaltuPzHoIifSv5xv8Ag1Bg1eD/AIJ0eK7+yiiKXnxF1+XLMQc5iX+lf0ZfEi4Np4I8b3a8GLS5n/75gc1+AP8AwagQgf8ABKw3ve68a+IZD7/vwP6UAf0hed4j/wCeMH/fR/wo87xH/wA8YP8Avo/4VvUUAcHrM3iP7VYfuYf+PgfxH+61b3neI/8AnjB/30f8KNZ/4+rD/r4H/oLVvUAYPneI/wDnjB/30f8ACjzvEf8Azxg/76P+Fb1FAHOzTeI/Kb9zB0P8R/wrK8PTeI/7Dtf3MH+rX+I12c3+qb6Gsrw9/wAgO1/65rQBF53iP/njB/30f8KPO8R/88YP++j/AIVvUUAYPneI/wDnjB/30f8ACufs5vEX/CR3n7mD/VRfxH1au+rnrP8A5GO8/wCuUX82oAf53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQBg+d4j/54wf8AfR/wrB16bxHstf3MH/HzF/EfWu8rB177lr/18xfzoAPO8R/88YP++j/hR53iP/njB/30f8K3qKAMHzvEf/PGD/vo/wCFNebxHsP7mDp/eP8AhXQU1/uH6UAcP4bm8R/2LD+5g/i/iP8AePtW553iP/njB/30f8Kd4b/5AsP/AAL/ANCNblAGD53iP/njB/30f8KPO8R/88YP++j/AIVvUUAcFFN4i/4Sab9zD/x7p/Ef7xr4M/4Ke/8ABQ/wt/wTb/ZW1n48+OYoLrUmAstD0uNz59/qM3yxRIvU88sewBr731zxBo3hO51LxP4iuEtLDT7E3FxPIdqRxR5ZmJPQADNfyS/sw+FNR/4L9f8ABSm+/ba+JEEkv7OvwP1CTTPB2mTgmDV9VgOWumU8Fejf7u0dzQB9wf8ABDL/AIJ/fF74U6B4g/4KD/tcxpqnxs+ND/2ndveZ83StPm+eK0TIJT5SNwGMAAetf0K+d4j/AOeMH/fR/wAK3VVVUKowBwAKWgDg/Ec3iP7An7mH/Wx/xH+8K3vO8R/88YP++j/hSeI/+PBf+u0f/oQrfoAwfO8R/wDPGD/vo/4Ued4j/wCeMH/fR/wreooAwDN4jwf3MH/fR/wrD8OzeIxpv+ph/wBZJ/Ef7x9q7o9DWH4d/wCQb/20k/8AQjQAnneI/wDnjB/30f8ACjzvEf8Azxg/76P+Fb1FAGD53iP/AJ4wf99H/CsEzeI/+ElH7mD/AI9z/Ef7w9q7ysE/8jKP+vc/+hCgA87xH/zxg/76P+FHneI/+eMH/fR/wreooA4jxFot14s0K78NeIbG1urG+iaGaKQlldHGCCCK/H3wN4m8cfsA/F//AIZx8dyfaPh34tuTJ4bv5mPl2Mztk2zMei9hmv25r5c/bF+DPgH43/AfWfCvxAdLW3iiNxDetwbSWPlZQe23v7V9Nw5mlKlKeAxycsNWspJauL+zUj/ei/8AwJXj1PJzTBzmo4jDu1WGq7NdYvyf4OzOI/bX/aRl/Zv+AGpeOb+zs9QuLkLaWlk8pH2l5/lwMDJ4OeK8A/4J3/su678IvCVz8fviNbwf8JZ4tiWeTzSVFjZkZjhXP3QFxn2r8W/BPjO5/aq12bw1+0b42gt9P+HOk3H9gPPuiivntm2rMWP3iFUH1I4r9aU1L9o//goNbQ+HfBpuPAXwnjVIp9QYFL/Vo0GCIhwUjbHWv0vMOFqmTZW8rddU1OXNiKrTS5NHTpwvrNvWTjFX5tHomfKYbOI47GLGKm5OKtTgrN832pS/ltorvS2q1Z3/AMaP27/G3iPxrL8Av2Q9Hj8WeKm/dXGoREtYaeTwWd8bSV64zXQ/s4/sCj4eeJ5PjP8AHS7j8dePbwiR729JaG1Y87YUPAA7HH0r7Q+CHwD+F37PPg2HwR8LtMjsLWMDzJMZmmfu0j9WJr2Svz7GcR0sPQlgMki6dJ6Sm/4lT/E18Mf7kdO7kfTUMrnVqLE49qc1qo/Yh6Lq/wC8/lY4Lw7N4iFrMBDD/r5P4j61v+d4j/54wf8AfR/wpvh3/j2n/wCu8n866Cvjz2zB87xH/wA8YP8Avo/4Ued4j/54wf8AfR/wreooA4KebxH/AMJJB+5h/wBS/wDEfUVv+d4j/wCeMH/fR/wpJ/8AkZLf/ri/8xW/QBg+d4j/AOeMH/fR/wAKPO8R/wDPGD/vo/4VvUUAcR4gm8RnSJv3MHQfxH1+lasM3iMQoPJg+6P4j/hVjxD/AMgibjPFasP+pT/dFAGN53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wrB0SbxF5t6fJg/4+G/iPoK7ysDQ/wDW3v8A18N/IUAL53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wr5e8S/tHQ6T+1l4Z/ZjOnmXWNY0W81oTqT5MUFswTDHrlmOBX1/X5m+K/BniP8A4eweE/HqWEzaSvgHULR7wKfJSY3KMELdAxHOKAP0U87xH/zxg/76P+FBn8Rjkwwf99GvEvip+1D8LfhYTp93df2jqbcJZWn7yUn3xwPxr59eT9qr9owlbZR4G8OS/wATf8fUiH9RkfSvm8dxPhqVV4bDRdasvsQ1t/il8Mfmz2sLkdepTVeu1SpfzS0v6LeXyR7j8Vv2kPA3wxtzb+JZrW8u8/JZwN50rN2+UA4/Gvl3xh4r/aK/aQ8I31tY6TF4U8JmJnnmus+bLEvJwD9O1fUvwq/ZS+FnwwkXVjbHVtWPL3t5+8ct3IB4FP8A2tfE9x4V+BerjTVJuL5Vs4gg6NMdvavDzXDZlXwdbFZrU9nSjFt0qe8kltKpu77NRSXmergK+CpYmlQwEOeo5Jc89k77xhtpveTfoeK/sXeHtfu9C1D4n3eLmW+YWVs85O4W1t8q468HrX3F53iP/njB/wB9H/CuO+C/hGLwN8LdD8MRjBtrSPf/AL7DJ/U16fX0vDmAeDy2hQl8XKnL/E9ZfizxM6xf1nG1aq2vZei0X4Hwt+25Jq7fDPTTeRxqBqttjaxPO4V9eaVP4iOl2xWGEjyk/iPoPavlj9upW/4VLZzDpHqdsx+m6vr3QJBNoVlKvRoIz+aiuLAP/hdxq/uUf/ch1Yv/AJFOFf8Aeqf+2nO6XN4i+2XuIYP9aP4j6fStvzvEf/PGD/vo/wCFO0r/AI/b3/rqP5V80/En49+I7nxi3wm+B9imra6o/wBJuHP+jWgPdz3PtXsZjmdDBU1Urvd2SSvKT7RS1b/4d6HmYLA1cVNwpLZXbeiS7t9EfSnneI/+eMH/AH0f8KPO8R/88YP++j/hXzR8KfGfxl074tXPwt+Kl1Z6kfsC3qT2iGPy8tja2etfWtGW5jDGUnUhFxs3FqSs01utG19zHjcHLDTUJSTuk01qmn935HCalN4j/tWx/cw/ef8AiPpW753iP/njB/30f8KNS/5Ctj/vP/Kt4nHJr0DjMHzvEf8Azxg/76P+FMku9fiXdLHbqOmS5FaK6vpT3H2RLmIy/wBwON35ZzXzB+2DqV3pvw402SzleFm1mxBKEqSPM5HHavNzTMY4PB1cXbmUFe1/wO3A4N4jEU8Pe3M7XPoLVJvEf9mz/uYP9W38R9KTSZvEX9mQYhg+4P4jWxdN5miO/rDn9Km0n/kGQf7gr0ltc42ij53iP/njB/30f8KPO8R/88YP++j/AIVvUUCMHzvEf/PGD/vo/wCFYGmy+Iv7Vv8A9zB95P4j6fSu9rA0v/kLX/8AvJ/KgDkvDHgq08GT3t14Y0qzs5NQlM1wYyQZHPc113neI/8AnjB/30f8K3qKzpUYUo8lOKS7JWRdSpKcuabu/MwfO8R/88YP++j/AIVg6xN4i+22BMMH+tP8R9PpXeVz+s/8ftif+mp/lWhA7zvEf/PGD/vo/wCFHneI/wDnjB/30f8ACt6igDB87xH/AM8YP++j/hVe7m8R/ZZf3MH3G/iPpXTVXu/+PWX/AHG/lQByuizeIxpUH7mD7g/iNanneI/+eMH/AH0f8KtaJ/yCYP8AcFalAGD53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQB8I+C/gX428O/tVa78U4Vt/sF3EX27+fMmwSMYz1FfaHneI/+eMH/AH0f8Kjsf+Rhvf8Acjroq83LMqw+AhUp4dNKcpTd+8nd28ux247MKuLlCVbeMVFei2+Zg+d4j/54wf8AfR/wo87xH/zxg/76P+Fb1FekcR+V9y+pj/goE7BI/ONuvy5O3/VjvX6Zed4j/wCeMH/fR/wr83Lzn/gocf8Ar3X/ANFiv1Br4vgv4cf/ANhFX80fTcTb4T/rzD9TB87xH/zxg/76P+FHneI/+eMH/fR/wreor7Q+ZOekm8R+W37mDof4j/hX8Zn/AAUP+E3xk/4ItftraZ/wV9/Zg0lrr4Y+L3Sx+JHh6yJESyTNg3IQDAz94Njh8g8Gv7UZP9W30NeTeMPhd4F+Nfwf1L4UfEzT4tW0HX7OSzvbWZdySRSjBHPfuD2PNAGL8DPjn4b/AGjPhNoXxq+E15Z6toHiG0jvLS4hk3KUkAODjoy9COxr1jzvEf8Azxg/76P+FfxufsB+PviB/wAEGf8Agojdf8Ewf2gtRmu/gp8T7t7/AOHmtXHENpcTMSbdmPA3EhSOz8/xV/Z+rK6h0OQRkEdxQBh+d4j/AOeMH/fR/wAK563m8Rf8JLc/uYf9TH/Efeu/rnbb/kZbn/rlH/WgCTzvEf8Azxg/76P+FHneI/8AnjB/30f8K3qKAMHzvEf/ADxg/wC+j/hWJrs3iP7PD+5g/wBcn8R9fpXc1ia7/wAe8P8A12T+dADPO8R/88YP++j/AIUed4j/AOeMH/fR/wAK3qKAMHzvEf8Azxg/76P+FHneI/8AnjB/30f8K3qKAOC8MzeIxpK/uYPvv/Ef7x9q3/O8R/8APGD/AL6P+FJ4Z/5BK/78n/oRrfoAwfO8R/8APGD/AL6P+FHneI/+eMH/AH0f8K3qKAODM3iL/hJs+TD/AMew/iP941ved4j/AOeMH/fR/wAKQ/8AIz/9uw/9CNb9AGD53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQBwXiWbxH/AGWf3MH+si/iP98e1bwm8R4H7mD/AL6P+FHiX/kFn/rpF/6GK3h0FAGF53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wrD8PzeIxZy/uYP9fL/Ef7x9q7qsPQP+POT/AK7y/wDoRoAb53iP/njB/wB9H/CjzvEf/PGD/vo/4VvUUAYPneI/+eMH/fR/wrEll8RHxDCfKg/1D/xH+8Pau5rDl/5GKH/rg/8A6EKAG+d4j/54wf8AfR/wo87xH/zxg/76P+Fb1FAGD53iP/njB/30f8Kw/Es3iM6FcjyYPu/3j6iu6rD8S/8AICuf93+ooAYJvEeB+5g/76P+FL53iP8A54wf99H/AArdHQUtAGD53iP/AJ4wf99H/CjzvEf/ADxg/wC+j/hW9RQBwmhTeItt5iGH/j6l/iPtW753iP8A54wf99H/AAo0Hpef9fUv9K3qAMHzvEf/ADxg/wC+j/hVuyk1Z5SL+ONExwUJJzWnRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY+v/wDIHn+g/mK2Kx9f/wCQPP8AQfzFAGxRRRQAVkaV/rbz/r4P/oK1r1kaV/rbz/r4P/oK0Aa9FFFAGNqH/ITsP+uj/wDoDV+d/ix2/aD/AOClXh/wQn73w78B9CfxFfjqj+I/EKva2CMDxm3sUupfUG4jNfoD4m1XTtCEOt6vMtvaWYmnnlc4WOOOJmZiewABJr4L/wCCZOjzeJfghrH7VmtxOur/ABy1688au0qlZF0y52waRFg8hY9MhtRt/vFj1Y0Afo5UF1/x7Sf7p/lU9QXX/HtJ/un+VAFTR/8AkEWv/XJP5CtKs3Rv+QRa/wDXJP5CtKgArIt/+Q3df9c4v5tWvWRb/wDIbuv+ucX82oA16KKKAMfWxm2i/wCu8P8A6GK2Kx9b/wCPaL/rvD/6GK2KACiiigDH0P8A48T/ANdZf/Q2rYrH0P8A48T/ANdZf/Q2rYoAKx5v+Q9b/wDXCX+aVsVjTf8AIet/+uMv80oA2aKKKAMvW/8AkDXX/XJ/5GtJPuD6Vm65/wAga7/65P8AyrST7g+lADqKKKAMfTf+P6+/66r/AOgLWxWPpv8Ax/X3/XVf/QFrYoAKx9U/4+LH/r4/9katisfVf+Pix/6+P/ZGoA2KKKKAEPQ1laD/AMgW0/65J/KtU9DWVoP/ACBbT/rkn8qANaiiigDHj/5D8v8A1wT/ANCatiseP/kPy/8AXBP/AEJq2KACsbX/APkGN/10i/8AQ1rZrG17/kGN/wBdIv8A0NaANmiiigArH0X/AFU//XxL/wChGtisfRf9VP8A9fEv/oRoA2KKKKAPzb/4Ka5t/hh4G1Yf8uXjrQJPzuVX+tfpJX5u/wDBUT5P2ftHuj0tvFegzH6Lexf41+kVfSY7XJME/wDp5WX4Un+p5WG0zDEf4af/ALf/AJBVHU/+Qbcf9cn/AJGr1UdT/wCQbcf9cn/ka+bPVJLL/jyh/wBxf5VaqtZf8ecX+4v8qs0AFY1h/wAhW+/3o/8A0EVs1jWH/IVvv96P/wBBFAGzRRRQBjax960/6+E/ka2axtY+9af9fCfyNbNABRRRQBj6B/yCIf8AgX8zWxWN4f8A+QRD/wAC/ma2aACsb/mYf+3f/wBmrZrG/wCZh/7d/wD2agDZooooAyNe/wCQTN9B/MVr1ka9/wAgmb6D+YrXoAKKKKAMTRfv3v8A18v/ACFbdYmi/fvf+vl/5CtugArIvv8AkKWX+9J/6Ca16yL7/kJ2X+9J/wCgmgDXooooAr3f/HrL/uN/Kq2j/wDIJtf+uKf+girN3/x6y/7jfyqto/8AyCbX/rin/oIoA0aKKKAMa1/5Dd5/1zh/9mrZrGtf+Q3ef9c4f/Zq2aACsnV/9XB/13i/9CFa1ZOr/wCrg/67xf8AoQoA1qKKKACsfQv+Qf8A9tZf/Q2rYrH0L/kH/wDbWX/0NqANiiiigDIl/wCQ7D/1wk/9CStesiX/AJDsP/XCT/0JK16APzo/4KWaJf8Ahv4PaH+1h4XiaTW/gbrdv4wXy/vy6VErW+sQe4k02a4IHTeiHsK+7ptY0zxD4NGv6LOtzZ31qtxbzIcrJFKoZWB7gggitXXNE0nxLot54c1+3S7sdQgktrmCUbklhlUq6MDwQykgjuDX5wf8E5Ne1DRf2b9f/Ze8TyySa18DtZvvA8vntulk06yCy6TM3fEumzWzAnqc9SDQB+mS/dFLSL90UtABWRpv/H3ff9dh/wCgLWvWRpv/AB933/XYf+gLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDw34utt+Gnj9hxjR7n/0nevwc/4NQcf8Ok9Pb+94u8Qn/wAma/d/4xnHwv8AiCfTRrr/ANJnr8If+DUD/lEbpbevizxD/wClNAH9KlFFFAGDrP8Ax9WH/XwP/QWrerB1n/j6sP8Ar4H/AKC1b1ABRRRQBHN/qm+hrK8Pf8gO1/65rWrN/qm+hrK8Pf8AIDtf+ua0AbNFFFABXPWf/Ix3n/XKL+bV0Nc9Z/8AIx3n/XKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/6+Yv50Ab1FFFABTX+4fpTqa/3D9KAMXw1/yBYf+Bf+hGtysPw3/wAgWH/gX/oRrcoAKKK+cP2t/wBp34afscfs7+Kf2jfi1eJZaL4ZsnuZGY4MknSONfVnchVHcmgD+fv/AIL5/tQfEn4reO/CP/BIH9km6LfEL4ztDb65cwE50vQt5855CvKeYuc/7ANfv5+x7+y18Nf2Lv2cPCn7NvwotUttJ8M2UdvuVQrXE+B5sz46vI+WJPPbtX4Gf8EBf2bPiJ8YvG/jj/gsH+1dZn/hPvjG7v4fgnU7tM0BXKxIgP3fMVQAe6jP8Vf1FUAFFFFAGD4j/wCPBf8ArrH/AOhCt6sHxF/x4L/11j/9CFb1ABRRRQAh6GsPw7/yDf8AtpJ/6Ea3D0NYfh3/AJBv/bST/wBCNAG7RRRQAVgn/kZR/wBe5/8AQhW9WCf+RlH/AF7n/wBCFAG9RRRQAV+NH7dnxY8UftF/E2y/YU+B87ZuWSfxTfQn5bWzBGYyw7nuPw719f8A7dP7U1p+zF8IZb7RwLrxRrTfYtGs15eS4k4DYHOFzk15/wDsT/stz/AX4QXHjPx4Td+OvFzrqGs3cnMgaUhhFk9AueR6/SvuuH6MMrwb4gxMbzu40Iv7U1vNrrGn+M7Loz57MqksZX/s2k7K16jXSPSK85fgrmd+0H/wTW+EHxX+CWifDrwZDFomr+FYETStQWMElkHIlGPnVzy2e5r7E/Z+8N/EXwf8H9D8MfFee1utdsYBDcS2a7IW2khdoGAPlxnFexFlRN7kAAck9K8u8SfHD4SeEnMXiHxBZW7r1UyAn8hmvmM04sxE8DHC5jXXs4yc05tXTl8VpPWzerW19T18FklNYh1sJSfM0otRTs0ttF1WyfY9Uor5cv8A9sT4G2uVsdQmv2Ha2geTP5CsJv2vdIu2xoHhXXL5T0ZbYqD+dfGy4pylOyxMW/7r5v8A0m59DHIcwevsJL1VvzsfUHh3/j2n/wCu8n866CvibR/2oNes4JWk8B62YjK7FljBxk+me1d94R/aw+FniPUk0LWZJ9Bv3OFg1GMwkn0BPBp0+J8snJQ9uk3tzJxv6cyQp5Fjoxc/ZNpdrS/Js+m6KjhmhuIlnt2DowyGU5BH1qSveTPJMCf/AJGS3/64v/MVv1gT/wDIyW//AFxf+YrfoAKKKKAMXxD/AMgib6D+dasP+pT/AHRWV4hONHm+lasH+pT/AHRQBLRRRQAVgaH/AK29/wCvhv5Ct+ub0qeG2N/NcOI0WdiWY4A4HehsDpKRmVQWY4A6k18zfET9qz4YeCLg6LpUza7qxO1LOwHmuW9yOBXjyeF/2m/2hJPN8X3R8E+HZDn7LbnN1Ih7E9q+cxXEuHVR4fBRder/ACw1S/xS+GPzd/I9qhklVwVbFSVKn3lu/wDDHd/JW8z2r4m/tSfDD4c3J0VLhtW1dvlSysh5shbsDjIFfPd3pX7Tf7Quq2415/8AhCNBnDbI4jm7dO+e4yK+q/hn+z98L/hVGsnhvTke8x893P8AvJnPqWOefpXpd7/yHbP/AHX/AJVzPJ8fj9c0rcsP+fdJtL0lP4peaXKvU2/tLCYTTAUuaX887N/9ux2XzuzyL4X/ALNnwr+FaC40ixF5fnl7y7/ezM3rk9Pwr3wDHAoor6HBYDD4SkqOFpqEV0SsePicXWxE3Urzcpd27hWD4mtLS90SeK8iSVQuQHUMMjocHvW9WTrv/IIuP9w11NJqzME2tUXLH/jyi/3F/lVqqtj/AMecX+4P5VapiPjz9uiHf+z/AH046w3EDD/vqvpP4e3AuvAmjXAOd9lAf/HBXhf7Ztib79nfXsDPkokv/fJr0f4B6gdU+DHhq/brJYRfoMV8nQko8SV4/wA1GD+6c1+p9BWV8lpPtVkvvjF/oYHxn8bXvw7+F3irxdpv/HzaxkxH0ZhgH8M1zv7K3w/sfCPwntdaikW41XXE+2Xl0TuZ5ZOQCfQeleyal4Z0Xxjpur+GfEMIuLO8PlyxnupFfBHxM+Fnij9lvRJvHnwq8XTRWFmRI2kXjeYrpnG1M81hnrrYPHxzadL2lGnTadmk4Nu8pJOyd42WjvpotTbKo0sThJZfGpyVZzT1TalpZRbW2uuqsfZnhH4X3mga5rXjbW9Q+161q6CIzom1IYkB2Ki+3U+prlP2eviHrHir4Z32reKrr7RcaXd3du87ALuSBjgnHHSvZfCOtzeKvBlhr8kflSX1qkpT+6XXOK/KHRfHvjLw74K8UfAPw7p91/wkmq6rc87CEjtpCSzlsYxiufNcyo5VUwtain7OUarsrvmm+WUV5yk72vrqzXL8FUx8K9OpbnjKGui5Yq6fpFK1+h9dfs7fFLUPF/gu88a+LL0zwWupXpWV+NkEecD6AVS0HUfHn7Ul9Pq9ne3GgeB4nMcP2c7Lm9KnBO7qqemK8O/Zs8Mat4k/Zg1jwjpJ/wBMnnvYE93Axj8cV1Hwl/adsfg/8P8ATvhz438MarbXukx+RIY4CyMVPUEDvXiYTN1PCZfDNKrjQlScpPX353soSktbWbbV9fTQ9XE5c44jGSwNNSqxnypae7G3xJPrfS/T1PsPQPgP8NfC8sV7o1gReQfNHcSyPJJu9SSea+Kv2wJvjrYeE7K08Rf2bc6cNTgME8JZJWkDfIGQ8Y9cGvbtG/be+E+panBp1/bahp4uJFiEtxbskYZjgZPbJrC/btuVHwz0WWM5VtVtmBHpkGuziCrleKyPFSyuqkoR1VNpLW3xK2u3b5nLlFPHUM1oLH023J6Oeu3Z3KCeFf2y/GWni38Sa1p2hae0Q3GzXfIUx0B55xWboGr/ABS+KXiWX4WfDTXZNL0XwtElveam6iS4uLjHIGeOK+0NWTUbj4eSppEwguWsf3UhGQrbODivy8/Zch/aE1/QNfsfhxPYWkV1qMn23UJzmZZOh2p9OlZZrQWCxOFwqlXqe15nJqTcmoq6grOPKm2nJq2i1ZeX1XiqGIrtUoezsknFKKcn8T0fM7JpJ316H2P8DfGPju2+JXiH4QeM9RGtjRo4por7btfEn8D44yK+g/iD4i/4RHwNq3iYdbG1lmH1VSR+tcF8H/hDo/wc0O7uLy8a/wBSvmNxqGoTn5pG+vZR2r5o+OPx7k8feBvGOieAbUXWhabYyRXepkkKZ2IASP8Ave5r2/r88qylrGTaqtTcY3cpJaySvq3yK3NLZdzzPqkcfmCeGj+7TgpO3Knsm7bLmey38j2bUfjXoHwc+BeleN/GU73U91bo0aZzJNLIN2B9M10f7P3xZ0/40+Fp/HOnW7Wgll8t4nOSrIMHmvzk8ASXX7SviizN+rP4d8EaNgRsPlkuBGRkj6j9K9Z/Y/8Aib4c+F/7PHiHxX4ilEcNlqE21Ohdz91QPU18/knF1etjqTnJRwbpzs3u3TUOad+120vS56+Z8O0qeEqKMW8Tzxul0U3K0bd7JN+p94eMvjD8O/AGuWHhvxVqUdream4SCNupJ4GfQE9zXpisGAZeQea/AP4m6B8RvH/hO8/aj8VM8SXF/GllEeghByCPQAgAV+4/w21tPEfgDRtcjfeLmzifd6kqM17nC3FdbNcXiKNWlyQSjOnfeUJNq79bX9GeXn2QU8Bh6NSFTmk24z7KSs7L0vb5HbVz+s5+22P/AF1P8q6CsDWeb2xH/TX+lfcHyxv0UUUAFV7v/j1l/wBxv5VYqvd/8esv+438qAKeif8AIJg/3BWpWXon/IJg/wBwVqUAFFFFAHO2P/Iw3v8AuR10Vc7Y/wDIw3v+5HXRUAFFFFAH5eXf/KQ4/wDXuv8A6LFfqHX5eXvy/wDBQ4A94F/9Fiv1Dr4vgv4cf/2EVf0Pp+Jt8J/15h+oUUUV9ofMDJP9W30NYvhr/kCwf7tbUn+rb6GsXw1/yBYP92gD8qP+C0X/AATb0L/gpL+xzq/w/wBKjW28eeHVbVfCmor8ssF/CNwQP1VZdoU4PBwe1eAf8EBf+Ci2rftifsyzfA343M9p8XvhFL/wj/iazuTieRrb5EuMHk7wvzHswNfvnX8bX/BWT4aeK/8Agj3/AMFGvCn/AAWR+AWnyf8ACBeMblNG+JWnWvCH7QwzclRxlgN+f76n+9QB/ZLXO23/ACMtz/1yj/rWB8KPij4I+Nfw30X4r/De/i1PQ9ftIr2yuYW3JJFKoYEEfWt+2/5Ga5/65R/1oA6KiiigArE13/j3h/67J/OtusTXf+PeH/rsn86ANuiiigAooooAwPDP/IJX/fk/9CNb9YHhn/kEr/vyf+hGt+gAooooAwD/AMjP/wBuw/8AQjW/WAf+Rn/7dh/6Ea36ACiiigDA8S/8gs/9dIv/AEMVvDoKwfEv/ILP/XSL/wBDFbw6CgBaKKKACsPw/wD8ecn/AF3l/wDQjW5WH4f/AOPOT/rvL/6EaANyiiigArDl/wCRih/64P8A+hCtysOX/kYof+uD/wDoQoA3KKKKACsPxL/yA7n/AHf6itysPxLzoVyP9n+ooA2x0FLSDoKWgAooooAwdB6Xn/X1L/St6sHQel5/19S/0reoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisuTRNIlkaWW2jZmJJJUZJNAGpWPr/8AyB5/oP5il/sDRP8An0i/75H+FZGvaBon9kT/AOiRdB/CPWgDrqKyP7A0T/n0i/75H+FH9gaJ/wA+kX/fI/woA16yNK/1t5/18H/0FaP7A0T/AJ9Iv++R/hWTpeg6IZbz/RIv+Pg/wj+6tAHW0Vkf2Bon/PpF/wB8j/Cj+wNE/wCfSL/vkf4UAfnt/wAFRfEOoTfs52nwJ8NySR638ZNasvAFkYQTJHFrRZL6YbeQILBLmVm4Chc5r9BfDXhzRfB/hzT/AAj4at0tNO0q2is7WCMbUiggUIiKBwAqgAD0Ffmj43sdL+MX/BUrwZ4Chs4pdH+DfhO88SXjYyq6z4kZ7GxUjGNyWltev6qJF6bq/TL+wNE/59Iv++R/hQBr1Bdf8e0n+6f5Vn/2Bon/AD6Rf98j/CobnQdFFvIfssX3T/CPSgC3o3/IItf+uSfyFaVcto2gaJ/ZNr/okX+qT+EegrS/sDRP+fSL/vkf4UAa9ZFv/wAhu6/65xfzaj+wNE/59Iv++R/hWRb6Don9tXQ+yRf6uL+EerUAddRWR/YGif8APpF/3yP8KP7A0T/n0i/75H+FACa3/wAe0X/XeH/0MVsVyGt6Dogtov8ARIv9fD/CP74rY/sDRP8An0i/75H+FAGvRWR/YGif8+kX/fI/wo/sDRP+fSL/AL5FACaH/wAeLf8AXWX/ANDatiuR0TQdENkf9Ei/1sv8I/vmtf8AsDRP+fSL/vkf4UAa9Y83/Iet/wDrhL/NKX+wNE/59Iv++R/hWPNoOif27bj7JF/qZf4R6pQB19FZH9gaJ/z6Rf8AfI/wo/sDRP8An0i/75H+FAD9c/5A13/1yf8AlWkn3B9K5bXNA0T+xrv/AESL/VP/AAj0NaSaBom0f6JF0/uigDZorI/sDRP+fSL/AL5H+FH9gaJ/z6Rf98j/AAoATTf+P6+/66r/AOgLWxXI6doOifbr7/RIv9av8I/uLWv/AGBon/PpF/3yP8KANesfVP8Aj4sf+vj/ANkal/sDRP8An0i/75H+FZGqaDoguLH/AESL/j4/uj+41AHXUVkf2Bon/PpF/wB8j/Cj+wNE/wCfSL/vkf4UAax6GsrQf+QLaf8AXJP5U06BomD/AKJF/wB8isvQtB0Q6LaH7JF/qk/hHpQB1lFZH9gaJ/z6Rf8AfI/wo/sDRP8An0i/75H+FACR/wDIel/64J/6E1bFcjHoOif29KPskX+oT+Ef3mrX/sDRP+fSL/vkf4UAa9Y2v/8AIMb/AK6Rf+hrTv7A0T/n0i/75H+FY+vaDog0xv8ARIvvxfwj++tAHX0Vkf2Bon/PpF/3yKP7A0T/AJ9Iv++R/hQBr1j6L/qp/wDr4l/9CNL/AGBon/PpF/3yP8KyNG0HRTDP/okX/HxL/CP7xoA66isj+wNE/wCfSL/vkf4Uf2Bon/PpF/3yP8KAPz1/4Kprs/ZK1HUP+fLUNKuM+my/tx/Wv0difzIlf+8Afzr82P8Agqdo2lW/7GXiqe3t40dBZMGVQCMXttX6FWOh6JJZQyfZYjuRT90dxX0mK/5EGEf/AE+r/wDpGHPKo/8AIyr/APXun/6VVOhqjqf/ACDbj/rk/wDI1W/sDRP+fSL/AL5H+FUtT0HRBptwfskX+qf+Eehr5s9U2rH/AI8of9xf5Varn7LQNE+xxf6JF9xf4R6VZ/sDRP8An0i/75H+FAGvWPY/8hW+/wB6P/0EUv8AYGif8+kX/fI/wrHsdB0X+1L4fZIvvR/wj+6KAOvorI/sDRP+fSL/AL5H+FH9gaJ/z6Rf98j/AAoAbrH3rT/r4T+RrZrj9X0DRQ1p/okX/Hwn8I9DWz/YGif8+kX/AHyP8KANeisj+wNE/wCfSL/vkf4Uf2Bon/PpF/3yP8KAE0D/AJBEP/Av5mtiuQ0DQNE/smH/AESL+L+Ef3jWx/YGif8APpF/3yP8KANesb/mYf8At3/9mp39gaJ/z6Rf98j/AArH/sHRP+Egx9ki/wCPf+6P71AHX0Vkf2Bon/PpF/3yP8KP7A0T/n0i/wC+R/hQAa9/yCZvoP5iteuR13QNE/smb/RIug/hHqK1/wCwNE/59Iv++RQBr0Vkf2Bon/PpF/3yP8KP7A0T/n0i/wC+R/hQBHov373/AK+X/kK2647RtB0Uvef6JF/x8v8Awj0FbX9gaJ/z6Rf98j/CgDXrIvv+QnZf70n/AKCaP7A0T/n0i/75H+FZF9oGif2nZf6JF96T+Ef3TQB11FZH9gaJ/wA+kX/fI/wo/sDRP+fSL/vkf4UAX7v/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFUbvQNE+yy/6JF9xv4R6VW0jQNEOk2p+yRf6lP4R6CgDqKKyP7A0T/n0i/wC+R/hR/YGif8+kX/fI/wAKAG2v/IbvP+ucP/s1bNcha6Dov9tXn+iRf6uH+Ef7VbH9gaJ/z6Rf98j/AAoA16ydX/1cH/XeL/0IUn9gaJ/z6Rf98j/CsnV9A0Ty4P8ARIv9fF/CP7woA62isj+wNE/59Iv++R/hR/YGif8APpF/3yP8KANesfQv+Qf/ANtZf/Q2pf7A0T/n0i/75FZGh6DohsP+PSL/AFsv8I/vtQB11FZH9gaJ/wA+kX/fI/wo/sDRP+fSL/vkf4UAEv8AyHYf+uEn/oSVr1yMugaJ/bsP+iRf6iT+Ef3krX/sDRP+fSL/AL5H+FAGvX5h+KhcfBD/AIKUJdIgi0H46+DpraRwBt/4SHwoTJFn/auNPuZQPa0+lfpL/YGif8+kX/fI/wAK/N7/AIKleHP+EU/Zusv2j/C1kj6l8HvEOmeMdqxhmfT7aTyNUQcj72nT3PfqB16UAfpsn3R9KdXPWOm+GdRsodQ0+CGWCdFkjdVBDIwyCOOhBq1/YGif8+kX/fI/woA16yNN/wCPu+/67D/0BaP7A0T/AJ9Iv++R/hWXpOiaRFfXksVrErJOCCFGQQi0AdXRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9P+/iiiigArC1fWNOtbe4t55ArrG2R9RW7VHUI42spyygny2/lQBgaJ4g0j+xrT98P9SnY/3RWp/wAJBpH/AD2H5Gl0OKL+xbT5B/qU7ew9q1PKi/uD8v8A61AGV/wkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f8A1qPKi/uD8v8A61AHzp8ZNd0tvhb8QwsoP/Eluux/59nr8KP+DUjV9Ptf+CR+kw3Em1v+Er8QHB97mv3q+MsUf/CrPiH8o/5At12/6dnr8I/+DUBEb/gkXpW5QSPFniH/ANKaAP6P/wDhINI/57D8jR/wkGkf89h+RrV8qL+4Py/+tR5UX9wfl/8AWoA4zWfEGkfarD98P+Pgdj/dat7/AISDSP8AnsPyNVtZhh+1WHyD/j4Hb/Zat7yov7g/L/61AGV/wkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f/Wo8qL+4Py/+tQBjTeINI8lv3w6HsayvD3iDSP7Dtf3w/wBWvY11U0UPlN8g6HtWV4dih/sO1+Qf6te1AEn/AAkGkf8APYfkaP8AhINI/wCew/I1q+VF/cH5f/Wo8qL+4Py/+tQBlf8ACQaR/wA9h+Rrn7TXtJHiO8/ej/VRdj6tXa+VF/cH5f8A1q5+zii/4SO8+Uf6qLt7tQBb/wCEg0j/AJ7D8jR/wkGkf89h+RrV8qL+4Py/+tR5UX9wfl/9agDK/wCEg0j/AJ7D8jWDr3iDSSlriUf8fMXY+tdn5UX9wfl/9asHXootlr8o/wCPmLt70AWf+Eg0j/nsPyNH/CQaR/z2H5GtXyov7g/L/wCtR5UX9wfl/wDWoAyv+Eg0j/nsPyNNfxBpGw/vh09DWv5UX9wfl/8AWprxRbD8g6en/wBagDj/AA14g0j+xYf3w/i7H+8a3f8AhINI/wCew/I1B4bii/sWHKj+Lt/tGtzyov7g/L/61AGUNf0g8ecPyNfyTf8ABTbxpef8Fcv+CnPg7/gkl4Du5h8MvADxeJ/iTfWxOyRofnitCwyAfu8H+Jh6Gv3p/wCCoX7bfhD/AIJ7/sW+Mv2j9f8ALe+0+0a30m1bAa61GcbIIlHfLkE47Amvhv8A4N+v2KfEn7PP7JE37RfxyU3XxV+N123irxDdTrmZEuiXt4MnkKqENjsWx2oA/ZfwjB4K8Fta+EPC0cVjpul6fBa2tvEu1IoYflRVA6AAAV3v/CQaR/z2H5GqkUUX/CTzfIP+PdO3+0faug8qL+4Py/8ArUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArUAcZ4j1/SfsCfvh/ro+x/vCt7/hINI/57D8jVbxHFEbBMKP9bH2/wBoVveVF/cH5f8A1qAMr/hINI/57D8jR/wkGkf89h+RrV8qL+4Py/8ArUeVF/cH5f8A1qAMk+INIwf3w/I1h+HfEGk/2bnzh/rJOx/vGuxMUWD8g/L/AOtWH4dih/s37g/1knb/AGjQBY/4SDSP+ew/I0f8JBpH/PYfka1fKi/uD8v/AK1HlRf3B+X/ANagDK/4SDSP+ew/I1gnxBpH/CSj98P+Pc9j/eFdn5UX9wfl/wDWrBMUP/CSj5B/x7nt/tCgCz/wkGkf89h+RqlqXjHw5pGnT6rqN0sVvbRtLI7cBVUZJP4V0XlRf3B+X/1q/EX/AIKX/tUPr+sR/sd/Cm6EV3qW0+INQi5FpaE8x5H8TDqPSvVyfLVjK/LVqKnSinKpUk7RhBfFKTfRLbu7Jas5MbiXRp/u4OdSTtGK1cpPZJf1ZakP7PMcP7c/7W+qftUeOQx8GeCZjYeGbaUHy5ZlPzTY6HkZ/Kv0p+PP7R/w4+FXh2RdRuludQkwYrSI5kYjnn+6Pc18Z/Ay8+Lmp/DbTvhH+zRoUfh3wxpUIt11W8X95Kf4pMd2Y5PGa9s8NfsUeE9Cnk8a/Ey/m8Taw7K7NPxEGJ9Op/GvluLuOMZxBiFDhmg1hoLkpTqLlhGC+0k/enKTvJtKzb3Z7+R8NYbKqfPnVW9VvmnCGsnJ9G9opbLW9lsfPmj+Jf2h/wBq3XUk1Oe48P8AhJ5MObY+Udh9zy/vivsT4Vfs1fBT4XtcXGP7YnuSpaS/USlSP7uRxmvq2z0+wsLWOzsoUiijUKiIoCgDsAKs+VF/cH5f/Wrxcq4Pw2HksTjpOviN3Oetr9IrZLsjuzDiOtWi6GFiqVH+WOl/V7tnH2cXgbT122FtbQj0SIL/ACFbCa5okY2xyKB6AY/pWx5UX9wfl/8AWo8qL+4Py/8ArV9XGnGKtFWPn5TlLVs4rw74g0j7LPmYf6+TsfWsPxz4S+F3xG0x9J8YWcF3G/RmT51PqrYyDXY+HYovs0/yD/Xydvf6V0HlRf3B+X/1qmvQp1oOnWipRe6aumVSqzpyU6cmmuq0Z+fstr8Uf2Z7o3fgOeXxX4R3bnsJSWurZe/lk/eA9K+jfh/+0l8JviFZiXT9SS0ul4ktbo+VMjehVsV7r5UX90flXiHxA/Zw+EHxJuDf+IdJjS7P/Lxb/upfzXrXziyrG4B/8Jc1Kl/z7qN2X+Cau4r+61JdrHtPH4XFr/botT/ngld/4o6JvzTT73O5fxHosviG3kinV18l+RyOo9K6H+39I/57D8jXxTN+yFdaJrkcPgTxrrGlho2ZVLiULgjj5q2R8C/2ktMwNJ+IpmA6faLZSf0q1nGYw0rZfL/t2dOS/GUX+BDy3BS1p4yP/b0Zp/gpL8T69/4SDSP+ew/I0f2/pH/PYfka+Q/+FW/tbJwvjeyb62tL/wAKu/a3bhvG1iv0tar+3MT/ANAFX/yn/wDLA/smj/0GU/8Ayf8A+RPqHxD4g0n+yJsTDoOxrRHibQ7e3Rp7hIxtHLHaP1r471j4C/HzUdOkk8SfEWZEx8yWsCoCPyq3a/sXaRqO2bxj4s1nVQQCVaby1/IVLzfM5/wcvl6znCP5OT/AP7PwMf4mMX/bsZP81FH0fq3xl+FmhoX1XXrOEL1zKM14rrv7aPwX09mt9AmudbnHASxhaQE/XGK3tB/ZD+Aehus39hpeSD+K6Yykn15r3HRPBXhDw5EINB0y2tFXoIolX+Qocc+rbypUl5KVR/jyL8GCllNPpUqPztBfhzP8j4un/aI+P/j9vs/w08H/ANlwMcC71RtuB67aytI+B3jf4kTz3Pxq8aTtD5p8yx07MMTHAzk9a/Qoxxnqo/Kuf0OKLzb35B/x8N29hU/6sxra5hiJ1vJvlh/4DCyfzuV/bkqWmDoxp+aXNL/wKV391jzT4e/DP4N/C+AReD7CCCTGDMy75W+rEZr1X/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArV9BhsLRw9NUqEFGK6JJL7kePXr1K03UqycpPq3dmV/wkGkf89h+RrAvfEGkf29Z/vh91+x9K7Tyov7g/L/61YF7FF/btn8g+6/b2+lbmRa/4SDSP+ew/I0f8JBpH/PYfka1fKi/uD8v/rUeVF/cH5f/AFqAMr/hINI/57D8jWTruv6R/ZFx++H3D2NdX5UX9wfl/wDWrJ12KH+yLj5R9w9v/rUAVrLxBpH2OL98PuDsfSrX/CQaR/z2H5GrdjFF9ji+QfcHb2+lWvKi/uD8v/rUAfPf7SN1puufAvxPptvIGkksX2jB6jB/pWR+yn4p0y5+APhvzZgGjthGfqpNe8eMNEi17wpqWi7Bm6tpYhx3ZSK+Pv2Etaib4b6h4AvQFvPD99LA6N1CE8GvksS1R4jw85bVKU4L1jJSt9zf3H0NBe0yWtFfYqRl8pJx/NI+s9L8QaT9svv3o/1g7H0r84L34T/EP9oH493nib4pGTTPDemTeXDCScSxxnICjuG6k1+mmlRRfbb35B/rR29q3PKi/uj8q9LOshoZoqUMTJ+zhLmcU7KVtlLyXY4sszargPaSoJc8lZSe8e9vMwrPVtAsbWOytJFSKFQiKAcBV4ArG13U/DUOmX2oJ5QnNvIDIEwxG098ZrtvKi/uD8v/AK1eI638TPDet+GfGVvpqndoEU0EzkDaXMZPH513YzEUaNO02k7Oy9E3p6JHLhqNSpO8U3qr/N2/M+Uf2NfE+ieHfhZPqmtXCwQQ6neSu7dAuetfbM3xJ+GTaMniO61Oz+xyJvWZ2XaV+pr5J/Y08O2eo/AewtdVhEkOqXN2XUjhkk4NT23/AAT/APhuNWM2patqFzpquXjsC+I1BOdufSviskrZpRybArA4eNRSpq/NLl5W9U3o7qz2Wp9PmlPAVMyxTxVaUGpu1o811s1urO/fQ83+InxAg/al8cWPw0+G0Aj8NafdR3OoakY8K5iOQqHH/wCuvSv237OTVPg9Zf8ACOq1yNMvIZHVFLMI04zgemK+yPCHgXwl4D0aPQPCdjFZWsfREXGT6k9zXTPb28iGOSNWU8EEZB/SvQjwtUr4LFU8bVvXxCtKUV7sUvhjFdo+eru2zjefQpYnDzwtO1Ki7pN6u+7k+78tFoeX+F/HHhrxD8OrTVNPn3xS2a9VIPC4Iwfevz+uIPij+y948vfFnwysG1/wzrp8+a1QHdHIevTkex71+n99Z2dtpM0NvEkaCNsKqgAcegFSaRHH/ZkHyj7g7V6WZ5F9do0b1XCtT1jOO6drPR3TT6pnDgc1+q1KlqalSno4y6q91qraro0fmPqXjf8AaC/ajvY/CrWD+D/DZI+2ytuEkid1BIB59BX1B44+E/hmP9nvUfg78ODFbtNbiOIvxvkBByxx1OOtfVPlRf3R+VJ5UX9wfl/9aufCcL0oQrPF1ZVqtWLjKcrJqLVuWKWkV6bvVm+Iz6pKVNYemqdODUlFXtddZN6yfqfKX7Nfwo0P4PfCz/hFdYkjbUL/AHPfOmSCzjG0HHQDivlLSP2LLa48b3Wmar4jL+Forv7SbNAwZ2bkAjp04zX6teVF/cH5f/WrA0uGL+1r87R95O3tRX4Nyqth8PhqtK8KKtFXa06p2tdO13fdhS4lzClWrV6dS0qmstFv0avtbp2PJPif8PvBvjr4R3fwt0947SBoBHbYX5Y2T7px/OuR/Zi8LeM/hZ4EPhT4h6tDeC3fbaJECRHEOgz3z+lfVHlRf3B+X/1qPKi/uD8v/rV6byXC/XYZhFNVIx5FZ2Tj2a2dunb7jhWZ1/qssG3eEpc2qu790+l+plf8JBpH/PYfkawNZ1/Sftlh+9H+tPY+ldp5UX9wfl/9asDWIovttgAq/wCtPb2r1Tzy1/wkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f8A1qPKi/uD8v8A61AGV/wkGkf89h+Rqvd+INI+yyfvh91ux9K3fKi/uD8v/rVXu4ovssvyD7jdvb6UAc9oniDSP7Jt/wB8PuDsa1P+Eg0j/nsPyNLokUX9kwfIPuDt/wDWrU8qL+4Py/8ArUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArUAcRY6/pH/CQ3v74fcj7H0rov8AhINI/wCew/I1SsYov+EivfkH3I+3tXReVF/cH5f/AFqAMr/hINI/57D8jR/wkGkf89h+RrV8qL+4Py/+tR5UX9wfl/8AWoA/LTWtQsoP+Cgttes/7qS3X5v+2dfpt/wkGkf89h+Rr83PjAsGkft4+FL5tsUc9su8nhcBX5J6dq/TWMW0qCSIKysMgjkEV8Vwe1GrmVLqsRN/eov9T6fiP3qeCqd6MfwbRm/8JBpH/PYfkaP+Eg0j/nsPyNavlRf3B+X/ANajyov7g/L/AOtX2p8wY8niDSPLb98Oh7Gsbw34g0j+xYP3w6ehrrpIovLb5B0Pb/61YvhqKIaLB8o6elAFj/hINI/57D8jXhf7S3wY+Dn7V3wM8S/s+fF+2j1Dw/4nspLO5jdcldw+V1OOHRsMp7EV9E+VF/cH5f8A1qPKi/uD8v8A61AH8fP/AAQ3/aL8e/8ABPf9rLxp/wAEQ/2qdQd00a4m1L4falcE7LvT5D5nkIx6/Kd6AdPmHav6z7fX9JHia5zKP9TH2PvX85v/AAcg/sUeKvFfwb8P/wDBR/8AZwje0+KvwFuY9Wgltl/eXWnI4Msb7eWCct/ulhX6xf8ABNb9srwb+37+y54T/ac8J+Wp13TIRfW6nJt76HKTxH3VwfwoA+8v+Eg0j/nsPyNH/CQaR/z2H5GtXyov7g/L/wCtR5UX9wfl/wDWoAyv+Eg0j/nsPyNYmu+INI+zw/vh/ro+x9a7Dyov7g/L/wCtWJrsUP2eH5B/rk7e9AE3/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/wDWo8qL+4Py/wDrUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/wDWo8qL+4Py/wDrUAcX4Z8QaR/ZK/vh99+x/vGt/wD4SDSP+ew/I1V8MwwjSV+Qffft/tGt/wAqL+4Py/8ArUAZX/CQaR/z2H5Gj/hINI/57D8jWr5UX9wfl/8AWo8qL+4Py/8ArUAcWdf0n/hJ/wDXD/j2HY/3jW//AMJBpH/PYfkaqmKL/hJ/uj/j2Hb/AGjW/wCVF/cH5f8A1qAMr/hINI/57D8jR/wkGkf89h+RrV8qL+4Py/8ArUeVF/cH5f8A1qAOL8SeINIOln98P9ZH2P8AfFby+INIx/rh+Rqt4lih/sv7g/1kXb/bFbwiiwPkH5f/AFqAMv8A4SDSP+ew/I0f8JBpH/PYfka1fKi/uD8v/rUeVF/cH5f/AFqAMr+39I/57D8jWF4f8Q6QbOT98P8AXy9j/eNdl5UX9wfl/wDWrC8PxRfY5fkH+vl7f7RoAsf8JBpH/PYfkaP+Eg0j/nsPyNavlRf3B+X/ANajyov7g/L/AOtQBlf8JBpH/PYfkaw5df0n/hIoT5o/4937H+8K7Hyov7g/L/61YcsMP/CRwnYP9Q/b/aFAE/8AwkGkf89h+Ro/4SDSP+ew/I1q+VF/cH5f/Wo8qL+4Py/+tQBlf8JBpH/PYfkaw/EviDSP7Cuf3w+76H1Fdj5UX9wfl/8AWrD8SxQ/2Fc5Qfd9PcUATDxBpGP9cPyNL/wkGkf89h+RrUEUWB8g/L/61L5UX9wfl/8AWoAyv+Eg0j/nsPyNH/CQaR/z2H5GtXyov7g/L/61HlRf3B+X/wBagDjNB1/ScXn74f8AH1L2PtW9/wAJBpH/AD2H5Gq2gxQ4vPkH/H1L2+lb3lRf3B+X/wBagDK/4SDSP+ew/I1ZtdUsb2QxWsgdgM49queVF/cH5f8A1qcqIpyqgfSgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWPr//ACB5/oP5itisfX/+QPP9B/MUAbFFFFABWRpX+tvP+vg/+grWvWRpX+tvP+vg/wDoK0Aa9FFfMv7Z/wAbT+zh+yZ8RfjnCvmXXhnw/f3lnFkAzXixMLaIZIG6SYog5HLDmgD5f/4J+3K/EzWfif8AtWMN8fxI8e6nFpkpAy2j+GkOjWpBGcpI9rPOvPIlzxmv06r5d/ZW+Df/AAz3+zj8MfgpLzceG9FtbK6fqZLpLf8AfueTy8pdjyeT1NfUVABUF1/x7Sf7p/lU9QXX/HtJ/un+VAFTRv8AkEWv/XJP5CtKs3Rv+QRa/wDXJP5CtKgArIt/+Q3df9c4v5tWvWRb/wDIbuv+ucX82oA16KKKAMfW/wDj2i/67w/+hitisbW/+PaL/r4h/wDQxWzQAUUUUAY+h/8AHif+usv/AKG1bFY+h/8AHif+usv/AKG1bFABWPN/yHrf/rhL/wChJWxWPN/yHrf/AK4S/wA0oA2KKKKAMvW/+QNdf9cn/ka0k+4PpWbrn/IGu/8Ark/8q0k+4PpQA6iiigDH03/j+vv+uq/+gLWxWPpv/H9ff9dV/wDQFrYoAKx9Vx9osf8Ar4/9katisfVf+Pix/wCvj/2RqANiiiigBD0NZWg/8gW0/wCuSfyrVPQ1laD/AMgW0/65J/KgDWooooAx4/8AkPS/9cE/9CatiseP/kPy/wDXBP8A0Jq2KACsbX/+QY3/AF0i/wDQ1rZrG1//AJBjf9dIv/Q1oA2aKKKACsfRf9VP/wBfEv8A6Ea2Kx9F/wBVP/18S/8AoRoA2KKKKAPzx/4KkQGf9i3xnj/lnaRS/wDfu6t2/pX3l4ZuPtfhvT7r/nrbRP8AmoNfD/8AwU2Gf2L/AB57aU5/KWGvtHwGc+BtGPrY23/ota+lxGvD+G8q9b/03Q/yPKp/8jOr/wBe4f8ApVQ6uqOp/wDINuP+uT/yNXqo6n/yDbj/AK5P/I180eqSWP8Ax5Q/7i/yq1VWy/48of8AcX+VWqACsex/5Ct9/vR/+gitisex/wCQrff70f8A6CKANiiiigDG1j71p/18J/I1s1jax960/wCvhP5GtmgAooooAx9A/wCQTF/wL+ZrYrH0D/kEw/8AAv5mtigArG/5mH/t3/8AZq2axv8AmYf+3f8A9moA2aKKKAMjXv8AkEzfQfzFa9ZGvf8AIJm+g/mK16ACiiigDE0X797/ANfL/wAhW3WJov373/r5f+QrboAKyL7/AJCll/vSf+gmtesi+/5Cdl/vSf8AoJoA16KKKAK93/x6y/7jfyqto/8AyCbX/rin/oIqzd/8esv+438qraP/AMgm1/64p/6CKANGiiigDGtf+Q3ef9c4f/Zq2axrX/kN3n/XOH/2atmgArJ1f/Vwf9d4v/QhWtWTq/8Aq4P+u8X/AKEKANaiiigArH0L/kH/APbWX/0Nq2Kx9C/5B/8A21l/9DagDYooooAyJf8AkOw/9cJP/QkrXrIl/wCQ7D/1wk/9CStegArgvip4N0L4i/DLxF8PfFEfnaZr2m3Wm3af3oLuJopB+Ksa72sjX/8AkC3X/XNv5UAfDv8AwTI8ZeJ/Ev7GHhPwr4+k8zxL4DN34L1hs5Zrzw5PJp5kbhcGZIUm6DiQV981+bf7MEE/wp/bm+P3wPlxHp3iSXRfiJpKf9hW3NhqAUZ6C6sBK2APmn5yTX6SUAFZGm/8fd9/12H/AKAta9ZGmf8AH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9T+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAPCfjGN3wv+IS+ujXX/pM9fg5/waesD/wSR05P7vi3xAP/ACYr96Pi4pf4a+P1HfR7kf8Aku9fgh/wadNn/gk5bR/3PGHiAf8AkcUAf0wUUUUAYOs/8fVh/wBfA/8AQWrerB1n/j6sP+vgf+gtW9QAUUUUARzf6pvoayvD3/IDtf8Armtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/wAjHef9cov5tXQ1z1n/AMjHef8AXKL+bUAdDRRRQAVg699y1/6+Yv51vVg699y1/wCvmL+dAG9RRRQAU1/uH6U6mv8AcP0oAxfDX/IFh/4F/wChGtysPw1/yBYf+Bf+hGvj7/got+2T4M/YK/Y98aftMeMpUX+wrFxYwMfmub6X5LeFR3LyEDigD8A/255o/wDgrj/wWg8B/wDBPTSmN38MfgOI/GHjVlO6C5v1IENq2OONwUg/3z6V/WlbW1vZW0dnaIsUUShERRhVVRgAAdAB0r8AP+DeT9j/AMYfBj9lLUv2r/jzBv8Ail8edQl8V61PKMyx290xe2hyeQArb9vbcB2r+gagDn4v+Rnm/wCvdP8A0I10Fc/F/wAjPN/17p/6Ea6CgAooooAwfEf/AB4L/wBdY/8A0IVvVg+I8/YEx/z2j/8AQhW9QAUUUUAIehrD8O/8g3/tpJ/6Ea3D0NYfh3/kG/8AbST/ANCNAG7RRRQAVgn/AJGUf9e5/wDQhXzj+2l8U9V+Ef7Pur+IfD0xg1O7eCws5F+8s13Isake43Zr07U/EGn/AAu8LnxF40vP3Gh6P5l3cyHlvJVdzE+rEZ+teh/ZtV4eliFr7SUoxXVuKjf/ANKSOb61D2s6T+yk2+lnf/Jnyr+31+1xc/s++DbTwF8OYzqHj3xaxs9ItI/mZGf5fNYei549TXLfsn/8E9fA/wANvA0OvfGiIeIfGuqz/wBo6neTsW/fPz5fuq559TXgX7BngHVf2qPjj4g/b2+K1u0ls9w9n4Wt5uVhgjOPMUHvjofUn0r9Ff2kf2tvgt+yxolvq3xT1ExTXjbba0gXzLiUjqVQc4HrX2We5d7PDx4RwNH2tWdnXsuZzqL3lTX92n17zu3sjw8txbdV53XqckY3VPW3LF6OXrP8tOp9IWdlZ6dbJZWESQwxjCogCqB7AVj+I5oTp0kAYbxtO3POM9cV5D8DP2mvhF+0P8PJPiX8NtSFxYW+4XKyDZLAyjJDqeRxXyp+zn8RbLxyfEv7Q/jvU1tU8X6y2jeHoJpMIbSzcqgjU8FpWDN+FfLwyDEwhiPbQcHRtFxad+ZvSNumilJ+SPWlmVKUqXJJSU7u99LLrf1aXqz9KR0FLSDoKWvFO8KKKKAOf8O/8e0//XeT+ddBXP8Ah3/j2n/67yfzroKACiiigDAn/wCRkt/+uL/zFb9YE/8AyMlv/wBcX/mK36ACiiigDF8Rf8gef6f1rVg/1Cf7orK8Rf8AIHm+lasH+oT/AHRQBLRRRQAVgaH/AK29/wCvhv5Ct+sDQ/8AW3v/AF8N/IUAb9FFFABX59/C79qTxH8RP2+/iR+zFf2cEWm+BNL0y8tbhM+bI9+rFw/bA2jGK/QSvyR/Y9+F/iZP2/P2gfj/AOI7aW1i1rULDRrDzFIWWDT4OXXPUbmxQB+t1FFFABWTrv8AyCLj/cNa1ZOu/wDIIuP9w0AXLH/jzi/3B/KrVVbH/jzi/wBwfyq1QAV+bnxZ0PxZ+zJ8Ypvjz4OtHvvD2rnGqWsfVGPVsfqDX6R1VvbKz1K1ksb+JZoZQVdHGVYHsQa8XPMnWYUYqE3CrB80JreMl5dU1o11R6eV5i8JUblHmpyXLKL6r9Gt0+jPIPhN8YPAHxPsJta8LahFIJ3DGJmCyKcdCp54r2kEEZFfCPif9iP4d+ItbvdZ8F3l14avFk+U2bYjz1+7xXIv8B/2wvBJ2+B/HC6jCn3Y7njI9Durxo51nWFXLjcA6lvtUpJp+fLJqS9NT0nlmWYh82Fxahf7NRNW8uZXT/A/Rw5xxX4v6x8XofB3hL4l/D68LDxBrWrGKCDB3MknGRX0Mur/APBQXSf3c1hp19j+Jdv+NefXvhv9q3UPFS+NdR8AaNPqq4IuWVS2R0PXGR618txRnFbMIUvq1CtTnHmT5qMn7s48rty/aXToe9kWX0sHKft6tKcXytWqRWsXdXv0fXqfa3wM8GTeAfhh4S8M3S7ZoYN0o/23GT/OvoWvzau/Hf7dv2y2MvhmxDqT5YBGDxz3rR/4WJ+3qnL+FLFvoR/jX0eC4owmGw9PD08LX5YRUV+5lslY8bE5DiK9adaeIpXk23+8j1dz9FKK/Oc/Fr9uaHiXwZbN9D/9elX4r/t0XPyweDbVD6sf/r10/wCumF2+r1//AATP/Ix/1Yr/APP6l/4Mj/mfoRqn/INn/wCubfypukHOmQf7gr88L3xj+3xdW0vmaBYQoVOeV4H51HZ+I/2/BaRi30rT9m0bfu9KX+udLpg8R/4KYf6tT64mj/4MR+klFfnJ/wAJJ/wUBHJ0nTz/AN8/41BdeM/2+LGBrq80rTYokGWd2VVA9yTSfGdJK7weI/8ABTGuGpvRYmj/AODEfpFXP6X/AMha/wD99P5V8BLr/wDwUBvkDW9hpsYcAhsqRg/jWfbaf/wUAu724MVzpsMmV342jnHH6Uf64p/BgMQ/+4X+bQv9W2vixdFf9v8A+SP0tor84f8AhGf+Cgkpw+raeg9itA+Ef7cus/LqnjOG0RuoiI/oKP8AWzES/h5ZXfrGMfzkP/V+kvjxtJf9vN/lE/RxnVeWIH1rl9cvrGO8sTLPGoEpzlgO1fCf/DIfxz1cbvEnxIumz1Ee7/61Ubv9hWY3FtHrXjfVLkzPtIzjHHbmqee5zL+Flcv+3qkF+rF/ZWWR+PHr5Qk/8j9Bp/FPhm1Ba41C2QD1lUf1rAufil8N7LP2rXbFMes6f418fW//AAT2+Gx+bU9b1W5PfM2BW9a/8E//AICxHN3Hd3J/25jS/tDiWXw4GnH1qt/lAPqeSR3xU36U/wDOR7/d/tA/BSxz9q8TWC4/6ag/yri9Z/a0/Z8sbeRG8SW0pKkfust2rmLP9hz9na0IP9kNJj+/ITXSR/skfs96fbvJD4bt2KqSCxJ6D60ufime0MPH51H+iHyZDHeVaXygv1Z52f26/gDo9hFbxXs906LgiKImuem/4KHfCbJFhpuo3P8Aux4r6Q8MfAj4Oadp8E9n4bsUcqCT5QJ/WvQ7fwL4KtFC22kWcYH92BB/Sp+pcUVNZYulD/DTcv8A0qX6D+tZFH4cPUl6zS/JHw+f+Chngo8x+GtWYeuwU0/8FCvCOfl8Lauf+AD/AAr7zXw54eQYSwtx/wBsl/wp40DQh0soP+/a/wCFCyjiLrmcf/BMf8xf2hk3/QFL/wAGP/I/POD9v3wxFqlxep4V1ZvNVRt2DI2/hVx/+CgMEpxY+CtVf6r/APWr7hsdF0b/AISG8H2SHhI/+Wa+n0rqF0zTU+5bxj6IP8Kp5PxA980Xyox/zD+0cnW2Bf8A4Ml/kfnif28tdbmPwFqRH0P+FA/b41GL/j78C6mv0B/wr9ExaWo6RJ/3yKa1jZN96FD9VFL+w896Zr/5Sh/mH9qZV/0Af+VJH4+/Ejxbqv7W/jPQtN8PeErvSLmOVYptSmypSAn5hxgdM1+vGh6VBoWjWujWxJjtYliUnrhRis/WIIIFtRAipm4X7oA7GukrvyLh94CrWxVet7WtVtzS5VHRLRJL8XuzkzXN1iqdKhSp8lKF7K7lvvq/wXQKKKK+kPFGSf6tvoaxfDf/ACBYP92tqT/Vt9DWL4a/5AsH+7QBu0UUUAZWu6HpPibRLzw5r0CXVjfwyW9xDINySRSqVZSD1BBINfxv/wDBI3XL/wD4JUf8Fgviz/wSd8eXLx+D/Hsz+JfA0krERDePMMKZ4y0Z5A/iQ1/ZrX8mH/BzP+zn428L2Hw+/wCCpPwIgb/hL/gRqlrdX/kj5p9LkkydxHOEbKn/AGXPpQB/WfRXzp+yT+0X4L/az/Zu8HftEeAJ1uNM8VaZb3yFTnY0iguh9CrZBHqK+i6ACsTXf+PeH/rsn8626xNd/wCPeH/rsn86ANuiiigAooooAwPDP/IJX/fk/wDQjW/WB4Z/5BK/78n/AKEa36ACiiigDAP/ACM//bsP/QjW/WAf+Rn/AO3Yf+hGt+gAooooAwPEv/ILP/XSL/0MVvDoKwfEv/ILP/XSL/0MVvDoKAFooooAKwvD/wDx5yf9d5f/AEI1u1heHwPscv8A13l/9CNAG7RRRQAVhy/8jFD/ANcH/wDQhW5WHL/yMUP/AFwf/wBCFAG5RRRQAVh+Jf8AkBXP+7/UVuVh+Jf+QFc/7v8AUUAbY6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/wCvqX+lb1ABRRRQAUUVT1DULDSbGbVNVnjtra3QySzSsEjRFGSzMcAADqTxQ2NJt2Rcor8aP2lv+CzvwH+GurD4dfs8Wj/EvxZcyrawCyYrpwnkIVV88AmYliMLCrK3Tepr9YfhtH48j8BaR/wtCW3l8RvaxvqRs0KW63LjdIkQJY+WjEohJLFQCSSTXDhsyw+IqTpUJczju1svK+1/T5nu5nwzmWXYWjisfSdNVb8ilpKSW75d0ldatK99L627aiiiu48EKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKypItaMjGKeEJk4BjJOO3O8V+O/iH/gqxF+zH+0drf7Nn7ZOivYw2c4fTfEulxs8NxYT/NBLPbcupCfLI0JceYGAjAFfrB8Nvil8OPjD4Wg8bfC3W7PX9KuPuXNlKsqZ7q205Vh3VsMOhArhwmZYfESlTpz9+Ls4vRq3l+u3me/m/DGZZbTp4jFUX7Kok4TWsJJq6tJaXt0dpLqkdN5Ou/8APeH/AL9N/wDF1j69Drv9jz/v4Og/5ZN6j/brr6x9f/5A8/0H8xXceAHk67/z3g/79N/8XR5Ou/8APeD/AL9N/wDF1sUUAY/k67/z8Qf9+m/+LrJ0uHXfNvP38P8Ax8H/AJZN/dX/AG666sjSv9bef9fB/wDQVoAPJ13/AJ7w/wDfpv8A4uvzk/4KJvqfjC0+En7NjNFct8SPiHo0FzCqEE6dofma1dMR5mSu2xVDwRlwCMGv0yr84fGlra/En/gqh4H0iZfMj+F/gDVtdzwRHd+I7uKxgJBHDGGzugpBzgsOhoA+7tQh13+07D9/D/rH/wCWTf3G/wButjyde/5+IP8Av03/AMXSah/yE7D/AK6P/wCgNWzQBj+Trv8Az3g/79N/8XUNzDrv2aTM8P3T/wAsm9P9+t6oLr/j2k/3T/KgDndHh13+ybX9/B/qU/5ZN6D/AG60vJ13/nvD/wB+m/8Ai6l0b/kEWv8A1yT+QrSoAx/J13/nvB/36b/4usi3h13+2rr/AEiD/Vxf8sm/2v8Abrr6yLf/AJDd1/1zi/m1ACeTrv8Az8Qf9+m/+LpfJ13/AJ7w/wDfpv8A4uteigDkNbh137NFmeD/AF8P/LJv74/262PJ13/nvD/36b/4uk1v/j2i/wCu8P8A6GK2KAMjydd/57w/9+m/+Lo8nXf+e8P/AH6b/wCLrXooA5DRIdd+wn9/B/rZf+WTf32/262PJ13/AJ7w/wDfpv8A4uk0P/jxP/XWX/0Nq2KAMfydd/5+IP8Av03/AMXWRNDrv9vW/wC/h/1Mv/LJvVP9uuvrHm/5D1v/ANcJf5pQAvk67/z3h/79N/8AF0nk67/z3g/79N/8XWxRQByetw67/Y91+/g/1T/8sj6H/brSSHXdg/0iDp/zyb/4uptc/wCQNd/9cn/lWkn3B9KAMnydd/57wf8Afpv/AIujydd/57wf9+m/+LrYooA5DTodd+3X2J4f9av/ACyb+4v+3Wv5Ou/894P+/Tf/ABdGm/8AH9ff9dV/9AWtigDH8nXf+fiD/v03/wAXWRqcOu/aLEmeD/j4/wCeR/uN/t119Y+qf8fFj/18f+yNQAvk67/z3h/79N/8XSeTrv8Az8Qf9+m/+LrYooAx2h13B/fw/wDfpv8A4usrQYdd/sW0/fwf6pP+WTen+/XWHoaytB/5Atp/1yT+VADfJ13/AJ+IP+/Tf/F0eTrv/PxB/wB+m/8Ai62KKAOQjh13+3pf38H+oT/lk395v9utfydd/wCfiD/v03/xdEf/ACH5f+uCf+hNWxQBkeTrv/PeH/v03/xdY2vQ67/Zrfv4fvxf8sm/vr/t1y/xf+Mvg74LeH7fWPFLTTXOo3KWOnWFpH515fXcv3IYIgQWY9TyFVQSxABNfKGueNv+CisOki5bwN4NukJiYxrq1xDKcsCAQ0JVTngjeQD3Netg8lr4in7VSjCL0TnKME7b2cmr269jir4+nSnyWcn15U5W9bXtfp3Pu/ydd/57wf8Afpv/AIujydd/57wf9+m/+Lr4JPxx/wCCiEPyy/AvS5SP4o/E9uAf++owaT/hd/8AwUTuPkg+BukwE/xTeJ4CB+Cxk13f6rYr/n9Q/wDCih/8sOf+2KP8lT/wVU/+RPvfydd/57wf9+m/+LrI0aLXPJn/AH8P/HxL/wAsj/eP+3XxL/wkf/BTzW0xa+GvAOhh+hub68unT6iNFU/gaybHwr/wU9v45fL8W/D+wHnSbhFpt7Kd2455eQd/aj/Vy2lTGUY/9v8AN/6QpB/al/hoVH/27b82j9B/J13/AJ7wf9+m/wDi6PJ13tPB/wB+m/8Ai6/P5/hf/wAFOLwbJfin4Ss8/wAUGgvIR9A8uKQfs+/8FCr4btS+P1nAfS18MWoH/j0hNV/q/hV8WZUF/wCDn+VFk/2nWfw4So//AABfnNF//gpXDq//AAxp48NxNEyf2TJkLGQcebF33n+VfY/gGLWz4E0QpPCAbC26xE/8s1/26/HP9uP4Eftb+GP2Y/F+u/ET42SeI9KttNke400aHa2q3CB4wUMiMWUEkHI54r6U8Ifsk/tT6l4S0u+X9ojX7dJbOB44otKslSNSgIXpyAOOete/WyfBf2JQhLMaVlWqO6jWabcKWn8JO6td6W1Vm3e3mwx2I/tCclhZ35I6Xp/zT1+O2v3n6SeTrv8Az3g/79N/8XVLU4dd/s24zPD/AKp/+WTeh/26+B2/Zf8A25tHAk8NftE3Fww6LqPh6zlX8SrAms+9+DX/AAUwgtJs/Gjw9NGEbJfw4ikjHs5FeD/YGDfwZnR+arr86J6TzOuviwdT5ezf/uQ/Qyyh137FF+/g+4v/ACyb0/36teTrv/PeH/v03/xdfnhafBL/AIKT3MCGf44aJboVH+p8MwsQMf7Un9KuL+zX+3pcfNe/tDeWfSHw1Zgfq9L+wMGvizOh91d/+4Q/tOu9sJU++n/8sP0C8nXf+fiD/v03/wAXWPYxa7/al9+/h+9H/wAsj/dH+3Xwx/wzB+3EPu/tF3P4+HLL/wCKrNtf2Z/24jf3UcX7REwZCm4nw5Zc5X/eo/sLA/8AQ0o/+A4j/wCUj/tDEf8AQHP76X/yw/RLydd/57w/9+m/+LpPJ13/AJ7wf9+m/wDi6/P/AP4Zi/bml+Wb9oqdV9U8N2QP/oVKP2Pv2pr9v+Kh/aN8RSL6WemWVofzUNR/YmAXxZnS+UK/60V+Yf2hiXthJ/N0/wD5Nn3Pq8Ou5tMzwf8AHwn/ACyb0P8At1seTrv/AD3g/wC/Tf8AxdfnzqH7EXxMBtvtnx88fyF5lXi5tkAPPIxCMVoH9hPx433/AI8/EQ/9v8I/9o1P9k5Z1zGP/gup/wDIlPGYvphX/wCBR/zPvbydd/5+IP8Av03/AMXR5Ou/894P+/Tf/F18Ef8ADCHjjv8AHf4if+DCH/4zR/wwX4sf/XfHP4isP+wlGP5RUf2Vlf8A0MV/4Lqf5E/XcZ/0Cv8A8Cj/AJn3BoMOu/2TD+/h/i/5ZN6n/brX8nXf+e8H/fpv/i6/Hv41fA/4Xfs/eBLbX/iD8WfiZrGq6m5ttJ0XT9ccX2pXROFigijTJyfvN91RyewPmngf9mn40fs86f4Y/ad+LvijW5vEdx4q0i2tNButUmv7fTrDUpxbSwzSSMRPM0cuGYAKhHy5PI9fD8I4Sth1XhjfifLTTpte0l2jeV7J/FK1o+btF8dTO68Kvs5YfbWVpJ8q7vTd9Fe79NT90PJ13/nvD/36b/4usXydd/4SD/Xwf8e//PJv73+/XY1jf8zD/wBu/wD7NXwh9EO8nXf+e8P/AH6b/wCLpPJ17/n4g/79N/8AF1sUUAcjr0Ou/wBkTfv4eg/5ZN6j/brX8nXf+e8P/fpv/i6Ne/5BM30H8xWvQBkeTrv/AD3h/wC/Tf8AxdJ5Ou/8/EH/AH6b/wCLrYooA43Rotd3XmJ4f+Pl/wDlkfQf7dbXk67/AM/EH/fpv/i6Zov373/r5f8AkK26AMfydd/5+IP+/Tf/ABdZN9Frv9p2X7+D70n/ACyb+6f9uuurIvv+QnZf70n/AKCaADydd/57w/8Afpv/AIuk8nXf+e8H/fpv/i62KKAMC7h137LL+/g+43/LJvT/AH6raRDrv9k2v7+D/Up/yyb+6P8AbroLv/j1l/3G/lVbR/8AkE2v/XFP/QRQBB5Ou/8APxB/36b/AOLpfJ13/nvD/wB+m/8Ai616KAOPtYtd/tu8/fw/6uH/AJZH/a/262fJ13/nvD/36b/4um2v/IbvP+ucP/s1bNAGP5Ou/wDPxB/36b/4usrV4dd8qD9/B/r4v+WTf3h/t11tZOr/AOrg/wCu8X/oQoAb5Ou/894P+/Tf/F0eTrv/AD8Qf9+m/wDi62KKAMjydd/57w/9+m/+LrH0KHXfsH+vg/1sv/LJv77f7ddfWPoX/IP/AO2sv/obUAHk67/z8Qf9+m/+Lo8nXf8An4g/79N/8XWxRQByMsOu/wBuw/v4f9RJ/wAsm/vJ/t1reTrv/PeD/v03/wAXSy/8h2H/AK4Sf+hJWvQBkeTrv/PeH/v03/xdZGvQ67/Yt1+/h/1bf8sm9P8AfrrqyNf/AOQLdf8AXNv5UAfnH8f5tb+Fv/BQP4E/FFriKOy8a2XiDwBfP5TbTPNAmrWG478cNYXCLnvLgck1+jfk69/z8Qf9+m/+Lr89/wDgqUf+EX/ZjsfjxFtWX4VeK/Dvi9nbACWlhfRJfNuOdoFjLcZPpkd6/R5WV1DocgjII9KAMnydd/5+IP8Av03/AMXWZpMWsi/vDJNCV88bgIyCRsXvvrq6yNN/4+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAqpf8A/HjN/wBc2/lVuud1jSftMNxcfaJU3Rt8qtgDAoAvaH/yBbT/AK4p/wCgitSuM0TQidGtD9rnH7lP4vYVp/2Cf+fuf/vqgDoKK5/+wT/z9z/99Uv9gnGPtc//AH1QB5z8S4TceBPHFuOr6XOv5271/Pt/waazBv8AgllcWve38b6+n/kVD/Wv6Ddf8NJfab4msZbqfbLaGM/N2aJhX83H/Bpki6l/wTv8aaWlxLH/AGZ8SNdtyqNgD5YH/wDZqAP6qKKwP7BOP+Puf/vqj+wTj/j7n/76oAXWf+Pqw/6+B/6C1b1cHrGhYubAG7n/AOPgfx/7LVuf2Cf+fuf/AL6oA6Ciuf8A7BP/AD9z/wDfVKdBJ6Xc/wD31QBtzf6pvoayvD3/ACA7X/rmtVZtCPlN/pc/Q/xVl+H9CJ0S1Iu5/wDVj+KgDt6KwP7BOMfa5/8Avqj+wTjH2uf/AL6oA3656z/5GO8/65Rfzanf2Cf+fuf/AL6rBtNEz4hvB9qn/wBVF/H7tQB3tFYH9gnP/H3P/wB9UHQTn/j7n/76oA36wde+5a/9fMX86Q6Cc/8AH3P/AN9Vh67oeEtf9Kn/AOPiL+P3oA7uisA6CT0u5x/wKg6Cf+fuf/vqgDfpr/cP0rC/sE/8/c//AH1TW0E7T/pc/T+9QBL4b/5AsP8AwL/0I1/Jx/wUO+0f8Ff/APgrt4C/4Jr+Fbh5/hf8GJI/FfxBkhOYprpSDDasRxnHy47F89RX7cf8FCP2tvCf7An7D3i39pHxNfy/aNLs5YtMtmf5rnUJiUt4lHUlnI4HbJr4g/4N+P2EvF/7PP7JVz+0X8ennf4sfG28bxR4iuZD++WO4Je3hJPIwrbyvYtjtQB+/um6bYaNp1vpGlQrb2trGkMMSDCpGgCqoHYADAq7WB/YJzn7XP8A99UHQT/z9z/99UAJF/yM83/Xun/oRroK4KLQ8+JZl+1z/wDHun8X+0a3joJPS7nH/AqAN+isD+wT/wA/c/8A31QNBP8Az9z/APfVAC+I8/YFx/z1j/8AQhW9XBeItDK2C/6XP/ro/wCL/aFb39hHOTdz/wDfVAG/RWANBOf+Puf/AL6o/sE5/wCPuf8A76oA3j0NYfh3/kG/9tJP/QjTDoJ5P2uf/vqsTw9oROnf8fc/+sk/i/2jQB3dFYH9gn/n7n/76o/sE4x9rn/76oA/Oz/go3ePqNz8Jvh+pO3W/Gdgsqj+KOIlz+oBrw7/AIKXfEHxF8V/iB4Z/Ye+E82/VvFro2rtGcmCyVgx3Y6BgCT7Csz/AIKJ/FHwp8Nf2l/hTL4rvZPsfh8XutzKzc5hTEePctwKxf8Agnl4Cn1TVfEf7eX7Q96NOvvFHnPp813IIxb2QbGQWxjIwox1A96/aMpwccBk+BzqvG/sozdKNvjrVKklDTryqHO/Rdz4PG1nicbiMBTl8bipv+WnGKcvvbsvVn7H/Cz4c+Hfg/8ADjSPhv4VjEVho1qlvGAMZ2jlj7sck/WvyZ/Zc+GOmfta/tX/ABC/aU+MEK6pa+FdTk0HRLKcboYvs+Q7FTkE/wCNfrD4N1Twx8QfDVr4v8Hau+o6ZfKWguIpMo6gkEg/UGvnP4N/s/z/ALOnizx3rT6wkXhDXLo6ygZtkltcOP3+9uhQ4yK+HynNqmFo5jzSccXUSim782s/3iXVSl120uj6DGYONWphbJOjFttdNI+6/Rf5H40/t/fDHx3+wD401P4l/s96gum+FfiPFNY6hp+flhnkBJKL9CSpHQ8V618Y/FXw30z9lj9nS4+GmoxX9hp/iHTklkiPKzhCZQw6hg5Oc11Wi6Naf8FKP2wzrl0k198KPh8jxQvLnyr67k4JXsRn9B71z3xF/wCCP/iPQfipp+sfCfxN5HgePU4tRl0y5Zi1u6tyY+x44Hev12nm2X06eCwefYj2eMpR9pN8ukrwlGFObWvtIwas33s9T4uWDxMpV6+XUuahN8sVfa0k3KK25XJPbtfY/oDRxIgdehGRTq5yPw/siWNbu4woA+96VJ/YJxj7XP8A99V/OR+oG/RWB/YRxj7XP/31QNCI63c5/wCBUAJ4d/49p/8ArvJ/OugrgvD2h5tZ/wDSp/8AXyfx+9bw0E/8/c//AH1QBv0VgDQT/wA/c/8A31QNBP8Az9z/APfVABP/AMjJb/8AXF/5it+uCm0IjxHAPtc/+pf+L3Fbx0E/8/c//fVAG/RWB/YRxj7XP/31R/YJxj7XP/31QBN4hONHm+n9a1If9Sn+6K43X9DxpE2bufp/e961ItCJhX/S5+g/ioA6OisD+wT/AM/c/wD31R/YJ/5+5/8AvqgDfrA0P/W3v/Xw38hQdBP/AD9z/wDfVYOi6GTJej7XP/r2/i9hQB3tFYB0Inpdzj/gVB0Inpdzj/gVAG/XO3cccevWhjULuEhOBjJxT/7BOMfa5/8AvqsK80PGuWYN3P8Adf8Ai9qAO8orA/sE4/4+5/8Avqj+wTj/AI+5/wDvqgDfrJ13/kEXH+4arf2Cc5+1z/8AfVZWuaERpNwftc/3D/FQB1Vj/wAecX+4P5VarlrLQf8ARIiLufG0fxe1WjoJPS7nH/AqAN+isA6Cf+fuf/vqg6Cf+fuf/vqgB+lf8ft7/wBdR/KtyuF0vQs3d6Bdz8Sj+L2rb/sE/wDP3P8A99UAb9FYA0E/8/c//fVH9gnOftc//fVAC6l/yFbH/ef+Vb1cHqOhY1Wx/wBLn+8/8XtW7/YRzn7XP/31QBv0VgHQSel3OP8AgVB0Enpdzj/gVAGhqn/INn/65t/Km6T/AMgyD/cFYeqaFjTpz9qn/wBW38ftTdK0InTYD9rnHyD+KgDr6+cv2tb1rD9nvxLOhwfs6qPxda9uGgkdbuc/8Cr5d/bJ01rH9nnXZvtMr5WMYZuD8wrxOJZ8uUYyS/59z/8ASWepkkebMMOv78fzR9H/AA7k87wHo0vrZw/+gitPS/8AkLX/APvJ/KuG+GOjed8PNEl+1TjdZQ8Bv9kVuaZoY/tW/wAXU/3k/j9q9HAu+GpP+6vyOLFK1aa83+Z3lFYH9gnOftc//fVH9gnOftc//fVdRgb9YGsf8fth/wBdT/Kg6Cf+fuf/AL6rB1fQ8Xljm7n/ANaf4vagDvaKwP7BP/P3P/31QNBI63c5/wCBUAb9V7v/AI9Zf9xv5VkDQSOt3Of+BVBc6ERayk3c5+U/xe1AGlon/IJg/wBwVqVxui6ETpcB+1z/AHB/FWn/AGCc5+1z/wDfVAG/RWB/YJzn7XP/AN9Uf2Ccf8fc/wD31QAyx/5GG9/3I66KvP7LQyfEF6Ptc/3I/wCL2roRoJx/x9z/APfVAG/RWANBOP8Aj7n/AO+qBoJx/wAfc/8A31QA7Xelr/18L/I1u1wmt6Fj7Lm7n/16/wAXsa3BoJz/AMfc/wD31QBv0VgDQT/z9z/99Uf2Cf8An7n/AO+qANyT/Vt9DWL4a/5AsH+7UUmgnyz/AKXP0P8AFWP4d0PdosH+lTj5f71AHdUVgf2CcY+1z/8AfVH9gnGPtc//AH1QBv14f8YfhN4R+PHgnxd8GPHtut1o3ijSJNNu42GQY7hGQn6jOR7ivURoJ/5+5/8Avquft9D/AOKkuR9rn/1Mf8X1oA/lA/4N0vi54x/Y9/aF+MP/AARd+PE7w6l4C1a51Twp9oODcaXK2WEeeq8rIMdnr+v6v41v+Dh/4Z+If2I/2yfgL/wWF+F/nRjw9qsWgeKpIiQz2kuQpkI6homdOe6j2r+uLwTf6T4+8HaV430DUJZrLVrSG7gkR8qyTKGBB+hoA9HrE13/AI94f+uyfzqM6Cf+fuf/AL6rF1zQv9Gh/wBKn/1yfx+9AHc0VgHQTj/j7n/76oOgnH/H3P8A99UAb9FYH9gnGPtc/wD31R/YJxj7XP8A99UAHhn/AJBK/wC/J/6Ea364Lw3oROkri7n++/8AF/tGt7+wTnP2uf8A76oA36KwDoJ/5+5/++qDoJPS7nH/AAKgAP8AyM//AG7D/wBCNb9cEdDP/CTY+1T/APHsP4/9o1vHQSel3OP+BUAb9FYH9gn/AJ+5/wDvqj+wTjH2uf8A76oAPEv/ACCz/wBdIv8A0MVvDoK4TxHoeNL5u5/9ZH/F/titwaCeD9rn/wC+qAOgorA/sE5/4+5/++qDoJz/AMfc/wD31QBv1h+H/wDjzk/67y/+hGmf2Ec5F3P/AN9Vh6DoJNpJi7n/ANfL/F/tGgDu6K5/+wT/AM/c/wD31SnQT/z9z/8AfVAG/WHL/wAjFD/1wf8A9CFM/sE/8/c//fVYsmhkeIYR9rn/ANQ/8X+0PagDuaKwBoJHW7n/AO+qP7BOc/a5/wDvqgDfrC8S86Fcj/Z/qKb/AGCc5+1z/wDfVYfiTQj/AGHc/wClz/d/ve4oA7odBS1zw0E4/wCPuf8A76pToJ/5+5/++qAOgorA/sE/8/c//fVA0Ejrdz/99UALoPS8/wCvqX+lb1cJoWh5F5/pU/8Ax9Sfx/StwaCR1u5z/wACoA36p6hqFhpNjNqmqzx21tboZJZpWCRoijJZmOAAB1J4rJk0CUxsIryYOQdpY5APbIyM/mK/lq/4Kgfs4f8ABT7V7u81/wAcarN468BwuZYoPDqPFbWyKcgz2AZpMryfMZpwo6yDpXlZxmU8FQdWFGU35dPXql8mfXcGcMUM8x6wdfGQw67z3l5RWib8nJeV9j9D/wBq3/gtp+zp8FvtPhf4JJ/wsHX48p5ts/l6XC/q1xgmXHXEKsrdN6mv5q/2nf28f2mv2tr5x8WPEMg0nfvi0axzbadFg5H7oEmQjs0rO49a+PCCDg8EUlfj2a8R43H3jUnaH8q0Xz6v5n9o8J+GWRZAo1MNR56y/wCXk7Sl8ukf+3Un3bP1l/4JA+DfgW/7R5+Mvx+8V6D4c03wXGtzp8Gs6hb2bXWoy5WJkWZ0LLAA0hZfuv5frX9Yf/Daf7HP/RWfBn/g+sf/AI9X+evRXdk3FU8uw/sKVFPW7bbu3/w2h4fGvhLR4lzD6/isZONoqMYqKtFLtfu22/W3Q/0KP+G0/wBjn/orPgz/AMH1j/8AHqP+G0/2Of8AorPgz/wfWP8A8er/AD16K9X/AIiDiP8AnzH72fIf8S6Zd/0HVP8AwGJ/oUf8Np/sc/8ARWfBn/g+sf8A49R/w2n+xz/0VnwZ/wCD6x/+PV/nr0Uf8RBxH/PmP3sP+JdMu/6Dqn/gMT/Qo/4bT/Y5/wCis+DP/B9Y/wDx6j/htP8AY5/6Kz4M/wDB9Y//AB6v89eij/iIOI/58x+9h/xLpl3/AEHVP/AYn+hR/wANp/sc/wDRWfBn/g+sf/j1H/Daf7HP/RWfBn/g+sf/AI9X+evRR/xEHEf8+Y/ew/4l0y7/AKDqn/gMT/Qo/wCG0/2Of+is+DP/AAfWP/x6j/htP9jn/orPgz/wfWP/AMer/PXoo/4iDiP+fMfvYf8AEumXf9B1T/wGJ/oUf8Np/sc/9FZ8Gf8Ag+sf/j1H/Daf7HP/AEVnwZ/4PrH/AOPV/nr0Uf8AEQcR/wA+Y/ew/wCJdMu/6Dqn/gMT/Qo/4bT/AGOf+is+DP8AwfWP/wAeo/4bT/Y5/wCis+DP/B9Y/wDx6v8APXoo/wCIg4j/AJ8x+9h/xLpl3/QdU/8AAYn+hR/w2n+xz/0VnwZ/4PrH/wCPUf8ADaf7HP8A0VnwZ/4PrH/49X+evRR/xEHEf8+Y/ew/4l0y7/oOqf8AgMT/AEKP+G0/2Of+is+DP/B9Y/8Ax6j/AIbT/Y5/6Kz4M/8AB9Y//Hq/z16KP+Ig4j/nzH72H/EumXf9B1T/AMBif6FH/Daf7HP/AEVnwZ/4PrH/AOPUf8Np/sc/9FZ8Gf8Ag+sf/j1f569FH/EQcR/z5j97D/iXTLv+g6p/4DE/0KP+G0/2Of8AorPgz/wfWP8A8eo/4bT/AGOf+is+DP8AwfWP/wAer/PXoo/4iDiP+fMfvYf8S6Zd/wBB1T/wGJ/oUf8ADaf7HP8A0VnwZ/4PrH/49R/w2n+xz/0VnwZ/4PrH/wCPV/nr0Uf8RBxH/PmP3sP+JdMu/wCg6p/4DE/0KP8AhtP9jn/orPgz/wAH1j/8eo/4bT/Y5/6Kz4M/8H1j/wDHq/z16KP+Ig4j/nzH72H/ABLpl3/QdU/8Bif03/8ABah/2Wf2gfhVpPxl+FPxC8K6v4t8KSC2ltLHWLSe6u9OuWwVSOOUu7QykOqgcK0hr+ez4N/Hr4x/s+eKV8Z/BjxFeeH9QGN7Wr4jlVeQssbZjlXP8MisvtXkdFfKZnmssXivrkY8k9Nm9119bH67wtwjSyjKFk1Wp7ekm7c8V8L15WtU1e71726H9P8A+yl/wXo0PUvs3hL9rnRv7PmOE/t7SI2eA9t09rkuvqWiL5PSNRX72eFfin8OPjD8Pv8AhNvhZrdnr+lXCjZc2UyypnjKttOVYd1bDDoQK/zlK/Qf9hn4M/t1+I/FK+Nv2Uv7S0C1DBLnWWZoNMKqfuy5VkuAp6xiOUjrt719TkfGGO544etTdX0+L/J/O3mz8l498GMi9hUzDBYiOEa1am/3Tfz1jfyuuiif3c0V5P8AC288daT4C03T/i/qdtrHiOKIC9u9PsZbS3kf1WNmkI44JyAx5CqDtHoH9u6f/wBNf+/T/wDxNfqcJc0U2reR/JlamoVJQUlJJtXV7PzV0nZ9LpM2KyNK/wBbef8AXwf/AEFaT+3dP/6a/wDfp/8A4msjStd0/wA28/1v/Hwf+WT/AN1f9mqMzr6/Ob9kxk8c/tjftI/GBZPOit9Z0PwXbHcSEj0LT1uZVCnhf9J1GbOPvYHpX6BDXNPJx+8/79P/APE1+cn/AAS21W31f9mS/wDi9fCTz/iP4w8U+KchXkBgvtUuFtSrBeR9kjhx6DigD9GdQ/5Cdh/10f8A9AatmuP1DXNP/tOw/wBZ/rH/AOWT/wBxv9mtj+3dP/6a/wDfp/8A4mgDYqC5/wCPaT/dP8qzv7d0/wD6a/8Afp//AImobnXdP+zSf6z7p/5ZP6f7tAFzRv8AkEWv/XJP5CtKuV0bXdP/ALItf9b/AKpP+WT+g/2a0v7d0/8A6a/9+n/+JoA2KyLf/kN3X/XOL+bUn9u6f/01/wC/T/8AxNZFvrth/bd1/rf9XF/yyf1b/ZoA6+isf+3dP/6a/wDfp/8A4mj+3dP/AOmv/fp//iaADW/+PaL/AK7w/wDoYrYrjtb13T/s0X+t/wCPiH/lk/8AfH+zWz/bun/9Nf8Av0//AMTQBsUVj/27p/8A01/79P8A/E0f27p//TX/AL9P/wDE0AGh/wDHi3/XWX/0Nq2K5DQ9d0/7Cf8AW/62X/lk/wDfb/ZrX/t3T/8Apr/36f8A+JoA2Kx5v+Q9b/8AXCX+aUf27p//AE1/79P/APE1jza7p/8Ab1v/AK3/AFEv/LJ/VP8AZoA7Cisf+3dP/wCmv/fp/wD4mj+3dP8A+mv/AH6f/wCJoAk1z/kDXf8A1yf+VaSfcH0rldc13T/7Gu/9b/qn/wCWT+h/2a0k13T9g/1vT/nk/wD8TQBtUVj/ANu6f/01/wC/T/8AxNH9u6f/ANNf+/T/APxNABpv/H9ff9dV/wDQFrYrj9O13T/tt9/rf9av/LJ/7i/7NbH9u6f/ANNf+/T/APxNAGxWPqv/AB8WP/Xx/wCyNR/bun/9Nf8Av0//AMTWPqmuaf8AaLHiX/j4/wCeT/3G/wBmgDsKKx/7d0//AKa/9+n/APiaP7d0/wD6a/8Afp//AImgDXPQ1laD/wAgW0/65J/KmHXdPwf9b/36f/4msrQdd0/+xbT/AFv+qT/lk/p/u0AddRWP/bun/wDTX/v0/wD8TR/bun/9Nf8Av0//AMTQAR/8h6X/AK4J/wChNXlvx1+PXgT9n3wcPFXjN5Z57qVbXTtOtE8291C7f7kFvEOXdj+CjkkCvNfj9+1H4N+BMsNtHa3Ou+KdbjW30PQLONjeahcbmwFBHyRr1klb5UXnk8VxnwJ+CGuReMf+Giv2mLpdb+IlzCYraGCKQ6foVtJ1trJSD83aWc/PIcjO3r7+ByylTorH5hdUvsxWkqjXSPaKekp7LZXloebiMXOVR4bC6z6vpBefd9o/N2Wpo/Aj4M/ETxL48P7Tn7S6xjxZNC8Gi6LE3mWvh6xl+9GjdHupRjz5h1xsX5Rz6N8KPG3iDxjpXjK18RTfaJNE8V3mmwsVCkW8ckTxLwBnasgGepA5r3j+3dP/AOmv/fp//ia8T8IeGYfAUPiu5nmMw8Qa+2rRhIZBsWZYE2tleSDGTxxzUYnM1i4VpV0k7RUElZRSfwx7Kzd9bt3bbk226WEdCVONO7V25N7ttbvu7/dsrI+hKKx/7d0//pr/AN+n/wDiaP7d0/8A6a/9+n/+Jrwz0TYrH0X/AFU//XxL/wChGj+3dP8A+mv/AH6f/wCJrI0bXNP8qf8A1n/HxL/yyf8AvH/ZoA6+isf+3dP/AOmv/fp//iaP7d0//pr/AN+n/wDiaAPh7/gpkSP2MPHpH/QIk/8ARsVfZfw/GPAeiD0sLb/0WtfDn/BTHWbKX9jTxzDH5m59MZRmNwOZoR1KgV9peCNYsYfBejwsJMrZW4/1T9o1/wBmvpK//JP4f/r/AFf/AE3RPKp/8jKp/wBe4f8ApVQ7+qOp/wDINuP+uT/yNVf7d0//AKa/9+n/APiao6nrun/2bcf63/VP/wAsn9D/ALNfNnqm5Zf8eUP+4v8AKrVc9Za7p/2KH/W/cX/lk/p/u1Z/t3T/APpr/wB+n/8AiaANisax/wCQrff70f8A6CKX+3dP/wCmv/fp/wD4msex1zT/AO1L4/vfvR/8sn/uj/ZoA7Cisf8At3T/APpr/wB+n/8AiaP7d0//AKa/9+n/APiaAE1j71p/18J/I1s1x2sa5p+60/1v/Hwn/LJ/Q/7NbP8Abun/APTX/v0//wATQBsV8l/tJ/tU6R8E7iw+HfgvT38V/ETxECmjeHrU/vHPTz7hukNsnV5GxwDjuRwH7Rf7YF94b8Sp+z/+zfp48V/E7UUBFsVb7JpELY/0q/cD5EUHKp95uOmRnqv2Zv2dfC/wKTUPG/iq/uPFPxB8SES674huoX82d+D5UI2/urdOiRrgYAz0AH0+Eyyhg6McfmkbqSvTpXs6naUusafnpKe0NLyj5FfF1K9R4bBvbSU91HyXRz8to7vonz37MH7LF/4W1xv2hPj/AKgnin4m6pGyPd4P2TSoGJ/0SwjPEca5IZ8bn57E51/275PJ+D2izf3fF3hs/wDlRgr6j0DXdP8A7Ih4l/i/5ZP6n/Zr5A/b31izk+CmlCPzMjxZ4cPMbDpqEJ7gVplOY18dnmFrYh3fPFJJWUUnpGKWkYroloLF4Wnh8vrQpL7Mm3u27atvq31Z931jf8zD/wBu/wD7NTjrmng4Pm/9+n/+JrF/tyw/4SH/AJaf8e//ADyf+9/u18oewdjRWP8A27p//TX/AL9P/wDE0f27p/8A01/79P8A/E0ALr3/ACCZvoP5iteuQ17XdP8A7Im/1vQf8sn9R/s1r/27p/8A01/79P8A/E0AbFFY/wDbun/9Nf8Av0//AMTR/bun/wDTX/v0/wD8TQAzRfv3v/Xy/wDIVt1xuja5YB7zPm/8fL/8sn9B/s1tf27p/wD01/79P/8AE0AbFZF9/wAhOy/3pP8A0E0n9u6f/wBNf+/T/wDxNZF9run/ANp2X+t+9J/yyf8Aun/ZoA6+isf+3dP/AOmv/fp//iaP7d0//pr/AN+n/wDiaANC7/49Zf8Acb+VVtH/AOQTa/8AXFP/AEEVQu9c082sv+t+43/LJ/T/AHaraRrun/2Ta/63/Up/yyf+6P8AZoA6misf+3dP/wCmv/fp/wD4mj+3dP8A+mv/AH6f/wCJoAS1/wCQ3ef9c4f/AGatmuPtdcsP7avD+8/1cP8Ayyf/AGv9mtj+3dP/AOmv/fp//iaANisnV/8AVwf9d4v/AEIU3+3dP/6a/wDfp/8A4msnV9d0/wAqD/W/6+L/AJZP/eH+zQB11FY/9u6f/wBNf+/T/wDxNH9u6f8A9Nf+/T//ABNAGxWPoX/IP/7ay/8AobUf27p//TX/AL9P/wDE1j6Frun/ANn/APLX/Wy/8sn/AL7f7NAHYUVj/wBu6f8A9Nf+/T//ABNH9u6f/wBNf+/T/wDxNACy/wDIdh/64Sf+hJWvXIS67p/9uw/63/USf8sn/vJ/s1r/ANu6f/01/wC/T/8AxNAGxWRr/wDyBbr/AK5t/Kk/t3T/APpr/wB+n/8Aiayde13T/wCxbr/Wf6tv+WT+n+7QB5v+078LYvjf+zV4++Dc8fmjxV4c1PSguQMtd2zxLycgHLDB7Vxf7DHxNl+Mv7Gnwt+J91L51zrPhfS57ltxb/Sfs6LMMnBJEgYE+tfSCa7p+0f63p/zyf8A+Jr87P8AgmJq1v4Z+AXiP4OXRmJ+HvjzxZ4fj3ozMLVNTnurUEKvygWtzCFH90CgD9LayNN/4+77/rsP/QFpP7d0/wD6a/8Afp//AImsvSdZsZb+8iTzMtOAMxuByi9ytAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/W/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDjZYvPm1yH+/Eo/OM1/LN/waQTmx/Zk+P/g9uul/F7WBj0D29suPzjNf1SWq79V1VT3EY/8AHDX8qH/BqN+48KftV6d2h+L2pcfUEf0oA/rWooooAwdZ/wCPqw/6+B/6C1b1YOs/8fVh/wBfA/8AQWreoAKKKKAI5v8AVN9DWV4e/wCQHa/9c1rVm/1TfQ1leHv+QHa/9c1oA2aKKKACues/+RjvP+uUX82roa56z/5GO8/65RfzagDoaKKKACsHXvuWv/XzF/Ot6sHXvuWv/XzF/OgDeooooAKa/wBw/SnV8Y/8FCP2tvC/7Dv7Hfjv9pfxQyEeG9LmmtIWbabi7ZSsES+7yECgD+dH9tiwuf8Agrn/AMFg/h7/AME8NIna4+FvwKVfF3jgxH93PqBY+TbORxkAquD/AHz6V/XrbW1vZ20dnaII4olCIijAVVGAAPQCv57f+Dcj9kjxb8Hf2O779qv43RGT4lfHjUpvFmr3Eq/vktrli1vESeQNpLhewYDtX9DNABRRRQBz8X/Izzf9e6f+hGugrn4v+Rnm/wCvdP8A0I10FABRRRQBg+I/+PBf+usf/oQrerB8Rf8AHgv/AF1j/wDQhW9QAUUUUAIehrD8O/8AIN/7aSf+hGtw9DWH4d/5Bv8A20k/9CNAG7RRVW9vrPTbSS/1CVIIIVLvJIQqqo6kk8AU0m3ZA2fyk/8ABWrTPiF45/bgttLtNBvtTtLOwtIbWGCJ2E4ZmZwpAI5OAfpX2V8Ov2Ff2h/2qLvS779rfVZPDfhSwtkGn+FtPbYI7ePAVJMcDjGScmv3bsh4e16O28SWKwXayIHguVCvlDyCreh9qYf+RlH/AF7n/wBCFfqGJ8T8XDLcJl2DoRpToR5VU+KS7uN1aDfV2b7NHyFLhKhLFVsVXqOcajvy7LyTtul0W3kZ3gHwJ4V+GPg7T/AXgm0Wx0rS4RBbwp0VB/Unkn1rf1bSdN13TZ9H1iBLm1uUMcsUgyro3BBHcGtCivzKdapOo6spNybu31vve/c+tjCKioJabW8jm/Cvg/wr4G0hNA8Hadb6ZZR/dhtoxGg/AAVP4k/5BMn1X+dbtYXiT/kEyfVf51M5ynJzm7t7t7jjFRVoqyNwdBS0g6ClqRhRRRQBz/h3/j2n/wCu8n866Cuf8O/8e0//AF3k/nXQUAFFFFAGBP8A8jJb/wDXF/5it+sCf/kZLf8A64v/ADFb9ABRRRQBi+ISRo8xHpWrD/qU/wB0VleISRo8xHpWrB/qU/3RQBLRRRQAVgaH/rb3/r4b+QrfrA0P/W3v/Xw38hQBv0UUUAFeNeF/ir4N+IHj/VvC3hmczXnha5NlqClcBJnTeAD34r2Wvz5/ZY+DnxO+GXx++L3izx7Ekdh4u8RC/wBIKPuLWyQBCWHY7h0oA/QaiiigArJ13/kEXH+4a1qydd/5BFx/uGgC5Y/8ecX+4P5VaqrY/wDHnF/uD+VWqACiiigDD0r/AI/b3/rqP5VuVh6V/wAft7/11H8q3KACiiigDB1L/kK2P+8/8q3qwdS/5Ctj/vP/ACreoAKKKKAKGqf8g2f/AK5t/Kk0n/kGQf7gpdU/5Bs//XNv5U3SM/2ZBn+4KANGvlH9thGf9nLXtvYRn/x6vq6vij46eOtO+KnwG+IWl6dC0b6FK9o+453NEVO4egr53imtTWWYmhKXvTp1OVd7Qbf4Hs5DTl9eo1UvdjOF/K8kj6P+D0wuPhZ4fmXo1jD/AOgiup0v/kLX/wDvJ/KvFv2f/FOn2v7Omg+JtXlEVvbaeryux4UIOa539mr4q+I/jHd+JPGFzCsGjG7EOnrjDsiDBYnvmqy/NqEaWCw7d51YJpLXRRTbfZdL92kTjMvqupiayXuU5NN+bk0ku76+iPqqiiivoDyArn9Z/wCPyx/66n+VdBXP6z/x+WP/AF1P8qAOgooooAKr3f8Ax6y/7jfyqxVe7/49Zf8Acb+VAFPRP+QTB/uCtSsvRP8AkEwf7grUoAKKKKAOdsf+Rhvf9yOuirnbH/kYb3/cjroqACiiigDB13pa5/57r/I1vVha70tf+u6/yNbtABRRRQAyT/Vt9DWL4a/5AsH+7W1J/q2+hrF8Nf8AIFg/3aAN2iiigArnbb/kZbn/AK5R/wBa6Kudtv8AkZrn/rlH/WgD4Q/4KvfsmWX7bX/BP34mfs+SRLJfanpE1xpxYZ231qPNhI+rLt+hr8/f+DaD9rS//aS/4Jq6H4G8YXBk8UfC66m8K6mjnMo+xnEJbPPMZXmv6EmVWUqwyDwRX8Zn7B0H/Drv/g4g+LX7HGqH7L4M+PNuPEXhwsdsX2gbpvLUdNw3SJxydlAH9mlYmu/8e8P/AF2T+dbdYmu/8e8P/XZP50AbdFFFABRRRQBgeGf+QSv+/J/6Ea36wPDP/IJX/fk/9CNb9ABRRRQBgH/kZ/8At2H/AKEa36wD/wAjP/27D/0I1v0AFFFFAGB4l/5BZ/66Rf8AoYreHQVg+Jf+QWf+ukX/AKGK3h0FAC0UUUAFYfh//jzk/wCu8v8A6Ea3Kw/D/wDx5yf9d5f/AEI0AblFFFABWHL/AMjFD/1wf/0IVuVhy/8AIxQ/9cH/APQhQBuUUUUAFYfiX/kBXP8Au/1FblYfiX/kBXP+7/UUAbY6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/6+pf6VvUAFFFFAH52/tWf8Ewf2Vv2rRc65rukf8I74mmy39taQFgmdz3njx5c+TjJdd+OA4r+aD9q3/gkV+1R+zV9p8RaDZf8Jx4Yhy39oaRGzTxRjvPa8yJgckp5iKOriv7caK+czXhbA4683Hln/NHT71s/z8z9M4S8V8+yLlpQqe1oL7E7tJf3Zbx8kvd8mfxY/wDBHD9qw/s8/tQweAPE1z5Phvx95el3O84SG9BP2SU+nzsYj0AEmT92v7Tq/PH9qf8A4Jjfst/tTST+ItW0o+GvFMhLrrejBbe4aTqGmQDy5ucZZ18zAwHFfbHw20fxh4e8BaRoHj/Uo9Z1mxtY7e71COMxC7kiG3zihLbGkADsuSFYkAkYNLh3LsVgITwlZqUE7xkvPdNdO/VavUfiRxJlPENelnGBi6deS5asH3XwzUlpJW913s9I+6dtRRRX0h+ZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH88H/BeP9q3/AIRnwPpH7J3hO5xeeINmp63sPKWUL/uIj/11lUuR1AjHZq/CH9mL9g/9pr9ra+T/AIVP4ek/snfsl1i+zbadFg4P70g+YR3SJXcf3a/rE0T/AIJffBrxX8cdb/aU/aZkPj/xRrN4bmO1uV2aVZRJhYYUgyTMIowseZiVbGfLUmv0t0/TtP0ixh0vSoI7W2t0EcUMShI0RRgKqgAAAcAAYr4bEcL1cyxssXjp8sNoxW/KtrvZX3dr77o/fMt8VsHwzklLKMgo+0rW5qlWSajzy35Y6SlbSKb5dIrRn4xfspf8ES/2dfgv9m8UfG6T/hYOvx4fyrlPL0uFxzhbfJMuOmZmZW6+Wpr9hb7T7DSPDJ0vSYI7W2t41jihiUJGiLgBVVQAABwABgV0lY+v/wDIHn+g/mK+swOXYbBw9nhoKK/F+r3fzPyDPuJszzqv9YzOvKpLpfZf4YrSPySNiiiiu08IKyNK/wBbef8AXwf/AEFa16yNK/1t5/18H/0FaAPMP2jfHyfCn9nvx38UJJTAvhzw9qepmQDJT7JbSS7gO+Nua8w/YI8AJ8Lf2IvhH8Pgqq+l+ENGhl2LtBl+yxmRsf7Tlifc14//AMFadVlsP+CdXxS0i3u2sZvEemw+G4pl+8suv3MOmpj3LXIH41+g+l6da6RptvpNioSC1iSGNQMAKgAAA9gKAKmof8hOw/66P/6A1bNY2of8hOw/66P/AOgNWzQAVBc/8e0n+6f5VPUF1/x7Sf7p/lQBU0f/AJBNr/1yT+QrSrN0b/kEWv8A1yT+QrSoAKyLf/kNXX/XOL+bVr1kW/8AyG7r/rnF/NqANeiiigDH1skW0WP+e8P/AKGK2Kxtb/49ov8Ar4h/9DFbNABRRRQBkaH/AMeJ/wCusv8A6G1a9Y+h/wDHif8ArrL/AOhtWxQAVjzf8h23/wCuEv8A6ElbFY83/Iet/wDrhL/NKANiiiigDL1z/kDXf/XJ/wCRrST7o+lZut/8ga6/65P/ACNaSfcH0oAdRRRQBj6cT9uvv+uq/wDoC1sVj6b/AMf19/11X/0Ba2KACsfVP+Pix/6+P/ZHrYrH1X/j4sf+vj/2RqANiiiigBD0NZWhf8gW0/65J/KtU9DWVoP/ACBbT/rkn8qANavj/wDaP/advfhrren/AAY+DmljxX8S/EKFtP0oNthtYOhu72Qf6q3Q+uGc8L6ih+0T+1NfeCvEUHwK+A2nL4t+J2rR7rfT1b/RtOhbj7VfyD/VRLnIUkNJ0HXNdZ+zL+zXafArS9Q8R+KtRbxL478TSC58Qa/OuJbqb+GOMf8ALO3iHyxRjgAZ69PpsHgKODoxx+ZRvfWnTd05/wB6VrNU130c37sdOaUfJr4mdeo8NhXa3xT/AJfJdHP8I7vonzf7O37M3/Cr/FuofFD4p6q3jD4ja1bp/aGtzptWJCzYtrOPpBbp0Crgt1b0H2PWPH/yH5f+uCf+hNWxXi4/H18ZWdfESvJ6dkktkkrJRS0SSSS2O/DYanQgqdJWX4t9W3u2+rerCuU1TWdKvo7zS7O4SW5sZbdbiNTlojIVZQw7ZUgj2rq6+evBkUsXib4hfaD87a9aMvr5ZtLQL+GQcVnRoqcKk2/hSf8A5Ml+pVSo4ygl1f6N/ofQtFFFc5qFY+jf6qf/AK+Jf/QjWxWPov8Aqp/+viX/ANCNAGxRRRQB+ev/AAVEk8v9i7xpn+KzjX/vq5gH9a+7vDEfk+GtOh/u20I/JBXwJ/wVSbb+xb4t/wBpLRfzvbYV+hWmxiLTreIfwxoPyFfSYn/kQYX/AK/Vv/SKB5NL/kZ1v+vdP/0qqXao6n/yDbj/AK5P/I1eqjqf/INuP+uT/wAjXzZ6xJZf8eUP+4v8qtVVsv8Ajyh/3F/lVqgArHsf+Qrff70f/oIrYrGsf+Qrff70f/oIoA2aKKq3t9ZabbG81GZLeFSAXkYKoLEAcnA5JAHuaaTbsgbKGsfetP8Ar4T+Rr8/vjj+0j8SPir8RLr9lb9jZ45fENvhPEfid18yy8PxNwVH8Mt2QCFjB+U9eQdvk37Qf7Wl7+0L8Yrf9iv9lXxJa6ZqE8pTXfE4mX/Qo1B8yCxXIM1yV3AlMiP1ByV/RH4FfAj4b/s6fDy0+Gvwxsha2Vvl5ZXO6e6nb780z9Xkc8kn6DAAA+wp5fTyWlDF5jT5sRNc1OlJaJPapUXVfyQ+1vP3bKfhSxMsfOVDCytSi7Smnq31jF/nLpstdVzn7On7NPw6/Zq8IyaB4OSS81K/f7Rq2sXjebf6ldNy0s8p5JJJwv3VB47mvoWiivl8ZjK+KrSxGIm5Tk7tvd/107LRHsUKFOjTVKlG0VskY+gf8gmL/gX8zXxn/wAFBW2/A7Sm9PFnhz/04Q19maB/yCYf+BfzNfFv/BQ9tnwDsH9PFPh0/wDlQhr1uFv+RxhP+vkfzOPN/wDcq3+F/kfdVY3/ADMH/bv/AOzVs1jf8zD/ANu//s1eAeibNFFFAGRrv/IJm+g/mK16yNe/5BM30H8xWvQAUUUUAYmjffvP+vl/5CtusTRfv3v/AF8v/IVt0AFZF9/yE7L/AHpP/QTWvWRff8hOy/3pP/QTQBr0UUUAV7v/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFWbv/AI9Zf9xv5VW0f/kE2v8A1xT/ANBFAGjRRRQBjWv/ACG7z/rnD/7NWzWNa/8AIbvP+ucP/s1bNABWTq/+rg/67xf+hCtasnV/9XB/13i/9CFAGtRRRQAVj6GSdP5/56y/+htWxWPoX/IP/wC2sv8A6G1AGxRRRQBkS/8AIdh/64Sf+hJWvWRL/wAh2H/rhJ/6Ela9ABWTr3/IFuv+ubfyrWrI1/8A5At1/wBc2/lQBrLyoNfnJ+yHcW3hj9sD9pr4UwGNFTxFofihIkGGCa3pMETO3qXmspfyr9G1+6K/Obw09z4W/wCCsXi3TFZEtvGXwu0a+CAYdp9D1S9hdm9cJfRgelAH6NVkaaT9rvs/89h/6Ata9ZGm/wDH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1/7+KKKKACql/wD8eM3/AFzb+VW653WbjWI4LhbW3SSMRthi+CePSgC9of8AyBbT/rin8hWpXGaJd+IP7FtMWif6mP8A5aewrU+1+If+fSP/AL+f/WoA36KwPtfiH/n0T/v5/wDWo+1+If8An0T/AL+f/WoAhsedY1Qf9cv/AEGv5Tv+DVz9zcftf2B/5Y/F7UePq0o/pX9S+nXWuHW9S32qAZiziTttr+VX/g18utSh8dftoWtnAr7Pi9fEgtjGZbof0oA/rporn/tfiH/n0T/v5/8AWpftfiH/AJ9E/wC/n/1qAF1n/j6sP+vgf+gtW9XBazd+IPtNh/oif8fA/wCWn+y1b32vxD/z6J/38/8ArUAb9FYH2vxD/wA+kf8A38/+tR9r8Q/8+if9/P8A61AG3N/qm+hrK8Pf8gO1/wCua1Vmu/EPlN/oidD/AMtKyvD154g/sO1ItE/1a/8ALT/61AHcUVz5u/EP/Pon/fz/AOtQbvxD/wA+if8Afz/61AHQVz1n/wAjHef9cov5tSm88Q/8+if9/P8A61YFpd6+PEV5/oiZ8qL/AJae7e1AHf0Vgfa/EP8Az6R/9/P/AK1J9s8Q/wDPon/fz/61AHQVg699y1/6+Yv5037Z4h/59E/7+f8A1qw9eu/EGy1zaJ/x8xf8tPegDvKK5/7Z4gzj7In/AH8/+tR9s8Q9Psif9/P/AK1AHQV/Jd/wWJ1bV/8Ago//AMFOvgn/AMEjfA0zzeGNBu4vGvxCER/diztvmigl+qgkKf4mWv6gPiJ8RD8MvAWs/ETxVHDa6bodlPfXUzygKkUCF2JPoAK/mo/4N3vA3iz9oPxL8av+Cu/j+wMmsfGvXprXRDO2Gg0SwbYiqDnG4qoOD/BQB/T94I0zTtE8J2Oi6PCtvaWcQggiQYVI4ztVQPQAAV1VcJ4bu/EH9jQ4tE/i/wCWn+0fatz7X4h/59I/+/n/ANagDforA+2eIf8An0T/AL+f/Wo+1+Ic4+yJ/wB/P/rUAJF/yM83/Xun/oRroK4GK78Qf8JLN/oiZ+zp/wAtP9o+1b32zxDnH2RP+/n/ANagDoKK5/7Z4hzj7In/AH8/+tS/a/EP/PpH/wB/P/rUAL4jGbBf+usf/oQrergvEV3r/wBgXNon+uj/AOWn+0K3vtfiH/n0j/7+f/WoA36KwPtniH/n0T/v5/8AWpPtniH/AJ9E/wC/n/1qAN89DWH4d/5Bv/bST/0I0w3fiHBH2RP+/n/1qw/Dt54g/s7i0T/WSf8ALT/aNAHeV83fHz4O+Jfjfd6L4OuNQ+xeEVmM+tQRErNeKmDHBkdI2PL+oGK7/wCIPxI/4Vl4N1Dx14pgWKx02FppCr5Y46ADHJJ4ArE+D/in4o+K/Alr4q8baZFZ3WpFrmK1DbWgt5OYkf1cLy3ucdq9PBPEYaKzClZcr5U3/M0/h84rW/2XZ72OTEKlVf1aet1dryv18ntbrqevaXpmn6LpsGkaTClva2yLFFEgwqIowAB6AVQP/Iyj/r3P/oQpPtniHr9kT/v5/wDWrBN54g/4SRf9ET/j3P8Ay0/2hXmttu73OpK2iO9orA+2eIf+fRP+/n/1qPtfiH/n0j/7+f8A1qQzfrC8Sf8AIJk+q/zpn2zxD/z6J/38/wDrVh+I7zxB/ZMmbROq/wDLT3oA7sdBS1z4vPEGP+PRP+/n/wBal+2eIf8An0T/AL+f/WoA36KwPtniH/n0T/v5/wDWo+1+IP8An0T/AL+f/WoATw7/AMe0/wD13k/nXQVwHh278QfZZ/8ARE/18n/LT3roPtniH/n0T/v5/wDWoA36KwBd+IT/AMuif9/P/rUn2zxD1+yJ/wB/P/rUALP/AMjJb/8AXF/5it+uBmvNf/4SODNmmfJf/lp7it/7Z4h6/ZE/7+f/AFqAN+isD7Z4hH/Lon/fz/61IbzxCP8Al0T/AL+f/WoAm8Rf8geb6Vqwf6lP90Vxmv3fiD+yJs2idP8Anp7/AErViu/EHlJi0ToP+WlAHR0Vgfa/EP8Az6R/9/P/AK1J9s8Q4z9kT/v5/wDWoA6CsDQ/9be/9fDfyFJ9s8Q4z9kT/v5/9asLRLvX/NvcWif8fDfx+woA72isD7Z4h/59E/7+f/WpDeeIR/y6J/38/wDrUAdBWBe/8h2z/wB1/wCVH2zxD/z6J/38/wDrVg3t3r/9u2ebRPuyf8tPagDvaK583niH/n0T/v5/9al+1+IcZ+yJ/wB/P/rUAb9ZOu/8gi4/3DVX7Z4g/wCfRP8Av5/9asrXbvxANIuM2ifcP/LSgDq7H/jzi/3B/KrVctZXfiD7HF/oifcH/LT2+lWftniHp9kT/v5/9agDoKRmVFLscAck1gfbPEPT7In/AH8/+tXK+O9S8RWvgrV7hbZEKWczBhJyMIeazrVPZ05T7Jv7i6cOeah3djc8Kaxpeu/bNR0a4S5gaYqJIzlcrwRn2NddXxL+xJqmsXPwMtWtrdZQLibLF8Ektk19dm78Qj/l0T/v5/8AWrjynHfXMFRxdrc8Yyt2urnTmOF+rYqrh078smvudjforA+2eIf+fRP+/n/1qPtfiH/n0j/7+f8A1q9A4xdS/wCQrY/7z/yrerg9Su9f/tWxzaJ95v8Alp7VufbPEOcfZE/7+f8A1qAOgorn/tniHOPsif8Afz/61L9s8Q/8+if9/P8A61AGhqn/ACDZ/wDrm38qbpGf7Mgz/cFYWqXniD+zZ/8ARE/1bf8ALT2pNKvPEH9m2/8AoifcX/lpQB19fkL8RrXxLaa18XvA/h+4eCV5I9V2J/y1hIw6/THNfq39r8Q/8+kf/fz/AOtX59ftD+B/i/4Z+Kj/ABZ+H2ijU49V099OvLdDv+8MAkV8Nx7hZ1MHTrRUmoyalypuSjOEoNpLV2umfVcJV4wxM6cmk5JW5rJc0ZKSTb01s0fMfhLx/wCJfi18LPCn7MfgMus1wzHUpR0SBWyAT6Y5Nfrp8MfB2keANH/4RDQ4xHb2KRRjAxkheSfcnmvmD9kX9nvXvg1oE/iHxDYxHWtT+Zvn5hj6hPr619Xabd6//a1/ttE+8n/LT2rPgTJcTh8LHG5h/HlGMUn9iEVaMbdG/il5vyL4rzSjWxEsNg/4UZOTf8029X6LZeR3tFc/9s8Qn/l0T/v5/wDWo+2eIT/y6J/38/8ArV96fJHQVgaz/wAfth/11/pR9s8Q/wDPon/fz/61YGsXev8A2yxzaJ/rT/y09qAO+orA+1+If+fSP/v5/wDWo+2eIf8An0T/AL+f/WoA36r3f/HrL/uN/Ksj7X4h/wCfSP8A7+f/AFqr3V54g+yy5tE+43/LT2+lAGnon/IJg/3BWpXGaLeeIP7KgxaJ9wf8tP8A61af2zxD/wA+if8Afz/61AHQUVgfbPEP/Pon/fz/AOtR9s8Q/wDPon/fz/61ADLH/kYb3/cjroq8/sbvxB/wkN7i0T7kf/LT2+ldD9r8Q/8APpH/AN/P/rUAb9FeI/GnxZ4j8K/CnXfEEcKwPbWjMrrJ8yk4GR+ddf4T1bxHf+GNPvXtkdpbeNyxk5JKjnpXKsXB4l4X7SipfJtr9GdDw8lQVfo2180k/wBTode6Wv8A13X+Rrerg9bu/EBFrmzT/Xr/AMtPY1ufbPEH/Pon/fyuo5zoKK5/7Z4h6/ZE/wC/n/1qX7Z4h/59E/7+f/WoA3JP9W30NY3hv/kCwfSoXu/EBjb/AESPof8Alp/9asbw5d6+NFgxaJ93/np/9agDu6KwPtniH/n0T/v5/wDWo+1+IcZ+yJ/38/8ArUAb9c7bf8jNc/8AXKP+tO+2eIcZ+yJ/38/+tXPW93r/APwktz/oif6mP/lp9fagD0Gv5M/+Dob4KeMPh74e+EH/AAVG+EMH/E/+B/iGCTUGjBEj6fPIpGSP4VYMp9pK/qs+2eIf+fRP+/n/ANavm79sP4DJ+1b+y747/Z28V2Eb2fi3RrqwzvBKSuh8pxx1SQKw+lAHoH7NHxx8KftLfADwh8evBEwn0vxZpVrqUDD+7OgbB9wTg16trv8Ax7w/9dk/nX8tn/BrX+0P4xuf2WfGX7Cvj5F/4Sr4F+ILnR5LeWTEgspHYxHHXarB0/4DX9Omu3niD7PF/oif66P/AJae9AHdUVz/ANs8Qf8APon/AH8/+tSm78Q/8+kf/fz/AOtQBv0Vz/2zxD/z6J/38/8ArUfbPEP/AD6J/wB/P/rUAL4Z/wCQSv8Avyf+hGt+uB8NXniD+yVxZp99/wDlp/tH2rf+1+If+fSP/v5/9agDforA+1+If+fSP/v5/wDWo+1+If8An0j/AO/n/wBagAP/ACM//bsP/QjW/XBfa9f/AOEm/wCPRM/Zh/y0/wBo+1bv2zxD/wA+if8Afz/61AHQUVgG78Qj/l0T/v5/9akN54hH/Lon/fz/AOtQAviX/kFn/rpF/wChit4dBXB+JLvX/wCyyDaJ/rIv+Wn+2Pat0XfiDtaJ/wB/P/rUAdBRWB9r8Q/8+kf/AH8/+tSfbPEP/Pon/fz/AOtQB0FYXh85s5f+u8v/AKEaaLzxBn/j0T/v5/8AWrC8P3fiD7JIPsif6+X/AJaf7RoA7yisD7X4h/59E/7+f/WpPtfiHP8Ax6J/38/+tQB0FYcv/IxQ/wDXB/8A0IVH9r8Q5/49E/7+f/WrFlu9f/4SKH/REz5D/wDLT/aFAHdUVgfa/EP/AD6R/wDfz/61Au/EP/Pon/fz/wCtQBv1h+JeNCuT/s/1FM+1+If+fRP+/n/1qw/El34g/sO5zaJ90f8ALT3FAHdDoKWufF34h6fZE/7+f/WpftfiHP8Ax6J/38/+tQBv0Vz/ANr8Q/8APon/AH8/+tS/a/EP/Pon/fz/AOtQAug9Lz/r6l/pW9XBaFd+INt5i0T/AI+pf+Wn0re+1+If+fRP+/n/ANagDforn/tfiH/n0T/v5/8AWq5ZT6rLKVvoFiTHBDbuaANSiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisuTSYZJGkMs4LEnAlYDn0GaANSsfX/APkDz/QfzFL/AGNB/wA9rj/v8/8A8VWPr+jQf2PP++uPuj/ls/qPegDr6KyP7Gg/57XH/f5//iqP7Gg/57XH/f5//iqANesjSv8AW3n/AF8H/wBBWj+xoP8Antcf9/n/APiqyNK0aDzbz99cf8fB/wCWz/3V/wBqgD4V/wCCl1tc6/8ADH4dfD+3KEeI/if4MtpI36SRWupRXzr/AN82pP4V+jFfmh+3NpVjq3xr/Zl8DvPMJL34mfb1DSucjS9F1S4I6+qiv0Y/saD/AJ7XH/f5/wD4qgBuof8AITsP+uj/APoDVs1x+oaNB/adh++uP9Y//LZ/7je9bP8AY0H/AD2uP+/z/wDxVAGvUF1/x7Sf7p/lWf8A2NB/z2uP+/z/APxVQXOjQfZpP31x90/8tn9P96gC5o3/ACCLX/rkn8hWlXLaPo0B0m1/fXH+qT/ls/oPetL+xoP+e1x/3+f/AOKoA16yLf8A5Dd1/wBc4v5tR/Y0H/Pa4/7/AD//ABVZFvo0H9tXX764/wBXF/y2f/a96AOuorI/saD/AJ7XH/f5/wD4qj+xoP8Antcf9/n/APiqAG63/wAe0X/XxD/6GK2a5DW9Fg+zRfvrj/Xw/wDLZ/74962P7Gg/57XH/f5//iqANeisj+xoP+e1x/3+f/4qj+xoP+e1x/3+f/GgA0P/AI8T/wBdZf8A0Nq165HRNGgNif31x/rZf+Wz/wB9vetf+xoP+e1x/wB/n/8AiqANeseb/kPW/wD1wl/mlL/Y0H/Pa4/7/P8A/FVjzaNB/b1v++uP9TL/AMtn9U96AOvorI/saD/ntcf9/n/+Ko/saD/ntcf9/n/+KoAfrn/IGu/+uT/yrST7g+lctrejQf2Ndfvrj/VP/wAtn9P96tJNGg2D99cdP+ez/wDxVAGzRWR/Y0H/AD2uP+/z/wDxVH9jQf8APa4/7/P/APFUAJpv/H9ff9dV/wDQFrYrkNO0aD7dffvrj/Wr/wAtn/uL71sf2NB/z2uP+/z/APxVAGvWPqv/AB8WP/Xx/wCyNS/2NB/z2uP+/wA//wAVWRqmjQC4sf30/wDx8f8APZ/7je9AHXUVkf2NB/z2uP8Av8//AMVR/Y0H/Pa4/wC/z/8AxVAGsehr87vib+0L8RPiJ4m/4Zf/AGRDFN4mtoIxr/iOVfN0/wAPROOh7S3jDOyEfdPLdDjO+Lvxi8efG7x/e/sxfsjX00V7ZkR+J/F3mPJaaJGfvQwc7Zb1hwFBxH1bkHb9R/s//AD4c/Ar4Yaf4G+HsM1tbhRPcTNKxnu7mQAyTzPkF5HPJP4DAAFfVUMLSyqlHFY6ClXkk6dJ7JPapUXbrCD+L4pe5ZT8epWnjJujh5WprSU11/uwff8Aml02XvaxP2ev2bvh9+zl4Yn0jwoJb7VdTk+06vrN63m3+pXR+9LPIeTkk7VHyqDgDrn6ArI/saD/AJ7XH/f5/wD4qj+xoP8Antcf9/n/APiq+exeLrYqtLEYiblOW7e/9dlsloj06FCnRgqdKNorZISP/kPy/wDXBP8A0Jq2K5CPRoP7el/fXH+oT/ls/wDeb3rY/saD/ntcf9/n/wDiq5jU165bVdJ02yiu9StIEjuL2WBp5FGGkKMqqWPfCgAe1aX9jQf89rj/AL/P/wDFV5zaaxpPi211mDTmu1XSNSXT3d5mxJJH5TOVwx4Uvt5xyp7VpCE3GUo7Lf7/APMiTjdJ79D12isj+xoP+e1x/wB/n/xo/saD/ntcf9/n/wDiqzLNesfRf9VP/wBfEv8A6EaX+xoP+e1x/wB/n/8Aiqx9G0aDyZ/31x/x8S/8tn/vH3oA6+isj+xoP+e1x/3+f/4qj+xoP+e1x/3+f/4qgD8+f+Cq/wDyZb4q/wC3H/0utq/RSz/484v9xf5V+bX/AAVQ0yKD9jPxRKsszEGx4aRmHN9a9iTX6H2mjwG0iPnT/cX/AJbP6fWvpMV/yIMJ/wBfq/8A6Rhzy6X/ACMq3/Xun/6VVN+qOp/8g24/65P/ACNVv7Gg/wCe1x/3+f8A+KqjqejQf2bcfvrj/VP/AMtn9D7182eobdl/x5Q/7i/yq1XP2WjQfYof31x9xf8Als/p9as/2NB/z2uP+/z/APxVAGvWPY/8hW+/3o//AEEUv9jQf89rj/v8/wD8VWPY6NB/at8POuPvR/8ALZ/7o96AOvr8/f2/10L4qfD2D9k/TLWfWPFfjd45LGytbj7MLeKzkWRry6kCsUtYmUbvlJkbCJ8xyPpP42/EvwT8BfhvqHxL8aXN0bazCpDbxSu091cynbFBCuctJK5CqB65PAJryj9mL4H+KNDt9S+NnxqZ2+IPjPZNfqkzMunWi5Nvp8LZ/wBXAp+c/wAcpZjnivo8kX1JLOKmns5L2a25qis158sNJSa/uxuua68rMP8AaL4GP2l7z7Ren3y2j83razg/ZZ/Y/wDhp+yD8ONO8IeEIUutWuZ431TVWQLNdzYOfUrGvREBwo65Ykn7Nrj9Y0aDdafvrj/j4T/ls/ofetn+xoP+e1x/3+f/AOKryMwzDEY7ETxeLm51Ju7b3b/rZbJaLQ7sNhqWHpRo0Y8sY6JI16KyP7Gg/wCe1x/3+f8A+Ko/saD/AJ7XH/f5/wD4quM3E0D/AJBEP/Av5mvir/gop/yb5Zn08T+Hv/ThBX19oGjQHSYf30/8X/LZ/U+9fF//AAUP0yGD9ny1YSzH/ipvD33pGP8AzEIfU19Bwp/yOcH/ANfIfmjzc4/3Gv8A4Zfkff8AWN/zMP8A27/+zU86NATnzp/+/wA/+NYv9jQf8JD/AK64/wCPf/ns/wDe+tfPnpHYUVkf2NB/z2uP+/z/APxVH9jQf89rj/v8/wD8VQAa9/yCZvoP5iteuR17RoP7Jm/fXHQf8tn9R71r/wBjQf8APa4/7/P/AI0Aa9FZH9jQf89rj/v8/wD8VR/Y0H/Pa4/7/P8A/FUAR6L9+9/6+X/kK2643RtGg33v764/4+X/AOWz+g962/7Gg/57XH/f5/8A4qgDXrIvv+QnZf70n/oJo/saD/ntcf8Af5//AIqsi+0aD+07L99cfek/5bP/AHT70AddRWR/Y0H/AD2uP+/z/wDxVH9jQf8APa4/7/P/APFUAX7v/j1l/wBxv5VW0f8A5BNr/wBcU/8AQRVG70aD7LL++uPuN/y2f0+tVtI0aD+ybX99cf6lP+Wz/wB0e9AHUUVkf2NB/wA9rj/v8/8A8VR/Y0H/AD2uP+/z/wDxVADbX/kN3n/XOH/2atmuQtdHgOtXg86f/Vw/8tn/ANr3rY/saD/ntcf9/n/+KoA16ydX/wBXB/13i/8AQhSf2NB/z2uP+/z/APxVZOsaLAYoP31x/r4v+Wz/AN4e9AHW0Vkf2NB/z2uP+/z/APxVH9jQf89rj/v8/wD8VQBr1j6F/wAg/wD7ay/+htS/2NB/z2uP+/z/APxVY+haNB/Z/wDrrj/Wy/8ALZ/77f7VAHX0Vkf2NB/z2uP+/wA//wAVR/Y0H/Pa4/7/AD//ABVABL/yHYf+uEn/AKEla9cjLo0H9uw/vrj/AFEn/LZ/7yf7Va/9jQf89rj/AL/P/wDFUAa9ZGv/APIFuv8Arm38qP7Gg/57XH/f5/8A4qsjXtGg/sW6/fXH+rb/AJbP6fWgDrV+6K/Oz4r3T+HP+CnnwcvYY0UeJPBPjDTJZSfmP2OfS7pEH5u34V99rosG0fvrjp/z2f8Axr85P2u/Dttpf7Zv7LXjeS4njVPE3iLRSfNbLf2joV5KFznoWtFP4UAfppWRpv8Ax933/XYf+gLR/Y0H/Pa4/wC/z/8AxVZek6TDHfXkglnJWcHBlYjhF6jPNAHV0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Q/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWVof/IFtP8Arin/AKCK1aACiiigDm7D/kM6p/2y/wDQa/lC/wCDXTcvxW/bchbqvxcu8/8Af+9/wr+r7T/+Q1qf/bL/ANBr+U//AINi4xB8cv25YR/D8Xbo/nPfUAf1p0UUUAYOs/8AH1Yf9fA/9Bat6sHWf+Pqw/6+B/6C1b1ABRRRQBHN/qm+hrK8Pf8AIDtf+ua1qzf6pvoayvD3/IDtf+ua0AbNFFFABXPWf/Ix3n/XKL+bV0Nc9Z/8jHef9cov5tQB0NFFFABWDr33LX/r5i/nW9WDr33LX/r5i/nQBvUUUUAfz7f8HKv7QuqfCX/gm1q/wi8FTH/hKvi5qNp4Q0uCNsSy/bpAJ9o6nEQbP1r9Tv2Df2adE/Y8/Y1+HX7NmhIEj8KaHbWsxxjfcld87n/elZz+Nfz+ftb3dv8A8FAP+DiX4P8A7LdqPt3hT9nrTZfF2vL96IalMoe3Rh03DEX/AH39a/q8f7h+lAGL4a/5AsP/AAL/ANCNblYfhv8A5AsP/Av/AEI1uUAFFFFAHPxf8jPN/wBe6f8AoRroK5+L/kZ5v+vdP/QjXQUAFFFFAGD4jGbBf+usf/oQrerB8R/8eCf9do//AEIVvUAFFFFACHoaw/Dv/IN/7aSf+hGtw9DXlXiTx1p/w68A3Pia/RpjHI6QwxjLyzO5VEUerMQK0pUp1ZxpwV5N2RM5qEXKT0R6Vf6fYapbNZalClxC2NySKGU49QeKtgBQFUYArzj4V6V4y07wmlz8QLo3OrX0jXM6D/VweZ0hT/ZQYHucmvSKqvDkm6aldJ7rb5Cpy5oqbVm/vCsE/wDIyj/r3P8A6EK3qwT/AMjKP+vc/wDoQrEs3qKKKACsLxJ/yCZPqv8AOt2sLxJ/yCZPqv8AOgDcHQUtIOgpaACiiigDn/Dv/HtP/wBd5P510Fc/4d/49p/+u8n866CgAooooAwJ/wDkZLf/AK4v/MVv1gT/APIyW/8A1xf+YrfoAKKKKAMXxD/yB5vp/WtWD/UJ/uisrxD/AMgeb6f1rVg/1Cf7ooAlooooAKwND/1t7/18N/IVv1gaH/rb3/r4b+QoA36KKKACuNTWtJ1fxDHFpdzHcNaPJDMI2DGOQDJVsdD7Guyr87P2Lrlm+IPxXsJ5RJPB41vdwzkhWhQr+lAH6J0UUUAFZOu/8gi4/wBw1rVk67/yCLj/AHDQBcsf+POL/cH8qtVVsf8Ajzi/3B/KvP8A4weOI/hv8NNY8ZvjdY27ume79F/WscTiIUKU69V2jFNv0SuzWjRlVqRpQWsmkvVnRzeNfCFvq40CfU7ZL08eQ0qiTP0zmqPxI/5J9rf/AF4z/wDoBr5I+Bn7Ofg3xh8LYvF3xFtje654g3Xst2zESxGQ5UI2cjb2rn/C3xe8WSeJPGH7P+uSRX9voGl3AivcnzpAqHG/sSBwa+RlxDVWHpvHUlBV0/Z2bbu4tpSVlZ8ut1ddPX6FZPT9tNYWo5Ok1z3VtE0m46u6vpZ2fU6j/gn9Pv8AgMoY/cvJh+tfXfhTxl4f8bWc9/4cm8+G3me3dsYG+M4YD8a+GP2JdRbTf2YtWv0OGt5Ltx9QpNeJ+Gv2jNV+Df7PPhy70Eo1/rGqzySiQbv3AfL/AJ5xXiZPxPRyzKcvWIdqfsOaT3fu8kUl6uR6eY5HUxuYYz2Px+15V215m7/JH68SyxQRtNOwRFGSzHAA9zXOar408J6LoU3ibUtQgjsIM7594KDHbIJ59q+If2wfGWreIPDHgzwhoNzJaxeKruITmJsMYmAOMjtzXO+O/B/h0/Fjwf8AsyeFI/K0eyxqepJuLeYU5G/J5z1r28w4qnTr1qGGpKXL7OKbfxVKnwpK2yWsnfbZHm4Ph+M6VOrWm1zc8mktoQ+J3vu3olY+0fD3xI8F/EG9s7nwlfJdBGYsuCrgEddrAHHvXq1fmZ4F+IMHi/8AbgurLRmRNN0u0ktIljAVD5YGTx719L/D/wDaN0zx54+8W+F7OJFsvDUe5bgNnzNud/4AiujKOKaGIglXmlJ1J001tJwV20tbK3n+ZhmOQ1qMm6UXyqEZu+8VJ2Sb0u/l+R9OVz3ijxV4f8GaNN4g8TXSWlpAMs7nH4D1J7AV87/Ab9oL/hYXww1jx94rMcS6Tc3CyGMYHlRklfxIryf4W2Wv/tV+LD8V/HSGLwpp0xGk6cfuyuh/1jj+KtKnEtOtSw6y9c9SsrwT0Sit5S7Jfe3oiIZJOnOs8Y+WFJ2k1u29ox7t/clqz7A8M+NLXx74Ol8R2FrcWsEquIxcpsZ1HRgPQ9q7DSOdMg/3BSajGkWlTRxgKqxkADgAAUuk86ZB/uCvo6MZxpxjUleVtXa136dDxaji5twVl0W5o1ysnjjwhFLdwzalbxtYOsdxvcL5bt0DZ6E11Vfgh+0sPEGrfHbxf4U06do7Qym+lQHAJiQcn6V8txjxNPJMNTrwpc7lLlte32W1+K18j3+G8jjmladKdTkUVe+/VJ/gz97I5I5o1liYMrDIIOQQawtL/wCQtf8A++n8q+FZf2rdO+Df7Pfg7Vr23Op6nqNomId+CEThmY/yr7J8D+IrXxHpjeKYBshvIYrgA9gyA/pXqZZn+Dx0vY0p/vFGM5R7KSutdjgx2UYnCx9pUj7jlKKfdxdmeg0V+dHin9uPxDpr3HiPw94Ve88OWN09nPd+Zz5iHHboD719O+F/jppvin4gad4IsrfjUNKXU1mDggBsfL79etc+D4ryzFVXRo1byultJX5m0mrrVNp6rQ3xPD+OoQVSpT0s3una2rvZ6NX23Peq5/Wf+P2w/wCup/lWo+o6fHerpsk8a3DqWWIsN5A7gdcV8e/tb/FDxD4dh0X4cfD1yviLX5/KhdesUZ4Le31r0M0zSjgMLPFVdVHotW29FFebbSRxYDAVcXXjQp6N9XsktW35Jan2aCD0OabJJHDGZZmCKoySTgAV+cX7Mja54A+NPi3wRq2tz6lp+lWcU13LcuWVZ+rkE9B1r1HQNW179qLXp76KWSy8B2MpjREJSTUJEOCWI5EYPbvXi4LihYmhBqi1XlKcVTunrB2k3LblXV28km7Hp4rInRqyTqJ0oqMnOzWkldJL+Z9F83ZH2LZX1lqNut3p8qTxN0dGDKfxFOu/+PWX/cb+VVdI0fTNB06LSdHhW3t4RtSNBgAVau/+PWX/AHG/lX1UOblXPv1tseDK13y7FPRP+QTB/uCtSsvRP+QTB/uCvmnXv2hvEWofEC98A/CTw+fEEmkYF/OZRFHG5/gB7tXFj8yw+DjGVdv3nZJJtt76JJt6avTRHThMFWxLkqS2V220kl5t2SPqqivgP4y/taeIfB2n6XokOlT6H4gu76FJILtQ6G3LAMyMODnOK9f+OHxQ8dfD3+w/EGjxxjSWuLaO+Z1yX+0Nt2r6beua8v8A1qwD9vyNv2XK5WT05r7p2atZuV0rI7/7Axa9kpJL2nNy678vppreyse92P8AyMN7/uR10VfJo/ai+G9n8cW+FpZ3urrZD5648pZsZ2H37fWvRvjL8c/DHwZs7P8AtWGa+vtRk8q1s7cZlkPfA9BXYs/y50qtdV48lN8snfZ9vX03OZ5TjFUp0nSfNNXiu67+hw37ZmojT/2fNaQHBufKhH1dxXvngeIw+DdKiPVbWIf+Oivzm/ad+PPh34m/DrTfCNlBc6dqdxqtss9jdxmORV3dR2Ye4r9MdIhFvpNtAowEiRcfQCvGyjH0cbnOKrYealCNOlG673qN/NX1R6WY4SphstoU60bSc5v8IIpa90tf+u6/yNb1YOvdLX/ruv8AI1vV9gfOBRRRQAyT/Vt9DWL4b/5AsH+7W1J/q2+hrF8Nf8gWD/doA3aKKKACudtv+Rluf+uUf9a6Kudtv+Rmuf8ArlH/AFoA6KiiigD+Mvw1Ywf8E1f+DonVNOuHNl4N/aY0drm3LZER1Nj5hX0yJUlA9mFf2M67/wAe8P8A12T+dfyqf8HWPww1zwd8EPhP/wAFBfh/ATr/AMGfF1pcPInDm0nYPgkfwh4wPT5q/pE+CPxe0H4+/s/+CvjV4YlE1h4o0+w1KF1OQVuED/1oA+gqKKKACiiigDA8M/8AIJX/AH5P/QjW/WB4Z/5BK/78n/oRrfoAKKKKAMA/8jP/ANuw/wDQjW/WAf8AkZ/+3Yf+hGt+gAooooAwPEv/ACCz/wBdIv8A0MVvDoKwfEv/ACCz/wBdIv8A0MVvDoKAFooooAKwvD//AB5yf9d5f/QjW7WH4f8A+POT/rvL/wChGgDcooooAKw5f+Rih/64P/6EK3Kw5f8AkYof+uD/APoQoA3KKKKACsPxL/yArn/d/qK3Kw/Ev/ICuf8Ad/qKANsdBS0g6CloAKKKKAMHQel5/wBfUv8ASt6sHQel5/19S/0reoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArH1/8A5A8/0H8xWxWPr/8AyB5/oP5igDYooooAKyNK/wBbef8AXwf/AEFa16yNK/1t5/18H/0FaAPgf9pqWzv/ANun9mjw9c4LxXnizVoweubXSWt+Pwu6/Q+vzh+O2lw6p/wU3/Z6uW5fTPC3j+4A7DzDo0WfyYj8a/R6gDG1D/kJ2H/XR/8A0Bq2axtQ/wCQnYf9dH/9AatmgAqC6/49pP8AdP8AKp6guv8Aj2k/3T/KgCpo3/IItf8Arkn8hWlWbo3/ACCLX/rkn8hWlQAVkW//ACG7r/rnF/Nq16yLf/kN3X/XOL+bUAa9FFFAGPrf/HtF/wBd4f8A0MVsVj63/wAe0X/XeH/0MVsUAFFFFAGPof8Ax4n/AK6y/wDobVsVj6H/AMeJ/wCusv8A6G1bFABWPN/yHrf/AK4y/wA0rYrHm/5D1v8A9cJf/QkoA2KKKKAMvXP+QNd/9cn/AJVpJ9wfSs3XP+QNd/8AXJ/5VpJ9wfSgB1FFFAGPpv8Ax/X3/XVf/QFrYrH03/j+vv8Arqv/AKAtbFABWPqv/HxY/wDXx/7I1bFZGqf6+y/6+P8A2R6ANevgn/goJqvx/k+GuhfDz9nZxFrHi7VhplwyXC2lwbQW808qQTuGSGR1iKhyCRnjmvvavk79q+7fR4/h14kjGPsPjjR1Zv7qXhktW/Savc4aqezzKjPkjJptpSV4uVny3Wl1zWPOzaLlhKkeZq9rtaO11e3yufLHwl8Q/tffA3wFZfDT4V/s22Ol6VZKdq/8JXaMzu33pJH8rdJI55Z25JrstM+NP/BRmTTLddP+CeiRxiNQpl8SxHIx14jr9JT0NZWg/wDIFtP+uSfyrurcS0KtSVarl1GU5O7bddtt7tt13qYQyqpCChDFTSWiSVNJL5Uz892+IP8AwVF1phBpvw78FaJu482+1ia6C++2FBn86s/8Iv8A8FTL/wDfT+Kfh7YE/wDLOGxvZgPxdga/RWis/wDWRR/hYKhH/txy/wDS5TK/slv48RUf/b1v/SUj81l8C/8ABT1tVkQePfA6yeUpJGk3BGMtj+OtRfht/wAFObgbbj4meDrfPeLQ5XP/AI9KK+/Y/wDkPS/9cE/9Catil/rRW6Yeh/4Jp/8AyI1lFNf8van/AIMl/mfnXF+z7/wUD1LMus/H22smP8Fj4atCg/GVia840P8AY/8A2v7Sx1ZNf+PGq6fFNqss4FjpNlGbjznQ+dkZKFiT8vbHpX6t1zer39jd2dxa2sySSW00KTKpBKMWRgGHYlSDz2NaR4ux6jKMKdFJ22w9DT/yn+ZDyTDNpylN+tSp/wDJHwSf2Ffizec61+0F4+mJ6+TPb24/JIqb/wAMAeL+v/C+PiPu9f7Tj/8AjVfo5RUf64ZqtqkV6U6a/KA/7CwXWD/8Cl/8kfnIP2GPjDF8tp+0L49VR0Dy2zn8zFzVHTv2Pf2mtNSS78IftE+J0nilkULqNjZ3sRIY9VKrnP1r9Kax9F/1U/8A18S/+hGj/W7Mn8Tg/WjRf50x/wBiYRbKS9JzX/tx+fJ8Bf8ABUfQSsGlePvBGvRpx5mo6XcWsjY/vC3Yrn6YqKfVf+Cr+iMW/sn4ca4o/hhnvrYn8XBxX6R0U1xPJ/xMHQl/3CUf/SOX8Bf2Ql8Neov+32//AEq5+BX7fnxm/bE1T9mLXfCnxv8AhHDotjObPzNY0zWIby3jKXduy5h2iQb2UIOerA9Aa+2bT9vPxvZ26Q6x8BviNC6KAfJ06OdePRllAP1qL/gq1/yZp4iHrNpw/wDJ+1r9GbT/AI9Yv9xf5V7+JzbASyTDTq5fCzq1tIzqxSahQu9Zyet0mr20Vktb+dRwWJjmFWMMTL4KerjBv4qmmkVt9+uvQ/Os/wDBSDw1p77PE3ws+I2me8mgPJ/6A5qrff8ABTT4OS2c0J8G+PVLow58N3IxkfSv0mqjqZxptwR/zyf+Rr5/+0cle+Al8qz/AFg/zPTWFx6/5iV/4Av/AJJH51Wn/BSDwtfxR2vhT4XfEXVpNoAEegSR5/GR1qc/tlftN68n/FB/s7+JpCxwraveWumr+Icuw/Kv0TsjmzhJ/uL/ACqzR/a2VQ/h5cn/AI6lR/8ApDpi+pYx/Fimv8MIr81I/NiX4tf8FQNYffovwl8K6Oh6LqOvGdh+MC4/Ss60+Jn/AAVC0W/ub3Uvhj4O1hNyGWDT9ZkgmPyjG1pwV6etfpxWPY/8hS+/3o//AEEU/wDWPD7f2bQt2tV/P2t/xF/ZdTf61Uv6w/Lkt+B+Yfwe1H4lftBfGPTfj1+1x4Zm8DaTo11Fp/gnw7eSiUSapOsnnXUgChmmVUIgLIqqpLLz81fqpXyR+1PPLZ+IfhLdq22MeOrKN/8AtraXaD/x5hX1vWef4lYmOHxEIKEHFqMI35YKMmrK7bbfxSbbblJsrLKTourSlJykmm5O15Nq93bTTZJLRJIxtY+9af8AXwn8jWzWNrH3rT/r4T+RrZr5w9UKKKKAMfQP+QRD/wAC/ma+Kf8Agot/yb1a/wDYz+Hv/ThBX2toH/IJh/4F/M18U/8ABRb/AJN6tf8AsZ/D3/pwgr6DhT/kc4P/AK+Q/NHm5z/uNf8Awy/I+7qxv+Zh/wC3f/2atmsb/mYf+3f/ANmr589I2aKKKAMjXv8AkEzfQfzFa9ZGvf8AIJm+g/mK16ACiiigDE0X797/ANfL/wAhW3WJov373/r5f+QrboAKyL7/AJCdl/vSf+gmtesi+/5Clj/vSf8AoJoA16KKKAK93/x6y/7jfyqto/8AyCbX/rin/oIqzd/8esv+438qraP/AMgm1/64p/6CKANGiiigDGtf+Q3ef9c4f/Zq2axrX/kN3n/XOH/2atmgArJ1f/Vwf9d4v/QhWtWTq/8Aq4P+u8X/AKEKANaiiigArH0L/kH/APbWX/0Nq2Kx9C/5B/8A21l/9DagDYooooAyJf8AkOw/9cJP/QkrXrIl/wCQ7D/1wk/9CStegArI1/8A5At1/wBc2/lWvWRr/wDyBbr/AK5t/KgDWX7or82v+ChOmr/wnf7NvipnZP7I+LmmHKnH/H7pupWeD7EzgV+kifdH0r83v+ClJuYvD/wXvLYf6j4weCy3skl55Z/R6AP0jrI03/j7vv8ArsP/AEBa16yNN/4+77/rsP8A0BaANeiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0f7+KKKKACql/wD8eM3/AFzb+VW6xNW1bTba2uILiZUdY2yCfUUAT6H/AMgW0/64p/6CK1K5XQ9d0caLaf6Qn+pTv/sitT+3tH/5+E/P/wCtQBrUVk/29o//AD8J+f8A9aj+3tH/AOfhPz/+tQBS0/8A5DWp/wDbL/0Gv5Uf+DZE5+PX7c//AGVu5/8AR99X9TWna3pR1rUgJ1OTFjn1Wv5VP+DZbVbC3+Pf7cpnlVQ/xauSue48++oA/riorJ/t7R/+fhPz/wDrUf29o/8Az8J+f/1qAK+s/wDH1Yf9fA/9Bat6uL1nXdH+1WH+kJ/x8Dv/ALLVvf29o/8Az8J+f/1qANaisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1qANKb/VN9DWV4e/5Adr/ANc1pJtd0fym/wBIToe9ZXh7XdH/ALDtf9IT/Vr3/wDrUAdfRWT/AG9o/wDz8J+f/wBaj+3tH/5+E/P/AOtQBrVz1n/yMd5/1yi/m1W/7e0f/n4T8/8A61YFprekDxFeH7Qn+qi/m1AHa0Vk/wBvaP8A8/Cfn/8AWo/t7R/+fhPz/wDrUAa1YOvfctf+vmL+dWP7e0f/AJ+E/P8A+tWDr2u6Pstf9IT/AI+Yu/vQB2lcx418V6R4F8H6p401+VYLHSbSa7nkY4CRwqWYn6AVo/29o/8Az8J+f/1q/CP/AION/wBqQ/An/gl14z8O+D7wr4h+Izw+EdNSFiJWfUjsk245yIt54oA+WP8Ag248Aaj8Z9c+P/8AwVI8YI0l58aPF1zBoryjLJo9g7BNpPIDkqMdP3Yr+pd/uH6V8J/8E4vgT4a/ZE/YZ+F/7Pds0cE/h7w/Zx3gHGbyWMSXBPHJ81mr7WfXdH2n/SE6etAEfhv/AJAsP/Av/QjW5XG+G9d0f+xYf9IT+Lv/ALR9q3P7e0f/AJ+E/P8A+tQBrUVk/wBvaP8A8/Cfn/8AWo/t7R/+fhPz/wDrUAVYv+Rnm/690/8AQjXQVxMWu6P/AMJNMftCf8e6d/8AaNdB/b2j/wDPwn5//WoA1qKyf7e0f/n4T8//AK1H9vaP/wA/Cfn/APWoAreI/wDjwX/rtH/6EK364vxHrukfYFxcJ/rY+/8AtD2re/t7R/8An4T8/wD61AGtRWT/AG9o/wDz8J+f/wBaj+3tH/5+E/P/AOtQBqt0Nc3olraXmmKLqNZQkzuu4A4YMcEe4r55+MvjfxL4s8Q2vwW+HFw9hJfR+fqmrBSFtLPOCI26GZzwvp1r2bwJceHtC8L22i2VwDDaAwoXYsxVDgZJySfU12VcK6NKFSUvelql1S6N9r9FvbXZq+EK3POUEtF18+y9Ov3dz0Wisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1q4zc1qwT/wAjKP8Ar3P/AKEKsf29o/8Az8J+f/1qwTr2j/8ACSj/AEhP+Pc9/wDaFAHaUVk/29o//Pwn5/8A1qP7e0f/AJ+E/P8A+tQBrVheJP8AkEyfVf51P/b2j/8APwn5/wD1qwvEmu6P/ZMn+kJ1Xv7/AEoA7IdBS1kDXtHwP9IT8/8A61L/AG9o/wDz8J+f/wBagDWorJ/t7R/+fhPz/wDrUf29o/8Az8J+f/1qAKvh3/j2n/67yfzroK4nw7ruj/Zp/wDSE/18nf3+ldB/b2j/APPwn5//AFqANaisn+3tH/5+E/P/AOtR/b2j/wDPwn5//WoArT/8jJb/APXF/wCYrfrip9d0f/hI7c/aE/1L9/cVv/29o/8Az8J+f/1qANaisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1qAGeIP8AkETfQfzrUh/1Kf7orlfEGu6QdImH2hOnr71qw67pAhQfaE6DvQBtUVk/29o//Pwn5/8A1qP7e0f/AJ+E/P8A+tQBrVgaH/rb3/r4b+Qqz/b2j/8APwn5/wD1qwdE13SPNvT9oT/j4bv7CgDtKKyf7e0f/n4T8/8A61H9vaP/AM/Cfn/9agDWr8m/2WNbGg/8FGfj78Ko4mWN20nXVYn5SbuBkYAf8B5r9Tv7e0f/AJ+E/P8A+tX5I/C++07Tv+Cx3xQkSZRFe+CtElb0LKzj+VAH7CUVk/29o/8Az8J+f/1qP7e0f/n4T8//AK1AGtWTrv8AyCLj/cNH9vaP/wA/Cfn/APWrJ13XdH/si4/0hPuHv/8AWoA6Kx/484v9wfyr5R/bhFyf2ddX+zAt88W/H9zdzX0xZa7o/wBji/0hPuDv7fSq+sS+FPEGmT6NrJiubW5QpJG/Ksp7EYrzs4wLxmBr4SMrOcZRv2urHbluKWGxVLENXUZJ29GfLK/tH/Df4c/s8abr1tqENzdJYRxQW0TBpDMFxgr1GD1r80Php4o+IXhD4sXdxrOmPcal4ts5QUfIPl3Kk7x9BX6c6L+yX+zbofiVfEtvZiRo23pDJIWhVuuQpr6OksfAU2qQ63LBbNd2yeXFKUG9E9AccCvgMVwnnOZSw9TGV40vYWUVC8k+kpO6WrWiVtD67D8QZbgo1oYalKp7W/M5WTXWKVr6J7vqfmD+zB8S/Dmk/A/xB8KWeRtalS+lESoSERFOSx7V8wfCX4eeIPjR4T1kMrSWvhbTZWtwOnmud354BNftR4a8G/CfSNb1fU9MsLOC4vmKTuiAF1Ycg+x71u+C/Cfww+HunT6T4Otbext7li8qRjhyfX1rnfh5iq8cJQxleLpUYzg1FNXWnJvu01d+iSNlxjQoyxFXDUmp1JRldtaPXm/B2R+YXgTxtb/G74jfCrw9ZkySaDbl71CPuPFxz+lZfxi+I/iD4dftPeL7zTrWSbVdQtRY6fgHI80ABh+HTFfpt4Q+GXwa8B+IrrxV4UsbazvrzPmSJ78nHpn2rrr3Svh5qOtxeJL+2tZr+AYjndAXUexxW8eB8wnglCpiVGv7SM+ZJtWjD2ate3vW19TJ8VYOGJcoUG6XI48ret3Lnfyvp6H4hp4N+LX7PfxBS1s7Ge61fXNP8uKVFLASXQ+bBx1XPNerx/Af49/Bq7utA8IafJqX/CX6dHbXFyp4glc5kye2M9a/WbVdU0CXWNPlkliZkZ8EjJHHatLWPGvhbQNLn1rV72OC2tkLyOx4VRSpeGWFoRk3ipqMW3Bqy5E17+r35lu9LJBU44xFVxSoRcmkpbvma+HTpZ7I/Nz9kb4ei88PfEP4DeIZiNkwhkePsWXGR+NaWi/sh/GDw+r+HfA3xFaC0szt8hM5jz2IB4rS/ZX8V6Hqf7QfxA1jTrhWsr1kmifoGBPBqT4n2nx4+G/xi1fxh8FIY9TsvEkSCQOwKwyrxnB6fWvJwWX4F5PhsRUoTqKnOpTvTlLmUOedrcrvJXt99z0MTjMUsxrUY1Ywc4wnaajyuXLG/wAS0dr/AHWND4X3PxR+G/x0k+EPjDxM/iO3u9Kkun3/APLF16fTNfoHpP8AyDIP9wV8efAb4SyfD+z1X4g/EnUk1DxTrCMZ5SdwiQjOxT/Ovq3Sdd0f+zIP9IT7g71+hcJ4Svh8C1XUo80pSjGUnKUIvaLbbd+r10bsfH8QYilVxV6TTsknKKSUpLdpK2nTztc6avxP+JdqLj9pb4izkZEGlXJ/NVFfs1/b2j/8/Cfn/wDWr4H8Rfs96zrHxQ8d+MYr61Fv4h0421nljuEjDncMcDivJ48yrE46hhoYeDk4zbdui5JfrZfM9DhPH0cLVryrT5bwsv8AwKP6XPhL4baFqXj34R+LvHGvr5tv4b0ZLCyyMqrMyk498V9t6r8XZ/Bf7Oej+HfDp83XvEVpBZWcY5YB0wz/AEAr0n4XfAPSPC/7ON78HdbvYUvdVik+1TRHcokfpj1AwK8//Z8/Zxl8H+Mm8S/E7WYdUn0aEWunRrkpEhHDc98V8llHDebYGFGlRptTrUuWpO6/dtzbd+t1C0Y+a8j6HMc6y7Fzq1Ks1y0qnNCP865bK3k5avyOI/ZI8PWl9+z3498M+JVWZY5bkShuRvSMnP4EV41+xF4ku7r422VvqEpaKy0yeFCx6Rqc/kKvzXnxe+FF14z+DnhnRJbweKLtjbXqZ8tI5OCc9OR+Vea+JrK+/Zg+IMVnArTz3Ggm2Esf3TPcLhseu05FfL1cRPBvLq0qcoxwj5ajaa1c24xu99FfS61R7sKMcT9cpxnFyxC5oJNPTlSb8tXb5HY6/wDHLWrr9p6P41TGb/hHtP1D+zhIM+WsQGCPTJ+9XT/Fn4+eGrP9qOb4kWsy6haaTp4j08R/MrTOnH6nmvrL9nL4NeC7P9n638J/Ea3huZNWJvLqKUch36fQgV8UfEP4d+Dv2dP2gLbxJc6G+reEjiWCNMuFfHQ57qexr0Mwy/OsHgKWNq1FyVqsK021JulNp7pJ+6tH5NJHHg8ZlmJxdTDU4PmpwlTik0lOKts39p6+qbPpj4W/CbWof2cPFfjDxjeLp2s+L4pLqa4nO3y4zyoY9RkdvevOPgZ8Z/2jvBXw2sLHw/4NTWtDtg0cFxCCjSKpwT759cc1c1Dx/wCKv2xfGFr4U063n0LwNYFZbsuCrThP4eMZz0AHSvX5/wBt74OeDfDY8OeCtOuZ72yLWtvYJHt5jO0Z9jjPrXq4epgYSpYijjJYejTg4Rqda0rqU2oyTurvteTemxw1oYqSnRqYZVqk5KcodKStaKbTVnZd7JLzPUvg3+09F8RvFTeAPFuh3Xh3WvKM0cNwPlkQddpr6lu/+PWX/cb+VfCXwC8JeMvFXxAm/aD+M0yWt/PCYbCxHHkQtzz719r3eu6P9ll/0hPuN39vpX6VwvXxtbBe0xrbbk+VyioycPsuUVom+3a19T4jPaWFpYnkwtkklzJPmipdUm90vzMPWtVbQvh3eazGcNa2Usq/VVJH618rfsYzaR4e+BN58Q9clEbX11c3t3cOecBj1PsOlfSusHSvEvw+u/Dsd0iNe2ckKtnoXUgV+Vvh7wR+0Drfhu1/Zqu7T+ytCgu3kutQDcSQls4z3HoPzrxeJsXiMJmeGxNOhKpanUjBRTa9pJxtd7RVr6vpc9TI8PRxGBrUJ1VD34OTbt7iUr2769F1scJ8btf134v6pJ+0FfFoNCtdUgsNPRu8cbZZv0yfevtr9r7xpput/ss2PiLRnZY7ye1kgZhtb5QSDj8K9N+I37P3w/8AGnwesfhDpN6mm2tg8bxyIMklfvE+7ZPPrWv8Tfgr4G+JXgjQ/Al1qJtbPRJoZFWPGJFiAG0g9jXh0+Fc2o0sxgrTniKcbu+9RuXNbXRRT08rWPVnn+AqTwUtYxozdlbaCS5fVtrX5n5X6n4E1D4daV4D8da+W/tDVtSS7nlf7wVypUEn25r7Y8b3UXiP9uLwhY3DCaC10wzxjOVDEE5H519G+Nvh18LvifaXHg3xYiS2lukXk7TtaMqMAqR04r5E+KX7NXiHwFq+kePv2eL97rUdORoXjupi8hVgQCpbsAelcuM4XxmUxk8LS9pQ5qE2ov3/AN3ZS923vOT97c2w2fYbMGliJ8lXlqxV/h9/4fe6W22PKP2lPHqfEn9p/RtG0pQ1joeoW1kZAB80pcM/Pfpiv2WiAWJVHYCvzD8Nfsza3pHgfw7f3c8E3iJNdj1XUiz9EP3hu77R+tfpSuu6QFANwn5//Wr6TgrBY6nXxuLx8HGdZxnZ9E07R9YqyZ4vE+Kws6WGw+EknGkpR9dVr890Qa7jFrn/AJ7r/I1vVxut67o/+i/6Qn+vXv7Gtz+3tH/5+E/P/wCtX3x8ia1FZP8Ab2j/APPwn5//AFqP7e0f/n4T8/8A61AGnJ/q2+hrF8Nf8gWD/dqSTXdH8tv9IToe/wD9asbw3rujjRYP9IT7vrQB2VFZP9vaP/z8J+f/ANaj+3tH/wCfhPz/APrUAa1c7bf8jLc/9co/61c/t7R/+fhPz/8ArVz1vrukDxLc/wCkJ/qo+/1oA7eisn+3tH/5+E/P/wCtR/b2j/8APwn5/wD1qAPhj/gqZ+z3H+1J/wAE9fi38FVtxc3ep+HL2SyQjJN3bIZoQPcugUfWvyn/AODYH43XXxX/AOCSfhHwjrFw02peBNWvNBnVzl0WCZjGOucBGAH0r+ji61PQb61ksrmZHjmUo6noVYYI6elfxv8A/Bvdrlv+zl/wUC/a7/YVvnjt7PSfFMevabEMhfLlleJwo7KFEX50Af2e0Vk/29o//Pwn5/8A1qP7e0f/AJ+E/P8A+tQBrUVk/wBvaP8A8/Cfn/8AWo/t7R/+fhPz/wDrUAVvDP8AyCV/35P/AEI1v1xXhrXdH/slf9IT779/9o1v/wBvaP8A8/Cfn/8AWoA1qKyf7e0f/n4T8/8A61H9vaP/AM/Cfn/9agCsf+Rn/wC3Yf8AoRrfrizrmkf8JNn7Qn/HsO/+0a3v7e0f/n4T8/8A61AGtRWT/b2j/wDPwn5//Wo/t7R/+fhPz/8ArUAVvEv/ACCz/wBdIv8A0MVvDoK4zxLrujnSz/pCf6yPv/tit0a9o+B/pCfn/wDWoA16Kyf7e0f/AJ+E/P8A+tR/b2j/APPwn5//AFqANasPw/8A8ecn/XeX/wBCNTf27o//AD8J+dYega7o4tJB9oT/AF8vf/aNAHZUVk/29o//AD8J+f8A9aj+3tH/AOfhPz/+tQBrVhy/8jFD/wBcH/8AQhU39vaP/wA/Cfn/APWrEl1zSD4ihPnr/qH/APQhQB2NFZP9vaP/AM/Cfn/9aj+3tH/5+E/P/wCtQBrVh+Jf+QFc/wC7/UVN/b2j/wDPwn5//WrD8S67o50K5H2hPu+vuKAOxHQUtZA17R8D/SE/P/61L/b2j/8APwn5/wD1qANaisn+3tH/AOfhPz/+tR/b2j/8/Cfn/wDWoAr6D0vP+vqX+lb1cZoWu6QBef6Qn/H1L3+lbv8Ab2j/APPwn5//AFqANaisn+3tH/5+E/P/AOtVi21KwvJDFayq7AZwPSgC9RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVJcawJGEVtGygnBMmCR9NtatFAGR9p1v8A59Y/+/p/+JrH1651r+yJ/wDRY+g/5a+/+7XX1j6//wAgef6D+YoAX7Trf/PrH/39P/xNH2nWv+fWP/v7/wDY1r0UAY/2nW/+fWP/AL+//Y1k6Vc615t5/osf/Hwf+Wv+yv8As111ZGlf628/6+D/AOgrQB+fnxHm1af/AIKdfCdGt490Hw+8ZyAeZx817oi/3a/QP7TrX/PrH/39P/xNfB/xFxH/AMFQfhU7f8tPh34yQfUX2iGv0HoA4/ULjWv7SsP9Fj/1j/8ALX/YP+zWz9p1v/n1j/7+n/4mm6h/yE7D/ro//oDVs0AY/wBp1v8A59Y/+/v/ANjUNxc619mkzax/dP8Ay1Pp/u1vVBdf8e0n+6f5UAc7o9zrX9k2uLWP/VJ/y19h/s1pfada/wCfWP8A7+n/AOJqXRv+QRa/9ck/kK0qAMf7Trf/AD6x/wDf3/7Gsm3uda/tq6/0WP8A1cX/AC1/3v8AZrrqyLf/AJDd1/1zi/m1ACfadb/59Y/+/v8A9jR9p1v/AJ9Y/wDv7/8AY1sUUAchrdzrX2aLNrH/AK+H/lqf74/2a2PtOt/8+sf/AH9P/wATTdb/AOPaL/r4h/8AQxWzQBkfadb/AOfWP/v6f/iaT7Trf/PrH/39P/xNbFFAHIaJca19hOLWP/Wy/wDLX/bP+zWv9p1v/n1j/wC/p/8AiaND/wCPE/8AXWX/ANDatigDI+063/z6x/8Af0//ABNY81xrX9u2/wDosf8AqJf+Wp9U/wBmuvrHm/5D1v8A9cJf/QkoAX7TrX/PrH/39P8A8TR9p1v/AJ9Y/wDv6f8A4mteigDlNcuda/sa6/0WP/VP/wAtT6H/AGa0kuda2D/RY+n/AD1P/wATUut/8ga6/wCuT/yNaSfcH0oAyvtOt/8APrH/AN/T/wDE0fada/59Y/8Av6f/AImteigDkNOuda+3X3+ix/61f+Wp/uL/ALNbH2nWv+fWP/v6f/iaTTf+P6+/66r/AOgLWxQBkfadb7Wsf/f0/wDxNY+qXGs/abHNrH/x8f8APX/Yb/Zrr6x9Vx9osf8Ar4/9kagBftOt/wDPrH/39P8A8TXyF+3Hcata/AGXX5reNV0jWtDvyRJk4g1G3J/hr7Ur5R/bo06bUv2P/iKtqC01rolzeRAdfMtB56/+PIK9nh2SWa4Rvb2kPu5kcOaJvB1rb8svyZ9LNca1zi1j/wC/p/8AiaytBuda/sW0/wBFj/1Sf8tT6f7tXfCurxeIPCum69AwdL20huFYdCJEDA/jmrWg/wDIFtP+uSfyryJxcZOL3R2xaaTQn2nW/wDn1j/7+n/4mj7TrX/PrH/39P8A8TWvRUjOQjuda/t6X/RY/wDUJ/y1/wBpv9mtj7TrX/PrH/39P/xNJH/yH5f+uCf+hNWxQBkfada/59Y/+/p/+JrwfwLLq2PGd19mjMkviRt2ZMfcjtkX+H+6or6PrjbnQNM0Syv59OQo2o3kd1Pkk7pSY0JGenCDgV0UqqjTqQe8kvwaZnODcoy7f5G39p1r/n1j/wC/p/8AiaPtOt/8+sf/AH9P/wATWvRXOaGR9p1r/n1j/wC/p/8Aiax9GuNa8qfFrH/x8S/8tT/eP+zXX1j6L/qp/wDr4l/9CNAC/ada/wCfWP8A7+n/AOJo+063/wA+sf8A39P/AMTWvRQB+Zv/AAVSm1Nv2OPERubdERZdPYlZMkYv7XttFfopbXOtfZo9trHjaP8AlqfT/dr4R/4KjWiXf7FnjUP/AMsbKOcf70NzA4/UV91eELyXUPCWl6hMdzz2kEjH1LICf519LideH8K+1av+MMP/AJHlUn/wpVl/07p/+lVC39p1r/n1j/7+n/4mqOp3Otf2bcf6LH/qn/5an0P+zXS1R1P/AJBtx/1yf+Rr5o9UzbK41r7HF/osf3F/5an0/wB2rP2nWv8An1j/AO/p/wDiau2P/HlD/uL/ACq1QBkfada/59Y/+/p/+JrHsbjWv7UviLWP70f/AC1P90f7NdfWRYqw1S+JHBaPH/fIoA+N/wBtu81bTPh34W8XTwJHFoXjTw5eyMJM7Y/tscTfwjqJMfjX2R9o1r/n1j/7+n/4mvlr9vTSZNW/ZC8ctApaXT7AakmOoawkS5B/Dy819UaJqUOs6LZ6xbnMd3BHMp9pFDD+de5ifeynDS6qpVXytSa/Fs8+lpjaq7xg/wAZp/kjD1i41rNp/osf/Hwn/LU+h/2a2ftOtf8APrH/AN/T/wDE0mrglrTA/wCXhP5GtGW6tYTiaRUP+0QK8NK+x6Bn/adb/wCfWP8A7+n/AOJo+061/wA+sf8A39P/AMTVhtV0tBlrmIfVx/jVQ+JPDoODf22f+uq/41apyeyJ5l3MrQbnWv7Ji/0WP+L/AJan+8f9mvi//godNqj/ALP1os9uig+J/D3STPP9oQ/7Ir7R8O69oUulwxxXtux+bgSKe596+QP+ChxEvwC09U53+KvDoGP+whDXvcLRaznB3X/LyP5o8/N2nga9v5ZfkfaxuNazxax/9/T/APE1jfaNa/4SAf6LH/x7/wDPU/3v92uwrH2t/b+7HH2fGf8AgVfPHpC/adb/AOfWP/v6f/iaPtOtf8+sf/f0/wDxNa9FAHI67ca3/ZM/+ixdB/y1PqP9mtf7TrX/AD6x/wDf0/8AxNGvf8gmb6D+YrXoAyPtOt/8+sf/AH9P/wATR9p1v/n1j/7+n/4mteigDjtGuNa33mLWP/j5f/lqfQf7NbX2nWv+fWP/AL+n/wCJqPRfv3v/AF8v/IVt0AZH2nW/+fWP/v6f/iayL251r+07LNrH95/+Wv8Asn/ZrrqyL7/kJ2R7bn/9BNAB9p1r/n1j/wC/p/8Aiap3+s3mlWb6hqiW9tBEMvJLPsRQeOWKgDmt9pokOGYD6mszV9M0HxLpc+ha9b29/ZXSGOa3nVZYpEPVWRgQQfQirglzLm262FK9ny7la5u9YezkZbaIgoSCJfb/AHar6Rc61/ZNri1j/wBSn/LU+g/2a+cvHXwM0/wL4Y1DxP8ADDxfrHgaDTbaW5eK3cahp6RxKWb/AEO5EqhQB92Ex+1eQ/s7/tM/EjUfi9pHwF+I1xoniePW/Dg8RaTr3h/zId1kCgT7ZayF/JaQP8jK5ViCMDt7VPI5YihUxODqKcYJtppxkkldvrB2WtlNytrY8+WYqnUjSrx5XLRNNNXe3975uKXmffn2nWv+fWP/AL+n/wCJo+063/z6x/8Af0//ABNa9FeEeicha3Gtf21eH7LH9yH/AJa/73+zWx9p1v8A59Y/+/p/+Jptr/yG7z/rnD/7NWzQBkfada/59Y/+/p/+JrJ1e51ry4P9Fj/18X/LU/3h/s11tZOr/wCrg/67xf8AoQoAT7TrX/PrH/39P/xNH2nW/wDn1j/7+n/4mteigDI+061/z6x/9/T/APE1j6Hc619g/wCPWP8A1sv/AC1/22/2a6+sfQv+Qf8A9tZf/Q2oAX7Trf8Az6x/9/T/APE0fada/wCfWP8A7+n/AOJrXooA5GW51r+3Yf8ARY/9RJ/y1P8AeT/ZrX+063/z6x/9/T/8TRL/AMh2H/rhJ/6Ela9AGR9p1r/n1j/7+n/4msjXrnWv7Fuv9Fj/ANW3/LU+n+7XXVka/wD8gW6/65t/KgBq3Gt7R/osXT/nqf8A4mvgP/goe+pyeA/htNNbRjyfij4KdcSZyf7UhH933r9FF+6K/P3/AIKJyongP4aQuced8UvBKf8AlUhP9KAPuw3Gt9rWP/v6f/iay9Jn1c314JbaNVM4yRJkgbF7ba6usjTf+Pu+/wCuw/8AQFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/0v7+KKKKACs7Uba3eznkdFJMbcke1aNVL/8A48Zv+ubfyoAzdDsrT+xbT92v+pTsPQVqfYrT/nmv5Cqmh/8AIFtP+uKfyFalAFb7Faf881/IUv2O16eWv5CrFFAHK6faWw1rUj5a8eV2H92v5S/+DZKGCT9oH9udHQHHxZucZH/TxfV/V3p//Ia1P/tl/wCg1/KN/wAGx7f8ZD/t0L/1Vi5P/kxfUAf1p/YrT/nmv5Cj7Faf881/IVZooA5jWbK0+1WH7tf+Pgdh/dat77Faf881/IVlaz/x9WH/AF8D/wBBat6gCt9itD/yzX8hS/Y7U/8ALNfyFWKKAKc1na+U37teh7Csnw9ZWn9h2v7tf9WvYVvTf6pvoayvD3/IDtf+ua0AaH2K06eWv5Cj7FadPLX8hVmigCt9itP+ea/kK5+ztLX/AISO8Hlr/qouw9Wrqa56z/5GO8/65RfzagDY+xWn/PNfyFKbO1P/ACzX8hViigCubO1P/LNfyFYOvWdrttT5a/8AHzF2HrXTVg699y1/6+Yv50Aa32O1P/LNfyFfyu/8FQrOP9tP/gtp+zF+wfZRrc6D4Cab4heJIl5Crb5ECuP9ooV/4FX9Ud1cxWdrJdznakSl2J7BRk1/Kf8A8EPxqP7Yv/BTT9q//gpdqx+0aS+rR+B/Dcx5T7LY48zyz6YjQnHBMhNAH9V32K07RL+Qpr2VptP7tenoKt01/uH6UAc54bsrT+xYf3a/xdh/eNbn2O0/55r+QrM8N/8AIFh/4F/6Ea3KAK32O0/55r+Qo+xWn/PNfyFWaKAOWis7T/hJph5a/wDHunYf3jXQfYrT/nmv5CsiL/kZ5v8Ar3T/ANCNdBQBW+xWn/PNfyFH2K0/55r+QqzRQBzHiOztRYL+7X/Wx9h/eFb32O0/55r+QrK8Rf8AHgv/AF1j/wDQhW9QBW+x2n/PNfyFU7iTRbSeG1u2hiluWKxIxAZ2AyQoPU4GeK1a8G8L/CzW7r4lXnxV+I90t5eQs9vpNrHnyLK2PG4A9ZZB95uw4HFdOHpU5Kcqs7WWi6t9Ev1fRd3ZGNWc04qEb3fyS6v/AC8z282Vngnykz67RWH4ds7T+zf9Wv8ArJOw/vGulPQ1h+Hf+Qb/ANtJP/QjXMbGp9itP+ea/kKPsVp/zzX8hVmigCt9itP+ea/kKwTZWn/CSj92v/Huew/vCunrBP8AyMo/69z/AOhCgDV+xWn/ADzX8hR9itP+ea/kKs0UAVvsVp/zzX8hWF4ksrT+yZP3a9V7D1rpqwvEn/IJk+q/zoA0xZWmB+7X8hS/YrT/AJ5r+QqwOgpaAK32K0/55r+Qo+xWn/PNfyFWaKAOX8O2dqbWceWv+vk7D1rf+xWn/PNfyFZHh3/j2n/67yfzroKAK32K0/55r+Qo+xWn/PNfyFWaKAOXnsrT/hJLceWv+pfsPUVv/YrT/nmv5Csmf/kZLf8A64v/ADFb9AFb7Faf881/IUfYrT/nmv5CrNFAHO+ILK1/sibEa9PQetasNlaeUn7teg7CqXiHP9kTY9BWtD/qU+goAi+xWn/PNfyFH2K0/wCea/kKs0UAVvsVp/zzX8hWBolna+bejy1/4+G7D0FdRWBof+tvf+vhv5CgDW+xWn/PNfyFH2K0/wCea/kKs0UAVvsVp/zzX8hXyRov7Ntl4d/bJ1z9pb7WsjeI9DtdINps/wBX9jJIbPvmvsCsC9/5Dtn/ALr/AMqANb7Faf8APNfyFH2K0/55r+QqzRQBW+xWn/PNfyFZOu2Vp/ZFx+7X7h7Ct+snXf8AkEXH+4aAH2NlafY4v3a/cHYelWvsVp/zzX8hWJqfiLRfCnhptf8AEFwlraW0QeSRzgAAV418Lv2lPBfxV8Vz+EtItru0nSLz4GuY9gniBxuTPOK4a+Z4WhWp4arUSqT+FdWdVHA4irSnWpwbhHd9EfQH2K0/55r+Qo+xWn/PNfyFct4n+IfgbwYhfxVq1rYY7TSBT+XX9KseGvHPg/xjbi68Lalb36EZzDIG/Qc1ssXQdT2KqLn7XV/u3M/q9Xk9pyPl72dvvJdKs7Q3t7+7X/WjsPStWNNLmleCHynePh1GCVJ9R2rw7xj8efh58LNdu9M8WyzpM7BwIoHkG0j1Ax+tfHnwJ/aj+H2ieKfGOteImvZpdX1My2/lQtJ+5AwoIH3fpXhZjxVgMJi6WEqVY3k2pXkvdtFvX1dl0PWweQYzEYepiIU5WSVtPiu7aei1P07+xWn/ADzX8hR9itP+ea/kK5vwR4z0rx94fi8SaLHNHbykgC4jMT8f7J5rra+hpVYVYKpTd4vVPujxqlOUJOE1Zrc5fU7OzGqWJMaY3P2HpXzL+29Fewfs96pJo8WcyReaUHPl556dq0P2yNdvdA+Er3FhM8Ek88cG+M7WAkIBwR0r2Oz1bwV4e8CWOneLNQtxbi1iV/tkiksNo+9uPNfP5vVhjY4rKXLkvS1nfbn5ktNNuW+56+XQlhnh8wUea0/h78vK/wBT4U/4J6eFb69i8QfEPU7fy4r1o4INy4UhByVz2r9MfsdqP+Wa/lXnvhX4h/Ce+ZNC8H6tp7lOFgt5EH5AGtzx3458PfDrwvdeLvE8whtLVdxPdj2UDuT2qeG8HhsqyqFCNdTjBNyndWu25Se+m/fYrOsTXx+YSquk4ylZKOt7Wsl5mvqllaf2bP8Au1/1bdh6Umk2Vr/ZkH7tfuDsK+bvBWm+Pfilaf8ACzvHlzPplowaXT9KgYooj/habHLMRzjoK+mdJ/5BkH+4K9jAYx4qn7bkcYv4b7td7dL9E9bb22PNxeGVCfs+ZOS3tsn2v1+WnqWPsVp/zzX8hR9itP8Anmv5CrNFdxylb7Faf881/IVgaZZWh1a//dr95Ow9K2pNT06K+TS5J0W5kUssRYbyo6kDris7TP8AkLX/APvJ/KkpJ7MbTW5rfY7TOfKTI9hWNqnhHwvrcsM+r6fb3LwNujaSMMVPqMisb4k6L4p8QeDrvTfBd+dO1JgGhmHqpzg+x6Guk0BtTOi2n9tqI7zylEyqdw3gc4PeuaUlOq6E6d42Tu0mnrt6qyevfQ2jFxgqsZ63ast1pv6MvfYrTtEg/AVxHjkaPp9hHqOoWqTw22+VkKg5CKSRz9Kb8UvHcfw28E3fi+SHz/sxQCPO3JdgvX8a8F+JX7Rnws+2v4Avr7ydSltmYLt3RkyxEhQwzzzjpXHmGb4TDKVOtVjGVlbm0Wt+Va6auL0OnB5diK3LOlTclfprta+3a6PoH4fav4a8X+DrDxP4ftEt7W+iEqIFAwD2OBirsHgHwRa6m+s2+k2qXchy0oiXcT65xXgf7GGqtqfwB0pWOfszzQ59kcivqJbu0e5azSVDMgDMgYbgD0JHWpyivDG4DDYmrFNyjGWy0bWtuxWY0pYbF16EG7Rk18k+on2K0/55r+Qqvd2Vp9ll/dr9xuw9K0ar3f8Ax6y/7jfyr2DzTK0WytP7Kg/dr9wdhWr9ktSMeWv5VT0T/kEwf7grzH45fEu++FHggeK9OtBey/aoIPJ7sJWwcY746Vz4vFU8NRniKztGKu/RG2Hw869WNGmvek7I9Ru49PsrWS8njUJEjOxwOijJrF8Ka54e8aaBb+JdCUPa3S7kJUA46dKwdT8VaX4m+GWoeINDlEkcljM3B5VthyCOxHcGvnf9nL4neFvBf7Men+LPGN2tpaWjSxs7cksHOAB3J9K8ytnFOnjKdKUkqcqcp819LRcdb7Ws2d1LLZzw06ii+dTjG3qpdO+h9T2Vna/8JDe/u1+5H2HpXQ/YrT/nmv5CvI/hP8UvBnxaN74m8E3P2i2GyNtw2srDsR2pvxU+PHgH4R+TaeIZnnv7r/U2VsvmTv7hR2rsnmmDhhljJVo+yevNdWfozmjgMRKv9WjTftP5ba/cevfYrT/nmv5Cj7Faf881/IV4B8Nv2l/AfxG8QjwgkN3pWqOpeO2vojE0ijqVz1xX0RV4HMMNjKftcLUUo7XXfs+zJxWErYafs68HF769jmdcs7QC1/dr/r17D0Nbv2K0/wCea/kKy9d6Wv8A13X+RrdrsOYrfYrT/nmv5Cj7Faf881/IVZooApyWVp5bfu16HsKxvDdnaHRYP3a/d9BXRSf6tvoaxfDf/IFg/wB2gDU+xWn/ADzX8hR9itP+ea/kKs0UAVvsVp/zzX8hXPW9nanxLc/u1/1MfYe9dVXO23/IzXP/AFyj/rQBs/YrT/nmv5Cj7Faf881/IVZooArfYrT/AJ5r+Qr+MPWoR+yr/wAHavlGE2+kfGnwzEy5ICSzrArE49pIHH1r+0Wv48f+DkLTY/2ff26f2Qf28LRBF/Y3ihdFvp8f8sXkQ4Y/7ksmB9aAP7Bfsdp/zzX8hR9itP8Anmv5CodLv4dU0y31O3OY7iJJVI9HAI/nV+gCt9itP+ea/kKPsVp/zzX8hVmigDl/DVlaf2Sv7tfvv2H941v/AGK0/wCea/kKyfDP/IJX/fk/9CNb9AFb7Faf881/IUfYrT/nmv5CrNFAHMGztf8AhJ/9Wv8Ax7DsP7xrfNnan/lmv5Csg/8AIz/9uw/9CNb9AFb7Faf881/IUfYrTp5a/kKs0UAcv4ls7X+yj+7X/WRdh/fFby2VoAP3a/kKyvEv/ILP/XSL/wBDFbw6CgCv9itP+ea/kKX7Ha9fLX8hViigCv8AY7Xr5a/kKwtAs7Q2ch8tf9fL2H9410tYfh//AI85P+u8v/oRoA0/sVp/zzX8hR9itP8Anmv5CrNFAFb7Faf881/IViS2lr/wkUI8tf8AUP2/2hXSVhy/8jFD/wBcH/8AQhQBp/YrT/nmv5Cj7FaHny1/IVZooAr/AGO16+Wv5CsLxLZ2v9hXJ8tfu+g9RXS1h+Jf+QFc/wC7/UUAaQsrTA/dr+QpfsVp/wA81/IVYHQUtAFb7Faf881/IUfYrTp5a/kKs0UAczoNna4vP3a/8fUnYe1bv2K0HPlr+QrK0Hpef9fUv9K3qAK4s7Uf8s1/IU6O3giO6JAp6cDFTUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFUH1TTI3MclzErKcEFwCCPxoAv1j6//wAgef6D+Yqf+19J/wCfqH/vsf41zmo+JvDep6BPdadqFtPFyu+OVWXKtgjIOODwaXMr2vqOztc7Sis7+19J/wCfqH/vtf8AGj+19J/5+of++1/xpiNGsjSv9bef9fB/9BWpv7X0n/n6h/77X/GsjStX0nzbz/Sof+Pg/wAa/wB1fegD4T+Nd7Bp3/BTX4CRs2JNR8I+PYAPURSaLJ/Sv0Ur83P2khoift+/s1eLpbiLMf8AwmWlo+8feu9OjnxnPcWp/Kv0S/tfSf8An6h/77X/ABoAr6h/yE7D/ro//oDVs1yuoavpP9p2H+lQ/wCsf+Nf7je9bP8Aa+k/8/UP/fa/40AYvjHxpoHgTSV1jxDL5ccs0dvEoxukmlOFRckDJ9yAAMk4FaD65otzaO1vdwOCp+7Ip7exqlrlv4M8Taa+j+I1sr+0l+/DcBJY2x6q2RXiuofs6fsy3Mckr+G9JVsE/IAg/JWFeZipZhGo3howlCy0lKUWnrfVRnfp0R20FhHC1aUlLySat85Rt+J7R4X8Q6FqtudL027inubBIkuIkcF4mdAy7h1GQcj1rqq/LrXPhb+z3efF/SdH8MWUNhpnh/T5r7xNdw3MkUSK8f7mMurg+YGy+FOQPyr6X/ZZv7o+DtQ1m6vrhdD1C9eXQ7fUbgzXMVkAFDMzndiRgXVTnaCK8fK+IMRXxjwdelFNOSvCbkvdSu7OEdE3yN3+NNW0dvSx2UUaWHWIpVJbRdpRSfvXstJPVpcyVvhad9j6urIt/wDkN3X/AFzi/m1Tf2vpP/P1D/32v+NZFvq+k/23df6VD/q4v419W96+rPAOoorO/tfSf+fqH/vtf8aP7X0n/n6h/wC+1/xoAr63/wAe0X/XxD/6GK2a5bW9X0n7NF/pUP8Ar4f41/vj3rY/tfSf+fqH/vtf8aANGis7+19J/wCfqH/vtf8AGj+19J/5+of++1/xoAh0P/jxP/XWX/0Nq165fQ9X0n7Cc3UP+tl/jX++3vWv/a+k/wDP1D/32v8AjQBo1jzf8h63/wCuEv8ANKn/ALX0n/n6h/77X/GsebV9J/t63/0qH/Uy/wAY9U96AOporO/tfSf+fqH/AL7X/Gj+19J/5+of++1/xoAZrn/IGu/+uT/yrST7g+lc5rmr6T/Y13/pUP8Aqn/jX0+taSavpOwf6VD0/vr/AI0AadFZ39r6T/z9Q/8Afa/40f2vpP8Az9Q/99r/AI0AQab/AMf19/11X/0Ba2K5bTtX0n7dff6VD/rV/jX+4vvWx/a+k/8AP1D/AN9r/jQBo1j6r/x8WP8A18f+yNU/9r6T/wA/UP8A32v+NY+qavpP2ix/0qH/AI+P74/uN70AdTXmvxm0NfE3wf8AFfht+RqGj31t/wB/YXX+tdz/AGvpP/P1D/32v+NZet3mlX+i3liLqEmaCSP76/xKR61thqjp1YVF0af3MzqwUoSi+qZ41+yNrEmvfsr/AA71Wbl5PDmmhj6lIEXP6V7poP8AyBbT/rkn8q+Rf2B9esJ/2OfAC3NzGrw6YICGcAjyHeP1/wBmvqnQdY0k6Jaf6VD/AKpP4x6fWvQz+mqeZ4qmulSa+6TObLZ82Doy7xj+SOnorO/tfSf+fqH/AL7X/Gj+19J/5+of++1/xryTtII/+Q/L/wBcE/8AQmrYrlo9X0n+3pf9Kh/1Cfxr/eb3rY/tfSf+fqH/AL7X/GgDRrx/w/4t1LxYPE4u1RbbS9ZXT7YKPmKQrAXLHPJ8xnA9gK9P/tfSf+fqH/vtf8a8L8ES6fo8Pi3T7i6g8xvED3OFkU4S48mRc4PBIPSuuhGDo1W1qkrferv9PmY1HLngltr+R9C0Vnf2vpP/AD9Q/wDfa/40f2vpP/P1D/32v+NchsaNY+i/6qf/AK+Jf/QjU/8Aa+k/8/UP/fa/41jaPrOkJBcO11CAJ5iSXXAAY+9AHVV5N8Y/jh8MvgJ4Tbxj8TtTSwt2by7eIAyXF1MfuxQRLl5ZGPAVQT64HNfKvjb9svVviD4nuvhN+xtp9t4t1q1fyb/X7uTy/D+lt3Lzjm4kH/PKHPPVhzXb/Bv9mHwX4I8Vf8Lf+LOvnx78QZVw2takU2Wgbkx2NuD5dtGP9gbz3avo4ZNSwkVWzaTjfVU1/El2ve6pxfeS5mtYwktTypY+dduGCV+838K9P5n5LTvJM8Z8WfBb4zftreG9RHxn1LUvh14b1+2a107w9Z+S90LTckjS6gZEkUTSlVxGmDCo27tzNXaR/sn/ALTFpaRadpf7QGu29vAixRINI047UQAAZ8vsBX2rd6vpP9s2f+lQ/dl/jHovvWx/a+k/8/UP/fa/403xTjIx9lRjCNJO8YezpyUdEtOeMndpK7bu7XbEsmoN89Ryc+suaSb/APAWl1dlay6HwJN+yL+1FdfLc/tF+JNvpFpenxn8xHmsi/8A2IfjO9nNNfftCeOXIRiRG9tEDgegjr9Ev7X0n/n6h/77X/GqOp6vpP8AZtx/pUP+qf8AjX0PvTXFuYr4XTXpRor8qY3kuFfxKT9Zzf8A7cfn1b/sGfEi6gje6/aB+IpUqDiK+hj6j2ipf+Hb+nXh3a/8YPiVft3La6Uz/wB8xCv0JstX0n7HD/pUP3F/jHp9as/2vpP/AD9Q/wDfa/41X+uObr4ayXpCC/KKJ/sLA9ad/WUn+bPzx/4dn/Dg/f8AiN8RmPv4jl/+IrLt/wDgm14LF9dR6b8TviNavEU2uviB2PK553Ic1+kX9r6T/wA/UP8A32v+NY9jq+k/2pff6VF96P8AjH90e9L/AFyzr/oKl+H+Q/7DwP8Az6X4/wCZ+bHj7/gnDqF74F1rT4PjJ8RbxZrG4T7Jc6sssE26Nh5cimL5kbow7g159+zV+xlq/wAXP2ffBnxFuvjV8Rbcaxo9pcPa22rqkETtGN0cY8okIrAqoJJwK/X59U0iRTGbqHDDH317/jXxj/wT51XTbX9k7w5octzEp0mfU9OwXAIW0vp4lHX+6o/CvapcW5rLKq1R1lzRqU0vchtKNS/2f7qPPnkeCWMhFQ0cJdZbpwt1/vM8q1H/AIJn/DG4+zL4q8feP9bWSdVZLvX5dhznsir+hroh/wAEr/2OHwbzR9Tum7vNrF67H6/vq+6tY1fSd1p/pUX/AB8J/GPQ+9bP9r6T/wA/UP8A32v+NeK+M88+zjakf8MnH/0mx6H9hZd1oRfqr/nc/P4f8Eq/2Jc5k8MXUns+p3hH/o6tSL/glx+wdGgV/h9ayH+89zdMT+PnV92/2vpP/P1D/wB9r/jR/a+k/wDP1D/32v8AjUPjHPnvmFb/AMGT/wAxrIstW2Gh/wCAR/yPz3sP+CXX7DeoaZFMnghLaQ5+e3vbqNuCe4mr5O/bH/4J8/s7fDXwBoF/4H/tqwn1PxRoml4/ta5ljWO7uVRyFkdwGC5KtjKnBFftDoGr6T/ZEObqL+L+Mep96+Kv2/dS06bwD4EjiuI3z4+8OZw4OALnPr7V7vDPFmd1M0w9OpjasouSunOTX4tnn5tk2AjhKs44eCdt1FL8kc2v/BMX4Sxn/RvHXxAhHoniKYD/ANBrPb/gmt8PRq/2aD4jfEWP9zu3DxFKTndjulfpCdX0kcG6h/77H+NY39r6T/wkP/H1D/x7/wB9f731rxv9c8764qX4f5Hf/YeA/wCfS/E+Bl/4J0TWB3eHvjX8S7EjpjWhJ/6FEad/wwh8W4flsv2hfiAq/wDTW5hkP5mMV+iH9r6T/wA/UP8A32v+NH9r6T/z9Q/99r/jR/rjmz+Kqn606b/ODF/YWB6Qa9JSX5M/ODVP2IvjlbafJIP2h/GzKoHDC3bPP+4K0f8AhiT9oEcD9orxl+MVqf8A2SvvfXtX0n+yZv8ASoeg/jX1HvWv/a+k/wDP1D/32v8AjS/1wzP+aH/gmj/8rD+w8H2l/wCBz/8Akj88P+GJf2hf+jivGP8A35tf/iaP+GJP2gz1/aK8Zf8Afq1/+Ir9D/7X0n/n6h/77X/Gj+19J/5+of8Avtf8af8Arhmfen/4Jo//ACsP7DwnaX/gc/8A5I/N7Tv2KPj5M9zt/aH8ZLsmZTiO25IA5+7Wkf2G/jjN8t1+0R44K/8ATM28Z/MJX3ro2r6VvvM3UX/Hy/8AGPQe9bX9r6T/AM/UP/fa/wCNL/W/M/5of+CaP/ysP7Dwf8sv/A5//JH53H/gnTLqpB8ZfGn4k6qO6nWhCv8A45EMfnVB/wDgl7+zmNRthruq+LNXaVn3Pe69cu3Ck9VK1+kH9r6T/wA/UP8A32v+NZF9q+k/2nY/6VD96T+Nf7p96f8ArnnS+DFSj/htH/0lIFkWA60U/W7/ADufCp/4JZfseN/rdK1Zz3LazfHP/kakH/BLH9jlf9XpGqIfVdZvh/7Wr9Av7X0n/n6h/wC+1/xrxH9oT4w658LPhldeIfhxo0nivxFPJHZ6Zp1sQRJdXB2o0zA/u4U+9I5IAUdQSK1wvFXEOIrQoU8fV5pNJXqSS17tuyXdt2XUmtlGWU4Sqzw0LJX+BP8ABK7Pyl/aq/ZW/ZJ+Dn9n/DD4b6FrXin4i+Kw0WjaCNcvjHt6NcXX775LaPksSRuwQO5H6CfsTfsieGf2W/h0rTSrqnivWoYH1bUyMbhGoEdvCDylvAvyxp7ZPJwKn7MH7PVv8IrPVvir8WtYg8R/E3xWvna3qzMpWIYytpag/wCrt4uAoGNxGT2A+vtI1fSf7Jtf9Kh/1Kfxr/dHvXfxFxViauG/smnip1aad5zlKT9pJdIp7U0/hW8mueX2Yx58syelGr9dnRjCX2YpJcq87byfXotl1b+J/wDgo5ovi3XP2Z/FL6Xdz6fpWk6LqOq3U1rMYZZbm1jBtYcqQ2wyEyPjg+WFPBIP2D8L9WuNf+Gnh3XbtzJLe6ZaTu56s0kSsT+JNfPH7dd1DqP7G3xMstLkS4nfw7fbY42DMcRknAByeM1832/7f/wg8E/s6eDPDPwY1C08deP9T0iw0/StB06UTSm8ECKTc7T+4jjOTIXKnAIHqM8LluLzLJKFHC0uZxrTWi0ScINym9ktNZNpJR7IdbFUcLmFSpWnZOEXr1tJqyXX0Wt35ntmoftTSp+3npv7KXhmC2u4JdBm1PWLgljNbSx8wRrg7RlTucMCcMuMd/uSvw1/ZE+CV78L/wDgoXqOo+PNZj1jxVJ4JOq+Ir/eDHJqeq3gLJFk4EcUcaxoP7ozgZwP25/tfSf+fqH/AL7X/GuTi7AYLBV8PQwL5oqlByl/NJ3bkr9GmuXb3bXVzbJMTiK9OrUxCs+eVl2SskvVdfO5o1k6v/q4P+u8X/oQqX+19J/5+of++1/xrJ1fV9J8uD/Sof8AXxfxr/eHvXyZ7R09FZ39r6T/AM/UP/fa/wCNH9r6T/z9Q/8Afa/40AaNY+hf8g//ALay/wDobVP/AGvpP/P1D/32v+NY+havpP8AZ/8Ax9Q/62X+Nf77e9AHU0Vnf2vpP/P1D/32v+NH9r6T/wA/UP8A32v+NAEMv/Idh/64Sf8AoSVr1y8ur6T/AG7D/pUP+ok/jX+8nvWv/a+k/wDP1D/32v8AjQBo1ka//wAgW6/65t/Kpv7X0n/n6h/77X/GsjX9X0n+xbr/AEqH/Vt/GP8AGgDp1+6K/N3/AIKULcz6B8FrO2OPN+MHgzd7pHeeYf0Sv0RXV9J2j/Sof++1/wAa/N3/AIKC+JNNk8ffs2eFo5VmGrfFvTdwRgcCy0zU7vJ54AMI/HFAH6aVkaZ/x933/XYf+gLU39r6T/z9Q/8Afa/41laVqmlyX17HHcxMzTgABxkkovvQB01FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/kK1Ky9D/5Atp/1xT/ANBFalABRRRQBzmn/wDIa1P/ALZf+g1/KB/wbINj9pD9uiP/AKqtcn/yZvq/q/0//kNamf8Arl/6DX8nf/Bs2wi/ap/bptB2+KVw3/kze0Af1z0UUUAYOs/8fVh/18D/ANBat6sHWf8Aj6sP+vgf+gtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/IDtf8ArmtAGzRRRQAVz1n/AMjHef8AXKL+bV0Nc9Z/8jHef9cov5tQB0NFFFABWDr33LX/AK+Yv51vVg699y1/6+Yv50AfAv8AwVr/AGmD+yJ/wTq+K/x1tWAv9L0G5isFLbS95dL5MAHuZHXpXgH/AAQF/Znm/Zd/4JW/DDwtq9u0Gs+IrJvEeqeYMSG51RvO+fvkRlBz6V8Bf8HLPijUvi7H+z5/wTn8LuxvfjJ47svtkaYObDT3RnBHvI6H0+U1/T54e0PTfDGgWPhrR4hDaafbxW0EajASOJQqgewAAoA2Ka/3D9KdTX+4fpQBi+G/+QLD/wAC/wDQjW5WH4b/AOQLD/wL/wBCNblABRRRQBz8X/Izzf8AXun/AKEa6Cufi/5Geb/r3T/0I10FABRRRQBg+I8fYEz/AM9o/wD0IVvVg+IsfYEz/wA9o/8A0IVsTLFMjW0h++pBGecHg00B5z4W+Knh3xn401fwd4bElz/YYRLu6UfuFnf/AJZBu7gcsB0716ZXKeDPBHhf4faIvh7wlaJZ2od5Sq9WkkO5mY9SxJySa6ut8U6LqP6umodL7vzfa+9um2u5lRVTl/etc3lt6fLv1EPQ1h+Hf+Qb/wBtJP8A0I1uHoaw/Dv/ACDf+2kn/oRrnNTdooooAKwT/wAjKP8Ar3P/AKEK3qwT/wAjKP8Ar3P/AKEKAN6iiigArC8Sf8gmT6r/ADrdrC8Sf8gmT6r/ADoA3B0FLSDoKWgAooooA5/w7/x7T/8AXeT+ddBXP+Hf+Paf/rvJ/OugoAKKKKAMCf8A5GS3/wCuL/zFb9YE/wDyMlv/ANcX/mK36ACiiigDF8QgnR5selasP+pT/dFZXiLP9jzY9K1YP9Sn+6KAJaKKKACsDQ/9be/9fDfyFb9YGh/629/6+G/kKAN+iiigArAvf+Q7Z/7r/wAq36wL3/kO2f8Auv8AyoA36KKKACsnXf8AkEXH+4a1qydd/wCQRcf7hoA858T/AAxsfH+raVfeJZjPpenpvFiR+7km7O/94L2B4r4D/a5+IWq/B748aXr3g6FRdyaQ9rCqjAVpGwCAOuO1fqdY/wDHnF/uD+Vfmv8AHrQbPxl+2n4M0G+XdCkKyOD3CHdXwHHeEccBfCPlrVKtNKXW/MktfLoj6/hTEKWLaxHvU4U5vl6Wtd/efO/xg+Ak3gj4WaR44+IV3NqXiPxFfQiUyuSsKSYYqB68819H/tE/ATRfBPgKP4z/AA/v59D1DSLS3xDbHZDIVA5IHc/rXdf8FANGvZ/hNp+v2KFl0m/jmcDstecftMfG/wAOeOPgFoXgvwdcpean4l+zxiGMgugXAbcByOfWvjcxyrLMuqZnhqkUnGlTlTbb5nL3lzJ7uTm1f/I+kwWPx2Nhga8JaOpNTX2VH3XZrZLlR9h/BXXB8QPhpYeMNegjlub22jlk3oD823k8+uM189fsT22nXy+ObqeCJsa3JtJQHA56ccV9O/Cvw43g/wCH0HhlhhrG1SJh/tBOf1r5C/Y2v2sfA/xF1EHBh1G5kB/3VY19rinKnj8pWI1koVHL1VNX/G58xh1GWEzD2WkXKCXo5ux1NjqXiD9of4j+IFsNVutF8M+FiYIDZP5bTXI5Z2I6hcdKZ8C/j949+NOh694J0S5trfX9FkEcN5Mm9JYQSu9lz944+lfPnwz+KKfDf9k3WteibdqviLUbiC1UfeaSQkE/gDVr9lXwVrHwW/aMi8Ja6x36zpC3OT0LsNxH1BNfIYLOq88ZgZQnL9/d1mm9Pa39lH+64pe7az+8+ixOWUo4fFKUV+6/hJpa+zt7R+d763/Qt/tb/D/4t6P8PrfWviJ4ubVY5byKMWkMQhhBY9eO47VxX7Rnwz8BeB9L8MeDNDhu73VteWOae5ld7iWOEAbtiZPNfZP7cPhrXPE/wpt7fQLZ7ua3vI52jjG5iiHkgd8V458dbPxj4T+I3gT44abo9xq2m6bYxxTQRKTIjbehGMj8qOJ8kpUq+MShJpxo+/LmqOMXOSnJNtvRb228h5FmlSpSw3vJO9X3VaCbUYuCdrLV99/M83m+Fej/ABCh07wb8DvBNzpL2zx+f4gvFNu67DywHUk19AftjaV4j0vwb4RvGtp9X03Rr2KXUljG5pFjA+Zh7kUzSvF/x3/aQ1iCw0vTbjwZ4WgkV7meQ7bmcKc7F4GAe/FfUPxN+KvgT4QaRZP48eRLO7byBJsMiggfx/WvXwOVYKrl2MkpunTmoL2jgqcPdenLDT3U9HKWsr2vZHnYvH4qGMw0XFTnFyfIpOctVreeuttlHSNr2PE9H/bU/Z917SjZ/wBpnTpDEVEdxGV2nGMcZr6e8GeINE8TeG7XVvD93HeW0iDbJE25TivzD+Lfxf8AgL8QfN8NfB3wXD4h1y6youPs2xI8/wAWRzx15wK+zf2UfhHqfwf+FcOi61L5l3eSNdSop+SMv/CvsK9bhziDH4vHSwkpU61KKd6lNSST6LW8W32i3Y8/OsowmHwqxCjOnUb0hNptrq9LNJee59MUUUV98fInxX4J1B9e/bL8U/aTvXStNghiB6Lu5OPrXjHxB+N+t6z+1/oPgLwrfPFplnerFciM/LLLsO4N644rP1L4mWXwi/aB+KPinUXCzrZRfZUPWSRuFA/HmvIdF8Nt8NvGXw68R+MXEd7qd9Pql9I/VRIhYAn2FfimOzet7L6tQna2IlOq+0fb8kYt+b/CPY/UMNl1L2ir1Y3vRUYLvL2Tk38vzkfeH7WXxf13wF4f07wb4EmMfiLxDcLb2xTl40JwXFUodP8AGOveI7H4OeJdeuU1HT9OTUBqlufLnMzEggj7pAHHNeSfAbSr/wDaF+Omq/tAeIlZtI0qRrbSI3+7leNwHsO/rXqvizWJNA/bJ8PpIcRappMsA92U5Fe/HF1MY5ZpWk/YVakKUI3aXs+a3NbTWctU90krM8d4eGGSwFNL2sISnJ2V+e1+W/aMdGtr3PD/ANp34LeIfDvgSPWfE3jTVtZ8+9t7dbedlWLEjc8KO3avcJf2cvhH8PfCh1zRNLV742krG4nJlkz5RPBasb9vLVY9M+HOiGdtsR1i3dz/ALMZya9H8G+NL340fDcarDa/ZbW8ae2siT80kYQqHI7ZNVhsuyyGd4vCqmpVFTi4815taSu7yu1vHr2sTWxmOllWHr87UHOSla0V9mysrX2Z53+xFrNjpH7Ob6tqcgigtLq8kkdjgBVck14Z+y98WLz4oftZ+IvETMy299aSCGMngRxMAvHTpXiXg+6+K+o+DX/ZQ0DTLm0vLnU5GvrllKoluWyecdO/vXrnhvw/ov7O/wC2Npuj3C/Y9MvbCO2hmYYR3ZQDz6lh+dfJYXN8ROnlMYpxoYedONRtNXqNONtekFu+8rH0WIy+jGeYttOrWjOUEtfcTTv/ANvdPJH6zVXu/wDj1l/3G/lU4IIyOhqC7/49Zf8Acb+Vfu5+Tni/xJ/4W0ngixufhB9na/hkR5YrjgSxDqoPbPrXwb+0N8Sf2npfDFlbeOvC9np1quo2zxSwyl90ytlF69Ca/U7RP+QTB/uCvjT9vG9XT/hbpV05wsesWrk+gRs18Nxrl83l+JxccTOCUdYprldvJxbXnZo+r4XxkPrdDDyoQleWjafMr+jX4pnyd4s8G/tfeIry78Z2elx+GojbO139mm2RyoFOSycgkivP/gjLd/GK/wDBHwTXL2Gk3FxqOor/AAsQ+QD6joPxr9JvhN4+1v486B4lvLQLHoEkZsNOLLhnYJtdyfQseK86/ZG/Zr174Iya34p8apG2oXLFIFhO/EK5Pp1Y9q+JjwrLEY/CV8HUqVMPV5vaSna3LGUZaJJJKbiunvLU+nefxo4XEUsTCEK1Pl5Ix3u4ta3u24qXyZ5f+yjqtr4C+J/xQ0xAEs9Nd7gIOABGW6enArsf2T9P0jxZ/bn7SHxGuIpL6+uZVgkuGG23t4z2ycCvOv2YfCWu+ONc+Kmq3UMls+rCW1j8xSvzvu9fqK+XPhX4f+EWnXl54E+PGp6pol3ZXDK0CMVt5UB6EDkf1riwmYVcHTy6c6adK9dw55ckFPnfK22mtI3svN21OnE4OniJ4yMZtVLUlLlXNLl5feSV1u7X/E+3PD2vp+0N+1hZeL/BsX/Eg8HQvEbxRhZpXyMA/jx7V+jVfnQv7RHwv8ETeGvhP+zRFDcy6hexRTbYztWLPzkk8liM81+iy52jd1r9L4Rq0ZRxHLWVWq581SUfg5pJWjF9VGKS/M+I4ip1Iujem4U1HlgpfFZPVyXS7bZha70tf+u6/wAjW9WDrvS1/wCvhf5Gt6vsT5sKKKKAGSf6tvoaxvDf/IFg+lbMn+rb6Gsbw3/yBYPpQBuUUUUAFc7bf8jNc/8AXKP+tdFXO23/ACM1z/1yj/rQB0VFFFABX84v/B0/8DU+Ln/BJXxP4us492peAtSsNftJAcNGUk8p2GP9mSv6Oq+Q/wBvf4Kw/tG/sb/Ef4FyxiR/FGhXljCD089o2MX/AJEC0Aeef8EsP2gLb9qH/gnp8JPjbDIry6x4csjc7TuC3MUYSVc9yrqQa+/6/lY/4NHPi/ceK/8AgnNrHwQ1aXde/DfxRf6WYy2SkcjCZeOwy7Yr+qegAooooAwPDP8AyCV/35P/AEI1v1geGf8AkEr/AL8n/oRrfoAKKKKAMA/8jP8A9uw/9CNb9YB/5Gf/ALdh/wChGt+gAooooAwPEv8AyCz/ANdIv/QxW8OgrB8S/wDILP8A10i/9DFbw6CgBaKKKACsLw/n7HLn/nvL/wChGt2sLw//AMecn/XeX/0I0AbtFFFABWHL/wAjFD/1wf8A9CFblYcv/IxQ/wDXB/8A0IUAblFFFABWH4l/5AVz/u/1FblYfiX/AJAVz/u/1FAG2OgpaQdBS0AFFFFAGDoPS8/6+pf6VvVg6D0vP+vqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8h/tc654q8KaF4a1rwxfXmnwy6zFaXraf5fntHco6jb5gKE7sYDcZPY819eV80/tfaDLrv7PHiI2wPn6fEl/ER1VrV1kz+ABrwuJ4VJZViXSbUlFyVnZ3j71rrvax6uRSgswoKok4uSTvqtdPwvc828HfDDwb8VnksdX+IOu+IIbZsXmj3Uy2kikfwTxIkcoHqDgH1Ir6xuNA0PQPCv9j6JaQ2tpbxhIoYkCoigjgAcV5Uvw88D/HTwPoPjrW7d7TVrmwt7iHUbKQ295C0kYb5ZU5IBP3WyvtXJ6tZ/tH/DnT5YYZrXx3pCgY84iy1NFB/vD9zL9SEJrzsutgV7Z4fmjNJ+0hzTdt1zRk5VF6Rc110O3GXxT9mq3K4t+5K0VfZ2aSg/WXK+mp9U/Zrf+4v5Cj7Nb/3F/IV876T+1F8NGvU0Xx0LvwhqLHb9n1qE2wJ/2ZeYmHoQ9fQVhqFhqlqt7pk8dzC/KyRMHU/QjINfQYPMsLi7/V6qk1uk9V6rdejSPHxOCr4e3toNX2bWj9Hs/kTfZrf+4v5CsjSre3828/dr/wAfB7D+6tbtZGlf628/6+D/AOgrXccp+e37bsFlon7Qn7MHjWc7EtviLc6cQMDcdT0LVIVB9twFfo19mt/7i/kK/Ov/AIKRyRaN4V+EnjqSDzv7A+K3hGUH+59tujp5Y+gAujX6NUAYGoW8H9p2HyL/AKx+w/uNWz9mt/7i/kKzNQ/5Cdh/10f/ANAatG6u7Wxt3vL6VIYYxud3YKqgdyTwBSbSV2NK+iHfZrf+4v5Cvmv4z/E7VoNTT4P/AAjiiuvFupRlnkIBi022PW4mPIH+wp5Y/rj+I/j1rfxD1GbwJ+zXAmrXwPl3Otyg/wBmWPqd/wDy2kHZUyPXIyK9Q+Fnwh0T4UeH7uOGaTUdW1EmfUtTuPmnupiDkseyjoqjgD8TXzlbHTzGTw2XytT2nVW1usab6yezktId+bQ9qlhY4JKtjI+/9mm/zmukfJ6y/wAOp84w/AP7TFoPwQ0a3mXwyqR6z4l1KUYfU7hjlIN/U7mXdIBwqBR3r7misbOCJYIIkREAVVVQAAOgA9qr6N/yCLX/AK5J/IVpV6GW5RQwTm6K+Ky9Ix0jFeS1fnJyb1Zx43MKuJUVUe1/m3vJ+b0Xkkl0Ifs1v/cX8hWRb28H9tXQ8tf9XF2Hq1btZFv/AMhu6/65xfzavUOA0fs1v/cX8hR9mt/7i/kKmooAwdat7cW0XyL/AK+HsP74rY+zW/8AcX8hWZrf/HtF/wBfEP8A6GK2aAIfs1v/AHF/IUfZ7f8AuL+QqaigDC0O3gNifkX/AFsvYf32rX+zW/8AcX8hWbof/Hi3/XWX/wBDatigCH7Nb/3F/IVjzW8H9u242L/qZew9UrerHm/5D1v/ANcJf5pQBpfZrf8AuL+Qo+zW/wDcX8hU1FAGLrdvB/Y11+7X/VP2Hoa0kt7faPkXp6Cqeuf8ga7/AOuT/wAq0k+4PpQBH9mt/wC4v5Cj7Nb/ANxfyFTUUAYWnW8Bvr792v8ArV7D+4ta/wBmt/7i/kKzdN/4/r7/AK6r/wCgLWxQBD9mt/7i/kKyNUt7cXFj+7X/AI+PQf3GrdrH1X/j4sf+vj/2RqANL7Nb/wBxfyFH2a3/ALi/kKmooA+If+CewQ/sr6RpM6L5mk6hrOnMCOQbXULiMj9K+wtCt4Dotodi/wCqTsPSvjb9hdjZ6B8S/C4P7vR/iH4hgjHoksyz/qZTX2foP/IFtP8Arkn8q97ihf8ACtipfzTcv/AnzL8zzcnf+xUV2il92n6Gh9mt/wC4v5Cj7Nb/ANxfyFTUV4J6RhR28H9vSjy1/wBQnYf3mrX+zW/9xfyFZsf/ACHpf+uCf+hNWxQBD9mt/wC4v5CvnrwtcwXXjz4h2W1T9m1TTRjA43Wtsa9x8Q+IdI8K6LceINdmEFrbLudjyfQAAcszHAVRkkkAZJrk7Cxtm0KXxO+lrpeoay9tcXkfBlLrsRRIR1ZUCqeuMY7V2UJclGq5R0kuVPz5oy/JdNrruYVFzVIJPZ3fpZr83+DPQPs1v/cX8hR9mt/7i/kK8/0/4wfCbVtX/wCEf0vxPpNzfh/K+zRXsLS78427A5bOeMYzmvMvj5+1P8MfgAtro2stPrPifVfk0vw7pSfadTvZD0CRA5VM9ZHwgGee1XQyvF1q0cPSpSc5bKzvbv6LdvZLV6E1MZQp03VnNcq63/D18tz2vxb4l8IeA/Dd74x8aXltpeladE01zdXLLHFEi9SzHj/E8DmvzW0nTPiL/wAFA55pbn7Z4Q+CIuHZI03W2p+KV3Zyx+V7ey44Aw8oPYdO68N/s3fFf9pPxHafE79td4YtKtJFudK8B2UnmafbMvKSX79Ludf7v+qU9AeRX35oMccNrLDCoREnkVVAwAAxAAHoBXt+3w+Tq2GkqmK/nWsKf+DpKf8Af+GO8Lu015/s6uO/ipwo/wAr0lP/ABdo/wB3d/asrxef4P8AAvg34f8Ahqz8G+CNLttK0qwjEVva20axxRqPQD9T1J5PNdL9mt/7i/kKmor5ipUlOTnN3b1be7fmexGKilGKskYN3bwf2xZ/u1+7L2HotbH2a3/uL+QrLvGUa1ZKSASsvH4CtqoGQ/Zrf+4v5CqOp28A024Oxf8AVP2Hoa1Ko6n/AMg24/65P/I0AJZW8H2OLKL9xew9Ks/Zrf8AuL+QqOx/48of9xf5VaoAh+zW/wDcX8hWPY28H9qXw2L96PsP7orerGsf+Qrff70f/oIoA0/s8A52L+Qr4m/YUitLf4feMfDqIMaR448R2uCPug3bSgflIK+36+Hv2PmbTfH/AMbvCUg2taeO7m7x/s39pbTD885r3svXNluNh29nL7pOP/t55uJ0xeHl35l96v8A+2n2Hq9vAGtPkX/j4TsPQ1sfZrf+4v5CszWPvWn/AF8J/I1rSSRxLvlYKOmScDmvBPSGfZrf+4v5Cj7Nb/3F/IVNVZ72ziuVs5JUWZxlULAMR7DqaaTewGVoFvbnSYTsX+LsPU18Sf8ABQKKFPA/w+Coo3fEHw4On/Twa+4dA/5BMP8AwL+Zr4e/4KCAt4P+G8Q6v8RPDg/8jMf6V9Bwp/yN8P8A4v0Z5Wd/7jV9P1R95/Z4DzsX8hWN9ng/4SDHlr/x7+g/vVv1jf8AMw/9u/8A7NXzx6pp/Zrf+4v5Cj7Nb/3F/IVNRQBha7b240mb5F6DsPUVr/Zrf+4v5Cs7Xv8AkEzfQfzFa9AEP2a3/uL+Qo+zW/8AcX8hU1FAHP6NBAXvMov/AB8v2HoK2vs1v/cX8hWVov373/r5f+QrboAh+zW/9xfyFZF7bwf2nZDy1+9J2H901u1kX3/ITsv96T/0E0AaP2a3/uL+QpRbwDoi/kKlooAo3dvbi1kOxfuN2HpVbSLeA6TanYv+pTsPQVfu/wDj1l/3G/lVbR/+QTa/9cU/9BFAFl7S1dSjxoVYYIKjBBrhPDPwj+FPgrVZ9d8HeGdK0q9uQRLcWdnFBK4PUMyKCQfrXodcNB8S/Ad1Dr81rqtvIPC7vHqwDjNoyRiYiQHG392Q2TwRXRRdfllGleztdK9t7K9vN6X6mVT2d052v0v+h8LfsztbeMv25/j743RUeHS20Pw/EwGebe3aSUD6O2D7iv0c+zW/9xfyFfm3/wAExdLvtT+E/iX42ashS5+JXiG/8RqGGGFvPK8cOf8AgEeR7Gv0qr3uL2lmlShH/l0oUvnShGm/xizzskTeDjUf23Kf/gcnJfg0Q/Zrf+4v5CsnV7eARwfIv+vi7D+8K3KydX/1cH/XeL/0IV8yesaH2a3/ALi/kKPs1v8A3F/IVNRQBD9mt/7i/kKyNDt4Dp/3F/1svYf32rdrH0L/AJB//bWX/wBDagDS+zW/9xfyFH2a3/uL+QqaigDClt7f+3YR5a/6iTsP7yVr/Zrf+4v5Cs6X/kOw/wDXCT/0JK16AIfs1v8A3F/IVk69bwDRbo7F/wBW3YelblZGv/8AIFuv+ubfyoA0FtoNo+RfyFfm/wDtc3Nvf/tq/ss+A2gEiS+I/EetNgD5P7N0K7iVj7B7tR9SK/SVfuj6V+dvxVtm8R/8FPvg9ZQyqR4b8EeMNTliI5H2y40q2Rx+Tj8aAP0O+zW/9xfyFZOmQQC8vSEUETjsP7i1uVkab/x933/XYf8AoC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1P7+KKKKACuf1jT7meC4mjupIwUb5VxgcV0FVL//AI8Zv+ubfyoA5rRNJuzo1p/ps3+pj9P7o9q0/wCybv8A5/pv0/wqxof/ACBbT/rin/oIrVoAwv7Ju/8An+m/T/Cj+ybv/n+m/T/Ct2igDg9O0u6Gtalm8lODF6f3fpX8n3/BttaTj9s79urTVuJIynxJnY4xk/6Vecmv629O/wCQ3qf/AGy/9Br+Sv8A4N3JRpP/AAUw/b38HPxJD46NwV9pLu8AoA/rZ/sm7/5/pv0/wo/sm7/5/pv0/wAK3aKAOF1nSrz7TYD7bL/x8D0/ut7Vu/2Td/8AP9N+n+FJrP8Ax9WH/XwP/QWreoAwv7Ju/wDn+m/T/Cj+ybv/AJ/pv0/wrdooA56XSbvym/06XofT/Csvw9pN3/Ydr/p03+rX0/wrsZv9U30NZXh7/kB2v/XNaAI/7Ju/+f6b9P8ACj+ybv8A5/pv0/wrdooAwv7Ju/8An+m/T/CsC00q7PiK8H22X/VRenq1d5XPWf8AyMd5/wBcov5tQBJ/ZN3/AM/036f4Uf2Td/8AP9N+n+FbtFAGF/ZN3/z/AE36f4Vh67pV2Etf9Nl/4+YvT1+ldzXC/EXWofDXhefxHcDMeng3LD2iBY/yoA/mM1fTf+Gxv+DnHS9La4e70b9m3wXJdO4YMsWqaquFVlxwwWRGHuAa/qQ/sm7/AOf6b9P8K/lX/wCDZAeKv2hvFv7Tf/BRnx3CBefFHxs1lZuRytrpwb5B7KrxKMHHy1/WLQBhf2Td/wDP9N+n+FNfSbvaf9Om6e3+Fb9Nf7h+lAHE+HNJuzo0J+3Tfxen94+1bf8AZN3/AM/036f4Uvhv/kCw/wDAv/QjW5QBhf2Td/8AP9N+n+FH9k3f/P8ATfp/hW7RQBwkWlXf/CSzD7bL/wAe6en941vf2Td/8/036f4UyL/kZ5v+vdP/AEI10FAGF/ZN3/z/AE36f4Uf2Td/8/036f4Vu0UAeJ/GPxNpPwy8AXnjjxTqU0VlYFJH2jczHcMKoAyWY4AHqa4v4G+FPHuupc/F74kXFxZ6rrigW1iW4srHO6OMjp5h+9IfXjtXo154s8GePzqnhuxKXx0W9gguwybolmJDhQTwzLwTjocV61Xo+29hQlQ9napK12/5bJpJdL7t9VZKyvfl5PaVFU5rxWyXfZtvy2S6a+VsL+ybv/n+m/T/AAo/sm7/AOf6b9P8K3aK846jBbSbvB/06b9P8KxPDuk3n9m/8fsv+sk9P7x9q7g9DWH4d/5Bv/bST/0I0AH9k3f/AD/Tfp/hR/ZN3/z/AE36f4Vu0UAYX9k3f/P9N+n+FYR0q8/4SRR9ul/49z6f3h7V3VYJ/wCRlH/Xuf8A0IUAL/ZN3/z/AE36f4Uf2Td/8/036f4Vu0UAYX9k3f8Az/Tfp/hWH4j0m7GkyH7dL1X09fpXc1heJP8AkEyfVf50AINJu8D/AE6b9P8ACl/sm7/5/pv0/wAK3B0FLQBhf2Td/wDP9N+n+FH9k3f/AD/Tfp/hW7RQBwfh3Sbw20+b6X/Xyenr9K3/AOybv/n+m/T/AApnh3/j2n/67yfzroKAML+ybv8A5/pv0/wo/sm7/wCf6b9P8K3aKAOEm0m7HiOAfbZf9S/p6it7+ybv/n+m/T/Cmz/8jJb/APXF/wCYrfoAwv7Ju/8An+m/T/Cj+ybv/n+m/T/Ct2igDifEGlXY0iY/bZuntWrDpN35K/6dL90en+FT+If+QPNj0/rWrB/qU/3RQBj/ANk3f/P9N+n+FH9k3f8Az/Tfp/hW7RQBhf2Td/8AP9N+n+FYOiaTd+Zej7bL/wAfDenoK7usDQ/9be/9fDfyFADv7Ju/+f6b9P8ACj+ybv8A5/pv0/wrdooAwv7Ju/8An+m/T/CvlLRPjpF4l/a81z9mWKK5iufDOjWurPel1KSrekgIExkFcdc819lV+PPwL1o6z/wWL+NdtnP9neFtAg+m4SNQB+tP9k3f/P8ATfp/hR/ZN3/z/Tfp/hW7RQBhf2Td/wDP9N+n+FZWuaTdjSLg/bpvuH0/wrsqydd/5BFx/uGgDPstJvDZxH7dL9wenp9KwLr4aaBfeJrfxndjzNUtEMcVyVHmIrdQDiu7sf8Ajzi/3B/KuZ+IHig+CvBOqeK1QSGwt3mCnoSo4Fc+K9kqbqV0nGPvaq9ra39UbUPaOahSestNPPS3zIfEPgiy8V6LceHvEEz3NndIUljcAhlP4V8+eBP2LvhD8PfFMfi7Q1uGuoCWhEr71jJ7gGvoT4c6tq2veCNM13XHR7m9gSdti7VHmDIAHtnFdrXDUy3A46VHGVqEZSik4uSTavr/AF5nVDG4rCqphqVVqLupJN2fQ4bTtHupbm+ia9l2mTB6dxXwxpPwA/aJ+F3iPXNI+G11Y3Xh/XpnllFycOBJkHt1AJ6V9b/E3xvN8PfA3iDxRaAG4hIWAN0Mj4Vf1Nei+D49Sj8LaeNYnNzdGBGllYYLOwyT+tceaZfhcwxUKM5SjUpLmUouzSleNut+azurdDpwOMr4PDyqRUXCb5WpK93HW/yuvvPgD4Z/sNa3oPiqzu/G2ti80fSpTc2lpGDgTNzk5yOD+dfY2u/BzQPEHjHSvHd5cTrqWjhlgkQhflfqreor12iryzhjLcBQeHoUvdbUtW27xty6v+Wyt2Jx2eY3F1VWq1NUmtNNHvou/XucLqek3Z1SxU3spBZ/T0+lbZ0a5ZdjXkpHpxUOuXVtZXtpd3kixRRF2d3OFUAdST0ryPxh8TLlvip4W8CeGbqPyb9ZL26kUhg0EYwAD7nvXp4zG0sNFSqPdxSXVuTUV+LOHDYWpWk1Dom79NFdnsY0e6UYW9lA9sf4Vj694G0zxTpr6R4jb7dayfeimVXU/gRWjq/jPwjoEYl1rU7W1BIA8yVVyTwMZNbVpqFjqCeZYzJMvqjBh+lbOVGpzUm0+60enmjNRqQtUSa7P/gnmOmfCrwp4K0m4i8JW8enqUb/AFEar29cV1mlaTeHTYD9tm+4PStrWpYoNIuZp2CIsbFmY4AGO5rlPB/j7wR4jjTS9B1e0vLmJAGjhlVmGPYHNRD6vQUaMeWN9lovuX+Q5KtVvUd5d3q/vZ0P9k3f/P8ATfp/hR/ZN3/z/Tfp/hW7RXSYnyj8Qv2RfAHxJ+INt8Qtfubg3EWzzY1ICTeX93dx2rzL9o79l/xF8ar+yXw1qKQNpkgjcTcARMoHy47gdq++8jOK5/S/+Qtf/wC+n8q+fxnC+WYmjiKM6KSrNOdtHJp3Tv6/r3PYw2fY6jUo1Y1Lummo31ST02OL+HPwusvht4NsfB2hXUkcFnGE4x8zdyfqa8n+JvwX8XeKPjP4P8f6NdD7NoxkFyznDhWzjaMc9a+rKK7sTlOGrYaGEcbQg4tJaW5GnH8kctHMK1OtLEJ3lJSTv15k0/zPB/jJ8BtE+NfhmPwx4nvrhYoplmVkIBBHXt3FdFZ+Cbbwlp2jeG9EuJIbWzIiiQY4VVxXpOoalp+k2rX2qTx20KDLSSsEUfUnArzaz+IHh7xfrtvY+HzLOkD7jceWwhbI6KxwG/Cn7DBUsY69oqvNJX+00r2Xohe1xNTDqldulFt26Jvc7JPDzRzG4S5cSN1YBQT+OM1j618PtF8SPDLr4F41s4kiMqKxRh0IJHFd5RXdOlCcXGcU12aOWM5RfNF2ZhDSLscC9lx+FQXWkXn2aT/TZvun09PpXNWHxHstQ+KF98M4IiZbCziunlB4/eEgLj14zUnxb8ZQfD/4baz4vnIH2K1dlz3cjC/qRXM8woKjUr83uw5uZ9uX4vusbLCVXUhS5fela3nzbfeeIXX7RHww8MauPCGo6zdyXFqoFxJDCZYoSezsoIFdz4/+Ffg39oLwHFpep6lLd6ZcMlxDLAw5I6EH8a8x/Yz+HltpXweXxJrsCy33iOV72cyKGJWQ/KvPYCvpjwd4G0HwJBdWXh1WhtrmZp/JzlI2bqEH8IzzgV4OWPGZlhIzzCEHRrRbcLNOKeyerUrrfSNmetjlhsFiHHBykqlN25rqza3a0Vtdt7oxfAvwx0n4deF7Xwj4WnlgsrRdqLwSSepJ7kmuu/sm7/5/pv0/wrdor6ajRhShGlTjaKVklsktkeHUqSqTc5u7erfdnnumaFJB4gvlhupEBWMnaAMnHsK47x5+zz8NfiZKtx41slvJl6SkBZP++hzXqNj/AMjDe/7kddFWeJwlDEU/ZV6alHs0mvuZdHEVaM/aUpuMu6bTPnnwH+zD8J/hrqf9s+D7H7Nd9BM3zuv0J6fhXtP9k3f/AD/Tfp/hW7RSwmCw+Fh7LDU1CPaKSX4DxGJrV589eblLu22/xOF1zSrwC1xey/8AHwvp6H2rd/sm7/5/pv0/wpNd6Wn/AF8L/I1vV0mBhf2Td/8AP9N+n+FH9k3f/P8ATfp/hW7RQBgSaTeeW3+nTdD6f4VjeG9JuzosH+my/d9q7WT/AFbfQ1i+Gv8AkCwf7tAB/ZN3/wA/036f4Uf2Td/8/wBN+n+FbtFAGF/ZN3/z/Tfp/hXPW+lXf/CS3I+2y/6mP09/au+rnbb/AJGa5/65R/1oAl/sm7/5/pv0/wAKP7Ju/wDn+m/T/Ct2igDC/sm7/wCf6b9P8KxNd0e6e2iR72Uq0yAg45GfpXcVia7/AMe8P/XZP50Afxuf8EE4779nr/gsH+2N+xQt0baw/tX+37KGNQo5mdWI9gjxgV/ZD/ZN3/z/AE36f4V/HdfRW37L/wDwdyJcySPbWXxj8IcfLtSS4EKnGeh5t2z71/ZdQBhf2Td/8/036f4Uf2Td/wDP9N+n+FbtFAHB+GtJvP7JX/Tpvvv6f3j7Vv8A9k3f/P8ATfp/hTfDP/IJX/fk/wDQjW/QBhf2Td/8/wBN+n+FH9k3f/P9N+n+FbtFAHCnSrv/AISbH22X/j2Hp/ePtW7/AGTd/wDP9N+n+FNP/Iz/APbsP/QjW/QBhf2Td/8AP9N+n+FH9k3f/P8ATfp/hW7RQBwviTSrsaWT9tl/1kXp/fFbg0m7x/x/Tfp/hSeJf+QWf+ukX/oYreHQUAYf9k3f/P8ATfp/hR/ZN3/z/Tfp/hW7RQBh/wBk3f8Az/Tfp/hWFoGk3htJP9Nm/wBfL6f3j7V3NYfh/wD485P+u8v/AKEaAE/sm7/5/pv0/wAKP7Ju/wDn+m/T/Ct2igDC/sm7/wCf6b9P8KxZdKu/+EhhH22X/UP6f3h7V29Ycv8AyMUP/XB//QhQAn9k3f8Az/Tfp/hR/ZN3/wA/036f4Vu0UAYX9k3f/P8ATfp/hWH4l0m7GhXP+mzfd9vUe1dzWH4l/wCQFc/7v9RQA0aTd4H+nTfp/hS/2Td/8/036f4VuDoKWgDC/sm7/wCf6b9P8KP7Ju/+f6b9P8K3aKAOF0LSrwrd/wCmy/8AH1L6e3tW7/ZN3/z/AE36f4Umg9Lz/r6l/pW9QBhf2Td/8/036f4Vbs7Ge2lMkty8wIxhsY+taVFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWXrmjaf4i0W70DVk8y1voXgmXOMpIpVhn6GtSsqSx1B5GZL2RASSAEQ4HpytTOClFxkrpjjJxaknqit4W8N6X4P8N2HhTRFZbPToI7aEOxZgkYCjJPJOB1qbX/+QPP9B/MUn9n6l/z/AMn/AHxH/wDE1ka9p+pf2RPm/k+6P4E9R/s0qdOMIqEFZLRLskOc3KTlJ3bNzWND0XxFYvpmv2cN9bSDDRXEayIfqrAivnq8/ZR+GVtctqHgKfUvCNyxzv0a7e3Qn3iO6Mj2219A/wBn6l/z/wAn/fCf/E0f2fqX/P8Ayf8AfEf/AMTXHjMqweLaeIpRk1s2tV6PdfJnThsfiMPdUajSe6vo/VbP5o+dj8Jv2gdHG3w18S5LhF+6mp6dDOfxdNhP5Vk2Okfth2T3K2GseF7/ABMQxuLa4hJO0f8APNiBX0//AGfqX/P/ACf98J/8TWRpen6l5t5/p8n/AB8H+BP7q/7NcLyCiv4dWrH0qzf4Sk0dX9r1X8dOD/7hwX5JH5S/8FHR8fv+GNfGHiD40x6Pa+GvC39n+Jry70IzvfxDQL231FGiSQbW+e3UOCR8hbHNfbEHiD9sy5iSaDRfCmyRQyt9quSMHkH7ta37Wnw0vvih+yv8SvhtLeSyDX/C2r6eFWNC2bm1kjGBt65PHvVL9jnxdffFT9kn4X/EmO/l/wCJ74U0a+bcqM26e0iZsnHXJOfep/sKXTGVv/Ao/wDyI/7Uj1w9P7n/APJGbd6T+19rl9aRanq/hvQg7ttazt5rqRflOf8AWlV6dK1Yv2W9I8Rzpf8Axm8Qap4ylU7vIupfIsgfa3h2r+ZNe6ahp+o/2lYf6fJ/rH/gT+43+zWz/Z+pf8/8n/fEf/xNUuHcJL/eXKr5VJylH/wG/J/5KL+2cRH+Co0/8MUn/wCBfF+JJouh6N4c0yLRvD9pDZWkA2xwwII41HsqgAVduv8Aj2k/3T/Ks7+z9S/5/wCT/vhP/iagudP1IW8h+3yfdP8AAnp/u17cIRjFRirJdDy5Scm5Sd2XdG/5BFr/ANck/kK0q5bR9P1H+ybX/T5P9Un8Ceg/2a0P7P1L/n/k/wC+I/8A4mqEbNZFv/yG7r/rnF/NqT+z9S/5/wCT/viP/wCJrIt9P1L+2rr/AE+T/VxfwJ/tf7NAHX0Vj/2fqX/P/J/3wn/xNH9n6l/z/wAn/fCf/E0AJrf/AB7Rf9fEP/oYrZrj9a0/URbRZv5P9fD/AAR/3x/s1r/2fqX/AEEJP++I/wD4mgDZorH/ALP1L/n/AJP++E/+Jo/s/Uv+f+T/AL4T/wCJoAND/wCPE/8AXWX/ANDatiuP0PT9R+wnF/J/rZf4E/vn/ZrY/s/Uv+f+T/vhP/iaANiseb/kPW//AFwl/mlH9n6l/wA/8n/fEf8A8TWPNp+pf29b/wCnyf6iX+BPVP8AZoA7Cisf+z9S/wCf+T/viP8A+Jo/s/Uv+f8Ak/74j/8AiaAJNc/5A11/1yf+VaSfcH0rldb0/Uv7Guv9Pk/1T/wJ6H/ZrSTT9S2D/T5On9xP/iaANqisb+z9S/5/5P8AviP/AOJpf7P1L/n/AJP++E/+JoANN/4/r7/rqv8A6AtbFcfp2n6l9uvv9Pk/1q/wJ/cX/ZrY/s/Uv+f+T/vhP/iaANisfVP+Pix/6+P/AGRqP7P1L/n/AJP++E/+JrI1TT9RFxY5v5P+Pj+4n9xv9mgDr6Kx/wCz9S/5/wCT/viP/wCJo/s/Uv8An/k/74T/AOJoA+Lv2Lht8S/GqMdB8Q9TP/fUNua+09B/5Atp/wBck/lXwz+xtaXr+LfjXGl26FfiBf5IVDnNvb88r/Kvs7QtP1L+xbT/AE+T/VJ/Anp/u17/ABP/AMjGfpD/ANIieXk3+6R9Zf8ApTOuorH/ALP1L/n/AJP++E/+JpP7P1L/AJ/5P++I/wD4mvAPUM/VNY0nw/dXmt69dRWVla2iyTXE7iOKNFLEszMQAB3JIrxO1+M3jP4oAp8B9EM2ntwuv6yr22nsP71vDgT3I9GAjibtIa5b/hUWv/F74oX3iP4yvI2iaNKqaHokgja3kMLEfbrpACsrs4JgRsrEgDY3nK/Uo07UQMC/kx/uR/8AxNeq/q2GilZVKnX+SPlprJrrqop6WktTiXtqzevLD/yZ/wCS7det0ee6B8LJF1K38SfEHVrjxJqdq3mQGZVhtLeTGN0Nug2qR2dzJIOz81u/E7xn4S+H3gq78XeONSt9J0uyMck91dSCKJFDg8k/oBye1fLnxr/a10zwH4q/4U78Io7r4gfEWdSYtD00R7Lb/ppe3G3y7aMd9x3HsO9efaP+x54x+I9/afFv9s/Xk8Wa/ayxTWOh2yBdB0pi44jgYf6RKM4MsoOew716UcsbhHGZvU9nTa92KS55r+5DRRi/53aO/LztWOV4tKToYKPPLq2/dT/vS1bf91Xfey1OfuPiV8YP2u7uOD9lnw1a+FPCaS5PjjxBYKZ5cH/WaXZuAzHPKzS7V9Bmvqz4D/sp/Cz4BzXXiHRkuNa8UapzqXiLVpPtWp3bHrulb7qekabVHp3r3uPS76GNYob10RAAqiOMAAdAPlp/9n6l/wA/8n/fEf8A8TWGOz+pUpPCYSPsqHWKbcpf457y720gnqoI0w+WxjNV6756ndqyX+GOy9dZd2zD8c+CLTx5pKaVd3+o6b5cgkWbTbuS0mBAIxujIyCDyDkV5Z4E+AnhXw/f/wBtSav4h1G5trqR0N7rN5KmVY43R+aI2HqGUg969v8A7P1L/n/k/wC+E/8Aiax9G0/UvJn/ANPkH+kS/wACf3j/ALNeVTx+Ip03Sp1Go9kzsnhqUp88ops7CvKviL8FvAHxVnguPGcV3K1shRPs1/dWg2scnIt5Yw31IJrvf7P1L/n/AJP++E/+Jo/s/Uv+f+T/AL4j/wDiayoYirQmqlGbjJdU2n96NKlKFSPJUimuzV0eH+FP2bvgh8PPF+n+IfC3h+GPUIVlMd3O8l1OhwBlXmd2BwSMgivoiuPu9P1H+2LPN/J92X+BPQf7NbH9n6l/z/yf98J/8TVYnFV8RLnr1HOXeTbf4k0qNOkuWnFJeSsYXjLwFo3jiOAapPfW0lqWMUljeT2bjfjOTC6Bug4YEDtXAQfA7wxpGdWutT1zU5bbMsQvtWupow6jIzH5gRsHsykV63/Z+pf8/wDJ/wB8R/8AxNUtT0/Uv7NuP9Pk/wBU/wDAnof9mqp47EQh7OFRqPa4pYalKXPKKubll/x5Q/7i/wAqj1Ox/tPT5tP86W385SvmQtskXPdTg4PvWXZafqX2OH/T5PuL/Anp/u1a/s/Uv+f+T/vhP/ia5k2ndGrV1ZmF4Y8D2fhe6kvY7/Ub6WRPLJvbuSdQM54RjsB9woNblj/yFb7/AHo//QRS/wBn6l/z/wAn/fEf/wATWPY6fqP9qX3+nyfej/gT+6P9mrqVZ1Jc03dijBRVorQ7CviD4QlfDX7b3xe8MMCo17TvD+vRZ6ErFLZyEf8AflB+FfY/9n6l/wA/8n/fEf8A8TXw94rs77wv/wAFCvCF+LtlHivwZqunF9qZaTTbmC4UYxj7srfgDXtZH78cXQ/npS/8kcav5QZ5+Y+66FT+Wa/8mTh/7cfZnjPR7HxBpkWjal5nkXE6K/kyvA+OT8rxsrqeOqsK5nSPgt8NdG1GPWI9Pa7u4SGjmv7ia9dGHQqbh5CpHqMGui1fT9R3Wmb+T/j4T+BPQ/7NbP8AZ+pf8/8AJ/3wn/xNeRTxVanFwpzaT3SbSZ3Sowk1KUU36HF+LPh1f+JNQfU9N8T6zokjoqbbGWIxjb3Ec8Mqgnucc15Rc/suWGreILPxT4o8Y+INVv8ATiTazzNZRyw5BB2SQ2kbrkEg7WGQTX0X/Z+pf8/8n/fCf/E1BdQ3FjbSXt9qbQwwqXkkdY1VVUZJJK4AA5JPSuqhmmKpLlpSt02je21r2v8AiYVcHRm7zXnu7fdexwfjPxxoXwv+El9478T6tBo2n6TAZ7i9ulMiJGjc5UMpZmHyqAcliMAng/IngT4afEX9rrxLonx9+Pgu/D3hfSL6LVfCnhONvKkzEcw3mpnkvK33khBCxA4OSWrkvAWmat+3F49tPGeqTSN8IPBt2X0iKVFC+IdVgZh9rZCMNaW54hB4kkG7oMV+lf8AZ+pf8/8AJ/3xH/8AE17NWo8mpewh/vcl7z60k18C7Ta+N7w+BWlznDCKx0/aS/grZdJtfaf91fZWz+J3XKbFY3/Mw/8Abv8A+zUv9n6l/wA/8n/fEf8A8TWN/Z+o/wDCQf8AH/J/x7/3E/vf7tfKnsnY0Vj/ANn6l/z/AMn/AHxH/wDE0f2fqX/P/J/3wn/xNAC69/yCZvoP5iteuQ13T9S/smf/AE+ToP4E9R/s1r/2fqX/AD/yf98R/wDxNAGxRWP/AGfqX/P/ACf98J/8TR/Z+pf8/wDJ/wB8R/8AxNADNF+/e/8AXy/8hW3XG6Np+o773/T5P+Pl/wCBPQf7NbX9n6l/z/yf98R//E0AbFZF9/yE7L/ek/8AQTSf2fqX/P8Ayf8AfCf/ABNZF9p+pf2nZf6fJ96T+BP7p/2aAOvorH/s/Uv+f+T/AL4T/wCJo/s/Uv8An/k/74j/APiaANC7/wCPWX/cb+VVtH/5BNr/ANcU/wDQRVC60/Uvssub+T7jfwJ6f7tVtI0/Uv7Jtf8AT5P9Sn8Ef90f7NAHU18LftBfsJeEPjz48n8bReJtZ8LprlpHp3iW00iVYotas4DmNJsg7WUZTevJQ7elfaP9n6l/z/yf98J/8TR/Z+pf8/8AJ/3wn/xNehluaYrAVvb4Opyzta+m3o7rdJrs0mrNJnNi8HRxMPZ143j/AF2+7002MDwX4Y0HwTaR+DvCtqllpmlWdraWlvGMLFDErKij6AD3rt64+10/Uf7au/8AT5PuQ/wJ/tf7NbH9n6l/z/yf98J/8TXDOcpycpO7erZ0RiopJKyRsVk6v/q4P+u8X/oQpv8AZ+pf8/8AJ/3wn/xNZOr6fqXlwf6fJ/r4v4E/vD/ZqRnXUVj/ANn6l/z/AMn/AHxH/wDE0f2fqX/P/J/3wn/xNAGxWPoX/IP/AO2sv/obUf2fqX/P/J/3xH/8TWPoWn6l/Z//AB/yf62X+BP77f7NAHYUVj/2fqX/AD/yf98R/wDxNH9n6l/z/wAn/fCf/E0ALL/yHYf+uEn/AKEla9chLp+pf27D/p8n+ok/gT+8n+zWv/Z+pf8AP/J/3wn/AMTQBsVka/8A8gW6/wCubfypP7P1L/n/AJP++E/+JrI17T9SGi3Wb+Q/u2/gT0/3aAOtX7o+lfnR4YSbxV/wVg8X6moR7fwb8L9FsAwPzJPrmp307qfTKWMRFff66fqW0f6fJ0/uJ/8AE1+dX7Iumz+Kf2uv2mPinb3gYHxJonhdJkVSxTRNJgkZGBXjZNey9PWgD9L6yNN/4+77/rsP/QFpP7P1L/n/AJP++I//AImsvSbG/W/vGe9kYCcEqUTkbF44WgDrKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/V/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntN/wCQ5qX1i/8AQa/kq/4IcXUOm/8ABcr/AIKA+HXXy5J/EENyqHjKi6n5x7+YD+Nf1q6b/wAhzUvrF/6DX8lf/BOK0bwN/wAHRf7XXg+3YCDWfDFtqjjoTKz2Tj9JWzQB/XrRRRQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/ACA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/ACMd5/1yi/m1AHQ0UUUAFfmX/wAFjvjXH+z1/wAEzvjF8VvMMc2n+HLyO3Ktsbz7hDFHtPY7nGK/TSv5OP8Ag8L/AGgYvhf/AMEybL4R2kxS++IXiG0slRTy0Fpm4kyOpX5FH1IoA+yf+DYnw1F4c/4I1/DGRVAl1GTUr2V8YLvLdScn1OABn2r9/q/K7/giH8Orr4W/8EnPgR4Vv4vJuH8K2t9IuMHN9m4GR67ZBmv1RoAKa/3D9KdTX+4fpQBi+G/+QLD/AMC/9CNblYfhv/kCw/8AAv8A0I1uUAFFFFAHPxf8jPN/17p/6Ea6Cufi/wCRnm/690/9CNdBQAVyPj3T/FOreDdR0zwVdx2Oq3EDx21xKu9IpGGAxUEZx1pdX8c+GdD8Sab4Qv7gDUtWL/ZoFG52WMZZiB0UdyeMkDvXW1tFTpShUcfNXWjs/PdXVjN8s1KCfk7dP8jxvwZ8N9H+FHw3sPBekM03kSI89xJzJcTyPuklc92diSfyr2SsDxH/AMeC/wDXaP8A9CFb9KtWnVqSq1HeUndvzY6dOMIqEFZIKKKKyLEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8ADv8Ax7T/APXeT+ddBXP+Hf8Aj2n/AOu8n866CgAooooAwJ/+Rkt/+uL/AMxW/WBP/wAjJb/9cX/mK36ACiiigDG8Qf8AIIm+g/nWrD/qV+grK8QDOkTD2/rWrD/qU+goAkooooAKwND/ANbe/wDXw38hW/WBof8Arb3/AK+G/kKAN+iiigAr8Zf2a9Pa2/4LD/tBXT/8ttC8OkfTy5K/Zqvz6+HHwP8AGnhL/god8Rfjff2qpoPirQtJtbScOCzz2YcSAr1GMjnvQB+gtFFFABWTrv8AyCLj/cNa1ZOu/wDIIuP9w0AebfE34xeD/g14Sh17xXIxMoWOCCIbpZnI6KK+U/iB+1J4R+JHwh8U+G57K70LVhp7yR2t8hRpU45QkDP5VB8RoYvFf7Zng/wzrAEtpYWH2lIn5UvjPSuS/b50601u+tVsgivpGnXFzcSLgFQxCohP+0egr8t4jzvMJYfH1qE4qlSk6XJy3crxXNLmvpbmuklay1PvMmyvBxrYSlVi3Umvac19I2fuq3W9tdeuh9k+HfH3hr4dfAfSPGHiy4FvZ22nQFj1LHaMBR3Jrw+L9tOU241648D6ymiHkXoTI2f39uOn414f8fXTxF8KfhP4QunZbLU5IEm2nGQFA617L4l+Ff7VmkaDP8PvA+uaff6DLG1vE95Hi4jhYY2kgHOB3orZ1mtSbo4HmVOlCC9yEZtzlBSXMpNWjbT3db7hTyvAQgquKs51JT+KUopRjKzs0neXqeB/tL/H3X/EumxxeHdMa58J6nPazwX0Y+aWVSCY/Y9sYr2Gb9uWfRdIEk/gPWIo7eMBpJVKoABjJJTgV5d8YvADfCL4T+Cfh083ntb65CZZAOGk4Jx7Z6V9F/tw3d5Yfs63S6euFnkgjlZR0jPXPtXm1KmcUZ5hjni3CpTp05SjyRlq4uXIm9lFtpb+dzthDLqscHhVQUoTnOMXzSWnMlzPu2vT5HC+HP2sPjd4s0C4+IuieB1fw5aZaSRpsStGv3imeuPpXbeNPjTrPxP1nwz8N/hRdnT38R2wv7m9HMkFsOqr/tHpmvI/C2hftQfEz4WaZ4D0WLStD8NXNqkTXcDl5XgI5x7kdelRxaVo3wM/a18MaPfSeVpkmjLY28z8KZAMHJ6DJrWnmWZuhSderUdCo6UZznFQ1lLX2dkmotaXfdWZEsDgfa1PZU4KrBTcYxblpFac17pyvrZdndH1lN8CfBFvBFol6bq8F7FJBcSTzu7urDk8ng/SvhjSP2Y/BOu/tLat8NbS+1CHTtI06KVWWc+YrSH7obqF9q/Rv4mePvC/w5sbXxR4puBDaxsQNvzO7MMBVHcmvkLwN4z0Pwf+1j4l1Pxk76eviGztTp7zIwEgPIXODg89K9vifLspeIwVGrThpUXNsrRcZ2TfaUkrX3Z5eR43MVSxNWE5awdvOScb280n02Rj/Ev9mP4U/DTSraO1Fzq2ta3cLYWH22ZpFieTrJjPOwc15V+z18M7/RPilrvwk1jWb7SvEmmfvrO8glPlzR+8bEgjv9K+l/2ltei0j42fDV759lobxyWbhQzDArjNXmi1X9v/AE8aOQxtdN/0hk5H3e+K+czDK8BSzSM8PSUfZ1qdLlWl1UhdvTXmu7qV9OXTqezg8di6mBlGtNy56U53etnCVktdLWVmra3Mb4j/ABG8X/GrXbD9nC3ma0vYXlOu3EOVBit/T0D9fxr2KT9jj4cwWGn638N3l8Oa1ZhHjvIGJ3EYzvUnDZ71wv7OGm/8JB8V/iR8Rr+3aOc3L2kRZcYVeuM+tfe+k/8AIMg/3BX03D+TUMzw9THZjFVJzk1FveMINxjZ7puzk2rNtnh5vmVXA1YYXBS5IxinJLZykryutmtbJPSyLFpHPFaxxXL+ZIqgM+MbmA5OPerFFFfoCVlY+RbvqeYeNPhjB4w1eHWo9Vv9MnijMR+xzGMOuc4I/rXQeH7aLR2u7aSZnS3CAyStliFXqxP866LUrpLHTri9kOFhjZyfZQTXgf7Ol3e+IPh62o63I1yb53cmQ5JRycA/hXnL2NLF8kIe/OLk3/hcVr63R2v2lTD885e7FpJet3+hy3xH8byr+0R4G8OWl5tsZoLm5cI+Ec4wM44I9K921H4ofD7S9YtvD93q9t9uu3EcUCOHkZj7Lkj8a/N34l/BLwBJ+1r4f8A2kU8Nhf2zzTpHO4IPJ+U5yo9ga++Ph/8As/8Awn+Gd1/aHhXSo47vGPtEpMsv/fTZNfKZHjM1r4vGRVOCiqtm3KTtaENIrlV9O7Wr27+9mmGy+lh8M3KTbp3SUUr3lLVu7t9z0/D5l8Ba/oPxv+M/iJfijfKqeH7s2+n6PM+yPav/AC1ZTjec19sX0FrbS6dDZIqRLJhQgwoGO2K+av2gvgR8AfEsx8a/EC7XQbzGDeRS+S749R/Efwr89PDnjnWvA3xUtLL9njV9T8Y20G8zW9yD5ZGD0JPQdc8V5zzypkFd0cdTjUdSb9+M71Gm9L02uZ8qdrRdklodqyuGb0va4SbgoR+GUbQTS1tPbV63et9z7p+Kv7TXjSHxpqPgH4LaVFqM+hxNPqV3ctiCIIMleO/9a9x+CPxfg+KXw00rxvq8cenT6gzRCIvw0iEg7M8nOMgV+an7Pvws8Y/GfTfEuu+I9e/sXQLi/kl1SGLiaV05Ks56IBX0d8A9PtPin8S18Q+HYTbeCvBaGy0iLoJZ+jyn1PvXLkPEGaYjF08VVu4V21CDtayl8SSV1GEE7uTvKTSt1N82yfA0cPOhCylSs5SV73t8Lb0blJ6JaRim7s6z9mDU28b/ABV+IXxDflZL5bKE/wDTOEcVW/4KBeIZNM+CaaHCcNqt5HEfdV5I/lXqPhL9nu5+HWqeIb3wBrs9jBrm+VbdkV0guHOfMXPP4V+ev7XHhf436PfeHdA+IHiSHWo7y6xabYRFskyBlgPwoz2tjcu4arYWvQk5z51KScXG85vX4ubXm008nYeVU8NjM7pV6VVKMeW0XdO0YeltLa6n6zfDOxh0f4daNYjCJDZxD0Awoq74X8d+E/Gk99b+GL2O8bTZjb3HlnISQc4z3/Cvz4i/Zj/aa+IGnW9n428d+RpxRQI7fd9zHTGR2r7Q+CPwT8NfA3wmfDXh93neZ/NuLiU5eWQ8ZP8ASvrcpzHMq9aFL6k6VCK1lNrmdlZKMYt282+h87mGCwVKnKf1lVKreiinZa6ttpfgey0UUV9WeAc7Y/8AIw3v+5HXRVztj/yMN7/uR10VABRRRQBha5/y6f8AXwv8jW7WFrn/AC6f9fC/yNbtABRRRQAyT/Vt9DWL4a/5AsH+7W1J/q2+hrF8Nf8AIFg/3aAN2iiigArnbb/kZbn/AK5R/wBa6Kudtv8AkZbn/rlH/WgDoqKKKACsTXf+PeH/AK7J/OtusTXf+PeH/rsn86AP48f+DmXRLv8AZ8/bO/ZK/wCCgukbov8AhHvFEGi30qEj9x56y4YjsUkkHvzX9imharb67otprdoQ0V3CkyEd1cAj+dfz2f8AB0n8DV+M3/BInxlq9tb+df8Agq/sNftXBwYjC5idgfZJWr9H/wDglD8aD+0H/wAE4/g38XJCDLq/hbT3mAbdtlSJVcE+oYEH3oA/QmiiigDA8M/8glf9+T/0I1v1geGf+QSv+/J/6Ea36ACiiigDAP8AyM//AG7D/wBCNb9YB/5Gf/t2H/oRrfoAKKKKAMDxL/yCz/10i/8AQxW8OgrB8S/8gs/9dIv/AEMVvDoKAFooooAKw/D/APx5yf8AXeX/ANCNblYfh/8A485P+u8v/oRoA3KKKKACsOX/AJGKH/rg/wD6EK3Kw5f+Rih/64P/AOhCgDcooooAKw/Ev/ICuf8Ad/qK3Kw/Ev8AyArn/d/qKANsdBS0g6CloAKKKKAMHQel5/19S/0rerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/wCQPP8AQfzFbFY+v/8AIHn+g/mKANiiiigArI0r/W3n/Xwf/QVrXrI0r/W3n/Xwf/QVoA1WVXUo4yCMEGvzi/4JRXB079jTTfhZcbFufh1rviLwdKiMXCLomqXVtCMnkk26RMfrX6P1+cv7GRh8FftM/tJfBYMf9G8XWHiuBGbJFv4j06BiQvQKbm1uQPVgxoA/QHUP+QnYf9dH/wDQGrZrG1D/AJCdh/10f/0Bq2aACoLr/j2k/wB0/wAqnqC6/wCPaT/dP8qAKmjf8gi1/wCuSfyFaVZujf8AIItf+uSfyFaVABWRb/8AIbuv+ucX82rXrIt/+Q3df9c4v5tQBr0UUUAY2t/8e0X/AF8Q/wDoYrZrH1s4tov+u8P/AKGK2KACiiigDH0P/jxP/XWX/wBDatisfQ/+PE/9dZf/AENq2KACseb/AJD1v/1wl/mlbFY83/Iet/8ArjL/ADSgDYooooAy9b/5A11/1yf+RrST7g+lZuuf8ga7/wCuT/yNaSfcH0oAdRRRQBj6b/x/X3/XVf8A0Ba2Kx9N/wCP6+/66r/6AtbFABWPqv8Ax8WP/Xx/7I1bFY+q/wDHxY/9fH/sjUAbFFFFAHwv+x0pi8ffHG3Ixjx7dN/33aWzV9paD/yBbT/rkn8q+M/2YS9j+0H8edCYbQviOwvAP+vrToOfx2V7Lqfxht9H8RaP8J/B9i2ueJLu2iuZ4Efy4bCzPH2i6lw3lqxBESAF5WGFGAzD6XPcPUr5i1TV/wB3Tl5Jeyg7t7Ja7s8nLqsKeFXM/tSXz55I9V8YeM/DXgLQZfEniu6W1tYiFycszu3CoijLO7HhUUFmPAFZvgHUvGOuaXLr3i+0Gmfa5N9rYnBmt7fACiZgSDK33mC8JnbkkEnbv/CvhzVNdsvEupWcVxf6csi2s0i7mh83G8pnhSQACRzjjODXxv8AFX9sSabxnP8AA/8AZZ0cePvHMfyXbRvt0nSM8b765GQCP+eKZkbGODiuLL8vqYyPscLTvLeUm0owiu7ekV3lJ66RVvtb4nExoP2laVo7JK7cn6LVvsl6vy95+L/xt+GHwD0258c/FXVotKsVhRIg/wA01xKWbEUMa5eWRjwFUE/hXyMsX7Wn7Y48yd7v4N/Di4PyomP+En1KE+p5SxRx2G6XHsa734MfsiQaJ8R/+Fz/ALQ+rn4gfEIQq8d/cx7LLTQxb91YW3KwqP75zI3XIyRX3VXoPG4LLPdwKVWt1qyXuxf/AE7hLf8AxzV/5YRauc/sMRi9cReFP+RPV/4pL/0mL9ZPY8g+DHwG+E/7P3hUeEPhPo0Ol2zEPPIvz3FzJ3knlbLyue7MT7cV6Nr/APyDG/66Rf8Aoa1s1j69/wAgxv8Afi/9DWvncRiauIqyrV5uU5att3bfm2enSpQpQVOnFKK2S0SNiiiisTQKx9F/1U//AF8S/wDoRrYrH0X/AFU//XxL/wChGgDYooooAx7v/kMWf+7L/IVsVj3f/IYs/wDdl/kK2KACqOp/8g24/wCuT/yNXqo6n/yDbj/rk/8AI0ASWX/HlD/uL/KrVVrL/jzhx/cX+VWaACsaw/5Ct9/vR/8AoIrZrGsf+Qrff70f/oIoA2a+If2nV/sb9oL4FeNQQvleIr7SmJ6ldR0+dQPxaMfjivt6vhf9va4OheB/Avj0KCPD3jrw/dOx6Kk1x9mY/T99zXvcMrmzGnSX21OH/gcJQ/8Abjzc20wsp/yuMv8AwGSl+h9n6x960/6+E/ka2axtY+9af9fCfyNeNfHT9o7wD8B7O0tdaFxq3iHVyY9J0HTU8/UdQlHaKIdFH8cjYRByT2rycJhK2JqxoYeDlN7Jf1st29ktXodtavTowdSpK0Uey+IvEegeEdCu/E/im9h07TrGNpri5uXEcUUa8lmZiAAPevzsu5/Gf/BQTUEsbBLrw/8ABCGQNNO4a3vfFWw5CRg4eLTyfvMcNMOBhTkdfof7OfxG/aH160+JH7ZTxf2fayLcaX4Gs5DJpto68pJfScfbLgehHkoegbrX3zDDDbQpb26COOMBVVRgADgAAdAK9+NfD5Trh5Kpiv51rCn/AIH9ua/n+GO8OZ8s15sqdXG6VU40e32pf4v5Y/3d39qyvF854L0rTND8K2Oi6Lbx2lnaRCGCCFQkccafKqqo4AAGABXT1j6B/wAgiH/gX8zWxXzLbbbb1PWSSVkFY3/Mw/8Abv8A+zVs1jf8zD/27/8As1IZs0UUUAZGvf8AIJm+g/mK16yNe/5BM30H8xWvQAUUUUAYmi/fvf8Ar5f+QrbrE0X797/18v8AyFbdABWRff8AITsv96T/ANBNa9ZF9/yFLL/ek/8AQTQBr0UUUAV7v/j1l/3G/lVbR/8AkE2v/XFP/QRVm7/49Zf9xv5VW0f/AJBNr/1xT/0EUAaNFFFAGNa/8hu8/wCucP8A7NWzWNaf8hu8/wCucP8A7NWzQAVk6v8A6uD/AK7xf+hCtasnV/8AVwf9d4v/AEIUAa1FFFABWPoX/IP/AO2sv/obVsVj6F/yD/8AtrL/AOhtQBsUUUUAZEv/ACHYf+uEn/oSVr1kS/8AIdh/64Sf+hJWvQAVka//AMgW6/65t/KtesjX/wDkC3X/AFzb+VAGsv3RX5zf8EwDL4h+AXiT4yThw3xD8eeLfEMfmABjbPqc9tanI6g2tvEVP90ivqb9pz4ow/BD9mzx98ZJ38seFfDmp6sGwCQ1pbPKMA4BOVGB3NcR+wt8Mpfg1+xl8LPhhdReTc6N4W0uC5XaV/0n7OjTHB5BMhYkepoA+q6yNN/4+77/AK7D/wBAWtesjTf+Pu+/67D/ANAWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA/9b+/iiiigArnNZ1DUYYriGCzaVAhwwYAHiujqpf/wDHjN/1zb+VAHK6JqurDRrQDT2/1Kfxj+6K0/7W1f8A6B7/APfYq9of/IFtP+uKfyFalAHO/wBrav8A9A9/++xR/a2r/wDQPf8A77FdFRQB5/p2qasNb1EjT35MX8Y/u1/JN8Pr6++F3/B314o063tmH/Ce/DvzZEDDlobVHBP/AIDgV/Xxpn/Id1L6xf8AoNfEd7/wTh/Z8v8A/gobZf8ABSyeO7/4WDYeH38PRATEWvkuChkMfd/LZk9MHPWgD7b/ALW1f/oHv/32KP7W1f8A6B7/APfYroqKAOA1nVdX+02B/s9/+Pgfxj+61bv9rav/ANA9/wDvsVJrP/H1Yf8AXwP/AEFq3qAOd/tbV/8AoHv/AN9ij+1tX/6B7/8AfYroqKAOal1XVzE3/Evfof4xWV4e1XVxolqP7Pf/AFa/xiu2m/1TfQ1leHv+QHa/9c1oArf2tq//AED3/wC+xR/a2r/9A9/++xXRUUAc7/a2r/8AQPf/AL7FYNrqerDxDeEWDf6qL+MerV6BXPWf/Ix3n/XKL+bUAJ/a2r/9A9/++xR/a2r/APQPf/vsV0VFAHO/2tq//QPf/vsV/ni/8HafxG1X9on/AIKPfAn9jLS3ZTp9vE7wKQ5S51m5SIEgd9kQ61/orXE8VrA9zOQqRqWYnoAOTX+XP4a+Id9/wUm/4OotG8aWjG/0a28cpDYkYYDTfDv8Q/2SYmf8aAP9MX4Z6HdfDv4ceH/AOnaaUg0TTbWwjCMoULbxLGMDsPlrt/7W1f8A6B7/APfYroqKAOd/tbV/+ge//fYpr6tq+0/8S9+n98V0lNf7h+lAHCeHdV1YaNCBp7/xfxj+8a2/7W1f/oHv/wB9ipvDf/IFh/4F/wChGtygDnf7W1f/AKB7/wDfYo/tbV/+ge//AH2K6KigDz+LVNW/4SSVv7Pf/j3X+Mf3jR4p8WeItA8N3+t2GiTX89pA8sdvE675WUEhVz3J4raa4gtfEFzc3LiOOO1VmZjgAAnJJryb4H/HzS/j1ca5qng6wmHh/S7trK21OQ4jvpYsiUxLjJjU8Bs4Y9K68PhasoSxChenC3N0Wr0V+77LW13smY1K0FJUnK0pXt8uvy+48j/Zi8FfFKEX3xw+N9iz+MPEvP2feCmm2QOY7aPrjHWQj7zfSvrn+1tX/wCge/8A32K6KiqzDHTxdeVeaSvsloopaKKXZLRfjqThcPGhTVOLv5vdvq35s4HxDqmrNYLmwf8A1sf8Y/vCtz+1dX/6B7/99ipPEZxYJ/12j/8AQhW9XEdBzv8Aa2r/APQPf/vsUf2tq/8A0D3/AO+xXRUUAc4dV1fB/wCJe/8A32KxPD2qauNN/wCQe3+sk/jH9413p6GsPw7/AMg3/tpJ/wChGgCL+1tX/wCge/8A32KP7W1f/oHv/wB9iuiooA53+1tX/wCge/8A32Kwjqmrf8JGp/s9/wDj3P8AGP7wrv6wT/yMo/69z/6EKAI/7W1f/oHv/wB9ij+1tX/6B7/99iuiooA53+1tX/6B7/8AfYrE8Rarqx0mTOnv1X+Metd7WF4k/wCQTJ9V/nQBCNV1fH/IPf8A77FL/a2r/wDQPf8A77FdCOgpaAOd/tbV/wDoHv8A99ij+1dX/wCge/8A32K6KigDz7w9quri2m/4l7/6+T+Metb/APa2r/8AQPf/AL7FO8O/8e0//XeT+ddBQBzv9rav/wBA9/8AvsUf2tq//QPf/vsV0VFAHn8+qasfEcB/s9v9S/8AGPUVvf2tq/8A0D3/AO+xT5/+Rkt/+uL/AMxW/QBzv9rav/0D3/77FH9rav8A9A9/++xXRUUAcLr+qas2kzA6e/T++K1ItV1cRKP7PfoP4xVzxCM6RN9B/OtaH/Up9BQBg/2tq/8A0D3/AO+xR/a2r/8AQPf/AL7FdFRQBzv9rav/ANA9/wDvsVhaLqmrCW9I09v9e38Y9BXf1gaH/rb3/r4b+QoAZ/a2r/8AQPf/AL7FH9rav/0D3/77FdFRQBzv9rav/wBA9/8AvsVw2ueOrPSvGWjaFqax297qImFrBJMqyTFFy2xepwOTivW6/P34w2nnf8FBfhBPcgNDHpGu7Nw4Evljke+KAPuD+1tX/wCge/8A32KP7W1f/oHv/wB9iuiooA53+1tX/wCge/8A32Kytc1XVzpFx/xL3+4f4xXb1k67/wAgi4/3DQB8KftHfD/4jP4i0D46fDXTnk1XQlAnhDBjLD1wB344r5+8dax4s/ar1H/hE/BHhm80TzFa61eWdCnmzRrhE3MBwD0FfrxY/wDHnF/uD+VTJDDESYkCk9cDGa+KzTg2GLr1JRruFKq06kEk+ZpWvF7xclpK26Pp8BxLLD0oKVJSqU01CV3onrZraVnqr7M/NHW/hD8Sfib+zZomhTaRNpniPwu+628x1G9ovTngEdKNF/bY8feFNCTwv478F6hJr1qnk70Rtksg4BOFPXvg1+mVV3tLWRxJJGjMOhKgmnPhSvRnGtl2MlTqckYSbjGSmoq0W1olJLS66CjxBSqRlTxmHU4czlFXcXFy1aT10fZn5q2Hwf8Ai58evAt7rvxGln0/Wri/jvbCPjy7QIPlGzryOvevr2Lwjr3iL4Y/8K/+KFv/AGw88Hk3EyhYw3oQOxFes6V/x+3o/wCmo/lW5Xq4DhzC4Xmk7znKPLNybfPvrJbN6vpotFoefi85xFeyVoxjLmikkuXyT3touu+u5+aWjfsgfFHw7M2keH/GOp2WihiY4ImAZQe2c4/SvU9U/ZR8Ma74Ibwprw1K+uhL50eoT3G+eOTGPlJ4A9R0r7aornocG5RShKmqF4tWtKUpJLsk20vlaxvV4kzGpJTdWzTvdJJ37tpK/wAz87fCH7KOoeHvGelap441S/8AElrYuWtbW6ceWjKMgn1xX27dxC/mjuL3RVleH7jPtJXHoT0rX1L/AJCtj/vP/Kt6vSy3JMFgKcqWFp2Td3e7bfS7bb06a6dDixuaYrFzU687taLZJfJWWvXufPnxm+FGkfG7w4mgeJtPmieB/Mt7iJwJIn9Qa4j4G/s8aZ8E9TvPEMCXeraneKI2ubp1LBB2FfXVFKpkWAqYyOYTop1ltLr29LpbPdBDNcXDDPBxqP2b3X9fkcPd3N5bafdG20vyvMVmbaVGTjqfep9K1XVxpsH/ABL2+4P4xXRap/yDZ/8Arm38qbpAxpkH+4K9VJLRHA23uZ39rav/ANA9/wDvsUf2tq//AED3/wC+xXRUUxHinxi1XxW3ws1+PRdMlkunspUjVCGYlhjgd+tYPwKj17w/4A0/SLrTJI5oLWBZFLAENs5yPWvomsDTP+Qrf/7yfyrh+or659c5teTkt03vf12Or60/q31a2nNzX+VrHwr8c/hx8dZ/jhpXxg+Femw3E1vbfZ9tw42xt0yRxkV9W/Dl/ibpfhSC3+IQGoaqSXmki2og3c7QB2HSvXKK4sDkVHC4ytjKc5XqO7i37qbtdpd3Zb3t0OrFZrUxGHpYecY+4rJ296yvZN9lfpbzPzl+Lv7Jfjf4z/FGfxb4p1eZdIbAhtUwXiQfwgk7R9cZr6A8A/Cbwn8HbKy0fwZoJiMsmJpmcNLLx/Ex5NfTVYGsf8fth/11/pUYLhnLcLiqmOpUv30225NuT13s23ZelisTneNr0IYWpU/dxSSirJad7Wv8z84PFH7Inxaj1zVrP4ca3Jpnh7XZjLd2hbkbjkgYOD7V9w/DXwlb/C7wbZeC/DmlslvaJjO4Zdj1Y+5PNeu0UZXwzl+X154jCwalLTVt2Td2op/Cm9WkGOzvF4ylGjXleK7JK7ta7tu7aXZzv9rav/0D3/77Ffm5+3Te3tx408CC4tmiIuwQCwOfnFfpvqdtcXmm3FpaSmCWWNlSQdUYjAP4GvxH+K3iX4qeKvin4X+GnxItHfVdD1AItyFI+0xFwQ/oeB1FfN+I+OVPLlhHB3qyik0rq6nF2fZtXa72Z7fBeEc8a8QpK0FK662cZaryT39T9jdA1XVxotqP7Pf/AFa/xj0rX/tbV/8AoHv/AN9irmhDGj2y+kYFa1foR8cznf7W1f8A6B7/APfYo/tbV/8AoHv/AN9iuiooA89stU1f/hIb0/2e33I/4x6V0H9rav8A9A9/++xRY/8AIw3v+5HXRUAc7/a2r/8AQPf/AL7FH9rav/0D3/77FdFRQBwOt6pqx+y509/9ev8AGPQ1uf2tq/8A0D3/AO+xUmu9LXP/AD3X+RreoA53+1tX/wCge/8A32KP7W1f/oHv/wB9iuiooA5uTVdXMZ/4l79D/GKxvDmq6sNFgxp7/d/viu6k/wBW30NY3hv/AJAsH0oAh/tbV/8AoHv/AN9ij+1tX/6B7/8AfYroqKAOd/tbV/8AoHv/AN9iuft9U1YeJLk/2e/+pj/jHvXoVc7bD/iprk/9Mo/60AH9rav/ANA9/wDvsUf2tq//AED3/wC+xXRUUAc7/a2r/wDQPf8A77FYuuarq5t4f+Je/wDrk/jHrXeVia7/AMe8P/XZP50Afn5/wVS8Mz/Er/gnB8bPCGp6a7Rz+ENTlA3A/PBC0q/kVBr8y/8Ag1f+KGreLv8Agj54K0NoHuX8N6jqumbtwyFS5d1HPorgD6V/QR8Z/A0fxP8Ag94r+G0xwviDR77TST2+1QvFn/x6v5O/+DP/AMcy2H7PPxk/Zuvp2e48DeM5yImGNkdyMA/iyNQB/XZ/a2r/APQPf/vsUf2tq/8A0D3/AO+xXRUUAef+GtV1caUo/s9/vv8Axj+8a3v7W1f/AKB7/wDfYp/hn/kEr/vyf+hGt+gDnf7W1f8A6B7/APfYo/tbV/8AoHv/AN9iuiooA4D+1NW/4SXP2Bv+PYfxj+8a3f7W1f8A6B7/APfYp5/5Gf8A7dh/6Ea36AOd/tbV/wDoHv8A99ij+1tX/wCge/8A32K6KigDgPEeqasdMIOnv/rI/wCMf3hW4NV1fH/IPf8A77FSeJf+QWf+ukX/AKGK3h0FAHPf2tq//QPf/vsUf2tq/wD0D3/77FdFRQBzv9q6v/0D3/77FYmg6rq4tJP+Je/+ul/jH9411B1zSRrf/COeev24w/aPJ/i8rO3d9M8VB4f/AOPOT/rvL/6EamM4yvyu9huLW6If7W1f/oHv/wB9ij+1tX/6B7/99iuioqhHO/2tq/8A0D3/AO+xWLLqmr/8JDCf7Pf/AFD/AMY/vCu8rDl/5GKH/rg//oQoAh/tbV/+ge//AH2KP7W1f/oHv/32K6KigDnf7W1f/oHv/wB9isTxJqurnQ7n/iXv93++PUV3tYfiX/kB3P8Au/1FAEI1XV8f8g9/++xR/a2r/wDQPf8A77FdCOgpaAOd/tbV/wDoHv8A99ij+1tX/wCge/8A32K6KigDgNC1TVwLz/iXt/x9Sfxj2rd/tbV/+ge//fYqTQel5/19S/0reoA53+1tX/6B7/8AfYq7Y319czGO6tWgUDO4sDz6Vq0UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZUmpyRyMgtJ2wSMgLg49PmrVooAx/7Vl/58rj8l/8AiqyNf1WU6RP/AKFcdB2X1H+1XX1j6/8A8gef6D+YoAP7Vl/587j8l/8AiqP7Wl/58rj8l/8Aiq2KKAMf+1pf+fK4/Jf/AIqsnS9VlEt5/oVx/wAfB7L/AHV/2q66sjSv9bef9fB/9BWgBP7Wl/58rj8l/wDiq/OzUdWPw6/4Kn6bdPBPFb/FH4cz2gjwP3t54VvxKp4OMiDU5MknJAGOAa/Suvzb/wCCgNnH4K8b/Aj9pmHZG/gbx/Z6dezP0XTPFMUmjzgkkYHnXFvJ35jHegD701DVZf7SsD9juP8AWP8Awr/cb/arY/taX/nyuPyX/wCKpNQ/5Cdh/wBdH/8AQGrZoAx/7Wl/58rj8l/+KqG51WX7NJ/odx909l9P96t6oLr/AI9pP90/yoA53R9VlGk2v+hXH+qTsvoP9qtH+1Zf+fO4/Jf/AIqptG/5BFr/ANck/kK0qAMf+1pf+fK4/Jf/AIqsi31WX+2rr/Qrj/Vxdl9W/wBquvrIt/8AkN3X/XOL+bUAJ/a0v/Plcfkv/wAVR/asv/Plcfkv/wAVWxRQBx+t6rMbaL/Qrj/Xw9l/vj/arY/taX/nyuPyX/4qk1v/AI9ov+viH/0MVs0AY/8Aasv/AD53H5L/APFUf2rL/wA+dx+S/wDxVbFFAHIaJqswsT/oVx/rZey/32/2q1/7Vl/58rj8l/8AiqND/wCPFv8ArrL/AOhtWxQBj/2rL/z5XH5L/wDFVjzarL/btufsVx/qJey+qf7VdhWPN/yHrf8A64y/zSgA/tWX/nzuPyX/AOKo/taX/nyuPyX/AOKrYooA5PW9Vl/se6/0K4/1T9l9D/tVpJqsu0f6FcdPRf8A4qptc/5A13/1yf8AlWkn3B9KAMn+1Zf+fK4/Jf8A4qj+1Zf+fO4/Jf8A4qtiigDkNO1WUXt8fsdx/rV7L/cX/arX/tWX/nyuPyX/AOKo03/j+vv+uq/+gLWxQBj/ANrS/wDPlcfkv/xVZGqarN9osv8AQrj/AI+PRf7j/wC1XX1j6r/x8WP/AF8f+yNQAf2rL/z5XH5L/wDFUf2rL/z5XH5L/wDFVsUhIAyeAKAPyvl/aH+HH7O37WPxgHxW1WHww/iKz0O90h9SVlhuWhtXhZlK/eCyABwpzXGfCv8Ab9/YW+BXheQXnjC41/xNrkou9WvYrCeS4vrtgFwgCYEcYxHDEGIRAAMnJPuvxW/anb4l+Lp/gv8AsleHrPx/4qsmMd5q12oOg6KTwTPcAESSDtDCSxPUjBFdT+z3+xh4Q8D6va/GX4sXzeOfH8sSn+1b2NVgsgRnyrG2A8uCNegIG89c84r9OqPLaeEVXOadSE5QppU41IqU/ZwUYtp0m4QaSl70rt2cYySTXyMVip1+XASjKKlJ8zi2o80m2k1NKUle2i0WjavZ/nb8Rv2vP2i/2qPEkvhPQfAPxA8M/Ds/Ky6FpbLq2rKeqPeTNHFZxMOoj8xyCQTivqT4T/Ff4q/BvwbB4G+B/wCy/rWkaRB8yxvqNjbSO56vKWdndz3Z2LH1r9VKK8nF8W4OpQjhKWXQjRj9lzqWb/mlyyhzS85Xa2VlodtHJa8ajrTxUnN9eWF0uyupWXkvndn5xL+1F+2IdWklj/Z21LeYlG069YjjLc56c1bf9pL9uq8+TTP2fGgJ73XiOzA/8dU199R/8h+X/rgn/oTVsV5f9t4JbZZR/wDAq/8A8uOz+z8R/wBBc/up/wDys/OsfGr/AIKOTfNF8FNDjHYSeJI8/pFWdq/xh/4KONYkXHwb8Pqm+PkeJFJzuGP+WPrX6S1ja/8A8gxv+ukX/oa0v7dw3/Quo/8Alb/5cV/Z1X/oKqf+Sf8AyB8At8df+CiVkc3vwN0q4H/Tt4khz/49EKX/AIaP/b0X737Pqn6eJLT/AOIr9FqKf9u4TrltH76//wAuJeXV+mLqfdT/APlZ+c5/aQ/b06j9nxfx8SWn/wARWbpv7RX7eaRyiD4ARnM0hJPiO1GCWOR9ztX6VVj6L/qp/wDr4l/9CNH9uYP/AKFlH76//wAuF/Z1f/oLqfdT/wDlZ+fp/aC/4KET8W3wGsoye8viS3x+kdNl+Kf/AAU31IY034WeE9L97zXHuP0hjX+dfo5RR/b2GXwZdRX/AIOf51mh/wBm1ftYqo//AABflBH5jXHij/gqtJqdszeHfhzE+2TYDPqDDGBnJGKvnxT/AMFYEP8AyLnw3k+k+orn8ya/RK7/AOQzZ/7sv8hWxT/1jj/0BUP/AAB//JC/sn/qIqf+BL/I/NtPiH/wVKtf+Pr4feCLz/rhqlxF/wChqaLz4v8A/BSlLKZbv4PeG5F2NuZPEW3jHPBir9JKo6n/AMg24/65P/I0v9YKL+LL6D+VRflVQ1lk1tian3xf5wZ+dln+0R+37pUUaav8AoLxAowbDxHbdMf9NEFWf+Gxf2oLI7NZ/Z08Sq3/AE66hZ3A/MFa/Q+y/wCPOH/cX+VWaf8AbmBfx5ZS+Uq6/wDczF/Z+JXw4ufzVN/+2L8z86T+2l+0CwxD+zv4wLf7U1oo/PzDWdaftYftbz391Lp37OussHKcTazZREYXuDn+dfpPWNYf8hW+/wB6P/0EUf21ly2yyn851v0qof1DFPfFy+Uaf6wZ+fs3x6/4KG+I8w+FPgfp2ikjiXWfEEMiqfXZboWP0BFfIv7bWlf8FBdX/Ze8U+I/jJqvhPTtG09bW9m0/R7K4lmLQXETx7LiaT5SrhWJ28gY71+6tfPn7Vvwr1v43/s5eMfhR4aaJdR1vTZbe1M7FY/O4ZNzAEgFgMnBxXqZFxPQoZlhpxwlGlBVINvllJpKSu71JztZdVZo4sxyipUwlaLr1JycZJK6Sbs7aRjG5+aPi2X9tv4f/GjwX4mvvG1h418S6xZ3Frp/h2005rCCeGVQ32m8KysqQWrlXMmA7H92uSxx+gXwI+AenfCi7u/H/jFrrxV4+1oA6r4gu4081h1EFuu7EFsnRIkx6tk1r/CH4PXnw+sLfxd46mj1HxprP2SPVb2MHykWBCI7W3B5S3hydo6uxLtlmNfTFcee8QzrR+q0OVRS5ZShCMOdJt2tFL3E3ot5aSltGMN8uytQftqt227pSk5culr6t+8+vbZdW8f+1pf+fK4/Jf8A4qj+1Zf+fK4/Jf8A4qtiivkj2zj9A1WUaRD/AKHcfxdl9T/tVsf2rL/z5XH5L/8AFUaB/wAgiH/gX8zWxQBj/wBqy/8APlcfkv8A8VWP/asv/CQZ+x3H/Hv6L/e/3q7Csb/mYf8At3/9moAX+1pf+fK4/Jf/AIqj+1pf+fK4/Jf/AIqtiigDkdd1WU6TN/oVx0HZfUf7Va39qy/8+dx+S/8AxVLr3/IJm+g/mK16AMf+1Zf+fK4/Jf8A4qj+1Zf+fO4/Jf8A4qtiigDjdG1WUPef6Hcf8fL9l9B/tVtf2tL/AM+Vx+S//FUzRfv3v/Xy/wDIVt0AY/8Aa0v/AD5XH5L/APFVk3uqy/2nZf6Hcfek7L/dP+1XXVkX3/ITsv8Aek/9BNACf2rL/wA+dx+S/wDxVH9qy/8APlcfkv8A8VWxRQBgXWqym1l/0K4+43ZfT/eqrpGqy/2Ta/6Fcf6lOy+g/wBquhu/+PWX/cb+VVtH/wCQTa/9cU/9BFAEH9rS/wDPlcfkv/xVH9qy/wDPlcfkv/xVbFFAHH2uqyjWrs/Y7j/Vw9l/2v8AarY/taX/AJ8rj8l/+KpLX/kN3n/XOH/2atmgDH/tWX/nzuPyX/4qsrV9VlMUH+hXH+vi7L/eH+1XW1k6v/q4P+u8X/oQoAb/AGrL/wA+Vx+S/wDxVH9rS/8APlcfkv8A8VWxRQBj/wBqy/8APncfkv8A8VWRoeqyjT+bK4/1svZf77f7VdfWPoX/ACD/APtrL/6G1AB/a0v/AD5XH5L/APFUf2tL/wA+Vx+S/wDxVbFFAHIy6rL/AG7CfsVx/qJOy/3k/wBqtb+1Zf8AnyuPyX/4qll/5DsP/XCT/wBCStegDH/tWX/nzuPyX/4qsnXtVlOi3X+h3H+rbsvp/vV11ZGv/wDIFuv+ubfyoA/OT/gqNfS+LP2Xbb4Ex2knm/FPxR4d8HskgUh7XUL+Jr4bd3zf6FFcZHpz2r9GV1N41EaWU4C8ABVxgf8AAq/Pb9oi1m+KH/BQL4BfChU86w8H23iH4gagCSAs1rbppVgCMEHL6jO4yQQYsjODX6RUAY/9rS/8+Vx+S/8AxVZek6lK99eIbSdQ04GSFwMovX5q6ysjTf8Aj7vv+uw/9AWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKf8AoIrUoAKKKKAOe0z/AJDupfWL/wBBroa57TP+Q7qX1i/9BroaACiiigDB1n/j6sP+vgf+gtU+ueINB8Mae2reJL230+1ThprmRYox9WYgVBrP/H1Yf9fA/wDQWr+PH/g4Nv8A9mvx9/wUp+CfwE/b38f638Pvgvd+EdX1Ca70+eeGCTVxMqQh/KV8kKME7TgMOgoA/sO8P+KfDHi2z/tHwrqNrqVv/wA9LWZJk/NCRW9X8Av/AAQr8EeEY/8AgtTqkf8AwTE8S+Ldf/Zy8L+H7iDxFquuTySWd/eyxt5axBwvAlMZQMN42M3AIFf39UARzf6pvoayvD3/ACA7X/rmtas3+qb6Gsrw9/yA7X/rmtAGzRRRQAVz1n/yMd5/1yi/m1dDXPWf/Ix3n/XKL+bUAdDRRRQB+X3/AAWW/a4t/wBij/gm98UfjhDMsOqRaPNYaVk4LX96PJhx6lWbd9BX8U//AAZz/s93XxP/AGqPG37V3iWHzE8DabFpVlKVHN3qspMjZPO/y1cZz0bFfYP/AAeb/tM694gh+H37FnguR/s1lb3Hi/xBsY7QkZEFqjgcfMzORu/iC4r9o/8Ag20/Yavv2LP+CYHhG+8V26w+I/iVew+KrzH3lt7tE+yI30hAbHYuaAP6NaKKKACmv9w/SnU1/uH6UAYvhv8A5AsP/Av/AEI1uVh+G/8AkCw/8C/9CNblABSEgDJ6Clr8+f2l/iX8Q/i54juP2Uv2cpGg1W5RV17XgD5Gk2r9VBH3p5F4VQcgHJr0sry2eNr+yjJRitZSfwxit5P07bt2Su2jlxmLjh6fO1d7JLdvol/Wm70PdviL4d0n9obwrrXgnwn4iNraX0Ysru8091d1VHxNErchWIypPUZr2HwD4E8MfDLwbp3gLwZarZ6ZpUC29vEvZV9fUnqT3NcF8GPhV4X+Cfh6w+GXg+Py7LTLKNAx5aSQsS8jnuztkk+9e2VOKxVoywlCbdBSbjdJX6KTS62Xd21t1u6NHVVqkUqjSTtrbrZeV/vCiiivPOkwfEePsCZ/57R/+hCt6sHxHj7Amf8AntH/AOhCt6gAooooAQ9DWH4d/wCQb/20k/8AQjW4ehrD8O/8g3/tpJ/6EaAN2iiigArBP/Iyj/r3P/oQrerBP/Iyj/r3P/oQoA3qKKKACsLxJ/yCZPqv863awvEn/IJk+q/zoA3B0FLSDoKWgAooooA5/wAO/wDHtP8A9d5P510Fc/4d/wCPaf8A67yfzroKACiiigDAn/5GS3/64v8AzFb9YE//ACMlv/1xf+YrfoAKKKKAMXxEM6PN9K1YP9Sn+6KyvEX/ACB5vpWrB/qU/wB0UAS0UUUAFYGh/wCtvf8Ar4b+QrfrA0P/AFt7/wBfDfyFAG/RRRQAV5b4913wN4R1jTfFfjWe2sxb+ZHFcz4BQyDBCnqM98V6fJJHDG00pCqoJJPQAV/OT+39+1Rqfiv4z+FvCmlW0s2g6pqUuk2kwOI/OhjMkj+5OMD0r5rifPpZZhk6FPnrSvyx72V5N+UVq/kup7eRZTHHVrVZ8tKNuaXq7JLzb2P6MrW5t722ju7RxJFKoZGU5BU9CKnr5+/ZZ8RnxT8BvDupO251thC31jOK+ga9nL8XHFYWlio7Tipfernm4zDvD16lB7xbX3OwVk67/wAgi4/3DWtWTrv/ACCLj/cNdhzFyx/484v9wfyq1VWx/wCPOL/cH8qtUAFFFFAGHpX/AB+3v/XUfyrcrD0r/j9vf+uo/lW5QAUUUUAYOpf8hWx/3n/lW9WDqX/IVsf95/5VvUAFFFFAFDVP+QbP/wBc2/lTdIGNMg/3BTtU/wCQbP8A9c2/lTdJ/wCQZB/uCgDRooooAKwNM/5C1/8A7yfyrfrA0v8A5C1//vJ/KgDfooooAKwNY/4/bD/rt/St+uf1n/j+sP8Arqf5UAdBRRRQAVjalpGlXLnUri2je4iRtkjKCy8dj1rZqvd/8esv+438qTino0NSa2ZT0T/kEwf7grUrL0T/AJBMH+4K1KYgooooA52x/wCRhvf9yOuirnbH/kYb3/cjroqACiiigDB13pa/9d1/ka3qwdd6Wv8A18L/ACNb1ABRRRQAyT/Vt9DWL4b/AOQLB/u1tSf6tvoaxvDf/IFgx6UAblFFFABXO2w/4qa5P/TKP+tdFXO2w/4qa5P/AEyj/rQB0VFFFABWJrv/AB7w/wDXZP51t1ia7/x7w/8AXZP50AbZAIwa/i//AODfhr/4Wf8ABZT9tn4CtGttaNrC6lFCOMD7VcAYHsriv7QK/jC/ZSaT4C/8HZ/xo8CX5ZU+IfhxtQgwMKxdYLgfkCw+tAH9ntFFFAGB4Z/5BK/78n/oRrfrA8M/8glf9+T/ANCNb9ABRRRQBgH/AJGf/t2H/oRrfrAP/Iz/APbsP/QjW/QAV5/41+JnhfwK8FnqjyT313nyLO2TzZ5MeijoPckD3rT8d+LrHwH4P1HxfqXMVhA0pXuxH3VHuxwB9a4P4QeBJ9J04+NPFhFz4i1kCe7mbny93KxJn7qIOAB9a8zF4mq6ywuGtztczb1UY3stNLtu6irpaNvaz7sPQpqm69a/LeyS6v16JdfVLrdQv8QPEGt+XZXfhm/sYJZI/wB/MY9q4YfeAYmvbh0FYPiX/kFn/rpF/wChit4dBXZh6U4RtUm5Pu0l+SRzVZxk7wjyr5v87i0UUVuZHy/JfsP2vVsM8Hw1n/yOa+g/D+fscv8A13l/9CNfJ9zf5/bqgsR28Lkn/v8AV9V6NPBa6bNcXLrHGk0xZmOABuPUmvnsgq831u72rTX5HsZtT5fq/nTj+p0VFZmn63o2rAtpV3DcgdfKdX/kTWkzKqlmOAOSTXvxnGSvF3R5Di07NC1hy/8AIxQ/9cH/APQhXGeGfiVB418STaf4VtmutLtN6TaiTiJplONkX9/HO5hwDxzWtZeJNI1bxzdaHp8nmXGlwhbkAcI0uGUZ9cckdsisKOMo1UpU5JptpebWunfZ7aaPsbVMNVptqcdUrvyXn26bnc0V8q6x8cpfhV8Stc0r4rx3UGiXMkMul3qQtJbonlqHRmQEg7wTz610Z/at+ARQND4himZvupHHI7k+gUJnNebHiPLlKUKteMJxbTjOSi9G1ezeztdPqmdksmxloyp0nKLSacU2tVfddVs10Z9D1h+Jf+QFc/7v9RXFfC34v+DvjDp15qvgszvb2NwbaR5ozHmRQCcZ64zXaeJf+QFc/wC7/UV6mGxVLEUo1qElKD2a1TOGvQqUZunVi1Jbp7m4OgpaQdBS1uZBRRRQBg6D0vP+vqX+lb1YOg9Lz/r6l/pW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWPr/8AyB5/oP5itisjX/8AkET/AEH8xQBr0UUUAFZGlf628/6+D/6Cta9ZGlf628/6+D/6CtAGvXyL+3v8G9T+P37GfxI+FXh9jHrGoaHcy6TIM5j1S0H2iykGCDlLmKNuCOnWvrqggEYNAHz7+z/8XtP+P/wR+HXxv0zAi8WaPaartX+Brq2Ejp9UYlT7ivoKvzG/4J0W83w68PeNf2V7xmL/AAo8d61ptkH4b+yNWzq+nY9VS3vBADz/AKk/Sv05oAKguv8Aj2k/3T/Kp6guf+PaT/dP8qAKmjf8gi1/65J/IVpVm6N/yCLX/rkn8hWlQAVkW/8AyG7r/rnF/Nq16yLf/kNXX/XOL+bUAa9FFFAGPrf/AB7Rf9d4f/QxWxWPrf8Ax7Rf9d4f/QxWxQAUUUUAY+h/8eJ/66y/+htWxWRoYxYn/rrL/wChtWvQAVjzf8h63/64S/8AoSVsVjzf8h63/wCuEv8ANKANiiiigDL1z/kDXX/XJ/5VpJ9wfSs3XP8AkDXX/XJ/5VpJ9wfSgB1FFFAGPpv/AB/X3/XVf/QFrYrH07/j+vv+uq/+gLWxQAVkap/r7L/r4/8AZHqTWtb0bw3pNxr3iG7hsbG0Qyz3Fw4jijRerMzEBQO5Jr84tf8A2n/i3+05q0fhL9iWwSLRo7hobnx3q8JGnRuFYMtjA2Gu3AzhsCMHGcg5r1ctyfEY3mnC0acfinJ2hH1fd9Iq8n9lNnHisdSoWjLWT2itZP0X5t2S6tH2B8bv2jfg5+zxosesfFTWY7GS6Oy0sowZr27kPASCBMySMTx8owO5FfIcvhX9pL9tmXHxJhvPhd8LZDn+x45Nmv6zEe11Ih/0SFh96JT5hHDHvXu/wO/Y5+GXwf1uT4ia5Nc+MvHN2M3XiXW2+0XrH0hBytvGOipEBgcEmvrWvT/tHBZdplq56v8Az9mtvOnDWz7TneXVRgzk+q4jFf72+WH8kXv/AIpdf8MbLo3JHE/D74ceA/hP4StvA3w20m20XSLJdsNraoI0HqTjlmPdjlieSSa6DQf+QLaf9ck/lWqehrK0H/kC2n/XJP5V83VqzqTdSpJuT1bbu2+7fU9WEIwiowVktkjWooorMox4/wDkPS/9cE/9CatiseP/AJD0v/XBP/QmrYoAKxtf/wCQY3/XSL/0Na2axtf/AOQY3/XSL/0NaANmiiigArH0X/VT/wDXxL/6Ea2Kx9F/1U//AF8S/wDoRoA2KKKKAMe7/wCQzZ/7sv8AIVsVj3f/ACGLP/dl/kK2KACqOp/8g24/65P/ACNXqo6n/wAg24/65P8AyNAElj/x5Q/7i/yq1Vay/wCPOH/cX+VWaACsex/5Cl9/vR/+gitisax/5Ct9/vR/+gigDZooooAxtY+9af8AXwn8jWzWNrH3rT/r4T+RrZoAKKKKAMfQP+QTF/wL/wBCNbFY+gf8gmL/AIF/M1sUAFY3/Mw/9u//ALNWzWN/zMP/AG7/APs1AGzRRRQBka9/yCZvoP5itesjXv8AkEzfQfzFa9ABRRRQBiaL9+9/6+X/AJCtusTRvv3v/Xy/8hW3QAVkX3/IUsf96T/0E1r1kX2f7Tsv95//AEE0Aa9FFFAFe7/49Zf9xv5VW0f/AJBNr/1xT/0EVZu/+PWX/cb+VVtH/wCQTa/9cU/9BFAGjRRRQBjWv/IbvP8ArnD/AOzVs1jWv/IbvP8ArnD/AOzVs0AFZOr/AOrg/wCu8X/oQrWrJ1f/AFcH/XeL/wBCFAGtRRRQAVj6F/yD/wDtrL/6G1bFY+hf8g//ALay/wDobUAbFFFFAGRL/wAh2H/rhJ/6Ela9ZEv/ACHYf+uEn/oSVr0AFZGv/wDIFuv+ubfyrXrifiV4q0PwJ8O9e8c+J5RBpui6fc393KeiQW0bSSN+CqTQB8Ifs0XFz8Vf28vj38Z5VEmm+FBofw70mbrl9PgbUdRI4HH2i/jibBI3QnoQRX6S1+f3/BMLwr4i0j9jTw1498cQeR4i+I017441ZCu1lufElxJfrG3fdDDLHCc8/u6/QGgArI03/j7vv+uw/wDQFrXrI03/AI+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//Q/v4ooooAKyNU1CwgtZ4ZpkRhG2QzAEcVr1k6pYWU1pPLLErMY2ySOelAFHRNW0saLaf6RF/qU/iHoK1P7W0v/n5i/wC+x/jWZoel6adFtD5Cf6mPt/sitT+y9N/54J+VACf2tpf/AD8xf99j/Gj+1tL/AOfiL/vsf40v9l6b/wA8E/Kj+y9N/wCeCflQBz2m6ppg1zUibiPrF/EP7tdAdX0sDP2iL/vof41gabpunHXNSHkp1i7f7NYPxWmt/Dfwv8R+IrGJFmsNMu7iM46NFEzA/mKAP42/2kf2+P8Agol/wWj/AG19c/YF/wCCdGoXPwr+EnhDUby18QfECPzI2vo7FxBOIphhT+93CKKNgX4ZjisT4z+Av+CyP/BBDS7b9qjQvjFcftB/BvSbmMeJtE1d3e6trWVgrTLuZyoGf9YhG3IyCM1+mX/BqbJa+KP+CTOneLdRt42vNT8W+IriaTaNzNJc7jk9T1r9+fjj8N/AfxG+DXirwF45sILvR9X0q7tbyGVQUeGSJgwOfb8qAOR+C37Q3wy/aW+DXgb4/fDO/S40Hxda2+p2bMwDCOeMttYZ4ZDlWHYg1F+0D+zN+y3+1Xolt4d/aL8J6J4xs7JzJbx6pBHceUzDBKFslc98V+Bn/Bq54i1TxT/wSx0zw7rsZltPC3jjW9J0yST5y1mhWVcE9laVlH0r+nj+y9N/54J+VAHjXwP+CH7Pv7NfgxPh58BfD+k+E9FRzILTTYo4Iy7dWIXGT7mvZP7W0v8A5+Yv++x/jS/2Xpv/ADwT8qP7L03/AJ4J+VAEU2raX5Tf6TF0P8Q/xrK8Patpf9h2v+kRf6tf4hWtNpem+U37hOh7VleHtL07+w7X9wn+rXtQBsf2tpf/AD8xf99j/Gj+1tL/AOfmL/vsf40v9l6b/wA8E/Kj+y9N/wCeCflQAn9raX/z8xf99j/GsOxv7FvEV4yzIR5UXRh6tW7/AGXpv/PBPyr8df2qv+CSunftVftAat8WR8Z/iF4K+1WtrF/Znh7VmtLFPKBXKRgYBbGT6nmgD9j/ALdZ/wDPVPzH+NH26z/56p+Y/wAa/nz/AOHAdh/0cp8X/wDwoH/+Jo/4cB2H/Rynxf8A/Cgf/wCJoA/md/4OTPBviTwR+1B8b/iP8Rd0S+Nv+EM0jwlLICyz2ETGTUI4jjaAkiKX5HJHrX+gT8OtM0Twn8H/AAX4W0pkjtdNsNNtYUBACxwxIij8AK/hF/4OEv8Agldpn7K3wg+FmqN8XfHfjY+JfGllpDQeI9UN5FAkqsTJECPlcbeDX71x/wDBA3T10TTZR+0h8XAJPIAUa++F3AdBjjHagD+jT7dZ/wDPVPzH+NH26z/56p+Y/wAa/nz/AOHAdh/0cp8X/wDwoH/+Jo/4cB2H/Rynxf8A/Cgf/wCJoA/oM+3Wf/PVPzH+NNe+s9h/ep09R/jX8+v/AA4DsP8Ao5T4v/8AhQP/APE0jf8ABAOxCk/8NKfF7/woH/woA/fHw3fWX9iw/vU/i7j+8fetz7dZ/wDPVPzH+Nfzv6L/AMECrC502OYftJfF1N27hdfcDgn/AGa1P+HAdj/0cp8X/wDwoH/+JoA/bH4tfG3wt8JbLTDfq9/f61fQ6fYWVuQZZppTjjPRUGWZjwAK9H0+x8N6TNcXGmRQW8l3J5s7RhVMj4A3MR1OABzX882hf8EC9S1bSns/H3x9+I3n2WpS3GmXVvrLvdxwFdgDTOCQWGSVXavPeuh/4cB2H/Rynxf/APCgf/4mvSxscPShTpUJc0rXm+jb15V5R79ZX6JM5cO6k5SnUVlf3V1sur9e3a3W5+9kV9Z/8JPN+9T/AI907j+8feug+3Wf/PVPzH+Nfzux/wDBAuwOtyWv/DSXxd+WFW3f2++eSeOla3/DgOw/6OU+L/8A4UD/APxNeadR/QZ9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH73eIr6y+wJmVP9dH3H94VvfbrP/nqn5j/Gv53tZ/4IFWFtaLIf2kvi6wMiDDa+5HJA9K1f+HAdj/0cp8X/APwoH/woA/oM+3Wf/PVPzH+NH26z/wCeqfmP8a/nz/4cB2H/AEcp8X//AAoH/wDiaP8AhwHYf9HKfF//AMKB/wD4mgD+gs31ng/vU/Mf41h+HL6yOm/61P8AWSdx/eNfgef+CAdjj/k5T4v/APhQP/8AE1l6L/wQJsbiy8z/AIaS+Lq/O4wuvuBwxHpQB/RD9us/+eqfmP8AGj7dZ/8APVPzH+Nfz5/8OA7D/o5T4v8A/hQP/wDE0f8ADgOw/wCjlPi//wCFA/8A8TQB/QZ9us/+eqfmP8awTfWX/CSj96n/AB7nuP7wr8Ef+HAdh/0cp8X/APwoH/8AiayT/wAECrD+2xbf8NJfF3/Ult39vvnqOOlAH9EX26z/AOeqfmP8aPt1n/z1T8x/jX8+f/DgOw/6OU+L/wD4UD//ABNH/DgOw/6OU+L/AP4UD/8AxNAH9Bn26z/56p+Y/wAawvEl9Z/2TJ+9Tqvcetfgh/w4DsP+jlPi/wD+FA//AMTWVrX/AAQJsLfT3lP7SXxdbBHDa+5HX6UAf0QC+s8D96n5j/Gl+3Wf/PVPzH+Nfz5D/ggHYY/5OU+L/wD4UD/4Uv8Aw4DsP+jlPi//AOFA/wD8TQB/QZ9us/8Anqn5j/Gj7dZ/89U/Mf41/Pn/AMOA7D/o5T4v/wDhQP8A/E0f8OA7H/o5T4v/APhQP/hQB+9nh29s/s0/71P9fJ3Hr9a6D7dZ/wDPVPzH+Nfzu6P/AMEC7C5glYftJfF1dsrrxr79j9K1v+HAdh/0cp8X/wDwoH/+JoA/oM+3Wf8Az1T8x/jR9us/+eqfmP8AGv58/wDhwHYf9HKfF/8A8KB//iaP+HAdh/0cp8X/APwoH/8AiaAP3tnvrL/hJLf96n+pfuPUVv8A26z/AOeqfmP8a/ncl/4IFWC61Fbf8NJfF35omO7+33zwR3xWv/w4DsP+jlPi/wD+FA//AMTQB/QZ9us/+eqfmP8AGj7dZ/8APVPzH+Nfz5/8OA7D/o5T4v8A/hQP/wDE0f8ADgOw/wCjlPi//wCFA/8A8TQB++XiG9s/7Hm/ep0/vCtaG9s/JT96nQdxX88ur/8ABAiwt9OlmP7SXxdbaOja+5H8qvxf8EBLBo1b/hpT4vcgf8zA/wD8TQB/Qf8AbrP/AJ6p+Y/xo+3Wf/PVPzH+Nfz5/wDDgOw/6OU+L/8A4UD/APxNH/DgOw/6OU+L/wD4UD//ABNAH9Bn26z/AOeqfmP8awdEvbPzb396n+vbuPQe9fgj/wAOA7D/AKOU+L//AIUD/wDxNZOl/wDBAqwne5A/aS+Lq7JivGvvzwOTxQB/Q9NqdhBE00kq7UBY8joK/PHxR+3zJca9ceHvhV4Wudakt3aMyOSASpxnaoJxn1Ir4EP/AAQBsGBU/tKfF7B/6mB/8K6b4r/8EovE/gL9n2bwV8O/iF4q1mSFP39818bbVjGvO5biEIzFe+7Oa+P4wnm1OhTq5dNxgn+85YqU+XvBPR21ut30Po+HI5fOrOGNjeTXuXbUb9pNaq/R7dz2n4k/tYftJeINO/4QW58Nx6NLrqm3gCq4nbdwdu5v1xXx/wDGH4D/ABc1TQ/Alh408MzRx+EdXfUNNa1wzm6mQozT7Cdybc53cCvMPgV+wL4T+LHwj1nwN4z+NfjPQ7fSJ1uRq0+smTWQf4lE8gJWMEY2oBXgOp/8E7bC++ItloXwP+NXxb8ZPbyZcXWvzCGQA9MLtIU9ySARX5pFYatTlmeOzOq3LmhSUeX2k4bP3VG65pLay0tdn27danOOBwuBppRtKo5X5Iy6e83b3V1112P0l+F3xz+PHw3+GckXhLULG20exnddk5QzGRuSFUgsR+ld/wCDf2pv2vfiDfiw8HqL1+5W3QIv1YgAV5b8DP2P4Pj/AGniPwDrviLUfDN/pG2Ay2PlvMpPyk7pFcbh61h2/wDwb6aBZPI2nftF/Fi1ErlykGuGNMscnCqoA+gp8G8OZ1mGFpVpY6pRw6VlFSbk+VtOy2gla1ndhxLnOWYOvUpLCwqVnq24qyur77yfW+h+43wf1L4gS+BLST4tvbJrZz5ogI247ZxxnHXFdzrt9Z/2RcfvU+4e4/xr8Cf+HAdj/wBHKfF//wAKB/8ACs/Vf+CBFhBp00x/aT+LzbVJwdfcg/pX7nhqPsaUKXM5cqSu3du3VvuflVer7SpKpypXd7LRLyXkf0JWN9Z/Y4v3qfcHcen1q19us/8Anqn5j/Gv57Lb/ggLYPbRv/w0n8XhlQcDxA/p/u1P/wAOA7D/AKOU+L//AIUD/wDxNbmR/QZ9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH74aVfWf229/ep/rR3Hp9a3Pt1n/wA9U/Mf41/PBYf8ECbCW5uUH7SXxdGx8ZGvvzx3+WtP/hwHYf8ARynxf/8ACgf/AOJoA/oM+3Wf/PVPzH+NH26z/wCeqfmP8a/nz/4cB2H/AEcp8X//AAoH/wDiaP8AhwHYf9HKfF//AMKB/wD4mgD97tSvrP8AtWx/ep95+49K3vt1n/z1T8x/jX8715/wQKsIr+1i/wCGkvi6fMLDJ198jA7cVq/8OA7D/o5T4v8A/hQP/wDE0Af0GfbrP/nqn5j/ABo+3Wf/AD1T8x/jX8+f/DgOw/6OU+L/AP4UD/8AxNH/AA4DsP8Ao5T4v/8AhQP/APE0Afv7ql9Z/wBmz/vU/wBW3cen1pukX1n/AGZB+9T7g7iv5+r7/ggNYRWUsh/aT+Lx2oTg6++Dx9KSw/4ID2M1lFKf2k/i8Nyg4HiB8D9KAP6F/t1n/wA9U/Mf40fbrP8A56p+Y/xr+fP/AIcB2H/Rynxf/wDCgf8A+Jo/4cB2H/Rynxf/APCgf/4mgD+gz7dZ/wDPVPzH+NYGl31n/a1/+9T7ydx6V+CX/DgOw/6OU+L/AP4UD/8AxNZNj/wQKsJdQu4h+0l8XR5bKMjX3ycjv8tAH9EX26z/AOeqfmP8aPt1n/z1T8x/jX8+f/DgOw/6OU+L/wD4UD//ABNH/DgOw/6OU+L/AP4UD/8AxNAH9Bn26z/56p+Y/wAawNYvrP7bYfvU/wBae49K/BL/AIcB2H/Rynxf/wDCgf8A+JrJ1H/ggXp8N1aIf2kvi63mSY5198jjtxQB/RF9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH9Bn26z/wCeqfmP8ar3d9Z/ZZf3qfcbuPT61/P3/wAOA7D/AKOU+L//AIUD/wDxNQ3H/BASwSB2/wCGlPi8cKTz4gf/AOJoA/f7RL6z/sqD96n3B3Fan26z/wCeqfmP8a/nl0z/AIIEWE9hFL/w0n8Xl3KDga+4A/Sr3/DgOw/6OU+L/wD4UD//ABNAH9Bn26z/AOeqfmP8aPt1n/z1T8x/jX8+f/DgOw/6OU+L/wD4UD//ABNH/DgOw/6OU+L/AP4UD/8AxNAH71WN9Z/8JFe/vU+5H3HpXRfbrP8A56p+Y/xr+du1/wCCBlg+sXNt/wANJfF0bFQ7hr75OfXitj/hwHYf9HKfF/8A8KB//iaAP6DPt1n/AM9U/Mf40fbrP/nqn5j/ABr+fP8A4cB2H/Rynxf/APCgf/4mj/hwHYf9HKfF/wD8KB//AImgD97tdvbM/ZP3qf8AHwvcehre+3Wf/PVPzH+Nfzvap/wQKsIPs5/4aS+LrbpVXnX3OM55HFav/DgOw/6OU+L/AP4UD/8AxNAH9Bn26z/56p+Y/wAaPt1n/wA9U/Mf41/Pn/w4DsP+jlPi/wD+FA//AMTR/wAOA7D/AKOU+L//AIUD/wDxNAH9BMl9Z+W371Oh7j/GsXw1fWR0WD96nT1Ffgc//BAOwCE/8NKfF7p/0MD/APxNZmif8ECrC50uGYftJfF1dw6Lr7gD9KAP6Ift1n/z1T8x/jR9us/+eqfmP8a/nz/4cB2H/Rynxf8A/Cgf/wCJo/4cB2H/AEcp8X//AAoH/wDiaAP6DPt1n/z1T8x/jXO297ZjxNc/vU/1Mfce9fgr/wAOA7D/AKOU+L//AIUD/wDxNY8P/BAuwfW5rb/hpL4ujbGh3f2++TnPfFAH9En26z/56p+Y/wAaPt1n/wA9U/Mf41/Pn/w4DsP+jlPi/wD+FA//AMTR/wAOA7D/AKOU+L//AIUD/wDxNAH9Bn26z/56p+Y/xrE16+svs8P71P8AXR9x61+B3/DgOw/6OU+L/wD4UD//ABNZmq/8ECdPghjY/tJfF1syIvOvuep+lAH9D/26z/56p+Yr+Oz9qqwvNG/4Oz/g3rXh4CEan4JJu5E/5aIqToc/gqj8K/Qf/hwHYf8ARynxf/8ACgf/AOJr8gviL/wQw8YS/wDBZLwP8P7P4nfEq98PnwTeajceL5tQke+tZUl8tbeO724VW3ZKdTQB/cT9us/+eqfmP8aPt1n/AM9U/Mf41/Pn/wAOA7D/AKOU+L//AIUD/wDxNH/DgOw/6OU+L/8A4UD/APxNAH72+Gb6yOkr+9T779x/eNb/ANus/wDnqn5j/Gv53dE/4IFWFzp6yj9pL4up8zDC6+4HBI9K1v8AhwHYf9HKfF//AMKB/wD4mgD+gz7dZ/8APVPzH+NH26z/AOeqfmP8a/nz/wCHAdh/0cp8X/8AwoH/APiaP+HAdh/0cp8X/wDwoH/+JoA/e03tn/wk/wDrU/49h3H941tHVdMBwbiP/vof41/PEf8AggXYf259l/4aS+Lv+oDbv7ffP3jx0r94Phb8MdO+GPw50T4efbbrWv7FsobP7fqL+dd3HkqF8yaQ8s7Yyx7mgDwL9srxda2Pw50rSLadGXVNZs4JArA/u1bec+3yivrS21PTBboonj4UfxD0+tfC3/BQHS2svhZpHiLToBt03VoZZCo6Lhv64Feh+Pfgsv7QGmaJ4s8NeKbzRrB7RW8uxICS7+dx9+1fFLMK9LN8fCjS9pNQouMbqN4+/d3elk27n07wlKeXYSVSpyRcql5Wbs/dtou6R9F+JtX0n+yyDcxf6yL+Mf3x71vJrGlMuVuYj9HH+NflJ8cv2NZvh54EvPH1n4rvr+LTVWW4hu3wXQEAhGXGG9Mg14tq3jOb9mnxNFc/D3Uri/s9f0CK7SK8YO0MtyMqSMYyo5HHevOx3HlfL6vLmeC9nBWbftIydndJpJa6qz1ujtwvCdHGU+bA4rnk72XI0rqzabb00d9j9evE/wAevg74M1QaJ4l8Q2lrdnH7ssWIz67Qcfjiux0Px14M8TWzXfh/VbW8iQ7WaKVWAJGcHB44r5r+EPw88DfCb4FJ408cW8Nzey2Z1HUrq4UO7vIu8rlvTO0Cvn//AIJ36np+vt40eaJA017HcLHjhVkB4A7Cu+hxHi45hg8JiowX1hSkoq/NBKPMuZt2k3too6p7nHVyXDvCYnEUHJ+xaTbtaTbs7K11bfd9Njv9E1W11P8Ab71i585DFY6HHAG3DHzeW2M/UmsHXdcuv2iPjdP8HYLw23hHw3I8+qPG+z7XPvOI9wP3fb2Ncz4d1y38N/tL/F3xdPGrHSNLaSNSOMp93j6gVtfsr6v4Z+F37NesfG3xpsaXUru4uXZ/vSMrFEQe7MDj618vhcXCvUlgasuWlKtiKtX/AK9052UX5Sla/dJrqe9Xw8qMFiqcb1I06NOn/jnG7a80r282dv8A8JJ8OfBH7TGgfCP4daNZQgW8k19dISrR/ISqgg4PHJz616H+0T48uNQvdC+CfhK8EN74qmK3M8bDdDYx8zEEdCwyoP1r49/YcuB8S/jt4q+JHirY+oPb744mGMCd+SqnsqqF+hr3Cz1LRLv9vDUINcaGGLTNBEVsJSFXc7IxIzxnDGt8tzV4nKvawtCnicRyRStHlp3s1pazcYS87u/YyxuAVDH8kvenQo80m7u8909eicl8ke/+N9W8TfD3wppvhL4HaVZ3Um0wq08wjt7VIwPmcDlie2Pxr4b+DPhH41/Fi2vPF58dDQU1a9vJp0tVAcyI4jYg5HynaAvoAK+77n4r/DDV9V1jwX4bnjvtR06wmuZ/IXfFGFBGGcfLuPpXhn7DkNlf/BzS55o1djLqGSRz/rzXr43CYXH5xh6CrylS5Kj5YT5YxcHTjZcln9qV02+2ljzsNiK+Ey6tVdJKpzQ1lG7akpu75rrorWS7n0B8Mvhz4c+Hmjz2F5rM+u3F2weefUJhMzMBjgHhR7AV41+1b4v8OfC34U3F14KtrWLW9YlWwtJIUXery/eYEdCFzg+pri/2hvjFDpPx48DfC3wlOsbjUYZNTEWOVlIRIm+oJJH0qt+3npzaNpPg7xvDbb7DSNXSS7VRxtbBBP8A3yR9TWec5nhYZVj6GXxs8PaHNvbmtzNPV3ipNt73TLyzAV5Y/CVcW7qteVtr8t7Jra0rKy7M+nvgT4I0D4SfDHTPB8NzE1wkfm3Um4ZkuJOXY8+vA9hXoXibVtL/ALCuf9Ii+7/eHqKp+E/EHgXxro1vrnhi4try3nQOrRkHg+o6g+xqLxlP4W0zQLmTUZLa3AXrIyr3HrX2+BhhqGFp08O17KMUo2atZLTU+WxUq1WvOdZPnbbemtzrRq2l4H+kRf8AfY/xpf7W0v8A5+Yv++x/jXyT8Tv2svgv4ItTYeF3i8RazI6xQ2dp8252OAC4BH5Zr6q02ztbzToLu7s1glljV3jIBKMQCVz7HiowmbYPFValHDVVOULc3Lqle9ldaX0el7rqXiMvxNCnCrXg4qV7X0btbpvbXfYuf2tpf/PzF/32P8aP7W0v/n5i/wC+x/jS/wBl6b/zwT8qP7L03/ngn5V6JxGDoOraZi8/0iP/AI+pf4h7Vu/2tpf/AD8Rf99j/GsLQdL07F5+4T/j6l7fSt7+y9N/54J+VACf2tpf/PxF/wB9j/GpoL6zuXMdvKkjAZwrAnFRf2Xpv/PBPyqaGytLdt8EaoSMZAxxQBZooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArKk0PSJpGmkgUsxJJ9Sa1aKAMb/hHtF/59krI17w/oo0ic/Zk6D+YrsKx9f8A+QPP9B/MUAJ/wj2i/wDPslL/AMI/ov8Az7JWxRQBj/8ACP6L/wA+yVkaX4f0Uy3mbZP+Pg/+grXX1kaV/rbz/r4P/oK0AN/4R7Rf+fZKP+Ee0X/n2StmigD8s9Z8O2fwc/4KraTqBijj0H41+DpLV0yRnXvCbtJG2M43TafeSA8ZxbD0r9M/+Ee0X/n2Svzt/wCComlXfh/4LeHP2mtELpqXwS8S2XjfMQy8mnWYeDVIumdsmnT3Occ5APav0d0zUrDWdNt9Y0qVZ7W7iSaGVDlXjkAZWB7gg5BoAq/8I/ov/PslQXOgaMLeQ/Z0+6f5Vv1Bdf8AHtJ/un+VAHOaP4e0X+ybU/Zk/wBUn8hWj/wj2i/8+yVPo3/IItf+uSfyFaVAGN/wj2i/8+yVk2+gaL/bV0Psyf6uL+bV19ZFv/yG7r/rnF/NqAG/8I9ov/PslL/wj+i/8+yVsUUAcfrWgaKLaL/Rk/18P/oYrX/4R7Rf+fZKXW/+PaL/AK7w/wDoYrYoAxv+Ee0X/n2SlHh/RR0t0rYooA5DRNA0U2J/0ZP9bL/6G1a3/CPaL/z7JS6H/wAeJ/66y/8AobVsUAY3/CPaL/z7JWRN4f0X+3bcfZk/1Mv80rsKx5v+Q9b/APXCX+aUAJ/wj2i/8+yUv/CP6L/z7JWxRQByet+H9FGjXX+jJ/qn/lWknh7Rdg/0ZOlTa5/yBrv/AK5P/KsDxL4/8I+Db3StJ8RXggu9an+zWUCo8ss0gGTtRAzbVHLuQFQcsRV06U6kuWnFt9lrtr+RM5xirydkbf8Awj+i/wDPslJ/wj2if8+yVs15H8afjr8LP2fPBkvjv4satFpdih2xK3zTXEvaOGNcvJI3ZVBP0FXh8NVxFWNGhBynJ2SSu2+ySJq1YU4OpUaUVu3sdZp2gaKb6+/0ZP8AWr/6AtfKPxt/ax+EHwt8Rj4X+B9Ln8eePpuIfDuhgTXCH+9cycpbRj+JpDkDnBrxvTrb9rH9s6W6upJ7z4NfDi7dSIowB4n1KIqPvMcrZI64OADJz6V9tfBP9nr4P/s8eHD4Z+EuiQaXHKd1xPzJdXMnd55mzJIxPOWY47Yr6P6hgMu1zCXtay/5dQfup/8ATyorr1jTu+jnB6Hl/WcTiv8AdlyQ/nktX/hi/wA5W/wtHx34d/Y++I3x+1qDx7+27fW9xYwuJrHwRpDsukWxHKm7k4a8lHfd+7B6AivvF/B/hXR4NL0rSdPgtbW3lWOGGFBHHGiowCqq4AA9BxXd1j6r/wAfFj/18f8AsjV5WZZxiMbyxqNKnH4YRXLCPpFdX1bvKW8m3qdmFwNLD3cNZPeT1k/V/ktl0SD/AIR/Rf8An2Sk/wCEe0X/AJ9krZoryzsMU+HtFwf9GSsvQvD+inRbQ/Zk/wBUn8q609DWVoP/ACBbT/rkn8qAG/8ACP6L/wA+6Uf8I/ov/PulbFFAHHx+H9F/t6UfZk/1Cf8AoTVsf8I/ov8Az7JRH/yH5f8Argn/AKE1bFAGN/wj2if8+yVj694f0UaY2LZP9ZF/6GtdjWNr3/IMb/rpF/6GtAC/8I/o3X7OlH/CP6L/AM+yVsUUAY3/AAj2i/8APslZGjaBophn/wBGT/j4l/8AQjXYVj6L/qp/+viX/wBCNACf8I9ov/PslH/CPaL/AM+yVs0UAcfd+H9FGsWY+zJ92X+QrY/4R/Rf+fdKLv8A5DFn/uy/yFbFAGP/AMI/ov8Az7JVHUvD+ijTbgi2T/VP/I101UdT/wCQbcf9cn/kaAMuy8P6KbOLNun3F/lVn/hHtF/59krQsv8Ajzh/3F/lVmgDG/4R7Rf+fZKyLHQNG/tS+H2dPvR/+giuwrGsP+Qrff70f/oIoAP+Ee0X/n2Sj/hHtF/59krZooA47V9A0YNaYtk/4+E/ka2P+Ee0X/n2SjWPvWn/AF8J/I1s0AY3/CPaL/z7JS/8I/ov/PulbFFAHH6DoGinSYT9mT+L+ZrX/wCEe0Xr9mSl0D/kEQ/8C/ma2KAMb/hHtF/59krH/wCEf0b/AISHH2dP+Pf/ANmrsaxv+Zh/7d//AGagA/4R7Rf+fZKP+Ee0X/n2StmigDkNd8P6KNJm/wBGToP5itc+H9FPW3Sl17/kEzfQfzFa9AGN/wAI9ov/AD7JR/wj2i/8+yVs0UAcbo+gaMXvM26f8fL/AMhW1/wj+i/8+yUzRfv3v/Xy/wDIVt0AY3/CPaL/AM+yVk33h/Rf7Tsh9mT70n/oJrr6yL7/AJCll/vSf+gmgBv/AAj2i9fsyUf8I9on/PslbNFAHP3Xh/RRaykWyfcb+VVtH8P6L/ZNr/o6f6lP5Cuhu/8Aj1l/3G/lVbR/+QTa/wDXFP8A0EUAV/8AhHtF/wCfZKP+Ee0X/n2StmigDj7Xw/ox1q7Btk/1cP8A7NWv/wAI9on/AD7JRa/8hu8/65w/+zVs0AY3/CPaL/z7JWVq/h/RRFB/oyf6+L/0IV11ZOr/AOrg/wCu8X/oQoAb/wAI/ov/AD7pSf8ACPaL/wA+yVs0UAY3/CPaL/z7JWRofh/RTYZ+zJ/rZf8A0Nq7CsfQv+Qf/wBtZf8A0NqAE/4R7Rf+fZKX/hH9F/59krYooA5CTQNFGuwj7Mn+ok/9CStb/hHtE/59kp0v/Idh/wCuEn/oSVr0AY3/AAj2i/8APslfnJ/wVItm1L9mFfgF4Qj8rWvjBrem+CLd48h47XUZd2oSjHI8rT4rl89iByOtfppX5jeP3vfjX/wUk0nw7F8+gfBDwhda1dYOVOv+Jy1pZgjpugsYLtuef9IUigD9FNO8IeGNL0630rTrKOK2tYkhhjUYVI4wFVR7AACrv/CP6L/z7JWuv3RS0AY//CP6L/z7pWXpOh6RFf3ksduisk4II7EItdZWRpv/AB933/XYf+gLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//R/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntN/wCQ5qX1i/8AQam8TaDY+KvDl/4Y1MFrbUbeW2lA4JSVSrfoah03/kOal9Yv/Qa6GgD+Hr/gjr+2Ho3/AARO/am+JX/BH39vS9/4RXw5Jr9xrPgPxFegpp81tdkYRpWwFWVAjbuiyB1Yjg1+y/8AwWW/4LC/sxfsm/sQeKZfht4w0fxd488Y2E2i+GtJ0e8ivp5rq9UxCVlgdiscW7cTwSQAOTX6Cftwf8E2/wBjn/gol4Ng8HftVeDrXxALLcbK9GYb21LcExTph1z3AODX51/skf8ABtX/AMExf2RPi9b/ABt8O+Hr/wAUa3ps/n6Z/wAJBdtew2T5BUxxN8hKkZVmBI9aAPXv+CGv7Ivir9in/gmH8JPg78QLd7PxHcrLrWq28oxJDdamzzmN/wDaRWVTnoRjtX7QVg6wALnTwP8An4H/AKC1b1ABRRRQBHN/qm+hrK8Pf8gO1/65rWrN/qm+hrK8Pf8AIDtf+ua0AbNFFFABXPWf/Ix3n/XKL+bV0Nc9Z/8AIx3n/XKL+bUAdDRRRQB/JX/wdiyH/hUH7PVtn/W/E7Th+Uchr+qEjGg6SPRrb+Qr+VX/AIOu4bi+8Ifsw6TbctdfFWwQD1Pky4/Wv6sbuJoNJ02F+qSQKfwxQB1lFFFABTX+4fpTqa/3D9KAOFm8U6D4J8BzeK/FFylnYWEUk080hwqqpJ//AFDvWb8IviBqnxQ8GR+NNQ0W40KK7kc2kF2R572wx5crqB8hcc7DkgYzzxVi88FeGPH3g+30LxdaJfWYmWYwycozxSbl3DuAQODxXooAUBVGAK6uegsPy8rdRvfokuiXVt7t7WVt2Y8tR1b39y23d+fp0t8xaKKK5TY5+L/kZ5v+vdP/AEI10Fc/F/yM83/Xun/oRroKACiiigDB8R/8eCf9do//AEIVvVgeI/8AjwX/AK7R/wDoQrfoAKKKKAEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8ADv8Ax7T/APXeT+ddBXP+Hf8Aj2n/AOu8n866CgAooooAwJ/+Rkt/+uL/AMxW/WBP/wAjJb/9cX/mK36ACiiigDG8Qf8AIIm+n9a1Yf8AUr9BWV4gx/ZE2fT+tasP+pT6CgCSiiigArA0P/W3v/Xw38hW/WBof+tvf+vhv5CgDfr8/P2hP2srjStW1X4NeB/Dt7qeqvGbdpArBR5gwSoUZPXrkCv0Dqj/AGXpovDqAgj88jBk2jcR9etePneBxeLw/sMJiPZNv3nyqT5bapX0T8z0srxWHw9b2uIo+0tsrtK/Ru268j8K7T9i3433vgW68cX1rHayQxh008n9/Mg5OQOAcdjya+6/2O/G3wr1zRLPw94U06HRtZsVdL61I/eswGC+T8xBPY9K+9yM8GvzT/ad+BfiPwX4zh+PHwPDQanBma7toeA4TlmAHXI+8O9fA/6qLhmUMzyyDqxirVYuzk49ZwdtGusVo0fW/wBvvPIywOOkqbbvBq6in/LJdU+jeqZD+zu7eGv2xvHXhl/lW7VpQPcEGv0yr8Zv2eviqnxG/bBt/Gy2xtZNUtWjnizkCUJhiPbI4r9ma9jw7xdKvgK7oO8FWqcvo3zL8zzuMsPOli6XtVaTpwv6pWf5BWTrv/IIuP8AcNa1ZOu/8gi4/wBw198fIlyx/wCPOL/cH8qtVVsf+POL/cH8qtUAFFFFAGHpX/H7e/8AXUfyrcrD0r/j9vf+uo/lW5QAUUUUAYOpf8hWx/3n/lW9WDqX/IVsf95/5VvUAFFFFAFDVP8AkGz/APXNv5Umk/8AIMg/3BS6p/yDZ/8Arm38qTSf+QZB/uCgDQooooAKwNL/AOQtf/7yfyrfrn9L/wCQtf8A++n8qAOgooooAKwNY/4/bD/rr/St+sDWP+P2x/66/wBKAN+iiigAqvd/8esv+438qsVXu/8Aj1l/3G/lQBT0T/kEwf7grUrL0T/kEwf7grUoAKKKKAOdsf8AkYb3/cjroq52x/5GG9/3I66KgAooooAwtc/5dP8Ar4X+RrdrC1zj7J/18L/I1u0AFFFFADJP9W30NYvhr/kCwf7tbUn+rb6GsXw1/wAgWD/doA3aKKKACudtv+Rluf8ArlH/AFroq522/wCRluf+uUf9aAOiooooAKxNd/494f8Arsn8626xNd/494f+uyfzoA26j8qIy+cVG8DG7HOPTNSUUAFFFFAGB4Z/5BK/78n/AKEa36wPDP8AyCV/35P/AEI1v0AFFFFAGAf+Rn/7dh/6Ea36wD/yM/8A27D/ANCNb9AHHeP/AAPofxI8H3/grxGm+0v4zG2OqnqGHuDyK/O7RfAP7ZX7OyyeGfht9n8S6CjFrdJCu6NT2wxUj6AkV+oVFfP5vw5Qx9WGJVSdKtFWU4O0rPo9GmvJo9jLs5q4SnKg4RnTk7uM1dX7rZp+jPyh8d+Gf2qvjJoNxqPxngXRvDmlobmWwtSPNujHyFAUsST0GT+FeJ+GPgR4o+PPwu8QfErSImk8QLexRQWLqY1jtYR9xC4APGMdsLiv2q8TAHSiD0Mkf/oYrZt7a3tY/LtkWNeuFGB+lfM4rw5w2JqqeJxE6l1JScneTbVotPRLku7Lla1Z7dDjOvQpuNCjGDTTjy6RSTu01q3zaXd76I/LO48JftUftG2+nfDjxxpq+FvDVkUF26Ha0yx4GMZJJx0H3c819UfCz9mKw+D3xRvfGXgrUWg0i/tkhl08oDl0HDbvrk/U19V0V7WX8H4OhVjiq85Va6aanN+8rJpJctko2burWd9bnm4viPE1aboUoxp0mmnGK0d2m273bd0tenQ+F/if+zZ4x1T4l+JfFngiaAWXi3R5bK8jlJVo7hVGxlwOQxAz6ZNfNvwz/Zh+OvxAstI+HPxUxpXg/wAPSu3lRurNcPvJP3SepJGTjA6Cv16rD0D/AI85P+u8v/oRrmxfAeW4jE/WJOaTbcoqXuyUpKTi1a/K5LmsmtfLQ2w/FmNo0fZRUW0klJr3lZOKa8+V2vbY8wi+AHw4svHunfEbRrVrDUtOi8kG3YokkYXYFdRwwA/lXIfGf9lP4bfGzW4vE2utc2OoxoIjcWj7GdB0DcEHFfTVFe9XyHLq1GeHqUIuEnzNW0cu+nXTc8mlm2Mp1I1oVZKUVZO/Tt6HiHww/Z++Hvwl8KXnhXwtC+NRVluriVt00u4EfM3sDwOlfEPh34b/ALXHwEmufh18MYbLVdMumme0unYBoFlYZYhiMEHBx83NfqbWHL/yMUP/AFwf/wBCFcOM4VwlWFGOHlKi6Sai6b5WoytzLZqzsnte+t7nVhs/xFOVR1kqqm05KavdrZ7rVX+7Q+AvC37EGqad4o8M+Ptd1n7XrFtfnUdYlfLGVxhkWM+gYck9c199eJ/C+g+MtCuPDXia2S8sbpdksUgyCP8AEdjW/RXVlfDuAy+lUo4anaM/iTbd9La3vut+7bfUwx+c4vGThUrz1htbS2t9LdunZWPz21T/AIJ7+ClvJJvCPiLU9Jhc58lHDKvsMjOPxrE1D/gn94YgsJbzXPFGq3yxjOwsqg/pX6SVheJf+QFc/wC7/UV5b4DyFu/1VW7Xlb7r2/A7lxZm1re3frZX++1zxH4Z/sr/AAX+Fl5Fq/h7SllvouVuLg+a4PqM8A/SvoukHQUtfR4HLsLg6fscJSjCPaKSX4HjYrGV8TP2mIm5S7t3Ciiiuw5jB0Hpef8AX1L/AErerB0Hpef9fUv9K3qACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorKkXXPMbyXgC5O3KtnHvzQBq1j6//wAgef6D+YpNviD/AJ6W/wD3w3/xVZOvLr/9kT5e36D+BvUf7VAHX0Vj7fEH/PS3/wC+G/8AiqTb4g/v2/8A3w3/AMVQBs1kaV/rbz/r4P8A6CtJt8QZ/wBZb/8AfDf/ABVZGlpr/m3n7y3/AOPg/wADf3V/2qAOvorG2+If79v/AN8N/wDFUuzxB/z0t/8Avhv/AIqgDB8c+GtD8aaY3g7xNbpeabq0NzZXcEgyksE8LpIjA9Qykgivif8A4Jk+I9Rtv2bm/Z88U3Dz6/8ABbV73wFfGZt0rw6QwGnzP3/0jTntZwTyd9fbuoLr/wDaVhl7fPmP/A39xv8Aar88LuLWv2ev+CmFvqS/Z4tC/aB0D7LLJhgq+JvC6l4sjP3rrTZJBnOf9DA5yMAH6gVBdf8AHtJ/un+VZu3xB/ft/wDvhv8A4qobldf+zyZkt/un+BvT/eoAu6N/yCLX/rkn8hWlXK6QviD+ybXD2/8Aqk/gb0H+1Wls8Qf89Lf/AL4b/wCKoA2KyLf/AJDV1/1zi/m1N2+If+elv/3w3/xVZNuuv/21dfvLfPlxfwN/tf7VAHX0VjbfEP8Aft/++G/+KpdviDvJb/8AfDf/ABVABrf/AB7Rf9d4f/QxWxXH60mv/ZosyW/+vh/gb++P9qtfb4h/56W//fDf/FUAbNFY+zxB/wA9Lf8A74b/AOKpAviDu9v/AN8N/wDFUALof/Hif+usv/obVsVyGiJr/wBhO17f/Wy/wN/fb/arX2+IP+elv/3w3/xVAGxWPN/yHrf/AK4S/wA0o2+IP+elv/3w3/xVY8ya/wD27b/vLfPky/wN6p/tUAdhRWPs8Qf89Lf/AL4b/wCKpNviH/npb/8AfDf/ABVAEuuf8ga7zx+6f+Rr5B/Zzux8bPiT4m/afnYy6UzyeHfC277v9m2cmLm5T/r7uVOG7xxJ2rzj/gpT+0Vdfs8fsy6lJPexW2peKW/sWzaFSZoxcAieZAW5MUO5h0+fbzzXivw9s/2lP2pvh/pPw8+DUNz8HPg9p9nDZ2+pTR7Nf1W0jQKBBHk/Zo3HPmk72zkZBIr7jKMhq/2TPMKklTp1W4e0lsoxs58qXvSlJuMYqKbspp2V2vnsdmMPrscNBOcoLm5Vu27qN3skldtvq4210f1B8df2y7Twt4u/4UX+z3pR8f8AxKuBgadav/omnAnHm6hcD5YUXrszvPTjINVvgh+xzLpvjGP4+ftO6ovjv4juMxXEqf8AEu0lTz5OnwEbYwv/AD0I3seeMnPt3wO/Z78Cfs5+EF8E/CTTLPTbUt5k8pV5Lm5l7yTys2+Rz6seOwA4r2Xb4h/56W//AHw3/wAVXm4jOqOGpSwmURcIvSVR/wASou2l1CD/AJIt3+1KWluulgJ1ZqvjWm1qor4Y+f8Ael/ee3RLqum/8f19/wBdV/8AQFrYrkNOTX/tt9iS3z5q/wADf3F/2q19viD/AJ6W/wD3w3/xVfMnrGxWPqo/0ix/6+P/AGRqTb4h/wCelv8A98N/8VWTqa+IPtFll7f/AI+P7jf3G/2qAOvorG2+IP8Anpb/APfDf/FUu3xB/wA9Lf8A74b/AOKoA1z0NZWg/wDIFtP+uSfyphXxBg5kt/8Avhv/AIqsrQl1/wDsW0xJb/6pP4G9P96gDrqKxtviH/npb/8AfDf/ABVLt8QY/wBZb/8AfDf/ABVABH/yHpf+uCf+hNWxXIImv/29L+8t/wDUJ/A395v9qtfZ4g/56W//AHw3/wAVQBsVja//AMgxv+ukX/oa0bfEP9+3/wC+G/8AiqyNdTX/AOzWzJb/AH4v4G/vr/tUAdhRWPt8Qf8APS3/AO+G/wDiqNviDvJb/wDfDf8AxVAGxWPov+qn/wCviX/0I0m3xB/ft/8Avhv/AIqsnRk1/wAqfElv/wAfEv8AA394/wC1QB19FY23xD/z0t/++G/+Ko2+If8Anpb/APfDf/FUALd/8hiz/wB2X+QrYrkLtdf/ALYs8vb/AHZf4G9B/tVrbfEP/PS3/wC+G/8AiqANmqOp/wDINuP+uT/yNVdviDH+st/++G/+Kqjqa+IP7NuMvb/6p/4G9D/tUAbll/x5Q/7i/wAqtVztmviD7HFiS3+4v8Den+9Vnb4h/v2//fDf/FUAbNY1j/yFb7/ej/8AQRRt8Qf37f8A74b/AOKrJsl1/wDtS+w9v96P+Fv7o/2qAOvorH2eIP8Anpb/APfDf/FUm3xB/ft/++G/+KoANY+9af8AXwn8jWzXHauuv7rTMlv/AMfCfwN6H/arY2+If+elv/3w3/xVAGzRWNt8Q/37f/vhv/iqXb4g/v2//fDf/FUAGgf8giH/AIF/M1sVx+gJr/8AZMOJLf8Ai/gb1P8AtVsbfEH/AD0t/wDvhv8A4qgDYrG/5mH/ALd//ZqNviH/AJ6W/wD3w3/xVY+zX/8AhIPv2+fs/wDcb+9/vUAdjRWNt8Q/89Lf/vhv/iqXb4g7SW//AHw3/wAVQAuvf8gmb6D+YrXrkNdXxB/ZM2Xt+g/hb1HvWvt8Qf8APS3/AO+G/wDiqANiisbb4h/v2/8A3w3/AMVS7PEH/PS3/wC+G/8AiqAGaL9+9/6+X/kK2643R11/febXt/8Aj5f+FvQf7VbW3xBj/WW//fDf/FUAbFZF9/yE7L/ek/8AQTSbfEH/AD0t/wDvhv8A4qsi9XX/AO0rLL2+d0n8Df3T/tUAdfRWNt8Q/wB+3/74b/4qjb4g/wCelv8A98N/8VQBo3f/AB6y/wC438qraP8A8gm1/wCuKf8AoIqhdJr/ANllzJb/AHG/gb0/3qraQviD+ybXD2/+qT+BvQf7VAHU0Vj7fEHaS3/74b/4qjb4g/56W/8A3w3/AMVQAlp/yG7z/rnD/wCzVs1x9quvf21d4kt8+XD/AAN/tf7Va+3xD/ft/wDvhv8A4qgDZrJ1f/Vwf9d4v/QhTdviD/npb/8AfDf/ABVZOrL4g8qDL2/+vi/gb+8P9qgDrqKx9viD/npb/wDfDf8AxVJt8Qf37f8A74b/AOKoA2ax9C/5B/8A21l/9Dajb4g7yW//AHw3/wAVWPoi+IPsHD2/+tl/gb++3+1QB2FFY+3xB/z0t/8Avhv/AIqk2+IP79v/AN8N/wDFUAOl/wCQ7D/1wk/9CSteuQkXxB/bkP7y3z5En8Lf3k9619viDtJb/wDfDf8AxVAF6+vrPTLGbUtRlWC3t0aWWRzhURBlmJPQADJNfmj/AME7NLuvGHwP8Y/tb64HbUfjhr994shaVdrpouFtNHix2VdPghkA/vSMepNbP/BSjxJ4xuvgBb/s6eE7mKPxF8adWtfA1j5QYSR22pbjqVwPmyBbadHdTEjoVAHJFfadn4VPgj4fW/gvwrFaWel6RYx2VnbojBIre3QRxoADwFVQB9KAPS1+6KWsVU8QhR+8t/8Avhv/AIqnbfEGfv2//fDf/FUAbFZGm/8AH3ff9dh/6AtN2+If+elv/wB8N/8AFVmaSuti+vPNeAr543YVs42LnHNAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9L+/iiiigAqpf8A/HjN/wBc2/lVuud1mw1CaC4lgvHiQxthAqkDj1IzQBe0P/kC2n/XFP8A0EVqVxmiaZqx0a0/4mL/AOpT+BPQe1an9l6t/wBBGT/vhP8ACgDforA/svVv+gjJ/wB8J/hR/Zerf9BGT/vhP8KAG6b/AMhzUvrF/wCg10NcDpumaqdc1If2g/WL+BP7v0rf/svVv+gjJ/3wn+FAG/RX56+Bf2svEPjD/goX48/YhkjSG38HeE9J8SR6gCDNM+ozSxNGUxtCoI1II5O6vuv+y9W/6CMn/fCf4UALrP8Ax9WH/XwP/QWrergtZ0vVvtOn/wDEwf8A4+B/An91vat7+y9W/wCgjJ/3wn+FAG/RWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAbc3+qb6Gsrw9/yA7X/rmtVZtL1byX/wCJi/Q/wJ/hWV4e0vVjodr/AMTB/wDVr/An+FAHcUVgf2Xq3/QRk/74T/Cj+y9W/wCgjJ/3wn+FAG/XPWf/ACMd5/1yi/m1O/svVv8AoIyf98J/hXP2emat/wAJHeD+0H/1UX8Cere1AHf0Vgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAfyv/8AB0Rzefskg/8ARXtM/wDRb1/U/rf+ptP+viL+dfyff8HMMOqav8X/ANjn4crdtJLqPxRtLhCyqNvk7UzwP+mlf1Sa/pmrbLXGoOB9pi/gT1+lAHe0Vgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAb9fKFn8VvHXxW+Mc3g34ZRPYeGvCtzt1vVLiHi7nAz9ltgw5Az+8k7dF55r6MWy1B5GgXU2LrglQqZGfUYpo0XUYUcQ3zLuyTiNBknv0rswuIp0VNzpqUmrRvsr9bdXbbonrrYwrUpT5UpWSd3bd+V+mu/fYs+G/8AkCw/8C/9CNblcJ4b0zVv7FhP9oP/ABfwJ/ePtW5/Zerf9BGT/vhP8K4zc36KwP7L1b/oIyf98J/hR/Zerf8AQRk/74T/AAoASL/kZ5v+vdP/AEI10FcDFpmrf8JNMP7Qf/j3T+BP7x9q3/7L1b/oIyf98J/hQBv0Vgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAL4j/48E/67R/8AoQrergvEemauLBD/AGg/+tj/AIE/vD2re/svVv8AoIyf98J/hQBv0Vgf2Xq3/QRk/wC+E/wo/svVv+gjJ/3wn+FAG8ehrD8O/wDIN/7aSf8AoRpjaXq2D/xMZP8AvhP8Kw/Dml6v/Zv/ACEX/wBZJ/An94+1AHeUVgf2Xq3/AEEZP++E/wAKP7L1b/oIyf8AfCf4UAb9YJ/5GUf9e5/9CFJ/Zerf9BGT/vhP8KwTperf8JKP+JjJ/wAe5/gT+8PagDvaKwP7L1b/AKCMn/fCf4Uf2Xq3/QRk/wC+E/woA36wvEn/ACCZPqv86b/Zerf9BGT/AL4T/CsLxJpmrf2TJ/xMH6r/AAJ6/SgDux0FLWANM1bA/wCJg/8A3wn+FH9l6t/0EZP++E/woA36Kwf7M1b/AKCD/wDfCf4Uf2Zq3/QQf/vhP8KAG+Hf+Paf/rvJ/OugrgfDumasbaf/AImD/wCvk/gT1+lb/wDZerf9BGT/AL4T/CgDforB/szVv+gg/wD3wn+FJ/Zerf8AQRk/74T/AAoAJ/8AkZLf/ri/8xW/XAz6Zq3/AAkkH/Ewf/Uv/AnqPat/+y9W/wCgjJ/3wn+FAG/RWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAS+Icf2RNn0rWh/wBSn0FcV4h0vVv7Im/4mD9P7if4VrQ6ZqvlIf7QfoP4E/woA6OisD+y9W/6CMn/AHwn+FH9l6t/0EZP++E/woA36wND/wBbe/8AXw38hR/Zerf9BGT/AL4T/CsHQ9M1bzb3/iYP/wAfDfwJ6D2oA72isD+y9W/6CMn/AHwn+FNXTtTf7upOceiJ/hQB0Nc/fqra5ZowyCsgI/Cl/svVv+gjJ/3wn+FYN7pmrDXbP/iYP91/4E9PpQBh6B8DfhZ4W8ZzeP8AQdHgttVnB3TIMfe6kDoCe+K9ZrA/svVv+gjJ/wB8J/hR/Zerf9BGT/vhP8K58PhaOHi4UIKKbvZJLV7vTqbVsRVrNSqycmlbV307G/WTrv8AyCLj/cNVv7L1b/oIyf8AfCf4Vla5pmrDSLg/2jJ9w/wJ/hXQYnVWP/HnF/uD+VWq5ay0vVvscX/Exk+4P4E9PpVr+y9W/wCgjJ/3wn+FAG/RWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAP0r/j9vf+uo/lW5XC6Vpmrfbb3/iYP/rR/Anp9K2/7L1b/oIyf98J/hQBv0Vgf2Xq3/QRk/74T/Cj+y9W/wCgjJ/3wn+FAC6l/wAhWx/3n/lW9XB6lpmrDVbH/iYOfmb+BPT6Vu/2Xq3/AEEZP++E/wAKAN+isD+y9W/6CMn/AHwn+FH9l6t/0EZP++E/woA0NU/5Bs//AFzb+VN0n/kGQf7grD1TTNWGmz/8TB/9W38Cen0pulaZqx0yDGoOPkH8Cf4UAdfRWB/Zerf9BGT/AL4T/Cj+y9W/6CMn/fCf4UAb9YGl/wDIWv8A/eT+VH9l6t/0EZP++E/wrA0zTNWOrX//ABMH++n8Cen0oA76isD+y9W/6CMn/fCf4Uf2Xq3/AEEZP++E/wAKAN+sDWP+P2x/66/0o/svVv8AoIyf98J/hWDrGmasLyxH9oP/AK3+4np9KAO9orA/svVv+gjJ/wB8J/hR/Zerf9BGT/vhP8KAN+q93/x6y/7jfyrI/svVv+gjJ/3wn+FQXemat9kl/wCJg/3G/gT0+lAGlon/ACCYP9wVqVxmi6Zq39lQf8TB/uD+BP8ACtX+zNW/6CD/APfCf4UAb1FYH9l6sf8AmIyD/gCf4Uv9mat/0EH/AO+E/wAKAI7H/kYb3/cjroq8/sdM1b/hIb3/AImD/cj/AIF9PpXRf2Zq3/QQf/vhP8KAN6isD+y9W/6CMn/fCf4Uv9mat/0EH/74T/CgBdc/5df+u6/yNbtcHrumasBan+0X/wBev8Ceh9q3v7M1b/oIP/3wn+FAG9RWB/Zerf8AQRk/74T/AApf7M1b/oIP/wB8J/hQBtyf6tvoaxfDX/IFg/3ajk0zVvLb/iYP0P8AAn+FYvhvTNW/sWD/AImL/d/uJ/hQB3dFYH9l6t/0EZP++E/wpf7M1b/oIP8A98J/hQBvVztt/wAjNc/9co/60/8AsvVv+gjJ/wB8J/hXPW+m6qfE1z/xMH/1Mf8AAnv7UAegUVg/2Zq3/QQf/vhP8KP7M1br/aD/APfCf4UAb1Ymu/8AHvD/ANdk/nTP7M1b/oIP/wB8J/hWHrul6t9nh/4mEn+uT+BPX6UAd1RWB/Zerf8AQRk/74T/AApf7M1b/oIP/wB8J/hQBvUVg/2Zq3/QQf8A74T/AApP7L1b/oIyf98J/hQAeGf+QSv+/J/6Ea364Hwzperf2Sv/ABMH++/8Cf3j7Vv/ANl6t/0EZP8AvhP8KAN+isH+zNW/6CD/APfCf4Uf2Zq3/QQf/vhP8KAEP/Iz/wDbsP8A0I1v1wX9mat/wk2P7Qf/AI9h/An94+1b/wDZmrf9BB/++E/woA3qKwf7M1b/AKCD/wDfCf4VyPjLxTovw90o614z8Qpp9t0DShAWPoowST7AVnVqwpQdSrJKK3bdkvVl06cqklCCu3sludb4l/5BZ/66Rf8AoYreHQV8Za5+1D8JJ7MRN4juY0aSMiWSydY8Bgc7igFfUenR3Oq2EOp6bqpnt7hFkjkRUKsrDIIOOhFcuEzPCYptYatGbW/LJO33G+IwOJw6Tr05RT2umjq6Kwf7M1Yf8xBz/wAAT/Ck/svVv+gjJ/3wn+Fdxym/WH4f/wCPOTP/AD3l/wDQjTf7M1b/AKCD/wDfCf4VhaBperfZJP8AiYP/AK+X+BP7x9qAO7orB/szVv8AoIP/AN8J/hXi+u+MfFK/GvRvhZod9lHsp9R1F2jQlYQRHGq8cFnOfoK5sVi6eHjGVT7UlFebk7L/ADfkmzehh51m1Dom36JX/wCG8z6GrDl/5GKH/rg//oQpv9mat/0EH/74T/CsKXTNW/4SOL/iYP8A6h/4E/vD2rpMDu6KwP7L1b/oIyf98J/hS/2Zq3/QQf8A74T/AAoA3qwvE3/ICuf93+opv9l6t/0EZP8AvhP8Kw/EumasNDuT/aD/AHR/AnqPagDuh0FLWANM1Ygf8TB/++E/wpf7M1b/AKCD/wDfCf4UAb1FYP8AZmrf9BB/++E/wpP7L1b/AKCMn/fCf4UALoPS8/6+pf6VvVwehaZqxF5/xMH/AOPqX+BPb2rd/svVv+gjJ/3wn+FAG/RWB/Zerf8AQRk/74T/AAq5ZWd9byl7m6adSMbSqjB9eBQBp0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFY+v8A/IHn+g/mK2Kx9f8A+QPP9B/MUAbFFFFABWRpX+tvP+vg/wDoK1r1kaV/rbz/AK+D/wCgrQBr0UUUAY2of8hOw/66P/6A1fFv/BRX4W+KPiD+zVd+M/hrA8/jX4a39p438NpFnfLqGhv55twByRdwCa0Zf4lmIr7S1D/kJ2H/AF0f/wBAatmgDzf4O/FXwd8dPhP4a+NHw9uRd6H4r0y11awmB+9b3caypn0IDYI6g5Br0G5/49pP90/yr81v2G9vwB+LnxN/YPvlW3sPDF9/wlng5BwreGvEMkkphQdhZagLmDA4WIw+uB+lN1/x7Sf7p/lQBU0b/kEWv/XJP5CtKs3Rv+QRa/8AXJP5CtKgArIt/wDkN3X/AFzi/m1a9ZFv/wAhu6/65xfzagDXooooAxtb/wCPaL/r4h/9DFbNY2t/8e0X/XxD/wChitmgAooooAx9D/48T/11l/8AQ2rYrH0P/jxP/XWX/wBDatigArHm/wCQ9b/9cJf/AEJK2Kx5v+Q9b/8AXCX+aUAbFFFFAH4nftA/Gv4K6t+2b4m0r486NeeI4/BGj22neGfD0Oly6hLeX99i5uLuOPYYxsCxRK7sBwa+ljr/APwUM+OxVvCGl6R8G/D8n3Z9WA1XW2Q9CLeMi3iP+y7Eiv0D1uOMaXdzhRv8lxuxzjB71rJ9wfSvr63E9H2VGNHCR5qcIxTqP2kU0ldwptKC55XlLnU9WeHTyipz1HUrO0pN+6uVu70TldydlorOOiPin4WfskeN/Cfjux+IXxQ+LXivxpc6exkisriZLPTTIyldz28CgPgE4DNjPUHFfbFcf498f+C/hd4SvfHfxC1KDSdI09PMuLq4baiDoB6kkkBVAJYnABNYXwj+Mfw5+OvguL4gfC3Ul1PTJZJIS4R4njliOHjkjkCvG6nqrKDyD0Irx8fXx+Oh9erxbhH3eZQUYJ78vupRT623O/DU8Nh5fV6btJ62cryfS+rbfqdrpv8Ax/X3/XVf/QFrYrkL3xBoXha21XxB4mvYNPsbV1ea4uZFiijXYoyzMQB+NdBpWqafremwaxpUontrqNZYpF6MjDII9iK8v2cuXntptfpfsdnMr8t9S/WPqv8Ax8WP/Xx/7I1bFY+q/wDHxY/9fH/sjVAzYooooAQ9DWVoP/IFtP8Arkn8q1T0NZWg/wDIFtP+uSfyoA1qKKKAMeP/AJD0v/XBP/QmrYrHj/5D0v8A1wT/ANCatigArG1//kGN/wBdIv8A0Na2axtf/wCQY3/XSL/0NaANmiiigArH0X/VT/8AXxL/AOhGtisfRf8AVT/9fEv/AKEaANiiiigDHu/+QzZ/7sv8hWxWPd/8hiz/AN2X+QrYoAKo6n/yDbj/AK5P/I1eqjqf/INuP+uT/wAjQBJY/wDHlD/uL/KrVVbH/jyh/wBxf5VaoAKxrH/kK33+9H/6CK2ax7H/AJCt9/vR/wDoIoA2KKKKAMbWPvWn/Xwn8jWzWNrH3rT/AK+E/ka2aACiiigDH0D/AJBMX/Av/QjWxWPoH/IJi/4F/wChGtigArG/5mH/ALd//Zq2axv+Zh/7d/8A2agDZooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/wBfL/yFbdYmi/fvf+vl/wCQrboAKyL7/kKWX+9J/wCgmtesi+/5Cdl/vSf+gmgDXooooAr3f/HrL/uN/Kq2j/8AIJtf+uKf+girN3/x6y/7jfyqto//ACCbX/rin/oIoA0aKKKAMa1/5Dd5/wBc4f8A2atmsa1/5Dd5/wBc4f8A2atmgArJ1f8A1cH/AF3i/wDQhWtWTq/+rg/67xf+hCgDWooooAKx9C/5B/8A21l/9DatisfQv+Qf/wBtZf8A0NqANiiiigDIl/5DsP8A1wk/9CStesiX/kOw/wDXCT/0JK8p/aS+OHh39mv4C+LPjv4pRp7Twvps96LePmS5mUYht4x3knlKRRju7AUAfH3hISftG/8ABSTXvHDN5vhj4B6R/wAI7YYOUk8T6/HHc38nputbAW0I7g3MoNfovr//ACBbr/rm38q+Vv2E/gV4i/Z//Zr0Xwz8QZFufGWtSXPiHxVdDkz67rErXV42e6pJIYk9I0UDAAFfVOv/APIFuv8Arm38qANVfuj6U6mr90fSnUAFZGm/8fd9/wBdh/6Ata9ZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9P+/iiiigAqpf8A/HjN/wBc2/lVuql//wAeM3/XNv5UAVtD/wCQLaf9cU/9BFalZeh/8gW0/wCuKfyFalABRRRQBz2mf8h3UvrF/wCg10Nc9pn/ACHdS+sX/oNdDQB/OB+z74vkvf8Ag5n+O3hlWysHwt0JSPdJY2H/AKMr+j+v5av2S4Zbn/g6Z/aXvTnbB8PdEj9huSzP9K/qVoAwdZ/4+rD/AK+B/wCgtW9WDrP/AB9WH/XwP/QWreoAKKKKAI5v9U30NZXh7/kB2v8A1zWtWb/VN9DWV4e/5Adr/wBc1oA2aKKKACues/8AkY7z/rlF/Nq6Gues/wDkY7z/AK5RfzagDoaKKKAP5K/+Diwib9uj9hizP8fxBLflJbf41/Vtr33LX/r5i/nX8o//AAcR8ft+fsKE9P8AhPm5/wC2trX9XGvfctf+vmL+dAG9TJFLoyKdpIwCO1DfMrIjYbH5Zrzj4a/Dr/hX9pfPe6ndaxqGqXL3V1d3bZZmPCoqj5URFwqqox36kmtYQhySlKVmrWVt+/kkv8tN2olKXMklp1fY5X4M/APwr8G5NU1ixuLnU9a12dp9Q1G8kMk07FmZRgnCqgbCqoAAFe5P9w/SnU1/uH6VeKxVXE1XWrycpPq/uXyS0S2S0Jo0YUoKnTVkjF8N/wDIFh/4F/6Ea3Kw/Df/ACBYf+Bf+hGtyuc1CiiigDn4v+Rnm/690/8AQjXQVz8X/Izzf9e6f+hGugoAKKKKAMHxGcWCf9do/wD0IVvVg+IziwT/AK7R/wDoQreoAKKKKAEPQ1h+Hf8AkG/9tJP/AEI1uHoaw/Dv/IN/7aSf+hGgDdooooAKwT/yMo/69z/6EK3qwT/yMo/69z/6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8ADv8Ax7T/APXeT+ddBXP+Hf8Aj2n/AOu8n866CgAooooAwJ/+Rkt/+uL/AMxW/WBP/wAjJb/9cX/mK36ACiiigDF8QjOjzfStWD/Up/uisrxCM6PN9K1YP9Sn+6KAJaKKKACud0iWOA380zBESdizE4AAA5NdFX55/tI/EHxbr/iqD9nH4bMY9Q1+YteTrwYrc4zg9sjqa8rOc1p5dhZYiacnooxW8pN2jFer/wAzvyzATxldUYuy1bb2UVq2/RFjxt8XfiB+0F45m+EfwDuWsNLs226nrS8jHQrGf8OT9Kv65+zz4g+CGlx/En4Xa5qV9qGmETXttdTGWO7hH+sG09DjkV9TfCP4U+Gvg94MtvCHhuMBYgDLKR88sh6sx969LlijniaGUBkcFWB6EHrXg4fhieJpvFZnNvFS1TTaVLsoK9vd6veXXTQ9atnkaM1QwMUqC0aaV593L16L7PQxPC3iGx8WeHLLxLppzBfQpMn0YdPwPFF7/wAh2z/3X/lRBaaN4N8OtDpsKWtlYxO6xoMKqrljgfnXyP8AszazrPxL1G6+MGv31xK1/d3Nva2+8/Z47eLhdqdMnua92eYujXw+CmuarNNu2iSilzP72kl5nlRwaqUq2Ji7Qi0lfduV7L7k7n2vRXyF+2V8bJPhF8MJLbRZzFrGrZhtipwyL/E4+g6e9em/s33euX/wT8P3/iO5ku7ue2DvLKdztnpkms6eeUKmaTyqCvOEFOT6K7sl69fQueVVYYCOPk7RlLlS6uy1fp0PcKydd/5BFx/uGsL4h+KT4J8D6p4rCh2sLd5VU9CVHH61haH4mfV/hNbeLdbmjzPZLcTSKNqDIyfoBXoPGUlX+rt+9y83yvY41hpul7ZL3b8vztc9Gsf+POL/AHB/KrVfAXhv9t3TfEHxQ07wVpOjyHQ72X7JHqLkgvKvGVGMFc/jX37XJlWd4LMo1JYKpzqD5W9d99L7rs1ozpx+V4nBOCxMOVyV16fo/LcKKKK9U88w9K/4/b3/AK6j+VblYelf8fl6f+mv9K3KACiiigDB1L/kK2P+8/8AKt6sHUv+QrY/7z/yreoAKKKKAKGq/wDINn/65t/Km6SMaZB/uCnar/yDZ/8Arm38qbpIxpkH+4KANGiiigArA0w/8Ta//wB5P5Vv1gaWf+Jtf/7yfyoA36KKKACsDWP+P2w/67f0rfrn9Y/4/rD/AK6n+VAHQUUUUAFV7v8A49Zf9xv5VYqvd/8AHrL/ALjfyoAp6J/yCYP9wVqVl6J/yCYP9wVqUAFFFFAHO2P/ACMN7/uR10Vc7Y/8jDe/7kddFQAUUUUAYOu9LX/r4X+RrerB13paf9fC/wAjW9QAUUUUAMk/1bfQ1i+G/wDkCwf7tbUn+rb6Gsbw3/yBYPpQBuUUUUAFc7bf8jNc/wDXKP8ArXRVztt/yM1z/wBco/60AdFRRRQAVia7/wAe8P8A12T+dbdYmu/8e8P/AF2T+dAG3RRRQAUUUUAYHhn/AJBK/wC/J/6Ea36wPDP/ACCV/wB+T/0I1v0AFFFFAGAf+Rn/AO3Yf+hGt+sA/wDIz/8AbsP/AEI1v0Ac/wCK/Eul+DfDV94q1p/LtbCF5pG9lGf16V8GfB678CfEaV/2gvjzrFhJdXMjnTLC6nQRWVupIXEZP3zjJJGa+nf2nDcD4AeK/sq72OnyDA9DjP6Zr58/Zq/Z++A3jf4MeHPFupaDa317Lap9okkG/dMnD5B4zkHtXwmeSxeJzqhg6MYSjCm6nLNtRcuZRTaSfM49E9E3fex9XlaoUcsq4mrKUXKaheKTduW7WrVr9X5W2ucx8Z/i5D8fbCX4L/ArTze215IkV/q5i22sEW4ZCNjk5x/SvT/FPxF174eyeH/2avghFHf+IYrOOOW4n+aGzgjUDfIB/EQMgH+tfTN7ovh7wr4cWx0e2gsLWOSIBI1WNB849MCvyy8LfGbVfhl488fm00a61Hx7ruqPBZoYi0ccKk7ST6DOcdDgZ4ry87lUyypCvjMR+9rvllOMbclOKcuSnHV803om7tt36K3flkYY6EqWHo/u6XvKMnfmnJpc03ouWK1aWmlup9I+DfjD8cLT9oeD4Ga1d2XiCO2hE+o3kNsbfyQyZCjDEcEqMkd6+kpfH2ot8cl+HNsU+xQaOb+5JHzLI8uxOew2hjXyl/wT/wBM1HUNE8UfEDxIxuNU1LUWjlnf5nbyhyM+m4n2rkfFfxWi0DV/jH8UPMxPAbbQLDnksqlcD6Fmapy7OquGyuhja9WXLVqTmlJ3caUIyko3d29IK93duQ8ZldOtj6uFpU43pwjG6VlKcnFc1lotZO3kj7F+Dn7QXhD416pr2m+F45U/sKcQtJJjbKrZw646A7T1rw3w78Y/jF8Q/GniC1+D1rZPoXhq4kjke5BLX0+4kojAgLx0PbjNfL/7IbXvwq1rx74S1xxb6pLo8d5bxsdrSERu4256nDA15bp3xhj8D/sjL4R8MX3k67r2rXDXPlNiZIUIySRyN2FA9RmvHlxriJ4DD1MdUcJJVpVOS0ZNwlywgt7NuSb7210bPSjwxRji60MLBSTdOMOa7SU480pvvZJ29dNT9h/iXYfFzVNKth8LNQstLuskzm8hMwIIGAvOBg5zwa/O/wACxftT+KPjp4u1Hw7q+lya1pCQaddzyxYhZFyyrGu04wc56V9q/sqfEO1+IHwW0O5mvlutRt7ZY7tS+6VWUlQXHUFgM89a8V/ZHuDcfGD4qu/3zrH6BpAP5V9DmdOjmeJyzEU61SMazcvdqNJWptqyWilfdpdzx8BKpgqOOpTpwcqStrBO95pa31a7fI9F0fxd8b/hVpGoeOv2iNQ06bRLKEZXToGabzGYKDwAMc89a6TwT+0p8FviJ4gtR4f1yBZpojGkM58mQuzDCgNjJPoKyfi5q0Xi34z+FfghfHfpl7b3Wo6jDniZIAFjjb1Usckd8V8yfCP4d+CvAn7Z3iH4eWNhDdaebVL+2WVA5tZRtcBCemN2B7Yq6uaY7A4ylhsLNToOoqUnUcpT9o48+jv8Nmo7aO/QmngMLisNUr4iLjV5HUSgko8ifLqrb3u99V5n6d3V1b2VtJeXTiOKJS7s3AVVGST9BWP4Y8UaF4y0G38TeGrlbuxu1LRSp91gCR/MVxPxzlmt/gv4smtjh10i8KkdQfKavzBh+LHiaP8AZo8BfBD4cTFNc8TGSJ3jJDxwCZlxkcjcc5P90GvXz3imOWYr2VSF4+zc1b4pS54wjFerkedlWQyx1D2kJWfOo67KPLKUpP0SP2Ktr2zvAxs5kl2Ha2xg2COxx3rL8S/8gK5/3f6ivzaT9lD49fA7VLfxZ8BvEB1CRkX7ZaXbbVlf+Lj7rKe2cEetfcXhTV/H+t/DI33xL02LStWIZZYIX3pgHAYHJxnrjNdmTZ1icTUlh8bhJ0ai1/mg15TWl/J2ZzZlllChBVsLiI1IPTtJPzi9beZ6+OgpaQdBS19EeMFFFFAGDoPS8/6+pf6VvVg6D0vP+vqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVlSa3p0UjRO7blJB+RjyPwrVooAx/7e0v++3/AHw3+FZGv69pf9jz/O33R/A3qPauvrI1/wD5BE/0H8xQAn9vaX/fb/vhv8KP7e0v++3/AHw3+FbFFAGP/b2l/wB9v++G/wAKyNL17S/NvPnb/j4P8Df3V9q6+sjSv9bef9fB/wDQVoAT+3tL/vt/3w3+FH9vaX/fb/vhv8K2KKAOP1DXtL/tKwO9v9Y/8Df3G9q2P7e0v++3/fDf4Umof8hOw/66P/6A1bNAH5cf8FA9WsPghrvgP/goDoMUzv8AC69ax8UC3iYyTeENaZIdQLADLrZSi3v8dQtu+PvHP6SP4k0W5sDcW03mRyR7kdVZlZWGQQQMEEdDVjxN4b0Lxl4c1Dwh4otY77TNVtpbO7tpRujmgnUpIjDurKSCPQ1+e3/BPTxZ4h8IeDvFX7E3xJvZL3xR8EbtNHhubgkzah4cuUMmi3pJ+8WtR9nlYZzPby55oA++tG17S/7Itfnb/VJ/yzb0HtWl/b2l/wB9v++G/wAKn0f/AJBNr/1yT+QrRoAx/wC3tL/vt/3w3+FZFvr2l/23dfO3+ri/gb/a9q6+si3P/E6uh/0zi/m1ACf29pf99v8Avhv8KP7e0v8Avt/3w3+FbFFAHH63r2l/Zovnb/Xw/wADf3x7Vsf29pf99v8Avhv8KNbOLaL/AK7w/wDoYrYoAx/7e0v++3/fDf4Uf29pf99v++G/wrYooA5DQ9e0v7Cfnb/Wy/wN/fb2rX/t7S/77f8AfDf4UuhnNif+usv/AKG1a9AGP/b2l/32/wC+G/wrHm17S/7et/nb/US/wN6p7V2FY8x/4n1uP+mMv80oAP7e0v8Avt/3w3+FH9vaX/fb/vhv8K2KKAOT1zXtL/sa7+dv9U/8Deh9q0k17S9g+dun9xv8Km1v/kDXX/XJ/wCRrST7o+lAHw9c6NpP7Qn7Qt3rPjfNx4T+GlzHb6bp0kbGK61xo1mku5VxhhbRyIkAIwHZ36ha8h8YeMPD/wCx3+1yfiHqNyun/Dr4tKY9WlkBSDT/ABBaJmOdsgBVuoVKue7rk1+l9lo+labd3d9YW6QzX8gluHQYMrqqoGb1IVVGfQCvyd/aq0zxB/wUD8f6z+yR8MbxbLwr4LQ3XiLWdgkV9ZCE2djESCP3bkSXBHIA28Hg/ecO4lYzFOhXfLgo0uWpfaENPeW/v+1tKOl5TsttvnM0pewoqpT1xDnePeT10/w8l0+0bvc9d+Dc4/as8byftC/EOKaPwZY3IfwfodxE4WXaoA1S5jIw0kg5tkYYiQ7sb2yPv/8At7S/77f98N/hX4++Hv2uvFXj34QeGPgBBM2gfFrVPEln4T1qytj5VzYrYBWvbpFH3Ynt4iUYDaN+B0r9mq87irA4nDVYqvFQjeUYQWqUItJST2kpu75/ttOXVHVk2Io1YSdN8z0cpd5Nap9nFW937Ksuhj/29pf99v8Avhv8KyNU13SzcWPzt/x8f3H/ALje1dfWPqn/AB8WP/Xx/wCyPXyh7If29pf99v8Avhv8KP7e0v8Avt/3w3+FbFFAGM2vaXg/O3/fDf4VlaDr2l/2LafO3+qT+BvT6V1p6GsrQv8AkC2n/XJP5UAN/t7S/wC+3/fDf4Uf29pf99v++G/wrYooA4+PXtL/ALel+dv9Qn8Df3m9q2P7e0v++3/fDf4URk/29KP+mCf+hNWxQBj/ANvaX/fb/vhv8Kx9e17SzpjfO334v4G/vr7V2FY+vf8AIMb/AK6Rf+hrQAf29pf99v8Avhv8KP7e0v8Avt/3w3+FbFFAGP8A29pf99v++G/wrI0bXtL8mf52/wCPiX+Bv7x9q6+sfRv9VP8A9fEv/oRoAP7e0v8Avt/3w3+FH9vaX/fb/vhv8K2KKAOPu9e0v+2bP52+7L/A3oPatj+3tL/vt/3w3+FF3/yGLP8A3Zf5CtigDH/t7S/77f8AfDf4VR1PXtLOm3Hzt/qn/gb0PtXTVR1P/kG3H/XJ/wCRoAzLLXtL+xQ/O33F/gb0+lWf7e0v++3/AHw3+FX7L/jzh/3F/lVmgDH/ALe0v++3/fDf4Vj2OvaX/al987fej/gb+6PauwrGsT/xNb4f7Uf/AKCKAF/t7S/77f8AfDf4Uf29pf8Afb/vhv8ACtiigDjtX13TC1p87f8AHwn8Deh9q2f7e0v++3/fDf4UmsfetP8Ar4T+RrZoAx/7e0v++3/fDf4Uf29pf99v++G/wrYooA4/QNe0v+yIfnb+L+Bv7x9q2P7e0v8Avt/3w3+FGgc6RDn/AGv5mtigDH/t7S/77f8AfDf4Vjf29pf/AAkH32/49/7jf3vpXY1jf8zD/wBu/wD7NQAv9vaX/fb/AL4b/Cj+3tL/AL7f98N/hWxRQByGva9pf9kT/O3QfwN6j2rX/t7S/wC+3/fDf4Uuu/8AIJm+g/mK16AMf+3tL/vt/wB8N/hR/b2l/wB9v++G/wAK2KKAON0bXdMD3mXb/j5f+BvQe1bX9vaX/fb/AL4b/CmaN9+8/wCvl/5CtugDH/t7S/77f98N/hWRfa9pf9p2J3t96T+Bv7p9q6+si+/5Cdl/vSf+gmgBP7e0v++3/fDf4Uf29pf99v8Avhv8K2KKAOfu9e0v7LL87fcb+BvT6VW0fXtL/sm1+dv9Sn8Df3R7V0N3/wAesv8AuN/Kq2kf8gm1/wCuKf8AoIoAg/t7S/77f98N/hR/b2l/32/74b/CtiigDj7XXdMGtXh3t/q4f4G/2vatj+3tL/vt/wB8N/hSWv8AyG7z/rnD/wCzVs0AY/8Ab2l/32/74b/CsnV9e0vyoPnb/XxfwN/eHtXXVk6v/q4P+u8X/oQoAb/b2l/32/74b/Cj+3tL/vt/3w3+FbFFAGP/AG9pf99v++G/wrH0LXtL/s/77f62X+Bv77e1dhWPoZJ0/n/nrL/6G1AB/b2l/wB9v++G/wAKP7e0v++3/fDf4VsUUAchLr2l/wBuw/O3+ok/gb+8ntX5y/tK6xpv7TP7Y3w8/ZLs5nl8O+BvI+I/jNURtjm1laPQ7KTjpNeI92UI+ZbMZ4bn9APiV8QfCXwm8Oat8UPH96mnaF4c0m81PULqU4SG2tVEkjn2VVJr5G/4J3eBvGLfC3V/2mfi5ZGw8b/GfUm8U6jbSD95YWEiLFpVgx65tLBIVcdPOaUjG6gD7q/t7S/77f8AfDf4Vka/r2l/2LdfO3+rb+BvT6V19ZGvf8gW6x/zzb+VADV17S9o+dv++G/wpf7e0v8Avt/3w3+Fa6/dFLQBj/29pf8Afb/vhv8ACsvSNb06W/vIkdtzTgD5GHJRfausrI00k3d9n/nsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP//U/v4ooooAKqX/APx4zf8AXNv5Vbrn9Y1K4gguIUtJZQEb5l24OR7mgC5of/IFtP8Arin/AKCK1K47RNYuv7FtP9Am/wBTH/d9B/tVp/2xdf8APjP/AOO//FUAb1FYP9sXX/PjP/47/wDFUf2xdf8APjP/AOO//FUAM0z/AJDupfWL/wBBroa4LTtXuhreo/6DN1i/u/3f96t/+2Lr/nxn/wDHf/iqAP5m/wBgj/if/wDByd+2HrZ5Om+F/Dlpn0zHDx/47X9QVfyzf8E1tRnH/Bwt+2/cC2kYnTfDQ2jGRiNevP8AWv6e/wC2Lr/nxn/8d/8AiqADWf8Aj6sP+vgf+gtW9XCa1rF19qsP9An/AOPgf3f7rf7Vbv8AbF1/z4z/APjv/wAVQBvUVg/2xdf8+M//AI7/APFUf2xdf8+M/wD47/8AFUAbU3+qb6Gsrw9/yA7X/rmtVptZuvKb/QZ+h/u//FVl+HtYuv7Dtf8AQZv9Wv8Ad/8AiqAO2oryX4n/ABg0H4ReA9T+I3jO2ng03SoTNMw2lj2CqN3LMSAB6mvHv2eP2wfCH7Q02paRpGj6hpGsaUscs+n3yqkwgmGY5QM8qwI+mRWMsRTjUVJy957I76WV4urhZ42nTbpQdnLonp/mr9rq+6Pruues/wDkY7z/AK5RfzanNrVygLNYzADqTt/+Krn7HWp38QXbpZTEGGIggqQQS3+1WxwHf0Vg/wBs3X/PjP8A+O//ABVQXWu3kNtJMlhMSqkj7vYf71A0r6H8tP8AwX10cfEj9sX9l7W/Bt1b3LfCzxYNb8QoH/eWtmWhYHHdmCEhRzX9MGk/EDw38VfAGneOfhnfxX1lqDo9rPglN2cDcvBGG+8Dg1/Gl8YvFutePPix4k8YeISxvdQ1G4klDdUO8gJ/wEALj2r+iX/gmNoHi/wd+ypp0/iCC5ki1XWXu7OM42pASqgrnBAZlJr5zKs6q4rFzpuK5Vdr5Pqfr/Gvh3gskySjjYVZOu3FSTas7pt8qtdWa01eh9/fBn4Xaj8OtJvL/wAVak+teItam+1anfMCqvIOFSNMkJFGvyoo+pySa9lrB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8Aiq+qxOIqV6kqtR3k/l8klokloktEtEfjdKlGnBQhsv6/4c3qa/3D9Kw/7Zuv+fGf/wAd/wDiqa2sXW0/6DP0/wBn/wCKrA0JPDf/ACBYf+Bf+hGtyuG8OaxcjRoQLGf+L+7/AHj/ALVbf9s3X/PjP/47/wDFUAb1FYP9sXX/AD4z/wDjv/xVH9sXX/PjP/47/wDFUANi/wCRnm/690/9CNdBXBxavdf8JNMfsM//AB7p/d/vH/are/ti6/58Z/8Ax3/4qgDeorB/tm6/58Z//Hf/AIqj+2br/nxn/wDHf/iqADxFxYJ/12j/APQhW9XB+ItYuvsC5sJ/9bH/AHf7w/2q3v7Yuv8Anxn/APHf/iqAN6isH+2Lr/nxn/8AHf8A4qj+2Lr/AJ8Z/wDx3/4qgDdPQ1h+Hf8AkG/9tJP/AEI006xdYP8AoM//AI7/APFVieHdYuv7N/48Zv8AWSf3f7x/2qAO6orB/tm6/wCfGf8A8d/+Ko/tm6/58Z//AB3/AOKoA3qwT/yMo/69z/6EKP7Zuv8Anxn/APHf/iqwTrF1/wAJIP8AQZ/+Pc/3f7w/2qAO8orB/ti6/wCfGf8A8d/+Ko/ti6/58Z//AB3/AOKoA3qwvEn/ACCZPqv86T+2Lr/nxn/8d/8Aiqw/EesXX9kyZsZ+q/3fX/eoA7kdBS1gDWbrA/0Cf/x3/wCKpf7Zuv8Anxn/APHf/iqAN6isH+2br/nxn/8AHf8A4qj+2Lr/AJ8Z/wDx3/4qgBvh3/j2n/67yfzroK4Lw7rF19lm/wBAn/18n931/wB6t/8Ati6/58Z//Hf/AIqgDeorB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqAEn/5GS3/64v8AzFb9cFPrN1/wklv/AKBP/qX/ALvqP9qt/wDtm6/58Z//AB3/AOKoA3qKwf7Zuv8Anxn/APHf/iqP7Zuv+fGf/wAd/wDiqAJPEP8AyB5vpWrB/qU/3RXHeINYuv7Im/0Gfp/s/wDxVakOsXXkp/oM/Qf3f/iqAOiorB/ti6/58Z//AB3/AOKo/ti6/wCfGf8A8d/+KoA3q+Jvi3+y/cfFDxi/xE8Ga7N4e121cxCaMbldQBjoQR+Br67/ALYuv+fGf/x3/wCKrB0TWbkS3v8AoM/+vb+76D/arz8zyvDZhQeHxceaN092mmtmmmmmu6Z2YHH18HV9th5WltsmmnumndNHxavwi/bh8NjzNE8d22o7Oi3KE5x67w9df8J/2iviRZ/ESD4M/H3SE0/V7pSbW8g/1M+326c+35V9MeGfiZo3jA3o8OwzXI0+draYgAASL1AJIzj2r4Y/aJ8RL4o/ac8B+HvDULyapps3m3Ea4JWMnODgnHHPNfEZjhFlFKljsvxVSSc4R5JTdSM1KSi0ua7T3aad9D6jBYh5jUqYTGYeCajKXMoqEotRbTdrK2266n2r8d9QfS/g74jvozhksZcEepGK8D/Y0t4rD4IeG5WwquLmVieOp5Nei/tK6vcH4FeJg1nKgNm43HbgfkTXxRYfFqb4b/sfaDHp0T/b9Sgms7YjGN8hIJ654B9K6c4zGlg8++tV37tPDTl/5PHT1dkjHLsHPE5T7Cl8U60V/wCSv8tzwL9qjxZqfxn8Xaz49s2/4kfh+ePTLb0d2PzEfXGa/aD4R2sdl8MNBtYhhUsYcf8AfIr8sPjJ8NLj4X/siaLpFxaPHdT3sd3eytjBeQZAPPbpzX6M+EfiT4c8L/CDSPEmuOLfT4rGEmd3QKcKOB83J9hzXicF0amHzfGV8dK1WdOFSd3a3M5NrXZRVl8j1OJakK2XYalhFeEZyhG3XlSV/Vu7+Z0fx0tlvPg94jt2Gd1hN+gr82vEnxV1fxP+z34G+CHhWQnUvEMKx3TKeUt0bBz6Zr7c1r4t6R8U/gbr/ibw3Y3i2L2txHHLOgj8wKPvKCclT2Nfnr+wx4LutU1nVPiPf28l1DpNv9ntsEYWR+uMnsKvijEVMZmuEwmCleGJpuLkv+ffOpSa9YppepGRUY4bL8RiMUrSoTUkn/PytJP0bT+R7J8c/COi/Dfxt8JfCmhRrFBaSgcD7zZG5j7k1+o1fl7+13qsp+LPw1le3ki2TAgNjJ+YdMGvsf4q/tCeEPhDYwy+JYJ3u7ohba0h2tNKx44UHp717GR4nC4HG5r7SShSpyp+SS9mkvy0POzSjXxeFwHInKpNT9W+d3Pe6K5PS/Et5qWm2+oNplzCZ41k8t9oZdwzg/N1FXv7Yuv+fGf/AMd/+Kr72MlJKS2Z8k002mO0r/j8vT/01/pW5XDaXrF0Ly9/0Gf/AFg/u+n+9W3/AGxdf8+M/wD47/8AFUxG9RWD/bF1/wA+M/8A47/8VR/bN1/z4z/+O/8AxVABqX/IVsf95/5VvVwmpaxc/wBqWP8AoM/3m/u+n+9W7/bF1/z4z/8Ajv8A8VQBvUVg/wBsXX/PjP8A+O//ABVH9sXX/PjP/wCO/wDxVAF/Vf8AkGz/APXNv5U3SBjTIP8AcFYeqaxdf2bP/oM/+rb+76f71JpWsXI02DFjP9wf3f8A4qgDrqKwf7Yuv+fGf/x3/wCKo/tm6/58Z/8Ax3/4qgDern9L/wCQtf8A++n8qd/bN1/z4z/+O/8AxVYOmaxdf2tf/wCgz/eT+7/d/wB6gDvKKwf7Yuv+fGf/AMd/+Ko/ti6/58Z//Hf/AIqgDern9Y/4/rD/AK6n+VO/ti6/58Z//Hf/AIqsHWNYuvttifsM/wDrT/d9P96gDvKKwf7Zuv8Anxn/APHf/iqP7Zuv+fGf/wAd/wDiqAN6q93/AMesv+438qyf7Zuv+fGf/wAd/wDiqgu9Yuvssv8AoE/3G/u+n+9QBo6J/wAgmD/cFalcdousXX9kwYsJ/uD+7/8AFVp/2xdf8+M//jv/AMVQBvUVg/2xdf8APjP/AOO//FUf2xdf8+M//jv/AMVQBHY/8jDe/wC5HXRVwFlrF1/wkN7/AKDP9yP+76f71dD/AGzdf8+M/wD47/8AFUAb1FYP9s3X/PjP/wCO/wDxVH9sXX/PjP8A+O//ABVABrvS0/6+F/ka3q4TXNYu/wDRP9Bn/wCPhf7vof8Aard/ti6/58Z//Hf/AIqgDeorB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqANuT/Vt9DWL4b50WA/7NRyazdeW3+gT9D/AHf/AIqsbw3rF0NFg/0Cf7v+z/8AFUAd1RWD/bN1/wA+M/8A47/8VR/bF1/z4z/+O/8AxVAG9XO23/Iy3P8A1yj/AK1J/bF1/wA+M/8A47/8VXPW+sXX/CS3P+gz/wCpj/u+/wDtUAd/RWD/AGxdf8+M/wD47/8AFUf2zdf8+M//AI7/APFUAb1Ymu/8e8P/AF2T+dM/tm6/58Z//Hf/AIqsTXdZufs8ObCf/XR/3fX/AHqAO5orB/tm6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqAN6isH+2Lr/nxn/wDHf/iqP7Yuv+fGf/x3/wCKoATwz/yCV/35P/QjW/XB+GtYuf7JXFjP99/7v94/7Vb39s3X/PjP/wCO/wDxVAG9RWD/AGzdf8+M/wD47/8AFUf2zdf8+M//AI7/APFUAIf+Rn/7dh/6Ea364M6xc/8ACTf8eM3/AB7D+7/eP+1W9/bF1/z4z/8Ajv8A8VQBo6lp1nq+nT6VqCCWC5jaKRD0ZWGCPyr827H4OftTfs6ane2PwJntta8PXUrSx2t1jdET2wSOe2QefSv0T/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8Aiq8PN8hoZhKnVlOVOpC/LOD5ZJPdX1TT6po9XLs2q4NTpqMZwla8ZK6dtn5Nd0fBum/Bn46/FS+h8W/tJ6kIbC1mjeDRbM7Yi24AGQqcY9skn1r7R8ePp3hzwTrHiaKGNJ7LT55Fk2jdlIyRz+FP8S6xdf2XzYz/AOsi/u/3x/tV5z+0Hrl3H8EPE7C0lj/4l8o3HbgbhjsfeueOVUcswOIqU25VOWUnOb5pSaTtdvt0Ssl0Rs8fVx2KowmlGN0lGKtFJtXsvPq3q+p5p+wbZfZv2erK7Iwbu6uZifXMhH9K+VPDX7LXxU8X/HbUtO8awSW3hSHWJdVkckbLklsoFwcnIwCT0GaT4afFW/ufgF4S/Z8+He99e8QGVLuSIgm2s2lfzGyDwxXOM4/UV+pOiyPomkWujW1lcGO1iSJSxUkhBgZJavj8lyvA55gMDh6l3DDwpuVn7spSim4PTWys5WfW3c+izPH4rK8Xiq0LKVaU0rrVRUmlNdr6pel+x5d8Vv2Z/hZ8X7621bxNayQ3tqgiW4tnMUhjH8LEdR9elcJ8PP2PvgV4au59ZttLa4lYTWwFxI0ihWypIBOMkd+o7V9PjWLo/wDLjN/47/8AFVheH9Yu/skn+gzf6+X+7/ePvX3VXhzK6mIeKqYWDqXvzOKvfufKwzrHwpewhXkobWu7WOf+E/wS+HvwX0+50/wJZm3F2/mTO7F3cjoCTngdhXh2p/Aj4hfD/wCMlz8W/gvewNb61Kh1bTLvKpIC3zOjDOCMkgY6+xxX1b/bF1/z4z/+O/8AxVL/AGxdf8+M3/jv/wAVRXyDBVKNKhCHIqb5ocnuuL8rd7u6ejvqgpZviYVKlWUuZzVpc2vMvO/ays910PkD9pH4bfFyH4iaF8dfgxFHe6npED2s9nIR+8jf0yQD1IIyD0Irnv2Y/h38UZPi74g+Nfxgsl03Udbh8uG1BBKIhUHoTgYAA5ya+3/7Yuv+fGf/AMd/+KrFl1i5/wCEhh/0Gf8A1D/3f7w/2q4XwphnmKzD2k/i5+S/uc/Ly89rXvbzsdSz+ssE8HyR25ea3vct+blve1r+Vzotf0e18Q6HeaDfDMN7BJA/+7IpU/oa/Of9lf8AZD8X/Db4o3PjT4g+W0OkCSDSwG379+QZMfwjaTgepNfoh/bF1/z4z/8Ajv8A8VR/bF1/z4z/APjv/wAVXZmPD2Dx2Lw2NxEbzotuPbpv3s0mvM58FnOJwuHrYWi/dqpJ9/l6p2fkb1YXib/kBXP+7/UUn9sXX/PjP/47/wDFVh+JdYujoVz/AKDP90f3fUf7Ve4eUdyOgpawRrF1j/jwn/8AHf8A4ql/ti6/58Zv/Hf/AIqgDdorB/ti6/58Z/8Ax3/4qj+2Lr/nxn/8d/8AiqADQel5/wBfUv8ASt6uE0LWLoC8/wBBm/4+pP7vt/tVu/2xdf8APjP/AOO//FUAb1FYP9sXX/PjP/47/wDFVcs7+a6lMcltJCAM7nxj6cE0AaVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWPr/APyB5/oP5itisfX/APkDz/QfzFAGxRRRQAVkaV/rbz/r4P8A6Cta9ZGlf628/wCvg/8AoK0Aa9FFFAGNqH/ITsP+uj/+gNWzWNqH/ITsP+uj/wDoDVs0AFfmF+3Orfs2/FHwb/wUL0kGPS/DSnwx4+CjPmeFdTlXbdtgEk6XeeXcZ/ht3uOma/T2ua8Z+FfDfjrwfqvgnxlZRalpGsWc9lfWkw3Rz29whSSNx3V1JBHoaANHRHjk0a0kiYOjQoVZTkEFRgg9wa1K/NT/AIJ2eLvFfgLSfEH7C3xYvGvPEfwh+yw6TezMTLqvhK8Vv7JvGLAbpESOSzuCM/vrcscbwK/SugArIt/+Q3df9c4v5tWvWRb/APIauv8ArnF/NqANeiiigDH1s4tov+u8P/oYrYrH1v8A49ov+u8P/oYrYoAKKKKAMfQ/+PE/9dZf/Q2rYrH0P/jxb/rrL/6G1bFABWPN/wAh63/64y/zStiseb/kPW//AFwl/mlAGxRRRQBl65/yBrv/AK5P/I1pJ9wfSs3W/wDkDXX/AFyf+RrST7g+lAHzT+1VqX7QUfw2Twz+zXpyT+ItfuU0/wDtGaREh0mCUHzLxwx3P5YHyqoJ3EHBxg9J+zj8AvCP7Nfwn0/4XeES84t9095ezcz3t5L801xKepZ29c4GB0Fe6UV6Us0q/UVgIJRhzc0rbzey5nfVRV+VKyV293c5VhIfWHiZNuVrK+0V1t69X5LojxjT/gt8J2+MN58bv+Efsh4tSMWY1URD7T5JjUFd304zjO3jOOK9nrH03/j+vv8Arqv/AKAtbFcVXEVavL7WblypJXbdktkr7JdFsbwpwhfkild3dur7+oVj6r/x8WP/AF8f+yNWxWRqn+vsv+vj/wBkesizXooooAQ9DWVoP/IFtP8Arkn8q1T0NZWg/wDIFtP+uSfyoA1qKKKAMeP/AJD8v/XBP/QmrYrHj/5D0v8A1wT/ANCatigArG17/kGN/wBdIv8A0Na2axtf/wCQY3/XSL/0NaANmiiigArH0X/VT/8AXxL/AOhGtisfRf8AVT/9fEv/AKEaANiiiigDHu/+QzZ/7sv8hWxWPd/8hiz/AN2X+QrYoAKo6n/yDbj/AK5P/I1eqjqf/INuP+uT/wAjQBLZf8ecOP7i/wAqs1Wsv+POH/cX+VWaACsax/5Ct9/vR/8AoIrZrGsP+Qrff70f/oIoA2aKKKAMbWPvWn/Xwn8jWzWNrH3rT/r4T+RrZoAKKKKAMfQP+QRD/wAC/ma2Kx9A/wCQRD/wL+ZrYoAKxv8AmYf+3f8A9mrZrG/5mH/t3/8AZqANmiiigDI17/kEzfQfzFa9ZGvf8gmb6D+YrXoAKKKKAMTRfv3v/Xy/8hW3WJov373/AK+X/kK26ACsi+/5Cll/vSf+gmtesi9/5Cdl/vSf+gmgDXooooAr3f8Ax6y/7jfyqto//IJtf+uKf+girN3/AMesv+438qraP/yCbX/rin/oIoA0aKKKAMa1/wCQ3ef9c4f/AGatmsa1/wCQ3ef9c4f/AGatmgArJ1f/AFcH/XeL/wBCFa1ZOr/6uD/rvF/6EKANaiiigArH0L/kH/8AbWX/ANDatisfQv8AkH/9tZf/AENqANiiivOPjB8V/BXwK+FniH4yfEe6+xaF4YsJ9SvpsbmENuhdgq9WdsbUUcsxAHJoA/Pn9tGyk/al/aK8C/sE6akdx4ekjTxl8Q9xyBoen3CGxsWHQ/2lfRgOCRm3t5hzmv1MAAGB0Ffnh+wL8JvGmhaDq37SPxtsjZfEj4yTHxFrltId0mmWgVI9N0oN122FrtRh0M7zOB85r9EKACsjX/8AkC3X/XNv5Vr1ka//AMgW6/65t/KgDWX7opaav3R9KdQAVkab/wAfd9/12H/oC1r1kab/AMfd9/12H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//V/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP5CtSsvQ/+QLaf9cU/wDQRWpQAUUUUAc9pv8AyHNS+sX/AKDXQ1z2m/8AIc1L6xf+g10NAH8uv/BMkk/8HDH7cuf+fDw1/wCilr+oqv5d/wDgmcNv/Bw3+3GPXTvDR/8AIS1/URQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAUUUUARzf6pvoayvD3/IDtf+ua1qzf6pvoayvD3/ACA7X/rmtAHwv/wURtLjxF8NfCPw9RiLfxN4u0jT7oD+KB5CzD/x2vPf2sNPtv2b/j/4E/ay0KH7NpLSJ4d8QiIbVNpP8sLsB1EZ/kPSvb/22rNv+Eb8C+ITxHpPjTRJ5D6LJN5PP4yCvWv2nvhNb/G/4D+JfhtKoaW/s3NuT2nj+eM/g6ivJxFBzlWcfiSi16q7X43PvcpzKGGoZfGr/Bk6sKi7xnyxl81Hla7NJnn37W3jK+PgjRfhh4SuCmo/EDUrfR4ZYjylrMd1xKCP7sIbB9SK+iPDWkWHh+7OhaWnl21laW8EKD+FIwVUfgBX4vfsG/EjxZ+0n8avCNv4wjkA+E/h24trjzRy9/LL5CMQe4iXHPIZTX7Z2f8AyMd5/wBcov5tW2ArrEKWIWzsl8t/xb+48/inLJZVKllU378OaUrd5O0f/JIxa/xPudDQRng0UV6B8kfzhf8ABwb+zT4c8Af8E+/iZ+1X8B7IeH/HHh+3jv5L2yPl74hKvnsyD5SxQn5sZ75r9Pv+CeHxhj+Pv/BPv4J/F1dvm614c0eS42gAfaI4ljmIA9ZFY13/APwUD+EX/C+/2H/ix8HUjSWXxD4V1SyhEg3KJZLdwhIHJw2DX4r/APBrd8Z/+Fof8Ek/C/gq+kB1HwB4jvdBuIixaRFWQTJuB5XiUgD/AGayp0KcG5Qik3vZbndi8zxmKhCnia0pxhpFSbaS8rvQ/poooorU4Qpr/cP0p1Nf7h+lAGL4b/5AsP8AwL/0I1uVh+G/+QLD/wAC/wDQjW5QAUUUUAc/F/yM83/Xun/oRroK5+L/AJGeb/r3T/0I10FABRRRQBg+I/8AjwT/AK7R/wDoQrerA8R/8eC/9do//QhW/QAUUUUAIehrD8O/8g3/ALaSf+hGtw9DWH4d/wCQb/20k/8AQjQBu0UUUAFYJ/5GUf8AXuf/AEIVvVgk/wDFSj/r3P8A6EKAN6iiigArC8Sf8gmT6r/Ot2sLxJ/yCZPqv86ANwdBS0g6CloAKKKKAOf8O/8AHtP/ANd5P510Fc/4d/49p/8ArvJ/OugoAKKKKAMCf/kZLf8A64v/ADFb9YE//IyW/wD1xf8AmK36ACiiigDF8Q/8gib6VrQ/6lPoKyvEBA0ibPpWrD/qV+goAkooooAK4O8TVJNA1yPRBm8bzhCCcfOU4/Wu8rA0P/W3v/Xw38hUVIc0XG9rlQlyyUux+Unw8vv20vCHhOT4Z+DvCn2KeW4lln1KfG9nlOSwZm2/Q4Jr64/Zu/Zln+GF7c/EH4hXf9reKtRyZZySwiDckKTySe54r7Cor5DKeC8Pg6lKrWrTrOlpBTa5Yeaiklfzd2fR5hxNWxEJ06dKNNT+JxTvL1bbdvJaHGfETwfb+P8AwRqfg66fy01CB4d3XaWHB/OvzT+E37IvxRt/iBo+lfF64jl8PeHneSxiSTespB3D5ewJ5Oea/V+sC9/5Dtn/ALr/AMq9DNuF8DmWJo4rEpuUOidlJXulJdUmk7HHl+e4rBUKmHoNWn3WqdrXi+jtoYvxF+Hnhv4n+D7rwT4oi8yzulwdvDIR0ZT2I7V8T+E/2AdH03XIf+Ew8RXesaJZvvg058qmf9r5iMeuAM1+iNFa5lw1lmYVoYjF0VKcdnrtvZ2dmr9HdGeBzvG4OlKjh6rjGXpv3Wmj80cT4k8F2Wq+ArzwLpASxgntXtogi/LGCMDAHYV5L8EPguPgX8I5PB01wl3clnlmmRdodmPHByeBX0hWTrv/ACCLj/cNd0sswzxVPGOH7yEXGL7J2urbdDlWOrKhPDc3uSak/Nq9tfmfC37Ynwc+JfxAXwx4u+GNsLu80ZsmPcqsM4IYbsA4I5FX/wBn79mnxRH4jf4wftATf2n4jkObeGRvMW2Hr6bvTHAr7msf+POL/cH8qtV4kuD8BPM5ZpU5nJtPlb9zmSspctt0tr3tuj1I8R4uOBWAhZJXXMl71m7uN+ze9gooor6o8Aw9K/4/b3/rqP5VuViaV/x+Xv8A11/pW3QAUUUUAYOpf8hWx/3n/lW9WDqX/IVsf95/5VvUAFFFFAFDVP8AkGz/APXNv5Umk/8AIMg/3BS6p/yDZ/8Arm38qTSf+QZB/uCgDQooooAK5/S/+Qtf/wC+n8q6CsDS/wDkLX/+8n8qAN+iiigArA1j/j9sP+up/lW/WBrH/H7Y/wDXX+lAG/RRRQAVXu/+PWX/AHG/lViq93/x6y/7jfyoAp6J/wAgmD/cFalZeif8gmD/AHBWpQAUUUUAc7Y/8jDe/wC5HXRVztj/AMjDe/7kddFQAUUUUAYWuDP2TH/Pwv8AI1u1ha5/y6f9fC/yNbtABRRRQAyT/Vt9DWN4b50WA+1bMn+rb6GsXw1/yBYP92gDdooooAK522/5GW5/65R/1roq522/5GW5/wCuUf8AWgDoqKKKACsTXf8Aj3h/67J/OtusTXf+PeH/AK7J/OgDbooooAKKKKAMDwz/AMglf9+T/wBCNb9YHhn/AJBK/wC/J/6Ea36ACiiigDAP/Iz/APbsP/QjW/WAf+Rn/wC3Yf8AoRrfoAKKKKAMDxL/AMgs/wDXSL/0MVY1zQ9L8S6Lc+H9bhW4tLyJopo26MjDBFV/Ev8AyCz/ANdIv/QxW8OgqZwjKLjJXT3Q4ycWpRdmj5/+En7M3wp+C2q3OueDbR/tdyNnmzuZGROu1M9BX0DRRXNgcBhsHSVDC01CC6JWWpvisXWxNR1cRNyl3buwrD8PnNnJ/wBd5f8A0I1uVh6B/wAecn/XeX/0I11nOblFFFABWHL/AMjFD/1wf/0IVuVhy/8AIxQ/9cH/APQhQBuUUUUAFYXib/kBXP8Au/1FbtYXiX/kBXP+7/UUAbg6ClpB0FLQAUUUUAYOg9Lz/r6l/pW9WDoPS8/6+pf6VvUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWVJpSySNJ5843EnAkIAz6Vq0UAY/8AY6/8/Fx/38NZGvaQg0if/SLjoP8AlofUV19Y+v8A/IHn+g/mKAA6Ov8Az8XH/fw0f2Ov/Pxcf9/DWxRQBj/2On/Pxcf9/DWTpekJ5t5/pFx/x8H/AJaH+6vtXXVkaV/rbz/r4P8A6CtACf2Ov/Pxcf8Afw0f2Ov/AD8XH/fw1sUUAcfqGkJ/aVgPtFx/rH/5aH+41bH9jr/z8XH/AH8NJqH/ACE7D/ro/wD6A1bNAGP/AGOv/Pxcf9/DUNxpCi3kP2i4+6f+Wh9K3qguv+PaT/dP8qAPy/8A23/Anib4WWPhP9vr4TQ3l94g+FUDrr9hbEvNrHhC62HU7UActLbhFvbYdfNhKD/WGv0M8H6v4V+IPhLS/HngnV21TRtatIb6xvLaffDcW1wgkjkRhwVdGDAjqDXT6VGkui28UqhlaFAQRkEFe4r8zP2V5m/Y7/aI1b9gTXN8Xg/XEu/E/wAMZ5P9WlkXD6loqsed2nzSedbocn7JMFBxC2AD9L/7HX/n5uP+/h/wrIt9IX+2rr/SLj/Vxf8ALQ/7XtXX1kW//Ibuv+ucX82oAT+x1/5+Lj/v4aP7HX/n4uP+/hrYooA5DWtIQW0X+k3H+vh/5aH++K1/7HX/AJ+Lj/v4aNb/AOPaL/rvD/6GK2KAMf8Asdf+fm4/7+H/AAo/sdf+fi4/7+H/AArYooA5DRNIU2RP2i4/1sv/AC1P99q1/wCx1/5+Lj/v4aND/wCPE/8AXWX/ANDatigDH/sdf+fm4/7+H/CsibSE/t23/wBIuP8AUy/8tD6pXX1jzf8AIet/+uEv/oSUAH9jr/z8XH/fw0f2Ov8Az83H/fw/4VsUUAcnrekL/Y11/pFx/qn/AOWh9K0l0dNo/wBIuOn/AD0NTa5/yBrr/rk/8q0k+4PpQBk/2Ov/AD8XH/fw0f2Ov/Pzcf8Afw/4VsUUAchp2kJ9tvv9IuP9av8Ay0P9xa1/7HX/AJ+bj/v4f8KNN/4/r7/rqv8A6AtbFAGP/Y6/8/Fx/wB/DWRqmkqLmx/0i4/1/wDz0P8AcauvrI1T/X2X/Xx/7I9ACf2Ov/Pxcf8Afw0f2Ov/AD83H/fw/wCFbFFAGMdHXB/0m4/7+H/CsvQtHT+xbX/SLj/VJ/y0PpXWHoaytB/5Atp/1yT+VADf7HX/AJ+Lj/v4aP7HX/n4uP8Av4a2KKAOQj0hP7dlH2i4/wBQn/LQ/wB5vatf+x1/5+Lj/v4aI/8AkPS/9cE/9CatigDH/sdf+fm4/wC/h/wrH17SEGmt/pFx9+L/AJaH++tdhWNr/wDyDG/66Rf+hrQAv9jr/wA/Fx/38NH9jr/z8XH/AH8NbFFAGP8A2Ov/AD83H/fw/wCFZOj6Qhin/wBIuP8Aj4l/5aH+8a66sfRf9VP/ANfEv/oRoAP7HX/n5uP+/h/wo/sdf+fi4/7+GtiigDkLvSF/tiz/ANIuPuy/8tD6D2rX/sdf+fi4/wC/hou/+QzZ/wC7L/IVsUAY/wDY6/8APxcf9/DVLU9IX+zbj/SLj/VP/wAtD6H2rpao6n/yDbj/AK5P/I0AZllpCmziP2i4+4v/AC0Pp9Ks/wBjr/z83H/fw/4Vesf+PKH/AHF/lVqgDH/sdf8An4uP+/hrIsdIT+1L4faLj70f/LQ/3RXX1j2P/IUvv96P/wBBFAB/Y6/8/Fx/38NH9jr/AM/Nx/38P+FbFFAHH6vpCbrT/SLj/j4T/lofQ1sf2Ov/AD83H/fw/wCFJrH3rT/r4T+RrZoAx/7HX/n4uP8Av4aP7HX/AJ+Lj/v4f8K2KKAOQ0HSE/smH/SLj+L/AJaH+8a1/wCx1/5+bj/v4f8ACjQP+QTF/wAC/wDQjWxQBj/2Ov8Az8XH/fw1j/2Qn/CQY+0XH/Hv/wA9D/e+ldhWN/zMP/bv/wCzUAL/AGOv/Pzcf9/D/hR/Y6f8/Fx/38NbFFAHI67o6f2TN/pFx0H/AC0PqPatb+x1/wCfi4/7+Gl17/kEzfQfzFa9AGP/AGOv/Pzcf9/D/hR/Y6/8/Fx/38NbFFAHG6PpCF7z/SLj/j5f/lofQe1bX9jp/wA/Fx/38NM0X797/wBfL/yFbdAGP/Y6/wDPxcf9/DWTfaQv9pWQ+0XH3n/5aH+6fauurIvv+QpY/wC9J/6CaAE/sdf+fm4/7+H/AAo/sdf+fi4/7+GtiigDAutIT7LJ/pFx9xv+Wh9KraRpCf2Ta/6Rcf6lP+Wh/uiugu/+PWX/AHG/lVbR/wDkE2v/AFxT/wBBFAEH9jr/AM/Fx/38NH9jr/z8XH/fw1sUUAcha6Qp1q7H2i4/1cP/AC0P+17Vr/2Ov/Pxcf8Afw0lr/yG7z/rnD/7NWzQBj/2Ov8Az8XH/fw1k6vo6eXB/pFx/r4v+Wh/vV11ZOr/AOrg/wCu8X/oQoAb/Y6/8/Fx/wB/DR/Y6/8APxcf9/DWxRQBjjR1/wCfi4/7+GsjQ9HT7BxcXH+tl/5aH++3tXX1j6F/yD/+2sv/AKG1AB/Y6/8APxcf9/DX5f8Axy02H9sj9rvSP2R7KaS88AfC+Sx8W+Piz747vVAwm0XSG7EB0/tC4U/wxwKeJa+uv2vf2j7X9l74J3nxBtNOfXvEN9cQaP4b0SE4m1bW79vKtLRO+Hc7pG6Rwq8h+VCaofsafs5XP7NPwXh8M+Kb9db8Za9dz694t1kJsOp67fkPdTY7RqQIoF/ggjjT+GgD3+XSF/t2H/SLj/USf8tD/eStb+x1/wCfm4/7+H/Cll/5DsP/AFwk/wDQkrXoAx/7HX/n4uP+/hrJ13SFGi3X+kXH+rb/AJaH0rrqyNf/AOQLdf8AXNv5UANXR1wP9IuP+/hpf7HX/n4uP+/hrWX7o+lOoAx/7HX/AJ+Lj/v4azNJ0pY768kE852zg4MhIOEXrXV1kab/AMfd9/12H/oC0Aa9FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//W/v4ooooAKqX/APx4zf8AXNv5VbrP1GeBLKdXdQRG3BPtQBHof/IFtP8Arin/AKCK1KxNDubb+xbT94v+pTuPQVqfabb/AJ6L+Y/xoAnoqD7Tbf8APRfzH+NH2m2/56L+Y/xoAxdN/wCQ7qX1i/8AQa6GuY025tv7c1L94vWLuP7tdB9ptv8Anov5j/GgD+ZH/gnZZPpX/BxV+2tay8G50PwxcD6NEn+Nf061/Mx+wTfWerf8HGf7ZWpWsq+XaeGfCts+CMeYIo8/yr+mD7Tbf89F/Mf40AZGs/8AH1Yf9fA/9Bat6ua1m6tvtVh+8X/j4Hcf3Wre+023/PRfzH+NAE9FQfabb/nov5j/ABo+023/AD0X8x/jQA+b/VN9DWV4e/5Adr/1zWr011beU37xeh7j/Gsrw7dW39h2v7xf9Wvcf40Acx8WfhxpvxZ8A3/gXU5mtluwjRzxgF4ZomDxyLnjKuoP4V1Ohx61Y+H4Y/FNxFdXsUf7+aJPLjdh1IUk447ZNa/2m2/56L+Y/wAa+c/2t/iVB8Lv2b/GHjOKVRLb6dLHEQ2CJZh5aY/4EwrGo401Ks+i19Fqehg41sVOlgIfamrLzlaPrrpf0R+PH7E3x8s/CX7bPie5ntVsfDHxO1O9t9PlAxGbm2lOwqenzlvmHq4NfqH8OfFdxcftx/EPwi0paKLQdInVCeAweUHA7fe5r5L8NfsVWnxQ/YE8E+GNFuk0vxdpsQ1zTrwnaUu5yZNrEcgMCqkjoQD2ru/2Ifht+0RafHHxj8Yv2lLaCw1W802y0yMRSo4nEHBl+RiBu2gnOMk9BXg4GOIpulSlFtN81+iundPtZvT1P1LiWtlWMjjcbRqxjOEHRcG/ek4VIKnOPe8I+92a13P1Qor8f/8Agpl8UPi14PvtP/4Vt44Phu00zS7jU7i2tTsuLiZZI4oV3A5Ku77dvQckg4r9Kfgl4h13xB8HvC+u+M5VOq3ml2s10ThSZXjUsSOxJOTXs0sXGdedBJ3jbXofnmNyCphstw+ZyqJxqtrlV7q3e6s++je67nqNxBFdQPbTDckilWB7g8Gv4y/+CXd8f+Ca3/Bcn46f8E2fFB+x+Gfitdp4x8H72wjOS0zRrwBnaZU4/wCeY7nFf2Z/abb/AJ6L+Y/xr84f2v8A/gmz+yb+1v8AG74c/tJfFCxuYPG/w51GCfSNW0y8ezuAqyB/KkaMjfGWGdp6ZOCMmus8A/SWioPtNt/z0X8xR9ptv+ei/mP8aAJ6a/3D9Ki+023/AD0X8x/jTXubbYf3i9PUf40AZnhr/kCw/wDAv/QjW5XOeG7m2/sWH94v8Xcf3j71ufabb/nov5j/ABoAnoqD7Tbf89F/Mf40fabb/nov5j/GgDGi/wCRnm/690/9CNdBXMRXNt/wk837xf8Aj3TuP7xroPtNt/z0X8x/jQBPRUH2m2/56L+Y/wAaPtNt/wA9F/Mf40AZHiP/AI8E/wCu0f8A6EK3q5rxHdW32BP3if66PuP7w963vtNt/wA9F/Mf40AT0VB9ptv+ei/mP8aPtNt/z0X8x/jQBMehrD8O/wDIN/7aSf8AoRrVNzbYP7xfzH+NYfh26tv7N/1i/wCsk7j+8fegDpKKg+023/PRfzH+NH2m2/56L+Y/xoAnrBP/ACMo/wCvc/8AoQrX+023/PRfzH+NYJurb/hJR+8X/j3Pcf3h70AdLRUH2m2/56L+Y/xo+023/PRfzH+NAE9YXiT/AJBMn1X+da32m2/56L+Y/wAawvElzbf2TJ+8XqvcetAHRjoKWq4ubbA/eL+Y/wAaX7Tbf89F/Mf40AT0VB9ptv8Anov5j/Gj7Tbf89F/Mf40AY3h3/j2n/67yfzroK5jw7c232af94v+vk7j1+tdB9ptv+ei/mP8aAJ6Kg+023/PRfzH+NH2m2/56L+Y/wAaAMef/kZLf/ri/wDMVv1zM9zbf8JJb/vF/wBS/ceo963/ALTbf89F/Mf40AT0VB9ptv8Anov5j/Gj7Tbf89F/Mf40AZniHjSJvpWtD/qU+grD8QXNr/ZE2ZF6eorVhubbyV/eL0HcUAW6Kg+023/PRfzH+NH2m2/56L+Y/wAaAJ6wND/1t7/18N/IVsfabb/nov5j/GsDRLm2829/eL/x8N3HoKAOmoqD7Tbf89F/Mf40fabb/nov5j/GgCesC9/5Dtn/ALr/AMq2PtNt/wA9F/Mf41gXt1bf29Z/vF+6/cen1oA6aioPtNt/z0X8x/jR9ptv+ei/mP8AGgCesnXf+QRcf7hq/wDabb/nov5j/GsnXbm2/si4/eL9w9xQBp2P/HnF/uD+VWqzrG6tvscX7xfuDuPT61a+023/AD0X8x/jQBPRUH2m2/56L+Y/xo+023/PRfzH+NAGVpX/AB+3v/XUfyrcrndKubb7Ze/vF/1vqPStv7Tbf89F/Mf40AT0VB9ptv8Anov5j/Gj7Tbf89F/Mf40AZGpf8hWx/3n/lW9XNalc239q2P7xfvP3Hp9a3vtNt/z0X8x/jQBPRUH2m2/56L+Y/xo+023/PRfzH+NAFfVf+QbP/1zb+VN0j/kGQY/uCotUubb+zZ/3i/6tu49PrSaTc239mQfvF+4O4oA16Kg+023/PRfzH+NH2m2/wCei/mP8aAJ6wNM/wCQtf8A+8n8q2PtNt/z0X8x/jWBpl1bf2tf/vF+8ncen1oA6aioPtNt/wA9F/Mf40fabb/nov5j/GgCesDWP+P2w/66/wBK2PtNt/z0X8x/jWBrFzbfbLH94v8ArfUelAHTUVB9ptv+ei/mP8aPtNt/z0X8x/jQBPVe7/49Zf8Acb+VL9ptv+ei/mP8ar3dzbfZZf3i/cbuPT60ARaJ/wAgmD/cFalYmiXNt/ZMH7xfuDuP8a1PtNt/z0X8x/jQBPRUH2m2/wCei/mP8aPtNt/z0X8x/jQBiWP/ACMN7/uR10VctY3Nt/wkN7+8X7kfceldF9ptv+ei/mP8aAJ6Kg+023/PRfzH+NH2m2/56L+Y/wAaAMjXf+XT/r4X+Rrerm9durb/AET94v8Ar17j0Nbv2m2/56L+Y/xoAnoqD7Tbf89F/Mf40fabb/nov5j/ABoAkk/1bfQ1i+G/+QLB/u1pyXNt5bfvF6HuP8axvDdzbf2LB+8Xp6igDo6Kg+023/PRfzH+NH2m2/56L+Y/xoAnrnbb/kZrn/rlH/Wtv7Tbf89F/Mf41ztvc23/AAktz+8X/VR9x70AdTRUH2m2/wCei/mP8aPtNt/z0X8x/jQBPWJrv/HvD/12T+dan2m2/wCei/mP8axNdubb7PD+8X/XJ3HrQB0VFQfabb/nov5j/Gj7Tbf89F/Mf40AT0VB9ptv+ei/mP8AGj7Tbf8APRfzH+NAGP4Z/wCQSv8Avyf+hGt+uZ8M3Vt/ZK/vF++/cf3j71v/AGm2/wCei/mP8aAJ6Kg+023/AD0X8x/jR9ptv+ei/mP8aAMc/wDIz/8AbsP/AEI1v1zJubb/AISf/WL/AMew7j+8a3/tNt/z0X8x/jQBPRUH2m2/56L+Y/xo+023/PRfzH+NAGP4l/5BZ/66Rf8AoYreHQVzXiW5tv7KP7xf9ZF3H98VvC5tsD94v5igCxRUH2m2/wCei/mP8aPtNt/z0X8x/jQBPWF4f/485f8ArvL/AOhGtb7Tbf8APRfzFYXh+6tfscuJV/18vcf3jQB0lFQfabb/AJ6L+Y/xo+023/PRfzH+NAE9Ycv/ACMUP/XB/wD0IVq/abb/AJ6L+Y/xrElubb/hIof3i/6h+4/vCgDoqKg+023/AD0X8x/jR9ptv+ei/mP8aAJ6w/Ev/ICuf93+orV+023/AD0X8x/jWF4mubb+wrn94v3fUeooA6MdBS1XFzbYH7xfzFL9ptv+ei/mP8aAJ6Kg+023/PRfzH+NH2m2/wCei/mP8aAMjQel5/19S/0rermtBubbF5+8X/j6l7j2re+023/PRfzH+NAE9FQfabb/AJ6L+Y/xp6TQyHbG4Y+xzQBJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRWTJdassjLHaKygnB80DI9cbaANasfX/wDkDz/QfzFJ9s1r/nyX/v6P/iayNdu9ZOkT5s16f89h6j/ZoA7Cisb7XrP/AD5r/wB/R/8AE0fa9a/58l/7/D/4mgDZrI0r/W3n/Xwf/QVpv2vWf+fNf+/o/wDiayNLu9a828/0Jf8Aj4P/AC2H91f9mgDsKKxvtes/8+a/9/R/8TR9s1r/AJ8l/wC/w/8AiaADUP8AkJ2H/XR//QGrZrjtQu9Z/tKw/wBDX/WP/wAth/cb/ZrY+161/wA+S/8Af4f/ABNAGzUF1/x7Sf7p/lWb9r1n/nzX/v6P/iahubvWfs8g+xr90/8ALUen+7QBd0b/AJBFr/1yT+Qr5Z/bP/Zuv/2jvhNFbeBr5NE8feEr2LxD4N1hgcWGt2YbyTJjlredWe3uU5DwSuuM4r6O0e71n+ybXFkv+qT/AJbD0H+zWj9r1r/nyX/v8P8A4mgDwL9kv9o3Tf2ofgvZfEX7A+h65azz6V4h0Sdg0+ka1Yt5V5Zy+pikB2N0kjKSD5WFe/2//Ibuv+ucX82r8s/2hhrv7EX7RK/tw+HbJYfh34ya10j4oWiPlLR02w2HiBQBhfs+Rb37Y5tSkh/1HP6YWOo6ncapPcW9rHIkkMLKyzAhlO4ggheh9aAOzorG+161/wA+S/8Af4f/ABNH2vWf+fNf+/o/+JoANc/49ov+viH/ANDFbNcdrV3rP2aL/Q1/18P/AC2H98f7NbH2vWc/8ea/9/R/8TQBs0Vjfa9a/wCfJf8Av8P/AIml+16z/wA+a/8Af0f/ABNABof/AB4n/rrL/wChtWxXIaJd6z9hOLNf9bL/AMtR/fb/AGa1vtes/wDPmv8A39H/AMTQBs1jzf8AIet/+uMv80pPtmtf8+S/9/R/8TWRNd6z/btv/oS/6mX/AJbD1T/ZoA7Cisb7XrX/AD5L/wB/h/8AE0v2vWf+fNf+/o/+JoAk1z/kDXf/AFyf+VaSfcH0rldbu9a/se6/0Jf9U/8Ay2Hof9mtFbvWtg/0Jen/AD2H/wATQBt0Vjfa9Z/581/7+j/4mj7ZrX/Pkv8A3+H/AMTQAum/8f19/wBdV/8AQFrYrj9Ou9ZF9fYsl/1q/wDLYf3F/wBmtf7XrP8Az5r/AN/R/wDE0AbNY+q/8fFj/wBfH/sjUfa9Z/581/7+j/4msfU7vWTcWWbNf9f/AM9h/cb/AGaAOworG+16z/z5r/39H/xNH2zWv+fJf+/w/wDiaANg9DWVoP8AyBbT/rkn8qjN3rWD/oS/9/h/8TWXoV3rX9i2mLJf9Un/AC2Hp/u0AddRWP8Aa9Z/581/7+j/AOJpPtetf8+S/wDf4f8AxNACx/8AIfl/64J/6E1bFcfHd6z/AG7KfsS/6hP+Wo/vN/s1r/bNa/58l/7/AA/+JoA2axtf/wCQY3/XSL/0NaPtmtf8+S/9/h/8TWPr13rP9mtmzX78X/LUf31/2aAOxorH+16z/wA+a/8Af0f/ABNH2vWf+fNf+/o/+JoA2Kx9F/1U/wD18S/+hGk+161/z5L/AN/h/wDE1kaNd6z5M+LNf+PiX/lqP7x/2aAOworG+2a1/wA+S/8Af4f/ABNH2vWf+fNf+/o/+JoAW7/5DFn/ALsv8hWxXH3d3rP9sWf+hr92X/lqPQf7NbH2vWf+fNf+/o/+JoA2Ko6n/wAg24/65P8AyNVPtmtf8+S/9/h/8TVLU7vWf7NuM2a/6t/+Wo9D/s0Abtl/x5w/7i/yqzXO2V3rX2OL/Q1+4v8Ay2Hp/u1Z+16z/wA+a/8Af0f/ABNAGzWNY/8AIVvv96P/ANBFH2vWv+fJf+/w/wDiayLG71n+1L7/AENfvR/8tR/dH+zQB2FFYxu9Z7Wa/wDf0f8AxNH2zWv+fJf+/wAP/iaADWPvWn/Xwn8jWzXHavd6yWtM2S/8fCf8tR6H/ZrY+2a1/wA+S/8Af4f/ABNAGzRWP9r1n/nzX/v6P/iaT7XrP/Pmv/f0f/E0ALoH/IIh/wCBfzNbFcfoN3rI0mHFmv8AF/y1Hqf9mtf7ZrX/AD5L/wB/h/8AE0AbNY3/ADMP/bv/AOzUfa9Z/wCfNf8Av6P/AImsf7XrP/CQf8ea/wDHv/z1H97/AHaAOxorH+16z/z5r/39H/xNJ9s1r/nyX/v8P/iaAHa9/wAgmb6D+YrXrkNdu9Z/smb/AENeg/5aj1H+zWt9r1r/AJ8l/wC/w/8AiaANmisb7XrX/Pkv/f4f/E0fbNa/58l/7+j/AOJoAbov373/AK+X/kK2643R7vWA15izX/j5f/lqPQf7NbP2vWf+fNf+/o/+JoA2ayL7/kJ2X+9J/wCgmm/bNa/58l/7+j/4msm+u9Z/tKy/0NfvSf8ALUf3T/s0AdfRWN9s1r/nyX/v8P8A4mj7XrP/AD5L/wB/R/8AE0AaN3/x6y/7jfyqto//ACCbX/rin/oIqhd3es/ZZf8AQl+63/LYen+7VbSLvWf7Jtf9DX/Up/y1HoP9mgDqaKxvtetf8+S/9/h/8TR9r1n/AJ81/wC/o/8AiaAC1/5Dd5/1zh/9mrZrjrW71n+2rs/Y1+5D/wAtR/tf7NbH2vWv+fJf+/w/+JoA2aydX/1cH/XeL/0IUz7XrX/Pkv8A3+H/AMTWVq93rPlQ/wChr/r4v+Ww/vf7tAHXUVjfa9Z/581/7+j/AOJo+2a1/wA+S/8Af0f/ABNAGzWNoZA04k9BJL/6G1H2vWv+fJf+/wAP/ia/MX9rXx949+NniXTv+Cefwakew1jxhBLf+M9WtJ8S6D4TMzRzMrgfJd6iQ1radCo82Yf6rkAl+Aok/bh/afm/bI1JjL8NfhzJe6F8OYGH7rUdQO631PXcdGU4aysW/wCeQmkXiZTX6nV574G8J6X8M/Bek/DrwDoVtpOh6FZw2Gn2Vs4SG3trdBHHGiheFVQAPYV1P2vWf+fNf+/o/wDiaAHS/wDIdh/64Sf+hJWvXIS3es/27D/oa/6iT/lqP7yf7Na32zWv+fJf+/w/+JoA2ayNf/5At1/1zb+VN+161/z5L/3+H/xNZOvXes/2LdZsl/1bf8tR6f7tAHXL90UtYy3es7R/oa/9/R/8TR9r1r/nyX/v8P8A4mgDZrI03/j7vv8ArsP/AEBab9r1n/nzX/v6P/iazNJutWa/vFktFVTOMnzQcDYvONtAHWUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9f+/iiiigArD1bR9Lube4uLi3jdyjZLLknArcqpf/8AHjN/1zb+VAHPaJ4f0Q6Naf6LF/qU/hH90Vqf8I/of/PrF/3yP8Kk0P8A5Atp/wBcU/8AQRWpQBj/APCP6H/z6xf98j/Cj/hH9D/59Yv++R/hWxRQBxGm6Dop1zUlNrF1i/hH92t//hH9D/59Yv8Avkf4VW0z/kO6kPeL/wBBroaAP5X/APgkt4d0+/8A+C5/7e+tXkayGPUdCtFDDIVFh3AAdq/qI/4R/Q/+fWL/AL5H+FfzJf8ABGp21j/gsN+314it/ntx4n0q28wdN8cTjH/jp/Kv6haAOK1nw/ogurD/AEWL/j4H8I/ut7Vu/wDCP6H/AM+sX/fI/wAKh1n/AI+rD/r4H/oLVvUAY/8Awj+h/wDPrF/3yP8ACj/hH9D/AOfWL/vkf4VsUE45NAGHL4f0QRN/osXQ/wAIrK8PeH9EOh2p+yxf6tf4RXz3dfFfxr8ZvGd94K+BU8Vnouhzm31fxDIgmX7Qn37W0RvldwPvyNlFzgZPT6c8O8aFaD/pktZ06qnfl27/AOR2YvBVMNyqq0pNX5eqXTm7X7Xv3S0F/wCEf0P/AJ9Yv++R/hXxr+3r8E/E/wAWf2atY8IfDGwS41RpradbdMI0yQyqzoCcDJUHGete7/tH+ML3wD8BvFvjDTZDDc2Gl3MkMi8FJNhCke4ODWr8CYbuD4LeFE1CeS6nOk2jSSzMXkdmiUkszEkkk9SaxrqNXmw8usdfnod+WyrYH2Ob07NwqKyfVxtLXy2+81vA/hLSNO8FaPp0+npbvb2NvE0TKNyFI1BU4yMjGDirNnoOinxFeD7LF/qov4R6tXb1z1n/AMjHef8AXKL+bV0pWVjx6k3OTm+up4j8Tf2TPgL8YPF2k+NvH+gxX19o/EBLMqMoO4LIgIVwG5AYGvdU8OaDGojS0iVVGAAoAAH4VtUVMaUItyirN7+ZtWxlerTp0qtRyjC6im21FPV2XS7Mf/hH9D/59Yv++R/hWFr3h/RAlr/osX/HxF/CPWu1rB177lr/ANfMX86s5jJ8Qy+A/CemtrHid7SwtVZUMs5WNNznCjJwMknAFflYP2vviB4m/aR0AeEtNsY/hnqXiH/hGInkiBnvbkKTJMjdkRsAYOD+PH1L/wAFFtN067/ZO8R6nezSwTaZ5N3aNCQCblJF8oHIPBYgHvivjXUfAtn4N8ffsyfAbSlBuLCRtcvCvUusfmO7fV2avGzCvVVVQg7Jcr06tytb03P0bhTK8DLBTxWIhzzn7WNmtIxhSc3Nf3vhS7X7n7Kf8I/of/PrF/3yP8Ka/h/RNp/0WLp/dH+FbVNf7h+leyfnJxvhvw/oh0WE/ZYv4v4R/eNbn/CP6H/z6xf98j/Co/DfOiw/8C/9CNblAHDaDefD7xQ95H4dktLxtPna2uViIYxTJ1Rh1BHvXQ/8I/of/PrF/wB8j/CvzT/bE8CeN/2ffFSftl/AQOk1qyL4n0xD+5vrMdZGTpvQdWAzjntX6A/Cf4m+GfjH8O9J+Jfg+XzbDVoFmjz1U9GU+6sCD9K5aOJ5qkqM1aS19V3X69me5mGTqlhKOYYaXNRn7r7xmlrGX5xfVdmmi5FoGif8JNMPssX/AB7p/CP7xrf/AOEf0P8A59Yv++R/hVeL/kZ5v+vdP/QjXQV1HhmP/wAI/of/AD6xf98j/Cj/AIR/Q/8An1i/75H+FbFFAHFeItA0QWCYtYj++j/hH94Vu/8ACP6H/wA+sX/fI/wqHxH/AMeCf9do/wD0IVvUAY//AAj+h/8APrF/3yP8KP8AhH9D/wCfWL/vkf4VsUUAYx8P6Hg/6LF/3yP8KxPDvh/RP7N/49Yv9ZJ/CP7xrsz0NYfh3/kG/wDbST/0I0AS/wDCP6H/AM+sX/fI/wAKP+Ef0P8A59Yv++R/hWxRQBj/APCP6H/z6xf98j/CsI6Bon/CSAfZYv8Aj3P8I/vCu1rBP/Iyj/r3P/oQoAm/4R/Q/wDn1i/75H+FH/CP6H/z6xf98j/CtiigDH/4R/Q/+fWL/vkf4Vh+I9A0QaTJ/osXVf4R612lYXiT/kEyfVf50ASDw/oeP+PWL/vkUv8Awj+h/wDPrF/3yP8ACtcdBS0AY/8Awj+h/wDPrF/3yP8ACj/hH9E/59Yv++R/hWxRQBxHh3w/ohtp82sX+vk/hHrW/wD8I/of/PrF/wB8j/Cq/h3/AI9p/wDrvJ/OugoAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooA4mfw/on/CRwD7LF/qX/hHqK3v+Ef0P/n1i/75H+FQT/8AIyW//XF/5it+gDH/AOEf0P8A59Yv++R/hR/wj+h/8+sX/fI/wrYooA47xBoGhrpEx+yxdP7orVh8P6GYU/0WL7o/hFO8Q4/sebPpWrB/qU/3RQBmf8I/of8Az6xf98j/AAo/4R/Q/wDn1i/75H+FbFFAGP8A8I/of/PrF/3yP8KwdE0DRDJej7LF/wAfDfwj0FdtWBof+tvf+vhv5CgCf/hH9D/59Yv++R/hR/wj+h/8+sX/AHyP8K2KKAMf/hH9D/59Yv8Avkf4VhXugaINdsx9li+7J/CPSu1rAvf+Q7Z/7r/yoAn/AOEf0P8A59Yv++R/hR/wj+h/8+sX/fI/wrYooAx/+Ef0P/n1i/75H+FZWueH9EGkXGLWL7h/hFdbWTrv/IIuP9w0AU7Lw/ohs4v9Fi+4v8I9Ktf8I/of/PrF/wB8j/Cr1j/x5xf7g/lVqgDH/wCEf0P/AJ9Yv++R/hR/wj+h/wDPrF/3yP8ACtiigDjNK8P6Iby9/wBFi/1v90elbf8Awj+h/wDPrF/3yP8ACo9K/wCPy9/66/0rcoAx/wDhH9D/AOfWL/vkf4Uf8I/of/PrF/3yP8K2KKAOK1LQNEGq2IFrF95/4R6Vu/8ACP6H/wA+sX/fI/wqHUv+QrY/7z/yreoAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooA5jVPD+iDTZz9li/1bfwj0pNK0DRG0yA/ZYvuD+EVs6r/yDZ/+ubfypuk/8gyDH9wUAQf8I/of/PrF/wB8j/Cj/hH9D/59Yv8Avkf4VsUUAY//AAj+h/8APrF/3yP8KwdM8P6J/at//osX3k/hHpXbVgaX/wAha/8A95P5UAT/APCP6H/z6xf98j/Cj/hH9D/59Yv++R/hWxRQBj/8I/of/PrF/wB8j/CsHWPD+ifbLEfZYv8AWn+EeldtWBrH/H7Yf9dT/KgCf/hH9D/59Yv++R/hR/wj+h/8+sX/AHyP8K2KKAMf/hH9D/59Yv8Avkf4VXu/D+h/ZZf9Fi+438I9K6Cq93/x6y/7jfyoA5zRfD+iHSoCbWL7g/hFaf8Awj+h/wDPrF/3yP8ACpNE/wCQTB/uCtSgDH/4R/Q/+fWL/vkf4Uf8I/of/PrF/wB8j/CtiigDhrLQNE/4SG9H2WL7kf8ACK6H/hH9D/59Yv8Avkf4VVsf+Rhvf9yOuioAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooA4nXfD+hgWv+ixf69f4R6H2re/4R/Q/wDn1i/75H+FQ67wLT/r4X+RreoAx/8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooAxJPD+h+W3+ixdD/CP8KxvDnh/RDo0GbWLp/dFdjJ/q2+hrG8N/wDIFg+lAEn/AAj+h/8APrF/3yP8KP8AhH9D/wCfWL/vkf4VsUUAY/8Awj+h/wDPrF/3yP8ACuet9A0X/hJbkfZY/wDUx/wj3rua522/5Ga5/wCuUf8AWgC1/wAI/of/AD6xf98j/Cj/AIR/Q/8An1i/75H+FbFFAGP/AMI/of8Az6xf98j/AArF13w/ogt4f9Fi/wBcn8I9a7KsTXf+PeH/AK7J/OgB/wDwj+if8+sX/fI/wo/4R/Q/+fWL/vkf4VsUUAY//CP6H/z6xf8AfI/wo/4R/Q/+fWL/AL5H+FbFFAHE+GvD+iHSlP2WL77/AMI/vH2re/4R/Q/+fWL/AL5H+FQeGf8AkEr/AL8n/oRrfoAx/wDhH9D/AOfWL/vkf4Uf8I/of/PrF/3yP8K2KKAOJOgaJ/wk2PssX/HsP4R/eNb3/CP6H/z6xf8AfI/wqA/8jP8A9uw/9CNb9AGP/wAI/of/AD6xf98j/Cj/AIR/Q/8An1i/75H+FbFFAHE+JPD+iDSz/okX+si/hH98Vujw/oeB/osX/fI/wqHxL/yCz/10i/8AQxW8OgoAyP8AhH9D/wCfWL/vkf4Uf8I/of8Az6xf98j/AArYooAx/wDhH9E/59Yv++RWH4f8P6GbST/RYv8AXy/wj+8a7SsLw+f9El/67y/+hGgCX/hH9D/59Yv++R/hR/wj+h/8+sX/AHyP8K2KKAMf/hH9D/59Yv8Avkf4ViS6Bov/AAkMI+yxf6h/4R/eHtXZ1hy/8jFD/wBcH/8AQhQBJ/wj+h/8+sX/AHyP8KP+Ef0P/n1i/wC+R/hWxRQBj/8ACP6H/wA+sX/fI/wrD8SeH9EGhXOLWL7v90eortKwvEvOhXI/2f6igCQeH9DwP9Fi/wC+R/hS/wDCP6H/AM+sX/fI/wAK1x0FLQBj/wDCP6H/AM+sX/fI/wAKP+Ef0P8A59Yv++R/hWxRQBxWheH9Exef6LF/x9S/wj2rd/4R/Q/+fWL/AL5H+FQ6D0vP+vqX+lb1AGP/AMI/of8Az6xf98j/AAqza6Xp1jIZbOFI2IwSowcVfooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACsfX/8AkDz/AEH8xWxWPr//ACB5/oP5igDYooooAKyNK/1t5/18H/0Fa16yNK/1t5/18H/0FaANeiiigDG1D/kJ2H/XR/8A0Bq2axtQ/wCQnYf9dH/9AatmgAqC5/49pP8AdP8AKp6guv8Aj2k/3T/KgCpo3/IItf8Arkn8hWlWbo3/ACCLX/rkn8hWlQBi+JPDmgeMfD1/4S8V2cOo6XqlvLaXlpcIJIZ4JlKSRupyGV1JDAjBBr8yf2RNe1r9k342z/8ABO/4o3097pa2Laj8MdZvXMkl9oVux83SppWOXvNK3BVyS0tmY3OWSQ1+qFfJP7V/7NGl/tReA7rwjDqcvhzxNo01rrPhfxDaqGutF1m13+RdRBuGHLRzRn5ZoHeNuHNAH1tRXxx+xl+05qv7QXgvU/C3xS02Pw18UfAd0uj+M9AV94tb4LujuICeXsr2PFxaS/xRttPzo4H2PQBj63/x7Rf9d4f/AEMVsVj63/x7Rf8AXeH/ANDFbFABRRRQBj6H/wAeJ/66y/8AobVsVj6H/wAeLf8AXWX/ANDatigArHm/5D1v/wBcZf5pWxWPN/yHrf8A64S/zSgDYooooAy9c/5A13/1yf8AlWkn3B9Kzdc/5A11/wBcn/lWkn3B9KAHUUUUAY+m/wDH9ff9dV/9AWtisfTf+P6+/wCuq/8AoC1sUAFY+q/8fFj/ANfH/sjVsVj6r/x8WP8A18f+yNQBsUUUUAIehrK0H/kC2n/XJP5VqnoaytB/5Atp/wBck/lQBrUUUUAY8f8AyH5f+uCf+hNWxWPH/wAh6X/rgn/oTVsUAFY+vf8AIMb/AH4v/Q1rYrG1/wD5Bjf9dIv/AENaANmiiigArH0X/VT/APXxL/6Ea2Kx9F/1U/8A18S/+hGgDYooooAx7v8A5DFn/uy/yFbFY93/AMhmz/3Zf5CtigAqjqf/ACDbj/rk/wDI1eqjqf8AyDbj/rk/8jQBLZf8ecP+4v8AKrNVbL/jyh/3F/lVqgArGsP+Qrff70f/AKCK2axrH/kK33+9H/6CKANmiiigDG1j71p/18J/I1s1jax960/6+E/ka2aACiiigDH0D/kEQ/8AAv5mtisfQP8AkEQ/8C/ma2KACsb/AJmH/t3/APZq2axv+Zh/7d//AGagDZooooAyNe/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0X797/18v/IVt1iaL9+9/wCvl/5CtugArIvv+QnZf70n/oJrXrIvv+QnZf70n/oJoA16KKKAK93/AMesv+438qraP/yCbX/rin/oIqzd/wDHrL/uN/Kq2j/8gm1/64p/6CKANGiiigDGtf8AkN3n/XOH/wBmrZrGtf8AkN3n/XOH/wBmrZoAKydX/wBXB/13i/8AQhWtWTq/+rg/67xf+hCgDWoorH8ReIdC8I6BfeKvFF5Dp+maZbyXV3dXDiOGCCFS8kju2AqqoJYngAZoA8G/as/aQ0D9lz4QXXxF1Gyl1rVrqeHS9A0S1I+1axrN4dlpZQ5/ilk+8x4jjDSN8qsa82/Yc/Zv134G+AtX8b/Fi7h1n4o/EPUH1zxlqkIzG98fkjtLYkBhZWMQFvaqf4FLn5nYnwz9ljQNe/bL+L8H/BQn4qWdxZ+F7KGa0+Feg30TQyWunTjZPrlxE+Ct3qS8W4ZQ0FltHDzSiv010L/kH/8AbWX/ANDagDYooooAyJf+Q7D/ANcJP/QkrXrIl/5DsP8A1wk/9CStegArI1//AJAt1/1zb+Va9ZGv/wDIFuv+ubfyoA1l+6KWmr90fSnUAFZGm/8AH3ff9dh/6Ata9ZGm/wDH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0P7+KKKKACql/wD8eM3/AFzb+VW6qX//AB4zf9c2/lQBW0P/AJAtp/1xT/0EVqVl6H/yBbTP/PFP/QRWpQAUUUUAc9pn/Id1L6xf+g1vucKT7VgaZ/yHdS+sX/oNb0vETH2NAH8pP/Btpc3fib9pH9ujx9qEhmmvfi9fWu8947ae7EY/BSBX9XNfyf8A/Brv+91v9sa8PWT4y6tn/v5Kf61/WBQBg6z/AMfVh/18D/0Fq3qwdZ/4+rD/AK+B/wCgtW9QAV8yftk/EfUfhV+zR4u8Y6LIYb+KxeG1dTgrNP8Au0I9wWyK+m6/PD/gqLcT2v7I2q3EWdqXti0mP7gnXNcuOm4YepNbpP8AI93hjDQxGb4ShUV4yqQTXdcy0+Z9O/s6fDrSfhV8B/DXgnSU2i206F5nI+aWeVQ8sjHuzOSSa9Z8Pf8AIDtf+ua1meDbuHUPA2lX1ud0c1jA6kdw0YIrT8Pf8gO1/wCua1vSiowjGOyR5mOrTq4ipVqu8pSbfq3qfLf7et79g/ZF8czZxnTyn/fbKP61Pa/tG/Bf4FfA3wbq/wAW/EFroyXmlWQgSUlpJMRIDtRQWIHc4wK5T/go7cG3/Y38ZuO9vEv5yoK+JP8Agnv8PLL9pOXWP2ifi/YxajDpdlB4c0W0uVEsMEVtCBK6q3G5sjnHUmvJxGInHG+ypJc0orfZJN3bPu8pyrDVuHHjcbJqjTqyuo25pNxpqMVe6V9W3Z2Seh+y/g/xl4W+IHhu08YeC7+HUtMvk8yC5gYOjr7Eeh4I6g1LaAjxHeZ7xRfzavxB/ZQ+LXir4VfsTeKtL8BZm1STxbNoOhEn5Y5r50ijfnPyoW316x+zdrvjH9lH9qnWP2evjJ4ouNdsdf0ZNat9Sv5DhbmEM04BYnCnDnr2Hc1dHNFJUnKPxWu+ibvZfNpnNmHBE6M8YqNVP2TlyRafNOMOVyemi5VJPz1tsfsNRXh/wS+OekfHjTLvxP4S0q+t9Djk8uz1C7RY474AkM8K7i+wEcMyrntXuFenCcZxUou6Z8VisLVw9WVGtG01uu3k/Put09HqFYOvfctf+vmL+db1YOvfctf+vmL+dWYHw5/wUzv/ALF+ynqaM21Z76wjYk4GPPQn+VeMfssTy/tE/tgeJfj/AGw8zw34N0+Pw7pEvVJJdoMrr6/xdOxWk/4K7/FHwjoPwAi+F93MX1rXbqKa3gTkiK2YO8jeijp7n8a+o/2PtG+Fnwc/ZI8N6joeoQpopsBqN1fzERq0so3Su5J4wflxnjGK8KSVXMXG/uxUW/VXt+d/uP0+hKWC4RhV9m/a1p1KcHbTlkqfM15vk5F3vLsfWOr67ofh+2W8168gsYWYIHuJFiUs3QAsQMnsKTWdc0XQNNfVtdvILK1QDdNPIscYz0yzEDn61+Y/x9/Zxuf24tUf4hWviIz+CIdCaXw59jkZFbUmZsyyIQCVAAxXyF+x9/ws79tTW9B+G3xlYz+E/hVGVv4JH3jULwMywpN2YRhSMHIwvqa3qZjONVUlT+L4Xfe29+ytr5o8zC8H4argZY2eKt7LWtHl1hdPlSu1zSbXK1paT10TZ+9nheRJdCt5YmDKwYgg5BBY4INb9eQWPj74X/DjStK8J69rOn6NJInlWlrcXCQsUUlVCqxBI4wK9eVldQ6HIPII716iknpfU+IqUpRSk4tRezatcxPE2h6f4l8O33h7VYxNbXsEkMqMMhldSCD+dfl7/wAErtVvdE8NePPgreyF08J6/NFbqedsUhYD/wBBz9Sa/Ve6kWG2kmc4VVJJPoBX5Hf8ExpP+Ei+IXxj8fWfNnf6+Y427HY0nI/CvPxOmLoNbvmXyt/nY+uyW8sgzSM/hXspL/Fz2X3xcj9WIv8AkZ5v+vdP/QjXQVz8X/Izzf8AXun/AKEa6CvSPjAooooAwfEf/Hgn/XaP/wBCFb1YPiP/AI8E/wCu0f8A6EK3qACiiigBD0NYfh3/AJBv/bST/wBCNbh6GsPw7/yDf+2kn/oRoA3aKKKACsE/8jKP+vc/+hCt6sE/8jKP+vc/+hCgDeooooAKwvEn/IJk+q/zrdrC8Sf8gmT6r/OgDcHQUtIOgpaACiiigDn/AA7/AMe0/wD13k/nXQVz/h3/AI9p/wDrvJ/OugoAKKKKAMCf/kZLf/ri/wDMVv1gT/8AIyW//XF/5it+gAooooAxfEIJ0ibHpWrD/qU/3RWV4h/5BE30rVh/1Kf7ooAlooooAKwNE/1t7/18N/IVv1gaH/rb3/r4b+QoA36KKKACsC9/5Dtn/uv/ACrfrAvf+Q7Z/wC6/wDKgDfooooAKydd/wCQRcf7hrWrJ13/AJBFx/uGgC5Y/wDHnF/uD+VWqq2P/HnF/uD+VWqACiiigDE0r/j8vT/01/pW3WHpX/H5e/8AXX+lblABRRRQBg6l/wAhWx/3n/lW9WDqX/IVsf8Aef8AlW9QAUUUUAUNU/5Bs/8A1zb+VN0n/kGQf7gp2qf8g2f/AK5t/Km6T/yDIP8AcFAGjRRRQAVz+l/8ha//AN9P5V0Fc/pf/IWv/wDfT+VAHQUUUUAFYGsD/TbD/rqf5Vv1gax/x+2H/XU/yoA36KKKACq93/x6y/7jfyqxVe7/AOPWX/cb+VAFPRP+QTB/uCtSsvRP+QTB/uCtSgAooooA52x/5GG9/wByOuirnbH/AJGG9/3I66KgAooooAwtd/5dP+vhf5Gt2sHXf+XT/r4X+RreoAKKKKAGSf6tvoaxvDf/ACBYPpWzJ/q2+hrG8N/8gWDPpQBuUUUUAFc7bf8AIy3P/XKP+tdFXO23/Iy3P/XKP+tAHRUUUUAFYmu/8e8P/XZP51t1ia7/AMe8P/XZP50AbdFFFABRRRQBgeGf+QSv+/J/6Ea36wPDP/IJX/fk/wDQjW/QAUUUUAYB/wCRn/7dh/6Ea36wD/yM/wD27D/0I1v0AFFFFAGB4l/5BZ/66Rf+hit4dBWD4l/5BZ/66Rf+hit4dBQAtFFFABWF4f8A+PSX/rvL/wChGt2sLw//AMekv/XeX/0I0AbtFFFABWJL/wAjDD/1wf8A9CFbdYkv/Iww/wDXB/8A0IUAbdFFFABWF4m/5AVz/u/1FbtYXib/AJAVz/u/1FAG4OgpaQdBS0AFFFFAGDoPS8/6+pf6VvVg6D0vP+vqX+lb1ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVSbUtORijzxgqcEFwCCKu1XaztGJZokJPJJUUAQf2rpf/PzF/wB9j/GsjX9U0z+x5/8ASYug/jHqPetz7DZf88U/75FZGv2Vn/Y8/wC5ToP4R6igDT/tTTP+fmL/AL7H+NJ/aul/8/MX/fY/xqb7FZ/88U/75FJ9hsv+eKf98igCL+1NM/5+Yv8Avsf41k6Vqmmebef6RF/x8H+Mf3V962/sVn/zxT/vkVk6XZWZlvP3Sf8AHwf4R/dWgDR/tXS/+fmL/vsf40f2ppn/AD8xf99j/GpfsNl/zxT/AL5FH2Kz/wCeKf8AfIoAwtQ1PTf7TsP9Ii/1j/xj+43vWx/aul/8/MX/AH2P8azNQs7T+07D90n+sf8AhH9xq2PsNl/zxT/vkUARf2ppn/PzF/32P8ahudU0z7NIPtMX3T/GPT61b+xWf/PFP++RUNzZWX2aT9yn3T/CPSgDP0bVNM/si1/0iL/VJ/GPQe9aP9qaZ/z8xf8AfY/xqno9lZnSbX90n+qT+EegrR+xWf8AzxT/AL5FAEf9qaZ/z8xf99j/ABrHt9T0z+27r/SIv9VF/GPVvet37FZ/88U/75FZFvZWf9tXX7lP9XF/CPVqAPgH9sf4S+ONC8YaT+27+yvCl98SPBls1pqWhxSRxjxb4eLGSbS3ZiFFxG2Z7CVj+7nyh/dyyV9c/A74/fCr9on4U6L8ZvhbqiXmia5D5sLSfuponUlJIZo2+aKaGQNHLG2GSRSp5FeufYrMdIk/75FflJ8Z/Cmo/wDBP34xax+2B8NNOe8+E/jC5F18TNCtYzI2l3W0IPEVlCoPQADVIkGZIwLgAyRvvAP091vVNMNtF/pMX+vh/jH98e9bH9q6X/z8xf8AfY/xrl01Dwz4o8N6d4l8NS21/p2om1ubW5tyssM0MpVkkR1yrKykFWBwQciut+w2X/PFP++RQBH/AGppn/PxF/32P8aP7U0zp9oi/wC+x/jUv2Kz/wCeSf8AfIo+xWf/ADxT/vkUAYWh6ppgsWzcxf62X+Mf32962P7U0z/n5i/77H+NZmh2VmbE/uU/1sv8I/vtWx9is/8Anin/AHyKAIf7U0z/AJ+Yv++x/jWPNqmmf29b/wCkRf6mX+Meqe9bv2Kz/wCeKf8AfIrImsrP+3bf9yn+ol/hH95KANL+1NM/5+Yv++x/jR/ammf8/MX/AH2P8al+xWf/ADxT/vkUfYrP/nin/fIoAxtc1TTDo13/AKTF/qn/AIx6H3rTTVNM2D/SYun98f41S1uys/7Gu/3Sf6p/4R6GtJLKz2D9ynT+6KAI/wC1NM/5+Yv++x/jS/2ppn/PxF/32P8AGpPsVn/zxT/vkUv2Kz/55J/3yKAMLTtU0z7dff6TF/rV/jH9xfetj+1NM/5+Yv8Avsf41madZWZvb4eSn+tX+Ef3FrY+xWf/ADxT/vkUAQ/2ppn/AD8xf99j/GsjVNV0z7RYgXEX/Hx/fH9xvetz7FZ/88U/75FZGqWVmLixxCn/AB8f3R/cagDS/tTTP+fmL/vsf40f2ppn/PzF/wB9j/GpfsVn/wA8U/75FH2Kz/54p/3yKAIjqmmYP+kxf99j/GsrQdU0z+xbT/SYv9Un8Y9PrW0bKzwf3Kf98isrQrKzOi2n7lP9Un8I9KANH+1NM/5+Yv8Avsf40n9q6X/z8xf99j/GpvsVn/zxT/vkUn2Gy/54p/3yKAMOPVNM/t6X/SYv9Qn8Y/vN71r/ANqaZ/z8xf8AfY/xrNjsrP8At6UeSn+oT+Ef3mrX+xWf/PFP++RQBH/ammf8/MX/AH2P8axte1TTDpjYuIvvxfxj++tb32Kz/wCeKf8AfIrG16ysxpjERJ/rIv4R/fWgDU/tTTOn2mL/AL7H+NJ/aul/8/MX/fY/xqX7FZ/88U/75FH2Gy/54p/3yKAI/wC1NM/5+Yv++x/jWPo2qaYIp83EX/HxL/GP7x963fsVn/zxT/vkVj6NZWZin/cp/wAfEv8ACP7xoA0/7U0z/n5i/wC+x/jSf2ppn/PzF/32P8am+xWf/PFP++RSfYrP/nin/fIoAw7vVNM/tiz/ANIi+7L/ABj0X3rX/tTTP+fmL/vsf41m3dlZ/wBsWf7pPuy/wj0Wtf7FZ/8APFP++RQBF/ammf8APzF/32P8apanqmmf2bcf6RF/qn/jHofetL7FZ/8APFP++RVLU7KzGm3H7pP9U/8ACPQ0AJZappn2OEfaYvuL/GPT61a/tTTP+fmL/vsf41FY2Vn9ih/cp9xf4R6Va+xWf/PFP++RQBD/AGrpf/PzF/32P8ayLHVNN/tS+/0iL70f8Y/uj3rc+w2X/PFP++RWPY2Vn/al9+6T70f8I/uigDT/ALU0z/n5i/77H+NL/ammf8/MX/fY/wAak+xWf/PFP++RS/YrP/nin/fIoAwdY1TTCbTFxF/x8J/GPQ+9bP8Aammf8/EX/fY/xrL1eysw1p+5T/j4T+EehrZ+xWf/ADyT/vkUAQ/2rpf/AD8xf99j/Gj+1NM/5+Yv++x/jUv2Gy/54p/3yKPsVn/zxT/vkUAYWgappn9kw/6RF/F/GPU+9bH9qaZ/z8xf99j/ABrN0Gys/wCyYv3Kfxfwj1Na/wBis/8Anin/AHyKAIv7U0z/AJ+Yv++x/jWP/aemf8JD/wAfEX/Hv/fH9761u/YrP/nin/fIrH+xWf8AwkH+qT/j3/uj+9QBp/2rpf8Az8xf99j/ABo/tXS/+fmL/vsf41L9hsv+eKf98ij7DZf88U/75FAGJr2qaZ/ZM3+kRdB/GPUe9a/9qaZ/z8xf99j/ABrN16ys/wCyZv3KdB/CPUVrfYrP/nin/fIoAj/tTTP+fmL/AL7H+NJ/aul/8/MX/fY/xqb7FZ/88U/75FJ9hsv+eKf98igDA0bU9N33v+kRf8fL/wAY9B71tf2rpf8Az8xf99j/ABrK0aysy95+6T/j5f8AhHoK2vsNl/zxT/vkUARf2rpf/PzF/wB9j/Gsm+1TTP7Tsv8ASYvvSfxj+6fetv7DZf8APFP++RWTfWVn/adl+6T70n8I/umgDS/tTTP+fmL/AL7H+NJ/aul/8/MX/fY/xqb7FZ/88U/75FJ9hsv+eKf98igCndapphtZQLiL7jfxj0+tVdI1XS/7Jtf9Ji/1Kfxj+6Per91ZWf2WXEKfcP8ACPSqukWVl/ZNr+5T/Up/CP7ooAuf2rpf/PzF/wB9j/Gl/tTTP+fiL/vsf41J9hsv+eKf98il+xWf/PJP++RQBhWup6b/AG1dn7RF/q4f4x/te9a/9qaZ1+0xf99j/Gsy1srP+27weUn+rh/hH+1Wx9is/wDnin/fIoAj/tTTP+fmL/vsf41kavqumeXB/pMX+vi/jH94e9bn2Kz/AOeKf98isnV7Kz8uD9yn+vi/hH94UAaI1PTGIC3ERJ/2x/jX5K/EnU9P/wCClHxwvfgFpN1HJ8BvhzqQi8a3B/1XirXbVhImjQvkB7KycJJqLDcssu226LOK9H/an+J/jj41/E5v2Cf2W76TSdfu7WO78b+K7RQf+EV0W4yFSF+VGq3yhls0IJiQNcMMKgf7j+Enwa+GfwL+Gmi/CH4WaRBpPh/w/apaWVrEuQkad2JyWdySzuxLO5LMSSTQB3kWoaRDGsMM8KogCqqsAAB0AFZehappn9n/APHxF/rZf4x/fb3rd+xWf/PFP++RWPodnZnT/wDVJ/rZf4R/fagDS/tTTP8An5i/77H+NL/ammf8/MX/AH2P8ak+xWf/ADxT/vkUv2Kz/wCeKf8AfIoAwpdU0z+3YT9pi/1En8Y/vJ71r/2ppn/PzF/32P8AGs6Sys/7dhHkp/qJP4R/eT2rW+xWf/PFP++RQBH/AGppn/PxF/32P8ayNe1TTDot1/pMX+rb+Men1rc+xWf/ADyT/vkVka9ZWQ0W6Pkp/q2/hHpQBoLqmmBRm5i6f3x/jTv7U0z/AJ+Yv++x/jT1srPaMxJ0/uinfYrP/nin/fIoAh/tXS/+fmL/AL7H+NZWlajpz3t6kdxGxacAAOCSSi1tfYbL/nin/fIrK0uztFvL1liQETgjCj+4tAG/RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//R/v4ooooAK53WbXWZIbh7W7SOMocKYtxHHruHeuiqpf8A/HjN/wBc2/lQBy+iWXiH+xrT/To/9Sn/ACx9h/tVqfYvEP8Az/R/9+f/ALKreh/8gW0/64p/6CK1KAMD7F4h/wCf6P8A78//AGVH2LxD/wA/0f8A35/+yrfooA4DTbPX/wC3NSxfR5zD/wAsf9n/AHq3ZLPxAI2LX0ZGD/yx/wDsqXTP+Q7qX1i/9BrbuW228jeik/pQB/Jj/wAGuUGq3MP7XNxaXKRbvjHqucx7snLnPUY61/Vr9i8Q/wDP9H/35/8Asq/lZ/4NRpI9T+Gf7T/iVDk3/wAYtXb8NiMP/Q6/rFoA4LWbLxD9qsP9Oj/4+B/yx/2W/wBqt77F4h/5/o/+/P8A9lS6z/x9WH/XwP8A0Fq3qAMD7F4h/wCf6P8A78//AGVeGftL/B7XfjT8CfE3w2+1xSTalZSLbgxbR56/NHzuOPmA5xX0lRUVIKcHCWzVjowmKqYavTxFJ2lBqS9U7o/Mb/gnR8c9S+JHwZX4S+IL5bLxV4HU6beWU8eZvJh+WN8FgTgfIxxwV561+gXh+y8Qf2Laj7dH/q1/5Y//AGVfBv7TH7B+s+O/iVH8e/2dfEh8D+MtpS6lQMsN0CMFm2chyOGOGDAcjPNey/sk/s5698GNFu/FPxA8VX3i3xNrqR/a7q5lcwxomSscMbE7QMnJ4J9AOK4MHLEU7YepC6WnNdWa6ab37/fc+r4gpZTilPNcJiOWVTX2PK+aM2/eXNpHk3cXe+yt1G/tq/Cv4i/Fj9mbxR4H8IMuoaldQI0FssYjaVonV9oYtgEheM96/Gjwj+038Z/2O/BMf7JUWjiLXZdJeRbdIvNuV1TU5N0Y3K5GI4iDwGy/Hav6Xa465+HngK98WRePLvRbGXW4E8uPUHt0Nyif3RIRuA56ZqcZl8qtRVqU+Wdrd9N/vNOHeLKOCwcsvx2GVahze0SvZ89kld/y23Vr67nwN+zz+xj4i8E/ssaH8ONZvorPXV1K38RTF4vMEV7HKkqo3zAkKECn3zXwp/wV2l0qH4s+CINaeSa4it3kunt08srZNIqMCcnqxwO3OO9f0K18q/Hz9m/wJ+0DpniTQ9btIU1W/wBIGn2+oMm6SBWfzFwfQSKrcelTjMuUsI6FHeyWv93VG3D3GEqWfQzPMW3Hmm3y6WdRWb9EtbeR4Z8b/in8Mk/Z48XfDzwdqaGDQdJsYPItka2WJb8KtqFlVuPvKTg8d65//gm/48+KHi7wJ4r8BeKddOrR+DdZl0u01CZPMeaFc4BYnJ24yM5ODinfsofsBt8Pvg54r+Hv7Q00HiCXxbJElykLuVWC1GIsSHDbgcMMfdwMV9UaF8B7f4HfBK/+G37MEFpo9/IHe3mvi8q/aJcBpZSMs7ADjPoB0qaNPESqQxM1ypRd4rfrZdu3Xc3zHF5RRweIyfC1HUlKpFxqSS5do80r/EteZWtqmm27I4z4G/FPx34o+K3xA+DXiTVob+48H3du0F4LdUaS3vUMio6qQu6I/LkDkYzzmvoLxRpfiG6sorX+0Vj8yZE3pDhl3HGR83Udq8v/AGav2bdB/Z58PXo+2za34i12b7XrOr3P+uu7jnnHO1FyQq54r3bXvuWv/XzF/OvQwyqKmva76+fXRX8lofI51UwssZJ4L+GlFXtZNqKUpJdFKSbS6J7LY+Ifh9/wT/8AAnhTUNb17xlrV74x1PW7WSwa71oCeSC1lBDRxdAuQeT1+lfLui/8EqPF1rqdt4H1z4kXl98OLS5+1pozK6lmznaw37MHoWAyfTNfs9RXPPK8NJJOG3r+Pf5nq4fjbOqMqkoYh3nbdRdrKycbq0Wk3ZxtufH37T//AAnPws/ZZ8Rr8KEHn6dpn2aytrO3w0UeAmUCkn5EyRx2r8av2fvgT+2N8Avin4f8J/D2O9j0Tx5Fpd/qGp28TGOGFSJZUkf+BkBZGDcsCcda/pWIBGDTXA2H6VOKy2NerGrztOO1vx+9aHRkfGVXLcFWwSoRqKq25OWt3Zcv/gMlzLu2/U/nw+Mn/BOL9ov40/HjUfFEslhPpGq3nmJq09y2+C1z/q1t8HBXHGDiv3Y8OeF9Y8M+HrDw5Zagrw2FvFbozw5YrEoUEnd1OK3fDf8AyBYf+Bf+hGtytcLgKVCc6kN5bnn51xTjs0w+HwuJtyUVaKSt0Su9XrZLay7I+Bf25fjH48+F/wAMB4M8BRz6v4p8XltN02C0tiWUuMPISCcbVPHv7V0n7Ev7OfiT9nT4Cad4N1S5ii1e6Z73UQsfmYnlx8u7IztUAfXNfaTRRO6yOoLJ90kcjPpUlWsN/tHt5O+lku3f5swlnTWVrK6NPlTlzzle7m1dRXlGKe2uutzgYrPxB/wksw+3R/8AHun/ACx/2j/tVv8A2LxD/wA/0f8A35/+ypIv+Rnm/wCvdP8A0I10FdR4ZgfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBwXiKy8QfYFzfR/62P/AJY/7Q/2q3vsXiH/AJ/o/wDvz/8AZUeI/wDkHr/12j/9CFb9AGB9i8Q/8/0f/fn/AOyo+xeIf+f6P/vz/wDZVv0UAc+bLxDg/wCnR/8Afn/7KsTw7ZeIP7N/4/o/9ZJ/yx/2j/tV3R6GsPw7/wAg3/tpJ/6EaAG/YvEP/P8AR/8Afn/7Kj7F4h/5/o/+/P8A9lW/RQBgfYvEP/P9H/35/wDsqwTZeIf+ElH+nR/8e5/5Y/7Q/wBqu9rBP/Iyj/r3P/oQoAT7F4h/5/o/+/P/ANlR9i8Q/wDP9H/35/8Asq36KAMD7F4h/wCf6P8A78//AGVYfiOy8Qf2TJm+j6r/AMsff/eru6wvEn/IJk+q/wA6AGCy8Q4H+nR/9+f/ALKl+xeIf+f6P/vz/wDZVvDoKWgDA+xeIf8An+j/AO/P/wBlR9i8Q/8AP9H/AN+f/sq36KAOA8O2XiD7NPi+T/Xyf8sff/eroPsXiH/n+j/78/8A2VJ4d/49p/8ArvJ/OugoAwPsXiH/AJ/o/wDvz/8AZUfYvEP/AD/R/wDfn/7Kt+igDgp7LxB/wkcA+3R/6l/+WPuP9qt77F4h/wCf6P8A78//AGVE/wDyMlv/ANcX/mK36AMD7F4h/wCf6P8A78//AGVH2LxD/wA/0f8A35/+yrfooA4fxBZ+IRpE2b6Pp/zx/wDsq1YbLxD5Kf6dH0H/ACx/+yq14gONIm+lasP+pX6CgDE+xeIf+f6P/vz/APZUfYvEP/P9H/35/wDsq36KAMD7F4h/5/o/+/P/ANlWDoll4g829xfR/wCvb/lj7D/arvawND/1t7/18N/IUAH2LxD/AM/0f/fn/wCyo+xeIf8An+j/AO/P/wBlW/RQBgfYvEP/AD/R/wDfn/7KsK8s/EH9u2eb6P7sn/LH2/3q7ysC9/5Dtn/uv/KgA+xeIf8An+j/AO/P/wBlR9i8Q/8AP9H/AN+f/sq36KAMD7F4h/5/o/8Avz/9lWVrll4g/si4zfR/cP8Ayx/+yrtKydd/5BFx/uGgDNsrLxB9jixfR/cH/LH2/wB6rP2LxD/z/R/9+f8A7KtWx/484v8AcH8qtUAYH2LxD/z/AEf/AH5/+yo+xeIf+f6P/vz/APZVv0UAcLpdl4g+2XuL6P8A1v8Azx9v96tv7F4h/wCf6P8A78//AGVSaV/x+Xv/AF1/pW3QBgfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBweo2fiAarY5vo/vN/yx9v96t37F4h/5/o/+/P/ANlS6l/yFbH/AHn/AJVvUAYH2LxD/wA/0f8A35/+yo+xeIf+f6P/AL8//ZVv0UAclqll4h/s2f8A06P/AFbf8sfb/epulWXiD+zIMX0f3B/yx/8Asq6DVP8AkGz/APXNv5Umk/8AIMg/3BQBQ+xeIf8An+j/AO/P/wBlR9i8Q/8AP9H/AN+f/sq36KAMD7F4h/5/o/8Avz/9lWBpll4g/ta/xfR/fT/lj/s/71d9WBpf/IWv/wDeT+VAB9i8Q/8AP9H/AN+f/sqPsXiH/n+j/wC/P/2Vb9FAGB9i8Q/8/wBH/wB+f/sqwdXsvEH2yxzfR/60/wDLH2/3q72sDWP+P2x/66/0oAPsXiH/AJ/o/wDvz/8AZUfYvEP/AD/R/wDfn/7Kt+igDA+xeIf+f6P/AL8//ZVXu7LxD9ll/wBOj+43/LH2/wB6unqvd/8AHrL/ALjfyoA5XRbLxB/ZUGL6P7g/5Y//AGVaf2LxD/z/AEf/AH5/+yq3on/IJg/3BWpQBgfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQB5/ZWXiD/hIb3/Tk+5H/wAsfb/erofsXiH/AJ/o/wDvz/8AZUyx/wCRhvf9yOuioAwPsXiH/n+j/wC/P/2VH2LxD/z/AEf/AH5/+yrfooA4PXLLxD/on+nR/wDHwv8Ayx9j/tVu/YvEP/P9H/35/wDsqdrn/Lp/18L/ACNbtAGB9i8Q/wDP9H/35/8AsqPsXiH/AJ/o/wDvz/8AZVv0UAc7JZeIdjf6dH0P/LH/AOyrG8OWfiE6LB/p0f3f+eP/ANlXcSf6tvoaxvDf/IFg+lADPsXiH/n+j/78/wD2VH2LxD/z/R/9+f8A7Kt+igDA+xeIf+f6P/vz/wDZVz1vZ+IP+ElucX0f+pj/AOWP1/2q9Arnbb/kZbn/AK5R/wBaAH/YvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBgfYvEP/P8AR/8Afn/7KsTXbLxD9nh/06P/AFyf8sff/eruqxNd/wCPeH/rsn86AI/sXiH/AJ/o/wDvz/8AZUfYvEP/AD/R/wDfn/7Kt+igDA+xeIf+f6P/AL8//ZUfYvEP/P8AR/8Afn/7Kt+igDgfDNl4h/slf9Oj++//ACx/2j/tVv8A2LxD/wA/0f8A35/+yo8M/wDIJX/fk/8AQjW/QBgfYvEP/P8AR/8Afn/7Kj7F4h/5/o/+/P8A9lW/RQBwRsvEH/CTf8f0f/HsP+WP+0f9qt77F4h/5/o/+/P/ANlQf+Rn/wC3Yf8AoRrfoAwPsXiH/n+j/wC/P/2VH2LxD/z/AEf/AH5/+yrfooA4LxJZeIP7L5vo/wDWRf8ALH/bH+1W6LLxDgf6dH/35/8AsqXxL/yCz/10i/8AQxW8OgoAwfsXiH/n+j/78/8A2VH2LxD/AM/0f/fn/wCyrfooAwPsXiH/AJ/o/wDvz/8AZVh6BZeIfscn+nJ/r5f+WP8AtH/aru6w9A/485P+u8v/AKEaAGfYvEP/AD/R/wDfn/7Kj7F4h/5/o/8Avz/9lW/RQBgfYvEP/P8AR/8Afn/7KsSWy8Qf8JDF/pyf6h/+WP8AtD/aruqxJf8AkYof+uD/APoQoAj+xeIf+f6P/vz/APZUfYvEP/P9H/35/wDsq36KAMD7F4h/5/o/+/P/ANlWH4lsvEP9hXOb6P7v/PH3H+1Xd1heJf8AkBXP+7/UUAMFl4hx/wAf0f8A35/+ypfsXiH/AJ/o/wDvz/8AZVvDoKWgDA+xeIf+f6P/AL8//ZUfYvEP/P8AR/8Afn/7Kt+igDgtCsvEOLzF9H/x9Sf8sfp/tVvfYvEP/P8AR/8Afn/7Kl0Hpef9fUv9K3qAMD7F4h/5/o/+/P8A9lVuyt9VilLX1ysyYwFWPYc+ucmtSigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/5A8/0H8xWxWPr/APyB5/oP5igDYooooAKyNK/1t5/18H/0Fa16yNK/1t5/18H/ANBWgDXooooAxtQ/5Cdh/wBdH/8AQGrZrG1D/kJ2H/XR/wD0Bq2aACoLr/j2k/3T/Kp6guv+PaT/AHT/ACoAqaN/yCLX/rkn8hWlWbo3/IItf+uSfyFaVABWRb/8hu6/65xfzatesi3/AOQ3df8AXOL+bUAa9RTwQXUD2t0iyRSKVdGGVZTwQQeCCOoqWigD8dFe7/4JdeP7DwPeox/Zr8WanEml3hOU8CatdTAraTZ+5o11I2LeTO2ymbymxC8ez9igQRkdDXC/Evwj4W+IHgq98CeOdOt9X0XWVFlf2N3GJYLi3nISSORGBDKykgg1+afwx8eeL/8Agnf8S9F/Zc+Ol/c6t8IvE12un/D7xheyNNJpNzJ/qtA1adyTk/d067kP75QIJD5qo0oB+s9FFFAGRof/AB4n/rrL/wChtWvWPof/AB4n/rrL/wChtWxQAVjzf8h63/64S/zStiseb/kPW/8A1wl/mlAGxRRRQBl65/yBrr/rk/8AKtJPuD6Vm65/yBrv/rk/8jWkn3B9KAHUUUUAY+m/8f19/wBdV/8AQFrYrH03/j+vv+uq/wDoC1sUAFY+q/8AHxY/9fH/ALI1bFY+qZ+0WP8A18f+yNQBsUUUUAIehrK0H/kC2n/XJP5VqnoaytB/5Atp/wBck/lQBrUUUUAY8f8AyH5f+uCf+hNWxWPH/wAh+X/rgn/oTVsUAFY2v/8AIMb/AK6Rf+hrWzWNr/8AyDG/66Rf+hrQBs0UUUAFY+i/6qf/AK+Jf/QjWxWPov8Aqp/+viX/ANCNAGxRRRQBj3f/ACGLP/dl/kK2Kx7v/kMWf+7L/IVsUAFUdT/5Btx/1yf+Rq9VHU/+Qbcf9cn/AJGgCSy/48of9xf5VaqtZf8AHnDn+4v8qs0AFY1j/wAhW+/3o/8A0EVs1j2P/IVvv96P/wBBFAGxRRRQBjax960/6+E/ka2axtY+9af9fCfyNbNABRRRQBj6B/yCYv8AgX8zWxWN4f8A+QRD/wAC/ma2aACsb/mYf+3f/wBmrZrG/wCZh/7d/wD2agDZooooAyNe/wCQTN9B/MVr1ka9/wAgmb6D+YrXoAKKKKAMTRfv3v8A18v/ACFbdYmi/fvf+vl/5CtugArIvv8AkJ2X+9J/6Ca16yL7/kKWP+9J/wCgmgDXooooAr3f/HrL/uN/Kq2j/wDIJtf+uKf+girN3/x6y/7jfyqto/8AyCbX/rin/oIoA0aKKKAMa1/5Dd5/1zh/9mrZrGtf+Q3ef9c4f/Zq2aACvgH9sr9pbxn4U1nRv2Xv2Yo7XVvjL4yUTadFdKZbLQ9ORwk2sakEIK20JysMeQ1zPtiTjey9z+1f+1PP8D49I+GHwq0keL/it40MkPhnw4snlq/l4Et7eSAH7PYWuQ08xHPEaBpHVTT/AGXv2VLT9nDw1feIvGGryeL/AIk+Mr2C/wDF3im5QJPqV2pwkcaciCztlPl2lsnyRRju7OzAHof7Lf7Mvgr9lb4YL4B8L3V1rGo3txJqWu69qTCXUta1W5wbi9u5ABulkboAAkaBY0CoqgfR1FFABWPoX/IP/wC2sv8A6G1bFY+hf8g//trL/wChtQBsUUUUAZEv/Idh/wCuEn/oSVr1kS/8h2H/AK4Sf+hJWvQAVka//wAgW6/65t/KtesjX/8AkC3X/XNv5UAay/dFLSL90UtABWRpn/H3ff8AXYf+gLWvWRpn/H3ff9dh/wCgLQBr0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/S/v4ooooAKqX/APx4zf8AXNv5Vbqpf/8AHjN/1zb+VAFbQ/8AkC2n/XFP/QRWpWXof/IFtP8Arin/AKCK1KACiiigDntM/wCQ7qX1i/8AQa0NYuYrPSbq7mOEiid2PsASaz9M/wCQ7qX1i/8AQa5v4wX7aV8JvE+pr1t9KvJR/wAAiY/0oA/mn/4NN9Fjtv2Lfir4pRf+Q38UNcuN397YIkz+lf1O1/M5/wAGmqRXf/BJa08S4xLq/i/X7mX/AHjMB/IV/THQBg6z/wAfVh/18D/0Fq3qwdZ/4+rD/r4H/oLVvUAFFFFAEc3+qb6Gsrw9/wAgO1/65rWrN/qm+hrK8Pf8gO1/65rQBs0UUUAFc9Z/8jHef9cov5tXQ1z1n/yMd5/1yi/m1AHQ0UUUAFYOvfctf+vmL+db1YOvfctf+vmL+dAG9RRRQAU1/uH6U6mv9w/SgDF8Nf8AIFh/4F/6Ea3Kw/Df/IFh/wCBf+hGtygAooooA5+L/kZ5v+vdP/QjXQVz8X/Izzf9e6f+hGugoAKKKKAMHxH/AMeCf9do/wD0IVvVg+I8/YEx/wA9o/8A0IVvUAFFFFACHoaw/Dv/ACDf+2kn/oRrcPQ1h+Hf+Qb/ANtJP/QjQBu0UUUAFYJ/5GUf9e5/9CFb1YJ/5GUf9e5/9CFAG9RRRQAVheJP+QTJ9V/nW7WF4k/5BMn1X+dAG4OgpaQdBS0AFFFFAHP+Hf8Aj2n/AOu8n866Cuf8O/8AHtP/ANd5P510FABRRRQBgT/8jJb/APXF/wCYrfrAn/5GS3/64v8AzFb9ABRRRQBi+IeNIm+la0P+pT6CsnxDgaRNn0rVh/1Kf7ooAlooooAKwND/ANbe/wDXw38hW/WBof8Arb3/AK+G/kKAN+iiigArAvf+Q7Z/7r/yrfrAvf8AkO2f+6/8qAN+iiigArJ13/kEXH+4a1qydd/5BFx/uGgC5Y/8ecX+4P5VaqrY/wDHnF/uD+VWqACiiigDD0r/AI/b3/rqP5VuVh6V/wAft7/11H8q3KACiiigDB1L/kK2P+8/8q3qwdS/5Ctj/vP/ACreoAKKKKAKGq/8g2f/AK5t/Km6R/yDIP8AcFO1X/kGz/8AXNv5U3SP+QZB/uCgDRooooAKwNM/5C1//vJ/Kt+sDTP+Qrf/AO8n8qAN+iiigArA1j/j9sP+uv8ASt+sDWP+P2x/66/0oA36KKKACq93/wAesv8AuN/KrFV7v/j1l/3G/lQBT0T/AJBMH+4K1Ky9E/5BMH+4K1KACiiigDnbH/kYb3/cjroq52x/5GG9/wByOuioAKKKKAMHXf8Al0/6+F/ka3qwdd6Wvf8A0hf5Gt6gAooooAZJ/q2+hrG8N/8AIFg+lbMn+rb6Gsbw3/yBYPpQBuUUUUAFc7bf8jNc/wDXKP8ArXRVztt/yM1z/wBco/60AdFRRRQAVia7/wAe8P8A12T+dbdYmu/8e8P/AF2T+dAG3RRRQAUUUUAYHhn/AJBK/wC/J/6Ea36wPDP/ACCV/wB+T/0I1v0AFFFFAGAf+Rn/AO3Yf+hGt+sA/wDIz/8AbsP/AEI1v0AFFFFAGB4l/wCQWf8ArpF/6GK3h0FYPiX/AJBZ/wCukX/oYreHQUALRRRQAVheH/8Aj0l/67y/+hGt2sLw+B9klx/z3l/9CNAG7RRRQAViS/8AIxQ/9cH/APQhW3WHL/yMUP8A1wf/ANCFAG5RRRQAVh+Jf+QFc/7v9RW5WF4m/wCQFc/7v9RQBuDoKWkHQUtABRRRQBg6D0vP+vqX+lb1YOg9Lz/r6l/pW9QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFZUlnqbSM0d5tUkkL5anA9M1q0UAY32LVv+f7/yEtZGvWWrf2PPm9/hH/LNfUV2FY+v/wDIHn+g/mKAA2Wrdr7H/bNaPsWrf8/3/kNa2KKAMf7Fq3/P8f8Av2tZGl2Wrebef6cf+Pg/8s1/urXX1kaV/rbz/r4P/oK0AJ9i1b/n+/8AIa0fYtW/5/v/ACGtbFFAHHahZar/AGlYf6af9Y//ACzX+41bP2LVv+f4/wDftaTUP+QnYf8AXR//AEBq2aAMf7Fq3/P9/wCQ1qC4stW+zyZvc/Kf+Wa+lb9QXX/HtJ/un+VAHOaPZar/AGTa4vj/AKpP+Wa+grS+xat/z/f+Q1qbRv8AkEWv/XJP5CtKgDH+xat/z/f+Q1rIt7HVv7ausX3Plxf8sl9W966+si3/AOQ3df8AXOL+bUAJ9i1b/n+/8hrR9i1b/n+P/fta2KKAOO1uy1X7NFm+P+vh/wCWa/3xXNfFL4QeEfjb8PNY+E3xatbfX/DfiC1ez1DT7uBXhnhkHKnuCOqsMMrAEEEA132tnFtF/wBd4f8A0MVsUAfk78K/iJ8Uv2HPiDo/7Kv7TfiG51vwJrlwtj4B8fX4V5N5H7rRdZlOAL0AbbS6bC3ija2Jx+8/Ur7Fq3/P9/5DWuX+Knwq+HXxv+Her/Cb4taPba/4c163a1v7C7TfFNE/YjqCDgqwIZWAZSCAR+bPw/8Aiz8Sf+CfPjrTP2d/2qtWuvEPwr1q5Sx8E/ES+bfLYySELDo+vy9ps/Jaag2EuRiOYrPgygH6baJZar9iOL0/62X/AJZr/fNbH2LVv+f4/wDftaXRAVsmVuCJZf8A0Nq16AMb7Fq3/P8Af+QlrImstV/t23/00/6mX/lmvqldhWPN/wAh63/64S/zSgA+xat/z/f+Q1pPsWrf8/3/AJCWtmigDk9bstW/sa6/07/lk/8AyzX0NaSWWrbR/px6f88lqbXP+QNd/wDXJ/5GtJPuD6UAZP2LVv8An+/8hrR9i1b/AJ/v/Ia1sUUAcfp1lqv26+xfH/Wr/wAs1/uLWx9i1b/n+/8AIa0ab/x/X3/XVf8A0Ba2KAMf7Fq3/P8Af+Q1rI1Oy1X7RY5vSf8ASP8Ankv9xq6+sfVf+Pix/wCvj/2RqAD7Fq3/AD/f+Q1o+xat/wA/3/kNa2KKAMY2WrY/4/j/AN+lrK0Ky1b+xbT/AE0/6pP+Wa+ldaehrK0H/kC2n/XJP5UAM+w6v/z/AH/kJaX7Fq3/AD/f+Q1rYooA4+Oy1b+3pf8ATT/qE/5Zr/eatf7Fq3/P9/5CWlj/AOQ/L/1wT/0Jq2KAMf7Fq3/P9/5DWsfXrLVf7NbN6fvxf8s1/vrXYVja/wD8gxv+ukX/AKGtAC/YtW/5/v8AyEtH2LVv+f0/9+1rYooAx/sWrf8AP9/5DWsjRrLVfJnxen/j4l/5Zr/eNdfWPov+qn/6+Jf/AEI0AH2LVv8An+/8hrSfYtW/5/v/ACEtbNFAHH3dlqv9sWf+mn7sv/LNfQVr/YtW/wCf7/yEtLd/8hmz/wB2X+QrYoAx/sWrf8/3/kNao6nZar/Ztxm9P+qf/lmvoa6aqOp/8g24/wCuT/yNAGZZWOrfY4v9O/gX/lmvpVn7Fq3/AD/f+Q1q9Zf8eUP+4v8AKrVAGP8AYtW/5/v/ACGtY9jZaqdUvgL0/ej/AOWa/wB0V2FY1j/yFb7/AHo//QRQAv2LVv8An+P/AH7Wj7Fq3/P9/wCQ1rYooA47V7LVg1pm9z/pCf8ALJfQ1s/YtW/5/v8AyGtJrH3rT/r4T+RrZoAx/sWrf8/3/kNaPsWrf8/3/kNa2KKAOP0Cy1b+yIcXx/i/5ZL6mtj7Fq3/AD/f+Q1o0D/kEQ/8C/ma2KAMf7Fq3/P8f+/a1jfYtV/4SD/j9/5d/wDnmv8Aersaxv8AmYf+3f8A9moAPsWrf8/3/kJaX7Fq3/P9/wCQ1rYooA5DXbLVf7Im/wBNPQf8s19RWv8AYtW/5/f/ACGtLr3/ACCZvoP5itegDH+xat/z/H/v2tJ9h1f/AJ/v/IS1s0UAcbo9lqpa8xen/j5f/lmvoK2vsWrf8/x/79rTNF+/e/8AXy/8hW3QBjfYtW/5/v8AyEtZN9Zat/adl/px+9J/yyX+6a6+si+/5Cll/vSf+gmgBPsWrf8AP9/5DWj7Fq3/AD/f+Q1rYooA5+6stW+yy5vf4G/5Zr6VW0iy1b+ybXF9/wAsU/5Zr/dFdDd/8esv+438qraP/wAgm1/64p/6CKAIPsWrf8/3/kNaPsWrf8/x/wC/a1sUUAcfa2Wq/wBtXf8ApvPlw/8ALNf9qvlT9q/9qe7/AGfIdI+H3gC0fxt8UvGTSW/hbwpbbI5LqRAN91dSc/ZtPtshrm5YYRcKoaRkRq37TX7WJ+DHjCz+C/wj0geNPi14wt1bQfDkcnlxxwxllk1DUZgG+y6fAT+8lYFnb93EryECt79lj9lBPgfd6x8Wfihq58afFfxkIm8R+JpY/KDpFkxWVlDlha2FvkiGBSSTmSQvIzMQDE/ZP/ZK8QfBMav8WPi74hj8XfFvxr5cvibxELfy4yI8mGwsI2LG30+1yVgiByxzLIWkdjX1nq9lq3lwf6cf9fF/yyX+8K66snV/9XB/13i/9CFADfsWrf8AP8f+/a0n2LVv+f7/AMhLWzRQBj/YtW/5/f8AyGtY+h2Wrf2fxfH/AFkv/LJf77V2FY+hf8g//trL/wChtQAfYtW/5/v/ACGtH2LVv+f7/wAhrWxRQByEtlqv9uw/6af9RJ/yzX+8la/2LVv+f7/yGtLL/wAh2H/rhJ/6Ela9AGP9i1b/AJ/j/wB+1rI16y1b+xbrN6f9U3/LJfSuvrI1/wD5At1/1zb+VADFstWwP9O/8hrTvsWrf8/3/kNa1l+6PpTqAMb7Fq3/AD/f+QlrM0mz1Nb+8Z7wsonBK+WoyNicZrrKyNN/4+77/rsP/QFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9P+/iiiigArntX1UwRz2q2txKQhAaOPcpyO3PNdDRQBx2ka28Ok2sUlhdqyxICDFgggDjrWj/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr0f8JB/wBON3/37/8Ar10FFAHB6frEsesahM9heBXMW0mLg4XnHPNeQftU+I/Ecf7MvxCfwhomp6nqv/COamLO0tLZ57iec27hEjjj3O7s2AqqCSeAK+m6KAPwU/4NyPgz8Sf2Zf8Agkp8PPht8X/COteFvEhudVvL7TNVsJbK8gee7kK+bDOqSIWUKRuUZBB6V+5f/CQf9ON3/wB+/wD69dBRQBw2q61JLcWTR2F4wScFsRZwNp5PNbP/AAkH/Tjd/wDfv/69dBRQBz//AAkH/Tjd/wDfv/69H/CQf9ON3/37/wDr10FFAHOS6/mNgLG76H/ll/8AXrN0LW5IdHtopbC8VljAIMWCD+ddrRQBz/8AwkH/AE43f/fv/wCvR/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr1iWusSpr11O1hdhGijAPlcEgtnnNd3RQBz/8AwkH/AE43f/fv/wCvR/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr1jazrUkyW/l2F4ds8bHEWcAHk9a7migDnzr//AE5Xf/fv/wCvR/wkH/Tjd/8Afv8A+vXQUUAc/wD8JB/043f/AH7/APr0ja/lSPsN3/37/wDr10NFAHD6BrcsGkxRTWF4rDdkGLB+8fetj/hIP+nG7/79/wD166CigDn/APhIP+nG7/79/wD16P8AhIP+nG7/AO/f/wBeugooA4SLWZR4hlnNhebDAoDeUcZyeM5rb/4SD/pxu/8Av3/9eugooA5//hIP+nG7/wC/f/16P+Eg/wCnG7/79/8A166CigDhde1qWayVYbC8ZhLGcCLJwGGe9bf9v8/8eV1/37/+vW/RQBz/APwkH/Tjd/8Afv8A+vR/wkH/AE43f/fv/wCvXQUUAc8df4P+hXf/AH7/APr1kaFrUkFhslsLxT5jnBiweWPqa7iigDn/APhIP+nG7/79/wD16P8AhIP+nG7/AO/f/wBeugooA5//AISD/pxu/wDv3/8AXrF/tqX/AISATf2febPII3eVxncOM5ruqKAOf/4SD/pxu/8Av3/9ej/hIP8Apxu/+/f/ANeugooA5/8A4SD/AKcbv/v3/wDXrH17WpZ9MeOGwvGYleBFk9frXcUUAc8Nf4/48rv/AL9//Xpf+Eg/6cbv/v3/APXroKKAOf8A+Eg/6cbv/v3/APXo/wCEg/6crv8A79//AF66CigDhNC1mWC3mWawvFJmcjMWOCfrW3/wkH/Tjd/9+/8A69dBRQBz/wDwkH/Tjd/9+/8A69H/AAkH/Tjd/wDfv/69dBRQBws2sytr8M4sLzYsLgt5XGcjvmtr/hIP+nG7/wC/f/166CigDn/+Eg/6cbv/AL9//Xo/4SD/AKcbv/v3/wDXroKKAOJ1zW5JtLljisLtmI4AiyT+tacWvbYlU2N3wB/yz/8Ar10dFAHP/wDCQf8ATjd/9+//AK9H/CQf9ON3/wB+/wD69dBRQBz/APwkH/Tjd/8Afv8A+vWLo+tSxSXbS2F4u6ckZixkYHI5ruqKAOf/AOEg/wCnG7/79/8A16P+Eg/6cbv/AL9//XroKKAOf/4SD/pxu/8Av3/9esW71qV9ZtJVsLwqofJ8o4GR9a7qigDn/wDhIP8Apxu/+/f/ANej/hIP+nG7/wC/f/166CigDn/+Eg/6cbv/AL9//XrM1nW5JtLnjisLtmKnAEWSf1rs6KAOWs9eZLSNWsbsEKAcxf8A16s/8JB/043f/fv/AOvXQUUAc/8A8JB/043f/fv/AOvR/wAJB/05Xf8A37/+vXQUUAcRputSRXd2z2F4A8mQTF1GPrWv/wAJB/043f8A37/+vXQUUAc//wAJB/043f8A37/+vR/wkH/Tjd/9+/8A69dBRQBw2oa1LJqVnIlheFUZtxEXA4781s/8JB/043f/AH7/APr10FFAHP8A/CQf9ON3/wB+/wD69H/CQf8ATjd/9+//AK9dBRQByWpa60lhOiWN2SUYACLOePrSaZrjR6fDG9hdghBkGLBH6111FAHP/wDCQf8ATjd/9+//AK9H/CQf9ON3/wB+/wD69dBRQBz/APwkH/Tjd/8Afv8A+vWLp+syx6neyPYXgV2XaTFweO3Nd1RQBz//AAkH/Tjd/wDfv/69H/CQf9ON3/37/wDr10FFAHP/APCQf9ON3/37/wDr1i6prMst3ZPHYXhCS5OIs4GPrXdUUAc//wAJB/043f8A37/+vR/wkH/Tjd/9+/8A69dBRQBz/wDwkH/Tjd/9+/8A69QXOvFraRVsbskqcfuvb6109FAHHaRrjxabDHJYXasFGQYsH+daP/CQf9ON3/37/wDr10FFAHP/APCQf9ON3/37/wDr0f8ACQf9ON3/AN+//r10FFAHB2msyprt3M1heBGVMExcHjsc1uf8JB/043f/AH7/APr10FFAHP8A/CQf9ON3/wB+/wD69H/CQf8ATjd/9+//AK9dBRQBw2s61JN9m8uwvG2zqTiLOBg89a2f+Eg/6crv/v3/APXroKKAOf8A+Eg/6cbv/v3/APXo/wCEg/6cbv8A79//AF66CigDnX1/KEfYbvof+WX/ANesnQNakg0mGKWwvFYDkGLBH613FFAHP/8ACQf9ON3/AN+//r0f8JB/043f/fv/AOvXQUUAc/8A8JB/043f/fv/AOvWHBrMq+ILic2F5saJAG8o4JGe+a7yigDn/wDhIP8Apxu/+/f/ANej/hIP+nG7/wC/f/166CigDn/+Eg/6cbv/AL9//XrI1nW5JYIhFYXjETISBFngH6129FAHP/8ACQf9ON3/AN+//r0f8JB/043f/fv/AOvXQUUAc/8A8JB/043f/fv/AOvR/wAJB/043f8A37/+vXQUUAcJ4e1qWDTFjm0+8Rt7nBiweWPvW3/wkH/Tjd/9+/8A69dBRQBz/wDwkH/Tjd/9+/8A69H/AAkH/Tjd/wDfv/69dBRQBwp1mX/hIftH2C72fZwN3lcZ3HjOetbX/CQf9ON3/wB+/wD69dBRQBz/APwkH/Tjd/8Afv8A+vR/wkH/AE43f/fv/wCvXQUUAcL4g1qWfTTHDYXjN5kZwIsnAYE962Rr/H/Hjd/9+/8A69dDRQBz/wDwkH/Tjd/9+/8A69H/AAkH/Tjd/wDfv/69dBRQBgf2/wA/8eV1/wB+/wD69YuiazJBayLJYXikzSHmLHBY46mu5ooA5/8A4SD/AKcbv/v3/wDXo/4SD/pxu/8Av3/9eugooA5//hIP+nG7/wC/f/16yZNZkOuxTiwu9ggcE+VxnI4zmu2ooA5//hIP+nG7/wC/f/16P+Eg/wCnG7/79/8A166CigDn/wDhIP8Apxu/+/f/ANesfxBrUk+jXEUNheMzLwBFknke9dxRQBzw1/j/AI8bv/v3/wDXpf8AhIP+nG7/AO/f/wBeugooA5//AISD/pxu/wDv3/8AXo/4SD/pxu/+/f8A9eugooA4bRtalhF15theLuuZGGYsZBxg9elbP/CQf9ON3/37/wDr10FFAHP/APCQf9ON3/37/wDr1cstU+2ymL7NPDgZzIm0fTr1rUooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKyZNWMcjR/ZZ22kjITIOPTmgDWrH1/wD5A8/0H8xTf7ZP/Ppc/wDfH/16yde1gnSJx9kufu/88/ce9AHYUVjf2yf+fS4/74/+vSf2yf8An0uf++P/AK9AG1WRpX+tvP8Ar4P/AKCtN/tk/wDPpcf98f8A16yNK1g+bef6Jc/8fB/5Z/7K+9AHYUVi/wBsnGfslz/3x/8AXo/tk/8APpc/98f/AF6AF1D/AJCdh/10f/0Bq2a47UNYP9pWB+yXH+sf/ln/ALDe9a/9sn/n0uf++P8A69AG1UFz/wAe0n+6f5Vmf2yf+fS5/wC+P/r1DcayTbyD7Jc/dP8Ayz9vrQBe0b/kEWv/AFyT+QrSrlNH1gjSbX/RLn/VJ/yz9h71o/2yf+fS5/74/wDr0AbVZFv/AMhu6/65xfzamf2yf+fS5/74/wDr1k2+sEa1dH7Jc/6uL/ln/v8AvQB2FFYv9sn/AJ9Ln/vj/wCvS/2yf+fS4/74/wDr0ALrf/HtF/13h/8AQxWxXHa1q5a2i/0S5/4+If8Aln/tj3rX/tk4z9kuf++P/r0AbVcn478B+C/ih4M1P4d/EbSrXXNB1q2ks7+wvYlmt7iCUbXSRGBDKR2IrT/tk/8APpcf98f/AF6T+2T/AM+lz/3x/wDXoA/Jjw14z+In/BMeSHwp8U7m98Vfs7PO8GmeJpi91qXgsGQqlrqrEtJcaYMhYb45e2GEuMpiUfrrp2o6frGnwatpM8d1aXUazQzQsHjkjcBlZWUkMrAggg4IrkbK7tNR0WfTdR0+a4t7hp45YpYgyOjswZWUnBBBwQeCK/L648CfF7/gnBeP4m/Zp0HUvGXwLaWS41bwLAhl1TwyshLyXOggkme0BJaTTCdyZJtT/wAsSAfr3WPN/wAh63/64S/zSvOPhN8dfhn8dvh9pnxW+D2or4i8O6xF5tpfWWJInGcEHnKujAq6MAyMCrAEEV102sH+3IG+yXP+pl/5Z+6e9AHY0Vi/2yf+fS5/74/+vQdZP/Ppc/8AfH/16AJtc/5A11/1yf8AlWkn3B9K5TW9YJ0a6H2S4/1T/wDLP2PvWkuskKP9Euen9z/69AG3RWN/bJz/AMelx/3x/wDXo/tk/wDPpcf98f8A16AF03/j+vv+uq/+gLWxXH6drBF7fH7Jc/61f+Wf+wvvWv8A2yf+fS4/74/+vQBs1kaof39l/wBfH/sj006yf+fS4/74/wDr1kanrBNxZf6Jc/6/+5/sN70AdhRWL/bJ/wCfS5/74/8Ar0f2yc/8elz/AN8f/XoA2T0NZWg/8gW0/wCuSfyqI6ycH/RLn/vj/wCvWXoWsEaLaf6Jc/6pP+Wft9aAOvorG/tk/wDPpcf98f8A16T+2Tj/AI9Ln/vj/wCvQA6P/kPS/wDXBP8A0Jq2K45NYI12U/ZLn/UJ/B/tN71sf2yc/wDHpcf98f8A16ANmsbX/wDkGN/10i/9DWk/tk5/49Ln/vj/AOvWRrusE6aw+yXH34v+Wf8Atr70AdjRWL/bJ/59Ln/vj/69H9snH/Hpc/8AfH/16ANqsfRf9VP/ANfEv/oRpv8AbJxn7Jc/98f/AF6yNH1giKf/AES5/wCPiX/ln/tH3oA7GisX+2Tn/j0uf++P/r0f2yf+fS5/74/+vQA67/5DFn/uy/yFbFcddawTrFmfslz92X+D2X3rX/tk/wDPpc/98f8A16ANqqOp/wDINuP+uT/yNU/7ZOM/ZLn/AL4/+vVLU9ZJ024/0S5/1b/wex96AN2y/wCPKH/cX+VWq5yy1k/Y4R9kufuL/B7fWrX9sn/n0uP++P8A69AGzWNY/wDIVvv96P8A9BFJ/bJ/59Ln/vj/AOvWRY6wf7Uvj9luPvR/wf7I96AOxorGGsn/AJ9Lj/vj/wCvSf2ycZ+yXP8A3x/9egBdY+9af9fCfyNbNcbq+sEtaf6Jcf8AHwn8Hsfetn+2T/z6XH/fH/16ANmisX+2T/z6XP8A3x/9ej+2T/z6XP8A3x/9egB2gf8AIJh/4F/M1sVx+g6wRpMQ+yXP8X/LP3PvWt/bJx/x6XP/AHx/9egDarG/5mH/ALd//ZqT+2T/AM+lz/3x/wDXrH/tg/2/n7Jc/wDHv/zz/wBr60AdlRWL/bJz/wAelz/3x/8AXo/tk/8APpc/98f/AF6AH69/yCZvoP5iteuP13WCdJmH2S56D/ln7j3rXGsn/n0uP++P/r0AbNFYv9snGfslz/3x/wDXo/tk/wDPpc/98f8A16AE0X797/18v/IVt1xmjawQ95/olx/x8v8A8s/Ye9bJ1k/8+lz/AN8f/XoA2qyL7/kJ2X+9J/6CaZ/bJ/59Ln/vj/69ZN7rBOp2R+yXP3n/AOWf+yfegDsKKxf7ZOP+PS5/74/+vR/bJ/59Ln/vj/69AGld/wDHrL/uN/Kq2j/8gm1/64p/6CKz7rWSbWT/AES5+43/ACz9vrVbSdZI0m1/0S5/1Sf8s/8AZHvQB1VfAf7SX7XXibSviEv7J/7JWn23i34wX9vHcTpcbjpHhmxmOBf6xLHgouATBaKwnumGECpukXy/4lftVfFf9qHxbqv7O/7A0htotNmksPFHxKkgW60zQ5F+WW105GJjv9UXONvNtbNzMWYeUfrb9nT4BfCr9lzwGfAfwt0q+BupmvdT1K9Y3Wparfy4827vblyXnnkPLMxwBhVCoFUAHI/spfso+Fv2bZdf1q+1O68XePPFJt7vxP4t1QKdQ1W5UPtGF+WC1hBK21rFiKFOACxZm+xK4611g/21dn7Jc/ci/wCWf+971r/2ycZ+yXP/AHx/9egDarJ1f/Vwf9d4v/QhTP7ZP/Ppcf8AfH/16ydX1k+VD/olz/r4v+Wf+19aAOvorFOsn/n0uf8Avj/69H9sn/n0uf8Avj/69AG1WPoX/IP/AO2sv/obUn9sn/n0uP8Avj/69ZGh6wRp/wDx6XP+sl/5Z/7be9AHYUVi/wBsn/n0uf8Avj/69H9sn/n0uf8Avj/69AD5f+Q7D/1wk/8AQkrXrj5dYP8AbkJ+yXP+ok/5Z/7Se9ax1k/8+lz/AN8f/XoA2qyNf/5At1/1zb+VN/tk5/49Lj/vj/69ZGvayTot0Pslz/q2/g9vrQB1y/dH0p1Yi6ydo/0S56f88/8A69L/AGyf+fS5/wC+P/r0AbVZGm/8fd9/12H/AKAtM/tk/wDPpc/98f8A16zNJ1XzL68T7LcLunAyyYAyicnnpQB1tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/wCQPP8AQfzFbFY+v/8AIHn+g/mKANiiiigArI0r/W3n/Xwf/QVrXrI0r/W3n/Xwf/QVoA16KKKAMbUP+QnYf9dH/wDQGrZrG1D/AJCdh/10f/0Bq2aACoLr/j2k/wB0/wAqnqC6/wCPaT/dP8qAKmj/APIItf8Arkn8hWlWbo3/ACCLX/rkn8hWlQAVkW//ACG7r/rnF/Nq16yLf/kN3X/XOL+bUAa9FFFAGPrf/HtF/wBd4f8A0MVsVja3/wAe0X/XxD/6GK2aACiiigDI0P8A48T/ANdZf/Q2rXrH0P8A48T/ANdZf/Q2rYoA/N34tfsl/Ef4SePtT/aa/YHntNG8UalI134j8G3shg8PeKnwNzybVb7DqJAwl9EnznAuEkXlfYv2af2ufhr+05qF3pOkwXnhvxl4ajaDxF4T1qP7NrGkzsUx5sWSJIXwTDcwl4Jl5Rzzj7Ar4z/ad/ZC8DftD+JdG8cadqF54L+Inhy3n/sDxjopWPU7Asylon3Ax3NrIf8AW2s6vE45wrYYAH2ZRX5r/Dv9s3x18HPG2lfs+f8ABQaws/CniPVZRaaF4wsNy+FvEcrHEcccshJsL9+9lcN8zf6iSUcD9KKAMvXP+QNdf9cn/lWkn3B9Kzdc/wCQNd/9cn/lWkn3B9KAHUUUUAY+m/8AH9ff9dV/9AWtisfTf+P6+/66r/6AtbFABWRqn+vsv+vj/wBketesfVf+Pix/6+P/AGRqANiiiigBD0NZWg/8gW0/65J/KtU9DWVoP/IFtP8Arkn8qANaiiigDHj/AOQ/L/1wT/0Jq2Kx4/8AkPy/9cE/9CatigArG1//AJBjf9dIv/Q1rZrG1/8A5Bjf9dIv/Q1oA2aKKKACsfRf9VP/ANfEv/oRrYrH0X/VT/8AXxL/AOhGgDYooooAx7v/AJDNn/uy/wAhWxWPd/8AIYs/92X+QrYoAKo6n/yDbj/rk/8AI1eqjqf/ACDbj/rk/wDI0ASWP/HlD/uL/KrVVrL/AI84f9xf5VZoAKx7H/kK33+9H/6CK2KxrH/kK33+9H/6CKANmiiigDG1j71p/wBfCfyNbNY2sfetP+vhP5GtmgAooooAx9A/5BMX/Av5mtisbw//AMgiH/gX8zWzQAVjf8zD/wBu/wD7NWzWN/zMP/bv/wCzUAbNFFFAGRr3/IJm+g/mK16yNe/5BM30H8xWvQAUUUUAYmi/fvf+vl/5CtusTRfv3v8A18v/ACFbdABWRff8hSx/3pP/AEE1r1kX3/ITsv8Aek/9BNAGvRRXyb+0p+2L8Mf2b7vTPBM8F54r8feI1f8AsDwfoaLcaxqRTgusZZVgtkP+tup2jgjH3nzgEA95+JnxD8B/CbwBq/xI+J+s2fh7w/o1s9zfajqEy29tbwqOXkkcgKP5ngc1+YWnS/tAf8FJLG3t9OfV/hV+z+8ahrgeZp/ijxnbsgGIwdk+k6c5P3+Ly4T7vkI2W77wV+yD8Sfj54tsf2gf+ChM9nrGo6VL9t8O+ArCRpvDfh6RRmOWbcF/tPUE6/aZk8qJs+RGmN7fpRpBJ0q1J6mJP5CgDl/hr8NPh98G/AWk/C34U6NZ+HvDmhW6Wmn6dYRLBbW8KdFRFAAHc9ySSeSa7iiigDGtf+Q3ef8AXOH/ANmrZrGtf+Q3ef8AXOH/ANmrZoAKydX/ANXB/wBd4v8A0IVrVk6v/q4P+u8X/oQoA1qKKKACsfQv+Qf/ANtZf/Q2rYrH0L/kH/8AbWX/ANDagDYooooAyJf+Q7D/ANcJP/QkrXrIl/5DsP8A1wk/9CStegArI1//AJAt1/1zb+Va9ZGv/wDIFuv+ubfyoA1l+6KWkX7opaACsjTP+Pu+/wCuw/8AQFrXrI03/j7vv+uw/wDQFoA16KKKACiiigAooooAKKKKACiiigAooooAKKKKAP/V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiisuTRdMlkaWSLLMSScnqaANSsfX/+QPP9B/MUv9g6V/zx/wDHj/jWPr+haV/Y8/7n+Edz6j3oA6+isj+wdK/54/8Ajx/xo/sHSv8Anj/48f8AGgDXrI0r/W3n/Xwf/QVo/sHSv+eP/jx/xrI0rQdJ828/c/8ALwe5/ur70AddRWR/YOlf88f/AB4/40f2DpX/ADx/8eP+NADdQ/5Cdh/10f8A9AatmuQ1DQtK/tKwHk/8tH7n+43vWx/YOlf88f8Ax4/40Aa9QXP/AB7Sf7p/lWf/AGDpX/PH/wAeP+NQ3OhaV9nk/c/wn+I+n1oAt6OMaTa/9ck/kK0q5bR9C0n+yLX9z/yyTufQe9aX9g6V/wA8f/Hj/jQBr1kW/wDyGrr/AK5xfzaj+wdK/wCeP/jx/wAayLfQtJ/tq6/c/wDLOLuf9r3oA66isj+wdK/54/8Ajx/xo/sHSv8Anj/48f8AGgBNb/49ov8ArvD/AOhitiuQ1vQtJFtF+5/5bw/xH++Petj+wdK/54/+PH/GgDXorI/sHSv+eP8A48f8aP7C0r/nj/48f8aADQ+LE/8AXWX/ANDateuR0PQtJ+wn9z/y1l7n++3vWv8A2DpX/PH/AMeP+NAGvWPN/wAh63/64y/zSl/sHSv+eP8A48f8ax5tC0n+3bceT/yxl7n1T3oAh+Ivw38AfF3wTqXw2+KOjWfiDQNXhNve6ffwrPbzxt2dHBB9QeoIyMEV+cMXw9/am/YD3XHwSXUfjH8HbcZPhO6n87xVoEK9tKupmH9o26DO20unFwgAWKZ+I6/Tz+wdK/54/wDjx/xo/sLSv+eX/jx/xoA8R+Dn7SHwW/ae+F914/8AglrkOsWUYkt7qLa0N3Y3KD57e7tpQs1tOh4eKZEde4r6DT7o+lfAH7Sn7BXw8+J3iK4+PHwj1W7+GPxTt7fYvinQwu6+iiDbbfVLVv3Oo23J/dzjenWKSNua8z0H9sjxF+z/AK9Z/DX/AIKNeHbTwPNeTpZ6Z450uSWXwhq0sn3FeaQ+Zpdw/OILw+WSMRzydKAP1NorCt9J0K7t0urVVlilUOjo5ZWVuQQQcEEdDU39g6V/zx/8eP8AjQAmnA/br7/rqv8A6AtbFcjp2haV9uvv3P8Ay1Xuf7i+9a/9g6V/zx/8eP8AjQBr1j6oM3Fif+nj/wBkel/sHSv+eP8A48f8ayNU0PShcWP7r/l49T/cb3oA66isj+wdK/54/wDjx/xo/sHSv+eP/jx/xoA1j0NZWg/8gW0/65J/KmnQdKwf3P8A48f8aytB0LSf7FtP3P8AyyT+I+n1oA62isj+wdK/54/+PH/Gj+wdK/54/wDjx/xoAIx/xPpT/wBME/8AQmrXrkY9C0r+3pR5P/LBP4j/AHm961/7B0r/AJ4/+PH/ABoA16xtf/5Bjf8AXSL/ANDWnf2DpX/PH/x4/wCNY+vaFpQ0xv3P8cX8R/vr70AdfRWR/YWlf88v/Hj/AI0f2DpX/PH/AMeP+NAGvWPo3+qn/wCviX/0I0v9g6V/zx/8eP8AjWRo2haV5M/7r/l4l7n+8fegDrqKyP7B0r/nj/48f8aP7B0r/nj/AOPH/GgBLv8A5DFn/uy/yFbFchd6FpP9s2f7n+GX+I+g962P7B0r/nj/AOPH/GgDXqjqf/INuP8Ark/8jVb+wdK/54/+PH/GqOp6FpQ024/df8sn7n0PvQBuWX/HnD/uL/KrNc/ZaFpJs4f3P8C/xH0+tWf7B0r/AJ4/+PH/ABoA16x7H/kK33+9H/6CKX+wdK/54/8Ajx/xrHsdC0r+1b4eT/FH3P8AdHvQB19FZH9g6V/zx/8AHj/jR/YOlf8APH/x4/40AN1j71p/18J/I1s1x+r6FpQa0Plf8vCdz6H3rZ/sHSv+eP8A48f8aANeisj+wdK/54/+PH/Gj+wtK/55f+PH/GgBNA/5BEP/AAL+ZrYrkNA0LSjpEP7kfxfxH1PvWx/YOlf88f8Ax4/40Aa9Y3/Mw/8Abv8A+zU7+wdK/wCeP/jx/wAax/7C0r/hIP8AU/8ALv6n+99aAOvorI/sHSv+eP8A48f8aP7B0r/nj/48f8aADXv+QTN9B/MVr1yOvaFpP9kT/uew/iPqPetf+wtK/wCeX/jx/wAaANeisj+wdK/54/8Ajx/xo/sHSv8Anj/48f8AGgCPRvv3v/Xy/wDIVt1x2jaHpRe9/c/8vL9z6D3ra/sHSv8Anj/48f8AGgDXrnde1Cw0h4dX1aeO1tLRZpp5pWCRxxohLM7EgKoHJJOAK+O/2hP2xPgt8DvFkHwc8NadffED4n6hD51h4M8NgXOptGcYmuSWWGxtskZuLqSKPH3SzfKfBrf9i34oftR+ItK8af8ABQy/tbjRUd5rP4ZaDNIfDsBxuU6pOwSXV5kwPldY7RTnELcNQBtah+1p8Zv2wrubwX/wTugt4fDSy/Z7/wCKesQGXR4lGRINFtjtOqzqeBNlLJG5MkpBjP07+zR+yB8Kf2Y4NS1rw8134g8YeImWXX/Fety/a9a1aYdDNOQNsS/8sreJY4IhxHGvNfQ9j4T8OaXYwaXpdnHbWttGsUMMI2RxxoMKqquAqgcAAYAq1/YOlf8APH/x4/40AX7v/j1l/wBxv5VW0j/kE2v/AFxT/wBBFUbvQtK+yy/uf4G/iPp9araPoOlf2Ta/uf8Alin8R/uj3oA6iisj+wdK/wCeP/jx/wAaP7B0r/nj/wCPH/GgBtqP+J3eH/pnD/7NWzXIWuh6UdavB5X/ACzh7n/a962P7B0r/nj/AOPH/GgDXrJ1f/Vwf9d4v/QhSf2DpX/PH/x4/wCNZOr6FpPlQfuf+W8Xc/3h70AdbRWR/YOlf88f/Hj/AI0f2DpX/PH/AMeP+NAGvWPoX/IP/wC2sv8A6G1L/YWlf88f/Hj/AI1j6FoOk/2f/qf+Wsvc/wB9vegDr6KyP7B0r/nj/wCPH/Gj+wdK/wCeP/jx/wAaACUH+3YT/wBMJP8A0JK165GXQtJ/t2H9z/ywk/iP95Petf8AsHSv+eP/AI8f8aANesjXv+QLdf8AXNv5Uf2DpX/PH/x4/wCNZOvaFpX9i3X7kf6pv4j6fWgDrF+6KWsddC0naP3P/jx/xpf7B0r/AJ4/+PH/ABoA16yNN/4+77/rsP8A0BaP7B0r/nj/AOPH/GsvSdF0yK/vJY4sMs4IOT1CLQB1dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKx9f/wCQPP8AQfzFbFY+v/8AIHn+g/mKANiiiigArI0r/W3n/Xwf/QVrXrI0r/W3n/Xwf/QVoA16KKKAMbUP+QnYf9dH/wDQGrZrG1D/AJCdh/10f/0Bq2aACoLr/j2k/wB0/wAqnqC6/wCPaT/dP8qAKmjf8gi1/wCuSfyFaVZujf8AIItf+uSfyFaVABWRb/8AIbuv+ucX82rXrHt/+Q3df9cov5tQBsUUUUAY+t/8e0X/AF3h/wDQxWxWNrf/AB7Rf9fEP/oYrZoAKKKKAMfQ/wDjxP8A11l/9DatisfQ/wDjxP8A11l/9DatigArHm/5D1v/ANcJf5pWxWPN/wAh63/64S/zSgDYooooAy9c/wCQNdf9cn/lUWueH9B8V6Fc+GvFFlb6lp19E0Nza3UazQTROMMjo4KspHBBBBqXXP8AkDXf/XJ/5GtJPuD6UAfmHc/sZ/Gb9lq7fxP/AME7fEMGn6IpMk/w18SyyzeG5RySNOnUSXGkuSeFiEtpn/l3H3h6n8Gf2+Php478c23wN+M+l3/wo+J0ysU8MeJtkT3uwgM+m3iFrXUYgSPmt5GcA/OiHivuuvKfjP8AAz4PftEeBLn4Z/HHw3YeKNCu8F7TUIRKgdfuuhPzRyKeVkQq6nlSDQB32nf8f19/11X/ANAWtivyys/gd+2j+yje3Vz+yn4mX4peC7Vgv/CEeOLx11K3QKuF07XiskmAOFi1COcYAAmQZr3D4M/t9fBD4oeLoPhH42TUPhr8RZVJ/wCES8XwjTtRlK/eNo5Zre+QH/lpZzTLjkkUAfbtY+q/8fFj/wBfH/sjVsVj6r/x8WP/AF8f+yNQBsUUUUAIehrK0H/kC2n/AFyT+Vap6GsrQf8AkC2n/XJP5UAa1FFFAGPH/wAh6X/rgn/oTVsVjx/8h+X/AK4J/wChNWxQAVja/wD8gxv+ukX/AKGtbNY2v/8AIMb/AK6Rf+hrQBs0UUUAFY+i/wCqn/6+Jf8A0I1sVj6L/qp/+viX/wBCNAGxRRRQBj3f/IZs/wDdl/kK2Kx7v/kM2f8Auy/yFbFABVHU/wDkG3H/AFyf+Rq9VHU/+Qbcf9cn/kaAJLL/AI8of9xf5VaqrZf8eUP+4v8AKrVABWNY/wDIVvv96P8A9BFbNY9j/wAhS+/3o/8A0EUAbFFFFAGNrH3rT/r4T+RrZrG1j71p/wBfCfyNbNABRRRQBj6B/wAgmH/gX8zWxWPoH/IJi/4F/M1sUAFY3/Mw/wDbv/7NWzWN/wAzD/27/wDs1AGzRRRQBka9/wAgmb6D+YrXrI17/kEzfQfzFa9ABRXhPx3/AGmvgL+zL4fh8SfHPxRY+HoruQQ2cEz77u9mPAitbaMNPcSk8COFHY+lfGsvxS/bv/a2LWXwF8Pn4HeCZmAPinxdarceI7qHu1hoxby7XP8ABLqDlh1NqeKAPqb40/tRfAr9lzw/L4j+NevxaUb+8eHTrGNHudR1GcgYhs7OFXuLmVjwEhjY+uBzXyo0v7c37ajGK3S+/Z3+GkrYMj+VN441WHPO1f3ttpEbjufPuwO0Dcj3T9mv9in4HfALxPq3xL02C88TePNSkaLUPF/iO4Opa3cpgHYLiQAQQ8/LBbrFCo6JX2jQB4L8AP2Y/gf+zB4Yn8L/AAX0GLSxfSm51C8dmuNQ1G5bJae8u5i89zMxJJeV2bnAwOK9jvv+QnZf70n/AKCa16yL7/kJ2X+9J/6CaANeiiigCvd/8esv+438qraP/wAgm1/64p/6CKs3f/HrL/uN/Kq2j/8AIJtf+uKf+gigDRooooAxrX/kN3n/AFzh/wDZq2axrX/kN3n/AFzh/wDZq2aACsnV/wDVwf8AXeL/ANCFa1ZOr/6uD/rvF/6EKANaiiigArH0L/kH/wDbWX/0Nq2Kx9C/5B//AG1l/wDQ2oA2KKKKAMiX/kOw/wDXCT/0JK16yJf+Q7D/ANcJP/QkrXoAKyNf/wCQLdf9c2/lWvWRr/8AyBbr/rm38qANVfuj6U6kX7ozS0AFZGm/8fd9/wBdh/6Ata9ZGm/8fd9/12H/AKAtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9f+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKyJTrvmN5It9mTt3Fs47ZrXooAxc+IvS2/Nv8KyNePiH+yJ8i2+6O7eorsax9f8A+QPP9B/MUANz4i9Lb82/woz4i9Lb82/wraooAxc+IvS2/Nv8KydLPiHzbzAtv+Pg92/ur7V2FZGlf628/wCvg/8AoK0AMz4i9Lb82/woz4i9Lb82/wAK2qKAON1A+If7SsOLbPmP3b+43tWxnxF6W35t/hS6h/yE7D/ro/8A6A1bNAGLnxF6W35t/hUNyfEP2aTi2+6e7en0roKguv8Aj2k/3T/KgDm9HPiH+ybXAtv9UndvQe1aOfEXpbfm3+FWNG/5BFr/ANck/kK0qAMXPiL0tvzb/Csm3PiH+2rri2/1cXdv9quwrIt/+Q3df9c4v5tQAzPiL0tvzb/CjPiL0tvzb/CtqigDjta/4SH7NFkW3+vh7v8A3x7Vr58Relt+bf4U7Wxm2i/67w/+hitigDFz4i9Lb82/woz4h9Lb82/wraooA4/RD4h+xHAtv9bL3b++3tWtnxF6W35t/hT9D/48T/11l/8AQ2rXoAxc+IvS2/Nv8KyJj4h/t2Di2/1Mvdv7ye1djWPN/wAh63/64S/zSgBufEXpbfm3+FGfEXpbfm3+FbVFAHI62fEP9j3XFt/qn7v6H2rSU+Ito4tunq3+FWNc/wCQNdf9cn/lWkn3B9KAMfPiL0tvzb/CjPiL0tvzb/CtqigDjtOPiH7bfcW3+tXu/wDcX2rz74yfAn4d/tD+DpPh/wDHHwvovirR5GEgttRg89UkHSSMsN0ci/wyIQ69iK9a03/j+vv+uq/+gLWxQB+W9p+yz+2V+zHGsv7HPxCj8T+HIDkeC/iLcXGoQxxf887LWVD39vgDCLcreIOnA6WY/wDgoz4X8HeItM8F/th+Hb34H65LdCOKXxLiTQbtypH+ja1bl7JskgBJ3gl9YxX6f1yni/RNF8SWMWgeI7ODULC8kMU9tcxrNDKjI4KujgqwPcEGgCXT9S1LV7GHVNJmsrq2uEEkU0Tl43RuQysuQQR0INXM+IvS2/Nv8K/Pqf8A4Ju+B/hrqD+I/wBizxZrXwSvWYudO0J0uvDczc8S6LdCS0Qc8m1FtJ/tiqH/AAvj9vz9n4yw/tB/DC2+J+hQcr4g+G0m2+8sd59EvpFk39z9lurjPZAcCgD9EyfEWOlt+bf4Vl6EfEP9i2uBbf6pO7en0r52+B37df7Kf7ROrP4T+G3i+2HiOLKz+H9USTStagYdRJYXiQ3K4x18vHoSK+o9DVl0a1VhgiJOD9KAIs+IvS2/Nv8ACjPiL0tvzb/CtqigDjoz4h/t2Xi2/wBQndv7ze1a+fEXpbfm3+FOj/5D8v8A1wT/ANCatigDFz4i9Lb82/wrH14+If7NbItvvxd2/vrXZVja/wD8gxv+ukX/AKGtACZ8Q+lt+bf4UZ8Relt+bf4VtUUAYufEXpbfm3+FZGjnxD5M+Bbf8fEvdv7x9q7GsfRf9VP/ANfEv/oRoAbnxF6W35t/hRnxF6W35t/hW1RQBx10fEP9sWeRbfdl7t6D2rXz4i9Lb82/wp13/wAhiz/3Zf5CtigDFz4i9Lb82/wqlqR8Q/2bcZFt/qn7t6H2rp6o6n/yDbj/AK5P/I0AZVkfEP2OHAtvuL3b0+lWc+IvS2/Nv8K0LL/jyh/3F/lVqgDFz4i9Lb82/wAKyLE+IP7UvsC2+9H3b+6PauxrGsf+Qrff70f/AKCKAEz4i9Lb82/woz4i9Lb82/wraooA43Vz4h3WmRbf8fCd29DWxnxF6W35t/hS6x960/6+E/ka2aAMXPiL0tvzb/CjPiL0tvzatqigDjtBPiH+yYsC2/i7t6n2rXz4i9Lb82/wp2gf8gmH/gX8zWxQBi58Relt+bf4Vj58Qf8ACQdLbP2f1b+9XZV478U/jJ8JfgdA/jX4y+JtL8K6THbkG71W7itIi27O0NIygt6AZJoA9Iz4i9Lb82/woz4i9Lb82/wr86z/AMFBfFHxjL2H7D/wr8QfEhHA8vxDqiN4a8Mckjct7ep9ouFGMk2lrOpHRuRSP+yX+1h+0FaRt+2L8XLjStMkyZ/Cvw0Emh2MikY8ufVHL6nOuDz5MloG7rj5aAPRP2jP26fgV8BNS/4Vv4o1yHWPGl2gNr4V8PwTavrs+SAuLO1V5I1J48yURxDu4ANeVtqv/BSr9p4xjQrHTf2efCFwoL3GoeVrni+ZD2SCNn02xJB5LyXjqf4ARX1x8Kv2avgJ+zP4Ju/DPwG8J6b4Xtrg+ZctZQhZ7qQnmS4nOZZ5D3eV2Y9zX0PQB8S/Ab9hj4N/s/8AiOT4i6Np58S+OLpCt34u8TXMura9cbvvD7VMCYUP/PG3WKEdAgFfYGfEXpbfm3+FbVFAHGaOfEG+8wLf/j5fu3oPatnPiL0tvzb/AApNF+/e/wDXy/8AIVt0AYufEXpbfm3+FZN6fEP9pWXFt96Tu390+1dhWRff8hOy/wB6T/0E0AMz4i9Lb82/woz4i9Lb82/wraooA527PiL7LLxbfcbu3p9KraQfEX9k2vFt/qU7t6D2ro7v/j1l/wBxv5VW0f8A5BNr/wBcU/8AQRQBWz4i9Lb82/woz4i9Lb82/wAK2qKAOOtT4g/tq7wLfPlw92/2vatfPiL0tvzb/Cltf+Q3ef8AXOH/ANmrZoAxc+IvS2/Nv8KytXPiHy4OLb/Xxd2/vV19ZOr/AOrg/wCu8X/oQoAjz4i9Lb82/wAKM+IvS2/Nv8K2qKAMXPiH0tvzb/CsjQz4h+wcC2/1kvd/77e1djWPoX/IP/7ay/8AobUANz4i9Lb82/woz4i9Lb82/wAK2qKAOPkPiH+3IeLb/USd3/vJWtnxF6W35t/hT5f+Q7D/ANcJP/QkrXoAxc+IvS2/Nv8ACsnXT4h/sa6yLb/Vt3b0+ldhWRr/APyBbr/rm38qAI1PiLA4tvzb/Clz4i9Lb82/wrZX7opaAMXPiL0tvzb/AArM0n+3ft955ot9nnjdtLZxsXOK62sjTP8Aj7vv+uw/9AWgDXooooAKKKKACiiigAooooAKKKKACiiigAooooA//9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKypNb0uKRopJQGUkEYPUUAatY+v/8AIHn+g/mKP7f0j/nsPyP+FZGva9pB0if98Og7H1HtQB19FY/9v6R/z2H5H/Cj+39I/wCew/I/4UAbFZGlf628/wCvg/8AoK0n9v6R/wA9h+R/wrJ0vXtIEt5++H/Hwex/ur7UAddRWP8A2/pH/PYfkf8ACj+39I/57D8j/hQAmof8hOw/66P/AOgNWzXH6hr2kf2lYHzh/rH7H+43tWx/b+kf89h+R/woA2Kguf8Aj2k/3T/Ks7+39I/57D8j/hUNzr2kG3kHnD7p7H0+lAFzRv8AkEWv/XJP5CtKuW0fXtIGk2o84f6pOx9B7Vo/2/pH/PYfkf8ACgDYrIt/+Q3df9c4v5tSf2/pH/PYfkf8KybfXtI/tq6PnD/Vxdj/ALXtQB11FY/9v6R/z2H5H/Cj+39I/wCew/I/4UAJrf8Ax7Rf9fEP/oYrZrkNa17SDbRfvh/r4ex/vj2rX/t/SP8AnsPyP+FAGxRWP/b+kf8APYfkf8KP7f0j/nsPyP8AhQAaH/x4n/rrL/6G1bFchomvaQLIjzh/rZex/vt7Vr/2/pH/AD2H5H/CgDYrHm/5D1v/ANcZf5pR/b+kf89h+R/wrIm17SP7dgPnD/Uy9j6p7UAdfRWP/b+kf89h+R/wo/t/SP8AnsPyP+FAEmuf8ga7/wCuT/yNaSfcH0rldb1/SP7Huv3w/wBU/Y+h9q0k1/SNo/fDp6H/AAoA2qKx/wC39I/57D8j/hR/b+kf89h+R/woANN/4/r7/rqv/oC1sVyGna9pAvb4+cP9avY/3F9q1/7f0j/nsPyP+FAGxWPqmftFj/18f+yNR/b+kf8APYfkf8KyNT17STcWWJh/x8eh/uN7UAdfRWP/AG/pH/PYfkf8KP7f0j/nsPyP+FAHknxu/Zl/Z7/aR0ZND+PHgzSPFcEJDQNqNqk0sDKchoZSPMicHkNGysD0NfHNj+wz8XvhlptlqX7Hvxr8SeD4o4lxoPib/irdCZeCECXrrfwgcgeTfIoB+6cCv0gOv6Rg/vh+R/wrL0LXtIGi2o84f6pOx9PpQB8Dj4/f8FA/g3d/Zfjl8G7Px9pCZLa38OdSV5wgxzJpOpm3lB6/LBc3B44611vgv/gpr+xn4o8Sr4C8U+Km8B+JjgHRfGlpP4cvcnPCLfpCkvTrC8inseRX3B/b+kf89h+R/wAK5fxho3wz+IeiS+GfH2m2OuabN/rLTULZbmB/rHIrKfxFAG9pl9Y6rqH9qaXNHc201tG0c0TB43BZuQwyCPoa6KvzBvP+Cbf7HmmeJ5tW+CC6z8Jb9kWUzeBNVu9DhZycEvZwv9ik+6P9Zbt+ppYfg7+378Kyp+E/x703xxYxnC6f8QfDsck+z5cAX+kPYtkYPzSW0pJPJ4oA/T2sbX/+QY3/AF0i/wDQ1r86JP2o/wBu34cBF+KfwItvFlsp/e3vgHxFb3cm3BJYWeqR6dJwABtSWRiTwMVSuv8AgqX+ztZaQ5+M2g+N/hi6Mhk/4SvwtqNrDHsIZybmGGe22qOr+bt9CaAP09or5N+HH7ef7E/xemFp8Mfix4T1u4IQ/Z7TV7Z5xv8AugxeZ5gJ7AqDX05FrukzwC5gmEkR6OoLKfxAxQBrVj6L/qp/+viX/wBCNH9v6R/z2H5H/CsjRte0kQz/AL4f8fEvY/3j7UAdfRWP/b+kf89h+R/wo/t/SP8AnsPyP+FABd/8hiz/AN2X+QrYrkLvXtIOsWf74fdl7H0HtWv/AG/pH/PYfkf8KANiqOp/8g24/wCuT/yNVf7f0j/nsPyP+FUtT17SDptx++H+qfsfQ+1AG5Zf8ecP+4v8qs1z1lr2kCzhHnD7i9j6fSrP9v6R/wA9h+R/woA2KxrH/kK33+9H/wCgil/t/SP+ew/I/wCFY9jr2kjVL4+cPvR9j/dHtQB2FFZaa1psh2xyFj7Kx/pXAeOfjl8GPhhZtqPxL8V6R4dgUEmTU7yKzUbeTzKy9KAO61j71p/18J/I1s1+cHiP/gqj+wTJfQaX4M+INt40vY5o2+zeEra58QyHfkL/AMg6G4A3HgEkDNZKf8FAfi348cW/wG/Z48e6srNtF94nS18KWIyD8x+3TfayuRg7LRjzkA0AfprRX5m3F7/wU++JjiOTV/h18J7GU5Y21vfeLNRRcg7Q0h0y2DYyMlJBnBwRxVWP9gmx8dhZf2nvjV8QPiKWcPNZLqh8O6XIQQdptdFjstyZA+WSSTPIOQTQB9I/E79sT9lj9m/Q4z8cPH+ieHJxu22lzdp9skOTgR2yFp5GPZUQknjGa8Gn/b1+I3xMiWP9kj4JeLvGyTMBHquuxDwlo+xjjzPN1IJdugHP7qzkJGMZzXtn7Pv7Mn7I37POlRS/BDwJoHhedg2+5sLBEupMnBLzlTM5OBku5J719Qf2/pH/AD2H5H/CgD87ZPgh/wAFE/jgsT/Gn4r6Z8LtKkA8/R/h1Yi5vWBOSjavqiSEYHylobKFjyVZTjHffDX/AIJ7/snfDb4jwfEOfwwPFni6C2O3xH4ruJtf1ZSzjJjuL55mhzgZEIjXjpX2p/b+kf8APYfkf8Kx/wC3tJ/4SDPnD/j39D/e+lAHYUVj/wBv6R/z2H5H/Cj+39I/57D8j/hQAuvf8gmb6D+YrXrkdd17SDpM374dB2PqPatb+39I/wCew/I/4UAbFFY/9v6R/wA9h+R/wo/t/SP+ew/I/wCFADNF+/e/9fL/AMhW3XG6Pr2kh7zMw/4+X7H0HtW1/b+kf89h+R/woA2KyL7/AJCdl/vSf+gmk/t/SP8AnsPyP+FZN7r2kf2lZHzh96Tsf7p9qAOuorH/ALf0j/nsPyP+FH9v6R/z2H5H/CgDQu/+PWX/AHG/lVbR/wDkE2v/AFxT/wBBFUbrX9JNrJiYfcbsfT6VV0jX9IGk2o84f6lOx9B7UAdTRWP/AG/pH/PYfkf8KP7f0j/nsPyP+FACWv8AyG7z/rnD/wCzVs1x9rr2kjWrw+cP9XD2P+17Vsf2/pH/AD2H5H/CgDYrJ1f/AFcH/XeL/wBCFN/t/SP+ew/I/wCFZOr6/pHlwfvh/r4ux/vD2oA66isf+39I/wCew/I/4Uf2/pH/AD2H5H/CgDYrH0L/AJB//bWX/wBDaj+39I/57D8j/hWRoevaQLD/AFw/1svY/wB9vagDr6Kx/wC39I/57D8j/hR/b+kf89h+R/woAWX/AJDsP/XCT/0JK165GXXtI/t2E+cP9RJ2P95Patb+39I/57D8j/hQBsVka/8A8gW6/wCubfypP7f0j/nsPyP+FZOva9pB0W6/fD/Vt2Pp9KAOsX7o+lOrGXX9I2j98PyP+FL/AG/pH/PYfkf8KANisjTf+Pu+/wCuw/8AQFpP7f0j/nsPyP8AhWXpOt6XLf3kUcwLNOABg9Si0AdZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArI1/P9kT49B/MVr1j6/8A8gef6D+YoA2KKKKACsjSv9bef9fB/wDQVrXrI0r/AFt5/wBfB/8AQVoA16KKKAMbUP8AkJ2H/XR//QGrZrG1D/kJ2H/XR/8A0Bq2aACoLn/j2k/3T/Kp6guf+PaT/dP8qAKmj/8AIJtf+uSfyFaVZujf8gi1/wCuSfyFaVABWRb/APIbuv8ArnF/Nq16yLf/AJDd1/1zi/m1AGvRRRQBj62cW0X/AF8Q/wDoYrYrH1v/AI9ov+u8P/oYrYoAKKKKAMjQ8/YTn/nrL/6G1a9Y+h/8eJ/66y/+htWxQAVjzZ/t63/64y/zStiseb/kPW//AFwl/mlAGxRRRQBl65/yBrv/AK4v/I1pJ90fSs3W/wDkDXX/AFyf+RrST7g+lADqKKKAMfTift19/wBdV/8AQFrYrH03/j+vv+uq/wDoC1sUAFY+qf8AHxY/9fH/ALI1bFY+qf8AHxY/9fH/ALI1AGxRRRQAh6GsrQv+QLaf9ck/lWqehrK0H/kC2n/XJP5UAa1FFFAGPGT/AG9KP+mCf+hNWxWPH/yHpf8Argn/AKE1bFABWPrxxprf78X/AKGtbFY2v/8AIMb/AK6Rf+hrQB5H8Sf2Xf2a/jJKbj4s/D/w54lmJz5up6XbXUgJ7h5I2YH3BzXyzJ/wSe/Yb093uvh54Z1DwLcsrKs/hLXdU0Fk3dSq2N1DHu9ypNfo3RQB+dVv+wH4v8MIf+Fa/tA/FHSCkflxR32qWutxJjuRqNncSOfdpDWTp/7Of/BQPRvm8G/tHw30MEkqmLxD4OsrppGDdWksp7E/kBX6V1j6L/qp/wDr4l/9CNAH58Wnh3/grdoMU3neK/hP4mbcfKEmiatpB29tzJf3oz64Wrdv4v8A+Crmj2gbV/Anwu1ubv8AYvEuqWQ/KbSpv51+ilFAH5z2vxb/AOCkg1G3k174K+ENyLJhbXxrIxYcdPM0lK6OT47/ALecIw3wAsZSO8XjG2IP/fdop/Svt27/AOQxZ/7sv8hWxQB8CJ8fv28nOD+z3bL9fGFnj9LY1HqXxm/4KBXmnTiy+B2hW2Y2H+l+MlHb/pnpz19/1R1P/kG3H/XJ/wCRoA/PSx+Jv/BUa+jWGD4RfD+xXACyXHjO8lAHqVj0Xn8D+NOjl/4K2ancyxzQfCPRIG/1brNrOpuv1Ux2Yb/voV+htj/x5Q/7i/yq1QB+a0Pwd/4KpeI7R4/FHxw8D+H5C5KHQfBE8pCE8Am91eYEgd9g57VPbfseftJ+JNQv4vH/AO0t41kjlVFkj0TT9G0kK23rG4sZpF/77P1r9IqxrH/kK33+9H/6CKAPz6f/AIJg/A/xE0p+LnjD4i+O1nRUkh1rxlqq2zbc8/Z7Oe1gB9cRgV6J4G/4JtfsDfDq5F/4W+EPhZboOJftF1p0V7P5gGN3m3Akfd6tuya+2qKAOWOk6V4esrDStBtorG1inRUht0EUarg8BVAAH4V1NY2sfetP+vhP5GtmgAooooAx9Az/AGTFn/a/ma2Kx9A/5BMX/Av5mtigArG/5mH/ALd//Zq2axv+Zh/7d/8A2agDZooooAyNd/5BM30H8xWvWRr3/IJm+g/mK16ACiiigDE0b795/wBfL/yFbdYmi/fvf+vl/wCQrboAKyL4/wDEzsh/tSf+gmtesi+/5Cdl/vSf+gmgDXooooAr3f8Ax6y/7jfyqtpH/IJtf+uKf+girN3/AMesv+438qraP/yCbX/rin/oIoA0aKKKAMe1J/tu8H/TOH/2atisa1/5Dd5/1zh/9mrZoAKydX/1cH/XeL/0IVrVk6v/AKuD/rvF/wChCgDWooooAKx9DJOn8/8APWX/ANDatisfQv8AkH/9tZf/AENqANiiiigDIlJ/t2Ef9MJP/QkrXrIl/wCQ7D/1wk/9CStegArI17/kC3X/AFzb+Va9ZGv/APIFuv8Arm38qANVfuj6U6mr90fSnUAFZGmnN3ff9dh/6Ata9ZGm/wDH3ff9dh/6AtAGvRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXlrHe2z2spIV+CR1qzRQAUUUUAFVre1jtmlZCT5rlzn1IA/pVmigAooooArTWsc88Nw5O6Ellx05BHP51ZoooAKZIgkRo26MCPzp9FAEFtAlrbR20ZJWNQoz1wOKnoooAKrJaxx3Ul2Cd0iqp9MLnH86s0UAFFFFAFa6tI7xFjkJAV1cY9UOR/KrNFFABRRRQBWtbWOzi8mIkjczc+rEk/zqzRRQAVWa1ja7S9JO5FZAO2GIJ/lVmigAooooAr3dsl5ayWkpIWRSpx1weKnAwMUtFABRRRQBWgtY4JZZkJzMwZs+oAHH5VZoooAKrXFrHcvE7kgwvvGO5wRz+dWaKACiiigAPPFV7S2jsrWO0iJKxKFBPXAqxRQAUUUUAVhaxrdtegncyBCO2ASf61ZoooAKrXdrHewG3lJCkq3HX5SCP5VZooAKKKKACq1rax2iusZJ3uznPqxyas0UAFFFFAFaS1jluYrpid0QYD0+bGf5VZoooAKinhW4ge3fIV1KnHXB4qWigCOKNYYliXooAGfapKKKACq0VrHDcS3Ck7piC2enyjHFWaKACiiigCtc2kd0YzISPKcSDHqKs0UUAFFFFAFa0tY7K3W2iJKrnGevJz7VZoooAKrfZY/tn27J37NmO2M5qzRQAUUUUAVru1jvLdraUkK/XHWrNFFABRRRQBVtbSO0MpjJPmuZDn1OOn5VaoooAKrS2sc08VwxO6EkjHT5hjmrNFABRRRQAyRBLG0bdGBB/GmW0CWtvHbR5KxqFGeuAMVNRQAUUUUAVo7WOO6lu1J3ShVI7fLnGPzqzRRQAVXubaO6VFkJGx1cY9VORViigAooooAKrWlrHZw+TESRuZueuWJJ/nVmigAooooArNaxtdreEnciMgHbDEH+lWaKKACq15ax3trJaSkhZFKkjrg1ZooABxxRRRQAVWgtY7eSWVCSZm3tn1wBx+VWaKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==" + } + }, + "cell_type": "markdown", + "id": "f174b55a-ea04-4222-b477-44ac9d8ea5fc", + "metadata": {}, + "source": [ + "![Xnip2023-03-02_10-55-29.jpg](attachment:04c01833-6f41-4b2a-812f-56ce5790948d.jpg)" + ] + }, + { + "cell_type": "markdown", + "id": "c5c402a1-20dc-4888-867d-e3034545fd5e", + "metadata": {}, + "source": [ + "Currently, this information is stored in a text file with a filename ending in \".ori\", a format inherited from MEGALib. Each line contains the keyword \"OG\", followd by: time stamp (GPS seconds), x-axis galactic latitude (deg), x-axis galactic longitude (deg), z-axis galactic latitude (deg), z-axis galactic longitude (deg). " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "319be2f3-92f1-4dad-b040-99b865dabe18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "#Type OrientationsGalactic \n", + "\n", + "OG 1835487300.0 68.44034002307066 44.61117227945379 -21.559659976929343 44.61117227945379\n", + "\n", + "OG 1835487301.0 68.38920658776064 44.642124027021296 -21.610793412239364 44.642124027021296\n", + "\n", + "OG 1835487302.0 68.3380787943012 44.67309722321497 -21.661921205698793 44.67309722321497\n", + "\n", + "OG 1835487303.0 68.28695666554313 44.70409195030112 -21.713043334456863 44.70409195030112\n", + "\n", + "OG 1835487304.0 68.2358402243372 44.73510829054615 -21.764159775662804 44.73510829054615\n", + "\n", + "OG 1835487305.0 68.18472949353415 44.76614632621641 -21.81527050646584 44.76614632621641\n", + "\n", + "OG 1835487306.0 68.13362449598479 44.79720613957824 -21.8663755040152 44.79720613957824\n", + "\n", + "OG 1835487307.0 68.08252525453989 44.82828781289802 -21.91747474546011 44.82828781289801\n", + "\n", + "OG 1835487308.0 68.0314317920502 44.859391428442066 -21.968568207949804 44.859391428442066\n", + "\n" + ] + } + ], + "source": [ + "with open(ori_path) as f:\n", + " for i in range(10):\n", + " print(f.readline())" + ] + }, + { + "cell_type": "markdown", + "id": "fc774be1-7a5e-45c4-a563-50f2936df15e", + "metadata": {}, + "source": [ + "
\n", + "Note: The orientation (.ori) file format will change in the future, from a text file to a FITS file. However, the file contents and the capabilities of the SpacecraftFile class will be the same.
" + ] + }, + { + "cell_type": "markdown", + "id": "975bc80f-5aef-4b71-b1a9-9ba79fdf76a8", + "metadata": {}, + "source": [ + "You don't have to remember the internal format though, just load it using the SpacecraftFile class:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "88196861", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 1 of \"dubious year (Note 3)\"\n", + "\n", + "\n", + "WARNING ErfaWarning: ERFA function \"taiutc\" yielded 1 of \"dubious year (Note 4)\"\n", + "\n" + ] + } + ], + "source": [ + "ori = SpacecraftFile.parse_from_file(ori_path)\n", + "\n", + "# Let's use only 1 hr in this example\n", + "ori = ori.source_interval(ori.get_time()[0], ori.get_time()[0] + 1*u.hr)" + ] + }, + { + "cell_type": "markdown", + "id": "d203e24e-ff40-4ca7-a104-9ebb70c4b77c", + "metadata": {}, + "source": [ + "You can plot the pointings to see how the zenith changes over the observation. In this example, we'll plot only 1 hr:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "e039c144-9374-4d38-b114-08116c88f89e", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 3601 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkgAAAEXCAYAAADm98iSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADkmklEQVR4nOzdd3hT5dvA8e9J0pYWyiqlzLIpSwEp8CIiIHsWkA3KEhARB6IsFUEUULb8RHAUQdnIKHsvB0u20KKssmmB0t0mOe8faULSprSlIx3357pCk5Mn59wnCcmdc5/neRRVVVWEEEIIIYQQQgghhBBCCCHyEI2jAxBCCCGEEEIIIYQQQgghhMhqUiARQgghhBBCCCGEEEIIIUSeIwUSIYQQQgghhBBCCCGEEELkOVIgEUIIIYQQQgghhBBCCCFEniMFEiGEEEIIIYQQQgghhBBC5DlSIBFCCCGEEEIIIYQQQgghRJ4jBRIhhBBCCCGEEEIIIYQQQuQ5UiARQgghhBBCCCGEEEIIIUSeIwUSIYQQQgghhBBCCCGEEELkOVIgESIPGThwIIqicPXq1UzdzmeffYaiKOzfvz9TtyOEEEKInEVyESGEEEI4muQjQghrUiARIptRFMXmotVqKVasGK+88grLly93dHgALFmyBEVRWLJkiaNDEUIIIUQGk1xECCGEEI4m+YgQIqvoHB2AEMK+SZMmARAfH8/FixfZuHEj+/bt4/jx48yePfuZ1jlt2jTGjRtH6dKlMzLUJN5++2169+6Nt7d3pm5HCCGEEJlHchEhhBBCOJrkI0KIzKaoqqo6OgghxBOKogCQ+L/mnj17aNWqFQCXL1+mfPnyWR2axZIlSxg0aBD+/v4MHDjQYXEIIYQQIuNJLiKEEEIIR5N8RAiRVWSILSFyiBYtWlCtWjVUVeXYsWOW5SdOnODVV1+lePHiuLi4UK5cOd566y1u376dZB32xtm8evUqiqIwcOBArl69Su/evSlWrBj58uXD19eXzZs326yjWbNmDBo0CIBBgwbZdHk1rze5cTYVRaFZs2aEhIQwbNgwSpYsiYuLCzVr1sTf39/ufsfGxvLZZ59RsWJFXFxcqFChAh9//DGxsbGW9aVGly5dUBSF+fPnJ7nvk08+QVEUhgwZkqp1CSGEEHmR5CLPnotcvHgRRVFo3rx5sm2ee+45nJyc7D5vQgghhDCRfCR9x0bKly+fZPgy64sUekReJENsCZGDmM+cMJ9JsXnzZl599VVUVaV79+6UK1eOEydOsHDhQjZu3Mjhw4epUKFCqtZ97do1GjRoQMWKFXnttdd48OABq1atws/Pj927d1t+0A8cOJDChQuzceNG/Pz8qFOnjmUdhQsXTnE7jx49onHjxjg7O9O9e3diY2NZs2YNgwcPRqPRMGDAAJv9ffXVV9myZQtVqlTh7bffJj4+niVLlnD+/PlUPmsmP/30E3Xr1uWjjz6iSZMm1K1bFzCdffLll19So0YNvvnmmzStUwghhMhrJBd5tlykWrVqNG/enH379hEUFETVqlVt7v/jjz84d+4cr776KiVLlkz1eoUQQoi8SPKRZz828t577/Ho0aMkywMCAvj7779xc3NL0/qEyBVUIUS2Aqj2/mvu2rVLVRRFVRRFvXr1qhoeHq4WLVpU1Wg06sGDB23aTp8+XQXUVq1a2SwfMGCACqhXrlyxLLty5Yplm5999plN++3bt6uA2q5dO5vl/v7+KqD6+/vb3YdJkyapgLpv3z67+zZkyBBVr9dblp8/f17VarVq9erVbdovXbpUBdQmTZqosbGxluUPHz5UfXx8VEBt2rSp3Rjs+f3331WdTqdWqVJFDQ8PV+/cuaOWKFFCdXV1Vc+dO5fq9QghhBC5meQiT2RkLrJmzRoVUD/44IMk95mfl507d6ZqXUIIIURuJ/nIExl9bCSxnTt3qjqdTq1cubJ6//79Z16PEDmVDLElRDb12Wef8dlnnzFx4kS6d+9O27ZtUVWV9957j3LlyrFx40YePHhAr169aNKkic1jP/jgA8qXL8+uXbu4fv16qrZXrlw5Pv74Y5tlbdq0wdvbm6NHj2bYfrm5uTF79my0Wq1lWY0aNWjcuDEXLlwgIiLCsvznn38GYOrUqTg7O1uWFy5cmE8++STN237xxRf5/PPPuXTpEsOHD+e1117jzp07zJ8/n5o1a6Zjr4QQQojcR3KRjM1FunTpQsmSJVmyZAmxsbGW5Y8ePWL16tVUqlSJli1bPutuCSGEELmS5CMZf2zE2rlz5+jevTuFChVi69atFCtWLF3rEyInkiG2hMimJk+eDJi6jBYuXJgmTZowZMgQ+vfvD8Dff/8NwCuvvJLksTqdjpdffpmrV69y8uRJvL29U9xenTp1bL6YzcqWLcuff/6Znl2xUaVKFQoWLGh3OwAPHz6kQIECAJw8eRKNRsOLL76YpP1LL730TNsfO3Ys+/btY/ny5QD06dOHN95445nWJYQQQuRmkotkbC6i0+kYOnQoU6ZMYd26dfTt2xeAZcuWER0dzbBhwyxDhQghhBDCRPKRzDk2AnD79m06dOhAbGysZfguIfIiKZAIkU2pCWNqJicsLAwg2XGqzcvtjS1pT3JjZOp0OoxGY6rWkd7tABgMBsuysLAwihYtarnPmpeX1zNtX1EUunXrxs6dOwHT+JtCCCGESEpykYzPRYYNG8YXX3zBokWLLAWSxYsX4+zsbJnoVQghhBBPSD6SOcdGIiMj6dixI8HBwfz666/pKrQIkdPJEFtC5FCFChUC4M6dO3bvv337tk27nKhgwYI8ePAAvV6f5L67d+8+0zovXbrEmDFjKFKkCBqNhjfeeIOYmJj0hiqEEELkOZKLpD0XKV26NJ07d+bgwYNcvHjRMjl7165d8fT0zIiQhRBCiDxF8pG05yMGg4HevXvz999/M3XqVPr06ZMRYQqRY0mBRIgcqm7dugDs378/yX16vZ5Dhw4B8MILL2T4ts3dTa3PaMgMdevWxWg08scffyS57/Dhw2leX2xsLL169SIyMpJVq1Yxfvx4zp49K71IhBBCiGcguUjacxGAt956C4BFixaxePFiAIYPH/7sQQohhBB5mOQjac9H3nvvPTZv3szgwYOZMGFCRoQoRI4mBRIhcqguXbpQtGhRVqxYwV9//WVz39y5c7ly5QotW7ZM1RibaeXh4QGQ6knOntXrr78OwMcff0xcXJxleVhYGJ9//nma1zdmzBhOnjzJRx99RKtWrZg8eTKNGzdm0aJFrFmzJsPiFkIIIfICyUXSnosAtGjRgqpVq/Lzzz+zevVqfHx8aN68eYbEK4QQQuQ1ko+kLR+ZO3cuCxYsoGXLlnz33XcZGqcQOZXMQSJEDlWgQAF++uknevToQdOmTenRowfe3t6cOHGCnTt3UqJECRYtWpQp227UqBFubm7MnTuX0NBQSpQoAcCoUaMytNvq66+/zsqVK9m+fTu1atWic+fOxMfHs27dOurXr09gYCAaTerqvOvXr2fBggU0bNiQqVOnAqazPVasWEGdOnV44403qFevHhUrVsyw+IUQQojcTHKRtOUiZoqi8OabbzJ69GjANC+JEEIIIZ6N5COpz0fu3LnDBx98gKIo1KpViy+++CJJmzp16tClS5cMi12InEAKJELkYH5+fvz+++98+eWX7Nixg7CwMEqUKMGbb77JJ598QqlSpTJlu0WKFGHdunVMnjyZJUuWEBkZCUD//v0zNAlQFIX169fz5ZdfsmzZMr755htKlizJgAEDeOutt9iwYQMFCxZMcT3Xr19nyJAhFCpUiJUrV9pMbFa2bFl++uknunTpQu/evTl8+DDOzs4Ztg9CCCFEbia5SOpykcQGDhzImDFjcHZ2ZsCAARkWrxBCCJEXST6SunwkJibGMtH83Llz7bYZMGCAFEhEnqOoqqo6OgghElNVFb1ej5OTk6NDEdnUrl27aN26NePGjWPatGmODkcIIUQuI7mISEl6cpH9+/fTvHlz+vfvz7JlyzIpQiGEEDmZ5CIiNeTYiBDpJz1IRLp8+eWXbN++Pdn7161bh6enJ++88w6nTp1Kcn+DBg2YOXOmzbKdO3cyf/58oqOjadmyJWPGjJGEIA+7detWkrM9QkNDGTduHABdu3Z1RFhCCCGyCclFRGbLjFzkq6++AuDtt99Of4BCCCEcSnIRkRXk2IgQmUcKJCJdOnfujK+vr80yVVWZNWsWJUqUwNPT07Lc09OT4cOH27Q1T2hldvv2bWbNmsWgQYMoUaIE/v7+rFmzhr59+2beTohsbfTo0Zw+fZoXX3wRT09Pbty4wbZt23jw4AHDhw+nQYMGjg5RCCGEA0kuIjJbRuUiZ8+eZfPmzZw4cYJt27bRsWNHGjZsmMnRCyGEyGySi4isIMdGhMg8UiAR6VKrVi1q1apls+zMmTPExMTQqlUrm+UFChSgdevWT11fYGAgvr6+9O7dGzBNor1lyxZJBPKwbt26cffuXQICAnj06BH58uWjZs2aDBkyhCFDhjg6PCGEEA4muYjIbBmVi5w4cYIJEyZQsGBBevTowbfffpuJUQshhMgqkouIrCDHRoTIPFIgERlu9+7dKIpCy5Ytk9yn1+uJi4vDzc3N7mNLlizJ6dOnOXbsGF5eXgQEBODt7Z3ZIYtsrGfPnvTs2dPRYQghhMhBJBcRGSmjcpGBAwcycODA9AckhBAi25NcRGQ0OTYiROaRAonIUHq9nn379lGrVi1Klixpc19wcDBt2rQhPj6eokWL0rFjRwYOHIhO9+Rt6OPjQ6tWrfjggw8AqFSpEhMmTMjSfRBCCCFEziW5iBBCCCEcSXIRIYTIWaRAIjLU0aNHCQsLS9KNtFSpUtStW5eKFSsSExPD/v37Wbp0KcHBwUyePNmm7bvvvkuPHj0IDw+nUqVKNomCyHyqqhIXF0d0dDRRUVHExcVhNBotF1VVn/pXo9GgKEqyf7VareW2s7Mzbm5uuLq64uzsjKIojt59IYQQOZzkIjmfqqrEx8cTFRVlk4uoqorBYEgxFzHnGU/LScwXyUWEEEJkNMlFcgfr4yKxsbE2uUZKx0cURUly/CO54yNOTk64ubnh5uYmuYgQDqKoqqo6OgiRe0yZMoX9+/ezfv16ChUq9NS2X3/9NQEBASxcuJCaNWtmUYS5U1xcHBEREZYDCeYvcevryf21d91gMGT9TmhAcVHQOOvQuOhwcXWmkFshKhYrZzlw4erqarluTiDsXS9QoADOzs5Zvw9CCCEcTnIRx4iPjyc8PPyp+YX19ZTyEUfkIlqt1ibfSJxnWN9O7q/5eoECBXBxccnyfRBCCOF4kos4Rnx8PBEREcnmFk87VmJvuV6vz/J9sM5FUjruYe+69W3JRYRIPSlBiwwTFRXF4cOHadCgQYpJAECvXr0ICAjg+PHjkggkIzY2ltDQUJtLSEgIISEhNsseP3781PXky5fP7o/4QoUKUaJEiad+0To7O9uc9WB9RuZHZyabChsKKBoVDaCgomBEq6qm66ox4a/polFVMF/iVYyxRoxxRgzRKsZYlfgYlceRzuhjVULiHnH/3gPUWKPpEmf6a4w1QPzTa7uKqxZNQR0li5WgVtnqFCtWDA8PD8vFfFsKKUIIkXtILpLx4uLiePDggSX3sM5BrK+HhYU9dT358uWz+yPe3d0dLy+vpxYlEuciTzsjU1EUVFVN9oxO6zM+DQYDcXFxdg+OJD6Icvfu3SQFnujo6Kfus7u7u03OYX3depkcvBBCiNxDcpGMFx8fz4MHD2xyD3v5yKNHj566HhcXF7snPri7u1O8ePGnFh9cXFzs5h72eqyae4Ak18vE+rrBYLDpNfu0E1vv3btn94STpylQoECSHMRePpIvX76MermEyJGkQCIyzOHDh4mJiUnSjTQ5xYsXByA8PDwzw8qWnrXw4eTkZPMlVq5cOcsXnLu7u90v8nz58qHVajNlP+rH1Odk2BkURUWjqCiABhWNYkSbsEyD0fTX6rqCilYBRUkongAJKQRgqp2ERSk8oHiy2zYaVYxxRtRYNaGAYrAUUNQoA4ZwPcbHeu6FP2T3PwcxPo7HGK4Hg21hRXHVohR0wrNoMeqWq2U3aZBCihBC5AySi6SevcKH+fbTCh86nc7mO7J27dqW69a5SOITMzIrF3Ekg8FATEyM3cLK48ePbXK6W7ducebMGUJDQ4mLi7NZjxRShBAi95BcJPWetfCh1WptviOfe+45y3dloUKFku1ZkRuHKTMajcTExNjtLRMREWHzPN65c4dz584RGhpKbGyszXrMhRR7J5ZaL5NCisitct+ng3CYXbt24erqSuPGjVPV/tatWwAULlw4E6NynMjISIKDg7l+/brl740bN7h7926aCh/WP5Dd3d2z1XiUb1UZyLDjowFQVQUUFRUsF2tPiiAJPU4SiiMaTNc1prWY2ilQLL9KEeMd/osuYX/jGgVNPh0k8/1sVM1bfUJVVVPx5LEeY7jeUjRRH8fzIDycXQmFFNVOIQVXLZrCzjSr3ghvb2/Kli1r+evm5paap0sIIUQmk1zEVlRUFMHBwTZ5yPXr17l7926aCh/WP4wLFSqUrXIRR9JqteTPn5/8+fOn+jGqqhIREWFTiLI+GHTz5s2nFlK8vLwoW7asTR7i7e2dphiEEEJkHslFbMXExFhyEevjI3fu3El14cP6IH2xYsUoWLAgGo3GMTuUzWg0GkshKLXMuUjiQlRqCynFixe35B9lypTB29sbb29v3N3dM3r3hMgyUiARGeLRo0ccP36cli1bJqkoR0ZG4uTkZHMGvqqqLF26FID69etnaawZSa/Xc+fOHcsXvfXBh9DQUEu7okWL4u3tTbVq1WjevHm2L3yklrtTAb6pO51Rp8ZhVE3FDlUx9QAxgqXYYc3Uy+RJwcRUHFETCiRGNIppmC4U0GmgeoGbXI9QiKSUZR1PG1zr6bMqKShuOrRuOrQlkj7f5qKKqqqo0QbU8HiMjxMKKY/1qI/i2H/5COrRg6gRVuORujvhVsydls+9ZHOwokSJErnyjFkhhMiO8mouYjAYuHv3bpKTMoKDg7l//76lXZEiRShbtixVq1bl5ZdfTnJGoBQ+soaiKLi7u+Pu7k6FChWSbZdcIcWcd549e5aQkBBL+6JFiyYpmpQtW5aSJUvmyjNmhRAiO8qruYjRaOTevXtJ8pDr169z7949S7tChQrh7e1NxYoVady4sRQ+HMQ6Fylfvnyy7ZIrpJhzke3bt9vkmoULF06Sh3h7e1OqVCnJRUS2J+9QkSH27NmDwWCw2400KCiIyZMn07JlS0qXLk1sbCyHDh3i7NmzdOrUCR8fHwdEnDZhYWF2v+xv3rxpmbjLxcXFckbf888/b7letmxZChQo4OA9yDzF8hVlxf8t5mr4Naaen0OkGoERDTqe9BAxAhqbYy6mPiY2xZKEQomimIsnRkuBpZI7xMYHczGmbEJxxP4BHFW1Lp4k7j3yZMv27rNeriimQgpuOjTFzZHaRm+MMWAMiUUNicUYEkPs/VgCjuxE3RoL+oSNaRWUoi5ULVUV31rPWZKEsmXLpmo8WiGEEKmX23OR8PBwy8kY1vnIzZs3LT0NnJ2dLWfytW3b1uYHqpzVl7OkppBi7iFk/Z64ePEiu3btIiYmBjD1DCpVqpRNDmI+01OKYkIIkbFyey4SERGRZIQM819zTwMnJydKly5N2bJladWqlc2B8oIFCzp4D0RapKaQEh0dnaR30L///svevXst86NotVpKlixpt3hSpEgRyUVEtqCo6tPPtxYiNUaMGMGtW7f47bffkpwxf+vWLRYtWsSFCxd48OABGo2GcuXK0bFjRzp37pytPgzj4uL477//uHjxIoGBgVy7do3g4GDLkFiKotgMbWD9I9PT01POdkhkU1AAvz1ai5NiQKdR0SXMTaJVjGgVIxpL7xEVraKa5jLBaBl2y/TOePIRZVTh41rbkmwn1hDHvegQrkfdJjj6Nrei7nE3NoSH8eFExkcRo8ZjVA0YrQsdVsWUpxdNbO9T7bS3Lr6oRlAfx6GGxKKGxGBI+KuGxEKY1VAZrjo0xfLR7vmm+Pj4UK1aNSpVqoSTk1Mqn10hhBDWcksuotfrLblIUFAQ165d4/r16zbDUHh6etr8uDRf9/LyklxEYDQauX//vuXAlfXBrLt372L++efu7m55/1StWpXq1atTqVIlmetECCGeUW7KRa5evWo5LnL16lWCg4N58OCBpU2xYsWSHOz29vbGy8tLRlEQqKpKaGioTQ5iPbya0Wiaf7ZAgQKW90/VqlWpVq0aVatWlVxEZDkpkIg8y2AwcO3aNS5evGi5/Pfff8THx6PVaqlYsSIVKlSw+bIvU6aMfFA/o2HH++OkGNAqKk4aFY1iMBVKrCZ1V1DRoj6ZnyRhuC0lUZGkXZGPqF2qRYbFFq2P5p9HVzjx8B8Cw69yJzqUCEM0+oRJ4yH5YkpyPVMS90oBUOOMGENjLMUTNTQG9V403Isx7ZhWAS83ujRoRfXq1alevTply5aVBFMIIXIpo9FoOevffPn333+Ji4tDq9VSvnx5KlSoYHPwoUyZMri6ujo6dJFDxcbGcuPGDZuzPa9evcp///2HXq9Hp9NRsWJFqlWrRrVq1ahevTrlypWToTGEECKXMhqN3Lx5kwsXLlhykUuXLhEbG2sp4lSsWDHJ/FcyD6d4VnFxcdy6dcumaGLORcw5cIUKFSy5SLVq1ahYsaLkIiJTSYFE5AmqqnLr1i0uXrxo+eK/dOkS0dHRKIpimR/E/ENQzp7LPCP/7o2ToqJLKJDoEnqUaBJ6j2gTiiNaxXqYLdUyiTuoqKqCRinI+9XXZXn8RqORoPDr7LtznJNhgdyOeUic+mQ+kpQLJkmXG+ONcCca9VYk3Iw0/Q0xDY2hOmvQlXSnR6N2lvdoyZIls9UZRkIIIVKmqip37961OQARGBhIVFQUAGXLlrX5IVilSpUk45cLkVmse1GbL1evXkVVVfLly2c5q9N8KV26tOQiQgiRw6iqyv379y2f8xcuXCAwMJCIiAgASpcunSQXkUKIyCrx8fFcvnw5SS5iMBhwdnamSpUqlmN21apVo0yZMtJzWmQYKZCIXCkkJMTmQ/XixYuWYbJKlChh+UA1d9/Lnz+/gyPOW26F3uDr6+/jpBjRaYyWobc0JAy7pahoE4oj5sKJebgtRVEtw2OpwPvV9zpyV5J1JzKUjbcOc+jeGe7GP7CaAP5Jm+R6o4CCGmuAW5FwMwL1lqlooiQM0aW66ShQyoPujdta3sceHh5Zsl9CCCFS5+HDhzYnZly8eNEyTFbx4sVtTsyoWrWqzBEisp2oqCiCgoJsDqTdvn0bMA3P5ePjY5NTe3p6OjhiIYQQ1sLCwmw+wy9evGgZJqtYsWI2xZBq1arJHCEi24mJieHSpUs2+fSNGzcAyJ8/v2W4cnNOXbx4cTmBQzwTKZCIHC8+Pp7z589z9uxZywfm/fv3AShSpIjND7dq1apRuHBhxwYsLMad7gPEojPPUZJQIDEXSxSrQolpEncsw20pJPS+UOCdavscuBfP5nZUKMuu7OLwvXOEq9G2xRGrdjZFlMh41BsRpsLJrUi4FYESZeq9oro7U9bbm/aNX+G5556jRo0aMp+JEEJkEb1ez4ULFzhz5owlF7l79y4AhQoVsvnh5uPjI0VtkWM9evSIwMBAuwfbPDw8LO/15557jlq1auHs7OzgiIUQIm8wGAwEBgZy+vRpSy4iRW2RG4WHhyc5Idr6GKD5PV6rVi2ef/55GR1GpIoUSHIRVVXR6/W5/qCoqqpcvnyZ48ePc/z4cU6fPk1MTIxUj3OoqKgoPr/UD2eNIaEnyZMCyZNCiXkydwBjwtwkYOpKomJEoZfncjw8yjhyVzLM3ehHLL60hUP3zxNDfKJhu8Cy90bVNPH7rUiUWxGmgsntSJQ4A6qTBvdyXgxs+yq+vr5UqFBB/i8IITJdXspFrl27ZslFTp06RVRUFK6urja5iAyLKHK7xMO1mC8RERG4uLhQu3Zt6tWrh6+vL5UqVZKhMIQQmS4v5SI3btyw5CInT54kIiJChkUUeVJyo8g4Ozvz3HPPWXKRKlWqyByvwi4pkDhQYGAg/v7+nD17lri4OEqVKkWnTp3o3r27pc3Zs2f57rvvCAoKIn/+/DRv3pyhQ4cmGQdy586dzJ8/n+joaFq2bMmYMWNyVUJw9+5dTpw4wfHjxzlx4gQPHz7E2dmZ559/Hl9fX3x9falcubL86MrBPjnrhw5TkUSnUdEkXFfAMi+JxtKLxGiZk0RREub3UKGqa0+alXvHofuRmfQGPWuuHuKXawd4ZDCNWa+qVkN0gWmy97tRaC4/QrkShhL8GMWgouZ3onal6nTo0AFfX185Y0gIAUgukhYhISE2uUhISAhOTk7UqlXLkotUrVpVfnSJPM9oNCY5mSk2NpbChQtTr149y0GKEiVKODpUIUQ2ILlI6j18+NAmF7l79y5arZaaNWtacpFq1arJZNYiz1NVlatXr9qczBQdHU3BggV54YUXLLlI6dKlHR2qyCakQOIgR48eZfz48VSpUoVXXnkFV1dXbt68iaqqjBgxAoBLly4xYsQIypUrR+fOnbl37x6rVq2ibt26fP3115Z13b59m4EDBzJo0CBKlCiBv78/bdq0oW/fvo7avXSLiIjg5MmTli/+69evoygKPj4+lg+yWrVqSVe5XObvW/vZ8uArnBQVrWIqkGgUI1pUq0KJqTeJopgGo1IS7oOEOTzCnRjse8CBe5H1ouJimHcxgK13TqJXjaZCiQooCsQbIDgczZVHaK4+QrkTiQIYPVzp0aw99erVo27dujIPjxB5kOQiTxcVFcWpU6csuciVK1cAqFKliiUXef7552UidSFSEBcXx/nz5y0HKQIDAzEajZQpUwZfX1/q1avHCy+8IPPwCJEHSS7ydDExMZw+fdqSi/z7778AVKhQwVIQqV27tkykLkQK4uPjuXDhgiUXuXDhAgaDgZIlS9rkIjIkf94lBRIHiIyMpF+/ftSsWZPPP/882V4PH374If/++y+//PKL5eDl5s2b+eqrr5g5cyYNGjQAYP/+/ezatYsvvvgCgEOHDrFlyxamT5+eNTuUAczziJi/+C9cuIDRaKR06dKWgxAvvPCCTBqWR3xxrh1OigGdJmHIrYTeI9qEniMaRbX0IlEUI4BNkSQuDobW+stR4WcLqqqyNfgEsy5uJcIYDWrC3CZR8WivmYolmiuP0ITFoipgLOXOkFavUq9ePWrWrClnHQmRy0kukpR5HhFzLnL+/HkMBgNeXl6WgxD16tWTH05CpFN4eDh///235SzoGzduoNFo8PHxsfw/k/lLhMj9JBdJyjyPiDkXOXfuHPHx8RQrVsySi7zwwgsUK1bM0aEKkaNFRkZy8uRJSy5y7do1FEVJciKUnJSdd8gRMAfYvXs3Dx48YOjQoWg0GqKjo3FxcbFJCCIjIzl+/Dg9e/a0ObO7TZs2fPPNN+zbt8+SCJQsWZLTp09z7NgxvLy8CAgIwNvbO8v3Ky2Sm0ekUKFCvPDCC7RvbzqzvVSpUo4OVTjAxFrb+OqfNqjmg/oJc46YJmu3LY6Ye5CY5ydBAZ0L/HyxAQOqHXXYPjiaoih08Palg7evzfKNV48y020z0dU9Tc/tg2h018LQXnmE/8pfWLJkCaqzlnxlizG0XQ/q169P+fLlZcxaIXIZyUWSn0ekQIECvPDCC7z77rvUq1ePMmXKyGegEBnI3d2dpk2b0rRpUwDu3LljORi4adMmli1blmT+ksqVK8v/QyFyGclFTG7cuMGxY8ds5hFxc3Ojbt26vPXWW9SrV49y5crJZ6AQGSh//vy89NJLvPTSSwDcu3ePEydOcOLECXbs2MGKFSuSzF9StWpVGdY/F5MCiQMcP36c/PnzExISwsSJEwkODsbV1ZXWrVvz9ttv4+LiwuXLlzEYDPj4+Ng81snJiSpVqnDp0iXLMh8fH1q1asUHH3wAQKVKlZgwYUKW7lNqqKpKUFAQ+/fvZ9++fdy6dcsyj8jAgQOpV68eVapUkQ8cAcBHNXaw/sJ0rqq7UBVTRzfF+mKelwTQJMxVYh5yC0CrheVB9ehb9YSD9iB78ivfAL/yDSy34/RxjD+5in33L4JRRbkTie7aQwxXH/HNwv+hLFAxFHFlYMfuNGvWTA5QCJFL5OVc5PLly5Zc5Pr165Z5RPr160e9evXw8fGReUSEyEIlSpSgY8eOdOzYEaPRyH///WcpmPz0008sXLiQEiVK0Lx5c5o1a0a1atUkFxEiF8iruQjAtWvX2L9/P3v37uXKlSuWeUR69uxJvXr1qF69uvToFyILFS9enHbt2tGuXTtUVeXKlSuWXGTZsmUsXrwYT09PmjVrRrNmzahZs6Ycu8xlZIgtBxg0aBA3b94EoEOHDtSpU4dTp06xbt06WrRowaRJk9i/fz+ffvop33zzDbVr17Z5/KRJkzh9+jQbNmywWX7r1i3Cw8OpVKlStvkytVcUKVSoEE2aNKFZs2bUrl1buqyJp3r48AFL77yKTjHipBjRKqppqK2EAonWauL2J4WTBCoYVKivXUfFihUdtxM5zMarx5h8fhOGOAO64EfoAkNwuhSCJkYvxRIhcom8loskLooUKFCAl156iWbNmlG3bl1cXV0dHaYQwo7Y2FjOnDnDgQMHOHjwII8ePZJiiRC5RF7KRSBpUcTV1ZXGjRvTrFkzfH19ZR4RIbKp+Ph4zp07x4EDB9i/fz8PHjyQYkkulH2+LfKQ6OhoYmJi8PPz49133wWgadOmxMfHs2nTJgYPHkxsbCxgOjMiMWdnZ+Li4pIszy7DUT2tKDJ69GheeOGFbJWoiOytSJGivFtkH/MvNkOrgtbqN7CpMPKkOGLbk8Q0R7lOgVPGbvz9Wze6d/vUIfuQ0/iVr49f+fqW23/eCeLtI0tRrz3E6eJ9fl6zgmXLlkmxRIgcLC/kIskVRUaOHImvr6/d/RJCZC8uLi7Ur1+f+vXr895773H69Gn27dvH1q1bWbFihRRLhMjBcnsuAskXRd544w0aNGggJ4sKkQM4OTlRt25d6taty6hRozh79iz79+9nz549rFmzRooluYQcpXYA85dgixYtbJa3bNmSTZs2cf78efLlyweYKpWJxcXFZbtJC6UoIjLbO9X2823gyxhV1apIolqG3NIoRjTm+UhsJm5X0Sig1l7Dt6t281avgw6IPmdrVKIqJ/ymWm6vvnSE6VuX4hQYIsUSIXKo3JqLSFFEiNxLp9NRr1496tWrJ8USIXKB3JiLgBRFhMjNtFotderUoU6dOlIsyWXkiLUDeHh4cOXKFYoWLWqzvEiRIgCEh4dTunRpAEJDQ5M8PjQ0lGLFimV+oCmQoojIam/5HOSHoHYY1DA0CpgKJEYSF0qse5WYh91SgXL1Q1hxtBZ9Gpxz2D7kBj2rNKTnuw0B0w+TQb98zaXjZ/h5dUKxpLArAztJsUSI7Cw35SJSFBEi75FiiRA5X27JRUCKIkLkRVIsyV3k6LUD+Pj4cPz4ce7fv4+3t7dleUhICACFCxemQoUKaLVaAgMDeeWVVyxt4uPjuXTpEs2bN8/yuMF+UaRgwYK8/PLLUhQRWeKNqtvYFDSVB+pmtIppSnaNoj4ZVgtTcUSDqTBiGoZLNXcnoUgxAwGB1enkc8Fh+5CbODs78+vgiTAY9Ho9a/duY/b6XyzFEn1hVwZJsUSIbCen5yJPK4rUq1cvW55RKoTIHFIsESJnysm5CEhRRAjxhBRLcj45ku0AzZs359dff2XLli3Uq1fPsnzLli1otVrq1q1LgQIF8PX1ZefOnQwYMMAyYdeOHTuIjo7O8kTg8ePHbNu2jU2bNhEcHCxFEeFQnat+zNGgF7mojkcLqACKqSACWBVHbIsmSkI7nRNs/9eHtpUDHbQHuZNOp6N36070bt0JvV7PkSNHGL984ZNiSdH8vN9vMG3btsXd3d3R4QqRp+XEXCQiIoIdO3awadMmrly5IkURIUQSKRVLSpcuTadOnWjfvj2FCxd2dLhC5Gk5MReJiopi9+7dbNy4kUuXLklRRAiRRErFEi8vLzp27EjHjh3x8PBwdLgigaKqquroIPKi6dOns3XrVpo3b06dOnU4deoU+/bto3///gwbNgyAwMBARo4cSbly5ejcuTP37t1j1apV1K5dm1mzZmV6jKqqcuHCBTZs2MDevXsxGo00bdqUdu3aSVFEZBu/BNXHWaNHq6joFCMajGgVNaE4oqJJ6E0CKooC5jq9qoJBhZYVgxwXfB6h1+s5ceIEHy9ZQMyF66BRqPd8HYYPH0716tUdHZ4QeVZOyEUAgoKC2LhxI7t37yYuLo7GjRvTvn17fH19pSgihEgVvV7P6dOn2bZtG/v27QOgWbNmdOnShVq1akmvEiEcJKfkIleuXGHDhg3s3LmTqKgoGjVqRPv27WnYsKEURYQQqWIwGDh79izbt29nz5496PV6Xn75Zfz8/Khbt67kIg4mBRIH0ev1LFu2jG3bthESEoKXlxddu3alZ8+eNu3OnDnDd999R1BQEG5ubjRv3pzhw4dbzpzIDInPiihRogSdO3emQ4cOlvFAhchOlgfWw0VrQKsYTUUSxYjWPGE7RjSKmjDUlvXk7QAqRqNCBe0eypUr55jg85jQ0FC2bNnCkjUr0YdFoClemDEDh9GyZUvLJIxCiKyRnXOR2NhY9u7dy8aNG/nnn3/w9PSkU6dOdOjQAU9Pz0zbrhAi93v06JGlZ/zNmzepWLEiXbp0oXXr1pn6uSaESCo75yJxcXEcPHiQDRs2cObMGYoWLUqHDh3o1KkTJUqUyLTtCiFyv/DwcLZv387GjRu5fv063t7edO7cmXbt2sloGw4iBRJhYe+sCD8/Pxo0aIBWq3V0eEI81fILdXFztiqSWHqPqGgV60nbjTwZ7dH08aeqoP9nJM06jHFQ9HmPwWDgr7/+YuPGjfz111+ozjq6d/LDz8+P8uXLOzo8IYSDBAcHs3HjRrZt20Z4eDj169enS5cuNGrUSHquCiEylNFo5Pjx42zcuJHff/8dFxcXWrduTZcuXahUqZKjwxNCOMitW7fYtGkTW7du5dGjR9StWxc/Pz+aNGmCk5OTo8MTQuQiqqpy6tQpNmzYwMGDB9HpdLRo0QI/Pz8ZbSOLSYEkj5OzIkRusvRoHQp76NEppmG2tAm9R7SJiiOKpUdJQoEk4Z/Lx0vRt/sfjtuBPOrWrVsEBASwefNmwsLCKFyxLO+9PkR+hAiRR+j1eg4fPszGjRs5ceIEhQoVon379nTq1IkyZco4OjwhRB5w7949Nm/eTEBAAKGhodSqVYsuXbrQtGlTGT5HiDzAfPLWhg0bOHr0KPnz56dNmzZy8pYQIsuYR9sICAjg7t27+Pj44OfnJ6NtZBEpkORR5gOSW7ZskbMiRK7y7ZpGlKsXhi6hMGKaj8RomYtEkzA/CSRM3q4kTN6ughF4/ABa1r3uuB3Iw+Li4jh06BAbNmzg9OnTaPLno1+3HlKwFSKXkgOSQojsRq/X8/vvv7Nx40aOHz9OoUKFaNeuHX5+fpQuXdrR4QkhMljiA5LVqlXDz8+PFi1ayAFJIYRDGAwGjhw5woYNGzhy5IgUbLOIFEjyEDkrQuQVG9eOw/mFjegUo6VQYj0XiQbVUhgxXdQn85KoEKeHhpWCHRa/MA35t3HjRnbs2EFkVBRlqldj1ICBMuSfEDmc9ZA2f/zxB87OzjKkjRAiW5Ih/4TInZIb0qZLly5Uq1bN0eEJIYSFnNyedaRAkgfExMSwefNmVq1aJWdFiDzj/JUT3FD74qSopiG3LAUSUzFEqxhRsB1qy1wkUQGDAV6ocMNB0QuzqKgo9uzZw4YNG7h06RKaQgV4Z9AbdOjQQc4wFyIHiYuLY9u2baxcuZKbN29SqVIlunTpQqtWrWRSZCFEthYbG8vevXvZtGkT58+fx9PTk549e9K5c2dcXV0dHZ4QIpX0ej27du1i+fLlXLt2DW9vb7p06UKbNm1kUmQhRLaWeLSNokWL0r17d7p06UKBAgUcHV6uIAWSXCwqKor169ezatUqwsPDadmyJa+++qqcFSHylF3/VcVJY8RJMQ+3Zeo9orUqjpiG2lItPUoAUMGggqfzcUqWLOmw+IWJqqpcuHCBtWvXsmfvXhRXF94cMIjOnTvLwVUhsrGYmBgCAgJYsWIFoaGhNGvWjO7du1OrVi0URUl5BUIIkY0EBQXx22+/sWPHDgoUKECPHj3o1q2bHJwQIhuLjY1l+/bt/Prrr9y5c4eXXnqJHj16UKdOHclFhBA5zpUrV/jtt9/Ytm0bzs7OvPrqq3Tv3p1ChQo5OrQcTQokudDjx49Zt24da9euJSYmhnbt2tG3b19KlSrl6NCEcIg9/1XGWWNEp1FNhRHFiAbTdXNxxKZYYvVYVYUbF0bQqs0njgleJHHjxg2WL1/O9u3bUZ10DOzbj27dusmZX0JkI5GRkaxfv57Vq1cTHh5O69at6devH97e3o4OTQgh0u3OnTusWLGCLVu24OzsTLdu3ejevTuFCxd2dGhCiATR0dEEBASwcuVKHjx4QPPmzenfv78M6SmEyBVCQkJYuXIlmzZtQlEUunTpQs+ePfHw8HB0aDmSFEjSQVVV9Hp9thn37eHDh6xatYoNGzZgMBjo1KkTvXv3pnjx4o4OTQiH2xNUkXzOKk6KijahQKJBtcxL8mS4rScFEkVRMX9CXg10p3XLIMcEL+y6e/cuK1asYPPmzegV6NezFz169JCDEyJPyW65yOPHj1m7di1r164lNjaW9u3b06dPHzlJQwiRK4WEhLBq1So2btyIoij4+fnRq1cvOTgh8pTslouYT9JYtWoVERERtGnThn79+lG2bFlHhyaEEBnu0aNHrFmzht9++434+Hg6duxInz598PLycnRoOUqeLJAsXbqUH374gQoVKvDzzz9blr/zzjucOnUqSfsGDRowc+ZMm2U7d+5k/vz5REdH07JlS8aMGeOwhODRo0csX76c9evXo9Fo6Nq1Kz179qRo0aIOiUeI7GrbyQoUKaKi0xjRYR5uS7UabgubHiUk3FYx/RMbBzUq3XZQ9CI5ISEhrF69mo0bNxKjj6dPj5706dNHupiKbC235SLh4eGsXLmStWvXYjQa6dy5M71798bT09Mh8QghRFZKfHCic+fO9O/fX36PiWwtt+UiUVFRrFmzhlWrVhEbG0uHDh3o06ePDJcshMgTwsPD+e2331izZg1RUVG0b9+e119/XU6aT6U8VyC5d+8e/fv3R1EUSpQokSQRuHnzJsOHD7d5jIeHB/Xq1bPcvn37NgMHDmTQoEGUKFECf39/2rRpQ9++fbNsP8D05l+1ahVr1qxBURR69OhBjx49KFiwYJbGIURO8utv9alS766pJ4mlB4mKFhINt5WoNwmm4bYMRqhUTook2ZH54MSaNWuIMRoY2LcfPXv2lHHBRbaTm3KRqKgo1q5dy8qVK4mPj6dbt2707t2bIkWKZGkcQgiRHZgPTqxatQq9Xs+rr75Knz595PeZyHZyUy4SGxvLb7/9xvLly4mKiqJz587069ePYsWKZWkcQgiRHURFRbFhwwZWrFhBdHQ0fn5+9OvXT07aSIHO0QFktW+//ZYaNWpgNBoJCwtLcn+BAgVo3br1U9cRGBiIr68vvXv3BkCr1bJly5YsSwTsHYzo06ePDCsjRCr063aMvdumUajGt2gSqh9PhtQiSXFEk7BcSWioU+BacElUw2+UL98o63dAJKtw4cIMHTqUHj168Msvv/Drr7/iv2I5bw4cRLdu3XB1dXV0iEIAuSMXiY2NZf369fz666+WgxH9+/eXYWWEEHmau7s7AwYMoGvXrqxatYq1a9eyYcMGevbsSc+ePcmfP7+jQxQCyB25SFxcHJs3b2bZsmU8evTIcra0DCsjhMjL3Nzc6Nu3L35+fpZjxwEBAXLSRgo0KTfJPU6dOsWBAwcYNWrUU9vp9XqioqKSvb9kyZKcPn2aY8eOcf36dQICAihTpkxGh5tEbGwsq1atolevXvz888+0adOGFStWMGLECCmOCJEGr7QbT3HNHxiNYNuHTrVbHNEAGhQ0KGgVBWeNgrOuGzsDXnJA9CIlhQsX5u2332blypV0bdeexT98T8sunS1zIgjhSDk9F4mPj2f9+vX07t2bRYsW8fLLL7N8+XLeffddKY4IIUSCggULMnToUFauXEmHDh349ddf6dWrF8uXLyc6OtrR4Yk8LqfnInq9ni1bttC/f3/mzZuHr68vv/zyCx9++KEUR4QQIkH+/PkZMGAAq1atonv37qxbt45evXqxZMkSIiMjHR1etpNnhtgyGAy88cYb1KxZkzFjxvDOO+8QFhaWpCvpuXPnUBSF+Ph4ihYtSseOHRk4cCA6nW1nm3nz5rFu3ToAKlWqxJw5czKtSKGqKrt27eK7777j4cOHtGvXjgEDBsiXvxAZ4NTV0jhpVHQKaBTTUFsabIsjCopN4cTc40QFYmPAu9Ith8QuUuf27dv8/PPPbNm2FYNrPj7/cCyvvPIKiqKk/GAhMlBOz0UOHDjAt99+y927d2nVqhUDBw7MkgMhQgiR092/f59ly5YREBBAoUKFGDZsGG3btkWjyVPnK4psICfnIgB//vknCxYsIDg4mObNmzNo0CDKly+fadsTQojc4uHDh/z6669s2LABV1dXBg8eTOfOndFqtY4OLVvIMwWS3377jR9++IHly5dTuHBhu4nA9OnT8fLyomLFisTExLB//35+//13mjdvzuTJk5Os89atW4SHh1OpUqUkiUJG+e+//5gzZw5nzpyhWbNmDBs2TA5GCJHBTl0uRT4daBUVbUJRRGunOGIqmijYHFZXwahCsVLB8iM3m7t+/Tpfz5vH6WPHiCnhweqv5sgPKpGlcmoucv36debOncvx48dp1KgRI0aMkP87QgjxDG7dusUPP/zA7t27qVmzJu+//z5Vq1Z1dFgiD8mpucjt27f55ptvOHz4MC+88AJvvfWW/N8RQohncO/ePX766Se2bt1KlSpVeP/996lVq5ajw3K4PFEgCQsLo1+/fvTv398yPqa9RMCer7/+moCAABYuXEjNmjWzIlwAIiIi8Pf357fffqN06dK89957+Pr6Ztn2hchrfv+7FJ6epgKJlicFEk1CgcS6OKKgWMYnVFBQUVFVldMnX6N5x+mO2gWRSkeOHOG9KZ+hi4iiT69eDBw4EDc3N0eHJXK5nJiLREdHs2zZMlauXImnpyfvvPMOjRs3zrLtCyFEbnXq1CnmzJnDtWvX8PPz44033sDd3d3RYYlcLifmIrGxsaxcuZJly5ZRqFAh3n77bZo1ayY9wYUQIp3Onz/PnDlzCAoKon379rz55pt5evqGPHG68w8//IC7uzuvvvpqmh/bq1cvAI4fP57RYdmlqio7d+6kf//+bN68maFDh+Lv7y/FESEyWeMXbvHPX76oqmnoLFUFc18RhaTFESVhThIF0KJBp2h4oe6vXDvv7bidEKnSsGFDDqzfSMMO7Vi+ZjUtu3Zhz5495IHzBYQD5bRcZP/+/bz22musXr2a1157jaVLl0pxRAghMkidOnX48ccfeeutt9ixYwf9+vVj69atGI1GR4cmcrGclIuAaTitgQMHsmTJErp3786yZcto3ry5FEeEECID1KxZk0WLFvHBBx9w6NAh+vbty/r16zEYDI4OzSFyfYEkODiYgIAAunfvTkhICLdv3+b27dvExcWh1+u5ffs2jx8/TvbxxYsXByA8PDzTY/3vv/8YNWoUU6dOpXbt2ixdupS+ffvi5OSU6dsWQkCXHgGoylaMCcfJVUxXzCm4dXHEXCzRJkzcrlU06DQaihVReHzTO89+qeQUzs7OzPxoHGtXrCTOozCTJ0+mYY9uXL161dGhiVwoJ+UiwcHBjBkzhk8//ZTKlSuzdOlSBg0ahIuLS6ZvWwgh8hKdTkfPnj355Zdf8PX1Zfr06YwcOZKgoCBHhyZyoZyUi9y+fZsJEyYwduxYSpQogb+/P2+++ab0+BZCiAym1Wrx8/Pj119/pWnTpsyZM4dhw4Zx7tw5R4eW5XL9EFsnT57k3XfffWqb7t27884779i97/LlywwcOJBhw4bRv3//zAhRhtMSIhv671pJXLSYih+ARjH1GNGQqCeJoqBYSiamYoqpB4rKseMv0bTzL47bCZFq1T75iCInzqKLlGG3RMbLCbmIDKclhBCOJcNuicyUE3IRGU5LCCEcKy8Pu5XrCySPHj3i7NmzSZb/8MMPREVF8c4771CqVClKlCiBk5MTzs7OljaqqjJ58mT27t3L999/j4+PT4bGpqoqu3bt4ttvvyU6OpoBAwbQo0cP6TEiRDYR9G9JCuQDnaLYFEg0dooj5qKJ+a9ZXLxKfu/LjtoFkQY1F3yF9sK/FPznEkYnJz4fO5ZXXnlFfpSJdMvOuQjAwYMHmT9/Po8ePaJfv3707dtXeowIIYQD6PV61q1bh7+/P87OzowYMYK2bdtKLiLSLbvnIkeOHGHu3LncuXOHXr168frrr8vJSkII4QAGg4GAgAC+//57VFVl6NCh+Pn5odHk7kGocn2BJDmJJyM7efIkkydPpmXLlpQuXZrY2FgOHTrE2bNn6dSpEx9++GGGbj8kJISZM2fyxx9/0KxZM0aOHImXl1eGbkMIkX47A3x5ru5NdBoNWqsCidZOcUSDYvkBaymSqKahus5cmcgLLw5y3I6IVGm99Hv+u32bIqfO4XbzDlGlSrDz2+8oWrSoo0MTuZCjc5FHjx4xZ84c9u3bR6NGjXj33XcpVapUhm5DCCFE2oWEhPDtt9+ye/duGjRowEcffWQZ4kiIjOToXCQiIoJvvvmGbdu2Ua9ePd59913Kly+fodsQQgiRdo8ePWLRokVs2bKF559/nvHjx1O6dGlHh5VppECSkAjcunWLRYsWceHCBR48eIBGo6FcuXJ07NiRzp07Z9hZO6qqsnv3bubOnYuTkxNjxozhpZdeypB1CyEyx/UrR3Bx6opWo6BDk6RAorEqjlgPt2VNVVUePnSiWI1/HLAHIi3aLvmBi+FhuN68RdETp0GFqRMn0rx5c0eHJnIZR+UiAIcOHWLmzJkYDAbef/996S0lhBDZ0F9//cVXX31FTEwMo0aNkt4kIsM5Mhc5evQoM2bMIDIyklGjRtG+fXt5fwshRDZz8uRJpk2bRlhYGG+++Wau7U2SZwskjvDw4UNmzZrFwYMHadGiBe+99x6FChVydFhCiFS6G1waZ41puC2dokkolSRM1q5oki2OQMKE7yrcuFGAq2E/07Tl81kbvEiTGt/MIloFTWwsRf4+jdvN20SVLs3uhQvzzBicIncKDw9n/vz57NixgxdffJEPP/wQDw8PR4clhBAiGYk/t8eMGUOxYsUcHZYQzywqKopvv/2WTZs24evry9ixY2U0DSGEyMaioqJYuHAhGzdupF69eowbNy7XfW5LgSSL7N+/n1mzZgEwevRoORNZiBzqwvGylCxpnpdEk9B7RIPmKb1HrKkq9HytG+ERbuz869Msilo8iwrzTZ/ZqCpuN25S+O8zoNEw/dNPadKkiWODE+IZyJnIQgiRcx06dIhZs2ah1+t57733aNGihXyGixzH+kzkESNG4OfnJ+9jIYTIIY4dO8b06dOJjIzk7bffpkOHDrnmM1wKJJksKiqK2bNns3PnTpo0acIHH3wgY9kLkcP9tX8RNapMRatoTBc0KIqpUJIal/4tzNtjOgLQqGllpszom5nhinSoOGcWasLLqomJoeiJU7jeuUtk2bIc/uEHXF1dHRugEKkQGxvLN998w6ZNm2QseyGEyMEePXrE3Llz2bt3L82bN+fDDz+kQIECjg5LiBTFx8ezaNEiVq9eTe3atRk/frzMeyaEEDlQREQECxYsYOvWrbz44ouMGzcuV4yyIQWSTPTff//x6aefEhISwujRo2ndunWuqawJIeDxDW90Go1puK2EIbdSIypaR9d+CUURVQVFYcWmURQrJkPuZTd3Hz6k0RJ/UMxflSpuV4MpfPoMBlc3Vnz7P5lIUmRr169fZ9KkSQQHBzNq1KgMHz9cCCFE1tu7dy8zZ86kYMGCTJ48GR8fH0eHJESybt++zWeffcalS5cYPnw4PXr0yJXj1wshRF7yxx9/MG3aNJydnfnss8947rnnHB1Susi3UiZQVZWAgACGDx+Os7MzP/zwA23atJEDEkLkMgXLXOfaNWeMqoqqqqZ5RlIhLk5DwuQloFFAgT5+39DqpS8yNV6Rdl5FioARMCqgKqBqiCpXjnvNmoIC/QcNYtu2bY4OUwi7du/ezdChQ4mLi2PRokUyjIUQQuQSr7zyCj/88APu7u689dZb/Pbbb8h5jyI7OnToEEOGDOHhw4csWLCAXr16SXFECCFygRdffJEff/yRkiVL8s4777B8+XKMRqOjw3pm0oMkg0VFRTFz5kx2795N586dGTVqFC4uLo4OSwiRiW7fPk1RYxd0Gl2qDj5+5/8C6zfXAkUxlVRsHqLiUcyNVetHZ1K04llUnDn7SVErgaLXU/jMGfJfv05k6bIc/kmG3BLZQ2xsLPPnzycgIIBWrVrxwQcf4Obm5uiwhBBCZLC4uDgWLlzIunXraNasGR999JEMuSWyBeshtZo0acK4ceNwd3d3dFhCCCEymF6v56effuKXX36hYcOGTJw4MUcOuSUFkgxkPaTWhx9+SMuWLR0dkhAiC4X9V5kCbspTiyRGI7Tv+RoqGtREB9wBVEUxDbsFNHulKp981iMTIxapVWnGbNAm3LB+zVRwDb5O4TOnMbi6sfx/C6hQoYIjQhQCgODgYD799FOCg4N57733ctXEeUIIIew7cOAAM2bMkCG3RLZgPaTWiBEj6N69u+QiQgiRyx05coSpU6fi7OzMpEmTeP755x0dUppI38YMsn//ft58803LkFpSHBEi7ylU6V/OXPkEVcXuMAdGFYa91xFVTdpzRFUUU3HEPOyWRmH//ku0aPYl/j/uz6I9EMlRDJiG2lKTXqLLeBPyUjMAXhs8mMOHDzsqTJHH/fXXXwwbNswypFbHjh3lgIQQQuQBTZs2tQy5NXLkSHbt2uXokEQederUKYYOHWoZUqtHjx6SiwghRB7QsGFDy5Bb7777Lps2bXJ0SGkiPUjSSVVVli5dyo8//sgrr7zC+PHjZUgtIQQ/zOjKgP7n0WjAYFDYurMy3/k3wGDUmobWsuo9opp/NJh/OyT5EaECCv1f/z8GDWqeNTsgbFSZOgdVp0LCVCSW10pNuKqCEm+g8OkTuN27zfDhw+nTp4/8IBRZQlVV1qxZw7fffsv//d//8emnn8qQWkIIkQfFxcXx9ddfs2PHDl5//XUGDx4s8z2ILLN582ZmzZpF7dq1mTJlCgULFnR0SEIIIbKYXq/nm2++Yf369XTv3p233noLnU7n6LBSJAWSdIiNjWXGjBns3r2bwYMHM2DAADkYJoSwOH/6Cu8PXQaahCJIQg8RS08RhaTzkFh9hqjJfJw0ebkKkz/rnrnBCxtVpsxBdSLhNUv8talYepMoepWxJQuydOlS2rZty5gxY3B2ds76gEWeER8fz9y5cwkICKBPnz4MGzYMrVab8gOFEELkSqqqsmLFChYtWsTLL7/MhAkTZI40kakMBgMLFy5k9erVdO7cmffeey9HHAwTQgiReX777Te++eYbfH19mTRpUrafIy1XF0ji4uIy7cBUaGgoEydO5L///mPChAk0by5ndQsh7OvcbCrRMUZT8UOj2BRIbHqP2CuOmNuSqGCiQqEiLmxY834W7EHeZjQaqTZ1HqoWVA1J5o0BTMURFRQjBH38Prt27WLGjBn4+PjwxRdf5MhJykTGyMxcJCwsjE8//ZSzZ88yZswY2rdvnynbEUIIkfMcOnSIqVOnUrZsWb788kuKFy/u6JCEg2RmLhIZGcnkyZM5evQoo0aNolu3bnLSqBBCCACOHTvGpEmT8PDwYPr06ZQuXdrRISXL4QWSK1eu4O/vT2BgIA8ePCBfvnyUK1eOPn360LhxY5u2V69eZcGCBZw9exadTkejRo14++23kxx4Onr0KDNmzODBgwc0bNiQiRMn4u7unmEx//vvv4wbNw6j0ciXX35JtWrVMmzdQojcKTY2lo7NvnrSa0STqDcJPCmQJHRIwLqQQqI2gJow9BYKbFozQrqxZxKfT+eg6kjoCcST3j9m5hfHCE7APx+bilbnz59n4sSJODs7M336dCpWrJilcYvUy4m5yPXr1xk7diwRERFMnTqV2rVrZ9i6hRBC5A6XLl1i/PjxGAwGpk2bJr9bs7GcmIvcvn2bcePGce/ePSZPnkyDBg0ybN1CCCFyh2vXrjFu3Lhs/7vV4QWSP//8k3Xr1lGzZk2KFStGTEwMBw4c4MyZM4wZM4bOnTsDcO/ePYYMGUKBAgV49dVXiY6OZuXKlXh5ebFo0SKcnJwAiIqKomfPnnTp0gUfHx9Wr15NhQoVGD16dIbEe/r0acaNG0fp0qWZNm0anp6eGbJeIUTe8PP3e/nF/w/TgXatYrcHiWrdm0RjVSxJYNOTxGouDBRo/nIVJk3olpm7kKdU+2SOqdeI9klxRLVTIFEShtj6Z/womyEF7t69a/nh+NVXX1GzZs2s3QGRKjktFwkMDGTMmDEUKVKE6dOnU6pUqQxZrxBCiNzHPPLBlStX+PLLL6lXr56jQxJ25LRc5OrVq4wePdpyIlD58uUzZL1CCCFyn8ePH/PJJ59w/vx5Jk+enKTwnx04vEBij8FgYOjQocTFxfHLL78AMHv2bLZt28Yvv/yCl5cXAMePH2f06NE2CcPFixf5+uuv+fHHHwFTb4/PP/+cn3/+Od1xHTlyhI8//pgaNWowbdo0mQBVCPHMurSZTkSkPtGQW4kKJEqiobawvv1kXaqSuDuD6bFLvhtABW+vzN2RXKz6RFNxRNVgKlSZ5zi1fg3M36AqYISgSUmHPIuIiGDcuHFcunSJL774Al9f30yPXaRfds1FTp06xbhx4yhfvjxfffWV9BwTQgiRoujoaD7++GNOnz7NpEmTaNKkiaNDEqmQXXORixcv8uGHH1KsWDFmzpyJh4dHutcphBAid4uLi2PKlCn8/vvvTJgwgVatWjk6JBualJtkPa1WS/HixYmIiLAsO3DgAC+++KIlCQDw9fWlbNmy7Nu3z7LMy8uLGzdusG/fPm7evMnatWspU6ZMumPat28f48ePp169enz11VdSHBFCpMuGHePYffhj0w1VTZjkO5l6tXUvE+u/JJ7DJKFtwjwZA0f8TNMOX9G009dERkZn+D7kVndCHlJj3BzLbcvTbl0MSSiIWK6roCTzjVqgQAFmzpzJ888/z9ixYzl48GBmhS4yUHbMRf7880/GjBlDtWrVmD17thRHhBBCpIqrqyvTpk3jxRdf5NNPP2Xnzp2ODkmkQnbMRU6dOsV7771HmTJlmD9/vhRHhBBCpIqzszOfffYZrVu3ZurUqWzYsMHRIdnQpdwka0RHRxMbG0tkZCS///47R44csUx8fv/+fR4+fIiPj0+Sx1WvXp2//vrLcrtIkSIMHDiQyZMnYzQaKVGiBLNmzUpXbJs3b2bmzJm0aNGC8ePH2wyfIoQQ6bH74EQiI6Pp3H6OpfMHYCqWpDTBYXKFEyVxrxJo1/sb0x0aWP7tIMqULpYxO5DL1Bw7x9RLxzwZu/UQZuabiV+WhGJJ4GdJe4+Y5cuXjy+//JKpU6cyadIkxo4dS9u2bTM4epFe2TkX2bNnD1OnTqVRo0ZMmjQJFxeXdK1PCCFE3uLs7MykSZP4+uuvmTp1KhEREXTrJsOyZjfZORf5888/+eSTT3juuef44osv5KRRIYQQaaLT6Rg7diz58+dn9uzZRERE0L9/f0eHBWSjAsn//vc/Nm3aBIBGo+Hll1/m/fdNB5tCQ0MB7J6d4OHhwePHj4mLi8PZ2RmAPn360LJlS0JCQqhYsWK6DiKsXr2aBQsW0KVLF9577z00mmzZ6UYIkYPlz+/KngMTuBF8nwGvfW8auUlRnhRM7BVLFCVhbhLz7Sd/1cSFE2wLJn3e8rfc375ldca/3TGjdynHqfXhHNPzaS6MmFkVRuz270noPeKSQi0LwMnJiU8//ZRZs2bx5ZdfEhkZyauvvpq+wEWGyq65yObNm/n6669p1aoV48aNkxM1hBBCPBOtVsvYsWMpUKAAc+fOJTIyktdee83RYQkr2TUXMZ+oYe6FJCdqCCGEeBYajYZRo0bh7u7O4sWLiYiIYPjw4SgpnSCcybLNL+wePXrQrFkzQkJC2LdvHwaDgfj4eABiY2MBLBOOWTN/+cfGxlquA3h6eqZ7AvXffvuNBQsW0Ldv32zxYgkhcrcyZT3Zs38CV67cYchgf0BFURXbSdmfxnpyd5viCHaWmW5s2XORLXsuYJ63ZMzQV+jS7oX07UgO8b/NB/hu79+oSsL8ItY9RqyeRnNhxDzElqra3qEY4cyU5HuPWNNqtXz44Ye4ubkxb948nJ2d6dSpU0bsjsgA2TEX2bFjB1999ZWcqCGEECJDKIrCyJEjKVCgAN9//z1OTk707t3b0WGJBNkxFzl06BBTp06lRYsWcqKGEEKIdFMUhUGDBpE/f34WLFiAs7MzgwcPdmhM2eabrVy5cpQrVw6Atm3bMnr0aMaNG8eiRYssZyeYEwNrcXFxABl+BsP27duZO3cuPXv2lOKIECJLVahQgr37xnP37kP69F2E1SH6pMM7JZKkl0NK85YkXDH3Rvn6h718/cNey/0+lYrxv8/64ur65IdWTvbO4rXsuxBsuqFgfzgtSKa7iOVhNnOPXJjyXppiMB+YiI+PZ+bMmbi5udGiRYs0rUNkjuyWixw8eJDp06fToUMH3n//fclFhBBCZAhFURg4cCDx8fF8++23uLm5WSb3Fo6V3XKRY8eO8dlnn/Hyyy8zfvx4tFpthq5fCCFE3tWzZ0/0ej3fffcdrq6u9OnTx2GxZJsCSWLNmjVj5syZBAcHW7qQmruUWgsNDaVgwYI2Z0mk14EDB5g+fTodO3Zk5MiRckBCCOEQXl5F2LtnHAaDgZZtv7aaxD2h+0Jyn03Ww20luS9tPUwuXg6lxevzMRdnVAUKF3Dhi9GdeaGm97PuWpYwGAwMm7eK49fuWgpAqlUhRE1cFEnE3EnE0nPE+s6E4oh//w7P9B2hKArvvvsuUVFRTJ06lXz58tG4ceM0r0dkLkfmIkePHmXy5Mm8/PLLjBkzRnIRIYQQGe6NN94gMjKSWbNm4ebmRsuWLR0dkkjEkbnI2bNnmThxIvXq1ePjjz+W4ogQQogM17dvXyIjI1m4cCH58+d32Akb2bZAYu4+GhERgbe3N4ULFyYwMDBJuwsXLlC5cuUM2675gESzZs344IMP5ICEEMLhtFot+3aNA6BTt5mERxgS7kkY6ymljylLASTRvCU29z1ZZLeHiVUx4VFULCOnrnlSMLC6z6NwPoZ2a0ynZs9l2Y+o8PBoPvt1O3vOXQU1UcHHuiiSeAitFAokqAlFEuXJdctOq/DNq21pVK3qM8et0WgYO3Ys0dHRTJo0iRkzZlCvXr1nXp/IeI7KRc6cOcPEiRPx9fWVAxJCCCEyjaIovPPOO0RFRfHFF1+QL18+XnrpJUeHJaw4KhcJDAzko48+olq1anz++ed2h/USQgghMsIbb7xBVFQUs2bNwtXVlVatWmV5DA4vkDx8+JAiRYrYLNPr9ezYsQMXFxfKly8PQNOmTdm+fTt3797Fy8sLgBMnThAcHEzPnj0zJBbzAYkGDRrIAQkhRLYU8NsYADZtPsrsBftQLRNiJLB0e0jFytLSwyRRccGmOGJppxASFss0/71M89+btJ11zw2rZeaijWK1PqNVcdp+DxerWOz1CrFTDEn1XC6JO+okvt8Ihz8cQNGiRVO5wuTpdDo+/fRTxo8fz4QJE5gzZw41atRI93pF2mSnXCQoKIixY8dSo0YNpkyZIgckhBBCZCqNRsNHH31EdHQ0n332mZyw4SDZKRe5du0aY8aMwdvbm+nTp8uE7EIIITKVoiiMGjWKqKgovvzyS1xdXbP8hA1FVdWnjLSe+SZOnEhkZCS1a9fG09OT0NBQdu3axfXr1xk5ciS9evUC4O7du7zxxhsUKFCA7t27Ex0dzYoVK/D09GTx4sXp7kp669Ythg0bRsWKFfn6668lCRBC5BgtOn6F3oDpSL4moQeIvWGkEvcgsSpO2NyfuE1KxRE7j7MpRiSzLHEsNm0SCiRJiiNK0mXJDpul2CmkkMJ9iYo29vwz7X37d6RDTEwMH3zwATdu3GDRokWUKFEiw7chkpddcpH79+8zbNgwPD09mTt3Lm5ubhmxe0IIIUSK4uPjGT9+PP/88w/fffcd3t7ZeyjV3Ca75CJhYWEMHz4cFxcXvvnmGwoWLJgRuyeEEEKkSK/XM3nyZI4cOcKCBQuoWvXZR+xIK4cXSPbs2cOWLVu4fPkyYWFhuLm54ePjQ7du3ZJUi65cucKCBQs4e/YsOp2ORo0aMXLkyHSfxRsZGcmIESOIj49n0aJFkgQIIXKky9fuMuitn616UVgVGSwFBCXlAom9+9NaVLG+TTKFDnu3SRR3Ctu3W7xJpmCSbNHGXs+WRPGjQvtaFfj6tS5klkePHjFs2DAKFCjAggUL5OB4FsoOuUhsbCyjRo0iNDSUxYsXW8YZF0IIIbKK+XexXq9n0aJFuLu7OzqkPCM75CJ6vZ4PPviAy5cvs3jxYkqWLJmu9QkhhBBpZf5d/ODBAxYtWpRlv4sdXiBxNIPBwIQJEzh79iwLFy6kXLlyjg5JCCHSbc+h80z+aitgO+xU4vlFUtXDRIPtY0jFY+wtS1UBRUn2MbbtkrZJXCxJvOypvVrstbFqe35Gxvcasee///7jrbfewtfXl88//xyNRpPyg0SOp6oqU6ZM4fDhwyxYsAAfHx9HhySEECKPunnzJsOHD6dq1ap89dVX6HQOH5VbZAFVVZk1axZbt25lzpw51K5d29EhCSGEyKPMIyuUKFGCuXPnZskoT3n+yMvixYs5cuQIkyZNkuKIECLXaNGkJgcDPuRgwIf874uE8YhVUFQVVNV28hHLxOOq7e30sNcLI8W2Ty+OpGqdiWJXrJYpdvZZUROuJ1wUo9UFOP/V+1lWHAGoVKkSn3zyCYcPH+ann37Ksu0Kx1q2bBl79uxhwoQJUhwRQgjhUKVLl2bKlCmcPHmS//3vf44OR2SR3377jU2bNjF69GgpjgghhHAoT09PvvjiCy5dusTMmTPJir4debpAsm3bNlasWMFbb71Fw4YNHR2OEEJkiuefK8ehjR9yaOOH7Fv7PkULJVTf1UQFAhLVHtRk/qbR0+bzyEipiT1JkSRhEnZFfXIpX8SdczPf59xXWVcYsfbSSy8xbNgwli5dyu7dux0Sg8g6Bw8e5IcffmDQoEE0b97c0eEIIYQQvPDCC7z33nusW7eOjRs3OjockcmOHTvGggUL6NmzJx07dnR0OEIIIQQ1atRg3Lhx7NixgxUrVmT69vLsEFuXL19m2LBhtGzZkrFjx6IoWXD0Tgghspkr1+7y2uhlth1KzPOXWA87ZTXMVqrnLSG5xyR3O5keJFbXkx0SK4V5RJK0M19Xnyw7MnV4tpn3Q1VVvvjiC8vBc5koNXe6desWgwcPpkGDBnz22WcypJoQQohsZc6cOQQEBLBw4ULp4ZhLhYSEMGjQIHx8fJg+fboMqSaEECJb+f777/n111+ZN29epvZwzJMFktjYWIYNGwaYhtjKirHMhBAiJ4iIimbwmJ+5cT/yyUIl8TwmT5ZD0nlNUl8QSXQbUjXMVurnM0kUp/WOKpDPScPhL0bg7Oyc9InIBqKjoxk6dCguLi4sXLgw28Ypno1er2fUqFE8fPiQH3/8kfz58zs6JCGEEMJGfHw8b775JrGxsXz//fe4uro6OiSRgYxGI2PGjOHKlSv4+/tTuHBhR4ckhBBC2DAYDLz77rvcuXMHf39/3N3dM2U7ebJAMm/ePAICAli0aBGVKlVydDhCCJGt3Q99zNuTV3L9brhpgXXBxHLbzuTvabidpBdJMm3sLre3fhK1UcBFp/Db+Ncp41n0abubrQQGBjJixAi6d+/OW2+95ehwRAb68ccf+eWXX1iwYAE1a9Z0dDhCCCGEXdevX+eNN96gVatWfPjhh44OR2SglStX8u233zJr1izq16/v6HCEEEIIu+7evcugQYOoX78+n332WaaMApXn+k/++eefrFu3jnfeeUeKI0IIkQqeHgVZNX9YkuWPwiP54rvtHDp1FUVVE4oSiuVf6+q7QkIRI2FIK0W1vW2eC0S1TBai2G1js26r4bEsbRMalCtWiO9GdqWUZ5GMeAocxsfHh6FDh7Jw4UIaNGiAr6+vo0MSGeD06dMsW7aMQYMGSXFECCFEtubt7c2oUaP4+uuvadCgAU2bNnV0SCIDBAYGsnjxYnr16iXFESGEENmal5cXY8aM4bPPPuP//u//aNeuXYZvI0/1IHnw4AGDBg2iatWqfPXVVzLviBBCZLKwsGhW7jrO3qNBBIeEoTemPCSWav3RnPA5bd1jpbCbM41qlmN4x0Z4l/DI3B3IBmT4g9wlPDycwYMH4+Xlxbx589BqtY4OSQghhHgqVVX5+OOPOXXqFP7+/hQvXtzRIYl0kGFchRBC5ETTpk1j//79/PDDD5QtWzZD152nCiQTJ07k3Llz+Pv7U7RozhliRQghRN5mnkDzhRdeYPLkyY4OR6TDl19+yeHDh/npp58oUaKEo8MRQgghUiUsLIzBgwdToUIFvv76aznZMAebN28emzdv5ocffqBcuXKODkcIIYRIlaioKIYMGULhwoX53//+h0ajybB1Z9yasrk//viDQ4cO8e6770pxRAghRI5SrFgxRo0axb59+zh69KijwxHP6NSpU2zfvp0RI0ZIcUQIIUSOUqhQIUaPHs3Ro0c5cOCAo8MRzygoKIj169czePBgKY4IIYTIUdzc3Bg7diznz59n69atGbruPFEgiY2NZd68efj6+tK8eXNHhyOEEEKkWatWrahTpw5z584lLi7O0eGINNLr9cyZM4caNWrQoUMHR4cjhBBCpFnjxo1p3Lgx33zzDVFRUY4OR6SR0Whk9uzZlCtXjh49ejg6HCGEECLN6tSpQ5s2bVi0aBFhYWEZtt4cUSBJ74GgX375hZCQEN5//33pCiyEECJHUhSF0aNHc/v2bVasWOHocPKc9OYia9eu5dq1a4wePTpDuwILIYQQWemdd97h8ePHLFmyxNGh5DnpzUW2bt3KP//8w+jRo9HpdBkUlRBCCJG1RowYgcFgYPHixRm2zgz7VoyKimLlypX8888/XLhwgfDwcMaPH59kZvkvv/yS7du3J3m8t7c3v/zyi82yo0ePMmPGDB48eEDDhg2ZOHEi7u7uaYorODiY5cuX07dv3wyfwEUIIYTISuXLl6dnz54sW7aMVq1aUapUKUeHlK1k11zk3r17+Pv707VrV6pWrZr2HRNCCCGyiZIlS/L666/z008/0bZtWypWrOjokLKV7JqLPHr0iO+++462bdtSu3bttO+YEEIIkU0ULVqUoUOHMmfOHNq3b0/NmjXTvc4MK5CEhYWxZMkSvLy8qFy5MidPnky2rbOzMx999JHNsvz589vcjoqKYsqUKXTp0gUfHx9Wr17N999/z+jRo9MU1/z58ylWrBj9+/dP0+OEEEKI7GjAgAHs2bOH+fPnM336dEeHk61k11zk22+/xdXVlSFDhqTpcUIIIUR21KtXL3bs2MGcOXOYP3++jNJgJbvmIt9//z1Go5ERI0ak6XFCCCFEdtS5c2e2bt3K7Nmz+f7779M9SkOGFUg8PDxYv349Hh4eXLx4kWHDhiXbVqvV0rp166eu7/r163h5efHGG28ApjNVPv/88zTFdPr0aY4cOcKUKVNwcXFJ02OFEEKI7MjNzY0333yTKVOmcP78+Qw5WyK3yI65yKVLl9i7dy9jx46lQIECaXqsEEIIkR05OzszcuRIxo4dy7Fjx2jQoIGjQ8o2smMucuPGDbZu3cqIESMoUqRImh4rhBBCZEdarZZ33nmHkSNHcuDAgXTPOZ5hg2A7Ozvj4eGR6vYGg4HIyMhk7/fy8uLGjRvs27ePmzdvsnbtWsqUKZOmmH766ScqV67Myy+/nKbHCSGEENlZ8+bNKV++PP7+/o4OJVvJjrnIkiVLKF26NG3atEnT44QQQojs7P/+7/+oUaMG/v7+qKrq6HCyjeyYiyxdupTChQvj5+eXpscJIYQQ2dlzzz1H/fr1WbJkCUajMV3rcsjMXDExMbRr146YmBjc3d1p0aIFb775Jm5ubpY2RYoUYeDAgUyePBmj0UiJEiWYNWtWqrdx6tQpTp48yRdffCGToQohhMhVtFotAwYMYPLkyZw7d45atWo5OqQcJytykaCgIA4dOsT48eNlMlQhhBC5iqIoDBo0iA8//FB6kTyjrMhFgoOD2blzJ2+//baMqiGEECLXGTx4MCNGjGD//v288sorz7yeLP+17uHhQZ8+fahatSqqqnLkyBE2bNjAf//9x7x582wOIPTp04eWLVsSEhJCxYoV0/SF/tNPP1GlShVeeumlzNgNIYQQwqGaN2/O0qVL8ff3T9MPZZF1uYi/vz+lS5emVatWmbEbQgghhEM1aNCAmjVr8tNPP1G/fn2ZiyQNsioXWbp0KUWKFKFTp06ZsRtCCCGEQ9WsWZOGDRuyZMkSmjZtilarfab1ZHmBZPjw4Ta3W7RoQdmyZfn+++85cOAALVq0sLnf09MTT0/PNG3j5MmTnDp1ii+++EKSNCGEELmSRqNh4MCBTJo0ibNnz/Lcc885OqQcIytykcDAQH7//XcmTJggvUeEEELkSuZeJGPGjOHo0aM0bNjQ0SHlGFmRiwQHB7Nr1y5GjRolvUeEEELkWoMGDeLNN99k//79Sb4/UytbjD3Vs2dPNBoNx48fz5D1rVixQnqPCCGEyPWaNm1KhQoVWLlypaNDyfEyOhdZtWoVpUuXpmXLlhmyPiGEECI7ql+/PjVr1mT58uWODiXHy+hcZPXq1RQuXJiOHTtmyPqEEEKI7KhGjRo0aNCAFStWPPM6skWBxMXFhYIFC/L48eN0r+vOnTscOXKErl27Su8RIYQQuZpGo6FLly788ccfhISEODqcHC0jc5FHjx5x4MAB/Pz8pPeIEEKIXE1RFLp27crJkycJDg52dDg5WkbmIlFRUezatYtOnTpJ7xEhhBC5Xrdu3QgKCiIwMPCZHp8tCiRRUVGEhYVRuHDhdK9ry5YtuLq6pmtiFiGEECKnaNWqFTqdjq1btzo6lBwtI3OR7du3A9C2bdt0r0sIIYTI7po2bYq7uzubN292dCg5WkbmInv37iU6OpoOHTqkPzAhhBAim2vQoAGenp5s2rTpmR6fpQWS2NhYoqKikiz/+eefUVU13WOW6vV6tmzZQqtWrXBzc0vXuoQQQoicoECBArRo0YLNmzdjNBodHU62l9m5iKqqBAQE0LRp0ww5wCGEEEJkdy4uLrRt25atW7cSFxfn6HCyvczORQA2bdpEw4YNKVGiRLrXJYQQQmR3Op2ODh06sHv3brvfsSk+PiODWbduHREREYSGhgLw+++/c+/ePQBeffVVwsPDGTJkCC1btsTb2xuAo0eP8tdff9GwYcN0zxny559/EhISQqdOndK3I9lIXFwczs7Ojg4jifj4eJycnBwag9FoxGg0ZrvhS7JrXKqqotfrs/R1y67v3+Rkx3gd8bqlVnaOLTG9Xo9Go0GjyRYdJy0y6rO0U6dObN26lWPHjuX5CVIdnYucOnWK4OBgxowZk74dyUay42cjSC7yNNk1LslFUpYd483O3/fZObbE8kIusmbNGg4dOvTME6TmFo7ORYKCgrh48SJffPFF+nYkG8mOn40gucjTZNe4JBdJWXaMNzt/32fn2BLL7blIhw4dWLp0Kbt376Zz585peqyiqqqa7ggS9OzZkzt37ti9b9WqVRQoUIB58+Zx/vx5QkNDMRqNlC5dmlatWtG7d+90f3COGzeOBw8esHjx4nStByAkJIS1a9dy4cIFLl68SHR0NPPmzaNu3bpJ2r7zzjucOnUqyfIGDRowc+ZMm2VxcXH8+OOP7Ny5k/DwcCpVqsQbb7xB/fr1bdqFhYUxZcoUTpw4QfHixRk/fjx169ZNdVwxMTFs3bqVw4cPc/nyZaKjoylTpgydOnWiU6dOaLVam/ZGo5GVK1eyYcMGHjx4QJkyZejfv3+SyWVjY2OZMWMG+/bto2DBgrz77rspDmd27NgxlixZQlBQEE5OTtSrV4+33nqLkiVLJml7+PBh/P39uXbtGoULF6Z9+/a8/vrrSd4by5cv5+eff8ZoNNKtWzdGjBjx1BiSc/z4cZYtW0ZQUBBGo5GyZcvSp0+fJEl9VsV16tQpVq5cyaVLlwgLC6NAgQJUrlyZAQMG8NxzzyVpf/bsWb777juCgoLInz8/zZs3Z+jQoUl6UO3cuZP58+cTHR1Ny5YtGTNmzDN/+KTmPZzc+zcjXLlyBX9/fwIDA3nw4AH58uWjXLly9OnTh8aNG9u0vXr1KgsWLODs2bPodDoaNWrE22+/neSs7qNHjzJjxgwePHhAw4YNmThxIu7u7s8UX2BgIP7+/pw9e5a4uDhKlSpFp06d6N69u6VNVr9ugYGBfP/995w7dw5VValZsyYjRoygSpUqSdpmRmxRUVGsXLmSf/75hwsXLhAeHs748eNp166dpY3RaGTHjh0cOHCAS5cuER4eTsmSJXnllVfo3bu33bGTN2/ezMqVK7lz5w6enp50796dV1991aaNqqp88803bNq0CScnJ4YMGWJ5LVITF8CXX35pGTLJmre3N7/88ovNssz8LH0aVVUZPHgwZcqU4fPPP3/m9eQGjs5FPv/8cy5evMgvv/yS7rnQJBeRXMQRcUkukjLJRSQXMZNcxNbbb7+Ns7Mzs2fPTtd6cjpH5yKzZ8/m8OHDrF69Ot3rklxEchFHxCW5SMokF5FcxExyEVvPWhvI0FLu6tWrU2zz8ccfZ+QmLaKiojh27BjDhw/PkPUFBwezfPlyypQpQ8WKFTl//vxT23t6eibZtoeHR5J206ZNY//+/fTo0YMyZcqwbds2PvroI+bNm8fzzz9vabdo0SLi4uIsB1omTZrEqlWrUh3XrVu3mDdvHvXq1aNXr164ublx9OhRZs+ezfnz55k4caJN+++//55ff/2VTp06Ua1aNQ4fPsyUKVNQFMXmS3HVqlX8999/TJo0iTt37vDVV19Rs2ZNvLy87Mbxxx9/MGHCBKpWrcrw4cOJjIxk7dq1vP322/z44482H8h//fUXEydOpE6dOrz77rtcvnyZpUuX8vDhQz744ANLu7Nnz/LLL78wcuRI8uXLx+LFi/Hx8Unzf6KtW7cyY8YMfH19GTp0KFqtluvXr1vO7nFEXDdu3ECj0eDn50fRokUJDw9n165djBo1ihkzZticGX7p0iXef/99ypUrx9tvv829e/dYtWoVN27c4Ouvv7a0u337NrNmzWLQoEGUKFECf39/1qxZQ9++fdP0fJml5j2c3PvX1dX1mbZp7c6dO0RFRdG2bVuKFStGTEwMBw4cYPz48YwZM8ZSJb537x6jRo2iQIECDB06lOjoaFauXMnly5dZtGiR5UsrKiqKKVOm0KVLF3x8fFi9ejXff/89o0ePTnNsR48eZfz48VSpUoUBAwbg6urKzZs3uX//vqVNVr9ugYGBjBw5kuLFizNw4EBUVWX9+vW88847LFq0yHLWWmbGFhYWxpIlS/Dy8qJy5cqcPHkySZuYmBimTZtGzZo18fPzo0iRIpw/fx5/f3/+/vtv5s6da3OweePGjcyaNYumTZvSq1cvzpw5w7x584iJiaFfv36Wdrt27eLgwYN89NFHxMTEsGjRImrUqEGNGjVSFZeZs7MzH330kc2y/PnzJ2mXWZ+lKVEUhZYtW/Lzzz8TGxubpyfjdGQuotfr+fPPP+nevXu6iyMguYjkIk9ILmJLcpHkSS4iuYijchEwzYs2d+5cwsPDn/mgWm7gyFxEVVUOHz5M8+bNM+TMfclFJBdxRFySi6RMchHJRUByEXtatmzJlClTuHfvHsWLF0/9A9Vc4uDBg2qTJk3U4ODgDFlfZGSkGhYWpqqqqu7bt09t0qSJ+vfff9ttO2rUKPX1119PcZ3nz59XmzRpoi5fvtyyLCYmRu3du7f65ptv2rR9/fXX1UuXLlluDx48WL148WKq43r48KF6+fLlJMunTZuW5Hm6d++e2rx5c3X27NmWZUajUR05cqTarVs3Va/XW5Z/9NFH6sGDBy23J0yYoO7bty/ZfX7ttdfU3r17q3FxcZZlly5dUps2bap+8803SdoOGjRIjY+PtyxbvHix+vLLL6tXr161LFu+fLk6f/58y+3Vq1erc+bMSTYGe27duqW2bNlSnTt3boptszIue6Kjo1U/Pz/1gw8+sFk+ZswYtUuXLmpERIRlWUBAgNqkSRP1yJEjlmX79u1TJ0yYYLl98OBBdezYsc8US2rfw8m9fzOLXq9XBw0apPbr18+ybNasWWrLli3VO3fuWJYdO3ZMbdKkibpx40bLsgsXLqiDBw+23L506VKq/j8nFhERofr5+akTJkxQDQZDsu2y+nX78MMP1fbt26uPHj2yLLt//77aunVrdeLEiVkSW2xsrBoSEqKqqun5btKkibp161abNnFxceqZM2eSPNbf319t0qSJeuzYMcuymJgYtWPHjupHH31k03bKlClq69at1cePH1uWzZ49W129erXl9vz589UVK1akOi5VVdUvvvhCbd26dbL7Z5aZn6WpcfnyZbVJkybqn3/+ma71iGd34sQJtUmTJhn2eSe5iOQijojLHslFUia5SPIkF8k7ucidO3fUJk2aqLt3707XesSzu3jxotqkSRP1+PHjGbI+yUUkF3FEXPZILpIyyUWSJ7lI3slFHj9+rDZr1kzdsGFDmh6XvQYdS4c//vgDb29vypQpkyHrc3Nzo2DBgml6jF6vf+pEMAcOHECr1dqMg+bi4kKHDh04f/48d+/etSwvWbIka9eu5ebNm+zbt48bN27g5eWV6rgKFy5MhQoVkixv0qQJANeuXbMsO3z4MHq9nq5du1qWKYpCly5duH//vs3ZGKVKlSIgIIDr169z7NgxTp8+nexz/vjxY65evcrLL79s08WscuXKlCtXjr1791qWXb16latXr9KpUyebM126du2Kqqrs37/fJobff/+d8+fP8++//7Jr1640v+4bN27EaDQyZMgQwFQtV+2MNpfVcdmTL18+ChUqREREhGVZZGQkx48fp3Xr1jbV2jZt2uDq6sq+ffssy0qWLMnp06c5duwY169fJyAg4JnjSu17OLn3b2bRarUUL17c5jk6cOAAL774os12fX19KVu2rM3z4+XlxY0bN9i3bx83b95k7dq1z/T87N69mwcPHjB06FA0Gg3R0dFJJsx2xOt25swZfH19KVSokGVZsWLFqFOnDn/++aflMyszY3N2drZ75pg1Jycnu92l7X1m/f3334SFhdGlSxebtl27diU6Opo///zTsqxUqVLs2rWLf//9l/Pnz/P7779bYk1NXNYMBgORkZHJ3p9Zn6WpVb58eUqWLMkff/yRrvWIZ/fHH39QrFgxqlatmiHrk1xEchFHxGWP5CIpk1wkeZKL5J1cxMvLiypVqvD777+naz3i2f3555/kz5+f2rVrZ8j6JBeRXMQRcdkjuUjKJBdJnuQieScXcXd357nnnkvzcZHsNVvSMzIajfz555+0bt3aYTEEBwfTpk0b4uPjKVq0KB07dmTgwIE2Xx6XLl2iTJkySbofVa9eHYB///3X8qE1bNgwxowZw9atW9FqtYwaNSrJ+IDP4sGDBwA2HwqXLl3C1dWVcuXK2Y3r0qVLli6C/fr147333qN///6W25UrV7a7rbi4OAC7Q724uLhw5coVQkND8fDwICgoCAAfHx+bdsWKFcPT05NLly5ZljVp0oSdO3daxrGsW7cunTp1SuUzYHLixAm8vb3566+/WLhwIffv38fd3Z2uXbsyePBgy4RFWR2XWWRkJPHx8YSFhbFjxw6uXLnCa6+9Zrn/8uXLGAyGJHE5OTlRpUoVm7h8fHxo1aqVpdtrpUqVmDBhwjPFldr3cGa9f61FR0cTGxtLZGQkv//+O0eOHKF58+YA3L9/n4cPHyZ5fsyx/vXXX5bbRYoUYeDAgUyePBmj0UiJEiWYNWtWmuM5fvw4+fPnJyQkhIkTJxIcHIyrqyutW7fm7bffxsXFxSGvW3x8vN0J1vLly0d8fDxXrlyhZs2aDntPpSS5zyyAatWq2bT18fFBo9EQFBRk+T7w8/Nj//79DB48GDB1t0w8JmtqxMTE0K5dO2JiYnB3d6dFixa8+eabNmOQZtZnaWopisKLL77IoUOHeP/99zNkiCeRNn/88QeNGjVy2HMvuUhSkotILiK5iOQi6SW5SNo0atSI9evXo9frs93kzHnBH3/8QYMGDRz23EsukpTkIpKLSC4iuUh6SS6SNo0aNeLHH38kJiaGfPnypeoxuSJjMU9K9OKLLzpk+6VKlaJu3bpUrFiRmJgY9u/fz9KlSwkODmby5MmWduYvvcTMy0JCQizLKlasyPLly7l8+TJeXl5pquYlJz4+njVr1lCyZEmb/0ChoaEUKVIkyQEde3EVK1YMf39/Ll++TKFChShRokSy2ytatCgFChTg7NmzNsvDwsIsVc+QkBA8PDwIDQ212WbiOMz3A2g0Gr744guuXr2KwWCgYsWKaT4YZR7Tcvr06fTp04dKlSpx8OBBli5disFgsIybmtVxmU2aNImjR48Cpg/izp078/rrr1vuTymu06dP2yx799136dGjh2XysGdNmFP7Hs6M929i//vf/9i0aRNgeu5ffvll3n//fUuc1nEljvXx48fExcVZviD79OlDy5YtCQkJoWLFis80f8ONGzcwGAxMmDCBDh06MGzYME6dOsW6deuIiIhg0qRJDnndypYtyz///IPBYLBMQhgfH88///wDYBkH1FHvqZSsWLGC/Pnz24wzGxoailarpUiRIjZtnZycKFiwoM3/y3z58vG///2Py5cv4+zsbDO2aGp5eHjQp08fqlatiqqqHDlyhA0bNvDff/8xb948y75n1mdpWrz44ousW7eOy5cvU6lSpQxZp0id4OBgbty4wciRIx2yfclF7JNcRHIRyUUkF0kvyUXS5sUXX2Tp0qWcO3eOOnXqZMg6ReqEhIRw8eJFm0mQs5LkIvZJLiK5iOQikoukl+QiadO4cWMWLlzIiRMnUl0IyhUFkhMnTpA/f35q1arlkO2PGzfO5nabNm34+uuvCQgIoGfPntSsWROA2NhYmy6VZuYPo9jYWJvl+fLlo0aNGhkW59y5c7l69SozZsyw+U+b1ricnJzsVqAT02g0dO7cmeXLl7No0SLat29PVFQUCxcuJD4+3mbd5rMq7FV0nZ2d7XbRLV++fIoxJMfczW/48OGWiYuaNWtGeHg4a9eu5bXXXsPNzS3L4zIbPnw4vXr14t69e2zfvh29Xo/BYLDcb37eknvdzHFbK1WqVLrjSst7JaPfv4n16NGDZs2aERISwr59+zAYDEneVynFav26enp64unp+czxREdHExMTg5+fH++++y4ATZs2JT4+nk2bNjF48GCHvG5du3Zl1qxZzJgxg759+2I0Glm6dKnly9K8TUe9p55m2bJlHD9+nNGjR9tM9BkbG5ts4uHs7JzkM0uj0aTrLITEE022aNGCsmXL8v3333PgwAHLJGOZ9VmaFrVr1yZfvnwcO3ZMCiRZ7Pjx4+h0OurVq+eQ7UsuYp/kIs9OcpGUSS6SOpKL5K1cpFq1ahQqVIjjx49LgSSL/f333wA0aNDAIduXXMQ+yUWeneQiKZNcJHUkF8lbuUjZsmUpVaoUx48fT3WBJFfMQXLx4kWqVq36TJW6+Ph4QkNDbS7WH7jPqlevXoDpgImZi4uL5YPKmr0ulxkd14oVKwgICGDIkCE0atTI5r60xJWc5OIdMmQIHTp0YMWKFfTr14+hQ4ei1Wrp0KEDAK6ursCT/yj2Pmzi4uKeqXL9tLjM62vZsqVN+xYtWhAbG2vpQprVcZlVqVKF+vXr06FDB2bPns2FCxeYNm2a5X7zdpN73ewlLhkhI94rGaVcuXL4+vrStm1bZsyYQXR0NOPGjUNV1RSfn8yI1bw+85eCmfk9dv78eYe8bn5+frz22mvs3r2b119/nYEDB3Lr1i369OkDPPk/6Kj3VHL27NnDDz/8QIcOHZKMqeni4oJer7f7uPT8v0yLnj17otFonvkzPrM4OztTuXJly2eYyDqBgYFUrFgx1V14rUkuIrmINclFni47fNaaSS6SOpKLZI7smotoNBqqVasmuYgDBAYGUrp06WcawkdyEclFrEku8nTZ4bPWTHKR1JFcJHNk11xEURSqV6+eplwkV/QgCQoKolmzZs/02HPnzlmqmmarVq2iZMmS6YqpePHiAISHh1uWeXh4WLptWTNXLIsVK5YpcW3bto3vvvsOPz8/BgwYkOR+Dw8PTp48iaqqNl2g7MWVnKfFO3bsWIYOHUpwcDBFixalbNmyTJkyBY1GQ+nSpS0xmLeZeNKq0NBQy1h1aZVcXB4eHty4cSNJVzTzbfPrltVx2Xt9nZycaNy4Mb/++iuxsbG4uLjYxJVYaGhoql6zZ5GW93BWa9asGTNnziQ4ODjF56dgwYIZ/sXm4eHBlStXKFq0qM1y6/eU+f2e1a/b0KFD6d27N1euXCF//vxUqlSJxYsXA6bKujl+R8Rmz7Fjx/jyyy9p1KiRZTxPax4eHhgMBh4+fGjzfzg+Pp7Hjx9nStflxFxcXChYsCCPHz+2iSu9n6UZwcfHx9IVXWSdwMDAZz47THIRyUWsSS7ydJKLJE9ykYwjuUj6+Pj4sHnz5iRxiMwVGBhI1apVn+mxkotILmJNcpGnk1wkeZKLZBzJRdKnatWq/P777zbDqj1Nji+QhIWFcefOnWdOBCpXrszs2bNtliX+j/wsbt26BWBz9kblypU5efIkkZGRNpM5mce8s+7qlFFxHTp0iK+++spmHMLEKleuzObNm7l27ZpNN0h7cSUnpXiLFi1quW0wGDh58iTVq1e3TORTpUoVIOkBppCQEO7fv0/nzp1Tsbepj8vHx4cbN24QEhJi0x3OPBae+XXL6riSExsbi6qqREVF4eLiQoUKFdBqtQQGBvLKK69Y2sXHx3Pp0iXLpFwZLS3v4axm7qYXERGBt7c3hQsXJjAwMEm7CxcuZEqcPj4+HD9+nPv379uM52j9nnLU6wbg7u5umQgLTGdxeXp6WmJ1ZGzW/vnnHz7++GN8fHyYPHmy3Z6B5v+XFy9etDnz6+LFixiNRsv9mSkqKoqwsLAkn/Hp/SzNCFWrVmXdunVJ/p+KzBMbG8vVq1eTnNWTWpKLSC4iuUja4pZcxD7JRTKG5CLpV7VqVR48eEBISEi6hmoRqWc0Grl06VKSXhGpJbmI5CKSi6QtbslF7JNcJGNILpJ+VatWJSYmhuDg4FQN+Zfjh9gy/0d/1vHK3N3d8fX1tbmkpbtPZGRkkm6GqqqydOlSAOrXr29Z3qxZMwwGg2UCJTB1Mdq6dSs1atSwqcSnNy6AU6dOMXnyZJ5//nk++eQTNBr7L/dLL72ETqdj/fr1NvuwceNGPD09UzW3S1riXblyJaGhoZbutmD6EPL29iYgIMCmS+WGDRtQFIWmTZumdrdTFZf5g27Lli2WtkajkW3btlGwYEHL+ymr43r48GGStuHh4Rw4cIDixYtbqsIFChTA19eXnTt32oz3uWPHDqKjozPtQzst7+HMYu850uv17NixAxcXF8sHX9OmTfnjjz+4e/eupd2JEycIDg7OlOfHvE7r95T5tlarpW7dug573RLbs2cPFy9epEePHpbPhewQ29WrVxk7diwlSpRgxowZyX6GvPDCCxQsWJCNGzfaLN+4cSP58uV75h+G9sTGxtodU/fnn39GVVWbSdIy4rM0I5hPGLh06VKWbE/Af//9h8FgeOaTNSQXkVzETHKRlEkukjzJRdJPcpGMYf78sndQTmSO4OBgoqOj5biIHZKLSC6S0SQXSZ7kIuknuUjGMP82T20ukuN7kAQFBeHm5mbpopWRfv75Z8D05gTTf4gzZ84AWLpkBgUFMXnyZFq2bEnp0qWJjY3l0KFDnD17lk6dOtkkKDVq1KB58+YsXryYR48eUbp0abZv386dO3cYO3ZshsZ1584dJkyYgKIoNGvWjP3799uso1KlSpYJfIsXL06PHj1YsWIFer2e6tWrc+jQIc6cOcMnn3ySqq5Iydm5cycHDhygdu3auLq6cvz4cfbt20fHjh2TDIv21ltvMX78eD744ANatGjB5cuXWb9+PR07dsyQCb6svfTSS9SrV49ffvmFR48eUblyZcs+jxkzxqabYVbG9eGHH+Lp6UmNGjUoUqQId+/eZevWrYSGhvLZZ5/ZtH3jjTcYOXIko0aNonPnzty7d49Vq1ZRv359mw+njJRR7+H0mDlzJpGRkdSuXRtPT09CQ0PZtWsX169fZ+TIkZazb/r378/+/ft577336N69O9HR0axYsYKKFSvSrl27DI+ratWqtG/fnq1bt2IwGKhTpw6nTp1i37599O/f39KNMKtft1OnTvHzzz9Tv359ChYsyD///MO2bdto2LAh3bt3t2mbmbGtW7eOiIgIS7fK33//nXv37gHw6quvotFoGDNmDOHh4fTu3Zs///zT5vGlSpWyfJG6uLgwZMgQ5syZw6effkqDBg04ffo0O3fuZOjQoRQsWDDD4goPD2fIkCG0bNnSclbJ0aNH+euvv2jYsCEvvfSSZV2Z+VmaFuXKlcPFxYXAwECZHDWLBAUFodVqqVixYoavW3IRyUWyOi7JRVImuUjaSC6SvrhyYi5SvHhxChUqRFBQkE18IvOYx1l/1pM1nkZyEclFsjouyUVSJrlI2kgukr64cmIu4u7uTunSpQkMDKRNmzYptldUVVWzIK5UeZYJb77++muCgoL4/vvvMzyel19+Odn7Dh48CJi6jC5atIgLFy7w4MEDNBoN5cqVo2PHjnTu3DnJmKuxsbH8+OOP7Ny5k4iICCpWrMgbb7xBgwYNMjSukydPJhnL0drAgQMZPHiw5bbRaGT58uVs2rSJ0NBQypQpQ79+/WjdunWq47Lnn3/+YeHChVy+fJnY2Fi8vb3x8/Oz+9yAqevrkiVLuHbtGoUKFaJdu3YMHDjQbney9IqKiuKHH35g7969hIeHU7ZsWfr27Wt3n7Mqrt9++429e/dy7do1IiIicHd3p0aNGvTp04fatWsnaX/mzBm+++47S6GwefPmDB8+3PJlmBky4j2cHnv27GHLli1cvnyZsLAw3Nzc8PHxoVu3bkl+gF25coUFCxZw9uxZdDodjRo1YuTIkRnSXdwevV7PsmXL2LZtGyEhIXh5edG1a1d69uxp0y4rX7ebN28ye/ZsgoKCiI6OpkSJErRt25ZevXrh5OSUpH1mxdazZ0/u3Llj975Vq1YB2Jw9lVjbtm2ZMGGCzbKAgABWrVrF7du3KV68OF27dqVHjx5pGus6pbgKFCjAvHnzOH/+PKGhoRiNRkqXLk2rVq3o3bt3ks+AzPosTauBAwdSp04d3nvvvSzdbm7wLLnIt99+y6FDh1ixYkWGxyO5iOQiWR2X5CIpk1wkbSQXSV9cOTUXefvttylZsiQTJ07M0u3mBs+Si/z888+sW7fO5oz2jCK5iOQiWR2X5CIpk1wkbSQXSV9cOTUXGTt2LBqNhmnTpqXYNtMLJHFxcZYPjfDwcCpVqsQbb7xh08UyLCyMKVOmcOLECYoXL8748eOpW7duqtY/duxYFEVh+vTpmbULQgghRI7ywQcf4OrqytSpUx0dSraQ2bnIlClTuH//Pt98801m7YIQQgiRo0yaNInHjx8zZ84cR4eSLWR2LjJ79mzOnTvHTz/9lFm7IIQQQuQoX331Ff/++y+LFy9OsW2mz0Eybdo0Vq9eTatWrXjnnXfQaDR89NFHlq6PAIsWLSIuLo7PP/+cVq1aMWnSJKKjo1O1/tDQUDw8PDIrfCGEECLH8fDwsHSPFZKLCCGEEFmtaNGikotYkVxECCGEyFrFihVLdS6SqXOQ/PPPP+zZs4cRI0bQp08fANq0acPAgQNZuHAhCxcuBOD8+fN88sknVK5cmSZNmvDXX39x/fr1VE0wFhoaahnDTgghhBCmRODUqVOODiNbyKpcpEqVKpm6H0KIp4uN0/PuhBX8c+kOlu7xCqbr5iEGLLdTeX/CqWSqVXvTbcX2dqJ12nuM/fVY7UDCOpM8Lg3bsF1f4n1M5jb2l6tKCtuz0y7xYxK3TxJH4uWK+mQdVvcnvk9NuG1zn8ZqmebJX8VmmYqiSbgkXNcoKhqNikZjRKOoaDVGtBoVrWJMuG5EqxjRaYzotEacFIPpumLAyfLXgE4xJvw13XZSrC4aA06K3maZTjGiU/Q4YcDJfF0xoFNUdIoeHSo6xZDwVzW1B7SKihbQAjrF9FerKGgS/upQ0KBBg4JWMV9TQNEAOjRFAtC4VCIrFCtWjJCQkCzZVnaXVblIRs8DIYQQQuRkHh4ePHjwAIPBkOLcJ5nag+TAgQNotVo6d+5sWebi4kKHDh04f/48d+/eBaBkyZKsXbuWmzdvsm/fPm7cuIGXl1eK6zcYDDx8+FDOlBBCCCGsmHuQZKNpxhwms3MRkLM2hXC0r7/ZRqvuczgfdMfqYHtCIUNRkjngnsz9micXNdFjVOwURxKvE/uFC5t2Nm1MMVjaWD0u2W3YaZukeJHsPlutn0TrM7fRPGU9mqTt1MSP0di2VzVJ1299QauialXUhCP/asLFdPQ/0X0aFbSq5T50KqrOfB3QqSg6UHQqitbUVtGpaBIu2oSLTmdEp1Vx0hlx0hlx1hlxdkr4qzPg4mTARWcgn86Aq5MBV50eV62efDq96brO9rqrTo+bTk9+nZ78Wj1u2njcdAkXbTyuWvNfPa4aPa6aONw0Cbe18bhqDbhqDOTTxOOqGMmnMST8NZJPMeKiqLgoKs4KuCjgogEXRcFZ0SRctDijRafocFJ0OCtO6BQdWkWLRtEkvKX1qA/bYbxTO0vyAw8PDyIiIoiNjc30bWV3WZGLhISESC4ihBBCWPHw8MBgMBAWFpZi20ztQXLp0iXKlClD/vz5bZZXr14dgH///RcvLy+GDRvGmDFj2Lp1K1qtllGjRlG4cOEU1x8WFobRaKRIkSKZEb4QQgiRIxUtWpT4+HjLpIZ5WWbnIrGxsURGRkouIoSDrFh3hIBd51Lu5ZGa++0WMMx/bdvbb0Oq2jzp4aIkuS/N2zCvL1HRw95jk+thkuxjUlpmZ3mSIkwyxZ7EhRv7l0Q9SsCmQPOkEKMmLFdNHSUU1XJRNNj0GDH3GlEU0GqMT3qP2Ok1otUk9BzRGE29ODQqTpqEHh0ao6V3iHXvEZ1iQKfRW/UUMd3vnNALxLzMCfNto+kvBrSKESdMcTgpRrSolh4jOsW0i6ZeJAo6QKMoaFFMvUVQ0CgatFY9R+wxvQzRqPf+D8XriN02GcU8+e+DBw8oWbJkpm4ru8vsXATg4cOHmTbhshBCCJETWeciKX1HZmqBJLkzKs3LzF1uK1asyPLly7l8+TJeXl6pPvMhPj4eMJ19IYQQQggTZ2dnwDQhaF4nuYgQudvCpQftHIxPofBg7/6nHNRHUUhyvv3TCh9PafPkvicx2B3y6mnbsC6gpHKbqr31J3683TiTLlOTuW4pfFjfTrx+e0WQxPHYaWdabjusFjbLTEUP68eYOwiZ21g6DCmqzUWT6KJN9FeDaimgmNoY0SqgUUhoZ7S9YF4XaBUSHmdEg2q6D/NjErZDQsHG/FdRTfUfxdRRRsF0W5uwTAEUxVQYsS6OmG4nDKmVEvUhRv0jNLrCKbd9RuZcxPw9mZdldi6iqirx8fGSiwghhBBWzN+LqTkukqkFktjYWJycnJIsNydL1t1t8+XLR40aNdK0fr1eD5DiOGJCCCFEXmL+XjQYDA6OxPEkFxEi97px64HpyHmi48GJiwa2B+ntFDtSy14BIY1tbOY8edZtJNc2uUJK4nU9rXCTuE1yy5K7ntztlJ6zxEWq5NpY3bbfu0a1fYz5oQnFEMtdSqKLvWUJF41i7riimi6KioaEYglWRQurdZiGtDImXKzaJRRelIT1mTvEaDAm/FXNnWOeFEYU611UbDrRYLVcQUFRlNQVSAAej4Wii1LX9hlILvJEZuci5udYchEhhBDiibTkIpk6B4mLi4vdM0bMlZv0nuFgNBoBSQSEEEIIaxqN6evd/D2Zl2VVLmJ+zoUQWedeSETyd6ZUBHhKr4y8yl7hKNXPTUa1SY2nFWdS2KadkdJS+XDVppiSZL2JLvbWodhbiG3RhoSiiN1Y7MRuLoo8E8ONZ3tcKpl/o0sukvm5iPnAj+QiQgghxBPmHCk1uUimfoOaJ4lNzLysWLFi6Vq/nJUihBBCJCUnEDyRVbmIHAASIut5ly6S/J1qcn/VJMsTdzxIUWraPq1NaibITs8c2sntewqS7TSS3v01358R+2R1PVWxqbZXE7/8qdmsmrA1VcXmYq+dvd209zI8iUOxWT8oGBM9Nrm3rum6iqqqqM/y5Do9n/bHpIH0anhCchEhhBAi66XluEimFkgqV67MjRs3iIyMtFn+zz//WO5PDymQCCGEEEnJsE9PZHYuotOZRis1P+dCiKxTzMMdnVZJckQ6NSM+JZGagka6CyNP6bmQlmJGssWfJ02eus+pKaDYPaqfiuupuZ34PnuXp7W1e1158jfR/aaCxpMxuVSrZZYLT64bLZcnxRCjCsYng2yhojG1QcGomgfTSrhuXs6T5QbzOlQNBtVUFDENvkXCdSXR3yd9SYyq9a6qGAGjmrQkkuZiScHJqWv3jKRA8kRWHReRXEQIIYR4Ii25SKYWSJo1a4bBYGDTpk2WZXFxcWzdupUaNWrg5eWVrvXny5cPgOjo6HStRwghhMhNYmJiAJk4HDI/FzGPH25+zoUQWWv6J68+ufGUXiJpuz/RX+yMiGTnb4ptrFnFkKRokpptmONK7T4kU7RQ1KTLnlocUW23abN9e7exvW3TLqHHhN0RsxK3B6siiPX1JwUyNVGBxdLTI6HNk94f5kKIVfEj0cW0XMFgdTGqGgxGBYOqQW9UrO43PcZ83WC5rrH8tRRKIKGIonnymITCiukvlgKLQcXUPmG5AdO6zSUQIypGVAyoGFVjwnUjRtX41CKJCqCti0bjnGybjGD+jW7+nszLMjsXURSFfPnyyXERIYQQwor5ezE1x0UydZL2GjVq0Lx5cxYvXsyjR48oXbo027dv586dO4wdOzbd6y9YsCA6nc5ud1UhhBAirwoNDSVfvny4ubk5OhSHy+xcxMnJiUKFCkkuIoSDNHihApPHdmTSV5tthj1SLIeIFcu/1oeM7d6vYjl9LHF78/n8qpJwQF4xHeRXEzU0tcG2TaKYn7RRrZYkbpDC461u2MSR+LFWjS3bfbJLSbaRdL9TXpbkuVVtt2P9nCRZlwooCoqimtrYXBQUjZpoO4qpGqExLVGMKqomYZmioGpUMCooGtO6VVRURbGsMuFhGDWY/0lYagSNBtWQ8LJoTYtUntwNoFoeYqqKmNavmgov1icnGvWoGhUVjalXh6KConuyjxhR0aGix9yHhIQeJQCqajS918xPUqLX1/ysqIDO0ixhXxRT4BpFk2TCdhVQtM+j8VxFZjN/LxYtWjTTt5XdZXYuAqbnWXIRIYQQ4gnz96KHh0eKbTO1QAIwYcIEvLy82LFjBxEREVSsWJEZM2ZQp06ddK9bURRJBIQQQohEQkND8fDwePaJW3OZzMxFQA5KCOFozRtXp/nG6uw5dJHZC7fzONI0GbLV4eXU3zYXC5Sk95vbJL6dYhvFfht4Ukiwt56UHv/UOKyKH5aJ6El6214xJcn2zMusCx/WyxJitK73mHuSqNhZv9V2n8SiWIpWNvtiVEzbSSigWIokBvVJEUVNKI4oWOodqhEUTUJQippQO1AwKCqKRkVRVIwaFY0GDBrQYCrGaDUKGo0GrdGIVjGi1RiJ15j+6hQDThoFnUZBpyjoNBqcFA06jRYnxYDOqMFJ0eKkMeCk0eJkNOCk6NFpDDgp5ouCk5LwOMVoua1TjOhUDU6KER0GdBhwQoNWNZruQ0WbUFLRmXYFnWpepqBBQasoaFDRqQoaxYhG1aBFSSiUaNBom6Ep9v/t3XdYU+fbB/Bvwl6i4EAQFBAQN4LWaq3irFVx/KqtVVHrqtZWi/o6W+tsHdCqdZRiVbTD2gHauussTtyLYRFEVBQUAZlJzvsHJBKGggIn4/u5Li7CycnJHURy89zPcz/fVVtukJqaipo1a8LIyKhank/TVXUuYmtri0ePHlXKtYiIiHRBamoqjIyMUKNGjReeW+UFEhMTE0yaNAmTJk2qkuvXrl2bgxJERERFKAskVIC5CJF+6NapCbp1aiJ2GEQE5iLFMRchIiKqXhWZOFqle5BUB1tbWyYCRERERaSkpKB27dpih6E3bG1tkZKSInYYREREGiM1NZW5SDWysbFhLkJERFRERSZr6ESBhIkAERHRM5y1Wb04WYOIiEhdSkoKc5FqxHERIiIidQ8fPtSfAomjoyMSExMhk8nEDoWIiEh0ubm5SEpKgpOTk9ih6A0nJyckJycjKytL7FCIiIhEp1AokJCQAEdHR7FD0RtOTk7IzMxkkYSIiKhQfHx8ucdFtL5A4uHhgby8PMTHx4sdChERkej+++8/yOVyuLu7ix2K3nB3d4cgCIiJiRE7FCIiItHduXMHWVlZzEWqkYeHBwAgOjpa5EiIiIjEl5qaipSUlHLnIlpfIGncuDEkEgkTASIiIgAxMTEwMDCAi4uL2KHojYYNG8LY2JgFEiIiIjwbpGeBpPrUrVsX1tbWHBchIiICVH+b602BxNzcHI6OjkwEiIiIUDAo4ezsDBMTE7FD0RuGhoZo3LgxcxEiIiIU5CJ2dnawtrYWOxS9IZFI4O7uzskaREREKMhFrKysUL9+/XKdr/UFEqBgOWlsbKzYYRAREYkuJiaGMzZFwEEJIiKiArGxsaqWT1R9PDw8mIsQERGhYFzEw8MDEomkXOfrRIGkSZMmiI2NRU5OjtihEBERiSYrKwtxcXHw9PQUOxS94+npidu3byM9PV3sUIiIiESTn5+PqKgoFkhE0KRJE6SkpOD+/ftih0JERCQahUKB69evVygX0YkCyWuvvYa8vDycP39e7FCIiIhEc+bMGcjlcrRt21bsUPRO27ZtIQgCTp06JXYoREREorl06RKys7Px2muviR2K3mnTpg0MDAxw8uRJsUMhIiISTXR0NB49elShXEQnCiSOjo5wcHDAiRMnxA6FiIhINCdPnoSzszPs7e3FDkXv1K5dGx4eHhyUICIivXbixAnUqVMHjRs3FjsUvWNpaYlWrVpxXISIiPTayZMnYWlpiebNm5f7MTpRIJFIJOjQoQNOnjwJQRDEDoeIiKjayeVynDx5Eq+//rrYoeit119/HadPn4ZMJhM7FCIiomonCAJOnDiBDh06lLvnN1WuDh064MKFC8jOzhY7FCIiIlFERESgffv2MDQ0LPdjNL5AIggC8vPzX3hehw4d8PDhQ27WTkREeikqKgppaWno2LGj2KHonPLmIh07dkRmZiauXLlSDVERERFploSEBNy9excdOnQQOxSdU5Fxkby8PERGRlZDVERERJpFWRuo6MTR8pdSniMlJQW//fYbbty4gaioKGRnZ2PVqlXw8vIqce4nn3yCixcvljjerl07rFy5Uu3Y/v37sXr1amRnZ6N79+6YPn06jIyMSo2hZcuWsLCwQEREBNzd3SvjZREREWmNEydOwNraGk2bNhU7FFFoQi7i5uYGW1tbRERElPq8REREuuzEiRMwMTFBmzZtxA5FFJqQizRo0ABOTk6IiIhAp06dKuV1ERERaYsTJ07AwMAA7du3r9DjKqVAkpiYiJ9++gkNGjSAi4sLrl279tzz69SpgwkTJqgds7W1Vfv63r17CAwMxOjRo2FnZ4dNmzZhx44deP/990u9ppGREd544w3s378fI0eOhFSq8YtjiIiIKoVcLse+ffvQqVMnGBgYiB2OKDQhF5FKpejcuTMOHjyIDz/8sEJLeomIiLSZIAjYu3cvOnToABMTE7HDEYUm5CIA0LlzZ/zxxx+YMmUKzMzMXv4FERERaZm9e/eiTZs2sLKyqtDjKuUvdw8PD/z111+oUaMGjhw5gs8///y551taWqJnz57PPSc6Oho+Pj547733AAAGBgb4+++/n5sI9OvXD/v27cOFCxfg7e1d8RdCRESkhc6cOYMHDx6gX79+YociGk3KRf744w9ERESgc+fOFX8hREREWujq1auIj4/HJ598InYootGUXKRPnz7Ytm0bDh8+jLfffrviL4SIiEgL/ffff7h27RoWLlxY4cdWyjILc3Nz1KhRo0KPkclkyMrKKvP++vXr49KlSzh79ixu376NXbt2oUGDBs+9ZosWLdCwYUPs3LmzQrEQERFps127dsHNzQ1NmjQROxTRaEou4urqimbNmjEXISIivbJz507Y29vrbXstQHNyEXt7e7Rt25a5CBER6ZW//voLNjY2eOONNyr8WFH6UCUmJqJXr1546623MGDAAISEhEAmk6md4+HhgR49emDatGkYPnw4Hj58iOHDhz/3uhKJBH5+fjh27BgePXpUlS+BiIhIIzx8+BAnT55Ev379IJFIxA5Ha1RVLgIAfn5+OHv2LO7evVtV4RMREWmMjIwMHD58GH379mWr6wqo6lzk+vXruHnzZlWFT0REpDFycnKwb98+9O7d+6VaXVd7c2x7e3t4eXnBxcUFOTk5OHLkCEJDQ5GYmIgFCxaonTtlyhQMHjwYGRkZcHV1LdcL7NWrF7777jvs3bv3uctOiYiIdMHu3bthZGSEHj16iB2K1qjqXMTX1xdr1qzB33//jXHjxlXVyyAiItII+/btg1wuZzunCqjqXKRDhw6wsbHBrl278Omnn1bVyyAiItIIhw8fRmZm5ku3Ha/2AsmsWbPUvu7VqxdWrFiBXbt2YciQIWjWrJna/fb29hW6fo0aNeDr64s///wTgwcPhpGR0SvHTEREpIlyc3Oxc+dOdOvWDRYWFmKHozWqOhcxNTVFz549sWvXLgwfPpwbpBIRkc6SyWT4448/0KlTJ9jY2Igdjtao6lzE0NAQffr0we+//44xY8ZUuPUXERGRthAEAb///jt8fHwq/H6pVKH1r/n5+UhNTVX7kMvlL/XERb377rsAgMjIyFe+FgC8//77ePDgAfbs2VMp1yMiItJEf/31F1JTU/VqxaS25CLvvvsuMjIyEBYWVinXIyIi0kT//PMP7ty5g2HDhokdSrXRllzknXfegUKhwPbt2yvlekRERJooIiICMTExGDFixEtfo0IrSK5evYopU6aoHdu+fTvq16//0gEAQN26dQEU9C6tDM7OzvD19cXWrVvRu3dvriIhIiKdk5ubix9//BE9evSAo6Oj2OFUG23JRerXr4+3334bP/30EwYMGMBVJEREpHNkMhk2b96Mjh07wsPDQ+xwqo225CK1atXCwIED8fvvv2PIkCGwtraulOsSERFpCkEQsGnTJrRu3RpeXl4vfZ0KFUgaN26MoKAgtWOVsYxWuYlpzZo1X/laSqNGjcLIkSOxe/du9O/fv9KuS0REpAl27dqFx48fw9/fX+xQqpU25SIjRozAnj178Oeff+rVKh8iItIPBw4cQFJSUok9M3SdNuUi7733Hv7880/8+uuv3BeNiF6aXC5HdkYOTC1MYGhU7bs1EJXp33//RWxsLFavXv1K16nQT7WVlRV8fHxe+smePn0KIyMjGBsbq44JgoDQ0FAAQNu2bV/62sU1atQIXbt2Va0iKfqcRERE2iw3Nxfbtm3Tu9UjgHblInZ2dnj77bfx888/Y8CAATA3N6+0axMREYlJJpMhNDQUnTp1gru7u9jhVCttykWUq0h+++03DB48uFKLL0Sk++7F3cdE7//D0yfZascnfTMaAz95W6SoiAoIgoDNmzfDy8sLrVu3fqVrVVrZb8uWLQCA+Ph4AMC+fftw+fJlAMDIkSMBADExMViwYAG6d+8OBwcH5Obm4vjx47hy5Qr69etX6ctyR44ciZEjR+Kvv/7CoEGDKvXaREREYgkLC8OTJ0/0bvXIi2hiLjJixAjs3r0bv//++yv1RCUiItIke/fuRVJSEhYuXCh2KBpFE3ORoUOHIiwsDD///DMmTpxYqdcmIt1162oCxrecXviVRO2+dVM34d+wkwg8tKj6AyMqdPTo0UpZPQIAEkEQhEqICW+++WaZ9x07dgxAwZLR7777Djdu3MCjR48glUrRsGFD9O3bF35+fpBIJGVe42V99dVXOH78OH788UfOliAiIq2XkpKCESNGoFu3bpg+ffqLH6BHNDUX+fbbb7Fz505s3boV9erVq/TrExERVaeMjAwMGzYM3t7emD9/vtjhaBRNzUU2bdqErVu3YvPmzXBycqr06xOR7ukhHVx4SwJIJOo1EoUAQMD2lGDY2NQSITrSd9nZ2Rg5ciQaNmyIFStWvPL1Kq1AoqnS0tIwbNgwdOrUCbNmzRI7HCIioleycOFCnD17Fj/++CNq1KghdjhUDk+fPsXw4cPRrFkzLF68WOxwiIiIXklQUBD279+Pbdu2oXbt2mKHQ+WQm5uLUaNGwc7ODkFBQVVShCEi3XE76g7GNP0UgASQSgp/ZxT9vSFAEARAUOCAfIdIUZI+Cw4Oxq+//ootW7bAwcHhla8nrYSYNFrNmjUxYcIE7N69W7W0lYiISBudO3cOBw8exKRJk1gc0SIWFhaYPHkyjh07hpMnT4odDhER0Uu7ceMGwsPDMWbMGBZHtIiJiQmmTJmCc+fO4dChQ2KHQ0Qa7sfFO/CsOCIFJNKCVSTSwg+JtOA4WGyl6hcfH49ffvkFw4cPr5TiCKAHBRIA6Nu3Lzw9PREYGAiZTCZ2OERERBWWn5+Pr7/+Gi1atECvXr3EDocqqGvXrvDx8cGqVauQm5srdjhEREQVJpfL8fXXX8PV1RUDBw4UOxyqoPbt2+PNN9/EmjVrkJmZKXY4RKTB8vMVAFCwcqSwvZaksFgikUghURZKpAY4/CcngFH1EQQBX3/9NerVq4ehQ4dW2nX1okAilUoREBCAhIQE/Pbbb2KHQ0REVGHbt29HUlISAgICIJXqxdu3TpFIJJg6dSoePHiAbdu2iR0OERFRhe3atQtRUVH49NNPYWhoKHY49BI+/vhjZGdnY+PGjWKHQkQabNLasYWLQwqLI8VXkagKJVJ8OWSV2OGSHjl48CAuXLiAqVOnwsTEpNKuqzcjLB4eHhg4cCBCQkIQHx8vdjhERETl9t9//2HTpk1455134OrqKnY49JKcnJwwbNgwbNu2DTdu3BA7HCIionK7c+cO1q9fj759+6JFixZih0MvqV69ehg9ejT++OMPnD9/XuxwiEhD1a5tXXBDomyxVbhJu1TyrEhiIIXEQApIDUSNlfTHw4cPsWrVKvj6+uK1116r1GvrTYEEACZMmID69etj4cKFyMvLEzscIiKiF8rNzcWCBQvg5OSEsWPHih0OvSJ/f3+4ublh0aJFyMrKEjscIiKiF5LJZFi4cCFsbGwwefJkscOhVzR48GC0bt0aS5YsQXp6utjhEJGGkkilz7YYkaCwSFLKh4EUUZeixQyV9IBcLsfixYthYmKCgICASr++XhVITE1NMX/+fCQkJCA4OFjscIiIiF5o7dq1uHv3Lj7//PNKXUJK4jAyMsJnn32G1NRUrF69WuxwiIiIXuiHH35AbGwsPvvsM5ibm4sdDr0iAwMDzJ07Fzk5OVi+fDkEQRA7JCLSQF+f/BzKjdqLFkQkUqnqA1IpJBIJprRfLHa4pON++eUXXLx4EXPmzIG1tXWlX1+vCiQA0LhxY0yYMAG//vorTp8+LXY4REREZYqIiEBYWBg++ugjODs7ix0OVRJHR0dMmTIFu3fvxuHDh8UOh4iIqEwXLlzAjz/+iDFjxqBp06Zih0OVpG7dupgxYwaOHTuGv//+W+xwiEgDNfMp8jtfWRgptnpEIpEABgYFRRSiKhIVFYWQkBAMHToU3t7eVfIcelcgAYB33nkH7dq1w5dffonHjx+LHQ4REVEJKSkp+Oqrr9ChQwcMGDBA7HCokvXu3Ru+vr5YsWIFkpOTxQ6HiIiohPT0dCxevBitW7fG0KFDxQ6HKlmXLl3Qt29frF69Grdv3xY7HCLSQJKirbUAQKrcqF2q+pBIpYCBAcdXqUpkZWVh4cKFcHNzw5gxY6rsefSyQCKVSjF79mwoFAp88cUXkMlkYodERESkkpeXhy+++AIGBgaYNWtWwcwc0ikSiQTTp0+Hubk5PvvsM+Tm5oodEhERkYpcLseiRYuQk5ODuXPnwsCAm/Dqoo8//hh169bFZ599hqdPn4odDhFpmOlbxjxbKaIsjhT9KDwmkUoxtFHl7wtB+k0QBCxbtgypqan47LPPYGRkVGXPpZcFEgCwtbXFwoULcfnyZfYAJyIijSEIAoKCgnDjxg0sXrwYNWvWFDskqiJWVlZYsmQJbt26hWXLlrEHOBERaYz169cjMjISX3zxBerWrSt2OFRFzMzMsHjxYjx48ACLFi2CXC4XOyQi0iA93u367AtVUURSsGm7VKL+AU7qo8q1ZcsWHD58GHPnzoWjo2OVPpfOFkgEQUB+fv5zz2ndujWmTZuGsLAw/Pnnn9UUGRERUdl27NiB3bt3Y8aMGWjevLnY4dArKE8u4uHhgdmzZ+PgwYP48ccfqykyIiKisv3999/49ddfMXnyZLRt21bscOgVlCcXadSoEebPn49Tp07h+++/r6bIiEirSAuHj1Utt6SQFH5AIgWkBoCBFAqFQtQwSXccOXIEP/zwA8aOHYs333yzyp/PsMqf4TkuXryIX375BbGxsXjy5AksLS3RuHFjjBw5Ei1atChx/pUrV7BhwwbExMTAwsICvr6+GDduHMzNzdXO279/P1avXo3s7Gx0794d06dPL3MZTt++fREXF4fVq1fDycmpyjZ7ISIiepFTp05h3bp1GDp0KN566y2xw9ELmpCLdO3aFfHx8QgODkbDhg3RqVOnKnmtREREL3L58mUEBgbCz88PgwYNEjscvaAJuUj79u0xceJErF27Fs7OzujVq1eVvFYi0j69x72JPZtOQCJVFkYkzwolACSFi+AFGODtuh9ib0qweMGSToiJicGSJUvQrVs3jBgxolqeUyKI2M/hr7/+wokTJ9CkSRPY2NggIyMDBw4cQFxcHJYtW4bXXntNdW5sbCwmTpyIhg0bws/PDw8ePMD27dvh5eWFFStWqM67d+8eRo0ahdGjR8POzg6bNm1Cr1698P7775cZh0wmw8yZMxEVFYUNGzZU+bIdIiKi4uLj4zFx4kS0atUKS5YsYa/vaqIpuYhCocD8+fNx5swZrFu3Dq6urlX6uomIiIq7d+8eJkyYAGdnZwQGBsLQUNT5lHpDU3IRZa/3AwcOYPXq1WjWrFmVvm4i0h5v1RwDGEghkRqoFUdUnwUBEAQIcgX2prJAQi8vNTUV48ePh62tLdasWQMTE5NqeV5RCySlycnJwXvvvYfGjRtj5cqVquMzZszAzZs3sW3bNlhYWAAoSCSWL1+OlStXol27dgAKluAcOHAAS5YsAQAcP34cf//9N7766qvnPm9GRgY+/PBDKBQKfPvtt7C1ta2iV0hERKTu4cOHmDx5MkxNTbFu3TrV+xyJQ6xcJDs7G5MnT0ZaWhrWrl0LOzu7KnqFRERE6tLS0vDJJ58gLy8P3333HaytrcUOSa+JlYvk5eUhICAAt2/fxrfffgsnJ6cqeoVEpE3eqjUGMDAsXEUiKb1AAkBQKLD3wQaRoiRt9/TpU0ydOhWpqakIDg5G7dq1q+25NW4PElNTU1hbWyMzM1N17OnTp4iMjETPnj3VBo169eoFMzMzHD58WHWsfv36uHTpEs6ePYvbt29j165daNCgwQuf18rKCitWrEBubi6mTZuG9PT0yn1hREREpUhLS0NAQADkcjmWL1/O4ogGECsXMTMzw7Jly2BkZIRPP/0UqamplfvCiIiISpGZmYkZM2bgyZMnWLFiBYsjGkCsXMTY2BhLlixBrVq18Omnn+L+/fuV+8KISCs1aFK/4IakSIFEKn32ufBDIpWiv8tH4gZLWiknJwczZ85EUlISli9fXq3FEUBDCiRPnz5FWloaEhISEBwcjFu3bqntBRIXFwe5XA4PDw+1xxkZGcHNzQ2xsbGqYx4eHujRowemTZuG4cOH4+HDhxg+fHi54rC3t0dQUBBSU1MxY8YMZGVlVc4LJCIiKkVmZiamTZuGjIwMfP3116hXr57YIektTclFateujaCgIOTm5iIgIIATNoiIqErl5ORg1qxZSEpKQlBQENtNi0hTchFra2sEBgbC2NgYn376KVJSUirnBRKR1go5ubigtRagXiQp/iGVIu8pN2qnisnLy8O8efMQGxuLFStWoHHjxtUeg0Y0FVX23AYK3tz9/Pzg7++vul85g7K0tle2tra4dOmS2rEpU6Zg8ODByMjIgKura4V6pzZq1AgrV67E1KlTMXv2bCxfvrza+p0REZH+yM7OxsyZM3Hv3j2sWbOGAxIi06RcRDlh4+OPP8b06dPxzTfflNh4lYiI6FXl5eVh7ty5iI2NRVBQEPe/Epkm5SLKCRuTJ0/GtGnTsHr1aq4sIqKSBZGix5Q7OHAvTaoAmUyGRYsW4eLFi1i2bJlo+19pxAqSCRMmIDAwEDNnzkTTpk0hk8kgl8tV9+fm5gIoSBKKMzY2Rl5eXonj9vb28PDweKmN5Tw8PLB8+XLcuHEDn3/+OfLz8yt8DSIiorIoZ0jcvHkTK1eu5ICEBtC0XKRRo0YIDAzEnTt3MGvWLNXzExERVQaZTIaFCxfi0qVLWLp0KTfk1gCalovUr18fQUFBePToEWbMmIGnT59W+BpEpDukJoWFjxesIIFUioBBK59/MSIACoUCy5cvx7///osFCxaorZqsbtVSIMnPz0dqaqraR9E3ejc3N7Rt2xZ9+vRBUFAQbty4gS+//FJ1v3IFR2mFiry8PBgbG1d6zC1atMCSJUsQGRmJzz//nAMTRERUKXJycjBv3jxcunQJX375JZo2bSp2SHpBG3MRd3d3LFu2DFFRUZg1axZbfxIRUaXIz8/HokWLEBERIfqAhD7RxlykYcOGqgkb06dPR0ZGRqU/BxFph9131pXcnF0qKWi9JZU8+5BIcON0gmhxknZQ7sG6b98+zJ07Fx07dhQ1nmopkFy9ehUDBw5U+3jw4EGp5xoZGaFjx444duyYqiihXEJa2malqampVbZxS9u2bbFkyRKcPXsWM2fO5MAEERG9kqdPn2LGjBm4ePEili5dijZt2ogdkt7Q1lykRYsWqlWt06ZN454kRET0SnJycjBnzhzVbE2xByT0ibbmIu7u7ggMDERiYiI++eQTPHr0qEqeh4i0hFpxpLRN2wtvE5UhLy8PCxYswL59+zBnzhx0795d7JCqZw+Sxo0bIygoSO2YjY1Nmefn5uZCEARkZWXBxMQEzs7OMDAwQHR0NLp27ao6Lz8/H7GxsfD19a2y2Nu3b4+VK1di1qxZCAgIwPLly1GjRo0qez4iItJNaWlpmD59Ou7evYvAwEC0aNFC7JD0ijbnIq1bt8Y333yDGTNm4JNPPkFgYGCp/ceJiIieJzMzE7NmzUJsbCyWLVsGHx8fsUPSK9qci3h6emLNmjUICAjA5MmTERQUBDs7uyp7PiLSUMrCR9HiCIrsRwKhYEWJRIFf1u3Ge5PeFilQ0lTZ2dmYN28eLl68iIULF6JTp05ihwSgmlaQWFlZwcfHR+3DxMQEjx8/LnFuRkYGjh49irp166JWrVoAAEtLS/j4+GD//v1qqzj27duH7OzsKk0EgIKBiVWrViEpKQkff/wxUlJSqvT5iIhItzx48ACTJ0/Gw4cPsXr1ahZHRKDtuUiTJk2wZs0apKenY/Lkybh//36VPh8REemWx48fY8qUKYiLi0NQUBCLIyLQ9lzE2dkZa9euhVwux+TJk3H79u0qfT4i0jy/xy4rtjm7VL29lkHh1xIptiw/IG6wpHEyMjIwbdo0XL16FcuXL9eY4ggASARBEMR68rFjx6JOnTpo2rQpatWqheTkZOzevRupqan44osv0KVLF9W50dHR+Oijj9CwYUP4+fnhwYMH2L59O1q1aoXAwMBqiTc+Ph7Tpk2DsbExgoKCUL9+/Wp5XiIi0l537txBQEAABEFAUFAQHB0dxQ6JitC2XOTu3bsICAhAfn4+goKC0LBhw2p5XiIi0l7JycmYNm0aMjMzERgYCFdXV7FDoiK0LRdJSUlBQEAA0tLSsHLlSri7u1fL8xKRZujtOKWgEKIsjhTfl0Q5zCxXYM+t6vm9RJrv8ePHmD59Ou7du4eVK1dq3F6sohZI/vjjDxw6dAgJCQnIzMyElZUVmjZtiqFDh6JVq1Ylzr98+TI2bNiAmJgYmJubw9fXFxMmTIC5uXm1xXzv3j0EBAQgOzsbS5cu1bh/UCIi0hyXL1/GvHnzUKNGDQQGBqJevXpih0TFaGMukpKSgmnTpiE1NRULFy7kXjZERFSm6OhozJkzBwYGBggKCkKDBg3EDomK0cZc5MmTJ5gxYwZu376N+fPn4/XXX6+25yYicfV2mlq4UkRapM0WirTZQkGRRBCweMsH8O7oKUqcpDni4+MxbcYMPMrMwMa16+Di4iJ2SCWIWiDRVo8fP8bcuXMRExODWbNmacRmMkREpFn27NmjmhmxaNEi1KxZU+yQSIdkZGRg/vz5uHDhAgICAtCvXz+xQyIiIg1z5MgRLFmyBM7Ozli6dGmVbeJN+ikrKwuLFi3CiRMnMGnSJAwZMgSSogOkRKST4m4k4KO3VxeuIilWIJEAEKAqkEAQsOfmCjHDJZFt2xWODd+sgsLcDL8Hh2hsNyYWSF5SXl4eVqxYgX379sHf3x8ffPABpNJq2dKFiIg0mEKhQHBwMH766Sf06dMHAQEBMDIyEjss0kEymQyrV69GWFgYBg8ejIkTJ8LQ0FDssIiISGSCICA0NBQbN25E165dMXv2bJiYmIgdFukg5r1E+qm387Riq0igvoIEKCiQyBXYE7tclBhJXFvOncXKLZtQ8+JVwL4e9v2wpVpXOlYU/4p+ScbGxpgzZw4aNWqE4OBgJCQkYM6cOTAzMxM7NCIiEklWVhYWL16MiIgITJ48GYMHD+ZMOqoyhoaGCAgIQKNGjbBmzRpVmwtLS0uxQyMiIpHk5uZi2bJlOHjwID744AOMHDmSuQhVGalUig8//BANGzbEihUrcOfOHa6cJtIHaitHAKHo10VPM5DiZkwiGrtzH059MT7sdxxIiEOtC5dRKy4BQ4cOxfjx42FgYCB2aM/FFSSV4Pjx41i8eDEcHR2xZMkS9pgnItJD9+/fx5w5c3D37l32YqZqd/bsWcyfPx+2trb46quv4ODgIHZIRERUzVJSUjBv3jzcvHkTc+bMQdeuXcUOifTI5cuXMXfuXFhYWODLL7+Es7Oz2CERURU5GH4SgdP/BAykz4ojypUkSspWW3IF9kZ/JVaoVE281q1Gmiwf0tw82J46C5OUVMz6v/9Dnz59xA6tXNgTqhJ06tQJa9euRVpaGsaOHYtTp06JHRIREVWjiIgIjBkzBpmZmVi3bh2LI1Tt2rZti/Xr10Mmk2Hs2LE4cuSI2CEREVE1OnfuHMaOHYvk5GSsWbOGxRGqdi1btkRwcDBMTEwwYcIE7N27V+yQiKiKdO9f5O9diQSQSgpGmCVFPqQoPM5VjLoqMzMTLquC4PJNINLy82Gc8gj1Dh6G0ZN0rFm1SmuKIwBXkFSqtLQ0LF26FKdOncKwYcMwZswY9gInItJhMpkM3333HbZv346OHTti9uzZqFGjhthhkR7LzMzEihUrcPjwYQwaNAiTJk2CsbGx2GEREVEVkcvl2LJlC7Zs2QJvb2/MmzcPNjY2YodFeiw7OxvffPMN9uzZg7fffhtTp06Fqamp2GERUSXr7T4TgnIfEilKbbEFAFAo8OXGkfB6zaNa46Oqs+PyJcz855/CYpgAQIBlzE1YX72BPJta2LnhO63rrsQCSSVTKBT45Zdf8P3336Np06aYP38+6tatK3ZYRERUye7fv48FCxYgKioKEydO5H4jpDEEQUBYWBi+/fZbuLi44IsvvmDLLSIiHZSSkoJFixbh0qVLGD16NIYPH67xPb5Jf+zZswdBQUGwt7fHggUL0KhRI7FDIqJKtGPjAWxceahws3blfiQSCIWfAQCCAIkgAHIBe68tEStUqiRvrF+Pu9nZRVYKCZDm5qFW5HmY3U/W6sUCLJBUkStXruCLL75AXl4e5s6di/bt24sdEhERVZKIiAgsXboUFhYW+OKLL9C0aVOxQyIqITo6Gl988QXS0tIwc+ZMdOnSReyQiIiokpw7dw6LFi0CAMyfPx9eXl4iR0RU0q1btzB//nzcv38fAQEBeOutt8QOiYgq0VueswFDaUFhRG3j9mcFEgCAQoF9lxeLEyS9ktuPHsF30+bCwleRDwDGj1Jhc/osJHIFVi5apNWtxlkgqUJFW2699957GDNmDExMTMQOi4iIXlJubi6+++47/Pbbb2ypRVqhaMutAQMGYOLEiTAzMxM7LCIiekn5+fnYvHkztm3bxpZapBWKttzq1asXpkyZAktLS7HDIqJK8FbTOYCBBIJU+mwvEqDkZu0KAV38PDF74VAxwqSX8O7WHxGZnFzwhQQQihRGIChgFRuLGtejkGdTC7u+C9b67kkskLwChUIBhULx3KVDCoUC27dvR0hICBwcHDBnzhw0adKkGqMkIqLKcO3aNSxduhTJyckYP348W2qRRihPLiIIAsLDw7F27VrUrl0bs2fPRsuWLasxSiIiqgyxsbFYunQp4uPjMXr0aAwbNowttUh05clFgIKWW6tWrYKFhQVmzpyJdu3aVVOERFRV/tkZiRXzwgpWjxhInw2gF/87WRAAmQL7Li2q9hip/OJTUtBtU+izA4VFEUHy7GvDjAzYnDsPo8eP4T9iBEaPHq2VLbWK07sCyfLly/HXX3/h9ddfx7Jly9TuGzJkCO7fv1/iMX5+fpg+fbrasZ9++glbtmyBQqHAoEGDMHHixOc+b1xcHJYuXYr//vsPw4YNw8iRI2FkZPTqL4iIiKpUXl4efvjhB/zyyy9wd3fHnDlz2EOZXolYuUhiYiK+/PJLXLt2DYMHD8a4ceO4spWISAvIZDL8+OOP2Lx5Mxo1aoQ5c+bAzc1N7LBIi4mViyQnJ2PZsmWIjIyEn58fJk2aBHNz81d/QUQkmrdazIVgYAAYSEruQaIkCIAgYP+5BWKESC/QYfV6PCjcW0RtpYiyQAIAEGB58yasr9+AzNwcIStWoFmzZmKFXOm0v8RTAVFRUdizZw+MjY3LPMfNzQ3vvvuu2rEGDRqofX3lyhVs27YNH330EUxNTREcHAwPDw907dq1zOu6uLhgw4YN2LZtG7Zs2YITJ05gzpw5aNy48au9KCIiqjLR0dFYunQpEhMTMWbMGAwdOlQnZkeQeMTMRRwdHbFmzRrs2LEDISEhOHXqFObMmcM9dIiINNitW7ewdOlS3Lx5E++//z5GjRrFiXb0SsTMRerVq4fAwECEh4dj/fr1OHPmDGbPns09dIi0mUSiGlBXFUeKttpSbl6hENCz7QLsPztflDBJ3Yp/juK7s+cLvii+UkR5rJBhZiZqnT8P40eP8O6QITo50U5vRnkEQcCqVavQq1cvnD9/vszzateujZ49ez73WlevXkXv3r3h5+cHAHjy5AkuX7783EQAAAwNDTFq1Ch06NABS5cuxbhx4zBq1CgMGzaMA25ERBokPz8fW7duxdatW+Hi4oLvv/8erq6uYodFWk4TchEDAwO89957aN++PZYuXYpJkyZh6NChGD169HMHSoiIqHrJZDJs374dP/zwA+zt7bFu3Tp4enqKHRZpOU3IRSQSCQYMGIB27drhyy+/xJQpU/C///0P48eP5z5pRFpo26GpGNZz9bNN2qWSZ6sOlMUTQQAMJJDIFCJHq98uJd7BO9t2ACj895EW3iER1FeNKAkCLOLiUOP6dShMTPDtmjVo1apV9QVcjaQvPkU37Nu3D7du3cK4ceNeeG5+fj6ys7PLvN/e3h4RERG4du0abt68iQMHDpSYTfE87u7uCA4Oxvvvv4/NmzdjzJgxuHDhQrkfT0REVScyMhKjR4/G1q1bMWLECHz33XcsjlCl0KRcpFGjRli3bh3GjBmD7du3Y+TIkTh9+nS5H09ERFXn8uXLGDduHIKDg/HOO+8gJCSExRGqFJqUi9jb22PVqlWYPHkydu3aBX9/fxw7dgx61gWeSOvVrl1b2YMJkEogSFBQLFFu3F7ktmAoxeGD10SNV988ysiA+9Kv4bbka7yztbA4IkGR4kjpjzN6/Bh1jh1DzStX0NzDAwf/+ENniyOAnqwgycrKwoYNGzB8+HDY2to+99zz58+jZ8+ekMvlsLOzw+DBgzF48GC1czp16oT9+/er+mt6eXmhX79+FYrJ2NgY48aNQ5cuXRAUFIQpU6age/fumDRpUsEvFyIiqlYPHjzA2rVrcfjwYbRs2RILFixgYYQqjSbmIoaGhhgxYgQ6deqEr7/+GjNmzECnTp0wefJk1K9fv2IvkIiIXtmjR4+wYcMG7N27F02aNMGGDRtYGKFKo4m5iFQqxZAhQ9CxY0esWrUK8+bNQ7t27TBlyhQ4OjpW7AUSkXgMpM/2HVEWRYquIgEAoWChwtJ5v8O3u+7sXaGJsnNy4B24HjIB6vuKFN1fpAySvDzUuHEdFgnxkFnVwBodXjVSlF4USDZv3gwTExMMGTLkuee5uLigZcuWcHR0RHp6Ovbs2YM1a9YgJSVFbbMxqVSKJUuWID4+HnK5HC4uLpAU34ConNzc3LB27Vrs27cP69evx7Bhw/DBBx/gf//7H9tuERFVg/z8fOzYsQNbtmyBmZkZ5s2bhx49erz073Wi0mhyLtKoUSN88803OHToENauXQt/f3+MGDEC7733HttuERFVA5lMhvDwcGzcuBFSqRQzZsxAnz59IJXqTcMHqgaanIs4ODhg2bJliIiIwOrVqzFq1Ci89957GDFiBExNTV/qmkRUffZFfoGebRcUDsQXFkeU7bVUvxYkEAQJIBGQl5fHvzMqWXZuLnyWr0O+8kDxgsiLfj0LAsxvJ6DGjeuQCAp88vHHGDhwoN6MTUsEHV+/mJiYiJEjR+Lzzz9Hly5dAABDhgyBs7Mzli1b9tzHCoKAGTNm4Ny5c9i+fTvq1q1bpbFmZGRg48aNCAsLQ8OGDTF16lRuVkZEVIXOnTuHr7/+GklJSRg0aBBGjx4NS0tLscMiHaNNuUhWVha2bNmCX3/9FXZ2dpg6dSpee+21Kn1OIiJ9duXKFQQFBSEuLg79+vXDuHHjYG1tLXZYpGO0KRfJzc3Fjz/+iJ9++gm1atXCxx9/jE6dOnHyEpGG69n2CwiGBgWttKQSQFpsBYmSIEAiF3AwYp4YYeqUe0+eoMvqH1QtzoRSCiJC8QKJamXPs6+N0h7D+uolGKc9hpWzC0KDAl+40lDX6MyUlPz8fKSmpqp9yOVyrF69Gs2bN1clARUhkUgwZMgQyOVyXLx4sdJjLs7KygpTp05FcHAwzM3NMWXKFCxcuBApKSlV/txERPrkwYMHmD9/Pj799FPUrFkTISEh+Pjjj1kcoVeiC7mIubk5Jk6ciE2bNqFu3bqYMWMG5s6di3v37lX5cxMR6ZNHjx5h6dKl+Oijj2BkZIQNGzZg+vTpLI7QK9GFXMTExAQffPABtmzZAmdnZ8ybNw8zZsxAYmJilT83Eb28cf/3FoBng/Rqm7RLoNq8HVIJBAMJ0tPTRYtVmx24FgWPBV/DY8HX6PJNYXFEUqQQUtQLVo9I8vJgffkiav97BBK5HGvWrMHfWzbrXXEE0KEWW1evXsWUKVPUjs2cOROnT5/G4sWL1f6wl8vlyM3Nxb1791CjRg1YWFiUeV3l7Ijq/I/r7u7OtltERFWA7bSoKulSLsK2W0REVYPttKgq6VIuwrZbRNpl8OD2CA7cX7CCpLRWW0CRfUqAAf2+xaGjc8QKV6tMCP0dR/+7DaDYfiKAevGjlGMSAIJQ7DxBgHliAqyirullO63S6EyLrYyMDERHR6sdS0pKQmBg4HMfN3ny5Of24Dxx4gRmzZqFzz//HN27d6+UWCsiIyMDISEhCA8Ph5OTE8aPH4+OHTtyMI+IqAIEQcDx48cRHByMpKQkDBw4EB988AFXjFCl0tVcJCsrC5s3b8aOHTtgZ2eHcePGoUuXLhzMIyKqAEEQcPr0aQQHB+O///5D3759MX78eK4YoUqlq7lI8bZbY8aMQY8ePWBgYFDtsRBR2fy6LUZWLiAYSIvtQyJRb/8kAFAI8O3cCJ/PHypewBrqTuoj9Fy1BQrlgSJFkeLtsZTKOl78McapD2EVfQ3GTx7DqmEjhH7ztV6uGClOZwokpUlOTkZMTEyJ4ytWrICdnR1GjBgBFxcXODg4ID09HRYWFmpvsDKZDFOmTEFUVBR+/fVXUX9gYmJisHbtWly4cAGenp4YO3YsfHx8WCghInoO5WDExo0bER0dDW9vb0yePBmurq5ih0Z6Qpdykfj4eKxduxanT59G48aNMWbMGHTo0IG5CBHRC5w/fx4hISG4evUqWrRogcmTJ8PT01PssEhP6FIukpSUhHXr1uH48eNwcnLCmDFj0LlzZ07aINIg3d9YXFAgkRYURQTpsxUkgtrfDQV7kRz+Z7YocWoShUKB0cHbcebO/YIDkvLvJ6IkFPu6+J4jRo9TYRV7AyaPHiKvRk18t2QRWrVqVemvRVvpdIGkLKVtRrZnzx6Ehoaic+fOqF+/PjIyMnDgwAHcunUL48ePx/Dhw0WMuIAgCDh//jy+//57XL9+Ha1atcLYsWP5A01EVIoLFy4gJCQEV65cQYsWLTB27Fh4eXmJHRYRAO3NRQDg8uXLCAkJwcWLF9G0aVOMHTsW3t7eLJQQERVz9epVbNy4EefOnUOTJk0wduxYtG3blr8vSSNocy4SFRWFjRs34vTp03Bzc8OYMWPw+uuv8/8WkQbo/uaSwsJIYZFEWrzNlmpP8YIN2xXAkQOzRIpWPOv2/otvj50FULJtVmnFkRKrR4rdFoofK/xsmJ4Gy9jrME1JRr5lDSyfPRNvvPEGf18WwwJJoejoaGzatAmxsbFIS0uDoaEh3Nzc8L///Q++vr4iRluSIAg4deoUQkJCEBsbi3bt2mHMmDGchUREBODatWsICQnBuXPn4OHhgbFjx6Jdu3ZMAEij6EIucu7cOYSEhOD69eto3bo1xo4di5YtW4odGhGR6GJiYrBx40acPHkSzs7OGDt2LAcjSONoey4CAJcuXUJISAguXbqEZs2aYezYsWjTpg3/rxGJrNubSyAYSCEYSFQrSUps3K5UuEHG0T3/J0qs1WXjoZMIOnBKvZBRRkGk1HZZLyiQAOr3G2amw/LmDZg+uAuZuSUWzZgGX19frrgrg14WSHSFQqHAsWPHsHHjRiQkJOCNN97AyJEj4eHhIXZoRETV7vr169iyZQsHI4iqkSAIOHnyJEJCQnDz5k20a9cOI0eORIsWLcQOjYio2sXGxiI0NBRHjx6Fo6MjPvjgAw5GEFUx5aSN77//Hjdu3ICXlxdGjhwJLy8v/h1AJJI+Pb9Edr4AwVCqWj0iSJ9t0C4o3xYlEgBCwci+BDi2SzeKJAqFAlM3h+Gf6IRnByXFWmQ9p23WcwskRY8Vuy0AMMhMh+WtaJjevwO5qTk++3QKevToodcbsJcHCyQ6QC6X4+DBg9i8eTOSkpLw2muvwd/fn4MTRKQXLl68iNDQUERGRsLJyQmjRo2Cr68vN20kqkYKhQJHjx7Fpk2bEB8fDy8vL/j7+3MWJxHphevXryM0NBQnTpxA/fr14e/vj169enEwgqgaCYKAEydO4IcffkBsbCyaN28Of39/vPbaa8xFiETQtctSCEZSCKoVJJJnxRHlpu1AkY3bC6okx3fOECXeV3E+9jY+CP4dssJCj6rA8YJCSFmrQsq74XrR44YZabCIi4bJg7tQmJhh+qQP0bdvXxgZGVXGS9R5LJDoELlcjsOHD2Pr1q24desWByeISGcJgoCzZ88iNDQUly9fhqurK/z9/fHmm2+yMEIkIoVCgX///RehoaGIiYlBs2bN4O/vj/bt2zMXISKdIggCLl26pDZJw9/fH127dmVhhEhEypbkoaGhuHbtGtzd3eHv74833niDq7mIqtHxY9fw+cKdBa22pKUUR9RWVKiqJIAC+HH1SDRsWFecwF/g6q0kjNmwA1n5hcPpxQoipa0SqWjbrOe20iq2ksToySNY3IqCSUoyZGYWmPPxR+jVqxcLIxXEAokOUigUiIiIQGhoKKKjozk4QUQ6Q6FQ4MSJEwgNDUVUVBQ8PT3h7++PDh068PcbkQYRBAGnT59GaGgorl69Cjc3N/j7+6NTp04cnCAirVZ8kkbjxo1VkzT4+41IcwiCgAsXLiA0NBTnz5+Hs7Mzhg8fDl9fXxYxiaqJb/evIBgUbtguAQSDYsUR5aoSoORKCwHYtmIQXFxcRIk9KysX0zaHISLmbsGB4i2uXmX/kOe1zSpHKy1AgGFaCixuRcPk8UMYWdfCzI8/4iSNV8ACiQ4TBAFnzpxBaGgorly5gsaNG2PQoEHo3r07TE1NxQ6PiKjcsrKy8M8//+D3339HXFwcWrduDX9/f3h7e7MwQqTBBEFQtcE7d+4cGjZsiP/973/o2bMnzM3NxQ6PiKjccnNzcejQIfzxxx+Ijo5G06ZN4e/vj9dff525CJGGu3LlCrZu3YpTp07BwcEBgwYNwltvvQUrKyuxQyPSeV16fAXBsHCzdmW7LSme7U2iVmiQFLkNQCJAQMF5Af5vYkjvtpUaW25uLpbtOIQ/TkdBbXBcUkrho5RiRfG2WaW20VI+vrTjpd1X9Fjx4wo5TB7ehdmdOBinP4K9oxM+HDeWkzQqAQskekC5/Punn37C6dOnYWFhgV69eqF///5o1KiR2OEREZXp1q1bCAsLw/79+5GdnY327dtj6NChaNWqldihEVEFXbt2DT/99BMiIiJgYmKCnj17YsCAAXB1dRU7NCKiMiUmJiI8PBx79uxBRkYG2rVrh6FDh7KNMZEWio6Oxs8//4yjR4/C0NAQ3bp1Q//+/eHp6Sl2aEQ66/HjxxjwXjBgWFggkT4rhhRfTaIsnhQtGqi1r1LeRrFzC++XSAoKLyUeW8rXz4owz9kzpHjhQ6k8q0ee89yl3lf8/iLPK81+CrO7t2B2PwHS/Dx4eXnhvffeY6egSsQCiZ65e/cudu3ahb///htpaWnw8vKCn58f3nzzTfanIyKNkJeXh2PHjiEsLAyXL1+GjY0N+vTpAz8/P9SrV0/s8IjoFT148AB//fUXdu3ahdTUVDRr1gwDBgxAly5dYGJiInZ4RESQyWT4999/ER4ejnPnzsHa2hpvv/02/Pz84ODgIHZ4RPSKUlNTsXv3buzcuRPJycnw8PBA//792W2DqIqsWf83ftt5FYJh0VUkRQskRfcoKWVVSdGCSfFVHaUWNCSlFzvKKn48byVI0QIGUHbRQ/nYUo6Vp21WiSKMIMD40X2Y3rsF08cPYGFhgbfeegv9+/dHw4YNQZWLBRI9lZeXh+PHjyMsLAyXLl1SDUD269cPdnZ2YodHRHro7t272LlzJ3bv3q0q4Pbv3x+dOnViAZdIB8lkMkRERCA8PByRkZGwtrZG79694efnhwYNGogdHhHpoQcPHmDXrl3466+/kJqaiubNm2PAgAHo3LkzC7hEOkgul+P06dMICwtjtw2iKuY/YT3ikzJUq0iUBZLiq0fUVnYUa8NVtChS+sboklI3SX9eQaREQaOslScock7x46+4UgQSFNwpASR5OXDPfQzDe7eQnJyMJk2aoH///ujWrRsLuFWIBRIdolAooFAoKrwhz61btxAeHo59+/apWtj0798f7dq1g4GBQRVFS0RU8EfJqVOnEBYWhjNnznBWBJEOeJl8pHgLm7Zt26J///7o0KEDNxokoiqlUCgQGRmJsLAwnDhxAiYmJqoBUrYAJNJOL5OLsNsGUdX7MCAE12IfQTAo6IelarclLVkgEZSto4oWRZ5b9JCUOF68uFJmmy3guUWTUgskLzq3vCtFJICNqTG+6t4GB/btxbFjx1QtAAcMGIAmTZqAqh4LJCKJjIzE1q1bERMTA4VCAUdHRwwdOhTdunVTO+/ff//Fpk2bkJCQgJo1a+Ltt9+Gv79/iTf6n376CVu2bIFCocCgQYMwceLECsek3AQ5LCwMsbGxsLOzg5+fH/r06YNatWq90uslIioqNTUVf//9N3bt2sVZEUQi0rR8RLkJcnh4OK5fv446deqgb9++6Nu3L+rUqfPKr5eISCktLQ179uzBzp07kZSUBFdXVwwYMAA9evSAubm52OER6Q1Ny0XKavfLbhtElePAoctY+M0+CAaF+4UUWU1SokBSVkutUltuvXj1SKUUSMq6r6wiSCkFEUtjA+z81B/mhgbYu3cvwsPDcfv2bTg5OaF///546623YGVlVfKbR1WGBRIR7N69G8uWLYOPjw86duwIAwMD3L59G7Vr18bQoUNV5506dQozZ85E69at0b17d8TFxeHPP/9Ev379MG3aNNV5V65cwcyZM/Hhhx/C1NQUwcHBmDRpErp27fpS8QmCgBs3biAsLAyHDh2CQqFA586d0b9/f7Rq1YobABHRSxEEARcuXEB4eDhnRRBpAE3PR2JiYhAeHo4DBw4gPz8fHTt2RP/+/eHt7Q2pVPrKr5+I9I8gCLh69SrCwsJw5MgRAICvry/69++P5s2b8+8comqm6blIXFwcdu7ciX379iErKwvt27fHgAED2G2DqBK80X8FBAMUriQpLG4YlFEgKVbQKO/qkdKOlSiQoIzHoJTHFVWOgojyuRxqWuK3KcNQw6JgAsaNGzcQHh6Of/75BzKZDG+++SYGDBiA1q1bMxcRCQsk1ezevXvw9/dH3759MWXKlOeeq5wNERwcrJoV8f3332Pbtm0IDQ1VtZ/5+eefkZKSgo8//hgAsGPHDiQlJWHq1KmvHG96erqqmpmYmIhGjRqhd+/e6NKlC+rXr//K1yci3Xf37l0cPnwYe/bs4awIIg2hTflIZmYm9u/fj/DwcNy6dQsNGjRQ5SKOjo6vdG0i0g/Jyck4cuQI9uzZg7i4ODg4OMDPzw+9e/dGzZo1xQ6PSC9pUy5SWreN3r17w9fXl3uVEL2C8dM34dp/qQWFEmmRllsSQJBKSt9rpLRVJcDzV5AUvQZQZsHkeStDSrTGKnq/oH6tD319MLlPJ7XTUlJScPToUezduxfR0dGoV68e+vXrhz59+sDW1vaF3yuqWmzqXM3Cw8OhUCgwZswYAAVvtGZmZiUqhPHx8YiPj8enn36qtmR04MCB2Lp1K44cOYKRI0cCAOzt7REeHo6uXbvCxMQEBw4cQM+ePSsl3ho1amDIkCEYPHgwzp8/j/DwcGzcuBHr169HkyZN4Ovry2IJEZWgLIocOXIE0dHRMDExQceOHTFt2jTOiiDSANqUj1haWmLQoEEYOHAgLl++jPDwcGzduhXff/893Nzc0KVLFxZLiKgEZVHkyJEjuHbtGoyMjNC+fXtMmjQJPj4+XIlGJDJtykXMzc3Rr18/9O3bVzXze/v27di0aROcnZ3RpUsXFkuIXkLwytEAgDcGB0KhKChJSApXk0gEAQIkkJSyekMiPCtYKOsTxW+rNj0v5Vh5PktQ+BzK6wjPLqF6MgDtXR2wbtzAUvcqUhZFDh8+jCtXrkAqlaJdu3b48ssv0b59e65E0yAskFSzc+fOwcnJCadOncL69evx8OFDWFlZYeDAgfjggw9UiXpMTAwAwMPDQ+3xtWvXRp06dRAbG6s61qlTJ+zfv1/VW9PLywv9+vWr1LglEgm8vb3h7e2NrKwsnDhxAocPH2axhIhUSiuKtG/fHkOHDkX79u3Zz5tIg2hjPiKRSNCqVSu0atUKOTk5OHXqFA4fPsxiCRGplFYUadeuHebNm4eOHTvCwsJC7BCJqJC25iJNmzZF06ZNERAQgDNnzuDIkSMslhC9on93FLTKW731AH7eebngoBR4VrEoRnlIrTJSrCJS9JxihY7ihQ9BrYpS5GmKrQyZ3Ksdxr/V8bmvpbSiiI+PD2bOnIk33ngDNWrUeOH3g6ofW2xVs969e0MqlSI3NxdDhw6Fq6srjh07hoMHD2LYsGGYMGECgIKloevXr8eOHTtQr149tWuMHz8eBgYGWL9+vdrx+Ph4yOVyuLi4VNvs7KLFktOnTyMvL4/FEiI9UlZRxNfXl0URIg2mS/lI0WLJyZMnkZOTw2IJkR4pqyji6+vLogiRBtOlXCQ3N1dVLImIiEBWVhaLJUSvKPjXI/gh7FxBcULVektS6kbtJVptFTkOFDu3UKn7jEgAcyMpZvyvCwZ1bFXuWMsqivj6+rIooiW4gqSaZWdnQ6FQYMKECRg2bBgAoEuXLsjIyMBvv/2GESNGwNzcHHl5eQAAY2PjEtcwNjZGVlZWieNivOmam5uje/fu6N69O1eWEOkJrhQh0n66lI+YmpqqiiFlrSxR5iINGjSo1tiIqGpwpQiR9tOlXMTExASdOnVCp06d1IolRVeWKHMRFkuIymf8kC4YP6SL2rHlm/fjt8NXAaFgwYhEUmThiLJIIgjP2nIJElUBRFkrdbCxwMcDOqFnW89Xio8rRXQLCyRVJD8/H+np6WrHatasCRMTE2RnZ6N79+5q93Xr1g2nT59GTEwMWrdurXrzVyYDReXl5cHExKTqgn9JLJYQ6S4WRYi0k77lI2UVS0JDQxEcHMxiCZEWY1GESDvpWy5SVrHkl19+wQ8//MBiCdEr+L9RPfF/oypnz+WXwaKI7mKBpIpcvXoVU6ZMUTu2fft22Nra4s6dO6hVq5bafcqvMzIyAAC2trYAgNTU1BLLSFNTU+Hp+WqVzqpWnmJJly5d8Nprr1VrSzAiKh+FQoH//vsPp0+fxtGjR1kUIdJS+pyPlKdY0qVLF7Rr1w5ubm7csJlIwwiCgFu3buHMmTM4evQoiyJEWkqfc5HyFEuU4yIeHh7csJlIwwiCgNu3b6tyERZFdBcLJFWkcePGCAoKUjtmY2MDDw8P3LlzBykpKbC3t1fdl5KSAqBgJgUAuLm5AQCio6PRtGlTtfMePnwIPz+/Kn4FlaesYskPP/yADRs2oFatWvD29oaPjw+8vb1LJD1EVD3u37+PyMhInDt3DufOnUNaWhqLIkRajvlIgbKKJdu2bcP3338Pa2trtGnTRpWLFP2eEFH1efjwoSoXiYyMxKNHj2BsbIy2bduyKEKkpZiLFHhRGy5LS0u1XKRBgwacSEokgtTUVNWYSGRkJB4+fAhDQ0N4e3uzKKLDWCCpIlZWVvDx8SlxvGvXrvjnn3/w999/Y9y4cQAKZmrv2bMHNWrUgIeHBwDA2dkZTk5O2LVrF/z8/FQzCcLCwiCRSNC5c+fqezGVqGixJDc3F1evXlX9EfTPP/9AEAQ4OTmpCiatW7eGlZWV2GET6aSMjAycP39e9cZ/584dSKVSeHh4oF+/fvD29kbz5s1L7fdLRNqB+UhJRYsl+fn5uHbtmioXCQwMhEKhgIODgyoXadOmDf8IIqoiT58+xYULF1S5SEJCAiQSCdzc3NCrVy/4+PigZcuWGtdCh4jKj7lISUWLJTKZDDdu3FDlIqtWrYJcLoednZ3aRFJlwYiIKldWVhYuXbqkykXi4uIAAK6urvD19YWPjw9atWoFMzMzkSOlqiQRBEEQOwh9IggCAgICcP78efTt2xeNGzfG8ePHERkZienTp6vNfjhx4gRmz54NLy8vdOvWDXFxcfjzzz/Rp08fzJgxQ8RXUTXS09Nx/vx5VWKQlJQEqVQKT09PVWLQrFkzGBkZiR0qkVbKy8tTDQRGRkYiOjpaNRDYtm1beHt7o02bNixKEukB5iOly8jIwMWLF1W5yO3btyGRSODh4aHKRZo3b87BWqKXJJPJcP36dVUucuPGDdVAYNFchAOBRLqPuUjpsrKy1HKRW7duAShYSaPMRVq2bAlTU1ORIyXSTjKZDNHR0apc5Nq1a5DJZKhTp44qF/H29oaNjY3YoVI1YoFEBFlZWQgJCcGhQ4eQkZEBR0dHvP/+++jZs+RGQ8ePH8fmzZuRkJAAa2tr9O7dG6NGjYKhoe4v/rl7966qgnv+/Hk8efIEpqamaNWqFXx8fODj48P9S4ieQ6FQIC4uTvXGf+nSJeTm5sLa2lo1E8nb2xv169cXO1QiEgHzkRdLTk5W5SLnzp3D48ePYWxsjJYtW6pykcaNG3P/EqIyCIKA+Ph4VS5y8eJFZGdnw8rKSpWH+Pj4wN7enjk9kR5iLvJiKSkpqlwkMjISqampMDIyQvPmzVW5iLu7O/cvISqDIAhITExU/R+6cOECnj59CgsLC7Rp00aVizg6OjIX0WMskJBWUCgUiI2NVSUGly9fRl5eHmxsbNCmTRu0bdsWrVq1Qv369fkLjfSWIAi4d++eWqsK5T4irVq1Ur3xu7q6cjCPiKiCFAoFbt26pVZ0zsnJUe1f0rZtW7Ru3RoODg7MRUhvCYKA5ORkXLx4UZWLpKamwtjYGC1atFDlIm5ubhzMIyKqIEEQkJCQoDbQm52drdq/RJmLODo68u890luCIODhw4dqbbMePHgAQ0NDNG/eXJWLeHh46HyBlcqPBRLSSkX3L4mMjERMTAwEQYC1tTWaNGmi9mFrayt2uERVIiUlBVFRUaqP6OhoPHnyRNUORrk8tFmzZmwHQ0RUyfLy8tRaBUVFRUGhUMDKygoeHh7w9PRU5SJ16tQRO1yiKvH48WNERUXhxo0bqnwkLS0NQEE7GOXs5hYtWrAdDBFRJSu6f0lkZCSuX78OuVwOS0tLuLu7q/IQT09P1K1blxM4SCc9efJElYMo85FHjx4BAFxcXFS5SMuWLWFubi5ytKSpWCAhnfDkyRNcv3691D/O6tatq5YYeHh4wNLSUtyAiSooIyNDrRgSFRWFhw8fAgBq1aqlVhRs1qwZNxQmIqpmGRkZuH79eql/nNna2qryEOXvav6eJm2TmZmJ6OhotVwkOTkZAEpMUmrWrBn3ESEiqmZPnz5V5SIv+pvR09OTv6dJ62RlZSEmJkZt7O/evXsAAEtLS7V8u2nTppwwTeXGAgnpJOXy/qKDFNHR0cjKygIAODo6qiUH7u7unGFPGiMnJwexsbGqn90bN24gKSkJAGBhYQEPDw/OBiIi0nDK5f3Fi9uZmZkAAAcHhxK5iJmZmchRExXIzc3FzZs31WZk3r59GwBgZmamlos0adKEbW6JiDRU8a4DUVFRSE9PBwDY2dmpTd7w8PDgDHvSGHl5efjvv//UfnYTEhKgUChgYmJSIhdhm1t6FSyQkMZSKBRQKBSV1hNQoVDg9u3bar9cb968iby8PBgYGMDZ2Vntl6uLiwv7EVKVk8lkJd704+PjIZfLYWxsDDc3N7VZEA0aNGA/WSKialIVuUhSUpLarLfY2Fjk5uZCKpWiYcOGagMVrq6uMDIyqpTnJiqLTCZDfHy82sSiuLg4yOVyGBkZwdXVVfVz6enpCUdHR+4fQkRUTSo7F1HuW3njxg3V7/zY2FhkZ2dDIpHAyclJbTKeq6srJ5NSlZPL5UhISCgxXieTyWBgYABXV1e1n8uGDRtyvI4qFQsk9Eo++eQTXLx4sdT7DAwMcPjwYdXXQ4YMwf3790uc5+fnh+nTp6sd++mnn7BlyxYoFAoMGjQIEydOrNS4lfLz8xEXF1fm4HSDBg3g5OQER0dHtc9s0UUVlZGRgcTERNy+fVv1+fbt20hKSiq1SOfp6QlnZ2e+6RMRvYC25yIvGpxu0KCBWh6ivM0WXVRRT58+VctDEhMTVbfz8vJYpCMieknanou8aHBamYsocxBlTsIWXVRRWVlZavlH0c85OTks0pFoWCChV3L27Fk8fvxY7Vh2djYCAwPRvn17LF++XHV8yJAhsLKywrvvvqt2foMGDdC0aVPV11euXMHMmTPx4YcfwtTUFMHBwZg0aRK6du1atS+mkLK9UXR0NBISEnD79m3cuXNH1bsTAGxsbEoUT5ycnFC/fn0OaOsxmUyGu3fvljr4UPT/SZ06dVQ/Nw0bNoS7uzvc3Ny4eSkR0UvQxVykaHujou8pDx48UJ1jbW1d6iQOe3t7DmjrMZlMhnv37pU6+KDcEwco2Ben6M+Nh4cH3Nzc2FqFiOgl6GIuomxvVHRcJDExEcnJyVAOI9aoUaNEHuLo6AgHBwcYGxtXS5ykeeRyOZKTk1WTQovmIykpKarzbGxs1H5uPDw84O7uDgsLCxGjJ33FkVx6JW3bti1xbP/+/QCAHj16lLivdu3a6Nmz53OvefXqVfTu3Rt+fn4ACjZgv3z5crUlAqampmjRogVatGihdry0Snd0dDT++ecfZGdnAyiYHeLg4FDqTM+aNWuyH6IOEAQBjx8/VhXOir7p3717F3K5HEBBf27lv723t7fq56FBgwYcfCAiqkS6mIuYmJigWbNmaNasmdrx7Oxs1XuPMh/577//cPjwYbVcxM7OrsQkDkdHR9jY2DAX0RFpaWlqK1KVt+/evQuZTAagIKdV5qKtW7dW3XZ0dOTgAxFRJdLFXMTY2Bienp7w9PRUO56bm6v2d/CdO3cQHx+P48ePq/ZZk0qlsLOzK5GHODk5wdbWlrmIjkhPTy/RISMxMRFJSUnIz88HUPBzpMw9mjdvrjZOZmVlJfIrIHqGBRKqdAcOHICZmRneeOONUu/Pz8+HTCYrcyNSe3t7hIeHo2vXrjAxMcGBAwdemDxUB3Nzc3h4eMDDw0PtuHIT1uIrBo4cOYL79++rZldYWlrCyckJdnZ2qF27NmxtbWFra6u6Xbt2bZibmzNZEJEgCHj69ClSU1ORkpKC1NRUtdvKGZmlJX7t27eHk5OTamVR7dq1+W9JRCQSXc1FzMzM4ObmBjc3N7XjgiAgNTW1xIqBiIgI/Pbbb1AoFAAACwsLODo6on79+qrco2hOYmtrC0tLS75/iSwrK0uVexT/fP/+fSQmJqo22JVIJKhXrx4cHR3Rtm1btUk6derU4b5lREQi0dVcxMTEBK6urnB1dVU7XnQiYdF85OTJk/jjjz9KTCS0t7cvMR6i/MxcRHxZWVmq8RBlHqLMRZSrQ548eaI6v27dunBycoKXlxf69++vykfq1q3LXIS0AltsUaVKS0vDwIED0bVrV3z22Wdq9w0ZMgSPHz+GTCaDXC6HnZ0dBg8ejMGDB6udp1Ao8Nlnn+H48eMAAC8vLyxfvlwrew7m5uYiKSmpRHsM5ZvM06dP1c43MzODjY1NiSSBhZRX86LCR9FjOTk5ao+1sLBQ/RvUq1dPbfYLlw4TEWke5iLq8vLy1No/JiYm4v79+6r3PWXRX8nExKTM/KPoMQsLC+YiFfS8wkfR28rVQErm5uaq73vdunXViiANGjTQyp9LIiJdxlxEXX5+Pu7du6c2LpKcnKx638vIyFA739jY+LnjISykvLznFT6KHsvKylJ7nJmZmerfQlkMUa4EadCgQZmFPiJtwRUkVKn++ecfyOXyUpeRuri4oGXLlnB0dER6ejr27NmDNWvWICUlRW2zMalUiiVLlqg2S3dxcdHaNz0TExO4uLjAxcWl1PtLe3Mq+vnmzZtlvjkVL6RYWVnBzMwM5ubmqs/Kj6Jfm5iYaOX3UxAE5OTkIDs7G1lZWcjKyir1dnZ2NtLT0ytc+GjWrJnaDFrl95Zv9ERE2oW5iDpjY2M0atQIjRo1KvX+nJyc5w7Yx8XFlauQYmtrixo1apTIPYrmIMrbpqamWvn9FAQBubm5ZeYgRb/OyMioUOGjdu3a8PDwKLUgxdacRETahbmIOiMjI1WrrdLk5uY+d8A+Pj4eKSkpJXKR0gop1tbWpY6HFM9LzMzMtPL7KQgC8vLynjsmovzIzMysUOGjdu3acHNzK1GIUk7SJdJlXEFClWrixIlISkrCH3/88cLNygVBwIwZM3Du3Dls374ddevWraYotc+LCinKgYusrKwShYDipFJpqclBWYUV5SCGVCpVfS56u/hnhUIBQRBK/Vz8WE5OTpkDC0ULHsrPyhYhZTE1NYW5uTksLS2fO+uVhQ8iIt3FXKRqFC2klDbTUDlwoXwPfx6JRFKuwYuikzuK5x8vm4sUz0mUBY+y8pHieUl5chEzMzNYWlq+cCUOBxuIiHQTc5Gq8aJCSkpKCtLT0yuUi5Q1ubT4faampmXmH6UdK2sMpKxc5EUTL4rmI8p2ZWUxMTGBubm5alLo8/IRdichKsAVJFQu+fn5ql7HSjVr1oSBgYHq67t37+LatWsYNGjQC5MAoOANaciQIThz5gwuXryoEf00NZXyTdnR0fGF58rlclXh4XkzCkr7o185o6DoeXl5eao38MqiTBxMTExKnVmqLGCUdt/zZqMW/XkkIiLdwlxEXKampnBwcICDg8MLz1XmIi/KQYrnI8oJIcXPyc3NrbJcxNjYuNTcwsbG5oWTSYrfNjMzYy5CRKTDmIuIy8TEBPb29rC3t3/huQqFotQJmeW5rVz1WfR4Tk5OpeciymKKsbFxqXlGzZo1YW9vX2bOUdqkElNT03L93BGROv6voXK5evUqpkyZonZs+/btqF+/vurrAwcOAECpy0jLopwdUTzJoJdnYGAACwsLWFhYVOp1BUF44WxMQRDKnM1ZdHYFERFRRTEX0R5VlYsAKNdszBetMJFIJJwtSUREFcZcRHtIpVJV0aCyCYIAuVz+wlzkRatemYsQaQ4WSKhcGjdujKCgILVjNjY2al8fPHgQDg4OaNasWbmve/fuXQAFsy5IsynfwFngICIiMTAXIQCcbEFERKJhLkJAwdgIV2kQ6Rb+j6ZysbKygo+PT5n3x8TEICEhASNHjiz1/vT0dFhYWKgtPZXJZPjxxx9hZGQELy+vSo+ZiIiIdAdzESIiIhITcxEiIt3EAglVihctI42IiEBoaCg6d+6M+vXrIyMjAwcOHMCtW7cwfvx42NraVme4REREpGOYixAREZGYmIsQEWknFkjolSkUChw6dAju7u5wcnIq9RwXFxc0bNgQBw4cQFpaGgwNDeHm5oYFCxbA19e3miMmIiIiXcJchIiIiMTEXISISHtJBEEQxA6CiIiIiIiIiIiIiIioOnGHQyIiIiIiIiIiIiIi0jsskBARERERERERERERkd5hgYSIiIiIiIiIiIiIiPQOCyRERERERERERERERKR3WCAhIiIiIiIiIiIiIiK9wwIJERERERERERERERHpHRZIiIiIiIiIiIiIiIhI77BAQkREREREREREREREeocFEiIiIiIiIiIiIiIi0jsskBARERERERERERERkd5hgYSIiIiIiIiIiIiIiPQOCyRERERERERERERERKR3/h97i71gWHmE5gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib\n", + "\n", + "# Get a time range interval\n", + "ori = ori.source_interval(ori.get_time()[0], ori.get_time()[0] + 1*u.hr)\n", + "\n", + "# Plot\n", + "fig,ax = plt.subplots(ncols = 3, figsize = [20,5], subplot_kw = {'projection':'mollweide'})\n", + "\n", + "# Use color to represent time\n", + "cmap = get_cmap('viridis')\n", + "time_sec = (ori.get_time() - ori.get_time()[0]).to_value(u.s)\n", + "time_color = cmap(time_sec/np.max(time_sec))\n", + "\n", + "# Plot the galactic coordinate of each SC axis\n", + "for n,(label,pointing) in enumerate(zip(['x','y','z'], ori.get_attitude().as_axes())):\n", + "\n", + " ax[n].scatter(pointing.l.rad, pointing.b.rad, color = time_color)\n", + " ax[n].set_title(f\"Pointing {label}\")" + ] + }, + { + "cell_type": "markdown", + "id": "e0ea0cf0-74e8-49d8-a902-c23be544e282", + "metadata": {}, + "source": [ + "## Calculate the source movement in the SC frame" + ] + }, + { + "cell_type": "markdown", + "id": "852dfe3b-8df1-4581-bcc6-96e393f7c352", + "metadata": {}, + "source": [ + "This converts a fixed coordinate in the galactic frame to the coordinate in the SC frame as a function of time:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "15339d40-789f-4493-8542-73efcb229ca2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n" + ] + } + ], + "source": [ + "# define the target coordinates\n", + "target_coord = SkyCoord(71.334998265514, 03.0668346317, unit = \"deg\", frame = \"galactic\")\n", + "\n", + "# get the target path in the Spacecraft frame \n", + "target_in_sc_frame = ori.get_target_in_sc_frame(target_name = \"CygX1\", target_coord = target_coord)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "7a62207b-62d3-4b64-b95a-426e541b0a4f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAEdCAYAAAAip0w7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8bklEQVR4nO3dd1xTZxcH8F/CVlCUIRsFFVddoFatA0WtA1Drwr2tu4rbqq9aqziwrrrrrHW1VakLtLhbEayIylJQQFQEZIeR5L5/hFxyISBoFnC+fiLJc29uTiC5OXkmj2EYBoQQQgghGoiv7gAIIYQQQkpDiQohhBBCNBYlKoQQQgjRWJSoEEIIIURjUaJCCCGEEI1FiQohhBBCNBYlKoQQQgjRWJSoEEIIIURjUaJCCCGEEI1FiQqp9BiGQUFBgbrDIIQQogTa6g6AVB8//vgjrly5Uur233//HWZmZpgzZw4ePXpUYnv79u2xefNmTpm/vz+2b98OgUAANzc3LFiwADo6OooOnRBCiJpQokJUxsPDAy4uLpwyhmGwZcsWWFhYwMzMjC03MzPDtGnTOPuamJhwbr958wZbtmzBhAkTYGFhgUOHDuHMmTMYOXKk8p4EIYQQlaJEhahMixYt0KJFC07Z48ePkZubi169enHKDQ0N0bt37zKPFxkZCRcXF4wYMQIAoKWlhYsXL1KiQgghVQj1USFqde3aNfB4PLi5uZXYJhQKkZOTU+p9LS0tERoaigcPHiAuLg5+fn6wsbFRZriEEEJUjGpUiNoIhUIEBgaiRYsWsLS05GyLj49Hnz59UFBQgLp162LAgAEYP348tLWLXrJOTk7o1asXvL29AQCOjo5YtmyZSp8DIYQQ5aJEhahNUFAQ0tPTSzT7WFlZoU2bNnBwcEBubi5u3LiBo0ePIj4+HqtXr+bsO3fuXAwdOhSZmZlwdHTkJDKEEEIqPx7DMIy6gyDV05o1a3Djxg38+eefqF27dpn7btq0CX5+fti9ezeaN2+uogjJ55I23wkEAuTk5EAoFEIsFoNhGM5PeWUMw4BhGPB4PPD5fPYivS3vp5aWFgwMDFCjRg0YGBhAV1cXPB5P3b8GQshnoK+fRC1ycnJw584dtG/f/qNJCgAMHz4cfn5+CA4OpkRFifLz89mkQjbBkL1e/Gdp+woEAuTn56v1+cgmLtKL7G0DA4MSt+Vdl97W09OjxIcQFaNEhajFnTt35I72KY25uTkAIDMzU5lhVUkMwyA9PR0pKSlISUlBcnIykpOT2eupqansz49NnKejo1PqB7yJiUmZH/gGBgbQ0dHh1JDIuy77U0okEsmtcZH+lG4XiURsklRWEpWTk4P09PQS2/Ly8sp8/lpaWqhduzZMTExgamoKU1NTmJiYsBdpmbGxMTVDEqIg9E4iahEQEAADAwN07ty5XPsnJiYCAIyNjZUYVeVS3gQkJSUFQqGQc1/ZD1s7Ozu0bdsWderUQc2aNcusfajqk+lJE52yEpwPHz6wv9eoqCikpKQgNTUVYrGYPQ6Px0OdOnUooSFEAegdQlQuLS0NwcHBcHNzg76+PmdbdnY2dHR0oKury5YxDIOjR48CANq1a6fSWNVJLBYjKSkJcXFxiI+PR0JCApKSkiqcgMh+OJqYmKBu3bqc3y8poqWlBUNDQxgaGlbofiKRCGlpaezfRZosSn9WJKGxtraGra0t7OzsYGVlVeWTQ0I+hhIVonLXr1+HSCSS2+wTFRWF1atXw83NDdbW1sjLy8Pt27cRFhYGd3d3ODk5qSFi5crKymKTEeklLi4OCQkJbFOEjo4OrKysUK9ePUpANJCWlhb79yjLxxKaiIgIXLt2DQKBgD2uhYUF7Ozs2ORFer1u3brUX4ZUCzTqh6jc9OnTkZiYiD/++ANaWlqcbYmJidi7dy/Cw8ORmpoKPp8Pe3t7DBgwAB4eHpX2xCwUCvHmzRs2CZH9mZqayu5namrKfiDZ2tqy1y0sLEr8rkjVxDAMUlJS5L5W3rx5w9bI1KxZU+5rxcbGpkRNJSGVGSUqhChQWloa4uLiSnzAJCYmss00+vr6nA8W2Z81atRQ8zMgmiw/Px+JiYlyk5j09HR2v3r16pV4fdnZ2cHc3LzSJvuk+qJEhZBPlJWVhcjISISHhyMiIgIRERFISkoCIOl7IG2mKV5lb2ZmRh8WROHS09NLJC/x8fF4/fo1O5rLyMgITk5OaNq0KZo0aYImTZpwFgMlRBNRokJIOeTl5SEqKopNSCIiIhAfHw8AqFGjBpycnNCkSRM4OTnB3t4eNjY20NPTU3PUhEiaHd+9e4e4uDhERUWxibW0ydHExIRNWpo2bQonJ6dyzW1EiKpQokJIMUKhEDExMZykJDY2FiKRCLq6umjYsCF7Ym/SpAns7OzA59P6nqTyYBgG79+/57zGIyIikJWVBUCyjIXsa7xx48bULEnUhhIVUq2JxWLEx8dzTtbR0dHIz8+HlpYW6tevzzlhOzg40HBRUiUxDIOEhATOeyEqKgp5eXlsp3bZ94KjoyONMiMqQYkKqVZycnLw6NEjhIaGsifi7OxsAICNjQ2nCrxRo0Y0eoJUa0KhEK9eveL0w3rx4gVEIhF0dHTg6OiIJk2aoHnz5nB2doapqam6QyZVECUq1QDDMBAKhdWyJkAoFCI8PBzBwcEIDg7Gs2fPIBKJYGZmxiYk0r4lRkZG6g6XEI2Xl5eHFy9ecJKXV69eAQAaNGgAZ2dnuLi4oHXr1tRcRBSCEhUNFBkZiUOHDiEsLAz5+fmwsrKCu7s7hgwZwu4TFhaGPXv2ICoqCjVr1oSrqyumTJlS4sTg7++P7du3QyAQwM3NDQsWLKjSCQvDMHj16hWbmDx69Ag5OTkwNDRkT6DOzs6wtramkTeEKEhaWhpCQkLY9927d++gpaXF1rS4uLigadOmtFwA+SSUqGiYoKAgLF26FI0aNUKPHj1gYGCA169fg2EYTJ8+HQAQHR2N6dOnw97eHh4eHkhKSsKpU6fQpk0bbNq0iT3WmzdvMH78eEyYMAEWFhY4dOgQ+vTpg5EjR6rr6SlFcnIye5IMCQlBcnIydHR00KJFC7Rr1w7Ozs5o3LgxTZhGiApI+7pI35MPHz5EVlYWatSogdatW8PFxQUuLi6wt7enLwukXCi91SDZ2dn48ccf8eWXX2Lt2rWljiTZt28fjIyMsH37dtSsWRMAYGlpiY0bNyIoKAjt27cHIKmZcXFxwYgRIwBIpuO+ePFipU9UpP1MpIlJbGwsAKBRo0Zwc3ODi4sLWrZsSf1LCFEDHo/HTmg4cOBAiEQiREZGsonL7t27UVBQAFNTUzg7O6Ndu3Zo27Yt9W8hpaJERYNcu3YNqampmDJlCvh8PgQCAfT09DgJS3Z2NoKDgzFs2DA2SQGAPn36YMeOHQgMDGQTFUtLS4SGhuLBgweoV68e/Pz8YGdnp/Ln9blk+5mEhITg6dOnEIlEqFevHlxcXDB27Fg4OzvTysqEaCAtLS00a9YMzZo1w5gxYyAQCBAWFoYHDx4gJCQEV69eBSDp3yKtbWnVqhX1byEsSlQ0SHBwMGrWrInk5GQsX74c8fHxMDAwQO/evTFr1izo6ekhJiYGIpGoxOJ8Ojo6aNSoEaKjo9kyJycn9OrVC97e3gAAR0dHLFu2TKXP6VNlZ2fj7t27uHnzJkJCQth+Jm3atMHcuXPh7OwMGxsbqjompJIxMDBA+/bt2S9UHz58YGtbbt68iTNnzrD9W7p27Yru3bvD3NxczVETdaI+KhpkwoQJeP36NQCgf//+aN26NR49eoTff/8dPXv2xKpVq3Djxg2sXLkSO3bsQKtWrTj3X7VqFUJDQ3Hu3DlOeWJiIjIzM+Ho6KjRndmkyUlgYCAePHiA/Px8NG/eHB07doSLiwsaN26s0fETQj6PtH9LcHAw7t+/jwcPHqCgoAAtWrRA9+7dKWmppuisr0EEAgFyc3Ph6emJuXPnAgC6deuGgoICXLhwARMnTkReXh4AyB25o6uri/z8/BLlVlZWyg38M5SWnEyZMgXdu3dHvXr11B0iIURFZPu3DBo0CFlZWez5Ye/evdi5cyclLdUQJSoaRLo2TM+ePTnlbm5uuHDhAp4+fcp2EJUuMiYrPz+/UswUSckJIaQ8DA0N0adPH/Tp04eSlmqMEhUNYmJigtjYWNStW5dTXqdOHQBAZmYmrK2tAQApKSkl7p+SkqKxPeelycmNGzcQFBREyQkhpEIoaam+KFHRIE5OTggODsb79+85o3OSk5MBAMbGxmjQoAG0tLQQGRmJHj16sPsUFBQgOjoarq6uKo+7NJScEEKUgZKW6oUSFQ3i6uqKX3/9FRcvXoSzszNbfvHiRWhpaaFNmzYwNDSEi4sL/P39MW7cOHYI39WrVyEQCNSeqFByQghRJUpaqj4a9aNhNmzYgEuXLsHV1ZUd9RMYGIjRo0dj6tSpACQTuc2cObPEzLStWrXCli1bVB4zwzB49uwZzp07h8DAQDY5kZ4cKDkhhKiabNIiHT3k4uICT09PdO7cmUYQViKUqGgYoVCIY8eO4fLly0hOTka9evUwaNAgDBs2jLPf48eP2bV+atSoAVdXV0ybNk2lkyTl5OQgICAAFy5cQHR0NCwtLeHu7o5evXpRckII0RhZWVm4ffs2OyjB1NQUAwYMgLu7O8zMzNQdHvkISlRIhcXExODcuXPw9/dHbm4uOnbsiIEDB6Jdu3alTvtPCCGa4Pnz5zh37hwCAgKQn5+PTp06wdPTEy4uLnT+0lCUqJByyc/Px40bN3DhwgU8fvwYdevWZb+RUO0JIaSyyc7Ohr+/P86dO4fY2FhYW1vDw8MD/fr1Q+3atdUdHpFBiQopU2JiIs6fP49Lly4hPT0dbdq0wcCBA9GlSxdq4yWEVHoMw+DJkyc4d+4cbty4AR6PB1dXV3h6eqJ58+a0TIcGoESFlCASifDPP//g/PnzCAoKQs2aNdG3b194eHjA3t5e3eERQohSpKWl4dKlS7hw4QISExPRsGFDeHp6olevXrRIohpRokJYycnJuHjxIvz8/JCUlIQmTZpg4MCB6NGjBzsjLiGEVHVisRgPHjzA+fPnce/ePejr66N3797w9PSEo6OjusOrdihRqeYYhsF///2Hc+fO4fbt29DW1oabmxsGDhxYYoVmQgipbt69e4e//voLfn5+SE1NxRdffAFPT0+4urrKXXONKB4lKtUUwzC4e/cujh07hvDwcNjb22PgwIHo3bs3jIyM1B0eIYRoFKFQiDt37uDcuXN4+PAhzM3N4eXlhQEDBrDrtBHloESlmhGJRLh58yaOHTuGFy9eoGXLlhg7dizatWtHncYIIaQcYmNjcfz4cVy/fh3GxsYYPnw4PD09qR+LklCiUk0IhUJcu3YNx48fR1xcHFxcXDB27Fi0bt1a3aERQkillJCQgF9//RVXrlxBzZo1MXToUAwePJhqpRWMEhUFYhgGQqFQo9ot8/PzcfnyZZw4cQJv3rxBp06dMHbsWDRr1kzdoRFCSJXw7t07nDhxAhcvXoSOjg4GDx6MoUOHwtjYWN2hVQmUqAA4evQoDhw4gAYNGuDIkSNs+Zw5c/Do0aMS+7dv3x6bN2/mlPn7+2P79u0QCARwc3PDggUL1Jqw5Ofn49KlSzh27BiSk5PRvXt3jBkzBg0bNlRbTIQQUpUlJyfj9OnTOH/+PBiGweDBgzFixAhKWD5TtU9UkpKSMHr0aPB4PFhYWJRIVF6/fo1p06Zx7mNiYsJZ3fjNmzcYP348JkyYAAsLCxw6dAh9+vTByJEjVfY8pIRCIa5cuYIjR44gKSkJPXv2xNixY1G/fn2Vx0IIIdVRWloaTp8+jd9//x0AMHToUAwfPpyahD5RtZ9a9Oeff0azZs0gFouRnp5eYruhoSF69+5d5jEiIyPh4uKCESNGAAC0tLRw8eJFlSYqYrEYf//9Nw4cOIDExES4urpi06ZNlKAQQoiKGRsbY+rUqRg2bBh+++03Nmnx8vLCsGHDaF6qCqrWKzA9evQIN2/exOzZs8vcTygUIicnp9TtlpaWCA0NxYMHDxAXFwc/Pz/Y2NgoOtxSPXr0CN9++y3WrFmDBg0a4NChQ1i9ejUlKYQQokbGxsaYPn06Tp48iX79+uHw4cMYNWoULl++DJFIpO7wKo1q2/QjEokwefJkNG/eHAsWLMCcOXOQnp5eounnyZMn4PF4KCgoYBfiGz9+fIl1brZt28ZW8zk6OmLr1q1Kb5d89eoV9uzZg7t376JJkyaYMWMGjeIhhBAN9fr1a+zbtw+BgYFwdHTE9OnT0b59e3WHpfGqbaLyxx9/4MCBAzhx4gSMjY3lJiobNmxAvXr14ODggNzcXNy4cQN3796Fq6srVq9eXeKYiYmJyMzMhKOjo1IX7EtNTcWhQ4fw119/wczMDNOmTYOrqystUU4IIZXAs2fP8PPPP+Px48do3749pk+fTlPzl6FaJirp6ekYNWoURo8ezfYrkZeoyLNp0yb4+flh9+7daN68uSrCZeXm5uLUqVM4ceIEtLS0MHbsWAwePBi6uroqjYMQQsjnYRgGd+7cwe7du/H69Wv07dsXkyZNgpmZmbpD0zjV8iv4gQMHYGRkhG+++abC9x0+fDgAIDg4WNFhlenu3bsYO3Ysjhw5And3d5w8eRIjRoygJIUQQiohHo+HLl264OjRo5g7dy7u3r2L0aNH49SpUxAKheoOT6NUu1E/8fHx8PPzw+zZs5GcnMyW5+fnQygU4s2bN6hZsyZq1aol9/7m5uYAgMzMTJXE++bNG2zfvh13795F+/bt4evrq9KOuoQQQpRHW1sbgwcPRu/evXHw4EHs3r0bly9fhre3N7744gt1h6cRql3Tz3///Ye5c+eWuc+QIUMwZ84cudtiYmIwfvx4TJ06FaNHj1ZGiACAgoICnDp1CkeOHEGtWrUwe/ZsdOvWjdbjIYSQKiwyMhK+vr4IDw9Hv3798O2331b7CeOqXaKSlpaGsLCwEuUHDhxATk4O5syZAysrK1hYWEBHR4fTtMIwDFavXo2///4b+/fvh5OTk1JifPjwIXx9ffH69WsMGTIEEyZMoMWuCCGkmhCLxfDz88O+ffsAANOmTcOAAQOq7YCJapeolKZ4Z9r//vsPq1evhpubG6ytrZGXl4fbt28jLCwM7u7uWLhwocJjSEtLw44dOxAQEIAWLVrA29ubeoITQkg19eHDB+zZsweXL19Gs2bNsHDhwmr5mUCJSqHiiUpiYiL27t2L8PBwpKamgs/nw97eHgMGDICHh4fCm2Bu3bqFzZs3QywWY/r06ejbt2+1zZ4JIYQUCQ0Nha+vL+Lj4zF+/HiMHDlSqVNgaBpKVNQsIyMD27ZtQ0BAAL766it4e3vDxMRE3WERQgjRIPn5+Th8+DBOnDiBxo0bY9myZdVm9nFKVNTon3/+wcaNG5GXl4e5c+eid+/e1FmWEEJIqZ49e4Yff/wRb9++xaRJkzBs2DBoaWmpOyylokRFDbKysrBz505cunQJHTp0wKJFi2iSH0IIIeWSl5eH/fv348yZM2jRogWWLFkCW1tbdYelNJSoqNh///2HdevWISsrC7NmzUL//v2pFoUQQkiFhYaGYsOGDUhOTsaMGTMwcODAKvl5QomKiohEIhw/fhyHDh1Cq1atsHTpUlhYWKg7LEIIIZWYQCDA7t27ce7cOXTr1g2LFy+GoaGhusNSKEpUVCA1NRU//PADQkJCMGHCBIwZM6bKtykSQghRnZs3b8LHxwe1atXC6tWrlTbPlzpQoqJkDx8+xJo1awAAK1asgLOzs5ojIoQQUhUlJibif//7H168eIEZM2Zg8ODBVaIpiBIVJRGJRDh27BgOHz6M1q1bY8WKFTTsmBBCiFLl5+djz549OHv2bJVpCqJERQnS0tKwZs0ahISEYPz48Rg7diw19RBCCFEZaVOQkZER1q5di8aNG6s7pE9GiYqCxcbGYsmSJRAIBFi1ahU19RBCCFGLxMRErFq1Cq9evcLy5cvRrVs3dYf0SShRUaB//vkHq1evhoWFBTZs2ECjegj5BJkZAqz5/iwehbxiy4aOdMHUmV+rMSpCKqfc3FysX78egYGBmDJlCkaPHl3p+q1U+UQlPz+fswKyMjAMgzNnzuDnn3/Gl19+iZUrV9Jqx4R8gn/uRmPlolNFBTweGAAoPE2tWDcI3bo3V0tshFRWDMPg0KFDOHz4MHr16oVFixZBT09P3WGVm0YkKrGxsTh06BAiIyORmpoKfX192Nvbw8vLC507d+bs+/LlS+zcuRNhYWHQ1tZGx44dMWvWLBgbG3P2CwoKgo+PD1JTU9GhQwcsX74cRkZGCo+9oKAAP/30E/z8/ODl5YWpU6dSfxRCPoFAkA8Pt42SG9IERfrFT/qTYQAeD9duLVd9gIRUctevX8f69evRqFEjrFu3DnXr1lV3SOWiEYnKP//8g99//x3NmzeHqakpcnNzcfPmTTx+/BgLFiyAh4cHACApKQmTJk2CoaEhvvnmGwgEApw8eRL16tXD3r17oaOjAwDIycnBsGHDMHDgQDg5OeH06dNo0KAB5s+fr9C4MzIysGLFCoSFhWHhwoXo27evQo9PSHWyYfU5XPd/AgBgeDxJciJTQ81Iq6sLT1n93FvCe6G7iqMkpHILDw/HsmXLoK2tjQ0bNsDR0VHdIX2URiQq8ohEIkyZMgX5+fk4fvw4AMDX1xeXL1/G8ePHUa9ePQBAcHAw5s+fz0loIiIisGnTJhw8eBAA8Pz5c6xduxZHjhxRWHzJycmYP38+Pnz4gHXr1qFly5YKOzYh1VHfbusgFEpqTBjZJEVauwJwEhdp7cqVgIXslxRCyMclJSVh6dKlSExMhI+Pj8Z/fvHVHUBptLS0YG5ujqysLLbs5s2b6NSpE5ukAICLiwtsbW0RGBjIltWrVw8JCQkIDAzE69evcfbsWdjY2CgstsTERMycORM5OTnYtWuXxv+RCakMRCJJOsJt8pFpApIpA48H8PkAj4eve23CIM8tqg6XkErL3NwcO3bsQOPGjeHt7Y379++rO6QyaVSiIhAIkJaWhtevX+P06dO4f/8+2rZtCwB4//49Pnz4IHda4KZNmyI6Opq9XadOHYwfPx6rV6+Gl5cXHj58iG+//VYhMcbGxmLmzJnQ0tLCrl27YGdnp5DjElLdmZiVnJSqRHWv7GgFHsDwAIbPQ3pGHnr0WI87dyKUGiMhVUWNGjWwceNGODs7Y+nSpZwv+5pGW90ByNq1axcuXLgAAODz+ejatSvmzZsHAEhJSQEAubO7mpiYICMjgzPCx8vLC25ubkhOToaDg4NCejg/e/YMixYtgrm5OTZv3lxpOiIRUhn4bB2JSaP2ldwgW5NSiJFtApLWsABYuepPADwE+C+kTu2EfISenh5++OEHrF+/HqtXr0ZOTg769++v7rBK0KhEZejQoejevTuSk5MRGBgIkUiEgoICAEBeXh4AyG2LliYneXl5nKHIZmZmMDMzU0hsDx8+xNKlS+Hg4ICNGzcqZQQRIdWZXX1z1DWpiZSUbEkmUspUD0zxxKWwWYhhbwBufTbB3LwGTp2Yo9ygCanktLW1sXz5ctSsWRM+Pj7IysrC8OHD1R0Wh0Y1/djb28PFxQVff/01fHx8IBAIsGTJEjAMw9aISBMXWfn5+QCgtHHhISEhWLRoEZo3bw5fX19KUghRklMX5qGmoRY7sqcEOUkKw5NpImL7r/CQlJwD194+uHTloZKjJqRy4/P5mDdvHkaPHo1du3axA1g0hUYlKsV1794dERERiI+PZ5t8pE1AslJSUlCrVi2lTOwWFhaGpUuXok2bNtiwYQMMDAwU/hiEkCLnry7FrgPjATEkCUtp4xLldbAtLGd4kuHMDA/YuDUA3fv4IDs7V+mxE1JZ8Xg8TJ06FePHj8e+ffvw+++/qzsklkYnKtLmnqysLJiZmcHY2BiRkZEl9gsPD0fDhg0V/vjR0dFYvHgxGjdujLVr1yp9hltCiIRTExtcu7McRobapdeuQF5nW3CHMstc+n+zDd37blRGuIRUGRMmTMCwYcOwbds2XL58Wd3hANCQROXDhw8lyoRCIa5evQo9PT3Ur18fANCtWzfcu3cP7969Y/cLCQlBfHw8XF1dFRrTq1ev4O3tDRsbG/j4+EBfX1+hxyeEfNy5S4vhd8Vbkn0Ur12R1wxUfFvhdkZ6AdDtax+Mnyan0y4hBDweDzNnzsSAAQPg4+ODGzduqDskzZjwbfny5cjOzkarVq1gZmaGlJQUBAQEIC4uDjNnzmQ79rx79w6TJ0+GoaEhhgwZAoFAgN9++w1mZmbYt2+fwmo83rx5g1mzZsHQ0BDbt29H7dq1FXJcQsinW7f2D/x9PUIyQy2fxzbxlEhUPjZRnIzRQ9tjyoTuyguakEpKJBLhhx9+wM2bN7F+/Xp06NBBbbFoRKJy/fp1XLx4ETExMUhPT0eNGjXg5OSEwYMH46uvvuLsGxsbW2Ktn5kzZypsqHBKSgpmzpwJHo+HHTt2wNTUVCHHJYQoRs8e6yUJCJ/HSVSKRgNJfxZbL6i06wywdd03aNta86cSJ0SVhEIhvv/+e4SEhGDLli1qm9xUIxIVTZGXl4c5c+YgKSkJP//8MywtLdUdEiFEjpgXbzB5ymEwfLAdaeVOuy8vMeGBW9sCQFIXw8Mfh6fB1KSWcoMnpBLJy8vDokWLEBMTg71798LKykrlMVCiUohhGLaaa+fOnWjSpIm6QyKEfMR3844iNCxR0uzDl51XpZTVl4snKfKahHjAtTNzqfM8IYUyMjIwbdo06Orq4ueff0bNmjVV+viUqBQ6fvw49u3bh1WrVqFnz57qDocQUgGuvX0AMDKrLpeSqPBLSVJ4xUYQMQD4wI3f59MMt4RAMsBk+vTpaNmyJdatW6fS9wUlKgBu376N77//HmPHjsWkSZPUHQ4h5BO8f5+OoaP3SG4UzqPCrUlBqU1CpdawMAD4PNz+c4Gywiak0rh//z4WL16M4cOHY/r06Sp73GqfqLx48QIzZsxAu3btsGbNGvD5GjFimxDyiX45dANHT94v6mjLmU+lZE1LqUOaZQ/KMNDW5uHGWUpYSPV2+vRp7Ny5E8uWLcPXX3+tkses1olKZmYmJk+ejJo1a2LXrl006ywhVcjw0bvwNjmrKFkp7HgrN1EpLUmRU8PC5wO3fqeEhVRPDMNg48aN8Pf3x65du1TSn7PaJioMw2DNmjW4f/8+Dh48SCN8CKmiuvXbyPY5YfuoFCYgpQ5pli2Tuc1uK0xYblMNC6mGCgoKMGPGDGRnZ+PAgQOoUaOGUh+v2rZzXL16FdevX4e3tzclKYRUYTcvLcKVP+ZKbsj7XlbKyB/O9eJNRHzJUkSdv9mMzkM3QygUKjBiQjSbjo4OVq5cieTkZOzYsUPpj1cta1QSEhIwadIkdOvWDcuWLVN3OIQQFYl6/hqT5/7KNgOVOpttsZqWEs1Dhfuy2xgG4PHw97GZtNwGqTYuXrwIHx8frFmzBt27d1fa41S7REUoFGLmzJnIyMjAwYMHlV5lRQjRPBcuh2Dzz3/LTMNfuOFTO9vKzHILHvD7romwNKujnOAJ0RAMw2DVqlUIDg7GoUOHUK9ePaU8TrVLVPbv348TJ05g165daNasmbrDIYSo0eadl3He/8nHRwWVt7OttAamMGHZ+f1gOH/RQDnBE6IBMjMzMWHCBFhZWWHr1q1KmV+lWiUqkZGRmDp1KiZNmoSxY8eqOxxCiIaYv+oUHjyKkzv/SvGmIaC0pqDi+4KtYZk54iuM9lTfom6EKNOjR48wd+5czJ49G0OGDFH48atNoiISiTB9+nQUFBRg//790NbWVndIhBANM2XBEYQ/T2JrV8q1InPxfiylrNQMAB3b1Ifvom8UHTYhardlyxZcu3YNx44dU/hivtUmUTl//jy2bNmCXbt24YsvvlB3OIQQDTZu7i94EZda1IcF+PjMtsWTFNkEphizOjXgt0t1M3sSomyZmZkYNWoUXFxcsHLlSoUeu1IkKvn5+Z+1QNiHDx8wevRodOnSBUuWLFFgZISQqmzcd5KERbbDLadpCChKVIpP9iCvf0sxfD4Pd458RzNikyrh8uXLWL9+PbZu3QpnZ2eFHVdhiUpOTg5OnjyJZ8+eITw8HJmZmVi6dCn69u3L2e/HH3/ElStXStzfzs4Ox48f55QFBQXBx8cHqamp6NChA5YvXw4jI6MKx7Z+/XrcuXMHv/76K4yNjSt8f0JI9TZ10VE8fZEkucGX0+FWTm3KR4c0g7v/Od+JsDQzVmTYhKiUWCzGnDlzkJaWhkOHDkFHR0chx1VYR4309HQcPnwY9erVQ8OGDfHff/+Vuq+uri4WLVrEKSu+bHROTg7WrFmDgQMHwsnJCadPn8b+/fsxf/78CsX1+PFjXL58Gd7e3pSkEEI+yb6Nks733mtP4d/Q+MJSnvzaktJqUMoaLQRg4PxfAADLJ/eER7dWnxEtIerB5/Mxb948TJ48GadOncLo0aMVclyFJSomJib4888/YWJigoiICEydOrXUfbW0tNC7d+8yjxcXF4d69eph8uTJAABLS0usXbu2QjExDIPdu3fDyckJAwYMqNB9CSGkuC0rhgMA1v98EX6BEdyqkTKaeKQ1KXL3K9aX5YeD1/HDwevo3MoeW72p4y2pXBwdHTFo0CAcO3YM7u7uqF279mcfU2ENo7q6ujAxMSn3/iKRCNnZ2aVur1evHhISEhAYGIjXr1/j7NmzsLGxqVBMDx48wNOnTzF58mSljO0mhFRPS2f0x70z3pg1upOkgEFRplFKY7rcYh73rrIrPd8NfYX243zRZ+YuhcVNiCqMGTMGDMPg9OnTCjmeWsbo5ubmom/fvsjNzYWRkRF69uyJb7/9ljNLbJ06dTB+/HisXr0aYrEYFhYW2LJlS7kfg2EY/PLLL2jevDnat2+vjKdBCKnmRnp2xEjPjvj3v+eYt+G8pLDMmpVyXJfeLkxiUrPz0G6cL8AHbu76lmbTJhqvTp06GDRoEM6ePYuhQ4d+drcLlScqJiYm8PLyQuPGjcEwDO7fv49z587hxYsX2LZtG2d+Ey8vL7i5uSE5ORkODg7Q09Mr9+MEBQXh2bNn2Lx5M3i8ss4chBDyeb5s0xD/nPLG2/dpGDTnIDvR28eUVsvC2SbTUbfbjD0AD9i3ZAjaONl9btiEKI2XlxfOnTuH06dPl9kVpDxUnqhMmzaNc7tnz56wtbXF/v37cfPmTfTs2ZOz3czMDGZmZhV6DNnalHbt2n12zIQQUh4WZsb45zdv5Ofno9v4HTKLNUsWLZSbwJQ294p0ZltZhY31UzacBXjAmN6tMHdETxCiaYyNjTFo0CD8/vvvGDZs2GfVqmjE4P1hw4aBz+cjODhYIce7f/8+wsPDMXHiRKpNIYSonK6uLv454Y1/T3jD0EBHkqeUcyYIuYsdyjQFyU4ud8w/FC4TfTF81WHFBU+IgowYMQIAcPLkyc86jkYkKnp6eqhVqxYyMjIUcrwzZ86gWbNmcHFxUcjxCCHkU107OAf/nvBGC0dzyWqF5UlYyprhlrPas+TyIiEVLpN80XXmdkWFTchnMzY2xsCBA3HhwgXk5eV98nE0IlHJyclBenq6QuY5SUxMxIMHD+Dp6Um1KYQQjXFgzRjc/9UbUwe3l2Qd4sJ8oxx5i9z5V6S1LDKX7DwhnCf7wmXKVgiFQgU/A0IqzsPDA1lZWQgMDPzkY6g0UcnLy0NOTk6J8iNHjoBhGHTo8Pmri/71118wNDSEq6vrZx+LEEIUbdLgLrh/fD4Or5VUi3PHJ5ehzFoWHufCAOgwfQecp25F3NtURYVOSIVZW1vDxcUFfn5+n3wMhXam/f3335GVlYWUlBQAwN27d5GUJJl2+ptvvkFmZiYmTZoENzc32NlJeqwHBQXh33//RYcOHfDVV1991uMLhUJcunQJvXv3hr6+/uc9GUIIUaKmDaxw/+h85OXlocvUXUVZh7QTbXkrhIvXHBdLYgauPAIA2DCpN3p3aP55QRPyCdzd3bFq1SrExsaiQYMGFb6/QhclHDZsGN6+fSt326lTp2BoaIht27bh6dOnSElJgVgshrW1NXr16oURI0ZwhiZ/ihs3bmDlypU4dOgQHB0dP+tYhBCial/P3IXUrDzuIofF1w3ijAwqmaSUOk1/YfIzwrU1Fo2gGmeiOgUFBRgyZAh69OiBuXPnVvj+lWL15PLy9vZGTk4Odu/ere5QCCHkky3beQEBwc8lN4ovelhaolJ8aLMs2duFCUu7xlbYO3+4QuMmpDR79uzBhQsX8Oeff1ZoTjRAQzrTKkJ6ejpCQkJKrNZcleTn56s7hHIpKChQdwgssVhcKToVVoY4GYZR+9+2srwH5KlI7D/O8sCDw/Ox/lvJ+YxXjin62U1lJSmA5KzPA4KiEtHm263wWHlAcl8N+PuWR2WJUx6hUAixWKzuMD5KGb/fvn37Iisr65OmIVHLFPrKcP/+fYjFYnTq1Enhx05OTsbZs2cRHh6OiIgICAQCbNu2DW3atCmx75w5c/Do0aMS5e3bt8fmzZs5Zfn5+Th48CD8/f2RmZkJR0dHTJ48ucQkdenp6VizZg1CQkJgbm6OpUuXyn3s8saZm5uLS5cu4c6dO4iJiYFAIICNjQ3c3d3h7u5eYl0ksViMkydP4ty5c0hNTYWNjQ1Gjx4NNzc3zn55eXnw8fFBYGAgatWqhblz56JHjx5l/m6lHjx4gMOHDyMqKgo6OjpwdnbGjBkzYGlpWWLfO3fu4NChQ3j16hWMjY3Rr18/jB07tkTT4YkTJ3DkyBGIxWIMHjwY06dPL1csHxMcHIxjx44hKioKYrEYtra28PLyKjFZoTrifPToEU6ePIno6Gikp6fD0NAQDRs2xLhx4/DFF1+U2D8sLAx79uxBVFQUatasCVdXV0yZMqXENO3+/v7Yvn07BAIB3NzcsGDBAoUt4V6e90F53wOfKzY2FocOHUJkZCRSU1Ohr68Pe3t7eHl5oXPnzpx9X758iZ07dyIsLAza2tro2LEjZs2aVWL0YlBQEHx8fJCamooOHTpg+fLlMDIyKlc8bl82hduXTZGWlg23+Xs5fVf4uWnQSYmAliAFYMRgdGqgwLgBCkyKmr35ghTovXsCfm46GC1tCGtZI8+8OaClzX5NjX+fiXZe82DwLgw6PEZhf9/IyEjs378fT548AcMwaN68OaZPn45GjRqV2FcVr8OcnBycPHkSz549Q3h4ODIzM7F06VLOl1uxWIyrV6/i5s2biI6ORmZmJiwtLdGjRw+MGDFCbk3AX3/9hZMnT+Lt27cwMzPDkCFD8M033MUkGYbBjh07cOHCBejo6GDSpEkYMmTIJ8cJAD/++COuXLlS4v52dnY4fvw4p0wV5/CPsbe3h42NDe7du1fivfQxVSZRuXfvHpo0aQJTU1OFHzs+Ph4nTpyAjY0NHBwc8PTp0zL3NzMzKzEDr7wFG9evX48bN25g6NChsLGxweXLl7Fo0SJs27YNLVu2ZPfbu3cv8vPzsXbtWkRERGDVqlU4deoUDAwMPinOxMREbNu2Dc7Ozhg+fDhq1KiBoKAg+Pr64unTp1i+fDln//379+PXX3+Fu7s7mjRpgjt37mDNmjXg8XicD+dTp07hxYsXWLVqFd6+fYuNGzeiefPmqFevXpm/r3v37mHZsmVo3Lgxpk2bhuzsbJw9exazZs3CwYMHOSf+f//9F8uXL0fr1q0xd+5cxMTE4OjRo/jw4QO8vb3Z/cLCwnD8+HHMnDkT+vr62LdvH5ycnD77TXfp0iX4+PjAxcUFU6ZMgZaWFuLi4thO4+qOMyEhAXw+H56enqhbty4yMzMREBCA2bNnw8fHhzOyLjo6GvPmzYO9vT1mzZqFpKQknDp1CgkJCdi0aRO735s3b7BlyxZMmDABFhYWOHToEM6cOYORI0d+UozFled9UN73wOd6+/YtcnJy8PXXX8PU1BS5ubm4efMmli5digULFsDDwwMAkJSUhNmzZ8PQ0BBTpkyBQCDAyZMnERMTg71797Ifnjk5OVizZg0GDhwIJycnnD59Gvv378f8+fMrFJexcU0E/yK5T8cpvhBlJkHvzb8Q69VGvkkTgK8FXkE2eEIBex9+XhoMXt2BWM8IeRZfgF8ggE5KNPj52RDUL/pCxyvIhv6bUOSaN4FApwYu3bgLe3v7z/r7RkZGYubMmTA3N8f48ePBMAz+/PNPzJkzB3v37mUHUwCqex2mp6fj8OHDqFevHho2bIj//vuvxD65ublYv349mjdvDk9PT9SpUwdPnz7FoUOH8PDhQ/z000+caS/Onz+PLVu2oFu3bhg+fDgeP36Mbdu2ITc3F6NGjWL3CwgIwK1bt7Bo0SLk5uZi7969aNasGZo1a/ZJcUrp6upi0aJFnLKaNWuW2E/Z5/Dy6tSpE/7++28wDFOx6UOYKqCgoIDp27cv88svvyjl+NnZ2Ux6ejrDMAwTGBjIdOnShXn48KHcfWfPns2MHTv2o8d8+vQp06VLF+bEiRNsWW5uLjNixAjm22+/5ew7duxYJjo6mr09ceJEJiIi4pPj/PDhAxMTE1OifP369UyXLl2Y+Ph4tiwpKYlxdXVlfH192TKxWMzMnDmTGTx4MCMUCtnyRYsWMbdu3WJvL1u2jAkMDCzr18AwDMOMGTOGGTFiBJOfn8+WRUdHM926dWN27NhRYt8JEyYwBQUFbNm+ffuYrl27Mi9fvmTLTpw4wWzfvp29ffr0aWbr1q0fjaUsiYmJjJubG/PTTz99dF91xlmcQCBgPD09GW9vb075ggULmIEDBzJZWVlsmZ+fH9OlSxfm/v37bFlgYCCzbNky9vatW7eYxYsXKyS28r4PyvseUAahUMhMmDCBGTVqFFu2ZcsWxs3NjXn79i1b9uDBA6ZLly7M+fPn2bLw8HBm4sSJ7O3o6OhynR/KkpWVxXh6ejJug0YxbSduZtpO2sK0nezLtJ3iy7SZ4su0mSq5dOw7hOns2otpM9mHafOtL9P6W1+m3fA5TJcuXRjn0YuZ1tN9mdYzfBmXUd7Ml/2HMa1m+DKtZvgyzqMXMF/2G8p0nLftk2NcuHAh069fPyYtLY0te//+PdO7d29m+fLlnH1V9TrMy8tjkpOTGYaR/F26dOnCXLp0ibNPfn4+8/jx4xL3PXToENOlSxfmwYMHbFlubi4zYMAAZtGiRZx916xZw/Tu3ZvJyMhgy3x9fZnTp0+zt7dv38789ttvnxwnwzDMunXrmN69e3/saavkHF5eISEhTJcuXSr83q0SfVQeP36MrKwspTT7AECNGjVQq1atCt1HKBTKnTNG6ubNm9DS0mK/oQGSGXr79++Pp0+f4t27d2y5paUlzp49i9evXyMwMBAJCQlyM9zyxmlsbCx3iFiXLl0AAK9evWLL7ty5A6FQiEGDBrFlPB4PAwcOxPv37zm1NlZWVvDz80NcXBwePHiA0NBQ2NjYlBlLRkYGXr58ia5du3KqcBs2bAh7e3v8/fffbNnLly/x8uVLuLu7c5pPBg0aBIZhcOPGDU4sd+/exdOnT/H8+XMEBAR8NJaPOX/+PMRiMSZNmgRA8m2ZkdMXXd1xFqevr4/atWsjKyuLLcvOzkZwcDB69+7N+QbWp08fGBgYcCZnsrS0RGhoKB48eIC4uDj4+fkpLMbyvg/K+x5QBi0tLZibm3N+fzdv3kSnTp04Mbi4uMDW1pbzu6tXrx4SEhIQGBiI169f4+zZs5/9u7t27RpSU1Ox3/cHhBz0xlfNrQGxuGjGWwaAqABaWUkQ1rYFtIreVwXGdmD42tDOeM02IYl0a0IrOxlaWUng52VCJ/UlxHo1kZMvQutZW9F14c4Kx/j48WO4uLigdu3abJmpqSlat26Nf/75hz03qvJ1qKurK7dmW5aOjo7cJlJ558aHDx8iPT0dAwcO5Ow7aNAgCAQC/PPPP2yZlZUVAgIC8Pz5czx9+hR3794tNfbyxClLJBIhOzu71O3KPodXRMuWLWFoaIh79+5V6H5Vounn3r17MDU1RePGjdUdCgBJE0yfPn1QUFCAunXrYsCAARg/fjznQys6Oho2NjYlqumaNm0KAHj+/Dl7Epw6dSoWLFiAS5cuQUtLC7Nnz1bILL7FpaZKJoaSPblER0fDwMAA9vb2cuOMjo5mq+dHjRqF7777DqNHj2ZvN2zYsMzHlHYwlNf2q6enh9jYWKSkpMDExARRUVEAACcnJ85+pqamMDMzQ3R0NFvWpUsX+Pv7s/092rRpA3d394/8BsoWEhICOzs7/Pvvv9i9ezfev38PIyMjDBo0CBMnTgSfL8n71R0nIPkAKCgoQHp6Oq5evYrY2FiMGTOG3R4TEwORSFQiRh0dHTRq1IgTo5OTE3r16sU2WTk6OmLZsmWfHSNQ/veBqt4DUgKBAHl5ecjOzsbdu3dx//59dhLJ9+/f48OHDyV+d9K4//33X/Z2nTp1MH78eKxevRpisRgWFhbYsmXLZ8UWHByMmjVrIjk5GcuXL0d8fDxMDQxQv2krBGeag+FrgZ+XAR4YiPWNuXfm8yHSrw0tQTqAwrnmahijwNgWNWPvAgBE+rUgsHOWjDQCkJ5bgFazt8Kidg1c/YHbpF2agoIC6OrqlijX19dHQUEBYmNj0bx5c415HX5MaedGAGjSpAlnXycnJ/D5fERFRaF3794AAE9PT9y4cQMTJ04EALi5uVW4n4Y8ubm56Nu3L3Jzc2FkZISePXvi22+/5fTtUfY5vCK0tbXRvn173Lt3DxMmTCj//RQWgRqFhobC2dlZI6bMt7KyQps2beDg4IDc3FzcuHEDR48eRXx8PFavXs3uJ/3wLU5alpyczJY5ODjgxIkTiImJQb169SqUbZdXQUEBzpw5A0tLS84bLyUlBXXq1Cnxu5UXp6mpKQ4dOoSYmBjUrl0bFhYWH33cunXrwtDQEGFhYZzy9PR09ttLcnIyTExM2IkES/u9SbcDAJ/Px7p16/Dy5UuIRCI4ODh89utD2v9jw4YN8PLygqOjI27duoWjR49CJBKx/ZLUHScArFq1CkFBQQAkJ30PDw+MHTuW3f6xGENDQzllc+fOxdChQ9nOrp8755FsHOV5H6jiPSBr165duHDhAgDJ36hr166YN28eG7NsjMXjzsjIQH5+PvtB7eXlBTc3NyQnJ8PBwaHCQzOLS0hIgEgkwrJly9C/f39MnToVjx49wu+//w6Pnj0xdOwUjFvqCwAQa5ec+JLR1gc/J5lTlmfdCvmmDcETF0BkUAvg8UuMFnqbkYNWc7aiVYN6ODqv7H4htra2ePbsGUQiEds5v6CgAM+ePQMgSfYAzXkdfsxvv/2GmjVrcvp4paSkQEtLC3Xq1OHsq6Ojg1q1anHe5/r6+ti1axdiYmKgq6vL6aPzqUxMTODl5YXGjRuDYRjcv38f586dw4sXL7Bt2zb2d6Psc3hFtWvXDoGBgcjJySnRWbo0lT5RKSgoQExMDL7++mt1hwIAWLJkCed2nz59sGnTJvj5+WHYsGFo3lwyM2ReXp7c3urSk1vxBZz09fXldrxSlJ9++gkvX76Ej48P581f0Th1dHTkftMsDZ/Ph4eHB06cOIG9e/eiX79+7Fw40iFy0seQ1r7I+6amq6srt6mtfv365Y7lYwQCAcRiMaZNm8Z2lOvevTsyMzNx9uxZjBkzBjVq1FB7nAAwbdo0DB8+HElJSbhy5QqEQiFEIhG7Xfo7Le1vK28orZWVlUJjlMZR3teXst8DsoYOHYru3bsjOTkZgYGBEIlEJV6PH4tb9u9vZmYGMzMzhcQmEAiQm5sLT09PdvKsbt26oaCgABcuXMDEiRPxw4ReWLcuCODzS854y+eDJ2eILKNfs/TJ4mRuh8a+Q6u5WzGme2ssGCR/4rhBgwZhy5Yt8PHxwciRIyEWi3H06FH2w1v6+tKU12FZjh07huDgYMyfP58zWisvL6/URElXV7fEuZHP5yu0dqL4gI2ePXvC1tYW+/fvx82bN9lOsso+h1dUkyZNwDAMoqOj0apVq3Ldp9L3UYmJiUFBQYFCmn0KCgqQkpLCucie3D/V8OGSSZVkx4/r6enJHateVlOIsuL87bff4Ofnh0mTJqFjx46cbZ8TZ3njnjRpEvr374/ffvsNo0aNYkfT9O/fHwDYkR3SN5a8k1d+fv5nf1P9WJzS4xcf0tezZ0/k5eWxTT6qiPNjr4FGjRqhXbt26N+/P3x9fREeHo7169ez26UxlPa3lZdkKYMiX1+KZG9vDxcXF3z99dfw8fGBQCDAkiVLwDDMR393gHLjlh67+HB46evy6dOn7D4H5w9B8O65kiWApFmIWAyGL//UX2IeFp6c23zJBHRHbzxCy++2IjjyFYrz9PTEmDFjcO3aNYwdOxbjx49HYmIivLy8ABS9pzXldVia69ev48CBA+jfv3+Jvih6enqlzn2kyPNRRQwbNgx8Pl9hnzXKYG9vD11dXURGRpb7PpW+RiUqKgp8Pl/u2PyKevLkSYnpfU+dOiV3Lo+KMDc3BwBkZmayZSYmJmz1pyzpN46yhlkrMs7Lly9jz5498PT0xLhx40psNzExwX///VdiOFl54qxI3IsXL8aUKVMQHx+PunXrwtbWFmvWrAGfz4e1tTUbi/Sxi3ekTElJYdtcP1dpcZqYmCAhIaFEVa/0tvTvq4o4K/Ia0NHRQefOnfHrr78iLy8Penp6nBiLS0lJUcowf3k+532gSt27d8fmzZsRHx//0d9drVq1lPoBa2JigtjYWNStW5dTLvs6lL5nUlJSwOfzEbJb0mz11dxtEAtzwWhXcFh3iUUQi8om7v4D4AEPNsyEnl7R854yZQpGjBiB2NhY1KxZE46Ojti3bx8ASdOQ9LlI4yxOla9DeR48eIAff/wRHTt25EwpIGViYgKRSIQPHz5wzgkFBQXIyMhQevOkPHp6eqhVqxYyMjI4cSrqHK4I2tracHR0ZL/Yles+SoxHJaKiomBvb6+QRQgbNmwIX19fTlnxk8GnSExMBABO5z/p+Pjs7GxOR0JpG25ZVYSKivP27dvYuHEjp/1d3mP99ddfePXqFad5ojxxVjTuunXrsrdFIhH+++8/NG3alG3HlCajkZGRnCaA5ORkvH//njNy5HOUFqeTkxMSEhKQnJzMqX6WtvFK/76qiLOir4G8vDwwDIOcnBzo6emhQYMG0NLSQmRkJGfOloKCAkRHR6ts9fHPeR+okrR6PCsrC3Z2djA2Npb7jTA8PFzpMTs5OSE4OBjv37/n9HWQfR2W9vcN3DwDAwZcQn4tS+TIDliT1y2qWFmpzUJ8yUaXJbtQU4ePfzcWJdBGRkacOaGCg4NhZmbGxq0pr8Pinj17hu+//x5OTk5YvXq13CYe6fs8IiKCUxMdEREBsViskC/PFZWTk4P09PQSnzWKOocripOTk9yJUUtT6Zt+IiMjFTbax8jICC4uLpxLRarFsrOzS1T3MwyDo0ePAgBnps3u3btDJBKxHfYASVXcpUuX0KxZszKHXn5unIBkBtPVq1ejZcuWWLFiBTtipbivvvoK2tra+PPPPznP6fz58zAzM0OLFi3K/ZgVifvkyZNISUlhm80AyUnNzs4Ofn5+nGaOc+fOgcfjoVu3buWO5VPilJ5IL168yO4rFotx+fJl1KpVi23XVUWcpcX44cOHEvtmZmbi5s2bMDc3Z7/5GRoawsXFBf7+/pw+M1evXoVAIFDZB8TnvA+UQd7vTygU4urVq9DT02NP9N26dcO9e/c40wiEhIQgPj5e6b876fFlX4fS21paWmjTps1H/74bFk7Hfz/Pg42JoWSD7BT9xRVv+pG5zhQugihdiyhbKMYX87di/ZmAEoe5fv06IiIiMHToUPZ8oymvQ1kvX77E4sWLYWFhAR8fn1LPUW3btkWtWrVw/vx5Tvn58+ehr69fohldkfLy8uT2dTty5AgYhuF0+lXkOVxRGjdujLi4OAgEgo/vjCpQo/Lq1SuVvJiPHJEslf7y5UsAkjfS48ePAYBtMomKisLq1avh5uYGa2tr5OXl4fbt2wgLC4O7uzung1KzZs3g6uqKffv2IS0tDdbW1rhy5Qrevn2LxYsXKzXOt2/fYtmyZeDxeOjevTtnXg9AMuxPuvq0ubk5hg4dit9++w1CoRBNmzbF7du38fjxY6xYsaLEdPufwt/fHzdv3kSrVq1gYGCA4OBgBAYGYsCAAejevTtn3xkzZmDp0qXw9vZGz549ERMTgz///BMDBgxQeIfU4r766is4Ozvj+PHjSEtLQ8OGDdnfxYIFCzjV/eqKc+HChTAzM0OzZs1Qp04dvHv3DpcuXUJKSgr+97//cfadPHkyZs6cidmzZ8PDw4OdEbRdu3acE50yKet98Kk2b96M7OxstGrVCmZmZkhJSUFAQADi4uIwc+ZMtnZv9OjRuHHjBr777jsMGTIEAoEAv/32GxwcHJS+3ljjxo3Rr18/XLp0CSKRCK1bt8ajR48QGBiI0aNHs1X55fn7/rV2CgDA838H8Co5k9vxVoa8vitlrWZ72v8GLhzegylDPGBuZoJnz57h8uXL6NChQ4mp41X5Ovz999+RlZXFNnvcvXuXnVX6m2++AZ/Px4IFC5CZmYkRI0Zw5kIBJB15pR/senp6mDRpErZu3YqVK1eiffv2CA0Nhb+/P6ZMmVLhubcqEmdmZiYmTZoENzc3tnYqKCgI//77Lzp06ICvvvqKPZYqzuEV5eDgALFYjPj4+HJVNGjM6smf0nFKOtX1ihUr0KtXLyVFJtG1a9dSt926dQuApIln7969CA8PR2pqKvh8Puzt7TFgwAB4eHiUGB6Wl5fHrnGSlZUFBwcHTJ48Ge3bt1dqnP/991+ZS22PHz+eHe8PSGoNTpw4gQsXLiAlJQU2NjYYNWoUO0fA53r27Bl2796NmJgY5OXlwc7ODp6ennJ/Z4Ckyerw4cN49eoVateujb59+5aYp0ZZcnJycODAAfz999/IzMyEra0tRo4cKfd3oY44//jjD/z999949eoVsrKyYGRkhGbNmsHLy0tuD/vHjx+za6zUqFEDrq6umDZtWrmHDSqCMt4Hn+r69eu4ePEiYmJikJ6ejho1asDJyQmDBw/mnPwBybpAxdf6mTlzpkKaiz9GKBTi2LFjuHz5MpKTk1GvXj0MGjQIw4YN4+xX0b9vvxX78PpDdlEflMILJ1Ep3l8F3HIA4OdmocarUGjlpIEnEsLe1gZff/01hg8fLncEiqpeh8OGDcPbt2/lbjt16hQAcGpxi/v6669LzN3i5+eHU6dO4c2bNzA3N8egQYMwdOjQz5pm4GNxGhoaYtu2bXj69ClSUlIgFothbW2NXr16YcSIESXOMco+h1dUUlIShgwZAh8fn3LVPCk1UVH2YmPx8fEYNWpUqQsEEkIIqbguC3cgI1dYlKjIjv6RV5tSVm1L4UKKv80aii/qK3bWZVI5CYVC9OzZEwsXLsSAAQM+ur9S+6isX78ep0+fRq9evTBnzhzw+XwsWrSIbYoAuIuN9erVC6tWrSp3u1VZkwURQgj5NLc3zUbojnngSedeqUAflhIjg/iSn147z6Dtoq3KCplUItra2jA2NpY72ksepSUqz549w/Xr1zF16lTMmDEDHh4e+Omnn2BhYYHdu3ez+z19+hRz585Fly5dMGXKFJiZmSEuLq5cj6FpQxgJIaQqebRtHoK3zCpKWIAyExa5I4OktTJ8II8Bmi/ciueJ70ren1Qrpqam6k9UVLHYWHJyMgwMDFTank4IIdWJjo4OQn+aB78lY8quWZGSU8PC9nEprF3x/OkEev6wW969STVRt25dzvT9ZVFaolKexcYAyYJ7QUFB8PLywpo1azBt2rRyLzaWnp7OWSSKEEKIcthbmuLxT/MwrVd7ySy35UhY5Naw8CWXt5m5aL54q9wVyEnVZ2xsjPT09HLtq7ThB6pYbEwoFMrtQU4IIUQ5ZvbvjJn9O6Pb9zuRmlPAdpYtrkSSUsr6QS2W/oRNw3ujX5vmSomXaCYdHZ1SlyAoTmk1Kp+y2FhFO8XKrsxJCCFEdW7+MAsPfWZJbhSvYSmenMibKE7msuCUP3qs26P0mInm0NLSKvcadUpLVFSxEJJYLC51RlVCCCHKpaOjgzDfeVjk0VlSUN4Ot8XmaQEfeJslQLNlNCqouuDz+RDLWcVb7r7KCsLExKTUhaYAxYzU0dLSKvcTJYQQohxjurdH2JZ54MuODiqu+MRx0uuyw5gBNFtOyUp1IBaLy90iorREpWHDhkhISEB2djanXJELIWlpaZW7jYsQQohyPd48D8enf/PxuVcATsLCNgPxJXdpunwr3qdnlHpXUvkJhUL1JyqqWGxMW1u7xCKAhBBC1Ke1ox2ebC6sXZHByVlkZ7mV7cciM4S566aDuBceo+RoiboUFBSUezkRpY36UcViY3Xr1kVaWhoYhvmsdRUIIYQoVtjGebjy8Am8TxaupFyekUGQma6fASaeOI9V/brCq6OzcoMlKpeamlrudbGUuorbsmXLUK9ePVy9epVdbMzHxwetW7dWyPFNTEyQn5+PzMzMz1qpkhBCiOJ93bYFvm7bAs2XbAWPkak9AeSODCox/T4DrL50C5mCXEzt0VlFURNVSElJgb29fbn2VWqioqenhxkzZmDGjBlKOb50OHNKSgolKoQQoqGebpiHrzfsR1xalvzVl+V1tJXe5gG+N4JQU08Pozq7qCJcogKlzbUmT6Ue2yubqBBCCNFcV5ZMwZ4x7txOtrJJS2mjgQr7raz1v41/I2NVFi9Rnvz8fGRkZFSvRKW86wUQQghRn67NG+Lpj99JbpQ2KkiavBSfGI4PjPvtHDIyaDRQZSetXKgWiYqenh6MjIyQlJSk7lAIIYSUA4/Hw7Mf58nrW8tJUtjbxS7tth5UQZREmd6/fw+g/POpVepEBQAaNGiAFy9eqDsMQgghFfBs3Ty2w6wsRk4n2+JDl53W0KRwlVl0dDS0tbVhY2NTrv0rfaLi5OSEqKgodYdBCCGkgsLXzoOhNr9kE5CcNYLYOeQKO946raVkpbKKjo6Gg4MDu/bfx1SJROX169fIzMxUdyiEEEIq6MH/5qJeTf1SkxVOVxaZ2hWGAXYH3lFVmESBIiMj4eTkVO79K32i0rhxYwCgWhVCCKmkbi6ZDhMDvZLNQNIr0gRF9jof2HrngapCJAqSl5eHly9fsp/d5VHpExVbW1sYGBhQokIIIZXY3aUzoMtH2c1A0uv8otuNf6AmoMrkxYsXEIlE1atGRUtLC40aNUJ4eLi6QyGEEPIZHq+aV+aEcOxQZRQNWWZ4wNF/g1QfLPkk4eHh0NbWhoODQ7nvU+kTFQBo27YtgoODaSVlQgip5CJXzSu6Ie2PInNd3mXt9bsqj5N8mvv37+OLL74od0daoIokKp06dUJWVhbCwsLUHQohhJDPFLlyXskZbMuYCI7hA122/qymaEl5CQQCPHz4EJ06darQ/apEotK4cWOYmJjg3r176g6FEEKIApwc802JsrImgnuTm6e64MgnCQkJQX5+fvVMVPh8Pjp27EiJCiGEVBFtG9iBJ7OiMnciOAbgFb8AXbftVk+wpFzu3bsHW1tb2NraVuh+Gp+oMAyDgoKCj+7XqVMnxMfHIz4+XgVREUIIUbbI7+dxe9XywCYlxZuAwGeQKBCoKVLyMWKxGP/880+Fa1MAQFsRASQnJ+Ps2bMIDw9HREQEBAIBtm3bhjZt2pTYd86cOXj06FGJ8vbt22Pz5s2cMn9/f2zfvh0CgQBubm5YsGABdHR05Mbg7OwMXV1d3LlzB15eXop4WoQQQtTsj9FDMPjE2cJbDHelZZmfDAOADzyOj0fLCn5jJ8oXERGBlJQU9SUq8fHxOHHiBGxsbODg4ICnT5+Wub+ZmRmmTZvGKSu+iuKbN2+wZcsWTJgwARYWFjh06BDOnDmDkSNHyj2mgYEBunTpgosXL2LEiBHg8eQueUUIIaQS+aK+rfx1fyDzU8ag387gxaL5qgmOlNvFixdhZmaGL774osL3VUii4uTkhL/++gu1atXCjRs3sHLlyjL3NzQ0RO/evcvcJzIyEi4uLhgxYgQAyXwpFy9eLDVRAQB3d3d89913CA0NRevWrSv8PAghhGieZwtmoemWnXJrU6R9V+irqebKycnBtWvXMGLECGhrVzztUEgflRo1aqBWrVoVuo9QKEROTk6p2y0tLREaGooHDx4gLi4Ofn5+H11psU2bNrCxsYGfn1+FYiGEEKK5dHR02L4pADh9VNi5VmQmgDsbGqrGaElx165dQ15eHvr37/9J91dLZ9r4+Hj06dMHX3/9NQYOHIgDBw6UmKzNyckJvXr1gre3N0aPHo33799j9OjRZR6Xx+PB3d0dN2/eRHp6ujKfAiGEEBXa695PcqVYgsKSWQNo0bXrKo+PlO7ChQv48ssvYW5u/kn3V0jTT0VYWVmhTZs2cHBwQG5uLm7cuIGjR48iPj4eq1ev5uw7d+5cDB06FJmZmXB0dCxXlVHfvn1x4MABXL16FcOGDVPW0yCEEKJCPZs1AS5ekt+Ztrji6wURtYmMjERUVBQmTpz4ycdQeaKyZMkSzu0+ffpg06ZN8PPzw7Bhw9C8eXPOdisrqwod39jYGF27dsW5c+fwzTffQEtL67NjJoQQogE4HWmZ0hMVGkyhMf7880+YmZmhffv2n3yMCjX9FBQUICUlhXMRiUSf/OBSw4cPBwAEBwd/9rGkx0tISMD161T9RwghVcXuvn0kV0qZS4VtEuIzSMnKUmeoBEBiYiKuXr2K4cOHf1InWqkKJSpPnjzBoEGDOJekpKRPfnApabtVZmbmZx8LAJo0aYJOnTrhyJEjtFAhIYRUEb2bN+d2pAVKTKUv3eZ+9Ij6AiUAgKNHj6J27drw8PD4rONUKMVp2LAhfH19OWV169b9rAAASdYFSJptFGXChAmYMmUKrl+/jj59+ijsuIQQQtSpsANKqc0+kh9vC3JVEg2RLyEhAVevXsX06dOhr6//WceqUKJiZGQEFxeXT36w7Oxs6OjocJZ3ZhgGR48eBQC0a9fuk49dnJOTE1ur0rNnz8+qdiKEEKIZGJl+KpyOtYUFPMhsI2pz7Ngx1K5dG56enp99LIV9eh85Iqlme/nyJQDg6tWrePz4MQBg3LhxAICoqCisXr0abm5usLa2Rl5eHm7fvo2wsDC4u7vDyclJUeEAKKpVuXbtGr7++muFHpsQQogayDTxcDKTQgx4NPmbmiUkJMDf3x8zZsyAnp7eZx9PYYnKwYMHObcvXbrEXpcmKvXq1UOrVq1w69YtpKamgs/nw97eHt7e3p/dhiWPk5MTOnfujF9++QWurq4K+YURQghRI+mKyrzSmoAYMAwlK+q0f/9+GBsbK+xznccwTJWuIYuLi8P48eMxatQoTJo0Sd3hEEII+Qz1d2yRJCnSoSDF23oY6YWHl7O9VR5fdRccHIz58+dj2bJlCmvJUMvMtKpkZ2cHLy8vnDhxAvHx8eoOhxBCyGcpTFJ4H7kQlcvPz8fWrVvRsmVLhQ5iqfKJCgCMGTMGJiYm2LZtG6p4BRIhhFRtnISEkbnI2UZU6tSpU0hMTMT8+fPBU+Cke9UiUdHX18fcuXMRFBSEmzdvqjscQgghn4qPkskJipUBVKuiYm/evMHRo0cxbNgwODg4KPTY1SJRAYDOnTujc+fO2LFjR5mrNhNCCNFgsrPS8uUtUCjZzq82n26aYfv27ahVqxY7eEaRqtWfcs6cOcjMzMSuXbvUHQohhJAKys3NlUlOipp9ONPnF27b22OAeoOtRvz9/XH37l3MmTMHNWrUUPjxq1WiYmlpidmzZ8PPzw+3bt1SdziEEEIqwOnoDoDPSC5ymn1kJ4Pr5dRETVFWL4mJifD19UWfPn3QrVs3pTxGtUpUAGDAgAHo0qULNm7ciPfv36s7HEIIIeUmr9MsOAkLdaFVHaFQiLVr18LY2Bjfffed0h6n2iUqPB4PixYtgp6eHn744QeFrP5MCCFEBdhhyQx4fJkJ30rUrqglumrn6NGjiIiIwIoVK1CzZk2lPU61S1QAoHbt2li+fDkePXqEkydPqjscQgghH2H/y0aAL0lQeIWJCY/HgMcrnOFNJlmx0jdQY6TVQ2hoKI4ePYrx48ejefPmSn2sapmoAEDbtm0xcuRIHDhwAM+ePVN3OIQQQspUlKBwZqXlQVIu0+hzb9wslUdXnWRkZOCHH35AixYtMHr0aKU/XrVNVABg0qRJaNKkCb7//nskJyerOxxCCCFyuP22U/JpJW36AYo190iTFaJsQqEQq1atQm5uLr7//ntoaWkp/TGrdaKira2NH374ATweD8uWLUNeXp66QyKEEFLM87wsSROP3IvMjjwGdbR01BZndbBjxw48evQIa9euhYWFhUoes8onKgzDoKCgoNTtJiYm+PHHHxEbGwsfHx+aYp8QQjRIw6MbZGpP5Jyfi81Q+2jiPNUFV82cO3cOf/75J+bPn4/WrVur7HG1VfZIZZB2ao2OjkZ6ejoMDQ3RsGFDjBs3Dl988UWJ/cPCwrBnzx5ERUWhZs2acHV1xZQpU0pMNOPv74/t27dDIBDAzc0NCxYsgI5OyWzbyckJy5Ytw6pVq1C/fn2MHTtWac+VEEJI+QmlixBC0rzD+TLJUHuPqoSEhGDbtm345ptv4O7urtLH1ogalYSEBPD5fHh6euK7777D8OHDkZqaitmzZ+P+/fucfaOjozFv3jzk5uZi1qxZ6N+/P/z8/LBq1SrOfm/evMGWLVswevRorFixAhEREThz5kypMbi6umLChAk4cOAATQZHCCEaoP6x9ZKRPuxwZEmHWp7sUGQAgGT+lKfDZqon0CouISEBK1euRJs2bTBzpup/xxpRozJgwAAMGMCd7njQoEEYMWIEzpw5gw4dOrDl+/btg5GREbZv386O27a0tMTGjRsRFBSE9u3bAwAiIyPh4uKCESNGAAC0tLRw8eJFjBw5stQ4xo0bh9jYWPzwww/w9fVFixYtFP1UCSGElMOg8/sl86XIJCaM9H9GMieWbOUKD4ChoaHqA63iPnz4gMWLF8PY2BirV6+Gtrbq0waNqFGRR19fH7Vr10ZWVhZblp2djeDgYPTu3ZszuUyfPn1gYGCAwMBAtszS0hKhoaF48OAB4uLi4OfnBxsbmzIfk8/nY9myZWjcuDEWLVqE6OhoxT8xQgghZcrJycGjrPfg8wGezEgfNmnhtPhIspWggdNUHGXVl5mZCW9vb+Tk5GDjxo0wMjJSSxwalahkZ2cjLS0Nr169wr59+xAbGwtnZ2d2e0xMDEQiEZycnDj309HRQaNGjTiJhZOTE3r16gVvb2+MHj0a79+/L9d4b319fWzYsAHW1tbw9vZGXFyc4p4gIYSQj2px7ifJxG7SZp9iHWZ50tlpZYYnmxsbqyfYKionJweLFi1CUlISfH19YW1trbZYNKLpR2rVqlUICgoCIEk+PDw8OB1bU1JSAEhG6hRnYmKC0NBQTtncuXMxdOhQZGZmwtHRsdxVVoaGhti0aRPmzJmDefPmYefOnbC0tPzUp0UIIaScHE+uk/RLAYpqThgeeDwGDMOTlBUb/PNy7BLVBlnF5eXlYdmyZYiNjcVPP/2EBg0aqDUejapRmTZtGrZs2YLFixejWbNmEAqFnLV4pPOcyBu5o6uri/z8/BLlVlZWcHJyqnC7mrGxMXx9faGrq4v58+fThHCEEKJkDU//UNQvhV+s0yw7XX4RhgEMaOCPQkkndHv69Cl8fHzQpIn6V6FWaaJSUFCAlJQUzkU2EWnUqBHatWuH/v37w9fXF+Hh4Vi/fj27XU9Pjz1Ocfn5+dDV1VVovKampvD19UV+fj68vb3x4cMHhR6fEEKIxFe/bwHAgM+XXKRNPpxRPpBpBioUPmapGqKtmoRCIdatW4egoCD88MMPaNWqlbpDAqDiROXJkycYNGgQ55KUlCR3Xx0dHXTu3Bm3bt1ia1KkTT7SJiBZKSkpMDU1VXjMlpaW8PX1RXp6OmbPno13794p/DEIIaQ6G3H1AN6JcySdZ3ngJCfSWhROJ9rCdQhDPGk4sqLk5eVh1apVuHHjBlauXMkZbatuKu2j0rBhQ/j6+nLK6tatW+r+eXl5YBgGOTk50NPTQ4MGDaClpYXIyEj06NGD3a+goADR0dFwdXVVStz29vbYuXMn5s+fj1mzZsHX1xe2trZKeSxCCKlOxlw7gJDMRMnoHlkyQ5DZ/ilFm2CpbQCTWrVUGmtVlZOTg+XLlyMsLAw//vgjOnbsqO6QOFRao2JkZAQXFxfORU9PT26TSmZmJm7evAlzc3PUqVMHgKSTq4uLC/z9/ZGTk8Pue/XqVQgEAqUlKgBgY2ODnTt3Qk9PD7Nnz8aLFy+U9liEEFIdDLi4C/fTE0vUpLC1J7IjewoxhS0/90bQVPmKkJGRAW9vb4SHh2Pz5s0al6QAAI/RgMVtJk+eDDMzMzRr1gx16tTBu3fvcOnSJaSkpOB///sfunfvzu4bGRmJmTNnwt7eHh4eHkhKSsKpU6fQqlUrbNmyRemxpqWlYcGCBUhMTMTGjRtpUjhCCPkEbf9cixxGJFMiW2Miuc4wABhJrYrkwgMj5iHGa7lqg62iUlJS4O3tjZSUFGzevLnE1B+aQiMSlT/++AN///03Xr16haysLBgZGaFZs2bw8vKS25nn8ePH7Fo/NWrUgKurK6ZNm1ZirR9lycrKwpIlSxAVFYV169ahXbt2KnlcQoiEWJwFCJ8DfBPwtakZtrJp9uf/2BHGkvV7irZJm3gYyMw8y/AgFgOMmIfQAd/RDLQK8ObNG8yfPx95eXnw9fVF/fr11R1SqTQiUamMcnNzsXLlSgQHB2P+/PkllgAghCieuCAGSBkMoKjpV9Kvsia0Lf5TW1yk/JqdW8WdIwUyyQlTdFu2VoURSxKVvc7fwK1hM9UGXAU9e/YMy5Ytg4GBAbZs2QIrKyt1h1QmjZpHpTLR19fHjz/+iH79+mHjxo3YtWsXZ6g1IUSxxPkvgJSvIZukAJLPOz6yIXrbCMK3e9QSG/m41PR0ND+/ElqFw4/5PMmFh2IjewrxpHUuhT8GWTWjJEUBrl27hjlz5sDKygo///yzxicpANWofDaGYfDHH39gx44d6NChA1auXMlZh4gQohjit20AZJe5D8MwyAcDA8vnqgmKlMv0m4dxJ/2F3I6xAK+wBoVbs8IwPIgL+6e0MDDHn/2/VXXYVYpYLMahQ4dw5MgR9OnTBwsXLlT43GPKQomKgty/fx//+9//YG5ujg0bNtCU+4QokFiUCrz/slz7ihgRhBCDwSLUsJyu5MjIx7T+6/tiM97LdJqVbeqRSVYYBoVJCg92OrVxzWOuCiOuegQCAX788UfcunULU6dOxciRI8ErnjVqMEpUFOjly5dYsmQJsrOzsW7dOrRs2VLdIRFSJYhz7wBpE8u1LwMGIkYMESNCARjUsnql5OiIPE/evsTokP2FTTuSsqKOsiVrT4Ci5EQslpQ11DPBxQGz1BB91fH+/XssXboU8fHx+P7779GlSxd1h1RhlKgoWFpaGlauXIknT55g5syZGDx4cKXKXAnRROL8Z0DqwHLty4CBmBFDBDHEDAMhRBDjOxhbeSs3SMJqd3kZxIxMglJYXpSccGtPpGVihgexWFLWtW4D7Os+TuWxVyUPHz7EmjVroK2tjfXr16NRo0bqDumTUKKiBAUFBfj555/x+++/o1u3bli8eDENpyPkMzAMA+Zd+eZ4kCYqYjCFyYoYIjAQgoGJVYKSI63e7sQ9wbynv8qUcGeTla1JkdaeAEW1KiKxJFFZ0sQN45t9pbrAqxiRSIRjx47h8OHDaNWqFVauXMkuQVMZUaKiRDdv3oSPjw9q1aqF1atXa+xkOoRUBuL3wwDRIzBgwEPptZRiiMEwDMSQXqQ1K2IIGTHAGwwzq50qjLx6+PLqksLp7ovKSnSSBWRqUnjsXCnSph6RmI+A7nNhUzgbOam41NRUrF27Fg8fPsT48eMxduxYaGlpqTusz0KJipIlJibif//7H168eIEZM2ZQUxAhn0H41gk8iAFAbrLCFP6T1qgwAJuoSGpYGAgZMYQA6lnEV/oTuCYYEPA/pIhzChMUeX1QuMmKGNxERZKkACIxH88GrlbHU6gypE09ALBixQo4OzurOSLFoERFBfLz87Fnzx6cPXuWmoII+UzCt23AY7I4CT9T2AuCAcPWpjCQ+SlTwyICAxHDQMgwEPPMYWsdqq6nUqntDr2A40m3OZO3lZacyNaeMJDpNFvYcRbgIcxjjeqfRBUh29TTunVrrFixolI39RRHiYoKSZuCDA0NsWzZMrRu3VrdIRFSKQnTYyHO6Qk++DIfkkxh04L0X9F1EVOUuIgKExcRABHDIB+AcY1A1K3bRH1PqBIJev0UCyJ+AY8B287DNucU7lN8uDHAg5gp2keaqIjEPDTVM8ep3rPV8lyqgsTERPj4+ODRo0dVpqmnOEpUFEgsFkMsFkNbW7vUfRITE7F+/XqEhoZiyJAhmDp1KvT19VUYJSFVh+BNQ/AgmRGaBx6boAAyCQvDQAywtSuiwn1EjLR2BRAygIgHNLJ5o66novFikhMxKXQzgKJRPEWdZXls/xNuJ1lJrQlkysUAxGJJ+ZUu82BZu+p881clhmHg5+eHXbt2oXbt2liyZAnatm2r7rCUotonKhs3bsRff/2Fjh07wsfHh7Nt2LBhePv2bYn7eHh4YMGCBZyyEydO4MiRIxCLxRg8eDCmTy99oimxWIyzZ89i3759MDc3x7Jly2gVZkI+UfaH52AEPcEHr6h2RdoUVJikSBMYkUxti6hwm6TfCiBmgAIAPHSGk+1Z9TwZDfRPwlN8H71fpkcQT24NCgp7D3GHHst0mJU29RSuiPyw/zqVP5eqIikpCRs3bkRQUBDc3d0xY8aMKj0jeulf/auBiIgIXL58ucxphBs1aoThw4dzymxsbDi3w8LCcPz4ccycORP6+vrYt28fnJyc0KNHD7nH5PP5GDZsGL788kusX78es2bNwvDhwzFx4kTo6el9/hMjpBqpWachUOcVMhLtwWPEhTUr0hEm0r4rxa4z3DoBPgCGB2gxgIi5h8dxVjDXPQULi8o3OZaibAg9hMAPj8DjATp82eYdyfo8sjUoEoWjsXgMW6MCSIceF10WOvaDlxMNPf4UDMPgypUr2LFjBwwMDLBp0yZ06NBB3WEpXbVNVBiGwbZt29CnTx88fPiw1P1MTU3Ru3fvMo/15MkT9O3bFx4eHgCA9PR0PH78uNRERcrOzg47duzAyZMncejQIfzzzz9YtmwZmjShtnJCKqqW1SukpcVAnNMVfE7/CYaTuBTVsqBwuwQPAJ8nGZWiDSApfwQS4nhobByGWrWqz3BZ99uzC2s9AC0+IK1BkU1OGKYoIZF0pi26Lq+KXlrjEtLvR9U8iSooOTkZmzdvxr1799CnTx/MmTMHRkZG6g5LJart6slXr15FbGwspkyZ8tF9CwoKIBAISt1uZWWFu3fv4unTp3j+/DkCAgJK1LqURltbG6NHj8b+/fuhq6uL6dOnY+fOncjJyfn4nQkhHMbGDqhrlYACnlbhMGTJZG/snCqMbNIiTVyKbgNFNSx8HqADIPpDS9x7ZYesrCz1PCkVuBR/A553ZsLz9kzwIIYWTwwtPgMtHgM+JBfpKseyU+LLrnwsj7iwSW1ji5F40JeSlE8hEolw/vx5jBs3DhEREVi3bh2WL19ebZIUoJrWqOTk5GDPnj0YPXr0R4dwPXz4EL1794ZIJIKFhQWGDh2KoUOHcvbp0qUL/P392X4pbdq0gbu7e4VicnBwwJ49e3Dq1CkcOXIEf//9N2bPno3u3bvTvCuEVJCZ1StkZaUhM70ZpOMfmBIXpnBGlpK1K0DhhzAALR6gywBPklsgP5kHR52/YG3dXBVPQ6nSM9MxOWyJZDQOJM8TPNn+J4ykPYxX+FNar8KT1Ejz2OtFx5TcF+wkbjV42vi7D/VF+VSRkZHw9fVFeHg4+vXrh2+//RbGxsbqDkvlqmWicvjwYejp6WHYsGFl7ufg4ICWLVvC1tYWGRkZuHz5Mnbs2IHk5GROZ1k+n49169bh5cuXEIlEcHBw+KTkQltbG6NGjULPnj2xY8cOrFq1Cu3atcN3330HW1vbCh+PkOrM0NAYhoaJSHzdHgwTX/gZWzQySPqhKpusyNasyOIV1izoMDy8yHdHZCwffF5bdK9/WlVPRyE+ZH3AjCeL2LlLJIlYYYfXwn0kk+SBm6QU/pT28uHJ7F+ctJnnnz4blftkqrDMzEwcPHgQ586dQ/369bFr1y588cUX6g5LbardqJ/4+HiMGzcOK1euRPfu3QFIRvc0aNCgxKif4hiGwcKFCxESEoJTp07B3NxcqbHeu3cPP/30E1JSUjBq1CiMGjWKOtsS8gnEYjHiEq05bd2y/VSk18XSeT4AiMGDqHDUigiAkOFBDD5EDA8iaEHI8FHA8JAPPjoY+sPcXDO/TJx9/gfOp1wsWvyPJ10IkDt6h2H4hYla4YyxcuY9YWRG9siO4mHnRQEPv7kshK1xPTU928qNYRgEBATg559/hkAgwKRJkzB48OAyp7yoDqrssy8oKEBGRganzNjYGNu3b0eLFi3YJKUieDwehg0bhqCgIDx69OijnWw/V6dOndC2bVscO3YMx48fR0BAAObMmYOOHTsq9XEJqWr4fD7q27xBfMIW5DGbUdhHlJuoMDxOrQq3WYgHXmHFAo8HgBGDzwO0C1OfB1l9IMzkIx98tDP8GfXrqW9Uy53Xt3D4zcHCWhNJ4qHFk01Q+BBLnzun1kQMFCYrRSN4JLVOxTvJcq4zPIjBw2KHIejvQOemT/Xy5Uts3boV//33H1xdXTFr1iyYmZmpOyyNUGUTlSdPnmDu3LmcssWLF+P+/fv44Ycf8OZN0cROIpEIeXl5ePPmDWrVqlXmeHRpLUrxJEhZ9PX1MWXKFPTp0wdbt27F4sWL4eLighkzZqBhw4YqiYGQqsLWxhuANyLjLVHUB7Rks4dYZrr3omaiovoYaf8VSfIihhaPL7kXw8PDzFkIyuRByPAhAh/tjX+Ak1kfpTyfJ8n/YX/cRhQAbJLBMDxoAeDzpYkXvzCZYAprS8TgM3xJHx0e2GRFOqS4aABySZw+KAwgEgMepl9iXquym9FJ6VJSUnDo0CFcvHgRFhYW2Lx5M9q3b6/usDRKlW36yczMRGRkJKfs9evX2LJlS5n3mzVrVpl9V+7du4clS5Zg5cqVcHNzU0is5cUwDO7cuYO9e/ciPj4effr0weTJk5XeBEVIVZSdnYnYVCdoFfYRLWr2QGEH06KmDjF4EDN8yU8AosJmoKKmIMk2IcOHqDBBETGS+wgZPoTgQ8hoQQw+24QEaMOW3x3dzKfB2Ljkezg9PR2B70/jkSAQBYyg8DEBMcMH2Dj5MnOZFDbLgF8UP9uUJU1WpDVHMvtAtmmnqFzMFDUBsc084EEs5kHI8DDErBumtxikij9VlSQQCHDq1Cn89ttv0NbWxrhx4zBw4MAy5/WqrqpsoiLPu3fvEBUVVaJ806ZNsLCwwJgxY+Dg4ABra2tkZGSgZs2anDUThEIh5s6di4iICJw+fVptiz4JhUL89ddf+OWXX5CTk4Phw4dj5MiRVXpmQkKUJSbhMDLEywsbcYqaf8BJUqRJi+S6CNK+K/zCD3A+RIXJjCRJkXO7MKGRbhMx/MLt0iSIX9Qnhik6PsPwCxMUyeOwyUPhdWnTi7TfiDQxkV5n2PtJros4fVK4fU6kiYrs8WT7oYjAw+omk/BlvVbq+FNVCSKRCJcvX8bBgweRkZGBb775BmPGjKlWw40rqlolKqWR15n28uXLOHr0KLp16wZLS0tkZmYiICAAsbGxmDp1KkaPHq3GiCWys7Nx4sQJnDp1CjVq1MCECRPg7u5e7TteEfIpQuOGQsj8K7lRuCSw5EO8qJOpSPohXlibwq1dKUpMxLLJSGHiIU1qSm6XJih8NsGQ3qcoOZEkENL9ZJMZSVJRlMxIa0ZEACd5YdhjS/crSlSKVjPmF9bKSBYMFDNFSdr5Tlvp3PIZGIZBUFAQfv75Z8TGxsLNzQ2TJ0+GlZWVukPTeJSoQH6iEhkZiUOHDiE6OhppaWnQ1tZGo0aN8M0338DV1VWN0ZaUlJSEgwcP4sqVK7CxscHEiRPh6uoKPr/azudHyCd78KoLREw8pN03AMjUYkgThaJaC1HhbdmaEbamRJpgFNakcJMZ6SiiomRGzN5H5qc0CSlsvhExRY/HFN5X2gzEaa4B93ZRglOUqBTdl1f0WIXXRQwPZry6OPjVWjX9JaqOJ0+e4ODBgwgJCUGrVq0wY8YMNG3aVN1hVRqUqFQhz58/x969e3H//n00aNAAEyZMQNeuXSlhIeQT3HvlCRETxg6KYTumoljthEwNR1GiIU0+CrfJ1K4UJTNFTUElEx1pLQ1kkhXZGhHpY0qTJkniIW3WkTbjFL8tTUAYmWPINu9IYzzUfH21nFhM0cLDw/HLL7+w5+TJkyfjq6++okk8K4gSlSro6dOn+OWXX/DgwQM4Ojpi/Pjx6NKlCyUshHyCiLiDSBT5cNe6kem4WtR8wmdrUGSbgoqaiEomKkV9W3icbdImHhGKaj9EMjUi0tqQoscrmagU1chw+61wamlkak8mWo1A3/plr09Gyic8PBxHjhzBvXv3YGdnhwkTJlAt92egRKUKCw0NxS+//IL//vsP9evXx+jRo9GjRw9qZybkE12NbVo0ZTwP4HZslY6YkdamSK8XNQUxANsvhWFHC0mbh3iFtRwfT1Tk1ajINttIamj4RX1PZPq4SBMVEXgYbjYEAx2/Vtvvs6oJDQ3FsWPHEBQUBBsbG4wfPx49e/bkDMogFUeJSjUQFhaGY8eO4d9//4W1tTVGjRqFPn36QEdHR92hEVIpRSX8jvD8VYXDg6STpEkSC8gkKZKko6iGhWETFmlTUVEzEbdWRtp/RZoMlWz64QyZZmtkikbviGRG64jBh1DMA3g8bGrqA3MjmtJAURiGQXBwMI4ePYrQ0FA0aNAAY8eORffu3SlBURBKVKqRyMhIHDt2DLdu3YK5uTlGjhyJ/v3707T8hHyGmHcBCMlaVDRFvbSzLdv3pGgYsQhFfUWKpujnF2v2kTYt8WVqP2T6xTBFNTZFHWb5klE6hRPVCWUSoiFmI/G1fV81/oaqJoZhcO/ePRw9ehTh4eFo0qQJxowZg86dO1MTj4JRolINxcbG4tixY/j7779hbGyM4cOHw93dHYaGhuoOjZBK7/LzWUhiHgCFCQcgbRoqqgmRrVFhZGpEpJ1v2ZoYdlSRTP8SduhyUYddabkWDLC6iS+Maxir9XdQlQmFQty6dQvHjx/H8+fP0bJlS4wdOxbt2rWjTrJKQolKNZaQkIBff/0VV65cgY6ODtzc3ODp6QknJyd1h0ZIlXI7bgeeCU4X9k+Rzi4LFO9wy/ZbYSQ1IyIU9VkRydSe6KEWpjVYBZta9mp9XtVJUlIS/vrrL/j5+SElJQUuLi4YO3YsWrdure7QqjxKVAiSk5PZN+D79+/RtGlTDBw4ED169KBmIUJItSUWixEcHIzz58/j3r170NXVRa9evTBw4EBaa02FKFEhLKFQiH/++Qfnzp3DgwcPYGRkhL59+8LT0xO2tpq5hD0hhChaWloaLl++jAsXLuD169dwcHDAwIED0atXL1qqRA0oUSFyJSQkwM/PD5cuXUJ6ejqcnZ3h6emJr776ioY3E0KqHIZh8OTJE5w/fx43btwAwzDo3r07Bg4ciBYtWlD/EzWiRKWaEIvFEIvFFU4y8vLycPPmTZw7dw5PnjyBiYkJBgwYAHd3d1q1mRBS6eXk5CAgIADnzp3DixcvYGVlBQ8PD/Tr149m59UQlKhooODgYBw7dgxRUVEQi8WwtbWFl5cXevbsydnvzp07OHToEF69egVjY2P069cPY8eOLZGMnDhxAkeOHIFYLMbgwYMxffr0T4rr+fPnOH/+PPz9/ZGXl4dOnTph4MCBcHFxoeF4hJBK5cWLFzh//jyuXr3Kns88PT3Rrl07Op9pGEpUNMylS5fg4+MDFxcXdO7cGVpaWoiLi4OpqSm8vLzY/f79918sXrwYrVu3hpubG2JiYvDnn3/C3d0d3t7e7H5hYWFYvHgxvv32W+jr62Pfvn2YMWMGevT49Kmyc3Jy4O/vj3PnziEmJgbW1tbw8PBA37596RsIIURjFa8hrlu3Ltzd3TFgwADUq1dP3eGRUlCiokHevHmDsWPHYsCAAZg7d26Z+0prTvbt28fWoOzfvx/Hjx/H0aNHYW8vGbb422+/ITk5GbNnzwYAnDlzBq9fv8Z333332fHKtukGBgYCALp3745evXrB2dmZZr4lhKgdwzCIjIzE9evXceXKFaSnp6Nt27YYOHAg9bmrJOgvpEHOnz8PsViMSZMmAZDUXBgYGJToxPXy5Uu8fPkS8+bN47zJBg0ahGPHjuHGjRsYN24cAMDKygrnz59nhxoHBASgd+/eComXx+Phiy++wBdffIFZs2bh8uXL+OuvvxAQEABDQ0N07doV3bt3p6SFEKJS0uQkMDAQN27cwJs3b1C7dm307t0bnp6esLOzU3eIpAIoUdEgISEhsLOzw7///ovdu3fj/fv3MDIywqBBgzBx4kS23TQqKgoASkzMZmpqCjMzM0RHR7NlXbp0gb+/P9svpU2bNnB3d1d47MbGxvDy8sKIESPw4sULBAYGIjAwEJcuXaKkhRCidKUlJ127doWrqytat25NtSeVFP3VNEhCQgL4fD42bNgALy8vODo64tatWzh69ChEIhGmTZsGAEhJSQEAmJiYlDiGiYkJux0A+Hw+1q1bh5cvX0IkEsHBwUGpw+x4PB4aNmyIhg0bYvLkyZS0EEKUhpKT6oH+ghpEIBBALBZj2rRpGDVqFABJn4/MzEycPXsWY8aMQY0aNZCfnw8A0NXVLXEMXV1d5OTklCivX7++UmOXh5IWQoiiUXJS/dBfUw0KCgqQkZHBKTM2Noaenh4EAgHc3Nw423r27In79+8jKioKrVu3ZhMUacIiKz8/XyOnvaekhRDyqSg5qd7oL6sGT548KTGq59SpUzAxMUFCQgLq1KnD2Sa9nZmZCaCoySclJaXEkLqUlBQ0bdpUWaErBCUthJCPoeSESNFfWQ0aNmwIX19fTlndunXh5OSEhIQEJCcnw8rKit2WnJwMAOwcJY0aNQIAREZGolmzZpz93r9/Dw8PDyU/A8X5WNJiZGSEdu3awcXFBS4uLrCwsFB3yIQQJcnMzERISAhCQkJw//59vH37lpITQomKOhgZGcHFxaVEeY8ePXD9+nVcvHgRU6ZMASCZ+v7y5cuoVasWO8qnQYMGsLOzg5+fHzw8PKClpQUAOHfuHHg8Hrp166a6J6NA8pKWGzdu4MGDB9i8eTPEYjFsbGzg4uICZ2dntG3bFkZGRuoOmxDyifLz8/HkyRMEBwcjODiYnY3bxsYGX375Jbp27UrJCaEJ3zQJwzCYP38+Hj58iAEDBqBhw4a4ffs2goODsWDBAk5Nyb1797B06VK0adMGPXv2ZGem7d+/PxYuXKjGZ6EcmZmZePjwIUJCQhAcHMyOkHJycmJrW5o3by63gzEhRDOIxWK8ePGCTUweP36MvLw8GBsbw9nZmf0SQjWnRBYlKhomJycHBw4cwN9//43MzEzY2tpi5MiRcidpu337Ng4fPoxXr16hdu3a6Nu3L8aPH18tvn28ffsWwcHBbOKSnp4OPT09tGrVik1cHBwcaM0OQtRM9r0aEhKCtLQ09r3q7OyMdu3a0XuVlIkSFVLpFf+WFhoaivz8fBgbG7Pf0FxcXGgtD0JU4GO1n87OzmjRogXVfpJyo0SFVDl5eXl4+vQpm7hERkaCYRjY2tqySUubNm2ofwshCpCXl4dnz55x3m9isRjW1tZo164d9Scjn40SFVLlZWRkcL7hvX79GgBgbW2Npk2bokmTJmjSpAkaNWoEAwMDNUdLiOYSCoV4+fIlIiIiEB4ejoiICMTExEAkEqF27dqcfiaWlpbqDpdUEZSokGrnzZs3CAsLY0+00dHRyM/PB5/PR/369dGkSRM2gXFwcKB5XEi1JBaL8fr1a/Z9In2v5OXlgc/nw97enn2fNG/eHI6OjtTPhCgFJSqk2hMKhYiNjWVPxrLfEnV1deHo6MjWujRt2hS2trbskHBCqgKGYZCUlMR5D0RGRiIrKwuApPZR+h6Q1j7WqFFDzVGT6oISFVIliMViiMVihY14ysvLQ3R0NOfEHRcXBwAwMDCAk5MT58RtaWmp1MUeCVGktLQ0zms7IiICqampACSrsMu+tps0aYJatWqpOWJSnVGiQlRmzpw5ePTokdxtWlpaCAwMZG8PGzYMb9++LbGfh4cHFixYwCk7ceIEjhw5ArFYjMGDB2P69OkKjVsqKysLkZGRnJP7u3fvAAC1a9dGkyZN4OTkBHt7e9jZ2cHW1pa+dRK1KigowOvXrxEfH49Xr14hOjoa4eHh7HvLyMiIk5A0bdoUpqamao6aEK6qP+EG0RhjxozBgAEDOGUCgQBbtmxBu3btSuzfqFEjDB8+nFNmY2PDuR0WFobjx49j5syZ0NfXx759++Dk5IQePXooPH5DQ0M4OzvD2dmZLUtNTUVkZCTbjv/XX3+x30wBybdTW1tbNnGR/rSwsKDmI6IQDMMgJSUF8fHxiIuL4/x88+YNxGIxAKBGjRpo2LAhunbtyvYtsbKyoppAovEoUSEqIy8Z8ff3BwD06tWrxDZTU1O5E93JevLkCfr27cvO2pueno7Hjx8rJVGRp27duujYsSM6duzIlmVmZiI+Pp7zgfHkyRNcvnyZXfFaR0cH1tbWbPIim8hQNTuRJzc3l/Oakn2N5eTkAJDUTFpYWMDOzg6dO3fmvLbq1q1LSQmplChRIWoVEBAAAwMDfPXVV3K3FxQUQCgUljps2MrKCufPn0ePHj2gp6eHgICAjyY3ymZkZIRmzZpxFowEJP1okpKSSnzrDQgIQFJSErtf7dq12Q8X2VoYa2trGoFUxZX2GomLi5P7GnFwcED37t3Z1wq9RkhVRH1UiNqkpaVh0KBB6NGjB1asWMHZNmzYMHz48AFCoRAikQgWFhYYOnQohg4dytlPLBZjxYoVuH37NgCgTZs22LhxI/T09FT2PBRBIBAgISGhRE2M7LdlPp+PunXrwtTUlP1pYmICU1NTTpmxsTE1K2kYhmGQmZmJ5ORkpKSksD9lrycnJyM1NZVT62ZjYwMbGxuqdSPVGtWoELW5fv06RCKR3GYfBwcHtGzZEra2tsjIyMDly5exY8cOJCcnczrL8vl8rFu3Di9fvoRIJIKDg0OlrN42MDBAo0aN0KhRI065bP+D+Ph4zodaeHg4UlJS8OHDB8h+39DS0kKdOnVgYmLCJjKyP6XXKaH5fJ+SgEjVqlWL/XtYW1ujVatWMDU1hbW1Nezs7FCvXj36+xACqlEhajR9+nS8fv0af/zxx0eHFTMMg4ULFyIkJASnTp2Cubm5iqLUfEKhEGlpaUhOTuZ8UEo/JKVlH0toTExMUKNGDc7FwMCgxHXpT319/Uo/wRfDMMjPz0dOTg5ycnIgEAjY68VvS69/+PCh3AmIbI2XbJmJiUmlq/UjRF2oRoUoXEFBATIyMjhlxb+9JyYm4unTpxg8eHC55j7h8XgYNmwYgoKC8OjRI7X3Q9Ek2tra7IdhWT6W0ERFRZX4kC4Lj8eDvr5+iYRGXlIj/amjowMejwc+n8/5qaWlJbecx+OBYRiIRCIwDAOxWCz3p3S7SCSCQCAoV8Ih3U8kEpX5PPX09DjPwdjYmFMDQgkIIcpFiQpRuCdPnmDu3LmcslOnTnHW/ggICAAgf7RPaaS1KMWTIFI+5U1opMRiMXJzc0t8uJen9iE1NRWvX78usU0VFbjFkyfZBMPKyqrMWqLiCZe+vr7CJhEkhHwaegcShWvYsCF8fX05ZXXr1uXcvnbtGqytrdG8efNyHzcxMRGApHaGKB+fz2c/sBWhtBoR6aW07Xw+n3ORV/Mi+7OyN0cRQrgoUSEKZ2RkBBcXl1K3R0VF4dWrVxg3bpzc7RkZGahZsyanqUgoFOLXX3+Fjo4O2rRpo/CYifJJm3gIIaQiKFEhKvexZp+7d+/i6NGj6NatGywtLZGZmYmAgADExsZi6tSpMDExUWW4hBBC1IgSFaJSYrEYf//9Nxo3bgw7Ozu5+zg4OMDe3h4BAQFIS0uDtrY2GjVqhNWrV8PV1VXFERNCCFEnGp5MCCGEEI1Fvc4IIYQQorEoUSGEEEKIxqJEhRBCCCEaixIVQgghhGgsSlQIIYQQorEoUSGEEEKIxqJEhRBCCCEaixIVQgghhGgsSlQIIYQQorEoUSGEEEKIxqJEhRBCCCEaixIVQgghhGgsSlQIIYQQorH+D7oKVNfIUXZyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots(subplot_kw = {'projection':'mollweide'})\n", + "\n", + "ax.scatter(target_in_sc_frame.lon.rad, target_in_sc_frame.lat.rad, color = time_color)" + ] + }, + { + "cell_type": "markdown", + "id": "0fd1dfc5-e49d-4016-a0d9-7129086e7d3f", + "metadata": {}, + "source": [ + "## The dwell time map" + ] + }, + { + "cell_type": "markdown", + "id": "afc2ec2c-3154-4b6b-b5f3-992e9fe9d7d3", + "metadata": {}, + "source": [ + "Since the response of the instrument is a function of the local coordinates, we need to calculate the movement of the source in the spacecraft frame. This is achieved with the help of a \"dwell time map\", which contains the amount of time a given source spent in a particular location of the COSI field of view. This is then convolved with the instrument response to get the point source response. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ed960ef1-df68-4e93-a097-6178adb48bb4", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7.68 ms, sys: 3.33 ms, total: 11 ms\n", + "Wall time: 10.3 ms\n" + ] + } + ], + "source": [ + "%%time\n", + "dwell_time_map = ori.get_dwell_map(response = response_path, src_path = target_in_sc_frame)" + ] + }, + { + "cell_type": "markdown", + "id": "938321d2-6fd0-4792-8bd2-c23627bf737b", + "metadata": {}, + "source": [ + "Plot the dwell time map in detector coordinates. The top is the boresight of the instrument. Note that in this plot the longitude increases to the left." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "39823fa3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAACBuElEQVR4nO3deZgcVb0+8PdUVW/Tsy/JbMlkTyALiwkBAgTZDYsIIipcRVRwQeEiCl5+XkURUMSr96qAKKDsCggSQBZZRJYkEMhGVrJNkplMZl96rzq/P6q7p3ume6a7ema6p+f9PE8/01PVdeqkZ3vzPXVOCSmlBBERERGNa0q2O0BEREREmWOoIyIiIsoDDHVEREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKAwx1RERERHmAoY6IiIgoD2jZ7gARTUxSSgQCAXg8Hvh8PgQCAQQCAfj9/ujzRNuCwSB0XY8+DMOI+zhwGwAIISCEgKIo0c8jzxVFie5XVRU2mw2apsFms0UfmqbBbrdHt0c+dzqdcDqdcLlccR81jb9aiWjs8TcPEVkSDAbR09OD7u7u6MfY5319ffB4PEM+dF3P9j9jVNhstrjA53K54Ha7UVhYGH0UFRXFfR77KCkpgdPpzPY/g4jGGSGllNnuBBFlXzAYREdHBzo6OtDe3o729vbo88j22PDm9XpH7Nx2ux2BviBgCMAQEAYAKeI/NyKfh/cBEDL8XMJ8IOZ55PMoGf9p7PNIYyLchCLNzxXEfZQCgBJ+nSIBVUIqEu5yF3w+34iGVIfDgdLS0rhHSUnJoG3l5eWoqKiAw+EYsXMT0fjEUEeU53RdR0dHBw4dOhR9tLS04NChQ2htbY2Gtp6enrTbFkJABgCEFIiQMD8GFSAkIHQF0AWELgBdhLcJYOB2XUAMSljjj4yERrU/7EGVgCIhVQlohrldM59HtkU+hypRWleMnp4ehEKhtM9fVFSEyspKVFRUoLKyMu557EebzTby/3giygkMdUTjnNfrRXNzM5qamnDgwAE0NzfHBbjW1tbUK0gGgGA4mAXMj4OexwQ4hPIjkOUSiXAYtJmBT9oM83mCj9JmwF6sIRAIpNS2EAKVlZWYPHkyqqurE350uVyj/C8kotHCUEeU40KhEFpaWtDU1BQNbpHnTU1N6OjoGLYNRVFgeAHhVyECCoRfNYOaX40LbQxp408kBEq7Adh1SIfR/9xuPp88pwJtbW0IBoPDtldSUoLJkyejpqYGdXV1qK+vR11dHerq6lBZWRmdYEJEuYehjigHSCnR0dGBxsbGuMfevXtx4MCB4YfjQgLCp5oPvwr4lcEBjmFtQpMIV/8cBqRDh3TqgEOPfu6udqK3t3fINux2+6CgV19fj/r6ekyaNAlC8HuMKJsY6ojGUCgUwv79+7Fr1y7s3r07LsD19fUlPc5utyPYqUP4VCAc3KIhzqea168RZUiq4cDnMMzQ5wpBOnXULpqEpqamIYfxXS4XGhoa0NDQgGnTpkWf19bWQlXVMfxXEE1cDHVEo8AwDDQ3N2Pnzp3YvXt39OOePXuSDoEJISC9CoRXheJVIbwaRPgj/Ky0UXZJSLOy5wo/nDqkK4T6I6uxf//+pIHPbrejvr4+GvRmzJiBmTNnora2lkO5RCOMoY4oQx6PBzt27MD27duxffv2aIDz+XyJD9AB4dHMR0xwE14VQjK40fgjhTRDXkHIfLjM57ZyJekkDpfLhRkzZmDWrFmYNWsWZs6ciRkzZqCgoGCMe0+UPxjqiNLQ2dmJbdu2RQPctm3bsH//fiT8MTJiwlv4ofSpgF9l1Y0mhEh1zyiICXzuocNeXV0dZs6cidmzZ2POnDmYN28eysrKxrjnROMTQx1REt3d3di8eTM2b96MLVu2YPv27Th06FDiF/sVKH0aRK8Noi9ShWN4I0pEQprVPHcQ0h2C4Q6hYk4xWltbE75+8uTJmDt3LubNm4d58+Zh7ty5KCoqGuNeE+U+hjoiAIFAADt27MDmzZvx4YcfYvPmzdi3b9+g1wkhgD7FDG69tv4gF+K1QUSZkpoB6Q7CcIcgC0OoXzwJjY2NCSvhdXV10YB3+OGHY+7cubyrBk14DHU0IR08eBDr16/Hhx9+iA8//BA7duxIOIFBeFWIHhtETzjA9WmcaUo0hqRqmNW8oiBkYRDVR1TgwIEDg16naRrmzJmDBQsWRB+VlZVZ6DFR9jDUUd4zDAO7d+/G+vXro4+WlpbBLwwKKJEA12NjBY4oR0nNgCwMwigMQRYFUTrbjfb29kGvq66ujga8hQsXYvr06dA0LQs9JhobDHWUdwKBALZu3Yr169djw4YN2LBhw6D7mqqqCqMzPsTBx2vgiMaj6ISM4iCM4iBmnFiHnTt3wjCMuNcVFBRg0aJFOOqoo3DkkUdi9uzZDHmUVxjqaNwLhULYtm0b1q5di/feew8bNmwYPLNOB0SPHUq3DUqXGeSEwSocUb6SariaFw56BfW2QQt8M+RRvmGoo3FHSoldu3ZFQ9y6desG394oKKB02SG6bVC67ea1cFwDjmjCkpDmtXklAciSIAoabIN+bxQUFGDhwoU4+uijsXjxYsycOZMLJNO4wlBH40JLSwtWr16NtWvXYu3atYOvnwmZIU7ptEN02SE8HEolouRSCXnl5eVYvHgxlixZgsWLF6OioiJLvSVKDUMd5aRgMIj169dj1apVWLVqFXbt2hX/Ah0Q3WaIU7rsEL0aQxwRWRYX8koDcNSp8Hq9ca+ZNWsWlixZgiVLlmDhwoVcQoVyDkMd5YyDBw/inXfewapVq/Dee+/F/UJVFAWyUzVDXKfdvCaOw6lENEqkkJDFQRilfsw6bQq2bt0at9/hcODII4/Ecccdh+OPPx7V1dVZ6ilRP4Y6yhpd17Fhwwa8+eabeOedd7Bnz574FwQUKB12KB0OM8hxeREiyhKpGTBKAzDK/CifXzjo7hczZszAsmXLcPzxx2PevHlQVTVLPaWJjKGOxpTP58OaNWvw73//G2+99Ra6urqi+xRFgexQo0FO9HFIlYhyj4SELNBhlPkx/5MzsHHjxrjlU0pLS6MVvCVLlqCgoCCLvaWJhKGORl1HRwfeeust/Pvf/8aaNWvilxsJCrMS1xauxvFuDUQ0zkjNgFHmh1HuR8H0+AkXNpsNRx99NJYvX44TTjgBpaWl2eso5T2GOhoVBw8exGuvvYY33ngDGzZsiL93o0+B2uaE0u6A6LKxGkdEeSN6LV65H9XHlGH//v3RfYqi4IgjjsDJJ5+ME088kbcxoxHHUEcj5tChQ3jttdfw6quvYuPGjXH7RK9mVuPaOaxKRBODhIR06TAq/Jh5Ri22bdsW3SeEwIIFC7B8+XIsX74ckydPzmJPKV8w1FFGWltb8frrr+PVV1+Nq8gJIYBODWpruCLn50XDRDSxSUcIeqUf885pwKZNm+L2zZs3D6eddhpOOeUUVvDIMoY6SltXVxdeffVVvPLKK1i3bl3c0KroskFpdUJtc0AEGOSIiBKRdh16hR8LLpiB9evXx/2H+Oijj8Zpp52G5cuXo7CwMMs9pfGEoY5SEggE8Pbbb+PFF1/E22+/jVAoFN0num1QWh1QW50MckREaZI2HUalH/M+2RB36Yrdbsexxx6L0047DccddxwXO6ZhMdRRUlJKbNy4ES+++CJeeeUV9PT0RPeJXg3KIacZ5Di0SkQ0IqRDh17lw5STK7F79+7odrfbjeXLl+Oss87CEUccYV7iQjQAQx0NcuDAAbzwwgt48cUX42Zuwa9APeSE0uKC4tGy10EiojwXvW1ZlQ/lR7lx6NCh6L66ujqcddZZOOusszjBguIw1BEAwO/341//+hdWrlyJ999/v3+HLsyh1RYnRJeds1aJiMaYhLlMij7JB+cMAY/HA8C8/m7JkiVYsWIFTjjhBNjt9iz3lLKNoW6C27VrF5555hm8+OKL6O7uBhCeudpug9rihNLmhDAY5IiIcoFUJIxKHxZ8ZgY++OCD6Pbi4mKcfvrpWLFiBWbPnp29DlJWMdRNQF6vF6+99hqeeeaZ+PXkfArUgy6oB12c8EBElOOkMwR9kg/lHyuIG56dN28ezj//fJxyyilwOp1Z7CGNNYa6CWTXrl3429/+hpdeegl9fX0AAFVVIQ9qUA66oHRweJWIaLyRkJClAZz47aPxxhtvIBgMAgAKCwuxYsUKfPKTn8SUKVOy3EsaCwx1eU7Xdbz55pt44okn4q+V86rhqpwTIsiqHBFRPpCaAX2yF5OOL0JTU1N0++LFi3H++efj+OOPh6Zxolu+YqjLU11dXXj22Wfx1FNPobm5GYB530G02KA2uTjpgcgqRYVaVQH9YEvGTWnVk7H5+9Mx++p3Mu9WQQHaP30ENJ9E4V8yb4/GNwkJoyyAY756ON5+++3o4sZVVVU477zzcN5556GsrCzLvaSRxlCXZ3bs2IEnnngCL730EgKBgLkxKKA2u6A2F3BNOaJMKSq0GnMZCRkKZRTutOrJ2PzzOkAC6LRnFO4Utxttn14EALB5Geyon3To0Ks9KFpoR2dnJwBzYeMzzjgDF110EaZPn57dDtKIYajLA1JKvPPOO3jkkUfiZkOJXg3qgQIorZzBSjRiYkJdhNVwp1VPxpbba802pMgo3MWGOgAQEqzaURwpzJmzs8+vw+bNm6Pbly5dis985jNYvHgxFzUe5xjqxrFgMIiXX34Zjz76KHbt2gUgPPGhWYPaVADRbeMQK9FISxDqItIJd1r1ZGz+WR2EEv8rWEoBdKQX7BS3G+0XLoJM8OPOqh0NJCEhi4I47lsL8cYbb0SHZqdPn46LL74Yp512Gte8G6cY6sahvr4+PPPMM/jrX//aP409FB5iPVDA5UiIRtMQoQ5IPdhpNdXY8vOaxG2kWbUbWKUbiMGOkpHOEPRaD+wzzeWuAKC8vBwXXHABPvWpT6GoqCjLPaR0MNSNI62trXj88cfx97//Hb29vebGgAJ1fwHUZheErmS3g0T5bphAF2u4cDdUqIu2IQXQacPsb69K3qUhqnSxhARUv0TRYwx3NJhUDejVXpQf44oWC9xuNz71qU/hoosu4qSKcYKhbhw4ePAgHnroITz77LPR9YeER4W63w2lxQkx3G9zIhoZaYQ6YOhgl0qoA4av2g1XpRt0Xh+DHSUXue5uylkV0ct67HY7zj33XHz2s5/lvWZzHENdDmtqasKDDz6I559/HqFQCAAgum1Q9xVAaXfwejmisZZmqIsYGO6SXU83ZBsJrrVLtUo3EIMdDUdCwij3Y9YFNdiyZQsA85rtM888E5deeinq6+uz3ENKhKEuB+3fvx8PPPAAXnjhBei6DgAQnTZojYVQunjxKlHWWAx1EZFwl2qVbtDxUgCGALo1zP72qrSrdLE4O5ZSISEhSwJY8IXp0QXsI+HuC1/4Ampra7PcQ4rFUJdDmpqacP/99+PFF1/sD3MddmiNbijdDHNEWZdhqAPMYCcUxVKoi7YRvtZu7vc3Wg51EazaUaqMogCOvmIOVq0yr/FUVRUrVqzAF77wBQ7L5giGuhzQ1taGBx98EE8//XR0mFVpt0NtdEPpYZgjypgQUAoLYfT0ZNSMVleLrddOxdxf7s2oHaOyBB993wY9g1v0GX02zP6zH52zCzLqi+aXKHpsFcA/BZQioyiAI748E++++y4AwGaz4ZxzzsGll16KqqqqLPduYmOoy6Kenh488sgjePzxx+Hz+QCEK3N7CqH02rLcO6I8IgTUkmIAgNQNy+FOq6vFhz+phdquYe7/WAt2RmUJPrrBDqFISAnLwc7os2HOvV5AETA0BV0zXZbaiYY6gMGO0mIUB7Dgi9Oiw7J2ux0XXnghLr30Ui6FkiUMdVng8/nw+OOP4+GHH44uTSK6bWaY4zVzRCMvJtQB1oNdJNQBAAxA7Uw/3BlVpdj5/f4bqlsNdtFQF2nHpqJzVnrBTvNLFP1lDSCN/o38k0BpMkoCOOySKVi/fj0AoKioCJdeeikuuOACOByOLPduYmGoG0OGYeCFF17AH/7wh+g6QKJPg7rHzdmsRKNpQKiLSCfcaXW1+PCmWmDAcpDpVu0GhrpoX9IId0afDbP/5IfQjbjt6Qa7uCpdog4RpUhCwigLYMo5ZdGlUCZNmoQvf/nLOOOMM6CqXBR/LDDUjZG1a9fit7/9LbZv325u8ClmZe6Qk2GOaLQlCXURqYS7uCrdQAagdmkpXWuXLNQBqQe7gVW6uDZSDHYJq3SJOkSUBgkJY5IPZcsc0eLFjBkz8I1vfAPHHHNMlnuX/xjqRtmePXtw55134q233jI3hATURrd5Oy8uGkw0NoYJdcDwwW7IUBemdgwd7GKvpxuyL8OEu6FCHQBAEZCqMmS4G7JKN7AzRGmSioRe44FrIaKXGR1//PH45je/iSlTpmS5d/mLoW6U9PT04N5778VTTz0FXdehqipkox3a3kKIEG/nRTSmUgh1EcnCXSqhDgCgC6jdasJwN1SVblA/kgS7ZEOvCdtIUrVLqUo3sDNEFkjNwCfvOBlPPvkkdF2Hpmm46KKL8IUvfAFutzvb3cs7TBcjzDAMPP/887j00kvxxBNPQNd1KG12KKtLYdtZzEBHlOOEqkDJZOaeKqGXhbD12qmZ9UMAqk1PvC+FQAcAIqijdEeSil6qgS7SGSILREjB36/+F5TVpVi6dClCoRAeeeQRfP7zn8fKlSuja7LSyGClbgRt3boVv/rVr7Bp0yYA5v1ZtZ1FUDo5+4coq9Ko1MWKrdqlXKmLNaBql06lLtqHARW7YYdeE7URU7FLu0o3sDNEGdDL/Kg5qwiNjY0AgHnz5uE73/kO5s6dm+We5QeWjUZAd3c37rjjDlxxxRVmoNMF1F2FsL1fwUBHNI7lQtVOCECz61BtenToNe02BlbsrAS6SGeIMqB2OHDwUT/UnYVwu93YsmULrrzySvzqV7+KXntH1rFSlwEpJV5++WX83//9Hzo7OwEASosT2u5CiACnbxPlDIuVujiTq7D5+lJrx0rzoRWEoKgWAxWAQK8dc+5OP9RFKQIiqEOu/dB6GwArdjQipE3HSTceiZdffhkAUF5ejm9961s45ZRTIPgfCEsY6ixqamrCL3/5y+g98ESfCu2jYt6jlSjXCAFtegP2fKYWU+/aZL2dqgps/fokGKUhS4crXRrm/qEDH/239ep9oNOBud9eD3nEHEvHi6AB+X74Pcjkjyb/bNAIMkr8mPyJQuzbtw8AsHjxYlx77bWor6/Pcs/GH4a6NIVCITz++OO49957zVt7GTCXKNnn5hIlRLlECCgF5n1RlclV2HZlDYQE7J0i/XBXWY7tX6mGVAGpSkvBTunSMPfHWwFNAyaVpx3uAp0OzP3m+5ChEITDYSnYxYU6wFqw458MGgVSSOj1fVBnBxEIBOBwOPCVr3wFn/70p7lwcRp4TV0aduzYga9//ev43e9+B5/PB9Flg+39CmiNhQx0RLkkJtDFkgLwl0ns/dr8tNuT4b8rQhdQ22xQOtOb8GB2wACCAeBAC2b+OP1hVBkyw6T0+yHWbUvr2EGBDmBAo5whpIDWWAi8VYSPfexj8Pv9+O1vf4tvfvOb2L17d7a7N24w1KUgFArhT3/6E7761a9i69atQEhA214E24YyKF4Lv9iJaHQIAcXtThjoYvnLJHbccDj2fD3NcBd7Kl1YC3aAGe4sBrtoE34/sGZj2uFucENpBDuGQBplwqdhw68boW0vgtvtxocffogvf/nLeOCBBxAKWbv0YSJhqBvG7t278Y1vfAN//OMfw2vOOWB/rwLqwQLe3osolySpziUjBRAolWMS7JQuDXNv+WhABzIPdpDSUtUuUTtEuUJAQD1YgOCrLhx33HEIBoO45557cOWVV+Kjjz4avoEJjKEuCV3X8eijj+IrX/kKtmzZYlbnthZD21wCkeJNt4lojKQZ6GKNRLAbdjhWwhx2HbQ9HOyuahoy3EWup0va/DDBTgQNyA+GmfE6XLBj8KMxJgIq3rv9I2hbi1FcXIzt27fjiiuuwGOPPQbDsD6LPJ8x1CXQ1NSEq6++Gr/73e8QCASgtNthX1sB9ZCL1TmiXJLicOtwAqUSO67P0nBsitfZyWGGnoat2KUSyhjcKMcICKiHXPC9ZMfxxx+PYDCI3/72t7j22mvR0tKS7e7lHIa6Af75z3/iy1/+MtavXw/o5rVz2oelXHeOKNdkUJ1LRCpjNxybuAMjc50dh2IpH4mgind/vgPa9iI4nU6sXbsWl112Gf75z39mu2s5haEuzOv14rbbbsNNN92E3t5eiG6bWZ3jtXNEuWeEA12sXAt2gU4H5l61LvUmBgS7lIZeBzUih/6cKAsi19rp/3bjsMMOQ29vL2666SbcfPPN8Hg82e5eTmCoA7Bt2zZ89atfxXPPPQchBNS9btjWl0H4WZ0jyikjNNw6nEyHY2ODndKlYe6taVzcnSDYyUTX4w3VxMCKnZVQxiBHOUrxafjoD2247LLLoCgKXnzxRXz1q1/lJApM8FAnpcQTTzyBr3/969i7dy/gV6CtL4W2t5DVOaJcM4rVuUQyHY6NTKCwdyiJJ0kMefIcGopluKMcJKTAI195Hur7JaiqqkJjYyOuvPJKPPPMM5jI91SYsKHO6/XiJz/5CX79618jGAyaS5W8XwGli7f5Iso1itsNeeyirJzbsAF6RaHl44UB6F3d6R8YDnaH3bjT8rml35/+0CvROKL02NH1DHDsscciEAjg9ttvx09+8pMJOxw7IW8TtnfvXvzgBz/Arl27AAmouwqhHuC1c0S5SHG7ETxmLhS/DnXdjrSPF/U12PydMgCA1pH+tW5an8D0vx5CqNyNnee70jrW3i0w9dbVkLoOtaQ47XPDkNC7LQRCoglGQkKv8wCzvNB1HVOmTMFPf/pTTJs2LdtdG1MTrlL32muv4YorrjADnV+BbUMZtANuBjqiHBQJdFIR0J0a9EWz0jpe1FWbgU6TgCYRKktvRXqtT2D6E23m8/Y+zHjKm9bxkOGlSKS0Vq0jopQICGj73VDWFscNx77xxhvZ7tqYmjChTtd13Hnnnfjv//5veDweiC4b7B+UQ+nmcCtRLpNK+D9cAoCS5n++hDADXfTzNA+XAGIXOTVSH9iwdwtMvW11/4Z0gx2rdERpiwzHHnXUUfB6vbjxxhtx7733TpjFiidEqPN4PLjxxhvxyCOPAADUfQWwbSjjnSGIclikShdLd6gpV+uiVbpYaurVOq1PoOFv7fHbOj2pV+siVbq4bazYEY02EVKw6Tf7ceGFFwIA7r//ftx4443o6+vLcs9GX95fU9fU1IQbbrjBHG41AG1bMdTW9K6LIaKxFTvsOogEVG8I6vrk19eJumpsvq48vkoXKySGvL5O6xOY9mQ7hK4nPnyY6+vsXQJTf/Zu8qVIhBj6GjtW6YhGhD7JC2WBD4FAAFOnTsXPfvYz1NXVZbtboyavK3Xr16/HlVdeaQa6gALb+nIGOqIcN2SgA4YdhhX1NUMHOmDY6+uERNJAB6R2fd2Qa8uxYkc0JtQWF+TqQlRVVWHv3r342te+ho0bN2a7W6Mmb0Pdiy++iGuuuQadnZ0QvZp5/VyvLdvdIqLhKEryQBc25DCsIoYOdBFJTpFo2DXh4Xria3QiVbphJQt2rNIRjSil14aulRJz585FV1cXrrnmGrz66qvZ7taoyLtQJ6XEQw89hJtvvhmhUAhKqwO29eW8dyvROKC43Qgunj38CwWguwbPhhX1Ndh8TWlqJ0twfd1ww65xh3d5k1brUr4DBCt2RGNCBFXsuq8Dy5YtQyAQwA9/+EM89NBDebdQcV6FOl3X8b//+7+4++67AZgTIrQtJRAGlyshynXDDrsONGAYVtTXYPO1ZYAtjV/SA4Zhhxt2HXR4ex+mP90f7FKu0iXDKh3RqBGGwJqfbcenP/1pAMDdd9+NO+64A3oaP/O5Lm8mSvj9fvz0pz/Fa6+9BgBQdxZCO+DObqeIKCVpB7qImEkTYmotNn+3JP2T6wJauwZbrznsmk6oiwiVu7Hv4wVDT44YSmTiBEMd0ZgI1XggZ/fBMAx8/OMfx4033gi7ffwvcZYXoa6vrw/f//738cEHH4RnuJZAbXVmu1tElAKlqAjBxbPTD3QREgiUaNh3lpFelS62D50a5tzbaSnQRRkS+tb073hBRNmhV/ggFnkQDAaxZMkS3HzzzXC5xvdkynE//NrT04Nrr73WDHQhAdumMgY6orGiqFDc1iviWl0t9n5rIVqOtv4za9gEPFWK5UAHAEpIADt2Wz4ewRD0bR9ZP56Ixpza5gTWuuFyubBmzRpce+216B7nlfJxHeo6OztxzTXXYPPmzUBQwLahDErX+C+fEo0Ligq1uBDCpmUU7AwbEHQDh450pH+sJuCt1KB5gdJ3rf3sq202zPrROhh+P+SuxvQbCIagf7QbGP+DHkQTjtLlQOhtF4qKirBp0yZ861vfQltbW7a7Zdm4DXVtbW349re/je3bt5tr0G0oh9LHJUuIxkQ40EVYCXZaXS12f3FauAFApjlBPRLoIAAhJew9Mu1gp7bZMPuH62B4zckOloMdAx3RuKX02uB73Y6Kigrs2rUL11xzzbgNduMy1LW0tODb3/42du/eDfgVs0LnSb46PBGNoAGBrn976r9OIoHOiPl/WMiZZrVOiLi15tINdgMDXURalxlHqnRENK4pHg09/wAmTZqEPXv24JprrkF7+/DrVeaacRfq2tvb8Z//+Z9obGwEfArs68ugeBnoiMZEskAHQKhKStW6RIHObCD1YVhDE/BWDC7tCSmh6KmFMiExKNABgAwEUqvWcdiVKK8Iv4bO53RUVVVhz549uPrqq8ddsBtXoa6rqys+0G0oh/Az0BGNiSECXf9rhv6VkjTQRaQwDBs77JrwHJ7hr6+LXEeX9BypDsMy0BHlFeHT0PW8EQ12461iN25CXW9vL6677jrzPq5+BfaNZRB+3iWCaEykEugwdLVu2EAXNtQw7HCBDhh+GDbZsOugcw0V7DjsSpS3YoPd7t27cd1116Gnpyfb3UrJuAh1Ho8H3/ve97B161ZzUsTGMggfK3REYyLFQBeRaNJEqoHObCDxMGwqgS7aRJJgp7bZMPtH64cNdNFzJgp2HHYlynvCp6HzeQPl5eXYsWMHvv/978Pv92e7W8PK+VAXCoXw3//939i4cWN4HbpSXkNHNFbSDHT9x/X/akkr0EUMGIZNJ9BFm0hwfZ0wAMPjSaMjSYIdAx1R3lN8Gnr+Cbjdbqxfvx4//OEPEQqFhj8wi3I61Ekp8Ytf/AKrV68GdAHbxjIuW0I0VhQVaqG19efihmEVJb1AFxY3DDtgpmuqYq+vU9tsmPXj9ek3gpgZsRx2JZpQlD4bAm/bYbfb8dZbb+HnP/85DMPIdreSyunbhN177724//77AQloH5ZC7Uh/cVIiSp9aWoLggumwbdyVWUOTKrHn05MthToA5r1d/UDhPsNSqAMAKQQ0n4Hi5zamXaWLJVQVUtdZpSOagPRyH+TCXui6jksuuQRXXnlltruUUM5W6lauXGkGOgDajiIGOqJUCWE+LFJLS+A9dg6kluGvh0mV2HtBBoEOgL0HaHhoD8rXHLLeRq+Bor+9B6Ovz3pHAMhQiIGOaIJS250Qm83Rh4ceegjPP/98lnuUWE6GujVr1uCOO+4AAKh73VAPFmS5R0TjRGyYsxrshAKpAqECFcGFM6y1MakSez81GYYKCN1aE/YuoP6veyD9AYiQtUZsfRLuZ94zAxnAUEZElqktLnzhC18AANx+++3mPedzTM4Nv+7fvx9XXHEFenp6oLQ4oW0rhrA67kI0kSQKcWn+eEerdJFJChKw9YRg27Az9UYigS52PlOatwGzdwH1j5uBDgCgCKCkCO3HVKXcxqBAFyvdwJtbvyaJKEskJJb9YD5effVVFBcX46677kJ9fX22uxWVU5U6j8eD//qv/0JPTw9Etw3adgY6opQkCylphJdBgQ4Ih7E0fgYTBToAkKlX7AYFOgAwJNDVg/LVqQ/DCikTB7p0MdARUZiAwJs/3YR58+ahu7sbN9xwA3p7e7PdraicCXVSStxyyy3RxYVtW0ogJAMd0bAyuH4uImGgC0t5GDZZoEtDwkAXkUaws/VJFKxcm/wFqQY1BjoiGkAYAjv/1Iqqqirs3bsXt956a3r3jB5FORPq/vznP+Nf//oXYMAMdAHeLYJoWKkEumFeM1SgM48HgkXa0MEulUCXSrVOInGgi0gh2Nn6JNwr3x++SjfcL+Ec+SVNRLlHBFV0vqTDZrPhjTfewKOPPprtLgHIkVC3du1a3HvvvQAA7aNiKD1D37eRiJBehS7Ja4cNdNHjhxiGTadCN0Sws3cB9U/sGb4NQyadOBENdMEhgmFcfxjciMgapdeGb33rWwCA3//+9zkxcSLrEyU6Ojpw+eWXo62tDUqzE7YdJdnsDtH4YGXIdcCPulpaAu/S2ZBaim0lmjRhdch1wMSJIYddE0kwcSLtQBfXnwHvAcMeEaVAQmL5TUfgpZdeQnl5Of74xz+ioqIia/3JaqXOMAzccsstaGtrg/Co0HYWZ7M7ROOD5aVK+o9LO9ABg4dhJ1dlfA0dYCHQAYOGYTMKdEB8iGOgI6IUCQi8ftM6TJ8+He3t7fjpT3+a1TtOZDXU/eUvf8GqVasAA9C2lEAYnBhBNKRMJ0UIYS3QRY8PD8NOrsLe8ydZD3ThYVhLgS4iJtgJKa0Hurh+MdARUXqEIbDv8W44HA68++67eOKJJ7LWl6yFum3btuHuu+8GAGg7i6B4eE9XomSEwwGtpjrjdrSp9Wj+3OHWAl2Y7lDgm1KScYXO0Q7U/nGDtUAXYUigrQMFz36QWWcABjoiskzxavjGN74BALj77rvNlTyy0Y9snDQYDOLWW2+FrutQWh1Qml3Z6AbRuCAcDqg1kwElsx9XbWo9Gj89BbrdeqATOmDrDkLrC2HSB0HL7Tg6gOp718Lo6YHR0WG5HRg69Lb2kanSERFl4LcXPoSlS5ciEAjg5ptvRiAw9r+XshLqHnjgAXz00UdAUED7iAsMEyUTF+jsNmjVky210x/oAN0FdM5IvzIudMDWFYCQEkJK2NsDloJdNND5fGkfGycc6IiIcoGAwPv/+xFKSkqwfft23HfffWPehzEPddu3b8cDDzwAwFy+RARzYlUVopwzqEInBOB0pB3sYgMdAEgBhNzpBbvYQBfdJiVEKL0hy0SBToZC6VfrGOiIKAeJoIq+t83njz76KLZv3z6m5x/TRBUKhXDbbbf1D7u2Osby9ETjRtIh1zSD3cBAFyHTuBdrokAXYesOplytc3QA1fd/kLBCl1awM3To7RkM2RIRjSK13YmTTz4Zuq7j9ttvh66neI/EETCmoe7JJ580U2tQQPuoiMOuRAkMew2dECldX5cs0EXozuGrdUMFOgApD8NGA53Hk/Q1KQW7SKDjpAYiymFv/Xwj3G43tmzZgqeeemrMzjtmoa61tbX/rhG7iyCCvA0Y0UApT4oY5vq64QIdMPww7HCBLvq6YYKds10OG+iifRoq2DHQEdE4IQIqrrzySgDm3SZaWlrG5LxjFuruvvtueDweiB4NykHnWJ2WaNxIa5brEMOwqQS6iGTBLtVAF319kmDn6AAm/2ldSoEu2qdEwY6BjojGmd9c8CDmz58Pr9eL3/3ud2NyzjEJdevXr8cLL7wASHC2K9EAwuGA1jAl/WVLBgzDag1T0HzNcSkHuoiE19eFZ7imI9HECWHItAJd9PTGgHMbkoGOiMYVAYFtDzZBCIFXXnkFGzduHPVzjnqoMwwDv/71r82THXRB6eUiw0QR0eqcqlpbhy48DKtNrUfjBfUIOZFWoIuIvb4ushadFbETJxwdwOQ/r7PUDgwdRmdX9Lne2WmtHSKiLFL6bFixYgUA4Le//S3kKP/ndNRD3auvvmpOjggJaLsLR/t0RKNPCAibheQ0gFZTDc9ZR2S2qLAQMKpK0XZiHfQMJpNHhmG7GmxpDbsO6k54GHbqiz0pX0eXtE/BAPTWVg67EtG49tJ/r4LL5cKmTZvwyiuvjOq5RjXUhUIh/OEPfwAAqPsLIEJck47GOSGgOByAktklBFpNNVpPmw7Dllk7RqET3fNKIXSg4GBmwcfRLlHzyGZoOw5k1I7qCQDvb84o0EVJDrsS0fgmgio+//nPAzDnF4zmnSZGNWU9++yz2L9/PxBQoO4vGM1TEY2+SKADIDKo1vUHOsBfpKD7CGt3iYgEOiN8PZwwLDUDAHC2SUz+y4cwevtgdHdD/ajJUjuKNwi5aTtkKGS9M0REeeaBLz+DyspKNDc347nnnhu184xaqPP7/fjTn/4EAFAb3RAGq3Q0jsUEuugmVUk72MUGOrMRwFeafrAzilxxgQ4AVL+0VK2LBro+b7hxCVgIZQx0RESJCUPgkksuAQA8+OCDCAat3zt7KKOWtFauXInW1lbAp0Btdo3WaYhGX4JAF92VRrAbFOiijaQX7IwiF7rnFMcFuug5vOkFu0GBLnIOjwfqjv0pt8NAR0Q0tDs/8wgqKirQ0tKC559/flTOMSqhLhQK4bHHHgMAaPvcEJJLmNA4NUSgi0rh+rqkgS56HsDQhu9ONNBpyc+ZarBLFujME0kYPb0pBTsGOiKi4QkpotfWPfjggwiNwu/MUQl1r7/+Opqbm4GggNLCKh2NU6kEOgx/fd2wgS4sUDh0tc4odA4b6KLnHCbYDRnooicMB7shrq9joCMiSt3dn3sM5eXlaG5uxksvvTTi7Y94qJNS4uGHHwYAqAcKIAxW6WgcSjHQRV+eZBg21UBnNpJ8GNYocqF7bklKgS7aXJKJEykFuuiJZdKJEwx0RETpEYbARRddBAB4/PHHR3zduhEPdWvXrjXXpdMF1CbOeKVxKM1AFzVgGFarq0XbqdNSC3TRcw8OdqkMuSaiBgZX65xtEpP/uiW1QBftwOCJEwx0RETW3PelJ+FwOLB9+3asW2dxgfYkRjzU/e1vfzMbPujkunQ0vggBxem0FugQPwyr1dWi7eNTodstVKpjgp3VQAfAvC2frz/YRQNdb1/aTRkeT7Rax0BHRGSdCCk444wzAJjVuhFtW45g7a+1tRUXXXQRdF2HbW0FFE8KV34T5QC1uBiomQS5Z1/GbSnVk9B2Qq21QBdD6IDNY1gLdAPYPAYK/7XdUqCLUgSEqkIGAgx0REQZMApCCB7dBkVR8Pjjj6OysnJE2h3RUtpzzz0HXdchum0MdDRuqMXFMOZMBbQEa4SkSUytw/7z6uGtyOxHy95joOpfB1C8tSvjPjm6dBT8Y13m90/VdRgeDwMdEVGGFI+GhQsXwjAM/OMf/xi5dkeqISklnn32WQDgunQ0bkQCndQU6G47REO95bbE1DocOGsydAdg2IFAkbUKm6PbQOnqA4DXB6WtG6WbOi33ydGpw/nP9ZB+f2a325IGwxwR0Qja/OQeAMDzzz8/YhMmRizUbdq0CU1NTYAuoLQ6R6pZolETG+gAAIqAXuKCmD4l7bZEQ3000PVvTL9Pjm4DJWsOAP7wvQF13Qx2H6ZfsXN06nC+Eg50YTJkYRVzBjoiohGntDrgcrnQ2NiIjRs3jkybI9IKgH/+859mg20OLmNCOW9QoItQBPQiZ1rBTjTU48CZk+IDHQDDll61blCgi9B1KK1dKVfsHJ06Sp9ePyjQAQCkTC/YMdAREY0KoStYvnw5gP4MlXGbIzFRIhQK4cILL0RHRwe0TaVQO6zNHiQaC0kDXSxDQu3yDjlxQkytQ9PpkyFVDAp0sZQAYO8Z+sfM3mOgdE0T4PMnf5GqwqgoRuf80qQvcXTqcL26AYbPN+T5IASENsxaKwx0RESjSi/zIzS/ExUVFXjiiSegKJnV2kakUrdhwwZ0dHSYd5DoTO8G50RjKaVAB5hrzg0xcSIy3BoqGDrQAcNfX5dSoAMAXYcI6kl3pxzogOErdgx0RESjTum0o7CwEG1tbSMyBDsioe6tt94yG2t38D6vlLPU0pLUAl1YsokTyYZbh5Is2Dm6Uwx0kXN39yUchk0r0EUkC3YMdEREY0JIgWXLlgEAXnvttYzbG5FQ9/bbb5uNtXPYlXKTWloCY9aUlAMdgP6JEzHBTjTU48AZ6QW6iIHBztFtoOTd1AMdgIQTJywFuoiBwY6BjohoTP3zV+8AAFatWpVxWxmHusbGRuzduxcwwKFXykmWAl1EzIzYaKDLZHJ3ONNZCnQRMRMnMgp0EZFgx0BHRDTmlE47VFVFY2MjDhw4kFlbmXbmvffeAwCIbhuEztuCUW7JKNBFKAKhcje6F1RkFuhgzoiFhPVAF6HrEE1tmQe6CCkZ6IiIskDoCubPnw8AWLNmTUZtZZzC3n//fbOhLlbpaARE7p+qZH53B23aVLR8+nB0zSnMqB1DUxAosY3I7bpcLRJVT2yC0dySUTsyFILe2joygY6IiLLqmGOOAZDlUCelxLp168yGGOooUzHLbAhVzSjYadMbcPD0OoRcAr5yBd0zCiy1Y2gKgsU2SEXA5jHgPmBY7pOrRaLiyY3Qu7th+P0wOq3dAkyGQtDb2jO7QwQREeWMP337CQDAxo0bM7q7REahrrGxEe3t7YABiJ5h1rwiGkqCddOsBjttegMOnlaLkNOsrEkBS8EuNtCZDZnXwlkJdpFAZ/T0hNuSloIdAx0RUf4RvTZomob29nbz7lwWZRTqtmzZEu0MlzIhy4ZYCDedYKdNb0D75cfFBboIKQDdlvr36KBAF20o/WA3KNBF20ov2DHQERHlJ2EIzJkzBwAyWq8uo1C3bds2s5FeLZNmaCJL4c4GqQS7SHUu6BaDAl1EsFCkVK1LGugi0gh2rhaJyr9tGhzoom2lFuwY6IiI8ltkssTmzZsttzEioU70cuiVLEjlVlWRlyYLWBg83JqMVABf2dDDsMMGumhjwwe7SKDTu7uHaUtC6snbYaAjIsp/f/vpCwCAnTt3Wm7DcqiTUmLHjh0AANHHSh2lKY1AZ75eSVitSzXQRQwV7FIOdNHGkge7lANdpKlQMGG1joGOiGhiiGSpnTt3Wp4sYTnUdXR0oLe3F5CA8DDUURrSDXSRwwYMw6Yb6CISBbu0A120scHBLt1AZ7YzeBiWgY6IaOIQXg2KoqCrqwttbW2W2rAc6hobG80nfoWTJCh1FgNd9PBwsLMa6CJig53lQBdtDFDC6/ZaCnTRdvqDHQMdEdHEIgyBmpoaAMC+ffsstWE51EVOKLys0lGKMgx0EcrCOdh7YZ3lQBchw9/9WrfPeqALs3kMTFrrtx7oop0ygx0DHRHRxBMJdVaXNbEc6iL3JxO+zFf+p/wnbHaoFeVQ3K7M2jl8JvacW4ZAmUSgJLM+OTsMlL3XCqXbg4J9vRm1Ze8IwPbvjZkFuggpGeiIiCag6upqAEBzc7Ol4y2Hush4r/Dzfq80NGGzQyktAVQVcDgsBztx+EzsOacMoQJprjvnsh7snB0Gyte0Qvj8gJQQQd1aQwDsnQFo726B9GdwL1ciIprwnv/NqwCyEOra29sBACLISh0lFw10scObFoJdNNC5+ytYVoNdXKCLtN/ntVStiwQ63oOViIgyFclUkYyVroxDHQKs1FFiCQNdRBrBThw2Y1Cgi0g32CUKdGZDEkpnb1rBjoGOiIhGVND8e9lt8VIey4ksckIRZKijwYYMdBEpBDvzGrryhIEuItVglzTQRRtKPdgx0BER0UiLZKqurvTuCx5hOZF5vV7zic7lTCheSoEuYohgl2jINRkp+mezJjJsoIs2NHywY6AjIqJRETL/kI15pS4S6oTBUEf90gp0EQmCXTqBLsJwJK7WpRzoIoYIdgx0REQ0WiKZKhAIWDreUqjTdb3/hKzUUZilQBcRE+ysBDog8TBs2oEu2tjgYMdAR0REoyp8c6JgMGjpVmGWVg7W9ZjlH7icFiEc6EqKrAW6CIcDcl4DGk8pTDvQRUSDHQSKd1sMdNHGwsEOQKjQzkBHRERjQkoJr9eLgoLB9ykfiqVQpyicHEH9lIICKOVlkMFgxm0ZDhXBwsz+pyAF4GgHKl7fl1nIBMxgd7Ad2pZOBjoiIhozgUBgbEJdHI6+TmhKQQGUyVWQqgKhKpBWq2IAQrNqse9kF6QiIQzrfXLvF6h9ejeMzi4IpwOi0G29MX8AoZZWwLC+ODEREVFKZH+o0rT0IxordWRZNNBp5mKJ0qZBAJaCXWhWLRpPL0CowKzSScBSsHPvF6h9ajeMjk6znXBfLAU7BjoiIsoSlyv9uy9ZSmeKosBut5ufqLyobiIaGOgAAEKYwc7pSKutgYHOPMHQS5QkMjDQAQCkhPT5IXv70muMgY6IiMaaalYzHA4HVDX9O3ZZLrm53WblQ6oZjJPRuJQw0EWkGexCs2rReNqAQBc9UXrBTgnK+EAXkW6wY6AjIqIskJr5tzDda+kiLIe66Ak1VuomEsXtTh7oIlIMdtFAN9RM1xSDnXu/QPVze5O/INVgx0BHRETZomYp1BUWFgLoT5WU/5SCAiiTKocOdBHDBLuUAl30xEMHO3NixB4Y7R1DtzNcsGOgIyKiLJKaOfpZVFRk6XjLoa6iosJ8YuMfwIlgyCHXZJIEu7QCXbQDiYNdyoEuIlmwY6AjIqJss5uhrrKy0tLhlkNdVVUVAEA6eE1dvrMU6CIGBDtLgS7akfhgl3agi0gQ7KSUDHRERJRVMhzqooWzNFkOdZEUKe38Q5j3VNVaoIsIBzv//CnWA11EONhZDnQRscHOH4B+qM16n4iIiEbAmV9bDsB6qLO8+PDkyZMBANLJUJfPlIICKBVlGd8NzjuzAvtPtkF3GFBCma1Y7d4vUPvkThhd3Zl1SkrIPg/0QJBVOiIiyroDBw4AAGpqaiwdbznUTZ06FQAgXfxjmK+UggIoVRWAogBSAsJ6GDPsCkJuA5ACBqTlYOfeJ1D3+E7ore2AIiAsrOMTIXUd0m/9DhhEREQjae9ecxWHKVOmWDre8vBr9IQOg2vV5aFooAuHJmFIM9hZ4J1Rjqbjw+FLSEgVMCzMmnbvE6j7azjQAYAhIXVr/6lgoCMiolwiVQPt7ebft0jhLF2WQ11RURHKy8vNjrBal1cGBroIK8HOO6Mc+5fbzCpdtKH0g517n0DdE7v7A12EhWDHQEdERLkmkqXKy8ujy8alK6ObuM6YMcPsiDuYSTOUQ5IFuoh0gl000BUmqOSmGexUv4Te0pp4ZxrBjoGOiIhykSw0s9SsWbMst5FRqJs3bx4AwChiqMsHwwW6iFSC3ZCBLtpQasHOvU+geuWeIV+TSrCTug4ZCAzdDhERURacefVJAIC5c+dabiOjUHfYYYcBAGRRKJNmKFeo6rCBLmKoYJdSoIs2NHSwczeGh12TVelihYPdkOHO4nWBREREo2nr1q0A+gtmVoxIpU4WhCAV/rEcz5SCAijlpWkdkyjYpRXoog0lDnbuRoG6J1MMdBGGTFi1Y5WOiIhylVQN7Nq1C0AWK3VVVVWorq4GBCCL+QdzvEp12DWRgcFOdyrpBbpoQ/HBzlKgixUT7KKBjlU6IiLKQUZxELquo7a2FpMmTbLcTkahDgCOPvpos0OlDHXjUSaBLkIYEkI34Jtejualmdx5wgx2ruYMA12EISGDIQY6IiLKaRfd/AkAwJFHHplROyMX6koY6sYjGQxB+jKfDdo3rwq7z1ERrMzw+kohoQQBo619+NcORxqQQQY6IiLKbe+//z6A/kxl1YiFOlkYgtS4CPG4oqgQNg3S44Xs81hupu+wKuz9hAKUBiEcOqTT+veBu1FF3cr9gKpCqBl8e0oDMsQJPERElNukTY9Oksh6qKusrMTs2bMBARjlXP9r3FBUKE6Heesvw8go2IVcClASXtZGwHKwc+9VMfWJAzAiw66ZBjsiIqIcZ5QHIKXE3LlzUVlZmVFbI/IX84QTTjA7VsFQNy7EBroIi8Gu77AqHFg+YKOFYGcGuv0wDh6K32El2LFKR0RE48SxX1oEAFi2bFnGbY1sqCv1c2mTcUAoIj7QRaQZ7PoOq8Les2KqdHEnSS/YaT70V+gGSifYMdAREdE4IRWJd999F0AOhbpZs2aZS5uoHILNeYoKYbcn328YgNcH2dE1ZLgbMtBFpBjs3HtV1D53YOh+q+b1f0OGOwY6IiIaR4xyH3w+H2pqajK6PVjEiIQ6IQROP/10AIAxyTsSTdJoSDTsmkB0XTevL2mwi7uObijDBDv3XhVTnzwweNg1YVsiedWOgY6IiMaZJV+aDwA4/fTTIYb525yKEbsKPRrqSgOcBZuLUgx0saSuJwx2ffOqcOCkNM6dJNilFehicQIFERGNc1IzsHr1agD9GSpTI/aXcdq0aeatLRTAqPKNVLM0QpJeRzeMgcEuOuxamkKVLq4Dg4Od5kP6gS4iNtixSkdEROOMXuWDruuYM2cOGhoaRqTNES13nHXWWQAAvdoDCU6YyBnDXUc3jEiw8zeUY++ZFgJdRCTYFepwtqRwHd1wVBVQBAMdERGNKxIS9aeUAwDOOeecEWt3REPdmWeeCafTCenWIYst/uGnkWfokMHMgo/UdUhFQDoyHFoXgNZiw+Q1AUgl8+sHiIiIxhtZHMSePXvgcrlGbOgVGOFQV1hYGO2cXmP9DgU08mQwABmwHrSNhTOx/yQHhF8BemyQXmv3eFUPOFD3egj2rgCMUjdEjfUbFyMyoYOIiGgcOfGaowAAp512Gtxu94i1O+JXm59//vkAzIWIpV0f6eYpA5kEu1CBDYFSA5ACCAmIgGIp2Kl+AUeHueyN1BTrwU7XYfj9vK8rERGNK9Kh4/XXXwfQn5lGyoiHutmzZ+Ooo44CFECvY7Uu18hgAIbHk1a4MxbOxP7ljgEb0w926gEHqt+JP6+lYMdAR0RE49S5ty2HrutYvHixeZvVETQq60JccsklAAC92svlTXKRlClX7Yz5M7DnE4VmlW7QztSDnXrAgbp/haJVurjupBnspJQMdERENO5IzcDKlSsBAJ///OdHvP1RCXVLliwxlzdRJfRaVutyVSrBLlRoTxzoIlIMdqpfwNGe/G4jKQc7XkdHRETj1OfvOht+vx9z587Fxz72sRFvf1RCnRCiv1pX64FUWa3LVUMFO2PhTBw4yZFwX/wLhw526gEHqlcNXxWMBDvMnJI43HHYlYiIximpGnjiiScAmCOaI3EHiYFGbVn+k046CVOnTgU0yWvrclyiYGcsnIm9ZxXCX5ZiIA8Hu0QzY4er0sX1RVNgFNgTVu047EpEROPVxb87Cz09PZg6dSpOPPHEUTnHqIU6RVHwla98BYA5YULaOBM2l8lgAIbXFw13Ibct9UAXYQyeGZtqlW5QfwYOx3LYlYiIxilp0/HXv/4VAHDFFVdAVa0tCzacUb2B5vLly3HYYYcBqkRoat9onopGgqGbVbs503DgxBSGXZO2YwY7x06nOTkixSrdQLHBjlU6IiIar1bcegJ8Ph/mz58/alU6YJRDnRACX//61wEARrUXhpO3cxoPFF8AWqYj5oaAbpfwVmoZNSM1BVBVVumIiGhcks4QnnnmGQDAlVdeOSrX0kWMaqgDgCOPPBLHHXccIAB9eu9on44ypNXVom9WGQqaJQoOWP/2UIKAEgJ66wQ651hfLVvt8UPu2ccqHRERjUtLrp4HXdexdOlSHHnkkaN6rlEPdQDwta99DaqqwqjwQy+zNhRHY8RhR6BQgRKUcDdJlH0o4N5v4dtECoiQgGEzg13z0kJr4S4YguHzpX8cERFRlullfrz55ptQVRXf/OY3R/18YxLqpk+fjosuuggAEJrRA6mw6pKLtLpa9M7vn3GqBCXs3TLtqp0SBDRv/+eGDQiUpF+1U3v8kPuaUn49ERFRrpCKRNVpLgDAZz7zGUybNm3UzzkmoQ4ALrvsMlRVVQEuHXo9J03kIulyIFA4+FsiUrVLOdiFq3QDRap2KQe7YAiGh8vhEBHR+PP5369AU1MTqqqq8MUvfnFMzjlmoa6goADf+ta3AAB6fR8nTeQYra4WfYdVJd2farAbWKUbKNVgxyodERGNV4YzhIcffhgAcNVVV6GgoGBMzjtmoQ4wlzg55phjAAUIze6GBIdhc0WyKl2sSLAr3SySh7skVbpYKQU7VumIiGgckpCY88VqBAIBLFmyBCeffPKYnVtIObbTCpuamnDZZZfB6/VC3VUIbb/1mZE0MrS6WvQeXT9sqItl2AT6agQ8tf0LFCtBQPMMH+piX2/rAxydEqXb+ofk1R4/5K5GhjoiIhp3QnV90Kf3wu124/7778fkyZPH7NxjWqkDgJqamv5h2IZeGC4Ow2ZbKlW6gRIOx6ZQpYtl2AB/aXzVjoGOiIjGK8MVgjrXXFf1qquuGtNAB2Qh1AHA2WefjaVLl5rDsHO6OAw7TsUGu+GupRtK3HAsh12JiGgckpCYdekkBAIBLF26FCtWrBjzPmQl1AkhcP3116OoqAiyKASdtxAbtyLBTutTEJhq/a4PkWDXe3jFCPaOiIhobFx895nYvHkzCgsL8b3vfW9U7xyRTFZCHQBUVlbi2muvBQDoU/pglHBR4myR+5pQsq3H8vGeyQKOIzrQUNcK/wzrX0dHp0Th9i6oZWVQ3LzWkoiIxgej1I8HH3wQAHDdddeZS7hlQdZCHQCceuqpOPfccwEBBOd2Q9r0bHZnwjJ8PohNH6H8td0o2ZJ+uAu5gIayDhTZ/RkFO9UHoLUDsNsgCgoY7IiIKOdJm47CEwWklPjkJz+JU045JWt9yWqoA4Bvf/vbmDFjBmA3EJzL6+uyxfD5EGpqhtj8UUZVO6vBznVIonJNR/8GRTDYERFRTpOQWPD1qejo6MDMmTNx1VVXZbU/WQ91DocDP/7xj+FyuSBLg7y+LssiVbtUg11vvQL70R1x2yLBzn50R8rhTvUB4lB7/EYGOyIiymGf/f1ZWLt2LVwuF370ox/B4XBktT9ZD3UAMHXqVHznO98BAOhT+6BX8Abu2RQdjv3X3mHDXWTodaAiux8NZaldZ+c6JFH53uA2ADDYERFRTtIrfPjzn/8MAPjOd76DhoaGLPcoR0IdAJxxxhm46KKLAAChOd0w3MEs92hiM3w+hPYfSKtql0gqw7GqDxAH25PujwQ7TqAgIqJcYLiD0I4y/65dfPHFOOOMM7LcI1POhDoA+PrXv47FixcDqkTwsE5ImzH8QTSqhhqO7a1XYDs6SYUtRiTY2dIYjh1EEZxAQUREWSc1AxWfsMPn82HJkiX42te+lu0uRY35bcKG09PTgyuvvBL79u2D6LLBtrEMQo79Wi8UT3E6oVRWQJ9ciq45RQCAztkKZp+6M612egIO7NlfCcdO87oDZytQ/e/2oSt1AxkS0uOB0cfrL4mIaOxIIXHYN2qwbt061NXV4fe//z2Kioqy3a2onKrUAUBRURFuvfVWFBYWQpYEEZrdzRmxOcDw+RDat3/Eh2M1r0wv0AG8zo6IiMachMSJ/70Q69atQ0FBAW699dacCnRADoY6AGhoaMCPfvQjqKoKY5IP+rTebHeJwgyfD2LzrhEJdtpRneieabERXmdHRERjSJ/Wi3/+859QVRU333wzpk2blu0uDZKToQ4AjjnmGNxwww0AAL3eg1Ath9pyheHxQG3tRvFuiU3vTbPURpHdj+riHhgzvGi+wGKyUwSgCEg/70aSt4SAUlAAxenMrBlNAxR1hDpFRBNNqLYPer15X/Lvf//75vX/OShnQx0AnHnmmbjyyisBAPqMXuiVXOokl9h7DFS+LywHu5ChwOkKoOt4H5o/ZTHY6TpkKGTtWMpt4UAnNA1QrQcyoWmAUCBUlcGOiNKmV/qgzzBHDL/2ta/lzEzXRHI61AHA5z//eVx44YUAgNCcLuhlrMrkEntvZsEOAAoK/ehalkGwo7wlwmFOqKr1ap1QYp5y0hURpU4v80PONwPdhRdeiM997nNZ7tHQcj7UCSFw1VVX4eMf/zigAKHDOmGUMNjlkkiw2/XMDMvhrqDQj87j/djxnzMZ7ihapYvbZLenHeyEpg3YoLBaR0QpMUr9EEf2Qdd1nHbaabjqqqsgRG7/xzDnljRJJhQK4Qc/+AHefPNNQBewbSqF0m3PdrcmJLWqCv5FUxEo1gbtCxQqaD1KYv7Hdg/ZhjdkQ1tfAYL64D+wnl4HSt50ovpvHw3dkVAIRlc3h1/zTWTYNcmQqwwEYPiGvxQjMuyasA1dBww9o24SUf4yigNQlnjg9/tx4okn4qabboI28D+JOSjnK3URmqbhpptuwtKlS83Fied3wigKZLtbE5IocCYMdEDqVbuQoSQMdEAaw7G8ni5vJQt0QGoVu6ECXbR9VuyIKAGjKABtqQ9+vx/HHnssfvSjH42LQAeMo1AHAHa7HTfffHP/XScY7HKSvddA6Ud6RtfaRYdjr+Fw7ISSYNg14cuGC3ZDBLr+l+T2MAoRjT2jKAD78QF4vV587GMfw09+8hPYbLZsdytl4yrUAYDD4cAtt9yCI488EtAkggs6YZQw2OWiTCdRuIt8cMzrSly1C4Vg9HKZm7wyzLDrIEl+0Q66ji7p+Xh9HRH1M0r8UJd60dfXhyOPPBK33HILHA5HtruVlnEX6gDA6XTiZz/7WUzFroOzYnNUdDh2ZeaTKOKCHYde81LKgQ7mJKqB1brhhl0Tno/BjmjC08v8EB/zwOfz4ZhjjsHPf/5zuFyubHcrbeMy1AGAy+XCrbfeihNOOMGcFXt4J/QKrmOXi+y9Bkp3ZDYc6y7ymcOxV3M4Ni+lOOw66LCYYdh0A120DQY7oglNr/BBLupBIBDAiSeeiFtuuQXODBc8z5ZxM/s1mVAohFtuuQUvv/wyIAFtRzHUg+MvXY8nWsMUdB9da+nYQKGC9oVA0bz2pBMlhtPX40TFaw6U3/u2peMpx6Q77JqADIUggxlUbqXByi/RBKRP9sCY2wfDMHDaaafhv/7rv8bNpIhExm2lLkLTNNx4440455xzAAGEZncjNKUXEuM6q+Y04+AhFO7stnSsvddA8Q6ga2cZeg9Zu2eru8iH1hMD6P78sZaOpxEkBBS3O6PbeKmVlej41ELrXXAXwHvyfOjHz7fchtS5vAnRRCIhEZrai9DsHhiGgbPPPhs33njjuA50QB5U6iKklLjnnnvw4IMPAgCUZie0j4ohJGe4jQbF6YRSUQ6jsgS9M4rTOtZXqqBnOmDYgGBFCIVV6U940HUF3tYCFOzRULzHQPHD76TdBo0ARYVaUmxWunz+lNaPi6VWVeHAZ2fDWy1Rtlmi/O8fpnW8cBeg55ip8JarsPcaKHrq/bSOB8AqHdEEI4VEaFY3jMnm76svfvGLuPzyy3N+YeFUjPtKXYQQAldccQWuvfZaKIoCo9qH4GGdkKqR7a7lJcPnQ2j/AWDrLstVOyUI2No0ePYUW6raqcUB+Bd60HySge7PsWo35oSA4gpX6ISSdDZqMmpVFZouno2+KRKGDeg4TKD93MPT64PdBm+5OWwbciqWqnWs0hFNHFIxcNS102FM9kFRFFx33XX48pe/nBeBDsijUBdx/vnn4+abb4bD4YAsDyC4sAPSzl/ao8Xw+YCtu1C8Zp+lcKcEAVu3gK1NSznYGYZAKNh//ZVaHEDzcoPDsWNNKBD2/ru6CFVJaxhWFDjRO7V/oMCwAR2Hpx7shLsAPUfW9B+vAd1TnWkFOxkKAvkxWEFEw5B2HdMuK8OqVavgcDjw05/+FOedd162uzWi8i7UAcAJJ5yAX//61ygtLYUsDCFwRDuMwmC2u5W3DJ8PoX37R6Rql0qwk1LAGDCsrhYHWLEbS7FVuug2BcLpSCnYqZUVOHDulEHbDRvQMzWFhYPdBehdPDVapYserwGeSSnePlAaDHREE4RRGEThWQa2bduGkpIS/PrXv8ayZcuy3a0Rl5ehDgAOP/xw3HnnnZg2bRrgMBBc1A69ypvtbuW1EanatWno22t9OLZ5uYH9NxzPcDfaBlTp4ranEOyEuyCuShcrVCiHr9bZbfBUJp4tm+owLIddiSYGvcoLcUwv2tvbMX36dNx99904/PA0L/UYJ/I21AFAXV0d7rzzThx//PHmWnZzuxFq6OHM2FGUadVOCQL2rvSGY2OpxQH4Fnk4HDuaElXp4vYPHezUqqqEVbqI4YZhhbsAvYtqEu4DUhuG5bArUf6TkAg19CA0txuBQADLli3DnXfeidpaa0tyjQd5HeoAwO1246c//SkuvfRSAIA+xYPQ4ZxAMdqiVbt392evasfh2NGRrEo38DVJgt3Aa+kSSRbsIsOuyap00eMjwe7YwcGOgY4o/0nVwMe+OxP6FA8A4NJLL8VPf/pTFFhY5Hw8yZslTVLx8ssv47bbbkMgEAC8KmxbSqD0jZ8b9Y5XitMJzJ0eXfoksqRJqgYufaLrCgKB1NYS0rvtcO/SULTXQPEjXPYkY5GFgocLdREDljpRq6rQ9JnZ6G1I7deOvUOg4bcb+09fVoKWU+pT7u6gZU64fAlR3jPcQVSucKCpqQl2ux3f+973cMYZZ2S7W2Mi7yt1sU477TT89re/RXV1NeDSETyiHfpkD4djR5nh8wHb90SrdvY+Ceeh1KePpzOJYiC1OADfEeHhWFbtMpdKlW7g62MqdqLAmXKgA8zr6zrOMat1ww27JjzeqcRV63gdHVH+kpDQJ3sglvaiqakJtbW1+N3vfjdhAh0wwSp1Ed3d3bjlllvw1ltvAQCUg+GFio38WKcml0Wqdq1Hl6ZVrQPMil2oQEI6DKjFgbTPrXfbUf26woqdVelW6WLIUAjC6UyrShehBIHyTRLlb+5Pq0oXPT4EFO/2Qfn3Bxx2JcpTUpEIzexfUPj444/HjTfeiKKioiz3bGxNqEpdRHFxMW655RZcccUV5kLFk30IHtEOw8VhmdEWqdpVvdmCynXpXdcYnUTRrkLvTD9YRNezy6Bip01vgOdTSy0fD0WFcDisH58BxemENiX9UBSh1dfh4BcWWTpWqApQXpJ2oAPMMN/doAAWFwc1NMBTbWegI8pThiuE+ksLowsKX3HFFbjlllsmXKADJmioAwBFUXDppZfif/7nf1BeXg7pDiF4ZDv0ag7HjjbD44G+7SMU/3sXpj7vST/chQAIYFH9ftRXdqZ1bKbBzihxo3mpYjnYCUVAcTisB7tMVj232aBPLrUc7GRRATqXBtD82XnpHywUSIeGULEO3W1tkpLs86J8c/q3lCOi/CQhoVd7II7rwc6dO1FWVoZf/vKXuPTSS6EoEzPeTMx/dYyjjjoKf/jDH7B48WJAlQjN6kHosC5IjbNjR5t+qA3quu0oeacx7WCn9ajY3laFBWVNaYc7q8FOm96AfWeUQi80zGB3QZrBLlKlUwREJjeNziDYSU0xg11D8iVFhmJzBa0Fu6py7Dm3HLAbkE4doUIL17YFA1A/akLlex0Md0QTnNQMLP3+XIRm9SAQCGDp0qW47777cPTRR2e7a1k14UMdAFRWVuIXv/gFvvnNb0LTNBgVfgSOaoNR4s921/KboUMGQzA6OlHyTiOm/iP1qp3qA3zbS/D6vpmYXXQo7XCnFgfQNSu9b3+jxI2+qWYY0QsNdE0felmNgYQiIGxmmBOqhWHY2DCXZrBTnE6I+moA4WBXVZJWxU6rr8POiysBWAt2ssAB78zwdZACgMOwVrELBiD2NkH9qInBjmiCMkoCKD5H4o033oDNZsNVV12Fn/3sZygvL89217KOoS5MURRcfPHFuOuuuzB16lTzLhQLOxGa1gOpcDh2tERmIxodnVA/2J5WuFN9QG+rOSPWrfnTDnfeuhB6PptatU6b3oB9p5fGH18lUx+GFSI+xGU6DBtuM2U2G/QSV/TTaMUuxWAni92Q83r7m7NasYsQgHRaH4qNVO0Y7IgmDqlIhKb3ILSoE62trZg6dSruvPNOfOYzn5mww60D8V0YYM6cOfjDH/4QvcmvXu9B8Mg2GEXpz7akFISrddFPY8PdC15Urh/6j77aqeG53f0L1KYT7tTiAJpONoYNdtr0Buz9dB36GuKHDKPDsMMFu8isUduAIdexDnYDpBvsBooGu4uzG+wq13Yy3BHlOaMogMkXO6DXeSClxLnnnot77rkHc+bMyXbXckoGF/bkL6fTieuuuw7HHXccbr/9drSjHcFFHVD3F0DdUwghufTJSJK6PijwGB2dUDs6UbK7FAVNk+CpdqD1iMH/B9G84WrdtPjtkXDX5+pGudP8g9/uc2Nfa2nc68xgZwdwLIoeTbzUiV5aOCjQRfeFg101lqLgb6sSvkao6uBAFxEOdgYA6R9iuH+o8CbEkDM7hcMRHXodKBrsAIQa9yV8jVZfh52fqQTQO2ifzRVE57GAv/wwONolqh/bkryfCTtnBruQKiF0AbUvzf9nBgMQew5AtdlRjhq0H5b+WoZElLukkNCn9kI2+NDY2IHKykp873vfw7HHct3RRFipG8KyZcvw5z//2Vy4UISrdke1wSgMZrtr+WVAtS5uV0cn1Pe3DVm5Uzs1PL/nsITHR8LdUNU7tTiAztmJfxS06Q3Yf2rJkN0fsmI3cNg1kVGu2Am7PW7odaDhKnay2A3jsMGBLsLmCiJ0RC86j01Stasqx95PlCY9HgLRCRSZVu3KtnisHU9EOccoDKL2kgLoUzwwDANnnnkm/vSnPzHQDWFCLj5sxRtvvIE77rgD7e3tgIRZtdtbyAWLR4qiQnEOH2qUslIEpw2u3IVcgGtWF1ZM+3DYNvpCDhzwFsdV7vRuO2peU+Kqddr0Buy9sA5901Kbqan2KqheZcRV7ISmQSlMsXpkSBh+/+CKXTpDrAl+nJWiIhjzh1/pWYQMKF0eCF8grmqnHj4HH/1w8D1cEwl6bSh9xx5XsZMNNdjy7RTvtygB4VMHVezsHQINd24a/nibHbKuCoZTi6va2XsNFP41cSWViHKLVAzoDX2QU3wwDAPl5eX4zne+gxNPPDHbXct5HH5N0YknnohFixbh17/+NV5++WXo9R7olT5oHxVD7cjOYrJ5JVytSzpMGXlZZFi2rBQFzZMAIBrwEg3DJjJwaLbd58Y+lA4ahtVLC1MOdIBZseucqSIaX1Kp0sVKdSh2KAOGYmNnvQ5Hagr0ikKIkDHkcOxQIsOxwLz0h2KBkRmO3b2fw7FE45Re5kfFKQ4cPOgBDPP2nldffTVKSoYeMSETK3UWvP322/if//kfNDc3AwCUQw5oO4sgguktcUGDCZt92GA3kFJWisD0Seie7oL3wk58omFzWsf3hRzY5ylFp9+FPTsnoeY1BWWrmtKq0kWovQpq3tHhemp1elW6WLEVO6sTIcI/1qlW6QYSQR1qSxcgJXZ+uQHG4cmHXxMJem1wbXXA0SEx+Z2u1Ct1scJVO0eLiikve6Bt2pXe8eGqne6yoa/eyUodUQ6TNh2hGT0wqsz/0FZXV+M73/kOli7N4A4+ExBDnUVerxf33nsvHn/8cei6DoQEtN2FUJpdEOCQrGUpDsMmPLSsFJ4FtThwgg3nn/N22sdHwt2B3mK0flRu+YpTtVdB9WoDhS9sTDugRhkSMhCAYbViB5jX6U2fMuT1dEMRIQOBUgf2f9X6NaRBrw2OXQ74GizOHpeA/YANM+8Yflg9KZsdqCyFvnm79TaIaFRISBjVXjiPlOjt7YWqqrjooovwpS99CS6Xtd9dExlDXYa2bduGX/ziF9iyxRxqEj0atJ1FUHrSvzcphSnq0DNGhyGm1KLlhCp0zQEuOCP9cAcAm7ursXFDg6VjpUtHQakX6pslqL83hevAEggeMQOt13rRs60MM7+XeFbucMTRh6PtpiBaD5Rgzr3WwqGnxoWDn/FBWFyrMdDlQO1LCoJuBYdOshYObS02zPjBe+bwtCu1a/sGkroBo6fH0rFENDqMogCmfboS27eb/+GaO3cuvvvd73KZkgzwmroMzZkzB3feeSeeeuop/OEPf0Af+hA8ogPKQSe03YUckrXC0CENPbowcboBTzYewKQn21Axdwpe3HM8AKC3QaYV8GpcXWic0oWuxvSv41DsOo6t24Odn6jAPjEf9X9MP9h5Jjvw/pL78M5CHZfiKkvBLlDhwqML78amuZNwNS5JO9gFSh04uFSBIQWU8KTUdMOd8KoofWsvZIETwGTLwU4GzUqfAVgOdkSUG6RNR2haL4zJPmzf3oHCwkJ8+ctfxvnnnw9V5d/MTHBJkxGgqiouvPBCPPTQQ1ixYgUAwJjsQ+BjbQjV9UEKFkMtMfTwBIoADJ8/6bInichQCOquZtQ+tw+1z+3D9Kc8ePEPx+PJF49L6fhSmxfH1OxByZSutLosXTqm1bQBAGYUtaHirP3Yd/n8tNoIHDkTNd/aAQA41qniwQt/g50/S28Kv7JoHrz/2QEAmG9vwa8//hC2fSm9Ye2QS4Ex1QsAMKSAIQWkxdnewuND5VstqHtWReUbNkttAOYEEqPPC8Prs9wGEWWHFBKh2j5oH/fAmGz+DJ999tl46KGHcOGFFzLQjQCGuhFUXl6OG264AXfddRfmzZsHaBL69F4Ej2qDXuaHBMOdZemGO12H9Hghw3/8bU0dqH12H2b8rS/lcGcl2Cl2HdMK26OfzyhqQ8Un0gt2nmo7Hp/5cvTzY50qHvj0b/DRz1MPdv7Jbjx4+J+in8+3t+DXp6Qf7AbKKNj1eVHyTiOq3mzJLNgFA2a4Y7AjGhckJPRyP6o/54Q+oxcejwfz5s3DXXfdheuvvx5lZWXZ7mLe4DV1o8QwDDz//PO4++670dnZCQAQnTZou4qg9Fn/g0ZhqV53p6oQBS6IAUN2oepStHysEADQO3XoodnOoAurmxqGHYqVLh0zGlriQl3Ezp4KtD1fN+w1doEjZ6L85j34y4x/Dtr3jk/HpU8MPxSrLJqHztsCcaEuYlNgEq5+5RLMuW/oodhAqQP7l2swGryJzyFkSkOxweYCHPbzvYO2ywInuhdVwV+soPXEoYdkbS02TL8h8ddH2OwpXWvHa+qIssNwB7Hg8ga8//77AICSkhJceeWVWLFiBe/XOgoY6kZZT08PHnzwQTzxxBMIBMzrgpQWJ7Q9hRB+lpozppjv4VABTzgcECVFSZsIVZeiZXEheqckD3fDBbuhAl3Ezp4KtD9Xh7r7kge7zrMOw1u/vCvp/nd8Ov7jr1dhxg3Jg13w9I/hnnt+lXT/hkA1bvrwHHQ2FyUNd55aF5o+PXTwU8KXFSQLd4EuB6Y+I1C4Nvl6d7LAiUMnTB4y2A0V6iKEwzFksGOoIxpb0qEj1NALY5JZUbfb7bjoootwySWXoLCwMMu9y18MdWOkubkZ99xzD1566SVzgwGoBwqgNrohdP5vZUQkq94lqdYNFAl3ABIGvKGCnSgJ4OTZwy+ZMVTFLnjEDJTc3Bg39JrIUMFOWTgXHbeF8ND8+4fty1BVu1RCXfScSap2yap0Aw1XtUsl1AFDV+0Y6ojGhlQN6PV9UGeGooWMM844A1/5yldQXZ3aQuhkHUPdGNuyZQvuvPPOaCkaQQF1vxvqgQLecmykJKrepRjsIkLVpTi4pBB99fHhbmv3ZKzfMC3utdKlY9rUQ5hR1JZS24kqdsEjZsD94wN4avYLKbXxjk/Hl967DKGdhXHhbrgq3UCbApNw9T8vxZz7+69PC5Q6sP8kDca0xEOviSSq2qUa6iISVe2Ubg0zHvdB+fcHKbeTKNwx1BGNLqlI6LUeuBYAvb3mYuVHHHEEvvnNb5rXmNOYYKjLAikl3n77bdx1113YvXu3uTGgQN3nhtrkgpAMdyMmtnqXZrAD+sMdAPTVS5zy8Q/wzoFp6NlXDCD9QBcxMNgNN+yaTGzVTlk0D223hPDIgvvSamNgxS6dKt1AsVW7dEMdEK7aHVEFf5FZtUu1SpdI7JAsQx3R6JBCQq/2onixho4Oc8b99OnT8ZWvfAUnnHAChNW74pAlDHVZpOs6Xn75Zdx33304cOCAudGnQGt0Q2lhuBtJQtOiH0VJcVrBLiJUXYqDxxTCWyXhXNiJ7ja3pUAXsbOnAu3P1mHS+164ftyEv8/+h6V23vHp+I+/XIX610L4w93/Y6mNTYFJ+H+bPome5iLUvygshzrADHbBHjumPCtQ9G76948FwlW7Eyejaw4shzqgv2on7HaGOqIRJCFhTPahfJkTLS0tAIC6ujp86UtfwqmnnsrlSbKEoS4HhEIhPPfcc/jTn/6EQ4cOmRu9qhnuDjkZ7kaYsNmhFBdCFFm7WDdUXYrWI9wIFAscc+H6jPqys6cC+9tKsO2kP2fUzjVNi/H+j47Gvb/5ZUbt/Pzg6dj1n3Ox85sZNQM0OTH7R5ugFCefoDIcWeCEd2YF7P9Yk2FnzDAvQ6mvc0hEiUkhYUzyYtLyomgxoqqqCl/84hexYsUKaBrvaZBNvEI/B2iahvPOOw8PP/wwrrrqKpSWlgIuHaE53Qh8rBV6tYcLGI8gGQxA7+iC0dYBo60Dsie9m9VrzZ2ofmE/al/vwb//uTCjvrT3FaD4JTem//2KjNpRYaBgVzdOf+Y7GbXj1W3Qtjai/MUM77loCBi9vTC6rVfHhMcH1/t7MutHGAMdUWbMYVYPyi4QCM3uwYEDB1BSUoKrrroKDz/8MM477zwGuhzASl0O8ng8ePrpp/HYY4+hvT28RIY/fM3dQRcnVIw0RYXiLoCw29Ku3oUmlWDX+YU48ZQNaZ927cF6lNxdBMfz70Kb3oA9F9Wib0YQu869J612/tJbgtt++XlU/3UrZM0kNJ5TDs8UHS+dc0fafbrpwAocXNYHtbwUfcfNhKdSRcfpqU+YiNrvwszvvg0IAcXlAlTVUtVOhkLQD7akf34iGhFSMcNc6RIH2trMS00qKirwuc99Dueeey5crgz/A0gjiqEuh/n9fjzzzDN45JFH+odlAwrU/QVQm11cCmWkhcMdgLQCntVg9+qWuZj9pbVx27TpDfjw+qq0gt13mo7G5jNK47bJmknY+vWStILd0z2L8NjPz0Tpg6uj29TyUhw6d05awU7vtGPmX0JQX4v5t1kMdwx1RNkhVQN6jReFR6jo6jLvqjNp0iRccsklWLFiBRyOzO5OQ6ODoW4cCAQCeP755/HQQw+hubnZ3BgSUJtd5lIoAV6QOuLSDHjpBru1B+tR8vsiOJ57d9A+deY0bP5uZUrB7i+9Jbjtfz6P6r9sHbRP1kzClm8U4+WzU7vOLlKlG9Sf8lL0LpsJb3mKVbtIlS4RIaAWFaUcmBnqiMaWtOvQaz1wzhXo6zN/H9TW1uLSSy/FmWeeCZuNd0TKZQx140goFMJLL72ERx55pH8pFANQWp1Q9xfw9mOjJcWAF5pUgoNLi+CpkUOGu6ECXUSqFbtEVbpYsmYS9p5bDm/90MOxT/cswqO3n4myB1YnfU3KVbuhQh2QetVO12F0dsHw8R6vRKPNcAeh13kgaoLQdR0AMHXqVPzHf/wHTj31VF4vN04w1I1DhmFg1apVePTRR/sXMQYgOuzQ9hdAdNohwOvuRkUKAS80qQS7PlWIEz8+ONitPViP4nuK4Xx2+Bmd2vQGfPj9Kuw6O3Gwe6K3GDf/6lLUPLZl2LaGq9olq9INpJaXoveEcNXutCThbrhQFzFM1Y5VOqLRJSEhSwMI1XsgSwPR7UceeSQ++9nP4thjj+X9WccZhrpxbuvWrXj00Ufx2muvRf93Jfo0qAcKzOVQOKli9AwR8JIFu1c2z8Wcy+OvoxuKNr0Buy+uhWdGcFC4G65KN1CyYPd0zyI8+oszUfbn5FW6gdTyUhw6b86gYKd32jHzryGor6b4bwxX7YSmDQp3DHVEo0MqEkaVD1POqMCuXbsAAKqq4uSTT8bFF1/MO0CMYwx1eaKpqQmPP/44Vq5cCa83/Ic2KKAedJl3qfCzdD6qEgS8gdfZpTLsmow2vQEf3lCFXeeYwe4vvSW49VeXpFSliyVrJmHveeXw1vUPx/5w/zk4dEL6S49Eq3Zl/dfaiX0uzPiehcWCEwzJMtQRjSzp0KHXeOA+XEN3dzcAwOVy4dxzz8WnP/1p3ps1DzDU5Zmenh6sXLkSTz31FJqamsyNElA67OakCg7Njr7YgDelBjv+owLuwztSHnZNJjIc+7Plf8Gtv74ENY+mF+hiyZpJ2PLNYry84peWQ12EWl6KnhNnwVemoHMerIW6CCGgFBRAqCrgcjLUEWVIQsIoC8Co8UBWBBH5k19dXY1PfepTOOecc1BUZH2RcMotDHV5Std1rF69Gk8++SRWrVoV3S68KpQml7neHZdEGX2KCnVmA/rmVmYU6CK06Q04eEoNqh5eZ+lWZ7EiVTv3AZnW0GsyalkJ/EdMh/bKexm3BSGgOBycJEFkkdQM6JO9qD6hBPv3749uX7JkCT71qU/huOOO46288hBD3QTQ2NiIp556Cs8//zx6e8N3T9DDs2YPuiC6bazejaVMbnAd+XGNXIuWYbBDMAQ9PAwDIQCRQdCXRn//iGjMSUjIoiD0ai9sUyX8fvMezoWFhfjEJz6B888/H1OmTMlyL2k0MdRNIF6vFy+99BKefPJJ7Ny5M7pdeFQoB11QW5wQQf7PbUxYCXYDf1QzDXa6DqPPCxnsn/WWUbBjqCPKCmnToU/yoW55Ofbu3RvdPmvWLHzqU5/Caaedxjs/TBAMdROQlBIffvghVq5ciVdeeaV/YoUBKO0OKAddUDp47d2oSzfYJfpRFQLCbodQ1fTCXaJAN7Bv6YQ7BjqiMRW9Vq7aCzEpFF39wOl04uMf/zjOOeccLFiwACKTkQEadxjqJjiPx4NXXnkFzz77LDZt2tS/w69APeiCcsgJxcuZs6Mm1V+4w/2Yplu1ix12HapvqQY7hjqiMWE4QzAme1F2VAFaW1uj2w8//HCcffbZOOWUU+B2u7PYQ8omhjqK2rlzJ5599lm88MIL0enuACB6NCgtLqitToggJ1eMiqHCXao/oqlW7Yar0iXq23DhjqGOaNRImwG90gdjkheyKBTdXlJSgjPPPBNnn302pk+fnsUeUq5gqKNBAoEA3njjDbzwwgtYs2ZNtKwfWRpFaXFCaefCxiMuUbCz8uM5XNUulSpdknYThjsGOqIRJxUJo8IHo8oHUaVHfw+rqorFixfj7LPPxrJly3gvVorDUEdD6ujowCuvvIIXX3wRmzdv7t+hCyitDqiHnFz7biTFBrtMfjSTVe3SrdIl62NsuGOoIxoRkdt26ZN8cDSI/uudAcybNw9nnHEGTjnlFJSXl2exl5TLGOooZY2NjXjxxRfx4osv9i9sDABBAaXNCbXVwYA3UoQYmaAUG+7stswD3YC2ATDQEWVAQkKWBKBX+lF8mAOdnZ3RfbW1tTjjjDNw+umncykSSglDHaVNSomNGzfixRdfxGuvvYaurq7+nbEBr8sOIRnwcoIQEJpt5AIdEVkmRX+QK5prj/sdWlJSglNOOQVnnHEGDj/8cM5epbQw1FFGQqEQPvjgA7z66qv417/+lSDgOcwJFgx4RDSBSSFhlAZgVPrgnmVDT0//rflKSkpw0kknYfny5Tj66KOhaVxxgKxhqKMREwqFsG7dumjAix1GQEiYa+C1O8w18HiLMiLKc1I1zLXkyv0omKH139EHQFlZGU466SScfPLJOOKIIxjkaEQw1NGoiAS81157Df/617/Q0dHRv9MARLcdapsZ8oSfd7EgovwgHTr0cj+MCj+Uiv5ZqwBQXl6Ok046CR//+MexaNEi3nuVRhxDHY06XdexefNm/Pvf/8abb76JPXv2xO0XfRqUSMDr1TjRgojGjcj9Vo1ysyIn3aG4/VOnTsWyZcuwbNkyzJ8/n0GORhVDHY25xsZGvPnmm3jzzTexYcMGGIbRvzMgoHSaQ7RKp4OLHRNRzpE2A0apH0ZZACVzXXEjEaqqYuHChVi2bBmOP/54zlqlMcVQR1nV1dWFd955B//+97+xevXquHWZgPDdLDocUDrtED02TrYgojEnRbgaV2YGOVkYX40rKCjA0qVLsWzZMhx77LEoLi7OUk9pomOoo5wRDAaxadMmrFq1CqtXr8b27dvjXxASUDrtZhWvyw74VA7VEtGIk5CAUzdnq5YF4KhXBv2Hc/bs2ViyZAmOOeYYLFy4kHd2oJzAUEc5q62tDWvWrMHq1auxZs2a+OVSAMCnQOmyRx+ccEFEVkmHDqMkEH3AacTtLykpiYa4JUuWoKKiIks9JUqOoY7GBV3XsW3bNqxevRrvvvsuNm3ahFAofggEXtUMeJ02M+QFGfKIKDFpjwlxpUHAqcftV1UV8+fPxzHHHIOlS5di9uzZUBRe40u5jaGOxiWfz4cNGzbg/fffx9q1a7F169a4pQMAQHhUiG47lG4blG4bh2uJJqjocGpxEEZRELIkAFkwOMTNnTsXRx11FI466igsXLgQLpcrSz0msoahjvJCX18f1q9fj7Vr12Lt2rXYsWMHBn1rBxQo3TaIbhuUbjtEn8aJF0R5SAoJ6Q7BKA5AFgdhFAcBe/xwqhACc+bMiYa4RYsWwe12Z6nHRCODoY7yUnd3N9atW4eNGzdiw4YN2LJly+DhWh0QPeGA12OD0mODCHF4hWi8kZphVuCKgzCKA7BPUuD3++Neo2ka5s6diwULFmDRokU48sgjUVRUlKUeE40OhjqaEPx+P7Zu3Yr169dHg17svRejfIoZ7nrDIa9XgzAY9IhyhVQMyMKQGeIKgzCKQoOuhwOA4uJiLFiwAAsWLMDChQsxb948OByOLPSYaOww1NGEZBgG9u7dGw15mzdvxt69ewcP2UpAeDRzvbxw2BMeDtsSjYXIMKoZ3swQJ4pk/ILlYVOmTIkGuAULFmDq1Kmc2EATDkMdUVhvby+2bt2KzZs3Y8uWLdi8eTMOHTo0+IUGILyaeU1erwalz2Y+59AtkWVSM8zr4NzBcJALQS3B4MsmAFRVVWHevHk47LDDcNhhh2HOnDkcSiUCQx3RkFpbW+NC3rZt29Dd3Z34xT6lP+BFHpxxSxQnOhPVHTLDmzsIwx0atC5cRFFREebNmxcNcfPmzUNlZeUY95pofGCoI0qDlBItLS3YsWMHduzYgW3btmHHjh1oampKfIAerup5Ig8Vikfj8iqU96LhrSAEWaBDFoTMhysEJFlCsqamBrNmzcLs2bMxc+ZMzJ49G5MnT4YQ/FkhSgVDHdEI6OnpwUcffYTt27dHA9+ePXsQCAQSHzAw7HlV8+HTIAz+AaPxQyoS0hmCdOmQrvgAhyRXJNjtdkyfPj0a3GbNmoWZM2eisLBwbDtPlGcY6ohGia7raGpqwq5du7B79+7oY8iwBwA+xQx3sUHPq5pDuZygQVkghYR0hkObS497DkfiYVPADG8NDQ2YNm1a3KOmpgaapo3hv4BoYmCoIxpjsWFvz5492L17N/bt24fGxsbEy6xESAD+cLjzKRCR5+GPCCgc0iVLJCRgN8yw5giHNodhPneFoBQg4YzTiMLCQtTX1w8KcNXV1VBV3q6PaKww1BHlkK6urmjAi/24b98+eL3eoQ82AOFXzev1/CqEPxz8AooZBgMKoAsGvwlGQgKqhLQbgD0mrDl0SKf5HA496VBphMvlQn19PaZMmYL6+vq4R0lJCa97I8oBDHVE44CUEm1tbdi/fz+am5vR3NyMpqYmNDU1obm5GS0tLYPufZuQLiD8ilnVC4SDXyBc5QsoQFCBCDL8jQeRsAabAWkzIO3mAw49/Fw3q28Ow3zdMFRVxaRJk1BdXY2amhpMnjwZ1dXVqK2tRX19PcrLyxnciHIcQx1RHgiFQmhra4sLegcPHsShQ4fQ2tqKQ4cOobe3N/UGDUQDXlzYi3wMKRBBYX4MhT/yer+MSCEBzYDUYj6GA1s0uNkMM6hp5sfhqmuxCgsLUVlZicrKSkyaNAk1NTWorq6OPioqKnidG9E4x1BHNEF4vV60trZGQ15s4Gtra0NnZyc6Ojrg8XisnUBHfMgLf4QuIHQB6OHnhgBCAjAi2/s/wgg/JHK+UijNTgJKeHgz/BGqhFT7n0OJ/XxAaIv5PNkyH8NxuVwoKSlBRUUFqqqqosGtsrIy7nOXyzWi/34iyj0MdUQUx+fzRQNe5GN7e3v0eUdHB3p7e9HT04Oenh709vYOeRG9ZQb6Q54BsxIYfh4JfghXB0Xkt5gMbwfi9kMC0YwYeXH08/ALIoeK8GsUmIEt/Fwm2DbSuVMIgcLCQhQVFaGwsBClpaUoKytDaWlp9Hns56WlpQxrRBTFUEdEGTEMA319fXEhL/K8u7sbXq8XXq8XHo9n2Ofj9deRqqpwuVzRh9PpjPs88igoKIgLbbEfi4qK4Ha7eb9SIrKMoY6IcoKUEsFgEIFAAIFAIO557OfBYBB+vx+hUAiGYcAwDEgpoes6pJTRbYZhxG1TFAVCiLiPkcfA7ZqmwW63w2azwWazDfk88uAkAiLKNoY6IiIiojzAOj8RERFRHmCoIyIiIsoDDHVEREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKAwx1RERERHmAoY6IiIgoDzDUEREREeUBhjoiIiKiPMBQR0RERJQHGOqIiIiI8gBDHREREVEeYKgjIiIiygMMdURERER5gKGOiIiIKA8w1BERERHlAYY6IiIiojzAUEdERESUBxjqiIiIiPIAQx0RERFRHtCy3QGiCCklfD5ftrtBRJQWp9MJIUS2u0HEUEe5w+fz4cwzz8x2N4iI0vLCCy/A5XJluxtEHH4lIiIiyges1FFOsq+eBCHD/+cQCoQiAKEAigCEgFAi+8LbhQAUARF5TXSfiB4TfQAx25T4/eaB0W1SiP7/+sS0Ed0u+s8Vu00Ks5noPsVs19wuovsix8jwtuh+oL8NJfz6yH7EnyPumHD3pZJgX9zrEdfH/m1i0L5BxyC2HwP2I8n2JO0l68egY4ZqN7pdDj4+5pjo/pi2ZHg7Yo4z98mY/pj7Rey+6Gsj+2S0TRH7eiGj+6LfYpHtkebCrzG/FWT088gxSvhzc5/5eeS46D4hIdB/nBLeFn1ARo9TBOK2m8cb/cch8noDauSY8Of9bRnR9tSY9lWY29VIe9HXGlAjbSLSD6P/9ehv22zTgALz/OY+sz01vE3AgBo5PuYYFTCPg3meyPsR+dw8lww/R3ifhBJ+X1QIKADU8BdbgQhvE1CFgAIFIvyVCwZUXPjVahDlEoY6yk26CP96hRnqEA5g4b+W/fsEoPQnGGEmpHAjkb/uCgb91e5PTPFJItLmoL/yGLAt9hxIsG3gcegPczGhbtC2mBAW+/nALsa/PsExyhD7kv0zBvUjyT97qH3J3iqr7cW0mSjwjWqoS7QfAz+X0bZj+xF7zkT7oiEQMa+Jff2gY2SCc8m4R2yo6w+K4UeyfYgEP7PJ2AAYCX9AJJwhGopi95mhzugPRSI2FJnPFSHMwBX+iOhzET3ObAfhNiPHInxceHuifTHHqOFAqkb7GQl1cthQF9ueGnk/EL9NQWwfY76GRDmCw69EREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR7gOnWUm1QJKc0FR81110TMRzFgQeDIx5jniN0mY56nsC9m0bL+JWKTbe//KOOeI+44CQAysr2/TQkBSESPjd0fbSNucbXYviT4XMZ1acD7keQx8LWprEU31L6Uz5XivthTDnmcHKZNmaSPyRcfjl9bLmZf9LXWFx/u70fMOnWwvk6dRP9xUsj4B8yP5j7EbTeEBITR3yYi5zJi1tMLvya8Xwoj2h7i2g9/jJwr/LkSfk3kI4BB24yYH+vIc0MABvrXqTPC2wSSrVMnogsGq+j/mkU+V8LHDFz7LvXFhwX6Fx9O9HNJlF0MdZSTAse0ZLsLoyPyN9OigZmEKCL2W8vIZkcsi03VHEQisoI/OZQzfD5ftrtAREQ0brFSRznD4XBEnz/99NNwOp1Z7E3+8/l8+OQnPwmA7/dY4Xs+tsbq/ebXkXIFQx3lDCH6BxSdTidcLlcWezOx8P0ee3zPxxbfb5oIOPxKRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKA0JKmcGqWURERESUC1ipIyIiIsoDDHVEREREeYChjoiIiCgPMNQRERER5QGGOiIiIqI8wFBHRERElAcY6oiIiIjyAEMdERERUR5gqCMiIiLKA1q2O0AEAB6PB48++ihef/11NDc3Q1EUTJkyBaeccgouvPBC2Gy2bHdx3Hj++edx6623Dvu6X/7yl1i8eHHCffv378fDDz+MNWvWoL29HS6XC3PmzMG5556Lk08+eYR7nNt8Ph8++OADbN26Fdu2bcO2bdtw8OBBAMBll12Gyy+/fNg22tvb8fDDD+Ptt9/GwYMH4XA4MH36dJx11lk4++yzIYQY8viJ9PXI5P2+9957cf/99w97jocffhj19fVJ92/duhV/+ctf8MEHH6CzsxNFRUWYP38+LrjgAnzsYx9L+99ENFYY6ijrmpub8e1vfxvNzc0AAKfTiWAwiC1btmDLli146aWX8Ktf/QpFRUVZ7un4oigKSktLk+5PFpTffvtt/PCHP4TP5wMAuN1u9PT0YM2aNVizZg1WrFiB66+/ftggki82b96M733ve5aP37p1K6677jp0dXUBAFwuFzweD9avX4/169fjtddew6233sqvR1im7zcAaJqG4uLipPtVVU26b+XKlbjjjjug6zoAoLCwEB0dHXjjjTfwxhtvpBzkibKBoY6yKhQK4YYbbkBzczMqKipw4403YvHixTAMA6+++ipuv/12bN++HT/5yU/w85//PNvdHVcmTZqEv/zlL2kdc+DAAfzoRz+Cz+fDwoULccMNN2DKlCnRSur999+P5557DlOnTsXnP//5Uep57ikqKsKcOXOij//7v/9De3v7sMf19vbi+uuvR1dXF6ZOnYr/9//+H+bNm4dgMIhnnnkGv/nNb7B69Wr83//9H6699tpBx0/Ur4fV9ztiwYIF+N///d+0z7tx48ZooDvxxBNx9dVXY9KkSejq6sI999yDv//977j//vsxbdo0nHLKKWm3TzTaGOooq/7xj39g586dAICf/OQnWLBgAQCzynTqqadCSokf//jHeOedd/Dee+9x6GOU3XvvvfB6vSgvL8dtt90WrY4WFBTg8ssvR1tbG5555hk88MADOPfccydE9XTRokV49tln47bdfffdKR376KOPor29HQ6HAz//+c9RW1sLwKySXnDBBfB4PPj973+PZ555BhdddBGmTJkSd/xE/Hpk8n5n6q677oKu65gxYwZuuukmaJr5J7KkpATXXXcdmpubsXr1atx1111Yvnz5kBU/omzgRAnKqn/84x8AgKOOOioa6GKdeuqpqKmpiXstjQ6v14vXX38dAHD++ecnDAiXXnopAKCvrw9vvPHGmPYvWzL5w/3CCy8AML+PI4Eu1gUXXACXywVd1/HSSy/F7ZuoX49sBaUDBw5g/fr1AIDPfvaz0UAXK/J+Nzc3Y926dWPaP6JUMNRR1vh8PmzcuBEAcOyxxyZ8jRACS5cuBQCsWbNmzPo2EW3YsAF+vx8Aou/5QDU1NWhoaADAr8dw9u7dG73AP9n7WVBQgEWLFgEY/H7y6zG2Yt+/ZO/3woULUVBQMOj1RLmCw6+UNXv27IFhGACA6dOnJ31dZF97ezu6u7uHvACa+nV2duIrX/kKGhsboes6KioqsGDBApxzzjk46qijBr0+MgwOADNmzEja7owZM7Bnzx7s2rVrVPqdL2Lfz6G+v2fMmIFVq1Zh9+7dSY/n1yM9u3btwhe/+EUcOHAAiqKgsrISRxxxBM4//3zMmTMn6TEAUFZWhrKysoSvUVUVU6dOxZYtW/h+U05ipY6yprW1Nfq8qqoq6esqKysTHkND8/l82LZtGzRNg5QSTU1NeOmll3D11VfjtttuQygUint95L0tKiqCw+FI2m7k69HW1jZ6nc8Dse9PKt/ffX198Hg80e38eljX1dWFPXv2wOFwIBAIoLGxEStXrsRXv/pV3HPPPQmPibzfsb9vEol8Lfl+Uy5ipY6yJvYP2FB/tJxOZ8JjKLGKigpcdtllWL58OaZMmQK73Q5d1/Hhhx/ivvvuw7vvvovnnnsOTqcT11xzTfQ4r9cLIP79TiSyn1+LoVn9/o4M7/Hrkb76+np8/etfxwknnICamhpomoZgMIj3338f99xzD7Zu3YoHHngARUVF+OxnPxt3bOT9G+79jnwt+X5TLmKljijPHHPMMbj88ssxc+ZM2O12AOaw0cKFC/GLX/wCJ5xwAgDgqaeeQmNjYza7SjSizjjjDHzuc5/DlClTohMdbDYbjjnmGPzmN7/BvHnzAAD33Xcfent7s9lVolHBUEdZE6lIAIheEJ5IZNHVgcdQ+hRFwTe+8Q0AgGEYeOutt6L7XC4XgPj3O5HIfn4thpbp9ze/HiPL4XDgiiuuAGBWQd977724/ZH3b7j3O/K15PtNuYihjrIm9tqVQ4cOJX1d7HV0w13vQsOrr69HSUkJAHMZh4jIe9vT0zNkCIl8PSoqKkaxl+Nf7PuTyve32+2OCwr8eoy8+fPnR5/Hfu8D/e/3cNftRr6WfL8pFzHUUdY0NDRAUcxvwaFmkkX2lZeXc+brKIqdYRk783KgyL6hZnRS/Ps51Pd35P2cNm1a0uP59Rh9kfevo6MDnZ2dCV+j6zr27t0b93qiXMJQR1njdDqjCw6vWrUq4WuklFi9ejUAYMmSJWPWt3y2f//+6H1IIws7A+YaXJGLwCPv+UDNzc3Ys2cPAH49hjNlyhRMnjwZQPLvb6/XG13wduD7ya/HyPvwww+jz2O/94H49y/Z12vDhg3RCRJ8vykXMdRRVp111lkAgPfffz/uF27Eq6++Gh0mibyWkpNSDrv/d7/7HQDz+rrjjz8+us/lcmH58uUAzEkUiS4kf/jhhwGY1xOdeOKJI9XtvCSEwJlnngkAeOWVV9DU1DToNX/729/g9XqhqipOP/30uH38eqRnuO/9QCAQXc7E5XINuuVgbW1tdCHoxx57bNCSPwDw0EMPAQCqq6txxBFHjES3iUYUQx1l1VlnnYUZM2ZASokf/OAH0YuXDcPAq6++ittvvx2AucI77/s6vObmZlxxxRV4+umnceDAgegfOsMwsGnTJnz3u9+N3k7qvPPOw9SpU+OOv/zyy+FyudDW1oYbbrghOjvW6/Xi/vvvx9NPPw0A+MIXvpAX9xlNVU9PDzo7O6OPyKLZfr8/bvvAZS4++9nPory8HD6fD9dffz22bt0KAAgGg3jqqafwxz/+EQBw7rnnDrrvKzBxvx5W3u9169bhP//zP/HCCy+gpaUluj0UCuG9997DVVddFf2P4xe/+MWE79eVV14JVVWxY8cO/OhHP4peP9fd3Y1f/vKX0Qre1772Nd73lXKSkMP994ZolDU1NeHqq69Gc3MzAHNY1jAMBAIBAMDs2bPxq1/9Kq/+aI2WpqYmXHzxxdHP7XY7XC4XvF5v9P0EgBUrVuC6665LeH/Lt99+Gz/84Q+jswALCwvh9Xqh63r02Ouvvx5CiFH+1+SOz3zmM9Hvz6GcddZZ+K//+q+4bVu3bsV1110XHfIuKChAIBCIVoKWLFmCW2+9Nbr8zEAT8eth5f1+//33cfXVV0f3ORwOOJ1O9PX1Rd9rRVFwySWX4Ktf/WrSNleuXIk77rgj+v4WFhair68v+h+kyy67DJdffrnlfxvRaGKoo5zg8Xjw6KOP4vXXX0dzczOEEJgyZQpOPfVUXHjhhbDZbNnu4rjg9/uxcuVKbNq0CTt27EBnZyd6enpgt9tRVVWFBQsW4Oyzz8bChQuHbGf//v14+OGHsWbNGrS3t8PlcmH27Nk477zzcPLJJ4/NPyaHZBLqAPMWdw8//DDeeusttLS0wG63Y8aMGTjrrLOwYsWK6IShZCba18PK+93V1YXnn38emzZtws6dO9HV1YW+vj44nU7U1NRg0aJFOPfcczFz5sxh2926dSsee+wxrFu3Dp2dnSgqKsL8+fNxwQUXcMSAchpDHREREVEe4DV1RERERHmAoY6IiIgoDzDUEREREeUBhjoiIiKiPMBQR0RERJQHGOqIiIiI8gBDHREREVEeYKgjIiIiygMMdURERER5gKGOiIiIKA8w1BERERHlAYY6IiIiojzAUEdERESUBxjqiIiIiPIAQx0RERFRHmCoIyIiIsoDDHVEREREeYChjoiIiCgP/H9fglxfIkcWrAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot, ax = dwell_time_map.plot(coord = SpacecraftFrame(attitude = Attitude.identity()));" + ] + }, + { + "cell_type": "markdown", + "id": "bceece48-9af5-4c37-93ec-64a0ae484173", + "metadata": {}, + "source": [ + "The dwell time map sums up to the total observed time:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "824a5710-55ad-4021-a026-ed2caf90bc05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$3600 \\; \\mathrm{s}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(dwell_time_map)" + ] + }, + { + "cell_type": "markdown", + "id": "8d858030-77da-40a2-83ca-fb3ae5de5e23", + "metadata": {}, + "source": [ + "## The scatt map" + ] + }, + { + "cell_type": "markdown", + "id": "23df1782-9bf7-4e7b-b469-31d2e6595e11", + "metadata": {}, + "source": [ + "As the spacecraft rotates, a fixed source in the sky is seen by the detector from multiple direction. Convolving the dweel time map with the instrument response, without binning it simultenously in time, can wash out the signal. Since the spacecraft can have the same orientation multiple times, we avoid performing the same rotation multiple times by creating a histogram that keeps track of the attitude information. This is the \"spacecraft attitude map\" ---a.k.a scatt mapp--- which is a 4D matrix that contain the amount of time that the `x` and `y` SC axes were pointing at a given location in inertial coordinates -e.g. galactic." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f1fed35c-66ba-430a-add0-93ee6dbdf5dd", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 3601 of \"dubious year (Note 3)\"\n", + "\n" + ] + } + ], + "source": [ + "# It's recommended that the scatt map pixel size be finer than the response, in order to mitigate error\n", + "scatt_map = ori.get_scatt_map(nside = 16, coordsys = 'galactic')" + ] + }, + { + "cell_type": "markdown", + "id": "c7be70f9-f7f9-4a9f-972f-03f3ebfc7dda", + "metadata": {}, + "source": [ + "This is a how the 2D projections looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8be8ef44-400c-4541-b7b6-875724c07038", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAD6CAYAAAAm7DFNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzyklEQVR4nO3dd3xV9f348dfnnLuyB2RAEiCMsEGgiKgsBURxIW5trVWL1r31q/7UVr91oLa2to46vq1VWweOOopWRFQQBZEpIIQVyE7IvOucz++Pm1wSxRogycl4Px+P+7jrnHvfuRfO+77PZymttUYIIYQQQgghWpHhdABCCCGEEEKIrkcKDSGEEEIIIUSrk0JDCCGEEEII0eqk0BBCCCGEEEK0Oik0hBBCCCGEEK1OCg0hhBBCCCFEq5NCQwghhBBCCNHqpNAQQgghhBBCtDqX0wEIobUmGAxSXV1NbW0tNTU11NbWRu/X1tYSCASaXYLBYPS23+8nHA5j2/Z/vSilME3zexfDMKK3PR4PPp8vevF6vcTExOD1eqP34+PjSUhIICEhIXo7JiYGpZTTH6UQQohWorWmvr5+v7mppqaG+vr67+Ukv9/f7H44HEZrjWVZaK2xbTt6u/G6MTe5XK795iaXy/W93NSYj5reb5qTGm97vV6nP0bRzSlZGVy0hWAwSGlpKeXl5VRUVFBZWUlFRUWzS2VlJZWVldTU1BAKhfb7OoZhRH/of/fi8XhYsWIHYLKvcU7tuygwQhrlDzd5RQ0q8k9eKx25jwZTYcW6MMJhDhubQyAQiCYRv98fvViWtd84TdOMHuATExNJSUkhNTU1ev3d27GxsVKYCCFEO6urq6O4uHi/Oalprtq7dy+1tbXYtr3f13G5XD+Ym7xeL1+8vQpsFUkxALrp7UiWij6mAKUjTzfc3pfKGm6bMGra0Gb5qGl++qGfch6PJ1p4JCYm/te8lJKSIoWJaHVSaIgDZts2ZWVlFBYWUlxc3OxSUlJCcXEx5eXlzfZRSpGcnExycjIpKSnRS3JyMvHx8c0ucXFx0dvHz/0DsQU1UFCItmywbex6P+j9HPx/6J+yUqAihYgyIj/utd18W2Uo1LCB+HvFE0ow0Q01gBls2E6BEdB4Kup5+e2rqKmpobq6Onpper+qqiqatMrKyqioqCAcDjd7v5iYGNLT08nIyCAjIyN6OzMzk/T0dNLS0nC73Qf4zQghRPcVDocpLCykqKjoe7mpMT/V1NQ028flcn0vJ6WmppKYmEhCQgJxcXHR68b8lJCQwOyY81B0jJNFGg0GvFT4+H5zUtPcVF5e3uwE4Hd/AiYlJX0vN2VmZkZvp6amYhjS6160nBQaYr/C4TDFxcUUFBSwe/dudu3aRUFBQfR+IBCIbhsXFxf9cZyenh69pKWl0aNHD1JSUjijxyW4MzPRPZKxErz4e/pQWqOVIhyjUDa46vYVD+66MO7SOigoxNpb9cNFRGtTCjMhYd99Q0F6T7Qn8qM/nBJDKN6F0hC7bg+6rg5dW4fd+HnsJ06NBpfmL5seih7gGwuyxoRYVFREZWVlkzAU6enpZGdnf+/Su3dvKUKEEN1SIBBg9+7d0XzU9FJUVNSs1TklJWW/eakxNyUnJzMn6cIOUzC0N40Gt83j6x6gvLycsrIySktLKSoqanapr6+P7uN2u+nVq1c0H+Xk5ERvp6WlSREivkcKjW4uHA5TUFBAfn4+27ZtY9u2beTn57Nz587oWXjTNMnMzIz+yM3KyiI7O5tevXpxSd4NKKvJgaWxO1DTFgRlYMTHRX6090jBjvMBYNTUQ3llZPtQGKu6et/rdOR/loaJNXk0ls9EhW3MgI27vA5CYSgpB8vCqqlt3urSgr9HGxrttbjvo/+hqKiIgoICdu3aFS3y/H5/5O0Ng/T0dPr06UNubi79+/cnNzeXfv364fP52uqvFkKIdlNfX8/27dujOanxurCwMLqNz+cjKyuL3r17k52dTVZWFllZWWRmZnJBn6tRunsWEK1Jo8HUaJ/Fr9+7kcLCwmhe2rVrF4WFhdHizuPxkJWVRU5ODv3794/mpqysLFwuGRLcXUmh0Y1UVlayadMmNm3axLfffvu9giIpKYl+/fpFLzk5OWRlZf3wAfs7XZKU14syTVRKEtrrQXvchHrGog1FOM7EXR3G/cVG7Nra9vyz24SrVybBgb0IJbhAgeVtKLY0KFvjrrZw1QQxNmxD+wNoywJ7/+M7WkKjwWPz4NI7ogf4xiS8e/duINIK0rt37+jBPTc3l7y8PLKysuQskxCiQ9Jas3v37mhu2rp1K9u2baOwsDDarSczM5O+ffuSm5tL3759o0XF2emXdtvWiI5Cq8gJsnv+cxO7du1i586d7Nixg/z8fCoqKoBIAdL4/TWeHMvLy6NHjx4ORy/agxQaXZDWmtLS0uiBu/FSUlICRLo6DRgwIHoWPDc3l5sm3gMho+UHbaVQHg/KNDEy0ghmpRBKdKNNhTZBWZEf3MoCT2UAszqAzt+JXVfXhn95O1MKZZqgDMweKWCaWOkpaK9JMMmDtzyAsa1wX8tGOAy2jnSzsjU6HGqVlhtt2OhYi+tf+iVbt24lPz+f/Px8SktLgcj3nZeXR15eHkOGDJHiQwjhCMuy2LVrF5s2bWLjxo1s3ryZzZs3R8dNpKWlNTtR0rdvX64afUfzVnPRaWi3jY4N86u//KxZbqptONmYlpZGXl4egwcPjl5SU1Mdjlq0Nik0uoBAIMCmTZtYu3Yt69atY+3atdHB2ElJSQwaNIjBgweTl5fHvbMfBb95YGeBmhQVyusFlwvlMsEwwDDQiXGEUmNRtsZVUo0KBNF7qyKDtm2NDgXb6C/vuIzYWMLjBmOELFTIwqiqR4XC4A9EBrVrO1JkhMLYgQC6yZiX1qJdNjo+xIWPnsnGjRvZuHFjtNtBfHw8gwYNYtiwYYwcOZIRI0aQmJjY6jEIIbqvqqoq1q1bF81LGzZsiPb379WrV/QESF5eHrdNvh8VMh2OWLQ1jQavjR0f4ux7T+Kbb75h06ZNVFVVAZHiY8iQIdHcNHjwYJkJq5OTQqMTKisrY82aNdHCYtOmTYRCIbxeL0OHDmXEiBEMGTKEwYMHc16vyw+qaVm5XBixsRDji0zD6nJFukq5TLTLRMd60S4DbRqYWwqwyis69rgKBxijhxJIi42MTQGwNUZY46oJRoqPyhrs0vJIK087fXavVPyFjRs3smnTJjZs2MD69espKysDoG/fvowcOTJaeGRnZ8sUvEKIFtFas337dtauXRvNTdu3bwcgOTmZESNGMHz48Gir6mlJv3A4YtFRaDR/3fVotKXrm2++Yf369dTX1+N2u8nLy4vmppEjR5KcnOx0yOIASKHRCVRWVrJq1SpWrlzJypUr2bFjBxDpt9p48B4xYgQDBgzgeM85rfOmjbMvpfdAx/nQLgPb50YbCm1GfnwqrfFsLyO8bUfrvGcXo7xejNhYVEoSdqwPK8GL7TOx3ZFuAJ6KAEaNHxUIQV09dnUNOhBAf2cq3LbUeIBfu3Yta9asYc2aNeTn56O1JiUlhVGjRjFu3DjGjRsnhYcQIkprTUFBAStXruSrr77iq6++ory8HMMw6N+/fzQvjRgxgt69ezPTPNPpkEUnotH86Zv/jZ5UXbNmDcXFxQBkZ2czZswYxo0bx9ixY6Xw6OCk0OiAampqWLVqFV999RUrV65ky5YtwL7/XGPHjmXUqFGcm/Gr1ntTpTC8XlRCAio+FjshBu1xEY73RDcx/WFU2MaorEXVB7Ar97br2fiuwIiNRcXFQXoq2m3CdxaDUiErMnvV3hrsqqo26VL1Y7Rpc+8nN7F69WpWrVrF+vXrsSyL9PT0aNExduxYevbs2e6xCSGcU1RUFD3htXLlSkpKSjAMgyFDhjBmzBjGjBnD8OHDOTXh506HKrog7bW45a1fsXr16mYnXQcOHMjYsWMZN24co0ePJjY21uFIRVNSaHQAWmvy8/NZtmwZy5YtY82aNViWRUZGBmPHjmXs2LGMGTOG8zIvb703VQojNhYjMQGdnIB2m9g+NxgKrRTKsjH8IZQ/hKqqQfv9WFU1+8YWiENixMZC/z77FjTfD1VUjlVU3H5B/QBt2vzm4xtYsWIFK1asiBa+ffv2ZcKECUycOJFRo0bJ2h5CdDGhUIg1a9awbNkyPv/8c/Lz81FKMXDgwOgZ5VGjRklhIRyhPRY3vjEvmptKSkowTZPhw4czYcIEjjzySPr37y8t8Q6TQsMhdXV1rFixgs8//5xly5ZRXFyMz+dj7NixTJw4kfHjx/Oz7KvabOo+5faghg/EinGjtAZbo0I2KmShbBtCYfTuoi4xFW2HpBTmgH7o2P0MclMKbRiYhWVYpeUdbjC9dtvc+s6v+PLLL/n8888pLS0lNjaW8ePHc+SRRzJhwgSZOUSITqq0tDR60uvLL7+krq6O1NRUjjjiCCZMmMC4ceOYm3yR02EK0YxGo2Msrnj+Z3z55Zd8+eWX1NfXk56ezsSJE5k4cSJjx46VtaYcIIVGO6qsrOSTTz5h8eLFrFy5klAoRHZ2NkcccQRHHHEE/zPxgXZZYEi5XKiYGFSf3g2tFxaErWYtFaq2nvCewv/yKuKQGSZGXCwqNgYVG4OO8aINA0xFXZ8ELI/CVWfj2RvEvacSu6ikw00PrNHouDA/++Mcli1bxvr169FaM3ToUI488kgmT55Mbm6u02EKIf6LHTt2sHjxYj7++GM2btyIYRgMGzYsWlxcPvQ2Wa9CdCpaaXRSkFPums7SpUspKCjA4/EwduxYjjrqKCZNmiQnxNqJFBptrKSkhCVLlrB48WK+/vprAEaNGsWkSZM44ogj+EXf69o+iIbpac30NMK9Ugim+gjHGMQW1GGW16BsHRkrEAii6+vRobCMvXBAYwFoJCYQGJRJKMGF5VVoBUqDGdB4y4O4d5QS3lXQIb+fl8ufYtmyZSxdupTly5dTW1tLnz59mDp1KlOnTmXAgAHSjC2Ew7TWbNmyhcWLF7N48WK2bdtGTEwMRxxxBEcffTSHH344p6dc7HSYQrQKjeaZbQ/z2WefsXTpUlavXo3WmlGjRjFlyhSmTJkiYw7bkBQabaC0tJQPP/yQRYsWsW7dOkzTZNy4cUyePJlJkyZxZo9ftkscZkoKum8vgqkxhONMwjGNq1dr3DU2cRuK0JV7sev96FD4kFauFq2scQxNRhpWUhyBjFhCcQYoSFxfgbV+k9MR/iitNL/55Ho++ugjlixZQk1NDVlZWUydOpVjjjmGgQMHStEhRDvRWvPtt9/ywQcf8PHHH1NQUEB8fDxHHXUUkydP5vDDD+fEmPOdDlOINqddNtcu+AUfffQRK1asIBwOM3LkSKZMmcIxxxwjRUcrk0KjldTW1vLxxx/z/vvvs3LlSkzT5PDDD2fKlCkcddRR7TNneMNK1crjAdMkOD4Pf8/IAF0zaOMtC+Eur4PCEuyaWkdmNBIt9J0f4MrjwUxJxs7sgdpTil1e2eHGbvw3Wmn+d+lN0aJj79695ObmMmPGDGbMmEFGRobTIQrRJRUVFfH+++/z/vvvk5+fT1JSEpMnT2by5MmMHTuWE7znOh1i96FUh2yJ7s60aXPDW5fw0Ucf8cUXXxAOhxk3bhwzZsxgypQpMoNVK5BC4xCEw2GWL1/OwoUL+eSTTwgGg4wZMyb6D7TdiguPJ9Ltxu3a97jLhZ3bG2wbc3cZdlW1dIfqjL5TcJhDB7F3RCruWgtfsR9zV0mHHDD+3zS2dLz//vssWbKEQCDAYYcdxsyZM5kyZQoJCQlOhyhEp1ZTU8OiRYtYuHAhX3/9NV6vl0mTJjFjxgzGjx/feustiSjlchE85jAqBnro9fJmrJKSfU8aJtbk0ey4NEzif+Lo8Zdlkos7IG3aXLPgQt5//32++uorvF4vRx99NDNnzmT8+PG4XK4ffxHxPVJoHISCggLefvtt3n33XcrKysjNzWXmzJlMnz6d83td0W5xGLGxKE+TKUW9XkhKINwzHsvnwrd+F+HConaLR7QxpTDzBrB3dE90Qy84ZdO86CgpbdcF/w5V49mkhQsXsnLlSlwuF1OnTuWkk05i1KhR0rVKiBbSWrNmzRreeustPvroI0KhEOPGjWPmzJlMmjSJU+IvcDrETs/VK5OiE3PpsaYWlq+Ldjc2B/Vn+30xLPjJk/Q2TR4tH82LfzuWnKfWETxsALuvCPL6+CfIc8exKVTLcQuvYeiNm7D2VuHqm0PRsVnUzqohUBjLkNs2YFVVOfyXCu21uPAvc1m4cCH5+fmkpqZy/PHHc+KJJ5KVleV0eJ2KFBotFAgEWLJkCf/6179YuXIl8fHxzJgxg9mzZ3P5kNscicnw+TB69sBOTsBK8hFKcGO7FCgw6y08i9d0qjPdogUME1dGGlZ2Gv50H6E4M1p0eKosPJVBXBV1UFKOVV7ZqcbdaI/FhU/P5V//+hcFBQX06dOHE088kVmzZsnKr0L8gIqKCt577z3efvttduzYQe/evaP/b85Jv8zp8LoMPXE0pbf6+dOIF/gm2IsH1s4k6dV4lIZL73qFsxL2YDRZGOnO4jEsveVwXDcV8d6QNzDVvueKrVqO/tsNuKsV1/3sNY6IycenLILa4IRFVzL06s37ig3DxExNRgeC2NXV7f1nd3uNMyue9JupLFy4kJqaGsaOHctJJ53EpEmT8Hg8P/4i3ZwUGj9iz549vP7667z99ttUVVUxevRoTjzxRKZMmcJJsT9t93iU24OZ3pNwTk9CiR5sl0KbkbO+ytKYfhtPaS1qT1nzplvR5Si3B7NnKlZWT/xpMRihfauMKw3uqiBmaRV2aXmnSlAazf1f3Mq//vUvPv74Y7TWTJ48mblz5zJixAhp5RDdntaatWvX8tprr7F48WKUUkyZMoXZs2czZswYjnOd5XSInZJyubAmjiQcaxL7TRF2UQlaayrPGMOcm//DlLhvotsurh3Cy7+bTtrnFWycl8Qfjv8/psdU83nAzQXv/ZKhD5dgfZuPmZbGt4/2ZvFRj+FTBhdsPY3SP/Uj+aOtWH0zGPX4Wi7tsST6un5tcuJ7V5P7mk3pCA/Vw4JMGr6JNcW96XWLhbVhsxMfjQC0obnx7Ut46623WL16NUlJSRx//PHMmTOHXr16OR1ehyWFxn5orVm1ahWvvPIKn376KbGxsZxwwgmcfPLJXNTv+naPp/EHZbhvOvWZPkKxRmTKUxu8VRbuvSHcRVVQVIpdV9epus6I1mEmJkKvdOx4L1asB9sT+TcC4KoLY67ciO33OxvkQXi5/CkWLlzI66+/zq5duxg8eDBz587lmGOOkTNJotsJBoN8+OGHvPrqq2zcuJGsrCzmzJnDcccdJ9PRHiKzZw92XTCYY85dTpKrnjV7e7NmVxbZ/+ei6ooqrh70IQM8xZhort90BjH3J2MuWrlv/2F5bD+lJ+krg3j+/WXzFzdMKs8/HJdfk/jmqubH4sNHMuLP65iRtI5Hts9g1wd9yHlvLyWHJ3L8ZZ/Qy1MZ3fSRVccy6OJNHW49pe7oL/nzeeutt3jnnXeoq6vjqKOO4vTTT+ewww6Tk2HfIYVGE4FAgPfff59XXnmFrVu30q9fP+bOncvMmTM5Oe5njsTkys6ielwWobgmPxz9mpjSIK6yetSO3VjV1TKwrJszEhIwkpMid0wD7fVgJ/gIx3vwbi8jnL/d2QAPkUZzz2c38Morr7B8+XJSUlI45ZRTOPnkk2UqQtHllZWV8frrr/Pmm29SUVHBhAkTmDt3Locffri0XrQCV2YGG+7L5tzDlmOqSMvw15XZ7Ppbf3r+3wrQNmrYQHbNTMWKgdxnt0fWMmqt9+/XBzspDr1+y77uzkqx/a6JXH762xgNMdVYPp5+ezoDnq9AaY3tc1F8eCI9v65DffZ1q8UjWk4bmitf/Smvvvoq27ZtY8CAAcydO5cZM2bg9XqdDq9DkEKDyAwdb7zxBi+//DIVFRUcddRRzJ07l5vH/9a51VAbKmIzPY2KY/tjBjUxJUE8OyuwC4vljIZoRnm9GMlJKLe72UxVOj6GQK9EvDvKsbcXdIkxO3/Jn8+rr77Kv//9b8LhcKQv+jnnkJ2d7XRoQrSqXbt28dJLL/Hee+9hmibHH388p512miMt612CUgRnjqM2MzKJisuvSfl8N5vnZTHlmNX09lUCkSKj+u5sXB+ucDDYyFpYG+4dhC+tHuvbeHqs1sTvCpB/so8BY3eilMZnhtlZlUTP33hh+RpH4+3ONJrffn4zr776KkuXLiUlJYXTTz+dU089lfj4eKfDc1S3LjTKysp45ZVXeP311wkGg8yaNYuzzz67fVbr3p+mzW3KwIiLRWVnogKhSHFRXy8tF+K/Um4PRowPFRcLLhdWZgqVg+MA8FTbxOypx7WzJDIbWSf/t6RNm58/O4eXX36ZvXv3MnXqVM477zwGDRrkdGhCHJJNmzbxwgsv8NFHH5GUlMQZZ5zBKaec0j5TpndVSlF1zgSs88qI80ROuBRXxZP1kAvz62/Ref3wZ8ZSeISb7I/8zbpFOUm5PWCoZutemT17sOn3fRiRvTv62Ncb+jL0lo1YlXudCFM0YfvCzLr7SN577z08Hg+nnnoqZ5xxBqmpqU6H5ohuWWgUFxfz/PPP884772CaJqeeeiqvXvs+Kmg6F5RS+4qLzDQCOSn4e7qxXZDy701YZeXOxSY6n4b1VYy+2VSP6EkoRqGNSCFrWBpfuUXMziooKOz0iUkbmstfPo8XX3yRwsJCJkyYwAUXXMCIESOcDk2IA7Ju3TqeffZZli9fTq9evTjnnHP44+nPo2zp831I9lNklFTHk/moF/OjjlFQHCh7yhjsO8qIcwcpq48lZJl4/5JKwqJvwOslODTSwutesblTTQbSlWiPxWkPT+eNN97AsixOOOEEzj//fNLT050OrV11q0KjrKyM559/nrfeegufz8eZZ57JXy96A2UZP75zG1JuD2ZOb/z9euDv6Sbs3ZdUfBUWvndWdKppSkXHorxezF4Z1A9Mw9/TjeVWKK1RNpEueYUBPNtKsAqLOvVEAhrNTe/9kr///e/k5+czceJEfvGLXzB48GCnQxPiv9q4cSNPP/00y5Yto1+/fvz0pz/l/uOecK7rbidm+Hzo4QPQZiSvKw17B8VRNbcanycEQG29l+w/uemsRQZEZsgKHHsY4ViTxC8LIBQCpfj2ilyCGSHccZG/NeXdWJL/JgsEOkmbNj/9y8m88sor1NfXc9JJJ3H++efTo0cPp0NrF92i0KisrOSFF15gwYIFuN1uzjrrrEjfuYSfOxaTcnswM9II9U2jtreXsG9fsWNYGm+lRUxBDWr77k5/xll0HGaPVOw+vfD3jiWYYDZf+K/GJm5rJXrnnk59BkyjufX9y3jmmWfYuXMnkydP5he/+AX9+/d3OjQhmtmyZQvPPPMMS5YsIScnhwsvvJBp06Yxy32206F1SobPR9GFY6icEIxUGIA330f/53Y1/6EdCHbZxWytaWPZdrHGMCMnJ8MBF4MfrMNe+82P7CnaWmPB8Y9//INQKMRpp53GueeeS1JSktOhtakuXWj4/X7+8Y9/8MILLwBwxhlncNZZZznXz1UpzNQU7P5ZVPeLJRhv0HjCygw2dGcpqEHtKMSqrJQzEKLNGHFxqF7phDKTqM/0YrkjCz266jUJn2ztEmuwaDTXv30Rzz77LEVFRUyfPp1f/vKXZGRkOB2a6OaKiop46qmneP/998nMzOTnP/85M2bM4HjPOU6H1qnVnDGBPbPDYERyp6vAy6A/7SS8c5fDkbUf5faw/bafYA2piT7mXRFP74c+l54RHYQ2bc7+8/G8/PLLKKU4++yzOeuss4iJiXE6tDbRJQsN27b597//zV/+8hcqKio47bTTOP/88zkj9RJH4lFuD0ZyElZuJpVD4rFdDU9o8NRqEvJrMbYWYJVXSHEh2p5SGLGx0btGQjx2egp1fRKJ21yOtfFbB4NrfVpprnztpzz77LPU1NRw1llncd555xHb5DMQoj3U1dXx97//nX/84x/Ex8dz4YUXMnv2bCkwWoGeOJrNP/egYiI/pnWdi6EPlWJt3upwZO3PGD2UksOT990PQsKuIOGYfeNQPZVBjE9WtX9wIkq7bE59eBoLFiwgOTmZSy65hJkzZ2IYznbnb21drtBYuXIljz32GJs3b2batGnMmzePC7Kvbv9ADBMzKRGVlICO9aFdBtrjonJwPGYIYnf7I/3ii0q6xJSjonNRXi/KNJvNdGb0TKV2WCaxO6rQ+Tu73BTKjWeRXnrpJeLj47nooos44YQTME0HJ4EQ3UI4HObtt9/mmWeeoa6ujrPOOotzzz2XU+IvcDq0TsmIi8PomYqVnhy5v7eOmqE9qM5yRbfpua4eY/FXDkXY8dhHH8aWM3zR1h6z1mDQI1uwioodjkxob5ijbhrFokWLyMvL44orruCwww5zOqxW02UKjeLiYv74xz/y0UcfMWzYMC6//HKuG/1rR2Jx9cpEJ8ShfZG5uiMzSim0y8CoqsfO3ynFhXCeUijTRLlcYJpYowZSPixylt9Tq4ktDOLZsAu7rLxTDxL/Lu2xmHr7WBYuXMiAAQO49tprGTVqlNNhiS5qzZo1PPzww2zZsoXjjjuOSy65hPMyL3c6rE7LSEig9IwRBJIV2gXKgqz3y7FXyxiE/8bw+dh5zVjqshq6T9mKfm+HcS/88r/vKNqNnRBkwFkZfPPNN0ydOpUrrriiS8xQ1ekLjXA4zCuvvMKzzz5LTEwMv/rVr3hg1pOOztbhysnGTomPFhe2x4X2GGil8OaXEN6+07HYhNgvw0SNG0ZlXhxhn4qOHTLC4K2ySdhYCTv3YFVVORpma7LjQww8J4MNGzYwe/ZsLr300i4/KE+0n8rKSh5//HHeeecdhgwZwnXXXceVw+5wOqxOTblcVM39CdV993UtyfjCj/nRV9LtuAX0UYeRf0oMtkuj3RpviUm/R9Z06sk/uhqNxk7zkzjRRX19PRdddBGnnXYaLpfrx3fuoDp1obFmzRoeeughtm3bxpw5c7jooouYk3ihs0EphSszAys7DcvnQpv7Ch6lNZ5tpVJoiA7LTExE98+mekACgSQDbYA2QStw1UPypjpcW/dgFZd0icSu0Vy54Kc88cQTmKbJZZddxqxZs7pcH1nRfmzb5p133uHxxx/Htm3mzZvHiSeeKDNJtYYjRrH76Hho+O8ZU6Tp8fLXXa6bZ5tRCrNHKqQkUd8/FaXBUxEgHOfGs6sisk1ZJVZFhbNxCrRpc9L8ySxYsID+/ftz/fXXM3z4cKfDOiidstCoq6vj8ccf5/XXX2fIkCFcf/31XDH0dkdjMuLiUL0zqB6ZRn2KQVyxhbs60t3ECNmYNQFUQTF25d4u1Q1FdE2N0y/XDe9FbaabcAyRVg4daeWI3x0mdntVpJWjurrTFx3abTH1jkh3qlGjRnHLLbeQnZ3tdFiik9m1axf33Xcfq1ev5rjjjuOyyy7jrJ7znA6rS1AuF9bEkdEiA8CzpZjwrgLnguoCzOGD2TanR3Sqc18ZZP5VWjk6CjsuxIBz0tm4cSOnnHIKl156aaebyKTTFRpfffUV9913HxUVFcybN48/n/GiY92klNuDmd6TuhG9Iz/GYkE3DK6NK7KI31GHuaccu7QM2+93JEYhDpWRkIA1oj9V/WMIxatoQtKmwgxoXHWa2KIQMVvLsHbs6tSF9P1f3sqDDz5IaWkpl156KXPmzJHWDfGjbNtmwYIFPP7446SmpnLzzTdz809+63RYQvwo5XJR9rPx1OREfrsoG/q+WYH99QaHIxONNJrLXj6HJ598kuTkZG699dZONVi80xQa9fX1PPHEE7z22muMGjWKW2+9lZ/nXONILMrtgVGDKD48EW0oaPgElda46iBpmx/3+l1YpaWd/kyvEI2U24MxsC91/ZOpznZheZsX+EZQ0+tfO7DLK9ChMDoc6pT//rWhOXH+0bz22muMGTOGm2++md69ezsdluigdu/ezX333ceqVauYM2cO8+bNk9mkROdyxCh2zIyPjs2L36lJfW65rLvRwWhvmKEXZ/P1118zd+5c5s2bh8/nczqsH9UpCo1vvvmGu+++m9LSUubNm8fjZ77kTCuGUrj65lB8TBZVuYABrhpFTIkmfk+Y2I2l6F17pPVCdG1K4cpIJ5SbScWQWELxkcHj3kpNj3c2oQNNZlSzrE7bf9pOCtJjhpe9e/dy5ZVXMnv2bJRybpIJ0bForXn33Xf5/e9/T1JSErfccou0YohOSXm9GAP6UtcviUCSibIh5bPIjIOd9fjdVWk0Vu96XEOD9OzZk//3//4fQ4cOdTqs/6pDFxq2bfPyyy/zxBNPMHDgQLY8X4Lhd2DkfUOBUXZUb/YONLC8GiOk8JZDyqYQscu+lZW8RbdkJCRAbhZVQ5LRCpLfXU/TQ4oOBtGBgIMRHhpt2sy453Defvttpk+fzvXXX09cXJzTYQmH1dbW8tBDD/HBBx9wwgkn8MHtX6Bs6WInugilCE8bS+UgD7ElNu6qML5V27BKy5yOTDSwfWEG/jSdzZs3M2/ePM4888wOeyKswxYalZWV/O///i/Lli3j7LPP5pJLLuEE77ntHoeZkkLNlEGUjHZhezTuakXCDpvUpXuwdhd26h9RQrQW5fVSNWcM2oCE/HrcO0rQdfXY1dWdesxGo1vev5QHH3yQlJQU7rrrLgYPHux0SMIhjS3sFRUV3HDDDUyfPp0ZxhlOhyVEqzIH5lJwYq/omLy4PTaJL30uJ1Q7EK00p/3hGF566SUmTpzIrbfeSnJystNhfU+HLDRWr17NnXfeSTgc5n/+53/4f0c93GbvZcTGopqcoVQeN1ZmSuR22KYuJ4FAcuR/WtyeEN4V32JV7m2zeITojMyhg8g/Mw3Lq1E60qXQUw3eCpuUryshfyd2ba3TYR4S7QuTe15Ptm7dyq9+9StOO+20DnsGSbQ+rTWvvfYajz32GAMHDuTOO+90bJygEG3N8PkoOW8MwaTIMc4IQe8XN0qrRgdkpQSIO1Lj8Xi48847O9wCtB2u0HjjjTf4/e9/z7Bhw7jrrrs4J/2yVn19IzYWFRuDahhAUzuqN/5UM/Kkjsy40Dj8I25PEFfVvhYLs6CUcGFRq8YjRFdQd9oEiscYYETW3AAIx2l6DS7G1orCwmQSV3nJXFqNsWFbp506USvNyY9M5pVXXmHWrFlcf/31eL1ep8MSbSwQCPDQQw/x3nvvcfrpp3PZZZc50sIuRHuypo2lfLCXcGzkoN7rsxpYttrhqMT+aI/FkIt7s27dOq655hpOOeUUp0OK6jCFRigU4tFHH+WNN97g1FNP5aqrruJ4zzmt/j5mRjoqNgYAHeOlYnQqtqthWjetI4UGkYIjfkc9RmBftw+j2o+1aUurxyREZ6fcHox+2VSOTWdvf4NwvCaYHqZfv+Jm27kMm+0lKXhXxtPr0zpca7Z2ytXGb3zvEh544AEGDhzIPffcQ8+ePZ0OSbSR0tJSbrvtNrZs2cKNN97IcccdJ12lRPegFGZCAio1mXBmMto0cG0qQFdXy6Q3HZBWmtnzj2LBggWceuqpXHnllbjdbqfD6hiFRkVFBXfccQfr16/n2muv5dFT/tpm7+XK6g2eyAdvx8VQcVhydO0LZUe6fQAYIU1Cfi1ojQpZGFV12GUVnfZMrBDtoiExBccNZMcML3HDK0iOrY8+3cNXi8eITJlYE/byze4MEj+MJf3TMuwt2zvVmCc7PkTS9Ei3ynvuuYdhw4Y5HJFobevWreO2227DNE3uuecerhr+/5wOSQjHmImJVMyOHOe8lRax2/dib9raJcbhdSVWRh0MrWf48OH8+te/JiUlxdF4HC80CgoKuOGGG6irq+Oee+7hutG/brs3M0xcfbKgobAI9Uqmqn+kdcMIN3Sbavg43DU2sVvKoawCe2+V/EcS4gAprxejbzY1Q3tQPNaFGlbN0IxCfOa+/0suwyLDW80efxKfbhhI9tsmCUu2YpWUOBh5y2m3xaBfZLB582buvPNOJk2a5HRIopV88skn3HXXXeTl5fGb3/yGs9MudTokIRwXOH48NdmR2T+VBenv5hPeU+hwVOK77MQg8VMgJiaGBx98kJycHMdicbTQ+Oabb7jppptISEjgwQcf5ILsq1v/TQwTZSiM+DhUUiI6PhbtMrBiPRj+MIY/CJaN3lMMtr1vRgXbxg4EZIYFIVqJmZFOzRH92DPRJHF4GbnJ5aR46kn17BskbmvFJ0X9KV+ZTv9/VqK/2drhWzm00hx1+3AWL17Mtdde26H6xoqD8+abb/Lwww8zadIkbr/9dk6MOd/pkIToEIzDhlEyPil6v+eXVeiv1jkYkfgh2muROTeWvXv3cv/99zvW6u5YobF8+XLuuOMOcnNzue+++zgj9ZJDe0GlQBmYqckon49Q3zS0S1GX7kGbCsutMCyNr7xhpUutiV29SypxIRzgysygZnxfCqYY5I4pYFRyAS4jMkAqw11FT1cVm/y9WLBlFKl/jyf+32s79KxVGs1Jj0zi1Vdf5Wc/+xkXXXSRzEjVCWmtefbZZ3nuuec47bTTuPLKK5nlPtvpsIToMMyUFKqOySOQZKANiCuy8L213OmwxA/QLptBF6WzZcsW7r77biZOnNjuMThSaHz00UfcfffdTJgwgTvvvJOT43524C9imJGiIiGeUGYygR5egokGoRiFNonMHNU4i1QDd63GVxEpNJSt8S7dKGMuhHCSUrh696JqQg67TwsysX8+k1M24VP7VhevtmP4d8lwtrzXn35/2054V4GDAf8wjeYXz5/G448/zty5c7nqqquk2OhEtNb87ne/Y8GCBfzyl7/kvPPOY6Z5ptNhCdHxNPz+0plpaJ8LY0uBLFrcgWlD85MbBvL5559z5513MnXq1HZ9/3YvNP7zn/9wzz33MG3aND6+azWKliVi5fZgJMajczLxZ8ZR38MkkGSgtI4O5obmA7q/W2jElNu46iIPmAEL12frOny3DCG6C+X2oIYPZMuZSYyatJkT01ZjYGMqTT93ZMzG65XjeOeVifR9tRhrcz7Y1vdfx+VydEzVFQvO56GHHuLUU0/lmmuuwTBkxeiOzrZtHnnkEd58801uvPFGfn/y/zkdkhCdg2ESmDUWAF9xPcbOYqyi4h/ZSbQ3rTRH3zGCxYsXc/vtt3Pssce223u3a6Hx/vvvc++99zJjxgwW3fHVfy8yDBMjLhaVnUntwBTqU02CSQqt2FdIEBmMRJP7htXkzncKjbgiC1dt5IeJuyqA/nJt6/xhQohW5crqTfnkPuydW8OFQ5YyJe6b6HMhbfJNoDf3rzqOvo8bGEtW7ys4DBM9cSSuynp0/k7sujpH4r/6zQt48MEHmT17NjfccIMUGx2YbdvMnz+ft99+m5tvvplHTnzW6ZCE6FT0UYdRlRtZm0xZkPpZAeHtOx2OSnyXRjP114fxwQcf8D//8z/MnDmzXd633QqNjz76iLvuuovjjjuO/9y2Yr9FhvJ6MXtnEs5IYu+AWOrTIn0Ao5vqyD/i77VYNNxXWmP6I4/FlFkoW+Mr8WNUNvTtrqzGblzVW9syk5QQHZzh86GHDmDTxfFcNfXfjI3Zhk+FiFNhhnti2BSq5eTPLyXnMRfmp2swe2Wy9/AsUOCqt4ndWom1cet+Wz7ampVejzW4mjlz5nD11VdLN6oOSGvNI488whtvvMEtt9zCw7OfcTokITod47BhVIxIjN5PXV4ia451UBqNNaga3SvA3XffzZQpU9r8Pdul0FixYgU33XQTU6ZM4fbbb+c411kN7x6Zc5/MNOoGpFLV10UooWGMBey3sDAaagMVjrRexJTZuGptYgqqUSELvasQLMuxM5lCiDagFK6+Oew6NZvDz/maO3v9m2xXfPTpLaEaZn9+GfH/jsdTo1F25KChbHDV2RjW/sdkGQkJ2LV1rV6IKK8XHQpz5WvnMn/+fH7+85/zi1/8olXfQxy6p59+mv/7v//jpptu4sQTT5SF+IQ4CGZaGpXHDsCOzHpLYr4f9ekqR2MSP0yjOfr/jWDJkiU88MADjBs3rk3fr80LjQ0bNnDNNdcwcuRIfvvb33KC7zzMpETs3Gz2DkmgLsMgHEPzVoumLRZW5MeCssFdo/FV2MTtrMO1swRdX4+1t0oGIAnRjZhpaey4aBDTz1jO7emL6WnGAZFi4+nyI3lt82i8nyUQvzsyXXX5cJMTT17K21uHk/5sDN53V4Jtodwe9p4xFle9JnH5TsIFu/e9iWFiDuyHvXX7Abd8NrbMYtvo2jrOf/honnzySa688krOOEN+yHYUr7zyCo8++ijz5s3jvPPOkyJDiIOlFGZqCmSmEciIx7BsjMVfOR2V+C+00oy5LpfVq1fzu9/9jqFDh7bZe7VpobF7927mzZtHdnY2Dz/8MHNG30nF+Axqsg3CcQ0BhJqPuWjsDqU0uKs1sSU2MYUBPPnF2BWV0lIhhAAi3apqThiN7/Ld/HXQiyyuz2F3KAULRWkogTc2j8T9ZQJJxxQyq/d6AHYHknnvs8PIe74Wy2tSODEWFBgBSF9Zj2vVt9i1dYSnHkb5MC+xxTbJH+cTLixq/t6xsehQGB0KNn88Lo7qWSPwlYfwFNVAMASWxcnXD+Cll17innvuYfLkye32GYn9W7x4MXfccQdnnXUWv/rVr2R2KSFakZmSgj0gC7NkL3ZRCbbf73RIYj+0oRl0SRoFBQU8+eSTZGZmtsn7tFmhUVdXx2WXXUYwGGRn3Qj2Dogl8J1V0JVuXmi46sBbqUnK9+PZVhr5ByqL5gkh/gvl9VI/YzQ7zwhz9qgv6emuAcBC8ecVU+i5yIvvnEJm9toQ3edfu0Zg/zMNf4/mXTW95ZrkrQHKhvuwGx43A5q0VbUYq79Feb2UnDqEiuEad5VB/6e37WsJUYq9502geIIGW+ErNei5Okz85kp0MMiEs2NYtmwZf/zjH8nLy2vHT0g0tWnTJq644gomTpzIp79Z1+KZD4UQLaNcLvzHjSEcY2D6Nb7ievhyvSNj5cR/p102Pea48Pl8/PnPfyY2NrbV36NNCg3Lsrjtttv4+uuv+fOf/8yMF17b94bWvoO6EQZvGcQXWsRvrUZtK8CuqZVB2kKIA6bcHkKTR7L1fDjnsC+wMFhx3VjMRStx9e/H1vN7M3LmRoYn7OH5d6eQvsLGdimCCYpgogKDfS2qjZNMRCeaAF+5jT/FoOaI+ujZEV3so9+bIdxL1sDoPDb9PA5t6shxrmH/uJ0mmcvrce2poM+kSsrLy3niiSfo2bOnQ59U91VWVsa8efNISUnhD3/4AyfF/tTpkIToepQiPG0s/h6RQRsuvybmvVXfawEWHYMdE8Yz2c/o0aO59957MU3zx3c6AG1SaDz99NP87W9/47777uOn//mMpieMzIDCsxcSt4eJ31CGvX2XrGUhhGg1yusldPQIisZ7yZ6/fN+JC6UwB/WnYHYG8QV2s5bSsM8gmKCwPTSfjKKx2NDgrtOoMNTkKAID/BjuyNzZdtggaZmPUCLUDghF9rUBS6HsSMGhQoqMzwGrnt7hlfTu3Zvf/e53uFyudvpURDgc5uqrr2b37t08+eSTnJvxK6dDEqLLUuOGU90/MmGHsiHxk3xZX6MDs5MDWKOq+NnPftbqE5e0eqHx5Zdfcv3113PRRRdx//oyggkaw1J4KiFpW5j49WXoHQXSZ08I4RgjIYHw6AH4073RLlKxxUE8O8opn9iLuoyGqbUBNHiqNK56jTYUKAjGK2r7aMKZQQy3TfJHPlLX1rHt5FhCPcPR/bAVKqzw7THp+0Y5ak8xlVN6EFO2lHPOOYdf/vKXTvz53dITTzzBSy+9xKOPPsp1o3/tdDhCdGlmWhqhwVkEUzxYXkXSF7tlbY0OLpxTg92vjocffrhVZ6Jq1UKjrKyMiy66iP79+/O+zsblh7hCi/j1peidu6W4EEJ0HEphpqcRGtSbQE8PCcu2Ey4sQnm9MGIgZaMSCaQojBD0XliMqq2nfkgm9elubDPSTBuKh1C8IueJtVhVVbj65lBwSg57R4QiLbkhRdIGF73/tg6rYQ0f5fUSHO/FZjPz58/n8MMPd/BD6B6WL1/ODTfcwKWXXsqz5y9wOhwhug0jNhYjIw38AcJFJTJOowPTaOxRVST2i+Xpp5+mR48erfK6rVZoaK254YYb2LJlC8888wznjbsHq7BYukUJITq2hvV8rOrqZt2pDJ8PPXwAVqwHY8lX0W1dWb2jBQdAyhfFWJu3NtuvbsYowjEGid9UYq/d/L3kqtGMuT6XjRs38te//pXk5OQ2/zO7q/Lycn7+858zePBg7r///n3rOAkh2o0aM5xQqg9PSS2qoBirrNzpkMR+aLdF/PE2AwYMYP78+a2y0GyrFRr/+te/eOCBB5g/fz63HfFga7ykEEJ0TA0Fh90jEXv1Nwc1M552W8TMDDFu3Djuuuuu1o9RAHDnnXeycuVK/vrXv3JmD+mqJoQTXDnZVI/rDYAR0sR+uinayis6FislQHh4ZXQh00Nl/PgmP664uJjHHnuME044QYoMIUTXpzXhXQXYX2846Om3Vcik9nP48MMP+eijj1o3PgHARx99xKJFi7jmmmukyBDCSU2Ok7ZbQa90B4MR/41Z4cUsiuGxxx6jqKjox3f4EYdcaGiteeihh/D5fHxwxxeHHJAQQnQXRqmXSZMm8fDDD1NdXe10OF1KdXU1jzzyCJMmTeK3M/7sdDhCdG9ao5r0INUemXGvIzO3xhMTE8MjjzxyyK91yIXGsmXLWLp0Kddccw3KapUGEiGE6BYUis8f2kAgEOC5555zOpwu5ZlnnsHv93PttdfKonxCOCy8ew9xy7cRl1+Nq0YGhHd0yjKoXBLis88+Y9myZYf2WocyRiMUCnHBBReQnp7O2kd3ycFcCCEOQji7FgbU8+yzz9KvXz+nw+n0tm3bxoUXXsjFF1/Mcz993elwhBBNKLcHM6c31NUTLi6Vmag6KI3GGr2X3sPSee6553C73Qf1OofUBPHaa6+xe/durrzySikyhBDiIJkFsWRmZvLYY485HUqX8Nhjj5GZmckZZ5zhdChCiO9oXCG8dkwf9IQRuPr3Q7k9DkclvkuhMDbHUVBQwIIFBz8t+EEXGnV1dTz//PPMnj2bSwfdctABCCFEd6e0ouiDGj7//HPWrFnjdDid2tdff83nn3/OvHnzmO07z+lwhBA/REEwxUPtkLRIC4focIw6N2q3l+eff576+vqDe42DffPXX3+d2tpa/v3/lh7sSwghhGhglHlxBTw8++yzTofSqT333HMMHDiQe475o9OhCCFaSBvSK6ajMnfGsbdyL6+//vpB7X9QhUZ9fT0vvfQSxx9/PCpgHtQbCyGE2EehYGsMX375pbRqHKQ1a9awYsUKfvazn0l3XiE6sno/RtB2OgrRAipgYhT6eOGFF6irqzvg/Q+q0Hj33Xeprq6W1gwhhGhFja0aL730ktOhdEovvPACubm50pohRAcX3lOI95N1xG4qxbM3hLKk6OjIzJ1x7N27l/fff/+A9z3gQkNrzYIFCzj66KOlNUMIIVqRQsFOL59++mmrLJTUnRQWFrJ06VLmzp0rrRlCdAK234/1bT7qs68hbGGmpYEhvys7IhUwMct9vPbaaxzoZLUHXGisWrWK7du3M2fOnAPdVQghxI8win3ExMTw5ptvOh1Kp/LWW28RExPD9OnTnQ5FCHEgtEYnxFI/ti/2kSNx9c1xOiKxH0ZBDPn5+axaterA9jvQN3rzzTfp06cPN/3kfw90VyGEED9C2Qb1m23efvttLEvml2+JcDjM22+/zXHHHccp8Rc4HY4Q4iBoQxFKcOMfkC7T3XZAaq8bV9DDW2+9dUD7HVCh4ff7+fTTT5k1a5Y0TQshRBsxi2MoLy8/4DNH3dWqVasoLy9n1qxZTocihDhU8vOyQ1Io9B43n376KX6/v8X7HVChsWzZMvx+P8/98tUDDlAIIUTLqBoXvXr14sMPP3Q6lE5h0aJF9O7dmyuG3e50KEKIg6Dq/BjWgfX9F+3PKPFRX1/PsmXLWr7PgbzBokWLyMvLQ/ldBxycEEKIllEoipfvZfHixdJ96keEw2E+/vhjpk2bJi3tQnRS4e078X2xhdgt5Zh+OeZ1VIbfhcvvZdGiRS3fp6UbWpbFF198wVFHHXVQwQkhhGg5o9xLVVUVmzZtcjqUDm3jxo3s3btXcpMQnZnWWBUVWJu2YH61CTO7F4bP53RUYj90sYsVK1a0+CRYiwuNzZs3U1NTw/PXvn6wsQkhhGghVeMmJiaGFStWOB1Kh7Zy5UpiY2O5ZtRdTocihGgFRmIC9QN6Ep4wFHNQf5TX63RIogmj0kNVVRXffvtty7Zv6QuvWLECn8+HqnYfdHBCCCFaRmlFcLfmiy++cDqUDm3FihWMHj1auk0J0VW4It3zLbeBv28KZu9MhwMSTalqNwZmi3NTiwuNtWvXMnz4cJSWg7kQQrSLShfffPMNti2r5u6PZVmsX7+e0aNHOx2KEKINKA26rMLpMEQTSitUlYsNGza0aPsWFxpbtmxh0KBBBx2YEEKIA2PUuqivr2f37t1Oh9Ih7d69G7/fL7lJiC5E+/2YoX0nVw50JWrRDqpMNm/e3KJNW1RoVFdXU1hYyCt3v3NIcQkhhGg5VRvpqtrSvrDdTePncuvR9zkciRCitVilZZifrSNmYxFmXdjpcMR+qFoXhYWFVFdX/+i2LSo0tm3bFn1hIYQQ7UOFDFJSUsjPz3c6lA4pPz+f1NRUVOiAZmoXQnRwOhQkvHMXrm92oPr0xkhIcDok0YSqi9QD27dv/9FtW3R0Li4ujrxwwDyEsIQQQhyo6j110WOwaK64uJiMjAynwxBCtBVt4+8VT+gngzCHD5YZqDoI5Y/UAy3JTS0qNEpKSoiJiUFZctZICCHak13bsoN5d1RSUkJaWprTYQgh2oiKjwfANhX+XvGYKcnOBiQiLIWB2bqFhhzMhRCi/amAQWlpqdNhdEilpaWSm4TownRcTPS2skEHgg5GIxopFGbY1aLc1KJCo7a2lt0biw45MCGEEAcobFC198cH3HVHtbW1vP7Ie06HIYRoI6rOj2qYgMqwbOyaWmcDEvuEob6+/kc3a9Ho7mAwCDLwXwgh2p+tCAYCTkfRIQWDQbBlbSchuqrwzl1491ah+/XG9rnRluV0SKKBDoPf7//R7VrUohEMBrHluxVCiHZnpwaorpUWjf2JFBpORyGEaEtWVRX26m8w8wtx9cpAuWQG1I4gHB/g/fff/9HtWvRtaa1B1ksRQoh2p8JKDr8/QBbyEqIb6ZlMfVYirj5puHeUEN69B+QY0OG1qEXD5/NhuNs6FCGEEN+lqjwkxMkc8vvj8/nAkB8aQnQHdqwHgHCci1DfNFAyE6qTXNVeZsyY8aPbtbjQUC7pByuEEO3O0Lg9cqZnf3w+H5hSaAjR1SmvFyveE71vhGykT7/DXODxeH50sxYVGrGxsWQM7HnIMQkhhDgw2m3TM02Ov/sTGxvLyVcd53QYQoi2ZmtUcN+ALLNMxq05TXk0ycnJP7pdiwqNtLQ0SkpK0NJTWAgh2pfXpmdPKTT2Jy0tTRYzFKIb0KEgxpcbiNlcjKsuDPU/PtuRaDsaTdgMtSg3tajQyMzMJBAIgEsKDSGEaE9mLPTo0cPpMDqkjIwMKTSE6CZ0KEh4+06MLzZAjA8jLs7pkLovl0ajW5SbWlRoZGRkAKB90h9OCCHai0bj6eGiV69eTofSIWVkZLBnzx5pbReiGzHi4/Dn9iA8Ng9Xvz4y3a0DdExkcb2W5KYWFRp9+vRBKYWOlVX7hBCi3XhtamtrGTBggNORdEj9+vWjpqYGPLKYhhDdhUpKQCuwvAb+AWkYCTIrX3vTsWEMw6Bfv34/um2LCo2YmBj69OnDybdMP9TYhBBCtJAdFzm5079/f4cj6Zjy8vIAuPs/1zsciRCiXSiF1TMxetcI2tjVMjC8vem4MNnZ2Xi93h/dtsWTEOfl5bFx48ZDCkwIIUTL6fgQiYmJpKenOx1Kh5SWlkZycrLkJiG6C2U0W6TPVeVHh6W3TXtTyTaDBg1q0bYtLjSGDh3Kpk2b0LI4khBCtAuVGmb06NEoJesY7Y9SimHDhrFmzRqnQxFCtAfbQn/1DTEb9mAGbIziCqcj6na0YWPFBjnssMNatH2LC42f/OQnhEIhdGLwYGMTQgjRQtrQqBSbMWPGOB1KhzZu3DjWrFkjJ8GE6C5si3DBblwrN6HjYjB8Pqcj6lZ0YgiNbv1Co2/fvqSlpTHn1zMPNjYhhBAtpBODhEIhKTR+xPjx4wkGg/zvZzc5HYoQoh0pnxd//x6EjhiGOag/yv3jq1SLQ2cnB0lNTaVPnz4t2r7FhYZSivHjx7N06VKZSlAIIdqY1SNAZmamDAT/EX379iU9PZ3PPvvM6VCEEO0pvQfaUFg+k0CfFJTH7XREXZ5GozLDHHXUUS3u0tviQgNg2rRp7Ny5Ex0nA2+EEKKtaDSJQ71MmzZNxmf8CKUUU6dOZdGiRXISTIjuwjAJ9di3YJ+rOohdV+dgQN2DjgsTdgWZNm1ai/c5oEJj3LhxJCcnM/d+6T4lhBBtRSeFqKysZMqUKU6H0ilMnz6diooKfvv5zU6HIoRoB4bHDU1OwrhKqprNRiXaht3TT1JSUovHZ8ABFhoul4upU6fywQcfyJkjIYRoI3avenJychg6dKjToXQKgwcPJjs7m4ULFzodihCiHdh+P+by9fh2VWP6LeziUqdD6vK00pAV5JhjjsF1AKuxH1ChAXDiiSdSWlrK7R9ecaC7CiGE+BHabaEyw5xyyinSbaqFlFKceOKJfPjhh/yz7EmnwxFCtAMdCGCv/QbvtlKM9J6oA/jxKw6cnRrAMiK56UAccKGRl5fHqFGjePXVVw90VyGEED/CyvBjGAazZs1yOpROZfbs2SileOutt5wORQjRjqy0JGqHpmMdNRJXdpbT4XRZOtvPqFGjDniCkgMuNADmzp3L119/jR0XOpjdhRBC7IdWGnICTJ8+ncTERKfD6VSSkpKYOXMmb7zxRuRzFEJ0eYbPRzApMq1tKM6F3TPJ4Yi6Jjs+hJUQYM6cOQe870EVGpMmTaJ3795MvHrEwewuhBBiP+yMerTb4rzzznM6lE7pzDPPpLS0lCtf+6nToQgh2oHRKwPb0/BTVoNRVO5sQF2U3aeOnJwcpk6desD7HlSh4XK5uOCCC/j444+lVUMIIVqBVhqd6+eYY44hJyfH6XA6pX79+nHsscfy17/+VVo1hOgG7LgYlB257a4OES4qcTagLsiODWGl+jn//PMxTfOA9z+oQgNgxowZZGVlcfgVMiuKEEIcKjuzHtsV5mc/+5nToXRqF1xwAWVlZVz2z3OcDkUI0cbsdRuJWbENb6kfd0kN2JbTIXU5dm4dvXv3ZsaMGQe1/0EXGi6Xi1/84hd8+umn2EnBg30ZIYTo9rTLJnaMYvbs2fTr18/pcDq1vn37MnPmTJ577jm0aTsdjhCiLWmNVVKCsWEb4R5xuLJ6g3HgZ93F/tnJAawUP/PmzTugKW2bOuhCAyKLJA0fPpzsk5NlXQ0hhDhIVk4toVCIiy66yOlQuoRf/vKXBINBTpo/2elQhBDtwOiZij/NS83YbOwjR2LExf34TuK/0mj0oDpGjRp1UGMzGh1SoaGU4pprrmHbtm1c+s+zD+WlhBCiW7JjQ9AnwE9/+lN69OjhdDhdQs+ePbngggt4/fXXeXzzfU6HI4RoQ8rlItAvcuzUBmiXgQ4EHI6q87N61RP2BrniiisOaU2nQyo0ILIi60knncRf/vIXtFf6xgkhREtpNAPOTScnJ4czzzzT6XC6lDPOOIOsrCzmz58vLe5CdGFmdm9C8ZFuPcoGb34JOhx2OKrOTXstPCPCnHrqqQwZMuSQXuuQCw2AefPmERcXx6jL+skBXQghWsjKqmPjxo3ccssteDwep8PpUtxuNzfffDPr16/nor/PdTocIUQb0S4TIxgZj+WuDmMV7HE4os5No7EGV5OQkMCll156yK/XKoVGQkICN998M19++SVXLpD5y4UQ4sfYMWHMwUHOOOMMhg0b5nQ4XdLIkSM588wzefrpp3lq64NOhyOEaAPWt/n4lqwnfnMl3m2l0ppxiOyMeqzEADfeeCOxsbGH/HpKa91qTRAPPvggH3zwAeFPYjHqD250uhBCdHXa0NjjKsnK68VTTz2Fz+dzOqQuKxAIcNFFF+H1etn+3F6UPvi+xkKIjsvskYp/XH98BdXobbuw6+qg9X7idgt2bBhrbAWzT5rNjTfe2Cqv2SotGo0uv/xy0tLSyD49EW3IlyuEEPtj5VZjJMBdd90lRUYb83q93HnnnWzfvp3jH5jodDhCiLagFNagbIIJJlVDkvEfPRQjJsbpqDoVbWj08Gr65vblyiuvbLXXbdVCIzY2lt/85jfs3r2bY38zrjVfWgghugSrpx+rVz1XXnklAwYMcDqcbmHQoEFcddVVvPHGG9y8cJ7T4QghWpmZmkJ9xr6TNr6iukiLhmgRjcYaUI2ZqFr9BFirFhoAubm5XHfddbz77rtcseD81n55IYTotOy4EOZoP9OnT+fkk092Opxu5aSTTmLGjBk8+OCD/HnTb50ORwjRiqwBWdiuSLdIM6Bhy06HI+pc7F71WBn1XHfddeTm5rbqa7d6oQFw/PHHM3fuXH73u9/x2+U3t8VbCCFEp6LdFskzTXJzc7n55psPaV5yceCUUtxwww1kZ2dzyy238FLJ406HJIRoDUrh2l2OrzyEsiF2Vw12dbXTUXUadlIAnVfHmWeeyfHHH9/qr9+qg8GbCofD3Hrrraxbt47AYq8MDhdCdFva0Ay6JI3CwkKefPJJ0tLSnA6p2yopKWHevHmkpaWx5ekylC0FnxBdgmHi6pOF9rix83eiQ0GnI+rw7JgwvqlBhg4dyn333YfL1fq/1dus0ACoqanh8ssvx+/3U/ZGCBU02+qthBCiQ9JorOFVuHvB7373O5nKtgPYuHEjV1xxBYcffjif/3YjCik2hOj0DBP7yJHU5PjwVNuRlo2vN8jMUz9AeyyssXvJGZjFY489RkJCQpu8T5t0nWoUHx/P/fffTzgcJuusBLTLbsu3E0KIDkWjsQZVQ88Qv/nNb6TI6CAGDx7M3XffzWeffcax946ThWaF6AJcfbKoyfGBgmCige0xpcj4AdplY4+uokfvFObPn99mRQa0caEBkJmZycMPP0x5eTkDLuyJNqXYEEJ0fRqN1a8GK6OeW2+9lQkTJjgdkmjiyCOP5NZbb+W9997jlN9PkWJDiE7M8PmoHZpBY+Okp8pGfb3J2aA6KG3aWCOriEuP4aGHHiI9Pb1N36/NCw2Avn37Mn/+fHbs2MGwy7LQhhQbQoiuK1pkZNdx9dVXM3PmTKdDEvsxc+ZMrrnmGl5++WXOfHymFBtCdFJGSjLhuMhPWmVD3MZSdCDgcFQdjzZtrFFV+NJdPPDAA/Tt27fN37NdCg2INFU/8MADbNq0icHzMqVlQwjRJWk0c/4wDSu7jquuuoq5c+c6HZL4L+bMmcOvfvUrnn/+eeb8YZoUG0J0QuE9hSR+8A1JG6uJLQxibdnudEgdjjZt8i7JwJfu4qGHHmLo0KHt8r5tOhh8f9avX88NN9xATk4OW54pRVntVusIIUSb0mhO/t1kXnnlFa6++mopMjqRV199ld///vfMnTuXt65dIgPEheiEzMREqmYOxVVrE7t9L/bmbTL7FJExGYMuSmf79u3Mnz+/XccLtnuhAZEZP66//nrS0tLY+eJemY1KCNHpaaWxBldhpwW49tprOfXUU50OSRygN998k/nz5zNr1iw+vGMlSkuxIUSnYZiEpx5GVT8PWoEZgp7/2U64YLfTkTlKeyzs0ZExGQ888EC7tWQ0cqTQANi6dSs33ngjhmFQ/k5Y1tkQQnRa2rSxhldh9LC54447mDp1qtMhiYP0/vvv89vf/paxY8ey6vf50uouRCehxg2nbFQi2gCloeeKysj0tt2YHRvGHl1FWlYP5s+fT58+fdo9BseOoP379+fPf/4zsbGxeKcEmP/V7U6FIoQQB027LfpdkIKvl4sHH3xQioxObsaMGTz44IOsXbuWfhekyAriQnQCZloalUMS0A2/auMKw+j1W5wNymF2YhDv5AB9B+Xwpz/9yZEiAxxs0WhUXV3Nbbfdxrp167j++ut55MRnnQxHCCFazI4LkTzTxLZtHnzwQQYOHOh0SKKVfPvtt9x4442Ypsm9997LFUPlZJgQHZVyezD698HfN5lwrEH80m1YRcVOh+UYK6MeNaye4cOHc++997bpOhk/xvFCAyAYDPLII4/w9ttvRwbiXbdE+sYKITo0q2c9xig//fv359577yUtLc3pkEQrKyoq4vbbb2fbtm3cfPPN3D/zCadDEkL8F8rtIThlJIFUN/HbajE37cCq3Ot0WO1GK42VW43Vu56TTjqJa665Brfb7WhMHaLzqcfj4aabbuKaa67h9ddfZ/gVWbxc/pTTYQkhxPdoNHP/dCzhIVVMnTqVP/zhD1JkdFEZGRn88Y9/ZMqUKfz617/mtMeO4b3QS06HJYT4Afb4oVQM8VKbaVB8eAKhEblOh9RutMtmxJXZkBPkuuuu44YbbnC8yIAO0qLR1KpVq7jjjjuIiYmh7L0gRo3zH5IQQkBkPIY1tBqdHOLSSy/lrLPOQilpfe3qtNb84x//4PHHH2fs2LGsfmwbKiSzJQrRkZhDB1E0uSeWN3JMTtkUwvvBV+hw2OHI2p6dEMQeXkN8j1h+85vfcNhhhzkdUlSHaNFo6rDDDuOpp54iJSUFe9xefvH302QBJSGE4+ykAPHH2yT1i+Ohhx7i7LPPliKjm1BKcfbZZzN//ny2bNlC/PE2v11+s9NhCSEamImJFB+5r8jwVmhilm3q8kWGRhPOqsUeW8WQ0Xk89dRTHarIgA7YotEoHA7z1FNP8eKLLzJhwgS+enQrKtTh6iIhRBen0Vh9arH71jFu3Dhuv/12UlNTnQ5LOKSsrIx7772XFStWcP755/OPef+Wxf2EcJjyelFD+uPvFU8o3iDpk22Ei0vBtpwOrc1ol401tAorKcC5557LxRdfjMvV8ZaK6LCFRqPly5dzzz33YBgG1R/bGJVep0MSQnQT2hdm8IW9Wb9+PRdddBHnnnsuhiEnPLo727Z54YUXePrppxk6dCibntuD8ne8BC9Ed2P4fFTPHk1tpom7RpO01Y+5dE2Xa9mwUgIkTTaxLIvbbruNCRMmOB3SD+rwGfPwww/nmWeeYcCAAYRGVDLjvvFo03Y6LCFEF6bRWL3qUEfVUFZWxqOPPsr5558vRYYAwDAMzj//fB599FHKysowjq7l0pfPlm6+QjhIeb1UnTSa8iEmgWSozVJYXqNLFRnatAkPqiI8vJIBAwbwzDPPdOgiAzpBi0YjrTVvvfUWjz32GAkJCdx88838z4QHnA5LCNHFaK/F8F/m8NVXXzFnzhwuvfRSYmJinA5LdFB1dXU88cQTLFiwgMMOO4xbbrmFC7KvdjosIbodfdRhFEyJRavIyuBpq0L4FnadweB2UoCUYz1UV1dzxRVXcOKJJ3aKcYKdptBoVFhYyP3338+KFSs46aST+Pf/LENZcpZRCHFoNBq7Vz3uEWGSkpK4+eabGTdunNNhiU5ixYoV3H///ezdu5df/vKX/PmMF2XshhDtxBw+mIIZPQjFRe6nfR0m5r2VXaLI0KaNlVuDlVnP2LFjueWWW8jMzHQ6rBbrdIUGRFo33nzzTf70pz/h8/moXmZhlPjkoC6EOCh2fIj+Z6WxadMmTj75ZC699FLi4uKcDkt0MnV1dfz5z3/mjTfeYPDgwWz9R4lM0S5EOzB8PlRSInZ2GrV94nHVWXiL6yPP7SrGKilxOMIDp9HYaX7iJxgEg0HmzZvHKaec0um68HbKQqNRSUkJf/zjH1m0aBFjxoxh7V92YNTLgDwhRMto08bqV4vdu54BAwZw/fXXM3z4cKfDEp3c2rVrefjhh9myZQunnHIK79z8qbS8C9EOzEH9yT8nk1BSZCyvu9qg/193E966zdnADpAdE8bOq8FKCHDMMcdwxRVX0LNnT6fDOiidutBotHz5ch555BGKioo466yzePmKhXJQF0L8II3GTveTeISL+vp6LrroIk477bQOOTWg6JzC4TCvvfYaTz/9ND6fj0svvZSHZj8tLe9CtBEzbwD552QQStxXZOT+owRrw2aHI2s5bdpY2bWo3CAZGRlce+21HH744U6HdUi6RKEBEAgEeOGFF/j73/9OXFwcv/jFL/jDnL/JQV0I0YydFKTfaT3ZvHkz06ZN4/LLLyc9Pd3psEQXVVJSwmOPPcaHH35IXl4el19+OTeN+1+nwxKiS9lfS0ZnKjI0GjuznvifmNTX13POOedw3nnn4fV2/iUdukyh0aioqIinnnqKhQsXkpuby69+9Stunzjf6bCEEA6zfWGOuHYYS5YsYdiwYVx++eWMHDnS6bBEN7F69Woee+wxNmzYwNFHH81ll13GL/pe53RYQnQJrpxsKidmY7sgkKTQSpG4MzIQ3Aja+Bavxfb7HY5y/+zkANknpZCfn89xxx3HJZdc0qVOfnW5QqPRN998w2OPPcbXX3/N+PHjWfXUFhmUJ0Q3pD0W4exaVE6Qnj17cumll3LMMcd0imkBRddi2zYffvghTz75JCUlJZx88sm8fcsSVMh0OjQhugQzI538ywYSyPWDAh0w6fs6eN/5EjrYz107PoSdW4eV5Gf06NFcfvnlDBkyxOmwWl2XLTQgMjvVJ598whNPPMGOHTs4+uij+fzR9Rh1UnAI0dVpV6Svq9k/jNfr5dxzz+X000/vEk3RonMLBAK88sor/P3vfycYDDJnzhwWXPshKixjC4U4WHriaLadEku4dyByP2DSdwF43+1YRYYd21BgpPjp27cvF198MZMnT+6yJ7+6dKHRKBwO88EHH/Dcc8+xe/dupk2bxifzV8sMVUJ0QZHBdHV48myUUpx55pmceeaZxMfHOx2aEM1UV1fzz3/+k5dffhmtNXPnzuWfV/xbCg4hDpA+6jA2/9SDio10l9KWIvstF/H/XguWhdYaHQg4GqMdE8buV4vVw09WVhYXXnghxx57LKbZtVs0u0Wh0SgcDvPee+/xf//3f5SUlDBt2jQ+nv8VRq20cAjR2Wm3xem/n8kbb7yBZVmcdtppnHPOOSQlJTkdmhD/1d69e3nxxRd57bXXME2TOXPm8M8r35MuVUK0gHJ7CBw7mmBCpECvyTJhagW1tT60DdpWpL/vIen5ZY7EZ8eFOPq60SxevJi0tDQuuOACZs2a1W1mOexWhUajYDDIO++8wwsvvEBhYSETJkxg5VObUFVumaVKiE5Ge8Mcf8/RvPvuu7hcLk455RTOOussUlNTnQ5NiANSXl7OSy+9FC2WTzjhBN65bQkq0D1+kAhxqMy8AWy4NZm+WWUAhGyDqv9kkv2Hle06GFyj0Ykhxlw8iOXLl9OrVy/OPfdcjj/+eDweT7vF0RF0y0KjUTgcZtGiRfz9739n69atDB8+nHPPPZe7p/xeCg4hOjg7LsSUG8eyaNEiEhISOOOMMzj11FNJSEhwOjQhDkl1dTULFizglVdeoaqqimOOOYZzzz2Xy/JudTo0ITompQgdO5b884gWGdUBD6GPepL9zAZUSqRlu35gTzwfrkKHw20ShkZjpwYYfEY269atY8CAAZx33nlMnTq127RgfFe3LjQaaa1ZtmwZf//731m9ejVZWVkULtmLWRQjC/8J0YFoNHaPAMPP7sfXX39NRkYGZ599NrNnz8bn8zkdnhCtyu/388477/DSSy9RWFjImDFjWPPCVowyr5wME6IJV04228/tg9Uw14erDsITqgkGXHh9IY7Kyefbqp6o+3vi/mBFq7+/Nm2sjHoyjk5k9+7djBw5kvPPP58jjjiiyw7ybikpNL5j/fr1vPLKKyxatAiPx8OsWbP41+0fy8BxIRykXZGDeM8j4igqKmLUqFGcfvrpHH300d32LJHoPsLhMEuWLOHVV19l9erVZGRkMGfOHJ75+asycFyI7zAOG8Y3V8Zy3rjPMVVkAb8VFX2o/W0Wnn9/CUqhTBOUgbYssK2Dfi87JozVqw7vAAiFQkybNo25c+cybNiw1vpzOj0pNH5AaWkpb775Jm+88QYVFRWMHz+er/66CaPci9LduzoVoj1oNDohhJ3px9XHxrZtpk+fzmmnncbgwYOdDk8IR2zcuJHXXnuNDz74AKUU06dP5/3/XYaqcUkrh+jeDBNr8mg8dxbSP74MG8WyPX2p3JHM4Mf3onbsBkNBw8kpXVePXVd3wG+jVaR7lO4dwEryk5KSwimnnMLJJ59Mz549W/uv6vSk0PgRwWCQRYsWsWDBAtavX09KSgqzZs3ilRsWSiuHEG1Au2ysdD99ju1Jfn4+mZmZzJ49m5NPPpmUlBSnwxOiQ6ioqOCtt97irbfeoqioiNzcXE466SQeP/dFaeUQ3ZKZkU7prAFoE9KWloJlQ3klqO/8f9D2QRUZti+MnVlPwggPlZWVDB8+nJNPPpljjz222w3wPhBSaByALVu28Pbbb7Nw4UKqqqoYPXo0J554Ig/Ofgply5kkIQ6WRqOTgky9bjyLFy/GsiwmTZrEiSeeyE9+8hMMQ344CbE/lmWxYsUK/vWvf/HJJ59gGAaTJ09m9uzZ3Dz+t9LKIbotIy4OFdMwdk9rCIXRloUOBFo8GFwbNnaPACPO6s+qVatISEjguOOO46STTiI3N7cNo+86pNA4CIFAgCVLlvCvf/2LlStXEhMTw9FHH83MmTO5beKDcmAXogU0Gh0XZu79M/nggw8oLS0lOzubE088kVmzZsn0tEIcoIqKCt577z3efvttduzYQVpaGsceeywzZ87k0rxbJDeJ7sMwMTxudDhSXBzIyuAajU4OMvXa8SxZsgS/38+YMWM48cQTmTx5Ml6vtw0D73qk0DhEu3fv5oMPPmDhwoXs2LGDlJQUjjnmGGbOnMmVw++QA7sQ36G9Fhf+ZS4LFy4kPz+fpKSk6I+hoUOHdvsZOoQ4VFpr1q9fz8KFC/nwww/Zu3cvubm5zJgxgxkzZnB+ryucDlGIDkWj0fFhTrnnGP7zn/9QUVFBnz59OO6445g+fTq9evVyOsROSwqNVqK1ZtOmTbz//vt88MEHlJeX07t3b6ZMmcIrN/9bBuqJbk37wlg9AuSdkMOGDRvweDzRVsDDDz9cZo4Soo2Ew2G++OILFi5cyCeffEIgEGD48OFMmTKFv1z4T1RAVh8X3VN0wpGeAdLGJVJYWEhqamr0xFdeXp6c+GoFUmi0AcuyWLlyJR999BFLliyhsrKS9PR0Jk+ezBv/7z+yArnoFuyYMHZPP/2n92bz5s14PB4mTJjAlClTOOqoo4iLi3M6RCG6lbq6OpYsWcLixYtZvnw5wWCQvLw8pk6dyrO/fBXDLwW/6NoaV+y2evrpMTqekpISUlNTmTRpElOmTOGwww6TE1+tTAqNNhYOh1mzZg0fffQRH3/8MWVlZaSmpnLEEUew8KFPMSo9siig6BK0ipwdOv23s/jss8/Yvn07MTExTJw4kalTpzJhwgRiYmKcDlMIQaToWLp0KR9//DFLly7F7/fTr18/Jk6cyCu3voeqdstU7qJL0KaNnRxk5vVHsXTpUioqKkhLS2Py5MlMmTKFkSNHYprSstdWpNBoR7Zts27dOj755BOWLl3Ktm3bcLlcjBo1iokTJ/LkL15C1ZvS2iE6De22sVMCTJo3ji+++IKamhpSUlKYMGECkydPZvz48TJwTogOzu/3s3z5cj799FOWLVtGRUUF8fHxjB8/nokTJzL/5KdkylzRaWg0OsbCTg0w6rRBrF69Gsuy6Nu3LxMnTmTKlCkMHTpUZjNsJ1JoOGj37t0sW7aMpUuX8tVXXxEMBsnKymL8+PGMGzeO38x4VA7uokNpbLU47+FTWLZsGRs3bkRrzZAhQ5g4cSJHHHEEgwcPlgO4EJ2Ubdts3LiRpUuXsmzZMr755huUUgwdOpTx48czduxYbvzJvdLaIToUbdrYSUFOuu0Yli1bxp49e/B4PIwZMyaam3r37u10mN2SFBodhN/vZ+XKlSxdupQvv/ySgoIClFIMGjSIcePGMW7cOP7nyAdkvQ7Rrhpn4rjwT6ezcuVK1qxZQyAQICEhgZ/85CccccQRTJgwQaaiFaKLKisr4/PPP2fZsmWsXLmSqqoqvF4vI0eOZOzYsYwbN05mWBTtThs2OjHE6fcez8qVK9m0aRNaa3r16sWECROYOHEiY8aMwefzOR1qtyeFRgdVWFjIypUrWblyJStWrKCsrAyXy8WwYcMYPXo0L97yFkaVW8Z3iFallUbHh7ATQkw4fxRff/01tbW1xMTEMHr0aMaOHcvYsWMZOHCgtFoI0c3Yts23334bzU1ff/019fX1xMfHc9hhhzFy5Ej+culLqBoZ3yFalzbtyAxRiSGGze7P+vXrsSyLHj16MG7cOMaOHcuYMWNkGtoOSAqNTkBrzY4dO1ixYkX0rHJFRQUAubm5jBgxgncfWoxR5Qa/jPEQLafdFnZCCJ0YYtjxA9i4cSPBYBCv18uwYcOiB/AhQ4bITBxCiGbC4TAbNmyIFh4bNmzA7/fj8XgYPHgwI0aM4OU73sGo8kg3YNFiGo32WejESGHRd2Im27ZtQ2tNUlISY8aMiZ70ysnJkSloOzgpNDohrTUFBQWsXbuWNWvWsHbt2uh/wpSUFIYOHUpeXh7P3/Q6Ro0LFZTZFETDGaG4MHZ8iGPmTWT9+vUUFBQAkJaWxsiRIxkxYgQjRoxg4MCBUlgIIQ5IOBzm22+/bZabSkpKAMjOzmbIkCEMHjyYJ+e9gKp1SYu8AEB7LOy4MDo+xIRzRrNu3Tr27t2LUop+/fpF89KIESPIzs6WwqKTkUKji6iurmbdunWsXbuWb775ho0bN7J3714AUlNTGTx4MHl5efz95tcxat0QMKTlowvTpo2OjxQVUy+ewKZNm9i5cycAHo+HQYMGMWTIkOjBOyMjw+GIhRBdUVFREWvXro3mpm+//ZZAIABATk4OeXl55OXl8ZdfvRQpPqTlo8vSaPDY2PEhdHyY8WeOZNOmTZSXlwOQmJhIXl5eNC8NHTqUhIQEh6MWh0oKjS5Ka01xcTEbN25k48aNbNq0iY0bN1JZWQlAXFwc/fr1o3///uTm5vLnS/6KqnNBSAqQzkSbNjrGQseFOe22WeTn57Nt27boWUSfz8egQYOiyTwvL4++fftKa4UQwhHhcJgdO3Y0y0vffvstfr8fgB49epCbmxvNTQ+f81Rk2ndp/eg0NBrcNjo2jB1rccI1U6O5qaamBoDk5OToCdDG64yMDGmt6IKk0OhGGouPLVu2sHXrVrZt20Z+fj7bt28nGAwCkJSURG5uLjk5OWRlZZGdnc3dJzyC8psy45VDNBq8FjrG4vK//JyCggJ27NjBtm3bKCoqAkApRe/evenXrx+5ubn069ePvLw8cnJyZCEiIUSHZlkWO3bsYOvWrdHctHXrVnbv3k3jT5TMzEz69etHdnY2WVlZ5OTk8D9TfgsBGZfoFG00jKXwhbnkD+eya9cuduzYQX5+PlVVVUCkBb1Pnz7R3JSbm0teXh5paWlSVHQTUmgIwuEwe/bsYevWreTn55Ofn09BQQG7du2irq4uul1aWhrZ2dlkZ2fzzh8WoQIGKmCiAiYEDZll5CBFz/54bbTXQntt8IX5yZxRFBQUsGfPHizLAsDlctG7d2+ys7ObFRV9+/aVafyEEF2K3+9n+/bt0by0fft2du3axZ49ewiFQkDkmNirV6/oibEFD7wXzUsqYEgr/SHQKtLVKZKXIrlJ+8KMmjWEgoKCaMs5QExMDNnZ2eTk5EQLitzcXHr16iUt6N2cFBriB2mtqaysZNeuXdFLYwFSWFgYPWMBYBgGPXr0ID09PXp55b63UUEDFTIihUioex30NRpMjfbYkULC3XDtsZl+ydEUFxdHL41JEyJngHr37k1WVlY0eTZep6enSwuFEKJbsyyL4uLiZjmp8VJUVBQdAwLgdrub5aX09HRevOv1SC4KGvuuLdW9ctN3cpJ22+CxmfzTCdG8VFZWhm3b0f3i4+Ob5aSmt1NSUqSFQuyXFBrioNXV1TX7sVxUVBS9FBcXU15eTn19fbN9DMMgKSmJlJQUUlJSSEhIID4+nncf/xDCBiqsIKzAarxtRLps2QoswG6/ZKDRYACGBkOjDQ0uDS4bbTZcuyKPadPmmJ8dRXV1NRUVFVRUVFBZWdmsgIDI2bfU1FQyMjK+l/zS09PJyMggKSlJDthCCHEQtNZUVVU1y0VN81NJSQkVFRXfOza73W6Sk5NJTU0lOTmZ+Ph4EhISeOsPC5vkpoZrq6EwsRpyk63App1zU0N+MhtzU0M+Mu1ITmqSq6acewRVVVWUl5dTUVHB3r17+e5PP5/PR8+ePb+Xm5rej42NbZe/T3QtUmiINuX3+6MHt8brxtuVlZVUV1dTU1MTva6pqYl2E/ohHo8Hr9eL1+tlb2E1aJpdtK2a3NZgAypyUYbad1s1Pq4j10akz2lcSgx+v7/ZWbEfEh8f/71LSkpKNFmlpqZGi6rU1FTi4+OliBBCCAdprampqWmWl5rmp8rKymg+asxNtbW13/tx/l1erxefz4fX66Vi9959eclW6GiOiuQkrdmXm4zGfLSf/NRQUGhl40v0EggEvlckfZdpmt/LS4mJic1y0XfzU0xMzCF/rkLsjxQaokPRWlNfXx89yNfW1hIIBKI//P1+//duh0IhbNvGtm0sy4peN72tlMIwDAzDwDTN6O2m9z0eDz6fL1rINCaMppemB+7Y2FjpxiSEEN2AZVnU1dVFi4/6+vr95qRAIEAgEKC+vv57eahpnmq83zQX/VB+asw/P5SffD5fs9wUExMjJ7REhyGFhhBCCCGEEKLVycTUQgghhBBCiFYnhYYQQgghhBCi1UmhIYQQQgghhGh1UmgIIYQQQgghWp0UGkIIIYQQQohWJ4WGEEIIIYQQotVJoSGEEEIIIYRodVJoCCGEEEIIIVqdFBpCCCGEEEKIVieFhhBCCCGEEKLVSaEhhBBCCCGEaHVSaAghhBBCCCFanRQaQgghhBBCiFYnhYYQQgghhBCi1UmhIYQQQgghhGh1UmgIIYQQQgghWp3L6QBERFFREZWVlU6HIcRBSU5OJiMjw+kwhBCtTHKT6MwkNzlPCo0OoKioiDNOOwNMpyMR4uD4fD7+9re/yQFdiC4kkpvOBFM7HYoQB0Vyk/Ok0OgAKisrwQT35mRUvQdlKDAMUAplGqAMMCP3Gx+PXisFhopsYxigiGyLAlNF7isDrVSko5xSDbebXDdsjlJoI7KPVg2P03DdsI1WRLYhcq1Vw+PR51X0vm7YHkXkffjutg3PN97/7vNEnou+xnf2JRJGQ5w0+Tt09HX37av3xQpg6OjjNIkher/htmq40PARKzSqYV9DaRSR26axb1uj4RL5eG0MpSPPE7mYRuR5U9kYDfeV0riUHXm+YR8j+piNS2kMZeMyNAZ2dFuXsjCVRqnIYyYaFxZKadzKwmjYxlCRx03shte1oq9jNm6DxkXkvlIaNxpDgSt6rTAVuDBQKFwYGCh27fbwv39IobKyUg7mQnQhkdyk9+UmszEvmQ3HTTOSf/ablxrzkUnDAbNJruI7uakhb5iRg28kD/1AbmrIO425Jpo/GvMRTbZp3L8h/3wv9zTNTd/JWfveez+5qek2TfZt9tx3riMd1fX3c1jT3NQ0H6GbfE40yU0N+agxPzVs0zRXNeYmZTTcVjaqMU+hMZWGhhyz77HGbRrykrIxFNF81DQ3uZpug8ZlWA3bWpH80SQ3uVQkH0XyT5N81JBzmuYml7IjeY5912bjfXTD/jYGRHIi4FYKBbiUwmzISwqFgaJgt5d7/5AsuclhUmh0IKrehVHXUGiY5r4DuhEpNFTTgqPh+YYjQ/NiREeuNfsO+Fo1HIENI/J4w8/eyHXjQbtxe75/3bQgMVTzawWYTYqQpoXGd5NAs8doVhB8v2jZ9xzfez2aFxrNXk9/b9/mB3P2FRoN19poLCb2U2g0eU4pjdG00Gg8uDd7LnJgj7y+HUkMRqQwiGxj7ys0Gg/aDUWFoRoPtpHCwt3wWPTasDGwI0WE0riVangdhVuBiW7YFjwNX51bRRKLW9mY2A23Iwd2d0NicKtww3XkvqE0HiKv40ZjKnCjMJXC3VBguJWJgcJQMtRLiK4smpvMSGGhGvPP/u43y0sKbHNf4WEotGFEfrk3zU2qIRdptS93ETkZphsKjaa5qGn+0Wbz+81uN9Q43y08ormiaW76gRyjjf0UGvvbpmnO2V8+a8xD381hTXOT0fTEl47uoxqumxUaRtNCI5J7mhUaDY/phpyjFKiGAkFHt22SmxrzktFYPDTNS7pZbnIbVrTAMBuvlcaljOjJrMbc5FY05DDdkHNUQw6ioVjZl5vcyorsw3euG3MXjdtq3A2FhkephjxnYKJwKwOjIUe5lHQT6QjkF4IQQgghhBCi1UmhIYQQQgghhGh1UmgIIYQQQgghWp2M0ehAdEwYm2D7DAb/zhiNxk6oWiuwGwaD0/hYw/M2+/q/QvM+sVZjN9vG/rI0GesAqpsNBlcNg8FRjWM0NDoyGga7YRyHpezIYw376oYB3laTweBWw2Dw0AENBm8YzN3wlbuUahjMbWBCQ79bs6EPq2oYYKcaBoObBzEYXA4jQnRl0dzUVoPBGycR+W5uik521SQ30TDeQjfkGk3zcRk0uW0RzT+Rx2lyfN/3XHcZDG40TkrSOD6jSW7SysZWYBkNealhrJ9uMhi8MTdZBzUYvHHikYZ8omgY47cvN7kUGErhQjUMBjcOcTC45KaOQL6FDsC2bVwuF6FBlc4F0bSY+C+a/L4XB6iFH3Erapbh2pTP5yM5ObnN30cI0X4kN3UPGgg33A61yzsq2uvnp+Qm50mh0QEYhkE4HOb222+nb9++TocjDtL27du55557uuX3KIsiCdH1SG5qXd05R7SFlnyekpucJ4VGB9K3b18GDx7sdBjiEMn3KIToSuSY1rrk82xd8nl2bDIYXAghhBBCCNHqpNAQQgghhBBCtDopNDqAHj168POf/5wePXo4HYo4BPI9CiG6EjmmtS75PFuXfJ6dg9J63wRyQgghhBBCCNEapEVDCCGEEEII0eqk0BBCCCGEEEK0Oik0hBBCCCGEEK1OCg0hhBBCCCFEq5MF+xwUDAZ5+umnWbhwIdXV1QwYMICLL76Y8ePHOx2aAOrq6njppZdYv349GzZsoLq6mltvvZXjjz/+e9tu27aNP/7xj6xZswaXy8XEiRO54oorSE5Obradbdu89NJLvP7665SXl5Odnc3555/P9OnT2+mvEkKI/05y04+T/NC6NmzYwHvvvcdXX31FYWEhiYmJDB8+nIsvvpicnJxm28rn2blIi4aDfvvb3/LPf/6TGTNmcNVVV2EYBjfddBOrV692OjQB7N27l+eee47t27czcODAH9yuuLiYK6+8koKCAi655BLOPvtsli5dynXXXUcoFGq27VNPPcXjjz/O+PHjufrqq8nIyODXv/41//nPf9r6zxFCiBaR3PTjJD+0rhdeeIHFixczbtw4rrrqKk466SS+/vprLr74YrZu3RrdTj7PTkgLR6xbt05PmjRJv/DCC9HH/H6/Pvvss/Wll17qYGSiUSAQ0KWlpVprrTds2KAnTZqk33nnne9t99BDD+np06frwsLC6GNffPGFnjRpkn7jjTeijxUXF+tp06bphx9+OPqYbdv68ssv16eddpoOh8Nt+NcIIcSPk9zUMpIfWtfq1at1MBhs9tiOHTv0scceq3/9619HH5PPs/ORFg2HLF68GNM0Ofnkk6OPeb1eZs+ezbp16ygqKnIwOgHg8XhatBDQ4sWLOfLII8nIyIg+9pOf/IScnBwWLVoUfeyTTz4hHA4zZ86c6GNKKU499VRKSkpYt25d6/4BQghxgCQ3tYzkh9Y1cuRI3G53s8dycnLo168f27dvjz4mn2fnI4WGQzZv3kx2djZxcXHNHh86dCgA3377rRNhiQNUUlJCRUUFgwcP/t5zQ4cOZfPmzdH7mzdvJiYmhr59+35vu8bnhRDCSZKbWo/kh0OjtaaiooKkpCRAPs/OSgoNh5SVle33bEjjY6Wlpe0dkjgIZWVlAD/4XVZVVREMBqPbpqSkoJT63nYg37kQwnmSm1qP5IdD8/7771NSUsIxxxwDyOfZWUmh4ZBAIPC9ZkKINMc2Pi86vsbvqSXfpXznQoiOTo5TrUfyw8Hbvn07jzzyCMOHD2fWrFmAfJ6dlRQaDvF6vd+bIQGIVuNer7e9QxIHofF7asl3Kd+5EKKjk+NU65H8cHDKysq4+eabiYuL4ze/+Q2maQLyeXZWUmg4pEePHtFmwKYaH+vZs2d7hyQOQmMz7A99l4mJidEzKD169KC8vByt9fe2A/nOhRDOk9zUeiQ/HLiamhpuuukmampqmD9/frO/Wz7PzkkKDYcMHDiQXbt2UVtb2+zx9evXR58XHV9aWhrJycls3Ljxe89t2LCh2fc4cOBA/H5/sxk0QL5zIUTHIbmp9Uh+ODCBQIBbbrmFnTt3ct9999GvX79mz8vn2TlJoeGQqVOnYlkWb775ZvSxYDDIO++8w7Bhw5pN3SY6tilTpvDZZ581m/ZxxYoV7Ny5k2nTpkUfO/roo3G5XCxYsCD6mNaaN954g7S0NEaMGNGucQshxHdJbmpdkh9axrIs7rrrLtatW8fdd9/9g3+vfJ6dj8vpALqrYcOGMW3aNJ588kkqKyvJysrivffeo7CwkJtvvtnp8ESDV199lZqammhz66effkpxcTEAc+fOJT4+nvPPP5+PPvqIa665htNPP536+npefPFF+vfvz/HHHx99rfT0dM444wxefPFFwuEwQ4cOZcmSJaxevZo77rgj2g9VCCGcIrmp5SQ/tJ7HHnuMTz/9lCOPPJLq6moWLlzY7PmZM2cCyOfZCSn93Q5sot0EAgGefvppFi5cSE1NDf379+fiiy/m8MMPdzo00eDMM8+ksLBwv8/94x//oFevXgDk5+fzxz/+kTVr1uByuZg4cSKXX345qampzfaxbZsXXniBN998k7KyMrKzsznvvPOiB1EhhHCa5KaWkfzQeq666ipWrVr1g89//PHH0dvyeXYuUmgIIYQQQgghWp2M0RBCCCGEEEK0Oik0hBBCCCGEEK1OCg0hhBBCCCFEq5NCQwghhBBCCNHqpNAQQgghhBBCtDopNIQQQgghhBCtTgoNIYQQQgghRKuTQkMIIYQQQgjR6qTQEEIIIYQQQrQ6KTSEEEIIIYQQrU4KDSGEEEIIIUSrk0JDCCGEEEII0eqk0BBCCCGEEEK0uv8PFEmWEzw+k2cAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib import pyplot as plt\n", + "\n", + "fig,axes = plt.subplots(ncols = 2, subplot_kw = {'projection':'mollview'}, figsize = [10,5])\n", + "\n", + "scatt_map.project('x').plot(axes[0])\n", + "scatt_map.project('y').plot(axes[1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "896bf07e-f25e-4dea-add8-38bbf487cfdf", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cosi_nomegalib]", + "language": "python", + "name": "conda-env-cosi_nomegalib-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/source_injector/GRB_source_injector.html b/tutorials/source_injector/GRB_source_injector.html new file mode 100644 index 00000000..73750143 --- /dev/null +++ b/tutorials/source_injector/GRB_source_injector.html @@ -0,0 +1,19906 @@ + + + + + + + GRB Source injector — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

GRB Source injector

+

The “source injector” is a cosipy module that will generate mocked binned data based on the detector response and a source hypothesis (provided by the users). This should result in the same output as simulating the source using MEGAlib, but be much quicker. MEGAlib is only needed when the event-by-event data is required, or to create the detector response itself.

+

The goal of this notebook is to get an idea how the source injector will work in practice. We need to take it from here to something that is user friendly and compatible with the rest of the modules.

+

First, let’s load all dependecies:

+
+
[1]:
+
+
+
# We'll use histpy's Histogram and mhealpy's HealpixMap as the basis
+# develop cosipy. These object (or a derivative) will be passed around by
+# the different modules.
+from histpy import Histogram
+from mhealpy import HealpixMap
+
+from cosipy.response import FullDetectorResponse
+from cosipy.coordinates.orientation import Orientation_file
+from cosipy.spacecraftpositionattitude import SpacecraftPositionAttitude
+from cosipy.ts_map.TSMap import TSMap
+
+# cosipy uses astropy units
+import astropy.units as u
+from astropy.units import Quantity
+from astropy.coordinates import SkyCoord
+from astropy.time import Time
+from scoords import Attitude, SpacecraftFrame
+
+#3ML is needed for spectral modeling
+from threeML import *
+from astromodels import Band
+
+
+#Other standard libraries
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+
+
+
+
+
+
+/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/np/ufunc/dufunc.py:84: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
+  dispatcher = jit(_target='npyufunc',
+
+
+
+
+
+
+
08:54:59 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69
+                  will not be available.                                                                           
+
+
+
+
+
+
+
+/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/core/decorators.py:262: NumbaDeprecationWarning: numba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.
+  warnings.warn(msg, NumbaDeprecationWarning)
+
+
+
+
+
+
+
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36
+                  available                                                                                        
+
+
+
+
+
+
+
+/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/np/ufunc/dufunc.py:84: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
+  dispatcher = jit(_target='npyufunc',
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
08:54:59 INFO      Starting 3ML!                                                                     __init__.py:35
+
+
+
+
+
+
+
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36
+
+
+
+
+
+
+
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37
+
+
+
+
+
+
+
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40
+
+
+
+
+
+
+
08:55:00 WARNING   ROOT minimizer not available                                                minimization.py:1345
+
+
+
+
+
+
+
         WARNING   Multinest minimizer not available                                           minimization.py:1357
+
+
+
+
+
+
+
         WARNING   PyGMO is not available                                                      minimization.py:1369
+
+
+
+
+
+
+
+
+WARNING NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
+
+
+
+
+
+
+
+
08:55:00 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94
+                  require the C/C++ interface (currently HAWC)                                                     
+
+
+
+
+
+
+
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
08:55:01 WARNING   No fermitools installed                                              lat_transient_builder.py:44
+
+
+
+
+
+
+
08:55:01 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+

Load the response and orientation files

+
+
[2]:
+
+
+
response_path = "/Users/ckierans/Software/COSItools/COSItools/intro_cosipy/test_data/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5"
+response = FullDetectorResponse.open(response_path)
+
+ori = Orientation_file.parse_from_file("/Users/ckierans/Software/COSItools/COSItools/cosipy/20280301_first_2hrs.ori")
+
+Timemin = Time(1835481433.0,format = 'unix')
+Timemax = Time(1835481435.0,format = 'unix')
+grbori = ori.source_interval(Timemin, Timemax)
+
+
+
+
+
[4]:
+
+
+
# you can plot the pointings to see how the zenith changes over the observation - shown in Galactic Coordinates
+plt.plot(grbori._z_direction[:,1], grbori._z_direction[:,0],"o")
+plt.xlabel("Longitude [deg]")
+plt.ylabel("Latitude [deg]")
+
+
+
+
+
[4]:
+
+
+
+
+Text(0, 0.5, 'Latitude [deg]')
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_6_1.png +
+
+
+
[5]:
+
+
+
# Simulating a 2 second GRB at l = 51, b = -17 in Galacti coordinates.
+coord = SkyCoord(l = 51*u.deg, b = -17*u.deg,
+                 frame = 'galactic', attitude = Attitude.identity(frame = 'galactic'))
+
+
+
+
+
[6]:
+
+
+
# Initiate a SpacecraftPositionAttitude object with the coordinates of the source
+SCPosition = SpacecraftPositionAttitude.SourceSpacecraft("GRB", coord)
+
+
+
+
+
[7]:
+
+
+
# From the orientation, get the attitude and define the source movement in the spacecraft FOV
+x,y,z = grbori.get_attitude().as_axes()
+dts = grbori.get_time_delta()
+
+src_movement = SCPosition.sc_frame(x_pointings = x[:], y_pointings = y[:], z_pointings = z[:])
+
+# The source should be 20 degrees off axis for this simulation, based on the GRB ori file.
+# Zenith is Latitude = 90, therefore, we expect this to be at Latitude = 90-20 = 70, and Longitude = 0.
+
+plt.plot(src_movement.lon.deg, src_movement.lat.deg,"o")
+plt.ylim(0,90)
+plt.xlim(0,360)
+plt.axhline(y=90, color='r', linestyle='-')
+plt.annotate("zenith",[250,85], color='r')
+plt.xlabel("Longitude [deg]")
+plt.ylabel("Latitude [deg]")
+
+
+
+
+
+
+
+
+Now converting to the Spacecraft frame...
+Conversion completed!
+
+
+
+
[7]:
+
+
+
+
+Text(0, 0.5, 'Latitude [deg]')
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_9_2.png +
+
+
+
[11]:
+
+
+
dwell_time_map = SCPosition.get_dwell_map(response = response_path, dts = dts, src_path = src_movement[:-1])
+#dwell time map has the correct distribution in detector coordinates with a hot spot 20 degrees from zenith
+
+_,ax = dwell_time_map.plot(ax_kw = {'coord':'C'}, coord = SpacecraftFrame(attitude = Attitude.identity(frame ='icrs')))
+
+#Need to use the same transformation to plot the coordinates of the source
+c_sc = coord.transform_to(SpacecraftFrame(attitude = Attitude(grbori.get_attitude())))
+ax.scatter(c_sc[0].lon.deg, c_sc[0].lat.deg, transform=ax.get_transform('world'), color = 'red')
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.collections.PathCollection at 0x7fd0baca3520>
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_10_1.png +
+
+

The sum of all pixel in the dwell time map is simply the duration of the data that was integrated. In this case is just the duration of the GRB.

+
+
[12]:
+
+
+
print(sum(dwell_time_map))
+
+
+
+
+
+
+
+
+2.00000000000351 s
+
+
+

The detector response is then convolved with the dwell time map to get the point source response:

+

The point source response is still quite generic. We obtained the response for a give location and duration, but we still convolved this with a given spectral assumption:

+
+
[13]:
+
+
+
psr = response.get_point_source_response(dwell_time_map)
+
+
+
+
+
[14]:
+
+
+
# Set the spectra of the source
+spectrum = Band()
+alpha = -1
+beta = -3
+xp = 1000 * u.keV
+piv = 500 * u.keV
+K = 0.00247 / u.cm / u.cm / u.s / u.keV
+spectrum.alpha.value = alpha
+spectrum.beta.value = beta
+spectrum.xp.value = xp.value
+spectrum.xp.unit = xp.unit
+spectrum.K.value = K.value
+spectrum.K.unit = K.unit
+spectrum.piv.value = piv.value
+spectrum.piv.unit = piv.unit
+
+# We project into the only event parameters that we can measure in COSI
+signal = psr.get_expectation(spectrum).project(['Em', 'Phi', 'PsiChi'])
+
+
+
+

The result signal is histogram that contains the expected counts in measured energy (Em) and the “Compton Data Space”: Compton scatter angle (Phi) and direction (in SC coordinates) of the scattered photon in he (PsiChi). For reference, see the following figure from this paper. The only different is that here we are using spacecraft coordinate instead of galactic coordinates. image0

+

The signal object is a 3D histogram. Note that the last axis, PsiChi, is actually a 2D axis encoding the coordinates in a sphere as pixels in a HEALPix grid. So, in a sense, it’s really a 4D histogram.

+
+
[15]:
+
+
+
signal.axes.labels
+
+
+
+
+
[15]:
+
+
+
+
+array(['Em', 'Phi', 'PsiChi'], dtype='<U6')
+
+
+

Let’s explore this simulated signal and see how it looks.

+

First, we can get the measured energy distribution by projecting the histogram into the Em:

+
+
[16]:
+
+
+
signal.project('Em').plot()
+
+
+
+
+
[16]:
+
+
+
+
+(<AxesSubplot: xlabel='Em [keV]'>, <ErrorbarContainer object of 3 artists>)
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_21_1.png +
+
+

This shape is a combination of the spectrum, the energy resolution, and the effective area of the detector as a function of energy.

+

We can get the total number of events we expect from the GRB by summing over all bins:

+
+
[17]:
+
+
+
np.sum(signal)
+
+
+
+
+
[17]:
+
+
+
+
+66479.07966849873
+
+
+

Now let’s explore the CDS. It’s easier to visualize if we take slices in energy and scatter angle. For reference, these are the bin edges:

+
+
[18]:
+
+
+
signal.axes['Em'].edges
+
+
+
+
+
[18]:
+
+
+
+
+$[100,~200,~500,~1000,~2000,~5000] \; \mathrm{keV}$
+
+
+
[19]:
+
+
+
signal.axes['Phi'].edges
+
+
+
+
+
[19]:
+
+
+
+
+$[0,~10,~20,~30,~40,~50,~60,~70,~80,~90,~100,~110,~120,~130,~140,~150,~160,~170,~180] \; \mathrm{{}^{\circ}}$
+
+

This is the plot of the distribution of events within the energy range 1-2 MeV (bin 3) and scattered angles between 40-50deg (bin 4):

+
+
[20]:
+
+
+
#Since `PsiChi` is encoded as pixel in a HEALPix grid, we need mhealpy to render it back to a sphere
+m_signal = HealpixMap(signal.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents,
+                      coordsys = SpacecraftFrame(attitude = grbori.get_attitude()))
+
+fig = plt.figure(dpi = 150)
+
+# Try also other projections, e.g. projection = 'orthview'
+ax = fig.add_subplot(projection = 'mollview')
+
+m_signal.plot(ax, coord = SpacecraftFrame(attitude = Attitude.identity(frame ='icrs')))
+
+# Location of the source
+c_sc = coord.transform_to(SpacecraftFrame(attitude = Attitude(grbori.get_attitude())))
+ax.scatter(c_sc[0].lon.deg, c_sc[0].lat.deg, transform=ax.get_transform('world'), color = 'red')
+
+
+
+
+
[20]:
+
+
+
+
+<matplotlib.collections.PathCollection at 0x7fd0baeb2080>
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_28_1.png +
+
+

This is a horizontal slice of the Compton cone shown in the figure above, spread by detector effects and the finite size of the Em and Phi bins. Try selecting different Phi bins to see how these circle grows or shrinks, and relate that to the CDS figure.

+

You can also try selecting different energy bins. The opening of the cone in the CDS is geometrically constrained and does not depend on the energy. This circle becomes more blurry at different energies though, which is related to the energy resolution and the bin width.

+
+
+

Getting a fake background

+

The background from Compton telescopes can be complex, and in general we need to either simulate all the different components with MEGAlib and/or use real data to constrain it. For the purpose of having a toy background that we can use to develop our algorithms, let’s use the detector response to simulate an (unrealistic) isotropic gamma-ray background. The final source injector should use a background model as input instead.

+

We’ll repurpose the point source convolution by generating an effective dwell time map with the same value for all pixels. Since all pixels have the same area, this is simulating an isotropic distribution

+
+
[21]:
+
+
+
iso_map = HealpixMap(base = response,
+                     unit = u.s,
+                     coordsys = SpacecraftFrame(attitude = grbori.get_attitude()))
+
+# Filling all pixels with a constant. The actual value doesn't
+# since we will renormalize it
+iso_map[:] = 1*u.s
+
+
+
+
+
[22]:
+
+
+
# Non-realistic spectrum
+bkg_spectrum = Powerlaw()
+bkg_index = -2
+bkg_piv = 1 * u.keV
+bkg_K = 1 / u.cm / u.cm / u.s / u.keV
+bkg_spectrum.index.value = bkg_index
+bkg_spectrum.K.value = bkg_K.value
+bkg_spectrum.piv.value = bkg_piv.value
+bkg_spectrum.K.unit = bkg_K.unit
+bkg_spectrum.piv.unit = bkg_piv.unit
+
+iso_response = response.get_point_source_response(iso_map)
+
+bkg = iso_response.get_expectation(bkg_spectrum).project(['Em', 'Phi', 'PsiChi'])
+
+
+
+

Now, let’s renormalize the background to a total rate of 1k Hz. This is again not realistic, but was chosen such that the signal will show up clearly enough above the background and we can work on the algorihtms.

+
+
[23]:
+
+
+
np.sum(bkg)
+
+
+
+
+
[23]:
+
+
+
+
+90238.31928090738
+
+
+
+
[24]:
+
+
+
bkg = bkg * 1e3 / np.sum(bkg)
+
+
+
+
+
[25]:
+
+
+
np.sum(bkg)
+
+
+
+
+
[25]:
+
+
+
+
+1000.0000000000001
+
+
+

These are the same plots as we did for the signal, so you can compare:

+
+
[26]:
+
+
+
bkg.project('Em').plot()
+
+
+
+
+
[26]:
+
+
+
+
+(<AxesSubplot: xlabel='Em [keV]'>, <ErrorbarContainer object of 3 artists>)
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_39_1.png +
+
+
+
[27]:
+
+
+
m_bkg = HealpixMap(bkg.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents)
+
+fig = plt.figure(dpi = 150)
+
+ax = fig.add_subplot(projection = 'orthview')
+
+m_bkg.plot(ax)
+
+
+
+
+
[27]:
+
+
+
+
+(<matplotlib.image.AxesImage at 0x7fd09f741c60>, <OrthviewSubplot: >)
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_40_1.png +
+
+

Note: I actually don’t understand what causes the strip in the middle. Maybe it’s a beating pattern caused by converting from FISBEL to HEALPix during the creation of the detector response. I plan to generate a detector response using HEALPix directly, and will revisit this then.

+
+
+

Adding Bkg + Source to get Data

+

Once we obtain the expected signal, it’s easy to add it do the background to simulate how the observed data would look like

+
+
[28]:
+
+
+
data = signal + bkg
+
+
+
+

If the user wants to simulate multiple sources, just add those to this sum.

+

This is how it looks:

+
+
[29]:
+
+
+
m_data = HealpixMap(data.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents)
+
+fig = plt.figure(dpi = 150)
+
+ax = fig.add_subplot(1,2,1, projection = 'orthview')
+
+m_data.plot(ax)
+
+
+
+
+
[29]:
+
+
+
+
+(<matplotlib.image.AxesImage at 0x7fd09c7945b0>, <OrthviewSubplot: >)
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_46_1.png +
+
+

The final source injector should save the result to disk in the same format as the “Data classes” module, including all the appropiate header information. However, for now you can use directly histpy’s write method:

+
+
[32]:
+
+
+
data.write("GRBdata.h5")
+bkg.write("GRBbkg.h5")
+signal.write("GRBsignal.h5")
+
+
+
+

To load them back, use:

+
+
[33]:
+
+
+
data = Histogram.open("/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBdata.h5")
+bkg = Histogram.open("/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBbkg.h5")
+signal = Histogram.open("/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBsignal.h5")
+
+
+
+
+
+

Now reading in the data to make TS Map

+
+
[34]:
+
+
+
tsmap = TSMap()
+
+
+
+
+
[35]:
+
+
+
print(coord.icrs.ra.deg)
+
+
+
+
+
+
+
+
+306.3669458839138
+
+
+
+
[36]:
+
+
+
print(coord.icrs.dec.deg)
+
+
+
+
+
+
+
+
+7.507101864237928
+
+
+
+
[37]:
+
+
+
piv = 1
+index = -2
+
+tsmap.link_model_all_plugins(dr=response_path,
+                             data=bkg + 3*signal,
+                             bkg=bkg,
+                             sc_orientation=grbori,
+                             piv=piv,
+                             index=index,
+                             ra = coord.icrs.ra.deg,
+                             dec = coord.icrs.dec.deg)
+
+
+
+
+
+
+
+
09:00:03 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042
+
+
+
+
[10]:
+
+
+
tsmap.ts_fitting()
+
+
+
+
+
+
+
+
+ra =  0/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:12:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:13:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:13:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:13:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:13:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:13:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:13:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:13:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:13:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:13:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:13:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:13:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:13:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:13:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:13:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:14:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:14:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:14:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:14:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:14:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:14:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:14:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:14:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  0/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:14:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:14:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:14:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:14:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:14:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:15:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:15:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:15:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:15:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:15:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:15:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:15:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:15:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:15:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:15:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:15:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:15:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:15:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:16:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:16:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:16:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:16:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:16:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:16:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  1/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:16:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:16:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:16:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:16:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:16:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:16:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:16:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:16:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:17:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:17:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:17:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:17:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:17:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:17:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:17:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:17:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:17:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:17:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:17:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:17:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:17:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:18:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:18:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:18:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  2/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:18:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:18:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:18:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:18:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:18:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:18:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:18:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:18:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:18:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:18:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:19:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:19:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:19:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:19:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:19:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:19:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:19:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:19:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:19:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:19:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:19:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:19:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:19:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:19:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  3/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:20:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:20:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:20:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:20:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:20:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:20:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:20:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:20:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:20:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:20:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:20:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:20:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:20:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:21:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:21:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:21:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:21:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:21:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:21:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:21:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:21:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:21:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:21:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:21:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  4/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:21:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:21:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:22:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:22:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:22:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:22:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:22:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:22:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:22:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:22:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:22:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:22:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:22:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:22:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:22:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:22:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:23:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:23:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:23:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:23:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:23:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:23:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:23:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:23:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  5/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:23:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:23:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:23:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:23:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:23:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:24:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:24:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:24:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:24:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:24:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:24:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:24:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:24:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:24:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:24:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:24:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:24:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:24:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:24:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:25:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:25:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:25:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:25:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:25:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  6/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:25:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:25:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:25:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:25:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:25:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:25:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:25:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:25:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:26:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:26:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:26:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:26:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:26:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:26:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:26:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:26:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:26:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:26:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:26:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:26:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:26:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:26:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:27:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:27:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  7/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:27:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:27:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:27:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:27:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:27:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:27:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:27:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:27:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:27:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:27:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:27:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:27:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:28:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:28:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:28:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:28:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:28:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:28:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:28:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:28:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:28:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:28:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:28:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:28:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  8/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:28:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:29:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:29:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:29:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:29:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:29:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:29:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:29:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:29:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:29:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:29:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:29:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:29:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:29:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:29:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:30:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:30:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:30:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:30:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:30:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:30:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:30:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:30:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:30:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra =  9/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:30:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:30:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:30:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:30:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:31:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:31:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:31:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:31:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:31:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:31:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:31:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:31:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:31:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:31:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:31:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:31:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:31:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:31:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:32:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:32:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:32:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:32:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:32:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:32:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 10/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:32:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:32:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:32:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:32:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:32:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:32:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:32:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:33:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:33:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:33:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:33:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:33:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:33:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:33:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:33:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:33:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:33:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:33:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:33:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:33:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:33:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:34:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:34:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:34:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 11/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:34:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:34:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:34:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:34:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:34:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:34:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:34:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:34:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:34:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:34:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:34:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:35:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:35:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:35:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:35:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:35:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:35:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:35:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:35:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:35:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:35:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:35:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:35:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:35:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 12/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:35:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:36:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:36:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:36:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:36:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:36:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:36:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:36:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:36:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:36:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:36:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:36:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:36:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:36:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:36:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:37:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:37:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:37:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:37:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:37:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:37:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:37:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:37:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:37:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 13/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:37:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:37:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:37:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:37:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:37:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:38:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:38:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:38:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:38:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:38:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:38:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:38:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:38:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:38:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:38:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:38:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:38:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:38:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:39:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:39:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:39:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:39:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:39:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:39:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 14/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:39:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:39:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:39:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:39:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:39:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:39:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:39:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:39:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:40:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:40:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:40:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:40:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:40:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:40:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:40:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:40:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:40:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:40:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:40:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:40:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:40:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:40:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:41:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:41:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 15/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:41:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:41:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:41:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:41:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:41:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:41:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:41:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:41:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:41:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:41:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:41:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:41:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:42:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:42:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:42:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:42:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:42:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:42:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:42:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:42:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:42:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:42:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:42:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:42:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 16/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:42:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:42:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:43:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:43:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:43:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:43:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:43:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:43:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:43:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:43:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:43:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:43:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:43:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:43:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:43:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:43:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:43:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:44:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:44:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:44:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:44:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:44:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:44:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:44:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 17/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:44:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:44:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:44:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:44:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:44:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:44:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:45:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:45:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:45:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:45:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:45:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:45:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:45:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:45:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:45:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:45:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:45:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:45:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:45:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:45:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:46:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:46:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:46:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:46:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 18/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:46:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:46:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:46:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:46:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:46:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:46:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:46:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:46:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:46:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:46:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:47:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:47:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:47:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:47:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:47:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:47:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:47:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:47:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:47:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:47:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:47:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:47:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:47:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:48:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 19/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:48:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:48:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:48:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:48:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:48:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:48:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:48:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:48:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:48:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:48:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:48:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:48:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:49:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:49:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:49:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:49:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:49:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:49:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:49:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:49:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:49:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:49:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:49:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:49:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 20/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:49:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:49:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:50:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:50:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:50:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:50:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:50:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:50:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:50:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:50:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:50:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:50:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:50:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:50:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:50:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:50:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:51:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:51:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:51:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:51:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:51:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:51:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:51:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:51:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 21/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:51:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:51:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:51:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:51:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:51:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:51:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:52:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:52:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:52:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:52:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:52:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:52:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:52:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:52:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:52:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:52:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:52:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:52:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:52:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:52:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:52:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:53:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:53:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:53:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 22/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:53:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:53:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:53:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:53:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:53:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:53:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:53:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:53:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:53:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:53:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:53:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:54:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:54:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:54:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:54:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:54:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:54:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:54:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:54:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:54:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:54:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:54:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:54:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:54:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 23/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:54:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:55:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:55:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:55:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:55:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:55:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:55:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:55:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:55:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:55:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:55:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:55:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:55:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:55:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:55:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:56:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:56:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:56:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:56:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:56:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:56:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:56:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:56:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:56:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 24/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:56:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:56:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:56:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:56:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:56:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:57:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:57:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:57:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:57:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:57:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:57:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:57:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:57:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:57:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:57:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:57:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:57:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:57:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:57:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:58:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:58:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:58:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:58:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 22/24   position change!
+
+
+
+
+
+
+
11:58:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 25/49   dec = 23/24   position change!
+
+
+
+
+
+
+
11:58:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  0/24   position change!
+
+
+
+
+
+
+
11:58:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  1/24   position change!
+
+
+
+
+
+
+
11:58:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  2/24   position change!
+
+
+
+
+
+
+
11:58:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  3/24   position change!
+
+
+
+
+
+
+
11:58:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  4/24   position change!
+
+
+
+
+
+
+
11:58:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  5/24   position change!
+
+
+
+
+
+
+
11:58:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  6/24   position change!
+
+
+
+
+
+
+
11:58:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  7/24   position change!
+
+
+
+
+
+
+
11:58:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  8/24   position change!
+
+
+
+
+
+
+
11:59:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec =  9/24   position change!
+
+
+
+
+
+
+
11:59:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 10/24   position change!
+
+
+
+
+
+
+
11:59:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 11/24   position change!
+
+
+
+
+
+
+
11:59:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 12/24   position change!
+
+
+
+
+
+
+
11:59:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 13/24   position change!
+
+
+
+
+
+
+
11:59:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 14/24   position change!
+
+
+
+
+
+
+
11:59:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 15/24   position change!
+
+
+
+
+
+
+
11:59:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 16/24   position change!
+
+
+
+
+
+
+
11:59:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 17/24   position change!
+
+
+
+
+
+
+
11:59:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 18/24   position change!
+
+
+
+
+
+
+
11:59:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 19/24   position change!
+
+
+
+
+
+
+
11:59:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 20/24   position change!
+
+
+
+
+
+
+
11:59:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 21/24   position change!
+
+
+
+
+
+
+
11:59:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:00:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 26/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:00:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:00:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:00:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:00:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:00:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:00:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:00:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:00:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:00:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:00:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:00:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:00:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:01:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:01:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:01:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:01:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:01:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:01:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:01:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:01:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:01:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:01:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:01:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:01:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 27/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:01:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:01:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:02:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:02:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:02:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:02:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:02:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:02:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:02:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:02:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:02:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:02:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:02:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:02:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:02:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:03:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:03:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:03:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:03:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:03:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:03:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:03:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:03:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:03:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 28/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:03:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:03:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:03:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:04:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:04:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:04:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:04:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:04:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:04:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:04:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:04:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:04:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:05:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:05:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:05:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:05:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:05:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:05:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:05:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:05:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:05:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:05:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:05:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:05:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 29/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:06:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:06:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:06:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:06:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:06:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:06:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:06:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:06:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:06:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:06:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:06:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:06:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:06:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:06:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:07:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:07:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:07:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:07:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:07:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:07:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:07:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:07:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:07:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:07:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 30/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:07:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:07:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:07:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:07:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:07:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:08:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:08:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:08:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:08:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:08:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:08:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:10:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:10:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:10:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:10:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:10:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:10:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:10:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:10:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:10:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:10:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:10:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:11:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:11:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 31/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:11:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:11:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:11:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:11:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:11:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:11:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:11:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:11:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:11:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:11:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:11:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:12:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:12:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:12:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:12:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:12:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:12:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:12:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:12:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:12:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:12:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:12:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:12:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:12:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 32/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:13:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:13:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:13:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:13:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:13:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:13:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:13:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:13:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:13:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:13:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:13:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:13:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:13:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:13:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:14:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:14:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:14:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:14:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:14:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:14:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:14:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:14:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:14:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:14:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 33/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:14:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:14:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:14:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:15:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:15:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:15:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:15:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:15:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:15:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:15:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:15:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:15:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:15:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:15:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:15:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:15:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:15:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:16:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:16:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:16:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:16:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:16:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:16:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:16:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 34/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:16:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:16:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:16:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:16:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:16:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:16:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:16:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:16:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:17:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:17:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:17:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:17:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:17:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:17:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:17:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:17:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:17:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:17:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:17:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:17:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:17:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:18:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:18:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:18:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 35/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:18:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:18:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:18:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:18:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:18:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:18:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:18:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:18:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:18:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:18:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:18:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:19:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:19:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:19:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:19:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:19:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:19:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:19:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:19:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:19:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:19:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:19:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:19:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:19:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 36/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:19:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:20:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:20:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:20:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:20:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:20:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:20:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:20:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:20:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:20:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:20:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:20:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:20:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:20:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:20:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:21:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:21:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:21:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:21:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:21:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:21:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:21:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:21:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:21:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 37/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:21:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:21:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:21:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:21:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:22:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:22:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:22:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:22:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:22:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:22:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:22:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:22:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:22:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:22:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:22:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:22:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:22:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:23:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:23:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:23:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:23:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:23:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:23:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:23:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 38/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:23:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:23:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:23:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:23:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:23:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:23:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:24:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:24:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:24:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:24:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:24:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:24:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:24:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:24:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:24:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:24:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:24:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:24:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:24:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:24:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:25:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:25:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:25:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:25:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 39/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:25:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:25:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:25:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:25:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:25:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:25:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:25:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:25:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:25:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:25:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:26:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:26:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:26:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:26:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:26:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:26:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:26:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:26:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:26:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:26:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:26:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:26:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:26:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:26:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 40/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:27:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:27:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:27:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:27:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:27:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:27:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:27:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:27:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:27:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:27:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:27:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:27:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:27:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:28:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:28:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:28:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:28:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:28:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:28:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:28:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:28:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:28:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:28:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:28:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 41/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:28:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:28:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:29:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:29:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:29:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:29:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:29:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:29:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:29:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:29:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:29:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:29:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:29:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:29:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:29:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:30:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:30:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:30:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:30:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:30:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:30:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:30:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:30:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:30:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 42/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:30:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:30:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:30:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:30:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:31:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:31:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:31:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:31:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:31:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:31:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:31:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:31:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:31:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:31:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:31:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:31:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:31:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:32:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:32:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:32:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:32:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:32:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:32:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:32:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 43/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:32:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:32:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:32:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:32:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:32:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:32:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:33:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:33:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:33:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:33:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:33:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:33:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:33:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:33:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:33:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:33:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:33:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:33:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:33:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:33:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:34:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:34:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:34:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:34:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 44/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:34:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:34:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:34:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:34:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:34:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:34:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:34:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:34:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:35:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:35:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:35:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:35:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:35:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:35:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:35:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:35:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:35:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:35:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:35:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:35:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:35:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:35:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:36:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:36:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 45/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:36:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:36:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:36:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:36:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:36:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:36:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:36:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:36:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:36:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:36:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:36:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:36:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:37:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:37:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:37:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:37:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:37:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:37:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:37:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:37:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:37:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:37:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:37:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:37:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 46/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:37:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:38:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:38:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:38:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:38:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:38:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:38:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:38:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:38:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:38:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:38:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:38:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:38:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:38:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:39:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:39:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:39:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:39:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:39:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:39:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:39:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:39:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:39:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:39:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 47/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:39:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  0/24   position change!
+
+
+
+
+
+
+
12:39:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  1/24   position change!
+
+
+
+
+
+
+
12:39:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  2/24   position change!
+
+
+
+
+
+
+
12:40:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  3/24   position change!
+
+
+
+
+
+
+
12:40:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  4/24   position change!
+
+
+
+
+
+
+
12:40:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  5/24   position change!
+
+
+
+
+
+
+
12:40:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  6/24   position change!
+
+
+
+
+
+
+
12:40:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  7/24   position change!
+
+
+
+
+
+
+
12:40:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  8/24   position change!
+
+
+
+
+
+
+
12:40:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec =  9/24   position change!
+
+
+
+
+
+
+
12:40:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 10/24   position change!
+
+
+
+
+
+
+
12:40:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 11/24   position change!
+
+
+
+
+
+
+
12:40:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 12/24   position change!
+
+
+
+
+
+
+
12:40:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 13/24   position change!
+
+
+
+
+
+
+
12:40:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 14/24   position change!
+
+
+
+
+
+
+
12:40:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 15/24   position change!
+
+
+
+
+
+
+
12:41:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 16/24   position change!
+
+
+
+
+
+
+
12:41:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 17/24   position change!
+
+
+
+
+
+
+
12:41:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 18/24   position change!
+
+
+
+
+
+
+
12:41:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 19/24   position change!
+
+
+
+
+
+
+
12:41:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 20/24   position change!
+
+
+
+
+
+
+
12:41:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 21/24   position change!
+
+
+
+
+
+
+
12:41:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 22/24   position change!
+
+
+
+
+
+
+
12:41:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
+ra = 48/49   dec = 23/24   position change!
+
+
+
+
+
+
+
12:41:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
12:41:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
[337]:
+
+
+
tsmap.print_best_fit()
+
+
+
+
+
+
+
+
+---------------------------------------------------------------------------
+AttributeError                            Traceback (most recent call last)
+Cell In[337], line 1
+----> 1 tsmap.print_best_fit()
+
+File ~/Software/COSItools/COSItools/cosipy/cosipy/ts_map/TSMap.py:161, in TSMap.print_best_fit(self)
+    157 def print_best_fit(self):
+    158
+    159     # report the best fit position
+    160     # converting rad to deg due to ra and dec in 3ML PointSource
+--> 161     if self.ts.axes['ra'].centers[self.argmax[0]] < 0:
+    162         self.best_ra = (self.ts.axes['ra'].centers[self.argmax[0]] + 2*np.pi) * (180/np.pi) # deg
+    163     else:
+
+AttributeError: 'TSMap' object has no attribute 'ts'
+
+
+
+
[19]:
+
+
+
tsmap.plot_ts_map()
+
+
+
+
+
+
+
+
+---------------------------------------------------------------------------
+TypeError                                 Traceback (most recent call last)
+Cell In[19], line 1
+----> 1 tsmap.plot_ts_map(vmin = np.max(tsmap.ts) - 2.7)
+
+TypeError: TSMap.plot_ts_map() got an unexpected keyword argument 'vmin'
+
+
+
+
[18]:
+
+
+
np.max(tsmap.ts)
+
+
+
+
+
[18]:
+
+
+
+
+63272.68466587507
+
+
+
+
[20]:
+
+
+
tsmap.save_ts("Source_Injected_GRB_TSMap.ts")
+
+
+
+
+
+

Load in a saved TS Map

+
+
[38]:
+
+
+
tsmap2 = TSMap()
+tsmap2.load_ts(input_file_name = "Source_Injected_GRB_TSMap.ts")
+
+
+
+
+
[39]:
+
+
+
tsmap2.plot_ts_map()
+
+
+
+
+
+
+
+../../_images/tutorials_source_injector_GRB_source_injector_63_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/source_injector/GRB_source_injector.ipynb b/tutorials/source_injector/GRB_source_injector.ipynb new file mode 100644 index 00000000..cc5e34a5 --- /dev/null +++ b/tutorials/source_injector/GRB_source_injector.ipynb @@ -0,0 +1,27346 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "a0226ddc", + "metadata": {}, + "source": [ + "# GRB Source injector" + ] + }, + { + "cell_type": "markdown", + "id": "c3cf1f63-9d4c-4922-9555-c6a33bdc6fc1", + "metadata": {}, + "source": [ + "The \"source injector\" is a cosipy module that will generate mocked binned data based on the detector response and a source hypothesis (provided by the users). This should result in the same output as simulating the source using MEGAlib, but be much quicker. MEGAlib is only needed when the event-by-event data is required, or to create the detector response itself. \n", + "\n", + "The goal of this notebook is to get an idea how the source injector will work in practice. We need to take it from here to something that is user friendly and compatible with the rest of the modules." + ] + }, + { + "cell_type": "markdown", + "id": "12989d27-f8eb-4764-947f-e5197b13b3b5", + "metadata": {}, + "source": [ + "First, let's load all dependecies:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "1863fe19-1d2b-4d9d-aacc-6e1eba99b882", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/np/ufunc/dufunc.py:84: NumbaDeprecationWarning: \u001b[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.\u001b[0m\n", + " dispatcher = jit(_target='npyufunc',\n" + ] + }, + { + "data": { + "text/html": [ + "
08:54:59 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:54:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=486351;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=74509;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80089;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=809035;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/core/decorators.py:262: NumbaDeprecationWarning: \u001b[1mnumba.generated_jit is deprecated. Please see the documentation at: https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-generated-jit for more information and advice on a suitable replacement.\u001b[0m\n", + " warnings.warn(msg, NumbaDeprecationWarning)\n" + ] + }, + { + "data": { + "text/html": [ + "
         WARNING   The ebltable package is not available. Models that depend on it will not be     absorption.py:36\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The ebltable package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=567084;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/absorption.py\u001b\\\u001b[2mabsorption.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=39921;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/functions/functions_1D/absorption.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/numba-0.57.0rc1-py3.10-macosx-10.9-x86_64.egg/numba/np/ufunc/dufunc.py:84: NumbaDeprecationWarning: \u001b[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.\u001b[0m\n", + " dispatcher = jit(_target='npyufunc',\n" + ] + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=29763;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=631989;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=72611;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=998801;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=490276;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628467;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97968;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=835206;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=53607;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=338285;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=648905;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=685841;file:///Users/ckierans/Software/COSItools/astromodels-2.4.0/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:54:59 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:54:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=66813;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=488489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=98877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=480722;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226120;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62755;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=870227;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=152137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:55:00 WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=787830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=39265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=420566;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=538421;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING NumbaDeprecationWarning: \u001b[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.\u001b[0m\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
08:55:00 WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=836595;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=813631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=895880;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=789700;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=320555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:55:01 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=357588;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=719606;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
08:55:01 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m08:55:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=453037;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265094;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=724171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=941918;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=876844;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825186;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We'll use histpy's Histogram and mhealpy's HealpixMap as the basis\n", + "# develop cosipy. These object (or a derivative) will be passed around by \n", + "# the different modules.\n", + "from histpy import Histogram\n", + "from mhealpy import HealpixMap\n", + "\n", + "from cosipy.response import FullDetectorResponse\n", + "from cosipy.coordinates.orientation import Orientation_file\n", + "from cosipy.spacecraftpositionattitude import SpacecraftPositionAttitude\n", + "from cosipy.ts_map.TSMap import TSMap\n", + "\n", + "# cosipy uses astropy units\n", + "import astropy.units as u\n", + "from astropy.units import Quantity\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.time import Time\n", + "from scoords import Attitude, SpacecraftFrame\n", + "\n", + "#3ML is needed for spectral modeling\n", + "from threeML import *\n", + "from astromodels import Band\n", + "\n", + "\n", + "#Other standard libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "markdown", + "id": "e713e7ed-3956-403e-919d-5f0e1330d1ce", + "metadata": {}, + "source": [ + "## Load the response and orientation files" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "a5ff96a4", + "metadata": {}, + "outputs": [], + "source": [ + "response_path = \"/Users/ckierans/Software/COSItools/COSItools/intro_cosipy/test_data/FlatContinuumIsotropic.LowRes.binnedimaging.imagingresponse.area.nside8.cosipy.h5\"\n", + "response = FullDetectorResponse.open(response_path)\n", + "\n", + "ori = Orientation_file.parse_from_file(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/20280301_first_2hrs.ori\")\n", + "\n", + "Timemin = Time(1835481433.0,format = 'unix')\n", + "Timemax = Time(1835481435.0,format = 'unix')\n", + "grbori = ori.source_interval(Timemin, Timemax)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d1e043e0", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Latitude [deg]')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmkAAAG5CAYAAADVp6NgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABRFUlEQVR4nO3deVxU9f4/8NewDbIPq5oiioROIosbJYgriRc128ByQVPJvIo38ZpdU8uKa5qlX7u5R3L1Imp1zQWCXMoVU8EgVEQgUUFAQWAAB2Z+f/BjruMADQPIiXk9H48eD87nfM75vM/ncvXlWUVKpVIJIiIiIhIUg/YugIiIiIg0MaQRERERCRBDGhEREZEAMaQRERERCRBDGhEREZEAMaQRERERCRBDGhEREZEAMaT9CVRVVeHq1auoqqpq71KIiIjoCWFI+xPIzc3F7NmzkZub296lEBER0RPCkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQEbtXQC1D4VCifwr91BZUo1ONmJ07mMLAwNRe5dFRERE/x9Dmh7KTs7H2Z0ZqLhXpWoztzWF77S+6Dm4cztWRkRERPV4uVPPZCfn48fPL6kFNACouFeFHz+/hOzk/HaqjIiIiB7FkKZHFAolzu7MaLLP2ZgMKBTKJ1QRERERNYYhTY/kX7mncQbtcRXFVci/cu8JVURERESNYUjTI5Ul1a3aj4iIiNoOQ5oe6WQjbtV+RERE1HYY0vRI5z62MLc1bbKPuZ0pOvexfUIVERERUWMY0vSIgYEIvtP6NtnHd2pfvi+NiIhIABjS9EzPwZ0xaqG3xhk1cztTjFrozfekERERCQRfZquHeg7ujB4DnfjFASIiIgFjSNNTBgYidJXatXcZRERE1Ahe7iQiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgFiSCMiIiISIIY0IiIiIgEyau8CWkNKSgpiY2ORmZmJ0tJSWFhYoHfv3pg+fTo8PDw0+svlcsTGxiIhIQH5+fkwNzeHu7s7IiMj4ejo2Og4R44cQVRUVKPrly1bhsDAQNVyYWEhNm7ciPPnz0OhUMDb2xvz589H165dW3bARERE1OF1iJCWl5cHAwMDTJw4Eba2tigrK0NiYiLmz5+P1atXY8iQIaq+NTU1WLJkCdLS0hAcHAxXV1eUlZUhIyMDFRUVTY7j6emJZcuWabTHxcUhKysLAwYMULXJZDJERESgoqICU6ZMgZGREeLi4jB//nzs2LED1tbWrTcBRERE1OF0iJAWHByM4OBgtbZJkyYhNDQUe/fuVQtpcXFxSElJwcaNGyGVSps1TteuXTXOglVXV2PdunXw9vaGnZ2dqv27775DXl4eNm/ejL59+wIAhgwZgrCwMOzZswdz5sxp7mESERGRHumw96SZmprC2toa5eXlqjaFQoF9+/bB398fUqkUNTU1qKqqatE4p06dgkwmw5gxY9Tajx8/jj59+qgCGgD06NEDPj4+OHbsWIvGJCIioo6vQ4W0iooKlJSUIDc3F1u2bEF2drbaJcicnBwUFRXB1dUVa9aswfPPP4/AwECEhYXh4sWLOo2ZmJgIsViMgIAAVZtCocCNGzfQp08fjf59+/bFrVu3IJPJdBqPiIiI9EOHuNxZb8WKFUhOTgYAGBsbY8KECZg2bZpqfV5eHgBg7969sLS0RGRkJAAgJiYGixcvxpYtW+Dq6qr1eA8ePEBycjL8/PxgZmam1v7w4UO1y5/16tuKiorg7Ozc4H6LiopQXFysWs7NzdW6JiIiIuoYBBfSFAoF5HK5Vn1NTEwgEolUy+Hh4QgJCcHdu3cRHx+Pmpoa1NbWqtZXVlYCqLupf9u2bXBycgIA+Pj4YPLkydi9ezfee+89rWs9fvw45HK5xqXO6upqAHVBsaGaH+3TkAMHDiA6OlrrOoiIiKjjEVxIS01NRUREhFZ9Y2Ji0KNHD9Wym5ub6ufAwEDMmjULUVFRWLVqFQBALBYDAPr166cKaADg5OQEDw8PpKWlNavWxMREWFlZwdfXV629fpyGwubDhw/V+jRkwoQJGDp0qGo5NzcXH374YbNqIyIioj83wYU0Z2dnLF26VKu+DV1OrGdsbIyhQ4di165dqK6uhlgsVvW3tbXV6C+RSJCZmal1nQUFBbh8+TLGjx8PIyP1abSysoKJiYnaJct69W329vaN7tve3r7J9URERNTxCS6k2dnZISgoqFX2VV1dDaVSCZlMBrFYDFdXVxgZGaGwsFCjb1FREWxsbLTed1JSEpRKpcalTgAwMDBAr169cOXKFY11v/32G7p27ap2DxsRERHR4zrE053379/XaCsrK8OJEyfg6OgIiUQCADAzM4Ovry/S09PVbsbPyclBeno6Bg4cqGqrqqpCbm4uSkpKGhwzKSkJTk5O6N+/f4PrAwICcOXKFbWg9vvvv+PSpUsYPny4DkdJRERE+kRwZ9J0sXjxYjg4OEAqlUIikaCgoACHDx9GcXExVq5cqdZ3zpw5uHDhAhYuXIiXXnoJALB//35YWlpi6tSpqn4ZGRmIiIhAWFgYZs6cqbaPGzduICsrC6+//rragwuPmjRpEg4ePIglS5YgNDQUhoaGiIuLg0QiQWhoaOtOABEREXU4HSKkjRs3DkePHkVcXBzKy8thaWkJqVSK5cuXw9PTU62vi4sLNmzYgM2bNyMmJgYikQg+Pj6YO3cuHBwctBovMTERADB69OhG+5iZmWH9+vXYuHEjdu7cqfp251//+tdmXVYlIiIi/SRSKpXK9i6Cmnb16lXMnj0bW7duhbu7e3uXQ0RERE9Ah7gnjYiIiKijYUgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCGNCIiIiIBMmrvAlpDSkoKYmNjkZmZidLSUlhYWKB3796YPn06PDw8NPrL5XLExsYiISEB+fn5MDc3h7u7OyIjI+Ho6NjoOEeOHEFUVFSj65ctW4bAwEAAwIkTJ3D06FFcuXIF9+7dg6OjI5599llMnz4dlpaWLT9oIiIi6tA6REjLy8uDgYEBJk6cCFtbW5SVlSExMRHz58/H6tWrMWTIEFXfmpoaLFmyBGlpaQgODoarqyvKysqQkZGBioqKJsfx9PTEsmXLNNrj4uKQlZWFAQMGqNrWrl0LOzs7BAYGwsnJCVlZWfj2229x9uxZbN++HWKxuPUmgIiIiDqcDhHSgoODERwcrNY2adIkhIaGYu/evWohLS4uDikpKdi4cSOkUmmzxunatSu6du2q1lZdXY1169bB29sbdnZ2qvYPPvgA3t7ean3d3d3x8ccfIzExUaNeIiIiokd12HvSTE1NYW1tjfLyclWbQqHAvn374O/vD6lUipqaGlRVVbVonFOnTkEmk2HMmDFq7Y8HNAAYNmwYACAnJ6dFYxIREVHH1yHOpNWrqKiAXC5HaWkpEhISkJ2djalTp6rW5+TkoKioCK6urlizZg3i4+Mhl8vRq1cvLFiwAD4+Ps0eMzExEWKxGAEBAX/Yt7i4GABgY2PTZL+ioiJVXwDIzc1tdl1ERET059ahQtqKFSuQnJwMADA2NsaECRMwbdo01fq8vDwAwN69e2FpaYnIyEgAQExMDBYvXowtW7bA1dVV6/EePHiA5ORk+Pn5wczM7A/77969G4aGhn8Y6A4cOIDo6Git6yAiIqKOR3AhTaFQQC6Xa9XXxMQEIpFItRweHo6QkBDcvXsX8fHxqKmpQW1trWp9ZWUlAEAmk2Hbtm1wcnICAPj4+GDy5MnYvXs33nvvPa1rPX78OORyucalzoYkJibi0KFDmDx5Mrp3795k3wkTJmDo0KGq5dzcXHz44Yda10VERER/foILaampqYiIiNCqb0xMDHr06KFadnNzU/0cGBiIWbNmISoqCqtWrQIA1ROV/fr1UwU0AHBycoKHhwfS0tKaVWtiYiKsrKzg6+vbZL/U1FSsXr0agwcPxuzZs/9wv/b29rC3t29WLURERNSxCC6kOTs7Y+nSpVr1ffRpyscZGxtj6NCh2LVrF6qrqyEWi1X9bW1tNfpLJBJkZmZqXWdBQQEuX76M8ePHw8io8Wm8fv06li5dil69euGDDz5osi8RERFRPcElBjs7OwQFBbXKvqqrq6FUKiGTySAWi+Hq6gojIyMUFhZq9C0qKvrDG/oflZSUBKVS2eSlzlu3biEyMhISiQSffPKJVvetEREREQEd5BUc9+/f12grKyvDiRMn4OjoCIlEAgAwMzODr68v0tPT1Z6YzMnJQXp6OgYOHKhqq6qqQm5uLkpKShocMykpCU5OTujfv3+D64uLi7Fo0SIYGBhg7dq1zQqARERERII7k6aLxYsXw8HBAVKpFBKJBAUFBTh8+DCKi4uxcuVKtb5z5szBhQsXsHDhQrz00ksAgP3798PS0lLtdR0ZGRmIiIhAWFgYZs6cqbaPGzduICsrC6+//rragwuP13T79m1MnjwZv/76K3799VfVOolEgkGDBrXS0RMREVFH1CFC2rhx43D06FHExcWhvLwclpaWkEqlWL58OTw9PdX6uri4YMOGDdi8eTNiYmIgEong4+ODuXPnwsHBQavxEhMTAQCjR49utM/169cBAP/5z3801nl5eTGkERERUZNESqVS2d5FUNOuXr2K2bNnY+vWrXB3d2/vcoiIiOgJ6BD3pBERERF1NAxpRERERAKk1T1prfGJIi8vL3h5ebV4P0RERET6QKuQ9tVXX0EkEkHX29dEIhHCwsIY0oiIiIi0pPXTnWPHjsXYsWObPYBSqcTChQubvR0RERGRPtM6pHXu3JlnwoiIiIieEK0eHHjttdfg4eGh8yAt3Z6IiIhI32h1Ji08PLxFg7R0eyIiIiJ9w1dwEBEREQkQQxoRERGRAOn07c6QkJA/7GNgYAAzMzM4OzvD398fI0eO1GUoIiIiIr2kU0hTKpWora1FUVERAMDQ0BDW1tYoLS1FbW0tAMDe3h7379/H9evXcezYMRw8eBCrV6+GsbFx61VPRERE1EHpFNK2b9+ORYsWwdnZGbNmzYJUKlW97Pa3337D9u3bUV5ejujoaJSWlmLjxo04e/Ys9uzZgylTprT2MRARERF1ODrdk7Zp0yY8fPgQn376KZ555hmIRCIAdV8WeOaZZ7BmzRo8fPgQmzdvRrdu3fD+++/DyckJP/74Y6sWT0RERNRR6RTSTp06BV9fXxgYNLy5oaEhfH19cfLkSQCAWCyGj48Pbt26pXulRERERHpEp5BWUVEBmUz2h30qKipUy9bW1roMRURERKSXdAppLi4uSEpKwu3btxtcf/v2bfz4449wcXFRtd29exc2Nja6DEdERESkd3R6cGDKlClYvnw5Zs6cieDgYPTr1w8SiQT3799HWloaDh06hMrKStVDAnK5HOfPn8egQYNatXgiIiKijkqkVCqVumx46NAh/N///R8qKytVDw4Ada/n6NSpE/76178iODgYAFBWVoaUlBT07NkT3bp1a53K9cjVq1cxe/ZsbN26Fe7u7u1dDhERET0BOp1JA4C//OUvCAgIwMmTJ3H9+nXIZDKYmZmhd+/e8PPzg4WFhaqvpaUl/P39W6VgIiIiIn2gc0gDAAsLC4wdO7a1aiEiIiKi/69FIQ0AZDIZbt68iaqqKnh6erZGTURERER6T+eQdufOHWzYsAFnz56FUqmESCTCsWPHAAC//vorPvnkE7z99tvw9vZutWKJiIiI9IVOr+AoKCjA3LlzcfbsWfj5+eGZZ57Bo88f9O3bF6WlpUhKSmq1QomIiIj0iU4hbceOHSgrK8OGDRuwatUqDBw4UG29kZER+vfvj7S0tFYpkoiIiEjf6BTSkpOT4e/vDw8Pj0b7dO7cGYWFhToXRkRERKTPdAppZWVl6Ny5c5N9lEol5HK5TkURERER6TudQppEIkFeXl6TfW7cuAEnJyediiIiIiLSdzqFtIEDB+LMmTPIyspqcH1qaiouXrwIX1/fFhVHREREpK90egXHtGnTcOLECcyfPx+hoaG4desWAODs2bNIS0tDXFwcrK2tERoa2qrFEhEREekLnUJaly5dsHbtWqxcuRLbt2+HSCSCUqnEO++8A6VSCScnJ3zwwQewt7dv7XqJiIiI9ILOL7OVSqXYvXs3Tp8+jd9++w1lZWUwMzODVCqFn58fjI2NW7NOIiIiIr3Sos9CGRkZYdiwYRg2bFhr1UNERERE0PHBASIiIiJqW1qdSYuOjtZp5yKRCNOnT9dpWyIiIiJ9plVI++qrrzTaRCKR6udHv9tZ317/0XWGNCIiIqLm0yqkrV+/XqMtNjYWv/zyCwIDA9G/f3/Y2tri3r17SE1NRWJiIgYNGoSQkJBWL5iIiIhIH2gV0ry8vNSWDx48iJSUFGzduhU9e/ZUWzd27Fi8/PLLeOutt+Dn56exLRERERH9MZ0eHNi7dy9GjRqlEdDqubq6YtSoUYiLi2tRcURERET6SqeQduvWLVhZWTXZx8rKCrdv39apKCIiIiJ9p1NIs7Gxwblz59QeGHiUQqHAuXPnYG1t3aLiiIiIiPSVTiFt9OjRyMrKwjvvvIPr16+rrcvMzMQ777yD7OxsjBkzplWKJCIiItI3On1xYMaMGbh27RrOnj2Lc+fOwdTUFDY2NigpKUFVVRWUSiUGDBiAsLCwVi6XiIiISD/oFNLEYjE+/fRTxMfHIz4+Hjdu3EBBQQEsLCzQp08fPP/88xg7dqzau9SIiIiISHs6f7tTJBIhKCgIQUFBrVkPEREREYHf7iQiIiISJK1Cmlwuh0Kh0HmQlm5PREREpG+0CmljxoxBTEyMzoO0dHsiIiIifaNVSFMqlY2+E+1JbE9ERESkb7R+cODIkSO4dOmSToPwKU8iIiKi5tE6pOXn5yM/P78tayEiIiKi/0+rkHbixIm2rqNFUlJSEBsbi8zMTJSWlsLCwgK9e/fG9OnT4eHhodFfLpcjNjYWCQkJyM/Ph7m5Odzd3REZGQlHR8dGxzly5AiioqIaXb9s2TIEBgY2uO7tt9/GL7/8gkmTJuFvf/tb8w+SiIiI9IrO70kTkry8PBgYGGDixImwtbVFWVkZEhMTMX/+fKxevRpDhgxR9a2pqcGSJUuQlpaG4OBguLq6oqysDBkZGaioqGhyHE9PTyxbtkyjPS4uDllZWRgwYECD2504cQLp6ektO0giIiLSKx0ipAUHByM4OFitbdKkSQgNDcXevXvVQlpcXBxSUlKwceNGSKXSZo3TtWtXdO3aVa2turoa69atg7e3N+zs7DS2qa6uxhdffIHXXnsN27dvb9Z4REREpL867MtsTU1NYW1tjfLyclWbQqHAvn374O/vD6lUipqaGlRVVbVonFOnTkEmkzX6Mfn//Oc/UCqVCA0NbdE4REREpF86xJm0ehUVFZDL5SgtLUVCQgKys7MxdepU1fqcnBwUFRXB1dUVa9asQXx8PORyOXr16oUFCxbAx8en2WMmJiZCLBYjICBAY11BQQF27dqFd955B2KxWOt9FhUVobi4WLWcm5vb7LqIiIjoz61DhbQVK1YgOTkZAGBsbIwJEyZg2rRpqvV5eXkAgL1798LS0hKRkZEAgJiYGCxevBhbtmyBq6ur1uM9ePAAycnJ8PPzg5mZmcb6L774Am5ubhg1alSzjuPAgQOIjo5u1jZERETUsQgupCkUCsjlcq36mpiYqL2DLTw8HCEhIbh79y7i4+NRU1OD2tpa1frKykoAgEwmw7Zt2+Dk5AQA8PHxweTJk7F792689957Wtd6/PhxyOXyBi91Xrx4ESdOnMCmTZu03l+9CRMmYOjQoarl3NxcfPjhh83eDxEREf15CS6kpaamIiIiQqu+MTEx6NGjh2rZzc1N9XNgYCBmzZqFqKgorFq1CgBUlxz79eunCmgA4OTkBA8PD6SlpTWr1sTERFhZWcHX11etvaamBuvXr0dgYCD69u3brH0CgL29Pezt7Zu9HREREXUcrRLSHjx4gMrKSrXgoytnZ2csXbpUq74NPU1Zz9jYGEOHDsWuXbtQXV0NsVis6m9ra6vRXyKRIDMzU+s6CwoKcPnyZYwfPx5GRurTmJCQgJs3byIyMhJ37txRWyeTyXDnzh1IJBKYmppqPR4RERHpF51DWnl5ObZv346jR4+itLQUIpEIx44dAwD89ttv+OqrrzBr1iy4u7s3a792dnYICgrStSw11dXVUCqVkMlkEIvFcHV1hZGREQoLCzX6FhUVwcbGRut9JyUlQalUNnips6CgADU1NZg3b57GuoSEBCQkJOCjjz6Cv79/s46HiIiI9IdOIe3Bgwd46623cPPmTTz99NOwsbFRewLR1dUVaWlpSExMbHZI08X9+/chkUjU2srKynDixAk4Ojqq1pmZmcHX1xdnzpxBbm6u6lJpTk4O0tPTMX78eNX2VVVVKCgogLW1dYPhLSkpCU5OTujfv7/GulGjRqldeq33j3/8A76+vhg/frxOl0GJiIhIf+gU0r766ivcvHkTK1aswMiRI/HVV1/h66+/Vq0Xi8Xw9PTExYsXW63QpixevBgODg6QSqWQSCQoKCjA4cOHUVxcjJUrV6r1nTNnDi5cuICFCxfipZdeAgDs378flpaWaq/ryMjIQEREBMLCwjBz5ky1fdy4cQNZWVl4/fXXG/x4fI8ePdTulXtUly5deAaNiIiI/pBOIe3UqVN49tlnMXLkyEb7dOnS5Yl9CmncuHE4evQo4uLiUF5eDktLS0ilUixfvhyenp5qfV1cXLBhwwZs3rwZMTExEIlE8PHxwdy5c+Hg4KDVeImJiQCA0aNHt/qxEJF+UCiUyL9yD5Ul1ehkI0bnPrYwMND8Rx8R6S+dQlpxcXGTAQ2ou3G//pUXbe3FF1/Eiy++qHV/d3d3rFu3rsk+3t7e+OmnnxpcFx4ejvDw8GbVCKDR/RGRfslOzsfZnRmouPe/L56Y25rCd1pf9BzcuR0rIyIh0emzUFZWVrh7926TfX7//fcmn74kItJH2cn5+PHzS2oBDQAq7lXhx88vITs5v50qIyKh0SmkeXp64tSpU40GtZycHJw7dw4DBw5sUXFERB2JQqHE2Z0ZTfY5G5MBhUL5hCoiIiHTKaRNnToVtbW1mDdvHn744QeUlpYCqAtnBw8exMKFC2FiYsKPihMRPSL/yj2NM2iPqyiuQv6Ve0+oIiISMp3uSXN1dcXKlSvx0Ucf4eOPPwYAKJVKhIWFQalUwszMDCtXrkT37t1btVgioj+zypLqVu1HRB2bzi+z9fPzw549exAfH4/ffvsNDx48gLm5OaRSKYKCgpr1YlgiIn3QyUbcqv2IqGNr0WehrKys8Oqrr7ZWLUREHVrnPrYwtzVt8pKnuZ0pOvfR/HQdEekfne5JIyKi5jMwEMF3WtNfG/Gd2pfvSyMiAFqeSYuPj9d5gLFjx+q8LRFRR9NzcGeMWuit+Z40O1P4TuV70ojof7QKaVFRUWqfP1IqlQ1+DulR9X0Y0oiI1PUc3Bk9BjrxiwNE1CStQto777yj0XbixAmcOXMGAwYMQP/+/SGRSHD//n2kpqbi4sWLePbZZxEQENDqBRMRdQQGBiJ0lfKF30TUOK1CWlBQkNryzz//jF9++QVr167FoEGDNPonJyfj3XffRXBwcOtUSURERKRndHpwICYmBiNGjGgwoAHA4MGDMXz4cOzcubNFxRERERHpK51CWk5ODhwdHZvs4+joiJycHF12T0RERKT3dAppZmZmSE1NbbJPamoqzMzMdCqKiIiISN/pFNL8/PyQlpaGTz/9FPfv31dbd//+faxduxbp6enw9/dvlSKJiIiI9I1OXxwIDw9HWloaDhw4gCNHjuCpp55SPd1569YtyOVy9OzZE3PmzGnteomIiIj0gk4hzdLSEps3b8auXbvwww8/ICcnR3X/WZcuXRAYGIjXXnsNpqamrVkrERERkd7Q+dudYrEYM2fOxMyZMyGTyVBRUQFzc3Peh0ZERETUClr0gfV6ZmZmDGdERERErYgfWCciIiISIJ3OpAUEBPzhtzsBQCQS4dixY7oMQURERKTXdAppnp6eDYa08vJy5OXloaqqCr1794aFhUWLCyQiIiLSRzqFtA0bNjS6rqqqCps3b8a5c+fw6aef6lwYERERkT5r9XvSTE1NERERAQsLC3z55ZetvXsiIiIivdBmDw70798fZ86caavdExEREXVobRbSSkpKUFlZ2Va7JyIiIurQWj2kKRQKJCQk4OjRo+jdu3dr756IiIhIL+j04EBISEiD7bW1tSgpKUFNTQ2MjIwQHh7eouKIiIiI9JVOIU2pVDa8MyMj9OzZE3369MGLL76Inj17tqg4IiIiIn2lU0iLi4tr7TqIiIiI6BH8LBQRERGRAOkU0oYPH46vv/66yT47d+7EiBEjdCqKiIiISN/pFNKUSmWj96U93o+IiIiImq9N35MmFovbavdEREREHZrWDw7Ex8erLWdmZmq0AXXvSbt79y4SEhL4dCcRERGRjrQOaVFRURCJRAAAkUiEU6dO4dSpUxr96i9xisVizJgxo5XKJCIiItIvWoe0d955R/XzP//5T/j5+cHPz0+jn6GhISwtLdGvXz9YWlq2TpVEREREekbrkBYUFKT6OSUlBf7+/g2GNCIiIiJqOZ1eZrt06dLWroOIiIiIHsGX2RIREREJkFZn0gICAmBgYICdO3eie/fuCAgIUD1E0BSRSIRjx461uEgiIiIifaNVSPP09IRIJFK996x+mYiIiIjahlYhbcOGDU0uExEREVHr4j1pRERERAKkU0gLCQnBvn37muzzzTffICQkRKeiiIiIiPSdTiEtPz8f5eXlTfYpLy9HQUGBTkURERER6bs2u9xZUVEBY2Pjtto9ERERUYem9ctsU1JS1Jbz8/M12oD/fWA9MTER3bt3b2l9RERERHpJ65AWERGh9oH1+Ph4xMfHN9hXqVRCJBIhPDy8daokIiIi0jNah7Tp06dDJBJBqVTi66+/hpeXF7y8vDT6GRgYwMrKCt7e3nBxcWnFUomIiIj0h9YhbebMmaqfU1NTERQUhLFjx7ZJUURERET6TqcPrK9fv76162iRlJQUxMbGIjMzE6WlpbCwsEDv3r0xffp0eHh4aPSXy+WIjY1FQkIC8vPzYW5uDnd3d0RGRsLR0bHRcY4cOYKoqKhG1y9btgyBgYFqbT/++CP27duHrKwsGBkZoUePHpg1axYGDBig+wETERFRh6dTSBOavLw8GBgYYOLEibC1tUVZWRkSExMxf/58rF69GkOGDFH1rampwZIlS5CWlobg4GC4urqirKwMGRkZqKioaHIcT09PLFu2TKM9Li4OWVlZGsFrx44d+PrrrzF8+HCMHTsWNTU1yM7ORlFRUescOBEREXVYOoe0goIC7Ny5ExcuXEBRURFqamo0+jypD6wHBwcjODhYrW3SpEkIDQ3F3r171UJaXFwcUlJSsHHjRkil0maN07VrV3Tt2lWtrbq6GuvWrYO3tzfs7OxU7enp6fj6668xb948vPrqqzocFREREekznULa7du3ER4ejvLycri4uEAul8PJyQkmJia4c+cOampq0Lt3b1hYWLR2vVozNTWFtbW12kt3FQoF9u3bB39/f0ilUtTU1KCmpgampqY6j3Pq1CnIZDKMGTNGrX3v3r2wtbXFyy+/DKVSicrKSpiZmek8DhEREekXnULaV199hYqKCnz22Wfw8vJCQEAAxo0bh7CwMBQVFWHdunXIycnBunXrWrveJlVUVEAul6O0tBQJCQnIzs7G1KlTVetzcnJQVFQEV1dXrFmzBvHx8ZDL5ejVqxcWLFgAHx+fZo+ZmJgIsViMgIAAtfYLFy6gX79+2LdvH2JiYlBaWgpbW1tMnToVL730UpP7LCoqQnFxsWo5Nze32XURERHRn5tOIe3ChQvw9fVVewWHUqkEANjb22PlypUICwvDli1bsHjx4lYpVBsrVqxAcnIyAMDY2BgTJkzAtGnTVOvz8vIA1J3lsrS0RGRkJAAgJiYGixcvxpYtW+Dq6qr1eA8ePEBycjL8/PzUzpKVlZWhtLQUaWlpuHjxIsLCwuDk5IQjR45g/fr1MDIywsSJExvd74EDBxAdHd2cQyciIqIORqeQVlpaCmdnZ9WyoaEhqqqqVMsmJiYYOHAgTp482ex9KxQKyOVyrfqamJioXrALAOHh4QgJCcHdu3cRHx+Pmpoa1NbWqtZXVlYCAGQyGbZt2wYnJycAgI+PDyZPnozdu3fjvffe07rW48ePQy6Xa1zqlMlkAOrmacWKFRg1ahQAYPjw4QgLC8POnTubDGkTJkzA0KFDVcu5ubn48MMPta6LiIiI/vx0CmnW1tZqocza2hr5+flqfQwNDf/wI+wNSU1NRUREhFZ9Y2Ji0KNHD9Wym5ub6ufAwEDMmjULUVFRWLVqFQBALBYDAPr166cKaADg5OQEDw8PpKWlNavWxMREWFlZwdfXV629fhwjIyMMHz5c1W5gYICRI0dix44dKCgoUKvhUfb29rC3t29WLURERNSx6BTSunXrhlu3bqmW+/bti/Pnz+P27dvo2rUrSkpKcOLECY0nIbXh7OyMpUuXatX30acpH2dsbIyhQ4di165dqK6uhlgsVvW3tbXV6C+RSJCZmal1nQUFBbh8+TLGjx8PIyP1abSysoKJiQksLCxgaGioMQ5Qd0m0sZBGREREpFNIGzJkCL766iuUlZXB0tISr7zyCk6fPo0ZM2agR48eyMvLg0wmw4wZM5q9bzs7OwQFBelSlobq6moolUrIZDKIxWK4urrCyMgIhYWFGn2LiopgY2Oj9b6TkpKgVCo1LnUCdWfM3NzccOXKFcjlchgbG6uNA6BZYxEREZH+MdBloxdeeAEbNmxQnSXy9vbGihUr4OTkhBs3bsDW1hYLFizA+PHjW7XYxty/f1+jraysDCdOnICjo6Pq7JWZmRl8fX2Rnp6u9sRkTk4O0tPTMXDgQFVbVVUVcnNzUVJS0uCYSUlJcHJyQv/+/RtcP2LECNTW1qp9hL66uhqJiYlwcXHh5UwiIiJqkk5n0szNzTVeBDtixAiMGDGiVYpqrsWLF8PBwQFSqRQSiQQFBQU4fPgwiouLsXLlSrW+c+bMwYULF7Bw4ULVqzD2798PS0tLtdd1ZGRkICIiAmFhYWrfLQWAGzduICsrC6+//rragwuPmjhxIg4dOoTPPvsMN2/ehJOTExISElBQUNDkp6WIiIiIgDb8LNSuXbuQnJz8RL7zOW7cOBw9ehRxcXEoLy+HpaUlpFIpli9fDk9PT7W+Li4u2LBhAzZv3oyYmBiIRCL4+Phg7ty5cHBw0Gq8xMREAMDo0aMb7SMWi/H555/jyy+/xOHDh1FVVYXevXtj9erVGDx4sO4HS0RERHpBpKx/wVkri4qKQkJCAo4fP94Wu9crV69exezZs7F161a4u7u3dzlERET0BOh0TxoRERERtS2GNCIiIiIBYkgjIiIiEiCGNCIiIiIBYkgjIiIiEiCtX8GxePHiZu34xo0bzS6GiIiIiOpoHdKSk5ObvfPGXvRKRERERE3TOqTt2bOnLesgIiIiokdoHdI6d+7clnUQERER0SP44AARERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRADGkEREREQkQQxoRERGRABm1dwGtISUlBbGxscjMzERpaSksLCzQu3dvTJ8+HR4eHhr95XI5YmNjkZCQgPz8fJibm8Pd3R2RkZFwdHRsdJwjR44gKiqq0fXLli1DYGCgavmXX35BTEwMbty4gdraWnTr1g0vvfQSnn/++ZYdMBEREXV4HSKk5eXlwcDAABMnToStrS3KysqQmJiI+fPnY/Xq1RgyZIiqb01NDZYsWYK0tDQEBwfD1dUVZWVlyMjIQEVFRZPjeHp6YtmyZRrtcXFxyMrKwoABA1RtJ0+exD/+8Q8888wzCAsLg0gkwrFjx/DRRx+htLQUr776autNABEREXU4HSKkBQcHIzg4WK1t0qRJCA0Nxd69e9VCWlxcHFJSUrBx40ZIpdJmjdO1a1d07dpVra26uhrr1q2Dt7c37OzsVO3ffPMN7Ozs8Pnnn8PExAQAMGHCBEydOhVHjhxhSCMiIqImdYiQ1hBTU1NYW1ujvLxc1aZQKLBv3z74+/tDKpWipqYGNTU1MDU11XmcU6dOQSaTYcyYMWrtMpkMlpaWqoAGAEZGRrC2ttZ5LCIiItIfHSqkVVRUQC6Xo7S0FAkJCcjOzsbUqVNV63NyclBUVARXV1esWbMG8fHxkMvl6NWrFxYsWAAfH59mj5mYmAixWIyAgAC1di8vL+zevRvbtm3D2LFjIRKJkJSUhKtXr2LlypVN7rOoqAjFxcWq5dzc3GbXRURERH9uHSqkrVixAsnJyQAAY2NjTJgwAdOmTVOtz8vLAwDs3bsXlpaWiIyMBADExMRg8eLF2LJlC1xdXbUe78GDB0hOToafnx/MzMzU1k2fPh137txBTEwMdu7cCaDu7N4HH3wAf3//Jvd74MABREdHa10HERERdTyCC2kKhQJyuVyrviYmJhCJRKrl8PBwhISE4O7du4iPj0dNTQ1qa2tV6ysrKwHUXYrctm0bnJycAAA+Pj6YPHkydu/ejffee0/rWo8fPw65XK5xqROoC4ndu3fH8OHDMWzYMNTW1uL777/Hhx9+iHXr1uGZZ55pdL8TJkzA0KFDVcu5ubn48MMPta6LiIiI/vwEF9JSU1MRERGhVd+YmBj06NFDtezm5qb6OTAwELNmzUJUVBRWrVoFABCLxQCAfv36qQIaADg5OcHDwwNpaWnNqjUxMRFWVlbw9fXVWPf555/jt99+w7Zt22BgUPc6upEjR2LatGnYsGEDNm/e3Oh+7e3tYW9v36xaiIiIqGMRXEhzdnbG0qVLter76NOUjzM2NsbQoUOxa9cuVFdXQywWq/rb2tpq9JdIJMjMzNS6zoKCAly+fBnjx4+HkZH6NMrlchw6dAivvfaaKqABdQ8ODBkyBN9++y3kcjmMjY21Ho+IiIj0i+BCmp2dHYKCglplX9XV1VAqlZDJZBCLxXB1dYWRkREKCws1+hYVFcHGxkbrfSclJUGpVDZ4qbO0tBS1tbVql1rr1dbWQqFQQKFQNOtYiIiISL90iM9C3b9/X6OtrKwMJ06cgKOjIyQSCQDAzMwMvr6+SE9PV3tiMicnB+np6Rg4cKCqraqqCrm5uSgpKWlwzKSkJDg5OaF///4a6yQSCSwsLPDzzz+r3V8nk8lw6tQpODs7qy69EhERETVEcGfSdLF48WI4ODhAKpVCIpGgoKAAhw8fRnFxscbrLubMmYMLFy5g4cKFeOmllwAA+/fvh6WlpdrrOjIyMhAREYGwsDDMnDlTbR83btxAVlYWXn/9dbUHF+oZGhoiNDQU27Ztw5tvvonnn38eCoUChw4dQmFhYYNfLSAiIiJ6VIcIaePGjcPRo0cRFxeH8vJyWFpaQiqVYvny5fD09FTr6+LiorpxPyYmBiKRCD4+Ppg7dy4cHBy0Gi8xMREAMHr06Eb7TJs2DV26dMG+ffsQHR0NuVwOV1dXfPDBBxg+fLjOx0pERET6QaRUKpXtXQQ17erVq5g9eza2bt0Kd3f39i6HiIiInoAOcU8aERERUUfDkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERALEkEZEREQkQAxpRERERAJk1N4FEBEREbUHhUKJ/Cv3UFlSjU42YnTuYwsDA1F7l6XCkEZERER6Jzs5H2d3ZqDiXpWqzdzWFL7T+qLn4M7tWNn/8HInERER6ZXs5Hz8+PkltYAGABX3qvDj55eQnZzfTpWpY0gjIiIivaFQKHF2Z0aTfc7GZEChUD6hihrHkEZERER6I//KPY0zaI+rKK5C/pV7T6iixjGkERERkd6oLKlu1X5tiSGNiIiI9EYnG3Gr9mtLDGlERESkNzr3sYW5rWmTfcztTNG5j+0TqqhxDGlERESkNwwMRPCd1rfJPr5T+wrifWkMaURERKRXeg7ujFELvTXOqJnbmWLUQm/BvCeNL7MlIiIivdNzcGf0GOjELw4QERERCY2BgQhdpXbtXUajeLmTiIiISIAY0oiIiIgEqENc7kxJSUFsbCwyMzNRWloKCwsL9O7dG9OnT4eHh4dGf7lcjtjYWCQkJCA/Px/m5uZwd3dHZGQkHB0dmxyrvLwcMTEx+Omnn1BYWAiJRIIBAwZgxowZcHJyUutbWFiIjRs34vz581AoFPD29sb8+fPRtWvXVj1+IiIi6ng6REjLy8uDgYEBJk6cCFtbW5SVlSExMRHz58/H6tWrMWTIEFXfmpoaLFmyBGlpaQgODoarqyvKysqQkZGBioqKJsdRKBR4++23kZubixdeeAHdu3dHXl4evvvuO5w/fx4xMTEwMzMDAMhkMkRERKCiogJTpkyBkZER4uLiMH/+fOzYsQPW1tZtOidERET059YhQlpwcDCCg4PV2iZNmoTQ0FDs3btXLaTFxcUhJSUFGzduhFQqbdY46enpuHLlChYuXIgXX3xR1e7s7Ix//vOf+OWXXzBs2DAAwHfffYe8vDxs3rwZffvWvY9lyJAhCAsLw549ezBnzhxdD5eIiIj0QIe9J83U1BTW1tYoLy9XtSkUCuzbtw/+/v6QSqWoqalBVVXTH1l9lEwmAwDY2qq/hdjOru7JELH4f5+QOH78OPr06aMKaADQo0cP+Pj44NixYzodExEREemPDnEmrV5FRQXkcjlKS0uRkJCA7OxsTJ06VbU+JycHRUVFcHV1xZo1axAfHw+5XI5evXphwYIF8PHxaXL/7u7u6NSpE7Zt2wZLS0s4Ozvj1q1b+PLLL9GnTx8MGDAAQF0YvHHjBsaNG6exj759++L8+fOQyWSqS6OPKyoqQnFxsWo5NzdXl+kgIiKiP7EOFdJWrFiB5ORkAICxsTEmTJiAadOmqdbn5eUBAPbu3QtLS0tERkYCAGJiYrB48WJs2bIFrq6uje7fxsYGK1euxCeffIK//e1vqvbBgwfjgw8+gJFR3XQ+ePAADx8+VJ1he1R9W1FREZydnRsc58CBA4iOjm7GkRMREVFHI7iQplAoIJfLteprYmICkeh/bwYODw9HSEgI7t69i/j4eNTU1KC2tla1vrKyEkDdZctt27apnsb08fHB5MmTsXv3brz33ntNjmltbQ03Nze8+OKLcHFxwfXr1/Gf//wH//znP/HBBx8AAKqrqwHUBcWGan60T0MmTJiAoUOHqpZzc3Px4YcfNlkXERERdSyCC2mpqamIiIjQqm9MTAx69OihWnZzc1P9HBgYiFmzZiEqKgqrVq0C8L97xvr166f2ugwnJyd4eHggLS2tyfFu376NhQsX4t1338Xw4cMBAP7+/ujcuTOioqJw9uxZ+Pr6qsZpKGw+fPhQrZaG2Nvbw97eXrVcH+h42ZOIiOjPp0ePHjA1Nf3jjo8RXEhzdnbG0qVLterb0OXEesbGxhg6dCh27dqF6upqiMViVf/Hb/wHAIlEgszMzCbHO3LkCB4+fIjnnntOrd3Pzw8A8Ouvv8LX1xdWVlYwMTFRu6+sXn3boyHsj+Tn5wMAz6YRERH9CW3duhXu7u7N3k5wIc3Ozg5BQUGtsq/q6moolUrIZDKIxWK4urrCyMgIhYWFGn2LiopgY2PT5P7u3bsHpVIJhUKh1l5TUwMAqkurBgYG6NWrF65cuaKxj99++w1du3Zt9KGBhgwePBjLli1Dly5dVJdLtVV/qXTZsmVqZx31EeeiDuehDuehDuehDuehDuehTmvPg677EFxI08X9+/chkUjU2srKynDixAk4Ojqq1pmZmcHX1xdnzpxBbm6uatJycnKQnp6O8ePHq7avqqpCQUEBrK2tVeGte/fuUCqVOHbsmFqQTEpKAqB+uTUgIACbN2/GlStX0KdPHwDA77//jkuXLiEkJKRZx2djY4PAwMBmbfO4Hj166JTiOyLORR3OQx3OQx3OQx3OQx3OQ532nocOEdIWL14MBwcHSKVSSCQSFBQU4PDhwyguLsbKlSvV+s6ZMwcXLlzAwoUL8dJLLwEA9u/fD0tLS7XXdWRkZCAiIgJhYWGYOXMmACAoKAixsbFYu3Ytrl27hp49e+LatWs4dOgQevbsqXqRLVD3Mt2DBw9iyZIlCA0NhaGhIeLi4iCRSBAaGtr2k0JERER/ah0ipI0bNw5Hjx5FXFwcysvLYWlpCalUiuXLl8PT01Otr4uLCzZs2IDNmzcjJiYGIpEIPj4+mDt3LhwcHJocx9raGlu3bsX27dtx+vRpHDhwAFZWVhg3bhxmz56t9jSnmZkZ1q9fj40bN2Lnzp2qb3f+9a9//cPLqkREREQipVKpbO8iqO0UFRXhwIEDmDBhQrMeVuiIOBd1OA91OA91OA91OA91OA91hDIPDGlEREREAtRhv91JRERE9GfGkEZEREQkQAxpRERERALEkEZEREQkQB3iFRwdxaVLlxr9bumXX36JZ555BgCQnJyMo0ePIiMjA7m5uXB0dERcXFyzxjp58iS++uor5ObmwsbGBuPGjcO0adNgZKT+K1FWVoZNmzbhp59+QnV1Nfr27Yu33nqrTV/uJ7R5KCoqwr59+5CRkYErV66gsrIS69evh7e3t+4HqQWhzcOFCxeQmJiIy5cvo7CwELa2tvDx8cEbb7zRpk8/CW0eUlJSEBsbi8zMTJSWlsLCwgK9e/fG9OnT4eHhofuB/gGhzcPjPvnkExw8eBDPPvssVq9e3azxmkNo83DkyBFERUU1uP23337b5OcLW0Jo81Dvl19+QUxMDK5duwaFQoHu3btj8uTJGDVqVPMPUgtCm4cFCxYgJSWlwe0NDQ1x7NixZo3JkCZAL730Evr27avW9tRTT6l+TkpKwtGjR/H000/r9AfA2bNn8Y9//ANeXl6IiIjAjRs3sHPnTty/fx+LFi1S9VMoFFiyZAmysrIQGhoKa2trfPfdd4iIiMDWrVvRvXt33Q9SC0KZh5s3b2L37t3o1q0bevXqhfT0dN0PSgdCmYdNmzbhwYMHGD58OLp3747bt2/jm2++wZkzZ7B9+/Y2+8uonlDmIS8vDwYGBpg4cSJsbW1RVlaGxMREzJ8/H6tXr8aQIUN0P0gtCGUeHnXlyhUcOXKk2Z+tawmhzcMbb7yBLl26qLVZWFg0e9zmEtI8HD58GKtXr8bAgQMxe/ZsGBoa4vfff8fdu3d1O7hmEMo8TJ06FcHBwWrbVlZW4tNPP8WgQYOaPS6UJBgXL15U+vv7K48dO9Zkv8LCQqVcLlcqlUrl3//+d+Urr7zSrHGmTp2qnDFjhmofSqVSuWXLFuWwYcOUOTk5qrYff/xRo5779+8rg4KClO+//36zxmwOoc1DRUWFsrS0VKlUKpXHjh1T+vv7Ky9evNissXQhtHm4dOmSsra2Vm3bS5cuKf39/ZVbtmxp1pjNIbR5aEhlZaVy4sSJykWLFjVrzOYQ6jwoFArlm2++qYyKilK+8soryr///e/NGq+5hDYPhw8fVvr7+yszMjKatf+WEto83L59Wzl69Gjl559/3qz9t5TQ5qEhCQkJSn9/f+UPP/zQrDGVSqWS96QJlEwmU324/XH29vZNXnZoSk5ODnJycjB+/Hi1fUyaNAlKpRLHjx9XtZ04cQK2trZqn7uysbHBiBEjcPLkSTx8+FCnGppDCPNgZmYGKysrncZpLUKYBy8vLxgYqP+R4eXlBSsrK+Tm5uo0fnMJYR4aYmpqCmtra5SXl+s0fnMJaR4SEhKQnZ2N2bNn6zRmSwhpHurrqa2t1WnMlhDCPPz3v/+FQqHAG2+8oapJ+YRfwyqEeWhIYmIiOnXqBD8/v2aPzcudAhQVFYXKykoYGhqif//+mDt3ruoj7S117do1ANC4p8ze3h4ODg7IzMxU6+vm5qbxF3Pfvn3x/fff4+bNm3B1dW2VuhoilHlob0KeB5lMhsrKSlhbW7dKPU0R2jxUVFRALpejtLRUFVQe/f5vWxHSPMhkMmzatAlTpkxp88vdjxPSPABAREQEKisrYWxsjEGDBmHevHltfksIIJx5uHDhApydnXH27Fl8+eWXKCwshKWlJSZNmoSZM2dq/D3S2oQyD48rKSnBL7/8gpEjR6JTp07NHpshTUCMjIwQEBAAX19fWFtbIycnB3v27MFf//pX/Otf/8LTTz/d4jGKi4sBoME/UO3s7FTrAeDevXsa3z59dNvi4uI2CWlCm4f28meYh71790Iul2PkyJEtrqUxQp2HFStWIDk5GQBgbGyMCRMmYNq0aS2upTFCnIfo6GiIxWK8+uqrLR5bW0KbB7FYjKCgIHh7e8Pc3BxXr15FXFwc3nrrLWzbtg1OTk4trqchQpuH+ns1//nPf2Ly5MlwdXXFTz/9hJ07d6K2thbh4eEtrqchQpuHx/3444+ora3FmDFjdBqbIU1APDw81J4O8/Pzw/DhwzFjxgxs2bIFa9eubfEY9ZcoG7rB18TEBDKZTLVcXV3daL/69W1BaPPQXoQ+DykpKYiOjsaIESMwYMCAFtfSGKHOQ3h4OEJCQnD37l3Ex8ejpqamTS91CW0ebt68iX379mH58uVP9IEBoc3DyJEj1f6R4u/vj8GDB2P+/PmIiYlBZGRki+tpiNDmobKyEgqFAuHh4Xj99dcBAMOHD0dZWRn27duHqVOnwszMrMU1PU5o8/C4pKQk2NjYYODAgTqNzXvSBK5bt27w8/PDpUuXWuUvgPpfsobuJ3v48CHEYrFqWSwWN9qvfv2T0p7zICRCmYfc3FwsW7YMvXr1wpIlS1pcR3MJYR7c3NwwaNAg/OUvf8G6deuQkZHR6KsY2kp7zsOGDRvQr18/DB8+vMXjtpQQfh8e1b9/f0ilUly4cKHFtTRHe/99AQCjR49W6zdq1ChUV1erLhk+CUL5fbh9+zbS09MxcuRIne+HY0j7E3B0dIRcLkdVVVWL9/XopcrHFRcXq53OtbW1bbTfo/t6UtprHoSmveehoKAAixYtgrm5OVavXt0m/zrWRnvPw6OMjY0xdOhQ1fsEn6T2mIcLFy7g3LlzePnll3Hnzh3Vf7W1taiursadO3dQUVHR4nqaQ0i/D/X1PHjwoMW1NFd7zUP9zxKJRK1f/XJZWVmL62kOIfw+JCYmAoDOlzoBhrQ/hdu3b8PExESnmw4f5+bmBgC4evWqWntRUREKCwtV6+v7ZmZmQqFQqPXNyMiAqanpE7kp9lHtNQ9C057zUFpaikWLFkEul2Pt2rVt+hLbPyK034fq6moolconfqm8Peah/r1Xy5YtQ0hIiOq/wsJCXLx4ESEhITh06FCL62kOof0+3L59GzY2Ni2upbnaax7qb6ovKirS6Avgic+FEH4fkpKS8NRTT6leqKsLhjQBKSkp0Wi7fv06Tp06hUGDBjX76Ziamhrk5uaq/Z+mZ8+ecHZ2xvfff692Gvi7776DSCRCQECAqi0gIAD37t3DTz/9pFbjsWPH8Nxzz7XZfShCm4f2IrR5qKysxN///ncUFRXhk08+eWIhXWjzcP/+fY19lpWV4cSJE3B0dNQ4k9BahDQPPj4++OijjzT+s7GxQZ8+ffDRRx9h6NChuh3oHxDSPDRWz5kzZ3D16lUMHjy4WbU0h9Dmof6+vEfDuUKhwJEjR2BlZdVmX6kR2jzUu3btGnJzczUu/zYXHxwQkBUrVkAsFqNfv36QSCTIycnB999/D1NTU7UnY7KysnDy5EkAwK1bt1BeXo6vv/4aANC7d2/VH46FhYWYOnUqxo4di3fffVe1/VtvvYWlS5di0aJFGDVqFG7cuIFvv/0WwcHBcHFxUfUbPnw49u3bh6ioKOTk5Ki+OKBQKDBz5ky9mQcAqv3m5OQAqHs31OXLlwEA06dP14t5WLVqFTIyMjBu3Djk5uaqvRutU6dO8Pf314t5WLx4MRwcHCCVSiGRSFBQUIDDhw+juLgYK1eubJM5ENo8ODk5NfjU4v/93/9BIpG02e8CIKx5AIC5c+fi6aefhru7O8zNzXHt2jUcPnwYjo6ObfpKFqHNg5+fHwYMGIB///vfKCkpQe/evfHzzz/j8uXLiIyMbLN/1AttHuq1xqVOgCFNUPz9/ZGYmIi4uDhUVFTAxsYGw4YNQ1hYGLp166bqd+3aNWzfvl1t2/rlsWPH/uG/YJ977jl8+OGHiI6Oxvr162FtbY0pU6YgLCxMrZ+hoSE++eQT/Otf/8L+/ftRXV2NPn36YOnSpXB2dm6dg26A0Obh0f3WO3z4sOrntgppQpuH69evA6g79kePHwA6d+7cZn8xC20exo0bh6NHjyIuLg7l5eWwtLSEVCrF8uXLG3xlTWsR2jy0F6HNw8iRI3H27FmcP38eVVVVsLOzw/jx4xEWFgZbW9vWOegGCG0eRCIRPvroI2zbtg1Hjx5FfHw8unfvjmXLliEwMLB1DroBQpsHoO4MYv0nqFr6d6VI+aRfCUxEREREf4j3pBEREREJEEMaERERkQAxpBEREREJEEMaERERkQAxpBEREREJEEMaERERkQAxpBEREREJEEMaERERkQAxpBEREREJEEMaEdEjhg0bhgULFrTb+B9//DGGDRuGO3futPq+L126hGHDhqn+e/PNN7XedseOHRg2bBguXbrU6nU15c0331Sr+UmPT9SeGNKIqFXduXMHw4YNQ2RkZHuX0mraMji1By8vL4SFhSE4OLi9S/lDwcHBCAsLg5eXV3uXQvTE8QPrRESPiImJgampaXuX0aa8vLwwc+bM9i5DK/VBcseOHUhJSWnfYoieMIY0IqJH9OjRo71LICICwJBGRO0sPz8f0dHRSE5ORklJCSQSCQYNGoQZM2bAyclJre+CBQuQkpKCo0ePYufOnYiPj0dxcTGcnJzwyiuvYNKkSRr7LykpwdatW/Hzzz+jsrISPXv2xJQpU1BRUYGoqCgsXboUQUFBqv7Dhg2Dl5cXNmzYAAB49dVXkZ+fDwAICQlR9avvc+fOHYSEhGDs2LF49913NcZ/fH/1srOzsWnTJqSkpMDAwAD9+vXD3Llzm5yrn3/+Gfv378e1a9fw8OFDPPXUUxg7dixeffVVGBoa/sFMa6egoACbNm1CcnIyampq8PTTT+ONN95ocpuUlBTExsYiPT0dMpkMjo6OGDlyJKZOnapxVrKmpgaxsbE4ePAgioqK4ODggL/85S8YOXIkQkNDG51HIn3EkEZE7ebmzZuYN28eSkpK8Nxzz6Fnz57Izs7G4cOHcfr0aXzxxRfo3r27xnbvv/8+MjIyMGTIEBgaGuLYsWP47LPPYGRkhPHjx6v6yWQyLFiwADk5OejXrx88PT1RWFiI999/H4MGDdKqxpdffhnx8fG4fv06Xn75ZVhYWAAAunTpovNx37hxA/PmzUNlZSWGDRuGbt26ISMjA/PmzYOrq2uD22zevBm7du2Cg4MDhg0bBgsLC1y+fBlffvklMjIy8MEHH+hcT72ioiK89dZbKCwsxODBg/H0008jNzcXixYtgre3d4PbfPfdd/jss89gYWGB5557DhKJBFevXkVMTAwuXbqE9evXw9jYWNV/9erVSEhIQNeuXfHCCy9ALpcjLi4OaWlpLa6fqKNhSCOidrN27VqUlJQgMjISEyZMULV/++23+Oyzz/Dpp5/i888/19iusLAQX3/9NczNzQHUBanp06djz549aiFt9+7dyMnJwfjx47F48WJVe1BQEP72t79pVeOrr76K69ev4/r163jllVdaFM7qff7556ioqMCyZcsQGBioat+yZQv+/e9/a/Q/f/48du3ahcGDB2PVqlXo1KkTAECpVGLdunX473//i+PHj2P48OEtqmvLli0oLCzErFmzMG3aNFX7gQMHsHbtWo3+OTk5WL9+PVxdXfHZZ5/B2tpate7f//43tmzZgv379yM0NBQAcOHCBSQkJMDNzQ1ffPGF6izb1KlTMWvWrBbVTtQR8elOImoXBQUFuHTpElxcXNSCFQBMnDgRzs7OuHjxIgoKCjS2nTNnjiqgAYCzszM8PDzw+++/QyaTqdp/+OEHGBsba1yuGzBggNZn0lpbQUEBUlJS4OrqqhbQAGDKlCmqM3WP+uabbwAAixcvVgU0ABCJRAgPD4dIJMKPP/7YorrkcjmOHj0KiUSidlkXqLt5v1u3bhrb/Pe//0VtbS0iIiLUAhoAvPbaa7CxsVGr64cffgAATJ8+Xe0yqL29PV5++eUW1U/UEfFMGhG1i8zMTAB193aJRCK1dQYGBvD09MTvv/+O69eva9yb5u7urrE/BwcHAEBZWRnMzMxQUVGB/Px8uLi4wNbWVqO/h4cHzp8/31qHo7Xr16+rxn+cmZkZ3NzcNN4F9ttvv6FTp044dOhQg/sUi8X4/fffW1TX77//jocPH8LHxwdisVhtnYGBATw8PJCXl6dRFwAkJyfjwoULGvs0MjJSq6v+2Pv376/Rt1+/fi2qn6gjYkgjonZRf8ZLIpE0uN7Ozg4AUFFRobHu0bNo9epvnFcoFGrbNbb/xtrbmi51PXjwALW1tYiOjm50v5WVle1SF1D32hJtyGQyGBgYaJx1A9BgkCbSdwxpRNQuzMzMAAD3799vcP29e/cANBzItFG/XWP7b6y9uQwM6u4aqa2t1VhXXl7eKnWZm5tDJBLh+++/b0mpTdK1LgCIj49X/e/ZFDMzMygUCpSWlsLGxkZtXf3/3kT0P7wnjYjahZubGwAgNTUVSqVSbZ1SqURqaioAoHfv3jrt39zcHJ07d8atW7caDBjNeZqwPojVn6V7VP09ZEVFRRrr6i/pPqr+eH799VeNdTKZrMFt+vbti9LSUty8eVPrmpure/fuMDExwdWrV1FdXa22TqFQNDhfUqkUAJCenq7VGE0dO5/uJNLEkEZE7cLJyQne3t7Izs7WuNfqwIEDyM3NhY+Pj8b9aM0xZswYyOVy7NixQ6390qVLSE5O1no/VlZWAIC7d+9qrDM3N4ezszMuX76sds+WTCbDli1bNPo7OTnB09MTWVlZqhvp6/373/9u8Oxb/U31q1evRmlpqcb64uJi5OTkaH08DTExMcGIESNw//597NmzR23dwYMHGwyIL7zwAgwNDbF+/foGH/AoKyvDtWvXVMtjxowBAERHR6sFweLiYuzbt69F9RN1RLzcSURt4saNG/j4448bXOfs7IwpU6Zg0aJFmDdvHtasWYPTp0/DxcUF2dnZOHXqFGxsbLBo0aIW1fD666/jxIkT+O9//4vs7Gz0798fhYWFOHbsGJ577jmcPn1a46GFhvj4+CA2NhZr1qxBQEAATE1N0blzZzz//PMA6l5yu2bNGsydOxcjRoyAQqHAuXPn0KdPnwb397e//Q3z5s3Dxx9/jJMnT6rek3blyhX0798fly9fVus/ZMgQTJ8+HV9//TUmT56MIUOGwMnJCQ8ePMCtW7dw+fJlvPHGG3BxcWnRfIWHh+PixYvYtm0bfv31V7i5uSE3Nxdnz57FoEGDNB606NWrF95++22sW7cOr7/+Onx9ffHUU09BJpPh9u3bSE1NxdixY1XfcR04cCBGjx6NpKQkhIWFwc/PD3K5HMeOHUPfvn1x+vRp1VlLImJII6I2UlRUhPj4+AbXeXl5YcqUKXB2dsbWrVsRHR2Nc+fO4cyZM7CxscG4ceMQFhaGzp07t6gGMzMzbNy4EZs3b8bJkydx5coV9OzZE8uXL8ft27dx+vRpre558/X1xdy5c/H9999jz549qKmpgZeXlyqkjR8/HjU1Ndi7dy8OHjwIOzs7BAUFYdq0aRg5cqTG/nr16oUvvvgCmzZtwrlz55CcnAwPDw988cUXiI2N1QhpAPDGG2/A09MT+/btw4ULF1BeXg4rKyt06dIFYWFhqrNULWFvb49//etf+PLLL5GcnIzU1FQ8/fTT+PTTT3Hx4sUGn4YdP348evfujbi4OKSmpqrmtP4rEGPHjlXr/+6776JHjx44fPgwvvnmGzg4OOCVV16Bj48PTp8+rdW9bUT6QqR8/GYQIiI9sGrVKiQmJmLnzp0tPgP1Z3Hp0iVEREQgLCxMcB9YP3jwID755BO8/fbbeOGFFzTW79ixA9HR0Vi/fn2jXz8g6mh4Jo2IOrSioiLY29urtdV//9PZ2VlvAtqjoqOjER0dDalUik2bNj3RsYuLi2Fra6t2mbmwsBA7d+6EoaEhnn32WbX+b775pup9bET6hiGNiDq0JUuWwMTEBG5ubjA1NUVOTg6Sk5NhYGCAiIiI9i7viercuTPCwsJUy46Ojk+8hl27duHMmTPw9PSEjY0N7t69i9OnT0Mmk2HGjBkaD4oEBwdj8ODBquWWXgIn+jPh5U4i6tDi4uKQlJSEW7duQSaTwcLCAh4eHpgyZYrqFRL05Jw7dw579uxBVlYWysrKYGJiAldXV7zwwgutcl8dUUfCkEZEREQkQHzWmYiIiEiAGNKIiIiIBIghjYiIiEiAGNKIiIiIBIghjYiIiEiAGNKIiIiIBIghjYiIiEiAGNKIiIiIBOj/ASUllaYrpLIiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# you can plot the pointings to see how the zenith changes over the observation - shown in Galactic Coordinates\n", + "plt.plot(grbori._z_direction[:,1], grbori._z_direction[:,0],\"o\")\n", + "plt.xlabel(\"Longitude [deg]\")\n", + "plt.ylabel(\"Latitude [deg]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "6d614d36", + "metadata": {}, + "outputs": [], + "source": [ + "# Simulating a 2 second GRB at l = 51, b = -17 in Galacti coordinates.\n", + "coord = SkyCoord(l = 51*u.deg, b = -17*u.deg,\n", + " frame = 'galactic', attitude = Attitude.identity(frame = 'galactic')) " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "9e603119", + "metadata": {}, + "outputs": [], + "source": [ + "# Initiate a SpacecraftPositionAttitude object with the coordinates of the source\n", + "SCPosition = SpacecraftPositionAttitude.SourceSpacecraft(\"GRB\", coord) " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "c021bb6e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n" + ] + }, + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Latitude [deg]')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj0AAAHACAYAAABJddlbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJCElEQVR4nO3deVxWZf7/8TeLIIuIgaKlIi6RuxVouWMuOBbTombl5BJkDZrpNGX9ZqbNqSm30TS3SjIrcaZpokXUjKy0JE2R1BBTcAuBOxc22bx/f/DlHm9vMLzZbjiv5+PhI891rnPuz7nmzPSec65zjpPZbDYLAACgkXOu7wIAAADqAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYgmt9F1CRlJQUrV69Wj/++KPMZrO6d++uRx99VF26dLHpm5ycrBUrVujQoUPy8vJSWFiYoqKi5OnpWQ+VAwAAR+XkaN/eSklJUXR0tFq1aqWIiAiZzWZ9+OGHysnJ0cqVK9W+fXtL39TUVD366KMKDAxURESEMjMzFRsbqxtvvFHz5s2rx6MAAACOxuGu9Lz55ptyd3fX8uXL1bx5c0nSiBEj9MADD2jVqlWaO3eupe+qVavUrFkzLVmyRF5eXpKkNm3a6NVXX1ViYqL69u1bL8cAAAAcj8PN6dm3b59CQkIsgUeS/P391adPH3377bfKz8+XJOXl5WnXrl0aOXKkJfBI0qhRo+Th4aGEhIQ6rx0AADguh7vSU1xcLDc3N5v2pk2bqri4WEePHlX37t115MgRlZaWKjg42KpfkyZN1KVLF6Wmpla4/+zsbJlMJstyYWGhCgoK1Lt3bzVt2rRmDwYAADgMhws97dq104EDB1RaWioXFxdJZUHowIEDkqSsrCxJsgQXPz8/m334+fkpKSmpwv3HxcUpJibGpn31Dz8oOC+vJg4BAADUhaucluxwoeeuu+7SggUL9Morr+j+++/XxYsXtXbtWkvIKSoqklR2hUYqu7JzOTc3N0u/y0VERGjAgAGW5fT09LJ5Qq1aSZVsAwAAGj6HCz2///3vlZmZqffff1/x8fGSpBtuuEH33Xef3nnnHXl4eEiS3N3dJZVdBbpcUVFRhbfIpLL5Qf7+/rYrNm6ULrtVBgAAGg+HCz2SFBUVpQkTJujo0aPy8vJSp06dtGrVKkllt7+k/93WunR+TjmTyVRxsAEAAIblcE9vlWvWrJl69eqlTp06SZJ27dqlli1bWt7TExQUJBcXF6WkpFhtV1xcrNTUVHXu3LnOawYAAI7LYUPPpbZu3aqffvpJ48aNk7NzWcne3t4KCQnR5s2bLY+xS9KmTZtUUFCgsLCw+ioXAAA4IIe7vbV37169/fbbCg0NlY+Pjw4cOKCNGzeqX79+Gjt2rFXfyMhIRUdHa8aMGVZvZA4NDVW/fv3q6QgAAIAjcrjQ07JlSzk7O+v9999XQUGBWrdurYceekj33nuvXF2tyw0ODtbChQu1YsUKvfbaa/L09NSYMWM0bdq0eqoeAAA4Kof79lZdS0lJUVRUlFavXm3zokMAQAPXoYM0dKhUwfvZKuzbo4f0ySe1WxPqTYOY0wMAQI04cEB67jkpLa2+K0E9cLjbWwAA1JiUFMn5kv9/f+CA9PzzZVd/OnSor6pQTwg9AIDG6/9eZAtI3N4CANSFtDTJyanyP+V27pTCw6XmzSVPT2nIEGn7dut9Pfdc2TaHD0uTJ0u+vmX9p0yRLnmFiaSyqzmTJ5f9PSZGGjeu7O9hYf/77S+/tN7mm2+kvn2lpk2ljh2ltWtrZgxQ77jSAwCofS1bSu+8Y91WXCzNmiWVfzboiy+k0aOlm2+Wnn227LbUmjXSsGHS11+XBZFLjR8vBQVJL78s/fCD9MYbZd9RfOWVimsYPFh67DFpyRLpmWekrl3L2sv/KZUFqbFjpYcekiZNkt56qyw03Xyz1L17jQwF6g+hBwBQ+7y8pIkTrduio6XcXGnLlrKvZT/ySNkVmI0b/3f1Z9q0srDxl79Imzdbb3/jjdKbb/5v2WQqW64s9HTsKA0aVBZ6Rowom9dzuZQU6auvyvpJZcGqXbuy8DV/vl2HDsfB7S0AQN1bu1Z6/XXp1VfLgs7evVJqqnT//WXhJTu77E9ennTbbWVB5OJF63088oj18qBBZdueP29/Xd26/S/wSGVXqIKDpSNH7N8nHAZXegAAdWvv3rLAct990uzZZW2pqWX/nDSp8u3OnZNatPjf8v99i9GifN2ZM5KPj321Xb7P8v2eOWPf/uBQCD0AgLpz5ox0zz3S9deXzcEpV34VZ948qU+firf19rZednGpuF913rlbG/uEwyD0AADqxsWL0gMPSGfPSp9/XvZ0VrlOncr+6eMjDR9eezVc+qQYDIc5PQCAuvH889KmTdL775c9dXWpm28uCz7z55dNbr5cVlbN1ODlVfbPs2drZn9oULjSAwCofcnJ0osvlj02npkprVtnvX7ixLLbXaNHlz2tNWWKdN110smTUkJC2RWgjz+ufh19+pTdwnrllbI5Qu7uZY/Et2pV/X3D4RF6AAC1z2QqmxezbVvZn8tNnFj2CPm335aFo6VLy674tG4t9etX9uh6TWjdWlqxouzdPg89JJWWloUqQo8h8JV1vrIOAIAhMKcHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYAqEHAAAYgmt9F1CR48eP680331RycrLOnz+vgIAADR8+XBMmTFDTpk0t/ZKTk7VixQodOnRIXl5eCgsLU1RUlDw9PeuxegAA4IgcLvScPn1a06ZNk7e3t+666y75+Pho//79euutt5SSkqKXX35ZkpSamqpZs2YpMDBQ06dPV2ZmpmJjY3XixAnNmzevno8CAAA4GocLPZs3b1Zubq6WLVumoKAgSVJERIQuXryoTZs2KScnR82aNdOqVavUrFkzLVmyRF5eXpKkNm3a6NVXX1ViYqL69u1bn4cBAAAcjMPN6cnLy5MktWjRwqrdz89Pzs7OcnV1VV5ennbt2qWRI0daAo8kjRo1Sh4eHkpISKjTmgEAgONzuNBz4403SpJeeeUVpaam6vTp09q6das++ugj3XPPPfLw8NCRI0dUWlqq4OBgq22bNGmiLl26KDU1tdL9Z2dnKyUlxfInPT29Vo8HAAA4Boe7vdWvXz899NBDWrdunbZv325p/8Mf/qCoqChJkslkklR29edyfn5+SkpKqnT/cXFxiomJqdmiAQCAw3O40COVzc3p3bu3hgwZIh8fH3377bdat26drrnmGt1zzz0qLCyUVHZl53Jubm4qKiqqdN8REREaMGCAZTk9PV1z586t+YMAAAAOxeFCz9atWzVv3jy9++67atWqlSRpyJAhMpvNWrlypYYPHy53d3dJUnFxsc32RUVFcnNzq3T//v7+8vf3r53iAQCAw3K4OT0ffvihunTpYgk85QYMGKALFy4oNTXVclur/DbXpUwmE6EGAADYcLjQc+bMGV28eNGmvaSkRJJUWlqqoKAgubi4KCUlxapPcXGxUlNT1blz5zqpFQAANBwOF3ratWun1NRUHT9+3Kp969atcnZ2VqdOneTt7a2QkBBt3rxZ+fn5lj6bNm1SQUGBwsLC6rpsAADg4BxuTs+ECRO0c+dOTZ8+XXfffbd8fHy0Y8cO7dy5U7fffrvl1lVkZKSio6M1Y8YMRUREWN7IHBoaqn79+tXzUQAAAEfjZDabzfVdxOUOHDigNWvWKDU1VefPn1ebNm0UHh6u++67T66u/8tp+/bts3x7y9PTU2FhYZo2bdpVfXsrJSVFUVFRWr16tc17fwAAQOPhkKGnLhF6AAAwBoeb0wMAAFAbCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD0AAMAQCD3/Z+e7B7Xv0yMqKblY36UAAIBa4FrfBVzupZdeUnx8fKXrP/jgA7Vs2VKSlJycrBUrVujQoUPy8vJSWFiYoqKi5OnpedW/+8uBMyo6nKLE91LUc0yQ+t1/g93HAAAAHI/DhZ6IiAiFhIRYtZnNZi1YsECtW7e2BJ7U1FTNmjVLgYGBmj59ujIzMxUbG6sTJ05o3rx59hdglpI/OSpJBB8AABoRhws9PXr0UI8ePaza9u3bpwsXLmjEiBGWtlWrVqlZs2ZasmSJvLy8JElt2rTRq6++qsTERPXt27dadfz46VHdPP56ubpyBxAAgMagQfwb/fPPP5eTk5OGDx8uScrLy9OuXbs0cuRIS+CRpFGjRsnDw0MJCQnV/k2zWTq4Ob3a+wEAAI7B4a70XK6kpEQJCQnq0aOH2rRpI0k6cuSISktLFRwcbNW3SZMm6tKli1JTUyvdX3Z2tkwmk2U5Pb3yYJOTmV/N6gEAgKNw+NCTmJioc+fOWd3aKg8tfn5+Nv39/PyUlJRU6f7i4uIUExNTpd9u1urqJ0QDAADH5PCh5/PPP5erq6vCwsIsbYWFhZLKruxczs3NTUVFRZXuLyIiQgMGDLAsp6ena+7cuTb9nJykriMDq1M6AABwIA4devLz8/XNN9+ob9++at68uaXd3d1dklRcXGyzTVFRkdzc3Crdp7+/v/z9/X/zt3uMCWISMwAAjYhDh55vvvnG5qkt6X+3tS6dm1POZDJVKdRUykm8pwcAgEbIoUPPli1b5OHhYXU7SpKCgoLk4uKilJQUDRs2zNJeXFys1NRUq1thVdWmWwv16ResbqM6cIUHAIBGyGH/7X727Fnt2rVLgwcPVtOmTa3WeXt7KyQkRJs3b1Z+/v+esNq0aZMKCgrsCj39HuiqXmM6EngAAGikHPZKz9atW1VaWmpza6tcZGSkoqOjNWPGDEVERFjeyBwaGqp+/frVcbUAAMDROexljc8//1wtWrTQzTffXOH64OBgLVy4UO7u7nrttdf08ccfa8yYMXrxxRfruFIAANAQOOyVnuXLl/9mn169eun111+vg2oAAEBD57BXegAAAGoSoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABgCoQcAABiCa30XUJmUlBStWbNGycnJKioq0rXXXqs77rhDY8eOtfRJTk7WihUrdOjQIXl5eSksLExRUVHy9PSsx8oBAIAjqlLoiYmJqfYP9enTR3369KlS38TERD399NPq0qWLJk2aJA8PD508eVJZWVmWPqmpqZo1a5YCAwM1ffp0ZWZmKjY2VidOnNC8efOqXS8AAGhcqhR61qxZIycnJ5nNZrt+xMnJSZMnT65S6MnLy9NLL72kW265RS+++KKcnSu+A7dq1So1a9ZMS5YskZeXlySpTZs2evXVV5WYmKi+ffvaVSsAAGicqnx7Kzw8XOHh4Vf9A2azWY8//niV+3/++ef69ddfFRUVJWdnZxUUFMjd3d0q/OTl5WnXrl0aP368JfBI0qhRo/Taa68pISGB0AMAAKxUOfS0bt26yrenqmPXrl3y8vJSdna2/t//+386fvy4PDw8NHLkSE2fPl3u7u46cuSISktLFRwcbLVtkyZN1KVLF6Wmpla6/+zsbJlMJstyenp6rR0LAABwHFUKPffff7969uxp949czfYnTpxQaWmpnnnmGY0ZM0YPP/yw9u7dqw8++EC5ubl69tlnLaHFz8/PZns/Pz8lJSVVuv+4uLgamaMEAAAaliqFnmnTplXrR65m+4KCAl24cEG///3vNXPmTEnSkCFDVFxcrLi4OE2dOlWFhYWSyq7sXM7NzU1FRUWV7j8iIkIDBgywLKenp2vu3LlVrg8AADRMDvfIuru7uyTptttus2ofPny44uLitH//fjVt2lSSVFxcbLN9UVGR3NzcKt2/v7+//P39a7BiAADQEDjcywnLb1ldc801Vu0tWrSQJOXk5Fj6XDo3p5zJZCLUAAAAG3Zd6bn33nt/s4+zs7M8PT3Vvn17DRo0SMOGDavSvoODg7Vr1y5lZWWpffv2lvbs7GxJkq+vr4KCguTi4qKUlBSr/RYXFys1NVVhYWFXeUQAAKCxs+tKj9lsVklJiTIyMpSRkaGsrCwVFRUpKyvL0lZUVKSTJ0/qiy++0AsvvKDZs2dXeDvqcuWB5dNPP7Vq//TTT+Xi4qIbb7xR3t7eCgkJ0ebNm5Wfn2/ps2nTJhUUFBB6AACADbuu9Lz55pv605/+pPbt2ysyMlLdunWzvLzwwIEDevPNN5Wbm6uYmBidO3dOS5cu1XfffafY2FhNnDjxivu+/vrr9bvf/U6fffaZSktL1adPH+3du1cJCQmaOHGi5dZVZGSkoqOjNWPGDEVERFjeyBwaGqp+/frZc1gAAKARczLb8ZrlefPmaf/+/XrrrbcqfGNyaWmpHnroIfXo0UNPPPGECgsL9eCDD8rT01Nr1qz5zf2XlJTonXfe0caNG5Wdna2AgADdddddGj9+vFW/ffv2Wb695enpqbCwME2bNu2qvr2VkpKiqKgorV692ua9PwAAoPGw60rP9u3bFR4eXuknIlxcXHTLLbcoPj5eTzzxhNzd3XXTTTdp69atVSvK1VVTpkzRlClTrtivV69eev3116+6fgAAYDx2zenJy8uzmktTWZ+8vDzLcvPmze35KQAAgBphV+jp0KGDPv/8c506darC9adOndLWrVvVoUMHS1tmZqZ8fX3t+TkAAIBqs+v21sSJE/W3v/1NU6dO1e23364ePXqoRYsWOnPmjH788Ud9+umnKigosExaLi4u1vfff6/Q0NAaLR4AAKCq7JrILJU9Qv7aa6+poKBATk5Olnaz2SwPDw9Nnz5dt99+u6SyFwru3btXQUFBatu2bc1UXkOYyAwAgDHY/RmKMWPGaMiQIfrmm290+PBh5efny9PTU507d9bAgQPl7e1t6dusWTMNGjSoRgoGAACwR7W+veXt7a3w8PCaqgUAAKDWVPuDo/n5+Tp+/LguXLig3r1710RNAAAANc7u0PPLL79oyZIl+u6772Q2m+Xk5KSEhARJUnJysl599VXNnj1bN954Y40VCwAAYC+7Hlk/ffq0Hn30UX333XcaOHCgunfvrkvnQ3ft2lXnzp3T559/XmOFAgAAVIddoeett95STk6OlixZohdffFEhISFW611dXdWrVy/9+OOPNVIkAABAddkVehITEzVo0CD17Nmz0j6tW7dWVlaW3YUBAADUJLtCT05Ojlq3bn3FPmazWcXFxXYVBQAAUNPsCj0tWrTQiRMnrtjnyJEjCggIsKsoAACAmmZX6AkJCdG3336rn3/+ucL1SUlJ+uGHH3TLLbdUqzgAAICaYtcj6w8++KC2bdumGTNmaMKECTp58qQk6bvvvtOPP/6oDRs2qHnz5powYUKNFgsAAGAvu0JPmzZtNH/+fD333HN688035eTkJLPZrDlz5shsNisgIEAvvPCC/P39a7peAAAAu9j9csJu3brpvffe044dO3TgwAHl5OTI09NT3bp108CBA9WkSZOarBMAAKBaqvUZCldXVw0ePFiDBw+uqXoAAABqhV0TmQEAABqaKl3piYmJsWvnTk5OmjRpkl3bAgAA1KQqhZ41a9bYtDk5OVn+ful3t8rbyz9CSugBAACOoEqhZ/HixTZt69ev165duzRy5Ej16tVL11xzjX799VclJSVpy5YtCg0N1b333lvjBQMAANijSqGnT58+VsuffPKJ9u7dq9WrVysoKMhqXXh4uMaOHas//vGPGjhwoM22AAAA9cGuicz/+te/dNttt9kEnnKdOnXSbbfdpg0bNlSrOAAAgJpiV+g5efKkfHx8rtjHx8dHp06dsqsoAACAmmZX6PH19dXOnTutJjBf6uLFi9q5c6eaN29ereIAAABqil2hZ/jw4fr55581Z84cHT582Gpdamqq5syZo6NHj2rEiBE1UiQAAEB12fVG5ilTpujQoUP67rvvtHPnTjVt2lS+vr46e/asLly4ILPZrJtvvlmTJ0++6n3v2bNHM2fOrHDd8uXL1b17d8tycnKyVqxYoUOHDsnLy0thYWGKioqSp6enPYcFAAAaMbtCj7u7uxYsWKD4+HjFx8fryJEjOn36tLy9vXXDDTdo1KhRCg8Pt3qXz9W655571LVrV6u26667zvL31NRUzZo1S4GBgZo+fboyMzMVGxurEydOaN68eXb/LgAAaJzs/vaWk5OTRo8erdGjR9dkPRa9e/fW0KFDK12/atUqNWvWTEuWLJGXl5eksq+/v/rqq0pMTFTfvn1rpS4AANAwOfS3t/Lz81VSUmLTnpeXZ3kxYnngkaRRo0bJw8NDCQkJdVkmAABoAKp0pae4uFguLi5ydrYvI9mz/csvv6yCggK5uLioV69eevTRR3XDDTdIko4cOaLS0lIFBwdbbdOkSRN16dJFqample43OztbJpPJspyenn6VRwMAABqiKoWeESNGaMqUKXZ/R+tqtnd1ddWQIUN0yy23qHnz5kpLS1NsbKymT5+u119/Xddff70ltPj5+dls7+fnp6SkpEr3HxcXZ/cHVAEAQMNVpdBjNpsrfSdPTW/fs2dP9ezZ07I8cOBADR06VFOmTNGqVas0f/58FRYWSiq7snM5Nzc3FRUVVbr/iIgIDRgwwLKcnp6uuXPnVvVQAABAA1XlicwbN27Unj177PqR6jzFJUlt27bVwIED9dVXX6m0tFTu7u6Sym6bXa6oqEhubm6V7svf31/+/v7VqgcAADQ8VQ49GRkZysjIqM1arqhVq1YqLi7WhQsXLLe1Lp2bU85kMhFqAACAjSqFnm3bttV2Hb/p1KlTcnNzk4eHh4KCguTi4qKUlBQNGzbM0qe4uFipqakKCwurx0oBAIAjcrhH1s+ePWvTdvjwYW3fvl2hoaFydnaWt7e3QkJCtHnzZuXn51v6bdq0SQUFBYQeAABgw+6XE9aWZ599Vu7u7urRo4datGihtLQ0ffzxx2ratKmmTZtm6RcZGano6GjNmDFDERERljcyh4aGql+/fvV4BAAAwBE5XOgZNGiQtmzZog0bNigvL0++vr4aPHiwJk+erLZt21r6BQcHa+HChVqxYoVee+01eXp6asyYMVbBCAAAoJyTuTrPojcCKSkpioqK0urVq21edggAABoPh5vTAwAAUBsIPQAAwBAIPQAAwBBqJPScP39ep0+froldAQAA1Aq7n97Kzc3Vm2++qS+++ELnzp2Tk5OTEhISJEkHDhzQmjVrFBkZyeRgAADgEOy60nP+/Hk98sgj+s9//qNWrVopMDDQ6oOinTp10o8//qgtW7bUWKEAAADVYVfoWbNmjY4fP65nn31Wq1ev1tChQ63Wu7u7q3fv3vrhhx9qokYAAIBqsyv0bN++XbfeeqvVd68u16ZNG2VlZdldGAAAQE2yK/SYTCZ16NDhin2aNGmigoICe3YPAABQ4+wKPT4+PsrMzLxin2PHjsnPz8+uogAAAGqaXaGnd+/e2r59e6XBJy0tTTt37lRISEi1igMAAKgpdoWeP/zhDyotLVV0dLQ2b96sc+fOSSoLO5988okef/xxubm5acKECTVaLAAAgL3s/uDoN998o7///e+WeTtms1lOTk4ym83y9PTU3/72N9166601Wmxt4IOjAAAYg90vJxw4cKBiY2MVHx+vAwcO6Pz58/Ly8lK3bt00evRo+fr61mCZAAAA1WN36JHKJjSPHz++pmoBAACoNXxwFAAAGEKVrvTEx8fb/QPh4eF2bwsAAFBTqhR6Xn75ZTk5OVmWyyctX0l5H0IPAABwBFUKPXPmzLFp27Ztm7799lvdfPPN6tWrl1q0aKEzZ84oKSlJP/zwg2699VYNGTKkxgsGAACwR5VCz+jRo62Wv/76a+3atUvz589XaGioTf/ExEQ988wzuv3222umSgAAgGqyayLzO++8o7CwsAoDjyT17dtXQ4cO1dq1a6tVHAAAQE2xK/SkpaWpVatWV+zTqlUrpaWl2bN7AACAGmdX6PH09FRSUtIV+yQlJcnT09OuogAAAGqaXaFn4MCB+vHHH7VgwQKdOXPGat2ZM2c0f/587d+/X4MGDaqRIgEAAKrLrjcyT5s2TT/++KPi4uK0ceNGXXfddZant06ePKni4mIFBQXp4Ycfrul6AQAA7GJX6GnWrJlWrlypd999V5s3b1ZaWppl/k6bNm00cuRI3X///WratGlN1goAAGA3u7+95e7urqlTp2rq1KnKz89XXl6evLy8mMcDAAAcUo18e8vT01MtW7aslcCzdu1aDR48WJMmTbJZl5ycrOjoaI0YMUJ33nmnFi9erPz8/BqvAQAANHzV+sp6bcvMzNS6devk4eFhsy41NVWzZs1SYGCgpk+frszMTMXGxurEiROaN29ePVQLAAAcmV2hZ8iQIb/57S1JcnJyUkJCgj0/IUl6/fXX1a1bN128eFHnzp2zWrdq1So1a9ZMS5YskZeXl6Sy+USvvvqqEhMT1bdvX7t/FwAAND523d7q3bt3hX86deokd3d3mc1mderUSb169bK7sL1792rbtm2aMWOGzbq8vDzt2rVLI0eOtAQeSRo1apQ8PDyqFbQAAEDjZNeVniVLllS67sKFC1q5cqV27typBQsW2FVUaWmpFi9erDFjxqhTp042648cOaLS0lIFBwdbtTdp0kRdunRRampqpfvOzs6WyWSyLKenp9tVIwAAaFhqfE5P06ZNNXPmTD388MNavny5nn766avex0cffaTTp09r0aJFFa4vDy1+fn426/z8/K74tui4uDjFxMRcdU0AAKBhq7WJzL169dLmzZuvertz587prbfe0oMPPihfX98K+xQWFkoqu7JzOTc3NxUVFVW6/4iICA0YMMCynJ6errlz5151nQAAoGGptdBz9uxZFRQUXPV2b7zxhpo1a6Z77rmn0j7u7u6SpOLiYpt1RUVFcnNzq3Rbf39/+fv7X3VdAACgYavx0HPx4kVt2bJFX3zxhc2cm99y/Phxffzxx5oxY4ays7Mt7UVFRSopKdEvv/wiLy8vy22tS+fmlDOZTIQaAABgw67Qc++991bYXlpaqrNnz6qkpESurq6aNm3aVe03OztbFy9e1OLFi7V48eIKf3fs2LGaOnWqXFxclJKSomHDhlnWFxcXKzU1VWFhYVd3QAAAoNGzK/SYzeaKd+bqqqCgIN1www26++67FRQUdFX7DQoK0t///neb9jfeeEP5+fl67LHHdO2118rb21shISHavHmzJk2aZHkT9KZNm1RQUEDoAQAANuwKPRs2bKjpOiRJvr6+GjRokE37v/71L0myWhcZGano6GjNmDFDERERljcyh4aGql+/frVSHwAAaLhq5Ntb9SE4OFgLFy6Uu7u7XnvtNX388ccaM2aMXnzxxfouDQAAOCC7rvQMHTpUU6ZMqfAjoOXWrl2rNWvW1MjbkSt7GWKvXr30+uuvV3v/AACg8bPrSo/ZbK50Xs/l/QAAABxBrd3eOnv2rOV9OgAAAPWtyre34uPjrZZTU1Nt2qSy9/RkZmZq06ZNV/30FgAAQG2pcuh5+eWX5eTkJElycnLS9u3btX37dpt+5be03N3dNWXKlBoqEwAAoHqqHHrmzJlj+fs//vEPDRw4UAMHDrTp5+LiombNmqlHjx5q1qxZzVQJAABQTVUOPaNHj7b8fe/evRo0aFCFoQcAAMAR2fXI+tNPP13TdQAAANSqBvtyQgAAgKtRpSs9Q4YMkbOzs9auXat27dppyJAhlknNV+Lk5FQjLycEAACoriqFnt69e8vJycny3p3yZQAAgIaiSqHn8s9AVPZZCAAAAEfFnB4AAGAIdoWee++9V//+97+v2Oc///mP7r33XruKAgAAqGl2hZ6MjAzl5uZesU9ubq5Onz5tV1EAAAA1rdZub+Xl5alJkya1tXsAAICrUuWXE+7du9dqOSMjw6ZN+t8HR7ds2aJ27dpVtz4AAIAaUeXQM3PmTKsPjsbHx1f4lXWp7KOjTk5OmjZtWs1UCQAAUE1VDj2TJk2Sk5OTzGaz3n77bfXp00d9+vSx6efs7CwfHx/deOON6tChQw2WCgAAYL8qh56pU6da/p6UlKTRo0crPDy8VooCAACoaXZ9cHTx4sU1XQcAAECt4uWEAADAEOy60iNJp0+f1tq1a7V7925lZ2erpKTEpg8fHAUAAI7CrtBz6tQpTZs2Tbm5uerQoYOKi4sVEBAgNzc3/fLLLyopKVHnzp3l7e1d0/UCAADYxa7bW2vWrFFeXp4WLVqkNWvWSJJ+97vfad26dYqNjdWAAQNUUFCgF154oUaLBQAAsJddoWf37t265ZZbrB5ZN5vNkiR/f38999xzkqRVq1ZVu0AAAICaYFfoOXfunNq3b29ZdnFx0YULFyzLbm5uCgkJ0bffflv9CgEAAGqAXaGnefPmViGnefPmysjIsOrj4uLymx8lBQAAqCt2TWRu27atTp48aVnu2rWrvv/+e506dUrXXnutzp49q23btunaa6+96n0fPXpUa9asUUpKin799Vc1bdpUgYGBuu+++zRgwACrvmlpaVq6dKmSk5Pl6uqqW2+9VdOnT5evr689hwUAABoxu0JPv379tGbNGuXk5KhZs2YaN26cduzYoSlTpigwMFAnTpxQfn6+pkyZctX7zsjIUH5+vsLDw+Xv768LFy5o27Ztevrpp/XEE08oIiJCkpSZmakZM2bI29tbUVFRKigo0Pr163XkyBGtXLmSL7wDAAArTubyGchXIS8vT+np6erQoYM8PT0lSQkJCVqzZo1OnTql1q1b6+6779bdd99dI0WWlpYqKipKRUVFWrdunSRp4cKF2rhxo9atW6eAgABJ0q5duzR79myrcPRbUlJSFBUVpdWrVys4OLhG6gUAAI7Hris9Xl5e6tatm1VbWFiYwsLCaqSoy7m4uKhVq1b66aefLG3btm1T//79LYFHkkJCQtSuXTslJCRUOfQAAABjqLXPULz77ruaOXOm3dsXFBTo7NmzOnnypDZs2KCdO3fqpptukiRlZWXpzJkzFV6Z6dq1q1JTU+3+XQAA0DjZ/RmK33Ls2DElJSXZvf2yZcsUFxcnSXJ2dtbgwYM1a9YsSZLJZJIk+fn52Wzn5+en8+fPq6ioSG5ubjbrs7OzLdtLUnp6ut01AgCAhqPWQk91jRs3TkOHDlV2drYSEhJUWlqq4uJiSVJhYaEkVThZuTzoFBYWVhh64uLiFBMTU3uFAwAAh+SwoScwMFCBgYGSpPDwcM2ePVtz5szRypUr5e7uLkmWEHSpoqIiSbL0uVxERITVo+/p6emaO3duTZcPAAAcjMOGnssNHTpU8+fP1/Hjxy23tS69TVXOZDLJx8enwqs8UtlnMvz9/Wu1VgAA4HhqbSJzTSu/pZWbm6uWLVvK19dXKSkpNv0OHjyozp0713V5AADAwTlc6Dlz5oxNW0lJiTZt2iR3d3d16NBBkjRkyBDt2LFDp0+ftvTbvXu3jh8/XmuPzgMAgIaryre3/vznP1/Vjo8cOXLVxUjS/PnzlZeXp969e6tly5YymUzasmWLjh07pujoaMvLECdOnKgvv/xSjz/+uMaOHauCggK9//776tixo0aPHm3XbwMAgMaryqEnMTHxqnfu5OR01dsMGzZMn376qT766COdO3dOnp6eCg4O1iOPPKKBAwda+gUEBGjJkiVaunSpVq5cafn2VnR0dKXzeQAAgHFV+TMUl39Fvapat25t13Z1hc9QAABgDFW+0uPo4QUAAOBKHG4iMwAAQG0g9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAEMg9AAAAENwre8CLnfw4EHFx8drz549ysjIkI+Pj7p3767IyEi1a9fOqm9aWpqWLl2q5ORkubq66tZbb9X06dPl6+tbP8UDAACH5XCh57333lNycrLCwsLUqVMnmUwmffjhh4qMjNTy5cvVsWNHSVJmZqZmzJghb29vRUVFqaCgQOvXr9eRI0e0cuVKNWnSpJ6PBAAAOBKHCz3jx4/X3/72N6vQMmzYME2ZMkXvvvuu/vrXv0qS1q1bpwsXLuiNN95QQECAJKlr166aPXu2Nm7cqIiIiHqpHwAAOCaHm9PTs2dPm6s07dq1U4cOHZSenm5p27Ztm/r3728JPJIUEhKidu3aKSEhoc7qBQAADYPDhZ6KmM1mnTlzRs2bN5ckZWVl6cyZMwoODrbp27VrV6WmptZ1iQAAwME53O2timzZskVZWVmaOnWqJMlkMkmS/Pz8bPr6+fnp/PnzKioqkpubm8367Oxsy/aSrK4eAQCAxsvhQ096eroWLVqk7t27Kzw8XJJUWFgoSRVOVi4POoWFhRWGnri4OMXExNRewQAAwCE5dOgxmUx66qmn5OXlpRdffFEuLi6SJHd3d0lScXGxzTZFRUVWfS4XERGhAQMGWJbT09M1d+7cmi4dAAA4GIcNPbm5uXryySeVm5urpUuXyt/f37Ku/LbWpbepyplMJvn4+FR4lUeS/P39rfYFAACMwSFDT2FhoebMmaPjx49r4cKF6tChg9X6li1bytfXVykpKTbbHjx4UJ07d66jSgEAQEPhcE9vlZaW6rnnntP+/fv1/PPPq0ePHhX2GzJkiHbs2KHTp09b2nbv3q3jx48rLCysrsoFAAANhMNd6Vm2bJm2b9+u/v37KycnR5s3b7ZaP3LkSEnSxIkT9eWXX+rxxx/X2LFjVVBQoPfff18dO3bU6NGj66N0AADgwBwu9Bw+fFiStGPHDu3YscNmfXnoCQgI0JIlS7R06VKtXLnS8u2t6OjoSufzAAAA43K40LNkyZIq9w0KCtKCBQtqsRoAANBYONycHgAAgNpA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIZA6AEAAIbgWt8FXC4/P1/r16/XgQMHdPDgQeXk5Ojpp5/W6NGjbfqmpaVp6dKlSk5Olqurq2699VZNnz5dvr6+dV84AABwaA53pefcuXOKiYlRenq6OnfuXGm/zMxMzZgxQydPnlRUVJQmTJigb7/9VrNnz1ZxcXEdVgwAABoCh7vS4+fnpw8//FB+fn766aef9PDDD1fYb926dbpw4YLeeOMNBQQESJK6du2q2bNna+PGjYqIiKjLsgEAgINzuCs9bm5u8vPz+81+27ZtU//+/S2BR5JCQkLUrl07JSQk1GaJAACgAXK4Kz1VkZWVpTNnzig4ONhmXdeuXfXdd99Vum12drZMJpNlOT09vVZqBAAAjqVBhp7y0FLRFSE/Pz+dP39eRUVFcnNzs1kfFxenmJiY2i4RAAA4mAYZegoLCyVJTZo0sVlXHnQKCwsrDD0REREaMGCAZTk9PV1z586tpUoBAICjaJChx93dXZIqfEqrqKjIqs/l/P395e/vX3vFAQAAh+RwE5mrovy21qVzc8qZTCb5+PhUeJUHAAAYV4MMPS1btpSvr69SUlJs1h08ePCK7/cBAADG1CBDjyQNGTJEO3bs0OnTpy1tu3fv1vHjxxUWFlaPlQEAAEfkkHN6PvjgA+Xm5lpuX23fvl2ZmZmSpHvuuUfe3t6aOHGivvzySz3++OMaO3asCgoK9P7776tjx44VfrICAAAYm0OGntjYWGVkZFiWv/rqK3311VeSpJEjR8rb21sBAQFasmSJli5dqpUrV1q+vRUdHc18HgAAYMMhQ8+GDRuq1C8oKEgLFiyo5WoAAEBj0GDn9AAAAFwNQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAEQg8AADAE1/ouoDqKior05ptvavPmzcrJyVGnTp0UGRmp0NDQ+i4NAAA4mAZ9pefll1/Whg0bNGLECD322GNydnbWk08+qX379tV3aQAAwME02NBz4MABbd26VQ8//LD++Mc/KiIiQv/85z/VunVrLV++vL7LAwAADqbBhp5t27bJxcVFERERljZ3d3eNGTNG+/fv1+nTp+uxOgAA4Gga7Jye1NRUtW3bVl5eXlbtXbt2lSQdPnxYAQEBNttlZ2fLZDJZlg8fPixJSk9Pr8VqAQBAbQgMDFTTpk2r1LfBhh6TySQ/Pz+b9vK27OzsCreLi4tTTEyMTfvcuXNrtD4AAFD7Vq9ereDg4Cr1bbChp7CwUE2aNLFpd3Nzs6yvSEREhAYMGGBZPnjwoBYuXKinnnpKnTt3rp1iG5j09HTNnTtXf/nLXxQYGFjf5TgExsQWY2KLMbHFmNhiTGxVZ0yupn+DDT3u7u4qLi62aS8qKrKsr4i/v7/8/f1t2jt37lzlpGgUgYGBjMllGBNbjIktxsQWY2KLMbFV22PSYCcy+/n5Wc3NKVfeVlGwAQAAxtVgQ0/nzp114sQJ5eXlWbUfOHDAsh4AAKBcgw09Q4cOVWlpqeLi4ixtRUVF+uyzz9StW7cKn9yqiJ+fnyZPnlzhpGijYkxsMSa2GBNbjIktxsQWY2KrrsbEyWw2m2v1F2rRs88+q6+++krjx4/Xddddp/j4eB08eFCLFi1Snz596rs8AADgQBp06CksLLR8eys3N1cdO3ZUZGSk+vbtW9+lAQAAB9OgQw8AAEBVNdg5PQAAAFeD0AMAAAyhwb6csLqKioos84FycnLUqVMnRUZGKjQ0tL5Lq3V79uzRzJkzK1y3fPlyde/e3bKcnJysFStW6NChQ/Ly8lJYWJiioqLk6elZV+XWuPz8fK1fv14HDhzQwYMHlZOTo6efflqjR4+26ZuWlqalS5cqOTlZrq6uuvXWWzV9+nT5+vpa9bt48aLWr1+v//73v/r111/Vtm1bTZw4UcOHD6+jo6qeqo7JSy+9pPj4eJvt27dvr3Xr1lm1NeQxOXjwoOLj47Vnzx5lZGTIx8dH3bt3V2RkpNq1a2fV1yjnSFXHxCjniCQdPXpUa9asUUpKin799Vc1bdpUgYGBuu+++6ze/C8Z5zyp6pjU13li2NDz8ssv68svv9S4cePUtm1bbdy4UU8++aQWL16sXr161Xd5deKee+6xfKC13HXXXWf5e2pqqmbNmqXAwEBNnz5dmZmZio2N1YkTJzRv3ry6LrfGnDt3TjExMQoICFDnzp21Z8+eCvtlZmZqxowZ8vb2VlRUlAoKCrR+/XodOXJEK1eutPoMyurVq/Xuu+/qjjvu0A033KBvvvlGL7zwgpycnHTbbbfV1aHZrapjIpV96uXJJ5+0arv8w79Swx6T9957T8nJyQoLC1OnTp1kMpn04YcfKjIyUsuXL1fHjh0lGescqeqYSMY4RyQpIyND+fn5Cg8Pl7+/vy5cuKBt27bp6aef1hNPPKGIiAhJxjpPqjomUj2dJ2YD2r9/v3nQoEHm9957z9J24cIF84QJE8yPPPJIPVZWN3744QfzoEGDzAkJCVfs98QTT5jvvPNOc25urqXt448/Ng8aNMi8c+fOWq6y9hQWFpqzs7PNZrPZfPDgQfOgQYPMn332mU2/BQsWmIcPH27OyMiwtH3//ffmQYMGmT/66CNLW2ZmpjksLMy8cOFCS9vFixfN0dHR5rvvvttcUlJSi0dTM6o6Jn//+9/NI0eO/M39NfQx2bdvn7moqMiq7dixY+bbbrvN/MILL1jajHSOVHVMjHKOVKakpMQ8ZcoU8wMPPGBpM9J5UpGKxqS+zhNDzunZtm2bXFxcrBKnu7u7xowZo/379+v06dP1WF3dys/PV0lJiU17Xl6edu3apZEjR1ol71GjRsnDw0MJCQl1WWaNcnNzq9ILsLZt26b+/ftbvegyJCRE7dq1szr+b775RiUlJbrrrrssbU5OTrrzzjuVlZWl/fv31+wB1IKqjkm50tJSm7ehX6qhj0nPnj1tPmjcrl07dejQQenp6ZY2I50jVR2Tco39HKmMi4uLWrVqpdzcXEubkc6TilQ0JuXq+jwxZOhJTU1V27ZtbS6jld/qOXz4cH2UVedefvllhYeHa8SIEZo5c6Z++ukny7ojR46otLTU5sNvTZo0UZcuXZSamlrX5daprKwsnTlzpsIP33Xt2tXq+FNTU+Xh4WHzpd/y86mxjdWFCxc0evRojR49WmPGjNHChQuVn59v1acxjonZbNaZM2fUvHlzSZwjku2YlDPaOVJQUKCzZ8/q5MmT2rBhg3bu3KmbbrpJknHPkyuNSbn6OE8MOafHZDJV+P9qy9uys7PruqQ65erqqiFDhuiWW25R8+bNlZaWptjYWE2fPl2vv/66rr/+esuHWysbp6SkpLouu0791vGfP39eRUVFcnNzk8lkUosWLeTk5GTTT2pc55Ofn5/uu+8+XX/99TKbzdq5c6f++9//6ueff9bixYvl6lr2PymNcUy2bNmirKwsTZ06VRLniGQ7JpIxz5Fly5ZZPonk7OyswYMHa9asWZKMe55caUyk+jtPDBl6CgsLbS7TSmWX+MvXN2Y9e/ZUz549LcsDBw7U0KFDNWXKFK1atUrz58+3jEFl41RUVFRn9daH3zr+8j5ubm6GOp+mTZtmtXzbbbepXbt2Wr16tbZt22aZVNjYxiQ9PV2LFi1S9+7dFR4eLolzpKIxkYx5jowbN05Dhw5Vdna2EhISVFpaquLiYknGPU+uNCZS/Z0nhry95e7ubjX45cr/Re7u7l7XJdW7tm3bauDAgdqzZ49KS0stY1DZOJWfcI3Vbx3/pX2Mfj6NHz9ezs7O2rVrl6WtMY2JyWTSU089JS8vL7344otycXGRZOxzpLIxqUxjP0cCAwMVEhKi8PBwvfLKKyooKNCcOXNkNpsNe55caUwqUxfniSFDj5+fn+WS46XK2/z9/eu6JIfQqlUrFRcX68KFC5ZLh5WNU2Mfo986fh8fH0vw8/Pz06+//mrzX2ajnE/u7u7y8fHR+fPnLW2NZUxyc3P15JNPKjc3V/Pnz7eq26jnyJXGpDKN+RypyNChQ/XTTz/p+PHjhj1PLnfpmFSmLs4TQ4aezp0768SJEzYzxg8cOGBZb0SnTp2Sm5ubPDw8FBQUJBcXF6WkpFj1KS4uVmpqaqMfo5YtW8rX19fm+KWyl7RdevydO3fWhQsXbJ5gMcr5lJ+fr3Pnzlm9ZK0xjElhYaHmzJmj48eP6x//+Ic6dOhgtd6I58hvjUllGus5UpnyWy65ubmGPE8qcumYVKYuzhNDhp6hQ4eqtLTUMslKKrtU9tlnn6lbt25WjxU2RmfPnrVpO3z4sLZv367Q0FA5OzvL29tbISEh2rx5s9Vs+k2bNqmgoEBhYWF1WHH9GDJkiHbs2GH1CoPdu3fr+PHjVsc/cOBAubq66sMPP7S0mc1mffTRR2rZsqV69OhRp3XXlsLCQpsnKyTp7bffltlsVr9+/SxtDX1MSktL9dxzz2n//v16/vnnK63XSOdIVcbESOeIJJ05c8amraSkRJs2bZK7u7slFBrpPKnKmNTneWLIiczdunVTWFiYVq1apbNnz+q6665TfHy8MjIy9NRTT9V3ebXu2Weflbu7u3r06KEWLVooLS1NH3/8sZo2bWo1uSwyMlLR0dGaMWOGIiIiLG9kDg0NtTopG6IPPvhAubm5lkuk27dvV2ZmpqSyN1V7e3tr4sSJ+vLLL/X4449r7NixKigo0Pvvv6+OHTtafZ6hVatWGjdunN5//32VlJSoa9eu+vrrr7Vv3z799a9//c35Do7it8YkJydHDz30kIYPH6727dtLkhITE/Xdd9+pX79+GjhwoGVfDX1Mli1bpu3bt6t///7KycnR5s2brdaPHDlSkgx1jlRlTH799VfDnCOSNH/+fOXl5al3795q2bKlTCaTtmzZomPHjik6OtryuR4jnSdVGZNffvml3s4TJ/OVZhU1YoWFhZZvb+Xm5qpjx46KjIxU375967u0Wvfvf/9bW7Zs0cmTJ5WXlydfX1/dfPPNmjx5stq2bWvVd9++fZZvb3l6eiosLEzTpk1r0N/eksomzGVkZFS4LjY2Vm3atJFU9h2Zy7+XEx0drWuuucZqm4sXL+q9995TXFycTCaT2rZtqwceeMDyL8eG4LfGxNvbW4sXL9b+/ftlMpl08eJFXXfddRoxYoQmTJhgecS0XEMek8cee0x79+6tdP1XX31l+btRzpGqjElOTo5hzhFJ2rp1qz799FMdOXJE586dk6enp4KDg3X33Xdb/YtbMs55UpUxqc/zxLChBwAAGIsh5/QAAADjIfQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAAABDIPQAqFODBw/WY489Vm+//9JLL2nw4MH65Zdfanzfe/bs0eDBgy1/HnnkkSpv+9Zbb2nw4MHas2dPjdd1JY888ohVzXX9+0BdIvQADcwvv/yiwYMH64knnqjvUmpMbQaR+tCnTx9NnjxZt99+e32X8ptuv/12TZ48WX369KnvUoBaZ8ivrAOoP++8846aNm1a32XUqj59+mjq1Kn1XUaVlAezt95664ofFAUaA0IPgDoVGBhY3yUAMChCD9DIZWRkKCYmRomJiTp79qxatGih0NBQTZkyRQEBAVZ9H3vsMe3du1dffPGF1q5dq/j4eJlMJgUEBGjcuHG66667bPZ/9uxZrV69Wl9//bUKCgoUFBSkiRMnKi8vTy+//LKefvppjR492tJ/8ODB6tOnj5YsWSJJGj9+vDIyMiRJ9957r6VfeZ9ffvlF9957r8LDw/XMM8/Y/P7l+yt39OhRrVixQnv37pWzs7N69OihRx999Ipj9fXXX+uDDz7QoUOHVFRUpOuuu07h4eEaP368XFxcfmOkq+b06dNasWKFEhMTVVJSouuvv14PPfTQFbfZu3ev1q9fr/379ys/P1+tWrXSsGHD9Ic//MHmqllJSYnWr1+vTz75RNnZ2WrZsqXGjBmjYcOGacKECZWOI2AEhB6gETt+/Liio6N19uxZ9e/fX0FBQTp69Kg+++wz7dixQ8uWLVO7du1stnv++ed18OBB9evXTy4uLkpISNCiRYvk6uqqO+64w9IvPz9fjz32mNLS0tSjRw/17t1bWVlZev755xUaGlqlGseOHav4+HgdPnxYY8eOlbe3tySpTZs2dh/3kSNHFB0drYKCAg0ePFht27bVwYMHFR0drU6dOlW4zcqVK/Xuu++qZcuWGjx4sLy9vbVv3z4tX75cBw8e1AsvvGB3PeWys7P1xz/+UVlZWerbt6+uv/56paen609/+pNuvPHGCrf573//q0WLFsnb21v9+/dXixYtlJKSonfeeUd79uzR4sWL1aRJE0v/V155RZs2bdK1116rO++8U8XFxdqwYYN+/PHHatcPNHSEHqARmz9/vs6ePasnnnhCERERlvYPP/xQixYt0oIFC/TPf/7TZrusrCy9/fbb8vLyklQWTCZNmqTY2Fir0PPee+8pLS1Nd9xxh/785z9b2kePHq1Zs2ZVqcbx48fr8OHDOnz4sMaNG1etsFPun//8p/Ly8vSXv/xFI0eOtLSvWrVK69ats+n//fff691331Xfvn314osvysPDQ5JkNpu1cOFCffTRR/ryyy81dOjQatW1atUqZWVlKTIyUg8++KClPS4uTvPnz7fpn5aWpsWLF6tTp05atGiRmjdvblm3bt06rVq1Sh988IEmTJggSdq9e7c2bdqkLl26aNmyZZarQH/4wx8UGRlZrdqBxoCnt4BG6vTp09qzZ486dOhgFVQk6fe//73at2+vH374QadPn7bZ9uGHH7YEHklq3769evbsqWPHjik/P9/SvnnzZjVp0sTm9szNN99c5Ss9Ne306dPau3evOnXqZBV4JGnixImWK0mX+s9//iNJ+vOf/2wJPJLk5OSkadOmycnJSVu3bq1WXcXFxfriiy/UokULq9t4Utlk4rZt29ps89FHH6m0tFQzZ860CjySdP/998vX19eqrs2bN0uSJk2aZHXby9/fX2PHjq1W/UBjwJUeoJFKTU2VVDY3xsnJyWqds7OzevfurWPHjunw4cM2c3uCg4Nt9teyZUtJUk5Ojjw9PZWXl6eMjAx16NBB11xzjU3/nj176vvvv6+pw6myw4cPW37/cp6enurSpYvNu2gOHDggDw8PffrppxXu093dXceOHatWXceOHVNRUZFuuukmubu7W61zdnZWz549deLECZu6JCkxMVG7d++22aerq6tVXeXH3qtXL5u+PXr0qFb9QGNA6AEaqfIrMi1atKhwvZ+fnyQpLy/PZt2lV3nKlU/kvXjxotV2le2/svbaZk9d58+fV2lpqWJiYirdb0FBQb3UJZU95l8V+fn5cnZ2trkqJKnCYAoYDaEHaKQ8PT0lSWfOnKlw/a+//iqp4oBTFeXbVbb/ytqvlrNz2V340tJSm3W5ubk1UpeXl5ecnJz08ccfV6fUK7K3LkmKj4+3/Od5JZ6enrp48aLOnTsnX19fq3Xl/3kDRsacHqCR6tKliyQpKSlJZrPZap3ZbFZSUpIkqXPnznbt38vLS61bt9bJkycr/Bf21TwtVB5syq8iXap8Dk52drbNuvJbeJcqP57k5GSbdfn5+RVu07VrV507d07Hjx+vcs1Xq127dnJzc1NKSooKCwut1l28eLHC8erWrZskaf/+/VX6jSsdO09vAYQeoNEKCAjQjTfeqKNHj9rMVYmLi1N6erpuuukmm/k8V2PEiBEqLi7WW2+9ZdW+Z88eJSYmVnk/Pj4+kqTMzEybdV5eXmrfvr327dtnNeclPz9fq1atsukfEBCg3r176+eff7ZM7C23bt26Cq8OlU/yfeWVV3Tu3Dmb9SaTSWlpaVU+noq4ubkpLCxMZ86cUWxsrNW6Tz75pMLAdeedd8rFxUWLFy+ucMJ5Tk6ODh06ZFkeMWKEJCkmJsYqWJlMJv373/+uVv1AY8DtLaCBOnLkiF566aUK17Vv314TJ07Un/70J0VHR2vevHnasWOHOnTooKNHj2r79u3y9fXVn/70p2rV8MADD2jbtm366KOPdPToUfXq1UtZWVlKSEhQ//79tWPHDptJ1BW56aabtH79es2bN09DhgxR06ZN1bp1a40aNUpS2UsL582bp0cffVRhYWG6ePGidu7cqRtuuKHC/c2aNUvR0dF66aWX9M0331je0/PTTz+pV69e2rdvn1X/fv36adKkSXr77bd13333qV+/fgoICND58+d18uRJ7du3Tw899JA6dOhQrfGaNm2afvjhB73xxhtKTk5Wly5dlJ6eru+++06hoaE2E787duyo2bNna+HChXrggQd0yy236LrrrlN+fr5OnTqlpKQkhYeHW77DFhISouHDh+vzzz/X5MmTNXDgQBUXFyshIUFdu3bVjh07LFfVACMi9AANVHZ2tuLj4ytc16dPH02cOFHt27fX6tWrFRMTo507d+rbb7+Vr6+vfve732ny5Mlq3bp1tWrw9PTU0qVLtXLlSn3zzTf66aefFBQUpL/97W86deqUduzYUaU5Q7fccoseffRRffzxx4qNjVVJSYn69OljCT133HGHSkpK9K9//UuffPKJ/Pz8NHr0aD344IMaNmyYzf46duyoZcuWacWKFdq5c6cSExPVs2dPLVu2TOvXr7cJPZL00EMPqXfv3vr3v/+t3bt3Kzc3Vz4+PmrTpo0mT55suYpSHf7+/nr99de1fPlyJSYmKikpSddff70WLFigH374ocKn3e644w517txZGzZsUFJSkmVMy9+SHR4ebtX/mWeeUWBgoD777DP95z//UcuWLTVu3DjddNNN2rFjR5XmBgGNlZP58pv9AFADXnzxRW3ZskVr166t9hWShmLPnj2aOXOmJk+e7HAfHP3kk0/06quvavbs2brzzjtt1r/11luKiYnR4sWLK307NNDQcaUHQLVkZ2fL39/fqq38+13t27c3TOC5VExMjGJiYtStWzetWLGiTn/bZDLpmmuusbqtmJWVpbVr18rFxUW33nqrVf9HHnnE8j4goLEj9AColqeeekpubm7q0qWLmjZtqrS0NCUmJsrZ2VkzZ86s7/LqVOvWrTV58mTLcqtWreq8hnfffVfffvutevfuLV9fX2VmZmrHjh3Kz8+v8COzt99+u/r27WtZru4tT8CRcXsLQLVs2LBBn3/+uU6ePKn8/Hx5e3urZ8+emjhxouWRa9SdnTt3KjY2Vj///LNycnLk5uamTp066c4776yReUlAQ0boAQAAhsCziwAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBAIPQAAwBD+P/1gjtrwJcvKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# From the orientation, get the attitude and define the source movement in the spacecraft FOV\n", + "x,y,z = grbori.get_attitude().as_axes()\n", + "dts = grbori.get_time_delta()\n", + "\n", + "src_movement = SCPosition.sc_frame(x_pointings = x[:], y_pointings = y[:], z_pointings = z[:])\n", + "\n", + "# The source should be 20 degrees off axis for this simulation, based on the GRB ori file.\n", + "# Zenith is Latitude = 90, therefore, we expect this to be at Latitude = 90-20 = 70, and Longitude = 0.\n", + "\n", + "plt.plot(src_movement.lon.deg, src_movement.lat.deg,\"o\")\n", + "plt.ylim(0,90)\n", + "plt.xlim(0,360)\n", + "plt.axhline(y=90, color='r', linestyle='-')\n", + "plt.annotate(\"zenith\",[250,85], color='r')\n", + "plt.xlabel(\"Longitude [deg]\")\n", + "plt.ylabel(\"Latitude [deg]\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0cb75a24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGaCAYAAABpDbWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAABS5klEQVR4nO3deXxU1cH/8c+9d2aSyUIgYQn7IpsKisqi4lZEpKhVa7GttXaj2j5VW5cuttU+tXWrttXn1/apS61at6eurQuKFtwRVFBAWWWHBAgJ2Sczc+/5/TGZScImWSYzmXzfr9e85s5dzj25hOSbc+85xzLGGERERESkS7NTXQERERERaT+FOhEREZEMoFAnIiIikgEU6kREREQygEKdiIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBFOpEREREMoAv1RUQke7JGEM4HKauro5QKEQ4HCYcDtPQ0JBY3t+6SCSC67qJl+d5Ld73XgdgWRaWZWHbduJzfNm27cR2x3Hw+/34fD78fn/i5fP5CAQCifXxz9nZ2WRnZxMMBlu8+3z60SoinU8/eUSkTSKRCNXV1VRVVSXemy/X1tZSV1d30Jfruqn+MpLC7/e3CHzBYJDc3Fzy8vISr/z8/Bafm78KCgrIzs5O9ZchIl2MZYwxqa6EiKReJBKhoqKCiooKysvLKS8vTyzH1zcPb/X19R127kAgQLg2Ap4FnoXlAcZq+dmLf27cBlimcdkQe9FsOf45wbT82Hw5XpjVWIRtYp9tWrwbC7Ab97MNOAZjG3ILg4RCoQ4NqVlZWfTs2bPFq6CgYJ91hYWFFBUVkZWV1WHnFpGuSaFOJMO5rktFRQW7du1KvHbu3MmuXbsoKytLhLbq6upWl21ZFiYMRG2sqBV7j9gQtbBcG1wLy7XAtRrXWbD3etfC2idhdT0mHhqdprCHY8A2GMeAz4ut98WW4+vin3EMPQf2oLq6mmg02urz5+fn07t3b4qKiujdu3eL5ebvfr+/4794EUkLCnUiXVx9fT2lpaWUlJSwfft2SktLWwS4srKyQ29B8oBIYzALx973WW4W4IhmRiBLJ4bGMOiPBT7j92LL+3k3fo9ADx/hcPiQyrYsi969e9OvXz+Ki4v3+x4MBpP8FYpIsijUiaS5aDTKzp07KSkpSQS3+HJJSQkVFRWfWYZt23j1YDU4WGEbq8GJBbUGp0VoU0jreuIh0AQ8CLiYLK9pORBb7je6iN27dxOJRD6zvIKCAvr160f//v0ZOHAggwYNYuDAgQwcOJDevXsnOpiISPpRqBNJA8YYKioq2LJlS4vX5s2b2b59+2ffjotaWCEn9mpwoMHeN8AprHVrhsbWvywPk+Visl3IchOfc4uzqampOWgZgUBgn6A3aNAgBg0aRN++fbEsfY+JpJJCnUgnikajbNu2jQ0bNrBx48YWAa62tvaAxwUCASJ7XKyQA43BLRHiQk7s+TWRdjJOY+DL8mKhLxjFZLsMOKovJSUlB72NHwwGGTp0KEOHDmXYsGGJ5QEDBuA4Tid+FSLdl0KdSBJ4nkdpaSnr169n48aNifdNmzYd8BaYZVmYehur3sGud7DqfViN7zSopU1Sy2BiLXvBxle2iwlGGTShmG3bth0w8AUCAQYNGpQIeiNGjOCwww5jwIABupUr0sEU6kTaqa6ujnXr1rF27VrWrl2bCHChUGj/B7hg1flir2bBzap3sIyCm3Q9xjKxkJcTjb2CsWV/oX3AThzBYJARI0YwcuRIRo4cyWGHHcaIESPIycnp5NqLZA6FOpFW2LNnD2vWrEkEuDVr1rBt2zb2+9/IaxbeGl92rQMNjlrdpFuIt+55Oc0CX+7Bw97AgQM57LDDGDVqFKNHj2bs2LH06tWrk2su0jUp1IkcQFVVFStXrmTlypWsWrWKtWvXsmvXrv3v3GBj1/qwavxYtfFWOIW3dGBNHMdL/36Yv+4ZyDNH9El1dYRY2DNBF5MbweRG8XKjFI3uQVlZ2X7379evH2PGjGHs2LGMHTuWMWPGkJ+f38m1Fkl/CnUiQDgcZt26daxcuZJPPvmElStXsnXr1n32sywLau1YcKvxNwW5qJ4NShfWpPG89K9/7LPeNR4eTT/u/l41mKcO79uZVZPPYHweJjeClxvF5EUZNLEvW7Zs2W9L+MCBAxMB74gjjmDMmDGaVUO6PYU66ZZ27NjBsmXL+OSTT/jkk09Yt27dfjswWPUOVrUfq7oxwNX61NM0zRwoxO3NNd4+6xTy0p9xvFhrXn4Ekxeh+Ogitm/fvs9+Pp+P0aNHM27cuMSrd+/eKaixSOoo1EnG8zyPjRs3smzZssRr586d++4YsbDjAa7arxa4dDZ5PC8/+9lBrrn9hbq9xUPeQ1UD+efhxW2qmiSf8XmYvAheXhSTH6HnqFzKy8v32a+4uDgR8MaPH8/w4cPx+XwpqLFI51Cok4wTDodZvXo1y5YtY/ny5SxfvnyfeU0dx8Hb0zLEEdIzcOnMnHA085568NAP2BWFR6qwFtZDrYfJtTEnZuN9NR/6fPYv9njAe6S6P4+NHdDWaksnSHTI6BHB6xFhxMkDWb9+PZ7XMsjn5ORw1FFHccwxxzBhwgRGjRqlkCcZRaFOurxoNMqaNWtYsmQJH3zwAcuXL9+3Z50LVnUAu8qPXRkLcpanVrh01+ogB1DvYV1fBv+swtrPkIDGD96X8/FuLILsQ/seUMDreozT2JrXGPRyBvn3GeBbIU8yjUKddDnGGDZs2JAIcR999NG+0xtFLOzKAFaVH7sqEHsWTmPAdQnmxKOZ92Qrg1xcvYf1te1YCw8wRmAz3gnZuA8XQ7B14T4e8B6r7scjYwe1qZrS+Qwm9mxeQRhTECFnqH+fnxs5OTmMHz+eY489lokTJ3LYYYdpgGTpUhTqpEvYuXMnixcvZsmSJSxZsmTf52eisRBn7wlgVQaw6nQrtatpV5hrZF27E+uRKgwc9F8/vt29OB/vd20f5sTDKNx1UYcS8goLC5k4cSKTJk1i4sSJFBUVpai2IodGoU7SUiQSYdmyZSxatIhFixaxYcOGlju4YFXFQpxdGcCq8SnEdXHtDnU7o1gTN+73lusBz+mH6PtDDukZuwN5vKYPD40Z3ObjJT20CHk9w2QNdKivr2+xz8iRI5k0aRKTJk1i/PjxGkJF0o4eHpC0sWPHDt59910WLVrEBx980OIHqm3bmD1OLMTtCcSeidPtVGnu0f0/Q3cwVgTsx6rxrtSMBd2dhYVV68eu9cP2XNyVBn+PbLyeDYycPpjVq1ezbt061q1bx2OPPUZWVhYTJkzghBNO4MQTT6S4WL2lJfXUUicp47ouy5cv5+233+bdd99l06ZNLXcI29gVAeyKrFiQ0/AiGc9MncC8Jx5o9XHLwiGqPh/klE/WtvrYNw4fxXd+/XU+Oan151UrXfdhfB5ezzBerwYKj8zbZ/aLESNGMHXqVE488UTGjh2L4zgpqql0Z2qpk04VCoV47733eOutt3jnnXeorKxMbLNtG1PhJIKcVatbqt1OK/7GXBYOce4rVzQeB8+E/tymU+Y1NBDek8XI5y8DINCzoU0BTzKbFbVxyrJxyrKpWmvw5xTh9WrgyHNHsGLFCtavX8/69ev5xz/+Qc+ePRMteJMmTSInJyfV1ZduQqFOkq6iooJ33nmHt956i/fee6/lcCMRK9YSt7uxNU6zNchn2DvMxdVkt+35ppq9nouKBzyFOzkQCwurzodd52P1X3bg88UCnlfYQM5wP3v27GHu3LnMnTsXv9/Psccey6mnnspJJ51Ez549U119yWAKdZIUO3bs4LXXXuPNN99k+fLlLeduDNk4u7Oxy7OwKv1qjZPP9GFDA+e/ennTiv006C0aPaJNt1/fHTNiv+ubt975CxpYefIDrS5bugcrauPsCuLsChJeY/D38OMVNlA8uRfbtm1LdPi64447OProoznttNM4+eSTNY2ZdDg9UycdZteuXbz22mssWLCAFStWtNhm1fhirXHluq0qB9f8uboWYe4zflL1qazmnZ/eQsB1D/lcYcfhhNuuo6xH/iHt3zzcPV7Th4fGDmnVLWPpXgwGE3Txiho4bMYA1qxZk9hmWRbjxo3j1FNP5dRTT6Vfv34prKlkCoU6aZeysjJef/11FixY0KJFzrIs2OPDKWtskWvQQ8NyaMyJR/O7R+455DDX3C0PPcVFby4+5HHqHjl5Mj//+gWtrqO/oIFfHfOCOklIq5isKG7vBsaePZSPP/64xbaxY8cyffp0pk2bphY8aTOFOmm1yspKFixYwPz58/noo49a3Fq1Kv3YZdk4u7Owwgpy0nq+4UP55Od9WxXm4rLCER68635OWLP+M/ddOHoE3/jht2nw+9tQS/BV+Bjxs4VtOlbEBFzcogbGfXEEy5Yta/EH8bHHHsv06dM59dRTycvLS3FNpStRqJNDEg6HWbhwIfPmzWPhwoVEo9HENqvKj12WhVOWrSAn7eYbPpRPruvb5uOzwhF+/eDzfGnxIvz7SYYRLF7JO5If3faVNgc6AH+Fj+EKddIBjN/F693A2HOHtnh0JRAIcPzxxzN9+nROOOEEDXYsn0mhTg7IGMOKFSuYN28e8+fPp7q6OrHNqvFh74p179etVelovhHD+ORnrZ++y1/mY/jPY0GrpwnxeTZwNLsIEqUeHx/Rh7kMZ4+VHTvP4EF88sv+rT+PAp0kiclycfuEGHxabzZu3JhYn5uby6mnnsrMmTM5+uijY4+4iOxFoU72sX37dl5++WXmzZvHtm3bmjY02Di7srF3BrHr1HFakqe1rXX+Mh/Df/Fu2zotWBa+QQNbFe4U6iTZEtOW9QlReEwuu3btSmwbOHAgM2fOZObMmepgIS0o1AkADQ0NvPHGGzz//PMsXbq0aYNrxW6t7szGqgyo16p0ikMJdYFdPob98t3Yh474MdbY8uEbOIBPrh9w0F0V6qQzGQymRwS3b4jsERZ1dXVA7Pm7SZMmMWvWLE466SQCgUCKayqpplDXzW3YsIHnnnuOefPmUVVVBTT2XC334+zMxt6djeUpyEnnOlioS4S5ZP7osqyDhjuFOkkVYxu83iHGXTiCDz/8MLG+R48enHHGGcyaNYtRo0alroKSUgp13VB9fT2vvfYazz33XMvx5EI2zo4gzo6gOjxISu0v1HVKmNvbAcKdQp2kA5Mdxe0bovC4nBa3Z8eOHct5553HtGnTyM7OTmENpbMp1HUjGzZs4JlnnuGVV16htrYWAMdxMDt82DuC2BW6vSrpI95ZIiVhbm/Nwp2/wsfw61JcH5FmDAbTM8zJVx7Lm2++SSQSASAvL49Zs2Zx7rnnMniwxlTsDhTqMpzrurz99ts89dRTLZ+Vq3caW+WysSJqlZP04xs+lHVzBqQ+0DXjGzSQtZcPUSudpC3j83D71dP3xHxKSkoS6ydOnMh5553HiSeeiM+njm6ZSqEuQ1VWVvLCCy/w7LPPUlpaCoBt27DTj1MSVKcH6RosK20CXUI61klkLwaD1yvM5O8ewcKFCxODG/fp04cvfOELfOELX6BXr14prqV0NIW6DLNu3TqeeuopXnnlFcLhcGxlxMIpDeKU5mhMORGRbsZkubjFdeSPD7Bnzx4gNrDxjBkzmD17NsOHD09tBaXDKNRlAGMM7777Lo899liL3lBWjQ9new52mXqwioh0d8aK9Zwddd5AVq5cmVg/ZcoULrzwQiZOnKhBjbs4hbouLBKJ8Oqrr/L444+zYcMGoLHjQ6kPpyQHq8qvW6wiItKCwWDyI5xwxXjefPPNxK3Z4cOH8+Uvf5np06drzLsuSqGuC6qtreW5557jiSeeaOrGHm28xbo9R8ORiIjIITHZUdwBdQQOiw13BVBYWMgXv/hFzj//fPLz81NcQ2kNhboupKysjCeffJJ///vf1NTUxFaGbZxtOTilQSzXTm0FRUSkSzKOh1tcT+HkYKKxIDc3l/PPP5/Zs2erU0UXoVDXBezYsYNHHnmEF154ITH+kFXn4GzLxd6ZjWV0i1VERNov/tzd4JlFicd6AoEA55xzDl/5ylc012yaU6hLYyUlJTz88MPMnTuXaDQKgFXlx9mag12epeflREQkKQwGr7CBkV/sz6pVq4DYM9tnnnkmF198MYMGDUpxDWV/FOrS0LZt2/jHP/7Byy+/jOu6AFh7/Pi25GFX6uFVERHpHAaDKQgz7pLhiQHs4+HukksuYcCA/c+PLKmhUJdGSkpKeOCBB5g3b15TmKsI4NuSi12lMCciIqnj5Yc59tLRLFq0CIiFu1mzZnHJJZfotmyaUKhLA7t37+bhhx/mX//6V+I2q10ewNmSi12tMCciIunDyw9z9HcO4/333wfA7/dz9tlnc/HFF9OnT58U1657U6hLoerqah577DGefPJJQqEQ0NgytykPu8af4tqJiIgcmNcjzLhvDEvclg0EAlxwwQVcfPHFGgolRRTqUiAUCvHkk0/y6KOPJoYmsar8sTCnZ+ZERKQL8QrCHP61wSxbtgyA/Px8Lr74Yr74xS+SlZWV4tp1Lwp1ncjzPF5++WXuu+++xDhAVq0PZ1OuerOKiEiXZTB4vcIMPrtXYiiUvn378p3vfIcZM2bgOBoUvzMo1HWSJUuW8Oc//5m1a9fGVoTsWMvcrmyFORERyQgGg9c3RK+pWYnGixEjRvBf//VfTJ48OcW1y3wKdUm2adMm/vd//5d33nkntiJq4WzJjU3npUGDRUQkAxnb4PavIziexGNGJ554Ij/4wQ8YPHhwimuXuRTqkqS6upr777+fZ599Ftd1cRwHsyWAb3MeVlTTeYmISOYzPo9zf38aTz/9NK7r4vP5mD17Npdccgm5ubmprl7GUajrYPHn5v76179SUVEBgL07gLMxH7vel+LaiYiIdD4vGOXY/xqZGOOuV69efPe73+Xzn/+8nrfrQAp1HWj16tXceeedfPzxx0Bsflbf+nzsPer9IyIi4vZqoP/MfLZs2QLA2LFjueaaaxgzZkyKa5YZFOo6QFVVFffeey///ve/McaAa+Fs1nNzIiIiezNW7Hm77PGG2tpabNvmvPPOY86cOeTl5aW6el2aQl07GGN49dVX+X//7/+xZ88eAOyd2fg25mGF1ZwsIiJyIMbvcsovJvDqq68CUFhYyBVXXMG0adOwLDWItIVCXRuVlJTwhz/8IfF8gFXr4Pu0h+ZoFRERaQWvoIF+n89j69atAEycOJGrr76aQYMGpbhmXY9CXStFo1GefPJJ7r///tjUXh6xIUq25upWq4iISBsYy+AOqsUZFSEcDpOVlcWcOXP40pe+pI4UraBQ1wrr1q3jtttuY/Xq1QBYlX5863qoV6uIiEgHMNlRxl82jA8++ACAI444gp/97GcMGzYstRXrIhTqDkE0GuWRRx7hgQcewHVdiFr4NuRh7whqNggREZEOZDB4/erJmuBRW1uL3+/nm9/8Jl/96lfx+dSIcjAKdZ9h48aN3HzzzaxatQoAe3cWvnX5WBE1B4uIiCSLCbgc98NRLFy4EIBRo0bx85//nMMOOyzFNUtfCnUH4LouTzzxBPfddx/hcDjWOvdpvuZqFRER6SQGg9cnRM6k2PBhfr+fSy+9lNmzZ2Pbmp1pbwp1+1FSUsJNN93EsmXLALDLA/jW9dAwJSIiIilg/C4TrxqdmEf92GOP5ec//zl9+/ZNcc3Si0LdXv7zn//w+9//PjYBsWvhW69n50RERFIt/qydb3yEUChEXl4e11xzDaeffnqqq5Y2FOoa1dfXc9ddd/Hiiy8CYFX58a8uwGpQ65yIiEi68LKjjPx6X1auXAnAjBkzuPrqq8nJyUlxzVJPoQ5Ys2YNN954I5s3b8ayLOxNOTibc9U6JyIikoaMZbjo3lk89NBDeJ7H4MGDufHGG7t9J4puHeqMMTz99NP85S9/IRKJQIONf00BdqVmhRAREUl3Xn6YntN97Nq1i0AgwA9/+EPOPvvsbjvNWLcNdfX19dx+++2JOefs3Vn41vbAiqo3jYiISFdhfB7H/ugw3n33XQCmT5/Otdde2y1vx3bLULd582auv/56NmzYAAacDXk423N0u1VERKQLMhjcgXUwsh7XdRk8eDA33XRTt5uJotuFutdee41bb72Vurq62O3W1QXYVbrdKiIi0tU1vx0bDAb55S9/ycknn5zqanWabhPqXNflnnvu4bHHHgNi87b6VxVoZggREZEMYnweR35/EEuXLgXgm9/8Jt/85je7xWDF3SLU1dXVceONNyYGLXS25uBszNPtVhERkQxkLMM5fziZp556CoCpU6fyy1/+ktzc3BTXLLkyPtSVlJTws5/9LPb8nAe+NT1wyoKprpaIiIgkmdu3HntciHA4zJAhQ7jtttsYOHBgqquVNBndFrls2TIuu+yyWKAL2/iXFSrQiYiIdBPOziBmcR59+vRh8+bNfO9732PFihWprlbSZGyomzdvHj/60Y/Ys2cPVo2PwIeF2DX+VFdLREREOpFd46fyecOYMWOorKzkRz/6EQsWLEh1tZIi426/GmN49NFHufvuuwGwy7LwrSnA8vT8nIiISHdlbMOkH4/i7bffBuCyyy7joosuyqiBijMq1Lmuy5/+9KfEg5HqECEiIiJxBsMX7jyFJ598EoAvfOELXHXVVThOZoyEkTGhrqGhgZtuuonXXnsNAGd9Hr7tmd3LRURERFov2r8OM6oWz/P43Oc+xy9+8QsCga4/Zm1GhLra2lquu+46Pvzww8YergU4ZdmprpaIiIikKbcohHVUHZFIhEmTJvHb3/6WYLBrd6bs8qGuurqaa6+9lpUrV0LUwr+yJ3Zl10/bIiIiklxeQQO+yQ3U19dz5JFHctttt9GjR49UV6vNunSo27NnD9dccw1r166FiIV/RS/sWvVwFRERkUPj5UXIPjlCdXU1w4cP5w9/+ANFRUWprlabdNlQt3v3bq666io2btwYG4NuRS/sOl+qqyUiIiJdjJcTpccZsWwxdOhQ7rzzzi4Z7LrkOHU7d+7kyiuvjAW6Bhv/cgU6ERERaRu7zkf1S9C3b182bdrEj370I8rLy1NdrVbrci115eXlXHHFFWzZsgVCNoHlvbAaFOhERESkfUx2lILP2+zatYuhQ4dy1113UVhYmOpqHbIu1VJXWVnJVVdd1SzQFSrQiYiISIewQj4q53r06dOnS7bYdZlQV1NTw7XXXhubx7XBJrCiF1ZDZgwWKCIiIumhebDbuHEj1157LdXV1amu1iHpEqGurq6On/zkJ6xevTrRKcIKqYVOREREOp4V8rFnrkdhYSHr1q3juuuuo6GhIdXV+kxpH+qi0Sg33HADK1asiI1D93FP7HoFOhEREUkeO+Sj+j+Qm5vLsmXL+NWvfkU0Gk11tQ4qrUOdMYY77riDxYsXg6tx6ERERKTz2LV+wgsDBAIB3nnnHX73u9/heV6qq3VAaR3q/v73v/Piiy+CAd+qAuwaBToRERHpPHZVAO/DII7j8NJLL3HvvfemukoHlLah7vnnn+eBBx4AwLcuH6ciK7UVEhERkW7JKc/GWpkLwCOPPMLcuXNTXKP9S8tQ99577/H73/8eAGdzLs6OnBTXSERERLozZ2eQSy65BIDbb7+dDz/8MLUV2o+0G3x427ZtXHrppVRXV2PvzMa3pgcWVqqrJSIiIt2cwTD1+iNZsGABPXr04K9//SuDBg1KdbUS0irU1dXV8f3vf58NGzZgVfnxL++FZRToREREJD0Y2zDi24WsWrWKIUOG8Ne//pW8vLxUVwtIo9uvxhhuvvnmxODC/lUFCnQiIiKSVizPYv2DZfTp04fNmzdzyy23kC7tY2kT6h566CHeeOMN8IgFurBmixAREZH0Y0Uc9rzi4vf7efPNN3n88cdTXSUgTULdkiVLuP/++wHwfdoDuzqQ4hqJiIiIHJhd4+eKK64A4J577kmLjhMpf6auoqKCb3/72+zevRu7NBv/uoJUVkdERETkkBgMp/76aF555RUKCwv529/+RlFRUcrqk9KWOs/zuPnmm9m9ezdWnYNvfY9UVkdERETkkFlYvP7rjxg+fDjl5eXcdNNNKZ1xIqWh7p///CeLFi0CLzZjhOWpY4SIiIh0HZZnsfXJKrKysnj//fd56qmnUlaXlIW6NWvWcPfddwPgW5+PXacpwERERKTrset9/Nd//RcAd999d2wkj1TUIxUnjUQi3HLLLbiui12WhV0aTEU1RERERDrEny94hClTphAOh/ntb39LOBzu9DqkJNT94x//4NNPP4WIhe9TzRghIiIiXZuFxdL/+ZSCggLWrl3L3//+906vQ6eHurVr1/KPf/wDiA1fYkXSYlQVERERkXaxIg61C2PLjz/+OGvXru3U83dqoopGo9x6661Nt13Lsjrz9CIiIiJJ5ZRnc9ppp+G6Lrfffjuu63bauTs11D399NOx1Bqx8H2ar9uuIiIiknHe+d0KcnNzWbVqFc8++2ynnbfTQl1ZWVnTrBEb87EimgZMREREMo8VdrjsssuA2GwTO3fu7JTzdlqou/vuu6mrq8Oq9mHvyO6s04qIiIh0uj998WGOPPJI6uvr+ctf/tIp5+yUULds2TJefvllMKi3q4iIiGQ8C4s1D5dgWRbz589nxYoVST9n0kOd53ncddddsZPtCGLXaJBhERERyXx2rZ9Zs2YB8Oc//xljTHLPl9TSgQULFsQ6R0QtfBvzkn06ERERkbTxyg2LCAaDfPzxx8yfPz+p50pqqItGo9x3330AONtysKIak05ERES6DyvicNFFFwGx/gXJnGkiqSnrhRdeYNu2bRC2cbblJPNUIiIiImnpH995jt69e1NaWsqLL76YtPMkLdQ1NDTw4IMPAuBsycXy1EonIiIi3Y/lWXzta18D4OGHHyYSiSTlPElLWs8//zxlZWUQsnFKg8k6jYiIiEja+98LH6OoqIidO3cyd+7cpJwjKaEuGo3yf//3fwD4tuZiGQ1hIiIiIt2XZazEs3UPP/ww0Wi0w8+RlFD3+uuvU1paChELe6da6URERETu/ur/UVhYSGlpKa+88kqHl9/hoc4Yw6OPPgqAsz0Hy1MrnYiIiIjlWcyePRuAJ598ssPHrevwULdkyZLYuHSuhVOiHq8iIiIicX//1tNkZWWxdu1aPvroow4tu8ND3TPPPBMreEe2xqUTERERacaK2syYMQOItdZ1pA5NXWVlZbz99tsAOKVqpRMRERHZ20u/fgeAt956KzZSSAfp0FD34osv4rouVpUfu87XkUWLiIiIZAS7zsf48ePxPI+XXnqp48rtqIKMMbzwwgsAGpdORERE5CBWPr0JgLlz53ZYh4kOC3Uff/wxJSUl4FrYZdkdVayIiIhIxrHLsggGg2zZsoUVK1Z0TJkdUgrwn//8J1bg7iwNYyIiIiJyEJZrc+qppwJNGaq9OiTURaNR5s+fHytwl1rpRERERD7Lq79/F4hN2uB5XrvL65BQt3z5cioqKmIzSOwJdESRIiIiIhnN3hMgLy+P3bt3d8gt2A4Jde+8E+uaa5dnaZ5XERERkUNgGYupU6cC8Nprr7W7vA4JdQsXLowVVp7VEcWJiIiIdAv/uTN2C3bRokXtLqvdoW7Lli1s3rwZPHTrVURERKQV7D0BHMdhy5YtbN++vX1ltbcyH3zwAQBWlR/L1bRgIiIiIofKcm2OPPJIAN577712ldXuFLZ06dJYQZVqpRMRERFprcmTJwMpDnXGGD766KNYQQp1IiIiIq324JVPAbBixYp2zS7RrlC3ZcsWysvLwQOr2t+eokRERES6JavGj8/no7y8PDY7Vxu1K9StWrUqURkNZSIiIiLSepZnMXr0aIB2jVfXrlC3Zs2aWCE1vvYUIyIiItKtxTtLrFy5ss1ldEios2p061VERESkrZ656WUA1q9f3+Yy2hzqjDGsW7cOAKtWLXUiIiIibRXPUuvXr29zZ4k2h7qKigpqamrAgFWnUCciIiLSVla9D9u2qaysZPfu3W0qo82hbsuWLbGFBludJERERETawfIs+vfvD8DWrVvbVEabQ138hFa9WulERERE2ise6to6rEmbQ118fjIr5LS1CBERERFpVFxcDEBpaWmbjm9zqIvf77UaNN+riIiISHvN/dMCIAWhrry8HAAropY6ERERkfaKZ6p4xmqtdoc6wmqpExEREWm3SKzjaVVVVZsOb3Mii5/QiijUiYiIiLRXPFNVVla26fg2J7L6+vrYgqvhTERERETaLRqLZZ3eUhcPdZanUCciIiLSXvFMFQ6H23R8m0Kd67pNJ1RLnYiIiEj7ebG3SCTSpqnC2hzqEto2PZmIiIiI7Icxpukxt1ZoU6izbXWOEBEREUmWttyCbX86091XERERkfYzTaHK52v9NKxqqRMRERFJM8FgsNXHtDnUBQKB2AdHD9WJiIiItJsT6ymRlZWF47R+xq42N7nl5uYCYBorICIiIiJtZ3yxhrKcnJw2Hd/mUJc4oU8tdSIiIiLt5qQo1OXl5QFNqVJERERE2s74Ync/8/Pz23R8m0NdUVFRbMHvHnxHEREREflsgVio6927d5sOb3Oo69OnDwAmS8/UiYiIiLSXaQx1iYazVmpzqIunSBNQS52IiIhIe535vVOBFIS6fv36AWCyFepERERE2mv79u0A9O/fv03HtznUDRkyBAATVKgTERERaa/NmzcDMHjw4DYd3+ZQlzhhlqex6kRERETawTge5eXlQFPDWWu1OdTl5+dTWFgYq4ha60RERETaLJ6lCgsLE8PGtVa7JnEdMWJErCK5kfYUIyIiItKtmbxYlho5cmSby2hXqBs7diwAXr5CnYiIiEhbnfnDUwAYM2ZMm8toV6g7/PDDATD50fYUIyIiItKtrV69GmhqMGuLDmmpMzlRjK3pwkRERERayzgeGzZsAFLYUtenTx+Ki4vBAtMj3J6iRERERLolr0cE13UZMGAAffv2bXM57Qp1AMcee2ysQj0V6kRERERaa/ZvPw/AhAkT2lVOx4W6AoU6ERERkdZaunQp0JSp2qrDQp3Ji2J8GoRYRERE5FAZv5voJJHyUNe7d29GjRoFFniFDe0tTkRERKTb8ArDGGMYM2YMvXv3bldZ7Q51ACeddFKsYkUKdSIiIiKH6vhvHQXA1KlT211Wx4a6ng0a2kRERETkEBjb8P777wNpFOpGjhwZG9rE0S1YERERkUPhFYYIhUL079+/XdODxXVIqLMsizPOOAMAr299RxQpIiIiktEmfetIAM444wwsy2p3eR0S6oCmUNczrF6wIiIiIgdhfB6LFy8GmjJUe3VYqBs2bFhsagsbvD6hjipWREREJOO4fUK4rsvo0aMZOnRoh5TZYaEOYObMmQC4xXUY1GFCREREZG8Gw6BphQCcffbZHVZuh4a6M888k+zsbEyui+kR6ciiRURERDKC6RFh06ZNBIPBDrv1Ch0c6vLy8hKVc/vXdWTRIiIiIhnh5B8dA8D06dPJzc3tsHI7NNQBnHfeeUBsIGITcDu6eBEREZEuy2S5vP7660BTZuooHR7qRo0axTHHHAM2uAPVWiciIiISd86tp+K6LhMnToxNs9qBOjzUAXzta18DwC2u1/AmIiIiIsSGMXn++ecBuOiiizq8/KSEukmTJsWGN3EM7gC11omIiIhc9NezaGhoYMyYMRx33HEdXn5SQp1lWU2tdQPqMI5a60RERKT7Mo7HU089BcTuaHbEDBJ7S0qoAzjllFMYMmQI+IyerRMREZFu7ct/mUl1dTVDhgzh5JNPTso5khbqbNtmzpw5QKzDhPGrJ6yIiIh0P8bv8sQTTwBw6aWX4jhOUs6TtFAHcOqpp3L44YeDY4gOqU3mqURERETS0qxbTiIUCnHkkUcmrZUOkhzqLMvi+9//PgBecT1edjSZpxMRERFJKyY7ynPPPQfAZZddlpRn6eKSGuoAJkyYwAknnAAWuMNrkn06ERERkbQx6YdjcV2XKVOmMGHChKSeK+mhDuB73/sejuPgFTXg9mrojFOKiIiIpJTbq4G3334bx3H4wQ9+kPTzdUqoGz58OLNnzwYgOqIaY5vOOK2IiIhIShjb0Gd6EIALL7yQYcOGJf2cnRLqAL75zW/Sp08fCLq4g9RpQkRERDLXRffMoqSkhD59+vCNb3yjU87ZaaEuJyeHK664AgB3UK06TYiIiEhG8rKjPProowBcfvnl5OTkdMp5Oy3UQWyIk8mTJ4MN0VFVGHQbVkRERDKHwTD6G8WEw2EmTZrEaaed1mnntowxnZqsSkpK+OY3v0l9fT3Ohjx823I78/QiIiIiSRMdWIs7vIbc3FweeOAB+vXr12nn7tSWOoD+/fs33YYdWoMX1G1YERER6fq8YBRnTBiI3XbtzEAHKQh1AGeddRZTpkyJ3YYdXanbsCIiItKlGQwjL+5LOBxmypQpzJo1q9PrkJJQZ1kWP/3pT8nPz8fkR3E1hZiIiIh0YV+++0xWrlxJXl4eP/nJT5I6c8SBpCTUAfTu3Zurr74aAHdwLV6BBiUWERGRrsfr2cDDDz8MwLXXXhsbwi0FUhbqAE4//XTOOeccsCAypgrjd1NZHREREZFWMX6XvJMtjDGce+65TJs2LWV1SWmoA7jyyisZMWIEBDwiY/R8nYiIiHQNBsO47w+hoqKCww47jMsvvzyl9Ul5qMvKyuLGG28kGAxiekb0fJ2IiIh0CV+5ZyZLliwhGAzy3//932RlZaW0PikPdQBDhgzhmmuuAcAdUotbFEpxjUREREQOzC0K8dBDDwFwzTXXMHTo0BTXKE1CHcCMGTOYPXs2ANHRVXi5kRTXSERERGRfXm4E3zGxDp5f/vKXmTFjRoprFJM2oQ7g+9//PhMnTgTHEDl8D8bvpbpKIiIiIgnG51H0+QChUIhJkybxve99L9VVSuj0acI+S3V1NZdddhlbt27FqvTjX9ELy3T+WC8iIiIizRnLcPh/9eejjz5i4MCB3HPPPeTn56e6Wglp1VIHkJ+fzy233EJeXh6mIEJ0VJV6xIqIiEhKGQwn3zCejz76iJycHG655Za0CnSQhi11cYsXL+anP/0pruvibM3BtzG9LpyIiIh0H9Fh1biD6nAch9tvvz32uFiaSbuWurjJkyfzs5/9DAB3UB3RARrqRERERDpfdEAt7qA6AK677rq0DHSQxqEO4Mwzz+Syyy4DwB1Rg9tbQ52IiIhI53F7h3BH1ADwve99L216uu5PWoc6gIsuuogLLrgAgOjoStxemiNWREREks/t1YA5MhboLrjgAr761a+muEYHl/ahzrIsLr/8cj73uc+BDdHD9+AVKNiJiIhI8ng9G7Am1OK6LtOnT+fyyy/HstJ7NI60D3UAjuNw/fXXM3XqVLAhckQlXo9wqqslIiIiGcjrEcY+rp5IJMLJJ5/Mz3/+cxzHSXW1PlPa9n7dn3A4zC9+8QsWLVoEroV/RU/s6kCqqyUiIiIZwssP4zs+RH19Pccffzw33XQTfr8/1dU6JF0q1AE0NDRw3XXX8f7770PUwv+xgp2IiIi0n5cfJnBimNraWo477jhuvfVWsrKyUl2tQ9blQh1AKBTiJz/5CR9++GGsxe6TntiVCnYiIiLSNl5BA86kEKFQiAkTJnDbbbcRDAZTXa1W6RLP1O0tOzub2267rWme2CMr1CtWRERE2sTt1YB1XB2hUIjJkyfzu9/9rssFOuiioQ4gGAxyyy23cNJJJ8V6xR6xB7dI49iJiIjIoXOLQpijqgmHw5x88sncfPPNZGdnp7pabdIlb782F41Gufnmm3n11VfBgG9dD5wdXS9di4iISOdy+9XhjanF8zymT5/Oz3/+c3w+X6qr1WZdPtQBuK7L73//e55//nkAnE25OFtysUjv8WRERESk8xkM7pBa3CGxKUjPOussrr322i4xbMnBZESoAzDGcO+99/Lwww8DYJdm4/u0B5ZRsBMREZEYYxmiI6vw+sUe2frGN77Bt7/97bQfWPhQZEyoi3v22We588478TwPqzyAf3UBlttlHx0UERGRDmJsj2OuGsGiRYuwbZurr76aL3zhC6muVofJuFAH8NZbb/HrX/+ahoYGrBof/k96YoW7dpOqiIiItJ0JuAy7uJA1a9aQlZXFf//3f8dmqsogGRnqAD755BN+9rOfsWfPHmiw8a/siV3TNUaEFhERkY7j5UXInwbl5eUUFBRw2223ccQRR6S6Wh0uY0MdwLZt27juuuvYuHEjeOBb2wNnl3rGioiIdBdun3rs8SHC4TDDhw/nlltuYcCAAamuVlJkdKgDqK2t5Te/+Q3vvPMOAM6WHJxNeeoZKyIiksEMBndoDe7gOgCmTp3K9ddfT05OToprljwZH+ogNuTJ3/72t6aeseUBfOpAISIikpGM43Hc1SNZuHAhABdffDFz5szBtjP79363CHVxr776KrfeeivhcBjqHfyrCrBr9ZydiIhIpvByI/SelUVJSQmBQICf/OQnzJgxI9XV6hTdKtQBrF69muuvv57S0tLYc3af5mPvCOp2rIiISBdmMHj96rGPbCAcDjNgwABuvPFGRo8eneqqdZpuF+oAqqqquPnmmxPP2dk7Ggcq9hTsREREuhpjG6KHNQ0ofOKJJ/KLX/yC/Pz8FNesc3XLUAfgeR6PPvoo9913X2yg4lofvlUF2PVdd843ERGR7sYLRhk8u4D169dj2zZz5szhoosuyvjn5/an24a6uKVLl/LrX/+a8vJycC18G/KwS3U7VkREJJ0ZDF5xPfYRsdutvXr14le/+hXHHntsqquWMt0vxu7lmGOO4b777mPixIngGKIjq4keXonxeamumoiIiOyH8XlMuW4M0ZHVhMNhpkyZwt///vduHehALXUJnufxxBNPcPfddxONRmOzUKzpgV2ZleqqiYiISCOvIEzB5xzKysrw+/1cdtllfOlLX+qWt1v3plC3lzVr1nDjjTeyefNmAJytOTib89SJQkREJIWMHRtM2BtUjzGGIUOGcMMNN3Sr3q2fRaFuP0KhEH/605/497//DYBV5+Bb2wO7OpDimomIiHQ/Xn6Y4rPz2LJlCwDnnHMOl19+OcGgpv5sTqHuIN5++21uv/32WCcKA862xinGjFrtREREks1YBndIDWZoCM/z6N27Nz/5yU84/vjjU121tKRQ9xmqqqr4n//5H+bNmwc0ttqtKcCu0UwUIiIiyeLlRRh4Xg82btwIwJlnnsmVV17Z7caeaw2FukP05ptv8vvf/75lq52etRMREelQxvZwh9ZiBsda5woLC7nmmms4+eSTU121tKdQ1wqVlZXcddddvPrqq7EVIRvfpz1wKtRDVkREpL3cXg0UTctix44dAEyfPp0f/vCHFBQUpLhmXYNCXRssXLiQP/7xj7H5YwF7Vxa+9flYESfFNRMREel6jN8lOqIar08DAMXFxVxzzTVMmTIlxTXrWhTq2qi+vp7777+fJ598Etd1IWrh26jZKERERA5VfFaI7AmGmpoaHMdh9uzZfOtb31LP1jZQqGunNWvWcMcdd7Bq1SoArGofvvX5Gv5ERETkILz8MMO+1Ju1a9cCMGbMGH784x9r3Ll2UKjrAK7r8uyzz3LfffdRW1sLgL0jG9/GPN2SFRERacb4XaLDavD6hQDIy8vjO9/5Dueddx6Oo9+Z7aFQ14HKy8u55557ePHFF2MrohbOllyc7Tka205ERLo1Yxnc/nVkjfOoq6sD4KyzzuLSSy+lV69eKa5dZlCoS4JPPvmEO++8s+mWbJ2DsyEfuyKg5+1ERKRbMRi8wjADZvZITME5duxYfvSjH3HEEUekuHaZRaEuSTzPY+7cudx9993s2bMHAGuPH9+GfOxaDVwsIiKZz8uNMO7bQ1m6dCkABQUFXHbZZcyaNQvbtlNcu8yjUJdk1dXVPPzwwzz11FOEw2EA7J3Z+DblYTXo2QEREck8JsslOrQGr2/sublAIMDs2bP52te+Rl5eXoprl7kU6jpJaWkp9957L6+88kpshQfO9hycLblYrv5aERGRrs84Hu6gWpzDoomGjBkzZjBnzhyKi4tTXLvMp1DXyVatWsX//u//JpqiiVg42xo7U2jKMRER6YKMbXAH1BEcBzU1NQAcffTR/OAHP2Ds2LEprl33oVCXAsYYFi5cyF//+tfERMWEbZytuTglQfWUFRGRLsFYBre4nh4TfVRUVAAwfPhw5syZw0knnYRl6fdZZ1KoSyHXdXn11Vf5+9//zvbt22MrQza+LbnYOxXuREQkPRkMXr8QhVOz2blzJwADBw7kW9/6FqeffrrGm0sRhbo0EI1GefHFF3nwwQfZtWtXbGW9Ewt3u7IV7kREJC0Yy+D1rafvqfmJxog+ffrwjW98g1mzZuHz+VJcw+5NoS6NNDQ08K9//YuHH344MQwKIRvf1lzsHWq5ExGR1DCWwetXT9HUHHbs2AHEhif5+te/zrnnnktWVlaKayigUJeW6urq+Ne//sX//d//UV5eHlvZ0PjM3Y6gOlSIiEinMLbBLa6j56Qsdu/eDUBRURFf/epXOeeccwgGgymuoTSnUJfGGhoaeO6553jssceabsuGbZxtOTilQQ2FIiIiSWEcD7d/PXlHO1RWVgLQt29fvva1rzFr1iy1zKUphbouIBwOM3fuXB555BFKS0tjK6MWTmkwNhRKWA+kiohI+5mAizugjuwxFrW1tQAMGDCAiy++mDPPPBO/XzMipTOFui4kGo3yyiuv8NhjjzUNheKBXZaNsy1H04+JiEibeLkR3IF1WP0juK4LwJAhQ/j617/O6aefrg4QXYRCXRfkeR6LFi3i8ccfbxrEGLAqAvi25WDtCWCh5+5EROTADAbTM0x0UB2mZzixfsKECXzlK1/h+OOP1/ysXYxCXRe3evVqHn/8cV577bXEX1dWrQ9ne05sOBR1qhARkWaMbfD6hBg8o4gNGzYA4DgOp512Gl/+8pc1A0QXplCXIUpKSnjyySd5/vnnqa+vj62MWDg7grFZKhrUdC4i0p2ZLBe3fx25R/ioqqoCIBgMcs455/ClL31Jc7NmAIW6DFNdXc3zzz/Ps88+S0lJSWylAbsiEOtUoVuzIiLdhsHg9Qrj9a/DFEWI/8ovLi7m/PPP5+yzzyY/Pz/FtZSOolCXoVzXZfHixTz99NMsWrQosd6qd7BLgrHx7jQkiohIRjI+D7dfPcUnFbBt27bE+kmTJnH++edzwgknaCqvDKRQ1w1s2bKFZ599lrlz51JTUxNb6Tb2mt0RxKryq/VORKSLMxhMfgS3uB7/EENDQwMAeXl5fP7zn+e8885j8ODBKa6lJJNCXTdSX1/PK6+8wtNPP8369esT6606B3tHEGdnNlZEf7mJiHQlxu/i9g0x8NRCNm/enFg/cuRIzj//fKZPn66ZH7oJhbpuyBjDJ598wvPPP8/8+fObOlZ4YJdnYe8IYlfo2TsRkXSVeFauuB6rbzQx+kF2djaf+9znOPvssxk3bhyWpZ/j3YlCXTdXV1fH/PnzeeGFF/j444+bNjTYODuC2LuysevVc1ZEJB142VG8fvX0OiaHsrKyxPojjjiCs846i2nTppGbm5vCGkoqKdRJwvr163nhhRd4+eWXE93dAaxqH/bOIE5ZNlZEnStERDqT8Xu4vUN4fesx+dHE+oKCAs4880zOOusshg8fnsIaSrpQqJN9hMNh3nzzTV5++WXee++9RLN+fGgUe2c2drkGNhYRSRZjG7yiEF6fEFYfN/Fz2HEcJk6cyFlnncXUqVM1F6u0oFAnB1VRUcH8+fOZN28eK1eubNrgWthlWTi7sjX2nYhIB4hP2+X2DZE11Gp63hkYO3YsM2bMYNq0aRQWFqawlpLOFOrkkG3ZsoV58+Yxb968poGNASIW9u5snLIsBTwRkVYwGExBGLd3Az0Oz2LPnj2JbQMGDGDGjBmcccYZGopEDolCnbSaMYYVK1Ywb948XnvtNSorK5s2Ng94lQEso4AnItKcsZqCXP6YQIufoQUFBUybNo0ZM2ZwxBFHqPeqtIpCnbRLNBrlww8/ZMGCBbzxxhv7CXhZsQ4WCngi0o0Zy+D1DOP1DpE70k91dXViW0FBAaeccgqnnnoqxx57LD6fRhyQtlGokw4TjUb56KOPEgGv+W0EolZsDLzyrNgYeJqiTEQynHG82FhyhQ3kjPA1zegD9OrVi1NOOYXTTjuNo48+WkFOOoRCnSRFPOC99tprvPHGG1RUVDRt9MCqCuDsjoU8q0GzWIhIZjBZLm5hA15RA3ZRU69VgMLCQk455RQ+97nPcdRRR2nuVelwCnWSdK7rsnLlSt566y3efvttNm3a1GK7VevDjge8Gp86WohIlxGfb9UrjLXImdxoi+1Dhgxh6tSpTJ06lSOPPFJBTpJKoU463ZYtW3j77bd5++23Wb58OZ7nNW0MW9h7Yrdo7T1ZGuxYRNKO8Xt4PRvweoUpGBNscSfCcRzGjx/P1KlTOfHEE9VrVTqVQp2kVGVlJe+++y5vvfUWixcvbjEuEzTOZlGRhb0ngFXtV2cLEel0xmpsjesVC3Imr2VrXE5ODlOmTGHq1Kkcf/zx9OjRI0U1le5OoU7SRiQS4eOPP2bRokUsXryYtWvXttwhamHvCcRa8SoDEHJ0q1ZEOpzBQLYb663aK0zWIHufPzhHjRrFpEmTmDx5MuPHj9fMDpIWFOokbe3evZv33nuPxYsX895777UcLgUgZGNXBhIvdbgQkbYyWS5eQTjxIttrsb2goCAR4iZNmkRRUVGKaipyYAp10iW4rsuaNWtYvHgx77//Ph9//DHRaMtbINQ7sYC3xx8LeRGFPBHZPxNoFuJ6RiDbbbHdcRyOPPJIJk+ezJQpUxg1ahS2rWd8Jb0p1EmXFAqFWL58OUuXLmXJkiWsXr26xdABAFadg1UVwK7yY1f5dbtWpJtK3E7tEcHLj2AKwpicfUPcmDFjOOaYYzjmmGMYP348wWAwRTUWaRuFOskItbW1LFu2jCVLlrBkyRLWrVvHPt/aYRu7yo9V5ceuCmDV+tTxQiQDGctgcqN4PcKYHhG8HhEItLydalkWo0ePToS4o446itzc3BTVWKRjKNRJRqqqquKjjz5ixYoVLF++nFWrVu17u9YFq7ox4FX7sav9WFHdXhHpaozPi7XA9Yjg9QgT6GvT0NDQYh+fz8eYMWMYN24cRx11FBMmTCA/Pz9FNRZJDoU66RYaGhpYvXo1y5YtSwS95nMvJoTsWLiraQx5NT4sT0FPJF0Y28PkRWMhLi+Clx/d53k4gB49ejBu3DjGjRvH+PHjGTt2LFlZWSmosUjnUaiTbsnzPDZv3pwIeStXrmTz5s373rI1YNX5YuPlNYY9q063bUU6Q/w2aiy8xUKclW9aDljeaPDgwYkAN27cOIYMGaKODdLtKNSJNKqpqWH16tWsXLmSVatWsXLlSnbt2rXvjh5Y9b7YM3k1Puxaf2xZt25F2sz4vNhzcLmRxiAXxSlg38cmgD59+jB27FgOP/xwDj/8cEaPHq1bqSIo1IkcVFlZWYuQt2bNGqqqqva/c8huCnjxl3rcirSQ6ImaG42Ft9wIXm50n3Hh4vLz8xk7dmwixI0dO5bevXt3cq1FugaFOpFWMMawc+dO1q1bx7p161izZg3r1q2jpKRk/we4ja16dfGXg13n0/AqkvES4S0nislxMTnR2CsYhQMMIdm/f39GjhzJqFGjOOywwxg1ahT9+vXDsvR/ReRQKNSJdIDq6mo+/fRT1q5dmwh8mzZtIhwO7/+AvcNevRN7hXxYnn6BSddhbIPJjmKCLibYMsBxgCcSAoEAw4cPTwS3kSNHcthhh5GXl9e5lRfJMAp1Ikniui4lJSVs2LCBjRs3Jl4HDXsAITsW7poHvXonditXHTQkBYxlMNmNoS3otlgma/+3TSEW3oYOHcqwYcNavPr374/P5+vEr0Cke1CoE+lkzcPepk2b2LhxI1u3bmXLli37H2YlzgANjeEuZGPFlxvfCdu6pSttYjAQ8GJhLasxtGV5seVgFDuH/fY4jcvLy2PQoEH7BLji4mIcR9P1iXQWhTqRNFJZWZkIeM3ft27dSn19/cEP9sBqcGLP6zU4WA2NwS9sx8Jg2AbXUvDrZgwGHIMJeBBoFtayXEx2bJks94C3SuOCwSCDBg1i8ODBDBo0qMWroKBAz72JpAGFOpEuwBjD7t272bZtG6WlpZSWllJSUkJJSQmlpaXs3Llzn7lv98u1sBrsWKteuDH4hRtb+cI2RGysiMJfVxAPa/g9jN/DBGIvstzGZTfW+pblxfb7DI7j0LdvX4qLi+nfvz/9+vWjuLiYAQMGMGjQIAoLCxXcRNKcQp1IBohGo+zevbtF0NuxYwe7du2irKyMXbt2UVNTc+gFeiQCXouwF3+P2lgRK/YebXzX837tYiwDPg/ja/beGNgSwc3vxYKaL/b+Wa1rzeXl5dG7d2969+5N37596d+/P8XFxYlXUVGRnnMT6eIU6kS6ifr6esrKyhIhr3ng2717N3v27KGiooK6urq2ncClZchrfMe1sFwL3MZlz4KoBV58fdM7XuPLkPYthSZWSbAbb282vuMYjNO0jN38816hrdnnAw3z8VmCwSAFBQUUFRXRp0+fRHDr3bt3i8/BYLBDv34RST8KdSLSQigUSgS8+Ht5eXliuaKigpqaGqqrq6murqampuagD9G3mUdTyPOItQQ2LseDH42tg1b8p5hpXA8ttmMgkRHjOyc+N+4QP9Rq3McmFtgal81+1nV07rQsi7y8PPLz88nLy6Nnz5706tWLnj17Jpabf+7Zs6fCmogkKNSJSLt4nkdtbW2LkBdfrqqqor6+nvr6eurq6j5zuav+OHIch2AwmHhlZ2e3+Bx/5eTktAhtzd/z8/PJzc3VfKUi0mYKdSKSFowxRCIRwuEw4XC4xXLzz5FIhIaGBqLRKJ7n4Xkexhhc18UYk1jneV6LdbZtY1lWi/f4a+/1Pp+PQCCA3+/H7/cfdDn+UicCEUk1hToRERGRDKB2fhEREZEMoFAnIiIikgEU6kREREQygEKdiIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBFOpEREREMoBCnYiIiEgGUKgTERERyQAKdSIiIiIZQKFOREREJAMo1ImIiIhkAIU6ERERkQygUCciIiKSARTqRERERDKAQp2IiIhIBlCoExEREckACnUiIiIiGUChTkRERCQDKNSJiIiIZACFOhEREZEM4Et1BUTijDGEQqFUV0NEpFWys7OxLCvV1RBRqJP0EQqFOPPMM1NdDRGRVnn55ZcJBoOproaIbr+KiIiIZAK11ElaCizui2Ua/+awbCzbAssG2wLLwrLj2xrXWxbYFlZ8n8Q2K3FM4gXN1tktt8cOTKwzltX0p0+zMhLrraZzNV9nrFgxiW12rNzYeiuxLX6MaVyX2A5NZdiN+8e30/IcLY5prL6x97Otxf60qGPTOmufbfscQ/N67LWdA6w/QHkHqsc+xxys3MR6s+/xzY5JbG9WlmlcT7PjYttMs/rEtlvNtyX2jW8ziTKt5vtbJrEt8S0WXx8vrnGf2LeCSXyOH2M3fo5ti32OH5fYZhksmo6zG9clXpjEcbZFi/Wx472m44jv7+HEj2n83FSWlyjPaVa+Q2y9Ey8vsa+HEy+TeD28pv1pKjtWpodN7PyxbbF94+ez8HDixzc7xoHYccTOE78e8c+xc5nGZRq3GezG6+JgYQNO4z+2jdW4zsKxLGxsrMZ/uUjY4YLvFiOSThTqJD25VuOPV2KhjsYA1vjbsmmbBXZTgrFiCamxkPhvd5t9fms3JaaWSSJe5j6/5dlrXfNzsJ91ex9HU5hrFur2WdcshDX/vHcVW+6/n2Psg2w70JexTz0O8GUfbNuBLlVby2tW5v4CX1JD3f62s/dnkyi7eT2an3N/2xIhkGb7NN9/n2PMfs5lWryah7qmoNj4OtA24sEvVmTzABgPfxAPZyRCUfNtsVDnNYUiq3koii3blhULXI3vJJatxHGxcmgsM34sjceROG6fbc3WO42B1EnUMx7qzGeGuublOfHrQct1Ns3r2OzfUCRN6PariIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBNE6dpCfHYExssNHYuGtWs3drrwGB4+/Nlmm+zjRbPoRtzQYtaxoi9kDrm95Ni2VaHGcATHx9U5kGCwyJY5tvT5TRYnC15nXZz2fTokp7XY8DvPbe91DGojvYtkM+1yFua37Kgx5nPqNMc4A6Hnjw4ZZjyzXblti37YMPN9Wj2Th1tH2cOkPTccYyLV/E3mPbaLHeswxYXlOZxM/lNRtPr3Gfxu3G8hLl0aL8xvf4uRo/2437xN+BfdZ5zf5bx5c9Czxi/+29ZtssDjROnZUYMNih6d8s/jk+3l18GZrKOLTBhy2aBh/e3/9LkdRSqJO0FJ68M9VVSI7478w22juTiMQ1/9byDrZj2mqeqnUTSaQt9D9H0kYoFEp1FURERLostdRJ2sjKykos/+tf/yI7OzuFtekeQqEQ5557LqBr3hl0vTtfZ1xz/TtKulCok7RhWU03FLOzswkGgymsTfeja965dL07n665ZDrdfhURERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAyxjTjlGzRERERCQdqKVOREREJAMo1ImIiIhkAIU6ERERkQygUCciIiKSARTqRERERDKAQp2IiIhIBlCoExEREckACnUiIiIiGUChTkRERCQD+FJdAclMdXV1PP7447z++uuUlpZi2zaDBw9m2rRpXHDBBfj9/jaXXV5ezqOPPsrChQvZsWMHWVlZDB8+nJkzZ3LWWWdhWVYHfiVdQzKu965du3jrrbdYunQpa9euZdeuXQAUFhZy5JFHcvbZZ3Pcccd19JfSZSTze3xvd9xxB//+978BKC4u5p///GeHld1VJPt67969m2eeeYZ3332XkpISGhoa6NWrF0OHDmXChAl85StfwefTr0xJb5omTDpcaWkpV155JaWlpQBkZ2fjeR7hcBiAUaNGceedd5Kfn9/qslevXs21115LZWUlAMFgkHA4jOu6AEyePJlbbrmlQ3+hprtkXO8dO3Zw4YUX0vzHQ3Z2NsYYGhoaEutmzZrFj3/8YxzH6aCvpmtI5vf43pYsWcJVV12V+LfojqEu2df7P//5D3fccQe1tbUABAIB/H5/4jPACy+80CH/niLJpFAnHSoajTJnzhzWr19PUVERv/jFL5g4cSKe57FgwQJuv/126urqOP744/nd737XqrJramq4+OKLKS8vZ8iQIfzyl79k7NixRCIRnnvuOf70pz8RjUY577zzuPrqq5P0FaaXZF3vkpISvvzlL3Pcccdx5plnMnHiRHr37o3neWzevJl77rmHt956C4BLLrmEOXPmJOtLTDvJ/B7fWygU4lvf+hY7duxg5MiRrFq1qtuFumRf7wULFvDrX/8az/M455xzmD17NsOGDQNirYNr167lzTff5Dvf+Q7BYLCDvzqRjqVn6qRDvfTSS6xfvx6A3/zmN0ycOBEA27Y5/fTTufbaawF49913+eCDD1pV9uOPP055eTlZWVn87ne/Y+zYsQD4/X6++MUv8u1vfxuA5557ji1btnTUl5TWknW98/Pzuffee/njH//IzJkz6d27d6LcYcOGcdNNNzFlyhQAnnjiiRatd5kumd/je7v33nvZtm0bX/3qVxNBo7tJ5vUuKyvjjjvuwPM8fvCDH/DjH/+4xXXOycnh6KOP5vLLL1egky5BoU461EsvvQTAMcccw7hx4/bZfvrpp9O/f/8W+x6ql19+OVHGgAED9tn+xS9+kWAwiOu6vPLKK62tepeUrOudl5fHmDFjDrjdsixmzZoFQH19PZs2bWpNtbu0ZH6PN/fxxx/z1FNPMXjwYC655JI2l9PVJfN6P/XUU1RXVzNq1CguvPDC9ldWJMUU6qTDhEIhVqxYAcDxxx+/330sy0q08Lz33nuHXPbmzZvZsWMHQOL4veXk5HDUUUe1uuyuKpnX+1AEAoHEsud5HVp2uuqsax4Oh7n11lsxxvDjH/+YrKystlW4i0v29Y7/oThjxoxu2cFKMo+68kiH2bRpU+KX+/Dhww+4X3xbeXk5VVVV9OjR4zPLjt9++ayyR4wYwaJFi9i4ceMh1rrrSub1PhRLly4FYre/Bw8e3CFlprvOuuYPPvggmzZt4uyzz2bChAltrm9Xl8zrvX37dsrKygAYM2YMn376KY888ghLliyhurqanj17Mm7cOL70pS8xfvz4DvhqRJJPLXXSYeI/IAH69OlzwP3iz2ftfczB7N69u1Vl19bWUldXd0hld1XJvN6fZfv27YkhNqZNm0Zubm6HlJvuOuOar1mzhkcffZTCwkK+//3vt76SGSSZ13vr1q2J5eXLl3PppZfy6quvUltbSyAQYNeuXSxYsIDLL7+cBx98sA21F+l8CnXSYZqHqIPdLsrOzt7vMakqu6tK1TVpaGjgV7/6FaFQiIKCAi677LJ2l9lVJPuaR6NRbrvtNlzX5corr+z2Q2gk83pXV1cnlv/2t79RVFTEH/7wB15++WXmzp3LQw89xDHHHIMxhr/97W+8/vrrbfgKRDqXQp2IHLJoNMqNN97I6tWr8fl8XH/99S1aSaR9HnnkEdauXcuJJ57ItGnTUl2djNb8OVBjTKJnrW3Hfi0OGzaMW265hcLCQgAeeOCBVFRTpFUU6qTD5OTkJJYPNsRFKBTa7zGpKrur6uxr4rouv/nNb3jzzTdxHIcbbriByZMnt7m8riiZ13zjxo089NBDBINBrrrqqrZXMoN01s+U4447br+9vXNycjj//PMB+PTTTykvLz+kskVSRaFOOkzzFpv4lFL70/yZl0Nt5SkqKmpV2bm5uRkf6pJ5vffmui6//e1vWbBgAY7j8Mtf/pLTTjutTWV1Zcm85n/84x+JRCJ8/etfJz8/n7q6uhav+KwpxpjEumg02savpGtI5vVuvt/QoUMPuF/zceviM1qIpCv1fpUOM3ToUGzbxvM8NmzYcMAhCDZs2ADE5hA91F6BI0aMaHH8gQZijfeS7Q4DtSbzejcXb6GbP39+ItCdfvrp7ap7V5XMa15SUgLAPffcwz333HPA/Xbs2MHMmTMBuPzyyzN6fLVkXu9hw4bhOE4iLB9I80mXNOyJpDu11EmHyc7OTgwOumjRov3uY4xh8eLFAEyaNOmQyx48eDD9+vU7aNn19fUsW7as1WV3Vcm83nGu63LjjTcq0DXqjGsuTZJ5vbOyshLjWh5s8Oz4NsuyEoMci6QrhTrpUPEWhKVLl/LJJ5/ss33BggVs3769xb6HwrIszjzzTADmz5+faNVo7plnnqG+vh7HcTjjjDPaUv0uJ1nXG5pa6Jrfcu3OgS4uWdf8n//8J2+88cYBX/GyiouLE+syuZUuLpnf4/FZUT744ANWr169z/a6ujqeeeYZAI444gh69uzZqvJFOptCnXSomTNnMmLECIwxXH/99Ym5GJtPvg2xWSGOO+64Fsfef//9nHLKKZxyyin7DW1f+cpXKCwsJBQK8dOf/jTxQzgSifDss8/yt7/9DYBzzjmn2wyGm6zrHX+GLt5Cd8MNNyjQNUrm97jsK5nX+4wzzuDwww9vUXa8V+zGjRu57rrrKC8vx7Zt5syZk+SvVKT99EyddCifz8ctt9zCD3/4Q0pLS7nqqqvIzs7G8zzC4TAAo0aN4oYbbmh12Xl5edx2221ce+21bNy4ke9+97vk5OQQDocTD4xPmjSJyy+/vEO/pnSWrOu9fPly/vOf/wCxVtK77rqLu+6664D7X3HFFd0m9CXze1z2lczrbds2N998M1dddRUbN25MlO3z+aipqUmc/6qrrtonMIqkI4U66XD9+/fngQce4PHHH+f111+ntLQUn8/H8OHDOf3007ngggvw+/1tKnvMmDE8+OCDPProo7zzzjvs3LmT7OxsRowYwcyZM5k1a1ZinKnuIhnXu/nD4dFo9DOHcoj/cu0ukvk9LvtK5vUuKirivvvu4+mnn2b+/Pls3bqVhoYGiouLOfbYY7nwwgtbdNQSSWeWaf7TW0RERES6pO7VpCEiIiKSoRTqRERERDKAQp2IiIhIBlCoExEREckACnUiIiIiGUChTkRERCQDKNSJiIiIZACFOhEREZEMoFAnIiIikgEU6kREREQygEKdiIiISAZQqBMRERHJAAp1IiIiIhlAoU5EREQkAyjUiYiIiGQAhToRERGRDKBQJyIiIpIBFOpEREREMsD/ByHfjE5fhkH6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dwell_time_map = SCPosition.get_dwell_map(response = response_path, dts = dts, src_path = src_movement[:-1])\n", + "#dwell time map has the correct distribution in detector coordinates with a hot spot 20 degrees from zenith\n", + "\n", + "_,ax = dwell_time_map.plot(ax_kw = {'coord':'C'}, coord = SpacecraftFrame(attitude = Attitude.identity(frame ='icrs')))\n", + "\n", + "#Need to use the same transformation to plot the coordinates of the source\n", + "c_sc = coord.transform_to(SpacecraftFrame(attitude = Attitude(grbori.get_attitude())))\n", + "ax.scatter(c_sc[0].lon.deg, c_sc[0].lat.deg, transform=ax.get_transform('world'), color = 'red')" + ] + }, + { + "cell_type": "markdown", + "id": "d532c332-d566-4787-8830-d42271c22442", + "metadata": {}, + "source": [ + "The sum of all pixel in the dwell time map is simply the duration of the data that was integrated. In this case is just the duration of the GRB." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "6bbffb4e-853a-4925-8987-7cfd57d33029", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.00000000000351 s\n" + ] + } + ], + "source": [ + "print(sum(dwell_time_map))" + ] + }, + { + "cell_type": "markdown", + "id": "9c6baed9-14e7-48fc-84f5-af349de2b715", + "metadata": {}, + "source": [ + "The detector response is then convolved with the dwell time map to get the point source response:" + ] + }, + { + "cell_type": "markdown", + "id": "f817be35-5398-48b9-b088-d308195a302f", + "metadata": {}, + "source": [ + "The point source response is still quite generic. We obtained the response for a give location and duration, but we still convolved this with a given spectral assumption:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b2d58300-deae-4c26-9469-e1ac07fa8313", + "metadata": {}, + "outputs": [], + "source": [ + "psr = response.get_point_source_response(dwell_time_map)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3d93229f-7c8e-4c9a-a582-54cc73bf9eec", + "metadata": {}, + "outputs": [], + "source": [ + "# Set the spectra of the source\n", + "spectrum = Band()\n", + "alpha = -1\n", + "beta = -3 \n", + "xp = 1000 * u.keV\n", + "piv = 500 * u.keV\n", + "K = 0.00247 / u.cm / u.cm / u.s / u.keV\n", + "spectrum.alpha.value = alpha\n", + "spectrum.beta.value = beta\n", + "spectrum.xp.value = xp.value\n", + "spectrum.xp.unit = xp.unit\n", + "spectrum.K.value = K.value\n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.value = piv.value\n", + "spectrum.piv.unit = piv.unit\n", + " \n", + "# We project into the only event parameters that we can measure in COSI\n", + "signal = psr.get_expectation(spectrum).project(['Em', 'Phi', 'PsiChi'])" + ] + }, + { + "cell_type": "markdown", + "id": "7f6e60b5-65e4-4171-a8a7-e8e4f4d72008", + "metadata": {}, + "source": [ + "The result `signal` is histogram that contains the expected counts in measured energy (`Em`) and the \"Compton Data Space\": Compton scatter angle (`Phi`) and direction (in SC coordinates) of the scattered photon in he (`PsiChi`). For reference, see the following figure from [this](https://arxiv.org/abs/2102.13158) paper. The only different is that here we are using spacecraft coordinate instead of galactic coordinates. ![](cds.png)" + ] + }, + { + "cell_type": "markdown", + "id": "9ea7ffcb-d555-4da0-913a-87c7087b60c0", + "metadata": {}, + "source": [ + "The `signal` object is a 3D histogram. Note that the last axis, `PsiChi`, is actually a 2D axis encoding the coordinates in a sphere as pixels in a HEALPix grid. So, in a sense, it's really a 4D histogram." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "8d821639-d2c7-42a8-9f3b-d6ef53268356", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array(['Em', 'Phi', 'PsiChi'], dtype=', )" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG7CAYAAAAv0vpMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwe0lEQVR4nO3de1RU573/8c8IDl7QYAdFKwSDGESNyTnVGC9VDGo0Kic2apvWdWpS0UQhUVeXJlmaNoYmbWJzMURrSM6ha3kBY5bKaRU1ieItxuiyRwuGYqzUXFQc8ILAcHF+f/hjH8dBA8ZhgOf9WotF9rO/+zvPgBk/7v3MHpvb7XYLAADAQK38PQEAAAB/IQgBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIHQTFRUVys/PV0VFhb+nAgAAfIAgdBOFhYVKTExUYWGhv6cCAAB8gCAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMFagvycA3IoT+7/VofUFqqqo9vdUcBOt2wRqwJReumtQN39PBQDqRBBCs3RofYEufHPZ39PAd3Lp4AcFBCEATRZBCM1S7Zkgm01q2ynIz7NBXcpLXHK7xVk7AE1ag4LQP//5T/33f/+38vPzVVxcrDZt2igyMlKPPfaYhg4d6lF78uRJpaam6ujRowoMDNTgwYOVlJSkkJAQj7orV64oIyNDGzduVHFxscLDwzVt2jSNGjXK6/F90RPNW9tOQfp56oP+ngbqsCbpE5UVu/w9DQC4qQYFodOnT6usrExjx45VaGioKioqlJOTo+eee06//vWvlZCQIEk6e/askpOTFRwcrMTERJWXlysjI0MnTpzQypUr1bp1a6tnWlqaVq9erYkTJ6p3797as2ePlixZIpvNpvj4eKvOFz0BAIDZGhSEBg8erMGDB3uM/eQnP1FiYqLWrVtnBaFVq1apoqJC7733nsLCwiRJsbGxmj9/vrZs2WLVFRUVKTMzU5MmTdK8efMkSRMmTFBycrKWL1+uuLg4BQQE+KwnAAAw2/d++3xAQIC6dOmi0tJSaywnJ0dDhgyxAoskDRgwQBEREdqxY4c1tmfPHlVXV2vSpEnWmM1m0yOPPKKioiLl5ub6tCcAADDbLS2WLi8vl8vl0uXLl7V371599tlnGjlypKSrZ2RKSkoUExPjdVxsbKz2799vbRcUFKht27aKjIz0qqvd379/f5/0rMu5c+fkdDqt7cLCwpv+HAAAQPN2S0HonXfeUVZWliSpVatWGj58uHUZqjZIOBwOr+McDocuXryoyspK2e12OZ1OderUSTabzatOuhpMfNWzLllZWUpPT//O5w8AAFqGWwpCU6ZMUVxcnM6dO6cdO3aopqZGVVVVkiSX6+q7RK5dvFzLbrdbNXa7XS6X6zvrfNWzLgkJCR7vfissLFRKSsoN6wEAQPN2S0EoMjLSuvQ0duxYzZ8/X88++6xWrlypoKCr93SpDUbXqqyslCSrJigoqN51t7tnXUJDQxUaGnrD/QAAoGW5LZ81FhcXpy+++EKnTp2yLkFdu9amltPpVMeOHa2zMw6HQ8XFxXK73V51kqxQ4oueAAAAtyUI1V5uKi0tVefOnRUSEqL8/HyvumPHjik6Otrajo6OVkVFhdei5Ly8PGu/JJ/0BAAAaFAQKikp8Rqrrq7W1q1bFRQUpB49ekiSRowYoX379unMmTNW3aFDh3Tq1Cnr3WWSNGzYMAUGBmrDhg3WmNvt1qZNm9S5c2f169fPGvdFTwAAYLYGrRFaunSpLl++rHvvvVedO3eW0+nU9u3b9a9//Utz5sxRu3btJEnTpk3Tzp07NXfuXE2ePFnl5eVau3atoqKiNG7cOKtfly5dNGXKFK1du1bV1dWKjY3V7t27deTIES1evNjjxoe+6AkAAMzWoCD04IMP6q9//as2bdqkCxcuqF27doqJidGTTz6pYcOGWXVhYWFatmyZUlNTtXLlSutzwebMmWOt5ak1a9YsdejQQVlZWcrOzlZ4eLgWLVqk0aNHe9T5oicAADCbzX39qmJY8vPzlZiYqLS0tDpv5gj/qf1Az3Y/4ENXmyp+RwCag9uyWBoAAKA5IggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxgpsSPGxY8eUnZ2tw4cP6/Tp0+rYsaP69u2rGTNmKCIiwqp7+eWXlZ2d7XX8nXfeqVWrVnmMXblyRRkZGdq4caOKi4sVHh6uadOmadSoUV7Hnzx5UqmpqTp69KgCAwM1ePBgJSUlKSQk5JZ7AgAAczUoCK1Zs0ZHjx7VyJEj1bNnTzmdTm3YsEEzZszQihUrFBUVZdXa7XYtWLDA4/j27dt79UxLS9Pq1as1ceJE9e7dW3v27NGSJUtks9kUHx9v1Z09e1bJyckKDg5WYmKiysvLlZGRoRMnTmjlypVq3bp1g3sCAACzNSgITZ06VS+88IJH6HjwwQf1+OOPa/Xq1Vq8eLE1HhAQoDFjxty0X1FRkTIzMzVp0iTNmzdPkjRhwgQlJydr+fLliouLU0BAgCRp1apVqqio0HvvvaewsDBJUmxsrObPn68tW7YoISGhwT0BAIDZGrRG6J577vEIQZIUERGhHj16qLCw0Ku+pqZGly9fvmG/PXv2qLq6WpMmTbLGbDabHnnkERUVFSk3N9caz8nJ0ZAhQ6wQJEkDBgxQRESEduzYcUs9AQCA2Rp0RqgubrdbJSUl6tGjh8d4RUWFxo0bp4qKCnXo0EHx8fF68skn1a5dO6umoKBAbdu2VWRkpMexsbGx1v7+/furqKhIJSUliomJ8Xr82NhY7d+/v8E963Lu3Dk5nU5ru65wBwAAWo7vHYS2b9+uoqIiPfHEE9aYw+HQY489prvvvltut1ufffaZNm7cqC+//FJvvfWWAgOvPqzT6VSnTp1ks9k8ejocDklXg0lt3bXj19devHhRlZWVstvt9e5Zl6ysLKWnpzfwJwAAAJqr7xWECgsL9cYbb6hv374aO3asNT5r1iyPuvj4eEVERCgtLU05OTnWgmWXy+V1qU26utC6dv+137+r1m6317tnXRISEjR06FCP55eSknLDegAA0Lzd8n2EnE6nFi5cqPbt2+ull176zgXIU6dOVatWrXTw4EFrLCgoSFVVVV61lZWV1v5rv9e3tj51dQkNDVVMTIz1df3lNQAA0LLcUhAqLS3VggULVFpaqqVLlyo0NPQ7jwkKClLHjh118eJFa8zhcKi4uFhut9ujtvZSWG3f2sta167fuba2Y8eO1hmf+vYEAABocBByuVx69tlnderUKf3+97/3WiR9I2VlZbpw4YLHzQ+jo6NVUVHhtSg5Ly/P2i9JnTt3VkhIiPLz8736Hjt2zKprSE8AAIAGBaGamhr99re/VW5url588UX169fPq8blcqmsrMxr/M9//rPcbrcGDRpkjQ0bNkyBgYHasGGDNeZ2u7Vp0yZ17tzZo/+IESO0b98+nTlzxho7dOiQTp06pZEjR95STwAAYLYGLZZ+5513tHfvXg0ZMkSXLl3Stm3bPPaPGTNGxcXF+tWvfqVRo0bpzjvvlCQdOHBA+/fv16BBgzRs2DCrvkuXLpoyZYrWrl2r6upqxcbGavfu3Tpy5IgWL17sse5o2rRp2rlzp+bOnavJkyervLxca9euVVRUlMaNG3dLPQEAgNkaFISOHz8uSdq3b5/27dvntX/MmDEKDg7WkCFD9Pnnnys7O1tXrlxR9+7dNXPmTP3sZz9Tq1aeJ6FmzZqlDh06KCsrS9nZ2QoPD9eiRYs0evRoj7qwsDAtW7ZMqampWrlypfVZY3PmzLHWBzW0JwAAMJvNff2qYljy8/OVmJiotLS0Om/mCP9Zk/SJyopdaveDIP089UF/Twd14HcEoDm45bfPAwAANHcEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxAhtSfOzYMWVnZ+vw4cM6ffq0OnbsqL59+2rGjBmKiIjwqD158qRSU1N19OhRBQYGavDgwUpKSlJISIhH3ZUrV5SRkaGNGzequLhY4eHhmjZtmkaNGuX1+L7oCQAAzNWgILRmzRodPXpUI0eOVM+ePeV0OrVhwwbNmDFDK1asUFRUlCTp7NmzSk5OVnBwsBITE1VeXq6MjAydOHFCK1euVOvWra2eaWlpWr16tSZOnKjevXtrz549WrJkiWw2m+Lj4606X/QEAABma1AQmjp1ql544QWP0PHggw/q8ccf1+rVq7V48WJJ0qpVq1RRUaH33ntPYWFhkqTY2FjNnz9fW7ZsUUJCgiSpqKhImZmZmjRpkubNmydJmjBhgpKTk7V8+XLFxcUpICDAZz0BAIDZGrRG6J577vEIQZIUERGhHj16qLCw0BrLycnRkCFDrMAiSQMGDFBERIR27Nhhje3Zs0fV1dWaNGmSNWaz2fTII4+oqKhIubm5Pu0JAADM9r0XS7vdbpWUlOiOO+6QdPWMTElJiWJiYrxqY2NjVVBQYG0XFBSobdu2ioyM9Kqr3e+rnnU5d+6c8vPzra9rwx0AAGh5GnRprC7bt29XUVGRnnjiCUmS0+mUJDkcDq9ah8OhixcvqrKyUna7XU6nU506dZLNZvOqk64GE1/1rEtWVpbS09Pr87QBAEAL8L2CUGFhod544w317dtXY8eOlSS5XC5J8rqEJkl2u92qsdvtcrlc31nnq551SUhI0NChQz2eX0pKyg3rAQBA83bLQcjpdGrhwoVq3769XnrpJWsBclBQkCSpqqrK65jKykqPmqCgoHrX3e6edQkNDVVoaOgN9wMAgJblltYIlZaWasGCBSotLdXSpUs9wkPtJajay1nXcjqd6tixo3V2xuFwqLi4WG6326tOktXXFz0BAAAaHIRcLpeeffZZnTp1Sr///e/Vo0cPj/2dO3dWSEiI8vPzvY49duyYoqOjre3o6GhVVFR4LUrOy8uz9vuqJwAAQIOCUE1NjX77298qNzdXL774ovr161dn3YgRI7Rv3z6dOXPGGjt06JBOnTqlkSNHWmPDhg1TYGCgNmzYYI253W5t2rRJnTt39ujvi54AAMBsDVoj9M4772jv3r0aMmSILl26pG3btnnsHzNmjCRp2rRp2rlzp+bOnavJkyervLxca9euVVRUlMaNG2fVd+nSRVOmTNHatWtVXV2t2NhY7d69W0eOHNHixYs9bnzoi54AAMBsDQpCx48flyTt27dP+/bt89pfG4TCwsK0bNkypaamauXKldbngs2ZM8day1Nr1qxZ6tChg7KyspSdna3w8HAtWrRIo0eP9qjzRU8AAGA2m/v6VcWw5OfnKzExUWlpaXXezBH+sybpE5UVu9TuB0H6eeqD/p4O6sDvCEBz8L3vLA0AANBcEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgN+tBVAGio8hKX1iR94u9pNEut2wRqwJReumtQN39PBWixCEIAfKJ1m0BJLrndUlmxy9/TaaZcOvhBAUEI8CGCEACfGDCllw5+UKCqimp/T6VZKi+5GiL5+QG+RRAC4BN3DerGmYzvYU3SJ5xJAxoBi6UBAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYgQ09oKysTBkZGcrLy9OxY8d06dIlPffccxo3bpxH3csvv6zs7Gyv4++8806tWrXKY+zKlSvKyMjQxo0bVVxcrPDwcE2bNk2jRo3yOv7kyZNKTU3V0aNHFRgYqMGDByspKUkhISG33BMAAJipwUHowoULSk9PV1hYmKKjo3X48OEb1trtdi1YsMBjrH379l51aWlpWr16tSZOnKjevXtrz549WrJkiWw2m+Lj4626s2fPKjk5WcHBwUpMTFR5ebkyMjJ04sQJrVy5Uq1bt25wTwAAYK4GByGHw6ENGzbI4XDoiy++0MyZM29YGxAQoDFjxty0X1FRkTIzMzVp0iTNmzdPkjRhwgQlJydr+fLliouLU0BAgCRp1apVqqio0HvvvaewsDBJUmxsrObPn68tW7YoISGhwT0BAIC5GrxGyG63y+Fw1Lu+pqZGly9fvuH+PXv2qLq6WpMmTbLGbDabHnnkERUVFSk3N9caz8nJ0ZAhQ6wQJEkDBgxQRESEduzYcUs9AQCAuRp8RqghKioqNG7cOFVUVKhDhw6Kj4/Xk08+qXbt2lk1BQUFatu2rSIjIz2OjY2Ntfb3799fRUVFKikpUUxMjNfjxMbGav/+/Q3ueb1z587J6XRa24WFhbfwrAEAQHPhsyDkcDj02GOP6e6775bb7dZnn32mjRs36ssvv9Rbb72lwMCrD+10OtWpUyfZbDav46Wr4aS27trx62svXryoyspK2e32eve8XlZWltLT02/9SQMAgGbFZ0Fo1qxZHtvx8fGKiIhQWlqacnJyrAXLLpfLY5FzLbvdbu2/9vt31drt9nr3vF5CQoKGDh1qbRcWFiolJeXmTxQAADRbjXofoalTp6pVq1Y6ePCgNRYUFKSqqiqv2srKSmv/td/rW1ufuuuFhoYqJibG+rr+0hoAAGhZGjUIBQUFqWPHjrp48aI15nA4VFxcLLfb7VFbeyksNDTUqrt2/Prajh07Wmd86tsTAACYrVGDUFlZmS5cuOBx88Po6GhVVFR4LUzOy8uz9ktS586dFRISovz8fK++x44ds+oa0hMAAJjNJ0HI5XKprKzMa/zPf/6z3G63Bg0aZI0NGzZMgYGB2rBhgzXmdru1adMmde7cWf369bPGR4wYoX379unMmTPW2KFDh3Tq1CmNHDnylnoCAABz3dJi6Q8//FClpaXWpaa9e/fq7NmzkqRHH31Uly5d0q9+9SuNGjVKd955pyTpwIED2r9/vwYNGqRhw4ZZvbp06aIpU6Zo7dq1qq6uVmxsrHbv3q0jR45o8eLFHjc+nDZtmnbu3Km5c+dq8uTJKi8v19q1axUVFeXxER8N6QkAAMx1S0EoMzNTp0+ftrZ37dqlXbt2SZLGjBmj4OBgDRkyRJ9//rmys7N15coVde/eXTNnztTPfvYztWrleSJq1qxZ6tChg7KyspSdna3w8HAtWrRIo0eP9qgLCwvTsmXLlJqaqpUrV1qfNTZnzhxrfVBDewIAAHPZ3NevKIYlPz9fiYmJSktLq/NGjvCfNUmfqKzYpXY/CNLPUx/093SA244/40DjaNTF0gAAAE0JQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwVmBDDygrK1NGRoby8vJ07NgxXbp0Sc8995zGjRvnVXvy5Emlpqbq6NGjCgwM1ODBg5WUlKSQkBCPuitXrigjI0MbN25UcXGxwsPDNW3aNI0aNapRegIAADM1OAhduHBB6enpCgsLU3R0tA4fPlxn3dmzZ5WcnKzg4GAlJiaqvLxcGRkZOnHihFauXKnWrVtbtWlpaVq9erUmTpyo3r17a8+ePVqyZIlsNpvi4+N92hMAAJirwUHI4XBow4YNcjgc+uKLLzRz5sw661atWqWKigq99957CgsLkyTFxsZq/vz52rJlixISEiRJRUVFyszM1KRJkzRv3jxJ0oQJE5ScnKzly5crLi5OAQEBPusJAADM1eA1Qna7XQ6H4zvrcnJyNGTIECuwSNKAAQMUERGhHTt2WGN79uxRdXW1Jk2aZI3ZbDY98sgjKioqUm5urk97AgAAc/lksXRRUZFKSkoUExPjtS82NlYFBQXWdkFBgdq2bavIyEivutr9vup5vXPnzik/P9/6KiwsrM/TBQAAzVSDL43Vh9PplKQ6zxw5HA5dvHhRlZWVstvtcjqd6tSpk2w2m1eddDWc+Krn9bKyspSent6AZwoAAJoznwQhl8slSR6Ll2vZ7Xarxm63y+VyfWedr3peLyEhQUOHDrW2CwsLlZKScoNnCQAAmjufBKGgoCBJUlVVlde+yspKj5qgoKB6193untcLDQ1VaGjojZ4WAABoYXyyRqj2ElTt5axrOZ1OdezY0To743A4VFxcLLfb7VUnyQomvugJAADM5pMg1LlzZ4WEhCg/P99r37FjxxQdHW1tR0dHq6Kiwmthcl5enrXfVz0BAIDZfPYRGyNGjNC+fft05swZa+zQoUM6deqURo4caY0NGzZMgYGB2rBhgzXmdru1adMmde7cWf369fNpTwAAYK5bWiP04YcfqrS01LrUtHfvXp09e1aS9Oijjyo4OFjTpk3Tzp07NXfuXE2ePFnl5eVau3atoqKiPD6Oo0uXLpoyZYrWrl2r6upqxcbGavfu3Tpy5IgWL17sceNDX/QEAADmuqUglJmZqdOnT1vbu3bt0q5duyRJY8aMUXBwsMLCwrRs2TKlpqZq5cqV1ueCzZkzx1rLU2vWrFnq0KGDsrKylJ2drfDwcC1atEijR4/2qPNFTwAAYC6b+/oVxbDk5+crMTFRaWlpdd7IEf6zJukTlRW71O4HQfp56oP+ng5w2/FnHGgcPlsjBAAA0NQRhAAAgLF8ckNFfLcT+7/VofUFqqqo9vdUmqXykrrvDg4AQEMQhPzk0PoCXfjmsr+n0ey1bsMfYQDAreNvET+pPRNks0ltO9X9kR+4udZtAjVgSi9/TwMA0IwRhPysbSfeEQIAgL+wWBoAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBY3VASAJqy8xKU1SZ/4exrNUu3d5+8a1M3fU0ETRhACgCbo6ufoueR2S2XFfMjwrXHp4AcFBCHcFEEIAJqgAVN66eAHBdbnEqJhykuuhkh+fvguBCEAaILuGtSNMxnfw5qkTziThnphsTQAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYgb5qfPjwYT3zzDN17luxYoX69u1rbR89elR/+tOf9I9//EPt27fXyJEjlZiYqHbt2nkcV1lZqffff1/btm3TpUuX1LNnT82YMUMDBw70eoz69gQAAObyWRCq9eijjyo2NtZjrHv37tZ/FxQUaN68eYqMjFRSUpLOnj2rzMxMffXVV3rttdc8jnvllVe0c+dOTZkyReHh4dqyZYsWLFigt956S/3797+lngAAwFw+D0L33nuv4uLibrj/3XffVYcOHbRs2TK1b99ektStWze9+uqrOnDggO6//35JUl5enj7++GM99dRTeuyxxyRJDz30kKZPn64VK1ZoxYoVDe4JAADM1ihrhMrKylRdXe01fvnyZR08eFBjxoyxAot0NeC0bdtWO3bssMZycnIUEBCghIQEaywoKEjjx49Xbm6uzpw50+CeAADAbD4/I/TKK6+ovLxcAQEB6t+/v5566in17t1bknTixAnV1NQoJibG45jWrVurV69eKigosMYKCgoUHh7uEW4kWZfdjh8/rrCwsAb1vN65c+fkdDqt7cLCwlt70gAAoFnwWRAKDAzUiBEj9MADD+iOO+7QyZMnlZmZqaSkJC1fvlx33323FTocDofX8Q6HQ//7v/9rbTudzhvWSVdDTG1dfXteLysrS+np6fV/kgAAoFnzWRC65557dM8991jbw4YNU1xcnB5//HG9++67Wrp0qVwul6SrZ2uuZ7fbVVlZaW27XK4b1tXuv/Z7fXpeLyEhQUOHDrW2CwsLlZKSctPnCQAAmi+fXxq7Vnh4uIYNG6Zdu3appqZGQUFBkqSqqiqv2srKSivkSFfXA92ornb/td/r0/N6oaGhCg0NbcAzAgAAzVmj31CxS5cuqqqqUkVFhXX56tp1ObWcTqdHKHE4HDesk2TVNqQnAAAwW6MHoW+++UZ2u11t27bVXXfdpYCAAOXn53vUVFVVqaCgQNHR0dZYdHS0vvrqK12+fNmjNi8vz9ovqUE9AQCA2XwWhM6fP+81dvz4ce3du1cDBw5Uq1atFBwcrAEDBmjbtm0qKyuz6rZu3ary8nKNHDnSGouLi1NNTY2ysrKsscrKSm3evFl9+vRRWFiYJDWoJwAAMJvP1gj95je/UVBQkPr166dOnTrp5MmT+p//+R+1adNGs2bNsupmzJihOXPmKDk5WQkJCdZdoAcOHKhBgwZZdX369NHIkSP17rvv6vz58+revbuys7N1+vRpLVy40OOx69sTAACYzWdB6Mc//rG2b9+udevW6fLlywoJCdHw4cM1ffp0hYeHW3UxMTF6/fXX9ac//Ulvv/222rVrp/Hjx3uEpVrPP/+8wsLCtHXrVpWWlioqKkp/+MMfdN9993nUNaQnAAAwl83tdrv9PYmmKj8/X4mJiUpLS/O6QeP3tSbpE5UVu9TuB0H6eeqDt7U3AJiO11jUV6MvlgYAAGgqCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEIQgAAwFgEIQAAYCyCEAAAMBZBCAAAGIsgBAAAjEUQAgAAxiIIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGMRhAAAgLEC/T0BAAB8pbzEpTVJn/h7GriJ1m0CNWBKL901qJtfHp8gBABocVq3CZTkktstlRW7/D0d3JRLBz8oIAgBAHC7DJjSSwc/KFBVRbW/p4KbKC+5Glb9+XsiCAEAWpy7BnXz2xkG1N+apE/8fsaOxdIAAMBYBCEAAGAsghAAADAWQQgAABirxS6Wrqys1Pvvv69t27bp0qVL6tmzp2bMmKGBAwf6e2oAAKCJaLFnhF555RWtW7dOo0eP1tNPP61WrVppwYIFOnLkiL+nBgAAmogWGYTy8vL08ccfa+bMmZo9e7YSEhL05ptvqmvXrlqxYoW/pwcAAJqIFhmEcnJyFBAQoISEBGssKChI48ePV25urs6cOePH2QEAgKaiRa4RKigoUHh4uNq3b+8xHhsbK0k6fvy4wsLCvI47d+6cnE6ntV1YWOjbiQIAAL9qkUHI6XTK4XB4jdeOnTt3rs7jsrKylJ6e7supAQCAJqRFBiGXy6XWrVt7jdvtdmt/XRISEjR06FBru7CwUCkpKT6ZY7s7gjy+AwBgmqbwd2GLDEJBQUGqqqryGq+srLT21yU0NFShoaE+nVutR3439LuLAABowZrC34UtcrG0w+HwWOtTq3asscIOAABo2lpkEIqOjtZXX32ly5cve4zn5eVZ+wEAAFpkEIqLi1NNTY2ysrKsscrKSm3evFl9+vSp8x1jAADAPC1yjVCfPn00cuRIvfvuuzp//ry6d++u7OxsnT59WgsXLvT39AAAQBPRIoOQJD3//PMKCwvT1q1bVVpaqqioKP3hD3/Qfffd5++pAQCAJqLFBqGgoCDNnj1bs2fP9vdUAABAE9Ui1wgBAADUB0EIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAAMBYLfY+QreDy+WSJBUWFvp5JgAAoKEiIyPVpk2bm9YQhG7i9OnTkqSUlBQ/zwQAADRUWlqaYmJiblpjc7vd7kaaT7Nz/vx5HThwQN26dZPdbv/O+rffflvJycn16l1YWKiUlBQtWrRIkZGR33eqRmrIz7upaQpzb4w5+OIxblfP79vnVo7nNaJxNYX/z25VU5h7Y83Bl68TnBH6nkJCQjRmzJh61wcHB39n8rxeZGRkg4/BVbfy824qmsLcG2MOvniM29Xz+/a5leN5jWhcTeH/s1vVFObeWHPw9+sEi6Vvo1GjRvl7CkZpzj/vpjD3xpiDLx7jdvX8vn1u5fim8Hs3SXP+eTeFuTfWHPz9OsGlMT/Jz89XYmJiva5fAjAPrxFA4+CMkJ84HA5Nnz5dDofD31MB0ATxGgE0Ds4IAQAAY3FGCAAAGIsgBAAAjMXb55uoyspKvf766zp48KBKS0vVo0cPJSUlqV+/fv6eGoAm4rXXXtPevXtVUVGhsLAwzZw5U0OHDvX3tIBmhTVCTVR5ebkyMzM1btw4de7cWTt27NCbb76pzMxMtWvXzt/TA9AEFBYWWjd8PXbsmObPn6+MjAzdcccd/p4a0GxwaayJatu2raZPn66wsDC1atVK8fHxCgwM1KlTp/w9NQBNRGRkpHXXe5vNpqqqKp07d87PswKaFy6N3SZlZWXKyMhQXl6ejh07pkuXLum5557TuHHjvGorKyv1/vvva9u2bbp06ZJ69uypGTNmaODAgTfsf+rUKV26dEndu3f35dMA4CO+eo14/fXXtXnzZlVWVuqBBx5QVFRUYzwdoMXgjNBtcuHCBaWnp6uwsFDR0dE3rX3llVe0bt06jR49Wk8//bRatWqlBQsW6MiRI3XWu1wupaSk6Be/+IWCg4N9MX0APuar14j58+dr69ateuONNzRw4EDZbDZfPQWgRSII3SYOh0MbNmzQBx98oKeeeuqGdXl5efr44481c+ZMzZ49WwkJCXrzzTfVtWtXrVixwqu+urpaL7zwgrp3767p06f78BkA8CVfvUZIUkBAgH70ox/p0KFD+vTTT331FIAWiSB0m9jt9nrdATYnJ0cBAQFKSEiwxoKCgjR+/Hjl5ubqzJkz1viVK1eUkpIim82m559/nn/pAc2YL14jrldTU6Ovv/76tswXMAVBqJEVFBQoPDxc7du39xiPjY2VJB0/ftwaW7p0qZxOp1588UUFBrKcCzBBfV8jSktLtX37dpWVlam6ulo7duzQ4cOHde+99zb6nIHmjL9dG5nT6azzX4W1Y7Xv+Dh9+rT+8pe/yG63e/zL8NVXX+WFDmjB6vsaYbPZ9Je//EVvvPGG3G63unfvrsWLF6tXr16NOl+guSMINTKXy6XWrVt7jde+BdblckmSunbtql27djXq3AD4X31fI9q3b6+33nqrUecGtERcGmtkQUFBqqqq8hqvrKy09gMwF68RQOMiCDUyh8Mhp9PpNV47Fhoa2thTAtCE8BoBNC6CUCOLjo7WV199pcuXL3uM5+XlWfsBmIvXCKBxEYQaWVxcnGpqapSVlWWNVVZWavPmzerTp4/CwsL8ODsA/sZrBNC4WCx9G3344YcqLS21TmHv3btXZ8+elSQ9+uijCg4OVp8+fTRy5Ei9++67On/+vLp3767s7GydPn1aCxcu9Of0AfgYrxFA08Onz99GU6dO1enTp+vcl5mZqW7dukm6+q6P2s8RKi0tVVRUlGbMmKH777+/MacLoJHxGgE0PQQhAABgLNYIAQAAYxGEAACAsQhCAADAWAQhAABgLIIQAAAwFkEIAAAYiyAEAACMRRACAADGIggBAABjEYQAAICxCEIAjDB8+HCPL5fLZe3bsmWLhg8fri1btvhxhv9n06ZNHnN9+eWX/T0loMXi0+cB3FbffvutfvrTn960pmvXrlq3bl0jzcjzcceOHStJCggI8OljHThwQL/+9a81cOBA/fGPf7xp7ZIlS/TRRx9p8eLFGj16tGJiYjR9+nSVlpZq/fr1Pp0nYDqCEACf6N69u0aPHl3nvuDg4EaezVVdu3bVE0880SiPNWDAAIWFhenQoUM6c+aMwsLC6qwrLS3V7t27FRwcrOHDh0uSevfurd69e+vbb78lCAE+RhAC4BPdu3dvtNDRFLVq1Urjxo1Tenq6srOz9ctf/rLOuo8++kgul0sPP/ywgoKCGnmWAFgjBMDvhg8frqefflpFRUVasmSJJk6cqIceekgLFizQN998I0k6efKknn/+eY0fP14PPfSQFi9erOLiYp/O6+zZs/rlL3+pUaNGaefOndZ4SUmJ3n77bT322GOKj4/XxIkTtWjRIp04ccLj+Icfflg2m01btmyR2+2u8zE2b94sSRo/frzPngeAGyMIAWgSLl26pDlz5ujbb7/VQw89pH/7t3/T/v37NX/+fJ04cUKzZ89WeXm5Hn74YfXu3Vs5OTl68cUXfTafkydPavbs2Tp79qxee+01xcXFSZK+/vprzZgxQx988IF++MMf6ic/+YkeeOABHThwQE899ZTy8vKsHl27dtWPfvQjffPNNzp8+LDXY5w4cUJffPGFevXqpbvvvttnzwXAjXFpDIBPfP311/qv//qvOvf17dtXgwYN8hj78ssvNXXqVCUlJVljr7/+ujZu3KikpCQ9/vjjmjJliiTJ7XZr4cKF2r9/v/Lz8xUTE3Nb556bm6uFCxcqMDBQb7/9tqKjo619v/vd71RcXKylS5fq/vvvt8b/8z//U4mJiXr11VeVnp5ujY8fP14HDx7U5s2b9e///u8ej8PZIMD/OCMEwCe+/vprpaen1/n12WefedW3bdtWM2bM8BiLj4+XJN1xxx2aPHmyNW6z2ax9X3755W2d96effqp58+apQ4cOWr58uUcI+sc//qG///3veuihhzxCkCRFRERowoQJOnHihMclsh//+Me64447lJOTo8uXL1vj1dXV2rZtm+x2+w0XlQPwPc4IAfCJ+++/X0uXLq13fXh4uNq0aeMx5nA4JElRUVGy2Wx17jt37tz3nOn/2bFjhz7//HP17NlTr732mjp16uSxv/ayV0lJSZ1nu/71r39Z36OioiTJCjrr16/XRx99pP/4j/+QJO3du1fnz5/XqFGj1KFDh9v2HAA0DEEIQJPQvn17r7Hae/3cbF91dfVtm0Nubq5qamrUv39/rxAkSRcvXpR09azRp59+esM+5eXlHtvjx4/X+vXrtXnzZisIcVkMaBoIQgDw/82cOVN79uzR+vXrFRAQoDlz5njsrw1kzzzzjB599NF69+3Zs6d69+6tY8eO6Z///Kc6dOigAwcOqFu3bl7rhgA0LtYIAcD/Z7fb9bvf/U6DBw9WZmamUlNTPfbHxsZKunrmqKFqz/z89a9/1datW1VTU2O9vR6A/xCEAOAadrtdKSkpGjJkiNatW6e3337b2tenTx/16dNHH3/8sT7++GOvY69cuaK//e1vdfYdNWqU2rRpo23btmnz5s1q1aqV9XEfAPyHS2MAfOJmb5+XpF/84hdN9k7KrVu31ksvvaQXXnhBH3zwgdxut55++mlJ0gsvvKC5c+fqxRdf1Pr169WrVy8FBQXp7Nmz+vvf/64LFy7oo48+8urZvn17jRgxQlu3btX58+c1aNCgG37sBoDGQxAC4BO1b5+/kSlTpjTZICT9Xxj6zW9+o/Xr18vtduuZZ57RD3/4Q73//vvKzMzU7t27tWXLFrVq1UoOh0P33nuvdePFuowfP15bt26VdPWu0wD8z+a+0X3fAaAFGT58uO677z4tW7bM31Opt2+//VY//elPNXbsWD3//PP+ng7QInFGCIAx/va3v1mf8L59+/Yme0Zq06ZN+uMf/+jvaQBGIAgBMML06dM9tmvvQ9QUxcTEeMy3V69e/psM0MJxaQwAABiLt88DAABjEYQAAICxCEIAAMBYBCEAAGAsghAAADAWQQgAABiLIAQAAIxFEAIAAMYiCAEAAGP9P5uB7sjBC50YAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "signal.project('Em').plot()" + ] + }, + { + "cell_type": "markdown", + "id": "05960a53-f5ee-41f0-a3d3-1cb41d141f64", + "metadata": {}, + "source": [ + "This shape is a combination of the spectrum, the energy resolution, and the effective area of the detector as a function of energy.\n", + "\n", + "We can get the total number of events we expect from the GRB by summing over all bins:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "08eb4fae-d2e7-4336-82ca-cf8b301a1252", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "66479.07966849873" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(signal)" + ] + }, + { + "cell_type": "markdown", + "id": "aea9bc5f-3a6d-45ab-96ae-bd1d767f0df8", + "metadata": {}, + "source": [ + "Now let's explore the CDS. It's easier to visualize if we take slices in energy and scatter angle. For reference, these are the bin edges:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "7b7bc781-6100-4123-b805-d4c3742aff04", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[100,~200,~500,~1000,~2000,~5000] \\; \\mathrm{keV}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "signal.axes['Em'].edges" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "1339c2c6-48b4-4ce0-9c6f-c33263b6bc03", + "metadata": {}, + "outputs": [ + { + "data": { + "text/latex": [ + "$[0,~10,~20,~30,~40,~50,~60,~70,~80,~90,~100,~110,~120,~130,~140,~150,~160,~170,~180] \\; \\mathrm{{}^{\\circ}}$" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "signal.axes['Phi'].edges" + ] + }, + { + "cell_type": "markdown", + "id": "1d4b2946-6165-4d08-b045-d80f9292748a", + "metadata": {}, + "source": [ + "This is the plot of the distribution of events within the energy range 1-2 MeV (bin 3) and scattered angles between 40-50deg (bin 4):" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "db0b2090-2ad3-4807-87bc-9269b214d68d", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwYAAAHjCAYAAACZ0AjMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADI00lEQVR4nOy9d5wcxZn//6numdm8K63SKieEJCQhkgAbTDKybDDYOHBnG+cA2NhwmDNO3Pm4l22c7sf5vj6fA9i+c8A+4MhgsJHJGYRASLCSUJZWu5I2785Md9fvj56enZntmelQ1V01W+/XSy9JuzPV1dXVVc+nnqeeIpRSCoVCoVAoFAqFQjGh0eKugEKhUCgUCoVCoYgfJQwUCoVCoVAoFAqFEgYKhUKhUCgUCoVCCQOFQqFQKBQKhUIBJQwUCoVCoVAoFAoFlDBQKBQKhUKhUCgUUMJAoVAoFAqFQqFQQAkDhUKhUCgUCoVCASUMFAqFQqFQKBQKBZQwUCgUCoVCoVAoFFDCQKFQKBQKhUKhUEAJA4VCoVAoFAqFQgEgEXcFFAqFQhEcSilM04RpmjAMo+hP6c8qlVGJRCIBXdeh6zoSiUT+/6V/67oOQgjrW1QoFApFRChhoFAoFJyglCKTyWBwcBDDw8MYHBzE0NAQBgcHMTIygtHRUYyOjiKdTrv+PTo6ikwmU/S5dDo9TgCIRKF4qKurQyqVQn19Perq6or+1NfXI5VK5f9d+PPGxkY0NTW5/kmlUkp8KBQKBScIrbZUpFAoFBMYSilGRkbQ19eH/v5+9PX1Ff27v78fQ0ND+T+O8e/8ictwp4SAahqg2X9TrYwxTQhAAS1b8P+igigAClAKQq2xvxHP1KHrOpqbm13FQ2tra/5PW1vbuP83NjYqUaFQKBQVUMJAoVBMONLpNI4cOYLDhw/j8OHD4/7d29ubN/r7+/uRzWarF1oJCsAkIKYGmJr9t0Xsf1sEsEjuby3/b9LShtF5k0GJDpAEAB0gOsx6Hd0n02KDX9NASe5vjdjGvQ8DmIzqmLTFp8FcIBjgCAaM/Ts5bKHlzUEAFkBMUJgALBDLBPbuBzQKqlEg94dq1ti/dQvQc39rVv7/CGnTJxIJtLa2oqWlBZMmTUJ7ezsmT56MyZMn5/9d+HddXV24CyoUCoVkKGGgUChqhkwmg56eHnR3dxf9OXToEA4dOpQXAENDQ77LTqVS+VXoN1/aA2LogJEz8p2/HaM/JwKcn8EiIJWsWk3Dvs8eB6qP/SjbDIzODilIPBJIGASFAs37zaIfNe4bAXmls8rXciJCt4qFQ+7/VLeAhAWacP5tYuHxc/KenUwm47uqjY2NeZEwdepUTJs2Lf+38++pU6cilUr5LluhUChERAkDhUIhBYZhoKenBwcOHMD+/ftx8OBBdHd3FwmB3t5ez+Ulk8mi1eH29nY88PNHbYM/q4MYmv1vU7P/bYVL4kbaWkESY9u6tl06H9nmseHXarQAEs9wHKkwcLu+CWgFEVeT3hhBcsvu/P/pyChgmi7f9A7VCsWDCZqwgKQJmjTxjk+fjiNHjuSF45EjR3x5idra2jB9+vS8UJg+fTo6Ojryf6ZOnQpd16sXpFAoFDGjhIFCoRACwzBw8OBBHDhwAF1dXdi/fz8OHDiQ/9Pd3Q3Ti3FoEZCMDpLV7b8zCZBsztjP6iCG/TfMKqv4DDCPXwqrzjYId72jDtkpYm0UdohbGFRj8usZpA7aXh7tUC+sI71cr0dBbY9EwhYOjoCgKRM0aeT+NkFThqek37quY9q0aUViYcaMGejo6MDMmTMxffp0JBIqF4hCoYgfJQwUCkVkZDIZ7N+/H3v37sWePXuwZ88e7N27F3v37kVXV1dVwz+ZTMIYoLax7xj9GR0k6/w/t8LP2eAvS8mq8MgZx2BgbgKHTxRTEDiILgwA26PQ/uowkgd6YR3sGftFSE9CGGwBYdlCoVA0pOy/O5a14+DBg1U3oOu6jo6ODsyZMwezZs3C7NmzMWfOHMyePRszZ85UoUoKhSIylDBQKBRMMU0T+/fvx65du7Br16684b9nzx50dXVVzJmfSqXyK6kv3vuabfinEyCZBLRMwl71j8vor0QyCQCuGW9IYwOs6ZOx46J2jM6KZs+AX4QWBhSY+soIknsPwzp0pPznLCtWkVAOCgokTVh1hi0c6gy86/Iz0NXVlfeGVdr/QAjB9OnTMXv2bMyePRvz5s3DvHnzMH/+fMyYMUOFKCkUCqYoYaBQKAIxMjKC3bt3Y+fOnXkRsGPHDuzZs6difHZDQwPmzJmTXxG95V/vgzZqC4BSw1/I1JKaHTtC/IZ+JBN484plQooDUYUBMYH210aQ3Li96iFs4wibSYoTpfeRFw71tmj4u2++q0hMj4yMlC0rlUphzpw5mD9/fl4wOH8aGhp434pCoahBlDBQKBQVSafT2LFjB7Zv345t27Zhx44d2LVrFw4cOFD2O6lUCtleCjKSBEkncoZ/EmQ0YWfw8bDqL5Qo0DQ7/aemhaoXmdyGg+fMQd8SCLXfQERh0LLbRN3hNPRXtocryLLTp8Ky2FSMEV6mXgpqb5auN0DrsrZ4qDdA67NITiIVPQ3Tp0/HwoULsXDhQixatAgLFy7EggULVApWhUJRESUMFAoFADsEaN++fdi+fXvRn71798IqY1S1tbWhf88otJEEyGjS/jOStOP9A4b8CCUIKoQIhYEunI03PtEGq1GM0BfRhEHrLgONz+4AHR1lW7DTjwUKOQo6BVNQ0DoTtD6b/7Pi3MXYtWtX2excmqZhzpw5RWJh8eLFmDVrlgpJUigUAJQwUCgmJKOjo9i2bRveeOMNdHZ2YuvWrXjzzTeRTqddP9/W1oZFixZh0aJFuPOH620PwGjSTufJAKHEgK6DRGEkdUzD5i+387+OB0QSBo3dFlr/+gZoFCdGCxRuxHIqproJ2mDAasjgwqvPzov8/v5+18+nUiksWrQIS5YswZIlS3D00Udj0aJFqK+vZ1YnhUIhB0oYKBQ1zsDAADo7O9HZ2ZkXArt27XL3AlgEZCQJbTi38j+ShDac8hz+4xchBEFuzwB0Pdr6NNRjx2eOwsi8+I1TUYQBsYD2TSNIvLwt2gs74UbOv2OE15Rs72WwYDVkQBuyoA1ZWI1ZpNqJ64KApmmYN29eXiw4gqGlpYVL/RQKhRgoYaBQ1BBDQ0PYsmULNm/ejNdffx1vvPEG9u/f7/rZ9vZ29G4fBhlOQRtOgQzb+wF4Zv1xDG9KabyiwBEDhETjHSiDdfQ8bP37ZpgtMYa2EODc1a/hb+uPRcvO+KoBAFoWmP6nTdyMY0+YZuziABh7R3i3hR2SZIA2ZmE1ZUAbM2hb0IAjR9wzQHV0dGDp0qVYvnw5li9fjqVLl6KxsZFrHRUKRXQoYaBQSIphGNi2bRs2b96c/7Nz505XQ6KjowNHH300nvz9y2NCIMvfICa5Dbt54jC4tJITqEoESWTCQNcBzb726ImLMDQjCSsBZFoJBhZZoPURiIOE3Te0OhO3nfZf+R+3aVl88vVL0D9qb0w90t2Ctg127nxCAWJGN02kBuxrtT9zEDjca//QNEHNiPpOoffA7XdRU9J/aQT7I/KZkhqzoI0ZvPXDq9HZ2em6yEAIwfz58/NCYfny5Vi0aBGSuf05CoVCLpQwUCgkgFKKAwcOYNOmTdi8eTNee+01dHZ2umYl6ejowPLly7Fs2TL88srb7LAgk4/xO27Vv9QILyQKo6rS9St4KLiKg7o6oL0Nh9dMRbq1oH4F1RmaQ5GdbNpWOGP0lixam0cwvXkQ9y69e+znZKwuu4xBXLbt4qLvWdSuYPdQE4afmwoAqD8EEIvflEELnhEpmJqmvDaK5L4+0APd3K4NINim5KjEgpMZq5SSjEs8p3SqW7AaM/j0je/Leya7urrGfS6VSuGoo47C8uXLsWLFCqxatQozZszgVi+FQsEOJQwUCgExDANbt27FK6+8gldffRWvvPIKenp6XD5IoA3VgQyloA3WQRtKMdsQ7IYvIeDAy3Dycm0/4UohU5GWQhfMgjG5AZmWJPrnVznzgAC9Kw1mwmD2/ENY0W6v7p4/+WVc2DRc8fNuwsCNza/PATHsNmreriMxwnDDbJW21wyK9s12lqJU5z5YQ5XvyRdOH2U1HfLu85XayiU1K1exkDBhNaXtMKTmDKymDJAYf//Tpk3DqlWrsHLlSqxatQqLFy9Gwu9ZIAqFgjtKGCgUAjA4OIhNmzbhlVdewSuvvILNmzdjtCRVo67rWLJkCTof2WOLgcFUNHsCvBjgbrAwjoJeO6iBH1YcaAQDZy8D1YF0qwajwXtZo1OA0dnhNiL/85l3okUbxZr6fZiXaPb8Pa/CoJCdhycjm9Vh7WlE67bwfbCaMCik4bAFzaBo2jMC/bUd9veDTmWVQodYwlIslPMeuFF6b5bFVyg4exaaMrCa01hy5hx0dnbCLPHG1NfXY/ny5XmxsGLFCrWxWaEQACUMFIoY6O/vx8svv4yXXnoJGzZswLZt28ZN1s3NzVixYgVeuG0LiOMNsAIayh4JJQQcghpAYa8LBBcEJfXwIw5ISzOsaZNw8OQ2AICVIAii1cx6YGCxAejehmTSYCKRNDF7ai9uX/YHAMBkPdgm0CDCwMG0NKTNBAbSKWQes0OOEkP+Qo78iIJCNJOCWICeBqY+vAt0dBQ0Xf7Qr3FEJQq81CMIfgRCOUyT/wZnzcp5FNI48f3LsGnTJgwODhZ9hhCCo446CscffzxWr16N1atXo7W1lWu9FArFeJQwUCgiwIsQIKMJkMFcSNBgnZ0ulHeKUBbGeCF+DByW12ac4ajqnoNUEtaCmQCAntUtMOvZXH90KjA6q7LX4KijDiCpmbhszt+qhghVpdsAfteP9JOD2HGoHcONSWw8bg7+fN4K9LYHzzSz5dW50Ic1pPoI6o5UnmKCigI3WncZaNg/BG3UAN21r/oXBDrobBx+3yVW7VjQJjxTp9L6LKzmDKyWNGhzGrS++NwKQggWL16M1atX58VCW1sbl/ooFIoxlDBQKDgwMDCADRs2VBQC8+fPx57nDkHrr4M2WM8tS1CgfQF+KWfE8LiWA+d0p+XEgbFqEUanpTAwm318tFkPDM21YDUUG6zJ1gw+u+pxAMCXJm9BHQmZ8WXEArmuB/hTP4iLDskmNDz0rmPw0yvOQLYu+H3u7WtD/5FGIK1j8svu7clSGDjoaYrm/QaaNh+E1XPY/UOieAu8Uk0osBQHDiXtwzMjEk2asFpGYbWkMfukduzatWvcZxYtWoTjjjsOJ554Io4//ng0N3sPl1MoFN5QwkChYEA2m8WmTZvw/PPP4/nnn8eWLVvGHSA2f/58HH/88bj3h49BG6jnv0mYp1HuUGqsRHFNgLsoyF9G1+00o6kkDq1bDEps491K8Lv+4HwKo80AUhbOX/kqLp/2NzQSEwuTjIygEQvkI/tAnhqt+tGNq2fjm99/DzIhxAFghxv1DNseiNEnpyI5aG8mBvgIA4fECIVmAk0Hsqh/YTuQNWyBLpsoqITbO8irTQvajHfaVJqwhcL517wNGzZswI4dO4p+r2kali9fjpNOOgknnXQSjjnmGJUiVaFggBIGCkUAKKXYuXMnnnvuOTz//PPYsGEDRkZGij4zb948nHDCCTjuuOPw3ff8gosQ4BoWVA3Liv6aER+KRhobMfC2RRjs0APtGwjCyAyKKSd34Yljb+dSPrnmIMjv+kFR+Zac3993wUr8+MvnMK3D7t5JwJOTkBykXIWBg5P6dPqz/SBbdtSOKHDDeS+jfFdyIoF39qNv3H0pXnzxRbzwwgvYvXt30e8bGhry3oQ1a9ZgwYIFYpysrlBIhhIGCoVH+vv78dxzz+HZZ5/F888/j+7ukpzqWQ1afz20/nro/fUgGf6p+CLzDMRNTBO8NrUdh0+bjdHJ0bbx7//xh1ie4nCa7EED5KQdruFD5cgmNHz0T58KtefAjS2vzUXbpmhPnZ78Rhp1T22pbWFQSpTvDqWRHMAGADRlwGwdhdU6ipZFSfT19RX9fsqUKVizZg1OPfVUrFmzRmU8Uig8opIIKxRloJRi27ZtePrpp/HUU09h06ZNReFBqVQKRveYGCDDfDYLu5FfCat1URDzip/Vcxjtj1roPncesk3R1cXi1Y9+776noBJJw8K6+zbhj5es4VOniJj8Rhr1z2/lnoFHOCiN7j0iBETXIxEHJJNAoqcZ6GnG6HaKVGMDrNZRHHfRUdi4cSMOHTqEBx54AA888AB0XceKFStw6qmn4i1veQsWLVqkvAkKRRmUx0ChKGB4eBgvvPACnn76aTz99NPjvAILFy7EKaecgtv+5a/QBupAaPSG+YQQBYJN2gPvXImhGdGFE41OAzZ/7j+Zl0v+bi/IoyPVP1jCCyfNxTd+eBGzerzZMwX1j7QAER0arGcppj3bC3TujOaCIhLxO0UNo/qHeF2bUFgtabzvn87G008/jZ07i5/7tGnTcOqpp+KUU07BSSedhMZGDt45hUJSlDBQTHj279+PJ554Ak8++SRefvllZLNjS6p1dXXIdhFovQ3Q+xoiCQ+qxIQIHRJMFAD2JuSBc5djcGY0oS+ZVmDTFzkIg3fvBnkh7ft7m4/pwD/8Z7BzDtzY3j0FDX+LJrRDMyimvTQIsmlbJNcTnhoNLaqElTJgtY3AmjSC5AyKdHrsHUgkEli9ejVOP/10nH766ZgxY0aMNVUo4kcJA8WEwwkReuyxx/D444+js7Oz6PdkNAGtrx5ab4OdPYiKYajWvCgQUBAUQmZOx/51MyO5lpUEFl60DXcs+TPTckXwGGQtHbufmIOGA9E87+QwxZQ/vRzJtaRhAooDB9ubMApr0gg6TmjD3r17i36/ZMkSvO1tb8Ppp5+OxYsXq5AjxYRD7TFQTAgMw8Arr7yCxx9/HI899hgOHDiQ/52maTj22GPx6l07oPU12AeNRRUz4pGaFgWyTLwHD6F9SzsOL6vjfiktC7y8dS6whG259C0NgYTBxuPmMKuDYWmRiQJCKaat3xNVxJI8OOuBUbx7Ee478AKhBHp/A/T+BhzaBaTqZuIz/3URHn/8cbzyyivo7OxEZ2cnbr75ZnR0dOQ9CcceeywSCWUyKWof5TFQ1CzpdBrPPvssHnvsMTz55JPo7+/P/66urg5r1qzB2972Nvzbxf/N9UyBsChRIBBL5qP7pDaYdfzr3XtCBm++65dsCxUgK9GIkUTv/81mUlY16nstTL7/ddC0//CpCUNU76BgngM3aMLEP/zxo3jsscfw3HPPIZPJ5H/X2tqKt771rTjrrLNw0kknIZVKxVhThYIfShgoaopMJoNnn30Wf/vb3/D4449jeHh47JeGZu8VONJgZxGyxDe2a1YUyCYIChh4V24jMmeGOyi+9sHb8InWg0zLjfscg82vz8GkjdGsvM78Ww/ojj2RXEt6ongnJRAHDlSzYLXaIUfNRyWK0qE2NzfjtNNOw1lnnYU1a9YokaCoKZQwUEhPJpPB888/j/Xr1+Pxxx/H0NBQ/nfTpk3D4VdHoB1ptLMICRYiVAklCsREm9qOA+vmwEryv4/5F7PfZ+D35ONvfP89yIY8+biQXQ8sQHKAWXFlad1loOmpraAj1e9TkUOJA1coKGhLGubkYUw6pg6HDh3K/66pqalIJNTV8Q81VCh4ooSBQkqy2Syef/55PPzww3jiiScwODiY/93UqVNx1lln4a5/fQxkMCWVGABqPB2p5KLA4ch7VyE9if/z4SIMAFsc/FMP8Ef3cw2yCQ0PvesY/PSKM5iKAiAaYaCZFFNeGYa+obP6hxXFKHFQEQoK2pzGBd98Gx555BH09PTkf9fY2IjTTjsNb3/723HyySerPQkKKVHCQCENlmXh1VdfxUMPPYT169cX7RlARod+pAH64SbmYqAwKwXP16WmBQHA3+CIYkNl7tlok9qw78J5/K5DgeQQRc/JFh5694+wONnM5TIv7M5g9Hcp0IcIWgYyGGhL4o2TZ+Av717O/KRjAHhj3wy0PVIPLQsYDfyeU/0RC5Pv3wxqWoBlTayTjsNiWcVjEK/3iVL7WuA7rgJjYyvr69giIQOzfQjm5BEgNSZ22tracPbZZ2Pt2rVYuXKlym6kkAYlDBTCs2PHDjz00EN46KGHirIJtbe3o++1DPQjjSCD7MOE3AZy1q9L0TV4CoKCE5sppfGFKfGYHHMGhvNsCCGAzn4PANF1QCMA0YBEAsMnLUDfoiTz66QGKPQ0RXLYfmaf/sHt+FhrT5Vv+WPYyuBjb56H7UemoLe3CXRUR8sW+15GOiiMKVksX7SP6TUBYMdfFmDaRgNWgsCsI8i0EJiMQ7KIRTHjySMgu7vsH5im3Td4rFBbJfmOaknUu90b6/e3QByM/YiPScJ7gYeCgraZMCcPoW2pjsOHD+d/19HRgbVr12Lt2rVYsGAB82srFCxRwkAhJD09PfjrX/+KBx98sOicgcbGRozuBPSeJmj9OTGg8fEOuBHmdXEtO0IxUFSPuAwYToZF6XMhjF34JJmwBUEB1qJZOLimFVQPf0/EotCyQMNhC8SkIAW2EithcMQcxu8HluKnW84ApcDI0FgsdKEwAACqA2YKgAa0n3YADcksklp4w9oRBg5WgsBKACNTNIAAlEH/0NMU0+94HbCK+wQ1DPbeg1LjGahtceDAUiQ4z8PlWlwXYjhchxACJJOgoLCaR3D251fh0UcfxcjIWIrgJUuW4Nxzz8W5556LadOmMbmuQsESJQwUwpBOp/Hoo4/i/vvvx4svvggrN1Houo5TTjkFa9euxQ3v/mVxNqGQosCrezfoazKu/AiMhkqxu0JsaGZhUFSJUWbiNdC0quUMv/Uo9C0I7jUgJoWeAer6LOgZ9z4WVhi8kR3CK+mZuPb598Ey3J99qTAoZaSDQl8wiPlTjkDXgp8KUCoMCkm3ajDrCIz6cP1j5oP7gUO9ZX/PTCCUM5od4n7PWOH1PsO81xXEwdhHGBrvPMtPJIqePSUWrr3to3jooYfwzDPPwMyNW4QQnHTSSTjvvPNw+umnq03LCmFQwkARK5RSvP7667jvvvvwl7/8pWgTMRlIQe9pgn64wf2cgRCiwE+8Z5BXJK4Qoar1EcVYCWtEuHgJiosnwVc1PQgChzDCINVPoWcpkkOVDa9d5wNvXPBTJIk/oZOlJr68/1S82DMX+w5OqvjZasLAYXCRCW1yBkfP6vJVFwDY3j0FzX9uRtPB8oKOakCmWYNRTwKfFVFNGNgXsgArJy6DTIHVjGUHUd63sHi537D7EjyIg+KPM1qsYXyN/Njh8uypbsKcNIjl583Exo0b8z9vbm7Gueeei/POOw9Lly5V+xEUsaKEgSIWent78eCDD+K+++7D9u3b8z/v6OhA9/PDdqhQuko4iE9hEHSw9fKKRBom5FEMOAjhJXDD7/PIrbR5HbICiQNNA9G1cWFDZa/R2oyD58yB0ejxGhRIjFDUDVjQssUhQ+Uw6wj++u//D3XEmwAxqYXrDh6H9QeWoKu7zVu1PAoDALBSQLaZovW4Q5jSOASNeHsem1+fg3n3evoorAQB1YHhqf5CjCZvzaD+pZ2A4e6VGIdp2h4EP3gVBYWI+P4Fwe+9+33/XPYcVP9KyIUbDtcgul51YcFKZWG296N9VRIHD46dVbJw4UKcd955eMc73oHJkyf7uq5CwQIlDBSRYZomnn32Wdx333144oknYOQm5FQqhTPOOAOP/MfLY/sGquFBFLBYdfG0Cg/EHiJUDmFFgYOXZ+TBQ1C2eF33dg2fgqCQ/nOOtg88q3AZYlJoJtDYbQIUngSBg1dhsC07iE2Z6bj6uYtBLQJq+VgZ9SEM8t/RgUwrRdPqw5jcOII6vbKB7UcY5K+hAUaDhkyLvRehkkDQsxRTX+yHtj3ApmnT9O49CCIMALHfQz+Evf9q76NPz0HxV72PETwXioDxIUVlywPFt//yedx///149NFH86ct67qOt7zlLbjgggtw8sknQ+eQUEGhcEMJAwV3enp6cO+99+Luu+8uWhkhgyno3U3QDzWCmD4nzTLCgLUL1u31iFQQBDSIAQlEgUOlZ8Yg33m1jcheVvcqkkhg/weXuAuDXNrR5AhFYiSYQVVNGOw3BvHb/tX4/bY16OsLlmI0iDAoZHCBCdKewdLZ5UOMggiDQtJtGswkKZvmtGWfgeZHwp1bQA2jcvaioEZxITK8k5UI2wZeQo5CiIPiYjwu7HC4RpBxxQk1Mtr7QRvT+Z/PmDEDF1xwAc477zxMnTo1VH0VimooYaDggmVZePHFF3HnnXfi8ccfz2+4amtrw+AWE3p3E7SRgMfIxyAKIttEzCivtzSiAKhoHLA4BKncfoGi9KNhKCMMkoMUidGxtKNBoTqw7+IMtp7163G/+/zeU/HakQ7sOtAe7hohhQEA0AQwMt1Ccv4QFk49VPS7wyONyN45Dc37wj1PK0FgpgjSbQRWorjBWQiDqnsPWAgDQJ53sxys2gEoH24UIKyoElUXeXiUnwo4xwGw6tO48Jun4oEHHsDAgH0ioK7rOP300/Ge97wHJ5xwAjTZ+5FCSJQwUDClr68P999/P+666y7s2bMn//Njjz0Wm2/fA+1wIwgNORgXCANem7Tyuf6LrivGnoFqSCUKHArbOkTokHvRJcIgRNhQOawFs9D1Vjuen5gUiRGgvtf0FTJUiUPHJPDqlf8JAOgxh3D74BLcuOkcpEeTvkKGysFCGDhYSXsfQvtpB1CXMFCnG9jf34rWX7YyKR+wBcLwdA2UAFQj0NMUM+7dDprOsLkAzQn0rFEsEFgaxIB872kprNujVMAzFgd2kSWpjXkvKCVDCm5iwZw0iKXnTcerr76a//ns2bNx4YUX4l3vehcmTZoU6hoKRSFKGCiY8Nprr+H222/H3/72t3yMZGNjI9atW4d7/+XJ4N6BUjQSbcYGzhmFuOTpltzYYOElKKVwgmZ9xgEAYOY0dJ0+BZoBNBxiJwgcDh2TwO2f/wE2pGfhmy+8F0aWbbwxS2FQyPAsC9qcYdTXZzH5phbm5RsNGjJN9ngw7Y4tzMsHtezTk02TvRHsIPn7Gkm7cLhG0YGIPCmToSgI//niN3DXXXfhz3/+M4aHhwEAyWQS55xzDt7//vdj2bJlTK6jmNgoYaAIjGEYeOSRR3Drrbdi06ZN+Z+ToST0rmZ774DFaNLLeQkiEQWChwmVQ3pRwEEoORBdB0klmXoJ8mgE2ZXzMTw9hcQon/r3z0ug5cL92NPFJ0sJL2EAACDAyHSKWY9zOHk4h9Ggoe2VQ8ABtidE5zFN0Awjb0Q5JH93FRXQNKansVPNgjlpAIvXTsGWLWOCeOXKlfjABz6AM844AwkeCyCKCYESBgrf9Pb24u6778Ydd9yB7u5uAGOrFut/9BLIUMpbZiGPED2iCVMy70AhShSUR6urY7OXwLVwguzyechMZuQRK8PIFB09Z6crZj4KA1dhAEDLAm07fKYF9QkxKRq3HQF6Do879ZgJ1LJDizh4tPJI/g4rqsBYIACA1TCKM684Bg8//HA+09+0adNw0UUX4d3vfrcKM1L4RgkDhWe2b9+OW2+9FQ8++GA+XKi9vR39Gw3oXc3uh5AFIUrvQNF1+XkKlCgoA6e2cdqEJBLMJ2IAgEZA53ZgeE4zN2O9EKoBh5clMLxilE/5nIVB25smNCOCqYYChFI0vbwPdGiYzyUyGS6x73lkfZcBJQ784IxLjJ43TRj4+x+chTvvvBNHjhwBYKcCX7t2LT7wgQ9g8eLFTK6jqH2UMFBUhFKKZ599FrfccgteeOGF/M/JUBKJAy3QDjHYTOwQlyAAuE7GPGLmHZQocIekUnz2EgDA1MmwmhswMqeJT/llOLw8gaGVcgqDSdsNEI4L7aVoGQv1+wehdfeCjqarf8Ev1ALNZJU4cEOJA384WZlYCQRCYU4awKK1k/H666/nf37SSSfh7//+77FmzRp1srKiIkoYKFwxDAMPP/ww/vCHP2Dbtm0AYKdG665D4kALyCDDcKGoNxSPu76cIURKFIyHJBLhzyUoV3ZTIzILpiHbkgRNRN9flTDwT3LQgD5iQH99N/vCndSmvPYeyPpuA0ocBIG1QACF1TgKc1ofMGUknzL8qKOOwoc+9CGcffbZah+CwhUlDBRFjIyM4N5778Uf//hHdHXZhxU1NDTgggsuwJ1fewwkw3AgiVsQAEoURA3HDdjcNhgnEiAJHUPHzY1FEDgoYRCcup40km8eAM1m2e8/oBYfr4SDjO85oMRBGBhmMgIAK5nFBf+0Bvfccw9GR+0xpKOjAx/84Adx/vnno7Ex2MGIitpECQMFAHtD8e23347bb78d/f399g+zGhIHWuz9A35PJi6HCGKgEAn3FcgsCngJAhAS6jChsmXXpZBZOguZVn5Gs1eUMAhP45v9IHvLn84cGN4bk2V83wElDsLC2ougmzCm9KF5uYXe3l4AQEtLCy666CK8733vQ3t7uIMSFbWBEgYTnK6uLvzhD3/Avffei3TaXvWaPXs2uh4fht7dxHT/gFCCAFCiIEo4igJeaUitRbNgNqaQmRS/KACAkXYdPWssoDXLvGyewiDVR9HYw/5sh0BQoKFrBNqRQeBQL/vyeaY1lfG9B5Q4YAHzfQgWzMkDmH5qCnv37gVgb1S+4IIL8OEPfxjTpk1jch2FnChhMEE5cOAAfvvb3+K+++7LpzhbtmwZtt3dDe1wQ+3sHyiHhJuNlSgYw+lTpL6OvSjQCKxFszHS0cC2XAbsO12HOZN92ApPYdC8z0JySCzjkBgUTVsOgvYPsA8t4n3mgaRjgIIRIU9SLoSCwmobwuJ3TcbmzZtzxSdx/vnn48Mf/jA6OjqYXUshD0oYTDD27duH3/72t7j//vvzm5GOP/54vPr7PdD669gIAlHFQCE8Jlee8fOSigJepxiTVIpPGtKOqRhaPDmSFKRBUMKALVrGQuOr+0CHR5iXTTMZFVpUiBIHbGHoRaCgsJpHsOyiqdi4cSMAQNd1vOtd78Ill1yCWbNmhb6GQh6UMJgg7N69G7/97W/x4IMP5gWB1leHxN5WaAP1bC4SZ7pRPyhREAnSiYKZ0zC0eBL7chmihAF7EkMm6t84wOXcAyUOSlDigD2Mw4zMphEYMw7DarHFsq7rWLt2LT760Y9i7ty5TK6hEBslDGqcvXv34te//jUeeughWLlBWeuttwXBYB2bi8jgISiEkzBQoqAATuFDPEQBaWtBZu4UZFsSoLrY/VgJAz4khk3ooyYSr+1kXjY1DCDLfl8IAGnHBgUHGJ+qbDaO4PhL5uCZZ57JFa9h7dq1+OQnP6k8CDWOEgY1Snd3N37zm9/g3nvvzXsITj31VLz4y+3QhhgJAgBEl2xikkgUAHIKAy6eglTK7mss9xNQC0imMHzyAlCNoSCgADEp89SmxKQ4eGISo0eNMg910g6m0LJDg8k4sZOWBVr28Dn1WMtSWEm2DVF3OIPEpjfZ71vheSCaZOODEgacYexBsBpGceIn5uHJJ58EACQSCbz73e/Gxz72MUydOpXJNRRioYRBjdHX14ff/e53uP3225HJbYDTeuuR2NPKVBBw8xJoGt+Jg/UkyiGEKN+uvCZ8Z1WJR4iDLNmHcoYaSSQwdOYyNmUCSPVmkRhIgwyNYmgZu0mTGBSN2w6D7j+ILT9YDtJoMClX66pDw0GCef+zDXRyKwaWt6N/rg7KaOFxyqYM6p98HebKRUhPZTj+UKDp6W0wj5qNTFsKVopNv0j1ZpF4bjOQTLI9Ods0YeWyvjEfN3mME45hySsMqmCckMHbXDimyVBfAGPjPEOBkJ15KB9ilEql8L73vQ8f/vCHMWnSJCbXUIiBEgY1wvDwMP70pz/hlltuwfCwHSurDdUjsXcytCNsDyUDOE5ujEVB0eQjsLdgXHuyrGthmyaT9sq7Re16s5r4S54b02EllzVGa2pgIwxyooCaJrS6OmbCwFlttkZGobU0I7NyPrIt4d+9xt2DIIMjoF09AMBEGNCshll/TqB5xxD0nV224TowaP9y5VEY7WjE4aXhQ4scYUASCaBjKjIzWti0ya4B4PU3AQDatKkYWjWTSRhYXhgATMUBTaftcw4A9osqrMe13Fjp1JEaBqhpsl+wcBk7RTa6udW1sD15eZRYhhg1jWDpRe145ZVXAACNjY24+OKL8Xd/93doampidh1FfChhIDmZTAZ33HEH/ud//gd9fX0A7CPPdz04BG2gEcSitgs7LCWhFlwGRYDZwOg6iHPwFggtCkrb0hEF+d9TO/6Z9XVyMBlaClJJEl0DaQiZQjR3Sm2hYCTz52Do6OAH+xCLIjloIPnStvyqMADQ1UdjdEbw+hKLomHvEMiOvaDmWBuHEgYWATUIFv/WQmrznrGfFwoDwBZMZyxD7+JEKO+BIwwcSF0Ko8ctgFmvhwqHan5uJ6zevrH6TmnH0HGzQQkJXC4xKRqf2Va8CZmFOHC8BSVpUZmEYXLyFpASQ9IRB0UfY2BsuoUdyiQOAAb1dXuGggsECgqrZRjz1zWjs7MTANDW1oaPfvSjeO9734sUh8MmFdGhhIGkUEqxfv16/OxnP8P+/fsBAHPmzEHXE1novc35tKN0NORGxTKx16IOhmUHbg4TaNhY+rJtGKau5dqwVBTkoKYVzmtQ4ZmFGlrccstrBFpdXbDJLXcyrZsQ0mfOwOCqYPm69RET9S9sBx0ZGXe/YYRB6kgGyY3b7XJKyg0qDGhWw7RHk5j25+3jn02JMABy/VPXcegDx2J0SrD3vVQYOOWS1hYMr5gZOASoVBjky144F8OLJgXaM0JMioaHX3H/XYhN7zSTKb84E9Z7wMFbUM7gdxMH9lfCja/VxlGRhEK5MY3LfAjwEQgMQ4yccxA6zkhh165dAIBZs2bhsssuw5lnninUs1N4RwkDCXn11Vfxk5/8BJs2bQIATJkyBf0bNOiHW8edQxBIGHiYVAO/8JUGo4CDYKUuzC1eP6C3oGq7Ba1npbYrIwocAouDKs8r8NBS4cCpoF4DmsmU9Y4ECfshJkXDngFoB4/APNLr+hl95gwMHTPDV4hLctBA8sgoyM79ZesbRBg0vVKPpn0W2v+y3f0DLsLAQWttxejqeehfkEKm1d977yYM8uVOmQxrUjOG5zT7WuVPHckguWkn6Ij72QNk/hxYrQ2+D6hr3D0IbCnTPggoDqgFa6jKGQlBxQHnECI3yokD++sBx1qPY6koRia3unKYG6tej+E5CGZ7P1pWmzh8+DAAYMWKFfjCF76AlStXhi5fES1KGEjEvn378LOf/Qzr168HANTX18PY0YhE9yQQy/3l9i0MeIgCrwOPz8HP8wAdsyjw3F4BJlQvZZJU9Vhx3+FmHp9VoOGFoTCghmGfRFttVXL5YgzPbfZcbvOGfTAPdlf9XObMVTDrvD1XPW2hYeNuWFXy6fsRBvqBOsz7cwb1bx6qnKe/gjDIl9UxHWZ7K/ad3ebp2kBlYeBAZs3wFcrVtK0XdPuuyh9KJkGXLfAlDpqe2gY6OFT5Q7oOkkx43+viRRgA/sVBRCFEpVBKPZ3q7Hvc9TGmxi0QuNWT0zzp6bqsQow0C3//ozNwyy23YHR0FABw9tln49JLL1UpTiVCsjxnE5OBgQH853/+Jz760Y9i/fr1IITg/PPPB17oQLKrvawo8IVGPIkCf2VqXAY7Sml8osAHhPiY7P20k/PHSx08xkf7iqPmlTXKohVFAeDdMAFyq5uZjKeQL5I1gWpditrGu1dR4BViUDRv2If657ZVFQUAkOirPonT4QS0gykc/ZM9qHt1N5PDu8wDB0E2b8Psvx5BcpCCVOkGxAISox48UfsPounxTjTsH67+DLySzYJs2ob6rhFomer9VctSwIvBZ5r2Ygv19g5YI6OePpdPBhAXHkSB/THiaayglIJ6EOR5qngqxpXtcQ7ggd96ModHZr1s1vYahxzbiaXhj//wOPBCB8477zwQQrB+/Xpccskl+H//7/9hYGCAUaUVPFEeA4ExTRP33Xcffv7zn+c3FmsDDUjumwpttHrqP5rJVDW0gogBTwMjh9Vvv101Dm8BlxCrgmv7KY8kEr6er6eQogATh6fnVq2fFkCSiaqpSx1R4AfjrSuQbS5v9DS+2Q/a+aavMit6DChQ3zOKRFcfrJ7DnsvUpk3B5m9VWGE/ksLi29NIbtnrvaIePAalZN62Ej3Hlh+HGrop2u941VeZ9Oh5MBtTyEwq7+Xy5DEogKRSyB6/GJnWCmVu6QHdvc97RR1PXCXPQZlNx5XL9bCYwGGxw+8Ga2qavhMXeBmPg+7bitqLENRsYv5sBd+DYNWnseojM/D8888DACZNmoRLL70U73rXu6DJdv7GBEIJA0F57bXXcOONN2LLli0AgPnz52P/+oydachjQG5FYRDQO8Bl0uIQqx71hmMuGwiDDvoBRIF9PXuVr+LKKYd9IM61/aA11Jd1fwcRBUBlYdC0vQ/W1h2+y9TmzsLQ8mnuZW7rBd2933+ZFYTBjPtTaN7nUxQAgYQBIQR01RIMzm9E/7zxzyKIMAAAUl+P7NLZyEwen9kkMWSi7pVdoD5XHklTI7Ir55cVB76FAVBVHNCRkaJsUt7LrSIOWI9ruh5o/AosDhzKJKAIY5JEKRC41JNH4omgMAoxcjIYdZyVzG9QXr58Oa666iosX748dPkK9ijJJhi9vb34/ve/j8svvxxbtmxBU1MTknunouuuBPSBJs+ioCw8QoYAf2FDHonTXeyKy8DrK1zIjXLZmUIM8oFEAZDrGxVECo/VKQ/hQ65fS7uEc5imbYwFEAUAkNq4Y1woCzEpmrb3gb65O1CZztkDRWVaFE3beoE9BwKVOf4iAE3rmH1HEu3r3/QvCoJellJg4xto/esbaN5nQWNz5hro6CiSm3chOWCAlPQNfdTwLQoAgA4NI/nydiSGzHFl1vWkQQ8ECA2zcqlv0+P3cdmbdAO+L5XCigRaZSW67t/TUBAG5LrI4iOkqFL5URC2nq6EGWN5hhiFgIBAH2jCwXuSuPzyy9HQ0IDNmzfjsssuw/e//3309vayqa+CGcpjIAimaeLOO+/EL3/5SwwO2it369atwyP/9jqIESCPtmmOHajjEFIQuA6EYQcjl4EwbJeMKoRIxJStJJUK/Zxp1ij2GvA4WyKAGChCI7bXwFmtLThZNihE1zF8zsp8hpy6njS0F7eEKzOVwvBZY6ti9d2j0F/bEaqPF3kMKND2XD1m/u/WUPUM4jEohBAC0tyEg+85Gpk2uwGDegwKy0RDPUZXzYXZYK9c1h1KQ3+x8mbmquW22VmWnBCvhgMjIK90hiqz1HtQMUWp5zJdDpNkOa55yELkhUqZijxXpXRlmuEJ6jy9CFzqyOIZ8/AesMpglDBwxj8cjQcffBAA0NzcjM985jO48MILkWB52rgiMEoYCMCmTZvwb//2b/mDQshICsk906APhzjMyREGDL0DXCaoggGM6WFhvE4OZommsS07aAhRKYUHnzGsH1NhAICkkrYQMk3bEGMgKOmKxRiZ1YT67lFoG7eGN3gKhEF91wj0LTtD19MRBvWd9WjeTTH1/m2hygMQWhg46NOnYXTJDBxeXodUfzhh4KC1tWJ0aQeMRp2JMADsA9FGVsyCpRM0be6CdeBg6DLzGYtgZ4ML7DEopDCsKMIzC/xAKQWyWXbjd+4+w757rmVzgKUJxXRRS/AUp2bTCOa/qzFv9yxZsgTXXHONCi8SACUMYmRoaAg///nPcccdd4BSiubmZqS31EM/1BY+ZMhPRgiPiJD6sxq86ig8rEQBMBbKwCBLRSmUBgsdciV34BkLUeCgT54EY8EMaJveDBySVAghBNrUKYCugfYPMjlpWps2Bds+MROLftcN9PaHLg8AM2HgoM2fg8MnT8PkOzexKa+5CUglbYO7j809k7ZWpFfMRepJNnUEkH8PPWcj8lQmGwN+HAH3FrjhJ1uYF5x6sTZPeIgDLnUUfQ5juP/AnNKP+uWjGBgYgKZpuOiii/DZz34WjY2NDCqqCIISBjHx2GOP4cYbb0R3tx3bum7dOjzyozdATAYTgGUxMUAKkUEUAC4uaRYILgwopWPxviyFQTZkKEQhhauADIUB0XWmAtjp58zLTFY/S8JzeboG0tTE7h03TdDBIXuFm5GHkRACkkoxf79pJsPWuNN1UMNgW6amjQ/jDFXexBMGhbAWCfm25OUNZYA085iuswkv0k2ccfWSfHjRtGnTcPXVV+O0004LXbbCP0oYRExPTw/+/d//HY888ggA+/jwnvUG9NHW8IXzEgRApBl+gsJUvDj3zaKOTp0IsWP3GQzQbq8tSaUqnnDsuezCtKUsJpPC+zdNdiEWucmTdT9iDUthkH8fdR3wcHBdRUwTMC3QdNrOMJM1xgwSFvuRGIohh0Ljk4VRW/geMRMHug44m2tZhMwlE2NjB2sYiQOWXrtCCCFjK9O595zJHrTcMwLAbTwOS35jN6uyOQgDSulYezKYe41UH6a9PYl9++wMYWeeeSauvPJKTJ06NXTZCu8oYRARlmXh7rvvxs9+9jMMDg5C13VgdyMSe1uhkUT4SZRRjKfDuMliongLCu87rBFfaBCzKA+VJyBnlTaMUTfuLIOwk4lLG4Q2mBxRUCC0RB7GWBjJ497HsMLAoqDDw0XGlrPKTTRib6IN0Y+iEAb564Qpj0dCgcK+HtJzQPSSkA0BxUGQtKV+KBIHwNgYEqZMZ/woKJPn2BwE1zqGhUdoaA6i66HDi+hoGlSzYMzuB+YOwzRNNDU14bLLLsMFF1ygzj6ICCUMImDv3r244YYb8PLLLwMAli1bhu3/ewTasJ2nm+ha8EmU8V4CLvmVXRDOW+B232Hq6DZAhijP62tKCAGpr3743TgK9xWM+13w8xRylSr6MTWMYMKgMKSisEzTFFoYAOEmTdd3MqgwsCiQTueeQfHG/0IjljiiIEydWQuDMosfrNNGhhIHZd77oF6yccIA4CIO/KYddeAZQlTIOCPZvnjwA9HcysuVye2sFp+ME0RjFwpeKEdh4GCHtAabi+noWGY5qzGDxRe3Y/PmzQCA448/Hl/96lcxc+bMYJVVeEbJL45QSnHnnXfiU5/6FF5++WU0NDTgiiuuwJu/GcyLAmgBJ1AnEwsjA7tiPn4ZVHrQOhLCVhSU25QVYDAvzPnt6zsBjJCyoiAozsqpS9sGMrwKvQS8vVkCwTT23TBsUZDJVD9U0KKgFuM+EZJy70FQg4x1eWX7oa4HD/FzK5PHBlrDCHbfEfUP14MXCQFJJOz9VT7bpOxBjiHCYiI7XC3iU579kj9gMoAIIQWLHdpwCtt/PYAvfelLqK+vx0svvYRPfOITuOuuu4RfCJId5THgRFdXF773ve/ljwIn/XVIbm+Hli5ZmdFy4R9esSwmrtRCuJxmXAkRMhFVume/q0ZlVsaL8PG8mMTQJpO+jJGqOddZtoffcKJCUVAGnqEMLPDrMaj6Tvr1GGSyoCMjZX9d6jEYVx+tzOpluc9z8BhUW5n2bRx6eM98lVkYRuSGX8+BRiqv5LOeun2mL2VxfoFfqraHz7nFU/v6GPu4hxONv6D/QiPadJ2fl/14HS3LdS6y6rJY9rHp2LhxIwBgzZo1+MpXvoIZM2b4rrOiOkoYMIZSigceeAA//vGPMTQ0hFQqBeuNRuhdze4pSP0IA8abiz1PegILA9+iwMs9+5nsqhkDPstj1i65lbSqceIWLb96Nu6zHicUj23iyUjyIAoAMBfLrPEjDDy9l16FgUUBw6goCoDqwgDwJw7iEAb563opy4/x6HWc9NI2HPo9U3ysvoc9UDAIrMeCsuE6LmV6Hf+YLnp5uV/7ot4LjTgbk6+xoIwwAHKpTTsGoS0ZRiaTQVNTE770pS/hne98Z3TemgmCEgYMOXToEH74wx/iiSeeAACsWLECnb8/BG20wkvhRRjwzDZUDYFFAeBDGHi9X68TgNdVEA8TFK9XsGqWIj+iAPDWLl5EAeDNa+DVOCosT2C8xN76MkKrCYNcGlIveBEGgPe9B8yFgY/kCl7a0O8758mr6vXZeREH1bwFhcQgDuLwFjj4MparzDeehUFJmZU/wthrwLofxJSmNf/cKo2BFYRB/iP1WSz58BRs2mSfP/LWt74VX/nKV9De3u65LorKKGHAiKeeegrf+c530NfXZx/rvb0J+v6W6geVVRMGvLMNVUN0YVBtUPd7v5UmOy8hQ4VUmUR4v3oVzzbwKwry36swqfgxjoDKBpIfUQDIkZ2oijDw9W5WEwaGAToy6muV008GnWregziFQf76FQjSTyqWybLvozjW2hMRigOWJx0HwbcxXyXNaSBxAEQ2tvsaB+2LV/9MjGc4VBwHPQgDIOc9mDkAsngY2WwW7e3t+NrXvoZTTjnFV10U7ihhEJJMJoP/+q//wq233goAIENJJLe1QxvxGB5UThjkTp1lGnITBNGzEZUb0IPcbzlD3q8gqFJelK8c0XVXI4NmDbbxqUHaqJzXwK8oKC1PUCpNiIHez1RyvEFjUdDRUd+nVvsVBgAqpjUNk5nElYCGaEXjNgBln1OQ7E1lxIFrJiIvRCAO4hYFDoGyKJUZH3wLg5Iyoxjjg2aNKtsnYj7crezZBx6FQf7jDRnMeW8Ttm/fDgC4+OKL8bnPfQ4pP/s2FeOo3XQeEbBz505cdtlleVGg729GatMM76KgHLkUpLUmClhT9r6C3q/bYFkuE041XCYMvxmGmGBZ4w1viwY3Itz6RFDh5Pb5oKJAYgK/n6XP0KKgQ0P2idURnNZNLQpQl/4FCDN2MD95mWV55bIVhcmwxpIyfShuUQAETDZQkMWoqCwaYjx0QmNKnpkwMe+i1KMESum4lMlB0EZS2HtLBu9///sBAH/6059w+eWXY+fOnSyqOWERY/SWDEop7rnnHnz2s5/F1q1b0dbWhu9973tI7poMQv29iEXeAsuKLgVpDDBfzS2dQIMY8A6lE4PfbAqllOaIj2kyzQ/ADhbjVfUKaUm9YO8RYdRHBevv4yjpA8zeT2eD8fBwJIKgEGr5zDAVA9zFQZhxQivxuIR9F1j2f5dxK4ozCzwTdBxzBELB+xcorLKgvKqx82EJM2YLPCZSwyheyNA0+6RvHxBKcO9XnsUNN9yAtrY2dHZ24jOf+QzuvvtuIUSsjKhQIp8MDAzghz/8IdavXw8A0PrqkNw2BSQb8CAg5zCquDIOVULgMKKiTcdh79VZ3WdcniivVv5EZIScAAtx2otBP8sfeMbCWyD4YWfOc2DyfiYTgKbboUNZ7+53N4KEEpVSGFrkKwVzNRgd4pg3All7YsOeuF7Q9oHDiFzKZEYujSnvE46DwMS7WDBeBw7ZKVMeK0KFOxUSIAWrt2LZpNgGYL/vAccimjSx6nOz8mnizzrrLFx77bVoamoKVb+JhhIGPti6dSuuu+467N27F7qug7zZ7G2DcQVIKsnUmGG2YirwpuO8KGB1r5QyXVURbfIExsQB87qxaLdc7C/rSV5ESCrF7h1NJux43JCiAGAjDIAxcRDo9O1yMDzdnRAS78bQcrB8B3LlMYUQMcc1lmGHTpsxLI/pYhjre415n0Ep+XFR00KNRXZa0wFg8RAMw8CcOXPwr//6r1i8eHHoOk4UlDDwyP33348f/ehHyGQy6OjowOG/WNCGGEx+rMIoILAoANgLAxarJ6wR3Shl3WaMwxaYlSeo16DQc8MCFjG6+bIotduNQUgQcTwGrPobh3TNrBB6PwzLd0D0cU3QZ8A0CoD1fTIUB8z7BoNxyGpKY/LbCbq6ulBXV4drrrkG69atY1C52kcJgypkMhn8+Mc/xl133QUA0HrrkdzaDmKGnPQmiiDIwTyMSDRhIKgxCpSEXbEtmH2ZLBDwWeRPo2bUZixFQb5MJQ58I7JRytxrAA77xBgi4rNgHh7Met7jEFrEbOxlMA7RhIns4sOwJo0CAC688EJ88YtfRF0dQ49mDaKEQQW6urpw3XXXYcuWLSCEQN/dAn1va6jQISEFAcB34xSPswtEmQBE9xLw3hQnynMoRLC0pcxFQS5lJA+oabEL29F1tiFFgokDIRcoHHiNRwKPdYCAz0TkcKJCRBYIQCiRQEFhzu6HOXcAlFIsXboU119/PWbOnMmufjWGykpUhueeew6f+cxnsGXLFrS2tiKxeQoSe9uCiwKNXfYVptmGXFKtiQwJk3mINblBX9SJkrsoEJXcZklhYCgKAHATBYC9+ZWwWrygFtu6ahqbzaGsEKmPRYWmCZ35a1wWtrgRuK2K4JBZie3CZXD7iYAgsbcNP/jBD9Da2orXX38dn/nMZ/IblBXjUR6DEiiluPXWW/GTn/wElmVh6dKlePOWfmiZgBMSQw8BIEfY0DhqbX9B7l5EWpUuJFJBIOrEJ4jXIH/6NAOcUJ8oUpJaPg4ZqoaWSrI7BVkgr4FQIqWUKKZ1gb0HzBNUhEDofQblYOhBEGn/wf/s+rd8FIiu6/jiF7+Iiy66SGixGwdKGBRgGAb+v//v/8Pdd98NANC7G5F4s9332QQAxA0ZAiJfRa6p/QWCGJzliNxLIOqAKkCIF9F119NjgxClKADYhhQBtScOhApnLCXKPi+wOAAEmC/APktdpIKU8VwnQngRJRTZhYdhTRsGYO87uOqqq5AQWehHzASMM3Cnr68PX/7yl3H33XeDEILEzjYktteYKJAsbEg0qGEoUSALMbcFS1GQJ8LDy4iuMQ3HYmocaRrbcxKCIKooiBoJQovA6uyWiYiuMw8vYhf1ECy8iFCC5PZ2XHbZZSCE4K677sLVV1+N3t5eNvWqAZQVAWDHjh249NJL8dJLL6GxsRE33HADEgcCbDIWcR+BIwZqxWCMafUn7hXKaihR4E4cRgspOFmVBTw3G1eD1X4DalHmp+bGJQ6E2r8iAhpbEcka6nh5YxIHIreNJxyvC0M7Im6BQEDw60/ei+9+97toaGjAhg0bcOmll+LNN99kUyfJmfChRM888wy+9a1vYWhoCGRUR/KNadBGfLq8RfUQAPEbi6wzEkXt7st5CER+TWKfeAReMYw6dSnLPQVAvKIAsEOKQC0mKUwBgCQTbA36GMKKhA4jAuJdHRc9tMgZK6N8frJkJvKKgIej5QkwTlkNWUx9p4Z9+/ahsbER119/PU4++WR2dZKQCS0M7rnnHvzoRz+CaZog/XVIdU4BMXwYWUoQVIV16E3U8ZWivx6xiwJAeCMpqvAv1uFDcYuCfD0Y7zeQWRyIELNeERHGK8HFARCxcc1aGIjSB0XefwD4Egk0YWL5p6djw4YN0HUd//iP/4jzzjuPbX0kQgzrMWIopfjVr36F73//+zBNE+vWrUNqyzTvooBhyBCg9hEIRy7lnRSTmwiI3E4sXdZRXyvCPQUV0Qi7FKYAc4Mi0jh3NbZWR/B9B4C9YCV6eKjwiLz/APBlpxFDx+af92Dt2rUwTRM33HADfv3rXwtvA/BiwnkMDMPAv/3bv+Gee+4BAOh7W5HY42M/gciCQECk8xgInnUIEEgQFCKyIRDBM2UeQmSa7A3oELA8FRnItVcqyXbcyma5TuTCrNRWQrTpXAbvgWRzinD9UPTD0QDP3gMKCmNOH8zZAwCA888/H1/+8pcnXMaiCSUMRkZG8K1vfQtPPfUUNE2Dtq0NiYPN3r4sqiAAhBUFgETCQID0ll4QdpOx4MKA57OtdVHgMNHFQeyx3V4QcfwSfFzNz8e8jO1aFwYONSQQjOmDsBb3wbIsnHrqqbj++utRX1/Pti4CM2GEwcDAAK699lq8+uqrSKVSoK+2Qj/SUPlLoh5O5iCigViCFMJAAi8BILAocBDZaOL0jCeKKHCghsFMGAB21iPSUGUc9gsncSD0gWaAmKLAQXBxAHA0uCeKMHBgvDnZLjJ6gWBOGoF27ADS6TSOPfZY3HDDDWhu9riQLDkCWxnsOHLkCK666iq8+uqr9oN9aZL8okAGRImRroQEooAQYq9WiiwKWELp2B+GsH4HWU/Q+ZzrIqPrTPcbUIuCjqaZlQeA3UFqBXAJ3xPcUGaK4ClNAUneP+TqKXLf4SBc2C+qVt9/oPc2gL7YhubmZmzcuBFXXnnlhDnroOYtjYMHD+KLX/wiOjs7gayGzJNN0AbrKn+JpSiwaKgjvN2glDJO8cU26wgA0KxhpzpkCPPBwTTZ3jeHZy2FoLQs+w/jPskMTqFElPXKmGWxFX+axm1lkZU4ILoOkmS8Ep/Nsn9vWPdv5xRrVmU6fVHkxRjLEn48o7nEE0Ib3rDnV6YixhFFDMukJuNU5YRwmWMroQ3WIfNUEyZPnozOzk5cccUV6Orqiuz6cVHTwmDPnj244oorsGvXLkyfPh2p16ZDG4nwUBzRBQFy2RkYlklN0x60GMI8W0FuAIw7f3I1RJ9EAbA3RAqNbVaGE88wBkb9iMsBTIxjp3msqBI9NwWxKregP7J6f/LlsOqPhWWwFhxOmQLDXrRxWHxzjGSBBQI1c2l6Gb07efuC8WIZU7uF2ueqMHveHhY4tOEUhv5Wh+nTp2PXrl244oorsHfvXjbXF5SaFQa7d+/Gl770JRw4cACzZ89G3591aKMeXMwsVsI4eQkKCeuWpaxXy3NlCr9injPkuIqCkG3AXAjxgvWqPusVeGezLMfJnYsoYOE1KC0j7HjhYjCE8RoQjdiegsJ6shiPSsdJ0T0HrMosfW8E9x4wG+MKx1oeC3GCiwNY1PbMs1zpZ+Q1yYv+nD3EdBymuXuOyHugjSbR92cdc+fORVdXF770pS9hz549kVw7DmpSGOzevRtXXnklenp6QIYT6LmbgmQi2DhWThCEmEClCBtyvARRiIKgbcHDSIwydEikSb6c0RG0jpWyWYQpM6oNjyE2u5Y1PMKIA01z3wgepswy/TywOCBlYs7DjE1OeA5DXN/HMIZ8OfEbtsxyiDJulKmHNN6DMONIBM8g7z1g7P0PtderdLzJiZhQYzIpKTNCgUAyCRy8w8T8+fPR3d2NK6+8smbFQc0Jg0JRsHDhQqQ2TwfJct70VGUwCjr4sRYEzA0lR2REGUYTZJDNrfyo0CEGVGv/oG1cqVy/ZUacejaU+511HcuJAsD+eQBxQM2c+74MfsUBqbbxL2hbRmV8OtcK8uwq9XMeZXr5fczweT6cQouCfDcqj4NFmYdA5SMLWIcXBd1/WG7coGy9JuUgho4Dt2exYMGCvDjYvXs39+tGTU0Jgz179uCqq65CT08PFixYgH23pr2fZhwUDgYiFy8BF88Dw1i/HMzDaFhnHfK6IuWzXWpCFHj9TCFewof8GExxnUcRwBNX9eTVICv81fqRT3FQTRQEgSQS1UMh/fajKm0f5P2q+h0Rwoq8flYCceD7GVUbYxl7D/IhNiLjrMqzjgrgcO92PRn3yyALlX4XNgwd+2/L1LQ4qBlhsH//flx55ZXo7u7GggULsP+2DF9RIEO2IbDfXAzwyzjEXBAYBntRwAHP9x3n5O7n2l76G689BTHlS/eTQpCyFqsOjDMQ+WlHr14Dz94Fv33Dw2f9jC++3kmv7eT1mfspk3EbxY0U3gOGG365YVHQTJa9Mc/h3llnL4oivMgRBwsXLkRPTw+uvvrqmspWVBPC4NChQ7j66qvR3d0NMpLgKwo4pctif4AH+1UDWBbzjEMA48kgZ6Cxv/eYRUGc+DUovBo2fo2aSmXGKAryVTBNbxOxH8PP6+q+H1HgwWtgp2KlvrwF1Yx+ohH7kDCv9+RVHGSz3spDjGFFfvsljzKdcgVHCnHghA+KvDEZsO+bdRpSHvfOOnsRMJa9iNfcbejYd2sa8+bNQ1dXF66++mocPnyYy7WiRnphMDAwgGuuuQZ79+5FR0cHUpun8REFHAWB8hIwhIsg4rOfoCZFgRdqyFMwripV+l6gjYzVDOkgnoJq4sCnKMgXW0Yc+BYFDtX6SoB+VO29C/RexhFWFPQdilocBHxGFZ9DkDGZV9Yiwb0H+ZAd1pmLOOw94JK9iGV60xKIoaPrzixmzJiB3bt348tf/jIGBga4XCtKpBYGIyMj+MpXvoJt27ahvb0dhx8ASJZD9iFJBAHXjEOMCWUUl2k3ahgc2jRMNooymVzC3HtUkzqPdIdhw4fcDCWBRIEDzWRc6xMqu0k5gzpM+FCZfmiHRQV/9mU9B0GzIlXK5BNwvOPmOXCDdZ9ngeDpTB24ZC1iTMXkAwKJBi6ZixilNi0izObkcnDcnEwyCRz5M0F7ezu2bduGr3zlKxgeHuZyraiQVhgYhoFvfvOb2LRpE2BoGPxbElrawzkFlXCb0CQJGxI245DL97mcTcB6UxgnD9GE8RKUGjSVUpIGRUBRAIw3FITOh15irOdDiEJSKA6IroOkQh4s6WZch5zo3d7F0O8nj+dcThCzKpsnIooPXgt9LgYyl7Ep5GIVzRrh0pC6EDq1qWuZgmxO9oCWTmLwb0m0tLRg06ZN+Od//mcYom9Ur4CUwoBSih/84Ad47rnnUF9fj9TrU9mfaCzJ5mKZMg4B/A4sY4oKHWJblmPUsRIcBWWKJgrylNaNRT0ZH1oGwPYa5MoJsq/A0yV0RtNMYRsy6qeF7ySz97PUkGfV7wuNLx7vqaCMGztZjM+8QoNFXQAowQ4NZlvXfGpT5qHRHDYnlz5/BgfbaiMppJ9qQF1dHZ555hn86Ec/End+qoKUwuDXv/417r//fmiaBnNDM7TBOnaFy7K5GOz3EjhhQ8xVOjgYxrn4RllEAVN4TeQy7CcoKFPkQZdSOnbwGUsXtiMOGGcggqYxFwVEI3ZaUhYnOTs4ApNhm3LdkMwhAYQ08DpsjoERl4eXOJBBIOTOPWCdvS+fhIGpeOW094CxB0EbqoO1sQWapuHee+/Fb37zG2ZlR4l0wuD+++/Hr371KwCAtrUNel8Du8I5bVDhcdoulw22vGLwGE68lNquUD7eF8EH8hw8hBvAy+3Noa4cDA4eHh1HHDCHpaHtwMM41nWQJOM9XzyMbUS850DEcjnVlfWYwi1jEY/oAA5785jj3DsXgcS4T/HKMMR4c7Le2wBtWxsA4Oabb8Z9993HrOyokEoYPP/88/j+978PAND3tiDR3Ry+0JxytF1ggq/GOCt6LDuy87JxvHdWkwOvUAcA7Aecaqe7BsQZbHmkouUCayNW0/J/WBgJvMO7KA+PiV0w2/I0zTbiCaPnRTQ7CxFrsZXzEorsLQJQ1E9FJ9+ejPupE47K5VnxGF95GJ2sy+Q5V/MwvB17hSWsxqgCxsKg2NQ1cbAZl1xyCQDgBz/4AV544QUm5UYFocKPsDa7d+/GpZdeisHBQWg9DUhumwKCkAMDtUALXgSiES6djskA5mYIhg0ncO698GXgdP9hDbBxooBlKAUPUVACCwO0aAXGCdMIS84YKBwGmBnLjlHEyuAoNbIYhBO53Su3VU7WRiJLo7vgWdFMNvQESRKJ4neUQZu6iWFh9+1o2tjz4SUOGeH67jPoq0Ur5gzmAKDMuxnB+B2I0nqxKLdwDuQxVzuEraubgOFRX0aGPA87kFITb/vmMfjLX/6ClpYW/OxnP8OcOXNClxsF4i9nABgaGsLXvvY1DA4OYsWKFUhumxxaFFDTLOoMwsIjxKfQSyC4lyS/mlWq5lm0CY8VEg5eAsDFLWsxMDZ4bFx3KDQsWBjEbmWEKLdS6BCXkCIesNrQXPKsSCpEdjfHU1AqWsO2aZm+LsW6locD5eKitP1YeQ/GiThengOAj+dABu8Bz/mbl/eANURjLjioE6oddnEEBI99+zUsX74cAwMD+NrXvoahoSFGteSLmKNVAaZp4l//9V+xa9cuIK1h638fAqFhcuBzOACLFzzchm5eAt4EnBTyXgIez4vHwM8jdIiWz+kcaqKtsNoeegLnET5UhiBGvJfvcBEHMoQUOQT1RmmE/cboKp4h4cRBobfAQWBx4Eao/mqVCXXN5acP+rwqfk+m0KKJLBB41ZVHeBED+4tQgu2/PYKpU6di586duP7662FKYH8KP1LddNNNePLJJwGLIPXGFJBswEknJwgqeQlYdAQmOMYwD1EggZcA8LifIOiAJct+gmo55YN6DXhm9IlQFDi/FzacpAThPAfl2lYrs+pfDaJVDm/j+JyEEQduosBhgoiDqs9CNu8Bj+8FPbm50nzIc16XQcxwEgdhvQckq6N/PUEqlcJTTz2FX/7ylwxryAehR6lHHnkEv/3tbwEAyW2ToA0FPKugZC9B5Pi5th9x4rXcCDYYsyK/Qs7LWxJT6JDfidDrQVO+Mz94FAWBJu5KRk8Qg4ixEeU385BUmWr8Pi8vgsuPOCDO5uUqbUaIP4HgQ8QKIw4qIZA48DwO+Omz5bwF4z7nTxzE+mx52Q68MuzwQob6cggtAgoEQkC0oRS++tWvAgB+97vf4bHHHmNVNS6IMUK5sHfvXtxwww0AgIsvvhj6oUb/hXjwEgiDKF6CGMVDkZeAVwgVS3jtJ/B7+qzXiTtuT4Efg8jnZ6sZ8UGNfGlCiuzCvX3Oa9t6FQdeRUHRdzx8NkB/jdWArOQtKMQ5VE4QgVANP33WV/tP9IxFvMrlHVrktQ5e4eU94Jm9KADfP+8mfPCDHwQAfPe738W+fftYVo0pQmYlSqfT+PznP4/Ozk6QgRRSr00dv6+g2kMP6CWIPDNRmJh/ovErlwOVTkDNr3z7rW+lNnAQSBRUMjTzr6Lf+lbLUBRCEFQ1jIMYN5WMjBDGUrkBm0lGLMYQXivHnJ4XTafL/17XbQHhlyrtGmaFLvLwMq+ioJSYMhaFGg8q9KFAuftzY6mnsdEvcXiIg16zWtlB3oe4MhcFfXdjylzk11Ykzr1Xqq/LdSmhyBzTA9qSwdFHH42f/OQnqKtjeEAvI4RcsvjJT36Czs5OIKsh1dnue7OxNF4CgO/quAShQ0BOFPBqB4FEAVB+gst7CYLGnpYzLuL2EkRYHpP0rW7lSrKHAQC3zchlDf9q+woqFlqhXQVO78mUGEKLwowHlbwHgYWcc2gnj2QIUWcsCjPfyBCqU4gs9eUVWhQg3JlQglTnZLS1teGNN97Af/zHfzCvGwuEEwYPP/ww7rjjDhBCkNw6GSTjfdIJ4+aJHOfY9DCUHnTGKg0pp8GkNB4+v58gbF3LZMDgQhybjL2WUYqoooCjIVRoxLM8zbgmQoqCtrumuXsFSC61aZi2cfsug34bqSM8qLfAQaB9B14o23fDjrk8Q4tYE3VoURhbIeqsRWHbRqbQogCbk0kmgeuuuw6EENx1111Yv34983qFRahQoq6uLnzyk5/E4OAg9D0tSO5pLf/hwofMcHMxt1AiwB6gWK/mO6E0PMrlgBNOlD+bgEmhJeFEEogCx9BkIQryZeoFOekZioJxRjELI6bUsGBpGHEyuKUKKbILH/s3q2tks6CGEWxfQSUK2pbl4g53b4/TriyuE0FYEcs+XNh3qWmyG3cLDkNj/s7x9iCzLL+wXJZzJS+c+rJMHBJRaBEz+7HoUMfKbZCd0w9zzgBaWlrwq1/9CtOnT2dSBxYIs0xhWRa+853vYHBwEMcccwwSe1oqf8FRlYwzDnENQeK9sVaC0KGiA8uYFVpw37wGfsarTmMHCTHsu/k9Cmw9BUVlsTIwnXJKD9hiWTZjuBmZvMNmWLZHznNA9JCr5KU4ZTFui0jWvVi1g6yeA6+ZiLyS8xxI5z1gPffwKJd3aJEsaU0LBAdT+9HxHnioc2JvC5YtW4aBgQF85zvfgSVQ+KQwo9D//u//4qWXXkJ9fT22/v5Q1ZONnRgv1oY84ZRphps7r0AgSQGPwYNoQu4nqAiP+ubcmqwn1LxBLIkBLxPcDVcebczRw8GjPQRyildHQnHApX15jedAbYQWhYG3vcDTzmFJThywtvm82qWEEmy/5TDq6+vx4osv4o9//CPTeoRBiBFo27Zt+PnPfw4AMF6rhzZaOcMFr1V9LmFEMhntDrzcjTxETFxZF8IgiVcD4CgKeKJCifhBKWjWsNuCR3sEyW7kAW7iwLLYtwPHPsHN6yXTWAlwGy+5EVO2nkBwiucHwM17QDQSi0DQRpO44oorAAC/+MUvsG3bNqZ1CErsM5JhGPjOd76DbDYL7Ug99IPlzyvg4SEAbEFAdJ2PKJAJmV5ogO9eEJkmOk51VaJgDOlEAY+yTXMsHWXIA38qwSu7lBIHTtFKHOSRTRzItHDJe4GRJZy8B0D1hez/+MDvcdppp8EwDNxwww0wjAApfxkT+4z/xz/+EZ2dnWhpaUFy+6SyIUTcBAGvzcYyigIe8Bp4eIoCXkgiCoqy+ShRoESBZRWLgvzPqb0RmTWkyrkcIVDiwCmaXcauIpQ44I9M9opMi42cxUE5G5aA4Pkfb0NzczNef/11/OlPf2J+fb/EOuvv3r0bv/rVrwAAoy/pINnxkwFPL4F0CpwHMr24AN/6yrSfAOAfOqREgRIFOcoeXOWIAw5GsQorgnR7DgDIN44CShwAynsAcA0tAsovcJOsjtGX7fHu5ptvxu7du5lf2w+xjTiWZeEHP/gBMpkMtN46aD3FIUS8BAEAfmFDMgkCgG98vmxeAtlWutR+gjFkEwW84GFE5rwFlT/DMayIU3spceAULVlYEaD2HTjwWiST1XvASSCwppxdq3c3QuutQyaTwfe+971YsxTFZgHcd9992LBhA2ASJN4sDiHiubmYi4taNkEAKFHgINsEpjYZFyORKMjDo415GY+mOe5gQld4hRXpuhIHgLziQLYFF0AucQDIJQ4AuWyPCDcmE9i2cENDAzZu3Ij777+f6TX9EIsV0N/fj5/97GcAgMTuFmhp24UinZcAUKKgFElOLAQgpyjggBIFxfAyGLmFEPHyFGSz3kRB/jtKHORR4mAMJQ74o0KLxuCYuYg1pTavlk7gk5/8JADgZz/7GQYGBphf0wuxWAI333wz+vr6sHDhQuhdzQAk9RIoUTAGx0wBXJAtDlaJgmIkEgX5jZ4yiQKvnoJx32V8eKGDEgc2ShwUo8TBGDKGFvGCkz1CdJ17eNFNH78D8+fPR29vL26++Wbm1/JC5NbAtm3bcMcddwAA9tw7AEKJXOcSAPIKAtk2GfNARve2EgXFSCQK8sjUxkFFQQ5eZxwocZBDiYNilDgoRiabh6ddAnCrN0/vAaEE++4fBAD83//9H7Zu3cr8WtWIdLailOLGG2+EZVnQDtVD602pNKRRIJOXAFChQ4UoUVCMZKJAugxElhVKFNhl0PJZjMKixIGN8+w59C0lDkpQ4sBG7TuwKUhryksg6P310A41wLIs3HjjjZGf3h6pVfDYY4/h5ZdfRl1dHRI7WrlcQ6UhLUBGL4ESBWOoMwqKkUgUcA0fsi/ARxQw3CNAM1nlOXDgJQ449TElDkpQ4sBG5n0HHLIW8dx7kNzZilQqhY0bN+LJJ59kfo1KRGYZGIaBn//85/a/tyZB0uxzVKsNxgXIpMABtZ+gFHVGQTESiYI8MooCxv2ZmqYSBw48xAHAVRxIl85UiYNiZFoYBOQMLeIkDjCq44Mf/CAAeyOyySkltBuRWQcPPPAAdu3aBWQJ9H3NzMvn8mAALvm5eWZf4oajuHkNCLKVa1HpBCOllI/RY1nc8tjDsriJAung1Ra8DFYgJ57le37SiQPLijzcQFh4LtgAfOcqmeYUzvXlZiNJJA7+90t/RWtrK3bs2IEHHniAefnliEQYpNPp/AnH+t4WEJPDyZwcVrocY4dXB+VRbl50sOz81IpGzLB+YZ3yWButUYgCHm2dmzCpabIx1nKGKjUtPnHlHA1KbiKpoHym9S8si9Xzc8rNtQPRdearokTPjfWs30HT5G4ISyEOKB3bLG7R8PtDSovPlctlPOJtCLOuc+G4z2Guknbu5tQW9j8Z23W5trA9mezbmTXE1PDRj34UgJ3NM51OM7+GG5EIg//7v/9Dd3c3pk+fDn1/E78LsXjQHAcr3i8ol7JL2oLbi8q67qXPkFX5pQO3LBNbYVkMyy01RJh5DjiLgihgJg7cymAhDlwMVJbiIC8KHFi0u2MIR/kMecBQHIx/B9m8O+PuneV4VDhOyDKGlsLRTuBRtlTioKhojguzLOw9zouEv7jkdsyYMQPd3d248847uV7LgbswSKfTuOWWWwAAh59Mg1CB4/QqqOuwnbPc91l1+tJymAwuue9H5TFhNiC6lUGt8JNEufqJ7v51689hjdZy2WtYhI7UgChgdr1KbRGm7AqGKQtxME4UVLmmH6R7huVg0B7lhHhYcWCPDy51YzEXuJUhujjgOfaXW21mMH+7zrG84NgWLBYPK5Ybsu4825VQgkNPjAIA/vCHP0TiNeAuDO655x4cPnwYSOvQuhu5XivUA+bkCrKL5usl4OUp4CWSWJXhUmjt7SlgIWbK/DyQwVMYPlSGUEZJDYmCPEHvqdr3OO6/CLXptJKoyB2eFgjW4Vm+Li2YOKC06mbxcO9hhTqFGZMqjaMii4NKdQsz71QzhDl5DrjG74eoc7V6cfceCIrW3QikdRw6dAj33Xcf/+vxLDybzeIPf/gDACCxt1lMbwG1N0566XB+O6XXFzBoZ/f0EgXp7B5EUpgXtNJ3w9TZ02f81tuyQxeqli/ioFLtXgOu7nsxOALtN6hFUeBc2++9ef18kJAiL8aoprmv+ldD85jJxu/zyLVh7M+RB0HEgeVtLAsiDjzdp0wbQx2C7pXwKmQD1F3WOdzL9Xl9R7TQoigSyRBKkNhrJ+353e9+h2w2y/V6XIXBgw8+iIMHDwIZDVoXX29BEV4frKReAt/l+2gPnm1iX4L/PghmnxVlFSFIm3n8ji+j1e/hV34M1hoVBUV14HWPfsSBHyPUrzjwKgr81kMAUTBWFQHEgc+N837e2bIhRG4EWWTxuoAjivfA7z1ymIt4rmZzFwc+6u2nLkEWaX19zo/NFBFaVyOmTJmCgwcP4s9//jPfa/Eq2LKsvLdA3xedt8BzB/DoJQhSPq9yuX42QPYCri8nzxfTywpQkMFYhMnM76qYE1LkIWzF7+qjndHEw3ckTGcZBM/iIEh7eBEHQVamvYoDP6LAT30EEgUOsYoD6mQV8zn2evHy+REFDn7GGxnHU47ea99zrVdDO0jZPPEqBn0X69PY91GuiKFFhBL83d/9HQDgf//3f7mOidyEwfPPP49du3ahsbERepTeAnhwz3HKuR5F1qHAoqNKjKRo9fb0YoZ5cavF0IaIGY2NoM+wYltU31NQiariQOKUpEGoKg7CtEclcRBmo2s1cRBEFPiol2jPEIhPHAQRBWPfjdHQDjo2xSkOwtgJPPcGcJjLpUtpmi+WX73jtpvc+OXHb0dDQwPefPNNvPDCC9yuw00Y3HbbbQCA9FbC5dyCqpTJIMBCFMSxIZfnZiFe+wW8/D7Qd3mmGGOxUsBzA3SQ33nA1YDP/Z9JhhM3ajx8qBxlxQGL9nATByyyAWma+6biMKLAoVz9Ytxs7IXIxUGQFf3SIkx370sgb0Ep5b4fdkyNQxywmG8rbLIOPS+WKZtX9kQmcGoPuwj37zMpV6BMhMTUkN5u29O33nort+twsdj37NmDp59+2r7AAY7nFlRgXJqugKFDQa7FuixmoqM0/74M+wlKX0CWL2ShSHRc4oK5D8fh1qaMnmGROMiFbzBZZbToeEEusMEXBePEAcv2KDT8GObLJ7o+znMQWhQ4lNZTwBAiNyITB5ThAYJWsSeNiSgoKHvc/3mloGZFaTgUy3nApRwu83mZawkHp/ZgWY5ruS6LkVF7Cxycs8Ceeuop7N69m8s1uAiD//u//wOlFNqROmijCR6X8IaTh59D6JDjwhJqk7H3QpnWnZeYKSis+G8esN7wFtUqF+P+4Ris+RNPWVEoDiZY+FA58vVk3R5OSlCWJ+w6FIYVMT4lOV9fSUSBA3dxwFIU5MsueE9YzzEcvdtciaLeDO+hyGBluMgXZVgRa9ussO6sF2wL2zsuUQAA2mgC2pE6UEq5HXjGXBhkMpn8jmmN5ynHHqBuK5USwEt0OO0hk5jxnSXAL6YZLpY0LvxuMvZRLrdYZM7voyyGZCHc2oOHKHDIiQNm3oJCnD0tkj1LnuKAuSjIl833XfeU5tkvvMUBjzoDcMKYuczpHFfKeYYw83yWUraJD5xInAcffJBL6lLmwuDJJ59Ef38/kNag9daxLl4hIIT1ymEJIryIgeCddk82WMSjl0E2Q9KBV3tA47evi2YNUMPgupmVW7twhFcfDHSehGLC4My/vOdhHshYZxHQjtRhypQp6O3txVNPPcW+fNYFPvDAAwAAvbsRBOqhK9ggrTgAlDgAlChwQUrjN2tEE9oHSduHm5dGsrbg1TcIR5Ek4Qp2KTwMbd6r5Eoc+IeAYN26dQDA5SRkpm/ZoUOH8Mwzz9gFdzewLFohIEQjri91uZ8rJihKFIyDq9HLyVtQJAqcn/FMgQklDhwIIfJ4DmRcCJFUFEQ5/ypxIBb/e81fAADPPPMMenp6mJbNdKT561//CtM0QQaS0EaSLItWCEYcL7LyGkiIEgXjqBVRYP8i+BkXXlHiYAzhxQHPcY6Xt6CGRIGf3weB9/0ogeAdbTSBFStWwDRN/O1vf2NbNsvC1q9fD8AOI1LULl5fXtkGJu5MNHGgRME4akoU5D+gxIEbE1Yc8ECJgiJqeQ5W4sA7W+6x05UKKwx6enqwadMmu9DD9ayKVQiGCC+t1OJgIqARfllroESBK3GJgvwHlThwg6s4EGAsLkLGfQUS4ncOVuKgdtEP2SH7r7zyCtNwImZv3KOPPgoAWLFiBUhGZ1WsQiCCvKy8XnBpxUGtew04egkAJQpc4ZWByO/5CkocuMJNHIi070BGUSCptyAIalNybUIyOlasWAFKKR555BFm5TJ765xKbbmXz0lsingJ85KqF7yEWhUHShS4IqsooGaAdLtKHLjCte/GPb4qURAZIs7Dat9BvDjhRM7iPAuYvHkDAwPYuHEjAEA/pMKIaglWL6Z6uUuQdGIqixIFrkgpCoBgoiD/ZSUO3ODpOYhdHLBGYlHAy1BmNQ+r0KLaQs+F7m/cuBFDQ0NMymTy9r300kt2NqLhBEg6waJIhQCI/jKK5q6dsChR4Iq0osDrvoKKhShx4EbNhRXV2gJHSGSZk5Q4qB1IOgEyosM0Tbz44otMymQykjz33HN2YX3qpONagcdLKGOcI1dqYVJVosAVKUWBZbERBQ5KHLhSM2FFKoSopGi54u1lnI+VOHCH9Npeg2effZZJeUyFAelVwqAW4PnyqRe7BJnFgRIFrkgpChAyfKhsofzFgYxIH1akREFkyDgfq30H0aLlbO9nn32WydgS+i3cu3cv9u3bB1iA1pcKXaHIoBwmwYjg+WLwfOF4rSZwHySIBuiSZtri2cc5Dv6yigJYVN6683qPeI4pkra1jJ6OPDKKggjK52lk8zK0ZfW2c623hLah1pdCIpHA/v37sX///vDlhS3A2XRMBlPQIInxVPjQJesAhYMP64GItyjgQSSiwLkGD3HA8+Aep2/zdJ9zWA2W1diDRe225ikO/KYQ9QHRdfZ9XNf5nmdhUa4ClQfcvWy8jSYeOONgFOM51+I51D83lstmxEspZiS1DTXoWLp0KQDg1VdfZVBeSPKHmg1K4i1we9iSdAC3QYfVQKREgesFxk9ULCeWKE/z5CkOGBrB0osCIBpxwEkgMBUHUYgCB0mMJiUKXCgVBUocjFFiqLKcS6MQGlKJGUltQ6e/bXloJwDRhMGALQyEjv2S4CG7wTumTokC1wu4T1AaYTOxRCkKvPwuDIyM4JoQBQ68xQFHmIiDKEWBg0xGCGOkFQUOpWOtEgdlDVUWc2qUBrtsYsblotFfMwDO4vwrr7wSvqwwXx4eHsabb75ZVClhqfZwBX34XgYYEQ89AWpQFDiEFQdxiAI/nwmCRUOFFcloQANwFwUOEzWsKA5R4CCwOIitTUJfgKOnoNJYO5HFQZUFnjBzaxzGNYt9EpGFEAX5fUwU9jFncX779u2hzzMI9WZs2bIFlmVh+vTpINmxSUSoXeN+NpII9vD9tGGQ9laiwPUC3iakIOLAmQh54KfvChZWVJOiwGGiiYM4RYGDgOJA2s3Gce8p0DhnWRJRHHhc4Akyx8Yd2hP0+rGKAr+fi4jSvkWyOmbMmAFKKTo7O0OVHeqt2L59OwCgZ0t/qEpwI8iDFOTh8zb0lShwvYC/SciPOJgoafh8GsE1LQocJsqeAxFEgYNA4kDqfQU88TvW8kJEceAFn+IgblHgIEo9AiFIxqJyfap7Sx+AMds8KKHeCCeMiIy4n3Ycq9cgzMOL+cHzDg1SosD1AvwmHxFFAec0pl6M4AkhChxk3nPgxbAVSRQ4CGCASC0KeHoLgoy1tS4OghidHsWBaMa4MIJGxPkzBGTYtsWFEAbacLLsZ2IRByweWkwPnkV7VSpDiQIXdD34pFPNayCiKGD1/UpUMYJlNJABBBMFDrKGFWkaSMJ98QcAQDTxRIFDjAaREgUuhF2A4S0OOI7XFeexkAuZohn+Xohd0Ig8f1agUj9ybPHYhAGlFDt27AAAkArCAIhYHLB8WBE/eN7tpESBCyxSM5YTByKLAtbluFHGCJ6QosAhJw64EYc44PmOsmirGIwmJQpcYOWVlXhTMrf9lxXEgciioVLdhBYFrMvxSLW+QwqEQZh5NvAbcPjwYQwODgIUIKMVVpNyRCIOBHXveIH3YWWyiYJINrCzPMypVBzIIAp4lVdIiTiY0KKgAK7tEKE4IIkEX28BKyI0jpQocIF1qKbE4sAuvqD+DI3U0rlYZFHgEHkdZZo/C/AUJp6zxYeHh9HX1xf4WoF7f1dXl/2PjA5CJc244IUIHjovA9gpV8aj2rnD4xRjp51lEgW8ywXyhowSBTmoBZim3OKAVAkvCgkXAziCsUqJgjLwmIMkFwcAuBip1DSlm5sjEzQyzp8+IJQAGbvf7t+/P3A5gXv+gQMH7IqkvRlYMnXScQjy0IPAUxTwgqungGh8RAFgr46zNiJLkVF0QImCsmXLiijpqP0ic5vzRNYxi2c/5By7T1gdlumGhDaLI2akthU54SvjZNpesHFs9CCE9hiQTHUji1oUsEz7j6wDEE+jSbIXQWpRwKt8i4KaZn7FRlGCZH0cAF9RwLMvAoDGbyykhgGaNUANg9s1COGYv55jX+QlgLl6C3jPyaLvQXGBmmYk47kSBxEiqe3p1yZyFuvjFQZVPAZ5UZD/AWcDQYkDrihR4I4ziRT9nxeS9nGpxEEEooBb2AlPUZDJ5McAalH+4oAXEokDaUUBIK9nqQQlDiRngogCYMwmz4f7ByDwHR05csSuRLa8MBgnChzcfsaSKGIDJyBKFLhgUdCsMX7g4e05UOKAH5xFAdH5pffkJgosq0gUOFCLgpo8T1/m++7ygpU4kFoU8ArZdODoLXBrGxVWpBiHYKIAGLPJY9l83N9vn3ZMDPciqGlWFgCydtYJ6jVQosCFgvAhV5Q4cEfgfq7Ch1ywLDt8qFw6RNPkKw4maFiREgUViFgU2L9Uew6kZILdu2OTxyoM4CIM7JerygtE1SZN96LFM5qUKHCn4iSS/5ASB64I2M9V+JA7lURB/jOmqcKKXAgqDpQoqEAcoiD/IbXnQCoktTFD2UU5mzxvowcg8J0NDAwAGO8xoIbhfR+BEgdlihbHaFKiwIVy4UPlUOLAHYH6uQofcqFM+FA5uO85mCBhRUoUlMHi1y6eREHp5zmhxAEjJLUtw9pFsXoMBgcH7X8Y9k1QJ6zCL0oclCk6fqNJiQIXqoUPlUOJA3cE6OdRiAJu8BQFpv/QCe57Dmo8rEiJgugJNJ5D7TkQGkltSiZ2Uc4mHxoaClxE4DvMZDIAAGLlboRawTMOKXFQpuj4jCYlClwIKgoclDhwJ05xoPYUuEINI3BfjSSsqAbFgRIFFRDEU1D8ZRVWJCSS2pLM7KLcgcNGiDE48F3mL0qJv/ChcihxUKbo6I0mJQrcCTWJ5AtR4sCVOMSB2lPgip/wobJlqFSmrpQTB0oUVEBEUVBaDieUOPCJpDYkS7vIWazPZrOBywh0p5ZlwbLsB0ANhg9CiYMyRUdnNClR4ILfPQXVUOLAnSjFgdpTMB6fewqqoVKZulMqDpQoqIDgoiBfngorih9JbUfmdlGuK5qmGVgcBLrbIhcF6xdCiYMyRfM/KlyJAhfChg+VQ4kDd6IQByp8aDxVUpIGRaUydYdSmv+jREEZJBEFdqEqlWmsSGozcrGLCooMus8g0B3zOvZdoRASXoOOzAOyzOKAZ915hg/Jisz9nDcibL4PAu9DRHm2ixrPawtJRQE3GLw6ge46kUiM/Yf1HEg4KmPecK4311V3znD1dlCL30SiERAeK2NEA0kk2ZfrwHuS4tnXefdzXedXf9Pku3BicXqumgboOvMxhmiE68oy1xV3zv2QEMI3YxVvryHPMZ1j2/Mad7nMEzkoby+nzMjqHY+AlpaWQN8L1KK6ro+JgwTDhxKFKJD05YpCFPC+hrTiQNfZDvpE4zqJSCsKNI5hIW7X4nUfFpVSHBBdZyoOHFHAy4MiuyjI/1uJA3d4igPW4y/HdlaiwAOSigMuNlHutSGEQA/YzwO3ZiqVsv+hA9AYvGRKFFQoPjpPgRIHZWAoDpQocCEObxiva+b6ocziIHQ5ShSUxa1NlDgoA69nwdBjSzh42hyUKPCBxOKApV1ENbusZDJ4/w4vDDRqvxRhxYESBWWKj95gUuKgDAzEgQofEgxeIo1a0oYVEV0HSSYCjwNKFJSnUpsocVAGgcOKVPiQYEgqDpii2+9ic3Nz4CICt2JjY2OuEnZjBRYHhIGoqIakL1ecewqUOChDUHGg9hS4E2X4UDnUnoNxBA0rUqKgPF7aRImDMogoDlT4kJhIKg6YpYlO2HWMRRhMmjTJrkRyrKF8iwMVPlSh+Pg3GitxUAa/4kDtKXBHgD6eR+05GIffsCIlCsrjp02UOCiDQOJAhQ8JzkQWB7nF+qAbj4EQwqCtrQ3AmDpx8CUOlCgoU7w4BpMSB2XwIQ6UKJAEtedgHF7DipQoKE+QNlHioAwCiAMVPiQJEouDMHaREB4DJMc3UF4cVBoQVfhQmeLFEQUOShyUoZo4UOFD5RGwnwPgF1Yk+Z6DSmFFShSUJ0ybKHFQhhjFgRIFkiGpOAhFzibP2+gBYBBK5H56K3Hyv7sNjLwPABL1gVVBRFHgoMRBGcqJA6LxbTNZRYEIewqqocKKxlFOHChRUB4WbaLEQRniSGWq9hTIiaTiIKhNRFO2TT59+vTA1w7cYs5FaZ27MHAYJw547ytQp+BxQ4mDMriIA8JzQ6vMokAWVFjROEr3HChRUB6WbaLEQRk4pjItbRe1p0BRFsHEQazCYNasWXYlqggDoEAcKFFQoXg5jCYlDspQKA5kHoxlrjtrVCrTcRTtOVCiwBUebSKtOOANp2dZuNCjwodqAFn3s8K/TeTY5DELAwMU1SvOdQUVkDZ8COBnbLM+OMNBiYMy5MSB1JuNeSGJ8B0HzzGLo+fANqw5iQMisSjgDK82ASDnO8Tba8CxbJJIyhs+pBjPBBEHNGUAiEkYdHR02P9IUCBRvUG4vgTUAniuvnGGhyGcb29qMS8/X54gL4Lfcqlp8plQeLcLh2cZGTzrzet5AvxX8ziIA6c8XuKAGgZo1gA1DPZlRyEKeJVvUVCTT3+hpu1l4lM4X+OU63ibm+N4QHm1NzgvfvHEaW8ZBQ3POlOa+8PhGj7sOJowgSQFIQSzZ88OfMnAwqCurg7Tpk2zK1NfeYIoEgVcGo4W/80D3oMn64GisL48DEqezzN/CQ6CxnnJWE9WubLzXhrG7UJNM98e3D0qvOBRb2fy5rEyyaudS1euGIqD0nJYiwOayRT1Q5biIBJR4PRvjn2FtTigpsVvvI1oXpNxvM3/m9fCGiBXFEVpeTKJA96igFvZlvu/y328wR6PZ86cifr6+sCXDdUrFy1aBACwGstPDq4vLcuHZJWoeiUO3MthJA64P0+X6zEbmEvFkpFlM1nlvBCF9WQ6WbmUwytMrNz1mMGyzqUreizFQdRuftHDiiyrSBTky2a0Ss5dFNAS45p1Xym9HCNxUCQK8j/kN66wZFxfYSUOCkRB0bU4j7dsinYpRwZxIJMIKCVKUcDSa+DWD6t4sazGLABgwYIFoS4dqkcuXrwYAEBzlSml4svKovHKlj1xxUG1Ng91cAbv51nt2mG+X+aFoqYZLhSlQpswmaziCh8SXRyUGyBZGHxxbQgMKQ4qfTeUOLAsO3yoXLtSK3y94/CCseor5S4bUhy4ioL8L8OPKzwp11dCiwMXUVB0zTD3VSVkg8ncLCOV2lR0wRBH/ViIgwrfryQOHI/B/PnzQ12eiTCwmtyFQdXGCf0SV3jRJqA48DQwBjQ0vZbNk1DtUv6X9mp/0AmrSnuGmqw8PKsJGVZULfY3jMEXd5aQgOLAy3dCGe9V+jjNBgspEmKjcZi+UoWg4qCiKMh/KPi4wpOqY1bQsbaCKPB67Qpf5OqFrVquqF4DL98VVRxEsaeg4u/5vZ/l+pMQHoOjjjoKAFA/XR+XmcjzCxZkI4vXzcYTSBz4MkB9igO/ZfOEW7sE2XfgcSIJKg683uuEEgdeNwQGEQdxi4KCevgx4n191u+GSsuClSmz8FP6UY+fy9clyvChap8J0le8VsOnOPAkCvIfDjB3csTXvO8HD6IgcNk+5sPAi2peEE0c+PmOaOJAhD0FQezPEDYcJRSpaXbmsuXLl/u/dgGheuLcuXNRX1+PkZGRvAsDCGgI+RkI/TR4NWUXBlEGWfvDfgvnN4gL0i6++6EfcZDbV+C9aOpLBPs14CbEngO/Rq0fg08UUeDgURwE8i54bUcfoiBftmF4r7dIgtZvX/FbHY/iwJcoyH9JvkUbalFv77NF/YkC+Bz3A3jQfd+nH0QRB7yFBE9EEAX5z3Ns89J9Ng1ZpNNpNDU1Yd68ef7KKiFUL0wkEnllYrVkxn7By4UiSscrJIjHw1fxHlekgxXOL1Qlbnd1UEPPizjwKQoK6+SlXjzT5AUmbnEQtE28GHyiiQKHan08TGhQtfbM7SvwXa4fg080vPaVoMVXEQeBRIHni4sjCoq+4yEssDSxg+eyOYXV5stn8BlX4hYHItpZXuBsiwXzAHiPWAhEwfesZnsRZ/ny5dC0cH0odA889thj7Uq1pAEwMGqqvsxBDVXOExFncVBxQ1TIGEKeZfOE5wp5WXEQUBQUF1++XZmUzYu4xEHYe6pk8IkqCnKUM/5ZZDAq29dynoIwRlMlTwOvXP8FFQj3/Up9hROhRUGl7wo8DlcUBwEEwbiyy917CFFQVH6A38UOz74Sl6jgfd0w422174asez4lcLO9OB82jAhgIAxWrVoFAKAt41PZBcatofyGELmWyzGsCIh8AGaWos1lVYZl2Tzhkp3CLsRdHDC6H7c6svIU1FRYEct+WFq+4KIAgGtIEcu0puP6XIDwoXJYmez4uvMUBSxWDMuVweh9crt/Zp6CcvMmR5ilwC7sh7n/Myt7/A+ZjY9l55+wxHFKL6u+ErU4EFkUOJSm1c+Xzea9tywL045tBQCsXLkydJGhe9+KFSugaRpovQmaZDOhABg/QLM06GtIHDAufKx8lvcRYZuwzmddJA4YTVZjxRfUlUMbSS8OWBvupeJAdFHgUCAOeJx1kBcHAcOHKmKaY3XnLQpYUtoPGVLYDszDh4rmTHnmIursJbD/w3bsKmkT1uPiuPmHFbzFQSEyhw9xLZ9fP2Ra9zoTBw4cQCKRwOrVq0MXF7rnNTU1YdmyZQAAa3I6dIXGwTtujAcRDMjUNPlch8PA6ZTLs128xu8HKDh/1gGPdnHqHFuavOAF8ykXKNpwyBxq2auTIu7jqITHzchBoaYZKnyobLmWncqUe/gQaxwRyeu9NHMijFcfjym0NWTBXMbZ/BjLaQx3rsGlbN77DXj1lShsNt77CViPt85+Aw71ttpGAdgL9Y2NjaHLY9LrTjnlFACANYmDMHAghG15UYQVySZoHGRZSS0l5k3gIpZNNMbvTSGy9m9Z4WioAgDRdT7l8u6DsvXDCOos45gS6zkCIhOl50AGRNxk7AXWNmwB1iR7f8FJJ53EpDzGwiADSji+gDwaVtZNybINFrKKAtnauQCuBpkDz0Fa1rbnbajyMnI0wrzPEI3we44821nGOucvwd8IjmRsUYwh21go6/sjoSigoLDa7EX5E044gUmZTJ7esmXL0NbWBiQoaAvDfQZuKHEwBtHkGzAUkRD5xK3EQTGyigNdZ+Y5UKIgerjFu7ugxIFiHDxtEiUKXKFtGSBJ0dbWhmOOOYZJmUyeoKZpY16D9lEWRVZGiYNiRJ/IooiT5IHo7VqGmpuwJX0O0ooDjYQWB0oUlBBT+JASBzWE6ONg3OcvBC6bY1g5Z1EAAGa77S047bTToDNa1GH2JM8880wAgDl1FBQRxPPxEgeyZiwSddAQtV7VkLXecTIR+3c1ZBYHAY0+JQpKiDl8SOr4ekUxoo6DsgpqnvZeBKKAgsKaYi/Gn3HGGczKZfY0Tz75ZHs3dJ3FP5zIgRD5vAdqhZsdqh3HEfsKnurf45FVHARYfVKioARB9hTIuBlZIQmyvjs8vQQRiAIAoM0GUGehoaEBJ554IrNymT3Ruro6nH766QAAa2oE4USFyCYOgIlhPIlUF6/IWOccQk3QE6F/+0FSceAnpEiJgmjxm8VHiYMaQZT+qvYTjCciQeBgTR0BALzlLW9BXV0ds3KZPtWzzz4bAGBOiSicqBAVWjSGCJuSZc1CJClCTsxKHBQjozjwuN9AiYISIjhLIMrveUHIMahWiXsMVPsJxhOxKKCgaF1pi4F3vOMdTMtm+nTXrFmDlpYWO5wol1c1UmQNLeJF3IMHL5TBWYTQE7J6VsXUoDhQoqAEwc8oUHsOFKGQVEzXQuhQIdbkNI4cOYJJkybh5JNPZlo20yecSqXyysWcMcyyaH/IKA5qyYCScTVBUkNTaFHgoJ5ZMTUkDpQoiBbRjXopxqNaoZbmdhU65Ju3feF4AMDatWuRSCSYls38Kb/73e8GAFjtadBEjOEesokDoDYMKBknXBnrDMkm4Vro2yyRMRSOQRpTz8goCgQNH+JdVilSjUuyUwtzuwod8g1NWHjiiScAAOvWrWNePvMnvXjxYixbtgzQAHP6COvi/cHDxaP2HVS+Bk9kNKYUYyhxUAzP/hzBGQfcvAUyvueChw9FVaaDEgc1hqyigAcxhQ4VYk4fQSaTwZIlS7BkyRLm5XN52ueffz4AwOoYjn4TshsxP0TfRHAYDhd415nH4KTETLSo9ogOwcNOyiKb0JO4T4semuSKxO0tJTKKAl4IYEtSUJgz7VD9iy66CIRDnbg88bVr16KpqQm0wYQ1OV35w84KPO8wHQEeqG9ke3EolVfU8MBpB07twWtS95sGMcAFxC5vXPGc2iMKA5h1vS0KapoAtew2kcQLVPQMJRyfZFuB5zZ+cBxTSYhD/WIjir7M4xpR1Ju1zcfThvRhB1uT00C9iZaWFpx77rlcqsNlZmpsbMzvNTBn+diEHIU4YPFwoxQZLF+gKNx2+Q4uQUhUlJukJREHheVJJQ44wa09olwVZ1XvAlEAQEoPIVNxEPEiCC+jlecYwrjgyv8PSKkgkEIcyLwAJ1u9eYcO+bR7HW/B+eefj/r6eh414iMMAOD9738/NE0DnZSB1ejjJGTRvQdxeB5YDAJRv4w8xQEQ3miQLVyhAqwmYrdyhBcHkmz2LCKOvhf2XkpFQQ63nzGFQVuVPkcm4iAm40Z0cRCZKGBEufYUWhzE0fckFNIAwttrvO09N1u3gv1rNWZBJ2dACMF73/tebtXiNkN1dHTgzDPPBFDBa1BJAPAWBzIiqtKu+BzFNhq4UO6eOQ6MPA14YcVBDKKAe5gVT4LWu4wocOAaUhSSSs8x948IayM2wp6PUOkZhXh+Qhv/IiLoWM2NOERBld+d9ZUTAABnnnkmZs2axaNWADgKAwC4+OKLAQDW9BHQOtN/AbxTTfl98CLsUwjygsX1UvIOKwKCiYO4z1ngKA54nYgqnDiIeaIJ3B5xi1m/9a4iCgDY+w14eg4CthmXPi1ACIdoBi1XscxpPPXShqK1swh9LxBx1zmI3RbFfgK/X6sz8PDDDwMAPvKRj7CuVRFcZ6kVK1bgxBNPBAhgzB4s/qWfhuHpPRDB2PeLnwFChINDRBIHcRtmEeB3kvb6eeHEASe4tYcofc9rvb2IggJEEge+nqEoY6kPRAkpknFMEM7g94Iofc9vPUSptx9E2U9Q8llj9hBM08TJJ5+MpUuXMq5YMdxnqk984hMAAGvGCGgq5zUIYujzFgeyCgRZEEEciJSaVJDDkKQ0BARoN9+fF0UUOFSrt09R4CBCpqLAnoAwv4+BuMUBVy8BJwPUb5sJISIE7HtVEc274cW+E2yTcdFXUyasGfa5YJdccgmrGpWF+2y1evVqHH/88YAGGHOGwhUW56ZkUYUDp/hLb9f2+TyiEAdxGWBB70sgIzfucnOFh/t9qEvzCcMSThR4IejEHnNYUZBnmA+FEcmQiZnYQgs5PoOgRn6s4kDEPimhiK6KgKFDhRhzBgENWLVqFVavXs2oYuWJZMb6+Mc/DgDQ52WD7TUoJI6UpqKKAodYshQEfA6UAlYMmUzi3lfA8/sViy7/nMJM7rGIAwFFAavvx0K5OjveAsng8gxFW/ksIQ6jVVhRUOH7Ydsp8nYWvN+VReQ6u9lxAnsJnO/TegNkTgYA8NnPfpbLgWalRCIMjj/+eJxwwgnIZrMw5g2EL1D0lKZxEFHefLtsBm0vQmiRSAhs9EZdbq7wyv9neimeYYqC98PSezdNUMNHeukyRO01YPYMC+ssspFTQJQhRcKKggoIEQ7kBxn6nVsdZah3IYJ7CRyMeYMwTROnnHIKjjvuOCZlViOSWYsQgssvvxwAYE0fhdUUfuIBEI/3QGRkezGjEgciewt4lTWu6DK53BmXyxSnPSQRBeOys4guChycOjPOLhOVOGD9DKUbRxGNOJBCFJSstLNsl0gEhkx9r3B8lqXejk0nspegAKsxCzo9DQD4zGc+w6zcakQ2cy1dujR/fLOxcBAUrFZ4IvAeyIRMLykwJg4EyWYSO5yNYB6pBYXYkByoaI6eFNn6XcDNxtXgfQAaj2coqzjgRezpSAOiPAURIGOdecLQFqWgWP25RaCU4uyzz+aeiaiQSGevz3zmM0gmk/ZpyJMzbAtX4iA6WKvtKM474AUPA1A2cQc5Y+y5Gg6SPT8g1x6M+zPRdW7vCK8+J51BKSu80pHqOpdnKOsCiCIiGNugVnsazz//PJLJJD73uc8xLbsakQqDWbNm4X3vex8AwFw0AEoYv2jKexAdPFxxShwUI2NbSAbXEAzZnh/RbEOeVXFKFESGdMJcMg+xEgWKsnCwOymhMBbaZ39dfPHFmD17NtPyqxG5v/vjH/842tvbQRtMmLOH+RmYCv7wiNXjHVrECyUO5DNOcihxUAKDvqxEQTRwDfPhhfIUOAXLOT4obHgtRBNi28YNJqZMmYKPfvSj7K9RhciFQXNzMz7/+c8DABJLs/ahZ0ocyI0KLbJR4oDbPgbeKHEwRlijXomCaJDtHQPAVRSwRta9FYoI4GVfEgKaMpFabqeLvvzyy9HY2MjnWhWIZYfc2rVrsXr1aqTTaRgL++0fKnEgNzy9BzLB65A12dpBQpQ4GCOwcc9RHCtRMIYSBTkYh785qNAhRVk4eQlACCgojEX9GBkZwcqVK7F27Vr21/JALMKAEIJ/+Id/gK7rsKamYbaPOr/gt/qskBMZxQGgxAHkNF6UOBgjiDjgsYFZiYJiZHyvuIkCFTqkiAoetmSJzWtNScOakkYikcA//uM/RnKYmRux5dRbtGgRLr74YgCAsbgfVC94YbhtbJVwQJUN5TkYQ2UsktKIUeJgDD/igCSSShRwRrr3idd4JaMoUMgLLy9B4SV0C8YiO4LmIx/5CBYuXMj+mh6JNdn2pz71KcydOxdIWTAWlpyIzOsQCiUOooGHOLBMtmVGgdp3IJ8xAyUOCqkaqsEpnAPg13eUKIgAjpmHlChQREYEogAAjAUDQMrCvHnzcMkll7C/pg9iFQZ1dXX46le/CkIIrBkjsCalx39IhRfJCxdhJ9eKOQAlDiChUQMlDooo14cdI02i0DklCiKAk5eAhyjgtslYxrlKMUYEoUMO1qQ0rI4RAMA111yDuro6ttf1SezHc65atQrvf//7AQDZo/qKQ4oKUeFFcsJa2KmMRcVI1A7SGTfgLA4kolxIEU9RwKONlCiIAI6hQ9I8P4nGZUUJHNOQul4uYaH1DHsMfd/73ofjjjuO/bV9ErswAIDPfvaz9gEOdRaMxf3lP8hrI4YSB/xR+w6UOICcede5iQPTlOrZFYkDJ3xIiQKuyPauyLafgJunQCEnHDMOuV4OFMbifhw6dAjz5s3DZZddxv76ARBCGDQ0NOCb3/ymnaVo2ijMaSPlP6z2HsiLOgxNiQNJUWFFNo4YUJ4C/ihRALWfQBENEYYNFWJNHYU1dRS6ruMb3/gG6uvr2dYhIEIIAwBYsWIFPvGJTwAAUsdlQeuMyl9Q4kBOZAst4hUrywOJJiUZPQcKG25GNscMRLIhXTsoUSDV+KsoIMKwoaLL1hmoP9FOqPKxj30My5cvZ1+PgAgjDAA7RdOqVaswPDyM7NF9oKjywNTGZHnhtTGZBxw30jEvkxec2pbHJC2l6JDIqKCmyb59OYsCXv2MB2ojbA7G9aUW5Re+J1vb8kBG2ykuUUAoskv7MDg4iGOOOQYf/ehH2dcjBEIJg0QigW9+85toamoCbc3CnD/o7YtKILAnvxLPsQ1YPbfCMlgO0IVlcUy9JzzOvUskDliXG4nQEN24oBaokR37t8kofbCEngKnvqzrLVs75OE0jrFqD24hezIKLh7IZivFFDrkYM4fAG3Jorm5Gd/61reQSCTY1iUkwlklM2fOxLXXXgsAMOcMjZ2K7AVeAmGiw7sNmD8zToP1RBQHpfcsuDgoLYdFuTyNtXGhEqIaGW5CgIU4iFAU8OpjrIgkxEXU/sURrqJAMd4+EN1milEQAIDZPgpz9jAA4Otf/zo6OjrY1ocBQlokZ511Fj74wQ8CAIwlfaD1VfYblKK8B+wRVRxU+l6Ygbvcd0UVB1GKC0HFQbnvhyk3UlEwdlFu1wxKWQEQRhzE4Cng0ceEFZ/lFkhEHcPcCNlHyoqCsG0g4DsaObLZRby8BH6qUGfAWNIHALj44otx+umns60PI4QUBgBw+eWXY+XKlUCCIru0F1Tz+UDVuQfskSW0qBCZ3Mc89h3wQlBxEHW5Qam6qVIkw0OkusRIpT4kqvicqHDbT6BCh2xksoNiDhvKV0OzkF3WCyQoli9fjksvvZRtnRhCKBX3CXd3d+PTn/40ent7oR2sR6KzDQQBDMeYNphITbU243n/fp6X13r4Nbi9Dv4iZBiKuw6cru8nI4lX44pHmX7xlWklbqHo1SPgnGvgp9wYDWK/2W549C8/5fos1Nvn4h43/OAjQ5Gv0CE/baAEgY2X+VkU+yhmD0G+GqAwju6DNW0UkydPxs9//nPMmDGDbd0YIvTy5LRp0/DP//zP9vkG00dhzh4KVpBKbeoPL/cmgufAz3OVKWMR4H3CEmFyj9l74Me4int11nf6xTiNET9hQn4/G/NziLvPqMO1+KD2E3DEz8q7CPaRIKIAAMzZQ7Cm2ecVXH/99UKLAkBwYQAAJ554Ir74xS8CAMz5g/42IxeiMhexJ4rQIpZ4dQP7nQTiFgciIFFokZcy4zZci4jDKAmyd8DLdwQQBQ48+kGsfUsU45XTXoPKv6bBREG1z6vQIRuZ7BwB9hIUYk5Kw1poL2pfddVVWL16NatacUMKy+Oiiy7Ce97zHoDAdsc0ZoMXpjIXsUcE74EfKg30QScBnvsOoiZMG3CAR2w3r3jxSoQ6rCli4yTMhuJKG/dFEQVekKlvBeofkhm8FZML8Bh/JWsfLsi2+CnAXoJCrMYsjKW9oJTiggsuwIUXXsiwcvyQQhgQQnDllVfi+OOPB3SK7PJe0GTINHnKe+BO0HuI2nsQ9vnJlNK03KZkET0KEYoDUTPMcCMiQyVsClLXTZ+CigIemaz8XotBwfF8txIRjU1MQoeizNwkEzLZM6ztDwYLkjRlInvMESBBsXr1alx55ZUgouy9qIKAloU7iUQC119/PWbPng3Um8guPwKqhXx5VeYi9sgUWgTIIw4AMYWAGzUWVsSCUN6CCGGVyaVUXIgoChx4nH1R7RoMC+ZTroiUiEu1n4ATrGyYKOwgwcKGHKhmYf6HJwF1FubNm4dvf/vbSKVS4esWEUJnJXJj9+7d+PznP4++vj5oh1NIbJkMQhlMuipzkQ1r1S0LRJMnFMipZwyxvL7gmK2ItaHFo8zCshkXyLa8HKzTOxJdz79XIgsDYOwZsawnjzKLEP1d5Tmesi6bV7myIaCR7YrA9hoFhbG8F1Z7GpMmTcJ//dd/YdasWUzKjgpJliDHmDt3Lm644QbU1dXBas/AWNwPCgadRHkPJjYyZS2S5bwD5Tng4ymQ5GwOapr2H8FFAVCweVXwMgsK51MuS3iJDUn6v3TIIgp4wFIULO6H1Z5GKpXCd7/7XelEASChMACAFStW4Fvf+hY0TYM1YwTmvEE2BcvUkXnBcrOvI4wmsjiiHNzdMu2PkAUObUo0wtw4Cpx9xUO5zKEUsELuBSuBaIS92JLNKJTh3ec2RnHqp7IgQ115JAwpROA2MOcPwuoYASEE3/zmN7FixYq4qxQIKYUBAJx22mm4+uqrAQDm3CEYMwOecaBwh/XLPZEFgmMgiZw1Q5YwKh4U3rvo4Rk5mImDwhSjLOtb+K4zatNCQcBMHPB69jyQTcCwhqcoEH1u4jV/svQ+OzaDLB5tgKmdY8wagjnHtkOvueYanHXWWUzKjQNJnp47F154IT796U8DAMxFAzCnK3HAHJXaNTil98rLe6BgC4M2LTJcGU2SrptkQ2akGecpYFFXDv0+spAsUd+nKOrF6hq8PQWsNsbKMheJLgiACS0IQCnM6cMwFw4AAC699FJccMEFbMqOCUmeYnk+9rGP4UMf+hAAwDx6EOaU4ZhrVIOo1K7sEFEcKG+B9597wDWEKGR7RJlWk09sePB6lhMFMp0LEYqJXlfWc4Usc0+5eTJs/ZkLAvYhk1xhHAlhThmFtdQOZ//Qhz6Ej3zkI+zKjwmJnqY7hBBcdtlleO973wtKKYyl/TAnj8jz8suCOhiOHWFCiyoZsjIZEDIQtD3LTZI8swn5/hKnTEGV3ukA7RnL5m2R3qOo6yLSAY+VFpCCzB3VFqREmo+Ul4APjPdPmlNGQVcOwrIsnH/++bjsssvYlB8zEj3R8hBCcNVVV2HdunX26cjL+mBOTk/slWleKHHADhG9ByyQZaLw0lY+27OqIeuzbbxmtvGVatSLKAjyDKu9yz77uxdR4Fs4iPB+eEWWuiovATt47iVgWp5EXoK8V4NRWvvc8zHbbVFgmibWrVuHa665RpoDzKohyZOtjqZpuPbaa3H22WcDGmAs74XZPmr/UgkEtqiNyezwYyyx/pzfz05UPLaR5yxEvDwHHj0Anj0Ffurp9f31+Dk/Br/nz8r0XsR9fa8oUcAOXvWcyKFDrO2UHGZ72l6ANk2ce+65+OpXvwpd19ldK2YkebreSCQSuO666/LigK4ahDlldOwDXl68GlF8kaC8B+Xxcy8c0jpKY1jEhd/24XWgUsVLBgmXYBwm48UA8PveVqlDkPChqt9hGbbHm7jfXR4LEJ6vHbMoiGsOUqFDbOGRdj2HOTkNHDsIaMDb3/52fP3rX68pUQDUmDAAxsTBueeeC9M0bVVXKg5qyQCNG+U9YAcPcRC1kSHDpBGUam3p9945tFXFTEVB9xWwriePELqK15NIJMtQ16j3E4QpU3R43DePFKSaLsfYzlEQAIA5dRT02AEYhoGzzz4b3/jGN5BIJNhcTyAkeNL+SSQS+PrXv461a9eO7TmYNlL8oSgNUBkGqLDwEAgTEdbiAKi8YXkiEjLFpxuE8YpRmI3B5cRB5JuNA3wvzGZjaU6ZFuFaQZHBS8CrTNaIvpdARA9BuTaLwP4wp4/AWDoWPnTdddfVpCgAAEKpDG9QMEzTxPe+9z088MADAIDEthbo+xvdP1zYqbi8sBMkREm1HZs2KI3jZDEhlw7wMYTHxA6rey6419AnHJfUiZUBX1QvFlmIig4DY/Sea2OCioVhP+4eebw3PBBNFLjds4iioHRuYDX28oRXHcOOQYX1csoPWiav/uzWdhEsSJozh2Ests8puOCCC3D11VfXXPhQITUtDADAsiz8x3/8B2677TYAgL6zCfruJhCU6UxOJ2Pu3pPMuA3LRG4/VvdOig07NmUyLs+tbJFh3I6hRUEhuboxFwYsU5M67cdYGLBc7c/fqySnWAsnChxYL0wUwnKM5Fkma3jUkcmhhAXCgMXm4iiEQQSCgILCnDMMc4F9TsHFF1+ML3zhCzWTfagcNS8MAIBSit/85je4+eabAQD6vgbo21vKiwMe1HhHKgvL7iVLG4p+zzljkXmZosPhnlkLA9bhPkQj7EOIWIe7aTp7YSBL/xZVFAD8FhFYj48yLELxqiPjRQnm5bGG0shClikozEUDMGfZYeif+MQn8MlPfrLmRQEwQYSBw2233YZ///d/BwBoB+uR6GwFoRE95AnQmVyRYdBmzUQMp5qIwgC5vQUM7z3QYWVRUhpywAIZhAHAYRO2wKKAF6KbG7zGWdZiSOTxVoZ+XeV5UEJhHN0Ha1oaAHDFFVfg4osvjqJmQjChhAEAPPjgg/jud78L0zRBepNIbp4EYkb4kolu4LFmIgoDYGKJA5EnqUI4TVgTShxMRG+BA49+LoMRxQIZzAwZQogAsYWByP3Z4zOguoXsMb2gbVkkEgl84xvfwNvf/nbOlROLCScMAODZZ5/Fddddh5GREZAhHcnXJoOkI95IIqqRx5qJKgwcJsL9izpJFcJ5wpoQ4oC1t0AmUeCgvAb+Ed3EiGJMrXVhIHI/9tH2NGUiu6IXtMlAY2Mjvv3tb+PEE0/kWDkxmZDCAAA6Oztx7bXXoqenB0hrSL42CdpQMvqKiGjosWQiGMbVqPU2EG2SKiWiSaumxYESBTbKa+AfkU2MqMbSWhYGIvdfH+1uNWeRXd4L1Flob2/HD37wAyxZsoRf3QRGoN4VLUuWLMFPf/pTLFy4EKizkD32CMz2dPQVEXnQVLCBxwnRqt8IB4+Nw0LAYV8B83uLyjgR2QgSDZHHKdZ57ycicRyg6RWffc+cMgrtlCGgzsKCBQvw05/+dMKKAmACCwMAmDFjBn7yk5/YriKdwljeC2POECgiHsxEHkAVbOAxEak+U52oD6hinCJTCHHAYbMxS4TyrChsRB6blCAIRw0JAgoKY+4gjOV9SKfTOOWUU/DTn/4UM2fO5FhJ8ZmwoUSFGIaBH//4x7jjjjsA5DIWbW0FsWIaQGpt4BI9fWeU1NqmZJFc2m7EMIGxDinikcbU63WFz0AUhyhQ4USVEdmkiGusZByGFwsi99EA7UsJhbGkH9b0UQDABz/4QVx++eU1e5qxH5QwKODOO+/EjTfeaGcsGkjYGYsyMb2EshvAhShhMJ5aEQhKGLhSE+JA9H0FcXoKlDgYj+imRJxzh8zCQPR+GUQUJE1kl/eBtmah6zquuuoqvOc97+FQOTlRwqCEDRs24LrrrkNfXx+Q0ZDc3AZtIBVfhWrBEK71zbdBqQVxILIwiHlCYyoOohYGrEUBIXZ7MCL28CElDIoR2YyIe74QPBSvIqL2yRBtarVkkF3WB9RZaGlpwfXXXz8hMw9VQgkDF/bt24evf/3r2L59O2ABiW0t0Loaoj0p2Y24B7igKGFQGVnbR2RRAAgxqUkrDlieV1BrosBBpS61EdmEEGGukDEjkch9MWB7UlBYM0dgLBoACDB//nx85zvfwdy5cxlXUH6UMCjD8PAwvv3tb+Oxxx4DAGhd9Uhsi3HfgYMIA10QVDhRZWQUB0oYeIIkGKZBjkIcsPQWsBYFUaUl9YISBuKKApHmCJmEgch9MEQ7Uo3COGpsP8HZZ5+Na6+9Fo2NjaxqV1MoYVABy7Lwhz/8Ab/4xS9gWRbIUAKJLW3QRmLenCLSoOcVJQyqI1tokcjCQKQJjmhMjWOu4kBgUQAI5C0AJrYwENlsEG1+kEUYiNr/QrafVW/AWN4H2mRA13Vcfvnl+OAHPwgiWj8RCCUMPLBhwwZ861vfwuHDhwGTINHZCr2nPu5q2cjSuZUw8I4M3gORRQEg3iTHUhxMUGEglChwmIjiQFSTQcR5gcdYPlH6HIO2M9tHYRzdDyQo2tvb8a1vfQvHHXdc+LrVOEoYeKSnpwfXX389NmzYAADQ9zVAf7MFhAoyGIk4KBaihIE/RBcHIgsDUSc60cWBEgX+mShGmoOo5oKoc4LI3gJR+xqDNqOEwlw4AHPWCABg1apV+Jd/+RdMnTo1dNkTASUMfGAYBm666Sb87ne/AwA7penrbSCjIUKLCJkYRrPohq6I8MhmwfgALmZQi+kmXWERVRwwzkJEGOYCF1YUABPDUHMQ1VQQeS4QVRiw7muUsn0OYbIONRgwlvaBNhsAgIsvvhiXXXaZOp/AB0oYBODJJ5/Et7/9bQwMDNihRdtaoB2sD5a1yEk9xiE9oHCILA5YDmyF9xm2TFZtlsshz9TIYjVJORlwWEx8ohtXADtxkLtXJuJAUGEg1GbjcrB4D5z2F3Hczp3ATU1TPHHAeswWxLgdBytRwLqfsZzrAPseA45FFBTWjFEkVmUwOjqKSZMm4etf/zpOPfXU8PWaYChhEJCuri58+9vfzocWad119mnJps+XtzAnsYjigOWAyaursa4bj3sNU2bYdisI62BuaLGYrApTY4adAEU3Ih1YiIOCew0tDgQUBlKIAoCNmOVhmLIgJwocqGHEWBkXZBj7WcBqXOQ1n7MSBUCgsYjqlp11aFoaAHDiiSfiG9/4hgodCogSBiEwTRN/+MMfcNNNN8E0TWBUQ/KNNmj9Pg5EK33hS19gFrAySkUdNB1Yr87zWO0PWmaYdis5cVYoceA2CYQ5wEcGQ9LBMbqCtp/LvQYWCAIJg/w9yPIswwqD0jMjRBEHJaIAgFheAxnGe1YEFQbl7AnWC1Vh267w3nyeoWK1ZJBd2g/Um9B1HZ/+9KfxoQ99CDrjjGgTCSUMGLB582Zcf/312Lt3L0ABfXcT9N1N3jcmuxlCInkPRFr9rgaPuokwiAZttzKbQIURB279PMzqmCzGZAGBD0Erc6+BxIEgwkAaL0EprPu/CLgJA4uyPfwuKKwXWESe04BgiyXl3mkei1NByyx9b3yMQ5RQmPMGQeePwrIsdHR04J/+6Z+wcuXKYHVR5FHCgBHDw8P493//d9x///0AADKYQOKNNmjDHibIci+9KN4DloNpVN1NlMGv2v36KdNv21XJDBO7OKg0CYRdIZOMQOKgyr36EggcFiL8hkpJKwqAYH21koEdtzhwEQUOQoiDuOexSuWxxu9YWM1uiHseA8rfj8dxyGrKwji6H7TJDm1bt24dvvSlL6GlpcVfPRSuKGHAmIcffhg/+tGP7I3JFqDvaoK+p6nyxuRKqwE8xAHA1iD1OyhE2eXiHgS93quXMv22W0kIkWuRcYqDapNA0AlRUvKGtNd79nC/nsUBa2EA714D6UKHysG678dFBVHgEGtIEev5RuQFLsD7OOjVVoi7/SrdS5X3goLCnDsEc94QQIBJkybhmmuuwRlnnOGvDoqKKGHAgZ6eHvzoRz/CE088AQAgAwkkOit4D7y4CeP0Hni5Js+VbxbEZcz7Kc9LmX7q5mWC52GUeTWQvKw6+hEHshuWOTx7DzzerydxEJMwqBlRAPjrp6zHVFZ4GDOAggUFUcdylmNu0HJZ4EcUxDVveS0v5H1YDQaMo/tAW2wvwdve9jZcc801mDx5srfrKzyjhAEnKKV46KGHcOONN2JwcDDnPWiGvqdxvPfAT/xgHAKB9SArw0qTCPdcrlwvZXnwFhQVyTpXfLVJwE8ogpfJsRYMywI8iQMf91xVHMQgDGpKFADeDB+//T5KPIoCh1i8BnGJgjjnrBAr7K7lVSNAyGr1zwQXzRQU5uxh6EszyGQyaG5uxlVXXYW1a9eCxB1yV6MoYcCZnp4e/PCHP8STTz4JoIz3gOXGoqCwFAc8ymMNj/pVKjPM/ZaW68G1K0R8d8g40uKyPEyQNUbV0CKf91xRHEQsDKTeT1AOlmIYEF4YADGIA9ZjLK8xmxVu416YxUEe91upzJD7zqymLIwl/fnDytasWYNrr70W06dPD1JThUeUMIgASin+/Oc/48c//rHtPaCAvqcR+u5mEIuE32gZhUBgPWiI0u2iHCgjEgdCZYRx69dBNy5Wek9qzch0qJTSNOA9uwqEiIRBzXkJSmEphoHoxEEAUQAg2o3IUc1NYcpkSbnxLsy7GsXclP958A35VLMzDpmzhwECtLS04IorrsA73/lO5SWIACUMIqS7uxs33ngjHnvsMfsHIzqS21qg9daFz93Oe3My64FDpG7HS7ywbEO3Mt3K8xlCVEok4iCsIVHu7I9apdxhaCHvu0ggRCkMavl5sVzdBaIRBgFFgUMkXgPWY6noC1aA+zgn2pzk1o5hzvWwTFhtaWSPGgAa7HninHPOwZe+9CW0t7cHL1fhCyUMYuCxxx7DjTfeiO7ubgCAdrAeiZ1tIFkGBzvxFAiiDUo8iMOYZ0VIUeDAVRywMkALJ81aNjQLKRUIDO67aAWfozCoeU9BITz6Oi9CigIHruJA5jE5KM74xnJe53HPhWWGPOiPJiwY83thzRgFAEybNg1f/vKX8da3vjVUuQr/KGEQE8PDw/jFL36B22+/HZRSwCBI7GiFdtBlc7IfeAoE1oOJyF2PRx153rfHLERe4SYOWBqgpZPnRIDhMy6ES0iIxlbESAOPfs4D1uMFr5Ai1uOm6KIAkGf+ccoMIQooKKzpwzDm9wNJCkIILrroInzuc59DY2Mjo4oq/KCEQcxs3rwZP/zhD9HZ2QkAIP0pJLa3QRtOhis4rlRytQZLQcSTABuOK8Et5CPO8zhqCJbPGuBo2E3Q5yNDP2fehwyDaXnckGFMl6WOIb0EVnMGxsI+0JYsAGDhwoW45pprsGrVKhY1VARECQMBMAwDt912G2666SaMjo4CFNC6GpHY1QpiBHzxlDAQH9aDP6NQIgDs05cC/DwlrKGUbbnOfbMsk4PngIthN9GEAc8xl3VbsvQYsA4lksEwnqiw8BIkLBjz+kFnjoBSiqamJnzqU5/CRRddhETA5BkKdihhIBAHDx7ET3/6U/z1r3+1f5AlSOxqhdYVILxICQPx4eHSZiAOJrS3oLCOrMrnUWbBpMzMuFPCIBxRb8BlUmZ4ccBUFMgQZjqRCbmngILCmjEMY54dNgQA69atw2WXXYYpU6awqqUiJEoYCMiGDRtw4403Yvv27QAAMpSww4sG6rwXooSBHLDO2BQypEgaUQDwFwasrsGjTJdJObSBp4RBcKIYawXca8AsBE2GxBQTGQbZh6yWNIyF/aDNdtjQokWL8A//8A9YvXo1ixoqGKKEgaAYhoG77roLN910EwYGBgAAWncDEjtbQDIeXW1R5ZdWhINDfu6g4oCLMIgqWwkLytU1zLV4lFlmUg6VdlIJg2CIcsBX4DJjOsNAhpShEx0GZxTQOgPG/H5YU+1sQypsSHyUMBCc3t5e/PKXv8Tdd99tZy+yAH1fM/S9zSAm45M2FfHB4URPIU4/BuT1FrC4Jo8ygaoTcyBDTwkD/8QxfQqwETmUKBD9YDFF9T7mQRhQ3YI5ZwDaggyy2Sw0TcP555+PT3/60+pMAsFRwkASXn/9dfznf/4nXnrpJfsHWQ2J3c3QuppAaLmVFxVOJA1eJnu/z9KnOFDeAg919XtdHmUCniZmv+JACQOfxDW2xuw1CCwKqtVbzVXx47VvVRh/KMntI5g7ACTt+eSkk07CF77wBSxevJhFLRWcUcJAIiilePLJJ/HTn/4Uu3btAgCQER36zlZoh+vdNygrr4E8+Jnwvb62HsUBlyxEgDzeAsBfXb3Wwcdz8n5tf7G9ng0+JQy8E/e0GZM4CCQKeCx6KNjitz+5jEEUFNbkNGata87bJ/Pnz8cXvvAFnHLKKSC1OhbUIEoYSIhhGLj33ntx880348iRIwAA0p9EYkcbtMFU8YeVMJAL1ivScQoDmbwFQCCPTCxlBsgG4kUcKGHgAVGmS9GFAY9FDgV7GIUyWq1pO/1oq72xuK2tDZ/+9Kfx7ne/W+0jkBAlDCRmeHgYv//97/HHP/4R6XQaAKAdroO+q3XsgDQlDOQj6GBdaZNrmUmf276CSvUJS1xhRG7wCo+oVG6I/OGVDD8lDKog2lQZsTioKgpYj1sKfoTtO7kxyGrK2oJgsm1/pFIpvP/978cll1yClpaWsLVUxIQSBjVAd3c3brrpJjzwwAOwLNvI03rqbYEwoqmBVzY4pcgs9RwoUVBAyBSxkZYb8rRRuwgXkaiEQXlEHEMjTF9aURTwyNil4AOjVMlWvQFz3limIV3X8e53vxsf//jHMXXq1PDXUMSKEgY1xM6dO3HzzTdj/fr19g8ooB1sQGJXE0g6eG57RQxwOnm3UBwoYZCD9eFMrMsuLZeBMLCLKTH+lDAYj+jTI6f2HTdOFIoCHgf/KfjC6JnRlAlj7hDI7DTMXPjpueeei0996lOYM2cOk2so4kcJgxpk69at+OUvf4knn3zS/oEFaAcakNjTBJJRAkEaOImDvGGpRIENy/ryOM26tFxGwmCsOLtsJQxKkGVq5CgOikQBj/FIwReWgmDOEKwZw0Bu+HnLW96Cz372szjqqKOYXEMhDkoY1DCbNm3CTTfdhOeff97+gQXoBxqgK4EgDzIaVhNZGDgQwr5c5/4ZC4M8vPYjqT7MF57tSyn78mVqW1lhKggGYc0YyQuCY489Fp/73Odw7LHHMrmGQjyUMJgAvPTSS/jFL36BV1991f6BBWhdOQ+CCjESH9kMK55DikzigAeFHh+W8D7zRJY+LEs/cJClXQuRrY1lgpUgqLMFgTYnCyPnSTzuuOPwyU9+EscffzyTayjERQmDCQKlFC+88AJ+85vf4OWXX879ENAO1kPf3QRtVKUUExY1+RczkcWBEgZ8kOHZlyJ6m7ohYzvLADNBYORChkbgHIt0/PHH45Of/CSOO+44JtdQiI8SBhOQDRs24L//+7/HQowooHXnBMKIEghCooyAYiaqOFDCgD2iP3M3RG7PcsjYzjLAoC9YjVmYs4dgTRvNC4KTTjoJH//4x7F69erQ5SvkQgmDCcymTZvwP//zP2OblGnuHIQ9jdAGUpW/rIgeZQyMZ6IJBCUM2CLqc66EqG1ZCRnbWVRYeQdAQVtzgqA9nf/5mjVr8IlPfAKrVq1ich2FfChhoMAbb7yB//7v/8ajjz6a/xnpT9oC4XAdCCSciGoVGY0CQE6jU8ShUQkDdoj4fKshYjtWQ8Z2FhUGz5+CwmpPw5w9lD+pWNM0nHnmmfjwhz+MpUuXhr6GQm6UMFDk2bFjB2655RY89NBDyGbtAYMM69D3NkI72ABCJZyUahEZjQNAXsNTlCGSlygAJpYwEOV5+kWkNvSKrG0tGiwEAaGwpo3YgqDRzkCWSqXwzne+E3//93+vziFQ5FHCQDGOnp4e3HbbbbjzzjsxODho/zCjQd/fAH1/I4jByThReEdGIwGQN7QIiN/IUcIgHHE/vzCI0H5+kbm9RYGFIEhYMDuGYc4cBlL22TVNTU1473vfiw984AOYMmVK6GsoagslDBRlGR4exj333IM//elPOHjwoP1Dk9iZjPY1qo3KcSOjseAgqxEa53CphEFwZJ3m4m63oMja3iLA6JlbjVmYs4ZhTRs7g2DKlCm4+OKLceGFF6KpqYnJdRS1hxIGiqoYhoGHH34Yt9xyC7Zu3Zr/OTmSgr6/EdrhlNqHEBeyGg6AvIZoXEOmEgb+kXl6k/XdlrnN44TV/oHJaZizhkEnZfI/X7ZsGT7wgQ/g7LPPRjKZDH0dRW2jhIHCM5RSbNiwAbfeeiueeOIJWJbtlsSIbocZdTWAmCrMKHJkNSAAFVrkByUMvCP7tCbrOy17u0cNqwxDumXvH5g1DNpg7x9wNhR/4AMfwMqVK0Fk7VOKyFHCQBGI/fv344477sA999yDgYEB+4cmgdZVb3sRVJhRtMg+6MtslEYxhDr3IKswAKLrozJPaTK/xzK3e5QwfMZWYxZmxzCs6aOAbrd/c3MzLrjgAlx00UXo6Ohgdi3FxEEJA0UoRkdH8dBDD+HWW2/Fm2++mf856UtC398A7VC9ymYUFTIbFYDchmkUdeclCoDaEQYyT2cyv78yt3tUsPIOEApr6ijMjuF8ulEAmDdvHt7//vdj3bp1aGxsZHItxcRECQMFEyileOmll3DbbbcVhxllCfSuBmgHGqCNKi8CCJF7dZwnUa6884LXPSiPQXVknsrUe1u7sBIE9QbMGSMwZwwDSbvNdV3HGWecgfe85z04/vjjVbiQgglKGCiYc/DgQdx7772455570N3dnf856U1BP9AA7VDdxPYilA7erF9BWSeHqIYiGVeuS+vMWiAoYRA/Mr63vIWw7M8UCPVcKcltJu4YBp08tpl4+vTpuOCCC3D++edj6tSpLGqpUORRwkDBDcMw8Mwzz+Cuu+7C008/jXxXyxDoBxugdTVM3L0I5SYLVq+jTEZGnFl+eMLyvsrVlZVAqAVhAMhvSE7U95b3eBgXAZ+n1ZCFNWMEzcck0dfXlyuK4OSTT8Z73vMenHrqqUgkJujcqeCOEgaKSOjq6sI999yDe+65B4cOHcr/nPQnoXfVQ+upn1gZjapNGCxeS1mMjLiHIBkEQrU6hhUIUQgDQI62jhsZ3tsoFjAm2LOkumXvHZgxAtoytndgypQpWLduHS644ALMnj2bRy0ViiKUMFBEimEYeOqpp3DPPffg2WefhWnaqdVgAtqheuhd9SB9E+RcBD8GQNDXVHQjQ5ThR/TVbD/1CyISlDAQC5Hf27Bt7OXeauE5erhPCgramoU5YxjWlFFAt3+u6zre+ta34vzzz8fJJ5+svAOKSFHCQBEbPT09eOihh3Dfffdh586dY78Y1aAfbIB+sB6k1jcsBzEA/L6ytWxk8EBE49VvnfyKAyUMxELUdzaKBYoJ8AytegPW9BGYU0eB3LkDADB//nycf/75eMc73oH29vYoaqlQjEMJA0XsUEqxefNm3H///fjrX/+KwcHB/O9IXxJ6dy7UyKjRUKMwRoDX11dEQ0PkoUc0D0LQ+ngVCLUiDACx+5UfRHtno+ivNfzsaNK0Q4WmjRaFCjU0NODtb387zj//fBxzzDEqs5AidpQwUAhFOp3G448/jvvvvx/PPffc2IZlC9B6U9C66+2sRlaNiQQWk4GXV1mUSUeGYUeUA7lY1KOaQIhKGADKa+AHEd7XqBYfauW5FbQD1Sis9lFY00ZhTU7DiZDVdR1r1qzBO97xDpx22mloaGiIqbIKxXiUMFAIS3d3Nx5++GH85S9/weuvvz72C5NAO1Rni4TeVO2kPmVtBJR7teM2NmQccuIUCSyvXU4g1JIwAOTsY+WI832NQrR6uY5EUA2w2jKwpo3AmpLOn0gMAMuWLcM73vEOnHPOOSpUSCEsShgopGDnzp3461//ioceegh79+4d+0WWQOuph95TD9KXlH/TMi8joPQ1j8vYkHm4iUsc8LpuoUhQwkBs4nhfeYvUSteRDEooaFsG5rQ0rPbR/AFkADBz5ky84x3vwNq1azFv3rwYa6lQeEMJA4VUOPsRHnroITz88MM4cuTI2C8zxM5s1FMnd2ajqEItRDE2ZCNqgcD7ekSrPWEA1EZfc4j6XS1sO57XlvgZURSIgSnFYqC9vR1nnHEG1q5di5UrV6p9AwqpUMJAIS2GYeDFF1/E+vXr8dhjj6G/v3/sl9kSkSBjuFEtTia1MtyoZxMcJQyCEWW7Ka+OK7YYyMKcOmqLgdTYPUyaNAlnnnkmzjnnHBx77LHQdT3GmioUwVHCQFETGIaBl156CX/729/w6KOP5k+LBGCLhMN10Hok3JOgDFAxUc8lOFG2XS30NaD2+ptEz4VqFNakNKwpaVjt6SLPQFtbG8444wycc845WL16tTpvQFETKGGgqDkMw8DLL7+cFwlF4UYmgXYkZQuFw3VypECtNaMAkMowGEctPg9ACQMRqcW+JsEzoQkLVntODExK5w8eA2wxcPrpp+Occ87B8ccfr8SAouZQwkBR05imiY0bN2L9+vV44okn0N3dPfZLCpD+JLRDddAP14l9mFotGgiAFEbCONSzCI8SB9WpxX4m8LOgdSas9jTMKWnQtgwKt6h1dHTgbW97G972trdh5cqVSgwoaholDBQTBkop3njjDTz++ON4/PHHsW3btqLfkyF9zJMwIGCGo1o0FAChjQVX1HMIjxIG5VH9KxIoKGhrFtbkNKz2DGiTUfT7xYsX58XAUUcdpTYQKyYMShgoJiz79u3DE088gccffxwbN26EaY4dTY8sgXakzg47OiJQyFEtT04yDEWq/dkQZ5YdUVF9izs0YeWEQBrWpEzRfgFN07By5cq8GJg1a1aMNVUo4kMJA4UCwMDAAJ566ik88cQTeO655zA4ODj2SwqQwYTtTThSBzKYiNebUMsGBCCMEeFKLbd91O2uvAZjqH7F59KgoE3GmFegJVsUItTa2opTTjkFb3nLW3DyySejtbU1troqFKKghIFCUYJhGHj11VfxzDPP4JlnnsHWrVuLP5Ah0Hpz3oTeFEg2hrR0tWxIAGIacqrN2aK8Bja12q9iam+aMmFNyuT+pItSigLAUUcdhbe85S049dRTccwxx6i0ogpFCUoYKBRV6O7uzouE559/HkNDQ0W/J0MJWyD0pqD1JUGsiMKOatWgKESU4Um1NR8msteglvtUhG1NNQqrLQOaEwK0ySz6fUNDA0444YS8GJg+fXpkdVMoZEQJA4XCB4434emnn8Zzzz2Hzs7O4g9YABlIQuvNeRN4b2KuZeOikDiHKdXG/JhoXoOJ0Jc4tzElFLQ5C6stawuB1ixQsBajaRqWLl2KNWvWYM2aNTjmmGOQTCa51kmhqCWUMFAoQtDb24sXX3wRL7zwAp577jkcOHCg+AMGgdaXAulL2n8PcdifMBGMDYeJYLzGxURp27imvFo7udjtujyKBQVtNmC1ZWzPQGsWSBRfq6OjIy8ETjjhBLVXQKEIgRIGCgVD9u3bh+effx4vvPACXnjhBfT39xd/wCDQ+pMgfSlbKLDeyBz3CmyUxk+UTARxUOvCoFa9Tm73FUW78hQCTQasSRnQtgwsFyHQ2tqK1atX48QTT8SaNWswZ84clU5UoWCEEgYKBScsy0JnZydefPFFbNiwARs3bhy3PwEGsUOP+nL7EwaTIFQyj0KlISRqgygKatUAqcX2rEUxUO2eJGtPquVCg1qzoK3uQqC5uRmrV6/G8ccfjxNOOAGLFi2CpgmSQlqhqDGUMFAoIsI0TWzduhUbNmzIC4WBgYGSDwFkMGl7FQaS0PpT7M9QqDWDpRYN2jiotXaU/X781p9HO/IQAgkLVqsdEmS1ZkGbi/cIAEBTU1NeCBx33HE46qijVPYghSIilDBQKGLCsixs3749LxRefvll9PX1jfscGdFB+h2xkAIZ1sUNPwoznLCoR62Hw/CkFlbXZb2HsPWO89qVigYFbTBBW7J5MUAbzXGfa29vx7HHHouVK1fi2GOPxVFHHYVEIsGtXgqFojxKGCgUgkApxe7du/Hqq6/m/+zYsWP8Bw1iC4XBnFdhMAmS5eRWV8aOf2QVCrK2WdxTWJC6s6pznNd2KzppwmrJgrYY9t/N48OCAGDBggVYtWoVVq1ahWOPPRYzZ85UewQUCkFQwkChEJiBgQFs2rQpLxQ2b96MkZGR8R8c1YqFwmACxOQgFvxO3iyHF8GMoKrIZujEPRX4aS/R68q7fgK0VX5vQE4AWC1ZoN4a97n6+nocffTReSGwcuVKlTVIoRAYJQwUCokwDAPbt2/Hq6++ii1btmDz5s3YtWsXxr3GNBeCVCgUhhLsD1/zaqDwGmYEMJA8IYNIiHsq8NJGcdcRGF/PKOtUro14nx2gW3amoOYsaLMB2pQLCSqpDiEECxYswDHHHINjjjkGy5cvx4IFC1RYkEIhEUoYKBSSMzQ0hNdffx1btmzJi4Wurq7xH3TEwlACZCgJbdD+m2kYUtwrqW7EaciVIrJAEGEqEOlZFeLUS4S+w1sEJCzQpiysZgPUEQIN4/cFAMDUqVOxfPnyvBBYunQpGhsbudZPoVDwRQkDhaIGOXLkSF4kbNmyBVu3bkVPT4/7h9MatJxYIIMJkOGELSB4nNhMiBjGnkj1EAVR2kOEekwAKMltDG7KgjYatkeg0XANBwKAGTNm4Oijj87/WbJkCaZOnRpxrRUKBW+UMFAoJghHjhxBZ2cnOjs7sXXrVnR2dmL37t3jw5AAwIItEIZzIUjDCWjDCSCt8REMExUlDBScoaBAyoLVZOQFAG0yQBuMcWlCHWbPnj1OBEyaNCnSeisUinhQwkChmMCMjIxg27ZtRWJh586d7hucATsjkiMYhhPQhnWQESUYAqOEgYIRFBSoN2E1mLYAaLRDgGij4ZoZCAAaGxuxePFiLFq0CIsWLcr/u7m5OeLaKxQKUVDCQKFQFGFZFg4cOIA333wTb775JrZv347t27dj165dMAzD/UsmQEZyIUgjCfusBef/rDc81woiiQJACQNJoBoFrTdAG03QhpwAaDRB6w2gzBlguq5j7ty5Rcb/4sWLMWPGDJUmVKFQFKGEgUKh8IRhGNizZw+2b9+eFwy7d+/Gnj17ygsGABjVbJEwqtt/RnJ/jyZArAlqlIhojKmpQBjyxn+DCVpv5v7ObQKuc98DAACpVApz587F/PnzMW/ePMyfPx8LFizAnDlzUFdXF+EdKBQKWVHCQKFQhMIwDBw4cAC7du3Czp07sXv37vy/3U5yLiKtjQmGvGiwRQQMUnvhSSIKAgc1FUQGBQWSlm3015ugdc6/qxv/ANDc3Iz58+eP+9PR0QFdL+M2UCgUCg8oYaBQKLjR19eHXbt2YdeuXdi3bx/27t2Lffv2Yc+ePfj/27vfEKmqx4/jn3Pv7O6s7q7r+nfTtTREghBKyh4FJeGSRJBk+iyC34NCMkMwghCSEEpKCg2kIEVsJegfPWhNEh9kaJgSEaxB/yCdXXV1V92dGXfm/B7cuXfunX8763d3ZzffLxjm3HPPuffMdnPPZ+fOnBs3blTunJFMypVSudCQcmVSjvecdKX0NPtcw1QOBRLBYBz5H/i1DaFJf4MXAuQ/j3KHXXNzsxYvXqxFixZp8eLFwWPRokWaNWvW5LwQAHccggGAmhgcHAyCwr///hs8Lly4UP6rVcOy8sJBKhca0o63nfbKJpULD7bGE/KpHgh8/CqoStGkv977C7+tj26Pllkdx9H8+fO1cOFCtbe3a8GCBUz+AdQcwQDAlJNOp9XX16fe3l4lEomi576+PmUypRddKnLLeGEh5Uh+aLjlSLdyz/72RN26RDCY8qys5FrZ+qw36a/LeuW6jGxuW6Hnai4Tx3E0Z84ctbe3q729PQgACxcu1MKFCzV//nxWBAYw5RAMAEw7mUxGV65cUW9vr/r6+nTp0iVdvny56JFOp6s/aFb5sJB7NmlHGnFkRoxXN5ILECNeG2V1+2FiqgWG/9CvAmty9/DXZaWYzT3ntuuysoV19dlRb+0Ji8Vimjt3rubPn6958+ZFHn7d7NmzmfgDmHYIBgD+k6y1GhwcDEKCHx6uXr2qq1evqr+/X9euXVN/f//on3coxw8TIyYfIDKOlDFB2WSMlDFeoMjt88q5tn64qHVQmAK/Cvy/3MuxkiPZWNb7S37uWTEr6+Ym+zErudncs/Um+bk2cm/vtTQ1Namtra3sY/bs2Zo3b55aW1vlOHwNL4D/HoIBgDverVu3gsBQGByuX7+uwcHBokfFr2gdCysvLGSNFxKyftl75LeV3/bbW0nWezahcvGzvM9a5MrevTA2ektM4a+CEjnFGnmTdiPvhE7u2eT+Sl9mv3Vy9a6VdWxQlmO9yXywPT4/Usn77v6WlhbNmjWr5KOlpUWtra2aNWtWMOnnKz0B3OkIBgAwRtZaDQ8PR4LCwMCAhoaGdPPmzcizXy6sv3nzpvjnt7yGhgbNnDkzeDQ1NampqankdmF9S0uLmpqaWLwLAMaIYAAANeCHi6GhISWTSaVSKaVSKaXT6aBc6ZFOpzUyMqJMJqNMJhMpj1bnM8ZEJs9+Ofwc3u+6rmKxmOrq6uS6rurq6hSLxUo+/DaxWEwNDQ2Kx+PBo6GhQY2NjUF9qW0m9QAw+QgGAAAAAMbzjk4AAAAA0xXBAAAAAADBAAAAAADBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAAiGAAAAAAQAQDAAAAACIYAAAAABDBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAAiGAAAAAAQAQDAAAAACIYAAAAABDBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAASIrVegDAVGWtVTKZrPUwAADjKB6PyxhT62EAUxLBACgjmUxq7dq1tR4GAGAcdXd3q7GxsdbDAKYkbiUCAAAAwDsGQDXqT8+XMkbGMZLx8nS4LMdIubemjeMEZZlc2cntM05Qlsn3CfcvWV/iPN5zcX9rTD7y+8eqtK9EvQ0dWsbIBn9CyO0L+quov83Vh9vlywq9foX6KzQWFffPnz4/lgrnsEXHLlU2JetL9leFdn45NMaifSa6r6pzlusfVlV/W9X5I+1U2M4W9Ve4vkQ7Ezp/pI/CbQrKkUvb5sq25CUvY0OXqI20c2SDY0fqTb7ea+PV+e1KlkPHckL1ftlReFvF7SL9s5F6R1aOyUqS3MixCtrl2jjGyo3UW7kK78uW6JOVGzputJw/T7jsKHysbHBOr002KLvGysgffzY/llB/N3eMoE/o5+FvB+OXX5//WbqywT9NjpFcmWDbNUZO7irw6k2oPvfvtIxc4yiZMlr/fwsFoDKCAVCNjJHJOjLKT9LD5fBMyCgUDBxH4ZmdkVNmlugoOnsqnL05BdvRcxbP2FRQX2lfpfqCfaHJ9KjlkvtUFAAK64uHXNDfUbRdyXMUHrvKPmPqX1BWQf1Y+4/xPNUHi0kIBqZSu/LBINreljm2LXmsIFQE9YXtyvX3+9kS5ykum6KQES37sbXUPr9/PkyoYMJfECZU3C48SY4Gg2wwUfb7uLn/hxyFysbIlcqUTWgCbkLHllz/nKGyK4Xae/X5Sbryx470yb8uNzf5D7+2sQQD/xzh7aBcVB9+LaFrBUBF3EoEAAAAgGAAAAAAgGAAAAAAQAQDAAAAACIYAAAAABDBAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAsfIxUB3XyirrLfvpr6JaVA4tFRpZxdcUb6uw3papz5WDFVkL9pVYHtdWWIa39L7i+ug6oaFtG96X72NlggVtbXDMMseLLK8bPU/ZeluiyWirGI+6inCJPuX6lzznKG2qWcV4zGOOnqa6/oUrCpcrWxW9jvC+cn1Uup0pd36F2xSUI5d2eBXhcH3ouAqVI+Mfv5WPbehY1ljZgrJVeFvF7WSVDY6bjZ5f1quT/7Mo3c7m2tiCcdlQn9L7vBWF/TGWKjuRcXpndKSS5azyKx9nc/X+j7b8ysdGTq6VK2/lZRPal1+JOd+/cIVlJ9LGhFY4jh47KIfqjYxcY5RMlfv3BUAYwQCoQvrhvloPYeqwBc/joNR8FJgKQtN1ZWs5kEkRTnDcUADcifg/HwAAAICMtXYc/+4H/HdYa5VMJms9DEwRyWRSTz/9tCTpq6++Ujwer/GIMFVwbUwv8XhcxvDeJFAKtxIBZRhj1NjYWOthYAqKx+NcGyiJawPAdMatRAAAAAAIBgAAAAAIBgAAAABEMAAAAAAgvpUIAAAAgHjHAAAAAIAIBgAAAABEMAAAAAAgggEAAAAAEQwAAAAAiGAAAAAAQAQDAAAAACIYAAAAAJAUq/UAAKBWksmkzp07p56eHp0/f17nz59Xb2+vJOn555/XCy+8MOox+vv7dfjwYf3444/q7e1VQ0ODli5dqs7OTq1bt07GmIl+GZgAAwMD+uGHH3TmzJngushkMmptbdWKFSvU2dmpRx99tOIxhoaG1NXVpRMnTiiRSMhxHHV0dOjxxx/X+vXrVVdXN0mvBgCqw8rHAO5YZ8+e1ZYtW0ruqyYY9PT0aNu2bRoYGJAkNTY2Kp1OK5PJSJIefvhh7dq1iwngNPTYY48F/x0lqb6+Xq7ranh4OKhbvXq1du7cqXg8XtQ/kUjo5ZdfViKRkCTF43Fls1ml02lJ0vLly7Vnzx41NzdP8CsBgOpxKxGAO1pzc7NWrVqlTZs2aceOHWpra6uq340bN7R9+3YNDAxoyZIl2r9/v7q7u3X06FG98sorisViOn36tD744IMJfgWYCJlMRvfdd59effVVdXV16dixY+ru7taRI0e0bt06SdKpU6e0e/fuor4jIyN67bXXlEgkNGfOHL377rs6evSojh49qh07dmjGjBn6/ffftXPnzsl+WQBQEe8YALhjZTIZua4bqduwYYMSicSo7xh89NFHOnjwoBoaGnTgwAHdddddkf2HDh3S/v375bquDh48qI6Ojgl5DZgYP//8sx588MGy+3fv3q2vv/5akvTZZ59pwYIFwb5vvvlGb7/9tiRp3759uv/++yN9jx07pjfffFOS9N5772nVqlXjPXwAuC28YwDgjlUYCsaiu7tbkrRmzZqiUCBJzzzzjBobG5XJZPTdd9/d9nlQG5VCgaTgXQPJu6Us7Ntvv5UkPfDAA0WhQPKumfb29khbAJgKCAYAMEb//PNP8CHl1atXl2wzY8YMrVy5UpL0008/TdrYMDnq6+uDcjabDcrJZFK//vqrJOmRRx4p2dcYE1w3XBsAphKCAQCM0R9//BGUly5dWrbdsmXLJEl//fXXRA8Jk+zcuXNB2f/vLEl///13EBQqXRv+vv7+fg0ODk7MIAFgjAgGADBGV65cCcrz5s0r227u3LmSpJs3b2poaGjCx4XJcf36dR06dEiStHLlSi1ZsiTYd/ny5aBczbVR2AcAaolgAABjFJ7kNzQ0lG0X/hpLgsF/Qzab1VtvvaUrV66ovr5eW7dujezn2gAwnREMAACo0vvvv6+TJ09KkrZu3ap77723xiMCgPFDMACAMZoxY0ZQTqVSZdslk8mSfTA97d27V59//rkkafPmzZFvJvJxbQCYzggGADBGc+bMCcqXLl0q286/d3zmzJlM/qa5Dz/8UEeOHJEkvfTSS9qwYUPJduHPDlRzbRT2AYBaIhgAwBiFv4Xmzz//LNvO//aie+65Z6KHhAm0b98+ffrpp5KkF198URs3bizb9u6775bjeL9aK10b/r62tja1tLSM42gB4PYRDABgjDo6OoKVbk+dOlWyzfDwsH755RdJ0kMPPTRpY8P42rt3r7q6uiR5oWDTpk0V28fj8WBRs3LXhrVWp0+flsS1AWBqIRgAwBgZY7R27VpJ0vfff6+LFy8Wtfniiy80PDws13X1xBNPTPYQMQ727t0buX1otFDg6+zslCSdPXtWv/32W9H+48eP68KFC5G2ADAVEAwA3NGuX7+ua9euBQ9/capUKhWpL/xKyY0bN6qtrU3JZFLbt29XT0+PJOnWrVv68ssv9fHHH0uSnnrqKXV0dEzui8L/LPyZgs2bN1e8fahQZ2enli1bJmut3njjDZ05c0aS91Wnx48f1zvvvCPJWzV71apV4z94ALhNxlpraz0IAKiVDRs2KJFIjNqus7NTr7/+eqSup6dH27Zt08DAgCTv22XS6bRGRkYkebeJ7Nq1S/X19eM/cEyY3t5ePfvss5Ikx3HU2tpasf1zzz1X9G7CxYsXtWXLluDaisfjymazSqfTkqTly5drz549am5uHv8XAAC3KVbrAQDAdLVixQodOHBAhw8f1smTJ9XX16d4PK5ly5aps7NTTz75ZPBBVEwf/rtGfrm/v79i++Hh4aK69vZ2ffLJJ+rq6tKJEyeUSCQUi8W0dOlSrVmzRuvXr1ddXd24jx0A/he8YwAAAACAzxgAAAAAIBgAAAAAEMEAAAAAgAgGAAAAAEQwAAAAACCCAQAAAAARDAAAAACIYAAAAABABAMAAAAAIhgAAAAAEMEAAAAAgAgGAAAAAEQwAAAAACCCAQAAAAARDAAAAACIYAAAAABABAMAAAAAIhgAAAAAEMEAAAAAgKT/B7PnpUka79n5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#Since `PsiChi` is encoded as pixel in a HEALPix grid, we need mhealpy to render it back to a sphere\n", + "m_signal = HealpixMap(signal.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents,\n", + " coordsys = SpacecraftFrame(attitude = grbori.get_attitude()))\n", + "\n", + "fig = plt.figure(dpi = 150)\n", + "\n", + "# Try also other projections, e.g. projection = 'orthview'\n", + "ax = fig.add_subplot(projection = 'mollview')\n", + "\n", + "m_signal.plot(ax, coord = SpacecraftFrame(attitude = Attitude.identity(frame ='icrs')))\n", + "\n", + "# Location of the source\n", + "c_sc = coord.transform_to(SpacecraftFrame(attitude = Attitude(grbori.get_attitude())))\n", + "ax.scatter(c_sc[0].lon.deg, c_sc[0].lat.deg, transform=ax.get_transform('world'), color = 'red')\n" + ] + }, + { + "cell_type": "markdown", + "id": "290a9873-c011-4bbd-a2e5-3605f0a56931", + "metadata": {}, + "source": [ + "This is a horizontal slice of the Compton cone shown in the figure above, spread by detector effects and the finite size of the `Em` and `Phi` bins. Try selecting different `Phi` bins to see how these circle grows or shrinks, and relate that to the CDS figure.\n", + "\n", + "You can also try selecting different energy bins. The opening of the cone in the CDS is geometrically constrained and does not depend on the energy. This circle becomes more blurry at different energies though, which is related to the energy resolution and the bin width." + ] + }, + { + "cell_type": "markdown", + "id": "79b32eb9-b8d4-49c1-9c38-52def6410278", + "metadata": {}, + "source": [ + "## Getting a fake background" + ] + }, + { + "cell_type": "markdown", + "id": "b90c008e-40b3-46b0-a20d-fd3d85c7c58c", + "metadata": {}, + "source": [ + "The background from Compton telescopes can be complex, and in general we need to either simulate all the different components with MEGAlib and/or use real data to constrain it. For the purpose of having a toy background that we can use to develop our algorithms, let's use the detector response to simulate an (unrealistic) isotropic gamma-ray background. The final source injector should use a background model as input instead.\n", + "\n", + "We'll repurpose the point source convolution by generating an effective dwell time map with the same value for all pixels. Since all pixels have the same area, this is simulating an isotropic distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4700ced8-79da-4d5f-87e3-8771f050caa4", + "metadata": {}, + "outputs": [], + "source": [ + "iso_map = HealpixMap(base = response, \n", + " unit = u.s, \n", + " coordsys = SpacecraftFrame(attitude = grbori.get_attitude()))\n", + "\n", + "# Filling all pixels with a constant. The actual value doesn't\n", + "# since we will renormalize it\n", + "iso_map[:] = 1*u.s" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "b0dcee61-d3e5-478c-a2a5-206b80812f49", + "metadata": {}, + "outputs": [], + "source": [ + "# Non-realistic spectrum\n", + "bkg_spectrum = Powerlaw()\n", + "bkg_index = -2\n", + "bkg_piv = 1 * u.keV\n", + "bkg_K = 1 / u.cm / u.cm / u.s / u.keV\n", + "bkg_spectrum.index.value = bkg_index\n", + "bkg_spectrum.K.value = bkg_K.value\n", + "bkg_spectrum.piv.value = bkg_piv.value\n", + "bkg_spectrum.K.unit = bkg_K.unit\n", + "bkg_spectrum.piv.unit = bkg_piv.unit\n", + " \n", + "iso_response = response.get_point_source_response(iso_map)\n", + " \n", + "bkg = iso_response.get_expectation(bkg_spectrum).project(['Em', 'Phi', 'PsiChi'])" + ] + }, + { + "cell_type": "markdown", + "id": "c0de926a-f12e-4c79-b7df-3cd94edd0c88", + "metadata": {}, + "source": [ + "Now, let's renormalize the background to a total rate of 1k Hz. This is again not realistic, but was chosen such that the signal will show up clearly enough above the background and we can work on the algorihtms." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "02ae055f-9549-4f38-a8e6-d0e57af60cbe", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "90238.31928090738" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(bkg)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5c0cc346-7bd6-4d67-b98b-e94bcf5569aa", + "metadata": {}, + "outputs": [], + "source": [ + "bkg = bkg * 1e3 / np.sum(bkg)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "3bf9becd-f9af-4259-b3af-22d0aa3e100a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000.0000000000001" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(bkg)" + ] + }, + { + "cell_type": "markdown", + "id": "71024a7d-1742-4a57-9b23-cd47bc1ae603", + "metadata": {}, + "source": [ + "These are the same plots as we did for the signal, so you can compare:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "aa8589a2-cff1-4c68-bae8-c78c1691a0fb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAG7CAYAAAAPPqWxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmiUlEQVR4nO3df1DU953H8dfyY1cFE5zFoBGHiHgIyZncVWPV1EDUqCFysZF0cmUam0HTKNjodLRxNG0sadpE80Ot1sT0uJskgtox0tZfiTHEH7GejjktGEtKpTYRgQWNKOwC7v3h8G22iz8AYfcDz8dMprOf72eX95JmffrdL4vN6/V6BQAAEORCAj0AAADAjSBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGCEbhMtDQ0NOnnypBoaGgI9CgAA6ATdJlrKy8s1a9YslZeXB3oUAADQCbpNtAAAgO6NaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBHCAj0Aur+yg2d0ZHOpGhuaAj0KriG8V5hGZgzTkNEDAz0KALSKaEGnO7K5VOe/vBjoMXBdbh3eVEq0AAhaRAs6XcsZFptN6t3PEeBp0Jr6Wre8XnE2DEBQI1rQZXr3c+g/Vz8Q6DHQinezP9SlGnegxwCAa+JCXAAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGCOvoA/zP//yP1q9fryFDhui///u/fY4dP35cv/71r/XnP/9ZERERSk1N1axZs9SnTx+ffR6PR2+99ZZ27dqlCxcuaOjQocrKytKoUaM6Oh4AAOgmOnSmpbKyUm+//bZ69+7td6y0tFTz589XQ0ODsrOzlZaWpt/97nf6yU9+4rf3xRdf1MaNGzVp0iTNmzdPISEhWrhwoY4dO9aR8QAAQDfSoTMta9asUXJysi5fvqzz58/7HHvjjTfUt29frVy5UhEREZKkgQMH6qWXXtKhQ4d07733SpJKSkq0e/duPf3003r88cclSZMnT9bMmTO1du1arV27tiMjAgCAbqLdZ1o+/fRTFRUVKScnx+/YxYsXdfjwYT344INWsEhXYqR3797as2ePtVZUVKTQ0FClp6dbaw6HQ2lpaSouLtbZs2fbOyIAAOhG2nWmpbm5Wa+//rrS0tI0dOhQv+NlZWVqbm5WYmKiz3p4eLiGDRum0tJSa620tFSxsbE+cSNJSUlJkqTPP/9cMTExfl+jurpaLpfLul1eXt6epwIAAAzRrmjZunWrzp49q1dffbXV4y0x4XQ6/Y45nU793//9n8/eq+2TrsRJawoLC5WXl9fW0QEAgKHaHC3nz5/Xb37zG33ve99TVFRUq3vcbrekK2dW/pndbpfH4/HZe7V9X3+sf5aenq5x48ZZt8vLy5Wbm3vDzwMAAJilzdGyfv169e3bV48++uhV9zgcDklSY2Oj3zGPx2MFScveq+37+mP9s+joaEVHR7dpdgAAYK42Rcvp06f1u9/9Tjk5OT5v23g8HjU1NenMmTOKiIiw3tr5+jUnLVwul09sOJ1OVVVVtbpPEmECAAAktTFaqqurdfnyZb3++ut6/fXX/Y5/5zvf0YwZM/Tkk08qNDRUJ0+e1AMPPGAdb2xsVGlpqVJTU621hIQEHT16VBcvXvS5GLekpMQ6DgAA0KZoGTJkiF544QW/9fXr1+vSpUuaN2+ebr/9dkVGRmrkyJHatWuXnnjiCesTcHfu3Kn6+nqfaElJSVF+fr4KCwutz2nxeDzatm2bkpOTW/3JIQAA0PO0KVqioqL0rW99y29906ZNkuRzLCsrS3PnzlVOTo7S09NVWVmpgoICjRo1SqNHj7b2JScnKzU1VW+88YbOnTunQYMGaceOHaqoqNCiRYva+7wAAEA30+HfPXQ1iYmJeuWVV/TrX/9aq1atUp8+fZSWlqannnrKb+/ixYsVExOjnTt3qq6uTvHx8frlL3+pe+65p7PGAwAAhrkp0bJy5cpW10eMGKE1a9Zc9/4Oh0Nz5szRnDlzbsY4AACgG+rQL0wEAADoKkQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhhbdn817/+Vf/1X/+lkydPqqamRr169VJcXJwef/xxjRs3zmfvqVOntHr1ah0/flxhYWEaM2aMsrOzFRUV5bPv8uXLys/P13vvvaeamhrFxsYqMzNTEydO7PCTAwAA3UeboqWiokKXLl3SlClTFB0drYaGBhUVFenZZ5/Vj370I6Wnp0uSKisrlZOTo8jISM2aNUv19fXKz89XWVmZ1q1bp/DwcOsx33zzTb3zzjuaNm2ahg8frn379mnZsmWy2WyaMGHCzX22AADAWG2KljFjxmjMmDE+a9/+9rc1a9Ysbdy40YqWt99+Ww0NDVq/fr1iYmIkSUlJSVqwYIG2b99u7auqqlJBQYGmT5+u+fPnS5Iefvhh5eTkaM2aNUpJSVFoaGiHnyQAADBfh69pCQ0N1W233aa6ujprraioSGPHjrWCRZJGjhypwYMHa8+ePdbavn371NTUpOnTp1trNptNjzzyiKqqqlRcXNzR8QAAQDfRpjMtLerr6+V2u3Xx4kXt379ff/zjH5WamirpytmT2tpaJSYm+t0vKSlJBw8etG6Xlpaqd+/eiouL89vXcnzEiBGtzlBdXS2Xy2XdLi8vb89TAQAAhmhXtPzqV79SYWGhJCkkJETjx4+33t5pCQmn0+l3P6fTqa+++koej0d2u10ul0v9+vWTzWbz2yddCZOrKSwsVF5eXnvGBwAABmpXtGRkZCglJUXV1dXas2ePmpub1djYKElyu92S5HOxbQu73W7tsdvtcrvd1913Nenp6T4/sVReXq7c3Nz2PB0AAGCAdkVLXFyc9ZbOlClTtGDBAv34xz/WunXr5HA4JMmKmK/zeDySZO1xOBw3tK810dHRio6Obs/4AADAQDflw+VSUlL02Wef6fTp09ZbO1+/3qSFy+XSLbfcYp1JcTqdqqmpkdfr9dsniSgBAACWmxItLW/j1NXVqX///oqKitLJkyf99p04cUIJCQnW7YSEBDU0NPhdRFtSUmIdBwAAkNoYLbW1tX5rTU1N2rlzpxwOh+644w5J0v33368DBw7o7Nmz1r4jR47o9OnT1k8ZSdJ9992nsLAwbdmyxVrzer3aunWr+vfvr7vuuqutzwcAAHRTbbqmZfny5bp48aLuvvtu9e/fXy6XS++//77+9re/ae7cuerTp48kKTMzUx999JGeeeYZzZgxQ/X19dqwYYPi4+M1depU6/Fuu+02ZWRkaMOGDWpqalJSUpL27t2rY8eOaenSpXywHAAAsLQpWh544AH94Q9/0NatW3X+/Hn16dNHiYmJ+sEPfqD77rvP2hcTE6OVK1dq9erVWrdunfW7h+bOnWtdz9LiqaeeUt++fVVYWKgdO3YoNjZWS5Ys0aRJk27OMwQAAN1Cm6JlwoQJN/z7gIYMGaIVK1Zcd19ISIgyMzOVmZnZllEAAEAPc1MuxAUAAOhsRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMEJYoAcwQdnBMzqyuVSNDU2BHsVI9bXuQI8AAOgGiJYbcGRzqc5/eTHQYxgvvBf/dwMAtB9/ityAljMsNpvUu58jwNOYKbxXmEZmDAv0GAAAgxEtbdC7n0P/ufqBQI8BAECPxIW4AADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAI4S1ZfOJEye0Y8cOHT16VBUVFbrlllt05513KisrS4MHD/bZe+rUKa1evVrHjx9XWFiYxowZo+zsbEVFRfnsu3z5svLz8/Xee++ppqZGsbGxyszM1MSJEzv85AAAQPfRpmh59913dfz4caWmpmro0KFyuVzasmWLsrKytHbtWsXHx0uSKisrlZOTo8jISM2aNUv19fXKz89XWVmZ1q1bp/DwcOsx33zzTb3zzjuaNm2ahg8frn379mnZsmWy2WyaMGHCzX22AADAWG2Klscee0zPPfecT3Q88MAD+v73v6933nlHS5culSS9/fbbamho0Pr16xUTEyNJSkpK0oIFC7R9+3alp6dLkqqqqlRQUKDp06dr/vz5kqSHH35YOTk5WrNmjVJSUhQaGnpTnigAADBbm65p+dd//VefYJGkwYMH64477lB5ebm1VlRUpLFjx1rBIkkjR47U4MGDtWfPHmtt3759ampq0vTp0601m82mRx55RFVVVSouLm7zEwIAAN1Tm860tMbr9aq2tlZ33HGHpCtnT2pra5WYmOi3NykpSQcPHrRul5aWqnfv3oqLi/Pb13J8xIgRrX7d6upquVwu6/bXowkAAHQ/HY6W999/X1VVVXryySclyQoJp9Ppt9fpdOqrr76Sx+OR3W6Xy+VSv379ZLPZ/PZJV8LkagoLC5WXl9fR8QEAgCE6FC3l5eV69dVXdeedd2rKlCmSJLfbLUl+byNJkt1ut/bY7Xa53e7r7rua9PR0jRs3zmeW3Nzc9j8ZAAAQ1NodLS6XS4sWLVJERIR+9rOfWRfMOhwOSVJjY6PffTwej88eh8NxQ/taEx0drejo6PaODwAADNOuD5erq6vTwoULVVdXp+XLl/vEQ8tbO1+/3qSFy+XSLbfcYp1JcTqdqqmpkdfr9dsniSgBAACWNkeL2+3Wj3/8Y50+fVq/+MUvrAtwW/Tv319RUVE6efKk331PnDihhIQE63ZCQoIaGhr8LqItKSmxjgMAAEhtjJbm5mb99Kc/VXFxsZ5//nndddddre67//77deDAAZ09e9ZaO3LkiE6fPq3U1FRr7b777lNYWJi2bNlirXm9Xm3dulX9+/e/6uMDAICep03XtPzqV7/S/v37NXbsWF24cEG7du3yOf7ggw9KkjIzM/XRRx/pmWee0YwZM1RfX68NGzYoPj5eU6dOtfbfdtttysjI0IYNG9TU1KSkpCTt3btXx44d09KlS/lgOQAAYGlTtHz++eeSpAMHDujAgQN+x1uiJSYmRitXrtTq1au1bt0663cPzZ0717qepcVTTz2lvn37qrCwUDt27FBsbKyWLFmiSZMmtfc5AQCAbqhN0bJy5cob3jtkyBCtWLHiuvtCQkKUmZmpzMzMtowCAAB6mHb99BAAAEBX6/An4gLoPupr3Xo3+8NAj2Gk8F5hGpkxTENGDwz0KEC3RbQAUHivMElueb3SpZqrfxI1rsWtw5tKiRagExEtADQyY5gObypVY0NToEcxUn3tleDj+wd0LqIFgIaMHsgZgg54N/tDzlABXYALcQEAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARiBaAACAEYgWAABgBKIFAAAYgWgBAABGIFoAAIARiBYAAGAEogUAABiBaAEAAEYgWgAAgBGIFgAAYASiBQAAGIFoAQAARghr6x0uXbqk/Px8lZSU6MSJE7pw4YKeffZZTZ061W/vqVOntHr1ah0/flxhYWEaM2aMsrOzFRUV5bPv8uXLys/P13vvvaeamhrFxsYqMzNTEydObPcTAwAA3Uubo+X8+fPKy8tTTEyMEhISdPTo0Vb3VVZWKicnR5GRkZo1a5bq6+uVn5+vsrIyrVu3TuHh4dbeN998U++8846mTZum4cOHa9++fVq2bJlsNpsmTJjQ/mcHAAC6jTZHi9Pp1JYtW+R0OvXZZ59p9uzZre57++231dDQoPXr1ysmJkaSlJSUpAULFmj79u1KT0+XJFVVVamgoEDTp0/X/PnzJUkPP/ywcnJytGbNGqWkpCg0NLS9zw8AAHQTbb6mxW63y+l0XndfUVGRxo4dawWLJI0cOVKDBw/Wnj17rLV9+/apqalJ06dPt9ZsNpseeeQRVVVVqbi4uK0jAgCAbqjNZ1puRFVVlWpra5WYmOh3LCkpSQcPHrRul5aWqnfv3oqLi/Pb13J8xIgRfo9TXV0tl8tl3S4vL79Z4wMAgCDUKdHSEhOtnZFxOp366quv5PF4ZLfb5XK51K9fP9lsNr990pU4aU1hYaHy8vJu7uAAACBodUq0uN1uSfK52LaF3W639tjtdrnd7uvua016errGjRtn3S4vL1dubm6HZwcAAMGpU6LF4XBIkhobG/2OeTwenz0Oh+OG9v2z6OhoRUdH35R5AQBA8OuUD5dreWvn69ectHC5XLrlllusMylOp1M1NTXyer1++yQRJgAAQFInRUv//v0VFRWlkydP+h07ceKEEhISrNsJCQlqaGjwu5C2pKTEOg4AANBpH+N///3368CBAzp79qy1duTIEZ0+fVqpqanW2n333aewsDBt2bLFWvN6vdq6dav69++vu+66q7NGBAAABmnXNS2//e1vVVdXZ72Fs3//flVWVkqSHn30UUVGRiozM1MfffSRnnnmGc2YMUP19fXasGGD4uPjfT7y/7bbblNGRoY2bNigpqYmJSUlae/evTp27JiWLl3KB8sBAABJ7YyWgoICVVRUWLc//vhjffzxx5KkBx98UJGRkYqJidHKlSu1evVqrVu3zvrdQ3PnzrWuZ2nx1FNPqW/fviosLNSOHTsUGxurJUuWaNKkSR14agAAoDtpV7Rs3LjxhvYNGTJEK1asuO6+kJAQZWZmKjMzsz3jAACAHqDTrmkBAAC4mYgWAABgBKIFAAAYgWgBAABG6JSP8QeAnqi+1q13sz8M9BhGCu8VppEZwzRk9MBAj4IgRrQAQAeF9wqT5JbXK12qaf2XvOJ63Dq8qZRowTURLQDQQSMzhunwplI1NjQFehQj1ddeCT6+f7geogUAOmjI6IGcIeiAd7M/5AwVbggX4gIAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMEJYoAcAAECS6mvdejf7w0CPgWsI7xWmkRnDNGT0wIB8faIFABBQ4b3CJLnl9UqXatyBHgfX5NbhTaVECwCgZxqZMUyHN5WqsaEp0KPgGuprr4RlIP89ES0AgIAaMnpgwP7mjhv3bvaHAT8TxoW4AADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADBCUPzIs8fj0VtvvaVdu3bpwoULGjp0qLKysjRq1KhAjwYAAIJEUJxpefHFF7Vx40ZNmjRJ8+bNU0hIiBYuXKhjx44FejQAABAkAh4tJSUl2r17t2bPnq05c+YoPT1dr732mgYMGKC1a9cGejwAABAkAh4tRUVFCg0NVXp6urXmcDiUlpam4uJinT17NoDTAQCAYBHwa1pKS0sVGxuriIgIn/WkpCRJ0ueff66YmBi/+1VXV8vlclm3y8vLO3dQAAAQUAGPFpfLJafT6bfeslZdXd3q/QoLC5WXl9eZowEAgCAS8Ghxu90KDw/3W7fb7dbx1qSnp2vcuHHW7fLycuXm5nbKjH1udfj8LwAAPU0w/FkY8GhxOBxqbGz0W/d4PNbx1kRHRys6OrpTZ2vxyAvjrr8JAIBuLBj+LAz4hbhOp9Pn2pQWLWtdFSYAACC4BTxaEhIS9Pe//10XL170WS8pKbGOAwAABDxaUlJS1NzcrMLCQmvN4/Fo27ZtSk5ObvUnhwAAQM8T8GtakpOTlZqaqjfeeEPnzp3ToEGDtGPHDlVUVGjRokWBHg8AAASJgEeLJC1evFgxMTHauXOn6urqFB8fr1/+8pe65557Aj0aAAAIEkERLQ6HQ3PmzNGcOXMCPQoAAAhSAb+mBQAA4EYQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwQlB8TsvN4Ha7JUnl5eUBngQAALRVXFycevXqdc093SZaKioqJEm5ubkBngQAALTVm2++qcTExGvusXm9Xm8XzdOpzp07p0OHDmngwIGy2+3X3b9q1Srl5OTc0GOXl5crNzdXS5YsUVxcXEdH7ZHa8v0ONsEwe1fM0Blf42Y9Zkcfpz335zWiawXDf2ftFQyzd9UMnfk60aPOtERFRenBBx+84f2RkZHXLbp/FhcX1+b74Ir2fL+DRTDM3hUzdMbXuFmP2dHHac/9eY3oWsHw31l7BcPsXTVDoF8neuyFuBMnTgz0CD2Kyd/vYJi9K2bojK9xsx6zo4/TnvsHw7/3nsTk73cwzN5VMwT6daLbvD3UmU6ePKlZs2bd0PttAHoeXiOArtFjz7S0hdPp1MyZM+V0OgM9CoAgxGsE0DU40wIAAIzAmRYAAGAEogUAABih2/zIcyB5PB698sorOnz4sOrq6nTHHXcoOztbd911V6BHAxAkXn75Ze3fv18NDQ2KiYnR7NmzNW7cuECPBRiFa1pugvr6ehUUFGjq1Knq37+/9uzZo9dee00FBQXq06dPoMcDEATKy8utD788ceKEFixYoPz8fN16662BHg0wBm8P3QS9e/fWzJkzFRMTo5CQEE2YMEFhYWE6ffp0oEcDECTi4uKsT+u22WxqbGxUdXV1gKcCzNIj3x66dOmS8vPzVVJSohMnTujChQt69tlnNXXqVL+9Ho9Hb731lnbt2qULFy5o6NChysrK0qhRo676+KdPn9aFCxc0aNCgznwaADpJZ71GvPLKK9q2bZs8Ho+++c1vKj4+viueDtBt9MgzLefPn1deXp7Ky8uVkJBwzb0vvviiNm7cqEmTJmnevHkKCQnRwoULdezYsVb3u91u5ebm6rvf/a4iIyM7Y3wAnayzXiMWLFignTt36tVXX9WoUaNks9k66ykA3VKPjBan06ktW7Zo06ZNevrpp6+6r6SkRLt379bs2bM1Z84cpaen67XXXtOAAQO0du1av/1NTU167rnnNGjQIM2cObMTnwGAztRZrxGSFBoaqm984xs6cuSIPvnkk856CkC31COjxW6339AnVxYVFSk0NFTp6enWmsPhUFpamoqLi3X27Flr/fLly8rNzZXNZtPixYv5GxRgsM54jfhnzc3N+uKLL27KvEBP0SOj5UaVlpYqNjZWERERPutJSUmSpM8//9xaW758uVwul55//nmFhfXIS4WAHudGXyPq6ur0/vvv69KlS2pqatKePXt09OhR3X333V0+M2Ay/nS9BpfL1erftlrWWq78r6io0O9//3vZ7Xafv3G99NJLvCgB3diNvkbYbDb9/ve/16uvviqv16tBgwZp6dKlGjZsWJfOC5iOaLkGt9ut8PBwv/WWH1t0u92SpAEDBujjjz/u0tkABN6NvkZERETo9ddf79LZgO6It4euweFwqLGx0W/d4/FYxwH0XLxGAF2LaLkGp9Mpl8vlt96yFh0d3dUjAQgivEYAXYtouYaEhAT9/e9/18WLF33WS0pKrOMAei5eI4CuRbRcQ0pKipqbm1VYWGiteTwebdu2TcnJyYqJiQngdAACjdcIoGv12Atxf/vb36qurs46jbt//35VVlZKkh599FFFRkYqOTlZqampeuONN3Tu3DkNGjRIO3bsUEVFhRYtWhTI8QF0Ml4jgODTY3/L82OPPaaKiopWjxUUFGjgwIGSrlz93/J7Rerq6hQfH6+srCzde++9XTkugC7GawQQfHpstAAAALNwTQsAADAC0QIAAIxAtAAAACMQLQAAwAhECwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQACDrjx4/3+cftdlvHtm/frvHjx2v79u0BnPAftm7d6jPrz3/+80CPBHRbPfa3PAOQzpw5o+985zvX3DNgwABt3Lixiyby/bpTpkyRJIWGhnbq1zp06JB+9KMfadSoUVqxYsU19y5btkwffPCBli5dqkmTJikxMVEzZ85UXV2dNm/e3KlzAj0d0QJAgwYN0qRJk1o9FhkZ2cXTXDFgwAA9+eSTXfK1Ro4cqZiYGB05ckRnz55VTExMq/vq6uq0d+9eRUZGavz48ZKk4cOHa/jw4Tpz5gzRAnQyogWABg0a1GWBEIxCQkI0depU5eXlaceOHXriiSda3ffBBx/I7XbroYceksPh6OIpAXBNC4A2GT9+vObNm6eqqiotW7ZM06ZN0+TJk7Vw4UJ9+eWXkqRTp05p8eLFSktL0+TJk7V06VLV1NR06lyVlZV64oknNHHiRH300UfWem1trVatWqXHH39cEyZM0LRp07RkyRKVlZX53P+hhx6SzWbT9u3b5fV6W/0a27ZtkySlpaV12vMAcHVEC4A2u3DhgubOnaszZ85o8uTJ+rd/+zcdPHhQCxYsUFlZmebMmaP6+no99NBDGj58uIqKivT888932jynTp3SnDlzVFlZqZdfflkpKSmSpC+++EJZWVnatGmTbr/9dn3729/WN7/5TR06dEhPP/20SkpKrMcYMGCAvvGNb+jLL7/U0aNH/b5GWVmZPvvsMw0bNkz/8i//0mnPBcDV8fYQAH3xxRf6zW9+0+qxO++8U6NHj/ZZ+8tf/qLHHntM2dnZ1torr7yi9957T9nZ2fr+97+vjIwMSZLX69WiRYt08OBBnTx5UomJiTd19uLiYi1atEhhYWFatWqVEhISrGMvvPCCampqtHz5ct17773W+ve+9z3NmjVLL730kvLy8qz1tLQ0HT58WNu2bdO///u/+3wdzrIAgceZFgD64osvlJeX1+o/f/zjH/329+7dW1lZWT5rEyZMkCTdeuutmjFjhrVus9msY3/5y19u6tyffPKJ5s+fr759+2rNmjU+wfLnP/9Zf/rTnzR58mSfYJGkwYMH6+GHH1ZZWZnP20Tf+ta3dOutt6qoqEgXL1601puamrRr1y7Z7farXrAMoPNxpgWA7r33Xi1fvvyG98fGxqpXr14+a06nU5IUHx8vm83W6rHq6uoOTvoPe/bs0f/+7/9q6NChevnll9WvXz+f4y1v/dTW1rZ6Fulvf/ub9b/x8fGSZEXJ5s2b9cEHH+g//uM/JEn79+/XuXPnNHHiRPXt2/emPQcAbUO0AGiziIgIv7WWz1K51rGmpqabNkNxcbGam5s1YsQIv2CRpK+++krSlbMxn3zyyVUfp76+3ud2WlqaNm/erG3btlnRwltDQHAgWgAYafbs2dq3b582b96s0NBQzZ071+d4Szz98Ic/1KOPPnrDjzt06FANHz5cJ06c0F//+lf17dtXhw4d0sCBA/2ucwHQtbimBYCR7Ha7XnjhBY0ZM0YFBQVavXq1z/GkpCRJV87ItFXLGZU//OEP2rlzp5qbm60fiQYQOEQLAGPZ7Xbl5uZq7Nix2rhxo1atWmUdS05OVnJysnbv3q3du3f73ffy5cv69NNPW33ciRMnqlevXtq1a5e2bdumkJAQ61cKAAgc3h4CcM0feZak7373u0H7CbDh4eH62c9+pueee06bNm2S1+vVvHnzJEnPPfecnnnmGT3//PPavHmzhg0bJofDocrKSv3pT3/S+fPn9cEHH/g9ZkREhO6//37t3LlT586d0+jRo6/60f4Aug7RAsD6keerycjICNpokf4RLj/5yU+0efNmeb1e/fCHP9Ttt9+ut956SwUFBdq7d6+2b9+ukJAQOZ1O3X333daH0LUmLS1NO3fulHTl03IBBJ7Ne7XPqwaAABk/frzuuecerVy5MtCj3LCW35g9ZcoULV68ONDjAN0SZ1oABKVPP/3U+k3K77//ftCe6dm6datWrFgR6DGAHoFoARB0Zs6c6XO75XNeglFiYqLPvMOGDQvcMEA3x9tDAADACPzIMwAAMALRAgAAjEC0AAAAIxAtAADACEQLAAAwAtECAACMQLQAAAAjEC0AAMAIRAsAADDC/wOHohl/eKaawwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bkg.project('Em').plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "eee3d467-d795-43b3-857e-b6cc1c09c1f7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfUAAAJGCAYAAABC/hxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOy9Z5gkV32+fZ8KnSeHndmcg1ZZWq0CQQRLxgIRhMkYYxMMQhiMMdjgFxskTE7CIEQQAkkg/SVEMCjnrFUOq815Z8Ps5J5OFc77obp7Z3pSh+qqnlXf1yUkZqarTndXnaeec35BSCklderUqVOnTp1Zj+L3AOrUqVOnTp067lAX9Tp16tSpU+cYoS7qderUqVOnzjFCXdTr1KlTp06dY4S6qNepU6dOnTrHCHVRr1OnTp06dY4R6qJep06dOnXqHCPURb1OnTp16tQ5RqiLep06derUqXOMUBf1OnXq1KlT5xihLup16tSpU6fOMUJd1OvUqVOnTp1jBM3vAdSpU6c4pJRkMhmSySSJRGLCvw3DwLIsTNMc92/LsrBtG1VVURQFVVXRNC3/36qqEgwGiUQihEIhwuEw4XCYUCiU/5mi1J//69SZDdRFvU4dH7Esi/7+fg4fPszhw4fp7+9naGiIwcHB/L9z/z00NIRlWZ6PUVEUGhoaaGpqorm5mcbGRpqamvL/dHR05P9pb28nEAh4PsY6deo4iHrr1Tp1qodt2xw5coR9+/axb98+9u/fz6FDh/Ii3tfXV5ZQh0IhUqoJATX7jwKaAoo4+o969L+NnRFCR1IgJJC75SUy//8tpLBA2CAswjGNVCqFbdslj62lpSUv8t3d3cybN4/58+czb948urq60LS6l6hTp1rURb1OHRdIp9Ps3r2b7du3s2vXrryI9/T0kE6np32tqqq0tbXR2dlJe3s798Y3QliHqAYRDSJ69t8aBFXQVUesS2D0N910PN5f0mskErBBmEhhIhUDKZx/UAze/P51DA4O0tvby5EjR+jt7SWTycz4XufMmcO8efNYsGABS5YsYenSpSxZsoRYLFbS+OrUqTORuqjXqVMCUkoOHTrE1q1b2bFjBzt27GD79u3s379/SsetqipdXV3Mnz+f+fPn093dTUdHB52dnXxs85UQ00sW6VIpR9RLRSJBmPzwpg/R29tLb28vPT09+RWK/fv3T/uA09nZmRf5pUuXsmrVKhYsWICqqlUdd506xxJ1Ua9TZxoGBwfZtGkTL730Uv7fg4ODk/5tY2Nj3nVe+8R2rFAUOxQjviiMsiRJd8uwt4MfgxeiPhVSVzFaQvSvCmCradT0KEoqzofOWp1/MOrt7Z30teFwmFWrVrFq1SpWr17NmjVr6O7uRojqPgTVqTNbqYt6nTpZbNtm165dPPvsszz33HNs3LiRAwcOTPg7VVVZsmQJy5Yty7vKD//6LqQeggKxSXRLuk8+iCL8vc38FPUcZmOIvhMjmJGJgizMDNf84xvYuXNnfvVjy5YtpFKpCX/b2NjI2rVrOfHEEznxxBNZvXo1uq578Rbq1Kl56qJe52WLaZps27aNZ599Ni/kw8MT3fTChQtZvXo1v3/pIGa0BSvSBMrRJWFbA7I6lWmWWCHnlpIKRBYP0xZNVPV96KqFwtHbOKiZLIwMjPub+397Gp1PHhVIYUm04QLBtCSiytPB4bNbGVwtkdnPKzigoOZW5G1Qxu5gSImSHOF/3rSOTZs2sWnTJrZv345hGOOOGQgEOO644/Iif/zxxxOJRKr6PurUqVXqol7nZcW+ffvYsGEDjz/+OE8//TSJxHjBDYVCHH/88Zx00kmsXbuWf/jVXUhtfIqWVCHTdPS2ybTaSHXibaQ0GCzoHJjw80qI6BkaA+PFeEF4AF1MH0H/x+tfQedTMwSxpS2U9PjjKPGMq0IvdZXNH2xEBrNR9WMOrSQVtFFH7RVLEBia5AC2xQ0fuYDnn38+/yA2NDT+DzVN4/jjj2fdunWsW7eOFStW1Pfl67xsqIt6nWOaeDzOU089xYYNG9iwYQM9PT3jfh+LxTjxxBM56aST+Po9G7EizZArtCLAzq7qGlEwGu2jPw/OnOqlN6eZ2zaZMk2NEJLAGLvaEEgxN3z0GLqwCCpmSceE4kR9MhTDHie8+mAKxkwZwiwt5U1qCtve3YzZPEManw1KJvs9SAj1KgjLychTxhp1KVFScS59wyk899xzPPvssxw8eHDcoZqamjj11FNZt24dZ5xxBp2dnSWNuU6d2URd1Osccxw8eJAHH3yQBx54gOeee25cVLqmaZxwwgl5F/f2K/48YR/caAArIEGBTIuVX1ovCQELlvQWtZfeGEwR05w16LBqMCfofkBduaI+LbZEGz36gKGOphHWzO93ZFUz+84rb9oRGYE+7Ii9HhdHl+6zSCS3fvodPPHEE2zYsIGnnnqK0dHRcX+zYsUKXvGKV3DOOeewYsWKetBdnWOKuqjXmfVIKdm6dSsPPvggDz74INu2bRv3+wULFrBu3Tp+9XwPRkMHqNniJxKsoPOfVtBZRgeQukQqFd4WBaIuhCSoHhXARbF+wqpjOXVhzbh8XilVEfUChHl0T15JWajJrKWWcpyjr0TUx53PEGALhA2hwwpCgrBAMcnv2SNttPgAn1y/lA0bNrBx40bGTnmdnZ2cc845nHPOOZxyyin1gLs6s566qNeZlUgp2bRpE3fddRf33Xcfhw4dyv9OURROOOEEHum3MJq7sUPji5oYEbDCEgQYzXblAj4ZAlau6KEjHHfGJGzmhwbdP0+ReCHqUyFMiZo8+kCTmBti/19VZ9pRUkf35QNDAmExbvtAGGn0wYO8YX6UDRs2jIuuj8VivOIVr+B1r3sdp512Wr3yXZ1ZSV3U68wqtm/fzt13381dd901bn88GAxyxhlncOu+UYymLqQenPBaW4NEt40MyEkD29xk0bLDrGvfXXUHXix+inohUsDBswKkukqPDSgFYQi0uEKwz3HzE7Atfvq35/Dggw/y0EMP0d9/NOWvqamJV73qVbz2ta/l5JNPrgfa1Zk11EW9Ts3T09PDHXfcwd13383OnTvzPw+FQgxH2sm0zsNomjMuzayQnKDb4dJrmZfDmtX7OLl5nyfnKoZaEnWAg2cESM6vrqjn0AdUQr0z7JtLiRbv4wOr27n33nsZGDiatdDa2sq5557LG97wBlauXFnfg69T09RFvU5NkkqluO+++/jLX/7C008/nf+5ruusX7+eW3vSGM1dR/fHZ8CIQXKuNyICdVGfCS9FXRiCyD51fNT8dEibq99zLnfffTf33XffuNoFS5Ys4Q1veAPnnXcera2t1RlwnToVUBf1OjWDlJIXX3yRW265hbvuuiufQy6EINPQTqZtAUZz94S88ZkwIpDqtqq+5D6WuqhPj5eiDk4OfOSAgij1lLaNPnyYty6Mcv/99+cb1qiqyvr163nDG97A2WefXQ+wq1Mz1CNB6vjOyMgIt9xyC3/84x/Zs2dP/udz587lDW94A9/esA8ZLK9CmBRgNFR/D71ObWOHbcywgj5S4gsVBaO5ixuG4ZGbb+buu+/m1ltv5cUXX+Thhx/m4Ycfprm5mQsuuIALL7yQ7u7uqoy/Tp1iqTv1Or6xZcsWbr75Zu688858965QKMRQtINM+yLMhvYJOeSlYgVgdLF3jjBH3alPj9dOHZzI+OheZVw0fNnHSo7w8RM6ue222+jr6wOcFaUzzzyTt7zlLZxxxhn14Lo6vlB36nU8JZPJcO+993LzzTfz4osv5n++dOlS3vrWt/LFezaD6t5SZqrTm8C4OrWPHbTJNAkCg5UHutnhBn64LQlLX8GP/+UMbr75Zp544gkeeeQRHnnkEbq6unjzm9/MBRdcQHNzc+WDr1OnSOpOvY4nDA4OcvPNN3PzzTfnW5dqmsarX/1qbt6fwYq1VezKC5ECRhfY2CHvhb3u1KfHD6cOEDiiEhwQrrj1QpRUnI+sbuGWW25hZMRZ5w8EApx//vm8853vZOHChe6ftE6dAuqiXqeq7N27lxtuuIFbbrklH2TU0dHBhRdeyLef7HHalXK0ApibHUpTbZJMa5llXstFgppQWHRyD+vbdnl44qkxpMpt155F55Mp7IDi93AA6D05QGKuDw9cEiJ7NdSJHV3LP6SSvW6z1+4Tl36Mu+++m5tvvpnNmzfn/+7ss8/mXe96FyeddFI9La5O1aiLeh3XkVLywgsv8Nvf/pYHH3wwX5Zz9erVPGE0YLTMBeGIi1ScHHJhO+U9KzqvAASYIeffRqPEbKhu8RdhH3V9+oCCsAVqChpfdYjXdG2t6rmnI21rGNLZ0zWlyqM/P4U5jwwi9ezPYgGkKpzPTPFeYAaX6qTaBXZAYgXBimVL9Cqy6g9hgSMqatqpNqdkxgtyOUgFZHYjM582J3Fy30f6eEObzcMPP5y/D1atWsU73/lOzj333HrVujquUxf1Oq4hpeSxxx7j6quvHrdfnnMo7//V3fkldlt1WphKxemhXXQO8SRYAUCAFRozFuF0VauWE1TSCkpGoCbFpK7Pa1FP2444GFLFlBMDtB79+SnMeXBMG9isYbeiQaQqQAissHeBXYNLddItE9XbaJLYKtiRydvZuoE2rI77zoQlHHG3y78OpXK0o5+wnRr0Y6vY/eWTF3HDDTdw66235lesuru7ed/73sdf//Vf11Pi6rhGXdTrVIyUkocffpirr76aTZs2AU6RmPPPP59rdyWxw43O3wnH0UjhTIJQvqBLxXkosAJHXdJYbFWSaXfPpeccuZpQUJMCxWTanGcvRN1CIWk5YjCZkI9lgqgXoji9zqWqYDY4dQCq6eKnEvUcdsD5jjPNNqjZlESXhiIygsDgJNsQ0vle1WT270p8HswLuwCkswKQE/jcSoAw0nzmlC5+97vf5WNLOjs7ec973sMFF1xAMDixvHGdOqVQF/U6ZWPbNg8++CBXX301W7c6AhYKhXjLW97CFZuGju6XK0eX2QvRStjblCI72QuwZ5j73BJ1kVFQU46T0xLFq0o1RN2QKrYUpG0du0SFm1HUJ0GGdeyAih1QsHV39+JnEvVCjCaJVMCMWflVhnKZUtTHIo+uwKgZil6el+pRx+78wPmXYo0X9ycu/Rh//OMf+c1vfpNPiWtra+Pd7343F154IaFQiDp1yqEu6nVKRkrJ/fffz1VXXcWOHTsACIfDvO1tb+PyTQMIxVHcvDNXxrTCHINiOJPdtOfK7pPnHPkMhjSPrWeD5EpE2AJsJ6dZH3X2XUuuQoY7om5l1Stta9hSYEulZDHPUY6o59EUpCqwsiIPILXKbHOpop7Dzm61pFsdcS/HwQtDoA8qRQdlCssReGFn3ft0rxOOqOeu23HIieJu6RZfPWMZ1157LYcPHwagubmZ973vfbz5zW+uO/c6JVMX9Tol8eSTT/KTn/wkv8wejUa56KKL+M6WI6jZ5uTTOfMcxSy7W4HsBFlGLFG6xUYGil8/FYZATSgoJvnWnZVQrqhbKJi2goVCZroPsEQqEvVCFLBiQRACM6yWtURfrqgXkmlyRN1sLC3LQR1R0ZKln09JC1Rjhgc9cTTOY1IKxV3A01/9BLfeeivXXHMNBw4cAJxl+Q9+8IOcf/759YC6OkVTF/U6RbF582Z+8pOf8MQTTwCOM3/HO97B1w70EhoIOq48G/iGmNyZj0VNT56+lnsgsELFu/LJKEbUhSVQUgJ9RHFcmItp06WIuoWSXVbXKnLj0+GqqI9B6iqoArMhgBSiaAfvlqjnsHVAcRy81OSMS/TlijpwdO89hbN3XniZZe+FGZ/JckvzhnMvSBXiizL8cP5x/PKXv6S3txeAhQsX8qEPfYhXv/rV9VS4OjNSF/U607J3715+9rOfcc899wBOwZg3v/nNXNF2GHNvG6EjAju7LD6TkOeYzKXb2b3ImfbKi2U6UVeSCmo2cl2pUj2WYkQ9bWuuO/KpqJaoj0MVWJEAKAIzOv17clvUx2JGJVIDM2Y7Aj8JFYn6GITtXENqmnHL8uOC5oo6ztGI+ZEVJls+8Eluvvlmrr32WoaGhgAnJfSjH/0op512WuUDr3PMUhf1OpMyPDzMVVddxe9//3ssy0IIwXnnncdv5g8zqjWh7gsR7BcliXkONZs+lNtrt4LZJXYX5/hCUReGQEsoqAkxId2oGkwm6jlHnrSc6PJqOPKp8ETUcyiAoiA1ZUoHX01RzyFVnP33FhsZHN/Uxy1RzyFsgZLOxohk995t/ejKVXEDzh0LRheZ6C1pQiLJv8SXcf3115NMOgM+++yzufjii1mwYIF7b6DOMUNd1OuMwzRN/vCHP3DVVVfl+0ifddZZ/GW5hdURY/RwlNg2zQkIKsNgCtsRdTN0dMm0GuREXRtRERZocVF1IR/LWFH30pFPhaeiXkjWwUtVYEWcz8ALUR+LHQQrKLHCEjtkuy7qY1EM4QSBGjPsrU+FPPpQkFmTJBxJIxIZPny4K/+QraoqF110ER/4wAdoaGioxtuoM0upi3qdPI8//jiXX345u3fvBmDJkiU8c1oTxsJWAEYPR4ns1pz9vwrm42qKOQASzIhEj4txkcZe0vDKw5zesRfw1pFPha+iniPn4HWV3lNipNp8+FyyK0N2QKJkhLt1iQtPlS1qU9bXnx2W1MBYkyAUdvaJbjnlH/nRj37Eww8/DEBTUxMf/OAHufDCC+vBdHWAuqjXwdk3v/zyy3n00UcBZ6LYf3oXqRO6QVFIpXTkoRCh3vLbVkr16HJo1ZDZfcnqVoYtiuBZfZzZvdvvYeSpCVEfw5F1LSS6/H/YkZqT/lhNhC0QZvlbPmZYYjTbRObFEdmHEH1XPyc9NczOnTsBWLRoEZ/61Kfq++116q1XX86k02muueYarrvuOgzDyC/p/bj9ADKkk4gHUQ4HCAwqZQulVEBWswJmrmqX9w2/6hwDCBNUUxzNL1dw3b1LRSIDOFHzRuniriUFWlLFOtJEaq6B3piBxa38/OLv8uc//5mf/exn7N69m09/+tO8/vWv5+KLL6atrc3V91Bn9lB36i9THn/8cb773e+yf/9+ANavX8+ta8BqjSIlJAbChHcGynYXXjjzvPupwSu47tSnp1aceiG58sNTRc27gbAqC9Y0IxK5LEEgaCKERKQMPnSgk5tvvhkpJdFolA996EO85S1vQVW9q+dfpzaoi/rLjCNHjnD55ZfnU9Ta29vZcWYXmRUdWLZKaiRIcJ+Omiqv53TVnXmum1uNX7V1UZ+eWhX1sTjinu0cV5UTlOfcwRlbusVGtmeINjj1bH+3+j18+9vfzheGWrlyJZ/5zGdYs2aNm6OuU+PURf1lgm3b3Hzzzfz0pz8lkUigKAqjJ88jcdYSZFDDtgXpvTFCh8uLYKu6M5+k81UtUxf16ZkNop4jX8+9SkF1ley5SxWSizNEmpMoigRbcpk4lSuvvJJ4PI4Qgre+9a185CMfIRKJuD/4OjVHNWOQ69QIe/fu5ZJLLuH73/8+iUSCNWvWcOWVVzJ67gpSMszo4Sg83ViWoEvFSRdyO88cANv5R8lQtqOpU6dShOVUj1MyAmEVUS6xRKQisQMy35mu1LGFdwQwX2ok3h/BRuEL4mmuueYazj//fKSU/O53v+Pv//7v89Ug6xzb1J36MYxlWdxwww38/Oc/J5PJEA6H6T1rAakT5yGFwMhoiG2RkrqP5aiqM5dUFC1cC9Sd+vTMJqc+gVwZ2CpFzVfi3JNzbELz4qiq82J9dz8rHzzEwYMHAbjgggv4+Mc/Xs9tP4apO/VjlF27dvHxj3+cH//4x2QyGU4//XT2v/dkUifPJxEPk97VgP58tHRBz3Veq5IzF6bjzGezoNc5xsk+dKpJgTCr59zLqdYYPqTAM43ED8VIp3SMRa388pe/5G1vexsAf/7zn/nABz6Qz3Ovc+xRd+rHGKZp8tvf/parrroKwzCIRqMcPHsB6eO7nUC44SDhXYGyUsCqVjTmGHDmhdSd+vTMaqdeyNgGLm7vu0snUl4p4341oxK5bBRdt1AUyXWL38bXv/519u3bB8B5553HP//zP9dd+zFGXdSPIXp6erj00kt54YUXADjzzDP5ywkKdkOITFpDbI+U1VY0FwXsOvbRRhbHGonlGc474UXUKlYsK4VaEnU7FuDwaTEyjX6PxH1sPbct5f73rmTKK3Wc6rQJLxxxCtcYFp/oncf111+Pbdt0dnbyhS98gVNOOcX18dbxh7qoHwNIKbn11lvzgXDRaJSDr1hI+rgubKmQ6okSGFCdVpGlkKvv7rY7PwadeSG2Dmf/zXME1dqoilNLop6a38DhU6qZ9+gz1XLuUiAkCKP0wxoNEqMrQ6zZKXiv9Qxx3P2H2L9/P0II3vWud/GP//iPBAIB98Zbxxfqe+qznOHhYf7rv/6L//mf/yGRSHDiiSey910nkl7bTWIkTHpPjPCB0gXd1sEO4O4VUt8zr/NyILfnnsLdPXchnf32oCy5mZI+IghvDxI/GCOT0TDnNvHzn/+cN77xjUgp+c1vfsM//dM/5cvO1pm91EV9FvPkk0/ywQ9+kHvuuQdVVfnwhz/M3a9tIxONMjoYJrQ96NRrLwGpVkHMcdyFYhybS+116kyFYji91hXD5WA6rfQUOGFDZK+G3B4lndI57bZvcPWqUS677DKamprYtm0bH/7wh7nxxhupL+DOXuqiPgsxTZOf/vSn/Mu//Au9vb0sWLCAH//4x/xPw3YypobcGiOytbRgOD1OPrLdzah2r515LWxhW2GnxWctoCB5XdNGbF0gjNrYCpCq8xnZL5eVXpm7DwTCdu/mykXJa8nSHpb1uEB/PkqyJwbAP/XfyS9/+UvWr19PJpPhBz/4AV/84hcZGRlxbax1vKO+pz7LOHLkCF/+8pd55plnAHjTm97EVYuHkZpK4nCUQL+KFi9u4hDSWSKM7bcwogojC4U7j3nZJiuK4fx3qQU1ykXYznuSiutZRjOSK49rhqXjojR4zfoXfNlTDygm7Xqc9zY9QVQRdKpRTvz2x1lwwx5QBFLXIKAjFX+e6UeXNdLzSsXJx7azve5fRis4uWvFrfKzSkbQttEi1aSQbhVYwSLHIcBskFjzUkRiaZCSL1sn8aMf/QjDMOjq6uK//uu/OO6441wZZx1vqHdpm0U8+eSTfPnLX2ZgYIBwOMyh1y7lqhWjgEriUJTQAc0R0iIJH5Y07sogpMSIBl0RdGE6rkHJTtJeiGtOzP3CCkusYHWbgBRDs5bgVQ2baVXjnBHUgdj4P5ASLImwMpDKQCgAQiCD/lhmqUikAplmiZoWKGlR0vXrBrnrxquHQJFtD4wFtiZcqS1vByRqyqZpwMA6oNK/SseMMOOKm5CgjQjErhCJxRCJpfn/tOdQ33kSx93dQ09PD5/4xCf42Mc+xtvf/naEOEZSEI9x6qI+C7Asi6uvvpqrr74aKSXLli1jw6s6sFsiJEcDqPtCBDPFux0tAS3bDNSUjZASM6QSn1fhDZsLDvJwUvZNzLPRzUZUggJS9VfM5wYHOSu6ldODcZqUMFBcZLlIZZx/ZwxkKAiaivRp4raC0qmDILP70Clv3bvX4g5O7rm0wA6Iilu+DqzU6XjWQk1btL0kSTepDC9RZwyoE9LZ79d2hUiGg2gLR2FOAz/72c/4xje+wb333svll1/OM888w+c///l6TvssoC7qNc7g4CBf/vKX83WbUyfM5bFz52MpOukDEfRBBWEW1+1J2BDbbxPqs9BSY2ZMUVlnNSWTbbbikbb56cztQFaAgv4KuYLkNU0v0ayOclYwSUQJAOHyDmbZiNEkaKrzj64hfWjZmXOsVjZYU8ngVDz08KP2w7mr6WwPBU2Uvdpjj7l/FcMmfMRGsSDZppBsF9O6dqewjUCxBMbuGOkmk/V3fRNOha+c/Cn+93//lwceeIBt27bx1a9+lWXLlpU1xjreUA+Uq2G2bNnCRz7yEZ544glCoRBf/OIXif/VagwCGLujBI6oCFMcXdKbBj0OTTssoj3GeEEHjGh5l4EwQE06k4IXIitsZ1nfD0G3dcg0SYwG21dBb9BSnBjdy2Xd9/KW6CCvC1tZQXcB00KkMoh4EiWeQFj+bXRLRWKFJJlm6fQP9/gZQ0hvr7NcDIqaLC+YztbADI3/kIIDBk07MkQOyhlTWoUNSNBHBcEDOvGDMSQK/6k+y49+9CPmzp3LgQMH+NjHPsZdd91V8vjqeEc9UK5GufPOO/n6179OOp1m/vz5PP+6eVhtUUaPRFCHtHzNdiEdRzOdmwn3Spp2ZhD25H90+NQQRimratkJSClizpei8kC5Up25m4Fytg5WqHRn7magnJL9cl/VtInTgvtZpsdmeMVETvz2x1lwfRllawM6Mqi76txzgXKlIGxRFede7HXlYqp5UedyUktLe6ON26FxT3rS35lhlYGVOmaYKV27VMZXjky32Ii2NJFoGiWV4bzHM2zYsAGAd7/73XzkIx9B9WFFp8701JffawzTNLnyyiv57W9/C8D69ev5y2kB7KBO4lCUYG9Bl4fsE/ZkaEkIDEka90wt6CWRi2rPeOfMfVtm18GKSGxNVq9H/AwoSJZHDnF+dCMLNIWwCKCK0gW9IjIGImMghEAGdd+i5h3nnl2WT4OaPnb33IUELFDS2UA6F2I2tKRF6yYYXKpjNDDpyoewnVjK3PUeHFCwh0MklkAkCre/UuPiFe/huuuu4ze/+Q1bt27lS1/6Ek1NTRWPr4571Jffa4jh4WH+7d/+LS/ooXM7+PNZEUfQj0QIHtbGzSpCTt7oQUhH0Fu2GjTtSk8r6Kk2HTM089hy+eZquvpCK6RPy+wCzJh0Smo22U5rTR8EXUGyKNTH37U/yCXNO1gTiBBTQqjCx9tVSmdpfiSBkkghfFrgk4pTA8BokJgxR+i9pNJl+WIfCnL3gJJxxL2YJflkp8DWp75GnCC6FE07rPxy+4TzFsTlKJZA2x0iMRrEQuV/5/Zwwj+GCYVCPPHEE3zkIx9h+/btxb2pOp5QF/UaYc+ePXz0ox/N75/H3r2AfaeeQDIVxNzUSPDgxEg2YTHhxlRMaNpu0fZCGi0xs5UxIsr0QXJ2du88U9xyeyElVbzKibnHJWSlBmZEkm61y1pqd5M1kQN8rONe/qV1E2cEdX+FfDKkdNz78CginUHY/tT7larECjr77ZmWbCEbDx/APAsKzYl7GoQ1fclZo0FiqzN/COEjBp1PpAkflhPmj0nnFEOg7wiR2tFAOqNxf8t6fvzjH+f32T/+8Y/zyCOPlPHu6lSDGpsxXp48/fTTfOxjH2P//v10d3cT+PB8dnWvIJkIoO4JOfWjC5gsOE6xoHG3TfiIgWLNPOtIIaYXXdsR82qnqYnssr4f9eCl5kyGVsS/ZXZNWMwPDvCR9vv4ePNO1gbC6KLG9yqlRCTTiNGkr849Vw/daLAxGrz9DnOu3ZOtqGyUvJKZ4Q+LnNEVS9K0K0P4iJxw3022rSFsgR5XMPdEMUyVt7x4NSs+PcKpp55KMpnk3//937npppuKO3mdqlLfU/eZW2+9lW984xuYpsnatWux3jXI072LSQ8ECRzQnafzyShYPssFw5USRGQHslXkJkFJl+fMSyUn6K4yZl9wKuxAtlSpj3vmc4ODdOuDrAvvYq0eQBVFlgKrJSzbSYnLGBAOghBOSpwP+e62Lkm3OFUS/dhz96rQkpoUTovXSdLf+lfpdD5d3BsXtqRpe4bYPoWB1dkgOiburY9FjytkdsVItRvczGl87qO30v3Hi/jzn//M97//ffbt28cnPvGJegCdj9RF3SeklPziF7/g6quvBmDdmSOs/4dH+cbON2DujRKMT/3IPXYvXbEgOJCtDFdOMFzBaQorwlWLagbBiYmrinmkBmbUPzFXkAQVgze3PMVx+ijtahTweGO4SohkNvJaUyGg+yPuQmKFswF1JmijU0fLu339eRFMlzuHYoC0RHbbYcwbKfHcQkq0lEXLZhhYlY2vEVlhn0KX9biCHA0yklH4fy1n8MV3/ogFC/6HK664gptuuomenh6+9KUvEYlEynmLdSqkvvzuA+l0mq985St5QX//+9/P2R+Gr2x5E/2b2tCmEXQ4uu+lJaHtBYOm7ZmiltunpcK982LxKwjODoLRKMn4GAA3JzDM65tf5BtdT/CqEFlBPwYxLUQihYgnHAfvA7k993SLE1jnZZ67F0vyufso3961QrSkRfuzaZq3284D9yR764XnD/XoPPvSIi7d+yYWnP2ffPnLXyYYDPLII49w8cUX09vbW/G46pROXdQ9Jh6P89nPfpY777wTVVX53Oc+x5nn/zc39Z3O6PammQU9W0ZTS0LLFgMtaZW9n2lrWRfj1d651/vm2a5zRpPEiNlO3q/HYq4gadBSvKP1cS5u3cBbovHaC36rFpaNSKScQjYZw599d+EE0+Wi5Y+1YDohsw/iaSeITioglfLepJCScG+Gxl120W2Sg4c0nt20kGdSi2hb+j5+8IMf0Nrayvbt2/n4xz/O7t1l1EaoUxEvk9mlNujr6+OTn/wkzzzzDNFolE/9225WnvghPrvzIp64c82Mgg6ADU07bNqfS6MlK7PUg8s1p6BHqrpi60clODvgBMBlmv1x5sKGgUyY1ze/yFc7n+LcsH3sOvOZGOvcDZPRLh9K0BY6d686B3oUTCdsx7WbYRjtrqDmMxA5lKHzyTTh3pkHLSSEDuh87//eyF/ix2NG/4orrriCBQsWcOjQIT7xiU+wcePGisZTpzTqou4R+/fv5+KLL2bbtm20trbyr/+xkaVrM3x619vZ/vCi4jbihKRxlyR0pDLXI4VgYEUQI1bdpXYt7qwqeLrUbjsNa2xNllyRyy2siM2CtQf5644XfXfme8w4Xzx8Ap1PpcA0sxFQPmHZCMOk+W/3I+am/Pl+ss5dNZz4ES/ryoNzbVajE13uwUExYHClINNUWbiUkE4QXWCwuL/XEoKf3PpX3DG6ht7M6Vz87w+wevVqhoaG+NSnPsVjjz1W0XjqFE9d1D1g69atXHzxxfT09DB37lw++8WnWLg4wxd2v4XN9y8pak/MCkoyTRJhy4oEPdWq03tykP4zjHElId1EyYA+LAmMTEyXqRoStFEI9UkCQ7Ks+tmVYkVtWlb18/FX3sVb5j3DYt2/PUVL2rxn52s49/ef4Q/XvRK9P4l1pA97eASZnikvqnpIRbC0oY/3rN3A2advJrhkxJf4BmE6GSPBwZnrort2zuw+eLBfoo1SlQcKIcGISfafq3Dk+FDZS/HgpL1ZQacboV1Eoxk9rnD5bX/NbfG1NDTafO9732PdunWkUik+//nPc/vtt5c9ljrFU49+rzLPPPMM//7v/87o6CjLly/nY5+6nVAzfHb3W9n48FKUIsTHCknMJovQAY1wb/kTcqZJ48ArBXZDlSZ1G4JD0ikj6+HeuZoEPS4nra7nBVIFO2rxhpOfZ03kgD+DyLLTiPOrwTP41T2vInxAIVrwPchkEplKI3QNpbEBVNVJQ/OBZdFeFi/r487wKg7tbkUd9d5jOOlvTtvXdLPwJKBO2BAYlmgJMCMCswq7MnaDydBJkGkM0rUhg2KUd0O2bTTZe57ADoM+oKBMlWKbJTCs8L93nIdyng2s5H0XQ9M1H+HOO+/k0ksvZWhoiL/9278tayx1iqMu6lXk0Ucf5Ytf/CKZTIaTTjqJD138Ox5iBddsWs/hp+egZIpz6GaTs0auZEDNlH5zSkVw5Pgg8cU2dkNW+dIKwsVlQDUJWlKiTt5PoioI0zmnHvfunIXIOWlWzD3MBXNe8G8QWd6z8zU88uwKYjs1pk0mkjYyk8E60ocSiUAwiAi61OmtRFRhc/68l0h169yxdxWDe5tRkh4/ZGSbIgX7ZdVEdjIU0xF3YQknDa+yrfA8WkKQaRCgSJJLMxzQAzTskjTuLv3m1BIW2DoyaGM02+hDCsoMK4v6iOAHd53PLWuP5/9b8ke++MUv0tzczI033sjll19OOp3mfe97X7lvr84M1EW9Sjz44IN86UtfwjAMzj77bN7/4V/xgLmCb9z5RrRRZcbIUqlKjGY7X2BCWIL2F0q3olZA4dDpAZJLMuOWOZWU4kq0u8im1QRGpkkOdxlhgj7qPEB4WWAkh1QdJ/TK47awMnqYJjXp/SCybDfiXD90Gr+47bWE+gSxEj8PO5GAZMp35x5SDN606AV6uxvYcGghR/Y1oxYTOOoiOZHVEmDEBHaw8g6DxaCPSrSUs1Jg61S8HaGNCjJj7sXUggypLgVbD9K8rTRhF7ak9QVB32kgdYnRYiPSAn1EmTJWRtjO73c+voAP9v49P5bHce6b4zQ0fIWrrrqKK6+8kkwmwwc/+EGET6tExzJ1Ua8C9957L//93/+NZVmce+65vPuDP+We9Cq+fu8F6FlBn7JSHBMF3fkhqCVGuw8tDhJfJEgtqM5yu2I4hW+8FFY1BcFB7x4gCpGdaZbP7eWNXc/7M4AxvG/XuTz03Epi2zXClRyo0LmHQwjdJdtYIh2BEf5mwYvEu4Pcf2A5fTtbnHQtD1FM5xqzdUi3eLQkbznxIFbIEXfX4wx0m751knRziJatJoGh4g3C2JgDqUpkRGLgLLVPhWIIbF0id0b5J/v9/PrMn3P66/6TQODr/OQnP+GXv/wl6XSaf/qnf6oLu8vURd1l7rjjDr761a9iWRYnn5XgPf/wU+5Nr+Qbd74RPeHcBNOJoFSdp+HCdotafOon48kYXBak73QL9Cpsbvuwdy6ylfMUHyKWAaywzTknb2F17KDvzvzG4VP4+Z9fjz4kiLkcR5B37gEdEYsiNM0X5x7T0vzNghfpmxPjkYOLGNza6nlvAMWA0BGJGRYYDXgS0KemnAA+I1qFbQBVEl+dITFXY969GoHh4i4eNSMRaQUZPPoF2GGbDEzr2LEBBcTuMH+nfJAfnv4bTnzl57gk8F0uv/xyfvOb35DJZPjkJz9ZF3YXqUe/u8gtt9zCpZdeimVZnPHKES7++H7uTq3if+59I9pYQZ8ifS3v0Cfpn9z8EkWVgZVCMLQ4SN86syqCribJRwx7Nclq8aygG3gu6FJAdNkQ5576Euubdvom6Ja0+bvdr+L1t36aa371VwT7RPUCA6WNTKex+/qRI3Gk4U9VOIC2QJw3LnyRBccfxGrzfhzCdpbHA0PexYsIy9kGCAxJJ+3OZexGk55XKmQai/N0kcMZwocK60mDHbExGqaeBBRrTInenVE+seE9jNgBVq//NMe/x1kJuummm/jWt76F7VO3v2ORulN3iVtuuYWvfe1rSCmJrm/iwx/Zyj2p8Q4dpijpKJylPrNxckEvlkyTRs8rFayYCUWkoJSKNurt3rmaIpue5s35xmKHJGpLmneseYp2PY7ux+Y9TjT7DcOn8PP/ez36sPvOfCYmOHefluVfPWcrifbdbB3p5Nkd81H7dU8f8LQkaCmJrXm3JK8lnMj8VKtwPf3UajHZ+9cKkb0h5jxRfnR8zrFrSYFiTJzbFHNMAODuCH8nHMf+sb/ZzL5FP+XrX/86f/rTn1BVlU9/+tN1x+4CdVF3gTvvvDMv6Nr6dr5zyaPclVjF1++7YLygT6ELRoPEDk99U+mDKuH+6UUl05gV9Gb3Z31hOiljmlcm1XYeHipZDQj2gxkr/XVSON2vzj5lM+ubdpZ3chewpM1H9r6Ku59bQ2yrjq/927LOXabTiHAYEQn7Iu4RNcNJzfs46dR9/G7HSSR2NpZ1fSgZgT5axhOBPBpHYoUERhnXV6nktp2soMBodPngAZvEsgyHZICux9LT1r9o2G2TnCcmmo6sY8+EQB9WUVPjRVnYAmFnK/hJHMcu38Ov1v+CpjUX03vahbQ/8TS///3v0TSNSy65pC7sFVJffq+Q+++/n8suu8wR9HVt/OATj3Ff0oly14fGP85PEHUhMRrtaQUdnGhWPT65WNu6wvDCIPtfXQVBz5aeDPV7JOjSKVoTOexEIFfi0MtZUbCaTTpWH+Efzr2P05t2lX/yCrk1EeSCzW/i0T+cSGyrP854KmQyiT04hEylwPJn9QLgzUue5w2vfBq609jB0r5oxaSigjOKAfqIJHzImyV5JZvtERiUM/dTL4PEsgwHzwwy2jV1WmPkkOHskU85SDCaLKzQJN9F4et2R/i7x/6BYTvETy/5I//2b/8GwI033shPfvITpJ9VD48B6k69Ah555BH+67/+C8uySHYt4OpP3sP9qRX8z73jl9xh8r30mRz6uNdOglQEh08NMLqiOtHtgWHv3LmSBj3hXXWvsUgVlp6wn1Nb9zI/MOD9AHCc+bCd4twn/5HE5mZCR0TtPnFbFvbgECIQQIRDiFDI82A6Vdi0BeK89/jHeXG4m42Husjsjnm6JC9sCAw6VdcyTVWIWC8gtwWQbnLy2l1DOMKeWKjQ8Whw6nx2WzB96zYwGi1gvGNXLIFVkMnDrgifwHHsQyv/Gzt2Bkr8Oa677joCgQD/8A//4MY7e1lSs/NGrfPkk0/yn//5n5imSaZ5Hv/85a3cn1rB1+540wSHDoy/F4p06ADY0PHMxAAhW1c4uD7I6PIyBF2COk2akJJ2lvzcEPTA0PSzrLCc4LvQgD+CTneKdeu2cEHX874J+u0JnTdvvYBzfvKv2A+3EDoyO5YfZSaDPRzHOtLnOHefHNbaxgO8bfmzNK4YwGrydvVA2I7Yhvpnvn6F5WxjVYR0Mk+0UaYNohPpMqZ23ab3bJOhJRM3exRL0vpcEdflFI590lW3rGNvVhPEPqdyySWXAPDLX/6Sa665pvTx1wHqTr0snn/+ef793/+dTCbDK17xCv58hiAueiZ16DnG5qUX69CPvvboDSKFYHhRgOHlkOkq06HbgsDg5DeomnQmDbccz7RpeFmno/pQitxqNjllxW7Oat1BqBohxkWQsDPcn2rgkt/9A6Fegfe9y1xA2mDhOPdw2Clg48OeqCps3rToBQ52NfLSQBf7N87xtH6CkoFgRmI0CIwoU7t2N+4r6ayi2RqkWycG7QkJ+qBCJlLGB6BKjqyziC8MMWeD4VSUy1J086dJHLuwJinkk3XsnxTv5FdnXMU/3r6Y//ynf+KKK67gyiuvJBKJ8La3va309/Aypy7qJbJjxw4+97nPkUqlOOOMM7h2UQP/vOpux6FPJeg5oy0kRqPEDpW/WTy8KMCRs0yoIEp+MoQ5pjKcB+gjEr1KTS2mww5Igl0J3rXiGebow96efAxfPbKKXzx/NsEXwoR8qlnvNjKZxEqlUWJRp+ys5v300hUcpqtrmA2BNFt65sABb0MM9RHHRadbBHaVK+8qplOwJtMgsEK4t/wfsEktyLCvQWPuA6KkQjVHB+c49pywC1sgLDl51sCuKH8n/4EPv/c2/uen5/Ppv/97fvnLX/L973+f5uZmXvva11b6jl5W1EW9BA4dOsRnP/tZ4vE4a9eu5eHd7bz2HZv5/v3nTSnoYzFipQu6MBSEtPMO/cgZlvuCPrawS5VRMs4SpJc14sEJZwgvHmH93N2c3LDXk3PaKFjSHtd69dGUxbvv+wjh7UHCHn8GniBt7JERRFJz9twbYuOcu4yGUDzIUVzXupsTmnt4aX4Xz29agDri3TqIsMdUpKtGdbix57Kcc5mR7L6+i1jNJj2v0Jh/j4qWsBC2s+JYdNrtFHvsE8g69p+Kc+CsOFf92uBtb30rN998M5deeimNjY2cfvrpbryllwX1PfUiGRoa4jOf+Qy9vb0sWrSIpwYWMvS+JPc8vnbyPfQctpPWYTTZ2JHSJ7PW5wWKYR916AEXJ0Tp5MKG+jwQ9Gyf81C/94Kei2r/0KqHPBN0gK3pLvZbCQCG7CT/uOcVvP//fYLYxqDnn4HXSNPETiQmtHrd/OFGuoLerJCEFINTmvfyhlOfR180WrVWw5OR64kQ6pd4Ua9IS2S3sly+rqwWk32vUck0aTTsTRM8VOLD0Zg99pkawbAzim0r7D1P5ZOf/CSvec1rME2TL3zhC2zatKn8N/Eyoy7qRZBMJvnc5z7Hnj176OjoYHf/cqxIkNGehnyluOkwGu2yl9xtHYaWBF136EKOqVpV7b1H21kJCLi4V1/UaXVH0N9+ypO8d9EGVB/qy+4yY3yyZx2n/OFTPP67E2dNEJxb5FLg7P4BME2k4v130BEY4R0rn2LpCfuxw3Kqgo5VQck4MSp6nKpf+1oyK+zJGWJZSsRqyVaga9LKK7qTdexmaOb7X9nthPWf+7bvcM+GEKeddhrJZJLPfvaz7N3r3QP5bEbIelLgtJimyX/8x3/w6KOP0tDQwIg8lXRLMwNrZt4zkziVySrZQ0eV4PZEaApan9LQEu4edjKkCraK58FwZhgWvW8br2rb6ouYAzwXn899d59IcEB4HjtQyPzbB5AvbvV3EMDAu9fxik89Rkzzb6ni10+fSfs93reaNcN4liI6OleQKCczZjokYFbgAyVow2pR9ScCg4LWTSa3X3sx//zP/8zmzZvp6uriRz/6Ee3t7eWP4WVA3alPg5SS73znOzz66KMEg0FG7BOLFnQAK1yhoIO7j9w5pPBschGWx4IuINUqsC8Y8FXQtyY7ue+uEwn2+y/oAL3rmlGam/weBi03PMW9P1lPb6bBtzFceMKzHDnViVT3Es8qMgJaNdJDBZXNRwLMBgu7iG2QTLNkYJXG+e/+XzbvW8j8+fM5ePAg//Ef/0Ey6V9DpdlAXdSn4be//S3/93//h6IopNUTSbe2Fy3oUgFZaUMVRXrSGepY4sgpkg98+Fb+Yfkjvgn6C6NzufWO0x2HXiOkWwSH37wStb3N34FYFh2/2MCTl59CwvLeLQM0aUnef+4DrHjXZpJzauc7mhVU2lNCcTJQiiHdIuk7TkMGQnzzm9+kqamJTZs2cemll9YbwExDXdSn4P777+eKK64A4JJLLiHTOrdoQQen41r90/UQAb3rbP7utff71nwFHId+z50nOw69xki3Cg69cSlKS4vfQ6Hl+qe458dncjDtdkHz4lnTcJAT3vwSqfba+66OZWTALtqsZJol/Ws03vmJ67jsssvQdZ0HHnggPzfXmUhddiZh8+bNfOUrX3FqEAcW8Y3f7aJ/jVK8oFP80+i01OeaojlysuRjr72TVm3UtzG8lOjm1jtry6EXkm4RHL5wOUpbq78DsSzar9rA0z86GcP2r+zOithhVr5lC8nO2v3Oag4XtgTtEhx/ukXSv1rj4v+8jc9//vOAs4r6xz/+seJxHIvURb2AQ4cO8fnPf550Os369etJd55I/3GitKYRCkjdBVGvVqSwkJhu1o72kVSroHe9zd+97n7fKsMBbE50cecdpxDsq31xSLcKDl+4rCYce+tvnuL2/z2HnlSzb2NY23iAE97yEvEF2SIuxwBmNd9HpaohcObTEm6VnGP/7x89k68L/93vfpfHH3+8wsEce9Sj38eQSCT4xCc+wbZt20BpIN39SgaOC5bcBcqM2u6IeqV78tMQOKjTPMtTP5OdghMv2uhri1RwBP22u04lNAsEfSyhPknHn7dj9/X7PRT6/m4df3XJQ+hF1yKtDjdtP5nwn8pr6VozCOg906re/GELsCq/1tURteT6GMEBQeuLBn99psFtt91GNBrliiuuYNGiRRWP51ih7tSzSCn52te+xrZt22hpaSE950z6jw+ULOhSUF8294Bkh+Csdz5dE4J++x2zT9ABUm2C3guWgfB/Gmi79ilu/6G/jh3gLUufI/HG4WPGsdcyRVemG0O6RdK/VueWJ1ROPPFERkdH+cIXvkA8Hq/CCGcn/t/NNcJ1113Hvffei6ZpHNKPZ3BtDFlGK2upSWSlEaJ1piXZKTjx7Rs5Ptrj2xgMqfLDF17NbXedWtN76DORaRSINUv9Hoazx371BjZ+63h+9djZvg1DFTZvX/4MqfOGJzYgqeMqdqj4gLmxpFskA6uCPLuri46ODvbs2VOPiB9D/bIFHn/8ca688koAkg1r6TulbULrwGKQgFVGKdhJcbm++7GAFYKhFfju0IesMJc//loCT8ZmpUMfi61Dz+ta4YRVfg8FgIabn2TNv23h1w++wtdxvHWZ49jjC2f391sV3Ir1UShrnoWsYz8+yqWXXkogEODhhx/ml7/8pTvjmuW87PfUe3p6+PCHP8zIyAjoC+g77TTSZRYskoDZ7NKeYDUqyY1BP6TT8lLVDu86UoHkW4b4yMqHfB2HIVV++MRriL7obfevaqNkYO69A8iN2512qn6Pp6WFly5dzHvXP4rq4wZ33Azyx7vW07KRmigiVAxSgSPrq7inDmC44wdFWkFLlP/g1LwJIvt3QupZAC677DJe+cpXujK22crL2qknk0m+8IUvMDIywnHHHcfwypNJV1CbwwrPkrseMDoNp4PULMAKQfqtg3xwxaO+jmPICnP5Y68luvHYEnQAOwD7X9cCx6/weygA2AMDrPnsZq57yL+leICYluZtf/UIfSfNnnt7ZAnVFXQXkQG7vHryWYaXQaZ9MRdddBHgiPquXbvcGdws5WUr6lJKvvnNb7J9+3ZaW1t53FhAfLFaWZBbNUq6VgvBrNgzlCqk3jDMh1Y87GtRmZTU+MVT5xDbFJg1jq1UpAoHXtWEWLuiJoLn7ESC1V/eya8eOQfLx4s1pBi86VVP0H88syIIthKR9BxBRQ12bB0GVin85tEMJ598MolEgi9+8YskEh40tqhR/L9zfeKPf/wjd955J6qqsqdlLcMrwxXdsFLwMv40q8PgSjDeOsCHVvm75D5ihfjRo685Jh16IXYA9r++hhx7Xz+rP/Oi7469SUvyjtc/RO8ZFsmOWaDss4hKA4utkKR/rcrjh7pob29nz549fOc73+HlurP8spShrVu3cvnllwMw2r6a4dVtFT+BS3X2Rb3X7BO9gL6TJO+68H5fa7hbCI6YMX729DnENh+7Dr0QqWQd+/Era8Kxy3SaNV/Zxa8ePsfXsrK6YvF35zzEigu3km6tUWGfJStwY7GDlW8V2DoMrA3zpS99CVVVuf322/nzn//swuhmHy+7QLlEIsGHPvQh9u3bx9lnn82NLR0gKr9BbU1ixVzcx6pyoBwAGYXOR9SaE6u+kyUfPf8OXyvEAdy0/xR675mLYlFzn5EXCBvm3TWIfGGL30MBQGga8vjlJC4b5TVd/o7pxeFuNv9xJeHDtXVhpJsFwydkqr9N4FKgHAA26EPuOAzFgP9vcSdXXnklgUCAn/zkJyxbtsyVY88WZtkzXWVIKfnWt77Fvn37kEqImwPNrgh6rm/6rKPGzIYZdgT9Xa97yFdBtxD8v32ncvj+uU7Fq1n41bqB49ibnXS3WnDspgnPbCLyHxGeHFjo61jWNh5g1YVbSLUL7DLqWVSVGruvZ0SAVWKRr6mwdfj6E4dZv349mUyGL33pSy+7/XX/71QP+b//+7/8PvrgCWdgxdxr/VhOdSTfUWTNRMAnOwVr/v4lPn7+7czRh30dy+/3n0z/Pd2oaV+HURNYQeh5bRNi7XK/h3KUZzdj/msb9x3yd99/beMBLnz/AyTfMFxUj3AvyPhfzr90XI5HSnbDF77whXxhmm9961svq/31l42o79ixg+9///sADC9YTXKBi12qZmtpWFWSavf/Yk+1Ck5++wusb9rpa4T7WIfu4zBqjlpz7AA8s4nQv0d9d+y5CnTDr08U3cWxaghIzfF3y6pc3C6vve7Hv2B3bDWqqnLnnXdy2223uXfwGqdG7tDqkslk+PKXv0wmk2H9+vUMuew6yq2KVMdx6Ce8cyPrGnf7PRT+0HNS3aFPQc069s+2++7YAd593BMk/3q4doNPaxwZtF0N8JMKDB7Xlu/o9r3vfY+eHv/KSnvJy0LUf/azn7Fjxw6am5v5Q2PLpPvokjK3TiWuuzp9UEUb8GA9TwJS+BYtawWg+2/2+N6U5ZDRyO96TubQ/fNqxqHbGsRXGjXVIlcqkFgQQ2g1stYM8PRLaF9t5aWRLlI+b26/ddlzHDnD8u1+snUQpjdLhuH9GiLj7rmqEUZz6bZeTjjhBBKJBJdddhmWVSM3eBU55kX96aef5vrrrwdgx5JV2MGJ7ZcklPVJaHFBpEcQGHTvY9QGVRq3VecCL0Q/ohM54FO6WNDJid764jxfzp9jT7qVax8/k31PzcXWS+vxXDUEJFelWbSoF+2UQcyo3wNyaNhjE314GyIQqBlhV+d1c/jUEM/es5KbNp7i61jStkbjZg0zLHzZY5cCYjtVRKL6ywVaAhq3qYi0e3NfdJ8gfFiUPvdNk8ZnRZz99UgkwvPPP891111X8ThrnWNa1EdGRrjsssuQUvLGN76R1LzuCX8jyRY/KHE+1+KChj2S4KB0xMAF9EGVpu3uO/9CRFKl4cUA0T0CIfF8L9AKkp/0GnaoXLX9TCwf1HRfpoUbH1+XXxWxgmBGPB/GOGwN4qszzO92epy3RROk2yzfHzYUAxq3jIBlgSJqQthFIMDety8g3eLcf+rOENe9uI6E5f3m9pAZ5sZH16FknP9vB/BU2KUCtiZQ09CwXSW8K+BKz/Pp0OOSxm2Ka47d1iFy0KZhd4mmRuII+xTPMq/69W/59Kc/DcAvfvELNm3aVPFYa5ljWtS/973vcfjwYaxQlJ9OcpHkBZ3SKrzmBF1YEiMKmY7KVdgrhy6SKg1bVfRRiWI5b7qSMo2lYgWdmzcnUmpaYt3TRtrjpdM96VZu2LAOrSA/1gpK/yKZBSRWplk0/wjKmAuye0UvyTk+1vKWMOexUZSd+47+rAaE3Tp5BUbDmB9IULaHuXnTSZ6P5bHDi2h+Qcvv4UkhsIIeOvYxgWaKAcF+CO/Wwa6ysI9K1xx7fLGdP2apwi5skIqcUtgvfuoFXvOa12BZFl/5yldIJpMVj7dWOWZF/e677+aOO+5AURQGTj4NWTD55AVdUJKqjRV0NxCGoGmjRtO28Q69YTfg8v6YSKo0blHRUgVjF1Q919bWHBc82SSnpOGKJ15V3QGMYU+6dZxDH4tUwGj0XthtDeJr0iyY2z/hd7pi03FcL4m53gu7YkD3Iwm0l3ZN8kufhF0oWGedwN7XR7EnSSVVd4Q9deyGrTL00JxJf2cFhRMXUeUH58neanAwK+wuzyNan05g+OjnrsclzS8JIns0cOkSzQm7YpTwIimmFnZF8JnPfIaOjg727t2bb7V9LHJMivrg4CDf/e53ARhavIJM+/j0tXGCTvHL3VpcENvroqCbgsatKvqInDAGVx27hOC+AA3bVNT05GOvplu3NcehS4VJJzchJeEdQZ6Lz6/eIHBS1n696wxufOL0CQ59LFLxuONezqHP6xvn0McSVC261hwm2eWhsEuY8/go2ovTBDL6IOxCVeh5ZXjqba+sY7/puVN5+MjSqo/nlj3HEZimtIJUBGaI6gr7FMcODkBkt47a795Tu7AnzplqBiIHJeH9R1crKkUflcT2FDkXSmdcMLVjP/VHP2NL90oAbrrpJp599ll3BlpjHJOi/r3vfY+hoSGWLVvGyOpV435XKOjFXoBaXNCwW6KYLgl6RtC42RH0qmIKIjsCRA5ItOTU55JadWpG5wR9pgktdETy0N4lVdtbT9gBfrrpHPo3theVWWAFnJav1SbZZRN45ZFJHXohXjp2xYDuh0fRNu4q4o+zwh4OVz2PXYlEGHj7yUWlkep7A+x+fD73H65eGt6AEWFkS8uMwlNNYbcDzvGnIjAEsT0Crbf6W1yRg9I/xz7mkphU2AWk5nVwwQUXAPD1r3+ddPrYy1895kT9gQce4O6770ZVVR6dswCUgrdY4BaFLWa8z/IO3XbRoW9T0eNVFnTpPKWH+qQvXWGLFfQc6qONVdlbtxBcs20dmW2N+af5GRFgRKUz/iqR6pC0rzlCQzAzpUMvJKhadK7ura5jlzBnQ6I4Qc+hCISqIELB6gm7UOi/8DgGVomiV5aECfuenFs1x/5M33wadhY3GE8c+xQIG6L7BVpfdYVdSAgfrpJjn2FFVWRTdHNIZWL0s1TgFwlJe3s7+/bt4+c//7k7g6whjilRHxkZ4Tvf+Q4A73znOzFamsf9XopJyrnOcOH55dCFBGW0gtQUUxDZHiDYX/y4XYuCF04d91IEHZyb9yd3v45DhnuduBJ2gCtfegWprU2lv1g4hYWqsYKR7LLpPPEQIa30fZagajFn7WES89wXdsWA7odmWHKfhmoKuzqvi+FFpR9XMWD3Y+479ueH5tJ/z8SMmumQijh6b7iAVMAKFHeTCRuieyt07BK00enPJ2SVHPuumR174bOxrTJhDrJDAf71X/8VgBtuuIGNGze6M8ga4ZgS9f/93/+lr68PMxzj20dGxn2ZUkzSt1dOH/VejENPzC1+fKEezdlDL8ahS4j0lPf1aEd0ojt0Qv2lOXSpuNCOVYAZyh6nDEfSvEnwRH/lpT8tBAk7wDXb1mFsbyjbNdg6GDF389eTnY5D15XyZzxdselclXXsLo1N2FmHPllQXCnHqYKwq/O62fu2+WVXbxSW49gf7F2GYVeex21Jhac3LqGcNgVSCGxNuPIQXerCVs6xh3cFEKkyPgdLFFXbIufYYzs0tMHiOkHKgCTROfU1U4xjn7ASJ+QEYZcK/P3dj3Leeedh2zZf+9rXyGQyMw9wlnDMiPqGDRv4y1/+ghCCoeNPQQaOXrCTCvoMFOvQjcbijhvZrRHbJ6u+5K736jTsguBgeeepyJWOFfQK2HfbIh4bWlLRMe49soor73xdeQ69ADsAmQZ3HHtyjs2cE8pz6IUEVYuutYdJdFduhxQDuh4u36EX4qawq/PnsuedR/PRy0UxYN9j8/jtQ2exL1lZ55P/t/kUml6sLDjQ0kXFjr2ce03YTspbbLtanrAXex4JoX5J03amDUzNIVU5Y6GlYh174UAmCLsKl1xyCa2trezatYtrrrmmhAPWNseEqKfTab797W8DEJ+/hEx7W/530wm6mKI4g9t76OF9GpGDsuotPLUjulNQpoI53tYoy/lZAXcEHSAwLHlo43KMMg5mIbinbyXPP70EJSNc+8ydYKQKDiAch966pq8ih16Ipth0rDpSkWN3y6FPOK4bwi4Uhk/tJtPg1hcJ+oDCPU+spS8TK+sQKVtHeybmSpEoWxNYZd43tua4/nJR0xDboYKLVeEmQ1jQsIuiHftMTOvYpRMnNXEQ44VdKnD6D3/Ozi5nS+baa69l7969lQ+uBjgmRP3aa6+lp6eHjo4O4ivW5CffscVlJmWSX7m9hx7ZrRHtKe9Yapqibzi9V6dhJ/mCMmUjsvtQJZArKONmM4vmpwM8MbSo5Nfd37eC5x5fhpJ2PxrJaCo/fz3ZadN1wiEieikWozhCmlm2Y1dM6H4o7ppDL6RSYTdfcTy9J7nvJvUBhb88dnJZjv3/PXvatClspWKrAjNUYqEa4WSsVLr1oqagYZuGSBb3Gasj5X0XaoaiHXsxTOvYp5oCc8Ke//+QnDuX9evXYxgG3/nOd46JFq2zXtT37t3LtddeC8CW7sXYAd254CldZKri0A+V79D1uEQbnv5NiJRKdOvRkq9uUMo+nRUYXyHOLYQteezxVQxZxXU0yTn0Z55eNuUKTKVIUUZhGuEsubeu6UNz0aEXoik2oYUjJV/zelyibqpuh7yyhF1Vsc45gf2vDDlRzFVAH1C4Z0Npjv3ZwfmENwersupWSmlZKRyX7wZq2qkZH9obmLECXfiwUvZKoLCgcadHjn3KQch8gLxUAAU+9alPEQgEePLJJ7nrrrsqH5jPzGpRl1Lyve99D8MwOOOMM0jPmesEe5EV9GkmA2GNT2WrikPfX90ld5FUadiiEhyQlTv0cQcuTthzTVmqRdMWwS+fP2vGv9uTbuXGvafy3OPLUFPVzReSSvGO3YzA6CKLruMPV8WhF9IWS5Bcmyxa2IODkjl3etOOMifsxRapMc9ey97XhVzrqzAV+qDj2G/vWY1VxP7K5ruWERiqzlhKKS3rdg0FNQWh3mwFuirWjFeM6jt2YTNtNS2pyXz/dingNb+4gfe///0A/PCHPyQej7syNr+Y1aJ+3333sWHDBgKBAH8ONDoFGJSZBb0QVx26HOPQXSC6X0z69CxSTg33CSVfXWK6vXWpOilrXpRSDT0f5pHBqXOMDxmN3Pjk6Rx6dk7VHHohOcc+nQZYQVBPGmLhikNVdehjUYRkXucgidXpGYVdH3EEXQ4MejI2GCPsgemfBOXpxzkO3aN8bn1Aof/JTm7ccvKU7VstqfDbTadVTdDHYucKH03x/m1t+mIzlRAcgPDeyWvGK0MagaHK55tacOw5YXeydCSX7epl4cKF9Pf387Of/azyQfnIrBX1RCLB5ZdfDkD//CVYkRgyd42UsA7tukPf665D15ITj5Vz6NUSdOckk/9YqpWlrJVKYEjy/B/W8MDAxBzjPelWrt1wJlq/901FpDL1KoUZAeXUIdpjo94OCkfY53f3T+vYA0OS7tu8FfSxiICOCE4e9i3CYfqPi1bdoU9Agtwc43cvnTypY79h0ylE7o+VFnVd7lCEyO6zM/k9VuVZe6pmMIohXHv/Xjj2mQdB3q2jqPlObjfffDObN292ZVx+MGtF/eqrr6a3t5d58+YRX+LU8yUX6V6k2Ljh0GO7nY9QG1JpejEb5e4mkqMNGSyBSFTXoY+lsEmEreFLRSx9RLJh62JS8qh4HzIanRruPgh6DiMqJyyD5hy6H4KeY6xjL1xN0UckXXf4J+g5hK5NcOxKJEL/W49nuLJsxopQdoT5f5tPGefYB4wI2ouxqmevFDJpBTrhpMJVm+AAhPfokDkqEYrLHSRzjr1hi4YwBCKtlB1UDONrxRfj6/KlZAUgJO/+y/28/vWvR0rJD37wg1kbNDcrRX3//v3ceOONALzQuQBUFaniPN0Xc71L0IedbmuVOnQ1KR1B3+oEHbl94wsbYruckouRXTrNLyqeCDpki9HkMgnU0ivEuUnL4wF+vvFsLAT/b9+pjkMvooZ7VRFOYZqcsJthEKf4K+g5FCFZOLeP1HHJ/HcYGJJ0337Ad0HPMdaxi2CQ3revZXCFz4OSwJYoN754Chv6FzFkhrnlrtMJ9vk0nAJhLzfltByC/dD8ouaUlrUEsSrEUyqGE9vhNJsSUzacKpZ8rfgiS7pLRY5bcbsurREMBnn++ee55557KhqLX8xKUf/xj3+MYRik2zpJtzstD0u52JWMe+1T1Qw0bi8xArNEpIDQXqfkq6c13LPlXs2IPw59wnBeaOCnm86h57kuXx16IUZUOkvuJw3R0eC/oI9lXucgiTVpbB3HofcP+D2kcQhdQ2lpoe/tJ/rq0AvRdobY+vgi7ti1itgefy/8XGlZI+oE0nl7cojuE6gjalXnnsCIpGGnO2mx+qgkVkLK+djmL3YozHve8x4ArrjiilnZ8GXWifozzzzD/fffj6IojKw8HoRAHxYlFQZR08IVQTcjgmSne/tMkyIg1S5RjJJCBVxBKmA0CMyw8F3QARr2SEK3N6JU8QGqLBTINNuYZvWqc1VCS9sI8tRhhk/u8nsoE9EDHHrbcgZXzfynXhMYEkT/1Ihi+L8MKxWBGXMesr1GWICEZHt1JwFhQXy+4kqqnpqeurjYZCiGcOqCAO9+97vp6Ojg4MGD3HDDDRWPxWtmlajbts0Pf/hDAOJzF2I2NDrNBRSKjnZXMgLFhTK/ZkQw2l3aw0SpSA0GV4HdmXb6kXsorFIBI+ak19iByipXVT4Y0JKgZiSBEUl0bw08YUA+hiO37ZMZCpK2akfYbSkYzegYloqmWRx6Z5Khv1rt97DG09nKyCKcrBUPl5ZnQrEE0f0SxZDoCfcCactFquTvRTOMp5+TVMEOSBLLM86cV8Vzm2GIzxcVC7uQpQm7GZYEB5yV0BO/+WO2znEKX11zzTUcOXKkorF4zawS9dtuu40tW7Zgaxojy9eAFIT6ZNEV0JSMQE0LAiOVjcOMCBJdoqqfXnKOYHC1xOpOg4D0goxnN/JYQQenwlwVOqIWhWJkBT2djVeQ2aI8Cf9nf6nKcVkASkLlYE8Lpu3/bTVW0HOEQgb970gQP7dGbPG8LnZf2Hb0PnKpSpob6MMcFXIJekKipSTCp+CpsQGZdrYks1dkGoBGE6FKkssyDC9z5sBqYYVgdJ6oaCleWBI9LooWdqlKFJN8ymKqaz5r164lmUzOuhQ3/2efIkkmk1x55ZUAxJesAjWUjVyHdOvMN1pO0IGKmqoY0axDz15w+VxHF0l0C0ZXpbE7xiwpCOksg1cRKZybNdM4sQCGFfLerSuGM5mqmfHfl5qRNO70UdizDn2y710Z0djf0+qrY59M0HPousmhd6cYOm+NDyMbw9w57HpbG0bTxHvRT2EXEkJ9gsjhgtoC0nmw1EdxreJksdiBiaWb7QBkGr152B7bGU8oEnNuhsHjTdeF3R4T1W+GYWRB+UvxwgY1CcjihX1kMcT2WQT7ASH4xCc+AcAtt9zCtm3byhqHH8waUb/xxhvp6+tj7ty5JBYtRUtCuN/Olvqb/iYbK+iVYEYEyTnjHbrUHaF3i+QcQWJFGlHQ912oksTc6hUxkQKssBNpO9mWwnR52dXAcehTZxMohiTsUoGfUsk79ClQhjXfHPt0gp4jGDQ4cpGPjn1eF7vf3I4Znfr780vYhS0IH7GnvO6EJdETeOfYRfa+m+yzyAayVlPYpQKZ7olBQyJkMXicu8KeKWioaIWcpfiKTVORwm6r2WyjAzZCwlt/dzuvfe1rkVLy05/+tMJBeMesEPXh4WF+85vfALCxrRs1o9Gwx0YKGJ662BjgrqCPdejVIOfQCwU9hx2Q455m3WKsoE+HFaIq5y8k59BnqjEdGJGED7vXiW1GpnHohfjh2IsR9BzBoMHh9/iwxz6NQy/Ea2FXTEGkZ+a0VGF559jNyAyVG6ss7NY0+/ciYlXFsY87fyjr2Cudd4oQdqlJhherKIYkulciLLg+paKqKo888gjPPfdcZWPwiFkh6tdddx3xeBwj1kiqaz6hvqNLstMGqtnuCXq199ATXZM79HE0G87+losUK+j5v62w//N0CBu0xPQOvfDvowdsQn3Vn/mlAnaRgp5DGdY4eMAbx16KoOcIBEx6L0p659jnzpnRoRciVfe3tyZDSIgckOijxY0t59grzaueDqkVWYq5WsIunO6C081J1XDshVghiFe4xw6AnDlTKXeOcL+NlgIrGuNv/uZvAPjJT34yKwrS1LyoHzlyhJtuugmA+PI1BPsVZ3kMMKLK1O/AFqipys9fjEOfcnmsSBLdguQ0Dn3c3y4xXIs+tXVBprk4Qc/hROG6fwPnBF3NzOzQxw/IKV7hdrWrcadQQOqyrLtFGdbYv7+6jr0cQc8RChn0vtcDxz6vi10XtRfl0MchOBoZX0XUpEBPlDY2YTnBc1Xrv1BK98OssBuxGYxOCWQawGqbOV8359gr2Ya09enH7ZZjF5ZAyUx9DKeNtPP7ht02agp+PpQhEAjw/PPP8+ijj1Z0fi+oeVH/1a9+RTqdJtPcSrq9m+ghO5+vnegSyMmEUDpdh5QKG3wU69DNaHk3klSzDn15pvgGNKp0pZmDrQuMaOlpck4wHUjVPWHPCXq5aUN6PFsesgpza17QK0AZqZ5jr0TQc+i6Se/bUoy8ZnXZfc+nZe4cdl/YVpJDn4ConrBrCUH0QPnVINW0+8JuhcpYFcsG7ZoRXNm2kAoUGxsrQhZDWcdezlxohsWMKw1uOXanhv3kbyzTZJPJPpyoGUmoX2IHI1x00UUAXHnlldi2Nw2ayqWmRb2np4c//elPAMSXHkfDHiZEQk/AFqhJ4YqgV3MP3YwK+k63HIeuFX+RCN0mvrCyCcTWRUVP9FJxb6mvUkHPkatI5aZjd0PQc1TDsbsh6DlC4Qx97x1l6PUrXRjZGMp16JNRhZQ3LSGIZfPRK8FVYa/w/pKqC45dQHJhaVW1RNhi8NQMQyur18HRLcfu1CuZ+RiRXptQH7z3ve8lFouxffv2mu+5XtOifvXVV2NZFuvWrcOOdBAaPCp+RkSQbpl4E3np0MdSyg1khgWDx5uIiFlSi9j861vLX+oq16EX4hTDqeAg2dUUfdSlwh4SAsPSKUZUKcJdQc+hjGiMpt1JIXBT0HNomuU49te65NiFQv/JLZU59AnHdG+PXWS3btyoLgm5lLfKr2dbq/w9SqUyx57sAAKlO1KhSKzODMNLi58Tc73Ni6Xajn107pifSYgctln3vZ/z7ne/GziqS7VKzYp6T08Pt99+OwC3GxEad42/wCxdYAcK0r5M/xx6qq3IykVRweCJWUEvExGySLfKkoTZaeVYmUMfixTZbYdyhF2ClgItLV2vmR/bW6GwC6cxkNuCniO+v5GhZGWVQ6oh6DlC4Qz9740z/LrKHfvoOSvoX1uFACrhpJJWOqkH+wSBYZcf3MzKKtBJzb1SsFIFI1p6KqqtQ6bVKnrpfTKsLsexF/UdKRPT2WY8vlt77CYTHI4ZG98YTE1LYrsll205QENDA3v27OHee++t6LzVpGZF/dprr8WyLFJtnahWy4Rl98L9NWEK1JT3Dr2k44916BWS6TKK3teWiiPAZsTdUrO2VsY+Z7Z8o5pxv6MdOJNqw+4yhV2U0OmvTIQhGNzfyHCqvDSClKkRTweqIug5VNXm8EUptn7+OOjuLP0AQiFx1koOnqlWd4ZRyhP2XIGZcF+V9kazFehKFnbhfidEqToPCVYJDZnMCNBQ+RxldWYYWjbzd1TunOSGYxe5gOqxgxATi/2EBm0US+dv//ZvASfWq1b31mtS1A8dOsQtt9wCgNG2iuihiR/e2Pz0nKBXEihV6R66Ux95muO74NDHIgI2owuKyPUtKPnqNk4ebZF35RiHXs3c8nzFuVKE3QNBz6FkFAb3Npfs2FOmRiKje5IiFwpnCK8e5KV/bkEunlfSaxNnL6fnVVrVI9aBsoQ92CcI905dYMYVyhB2pw5EdYZjBYsvLZtY5F6HKqsrw9CK6b8jK1R+PXk3HLuws81csoOwNcnwookDbtxpc9FFFxGNRtm5cycPPPBA2eesJjUp6r/97W8xTZNTTjmFQKp18j8a8x0qZmWRz0a0cocuNaZsi+imQx+L0TZ9fmi1BR2c+6CY5T3FBH20eg594vkkwQGKO5eHgp4/ZYmOPSfoXtPQNcKmj0WLc+xCIXH2Sg6cqXlbDa4EYVcsQXDQo1zjrLDro0XUjBdgVbliox2Y2bEnOylrL306ZnLsRrTC47vh2C0x41agmpG88nM/zUfCX3311TWZt15zot7X15ePeH9gJDpjRKmSnjo9oRhyS+7VjHJ306GPRQQtUu2Tfz5eCHoOK+A8bU+FI+hZ1+LhPRDus52Kc9MgVem5oOco1rH7Jeg5GubEHce+aO60f5c4azk9r9SQfgw1J+zTfI+Kme285mXHNZndZx+dprSs4kSre3ENTufY3dhLn/K8OcdeJcXJO/YKamg4Lbmnf330kM23dh4hHA6zbds2HnroobLPVy1qTtSvv/56MpkMmcZWAonJXfrIPBVbzZaALSItYUoEZBrd20PPNI6/aKvl0Meds8Mct/QkhXNeo8EbQc9hhiZfqVBM0BLeinkeCZFD9pSlZKUmfe8KJgzB0L6mKR2734Keo6FrhE0fj8HcORN/KRQS56zkwFkeO/RCphF2xRJEe6RzLfpAvrTsJMJuRL2pmpfDDoDRMDHtzIjiyl76VFidGYaWjz+vGRGu9ZSwQtl4gApQ0852brpdTplhFD0Y4K1vfSvg7K3XmluvKVEfGRnhD3/4AwB2dCXqFNeXFcz1y61sBkm2Kxgull0dKxBmVDB4QnUFHZxI+NG5Ry8qKyyckpE+NAmz9fHR8DlBL6lCnMsIG6I9Ex17sTXcvUAYgoF9TRMce9pSa0LQczTMifPSJc3Ihd3jfp44azk9r/DJoRcySS57zqH7Jeg5JhP2mSqpVYtcyttYgU0uqO5cBY5jH15+9D3bqrvvPzFHVNZgSwrUjLOvbk8RiBwatHnnO99JIBBg06ZNNVcTvqZE/U9/+hPJZJKlS5ei2R1T/p2QoKTLP49UHEHPNJd/jKlIt4ijDj1a/ZsEwJhjYEac83rZZ7kQW3Oi7IXt7J/7LehjiRyyCR9yHHstCXoOJaPkHbtpK6RM93La3aShe4RNn2jAWrkQEYvVhkOfhJxjV0x/HXohTp9vnG3FCnPJKx/MUWFPzpEQ9Cb3OufYrQAYje4eW6pOnrkRq0zYlcz0gdd/87FfcP755wNODFgtUTOibppmvsb7S/EmxBThkJbuLCtXko+eahNkWsp++bQYMTxx6GMRuo0Zdi+/tSJEtkKcUTuCDtnKdUlZdhqUFwhDMHCwkdF0oKYceiENnXEO/IfJ6IlzOXB2jTj0QrKOXVigZPwezHiELVHTEiXjTyzH+ME4wm6Fii8J6wZWV4bhZdWpPCdVGO0WmBUE4CmGIN00TZyQIfn17iQADz30EHv27Cn/ZC5TM6J+991309vbS2trK5qcOiAnExNOO8AKqOTLngqpSNIdFukFGc8cOgC2QDkc8GfPugDFglCvx4FIRZJqURheLicULKolpC4JNqew3CwmUAVsW0G9vYXwvS+y8NZUzYnmWMyYZGSR8KRlcKnoCUlgEP/vXQH6iEAmvH3atTsypOdlMKPuP/3n8vMrIdMEVmDq6yZ2KMLZZ58NwA033FDZyVykJkRdSsn1118PwGGrE8TkF1e6USExt/ZuTikg02ZDg1FSHfeKzzuqoR0MEOzz/2sUtiPo1epYVTYC0s2CkaV2zTp0cAQ90JEgEPDwgbAM4nsaab42RucVj2EnEigPPM2CO1L+C9M0WBHJyEJRle6CFSEhOGQTGPZ7IM6KRviAhtIbQFZYlbOk82oSq83AjNTeBWTrMLxk6hx4YcO73vUuAG699VYGBwc9HN3U+K8GwNNPP83WrVsJBoMIffGkfyMVZ3KutYlZKpJMuwUx9wo2FHXeUY3wPg19yN+JSmQLyoQP16CgA6lmx6F7UgilTGaNoO9tZPVlO4ne9BjYR/dflQefYdFfatuxW5HadezBQZvAIDP2+q42woLggCBwQEeaHgq7AKu9Oo69Usywszo8FRd/5Q5Wr15NJpPh5ptv9nBkU1MTop5bukgq3aBMHhwU71arEthWCWMdupd7Y3JUI7xfq4k9a33YCUKrNUG3dcHwEoWRJbUXFDeWWSPoexpZ8+0DWIcOT/yllI5jvysFNXBNTkXOsSc7amLaG0dwyCZySDqVzXxGSwgCB3VvHbugZh17fL4g3TTVNSN4esRJobr55pvJZPx/svX96u7p6eGRRx4BQIaXTvo3iQ6FdJuXo5oZPx16ZK/meiOUUsl1uAoNVrncZhlYQcHgSkh12lVrzFIpUpHYYWt2CHrWoZu7pg8GUu5/hkV/SRLdV3tuOIcVkSTnSEa7Ff+D1AoQliR8uIaEve7YAWd/fmSRmLJiqG7Mob29ncHBQe6//36PRzcR30X9D3/4A1JK7FAHaLEJv7d0Qbqltu4+vx16LYioPgzBIZ+KykyDrQuGlmc7LdUoUoBoydAwJz4rBH1Kh16IlCgPPkPXL56haTM1d23kEZBulyQ6fZ/+JiBsSbi3hoT9oI60PRb2VrPmHLtUHHM52XwvpMKFF14IUBNL8L5e1ZlMhr/85S8AyODiSf9mZJHi1CuuEZwod9MRdC/PWyMOXU1DcKC2HXpNC7oiEW1pIrEamLVnIL6nkdWXzuzQC7ETCdp+vYHmTVUamEukOmrbsWsJfN9i0xKCQI/Hjl2RNenY021ZYZ+EN77xjaiqyvPPP8+2bds8Htl4fBX1e++9l6GhITo6OiAwsfxkqllxWhHWCFJAptVGxLx1V7Xi0NU0hHtl7Tl0AfF5CkMralzQsw49GkshKulA5AGOQ+8pzqFPgjRN2m58rvYde5tkZKFSWbGSKuA4dptQr//3Wt2xO0gBqVYxaZrbmz/6S171qlcB8Pvf/97jkY3HV1HPvflDiVYQ44di6YL4gtqJds879EbvHLo0FBjUa8ahRw7btZeDLmBkoUJivo0ZrbGxjUEKZo9D393kOPTdeys6jj06WvuOXYDRKIkvpOaEHZzKc+HD/hdyyjl24t6lkQhFYnfUlmO3Qs7q8WTc+bRzb99xxx3E43EvhzUO30R9+/btvPDCC0gEMrRo3O+kgMSc2lkW88OhS8u5icIHVN+f1HMO3e8Hi0Kk4jj05Jzaueknw45YaJ3J2ePQv7O/bIdeSM6xL/vtEPpwjdzQkyBViM+vXWGvFcceOqAi+r0tIVhrjt0MOcWsJqC1sXjxYpLJJLfddpv3A8vim6jnXLoMdoM6ftM81aqQnqKNuh8YDbbnDj2wL4CW8H+CqWWHHl+gkJhn18zD32TYEYtYxyihsP+pLjMR393Emst2VezQC7FHR7Gf2cjiX+8hMFC7X5bUqTv2GRASQkcUlCPeCXvOsUu1NuYgqUJ84SQ1D4TgzW9+M+D0MfGre5svop5Op7nzzjsBkOHxLt0KCJLttXNT2brEbvTeofst6MJ23HnNOXQB6SZB/xoxKxx6pC1R8+4cIL6vkTXf3It58FDVzmHu3cei6/agjdTO/V1IzrGPLFSQU3Tp8gstJQkfkk4FOp8vqcCAgujX8VK3jGababuseIgUEO9WJnSY+861mwkEAuzYsYMtW7b4MjZfRP2BBx5gdHSUrq4u0NvH/W5kvoJdI8FxVkCSmWMgAt6IhzRrw6ErliPo+mjt1XFPNwqGV0jMhhpohjENOYeuqrX94JFKBlDuamHNZbsx9+2v+vnMvftYcs3emnfsRlO2Al2NlZZVM5LggP+lZXOOXe3zcCk+ZjqpxDUi7OnWSZbhRYBXvOIVAPnMLq/xRdRvueUWAHqGG8e1Bko3KhU3a3ELW5cYnR4KuiUI7K8Nhx46Ip2OZjVGukkwvKx2u6wBSFViR2eHQ08mgsy/SmfO5Q9jHjjo2XnN3XtZdN0egv0C4XNp1Okwo5L4QlFzjh3G1Ix/uTn2qEmmtXaEPdk5MZj7jicTANx5552k094Hxnou6r29vTz55JMAyNCC/M+lcHqR18KE/XJ16Lkl95oV9OWyZivEgVPyVe9M0tARr32HntJZdKWCfvsTvpzf3LuPud94mIV31nZpWTNam44diePYR/wdRt6xexk8V0OO3Q5AqrCErN5BR0cHIyMjPPzww56PyXNRv+2227BtG6m3gXa0B2p8rkqmyevRTMRzh24qvjt0IZ1mErUo6LYuSDdnHXotN2XRnBruwWANW88siUSQ+b8IoN77lN9DQbn/GRbclZkVjt0Kiprb8gkOOo7d77iXQL+C0ue9Y5eKv/OVFDA6T5BuHCOlQvDXf/3XgD9L8J6KupSSW2+91fnvMS7dDAmMiRViPccXh14DS+76CMR67JoU9MEVMLSqxh26JtE7kjVf8hUgndZZ/FP/HPoEpES760kW3JX2fSl5OsyoZGgltVdaNuvYowekr13yhIRgn/eO3Wj1f5lHqpBuHf/AlxP1DRs20Nvb6+l4PL1CN27cyJ49ewiFQsjg3PzP043C9+A4W5cYLzNBFxICQ87Tfq1NqFbAEXSzocYGVoDUJIHOWeLQR0PM+6mOeo//Dr0Q9b6nWXBHpqbbt4JTWraWamjkEJYkcthfYQefHHub5btjzzSCOabhy7s+dT0nnHACtm1z1113eToWT0U99+YSsg0UZy012aqQnOPvHWLrWYeuv7yC4vQRCA3avue+FmJr2aYsNS7odpMxaxy6YWgs+rmCfueTfg9lcqREu/tJFv1llIYdfg9mGgSkOmVNtm+tBWF/uTp2qcDwYgUzdHROf3an8++7777b07F4dmXats29994LgAzNc36mQrq5tH0qKZx/3EJYoCaFNw5dAsM6wb3+B8VJjZpz5wgww4LRuaLmBV0K0ILWrHDolqVgZDSC+wb9HsqMiCc2Eu63azp4DiDVLkm1KZPWAfcV6SwHF+ZPe01gQEE7EEBmvBmIDFroIy43wBGypGA8K+QE9B4d01wURWHTpk3s31/9dNEcnn31zz33HEeOHEEKDQIdABgRBTNS2nGkWtoHPRNqEvRRkF7UNI7raCOK7xH+UnVWJ1LtM/+tZwgn53N0nsAKgpKpsclyDLmHSqs/SCoZ8HcwM2BZCqapomoWmz7Zjrpymd9Dmpb060/hyAkqikltC7sN6RacB9Bw7VyrZhiMBokVlP4Ke/Yj0QY0T4RdO6KjJUG4uGhWzsNRskscfY0S5NRTTwW8deuefe25NyWD3SBUpKDkZXdbdbfgiJoCLQlKGtREFT+KrEPXRpxzSMVJhfAc4Th0O+A8FEkV4nP9f8hAZEsDt2T/rwQtLlDStTNZ5hi3SmQJzCOhmhV2y1KwrKPXtd6R5KXPtKKuWOrjqKZAUUm96QwOrs8u20pRm8IuQRigWM6FIDVIdNeGsFsBQaIrOw6BI+yquyubRY8l5Mwxwgatv/rCHhgSICEwgnPduIRUKGm/3lYlI/OPTqive93rADzdV/dE1E3T5L777gNABp2l93STgl2CmNiqdHW0StrZU84tQQf7FKRVpas/rqPFlXHL3XbA44poAqyg49CP/kxiNPoc+JN16OkWxo1BSKeBRK049im3fWyB2Vd7wp5z6LJg0IHmNJv+uaO2hF0IMuedyqHTtfHOKCvswqRmtoqECYopxo1HKpCY46+w27pgdL7IP7ADeWH32kDY2niHK2SVHXtcQ0tmz2U6wb+uCbvIOfbiL0Cjkfy18NWfPYumaezYsYNdu3a5NKjp8UTUn332WQYGBmhsbIRAO7YKmcZsoZkiRiAFrjv0wmpMzv93+aYc69ALrgmp4F3noaygT7VtYUTxZW/QDAmSbVM37xF2bTj2GS+LrGNPjIYwTb+XPY4K+lToHUle+te2mliK15YsInnhuqMOvRApEJbwX9gLHPqEX2cduxHzpwKdERNYwck/IKlKrKA3jl0qYIUnjqOajl1JiXHBgdUQ9mKVUtjO95Bqzr5ACXDGGWcA3rl1T0Q9t/Q+mGkGoWCGi99LlyK3jz7mZ0r5F2ihQz96UNAPuxixKZnUoY/7E8WDgiozCDo4aVnxedniGh5hhp2lwkzz9H/nt2Mv+jqzBfaRIMkjEWzbn81MKQWmqY5bcp+KQHOaTZ9s5/DFZyN0f1YZ1FXL2fO38zh8qjbj3qWw/RX2yRx6IVKBRJdzXUvFu+s13aSQ7Jz+g5GqN4593EpBAdVw7NIWhI5MPF7Fwi7kuHtfKpTUJS7VeXS14sHnUwD51epqU/XZx7ZtHnroIYB8bnp+36cYxCTL1GXeL2rK+aKnujGD/QKZdslpjUzu0MchCpbD3aYIQc9hByWjc72ZiMywYLRbFP1A45djL+fBUaQVRg9HPXfsUgoMwxH0wiX3qdA7koy+Ms7efz0dpaGhyiMcj7pyGbve3okRnflvc/gl7NM59Mkww45r98KxW0FBoru4oLhqO3apOEvv0+G2Yxdx1TFpk/2uAmGfbHVYKhQdpG1rkvg8Zw6QgTmoqsquXbvYt29f6YMpkaqL+qZNm+jv789GvbeTbCl+L10q0tUgLi0xw+/joIxUeELpRNJP59DHYutOKoTrlCDo+bEESk8xLBUzLEjMESVfeV479komPpFWPHXsOUEvVszHIgSYJ8fZ97ETEEFvKkCpq5az9y1zynKOOWH3qiyqMGZ26JNhhqm+YxeQai8xJbhKjl2K7LJ7EWNx07GHDqvTfjfCBNWtnioi+9BS5JyaacrurSs6J598MgAPPvigS4OZmqrPOnmXHujE1hSMxuIuQilc7MYlQR8uLt1Bj5d+A49jREcfnv5CK0RqLqeflCHo4DxEJbrE0f0gF7E1QbqpNIdeiFeO3Q0n45Vjr0TQx5I5Lc7efzmt6o5dXbW8ZIdeiCPswtX0pUnPU6JDLyTn2DMN7l+vUhHE5ylkGkufrKrh2GVBcNxMuOHYZVpBLaLQjjbqrNK6Qgm6ZAVlvjVrrh3rMSHq+TcR7HL20otsrTpTtGHR0YgS9HjxX2r4sEAaZXwsEmfJvUiHPu6lCkiXtvNtvTxBzyMkqc7xRRQqJRcdnOoo3aEXUm3H7mphoyo7drcEPUfOsSuhaiwdZR36mztdc4r5ALoqkBf0Cpf6zbDTnjNd2He7QhJdAqOCAk1SldhBOeNyebFMt5c+FZU6dnVYQ4sX8YfZVLdShH064ZaieP1JtTvH+s6vXwTghRdeYHBwsPiBlEFVRb2np4edO3eiqioy0Fn0XrpUikhfK+ZQ0gmKU5NFndbBhtCeMmadER1tuHRBz2EFJXaFwm4HHNdfaXEeqUiMRnfa4NqaYLRbwSryYa4YhO10lXObauw1VsOxSymcKnEuCnqOzGlx9vzLqVivOdXV46orl7H7osoc+mRURdilsxrg2t69gFSbU4vBDcyQKLlo12Q49TIqm3ekADNc/kpjuY5d2oLY3hKufdvJcCpa2Kc7tCg+wNnWJfFuFdQIK1aswLZtHnnkkSIHUR5VFfXc0ruhNpNsCxW1l+48BblzfmGVt+wSGAJGirzSxzr0Cinnaffoa0uLzpwJIyYZ7aqsMI1UHYfupqDnUNICbdSdidft0sOF5Bx7MVHpM5ET9Mly0N3CPCnOjg9C6k1nOJvuFaKuWs6et85xVpCqgLCE07rVjUI10qlmWI1+COkWKnbsVjCbj+5igK2tV+DYSxC4KQ9RhmPXD+qlx1VIJ67KrYKkxc636RbnQWzTQef9VXsJ3hNRl6Gu4vfSS6gaN92clot8LAfFAGEUOYgKHfpYpDp5judMuC3oOYxGyehcpayHLKniukMfi5CgpkTFNfS9qrYl0gqJ3soceykpa5WiB00OvDdF6oJ1FR1HXbWc3Rd1uuIsp0PYLlSgq6KgAxU7djMkiC9wV9BzlOPY3ay1UapjV1PlPdArRja+atrUxOIOXGxRGjsgne9cnQPAE088gWFUr2dE1WaHRCLBc889B4DR1F3UXrpUSqiyJpjymxGWI+iVRMhG9itgzzAYW7heXtbWS1upqJag5zBikkRXKREwToW4+HylOlH9BVTi2L0un1mJY885dHuma9JFhIC97zBJvrk8x+449M6qOfQJVFJattqCPoZ0C4wsHN/Rayak6r5DL8TWSxN2W8fVTBkhQSSLeOiNawQHyz+PmnK2ZacU9hJuz2JXMlNtYIeaaGlpIZlM8uKLLxZ/khKpmqg/++yzmKZJd3c3o/NiRb3GlahjEwKDlae8aEkQg1Nf4dISKH1lLAEVgRUpbo+q2oKewwxT9ASUalZIt1FxfECxlOvY/aiHDUcd++hIaU88Xjn0QvSgycF3pUn/zelFv0ZpaCBz/unsfltn0YGxrlGOsHso6ICTGhXI1owv8r7KNFZX0HMUuxRv65VtF06FlhAwQ3Ot4BG14jgKNTmzYy+KIoPm7IAk0aVx+unOfbRhw4YKTzw1VZslcoPeNxSAInI1y6ntPlllOTXjUg6rDcHeyevBS0ug9uvVi8AuIhreK0F3ziUZnT/DBCSyTVmmKPlabUpx7H4Jeg6RVpADAeKDkRn3xS1LIZPRPHXohQhFsuedFtu/fSba4oXT/q3S0EDvu47nwNkBT1ZqJiVXM95g5uvBa0Efe2q1OGFPtc5cMc5NZlqKl1UumqXFlSmFXaYVgv3unEdNT9QKqciS54eil+E1+PPTfcAsFfUnnngCgExr54xPfmXXdi8U9BTFpTgUSXAAROHFZVdX0HNMFw3vpaDnz6lLRudNPQGlmrOC7pcDLtKx+y3oeaSAIZ3R4amVr9oBcaWgB03U+Qle+pdu1OVLJv0bJRrl8LuPJz7f//EixcwV6HwU9PwQVCc9bar7Kt2skJzjfRvV6Ry7FXK3KNgEJE41zkmEPXRAdy/bQU5Rca7Uy1dQlJKm2iVGcycAmzdvrlpqW1Uuld7eXnbt2oUQgtH5nTO/YLJSsEWSe0JSMkxZLrASoruPFpLJLbl7VdVswvKW8EfQx45ndL4YP8H47NALmc6x14A2TmRIn9SxF7ZNrRX0OUle+kwH2pJF436uNjZy+L0nMjqvtj7kKYW9BgQ9PxRtcsduxASJLv+62OQc+7ga6Grl0e7FosUVGBlzsrhGsM/dc+S3a3NzfJkPK3KaGK+xxBeGWbp0KVJKnnzyyfJONgNVmTVyLt0MNiMD0+d8V1wKNnvBqSncyysdg5YC0R/wzKGPRapHo0ulmntC9rNVlbOElG5yWrWaIUGiw1+HXshUjr0mBR0mdey15NAnI9Ca4qVPdaMtXQyAEolw6F1ra07Qc0wQ9hoS9Bw5x55sz7ZBFpBuKa0EbDWwdenMO0p2PiojO6dsJGijRx17sFetSgyTsJ1GX5UdpLgSssKCdeucjJJqLcFX5ZkrN9hUxwwu3aWcdK2EinElY0NgQMGwvRX0HFJzhF34uKc6DiFJdQqkqmA0lP9kW22UtED1sr1tpQzpjCoSPVjl2qcuoXcl2PjFdtoe7kYxqVlBzyFsgTAccRJWbQl6DqlBphnsgJNGasRq5NoV5IXd84cM6Th2U2oEBqt3jsAwpFUqq3ZYhJ5ZIcm6deu4/vrr8+bXbVx36lJKnn76aQAyrR0z/DGVu+tqX2SK849frT+FnX34c6tiggtI4aTl1KqgA1S9A57bqCBUiZSiZh36WKSEpqcDtL6YoGl7qpYuz6nJ9Wav8bGaEaqe118Ovn1uOWGv5mci3TGYMx5DwHvvvBdVVTl8+DAHDx6s/KQFuC7qBw4coK+vD03TMBqn32gVNq440GqlT0nVqd1rBf25moXtXTeqopECYdXUM8YEpApGg+1ZWl3FaBK1JY2q1qB9nARpC5puizL31y+iPrcN7aktzL8zgVJEc41aIB+YW8PPTkI6Kwo1hcTXFQ6jUZJpoirfm1RxRQ2LmRelprFq1SrASf12G9dFPTfIVatWgeqNlTOj5QfaTYmAdFtd0MdR44KeKzFsxGaJoAsJmkRpSaPMFkGXELsvQvuNLyCNo1sF2tNbmXd/sqze1X6QXwypMd3MI3NzQI0NsAaE3ahCI0Er5O1cf9JJJwHkC7S5ieuinhvkY6OZqgSuTYXbPYKtYF3Q8+TSg2pc0M2IJNMySwRdkdBkoLUlZ51D77ruRbAnjll7aguLf7yZ5i2z5P0Iyk+n9Yi8Y6+l+85nYTfDLkfg54LcPEKY8MNtO4BZ4tSff/55AIymNu8EQOBq9ycrBOnWuqDnyI2plgXdikiscOmFI3xBSGgw0UOmG/1SPEHagth9ETpuehFpTX2BymSK1tu20rRN1uz1UkhNC3tWQJVaC+7zUdjtgHQybtxSLwGmx0GJ6dY2hBDs2bOH/n6XqulkcVXUBwYG2LNnDwBGc1tRr3HrwpCqO4FbVsgpEuBHEFjNCXousKiWJpMCcg7d01SbShCOQ9fD1Wvo4DZSQtPtEbqum17Q83+fTNH2hxdp2lrDF04BNS3sQK4dbE3diz4KuxWUTq9yFxy2FXAp5bWEKUgGAixZ4hRxcnsJ3lVRzzdwiTUi9eLWw6et+FQCdkBW3Dgi79B9uLlrTtDJBTL6PYqpkcpRhz4rUCQ0Og59tmDvjLLwJxodN28sStBzSMui9batNG+16wF0blEX9nFYQRccuwAzinvfeQlTUbX21V0V9RdeeAGATIs/5cUyTeULct2hj2EWOHQr4OyfzxaHLkMWemdyVjl0e2eUld/fif745nFBccUikyla/vAiS37TU1FXLS+p+X32urCPo1LHboU8LqgzhrVr1wLw0ksvuXpcV0V98+bNAGSaW9w8bPGUWczGDtQd+lhq3aFbAYkZmyX754AMW+hNlZas8hZ7V5SVP+nBHq6w9rJtYx/qZf4fetBd7MtQberCXiK14NjL+L58KaiT5ZKHHwVg69atmKZ7q3euibpt23lRN0oUddcuBgGZxtJfZob9KaRSa4LuRLjX2GRRgBWQmA3eN7goFxmyCDSlZ01AHGQd+g92Yx8+4t4xD/Wy8KbZ49hhFgl7rSxW+Sns5Wy/Csg0u/fhlRoYakajxGIxMpkMO3fudG0crk2Ne/bsIZlMEgqFMKPF9U+HbMqG6d6dY4Vk8eltAjJNTu6j19SioFPDDl0qs8yhK3LWOXQjpSF3RFl5xX7swSHXj28f6mX+7/cTHJikM1aNUtP77Nl0N6WWUt78EnYB6TaJFS7+JZlGl3tClPodCJEvQrNp0ybXhuGaqOdc+ooVK0Dx0UYpxS/BZxrrgg45h17DKWuKUyHOaJwlDl2TKG3pWeXQMwmdZT+TLLv0Oexel1thjcE+fIS5P32Wefcma/YBspCaf4iU1IUdZ55ItUmsqbsZj/97Fd8f1lavXg3UqKjnBvXISKLk1wo3asCPoZiKQ0ZDXdDhqEOvVXKCPisKygCoToW42VJQBrKCfrVEe2qLZ+fUntrC3AfSKLMkbrCmHTvUhT1H1rHPNF/YQdzNminzUD/YvBWoUVHP76c3NZf8WmG5ewHY+vTLMFKlpGUat6hFQZ8NDn3WCLomUVpnl6AbKY3lv7DRN2z2/NyBxzYx74FkzV5/hdQde4n46Ninbf4iwIi408Alf8gyP3OjpRmAHTt2kE67s1XnytuyLIutW50njkwZou46wgl+m+ypWqr+1HSvRUGvO3SXEBIZsGefQx8NsPSXeOrQC9Ge2sbc+9MEB3wbQknUHXuJ+CTs0zV/kapT36IWsEJhmpqasCzLtWA5V0S9p6eHdDqNrahYJQTJjcXNYDlwllYKA+bqgu5Q6w7dDMvZI+gAjSaB1tSsEvTgYzGWX2WhP+69Qx+HbTuO/eqXaNhVoxdkAbMhl70u7FlhnyQbKtPgrkuvqIW4ECxduhRw3LobuPLWcoMxGxooNzKoGqKXaRr//9OtdUGvZYcuhdNxz4zOvCdWE8zGkq+2IHZXlPlXveSrQy9EZjJ0/HEzTdtqRYlmpi7sJeCjsI+NsbIDtePSc9SkqOeWDcxYGUniVcTWju6tWyGnlKyX1JSg56rE1ahDl8JZXZktFeIAp+TrLBJ0gOhDUTp/8wIyU3u1W2UqTdtfNs8axw6zQ9hrJsvAJ2E3I0frkBhRl126CyxbtgyoUVE3GspvdCskKBmX747s3roZyZaA9fDLrD1Br+Ec9GyXNbPGnqCnQgbsWevQu699adK2qbWCTKXp+P0mWjbZ6BUWs/OKWhf2XFGpmsAHYbcDTilZK+RyxHuWSt/Pvz7iVJarSVE3G4469VqJFM00SVKdHpeAFdTMErcVdAry1KI7h+z+pOpf/eVSEW1pwh2JWSXoLQ0JTl6wj64/7axJh16IzGRo/uPzhI9IbI+3y8pFKtLXkqPTIh3TZDTZteFSc1+ph5+VHZSMLrDd7cNeCWPeu5k1w/39/QwODlZ86Iq/4kwmw969ewGnOxtk+93OLW3Syz/tupk6KMAO2ZiN3llmW5eEVg8SOmEQq9jKdlXCCoJckEQsTGBEa29ylIrzeUlVoiZFzT545FDa05yzbDvHdx0gFkmhKDU+YBxB/6el9/POzg3s+mEbYu4cv4c0I2LhXAYvPIHUWwbRlo94HgdTMsJpBCU1ia3600NiWgSk5pgEuxIY3Rnfhc1ospl3eg/WvJRnn5Wtgt1oYuvuXkvCBsUo/U1EVg7m/1tqOt3d3QCuRMBXLOp79+7FsixisRh2yCnlIxWcNpOlkBN0Fz9zM+qU6kSVnkwMUoHI8iEWNg+yoHkQs9m/9XcrCHJ+Ck2zUFQbuTBZU8IuFSfmIXdTKyYoqVqbDbMoEtGW5ozFu9CFTYOW5uSOHua2DCFq+EmkpSHB3y9+hAYlBcCXT/gTu78WRsSiPo9sapQ5Hbz0zy1Y7+sjpJvEwmm0ZXHHsdfiZy0KtvUUakvYBaQ7LELtSYSQhBvSGHMy/jl2AdH5IzQE0qyafwizK+PJZ2VFLRBgNVquxlYphiirAVZAs5BjNDLXW33Xrl2Vj6nSA+Rcer+m5yPfI0uGSzqGVI4GMrh135phiYya+YPaIbuqWwK2LomsGmRh82D+Z8tXHCDT7P06fM6ha/rRAtuaZiEW1YZjzzn0wptZMUGrMccuQxarj9/Lq5ZvI6yOX31aHOtnUdtATTr21sZR/mnp/XRo4zemv3zCn9jz446adOxi0Tw2fq6DjgXjk9YbIilix/WTWZQeNxH6TtahTxClWhH2nEPvTIx7+Aw3pDHn+uDYBViLUyxqcb5fTbE5bnH1HbutATmHrkqsJtMdLZBH/ynVrXdE44i5qfz/v+3gIQD2799f8bAqFvV9+/YBYEacp3+j2aIpnHIaWhTxPmVBu1Q3AjqkAnakQEwDdtU6seUc+oIxgg4QVE0Wrj6E0eDdRDTWoReSc+x+BqTlHfoUiBpy7DJos2blfrrDwyhTLCHNjw7WlGNXVZvzl73EBxY9mnfohfz38X9i+HLY/9GTEHptbDIqne289MlmOuYPTvp7TbVpa4uTmWfUhrAXOvRCakDY0+1HHXohoZj3jt2Yl2H1vIMoY8ajCFldxy7ADtugynE/s6KVm61xwdASlCJrrUjFed/Lunrzqwa5+i45Pa2Eir/Snp4eAKysqBOyCWomi+b1YcaKuPkmixyt4J6VKhgtFmgTvzSrwf3lcFtjgkMfSyyQhg5vOnVN5tAL0TQLo8nyJZBxKodeSC04dhmyWLNqH93hmVedco7db2EPBEzetvxZXt24eYJDL+TTS+/kcx+9nl0Xr/VodFMjFs1j4+c7Jzj0CX8nJO2dwxgLfXbsUzn0QnwUdjsgodGY9prMO3YP2k7bAWhpGxkn6Dmq6dilgrMFOxYBMmJhNlQm7BOW3Ittg7skQUcoTndkOH8dm9ktsZoQ9dxygRmNIVVo7XAmQVWZ+QObKhWkErduBeSkgu4Myt29dalAZMXgBIdeyKp5h5ylwyre3NM59EICbSnSHd4JuxSOmE/n0AvxzbErcpxDL5b50UHmtfrn2FXV5k2LX+CUyO6iXxMSBp963+/Z93H/HLuzh940pUMvRAiZd+zOA6LHn/dMDr2Q7MqU9FDcbU1izE8Tisyc6RCKpTG6quvYbQ0aVvczr3Hq+ynv2LvdnSfNmDX55y4csa/kfRcuuTt760UMfsw127DQ+UzMqCPqBw4cwLIqM5+uLr9LBRpDJbjSgqX3/I/LDJizghJ7Ojfu4t76TA59LIqQHLfoAEZTdfbXi3HoYxFCEpiTID2n+sIuhRMVXE66j+eOXUhaFg9w7skvlSToOXKOPRaZfNm7Wui6xduWP8tp0V0lv7ZNjfOfH76W3R/z1rELXWPoTSew8d86ixb0/Guzjj12fD+ZJg9FvViHPuF1zgqiF6sLti4xFqYJRYtPXay2YxeLR5nfNDTj32mKzXGLDmDNdWdlc9xe+qQDA7PZLEvYp6pBohQ3BedpjTpdTa1wBF3XMQyDw4cPlz6gsWOo5MXpdJre3l5nUJEoYl6y6NcW7qWP/yUli7qtO5GNMypAwMaqcNkFnGjKmRx6Ic2LB10vf5oX9CIceiF6e5J0Z2VPq9MxTtDLJOfYqy7siqRp0RAnd/RMuX9eDPOjg6xpO0xjtPrCLoRkbfcBPrDy0ZIceiEqkkve/wcGb+zCWLfKxRFOjggF2f/BtaTf2z/jkvuUxxASTbVpWDREpsWDLJNSHfokSJWqOnZbkxgLShP0HHnH7rKwGy0289pmFvQcipDMnzNQ8TikAlazOX4vfTJ0idlcohLn9s8nO3QJe+sAcyIjmB0ZECKf1lZpsFxFl+mBAwcAsDUNOxAgFM5Mumcy5Zmnee+lfDAAVtguOo1O6rbzFFcmZoPN4hWHSn7d3MZhYmv7Xctfr0TQIevYOxOOsLu9l+WCoOdQTFCrKexZh37qnMr3swCCisnx7QeqLuzHdR3kvV2PsTTQW/GxOrQR/nXZHRz/7efInLnahdFNjlBV9nx4NYHXHUF1wbkGdZOWJQPVzTIR7hWWqZZjL8ehFxJuSGN2uyfsRrPNstU9NARKc97NoSSxVQMVzdFWSM4s6Dk0WVKam7AdszHl783iU9zCqoEadObv+fPnAzUi6lYkilTFREFfMjrp6/JdjmaiyM/ZiMmJwRDToTjL8OXcpGbMZtGqg0T18m6euY3DRFYPlvXasVQq6GNx27G7Keg5quXYZdCmadEQJ3YccPW4CpI1bQerIuxCSE6Y28M75jzh+rFf2bCFE77xbFUcuwiH2Peh4wmec8TV2ANVkXnH7nZxETcFPYfbjr0Sh16IW47djEiWrD5AWCuv8uKC5kGiKwbLEnYpnEDXohFgNZVQmKaY+O8pTKkVlhw/d/xco+uOqZozx0kz9XX5PXdyKxTGbDPz+wM5ouEpLrIib5Jinnak6kzMpSLDlvM0VwJmg82i1eULeo7OhjiZlvKdhZuCDuMde6VUQ9Bz5By7a7RkOOfELZw6Z19FS+5ToQub49sPuL7HflzXQd4953H0KjUXeGXDFo771vPuOnZFYc8/riL0ul5XHHohQd2kfVk/yvK4e6VlqyDoOdxy7G449ELyjr2SbbM56YrnyUUtAzSsLG0pXgqcol+lPtwpYBdZqrqYnHQxRY17qUJTYPx8sG7+buyApLOzE/BZ1PP76aEQImAVtfRetEsnGwU/wyGN5snT14qhlKC5Sh36WIKqyZI1B8oSdrcFfSx6e5LUnPIcuxROYIqtV7dxjjBxpaSsaE1z5rKdBEuNbCkRBcna9oOs6TpU8XfWFEvy0bUPVsWhF/Lqxs2c/q0n2XLFSpT21oqOlXz1cWz6zmoC5/S5NLqpaYymUJfFK68aVm5QXAlItbL7xU2HXkgolnZKypbo2KUC5uIUK+eWvj05GQuaB4msLN6xS02CXp4eyJCFOUP+umIUmXAhS8vikkGbjo4OwGdRP3LkCABmOMzC7v4Jvw8FDNItBZ+Ai0++VrCEfZPJ0GzsIt16y+IBVwQ9R1gzHGEvYS+wlLS1csg79o4yjq9UNwho3Kmyjl0pt6dKS4azlu2cUCGuWujCpi04yprOQ+h6ed9dUyzJB5Y8yqLAkao59ELOiO7gG+tvYvs3m8suLZs+Zw29/5igY+4gmupNdcWGSAqlAmHPN2fxAuHcN6Wez9bcd+iFlOPY7UUp1i44gFZESnOxLGoZwO4sbl/eipW3rQo430VwhqY3svge9ZN1xlS7EhP+ThWSBUt6+eR99wBHzXK5uLL8bodDk/4+ohtOBGKWUlx6jqkC5qyQxGqqvDm4HbGmfwoUYM1P0RGdPD6gEsKagdaZLOqmKTVtrRL0jiSpruIce96hl5CD7gbCBDUtSm7X65VDn4wmPcXqjtIde1MsyYeWPkSXVnwUsZtcdvIf2PrduSgdbSW9Lvnq4zjw4TTRkPed4RqjKdTlJQq7yOaTe91trURhr8aS+1SU4tjtAMxtH6zKOJbMOzJ9sRiB47LLdOl5stHwk6Za26WnrBXurS/pmGh+c5iRMODoqpTlz6euOPXMnEDxgS+l3iySSduYWg2VCzoAisSKTT3Jmt1p1iw46OqT51hWdvViLpp+z7XaDr0QISSBjkRxgSM5h+4HEtQ0RTl2GbBpWjzI+qW7PHPok9Gkp1jTWZywK4rk7EU7+cCSR2lT4x6Mbmq+dvrv2P2dBg69/8Si/j59zhoOfTBFg8c5+2PJOfZ0V3Hft6+tU4sVduFElXsh6DnCDTMXqLF1aFzTR3Oo+LTmUojqGRauPDSlsEsBMjpFoZlS0eWkZWTFVGls01CsRLWGEhgdTr5zJpNheLj0Ohk5XBF1vYsp99OVkJl/yis3onJslR4pwGgsPn2tKHTbqYc+9oLIOvSVC9zZG5qOVfMPYS5LTXrTeOnQC8nMy0wr7H449MmYybHLoM2qVfs5dc4+XwU9R07YI6HMlM1gdN3ijcte4I2tz/rm0Av57+P/xEc++Uf2XXwSKJNPHaK7k/h5x3Poo0lfBT1HYzRF+7wh0gsyUwemCW8rvk1JEcJuRCV6R3WEczrCDekp27ZaQWg8rm/ainFu0BhMsWT1gQnCLhUwm1wS9NwxQ+MDqcfVeS/pQEdXm62QRFcnP0hLMIHWaNPc3AxUtq9etqgnk0niccc92LHglH+3sKsfK1RhAZIxNXWlNkktXxeQUXPcQ5itwop5h6vm0MeiCMnqeQexC/LXvXbohQSjGTILM5NuT+TTcmqBaRy7DNisWrmfeZHaEMYcTXqKU+fso6t5eMIql6JILljyImfGtvs0uqnp0Eb4zD/cyIG/P2GCsCsdbWz6dCfpD/X7suQ+FUJIOuYMkZk7eZSTrw69kKmEXTipu8r8BKpHsQmFTNW21e5MV13Qc0T1DA3zh8d9X3ZQQsDlz0QBe8wK7mT740WT06+5KTpCU6+4OSWQnS2ugYHyijJBBaI+ODgIQCAQoL2tiCCGKeq8F032XjQbqydwZpOVbzrSsHLAE0EfS/NxfVjZ5yM/HfpYApEM6YVpp6Z+llpx6IUUOvacQ681QR/L0oY+5rUO5R17zqGfEd3h88impkFJccnHf8e+jx0VdjGvi42f66J98dR7hn7TPmd4vGOvFYdeyCTCbkQl6sJRtDIDLd2i0LFnWi1WzK8sWrtU5jUNYS9wmr/YusSOVWmOVKSzTy+LrOk+BcXWhD9j0e68U8/pazmUXbNnaMiZKJVIZsbmLca8DMrOqd18MSiWwChsoec2uo0VUmhaPMi8ImoVu82c2Aj2cTC0pRW60r459EKC0QyZBSB2B10pl1k1JKgZQIHQkhHmNw/WtKDnWBzrx5aCsGawrnU3J4b3+j2kGWlWE3zqg7/j0jUXsPQa2HGRSsfC8t2FFwgh6egcpk+PwZEgWlzUnqDnGCPsdhBfHXoh4YY0SYCkytKVBwlq3hoPTbFZPe8gG81uZEJzoYPJFGSj4Uko01aQKwapShZ1Tv/AG1RMUtpDQCivr+VQtqjnNvIDMcF0u5SKkMSaExhUJurI3DJZdR2ijJlEg/4tHTaHU4wucD/SvmIUia3L8pegPEIKCC4eYd3cPVUpKFMtzu3cyprwftRZNGZV2ASjGaxACGpw5WYq2lrimI0JBnc3ow/X6hMq+dVNW5eoPrf1LSTckEZvsQiq/q0kRhrSjJpV/v50WbGgg7NtvDA280NvJOZMsJWIesXL70pk5ug3kf+fytASAipoy1oUEg4Pxqp7jilIWxqHhht8Ofd0GGkN9UCw9gVdAbFslDPn7Z41gq4IyfzwwKwT9FE7wNeufztLP7qPyCNbWP3DEXoPNPk9rKLRVJuGBcNO0G2NoyUE5qEIdgVLwNXAMFUOxWPYXvVwHoNpK4wOhaq+0iISalEV5Gai2NXNSIOPop5z6ocPz5nxb1ujCVLdlUcdK4ZApKv/ZG2MBtjVX1kVrVJJmjo9g42Y1X7yLJFMSkfdHyq/0ItHSAX0VcOcvWin30MpifmhAU4M7511gv6Nq97B0h9sAulMQmLPAdZ8c5Defc3+Dq4EgrpJ86LBWSHselxg9ERrbn5IpgP0DDdi2t6NK21q7DjUXnrRk1KxQY0r5UW9F9B5YnFZVL469XwenTJzyzFFSNeW5/QRpfpfpoTRgTB7B5ure54sOYduWbV1wxppDbUn6MryUzWxNcehnzFv9iy5R7U0pzbuZk24so5MXjNih/jq9e9g4c82gVUw2x3qZfXlIyi/aSNlVNBiy0PGOvaajRXJoo3WpmNPZXTPHLstBTsPt2EkXe5hPRmmgj7qgktXITBFKlshbjj1su+83PK7VIv7cBctOELPoW7UdGUfkpIRKKNq9SIec0gYHQ2RbtCqum+UNHUODtWeoGdSOtosEPRMu8VZJ2ytifzzYmnQU6yL7SQkZs+YAb657TwSd3Wy9Bcv5R16IWLfAVr3HSAwsoq+vxutqdS2qQjqJoElA4wkgli7YjW9KpVz7Fp37QTOQdaxy0a6GkaqmjU0mApjpLx5YAz0qSUXm5mM1OI0ixuKywqJxJwT+uLUcznqoJMyZ/6QhXAvdUSLC/DgadVKquw6VFppzFJIW1pNCvpsceiZdovT1u6YVYIe1dKcGt016wT9yxsvoPVfFeb//MUpBX0ssfs20/KbGMmMB47KBYSQTmnZxXFsl/qJVwttVGAcfPk59uF0iJ7DzdVfqSW7l16hAc0fq8jDBFWTQLbgTTJZfoGhstUklXKqRcW2JTiwvaOo1xgt7qRoKYZAJL2588yUxkAqXJVjH6zBJff8HvosEPSzTthKk+5/1bJi0BSLheF+To/tJKrUvnsdy6Uv/Q3zLxmBntKqKzbeuYnWX8QYeqa9SiNzn8ZoCnVpHLvGn0Vyjr3W5o9kOkBfMlKVY/eNRpBexBTYoMUVVwKDpQZNLcVlM50W20U07Dzs+yrqiq0UtUShCEm0071UreCA4o2w23DgYIvrwj6QCmOatWUJ6g69OmiKxZroAY4P75t1gv7fGy+g+99M5MhIWa+PPrCZ5T/aTfzhDqwac5ZTMdsce60JezwV/P/Ze+8wSa7ybvs+VdW5J+9O2Jy0u8o5CwUkkTOYaCxb5Gz82gTb2Bg+G8vGgMFgjHkB4xeDCQYMNskEGRDKeXOOMzt5pnNXON8f1T2hp2emQ6VZ9X1dukCa6aozXVXnV7/nPOd5yBnOvRVZUnB0oov0hDsvC5Vo4yE7GuwAVkhySV/teTPhiI9OfeakdWSXxMI6etKhRCYJasaDpDlAGoLBM52OHW8sF2dsOkETjXgcp+XQ3UERkgsSp1kfCm6ltWrcm97K+77zGta/Kw1nmmsFKTMZNn12L7n7VqBjD3i+XygtMAaDJeymqTA03eaYsE8XoqTGG2v9WzdFBTXnnKYU++ozHuXwe6FQwKxMRK2Rpp26qKNLS3s0j9mjO7e2nvNg33oJaSgcm+hqer1oLBdnMu3NG2et6AUt8ElxVhhWXXGGKy84tKIc+vnJU6wJBbvSWiWP59Zz/59dyTl/tRs55VBNb9Nk8xePkvn1ynLskXOmKfbrgc6MD6Jjd0rYC4bG4JhH9Q8kKFnFsURJKyzZuGG0rs+EI7Mx/7LG1kvzTr3O/Ykb143W1tKzRkKTHsXIJKTH4hyf6Gr4EBP5GBOpeOAcunIqGnhBX3vJIDs7h2nTaugzEAD6ItNclDy54hz6Q5lN/OJPrifxq32OH1tmMmz8p73wvZ4VU6gmHimyun8KvU7H5TVlxx6k5Llmhb28H93wKNsdSxCZcO7FqLBWZ3P7WF2f0UKgqM2F4Jt26kiFzd820M3axFUIiRlxTtXUvEBJexcjy6YiNf+tcxnLxRlPeRRCqgHLVCjm7G1rQQ65lwV9a3t9b7x+Ua4Qd0niWGBaptbKQ5lN/PoD17gi6DOYJn1f3825H08xMtzu3nkcpnv1NMUB3YvVvobRMoLiYIJiIYQMyEBNU2Fwqr0hYZ8uRrwTdFOgjTl3LqmAGqt9Yl0VTrM1PIwQs+vq2Wy2oXM7En4PjedrDksrQhLetHj7ubqREJ5UPNniBiB1hUNDq+sS9qA5dMsSmEMxQieCH3JfSYIOJYe+wirEAfzRD1/lvqDP5dQQOz6ZZ2RoZTh2VbHbt64Ex64ejZKfjPo9lBksS9Tt2Mdycc44mMe0HCKnEEoLR/alg50gd93m2jsthoRJqDQZq6VCbbre2L3WsKjPLuLXL6aaZjoagkeCNumdWzdzKoeGVlMwlz+nYSmk8k02s3EQy1Qwh+JoDlRKchMzsvIEfV1sgovix/0eRl1MmnH+9Cu/zc6/POKdoJdQjpzk3I+tMMfeG3zHDhAa0ciNxwLl2NPFcE3mbywXZ3CoC+nVUoIF4Qlnl3GNROP6ppSG4nminGWVFvTlvP+pidXJDMUeZ9uKKgVA9y5RxMypnEkt3fjFkoIzqTaKxWCk0EopMM/EHNuu4QoCjE151l28cgQ9oRU4P3ma82MnV5RDNxHc9e0Xs/nvd0HBp1yFkmM3vrcKI0CJXotRduzm+rxzO3lcQEgIjWrkp4JjKKYyMSZr2Bp8ZqzDO0GXIDKas0uQAnp2jNXVWU+Z87uqYv//RkW9YbWZ69SVVJb0DweIPu9kzZ/v3zTG+GgviuHMxVMMQWREpTAgXW/PWiY1nmAsUqQntnDtw7AUzqTayBWCUcXCMpXAC7pUQNmW5sYNR1dUDfeVWFDmi6ev5/BPN7Ptswf8HgrKkZP0H1WYGt/BxMvTJGPBT4bs6U6jt+eYOtpph20DiJAQGg6RswTRrrxd1dNnJjIxJCw6Zx6f6MIseFcgQORVImO11Vqpldwag8u6at8GqiC5Njn7HPri1KWUM05dIBCWRMvV961EVNPxtnnCFIishxUjLDhzprNqBaUgCfpKcehsznL9hiMrStAvSx5bcYL+twefgfW2djZ9ahfoARm7tOj48R46v5FcEY4dIKSZJDdOtRx7HUgpmEjHGa+YMy0pODHZSWbSneqd1QcD2rQzleNmEIAmCSn1CfLcstFKk069oadnJvQODb/hCCGxtjReNWcxtKw3deHLSEMwNNg1b339TDo4gm6ZCsZgPNCCLhUQ56S5vo7EEr8pO/Q2ZWUUwSlz14Fn0vM2HU4N+T2UqnT+eB+xf+0kk1+++2MQiIYMOjdPBF/Yh0Pkxj0UzGWYyMRIFWdfNAZTbZ5VjJvB4UIzYHeMvHxnc+2ffXHq80S9ZLe7d+c5Nlx7D3JFSLo6Muhtznb0UfOC0LjHa9gWDE7ZyT45I0Q2IILecujOowi5Yh36XQeeSc97VeTEpN9DWRxp0fGTvXR8o41cMThbs5ZCU60V49hzk9FAfKdSCqZyUSwpKBgaUynvBT0yrDnr0oHipjxxrb55YWt8hNCcpu3Dp2z9ePjhhxsag2OiHj41gZmqT8zaIgWsqPMPglPddeohMxHj9HR7oLqu6aMBF3TsMooryaFvjI1xQ/v+FefQT+tdrHqXgTg56PdQaqLzR/vY8PZJRkfa/B5KTURDBh2bJqmjwKbnlB170au938uQL4YYziQ5MtKN6fGYhClcabHb0ZmtK0EOYFUohcrCtwvP96nPYv8BMqTVfTSzxmYwdeNDQogaNemK52iLFWputec2or2IDMbzuyjqpMaRaffa2zrNcLGNPbm1fg+jbrq1NEdeMwBawG+IEnJ9HwfetpFEx8p4eZJSMDmeoMrcHCiMhEQNObvzqFEURdIRzdPTkfFlznY6pwvsZL960Rd5E7zwwgsbGkNDoq7NmxjsizF842o2bqyv8cPQZBuRUWdfbS1NUljt8U0rYGPfGDFNZ1U8QywSjLBsKGJgrs0Huo2kmheceniAA1O1te/1m4wR4WS+i0eyGzHdmBVcIip0/vzVX+XAH24HNcB2ErC2rmPfHyTovHiUeECepaWQUjA61E5oMOyLNtWKnpRE1mTQtGC8eaxKZohpOqvjGTq7nevgWQsyalLosRwX9uKTHTXVL5nLo6kN5OXsJL16jR1C6OzsbGgMDYm6osz5WOlLkQqoSu03i2kp6CedL5tqRoGQhzetgHhnjog6u9GxK56byWD0m1DEwFqTD7RjVww4/UTfihF2SwoG8x3syq1bUcIeEiYfeNE3OPKOnRAKZiKaXDfAvrfFWLXaoUYyLiOlYHS4ndBwKPCCrvVlA7GtDSAa1omHZl/YViUzqFEPy1sKsNoMx5dLFF3wwLGNdX2msiCPLMnXPJ2tZwyNfEgIMePWZRPxJsermgkwO72te5royrG5Z3xe8YCYpjPQOY2qBuONeKU49sFH+jk0vXLac57MdfF4dsOKEvaEUuQvXv0V9v3JVjI37PB7OPOwtq5j7/9JsLpvZdTMLzv08GDwBT08EByHHg3rrGmfRptjAmOazta+Uc+FveBwETRhgVFnblkl5aY8noo6zAnBC4mVjDJ1U33b046d6kFxsm2qgGKH5enaTLSjwIau6m01Y5pOf0eq5djrQDHg5GMD7JvsJWcG+A1kDmXHPjd8FnRUJH/znH/jqg89QOZp/gu7iEaxNq9j39ujrO5dGQ69oGszDj3IlB16UOahaFinvy01zwSViWgGm/vGUDxc85dRCyMpHQ3Dh0c0Dk3Vbk4sBA/nNs2OqfSuoza4TNa8qCORqkp/d+0PY6oQQR0LOZokZ0QlVpuHb3mqpLstU/XmLNNy7PWjFmDkoT5+8/g5pIxgFMxYjpO5Ln4xuZMTeu1bOoPANclD3P6X/0v6Jh+FPRLh0Fu2MvIhfcUI+lQ6RnZvZ+AdupEIvkOvJKbpxJMeVhRUJfoqZ2v5q3nBidP1zQUT+uxStFEyu56L+swJG7ir07kIoZSD274EGB0eJsepkv7+Sbqiy0cnYppONByczk4rwbEjITym8sCTW8mYwVz7rcSSgj2ZgRUn7OdGT3PDB+9l+tadiO4uT88tYjGOvn4bbZePztS7DjpT6RjW0QR1FgzzHD0p0QaC49CFkLRHC0uaoDLrOydJdjW2nashBBQ7nX3xCZ8MYzb4pqCXtmTHYo0VC2pYWUMh2+7JOkXdkoLcmLOVjYyoBM2jm1eVrBmYqFq7eDH6kmlikWAJu7k2j94VjDf4xQiPqtz3+LYV49gNS2VXei2ndW/FsVkuTxzl3R/5KsOfDMNqj7YXahqH37SF5HUjgUneWo6pdAzrSMLZ5h8OY2lQ7DEJD2QCEyEE6ErkaI/Utj1RUyw2d497J+wCrLiFFXbuPlRMwZ6x/oY+Wxb1aLSx9rkNi/rMW4QwOfLSdkJqba+uUgrCo87ZRDMiMboNz9bStYhZk0OfiyIkA+3TgRP20KocxVUmMhi1cqpSduwrRdgtKXgys4YTeveKWmcHeN/2HzL4UZeFXSjITWs5+qYdxC9fGV34AKYz0cA7dEsFa22e2KpgOfSuZJbOOudMgN62NMKrF5OwRaHXuX4kwoDRM7W3FB4ptnFUX41pgGn6JOrxuF3WTwoTvdOqKawCMDjRjnDwwTASEjy6gdW4waa+sYY+G0RhF0IS6c6h9wTYemA79geeWDmheMNSeSK1jgfSm8lYK2PMZf703P/mzMc010LxqZu3c/qDkuR1Iysq5G4eSQbeoVvr8kSiwZlfwHboPbFszfowl0SoyJq+SYRX94lmNdUHvRJ1QmMkv3R77jKGVMhbIfTi7FuFb6JeT/HcgqGhj8QQDmW9W5pExrx5dRaaZGvf6Lz96PUSRGEHCHcWKK42Au/YH7x3O786tgVrhWwhS+lRHlyBwv7HO37I4Cci5K86x9H97FPPOJfx304TCQVYHedQ0DVGD3cHP+SuggyYoDfj0OfSHcvS2+vRFkcFjKTl2DwYnlQ4MlZfjk2xOLudrbzEXS9Nh99lHfGoyWyMyIhzu/31du9cerw9X/MSw1IEUdiFkES68oF37GpOwMEE957Y5PdQaiZjRHg4s2nFCfuf7PwBb/6Hb3DsDec4crz0zTuYftU0iWjwK8QBGKZC6ng7oWkl+CH3dXnCAZpPADqbcOiVdETyaB7tX5dxE9PBfiTG3tpD8DB/PV00WG/cAade2x1vSUE+59zEZiQkMu7B0yagbVVm0f3ojVAW9qBsNSmzEhw7EswDSX55dOU59jEzuaIK1ahI/uC1/8HhPziv8Zrxa/uZeM65jP9OhliAdoEsRUHXmDza6ewOHRcIasi9PZ6vO+9oKSKawdb+Ec+EXe82nUuas+BMrvamRMUmk+TAAaee748S6astS1E53vhAKzE6vEmOE6pkQ+ekI2+cc1GEpCPufD/5Zphx7N0BtibYKz7iUIL7TtZXjtFPMkaE+6a2sCu3zu+h1EWnmuWDr/gax96wA0Sd08WaPva8sx3zNWMrooY7zHHoQRf0UlJc0ARdVS3aIrVtXauHsGrSV0ctlOZOZtlRYAfev9WCYO+xgZp+91C+l3Tafnlua2u8O2HTTl1PWKzp8rasY7HDAtUDQdckA/3OOfRKuqI5etozgenqVibclafYG3zHbuxvW1GOHeB0vpPHc+tXlGMPCZM/uuObHPyjnRQv3VrTZ+S6Afb8n3ZWr5t0d3AO0nLozaGqFv3tKWKaO+PqjOZo96jxi5U0MCPeJnKeKbSTSdvL0x0dHQ0fp+G7t73dXisQZm1v4KdGOx3pX2tpEivuTdg6kig6GkaqRlc0R2fSw0ILNSCEJNJZcuwB1p6yY//F7h0cTq2M9q2WFJzMda24ZjBtSp6PvOwrbP+b3WSv3b74L6oqrO1n7zvbWN2/gmq4j7aROtYRfEEPsEN3U9DBjm6u75z0ZpubAnq7M+dRz4RrDsHn0vb954tT7+qyt7wIo7aSfno67EjWuxkFPFiL1uIGG3vGXT8PQE8sG1zHvtoItLAjIXw6xMmH16wYYQfbsf908rwVV6jm1o7d3PLXv64q7CIW4+ibd3LsQxqr1056P7gGKHdZ005FCKWDfKM/dR36XBQh7W1uHmiAjDlTkCaUEqSLtdXZyJXuQV+cevmkSnL5cMh0Poo25kDBGQFmm/vrvWrMZFPf2JI1ip2m7NiDJOxlx17sCbZjB1B0OPH4wIoRdksKDEvlycyaFSfsF8ROct6HniB3zRxh1zSO3WFXiFspGe5SCsZG2wgNBbuGOwTXoSuK9EzQy3THsqzpnXQ/p0qV6G3OrK2fOFJbW+lsyamXI+GN0LColxu4t+nLi3rBUNFyzX8zepvlvksXkEjkm9qP3ig9sSzdbcFz7JHuXPAdO/aWt5Xm2A1L5fH0uhUn7Ld27Obmu37N0CvPQ25cw9E37yBy/cqpEDfj0E+Hgy/oAXboAx3Tngp6mc5ojpAH2fBWu4HphFufrG0rdy4TAFEvpJb+gy0pME1n1qm8SNwSeZVVNUQf3CIZKpIfjyKdbBvkAKG2oqNd9dxC0eHY7gFOZjrRA53pN4slBb+e3Mq96a0rqrTsubFTvOJt/8Pk+R0ol02tmApxuqEyOrIyHDoSzKgkHAlWDQlDV8mmI76YH7DD8OGIAUX3n3HpRGkVCQVz+Wh1Ofzuq6ibBZD60u5Z39/etCBIBbSsACd7sFdiCpSswpG9AzWvgThJzghxYO9awsMa+plYYITdMFTk8TiKLlB0EWhxl5odlTvw5Dp+tX/biigtO1GM8cTQAN87eAGfOHDrinHtf/zgi7n76Zvo/N4uej8bYyrtbKMmN5jORMns7iJ8MmxXiQvwvSxMUAxBeFIhPxKc77ZY1JDH44SORNlzorGmJc1yYrKTwoF2REFx9RqKjIowmzeUakHw4PENy/5eesp+gyjnrDVCw0NNJpMzPdXHR5ZxF7L55Q9Z2sKmZJyrSFeJOq2hGKClFI7v78PyWFQP7+8nNG5fktCUgj7iv7BbpoI4GUPLlMRc2hNNHdWBPUNqzGxDERLERJj7D22iYAW3z+yUHmX/aK/94iQF05koXz5yNWNmbTWj/cBE8N4HX8KOPx5HZjJgmkR+tZs1X4yQLQT3JWo6E8U8nETRZ+ejIN7HYAu6sOxnX0iIjGjkRuO+zweGriJOxFDzAqRAOxpl72Cvp2MYSreROtCJsGyjJ7IuaYIp0LKKvezYjKgLsFS57LV7YGg9xdQaAFatWtXw6RoeqhBi5m3Cml48BDOaTsy6u0aFfc53oRYFGC6EXPT55SDVtMKpqcYzEOtlMNVGaHr+zRmaUHx17GbJoWuZivNL7J0MAXI5UrPDlJXr/mI8zD0HtgTOsetS4Ximiz3Dfej6/Os+nYny+cPXB9ax/+lDL2L7O45jDc9fQ4/+7y56PxMl9UBtSUFeMp2JYh1KolbJ4RMmgbqX5wr6zH+TEDmj+erYyw5dzc+OTVgCYzhGRvfm+bJK2w8VfXYMSl5xJYIr8gqiJG1SaTxhTqrYdeWnw2SMxb+nbDrM+Li942r16safoabUsbe39IY2WVzU1aZHEzP70xt163O/UGGWkg4sBy+ioaBNqfMebCEhc6CTE5Odzp1nEQZTbUzv7kFUyTcpO3bLyb+3VuY69EoC5NjnOvRqlB37RDEWiEI1ulTYM9bP8dEuDKO6y5hKx/jykas5rXehO7Ko1zxP5tbxnvtfyjnvn0DmqvfGjtyzh82f2kv+Z6sxHMqlaQbdUO0+6CWHvhhBuI+huqDP/Kzs2Me8F/Z5Dr2C8ITKkT0D5Ax380EMS2HPiX60wflLo4oBasX83SwipxKanr1/pQINeSth11YBuynVVKH6tdMtFZEuYpomiqLMLG83giOirpywanOTjXzpYmGigjCx11IcQskrVV84FAOy+zpddeyDqTamd/WgLLELKDShYHgcii9kwqjV5+1ZAuDYF3PolYjxMI89vJWHh/wt06pLhV2j/Uxnli+ZPJ2J8g9P3sS/DV3te6Ga/x6/iF++6xq2v2n/AodeiczlWfvZxzB+4e8uBN1QmT7SidiXWPL5KuO3Y19K0Gd+R9rLhIYb0cpF0Ks49ErC4yqHdq9xzbFbUrD3eD/qyWjVa6QYAnSHvhMLlOzCtXqpNXhz1PDoHp3uRjthv1l2d3fPLG03QlPfQjlEoOaqV10zLQWMhaHberAWKQerpRRErnkHI7Kq3f1rsZ9bkNrfxWg20fS5KrGkYHy4vaZKe1469kImTPhkGFF57arhl2MX9lafeks5po638+DQel8ce9mhp7P19UDYf2Y1Xxu6yjfHfk9qG8f/6BxC9+8FWeP3LSXrvryP/E/9cey6oTJ1rIPQdH3XWVj4Iuy1CHqZUEZgnUh4IuyGrsIiDr2S8LjKaNr5eRJg3+m+BQ59HhK0SRX0Jp9rC9RJDbVKTTVZxWAue7jQ/JtpeokEbDVvu6hm1tPBIaeu5XKcmVpY1m4qFyV2av4bh1OTv5DY4ZFmRM4SKDU4fsWA4ZHGtxgsxr5TfYRP1xiykrOO3U2K2TCRE+F5a1bL4rFjl4rtzq0aHHolwhKkj3bw6Jm17gxuEepx6JVIKdg1OMDXhq5yYWRL8+PJ83nsDy9Be2hf3Z+V2Rxr/+kxjLu9deyGqTB9pJPwZGPTm7AAD19S6xH0Ml4Iey0OvZLc3k5OOhzZTBUjmOORZecXIe0tyc3MQyKvLv73Cuqab6SyMGv+zP7qa+VDYx381fU3AAERdTWXIz9Zx2RV68u+wrJfojqtNrjYAUJX7G0tNaANRth9fADDav4hsqRgz8l+tGP1T/ChKYXicNwVx17IhAkfr9GhV1Jy7Eojn63nNCVBb9a0Th3r8MyxH01388jQurodeiV7z/TyV/uexf2ZLQ6NbHGGjA7+/Au/zfE7NxK6b2/jB5KSdV/aS88fa4yccD/xTzdUuylLnQ69EiFxX9glCEPULehl3BT2ehz6XJSCIL2r2zFhTxUjHNvbj1ZjTX41Jxo3erpY9jyWWqORKLv6ysTdKtpnSoEcjnDmzBmguSQ5cFDUlbRKqlDb3u5a3XotGYdqQTS2vl5Uar5R7MGAdirC/hN99Z+rgnQxgnYk2tikUXbso8469rpC7otRmgjdEnapgBWRTd61NmXHfs+xzZzKupczcTzTxanxDorF5rfVSSlIZ6N8//D5PJJ1r+2sieCzX3w+6z/5KBw+3vTxZC4PB45x7sfGGDnunrCPjrU15dArcVXYS9GtZrf6uiHsjTj0uShFwdSh5q9zqhjh2L5+tHTtf5uQdvi8kWx4dVqz8yqWPEHtIfha1+D3T/QiTDh9+jQAa9asqe0Ei9DUndDXZwucUsijpSW54vxQcupg5+IfruXvrXF0Wkqpb5ubFPY2iAYeKG0wwu5jjTv2jB7m5P7m93WGJp1z7IVMAyH3pXBB2J1y6JUYg3H27V3LYM755ZWj6W5Ojnc6nuBoGCrfPnSRK459yOjgw//8Gtb/8y7Hjy1PDnLeXUOOO3YpBSNnOggdjzTt0CtxRdgdEvQyM8KuN/9w6EWtIYdeiZYWPHl0TcPzZL0OfS6KQX1r6xJEWq263bHqr9dQObFyLb2MmhXcf2p+EZrRiTaEKYIh6t3d3cRiMQSgZjNIKeZtbVtKJJZz67KOfunCsveV14wpUAuNbjoE7XSE/Sfrd+wFU+PY3n5CTjgJhxy7Iw69Gg4Ku5MOvRpKUWHPvnWOOvayQ3crsdEwVL5/+Hweymxy7Ji6VPnHf3k+6z79KLLoTj1va3iUcz8+7piwl5uyhE+FXEvWdFTYHRb0MqGMwDoZb6okt6GrcLJ5QQc7EhY+FmHfqfqLeGX0cN0OvRItVcfausRuuVvrsrBYusJctbX0MkKyoC5FmVOnTgGwdm1z+T5NTZNCCNats7cIaZk0uaP19YBd6iGstyyfWqixspAp0KYdyJofDdddSvbggQFnBH0OoUmF4pnGHLvjDr0SB4TdLYdeiZJXHHHsKSPC4VQPJ8acd+iVGIbKdw5dxEcP3c6I0Xj/ZYA/fuRFfPkFt7Lhn5x36JXIE6c576+HmNi1qqnSsuWmLKGT7jdlcUTYyztFXBprKCMwjzfm2GdC7g403ppBCrQjUQ4O15f4NZxKNuTQ5yIsUFLa8tfMFKgTofqitousl5d/ZoVrT+A9nu6CwQiiWCSdTgM+O3VgVtSzGRRD1DeRLVJlrpYEuWqEatjmJvLq8usmNaAWBMf39dW8L/P0dLtd4MZppC3s9Tp21xx6JU0Iu9sOvZKyY//18c0NNYOZ0qPsGenj9HiHZzUFTFNhfDrBl45ey6QZb+gYf/bE89n23knkidOuOfRKrOFRtn3wMQa+HKGg159vkMpGGT3e6apDr6QpYS/vEHGZRhx7o0lxtSAsQXEoXnNhmmMTXeQOOhMxU3PL9AqRi29fW47FIsmLiv0imJaCMAVa1m4i1t3dTTTaXEKtY6KuZtIIA46frm/7StW31iZeZdXcEtvcTOFIC9gyWlrh2J5+pgtLX4RTUx2kd3XXVACjUepx7IVMmMjxiHsOvRLLXoqpZ1LzyqFXouQV9NMJfn1wa12lZaf0KHuG+xxJiGuEiVScfz5yQ92O/U8efSGb3ja6bEEZt4j9Yjdd/5ysy7GnslHMQ0kio6rnXdbqFvZShrubDr2Sehx7s0lxtRCeUDm0a82y8+TRiS6y+zpr3pFUC+r0Es+jrtS8jl6NBe/tYvG6Kotx/IC9jKtlbFFvNvQODjt1IUEa9rr6ybHO2m6UKm69mY44ig7qlFZ1m5uSc7aUIICWUTi5v3dRx25JwdTJjpkawq4xx7Ev5RKlFKijYUeiFXUhS/txaxF24a1Dr8pYhAcOb6zJsaeMCPtKTVn8ZCIV50tHr2XMTC5bgW7SjPOBx1/A1velsKZTHo2wClIS+/mumh17KhvFOJx09QV5OeoRdjfWz2shlBHo6aVfSt106JWEJ1ROjy++tHVsootsqUmLkygmUG13VFEhNNGcHlRmt0uFmuYsYzjGVDGKbqkzxdnUkqg3G3qntiEszdw1dYDQSIjJbIxiJlyzkM276evc4F8NtQhKumKCNQVKo8lxy6ClFY7tXejYLSnYe2yA0IR36hSaUNCHq1eek1KgD8cIpf0rOSqspYXdL4delbHIso59So+y60y/bw69kolUnE/sejpfG7pqUWH/6dR5fOVdz2PTmwexhoY9HmF1yo59qeI8ZYfeSLjUaZYV9vIedB/LzoaHNPKZ6vduteYsbiMOJar20jg60UV2r7MOfQYJSk6Zf60khCacWYadecTE4hnvlYRSCnkzxAMnNsx8/6G0/WK9cWPzW1WbVpv169cDoOZzYBoICyYH60w2muPW6w1fLIZaEPO2uYm86uram5a2HfvctaP9p/sInQx7XnaymmOXUqCPxoiMOh+tqAu5hLCXHHogBL3MWIT79m/m8dGFb9ApI8LekT7fHXolpqmwe6if/xi5fIGwP55bz973n0/kV7uR2erlnX2h5Nj7vhwjX+HYTUswcrzLd4deyVLC7pdDn4tiCkInIwuEfanmLG4iDEF6Txenpm19sKSYdegufldqYc7aurRLgzsh6DNZ7kslzi3CVCGKPjy75HRRzH6Z3bx5c9PjalrUOzo66OiwExu0UvZeXdvLSswIrkP3mTDttzEMpdQX1/0bWEsrHNkzwHQhynQhihxZvrShW8xt21p26JFhnwW9TBVhD5RDr0CZCjF2qJtHhu31Ll0qnMp2sOtM/6LbU/xGSsGjp9bOc+w/njyfX/3BNUTu2ePz6BYn/vNddP9TksnH7Ixp3VCZONJFZEQNhEOvZIGwB8Chz0XRBaHjs8Luh0Ofi1oQjI+0Y0nB8clO9xx65XlT9nMq0hqhKecip2Vhr9Wll8nrGmq2NA4pOX7cLvLkhKg3HTMUQrB161YefvhhQqkpjI5OOylquIE2fA6E3ucdrtxtx8P7V0srnNzbh7DsAgx+EppS0JUYCPx36JWUhV0KLFUGz6FXICRMHuvkUSFRBA3VcPcaKYXt2NXLubzjGAf++DwivwmuoAO2Y797F9seiHH0zTvI95mOVYhzCyFBloRdWMER9DJlx54bUNBGQr4JepnIyRC7cxtQsgo11HFxBMUQWDnVcXMnVdlQDtjE8S7K052WyVAsFolGo/T39zc9JkcWAsuirqWmgZKYNlg/3GnC03ajeyPh3ZOmZYX3iWiLEJqo3lY2EJSWXRQpMC3AoaUXtxCmYOJwNzJpoEZNVC0gF3kJyo79oWMb2GgG+/udi7ltLfFBiRUOtqCXCaKYz0XRBZGToYb7ZDiKFIQmlaYSoutFmBA9rdbUprluGvg71NSs2Szr5saNG1GU5r8UR77WLVvscpWh0uAaxWq0X+1iSFBzEBnHLh/p4UPX6F57N5ipgBSQ8SxA2tm6wqstdk0gpF3UwpoIYwZsLX0xpBQoqsWh31bQr97p93CWRgj0q3dy4vYkaffK2zuLDLagQ0nLgyDoQjbsbhs+pQWRcUFk0qW+FE1e+/dcfCEAmzZtan4sOCTqW7duBWbfOBrG4e9bWBCelggpiUxK7/ZlQ0PJE24iFWm/NAXV+FgrR9jBXje1xleOsAOEk0WO3CnRrwqusBev3snJm6N1r1H6RsAFXYpgaHkZqdbeEMUptLRAtVuVE25Sotzg6NGjgDPr6eDQFL9p0yaEEKjFAkoh39hBXLjxKps7hKec6+deK0FzyJa6QoQ9wBNlGWGuPGHXwiaHfkeheO25KF2dfg9nFiEoXnMug9dHmio+5SkrQNADgw8OHezEvFBm9t8VHWdL4TrA/v37gVlz3CyOfMXRaHR2v3qDbt0KObvWoRTFgmxZLSeJjnq83h0wxw4rQNhTwk4y9PgFrBGEKbAmwhTTYWSAJ/i5hBNFTr5RZ/87N6L01leX2w3E2n4yt5/PqZsiK8OhSxH4NfRACTr+OHS1IIiMM3++l6Dlcd40NHg8oeucOHECgB07djgyFMem9m3btgEQmpp06pCNI0HNg2Is/KbVvCQy7n0iW8ux14eiC7TMChF2Q6CkNPTJ6IoRdgBlU4b9b12L0tPt3xj6eznxon6GL1NXhkMPuDuHgAm6jw59gaCXf5Z3aW29AUJTU4Ddxryzs9ORYzr2Ve/caa/ThaYm6v+ww+s+woLQEpUvtZy0BcNLWo69blaSsEOpbvxKE/aNGfa/fb0vwi7W9HHixWvQ21bIF9YS9Lrxw6FDaal1CeO2lD54Sbikl065dHBwSj/33HMBCDfg1GutmVsroWmBWGZmDadovKd6E7Qce32sSGGfiiBd6qPuBsqmDPvfsR5ldX3NmJo6Z99qTrxkgGJHwFWyTEvQ68Mnh460539lmWaDajEYa+tlpx5IUd++fTuKoqDmcyj5BpPlHEKpIbQuTEl0FO8LMQRwe9lKEXbF56IZtaLkVPSpCHo+GPXga0HZmGH/W9cx+aKLQLj4Pasqmdsv4MSL16InA66SZVqCXjd+OfRQStgZ7stdLxmM1Z7tpesWSFGPx+Mz++zqDsE7eEOqWYFSYznJGWH32rEHWdgDNKa5KLrdNlfNrYzMeCWvwGSYYraByoo+oWzKMPq8PGdeexEiEnH8+CIeY/xFFzB8mUaxcwVcRGgJer0IidT8c+jhOsLqoZTDu6HqvE+ErnPy5EnANsVO4ehX3+i6umNFZySEsiwbep+LsCThKWdOXxcBFXapulBxySmkHVnxY9mkEYQEMR1Cz60gYVctMrdkGH7JTmcdu6oy9uztTJ1DMCxSLQRc0IO2Bx3mNDnxGLsmCXUJq7D8DcGHJ22d7O/vdyxJDhwW9Zl19ckGkuWcQFKzS5+LUoDwlA8OMIDJc1IQfGEvO/YVgJDAVGhFOXaAqVtznPmdixDh5sddduhT21bGNQNWhKAHirJD9yHkLky7YlwjqD52/fvDnbY7v+iiixw9riuiHpqawI8UYC27fIJcNYSUhKckoZQ/od2gOfYVIex5e519JVSgKzv24mQE0wxw8sIcFNUifVOGkZec17iwC4F56XaGX7SCHHrJ/gZ5qIETdPx16JHxhTVJakXR7ZomfvD4448DcOGFFzp6XEcvw9atW0kkEiiGgZaqLabt1I0gTNCyzR0jPAVhj2vEAy3H3ggSlIJYMaVlhbQT6KzxlSPsQsDU7Vn2fOwcjMvqX/PTr9zBidvipDe4MDg3KIl5S9DrIAAOvZmWvMLE/rzX19yy2LPH7pgYaFFXVXVmgOGJ0Zo+45SYKQWBWmzuyrQc+3wCL+wAVilCswKEHco141eQsCuScKLIwTtCtQu7EBiXbef006L2/bMSCLg7hwAKOgFw6A5stJpbRrZparyHQtNT5HI5ksmkY41cyjh+OS6++GIAwpO1ibojSFCX2ZdYD5FJ2XLsJWaEPWAvHHMR5kpsBhNZUTXjw+0FDr1RqUnY9St3cPK2+Moo+QotQW8QXx36WHMOvRLV4xB8eHwMsF26E+1W5+KaqPcVsnipipqTb1uUtjv49KAH0bFb5UISARrXPEqOXcusjC1vwijVjJ+OrJgKdKGIsaRjV1b3MPrKizl9QxSprJA/qiXoDeFLYZkSasFZQS+36PYKKeCFpUJPTofewQVR37FjB9FolKmpKdSsN7X41ILzE7mwSs1fDGePW9vJg+fYwW7fGmRhF6a9DLNimsEYAiWjrqjSsos5dqW/lxMvW09qE1jhlfHHBL0pCwRU0H1y6GDP9eFJ54+rGHZzJm+QPPbYY8AKEfVQKMT5558P1BiCd+Cp0urcm14ral4SHReet2stE0QBDbqww5zSsgGfsMvMlJZdIeOdcexX7kAkEiirezjx4jUrp+QrtqAHncAJul+lX0vMNGlxYT5WdJYtLesUWmqayclJYrEY5513nuPHd+XyXHLJJQCElkmWcyTJwuV5RM3bzV98uZED7NidSFBxE0UX3pcAbgIlp2LkV85e9nB7gWNvMTn9qnMYeta6FSPoUiGAajkfodv/BA2/Sr+C3Zo7PLF0k5amceAWruWF44MX2lu/L774YkIh5595V6TqsssuAyAyPrzkfnUhceSLNOIgVXceVCkERkJidBm+zAXlqkdBaRUIEE4JEoOS6JgdtgoiUpOYERn0+XsGK2oRSRTRNBNlBaxHG0WVvn+Psfbbx+n7+fCKeIGyQmBptkAE8r6QtpjHhySJQRmoZ0uY9ouyH9EvKywxuw2ssHvnMCMOvLDIUgRoie9IKQgefPBBAK644oomT7jIOdw46LnnnksymUSYOtr00tXlFLP59U9Lg2Jbc8dYDKmBvraIiJgY3d4KuzCxG5mU9lKqReF72FBYgsRpC8WQRCcs2o5baB4mmdSC1CR6cnbdL5AT+BysqEVsVRZVtRACVNUKtLCbpsKGr2jEv30fxomTmPsPsfGbZ9Cywf2irdDsfSCVYAp7dAzaj1poeYlakERH/b8HhGW/uCsGKEXv+2RYYYnVoyM0i8wGl2y6AD1J0xHR5QTdxpxZT19Roq5pGpdffjkA8cEzy/5+bV/GYp+1/9cKgxFz/oZLr5+tRuG1sCvG/PV8RQc1719WvrAEsZH5ISZh2c6i2cI/TlEp6DP/PWATeBkrahHtyS0Q8aAKu17QWPvVMOEfPTjvv5v7D7HhP84EsnzvXEEvEyhhlxAZg8jkfHcTykAo7dOYsJ9tYcwPeQvDnTXtatgOXYfScyCTBoUuh08iQE8wI+gNJ8vJ2r6XxLFxCoUC3d3dbN68ubFzLYNrK8VXXXUVAKGJ4WXXQRoOw0tmnlapgN4OZtS5p1RPCMz2+TEwr4S9LOCViFLtcz+EPTYM0fGFd65iShJD/jv2xQR95udBmMDnUBZ0Va0+GwRN2C1TYcNXVaLfu7/qspq5/xAbvxUsYa8m6GWCIuzRsdJzVfGVClOSGLScLY5SIzOCXjmmUolmt4W9LOhiTvEioUoKqyxH85v0JJjR5o+j1PAyoKWFvSQNXH755QiXWhy7L+r6JGph+ar5Dbn1it+XAoyYvQ7eLFIIil0SEV34RuK6sMul6xF7LezCEsTPCKITiz/Jfjt2qUn0tuW32gShs5VU5bKCXkZVLTTNRPi490pKCD+QZPufTBD54YNL/m5Z2KOjwsMtQguRqh29W+5a+yrsizj0yt+JD0lPHftigj7zc9PdhLVqgl5GduqYMWfOI1UwK9bphUXdOlTrZ0JpuLDPlly3Qu/goqj39fWxYcMGLMsiOji87O+LGsMXlZ+pxIxAsaO+41RDqvZa+qLndlHYtZxYNknGS2FX89UdeiV+OfYZh17H3eyXsEtFovYUSPRmlhX0MuV1dr+EPfRYkrWfegjjyLGaGjWZ+w/R98l76HvAnxRuqYKl1j43l4XdayLj1R16JcKUxIa9Gd9ygl5GKbhTw2MpQbdPLMmsbT5MINVSHlaVeaDex6yWl1dhCCJjWfbu3YsQgquvvrq+k9SBqxu1ygOPjJ+pKZNTWHUkzS3xxZtRKHaIphx7esPynR1ExHS80Eb5oarpdz0QdkUXxIdqP4GwIDFokTgl3d1+UqJWh171sx4Lu1Ql6qoCkWj9YueXsIcfSLLhk48hC/WX8Ir++BEG7jE8dexlQa/7cwqYYW8cu5aFtqNyychXJYopiQ27u55dq6BDqUGR09nwAsy4tbigl5DtelNr61KFYrudBN0std7bWhYiE4OAnUje3d3d/MkXwVVRv/baa+2TZIcILxVimkNdc9YST6ARs9fYG0XW+OZudemOCbuw7Gz3er4DN4Vd0QXJkxKtUN/BhQWhnL0tx01hb8ShLziGR3pTduiNCHoZr4VdezTJun94GCvT2KKuNAzCP3yAvgd1T77oRgV95vMeOHY1Z4fTFV3WJ4jSDtNHXWqpUY+gl1EMZ7PhjaSFSCzvaITaeEW7skNf6vM17zCqtaOfhMRpiSjYSePXXXddbcdvEFdF/ZJLLrG3tski8cHRmt26U0JgRsDS6r/pCl0Cq6O2yVco9pYLJ4Rd0RtLQHFD2NWiIHlCouUbP6iWd2+/bTMOfcGxXF5nb8ahV+KFsBfHokR/k2TD3z+KlW++ylD0R48w8BvdNccuhb1+3oygzxzLRceu5kqTu9n4tYtMWY479kYEfeazTmTDCzDaLWir/fnIry829OxbIWccOpSS42r4zqJjglCmSAR7e/f111/vzAAWG5ebB9c0bdat54aITNR410hnwjpSgWJnfcIuFUGuz0LUk3Us7HWgZoRdKTbXRtBpYQ9PUrdDr4aWl8SHHHbsolQswuG7142J3AmHXokQoGlWzWvy9VAcj3Lu34/T/4l7sLLOZD2WHXvvQ4bjX7JUQIacjQLblS6dfWlSc9iRK6vJ45Ycu7J87nFNNCPo4Ew2vJEsCXodt4YIWeRX1TdoM1LavuYAtSbHCUMQHZWIwijFYpG+vj62bNnizCAWwfXip0972tMAEIUhwlNWTfV1hVx+raLWm8jS6hN2I2Gv2dRLU45dOlN3WEi7U1mzIbHw9NKZ7vVSduyOJNAJMKMSK+KOU3VSc5x06NVQFOmosOsjMc7722HMfQcdO+Zcov/9EAP3FB0roCSF/Xy7cSfIkDPCLgzQ0s079ErsEH4T4yrNOc0I+syxGs2Gb8Chz/1sscfCqrHKqhmto8DMcvpTgz6VCWUgnLEQxdnQu1tb2cq4LupXXXUVoVAIYWbQsilCKWp7w5EsnTRXx+xbFvZaSslm++t06XMRErPLqFvYhelsudVm1rrsErCW4wk5Wl6SPGURWbrA4NIIMCMSM+ZuQpMTx3bDoVfDKWEvTkTZ+clRjMNHmx/UYlgm4R8/RO+DRtPCLoUtvG4hKW2Ja0LYhVku+Wo179ArUIuSxOnGhb0cNncqsrfUFtzFMJIWJOtz6PNo022hXoYZh+7QnFHLnnRgZjsiUrIqZncsdTv0Dh6Iejwen6kuJwpDJIbNmgXDiRKyZSzNvrhLYYYFssm1caFadTl2YeJKec1GhF0tChKnnBf0uUTHLaJjjX3WjEqMhDcZys2cw22HXkmzwq6PxDjvb4Yx9x9ycFSLICXR/36I/t805tilKNVwdzjkXvVcNC7swoD4oETLuTdKtSDr2pkCcxy6w8+4sOwwfK0XZcahN/ksG0m59DFKS3WOCLq0q3zW+jdGxgXhtAX6OOPj4ySTSS699FIHBrI0nvQemw3BD4KE6FjtN2LVZIQGnxO9belSsnobjYWCKqnDsStF97ak1SPsQtr7Zt1OrBYSohN1OvZSyN2MebudqxFh98qhV9KIsJumQnEsys6/H3HXoVfShGOXmrdbERsR9rJDd1PQy6iF+krJulnmtdaXBaOtSYc+B71XXzJBUk/ibCOYGi+pMCE+bH8ZonAKsHXQja5slXgi6jfccAOqqiKMSYSeIZyuL2wkKoW9wWdFCnubmxFfeDdJRZDb5FD2CbU5dmGC6twpq1KLsAtLEB/E0XX05YiN2dtz1Bq2P3vp0Cup55xW3PTUoVeiKJJQqLYub6ahsu4rIXa8+zHMA4c9GF0FUhL9rwdY88sCsaHlv+SyQ/flHqB2YdfS7jv0uQirVEo2tczvueTQK1lurnHKoZcRmkVmfZU/Sth70ZeLzi563MpEuLJLr5FQShDK2qF3UbD3p99yyy2NDaZOPBH1rq6umXasonAKLV8qeyipfX3dIaSo7tilgvPfxlKOvZQ16gXLCbuiQ2TK+4pa0UnLTqBbLOvfJ4deybKlRgVY7Qbxnqxvgj6X5WrGm4ZK/3+EifzXAw0VlXEMKdF++hAD/76X+Oklfk1479AXjIFlhF1CeIJSRUWP71cJkQm55DzpWSMWa5GkX+GsQ5+LVJl/TOG8Q681oiRVu/7ATAVAfQxhFWhra5tZhnYbT0Qd4NZbbwVA5O1QROKMaWdM1nj/17OWsRxS2KVk5wp7eoNEuLBFaDHHrhaWLwXrJGVhr0zyUAt2gRm/UAxJ4rRVVdjNiH8OvZKl9rLLdp1EZw6Xk1rrYjFhN02FtV8NkfjWfT6Mqjrm2Dh9//p4VWGXqn8OfcFYWFzYI+MQG12+5KtbaHlJ7MxCYReWNw595nyLbHEz2px16HOR3UWK5UJjwi4u06hDr4awav/+pIDIpCCSKofe7Zvaq9A7eCjq5T9KmCkwputeWwdnhR1sx25GBVIR9huWW1TsYxcWju0zrQfFAKUwG0ZSTEHilEQt+uuEZ5rBlIW97NDj/o6rGnPFZcahtzdfoMUNKoXdNFT6vxUh+l8P+Diq6liZDP0Vjr3ZCnFusEDYS7koXi5dLUZ4WhIdmf13YXor6HOZyYZ30aHPUNraCHaWu7MOvfbta/bvC+JDpS9cWvREpwB4+tOf7tyglsEzUW9ra5upBS/ypxCSutfWwdltGFIBI1qqA9zjrsrO3ceu6P60ToXSm3TBFnQt7UyBGScoO/bwlH2Ng+LQq1EeVxAdeiVlYbfmOvQamrL4gTkxMePYgyjoZSR29EDNQ3QUomP+OfRKtKy0n2/D2W2y9SLM0nPcZkG7i4JeIr+hOLMrwimEJepO5AxPM1uFUx9jYmKC9vb2meVnL/BM1KEiBC/l/LX1Gmnki14KMwp6m/Qmvldy7Plew/FqaPWiFPxZR18KYUF8xLILa/g4IdWCFKBFTCwH70W3KGfFJx856fNIlkeEwyTOWIEV9DJaVhAflEu3TfUBVbeLPHnRTGkpzJikuNqwHboXSIG+TE33eqm3DauwIDYyuwQicicAO0FO0xyqTVsDnkrLddddRzQaRVhZMOw9TclBk/C0l6NYiKILlFFvFu6EIhEJg+x6w9eJS0i7xr0RDZ4ohTKS9gPCkSp7bmKORMmNxVaEsEeiOnveswFt43q/h7Io2uaNHHvLuQxd7fMb7zJoWUHbMYliBOulGCDfpWA41G+8UYy4pLimiIiarjt0AFlQCQ9r/holCfHT0t6XDmAZiKKd9f6sZz3L06F4+jXEYjFuuukmYPYtRlilzM063yydDl9rGQVlzLuMHBE3yK3z17FLBfI9An2Jvft+EZmWtB8MvrCLvEpufGUIe3x9ij1/uAZtoN/voSxA27ieI69ZS7E9eEI5l1DGFnQnS746goBCl2LX2vARIyEprlmiH7rDyKJC+IzWUEU7J1F0iE7NRm1E4TRCmqxfv57zzjvP27F4ejbg2c9+NlDakC/tGGtk2kJroLuj48KeVmzH7hEibjt2X4VdhUKPoNAhsGooo+slZWGPDgfbuYmcLewBXaqeR3xtmj3v24S2fp3fQ5lB27yRo69ej54M7hdoh1YFyePBc+hGTJDrUWYzwP0aR1xSHNARmjdLErKgEj4Tsvu6+0z8jJyXkHjZVvt/n/WsZ7le670Sz2fLSy65hIGBAYQ0ZjblAyQGLRQft8yW0TIKymgY6ZHzKgu7n6F4qUCxQ5BfFVBhP2aROKX4llxYCyKnkh2LrxzH/p61aGvX+D2UWYfeEdyLq5jQdgziQ1YwBX21wHCo+1jD44iXHLpXgh4Qh460O1pGpuf83WaGRx99FCEEz3jGMzwfkueirigKz3nOc4DZEDzYWdixkQZqLLvwjGlpBXXMW8fudyge7L2dQRR2YUHypEVscAU49rEYuayTdSndIb42zd4/2oC2bq0v5xeaRu5FV60Ih548DqF08MZYFnQv1q2XHIcvgh4Mhy4kJE/P72ci8nZC6mWXXUZfX5/nY/JlliyHJIQ+CuZs3D06aaE10MLZFWHPKCgjTy3HDsEVdrCFPfCOPa8ix8Nk0w5Wv3CJ2IYUe963DnHp+SjxuGfnVdraGPudKxm8Rl0RDr0l6EuMIyEpri16K+hDIf8deonYsESZmw8mJSJvm1WvE+TK+CLqfX19XHHFFcB8ty4siIzJhvZ8uiXsvjh2n+/XoAq7kCXHPhRsYUcKmAyRy6wAx74mzckPwNCdl+DFhnuhaYy8/AImt7t+qqZoOfQaxpGQFPu9TooLhkMHu95HeLriby+OIMwsyWRyJinca3yLZ86E4PPHQc6+5UUnLWJnGrtJ3BJ2MeHd5CziBtkNwXDs2X5BvlPx/SWjkuQJi55HBaFUwAY2FymQEyvDsQMUbp5m6J3XokSjrp2j7NCnznHtFI4QGxZ07gueoFuaINuvBEfQ1xQRIY/26UtsQQ+IQ0dC2zFrQfGumy+yTeAzn/lMoi4+S0vhm6jfcMMNdHR0IKw8FM/M/Hch7eSoRpPm3BB2NSuQundfVVAcu1TtUrrF9oA8SCWEBLUo6ThI4IW97NiDnhmvKBLzpimGXncZKM6/UYpQmNHfCr5Dj44K4sPBS4iTiu3OHesN3gReO3QkkA4h6uiS5ioSwlMsLK9t5rjnnnsAeOELX+jDwGx8E/VIJMLznvc8exDZI/N+puXtjOdGSy86LeyKLgifCXku7NkNhv9JRMIW9SA6drUo6dwffGGXE2FyQ0mKxYCXSQMKt0wz9M6rHXXsxtMv5+ifXhF4QY8NCxJDwSn5WsbSBNk+4Wxf8EbGEQK93WOHDpAKERlRfalhXw0tD20nzYXNc3LHME2Tiy++mE2bNvkyNvBR1MF+m1EUxU6YM+Y3BFaLkvAkgXnAhCEIDXsv7Pr6AoVu/4U9iI4d7JrxZccelId+AVKAIdDHo+h6sIVdUSTmjbZjF82WthQC64ZLOHlrGDMSkAe5CkJCdMx26EGZb8qUHbrfgi5VyA8YGGsK3jr0VIjwmBqY6yIsiI5WaXMrLXrj4wC86EUv8nxcc/FV1Pv7+7n22msBELmj834mLPttSA1QGH7GsXvsuMy+AvnVPivWHMduRIIl7mpR0rVX0rFfBGfNrQpCV9BHYyvGsQ++4ypEpPGcAPPmSzn23Jjv+SFLoeUEnXvtOhlBEQ7A7m4WD4hD1yC31kDEPW7IEDCHDhAdkUSr1fsvnmF0dJTOzk6e9rSneT+wOfi+8ffFL34xgL0NwJp/04hys/kGL6obwi4MQWhE89SxA1irisFw7O12ZnzQasYLy25Q037Y/2YWS7KCHLtxwxRnXnc5IlSnqgiB9bRLOXFrJHBLNnPRsnMqxAVM0AsdSnAc+hqPBT2ADh3sbPfoZPUBXbXNFqlnP/vZhMP+XjTfRf2KK65g3bp1pQpzC7tIRaYsoqONH7/l2J1HqsEUdrCFvSPgzWDKjj2XCQe6Ap0QULx1itPvuKJmYdc2rqfw7Cs49tzoTI/rIFJuyrIg2SkAFDoVih1+j6Ll0CtpO25Vv1/0KR566CFUVZ0xqX7iu6grijKzBiGyhxf0ehYSohPNlZA9qxx7j06+x/9e4+VmMEEV9rbDCoruzrV3BEMgxyPkJoJdM14IMK+f4swbrlg2FK+tXcPRV6/n1I1akAzWPIQsCXoAa7gjSoLucw13aDn0eUiIjFfJdi9hGYcBuOmmm+jv979Zku+iDvDc5z6XRCKBMNNQHF7wc60g6ThioeZ9GNwSKHopec5Lxy4kVm+BQo//r7Flx15sC16hmuikxapHIDYUiFt8UUQ2+DXjZxz72y5fNHlO27ieo7+zKfAV4pLHoOOwhaIHa5xGVJDvajn0IDr06Di0nTKrj8vME8vZPUxe/vKXezuwRQjEjJdIJHj+858PgMgdrPo7djZ842tfbjk2Rfdrjd127H4nIUnF7sue7xG+166vZKVUoBM5ldxEsNu3CgHGddOceeNVaP3z61mXHXqQBV1ISJyEcCpg6+eUBH218L1tqhT2tjVfHPp0AB06dn5OdGzxt4zfe24/hmFwwQUXeN5idTECMw2/7GUvQ1VVlOIY6BNVfyc+YhEZb/wcrgq7T449t7WIEfPutIthRiG3SgmcYxcWtB+zVoRjD3r7VkWR6LdNceATfVg3XQqsDIcuLNuhLyjpGQCMqCDXG4wX4mK3RWFL3nuHng4RGQ2eQxcmJE/IBVXjZpAG3/3ud4HguHQIkKj39vZy22232f+SP1T1d4SE6LjVVHazkKC4cM8quiA8rNlNYEwP97KrFoV1Rd8dO9jCnu8Rvq/3V2PGsQds4piLyKlkJ2OIIIcVgHDY5PDrQV5/SfAdeqmGezgVvDGaYduh+10hDqDYIbF6dE/HInMq2qkI4VEXHLpsfheMWoRIavEJQ1dPMTU1xcDAgO/b2OYSGFEHeOUrXwlAqDA0r3vbXEI5SShV9Uc1Ex+UrqzPC0MQGVOIHwjjpbIJzUItgvD4BbsaVhj0RPCEXVgQHZOouQAXqQHCySKJSJGQGtx9eYah0P6bGGqmSGSRLT5BQEi7KJGW83skC5GqwIgHw6Gr+ZIAKt5dS5nR6NgVcu15DE9BZLLxz0tVEh9a4vuQFltVe1tWOcocFAJwS82ydetWrrrqKizLQuqHF/09qdJUhSrFgOQp54VdSIhMSGLDktj+iGeOXRmOoOVAy/ks7NKeICzNTp4LUmZ8MSlIbwAUUAoBFHZFovXmWN2RJqyaJCJFwloA3tIqyOdDrP5anIH/9yQcOsHAtw/TfmT5z3mNKDk1Iy7JrBFYWkDuxVJRGSMGwnLHXNSDmgctJ4kPCWTeG2GSWY3OJzRCaUl42umDQ2QCYqNNPODCvm+WeuEqxIY4deoUHR0dM+XOg0KgRB3gVa96FQBq+hjSWvyOlwrIJt4sFUOSOO38Q6WY9oQSH5KeOHZpKETHhF2gR/or7Io+e26p2KIeBGEvC7osJW4Lgifs2uoc/d3TKKXQuyIkyYAJu2kqrP1qmORPdiNLi/9WJkvffxyk7ZjPg5uDkKX7sDQ9lIVd+p3vIey2qZbGjGBoOf8S98qCDqDoktCo+4UFZEaj80lt5u92ulBUeMoW9GZWsMzw0oJuanCeYrv0l7/85cRiAUhqmkPgRP2yyy7j/PPPR1gWJtXdevKkva5uRpoTdlWXhFPOJdCFpplX/S42LIntiyAN975mkVHt85YpCbuWxVPREiZVS/r6LezFpCC9cVbQy8wIu+nzXnZFovVl6e1MV/1xPKwHQtjzuTCr/i1O4u69C34m83n6/+OQ745dMOvQKzHikvRaHx37HEGvJJTBU2EXpi1+ZUEvEx0VyKJ7c1XZoWuZ2fNqWYlSdOb4wmw+GdKMSMyoJDqiEF5kPT3XMcTRo0dJJpOBKDZTSeBEXQjBHXfcAUB76gSmuvCKK4ZdUF8qzQt7ZMKyG8c4QKVACAnxM5L4Qfcce+JklZBZyamoeTyZLIRpv0gsdi6/hH3GoS8SVRSAWvS3Xry2Okd/V2rGoVcSBMdumgprvh4i+T+zDr0Smc3R951Dvjl2gX3Pz3Xolfjm2JcQdCi5ZI+EXZgQStuh/0q0nCQ0GnLlvDI7x6HPHY/lzEu1sOzo6KKZ6jVQFnSYjbhWUmgTXGlOAvCSl7yEZDLZ8PncInCiDnD11Vezc+dOCoUCFKrvWy8jFZoqRymkHa6JjDd3cwnLvhGq4ZZjV4YjaNXzCe0xGaVwvJuOXdph9+Xq8xtRQaHdO6ckBRQ7xAKHXg1hgVoQ3jr2ZRx6JX459nwuzOqvxEj+fKFDr0Rmc/R/86Dnjr0s6LWIohGXnm4BNSMCPbG4oJdRdOl6ZE2YEEpVF/QyiZMCWXB2bV1mNTofn+/Q59JsSWdh2oIeyjYzgS+M5lUiFTDVYfbv3080GuVlL3tZ4+dzkUCKuhCC3/u93wMgNHmEfGLhVY+OzIqD1MAKNX5BhWULezOOXSnaoaSqx3fBsUtTIToqlp3I3Hbsil77QykVgZ7AE2HP9SoUemr/o4WFp45dW5Vf0qFX4rVjl9LOcl/zjRCJn+5Z1KEv+Fw+T/93D3vm2OsR9DLZflto3cYMC8wwNWe4h9LuNSOacejLXEdhSsLDzq2ty6xGx66FDn0u4anm5u74kCS0yAtDrRgxiaXZxxCmIDqy8HjpAYVrSmudL3zhC+ns7GzqnG4RSFEHuOaaa9ixYwfCMlHyh+btwxZy/o1QroTUlLBLiI0079iXwknHLlJazVv7Zhx7nZPfsse1SoJexzGlcFfYpYDMgEKut/4/1BPHrkhC/Vl6uxrbl5mMFOmI51AUd22duL+Drf9nguTPlnfolViZLP3f2O+6Y29E0AEsTZJZ666wmxGBGaGufd/CklRZbWyOUiRtOYc+l8iYM5nwZYceSrvzQDnl0I24nKcdwoTo1Pzny4gIMM+wa9cuwuEwr3jFKxo/p8sEVtTnrq13T54gs3phW9a5k29Z2Js6p2zcsYdqiKI66djjp+u7dMKwk+fqFeFFkXP2t9b7UReFPderkF8tGy6iUXbsbhQoAtuh93XW7tCroQpJW7TgirBLCdZDHWz40kGsyamaHfqC4xSK9H/3MMkT7ginsJp7SZWKJDtg7xV3FDHr0Bu5B9W8rJpw2hDSTsILpeWyDn0uWk6ijWtNzROLraFXQ1j23FQPTjl0S5MLzGDlZbM0wfQmwZU5O+P9pS99KatWrWrqvG4SWFEHuP7669m+fTu5XI7w+L55yVbhlGWHnyswo811MCs79uhYfZ9T60jQaNaxKyPhml4iqqHmccQNCLO5UKEUgmLS/sepAhxmSDjS4UpYIHTnhV2GLdqSzlRCcUvYxf0dbPrsXmS2+XFamSzdewqL5po0ilK+95p8ObU0SbHduYpuUrXdf70OvRKlSPMv3iVBb7RxTfKEaLifhcwsvYa+8APUlQEvDAccOnaBGTO28BjtFWlchXaBNn2KAwcOEI/HefWrX93Ued0m0KIuhOCNb3wjALHTR0j35zFD9tMiJAtufCnAUsFqojBN+djRMYvIhDuh+LJjT+4Jowwv3c6yEmkqxIaVph56pdDkxCFLLwYOfDeWJtDjzVegs1RBeoOo+pA2gsBZYZchi8410yTCzjV6d1LYpQT5YAcb/+UQsujcGMMP7GfgHsOx50gxWTYpsx4KnZLcKqVpYZeqXVBGKjR9LMWQzSWPNSnoYIfqw0N1hj4tQeRglM5l1tCbQVj23NmsQ5eqtAvMVLlWcxMW8x0KmTWSiyfOAPCKV7yCjo6Ops7tNoEWdYArr7ySyy67DGFZxE/uptg2exVC6eoZo1JxzrGHJ5b/XbXQWIZ5dFzSuQ/UoTqE3WLJjPdaadixlwTdyYQeS7MdTqOO3QwJUpsERsLZicQpYZdhi651U7RFnYqrzuKUsIv7O9j4j3uwMnXGQWsg/st9rPu53nR2t9OCXibfI8n2Ni7sUhXo8doT4mpByzbYo8IBQS8TStf+hUhDIbYvQvKkrN2hz0HRl59DhWmX+HbCoRuJ6gVm1LyY6Zte7kAZGT7O8ePH6ejoCFTjlsUIvKgLIXjTm94EQPT0CfIdKfKd9rDjI1Z1UXfQscdGl3fszRR6ERa0HwL1TG3CHh4KOZbsphRKY69DoIV0KDxYQTOOXW9zXtDLzBX2htymJulaO0Uy4nQG1CzNCLuUIB8oOXTDnUQCKSXRe/ez5tdGw8+JW4Jeptgp6+8wKGYdutONUISUKHW+A6oFO7fHqV7xWgaYXN6tS1MQPxi2a6U3eGotJ5eshDnj0JsVdIVFHTpAeFrMnCO1VqXQYbBj5DQAr3nNa0gkEk2d3wsCL+oA5557LjfddBMCSB7eRaGrNlfXbClZqM+xN4piQEcNjl3mVcKTzs4e5QS6WoVdKeDa9jhLExQ6lLoK1RTbBJk17m4wF9hd+JR8faVlZdiic/2kq4JeplFhFw90sPEfd7ni0OcipbQd+y/0ul6OZroquryHWwrIrBVYoRrvvVJBGacd+lzUoqzZrauFUnU2w7lnQTEkkVEVrMW/E2kKEvsiSzc/aZIZh95kyB3AWqYEbBkjave3Txw/wpkzZ1i1alUgq8dVY0WIOsAb3vAGVFUlOjKEtEZJrbXb9cVPL3HDieYrzkFJ2F1cYy+fYznHrqbUurNEa0LWJuzCWLzAjpMYUWFvIVkGPS5Ir8ezu1hgZ8bXIuwyZLnu0CupR9gtS5Qc+mGk6U094RnH/qvaHPtMyVePigIZMbvi3LKue26FOJe3u6tLVGqc+Z3C4jUymiU6agt3NaQpiB+IEDvTuENfDqccOpQqxi0RvRWmIHFKYqkwtVnBEgXWnDoKwJ133kkkUl/+k1+sGFHfsGEDz3nOcwBo2/8kekJiRMWyN7O9vu6AsFvVHbsw68vcXIoZx15N2KUgNO3i5VpO2GWpFKxH9eSN2PKlZQtdtVWMcxIhl28GI8MWnWunPRX0MrUKu3io3XboaQcSNOpASknsf/cu69grm7J4hRmVS+9fX6bkq9Mohlyydaybgg6lZYCphX/sjEMfdO7cWkVzLScduhmdLQG7GEJCKGtR6FAwo5K2Q3tJp9Ns3bqVZz/72U2PwStWjKgD/N7v/R6xWIzw1ATh8eNMb1JQiywbkq507FaDdRWqOXbFAC3v3I0tpL2lQh2KIIuzA5WWIDru2GmqUxL2au7A8aIYNVB27JXhMqnYBWbqqRjnJEs59rJDdyMprlaWEnYpgfs72PQl7xx6NaL37mfNL42qkZ/FmrJ4gRSQHRDoyYVzilSEp4JeRqmSmCosu6CMm4JeJjo65wGUIHPqrEN3kLlFapp16OW8KljeoZdJnBTkuxUy6wRqOkX7Kbss4tve9rZA9UtfjhUl6qtWreK1r30tAG0HdiNVnWx/bdnJc5u/5Hobj5kJC+LD7q+xd+6DjsdDyKw9gyiTzRWDqBlpZ6LObdDSbKGPZjBidm/2uYVq9LiwC8z4SDXH7qdDr2RRYX+wgw2f9d6hVyKlJPbLvaz5X31eBNsvhz4XS5Vk++eH4c2wQE8212eiUYScX2muXMPdyfXzpVDzzM5DwxF67tccdeiVOOHQLU1Q7KzNoZdRipL0OoGlStr378I0Ta677jquuOKKhsfhBytK1AF+67d+i4GBAdRCnsTR/RiJUgnUGt7sZ4W9+XHExuySsm5OPqGMpHOXhsxpRMaa25teL+XSsuWex345J5hTgU4VmCFBdsD/Hu3ATPvWcs14ETd8deiVzBV2KYH7Otj0xUO+OvRKYo8eR0sL+7v0+T6bi6VJcqsVpCLsCnE+L6eWE1SFtXiXNbfQchI1o6AORujc3/hOn1oQpkNr6KJ2hw4QnlbQ2wRSkYTHRoiODKGqKm9961ubG4cPrDhRj0QiM1904uhBRCFDro6yoFJpfqsblBz7iEVk0t2HS8tKEkc0X3p+l4VdzS//u24jhS3mo5dbjhWYcYKyGGkZwapVjdVzdxNVSExToXC4nQ3/d5/rWe71IrM5Nn1rhMi4sPM1gnNpyXdLRi+VmFFcT4hbDiEl4VR9NdwdPb8p6DjAktvOmsah0q9QWnKt0aEDGFFJsV2CZXHVxBAAL3rRi9iwYUPTY/GaFSfqADfeeCOXXnopwrJo279rZg2uVuEzI5DpVxxx7MKEzEDzFdGWPIeE3BoTy2O3IKRdSCKUkagO7X1thsx6k1ffeA96r44Z9n88ZZQihKcE47tXkTd8iM8uwVQuivV4B7EzgtSN2xCRsN9Dmo9lYR08xoavn6yr2InbGEkJ2zNcefX+quvrniLLe9DlTGEUL8mvEhjt7oZQrBBk1gtHstwtTZBZV/s1m9k2CcRPHOHQoUO0tbXN9B5ZaaxIURdC8I53vANFUYidOUV4fMQO21k1CruAXF8pvNZseUgFcmsNcn3udR3Ld0tkxCK1xSTX791DLSxQS5We1AK+Cntqi8UdN/6SvtA0f3D1T7j0yoMNJzw6iVK0K28JC2LDgoldq9CtYDxWk7kohce67G2QAia3qkzfvA0hAiKelmWXpJUW5snTbPzGacIp/8emd1vceO0uXrr9UbbER+l/1gn/hL1UwVExaKgrYjOYUUF6A+Q2FiFkkVvt0hynwvQWKHY0H9e3VEFqo6j5WELaNSiQoBTyrDlxGIA3vvGNgW2tuhzBmH0aYNu2bbzgBS8AoH3PYwjTmqkHv5ywS8GMsGf7Gxd2KSC1uXSstSbjF0rnH34FjE77LVlGLQr9BukNEumBoFVu1VOK/gi7FYauneN0z6mPe1P3AS66+mDNa2ZuUBb0uZNsdFQw8mQvOb3JloFNMpmLoj/StaDxz9Qmlenbz/Xfsc8R9DLm8ZNs+PpJX4Vd77K4/crHGYhMzfy3K7uPkV3jQx6CrFKSeY6rdBMzKpg+x0Dv022VEHbVPUcRkFkjGL9QYnSYWBGL1PrGJcnS7HLRerK25Vg7witmvt/2fU+SyWTYuXMnz3ve8xoeh9+sWFEHuyBNV1cXWiZN4uiBuhM4pIDcakmut3FhL7ftk4rEilqktljuvtULMHoMMmvdF7PKlyMhfXDsAvQbpvmdzfct+NEtPfu59Ar/HLuWFQtdkyw59j09mG6uySzBZC5KsezQKxEwtUVl+iYfHXsVQS9jnjzN6kf92T2gd1nccPkeekILdwbcdv1jpDZ5OJi5Dn3OPVatkZXTmBFBapsJ0YrrUzJDjiAg2yfIrTWQYWvmvzW6u6Ds0PVkHV+ONZvHER4fJTZ4EiEEf/AHf7CitrBVsqJFva2tjbe97W0AJA/vQ01nanbrMwjINunY52JFLKa3mY4Je2ojUKVwjtHtrmNXi9Wb5UDJoWalJwk7k1cUeP3Oexb9edmx66t173KsJHbG9hLLjLERwZkn+jgz2ebVqIDFHXolU5t9cuymuaigl4n8eg+dB7wbkhWBYr/B7Vc9zrroZNXf6QlleObTH6bQ6f6LUHlL6WL3VzkU7wZmVDC93UDGFp7c6NYpdDnw9ws7Dym3znTkJaHc0KkeQRdW6R8JmBbtex4D4AUveAE7d+5sflA+sqJFHeD222/n8ssvR1gWHbsfQ5T3btYp7M069rnIkHTMscvFSlGWHHt2be2Z/7UirKVrTovS1hot724mrt4O124/TGiZfU639OznHVf/DG1r2hNh17ICdbmdayXHHno4ycnBbg9GBal8ZHGHXknJsadu3Ob6uMrIYhFZLC4p6ACyUKDnO7toP+zBmFRYd+lpXnXFfVUd+lzatRzFC7NIFyMcilHqWLbE/DWzl99hFnXoM4NzYDvwXIfeZJVPsMeT3lAh6IIl53Fh2WF3sL/HD21bSyidoqOjgze84Q1Nj8lvVryol8MloVCIyNgw0cHTsw/DEvfMgoseQMduhmfD+4uhdxtMXmhQ6Gr4NAtQzNqcgLBKjsIlYd/y7MNc21nbzB4SJm8499fEdk66J+wlh17PFj9hQXxPhBMnetwa1QyTY8llHXolqbUqyir3XzpksQhm7RnUVjbLqn9/zFXHbkVg7ZWnuWrVsZo/86KdjzF5kTuL2opeqh5Xww1c6zNaC1IRpDbB9Pl6VYc+FyNB4yai5NCz6w3HHPr0ZmWBQ19S0OUcQTdBzWb44he/CMCb3/xm2tvbmx+Yz6x4UQdYv349r3nNawBo3/sEoqjP/Kyu/d0Bc+x6UmAut5VEAKokt96g2NnQaRag6Mv/zszppTuOPbXV4tLOE3V9JiRMfnfbfYS2pVwR9pocehWEBYmDYU6c7sZyYZ3dkoKTQ13ED9QfSjejMHT7GpQeB98KK6hX0Od+ruc/d9N+xIUxlRz6tauOoNbR0CAkTM7dcRIj5uB1lPMdei04VeVRCkF6vcRYrYO6/MHya/TG5sY5Dt0JQa/q0Gthbsc5KenY9Qj5fJ5LL710prfISuesEHWwe92uW7cOtZCnY9eTsz9YKgy/SFg7aI69JlRJdqPetGNfai19McqO3aka+FYIunaMs0qr03ZiT7qv33kP0R1Tjgq7MOt72an2+cTeCKdOOu+KTw12Ed8dbTgrutghGHz2Wlcce6OCXsZKZ+jak0UxnHt+rHD9Dn0ul3SeJLPeGZtcXsaq1aHPpTKJrl6kIkhvKgm6m3jk0Mvnkou8nAhztqyzkBA/fozI+CiRSIQ/+qM/Cs5WzyY5a0Q9Eonw3ve+FyEE8VPHiJ4Znv1hPevrUJdjr60N56xjd6v3MgAKs47d4ytbLuDghLDrT6ue7V4rIWHyO+fcx/nXHkbvdKBohrV8YlwtOO3YZxz6/kjToVg9KRh6xhqU7s6mx1WmWUEvozywi7V351EWaQFaMwKMzXl2XH20bodeiRPZ8OX6DzMJW/V+volMeKmWHPoq3dVqeVKtz6Evdx9bqmjIoc8VdAA1k2PdsYMAvO51r2PdunV1HS/InDWiDnDxxRfzkpe8BICOxx+ZF4ZvRNiXc+x2D/TanggrYjG9w2R6m+1El0MK0BtJnFYl2U06UztMu7xlHQhLNt2NrVlhL/TA0zYcam4QQFQY3LpqL6+6+l70rsbXQO3mGbU1Dar1eMk9EU6dat4Vnx5qzqFXUmwXDD57Hcrq5tf/nRL0Mtqvn2T9T5pz7HJrlpec9ygXdZxqejw9oQzR7VPzGg3Vw1xBb4ZGokf5bsHkJUWM3gY+LEBvr+1v1pP2HvRaHbqSV2g7vvgXUkuWe7W5ulLQhSXpfOJx0uk0O3fu5GUve9nyg1tBnFWiDnYloIGBAbR8jo49u+b/sELYy0VoFqUGx17PQykVid5hktrE8lvRBBR6G5ythV2oJr3ZxKpjmbWZ8PK84xh2E4h6u0iZMbj6uU9wQeK0MwMBBsJTvOzKBxt27ErROUGfQULiQJgTp3oacuyWFJwc7Ca2r3mHXoneJhi6faApx+60oNsHtVDu3113IiAACphbczxn+65ld1LUw3M27SZzbZ219Mu1HhwQdChVmavj/sx3C3Ib9cZnflWS61v+udaTgtRWy96DXsctvpjxqtmhV2TUVwo6QPT0aSKjg6iqynvf+140LVilnZvlrBP1WCzGe9/7XgASx48SGRmZ/wsuOPZ60TtNpre638ZRRi1SW2t37NV6WzeKYtprhfUUqklvMbm4rb7kuFrYEBlvyLErBWF3qnMBYUJyb7ghx356qIvE7ohrlcWaceyuCPrMwS3Wf/04kYn6HkS5JctLz32UeGWJxCZRsbh4/Uny3bV2k5qtEOfUy1g9Ifh8tyC3pQiauxs/9aRg+hy7QpwTzKsUtxQVl6HatkA1l2fz4f0AvPa1r2Xr1q2OjDFInHWiDnDZZZfxohe9CIDOxx5GGBUWtAFhz5cdu0PfmN5hktpcg2NvkrJjN6MsebUVQ7pSqarW0rJWGC664CiqSxvSBsJTvPyqB9C7DawaJjWlCKEM7lbvkhA/GGbooX4msrFlf32uQ3d7Q77eJhh8Rh2O3TSR+YJ7gl4+zeAQ679xHLW4vJBakVmH3sz6+VJsTw6T26Qvv3d9rqA7fO2UZbLgLU3MOnSXc8H0pGB6m4VcZiturdRTKU7O2Z8+s3Vt7sekpPOxR5iammLbtm389m//tiNjDBpnpaiDveewv78fLZej88knFv5CSdhrdd9SQLZfku117ivz1LHv1MmsW7xQTaPJOstRLi27XCh+eqe9Bu4m68ITvOv6n3DRVYeWFXalUKUErAsoBkQmBMYjnYyl40v+7ukzna469Er0NsHQs2pw7KZZU1EZpzCHR2g/svS59C6LG2580hWHXslLLnto6Q6KLgp6+fiLHdeMCqZ3mOS2euTQt1mzZV+bpGaHXqb0JVQVdCBx9BjRkTOEQiH+9E//lHA4YB0LHeKsFfV4PM4f//Ef29nwJ44TPV0lOab8MNTx9prvlWT7nHXsUzsk2b757Vsza0RN+0ZrRtiFajLr5IKrLuTSFeScQC3Y6+zV9rNbEXjGZVVevNwYB5Jbevaz84pj1Qv7lAvMeFx+XMuB9VhHVcc+49D3Rj3vN15sX8axlwXdS0yT7v/cTdfe6l+G3mFx0xW7GYhMuebQ56IpFrmrqlejsxNHXRR0SjtPquTDmGG7QpyMOxs90bsMinOS5aQG09twVtDrreUu7L3riwm6mk4zcGgfYPcM2bJliyPjDCJnragDXHLJJbz61a8GYNP+vSi5KgukdT5olY5dKYI23VwM3YxbZNcb5HpnHxQr4nz5VwToq0rCPhfp3BrfoqeWs+vslcI+vd1gR/yMuwOo4Jmrd3PRlQsdu1JsrMCME2g5qjp2rx16JYs6dj8EvYSVzdL1nScWhOH1Loubrto9r8ua26hYXLTuFPme+WNRjNL+c5eiYPOoOL4ZEaTOMZetENcQIWmXr6bUNnUrFLvNpgU9MmbPqXU7dOx5eTFBx7K4dXiQXC7HpZdeystf/vKmxhl0zmpRB7jzzjvZsWMHqVSK7kcfBlndndUroPleSabf/vpCTrSKFJBbZ5LtF44l5C2G3m0wda45U4HOS1daWTM+tcXiddf/r6NZybVSduxmuHRPlIro+ImWA/norGMvmiraaffX0Jej2C7Ib+qZLdDho6CXkUWdtT/Pzgi73mFxyxW7PBX0MtuTw1zwrH1YIXssM4Lu0XUrZ8FLxe6BPr3TcNyhVyI1W9D1DmfOEx2TGNEGuq0BCFld0IE/H+hl165dJBIJ3v/+96MoZ7fsnd1/HRAKhfjABz5ANBolMjpC8vDB6r/YgGPP9Ummt4GRcObJlYoku26+Y3eF0pa37AaDYgeeC8ZcYV99/ggdqn9K+szVu7n0yoNY6/OEUs0XmHECNQ/Go52MphKM7l5FZDwYla5GLo1gnL85EIIOgLRQ732StT/PInakueHKPfRFpn0bzsb4OKktFkrRW0GH2Sz4zHpp90B3KAy+GFIpCboTxZ1K5FYLJnfQgKCDsKoLemRkfKa2++///u/T39/vwEiDzVkv6gAbNmzg7W9/OwCrDuwnNDXp2LEtDcyYs2vfuXUmxW4P1EWVmLH6y8I6Qbm07PCe1YwaSe8HMIebug9w54X3kDs373p2cK1oWeCRdmLDwXlEpQC9IxwMQS+hrurh4KvDvPCcJxZtm+oV+1J9JI8oqHXUcHcSxXBWZJcis9F0zKGX0dsbnIgW2dYnikUuOLof0zR5+tOfzjOe8YymxrdSCM6M4TLPf/7zueGGG9B1ne4HH1y4za0JnGisMBepyKo91N3CjwmofN5Vjwq+8pOnkZf+FoBoU/O8/bJfkN4ZIMEq4nvYfS6dh0wiP3/c72HMIGIxdn9wI6+69l5PEuKW4vGptRz9zy1EJ3y8YB6eWjqcSW8XiXGySY6k58FHGBoaYu3atWdVbffleMqIuhCC9773vfT29qJl03Q98mj19fVGjm0KhNsL4W5ggZrzf9zdTwj+6Ue3c0b3t+1hSJi8+cq7yVwYHMceFLr3GCR/9ITr+9BrRV3Vw967zuXlV9/v91B4cnoNJ769mdiI/29gSnaFTumLrIc3SvueI0TGBtE0jQ9+8IMkEgnnDh5wVugd0BgdHR188IMfRFVVYkOnSB4+6veQ/MUUJE77PxEJCT2PCb7+3zfwxUPX+DqWuFLkLZfdTXpHsSXsJToPmsT/5/HAhN1FJMLuP/ffoetS5av3XuO/Qy8hJCSPPaWm9KrET07RfXwPAG9961vZsWOHzyPylqfcHXDBBRfw5je/GYD2PU8Qmpx05LhKvqUAzdK1F5TvdvPZvTf4Oo6oMHjzVXeTuaDl2Ht26yR/8BjS8Gk/XQXqqh72fvR8Xnb1A76OY0xP8J3/uYbV96mBcOgrGglqwZkHTSnqdDx5P7quc8MNN/DSl77UkeOuJJ5yog7w8pe/nBtuuAEhLXoeuB+hO+BAVuBzHRsMXiMDVYfYD9r5wsFrMX1U1LhS5E2X/pLkLWcodK/Ai9ss0nbosZ/vCoagqyoTr76SPXet5VXX3OvLFsgyBUvjp3dfQveT7td3qJdQVqJMBu+5XhYnHjFL8opcCkXP0Nvby/ve976nzDr6XISUDi0srzBSqRSve93rGBoaotA9wOh1V0ETN4BUwIpbdpKbEygLK785TfuToUCEDathaTB1e5brNx/msrbjvo7laL6H7/3kaiJjT50JonuPYYfcgyDowMidV3LtGx6m3edCAj8b3M7YE6vp2hM8QS8zuQOKA84lAlelqDhmZIQhUJvMBRASeu7fT2R4N5qm8alPfYrzzz/fmQGuMJ6STh2gra2ND33oQ4RCISLjg3Q+caCp4wkLaKLXc4v5KAZ0/SDOg9+6kMfT63wdy6boGLfd+shTw7FL6DpgEP/Zk8EQdFVl/DVXctnrHvdV0E0UvnPoIoxvr6Z7V3AFfSWi1NCcZ0kkdOwaJjZq9474/d///aesoMNTWNQBdu7cye///u8DkDi2m+ShIX8H1GIB8TOS+/79Yu6b2uzrOM6ND/KcZzxAvufsFvbuvQbxHzwWmKS4kd+9jOve+QCrwylfx/Gd/ReR+K8230oIt1gECR17M/SPPoFlWTzvec/jBS94gd+j8pWntKiDvX+93Ka1Y8+DxAbTDR9LKXrT2csJtAmNUHplDDY2KnnsP87z3bFvjY7wzFsfPjsdu4Su/Qbxn+8KxrY1VWXstVdyye894XqXtaUwUfj2wYtJ/jSBEoCvpRbip8WKiRoKQ9jlXRskecwkefg+UqkUO3fu5F3vepeDo1uZPOVFHeAd73gHF110EUiDzsfvRRQbW49aSSE5u8+536Oonfiw7dg/u/cGUmbUt3HsiA+dlY69e69B/L8fRRaCYUVH7riMG99+n69lXx+fWsvXH72c5H8n0fK+DaNuQhm5YszFYtXgakHNS5IHHwFrms7OTj784Q8TiSzVA/epQUvUsevDf+hDH2L16tUoxTSr73mwaovQWlAKDn2lcuW4fq+IjUoS/9nO5+++2VdhLzv2fI/EWoGJxvOY69A96oe+FOrqVYzecSWX3PkEEb/a0gEHM6s5/r3N9P48vGIcumc4dZvIxtfTFR1W3bcfNXcSVVX50Ic+RF9fn0MDW9m0RL1Ed3c3f/VXf0U4HCaUOkPPvbsbEtVmw0kztAS9KkLCqgcVvvCTW8haYd/GsSM+xNue/wN6n35qRQt7KCOD49AvPZfMv0S55W33+u7Q9357B9HR1kNYFYcMR6NzpVqAVfefQpu2C8y8853v5JJLLml+QGcJLVGfw44dO3jPe94DQGTsAN0PH627LrqwsEsetnANIaH7ccE//fzpTJkx38ahInnJmkfpvGkIK+TbMBpG0aHvN1OBcOjivG3k/zLFdasP+7oHfX+6l+P/aZd89asnwlMFRa9/nlR06Hl0nGTG7kHw0pe+lBe/+MVOD21F0xL1Cp7xjGdwxx13ABA7/Ridjw/X/VYqTILttC0IT67sFw8hYfWDCl/60S382/ErfB3LK9c/RO8tK8uxKwas+Z9x5JP7/R4KXLKTzN8WuG71Yd+GULA0vvb4Fez/znaiY0F+eGtAQmg82DejsATU2cBFLUDPo1lCI/dRKBS4+uqredvb3ubSCFcuLVGvwp133sltt90GSOLH76dj73RdSXCK7nDHIaexBLGzJLTY8wQUv9PL5w9c52sFurJjN/1bEagZpQhrfj6J3HvQ76EgzttG4SMpbug95NsYpo0Y3/nfq1j188hZ4dCFhNiwi8+CE9+PIeqcU6H7SZ3z246ALLB582Y++MEPomnBfnnxg5aoV0EIwfve9z47Ix6DbendtB+oL/1VcaKWcZBfDAKEloPwf3bylSNX+TqOV65/iN6bTiNVX4exJMKENT8PiEO/eAepvyly7aojvg1Blyo/vPtSeh6tT2SeskiaX16ss9a7UoTuJ01u3jTBgQMH6Ozs5K//+q+fUp3X6qEl6osQDof5y7/8S9atW8fQ0BDJQ7+h7ZBR+4PfxFaNFvWjGGD9Zw+fP3Cdr+N40dpH6bg5mI5dKcLan00i9/gX5i4jztuGfleKG/v8ixZMGnH+4+6r6X5SrHh3vpKop021UoSeJy0iZx7jnnvumZmXBwYGXBzhyqYl6kvQ0dHBXXfdRXt7O5hTtO+/n7Yjtam6MAWi2QIQrReDutDyEPpeJx/71TN4MrPGlzGoSF65/iFW3TgYKMc+z6H7nRh34Q4m79K5uueob0P4r2Pn8z8/vZRVj7Qcel04ED0Uhdqy55UidO+WhEf2gH4cRVH4sz/7My688MKmx3A20xL1ZVi/fj0f+chHCIfDYAzTduBh2g/JmiYCNa84I+xOI8DySHCkh+cCu6BO76817vnmpRwvdHt34gpesu4ROgPk2Pt/kwmGQz//HPS/TXFLf3O9FprhhyfOJfRfnXTt9va8lmY/D24jBe4lbTYZelcKCkoNSHLyKAAAQoRJREFUc6JShJ5dksjIYSja98q73/1ubrzxxqbO/1SgJeo1cOGFF/IXf/EXqKoK+knaDj5B8mgNamuBllYQDWzdKBM/FiJ+JOS4uBe6hSfZ2lbIPpf0+E6LjEm++fDlfOXYlb4k0KlIXrH+Ia5/wWPkLs16/vcvGE+26K9DFwpKRzv7Xt/um0M/U2jn2wcvJv1kt6c13KUAMwKFLvfvQynAiIHe5vCEYQraHw+jTTX+hq5mFdTc8i5dMUoOfewUSnEXAL/7u7/LC1/4wobP/VSiJeo1cv3118/sYad4mOjQAdrOHUdqS9yhApAQnlAbFvb4kKTvwSLJg84Ku6VBvkdgRnBdcMww5LtL5/JQX9VJjZG9q/j8vut9qxv/vv4fcc/TPs1db/gC6XN0fCyE5wtC01CSCdS+1YhkAql6v56UtcI8Ob2Gnz16HvqxBF4WqrNUMKP2/e/2c2ZpYMSh2Cmcfc6KCj33avTsLqJlGjuwmlEITSvLjstoN2FbhsjYMGHzcSzL4vnPfz6/93u/19B5n4q0RL0Onv3sZ/PWt74VgPDYbtR/T7H6vBGWNIKKvcUkPNmYY09vEGBJVj9ccNyxWxrkVgkKHQ5PAlUwI/a59KT755qLkJA/0sZP77uAu8fPQfdwobsvNEmHIuhQwtwWS7H3uZ/h+uc9ZkdIngIbG4SmofR0IzraQbWnmoG7FSaNuGdj0KXKjw6fy+4HNqGmvZvupLBflgtdwjNBz3cLCk4LuinoeUCl/ViRfJeG3lF/tEfNKoRSCpYml7zvzYRF20CKVf9eICEep1gscv311/Pud78bIZ4CD4xDtES9Tl75ylfy6le/GoDEsUeIHzzD1TfsWdSx2w+3RBiiIcde6DGRqp3M0/dAwXHHDvbbfaHTdtJuo7dBrs+bc81F0QWPPLSNT933dH45sY28dH/toV3J06bMX1T/+Nqf8p9v/hvEdRPkV52dWZAiEkHp6kJZvQq0+S9RnY+MkDPdL793ptDO/57Zxrd+dRX6cW+3PkkBepsg68F9LhUwonbUzfGqhiWH3n7C7vykJwRmvD5RLzt0JEuqjdFh8qabfkbxYUFP/lEymQwXX3xxay96A7REvQHe9KY38dznPtf+l28eJb0rw0VXHlr0bby8di3Mxh072CVoZxy7w6Vojbj9pm+4XHW1nDhX6BLku7xdaxemHZJ/+L5z+LdDV3oi7JWEhMo6LcIDV36Zv3vJv7D22ccClSXfFKpqi3l3FyIeBcV7d2WiMKYn+NkT5zL0ZK+n7ZDnrp0X29xf1pICCh3CFnQnb2UJGLMOnQabW5UdelnQF7vPzYTFe2/8Lz7/oys495FHmZ6e5rzzzuOuu+5qdV1rgJaoN4AQgj/8wz/ktttuwzRNJv71NC8c+wXX3bCr6pqhnHNDN+rYZ85dcuzrf2ALVGMHkVhVnpVyuLCYdD+JzlLnvEj4sM48faiTf/zZbXx/6EJOFru8HwDwzPgU39z+La598WOkt62gPriVCAURi6Gu6vFNzAF2Tw/w3QMX8j/3XIzaREJXI1iqnaDmxYsx2O680ClYbCWjmdyN+MEwG7/DjENvBDWjEJpSZl6oLE1WXRYwOkze8/TvMzmiMvD9e5mYmOCcc87hb//2b4nHvVumOZtoiXqDqKrKH//xH3PzzTcjLIsvfKKXl4z9gouuquLYBfPC8/U4dqlKJrfND+EKC0Ipk4F7rMYmLwX0tuphNCmg2GFPTk4Iu55Y+m80I3Z2fDHpsWuXdkj+0KPr+PojV3BGb/d0vb1MSKj8w7pf8D/P+jjPefU9FLpWUDvXspj3dKF0dy4ItXtFwdJ4eGI9jz++CeN4AuFhItzctfPCMpEnWRL+Zs+nx+3zLZWaYHY28CVIiB0Os/pRHaVozXPoUlOY3lLbYWYc+hyq3dNm3Hbo3ekx/usvQihGnk2bNvF3f/d3tLW11T/+FkBL1JtC0zT+7M/+jBtuuAFhWnzq79byu+kf2Y694puVCvOSRGp27AIKndV/FJ4yWHu3RexoCJrYNlcNK2Sv0+nx5jLWa+mOWn6RyPYJX/Z1qxMaX/359XzxwDU8nNrg/QCAdVqED/U+wD2v/ShXvfCJYDt3oaDE46irum0xj/izGd9E4Z6RLfzHI5dx4NH1zpRmrgMpQE8Ksv21rZ1LAVJrfIxmyH5JLnY6/wKsTGok94bpe6CIoi984ZeCmpLkKh06VA+7Gx0m77n1+1yaP8Rn/rIftZhl7dq1fOxjH6Ozs7OJv6RFS9SbRNM0PvjBD3Lttddi6vDJj67hFdM/56KrD84Lxdsh+Pmh+Zodu7L4+pyWMRn4TYGeh1TH19ktrRSO7/DGRUvFdu35LoGlNvcyUa/pFhbkDrdz90Pn8anHb/atpWubEuaz63/Gfz/z78mcX/A8oXBZVBWlPYno6oCwf/1mH59ayzceu5yTT/SjTmp1VYUru+tGkUppm2aPQG9zf5tmuZiM/Sw6fz5lWmPg15LVjxQQ5iIJvzW8jFRz6PZn52e9lx36hdkjvO/Pd8BYgf7+fj7xiU+watWqhv+OFjYtUXeAcDjMhz70Ia688kqMouBjd63jjtSPuO763fMmj2qutezY1YyyaGe33IBBZs3SbqjjSJHV96qOO3YAPQHZfm/WCstr7bk+sWzofikya0VD28aUvMA6HeMLj1zHD4bPb/j8zbIlFOLx2z7N+3776xhXpXwvXoOq2vvNe+395n4xpif42eB29jy6EWW0sZ0gZkyS727s3iqH2nOrvam7IIW9dp7rdSG7Hduhr7lbEp5aOlw/eqG26A4foQu0lLrAoYP9cj039F526BdlD/OnHzwHOVFkzZo1fPKTn6Svr6/ZP6cFLVF3jEgkwl/91V9x1VVXYRbhUx9dw/PP/K/t2EsPgwSs0MIHQ5gQmlbQphcRdlHb5NF2vMjA3Qrxw85veytPLkbM/aze8vn0dntvuxlu4JxNduhQRsPse3QDH3/wVu6b2kzKh6oxIaHyirZB7r32c7z9ju+S3ln05MVqHqqK0tFuJ8F1tPuWBDdpxPnhiXP58SMXMLp7lafr5mC/bBaTgtwqbxI7y7tEih322rnjLw+GoPPBMGt+JQmllv8yFzt/2ZRo6eq/YIVnn8NylvsF6cPc9aF1yMki69at45Of/CT9/f0N/RktFtISdQcpC/sNN9yAoQs++/F+Xjn8Y665dq/tGgXIJQqPqDmBNr3wbRds51qL84yN6PTfX9r25jBSsRPocqu8KTFb3iKUW718EpIbCMsW93t/s5PPP3o9o0bS2wGUiAqN3+s4yq5nfoZ3v+o7WNdMuV+8RlVR2tpmnblPSXBgZ7X/8DcXM72/CzXl/TjMMORX26FvN9xy1XNGy9EqFw5uCHru0+jaXyA0vbyg620aRpWys0IXhMdVhFn9c3LOElo5y/386SP8zYfXMTWusWHDBj75yU/S29vbzF/TooKWqDtMORR/yy23YJqCf/rUem4/+r9cfO0BpCarrq3PRc0JQlPqAseeWWvV/rYuoffhIvHDIUTe+UtcTqLzohJdGSNaqkiX8LbUbBllJMyX77uOr524nMFih/cDAFQhuKP9GL+66p953+v+nfSO4pIZ0I2dpCTmq3oQ7UnfnLkuVQYLHfz7k5fz+BOb7P3mHiMVyHcJu0+CR+8Sllqq8uh0ZTgACSKj0v2gZu8/r5FCu4LeMV+5ZxJ9FxF0mF1LNxMW77/p+2wfO8rH/+pSpic0Nm3axCc/+cnWGroLrJTNMyuKclZ8JBLhhz/8IV/6x17ueP3PCF9j8sCvdmKGQZUs+kCoOQGUHqQGH2xFl/TfV6DYoTF4vYrZscTT1wCWBlYSpCLQchIt7+jhq58zZC8BSBXUnET1OEFcTamc2dXL1w6tpm/LKM9du4sONeftIIC4EuJlySFe/KzP8H+nzuGze29AubfJFw1VRYnHEYn4TElXv9if7mX3mX6KR5PlAJfn6HEwY97VUJDCzmw34u5FA6LHwgzcWwSrubULoQs7wXeJKcUK21szjXaTP7zpB6w/eYKP/d15pNPjbNmyhY9//ON0dflTH+JsR0gpz85alQHAsiw+8YlP8J3vfAeAF71ijF9fcgMP7t5KeFRbttqV1CRGQmLG7NTe9v0aqx6vv72U3q4yeK1qN0sore8rGZXocPVQf70ICyKTEqUISsWDnu1zJ1SvmKAUIJSuLu5T28BIuHtrm0mTtRvHuL7vMOvCEwt+fk5kiFtiaVfHAJCyityTX827fv4aoqdDaJmFv7PuxxPIXQvbnQpNQ8RiiHjMkxC7jITp+/IwA5Gpef/dROFUrpPfHN6MnAi7vj0tflohNjr//pBKKcu8UyBdapMaTkF4es6uGGGHqfWEQHdodUdqkNug284BEDmV6GmV3kdK+8/rOZYqOHlLCKPDRFgCLaWgFMSSgo6w62CYXQbvvfYHrD5wks99cjOFQoELLriAu+66q7UP3UVa4XcXURSFd7/73bzqVa8C4Dv/3sPFd9/DV279LHJrZlkLIgxBaFpBzSkgGi9cEZo22fCjIj0PqlB6pq2EiRl1RvTKa+1ehymNuL3WqftUeEpNqwzt6uXr917Fvx69imwtm/JdoE0J88z4FHuf+xne8LIfYlyVWv5DpVaoSjnM7uOa+cHMar536ALuvWcnYijiy37zmSzz1XaWuVd9z8s5I04JOkCh25oRdGVaY+AX0H9foW5BL2PGJEjQphXU7DKCjp0MfMnVB/nRbX9P4tHTfOZj6ykUClx99dV87GMfawm6y7RE3WWEELzlLW/hbW97GwD/88MuvvNPHXzh0i9i7lhe2JF2ZryaUcj3WuR6G4/NdRwp0vOgZpeXdcHElhOKCh0CD3p2AKXCNZ2CbG+DWfIOoGYVxvf28PknrmdPdsCX/u1l3ta1j7uv+Sx/96Z/Jr1Nx6hItBKaZq+Zl1qh+hlqnzZiPDm9hgcf3UbxqD9JiOV2pbleb7ZsQknMw5Bf5WICqC5Qx0IM/FISmWg83D52vv2iGppSS8uCS2NFJOffeJA/W/99fvrDDv7vZ/oxTZPbb7+dj3zkI0SjT7Hewz7QCr97yE9+8hM+8pGPYBgG556f5WXvnOSND99J+EBts4kVkvTsksSGm1tMlppg6OowVkjW9KA2grAgOi4pdHqTKV9Gy4GWk2TWuh9+r4YUkNgyxY1rD/O8rkc9Cb8vxSfGz+OLe65h81+ZiBNDiGjUV1cuI2FW/csIR6d7OHmmC2XYn+hGfFBBLdgJmF5ltIMdfgcoumhWC6ss2g8IOg/Wngy3GGMXRCh2ULMJOOfWw/zNhm/x3W9084P/7AbgpS99Ke94xztQlJaH9IKWqHvM/fffzwc+8AFyuRwbNuV57R+M8+ZdtQu7WoBVT+qoucZCaWWskGDsgrCrZVmFRc177B09rwQ9YTetWWqngZtYEckFFx7jo5u+xTo1hOpjP+gpq8gz7/oj1nzvhG9jAEAIZEjj8G/3o7dby4Zx3UIxBFpGeL7XHdx/JqQC8TOS9uN6w93VymT7Q0xvVGqqzig1ybYbj/IXa77D1/65hwd+Y7+1vO51r+N3fud3Wv3QPaT16uQxV111FX//939PZ2cnx49G+fxfXspfb/hXtEsnqxamqcSMwMT2EKkNzamxoksSgxZWuLR33gXKYUUhm64FU995BYQygtCUPXl71XpzHqZgIDbFZ0Zv4tuZAc6YBUyf3p87lLD/5WZVFRkJQzhE34OGL4IuTEEorRCa8kfQoVQu2i1B1+yXhvio2ZSgmzGVqS1hUhtqE3S9TbLzpsP8xar/4Esffz4P/KYNVVV5//vfzx133NESdI9piboP7Ny5k8985jOsW7eOM2fO8PkP9/Cc/K+R27LzKjAthp6AzIBgclu4qQYRkQl7y5yllUKQLj97Xgo72BnyWlYQGVNQ8wLhcG38WrCk4L7UFj41+jS+mtrAYT3AjVqcRghbzONRZCziW9hfMWwxD08KlPo3jwQfYZegtjRQi6ClG39jMmMq4zs0cqtFzYLede4Yr1R/wV1/vo4nnniCZDLJRz/6UZ797Gc3PI4WjdMSdZ9Yt24dn/3sZ7n00ksp5BXu/0yBG4d/hbUlt2iN5RlKm3fzPYKJbWHyq5pfFJSqHQVwO9HMa9dePmco5a9zL1gaj2XW8/mxG/hqai0jPjp3Tyg5cxmLgE9rqcKadeZnpZhju3NHnltFML0xzMR2zY7q1LBEoLdJEudM8jvix3z1I5sZPhOmv7+fz3zmM1x++eVNDqhFo7RE3Ufa29v56Ec/ynOe8xykFBz8RpbzHvsNxuas3eZwkYdKznngih0wtUUht9qZbB8rXFu71GbxQ9yD4Nx1qfJweiMfH7mRr6fX8WRRMmKeJYqjKMFy5hNnsZgrYEWq9ymv+1iawuSWELm+OcV2lng0rLCk2GUR3pziuWM/57sfjTI1NcXOnTv5x3/8RzZt2tT8oFo0TKuinM+EQiHe+973smHDBv7pn/6JqV9Ps2bwfqaecz7TiW6ig9W3n0mVmXaTUsD0JoVCZ5i24wZqobYkOkW3iA5DrqI5klRsYRcWrq89CulPIl0oZe+ptyJgxKXrSw+VlMX94fRG+sPTnBc7xS2xEaJiBT6SQiDDIVvEfVw/FZYdiVGaT/oONFYIux1zxVctJCQG60igVQT5bo3saoVi+9wDLf5MShWMjXlisTxrH3iCe35t/+LTnvY0PvCBD7S2rAWAllMPAEIIXv3qV/PhD3+YSCSCcniSzq88SKc6SH6Nvrhjn2OEygVgJnaGMGO1XVZhQTi9SP9kxdu1dq9dO8w691BaQXGhZW2tDBXb+dnUufx/w9fxm3xk5Th3RbFD7PEohDT/BF0KlKIgNH12C3r5ZXtuo5RKwtO1i3quR2NqS4Wgw6LPuxWW6FtyxJUM/d97gMKvxwD43d/9XT784Q+3BD0gtEQ9QNx44418+tOfpr+/HzFRoP3fHqZn4jCFrXn0Kl2SqhXGNqJ2dvz0xnBtYryMoEq1NJE0eKfU48L9Enc1D6EpQWhKsUPyi/S1d5uCpfEfE5fz5cnL+UG2i6wV0KQ6IZDRiB1i90vMpUBYAkUXdr5EavlKZysZqdXwHFogasjTsCIKEzsipDYqC5/Pai5dQKHPxNycJ5kdZ/XX7sU4lCEWi/HhD3+YO++8s7UHPUC0rkTA2L59O5/73Oe44oorELpF8vu7Wf3Ik0Q2TS4QdrlImMyIQrZfMLk1TKFr6XBu8lQRbZn6KFLMrrV7UbHND2EX0s4cjowLIuMCNefPmjvMde438Kt8lPGgOPeyM0/EfA21K4ZAywrCEyV3HtB3HyeQau1r58kTEmWJpTepCrJ9IcZ3hih0Ur2kc5VLmh8wiA+kaT9xkjXffAJrQmfNmjV85jOf4aabbqr5b2nhDS1RDyCdnZ38zd/8zUzN+NgDJ+j8zmOE+8bR2635W02WuIL5HsHUVpV8jzPrtDPhPw+Wff1y7eVzh9J2trya9c+561LluxOX8cXJy/nHyXPYp5vkpccbrEvr5fOcuR+UnHkopRCaFqgedAX0GytMXXXol464CVIbQkxvUhbvPFdhEqQmyfcbxLtTJH5xgPbvP0kul+OKK67gc5/7HFu3bq35b2nhHSswK+epgaZpvOUtb2HHjh3cddddcGyCnq/eR/r55zHd34d2NIpSLPVc1hZPaLNUmNqqYkQVYmMGan7hm3xkQqK31S5clmafUynOJuu5xdyJyuuEOsUEJSPQsmAk7K1DKN6/aQyVFj0P51azKTrGFfHDXB1x2Z4KgdRUCId8TX4D25krhaeGkEMp1F7nzKwUIZSp/jAWujRyPQr5niWuY8VSnpGUaJvTtGWztH3jSUKD0wC84hWv4E1vehOa1pKOoNK6MgHn6U9/Ops2beJP/uRPOHXqFO1fe5TQ0zYztvMctOMxFF0grdK8u4jeSAHpdYJ8T4iuAzpKwZonxslBg/SG+rfEyRBIiWfJSX5kypfPG0oL1ByYUXwtP3s038PxQjf3RSZ4TvJJuhWTDiXsTBna0jFkSLPD636uk0qBsOxERkXHn6qAHiMVW9AbWeJSiyxo3GKFFIodKtOblOW7J4rZNrBmTKJszBA9PsKGnx1lamqaZDLJ+9//fp72tKfVP7gWntIKv68AtmzZwuc//3me/vSnIyxJ/O7D9P3kAaKbh8n32w+ypbFsYpwRg5GLSkl0DiCFPQGZ0VJI3gPBLYfl/cqWD2XstVw/w/KWFJzId/NPozfykeFb+H52NceM5t6sZEibXS8Ph3wV9Jk188lSNvtZLujlZFQnc1bMqMrEzhCTW+sQdE1S3JwnsmWSjvv30/Htx5iammLHjh18/vOfbwn6CqHl1FcIiUSCP//zP+eyyy7jk5/8JBweR/vygyjPPZ/0zl44GSM0XVsGcK5XoCcjtJ0yiYzb+9oTpyWZNY2LlKWBUEHo7ofky/jq3DPlcLBAb5N2noMPoXmAX01v51F1I5uiozwnsZ+wEHQoNby4CVHKZA/P/H+/EJYt4Greduhnu5CXkaozXeLaj1ml4wlS60IUukTN9f6lCoVeE7WrQFJP0fbN3YROTgLwohe9iLe//e2Ew/5002tRPy1RX0EIIXjBC17A+eefz5//+Z9z/Phxur/5OKFr1pO+fAv60Xa7WUUNomrEYXKrSjyhEB82HAmhSwGyXLTGxJMtRn6vuQNEJu1e7nZo3h81SpsRnsys5cnMWtq1PFclDvH02DghUcWmKcrsernfSPvlSMv51HjHJ6RaCrU7dM9qOau2tfNKFMj3GST6M4T3nWHN3cdIp9PEYjHe8573cOuttzozwBae0Wq9ukLJZrN8/OMf50c/+hEA+pp2pp55AVmtg8ihaF3bfNQihKcluVUC08H6EaK83u5huFwK/7Lmy8sReptEhiS3Pu0xIopP7cCAnlCGkDB5WcfD/NYn/oi13xuc3VfuoyvPbO7g9A0qioG9ddCjyE4QcFrMAaKjpbXw6CLb1BbBSErkxhxhmaft7n1Edw8BcO655/KBD3yAdevWOTfIFp7REvUVjJSSH/3oR3ziE58gm80Si8UYuXED4xs2I8YjRIfrW6CTaukfh5dThQmK7p/Y+oGlwfXPf4yYGowSZ7/6/BX0/3Lc72EAkFvXxvBlT7FwbqnWg9PRJGFS93KFVCHfbxDqzhMfHefcu08zODiIoii89rWv5Y477mhlt69gWlduBSOE4FnPehYXX3wxf/mXf8njjz9O8kf7CG8bJXXbuWRC3YTHFdRcbTNJOWQulVJmu0MTkFTBUuxtd8J8aol7i6c4pdbG1Wq1N3XY0hJXXUsWAoyExBgokkhkid93lNh9xxiUkv7+fv70T/+Uiy66yLlBtvCFVvb7WcDAwAB///d/z1ve8hY0TSN8cIyuL99HV+EwckcGI1mfigrLTnhzMnIshZ0Q5FRnqRYtAo2Y0xZ1iVrtdR9Wll6MDeoW9HyvSWj7NG35ETr/7UHi9x5FSMltt93GF77whZagnyW0ptezBFVVedWrXsWVV17Jhz/8YY4cOULbt58kfO4wqZu2k9HbiR6J1LzWLizAAtUsVbVy6PVPilIUQDu7nbveLlGeSovFdaAWLNQCNWdnryhccubQWKgdbHfO5ixRRSfxmyO0PXAC0zTp6OjgXe96F7fddpuzA23hKy2nfpaxbds2Pve5z/HKV74SRVGI7Bmm+1/uo+fMUQpbc+R76xQaaa+HO11fe55zD0ASttO0nzvma5JckAmPZIiOn31vcm44c7CFXDEaCLcrkFtvwOYssakJrv3v48TvPYppmtx44438y7/8S0vQz0JaTv0sJBKJ8Na3vpWbb76Zu+66iyNHjpD8/m7C286QvnUH6dAqQhMKWrbGmacU8lPN2YpXjjp3rdQf/ix27i3OUtx05tZsxKxe9DaJ0auTSKaJ33eM2APHOGRJOjo6ePe7380tt9yC8Ln8bwt3aDn1s5jzzjuPz3/+8/zu7/7u7Fr7l+6ne2Ifclua7KbFe7UvhjBKmewOR5bPdufe4uzDCi3f37xRZtbN63zOzLgkt7lIaFuKzqlTdH35fuL3HUVYkptvvpkvf/nLdmXKlqCftbSc+llOKBTizjvv5KabbuKuu+5i7969JH+0j8iTg2Rv287kOb1ow2HCk3U85KX9583Uql700GK2oYVSLCUGtZamWwQEqVCqHuiCkEtmomL1rptLDfQ2C2VdlqSeI/HDA0T3ngGgp6eHd73rXdx8883ODrhFIGmJ+lOErVu38pnPfIZvfvObfOELX4BT07R/+SEil60lc80W0qvbiJwM1bz9DUrhQZfEHWwXBKV97kZL3Fv4h9PLTnMRErAaS4JDQKHHQnYXiSfzRJ84Tf+9p0in0wghePGLX8zrX/96ksmk8wNvEUhaov4UQtM0XvnKV3LLLbfwD//wD9x9991EHzpJeO8wkVu2kdq+hsKpBOEJpa4Sr/PEvVTAxkmkCqZaOo8xW561RQu3caMCXJlmnDnYoXa93SK2Jo02nCL5/X2EBqdJA9u3b+cP//AP2blzp8OjbhF0WqL+FKSvr48Pf/jD3HfffXziE5/g1KlTJL+/m8jGQTJP30aqtwdGIkRH6rMl5cQeaTpbvKaMVOza8rIk6k+1KnUtvGEmxC4C6MzBzmpfp6O16STMDImfHCK2awgpJbFYjNe//vW8+MUvblWFe4rSuupPYa6++mq+9KUv8bWvfY1//dd/hWMTdHzpQaIXD5C7bhOpcJ1Z8iWEBaLgrnMH272Xt/q0QvMtmsWtZaQyTYs5UOyUmN06ifYMsUdOEr/3CKJoIoHbbruNN7/5zfT29jo46hYrjZaoP8WJRCLccccd3H777Xz605/ml7/8JdFHTxPZM0zkmo1MnreJbDpG9HSo7k5ubjt3mG35Wg5jtrbEtagXK4RrrhyaD7OjgBmR6OsLRGJF2o6PkPz2AdTJHAA7duzgne98JxdeeKGTw26xQmk1dGkxj4cffphPf/rTHDhwAACzM0r2xq0Ut60md6iT6JhoWJylgr2v1+Uta4pun0PLuXuepYg/bYRr+o76N4AKgtTQRWoKI1d2klvtz7aqcm8DYbpbslhIu9wygoadubAgu0Un0ZNFPTNN4peHCB+fAKC7u5s3vvGNPOtZz0JRWruTW9i0RL3FAkzT5Ec/+hGf+9znGB+3hUBf10H62m1k8+uJjom6WjzORVj2ZGdEcWVbUBm9w47HhycVhD57Xq/ouHmIW/rtF6N0qR6q5XXD9zn4KepSCFAFMqRiJMNIRTCxPUyhy8Pvo+TEjYTEiEvUvEDNu3N+Yc1WYbQaDOeXo1yZTQZt4RES9xwmsm8YsLep/tZv/Ravfe1rSSQSDo++xUqnJeotFiWbzfLVr36Vr371qxSLduy9uLmbsa0XourdKEZjE5Za6rFerilvhZ0PfRY7LWS4tNAuQUupaFmBWnD2PIvRcfMQzxjYO++/Za0wlhQUfOho44eoS1VgJiKgCIzE/L95ckvIM1EvC7kVnU280FKq46Ku6LNthpVSFMBsoMOsWoRih8RIpll1YA/RJ04jLIkQgttvv50777yTNWvWODr2FmcPLVFvsSzDw8P8y7/8C//93/+Nadqp59mt/eS7LkBqbXVv+VHK1bJKSGVOdS6HxH2eqJcQpgBToGUEWla4uv5eTdTLWAhMqXjq4L0SdRlSkarAaI8ghUBq1f82N0W9nLle7LDsezMkkRUX2ilRLye/abn5+RxSlOrA13g/l4ssKToUOgq0Tewh8cgxhGHfw1dffTVvetOb2LZtW9NjbnF20xL1FjVz8uRJvvCFL/DTn/4UKSWKopDpXU+hbwdmPFFXcY6qjlmUnI1ovoNXNVFfMIasgpoVhDLOi8tSoj4XC0HeCrnu4N0UdSkEZlt1R74Ybom63i4xEhZSW3paa1bUhVWqeGiVIk8V1OPSFaP0T7GIOn2Q/qGTZDIZwC71/OY3v5lLLrmk4bG2eGrREvUWdXPo0CE+//nP8+tf/xqwJ/XCqvXk+7djxdtmt7ItMWeWXcliSAXMaOk4Dbj3WkTdHocAE5SCQnhagOVMcZtaRX0uFgLdUsmWSuk56eCdFvWyI9c7ova/L+LIF8MpUS9vQSt2WaW2vrXtbWxU1MvhdbW49DZKI1bb/S8kKMUC4dFDRAcPoRh2CGvz5s3ceeed3Hjjja067S3qorWlrUXdbN26lY985CM8+eSTfOELX+DBBx8kOnKc2OgJ8l1rya/ZjhnvQKqLZxeXM+EXywoWFmjZUh14dbYefK2oeYFR2qq0FFKR9pahkEkuCaKooOYEapG69+c3i4IkohhEFGPGwQMULM3XJLsyVjyMFVJA1O7I3UJvl3aIu81aEFpfDmEK6u2Kq+ZL/1tYfsnGWmI5qtxGVTFA6AUiZw7SPXmCXM7eqrF161buuOMObrzxxlZGe4uGaDn1Fk2ze/duvvzlL3PPPffM/Ldi1wC5gR2YbV0zbrvaRFdz4poolYuNlJq+LJN9L1VJsdusuwvdzOks27WrOQUtI+ouT9uIU18Mq/RHZE070U5voJpPI05dagpSUTATIayIal8/xZmXi3qdenkvebHLsl/EVOoW8zJKUSE0tbRgivK+cgu0fO3FjSy1+tLRjDO3QM1niAwdJDJ6DGHZN9U555zDHXfcwQ033NAS8xZN0XLqLZrmvPPO46//+q85ePAg//qv/8ovfvELwhODhCcG0dtWke/fht7Vj1TFArctVWqrMy/t5DrNmE2sc2LtfdHTlRy80WZitNnheaVgb4Pyev+7UgpnJEtvQOW1dxOFnOnspn+pKZjJUgJfWLGduY/o7dJeikmUxNxlhCy5cll9rXw5KmswzHXmamaC6OABolODWJb9lrB9+/YZMW+F2Vs4QUvUWzjGtm3b+Iu/+AuOHTvG//t//4//+Z//gdQoodQoZjRJvn8bhZ71oGkz+3ctDRRqFPYSwpp1+ErRXntHVITnpR1mXS5hqlasiIUVATMpKEpQMwpaTiB07xvMRObEjqOKjilnxd1EqStUb4VLF0BR0NvDjrrxRrBCgFLOXJelWgbOinnlvSas2WqEtYTXqyHF7O4NYc3Z4SElockzRIcOEEqNAnaL9CuvvJJXvepVXH755S0xb+EorfB7C9cYHh7mW9/6Ft/73vdIp9MAWGqIQt8W8r1bsKJRUOyQZbmGezNY4dLkWgrRmzGJ0eau4ioFBaVoT8rhCft/hXQ2/F4PulRnMunnhukrw+9mWwRLU+ywuuq9qMwNv1sRMOL2NGTGLKTq3pQkpCA0rqCYpeWVwqybboby9jXFsMVcGDqR0eNEhg+j5u17X1VVbr31Vl75yle2tqa1cI2WqLdwnWw2yw9+8AO+8Y1vcPr0acDOmC92raHQuxmjbRVSFTM1sptG2KJeWCXRO7yz0cISICE8rjBw7Wlu7j3g2bkXw0KQNcP85IvX0vtQBiNeCmf46MYBxneGya6RGEk7DO1FaB1sUY8OqmjZ8r83f0xLm30hVbPTRIYPExk9gbDsN4VYLMbzn/98fuu3fou+vr7mT9iixRK0RL2FZ5imya9+9Su+/vWv88QTT8z+92iSfO9miqs2ILUGSnAtghWG7EBtW9uc5sLzjnN553HPz7sYX//azfQ91MAisUsMXRkmt7ZJe9wA2rRKbEQ429VPWoQmh4icOUwoNTLznzds2MCLX/xinvWsZ7XKubbwjNaaegvPUFWVm266iZtuuomDBw/y3e9+lx//+MfkcmkSx58gfmIXxZ51FFZvwkh2Q5NrjUrRdlCtt9YWZZbbX14PSi5FZPQY4bHjKLqd5KEoCtdffz0veclLuOyyy1rr5S08p+XUW/hKNpvlJz/5Cd/5znc49P+3d++xTZ33/8Dfzzm2sZ045EaAcCtpKS2UFoqAsWGGVjoySkl/qar2j6lrO321SZMKrBOwSluR6Ki6qZRqf61VKVu/sDJNG3QTg/ArlG3QcVlHCKMEWm7NrZA4jmPHTmyf8/3D9vHxNQm5meP3S4pyfJ7ryeP443N7zhdfaOvD1kL0lk9Hb/l0qBbbbdcfLAQCk0K3fWvb7eKeenZjsacu9Umwt0hZJz3qVzgIi6sZ49qvw+SNX6NQXFyMNWvWoKamhofYaUxxT53GlN1uR01NDdauXYvz58/jww8/xLFjxxAIeGFvugBb0wWEiirQWz4dfSWTAXlwb1mTP3Ixm/5hHpSfTD5xewFdVWHqvgVLx5ewuJq1e8tlWcaSJUvw2GOPYenSpTCZ+HFKY4/vQsoJQgjMmzcP8+bNw4YNG/Dxxx/j4MGDOHv2LMyemzB7bkKVTOgrrURf6RQEiyqAAUzSIcKA2SOhd5wy6nvrlDuEImDpGsQbQFUh+zph6WiCpbNJO7wOANOmTcPq1auxatUqlJeXj0BviW4fgzrlHLvdjtWrV2P16tVoaWnBoUOHcPDgQbS2tkZuE2q/AUU2awE+5JiQNcBbugDFLCNYMso3lFNOEGEBa5vc/166qkLyd8PiiuyRy70+LcnhcGDFihWorq7GAw88wHPllLN4Tp3uCIqioKGhAUePHsXHH38Mlyt+PlMxWdBXUolgSSWCReWAlDqNqmIGeqaFR/QeaD2eU89uNM+pyz0SCpozfOlTVcg+FyydrTC7W7V7yoHIrWjf+MY3sHLlSixatAhm8/DO3kc0EhjU6Y4TDodx7tw5LcC73W4tTZVMCI6vQF/JZATHT4Rqjs8jG7IDgUmjE9gZ1LMbraAu+yXY2qTEyWWUMEyeW7C4I4Fcf2jdbDZj8eLFWLlyJb7+9a/DZrv9izSJxgKDOt3RQqEQ6uvrceTIEZw4cQIdHR1amgogVFiGYMkkBMdPQtjmgDJOoK9IRagg8rZXzSNzrl3YQ1h8zzXMsMePKNilsQuqYxrUFVW7jUyoKvrGm9C8QoIyAvMHiLCACEcGdFyHBDkQnXu91wdT102Yu76C2XNLmxgGAAoKCrB06VIsW7YMS5Ys4T3ldEdjUCfDUBQFjY2NOHHiBI4fP47PP/88Md1sRbBoAoLjKxAqqoBqtqK3RNUeEBMqGsZz7gKYUXUTshQJXJJQMbXArSVPHteVMIf7SBvtoC73hiH6otseUiD54nvD3bNL0PTo8H3sCEXA7JYiD2EJCJh9AJQQTN3tMHfdhNnzVcJhdQAoKyvDsmXL4HQ6sWDBAh5aJ8NgUCfDamtr0wJ8fX09+voSg1rIVoRQ0QQEiyoQKipF2BaZza6vWEV4nBp5SIzlNvfkk4J6snFyCFJ0jtIJVi/KLZGgIwl1RPboRyqoS8H49pk8vRCh6OuwCqGk3/ahBHWhCIhgdK59d2RPXKiA5A/B5OuEqbsdJm87TF4XhBpvX5ZlzJkzB4sXL8bixYsxe/ZsPuKUDIlBnfJCb28vzp8/j9OnT+PMmTO4fPky9G99IQSCVgdChWUIOcoQKiyDYrOjb7waeTiMFQgX6Pbk+wv0Aiic6EWFw9tPxkRmKYwKW7f2utDUh4kWz6DqSGe4grqpOwgR+7spKmRvb/YCSVRJQvOqUnTfPfCjFEKN7ImLMCAFBczdAMJBmLyuyN64tx3WgAehUGKdEydO1IL4ww8/DIfDMai+Et2JGNQpL7ndbnz66ac4c+YMzp49i6amppQ8YYsN4cIyhApKECosRrBoPCCboZiAQHl8L1Cxpt+blxxB3DWpIzVhECShwqx7tmuxxY/J1q6EPIWmXu2Z65kMJKiLsAoRTqzH3OkH9F9+QkM7D66aJFx6vhjKuNR6REhAiu6Fi5CAtSP6R1UUmD0eyN5OmHwumHydkALdKX/y8vJyzJ8/Hw899BDmz5+P6dOn89YzyjsM6kQAXC4XGhoacO7cOTQ0NODy5csIhxPPsasAFKsDoYJihAtKELIXI2wvQl+pGbFHmAcdSnz2OouCiZVuFFhG9lx2mdUHiy7w2+Qgplo7E/KkBHVFhdmT2C+pLwzRN7Ln+bvmlqDVCSB616HJE390rRwATN4Q5EA3ZH8X5B4PTL5O2IPelFMnADBp0iQtgM+fPx+VlZUM4pT3GNSJ0ujp6cGFCxfw3//+F42NjWhsbMStW7fS5lUsNoRtRQjbHAgVFCFkjyxDNsE7uw93zbilnT8fLfq9ewBo3z0dE04mBvpM57xHimqW0f5wMQJlAlCUyBXpPd0w+TyQ/R7I/i5IAW/aMxuFhYW4//77tZ/77rsPZWVlo9p/ojsBgzrRAHV0dODSpUtobGzExYsXcfny5YyBXgWgWmwIWwvQO9mGwimAVGYBSscBJVYIa+oEOSOp+3+noPzU0E4FDJaKMFSpF6rUC8UUgL9CgSr5IPV6IfX6Ml6WUFxcjHvuuQdVVVWYNWsW5syZgylTpvDCNqIBYFAnGoLu7m5cu3YNV65cSfjd2dmZvaDNBBSZAYcFIvobRRYIhxkosgB2E2AzQZiHJ5ANZ1BXoUAVQUAKQhVBqFIQqtQXD+BSL1QpeoN4FjabDVOnTkVVVRXuvvtu7ae0tHRY+kmUjxjUiUaA2+1GU1MTmpub0dzcjJaWFm1ZPwNev8xS5AtALMjbZWCcCbBIkTSzFF2WAYsEYZIASUQu3NP97vn/EzD+Mw+ixxAAoUKNXCUQuScMKlShACIMVYQivxGOvo7+jgbx/oK1ns1mQ0VFBaZNm6b9TJ06FVOnTkVZWRnPgRMNMwZ1olHm8/nQ1taG9vZ23Lp1K+F3bLm7uzvlQr1cIkkSxo8fj+LiYhQXF6OsrAwTJ05ERUVFwu/CwkIGbqJRxKBOlIMURYHP54PH40FXVxe6u7vR1dUFj8cDn8+HQCCAQCAAv9+vLQcCAfT29kJRFO0nHA4nvJYkCSaTCWazGSaTCbIsa6/NZjMKCgpgs9lgt9tRUFAAu92u/cSCeElJCRwOB89xE+UgBnUiIiKD4FdtIiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCNNYd2AsqaqKQCAw1t0gIqJhZLVaIYQY626MibwO6oFAAKtWrRrrbhAR0TA6dOgQbDbbWHdjTPDwOxERkUHk9Z66nuVUBRAWEJIAhBT5DQBCArRlASFJ2jKEbjmaR8TyC5GSFimTab2UPh8S86mx9RIS68qSlm69KiJVa3kkaCsiabHySCivJqzXldfXJwld3WnypVsfbz7Sl9iyri/6NtItJ9adrp9ZyiB7PgAJfdTKpsnXX5sJy+nK6/VbXh1w+xBqwvYm5lMTyuvLxKi69hB7i+pex/sfr0uI1GWhq1tEyye/5WP1ili56G8hAAn61/Hyki5fPE/Sel0ZSagQSEyLrU9Yhn490qZFyiupZRBfL0fXp80nFK1eOalNGfH8slCSykTr1reTsKyk1BErH6kr3rd4HkVbloUKAQWyvj5deTk6ZBJ0ZRD/G8tQov1RtTRZ6z/iy4h/zMkQ2t6mLAQkCMjRN5EEAVnEliWI6HpZSOjrlfH//qcC+Y5BPSYsIJTom0TE3yyRwK0L6tAH8thbL/7pKCKRL14GIhqlossZP3ml9J/EIqlMwid/8vpsaenWJ63TBcKBLSNeLul1+qAiMgSOpPISkvKlazPL5t92mX6WkWb9YMoPtH0M5kvBKAT1hDaTgng/QT2xXjVN3fry+i8M8S8T8fVqUr5M5VVEv4Klz697LdJ+QUhaTsqTLi0W8LXlLOv1r/UBLjGoK9p6LaCJWJBDNJ+AFH2fy0CGZZFQR6TuWHkkLGsBWrccyyNH+ywjuUz8y4usC9zJQXwgQT1TGxJ0fdPlk6DflvjfPN/x8DsREZFBMKgTEREZBIM6ERGRQTCoExERGQSDOhERkUEwqBMRERkEgzoREZFBMKgTEREZBIM6ERGRQXBGuRhZhQolPsWpNjWrflk3BVPC7Ggidda1hClc1TT50uRJl5Y07ZiaZXqzTGnp1ifOvRSdF0vVp8XLaOVVJNQVr0Mk1pcwbVliOxnXq0nJQ54dbpBlUtpMs5wuT39lBtXn1Gb6L59mRreMyypStiXtzG9J6xPyj+40sQl90OoavhnlVF1dqjY7X9Iy9OuRNk0RKhCdSjWhfcTXi9j6NPlUoWj1IqlN6JeT0mIztanIvhzvZ/wjLHk52itIumUl+jGXeUa5SIJ+KlcZ8bGUIaIz3MXLp5u57vamiRWITxMr0Neb6fMlvzCoR/UtvjnWXcgd+s+kYZAuJhLlAl3o1QKZsem/ffFArRFxVImIiAxCqKqat7Pgq6qKQCAw1t3IK4FAADU1NQCA/fv3w2q1jnGP8hPHIXdwLIaf1WqFEPl5XDCvD78LIWCz2ca6G3nLarXy758DOA65g2NBQ8XD70RERAbBoE5ERGQQDOpEREQGwaBORERkEHl99TsREZGRcE+diIjIIBjUiYiIDIJBnYiIyCAY1ImIiAyCQZ2IiMggGNSJiIgMgkGdiIjIIBjUiYiIDCKvn9KW73p6evDBBx/g2LFjaGtrgyRJmDZtGr71rW/hySefhNlsvu26XS4X9uzZg08++QRfffUVxo0bh5kzZ6K6uhqPPfZYv49FbG5uxp49e3D69Gm4XC7YbDbce++9ePzxx7FixYqsZXt7e7F//378/e9/x7Vr1+Dz+WC1WjFlyhQsWbIEtbW1KCsru+1tG265OA4dHR2or6/HpUuXtB+PxwMAeOutt7BgwYIBtd/Y2Ig//OEPOHv2LNxuNxwOB+bOnYva2losXLjwtrdrJBhxHL744gscP34c9fX1uHr1KtxuN8xmMyZNmoSHH34YtbW1mDZt2m1vF+UeziiXp9ra2vDiiy+ira0NQOSRj4qioK+vDwAwa9Ys7NixAw6HY9B1NzY24ic/+Qm6uroAADabDX19fQiHwwCAxYsX47XXXsv4IfnJJ5/glVde0Z51X1BQAL/fD0VRAACrV6/Gpk2b0n4QtrW14cc//jGampq0dYWFhejp6dHKFxYWYtu2bZg/f/6gt2245eo47Ny5E7t27Upb70CD+l//+le88cYbWnuFhYXw+XyIfeQ899xzeOGFFwa9XSPBiONQV1eHV199NWFdYWEh/H6/1rbZbMaLL76oPc+d7nw8/J6HQqEQNm/ejLa2NpSVlWH79u2oq6tDXV0dXnnlFdjtdly+fBlbt24ddN1erxebNm1CV1cXpk+fjrfffhuHDh1CXV0d1q9fD5PJhFOnTuHXv/512vItLS3YsmULAoEA5s2bh927d+Nvf/sbDhw4gOeeew4AcODAAfz+979PW/4Xv/gFmpqaYDabsX79ehw8eBAHDhzA4cOHsW3bNkyYMAFerxdbtmxBb2/voLdvOOXyOAghUFFRgWXLluH73/8+Nm7cOKj2z58/rwV0p9OJP/7xjzhw4AA+/PBDrF27FgCwa9cuHDlyZNDbNtyMOg7hcBgWiwXf/va38frrr2v/R3V1dXjzzTcxc+ZMBINBbN++HWfOnBn0tlGOUinv/OUvf1GdTqfqdDrVhoaGlPTDhw9r6WfOnBlU3e+8847qdDrVlStXqs3NzSnp77//vup0OtUVK1aoN27cSEnfunWr6nQ61ZqaGtXj8aSk//KXv1SdTqdaXV2dkt7a2qr1+913303bvzNnzmh5Tp48OahtG265PA6hUCjhdUtLi9aXTz/9tN/2f/SjH6lOp1P93ve+pwaDwZT0l156SXU6nepTTz2V0tZoM+o4XL9+Xb1161bGdI/Ho9bU1KhOp1Ndv379ALeIch331PPQwYMHAQALFizAAw88kJL+yCOPYPLkyQl5B+rQoUNaHZWVlSnptbW1sNlsCIfDOHz4cEKa3+/HsWPHAABPPPFE2kOd3/3udwEAPp8P//jHPxLSOjo6tOX77rsvbf/uv/9+bbmnp2cgmzRicnUcAECW5UG1p9fS0oJz584BAJ555hmYTKmX7sTGsa2tDfX19bfd1nAw6jhMnz4d5eXlGdMdDgeWL18OALh48eJtt0O5hUE9zwQCAZw/fx4A8LWvfS1tHiEElixZAgA4ffr0gOu+ceMGvvrqKwDQyiez2+148MEH09bd0NCgHRLPVH7y5MmYMWNG2vL6D81MH1KfffYZAECSJNx7771Zt2ck5fI4DJW+vkztz5s3D3a7fUTaHwwjj8NAWCwWANCuN6E7H4N6nrl+/br2Dzxz5syM+WJpLpdLu9q2P1euXEkpn05VVRUA4Nq1axnLx/JkK3/16tWE9SUlJdqex+7du/GnP/1J2xsPhUL45z//iW3btgEAnn766bR7TqMll8dhqGLjUlJSgpKSkrR5ZFnG9OnTE/KPBSOPw0CcPXs2oQ905+MtbXmmvb1dW54wYULGfPrDdu3t7SgqKuq3bv3h74HU7fP50NPTo+2xxfrmcDgwbty4fsvr24vZtGkTAoEATp06hR07dmDHjh0JV79XVVXh+eefx5o1a/rdnpGUy+MwVLFty3boN9a3ixcvph3H0WLkcejPRx99hEuXLgHAmP8/0PDhnnqe0Z9HzhY4rVZr2jIjWbff709Jz1Y+Xb8cDgdeffVVPP3009otb16vV9sb8/v9cLvd2i09YyWXx2GoYnX1N46xvo3ltQ1GHodsvvzyS7zxxhsAgAcffBDf+c53RqVdGnncUydDuXTpEl5++WW0t7fjiSeeQE1NDSorK+FyuXD8+HG89957ePvtt1FfX4/XX38dksTvtZRfOjo6sHHjRni9XpSXl+PnP/85/w8MhCOZZ/SH9rLdpx2b+CW5zEjWbbPZUtKzlU/uV09PDzZu3IibN2/i2WefxYYNG1BVVQWr1YrKyko89dRT2Lp1K4QQOHnyJA4cODCg7RoJuTwOQxWrq79xjPVttA43p2PkcUins7MTGzZsQHNzM0pLS/Hmm2+ioqJiRNuk0cWgnmf05wZv3bqVMZ/+XGN/50Zj9FOvDqTugoKChA+xWDvd3d1ZPwRj5ZOneq2rq4PL5QIQuRAunYULF2LWrFkAoN0+NxZyeRyGKtZPfd/TifVtLKfsNfI4JOvs7MT69etx7do1lJSUYMeOHdqdJGQcDOp5ZsaMGdqhtmxXHcfSSktLB3RREJB4BW22umNXBd91110Zy+uvHM5UPvmK4tjVw8XFxSgoKMhYfurUqQCA1tbWjHlGWi6Pw1DFxqWzsxNutzttnnA4jBs3biTkHwtGHge9zs5OrFu3DlevXtUC+ki2R2OHQT3PWK1WbYKNkydPps2jqipOnToFAFi0aNGA6542bRomTpyYtW6/369NTJJc97x587QLimLtJ2tra8P169fTlo9dGNfV1ZX10G9nZyeAsT3sm8vjMFT6+jK139DQoF0UNtztD4aRxyHG5XJh3bp1CXvoY/lFikYWg3oeqq6uBgD85z//wYULF1LSjx49ipaWloS8AyGEwKpVqwAAR44cSbsn/Oc//xl+vx+yLOPRRx9NSLPZbPjmN78JANi3bx+8Xm9K+T179gCIBGSn05mQFptMRlVV7N+/P20fr1y5on2Izp07d8DbNhJydRyGqrKyUptQZe/evQiFQil5du/eDQCYNGkSHnrooWFtf7CMOg5A4iH30tJSvPXWWwzoBsegnoeqq6tRVVUFVVXxs5/9DP/+978BRGaVOnr0KH71q18BiMyClfx4zJ07d2L58uVYvnx52g+pZ555BqWlpQgEAti0aRMaGxsBAMFgEPv27cO7774LAHj88cfTPvLxhRdegM1mQ0dHBzZv3owvv/wSQGSPZteuXVqwfvbZZ1OmkV2xYoV2HvOdd97B7373O+3JWH6/Hx999BFeeuklhMNhmM1m1NbW3t4fcJjk8jgoigK32639dHd3a2lerzchLfYkM70f/OAHkGUZn3/+ObZs2aKdU/Z4PNi+fbu25/rDH/5wSFOhDgejjoPb7U4I6Dzknh/46NU81drainXr1g36UZP6R0Hu3btXmxNbL/lRk3a7HX19fdoe26JFi/Daa69pU1QmS370avLjIrM9evXChQvYvHlzwrlcu90Ov9+vPfLTarXi5Zdf7ve57KMhV8ehtbU148WGyX7605+mvc/5Tnr0qhHHYdeuXdi5cyeAyFGw2N0lmfzmN7/RThfQnYv3qeepyZMnY9euXfjggw9w7NgxtLW1wWQyYebMmXjkkUfw5JNPZnzeeX9mz56N3/72t9izZw9OnDiBmzdvwmq1oqqqCtXV1Vi9enXW+2KXLl2K9957D3v27MHp06fhcrlQWFiIWbNmYe3atVmD8Zw5c/D+++9j3759+Ne//oUbN26gp6dHu61t4cKFqK2tHdMpYvVyeRyGas2aNZg1axb27t2L+vp6uN1ulJSUYO7cuaitrU3Z6x1LRhwH/Xzufr9fm9xpIPnpzsU9dSIiIoPgOXUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKDYFAnIiIyCAZ1IiIig2BQJyIiMggGdSIiIoNgUCciIjIIBnUiIiKD+D84r+pQRw9J6wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m_bkg = HealpixMap(bkg.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents)\n", + "\n", + "fig = plt.figure(dpi = 150)\n", + "\n", + "ax = fig.add_subplot(projection = 'orthview')\n", + "\n", + "m_bkg.plot(ax)" + ] + }, + { + "cell_type": "markdown", + "id": "3bcca3df-33c4-4843-aac1-27facf67cafe", + "metadata": {}, + "source": [ + "Note: I actually don't understand what causes the strip in the middle. Maybe it's a beating pattern caused by converting from FISBEL to HEALPix during the creation of the detector response. I plan to generate a detector response using HEALPix directly, and will revisit this then." + ] + }, + { + "cell_type": "markdown", + "id": "61f927b2-1132-4afe-971a-cc649a832ebb", + "metadata": {}, + "source": [ + "## Adding Bkg + Source to get Data" + ] + }, + { + "cell_type": "markdown", + "id": "2b0ce845-5b17-48e9-8282-97e6d703bcbc", + "metadata": {}, + "source": [ + "Once we obtain the expected signal, it's easy to add it do the background to simulate how the observed data would look like" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "5c9e5f28-0c5c-475c-923b-47b0ba28c38b", + "metadata": {}, + "outputs": [], + "source": [ + "data = signal + bkg" + ] + }, + { + "cell_type": "markdown", + "id": "70e53ffc-0e27-422d-88c6-f3a6f3969dae", + "metadata": {}, + "source": [ + "If the user wants to simulate multiple sources, just add those to this sum.\n", + "\n", + "This is how it looks:" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "8962acdf-949a-4f02-b932-8a974c068b1e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(, )" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAG5CAYAAACX/m9DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAB0NklEQVR4nO2deZhcRb2w3zqnl+mZSSaZTPaNhDWBhC2sEgREQRa9gqCg3o+LKFcQI6AiKAgKoiBuXOQKggvI6kWURRJkk1VIWAMkIWSfJJNMttmnu8+p749e0jPp6T59+mzdXe/z5JnJdHdV9Tl13v71r+pUCSmlRKFQKBQVh+Z3AxQKhUJhDyVwhUKhqFCUwBUKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUJTAFQqFokJRAlcoFIoKRQlcoVAoKhQlcIVCoahQlMAVCoWiQlECVygUigol5HcDFAo7JJNJuru7icfj9Pf3E4/HB/wupUQIgaalYhQhBEIIQqEQdXV11NXVEYvFiEajxGIxQiF1KSgqD9VrFYGhv7+f9vZ2Nm/ezKZNm9i8eTPt7e1s27aNjo4OOjs76ejooKOjg+7ubkfrDofDDB8+nBEjRjBixAiampqyv7e0tDBmzBjGjRvHmDFjqKurc7RuhcIuQi0nq/CSvr4+WltbWbt27YB/ra2tbN++veTypBBIXUPqeupnSEdqGggBJuj9QE4XF9IEM4kwjdRPG++hqamJsWPHMn78eKZMmcLUqVOZMmUKU6ZMob6+3kaJCoU9lMAVriClpK2tjeXLlw/4t379+oKvi0ajjB49esC/m5e+gRmNYEbCGOmfZjSMGQmDNvQwjujXaFqiI4bq4lKCNME0EGYSYcQRyX60ZBxh9POV4w9k+/btbNq0iU2bNrFx40Z6e3sLtn/06NFMnTqVPffck7322ou99tqLiRMnZlM5CoWTKIErHKGzs5N3332XxYsX8+6777J06VK6urryPnf48OFMnjyZSZMmMXnyZG544y36xsYwGutSUhZ24uJdKSrwUpESzARafy/R7T1cfNYhrF69mjVr1rBmzRq2bduW92X19fVZoc+cOZPZs2czevRoZ9qkqGmUwBW2aGtr4/XXX+edd95h8eLFrFq1apfn6LrObrvtxh577MEee+zB7y55GF00wbCRAGw7uIWNR5sgnOuCWkOSpuE9APT2R+DdYWCmHotuAy3pYF1JaHmjE60jFZXLrZsx9B7m3XY2H3zwAcuWLWP58uXE4/FdXjtu3Dj2339/Zs2axezZs5kyZYqK0hUlowSusERnZydvvPEGCxcuZNGiRaxdu3aX50ycOJH99tuP/fbbj1u+9iAiGUOMHYsUgp7dhpNo1EhGBYkGgQxBxx4GMmpab0QmMNckYydsJ6SlXvvZya8zM9oKwOTQDmZEUnnodckuLlj5WZJmSozrdjSRTOoA9G6qJ7Il9bseF0S35FRj85KI7pAIA+o3xQlv7kHEE8iNm/jNou+xbNkyli5dyuLFi1m+fDmmOfB9jxw5kjlz5nDooYcyZ84cRo0aZasNitpCCVyRFyklK1as4IUXXuCll15i6dKlA6SjaRozZsxg6TPr0Xrq0Psa0OqGY4wdQXxkHT1jw0hNEB8myDdSmGyArunJoaNvDRCSkWM6Gd3QjRCScye9wJTQVsLC4IBICF0UjlgHC3wo+o0Qm7saAOjcVk+oLQJAdJsg3A1IEGbhy0TmSftohiTSmXrdsFW96D0JxLo2pBnHiPZgNvQy65O78d5779Hf3z/gtbvvvjuHHnoohx56KPvvv7+a5qjIixK4IksymeStt97ihRde4MUXX2Tjxo0DHp86dSrrXtuG3l2PHh+OpteRnDIGoz5Mx9QoUodkzFr+unespH9sMvWfkARNUtcYZ9b49UQ0g2+Mf5IGkWRSCJq0mK33Y1XgQ9HRX0d/MkRHdx3GunqQUL9eQ0uCMAZKPZ/AByOkJNQDekIybGUvem9G6AZGuIPP/fB4Xn31VZYuXTrgdcOHD+fII49k7ty5HHrooUSjUVvvR1F9KIHXOMlkktdff52nnnqK559/fsDAYzQaZc6cObx6z1L0zno0vQFj94kY9WE6p0QxwmBE80fYxejYw+Qjh79HVDM4fdRCZka2UC8ELXqDY++tXIHnY0d/HaYUbGofjtweQevTaFgn0BKllyVMid4P4R5Jw/p+Qtt6Ees2YJp9GMN6+djXDubll19mx44d2dfU1dVx6KGHcvTRR3PUUUepaYs1jhJ4DSKlZPHixfzzn//k2WefHTB7YsSIERx55JH88+ZFaJ0xhEzJT2tppv3oSSQaQWrlzRIx6uB/LvwNR7t8P4wbAh+MKQUfrB/D8JfsfUvIRTMk9ZtMhj2/HNmTHhhFYjb28akrjuL555+nra0t+/y6ujrmzp3LJz7xCQ4++GCVZqlBlMBriA0bNvCPf/yDJ554YkB6pKmpiWOOOYZ/3PgqWncdYlBILXSdjk/MoHus7kg7kjF44Os/yw42uoUXAgdY3tZCw78aHSlLSMmoxX2EXl824AYkSMlcxuKc+eOP8fTTT9Pa2pp9bOTIkRx33HGccMIJ7L333giHpmIqgo0SeJUTj8d58cUXefTRR1m4cCGZ0x2LxTj66KN55jdvoXXEdpF2LsmD9qJ9VsxWqiRveUrgBdETkjH/2oxcO/RNTxLJL1/9LgsWLOCpp54akGbZc889+dSnPsXHP/5xlWKpcpTAq5R169bx8MMPM3/+/AEX98EHH8zJJ5/MDaf9KZseKYRobKD9k7uTaHAuolMCL07jBoPGBYt3icLzIZFc8+TXWLBgAc8//3x23nksFuP444/nU5/6FHvvvbej7VMEAyXwKkJKyeuvv86DDz7Iyy+/nI22W1pa+OQnP8kD330WLR4uqUyno29QAreClpSMfXYTct2Gkl4ndYPzbv8Uf//731mzZk327/vssw9nnnkmxxxzjMqVVxFK4FVAf38/Tz75JA8++CArV67M/v2www7jjXtWoXXUF0yRDIUIh+j42D50j3Mm953BqIP7L3Jf4B8murhoxZmu1gEpgTc+12BpKmEptLzTS2jR0uJPzENm8PPoC/bjueeeI5FITZMZPXo0n/3sZznllFMYNmyYk81V+IASeAXT2dnJQw89xF/+8pdsmiQWixFfEya0eThaX060XapcNA2tsYGNp07DDJcpJpkanBMGhPpACvjdNb9gdsTZaSgJabDD7OP+zn3YEB/BX5YdgPygkfiEOOFYgomjdhDVk2gO3roPsGTtOMY/GiFZJ0jGUu8PYW1ueCHqtpmMfOy91Dcp07SUTsmHDBl84Vcf56GHHsrOOIrFYpx88smcccYZjB8/vqx2KvxDCbwC2b59Ow888AB//etfs+tijxs3jtNOO407//sxRFJLXfCQWq3Pqkg0LTV7QRMgNOSUcbQdMQKp2xCR3DnPOdQvCfXKrMTjjRq3/vhXHODADSk7zF5WJjQe2H4IK3paeGv9ROJ9IaQUyD6dxmVhhAlSByMCvROTEDUZN2EbjZE4Yc0ouw1L1oxj8l9SaQmpp6ZZJmKCZJ3ADNufdhnqlYx5eh2yoyu9aqJMydyw2Obc2/U1DSlM5t33eR544IHsNzVd1znhhBP44he/yKRJk2y1U+EfSuAVxObNm7n33nt55JFHsrdeT5s2jXXPdKNva0jdlW6a2dy30HVL8ha6npV2Lv0HTmfrjNIkKwyJHodQX1rapkQMWu6kXIGvSXbxdM90Xu2czsJNk9m2owEjuWueO1fgAxsJZgj6myVGo0n9+C6aG3pojPTvUoYVcgU+oH4NpJ4SeaJeIHUwS/wwHP/cFli/aeAfDcN6VD5ozRU0LZVeGdbL7LMms3DhwvSfNT7+8Y/zpS99iSlTppTURoV/qNGMCmD79u3cfffdPPzww9kZBvvssw8rHt/GhjcgJBsGiBtSW4gVlLemIXRtF2nvfFxgRK0N/mlJiUim7igM9eWXdjn0mHGWJ03e6x/PQ5sP4u31E0jEQ0jTZopCgpaAWJuANh25qon2uibWtZg0TOmgLpxkVH132akWYaa+hUQSknA3mCGBEU3J3AxZi8zNutCuG9fq+s4RDcNAZiLyfDLXtIESN00EoHfW8+5tW7j137fyxz/+kVdeeYX58+fz5JNPctxxx3HOOecokVcAKgIPMD09Pdx///3cf//99PSklkidPXs2Sx7ahNaRvuFmkLghLe8hUidDRdu7PC8aoe3k6Rh1+SUjDImWgEi3RI9LhGFd2lYi8IQ0eCNu8uC2Q3mtfSprN40ECVJal/aQEXih12iABn0tEnN8HyNGdDO2Mf+65hmGisAL1WGGBUakuMwbNhkMf2qZhUJNpGEOHZUPjsQzpJew/dXCy/njH//Iiy++CKRSKyeffDLnnHMOLS0tlt6XwntUBB5A4vE4Dz/8MHfddVd2cHKvvfbiq1/9Kt8/7n/QzShSmhT85M2VdybahqLiHljGoP/L1E0mej9Euky0hPOf/S/2mSzonMUzG/eidfMI+1G2TYQJmBDbKKAtRn84xvIRozAn9zGyqZvRDYVlbrUOvV+i90sinan1ZOKNGmY4ldqBnQOglj+vhIYIaTtz5YZhbdAzLfZ5B10HmsYdb9zBHXfcwUsvvcTf//53FixYwBlnnMFZZ51FY6OzUyUV5aMi8AAhpeT555/nN7/5TXbrscmTJ3Peeedx/am/R2QGsQowIPouliYpVE40Qtsp0zEiIruKXqQ7Je1y0yO5EbghTV7ph+e6ZvBI635s3jYMM08+2w52IvBCGFFIDJOYU/toHtFFc6wHTciSI/ChMEOpaDzeqGGkJ+jE2k2a/mkhAs/b4EG58qGi8MFoGje+dCn/+7//y+LFi4HUcgtf+tKX+MxnPkM4XNq9BAr3UAIPCB9++CE333wzr7/+OpC6+WbHItC3NA6ZKsmH0HVEKGQpTVKwnLoo7R+fhpaQhPqlo9F2vFHj/135CDuMev6y+kB2dMZIJpydaw7OCzwXoy4lc2NSH2Z3mCmPOVe21FIyT9YJwr2SYc99AEXWIy9cYDq9kihhycT0YOeV//gKv/3tb7M3BU2ZMoV58+ZxyCGH2G+PwjGUwH1m+/bt3Hnnnfz973/HNE0ikQjm6npCbU2I9HLZlsQtBITDtiNuICV9TYfRI+mbMIxkg+6O/KKC1pOTCN3druemwHPREtC0Kula+ZGOBOHW7bCjC5Jl1CNNZCJpfRoiZEV+0b1n8Lvf/S47j3zu3Ll8/etfV3PIfUYJ3CdM0+Txxx/n1ltvpbOzE4Bjjz2Wl27+AK0vFY16KW5RX09yYjP9I6Oped8upp6NiKD1BBNRV/4c7EJ4JfBQj2RYq7vvRZgSkZTUtfWgbdyC7N91n03L2BW5bnDqtYfx0EMPYRgGkUiEs88+m7PPPpu6OpfXBlbkRQncB1atWsXPfvYz3n77bQD22GMP1jzehd4Vs54qcULcoRC0jCA5op54c6Tsdb6togReHlpCEtnaR6i9E7mjw356xabIzbo4+35xbDbdN2HCBL797W9z8MEH22uHwjZK4B7S39/P3XffzZ///GeSySSxWIwvf/nL/O7cRy0NUIKz4u4fP5xkve5qtJ0PJXCHkBDZkSDSus1bkafTKlc8ei4333wzmzdvBuCkk07iwgsvVGuseIgSuEe89dZb3HDDDdnd3I888kgW3bbGcrrECXGLhnqSE5pJNkZINjg/aGgVJXCHkRDpTBDa3ofWttV+esWGyB9q+w233XYbDz/8MFJKmpubmTdvHsccc4zaVMIDlMBdpr+/n9tvv50HH3wQKSWjRo1i3rx5/PiUO0uaFigi4bLF3d9SZ29dE4dRAncPvd8k2tZdnsgNA5lMljTt8Gcvf4sbbriB1atXA3DUUUfxrW99i+bmZnttUFhCCdxFlixZwnXXXZft1CeddBJP//hdRNLiAGVmSqBuL1rOintUHTLkv7gzGBFB6ydMREwJ3C20uEndxm7Exi0Qt7HjcuaGIKsi1zSkkHz+V8dw9913k0wmGTFiBN/5znc46qijSq9fYQklcBdIJpP86U9/4q677sIwDJqbm+l6LYy+o97SIGU2XWJz4X3RUI8xvpm+lmCJO4PUYPP+Ifr36HO3Ho8E3rDRJNLpciU2cULkpaZVzLo4k06t48MPPwTg5JNP5qKLLlLbu7mAu1uV1CCtra1ccMEF/OEPf8AwDI499lh6nmlE31aHzNwZNwRCCEQohKiL2pK3aKjH2HMS3bMm0DsuFkh5Q+pWcs2GS4KKCFbwPQAzotEzZRi9B0xBThkHkRLvohQaIhJB1EWz66YUrtBE64vQ+heDs846CyEEjz32GOeeey7vvPOOvTehGBIVgTvI008/zY033kh3dzfDhg2j7+06QtsarUXdZaZL5OSx9E4a5kiOW5gytXCUS/lyLSFpnx2mez8XI3AJYmuE4R9qGBH3qgEYvtog1GO69oEpktKxufla3KT+g3bkth3FnzwYG2mVn75wMddddx1tbW1omsZ//dd/8aUvfQnNyoeBoihK4A7Q39/PzTffzN///ncAZs2axbJ7tqMlQjuX+iyCFo2WLu/0LdIiGqHnsOllz+MWpiSyPUF4TTtyeAPd05vKKm8wWtykbkMXYsMW2k/eg/bj7K2/XQjZp9O4PMyI5QbDX98Aff0kpo2jY/cYvS0aFvZxLpmJC7aibdmOMWm0K2mrxjdakXUR4pNHkmgIlS3yULdB5LVlqVSdjYBBJpPI9LLGRWeaaBpSM/noZfswf/58AObMmcOVV17JyJEjS65bMRAl8DJZtWoVV199NStWrEAIwRe/+EUevPh56+uXmBKha6mvqCXMMpHJJCQSSCnRhjXSffjuti/srLhXb8Zs35Iqc/oUuvdw4AKTEOo1iGzuRmzYAv39SCnZctp+tH/MOYGLrRFGvwbDV/UR/nBDduca2dWNlDKVmtptEr2ThrFjephkzDnJTnqiHbl2QyoF1lCPMWk08aYIRsyZqZqNC9dgbtueWgd8/Bj6pzSXNQ001GMQefn9VBSt64hwqLQZTtLE7O1LzTvXhCWJA3zzwc/z85//nP7+flpaWrjqqqs44IADbL8PhVpOtiyeffZZrr/+enp7e2lubub73/8+3zvm5lQKAgs35mRuvAiXMEUwPagky1kTI1sWRLbHiaxKidtw8rM8c5PJ2i3IrduRUhZe/tZOFUmN8MYwoxZLRr7aBp3dmarzPDeJXL6Kug8F9Yub6Zk1ke5xIfqanRO5lBLZ1Y22tIc6XYcxo+if1JS6WcoJDAO5bgORtnaiY1vKFnm2TMMo7R4Dkdp6TyJTKZXMSsVDidw0QdP45Rn3cds7t3HVVVexevVqLr74Yr785S9z9tlnq5SKTVQEbgPDMLjjjju4++67ATjooIN47w+bEclQNjdY8LDm3jGnidQgUbFBywLiLjkCHyTufG21HYHnEXc+yonAZVKjfnmECf/qIbJ8w9DHOicCz4eIRGD3yWyd3URvi32RZyLwvHWEQimRT2yyLdtsBD6YcBgxtiWVWmm0HosNiMBz0bRURG5hAF3296dmpwx4fYFoPEfQg1Mqc+fO5Xvf+56apWIDJfAS6ezs5Ic//CH//ve/AQi1NRFqHZmOuncy5GEdfLuzJtBidYUjH8NAxuNDlmlZ4BKi2+KpVMnWbQXz8yULPCPudVuR27anli8tQMkCl8COMA1rdca90psSd7GBtCICz6BFo5i7T6Zr90a6x+klD3oWEngGEQlDS3NK5CUuXzCkwDOEw4hxo4lPGmEpRz6kwDNYuXHMMFJplF1ea1HiSL5x35n84he/IJFIMG3aNH784x8zceLEwo1XDEClUEpgxYoVfO9736O1tZVoNIq5ZHh2lkkuluVNkUGg9B1xRQdCLXzt1ftNYu9twNy6DaOUxYuKoCUk0S196O0dyG3bMYuIu2TS4m5ZpNHyymbY3pH9s1OY/f3w3nKGvS9oahlF9/4T2DEt7OjsFRlPwPo2ou1bibY0k2xucG4BsUQCuXY9kbZ2IuPH0LP7yIIziKSg8H6ppons6y+cVtFE6t/gPm3KVGqlSG5cILj58w9y86s3873vfY+VK1dy/vnnc80116hFsUpAReAWefnll7n66qvp7e1l3LhxbHtGQ+uN5o1idjmkBRYZEpFw6qv8gAJ2LsBv6Y7NGbvTMzn/dld6v0ldayes3ZASlUWKReDCkMTWdyNaNyP7Sp8OWDQCzxX3y5tgR2fJdViNwAcjhEArQeRWIvB8dYhhjSQnt9DXUlcwai4agQ8ue9gwzKlj6RsTyy9yCY2LN2Ju3LTrY4PRtCGnt8re3sLftPJJPE+uW4aTTDuzkffffx9d17nwwgs5/fTT1VoqFlARuAUefvhhfvnLX2KaJgceeCDv/2ELmqGXLW80kdpkOBerUXdunaFdLwphSqJb+tHfW1WSuHe2I/+FKUxJuCOZSpVs2VayHIsh4xqiO0TL64KWl9qgo/w9KEtug5QYm9uJPbONhrdG0r3/BDomhzBiwvoelRbqkB2d6O910TB+TGqwM7ZrakWYsniqaHDZnZ2I97qpX91AfN/Jqfx4brnFIvBcTDM1ZTDfbBVdH7KfpF5rYYATEIkQK+/p4YTvnsD8+fP59a9/zZo1a5g3bx66zfsiagUl8AKYpsmtt97K/fffD6TXMrnuPYQhgCIXldWlPXO+QudODbSLMCWRTJ57y1ZMu2Vt3Iw2vRkzLLLlZsXtQqpEJjRiqyKMf7Gfug/WZecZ+4k0jJTIn9pCfSSCuedkts4aTv9IZ0XO+jaim7YQzTNrJdyRTC0VWyqmiezsJPzaUqJjR9M/pXlXkZdC+i7i3Ghc6DqSIrfUpq8DqaUlnp6RMhghNZ77yTIu/N2F/OY3v+Hhhx9m8+bN/OAHP1CbRRRAzd0Zgr6+Pq666qqsvM877zyevvY9hDG0ELPiLXVdZmmmRvULDFRaQe81aHh/M/rrSzGGmF1iuUmZ10qIbE/Q8N4mwm99iNm+tegAZUn1JDXqPqhj97tNpv1uBdF31wZC3rlIKVPfYhYvZ9T/LWb8v3ZQt9Xhbx7JJHJ9G9HXV9CwbCuhHiNTeXkFGwbm+o2EX1tK/drO8vY2TUfjMh5P3ZVZ0mstrLwp4c7z/sEPf/hDIpEIL774IvPmzctu46bYFZUDz0NHRweXXXYZ7777LuFwmMsvv5wbP3N30QV9UjuAWz+cqa+kYufu4TYRM3ZH9Cegtc1euiRfmaEQ5qzdCW3cXnA6oF16jpnB5tkhJrzYR3RJq+PlA7Zz4FbQolHMPSezfZ9hNP+7DdnW7mj5memHZn0U8f6HzpXb2IC523j0LZ2YG9rsF5Secijj8dIClkxevNC8b13nZy9czOWXX05HRwcTJkzgxhtvZPLkyfbbW6UogQ+ivb2dSy+9lJUrVzJs2DDibzShdUYcl3emIztx+LVYXf4pXWWyy+Cqk2ULAdHogBSSY5gy/a0mnppN4eJWcZmVI13DNJHJpLMDerqeEmgpu9QXoORvZPnGfgaj69z+ztV8+9vfZsOGDTQ1NXHjjTeyzz772G9oFaIEnsP69eu59NJLaW1tZdSoUXS/1IDoCRWWdzqS2OWmhgIIXUu9zuL+l37hhsAHiMhpgafFTTyRHQiWiSRCE6nBNxdE7pXAB9TnALn9rqwydR2kTA26l/rt00rZYYOpp0VZsmQJ9fX13HDDDcyePdt+e6sMlQNPs3LlSi688EJaW1uZMGEC3S8Osyxv6zuXiJ3yrjGEsLBmhl3M1Lon9Pcje3rTX+t3nhNppgVTomSCiBsf+GWVKSVklkHWS+zXxfqDYUC/YNWDcQ488EB6enq49NJLee211+y3t8qoPZPkYcmSJVx00UVs2bKFadOmse2fUUSPGHoASRsoYUsXQOZrY6mvq3A8E3dX9y7iHky1iFxKaxtge16mrluWeHaabLG+ISUiIXn/jzs47LDD6O/v57vf/S7PP/98eW2tEmpe4EuWLOGSSy6ho6ODfffdl42PCsikk/PJwEb0LHSteM6vyvBc3CWgRF64zLLIzBcvJV1loZ+IpOSt29v56Ec/SiKR4KqrruLJJ58so6HVQU0LfOnSpVxyySV0dXUxe/ZsVtzfB/2ZqYAW5W2aQ0ugRlMmQRX3YKpJ5E6XV1aZ6ZRKQYmbcuA3XEsSN/n3r9dx4oknYhgG1113HU899ZT9dlYBtWWWHJYuXcrFF19MV1cXs2bN4oN7uiFe6LbgEg9VnpRJxVHiHYCuRt0Oinsw1SDyIEbjRfPig/tXkfVZME2EYfLsTz/glFNOwTRNrr32Wp599tmy2lnJVLBd7JMbec+aNYvl9/YMlHe+ZTaHIG8ntzJNqhKweAG7ni6JJ1wR92AGiDwolNgWp0VednmZvHieaDxvuULkF3nOhAFhmPzzuvezkfg111zDiy++aL+NFUzNCXzlypVceumldHZ2st9+++0q78HYjbxrAE/E3dOD7O11p44hkKYsbSf2ABKoaFzX099G8y2sNUS5RaLxTCR+/PHHYxgGV111Fa+88or9NlYoNSXwDRs2cOmll9LR0cHMmTP58L4y5Z2b/07nu2tJ3q5gSkgmd4rbR4lWusjdiMZ3wWqaTYhdJV4sXVVoJcO0xF+4aSXHHnssiUSC73//+7zxxhvW2lMl1IzAt23bxqWXXkp7ezvTpk1jxQO9EC/QIUuJvKsh320R16Lu3AHK7p5ASVNm2lbB+XEny7Jdnp354hYi8Zd/voqjjjqKeDzOFVdcwfLly+21rwKpfuMA3d3dfOtb32LdunWMGzeODX9PIgqlU+3IuwZwXNyZBZFMCYm4J3luuww50FkhH9qeRONWyZ0vbiWCL9LvhISFv1rD/vvvn73W169fb799FURl9L4y6O/v5/LLL+eDDz5g5MiRbF0gEIkCt/GWcEFKKWtC3q5F3Ub6tvfu7tSaJRXALiKvsE0HAilxK2SO8+DrM/0BIITOkt9vYffdd2fr1q1ceumlNbGKYVUL3DRNrr/+et58800aGhrofiGKHndufY+ql7eLg5RSytQSur29JU9XLAXh0kJWGZHn22Q66ARJ4vl2+hmSQrvemyaaqbPu/1I7ZrW2tnLZZZfR09Njv30VQFUL/I477uDpp58mFAoRX9SA3hutmK+8fpPKVbrzASVlJqfsnrghnfLRddckDqlFzFxN+4TDwQ8UvF4SosA1rCXD3HTTTTQ1NbFkyRKuvvpqR/eADRpVa7N//OMf3HXXXan/LBtOqCum5G0REYlUvLwzVIXEM9PwFJZSVuftfQU//elPiUQivPLKK9x6660eNMwfqtJob7zxBjfeeCMA+vrhhLcOU/K2iIhEXE2beCnvDEritcfFc67niiuuAOCBBx7gkUce8blF7lB164GvXbuW//7v/6azsxNtSz2RlS0ILZgdv5SNi91GpPOR1SbvfG2QLk4HFOGQqxthYJpl7+DkJJkPR8+R0lJfOvvW47njjjvQdZ2bbrqJgw46yIPGeUdVhaU9PT1cfvnldHZ2su+++xJZNSqw8g4SQtdTOe8qljekZSPc7fKuR+KalsqLV9jsF7/489eezN6teeWVV7J27Vq/m+QoVROBSym58sor+de//sXo0aPpfDKKMF3cKcUBghCBZ+TtFoFbW4TUFmBuH3uhCUTU5UHzRML3SNzXCBwsBQVSSHb/z2G8++67TJ06ld/+9rfU19e73EBvqJoI/M9//jP/+te/CIfDdPxLD7y8g4AIhWpO3uDN+uzSTE2TdPVbRyXMUHGLEr6BCCn48M87aGlpYfXq1dxwww2+f/A5RVUI/NVXX+X2228H4Jvf/CZab8znFlnDz6/Bbk4ThODKO0PVSNzvwc0KmRwgkjrXXHMNuq7z9NNP85e//MXvJjlCxadQNmzYwFe+8hU6Ojo45ZRTeOqH7/rdJOv4sKlxdkZGDcs7l6pJpxiGLyk5oev+3Y1aQholw1f+9Gl+/etfo+s6v/71r5k1a5ZLjfOGihZ4Mpnkwgsv5P3332fGjBmsvKcXIStrcMfLi86TmSbpWRKVhGcSj0Tczxd7nBd3MwVnCYuzUbJPR/KRy/bkqaeeoqWlhd/97nc0Nze72EB3qYzvP0Nw++238/7779PY2MiKB7oqTt5e4tk0wQqTN3iXTjH7+t1frMvDGSqVOBNGIHjxxmXstttutLe3c+2112L6PDuqHCpW4K+++ir33nsvAPE3Y2iFFqgKMF5cBJnBymqfJlgOXq3l7vo0Q6jtwU0LCFPjRz/6EdFolIULF/LAAw/43STbVKTAt2zZwnXXXQeAvqkRvaPR5xYFF9cHK6tA3hmqSuJeDG4GZQDTRju+OuP7fOMb3wDgtttuY+nSpU63yhMCcgasY5om1113Hdu2bWP69OmEW0f53aTAouRtA024est9BplIQiLhbiV+z1AphTI2ibDMINHf/Ln7mTt3Lslkkh/+8If0erx1nxNUnMD/7//+j4ULFxKNRml9tB8hbbyF9PKTtnFQWK4OOLlYtqfy1rTU4J8XEV/6Nnu3JZ4t34MxA/e2v3Pw3Jum/f5aSjty+pBA8NqvVzJ69GjWrl3LzTffbK9+H6koga9du5bbbrsNgAsvvBCtz8aaE5mpe3Zl4FSnNd2f+eBWHVl5g/tS1bSdUZbL4wVSyp27BOGyxHM/kNzqBzkfsE5LPFueYTgXKJQj8VLIlbih873vfQ8hBI8++ijPP/+8+/U7SMVMIzQMg69//eu8++67zJkzh8W3tSMosVPmzLsu+avlYHGXIy4P538LIRxdXGmAvHNxIxLPlXcubn8oDX7M4cWvRHiI1JbT6Y48KRqn+t0uHwhDnSsr5JsKWMqxKGUq4aCNkTP8x01Hcu+999Lc3Myf/vQnhg8fbr1+H6mYCPyBBx7g3XffpaGhgXd+31aWvEvG4a+KXn9mOhWFF7xBx+lIvJAQHBZdIXmDs5G40ArscuRkSmqI9+NqOsXJfu3FdNScPvvXb73IlClT2Lp1a0WlUipC4KtWreKOO+4AIL64rvQpg7Us7yJyslyOk1+Vi2Hl7j6HJG71+DghcaGldmUv+GFX4o0pQ1KgjHIlPuTrnb6Jy4s+lz4XQgra5sfRNI358+fz0ksvuVuvQwRe4IZhcP311xOPxzn88MPRtw0rrYAalncGKWVZUbhleTsRhZci5jIlXuqHW9kStzoQW67ErXwguTme4KTEnY7s8x3X9DnRuqOceeaZAPzsZz+js7PTuXpdIvAC/9vf/sb7779PQ0MDb/52bWmpkyGkaanzFruArF5g6Rkvvg812NgEICv+Ul5XjsTtCNmmxO1+M7Er8SHz3kNhV+IlzLASLm5aXVL0bOVa8ygSf/jbLzJ58mTa29u55ZZb3K3TAQIt8Pb29uysk/h7UYRRwmBcECLvdBt8lzelCyv7fDtttyPxcqLpEl9bblqpVIkLu/Ox7bTTzodSKUuzliJ8J8VbqCynPoQ0DSE1vvvd7yKE4PHHH+fNN990pmyXCLTAb775Znp6epg5cyb65hLutgyQvIOEtLhinVN5c8s4kc+2WIZT782qxIUmEHqZl5nV9pbRd30b3CzlGnHqA6HIcfrWYTdw6qmnAvCLX/yCZDJZfp0uEViBv/zyyzzzzDPous6HD26zvjWakndhiqRSHJO31SjcyRklRepMrZbo3HkRRe7atDRoaZVi58SBAcRiErctea8icSdIn6uvfvWrNDU1sXLlSh588EH36iuTQAq8r6+PX/ziFwCI1ga0XoupEyXvohSc7+z0aoKFxJW5u9JJhChcpznwRh3Hqs0jcUflnaHQNEO35nc7xVDitZvnd1niZ4y7kK997WsA/OEPf6Ctrc29+sogkAK/77772LhxI2PGjCG0vsnaReCHvAe/LuDyzpAvleLaNMF8566cmz6KMYTEpWG6Iu9stTkSF5pw79b/fIObDi9pkE/ijojdrUjcpWvul5+9h1mzZtHb28v//M//uFJHuQRO4Js2beKee+4BYNvLJsJ0Xt7Z55a7JkpO/ZUi7yzpVIqtmSalkisyN+WdIUfiqffnrryz1WZSKm4vIpUrcaf68CBcjcQz/a3cPldO2qjYMdM0BIJl97Wj6zrPPfccixYtsleXiwRO4Lfffjt9fX3MmjULfVt98SjGhjiFEIGfaeL2OuEDNmDwav0JL+SdITcS90DeWbxaAdCDDTQy0wxd6YtOL4TlElpvhP/4j/8A4JZbbsEI2IYlgRL4e++9x/z58wFYdv/m0m+Xt4CjndGlhZy82ulEVttSsIMR6Ty08Kib67p3W4ylFyqrqG99QcNC35dS8tiV/6axsZHly5dn/RQUAiNwKWV2DYITTzwRrSdavHOWGH27Im9Nc7Tc3LK8ELnMl1N1t0Lv6kojImH3JS5yNoPweKuxoNxrYIvMNzMfKNr3M7fZJ3W+9KUvAakMQZDWDQ+MwJ955hneffddYrEYz/70HaRhFhZYEOTtIK7eFVcEJfFyC9cQ4dBAcbt5Lofo+xUl8cHXUEAlLoRAGia/P+8xxo8fz5YtW7jvvvs8bGFhAiHwZDKZXazq85//PMR10ApMCatCedt5rKKpFonnk3f2MXdyx0Xn8VcqAZU4ACacf/75ANx77720t7d70LLiBELgCxYsYO3atTQ1NXHP158sfLNFEOVdRhrFyuuqMpWSqtTb+nBY4oXknX2Os+fOSt8PvMSL3R/gA0P2/0x7TMlPTrmTfffdl76+Pu6++25vGzgEvgs8Ho/z+9//HoDuxRoimerweaUVRHmXQdCiayXxUgqxIO/sc4UzIi/h3ARe4oUInMQzuw9JzjvvPAAeeeSRQNzc47vAMweipaUFva1h6Cf6JW+rgywldrpS2+fZzBQlcQsvLkHeA15Xxjm0MV1WSbx08vX/3Gvv8qN+wYEHHkgikeCuu+7yunm74KvAe3t7swdh+0IDYaQP1OD8t5/yLgGr9bqZbqlYKkjiQi9jPrud15Vxk1jgZqiUck35KfGh2mFKzj33XAAee+wxNmzY4GHLdsVXgT/yyCNs3bqV8ePHo28qEH2XgF/ytvIaP2ealIIvUXiqYs+rFJFwSWuyiFCo/DVcSlyS1QkBB0ripeCTxAv1/28ffiNz5szBMAz++Mc/etioXfFN4PF4nPvvvx+AzS/1I+QQ859L6MC+yrtIG5xqW1WnUlIVe16lCIUs3YDjiLyzhVnbVMRJ8foucbvXlQ8S36X/5y5YZkq+/OUvAzB//nzWr1/vcet24pvAFyxYwObNm1O57831+Z9UYfIe6vVOS1dJ3AWK3EXpqLyzhXr/bcx3idslCBLP4eKDfsxhhx2GYRi+zgv3ReCGYfDnP/8ZgO2vJwdE30DqZPmxOJRDncTruyndREncJXlnCx9ihoqL/d8XiTtxbfko8XzX8dlnnw3A448/zvbt2z1uWQpfBP7ss8/S2trK8OHDd515ogl/Bi2d7BzpeeFuytvLD4Zalrir8s7FZtrQLioSt85Qx+o7h9/IPvvsQzwe5//+7/88blUKz4+GlDIbffe8R97lYita3tVMNS98lYuuIyIR7+SdQZQevJSDZzNUnL6+AiJxgeDDv28G4KGHHqKnp8frZnkv8DfeeIPly5cTi8XQN5awz2Ueypa3jwvpVCQ1dKxSm154sBv6YHTd87Sb6xJ344PfgWu35OOcZ+clbVuMSZMm0dnZyWOPPVZWe+zg+RWZ+apxwgknIIxB0U0Ju307Im83cGmB/cF4+RVYFNuqzL2Kva9TSmQ8kd1+TSaSSuJO4NZ14bXEB78ekVq/CXjwwQc9Xy/c06ty/fr1vPjiiwA8fs0rg1pSJfJ2GS9vzMjm8WtJ3olkagOIzCYQfkrcy/QNHgUFlS7xPJ66+cx7GT58OBs3buTll18uqy2l4umV+fDDD2OaJocccghaX9hWGbUub6/IHmev5e3UuiGlkivvXR5LS9zr3ViEUBK3io8SF1Lj5JNPBuCvf/1rWe0oFSE9skJvby+nn346XV1dhJe2oG+P7XzQYvSt5O0NvsrbDwrJOxehpW6j91iqZPYt9RBPUjhu9K8yr8WSrrOcVVPNaJLEgRuzkzQmT55cVjus4tkVumDBArq6upg4cSLa9rqcFnh00Sp5W0LJu9BzzdTApk+RuNdTRyt2cLMM7B5jrT/EEUccAXgbhXt2lT766KMAtL3UbWuvy7I6r5K3JbL5biXvAq/JkbiXeXEhqndw02m86r+Dgs/X7lwGwBNPPOHZtmuevNPly5ezdOlSQqEQenvObfNepU7coFrl7TWVJO/sa01kMqlmqDhFwCRuNx+u7ahj4sSJdHV18dRTT9muvxQ8uWIz8yPNtjAimc4fVnLeu4rkXXMzTaA8eQ8oR81QcYyA3SRmxzsCkR3MfOKJJ5xuUl5cv2r7+/tZsGABAPrm0paMrUV5ez1NEKgpee+MnB06j35JvBpnqDh9bXmVD88JRv/434+gaRpvv/02ra2tZdVvqWq3K3jhhRfo7OxkzJgxaDvSg5cWou9albdX1Nw0QVLyztyg42zBapqhY1SqxDPPT4Q4+OCDgdRSs27j+tX7+OOPA7Dl9T5bg5e2UPIuSM3NNMFFeWcrqK0ZKq4SMIlbq2Pn8f/kJz8JpNIopsvecPWdbd26lUWLFgGgt6fTJ25H30reBam5mSak5W0Y7sk7W5F/Evd6cLOWJF5qKuWnp9xBQ0MDGzdu5M0337Rdr6Uq3Sz82WefxTRNRFcErT+k5J0HNdPEZQzDW6GmJS6T1T9DRUl8iOdKjeOOOw4gO/7nFq5ezU8//TQA+pYhdtzJQzmbtzp6wj1YlKpi12S2SuYY+vU+M/Xa3X2+XAI2s8INKm0RLK8mCRx//PEAPP/88ySTSdfqca1nb9q0ibfffhsAfWusyLPTmHLA7aklYTp4YqpomuAudXolldx6/JB4pj4tffu7VxIXGmg5m3l4ecOPYfjWryomGk87ptT2pq4d66/5zuE30tzcTGdnZzaN7Aau9epnnnkGANERRcSLbxhbDtJIn1zTAUFVqbwH1O3mexwqYvJS4oPr8Urig+WdwYv37pO8cwm6xAesJ2M34LMocYHg6KOPBna60A1c69GZO5H0LSVE3zbIyjvz/3I6UZXLe0Ab3Hivxco0PRjgG+r4ajkLUbkh8vRCV0PmSt2UeADknSHoEh9YlgsS10R2sPyx61NLZ7/wwguupVFcEfjmzZtZsmQJQgj0bRby3w7Ju5yyakXeGVwZM7CKWxIvdnw1LTVv2ukF1DKrFBbDDYkHSN4ZAilx08zvBru+sIDWEWXkyJF0dHTw+uuvu1OHG4W+9NJLAMycORORKHKjgV15F+okpZ7gGpN3BsckbqcMpyVeyj6quu7ckrBW5Z3BSYkHUN4ZgibxQu1xJZUizQFplOeee670OizgqsCXPrHO1uuLHdBiAwqlrelbPbfG26FsiZfzWqckbuP4OiLxUuWdwQmJB7xfQcAkXki4VlIpNqP3x3+aSqO88sorrhwPxwXe19eXHXXVttUVfrKN6NvSaLDVwUw1TRAoQ+JOHL9yJC5lWSIUup7aed5OTtyuvDNkJG6n/V7OJiqTIEjc0mYYbuTDpYnWESUajbJ582ZWrFhRevlFcFzgCxcuJB6PM27cOERvgW3Tinwi2nosh+KfqEreuZQscSePnx2JO3V87cxQKVfeGezMk0+fp0rqX75L3GqgOITEy2m/kFp2bRQ39st0XOCZ9MnmN7scX/sk76DlULg4OFGMSrq4crEscTc+/EqRuNPH16rEheacvHOxKvEKlHcG39pc8niYjUi8SBT+6p/fB1JpFKdxtCdKKXnttddSBW8vkD6xINfBB7EkeWdfM4QUXIy+K/HiyqWgxN2+O9XKTS9uHd9iEs/M8XZa3hmKSbyC5Z3B1bYP0S/teMPp4E9Pu3Dx4sV0dnY6WrajvbG1tZW2tjZCoRBaZ9Sxcm2f+LwDD0rexcgrcS/v4BzqOLp9fDUNEQ7tOrg51A06TjPUe68CeWfwVOJl9NkB7bQi9ALPEf0a06ZNwzTNbIDrFI4KPDN4ue+++yLMIYouIR8Fpd/COpiBd18peVtlgMS9HjDLJzIvF/3KnaHilbwzDH7vVSTvDK7OzMrpq7ai72w5svR2FvDUIYccAsAbb7xhv015cFTgmcnq7z62Mv8TShRxufLO1unyV/9qurhy8XTtlMHkztLw4fhmJe6lvDNk7litQnnn4qrEHbm/wblZKX/90T+BAAvcNM2swLM775RdqAMn2Om77nII+hxvRRlk7tzzcTC8UqYKloNb149zC9s5U47WEUUIwZo1a9iyZYsjZYKDAl+xYgU7duwgFoshuiNOFVseLkZPtSBuzyPPXPxYtzyDmVnP28yu7+0nvp4HD3DjWkqtfR+c4yYMjT322APA0U0eHLtK3nrrLQD6N5gIGYwDp+Rtn5qXdy4y9Tc/z7uSeOkETeIr/rUBcDaN4tiV8u6776YKdHD2SVm4dOKUvF3Gb3kXirZ9XntESbx0giRxrSOVmQhkBJ4RuOgKgMBdSp0oebuMj/KWhpGSd7F9M5XEXaXiJV6g/2idKYGvWbPGsfngjlwxW7duZcOGDQgh0PzOfyt520IIH2ZbZPBjk+UcZGbfTKubHmdk7xO+nisPqHiJD9WGpM7EiRMBWLJkiSNlOnLVZKJvunWE4eNXYCVvW9Rq1A058i75hWpw001ck7jPzJgxA4D333/fkfIcuXree++9VGGdPkbfSt62UPIuZzVEJXE3ceXa8zkK32effYCAClx0+SRwJW9b1Ky8TROZSDqzHrmaoeIqTh9Xv1MpuRG4E++t7KtISsmHH36YKqy7wPKxLqLkXTo1LW8rg5WlogY3XaNiJG6hT11y6I/RdZ2tW7eyadOmsqss+0pqb2+no6MDXdcLr//tFi6cCCVvF6lGeWdQEneNipF4sXpNjalTpwKwfPnysssr+2rKNMLsFN7fwONC6kTJ2yUCMNMke3elm6gZKq5RLRKfPn06ACtXDrFmVAmUfUVl0ieix+PoW8m7JHyfJugjZQ9WllyhGtx0C1ck7jGBEnhmnzfNS4EreZdEzaZM8EHe2Yr9l3i14vi16kQUXsI3u99f+hAQEIHbisDd/hqrSJFeTa+aP5wUtYfTAYlnqZT0bk+ZscLVq1eTHLzuTomUJXDDMFi3bl26UaGyGlISDi/xWZWCM2V2NT0/JJ5datftbdiKMGBzBi/Rdfe2X7OANAKwHG6FUPa+AyUGpKJfJxaLkUgkaG1ttV8vZQp88+bNJBIJMFONsrSztzSRGbmUgVNCqmp5Z/BY4rn1ZH8PgsRL2Xm+HHTd17TVLqmbKpJ4NeT2BSI7E2XVqlVllVVWj85G3/0hazvQO5k6caBT1oS8M3gk8XzlB0XilnaeL5egyTtDFUjctfs9vDg26a35MkyaNAmA9evXl1VsWb05E/6LPuvpE5nZ69JnAVedvDNflwt9SLos8ULlBkHiRXeeLxe/5V3svFZwSiWwkXepQWla4uPHjwdgw4YNZVVfVk9eu3YtAKLPwtfToaLCcrApo6qUdybfXQwXJG51a7mqlngQ5F3ihuG1jmfRdx7uveZRwOcIPJtCsRiBOxF1l0vVyrsUHJR4qWUMGNz0C01DhEOODW6KUMj/tEmp11YArkWrVHTqZAgyzvRV4G1tbanG9BcReGbgcpc/lz+YWYqIlLxzcEDiZb/W5017nZihIkIezr7KQ1lzzStA4oFNnYD9a08TaGlntrW1YZRxn0JZAm9vbwdAxP3txFY6opJ3HsqQuGPRewAkLkKh0lMqQqtseWcIsMRd3dPW7/cd1wmFQiQSiaxH7WBb4P39/ezYsQMAkSgQxQwRfTuNpQG0asEJeWewIXGn8+d+S7zkvLjQ/J3jLaWzd3n6LbM8BDryhrKvP4Fg1KhRAGzZssV2ObZ7YbZSE0ja78yOpFGgdu44dFLeGaRpeSU9N45xRUk8APJ2RbgBlLgb+BJ9D5pCmKG5uRnwSeA70yf60HPAA3DLfFVJ3Q1551JA4lZnmtglCHdtFh3c9PvuSrflExCJBz514sQ1qImswLdu3Wq/GLsvzOZt4oUHgaykT9yKwpW8bZBH4l7ewRmEaDzv4GYlTRMsB58l7qq8A0YgUigF899+kJZ4EE+YbbySd4YciftxHAMlcaHVjrwz+CRx149xQL5hZHjs1mcBnyLwzs5OAESB/HfJg5dOSSpgJ8o2pkwthepTKqqqPgTtEoA0oC9U8F2beXHqvdjpD0OsdJgJfn0VeKEBTFHCEo1BuMknUHgddefix+p9OaSW9/R/HXGZSKb6ZRC2SvNrI14Pr0s/lnjwE5FMXWeZ2Xx2KD8CN5y70BzLhUNlRw9+yTudLvCL7K5BAZF39v8Zifu8VZqSuM3y/Iy+C81qSruzu7vbZoNcjsA9W75zKCpR4n7K2y9BkJP/9HvT40RygLwzSFOmxO73fpd+zYKpQIkH4oadAggj1ed9FbhIFr7oS0mjgMNReKWh5O1bGzBNZDKZ2oKtAH5LHFAS9wM3rks/I/Curq7UL/GA3zEV4E/gAdSyvH3esT4rb4t9JbvDvY8oiVt4bRCu/QLXlkikHuvp6bH9Xm33gr6+vtQvpgsrhTktsyCcyELUurx9JCPjUgfRpSmDIXE/zl/AJe64vO1em8VSyOkUimma9Pb22qrC9tUTj8dTvxQTuNBKTqO4QlAl7pe8dd03eQdpsBLDsD0DKiPxmpyhElCJBybyhuLnxRSQbmpPT4+9Kmy9ClJ7YYJrB6smcuF+ytsnApHvpnx5Z8sxZWrgsxZnqARU4s5W7FL0TWpBK2TqvNndnb7sCFxYfH8qCh+Ekrc/5Mw0cfLeA78HN2tB4sUITOqkpDpSPzwXeDYCl6L4G7U5ndCVKDwIHc4PeQdgjjfgv7wNs+hME7soibtL0SWjg3BtZ7B6HkwfIvBkMomZWavCFK7eRVl1EvdL3kEYrPRR3tnBSpfkPbgev/BtrriPEndF3uVco1YC1kx70z/s7spj60wPqMzqcQvKYGYGPyRey/L2Eafy3ZbrC8oMFa/xS+JBiryhtOstkvJB9sbIUquy86JdVg1zWUpVMaBZY/KulpkmtusNwgyVGpC4K8fX7eg7D8uWLbP1Olu1abkXZYCC6pIJ2ie3whV8XShN9TF3qZLjG7K5v2r5AgfX1zwRmnCnDi+jU7feQyHS+136QZA2ZxBh7zcfFpoIxg4+VcrOQfGARZClRu/9qYkFM2bMsFWdAxG4xU7i0ebGlvHjxNeYxCE4mzOIcMizMZisvGtpE4gMHhzj3OPqysybcq9RG8d9l6DY6utsvWpQhW5eGK5E335+aiuJ+4LQdUTIfYkrebtLvuMaSIkXI9NeLXWePE2hAOiZOcUC/5eNrTSUxP1B01yVePZDwid5SylT89CrVN6F8PMDcxdKudbSAq+rq7NVlW2LRKNRAKRmoaE20ydVF33n4pfEXZ4HXbD6IEnc4ZuaRBDy3X6J26vUVBFJO378Xb4+JTIr8IxPS8V2C2OxWOoXl8aHqlreGfyQOARD4n6KXNNSOXEHJC40Udvy9gjLEXZQrnErg5mC7Cw+/wSuB2hgshBBObGD8UvifqdTwPdovFyJB2amiZL3wOc62bZyrs1i5yUne+F5CqW+vh6wkEKxkT5xbdpgUPEzneLjNEMgEBLXIuGS8+JqsNIb7BzfQOXDC5F2p6Zp3g9iVlQEHtToOxe/PrR8nisO+C7xUgc3lby9oZzj6+i3IrvXZZE0itRSj0ejUdvv1YEceOFO5Hv0XQnyzlCjEg/U4GaR/uL3TBNQ8rZMEFIphc5TJPVYU1OTvbIpQ+CNjY2pXwoJ3O/1SypJ3hlqUOIQoBkqkUjevHhQBiuVvEssJ8AOkKFUf/dF4CNGjEg1IuzcRedo9B3gE1eUWpd4APLiuRIP1GClknfp5TnVfjvXZKEgNpSaDTZ8+HCbDSpD4CNHjgRAhoeekhaoW+crjVqWOARG4jWd74aKlnfQ8TUCzwic0BAXWonpk0CtFV4IL6Mgv45JACQehJRKJuKuWXl7STW/xyHeW0BSKP7dFFIQNzpEZk1vrwTn1w03mcjf54squ/2ZDyKXhoEZT/i6OYM0fLxz1st+nr6uXNuOzjD8H4/Lw0nnfxTwKYVSLAduO30SwAOdJbdtbnduv+WdwS+JZ+o1vY/GpWEgEzul7cfmDNIwd/Y3r68JL/t57kYn0nT8GA/4UCj3ONp4faHNaNrb2wFoaWmx3STbAm9ubk79EjZS9/SXgWvpEyc7Xj6hutW5/ZLmUDl3rwfPBtflocQzO9bv8ndTph5zedPi7IJUgy96rySerx43+/ng+jLn2gHyHkfbhTm/L++mTZsAGDNmjO1ibAu8paUltSKhBjg4EwVw9mA50fEKleF05/Zr+7hSNmJ1k6Hq8EDiKUEX/ubj5s7z2Xz3UOff7X5RqHyv+nn6DuFyJT6kvD28tgZkIfIcO18FHgqFsqG/jMQHPljCQRoy+g6KxK0I1anOHWR5Z3D763SRx12RuGlakncGNyReVN7ZJzoYVQ4u18pzvOrnZdQjZZHySz1+ZR7vfOlkKZLZjYx9ETjAuHHjUo2JBnQgMxe3c/Lldu5KkHcGpyVeSoomLXGrsi1enpkarCyxPGkYjg1uWpb3gBc52FdKrdeLfm5zUFNK6ez4kc3jXHAM0JTISKqNDQ0NNDQ02KoDHBK4GRnYkR2b/+1C3qkkSu0Idjt3Jck7g1Pn2O7xMh2QeFrednFihkp2pomd8+9En7Fbrxf9vMRBzZLk7efAMCDDqX5TTvQNPkfglgYv/ZK4XTmU2rkrUd4ZypW4A6+3O80wM02wXMqRuCODbOW8vtzXetHPS8mHOz1zy43oO/OculRbMw61i3MCd1NCXguuXLFY7dyVLO8Mdo+VgxF8qXnxoWaa2EWaMpWGKSVa9HuGhFPRuxf93MLMFFtjEk7myUus9zPf/QQAkydPLquosq7kTOUylrS36qBfFMlPedK5q0HeGUqdZuhCDt2qxEsZrCwVmSg+V3zIaYJlV+5j/tztfp6uY6hjW9bxdHimSlEPmhJpStasWQPAlClTbNcFZQp86tSpqV/qjOzatq5JyatUiledu1rknYvVaMylugtK3DSR8bhr8s5QSOK2BitLqtynGSxD4eR7HeJacuXD0AXkoCBn7dq1gM8Cb2pq2nlHZizp7zxVOwzuEG5c3Pk6nh93WXq1MFaxaMzlurO33w/4u5m9Ld4L8kncdXlnK/JhDnm+Pu7Gex00M8UxeQ++89R2MRb6lzSRQrJx40bA5xQKwG677ZZql400ii3ckribbc90cNPhKU5W8XpVw3zH0uM7ObMSL3OmiV1y79osa6aJrcrNwv93q87ca8nFOgORhtrlpRblbUpkXRLTNKmvr995R7tNyr6yM2kUWZ9Mt7FCJe5FZFQBX/UcI/OB5fVt+Dn1OzlX2w7Z+v0475k6vaw7I3G3o303Pgw9OE4ZN2ZcOWXKlLJXunRO4DHrF4ojA5hOH/Ba2kS5VjAlCM23AXPfl0j284OjgpDpgUWvOOvaUwDYY489yi6rbGtNnz4dALPBu6+prh3sapV4BV5UjuKDxH2Xt6JkvJL4smXLANhzzz3LLqtsY+21116pX+oMZMj9/G72a4hbX9WqWeK1LHKh5d3r0p2qlLwrBaekXco5/+CDD4CACLyxsZFJkyYBIBu9HSxSErdBLUscXJW40ISSdwWRd5Epl6NwGTbYunUrQgh23333sstzxFR77703YC2NUk4HH/KAK4mXhpK482UqcVcUfu3XK9OOnDx5MrFYrOzyHBW41xH4AJTES0NJ3LmylLwrCj83W/9/Pz8NcCZ9Ak5H4C4KvNBBzz6mJF4aSuLll6HkXVFYWmjKpuCt9IXFixcDMGPGDFt1DMYRO+21115omgZRw7dNjl39VFUSr1rKkbiSt6IUJDIr8FmzZjlSpiNmamhoyCbkzeHxIs92D9fy4VD9Eq9hkQtdL0nGarCyMiklyHMjIJSxJF1dXdTV1QUrhQIwe/ZsAMzh/U4VmaXkA68kbo8alrjVaYZK3JWJn3nvbBvSwe2MGTMIhUKOlOmYkfbff39gZyPz4VXnVxIvg1qWOIX7qJJ3ZRIEeQOYw1Ju3G+//Rwr0/EInEYDGfJfAkriZVDLEh/irk0l78qkHHk7Lf7xB6YWrnIq/w0OCry5uZkpU6Ygpcx+0jhB2QdRSdweSuI5/1XyrkSCEnkDyGiS1tZWdF0PZgQOOWmUJufz4HZwdXphLVDLxy0tcV/lXe1BQgXg1IeAmXbijBkzaGxsdKRMcFjgc+bMAcAckV/gQfpErDS8XjENqG2ByNTGEG7v4DMkmWPv8TnwpZ/VABknHnLIIY6W67jANU1D1ieRkfI7vqMdqQLXD95Zlcz7u6soee/8r9cSH3zsPToX1SZur789DXX8JJLG6RFgZ5DrFI72jGHDhjFz5kwAzBF9eZ/jZSfZ5QT6uQu47aq8X3BHyXtXYXsicaENfexdPieD+1S1ydxPZGOCjo4OGhoaHLsDM4PjveLQQw8FwBw5dB7c185RQXldS8sHOE0Ny7tYykQahr/H3aVzM2TkWAUSdyIKL/f2+0z++6CDDnJs/ncG1wRePzWExL8pPAVPXDkS9+gDwM01G4akxuVt6dym9zV0lFKOu8PnqNh7qQaJu02xY7TPSamd5zNudBLHr9i9996bpqYmurq6Ct7U43vHsCPiAMnbznMLouRdwgsclLid4+7QubL6Hny/VsvEz5lEMpTgvffeA+AjH/mI4+U7ftXqus4RRxwBgNnc63TxlrB8wioonVKIsi+wWpW3NJHJhO0Pc1+Pe5nnrNS2V7rE3aLYcTGb+5FSMmPGDFpaWhyv35Ur96Mf/SgAow5oLJhGCUSnsHrxBjD6Hvy6QBzPSmGIwcqSy7B7zH360KzVflJuFG5rMoE0mfPF1KSOuXPnllX/ULjSi+bMmUMsFmPTpk3IhsJ3ZQaiMwUkEnfiWJRcRi1G307IO7esUo55oZkmpVJiOeX2r0BcqxWE1E0WLVoEwFFHHeVKHa5cvdFolMMPPxwAc1T+6YS5ONkxbH/SFpK4B4J38hhYLkvJ27kyrRxzN463xTKd6l9K4imsRN/miDiJRIJJkyYxdepUV9rh2hWcSaOYo/qQsrQLxrdOkk/UAYnOS6XoMaxBebt6Z2Uxibt5vIuU7fT1VKkSd2ow0+r7/8j5qaVF5s6dixDuDKS61qsOP/xwIpEIMmYgG5JFn+9Ep3DkBPkgbLcuiCHLrVF5u35uh4ruvTjeQ9RRqbKtaKSJ1E1efvllAI4//njXqnKtZ9XX1+9Mo4zutXTxBKazZdpaYakTS+UreXtTXwYvj/egutzsW4G5Vj3G6vs2R/URj8fZbbfd2GOPPVxrj6u964QTTgDAGN1n+aaewHSMKpB3bj2BOa5e49N2cdKUVT/TpBL7VDnf0i2933RfO+CsvYBU9O1W+gRcFvjhhx/O8OHDIWIiR8Rdv5AqrUP5sthOheb0bePkrI8S6nRix/uSceMu0QJU4jrpnnywhQ1ef/11wN30Cbgs8HA4zHHHHQeAMTp9U4+S+ACUxN1H6Lp3ElfyDiyuH5/0dfXVP30O0zTZd999mTBhgqtVut6rM2mUyBSQWrBvhvELJXH38UTiSt6BxbN0JZLHH38cgE984hOu1+e6wGfOnMmkSZPo6+vDbEnPCa+i/LJTKIm7j5sSF7qu5B1QPDk+6WtJNiZYsWIF0WjU9fQJeCBwIQQnnXQSAMY4b9dGURIvTK1K3GnRepqiyUXJuyheyhvg45enZt4dc8wxDBs2zPWqPel1J510EqFQCDksgdmQSP2xxsRhFa/3YaxFiTuZ6vBF3pnt3jySt+97g9rE6wBO6iZPP/00AJ/61Kc8qdOTntfc3MzRRx8NgDGuZ+cDKpUyJF5L3Ou50r5TrsQzr/dD3irqLopnxyjnmjFH99HX18fUqVMd3Xm+EJ71vk9/+tMARKelPqm8REncGjUXjduVuJJ3oPFD3hLJtBPHAnDqqae6Ovc7F8964AEHHMCUKVPo7e3FHJ2zwFXAl2n1GyVxlylV4mqmSaDx6zqXwxJ88MEHRCKR7Mw7L/BM4EKIbBRujO8ZeGemknhBlMRdxqqUlbwDjafX96Drw5jQDaSmDjY1NXnWDE+/A37yk5+kvr4eWZ/EHFF4nXC3UBK3hpL4oIf9mCaYXgZAybs4fspbRpMwJjU544wzzvCuHXgs8MbGRk455RQAZn9p2sAHvVxsSEncEtnBzVphCIn7me9WM02K4/f1/OmfHotpmhxyyCFMmzat+AscxPPJq2eccQa6rvP666/vnFKYQUm8KH5caDUn8VA4K2w1WBlsPL+OB0ffusljjz0GwJlnnultW/BB4GPHjuXYY48FduaN/KJSJQ4+XHQ+rernF0ITNSHvSsZveQMYY3vp6elh6tSpHHrood62Bx8EDvC5z30OADE+gYwMiu5KlUSZUnHra6rbX389v0khU18tSDxzo4zXc+OrUN5uXl9+I4VkxJwIkHKaV1MHc/FF4HvvvTcHHngghmFgTHQgCi/3InP4wsktq1o674CIv5olPmhXHc8k7qO8Pd8RKgjlOnBOzbG9bNmyhdGjR3s6dTAX37Zn+c///E8gdWfmLlG4HQIm8YFF+x8tlEPedE01SnyILdFclbgPM03yN8PdfTMDtamyA+dSCsmoI2MAnH322YTD4bLLtINvAj/ooIOYPXs2aDgThUMgJD7U6wPVgUugYK69miReZLd6VyTu8UwTrwh0IGT3HA56nTm6l7a2Npqbm7Mz6/zAN4ELIfiv//ovAPTdkgOj8HIulHJz6AGOxAMl7wzVIPEi8s4+zUmJByDqHowT7SlURjnlByXyhtRt82OPSa00+PnPf55oNOpIuXbwdYfbgw46iFmzZhGPx52LwsG3SNzKa+xGXIGUd4YKnqGSHaws4flB+KbnFnbb5eY3iSDJG+DSR8+ltbWVpqam7N3lfuGrwAtG4eUS8IssqBdwWVSYxO3KuKxzF2B526WU91Pqew+avKWQ3HnnnQCcddZZxGIxx8q2g68CBzj44IOZPXs28Xic5BSH54U7JHG/I4tAR9+DqRCJlxVJW0y55H1dBcjbTSGXUm7Q5A3w1XvOoK2tjdGjR3P66ac7WrYdfBe4EILzzz8/9Z/xfZixZOp3B3ONth7LfY6FC6+cr55BwpEbhAIuccfSIKVIvELkncFqOtCvui0W5Gg5Uje56667APiv//ovX3PfGXwXOMCsWbOYO3cupmli7NbpfAVOnEifBjcr9pbqgErc8YHIYhIPyDRBp3FrQDJw8s7BmNjNjh07mDJlCieeeKLj5dshEAIHOP/889F1HbO5H7MpUfwFpeKixN0eva9YAiZx16YCDiXxCp8m6PaUWNfKdaHfybBBZK9Uueeddx6hUMjxOuwQGIFPmTKFU089FYDk1A6kEK5cbE6U4VXer2Kj71wCInG3b8bZReJVGnW7dT9DYOWdLi85tYve3l5mzJjBRz/6UWfrKIPACBzgnHPOIRaLpTY/brG4g32piw0FXOKp4ito0NIKPkvck9vhcyVeRfLOvI+K6O8unWOzMYEcl9pF7Otf/7ova54MRaAE3tzczBe/+EUAmo7QkW59S3FQ4oH/OlkEz1Y19GmuuKcLUmUWwaoSeWeoZXlLJHudPQ4pJZ/4xCeYNWuWK/XYRUgpA9Xb4vE4/+///T9aW1vRWxsIrbawPZGdkyc0Z066W8uNZtrm4nKmXi5Jm7lQhSa8WaI1EwV7uppg+lLSvNm5R2jC/Q8LD/ph2dg9x8XekzQxRveS3GsHsViMP//5z7S0tNiryyUCd1YikQjz5s0DUuuFm7GEexeh0MrrmG7Le/DvTlPu+7fILnl9L9IZmTq9Ek9uHGS6uwFG7qYern4IB2T8oiBujmvoJk1HpNIAX/rSlwInbwigwAEOP/xwPvKRj4CA5LQdAzdAdoMgRxfgSvphwIXv4vsfctaOmxfe4DrdPr/5vsS6JPF8wnZc4vn6WxBl7uYKkcDpv/oYW7ZsYeLEib7stmOFwJrroosuIhKJIEfEMVvi7negoEscHDsGedMYLrz/ovN9nf5gKjR46Nq3pQLBhZsfum4RRFHno9x2FukPZkOCBx54AIBvfOMbRCKR8upzicBaa8KECXzhC18A0lF4qMDF7tTFGQSJF+uYZXbcgjloB1MqJS3s5dQqccXqdPr8Fhs+ks69t2Ly9uQO2qDI3c12SBOJZNqZozAMg+OOO44jjjjCvfrKJADGGpovfOELTJ06FSImyWnpOzSDEon7KfugHAOHcELilm9rd+q9WR37d0DiVuVcC2vYuC1vgK/c81mWLVtGY2MjF110kXv1OUCgBR6JRLjssssQQmCO6cUc0Z96oMoElqWU92XjGJQ0A6SMY2B7uVyb57XkhaXKPb+lTtwqY6JX4NImforeA3nLaJI77rgDgAsuuIBRo0a5V6cDBFrgAPvtt1921a/m4yJIPX0Sq1XipVDqMSj1Pdk4BmWvkVHie7K1KiDYP792ZWxjUNOOvEt+TSVE3k6PlQw+9xl5Iznggun09fVxwAEHcPLJJztXp0sEbh54Pnp6ejjnnHPYuHEj2vp6wiuH73ww92SUcpKtXsBu592L1WOVIu0pa/61xbY5NSfZaltty3tAIaVEn2W+P2H9HJQbeRc9F+X0Ny+DGzc+YIZwhjG2h+QeHUQiEX7/+98zefJk5+t2mAoIM6G+vp5vf/vbAMiJvZhN/d5VXgmROBTs6GXfPGNFpg7eUGIlEndE3mDtuEhZvryz5RQXUuCXNvDwzlavkHVJQvvFAfjqV79aEfKGChE4wCGHHMKpp56KlJIRx4a8S6VAVUi8bDy66SdDIYk7Ju8Mhd6X019QC5SXe4NOuQxZTiWkTMDdm/cG1SGR7PX/xtHX18eBBx7IZz/7WXfqdoGKSKFk6O3t5ctf/jLr1q1Da68jtLQJQbqjlnprfDnphKClTwaT0z5Xbl0f1F43b+ce3H7H5Z3LLjevuHhpDLrd3o2oe5fz4mYe2UncDkQG1ZGc2IWxWxf19fX84Q9/YNy4ce7V7zAVElqmiMVifP/730+tG97Shzm6b+eDpYrVrfUTgkDue3OjvblCdXktjgGRuJcD127HNTnvxa2UyYByg7g0s5flDlGH2ZBA7JHyyLx58ypK3lBhAgeYOXMm55xzDgDRA5PIaHLng5Xy9dALpOluLtWHdIonq/wJzX15QzYfHrhpgn7isbylZjL+Uw0kk0nmzp0bmF12SqHiBA6pG3z2228/uru7Sey1AykqJgu0Ky52WteXUhWaZysaerZEq1eyEwKhu7tqoeerMZaDx+2USI75wQGsWbOG0aNH8+1vfztQ63xbpSIFHgqF+P73v09jYyNyeAJjqgv7aFYJ1SRx15GmN9F3tci7Uj4c8nDx389hwYIF6LrOVVddxYgRI/xuki0qUuCQWivl8ssvB8CY2IPR3FfkFbWLNAx3B/+qQeLVJG8vN7GoQMxYgl/+8pcAnHvuuey///7+NqgMKlbgAHPnzuVzn/scANE5CWRdssgrBlFLnVxa2EG9HCpZ4tUmb8WQSM1k4mnD6O/v55BDDskumFepVNQ0wnwkk0nmzZvHO++8g+gKEX57FEKWIJJqXpQqHxnRurkGeCVJxCt5a7qrH3C+5bsdWxzM/bZLJMm9dmCO7mPUqFHceeedjBw50vV63aSiI3BI5cN/8IMf0NTUhGxMkty9w/0NICqZTCTu4gXjdpTpGEreNYUxsRtzdB+6rnP11VdXvLyhCgQOMGbMGH7wgx+gaRrm2F6MCT1+Nynw1LzElbydaoB/dZeAOaIfc1o3kJrvXcl571yqQuAAc+bM4YILLgBA7t69c+nZYlRIB3QDtwc3AytxJe+awqxLEj0sgZSSU089lU9/+tN+N8kxqkbgAGeccQYnnXQSpmkSPSyBGStxULMWcXlwU+juSqxkvJC3EO7LW800sYTUTSac1kBXVxf77rsv8+bNq8j53kNRVQIXQnDJJZcwa9Ysurq6SM7YtnPRK8XQ1MoMFY/k7faHVkUNEvuIFJIDvrEbq1evpqWlhR/96EeB3dvSLlUlcEjt4nPttdcyduxYZMwgsc+24ndqqkgmJfFkwtVV4HyVuIfydgtpSiVvi0gkn/jxIbz66qvU1dVx3XXX0dLS4nezHKfqBA4wcuRIrr/+emKxGHJEguQeO4I3MyWgHxqufjX3S+JVIu+g9pkg8p+/P5VHH30UTdO46qqrmDFjht9NcoWKnwdeiNdee43vfOc7GIaBvq6e0OrhhV9Q6TuNOIjQdfeOh1cLU6XrUvJ2mbL3GHX2vRktPST37gDgm9/8Jqeddpqj5QeJqozAMxxyyCF897vfBcCY1ENyXLfPLaocXJ2h4mUkruRdU5jD+2Hf1DTiz33uc1Utb6hygQOccMIJfPWrXwXA3KMLY1SBNVNKvVCq/cJy86YfLyRe4bs11YS8HXx/ZkOc0KF9JJNJjjnmGL72ta85VnZQqXqBQ2r52f/4j/9ASomYVWSOeKmb3NrYbbyiyKQ7XBKJk9uIVQvSlLUhbwevHbM+QezoJL29vRx00EF873vfQ9OqX2/V/w5JTS+cN28exx57LIlEAnFgN2ZTYugXWL1wMvNJa0HimZSKEvlAHDweA8St5G0ZWWcy7GOSjo4OZs6cyY9//GOi0ahj5QeZmhA4gK7rfP/73+fII48kHo8TOqQHc1iBG31KvYDMGrixIjelokTuKDUjbmk6K++opPlkja1btzJ9+nRuuOEG6uvrHSs/6NSMwAHC4TDXXHMNc+bMobe3l8TMLZiNDkpclvC1txL21hwCt6NxcG+fyKBRM+kScHxGkIxIxp0WZePGjUycOJGbbrqJ4cOLzDSrMqp6GuFQ9Pb28u1vf5u3334bEhrhd0ehdReYSVBItvmiCWFxudZquGjLWZ7W4vu3PeUwwFMIs++pSvpAUfKdizJuaZdRydjPRFi7di2jR4/mlltuqbgNiZ2gJgUO0N3dzcUXX8ySJUsgKVIS7woVflG+jlpIElqRC7saLt4MdkRe4vsvWeQBFXjVRdzFzvlQKRObApdRyehPh2htbWXs2LH86le/YsKECbbKqnQq93t8mTQ0NHDTTTex7777QkiS2HdL4Zw4qLx4IdRAZ1FqKl0Cjue7AWTUpOVTOq2trYwbN45f//rXNStvqGGBAwwbNoybbroptTZwSBI6rMjsFHA3L14NeLFhRIWJvKZml2Rw4duPrDMZdarO+vXrmTBhAjfffDPjx493tI5Ko2ZTKLn09fVxxRVXsHDhQqLRKObrDWjbi6xalvu10UqUkS8vXu0Xc7G0ikPvf8jUis8plKrKcxciX7+2ctxLSKGYDQZNx0va29uZOHEiv/rVrxgzZkyJDa0+lMDT9Pf3c9VVV/Hyyy8TCoXg3WHoW2KFL75Mxy1FFLkir/YLO8NQInf4/e8icp8EXjPizmD3OrBYtjmsn+gR/XR1dTFt2jRuuummqlxZ0A5K4DkkEgmuvfZannnmGQBCq5rQW2OFXyS00kWRkXitXOAZBovcpfc/QKAeC7ymctxgT95gTeBCw2zuQ8zuIh6PM2vWLH7yk58wbNgwe22tQpTAB2GaJv/zP//DX/7yFwD09Y3oKxsQFOlwpR7GKtoVpGQ8WsxKmh4sdZAWeM1F3RnsBDBQvP8LDXNML+beHRiGwRFHHME111xDXV2d/bZWIUrgeZBSct9993HrrbcCoG2OEfpgOEIW6HR2D6MSuatVyKQH2+rV8jm00++LHC8pBObkLpKTO4HUgnSXXXZZKrWpGIASeAHmz5/PT37yEwzDQOyIEF4yApEsMHHHhc5sidx6nZRJply3BJWTE3dL5ErgLlGONgocLykkyT07MEf3AnDWWWdx/vnn18TCVHZQAi/Cq6++ylVXXUVPTw/06YTfG4nWO0QkEASBO1Wmm+Vmy9v1onRa5ErgLlCuMoY4XjJkkpixDTk8ga7rXHLJJZx66qnl1VXlqI+1Ihx66KHceuutqfmmdQbho3owRg6xHK2dC9mNz08pK6vc3Coyc6YVwcOJ8z/ENWLGkoz6Dx05PEFjYyM/+9nPlLwtoCJwi2zfvp0rr7ySt956C03TEB82oK+v33Vw048ovFiddst3q9zs64vHD+VG5CoCdwinNJHnWBnNfUTnJOju7mbChAn89Kc/ZerUqc7UV+WoCNwiI0aM4Oc//zmnnHIKpmliTOskuecOpDZo1oEfF3OxOt2MyF1GReQ+42TfGdRPJZIz//fjJGdsp7u7m9mzZ/O///u/St4loCLwEpFS8uCDD3LrrbemBje7Q4SWjhiYF/djSqHTN1CUUqadssHWCoalRuQqAreJG1rIOU4yZDL7wiksXLgQgM9+9rNccMEFaqZJiSiB2+TNN9/k6quvZuvWrcRiMRJvRNG35MxR9VribtTn9tTIMtZEtypyJXAbuCxvsyHBqBPDbNy4kbq6Or7zne9w/PHHO19nDaAEXgbt7e1cc801vPXWWwDo6+vRVw1LzRcPusCt1OvSgNXOx53J4BWSuRJ4CbilgvTxkUjM8T2IvftIJBJMnDiRa6+9lt13392demsAJfAySSaT3H777dx7770AiM4woWVNaH0h528tLoQbsnVx4Cr1d2eHYPKJXAncAh4sNyBDJsk9d2A2p2ZwfeQjH+GKK65Qt8WXiRK4Qzz//PP85Cc/obOzk7q6OpLvRNA2xRBWj67fAs/XDqe7xuD36NK2crkiVwIvggfyNpv6Gf5RjS1bthCJRPja177Gaaedhqjk4xYQlMAdZNOmTVx33XW88cYbAGjtUUIfNiESVnPCZXToSjuNVredKxe310KByhO4R31FanDGLcdzzz33IKVkypQpXH311eyxxx6e1F8LKIE7jGEY3H///fzud78jmUzS0tLCjucMtG1F1hfPxa1520HCC4F7sRphhkqRuEfHw2xMMuX0EXz44YcAnHrqqVx00UVqMSqHUQJ3iaVLl/KjH/2INWvWAKC1xQitHIZIlnChV7PIlcC9xauoW0iMyd0wrQ/DMGhqauLSSy/lmGOO8aT+WkMJ3EV6e3v57W9/y0MPPQRAS0sL2/+VRN8atV5ItaZVlMC9wcM+YDYkmXrGSJYvXw7ARz/6US655BJGjhzpWRtqDSVwD3jrrbf46U9/yrp16wDQNtcRWjHcem4cqk/kSuDu4uE5l1o66t5tZ9T9zW9+k+OOO04NVLqMErhH9Pf3c+edd3L//fdjmiYkBKFVw9Da6opvFpFLtYhcCdwdPD7H5sg4oz8eY/369QDMnTuXSy+9lObmZk/bUasogXvM+++/z09+8hNWrlwJgOgIE1oxHK2rxFuIgzLt0C5K4M7hw7mUUZPktA7MltS87tGjR/ONb3yDo48+WkXdHqIE7gPJZJIHH3yQP/zhD/T29oIEfUM9+prG0gY5oXJFrgRePn6IWwNjfA+RmUl6e3vRdZ3TTz+dc889l/r6es/bU+sogfvIpk2buOWWW7KbKI8cOZLOV43S0ypQeSJXArePH+JGYo6KM+7jjdmxnH333ZdLL71Uzev2ESXwALBw4UJ++ctfZqcciu4Q+qphaNvC3oscvBGEEnhp+HiZmo1JZp07lddffx1IBRpf+cpXOOmkk9RWZz6jBB4QEokEDz30EH/605/o7Ext5iq2R1IDnaXmxyH4Is+0z02JV4vAfbpEZdTk41cfyuOPP46UkkgkwplnnskXvvAFGhoafGmTYiBK4AGjs7OTP/3pTzz00EMkEgmEEIi2KKHVDYh+n0QO7q+LAs7LXAncXnVhE2NSN/q0JPF4HIDjjjuO888/P7W1oCIwKIEHlPXr13P77bfz1FNPAaDrOrI1TGhtI6JfL73AoInci6VmlcBLq0Y3MSb1ENnLTA2uA7NmzeK///u/mTVrlidtUJSGEnjAee+997jzzjt59dVXgYzII4TWNvgrcihPLKW0w67MlcCtFa+bGBN6iO0r6OrqAmCfffbhvPPO45BDDlHTAgOMEniFsHjxYu68887sFlSYoG2KobfWD9zOrRT8lLndukuReTUI3MX2y4iBMaGH6F7Q09MDwPTp0/nyl7/MUUcdpcRdASiBVxjvvPMOd955J4sWLcr+TdsSRV9Xj9ZZwoqHuTh9oVrpUk7VWUjoSuB5MeuSGJN60CcnSSQSAEybNo3//M//5Nhjj1UzSyoIJfAK5Z133uGee+7hxRdfzP5t3333Zelf1qFtiZY+/TCDVzJ3Q3iDZa4EvrMYJHJ4giMvms2//vUvMpf97Nmz+cIXvsDhhx+uIu4KRAm8wlm9ejX3338/8+fPz0ZT9GmpOzvbYohkGdGUGxd0prt5JYsaF7jUJOboXqacMJoVK1Zk/37kkUdy9tlnM3v27HJbqPARJfAqYcuWLTz00EM8/PDD2Xnk4XAYo1VH3xBDdNq4KQiCs0iTXWpU4LIuiTGul9g+WnZgsq6ujk984hOcdtppTJ8+3clWKnxCCbzK6Ovr4+mnn+bhhx9myZIl2b+LrhBaWwx9c13pUXklS7ySBV5i26VmYrb0Y4ztRTYlsn+fMGECn/nMZzjppJPUJsJVhhJ4FfP+++/zt7/9jX/+85/ZGzJ0XUduCqFtqkPbGkVIC+JRAi+OTwLP5LaNsb1EdxPZ+dtCCA499FBOO+00DjvsMDUwWaUogdcAHR0dPPnkkzzxxBMsXbp05wMJgba5Dr29DtFRJMVSqRKvVIEXaLdEIhuSmC19GKP7oW7nxs0TJ07kpJNO4oQTTmDMmDHOtkkROJTAa4yVK1fyxBNP8OSTT9Le3r7zgbiG1h5F31KH2JFH5krghXFZ4BKJrE9iju7HbOlDxnZKOxaLceyxx3LSSScxa9YsNZukhlACr1EMw2DRokU8+eSTvPjii9mBLoCmpiY6l8bRtkbQtkcQZvrrdyWKoRIFnm6zFBI5PI7ZHGfcoSNpbW3NPiUajXLEEUdw7LHHcvjhhxOLxZyrX1ExKIErSCQSLFq0iOeee44XXniBHTt2ZB8Lh8MkNwm0bRG0bVFEX8j+HHM/qCSBS4kMG5gj45jN/dRN0bN3SAJEIhEOO+wwjjvuOI444gi1gYJCCVwxkGQyyVtvvcVzzz3Hv//9bzZs2DDwCX0a2vYI2o4IWkcEEbd5G79XBFngUiJDJmZTHLMpzuQjxrB69eoBT2lububwww/nyCOPZM6cOUraigEogSuGRErJ2rVreeWVV3jllVd46623dt4slKFP2ynzjnDwInSvNqewgJQmRA3MYQnk8ATm8ASyMTmoKMFee+3FEUccwZFHHslee+2lZpAohkQJXGGZ3t5e3nzzzey/ZcuWYRjGwCclBaIrjNYVQnSG0brC0K8h3N59Zyj8Eng6HSIbkilhD0tgNiYgsmt7pk2bxkEHHcSBBx7IAQccwPDhw91vs6IqUAJX2Kanp4fFixfz5ptv8tZbb7F06dLsfPMBJASiJ4ToCaGlf4oeHZK6+9G6B91b6iYylpK1rE9iNiSR9fllHQqF2HPPPZk5cyb77bcfBx10ECNHjnS9jYrqRAlc4RjJZJKVK1eydOlS3n//fZYsWcKKFSt2jdIzJASiT0f0h9I/dUSfDv06ol/bOfulHBzo3lIzkRETIiayzhj4L5aEcP46hBBMmDCBffbZh5kzZzJz5kz22GMPotFo2W1SKEAJXOEy/f39rFq1itWrV7Ny5UpWrlzJ6tWrWb9+PUW7niEgoSHiGiKhpX5PaGAIhJH6mfpdgKGBJP1PgASR+T+pRZ0QEgSg7fwpQxJCJlJP/8z8P5wWdsSEUPFLZOTIkUyfPn3Av912201N71O4ihK4whf6+vpYt24dGzZs2OXfxo0bs7eEB4VYLMaoUaMYM2YMEydOZMKECUycODH7u9rkV+EHSuCKQNLT08O2bdvYunUrW7duzf7e0dFBT0/PLv96e3sxDCP7zzTN7O+aphEKhQiHw9mf4XCYSCRCY2MjDQ0NNDY2Dvg3cuRIWlpaGDVqFC0tLWr6niKQKIErFApFhaImmCoUCkWFogSuUCgUFYoSuEKhUFQoSuAKhUJRoSiBKxQKRYWiBK5QKBQVihK4QqFQVChK4AqFQlGhKIErFApFhaIErlAoFBWKErhCoVBUKErgCoVCUaEogSsUCkWFogSuUCgUFYoSuEKhUFQoSuAKhUJRoSiBKxQKRYWiBK5QKBQVihK4QqFQVChK4AqFQlGhKIErFApFhaIErlAoFBWKErhCoVBUKErgCoVCUaGE/G6AIoWUkr6+Pr+boVBYoq6uDiGE382oeZTAA0JfXx8nnHCC381QKCwxf/58YrGY382oeVQKRaFQKCoUFYEHkOhrYxEiBEIDXUPo+s7f0z8RIs9PPfVTaKAJpKalPqK11ONSF6mf6b9LTYAg9XfEgP9LIZAa6ecDmsi+Rgp2Ppb+Pfe5Ox9PP5YtK+fv6X9oOb8Pet3gn7nPJ/PtXct9TA58jgYImVO2TL1uwN8lIv3/VDgjEennCU2mD6eZPawIiSYkQkj09E9NS/1NFya6ln5MM9GERBOpn6H0/0PCRBOk/o9E14zU3zHRhElYpH6G0j/D6eeFRep5qZ/mgJ865sDHMYkIg7BIogtJSCSzz9GBMEl0JCFhoCMJCzP9U6IBYSHSPzV0BGGhoaGRjIc4/Svj3O38ipJQAg8ipkiJOv1PCC0lYakh0HKspjPQcun/i/T/s1+wMv8Xef5O+jWZf+T5naysd/4//bvGzn+Z/wsG/Rzq70M0zcrP3A8AuwLPFXeOwMk+L/PTzP5fCJl6rsg8L+enEDl/E6kPByEQQiK09M/s/0GwU/6aYMA/PfNTAw0TXYj03wW6EISEQEv/1En/FJJw+lCHReqfnvlJ5mdK1EP91IBItgyZfp1EQ5IU0kZnVriJSqEoFApFhaIi8CCiSaQwd0aLmhgYpQ6KjLPRX+b/SFLxXSZiyvxfDPi7xEz/TIWzUqbyElKmnislqedL0nmO9M9MkQjSRaTIzErIpDdEgb/LQT/FEH8f6mf67e6M/smJmMn5KXOie5nn76WnUHb5l43AzZwI3ExH/yZSSKSW/inMdIrJRCIx088zMUGYmCL10xAmUpho6edpQiLFzp8iJ5UjSf000+8z86UHAWb6m4pO5mfq3OqAKQb/TL3WTKdQjHR0bwiBhiAZz5xARVBQAg8g/Ye0+VNxRsbG0E/JuFBhDTP9L+lJbQJ1SdcWKoWiUCgUFYqQUqqRiQBQazfy9PX18elPfxqAv/3tb9TV1fncIveppvesbuQJBur7VkAQQtTsjRF1dXU1995r8T0rnEelUBQKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUNQsFIVCoahQVASuUCgUFYoSuEKhUFQoSuAKhUJRoSiBKxQKRYWiBK5QKBQVihK4QqFQVChK4AqFQlGhKIErFApFhaJWI1Q4Ql9fH2+++SZLly5l2bJlLFu2jLa21MYU55xzDueee27RMrZu3co999zDyy+/TFtbG9FolGnTpnHiiSdy8sknB3L50h07dvDiiy+yaNGi7Hs2DIMRI0aw9957c+KJJ3L00UcXLKOnp4f77ruP5557jo0bN6JpGpMnT+a4447j9NNPJxwOe/RuFJWGuhNT4QhvvPEG8+bNy/uYFYEvXbqUb33rW+zYsQOAWCxGPB7HMFLbAx166KFcf/31gZPZsccem20jQCQSQdd1ent7s3877LDD+NGPfpR3/e+NGzfyjW98g40bNwKpZWZN0yQejwOw55578stf/pJhw4a5/E4UlYhKoSgcY9iwYRx88MGcddZZ/OAHP6C5udnS67q6urjsssvYsWMHU6ZM4bbbbmP+/PksWLCAb37zm4RCIV599VVuvvlml99B6RiGwYwZM7jkkku47777+Oc//8n8+fO5//77OfnkkwH497//zc9+9rNdXptMJvnud7/Lxo0bGTVqFD//+c9ZsGABCxYs4Ac/+AH19fV88MEH/OhHP/L6bSkqBalQOEAymdzlb2eccYacO3euvOOOOwq+9vbbb5dz586Vxx9/vGxtbd3l8bvuukvOnTtXHnPMMXLNmjWOtdkJFi1aVPDxG2+8Uc6dO1fOnTtXbty4ccBjjzzySPaxd955Z5fXPvnkk9nHFy5c6Gi7FdWBisAVjqDruu3Xzp8/H4CPfexjTJgwYZfHTzvtNGKxGIZh8OSTT9quxw0OOuiggo9nonBIpYlyeeKJJwA48MAD2W+//XZ57cc+9jHGjx8/4LkKRS5K4ApfWbNmTXaw87DDDsv7nPr6embPng3Aa6+95lnbnCASiWR/N00z+3tfXx+LFy8G4PDDD8/7WiFE9phU2vtWeIMSuMJXVqxYkf192rRpQz5v+vTpAKxatcrtJjnKm2++mf098x4AVq9enRV6ofedeWzr1q10dHS400hFxaIErvCVLVu2ZH8fPXr0kM9raWkBoLu7m56eHtfb5QSdnZ3cfffdAMyePZspU6ZkH2tvb8/+buV9D36NQgFK4AqfyZVxNBod8nm5U/AqQeCmaXLdddexZcsWIpEIF1988YDHq/V9K7xFCVyhcIFf//rXvPTSSwBcfPHF7L777j63SFGNKIErfKW+vj77e39//5DP6+vry/uaIHLLLbfw0EMPAfD1r399wEyUDNX4vhXeowSu8JVRo0Zlf9+8efOQz8vkfxsaGgItsltvvZX7778fgAsuuIAzzzwz7/Nyc9tW3vfg1ygUoASu8JncmRkrV64c8nmZ2Sq77bab202yzW9+8xvuvfdeAL72ta/x+c9/fsjnTp06FU1LXX6F3nfmsebmZoYPH+5gaxXVgBK4wlcmT57M2LFjgdQt5/no7e3l7bffBuCQQw7xrG2lcMstt3DfffcBKXmfddZZBZ9fV1eXvXlnqPctpeTVV18Fgvu+Ff6iBK7wFSEEJ5xwAgBPP/00GzZs2OU5f/3rX+nt7UXXdT7+8Y973cSi3HLLLQPSJsXkneHEE08EUguBvffee7s8/swzz7B+/foBz1UoclECVzhGZ2cn27dvz/7L3KjS398/4O+Dp8N9/vOfp7m5mb6+Pi677LLsLeeJRIKHH36YO+64A4BTTz2VyZMne/umipCb8/76179eMG0ymBNPPJHp06cjpeTKK69k0aJFQGoK4jPPPMONN94IpO5QPfjgg51vvKLiUcvJKhzjzDPPzC6LWogTTzyRK664YsDfBi8nW19fTzweJ5lMAqkUwvXXXz/g1nS/aWtr44wzzgBA0zRGjBhR8Pmf+9zndonON2zYwLx589RysgpbqA0dFIFg77335o9//CP33HMPL730Eps2baKuro7p06dz4oknctJJJ2UH/YJC7tompmmydevWgs/PXSM8w/jx4/nDH/4wYEOHUCjEtGnT+NjHPqY2dFAUREXgCoVCUaEEK6RRKBQKhWWUwBUKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUJTAFQqFokJRAlcoFIoKRQlcoVAoKhQlcIVCoahQlMAVCoWiQlECVygUigpFCVyhUCgqFCVwhUKhqFCUwBUKhaJCUQJXKBSKCkUJXKFQKCoUJXCFQqGoUJTAFQqFokJRAlcoFIoK5f8D55k/T7+RYk8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m_data = HealpixMap(data.slice[{'Em':3, 'Phi':0}].project('PsiChi').todense().contents)\n", + "\n", + "fig = plt.figure(dpi = 150)\n", + "\n", + "ax = fig.add_subplot(1,2,1, projection = 'orthview')\n", + "\n", + "m_data.plot(ax)" + ] + }, + { + "cell_type": "markdown", + "id": "cb3069c1-22ee-4b5a-bd0e-928d620f4f7d", + "metadata": {}, + "source": [ + "The final source injector should save the result to disk in the same format as the \"Data classes\" module, including all the appropiate header information. However, for now you can use directly histpy's `write` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "42d5f436-683e-421a-9996-88ab169844fd", + "metadata": {}, + "outputs": [], + "source": [ + "data.write(\"GRBdata.h5\")\n", + "bkg.write(\"GRBbkg.h5\")\n", + "signal.write(\"GRBsignal.h5\")" + ] + }, + { + "cell_type": "markdown", + "id": "79f22343-ad7e-4cf5-920c-0f0d7cd82ea5", + "metadata": {}, + "source": [ + "To load them back, use:" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "d9bcda82-15c0-433a-ae2a-f59ee707d171", + "metadata": {}, + "outputs": [], + "source": [ + "data = Histogram.open(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBdata.h5\")\n", + "bkg = Histogram.open(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBbkg.h5\")\n", + "signal = Histogram.open(\"/Users/ckierans/Software/COSItools/COSItools/cosipy/docs/tutorials/GRBsignal.h5\")" + ] + }, + { + "cell_type": "markdown", + "id": "dd49e99a", + "metadata": {}, + "source": [ + "## Now reading in the data to make TS Map" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "0ddff0c7", + "metadata": {}, + "outputs": [], + "source": [ + "tsmap = TSMap()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "66332aff", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "306.3669458839138\n" + ] + } + ], + "source": [ + "print(coord.icrs.ra.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "7fa9b755", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "7.507101864237928\n" + ] + } + ], + "source": [ + "print(coord.icrs.dec.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "572b29a3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
09:00:03 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m09:00:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=523930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=983643;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "piv = 1\n", + "index = -2\n", + "\n", + "tsmap.link_model_all_plugins(dr=response_path,\n", + " data=bkg + 3*signal,\n", + " bkg=bkg,\n", + " sc_orientation=grbori,\n", + " piv=piv,\n", + " index=index,\n", + " ra = coord.icrs.ra.deg,\n", + " dec = coord.icrs.dec.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a4076ad2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:12:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:12:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=315866;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=16056;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=261733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259386;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=851395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75847;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=12627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567205;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=894236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=830159;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=469658;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=548447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587807;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=926105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=950824;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458278;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=757914;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394874;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725194;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=670724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=324427;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=841410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=394536;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23541;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=491437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=745723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=649801;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=603892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:13:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:13:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=360026;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=157175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=679215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=746181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=361658;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809303;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=373162;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=788137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=856987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=506170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=479688;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=166193;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=74764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381751;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=462963;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 0/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=198842;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=477730;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=404289;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489598;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=595005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891528;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88436;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:14:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:14:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=755869;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=891751;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=949405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754634;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=583059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=138428;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=871525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=461790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=424195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660066;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=139127;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=577973;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=922063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=872272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=638258;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673702;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=748152;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=347176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923028;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=204093;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=107414;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=582235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:15:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:15:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=90513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=971099;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=693897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679620;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=670732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=610418;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899274;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=533905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=436345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=18282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=735814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964342;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=30715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 1/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=432847;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=742059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=9125;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=131064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=383176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=749975;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=563032;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107777;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=349804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223859;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356367;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=979519;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=867046;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:16:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:16:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=217539;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=736563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=3978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679701;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=104921;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=496896;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=168270;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=143930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=698663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887614;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882218;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=650281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687792;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955264;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=43279;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=5599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=11343;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=63765;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=823555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567122;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=52831;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=554117;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:17:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:17:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=706725;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=620141;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=105544;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=104672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=35938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=758440;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=912277;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 2/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=977321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870678;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366794;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=253654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=554347;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=136602;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=930645;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=337498;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=481872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=753059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366304;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=754171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=571983;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=466239;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=561718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=887627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=698350;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=945488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:18:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:18:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=827923;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=47516;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=612903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=92946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522142;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=324911;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=377443;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892542;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142838;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=523894;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=813080;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=824893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=368978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=484735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=81640;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248162;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=540263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=557155;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=841772;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=681532;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=522590;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=555001;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=764857;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=72706;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:19:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:19:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7620;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=358;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 3/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=766889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=302947;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=956799;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=290058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=117432;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938952;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=231021;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=95724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=833534;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=846405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=746779;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=247110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=408215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=457593;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=387222;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=550587;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=158399;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=706627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:20:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:20:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=57798;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=705691;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=794675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=410867;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=3990;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=959506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429346;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=521820;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=256077;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=458920;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=261334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234101;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=101229;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=695679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282178;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=318910;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=662272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=293365;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=179805;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=610234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=391377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=296814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=118210;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 4/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=681945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=640713;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:21:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:21:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=580790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=287661;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=221465;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=401563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=666628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86594;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=514596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=892966;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=128755;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=357925;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=796389;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=310518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=772071;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=520957;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=45474;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=131321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=581863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=516377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=17009;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=362442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441590;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=881766;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=314000;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=641761;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=594431;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:22:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:22:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=778284;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=895981;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=715919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923102;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=642175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=132184;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=199762;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=920169;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=881243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=663889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=671657;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=596422;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=632956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=889849;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=948740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=624442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567604;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 5/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=110672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=930783;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=1357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=538843;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=761115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=722785;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=185920;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:23:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:23:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=169752;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=538025;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=293694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=18525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=350743;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=513332;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489355;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=84247;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=464744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=137708;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=983862;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=284075;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=196717;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=926853;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=241074;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=950166;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=577831;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=994222;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=230944;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=755465;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=801249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=776430;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=315872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845564;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:24:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:24:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=589628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=515728;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854138;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=372219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=637073;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=149481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847197;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=585935;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754605;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=581857;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 6/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887024;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=388032;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7784;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=505219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=754270;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=351620;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=307965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=380892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=383953;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865789;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=833712;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=768518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=288941;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:25:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:25:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=558016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=833280;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752671;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=529192;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=426877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=415930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=984960;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=264833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=6747;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=832081;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=767657;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=351407;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970911;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=695460;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=498322;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=826486;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=631789;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=390538;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259651;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=625833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=875285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=583421;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=327455;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:26:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:26:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=111469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=304120;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=430749;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=86846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=176001;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 7/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=727541;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=863405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=163170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=250440;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=911636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=897714;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905152;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=890795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=733070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=952231;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=657108;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=798095;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=298301;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381841;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522739;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479292;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=630867;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=895427;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=752444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=796156;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668683;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:27:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:27:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=454147;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=608144;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=683839;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=207143;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=608014;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856646;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=956446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=968323;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=73716;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605898;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=760665;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=33321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=272734;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894391;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=762199;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=648347;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=320520;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=235614;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=977817;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=932463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=565625;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=688438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=596505;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=191414;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 8/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:28:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:28:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=938856;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=201244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=578109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=621196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=611189;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617783;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=149312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=939638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=745808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517406;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=528433;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=456309;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441765;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=103058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=173125;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=891059;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=777252;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=67483;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=827965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382254;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97852;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908459;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=487177;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110358;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883121;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=501736;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=438158;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:29:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:29:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=278336;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636347;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856350;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=497770;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=829771;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551540;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=269013;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59967;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=626456;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=749217;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=785715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=777412;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=613870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809417;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=72550;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=578738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 9/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=599462;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=385271;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=108034;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=799692;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=244484;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=318608;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:30:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:30:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=330195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27474;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=935877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=476104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856580;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=926121;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=144866;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=359742;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=330212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=280732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=438635;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662479;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=771989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=94206;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58083;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=194430;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882184;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=632019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=283444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=736692;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416705;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=610367;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=671513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=376836;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:31:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:31:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=776263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88584;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=862213;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=455994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=241283;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=711477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564470;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=966201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223275;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=773803;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=953652;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 10/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=705198;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=549310;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=582493;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=780698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=436171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=201014;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=391248;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=392437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:32:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:32:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429088;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922220;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=583007;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=837899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=555007;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=48119;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=593680;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=69840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=769935;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=370480;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=962768;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=548383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336836;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878280;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=269725;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=115320;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=772790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=214586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=699722;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451382;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=356228;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=810694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=228290;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:33:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:33:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=396344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289053;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=814115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=700338;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=183602;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394495;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=259095;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=874986;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 11/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=142130;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=488330;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=274190;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=867438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=632048;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=622768;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=382842;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=415464;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816520;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=104763;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=159880;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=674619;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=560987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=585967;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=76734;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=615143;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=981369;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721177;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:34:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:34:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=697000;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=423205;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=310286;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550351;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=454803;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=514032;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504958;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828164;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=323311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=803890;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=743366;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=133889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=66709;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547736;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=729655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711909;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=809688;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416065;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=679015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=247697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=452415;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=444315;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=392448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969382;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=983740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 12/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:35:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:35:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=12469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=819495;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=800008;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=310680;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=748021;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=27419;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=769198;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=272163;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=353387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=979438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=156811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=610017;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=234962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=856663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=586834;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=644191;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=246660;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=199725;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381152;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=837360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=170276;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=703685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=47795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=857238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=47742;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=895446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:36:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:36:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=571437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=408234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=265135;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=500013;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=438940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=604193;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=238824;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40608;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=939446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=833762;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360598;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=384888;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=536987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=646123;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=299128;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=380098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=361727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=751506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=418545;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 13/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=93914;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=148596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=999252;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=863903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=792379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=590422;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=29840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:37:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:37:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564043;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=360919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=362265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=797890;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=555411;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=942897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988260;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=719340;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=157771;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=520938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=306612;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=463444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=35863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=316631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=230040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=863055;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27881;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=111562;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=426312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=625644;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=643925;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=899718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=802329;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=653353;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=725491;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:38:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:38:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=962842;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=155756;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=514649;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=527587;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881426;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=445302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=725698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=384334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=499185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=642908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=399309;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564567;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870084;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 14/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=548154;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=492444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=670116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=5865;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=244020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306050;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=904245;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=297996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=821619;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=443677;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=27902;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=16201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=178172;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:39:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:39:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=54244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=159485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=904258;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=278332;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=103549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59737;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650857;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=553462;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=956069;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110097;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=42869;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=998103;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899534;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=262960;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=699822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=945840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=86972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=373718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819736;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=602225;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=602560;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=561055;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=397576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:40:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:40:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=945548;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=681537;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=785953;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=732425;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282204;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 15/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=203533;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=953186;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=960631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=958066;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=544962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=495300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=939285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=432461;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=361110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=248360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=771306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726817;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=903005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483337;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741618;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=564116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=331740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=879827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636511;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:41:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:41:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=440586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205748;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=974178;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=495044;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=585212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854154;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=880607;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=916968;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=983351;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=88126;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=93196;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902197;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=448047;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=974458;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=65565;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=96636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=338365;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=24929;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=264282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=200349;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=953673;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=229956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=846020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=328063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 16/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292676;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=301659;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:42:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:42:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=889146;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=910097;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117553;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=342704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=716496;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=686786;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=122142;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=432118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97999;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=743082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=459615;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=349990;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=507158;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=89735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=288253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=350318;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=115395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=798528;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=983039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773529;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=158008;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=553887;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=190243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=107375;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=320634;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=301551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=772707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:43:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:43:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828627;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=131785;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=85645;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=125726;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=229033;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64921;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=859332;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=723701;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=583631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639813;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=60663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=288616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=672237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 17/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=30583;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=33148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=936449;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=714998;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=834551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=952118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=182259;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=783116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=877040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:44:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:44:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340690;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=145837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=815626;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=133437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=363573;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=951148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=106859;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327291;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=993894;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=287400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=975513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=90723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=120385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=865281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=240639;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712303;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=305822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=289020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=931567;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=484312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=128383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=759937;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878451;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=835212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=210057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914845;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=714390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:45:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:45:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890354;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773898;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=315343;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=911908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=466015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=476091;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=765043;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=732965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=817525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 18/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=317951;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=421197;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=337821;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20451;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=320982;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=350819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=455978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=452808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=88582;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=525631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=750153;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=36522;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=994285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=888383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121050;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=541213;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:46:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:46:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=596858;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=931291;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=686236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107373;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=645589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=863367;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=134040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=153295;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=379170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=123054;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=254500;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=110243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=431331;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=327600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=668014;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=756487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=198715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=827429;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770486;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=216693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=489862;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482331;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938632;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:47:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:47:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=218148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=143265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=508187;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=549604;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 19/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40355;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=964860;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=885038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=153401;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=389980;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=517992;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80653;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=956687;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1835;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=939045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=784616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=19545;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=652856;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667552;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=879036;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530297;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306884;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825720;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=157310;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=394926;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=257977;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:48:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:48:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887382;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759605;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=986964;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=255113;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=996753;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=71105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=669912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=560237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=729118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=148507;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=781546;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243356;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=115379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=815994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=473619;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=582451;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=338416;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=307978;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606090;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=867033;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=390232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=855830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988370;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=985952;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991501;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 20/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=57207;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=222299;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:49:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:49:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=54989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903815;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=894573;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=107686;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726369;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=212415;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249090;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=24363;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62183;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=83532;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=526345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964618;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=440655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=832870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=540702;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=358719;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=934818;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=650553;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=556019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=131974;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53634;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=266886;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=914201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=570216;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=950554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=260615;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=507693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:50:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:50:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=543872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664278;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=2454;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=741965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=182917;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=205928;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=104378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23922;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=15092;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=778171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=476919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=850414;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=408119;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=393961;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=573588;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=47396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=246221;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=899466;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 21/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=333698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=356568;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=727230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=245732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=127446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=271697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=775311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=153965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=678806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:51:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:51:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=704447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882982;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868917;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=289826;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=148547;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=190546;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=899267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=704321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265139;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=626018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=193560;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=718819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=733542;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=992366;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=319354;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438139;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73471;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=950360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=298219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=836245;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=79275;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=940839;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=91928;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=704815;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58876;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:52:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:52:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=2269;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=946835;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739397;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=60911;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=985672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=851458;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=231989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=197946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 22/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=945810;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=623899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278703;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964307;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=155018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=730305;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=125067;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=683733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=240478;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=389104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=893463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=428551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=974609;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=549744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=754344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=795073;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=649562;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=346799;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:53:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:53:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=387160;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=250436;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=818872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=631821;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=903636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=312296;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=526272;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=311576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=390829;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=268964;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=488479;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=194870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=969918;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=382237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991803;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=733664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=662517;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=784811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=531822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=190600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=271223;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=334425;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=369559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914120;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6179;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=239827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 23/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:54:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:54:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=647438;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980652;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=332212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=124897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=905171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=571518;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=633469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=171987;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=516798;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=953837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=939559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=757049;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942603;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=571235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988170;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282345;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=877417;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=126565;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=40117;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737417;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=825516;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=758112;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=756767;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=429677;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=910362;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=29261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=135193;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=990940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:55:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=52381;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=853823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=137586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=309629;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=616240;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=981949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=885944;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=190924;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=674244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=83387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=27825;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=702328;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=401048;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=956551;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=237599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=39425;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=387723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=293704;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987821;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 24/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=497614;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=572455;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=716622;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=382745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=699391;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308053;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=206087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=592926;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=370238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=909831;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=39533;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=741746;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=145808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489642;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=945091;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=486522;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=700243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=923037;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=482843;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577943;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=872814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=304486;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=343161;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=242310;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=551082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=643623;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=350975;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=207548;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551457;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=248238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=747068;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=577845;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=38718;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:57:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:57:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=196597;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825335;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=247595;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374498;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=370642;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=697199;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=700854;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=877452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=674552;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=21490;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=530851;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 25/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=776975;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=254430;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=120125;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=774098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420886;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=687163;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605770;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=544150;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=306231;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=852685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=69334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=578649;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=908960;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=439599;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:58:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:58:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=899873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=282312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=878804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161632;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200562;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=454694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=245253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=279319;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290788;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=342216;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=837131;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=131968;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=848105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=44812;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=153972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=162946;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=704110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919734;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=198306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=334731;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=638695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=708873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=44167;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=714776;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=774051;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=499113;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
11:59:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:59:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=345300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 26/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=375931;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=989420;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=36966;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777976;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95628;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=938285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=891714;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=736123;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=300740;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62042;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=327496;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117078;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=524064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=442490;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=654137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=875844;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=106843;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=768730;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340496;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243124;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:00:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:00:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=155644;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=962218;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=597281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=146961;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=206239;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=966395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=203485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=34291;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=682442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=997882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=936859;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=806477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=935121;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=807040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=758564;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=816140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=988994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=632481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=231696;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=429576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=315400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=841302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=176401;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 27/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:01:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:01:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=116442;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=857527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=691790;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=840580;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=220563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=630726;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=591381;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=793626;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=502948;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=716377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=775027;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=765666;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=731285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=940335;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=288682;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=603989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=205685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=740199;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=437374;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=808936;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=605130;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=651100;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=387877;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=843714;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61617;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:02:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:02:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=561081;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=216959;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=569626;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=601465;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=127693;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=965707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=760694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=682731;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=367102;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=553033;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161869;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=770437;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=534378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208915;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=661085;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=619837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=761539;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=449745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 28/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=837744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=126993;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=724268;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=907227;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:03:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=318226;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=912724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=976578;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=617509;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=519808;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=304929;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=197078;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=228137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=494527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=227040;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=456768;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242329;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=399224;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=65274;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=713710;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=111105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:04:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=432879;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=134966;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=962633;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770073;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=778379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=922741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=292312;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=537087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=644526;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=315623;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=697616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=943057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=621137;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=32574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=231265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902915;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=398616;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504182;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739995;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=161699;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664288;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=788364;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=301664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 29/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=375223;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=61861;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=75973;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=949555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=816709;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479898;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=52003;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=446823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=339428;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868361;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68201;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226021;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=180954;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780494;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=62968;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=30070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=217931;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883294;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=423;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890257;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=923638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987750;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=768038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=774253;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=823933;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=171654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=777174;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=313396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=619832;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=608042;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=459045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=215590;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894663;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=344942;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=271049;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=180370;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=784622;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=794235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=451106;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=253136;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=567191;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=660055;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=690218;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=424421;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=600113;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=282071;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=432362;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 30/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=485715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=687516;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=318293;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6727;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=706811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=789214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=816390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:07:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:07:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=753207;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=175586;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187020;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=690649;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906007;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483099;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=669182;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=691305;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=766840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=593591;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=174833;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:08:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:08:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=798945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=50826;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535099;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=115912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=790994;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=10116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=532557;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=111707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=375555;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=59826;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=53570;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425166;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=130635;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=51140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840428;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=721487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=694444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=702690;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=572989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551028;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:10:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:10:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=182794;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=703501;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=221707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=165172;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=855531;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 31/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=529563;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=699384;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=56507;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=542517;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95472;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=444268;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=615286;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=14908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=435943;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=291855;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=98515;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=117722;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=954954;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=781252;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=553362;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=822541;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=884622;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=721074;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=306741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:11:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:11:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=382602;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=289501;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=430188;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=126464;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=926311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6094;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=702074;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=966748;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=124357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=459576;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=81219;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=669206;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=779930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=867410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=898344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=843200;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=595245;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=352919;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=520328;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=169535;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564986;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=343838;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740079;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=403084;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=700806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=214150;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:12:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:12:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=839509;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 32/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=20675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=381742;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=960419;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=665489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=742677;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=692906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=251934;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=663996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=915543;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=787263;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=975239;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=166004;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902479;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=636617;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=536234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=25002;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=584721;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249388;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=229686;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=15228;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=421776;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=489151;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416998;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=473215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=80145;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=246044;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:13:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:13:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=168156;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=522591;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=652636;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=606402;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=496387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=864471;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1004;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=821969;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=119282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=864396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=260862;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=355600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=16525;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=146237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=202418;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=102992;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=392002;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=359488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=488445;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=362512;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906598;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=860544;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 33/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=453721;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=846924;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=226481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=14056;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:14:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:14:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=59461;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=478208;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=626424;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=512726;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=891647;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=270284;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=729460;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=1930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=531102;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=167908;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=245473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=228892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=458909;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=616870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208392;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=528940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=794016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=305313;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=787173;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=414624;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=801410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=290814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=910292;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=509656;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=900644;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=584034;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=918115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:15:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:15:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=371575;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=51782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=70500;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=339724;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=144229;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=270023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=359244;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894615;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711303;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=496401;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=808537;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=755395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=319633;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=716473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=4673;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 34/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=39570;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978558;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=992697;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=761738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=810822;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=411497;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=568230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=517202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=515603;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=352583;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=144487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=552237;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530633;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:16:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:16:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=633132;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=187956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=51873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=136327;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=867632;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=917447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=669996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58378;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=278901;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=147181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=387692;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511698;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=55659;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=76592;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=33533;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=555390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=351405;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=94931;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=906468;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=881583;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=176846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660897;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=994298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=945333;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=135275;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=207679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:17:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:17:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=685540;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=230489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389883;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=713793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142069;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=94575;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=766393;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 35/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=6473;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=630175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=705745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=660103;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919712;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=104568;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=402873;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=692243;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=802327;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=941733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=325261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26900;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673265;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=667813;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=623609;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=747374;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=521723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=972716;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=612680;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:18:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:18:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=590133;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=712400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=712114;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=542023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=997848;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=494030;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=500585;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=340452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=593176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811342;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=246231;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=33228;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=525046;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=725474;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416051;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=47729;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=665326;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=695241;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=335233;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=902806;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=724780;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=893769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=79274;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=647832;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=368769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=297282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=203944;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 36/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:19:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:19:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=441630;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278694;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=834148;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=783018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462411;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=558064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=167961;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=147463;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:16 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:16\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=384802;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=129324;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=927298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=737087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=744270;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=67655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=49070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=67532;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=553153;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=218027;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=895098;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559111;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=676377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=978434;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=18938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=680814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=24695;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:20:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:20:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=569853;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=234600;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=544906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=613737;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=544232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=773860;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=147434;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=510775;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340195;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=298114;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=743126;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=6236;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378112;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=755103;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963350;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=308144;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=456945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827992;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=541807;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=661537;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 37/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=36298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=789689;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=143477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=673971;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=405058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412733;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:21:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:21:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=628515;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=977498;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677432;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764753;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=173601;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=390163;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902792;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=66394;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=711540;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=416202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=33277;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=422328;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=44963;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=8133;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=500723;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=344114;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=480185;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=513410;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=924087;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=143238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=989363;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=698233;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=698689;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438748;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:22:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:22:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=661681;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=861396;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=149447;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=699940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=372048;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=446495;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=167018;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=654202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=707701;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=743996;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=720111;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=192220;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=611361;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=744117;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=691865;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 38/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=467892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=258786;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187477;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639852;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=957836;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=150755;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=619655;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261997;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=595156;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=142927;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:23:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:23:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=262070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=845187;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=102444;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=261210;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=742119;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=464708;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=152928;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=350888;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=636797;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=336764;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=520257;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=658621;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=179559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=475874;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=363941;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=511161;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=419611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=639015;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=451019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=411302;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=819168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=873159;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=508308;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=460894;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=587710;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=909989;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:24:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:24:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=10019;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=600282;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=751915;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=23878;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=12261;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=804699;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=828837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=811063;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=668446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 39/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=986139;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=78070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=122049;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=574341;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=572772;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=122556;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=294745;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=132941;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=681502;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=782264;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:40 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=988870;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=318206;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=574469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=514202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:49 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:49\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=423281;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=997380;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=188050;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86924;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:25:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:25:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=23105;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=227069;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=239176;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=868214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=1034;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=704395;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=819016;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=453513;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=460965;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=713394;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=279557;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=594319;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=759095;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=162505;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=802172;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=26506;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=451789;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=908214;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=604672;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=243149;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=407559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=335874;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740124;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278341;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=347795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=875524;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=369795;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=465357;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:26:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:26:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=955383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=871242;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 40/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=535215;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=69827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=699118;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=541625;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=551194;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=865322;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=907435;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=50735;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=416796;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=75528;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=922884;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=313005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395173;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=406707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=89752;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=645606;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=520903;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=97611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=123574;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276705;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=815321;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=538127;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=425064;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:27:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:27:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=119729;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=665166;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=970146;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=529796;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=185769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=745051;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=220472;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=235010;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249419;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=68262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474511;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=32638;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181656;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=532344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=51973;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105962;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=481467;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=972559;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=276435;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=360888;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=380554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=124819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=409589;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 41/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=312306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=946171;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:28:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:28:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=462450;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=806664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=740029;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=532661;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=271546;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=267267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=455787;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=637596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=344667;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=376514;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=6168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=560554;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=511899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=369920;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=881548;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=221036;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=984611;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=796685;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=952128;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=399949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=498664;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=921343;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=7238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=854082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=846130;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=580104;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:29:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:29:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=483072;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=296607;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=86899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=965750;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=122938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=505490;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=339387;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=759194;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95932;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=683556;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=774709;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=40827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=575811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=620545;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=858550;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=878717;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=333910;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=405352;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=748706;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 42/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=961136;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=550597;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=322008;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=937284;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=286307;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=38082;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:30:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:30:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=340668;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=125912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=833683;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=852426;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=276080;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903772;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:09 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:09\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817955;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=155267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=883936;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=857235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:18 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:18\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=505557;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=351418;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=898030;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=389168;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121346;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=467905;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:31 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:31\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847527;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=351531;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=377085;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811893;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559488;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=73999;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:45 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:45\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=594360;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64882;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=32255;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=259993;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:31:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:31:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=418107;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=378190;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=735720;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=114150;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=349834;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=269484;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=87138;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955146;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844776;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=932871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=489174;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=640782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=878503;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=749232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=802744;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=399446;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 43/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200344;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=907251;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=242204;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45783;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=465780;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=252122;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=71400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=855311;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:53 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:53\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=565939;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263109;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:32:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:32:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=280715;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=112140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:02 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:02\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=113110;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=63489;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:07 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:07\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780092;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=181140;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=45377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=545366;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=717737;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=825945;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=979271;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=808212;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=829285;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=570684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=966654;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68522;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=697801;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=927331;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=222510;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=413844;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=117769;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=171267;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=301083;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=870671;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438147;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:54 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:54\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=803974;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=86249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:33:58 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:33:58\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=969711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=438297;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=450400;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=898811;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=336892;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=38241;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=780503;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=32595;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=477262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=100298;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 44/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=689450;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=689301;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:27 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:27\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=902379;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=886830;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=107300;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=954871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:36 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:36\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=924241;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903713;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:41 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=570230;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=64591;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=655448;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=991475;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=256823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=628334;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:34:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:34:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=447383;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=705791;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=84385;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=391290;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:04 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:04\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=455782;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=249974;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105370;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920738;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:13 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:13\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=824005;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=52232;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=810116;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=468751;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=966639;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=647880;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566648;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=372639;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856666;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=470475;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=914868;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=144779;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:38 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:38\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=690262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=265756;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=99175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=546076;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=989238;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=80846;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:51 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:51\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=403381;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=847408;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:35:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:35:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=682512;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=865316;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:00 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:00\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=604273;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=297832;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=654949;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=383408;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 45/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=879900;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286502;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=473259;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=593785;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=418452;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=429871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=727661;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=420181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:29 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:29\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=284135;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=212313;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=95070;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=100630;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641181;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=510306;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=48879;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=169262;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=521933;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=201469;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:50 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:50\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=729287;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726732;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:55 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:55\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=199746;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=876933;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:36:59 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:36:59\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=341038;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=5234;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:03 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:03\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=706703;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=251564;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:08 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=313209;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=596271;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:12 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:12\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=890336;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=497058;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:17 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:17\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=856420;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=204956;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:21 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:21\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=372047;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=903679;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=635420;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=651022;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=380394;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=58023;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:34 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=748624;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=364529;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=208640;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=814039;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=504353;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=930688;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=630819;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=980045;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=387026;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=252871;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 46/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:37:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:37:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=600839;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967549;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=677115;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=408601;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=289092;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=761711;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=267805;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=577538;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=564848;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987235;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=140827;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=576741;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=41257;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=635406;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=443823;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951814;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=479467;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=667286;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258901;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=635191;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=895887;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=530912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:46 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:46\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=576804;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=951930;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=204906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=435202;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:38:56 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:38:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=378535;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=436352;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=3840;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=629631;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:05 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=381247;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=752837;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:10 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:10\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=556127;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=866472;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:14 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:14\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=592294;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=291067;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:19 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:19\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=103834;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=947377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:23 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:23\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=739353;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=811024;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=888279;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=866057;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:33 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=614246;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=100793;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=2587;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=978624;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:42 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:42\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=375767;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=827863;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 47/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=887164;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=279999;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 0/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=999376;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483249;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 1/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:39:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:39:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=942947;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=41938;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 2/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=157175;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=638323;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 3/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=105889;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=884067;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 4/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=454940;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=872972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 5/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=223441;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=984872;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 6/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=153675;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=84739;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 7/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:25 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=121926;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=49029;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 8/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:30 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:30\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=436684;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=97459;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 9/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:35 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=301460;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=814165;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 10/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:39 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:39\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=631579;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=551761;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 11/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:44 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:44\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=678487;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=328314;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 12/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:48 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:48\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=668149;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=46174;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 13/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:52 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:52\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=228009;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=901377;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 14/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:40:57 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:40:57\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=301601;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=111580;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 15/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:01 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:01\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=566906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=692780;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 16/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:06 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:06\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=169913;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=374481;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 17/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:11 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:11\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=59327;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=343647;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 18/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:15 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:15\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=79290;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=848912;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 19/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:20 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:20\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=257470;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=175313;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 20/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:24 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=756899;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=726596;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 21/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:28 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:28\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=366390;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=933514;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 22/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:32 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:32\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=940972;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=644086;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ra = 48/49 dec = 23/24 position change!\n" + ] + }, + { + "data": { + "text/html": [ + "
12:41:37 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:37\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=885485;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=596096;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:41:47 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:41:47\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=335906;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587707;file:///Users/ckierans/Software/COSItools/COSItools/python-env/lib/python3.10/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tsmap.ts_fitting()" + ] + }, + { + "cell_type": "code", + "execution_count": 337, + "id": "b36eb543", + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "'TSMap' object has no attribute 'ts'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[337], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtsmap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mprint_best_fit\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/Software/COSItools/COSItools/cosipy/cosipy/ts_map/TSMap.py:161\u001b[0m, in \u001b[0;36mTSMap.print_best_fit\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mprint_best_fit\u001b[39m(\u001b[38;5;28mself\u001b[39m):\n\u001b[1;32m 158\u001b[0m \n\u001b[1;32m 159\u001b[0m \u001b[38;5;66;03m# report the best fit position\u001b[39;00m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;66;03m# converting rad to deg due to ra and dec in 3ML PointSource\u001b[39;00m\n\u001b[0;32m--> 161\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mts\u001b[49m\u001b[38;5;241m.\u001b[39maxes[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mra\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mcenters[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margmax[\u001b[38;5;241m0\u001b[39m]] \u001b[38;5;241m<\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m 162\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbest_ra \u001b[38;5;241m=\u001b[39m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mts\u001b[38;5;241m.\u001b[39maxes[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mra\u001b[39m\u001b[38;5;124m'\u001b[39m]\u001b[38;5;241m.\u001b[39mcenters[\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margmax[\u001b[38;5;241m0\u001b[39m]] \u001b[38;5;241m+\u001b[39m \u001b[38;5;241m2\u001b[39m\u001b[38;5;241m*\u001b[39mnp\u001b[38;5;241m.\u001b[39mpi) \u001b[38;5;241m*\u001b[39m (\u001b[38;5;241m180\u001b[39m\u001b[38;5;241m/\u001b[39mnp\u001b[38;5;241m.\u001b[39mpi) \u001b[38;5;66;03m# deg\u001b[39;00m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", + "\u001b[0;31mAttributeError\u001b[0m: 'TSMap' object has no attribute 'ts'" + ] + } + ], + "source": [ + "tsmap.print_best_fit()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "e8b51c21", + "metadata": {}, + "outputs": [ + { + "ename": "TypeError", + "evalue": "TSMap.plot_ts_map() got an unexpected keyword argument 'vmin'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[19], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtsmap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mplot_ts_map\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvmin\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmax\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtsmap\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mts\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m2.7\u001b[39;49m\u001b[43m)\u001b[49m\n", + "\u001b[0;31mTypeError\u001b[0m: TSMap.plot_ts_map() got an unexpected keyword argument 'vmin'" + ] + } + ], + "source": [ + "tsmap.plot_ts_map()" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "5efad8e6", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "63272.68466587507" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.max(tsmap.ts)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "2d5913f0", + "metadata": {}, + "outputs": [], + "source": [ + "tsmap.save_ts(\"Source_Injected_GRB_TSMap.ts\")" + ] + }, + { + "cell_type": "markdown", + "id": "a27f52a4", + "metadata": {}, + "source": [ + "## Load in a saved TS Map" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "173efd18", + "metadata": {}, + "outputs": [], + "source": [ + "tsmap2 = TSMap()\n", + "tsmap2.load_ts(input_file_name = \"Source_Injected_GRB_TSMap.ts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "562d5ecb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdwAAAMGCAYAAADoQEYXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABJ0AAASdAHeZh94AAEAAElEQVR4nOzdd5hTZfrG8e/JSTK90KRJEURUmnVVBAVsoCio2BVRlMX9WVERe1nb2nFRFN1VsYGKgiAI0hTpRboDLDDUAYYyvSY5vz/GCQwzwJRk0u7PdeUa5uScN2/CTCa585znNSzLshARERERERERERERkRqxBXoCIiIiIiIiIiIiIiLhQIG7iIiIiIiIiIiIiIgPKHAXEREREREREREREfEBBe4iIiIiIiIiIiIiIj6gwF1ERERERERERERExAcUuIuIiIiIiIiIiIiI+IACdxERERERERERERERH1DgLiIiIiIiIiIiIiLiAwrcRURERERERERERER8wB7oCYiIiIiIiIiIiIj407Bhw9i5c2egp1FOkyZNePXVVwM9DfEhBe4iIiIiIiIiIiIS1nbu3MmO7Ztp2sgV6Kl47dilaDYc6X9VREREREREREREwl7TRi4+fWtfoKfhNWBIvUBPQfxAPdxFRERERERERERERHxAFe4iIiIiIiIiIiIS9izAgyfQ0/CyACPQkxCfU4W7iIiIiIiIiIiIiIgPKHAXEREREREREREREfEBtZQRERERERERERGRiOC2gqeljIQnVbiLiIiIiIiIiIiIiPiAAncRERERERERERERER9QSxkREREREREREREJexbgwQr0NLwswAj0JMTnVOEuIiIiIiIiIiIiIuIDCtxFRERERERERERERHxALWVEREREREREREQkAlh48AR6EocInvY24juqcBcRERERERERERER8QEF7iIiIiIiIiIiIiIiPqCWMiIiIiIiIiIiIhIR3JbauIh/qcJdRERERERERERERMQHFLiLiIiIiIiIiIiIiPiAWsqIiIiIiIiIiIhI2LMAD8HTUiZ4ZiK+pAp3EREREREREREREREfUOAuIiIiIiIiIiIiIuIDaikjIiIiIiIiIiIiEcGtRi7iZ6pwFxERERERERERERHxAVW4i4iIiIiIiIiISNjToqlSG1ThLiIiIiIiIiIiIiLiAwrcRURERERERERERER8QC1lREREREREREREJPxZFm4riBq5BNNcxGdU4S4iIiIiIiIiIiIi4gMK3EVEREREREREREREfEAtZURERERERERERCQieAI9AQl7qnAXEREREREREREREfEBBe4iIiIiIiIiIiIiIj6gljIiIiIiIiIiIiIS9izAjRXoaXgFz0zElxS4i4iIiIiIiIiIiISgpUuX8v3337NmzRqys7NJTEykVatW9OvXj/POO6/MvqtWrWL06NGsXbuWwsJCjj/+eC6//HKuvfZaTNOscPx58+YxZswYNmzYgMfjoWXLlvTt25devXodcU5Tpkzhhx9+YMuWLdhsNtq0acONN95I586dK9zf7XYzbtw4Jk+ezPbt24mKiuLUU0+lf//+dOjQofoPToCopYyIiIiIiIiIiIhIiBk5ciQPPfQQKSkpnH/++dxwww2cd955ZGRksHz58jL7zpkzh/vvv5+VK1fStWtXrrnmGlwuFyNGjOD555+vcPxx48YxbNgwNm/ezCWXXELv3r3Zu3cvr7zyCu+9916Fx7z33nu88sor7Nu3j969e3PJJZewadMmhg0bxrhx48rtb1kWzz//PCNGjMDlcnHNNdfQtWtXVq5cyf3338+cOXNq/DjVNlW4i4iIiIiIiIiISERwh0kfl4kTJ/L111/Ts2dPHn30URwOR5nrXS6X99+5ubm8/vrr2Gw2hg8fzsknnwzAwIEDefDBB5k9ezYzZszgoosu8h6TlpbGyJEjSUxMZNSoUTRu3BiAAQMGMGjQIMaOHcuFF15I+/btvcesWrWKsWPH0rRpU0aNGkVCQgIAN910E3fffTcjR46kc+fO3rEAZsyYwezZs2nfvj1vv/02UVFRAPTp04d7772X119/nTPPPJPY2FgfP4L+owp3ERERERERERERkRBRVFTERx99RMOGDSsM2wHs9oN11rNnzyYjI4MePXp4w3aAqKgo7rrrLgDGjx9f5vjJkydTVFTENddcUyYgT0hI4NZbbwVgwoQJZY758ccfAbjtttu8YTtA48aNufrqqykqKmLKlClljim93bvuussbtgOccsop9OjRg4yMDGbPnn2shySoKHAXERERERERERERCRFLliwhIyODCy64AMMwmD9/Pl9++SXffvstq1evLrf/smXLADjnnHPKXdepUyeio6NZvXo1RUVF5Y7529/+Vu6Y0nFK96nuMYWFhaxZs4bo6Gg6duxY6dsJdmopIyIiIiIiIiIiImHPAjyBnsQhLGDHjh3079+/3HWjR48+4nEpKSkAOJ1OBg4cyObNm8tc36lTJ/75z3+SnJwMwLZt2wBo1qxZubHsdjuNGzdm8+bN7Ny5k5YtWwKwdevWIx5Tv359YmJiSE9Pp6CggOjoaPLz80lPTycmJob69euXO+b4448vMxeAnTt34na7ad68eZmK/KMdEwpU4S4iIiIiIiIiIiISIg4cOADAmDFjMAyDESNG8PPPP/PJJ59w9tlns2LFCp555hnv/jk5OQDExcVVOF7p9tL9oKTve1WOKd0/Pj6+wv1Ltx96G6X/PtIxFc0rFKjCXURERERERERERCQAmjZtetRq9op4PCV1+qZp8sorr3h7rLdu3ZqXXnqJW265heXLl7N69eoyi5pK7VCFu4iIiIiIiIiIiEQEN0bQXKqrtCK8TZs2ZRY0BYiOjvb2UP/zzz/L7F9ahX64iqrTS6vLK3vMsarRK6pmr6jq/VjzCgUK3EVERERERERERERCRPPmzYEjB9EJCQlAyaKkcLAPe0W90F0uF2lpaZimSZMmTcrdRkXH7N27l/z8fBo0aEB0dDQAMTExNGjQgPz8fPbu3VvumO3bt5eZC0CTJk0wTZO0tDRcLleljgkFCtxFREREREREREREQsSZZ56JYRikpqZ628scqnQR1dLq9zPOOAOAhQsXltt3xYoVFBQU0L59e5xOp3d76TGLFi0qd0zpOKX7VPeYqKgo2rVrR0FBAStXrqz07QQ7Be4iIiIiIiIiIiIS9izAYwXPxarm/WjUqBGdO3dm9+7dfPfdd2WuW7RoEYsWLSI+Pp5zzjkHgG7dupGUlMTMmTNJSUnx7ltYWMjHH38MQN++fcuM06tXL5xOJ99//z1paWne7dnZ2XzxxRcA9OnTp8wxV111FQCff/452dnZ3u1paWn88MMPOJ1OevXqVeaY0tv9+OOPvRX5UNIOZ+bMmSQnJ3PhhRdW+rEJBlo0VURERERERERERCSEPPTQQ2zYsIERI0Ywf/582rRpQ1paGr///js2m42hQ4eW6a8+dOhQnnnmGR544AF69OhBYmIic+fOZevWrXTr1o0ePXqUGb9Jkybcc889DB8+nEGDBtG9e3ccDgezZ88mPT2dG264odyCrB06dOD666/nm2++YcCAAXTr1o3i4mJmzZpFVlYWDzzwQLme8xdddBG//fYbs2fPZuDAgZx//vlkZmYya9YsPB4Pjz76qLc/fKgwLMuq7ocpIiIiIiIiIiIiIkGvf//+FBav44XXyvckD5RnhjYjytGW0aNHV+v4jIwMPv30U+bOncu+ffuIi4ujY8eO3HLLLZx66qnl9l+1ahWjR49mzZo1FBUV0bRpU6644gquvfZaTNOs8Dbmzp3LmDFjWL9+PZZl0bJlS66++upyleqHmjJlCj/88AOpqakYhsFJJ53ETTfdROfOnSvc3+Vy8f333/PTTz+xY8cOnE4n7dq1o3///nTo0KFaj00gKXAXERERERERERGRsFYSuK/n2SAK3J8f2owox0nVDtwlOKmHu4iIiIiIiIiIiIiID6iHu4iIiIiIiIiIiIQ9C3BjBHoaXmo7Ep5U4S4iIiIiIiIiIiIi4gMK3EVEREREREREREREfEAtZURERERERERERCQieKzgaSkj4UkV7iIiIiIiIiIiIiIiPqDAXURERERERERERETEB9RSRkRERERERERERCKCG7WUEf9ShbuIiIiIiIiIiIiIiA8ocBcRERERERERERER8QG1lBEREREREREREZGwZwHuIKo/tgI9AfGL4PkJExEREREREREREREJYQrcRURERERERERERER8QC1lREREREREREREJAIYeCwj0JM4RDDNRXxFFe4iIiIiIiIiIiIiIj6gwF1ERERERERERERExAfUUkZERERERERERETCngW4g6iNixXoCYhfKHAXEYkwU6ZM4ZVXXjnqPjabjdmzZwOQlpbGDTfccMR9e/TowXPPPVdu+9KlS/nggw/YunUrJ5xwAvfccw+dOnWqydRFRERERERERIKaAncRkQhz4oknMmDAgAqvW7lyJcuWLeOcc86p8LguXbqU296qVaty2zZu3MjQoUM56aST6Nu3LytXruThhx/mP//5Dy1atKjxfRARERERERERCUYK3EVEIkybNm1o06ZNhdfdc889AFx55ZXlrjvxxBO58847K3UbM2bMoHXr1rz33nvYbDY8Hg+DBw9m2rRp3H333dWfvIiIiIiIiEgNuC0taSn+pZ8wEREBSqrS16xZQ4MGDTjvvPNqNJbb7cZms2EYJb3xDMPwBu8iIiIiIiIiIuFKFe4iIgLAxIkTAbjiiiswTbPc9Xv37mXChAlkZWWRmJhI+/btad26dYVj9ejRg2+++Yb77ruPdu3asWbNGjZs2MCjjz7q1/sgIiIiIiIiIhJICtxFRITCwkKmTZuGaZpcccUVFe6zZMkSlixZUmbb6aefzhNPPEHDhg3LbG/bti0vv/wyH330EePHj6d58+a89tprRwzoRURERERERPzNAjxB1PDDCvQExC8UuIuICDNnziQnJ4fzzjuvXHgeHR3N7bffTpcuXWjSpAlQ0n7mk08+4Y8//uDBBx/kv//9LzExMWWOO++882rcmkZE/MvtduNyuSgqKsLlclFcXOy9HG17Rfu4XC4syyp3AY76fek2wzDKXA7fVtE+hmFgt9ux2+04HA7v5fDvS7c5nc4K9y3dXtHZPSIiIiIiIlWhwF1ERLztZK666qpy19WpU4eBAweW2Xbaaafx5ptvcu+997J27VomTZrEddddVytzFYkElmVRWFhIfn4+eXl55OXllfn34d/n5+d7v8/Pz6eoqKhSYbnb7Q70XQ0qNputUqG90+kkJiaG2NhYYmJivP8u/f5o/46KivJ+gCAiIiIitc3ATTC9FgumuYivKHAXEYlwmzdvZvXq1TRo0IBzzz230sfZ7XZ69+7N2rVrWbFihQJ3EcDj8ZCTk0NmZiZZWVlkZWUdMSA/WnCen59frTDcMAxiYmKIjo4uExjHxcWV+f7Qqu5Dq74nvjftr/NsjTJfDY8BlgEeynw1vN8bZc+H9f7bOOz7stcf/vbi8MMo930FBxqAzQLDwrIBhgWHfT243Tpkf7jy/y49ajX/oR9S5Ofne78v/TCkOgtB22y2ckF9ZQL72NhYEhMTSUxMJCkpifj4eGy24DkdWkRERERESihwFxGJcD/++CNw5MVSjyYpKQmAgoICn89LJNCKi4vLBOel/87MzCzz70Ovz87OrlIIa5pmmVC1fv365cLWI32tKJQtrZ6+xFb6AZjrr0t+peZjJ6HKj5Mv1XZ9z5RH5lfxCANw8ItnvPcshMp+oHLoWQiHbt+/f7/331X5kMVms5GQkEBSUlKZIP7wr4df73A4qnifRURERESkKhS4i4hEsMoslno0a9euBfD2dhcJVkVFRRw4cICMjIwKg/PDA/XSyvRjMU3TG2i2aNGiTMCZlJREQkIC8fHxFVYtx8TE4HQ6j9he5GBoLsGmJv83v3i+rXC7ZVkUFRWVCegP/Zqbm1vhz2lWVhY7d+7kzz//rFRgHxMTU+7ntKLAvvRSt25dnE5nte+viIiISDCxLHBbwXOWoKVVU8OSAncRkQg2e/ZssrOz6dy5c7nFUkutW7eONm3alGtdsHTpUr79tiQ4uuSSS/w+V5GKFBUVsX//fvbu3cu+ffu8Xw//d2Zm5jHHiomJ8YaNxx9//BEDyUO3x8bGHrUft0JzOZw/wnooCezz8vIqfVZGZmYmW7duJT//2Gc/lAbv9evXp169et6vh/9bwbyIiIiIiAJ3EZGIVrpY6pVXXnnEfd577z22b99O+/btadCgAQAbN25k2bJlAAwcOJAOHTr4f7ISUQ4N0g8NzqsSpEdHR1OvXj1atmzpDQSTk5MrDM4TExOPGhYqOJdgUN2fw6MF9UVFRUesnM/IyCjzO7dq1aqjthBLTEwsE8IrmBcRERGRSKTAXUQkQqWmprJy5cpjLpZ66aWXMmfOHFJSUli4cCEul4s6derQvXt3rrnmGjp16lSLs5ZQZ1kWGRkZpKWlsWfPnnIh+t69e9m/f3+VgvSKQr3SXuiHVp8rNJdI5auq+tIq+sN/Zw//PV69evVRK+dLg/mKwvnjjjuOxo0bk5ycfNSzR0RERESqy1PrKwdJpFHgLiISoVq2bMlvv/12zP169+5N7969a2FGEg4syyIzM5O0tDR27drFrl27yvx7165dR6yQjY6Opn79+rRs2bJMiF4axtWvX587Wz+Ex22wFxd72QXsqt07KBJhqhfWJ+I04/nvxrcrDOZLv1+zZs0Rg/moqCgaNWpEo0aNaNy4MY0bNy7zfVJSkgJ5EREREQlKCtxFRESk0izLIisryxukHx6m79q1q8IAzel00rBhQzp06ECjRo2Y/O9ZGIU2jCITimwYRTY8boN0ikk/SpBuEDwLHInIkRluGwNbPnyMvUqCecvpAacHy+nGivJwxf09vM8nf/zxBwsXLix3ZHR0tDd8PzSIL/23AnkRCUYej4fdu3dTWFiIx+MJ9HQkyNlsNqKiomjYsGG59bREJLgpcBcREREvy7LIzs4uF6QfGq5XWJHqAaPQhAITW2EMRoFZEqgXmBgFJhTb2EMRe9jKSrZiJ67275yIBB3DbcPIt8EhTytThx4asCfjdHiwot1YUW6saA9WlJvCaDdbDmwjdVMqFX0OFxMTUy6EP7RaPiEhQYG8iNQqj8fjXazaNE1M09TzkByRZVkUFRWRn59PYWEhzZs3V+juQ24V8YifKXAXERGJQBkZGWzbto2tW7eydetWtm3dxtat29izZzcFhRW0fPEAhSZGoYmtIAajwIZRaP4VrP9Vpa5eiCLiYwYGFJsYxSZkl7/ewiqpjo9ylwnlC6LcpO7fyuaNmysM5KOc0TQ87jiatWhG8+bNadas5Gvz5s1VHS8ifrF7927y8/OpW7cuxx13nJ5n5Jgsy2LPnj3s37+f3bt307hx40BPSUQqSYG7iIhImCoqKmLHjh0lgfpf4Xrq5lS2bd1Gbn5u2Z0toKA0UI8uE6YbBVUP1A3TrNacj3qc/cgvW6pze5bbfeQr3Uc+zftoxx1pHkZ01JGPiXIeeR5Huc/4+o26y3XEq6zi4iMfV1TxddbRTpU/ym15ioqOfJzIYQwMKDJL2lMdLZD3hvElX4uiPWzN3MHWbVuZa8wtc0xsTCzNmjXjhFYnlAnjmzZtitN5lN9XEZGjKCwsxDRNhe1SaYZhcNxxx5GZmUlhYWGgpyMiVaDAXUREJIRZlsW+ffvKhOpbt5ZUdabvS8eyrLIHFBkY+XZs+dEY+XaMfLPka4GJYVX/zV8oBOxQuyE7hEjQDj4P20WCRZlAvgKWYZWE8DEurJiSr/kxxazLXM+69evKjmUY1K9Xn1atW3lD+NKv9evXV4AmIkfl8XjURkaqzDAMTNNUz38fsjBwW8HTUsbSWcJhSYG7iIhICMjPz2fbtm3eUL3065bULRQWHVbx4uGvIN2JrTRQL/3qqvmLy+qG3cc89mghcw1u1x8h+7Hm45egHYIrbBcJA4ZV8iEk+eV/9yzTUxLCxx4M4/fmHCB9z8JyC7lGOaNo0bJFmRD++OOPp1mzZsTGxtbW3RGRIKewXapDPzcioUeBu4iISBDJzs5m06ZNbNy4kdTUVG+wnp6eXn7nQttf1eoxJV/zTIx8s6TXug8rJUItYIfqh+zHOra6ITsEYdAONQvbj1LdftR2MiIhwnDbMHJskOMos93CgigPVowLT6wbK9pFUayb9dn/Y/369eXGadCggTeEb9GiBa1bt6Z169YkJCTU1l0RERERkVqkwF1ERCQAXC4X27dvZ+PGjWUue/bsKbuj28DIN7HlR5VUqOcdUrHu8f2pkDUJuY95vB8DdvBfyA5hGLTDUcN2ETkyA+PgItIZZa+zbH9VxcccbFOzN+cA6bv2smzZsjL7HnfccbRu3ZpWrVp5Q/hmzZphP9bzgoiIiNSIp6IV1UV8SK/mRERE/Gz//v1lQvVNmzaxZcsWig5dHNIDRp4dW140Rq4dW64dI89e5cVKq8qvATsErood/BqyQw2DdgjqsL0m1e0ikczw2DBybZBbQVW804MV68IT58KKdZGes589u/Ywf/58734Oh4OWLVvSqlWrMkF83bp11VJAREREJEQocBcREfGRwsJCUlNTvS1hSr8eOHDgsB1t2HLtmLmxGHl2jFxHScV6DRYtrYyahuuVGiOQVexwzJC9MmPUpJodgjxoB7+H7WonI1LeoYu32jIOPo9YhvVXn/hirDgX7jgXG7I3smHDhjLHJycne8P30qr4li1bEhV17OckERF/+/TTT7njjjsAmDNnDl26dClzvWVZNG/enO3bt3PFFVcwadKkWp/X0bRo0YLU1FQAfv/9d1566SVWrlzJvn37OO644+jUqRM33XQTN998s59nLCLhQoG7iIhIFVmWxZ49e8q1g9m+fTvuQ8Nct4GRZ2LLjSmpWP+rat0XC5dWRjgE7BD4kB3CJGiHmoftIuJThmWUnM2UZ4e9B7dbpgcrzoUVV1IRn5mVy9J9y1i6dKl3H5vNxvHHH18miG/dujUNGzZUNbyIBER0dDRfffVVucD9119/Zfv27bX+IeEFF1zA559/XmbbXXfdxd/+9jcGDRrk3RYfHw/At99+yw033MBpp53GAw88QJ06ddi8eTO//fYbH330kQL3MGEBbj8XOlWFFegJiF8ocBcRETkKt9vN1q1bSUlJISUlxVu5npOTU3bHfLOkav2QljAU+Hbx0qPxRbBdqXEq0Vs4VEJ2qIW2MVCpxywYwvZK8UUrGfWOFzkmw23DyHJClpPSZykLC6Ld3pY0VpyLbbk72LplK7NmzfIeGxcX521Hc/LJJ3PyySfTokULTB/9nRCR4OJxedi1/gCFOcVExTtodFIdbPbA9Ke+/PLL+fbbb3n33XfLrEfx1VdfceaZZ7J3796jHO17pe25DjV48GBatWrFrbfeWm7/5557jlNPPZUFCxbgdJZ9jVdunSURkaNQ4C4iIvIXy7JIS0vjzz//9Abs69evJz8//+BOLuOvQL20at1RspCpHxYwPZpwC9gheEJ2CLOgHSoVcgdLdbvN6cRz6PoGIgL81ZamwI5ZYId9B7dbNg9WrBsrrqQtTV5cEasyV7Nq1SrvPjExMbRp04aTTz6ZU045hZNPPpkmTZqoEl4khHlcHlb8uIm1v2whP/Pg382YJCenXtKCTle1qvXg/aabbuKHH37gl19+oVevXgAUFRXx3Xff8dRTT/Huu++WO+aNN97g+++/Z926deTl5XHqqafy+OOP069fP+8+n3zyCXfeeSf/+c9/uPPOO73bX375ZZ588kl++uknLr/88hrPf+PGjdx0003lwnYoWehaRKSyFLiLiEjE2rt3rzdYT0lJYd26dWRmZh7cwW1gZNsxc2Ixsh3YchxQ6N9FTCviq0C7UmPVYsAOvgnZKzUOtdQ2BoIraAffhe2VqG5X/3aR2md4bBg5Nsg5uFCrhQVRHjzxxVgJxRTEF7MyexUrV6707pOYmEjbtm29VfCnnHIK9evXD8RdEJEq8rg8/PLWMrYtTy93XX5mEUu/28CejRlc8tAZtRq6t2zZkvPOO4+vv/7aG7hPmTKFzMxMbrzxxgoD9+HDh3PVVVdxyy23UFRUxJgxY7juuuuYNGkSV1xxBQB33HEH33//PUOGDOGSSy6hWbNmrFq1iueff56BAwf6JGyHkl7uM2bMYPv27Rx//PE+GVOCkYGbwJwFUjF9+B2OFLiLiEhEyM7OLhOup6SkkJ5+yJsUj4GRY8eWE4Mtx4GR/ddCpgF4AVSrATsEVxU71GrIDj4M2iGiw3YRCR4GBhSamIUm7IsGSkJ4K8aN9VcIn52Vz+KMJSxevNh7XP369b0BfOklMTExUHdDRI5gxY+bKgzbD7Xtj3RWTNzE6VefWEuzKnHzzTfz+OOPk5+fT0xMDF9++SUXXnghTZo0qXD/9evXExMT4/3+3nvv5YwzzuCtt97yBu4AH330Ee3atWPgwIFMmjSJ22+/nUaNGvHWW2/5bO6PPfYYAwcOpHXr1px//vl06dKFSy+9lM6dO2OzBVNAKyLBToG7iIiEnfz8fDZs2OAN1v/880927NhxcAcLjDw7tuzog+F6nh0jAIvn+DJcr/R4wVbFDj4N2UFBO6Be6SJShoGBkW+HfDukl4RblmGV9IOPL8aT4GJfTga/p//O77//7j2uadOmZQL4k046qUw4JiK1y+PysPaXLZXad+20LXS6snZby1x//fU8+OCDTJo0iZ49ezJp0qQKK9tLHfp8cuDAAdxuN127duXrr78us1+jRo147733uOmmm+jatSvLly/nl19+8emHgnfeeSdNmzblrbfeYtasWcyaNYt//vOftGrVis8//5zOnTv77LZEJLwpcBcRkZBWXFzMpk2bvMF6SkoKqampeA5pbWHkm9iyo0sq2LMdJX3XPYE5dS8SAnbwbche2fF8FbJDiAftUOmw3ZfV7WonIxJ6DMvAyHVArgNzd8k2y2ZhxZUE8FZ8MTvzdrFjxw5mzJgBgM1mo0WLFt5e8CeffDKtW7fG4XAc5ZZExFd2rT9Qpmf70eRnFrFr/QGanFrPz7M6qEGDBlx88cV89dVX5OXl4Xa7y/RjP9ykSZN48cUXWb58OYWFhd7tFa0xceONN/LFF1/w008/MWjQIC666CKfz/+yyy7jsssuIy8vj6VLlzJ27Fg++OADevfuTUpKinq5hwEL8FjBc8aCFegJiF8ocBcRkZCSm5vLmjVrWLlyJStXrmTNmjUUHxIaGoU2jGwHZo4DW7YdI8eB4Q7MCypfh9iVHrMyIXBlx6qCQITsEMRBO4R+2C4iEcfwGBjZTmzZB58PLdPjrYK34otJzd/C5s2bmTx5MgAOh4NTTz2Vjh070rFjR9q3b09cXFyg7oJIWCvMqdrf76ru7ws333wzd999N7t27aJXr14kJydXuN+cOXO46qqruOCCC3j//fdp3LgxDoeDTz75hK+++qrc/vv27WPJkiUArF27Fo/H47dWL7GxsXTt2pWuXbtSv359nn/+eaZMmcLtt9/ul9sTkfCiwF1ERILa3r17WbWqZKG3FStWsHHjRizrrzoAt4GR5cDMjsMoDdiLfR9yV1akBewQ3CE7RFjQDr4P29W7XUQAw23DyIzClnnwOdVyuPHEu7ASinElFLOioOTvNJRUprZq1YrTTjuNDh060LFjRy3IKuIjUfFVO5ukqvv7wtVXX83f//53FixYwNixY4+437hx44iOjmbq1KlERR18fvnkk08q3P///u//yM7O5pVXXuHxxx/nnXfeYciQIT6f/+HOOussANLS0vx+W1I7gmvRVAlHCtxFRCRoWJbF9u3bWbFiBatWrWL5H8tJ23Xwha1RbMPIdGLLcmDLcmLk2AOyqKl3PoEK2CH4Q3YIr6Adgj9sFxGpRUaxiXnAhAMlz7cWFlacC09SMVZiEZsKN7Nx40bGjRsHlPRf7tSpE506daJDhw40b968wpYRInJ0jU6qQ0ySs1JtZWKSnDQ6qU4tzKqs+Ph4Ro4cSWpqKldeeeUR9zNNE8MwcB/yOjA1NZXx48eX2/e7775j7NixvPvuu9x3332sWLGCp556it69e3PSSSf5ZN4zZsyosE1N6dk8bdu29cntiEj4U+AuIiIB43K5+N///udtD7Ni+QoyszK91xv5Jras6JJwPdOBUWAGNGA/3LFCYpuzkmFuZUNxzyEd/o4SZluug1XJx+oJaERVLpiuSnhuq5tc6X1xVPKliKeS3Q2tSu5XlX7jpf/Px6oe90f/4qqEUZZVuQ8FiosxKrGflZdf+ZsuruQCraatUnO02e2Vr9av7AdAVeCPMUXCnUFJP3hbrgN2xpYE8NFurMRiPElF7M5PZ+quqUydOhWAxMREOnXq5G1D06ZNG+yV/WBTJILZ7DZOvaQFS7/bcMx9T720Ra0umHqoyrReueKKK3jrrbfo2bMnN998M3v27OG9997jxBNPZOXKld799uzZwz333EP37t259957ARgxYgSzZs1iwIAB/P777z5pLdOnTx9OOOEErrzySlq3bk1ubi7Tp09n4sSJnH322Uf98EBE5FB6RSMiIrUmPz+ftWvXegP21atXH1wcyQIj146ZFeOtYg9ke5jq8mvIfgyHBu3HErFBO1QvbD+WYAjbRUSCiIGBUWCHAjvmnhjgrzY0icVYicVkZ+cxJ3MOc+bMAcDpjKJDh/Z06NCBTp06ccoppxAbGxvIuyAStDpd1Yo9GzPY9kf6EfdpdnoDOl3ZqhZnVXU9evTgP//5D6+++ioPPvggJ5xwAv/6179ITU0tE7jfc889FBYW8sknn3jPjKlXrx6jRo2iT58+vPHGGwwdOrTG8/n444+ZMGEC33zzDTt37sSyLFq1asWTTz7JY489pg8Fw4QFuK0gKuIK9ATELwzL0js0ERHxj4yMDFatWuVtEbNu3Xo8nr8CTI+BkWXHlvVXuJ4duMVNa8rnITtUOmiuSsgOYRi0g3+q2iE8w/ZK9m6vSnU7VLHCvbICWOHuz3FF5CDL9GAlFONJLMaTWISV6AJbyXOazWbjpJNO8lbAd+jQgTp1ar81hoivbNq0CYBWrXwTgntcHlZM3MTaaVvKtJeJSXJy6qUt6HRlq4BVt4tv+fpnJ5L179+fjKJNXPfPSr52rQXfPm0n2dmK0aNHB3oq4kP6eE5ERHwmJyeHP/74gyVLlrB06VK2bt3qvc5w2TAyHZhZMSUBe44DI4gqC6qq0iE7hE41OwQ+aIfQqWqHwIftIiIhzHDbMDKisGX81QfeKO0DX4SVWMy6ovWkpKTwzTffANC8eXPOOOMMzjrrLE4//XQSEhICOX2RgLLZbZx+9Yl0urIVu9YfoDCnmKh4B41OqqOgXUQkwBS4i4hItRUXF7NmzRqWLl3KkiVLWLt2LaUnThmFNmyZ0SXheqYTIz+4+q9Xh19Cdgh8NTuEVtAO4Ru2V5UfqturPIXKVrf7iWGafqlG99e4InJkhmVg5Diw5Thgx18Lsca4sRKL8CQVs61wB1u3bmX8+PEYhsEpp5zCmWeeyVlnnUW7du1wVuXvtEiYsNltNDm1XqCnIRJCDDwE04dSof0eWSqmwF1ERCrNsiw2bdrE0qVLWbx4MStWrKCgoKDkSreBLcOJmeHEOOAMugVOqyvQITsoaC/DX0E7BEfYHgR926vaTkZExF8MDIx8O+TbMXdzcCHW5CI8yUX86fqTtWvX8vnnnxMdHU2nTp0488wzOfvssznhhBN8soiiiIiISFUpcBcRkaPas2ePt4J96dKl7N+/v+QKC4wsB2ZGHLYMZ0kP9jAI2EEh++H8FrRDcITtVa1iDoawvar8VN0e7lTlLhJcvAux7rJj7ootCeDjXXiSCylMLmJh/kIWLlwIQJ06dbzV72eeeSYNGzYM8OxFREQkUihwFxGRMkr7sJeG7GX6sOfaMTNiMTKc2DKdGJ7wCNihiiE7KGg/XCgG7RC6YbvWvBcRKQngS1vQbAfLZpW0n0kuIiMnm+kHpjN9+nQAmjVr5q1+P+2009T/XUQkgrktnQEl/qXAXUQkwh3ehz0lJQX3XyGkUWjDlhGNLcNZUsVeXIWQOQSEasgOERK0g8L2ilQ1bK9CdXtV28kEun97KX9WoqvKXSR0GB6j7CKsDg+epEI8yUVsL9zJtm3bGD9+PDabjZNPPpmzzjqLs846i1NPPVX930VERMRnFLiLiESYQ/uwL1myhBUrVpCf/1fI9lcfdvtfVezhsNBpRfzWMgYiJ2iH4Klqh9AN20VExG+MYhvm3hjMvTHl+78Xl/R/Hz16tLf/e2kA36pVKwx/tvkSERGRsKbAXUQkAhQUFLB06VLmzZvH/Pnz2bt3b8kVYdyH/XDBErKDn9vGgIL2owm2oD2Iqtv9zqziqbt2O7jCv4JeRGpHVfq/161bl86dO3Peeedx1llnERMTE+DZi4iIr1iAJ4je86pRZHhS4C4iEqb27NnD/PnzmTdvHkuXLqWoqAgAI8/EPFDah92B4Qnf/nXB0jIGaqGaHUI7aAeF7cfi577tVW0nIyISyo7Y/71OEQfyMpk0aRKTJk3C6XRyxhlneAN4Lb4qIiIix6LAXUQkTHg8HtatW8e8efOYN28eGzZsKLnCAiPTgbk/Htv+KGwF4f3U79eQHRS0V0awBe0QmWG7n6vbg6V/eyl/V6Gryl0kvJXp/745ASvahbtuIcV1i1gwfwELFiwA4MQTT6Rz58507tyZk08+GZstfAsXREREpHrCO3URkTKWLl3K999/z5o1a8jOziYxMZFWrVrRr18/zjvvvDL7rlq1itGjR7N27VoKCws5/vjjufzyy7n22msxKwgo169fz7///W/Wr19P48aNGThwIF27dq2tuxax8vPzWbJkSUnIPnceBzIOAGC4bNj2R5cE7AecGO7wfjOokL1y/B60Q/CF7dUJSIMtbBcRkVpnFNix77TDzjgs04MnuQhPvUI2ujbxv//9j9GjR5OclEzn80vC97POOovY2NhAT1tERI7FMnBbQfR63M9nsUpgKHAXiRAjR47k66+/pkGDBpx//vkkJSWRkZHBunXrWL58eZnAfc6cOTzzzDM4nU66d+9OYmIi8+bNY8SIEaxevZoXXnihzNj79u1jyJAh1KtXjz59+rBx40aeeuop3n77bc4444zavqthb/fu3d4q9qVLl+L6q8exkWdi7o/Ftj8KIyt8e7GX8nvIDgraq8LfQTuER9heHbVQ3a52MpWjKneRyGS4bZj7ojH3RZf0fk8oxlO3kMzcHCZPnszkyZOxm3bOOPMMb/V7o0aNAj1tkZBgGAbPPvsszz33XKCnUiWffvopd9xxB5s3b6Zly5aBno6IBBkF7iIRYOLEiXz99df07NmTRx99FMdhgZLrkEXpcnNzef3117HZbAwfPpyTTz4ZgIEDB/Lggw8ye/ZsZsyYwUUXXeQ9Zu7cuURFRTFq1Cii/goPn3zySX766ScF7j7g8XhISUlh7ty5zJ07l02bNpVcYYGR4cQ8kIC531myEFiYq3LIDkFZzQ4RHLRDcLaQgdoJ24Osb7uIiFSNgYGR7cSW7YQtYEW58NQtwl23kEULF7Fo0SLeeecdTmh5Al26duG8887jlFNOqfAMUZFwURo+L168mLPOOivQ0/HKy8vjtddeo1u3bnTr1i3Q0xGRCBL+6YxIhCsqKuKjjz6iYcOGFYbtAHb7waeC2bNnk5GRwWWXXeYN2wGioqK46667eOihhxg/fnyZwN3j8WAYBsYhQZLdbsdTnZBMgJIXh4sXL2b+/PnM/X0umVmZABjFh7SKyQj/VjEQnCE71FI1OwRv0A7hU9UOwRm2V5efe7dD8PVvL1UbFeiqcheRQxmFdsw0O2Za7MHWM3ULSS3ewubUzXz++eckJiZ6K9//9re/qfWMyCHy8/PLvB/1pby8PJ5//nkABe7iZQFugud9tIVeV4YjBe4iYW7JkiVkZGRw3XXXYRgG8+fPZ9OmTTidTk455RTat29fZv9ly5YBcM4555Qbq1OnTkRHR7N69WqKiopw/hWEnnfeeXz44YcMHjyYs88+m9TUVObPn89rr73m/zsYRvbv389vv/3GnDlz+GPZH7jcf7WKybUfbBWTHf6tYqCWQnYI3mp2CK+gHYK3qh2CN2yvpep2tZMREfGNilvPFJFdN4+ff/6Zn3/+GdM0Of300+nSpQsXXngh9erVC/S0JUR9lz6fS+t0ItFe/gOcLFce0w6soF+D8yo4MrhER0cHegoiIj4XPB/piIhfpKSkAOB0Ohk4cCCPPfYYH374If/+97/5xz/+wX333UdGRoZ3/23btgHQrFmzcmPZ7XYaN26M2+1m586d3u0NGzbkjTfeIDo6mvHjx5OWlsazzz7Lueee6987Fwb279/P+PHjuf/++7n66qt56623WLxwCe69NuwbE3Auro/zj3rYtyRgy3aGddhuczq9l0ozzYOXyvJYBy+VZLmKq13RXq3WMVUM2211k6sWtjvs1W8fU52qdoXtVT+mumF7LVS3S0mVu4jI0RgY2LKd2LfE4/yjHs7F9bFvTMCTbrJk0VLeeecdrrn6Gu677z6+//579u3bF+gpSwgZufNn/rn1W/6+4QOyXHllrsty5fH3DR/wz63fMnLnzwGZ34ABA4iPj2fHjh307duX+Ph4GjRowCOPPIL7sNdshmGU69++Y8cO7rzzTho2bEhUVBTt2rXjv//9b7nbKSgo4LnnnuOkk04iOjqaxo0bc80117Bx40ZSU1Np0KABAM8//7z3jOxDbyslJYV+/fpRt25doqOjOeuss/jxxx/L3c6aNWvo0aMHMTExHH/88bz44os6m1tEjkoV7iJh7sCBAwCMGTOGFi1aMGLECE488UTS0tJ4//33Wbx4Mc888wzvvvsuADk5OQDExcVVOF7p9tL9SrVr147333/fX3cjrJRWss+cOZMVK1ZgWRZ4DGz7nZh7o7AdiIqIVjGlgrWaHcKwoh2Cu6odwi9sFxERAYxCEzMttqT1jM2Dp24RnvoFrPhjJStWrGD4O8Pp2Kkj3bt3V+W7HNV36fP5IG0aAGvztvP3DR/wYZvBJNpjvWH72rztAHyQNo0GjqSAVLq73W4uu+wyzjnnHN544w2mT5/Om2++SevWrbnnnnuOeNzu3bs599xzMQyDe++9lwYNGjBlyhQGDhxIVlYWDz74oHf83r17M2PGDG688UYeeOABsrOz+eWXX1i9ejUXX3wxI0eO5J577uHqq6/mmmuuAaBjx45ASYh+/vnn07RpU4YNG0ZcXBzffPMNffv2Zdy4cVx99dUA7Nq1i+7du+Nyubz7jRo1ipiYGP8+gOJXHit8C9kkOChwFwlzpZ+8m6bJK6+8QuPGjQFo3bo1L730ErfccgvLly9n9erV5drLiO94Q/YZM1mxUiH7odWhVemFbFQjnPfeVjUyeqOK4bRVVFTyD1fl+1vbGjes0m0A1fvAobqhdEzVT/P1RFUzyK7Gr4DhrmYleDUej2rdlqsaj3t1q9stC6Kq+DvisTCq2kvY5ar6uTY1qAKrassbA3AfcuaWiEiwMTw2zL3RmHujFb5LlV1apxPj9s73huqlofvrrW7n0U2febcDnBp7PJfW6RSQeRYUFHDDDTfw9NNPAzB48GDOOOMM/vOf/xw1cH/yySdxu92sWrXK+7M/ePBgbrrpJp577jn+/ve/ExMTw+jRo5kxYwZvvfUWDz30kPf4YcOGYVkWhmHQr18/7rnnHjp27Mitt95a5nYeeOABmjdvzuLFi4n6q1jmH//4B126dOGxxx7zBu7/+te/SE9PZ+HChfztb38D4Pbbb6dNmza+e7BEJOxETrojEqHi4+MBaNOmjTdsLxUdHe190fDnn3+W2T83N7fC8Uq3l+4nR1ZRu5jlf6zASHdiT0nEubA+jpRkzL0xERO2G6ZZrVYMhtNZ5bC9urdVHVZR0cGwvZJsjRsqbD+UwnYREYlApeG7IyUZ54L62FOSMPY6WfHHSrWdkQol2mP5sM1gTo093rttbd52rlj9UrmwvbTyPVAGDx5c5vuuXbuyadOmI+5vWRbjxo3jyiuvxLIs9u7d671cdtllZGZmetccGzduHPXr1+e+++4rN45xjHZ++/fvZ+bMmVx//fVkZ2d7b2Pfvn1cdtllbNiwgR07dgAwefJkzj33XO/7ZoAGDRpwyy23VPpxEJHIowp3kTDXvHlz4MgBeUJCAgCFhYVASe/2lJQUtm3bRtu2bcvs63K5SEtLwzRNmjRp4sdZhy61i6lYdYPvGlW014Kqhuylgj5oB4Xtvrit6qhJdbuIiIS0SlW+d+xI9x6qfI90paH7oe1jDhUMYXt0dLS3h3qpOnXqeFueViQ9PZ2MjAxGjRrFqFGjKtxnz549AGzcuJG2bdtit1c91vrf//6HZVk8/fTT3gr8im6nadOmbNmyhXPOOafc9Ye/V5bQYWHgDqL6YyuM12mLZArcRcLcmWeeiWEYpKam4vF4sNnK/mHZvHkzgLf6/YwzzuCXX35h4cKFXHzxxWX2XbFiBQUFBXTq1AlndfpuhymF7EcWrkE7VC9sr1bQDkFf1Q7hG7ZXWyhUt1enL7+IiNSKI4bvy1eyYuXB8L3HRT244IILFL5HoER7LK+3up0rVr9U7rrXW90e0LAdSlqaVlVpO9Rbb72V22+/vcJ9Snuw10Tp7TzyyCNcdtllFe5z4okn1vh2RCRyKXAXCXONGjWic+fOzJ07l++++47rr7/ee92iRYtYtGgR8fHx3k/tu3XrxgcffMDMmTO59tprOfnkk4GSCviPP/4YgL59+9b6/Qg2CtmPTkF7ebVW1Q4K2ytSzcckJKrbRUQkrB0rfH/n7Xfo0LEjFyl8jyhZrjwe3fRZhdc9uumzgFe4V0eDBg1ISEjA7XaXK/46XOvWrVm4cCHFxcU4HBW/Fj1Sa5lWrVoB4HA4jnk7LVq0YMOGDeW2r1u37qjHSXDzWJH7Xl1qhwJ3kQjw0EMPsWHDBkaMGMH8+fNp06YNaWlp/P7779hsNoYOHeptORMXF8fQoUN55plneOCBB+jRoweJiYnMnTuXrVu30q1bN3r06BHgexQYWVlZzJo1i5kzZ7J8+fK/Qnaw7Y9SyP4XBe3lhURVO4R32F5N1b692q5ur82gvgoLAouIiO8dKXxfuXwlK/8K3zud1onu3bvTo0cPkpKSAj1l8YMsV94R28nAwYVUQy10N02Ta6+9lq+++orVq1fTvn37Mtenp6d729Rce+21/PTTT4wYMaLMoqmAd9HU2L8Whs84bDH14447jm7duvHhhx9y3333lVvr7NDbufzyy3nnnXdYtGiRt497eno6X375pc/ut4iEHwXuIhHguOOO4+OPP+bTTz9l7ty5rFixgri4ODp37swtt9zCqaeeWmb/rl278u677zJ69Gh+/fVXioqKaNq0Kffeey/XXnvtMRehCScul4uFCxfy888/8/vvc3G7XQrZKxDOQTuEeVU7hH/YXputZKpL1e0+ZSYn4z7szbWISLg5Uvi+fNkKli9fzrvD36Xz+Z3p2bMn55577hGrgCW0VBS2nxp7PK+3up1HN33m3R6qofurr77KrFmzOOecc7j77rs59dRT2b9/P8uWLWP69Ons378fgP79+zN69GiGDBnCokWL6Nq1K7m5uUyfPp1//OMf9OnTh5iYGE499VTGjh3LSSedRN26dWnfvj3t27fnvffeo0uXLnTo0IG7776bVq1asXv3bubPn8/27dtZsWIFAEOHDuXzzz+nZ8+ePPDAA8TFxTFq1ChatGjBypUrA/lQiUgQU+AuEiGSk5N58MEHefDBByu1f4cOHXj99df9O6kgZVkWGzZs4Oeff2b69OklFREWGJlO7HsSse1TyA41C76rE7TX9DarIySq2iF0WshAyITtYV/drv7tIiJhpVz4Xq8Q93EFzPltDnPmzCEpKYmLL76Ynj17ctJJJ0VUAU24mXZgRbmwvTRUP3wh1bV525l2YAX9GpwXqOlWWcOGDVm0aBEvvPAC33//Pe+//z716tWjXbt2/Otf//LuZ5omkydP5qWXXuKrr75i3Lhx1KtXzxuil/r444+57777eOihhygqKuLZZ5+lffv2nHrqqSxZsoTnn3+eTz/9lH379nHcccdx+umn88wzz3iPb9y4MbNmzeK+++7j1VdfpV69egwePJgmTZowcODAWn1sxHfcWqhU/MywLJVUiYgA7N27l19++YWpU6eyadMmAIw8E9ueGMz0aIzC2q+sDkYK2o+s2kE7hH8LGVDYfiQ1eSlW24F7dVvK/LU4WXVYefnVOk4V7iIiYDnduI8rwHNcPlZsyd+pE044gZ49e3LJJZdQv379AM8wcpS+vyjtH14TI3f+zAdp08qE7aUOrYAf3PhS7mnSs8a35y9utxu73c4///lPnnrqqUBPJ2j58mcn0vXv3599hVvo/lz13gv5w6znCqgX1YLRo0cHeiriQ6pwF5GIVlhYyO+//87PP//MokWLSvqyuwxs6TGYu2MwcuwY+vQbiIygHSKgqh0UtouIiEQIo8jEvj0Oa3ssVrwL93H5bC5OZeTmkXzwwQecffbZ9OzZk65duxIVFRXo6Uol3dOkJw0cSVxap1O5djGlle6hUNmelpYGoA9+RCTsKHAXkYhjWRarV6/m559/ZtasWeTk5IAFtgNOzN0x2PZHYVgK2UspaD+6Wq9qB4Xtx1KDxyciqttFRCTiGBgYOQ5sOQ6szQl46hbiOa6ARQsXsWjRIuLi4ujevTuXXXYZHTt2VMuZEHC0MD3RHhv0Yft3333H6NGjMQyD7t27B3o6EkEswGMFT4tYvaIPTwrcRSRipKWlMXXqVKZOncqOHTsAMHLsmHviMdNjMIqD549uMFDQfmyRUNUOtR+2B0qNQv5QUtvtZEREJKgYloG5LxpzXzSWw4O7fgF5DfOZNGkSkyZNokmTJlx22WVcdtllNGnSJNDTlTA1dOhQDMPgP//5D23btg30dEREfEqBu4iEtdzcXGbPns3UqVNZvnx5ycYiG+aeWGx7orHl1SBIDFMK2o8tUqraITBhe0j1bQdVtwcpMzlZfdxFRI7BKLZhT4uFtFg8sS48x+Wzs2gXn3zyCZ988gkdO3akZ8+edOvWjfj4+EBPV8JIaV9yEZFwpMBdRMKO2+1m6dKlTJ06ld9++43CwkLwgG1fFLY9MdgOONWXvQKRErRDiFW1g8L2ylLfdhERkWqz5dmxpSZgpsZjJRfhbpjPyuUrWblyJe+88w4XXHABPXv25Mwzz8QM0Gs4EZGaM3AHVR4QTHMRX1HgLiJhY/fu3fz444/8/PPPpKenA2BkObDvTsC2NxrDHUK9LWqRgvbKCbmqdlDYXhu3G4jqdhERET8yMDAyorBlRGGZHjz1Cyg+roDp06czffp06tWrR69evbjyyitp3LhxoKcrIiISdBS4i0hIc7vdLF68mPHjx7NgwQI8Hg8U2DD3xJW0jCnQ01xFahp4Vzdo98VtV0fAgnaIrBYyoLC9NtQkrK9u/3YREYlIhtuGuTsWc3csVrQL93EF7Cs4wBdffMGXX37JueeeS9++ffnb3/6mqncREZG/KIkSkZB04MABfvrpJ3788Ud27doFFtgOOLGnxaplzFFEWtAOIVjVDgrbqyIU28ioul1EREKQUWDHvjUec2tcScuZxvnMnzef+fPn06hRI6666iouv/xy6tatG+ipiogckQV4rOA5+13vDMKTAncRCRmWZbFy5UomTJjA7NmzcblcJQug7o7D3BWDUaiqmiNR0F41IVnVDpEXttdQxFW314TLFZjbFRGRoFOm5UyUG3fDfHYV7WHUqFH897//5YILLqBv37506tQJw1ARjIiIRB4F7iIS9HJycpg2bRoTJkxg8+bNABgZDuy7krDti8Kw9EL+SBS0V11IVrVDZIbtgWolUxOqbq9VZnIy7oyMQE9DRCRsGYVmSdX7tjg8dQtxN85j5syZzJw5k5YtW9KnTx8uu+wy4uPjAz1VERGRWqPAXUSC1vr165kwYQI/T5lKsasIXAbmnhhsabHY8vX0dTSRGLRDiFa1Q8BayEBkhu01Fqjq9ppS/3YREfETwzIw90Vj7ovGE+PC0yifVNcWhg8fzvvvvc9lPS+jT58+tG3bNtBTFRHBHUQtZSQ8KbESkaBSWFjIzJkzmTBhAmvXrgXAyLZj35WILT0aw6Nq9qNR0F49kVjVDpEbtodsdbuq40VEJATY8u3YNidgbonHU78AV+M8Jk2axKRJkzj55JPp27cvPXr0IDq6Zq9jREREgpUCdxEJCtu2bWPChAlMnDCR/MJ8cINtbzRmWiy2nBqGghFAQXv1hGxVOyhsr6Ya336oVreLiIjUMsNTcnaquScGT1wx7sZ5pLhTeDXlVd55ezhXXtWbPn360Lx580BPVURExKd0DoWIBIzL5WL27Nk89NBD3HLLLXzzzTcUHCjC3JSAc1EDHBuSFLYfg2GaNQq8DadTYXt1KWwXERERqRRbrgPH/5JwLmqAuTGBwgNFfPvtt9x66608+OCDzJ49G5cW6A5pS5cupWfPniQmJpKQkMCll17K8uXLK9x33rx5dOnShdjYWBo1asT9999PTk5OmX127NjBFVdcQWJiIqeeeioTJ04sN87333/PcccdR2Zmpj/uks+8//77fPrpp4GehhzCgxE0FwlPqnAXkVq3b98+JkyYwPff/UBWTiZ4wLYvCnNXLEamA0N/dCrNqmZwa4uNrdHtGo4aBrYeT/Vvu05SydfqDmCv4Z8+o/o/n+56PlgwrAa3D2AU1yzsd8VX/wMaT1QNz8SoYQ9yyxa45xZ7bs1CBMNd/d8ZAKOg+rdvyy0Aew3+7w7U7E2wYZpgVv9THvtxDbBqEOK49x+o9rEiIlKW4bZhT4vFSovBSiypel+2ZBnLli0jIS6Bq6+9mr59+1K/fv1AT1WqYNmyZXTp0oVmzZrx7LPP4vF4eP/997nwwgtZtGhRmd79y5cv56KLLuKUU07hrbfeYvv27bzxxhts2LCBKVOmePe7/fbb2bFjB//617+YO3cu1113HSkpKbRs2RKAgoICHnnkEV588UWSkpJq+y5Xyfvvv0/9+vUZMGBAoKciIrVEgbuI1JrU1FTGjh3LlCk/4/G4ocCGuTsOc1cMRnHgKqUjSU2DdgiOsL3aFLbX6HiF7SIiIuILBgZGlhNblhPL4cbdsIDsRrmMHj2aL774kp49L+OGG27ghBNOCPRUpRKefvppYmJimD9/PvXq1QPg1ltv5aSTTuKJJ55g3Lhx3n2feOIJ6tSpw+zZs0lMTASgZcuW3H333UybNo1LL72U/Px8Zs6cyezZs7ngggsYPHgw8+bNY+rUqfz9738H4I033iApKYm77rqr9u+wiMgx6KRwEfEry7L4448/eOyxx+jfvz8//fQTVoYN+59JOJfUx74tXmF7LfFFVXuNwnaPR2F7gG4fQjtsD3U1rW4XEREJZ0axiX17XMl7g7VJWAdsTJ48mdtvv51HH32UpUuXYmnh8KA2Z84cLr74Ym/YDtC4cWMuvPBCJk2a5G0Xk5WVxS+//MKtt97qDdsB+vfvT3x8PN988w1QUr1uWRZ16tQBwDAMkpOTycvLA0razbz66qsMHz4cm61qsVZKSgrXX389DRo0ICYmhrZt2/Lkk0+W2eePP/6gV69eJCYmEh8fz0UXXcSCBQvK7PPpp59iGAZz585lyJAhNGjQgLi4OK6++mrS09O9+7Vs2ZI1a9bw66+/YhgGhmHQrVu3Ks1ZfMuyDNyWLWgulqXCoHCkCncR8QuXy8Wvv/7KmDFjWLduHVh/tY3ZEYstu/rBnVRdxFe1g8L2AIbtvhDp1e01bScjIiISCgwMzP3RmPuj8SQU4W6ax8IFC1m4cCFt2rThhhtuoEePHthr+rpOfK6wsJCYmJhy22NjYykqKmL16tWce+65rFq1CpfLxVlnnVVmP6fTyWmnncYff/wBQJ06dWjdujUvv/wyL7/8MvPmzWP58uX8+9//BmDo0KH06tWLCy64oErzXLlyJV27dsXhcDBo0CBatmzJxo0bmThxIi+99BIAa9asoWvXriQmJjJ06FAcDgcffvgh3bp149dff+Wcc84pM+Z9991HnTp1ePbZZ0lNTeWdd97h3nvvZezYsQC888473HfffcTHx3uD/YYNa7iWlIgEPf2lEhGfysvLY9KkSXz77bfs3r0b3GDbHYN9ZyxGgZ5yalvAe7WDwvaaCnDYXlOBbiUjNevfLiIiEgi2bCe2FCdWlAt30zw2uDfw4osv8uGHH3Lddddx5ZVXEhcXF+hpyl/atm3LggULcLvdmGbJa7+ioiIWLlwIlFSkA6SlpQEl1e+Ha9y4MXPmzPF+P2rUKPr168eYMWMAePDBBzn//POZN28eP/zwA3/++WeV53nfffdhWRbLli2jefPm3u2vvvqq999PPfUUxcXF/P7777Rq1QooqcBv27YtQ4cO5ddffy0zZr169Zg2bRrGX6/ZPR4P7777LpmZmSQlJdG3b1+eeuop6tevz6233lrlOYtIaFJLGRHxifT0dEaOHEm/fv0YMWIEu7elY26Jw7m4AY5NiQrba5ktNjbwYXswtJBR2F7jKYR6K5lAV7ernUzoM+vWCfQUREQillFox74pEefiBpip8aTv2Mf7779Pv379eP/990sKfCTg/vGPf7B+/XoGDhzI2rVrWb16Nf379/cG7Pn5+WW+RkVFlRsjOjraez1Ajx492Lp1KwsWLGDr1q28/fbbeDwe7r//fh5++GFatGjByJEjOfnkk2nbti0ffPDBUeeYnp7Ob7/9xp133lkmbAe8Ybnb7WbatGn07dvXG7ZDyYcBN998M7///jtZWVlljh00aJD3eICuXbvidrvZsmXLMR83CRyPZQTNRcKTEjARqZGNGzcyZswYpk+fjtvtxsgzse9IwLYnBkN/PAIi4EE71ChohyDo1w4K2wn9VjIiIiISHgyXDfv2OMwdsXiOKyCvaS5jxozh22+/5aKLLuKGG26gTZs2gZ5mxBo8eDDbtm3j9ddf57PPPgPgrLPOYujQobz00kvEx5e8Ni5tO1NYWFhujIKCgnJtaeLj48u0cPnkk0/YtWsXw4YNY/r06Tz66KN88cUXGIbBzTffTNu2benevXuFc9y0aRMA7du3P+L9SE9PJy8vj7Zt25a77pRTTsHj8bBt2zbatWvn3X54eF/ad/7AgQNHvB0RCX8K3EWkyizLYsmSJYwZM4bFixcDYGQ6sG9PwHbAiYGC9kAI9V7tECQtZEBhOzUP24OhlUygq9t9Qf3bRUREDjIsA3N3DLbd0XjqFOFumsu0adOYNm0aZ511FjfeeCNnn312mYpjqR0vvfQSjzzyCGvWrCEpKYkOHTrwxBNPAHDSSScBB1vJlFa+HyotLY0mTZoccfysrCyefPJJ3njjDeLi4vj666/p168fffv2BaBfv358+eWXRwzc/aW0hc7htNBv8LIAdxA1/KjJT8r111/Prl27Kryubt26jB8/vtz2VatWMXr0aNauXUthYSHHH388l19+Oddee+0Rf57nzZvHmDFj2LBhAx6Ph5YtW9K3b1969ep1xLlNmTKFH374gS1btmCz2WjTpg033ngjnTt3rnB/t9vNuHHjmDx5Mtu3bycqKopTTz2V/v3706FDh2M/GEFGgbuIVFpxcTEzZ85kzJgxbNy4sWQh1L1RmDvisOX4oCpaqiUognYIj7C9hm/OgiFs94VAh+2+EAxhezC0k6lp/3ZbboGPZiIiIuI7BgbmgSjMA1F44opxN81jyeIlLFmyhBNOOIEbb7yRiy66CKczsGfrRZo6derQpUsX7/fTp0/n+OOP5+STTwZKqsvtdjtLlizh+uuv9+5XVFTE8uXLy2w73AsvvMAJJ5zALbfcAsDOnTs5/fTTvdc3adKE5cuXH/H40hYxq1evPuI+DRo0IDY2lnXr1pW7LiUlBZvNRrNmzY54/JHoAyDxp/j4ePr161due0ULGc+ZM4dnnnkGp9NJ9+7dSUxMZN68eYwYMYLVq1fzwgsvlDtm3LhxDB8+nKSkJC655BIcDgezZ8/mlVdeYdOmTfzf//1fuWPee+89xo4dS4MGDejdu7c3Sxo2bBgPPPAA1157bZn9Lcvi+eefZ/bs2TRv3pxrrrmGrKwsZs2axf33388LL7xA165da/Ao1T4F7iJyTDk5OUycOJHvvvuO9PR0cBuYu2Ixd8ZiFAY+WItkCtsPobC9ZIgAL5LqC2olI75m2O1Yrup/+GDWrYN7v04NFxEJRrZcB7b1SVhb4nE3yWOzK5VXXnmFUaNGce2119KnTx8SEhICPc2IM3bsWBYvXswbb7yBzVZSTZyUlMTFF1/MF198wdNPP+39f/n888/Jycnhuuuuq3Cs9evXM2LECH777TdveN2wYUNSUlK8+/z55580atToiPNp0KABF1xwAf/9738ZMmRImVYwlmVhGAamaXLppZcyYcIEUlNTadmyJQC7d+/mq6++okuXLiQmJlb5sYiLiyMjI6Pc9uLiYjZu3EhSUlKFC8mKVEZ8fDx33nnnMffLzc3l9ddfx2azMXz4cO8HYQMHDuTBBx9k9uzZzJgxg4suush7TFpaGiNHjiQxMZFRo0Z5f04HDBjAoEGDGDt2LBdeeGGZVk2rVq1i7NixNG3alFGjRnl/z2+66SbuvvtuRo4cSefOncv8zM+YMYPZs2fTvn173n77be86D3369OHee+/l9ddf58wzzyTWB/lHbQmecyhEJOjs3buXESNG0K9fP0aOHEn69n2Ym+NxLqqPfXOCwvYA8tWiqMGwMGqoL44K4RW2B7q6Xa1kDlI7GRERkcozCk3smxNwLq6PuTmefTsPMGrUKPr168e7777Lnj17Aj3FsPXbb79x8cUX89prr/Gf//yHu+++m1tuuYWePXvywAMPlNn3pZdeYv/+/Vx44YV88MEHPPXUU9x7771ceuml9OzZs8LxH3roIW644Qb+9re/ebf169ePCRMm8MQTT/DEE08wceLEo1bIA7z77rtYlsUZZ5zBE088wUcffcSTTz5ZplL+xRdfxG6306VLF15++WVee+01OnfuTGFhIa+99lq1Hp8zzzyTlStX8uKLLzJmzBhmzpwJwI4dOzjllFN4/PHHqzWuVF+gF0oNxKKps2fPJiMjgx49enjDdihZxPiuu+4CKNeCZvLkyRQVFXHNNdeUCcgTEhK49dZbAZgwYUKZY3788UcAbrvttjIfdjZu3Jirr76aoqIipkyZUuaY0tu96667yiyqfMopp9CjRw8yMjKYPXt29e54gKjCXUTKKf0E/6effqKoqAgj1459RyK29GgthBoEVNV+iAD3aweF7YcKhlYywSIY2smIiIhEIsNtw74jDnNnLJ76BRQcn8d3333HhAkTuOKKK7jlllto2LBhoKcZVpo2bYppmrz++utkZ2dzwgkn8OKLLzJkyBDsh71eP+OMM5g+fTqPPfYYDz30EAkJCQwcOJBXXnmlwrEnT57Mb7/9xvr168ts7927Ny+99BL//ve/sSyLV1555aj9pAE6derEggULePrppxk5ciQFBQW0aNGiTFDfrl075syZw+OPP84rr7yCx+PhnHPO4YsvviizgGtVPPPMM2zZsoXXXnuN7OxsLrzwQnr06FGtsSQ87dixg/79+5fbPnr06GMeW1RUxLRp09i9ezfR0dG0bt2aTp06levHvmzZMoAKf447depEdHQ0q1evpqioyNuOq/SYQz/sKlU6Tuk+h9/OkY757LPPWLZsmbcqv7CwkDVr1hAdHU3Hjh0rPGbq1KksW7aMyy+//OgPRhBR4C4iXmlpaXz55ZdMnjwZl8uFkW3HvjVZC6EGiXAJ2kFhuy/nAMERtvuCqtt9q6b920VEREKZYRmY6THY0ksWWHU1y2X8+PFMmjSJXr16ccsttxx1kU6pvNatWzN16tRK79+lSxfmzp1bqX0vv/xysrOzK7xu2LBhDBs2rNK3CyWB+vfff3/UfU4//XR+/vnno+4zYMAABgwYUG57t27dyi2Y2rBhQyZNmlRu35YtW2pxVamx/fv38+KLL5bZ1rhxYx5//HFOO+0077Zt27YBVLgOgd1up3HjxmzevJmdO3d62ylt3br1iMfUr1+fmJgY0tPTKSgoIDo6mvz8fNLT04mJiaF+/frljjn++OPLzAVK1mNwu900b9683Ad0RzomFChwFxF27NjBF198wc8//4zb7cbIcuDYmoyRoaA9WChsP4zC9oNDBEnYrur2g1TdHp7Ux11EJDSVLrBqO+DESi4J3idOnMjkyZO59NJLufXWW6u1EKaIhCoDT1B12DZo2rRpparZD9erVy86duzICSecQGxsLDt37uT7779n4sSJPProo4wcOZITTzwRKFmbD0rWFKhI6fbS/aCk7/uxjsnPzycnJ4fo6Gjv/vHxFb9XLt1+6G2U/vtIx1Q0r1CgwF0kgm3bto3Ro0czffr0kqA904FjawJGpoL2YBE0QTsERwsZUNh+6BBBskCqL8J2VbeXpf7tIiIivmVgYGRE4chwYiUV42qWw5QpU5g6dSoXX3wxt912Gy1atAj0NEVEKu2OO+4o832rVq145JFHiImJYezYsXzyySe89NJLAZpdZFPgLhKBUlNTGT16NDNnzsTj8WBkOHBsS8SWGfiWEnJQ0ITt4VTVDgrbDxMurWREREREKsPAwMh04sysiyexpOJ92rRp/PLLL/To0YP+/ftzwgknBHqaIiLV1qdPH8aOHcuKFSu820oryEur0A9XUXV6XFwcmZmZ5ObmkpRU/j394cccqxq9omr2iqrejzWvUKDAXSSCbNu2jU8//ZTp06djWRbGASeObXHYsgIfuMlBQRO0Q3iF7T4IuYMlbPeVcGolEyzV7cHSTsYX/dttuQU+mImIiEjwsmU5ca5x4kkoCd5nzJjBzJkzueiii7j99ttV8S4ShizAbQXHewcomY+vJScnA1BQcPD1fLNmzUhJSWHbtm20bdu2zP4ul4u0tDRM0yyztkXz5s1ZtWoV27ZtKxe47927l/z8fBo0aEB0dDQAMTExNGjQgPT0dPbu3Vuuj/v27du9cynVpEkTTNMkLS0Nl8tVro97RceEgmBqWiQifrJz505eeeUVbrvtNn755RfY78Cxog7ONXUUtgcRW2xs8ITtHo9PWsgobPf9PCC8+rarlUx5aifjH4YPnkvMunV8MBMREQk2tmwnzrV1cCyvC/scTJ8+ndtvv52XXnrJG/b4ghbIlOrQz41U1dq1a4GSxVNLnXHGGQAsXLiw3P4rVqygoKCA9u3b43Q6yx2zaNGicseUjlO6T3WPiYqKol27dhQUFLBy5cpK306wU+AuEsZ27drFa6+9xi233MKUKVOw9ttxrPwraM9W0B5MfBW0h1ULGVDYXtEwQRK2+4JayYiIiEgwseU4SoL3FXWw9tmZOnUqt912G6+++io7d+6s0diGYeDxwetsiTwejwcjiM6SleCQmppKfn5+ue1paWm8/fbbAFx66aXe7d26dSMpKYmZM2eSkpLi3V5YWMjHH38MQN++fcuM1atXL5xOJ99//z1paWne7dnZ2XzxxRdASfuaQ1111VUAfP7552RnZ5eZ1w8//IDT6aRXr15ljim93Y8//pjCwkLv9j///JOZM2eSnJzMhRdeePQHJMiopYxIGNqzZw+ff/45P/30Ey6X66/FUNWjPRj5ImiHMGwhAwrbKxomSBZJBbWSqUiwtJMRERGRmrFl/9VqJrEIV4scJk+ezNSpU7n88svp378/DRs2rPKYDoeDgoKCClsmiByJy+XC5XIRExMT6KmEFU8QtZSprpkzZzJ27Fg6depEo0aNiImJYefOncyfP5+ioiLOPfdcbrzxRu/+cXFxDB06lGeeeYYHHniAHj16kJiYyNy5c9m6dSvdunWjR48eZW6jSZMm3HPPPQwfPpxBgwbRvXt3HA4Hs2fPJj09nRtuuIH27duXOaZDhw5cf/31fPPNNwwYMIBu3bpRXFzMrFmzyMrK4oEHHihTeQ9w0UUX8dtvvzF79mwGDhzI+eefT2ZmJrNmzcLj8fDoo496+8OHCsPSuSkiYWPv3r18+eWX/PjjjxQXF2NkObBvicPIdGIQ+n9Qwk3QtI8BnwTtEET92kFh+xGEUysZCM/AvaYtZXzRvx182MP9QGbNxzB9c1Km5ar5Y+Pef8AHMxERkVBhYWElFeNqnoOVVIzdbqd3797cdtttNGjQoNLjZGVlsWPHDpKSkmjcuLEqluWYLMsiLS2NzMxMmjZtSmJiYqCnFPL69+/ProLtnPJ41T8085c/X9lNo+jjGT16dJWOW758ORMmTGDDhg3s37+f/Px84uPjadOmDZdeeimXXXZZhc8zq1atYvTo0axZs4aioiKaNm3KFVdcwbXXXotpVvw+b+7cuYwZM4b169djWRYtW7bk6quvLlepfqgpU6bwww8/kJqaimEYnHTSSdx000107ty5wv1dLhfff/89P/30Ezt27MDpdNKuXTv69+9Phw4dqvTYBAMF7iJhIDc3l6+++opvvvmGwsJCjGw79i3xGBkK2oORqtqPQmF7xcMEUdgONQ/cwzFsB98E7r7o367A/ch8EbiDQncRkUhkYWElF+FqnouVWIzT6eS6667jlltuIT7+2K8bLcti69at5OXlYZompmkqdJcjsiwLt9uN2+0mNjaW5s2b6+fFB8IpcJfgpvOYREKYy+Vi4sSJfPLJJ2RkZGDkmti3JGHbH6WgPUipqv0oFLZXPEyYhe3hSu1kREREwpuBgZERhSPDiadOEcUtc/jyyy+ZNGkSAwYMoE+fPkdtFWMYBk2bNuXAgQPk5ORoIUw5KsMwcDgc1KlThzp16ihs9yEL8FjBs6SlngnCkwJ3kRBkWRa///47H374IVu3boVCG/atCdh2xyhoD1LhWNUOCtv9OQ8Iz7A9XKvbRUREJDIYGJgHorAdcOI5roDMFtkMHz6ccePGMXjwYLp27XrEcNRut9OgQYMqtaIREZHQo8BdJMT8+eefvP/++6xYsQLcBub2OMwdcRgehU/BSmH7MYRb2C4iIiIiYc/AwNwTg21vNO6muWx37eCpp56iQ4cO/OMf/6Bdu3aBnqKIiASIAncJqGnTpvHiiy8CMHToUHr37u297o8//uCBBx444rE333wzgwcPLrd9xowZfPbZZ+zZs4dTTjmF++67j1atWvl+8rVs586dfPTRR8yYMQMssO2Kwb41DqNY7R2ClZnkm0DaKi4u87W6vIG9rWanzxkN6tXo+LKD+eaDIlf94KlKd8f45neyON43f6Lz6/nmdEm3s+aPj1nkm+p2wzeF/z6bj73Aoji+5v/vjhwf3DELSKj5GQ22Yg8kR9d4HOf2A5DsowW+cnJrPIThcNT4uRTArFsHin2wAGt2do3HEBGRwDI8BvZt8Zi7YnA1z2WVtYp77rmH7t27M2jQIJo2bRroKYpIGQbuoOoMEExzEV9R4C4Bs3v3bt555x1iYmLIz88/4n6nnXYap512WrntHTt2LLdt0aJFPP/885x99tmce+65LFy4kAcffJDRo0eTnJzsw9nXnuzsbEaPHs33339PcXExtv1OzNQEbHn69Q1mvg7ba8pX1fEK249OYbuIiIhIZDKKTRwbE/HsjMXdModZs2YxZ84crr76avr370+Sj94fiIhI8FNiJwFhWRavvvoqiYmJXHDBBYwZM+aI+5522mnceeedlRr3559/5oILLvBWzd95553ccsst/P7772Wq50NBUVER48eP57PPPiM7Oxsjx45jcx1smb7pxSz+o7C9MoMpbD8SX4XtwSZcq9tFREREDmXLt2P7MxlPYhGuE7L59ttvmTJlCrfddhvXXHMNUVFRgZ6iiIj4WXi+q5eg991337Fs2TKGDx/OsmXLfDau2+3GNA+GXoZhYBgGbrePEppaYFkWs2bN4sMPPyQtLQ0KbNi3JGJLj9aCqCFAYXtlBlPYXhtU3V477AW+Ce590k5GREREgoYty4ljRV089QvIaZnDyJEj+eGHHxg0aBA9evTAVsM2jyJSTRZ4rCB6j6M6oLCkwF1qXWpqKh9++CH9+vXjtNNOO2bgvmPHDsaNG0deXh5169alY8eONGvWrMJ9L7nkEp544gny8/M54YQTWLx4MQUFBZx//vn+uCs+t3LlSt5//33Wrl0LLgNzWzxmWqwWRA0BvgraQWF7ZQRT2O5LwdZKxleCrbpdJFiYCQnq4y4iEsYMDMy9Mdj2ReNukscu125eeOEFvvnmG/7xj39U2DpVRERCnwJ3qVUul4uXXnqJhg0bMmjQoEod88svv/DLL7+U2XbhhRcydOhQEhISymzv0qULjz/+OF988QUrVqzgpJNO4s0336R+/fo+uw/+sG3bNj744APmzJkDHjB3xWBujcdwBVdoJhULtqp2UNh+TD4M28O5lUy4VrernYyIiIjUJsMysO+Iw9wdg7tZLimeFO6//37OP/98Bg8eTIsWLQI9RRER8aHge3cvYe2zzz5jw4YNjBgx4pi965KTk/n73//OeeedR6NGjSgqKmLdunWMGjWKX3/9lf379/Pvf/+73Kl4vXr1olevXv68Gz6TkZHBJ598wo8//ojb7ca2NwozNR5bgX41Q4XC9soOFkRhuw8FY9gebK1kwjnc9lU7GZ8JsumIiIhIWYbLhn1zAmZaDK4WOcydO5cFCxbQu3dv7rjjDurWrRvoKYqEPQvwWMFT3KiX8OFJqZ7UmrVr1/LFF19www030L59+2Puf8IJJ3DCCSd4v4+NjeWcc86hffv23HnnnaxatYq5c+fStWtXf07bL9xuNxMnTmTUqFHk5ORgZDlwbE7Elq0FUUOJwvbKDhZkYbv6toekcF4sVf3bQ5TDDsWuQM9CRERCkFFgx7EuGc/OIlwtc5gwYQLTp0/nrrvuom/fvmXWJRMRkdATvu/MJaiUtpI5/vjjGThwYI3GiouL4+KLLwZgxYoVvpherVq3bh333HMPb731Fjn78rCnJOFYWUdhewgxk5KCLmw3HA6F7ZURxn3bfUnV7SK1xzysPZ6IiEQOW7YTx6o62P9MIndfPsOHD+fvf/97yZpeIuI3HoyguUh4Cr53+RKW8vPz2bZtG4A3LD/ca6+9xmuvvUa/fv24//77jzpecnIyAAUFBT6dpz9lZ2fz8ccfM378eGw2G+b2WMytcRgefe4VSsJ5cVRQ2F5Z4dxKJhgF42KpQddORkREREKSgYG5LxrbgSjczXPYaG7knnvu4aqrrmLQoEHl1i0TEZHgp8BdaoXT6eSKK66o8Lr169ezYcMGOnbsSLNmzWjXrt0xxyv9xL9JkyY+nac/WJbFL7/8wnvvvceBAwcwMh3YNiZgy/NdSCq1I9iq2kFhe6UpbK+0cK5uD8Y5iYiIiAAYHgN7agKePTF4WmcxYcIEfv31V+655x569uyJEYRnaoqISMUUuEutiIqK4rHHHqvwuv/+979s2LCBnj170rt3b+/2lJQUTj755HL7T5s2jZkzZ+JwOOjevbvf5uwLqampvP322/zxxx9QbGDfnIhtTzSGThsKOQrbqzKYwnbxnWCsbvcl9W8XERGRQ9ny7DhW1cHToICMEzJ55ZVX+OmnnxgyZAitWrUK9PREQp4FuK3gyWRUEhSeFLhL0HrmmWcwTZO2bdvSoEEDioqKSElJ4c8//8Q0TR555BEaN24c6GlWKD8/n9GjRzNmzBg8Hg+2tBjsW+IxXOHb8iGcKWyvymDB88IlmKm6XUQOZSYk4M7ODvQ0REQkSBgYmOkx2PZH4WqRwypjFQMHDuT666/n9ttvJzY2NtBTFBGRo1DgLkGrT58+LF26lFWrVpGZmQlA/fr16dWrF9dddx0nnnhigGdYsTlz5vDuu++ye/dujBw79v/VwZaj9jGhKBj7tYPvwnafBu3g07A9nKvbwz1sD1a+/BAgKPu3+3BKtmKP7wYLQobD4bvnZIcdil2+GUtEROQwhtuGY1Minj0xuFpn8fXXXzN9+nTuv/9+LrjgArWZEREJUoZlWUH4rlEk9KSlpTF8+HDmzZsHLgP7lnhsaTFqHxOiFLZXdUCF7ZUV7oG7L4NtX7aTCcbA3aftZII0cHduP+CzscjJ9dlQvnxe9lXgrgp3ERE5GgsLT6N8XC1zwG5x7rnn8uCDD4bEumYiwaJ///7syN/J8Y+2CPRUvLa/voWmMU0YPXp0oKciPqT+FiI1VFxczOeff07//v2ZN28etj3ROJfWw0yLVdgeonzZQkZhe9UobK+8YAzbg5Va3EgoMBMSAj0FEREJYgYG5q5YnEvrYdsTzYIFC+jfvz+fffYZRUVFgZ6eiIgcQoG7SA0sXbqUO+64g48++oiiAy4cq+rgWJ+EUayFFUNVMPZrB4XtVaKwPWCCtbrdl4KynYyIiIhEDKPYxLE+CceqOhRnuPnPf/7DgAEDWLx4caCnJiIif1EPd5Fq2LdvH++99x7Tp08HN5jb4jF3xGIE0UrXUjXh3kIGFLYHki/Ddl8L9+p2ERERkXBky3Ti+KMe7iZ5bHfv4OGHH6ZHjx7ce++91K9fP9DTEwlqHmU34mfBmwCIBCHLspg0aRLvv/8+ubm52PY7sW9MxChURXsoU9henQHDP2z3ZXW7L6m6vWqCtZ2MT/u3i4iISEQyLAP7jjjMvdG4WmUzc+ZMFixYwODBg+nTp48WVRURCRAF7iKVtGfPHl577TUWLVoEhTbsG5Mw90cHelpSQwrbqzNgEIbtPhYprWRU3V41QdtOJkinJVVnJiRo8VQREakyo9DE8Wcy7jqF5LXO4q233uK3337jscceo2HDhoGenohIxAnOMjmRIGJZFlOmTGHAgAEsWrQI2+5onMvqKWwPA+G+OCpEUNgeAX3bfc2XYXuwVpEH67wkzDiC9/dcREQii3kgCucf9bDtimHJkiUMGDCAn376CcvSayKRUhbgwQiai347w5PeIYgcxb59+3j99deZN28eFNmwb0jGPBAV6GlJDQVrVTsobK+WID1V1tdhe7C2kvG1YF0sVURERCQUGG4bjv8l4t4XRe6JWfzrX//i119/ZejQoertLiJSSyLj3btIFVmWxYwZM7j99tuZN28etj1/VbUrbA95CturO2BkhO2R0rc9Eqrbfc2X7WTUv11ERET8zTwQhXNZPWy7o1mwYAG3334706ZNU7W7iEgtUIW7yGEyMjJ46623mD17NhQZJb3a96l9TDhQ2F7dARW2V1Uwt5IJZpGwWKrIsaiPu4iI+IrhtuHYkIR7XxTZJ2bz4osv8uuvv/Lwww9Tt27dQE9PJGA8VnCeJS3hQxXuIof47bffuPnGm5k9eza2vVE4l9VX2B4mFLZXd0CF7VUV7K1kVN0uIiIiElnM/SVnbNvSo5gzZw633Hwrs2bNCvS0RETClkrwRICsrCyGDx/OL7/8AsUlVe22vVEY6FPPcKCwvboD6udfRERERCQcGC4bjnXJuPcWkHtiFs8++yy//vorDz30EEk+fL8kIiIK3EWYP38+L7/4MpnZmdj2O7FvSMQoDs4+zlJ19ga+WxjIcrsxTN/18TfsvnsKturV8enq5la0b/88uBJ897i5o337+5nfwHcfeuQd59sPKQyPT4fDXgCGj35Q8usDvvxQ0odDObJ9O6BZCIU+eh8am+6hKNF3v1/OLJdv/xtcFpbNNwOahW5cDX34Br5hEvat6T4ZynA4sPLyfDIWAA47FPnuA1kzPh53To7PxhMRESll7ovGluXAdWI2M2fOZMmiJQx7YhhdunQJ9NREaodl4LGCqOGH2tuEJQXuErFycnIYMWIEkydPBpeBfVMitj3RqmoPI74O233J12G7Lylsr55gD9tFRERERACMYhP7n0l4GhSQ1TqbJ554gssuu4z777+fhISEQE9PRCTkBdFHOiK1Z/HixQwYMIDJkydjHHDiXFYPc0+MwvYworC9muMFcdguNWMv8N1Y+b779Sqhp14RERGRWmVgYKbHlPR23+9k6tSpDBgwgIULFwZ6aiIiIU8V7hJR8vLyGDlyJBMmTAC3gX1zArZdCtrDjcL2ao7n47Dd11TdLpVR0k7Gd8xC344nIiIiEkyMIhP72mQ8DQtId+/l0Ucf5corr+T//u//iI2NDfT0RHzOAjxB1MbFl61hJXiowl0ixvr16xk4cCATJkzAyHCUVLXvilXYHmYUtgePSGklEwqCurpdRERERALKwMDcXVLtbmQ4mThxInfccQcpKSmBnpqISEhS4C5hz7IsfvjhB+655x52bNuBuSkex+o6GIVaGDXcRErY7g9qJVN9qm6voQj6zDM2PdL+c0VERCSUGIUmjtXJ2DcmkLYjjX/84x+MGzcOy1INrohIVQR3AiRSQ7m5ubz22mvMmjULCkwcKXWx5URWZWukiKSwPdhbyfg6bFd1e834sro92Pm6nUywc2a5Aj0F8SMzPh53Tk6gpyEiIhHGwMBMi8XIclB8cibDhw/njz/+4LHHHtOCqhI2PJFU9SMBoQp3CVvr16/nrrvuYtasWdj2RuH8Q2F7uFLYXoPx1Le9RiKtuj3S2smof7tUiVOvMUREJHzYch04l9fFlh7Fb7/9xl133aUWMyIilaTAXcLO4S1k7BsTsKckYbj14x6Ogjls97VI69suNRf01e0qLBEREREJWobbhn1dEvb/qcWMhBePZQTNRcJTcJc2ilSRWshElmAP24N9kVS1kqkZVbdLuDFckfXm2YiNxcrLC/Q0REREgpqBgbkrFiNbLWZERCpLJb8SNtRCJrJEUtjuD5EWtvuar8N2f4i06vZg79+uBVNFREQklKnFjIhI5Slwl5BXpoXMdrWQiQSRFrZHWt92fwj2hVKDvbo9Eql/uwQDMz4+0FMQERHxUosZCQcWwdVSRr894UmJpIS03NxcnnvuOd5++21c2R4cK+qWrKiuxsBhS2F7DcfzQ9ge7NXtwd5Kxh98Xd2udjIiVZPX24knvuLnCk+8QV5vZy3PSERExDdKW8w4VtTFnW0xfPhwnn76abKzg/x0QxGRWqTAXULW4S1kHGohE/Z8Gbb7Q7CH7f4Q7GF7KIjI6vYIayfjD84sV6CnIEeQfXs0mQ/Hsf+N+HKhuyfeYP8b8WQ+HEf27dEBmqGIiEjN2XIdONRiRkSkQgrcJeSohUxk8nXY7uvq9lAI24O9b7s/qLq95lTdLlJ5eX1iyBkQA0BxW3uZ0L00bC9uW/JcnDMgRpXuIiIS0tRiRkJVoNvIHHqR8KSEUkKKWshEJoXtPhgzBPq2B3srGX+IyOr2EKD+7VJd0XNcONYdPPugNHR3NbaVCdsBHOtcRM8uDsQ0RUREfEYtZkREylPgLiFjy5YtaiETgSItbPeHSOzb7g+RWN3uFxHYTiY2XZ+sRApbDtR9JKdc6J7+VVK5sL3uIznYclQBKCIi4eHwFjN33303mzdvDvS0REQCQoG7hIRFixZ5W8iYaiETMYI9bPeHSOzb7g+qbvcNtZMRqTpbjlUudD9UVcN2Mz7el9MTERHxm0NbzOzcsZN77rmHBQsWBHpaIocJfBuZsi1lgr+wS6pOiaUENcuyGDduHEMfHUpuRh6O1cnY1UImIoRC2B6JrWT8Ebarut03IrG6XXzHcEVmpbURG+uXcW05FsnP51Z4XfLzuapsFxGRsOVtMbO6DvlZBTz22GN888036usuIhFFgbsELZfLxdtvv83w4cOx8gzsK+pgywz+ylqpOYXtPhozAvu2Q2gslKrq9uCl/u3iC554g4xn4yq8LuPZOO9CqiIiIuHKlunEsbwO5NoYMWIEb7zxBsXFWrtERCKDAncJStnZ2Tz66KOMHz8eI8OJY0VdbPnBHx5KzSls99GYIdC33R9CoZWMP4REdbsfhEL/dn9wZlXcqkSCgyfeKLdA6qFKF1JV6C4iIuHOKLDjWFEX44CTiRMn8sgjj5CZmRnoaUmEswAPRtBcdO5HeFLgLkFn27ZtDLp7EEuXLsWWFoNjTTKGSz+qkSASw3Z/CJWwPVJbyYRCdbtfRGi2qAVTI4snHva/mVBugdQGN2eWW0hVobuIiEQCw23DsSYZ284Y/vjjDwbdPYjU1NRAT0tExK+UYkpQWbp0KXffPYgdO3Zg35iAfWMChqU3o5EgUsP2SF0kNRRayYQKf1S3R2o7GZGaKuhqp/ikg89vpQuk2tM85RZSLW5rp6Bb5Z63tHCqiIiEMgMDx6ZE7P9LIC0tjb///e8sWrQo0NMSEfEbBe4SNCZMmMDDQx4mPzsPx5pkTC2OGjEUtvtwzBDo2+4P/gjbVd0e3PzRTkb926WmYqe4iP+8CDgYtpcukGrLscqE7vGf5hM7qShgcxUREaltJYupJlOQU8ijjz7KuHHjtJiq1D4LPJYRNBf1lAlPkZnMSFBxuVyMGDGC77//HqPAxL6mjvq1RxCF7T4cU61kIk7IVLfrs1OJIAlfFGHuKSZ6drE3bC9VGroXdHMobBcRkYhky4zC/kcdXO0yGD58OKmpqTzwwAPYQ6B1p4hIZanCXQIqOzubxx57rCRsz3TgWK7FUSOJwnYfjhnBYbuq20Uk2MROKioXtpey5VgK20VEJKLZCuw4ltfFyHAyYcIEHnnkEbKysgI9LRERn1HgLgGzfft2Bv99MIsXL8a2KwbH6jpaHDWC+DpsFxERERERkdDgXUw1LYZly5bx90F/Z9u2bYGelkSIQLeRKdNSRsKSSoklIJYtW8ZTTz5FTk4O5uZ4zJ3q1x5J7PXqgce3jcr8Ut1eN9nnY3oSYn0+pivJ95XorgTfV40XJvr+A7WsFr4f0/BDD73Cur4f1OOHNWLtzXJ9P6gfFO2KJb+hb8eMTbPhivPtmI4cyGnq25/RhG1uiuN9e6aII8eNZffDWR3Zvn9edjeqi1Hs43HrJWHbuce3Y8aYuA9k+nRIw+6fhaEtV7FfxhURETkWwzKwb0zAk2dnh7WDQXcP4p8v/pOzzjor0FMTEakRlRNLrZs0aRJDhjxMblYe9rXJ2HfGKWyPIPZ69Xw+psJ2H48ZImG7iIiIiIiENgMDMy0Wx5pk8rLzeeSRR5gwYUKgpyUiUiOqcJdaY1kWX375JaNGjSpZHHVtHWx5+hGMJJEctovvqbpdRERERCQ82DKisC8vWUz1zTff5MCBA9x+++0YhorzxLcsCKpWLn54CypBQCWHUissy+KDDz4oCdtz7ThWKGyPNP4I20OJqtsl2IVKOxkRERERCU+2/L8WU81x8N///pf33nsPy1IcKSKhRymI+J3b7eaNN97g66+/xshy4FhZB6PYt/1nJTKFSnW7P8L2SBcq1e3ie0W79PskIiIiEq4Mlw3HqmSMTAfffPMN//rXv3C5XIGelohIlajEWPyquLiYl156iZkzZ2IccOL4MxnDEzyn7kjtUCsZ31N1e2hQO5nQEJsW2T+nIiIiIsHEcNtwrKmD6+QMJk+eTG5uLk8//TROpzPQU5MwEUwtZSQ86R2m+E1BQQFPPvkkM2fOxLY3Csdahe2RKFTCdn8JlVYyocQf1e2RTu1kRCKXYdeneCIiEnwMj4H9z2Rs6VH8+uuvPP744+Tn5wd6WiIilaLUQvwiNzeXRx99lAULFmDbHY09JQlDnyBGnFDq2x5K1e3+EOnV7aGyWKqEDkdOoGcgIiIiEtoMy8C+LgnbrhgWL17Mww8/THZ2dqCnJSHPwLKC5wLKysJR6KQhEjIyMjJ44IEHWLFiBeaOWOwbEjH0BCI+EkqtZFTd7nuRXt2udjIiIiIiEkkMDOz/S8DcHsvq1at58MEH2b9/f6CnJSJyVOrhXktGjhzJunXr2LZtG5mZmURFRdGoUSO6dOnCNddcQ1JSUrljVq1axejRo1m7di2FhYUcf/zxXH755Vx77bWYZvlFR9evX8+///1v1q9fT+PGjRk4cCBdu3atjbvntWfPHoYMGcLWrVsxt8RhbotT2B6h1EomdBZ2VHV7oGcQWKHUTibSF0xN2BY6z4EiIiIivmJgYKbGg8vGBjZw77338vbbb9OwYcNAT01EpEKhk4iEuG+//ZaCggLOPvts+vXrxyWXXIJpmnzyySfccccd7N69u8z+c+bM4f7772flypV07dqVa665BpfLxYgRI3j++efLjb9v3z6GDBlCVlYWffr0oV69ejz11FMsW7astu4i27dv59577y0J2zclYN8Wr7A9QqmVjH+EykKp/hJK1e1qJyMiZp3yxRQiIiJSPQYG9u1x2DcmsH37dv7v//6PrVu3BnpaEqI8GEFzkfCkCvdaMmXKFKKiyodlH330EZ9//jlffvklQ4YMAUr6n7/++uvYbDaGDx/OySefDMDAgQN58MEHmT17NjNmzOCiiy7yjjN37lyioqIYNWqU93aefPJJfvrpJ8444wy/37+NGzfy8MMPs3/ffuwbEjH3xPj9NiU4+StsVyuZ0GklE0rV7aFE7WT8IzZNP68iIiIiocJMiwWXwR5rD/feey9vvvkmbdq0CfS0RETK0LvMWlJR2A7QvXt3oKQ6vNTs2bPJyMigR48e3rC9dIy77roLgPHjx5cZx+PxYBgGhnHw0zG73Y7H4/HVXTiiNWvWcP/997N/3wHsKUkK28Xn1ErGP1TdrnYyodRORkT8x7CHzt8DERERMz0G+59JZB7I5IEHHmDVqlWBnpKISBkK3ANs7ty5ALRq1cq7rbQNzDnnnFNu/06dOhEdHc3q1aspKirybj/vvPPIzc1l8ODBjBw5kscee4xZs2Zx2WWX+XX+S5YsYciQIeRk5eJYk4S5L9qvtyfBLZT6tkd6Kxl/UXW72smIiIiIiPibuT8a++okcrPyGDJkCIsWLQr0lCREWIDHMoLmoneP4UktZWrZ119/TX5+Prm5uaxbt46VK1fSunVrbr31Vu8+27ZtA6BZs2bljrfb7TRu3JjNmzezc+dOWrZsCUDDhg154403eO+99xg/fjwNGzbk2Wef5dxzz/XbfZk7dy7PPPMMrgI39tVJ2LKdfrstCX7q267qdn9RdbvayUBoLZjqyAn0DERERETCny0zCvvKZIo7ZDJs2DCeffZZLrzwwkBPS0REgXttGzt2LPv37/d+f8455/D444+TnJzs3ZaTU/JOPS4ursIxSreX7leqXbt2vP/++z6eccUWL17MM888g7vAg31lMrZcpUGRTH3b/UfV7aFF1e0iIiIiIrXHluOAFUm4O2by/PPP8/LLL/u18FBEpDKUjtSy8ePH89tvvzF+/HhefPFFdu7cycCBA1m3bl2gp1Zpq1at4sknn8Rd6MZckaSwXfwilPq2g6rb/UXV7f6j/u0iIiIiEg5seQ7Mlcl4iiyeeuopli9fHugpSTCzwLKMoLmop0x4UuAeIHXr1uWCCy7gzTffJCsri5dfftl7XXx8PAC5uRWHIaXbS/erTevWrWPo0KEU5hdhrkrClhc6wZ34h/q2+y9sV3W7gNrJ+FNsmn5uRURERMKBLc+OuTIJV6GLYcOG8eeffwZ6SiISwfROM8AaNWpEy5Yt2bx5MxkZGcDB3u2lvdwP5XK5SEtLwzRNmjRpUptTJTU1lUceeYS8nDz1bBdAfdv9yV9hu6rb/UftZEQklBn20Pn7ICIiUhFbjgNzVRL5ufk8+uijbNq0KdBTEpEIFVppRpjau3cvAKZpAnDGGWcAsHDhwnL7rlixgoKCAtq3b4/TWXuB986dOxkyZAhZmVmYfyZhy1TYHulCqW+7P6mVTOhVt6udTOi1kwmlBVP9JWFbaD03ioiIiASCLcuJfU0S2VnZDBkyhO3btwd6ShKEPJYRNBcJT6GVkoSobdu2lVvgFMDj8fDRRx9x4MAB2rdvT0JCAgDdunUjKSmJmTNnkpKS4t2/sLCQjz/+GIC+ffvWytwB0tPTeeihh9i7dy9mSiLm/tBpcyGhRa1kSoRSKxl/CbXqdn9ROxmR0GbWSQr0FERERCKOLSMK889E9u/fz5AhQ9i9e3egpyQiEcYe6AlEgvnz5zNq1Cg6duxI48aNSUxM5MCBAyxfvpydO3dSt25dhg4d6t0/Li6OoUOH8swzz/DAAw/Qo0cPEhMTmTt3Llu3bqVbt2706NGjVuaekZHBkCFDSEtLw74hAXNvdK3crgQ3tZIJPapuL+Gv6na1k5FSjvKfr4uIiIhILTP3RcN6i13sYsiQIYwYMYI6deoEeloiEiEUuNeCs846ix07drBq1So2bNhATk4O0dHRNGvWjEsvvZR+/fqRmJhY5piuXbvy7rvvMnr0aH799VeKiopo2rQp9957L9deey2G4f/TTnJycnjkkUfYsmUL5qZ4zN06pV/USqaUqtv9R9Xt/hVq7WRERERERKrD3BMDpsU2tvHwww8zfPhwb2cBiVwWYAVRKxeVboUnBe61oFWrVjz00ENVPq5Dhw68/vrrfpjRseXn5/PYY4+xfv16zC1x2HfGBWQeElxCLWwPter2UFsoNdSq2/3FX9XtaifjX7Fp+vkVERERCXdmWiyWafE//sfQoUN58803iY1VMaGI+JfebUo5RUVFPPXUU6xatQpzRyzmNoXt4j+hGLaH0kKpocaf1e1aLDU0acFUkdpj2PVJn4iIhB9zeyzmtljWrFnDE088QWFhYaCnJCJhToG7lOFyuXj++edZvHgxtl0xmJvjMQieU20kcEKpb7s/hVorGVW3y6HUTkZEREREIo2BgbklHltaDMuWLePZZ5/F5XIFeloSMAYeK3guKHMLS0pMxMvj8fCvf/2LOXPmYEuPwv6/BIXtAqiVjNSOUKxuVzsZEREREZHgZ2Bg35iAbU808+bN4+WXX8YdYuuIiUjoUOAuAFiWxfDhw5k6dSq2/VHY1ycpbBdAYfuhVN1eQtXtIiIiIiISagwM7OsTse2LYvr06bz11ltYlvpOiojvKTURAL799lt++OEHbJlO7H8mYQTRis0iIiIiIiIiIjVlYGBPScKWGcXEiRP5+uuvAz0lCQDLCp6LhCd7oCcggbdgwQLef/99zEIH5lqF7XKQmZzsl0p0y0+L1NgaN/TLuAA4HdgKi30+bNFx8T4fE6A40T/V7QdO9M+fjeJEvwwLQEFD/5xN0bj1Xr+MmxhV4JdxPX58bt+wubFfxrVl2P1SGRCz2z+PRewe/7xitgwoSPZPjUTsXjfuaN+PHbW3EMvhnzmb2fm+H7RuMrj881xhJibg2bnLL2N78v3wWIiIiIQ5wzKwr03EfXomH374IS1atOD8888P9LREJIyowj3Cpaam8vzzz4PLwLYqEcOtHwkpYSYn+2XcUA3bRUREREREJDwYbhvmqgRsbpMXXniBTZs2BXpKIhJGlK5GsMzMTB5//HFyc/Mw1yRiK9AJDyK1SdXtJUKxul1EREREREKbUWjHtjqBgvwChg0bRkZGRqCnJLXEgxE0FwlPCtwjlMvl4tlnn2XHjh3Y/xePLdMZ6ClJEFF1+yFU3S4VCLV2MiIiIiIiUp4ty4m5IZ5du3bx9NNPU1zs+zaiIhJ5FLhHqHfffZdly5Zh2xmDuSs20NMRiTihVt0uoS0U+7eLiIiIiNQGc3cs5o5YVqxYwdtvv42llSzDmgVYlhE8l0A/IOIXCtwj0A8//MD48eMxs6Kwb04I9HQkyKi6/RCqbvdSOxmpbbYMtTkTERERkdphbo7HzIxi0qRJjBs3LtDTEZEQp8A9wixdupR3330Xs8iBuTYRw49VjxJ6/BW2S1n+qm6X2uGvdjIiIiIiIhIYBgbm2kTMIgcjRoxg0aJFgZ6SiIQwBe4RZPv27TzzzDNYLrCtSsRw6b9faoeq22tHqC2WKmWpf3vtiNmtD5pFREREpDzDbcO2MhHcBs899xxbt24N9JTEH6ySlpvBclFPmfCkxDVCZGdnM2zYMLKzs7GtTcCWrwBNylJ1e+1QdftBaicjIiIiIiLBxFZgx1yTQG5OrjdDERGpKgXuEcDlcvH888+zdetWzE3xmAeiAj0liSCqbq8dWiy1doRiOxktmFo7YveoNEVEREQkHNgyojA3xrN9+3aeffZZXC5XoKckIiFGgXsE+OCDD1i0aBHm7hjMnbGBno4EoVBbKFVqj9rJ1A61kxGR6rDFxAR6CiIiImHJlhaDuSuGJUuW8N577wV6OuJjlhU8FwlPCtzD3KRJk/jmm28wc6Iw/5eAgXrXSlmh2EomVKvb1U7mILWTkaOxZeiDHhEREREJHAMDc2MCZnYU48aNY8KECYGekoiEEAXuYSwlJYW33noL0+XAXJOI4ce2AiKHU3V77VE7mdoRiu1kRERERESkegzLwFyTiFns4J133mHNmjWBnpKIhAgF7mEqLy+PF154AbfLg21VAkax/qulPFW3H0bV7WWonYyIiIiIiEQyw2XDtioBj9vin//8J7m5uYGekviAZRlBc5HwpBQ2TL377rts374d26ZYbLmqfpXaper22hOK1e1qJ1OWP/u3a8HUsmJ2h94LWn++Bo/dG3q/LyIiIiK1zZbnwNwYx86dO3nnnXcCPR0RCQEK3MPQrFmzmDx5MmZmtBZJlSNSdfthVN1ehqrbRSTi2E2/DW1r0shvY4uIiIj/2dJisGdEM3XqVKZPnx7o6YhIkFOiEmZ2797N66+/jumxY6bEa5FUqXWqbq89oVjdHqrUv11EREREJHIZGNjWJWCe7ebNN9+kXbt2NG4cemd8SolwbeUybdo0XnzxRQCGDh1K7969y+0zb948xowZw4YNG/B4PLRs2ZK+ffvSq1evI447ZcoUfvjhB7Zs2YLNZqNNmzbceOONdO7cucL93W4348aNY/LkyWzfvp2oqChOPfVU+vfvT4cOHSo8prCwkC+//JIZM2awe/duYmNjOf3007njjjto2bJl1R+MAFOFexhxu93885//JCcnB+PPeIxi/1VqSWhTdfthVN1ea9RORo7FlqFaABEREREJPkaxDdvaOHJzc/nnP/+Jy+UK9JREvHbv3s0777xDTEzMEfcZN24cw4YNY/PmzVxyySX07t2bvXv38sorr/Dee+9VeMx7773HK6+8wr59++jduzeXXHIJmzZtYtiwYYwbN67c/pZl8fzzzzNixAhcLhfXXHMNXbt2ZeXKldx///3MmTOn3DFFRUUMGTKETz/9lLi4OK699lrOOussfvvtNwYNGsTatWur/8AEiN7VhpEvv/ySlStXYu6MxTwQFejpSJDyZ9iu6vbwoHYytcef/dtFRERERMS3bBlRmDtiWc1qPv/8c+64445AT0kEy7J49dVXSUxM5IILLmDMmDHl9klLS2PkyJEkJiYyatQo7xkaAwYMYNCgQYwdO5YLL7yQ9u3be49ZtWoVY8eOpWnTpowaNYqEhAQAbrrpJu6++25GjhxJ586dy5ztMWPGDGbPnk379u15++23iYoqySf79OnDvffey+uvv86ZZ55JbOzBFtjffPMNq1atolu3bjz33HPYbCX14d27d+fJJ5/k1Vdf5dNPP/VuDwWhM1M5qrVr1/LJJ59gL3RipqqiVmqfP8P2UK1u9ye1k6k9odpORgum1p7YPVagpyAiIiIitcRMjcdeGMVnn33GqlWrAj0dqSILA48VPBfLB62gv/vuO5YtW8awYcOIjo6ucJ/JkydTVFTENddcUyYgT0hI4NZbbwVgwoQJZY758ccfAbjtttu8YTtA48aNufrqqykqKmLKlClljhk/fjwAd911lzdsBzjllFPo0aMHGRkZzJ4927vdsizv7Q4ePLhMqN61a1c6duxIamoqy5cvr+SjERwUuIeB3NxcXnjhBTxuC2NNAoYnPHtRSc2FYiuZUKZ2MmWpnYyIiO/ZjnLasIiIiPieYRkYq+PBg7etr0igpKam8uH/s3ff4VHUWx/Av7N900kI6SEJTSAJvYMgCIqiSAdFFBArCmIv4LVc4LXARcGCCIp4r6CoWGhSoiBSpEMA6SQkQHrdbLI78/6xJrBkgRB2Mlu+n+fZ59HZmd+e7JLN7pkz53zyCYYOHYrWrVtfcb9du3YBADp27Fjtvk6dOtntU9tjzGYzDh48CIPBgOTk5Bodc/bsWZw/fx4xMTGIjIysdkznzp0dxubq2DfAA/znP/9BRkYGNMf9oSrlS0p1j9XtdUvO6na2k6k7bCdTt4zneTKaiIiIiJxDZdJAOuaLcziHWbNmYerUqRAEft6k2jl79izGjBlTbfvixYuvepzFYsG///1vhIWF4eGHH77qvmfOnAEAxMTEVLuvfv36MBqNyMrKQllZGQwGA0wmE7KysmA0GlG/fv1qx0RHRwMA0tLSqrZlZGTAarUiNjYWGk313IKjYyr/21FcVzrGHbDC3c2tW7cOa9asgabAAFUmK5zoyljdXrdY3e4Z3LWdDBERERERyUt1zghNvhHr1q3D2rVrlQ6HroMkuc7tRnzxxRc4evQoXnrpJbv2LY6UlJQAAHx9fR3eX7m98oqNyv39/BznNiq3X3qFR+V/X+mYyx/j0v+uaVzugqWMbiwzMxPvvvse1KIWqsP+EJzQ94k8k7sOSmV1e92Ss7qd7WSoJlT5/FhCRERERO5BgADVYT9oOlowa9YsJCYmIioqSumwyA1FRUVds5r9cqmpqViyZAlGjBhhN+iUXAMr3N2UxWLBW2+9hdLSEqhSfSFU8KUkchVyVrdzWCrVBAemEhERERHJT7CoIBz0hclkwptvvgmLxaJ0SOQFKlvJREdHY/z48TU6prJSvLJy/XKXV7Rfq7LcUTW7o6r3qz3Gpf9d07jcBUvJ3NSXX36J/fv3Q53hA1X+1S8bIe/G6nYHWN1ONSBnOxn2byciIiIi8gyqAj3UZ32QilQsWrQIEyZMUDokuhoJkGQsULputWgrYzKZqnqa33rrrQ73efvtt/H2229j6NCheOqppxAbG4v9+/cjLS0NgYGBdvtmZ2fDZDIhNDQUBoMBAGA0GhEaGoqsrCxkZ2dX6+Oenp4OwL73emRkJNRqNTIzM2GxWKr1cXd0TOV/X6lHu6Nj3AHLot3QiRMn8MUXX0Bj1kN90r3O8BB5Onetbmc7GSIiIiIiotpRn/KDxqzHV199haNHjyodDnk4nU6HO++80+GtSZMmAIDk5GTceeedaNmyJQCgbdu2AIDt27dXW2/btm12+1S63mP0ej1atmyJsrIy7Nu3r0bHREVFISwsDGlpacjIyKh2zNatWx3G5uqYcHczkiRh1qxZEEURwiFfCK50Vo5cDqvbHWB1OxERERERETmRIAkQUn0hiRdzNkRy0ev1eOGFFxzeunXrBgC4/fbb8cILL6BPnz4AgP79+0On0+G7775DZmZm1VpFRUVYsmQJAGDgwIF2j3P33XcDsHXZKCoqqtqemZmJ77//HjqdDv3797c75p577gEALFiwAOZL8kaHDh3Chg0bEBQUhJ49e1ZtFwSh6nE//vhju9+dTZs2Yd++fYiLi0Pr1q1r9VwphS1l3MyaNWuwb98+qM/5QFXMxCERERERERERkdJUJVqoMo04iINYuXIlBgwYoHRIdAUu1VKmjkRGRuKxxx7DnDlz8PDDD+OWW26BVqtFSkoKsrKyHA5fTUpKwvDhw7Fs2TI8+OCD6NWrFyoqKrBx40YUFhZi0qRJiIiwn/HVp08f/P7770hJScH48ePRrVs3FBQUYOPGjRBFEc8991xVf/hKw4cPx5YtW5CSkoJHH30Ubdu2xYULF7Bx40YYDAa8+OKLUKncq2acCXc3UlRUhA8//BAaSQvVSd9rH0BeTR0YCEi1aAZWE4IAQS/P7AAhNESWdQHYng+LfC1IyiMDr71TLZnC5JvVUBgr3x8uqwEQZHrKVe0LINc74VM3bZRpZaBMkvdkabimQLa1f8hug/rNj8my9o4zsYBvuSxrW3INKImTZWnos9QojJfnA7vfGVmWBQBoS0WU+8n3u682yffv3OIbBMPpPHkWV6mACnmGnanCGkDKzpFlbbWfH6xXGE5FREREdUd9yhdCeAU++eQT9OjRo1qvbCIlDRkyBOHh4fj666+xZs0aSJKEuLg4PPTQQ9Uq1StNnDgRjRo1wvfff4+ffvoJgiCgadOmGDVqFLp27Vptf0EQMG3aNCQmJuKXX37B8uXLodPpkJycjDFjxiApKanaMTqdDrNmzcJXX32FdevW4ZtvvoGPjw969OiBcePGIS4uztlPhewESZIrI0fONmvWLPzwww/Q/B0A9QWj0uGQi1PL+YddkO9ssOwJdxkx4V6d1SDb0lC1ly+xzIS7Yz9kt5Ft7R1nYmVb25Ir3z9EfZZatrXlTrjLyZglT9K6kmwJd0C2hDsA2RLuAJhwJyIichHWUBMszQpx11134bnnnlM6HLrEmDFjcKwwCzljuigdSpWQxX+icUAoFi9erHQo5ETuVY/vxQ4fPowVK1ZAU2KA6oKMGSzyCO6abCciIiIiIiJyZ6osA7QlRvz00084ePCg0uEQkQKYcHcDVqsVs2bNAiRAOOILAUx4kmdidbtj7lrdTkRERERE5G0ECMBhHwgQMGvWLFgs8l75R0Suh5kWN/Dzzz/j8OHDUJ01QlXKtvtE5B7ctZ0MERERERHRjVCZNFCl++Do0aNYsWKF0uHQJSTYhqa6zE3pJ4RkwYS7i8vLy8Mnn3wCjaiF+gwHpdK1sZ0M0Y2Rs387ERERERF5B/UZX2hFHRYsWIDs7GylwyGiOsSEu4v76KOPUFxcDBzxgWDly0Wei+1kHJOznQzVPQ5MJSIiIiLyDoIoQDpsRElJCT788EOlwyGiOsQMrgvbu3cvVq9eDU2RAaocJt3o2mStbiePw/7t5Cp2nIlVOgQiIiIiIqdT5eqhLTRi3bp12LVrl9LhUCXJhW7kkZhtcVEWiwWzZs2CABUHpZJrYDsZug7s305ERERERN5OgADhiA9UggqzZs1CRUWF0iERUR1gwt1Fffvttzh58iRUZ4xQlXFQKnk2tpMhIiIiIiIiTySYNRBOGXHmzBksXbpU6XCIqA4w4e6CsrKysGjRImisOqjTOSiVaobDUj0P+7fXPQ5M9TyWXBkvtyAiIiIiqgF1ui+0Vj0WL16Mc+fOKR2O15MkwWVu5JmYcHdBn3/+OUwmE3DYB4LIXz4icj72byciIiIiIqobgiQAh4woKyvDokWLlA6HiGTGjIuLycjIwMqVK6E1GaDK0ykdDrkJdx6WynYynof92x0rk7Syrh+uke+5+SG7jWxrExERERF5A1W+HrpSI9auXYv09HSlwyEiGTHh7mKWLFkCq9UKHDNwUCq5BraTUQTbyRAREREREXkW6ZgBVqsVixcvVjoUryZJrnMjz8SEuwvJyMjAqlWroC01QihgdTsRERERERERkadQFeqqqtzT0tKUDoeIZMKEuwtZvHixrbr9OKvbqebYTuYK2E7miti/3TEOTFXGjjOxSodQa/ostdIhEFVR+/kpHQIRERHVgHTMAFEUWeVO5ME0SgfgbCkpKdizZw+OHTuGY8eOobS0FH379sXUqVOr7ZuZmYkRI0Zcca3evXvjX//6V7XtO3fuxMcff4wzZ84gPj4ejz32GFq1anVDcWdkZGD16tX/VLfL2+eXqMbYTkYRbCdDRERERETkmVSFOuhKfPDrr79izJgxiImJUTok7yIBkuRCuQ62lfFIHpdwX7x4MY4dOwaj0YjQ0FCcOXPmmsc0btwY3bt3r7Y9ISGh2rbjx4/j+eefR9OmTXHPPfdg3759eOaZZ/DZZ5+hYcOGNxS3KIpQs7qdroM7V7eTZ+LAVCIiIiIioquTjushJpfiiy++wKuvvqp0OETkZB6XcJ84cSJCQ0MRHR2NPXv2YNKkSdc8pnHjxhg3blyN1l+/fj0aNWqEefPmQaVSQRRFPProo1i7di0mTJhQq5jT09OrqttV7N1OXoLtZJTBdjLKKJPkvXIpXCPfyYgfstvItjYRERERkTeyVbkbsW7dOowZMwaxse7bZpGIqvO4zEvbtm0RExMDQaZWGFarFSqVqmp9QRCqEu+19eWXX9qOPyZjaSjR9WI7GSIiIiIiIiJZVPZy/+KLL5QOxcsIgORCN3a58EgeV+FeG9nZ2VixYgUKCwsREBCAxMRENGrUyOG+vXv3xrJly/Dkk0+iZcuWOHjwII4ePYrnnnuuVo+dnp6ONWvWQFtihKqQ1e1Uc2wn45nYv10ZHJjqmSy5PJFNRERERK5JVaSDrtiI9evXY8yYMTfUppiIXAsT7gD++usv/PXXX3bb2rRpg5dffhlhYWF225s1a4bp06fj008/xQ8//IDY2Fi8/fbbV0zQX8sXX3xR1budyGXIXN3OdjKeif3biYiIiIiIak46boDYyoQvvvgC06ZNUzocInISr064GwwGPPDAA+jevTsiIyMB2IaiLlq0CLt378bkyZOxcOFCGI1Gu+O6dOmCLl263PDjp6Wl4ddff2V1O103VrdTbbB/O7maHWfYq5KIiIiIvJetyt2nqso9Li5O6ZC8gsx1ekSe18P9etSrVw/jx49Hs2bN4O/vD39/f7Ru3RrvvfceWrRogbNnz+Lnn3+W7fEXL15s693O6nYiAtvJEBEREREReRvpmAGSJLGXO5EH8eqE+5VoNBoMGDAAALB3715ZHqOqur2Y1e3kYthO5orYToZqo0zSyrp+uEa+djs/ZLeRbW0iIiIiIgJUxVroin2wYcMGnDp1SulwvIPkQjfySEy4X0HgPy07ysrKZFl/6dKltur2E6xup+vDdjLkity5fzsHphIRERERkZIqq9y//vprpUMhIidgwv0KUlNTAaCqt7szlZaW4tdff4WunNXtRGQjdzsZ9m8nIiIiIiJyTapiLfTltir34uJipcMhohvk1RmYI0eO2KrML7Nz50588803AIC+ffs6/XHXr18Pk8kE8bRXz6ylWpC9up3tZK6I7WSIiIiIiIhILtZTGpSVleHXX39VOhSPJ0mCy9zIM3lcxnfTpk3YtGkTACA3NxcAcPDgQUyfPh2ArVXME088AQCYN28e0tPTkZiYiNDQUADA8ePHsWvXLgDA+PHjkZSU5PQYf/rpJ6gFNVTZbCdDREREREREROTtVNkGqJuV4scff8Q999wDQeaCOCKSj8cl3I8ePYrVq1fbbcvIyEBGRgYAIDw8vCrh3q9fP2zatAmHDx/Gtm3bYLFYUK9ePdxyyy0YPHgwWrVq5fT4jhw5gsOHD0NzwQeC1asvMCAiIiIiIiIiIgCCKEA4p8Nx6TgOHTqEFi1aKB0SEdWSxyXcx40bh3HjxtVo3wEDBmDAgAEyR2Tvp59+AgAIZ1ndTtdH7e8POGiB5LwHUMu3NuRtJyP6yNv/3BqghyBjxxpzsA7qcvkeIDtJ3te2rIF8/y57dTog29oA0DvokKzrj/LPlnX9UrFctrX3luvwePgG2dafdfY2JEVlyrb+7qOxgMEq2/q+h+SdwaIxARajfOsb8uRtwyWp5a3Ikgxa+RY3aCEUmWRZWqgfAjHzvCxrA4BKb4BoLpNtfSIiIpKXkGEAwmxV7ky4y0jej8JE3t3Dva7ZDUstkfGLIhERERERERERuRVVCYenEnkCJtzrUNWw1DMed2EBERERERERERHdIOtpDk8lcndMuNehqmGpWWwnQ0RERERERERE9lRZBqgFDX788UdIEnufOJskAZIkuNBN6WeE5MCEex2pHJYqnNdzWCpdN7W/v8wP4L7924mIiIiIiIg8RdXw1OO24alE5H6Y+a0jHJZKJA+5B6YSERERERER1SUhw5Y7+vHHHxWOhIhqgwn3OsBhqUTuyxogb0LfHKyTdf3sJHmvXihrIMq6PhERERERkbfh8FSZSS50I4/EhHsd4LBUIqLr16vTAVnX7x3EyzOJiIiIiMg1cXgqkftiwr0OcFgq3Qj2byciIiIiIiLyLhyeSuS+mHCX2fHjxzkslYiIiIiIiIiIauzS4al///230uF4GMGFbuSJmAGW2ebNmwEAwnkOdiRyNg5MJVc2yj9b1vVLxXJZ1yciIiIiImUJ52zfeStzS0TkHphwl9kff/wBtaCBUMhhqUREREREREREVDNCkRYaQYstW7YoHQoRXQcm3GWUk5ODw4cPQ5WjgyDxMhG6fuzfrixrgLwV9OZgnazrZyfJ+/qWNRBlXZ+IiIiIiMibCRAgZGtx9OhRXLhwQelwPIfkQjfySEy4y2jr1q0AAClLo3AkRERERERERETkbqQsW8eEP//8U+FIiKimmHCXke2SHwGqPPaZJiIiIiIiIiKi66PK00GAwLYyRG6ECXeZmM1m/PXXX9CVGSFY+DQTORsHpnq2Xp0OyLp+76BDsq7v7vaWy9vuaNbZ22Rdf/fRWFnX9z0k7/NDdCNUeoPSIRAREZETCVYVdCYjdu7cibKyMqXD8QxKt5FhSxmPx0ywTPbs2QOTyQRrJp9iIiIiIiIiIiKqHUumCuXl5di5c6fSoRBRDTAbLJPKS31UuazCpdrhwFQiIiIiIiIiUv+TW2JbGSL3wGmeMpAkCVu2bIFOMgAmeZOaRCQPa4C8J8vMwfK2pMhOkve9p6yBKOv6REREREREZCOUaaCXjPjzzz8hSRIEQVA6JPcm8fkjebHCXQYnTpzA+fPnYc1UQQB/iYmIiIiIiIiIqPYsGQKys7Px999/Kx0KEV0DE+4y+PPPPwEAqhwOVSOSAwemkqsb5Z8t6/qlYrms6xMRERERkWtR5di+B1fmnKj2JMl1buSZmHCXwR9//AG1oIFQyIQ71Q77txMRERERERFRJaFQC42gZR93IjfAhLuT5efnIzU1FUKuFgJ7QhERXbdenQ7Iun7voEOyrk9ERERERORsAgQIuVocPnwY2dnyXlFLRDeGCXcnqxxggSyt0qEQEREREREREZGHkM5rAABbt25VOBI3JrngjTwOE+5OtmfPHgCAKo/tZIjclTVA3h7x5mB53x+yk+RtGVTWQJR1fSIiIiIiIqpOlW/7rrp7926FIyGiq2HC3cn+/vtv6KCHUCFvwos8F/u3Xx0HphIREREREZE3Eiwq6GHA33//rXQoRHQVGqUD8CRmsxmnTp2CqkAPdm8nIiIiIiIiIiJnEvNVOCOcQWlpKXx8fJQOxz1x5iLJjBXuTnT8+HFYrVaI+fzFJSIiIiIiIiIi5xLzVJAkCceOHVM6FCK6AibcnejIkSMAAKGYA1OJiIiIiIiIiMi5VMW2ZhWVOSgicj1sKeNElW92lW9+REREREREREREziKU2Io82ce99gRJ6QjI0zEz7ER///03tByYSjdA7ecHSPK980uiCFitsq2vqh8MmM2yrS+GBMi2dtVj6LUQKkTZ1i9oIm+PvdIwAeoy+dYviREBGT+cNE1OQ0ZpoGzrdwk5iePmMNnWB4BH6+1Atny/Zmig9oOfyiDb+l8X15NtbQDYVxqDZv7nZX2M3eVxsq4v6mRdHr6Z8n8D0BXK+I8UgCT3NZSCzO37SkpkW1oV4AexWL71AUBlNEI0mWR9DCIiIlIGB6cSuT62lHESs9mMkydPAgV8SomIiIiIiIiISB5igQqnT5+GiSfYiVwSs8NOcnFgKp9SIiIiIiIiIiKSh5ingiiKHJxaW5IL3cgjMTvsJJWX8nBgKhERERERERERyaVydiDbyhC5JibcnaTyTY4DU4mIiIiIiIiISC6VxZ5HjhxROBIicoTZYSc5cuQItNBxYCoREREREREREclGsKigg4EJ91oRAElQOohLuFIs5CyscHeC8vJy28DUQp6/ICIiIiIiIiIimRXaBqeWlZUpHQkRXYYJdyc4ceIELBYLxHyelSIiIiIiIiIiInlZcwWIoojjx48rHQoRXYYJdyc4evQoAA5MJSIiIiIiIiIi+an+yUFxcGotSC50I4/EhLsTnDt3DgAgmNi/nYiIiIiIiIiI5CWU2XJQlTkpInIdijUdnzRpEgBAEAT85z//USoMp8jJyQEACOU8f1EbzTo0RrdBHdGoVRwat4lHcHgQstJzcG/so1c85ssT8xAe18Dhfbnn8jEicoLD+1p0aYr7XhmCmzo3hd6ow9mjmVi9aANWfLAaoihW279R6zg8PnssGreNx7mTF/DFa0uxZcWO2v2gbqBZuwR0vasdGiXHolGrWASHBSHrbC5GN3va4f7+wb7odld7dLy9FeJbRCMkqh4s5VacOpKJtd9sx6/fbIckOT5l27xtHEY92Rc3tWkInUGLjJPZWPvNNvz4+SaIYvVjGrWMwsNvDEXjmyJwLiMPiz/eiD9TDjv153cn7W6Kweg72iOxUTiMei3O5xZjw46/MW/bdpSaKxwek9AgGI/37YIOjaLhp9chI78Qq/f8jQUbt8NssVbbPzo4EC8N7IW2cVHIKS7FF7/vxOcZe+X+0dxSsC4c3eoPQYJfKwRpAyGJpbBYT6LM9DNKiz+ptr9KFQG/gOegN/SCSlUPovUCyspWo7hwFiSpwMH+IfAPfB16Qy8IUimk0mVAyXwA1d+3KolWFc6fTIC51Ad6n1KExZ+ASn3l/d1d+3q90TygPcIMMXjlpmCoBQEZxUXYcS4dn+7bgRMFeQ6PC/f1w5T23dEzOh5BBgOySkuw9tRR/GfnFhSWm6vtH2Lwwb+G9kaPJnEoMZfjm50H8OnvOyBe4b2ObELr+2Ps/d3RsX08AvyNyM0rweYtR/H5V5tRXGz/PAcF+uCJR3qjY/sEmEzl+HnVXvx32VaHfxvIsfFvDkeTVg0R1TQCgfUDYDaV48LpLPyxYjtWzF2NotziasfwM5K82vROxN1P9EeLLk3hV88XRTlFOLn/DL5/fyW2r9ptty9fC/n0f6gP+o/vg7iWMYAApB06i1Wfrccv89c5/Mza6c62GPbM3WjcJh4qtQqnDqbhp4/W4NfFvzlcv03vRDw0czSim0Xi9ME0zH/+SxzY7L2fV3sM6Yzkni3QqFUcElo1hG+AD9Yt+R3/N+aDavtGNQ5H98Gd0K5fa0Q1CUe9sCAU5xXj0Naj+G7OL9ibcvCKj9N3TE/c/fjtaNgiGqJVxLHdJ/HNez9i2y+7HO7fc3hXjJ46FKExITiy/Rg+evpznDqY5rSf2xVdz2sR1jAUS05+eMW1Nn79B6bf+x+H9/G1qGPltoR7bm6uwoEQ0eUUS7jv2bMHguAZPc9zcnKgghqwesbPU9d639sdgyfdiYpyC86kpiM4PKhGxxXnl+C7Ob9U224qdjwwpMvd7fHat8+ivKwCKcu2oCi3GJ0HtMPjs8cisetNeHPELLv964UF4e1fpyEnMw8/f/IrEpJi8dryZ/H8rW9c9QOfO7tleGcMeuI222tx+CyCw4Kuuv/NgzriqTkPIiczD3t/P4SsNaWoV98fXW9PxtNvj0SHXs3x78c/r3Zc576JePWjB1FutuD3n3ejKL8UnW5tiUemDUKLdvGY/sQXdvvXC/XH9CWPITenGL8s/wvxTcIw7Z0RePGxL7D3r1POewLcxOBbkvH8mD6wiiI2/nUUF/KKcVNcGB4Y0BFd2sVjzEfLUFxWbndMUkw4PntkKLQqFdbuP4pz+UXo1DgGj/XtjE6NYzB+/nJUWC8m3Q1aDT55aBA0KhWWb9+PyHqBmDqoD4rWW7D8sGf++6+t5gGdMST6GVglK/4u2gGteg8EIQAaTSMYDHdUS7ir1Q0RHPoj1OpQlJlWw2I5Bq2uNXz9JkCvvwU52QMhifbJ4aDgz6DRNIKpdDl81PUh+E0EBC2k4upfkkSrCvvW34rUzT1QVhxQtd3oX4jm3TYhuc86j0y8t6nXA/6aekgrPYa/0gwQJQlN69XHsGZJGNy0JR5Z+wNS0k7aHRPrH4TlA+9FqI8v1p46iuP5uWgVGo5xSe3RMyYeQ1b8F/lm+78pH/cbiEb+wfhxzyEEGA14vFdnaFQqzNu4tS5/XLcSGRGEubNGI7ieLzZv+Rtn0nJxU7MIDB3UHh3bx2PilCUoLLr4PL85bRBiooLx6/qD8PPT44H7ukGjUeHzJX8o+FO4l0ETb8exXSewa90+5F8ohMFXj+admuCBf43AnRP64qkuLyMrPadqf35GktdD/zcaI54biAtp2fjzp79QmF2IwNAANGmbgOReLe0S7nwt5PPil0+hz309kHc+Hxu/3gxzaTna3pqMSR89jBZdmuHtB+fa7T/widsx8YPxKMguxPqvfkdFuQU9hnTG859PRHxSLOY/96Xd/nGJsXjrl5dxbNdJ/PTxWiR1b46Za6bisbbPIe1IRl3+qC7jvleGoFHrOJQWmZCdngPfAJ8r7vvAGyNxy8huOHUwDdtX7UZRbjFimkaiy93t0XVgB8ybtBA/fLCq2nEPv3M/hj1zNy6kZWPlgnXQ6jToNaIb3vrpJcx98jOsmLfabv92fZPx6tdP4681e7B91W50uL013l7/GiYkTkFBdqHTnwNXcT2vRaXje07hjxXbq20/dcBxQpyvRd0TRAFqQYPs7GylQ3EvrtbKxZViIadRLOEeFham1EM7XXZ2NjSSFgKYcK+NtZ+nYO0XKTh9MB2WCgt+Fb+p0XHF+SX48vWa7evjb8TT8x+F1Sri2Vtew987TwAAPp/6Nd5Z/xpuHtYFvb7ripSlW6qO6XJ3e5SVmjGx40so/yd5+dq3z+L2cb099gvM2iWb8etXm3H60FlYKqxYU/zFVfdPP3YO04bNxvbVeyFJElT1gwEAn7/zC/7zw9PofkcrdLs9GX+s3ld1jI+fHpNmDIdolfDCyHk4ut/2gW3xrFWY+d/H0ePO1ui5eh9+++nil8/OtybCbCrHk2Pmo9xsAQBMfWcEbhvY1usS7iGBvph8by+IoogJ/16K1BMXLx98YEAHPDGsB57s1xUzfkyp2q4SBLw1vB98dFpM/HwFUlJt//4FAXjvvgHol9wEY3q0xWcpF6vh2sZFIizQH32nL0BeiQkA8NyAmzGiZRIT7pdooI/FkOhnkGVOw1en30CxJR+P1ru0qrD6n9mAoBlQq0NRmP8qSksWVm33D3wNvn6PwD/gBRTmv1i1Xa1JgE7fEdnne8NiOQyj2g+oOADBdwJwWcJdtKqwbuFDSD/UEpd/cjMV+WPX6juRdSYOfcYu8Lik+6KT02GRbFd3fL21U9X27lENseTO4Xilc69qCfe3ut+KUB9fvPbHOnxx8OJ7zqudb8FDye3xXIceeGXzr1Xb4wProUN4NO6euxhHz9uSlQczzmN89/ZMuF/F5In9EFzPF3M+/BXf/3ixwu3xh3tj+OAOeOjBmzHrg7UAgOioekhqGY2xj36Gk6dsXx7/PnYeo4Z2YsL9OgwKfwTm/OrJirFvjcK9Lw/GyJcG4YMnFgDgZyS59X+oD0Y8NxBrP0/B7Ec+gaXCYne/WnOxJSVfC/l0u6cj+tzXA5knzmNip5dQmFMEANBoNZj27TPoO6YntqzYjs3f25KLYQ1D8fA796MwpwhPdHgR509nAQCWvPEt5m6fiWHP3I1Ny7fh0NaLfZN7j+qGk/tOY3L3VyFJEgRBwAdbp6PP6Jvx+dSv6/6HdgEfTfkc2ek5OHvsHJJ7tsB7G1+/4r5/rdmDpW//gON7TtltT765BWaunYoJb9+P37/5E7nn8qvua9GlKYY9czfOHjuHiR1fRHF+CQBg2Ts/4sO//g8Pv3M/tv68s+r1A4B+D9yCTcu34o1h7wEAFr+2FIuOvI+uA9tj1WcbnPfDu5jreS0qHd9zqsbft/laKEcjaqu6LhCR61CsB8qyZcuqbu4uJyeH7WRuwPG9p3B8z6lqX0CcqcfQzqjXIBApX/9R9eUFACrMFVUfgO969Da7Y1RqFSAB0iWX7lotVqjVnvtan9h/Bsf3nYGlonp7EUf2/nYI21btqXYJbl5WEVZ+ZfsymNy5sd193fu3QlB9f/z28+6qZDsAVJgtWPzuSgDAnaO72h2jUguQJEC6pJ2AaBWhUnnua3ElXZPjYNBp8Nuu43bJdgD48pe/kF9iwqAOLWHQXkz0tk+IRqOwEOw4kV6VbAcASQJmrdwEABjeOclurcrn9tI2GVZRgtpDrkxylj5h90MtaLA8fRaKLfkO9rgssaJuCL2hFyyWMygtWWR3X3HhuxDFEhiMQyEIxkvusb0WEi75vZSscPQnfN/6W/9JtgOodhLY9v9pqS2xb8Ot1/zZ3E1lsv1ym8+eRoG5DA0D6tltj/UPws0x8UgrzMfig/btHGbv3IySinIMatICRs3Fgeiqf/79X9raxCqKUHvhe1FNRUYEoWO7eGSey8cPP9lfTr7oy80wmcrRt09LGPS257nqvefS59gqQqXme8/1qLhCa7Hfltn+Nkc1jqjaxs9I8tHqNBj71iicP53lMNkO2J63Snwt5NPtno4AgG9n/VSVbAcAS4UFX0xbCgC4+4n+VdtvH9cbOoMOK+attksQFueX4H8zvgMADHikr91jqNQqiFax6nOxJEm2z6te/FrsTTmIs8dq1lt67Rcp1ZLtALDv91TsSzkInV6LFl2b2d034JF+AID/TV9eleAFgPOns/Djh2ugM+hw29hb7I6pfJ0qiaIESZQ8/nW6nteiNvhaKKhcxYQ7kQtSrMLdU1RUVCA/Px+aEiM4MrVuafVa9LmvBxrE1kdZiRkn9p3G/t8POext2fqWRAC2yonL7fs9FaaSMrTo2hRanQYV5bYvQ9t+3omHZtyHD7bOwF9r96Bhixh0HtAOL9/xb1l/Lk9h+ecLpNVq/3q06toEAPDXb4eqHbN/+wmUlZrRvG08tDo1Kspta2xbn4qxzw/AnC8mYOefx9GwUSg69WiGV578stoani4k0BcAcDarep9vUZKQkV+IFlFhSIoNx47j6QCATo1jAAB/HDlV7Zj03AKczMpFfGgwYoIDkZZrW3fnybPILS7F10+OwroDxxAe6I9+yU0w7bf1Mv1k7kevMqKJfzucKzuFbHM6ooxNEOvTHD4+7WG1HIW57DcA9kkvnb4bAKDc/Bsur0CXpBJUlO+A3tALWl07lJs3AwCsluOoKN+L4PrfoMz0AwRVMGC8CyixvwJFtKqQurnHP+teLTkp4dDmHkju7ZmtZS7XPiwKgXoD9mfZf8nsEmn7vdh09nS1qzhLKiqw89xZ3BwTjzYNIrAl4wwA4ER+LvZlncOisUOxcv8R+Ol1GJB8Exb/uRvkWJtWsQCAHbtO4fL2yCZTOfannkXHdvFo0TwSu/acRlp6Do78nYnZM0difcoh+PrqcestLfDt938pEL3n6XxXOwDAyf2nq7bxM5J82vZNRr0GgVj+n58hiiI63tEW8YkxKC+rwOHtx+yqowG+FnKqbFmZeeJ8tfsqtyX1uAkarQaWCkvVa7Fj9Z5q++/4pwVQ696Jdtt/W/Ynhjw9ALN+ewOpfx5B885N0ahNPGY/Un2WC12fymIg62UzhypfA0ev0/ZVuzF66lC0viURi/91schvw3834Y0VL8Dga8Cpg2fQvl9rGHz12PrTTvl+ADcVElkPdz58KwJC/FGYU4TUP//Gyf1nHO7L10I51mIRRfoSmM1m6PV6pcNxH2zjQjJjwv0GVQ6nkBy3DScZhUTUw4tfPmW3LfPEebw77kPs+z3VbntMs0gAQPrfmdXWEa0izp28gPjEWEQkhOHM4bMAgKz0HLx0+1t45N0xuPvx23H+dBbeGjnb4YcIZ1D7+cmybiXJwYkIZ6psJwPYqhX6DG4PoHpiPTrBNuz27IksXE60ijiXlou4ZhEIjwlB2vELAIDszHy8/OQSPPz0bbhreAdcyCzA9BeX4a8tx5z6M4h67bV3ugEFTa7dK/Fa8ott7V0iQwOq3WcKFxAZZNseHxpclXCPC7VV9p7Kcjw08kx2PuJDg9EwtF5Vwt1UXoFHFnyHF+/uhWGdkpBXYsLbP/2G/57Z53ANbxRhbAyVoEZ+xQUMi3kOLQO7291vtaQjL3cCLBUXB81qNI0AABbLCThisZyEHr2g1iQA/yTcAQl5OWMREPQ6jD7DAckElHwKqdh+mNX5kwl2PduvTICpKADnTyYgorFzf4dcQWJgZ0xu1wUGtQbxgcHoFRuPvDITXvvD/mRRQpDtPetEvuMhUycL83Az4pEQGFyVcJcATFjzPV5v3Qf3tGmB0vIKfLb5L3yUsk3Wn8mdxUTbnuf0dMfP89mzuUC7eERH1cOuPachScArr3+HiY/2we19k2AqK8f/vtmGxf/d4vB4urqhz9wFo58BvoE+aNquEZJ6NMfxvafw9cwfqvZxh89I7qpZB9tVfuVlFfh41zuIT4q1u3/fb6l4Y9h7Vb2K+VrIpyDbVtUeHt+g2n0RCbZWpxqtBhEJDZB2JAPRVa9F9d7ruefyYSouQ4OY+tAbdTCbbK18ju46gdcGvYNxb43C3Y/fjrTDZ/HqndOvmKCkmmkQWx9t+iTCVFKG/b9f/F5h8NEjNDoEpUUmuzYzlc4etf0eRTeNsNv+509/4Z2x8zDyxUFI7tkCR3eewLvjP0ROpuPPyd6sXb9WaNevld22PRsP4O0H5yEr7WLPcL4WypJMtkKbnJwcREZGKhwNEVViwv0GVV26Y2Z9e11a8/lGHNh0GKcOpsFUZEJEQhgGTrwdd0y4Ff9e+TImdX0FJ/ZdrN7yDbQlOksKSh2uV/rPdt8gX7vth7YdxeQeU2X6KTzXuBcGIP6mSGzfkIpdvx+xu8/H3wAAKClyfJaqcrtvoNFu++ED6Zgy/jMZonUvW/efgsViRc+2jdE8LgyHTl2s1Hrw5vYI8rU9bwHGi9UN/gbbf18+SLVSUZnZtp/RviLiZFYeHvnse/udY274R/AYvupAAEAz/w4os5bg27R3caxoF8YFH4WP71j4+T+O4JAlyLrQE5JoSzYKKn8AgCQWOVxTkmxJF5VgnzgXxXPIz30EANBA7fjknLn0+k7oXO/+7iIpsAtaNexW9f8n8nMxacPP2J9tX9Xor7P9ey8qNztcp3J7wGWVQudLi/H00uoDu8kxXx/b81dS6vh5Li6xbffzM1Rty84pxr/+vUL+4LzAsGfuthtGv33Vbrwzdp7dMDp+RpJPUAPb34nhz96N06npmNxjKo7vOYXw+AZ45J370f621pi6bAqe7f0vAHwt5LRt5U70vrc7hjx9F1K+3oKivGIAth76Y/41vGo/v3q2v7HXei1KCkqrTmZVJtwBYPvKXdi+cpfDY+j6aXUavLRkEnQGHeY//6Vdq5KavEZA9d8XwNa+Zu0XKc4P2EOYS81Y8ua3+OOH7VVXgCQkN8T9rw1Hm96JeGfdNDza5jmU/fO3na+Fwv5pb8yE+3WS2K6Q5OXUhPv27dvx+uuvo1OnTpg2bdpV933llVewZ88evPnmm2jbtq0zw6hTlQl3oYJ9xq7k/teGVdu29vMUu36I12vJG9/a/f+pg2mY89inMBWXYdgzd+P+14bj9SHv1Hp9TzX65Xuqbft1yWacP+O8qeZ3P9gDQx6+BWeOncc7T3/ltHW9yYR7ulTb9vPmg8jMLsS5nCIsWLEVjw7phk9fHYGNfx3Dhbxi3NSwAdo1j8GRjCw0iwy1671Otderwchq2/bkbUB+xQUI//TzVglqrMycjwMFtn74ovUsigvfgkbTEAbjnfDxuRclxXNlj1Xv4/hLjrP2V9qtYcOrbduZuxF5FfZ/S/53ZjYGLtsCP60OTYPrY3Lbrvh24L14ZdNafPs3BwiSdxkROQGALfHbsmszjJ9xHz7e9TZevWsmju0+eY2j6UYJKtvfCavFimkD/6/qs++pA2fwr8HvYOHhOWjVqyWad25arb0MOVfK11tw6+ie6HB7ayw4OBtbftyBirIKtOmThOCIejh/OgthDUNlvyKUak6lUuGFxU8isftN2Pj1H/jm3R+VDslr5GcV4ovXltpt27/pEF687U38Z9ObaN65Kfo/1Affv79SoQjpUsIlCXcich1OTbhv2LABJSUl6NOnzzX37d27NzZv3oz169d7RsLdzIT7lYx5rXqSZG/KwRtKuF/Jzx//imHP3I3km5vbba86qx7ouKLTp/Ks/CVVE57o/pcHVdu2b9NhpyXc7xrTHY/9azBO/30OL933IYodVDmUVlaw+xuq3Xfp9pICk1NickcTBlVPuO88nIbMfyoSF/64DSczcjGyXxt0b50AtUrA0bQsPPH5D+jRLB7NIkORW3zxua+sYPcz6Bw+XmUFfJHJcQWqN+vVYFS1badKDiC/4gLKrLb3C0kScbiwekuRMtMqGIx3QqtrU7WtsrK9stL9csI/le2iVOjw/qsJiz8Bg18hyor9ca0e7kb/IoTFO25r46ocJdxPFB+slnCvVFxRjl3nMzB+zXf4cdAYvNW9LzafPY1zJbaqxsoK9spK98tVbi808/fiRlRWtldWul/Oz/efK3CK2ZtPTvkXCvDHD9txdNcJLDryPp7/YiIeTn4GAD8jyanyOTu2+1S1z71mUzl2rt2L/uP74KaOjXFo6998LWQkiiKm3j0TQ6cMQJ/7bka/MT1RXlaBvSkH8cbQdzH1G9vvQ/4F29/fkoJSBIUGwDfQB0W5xdXWu1ZFL90YlUqFF798Ej2Hd0XK0i2Yef/71fa51u+LL39fnE60ilj12Xo079wUST2aVyXc+VooSyi3dVvIznZeER0R3TinJtxTU1MhCALatGlzzX27dOkCQRBw8KB7V5tVnUWsYEuZK+mrql7hLpf8LNuHZIOv/Rf7tCMZaNahMaKbRuDoLvskk0qtQnh8A1gqLA4HKXmS2/wekG3te8bdjEemDcLJwxl46b6PUJBT/csJAKSfuICmrWIRlRCKYwfS7e5TqVUIjwmGpcKKc2nee4a+4wOzrrnPxr+OYuNfR+22lYYJGN+rAwDgQNrFf8uVvdsre7lfLrZ+EADg9BV6vHuzfx0YeMX7csy2/rkWqQIWqXq7Hkm09cMXhIsnlyyW4wAAjSbB4ZoaTTwAwHqFHu9Xo1KLaNF9E3atvvMaewpo3n2T2w1MfXHf0FodVyGK2JJxGs1DQtGmQSRWnbRVkVb2bq/s5X65+ADb78uJAse9x6lm0v7p3R4d7fh5jor6p8f7Wb7/1IULZ7JxJjUdjdvEVw3B42ck+aQdsfX/Lr5Ckqkoz7ZdZ9RV7c/XQj5WixVL316BpW/bt6zS6rWIahKB/KxCnDtlmx+UfiQDQaEBiG4aWe3qg+DwIBj9DLiQlm3XToacQ61R46UlT6Hn8K5Y/9UmvP3AXIgOrjwoKzUjKz0HodEhCA4PqtY7PKqJrV+4o5kIVHsXv29f/HzL10JhrHC/bgIAwYUuCGdzm7qVmZmJ//3vfzh48CAsFguio6MxcOBAdOzY0amP49Sy7KysLPj5+cHH59p9YX18fODn5+f2Z+Eq42eFu2to0bkJACDzxAW77Xs2HgAAtL+tdbVjkm9uAaOvAalb/kZFuUX2GD3R8KfvwCPTBuH4wXS8OOrDKybbAWDvFluSuH3P5tXuS+qYAIOPHod2nURFuVW2eD1VTHAg2sRF4u/MLBw7f/ED17ZjaQCAbs3iqh0THRyI+NBgnM0tqBqYSjWTV3EeueWZ0Kr0qKcLr3a/RnsTAMBquTgsrdz8BwBAp++Jyz9aCYIvtLoOEMVSVJTvrFVMyX3WIaZF5Ynsyz9F2v4/psVBJPdeV6v13VWYj60nr/WSL+x/Zth+L3pENaz2IddXq0W78CiUVpRj9wV+ObwRu/fa/v13aBsH4bIn2mjUIalFFExl5Ug9VH0wIckjJNJ2Mkm02n4f+BlJPrvX74coimjYIrqqDdml4lraBqOcO2n73MrXQhm3jOwGnV6LjV9vrtpW+Vp0uL11tf079LcVl+3ZcKBO4vMmGq0GU5dNQc/hXbH2ixT835gPHCbbK1W+Bo5ep46Vr9NGvk7O1LxzUwBA5kn7E398LZRT2d6YCXciYM+ePbj33nuv2Ob8yJEjGD9+PH788UccO3YMp06dwubNm/H888/jq6+c2xLZqVliq9WKioqKGu9vsVhgdvNLtXNycqCCCrDynFRdib0pCgYHl6aHNQzFxA/GAwDWf/W73X2bvt2K/KxC9BrZDU3bXaws1eq1ePBNW4/mnz5eI2PUnuveF+7G+DdH4O99aXjx3o9QmHf1SwU3r9qLgpxi9BzQBk2SLk7g1Oo1GPPsHQCAX5ZskTVmd+froDVMoK8BM0f1h1qlwqyVm+3u++tEOo6fz0GHhGj0anHx378gAE/f0R0AsGzrfnmD9lDbc2yX0vYNe8D2t+AfKlUEfPxsvZNNpouVdFbraZjLUqDRxMLHd6zdWn4Bz0Kl8kWZ6VtIUu1aKqnUIvqMXYC2/X+B0d9+MKvRvwht+/+CPmMXuF11+7X4qP0QrGvg8L7esQm4Lb4JisvLsTUzrWr7maJ8/J52EjEBQRjT0v7KvKfbdYevVofvj6bCZKn55xqqLiMzH9t3nkREeBDuucu+heDY+7vDaNTh1/UHUWbm8+wsUY3D4RNgrLZdEASMfWsU6oUF4eAfh6uqrvkZST4XzmRj6087EdYwFIMm3WF3X7u+yWh/WysU5RVjx+o9APhayM3Hv/rvRaNWcZjw9v0ozC3G0pk/VG1fs2gjysvKMfCJ2xHWMLRqu1+QL0a9NBgA8PMnv8oeszfR6jT413fPods9HbHqs/V4d9yHkK4xk+jnT9YCAEa9PAR+lwzkDGsYirsfvw3lZeVYs2ijrHF7osZt4h2eJGzTOxFDJtuupFy/xP77Nl8L5QhWFdSC2u2LWYmcYdeuXcjIyEC7du2q3SeKIv7973+jpMT2Gfjmm2/Gvffei8TEREiShAULFuDECee1XXVqS5mQkBBkZmYiPT0d0dHRV903PT0dJpMJYWFhzgyhzuXk5EAjaSHwIpBai2kWiZEv2PcW96vni+cWPlH1/588txiFObbkUc8RXTF0yl3Y//shnD+TBVORCREJ4eh0Z1vojTps+2UXvnn3J7v1SotMmP3wx5j2zTN4d+PrSFn6Bwpzi9HlrvaIvSkKv3/zJ1KWMskb0zQCw6fYt6PwD/LFMx8/VPX/n77yNQr/qWC/9d5ueGDqEFgtVhzccQIDx/aotub59Fys+3ZH1f+XFpsx56WleOXDB/F/Xz+B337ajaL8UnTu2xIxjcKw6Zc9+O2n3TL9hJ5h/D2d0SUpDvuPZSKvsBSh9fzQo00j+Pvo8fZPv2HzkVN2+4uShFeXrcVnjwzF7NEDsHb/UWTmF6Fz4xgkxoRj18mzWLxplzI/jJvbnvMzGvu1RYvArnhU/x+cKN6HAOMoGIy3QaWqh5Kij1FRvtXumML8lxAc+iMCgt6CTt8dFstRaHVtoNd3h6XiOIoK/++GYlKpRbTuuxbJvdfh/MkEmEt9oPcpRVj8CY9LtFcK1NbHk03+D+mmE8g2ZyDWqkeA3oAWIQ3QNiwS5VYrXvx9NQrL7U/yv7p5HZYPvBevd7sV3aIa4lheDlo3iEDXqIY4np+Ld3ZsUugn8iz/mbsWc2eNxqTH+6Jd64Y4nZaD5s0i0bZ1Q5xJz8GCz3+/9iJUYx1va4Wxrw/Dgc2Hce7UBRTmFKFeWCCSb26ByEbhyMnMw6yHP6nan5+R5PXBxAVo3CYej816EJ3uaItje04hPK4But3TAaJVxKwJH6O00Nb/mK+FvGaunYpyUzlOHUxDaZEJsTdFodOdbWE2lWPa3f+HnMyLra3OnbqA+c9/iYnvj8e8HTPx27ItqCi3oMeQzmgQUx/fvPcjB93WQNeBHdBtoO0S/XrhQQCAFl2aVn3PK8gpxPznvgQATProYXS6sy3yswqRfTYXo6dVbyW3N+Ug9v2WWvX/qX/+jW9n/YShU+7CJ3vfxablW6HVadBzeFcEhPhj7pOfyTI3zB1dz2vx6HsPIKpJBFK3HEHWWVvVdEJSQ7TpkwQAWDT1f0j90/7fP18LZWlEHSvcr5cLtZQh59m3bx8AoFu3btXu++uvv3D69GkIgoCXXnoJt912W9V906dPx5o1a/DLL7/gySefdEosgnSt08bXYcaMGVizZg3uvPNOPPfcc1fd9+2338bKlSvRt29fvPLKK84KAQBw4cIFLFy4ENu2bUNhYSFCQkLQvXt3jB07Fv7+9oPq8vLy8MEHH2D79u3w8fHBgAEDcN9990GtrllP9sGDB6MooxTY7ngAHl1bcs8WeG/j61fdZ3T841V/oJNvboEBj/RFozbxCA4PgsFXj+L8UhzfcwrrlvyGdV9e+Yt7y67NcO/Lg9G8S1PoDDpkHDuH1Ys24If3V131csW6oPbzk3V9qQY/X3KPm/DOqpeuus+YFs9UDVkd/fI9DgexXmrf1mN4YeS8attbtIvHyIm34qa2cdDpNcg4lY2132zHj4t+hyhWf1sSQwKuGf+NEvVaWdcvaHLtdls10a1VPO67vR0SouvD30ePwuIy7Pn7LD7bvhP7zpy74nEJDYLxRL8u6NgoBr56LTLyirBqzxEs2LgdZkvNWviUxMj7e9I0Oe3aO92ALiEnnb6mWtCgU8hdaBXUC8G6CKhRAUtFKkpLPkeZ6QeHx6jUkfDzfw56Qy+oVPUgWi+grGwVigtnQZKu3tqngVre94qvix33+neWfaUx197pOhnVvuhR/y7E+7VEiC4cBlUALKIVGcVF2JaZhoUHduJ4vuNe7BG+/pjSvht6xsQjSG/EhdJirD11FP/ZuaVagr7q8dKcWq9QjW+m/N8A/M/IW1EuXXYNZWh9f4wb0wMd28cjwN+InNxibN5yFJ9/tRnFxdd/taPhnLyD14RMeZMCYrF88TdsEYUB43ujZecmqB8dDL8gX5SVmJH+dwa2rdyFH95fhaK86q3fXPkzkrsLrB+A0dOGostd7REcUQ+lhaXYv+kwvp75PY7sOFZtf74W8hj27N3oNaIbIhuFQWfUIedsLnas3o3/zfge2Wcd/43oPKAdhj1zNxq3jYegEnAmNR0r5q3Gr4t/q+Po3dP9rw3DmNeqDz2vdO7UBdyfYEv4vrvhX2jVq+VV11v8+jJ8+fo31bb3e6AX7n78NsS2iIYkSji26ySWvbsC235hQUml63ktbh/XG93u6Yi4xBgE1g+AWqtG/vkCpP75N1bMW4UDmw9fcR2+FgrpUAxjmBY//vij0pG4vDFjxuBobg7O3dZb6VCqhK/ZgCbBIVi8eLHSobi9UaNGoaKiAt9++221++bMmYPvvvsOjRo1wsKFC+3uy8zMxL333ouEhAR89tlnTonFqQn31NRUPPbYYxAEAffeey/Gjh0LrdY+gVVRUYGFCxfiv//9LwRBwNy5c5GYmOisEHD27Fk8/vjjyMvLQ/fu3REbG4tDhw5h9+7diI2Nxbx58xAYGAgAkCQJEydOxJkzZ9C3b18UFRVh/fr1GD16NMaNG1ejx7vrrrtgOlcBYScT7nRjXCHhfiNU9R0PxHMWJtyvrTRM/ittmHC/tkfr7bj2TjeACfdr+3prJ1nXZ8L92i5PuDsbE+41eAxT7VpTERERkZtpVwxtqICVK1cqHYnLY8Lds/Xv3x8NGzbExx9/XO2+Rx99FIcPH8Z9992HCRMmVLt/2LBhKCkpcdrvkVO/MbZo0QKDBw/Gd999h//+97/4+eef0b59e4SH24bJnTt3Dn/99RcKC22TrQcNGuTUZDsAzJo1C3l5eZg0aRKGDBlStX3u3LlYtmwZPv30Uzz77LMAbG1t9u/fj0WLFqFRo0YAgGbNmuF///tfjRPuVqsVYKEJERERERERERHVMUmUYLUyMUVUXl4Ok4OiE6vViuPHjwOw5a4dCQ4OdmprJqeXaD355JPQ6XRYtmwZCgoKsGHDBrv7JUmCSqXCvffei4ceeugKq9TO2bNnsWPHDoSHh2PQIPs2F+PGjcNPP/2EtWvX4oknnoDRaLQlywG79jFqtbpqe01YrVZIEtjBnYiIiIiIiIiI6paI68pjEXmqwMBAnD9/HhaLBRrNxZT30aNHUV5eDkEQ0KxZM4fHms3mal1aboTTE+4qlQqPPfYYBgwYgNWrV+PAgQPIzc2FIAgIDg5GYmIi+vfvj6ioKGc/NHbvtg1a7NChA1Qq+2uZfXx8kJiYiB07diA1NRXt2rVDbGwsmjVrhsmTJ6NPnz4oKSnBunXrMHRo9QEtV2KrcK9Zv3ciIiIiIiIiIiJnkURAZMKdCE2bNsXWrVvx66+/on///lXb161bBwCIiopC/fr1qx0niiIyMzMd3ldbsjUhjYmJcdgTR05nzpypemxHoqOjsWPHDqSlpaFdu3ZQqVSYPn06PvjgA6xatQpGoxGjRo3CAw88UOPHtFqtEKxMuBMRERERERERUR0TK7svSBAE9l+oCUH+kUmkgL59++LPP//EnDlzUFhYiPj4eOzfvx/fffcdBEFAv379HB53+PBhlJWVoXHjxk6LRd6pX3WspMQ2gMrvCsMnK7cXFxdXbQsNDcUbb7xRq8eTJAlWqxVqkb+pRERERERERERUt6R/clJWq9WujQaRt+nTpw9WrlyJv/76Cx999FHVdkmSEBoaajfr81K//vorBEFAu3btnBaL6tq71I4oijh06BBSUlKwevVquR5GUZU9siTOpiAiIiIiIiIiojomWW0Jd4vFonAkRMqbPn06Bg8eDKPRCEmy/W60bt0as2fPdligXVhYiJUrVwKwtSh3FllOfS1fvhyLFy9GQUFB1bbbb7+96r+LioowceJEWK1WvP/++wgODnbK4/r6+gKwr2C/VOX2K1XAEylJqpD5j6NatvNrNnKfSa+DE1sqU4Ws68t92ZrW8Vufcx+jUN5/R+Uyt+jalNVI1vUBwCrJ+xwl+5yRdf3zFYGyrp9ZJu/6AKDJl/f9SCXvW4Xs6wOAIMn7hqQ2yfymLXefUp1O1uUFjVnW9YmIiMj7sJ1MDUkAJBd6rtg0w6n0ej0mTZqEiRMnIj8/Hz4+PjAajVfc38/PDz/88AMEQYDBYHBaHE7PCsyaNQsffPBB1Q/l6Bfe398fTZs2RXp6OjZu3Oi0x46NjQUApKWlObw/PT0dwJV7vF8vtdqWGBJkzmMSERERERERERFdTlDb8m6VOSoib7V69Wps374dgO33ISQk5KrJdgBQqVQwGo1OTbYDTk64b9u2DStWrIDRaMRbb72FlStXIjDQcSXbrbfeCkmSsHPnTqc9fps2bQAAO3bsgCjaV1aVlpbiwIEDMBgMaNGihVMeTxAEqNXqqjc3IiIiIiIiIiKiOvNPZo8Jd/J2M2bMwJdffql0GACcnHBfsWIFBEHAuHHj0KNHj6vu27JlSwDAiRMnnPb4UVFR6NChA86dO4fvv//e7r6FCxfCZDKhX79+1zy7cT3UajUr3ImIiIiIiIiIqM4Jqn+KQdlSpuYkF7qRU0kyt86sKac2OU1NTQUA3Hnnndfc18/PD76+vsjNzXVmCJgyZQoef/xxzJkzBzt37kTDhg2RmpqK3bt3IyYmBhMmTHDq46nValiYcCciIiIiIiIiorqmYnU7katxasK9qKgIvr6+8PHxqdH+giBUa/1yo6KiojB//nwsXLgQ27Ztw9atWxESEoKhQ4di7Nix8Pf3d+rjqdVqWIU6mOZIRERERERERER0CYEJdyKX49SEu4+PD4qLi2GxWKDRXH3pwsJClJSUICQkxJkhAADCwsLw0ksvOX1dRzQaDcpV5XXyWERERERERERERJVsLWXYeuG6uEbXEfJgTk24JyQkYO/evUhNTUVycvJV9123bh0kScJNN93kzBDqnE6nQ6nGrHQYRERERERERETkbdQSdDq90lEQuYT8/HysXr261sfffvvtTonDqQn3Xr16Yc+ePVi0aBHee+89qFSOz7AdO3YMCxYsgCAI6NOnjzNDqHMhISHIO58PjqYgIiIiIiIiIqK6JGmtsnSPIHJH6enpmDlzZq2OFQTBNRPud911F3744Qfs3r0bU6ZMwfDhw6t6tKelpeHcuXPYsmULfvnlF5jNZrRs2RK33HKLM0OocyEhITgsHIYWEgSm3YmIiIiIiIiIqA5IkGARKphwv04CW8p4LEmq/Yt7I8dezqkJd41Gg//7v//Ds88+i927d2PPnj1V991///1V/y1JEhISEvDmm29CENw7SR0SEgIJEqCVgAr3/lmIiIiIiIiIiMhNqCWIEFG/fn2lIyFyCUlJSZg7d67SYcDpUxXCw8OxYMECjBs3Dg0aNIAkSXa3kJAQjB07Fh9++KFHnIGrfFOTdFaFIyEiIiIiIiIiIm8h6W1dJTwhv1anJBe6kUdyaoV7JYPBgAceeAAPPPAAsrOzkZ2dDVEUERwcjPDwcDkeUjGVb2qSTgRKFA6GiIiIiIiIiIi8g9ZW/MmEO5FrkSXhfqn69et79KUtVW9qOlHZQIiIiIiIiIiIyGuwwt27ffTRRzhy5AjS0tJQUFAAvV6P8PBwdO/eHYMHD0ZgYGC1Y/bv34/FixcjNTUVZrMZ0dHRuOOOOzBkyBCo1WqHj7NlyxZ8/fXXOHr0KERRRFxcHO655x7079//irGtWrUK33//PU6fPg2VSoUmTZpg5MiR6Nq1q8P9rVYrli9fjpUrVyI9PR16vR4tWrTAmDFjkJSUVLsnSEFOTbgXFRVh8+bN2LNnD86ePYuioiIAQEBAAKKiotC6dWv06NEDvr6+znxYRV2scGdLGSIiIiIiIiIiqhuSlgn3WvGQVi7ffPMNmjZtig4dOiAoKAhlZWVITU3FokWL8NNPP+Gjjz5CWFhY1f6bNm3CtGnToNPpcMsttyAgIABbtmzB3LlzceDAAbzxxhvVHmP58uWYM2cOAgMD0bdvX2i1WqSkpGDGjBk4ceIEnnjiiWrHzJs3D0uXLkVoaCgGDBiAiooKbNiwAS+++CImTZqEIUOG2O0vSRJef/11pKSkIDY2FoMHD0ZhYSE2btyIp556Cm+88QZ69Ojh/CdQRk5LuH/11Vf46quvUFpaWrWtcrqrIAjYv38/Vq9ejQ8++ACjR4/GqFGjnPXQirJrKUN0A0RzGVR6g3wPYBUBtdPHNlQRz12AKryBbOurikoh+vvItn5dCNpfgPyk6meYnUVXLKHcj8ObiYiIiIiIvILeVvzpyZ0l6MpWrVoFvV5fbfunn36KL7/8El999RWmTJkCACgpKcE777wDlUqFOXPm4KabbgIAjB8/HpMnT0ZKSgrWr1+PPn36VK2TmZmJjz76CAEBAZg/fz4iIiIAAA8++CAefvhhLF26FD179kRiYmLVMfv378fSpUsRFRWF+fPnw9/fHwAwatQoTJgwAR999BG6du1atRYArF+/HikpKUhMTMTs2bOrfqaBAwdi4sSJeOedd9CuXTv4+LhPTsgp2be33noLn376KUpKSiBJEgRBQFRUFFq0aIEWLVogKioKgiBAkiQUFxfjk08+wYwZM5zx0IoLCgqCWq2GYPCQ02NEREREREREROTyBIOtyDU4OFjpUEgBjpLtAHDLLbcAANLT06u2paSkID8/H717965Ktleu8dBDDwEAfvjhB7t1Vq5cifLycgwePNguQe7v74/Ro0cDAFasWGF3zI8//ggAuP/++6uS7QAQERGBQYMGoby8HKtWrbI7pvJxH3roIbufqXnz5ujduzfy8/ORkpJyxeeh0m+//Ya5c+dec7+6cMMV7itWrMCvv/4KAGjSpAlGjx6NTp06wWg02u1nMpmwbds2LFmyBEePHsWaNWuQlJSEAQMG3GgIilKr1ahXrx4KSzkxlYiIiIiIiIiI6obaV4B/UBA0GtlHNHoOCRBcqWZWhlj++OMPAEBCQkLVtl27dgEAOnXqVG3/Vq1awWAw4MCBAygvL4dOp7M7pmPHjtWOqVyncp/LH+dKx3zxxRfYtWsXxo0bBwAwm804ePAgDAYDkpOTHR6zZs0a7Nq1C3fcccc1fnLXcUO/kRaLBQsWLIAgCOjduzdefvnlK/6SG41G9OrVC927d8f06dOxfv16fPrpp7j99tvd/o0hJCQEBVlFYCMHIiIiIiIiIiKqC5JOZP92D3D27FmMGTOm2vbFixfX6Pj//e9/MJlMKCkpwZEjR7Bv3z40atSoqgodANLS0gAAMTEx1Y7XaDSIiIjAyZMnkZGRgbi4OADAmTNnrnhM/fr1YTQakZWVhbKyMhgMBphMJmRlZcFoNDpscxQdHW0XCwBkZGTAarUiNjbWYX7Y0THu4IYy3Zs3b0ZhYSEiIyPxwgsv1ChxrtFo8MILLyA1NRXnzp3Dli1bcPPNN99IGIoLCQnB38Lf0EKCwLQ7ERERERERERHJSIIEi1DBhDth6dKlyM3Nrfr/Tp064aWXXkJQUFDVtuLiYgCAr6+vwzUqt1fuB9j6vl/rGJPJhOLiYhgMhqr9/fz8HO5fuf3Sx6j87ysd4ygud3BDCffdu3dDEAQMGjToin2DHNHr9Rg0aBA+/PBD7Ny50yMS7hIkQCMBFibciYiIiIiIiIhIRmoJIqxMuNeG5Fq5u6ioqBpXsztS2QM9NzcXBw4cwCeffILx48dj5syZaNasmZOipOtxQ0NTjx49CgDo0KHDdR9b2cuncg13VvnmJv0zHZqIiIiIiIiIiEgukk4EACbcqUpwcDBuvvlmvPfeeygsLMT06dOr7qusIK+sQr+co+r0yurymh5zrWp0R9XsjqrerxWXO7ihhPv58+chCEJVb5/rERcXB5VKhfPnz99ICC6hsp+QZGTCnYiIiIiIiIiI5CX5WADYqqOJLhUeHo64uDicPHkS+fn5AC72YXfUC91isSAzMxNqtRqRkZFV22NjY694THZ2NkwmE0JDQ2EwGADY5neGhobCZDIhOzu72jHp6el2sQBAZGQk1Go1MjMzYbFYanSMO7ihhHtpaSmMRiME4fovxRAEAT4+PigtLb2REFxC06ZNAQCSX4XCkRARERERERERkaeT/GzJSbYMqQXJhW4yqUx4q9VqAEDbtm0BANu2bau27969e1FWVobExETodLqq7ZXHbN++vdoxletU7lPbY/R6PVq2bImysjLs27evxo/j6m4o4W4yma6rd/vltFotysrKbiQElxATE2M78RAkKh0KERERERERERF5OFWQCJ1Oh4YNGyodCikgLS3NYRsWURTx6aefIi8vD4mJifD39wcA9OrVC4GBgdiwYQMOHz5ctb/ZbMaCBQsAAPfcc4/dWv3794dOp8N3332HzMzMqu1FRUVYsmQJAGDgwIF2x9x9990AgC+//BJFRUVV2zMzM/H9999Dp9Ohf//+dsdUPu6CBQtgNpurth86dAgbNmxAUFAQevbsWaPnxVXc0NBUSbrxUzHOWENparUajRs3RqrpECRIEOBawxeIiIiIiIiIiMgzSJAg+VvQpHETaDQ3lNojN/Xnn39i/vz5SE5ORkREBAICApCXl4c9e/YgIyMDwcHBeP7556v29/X1xfPPP49p06Zh0qRJ6N27NwICAvDHH3/gzJkz6NWrF3r37m33GJGRkXjssccwZ84cPPzww7jlllug1WqRkpKCrKwsjBgxAomJiXbHJCUlYfjw4Vi2bBkefPBB9OrVCxUVFdi4cSMKCwsxadIkRERE2B3Tp08f/P7770hJScH48ePRrVs3FBQUYOPGjRBFEc8991xVf3h3wd9KJ2natCn2798PtcEKlPFpJSIiIiIiIiIiGehFWFBR1eKYro/g/rW/aN++Pc6ePYv9+/fj6NGjKC4uhsFgQExMDPr164ehQ4ciICDA7pgePXrg/fffx+LFi/Hbb7+hvLwcUVFRmDhxIoYMGeKwZfiQIUMQHh6Or7/+GmvWrIEkSYiLi8NDDz1UrVK90sSJE9GoUSN8//33+OmnnyAIApo2bYpRo0aha9eu1fYXBAHTpk1DYmIifvnlFyxfvhw6nQ7JyckYM2YMkpKSnPOk1aEbzgzn5eWhV69etTpWkqRa9X93RZU9s0RfC9RMuBMRERERERERkQxEX9sMQSbcvVdCQgKefvrp6z4uKSkJ77zzznUd061bN3Tr1u26junfv/8VE/KOaDQaDB8+HMOHD7+ux3FVN5wZ9oSWMM5gNzg1x6BwNERERERERERE5Ik4MJXItd1Qwv3BBx90UhjuLzY2Fnq9HtYgETitdDREREREREREROSJVPVEqHU6xMfHKx2Ke2LtMMnshhLuY8eOdVYcbk+j0aBx48Y4bD7CwalUa6K5DBBUsj6G2tdHtrWlC9kQgoNkW1+VVwgpoA4GZcjY6qre3jwUNguSbX1jmQRTffn+DfmeBUojrr1fbWX8EQ1VYqF8DwCgNEe+3wEAOHY8AmqfCtnW/wodEBuWK9v6AJCeEyTr+tYLRlnX98mRdXloTPKubw4U4J9ulfdBRJmX18j7t0wwW2RdHxb51pdKSmVbu5K1uFj2xyAiIiJlVA5MbZTQiANTiVyUvN+GvEyzZs1ghQXQy/wtloiIiIiIiIiIvI/ONjCV7WSIXBdPhTlR1eBUvwqozWqFoyEiIiIiIiIiIk8i+nFg6o0S2FKGZMYKdyeyG5xKRERERERERETkRJUDU5lwJ3JdTLg7UcOGDaHX6yEEsaUMERERERERERE5lypIhFarRUJCgtKhENEVMOHuRJWDU+FvgcSRx1RbkrwnbKwyD2uTcvNlXZ+IiIiIiIjIawVYkZCQAK1Wq3Qk7klywRt5HCbcnaxp06awwAIYrEqHQuSRhMISpUMgIiIiIiIiqnOS3ooKlLOdDJGLY8Ldydq3bw8AsNYrVzgSIqo1Sd5TzAFH8mVd35gt71USPpmyLk9EREREREQOiPXMAC7mnqiWlK5oZ3W7x2PC3cnatWsHnU4HIZSDU4mIakM8ECDr+j4h8rZVIiIiIiIikkWoBWq1Gh07dlQ6EiK6CibcnczHxwdt2rSBNcAMSc3hqVRL7ONORERERERERP+QVBLEQDNat24NX19fpcMhoqtgwl0GXbt2hQQJYhDbyhARERERERER0Y0Rg8wQIaJr165Kh+LWBACC5EI3pZ8QkgUT7jLo0qULAEAKZsKdSA4cnEquzlqqlXX9M+eDZV2fiIiIiIhcS2WOiQl3ItfHhLsMwsPD0ahRIwgNLJA4AYGIiIiIiIiIiGpJggQhzIqGDRsiKipK6XCI6BqYcJdJ165dYREqIPlzeCqRW5LkPVkWcCRf1vWN2fLOAfDJlHV5IiIiIiIi+ofka4FFKGd1O5GbYMJdJpVtZUS2laHa4uBUIiIiIiIiIq8nhpgBXMw1EZFrY8JdJs2bN0dQUBBUYRalQyEiIiIiL2EtLlY6BCIiInIyVZgV/v7+SExMVDoUIqoBJtxlolar0blzZ1TozJD0VqXDIfI4HJzq2cQDAbKu7xMi7xUe7i46JF/W9dUNTLKuXxoj7xVCFqOsyxMRERERVZF0VlToy9CpUydoNBqlw/EMkgvdyCMx4S6jyt5aYj2zwpEQEREREREREZG7qcwpdevWTeFIiKimmHCXUYcOHWxnH0M5OJVqiX3ciYiIiIiIiLxXAwvUajU6duyodCREVENMuMvI19cXrVu3hjWwHJJK3sQpEclAkvf6roAj+bKub8yW933HJ1PW5YmIiIiIiLyapJIgBpqRnJwMf39/pcPxGILkOjfyTEy4y6xr166QIEKsV650KERERERERERE5CbEwHKIENGlSxelQyGi68CEu8x69OgBQRAghbGPO5GzcXAquTJrqVbW9c+cD5Z1fSIiIiIiUli4LZfUo0cPhQMhouvBhLvMwsLC0LFjR4jBZkg6q9LhEBERERERERGRi5O0IqwhZWjXrh2ioqKUDsezSC50I4/EhHsduOuuuyBBgrWBSelQyB1xcCoRERERERGRV7E2MEGChLvuukvpUIjoOjHhXge6du2KkJAQCNHlkHj6ioioRsQDAbKu7xMi78kmIiIiIiKi2pAgQYgpR1BQENvJELkhJtzrgEajwR133AGLpgJSEIenErkVSd6TZAFH8mVd35gt7xUSPpmyLk9EREREROR1pMByWDTl6N+/P7RaeWdDeR2lW8iwrYxXYMK9jgwYMACCIECMLFM6FCKPwsGpRERERERE5EmkSNuwVLaTIXJPTLjXkYiICA5PpdpjH3ciIiIiIiIij3fpsNTo6GilwyGiWmDCvQ5xeCoREREREREREV0Jh6XKT5Bc50aeSaN0AM6WmpqKTZs24dixYzh69Chyc3MRGhqK5cuXX/GY4cOH49y5cw7vCw4Oxg8//FBte0ZGBubMmYN9+/ahXr16GDFiBAYOHHjV2CqHpxZYCiGlSxAgXNfPRkREREREREREnonDUok8g8cl3NetW4dvv/0WGo0GcXFxyM3NrdFxfn5+GDp0aLXtRqOx2raysjI888wzsFqtGDBgAM6dO4dZs2ZBp9Ohf//+V3yMyuGpX375JbRB5RDy9TX/wYiIiIiIiIiIyGNdHJY6hMNSidyYxyXc+/fvj9tvvx3x8fHQarW4+eaba3Scn58fxo0bV6N99+3bh6ysLHz77bcICgoCAMydOxc///zzVRPugG146pIlSyBGlkHFhDtdD0kEBPm6QFlLSuXtFV9cDPU/vy9OV1gMoX6wPGv/Q9LL93YZcCgX5sgA2dbXFwAl4fJ9WAs8BpSFyHTFzqYAlEbId52dFoCqXM6rjTSw+MkX/5msSIh6+X5vtXlq2dbWAFCXy7Y8rD6AT4Z86wOA1iTfa1vhp4K+QL6ZL4Ik7/Wr6uIKWdeHKN+/eym/QLa1xYJC2dYGAMnKOUFERETujMNS6whbuZDMPK6He5MmTdC0aVNZzwSK/3zJE4SLSRq1Wl21/Wrshqdq+aWIiIiIiIiIiMjbcVgqkefwuAr32iovL8fatWtx/vx5GAwGNGrUCK1atYJaXb26Lzk5GfXq1cMjjzyCm2++GRcuXEBKSgqefvrpGj3WXXfdhW3btsEaZoIm3c/ZPwoREREREREREbkRDkutOxxWSnJjwv0fubm5eOutt+y2RURE4KWXXkLr1q3ttvv4+ODdd9/F+++/jx9//BFBQUGYOHHiNYemVqoanmrl8FS6TjK3lYGgkrWtjDU/X7a2MlJ2rqxtZQSzRda2MkREREREROSdOCyVyLMwewRb3/fk5GTEx8fDx8cHGRkZ+O677/DTTz/hueeew0cffYTGjRvbHdOwYUO89957tXo8jUaDO++8E4sXL4YmxAx1jsEZPwYRuTF9RqGsfdx9z1XI2sediIiIiIiIakcMNsOiKccddwzlsFQiD+B2CfeFCxdW29a/f39ERETUes2xY8fa/X9CQgKeffZZGI1GLF26FIsWLcK///3vWq/vyNChQ7Fs2TJUxJsg5ehZ5U41J3eVO1EtGHIk2Qan+mQKsg5OFXWSzINTiYiIiIiIHJMgAQll0Ov1GDZsmNLheAe2lCGZuV3C/fPPP6+2rU2bNjeUcL+SgQMHYunSpdi7d6/T1w4KCsLgwYPx3//+F0J9M9TZrHInF8G2MlfEtjJUG5piARY/+T7RqcwqiHp5fmcr6lmhzas+y4SIiIiIiJxDDDHDYjBj8MDhCAkJUTocInICt8sc/f7773X2WEH/JAXLyspkWX/kyJH47rvvbFXu2axyJ/J2creVISIiIiIiItchQQLibdXt9957r9LhEJGTsC/FVaSmpgKALNXzgC2hP2TIEFj15RDrm2V5DPJQMlagk+fyPVehdAhEdqw6pSMgIiIiIlJOZXX7Pffcg+Bg+a7WpstILnQjj+T1CfdTp07BZDJV256ZmYnZs2cDAPr16yfb448cORJGoxFSvMl2ZpPIFcjcI96any/b2lJ2rmxrA7a2MuSYIUe+9zCfTF4BREREREREnsPWu90Evd7A6nYiD+N2LWWu5fTp0/jqq6/sthUVFWH69OlV///4449XtYvZsGEDli5dilatWiE8PBxGoxEZGRn4888/UV5ejs6dO2PkyJGyxRsYGIihQ4fiyy+/hFC/DOpso2yPRR6Gw1M9EtvKKIODUz1TaSTgk6F0FERERERE1YkhZlj05Rg2eBTq1aundDhE5EQel3DPzc3F6tWr7baVlZXZbRs7dmxVwr1t27ZIS0vD0aNHceDAAZhMJvj5+SE5ORn9+vXDbbfdBkGQNwkzfPhwLF++HOaEMkjZBvZyJ9cg8/BUIiIiIiIiIm9UWd1u0BtkLfIkByRAcKUGE64UCzmNxyXc27Rpc12DVVu3bo3WrVvLF1ANBAYGYsiQIbYq99AyqLNY5U6ez5qfD/U/J76cTcrOhVBfvv53gtkCSe+eb5++5ypQEq5VOgyvoykWYPGT75OUyqyCqJfnBFlFPSu0eWpZ1iYiIiIi8kasbifybOxH4SJGjBgBHx8fSPFl7OVONccKdHIx7ONORERERER0ZVXV7QYDRo0apXQ4RCQDJtxdREBAAIYOHQqrrhxiaJnS4RDZsEe8IvQZhUqHQERERERERDIQ69uq2wcPHlzV7pjqmORCN/JIzKa5kBEjRsDX15dV7nR93LjK3ZqfL9vaUnaubGsDtrYy7sr3XIXSIbgkUcf3XSVYdUpHUHsVRl51Qa5DslqVDoGIiIiuobK63Wg0snc7kQdjwt2F+Pv7Y9iwYaxyJyIiIiIiIiLyMGJ9Myy6cgwZMoTV7UQejAl3FzNs2DD4+flBSjCxyp1cA9vKKIJtZYiIiIiIiDzHpdXtI0aMUDoc76Z0Gxm2lPF4zKS5GH9/f1svd20FxAiT0uGQu2BbGYfYVkYZHJzqmKZY3thVZvn+pFfUY6sKIiIiIqIbIYaZYNGVY+jQoQgMDFQ6HCKSERPuLmjkyJEIDQ2FmFAKScskBxE5H/u4ExERERER1Q1JI0JqXIqQkBDce++9SodDRDJjwt0F+fj44Mknn4QoWGGJL1Y6HHIXcla5s62MIthWpu5xcKrnKY1UOgIiIiIi8nbW+GJYBSsmTpwIX19fpcPxeoLkOjfyTMyiuaiePXuiU6dOEBuUQQwoVzocIlmxrQwRERERERF5ItG/HNYwE9q1a4fevXsrHQ4R1QEm3F2UIAiYNGkStFotxKbFkHjai5TGKne6DuzjTkRERERE3k6CBLFZCTQaDZ5++mkIAr/LEHkDZtBcWHR0NO677z5YDRWwRpYqHQ65Azcenkp1j33cyVVYdUpHQERERETkfNZIE6yGcowaNQqxsbFKh0OVJBe6kUdiwt3F3XfffYiMjIQUVwpJxwGq5LnYVsYx9nH3LJpieStaVGb5/qxX1OPfICIiIiKimpJ0VkjxpQgLC8P999+vdDhEVIeYcHdxer0ekydPhiiIsCQUKR0OuQMOTyW6IRycSkREREREN8qaUAxRsGLSpEkwGAxKh0NEdYjZMzfQuXNn3HzzzRDrmyEGmZUOh4ioRtjHnYiIiIiIvJEYaIa1fhm6du2K7t27Kx0OXUIAIEgudFP6CSFZMOHuJp588kkYDAaITUs4QJU8FtvKOCZnWxn2cSciIiIiInIeSZAgNiuFXqfHU089pXQ4RKQAJtzdRFhYGB588EFYdRWwRpcoHQ65OraVISIiIiIiIqpz1qhSWHXluH/M/YiMjFQ6HLqc0kNSOTjVKzBz5kaGDRuGuLg4iA1NkAzyVdMSEREREREREdH1kfRWSHGliImJwciRI5UOh4gUolE6AKo5rVaLKVOm4KmnnoK1UTHUBwMhsNsTXYmcVe4ysubnQxMlUxWAqQzQqOVZG4BQUQHodLKsbTiVB2uwryxrBxWWozTSKMvaumJAVMvzPuWXDpTVk++8sTlYnnW1xQKMWXKWMahQEiHf3wZVuWxLwyhj33/BKs+6ohrQF8jzfiuqBeiK5DnBLqkFCBb5nm91rnyD3qUL2fIVAum0cq0Ma26ebGsTERGRa7A2LoYIEU8//TR0Mn03JCLXxwp3N9O6dWv069cP1npmiCEcoEpEREREREREpDRrPTOs9crQu3dvtG/fXulw6GqUbiHDdjIejwl3N/TYY4/B19fXNkBV655VzERXYzmbIePiMpW5EhERERERkVeSNCKkm4rhY/TBE088oXQ4RKQwJtzdUEhICKZMmQJRbYGlSSEknhIjch3l8vXbUOfKNzDZJ8Mk29oqq3zvUYY8nnQkIiIiIiLlSJBgaVoIq9qCyU9PRmhoqNIhEZHCmHB3U3379sVtt90GMdgMMUK+RBmRUljlTkrT58q3timU8zeIiIiIiDyBGG6CGGxGnz59cNtttykdDtWA4EI38kxMuLuxyZMnIzIyEtaEYog+8gxVI6JacNMqd/IcvpnyXVUgcvYTEREREREAQDRaYG1UgrCwMEyZMgWCwBQqETHh7tZ8fX0xdepUCGoB1uaFkAS2liHPwir3usW2MqQ0Uwi/oBARERGRe5AECWKLQkAFTJ06Ff7+/kqHREQuggl3N9eyZUuMHTsWorEC1vgipcMhokoyVrlT3ZGzrQwREREREbkva1wxrMYKPPDAGCQnJysdDl0PyYVu5JGYcPcAo0ePRnJyMqyRJljrmZUOh8ipWOVenbsOTyV77ONetyS10hEQERERkacQg8ywRpWiZcuWGDNmjNLhEJGLYcLdA6jVakydOhV+fn4QbyqGpHXPJCKRx2GVux22lSEiIiIiIncnaUSIzYur2vxqNBqlQyIiF8OEu4cICwvDs88+C1FtgaVZESRel0IehFXu1XF4at1x17YyHJxad8yB/DhFRERE5A0kSLA0K4RVbcGUKVMQGRmpdEhUC4LkOjfyTPyG6EF69+6N/v372y5timRbCCKqHbaVqTtsK0NERERE5D7ECBPEemb069cPffv2VTocInJRTLh7mEmTJiEqKgpiQjFE3wqlwyFyGretcmdbGTtsK0PXYgrhSQgiIiIicj2ijwXWRiWIiIjA008/rXQ4ROTCmHD3MD4+Ppg2bRpUahXE5kWQVLw+hchTsa1M3XHXtjJERERERHTjJEGC2KIIKrWAqVOnwtfXV+mQ6EZILnQjj8SEuwdq3rw5xo8fD6uhApb4IqXDIXIaVrnXHbaVISKvo9PKtrQ1N0+2tYmIiEh+1vgiWA3lePDBB5GYmKh0OETk4phw91CjRo1CmzZtIEaYYA0pUzocIpKJO1a5s62MPTn7uHNwqj1JrXQE16/cXyPb2pKG7XuIiIiIrsVazzYnLzk5GaNHj1Y6HCJyA0y4eyi1Wo1XXnkFgYGBsN5UBNGH/dzJM7DKve6wyp2IiIiIiLyZaLRAbFGIgIAAvPrqq1Cr3bCCg6pTuo0MW8p4PCbcPViDBg3w5ptvQq1VwZpUCEnjfpWfRHRt7ljl7o7Yx52IiIiIyHtIGhHWpAIIGgFvvPEGwsPDlQ6JiNwEE+4ernXr1pgyZQpErQWWFgWQBJ4+I/fHKnf3x7YydDWmELY6ISIiIiLlSIIES4sCiDoLJk+ejLZt2yodEhG5ESbcvcCAAQMwbNgwiAHlsDQqhMRrVoiohthWpm7I2cediIiIiIhqToIES0IRxIByDBo0CAMHDlQ6JHImCRBc6MYUnWdiwt1LPPbYY+jYsSPE8DJYI0uVDofohrltlbtM2FambrhjWxkOTq0b5kB+pCIiIiLyBGKECWKECe3atcOTTz6pdDhE5Ib47dBLaDQavPbaa4iNjYU1oRhikFnpkIi8E9vKVGFbGSIiIiIiciVioBmWRsWIiorC66+/Do1Go3RIROSGmHD3Iv7+/pgxYwb8/f1hbVEI0WhROiSiG8Iqd3tyVbmzrUzdYFuZuiGplY6AiIiIiFyRaLDA2rIIfn6+mDlzJgICApQOieQiudCNPBIT7l4mJiYGr7/+OgStAGtiASQNq0CJ6hyr3N2aO7aVISIiIiKiK5PUIsSkQkAj4bXXXkPDhg2VDomI3BgT7l6offv2ePLJJyHqLbA0L4Ak8JQauS9WudcNuarc2VaGrsQUwop/IiIiIpKfBAmW5oWw6ivw+OOPo1OnTkqHRDJTelCq3dBU8khMuHupyknbYmA5LPFFSodD5H1kqnLn8FRyhINTiYiIiIgcs8bb5tzdeeedGDZsmNLhEJEHYMLdSwmCgEmTJqFNmzYQI02whpcqHRJRrbHKneqaXG1l2MediIiIiKjuWMNKYY0qRXJyMqZMmQJB4OdxIrpxTLh7MY1GgzfeeAORkZGwNC6GGMi+0kR1ys2q3NlWhoiIiIiIPIUYUA5rk2KEh4fjrbfeglarVTokqitKD0rl0FSPx4S7lwsMDMTMmTPh42OEtWUhJINF6ZCIaoVV7kRERERERFQTkt4Ka8tCGIwGzJgxA0FBQUqHREQeRKN0AKS8uLg4vPbaa3jppZdgSSqAZm8QhHK10mERXTfL2QyofHxkW19lNMqwaing5/yY1efKIQb5O31d3xNFqKgvx/MASCp5Lt/UFwDmIOf/uTPkO33JKuX+zn8ufDMlSDJeIqsxy1OeoSmV5yoFbYk866rN8pygE2S8EkST7fyrYiS9DoJZnqt4BB8Z3oOs8l0NY8nJkW1tIiIiun6S1gpLcj4kjYipU6eiUaNGSodERB6GFe4EAOjSpQueeeYZiHoLLEkFkDRsw0BEREREREREnkPSiLAkF0DUWzB58mR0795d6ZBIAYLkOjfyTEy4U5W77roLTzzxBERjBSxJ+ZDUTLqT+xFL5RsALJrk6WGOYnliVuUXybKuNlum54GIiIiIiEgmklqEJbEAorECjzzyCAYNGqR0SETkoZhwJzsjRozAgw8+CNG3ApaWBZBUPN1G7kfOpDvJRxDle7/R57vXfApdEd97iYiIiIicRVJJsLQogOhXjvvvvx/33Xef0iERkQdjD/c68ssvv+CPP/7AyZMnkZeXB1EU0aBBAyQnJ2PkyJGIjY11eNyFCxewcOFCbNu2DYWFhQgJCUH37t0xduxY+PtX78+cl5eHDz74ANu3b4ePjw8GDBiA++67D2p1zXuyjx07FqWlpVi2bBkszfOhSQ2CIMnX95fInYgmkzy93Ivl6eWuyi+SpZe7NtskWy93ko8gydvHnYiIiIjI1UiCBMtNBRADyzF48GA89NBDSodESmN9E8mMCfc6snbtWuTk5KB58+YIDg6GSqXCyZMnsWrVKqxZswb//ve/0blzZ7tjzp49i8cffxx5eXno3r07YmNjcejQIXz77bfYvn075s2bh8DAwKr9JUnCq6++ijNnzqBfv34oKirC559/DovFgnHjxtU4VkEQ8MQTT6C0tBQ///wzLM0KoDkcCAFM0pD7EEtLZRugKlvSnSCIknzDU/MtsgxPJRuLXpBlcKrFRyXb4FQiIiIi8mwSJFiaFkAMNuP222/HU089BYEFKEQkM2Ye6sjbb78NvV5fbfuOHTvwzDPPYN68edUS7rNmzUJeXh4mTZqEIUOGVG2fO3culi1bhk8//RTPPvts1fb09HTs378fixYtqpqy3axZM/zvf/+7roQ7YEu6P/PMMygtLcWGDRtgaVIIzdEAJt3JrciZdJcFq9zpEroiCeX+fM+VS4WvCtoSJvKJiIiIPJUECZbGhRBDzejZsyeef/55qFTsrExE8uM7TR1xlGwHgA4dOsDPzw9nz56123727Fns2LED4eHh1QZ5jBs3DkajEWvXroXpkiGOVqsVAOzax6jV6qrt10utVuPVV19Fly5dIIaVwZJQBInX3RABcL8Bqu5Ezl7uZGsrQ0RERETkySRIsMYXQwwvQ8eOHTF16lRoNKw5JdjaybjajTwOE+4K27dvH4qLi5GQkGC3fffu3QBsCfnLz8D6+PggMTERZWVlSE1NrdoeGxuLZs2aYfLkyfjggw8wc+ZMzJs3D7fffnut49NoNHjjjTfQpk0biJEmWBuW1HotIiVwgKqNKr9IlnW12TKdeJCJuw1PJfdj1dd8ZgoRERERycMaWwJrVCmSk5Px1ltvQafTKR0SEXkRnt6rYykpKThx4gTMZjPS09OxdetWBAQEYPLkyXb7nTlzBgAQExPjcJ3o6Gjs2LEDaWlpaNeuHQBApVJh+vTp+OCDD7Bq1SoYjUaMGjUKDzzwwA3FrNfrMWPGDDz99NM4hEOAVYAm3feG1iSqS3K1lnG3AaruRM5e7u7E3drKyNXHnchdWXJylA6BiIjI61iiSmCNLUGzZs0wc+ZMGAwGpUMiIi/DhHsdS0lJwYYNG6r+Pzo6GtOmTcNNN91kt19Jia2S3M/Pz+E6lduLi4vttoeGhuKNN95wZsgAbFX177zzDp566imcwAkIFgHqc96dECQC3GuAKnu523B4qq2tjORGw6I4OBWQ1AIEK09mEBEREV2NNawU1vhixMXF4Z133rliToW8lwBAcKGP1bX9VlZQUIBNmzbhzz//xIkTJ5CVlQWtVouEhAT0798fd9xxh8OZBfv378fixYuRmpoKs9mM6Oho3HHHHRgyZIhdi+pLbdmyBV9//TWOHj0KURQRFxeHe+65B/37979ifKtWrcL333+P06dPQ6VSoUmTJhg5ciS6du3qcH+r1Yrly5dj5cqVSE9Ph16vR4sWLTBmzBgkJSXV7klSEFvKOMnChQur3TIzM6vt969//Qu///47Vq1ahXnz5iEiIgJPPPEEVq1apUDU1ycgIADvvfceoqOjYWlcBGsD92olQd7N7VrLyNTLXa7WMnJgL3ciIiIiIqopa6gJliZFiIyMxKxZsxAUFKR0SESySUlJwdtvv43U1FQ0b94cw4YNQ8+ePXHy5Em8/fbbeO211yBdNr9r06ZNeOqpp7Bv3z706NEDgwcPhsViwdy5c/H66687fJzly5fjxRdfxMmTJ9G3b18MGDAA2dnZmDFjBubNm+fwmHnz5mHGjBnIycnBgAED0LdvX5w4cQIvvvgili9fXm1/SZLw+uuvY+7cubBYLBg8eDB69OiBffv24amnnsKmTZtu/AmrY95d4udEn3/+ebVtbdq0QUREhMP9fX19kZSUhJkzZ2LChAl477330K5dOzRo0KDqfqB6BXulyu11fbY2JCQEs2fPxhNPPIELuABYBahzeHkWuQe2lpGPu1W5uxN3ayvjTip8VdCWeHflPBEREZEnsAaXwdKsCKGhoZg1axbq16+vdEhEsoqOjsaMGTPQpUsXu0r2CRMm4JFHHsFvv/2G3377Db169QJg66TxzjvvQKVSYc6cOVWdNsaPH4/JkycjJSUF69evR58+farWyszMxEcffYSAgADMnz+/Ksf54IMP4uGHH8bSpUvRs2dPJCYmVh2zf/9+LF26FFFRUZg/fz78/W1X2Y8aNQoTJkzARx99hK5du9rlS9evX4+UlBQkJiZi9uzZ0Ov1AICBAwdi4sSJeOedd9CuXTv4yJDPkQsr3J3k999/r3Zr06bNNY/TarVo164dysvLqw1ABYC0tDSHx6WnpwO4co93OYWFhWH27NkIDg6G9aZCWEPK6jwGIlcjmtznig9WuXN4KmBrKyMHi54nB4iIiIio7lhDymBtXojAwADMmjULkZGRSodErk5yoVsttWvXDt26davWNiYkJAQDBw4EAOzZs6dqe0pKCvLz89G7d2+7ttZ6vR4PPfQQAOCHH36wW2vlypUoLy/H4MGD7RLk/v7+GD16NABgxYoVdsf8+OOPAID777+/KtkOABERERg0aBDKy8urdfmofNyHHnqoKtkOAM2bN0fv3r2Rn5+PlJSUaz0lLoUJdxeQnZ0NAHa9kiqT9Tt27IAo2lfflZaW4sCBAzAYDGjRokXdBXqJmJgYW9K9fjAszQtgDXOfZCN5N7aWkY82m+8DRERERERUd6wNTLA0L0BQcBD+85//oGHDhkqHRKQ4jcbW0OTSPOOuXbsAAJ06daq2f6tWrWAwGHDgwAGUl5dXO6Zjx47Vjqlcp3Kf2h5jNptx8OBBGAwGJCcn1/hxXB0T7nWgoKAAGRkZDu/bsmULfv/9dxiNRrRu3bpqe1RUFDp06IBz587h+++/tztm4cKFMJlM6NevH4wKDmuMj4/H3LlzERERAUuTQlgiSxSLheh6yJV0Z5W7PFjlbmsr4+0sPu7zkcWqdzxsiIiIiIicxxJZCkvTQoSFhWHu3Llo1KiR0iER1crZs2cxZsyYarfasFgsWL16NQD75HplBw1HnTI0Gg0iIiJgtVrt8pdnzpy54jH169eH0WhEVlYWyspsnS9MJhOysrJgNBodtnWKjo62iwUAMjIyYLVaERERUXWi4FrHuAP2cK8DFy5cwIQJE9CsWTPExsaifv36KC4uxrFjx3Dw4EFoNBo8//zzdpdaAMCUKVPw+OOPY86cOdi5cycaNmyI1NRU7N69GzExMZgwYYJCP9FFUVFRmDdvHqZMmYJTOAVoJKjP+EKo9ZxlorohVz93WbCXOxEREREREQBAggRrTAmsDUsQGxuL9957D2FhYUqHRW5ErvaaruCTTz7ByZMn0blzZ7sq88pZkJUzIy/naJZkSUnJNY8xmUwoLi6GwWCo2v9K8yYrt1/6GNeaUXmtGZeuign3OhAeHo777rsPe/fuxY4dO1BYWAiNRoMGDRrg7rvvxtChQxEXF1ftuMoBAwsXLsS2bduwdetWhISEYOjQoRg7dmy1BL1S6tevjw8++ADPPfccDuMwoBGhPuHPpDt5JdkGqMpAlV8EMcg13keuRRAlSCrnv6fo8y0wB3nvn0JBkiAJzn9eLXoBGrPnfoglIiIiImVIkGCNL4Y1qhRNmjTBe++9h6CgIKXDIrohUVFRWLx48Q2v8+2332Lp0qWIjY3Fq6++6oTIqLa8N8tQh/z9/WtdjR4WFoaXXnrJyRE5X2BgIGbPno2XX34Zu7EbkkaC5u8AJt3JpclV5S5L0p1V7l5PVySh3J/vqc5W4auCtkS89o5EREREpCgJEixNCiGGlSE5ORkzZ868YlUskbdZvnw53n//fcTFxWH27NkICAiwu7/yd6WyCv1yjqrTfX19UVBQgJKSEgQGBl7zmGtVozuqZndU9X6tuNyB+zREJZfn6+uLt99+G127doXYoAyW5gWQBFY4kmtzqyGqMgxQZS93IiJ5WHJylA6BiIjIY0iCBMtNBRDDytCpUye8++67bpeAIxciudDNCZYtW4Y5c+YgPj4ec+bMQUhISLV9KvuwO+qFbrFYkJmZCbVajcjIyKrtsbGxVzwmOzsbJpMJoaGhMBgMAACj0YjQ0FCYTCZkZ2dXOyY9Pd0uFgCIjIyEWq1GZmYmLJbqc9YcHeMOmHAnp9Lr9Xjrrbdw6623Qgwxw9IyH5KKlYPkfbx9gKo2231+fncanioHd+pf6E6DU+UgqXmFAxEREXkfSSXB0iIfYn0zbrnlFkyfPr0qwUfk7b766ivMnTsXTZo0wZw5c1CvXj2H+7Vt2xYAsG3btmr37d27F2VlZUhMTIROp6t2B4GiVAAAWCFJREFUzPbt26sdU7lO5T61PUav16Nly5YoKyvDvn37avw4rs67v7mSLDQaDV599VUMHDgQYlA5LMn5kDRMupPrkqvKXZakuwxV7u7E26vcdUXu8/Nb9EwOExEREdGNkdQiLEl5EOuVY8CAAZg2bRq0Wq3SYZGbEyTXud2IL774Ap988gmaNWuG2bNnX3WeQa9evRAYGIgNGzbg8OHDVdvNZjMWLFgAALjnnnvsjunfvz90Oh2+++47ZGZmVm0vKirCkiVLAAADBw60O+buu+8GAHz55ZcoKrpY3JeZmYnvv/8eOp0O/fv3tzum8nEXLFgAs9lctf3QoUPYsGEDgoKC0LNnz2s8G66FPdxJFiqVClOmTIG/vz+WLFkCS3I+NPsDIVSolQ6NyCG5+rm7CzkGqLpTL3dvH55KzmfVq6E2W5UOg4iIiMhtSVoRlqR8iD4VGDlyJB577DEIAos6iABg1apV+Oyzz6BWq5GcnIxvv/222j4RERFVyW1fX188//zzmDZtGiZNmoTevXsjICAAf/zxB86cOYNevXqhd+/edsdHRkbisccew5w5c/Dwww/jlltugVarRUpKCrKysjBixAgkJibaHZOUlIThw4dj2bJlePDBB9GrVy9UVFRg48aNKCwsxKRJkxAREWF3TJ8+ffD7778jJSUF48ePR7du3VBQUICNGzdCFEU899xzVf3h3YUgSW50LTm5pa+++gqffPIJVGYNNPuCIJiZdCfXJFfC3ekDVAFZBqg6O+EOQLaEu6Ry/gdtd0m4yzU4VZLhy4vG7PyPGJpS518xJdfQVDkS7oJVhuc02/HgpBslmMtlWRfFMsRrdf6/AfZwJyIiqj1Jb4UlOR+i3oIJEyZg9OjRTLbTDRszZgxOZOTAHNtH6VCq6M+sR0JkCBYvXnxdxy1cuBCff/75Vfdp3bo13n//fbtt+/fvx+LFi3Hw4EGUl5cjKioKd955J4YMGQK12nG+7o8//sDXX3+Nv//+G5IkIS4uDoMGDapWqX6pVatW4fvvv8epU6cgCAKaNm2KUaNGoWvXrg73t1gs+O677/DLL7/g7Nmz0Ol0aNmyJcaMGYOkpKSrPxkuiAl3qhMrVqzArFmzIJSroN4XBJXJPRJb5H3kSLrLknAHvDrp7s0Jd0CepLs3J9wBeZLuTLgz4U5ERETXTzRaYE0ugKi1YPLkyRg8eLDSIZGHGDNmDE6cdcGEe9T1J9zJtbGHO9WJgQMHYurUqRD0gLV1PkS/CqVDInJIjn7u7jRA1V3I0cvd24enykGOPu7ePjiViIiIyJOJvhWwts4H9CJeeeUVJtuJyC3xWyvVmVtvvRXTZ0yH2qCGpVU+rCFlSodEVGfcZYCqKr/o2jtdJ202Tzi4A4EXvBERERGRgqzBZbC0zodKL+DNN9/EbbfdpnRIRES1woQ71akuXbpgzpz/IDAoAJbmBbBEl0ACkzzkWuSocifn8+Yqd10R3zeJiIiIyDNIkGCJKoGlRQH8A/0we/Zs9OjRQ+mwyIMJkuvcyDMx4U51LjExEfM/nY+EhARY44phaVoIie8y5GLcprUMq9yJiIiIiMhNSYIES5NCWOOLERcXh/nz56NVq1ZKh0VEdEPcZ0IceZTw8HB8+OGHePPNN/HHH3/AYrRCkxoIocLxRGQiJciSdC8thUpvcO6ixSVQhdRz6pKqrDzAyUM09dn5EBsEOXVNADA38HXqerpCqyzDLkWtc89x6/MBweL8k5UV/s5/H5bUzu/lrqpw7s8uagWozc4dnClqVdCUOP+qCXWhk09gqQUIxTK0eZPjJKNKBaid+2/UknnOqesRERFRzUgaEZYWBRADytG5c2e89tpr8PV17md7IiIlsMKdFOPj44O33noLo0aNguhfAUubPIi+HKZKRERERERE5MlEHwssbfMgBpRj+PDhmDFjBpPtVHckF7qRR2LCnRSlVqvx2GOP4aWXXoJghG2YajCHqZJnE83O/zcu5uQ5fU3IMERTdSHf6WvqL5Q4fU2r3vlV3qoK51ZPExERERG5I2s9Myyt8yAYJTz//POYOHEi1E6+go2ISElMuJNL6N+/P+bMmQP/ID9YWhTAEsVhquTZmHQnZ5A0zm/Voi1yfjsdwcr3cyIiIiJvJ0GCJbIElpb58Av0xezZszFgwAClwyIicjom3MllJCcnY/78+YiLi4M1vhiWJhymSp7NbZLuboBV7t5H1Dr/ZINVz49FRERERHKQBAmWxoWwJhQjNjYW8+fPR+vWrZUOi7yUILnOjTwTv1mSS4mMjMRHH32ELl26QAwrgyUpD5KWCSryXHIk3Z3OTarc5Ui6uwN3qXInIiIiIu8kaURYkvIhhpehY8eO+PjjjxEVFaV0WEREsmHCnVyOr68vpk+fjhEjRkAM+GeYqg+HqRLVFFvLOA+r3J3HW9vKWHw1SodAREREpBjReHE46tChQzFz5kz4+fkpHRYRkayYcCeXpFar8cQTT+D555+HYJRgaZ0Paz2z0mERycJtWsvIkHR3Nla5exc52sq4A2uAUekQiIiIiK5JDDLD0sY2HPWZZ57BU089BY2GxQjkAiQXupFHYsKdXNqAAQMwe/Zs+Af6wdIyn8NUyWO5TdLdydyhtYy3Vrl7a1sZ9nEnIiIiujG24ailqEjMh2+AD959910MHDhQ6bCIiOoMv1WSy2vdujU+mf8JGjZsaBum2rQQkopJd/I8bpF0Z2sZl+UOVe7e2lbGHUh+BqVDUIQl85zSIRAREXkUSVU5HLUIMTEx+OSTT9CuXTulwyIiqlNMuJNbiIqKujhMtUEZLG1yIfpYlA6LyOm8dYiqs7lDaxlWuRMRERGRJxGNFtsMtkuGo8bExCgdFlE1guQ6N/JMTLiT2/Dz88OMGTPw2GOPAb4iLG1yYW1gUjosIpfnDv3cWeXuHN5Y5e4Ofdw5OJWIiIg8nTXUBEvbPEg+Fjz88MN4++234e/vr3RYRESKYMKd3IpKpcKoUaPwwQcfoH6D+rA0LURFkwK2mCGP4hatZWTg7KQ7q9ypttjHnYiIiKhmJJWEisYFsDQrREhoMObMmYPRo0dDpeLnKSLyXnwHJLeUlJSEhQsXonPnzhDD2GKGPI9bJN29sLWMN1a5s60MERERETlyeQuZhQsXonXr1kqHRXR1EmzfZV3mpvQTQnJgwp3cVmBgIGbOnMkWM+SxvLGfuzu0lnE2b6xy98a2Ms5mDTAqHQIRERF5MUctZIKCgpQOi4jIJTDhTm6NLWbI0zk76e6N/dxZ5X7jWOVORERERABbyJD7E6D8oFS7m9JPCMmC74jkEdhihjyZWyTdXZyr93P3xip3V8c+7kRERET22EKGiKhm+G2SPEb1FjN5bDFDdAWu3s/d1VvLeGOVu7N5W1sZi69G6RCIiIiIao0tZIiIao4Jd/Io9i1mQthihjyGNw5R9bbWMq5e5c62Mp5P8jMoHUKdsmSeUzoEIiIil3d5C5n333+fLWTI/UkudCOPxHdI8kiVLWa6dOnCFjPkMbxxiCrdGG+rciciIiIi53HUQqZVq1ZKh0VE5PKYcCePFRgYiBkzZrDFDHkUb+vnzip31+JtVe7s405ERETeqrKFDHytbCFDRHSd+E2SPNqlLWZCw+rbWsw0LYCkdu2kFtHVuHzS3ctay7g6V69ydyZX7+PubNYAo9IhEBERkYeR1CIqmthayNRvEII5c+awhQx5HEF0nRt5Jr5jkldISkrCZ599hq5du0JsUAZL+1yIQWalwyJyGa6edHdl3lbl7mze1FaGg1OJiIjIlYlBZlja50EMK0OnTp3w2WefsYUMEVEtMOFOXqOyxcwLL7wAfYAOFYn5qGhcyGp3ckve1s+dVe43xplV7t7WVoaIiIjI00kqERWNClGRmA+9vxbPPfccW8gQEd0AJtzJqwiCgDvvvBOLFy9G+/btIYabYGmXBzGwXOnQiK6by7eWcTJXTrqzyt11OLutDPu4ExERkScTA8ptVe0RJrRp0waff/E57rrrLgiCd7XqIy8judCNPBK/RZJXCgsLw3vvvYcpU6ZA569BRVIeKhIKIan4bkfuxeWT7l7UWsbVuXKVuze1lSEiIiJyBZJKgiW+CBXJedD4qTBp0iTMnj0bERERSodGROT2mHAnryUIAu655x58/sXnaNWqFcRIEyztciEGsNqd3Is3Jd1Z5U5EREREdGNE/3JY2uXBGlWKxMRELFq0CEOGDOFgVCIiJ+H0LvJ6kZGRmDNnDr799lvM/2Q+ypPzoD7rA/VpPwgiL6MjeQkarVPWkaxWSFbnVR2LmeehqR/stPVsizon8a46cx7w93PKWgBgzCuB5G902nqWQIPT1lJbRKcn3oUyi1PW0eYCghP/zQGAaNA5bS3ByVdXCOYK561V5ry1AACFRc5dT+2kk0cqlfPWAiBm5ThvLXeYg0FERORkkiDB2rAY1uhSaLVaPDrhcQwbNgxqJ/69JnJ5EiC40gW2rhQLOQ1PXxIBUKlUGD58OBYuWoiWLVvCGlUKS9s8iH5OTooQXUayODGJ5+QPypbsXKeuR0REREREyhD9KmxV7dGluOmmm/DZZ59h5MiRTLYTEcmACXeiS8TGxmLu3Ll45JFHoPKTUNE6F5aGRZBc6vQneRqvSbqrnHjFSFGx89YCIBSZnLaWpsDJLX60zv1TLRmcd3GbxC9oRERERC5NEiRYYotR0ToPKl8JEyZMwIcffoi4uDilQyMi8lhMuBNdRq1W47777sP/t3fn4VHVadrH71N7hSxACCEJBEiQXXa0QVZFCGtEWtyQRmhHW52xdXrm7blmunva6em3Z5xXx3Zpt0EbnVZsG3BjUVsQWhQQVLABRVD2sAXInlrOef8IKQlJWJKTVKXy/VxXXVU5dc7JU1Eqlbueen7PPfecevbsqXCXM93ubeh2R9MhdG+AVhS6txaOCvvW0LAMRoIBAIDWzWwTVGjISYWzS3XZZT307HPP6rbbbpPLxXRhtHKWFTsXxCUCd6AeOTk5euqppzR//nwZiaZCg08q1KWEbnc0GUL3Bojh0N1OdLlHn+W1Z70FSbJ89p0LAADgXJYshbqUKDT4pNQmrHnz5umpp55Sbm5utEsDgFaBwB04D5fLpXnz5unpp59W95zuCnctVWjwSZkJ9iw6CJyL0L0BbA7d7RLro2VilZ1d7gAAAK2N6Q8pPPiUwl1L1a17Nz399NOaP3++3G7e8AeA5tI6/noHGqlnz5569tmqj98ZSaZCQwoVyi6R5aDbHfYjdG8AG0P31jJapjV0uTNWBgAAtBaWcaarfWihrKSQbrnlFj377LPq1atXtEsDYo5hxc4F8YnAHbhIbrdbd9xxh5544gnl5OYonF2q8LBChdtVRrs0xCFC9+iK1dA9lkfLtAZ2jpWxVXJStCsAAABRZLatVHj4yUhX++OPP6677rpLHo8n2qUBQKtE4A5cor59++rZZ5/VvffeK0+KW6F+pxTsc0qWNxzt0hBnCN0vEfPco8rOLvfWsHgqc9wBAEBjWZ6wgr1PKdj/lDwpLv3oRz/S//zP/6h///7RLg0AWrXY/KsdiHEul0uzZ8/WSy+9pPHjx8tMrVRwWKFCWaUsqgpbWaGgbcE7oXv0tJbRMgAAAGh6lmEplFmq0PBCmR0qNWbMGC1atEg333yzXC5e2wEXZMXQBXGJZ2JEzf79+7VgwQJVVFTo2muv1c9+9rNa+4wZM6be4/v27aunnnqq1vavvvpKjz32mL766itlZGRowYIFGj16tK21V0tLS9Mvf/lLTZ06VY888ogOGgeljEo5vkqUo4iP78E+Vigow9X4jljD6ZQVtu/TGKHjhXJ1aG/PyRyGZNrwiqO4REpKbPx5VNXlbiX5bTmX63SFQik+W85luh1yBE1bzmUny+mUYdP/X46KgExf7D2PWl63jEr7Pn0CAABwKcykgMxepQr7AsrMzNR9992nESNGRLssAMBZCNwRFaFQSL/61a9kXMRH/Tt16qS8vLxa2zt27Fhr24kTJ/TAAw8oNTVV+fn52r17t/7lX/5FjzzyiIYMGWJL7XW54oor9MILL+jll1/WSy+9pMCAk3Ic8cn1bZKMIB8kgT0I3S8BofslsXwuGRUhW84ViyzDkGHRPgIAAFouy2Uq3L1E4fRyud1u3XbrPN16663yer3RLg0AcA4Cd0TFSy+9pK+//lo/+tGP9Nvf/va8+3bq1Enz58+/qPN++OGH8nq9euaZZyIvPP75n/9Zb7/9dpMG7pLk9Xo1b948TZgwQf/93/+tjRs3KpQWlGNPghwFfhmKzTnCaFkI3S9BjIbu8a41dLnbxfK5ZVTQLQ8AAOpnyZKZXi4zt0ymI6xhw4bp/vvvV5cuXaJdGtBiMQkYTY3AHc1u586d+v3vf6958+YpNzfX1nObpinDMGp0zrtcLplm841e6Ny5sx566CF98MEHeuyxx3TMcUzO6jEzpSySh8azM3SXZFvwTuh+cehyjw47u9xjcqxMcpJUVGzPucJhyeY1H2KJWRm7ayoAAHA2s01QZs8ShdsElJqaqr/927/V+PHjL+qT4gCA6CFwR7OqrKzUr371K1122WW69dZbtW3btgseU1JSorfffluFhYVq06aNevXqpX79+tW574gRI/T000/rrrvu0vDhw/Xtt9/qo48+0n/+53/a/VDOyzAMjRs3TldccYWef/55vfbaawoOLpTjkF+uvYkywoyZQePYFbpL9na72xq6x7F4D93t7HIHAABobSynqXDXEoUzy+VwOHTDrBs0f/58tWnTJtqlAXHAkmJq3GQs1QK7ELijWT311FMqKCjQc889d9Grp3/99df6j//4jxrbevTooX/+53+u1SGfnp6u//qv/9ITTzyhZcuWKT09Xb/4xS/0ve99z7bHcCkSEhJ0zz33KC8vTw8//LC2aZvC6UEZXyfIcczHmBk0StyH7nHc5Y6Lx1gZAADQWliyZHaokHVZmcLOkPr166cHHnhAl112WbRLAwBcAgJ3NJvNmzdryZIluvPOO9WtW7eLOmb27NkaO3asunTpIo/Ho3379ukPf/iD1qxZox//+MdauHCh0tLSahzTr18/Pfnkk03wCBouNzdXjz32mFatWqUnn3xSp3udljPzzJiZcv4ZouEI3S9SDIbudLk3PxZPBQAAscr0h2ReVqJwcqWSk5N11113acqUKXI4+HQ0ALQ0JH2wzcKFC2ttmzx5sjIyMlRcXKxf//rX6tu3r2688caLPue9995b4+vevXvrwQcf1M9+9jN98MEHeuWVV/S3f/u3ja69OTgcDk2ePFlXXXWVnn76ab311lsyhxbKccAv5/42jJlBgxG6XyRC9xYrFrvcY3KOOwAAaHEsp6lw51KZXcplydLUqVN15513qm3bttEuDYhLhqXYmuISS7XANgTusM0LL7xQa9vgwYOVkZGhJ554QkVFRXrkkUfktGEhtvz8fH3wwQf6/PPPG32u5pacnKx/+Id/0JQpU/Twww9rl3ZJmQEZ3/jlKPDLsBgzg0tnhaqCP7sWUyV0bz52hu52iecudwAAgFhgGZbMTuWyupcr7AgpNzdXDzzwgC6//PJolwYAaCQCd9hm7dq19d731VdfqbKyUnPmzKnz/nfffVfvvvuuevToUWen/Lmq3+2vqKhoUK2xoF+/fnrmmWf0zjvv6LnnntMxxzG5siulr/1ynPAy3x0NYle3O6H7hcXiPHe63C8sFsfKMMcdAIDWw5Ils32ldFm5Qu6AUlNTtWDBAk2ePNmW5jQAQPQRuKNZjBkzRr169aq1/cSJE/r444+VlZWlQYMGKT09/aLO99e//lWSlJGRYWudzc3pdGry5MkaP368/vjHP+qll15SeZ/TcpZ65fg6QY7i2BqhgJaB0L35xPNoGbrcLyzmxsokJ0lFxdGuAgAA1MNMDMq6rFShNpXy+/36wS0LNHv2bPn9sdXEAcS92PmTEnGKwB3NYt68eXVu//TTT/Xxxx+rb9+++j//5//UuG/37t3q2rWrXC5Xre3PPfecJGnixIlNUm9z8/l8uu222zRt2jQ9//zzevPNNxUceFLOEz45v2kjo4J/qrg0hO4XEOfz3O1iV+gea2Kxyx0AAMQvyxtSOKdU4dQKORwOzZg2Q7fffrtSU1OjXRoAoAmQ4iFmLV68WOvXr9eAAQPUsWNHud1u7du3Txs3blQ4HNb06dM1YcKEaJdpq3bt2umBBx7QrFmz9PTTT+svf/mLzNRKOQ6eWVg1xMKquHiE7hcQx/PcY220jF1d7rG4eCoAAEB9LJepcJdSmVlVC6KOHDlSd911l7p16xbt0gAATYjAHTFr9OjRKi0t1Z49e7RlyxYFAgElJyfryiuv1LRp0zRq1Khol9hkunbtql//+tf67LPP9OSTT2qndkpZldI3fjkPJbCwKi4aofsFMM/9guK1y90udo2VYY47AADxwzIshTPLpO4VCiukXr166e6779bgwYOjXRoASUYMfdg1hkqBjQzL4jPVQCwzTVOrV6/W008/rYKCArnCHulrnxzHfCysiotmR+guybbQXZI9obtkz0x3mzrd7Qrd7RotY1eXu12Bu12z3O3qcrdrrIxdc9xtCdztmuFu16JtNi7+Zh47Yc95KlvugusAgNhmyZLZ4cyCqM6A0tPTdccdd2jChAlyOPi0MhBtc+fO1bf7jstIGh/tUiKs4tXqlt1BixYtinYpsBEd7kCMczgcuuaaazR69GgtWbJEixYtUkmvIrm6VsrYlSDHacYr4MLodL+AGOt0j7XRMnS5AwAAnJ+ZHJB6linkq1RiYqJuu22Brr/+enm93miXBgBoZgTuQAvh8Xh00003acqUKVq0aJGWLFmi4OUn5Trtk/F1GznK+eeM87NCsTeuInTsuAybOmAdKcmNO0FRkRS0IVQ+IRkJjQ/d3Uclue35ZIISE2w5jeVu5H8rw5BRHmh0Hc6KoOS0qUvMjv/mkj2ftJAks5FvaPm8UmXjf8YyTVll5Y0/jySzvPEd5bH4/AUAgCSZ/pCs3DKF2pbL6XTq+zO/r7lz56pt27bRLg1Afex67Q7Ug4QOaGGSk5N177336vrrr9czzzyj999/X8bQSjkK/HLuTZARtO/j+0BzsMJhW0J383RR40N3t8u+ABYAAABxy3KbCnctldmpakHUcePG6W/+5m/UuXPnaJcGAIgyAneghcrMzNS//uu/avbs2XryySe1VVulTpXSPp+cBxNkhJkRiJYj3kJ3q6zcli53BYP2dLmXlNnS5W4Ew43ucrf8Hlu63BU27etyBwAAuEiW06xaELVrpcIKqV+/frr77rt1+eWXR7s0AECMIHAHWri+ffvqscce01/+8hc9/fTT2qd9UnaltNcr5yGCd7QchO71iMPQPabY9akGO9YSAAAAMctymgpnlMvoVqmwgsrKytKdd96psWPHyjCMaJcH4FLwsh1NjMAdiAOGYWj06NEaMWKE3nvvPb3wwgs6pEMyugZkfeuV85BfhknwjthH6F6PGAvdG4su9/NwOBs/xx0AANjGclgKZ5TJ6F4VtHfq1Enz5s3TxIkT5XIRqQAAauO3AxBHXC6X8vLyNGHCBK1cuVKLFi1SgQpkdKuU9Y1XzsMJMky6LxDbrHBV2NjY4J3QvR42hO4xNVrGDvE2u9/rsWfhVAAAWjHLYSncqUyOnIDCCqhjx476wQ9+oLy8PLntWtgeABCXCNyBOORyuTRt2jRNmjRJy5cv16JFi3RMx+ToHlB4j0fOAoJ3xD47ut0J3ZtOzIyWiaUud8bKAADQ4lmGJbNTuYzcSoUVULsOHXTbbbdp6tSp8ng80S4PQGNZkhFDL9mtGKoF9iFwB+KY2+1Wfn6+Jk+erLfeeksvvviiTuiEHDkBmbu9chT4ZVgE74hdhO51sCN0j7fRMnaIty53AABwSSzDkpleLqNHQCFVqn379pozZ46mT58ur9cb7fIAAC0IgTvQCng8Hl1//fWaOnWqXn/9df3v//6vTuaelDu3UuE9XjkL/HS8I2YRutchRkL3mBktE0td7nZgjjsAAM3GclQF7Y7cqqC9bdu2uvXWHyo/P18+ny/a5QEAWiACd6AV8Xq9mj17tmbMmKE33nhDf/jDH1SoQjlyKhX+xsOMd8Qsu0J3SY0L3mMpdLdDjITutrAjdLejyz1WxsrYMMfdSPDLKiu3qSAAAGJLZEZ7bkAhK6B27drphzcvUH5+vvz+GHmtBqBpMMcFTYzAHWiFfD6fZs+erfz8fL311lv6wx/+UDXjPadS4W+8ch72ywjHUbco4kLMLKYaK6F7DC2i2lgxNVoGAADENcthKpxRXrUYqhVQ2/apuuWWWzR9+nQ62gEAtiBwB1oxr9erWbNmafr06VqxYoVeeuklHbGOyOheKX3rleMQwTtiT0yMmIm30L2R4mq0TKzMcmesDAAAtrKcpsyMchndKxW2gmrfIU233nqrpk6dyox2AICtCNwByOPxKD8/X1OmTNGqVav04osv6rB1WK5uFbL2euU8lCAjRPCO2EHofpY4muceN2JlrAwAAKgK2rPKpa6VCllBdUrvpDlz5igvL08ejyfa5QGIAoOX6mhiBO4AItxut6ZNm6a8vDy9++67WrRokQ5aB6WuFXIU+GTs88mo5GkDsYHQ/SwxEro3Fl3uNrNhjjsAAC2V5Q3L6lIuM6NSYSukzIxM3XbbbZo0aZJcLv6mAQA0HX7LAKjF5XJp8uTJuvbaa7V69Wq98sor2mXtkpFeJvfpBFnfeOUoif4YC4DQ/SwxELrT5X4WutwBAIgKMzEoo3ulgillsmSpR24P3XTTTbr66qsJ2gFU4WU6mhi/bQDUy+Vy6dprr9WECRO0ZcsWLV68WB9//LE0qFTeygSFd7vlKPTKkBHtUtGK2bGYKqH7WaIcutPlfhbmuAMAcFEsWTLbB+TMCSjoK5MkXXHFFbrppps0dOhQGQZ/rwAAmg+BO4ALMgxDQ4cO1dChQ/XNN99o8eLFevfddxXqWyaP6VN4j1uOo34ZJi9kET2N7XYndI8dtoTuAAAg7lmGJbNjuRy5QYUcFZLLpcnXTtbs2bOVm5sb7fIAAK0UgTuAS9K9e3f99Kc/1Q9/+EMtXbpUy5YtU3GPYrkvq1B4r4cFVhFVdoTukhoevMdK6N5Y8TBaJha63GNhrEwj57gbCX5ZZeU2FgQAQONZLlNmZrmMrgGFrIASExN1Q/6tmjVrljp06BDt8gDEOMNipgyaFoE7gAbp0KGD7rjjDt16661asWKFXn31VR22DsvqWiHHkaoFVh0VPMWg+UV9rnsshO6MlqliR+gebYyVAQAgwvSFZGVXyEqvUNgKq1N6J91www2aOnWqEhKiu/g7AADVSMMANEpCQoJmzZql/Px8rVu3Ti+//LJ2WjuljqXyFCXI+tYro8jNnHc0K0J3xUTo3lgxMVomFma5AwDQyplJARndAwoml0qSevfqrRtvvFFjx45lIVQAQMzhNxMAW7hcLo0fP17jxo3T1q1b9corr+jDDz+UBpTJE/ArvNsjxwkWWEXzifpiqoTu8TNapjFiYawMAAAtkCVLZmqlnDlBBb1VC6GOHDlSN910kwYOHMhCqAAaxpJkRruIs/CnQlwicAdgK8MwNHDgQA0cOFD79u3Tq6++qhUrVijUp1wey6vwHo8cR1hgFc0nqoupxkvo3ggxMVqmsVp6l3sj57gDANCcLIclM71cjpygQkaFDLdb0/Om64YbblC3bt2iXR4AABdE4A6gyWRnZ+snP/mJFixYoKVLl2rp0qU6nXtarh4VsvZ55DzslxGIcvcrWgVC90aG7i19tEy0u9wbiznuAIBWwPKEFc4ol5EdUMgKKjk5WTfPvFEzZ85U+/bto10eAAAXjcAdQJNr166d5s+fr1tuuUWrVq3SK6+8ooPWQZldyuQq8kv7PDJOeRg3gyZF6B690D0mRss0VmP+GzJWBgCAOlmyZLUNyOgSUDClXJYsZWVmafbs2crLy5Pf34jXPgBQD8PitTmaFoE7gGbj8/mUn5+vadOm6eOPP9ayZcu0ceNGWf3L5DF9Cu11yXnELyPUgjtREdMI3Vtu6N7qu9wBAIgjlstUOL1czq4hBR0VMgxDV1xxhWbMmKGRI0fK2YjXawAARBuBO4Bm53Q6ddVVV+mqq67SoUOH9MYbb2j58uU65TglK6dMzuM+6YBXRrGbrnfYrnox1YYKF56U1LjFWB2N6NaySssa/RjUmOOPSobH0/DjXQ1/6WFJVd3ijREINu74xgQAjfzvZgUaN4fdakSXvRVq5M8NANDqWbJkJQWlzpUKd6iQaZlKTEnRrCkzlZ+fr8zMzGiXCACALQjcAURVZmam7rrrLs2fP19r167VsmXLtHXrVim1TJ6QT+Fv3XIc88kI05mK2NKYbnmzvLxRobvhdDYudHc6GxX+WoFA40J3AADQalgOU2bHCjm6hRR0lUuSLu9/ufLz8zVu3Dh5eE0BoLkxUQZNjMAdQEzweDyaMGGCJkyYoD179uj111/XqlWrVNajWM7LymQUeGUc9MlR1ohxGIDNqkPvhgTvrTZ0D4Ua1eUu02pcl7vH3bgu93C44V3ujfyZAwDQkpgJIVmZ5bIyAgpbISUkJGjKxOuUn5+v3NzcaJcHAECTIXAHEHNycnJ0//33684779R7772n119/XbusXVJ6mTwVfpl73XIc98mwGDeD2NDQbnezvKrLq6HBO6F7AzU2dI8Sw+Np9FgZAACakmVYMjtUyNE1qKCv6nVOj9weys/P17XXXquEhIatBQMAQEtC4A4gZiUkJGjGjBmaPn26duzYoWXLlun9999XqFe5XL3KZR10y3nYL6OCpzJEX7S63au/X4OD99YaujdGC+1yNxxGo+a4AwBQH8sbUjijQkbngEIKyu12a9LVk5Sfn69+/frJMGiUARBDLF4To2mRUgGIeYZhqG/fvurbt6/uvfderVixQq+//roO6IDCWWVyl/hl7fPIUehlkVVEXYvsdm+NoTtd7gAANIolS2b7ShnZAQUTq17HZGVlacaMGZoyZYpSUlKiXCEAANFB4A6gRUlOTtaNN96oG264QVu2bNGyZcv04YcfKty3XG7Lo/A+t5xH/DICDew+BWwQzW73RoXuUoOD91YXurfQLveGMlxuWaGW9wYFAMB+ljuscKdyObKDChkBOZ1OjR45Wvn5+Ro2bJgcDke0SwQAIKoI3AG0SA6HQ8OGDdOwYcN07Ngxvf3223rzzTd1zDimcNcyuYt9sg6e6Xo36XpHdDSm270ljpghdAcAID5ZhiUztVJGZkCh5ApZstSuQwdNmzZN06ZNU8eOHaNdIgBcFEOSEUMTZUgr4hOBO4AWLy0tTfPmzdOcOXP00Ucf6e2339aGDRsUTiqXUy7piFuOAp+MYjcjZ9DsGtrt3lJHzEQtdG9pGvEzbsxYGea4AwAuliVLVlJQZqdKKT2gsEJyOp363hXf05QpU3TVVVfJ1Zp+dwMAcJH47QggbrhcLo0ePVqjR49WYWGh3nvvPa1atUq7tEvh9HK5w16FD7jkPOqXUUlXKppXtLrdW03oTpc7AAC2sLxhhTuWy9E5pKCzUpKUm5urvLw8TZgwQampqVGuEACA2EbgDiAutW/fXrNnz9bs2bO1e/durVy5Uu+++64KnYUKdy2Vu9Qn65BHjuNeGWHmTKJ5RKPbvVEjZgjdm1aUutwBADiX5TSrRsZkBRVsU/W6I7ldO117bb7y8vLUo0ePKFcIAHaxJCuWPvEZS7XALgTuAOJebm6u7rnnHt15553atGmTVq5cqQ8//FDBNkVyXOaQcdwrR4FXxikPI2fQLFpUt3sjFlNtNaF7C+tyb+hYGRZOBYD4YsmSlRKQ1alSZlpApsJyu90aP2q88vLyNHz4cEbGAADQAPz2BNBquFwujRgxQiNGjFBxcbFWr16tlStX6osvvlC4Q7lcpkfWQZccR/1ylPP0iKbVmG73ljRipsWF7g3V0NC9EV3uAAA0hOkPyexYLiMrpJCj6tNS/fr1U15enq6++molJSVFuUIAAFo2EiUArVJSUpJmzJihGTNm6MCBA1q1apVWrVqlAkeBwl3K5K7wyjrokeOYT0aIkTNoOg3pdm9pI2ZaVOgejdEyDcRYGQDAxbJcpswOFTI6BxX0VUiS0tPTNXHiROXl5alLly5RrhAAmoklGbE0xYUP2cclAncArV7nzp21YMEC3X777dq6datWrlyp1atXq9xXLCO3RI6TXhmHvVXXFr8NYb8W1e1O6F4/utwBADHEMiyZ7c6MjGlfKUum/H6/rhmbp7y8PA0aNEgOB40lAADYjcAdaCUOHDigP/zhD/rkk09UWFgov9+vrKwsjRs3TjfddFOt/Y8ePaqFCxdqw4YNKioqUmpqqkaNGqXbb7+9zo+Znjx5Uo899pg2btyohIQETZs2TbfeequcLWiuscPh0KBBgzRo0CDdd999WrdunVauXKnNmzfLalchp+WSDrurut6L3cx7h+2i0e0e96F7nGtol3tD57gDAGKbJUtWYkhmWoWMzKBCRlCGYWjIkCHKy8vT6NGjlZCQEO0yASC6YmnRVGKFuMRfr0Ar8MEHH+jf/u3f5HQ6NXLkSGVkZKikpET79+/X2rVrawXuBw8e1N13362TJ09q1KhRys7O1o4dO/Taa69p48aNeuKJJ5SSkhLZ37Is/cu//Iv27duniRMnqri4WC+88IJCoZDmz5/f3A/XFn6/XxMnTtTEiRN19OhRvfPOO1q5cqX2GfsUziyXK+yRVeCqCt9LXITvsE1zd7s3eMRMSwnd6XIHAMS5SMjeoUJGRkghZ9UbsV26dFFeXp4mTpyo9PT0KFcJAEDrQeAOxLk9e/bo3/7t39S1a1f953/+p1JTU2vcHwqFah3z8MMP6+TJk7rvvvs0a9asyPbHH39cr776qp599ln95Cc/iWw/cOCAtm3bpueff165ubmSpF69eunll19usYH72Tp27Kg5c+bo1ltv1ZdffqnVq1dr9erVKnAWKJxVJlfYLavATfgOWzW0271ZR8xU13eJxxG6t1yGyy0r1DJm3ANAPKsvZE9PT9e4ceM0fvx49enTR4bB61IAAJobgTsQ55555hkFg0H97Gc/qxW2S5LrnPDq4MGD2rRpkzp16qSZM2fWuG/+/Pl688039c477+iee+6R/0ywFz4Ttp09PsbpdEa2xwvDMNS7d2/17t1bd911l3bu3Kk1a9YQvqPJNKTbvaWMmIn70L0hGtjlzuKpANA61AzZgwo5q34/EbIDwCWKoYkyiE8E7kAcKy0t1ccff6wePXqoW7du2r59u7Zt2ybTNNW1a1cNHz5cbre7xjGffvqpJGn48OG1FlFKSEhQ//79tWnTJm3fvl1Dhw6VJGVnZ6tXr1768Y9/rGuuuUalpaV677339P3vf795HmgUGIahPn36qE+fPvWG786QWzpC+I7Ga85u9+YcMdNiQveGaAFd7sxxB4DYVyNk7xRUyEXIDgBArCNwB+LYl19+KdM01alTJ/3iF7/Q6tWra9yfnp6uBx98UH369Ils27dvn6SqmY916dy5szZt2qT9+/dHAneHw6Ff//rXeuyxx7RixQr5/X7dfPPN+sEPftBEjyy21BW+r169WmvWrFGBi/Ad9mgR3e7xGrrT5Q4AaEZnh+zqFFSYkB0AcI41a9bos88+09dff62vv/5aZWVluvbaa/Wzn/2s3mO2bdumRYsWafv27aqsrFTnzp01ZcoUzZo1q8bEgrOtX79er7zyinbt2iXTNNWtWzddd911mjx5cr3fZ8WKFVq6dKn27t0rh8Ohyy67TDfddJNGjhxZ5/7hcFh/+tOftHz5ch04cEBer1d9+/bV3Llzdfnll1/aDyZGELgDcezkyZOSqp4g27Rpo5///Oe68sorVVpaqqVLl+rll1/WP/7jP+rFF19U27ZtJVV1xUtSYmJinees3l5SUlJje1pamh588MEmeiQtx9nh+49+9CPCd9iuubvdCd3PaEjo3gK63AEAsYGQHQCaj2G1/E95Llq0SF9//bX8fr/S0tIizZP1WbdunX7+85/L4/Fo/PjxSk5O1vr16/X444/riy++qDPP+dOf/qRHH31UKSkpuvbaa+V2u7VmzRr93//7f7Vnzx7dc889tY554okntHjxYqWlpWnatGkKBoN6//339dOf/rTWOoGSZFmWfvnLX2rNmjXKzs7W9ddfr6KiIq1evVp/93d/pwcffFCjR49u3A8rCgjcgRZu4cKFtbZNnjxZGRkZss78EgmHw7r//vt1zTXXSJKSkpL0ox/9SAcPHtTatWv11ltvac6cOc1ad2tA+I6m0pA56+Fz3iRrDobLfeGdzrAqKhv4XSobNndekiyzgd8TAIDGI2QHADTUvffeq7S0NHXu3FmfffaZ7rvvvnr3LS0t1UMPPSSHw6FHH31UvXv3liQtWLBAP/7xj7VmzRr9+c9/jmRGknT48GH97ne/U3Jysp555hllZGRIkubNm6e/+Zu/0eLFizV27Fj1798/csy2bdu0ePFiZWVl6ZlnnlFSUpIk6eabb9Ydd9yh3/3udxo5cmTkXJL05z//WWvWrFH//v31yCOPyOv1SpLy8/N177336qGHHtLQoUOVkJBg3w+vGRC4Ay3cCy+8UGvb4MGDlZGREelGNwxDo0aNqrXfmDFjtHbtWu3YsSOyrU2bNpJqd7BXq95eXwc86nZu+L5jxw6tWbOm7vD9uFdGsZvwHS2eFQpeUujeUA1e7NVwELoDAJqVJUtWUlBmamWtkH3s2LG6+uqrCdkBABc0ZMiQi953zZo1OnXqlCZNmhQJ2yXJ6/Xqhz/8oe6//34tW7asRuC+fPlyBQIB3XLLLTUC8qSkJM2ZM0f/8R//oddff71G4P7GG29Ikm677bZI2C5JGRkZmjlzpn7/+99rxYoVmj9/fuS+ZcuWSZJ++MMfRsJ2SerTp4+uvvpqrVq1SmvWrNGUKVMu+vHGAgJ3oIVbu3ZtvfdlZ2dLkjweT40nrmrVT4CVlZW1jtm/f3+d5zxw4ICk+me848IMw1Dfvn3Vt2/fesN3h+mUjrnlKPTKccojI+y48ImBGEToDgBo7SynKbNtQGb7SiktJNMRkkTIDgBRYUmKpZEyzVDKli1bJElXXnllrfsGDhwon8+nL774QoFAQJ4zoz6rj7niiitqHVN9nup9zv0+9R3z+9//Xlu2bIkE7pWVlfrrX/8qn8+nAQMG1HnMqlWrtGXLFgJ3ALEjMzNTmZmZOnTokA4ePKisrKwa9+/Zs0eSarxbOXjwYEnSpk2bZJqmHI7vgt6ysjJ98cUX8vl86tu3bzM8gvhXV/j+4Ycfav369drt2C0zvUKGDBmn3DJOeOUs9Mio5KkbLYsVqurea+rgndAdABArLG9YZvtKmamVstoGZZ1JVHJycjRy5EiNGjWKkB0AIEk6ePCg5s6dW2v7okWLbDl/dUNlXY2TLpdLGRkZ+uabb3To0CF169ZNkiIz4es6pkOHDvL7/Tp27JgqKirk8/lUXl6uY8eOye/3q0OHDrWO6dy5c41aJOnQoUMKh8PKzs6Wq461ueo6pqUgtQHi3PXXX6/HH39cTz31lH7xi19EnsSOHj2qP/7xj5JU42NDWVlZGj58uDZt2qSlS5fWWNBi4cKFKi8v14wZM+RvwAKMOL+zw/c77rhDR44c0fr167V+/Xpt2bJFwbbFCudKjgq3jONV3e9GEaNn0HI0R7c7oTsAIBoio2LaV8pKC8r0Vb3Z7Ha7NXjwcI0cOVIjRoyo0egCAEBzqB4NXD1C+Fx1jRYuLS294DHl5eUqKSmRz+eL7F/f+OHq7Wd/jwuNLL7QyONYRuAOxLnrr79eGzZs0AcffKAFCxZoyJAhKi8v17p161RcXKzZs2dr0KBBNY554IEHdPfdd+vRRx/V5s2b1bVrV23fvl2ffvqpunTpojvuuCM6D6aVSU9P18yZMzVz5kyVlZVp8+bNWr9+vT766CMV+goV7nxm9MyZ8N1xktEziH3N0e1uOJ1V3+tSg3dCdwDAJagxKqZDUKaz6vdOu3btNGLECI0cOVLDhg1rcQu9AUDci7GX/FlZWbZ1syM2ELgDcc7lcuk3v/mNXnvtNa1cuVJvvvmmnE6nevTooZkzZ2rChAm1jqleUXrhwoXasGGDPv74Y6Wmpur73/++br/99hqLX6B5JCQkaPTo0Ro9erRM09SXX34Z6X7f5dgls2OFZBlynHbLKPTIWeiVUcFTPGJXzHa7E7oDAM7D8oYUTg3Ial8pKyUoy6gaFdOjRw+NHDlSI0eOVO/evWuMZQQAIJqqO8iru9DPVVd3eps2bXT69GmVlpYqJSXlgsdcqBu9rm72urreL1RXS0EaA7QCbrdbN998s26++eaLPiY9PV3/9E//1IRVoaEcDof69OmjPn36aMGCBTp69Kg++ugjrV+/Xps3b1agbYnCOSVyVLhkHPcwegYxq7m63QndAQANZcmSlXxmVExqQKa/asFTj8ejIUOujIyKSU9Pj3KlAADUrUuXLtq5c6f279+vXr161bgvFArp8OHDcjqdyszMjGzPzs7Wtm3btH///lqB+/Hjx1VeXq60tDT5fD5Jkt/vV1pamo4dO6bjx4/XmuN+4MCBSC3VMjMz5XQ6dfjwYYVCoVpz3Os6pqUgcAeAFq5jx47Kz89Xfn6+KioqIqNn1q9frxO+Ewp3LpMRdsg44WH0DGJSU3e7E7oDAC6F5TRltjszKib1u1Ex7du3j3SxDx06lDWNAKCFMiwr2iU0qyFDhujdd9/Vhg0bak05+Pzzz1VRUaGBAwfK4/HUOGbbtm3auHGj+vfvX+OYDRs2RPY59/usWrVKGzdu1JQpUy54jNfrVb9+/bR161Zt3bq11vnq+z4tAYE7AMQRn8+nq666SldddZUsy9JXX30VCd+//PLLM6NnJKPILccpjxynPDKK6X5H9DV1t3uD5roTugNAqxBZ8LRtQGbbgKzkkHRmVEzPnj0jIXvPnj0ZFQMAaHHGjRunp556Su+//75mzZql3r17S5IqKyv13HPPSZKuu+66GsdMnjxZL7/8spYsWaLJkydHFv0uLi7WSy+9JEnKz8+vccyMGTO0atUqvfjiixo9enRkHPHhw4e1dOlSeTweTZ48ucYx1113nbZu3arnnntOjzzyiLxeryRpx44dev/999W2bVuNHTvW3h9IMzAsq5W9rQMArdTx48f10Ucf6cMPP9Snn36q8vJySZJhOmScrArgjVMeGeVOAnhEVVPPdr/kbndCdwCIK5YsWf6wrOqAvV1QlqPqud7v92vw4MGRUTFpaWlRrhYAYJe5c+dq755j8lV+L9qlRFR4P1bXnLRLXjR13bp1WrdunSSpsLBQGzduVGZmpgYMGCBJSklJ0T333FNj/5///OfyeDy6+uqrlZycrA8//FD79u3TuHHj9Mtf/lKGUTMH+NOf/qRHH31UKSkpGj9+vNxut9asWaNjx47pxhtvrHH+ao8//rheffVVpaWlady4cQoGg1q9erVOnz6t++67T7Nmzaqxv2VZ+sUvfqE1a9YoOztbV111lU6fPq3Vq1crEAjowQcf1OjRoy/pZxMLCNwBoBUKhULavn27PvnkE33yySfasWOHwmdCSCPgjATwjlMeGUFnlKtFa9WUwTuhOwC0LpY7/F0He7ugLE/V7wGn06nevXtr2LBhGjZsmPr27Su3u2nf+AUAREckcK+4MtqlRFT4NjQocF+4cKFeeOGFeu/v1KmTXn311Rrbtm3bpkWLFumvf/2rAoGAsrKyNHXqVM2aNUtOZ91/93/44Yd65ZVX9NVXX8myLHXr1k0zZ86s1al+thUrVmjp0qX69ttvZRiGevbsqZtvvlkjR46sc/9QKKQlS5bo7bff1sGDB+XxeNSvXz/NnTtXl19++YV/GDGIwB0AoNLSUn322WeRAH7v3r2R+4xSV6T73XHaLcPko9RoPoTuAICGsByWrORA1Sz2tgFZbUKR+7KzszVs2DANHTpUgwcPVmJiYhQrBQA0l3gK3BHbmOEOAFCbNm0is98l6dixY/rkk0+0efNmffLJJypsUyhllUmWIaPIxfx3NJumnO1+yXPdmekOADHLkiUrMSSzXWWtOezt27fX0KFDNWzYMA0ZMkTp6elRrhYAAMQzAncAQC1paWmaPHmyJk+eLMuy9M0330QC+M8++0zlKaUKdy2VEXbIOMX8dzQ9KxRs0gVVCd0BoGWxZMnynZnD3i4gq21QlrPq+dnn82ngwCEaPny4hg4dqpycnFpzaQEArZUlxdSwj1iqBXYhcAcAnJdhGMrJyVFOTo5mz56tYDCo7du3a/Pmzdq0aZN27typUGpl1b7Mf0cTaupud0J3AIhtltuUmVL53Rx2b9XztsPhUN8+fSJd7P369WMOOwAAiBoCdwDAJXG73Ro4cKAGDhyo+fPnq6SkRJ999lkkgN+3b5/M9ApJklHmlFHkkaPILcdpt1RJBzwar6m63QndASB2WLIkrykzOSAzJSgrOSAr4bvn6Ozs7EjAPmjQICUlJUWxWgAAgO8QuAMAGiUxMVGjRo3SqFGjJElHjx7V5s2btXnzZm3dulUFBQUyO5VLkoyAQ8ZptxxFHhlFbhmlLgJ4NEhTdbtf0lx3QncAsI0lS1abkKzkoMzkgKyUoCzPd8+x6enpuvzyyyOLnTKHHQDQIJakWHoJz0SZuETgDgCwVceOHSPz3yXpyJEj2rZtm7Zu3arPP/tc3377rUJpVSNoFDYiAbyjyF21CKtFAI+LF/Vud0J3AGgQy7BkJQVlJld1r5vJQcn1XerQrVs3DRw4UAMGDNCAAQMI2AEAQItB4A4AaFLp6elKT0/XhAkTJEnFxcX64osvqgL4zz/Xzh07FWpforAkmZJRUjV+pnoUjRF2RLV+xL6m7HYndAcAe1hOs0a4biUFpTO/4p1Op/r17hsJ2Pv376/k5OToFgwAiFtGTC2ainhE4A4AaFZJSUkaMWKERowYIUmqrKzUzp07tW3bNn3++efa+vlWlSeXSSqTpKqxM0XuM3PgPTICLMSKujVFtzuhOwA0jOUJV81fTw5WjYdJCKl6ipzf59flAwZr4MCBuvzyy9WnTx95vd7oFgwAAGATAncAQFR5vd7IIqxz5sxROBzWN998o61bt2rr1q369NPPdPJkocyMqjnwqnB8N4KmyFO1MCtz4HFGdbc7AKD5WLJk+cOyUqoCdjM5IPm+exOyXdt2GjR4UGQ8TE5OjpxO3kAHAADxicAdABBTnE6nevTooR49euj666+XZVk6fPhwZA78p59+pgMH9svsWFF1QMioCt9LqmbAO0pcMoL8EQ8AQFOx3KbMxKqxMFZiUGZSUHJ/9/H8rMwsDR4yWJdffrkGDhyojIwMGQZvjgMAYgQjZdDECNwBADHNMAxlZmYqMzNTkyZNkiSdOnUqEsBv27ZNX375lcLtS787qMIhR0lVCO8odlWF8cyCBwDgkllOU1ZiKBKwm4nBGt3rTodTvXv2inSvDxgwQG3bto1ewQAAAFFG4A4AaHHatm2r0aNHa/To0ZKkQCCgPXv2aOfOndq5c6d27NihvXv3KtyhUtXTt40yZ1XwXh3Cl7plmHTbAQBQzXJYstoEZSaGIt3rVsJ361gYhqHu3bqpd+/ekUtubq48Hk8UqwYAAIgtBO4AgBbP4/FE/vCvVlZWpl27dkVC+J07d+rgwYNSx4qqEN46syDr2V3wZS4ZFiE8ACD+WYYlKyF0ZiRM6Ey4HpLO+kBYZmZmjXC9Z8+eSkhIiF7RAADYgZEyaGIE7gCAuJSQkBBZjLVaUVFRjQB+586dOn78uMxOZ3YIS0bpmTnwxWfmwpezKCsAoGWLLGoaGQsTktUmKJ215ElqamokWO/Tp4969eqllJSU6BUNAADQQhG4AwBajeTkZF1xxRW64oorItuOHz+uHTt21Ajhi4uLJZVX7RAyZJS4qmbCF7vlKHVJFYTwAIDYZMmSvOGqUP2s7nW5vuvmS0pKUq9eA9WnT59IyJ6WlhbFqgEAAOIHgTsAoFXr0KFDjXnwlmXp0KFDkVnwO3fu1K5du1ReXvbdQWGjahxNqUuOMlfkNguzAgCak+U0ZbUJyWoTkplQdW0lhGqE6z6fTz17Xl5jNExWVpYMgzeOAQCtFCNl0MQI3AEAOIthGMrKylJWVpauueYaSVI4HNbevXu1c+dO7d69O3I5ffq0zLMPrnCcFcC7q64ZSQMAaKTISJgz4brVJigzIST5avwWUkpKinJycpSbm6vc3Fz17t1bXbt2lcvFn30AAADNhVdeAABcgNPpVE5OjnJyciLbLMtSYWFhJHzfs2ePdu/erW+//Vah0Hfd8G63W8GTVlX4XuaSo7obPuis61sBAFo5y23KSgjKjITrIbnbOxQMBCL7uFwude/aPRKs5+bmKicnR6mpqXSuAwAARBmBOwAADWAYhlJTU5WamlpjJnwoFNL+/ftrdMLv3r1bx44dkySFq3cMOGoG8GcCecMiKAGA1sAyLFkJoVojYeSp2bWelpZWo2s9NzdXXbp0kdvtjlLlAAC0YJZU82PKUcZ0m7hE4A4AgI1cLpe6d++u7t27a8KECZHtRUVFkS74s68rKr7rhnc6nTKLVTOAL3fJqHASxANAC2UZlixfWJY/JCshLKtNUFZCSI7kqpFl1Xw+n7p371WjYz0nJ0cpKSlRrB4AAACXisAdAIBmkJycrEGDBmnQoEGRbaZp6tChQzU64ffs2aODBw9KaZWR/ZxOp8wSVc2DL3fJKDtzXe6Ugg5mxANAlFmyJLdZNWfdH6q6Tqi6diTWDNYlKSsrK9K1Xn2dmZkpp5NxYwAAAC0dgTsAAFHicDjUuXNnde7cWWPHjo1sLysr0zfffKO9e/dq37592r9/v/bt26eDBw/WmA8vSQoZ3wXx516bBPEAYCfLYcny1QzUqwN2uWp+JtzlcikzM0vZ2dnq0qWLsrOz1bVrV+Xk5CghISFKjwAAABgWc1zQtAjcAQCIMQkJCerXr5/69etXY3soFFJBQUEkgK8O4/fv368TJ07UPlGFIxLAO84K4lVJVzwA1MeSJXnN7zrV/SGZZ67lNXXu02f79u1rhOrVtzt16iSXiz+3AAAAWhteAQIA0EK4XK5IR/yIESNq3FdaWhoJ4s++3r9/vyory2uuCxSWjIqao2kiI2rCBmE8gFbBcp4zAuasa50z2cXr9apz5+41gvUuXbqoS5cuSkxMjM4DAAAAQEwicAcAIA60adNGvXv3Vu/evWtsN01Tx44di3TEHzhwIBLGHzlyRKZVWfNEIUNGpbNqodZKh1RRffvMddjRjI8KABrOcppVi5V6w7J84aqu9bO/dtX+OHl6enqNQL26Yz0tLU0OB89/AAC0fJYUUyNlYqkW2IXAHQCAOOZwOJSenq709HQNHz68xn2VlZWRAH7fvn06fPiwCgoKdPjwYR09erTWIn+SlJiYqIyMDO3+eJ+MCqdU6ZRR4fgulCeQB9BMLKcZCc8tryn5qm7nfi9bhw8fVklJSa1jnE6n0jt2VKdOnZSRkaGMjIxIsN65c2f5fL4oPBIAAADEEwJ3AABaKa/Xq9zcXOXm5ta6LxQK6cSJEzVC+IKCgshto2NI4XBlreOSkpLUqVOnGmFW9dd39v5HAnkAF81ymnrmy4fqfB4qKChQUVFRrWMcDoeKi4t12WWXRZ57qp+POnXqpA4dOjBXHQAAAE2KV5sA0IocPnxYN9544wX3e+yxxzRw4MDI17Nnz1ZBQUGd+7Zv317Lli2rtf3QoUN69NFHtXXrVrVr10433nij8vPzG1w7mpfL5Yp0xtclFArp+PHj9QZhu3fvlmmaNQ8aISUnJ0eCr/T0dKWmpkYuHTp0UIcOHZSQkCDD+G6O/LWOG5ryoQJoBu+af4zctixLZWVlOn78uE6cOBG5PnHihI4cORJ5Hjl9+rTmzZtX4zwOh0NpaWnq3r17nW/spaWlEagDAIDzMxnjgqbFq1EAaEUSExNrhRfVjh49quXLlyslJUV9+vSp89jvf//7tbb7/f5a2yoqKvT3f//3CofDmjZtmgoKCvTwww/L4/Fo8uTJjX4ciD6XyxUJuOoSCoV09OjRGiH84cOHI8H8V199Jaue2Yk+n69GCD/j0THq0KFDjW2pqalq06ZNjWD+bIT0QNM5Ozw/2/mC9H/913+NbCssLFR5eXmd5zAMQ2lpaeratWuNIL36dseOHQnUAQAAENN4tQoArUhSUpLmz59f531PP/20JGnSpEnyeDy17k9MTKz32HNt3bpVx44d02uvvaa2bdtKkh5//HG99dZbBO6thMvlUmZmpjIzM+u8PxgMRoK448ePR0K4s4O6vXv3auvWrfV+j3OD+bOvf7Ppp5GvzxfMn4ugHq1JfcH5uc4O0o8fP6533nmnxr/fs68rKirqPU9KSopSU1PVv3//Gm+inf0Jl9TUVLndbrseIgAAANDsCNwBAAqFQlqxYoUkafr06Y0+X/UokbNDTqfTWXvECFott9t93g75aoFAQIWFhbW6Zc8O6i8lmE9JSVFKSoqSk5Nr3U5OTtYfC59VYmLiJXXQEtIjFlxseC5J4XBYxcXF2rt3r4qKinT69Oka19W3T506Ffn3djFB+oABAyLhefv27Wu8Eda+ffs638wFAABoVpakej5pGxUxVArsQ+AOANBf/vIXFRYWauDAgeratWud+wQCAb3zzjs6cuSIfD6fcnNzNXDgQDmdzlr7DhgwQO3atdOdd96pMWPG6OjRo1qzZo3uv//+pn4oiDMej+eigvlgMBjpkK8rmD9x4oT27t2r4uLii3rjJzExsc5g/uxwvvr6pcOPKyUlRT6f76IfFyE9zudSwvPKykqdPn1aX3/9tU6fPl1veH72dUlJSb0jnaoZhqHk5OR6g/TqMJ0gHQAAAKiJwB0AoDfffFOSNGPGjHr3KSws1K9+9asa2zIyMvRP//RPGjRoUI3tCQkJ+q//+i/99re/1RtvvKG2bdvq3nvvZdFUNBm3233eRV6rmaapkpKSGmHkqVOn6g0mjx8/rt27dysQCFywBq/XW2cgn5CQoISEBPn9/sjtBz98IHL77Pu8Xu95x98Q1Lcs5wvOLctSZWWlysvLVVZWFrmUl5fr/fffj9w++766/h+trKy8YB0ejyfy/2THjh1r/T967v+3KSkpSkxMlMPhsPPHAQAAEBtiqcMdccmwLtTeAgCIa4cPH9ZNN92k5ORk/elPf6qzU/H555/XgAED1L17dyUkJOjQoUNasmSJ3nzzTXk8Hv3ud79Tjx49olA90DwqKiouqnv47O0lJSWX/H0cDkckfD/3+tzbdd13dnDvdrvlcrk0s93tkikZurg59qjJkiU5pKUnn1coFFIwGFRlZWUkEK8OxesKzuu7XX0Jh8OXXE9iYmKtkDw5OVlt27at91MYPp/votcxAAAAiFdz587V3l1HlHB8YLRLiSjr8Lm6XpauRYsWRbsU2IgOdwCIMwsXLqy1bfLkycrIyKhz/7feekuWZdW7WKok3X777TW+zsnJ0U9+8hP5/X4tXrxYzz//vP793/+98cUDMcrn88nn812wg/5soVBIxcXFdYau9YWw595XWFgY+boh4awkaWTVlcPhkNvtjgTx1bfP3ubxeCL3bVr+mWRKsozItWFJMo2qS/VtSzKqv44492vV8/W5IbBVe1O9X1vffSvHmePOua7aXhWYV18PnzJIwWBQoVBIgUAgEqJXX879unoE0dSpU8/3U66X0+ms8cZIhw4dar1pUtebK3V9nZSUdEnrCwAAAABofrxiB4A488ILL9TaNnjw4DoD91AopOXLl0s6/ziZ+uTn52vx4sX6/PPPL/lYIN65XC61a9dO7dq1a/S5LMtSIBCos5v63CC/rKysVoB8oWC5vLy81r5Gx1DDQ/4Y5XQ69fnnn9d6c8HtdqtNmzY1vj57n3P3dbvd5/2kwdm3PR4P3eUAAACxhGEfaGIE7gAQZ9auXXvR+65fv14nTpzQoEGDlJ2dfcnfq23btpKqxm0AaDqGYcjr9crr9Ub+3TWHcDisUChUK6yvqxM8FApJqnpzoPpy7td1bav+2jCMGpfqx32+bZIiQXh9wXj1fS6Xq85FngEAAADATgTuANCKVS+WOn369AYdv337dkmqd1wNgJbN6XTK6XTK6/VGuxQAAAAAaBEI3AGglSooKNCmTZuUkpKisWPH1rvft99+q/T0dPn9/hrbDx8+rEceeUSSNHHixCatFQAAAAAAW5iMlEHTInAHgFbqrbfekmma510sVZLef/99LV68WAMHDlSnTp3k9/t16NAhffTRRwoEAvre976nm266qRkrBwAAAAAAiE0E7gDQCoXD4YteLHXIkCHav3+/du3apS+++ELl5eVKTEzUgAEDNHHiRE2aNIkFAQEAAAAAAETgDgCtktPp1JIlSy5q30GDBmnQoEFNWxAAAAAAAE3Okiwz2kWchfE28cgR7QIAAAAAAAAAAIgHBO4AAAAAAAAAANiAkTIAAAC4KAsXLtQLL7xQa7vb7VZycrJycnI0fvx45eXlyeVq/MvM3/3ud3r55ZclSRMmTNDPf/7zRp8TAAAArZglyYqhMS4xVArsQ+AOAACAS9a+ffvI7bKyMp04cUInTpzQpk2b9MYbb+j//b//p6SkpAafPxQKadWqVZGv165dq+Li4kadEwAAAACaGiNlAAAAcMmWLVsWubzzzjv64x//qOnTp0uSdu7cqUcffbRR5//oo49UWFio7t27a8iQIQoEAnrvvffsKB0AAAAAmgyBOwAAABotPT1d//AP/6AhQ4ZIklavXq2ysrIGn+/tt9+WJE2cOFGTJk2qsQ0AAABoMNOKnQviEoE7AAAAbHPllVdKkoLBoA4cONCgcxw/flwbNmyQw+HQxIkTNXbsWPn9fn311Vf6+uuv7SwXAAAAAGxF4A4AAADbWGctQmWaZoPOsXLlSoXDYQ0ZMkRpaWlKSEjQmDFjJNHlDgAAACC2EbgDAADANhs3bpQkGYahjIyMBp1j+fLlkqS8vLzIturb7777rgKBQCOrBAAAQKtlWbFzQVwicAcAAECjHTlyRA899JC2bNkiSRo5cqRSUlIu+TyfffaZDhw4UKOrXZKGDBmijh07qqioSOvWrbOtbgAAAACwkyvaBQAAAKDlue666yK3y8rKVFFREfk6OztbDzzwQIPOWz0yZuzYsfL5fJHthmFo0qRJevHFF/X222/rmmuuaVjhAAAAANCE6HAHAADAJSssLIxczg7bJ02apP/5n/9RWlraJZ+ztLRUH3zwQeQ856oeK7NlyxYdOXKkgZUDAACgVYv2GBlGysQ9AncAAABcsrVr12rt2rX64IMPtGTJEv393/+9EhMTtWrVKi1ZsqRB5/zzn/+siooKpaena/DgwbXu79Kli/r16yfTNCNz3gEAAAAgljBSBgAAAA1mGIY6dOig/Px8ZWdn68c//rGeeuop9ezZU0OHDr2kc1WPkzly5IjGjh173n1XrFihefPmyTCMBtcOAAAAAHajwx0AAAC2GDx4sCZOnCjLsvToo48qHA5f9LF79uzRjh07Lnr/goICffLJJw0pEwAAAK1WDIyRqTFShrEy8YgOdwAAANhm3rx5eu+99/Ttt99q5cqVmjp16kUdV93d3rNnT/32t789777//u//rnXr1mn58uUaPnx4o2sGAAAAALvQ4Q4AAADbZGVlafz48ZKk3//+9wqFQhc8JhgM6p133pEkjR8/XgkJCee9XH311ZKkdevWqaioqOkeDAAAAOKLJck0Y+dCg3tcInAHAACArebMmSPDMFRQUBDpXJek2bNna8yYMfq7v/u7Gvv/5S9/0enTpyUpEtafz8iRI+X1ehUIBPTuu+9Gtn/66acaM2aMxowZoxUrVtj0aAAAAADg4hG4AwAAwFY5OTm66qqrJEmLFi1SIBA47/7VoXyvXr2UmZl5wfP7/X5deeWVkqTly5c3sloAAAAAsA+BOwAAAGx32223SZKOHTumN954o979jhw5Eln89GK626tV77tr1y59+eWXjagUAAAArUq0F0qtsWgq4pFhWfzXBQAAAAAAABC/5s6dq71fHlbC3suiXUpEWddd6torQ4sWLYp2KbARHe4AAAAAAAAAANjAFe0CAAAAAAAAAKBZMOwDTYwOdwAAAAAAAAAAbEDgDgAAAAAAAACADRgpAwAAAAAAAKB1MBkpg6ZFhzsAAAAAAAAAADYgcAcAAAAAAAAAwAaMlAEAAAAAAAAQ/yxLlmVGu4rvWIy3iUd0uAMAAAAAAAAAYAMCdwAAAAAAAAAAbMBIGQAAAAAAAACtg8kYFzQtOtwBAAAAAAAAALABgTsAAAAAAAAAADZgpAwAAAAAAACA1sFipAyaFh3uAAAAAAAAAADYgMAdAAAAAAAAAAAbMFIGAAAAAAAAQOtgmtGuAHGODncAAAAAAAAAAGxA4A4AAAAAAAAAgA0YKQMAAAAAAAAg/llW1SVWxFItsA0d7gAAAAAAAAAA2IAOdwAAAAAAAACtgsWiqWhidLgDAAAAAAAAAGADAncAAAAAAAAAAGzASBkAAAAAAAAArQMLlaKJ0eEOAAAAAAAAAIANCNwBAAAAAAAAALABI2UAAAAAAAAAtA4mI2XQtOhwBwAAAAAAAADABgTuAAAAAAAAAADYgJEyAAAAAAAAAOKfZUmWGe0qvmMx3iYe0eEOAAAAAAAAAIANCNwBAAAAAAAAALABI2UAAAAAAAAAtAqWyRgXNC063AEAAAAAAAAAsAGBOwAAAAAAAAAANmCkDAAAAAAAAIDWwTKjXQHiHB3uAAAAAAAAAADYgMAdAAAAAAAAAAAbMFIGAAAAAAAAQKtgmVa0S7DN0aNHtXDhQm3YsEFFRUVKTU3VqFGjdPvttyspKSna5bVaBO4AAAAAAAAA0IIcPHhQd999t06ePKlRo0YpOztbO3bs0GuvvaaNGzfqiSeeUEpKSrTLbJUI3AEAAAAAAACgBXn44Yd18uRJ3XfffZo1a1Zk++OPP65XX31Vzz77rH7yk59EscLWixnuAAAAAAAAAOKfZUmWGUOXho23OXjwoDZt2qROnTpp5syZNe6bP3++/H6/3nnnHZWXl9vxU8MlInAHAAAAAAAAgBbi008/lSQNHz5cDkfNeDchIUH9+/dXRUWFtm/fHo3yWj1GygAAAAAAAACIe5Y/rMDg49EuI8Lyh3Xw4EHNnTu31n2LFi2q97h9+/ZJkrp06VLn/Z07d9amTZu0f/9+DR061J5icdEI3AEAAAAAAADEtczMzGiXUKcjR45c8jGlpaWSpMTExDrvr95eUlLS8MLQYATuAAAAAAAAAOLab37zm2iXgFaCGe4AAAAAAAAA0EK0adNGUv0d7NXb6+uAR9MicAcAAAAAAACAFiI7O1uStH///jrvP3DggKT6Z7yjaRG4AwAAAAAAAEALMXjwYEnSpk2bZJpmjfvKysr0xRdfyOfzqW/fvtEor9UjcAcAAAAAAACAFiIrK0vDhw9XQUGBli5dWuO+hQsXqry8XBMnTpTf749Sha2bYVmWFe0iAAAAAAAAAAAX5+DBg7r77rt18uRJjRo1Sl27dtX27dv16aefqkuXLnryySeVkpIS7TJbJQJ3AAAAAAAAAGhhjhw5ooULF2rDhg0qKipSamqqRo8erdtvv11JSUnRLq/VInAHAAAAAAAAAMAGzHAHAAAAAAAAAMAGBO4AAAAAAAAAANiAwB0AAAAAAAAAABsQuAMAAAAAAAAAYAMCdwAAAAAAAAAAbEDgDgAAAAAAAACADQjcAQAAAAAAAACwAYE7AAAAAAAAAAA2IHAHAAAAAAAAAMAGBO4AAAAAAAAAANiAwB0AAAAAAAAAABsQuAMAAAAAAAAAYAMCdwAAAAAAAAAAbEDgDgAAAAAAAACADf4/46X6pwhel/sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tsmap2.plot_ts_map()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "415a9a65", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "python-env", + "language": "python", + "name": "python-env" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.html b/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.html new file mode 100644 index 00000000..6bd646fd --- /dev/null +++ b/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.html @@ -0,0 +1,1295 @@ + + + + + + + Spectral fitting example (Crab) — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Spectral fitting example (Crab)

+
+
To run this, you need the following files, which can be downloaded using the first few cells of this notebook: - orientation file (20280301_3_month.ori)
+
- binned data (crab_bkg_binned_data.hdf5, crab_binned_data.hdf5, & bkg_binned_data.hdf5)
+
- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip)
+
+

The binned data are simulations of the Crab Nebula and albedo photon background produced using the COSI SMEX mass model. The detector response needs to be unzipped before running the notebook.

+

This notebook fits the spectrum of a Crab simulated using MEGAlib and combined with background.

+

3ML is a high-level interface that allows multiple datasets from different instruments to be used coherently to fit the parameters of source model. A source model typically consists of a list of sources with parametrized spectral shapes, sky locations and, for extended sources, shape. Polarization is also possible. A “coherent” analysis, in this context, means that the source model parameters are fitted using all available datasets simultanously, rather than +performing individual fits and finding a well-suited common model a posteriori.

+

In order for a dataset to be included in 3ML, each instrument needs to provide a “plugin”. Each plugin is responsible for reading the data, convolving the source model (provided by 3ML) with the instrument response, and returning a likelihood. In our case, we’ll compute a binned Poisson likelihood:

+
+\[\log \mathcal{L}(\mathbf{x}) = \sum_i \log \frac{\lambda_i(\mathbf{x})^{d_i} \exp (-\lambda_i)}{d_i!}\]
+

where \(d_i\) are the counts on each bin and \(\lambda_i\) are the expected counts given a source model with parameters \(\mathbf{x}\).

+

In this example, we will fit a single point source with a known location. We’ll assume the background is known and fixed up to a scaling factor. Finally, we will fit a Band function:

+
+\[\begin{split}f(x) = K \begin{cases} \left(\frac{x}{E_{piv}}\right)^{\alpha} \exp \left(-\frac{(2+\alpha) + * x}{x_{p}}\right) & x \leq (\alpha-\beta) \frac{x_{p}}{(\alpha+2)} \\ \left(\frac{x}{E_{piv}}\right)^{\beta} + * \exp (\beta-\alpha)\left[\frac{(\alpha-\beta) x_{p}}{E_{piv}(2+\alpha)}\right]^{\alpha-\beta} + * &x>(\alpha-\beta) \frac{x_{p}}{(\alpha+2)} \end{cases}\end{split}\]
+

where \(K\) (normalization), \(\alpha\) & \(\beta\) (spectral indeces), and \(x_p\) (peak energy) are the free parameters, while \(E_{piv}\) is the pivot energy which is fixed (and arbitrary).

+

Considering these assumptions:

+
+\[\lambda_i(\mathbf{x}) = B*b_i + s_i(\mathbf{x})\]
+

where \(B*b_i\) are the estimated counts due to background in each bin with \(B\) the amplitude and \(b_i\) the shape of the background, and \(s_i\) are the corresponding expected counts from the source, the goal is then to find the values of \(\mathbf{x} = [K, \alpha, \beta, x_p]\) and \(B\) that maximize \(\mathcal{L}\). These are the best estimations of the parameters.

+

The final module needs to also fit the time-dependent background, handle multiple point-like and extended sources, as well as all the spectral models supported by 3ML. Eventually, it will also fit the polarization angle. However, this simple example already contains all the necessary pieces to do a fit.

+
+
[1]:
+
+
+
from cosipy import COSILike, test_data, BinnedData
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.response.FullDetectorResponse import FullDetectorResponse
+from cosipy.util import fetch_wasabi_file
+
+from scoords import SpacecraftFrame
+
+from astropy.time import Time
+import astropy.units as u
+from astropy.coordinates import SkyCoord, Galactic
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+from threeML import Band, PointSource, Model, JointLikelihood, DataList
+from astromodels import Parameter
+
+from pathlib import Path
+
+import os
+
+
+
+
+
+
+
+
12:03:40 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69
+                  will not be available.                                                                           
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
12:03:40 INFO      Starting 3ML!                                                                     __init__.py:35
+
+
+
+
+
+
+
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36
+
+
+
+
+
+
+
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37
+
+
+
+
+
+
+
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40
+
+
+
+
+
+
+
         WARNING   ROOT minimizer not available                                                minimization.py:1345
+
+
+
+
+
+
+
         WARNING   Multinest minimizer not available                                           minimization.py:1357
+
+
+
+
+
+
+
         WARNING   PyGMO is not available                                                      minimization.py:1369
+
+
+
+
+
+
+
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94
+                  require the C/C++ interface (currently HAWC)                                                     
+
+
+
+
+
+
+
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
12:03:41 WARNING   No fermitools installed                                              lat_transient_builder.py:44
+
+
+
+
+
+
+
12:03:41 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+

Download and read in binned data

+

Define the path to the directory containing the data, detector response, orientation file, and yaml files if they have already been downloaded, or the directory to download the files into

+
+
[2]:
+
+
+
data_path = Path("/path/to/files")
+
+
+
+

Download the orientation file (684.38 MB)

+
+
[3]:
+
+
+
fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori', output=str(data_path / '20280301_3_month.ori'))
+
+
+
+

Download the binned Crab+background data (99.16 MB)

+
+
[5]:
+
+
+
fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/crab_bkg_binned_data.hdf5', output=str(data_path / 'crab_bkg_binned_data.hdf5'))
+
+
+
+

Download the binned Crab data (13.16 MB)

+
+
[7]:
+
+
+
fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/crab_binned_data.hdf5', output=str(data_path / 'crab_binned_data.hdf5'))
+
+
+
+

Download the binned background data (89.10 MB)

+
+
[9]:
+
+
+
fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/bkg_binned_data.hdf5', output=str(data_path / 'bkg_binned_data.hdf5'))
+
+
+
+

Download the response file (839.62 MB). This needs to be unzipped before running the rest of the notebook

+
+
[10]:
+
+
+
fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip', output=str(data_path / 'SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip'))
+
+
+
+

Read in the spacecraft orientation file

+
+
[4]:
+
+
+
sc_orientation = SpacecraftFile.parse_from_file(data_path / "20280301_3_month.ori")
+
+
+
+

Create BinnedData objects for the Crab only, Crab+background, and background only. The Crab only simulation is not used for the spectral fit, but can be used to compare the fitted spectrum to the source simulation

+
+
[5]:
+
+
+
crab = BinnedData(data_path / "crab.yaml")
+crab_bkg = BinnedData(data_path / "crab.yaml")
+bkg = BinnedData(data_path / "background.yaml")
+
+
+
+

Load binned .hdf5 files

+
+
[6]:
+
+
+
crab.load_binned_data_from_hdf5(binned_data=data_path / "crab_binned_data.hdf5")
+crab_bkg.load_binned_data_from_hdf5(binned_data=data_path / "crab_bkg_binned_data.hdf5")
+bkg.load_binned_data_from_hdf5(binned_data=data_path / "bkg_binned_data.hdf5")
+
+
+
+

Define the path to the detector response

+
+
[7]:
+
+
+
dr = str(data_path / "SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5") # path to detector response
+
+
+
+
+
+

Perform spectral fit

+

Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin

+
+
[8]:
+
+
+
bkg_par = Parameter("background_cosi",                                         # background parameter
+                     1,                                                        # initial value of parameter
+                     min_value=0,                                              # minimum value of parameter
+                     max_value=5,                                              # maximum value of parameter
+                     delta=0.05,                                               # initial step used by fitting engine
+                     desc="Background parameter for cosi")
+
+cosi = COSILike("cosi",                                                        # COSI 3ML plugin
+                 dr = dr,                                                      # detector response
+                 data = crab_bkg.binned_data.project('Em', 'Phi', 'PsiChi'),   # data (source+background)
+                 bkg = bkg.binned_data.project('Em', 'Phi', 'PsiChi'),         # background model
+                 sc_orientation = sc_orientation,                              # spacecraft orientation
+                 nuisance_param = bkg_par)                                     # background parameter
+
+
+
+

Define a point source at the known location with a Band function spectrum and add it to the model. The initial values of the Band function parameters are set to the true values used to simulate the source

+
+
[9]:
+
+
+
l = 184.56
+b = -5.78
+
+alpha = -1.99
+beta = -2.32
+E0 = 531. * (alpha - beta) * u.keV
+xp = E0 * (alpha + 2) / (alpha - beta)
+piv = 500. * u.keV
+K = 3.07e-5 / u.cm / u.cm / u.s / u.keV
+
+spectrum = Band()
+
+spectrum.alpha.min_value = -2.14
+spectrum.alpha.max_value = 3.0
+spectrum.beta.min_value = -5.0
+spectrum.beta.max_value = -2.15
+spectrum.xp.min_value = 1.0
+
+spectrum.alpha.value = alpha
+spectrum.beta.value = beta
+spectrum.xp.value = xp.value
+spectrum.K.value = K.value
+spectrum.piv.value = piv.value
+
+spectrum.xp.unit = xp.unit
+spectrum.K.unit = K.unit
+spectrum.piv.unit = piv.unit
+
+spectrum.alpha.delta = 0.01
+spectrum.beta.delta = 0.01
+
+source = PointSource("source",                     # Name of source (arbitrary, but needs to be unique)
+                     l = l,                        # Longitude (deg)
+                     b = b,                        # Latitude (deg)
+                     spectral_shape = spectrum)    # Spectral model
+
+# Optional: free the position parameters
+#source.position.l.free = True
+#source.position.b.free = True
+
+model = Model(source)  # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)
+
+# Optional: if you want to call get_log_like manually, then you also need to set the model manually
+# 3ML does this internally during the fit though
+cosi.set_model(model)
+
+
+
+
+
+
+
+
12:04:35 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794
+
+
+
+
+
+
+
+... Calculating point source responses ...
+
+
+
+
+
+
+
+
+WARNING ErfaWarning: ERFA function "utctai" yielded 7979956 of "dubious year (Note 3)"
+
+
+
+
+
+
+
+
+--> done (source name : source)
+--> all done
+
+
+

Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit

+
+
[10]:
+
+
+
plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)
+
+like = JointLikelihood(model, plugins, verbose = False)
+
+like.fit()
+
+
+
+
+
+
+
+
12:05:05 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042
+
+
+
+
+
+
+
+Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.
+
+WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents
+  the requested tolerance from being achieved.  The error may be
+  underestimated.
+
+
+
+
+
+
+
+
12:05:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
12:05:26 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
source.spectrum.main.Band.K(2.857 +/- 0.023) x 10^-51 / (cm2 keV s)
source.spectrum.main.Band.alpha-1.9886 +/- 0.0004
source.spectrum.main.Band.xp4.47 -0.17 +0.18keV
source.spectrum.main.Band.beta-2.1964 +/- 0.0016
background_cosi(9.9193 +/- 0.0020) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + + + + +
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
-0.120.080.011.00-0.52
0.05-0.03-0.02-0.521.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi-2.612135e+08
total-2.612135e+08
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC-5.224270e+08
BIC-5.224270e+08
+
+
+
+
[10]:
+
+
+
+
+(                                    value  negative_error  positive_error  \
+ source.spectrum.main.Band.K      0.000029   -2.272835e-07    2.278935e-07
+ source.spectrum.main.Band.alpha -1.988617   -3.560944e-04    3.585775e-04
+ source.spectrum.main.Band.xp     4.473464   -1.691279e-01    1.784522e-01
+ source.spectrum.main.Band.beta  -2.196416   -1.564268e-03    1.565798e-03
+ background_cosi                  0.991932   -1.915462e-04    1.937451e-04
+
+                                         error             unit
+ source.spectrum.main.Band.K      2.275885e-07  1 / (cm2 keV s)
+ source.spectrum.main.Band.alpha  3.573359e-04
+ source.spectrum.main.Band.xp     1.737900e-01              keV
+ source.spectrum.main.Band.beta   1.565033e-03
+ background_cosi                  1.926456e-04                   ,
+        -log(likelihood)
+ cosi      -2.612135e+08
+ total     -2.612135e+08)
+
+
+
+
+

Error propagation and plotting (Band function)

+

Define Band function spectrum injected into MEGAlib

+
+
[11]:
+
+
+
alpha_inj = -1.99
+beta_inj = -2.32
+E0_inj = 531. * (alpha_inj - beta_inj) * u.keV
+xp_inj = E0_inj * (alpha_inj + 2) / (alpha_inj - beta_inj)
+piv_inj = 100. * u.keV
+K_inj = 7.56e-4 / u.cm / u.cm / u.s / u.keV
+
+spectrum_inj = Band()
+
+spectrum_inj.alpha.min_value = -2.14
+spectrum_inj.alpha.max_value = 3.0
+spectrum_inj.beta.min_value = -5.0
+spectrum_inj.beta.max_value = -2.15
+spectrum_inj.xp.min_value = 1.0
+
+spectrum_inj.alpha.value = alpha_inj
+spectrum_inj.beta.value = beta_inj
+spectrum_inj.xp.value = xp_inj.value
+spectrum_inj.K.value = K_inj.value
+spectrum_inj.piv.value = piv_inj.value
+
+spectrum_inj.xp.unit = xp_inj.unit
+spectrum_inj.K.unit = K_inj.unit
+spectrum_inj.piv.unit = piv_inj.unit
+
+
+
+
+
+
+
+
12:06:33 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794
+
+
+

The summary of the results above tell you the optimal values of the parameters, as well as the errors. Propogate the errors to the “evaluate_at” method of the spectrum

+
+
[12]:
+
+
+
results = like.results
+
+print(results.display())
+
+parameters = {par.name:results.get_variates(par.path)
+              for par in results.optimized_model["source"].parameters.values()
+              if par.free}
+
+results_err = results.propagate(results.optimized_model["source"].spectrum.main.shape.evaluate_at, **parameters)
+
+print(results.optimized_model["source"])
+
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
source.spectrum.main.Band.K(2.857 +/- 0.023) x 10^-51 / (cm2 keV s)
source.spectrum.main.Band.alpha-1.9886 +/- 0.0004
source.spectrum.main.Band.xp4.47 -0.17 +0.18keV
source.spectrum.main.Band.beta-2.1964 +/- 0.0016
background_cosi(9.9193 +/- 0.0020) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + + + + +
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
-0.120.080.011.00-0.52
0.05-0.03-0.02-0.521.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi-2.612135e+08
total-2.612135e+08
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC-5.224270e+08
BIC-5.224270e+08
+
+
+
+
+
+
+
+None
+
+
+
+
+
+
+
12:06:34 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794
+
+
+
+
+
+
+
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794
+
+
+
+
+
+
+
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794
+
+
+
+
+
+
+
+  * source (point source):
+    * position:
+      * l:
+        * value: 184.56
+        * desc: Galactic longitude
+        * min_value: 0.0
+        * max_value: 360.0
+        * unit: deg
+        * is_normalization: false
+      * b:
+        * value: -5.78
+        * desc: Galactic latitude
+        * min_value: -90.0
+        * max_value: 90.0
+        * unit: deg
+        * is_normalization: false
+      * equinox: J2000
+    * spectrum:
+      * main:
+        * Band:
+          * K:
+            * value: 2.8565585663971596e-05
+            * desc: Differential flux at the pivot energy
+            * min_value: 1.0e-99
+            * max_value: null
+            * unit: keV-1 s-1 cm-2
+            * is_normalization: true
+          * alpha:
+            * value: -1.9886166208617622
+            * desc: low-energy photon index
+            * min_value: -2.14
+            * max_value: 3.0
+            * unit: ''
+            * is_normalization: false
+          * xp:
+            * value: 4.473463779563324
+            * desc: peak in the x * x * N (nuFnu if x is a energy)
+            * min_value: 1.0
+            * max_value: null
+            * unit: keV
+            * is_normalization: false
+          * beta:
+            * value: -2.196416422107725
+            * desc: high-energy photon index
+            * min_value: -5.0
+            * max_value: -2.15
+            * unit: ''
+            * is_normalization: false
+          * piv:
+            * value: 500.0
+            * desc: pivot energy
+            * min_value: null
+            * max_value: null
+            * unit: keV
+            * is_normalization: false
+        * polarization: {}
+
+
+
+

Evaluate the flux and errors at a range of energies for the fitted and injected spectra, and the simulated source flux

+
+
[13]:
+
+
+
energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)
+
+flux_lo = np.zeros_like(energy)
+flux_median = np.zeros_like(energy)
+flux_hi = np.zeros_like(energy)
+flux_inj = np.zeros_like(energy)
+
+for i, e in enumerate(energy):
+    flux = results_err(e)
+    flux_median[i] = flux.median
+    flux_lo[i], flux_hi[i] = flux.equal_tail_interval(cl=0.68)
+    flux_inj[i] = spectrum_inj.evaluate_at(e)
+
+binned_energy_edges = crab.binned_data.axes['Em'].edges.value
+binned_energy = np.array([])
+bin_sizes = np.array([])
+
+for i in range(len(binned_energy_edges)-1):
+    binned_energy = np.append(binned_energy, (binned_energy_edges[i+1] + binned_energy_edges[i]) / 2)
+    bin_sizes = np.append(bin_sizes, binned_energy_edges[i+1] - binned_energy_edges[i])
+
+expectation = cosi._expected_counts['source']
+
+
+
+

Plot the fitted and injected spectra

+
+
[14]:
+
+
+
fig,ax = plt.subplots()
+
+ax.plot(energy, energy*energy*flux_median, label = "Best fit")
+ax.fill_between(energy, energy*energy*flux_lo, energy*energy*flux_hi, alpha = .5, label = "Best fit (errors)")
+ax.plot(energy, energy*energy*flux_inj, color = 'black', ls = ":", label = "Injected")
+
+ax.set_xscale("log")
+ax.set_yscale("log")
+
+ax.set_xlabel("Energy (keV)")
+ax.set_ylabel(r"$E^2 \frac{dN}{dE}$ (keV cm$^{-2}$ s$^{-1}$)")
+
+ax.legend()
+
+
+
+
+
[14]:
+
+
+
+
+<matplotlib.legend.Legend at 0x289dee910>
+
+
+
+
+
+
+../../../../_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_40_1.png +
+
+

Plot the fitted spectrum convolved with the response, as well as the simulated source counts

+
+
[15]:
+
+
+
fig,ax = plt.subplots()
+
+ax.stairs(expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = "Best fit convolved with response")
+ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=np.sqrt(expectation.project('Em').todense().contents), color='purple', linewidth=0, elinewidth=1)
+ax.stairs(crab.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = ":", label = "Source counts")
+ax.errorbar(binned_energy, crab.binned_data.project('Em').todense().contents, yerr=np.sqrt(crab.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)
+
+ax.set_xscale("log")
+ax.set_yscale("log")
+
+ax.set_xlabel("Energy (keV)")
+ax.set_ylabel("Counts")
+
+ax.legend()
+
+
+
+
+
[15]:
+
+
+
+
+<matplotlib.legend.Legend at 0x2afdc8160>
+
+
+
+
+
+
+../../../../_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_42_1.png +
+
+

Plot the fitted spectrum convolved with the response plus the fitted background, as well as the simulated source+background counts

+
+
[16]:
+
+
+
fig,ax = plt.subplots()
+
+ax.stairs(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents), binned_energy_edges, color='purple', label = "Best fit convolved with response plus background")
+ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents), yerr=np.sqrt(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents)), color='purple', linewidth=0, elinewidth=1)
+ax.stairs(crab_bkg.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = ":", label = "Total counts")
+ax.errorbar(binned_energy, crab_bkg.binned_data.project('Em').todense().contents, yerr=np.sqrt(crab_bkg.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)
+
+ax.set_xscale("log")
+ax.set_yscale("log")
+
+ax.set_xlabel("Energy (keV)")
+ax.set_ylabel("Counts")
+
+ax.legend()
+
+
+
+
+
[16]:
+
+
+
+
+<matplotlib.legend.Legend at 0x2b007c6d0>
+
+
+
+
+
+
+../../../../_images/tutorials_spectral_fits_continuum_fit_crab_SpectralFit_Crab_44_1.png +
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb b/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb new file mode 100644 index 00000000..f4a2f72a --- /dev/null +++ b/tutorials/spectral_fits/continuum_fit/crab/SpectralFit_Crab.ipynb @@ -0,0 +1,1761 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "74a86fb5-4e54-4e3f-b349-3e60fbdd0279", + "metadata": { + "tags": [] + }, + "source": [ + "# Spectral fitting example (Crab)" + ] + }, + { + "cell_type": "markdown", + "id": "e7df3443-3ce1-43f3-90b5-1bceb7bc9af0", + "metadata": {}, + "source": [ + "**To run this, you need the following files, which can be downloaded using the first few cells of this notebook:**\n", + "- orientation file (20280301_3_month.ori) \n", + "- binned data (crab_bkg_binned_data.hdf5, crab_binned_data.hdf5, & bkg_binned_data.hdf5) \n", + "- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip) \n", + "\n", + "**The binned data are simulations of the Crab Nebula and albedo photon background produced using the COSI SMEX mass model. The detector response needs to be unzipped before running the notebook.**" + ] + }, + { + "cell_type": "markdown", + "id": "ba543558-7de9-494c-8b72-8cdd368676e9", + "metadata": {}, + "source": [ + "This notebook fits the spectrum of a Crab simulated using MEGAlib and combined with background.\n", + "\n", + "[3ML](https://threeml.readthedocs.io/) is a high-level interface that allows multiple datasets from different instruments to be used coherently to fit the parameters of source model. A source model typically consists of a list of sources with parametrized spectral shapes, sky locations and, for extended sources, shape. Polarization is also possible. A \"coherent\" analysis, in this context, means that the source model parameters are fitted using all available datasets simultanously, rather than performing individual fits and finding a well-suited common model a posteriori. \n", + "\n", + "In order for a dataset to be included in 3ML, each instrument needs to provide a \"plugin\". Each plugin is responsible for reading the data, convolving the source model (provided by 3ML) with the instrument response, and returning a likelihood. In our case, we'll compute a binned Poisson likelihood:\n", + "\n", + "$$\n", + "\\log \\mathcal{L}(\\mathbf{x}) = \\sum_i \\log \\frac{\\lambda_i(\\mathbf{x})^{d_i} \\exp (-\\lambda_i)}{d_i!}\n", + "$$\n", + "\n", + "where $d_i$ are the counts on each bin and $\\lambda_i$ are the expected counts given a source model with parameters $\\mathbf{x}$. \n", + "\n", + "In this example, we will fit a single point source with a known location. We'll assume the background is known and fixed up to a scaling factor. Finally, we will fit a Band function:\n", + "\n", + "$$\n", + "f(x) = K \\begin{cases} \\left(\\frac{x}{E_{piv}}\\right)^{\\alpha} \\exp \\left(-\\frac{(2+\\alpha)\n", + " * x}{x_{p}}\\right) & x \\leq (\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\\\ \\left(\\frac{x}{E_{piv}}\\right)^{\\beta}\n", + " * \\exp (\\beta-\\alpha)\\left[\\frac{(\\alpha-\\beta) x_{p}}{E_{piv}(2+\\alpha)}\\right]^{\\alpha-\\beta}\n", + " * &x>(\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\end{cases}\n", + "$$\n", + "\n", + "where $K$ (normalization), $\\alpha$ & $\\beta$ (spectral indeces), and $x_p$ (peak energy) are the free parameters, while $E_{piv}$ is the pivot energy which is fixed (and arbitrary).\n", + "\n", + "Considering these assumptions:\n", + "\n", + "$$\n", + "\\lambda_i(\\mathbf{x}) = B*b_i + s_i(\\mathbf{x})\n", + "$$\n", + "\n", + "where $B*b_i$ are the estimated counts due to background in each bin with $B$ the amplitude and $b_i$ the shape of the background, and $s_i$ are the corresponding expected counts from the source, the goal is then to find the values of $\\mathbf{x} = [K, \\alpha, \\beta, x_p]$ and $B$ that maximize $\\mathcal{L}$. These are the best estimations of the parameters.\n", + "\n", + "The final module needs to also fit the time-dependent background, handle multiple point-like and extended sources, as well as all the spectral models supported by 3ML. Eventually, it will also fit the polarization angle. However, this simple example already contains all the necessary pieces to do a fit." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ce42ab82-3bbd-4729-8f84-a4e32eb3bb24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:03:40 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=916286;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=215945;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=868229;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=764392;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=919383;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=286569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402464;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=161328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=200604;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=500344;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=943578;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=139722;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=882185;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=365193;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=588991;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483700;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:03:40 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:40\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=534169;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=474409;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=765631;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=407033;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=987302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=770994;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=670603;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=174077;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=60557;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=407332;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=541693;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=894858;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=847328;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=707179;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=853968;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=45582;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=982551;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=171931;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=958192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=870302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:03:41 WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=138869;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=412603;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:03:41 WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:03:41\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=828564;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=463928;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=215262;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=583062;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=752545;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=955651;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy import COSILike, test_data, BinnedData\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.response.FullDetectorResponse import FullDetectorResponse\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "from scoords import SpacecraftFrame\n", + "\n", + "from astropy.time import Time\n", + "import astropy.units as u\n", + "from astropy.coordinates import SkyCoord, Galactic\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from threeML import Band, PointSource, Model, JointLikelihood, DataList\n", + "from astromodels import Parameter\n", + "\n", + "from pathlib import Path\n", + "\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "id": "8d1c0168-9823-4eb7-930e-5dc61d6448ca", + "metadata": {}, + "source": [ + "## Download and read in binned data" + ] + }, + { + "cell_type": "markdown", + "id": "a57e30ec-9301-441c-a627-6ad0355aca22", + "metadata": {}, + "source": [ + "Define the path to the directory containing the data, detector response, orientation file, and yaml files if they have already been downloaded, or the directory to download the files into" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "5c765257-5a23-41bd-af67-4e461e3e6e4e", + "metadata": {}, + "outputs": [], + "source": [ + "data_path = Path(\"/path/to/files\")" + ] + }, + { + "cell_type": "markdown", + "id": "99500a01-882d-4053-a595-374202b87298", + "metadata": {}, + "source": [ + "Download the orientation file (684.38 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "36f96db4-640d-4233-8b18-a81bafcfd009", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori', output=str(data_path / '20280301_3_month.ori'))" + ] + }, + { + "cell_type": "markdown", + "id": "e1bee10b-4de7-417e-88a4-24f350789937", + "metadata": {}, + "source": [ + "Download the binned Crab+background data (99.16 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "51628f7e-cbab-4755-8cad-bf9af9a2a5f9", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/crab_bkg_binned_data.hdf5', output=str(data_path / 'crab_bkg_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "f1264463-2db3-4da8-a5d5-743607e7b2eb", + "metadata": {}, + "source": [ + "Download the binned Crab data (13.16 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "2f6ecc28-d928-4dc2-ad36-504e41175574", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/crab_binned_data.hdf5', output=str(data_path / 'crab_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "095adbe9-d0d0-4794-8912-3b3f7390d7b4", + "metadata": {}, + "source": [ + "Download the binned background data (89.10 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3d13cc84-2027-408f-8c7a-f2b4d654e7fd", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/crab_spectral_fit_galactic_frame/bkg_binned_data.hdf5', output=str(data_path / 'bkg_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "22cf85cc-6e8f-4db8-92a4-c8779e2fbe58", + "metadata": {}, + "source": [ + "Download the response file (839.62 MB). This needs to be unzipped before running the rest of the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5f3df678-009a-4b4c-96bb-01c3107a3805", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip', output=str(data_path / 'SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip'))" + ] + }, + { + "cell_type": "markdown", + "id": "d898bbd7-9ed0-4a27-bd5a-67414178733d", + "metadata": {}, + "source": [ + "Read in the spacecraft orientation file" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ed2c03a0-63e3-4044-9e16-50f0f17996af", + "metadata": {}, + "outputs": [], + "source": [ + "sc_orientation = SpacecraftFile.parse_from_file(data_path / \"20280301_3_month.ori\")" + ] + }, + { + "cell_type": "markdown", + "id": "f579870f-c854-450d-84e8-f1d5ef0753d1", + "metadata": {}, + "source": [ + "Create BinnedData objects for the Crab only, Crab+background, and background only. The Crab only simulation is not used for the spectral fit, but can be used to compare the fitted spectrum to the source simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3b5faaa1-1874-4d43-a6ae-7e1b0aaabb26", + "metadata": {}, + "outputs": [], + "source": [ + "crab = BinnedData(data_path / \"crab.yaml\")\n", + "crab_bkg = BinnedData(data_path / \"crab.yaml\")\n", + "bkg = BinnedData(data_path / \"background.yaml\")" + ] + }, + { + "cell_type": "markdown", + "id": "cf8b5ab1-7452-493e-b516-73fa72e455e5", + "metadata": {}, + "source": [ + "Load binned .hdf5 files" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "620159d2-f01a-453e-9e4c-075c99740086", + "metadata": {}, + "outputs": [], + "source": [ + "crab.load_binned_data_from_hdf5(binned_data=data_path / \"crab_binned_data.hdf5\")\n", + "crab_bkg.load_binned_data_from_hdf5(binned_data=data_path / \"crab_bkg_binned_data.hdf5\")\n", + "bkg.load_binned_data_from_hdf5(binned_data=data_path / \"bkg_binned_data.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a6bdaee8-45d7-41df-9835-413c1e397c12", + "metadata": {}, + "source": [ + "Define the path to the detector response" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "acccab93-7f9c-4167-a8f9-eedcf74b8a05", + "metadata": {}, + "outputs": [], + "source": [ + "dr = str(data_path / \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\") # path to detector response" + ] + }, + { + "cell_type": "markdown", + "id": "c4d25ed1-7139-4e1d-91ab-889bd2c01300", + "metadata": { + "tags": [] + }, + "source": [ + "## Perform spectral fit" + ] + }, + { + "cell_type": "markdown", + "id": "3d27b1c3-3e9f-4ca7-9a4f-1176a03d10df", + "metadata": {}, + "source": [ + "Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "8784a70b-c322-4e0b-a08e-c6f36bac024b", + "metadata": {}, + "outputs": [], + "source": [ + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = dr, # detector response\n", + " data = crab_bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = sc_orientation, # spacecraft orientation\n", + " nuisance_param = bkg_par) # background parameter" + ] + }, + { + "cell_type": "markdown", + "id": "a58bb558-e03d-4a07-b433-312302f622a7", + "metadata": {}, + "source": [ + "Define a point source at the known location with a Band function spectrum and add it to the model. The initial values of the Band function parameters are set to the true values used to simulate the source" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "e836fc74-15d8-4680-a947-2495670d7a25", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:04:35 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:35\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=444891;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=999475;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... Calculating point source responses ...\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n", + "WARNING ErfaWarning: ERFA function \"utctai\" yielded 7979956 of \"dubious year (Note 3)\"\n", + "\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--> done (source name : source)\n", + "--> all done\n" + ] + } + ], + "source": [ + "l = 184.56\n", + "b = -5.78\n", + "\n", + "alpha = -1.99\n", + "beta = -2.32\n", + "E0 = 531. * (alpha - beta) * u.keV\n", + "xp = E0 * (alpha + 2) / (alpha - beta)\n", + "piv = 500. * u.keV\n", + "K = 3.07e-5 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum = Band()\n", + "\n", + "spectrum.alpha.min_value = -2.14\n", + "spectrum.alpha.max_value = 3.0\n", + "spectrum.beta.min_value = -5.0\n", + "spectrum.beta.max_value = -2.15\n", + "spectrum.xp.min_value = 1.0\n", + "\n", + "spectrum.alpha.value = alpha\n", + "spectrum.beta.value = beta\n", + "spectrum.xp.value = xp.value\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value\n", + "\n", + "spectrum.xp.unit = xp.unit\n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + "\n", + "spectrum.alpha.delta = 0.01\n", + "spectrum.beta.delta = 0.01\n", + "\n", + "source = PointSource(\"source\", # Name of source (arbitrary, but needs to be unique)\n", + " l = l, # Longitude (deg)\n", + " b = b, # Latitude (deg)\n", + " spectral_shape = spectrum) # Spectral model\n", + "\n", + "# Optional: free the position parameters\n", + "#source.position.l.free = True\n", + "#source.position.b.free = True\n", + "\n", + "model = Model(source) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)\n", + "\n", + "# Optional: if you want to call get_log_like manually, then you also need to set the model manually\n", + "# 3ML does this internally during the fit though\n", + "cosi.set_model(model)" + ] + }, + { + "cell_type": "markdown", + "id": "e955d7a4-a40f-4fa2-af9a-c277fce3dc26", + "metadata": {}, + "source": [ + "Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f83dea31-2284-4f87-910a-be1003d970c8", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
12:05:05 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:05\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=102912;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=987128;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", + "\n", + "WARNING IntegrationWarning: The occurrence of roundoff error is detected, which prevents \n", + " the requested tolerance from being achieved. The error may be \n", + " underestimated.\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:26 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=737530;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=278840;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:05:26 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:26\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=562228;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=53136;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(2.857 +/- 0.023) x 10^-51 / (cm2 keV s)
source.spectrum.main.Band.alpha-1.9886 +/- 0.0004
source.spectrum.main.Band.xp4.47 -0.17 +0.18keV
source.spectrum.main.Band.beta-2.1964 +/- 0.0016
background_cosi(9.9193 +/- 0.0020) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (2.857 +/- 0.023) x 10^-5 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha -1.9886 +/- 0.0004 \n", + "source.spectrum.main.Band.xp 4.47 -0.17 +0.18 keV\n", + "source.spectrum.main.Band.beta -2.1964 +/- 0.0016 \n", + "background_cosi (9.9193 +/- 0.0020) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
-0.120.080.011.00-0.52
0.05-0.03-0.02-0.521.00
" + ], + "text/plain": [ + " 1.00 0.42 -0.61 -0.12 0.05\n", + " 0.42 1.00 0.45 0.08 -0.03\n", + "-0.61 0.45 1.00 0.01 -0.02\n", + "-0.12 0.08 0.01 1.00 -0.52\n", + " 0.05 -0.03 -0.02 -0.52 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-2.612135e+08
total-2.612135e+08
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -2.612135e+08\n", + "total -2.612135e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-5.224270e+08
BIC-5.224270e+08
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -5.224270e+08\n", + "BIC -5.224270e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "( value negative_error positive_error \\\n", + " source.spectrum.main.Band.K 0.000029 -2.272835e-07 2.278935e-07 \n", + " source.spectrum.main.Band.alpha -1.988617 -3.560944e-04 3.585775e-04 \n", + " source.spectrum.main.Band.xp 4.473464 -1.691279e-01 1.784522e-01 \n", + " source.spectrum.main.Band.beta -2.196416 -1.564268e-03 1.565798e-03 \n", + " background_cosi 0.991932 -1.915462e-04 1.937451e-04 \n", + " \n", + " error unit \n", + " source.spectrum.main.Band.K 2.275885e-07 1 / (cm2 keV s) \n", + " source.spectrum.main.Band.alpha 3.573359e-04 \n", + " source.spectrum.main.Band.xp 1.737900e-01 keV \n", + " source.spectrum.main.Band.beta 1.565033e-03 \n", + " background_cosi 1.926456e-04 ,\n", + " -log(likelihood)\n", + " cosi -2.612135e+08\n", + " total -2.612135e+08)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = False)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "e7c645bf-3e24-4caf-a47f-1b4b442fae46", + "metadata": {}, + "source": [ + "## Error propagation and plotting (Band function)" + ] + }, + { + "cell_type": "markdown", + "id": "1d4083b0-10f2-40a6-838a-99352580e1d0", + "metadata": {}, + "source": [ + "Define Band function spectrum injected into MEGAlib" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "1758942e-55e6-47ea-ab06-779e8a0fc622", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:06:33 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:33\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=26512;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=246007;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "alpha_inj = -1.99\n", + "beta_inj = -2.32\n", + "E0_inj = 531. * (alpha_inj - beta_inj) * u.keV\n", + "xp_inj = E0_inj * (alpha_inj + 2) / (alpha_inj - beta_inj)\n", + "piv_inj = 100. * u.keV\n", + "K_inj = 7.56e-4 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum_inj = Band()\n", + "\n", + "spectrum_inj.alpha.min_value = -2.14\n", + "spectrum_inj.alpha.max_value = 3.0\n", + "spectrum_inj.beta.min_value = -5.0\n", + "spectrum_inj.beta.max_value = -2.15\n", + "spectrum_inj.xp.min_value = 1.0\n", + "\n", + "spectrum_inj.alpha.value = alpha_inj\n", + "spectrum_inj.beta.value = beta_inj\n", + "spectrum_inj.xp.value = xp_inj.value\n", + "spectrum_inj.K.value = K_inj.value\n", + "spectrum_inj.piv.value = piv_inj.value\n", + "\n", + "spectrum_inj.xp.unit = xp_inj.unit\n", + "spectrum_inj.K.unit = K_inj.unit\n", + "spectrum_inj.piv.unit = piv_inj.unit" + ] + }, + { + "cell_type": "markdown", + "id": "9e7688b1-430a-4bce-8e9c-448202589e7f", + "metadata": {}, + "source": [ + "The summary of the results above tell you the optimal values of the parameters, as well as the errors. Propogate the errors to the \"evaluate_at\" method of the spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "c3851355-28fa-4ff4-9c5b-522733bb110e", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(2.857 +/- 0.023) x 10^-51 / (cm2 keV s)
source.spectrum.main.Band.alpha-1.9886 +/- 0.0004
source.spectrum.main.Band.xp4.47 -0.17 +0.18keV
source.spectrum.main.Band.beta-2.1964 +/- 0.0016
background_cosi(9.9193 +/- 0.0020) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (2.857 +/- 0.023) x 10^-5 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha -1.9886 +/- 0.0004 \n", + "source.spectrum.main.Band.xp 4.47 -0.17 +0.18 keV\n", + "source.spectrum.main.Band.beta -2.1964 +/- 0.0016 \n", + "background_cosi (9.9193 +/- 0.0020) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.42-0.61-0.120.05
0.421.000.450.08-0.03
-0.610.451.000.01-0.02
-0.120.080.011.00-0.52
0.05-0.03-0.02-0.521.00
" + ], + "text/plain": [ + " 1.00 0.42 -0.61 -0.12 0.05\n", + " 0.42 1.00 0.45 0.08 -0.03\n", + "-0.61 0.45 1.00 0.01 -0.02\n", + "-0.12 0.08 0.01 1.00 -0.52\n", + " 0.05 -0.03 -0.02 -0.52 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-2.612135e+08
total-2.612135e+08
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -2.612135e+08\n", + "total -2.612135e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-5.224270e+08
BIC-5.224270e+08
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -5.224270e+08\n", + "BIC -5.224270e+08" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n" + ] + }, + { + "data": { + "text/html": [ + "
12:06:34 WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:06:34\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=840959;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=587231;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=521892;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=431406;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The current value of the parameter beta (-2.0) was above the new maximum -2.15. parameter.py:794\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The current value of the parameter beta \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;37m-2.0\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m was above the new maximum \u001b[0m\u001b[1;37m-2.15\u001b[0m\u001b[1;38;5;251m.\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=402878;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=82481;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#794\u001b\\\u001b[2m794\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * source (point source):\n", + " * position:\n", + " * l:\n", + " * value: 184.56\n", + " * desc: Galactic longitude\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * b:\n", + " * value: -5.78\n", + " * desc: Galactic latitude\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * equinox: J2000\n", + " * spectrum:\n", + " * main:\n", + " * Band:\n", + " * K:\n", + " * value: 2.8565585663971596e-05\n", + " * desc: Differential flux at the pivot energy\n", + " * min_value: 1.0e-99\n", + " * max_value: null\n", + " * unit: keV-1 s-1 cm-2\n", + " * is_normalization: true\n", + " * alpha:\n", + " * value: -1.9886166208617622\n", + " * desc: low-energy photon index\n", + " * min_value: -2.14\n", + " * max_value: 3.0\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * xp:\n", + " * value: 4.473463779563324\n", + " * desc: peak in the x * x * N (nuFnu if x is a energy)\n", + " * min_value: 1.0\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * beta:\n", + " * value: -2.196416422107725\n", + " * desc: high-energy photon index\n", + " * min_value: -5.0\n", + " * max_value: -2.15\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * piv:\n", + " * value: 500.0\n", + " * desc: pivot energy\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}\n", + "\n" + ] + } + ], + "source": [ + "results = like.results\n", + "\n", + "print(results.display())\n", + "\n", + "parameters = {par.name:results.get_variates(par.path)\n", + " for par in results.optimized_model[\"source\"].parameters.values()\n", + " if par.free}\n", + "\n", + "results_err = results.propagate(results.optimized_model[\"source\"].spectrum.main.shape.evaluate_at, **parameters)\n", + "\n", + "print(results.optimized_model[\"source\"])" + ] + }, + { + "cell_type": "markdown", + "id": "d13bc552-c841-41d4-abc6-1d431eaca348", + "metadata": {}, + "source": [ + "Evaluate the flux and errors at a range of energies for the fitted and injected spectra, and the simulated source flux" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "804e78ca-2ccb-421b-aff2-ad41b70ed24f", + "metadata": {}, + "outputs": [], + "source": [ + "energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)\n", + "\n", + "flux_lo = np.zeros_like(energy)\n", + "flux_median = np.zeros_like(energy)\n", + "flux_hi = np.zeros_like(energy)\n", + "flux_inj = np.zeros_like(energy)\n", + "\n", + "for i, e in enumerate(energy):\n", + " flux = results_err(e)\n", + " flux_median[i] = flux.median\n", + " flux_lo[i], flux_hi[i] = flux.equal_tail_interval(cl=0.68)\n", + " flux_inj[i] = spectrum_inj.evaluate_at(e)\n", + " \n", + "binned_energy_edges = crab.binned_data.axes['Em'].edges.value\n", + "binned_energy = np.array([])\n", + "bin_sizes = np.array([])\n", + "\n", + "for i in range(len(binned_energy_edges)-1):\n", + " binned_energy = np.append(binned_energy, (binned_energy_edges[i+1] + binned_energy_edges[i]) / 2)\n", + " bin_sizes = np.append(bin_sizes, binned_energy_edges[i+1] - binned_energy_edges[i])\n", + "\n", + "expectation = cosi._expected_counts['source']" + ] + }, + { + "cell_type": "markdown", + "id": "b3cf7385-133f-4d4e-a78d-b90f9896c82e", + "metadata": {}, + "source": [ + "Plot the fitted and injected spectra" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "3402ff8a-d50e-4bad-a27d-f3b7bc4f4f54", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAG7CAYAAAB6sxkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFlElEQVR4nOzdd1yVZf/A8c9hyQYRFzJkKLhYLtx779yjUsvKHDkqrWz5VI85M8vqsVLbjsqBgoqKew/EhWxBRURlb875/cHPYwQq4MEDh+/79Xper8f7uu/7+h7ihi/XfV3fS6FSqVQIIYQQQohKT0/bAQghhBBCiNKRxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE0IIYQQooqQxE2HZGdnExYWRnZ2trZDEUIIIUQFkMRNh8TGxjJlyhRiY2O1HYoQQgghKoAkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYQkbkIIIYQQVYSBtgMQQgghqruCggLy8vK0HYaoYPr6+hgYGKBQKMp9D0nchBBCCC1KT08nPj4elUql7VDEM2Bqakr9+vUxMjIq1/WSuAkhhBBaUlBQQHx8PKamptSuXfupRmJE5aZSqcjNzeXOnTtER0fTqFEj9PTKPmNNEjchhBBCS/Ly8lCpVNSuXRsTExNthyMqmImJCYaGhsTGxpKbm4uxsXGZ7yGLE4QQQggtk5G26qM8o2xFrtdQHEIIIYQQooJJ4iaEEEKIIho2bIiHhwfe3t40adKEcePGkZGRUe77rVu3jmvXrj2y/fjx47Ro0QIfHx927dpF//79iYyMLNW11Y0kbkIIIYQoZvPmzZw/f57Lly+TmprKunXryn2vJyVf69ev54UXXuDcuXP06dOHnTt34urqWqprqxtZnCCEEEJUElveO0JmSk6F9mFqVYOhn3Yo9fk5OTlkZGRQs2ZN9bGlS5eyceNG8vPzqVevHt999x0ODg5s376d9957Dz09PfLz8/n000+5c+cOp0+fZubMmSxYsIDPPvuM/v37q++1aNEiNmzYgKmpKb/++ivBwcF4e3vj7+/P8ePHH3ttdSSJmxBCCFFJZKbkkHmvYhO30hoxYgTGxsZER0fTsmVLRo0aBcBvv/3GtWvXOHbsGPr6+vz8889Mnz6drVu3smDBAr799lvat2+PUqkkNTUVa2trfvnlF958800GDhxYrJ/58+dz9epVWrVqxfTp04u0vfzyy4+9tjqSxE2U2p07d6hdu7a2wxBCCJ1lalWj0vSxefNmmjdvTn5+Pq+++irz5s1j2bJlbNmyhdOnT9OyZUugsBadvr4+AD169GDWrFmMGDGC3r174+3tXVEfo9qSxE2Uyu3bt2nYsCE9evRg3rx5dOrUSdshCSGEzinLK8xnxcDAgOHDh/PWW2+xbNkyVCoVCxYsYPLkycXOXb58OZcuXWL//v28+OKLjB8/nrffflsLUesuWZwgSmX16tVkZ2ezY8cOtm3bpu1whBBCPEP79u3D3d0dgMGDB7N69Wru3bsHFBYRPnfuHABXr16lWbNmTJ8+nalTp3L8+HEALC0tSUlJKVffT3OtLpLETZSKvb09Dg4OGBgYMHPmzCJt+fn58lAJIYSOGTFiBN7e3jRr1owrV66wcuVKAJ5//nkmTJhA165d8fLywtvbm/379wPwzjvv0KxZM3x8fPj555/56KOPAHjllVdYuHAh3t7e7Ny5s0xxPM21ukihkl1tdUZYWBhTpkxhzZo16r+MNCkvL4+TJ0/SoUPRofyNGzfy8ssvM2XKFGbNmoWDg4PG+xZCCF2UnZ1NdHQ0zs7O5dr+SFQ9T/vfXEbcRKkZGhoWS9pUKhXLli0jLS2N5cuXExISoqXohBBCCN0niVsllZyczNtvv03v3r0ZN24cp06d0nZIJcrJycHb25saNWrQsmVLBgwYUKRdBnSFEEIIzZHErZJasWIFNjY2bNu2jddff50PP/ywUs4jMzY25rvvvuP69ev89NNPxTZKnj17NpMmTSIiIkJLEQohhBC6QxK3SigzM5NDhw4xadIkjI2N6dixI25ubhw+fFjboT1SnTp1aNq0aZFj8fHxfPPNN6xbt47WrVuTmZmppeiEEEII3aBzddwuXLjAzz//zKVLl8jNzaV27dr07duXF198scL6zMzMZP369YSHhxMeHk5KSgoTJ04sscZNZmYm33//Pfv37yctLQ1HR0fGjx9Pjx491OfEx8djYmJC3bp11cdcXFyIjo6usM9QES5evIipqSm5ubm89tprmJqaajskIYQQokrTqRG3PXv2MHPmTMzNzXnvvfdYvHgx48ePr/B5VikpKWzfvp28vLwnFqZdsGABgYGBTJw4kcWLF+Ph4cHHH3/Mnj171OdkZWVhZmZW5DozMzOysrIqJP6K0rdvX2JiYvjkk0+YO3dukTalUsnSpUvVdYCEEEII8WQ6M+J2584dli5dyuDBg5kzZ476uK+v72Ovy8jIIDQ0FD8/vxLbjx49io+PDyYmJo+8R7169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49e6rjS0hI4JtvvqF79+7o6+tjYmJCRkZGsTgfF0NlZWVlxXvvvVfs+IYNG3jrrbf49NNPWbVqFRMmTNBCdEIIUfmc2RxeYfduOaJRhd1bPBs6M+Lm7+9PVlYW48aNK/N18+fPJyAgoFjb1q1beeedd9i1a9dj76FQKIpNyi/JoUOHMDExoWvXrkWO9+/fn6SkJC5fvgwUFrvNysoiMTFRfc6Dmi8lCQoKYv78+axateqJMVQGKpWKTz75BChcPVunTh0tRySEEOKfGjZsiIeHB97e3jRp0oRx48YVG1Aoi3Xr1nHt2rVHth8/fpwWLVrg4+PDrl276N+/P5GRkaW6FmDOnDn88ccf5Y5P0+bOncvvv/9eIffWmcQtJCQES0tLrl+/zuTJk+nWrRuDBw9m6dKlj/1mGz16NCNGjGDRokVs3bpVfXzTpk0sW7aMCRMmMHToUI3EGB0djZOTEwYGRQc6XV1d1e0ApqamdOzYkbVr15KTk8PRo0cJDw8vVkPtgZ49e7Jo0SJmzJihkTgrmkKhYNeuXUycOJE+ffrQu3fvIu15eXlaikwIIcQDmzdv5vz581y+fJnU1FTWrVtX7ns9Kflav349L7zwAufOnaNPnz7s3LlT/bvxSdfeuHGDgIAARo8eXaaY8vPzS3WsLNc/MG/ePD766COUSmWZYioNnUnckpKSyM7O5oMPPqB79+4sX76csWPHsmvXLt5+++3HznObPn06EyZMYNmyZWzatIlff/2VVatW8dJLLzFlyhSNxZiSkoKlpWWx4xYWFgCkpqaqj82ZM4ekpCQGDhzIqlWr+Oijj7C2ttZYLNpmb2/P2rVrS3ytPH36dPr168eVK1e0EJkQQoh/ysnJISMjg5o1a6qPLV26lDZt2uDr60v//v2Ji4sDYPv27Xh6euLt7U3z5s3ZunUr33//PadPn2bmzJklblu1aNEiNmzYwMqVK/H29iY5OZmGDRty8eLFJ14L8OOPPzJixAj1m6+8vDzmz59PmzZt8Pb2ZsyYMSQnJwMwceJEZs6cSd++ffHy8iI4OBhvb29mzpxJu3bt+Pvvvzl9+jTt2rXD09OTNm3acOTIEQBiYmKwtbVl4cKFdOrUiVWrVpX4eaGw0oKzszN79+7V+H8PnZnjplQqyc3NZeLEier5Uj4+PhgYGLBq1SrOnDlDq1atHnn9lClTMDIyUr9unDp1KmPHjtV4nKV5pQpgbW3NkiVLNN5/ZfPv0ccrV67w/fffo1QqOXbsGHFxcerEVgghxLMzYsQIjI2NiY6OpmXLlowaNQqA3377jWvXrnHs2DH09fX5+eefmT59Olu3bmXBggV8++23tG/fHqVSSWpqKtbW1vzyyy+8+eabDBw4sFg/8+fP5+rVq7Rq1Yrp06cXaXv55Zcfey1AcHAwb775pvrfS5YswdzcnJMnTwLwn//8hw8//FC91+rhw4c5ePAg5ubmBAcHc+HCBb766iu+/PJLcnNzcXNzY82aNfTp04fDhw8zYsQIdS3Su3fv4ubmxgcffACAl5dXsc/7QPv27dm7dy+9evUq73+CEunMiJuVlRUAbdq0KXL8waKDJ70fB0hPT1cnVunp6RqOsDDGkoropqWlAZQ4Glfd3L59W73X6bx58yRpE0IILXnwqvTu3bs4Ozszb948ALZs2UJQUBAtW7bE29ubxYsXExsbC0CPHj2YNWsWixcv5sKFC8/kTVF8fDz16tVT/3vLli388ssveHt74+3tze+//05UVJS6fdSoUZibm6v/3bhxYzp27AgU7vltZGREnz59AOjYsSN16tThwoULQGHR+X8O6jzu89arV4/4+HiNf16dSdxcXFxKPP7gFenjRrpUKhUrVqxg06ZNzJs3j7lz5/LLL7/w9ddfazzG2NjYYu/FH3xDPWrxQXXStWtXrly5wvLly0ssIVLVatkJIURVZ2BgwPDhwwkMDAQKf2cuWLCA8+fPc/78eUJDQzl//jwAy5cvZ+3atZiamvLiiy+yePHiCo/P1NS0SLkslUrF6tWr1fFdvnyZ7du3q9v/mbT9+98qlarEfOHBMTMzsyLtj/u82dnZFVINQmcSty5dugBw4sSJIsePHz8OQLNmzUq8TqlUsnjxYrZt28b7779P//79GTJkCPPnz2fz5s0sX75cY3XgOnXqRFZWFgcOHChyPDAwEFtb22I7D1RXJiYmzJ49GyMjoyLH161bh4eHBwsWLJBdGIQQ4hnat28f7u7uAAwePJjVq1er63Dm5eVx7tw5AK5evUqzZs2YPn06U6dOVf8OtrS0LPe2jU+61tPTk6tXr6r/PXjwYJYvX67+PZGZmcmlS5dK1ZeHhwc5OTns27cPKCwJlpiYSIsWLUo8/1GfFwqn/nh5eZWq37LQmTlubdq0oX379qxfvx6lUkmzZs24evUq69ato3379nh6epZ43YYNG9i9e7d6suED/fr1w8jIiE8++QQnJyeGDx/+2P6PHz9Odna2+hslNjaW4OBgoPB1rbGxMX5+frRq1Ur9DdWgQQP27t3LiRMnWLBgAfr6+pr5Yuige/fuMW/ePHJzc/n000/p0aMH3bp103ZYQgihcZWl1tqDOW55eXk0bNiQb7/9FoDnn3+eu3fv0rVrVxQKBfn5+bz00kv4+PjwzjvvcO3aNYyMjDA1NeWbb74B4JVXXmHu3LksWbKEzz77jP79+5c6jiddO2LECH766Sf1bkXz58/n448/pm3bturRsXnz5j1yAOefjIyM+PPPP5k5cyYZGRkYGxuzadMmzMzMuHPnTrHzH/V5VSoVe/fu5d133y315ywthaqitxV4hnJycli7di1BQUHcvXsXW1tbevXqxcSJE4uN3vzzmvDwcJo3b15ie2hoKB4eHhgaGj6271GjRpGQkFBi24YNG6hfvz5QmPmvWbOmyJZXEyZMKLLlVXmFhYUxZcoU1qxZo/7LSFdkZmbyySefsHTpUp577rlKVa9HCCHKKzs7W12n09jYWNvhVElKpZLWrVuzdetW7O3ttR0OUPgm7ddff+Xnn38u1va0/811KnGr7nQ5cXvg6tWrWFpaYmdnV+R4SEgInp6epV61K4QQlYEkbppx+vRpsrOz1YsMtG3Dhg106tSp2O8qePr/5jrzqlRUDx4eHsWOnT59Gj8/PwYMGMC3336rHt0UQghRPTyu3Jc2lLUYcFnozOIEUT3l5+czadIkCgoK2LZt21NV9hZCCCEqO0ncRJVmYGDAwoULqVOnDj4+PkWKMAohhBC6Rl6Viipv2LBhdO7cmfv37xdbRHL9+nUcHBxk7psQQgidICNuQifUqlULNze3Isdu376Nr68vw4YN4+7du1qKTAghhNAcSdyEzpo2bRp3795l69atzJ49W9vhCCFElfFgk/fH+eCDD9iwYUO5+wgODmb37t3lvrayLUh4VuRVqdBZ48eP58CBA+jr67NkyRJthyOEEDpl4cKFT3V9cHAw6enp9O7dW0MRVQ8y4iZ01rBhwwgJCWHLli3UrVtX2+EIIUSpLF++HHt7e+zt7dU78DwQHR2tbpsxY0axawcPHqxu/7d169axfPnyMsXStWtX5s2bR6dOnXB1deW1115Tt02cOJGvvvoKKNz2av78+bRp0wZvb2/GjBlDcnIyACkpKbz88su0aNECLy8vJk+ezPnz5/n222/56aef8Pb2VieBu3btomPHjrRs2ZK2bdty8OBBdX8LFizAzc2NLl264O/vX6bPoUtkxE3oNDs7u2IFEPPy8hg+fDivvPIKAwcO1FJkQghRstTUVG7cuAEU7u7zTwUFBeq2+/fvF7v2zp076vZ/y8jIIDU1tczxREZGEhwcTG5uLk2bNuXYsWO0a9euyDlLlizB3NyckydPAvCf//yHDz/8kJUrVzJr1izMzc0JCQlBT0+PO3fuULt2bV577TXS09NZunQpAFFRUXz88ccEBgZiaWlJREQEXbp0ISYmhsDAQLZt28b58+cxMTFh2LBhZf4cukISN1HtfPjhh2zfvp3t27fz3//+l/nz52s7JCGEULO0tKRBgwYA1KhRo0ibvr6+uq1mzZrFrq1du7a6/d/MzMyKJYKlMWbMGPT19TExMcHb25vIyMhiiduWLVtITU1l8+bNAOTm5uLq6gqAv78/Z86cQU9PTx1jSQIDA4mIiKBz585FjsfFxbF//35Gjx6Nubk5AJMnT+aTTz4p82fRBZK4iSfKTMnh6t7rNO3lhLFFyXu+VhVKpZKwsDCgsAZc9+7dtRyREEIUNWfOHObMmVNim7OzM/Hx8Y+8dtu2bY9smzhxYrni+ee2TPr6+uTn5xc7R6VSsXr16qf6mapSqejbty8//fRTiW2ikMxxE090KSCGs5sj+GNmMMd/vkLG3Sxth1Ruenp6bN68ma+++oqlS5fSpk0bbYckhBBV3uDBg1m+fDmZmZkAZGZmcunSJXXbkiVLUCqVQOHrXCgcWUxJSVHfo3fv3gQGBhZZzfrg1WuPHj3YuHEjGRkZFBQUVOtdciRxE49VkFfA1X1xAOTnFHAxIIYNsw5w8H+hpNzK0HJ05aNQKJg2bRpvvPFGsbYtW7aQm5urhaiEEKLqeVDcfP78+Xh7e9O2bVs8PT3x8/Pj/PnzAKxYsYLMzEyaN2+Ot7c37777LlC4gOz06dPqxQmNGjXil19+4eWXX8bLy4smTZqwcuVKAAYOHMjAgQPx8vKie/fueHp6auXzVgYKlYw/6oywsDCmTJnCmjVrcHd319h90xIzCd0RTVhwPAV5yocNCnBuXQ+vwS7YulhprD9t2bx5MyNHjsTPz4+NGzfi4OCg7ZCEEDouOzub6OhonJ2di7ySrAr69+/PCy+8wJgxY7QdSpXytP/NZcRNPJFFHVPaT2rG6C+74jXEFSPT/58aqYLokwlsWXCUgP+e5Oalu1V2HkJGRgZTp04F4Pjx4wQEBGg5IiGEqLx69uxJWloaAwYM0HYo1Y4sThClZmpVg9ajG+M1yJkre+O4uDOarJTC14o3Qu9yI/Qutd2s8BrkilPLOij0qs7+oGZmZgQEBDBixAg6dOjAlClTtB2SEEJUWkFBQdoOodqSxE2UmZGpIV6DXGjWx4nwgze44B9FWmLhgoU7ESkErTiLdQNzvAa54Nq+PnoGVWNgt1WrVpw9exYjI6Nim9IrlUr1UnYhhBBCW+Q3kSg3AyN9mvR0ZOSyznSb7oWNo4W6LflGOge+vcDGOQe4tCuG/JwCLUZaejY2Nuo6QQ9cunSJ5s2bc+LECS1FJYTQdVV1mokouwera8tLRtzEU9PT18O1vR0u7eoTf/4O57dFcTussKJ3elI2x9Zf4dzfkTTr60TTnk7UMDfUcsSll5aWxvDhwwkLC6NTp04EBATQo0cPbYclhNARhoaGKBQK9W4C/x7tF7pDpVKRm5vLnTt30NPTw8iofHVRJXETGqNQKHDwqYODTx0Srt4jZHsUcecK6/Vkp+ZyZmM4F7ZH4dHDkRb9GmJas/KvoMrMzKR27dqEhYXRtGlT2rdvr+2QhBA6RF9fH3t7e+Lj44mJidF2OOIZMDU1xdHRsdzTbyRxExWinocN9TxsuHs9lQvboog6dguVCvKyCgj1j+ZSYAyNO9vjOcgZy7pm2g73kerWrcu+ffv48MMPmTx5MiYmJtoOSQihY8zNzWnUqBF5eXnaDkVUMH19fQwMDJ5qZFXquOmQiqrjpgmptzO44B/NtQPxKPMffsspFODsVx+vwS7UcrLUYoRll5KSwt69e3nuuee0HYoQQohqQhYniGfCsq4ZHV9qzpiVXfEc5IyhiT4AKhVEHbvF3+8cYdfi0yRcvafdQEtJpVIxefJkhg8fzrRp08q1cbMQQghRVpK4iWfKtKYxbcZ6MObLbrQa1Rhjy4eTM+PO38F/4Qm2f3Sc6+cSK/Uqq127dvHXX38B8Ntvv5GQkKDliIQQQlQHkrgJrahhZoj3UFfGrOxKuxebYm77cKHC7Wv32b3kDH/NP0LEkZsoC55u6XRF6Nu3Lz/88AMmJib8/PPPODk5aTskIYQQ1YDMcdMhlXmO25Mo85VEHrtFyLYokm+kF2mzqGOC50AXGnVugIGRvpYiLNnt27epW7dukWNKpRKVSoW+fuWKVQghRNUnI26iUtAz0KNRpwYM/7wjveb4Utvt4ab1aYlZHPnxEhveCCZkWyS5mZVn5dW/kzaAJUuW0KdPHxITE7UQkRBCCF0m5UBEpaLQU+DUqi6OLetw68o9QrZGcSM0CYCslFxO/XGNkG1RNOnlRPO+TphY1dByxEUFBwfz7rvvolQqadmyJZcvX8bCwuLJFwohhBClIImbqJQUCgV2TWth17QWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqm2QwbAwMCAOnXqkJCQwOTJkyVpE0IIoVGSuIlKz9bFih6zfEi5lUHI9igiDt1AWaCiIE/J5T3XubI3Dtf29fEc5IKNg3YTpY4dO3Lu3Dm+/PJLPvjgA63GIoQQQvfI4gQdUpUXJ5RFxr1sQndGc3VvXLHN6x196+A12IW6jWtqKbpHO3DgADVr1sTT01PboQghhKiiZHGCqHLMbIzxm9CEMV92xXeEW5FN66+fTWT7R8fx/88J4kLuVJpacHFxcQwfPhw/Pz/Wr1+v7XCEEEJUUZK4iSrL2MII3+caMebLrvg974GZzcNacAlX7rHr89NsefcIkcduoVRqN4H7z3/+w927d8nKymLTpk2VJqEUQghRtcirUh0QFBREUFAQ6enpXLhwQedflT5KQb6SyMM3CdkeRcqtjCJtlnVN8RzkQqNOdugbPvv6atnZ2bzxxhvs3r2bM2fOYGNj88xjEEIIUfVJ4qZDqssctydRKlXEnr5NyLYokqJSirSZWtegef+GePRwxMjk2a/NuXfvXrGkLScnhxo1KldZEyGEEJWTvCoVOkdPT4Fzm3oM+U87+r3TGrtmtdRtmck5nPwtjD9m7Of0xmtkpT7bzeFLSto6d+7M/Pnzyc/Pf6axCCGEqHqkHIjQWQqFggYtbGnQwpY7kcmEbIsi5vRtdS2481siCd0ZjXs3BzwHOGNua/LMY5w9ezYnT57k5MmT3L59m7Vr1z7zGIQQQlQdkriJaqG2qzU9Z/ty/0Y6of5RhB++iapARUGuksu7YrkSdB23DnZ4DnSmpv2zqQWnUqlo3LgxBgYGGBgY8MYbbzyTfoUQQlRdMsdNh8gct9JLv5tF6I5owvbHF6sF59SqLl6DXajjZv1MYjl69CjXr19nzJgxz6Q/IYQQVZckbjpEEreyy07N5dLuWC7viiUno+jm9XbNauE52IUGzWuhUCieeWzffvstY8aMwdra+pn3LYQQonKSxQmiWjO2NKLliEaM/rIrbcd7YFrz4erOm5fuEvjfU2xdcJToE8+2FtzatWuZOnUqLVu25Ny5c8+sXyGEEJWbJG5CAEYmBrQY4MzoL7rQaUpzLOs93LQ+KTqVvSvP8+dbhwjbH0dBvrJCY8nOzlbvcxoVFcXFixcrtD8hhBBVhyxOEOIf9A31ce/mQKMu9sScTCBkWxR3Y1IBSLmVwaE1FznzZzgt+jvj0d0BQ2PNP0LGxsYcPnyYkSNH4uvry/PPP6/xPoQQQlRNkrgJUQI9PQUufvVxbluPG6FJhGyL4tblewBk3svhxC9XOb8lkqa9nWjWxwljCyON9u/k5MShQ4dKbMvMzMTU1LTENiGEELpNXpUK8RgKhQJ7z9oMWNCWwR/74dSyjrotJz2Pc39F8MfMYI7/fIWMu1ka7btGjRrFdlQ4c+YMzs7O/PXXXxrtSwghRNUgiZsQpVSnUU16zW3J8MUdcetoh0KvcKVpfk4BFwNi2DDrAAf/F1psn1RNuX//PiNGjCAxMZHhw4fz999/V0g/QgghKi9J3IQoo5r2FnR93YtRK7rQtLcT+oaFj5GyQMW14Hg2vXmQvV+cK7ZP6tMyNDTEz88PgLZt2zJgwACN3l8IIUTlJ3PchCgni9omtJ/YFJ9hrlwMjOXKnlhyM/NBBdEnE4g+mUCDFrXwGuxK/aY2T10LztzcnN9++40uXbrQv39/jIw0O69OCCFE5SeJmxBPycSqBq1HN8ZrkDNX9sZxMSCGrOTCzetvhN7lRuhdarta4TXYFaeWddSvWMtDoVDw2muvFTuelJTEL7/8wsyZM9HTk4F0IYTQVfITXggNMTI1xGuQC6O/6EKHl5phUefhpvV3IlMIWnGWP+cd4trBeJQarAWnVCqZMGECs2fPZvDgwdy7d09j9xZCCFG5yIibEBpmYKRPkx6OuHe1J/pEYS24e9fTAEi+kcHBb0M5symcFgOc8ejmgEEN/afq7/Dhw+zevRuAU6dOkZ2d/dSfQQghROUkI25CVBA9fT1c29sx7L8d6PNWS+p51FS3ZdzN5vhPV/hj5n7O/R1BTnreY+70eJ07d2bXrl3UrVuX33//HTs7O02EL4QQohKSETchKphCocDBpw4OPnVICLtPyLZI4s7dASA7LY8zm8K5sD0Kjx6ONO/fELOaxmXuo1evXkRFRRUrzFtQUEB2djZmZmYa+SxCCCG0S2OJ25kzZzh79iwXL14kMTGRlJQUjI2Nsba2xsXFBW9vb9q1a0etWrU01aUQVU4995rUe6sVd6+ncmF7NFHHbqFSqsjLLiB0RzSXdsXQqJM9noOcsapXtmSrpN0UPvzwQ7Zs2cLmzZvx8PDQ1McQQgihJQqVSqUq78WZmZn8+eefbN++ncTERB7cysjICEtLS3JycsjIyECpLJyIra+vT4cOHRg1ahQtWrTQzCcQamFhYUyZMoU1a9bg7u6u7XBEKaTeziR0RzTXDsRTkPdwwYJCAQ3b1sNrsAu2Da3Kde+dO3eqa71ZW1sTHR2NtbW1JsIWQgihJeUecdu6dStr167l/v37uLm5MXjwYJo1a4a7u3uRv/xVKhXx8fFcvnyZU6dOcfjwYQ4dOkSHDh2YNm2azMcR1ZplXVM6TG6Gz3A3LgXEcHnPdfKy8lGpIPp4AtHHE7D3tMVriAv1PMpWC87V1ZVmzZpx6dIl3nvvPUnahBBCB5R7xK1bt2706tWLsWPH4uzsXOrrcnJyCAoK4pdffqFPnz5MnDixPN2LEsiIW9WXm5nHlaDrhO6MITs1t0hbnUbWeA12wdGn9LXgMjIy+PHHH5k+ffpTFwAWQgihfeVO3G7cuEGDBg3K3XFBQQF37tyhXr165b6HKEoSN92Rn1vAtQPxXPCPJv1O0c3ra9qb4znIBdd29dEzKN/C8B07dmBgYECfPn00Ea4QQohnpNzlQJ4maYPC+W6StAlRMgMjfZr2cmLU8s50fd2Tmg7m6rb78ekc+OYCG+cc5NKuWPJzCsp078jISMaPH0+/fv346KOP1HNQhRBCVH5SDkSISkxPXw+3jg1wbW9H3Pk7nN8WSeK1ZADSk7I4tv4y5/6OoFlfJ5r2cqKGmeET7/ntt9+SkpICwOXLl+UVqhBCVCGSuAlRBSj0FDj61sHBpzYJV+8Tsi2K+JD/rwWXmsuZjQ9rwbXo1xDTx9SC+/zzz7GxseGXX37h+++/l8RNCCGqkKcqB/JvaWlpHDlyhL59+2rqlqIMZI5b9XI3JpWQ7VFEH7/FP59ifUM9GnVugOdAZyzrProWXE5ODjVq1Chy7N69e9SsWVOSOSGEqKQ0uuXV7du3WbRokSZvKYR4hFoNLek+w5sRyzrj0cMBPYPCZKsgT8nVvXFsmnOQfavOczc2tcTr/520ZWRk0LlzZ8aOHUtaWlqFxy+EEKLsyvSq9Pbt249tT0pKeqpghBBlZ1XPjI4vNcf3OTcuBsZwJeg6eVkFqFQQdewWUcduYe9VG+//rwX3KFOnTuXSpUtcunSJvLw8/vzzz2f4KYQQQpRGmRK3UaNGPfYVikqlklcsQmiJaU1j2oz1wGuwK1f2XOdi4MNacPEhd4gPuUPdxjXxGuyCg0/tYs/qsGHD2Lp1K0qlks8++0wbH0EIIcQTlClxs7CwYMqUKfj4+JTYHhsby/vvv6+RwIQQ5VPDzBDvoa4079eQsOB4QndEk55UWAvu9rX77F56hpoOFngNcsalXX309AtnTAwbNowWLVoQHh4ucySFEKKSKlPi1rhxY5KTk3F0dCyxPTc3Fw2udRBCPAWDGvo06+NEkx4ORB67Rci2KJJvpANwPy6N4NUXOL0pHM+BzjTuYo+BkT5ubm64ubkVuY9KpeLjjz9m4sSJNGzYUAufRAghxANlWpwwdOhQ6tev/8j2unXrMn/+/KcOSgihOXoGejTq1IDhn3ek11xf6rhZq9vS72RxdO1lNrwRTMi2SHIz84pd//XXX/Pxxx/j6+tLQEDAM4xcCCHEv5VpxK1z586PbbewsKBfv35PFZAQomIo9BQ4tayLo28dEq7eI2RrFPEXChcUZaXkcuqPa5zfGkXTXo4069cQU6sa5OXlsXr1agDu379Pdna2Nj+CEEJUe1KAV4hqRqFQUL9JLeo3qUVSTAoh26KIPpEAKsjLyidkWxQXA2Jo3MUez4HOHDt2jEmTJuHi4sKwYcO0Hb4QQlRrT524de3alQ0bNlC3bl1NxCOEeIZsG1rRY6YPKbcyuOAfTfiheJT5KgrylFwJus7VfXG4tKvPmhXrsGpgWuz627dvy7MvhBDP0FMX4JXFCEJUfVb1zeg0pTmjV3alxQBnDI31AVApVUQeucnf7xxh74rzJITdV19z5MgRnJ2dWb58ufwcEEKIZ0RelQoh1MxqGtN2vAdeQ1y4suc6lwJjyE4rXLAQd+4OcefuUM+jJg6drBk1YRRZWVnMnTuXOnXqMGHCBC1HL4QQuk+jW14JIXSDsbkRPsPcGL2yK34vNMGs1sNN6xOu3uf4dxH4OXUHoFvXbowZM0ZLkQohRPUiI25CiEcyNDaged+GNO3pSMTRm1zYHkXyjQz09fTp13Ac9kaNaNaoOeEHbtKoUwMMjPS1HbIQQug0GXETQjyRnoEejTvbM/zzTvSc7UNtFysAWti1Ri/dhCM/XGLjrANc2B5FbFQcc+fOJSsrS8tRCyGE7pERNyFEqSn0FDRsXQ+nVnW5dfke57dGcvPiXQAyk3M4+uslVgS/y7XbF9kbtI+t27bg5OSk5aiFEEJ3SOImhCgzhUKBXbNa2DWrxZ3IZEK2RxFz6jbx96OISQoH4HpEPJe2x1NrTB3MbU20HLEQQuiGp07cnn/+eczNzTURixCiCqrtak3PWb4k30jngn8DDA1XsObw5zzf5g1uHk1lw4kDuLW3w3OQMzXtLbQdrhBCVGkKlRRgqpSSk5P57LPPOH/+PLa2tsyePZvWrVs/9pqwsDCmTJnCmjVrcHd3f0aRClFU+t0sQrZHEn7gJvk5Berj+QV52DQ1oev41kX2SxVCCFF6Fb44QaVSERcXR2JiYkV3pVNWrFiBjY0N27Zt4/XXX+fDDz8kJSVF22EJ8UTmtUzoMLE5Y1Z2xec5N2qYGQKw+fyPTFk0miWv/Y+dn54kPjRJCvcKIUQZaSxxO3ToEIsWLSItLU197NatW0ycOJHnn3+eUaNGsXDhQpRKpaa61FmZmZkcOnSISZMmYWxsTMeOHXFzc+Pw4cPaDk2IUjO2NKLliEaM/rIr6c6x7L22ldTs+3wZ/AFhZ6II/O8pti44SvTJBJRKSeCEEKI0NLY4Ydu2bSQmJmJh8XAOy6pVq4iJicHX15fU1FT27duHr68vAwcO1FS3j+Tv78/ixYsxMTFh165dFdpXZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSmyB6SLiwvR0dEV+jmEqAhGJgaMnzUc/xOb2bt3Ly90eR0L48JyIknRqez94hxW9c3wHOSMW8cG6BtIlSIhhHgUjf2EjI6OpkmTJup/p6enc/z4cbp3786KFSv47rvvcHJyYseOHZrq8pHu3LnD6tWrsbW1rfC+AFJSUti+fTt5eXl06tTpsecuWLCAwMBAJk6cyOLFi/Hw8ODjjz9mz5496nOysrIwMzMrcp2ZmZnUxRJVVu3atdm1axebNm3i291L6T7Tm1oNLdXtKbcyOPS/i2yYFUzozmjysvO1GK0QQlReGhtxS05OplatWup/h4aGUlBQoB5JMjAwoFWrVkUSlIqybNkyPD09sbS05MCBA489NyMjg9DQUPz8/EpsP3r0KD4+PpiYPLqcQb169dixYwcKhYLk5GT8/f1LPO/YsWOcPn2aDz74gJ49ewLg6+tLQkIC33zzDd27d0dfXx8TExMyMjKKxfm4GISo7PT19RkxYgQALn71cW5bjxuhSXz5yXckxNyhk2sfMu/lcOKXq5zfEknT3k406+OEsYWRliMXQojKQ2MjbmZmZqSmpqr/fe7cOfT09PDy8lIfMzAwIDs7W1Ndlmj37t2cP3+eOXPmlOp8f39/5s+fT0BAQLG2rVu38s477zzxVatCoUChUDyxr0OHDmFiYkLXrl2LHO/fvz9JSUlcvnwZAHt7e7Kysoos6IiOjsbZ2bnE+wYFBTF//nxWrVr1xBiEqCwUCgWpBnf4esd/+fnUl2yK+IYCZeEq1Jz0PM79FcEfM4M5/vMVMu7KaLMQQoAGEzdHR0eOHj1Kamoq6enp7N27l0aNGhWZ85aQkEDNmjU11WUx9+/fZ9WqVbz66qvUqVOnVNeMHj2aESNGsGjRIrZu3ao+vmnTJpYtW8aECRMYOnSoRuKLjo7GyckJA4OiA52urq7qdgBTU1M6duzI2rVrycnJ4ejRo4SHh9OhQ4cS79uzZ08WLVrEjBkzNBKnEM/K9u3byczMBMC+RW1GLe2CW0c7FHqFfwjl5xRwMSCGDbMOcPB/oSTfTNdmuEIIoXUae1U6fPhwPvzwQ5577jn1yNo/J+cXFBQQGhpaZB6cpi1fvhwHB4cyJ1rTp0+nRo0aLFu2jNzcXHJzc/nuu+946aWXePHFFzUWX0pKCnZ2dsWOP0hu/zliOWfOHD799FMGDhyIra0tH330EdbW1hqLRYjKYN68eTg6OvL111/z1VdfYWpqStfXvWg5sjGhO6IJ2x9HQZ4SZYGKa8HxXDsQT8PWdfEe7Irt/++XKoQQ1YnGEreuXbsye/Zs9eKDbt26MWDAAHX7mTNnyM7Opk2bNprqsojg4GCOHj3KDz/8UKrXlv82ZcoUjIyM1K8bp06dytixYzUdZqljs7a2ZsmSJRrvX4jKZuzYsYwZM6bIs2FR2wT77uY0H9iBa/tucnl3LLmZ+aCCmJO3iTl5mwYtauE12JX6TW3K9cwLIURVpNG9SocOHfrI0a42bdqwc+dOTXanlpmZyRdffMFzzz1HrVq11LXk8vMLV6alpaVhYGDwxMn96enpKBQKVCoV6emafyVjZWVVYhHdB/FaWloWaxOiOvh34pWSkkKPHj2oU6cOGzduxHNgV67sjeNiQAxZyTkA3Ai9y43Qu9R2tcJrsCtOLeuoX7EKIYSu0olN5lNSUrh37x4bNmxgw4YNxdoHDBhAx44d+eyzz0q8XqVS8cUXX7B161bmzZtHXl4ey5cvJzc3l2nTpmksThcXF4KCgsjPzy8yzy0qKgrgkYsPhKhuXn31VSIiIoiIiGDKlCns3LkTr0EuNOvjRPihG1zYHkVaYuGChTuRKQStOIt1AzM8B7ng1t4OPakFJ4TQUTqRuNnY2LBy5cpix3/99VfOnz/PkiVLsLIqeT6MUqlkyZIlBAYG8v7776vLlxgZGbF48WJycnKYPXu2Rl7FdOrUie3bt3PgwIEiBXcDAwOxtbWladOmT92HELpgzpw5HDt2jLS0NFavXq0+bmCkT5Mejrh3tSf6RAIh26K4d71wxDr5RgYHvw3lzKZwWgxwxr2rPYbGOvEjTggh1HTip1qNGjXw8fEpdjwgIAB9ff0S2x7YsGEDu3fvZuHChUWK5/br1w8jIyM++eQTnJycGD58+GNjOH78ONnZ2eoVcrGxsQQHBwPg5+eHsbExfn5+tGrViuXLl5OZmUmDBg3Yu3cvJ06cYMGCBejr65fj0wuhe9q0acPZs2cJCwujYcOGxdr19PVwbW+HS7v6xJ+/Q8j2KBKu3gcg4242x3+6wvm/I2jWpyFNeztRw9zwGX8CIYSoGAqVDu/y/Nlnn3HgwIHH1mHLyckhPDyc5s2bl9geGhqKh4cHhoaP/8E/atQoEhISSmzbsGED9evXBwrn461Zs6bIllcTJkwoMgJXXmFhYUyZMoU1a9bg7u7+1PcTorJRKpVMnz6dSZMm0bp16yJtCWH3CdkWSdy5O0WOGxrr49HDkeb9GmJmY/wswxVCCI3T6cStupHETei6RYsW8c4772BkZMR3333HxIkTi51z73oaIdujiDp2C9U/Nq/XM1DQqFMDPAe6YFXfrNh1QghRFejEq1IhhO4rKChQr0zPy8tTj2L/m42jBd2medFqZCMu7IjmWnB8YS24fBVh++MJC47HuU09vIa4YNtQasEJIaoWSdyEEFWCvr4+e/fu5e2338ba2po+ffo89nyLOqZ0mNQMn+fcuBQQw+U918nLKqwFF30igegTCdh72uI52IX6TaQWnBCiapBXpTpEXpWK6kKlUhVLtC5fvvzYldm5mXlcCbpO6M4YslNzi7TVcbPGa4gLjj5SC04IUbmVudiRUqkkKiqKpKSkYm35+fmcP39eE3EJIcQj/Ttp2717N82bN2fGjBnk5OSUeI2RqSFeg10Z82VX2k9qinnthwW5EyOS2bPsLH/NP0z4oRso85UVGr8QQpRXmUbcEhISePvtt4mNjUWhUODn58c777yjrpF27949nnvuOXUZDPFsyYibqI7u3r2Lh4eH+o/J77//npdeeumJ1ykLlEQdu0XI9ijuxxXdKcXc1gTPgc407mqPgZGU6RFCVB5lGnH75ptvqF27Nps2beLHH38kLy+PadOmFRl9kzevQohnycbGhs8++4waNWowYMAAJk2aVKrr9PT1cOvYgOf+25Fec32p08ha3ZaelMXRdZf5Y2Yw57dEkpORV0HRCyFE2ZQpcQsJCWHq1KnUqVMHFxcXli5diqenJ9OnT+f27dtA6TdRF0IITVAoFEyZMoVjx47x008/oadXthkgCj0FTi3rMugjPwa83xZ7r9rqtuzUXE5vvMYfM/Zz8verZCaX/BpWCCGelTL9hMvOzi5SiFahUPD222/TunVrZsyYwY0bNzQeoBBClIaPjw82NjZFjsXExDB69Gju3LnziKseUigU1G9iQ995rRj2WQdc/Orz4O/QvOwCLmyP5o+ZwRz+4SKptzMr4iMIIcQTlSlxc3R0JCwsrNjxuXPn4ufnx/z58zUWmBBCPI2cnBxGjhzJxo0b8fX15eLFi6W+tlZDS7rP9GbEss54dHdAz6Awg1PmK7m6N45Ncw6w/6vz3L2eWlHhCyFEicqUuHXu3Jk9e/aU2DZnzhy6d+8uc9yEEJVCZGQkcXFxQOF+xvb29mW+h1U9Mzq+3JwxK7vSYqAzBsaFCxVUKog8eou/5x9h15LTJFy9p8nQhRDikaSOmw6RVaVCFHXr1i0mTZrEokWL8Pb2fur75aTncTkolksBMWSnFV2wULdxTbyGuODgXVvm+gohKowkbjpEEjchSicrK4vY2Fg8PDzKdX1+TgFhwXFc8I8m4252kTYbRws8B7ng4lcPPf0yl8oUQojHeuqfKl27dlWvKBVCiKpgxowZtGzZkl9//bVc1xvU0KdZn4aMXtGFzq+1wNru4ab1966nEfx1CJvmHuRK0HXycws0FbYQQjx94iYDdkKIquTPP//khx9+IDMzk1deeYWbN2+W+156Bno07mzP8MWd6Dnbl9quDzetT0vM4siPl9jwRjAh2yLJzZRacEKIpyfj+EKIaqV///5MnjwZgG+//RY7O7unvqdCT0HD1nUZvLAd/d9rQ4MWtdRtWSm5nPrjGn/MDObUhmtkpUgtOCFE+RloOwAhhHiWTExM+OGHH5g8eTIdOnTQ6L0VCgV2zWph16wWSVEphGyLIvpUAqggNzOfkK2RXNwZjXtXe1oMdMaitqlG+xdC6D5J3IQQ1VJJSduaNWuIjo5m4cKFGBg83Y9HWxcreszyIflmOhf8o4k4dANlgYqCPCWX91znyt44XNvXx2uwCzXtLZ6qLyFE9SGJmxBCAGfOnGH69Onk5uZy/PhxAgMDMTIyeur7WtuZ0/mVFrQc7kZoQAxX98aRn1OASqki4vBNIg7fxLFlHbwGuVC3cU0NfBIhhC6TxE0IISjci7mgoHAFaPPmzTWStP2TWS0T/CY0wXuIK5d3x3IpMFa9ef31M4lcP5NIvSY2eA12wd7TVmrBCSFKJImbEEIAkydPpnHjxixfvpylS5dWWD/GFkb4Dm9EiwHOhO2PI3RHDBn3CmvBJVy5R8KVe9RqaInXYBcatqmHnp4kcEKIh546cXv++ecxNzfXRCxCCKFVHTt2pGPHjsWOX758mQYNGmBlZVXCVeVjaGxA837ONOnlROThm4RsjyLlVgYAd2NS2ffleSzrmuI5yIVGnezQN9TXWN9CiKpLdk7QIbJzghCal5SUhK+vLzVq1GDz5s14eXlVSD9KpYrY07cJ2RpJUnTRzetNa9ageX9nPLo7YGQiL0qEqM7kJ4AQQjzG9OnT1ZvVv/XWW+zevbtC+tHTU+Dcph4NW9fl5sW7hGyL4ualuwBk3s/h5K9XOb8lgma9nWjWpyHGlpqdgyeEqBo0nrgplUru3LnDnTt3yM/PL/EcTWz2LIQQz8J///tfwsPDiY+PZ926dRXen0KhoEELWxq0sCUxIpmQ7VHEnircVjA3I59zf0dyYUc0Ht0daDHAGfNaJhUekxCi8tBY4qZSqfj111/ZuHEjqampjz03ODhYU90KIUSFcnZ25siRI0RGRmpkl4WyqONmTa/Zvty/kc6F7VFEHL6JSqmiIFfJpcBYLu++jltHO7wGuWDdQOYaC1EdaCxx++677/j999+pWbMm/fr1o1atWujry2RaIUTVZ2xsTLNmzYocKygoYOTIkbzwwgsMHTq0Qvuv2cCcLq950nJEI0J3RHN1XxwFeUpUShXhB28QfugGDVvVxWuwC7VdrSs0FiGEdmkscQsMDMTBwYH//e9/mJrKNi5CCN32wQcf8Pfff/P333/z3//+l/nz51d4n+a2JrR7sSnew1y5vCuWS7tiyc3MBxXEnLpNzKnb2DWrhddgF+ya15JacELoII0lbllZWfTq1UuSNiGEzlMqlURFRQGgr6+v8T1Pn8TEsgYtRzamxUAXru69TujOGLKSCzevv3npLjcv3cXW2RKvIa40bFUXhdSCE0JnaCxxc3Nz4+7du5q6nRBCVFp6enr89ttvtG/fnoKCAjp16qSVOIxMDPAc6EKzPk6EHyqsBZd2OxOApOhU9n5xDqv6ZngNcsG1ox36BnpaiVMIoTkae4pfeOEFDh8+TFhYmKZuKYQQlZZCoWDGjBnMmjWrWNv+/ftRKpXPLBZ9Q308ujswcllnus3wxsbx4ab1KbcyOPi/UDbMCuZiQAx52SWv9hdCVA0aLcAbHBzMihUr6NChA66urpiZmZV4Xt++fTXVpfgHKcArhPZt2bKFYcOGMWjQINavX0/Nms9+43iVSkX8hSRCtkaScPV+kbYa5oY06+tE095OGJtLLTghqhqNvSrNzc3l8OHDpKSksGPHDoBiE2NVKhUKhUISNyGETkpJSWHy5MkAbN++nT///JOXX375mcehUChw8KqNg1dtbl+7T8i2SK6fvQNATnoeZzdHcGF7NE16OtK8f0PMaho/8xiFEOWjscTtq6++Ys+ePbi6utKlSxcpByKEqHasrKz47bffmDBhAj169OCll17SdkjUbVyT3m+24t71NEK2RxF17CYqJeTnFBC6I5pLu2Jo1KkBngNdsKpf8lsSIUTlobFXpYMHD6ZevXqsXr0aAwPZSUsb5FWpEJXD9evXqVmzJhYWFkWOP3jroE1piZlc2BFN2P54lPn/mIenAOe29fAa7IJtQyvtBSiEeCyNLU7Izc3Fx8dHkjYhRLXn6OhYLGkLCwujY8eOXLt2TUtRFbKoY0qHSc0Ys6orXoNdMDT+/zcjKog+nsCWd48S8N9T3LpyFw1OgRZCaIjGsix3d3fi4+M1dTshhNAZGRkZjBgxgosXL9KqVSt27dpFu3bttBqTqVUNWo9xx2uwC1eCrhO6I4bstFwAboQmcSM0iTpu1ngNccHRp47UghOiktDYiNuUKVM4efIkR48e1dQthRBCJyQlJanLgzg4OODp6anliB4yMjXEa7ArY1Z1pf2kppjbPlyokBiRzJ5lZ/lz3iHCD90o+mpVCKEVGpvjtm7dOi5dusSpU6fw8fHBzc2txHIgCoWCF198URNdin+ROW5CVF7p6enMmjWLN998Ew8PD22H80jKAiVRx25xflsUyfHpRdrMahnjOdAF9272GBjJ4jMhtEFjiVuXLl1K16FCQXBwsCa6FP8iiZsQVU9aWhpnz54t9c/QZ0WlVBF3/g7nt0aSGJ5cpK2GhSEt+jnTpJcjNcwMtROgENWUxua4rVy5UlO3EkKIakGlUvHyyy+zadMmPv74Y9577z309CrHtlQKPQWOvnVw8KnN7bD7nN8aSXxIEgA5aXmc3niN89siadrLkeb9nDG1rqHliIWoHjS6c4LQLhlxE6JqebDLAoClpSUXL17EwcFBy1E92t2YVEK2RxJ1PAH+8ZtDz0BB4y72eA50xrKu1IIToiJVjj/thBCiGho8eDD/+c9/0NPTY/369ZU6aQOo1dCS7jN8GLmsMx7dHdDTL1xpqsxXcXVvHBvnHGTfqvPcvZ6q5UiF0F0aG3ELDQ3lwIEDjB07llq1ahVrv3v3Lr///jvdunWjWbNmmuhS/IuMuAlRNUVERODm5lbk2IMfzdou2Ps4mfezCQ2I4cqe6+TnFBRps/eyxXuIK/U8bLQUnRC6SWMjbhs2bODIkSMlJm0AtWrV4ujRo2zcuFFTXQohhE74d9IGsGLFCiZMmEB6enoJV1QOpjWNaTvOg7GrutFyVCNqmD9cqBAfkoT/whNs+/AY188lSjFfITREY4sTrl69SsuWLR97jpeXF6dPn9ZUl0IIoZMOHz7M22+/TUFBASEhIZw6dQoTExNth/VINcwN8RnqRot+zoQFx3NhexQZ97IBSAxPZveSM9S0N8driCsufvXQ05dZOkKUl8aenuTkZGxtbR97jo2NDffv39dUl0IIoZPu37+PqakpUDgPrjInbf9kUEOfZn2cGP1FF7pM9cTK7uFChfvx6QR/HcLG2Qe4vCeW/NyCx9xJCPEoGhtxMzc3JzEx8bHn3L59u8r8ABJCCG0ZNGgQp0+f5osvvmDhwoXaDqfM9Az0aNSpAW4d7Lh+NpFzWyJJikoBID0pm6NrL3N2cwQtBjSkSU9HjEylFpwQpaWxEbdmzZpx8OBBbt++XWL77du3OXToEM2bN9dUl0IIobMaN27M6tWrMTAo+vf18ePHiY2N1VJUZaPQU+DUqi5D/tOO/gvaYNf84Rzo7LRcTv1xjd+n7+fUH2FkpeRoMVIhqg6NJW6jRo0iJyeHadOmERgYSFJSYaHGpKQkAgICeP3118nNzWX06NGa6lIIIaqVmzdvMmTIEHx9fQkMDNR2OKWmUCiwa1qL/u+2Yein7WnYph78/2LZvOwCQrZF8fuMYI6svUTanUztBitEJafRArx//fUXq1atKrKM/Z//f8aMGTz33HOa6k78i5QDEUK3Pf/88/zyyy8A9O3bl507d1bqciGPk3Irg5DtUYQfuoGq4OGvIYUeuLSzw2uwCzYOFlqMUIjKSeM7J0RFRbFlyxauXr1Keno65ubmNGnShCFDhuDi4qLJrsS/SOImhG67f/8+EydO5OzZs5w9e5batWtrO6SnlnEvm9Cd0VwJuk5BrrJIm4N3bbyHulK3cU0tRSdE5SNbXukQSdyE0H1KpZIbN24U22VBqVRWmn1OyyM7LZfLe2K5GBBDbkZ+kba67jXxHuqKvadtlR1hFEJTqu5TruOSk5N5++236d27N+PGjePUqVPaDkkIUQno6ekVS9pyc3Pp1q0bX3zxRZUtdGtsYYTvc40Yu6obfs83KbJp/e2w++z6/DR/v3OEqOO3UCqr5mcUQhM0Vg5EaNaKFSuwsbFh27ZtnD59mg8//JDff/8dKysrbYcmhKhk3nrrLQ4ePMjBgweJjY1lxYoV2g6p3AyNDWjeryFNejkSefgm57dGknq7cMHCvetp7PvyPOa1TfAe4kqjTnboG+prOWIhni0ZcauEMjMzOXToEJMmTcLY2JiOHTvi5ubG4cOHtR2aEKKSUalUGBsbA2BkZMT48eO1HJFm6Bvo0birPSOWdabHLB9qNbRUt6XfyeLw9xf5fUYwF/yjyM3Kf8ydhNAtOjPiFh4ezpo1a4iKiiI5OZkaNWrg6OjIsGHD6N27d4X2nZmZyfr16wkPDyc8PJyUlBQmTpzI5MmTSzz3+++/Z//+/aSlpeHo6Mj48ePp0aOH+pz4+HhMTEyoW7eu+piLiwvR0dEV+jmEEFWPQqHg888/p3379ty7d49WrVppOySN0tNT4NymHg1b1+Xmpbuc/zuSW1fuAZCdmsvJ38I493ckzfo40ayvEyaWNZ5wRyGqNp1J3NLT06lTpw49e/bE1taW7Oxs9uzZwyeffMKtW7d48cUXK6zvlJQUtm/fjqurK506dcLf3/+R5y5YsICrV6/y6quv4uDgQFBQEB9//DFKpZJevXoBkJWVhZmZWZHrzMzMSE5OrrDPIISo2oYMGVLi8T/++IOhQ4eqR+WqKoVCQYPmtjRobsudyGTOb40k9nThbj15Wfmc3xJJ6I5o3LvZ4znQBXNb2aVH6KanStzy8/OLVfXWFh8fH3x8fIoca9++Pbdu3WL79u2PTNwyMjIIDQ3Fz8+vxPajR4/i4+Pz2K266tWrx44dO1AoFCQnJz8ycTt27BinT5/mgw8+oGfPngD4+vqSkJDAN998Q/fu3dHX18fExISMjIxiccp2YUKIsvj111+ZMGECvr6+bN68GWdnZ22HpBG1Xa3pNaclyTfSCdkeRcThm6iUKgrylFzefZ0rQXG4tq+P12AXatpLLTihW55qjttzzz3H119/TUxMjIbC0TwrKyv09R89edXf35/58+cTEBBQrG3r1q2888477Nq167F9KBSKUi1RP3ToECYmJnTt2rXI8f79+5OUlMTly5cBsLe3Jysrq8jer9HR0Y/8oRsUFMT8+fNZtWrVE2MQQlQPGRkZzJo1C4CzZ89y4MAB7QZUAawbmNPlNU9Gr+xCsz5O6BsW/kpTKVVEHL7Jn28fZvfSMyRGJGs3UCE06KkSt4yMDDZu3MjEiROZOnUq/v7+ZGZqd7sSpVJJfn4+ycnJ/P3335w8eZJx48Y98vzRo0czYsQIFi1axNatW9XHN23axLJly5gwYQJDhw7VSGzR0dE4OTkVG6V0dXVVtwOYmprSsWNH1q5dS05ODkePHiU8PJwOHTqUeN+ePXuyaNEiZsyYoZE4hRBVn5mZGUFBQbi5uTF58mQmTpyo7ZAqjHktE9q92JSxq7rhM8wVQ5OHP2Ovn01k2wfH8F94nPjQpCpbLkWIB57qPefff//Nrl27CAgI4PLly1y5coVVq1bRrVs3+vfvj6enp6biLLXly5ezbds2AAwNDXnjjTceOffjgenTp1OjRg2WLVtGbm4uubm5fPfdd7z00ksanRuXkpKCnZ1dseMWFoVD+ampqepjc+bM4dNPP2XgwIHY2try0UcfYW1trbFYhBC6z8vLi9OnT2NkZFSsrTJNddEUY0sjWo5sTIuBLoTti+OCfxRZKbkAJFy9T+B/T2HjaIHPMFecWtdDT0+K+Yqq56meWktLS0aOHMnIkSMJCwtj586d7N27l4CAAAIDA7G3t2fAgAH06dMHGxsbTcX8WM8//zwDBw7k/v37HD16lC+++IKsrCzGjh372OumTJmCkZGR+nXj1KlTn3hNeZS26re1tTVLlizReP9CiOqlpNqPISEhPPfcc6xbt45OnTppIaqKZWRiQIsBzjTt7Uj44ZuEbIkk7U4WUFgLbu/K81jUMcF7qCtuHRugbyCVsUTVobE/t9zd3XF3d2f69OkcPHiQHTt2cO7cOb777jvWrFlDu3btGDBgAH5+fhW6LUvdunXVZTTatWsHwP/+9z/69ev3xBGr9PR0FAoFKpWK9PR0jcdmZWVFSkpKseNpaWlAYSIshBAVKSUlhREjRhAVFUW3bt0ICAhQr2jXNfqG+nh0c6BxF3tiTiZw7u8I7scV/mxPS8zi0P8ucnrDNTwHueDR3QFDY90agRS6SePfpYaGhvTo0YMePXqQmJhIQEAAAQEBHD58mCNHjmBjY8Nff/2l6W4fqUmTJmzdupWbN28+MnFTqVR88cUXbN26lXnz5pGXl8fy5cvJzc1l2rRpGovFxcWFoKCgYq8ooqKiAHRmxZcQovLKy8vD0dGRiIgIvL29dXLE7d/09BS4+NXHuW09boQmce6vCG5fSwYgKyWXE79c5exfETTv40Szvg0xtij+almIyqJC/7yoU6cOL774It26dWPx4sWEhoZy7969iuyymHPnzqGnp1fi3DIoXMywZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bIxsbd+rUie3bt3PgwIEiBXcDAwOxtbWladOmT92HEEI8jq2tLbt37+azzz7j+eefr/L13cpCoVBg71kbe8/aJIbf59zfkcSdvwNAXmY+5/6O5IJ/NB7dHfAc6IxZLSnBJCqfCkvcsrKy2L9/Pzt37uTixYvqbVm6dOlSIf0tWbIEU1NTmjRpgo2NDcnJyQQHB7Nv3z7Gjh37yNG2DRs2sHv3bhYuXFjkL89+/fphZGTEJ598gpOTE8OHD39s/8ePHyc7O1u9qjY2Npbg4GAA/Pz8MDY2xs/Pj1atWrF8+XIyMzNp0KABe/fu5cSJEyxYsOCxZUuEEEJT9PX1ef/994sdv3//PgEBAY9dia8r6jSqSZ+3W3E/Po3zWyKJOnYLlQoK8pRc2hXL5T3Xcetgh9cQF6ztzLUdrhBqCpWG10aHhISwc+dOgoODycnJQaVS4eHhwYABA+jZsyempqaa7E5t586d7Ny5k9jYWNLT0zExMcHNzY2BAwc+dsurnJwcwsPDad68eYntoaGheHh4YGho+Nj+R40aRUJCQoltGzZsoH79+kDhlldr1qwpsuXVhAkTiozAlVdYWBhTpkxhzZo1uLu7P/X9hBDVh1KpZMiQIfj7+zNp0iS+/vrralX0O+1OFhf8owjbH48yX1mkzbFlHXyGuVHbpfhCDyGeNY0kbnfu3CEwMJCAgABu3ryJSqXC0tKS3r17M2DAAFxcXDQRq3gCSdyEEOW1a9cu+vbtC0CtWrU4d+4cDg4OWo7q2ctKyeFiQAyXd8eSl11QpK2ehw0+z7li16yWRqbPCFEeT/WqdN++fQQEBHD69GmUSiV6enq0bt2a/v3706lTJ52rESSEELqqT58+/PLLL7z22mv8+uuv1TJpAzCxqkHrMe54DXbhSlAcF3ZEkZOWB0DC1XsEfHaPWk4W+DznhlPLuiikFpx4xp5qxO3BfLV69erRv39/+vXrR506dTQWnCgbGXETQjytu3fvUqtWrSLHCgoKUCqVT5wyoovycwsIP3SD81siybibXaTNoo4JPsPccO1gJ7XgxDPzVENiPXr0YMCAAbRs2VJT8QghhNCifydtAJ988gl79+7ljz/+eOQKfV1lYKRPkx6OuHe1J/pEYS245BsZQGEtuIPfhXLqj2t4DnKWWnDimdD44gShPTLiJoTQtN27d9O3b19UKhV2dnaEhYVhbl59V1mqVCriQ5I4+2c4dyKLFlQ3MjWgeb+GNO3jhLG51IITFUOjfxrk5+fz119/ERQUxPXr18nJyWH//v0AhIeHs337dkaOHFlt504IIURVY2lpSYMGDYiPj2fatGnVOmmDwlpwDt61cfCuTULYfc79FcGN0CQAcjPzOftnBCHbovDo4YDnQBfMbKpPnTzxbGgsccvJyWHu3LlcvHgRKysrzMzMyM5+OB+gfv367Ny5EwsLC6ZMmaKpboUQQlQgPz8/zp07x+rVq5k/f762w6lU6rnXpN87rbl3PY1zf0cQczLhYS24wMJacK7t7fAZ6opVfTNthyt0hMZmU/7888+EhobyyiuvsGXLFgYMGFCk3dzcHG9vb06dOqWpLoUQQjwDtra2fPDBB8X2mQ4KCuLMmTNaiqrysHG0oMcbPoxc3gX3bvbo6ReuNFUVqIg4dINNcw+ye9kZkmKK71UtRFlpLHHbt28f3t7ejBs3DoVCUWKNGzs7O27fvq2pLoUQQmhJTEwMo0aNon379nz33XfIdGmwrGtKpyktGPNVN1oMcMagxsPdcK6fSWTLu0fx/88Jbl6+K18vUW4aS9wSExPx8PB47DmmpqZkZGRoqkshhBBasmjRIu7fv09ubi6BgYHaDqdSMbWqQdvxHoz7uhstRzbCyOxhGZWEK/fY+clJtrx7hNjTt1EpJYETZaOxOW4mJiakpDx+GPjmzZtYWcmWIUIIUdV9+eWX1KhRgx07drB27VrZSaAERqaG+Axzo8UAZ8L2xxOyLZLM+zkA3I1NY8/ys1jWNcV7mCtu7e3Qk1pwohQ09l3SrFkzjhw5Qnp6eontiYmJHD9+HC8vL011KYQQQkuMjIxYuXIlZ8+exdraukhbVlaWdoKqpAyM9GnWx4kxX3aly+ueWNZ7uGd36u1MDn4byu8zg7kYGE1+TsFj7iSEBhO3MWPGkJaWxpw5cwgNDaWgoPCbLzs7mzNnzjB37lzy8/MZPXq0proUQgihZZaWlkX+nZWVRfv27Zk1axa5ublaiqpy0tPXo1HHBoxc2pneb7akVsOHX7us5ByO/3SV36bt4+yf4eRk5GkxUlGZabQA79atW1m5ciVKpbJYm56eHnPmzGHgwIGa6k78ixTgFUJo28svv8wPP/wAwAsvvMD69eu1HFHlpVKpuB12nzObw7l1+V6RNn0jPTy6O+A1yAXTmlILTjyk0QK8Q4YMwcvLi61bt3LlyhVSU1MxMzOjSZMmDBs2DGdnZ012J4QQohJRqVS0atWKn3/+GQMDA9566y1th1SpKRQK6nnYMGBBW+7GpnL2z3BizySCCgpyC2vBXdlzHdcOdvgMc8WyrtSCE7LllU6RETchRGVw6tQp4uLieO6557QdSpWTejuDc39HEnHkJqqCf/x6VoBTyzr4Dm9ELSfLR99A6LxnvoSlpNeoQgghdEfr1q2LJW0qlYoVK1aQlJSkpaiqBsu6ZnR5zZOxX3alWd+G6Bv9/69pFcSeTuTvd46w45MTJFy99/gbCZ2lscTN39//iecUFBSwcOFCTXUphBCiivjf//7HnDlz8PX15cSJE9oOp9IzrWlMuxeaMO7r7vgOd8PI9OHMpluX7+G/8AR/v3uE2LO3pZhvNaOxxG3ZsmUcOnToke0qlYr//Oc/BAcHa6pLIYQQVUB2djaffvopAHFxccTGxmo5oqqjhpkhvsMbMe7r7rR93gMTKyN1292YVPYsPcumuQcJP3wDZYG80aoONFrHbeHChYSEhBRre5C07d+/n8GDB2uqSyGEEFWAsbExx44do0OHDsycOZNRo0ZpO6Qqx6CGPi36OTN2VTc6v9oCizom6rbUhEwOrL7AHzOCubQrhvxcqQWnyzS2OCE9PZ1p06Zx584dVq1ahaurK1CYtH3yyScEBQUxePBg5s6dq4nuRAlkcYIQojLLy8tDpVJhZGRU5HhaWhoWFhZaiqpqUilVxJ65zZnNEdyPSyvSZmRmSPN+TjTv2xAjU8NH3EFUVRobcTM3N2fZsmWYm5vz1ltvcevWLfVIW1BQEIMGDZKkTQghqjFDQ8NiSdvx48dxcnLi999/11JUVZNCT0HD1vV4blEH+r/XmrqNrdVtuRl5nN0cwW/T9nP85ytkpuRoL1ChcRovBxIXF8frr7+OhYUFjRs3Zv/+/QwcOFDq+TwDMuImhKhKkpKS8PX1JS4uDoC//vqLYcOGaTmqqispOoUzm8KJO3+nyHE9fQWuHezwHe6GRW3TR1wtqgqNlwNxcHBgyZIl3Lt3j+DgYAYMGCBJmxBCiGJMTU3p0aMHAB07dpSddZ6SrbMVfd5uxchlnXFtXx+FngIAZYGK8IM32DDrAHuWneHev16tiqql3DsnrFu37rHtTZo0ISIiAltb2yLnKhQKXnzxxfJ2K4QQQkeYmpry448/0qVLF3r37o2hoczH0gSr+mZ0m+5Nm3HZnN8SybUD8RTkKQtrwZ1JJPZMIvWb2NByVCPqudtoO1xRRuV+VdqlS5fydahQSEmQCiKvSoUQuiIxMZEff/yRt956C319fW2HU6Vlp+cSuiOay7tjycsquuK0VkNLfEc2wtG7NgqFQksRirIo94jbypUrNRmHEEIIARQWax87diz79u1j7969/Pbbb9SuXVvbYVVZxuZGtB7tjvcQVy7vuU6ofxTZaXnA/9eCW3IGy3qm+Dznhmt7O/T0JIGrzMqduHl7e2swDCGEEKLQ0aNHOXDgAACXLl2ioEDqkmmCobEBXoNcaN6vIdcOxBOyNZL0pGzgYS24U7+H4TXYFfdu9hgYyUhnZfTM9yoVQgghHqdTp07s3bsXe3t7NmzYQL169bQdkk7RN9CjSQ9HRn/Rle4zvbFuYKZuy7yfw7H1l/l92n7O/hVObla+FiMVJSl34jZv3jzCwsLKdW1OTg6///47W7ZsKW/3QgghdFiXLl2IiIigU6dORY7n5eWRliarIjVBoafAxa8+wxd3ou/81tR2s1K35TyoBff6Po7/fIWsVKkFV1mU+1VpYmIir776Kt7e3vTp04fOnTtjZmb22GuuXr3K7t27CQoKIisri3fffbe83QshhNBxNWrUKHbs3XffZdu2bWzevJkWLVpoISrdo1AosPe0xd7TlsSIZE5vvMbNi3cByM8p4GJADJf3xOLa3o6WIxphbmvyhDuKilTuVaUqlYqdO3eyfv16bt++jZ6eHo6OjjRu3JiaNWtiYWFBTk4OqampxMfHExYWRkZGBgqFgm7dujFlyhTq16+v6c9TrcmqUiGELtuyZYu6QK+VlRUxMTFYW1trNygdlXwjndObrhF7+jaqf+xdr1CAo28dWo5qjI2DbFOmDeUecVMoFAwYMIB+/fpx7NgxAgICCAkJYffu3cXO1dPTw8XFhU6dOjFw4EBsbW2fKmghhBDVj6enJz4+Ppw7d46FCxdK0laBrBuY03OWL+l3szj7ZwQRh2+izFei+mctuKY2tBrVmLqNa2o73GpF41texcTEcOfOHVJTUzEyMsLa2hpnZ2fMzc012Y0ogYy4CSF0XXZ2Nj///DMvv/yy1B17hrJTczm/LZKre+PIzym6ytfW2ZKWIxth7yW14J4FjSduQnskcRNCVFd///03BgYGDBo0SNuh6LS87HxCA2K4FBBDTnpekTar+oW14FzaSS24iiTlQIQQQlRpYWFhvPDCCwwePJh33nkHpVL55ItEuRgaG+A7zI1xX3ej3cSmmNZ8uIAk5VYmwV9f4I+Z+7m0O4aCfPnvUBHKPcdNCCGEqAx+/PFH0tPTAYiPj5fXdc+AvqE+zXo70aSnI1FHb3L2rwhSEzIByLyXw7F1Vzi7OYJmfZ1o0d8ZQ2NJNzRFvpJCCCGqtEWLFlGvXj1++uknvv32W0ncniE9PQVuHRvg2sGOuPN3OLMpnLsxqQDkpBfWgruwPRqP7vZ4D3XD2MJIyxFXfTLHTYfIHDchRHWWl5eHoaFhkWOJiYnUri2T5p+lhLB7nN4YTsKVe0WO6xkocG1vR6uRjTCrJbXgykvmuAkhhNAJ/07a0tLS6Ny5M8OGDSM5OVk7QVVD9dxtGPh+W55b1AFH3zrw/zmzMl9F+MEb/PFGMHuWn+V+vOyAUR7yqlQIIYROevXVVwkLCyMsLIzJkyfz119/aTukasXG0ZLeb7YkNTGTs5vDiTp2C2WBCpUSYk/fJvb0beo3taH1qMbUkVpwpSYjbkIIIXTS888/j42NDZaWlixevFjb4VRblnVM6fq6F2O/6kbT3o7oGz1MPW5dvse2j46z5b0jxJ1PRGZvPVmFJ25du3at6C6EEEKIYvr168fZs2f566+/cHNz03Y41Z6JVQ3aT2zG+NXd8R7qipHpw5d+SdGp7Fp8hs1vHiLi8A1USkngHqXCEzfJnoUQQmiLk5MTPXr0KHJMpVIxf/58wsPDtRRV9WZkakirUY0Zt7o7bca5Y2L1cKVpyq0Mglf/fy24QKkFV5IyJW7z5s3j+++/5+DBg9y6datU1/xzJc+vv/5KXl7eY84WQgghKtaKFSv4/PPPadWqFdu2bdN2ONWWgZE+ngNdGPtVNzpOaY5F7YcrTTPu5XDspyv89vo+zv4ZTl52vhYjrVzKtDjB1taWU6dOsWHDBvLy8jA3N6dRo0Y0atSIxo0b06hRIxwdHYska/8ccVuzZg39+/enZs3CSYh//PEHQ4YMwcRElgULIYSoeHl5eaxbtw6A1NRU9PRkqre26enr4dHNAfeu9sScus3ZP8O5H1dYUDknPY+zf0ZwYUc07t3s8RnmhrF59a4FV6bE7a233gKgoKCA2NhYwsLCiIiI4OrVq/j7+5OZmYmxsTGBgYElXv/v16br1q2jc+fO6sTt/v37vP766/z+++/l+SxCCCHEYxkaGnL06FGmTJmCs7MzAwcO1HZI4v8pFAqc29TDuU09blxK4szGcBLDkwHIzy7gUkAsV4LicPWrT8vRjTC3qZ6DPuUqB6Kvr4+LiwsuLi4AREZGcvDgQbZs2UJKSkqp7/PvRE6lUpX6FawQQghRHubm5vz2228lzsGOj4/H3t5eC1GJf2rQzJYGH9uSFJXCqY3XuBGaBCpQ5ikJP3SDiCM3cfSpTasxjanZwELb4T5T5a7jdvnyZQ4cOMChQ4dITEzE29ubyZMn06FDB03GJ4QQQmicQqEotpvC/v376du3Lx999BHz5s2T16iVgK2LFf3mtyY5IYMzG64Rc+o2KqUKlVJF7JlEYs8mFtaCG92YOm7VoxZcmRK3M2fOcPDgQQ4dOkRGRgZt27Zl0qRJtGvXDnNz81Ld4+jRo/j4+GBnZ1eugIUQQghNS0xMZMyYMeTm5vLuu+/i6OjI+PHjtR2W+H/W9czo8YYPmcnZnNkUTsThmxTkKUEFty7dY9sHx7F1tqTlqEbYe+r2FmdlStzmzJmDra0tEyZMYNCgQcW2FynJP794jRo1YsWKFeTn52Nqakpubi6//vorLVq0oFGjRqVO/oQQQghNqlWrFq+//joff/wxvXr1YsyYMdoOSZTA1NqYTlNa0Ha8B+f+juDqvnjysgpXnCZFp7Lr8zNY1TfDe5grbu3tUOjpXgJXpk3mX375ZWJiYsjPz8fCwqLIitLGjRvj4OBQ7JquXbsSHBys/nd+fj4xMTFcu3aNa9euER4eTkREBDk5OSgUClQqVZHzRenJJvNCCPF0goKC8Pb2xtbWVtuhiFLIzy0gdGc0lwJiyU7LLdJmZmOM5yBnmvRwRM9Ad157lylxg8cnXiYmJri5ubFq1Sr1+f9O3EqiUqmIi4tTr1KdOnVquT5MdSeJmxBCaF5cXByLFi1i8eLFmJmZaTscUQJlgZIr++K4sC2KjLvZRdqMLQxp2tsJz0EuGBjpaylCzSlz4laSxyVeDxK3JUuW4OrqipubG66urvLNXwEkcRNCCM3Kzc2lS5cuHD9+nGbNmrFt2zZ1RQVR+aiUKiKP3+LcXxGk3Mwo0mZorE/jrvb4PFe1a8GVeo7b4xIvhUKBo6Mjjo6O9OrVq8Tr8/Ly2LlzJ7GxseTl5VG3bl31vdzc3HBzc5MFC0IIISqVixcvcvHiRQAyMjKwtrbWbkDisRR6Ctza2+Harj7xIXc4szmcpKhUAPKyC7gUGMvVvXG4tKtPy1GNMbcx1nLEZVfqxC0/P/+pEq93330XAKVSydmzZ/n4449JSkri/v37bN68WV2818XFhdWrVz/9JxNCCCGekq+vL6dPn2b8+PF8++232NjYaDskUQoKhQIH7zo4eNfhdvh9Tm+4xq0r90AFBXlKwg/eIOLwTRx9a9N6dGOsq1AtuFInbu+88w7w9ImXnp4e69ev57XXXmPAgAHAw9G47777jkaNGj3lRxJCCCE0x93dnVOnThUrMZGTk0NSUhINGjTQUmSiNOo2qsmABW25fyONU39cI+7cnYe14E4nEnsmkfpNbGg1ujF1G1X+WnBlLsCricTrypUr6hE4KNyCZMiQIZiamhIUFFTWkIQQQogKVVJdsNmzZ7Np0yZ+++23R04TEpVHzQYW9J7bkvS7WZzecI2o4wko8/+/Ftzle2z/8Di2Lpa0HN4YB5/a2g73kcq1PvbKlSv4+vqq//0g8Zo9ezYJCQlPvN7NzY3du3cXO96sWTOuXLlSnpCEEEKIZ2bTpk188803JCUlMXToUO7cuaPtkEQpmdcyoevrXoz7uhtNezthUOPhStOkqFR2LTnNpjcPEn7oRonbomlbuRK3p0285s6dy2+//cbKlSu5efMmUPgKduvWraUq6iuEEEJoU48ePdRvnVatWkXt2pV3hEaUzNjCiPYTmzL+m+54D3WhhvnD/CPlZgYHvrnAHzODuRgYg7JAqcVIiyrXXqVz585l+vTpJCcnM3LkSOzs7MqUeDVq1IjVq1ezYsUKxo4di6mpKQUFBeTn5/Pmm2+WJyQhhBDimbGxsWHbtm3s3LmTgQMHajsc8RQMjQ1oNcod3+cacTEwhosBMWTezwEg4242x3+6wvm/I2jSywnPQc4Y1ij3Nu8aUe46bpGRkaxYsYLQ0NBiiVf//v3V5z2pAO/NmzcJDw9HoVDg7u5O3bp1yxOOQOq4CSFEZbB+/XpSU1OZPn26Tu+ZqatUShXXDsYTsjWK1NuZRdqMzAzwGuRCk56OGJlq5w1hudNGV1dXvvrqqycmXk/KC+3s7KR+mxBCCJ1w/vx5XnvtNbKzszl69Cg///wzBgbaHaERZaPQU+De1YHGXeyJPX2bs39FcC82DYDcjHxO/XGNuu421HPXzgrUp/5uelLideDAgaftQgghhKgSgoKCyM4u3HLJ2tpakrYqTKFQ0LB1PRq2rsfNy3c5s/Eat68lU8+jptaSNihH4qZUKomJicHS0rLYJrz5+flcvHgRb29vTcUnhBBCVBlvvvkmLi4ufP3116xYsULb4QgNsWtaC7uP2pF8I52CPO0uVCjTqtKEhAQmTpzIpEmTGDFiBPPnzyclJUXdnpqayqxZszQdoxBCCFFlPPfccwQFBWFsXHQ7paioKHJycrQUldAE6wbm1GpoqdUYypS4ffPNN9SuXZtNmzbx448/kpeXx7Rp00hKSlKfUxlrngghhBDP0r8XJdy7d48ePXrQqVMnYmNjtRSV0AVlStxCQkKYOnUqderUwcXFhaVLl+Lp6cn06dO5ffs2UHJ1aSGEEKI6e/XVV4mJieHUqVO8/vrr2g5HVGFlStyys7OL1GlTKBS8/fbbtG7dmhkzZnDjxg2NByiEEEJUde+99x4uLi7UqlWLb7/9VtvhiCqsTImbo6MjYWFhxY7PnTsXPz8/5s+fr7HAhBBCCF3h7e3NmTNnCAwMxMHBQdvhiCqsTIlb586d2bNnT4ltc+bMoXv37jLHTQghhCiBtbU1rVq1KnKsoKCASZMmceTIES1FJaqacu+cICof2TlBCCGqloULF/Lhhx9iYGDA6tWrmTJlirZDEpVcuTaZf+DBBvFCCCGEKJuCggJ1kXqlUombm5uWIxJVwVOVdB43bhwvvfQSzz//vKbiEUIIIaoFfX19du3axfvvv4+lpSXdunXTdkiiCniqxE2lUlFQUFDk2I4dO7h48SLz5s17qsCEEEIIXWdgYMB///vfEtvOnz8vOxGJYp7qVWlJEhMTCQgIKLHtt99+Y9q0aZruUgghhNAp/v7++Pj48Morr6j3PhUCKiBxe5ycnBwuXbr0LLsUQgghqpS7d++qpyCtWbOGP/74Q8sRicrkmSZuQgghhHi8WrVqsXLlSkxMTBg2bBgvvviitkMSlchTzXETQgghhOa98MIL+Pr64uDgIFtJiiJkxE0IIYSohJo3b46VlVWRYxEREQwZMoSEhAQtRSW07alH3LZs2UJ0dDQeHh64u7uTkZGhibiqveTkZD777DPOnz+Pra0ts2fPpnXr1toOSwghhJZkZWUxYsQIQkJCOHnyJLt27cLT01PbYYln7KkSN2dnZ65fv05wcDDBwcFFhnMXLlyIi4sLrq6uuLi4ULdu3acOtjpZsWIFNjY2bNu2jdOnT/Phhx/y+++/F/vrSwghRPUQGxtLUlISAFZWVjg7O2s5IqENT5W4rVu3jtzcXCIiIggPDycsLIxr164RHR3N3r172bt3rzqZMzMzo0aNGhoJWtdlZmZy6NAhfv/9d4yNjenYsSNubm4cPnyYAQMGaDs8IYQQWuDh4cHZs2eZMmUKn332GRYWFtoOSWjBU78qNTIyomnTpjRt2lR9LD8/n8jISK5du6ZO5qKiokhPT6+wSZZnzpxhz549XLx4kcTERMzNzXF3d2fixIkVvm9nZmYm69evJzw8nPDwcFJSUpg4cSKTJ08u8dzvv/+e/fv3k5aWhqOjI+PHj6dHjx7qc+Lj4zExMSkySuni4kJ0dHSFfg4hhBCVW506ddi6dWux4xkZGURGRsqr02qgQlaVGhgY4O7ujru7O4MGDQIKk7mYmBjCwsIqoku2bt1KSkoKI0aMoGHDhiQnJ7NhwwZee+01li5dSsuWLSukX4CUlBS2b9+Oq6srnTp1wt/f/5HnLliwgKtXr/Lqq6/i4OBAUFAQH3/8MUqlkl69egGF8xjMzMyKXGdmZkZycnKFfQYhhBBVk0qlYurUqWzcuJGvv/6al156SdshiQr0zMqBGBgY4ObmVmGb6M6ePZuaNWsWOdamTRvGjRvHL7/88sjELSMjg9DQUPz8/EpsP3r0KD4+PpiYmDyy73r16rFjxw4UCgXJycmPTNyOHTvG6dOn+eCDD+jZsycAvr6+JCQk8M0339C9e3f09fUxMTEptsgjIyPjsTEIIYSonjZv3szPP/8MwKxZs+jfvz/169fXclSiouhMOZB/J20ApqamODk5kZiY+Mjr/P39mT9/fonbdG3dupV33nmHXbt2PbZvhUJRqlfAhw4dwsTEhK5duxY53r9/f5KSkrh8+TIA9vb2ZGVlFYk7Ojr6kRNRg4KCmD9/PqtWrXpiDEIIIXTL4MGD1dtJ/vDDD5K06TidSdxKkp6eTnh4OA0bNnzkOaNHj2bEiBEsWrSoyLyBTZs2sWzZMiZMmMDQoUM1Ek90dDROTk4YGBQd6HR1dVW3Q2HC2bFjR9auXUtOTg5Hjx4lPDycDh06lHjfnj17smjRImbMmKGROIUQQlQdNWrU4KuvvuL06dOMGjVK2+GICqbTOyesWLGCrKwsXnjhhceeN336dGrUqMGyZcvIzc0lNzeX7777jpdeekmjW42kpKRgZ2dX7PiDlUGpqanqY3PmzOHTTz9l4MCB2Nra8tFHH2Ftba2xWIQQQuiWkqYEffXVV0RHR7No0SIMDQ21EJXQNJ1N3L7//nv27NnDG2+8UapVpVOmTMHIyEj9unHq1KmMHTtW43GVdlWttbU1S5Ys0Xj/Qgghqofjx48zZ84c8vLyOHnyJHv37sXIyEjbYYmnpJOvSteuXctPP/3ElClTGD58eKmv+2e5kvT0dI3HZWVlRUpKSrHjaWlpAFhaWmq8TyGEENXTtWvX1P/fz89PkjYdoXMjbmvXrmXt2rVMmjSJ559/vlTXqFQqvvjiC7Zu3cq8efPIy8tj+fLl5Obmqid8aoKLiwtBQUHk5+cXmecWFRUFIFWwhRBCaMwLL7yAu7s7K1eu5LPPPtN2OEJDdCpxW79+PWvXruWFF15g0qRJpbpGqVSyZMkSAgMDef/999WFcI2MjFi8eDE5OTnMnj1bI4WDO3XqxPbt2zlw4ECRgruBgYHY2toWKWIshBBCPK22bdvy22+/FTseEhKCg4MDNjY2WohKPA2dSdz++OMPfvjhB9q2bUu7du24dOlSkfZmzZqVeN2GDRvYvXs3CxcupFOnTurj/fr1w8jIiE8++QQnJ6cnvnI9fvw42dnZZGZmAoV7ygUHBwOFQ9TGxsb4+fnRqlUrli9fTmZmJg0aNGDv3r2cOHGCBQsWoK+v/xRfASGEEOLJbt++rf4dt3nzZlq1aqXtkEQZKFQqlUrbQWjCzJkzOX/+/CPbDx48WOLxnJwcwsPDad68eYntoaGheHh4PHE1zqhRo0hISCixbcOGDeq6OpmZmaxZs6bIllcTJkwoMgJXXmFhYUyZMoU1a9ZU+DZfQgghqqZRo0axadMmAPr27VtiHVNReelM4iYkcRNCCPFkcXFxjBo1itjYWM6dO1dkX2xR+enMq1IhhBBCPJmDgwMHDhwgJiamWNKmUqk0MqdbVBydLAcihBBCiEczMjKicePGRY7l5eUxcOBANmzYoKWoRGlI4iaEEEII3n33XXbu3MmYMWP4z3/+o+1wxCNI4iaEEEJUc0qlkjt37gBgaGhIr169tByReBSZ4yaEEEJUc3p6eqxdu5YOHTqQn5+Pn5+ftkMSjyCJmxBCCCFQKBRMmTKlxLbAwEB69eol9UYrAXlVKoQQQohH2rhxI/369aN///4kJSVpO5xqTxI3IYQQQpQoJSWFV199FYDdu3ezfft2LUckJHETQgghRImsrKz466+/qFOnDhMmTGDixInaDqnakzluQgghhHikbt26ce7cOaysrIoV55WCvc+ejLgJIYQQ4rHs7OwwMzMrcuzSpUu0bt2aS5cuaSmq6kkSNyGEEEKUSVpaGsOHD+fMmTO0adOGo0ePajukakMSNyGEEEKUSXJyMsbGxgA0atQIHx8fLUdUfUjiJoQQQogycXBw4NixY0ybNo3NmzdjYmKi7ZCqDUnchBBCCFFmJiYmfPXVV7i5uRU5npKSwu7du7UUle6TxE0IIYQQGqFSqZg4cSJ9+vRhwYIFFBQUaDsknSOJmxBCCCE0YsuWLWzZsgWA1atXc+vWLe0GpIMkcRNCCCGERgwdOpSlS5diaGjIzz//jL29vbZD0jmSuAkhhBBCIxQKBXPnziUiIoIBAwYUaVMqlahUKi1FpjskcRNCCCGERjk6OhY7tnjxYkaMGEFKSooWItIdsuWVEEIIISrU/v37ee+991AqlVy8eJHz589LCZFykhE3IYQQQlSonJwcLC0tARg3bpwkbU9BRtyEEEIIUaH69u3L2bNnWbVqFQsWLNB2OFWajLgJIYQQosI5OzuzfPly9PX1ixw/dOgQkZGRWoqq6pHETQghhBBacf36dYYNG0bLli3ZunWrtsOpEiRxE0IIIYRWvPvuu9y9e5eUlBR++OEHKRdSCjLHTQghhBBasXr1anJzczl16hTr169HoVBoO6RKTxI3IYQQQmiFpaUlGzZsIDExkZo1axZpy8/Px8BA0pR/k1elQgghhNAahUJB3bp1ixzLycmhY8eOfP755yiVSi1FVjlJKiuEEEKISmXWrFmcOHGCEydOcOPGDb788ktth1RpSOImhBBCiEpDpVJRp04dFAoFNWrU4KWXXtJ2SJWKJG5CCCGEqDQUCgUff/wx7dq14969e3h5eWk7pEpFEjchhBBCVDp9+/Yt8fi6desYNWoUpqamzziiykEWJwghhBCiSli7di2TJk3Cz8+Pa9euaTscrZDETQghhBCVXkZGBm+//TYAoaGhnDp1SssRaYckbkIIIYSo9MzMzDhw4ABNmjThtddeY/z48doOSStkjpsQQgghqoSmTZty8uTJEgvz5ubmYmRkpIWoni0ZcRNCCCFElWFubo6xsXGRY6dPn8bV1ZWgoCAtRfXsSOImhBBCiCrr3r17jBgxgvj4eHr37s3u3bu1HVKFksRNCCGEEFVa06ZNAfDz86Nr167aDaaCyRw3IYQQQlRZNjY2+Pv7s3TpUsaOHavz89xkxE0IIYQQVZqenh5vv/02Dg4ORY4nJSXx448/olKptBSZ5kniJoQQQgidU1BQwPjx43nppZeYMGEC6enp2g5JIyRxE0IIIYTOCQoKUi9UCAoKIjU1VcsRaYYkbkIIIYTQOX369GHTpk1YW1vzxx9/YGdnp+2QNEIWJwghhBBCJ40YMYJevXphZWVV5Hh+fj5KpbJKLmSQETchhBBC6Kx/J20AH374IZ06deL69etaiOjpyIibEEIIIaoNf39/PvvsMwDatGlDREQE5ubmWo6q9GTETQghhBDVhp2dHc7OzgC8+eabVSppAxlxE0IIIUQ14uvry5kzZ1izZg1z587VdjhlJiNuQgghhKhWatasydtvv41CoShyfOfOnRw7dkxLUZWOJG5CCCGEqPYiIyMZO3YsnTt3ZuXKlZV2twVJ3IQQQghR7S1dupTU1FTy8/M5evSotsN5JJnjJoQQQohqb9WqVVhYWLB9+3a+//77Yq9RKwsZcRNCCCFEtWdgYMDixYs5ffo0FhYWRdrS0tK0FFVxkrgJIYQQQvw/MzOzIv/OyMigXbt2TJ06lezsbC1F9ZC8KhVCCCGEKIFKpeK1117j0qVLXLp0ifT0dH7++WetxiQjbkIIIYQQJVAoFHTr1g1jY2PMzc1ZsGCBtkOSETchhBBCiEeZPHkyLVu2JC4uDnd3d22HI4mbEEIIIcTjeHl54eXlpe0wAHlVKoQQQghRZUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRUjiJoQQQghRRRhoOwChOTk5OQDExsZqORIhhBBClJWTkxPGxsaPPUcSNx2SkJAAwCeffKLlSIQQQghRVmvWrMHd3f2x5yhUKpXqGcUjKlhycjInT55ky5YtvPHGG6W6ZtWqVcyYMeOJ58XGxvLJJ5+wYMECnJycnjZUnVDar502POvYKqo/Td33ae5TnmvLek1pzpdnsLjK/AyCPIeavE9FP4eV5XehjLhVM9bW1vTu3Zt9+/Y9MWN/wNzcvNTnQuE3VVnO12Vl/do9S886torqT1P3fZr7lOfasl5TlvPlGXyoMj+DIM+hJu9T0c9hVfpdKIsTdFDPnj0r5FxRVGX+2j3r2CqqP03d92nuU55ry3pNZf5eqswq+9dNnkPN3aein8PK/r30T/KqVJRKWFgYU6ZMKdX7dyGE5skzKIT2VYbnUEbcRKnUqlWLiRMnUqtWLW2HIkS1JM+gENpXGZ5DGXETQgghhKgiZMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNCCGEEKKKkMRNaERubi7//e9/GT58OH379uW1114jNDRU22EJUa189NFHDBkyhL59+zJx4kSOHj2q7ZCEqLYuXrxIly5dWL9+vUbvK+VAhEZkZWWxYcMG+vXrR+3atdm1axerV69m06ZNT9x3TQihGdHR0djb22NoaMjly5eZO3cuf/zxB1ZWVtoOTYhqRalUMnXqVBQKBe3atePFF1/U2L1lxE1ohImJCRMnTqRu3bro6enRr18/lEol8fHx2g5NiGrD2dkZQ0NDAPT19cnLyyMpKUnLUQlR/Wzbto0WLVrg6Oio8XvLJvPVVGZmJuvXryc8PJzw8HBSUlKYOHEikydPLvHc77//nv3795OWloajoyPjx4+nR48ej7x/bGwsOTk52NnZVeTHEKLKqqhncOHChRw8eJDc3Fz8/PxwcXF5Fh9HiCqpIp7DlJQUNm/ezLfffsuXX36p8ZglcaumUlJS2L59O66urnTq1Al/f/9HnrtgwQKuXr3Kq6++ioODA0FBQXz88ccolUp69epV7Pzs7Gw+/fRTXnjhBUxNTSvyYwhRZVXUM/jBBx+Qn5/P2bNniY2NRaFQVPRHEaLKqojn8H//+x+jRo3C3Ny8QmKWxK2aqlevHjt27EChUJCcnPzIb9Zjx45x+vRpPvjgA3r27AmAr68vCQkJfPPNN3Tv3h19fX31+fn5+Xz44Yc4OTnx/PPPP5PPIkRVVFHPIICBgQFt2rThzz//xN7ennbt2lX45xGiKtL0cxgWFsa1a9eYO3duhcUsc9yqKYVCUaq/xA8dOoSJiQldu3Ytcrx///4kJSVx+fJl9TGlUsmnn36Knp4e8+bNk7/0hXiMingG/02pVHLjxo2nDVUInaXp5zAkJISYmBiGDBnCoEGD2LdvH7/++iuffvqpxmKWETfxWNHR0Tg5OWFgUPRbxdXVVd3eokULAJYuXcrdu3dZsmRJsfOFEOVT2mfw7t27hIaG0rZtWwwNDTl48CDnzp3j1Vdf1UbYQuiU0j6HAwcOLJLcff3119SrV49x48ZpLBb57SoeKyUlpcQFBhYWFgCkpqYCkJCQgL+/P0ZGRgwePFh93uLFi/Hy8no2wQqhg0r7DAJs3ryZzz//HIVCgb29PR999BFubm7PLFYhdFVpn0NTU9Mic7tr1KiBqampRkvySOImnqg0w8j16tXj4MGDzyAaIaqf0jyDtWrV4quvvnoG0QhRPZVn+s+7776r8Thkjpt4LCsrK1JSUoodT0tLA8DS0vJZhyREtSLPoBDaV5meQ0ncxGO5uLgQGxtLfn5+keNRUVFAYcFPIUTFkWdQCO2rTM+hJG7isTp16kRWVhYHDhwocjwwMBBbW1uaNm2qpciEqB7kGRRC+yrTcyhz3Kqx48ePk52dTWZmJlC420FwcDAAfn5+GBsb4+fnR6tWrVi+fDmZmZk0aNCAvXv3cuLECRYsWFCsfpQQovTkGRRC+6racyibzFdjo0aNIiEhocS2DRs2UL9+faBwm481a9YU2eZjwoQJj93ySgjxZPIMCqF9Ve05lMRNCCGEEKKKkDluQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQgghhBBVhCRuQghRTaxYsYJBgwapt/YB+PHHH+ncuTPnzp3TYmQPffrpp4wcOZKcnBxthyJEpSR7lQohqqRbt24xevTox57j5ubGjz/++Iwiqtzi4uLYtm0br7zyCqamphXa19atW1m2bBmDBw/mzTfffOy5L7/8MteuXWPNmjW4u7vz4osvEhQUxKZNm5gwYUKFxilEVSSJmxCiSmvQoAG9evUqsa1WrVrPOJrKa+3atRgZGTFkyJAK76tnz558/fXX7Nu3jxkzZlCjRo0Sz4uMjOTatWs0atQId3d3AOzt7enYsSO//fYbw4cPx8TEpMLjFaIqkcRNCFGlNWjQgMmTJ2s7jEotOTmZgwcP0rVr1wofbQMwMzOjS5cu7Nq1iwMHDtC7d+8Sz/P39wegf//+RY737t2bAwcOsHfvXgYOHFjh8QpRlcgcNyFEtdG5c2dmzpxJcnIyixYtYvDgwfTs2ZPXXnvtkXO8MjMz+fHHH3nhhRfo2bMn/fv358033+TChQvFzp05cyadO3cmNzeXH374gbFjx9KtW7cir2sPHDjAlClT6NmzJ0OGDGHx4sWkpaUxatQoRo0apT7v008/pXPnzly5cqXEuL755hs6d+7MwYMHn/i59+7dS25uLl27dn3iuQ9ERkYybNgwBg0axOXLl9XHb968yeeff86IESPo0aMHQ4cO5bPPPiMhIaHI9QMGDAAgICCgxPvn5eURFBSEkZFRscTOz88PExMTdu7cWep4haguJHETQlQr6enpvP7660RGRtKrVy86d+5MWFgYb775JlFRUUXOTU1NZerUqaxbtw5LS0uGDh2qPv+NN97g0KFDJfaxYMECdu7ciZeXFyNHjsTOzg6AHTt28P7773Pjxg369OlD3759uXTpEnPmzCE/P7/IPQYPHgw8HJX6p/z8fHbt2oWNjQ3t27d/4mc+c+YMAM2aNXvyFwgICQlhxowZ6Ovr89VXX9G0aVMALl++zMsvv0xgYCDu7u6MGDECLy8v9uzZw6uvvsrNmzfV9/D29sbe3p6zZ89y69atYn0cOXKElJQUOnfujIWFRZE2Q0NDGjduzJUrV8jKyipVzEJUF/KqVAhRpd24ceORCxCaNWtG27ZtixyLiIhg6NChzJo1Cz29wr9dfX19Wbx4MX/99VeRyfRffPEF0dHRzJ8/v8jrvHv37vHKK6+wZMkS2rRpU2wO1927d1m7di2WlpbqY2lpaXz55ZeYmpry/fffq5O5KVOm8PbbbxMWFka9evXU57do0QJnZ2f27t3L9OnTi8z1Onr0KPfu3WPcuHEYGDz5x/jFixepXbs2NWvWfOK5hw4d4uOPP8bOzo6lS5dSp04doDBZ/Oijj1AqlaxZswY3Nzf1NRcuXOCNN97gyy+/ZNGiRerj/fv353//+x+BgYFMmjSpSD87duwAHo7M/Zu7uzshISFcuXIFX1/fJ8YtRHUhI25CiCrtxo0brFu3rsT/nThxotj5JiYmvPbaa+qkDaBv377o6+tz9epV9bHk5GT2799Py5Yti83BsrGxYezYsSQnJ6tHs/5p0qRJRZI2gMOHD5OVlcXAgQPVSRuAgYEBL730UomfbfDgwWRmZrJv374ix/39/VEoFKWa/5WXl0dycnKpkjZ/f38++OADGjVqxFdffaVO2qAwWUxISGDs2LFFkjYAT09POnTowPHjx8nIyFAff/B1DQgIQKVSqY8nJSVx+vRp6tWr98ik7EG8d+7ceWLcQlQnMuImhKjS2rRpw9KlS0t9vr29fbEJ+gYGBtjY2JCenq4+dvXqVQoKCsjNzS1xRC8+Ph6A2NjYYq8rmzRpUuz8yMhIAJo3b16srUmTJujr6xc73rt3b7799lv8/f3VI1N37tzh1KlT6leRT5KSkgJQ7HXkv23cuJEjR47g5+fHwoULMTY2LtJ+6dIlAK5fv17i1+PevXsolUri4uLw8PAAwNbWlrZt23L06FHOnj1Ly5YtgcJ5bwUFBfTv3x+FQlFiPA8S3wfxCyEKSeImhKhWzMzMSjyur6+PUqlU/zs1NRWA0NBQQkNDH3m/7OzsYsdsbGyKHXswEmVtbV2sTU9PDysrq2LHLSws6NatG4GBgcTExNCwYUN27txJQUFBqVdbPniN+6SCtg8WW7Rt27ZY0gaFr3oB9uzZ89j7/PvrMWDAAI4ePUpAQECRxE1PT49+/fo98j4P4n1UKREhqitJ3IQQogQPErzRo0czbdq0Ml1b0ijSg/slJycXa1MqlaSkpFC7du1ibYMHDyYwMBB/f3+mTZtGQEAAlpaWdO7cuVSxWFhYYGBgoE5EH2XevHn89NNPfPnll+jp6TFs2LAi7Q9GKRctWlSqBREPtGvXDhsbGw4cOMDs2bOJiIggPj6eNm3aULdu3Ude9yDekhJdIaozmeMmhBAl8PDwQKFQqF8RPi1XV1egcKHAv125coWCgoISr2vevDkuLi7s2rWL48ePc/PmTXr16lWmkShnZ2cSEhKKrVz9JwsLC1asWEHjxo1ZsWIFf/31V5H2BytLy/r1MDAwoE+fPuTk5LB37151iY9HLUp4IC4uDgAXF5cy9SeErpPETQghSlCrVi26devGxYsX+f3334tMrn/g8uXLJb4qLUnHjh0xMTHB39+/SNmM/Px8fvjhh8deO2jQIFJSUliyZAlAmYvSent7k5ubq55n9ygWFhYsX74cDw8PvvjiC/78888i8detW5cNGzZw/vz5Ytfm5+eXWNsOHiZpW7ZsITg4GCsrKzp27PjYWC5fvkytWrVwcHB4wqcTonqRV6VCiCrtceVAgKfaVWHOnDnExcXxzTffsGvXLpo1a4a5uTmJiYmEhYURHx/P33//XeKcsH+zsLBg+vTpLFmyhJdffpnu3btjZmbG8ePHMTIywtbW9pET9fv06cN3331HUlISTZs2VY/elVanTp3YtGkTZ86cUW8t9bg4ly1bxty5c1m5ciUqlYoRI0ZgZGTEwoULefvtt5k5cyYtW7bE2dkZgNu3b3PhwgWsrKz45Zdfit3T0dGRFi1aqOcKDhw4EENDw0fGcOPGDW7dusXQoUPL9DmFqA4kcRNCVGkPyoE8ytMkbpaWlqxevZq//vqLffv2ERQUhFKpxMbGBjc3N1588cUSFxU8yqBBg7CwsODnn38mMDAQMzMzOnTowGuvvcbIkSNp0KBBideZm5vTsWNHgoKCyrUFlLe3N46OjuzevZtx48Y98fwHI29z587lyy+/RKVSMXLkSJo0acKPP/74f+3dvYriUBjG8UdEvAERQcR7ECwtjIVFevEDrMXewtJSsBEsbMTSUtEuN6A2IugFCFpErUQQFGG3WHCYWZdlApMxu/9fGU6SUz6c9+U9GgwGms1mWq1WCgQCCoVCSqVSymQyf/ymaZqP4PZxvMpHlmVJehtCDOCN78ez838AgGt2u52KxaLS6bQajcbTNeVyWfv9XsPh0NF9o+PxWK1WS91u99Gv9oru97tKpZIikYja7fZ3bwd4OfS4AYBLzuezbrfbu2fX61WdTkfSr5LmM9PpVJvNRtls1vEl8aZpKh6Pq9/vO3rfLZZlybZtVavV794K8JIolQKAS5bLpZrNppLJpMLhsE6nkxaLhWzbViKRkGEY79aPRiMdDgdNJhMFg0EVCgXH//b7/arX65rP57pcLo4D4Ffz+Xyq1Wp/7cUD/leUSgHAJdvtVr1eT+v1+jHPLRqNyjAM5fP530Z85HI5HY9HxWIxVSqVT81PA/BvIrgBAAB4BD1uAAAAHkFwAwAA8AiCGwAAgEcQ3AAAADyC4AYAAOARBDcAAACPILgBAAB4BMENAADAI34C4fcZMfdez38AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.plot(energy, energy*energy*flux_median, label = \"Best fit\")\n", + "ax.fill_between(energy, energy*energy*flux_lo, energy*energy*flux_hi, alpha = .5, label = \"Best fit (errors)\")\n", + "ax.plot(energy, energy*energy*flux_inj, color = 'black', ls = \":\", label = \"Injected\")\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(r\"$E^2 \\frac{dN}{dE}$ (keV cm$^{-2}$ s$^{-1}$)\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "53f3bfb1-efc4-4b80-98ab-d86be8fe5133", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response, as well as the simulated source counts" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "e20787dd-42ce-4255-9994-2280912165c8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvLUlEQVR4nO3dd3hVVf7+/XcqKaSQAmmkQEIaCZEggkpRohQVxsagWFAB+YrKjBX9oaLiDDbGXsCuzNgbqDhGARsWEoGQhBRILxBKeiHlPH/wcMYQShJy2Cn367q8Ls4+a+99nyM7fLL22mtZmUwmEyIiIiJ9mLXRAURERESMpoJIRERE+jwVRCIiItLnqSASERGRPk8FkYiIiPR5KohERESkz1NBJCIiIn2eCqJ2qK+vJyMjg/r6eqOjiIiIiAWoIGqHvLw85s2bR15entFRRERExAJUEImIiEifp4JIRERE+jwVRCIiItLnqSASERGRPs/W6AAiIr2VyWSiqamJ5uZmo6OI9Hp2dnbY2Nh0en8VRCIiFnDw4EFKSkqora01OopIn2BlZUVAQAD9+/fv1P4qiEREulhLSws5OTnY2Njg5+eHvb09VlZWRscS6bVMJhNlZWUUFhYSFhbWqZ4iFUQiIl3s4MGDtLS0MHjwYJycnIyOI9IneHt7k5ubS2NjY6cKIg2qFhGxEGtr/YgVOVVOthdWV6uIiIj0eSqIRET6iODgYCIiIoiLiyMyMpIrr7ySmpqaTh/vjTfeIDMz85jv//LLL8TExHDaaafx9ddfM23aNHbu3NmufbuDpUuXcscdd3TpMYODg9m+fXun9t28eTOzZ88GoLy8nMcee6zV+xMnTmTt2rUnnbGvUkEkItKHfPjhh2zZsoW0tDQqKyt54403On2sExU1b775Jtdccw1//PEHkydP5ssvv2To0KHt2lfaGjVqFKtXrwaOXhB1VlNTU5ccp6dTQSQicgo01jZSklxisf8aaxs7lKehoYGamhoGDBhg3vbEE08wevRoRo4cybRp0ygoKABgzZo1xMbGEhcXx/Dhw/nss8945ZVX2Lx5M7feeitxcXF8+eWXrY6/fPly3nvvPZ5++mni4uIoLy83946caF+A9PR0Jk+eTGxsLLGxsbz00ksAZGdnk5CQYM7z6aefmvexsrLi0Ucf5YwzziAkJITXX38dgHfeeYeLLrrI3M5kMhESEsK2bdsAeOyxx4iOjiYmJobZs2dTUVHRJs+wYcNISkoyv3799de55JJLACgtLWXmzJmMHj2a2NhY7r//fnO7H374gZiYGEaPHs3NN9+MyWQ66v+PsWPHsmnTJgBuu+02AgICzO8FBgZSUFDAhg0bGDVqFAALFiygvLycuLg487bD5xs3bhxDhw5lwYIFRz1Xbm4uXl5ePPTQQ4wbN45nn332mJ+hpaWFm2++mYiICEaMGEF8fDz19fXmY9xxxx2cccYZREdH891335nP8fbbbxMTE0NsbCwXXHABRUVFwKFCePLkyVxxxRXExMQwatQodu3aBUBWVhZnnXUWI0aMICYmhiVLlgDQ2NjI4sWLGT16NHFxccyaNYvy8vKjfraTYpIT2rFjh2ncuHGmHTt2GB1FRHqAuro6U1pamqmurs68rTip2LSUpRb7rzip+IS5goKCTOHh4aYRI0aYXF1dTeecc46psbHRZDKZTKtXrzbNmzfP1NTUZDKZTKa33nrLNH36dJPJZDLFxsaafvrpJ5PJZDI1NzebDhw4YDKZTKYJEyaY1qxZc8zzXXvttaZnn3221flTUlJOuG9jY6MpLCzM9N5775m3lZWVmUwmk2n06NGml19+2WQymUyZmZkmDw8PU35+vslkMpkA01NPPWUymUymtLQ0U//+/U2NjY2m2tpak6enp6mkpMRkMplM3333nWnkyJEmk8lk+vLLL00RERHmzzRv3jzTTTfdZDKZTKYHHnjAdPvtt5tMJpPpkUceMS1cuNCcZ/z48abPP//cZDKZTOeff75p48aN5uyTJ082ffzxx6b6+nqTn5+faf369SaTyWR67733TID5O/izJUuWmB588EGTyWQynXbaaabRo0eb0tPTTTt27DANGzbMZDKZTOvXrzfFx8ebTCaTKScnx+Tp6dnqGBMmTDBdeumlpqamJlNtba0pODjY9PPPP7c5V05OjgkwrV692rztWJ8hOTnZFBERYWpubjaZTCZTeXm5qbm52XyMN954w2QymUybNm0yDRo0yFRdXW1KSUkxDRo0yFRYWGgymUymZcuWmaZNm2YymUym119/3eTm5mbKzc01mUwm0913322aP3++yWQymW699VbTI488Ys60b98+83f/8MMPm7c/9NBDpltvvbXN5zraddcReuxeROQU8IrwYn7SfIsevz0+/PBDhg8fTlNTEzfeeCN33303Tz75JJ9++imbN28mPj4egObmZvOjy5MmTeJvf/sbl112Geeffz5xcXGW+hgAZGRk0NTUxMyZM83bvLy8qKqqYsuWLdxwww0AhIWFcfbZZ/Pjjz9yxRVXAJjH2ERGRmJra0tpaSkBAQFceumlvPPOO9xxxx28/vrrXHfddQAkJiYye/Zs3N3dAfi///s/Zs2a1SbTtddey2mnncaKFSsoKCggMzOTqVOnUlNTw3fffcfu3bvNbaurq9mxYwdDhw7FycmJiRMnAjBz5kzmzz/634GEhATuu+8+FixYgJ2dHTNnziQxMRErKysSEhLa/d3NmjULGxsbHB0diYuLY+fOnYwdO7ZNOwcHB/N3drzPcO6559LY2Mj111/POeecwwUXXGB+etLe3p6rr74agDFjxuDj48PWrVtJSkriwgsvxN/fH4CbbrqJZcuWmXvHzj77bIKCgoBDPWPPPvssAOPHj+fOO++kpqaGCRMmmD/3p59+SmVlJR9++CFwaFqLw7deu5IKIumUivwKavf2rBl4nbyccAt0MzqG9FF2Tnb4jvQ1OoaZra0tl156KXfeeSdPPvkkJpOJJUuWcP3117dpu2LFClJTU1m/fj3XXnsts2fP5q677jrlmQ//g3rk49V/fu3g4GD+s42NjXl8zHXXXcfcuXOZP38+a9eu5amnnjIf83jHO8zf35+RI0fy+eefs3XrVq6++mpsbW2pq6vDysqK33//HTs7u1b7bN26td2fbezYsWzfvp3PP/+cSZMmkZCQwNKlSwG45ppr2n2cY33+Izk7O5s/Z0tLyzE/A0BqaiobN25k/fr13HPPPXz//ffY2h69fLCysmrznR75fR4r46WXXsqZZ57JN998w3PPPcdTTz3Fl19+iclk4oUXXuDcc89t57fQOSqIpMMq8it4PvJ5Gmsb2ctebLBhAANoppnd7GYAA3DEkRpqqKACP/wA2Mc+rLDCAw9aaKGUUtxxxwknaqmlnHJ88MEaa/azHxMmPPEEoJhi3HDDGWfqqOMABxjEIGyw4QAHaKYZLw79hlxCCS640J/+1FPPfvYzkIE4OjmyMH2hiiKR/993331HeHg4ANOnT+fpp5/mL3/5Cx4eHjQ2NrJ9+3ZOO+00duzYQXR0NNHR0dja2vLf//4XAFdX16OOt2mP4+0bHh6Ovb09H3zwAZdffjkAe/fuxcvLi7i4ON58802uu+46du7cyU8//cRzzz13wvONGTOGlpYW7rrrLs477zw8PDwAOO+887jrrru49dZbcXFxYeXKlcfskbn++ut57bXXSE1N5auvvgLAxcWFcePGsXz5cu677z4AiouLaWlpISIigrq6Or7//nvGjx/Phx9+eMzPbG9vzxlnnMGyZct47bXXiI2NJS0tjb1795rHQh35/dXW1tLU1HTM4qS9jvcZ+vXrh42NDeeffz7nnXceGzduJC0tjdjYWA4ePMjq1au5+uqr+e233ygtLSU2NhZXV1ceffRRSktL8fHx4aWXXmLSpEknnCcoKyuLIUOGcM011zB69GjOPPNM4NDfzRUrVjBmzBicnJyora0lJyeH6Ojok/rcR9Kgaumw2r21NNY2cvE7F5MUn0TB1ALmJ81n1nezWMlKwh4PY37SfAYuGchKVjI/aT7zk+aTdlYaWedkMT9pPtdtuo6VrGTww4OZnzSfoEeCWMlKrvnxGuYnzWfXpF1sG7PNvO+rNq/ide+hWw4RKyJYyUpmJs5kftJ8Si4s4dcRv5rbrnZejfPfnZmfNJ+4F+JYyUrO/NeZNNY29rheLZGudtlllxEXF0d0dDTp6ek8/fTTAFx99dVcddVVTJw4kREjRhAXF8f69esBuOeee4iOjua0007j7bffNvdczJ8/n4ceeuiYA6OP53j72tra8tlnn7Fy5UrzwNyPPvoIgNWrV/POO+8wYsQILr30Ul555RUGDx7crnNed911vPzyy+bbZQBTp07l6quvZuzYscTExFBZWckjjzxy1P1nzJjBr7/+iq+vL1FRUebtq1evJj09nZiYGGJiYrj00kvZt28f/fr14z//+Q8LFy5k9OjR/PbbbwQGBh4z33nnnceePXs466yzsLKyIj4+ntDQUPPtvD/z8PBg9uzZ5oHJJ+tYn6GgoIDzzjuP2NhYYmJiGD58OFOnTgXA09OT7OxszjjjDK677jr+/e9/4+zsTHR0NP/85z85//zziY2N5YcffuDll18+YYYPPviA2NhYTjvtNGbNmmUeSL948WLi4uI444wziI2NZcyYMWzZsuWkP/ORrEymYwx5F7OMjAzmzZvHqlWrzL9N9WXf/OcbLrjyAr749xcExQdhZ2dHSEgITU1NbNu2jZCQEAYMGMDevXvJz89n5MiRwKGnQ6ytrRkyZAgtLS1s2bKF4OBgPDw82L9/P7m5uYwYMQIbGxt27dpFc3MzYWFhACQnJzN48GC8vb0pLy9n165dxMTEYGdnR25uLg0NDeb/N1u2bMHX15dBgwZRWVlJdnY29QX1/O0vf+P5tc9z+gWnG/bdSd9QX19PTk4OISEhrW4PiPQWubm5jBo1ir179xodxexkrzvdMjuOxMREEhMTqa6uNjpKt+Lj7cMkJuHj7cOwYcPM221tbc3FDxwaBOnl9b+BnqGhoeY/W1tbt2rr4eFh7sIGGDJkSKtz/rmtu7t7q9fBwcGt2v55wKerqysjR47k+5zvKaCAuvq6DnxSERHpK1QQHUdCQgIJCQnmHiI5xMvDizGMwcujfU+1dAdhIWEsYAFhIWFGRxER6fGCg4O7Ve9QV9AYIumwquoqssmmqrrK6CgiIiJdQgWRdFhOQQ7v8A45BTlGR2m3tKw0nuAJ0rLSjI4iIiLdkAoi6bCI0Aj+zt+JCI0wOkq7ebp7cjqn4+nuaXQUERHphlQQSYfZ29njhhv2dvZGR2m3Qd6DmMAEBnkPMjqKiIh0QyqIpMMKSwpZwxoKSwqNjtJuNbU1FFBATW2N0VFERKQbUkEkHVZXX0cJJT3qEfadeTt5lVfZmbfT6Cgihvn444+Jj48nLi6OyMhIJk2aREtLi9GxDLV06VIOHjxodAzpBvTYvXRYWEgY85nfox5hDwsJ4yZu6lGZRbpSaWkpCxYs4PfffzcvrJmcnHzC5RQ6oiuWkTjVHnzwQe644w7s7XvOEACxDPUQSZ/g6OB4aD0zB0ejo0gfVlJSQkpKivl1WloaBQUFwKFZdpOTk6mqOjSdxe7du1stDpqRkUFeXh4AjY2NJCcnd2gdsZKSEmxtbfH0/N+DBSNHjjQXRJs3b2bs2LHExsYyevRofvrpJ+DQjMR/nmC1urq6zcKdTz75JBMnTuSee+6hoqKCuXPnEhMTw4gRI8yLxTY2NrJ48WJGjx5NXFwcs2bNory8/KhZv/jiC04//XTzEiK//vorAOvWrWPkyJHExsYyYcIE0tIOPTW6YcOGVstXbN++3Txh6+H8999/v3kpjMNLhSxYsACAM888k7i4OPbs2cMrr7xCVFQUcXFxxMTEmM8tvV/PKuWlW0jLSuMxHuPsrLO71erdx1O8u5j/8l/O/PFMo6N0iJOXkxaj7UVefvllXnnlFQoLD42/mzVrFhMnTuSZZ56hsLCQ+Ph41q9fz8SJE3nrrbf45z//yf79+wGYM2cO0dHRvPLKK+zdu5f4+HjWrl3LBRdc0K5zjxgxgrFjxxIYGMiECRM488wzufLKK/H39+fgwYNccsklrFq1ismTJ/Pjjz9y2WWXkZ2d3a5jNzQ0sGHDBuDQemH9+/dn69atWFtbU1ZWBsDjjz9O//79+e233wB4+OGHeeCBB8xrqR2WmZnJDTfcwPfff8+wYcNobGyktraWPXv2cNVVV7F+/XpiYmJYvXo1M2fOZPv27SfMt2/fPuLj43nooYdYt24dixYtYtq0abz00ku8/PLL/Pzzz/Tv3x+A22+/nfT0dPz8/GhsbKShoaFd34H0fCqIpMO8BngxlrF4Deg5M1U32jWSaZXJp4s+5Wd+NjpOu9k52bEwfaGKol7ixhtv5NJLLzW/fvfdd3FxcQEgICCApKQk8/p911xzDeeff7657RtvvGFen8nLy4ukpCSGDh3a7nNbW1vz0UcfsWPHDjZu3MhXX33FI488wubNm6mrq8Pe3p7JkycDcPbZZzNw4EC2bduGr++Jf+k53AsEsHbtWpKSkrC2PnQDwtvbG4BPP/2UyspKPvzwQwAOHjx41PzffPMN06ZNMy8LZGdnh5ubG2vWrDH32gDMnj2bhQsXUlJScsJ8zs7OzJgxA4CxY8eyc+exxxKee+65XHPNNVx00UVMnTq11fJE0rupIJIOG+g1kHGMY6DXQKOjtNuYhDFk52bzx69/4Oriiu9AX+rq68jKySI0OBQnRyd2l+1mf/l+IsMiAcjclYmzkzP+Pv7UN9STuSuTIYFD6O/cn7J9ZezZt4foYdEAZOdmU11TTeKPicyaPov95fsJDgjG1cWVfQf2Uby7mJiIQz/Id+XvwtbGlkD/QJqbm0nNTCXQPxB3V3f2l++nsKSQmIgY9u7Yy3+u+g+1e2tVEPUSvr6+rQqMP6+Y7uDg0GqNvkGDBjFo0P+mifjzwtJ2dnat2nZEREQEERER3HjjjUyZMoXPP/+chISEo44lsrKywtbWlubmZvO2+vr6Nu0O964cj8lk4oUXXuDcc8/tVG6TydTpjH9e6NPGxqZV2yN9/PHHJCUlsWHDBqZNm8ayZcuYNWtWpzJLz6IxRNJhNbU15JHX4x5hdwt0Y+49c/lg4wf4jvSlun81U66awn77/fiO9OXTTZ9yze3X4DvSF9+Rvtzy0C28te4tfEf60uzdzJSrplDUXITvSF++3vI1M2+aaW571+N38fZXb+Pi64Kdvx1TrppCdnU2viN92bhjIxddd5G57QPPPcBT/34K35G+uIa7MuWqKWwv247vSF9+z/+dKVdNYeCIgVj7WPMxH/eo6Q2k+yoqKjKPCwI4cOAAOTk5DB06lIiICBoaGvjuu+8A+Pnnn9mzZw8xMTH4+PjQ1NRERkYGAG+99dZxzzN9+nQef/xx89Nrh2+ZTZ8+nRUrVlBbWwtAbW0tqampbfafPHkyX331FZmZmcChsUcVFRWMHTuWLVu2kJ6eDhzqXQsICMDHx4eQkBBycnLYt28fAG+//Xa7vxcXFxfzWKympiZ27tzJqFGjuOOOO7jsssvMt/ik91MPkXTYzrydvM7r/DXvr4SeHXriHbqRzz77DHd3dwDCwsJISkoy/+bdFbczgoKCaGxsbHU7Y+bMmZx55v/GLr344ovmJ3GcnZ1JSkoiJCQEgIsuuoikpCRsbGyoqq6ihRaampos9G1IX9LU1MRDDz1ETk4OTk5ONDU1ce2115pvJX300Ufceuut1NTU4ODgwAcffICzszMAzzzzDFOnTiUgIICpU6ce9zz/+te/+Pvf/87w4cOxt7fn9NNPZ9WqVSxevJgHH3yQM844w9zTc/fddxMdHd1q/9DQUF599VWuuOIKGhsbsbGx4eWXX2b06NG8/fbbzJ49m+bmZtzd3Xn//fcB8Pf354477mDUqFEEBwczfvz4dn8vt99+O+eeey6Ojo58/fXXXHfddRw4cABbW1u8vb15/fXX230s6dmsTCaTyegQ3d3h1e5XrVrVqtu6r8rZlMOKM1dw28+3ETI2xOg4vVZJcgkr41cyP2l+jxm8LofU19eTk5NDSEhIq9s1ImI5J3vd6ZaZdJhDPwe88MKhn37QW5LJZKKZZvQ7i4iI5akgkg4r3l3MOtZRvLvY6Ci9WsqOFB7mYVJ2pJy4sYiInBQVRNJh1TXV7GQn1TXVRkfp1QJ8A5jBDAJ8A4yOIp3U15fFEDmVTrY3XYOqpcOGDRnGQhYybIjm57AkD3cPTuM0PNw9jI4iHWRvb4+1tTXFxcV4e3tjb2/fpUtkiEhrJpOJsrIyrKyssLOz69QxVBCJdFPlleWkkkp5ZTm+aFB1T2JtbU1ISAglJSUUF+vWssipYGVlRUBAADY2Np3aXwWRdNiO7B38i38xPnu8nn6yoPyifD7gA24ouoFIIo2OIx1kb29PYGAgTU1Nx50IUES6hp2dXaeLIVBBJJ3g7uZOLLG4u7kbHaVXix4WzWIWm2fDlp7ncPd9Z7vwReTU0aBq6TAfbx8mMQkfbx+jo/RqNjY2OOBwUr/xiIhI+6ggkg6rraulmGJq62qNjtKr5Rfl8yEfkl+Ub3QUEZFeTwWRdFh2bjYrWUl2brbRUXq1puYmaqihqVlLd4iIWJoKIumw0OBQ5jOf0OCetY5ZTzMkcAjXci1DAocYHUVEpNdTQSQd5uTohB9+ODk6GR1FRESkS+gps26gIr+C2r09ZzxO6s+pfMu3TC+brvlxLOjw0h1jd4zV9AYiIhamgshgFfkVPB/5PA21DZRSijvuOOFELbWUU44PPlhjzX72Y8KEJ54AFFOMG24440wddRzgAIMYhA02HOAAzTTjhRcAJZTgggv96U899exnPwMZiC22lFNOI4144w1AKaU444wLLjTQwD724Y03dthRQQUNNGDCRIpVCvXW9YZ9b32B3yA/JjMZv0F+RkcREen1VBAZrHZvLY21jUx9ZSpj547l+Uee5+IpF/PRlx/x2H2PkbMph372/bjhjhs4ePAgbz/zNgB+8X48vuRxZl88my+/+5K5d84l9btUBrgN4OYlN1Oyp4SPVn4EwNCzhnLPzfcw94q5bPh5A1feciWbv9yM3yA/7nrkLlJ2pPDV218BMHzScG6cfSPzr5/Pr3/8ysVzL+b7j74nNDiUpSuWsmHTBjZ8sIF/ev0Tt0A3w763vsBzgCejGY3nAE+jo4iI9HpWppNdDa0H+eKLL3jnnXfYv38/3t7ePProo/j7+59wv4yMDObNm8eqVasIDw/v0ky/fP4LN8y4gVWfrsJhsAPBwcF4eHiwf/9+cnNziYuLw9raml27dtHS0kJo6KGBzMnJyQQGBuLl5cWBAwfIyckhNjYWW1tbcnJyaGxsZNiwQ2uNbdmyBT8/PwYOHEhlZSXZ2dkMHz4ce3t78vPzqa2tJSIiAoBt27YxcOBAfHx8qK6uJjMzk6ioKBwcHCgsLKSyspKoqKgu/Q7k6DI2ZvDQxIe4f8P9hE/o2r93IiLSWp/pIfrpp5/48MMP+ec//0lQUBBFRUW4uroaHYvmluZDt6FMJkaOHGne7uHhgYfH/xb1HDKk9ZNGf247YMAABgwYYH4dEhLSqm1cXJz5z66urq32DQwMbNU2NjbW/Of+/fu3ahsQoFXXT6Xcwlz+zb+5pvAawlFBJCJiSX2mIHrzzTe5+eabCQ4OBrrPP+5DAodwNVfr0WppIzI0ktu5nchQrWMmImJp3bIgqq2t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNMrdpbm4mKyuLnTt38o9//AMbGxumTp3KnDlzsLKyOpUfTaTd7OzscMFF62CJiJwC3XIeooqKCtasWUNjYyPjxo07btslS5awbt065syZw2OPPUZERAQPPvgg33zzjbnNgQMHaG5u5vfff+eNN97g6aef5ptvvmHdunWW/igntC19Gw/yINvStxkdRbqZwpJCPuMzCksKjY4iItLrdcseIh8fH7744gusrKwoLy9n7dq1R223adMmNm/ezP33309CQgJwaGxNaWkpL774Iueeey42Njb069cPgNmzZ+Pi4oKLiwvTp0/nt99+Y+rUqafscx2Nv48/F3AB/j4nHtwtfUt9Qz1llFHfoOkNREQsrVv2EFlZWbXrVtYPP/yAo6MjEydObLV92rRp7N27l7S0NABcXFzw8vJq9/n37t1LRkaG+b+8vLwO5e8IzwGejGKUHq2WNkKDQ5nLXC2RIiJyCnTLHqL2ysnJISgoCFvb1h9j6NCh5vdjYmIAmDp1Kv/5z38YNmwY1dXVrF27lmuuueaox/3888954403LJr9sIqqCnawg4qqCs36LCIiYpAeXRBVVFTg59d2Fl8XFxcAKisrzdvmzJnDv/71Ly699FKcnJy46KKLOP/884963OnTp3PWWWeZX+fl5bFs2bIuTv//H7swj3d5lzmFc4ggwiLnkJ4pNTOV5SznrMyztHSHiIiF9eiCCGj3U2J2dnbcdddd3HXXXSds6+Xl1aFbbCcjMjSSO7lTj1ZLGwM9BzKOcQz0HGh0FBGRXq9bjiFqLzc3NyoqKtpsr6qqAugWEy+eiJ2dHc4469FqacPb05uzOAtvT2+jo4iI9Ho9uodoyJAhJCYm0tTU1Goc0a5du4C2MzZ3RwXFBXzCJ0wtnqrbItJKdU01OeSQm5xrdJQOcfJy0jp3ItLj9OiCaNy4caxZs4aNGze2mohx3bp1eHl5nfSaW4mJiSQmJlJdXX2yUY+p4WAD+9lPw8EGi51DeqbiymLe5E36zeuHHz1nxXs7JzsWpi9UUSQiPUq3LYh++eUX6uvrqa2tBQ4NbN6wYQMAY8aMwcHBgTFjxjBq1ChWrFhBbW0t/v7+fPvtt/z6668sWbIEGxubk8qQkJBAQkKCeXFXSwgNDuUGbtCj1dLGGZPOIHljMu527jj0c7DIOWrLakn7OI2oS6Jw8nY66eOVpZfxyVWfULu3VgWRiPQo3bYgWrFiBaWlpebX69evZ/369QC89957+Poeur20bNkyVq1axauvvmpeuuOBBx5o1WMk0hM5ODhw2vjTLH6eoZOHWvwcIiLdXbctiN5///12tXNycmLRokUsWrTIwoksY3vGdv7BPzgz40yNIZJWCgoKePzxx7nzzjsZPHiw0XFERHq1Hv2UWW8wyGsQE5nIIK9BRkeRbqaqqooNGzaYn5oUERHLUUFkMG9Pb87kTD1aLW1ERUWxbds2mpubKSkpAaCmpobk5GTq6uoAKCoqIjU11bxPamoqhYWHFoOtq6sjOTnZ/FBASUkJ27b9bxHh9PR08vPzAWhoaCA5Odk8menu3bvZsmWLuW1GRga5ubkANDY2kpycTHl5OQBlZWUkJyeb29ZR14XfgojIqaGC6DgSExNZvHgxzz77rMXOUVVdxU52UlWtXgA5uqlTp/Lyyy8DkJaWRnx8PFlZWQA899xzzJgxw9z2kksu4emnnwYOTT8RHx9PSkoKAK+++iqTJ082t509ezaPPvoocKhYio+P57fffgNg9erVjB8/3tz2hhtuYOnSpQCUl5cTHx/P999/D8DHH3/M6NGjAdh3YB8f8iGFJYVd/j2IiFiSlclkMhkdors7/JTZqlWrCA8P79Jjf736a6ZcNYV176xj8uzJJ95B+pyUlBS8vLzw9fWlpqaGjIwMIiMjcXR0pKioiPLycqKjo4FDPURubm4EBARQV1dHeno6w4YNo3///pSUlFBWVkZsbCxwqIfI2dmZwMBAGhoaSE1NJTQ0FFdXV3bv3k1JSQlxcXHAoWugX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkv3z+C9fOuJY3P3uTMdPHGPWViYh0mAqidrBkQZT7Sy5PjX2Kv236G8Fjgrv02CKnWklyCSvjVzI/ab4eEhCRHkW3zAzWz74fAxhAP/t+RkcROWnNzc0c5CDNzc1GRxER6RAVRAYrLCnkC77QmAvpFVIzU/kH/yA1M/XEjUVEuhEVRAarq6+jgALq6vVkjvR8g/0GcymXMthP8yaJSM+igshgYSFhLGABYSFhRkcROWkD3AYQQwwD3AYYHUVEpENUEIlIlzlQcYCtbOVAxQGjo4iIdEi3XbqjOzgVq92nZaXxBE9wdtbZeipHeryC4gI+4RNuLL6RKKKMjiMi0m4qiI7jVKx27+nuyemcjqe7p0WOL3IqDQ8fzhKWMDx8uNFRREQ6RLfMDDbIexATmMAgb61lJj2ftbU1tthiba0fLSLSs+inlsFqamsooICa2hqjo4ictLzCPN7lXfIK84yOIiLSISqIDLYzbyev8io783YaHUXkpLWYWmimmRZTi9FRREQ6RAWRwcJCwriJm/TYvfQKIYNDmM1sQgaHGB1FRKRDVBAZzNHBkYEMxNHB0egoIiIifZYKIoMV7y7mv/yX4t3FRkcROWnb0rexlKVsS99mdBQRkQ7RY/fHcSrmIaqqriKDDKqqqyx2DpFTxd/Hn4u4CH8ff6OjiIh0iAqi4zgV8xCFDw3nFm4hfGi4RY4vcip5DvAknng8B2heLRHpWXTLTES6THllOWmkUV5ZbnQUEZEOUUFksIydGTzN02TszDA6ishJyy/K533eJ78o3+goIiIdooLIYK4urkQTjauLq9FRRE5aVFgUd3EXUWFax0xEehYVRAbzHehLAgn4DtTCrtLz2dra4oQTtrYanigiPYsKIoPV1ddRSil19XVGRxE5aflF+XzER7plJiI9jgoig2XlZPESL5GVk2V0FJGT1tjUSCWVNDY1Gh1FRKRDVBAZLDQ4lHnMIzQ41OgoIidtaNBQruM6hgYNNTqKiEiHqCAymJOjE/744+ToZHQUERGRPksjH4/jVMxUvbtsN+tZz4yyGfiigdXSs23P2M4jPMKZGWfiO1J/n0Wk51BBdBynYqbq/eX7SSaZ/eX7LXJ8kVPJx9uHSUzCx9vH6CgiIh2iW2YGiwyL5HZuJzIs0ugoIifNy8OLMYzBy8PL6CgiIh2iHiIR6TJV1VVkk01OUo7RUTrEycsJt0A3o2OIiIFUEBksc1cmL/ACE3dN1JgL6fFKqkp4h3dwmu+EH35Gx2k3Oyc7FqYvVFEk0oepIDKYs5MzwQTj7ORsdBSRkzb2vLGk/pKKM87Y29kbHaddytLL+OSqT6jdW6uCSKQPU0FkMH8ff6YxDX8ff6OjiJw0e3t7os7QOmYi0vNoULXB6hvq2cc+6hvqjY4ictLy8/O58cYbyc/X0h0i0rOoIDJY5q5MnuVZMndlGh1F5KTV1taSnJxMbW2t0VFERDpEt8wMNiRwCNdyLUMChxgdReSkRURE8PvvvxsdQ0Skw9RDZLD+zv0JIYT+zv2NjiIiItJnqSA6jsTERBYvXsyzzz5rsXOU7SvjJ36ibF+Zxc4hcqps27YNb29vtm3bZnQUEZEO0S2z4zgVS3fs2beHH/iBPfv2WOT4IqfSwIEDue222xg4cKDRUUREOkQ9RAaLHhbNYhYTPSza6CgiJ83Hx4dbbrmF4uJi6usPPTlZWFhIWlqauc327dspLi4G2g7CLi4uZvv27ea2aWlpFBYWAlBfX09ycrJ5seXS0tJWPVE7duwwP9128OBBkpOTqaysBGDPnj1s2bLF3DYzM5OcnEOzaTc1NVFOeVd+DSLSA6kgEpEutWXLFuLj48nLywNgxYoVXH755eb3L7zwQl544QXgUBETHx/Pjh07AHjhhRe48MILzW0vv/xyVqxYAUBeXh7x8fEkJiaydOlSnn76aSZNmmRue/XVV/PII48Ahwqg+Ph4Nm3aBMC7777LWWedZW47f/587rvvPgByC3N5iqcoLCns8u9CRHoO3TIzWHZuNq/wCufmnqulO6RXiIuLIykpiaCgIABuu+025s6da35/7dq1eHh4AIeeSktKSiIiIgKAm266iVmzZpnbfvDBB7i6ugIQFBREUlISrq6ubNmyhVmzZnHFFVeY27799ts4OTkBh27dJSUlERoaCsCsWbMYP368ue3KlSuxs7MDYIDbAC7kQj3YINLHqSAymEM/B7zxxqGfg9FRRLpE//79GTlypPl1QEBAq/eHDx9u/rOTk1Ortn5+fvj5/W8NtKio/8167eDgYG67dOnSNuc9XFTBoRmz/3zcgQMHthrXNGzYMPOfPQd4MopRuLu6t+fjiUgvpVtmBgvwDWAGMwjwDThxYxHpcvsO7COJJPYd2Gd0FBExkAoigzU2NlJFFY2NjUZHEemTikqLWMMaikqLjI4iIgZSQWSw9Ox0nuRJ0rPTjY4i0ifFRsaylKXERsYaHUVEDKSCyGDBAcFcyZUEBwQbHUVERKTPUkFkMFcXV4YxDFcXV6OjiPRJOQU5rGY1OQU5RkcREQOpIDLYvgP7+I3fNKBTxCDWVtbYYIO1lX4civRl+glgsOLdxXzN1xTvLjY6ikifFBQQxCxmERQQZHQUETGQCiKDxUTEcB/3ERMRY3QUkT6ppaWFJppoaWkxOoqIGEgFkYj0adsztrOMZWzP2H7ixiLSa6kgMtiu/F28yZvsyt9ldBSRPmmw32Au5mIG+w02OoqIGEhLdxxHYmIiiYmJ5tW1LcHWxhZnnLG10f8KESMMcBvACEYwwG2A0VFExED6V/g4EhISSEhIICMjg3nz5lnkHIH+gVzGZQT6B1rk+CJyfAcqDpBCCgcqDuCLFlgW6at0y8xgzc3N1FNPc3Oz0VFE+qSC4gI+4iMKiguMjiIiBlJBZLDUzFSWs5zUzFSjo4j0SdHDormXe4keFm10FBExkAoigwX6B3I5l+uWmYhBbGxssMceGxsbo6OIiIFUEBnM3dWdaKJxd3U3OopIn5RXmMf7vE9eYZ7RUUTEQCqIDLa/fD9/8Af7y/cbHUWkT2puaaaBBppbNI5PpC9TQWSwwpJCPuMzCksKjY4i0icNCRzC1VzNkMAhRkcREQOpIDKYlu4QERExngoig1lZWWGDDVZWVkZHEemTtqVv40EeZFv6NqOjiIiBVBAZLLcgl3/zb3ILco2OItIn+fv4cwEX4O/jb3QUETGQCiIR6dM8B3gyilF4DvA0OoqIGEgFkcGCBwdzJVcSPDjY6CgifVJFVQU72EFFVYXRUUTEQCqIDGYymWimGZPJZHQUkT4przCPd3lX8xCJ9HFa3NVgKTtSeJiHOWvHWfjF+xkdR6TPiQyN5E7uxKvJi5LkEouco7aslrSP04i6JAonb6cuOaaTlxNugW5dciwRUUFkuADfAGYwgwDfAKOjiPRJbr5uuDu5s3bOWoufK3llcpcdy87JjoXpC1UUiXQRFUQG83D34DROw8Pdw+goIn3SgZYDbJ+2nb9d+zcG+w02Ok67lKWX8clVn1C7t1YFkUgXUUFksPLKclJJpbyyHF98jY4j0uc0NDSQX5KPW5gbvuG6BkX6Kg2qNlh+UT4f8AH5RflGRxHpk8LDw/nxxx8JDw83OoqIGEgFkcGih0WzmMVED4s2OoqIiEifpYLIYDY2NjjggI2NjdFRRPqkLVu24OrqypYtW4yOIiIG0hii40hMTCQxMZHq6mqLnSO/KJ8P+ZApRVPwHanxCyKnmq+vL0uXLsXXV9efSF+mgug4EhISSEhIICMjg3nz5lnkHE3NTdRQQ1Nzk0WOLyLHN2jQIG677TajY4iIwXTLzGBDAodwLdcyJHCI0VFE+qTKykoSExOprKw0OoqIGEgFkYj0adnZ2Zx33nlkZ2cbHUVEDKSCyGCHl+5I2ZFidBSRPik6OpqcnByio/Wkp0hfpjFEBvMb5MdkJuM3SOuYiRihX79+BAcHGx1DRAymHiKDeQ7wZDSj8RzgaXQUkT4pPz+fhQsXkp+vyVFF+jIVRAarrKokk0wqqzSgU8QINTU1bNq0iZqaGrZt20ZJyaEV76urq0lOTqaurg6AwsJCUlNTzfulpqZSVFQEQF1dHcnJydTU1ABQUlJCSsr/boOnpaVRUFAAQH19PcnJyVRVVQGwe/dutm7dam6bkZFBXl4eAI2NjSQnJ1NRUQFAWVkZf/zxh0W+B5G+TgWRwXILc/k3/ya3MNfoKCJ9UmRkJMnJyURGRjJ58mReffVVAFJSUoiPj2fXrl0APP3001xyySXm/WbMmMFzzz0HQFZWFvHx8aSlpQHw8ssvM3XqVHPbWbNm8fjjjwOHCqv4+HiSkpIAeOuttzjnnHPMbefMmcPDDz8MwN69e4mPj+fHH38E4P3332fMmDEW+R5E+jork8lkMjpEd3d4HqJVq1Z1+XpH+b/m88yYZ7j1l1sJPCOwS48tIh2zbds2vL298fX1pbq6mszMTCIjI3F0dKSwsJCKigrz4OvU1FTc3d3x9/enrq6O9PR0wsPDcXZ2pqSkhL179xITEwMc6iFycXFh8ODB1NfXk5aWRlhYGC4uLuzevZvS0lJGjBgBHPp54+DgQFBQEI2NjaSkpDB06FDc3NwoKyujsLCQ2rxarr74at7+5G3O+stZhn1fIr2JBlUbzM7ODhdcsLOzMzqKSJ8XGxtr/nP//v0ZOXKk+XVAQAABAQHm139+Ks3R0bFVW19f31YzX0dFRZn/7ODg0KrtoEGDGDRokPn1n3/psrOza9XW29sbb29vfi38FWecsbXRj3CRrqJbZgYrLCnkMz6jsKTQ6Cgi0kME+gdyGZcR6K9eZZGuooLIYPUN9ZRRRn1DvdFRRKSHaG5upp56mpubjY4i0mt0uiDKyclh3bp15qcqABoaGnjyySe55JJLuOKKK1izZk2XhOzNQoNDmctcQoNDjY4iIj1EamYqy1lOambqiRuLSLt0uiB6++23efnll3FycjJvW7lyJZ9//jm1tbXs2bOHJ5980vwkhYiIdI1A/0Au53LdMhPpQp0uiNLT0znttNOwsrICoKmpiS+//JLIyEg+++wz3nvvPdzd3Xn//fe7LGxvpN/0RKSj3F3diSYad1d3o6OI9BqdLoj279/f6smItLQ0amtrmTFjBv369cPLy4uzzjpLCyaewEDPgYxjHAM9BxodRUR6iP3l+/mDP9hfvt/oKCK9RqcLIhsbGxobG82vt23bhpWVFaeddpp5m5ubm3mGVTk6b09vzuIsvD29jY4iIj2Enk4V6XqdLoh8fHxaTSG/YcMGfH198fHxMW8rKyvDzc3t5BL2ctU11eSQQ3VNtdFRRKSHiImI4T7uIyYixugoIr1Gpwui888/n+zsbBYsWMDNN99MdnY2kyZNatUmMzOz1URm0tau/F28yZvsyt9ldBQR6SGsrKywwcY8hlNETl6nC6JLLrmEiRMnsmPHDlJSUjj99NO5+uqrze+np6eTm5vbapZVaWvYkGHcwi0MGzLM6Cgi0kPkFvz/ayAW5BodRaTX6PS87/b29jz44IPU1NRgZWXV6vF7ODR1/auvvtrqFpq05dDPAU88cejnYHQUERGRPqvTPURbtmxh9+7dODs7tymGANzd3XF1ddVTZidQVFrEl3xJUWmR0VFEpIcIHhzMlVxJ8OBgo6OI9BqdLoj+9re/8dVXXx23zTfffMPf/va3zp6iT6iprSGXXGpqa07cWEQEMJlMNNOMyWQyOopIr9Hpgqg9F6LJZNKgvxMYNmQYN3GTxhCJSLul7EjhYR4mZUeK0VFEeg2LLu5aWFiIs7OzJU8hItLnBPgGMIMZBPjqKV6RrtKhQdXLly9v9fqHH36gtLS0Tbvm5mbKysrYunUrZ5xxxskl7OXSs9J5kicZlzUO35G+RscRkR7Aw92D0zgND3cPo6OI9BodKoj+PGbIysqK7OzsYw6atrKyIiIigptvvvnkEvZyHu4ejGSkfrCJSLuVV5aTSirlleX4ol+kRLpChwqi9957Dzg0NmjWrFlcfvnlXHbZZW3aWVtb4+LigqOjY9ek7MUGeQ/iHM5hkPegEzcWEQHyi/L5gA+4oegGIok0Oo5Ir9ChgujPcwotXryYYcOGaZ6hk1RbV0sRRdTW1RodRUR6iOhh0SxmMdHDoo2OItJrdHpQ9dSpUxk6dGhXZumTsnOzWcUqsnM1X5OItI+NjQ0OOGBjY2N0FJFeo9MzVR+WlpbGjh07qK6upqWlpc37VlZWXHvttSd7mpN26623kpaWZv4BEhERwdNPP21wKggLCWMBCwgLCTM6ioj0EPlF+XzIh5y+8XSjo3SYk5cTboFa9Fu6n04XRJWVldx7771s3779uHMSdZeCCOCuu+7i/PPPNzpGK44Ojvjgg6ODxluJSPvYudpRZ13HutvW8Tu/Gx2nQ+yc7FiYvlBFkXQ7nS6InnvuOVJSUoiLi2PKlCkMHDhQ3bedULKnhEQSuWjPRXpaRETaZeSEkSTlJFG7t2eNPSxLL+OTqz6hdm+tCiLpdjpdEG3atInIyEieeuqpLp+Nura2ljfffJOsrCyysrKoqKhgzpw5XH/99Udt+8orr7B+/XqqqqoIDAxk9uzZTJo0qU3bZ599lmeffZahQ4eycOFCwsKMv01VWVVJKqlUVlUaHUVEehC3QDcVFSJdqNODqg8ePMiIESMssjRHRUUFa9asobGxkXHjxh237ZIlS1i3bh1z5szhscceIyIiggcffJBvvvmmVbsFCxbw3nvv8eGHHzJ27FjuvPNOqquruzx7R4UPDWcRiwgfGm50FBHpIf744w/69evHH3/8YXQUkV6j0z1EYWFhR52luiv4+PjwxRdfYGVlRXl5OWvXrj1qu02bNrF582buv/9+EhISABg5ciSlpaW8+OKLnHvuuebbeFFRUeb9/vrXv/Lll1+yfft2xowZ0+a4e/fuZd++febXeXl5XfnxREROSkBAACtWrCAgQEt3iHSVThdE1113HXfffTepqalER3ftXBjt7XX64YcfcHR0ZOLEia22T5s2jYceeoi0tDRiYmKOeY5jDQb//PPPeeONNzoSudMydmbwLM8yYecELd0hIu3i7e3NwoULjY4h0qt0uiAqKytj7Nix3HrrrZx33nmEhYUdcyHXKVOmdDrg8eTk5BAUFIStbeuPcXh+pJycHGJiYqiqqmLHjh3mW3yfffYZ+/fvZ/jw4Uc97vTp0znrrLPMr/Py8li2bJlFPoNLfxfCCcelv4tFji8ivU9FRQU//vgjZ599Nm5uGkck0hU6XRD985//NPeyfPXVV3z11VdtenZMJhNWVlYWK4gqKirw8/Nrs93F5VBxUVl5aKByc3MzK1euJD8/H1tbW0JDQ3nsscfM7Y7k5eWFl5eXRTIfyW+QH+dzPn6D2n4OEZGj2blzJxdeeCFJSUmMHDnS6DgivUKnC6LFixd3ZY5Oa8/tNXd3d1atWnUK0nRcXX0de9hDXX2d0VFEpIeIiYmhuLj4lP3iJtIXdLogmjp1alfm6BQ3NzcqKirabK+qqgLA1dX1VEfqsKycLF7gBabnTGfImUOMjiMiPYCdnR2+vhpzKNKVOv3YfXcwZMgQ8vLyaGpqarV9165dAISEhBgRq0OGBg3lBm5gaJDWhROR9snLy2Pu3Ll6AlakC3W6h2j37t3tbjto0KDOnua4xo0bx5o1a9i4cWOriRjXrVuHl5dXq0ftOyMxMZHExESLzlfk7OTMYAbj7HT0AekiIkeqr68nNTWV+vp6o6OI9BqdLohmzpzZrvE7VlZWrF+/vsPH/+WXX6ivr6e29tDU9Hl5eWzYsAGAMWPG4ODgwJgxYxg1ahQrVqygtrYWf39/vv32W3799VeWLFly0kuJJCQkkJCQQEZGBvPmzTupYx3L7rLdbGQjM8pmaOkOEWmX8PBwNm3aZHQMkV6l0wXR5MmTj1oQVVdXs3PnTkpKSoiLi8PHx6dTx1+xYkWriR/Xr19vLqzee+898/3zZcuWsWrVKl599VXz0h0PPPDAUZfu6I72le/jd35nX/m+EzcWERERi+h0QXTvvfce8z2TycS7777Lf/7zH+6+++5OHf/9999vVzsnJycWLVrEokWLOnUeo0WFRXEHdxAVdnK390Sk79i6dSvnnHMO69evZ8SIEUbHEekVLDKo2srKiiuuuIKQkBBeeOEFS5xCRKTP8vHx4Z577ul0D7yItGXRp8zCw8NJTk625Cl6vKycLF7iJbJysoyOIiI9xKBBg7jzzjst9sCKSF/U6Vtm7VFUVERzc7MlT2FRp+IpM0cHRwYzGEcHR4udQ0R6l6qqKpKSkoiPjz/mjPsi0jFd3kPU0tLC7t27efPNN/npp5+6fOHXUykhIYHly5dzyy23WOwcAb4BXMAFBPhq1WoRaZ+srCzOOeccsrKyKCgoIC0tzfxeSkoKJSUlANTU1JCcnExd3aGZ8IuKikhNTTW3TU1NpbCwEIC6ujqSk5PNvwCWlJTw7bffsnTpUkpKSkhPTyc/Px+AhoYGkpOTzcsj7d69my1btpiPm5GRQW5uLgCNjY0kJydTXl5uke9CpKt0uiCaMGECEydObPPfueeey1//+ldee+01nJ2duemmm7oyb6/TcLCBAxyg4WCD0VFEpIeIiooiKyuLqKgoHn/8cWbNmmV+b+rUqbz88ssApKWlER8fT1bWoVvyzz33HDNmzDC3veSSS3j66aeBQxPaxsfHk5KSAsCrr77KFVdcYW47e/ZsHn30UeBQsRQfH89vv/0GwOrVqxk/fry57Q033MDSpUsBKC8vJz4+nu+//559B/axmc3sO6CnaqX7sTKZTKbO7Hjrrbce9bF7KysrXFxcCA8PZ9q0aXh4eJx0SKMdnodo1apVhIeHd+mxv179NVOumsK6d9YxefbkLj22iPR+BQUFVFVVmSeiTUlJwcvLC19fX2pqasjIyCAyMhJHR0eKioooLy8399ynpqbi5uZGQEAAdXV1pKenM2zYMPr3709JSQllZWXExsYCkJ6ejrOzM4GBgTQ0NJCamkpoaCiurq7s3r3bPNUKHPqZ2a9fP4KDg2lsbCQlJYUhQ4bw6xe/MvWqqXz1zlf6eSfdTqcLor7EkgVR5veZLJuwjCUblzBs/LAuPbaISHdSklzCyviVzE+aj+9ITUQr3UuPXsusN3Dp78JQhuLSXwMjRUREjNIlT5mlpKSQnZ1NTU0NTk5OhIWFERMT0xWH7vXK9pXxMz9z8b6LtXSHiPRqu/J38TZvk5CfoB4i6XZOqiBKS0vjH//4h/kpBZPJZB5XFBAQwOLFixk+fPjJp+zFdu/dzQY2sHtv+xfLFRHpiWysbehHP2ysT26dSRFL6HRBlJuby9///nfq6+sZPXo0cXFxeHh4cODAAf744w9+++037rjjDl566SWCg4O7MPKpcyrmIRoePpx7uZfh4SocRaR3CwoIYiYzCQoIMjqKSBudLojeeOMNmpqaeOKJJzj99NNbvXfllVeyefNm7r77bt544w3z45c9zalY7V5EpK9obm7mIAd79IS90nt1elD1H3/8wYQJE9oUQ4eNGjWKCRMm8Mcff3Q6XF+QnZvNq7xKdm620VFERCwqNTOVf/APUjNTT9xY5BTrdEFUU1ODr+/xB8UdngdDjq2ffT888KCffT+jo4iIWNRgv8FcyqUM9htsdBSRNjpdEHl6eraaAv5o0tLS8PT07Owp+oTBfoO5mIv1A0JEer0BbgOIIYYBbgOMjiLSRqcLorPPPpstW7bwyiuv0NDQetmJhoYGXnvtNf744w/OPvvskw7ZmzU2NlJDDY2NjUZHERGxqAMVB9jKVg5UHDA6ikgbnR5Ufe211/Lzzz/zzjvv8PnnnxMZGcmAAQM4cOAAO3bsoLy8HD8/P6699tquzNvrpGen8ziPMyl7EoFnBBodR0TEYgqKC/iET7ix+EaiiDI6jkgrnS6IXF1defnll3nhhRf47rvv+OWXX8zv2dvbM3XqVBYsWICrq2uXBO2tggKCmMUsPYYqIr3e8PDhLGGJphmRbumkJmZ0dXVl8eLF3HHHHeTl5VFbW4uTkxNBQUHY2nbJJNiGOhXzELm5uBFBBG4ubhY7h4hId2BtbY0ttlhba9Uo6X46/LfyrbfeYuXKlTQ1NZm32draMnToUGJiYhg6dCgmk4lVq1bxzjvvdGnYUy0hIYHly5dzyy23WOwc+w7sYzOb2Xdgn8XOISLSHeQV5vEu75JXmGd0FJE2OlQQbd68mddeew1XV9fj9gDZ2dnh6urKK6+8QlJS0kmH7M2KSov4gi8oKi0yOoqIiEW1mFpoppkWU4vRUUTa6FBB9PXXX+Pi4sIll1xywrYXX3wxLi4ufPXVV50O1xfERsbyAA8QGxlrdBQREYsKGRzCbGYTMjjE6CgibXSoINq+fTvx8fHY29ufsK29vT2jRo1i+/btnQ4nIiIicip0qCDau3cvfn5+7W7v6+vLvn0aG3M8u/J38TZvsyt/l9FRREQsalv6NpaylG3p24yOItJGhwoia2vrVoOpT6SpqUlPE5yAjbUN/eiHjbWN0VFERCzK38efi7gIfx9/o6OItNGhasXT05OcnJx2t8/JycHLy6vDofqSoIAgZjJT8xCJSK/nOcCTeOLxHKAlnaT76VBBFBsbS3JyMiUlJSdsW1JSQnJyMiNGjOh0uL6gubmZgxykubnZ6CgiIhZVXllOGmmUV5YbHUWkjQ4VRBdffDFNTU3cf//9lJeXH7NdRUUFDzzwAM3NzcyYMeNkM/ZqqZmp/IN/kJp5/IVyRUR6uvyifN7nffKL8o2OItJGh6aTDg8P5/LLL+eDDz7gmmuuYcaMGZx22ml4e3sDhwZdJyUlsWbNGsrLy5k5cybh4eEWCX4qnIqZqgf7DeZSLtVq9yLS60WFRXEXd+Hd7E1J8onvNHRGbVktaR+nEXVJFE7eTl1yTCcvJ9wCtZpAb2dlMplMHdnh8CzU//nPfzjariaTCWtra6688krmzp2LlZVVl4U1SkZGBvPmzWPVqlVdXuCVJJewMn4l85Pm4zvSt0uPLSLSnVTkV/B85PM01jYaHaVD7JzsWJi+UEVRL9fhBcesrKyYP38+F1xwAV9++SXbt29n//79AHh4eBATE8PUqVPx99dTBO1xoOIAW9nKgYoD+KKCSER6r/3N+9l6/lZuu/42Av0DjY7TLmXpZXxy1SfU7q1VQdTLdXoFVn9/f+bNm9eVWfqkguICPuETbiy+kSiijI4jImIxjY2N7D6wmwHhA/Adpl8ApXvp+UvS93DDw4ezhCUMDx9udBQREYsaNmwYGzZsMDqGyFFp1kSDWVtbY4utJrAUERExkP4VNlheYR7v8i55hXlGRxERsagtW7bg7OzMli1bjI4i0oYKIoO1mFpoppkWU4vRUURELMrPz49//vOfHVoTU+RU0Rgig4UMDmE2swkZHGJ0FBERixo4cCC33nqr0TFEjko9RCIickpUVlby9ddfU1lZaXQUkTZUEBlsW/o2lrKUbenbjI4iImJR2dnZTJkyhezsbKOjiLShW2bHcSqW7vD38eciLsLfRxNZikjvNnz4cAoKChg4cKDRUUTaUEF0HAkJCSQkJJiX7rAEzwGexBOP5wBPixxfRKS7sLe3JyAgwOgYIkelW2YGK68sJ400yivLjY4iImJR+fn53HjjjeTna7V76X5UEBksvyif93mf/CL9gBCR3q22tpbk5GRqa2uNjiLShm6ZGSwqLIq7uIuoMK1jJiK9W0REBL///rvRMUSOSj1EBrO1tcUJJ2xtVZuKiIgYRQWRwfKL8vmIj3TLTER6vW3btuHt7c22bZpmRLofFUQGa2xqpJJKGpsajY4iImJRAwcO5LbbbtNj99It6T6NwYYGDeU6rmNo0FCjo4iIWJSPjw/33HOP0TFEjko9RCIickpUV1fz448/WnSyW5HOUkFksO0Z23mER9iesd3oKCIiFpWZmcm4cePIzMw0OopIGyqIDObj7cMkJuHj7WN0FBERi4qKimLHjh24urqSlpZm3r59+3aKi4uBtnMVFRcXs337/35hTEtLo7CwEID6+nqSk5PNPU6lpaV8++23LF26lJKSEnbs2GGeBPLgwYMkJyebF5bds2cPW7ZsMR83MzOTnJwcAJqamkhOTubAgQMW+iakO1JBZDAvDy/GMAYvDy+jo4iIWJSDgwPh4eG88MILXH755ebtF154IS+88AIAO3bsID4+nh07dgDwwgsvcOGFF5rbXn755axYsQKAvLw84uPjzYXN66+/zsyZM81tr776ah555BHgUAEUHx/Ppk2bAHj33Xc566yzzG3nz5/PfffdB0BlZSXx8fGsX7+efQf2kUQS+w7s6+qvQ7oZDao2WFV1FdlkU1VdhS++RscREbG42267jblz55pfr127Fg8PD+DQ5I1JSUlEREQAcNNNNzFr1ixz2w8++ABXV1cAgoKCSEpKYtiwYQBcd911XHDBBcTGxgLw9ttv4+TkBBx6wi0pKYnQ0FAAZs2axfjx483HXblyJXZ2dgC4urqSlJRESEgIv335G2tYw8LShQxnuEW+D+kerEwmk8noEN3d4cVdV61aRXh4eJce++vVXzPlqimse2cdk2dP7tJji4jIySlJLmFl/ErmJ83Hd6R+ae3NdMvMYBGhEfydvxMRGmF0FBERkT5Lt8yOIzExkcTERIs+ImpvZ48bbtjb2VvsHCIi0jk5BTmsZjXnFZynHqJeTj1Ex5GQkMDy5cu55ZZbLHaOwpJC1rCGwpJCi51DREQ6x9rKGhtssLbSP5e9nf4PG6yuvo4SSqirrzM6ioiIHCEoIIhZzCIoIMjoKGJhKogMFhYSxnzmExYSZnQUERE5QktLC0000dLSYnQUsTAVRCIiIsewPWM7y1im1QT6ABVEBkvLSuMxHiMtK+3EjUVE5JQa7DeYi7mYwX6DjY4iFqaCyGBeA7wYy1i8BmimahGR7maA2wBGMIIBbgOMjiIWpoLIYAO9BjKOcQz0Gmh0FBEROcKBigOkkMKBCq1r1tupIDJYTW0NeeRRU1tjdBQRETlCQXEBH/ERBcUFRkcRC1NBZLCdeTt5ndfZmbfT6CgiInKE6GHR3Mu9RA+LNjqKWJgKIoMNGzKMm7mZYUOGGR1FRESOYGNjgz322NjYGB1FLEwFkcEc+jnghRcO/RyMjiIiIkfIK8zjfd4nrzDP6ChiYSqIDFa8u5h1rKN4d7HRUURE5AjNLc000EBzS7PRUcTCVBAZrLqmmp3spLrGcgvIiohI5wwJHMLVXM2QwCFGRxELU0FksGFDhrGQhRpDJCIiYiBbowOIiIh0V9vSt/EgDxLxZQTjGW90nHZz8nLCLdDN6Bg9igoig+3I3sG/+Bfjs8fjO9LX6DgiIvInoVGhTLebTtJ9Sey4b4fRcdrNzsmOhekLVRR1gAoig7m7uRNLLO5u7kZHERGRIww9bShvZr9J7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEHWACiKD+Xj7MIlJ+Hj7GB1FRESOUF5ezvdbvmf8+PG4u7tb7DxDJw+12LGlfTSo2mC1dbUUU0xtneV++xARkc7ZtWsXM2bMYNeuXUZHEQtTQWSw7NxsVrKS7Nxso6OIiMgRYmJi2LNnDzExMUZHEQvTLbPjSExMJDExkepqy80RFBocynzmExocarFziIhI59jZ2eHt7W10DDkF1EN0HAkJCSxfvpxbbrnFYudwcnTCDz+cHE9+IJ2IiHSt3Nxc5syZQ25urtFRxMJUEBmstKyUb/mW0rJSo6OIiMgRGhoayM7OpqGhwegoYmG6ZWaw8opytrGN8opyo6OIiMgRwsPD+fHHH42OIaeAeogMFhEawd/5OxGhEUZHERER6bNUEImIiBzDli1bcHV1ZcuWLUZHEQtTQWSwzF2ZPM/zZO7KNDqKiIgcwdfXl6VLl+Lrq6WVejuNITJYf+f+DGUo/Z37Gx1FRESOMGjQIG677TajY8gpoB4ig/kN8mMKU/Ab5Gd0FBEROUJlZSWJiYlUVlYaHUUsTAWRweob6tnLXuob6o2OIiIiR8jOzua8884jO1urCfR2KogMlrkrk+d4TmOIRES6oejoaHJycoiOjjY6iliYxhAZbGjQUK7jOoYGaaVjEZHupl+/fgQHBxsdQ04B9RAZzNnJmSCCcHZyNjqKiIgcIT8/n4ULF5Kfn290FLEwFUQG27N3Dz/wA3v27jE6ioiIHKGmpoZNmzZRU1NjdBSxMN0yM9jeA3vZxCb2HthrdBQRETlCZGQkycnJRseQU0A9RAaLCoviLu4iKizK6CgiIiJ9lgoiERGRY9i2bRu+vr5s27bN6ChiYSqIDJaVk8VKVpKVk2V0FBEROYK3tzcLFy7E29vb6ChiYRpDZDBHB0d88cXRwdHoKCIicgRfX1+WLFlidAw5BdRDZLAA3wAu4iICfAOMjiIiIkeorq5m06ZNVFdXGx1FLEwFkcEONh6kggoONh40OoqIiBwhMzOTM888k8zMTAoLC0lNTTW/l5qaSlFREQB1dXUkJyebH88vKSkhJSXF3DYtLY2CggIA6uvrSU5OpqqqCoDdu3ezdetWc9uMjAzy8vIAaGxsJDk5mYqKCgDKysr4448/zG2zsrLIyckBoLm5meTkZMory7v6a+gTVBAZbEf2Dv7Fv9iRvcPoKCIicoTIyEi2b99OZGQkTz/9NJdccon5vRkzZvDcc88BhwqT+Ph40tLSAHj55ZeZOnWque2sWbN4/PHHASgsLCQ+Pp6kpCQA3nrrLc455xxz2zlz5vDwww8DsHfvXuLj4/nxxx8BeP/99xkzZoy57f/93/9x7733AofmTIqPj+eHX3/o8u+hL9AYIoOFDA7hKq4iZHCI0VFEROQIjo6O5nXMFi1axJw5c8zvffbZZ7i7uwMQFhZGUlIS4eHhANx4441ceuml5rbvvvsuLi4uAAQEBJCUlERYWBgA11xzDeeff7657RtvvIGDgwMAXl5eJCUlMXTooeWdZs6cyZlnnmlu++KLL2Jre+ifcmdnZ5KSkqgvqOdLvmR/+X588e3Kr6NXszKZTCajQ3R3GRkZzJs3j1WrVpn/sneVkuQSVsavZH7SfHxH6i+uiIicnK9Xf82Uq6aw7p11TJ492eg4PYZumRls7/69/MIv7N2vmapFROTkxUTEcB/3ERMRY3SUHkUFkcFKy0r5lm8pLSs1OoqIiPQCVlZW2GCDlZWV0VF6FBVEBhsePpz/x/9jePhwo6OIiEgvkFuQy7/5N7kFuUZH6VFUEImIiEifp4LIYDvzdvI6r7Mzb6fRUUREpBcIHhzMlVxJ8OBgo6P0KCqIDGZna4crrtjZ2hkdRUREegGTyUQzzegh8o5RQWSwQP9ALuVSAv0DjY4iIiK9QMqOFB7mYVJ2pJy4sZj1uYJo+/btTJgwgTfffNPoKAA0NTVRSy1NTU1GRxERkV4gwDeAGczQGpkd1KcKopaWFp599lkiIyONjmKWlpXGYzxGWlaa0VFERKQX8HD34DROw8Pdw+goPUqfKog+//xzYmJiCAzsPrenAv0DmclM3TITEZEuUV5ZTiqpWuS1g7plQVRbW8uLL77IbbfdxkUXXcT48eN57bXXjtn2mWee4eKLLyYhIYHrr7+eb7/9tk27iooKPvzww1br0HQH7q7uRBGFu6u70VFERKQXyC/K5wM+IL8o3+goPUq3LIgqKipYs2YNjY2NjBs37rhtlyxZwrp165gzZw6PPfYYERERPPjgg3zzzTet2q1cuZKZM2fSv39/S0bvsH0H9pFEEvsO7DM6ioiI9ALRw6JZzGKih0UbHaVH6Zar3fv4+PDFF19gZWVFeXk5a9euPWq7TZs2sXnzZu6//34SEhIAGDlyJKWlpbz44ouce+652NjYkJGRQWZmJrfffnu7zr9371727ftfgZKXl3fyH+oYikqLWMMaFpYuZDiarVpERE6OjY0NDjhgY2NjdJQepVsWRO1df+WHH37A0dGRiRMntto+bdo0HnroIdLS0oiJiWHr1q3k5uYyY8YMAOrq6rC2tqawsJD/9//+X5vjfv7557zxxhsn+zHaJTYylqUsJTYy9pScT0REerf8onw+5EOmFE3Bd6Sv0XF6jG5ZELVXTk4OQUFB2Nq2/hhDhw41vx8TE8OFF17Yqmh6/vnn8fHx4corrzzqcadPn85ZZ51lfp2Xl8eyZcu6/gOIiIh0sabmJmqooalZ07l0RI8uiCoqKvDz82uz3cXFBYDKykoAnJyccHJyMr/fr18/nJyccHNzO+pxvby88PLyskDitnIKcljNas4rOE+VvIiInLQhgUO4lmsZEjjE6Cg9So8uiKD9t9f+7N5777VAks6xtrLGBhusrbrl+HYREZE+oUf/K+zm5kZFRUWb7VVVVQC4urqe6kgdFhQQxCxmERQQZHQUERHpBbR0R+f06IJoyJAh5OXltVn2YteuXQCEhIQYEatDWlpaaKKJlpYWo6OIiEgv4DfIj8lMxm9Q2yElcmw9uiAaN24cdXV1bNy4sdX2devW4eXlRVRU1EkdPzExkcWLF/Pss8+e1HGOZ3vGdpaxjO0Z2y12DhER6Ts8B3gymtF4DvA0OkqP0m3HEP3yyy/U19dTW1sLHHrSa8OGDQCMGTMGBwcHxowZw6hRo1ixYgW1tbX4+/vz7bff8uuvv7JkyZKTnoMhISGBhIQEMjIymDdv3sl+pKMa7DeYi7mYwX6DLXJ8ERHpWyqrKskkk8qqSnzRwzrt1W0LohUrVlBaWmp+vX79etavXw/Ae++9h6/vof/Jy5YtY9WqVbz66qtUVVURGBjIAw88wKRJkwzJ3VED3AYwghEMcBtgdBQREekFcgtz+Tf/5prCawgn3Og4PUa3LYjef//9drVzcnJi0aJFLFq0yMKJLONAxQFSSOFAxQFV8iIictIiQyO5nduJDI00OkqP0qPHEPUGBcUFfMRHFBQXGB1FRER6ATs7O1xwwc7OzugoPYoKIoNFD4vmXu7VInwiItIlCksK+YzPKCwpNDpKj9Jtb5l1B4mJiSQmJlJdXW2xc9jY2GCPvRbhExGRLlHfUE8ZZdQ31BsdpUdRD9FxJCQksHz5cm655RaLnSOvMI/3eZ+8wjyLnUNERPqO0OBQ5jKX0OBQo6P0KCqIDNbc0kwDDTS3NBsdRUREpM9SQWSwIYFDuJqrtQifiIh0idTMVJaznNTMVKOj9CgqiERERHqRgZ4DGcc4BnoONDpKj6KCyGDb0rfxIA+yLX2b0VFERKQX8Pb05izOwtvT2+goPYoKIoP5+/hzARfg7+NvdBQREekFqmuqySGH6hrLPSHdG+mxe4N5DvBkFKO0CJ+IiHSJXfm7eJM3mbpxKv2d+xsdp92cvJxwC3Qz7PwqiI7jVMxDVFFVwQ52UFFVoaU7RETkpMWdHsdtDreRcl8KO+7bYXScdrNzsmNh+kLDiiIVRMdxKla7zyvM413eZU7hHCKIsMg5RESk7xg0bBD3Z9xP7d5ai52jtqyWtI/TiLokCidvp5M+Xll6GZ9c9Qm1e2tVEPVVkaGR3MmdWoRPRES6REFBAY8/8Th33nkngwcPtth5hk4earFjG0GDqg1mZ2eHM85ahE9ERLpEVVUVGzZsoKqqyugoPYoKIoMVFBfwCZ9otXsREekSUVFRbNu2jaioKKOj9CgqiAzWcLCB/eyn4WCD0VFERET6LBVEBgsNDuUGbtAifCIi0iVSUlIICAggJSXF6Cg9igoiERGRXsTLy4u5c+fi5eVldJQeRU+ZHcepmIdoe8Z2/sE/ODPjTHxHah4iERE5Ob6+vixdutToGD2OeoiOIyEhgeXLl3PLLbdY7ByDvAYxkYkM8hpksXOIiEjfUVNTw++//05NTY3RUXoUFUQG8/b05kzO1CJ8IiLSJTIyMhg9ejQZGRlGR+lRVBAZrKq6ip3spKpa80WIiMjJi4yMZOvWrURGasLfjlBBZLCcghze5m1yCnKMjiIiIr2Ao6MjsbGxODo6Gh2lR1FBZLDwoeEsYhHhQ8ONjiIiIr1AUVER99xzD0VFRUZH6VFUEBmsn30/BjCAfvb9jI4iIiK9QHl5OR988AHl5eVGR+lRVBAZrLCkkC/4gsKSQqOjiIhILxAdHU12djbR0dFGR+lRVBAZrK6+jgIKqKuvMzqKiIhIn6WJGY/jVEzMGBYSxgIWEBYSZrFziIhI35Gamsoll1zCxx9/rF6iDlBBdBwJCQkkJCSQkZHBvHnzjI4jIiJyQm5ubkyfPh03Nzejo/QoumVmsLSsNJ7gCdKy0oyOIiIivUBAQACPP/44AQEBRkfpUVQQGczT3ZPTOR1Pd0+jo4iISC9QV1dHamoqdXUam9oRKogMNsh7EBOYwCBvrWUmIiInLz09neHDh5Oenm50lB5FBZHBamprKKCAmlotwiciIidv2LBh/PzzzwwbNszoKD2KCiKD7czbyau8ys68nUZHERGRXqB///6MHTuW/v37Gx2lR1FBZLCwkDBu4iY9di8iIl2ipKSEZcuWUVJSYnSUHkUFkcEcHRwZyEAcHbQIn4iInLyysjKef/55ysrKjI7So6ggMljx7mL+y38p3l1sdBQREekFYmNjKSkpITY21ugoPYoKIoNVVVeRQQZV1VVGRxEREemzVBAZLHxoOLdwC+FDw42OIiIivUB6ejojR44kPT2dhoYGkpOTqaysBGD37t1s2bLF3DYjI4Pc3FwAGhsbSU5Opry8HDh06y05OdncNisri127dgFQWFjIjTfeSFraoUmF9+/fT3JyMi0tLQDs2rWL7Oxs877Jycns3bsXgAMHDpCcnExTUxMAOTk53eLBIhVEx5GYmMjixYt59tlnjY4iIiLSLs7OzowdOxYvLy9KSkqIj4/nt99+A2D16tWMHz/e3PaGG25g6dKlAJSXlxMfH8/3338PwMcff8zo0aPNbW+++WbuvvtuAPLy8li5ciWffvopAF9++SXx8fE0NjYCcMcdd7Bo0SLzvvHx8ea269evJz4+3lyk3Xfffdz1yF1d/0V0kJXJZDIZHaK7O7yW2apVqwgP79qenA0fbOCSmZfw8fsfM/HyiV16bBER6Zvq6upwdHSkoaGB1NRUQkNDcXV1Zffu3ZSUlBAXFwcc+vetX79+BAcH09jYSEpKCkOGDMHd3Z2ysjIKCgoYOXIkcKiHyMbGhiFDhlBYWMjDDz/MokWLiIqKYv/+/eTm5hIXF4e1tTW7du2ipaWF0NBQ4FAPUWBgIF5eXhw4cICcnBxiY2OxtbUlJyeHoi1FfHvJt8xPmo/vSF9DvjMt7mowVxdXoonG1cXV6CgiItJLODoeenK5X79+5oIGYNCgQQwa9L+VEf78S76dnV2rtt7e3nh7e5tfh4X9b3qYgIAAXn75ZfNrDw8PPDw8zK+HDBnSKs+fjztgwAAGDBhgfh0SEkL2L9k8wiOcmXGmYQWRbpkZzHegLwkk4DvQmL8AIiIiRvPx9mESk/Dx9jEsgwoig9XV11FKKXX1WoRPRET6Ji8PL8YwBi8PL8MyqCAyWFZOFi/xElk5WUZHERERMURVdRXZZBs6BY0KIoOFBocyj3mEBocaHUVERMQQOQU5vMM75BTkGJZBBZHBnByd8McfJ0cno6OIiIgYIiI0gr/zdyJCIwzLoILIYLvLdrOe9ewu2210FBEREUPY29njhhv2dvaGZVBBZLD95ftJJpn95fuNjiIiImKIwpJC1rCGwpJCwzKoIDJYZFgkt3M7kWGRRkcRERExRF19HSWUGPrEtQoiERERMVRYSBjzmU9YSNiJG1uICiKDZe7K5AVeIHNXptFRRERE+iwVRAZzdnImmGCcnZyNjiIiImKItKw0HuMx0rLSDMuggshg/j7+TGMa/j7+RkcRERExhNcAL8YyFq8Bmqm6z6pvqGcf+6hvqDc6ioiIiCEGeg1kHOMY6DXQsAxa7f44EhMTSUxMpLq62mLnyNyVybM8ywW7LiBkbIjFziMiItJd1dTWkEceNbU1hmVQQXQcCQkJJCQksG3bNm6++Wby8vK6/Bw2NjbMcp6FjY0NGRkZXX58ERGR7m7T5k287/w+4zePp9m7ucuPHxQUhIODw3HbWJlMJlOXn7mX+e9//8uyZcuMjiEiIiKdsGrVKsLDw4/bRgVRO5SXl/Pbb7/x6aefsmjRonbv9+yzz3LLLbcct01eXh7Lli1jyZIlBAUFnWzUXqE935tRjMhmqXN2xXFP5hid3bcj++ka7JzufA3Cqc/Xna/Bkz1OZ/bt6D7d4TpsTw+Rbpm1g7u7O+effz7ffffdCSvMP+vfv3+72wcFBXXo2L1ZR763U82IbJY6Z1cc92SO0dl9O7KfrsHO6c7XIJz6fN35GjzZ43Rm347u01OuQz1l1gEJCQkWbS+HdOfvzYhsljpnVxz3ZI7R2X07sl93/rvUnXX37+1U5+vO1+DJHqcz+/bWfwt1y8xgGRkZzJs3r133N0Wk6+kaFDFed7gO1UNkME9PT+bMmYOnp6fRUUT6JF2DIsbrDteheohERESkz1MPkYiIiPR5KohERESkz1NBJCIiIn2eCiIRERHp81QQiYiISJ+ngqibO3jwIP/85z+59NJLmTJlCgsWLCAlJcXoWCJ9ytKlS5kxYwZTpkxhzpw5/Pzzz0ZHEumztm/fzoQJE3jzzTe79Lh67L6bq6ur47333mPq1Kl4e3vz9ddf88ILL/DBBx+ccF0WEekaOTk5BAQEYGdnR1paGrfffjvvvvsubm5uRkcT6VNaWlr4v//7P6ysrBg7dizXXnttlx1bPUTdnKOjI3PmzGHQoEFYW1szdepUWlpaKCwsNDqaSJ8REhKCnZ0dADY2NjQ2NrJ3716DU4n0PZ9//jkxMTEEBgZ2+bG1uGsXq62t5c033yQrK4usrCwqKiqYM2cO119//VHbvvLKK6xfv56qqioCAwOZPXs2kyZNOubx8/LyaGhowM/Pz5IfQ6THstQ1+NBDD/H9999z8OBBxowZw5AhQ07FxxHpkSxxHVZUVPDhhx/y0ksv8cwzz3R5ZhVEXayiooI1a9YwdOhQxo0bx9q1a4/ZdsmSJezYsYMbb7yRwYMHk5iYyIMPPkhLSwvnnXdem/b19fU88sgjXHPNNTg5OVnyY4j0WJa6Bu+//36amppITk4mLy8PKysrS38UkR7LEtfhypUrmTlzJv3797dIZhVEXczHx4cvvvgCKysrysvLj/mXYNOmTWzevJn777/fvBLwyJEjKS0t5cUXX+Tcc8/FxsbG3L6pqYkHHniAoKAgrr766lPyWUR6IktdgwC2traMHj2ajz76iICAAMaOHWvxzyPSE3X1dZiRkUFmZia33367xTJrDFEXs7Kyatdvjj/88AOOjo5MnDix1fZp06axd+9e0tLSzNtaWlp45JFHsLa25u6779ZvpiLHYYlr8EgtLS0UFRWdbFSRXqurr8OtW7eSm5vLjBkzuOiii/juu+9YvXo1jzzySJdlVg+RQXJycggKCsLWtvX/gqFDh5rfj4mJAeCJJ55g3759PP74423ai0jntPca3LdvHykpKZxxxhnY2dnx/fff88cff3DjjTcaEVukV2nvdXjhhRe2Kpqef/55fHx8uPLKK7ssi/51NUhFRcVRB0a7uLgAUFlZCUBpaSlr167F3t6e6dOnm9s99thjjBgx4tSEFemF2nsNAnz44Yc8+uijWFlZERAQwNKlSwkNDT1lWUV6q/Zeh05OTq3Gzvbr1w8nJ6cunfpCBZGB2tOd6OPjw/fff38K0oj0Pe25Bj09PXnuuedOQRqRvqkzw0DuvffeLs+hMUQGcXNzo6Kios32qqoqAFxdXU91JJE+RdegiPG603WogsggQ4YMIS8vj6amplbbd+3aBRyaCE5ELEfXoIjxutN1qILIIOPGjaOuro6NGze22r5u3Tq8vLyIiooyKJlI36BrUMR43ek61BgiC/jll1+or6+ntrYWODS79IYNGwAYM2YMDg4OjBkzhlGjRrFixQpqa2vx9/fn22+/5ddff2XJkiVt5j8RkfbTNShivJ52HWpxVwuYOXMmpaWlR33vvffew9fXFzg0XfmqVataTVd+1VVXHXfpDhE5MV2DIsbradehCiIRERHp8zSGSERERPo8FUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIROQk/etf/+Kiiy4yL1EA8NprrzF+/Hj++OMPA5P9zyOPPMLll19OQ0OD0VFEuiWtZSYirZSUlPDXv/71uG1CQ0N57bXXTlGi7q2goIDPP/+c+fPn4+TkZNFzffbZZzz55JNMnz6dO+6447ht586dS2ZmJqtWrSI8PJxrr72WxMREPvjgA6666iqL5hTpiVQQichR+fv7c9555x31PU9Pz1Ocpvt6/fXXsbe3Z8aMGRY/V0JCAs8//zzfffcdt9xyC/369Ttqu507d5KZmUlYWBjh4eEABAQEcPbZZ/Pvf/+bSy+9FEdHR4vnFelJVBCJyFH5+/tz/fXXGx2jWysvL+f7779n4sSJFu8dAnB2dmbChAl8/fXXbNy4kfPPP/+o7dauXQvAtGnTWm0///zz2bhxI99++y0XXnihxfOK9CQaQyQiJ238+PHceuutlJeXs3z5cqZPn05CQgILFiw45hia2tpaXnvtNa655hoSEhKYNm0ad9xxB9u2bWvT9tZbb2X8+PEcPHiQV199lSuuuIJzzjmn1W27jRs3Mm/ePBISEpgxYwaPPfYYVVVVzJw5k5kzZ5rbPfLII4wfP5709PSj5nrxxRcZP34833///Qk/97fffsvBgweZOHHiCdsetnPnTi6++GIuuugi0tLSzNuLi4t59NFHueyyy5g0aRJ/+ctf+Mc//tFmtfALLrgAgK+++uqox29sbCQxMRF7e/s2BdOYMWNwdHTkyy+/bHdekb5CBZGIdInq6mpuuukmdu7cyXnnncf48ePJyMjgjjvuYNeuXa3aVlZW8n//93+88cYbuLq68pe//MXcftGiRfzwww9HPceSJUv48ssvGTFiBJdffjl+fn4AfPHFF9x3330UFRUxefJkpkyZQmpqKrfddhtNTU2tjjF9+nTgf70of9bU1MTXX3+Nh4cHZ5555gk/c1JSEgDR0dEn/oKArVu3csstt2BjY8Nzzz1HVFQUAGlpacydO5d169YRHh7OZZddxogRI/jmm2+48cYbKS4uNh8jLi6OgIAAkpOTKSkpaXOOn376iYqKCsaPH4+Li0ur9+zs7Bg2bBjp6enU1dW1K7NIX6FbZiJyVEVFRcccOB0dHc0ZZ5zRalt2djZ/+ctf+Nvf/oa19aHftUaOHMljjz3Gxx9/3GoQ8FNPPUVOTg6LFy9udVtn//79zJ8/n8cff5zRo0e3GSOzb98+Xn/9dVxdXc3bqqqqeOaZZ3BycuKVV14xF0nz5s3jrrvuIiMjAx8fH3P7mJgYQkJC+Pbbb7n55ptbjaX5+eef2b9/P1deeSW2tif+8bh9+3a8vb0ZMGDACdv+8MMPPPjgg/j5+fHEE08wcOBA4FARtnTpUlpaWli1ahWhoaHmfbZt28aiRYt45plnWL58uXn7tGnTWLlyJevWreO6665rdZ4vvvgC+F9P0pHCw8PZunUr6enpjBw58oS5RfoK9RCJyFEVFRXxxhtvHPW/X3/9tU17R0dHFixYYC6GAKZMmYKNjQ07duwwbysvL2f9+vXEx8e3GePi4eHBFVdcQXl5ubn35c+uu+66VsUQwI8//khdXR0XXnihuRgCsLW15YYbbjjqZ5s+fTq1tbV89913rbavXbsWKyurdo2vaWxspLy8vF3F0Nq1a7n//vsJCwvjueeeMxdDcKgIKy0t5YorrmhVDAHExsZy1lln8csvv1BTU2Pefvh7/eqrrzCZTObte/fuZfPmzfj4+Byz2Dmct6ys7IS5RfoS9RCJyFGNHj2aJ554ot3tAwIC2gwstrW1xcPDg+rqavO2HTt20NzczMGDB4/aA1VYWAhAXl5em9tWkZGRbdrv3LkTgOHDh7d5LzIyEhsbmzbbzz//fF566SXWrl1r7kkpKyvj999/N9+SOpGKigqANreljvT+++/z008/MWbMGB566CEcHBxavZ+amgpAfn7+Ub+P/fv309LSQkFBAREREQB4eXlxxhln8PPPP5OcnEx8fDxwaFxRc3Mz06ZNw8rK6qh5DheUh/OLyCEqiESkSzg7Ox91u42NDS0tLebXlZWVAKSkpJCSknLM49XX17fZ5uHh0Wbb4Z4Td3f3Nu9ZW1vj5ubWZruLiwvnnHMO69atIzc3l+DgYL788kuam5vb/fTV4dt5J5ro8PAg8TPOOKNNMQSHbvkBfPPNN8c9zpHfxwUXXMDPP//MV1991aogsra2ZurUqcc8zuG8x3pkX6SvUkEkIqfU4cLpr3/9KwsXLuzQvkfr9Th8vPLy8jbvtbS0UFFRgbe3d5v3pk+fzrp161i7di0LFy7kq6++wtXVlfHjx7cri4uLC7a2tuYC71juvvtu3nrrLZ555hmsra25+OKLW71/uFdt+fLl7RrIfdjYsWPx8PBg48aN/P3vfyc7O5vCwkJGjx7NoEGDjrnf4bxHKyBF+jKNIRKRUyoiIgIrKyvzraKTNXToUODQAOcjpaen09zcfNT9hg8fzpAhQ/j666/55ZdfKC4u5rzzzutQz0lISAilpaVtnmT7MxcXF/71r38xbNgw/vWvf/Hxxx+3ev/wk2Yd/T5sbW2ZPHkyDQ0NfPvtt+ZH6Y81mPqwgoICAIYMGdKh84n0diqIROSU8vT05JxzzmH79u385z//aTUo+LC0tLSj3jI7mrPPPhtHR0fWrl3b6vH0pqYmXn311ePue9FFF1FRUcHjjz8O0OHJCuPi4jh48KB5HNOxuLi4sGLFCiIiInjqqaf46KOPWuUfNGgQ7733Hlu2bGmzb1NT01HnZoL/FT+ffvopGzZswM3NjbPPPvu4WdLS0vD09GTw4MEn+HQifYtumYnIUR3vsXvgpGaxvu222ygoKODFF1/k66+/Jjo6mv79+7Nnzx4yMjIoLCzkk08+OeqYmyO5uLhw88038/jjjzN37lzOPfdcnJ2d+eWXX7C3t8fLy+uYA4wnT57Myy+/zN69e4mKijL3NrXXuHHj+OCDD0hKSjIvkXG8nE8++SS33347Tz/9NCaTicsuuwx7e3seeugh7rrrLm699Vbi4+MJCQkBYPfu3Wzbtg03NzfeeeedNscMDAwkJibGPBbrwgsvxM7O7pgZioqKKCkp4S9/+UuHPqdIX6CCSESO6vBj98dyMgWRq6srL7zwAh9//DHfffcdiYmJtLS04OHhQWhoKNdee+1RB0Mfy0UXXYSLiwtvv/0269atw9nZmbPOOosFCxZw+eWX4+/vf9T9+vfvz9lnn01iYmKnlrKIi4sjMDCQ//73v1x55ZUnbH+4p+j222/nmWeewWQycfnllxMZGclrr73Gf/7zH3755RdSUlKws7PDy8uLcePGMWnSpGMe84ILLjAXREdOY3Ck//73v8D/JqcUkf+xMh2tv1pEpBcoLCzkyiuv5JxzzuHBBx88aptrrrmG3bt388knn3RqPbLPP/+cJ554gpdeesk8Hqg7ampqYvbs2fj4+PD0008bHUek29EYIhHp8aqqqjh48GCrbQ0NDTz33HPAoVtbR7Np0yZyc3OZPHlypxdnveCCCwgKCuL111/v1P6nyn//+19KS0u56aabjI4i0i3plpmI9Hhbtmzh0Ucf5fTTT2fgwIFUVFSQnJxMaWkpI0eO5Nxzz23V/tNPP2XPnj2sWbOGfv36ccUVV3T63DY2Ntxzzz38+uuv1NbWnpJV7zvDysqKO++884RjnUT6Kt0yE5Eer6CggFdffZXt27eb5yPy9/fn3HPPZdasWW0epZ85cyZlZWUMHjyYBQsWdGj+HxHpnVQQiYiISJ+nMUQiIiLS56kgEhERkT5PBZGIiIj0eSqIREREpM9TQSQiIiJ9ngoiERER6fNUEImIiEifp4JIRERE+rz/D+lLeKBtdJtKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = \"Best fit convolved with response\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=np.sqrt(expectation.project('Em').todense().contents), color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(crab.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Source counts\")\n", + "ax.errorbar(binned_energy, crab.binned_data.project('Em').todense().contents, yerr=np.sqrt(crab.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "28b9380a-6e72-4cb9-9cd5-1fdb44bd2dcf", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response plus the fitted background, as well as the simulated source+background counts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "29823cda-ca7b-4c5c-ac11-681bfaf12ba8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAHDCAYAAABsyc0zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB82UlEQVR4nO3deVyVZf7/8deRHQWURUEQRDY33HBcyq1ETUutLMvUtEWzspy+NuaUrWPLWGll06KW2m7aNKmVFaXmZFpKrigiIgKCgrLvy/n94c8zoaiA4M2B93Me83h07nPd9/0+x3Pgw3Vf93WZzGazGRERERG5opoZHUBERESkKVIRJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAFWEiIiIiBlARJiIiImIAW6MDNGYjRoyo9LioqIj777+f22+/3aBEIiIi0lCYtHbklZGRkcGtt97Kxx9/TNu2bY2OIyIiIgbT5cgr5IcffqBLly4qwERERATQ5UiLgoICVq5cSVxcHHFxcWRnZzN16lTuvvvuKtsuW7aMjRs3kpubi7+/PxMnTmTo0KEXPP7333/PzTffXJ8vQURERKyIesL+v+zsbNatW0dpaSkDBw68aNt58+axYcMGpk6dyoIFC+jYsSPPPvssP/zwQ5Xt4+PjSUpKYsiQIfWQXERERKyResL+P29vb77++mtMJhNZWVmsX7++yna//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY1NpX2+++47rr76alxcXKqdp6ioiMTERAICAnB0dKz9CxMREZEGST1h/5/JZMJkMl2y3ZYtW3BycjqvV2vUqFFkZGQQExNTaXtFRQVRUVEMHz78osfNyMggNjbW8v+ff/6ZadOmkZiYWOPXIiIiIg2fesJqKCEhgYCAAGxtK791QUFBlufDw8Mt23fu3ElZWRl9+/a96HHXrl3LihUr6jyviIiINEwqwmooOzu7yjscz15qzMnJqbT9+++/Z+jQoecVbecaM2YMV199teVxYmIi8+fPr4PEIiIi0hCpCKuF6ly2POuJJ56oVjtPT088PT1rG0lERESsjMaE1ZCbmxvZ2dnnbc/NzQXA1dX1SkcSERERK6QirIY6dOhAYmIiZWVllbYfOXIEgMDAQCNiiYiIiJVREVZDAwcOpLCwkM2bN1favmHDBjw9PencubNByURERMSaaEzYn2zbto2ioiIKCgqAM4PjN23aBEC/fv1wdHSkX79+9O7dm4ULF1JQUICvry8//vgj27dvZ968eefNESYiIiJSFS3g/Sfjx48nLS2tyudWrVqFj48PcGbZoqVLl1ZatmjSpEkXXbaopmJjY5k2bRpLly4lLCyszo4rIiIiDYOKsAZKRZiIiEjjpjFhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiABVhIiIiIgZQESYiIiJiAE3WKiKVZB/LpiCjwOgYNeLs6Yybv5vRMUREakRFmIhYZB/LZkHHBZwqPIUPZyYnPsUpmtGMVrSiggrSSKMVrXDCiQIKyCILH3wwYeI0pwFwxx0zZlJJpSUtccaZQgrJJBNvvGlGMzLJpIIKPPAAIJVUXHGlOc0poojTnKYNbbDBhiyyKKMMTzwBSCONFv//f8UUU+ZYxhOxT6gQExGroiJMRCwKMgrYVbiLH2x/IHF7IgDj7x+PRysPHnvhMXLzcgkbHMa7L73L6GGjWbV2FQueXcCx7cewtbVlyiNTAFi5aCVlZWX49/Vn0dOLuG3Mbaz7YR33zb2P2M2xuLRw4f7H7+dU5ik+f/tzANr3a8/T//c0d42/i6gtUdz51zv5Y8MftPFqw+znZnPoyCHWrVgHQOdrOjPzrplMv3M6H6/4mL8t/hu37r2Vv/j/xZg3TkSkFlSEiUglXejCrJWz8Ol1pifs/Y/ex9bWFp9AH1qXt2bnzp0EBgbSqlUrJgdMZtCYQfj19MNkMvH2+28D4BPkg9lsZufOnQQEBODh4cGtgbfSe1hvgroHYWNjw6K3F1FWVoZPyJnzbNu+DT8/P7y8vBgTNIadA3fSJbwLdnZ2vPj6ixQVFeETdqbtpp834e3tTZs2bbgu8zoOLj6Ip7unMW+YiEgtqQgTEYuc3BxSSCHAN8CyLSQkxPLfNjY29OrVy/LYw8MDDw8Py+OgoCDLf5tMpkptW7VqRatWrSyPAwMDK527Z8+elv92c3OrtG9AQECltt27d/9fhlYetKMdjg6O1XuRIiINhIqwBiYqKoqoqCjy8vKMjiJN0NHko3zCJ9yZfCdhWMeapSlpKXzDN1yfdr1lHJuIiDVQEdbAREZGEhkZaVnAW+RK6hTcidnMplNwJ6OjVFt+QT5HOUp+Qb7RUUREakTzhImIhZ2dHS64YGdnZ3SUagvtEMoDPEBoh1Cjo4iI1IiKMBGxSE5N5iu+Ijk12egoIiKNnoowEbEoKi4inXSKiouMjlJtB+IO8CqvciDugNFRRERqREWYiFgEtw/mXu4luH2w0VGqzb2lO73ohXtLd6OjiIjUiIowEbFqbbzacA3X0MarjdFRRERqREWYiFjsP7Sfl3iJ/Yf2Gx2l2goKC0ghhYJC61rvUkRERZiIWLT2aM1ABtLao7XRUart8NHDLGUph48eNjqKiEiNqAgTEQsvDy+u5mq8PLyMjlJtIYEhzGAGIYEhl24sItKAqAgTEYu8/DwSSCAv33pWbHBydMIbb5wcnYyOIiJSIyrCRMTiyLEjrGQlR44dMTpKtaWeTCWKKFJPphodRUSkRrRskUg9yj6WTUFGAdm52SQmJ9IpuBN2dnYkHU+iuKTYMhXEvth9tPFsg5eHF7l5uSQkJRAWFIaDvQPJqckUFhVaLrfFxMXg0dKDNl5tyC/IJz4xnpDAEJwcnTh+4ji5ebmEBZ1Z9zE2PhZXF1d8WvtQWFRIXEIcwe2DcXZy5kT6CU5nnaZTyJklig4dOURpWikP8ZBVzT6fk5vDfvaTk5tjdBQRkRpRESZST+L/iGd239mEloaSRBKf8Rl/4280pzlf8iWnOc093APAC7zAEIZwFVcRTzwf8iGzmEUrWvE1X5NEEjOYAcArvMJf+AuDGUwSSbzHezzAA7SmNd/zPbHE8hAPAfA6r9OFLkQSSRppvMM7TGMavviykY1EE81sZgPwFm/RnvaMdR6Lu6/1zLkVFhTGLGZZCk8REWuhIkyknhyOOcza0rV8+o9PuXvg3UxNnmrpCRt5fGSlnrCrYq+q1BM2MWmipSdsVOqoSj1hA+IGVOoJuzXxVktP2A0nbqjUEzY4fnClnrAbE2609ISNTR9bqSdsyJEhNHduTkjXENz83Yx500REmhAVYSL1pFunbjzN0wwaNQifXj50pKPlOZ9ePpXa/vmxDz6EElrp8YXaAgQPCK522w5Xdah2W2sRGx/LYhYzOH6w1b4GEWmaVISJiFVzaeFCGGGUppaSGm09g/OdPZ3V4yjSxKkIE6knR44d4UM+JPJYpHpo6lFwl2CGOw1nzaw1bGQjDjiQSy755OONNwDppGOHHS1pSRllnOQk7rjjiCN55JFLrqVnMIMMbLChFa0op5wTnKAVrXDCiXzyySabtrQF4BSnMGHCHXcqqCCNNFrSEmecKaCALLLwxptmNOM0pzFjxgMPAPId83ki9gkVYiJNmIowkXpi08wGBxywaWZjdJRGzc3fjRFrR9B/WH/WLl9L7269eW3Za/z783+z6/tdAAy/YzgR3SKYM3cOSceT6Du6L5+99RmD+g7i3Y/e5Z0l73Do50MAjL17LIHtAnns2cc4lXmK8Mhwli9czojBI/jwiw9Z+M+FJP2WBMCEByfg0tyFuQvmUlBYQPCAYP71/L+46bqb+OKbL1jw5AISfk3Awd6Bex69h5KSEj5840Nit8dyzQPXcOveW/mL/1+MeutExGAms9lsNjqEnC82NpZp06axdOlSwsJ015c1So1OZUnEEqbvnK6esHpWWFjIgQMHCA0NpUWLFqSmppKenk63bt0AOHDgAM2bN8ff35/i4mL2799PcHAwrq6unDhxgtTUVHr06AGc+e45ODjQvn17SktL2bt3Lx06dKBly5akp6eTlJREr169AIiLi8PGxoYOHTpQXl7O7t27ad++Pe7u7pw+fZqjR4/So0cPmjVrxpEjR6ioqCA4OJh9P+7jr5F/5bWo1+g6tKtRb5uIGEw9YSL1pLy8nBJKKC8vNzpKo+fk5GQpjAB8fHzw8flf4dupUyfLfzs4OFRq26ZNG9q0aWN5/Oc/euzs7Cq19fLywsvrf0s6hYT8b6kkGxubSm3d3d1xd//fVB8dOvzvpgiPVh4MZCAerTxq9kJFpFHRjPki9WT/of28wAvsP7Tf6CjSwGTlZBFDDFk5WUZHEREDqQgTqSft2rZjHONo17ad0VGkgTmWcozP+ZxjKceMjiIiBtLlyAYmKiqKqKgo8vKsZwFlqVort1aEE04rt1ZGR5EGpnNIZ+Ywh84hnY2OIiIGUhHWwERGRhIZGWkZmC/WKzM7k93sJjM787yJUaVps7W1xRlnbG31I1ikKdPlSJF6knQ8iS/5kqTjSUZHkQbmWMoxvuALXY4UaeJUhInUk65hXZnHPLqGaQoCqay0rJQccigtKzU6iogYSEWYSD1p1qwZttjSrJm+ZlJZUEAQd3EXQQFBRkcREQPpt4NIPUlMTuQzPiMxOdHoKCIi0gCpCBOpJxXmCsopp8JcYXQUaWD2xe7jeZ5nX+w+o6OIiIFUhInUk8B2gUxkIoHtAo2OIg2Mt5c3QxmKt5e30VFExEAqwkRErjBPd0/60Q9Pd0+jo4iIgVSEidSTPQf28AzPsOfAHqOjSAOTm5fLYQ6Tm5drdBQRMZCKMJF64uvty2hG4+vta3QUaWASkhL4iI9ISEowOoqIGEhFmEg98WjlQQQReLTyMDqKNDAdgzvyCI/QMbij0VFExEAqwkTqSVZOFjHEkJWTZXQUaWDs7exxww17O3ujo4iIgVSEidSTYynH+JzPtTSNnCc5NZl1rCM5NdnoKCJiIBVhIvWkc0hn5jCHziGdjY4iDUxhUSGppFJYVGh0FBExkIowkXpia2uLM87Y2toaHUUamJDAEKYznZDAEKOjiIiBVISJ1JNjKcf4gi90OVJERKqkIkyknpSWlZJDDqVlpUZHkQYmJi6GBSwgJi7G6CgiYiAVYSL1JCggiLu4i6CAIKOjSAPj2cqT/vTHs5VmzBdpylSEiYhcYa09WzOQgbT2bG10FBExkIowkXqyL3Yfz/M8+2L3GR1FGpj8gnwSSSS/IN/oKCJiIBVhIvXE28uboQzF28vb6CjSwMQnxrOc5cQnxhsdRUQMpCJMpJ54unvSj354umvcj1QW2iGUmcwktEOo0VFExEAqwkTqSW5eLoc5TG5ertFRpIFxdHDEE08cHRyNjiIiBtIskiL1JCEpgY/4iElJkwhFPR7yP8dPHGcta7nqv1cBcPDwQVq6tcTby5uCwgIOHz1McPtgnJ2cSUtPIys7y7LY96Ejh2jRvAVt27SlqLiIQ0cOERQQRHPn5pzMOElGZoZllYa4hDicHJ3w8/GjpLSEg4cPEtguEJcWLmScziAtPY2uYV2BM5dI7Wzt8Pf1p6ysjJi4GPx9/Wnp2pJTmadISUuh38B+uPm7GfOmiTRCKsIamKioKKKiosjLyzM6ilymjsEdeYRHLL88Rc5yaOlAsimZH2b9wFa2sohFdKMbQxnKcY6zhCVMZzptacuP/Mge9vAIjwDwL/5FEEFcx3VkkMGbvMld3EUAAWxhC7/yK3OYA8ASluCDD6MZTTbZLGIRk5hEMMFsYxs/8iNP8AQAy1mOK66MYxwFFLCABYxnPJ3pzE52so51PO/8PA8eeFCFmEgdMZnNZrPRIeR8sbGxTJs2jaVLlxIWFmZ0HKmF1OhUlkQsYfrO6fj08jE6jjQwh6MP05zmgHX0hO3/dT8Hnzyoz7NIHVJPmEg9SU5NZh3rGJU6Ch/0S0sqC+4VbPnvc4uaoKv/N8HvuZ+dc9sG9g+sdtuAvgGV2oYTfsG27fq0q9Q2Jy+HJ3mSYUnDVISJ1BENzBepJ4VFhaSSSmFRodFRRC5bM1MzbLChmUm/NkTqir5NIvUkJDCE6UwnJDDE6Cgily3AL4DbuZ0Av4BLNxaRalERJiIil1RRUUEZZVRUVBgdRaTRUBEmUk9i4mJYwAJi4mKMjiJy2fbF7mM+87UMl0gdUhEmUk88W3nSn/54ttKM+WL92rVtx03cRLu27S7dWESqRUWYSD1p7dmagQyktWdro6OIXLZWbq3oTndaubUyOopIo6EiTKSe5Bfkk0gi+QX5RkcRuWyZ2ZnsZS+Z2ZlGRxFpNFSEidST+MR4lrOc+MR4o6OIXLak40l8wRckHU8yOopIo6EiTKSehHYIZSYzCe2gdSPF+nUJ7cLjPE6X0C5GRxFpNFSEidQTRwdHPPHE0cHR6Cgil83GxgZ77LGxsTE6ikijoSJMpJ4cP3GcDWzg+InjRkcRuWyJyYl8zuckJicaHUWk0VARJlJP8vLziCeevPw8o6OIXLbyinKKKaa8otzoKCKNhoowkXoS2iGUB3lQY8KkUejg34HJTKaDfwejo4g0GirCRERERAygIkyknhw8fJBFLOLg4YNGRxG5bHsO7OFZnmXPgT1GRxFpNFSEidSTlm4t6UY3Wrq1NDqKyGXz9fbleq7H19vX6CgijYaKMJF64u3lzVCG4u3lbXQUkcvm0cqD3vTGo5WH0VFEGg0VYSL1pKCwgOMcp6CwwOgoIpctOzebgxwkOzfb6CgijYaKMJF6cvjoYZawhMNHDxsdReSyJSYn8hmfaZ4wkTqkIkykngS3D2Y60wluH2x0FJHL1im4E3/jb3QK7mR0FJFGw9boAE3F119/zUcffcTp06fx8vLin//8J76+GuBaE/t+3Uezoma0cmtFZnYmSceT6BrWlWbNmpGYnEiFuYLAdoHAmTu5fL198WjlQVZOFsdSjtE5pDO2trYcSzlGaVkpQQFBZ44buw9vL2883T3JzcslISmBjsEdsbezJzk1mcKiQkICQwCIiYvBs5UnrT1bk1+QT3xiPKEdQnF0cOT4iePk5edZ5gXbtWUXbrjh7ORszBsmUofs7OxoTnPs7OyMjiLSaKgIuwJ++eUX1qxZw4svvkhAQAApKSm4uroaHcuq7Pt1H+FXhXMd19GPfuxmN1/yJfOYhy22fMZnlFPORCYC8AzPMJrRRBBBDDF8zufMYQ7OOPMFX5BDDndxFwDP8zxDGUo/+nGYw3zERzzCI7jhxjrWkUoq05kOwAIW0J/+DGQgiSSynOXMZCaeeLKBDcQTz4M8CMDrvE532+7YuuprJtYv6XgSX/IlI4+PxKeXj9FxRBoF/Xa4AlauXMnMmTNp3749AH5+fsYGskItbVsyi1nc9PZNhPYJJTM7k/uO32fpCRuRPKJST1i/A/0q9YTdnXK3pSfsupTrKvWEXRV7VaWesElJkyw9YaNSR1XqCRsQN6BST9htibdZesJuOHFDpZ6wQYcH4dXOC69gL2PeNJE6VFxSzGlOU1xSbHQUkUajQRdhe/bs4cMPP2T//v2UlJTg5eXFddddx5QpU+rtnAUFBaxcuZK4uDji4uLIzs5m6tSp3H333VW2XbZsGRs3biQ3Nxd/f38mTpzI0KFDLW3Ky8uJi4sjPj6eF154ARsbG0aOHMnUqVMxmUz19joaGxsbG1rRitA+ofj08sEHHzrT2fL8uX+Z//mxDz50olO124YSWunxhdoCBA8IrnZbEWsW3D6Ye7hHYxxF6lCDLcJ++OEHnn/+ea655hqeeOIJnJycOH78OBkZGfV63uzsbNatW0dQUBADBw5k/fr1F2w7b948Dh48yH333Ue7du2Iiori2WefpaKigmHDhgGQmZlJeXk5v//+OytWrCAvL4/Zs2fj7e3NyJEj6/W1NCaJyYl8zueMSB6h4kZERBqFBlmEpaen88orrzBmzBj+7//+z7K9V69eF90vPz+fvXv30q9fvyqf37p1Kz179sTJyemCx/D29ubrr7/GZDKRlZV1wSLs119/ZceOHTz11FNERkZa8qWlpfH2229z7bXXYmNjg4ODAwATJ07ExcUFFxcXxowZw2+//aYirAbKK8opppjyinKjo4g0Sfti9/ECL3BV7FX6Q0ikjjTIKSrWr19PYWEhd9xxR433mzt3Lt9+++15z3311Vf8/e9/57vvvrvoMUwmU7UuE27ZsgUnJyeGDBlSafuoUaPIyMggJiYGABcXFzw9Pav/IqRKHfw7MJnJdPDvYHQUkSapjWcbhjCENp5tjI4i0mg0yJ6w3bt34+rqyrFjx3j88cdJSEjAxcWFQYMGcf/999O8efMq97vttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJk7nxxhvrJGNCQgIBAQHY2lZ+C4OCgizPh4eHAzBy5Eg+/fRTQkNDycvLY/369dx5551VHjcqKoqoqCjy8vLqJKeISF3w8vDiKq7Cy0M3mojUlQZZhGVkZFBUVMRTTz3FpEmT6NKlCwcPHuT9998nISGBN99884K9VTNnzsTBwYFXX32VkpISSkpKePfdd7nnnnvqdEB/dnY2bdu2PW+7i4sLADk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+32HNjDszxLvwP9dClExAC5ebnEE09uXu55N6GISO00yCKsoqKCkpISpk6dyqRJkwDo2bMntra2LF68mJ07d9K7d+8L7j9t2jTs7e1ZvHgxAPfffz8TJkyo85zVvbvRzs6OOXPmMGfOnDrP0FT4evtyPdfj660JbkWMkJCUwId8yMSkiZXuIBaR2muQY8Lc3NwA6NOnT6XtZwfcHzp06JLHyMvLsxRJ9XFpz83Njezs8xeyzc3NBdBkrHXMo5UHvemNRysPo6OINElhQWHMYhZhQWFGRxFpNBpkEdahQ9WDr81mM3DxHiiz2cyiRYtYvXo1jz32GLNnz+ajjz7iX//6V51nTExMpKysrNL2I0eOABAYGFin52vqsnOzOchBsnPPL3xFpP452DvQilY42DsYHUWk0WiQRdjgwYMB2L59e6Xt27ZtA6BLly5V7ldRUcGCBQtYu3YtTz75JKNGjWLs2LHMnTuXNWvWsHDhQkshd7kGDhxIYWEhmzdvrrR9w4YNeHp60rlz5wvsKbWRmJzIZ3xGYnKi0VFEmqTk1GS+5muSU5ONjiLSaDTIMWF9+vThqquuYuXKlVRUVFgG5q9YsYKrrrqKbt26VbnfqlWr+P7773nuuecYOHCgZfvIkSOxt7dn/vz5BAQEMG7cuIuef9u2bRQVFVFQUABAYmIimzZtAs5cEnV0dKRfv3707t2bhQsXUlBQgK+vLz/++CPbt29n3rx52NjY1M2bIQB0Cu7E3/gbnYI7XbqxiNS5wqJCkkiisKjQ6CgijYbJXFddQ3WsuLiY5cuXExUVxalTp/D09GTYsGFMnToVe3v7C+4TFxdH165dq3x+7969dOzYETs7u4uee/z48aSlpVX53KpVq/DxOXNnUEFBAUuXLq20bNGkSZMqLVtUW2fvjly6dClhYRqDkRqdypKIJUzfOV13R4oYQN9BkbrXIHvCABwcHJgxYwYzZsyo0T4XKsAAy7xdl/L5559Xq52zszOzZs1i1qxZ1WovtZd0PIkv+ZKRx0fqF4CIiDQKDXJMmMi5ikuKOc1pikuKjY4i0iTFxMXwCq8QExdjdBSRRkNFmFiF4PbB3MM9BLcPNjqKSJPk0dKDv/AXPFpqmhiRuqIiTERELqmNVxsGM5g2Xlo7UqSuqAgTq7Avdh8v8AL7YvcZHUWkScovyOcgBzmVeQqA5ORk9u/fb3l+//79pKSkAFBYWEh0dDT5+fkApKamsnfvXkvbmJgYkpKSACgqKiI6Otoy0fWJEyfYvXu3pW1sbCyJiWempiktLSU6OtoyUXZ6ejp//PGHpW1cXBwJCQkAlJeXEx0dTWZmZt2+ESJ1SEWYWIU2nm0YwhDaeOqvcBEjZGZn8hmfsf2n7aRGp/L8488z5voxpEankhqdyg3X3cBL814iNTqVrWu3EhERwc///pnU6FReeeYVRkSOsLS9ZewtPPO3Z0iNTiX6u2giIiL4/tPv2fXdLm4deyuDBgyytJ1460T+PuvvpEansv+n/URERLB2xVpSo1NZ+upS+vXtZ2l796S7eeT+R0iNTiX+l/gzbT9ba/RbJ3JBDXaKiqZOU1RUptvjRYyVfSyb58Oex77IHjvsyCabYoppTWsATnISRxxxxZVSSkknHU88sceeXHIpoIA2tLG0dcABN9wsbT3woIQStrKVYIIJIgiADDKwxZaWtKScck5wAnfcccSRfPLJIceyoPgpTtGMZrSiFRVUkEYarZ1a8+jBR3HzdzPmjRO5iAY7RYXIn+Xm5RJPPLl5uZYfuCJy5bj5u/FE7BMUZBTU63lmM7vOjhX3WxwL719I8uFkFWHSIKkIE6uQkJTAh3zIxKSJhBJqdByRJsnN382qipk9B/bwFV9xf+r9dKHq5e5EjKQxYWIVwoLCmMUswoJ0aVZEqie8YzhP8iThHas3UbfIlaYiTKyCg70DrWiFg72D0VFExEqYTCZssMFkMhkdRaRKKsLEKiSnJvM1X5Ocmmx0FBGxEkeTjvIJn3A06ajRUUSqpCJMrEJhUSFJJFFYVGh0FBERkTqhIkysQkhgCDOYQUhgiNFRRMRKtG/Xnju4g/bt2hsdRaRKKsJERKRRMpvNlFOOpsOUhkpFmFiFmLgYXuEVYuJijI4iIlZi78G9/IN/sPfg3ks3FjGAijCxCh4tPfgLf8GjpYfRUUTESvj5+DGWsfj5+BkdRaRKKsLEKrTxasNgBtPGS2tHikj1uLd0pyc9cW/pbnQUkSqpCBOrkF+QTxJJ5BfkGx1FRKxEVk4W+9lPVk6W0VFEqqQiTKxCfGI87/Ee8YnxRkcREStxLOUYq1nNsZRjRkcRqZKKMLEKIYEhPMADmqJCRKqtS2gX5jKXLqFaN1IaJhVhYhWcHJ1oTWucHJ2MjiIiVsLGxgZHHLGxsTE6ikiVVISJVTh+4jjf8z3HTxw3OoqIWIljKcdYwxpdjpQGS0WYWIXcvFxiiSU3L9foKCJiJcrKy8gnn7LyMqOjiFRJRZhYhbCgMB7iIcKCwoyOIiJWooN/B6YwhQ7+HYyOIlIlFWEiIiIiBrA1OoBUFhUVRVRUFHl5eUZHaVBi42N5ndcZHD8Yn14+RscREStwdtmi/gf76+eGNEgqwhqYyMhIIiMjiY2NZdq0aUbHaTBcXVzpQhdcXVyNjiIiVqJtm7aMYARt27Q1OopIlXQ5UqyCT2sfIonEp7X+mhWR6vFo5UEf+uDRSmvOSsOkIkysQmFRIWmkUVhUaHQUEbESObk5HOIQObk5RkcRqZKKMLEKcQlxvMM7xCXEGR1FRKzE0eSjfMInHE0+anQUkSqpCBOrENw+mGlMI7h9sNFRRMRKdAruxGxm0ym4k9FRRKqkIkysgrOTM7744uzkbHQUEbESdnZ2uOCCnZ2d0VFEqqQiTKzCifQTbGQjJ9JPGB1FRKxEcmoyX/EVyanJRkcRqZKKMLEKp7NOE000p7NOGx1FRKxEUXER6aRTVFxkdBSRKqkIE6vQKeT/j+0I0dgOEame4PbB3Mu9GksqDZaKMBEREREDqAgTq3DoyCHe4i0OHTlkdBQRsRL7D+3nJV5i/6H9RkcRqZKKMLEKzZ2b0572NHdubnQUEbESrT1aM5CBtPZobXQUkSqpCBOr4OvtyyhG4evta3QUEbESXh5eXM3VeHl4GR1FpEoqwsQqFBUXcYpTustJRKotLz+PBBLIy88zOopIlVSEiVU4dOQQi1msMWEiUm1Hjh1hJSs5cuyI0VFEqqQiTKxCB/8OTGEKHfw7GB1FRKxEaIdQHuIhQjuEGh1FpEoqwsQqtGjegkACadG8hdFRRMRKODo44oEHjg6ORkcRqZKKMLEK6afS+YVfSD+VbnQUEbESKWkpfMM3pKSlGB1FpEoqwsQqnDx1ki1s4eSpk0ZHERErkV+Qz1GOkl+Qb3QUkSqpCBOr0CW0C3OZS5fQLkZHERErEdohlAd4QGPCpMFSESYiIiJigFoXYQkJCWzYsIH8/P918xYXF/Pqq69y8803M2HCBNatW1cnIUUOHz3MMpZx+Ohho6OIiJU4EHeAV3mVA3EHjI4iUqVaF2Effvgh7777Ls7OzpZtS5YsYe3atRQUFHDy5EleffVVdu7cWSdBpWlzdHDECy/d5SQi1ebe0p1e9MK9pbvRUUSqVOsi7MCBA/Ts2ROTyQRAWVkZ33zzDZ06deKrr75i1apVtGzZks8//7zOwkrT5efjx1jG4ufjZ3QUEbESbbzacA3X0MarjdFRRKpU6yLs9OnTtGnzvw92TEwMBQUFjB07FgcHBzw9Pbn66qs5fFiXj+TylZaWkksupaWlRkcREStRUFhACikUFBYYHUWkSrUuwmxsbCr9QtyzZw8mk4mePXtatrm5uZGdnX15CUWAA4f//9iOwxrbISLVc/joYZayVGNJpcGqdRHm7e3NH3/8YXm8adMmfHx88Pb2tmxLT0/Hzc3t8hKKAO392nMHd9Der73RUUTESoQEhjCDGYQEhhgdRaRKtrXdcfjw4bz99tvMmDEDW1tbDh8+zKRJkyq1OXToEH5+GsMjl8/VxZVQQnF1cTU6iohYCSdHJ7zxxsnRyegoIlWqdU/YzTffzJAhQzh48CB79+7lL3/5C5MnT7Y8f+DAAY4ePUqvXr3qJKg0bacyT/Ebv3Eq85TRUUTESqSeTCWKKFJPphodRaRKte4Js7e359lnnyU/Px+TyVRpqgoAHx8f3nvvvUqXJ0Vq6/iJ43zHd8w6MYuudDU6johYgZzcHPazn5zcHKOjiFSp1j1hu3bt4sSJEzRv3vy8AgygZcuWuLq66u5IqRPhHcN5kicJ7xhudBQRsRJhQWHMYhZhQWFGRxGpUq2LsL/+9a98++23F23zww8/8Ne//rW2pxARERFptGpdhJnN5mq1OTuZq8jlOHLsCCtZyZFjR4yOIiJWIjY+lsUsJjY+1ugoIlWq1wW8k5OTad68eX2eQpoIWxtbmtMcW5taD2MUkSbGpYULYYTh0sLF6CgiVarRb7SXXnqp0uMtW7aQlpZ2Xrvy8nLS09PZvXs3ffv2vbyEIoC/rz+3cAv+vv5GRxERK9G2TVuGM5y2bdoaHUWkSjUqwv48BsxkMnH48OELDrw3mUx07NiRmTNnXl7CRuLrr7/mo48+4vTp03h5efHPf/4TX19fo2NZjfLycoooory83OgoImIlCosKOclJCosKjY4iUqUaFWGrVq0Czoz1uv3227n11lu55ZZbzmvXrFkzXFxccHLSBHkAv/zyC2vWrOHFF18kICCAlJQUXF016WhN7D+0n5d4iSGHhuD3F00ALCKXFpcQx1u8xZiEMXS4qoPRcUTOU6Mi7M9zfs2dO5fQ0FDNA1YNK1euZObMmbRv3x5AqwjUgr+vP7dyqy5Hiki1BQUEcQ/3EBQQZHQUkSrVepTzyJEj6zLHRa1fv54FCxbg5OTEd999V6/nKigoYOXKlcTFxREXF0d2djZTp07l7rvvrrLtsmXL2LhxI7m5ufj7+zNx4kSGDh1qaVNeXk5cXBzx8fG88MIL2NjYMHLkSKZOnao7R2ugpWtLutCFlq4tjY4iIlaiuXNz2tGO5s66QUwapsu+1SwmJoaDBw+Sl5dHRUXFec+bTCamTJlS6+Onp6fz1ltv4enpSX5+/uVErZbs7GzWrVtHUFAQAwcOZP369RdsO2/ePA4ePMh9991Hu3btiIqK4tlnn6WiooJhw4YBkJmZSXl5Ob///jsrVqwgLy+P2bNn4+3tfUULWWt3Ous0f/AHp7NO44OP0XFExAqcSD/BZjYzNn2sfm5Ig1TrIiwnJ4fHH3+cffv2XXTOsMstwl599VW6deuGq6srmzdvvmjb/Px89u7dS79+/ap8fuvWrfTs2fOiY9W8vb35+uuvMZlMZGVlXbAI+/XXX9mxYwdPPfUUkZGRAPTq1Yu0tDTefvttrr32WmxsbHBwcABg4sSJuLi44OLiwpgxY/jtt99UhNVAcmoyX/EV96feTxe6GB1HRKzAqaxT/M7vnMrSmrPSMNW6CHvzzTfZu3cvPXr04LrrrqN169bY2NjUZTa+//57du3axQcffMCyZcsu2X79+vW8/fbbPPbYY+cVOF999RULFy7kkUce4cYbb7zgMap7iXDLli04OTkxZMiQSttHjRrFc889R0xMDOHh4bi4uODp6VmtY8qFadkiEampziGdeZRH6RzS2egoIlWqdRH266+/0qlTJ1577bV6GduUmZnJ4sWLue+++2jdunW19rnttttIT0/npZdeoqSkhLFjxwKwevVqFi9ezOTJky9agNVEQkICAQEB2NpWfguDgoIsz4eHnykYRo4cyaeffkpoaCh5eXmsX7+eO++8s8rjRkVFERUVRV5eXp3kbCxMJhM22GgcnYiINBq1LsJKSkro3r17vf1SXLhwIe3atatx0TRz5kwcHBx49dVXKSkpoaSkhHfffZd77rnnsi6Lnis7O5u2bc+fANDF5czMzDk5OZZtU6dOZdGiRYwbNw5nZ2dGjx7N8OHDqzxuZGQkkZGRxMbGMm3atDrLa+2OJh3lEz5heNJwfHppbIeIXFpcQhzv8A7XJFyjnxvSINW6CAsJCalytvy6sGnTJrZu3cp7771XqyJv2rRp2Nvbs3jxYgDuv/9+JkyYUNcxq53Nzs6OOXPmMGfOnDrPICIiVXNydKId7XBy1JyV0jDVeu3Iu+66i19++YX9+/fXZR4KCgp47bXXuPnmm/Hw8CA3N5fc3FzKysoAyM3NpbDw0rMf5+XlWYqk+ri05+bmRnZ29nnbc3NzATQZax1r3649d3AH7du1NzqKiFgJPx8/rud6/Hw0N6M0TLXuCUtPT6d///48/PDDDBs2jJCQkAsu1n3ddddV+7jZ2dmcPn2aVatWWWbo/7Prr7+eAQMG8MILL1S5v9ls5rXXXuOrr77iscceo7S0lIULF1JSUsKDDz5Y7RyX0qFDB6KioigrK6s0LuzIkSMABAYG1tm55My/aznlF70TV0Tkz4pLikkhhUO/HQIg/VQ6JzJO0DWsKwCHjx7Gwd6Bdm3bUVpayoHDBwjwC8DNxY1TmadISUuhW6duABw5dgSbZjYE+AVQXl7O/kP7ade2Ha3cWpGZnUnS8SS6hnWlWbNmJCYnUmGuILDdmd8Dew7swdfbF49WHmTlZHEs5RidQzpja2vLsZRjlJaVWiaU3Re7j8CwQIJ7BRvwjsmVVusi7MUXX8RkMmE2m/n222/59ttvz7s8ZzabMZlMNSrC3N3def3118/b/vHHH7Nr1y5efvll3Nzcqty3oqKCl19+mQ0bNvDkk09aJk21t7dnwYIFFBcX88gjj9TJOLaBAweybt06Nm/eXGly1g0bNuDp6Unnzrobpy7tPbiXf/APrj54NW0jtBiviFxanjmPpSzl9P2nCSecrWxlE5t4nMcBeI/3cMedm7iJfPJ5mZe5ndvpSEd2sIOv+ZqneRqAD/kQBxwYz3hKKOEFXmAc4wgnnP3sJ510BjAAW2z5jM8op5yJTATgGZ5hNKOJIIIYYvicz5nDHJxx5gu+IIcc7uIuAJ7neYbbDefjwx/j5l/17zppPGpdhM2dO7cuc1g4ODjQs2fP87Z/++232NjYVPncWatWreL777/nueeeY+DAgZbtI0eOxN7envnz5xMQEMC4ceMummHbtm0UFRVRUFAAQGJiIps2bQKgX79+ODo60q9fP3r37s3ChQspKCjA19eXH3/8ke3btzNv3rw6n66jqfPz8WMsY3VZQUSqrWv/ruzduhf7UntcWrhw06mbKvWEXXv02ko9YUMPD7X0hI3LHMfMtJmWnrDIY5GVesIGHRpk6Qk7fuQ4f3zyB4OnD6ZF6xaMSB5RqSes34F+lXrC7k6529ITdl3KdZV6wjpt6MTvT/xOQUaBirAmwGS2kus7L7zwAps3b77oskXFxcXExcXRtWvXKp/fu3cvHTt2xM7O7qLnGj9+/AVvOli1ahU+PmfusikoKGDp0qWVli2aNGlSpZ6x2jp7d+TSpUsJCwu77ONZu9ToVJZELGH6zum6y0lEGq1DPx/iH4P/wZObnyR0UKjRcaSeWU0R1tSoCKvswKYDPH3N0zy78Vk6DelkdBwRkXrx3cffcd2k69jw0QZGTBxhdBypZ7W+HHnixIlqt23Tpk1tTyMCwLGUY6xmNfek3EMnVISJSOPUMbgjj/AIHYM7Gh1FroBaF2Hjx4+v1gB3k8nExo0ba3saEQC6hHZhLnPpEqp1I0Wk8bK3s8cNN+zt7I2OIldArYuwESNGVFmE5eXlER8fT2pqKj169MDb2/uyAooA2NjY4IijbngQkUYtOTWZdaxjVOoofND418au1kXY448/fsHnzGYzn332GZ9++imPPfZYbU8hYnEs5RhrWMN1KddpYL6INFqFRYWkkkph0aUnJRfrV+sZ8y/GZDIxYcIEAgMDeeutt+rjFNLElJWXkU8+ZeVlRkcREak3IYEhTGc6IYEhRkeRK6BeirCzwsLCiI6Ors9TSBPRwb8DU5hCB/8ORkcRERGpE/VahKWkpFBeXl6fpxAREWk0YuJiWMACYuJijI4iV0CdF2EVFRWcOHGClStX8ssvv9Cli+5mk8t3dtmivQf3Gh1FRKTeeLbypD/98WzlaXQUuQJqPTB/8ODBF52iwmw206JFCx544IHankLEom2btoxgBG3baN1IEWm8Wnu2ZiADae3Z2ugocgXUugjr3r17lUWYyWTCxcWFsLAwRo0ahbu7+2UFFAHwaOVBH/rg0crD6CgiIvUmvyCfRBLJL8g3OopcAbUuwt544426zCFyUTm5ORziEDm5OZo7R0QarfjEeJaznNsSbyN4QLDRcaSe1evAfJG6cjT5KJ/wCUeTjxodRUSk3oR2CGUmMwntoMW7m4Ja94T92d69ezl8+DD5+fk4OzsTEhJCeHh4XRxaBIBOwZ2YzWw6BWvdSBFpvBwdHPHEE0cHR6OjyBVwWUVYTEwML7zwAsnJycCZwfhnx4n5+fkxd+5cunbtevkppcmzs7PDBRfs7OyMjiIiUm+OnzjOBjZww4kbNPSiCah1EXb06FEeeeQRioqK6NOnDz169MDd3Z3MzEz++OMPfvvtNx599FHeeecd2rdvX4eRpSlKTk3mK77Semoi0qjl5ecRTzx5+XlGR5EroNZF2IoVKygrK+OVV17hL3/5S6Xn7rjjDnbs2MFjjz3GihUreOaZZy43pzRxRcVFpJNOUXGR0VFEROpNaIdQHuRBjQlrImo9MP+PP/5g8ODB5xVgZ/Xu3ZvBgwfzxx9/1DqcyFnB7YO5l3sJbq+7hUREpHGodRGWn5+Pj8/FLwv5+PiQn6+5TkRERKrj4OGDLGIRBw8fNDqKXAG1LsI8PDzYv3//RdvExMTg4aHJNeXy7T+0n5d4if2HLv6ZExGxZi3dWtKNbrR0a2l0FLkCal2EDRgwgF27drFs2TKKi4srPVdcXMz777/PH3/8wYABAy47pEhrj/+/lIeHlvIQkcbL28uboQzF28vb6ChyBdR6YP6UKVPYunUrH330EWvXrqVTp060atWKzMxMDh48SFZWFm3btmXKlCl1mVeaKC8PL67marw8vIyOIiJSbwoKCzjOcQoKC4yOIldArXvCXF1deffdd7nuuusoKipi27ZtfPvtt2zbto2CggJGjhzJ22+/jaura13mlSYqLz+PBBJ027aINGqHjx5mCUs4fPSw0VHkCrisyVpdXV2ZO3cujz76KImJiRQUFODs7ExAQAC2tnUyGb8IAEeOHWElK5lwbAIhhBgdR0SkXgS3D2Y603UneBNR40rpgw8+oKioiLvvvttSaNna2hIUFGRpU1paytKlS3FycmLSpEl1l1aarNAOoTzEQ5o7R0QaNWcnZ9rSFmcnZ6OjyBVQo8uRO3bs4P3338fV1fWiPV12dna4urqybNkydu7cedkhRRwdHPHAQ+upiUijlpaexo/8SFp6mtFR5AqoURH23Xff4eLiws0333zJtjfddBMuLi58++23tQ4nclZKWgrf8A0paSlGRxERqTdZ2VnsYQ9Z2VlGR5EroEZF2L59+4iIiMDe3v6Sbe3t7enduzf79u2rdTiRs/IL8jnKUfILNPmviDReHYM78giP0DG4o9FR5AqoURGWkZFB27Ztq93ex8eHU6dO1TiUyLlCO4TyAA9oTJiIiDQaNSrCmjVrRllZWbXbl5WV0axZrWfBEBERaVIOHTnEv/gXh44cMjqKXAE1qpA8PDxISEiodvuEhAQ8PT1rHErkXAfiDvAqr3Ig7oDRUURE6k2L5i0IIogWzVsYHUWugBoVYd26dSM6OprU1NRLtk1NTSU6Opru3bvXOpzIWe4t3elFL9xbuhsdRUSk3rRt05bruI62bao/9EesV42KsJtuuomysjKeeuopsrKyLtguOzubp59+mvLycsaOHXu5GUVo49WGa7iGNl5tjI4iIlJvioqLyCCDouIio6PIFVCjyVrDwsK49dZbWb16NXfeeSdjx46lZ8+eeHmdWc8vIyODnTt3sm7dOrKyshg/fjxhYWH1ElyaloLCAlJI0XpqItKoHTpyiDd5kxuO3EBg/0Cj40g9q/GM+Q8++CD29vZ8+umnfPjhh3z44YeVnjebzTRr1oxJkyZx77331llQadoOHz3MUpYy7ug4gq4OuvQOIiJWKCggiLu4i6AA/ZxrCmpchJlMJqZPn87111/PN998w759+zh9+jQA7u7uhIeHM3LkSHx9fes8rDRdIYEhzGAGIYFaN1JEGq/mzs0JIIDmzs2NjiJXQK1X2fb19WXatGl1mUXkgpwcnfDGGydHJ6OjiIjUm5MZJ9nCFm7MuBEffIyOI/VMk3iJVUg9mUoUUaSevPSduSIi1iojM4Nf+ZWMzAyjo8gVoCJMrEJObg772U9Obo7RUURE6k3nkM7MYQ6dQzobHUWuABVhYhXCgsKYxSzCgnS3rYiINA4qwq6Qr7/+mgkTJjBixAgmTZpESkqK0ZFERKSBiUuIYwlLiEuIMzqKXAG1Hpgv1ffLL7+wZs0aXnzxRQICAkhJScHV1dXoWFYlNj6WxSxmcPxgfHppsKqINE5Ojk744KObkJoIFWFXwMqVK5k5cybt27cHwM/Pz9hAVsilhQthhOHSwsXoKCIi9cbPx4/RjMbPR78nmoIGWYTFxcWxdOlSjhw5QlZWFg4ODvj7+3PTTTcxfPjwej13QUEBK1euJC4ujri4OLKzs5k6dSp33313lW2XLVvGxo0byc3Nxd/fn4kTJzJ06FBLm/LycuLi4oiPj+eFF17AxsaGkSNHMnXqVEwmU72+lsakbZu2DGe41lMTkUatpLSEbLIpKS0xOopcAQ2yCMvLy6N169ZERkbi6elJUVERP/zwA/Pnzyc1NZUpU6bU27mzs7NZt24dQUFBDBw4kPXr11+w7bx58zh48CD33Xcf7dq1IyoqimeffZaKigqGDRsGQGZmJuXl5fz++++sWLGCvLw8Zs+ejbe3NyNHjqy319HYFBYVcpKTFBYVGh1FRKTeHDx8kEUsYsThEQT0DTA6jtSzBlmE9ezZk549e1badtVVV5Gamsq6desuWITl5+ezd+9e+vXrV+XzW7dupWfPnjg5Xfhau7e3N19//TUmk4msrKwLFmG//vorO3bs4KmnniIyMhKAXr16kZaWxttvv821116LjY0NDg4OAEycOBEXFxdcXFwYM2YMv/32m4qwGohLiOMt3mJMwhg6XNXB6DgiIvUisF0gk5hEYDutG9kUWNXdkW5ubtjY2Fzw+fXr1zN37ly+/fbb85776quv+Pvf/85333130XOYTKZqXSbcsmULTk5ODBkypNL2UaNGkZGRQUxMDAAuLi54enpe8nhycUEBQdzDPVpPTUQaNZcWLgQTrPGvTUSD7Ak7q6KigoqKCvLy8ti4cSO//fYbf/3rXy/Y/rbbbiM9PZ2XXnqJkpISxo4dC8Dq1atZvHgxkydP5sYbb6yTbAkJCQQEBGBrW/ktDAoKsjwfHh4OwMiRI/n0008JDQ0lLy+P9evXc+edd1Z53KioKKKiosjLy6uTnI1Fc+fmtKOd1lMTkUYt43QG29jGzadv1rJFTUCDLsIWLlzI2rVrAbCzs2PWrFmWwupCZs6ciYODA6+++iolJSWUlJTw7rvvcs8999TpWLLs7Gzatj1/kLiLy5m/XnJy/jez+9SpU1m0aBHjxo3D2dmZ0aNHX/AGg8jISCIjI4mNjdXanH9yIv0Em9nM2PSx+sEkIo1WWnoaP/IjaelphBNudBypZw26CJs8eTI33HADmZmZbN26lddee43CwkImTJhw0f2mTZuGvb09ixcvBuD++++/5D61Ud27G+3s7JgzZw5z5syp8wxNxamsU/zO75zKOmV0FBGRetM1rCtP8ARdw7oaHUWugAZdhLVp04Y2bdoA0L9/fwCWLFnCyJEjadmy5UX3zcvLw2QyYTab6+XSnpubG9nZ2edtz83NBdBkrHWsc0hnHuVRracmIiKNhlUNzO/UqRPl5eUcP378gm3MZjOLFi1i9erVPPbYY8yePZuPPvqIf/3rX3WapUOHDiQmJlJWVlZp+5EjRwAIDNSdLSIiUjPxifEsZznxifFGR5ErwKqKsD/++INmzZpVORYLzgzkX7BgAWvXruXJJ59k1KhRjB07lrlz57JmzRoWLlyI2WyukywDBw6ksLCQzZs3V9q+YcMGPD096dxZPTZ1KS4hjnd4R+upiUijZmdrhyuu2NnaGR1FroAGeTny5ZdfxtnZmU6dOuHu7k5WVhabNm3ip59+YsKECRe8FLlq1Sq+//57nnvuOQYOHGjZPnLkSOzt7Zk/fz4BAQGMGzfuoufftm0bRUVFFBQUAJCYmMimTZsA6NevH46OjvTr14/evXuzcOFCCgoK8PX15ccff2T79u3MmzfvolNpSM05OTrRjnZaT01EGjV/X3/GMQ5/X3+jo8gV0CCLsC5duvDNN9+wYcMG8vLycHJyIjg4mHnz5l102aKbb76Z8PBwunY9f0Dj0KFDad26NR07drzk+RcuXEhaWprl8caNG9m4cSNwptDz8Tlzd978+fNZunQp7733nmXZoqeffrrSskVSN/x8/Lie67Wemog0amVlZRRQcN5QF2mcGmQRNmrUKEaNGlXj/RwcHKoswM46O2/XpXz++efVaufs7MysWbOYNWtWtdpL7RWXFJNJJsUlxUZHERGpNzFxMSxgAdfGXUu7Pu2MjiP1zKrGhEnTFRsfy+u8Tmx8rNFRRETqjb+vP+MZr8uRTYSKMLEKge0CmcxkracmIo1aS9eWdKYzLV1bGh1FrgAVYWIVXFq4EESQ1lMTkUbtVOYpdrKTU5mamLopUBEmViH9VDpb2Ur6qXSjo4iI1JuUtBTWsY6UtBSjo8gVoCJMrMKJjBNsYhMnMk4YHUVEpN5069SNZ3gGlxYulsm/KyoqiI6O5vTp0wCcPn2a6OhoysvLgTOThMfF/W8OxejoaNLTz/zBmpWVRXR0NKWlpQAcPXqU2Nj/ja3dtWsXJ06c+bmak5NDdHQ0xcVnboA6duwYBw4csLTds2cPqampwJlVaaKjoyksLAQgOTmZY8eO1f0b0sipCBOr0DWsK4/zuNZTE5EmYe7Tc5l570xSo1M59tsxIiIi+OStT0iNTuWzdz4jIiKCo9uOkhqdyqzps5h25zRSo1NJjU6lT58+LH9tOanRqfxn+X+IiIgg9udYUqNTeeyhx5h822RL24EDBvL2P98mNTqVbz/+loiICHb/sJvU6FSeevQpxt803tJ22LXDeO0fr5EancrGNRuJiIhg+/rtpEan8vhfH2foNUMtBZ1Uj8lcV1PIS52KjY1l2rRpLF26lLCwMKPjGC41OpUlEUuYvnM6Pr18jI4jIlIvso9l869O/yKtIA0TJtxxp4IK0kijJS1xxpkCCsgiC2+8aUYzTnMaM2Y88ADgOMdxw43mNKeQQjLJpA1tsMGGTDIppxxPPAFIJRUXXGhBC4oo4jSnaU1rbLEliyxKKcULLwDSSKM5zXHBhWKKOcUpvPDCDjuyycbJyYk5B+fg5u9m2PtnbRrkPGEi5zp89DDv8R7XHr1WRZiINFpu/m48eOBBCjIKjI5SI+kH0vly0pcUZBSoCKsBFWFiFRzsHXDHHQd7B6OjiIjUKzd/N6srZM7O5Tg4frD+UK4BjQkTq9CubTtu4ibatdUM0iIiDY2riytd6IKri6vRUayKijCxCqWlpeSTb7nDR0REGg6f1j5EEolPa/WC1YSKMLEKBw4f4GVe5sDhA5duLCIiV1RhUSFppFFYVGh0FKuiIkysQoBfALdzOwF+AUZHERGRc8QlxPEO7xCXEHfpxmKhIkysgpuLGx3piJuLdQ1WFRFpCoLbBzONaQS3DzY6ilVRESZW4VTmKXawQ+upiYg0QM5Ozvjii7OTs9FRrIqKMLEKKWkpfM3XWk9NRKQBOpF+go1s5ES6ZsyvCRVhYhW6derG0zxNt07djI4iIiLnOJ11mmiiOZ112ugoVkVFmIiIiFyWTiGdmM1sOoV0MjqKVVERJlbhyLEjfMiHHDl2xOgoIiIidUJFmFgFm2Y2OOCATTMbo6OIiMg5Dh05xFu8xaEjh4yOYlVUhIlVCPALYDzjNU+YiEgD1Ny5Oe1pT3Pn5kZHsSoqwsQqlJeXU0IJ5eXlRkcREZFz+Hr7MopR+Hr7Gh3FqqgIE6uw/9B+XuAF9h/ab3QUERE5R1FxEac4RVFxkdFRrIqKMLEK7dq2YxzjaNe2ndFRRETkHIeOHGIxizUmrIZUhIlVaOXWinDCaeXWyugoIiJyjg7+HZjCFDr4dzA6ilVRESZWITM7k93sJjM70+goIiJyjhbNWxBIIC2atzA6ilVRESZWIel4El/yJUnHk4yOIiIi50g/lc4v/EL6qXSjo1gVFWFiFbqGdWUe8+ga1tXoKCIico6Tp06yhS2cPHXS6ChWRUWYWIVmzZphiy3NmukjKyLS0HQJ7cJc5tIltIvRUayKfqOJVUhMTuQzPiMxOdHoKCIiInVCRZhYhQpzBeWUU2GuMDqKiIic4/DRwyxjGYePHjY6ilVRESZWIbBdIBOZSGC7QKOjiIjIORwdHPHCC0cHR6OjWBUVYSIiInJZ/Hz8GMtY/Hz8jI5iVVSEiVXYc2APz/AMew7sMTqKiIico7S0lFxyKS0tNTqKVVERJlbB19uX0YzW4rAiIg3QgcMHeJVXOXD4gNFRrIqKMLEKHq08iCACj1YeRkcREZFztPdrzx3cQXu/9kZHsSq2RgcQY2Qfy6Ygo8DoGNUWvyOeGGLIysnCBx+j44iIyJ+4urgSSiiuLq5GR7EqKsKaoOxj2fyr07/IK8jjFKfwwgs77Mgmm2KKaU1rAE5wAieccMWVEkrIIANPPLHHnhxyKKSQNrQB4CQnccABN9wopZR00vHAAwccyCWXfPLxxhuAdNKxw46WtKSMMk5yEnfcccSRPPLIJddSaGWQgQ02FFLI53zOA/kP0IlOxrxxIiJSpVOZp/iN3xiXOU5/KNeALkc2QQUZBZQWlBL6ZChLWMKIL0Ywfed08ifmE9Uhiuk7pzN953TW+ayj/J5ypu+czqCPBrGEJQz6aBDTd06n/J5y1vmss7SN6hBF/sR8pu+czogvRrCEJfRZ1ofpO6dj/6A9n7f83NL2v53/S8bNGUzfOZ0bv7mRJSyh2+JuTN85HddHXfnA8QNL250RO0kamcS87fNI2J3A1SOuNvrtExGRcxw/cZzv+I7jJ44bHcWqmMxms9noEHK+2NhYpk2bxtKlSwkLC6vTY+/+fjezR8zmuf88h2M7Rzp37oyjoyPJycnk5OTQuXNnAPbt24e7uztt27aloKCAgwcP0rFjR5ydnTl+/DinT5+ma9czaznGxMTg6uqKn58fRUVFxMTEEBoaSosWLUhLS+PkyZN069YNgIMHD+Ls7Iy/vz8lJSXs27eP4OBgXF1dOXnyJMePH6dHjx4AHDp0CDs7OwIDNT+YiEhDlRqdypKIJUzfOR2fXuoJqy5djmyCMjIz+JVfKSwq5KpeV1m2+/lVnt/lbIEF4OzsTK9evSyP27ZtS9u2bS2PzxZuAI6OjpXaent74+3tbXncsWNHy3/b29tXatu6dWtat25teRwaGlrj1yciImINdDmyCeoc0pk5zKFzSOdLNxYREbmEI8eOsJKVHDl2xOgoVkVFmIiIiFwWWxtbmtMcWxtdYKsJFWFNUFxCHEtYQlxCnNFRRESkEfD39ecWbsHf19/oKFZFRVgT5OTohA8+ODk6GR1FREQagfLycoooory83OgoVkVFWBPk5+PHaEZroVUREakT+w/t5yVeYv+h/UZHsSoqwpqgktISssmmpLTE6CgiItII+Pv6cyu36nJkDakIa4IOHj7IIhZx8PBBo6OIiEgj0NK1JV3oQkvXlkZHsSoqwpqgwHaBTGISge00AaqIiFy+01mn+YM/OJ112ugoVkVFWBPk0sKFYIJxaeFidBQREWkEklOT+YqvSE5NNjqKVVER1gRlnM5gG9vIOJ1hdBQREWkEwjuG8yRPEt4x3OgoVkVFWBOUlp7Gj/xIWnqa0VFERKQRMJlM2GCDyWQyOopVURHWBHUN68oTPEHXsK6XbiwiInIJR5OO8gmfcDTpqNFRrIqKMBEREREDqAhrguIT41nOcuIT442OIiIijUD7du25gzto36690VGsioqwJsjO1g5XXLGztTM6ioiINAJms5lyyjGbzUZHsSoqwpogf19/xjFOMxuLiEid2HtwL//gH+w9uNfoKFZFRVgTVFZWRgEFlJWVGR1FREQaAT8fP8YyVmsS15CKsCYoJi6GBSwgJi7G6CgiItIIuLd0pyc9cW/pbnQUq6IirAny9/VnPON1OVJEROpEVk4W+9lPVk6W0VGsioqwJqila0s601kLrYqISJ04lnKM1azmWMoxo6NYFRVhV8jXX3/NhAkTGDFiBJMmTSIlJcWwLKcyT7GTnZzKPGVYBhERaTy6hHZhLnPpEtrF6ChWxdboAE3BL7/8wpo1a3jxxRcJCAggJSUFV1dXw/KkpKWwjnU8mPYgXdGs+SIicnlsbGxwxBEbGxujo1gV9YRdAStXrmTmzJm0b98ek8mEn58fLi4uhuXp1qkbz/AM3Tp1MyyDiIg0HsdSjrGGNbocWUMNsids586d/PDDD+zbt4+TJ0/SokULwsLCmDp1KmFhYfV67oKCAlauXElcXBxxcXFkZ2czdepU7r777irbLlu2jI0bN5Kbm4u/vz8TJ05k6NChljbl5eXExcURHx/PCy+8gI2NDSNHjmTq1Kla6FRERBqFsvIy8smnrFxTH9VEg+wJ++qrr0hNTeWWW25hwYIFPPzww2RlZTFjxgx27txZr+fOzs5m3bp1lJaWMnDgwIu2nTdvHhs2bGDq1KksWLCAjh078uyzz/LDDz9Y2mRmZlJeXs7vv//OihUreP311/nhhx/YsGFDvb6Oi0lISuBjPiYhKcGwDCIi0nh08O/AFKbQwb+D0VGsSoPsCXvkkUdo1apVpW19+vThjjvu4KOPPiIiIqLK/fLz89m7dy/9+vWr8vmtW7fSs2dPnJycLnhub29vvv76a0wmE1lZWaxfv77Kdr/++is7duzgqaeeIjIyEoBevXqRlpbG22+/zbXXXouNjQ0ODg4ATJw4ERcXF1xcXBgzZgy//fYbI0eOvOR7UR+amZphgw3NTA2yBhcREWkSGuRv4XMLMABnZ2cCAgI4efLkBfdbv349c+fO5dtvvz3vua+++oq///3vfPfddxc9t8lkqtZlwi1btuDk5MSQIUMqbR81ahQZGRnExJyZCNXFxQVPT89LHu9KCvAL4HZuJ8AvwOgoIiLSCGjZotppkD1hVcnLyyMuLo6ePXtesM1tt91Geno6L730EiUlJYwdOxaA1atXs3jxYiZPnsyNN95YJ3kSEhIICAjA1rbyWxgUFGR5Pjw8HICRI0fy6aefEhoaSl5eHuvXr+fOO++s8rhRUVFERUWRl5dXJzmrUlFRQRllVFRU1Ns5RESk6Wjbpi0jGEHbNm2NjmJVrKYIW7RoEYWFhRcsXs6aOXMmDg4OvPrqq5SUlFBSUsK7777LPffcw5QpU+osT3Z2Nm3bnv9hO3vXY05OjmXb1KlTWbRoEePGjcPZ2ZnRo0czfPjwKo8bGRlJZGQksbGxTJs2rc7y/tm+2H3MZz4DYgfg29u3Xs4hIiJNh0crD/rQB49WHkZHsSpWUYQtW7aMH374gVmzZlXr7shp06Zhb2/P4sWLAbj//vuZMGFCneeq7t2NdnZ2zJkzhzlz5tR5htpo17YdN3ET7dq2MzqKiIg0Ajm5ORziEDm5OfjgY3Qcq9Egx4T92fLly/nggw+YNm0a48aNq/Z+eXl5liKpPi7tubm5kZ2dfd723NxcAEMnY72UVm6t6E53WrmdP/ZORESkpo4mH+UTPuFo8lGjo1iVBt0Ttnz5cpYvX85dd93F5MmTq7WP2Wzmtdde46uvvuKxxx6jtLSUhQsXUlJSwoMPPlhn2Tp06EBUVBRlZWWVxoUdOXIEgMDAwDo7V13LzM5kL3vJzM7UXywiInLZOgV3Yjaz6RTcyegoVqXB9oStXLmS5cuXc+edd3LXXXdVa5+KigoWLFjA2rVrefLJJxk1ahRjx45l7ty5rFmzhoULF2I2m+sk38CBAyksLGTz5s2Vtm/YsAFPT086d+5cJ+epD0nHk/iCL0g6nmR0FBERaQTs7OxwwQU7Ozujo1iVBtkT9tlnn/Hee+/Rt29f+vfvz/79+ys936VL1QuErlq1iu+//57nnnuu0kSrI0eOxN7envnz5xMQEHDJy5rbtm2jqKiIgoICABITE9m0aRMA/fr1w9HRkX79+tG7d28WLlxIQUEBvr6+/Pjjj2zfvp158+Y16PWzuoR24XEe10KrIiJSJ5JTk/mKrxiVOkpXWGqgQRZhW7duBWD79u1s3779vOd//vnnKve7+eabCQ8Pp2vX8xelHjp0KK1bt6Zjx46XPP/ChQtJS0uzPN64cSMbN24EzhR6Pj5nPmDz589n6dKlvPfee5Zli55++ulKyxY1RDY2Nthj36ALRRERsR5FxUWkk05RcZHRUayKyVxX1+ekTp2domLp0qV1vl7mtrXbuGfsPbz31Xv0G1P16gIiIiLVlRqdypKIJUzfOR2fXuoJq64GOyZM6k95RTnFFFNeUW50FBERkSZLRVgT1MG/A5OZrIVWRUSkTuw/tJ+XeIn9h/ZfurFYqAgTERGRy9LaozUDGUhrj9ZGR7EqKsKaoD0H9vAsz7LnwB6jo4iISCPg5eHF1VyNl4eX0VGsioqwJsjX25fruR5fb60bKSIily8vP48EEsjLr/sVahozFWFNkEcrD3rTWwutiohInThy7AgrWcmRY0eMjmJVVIQ1Qdm52RzkINm55699KSIiUlOhHUJ5iIcI7RBqdBSroiKsCUpMTuQzPiMxOdHoKCIi0gg4OjjigQeODo5GR7EqKsKaoE7Bnfgbf9NCqyIiUidS0lL4hm9ISUsxOopVURHWBNnZ2dGc5lpoVURE6kR+QT5HOUp+Qb7RUayKirAmKOl4El/yJUnHk4yOIiIijUBoh1Ae4AGNCashFWFNUHFJMac5TXFJsdFRREREmixbowNI7ZSXl1NaWlqrfQMCAng44GECAgIoKtKK9yLScNnZ2WFjY2N0DLmEA3EHeJVXGRg3UAt414CKMCuUl5dHcnIyZrO5VvuX25Zz9TtXk2ObQ36Crt+LSMNlMpnw8/OjRYsWRkeRi3Bv6U4veuHe0t3oKFZFRZiVKS8vJzk5GWdnZ7y8vDCZTDU+Rl5mHsWlxXi39qZFK/1gE5GGyWw2k56eTnJyMiEhIeoRa8DaeLXhGq6hjVcbo6NYFRVhVqa0tBSz2YyXlxdOTk61OkZF8wpccMG5uTOOjprTRUQaLi8vL44ePUppaamKsAasoLCAFFIoKCwwOopV0cB8K1WbHrCzbG1saUELbG1Ug4tIw3Y5P+vkyjl89DBLWcrho4eNjmJVVIQ1QRUVFRRTTEVFhdFRRESkEQgJDGEGMwgJDDE6ilVREdYEFZcUc4pTdTZFRfv27enYsSM9evSgU6dO3HHHHeTn137A/4oVKzh06NAFn9+2bRvh4eH07NmT7777jlGjRhEfH1+tfRuCZ555hkcffbROj9m+fXv27dtXq3137NjBxIkTAcjKymLBggWVnh8yZAjr16+/7IyN0dGjR/H09Kyz402dOpU333yzzo5nTf92l/MZFuM5OTrhjTdOjrUbJtNUqQhrghwdHGlN6zpd42vNmjXs2rWLmJgYcnJyWLFiRa2PdalCauXKldx555388ccfjBgxgm+++YagoKBq7Svn6927Nx9//DFQdRFWW2VlZXVyHDGW/h2lOlJPphJFFKknU42OYlVUhFm50oJSUqNTa/T/E7tPkHUwixO7T1yybWlBzeYiKy4uJj8/n1atWlm2vfLKK/Tp04devXoxatQokpLOzNS/bt06unXrRo8ePejatStfffUVy5YtY8eOHTz88MP06NGDb775ptLxX3rpJVatWsXrr79Ojx49yMrKsvwFfal9AQ4cOMCIESPo1q0b3bp145133gHg8OHDREZGWvL85z//sexjMpn45z//Sd++fQkMDGT58uUAfPTRR4wePdrSzmw2ExgYyJ49ewBYsGABXbp0ITw8nIkTJ5KdnX1entDQUHbu3Gl5vHz5cm6++WYA0tLSGD9+PH369KFbt2489dRTlnZbtmwhPDycPn36MHPmzAtOV9K/f39+/fVXAP7v//4PPz8/y3P+/v4kJSWxadMmevfuDcCMGTPIysqiR48elm1nzzdw4ECCgoKYMWNGlec62yv03HPPMXDgQBYvXnzB11BRUcHMmTPp2LEj3bt3JyIigqKiIssxHn30Ufr27UuXLl346aefLOf48MMPCQ8Pp1u3blx//fWkpJxZp27FihWMGDGCCRMmEB4eTu/evTly5AgAcXFxXH311XTv3p3w8HDmzZsHnLnJZe7cufTp04cePXpw++23k5WVdcHXdaFMf2YymcjLy7M89vT05OjRoxd8vVXZvXs3Q4cOpWPHjkydOpXi4jM91p988gl9+/alZ8+e532+L/S5/rM1a9bQo0cPS6/xE088QXBwMH379uVvf/ub5d9706ZN9OjRg4cffpj+/fvz5ZdfsmPHDvr370+3bt3o06cPv/zyS6X35qy8vLxKY7gu9N2B6n+GxTrk5Oawn/3k5OYYHcW6mKVBOnjwoHngwIHmgwcPVtpeWFhojomJMRcWFprNZrP5+M7j5md4pt7+f3zn8UtmDQgIMIeFhZm7d+9udnV1NV9zzTXm0tJSs9lsNn/88cfmadOmmcvKysxms9n8wQcfmMeMGWM2m83mbt26mX/55Rez2Ww2l5eXmzMzM81ms9k8ePBg87p16y54vilTppgXL15c6fx79+695L6lpaXmkJAQ86pVqyzb0tPTzWaz2dynTx/zu+++azabzeZDhw6Z3d3dzceOHTObzWYzYH7ttdfMZrPZHBMTY27RooW5tLTUXFBQYPbw8DCnpqaazWaz+aeffjL36tXLbDabzd988425Y8eOltc0bdo08wMPPGA2m83mp59+2jx79myz2Ww2P//88+YHH3zQkmfQoEHmtWvXms1ms3n48OHmzZs3W7KPGDHC/O9//9tcVFRkbtu2rXnjxo1ms9lsXrVqlRmwvAd/Nm/ePPOzzz5rNpvN5p49e5r79OljPnDggPngwYPm0NBQs9lsNm/cuNEcERFhNpvN5oSEBLOHh0elYwwePNg8btw4c1lZmbmgoMDcvn1789atW887V0JCghkwf/zxx5ZtF3oN0dHR5o4dO5rLy8vNZrPZnJWVZS4vL7ccY8WKFWaz2Wz+9ddfzW3atDHn5eWZ9+7da27Tpo05OTnZbDabzfPnzzePGjXKbDabzcuXLze7ubmZjx49ajabzebHHnvMPH36dLPZbDY//PDD5ueff96S6dSpU5b3/h//+Idl+3PPPWd++OGHL/i6qsp07vsFmHNzcy2PPTw8zAkJCRd8veeaMmWKOTw83Jybm2suKyszjx492vzPf/7TbDabzRkZGeaKigpLJh8fH3NJSclFP9dnvw+vvPKKedCgQZbXvnbtWnO3bt3MeXl55vLycvNNN91k+Qxs3LjRbDKZzFu2bDGbzWZzcXGxuV27duYNGzaYzWazecuWLWZvb+8qX39ubq75z79WLvTdqcln+NyfedIwnf1dVJ3fGfI/uj3Oynl29GT6zuk12ic/J5+U5BR8/Xxp7tr8ksevjjVr1tC1a1fKysq47777eOyxx3j11Vf5z3/+w44dO4iIiADOzHN29jbzoUOH8te//pVbbrmF4cOH06NHjxq9jpqKjY2lrKyM8ePHW7Z5enqSm5vLrl27uOeeewAICQlhwIAB/Pe//2XChAkAljFTnTp1wtbWlrS0NPz8/Bg3bhwfffQRjz76KMuXL+euu+4CICoqiokTJ9KyZUsA7r//fm6//fbzMk2ZMoWePXuycOFCkpKSOHToECNHjiQ/P5+ffvqJEydOWNrm5eVx8OBBgoKCcHZ2ZsiQIQCMHz+e6dOr/gxERkby5JNPMmPGDOzs7Bg/fjxRUVGYTCYiIyOr/d7dfvvt2NjY4OTkZOlN6d+//3ntHB0dLe/ZxV7DtddeS2lpKXfffTfXXHMN119/Pc2anemYt7e3Z/LkyQD069cPb29vdu/ezc6dO7nhhhvw9fUF4IEHHmD+/PmWHpQBAwYQEBAAnOkBXLx4MQCDBg3ib3/7G/n5+QwePNjyuv/zn/+Qk5PDmjVrACgpKbFc1j7XhTK1bdu2Wu9fhw4dLvh6z3XbbbdZJia9++67eeutt5gzZw4JCQlMnDiR5ORkbG1tycjIIDExkeLi4io/12c988wztG3blu+//x4HBwcANm7cyPjx42ne/Mz3f8qUKfzjH/+w7BMaGsqAAQOAM98be3t7RowYYXmfW7duzZ49e/DxufTM6FV9d06fPl3tz7BIY6YizMrZOdvVeImIkvwSnFs449nJE/vm9nWax9bWlnHjxvG3v/2NV199FbPZzLx587j77rvPa7tw4UL279/Pxo0bmTJlChMnTmTOnDl1mqc6zv4SP/dW+D8//vN8ajY2NpZxMnfddRf33nsv06dPZ/369bz22muWY17seGf5+vrSq1cv1q5dy+7du5k8eTK2trYUFhZiMpn4/fffsbOzq7TP7t27q/3a+vfvz759+1i7di1Dhw4lMjKSZ555BoA777yz2se50Os/V/PmzS2vs6Ki4oKvAWD//v1s3ryZjRs38ve//52ff/4ZW9uqfySZTKbz3tNz388LZRw3bhxXXXUVP/zwA2+++SavvfYa33zzDWazmbfeeotrr722mu/C+ZnOZWNjQ3l5ueXx2UuObm5uVb7e4ODgap/n9ttv55VXXuHGG28EwN3dnaKioktO4dC/f3++++47EhIS6NixI1D15/PP/jw7/YXamkwmbG1tq3y9f1bVv4tZlx4bndj4WBazmMHxg7VsUQ1oTJjUuZ9++omwsDAAxowZw1tvvcXp06eBM+Nw/vjjDwAOHjxIly5dmDlzJvfffz/btm0DwNXVtcrxU9VxsX3DwsKwt7dn9erVlm0ZGRm4urrSo0cPVq5cCUB8fDy//PILV1999SXP169fPyoqKpgzZw7Dhg3D3f3Mkh3Dhg3js88+Izc3F4AlS5ZcsOfp7rvv5v333+eDDz5g6tSpALi4uDBw4EBeeuklS7vjx4+TnJxMx44dKSws5OeffwbO9EJe6DXb29vTt29f5s+fbxnzFhMTw88//8w111xzXntXV1cKCgrqZDD2xV5Deno6+fn5DB8+nBdeeIH27dsTExMDnOmROnujwG+//UZaWhrdunVj6NChfPPNN6SlpQHwzjvvMHTo0EsWIXFxcbRu3Zo777yTBQsWWD5nY8aMYeHChRQUnJlcsqCggP3791d5jAtlOldQUBDbt28H4N///rflLuGLvd5zrV69mvz8fMrLy1m+fLnlc5OZmUn79u2BM+MRMzMzgQt/rs8aMWIEy5Yt44YbbmDXrl0AXHPNNaxevZqCggIqKir48MMPL/j+dezYkeLiYss4uK1bt3Ly5EnCw8Px9vamrKyM2NhYAD744IMLHufcY1b3MyzWwaWFC2GE4dLCxegoVkVFWBNUVFxEGmkUFdfd4t233HILPXr0oEuXLhw4cIDXX38dgMmTJzNp0iSGDBlC9+7d6dGjBxs3bgTg73//O126dKFnz558+OGHlh6a6dOn89xzz11wcP3FXGxfW1tbvvrqK5YsWWIZ3P3FF18A8PHHH/PRRx/RvXt3xo0bx7Jly2jXrl21znnXXXfx7rvvWi5FAowcOZLJkyfTv39/wsPDycnJ4fnnn69y/7Fjx7J9+3Z8fHzo3LmzZfvHH3/MgQMHCA8PJzw8nHHjxnHq1CkcHBz49NNPefDBB+nTpw+//fYb/v7+F8w3bNgwTp48ydVXX43JZCIiIoLg4GDLpdI/c3d3Z+LEiZbB7ZfrQq8hKSmJYcOG0a1bN8LDw+natSsjR44EwMPDg8OHD9O3b1/uuusuPvnkE5o3b06XLl148cUXGT58ON26dWPLli28++67l8ywevVqunXrRs+ePbn99tstg9bnzp1Ljx496Nu3L926daNfv36WIuVcF8p0rtdee40HH3yQq6++mujoaDw8PAAu+nrPNWjQIG688Ua6dOlCq1ateOihhwB4/fXXuemmmxgwYAC7d++2/Jtf7HP952N++umnjBs3jl9//ZUxY8YwYsQIunfvzjXXXENQUBBubm5V5rG3t+eLL77giSeeoFu3bvz1r39l9erVNG/eHFtbW9544w1GjhzJoEGDLDcRXEpNP8PS8LVt05bhDKdtm+pdopczTGb1CzdIsbGxTJs2jaVLl1p6leBMd39CQgKBgYG1XnKoILuApLgk2oW0w9nNua4ii1y2o0eP0rt370o9OUZriJnqQm5uLi4uLlRUVHDvvffStm1b5s+fb3Ss89TFzzypf0e2HuHVq19l9i+z6XBVB6PjWA31hDVBtra2uOBywfE3ItL43XnnnfTs2ZPOnTtTVFRkyHhMaTziEuJ4i7eIS4gzOopV0W/hJqiiooISSrRskTQ47du3b3A9Tg0xU1348ssvjY4gjUhQQBD3cA9BAVXfYSxVU09YE1RcUkwGGXW2bJGIiDRtzZ2b0452NHe++LRHUpmKsCbI0cERL7zqdNkiERFpuk6kn2AzmzmRfuLSjcVCRVgTZDKZsMPukrf2i4iIVMeprFP8zu+cyjpldBSroiKsCSotKyWHHErLarYupIiISFU6h3TmUR6lc0jnSzcWCxVhTVBFeQVFFFFRfvkD83v06EGPHj3o3Lkztra2lse33XZble137drF559/Xq1j/3lhaSNt2rSJ77//3ugYIiLSyKgIa4IcHBxoTWvLOnKXY9euXezatYtvvvmGli1bWh6vWrXqgu2rW4Q1FCrCREQuLi4hjnd4h7iEOIqLi4mOjiYnJweAEydOVJoIOTY2lqNHjwJnVlGJjo4mKysLOLO6RHR09P+OGxfHkSNHgDNrD0dHR1tWYDl9+jTR0dGWO/2PHDnC4cOHLftGR0db7mzOzMwkOjrashpIQkIChw4dqvs3ooZUhEm9+PDDDy2zd19//fWkpKRw8uRJnnrqKaKioujRowczZswAYNKkSfTu3Ztu3bpxww03cPLkyUsePzs7m3vvvZfw8HC6d+9uWZsyLy+Pu+++m65du9K1a1eeffZZyz5Dhgxh/fr1lse33HILK1asAGDq1Kk88MADREZGEhoays0330xJSQm7du3inXfe4YMPPqBHjx4899xzpKenM3z4cMvr+/NM+SIiTZGToxPtaEfFyQp2/7CbiIgIvv34W1KjU3n7n28zcMBAUqNTSY1OZfJtk3nsocdIjU4l9udYIiIi+M/y/5Aancry15bTp08fS9tpd05j1vRZpEancnTbUSIiIvjsnc9IjU7lk7c+ISIigmO/HSM1OpWZ985kxtQZln0jIiJY8foKUqNT+fd7/yYiIoJDWw6RGp3Kow8+ytQ7ppJ9zNjlsjRjfgNVkxnzU1NTycjIIDw8HICYmBhcXFxo164dRUVFxMTEEBISgouLCydOnCA+Nh4nZyeCOwRzPP04jo6OBAQEUFpayt69ey+6hMmF/HlW8X379hEZGcnOnTvx9fXl+eefZ+vWrXz99desWLGC9evXs2bNGsu+GRkZeHp6AvDSSy+RnJzMm2++yaZNm3j00UfZsWPHeee76667aNGiBa+//jrNmjUjPT0dLy8vHnvsMVJSUvjggw8oLCxkwIABPP7449x6660MGTKERx99lBtuuAE4U4TdcMMNTJ06lalTp3Lo0CF+/PFH7O3tGTRoEDNnzmTChAk888wz5OXl8corrwCwaNEiDhw4wJIlS4Azf42dXTNSROqWZsy3DtnHsnmt42tQCGWUcZKTuOOOI47kkUcuufhwZmHvDDKwwYZWtKKcck5wgla0wgkn8sknm2zacmb5o1OcwoQJd9ypoII00mhJS5xxpoACssjCG2+a0YzTnMaMGQ/OLBd2nOO44UZzmlNIIZlk0oY22GBDJpmUU46Psw8PHngQN/+a/c6rK5qstRF49913WbZsGcnJyQDcfvvtDBkyhDfeeIPk5GQiIiLYuHEjQ4YM4YMPPuDFF15k6w9baWbTjKlTp9KlSxeWLVtGRkYGERERrF+/nuuvv77WeTZu3MgNN9yAr68vAA888ADz58/nQvX+xx9/zIcffkhxcTGFhYV4e3tf8hzr169n586dNGt2pjPXy8sLgKioKEth1rx5c+68806ioqK49dZbL3nMm2++GScnJwD69OlDfHx8le369evHokWLmD17NoMHD2bEiBGXPLaISGPm5u/GXw/+lYKMAqOjVNuWDVuY9MQk/vLLXxjmP8yQDCrCGoH77ruPcePGWR5/9tlnuLicWcnez8+PnTt3EhISApxZquSagdfgiit2tnasWLHC8telp6cnO3fuJCjo8mY8NpvNlaa/uNhUGP/9739588032bp1K15eXqxdu5bnnnuuzs795/Pb2tpSXl5u2V5UVHkB8z//lW1jY2MZO3Cu/v37s2vXLqKiovjiiy+YN28ef/zxBzY2NrXOLSJi7dz83QzrUaqNTqc7MZSheHtd+g//+qIxYY2Aj4+P5VIkQOfOnWnXrh1wprDo1auXpShr06YN4V3DKaUUs9lMWFgYAQEBANjZ2dGrV68aX4o819ChQ/nmm29IS0sD4J133mHo0KGYTCZcXV3Jzv7fNfjMzExcXV1xd3enpKSEd999t1rnGDNmDC+//LJlQGZ6ejoAw4YNY+nSpZjNZvLz8/noo4+IjIwEICgoiO3btwNnBmX+97//rda5zs2ckJBAixYtGD9+PIsXL+bQoUPk5eVV61giItIweLp70o9+eLp7GpZBRVgTVFRcRDrpFBUXXbpxLXTp0oUXX3yR4cOH061bN7Zs2WIproYOHUp+fj7du3dnxowZjBw5kuDgYDp27MiIESPo0aNHtc6xaNEiCgoK6Nq1Kz169ODxxx8H4Mknn8RkMhEeHk7fvn0ZM2YMt9xyCwCPPfYYP/zwAxERETzxxBP07du3Wue66aab2LFjh2Vg/qZNm4iIiKBHjx5cffXVvPzyy5dduIqIyJWVm5fLYQ6Tm5drWAYNzG+gajIwv6aK8opIO5iGd0dvHFtooKuINFwamC/15buPv+O6Sdex4aMNjJhozNhe9YQ1Qc1MzbDHnmYm/fOLiEjT1DG4I4/wCB2DOxqWQb+Fm6CysjJyyb3gwHMREZHGzt7OHjfcsLezNyyDirAmqKy8jHzyKStXESYiIk1Tcmoy61hHcmqyYRlUhFmpyxnK5+jgiDfeODpofIWINGwatiz1pbCokFRSKSwqNCyD5gmzMnZ2dphMJssM8Rebg+tCSopLKKOMouIiKmwufxFvEZH6YDabSU9Px2QyYWdnZ3QcaWRCAkOYznRCAkMMy6AizMrY2Njg5+dHcnKyZQHUmioqKCI9Ix0vkxeOzuoNE5GGy2Qy4efnp8mQpVFSEWaFWrRoQUhICKWlpbXaf9/mfbw5402eevcpAgcH1nE6EZG6Y2dnpwJM6kVMXAwLWMCAuAH49PIxJIOKMCtlY2NT6x9Mvl6+RCRG4Ovlq3l3RESkSfJs5Ul/+uPZSjPmyxVUVFzEKU7V24z5IiIiDV1rz9YMZCCtPVsblkFFWBN06MghFrOYQ0cOGR1FRETEEPkF+SSSSH5BvmEZdDmygSouLgYgMTGxzo9tY2PD7c1vx8bGhtjY2Do/voiISEP3645f+bz55wzaMYhyr/I6P35AQMAlh/xo7cgG6vvvv2f+/PlGxxAREZFaOHft56qoCGugsrKy+O233/jPf/7DrFmzqrXP4sWLeeihhy7ZLjExkfnz5zNv3jwCAgIuN2qjUN33zghXOlt9na+ujns5x6nNvjXdpzrt9R08X0P+DoK+h3V5nPr+HjaU34XV6QnT5cgGqmXLlgwfPpyffvrpkpX0WS1atKh2WzjzAalJ+8aspu/dlXSls9XX+erquJdznNrsW9N9atJe38H/acjfQdD3sC6PU9/fQ2v6XaiB+Q1cZGRkvbSVyhrye3els9XX+erquJdznNrsW9N9GvJnqSFr6O+bvod1d5z6/h429M/Sn+lyZBMUGxvLtGnTqnW9WkTqnr6DIsZrCN9D9YQ1QR4eHkydOhUPDw+jo4g0SfoOihivIXwP1RMmIiIiYgD1hImIiIgYQEWYiIiIiAFUhImIiIgYQEWYiIiIiAFUhMl5SkpKePHFFxk3bhzXXXcdM2bMYO/evUbHEmlSnnnmGcaOHct1113H1KlT2bp1q9GRRJqsffv2MXjwYFauXFmnx9XdkXKewsJCVq1axciRI/Hy8uK7777jrbfeYvXq1ZdcgkFE6kZCQgJ+fn7Y2dkRExPD7Nmz+eyzz3BzczM6mkiTUlFRwf3334/JZKJ///5MmTKlzo6tnjA5j5OTE1OnTqVNmzY0a9aMkSNHUlFRQXJystHRRJqMwMBA7OzsALCxsaG0tJSMjAyDU4k0PWvXriU8PBx/f/86P7bWjmwECgoKWLlyJXFxccTFxZGdnc3UqVO5++67q2y7bNkyNm7cSG5uLv7+/kycOJGhQ4de8PiJiYkUFxfTtm3b+nwZIlarvr6Dzz33HD///DMlJSX069ePDh06XImXI2KV6uN7mJ2dzZo1a3jnnXd444036jyzirBGIDs7m3Xr1hEUFMTAgQNZv379BdvOmzePgwcPct9999GuXTuioqJ49tlnqaioYNiwYee1Lyoq4vnnn+fOO+/E2dm5Pl+GiNWqr+/gU089RVlZGdHR0SQmJmIymer7pYhYrfr4Hi5ZsoTx48fTokWLesmsIqwR8Pb25uuvv8ZkMpGVlXXBD96vv/7Kjh07eOqppywLnPbq1Yu0tDTefvttrr32WmxsbCzty8rKePrppwkICGDy5MlX5LWIWKP6+g4C2Nra0qdPH7744gv8/Pzo379/vb8eEWtU19/D2NhYDh06xOzZs+sts8aENQImk6lafyFv2bIFJycnhgwZUmn7qFGjyMjIICYmxrKtoqKC559/nmbNmvHYY4/pL3CRi6iP7+C5KioqSElJudyoIo1WXX8Pd+/ezdGjRxk7diyjR4/mp59+4uOPP+b555+vs8zqCWtCEhISCAgIwNa28j97UFCQ5fnw8HAAXnnlFU6dOsXLL798XnsRqZ3qfgdPnTrF3r176du3L3Z2dvz888/88ccf3HfffUbEFmlUqvs9vOGGGyoVav/617/w9vbmjjvuqLMs+u3ahGRnZ1c5uN7FxQWAnJwcANLS0li/fj329vaMGTPG0m7BggV07979yoQVaYSq+x0EWLNmDf/85z8xmUz4+fnxzDPPEBwcfMWyijRW1f0eOjs7VxoL7eDggLOzc51OE6MirImpTlett7c3P//88xVII9L0VOc76OHhwZtvvnkF0og0TbUZYvP444/XeQ6NCWtC3NzcyM7OPm97bm4uAK6urlc6kkiTou+giPEa0vdQRVgT0qFDBxITEykrK6u0/ciRI8CZySFFpP7oOyhivIb0PVQR1oQMHDiQwsJCNm/eXGn7hg0b8PT0pHPnzgYlE2ka9B0UMV5D+h5qTFgjsW3bNoqKiigoKADOzHK/adMmAPr164ejoyP9+vWjd+/eLFy4kIKCAnx9ffnxxx/Zvn078+bNO29+IhGpPn0HRYxnbd9DLeDdSIwfP560tLQqn1u1ahU+Pj7AmaUali5dWmmphkmTJl102SIRuTR9B0WMZ23fQxVhIiIiIgbQmDARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARERERA6gIExERETGAijARESu0aNEiRo8ebVmeBeD9999n0KBB/PHHHwYm+5/nn3+eW2+9leLiYqOjiDRIWjtSRAyXmprKbbfddtE2wcHBvP/++1coUcOWlJTE2rVrmT59Os7OzvV6rq+++opXX32VMWPG8Oijj1607b333suhQ4dYunQpYWFhTJkyhaioKFavXs2kSZPqNaeINVIRJiINhq+vL8OGDavyOQ8PjyucpuFavnw59vb2jB07tt7PFRkZyb/+9S9++uknHnroIRwcHKpsFx8fz6FDhwgJCSEsLAwAPz8/BgwYwCeffMK4ceNwcnKq97wi1kRFmIg0GL6+vtx9991Gx2jQsrKy+PnnnxkyZEi994IBNG/enMGDB/Pdd9+xefNmhg8fXmW79evXAzBq1KhK24cPH87mzZv58ccfueGGG+o9r4g10ZgwEbFKgwYN4uGHHyYrK4uXXnqJMWPGEBkZyYwZMy44JqqgoID333+fO++8k8jISEaNGsWjjz7Knj17zmv78MMPM2jQIEpKSnjvvfeYMGEC11xzTaVLops3b2batGlERkYyduxYFixYQG5uLuPHj2f8+PGWds8//zyDBg3iwIEDVeZ6++23GTRoED///PMlX/ePP/5ISUkJQ4YMuWTbs+Lj47npppsYPXo0MTExlu3Hjx/nn//8J7fccgtDhw7lxhtv5IUXXiAtLa3S/tdffz0A3377bZXHLy0tJSoqCnt7+/OKtH79+uHk5MQ333xT7bwiTYWKMBGxWnl5eTzwwAPEx8czbNgwBg0aRGxsLI8++ihHjhyp1DYnJ4f777+fFStW4Orqyo033mhpP2vWLLZs2VLlOebNm8c333xD9+7dufXWW2nbti0AX3/9NU8++SQpKSmMGDGC6667jv379/N///d/lJWVVTrGmDFjgP/1Fv1ZWVkZ3333He7u7lx11VWXfM07d+4EoEuXLpd+g4Ddu3fz0EMPYWNjw5tvvknnzp0BiImJ4d5772XDhg2EhYVxyy230L17d3744Qfuu+8+jh8/bjlGjx498PPzIzo6mtTU1PPO8csvv5Cdnc2gQYNwcXGp9JydnR2hoaEcOHCAwsLCamUWaSp0OVJEGoyUlJQLDr7v0qULffv2rbTt8OHD3Hjjjfz1r3+lWbMzf1P26tWLBQsW8O9//7vSQPLXXnuNhIQE5s6dW+mS2enTp5k+fTovv/wyffr0OW/M06lTp1i+fDmurq6Wbbm5ubzxxhs4OzuzbNkyS2E2bdo05syZQ2xsLN7e3pb24eHhBAYG8uOPPzJz5sxKY6O2bt3K6dOnueOOO7C1vfSP5H379uHl5UWrVq0u2XbLli08++yztG3blldeeYXWrVsDZwq/Z555hoqKCpYuXUpwcLBlnz179jBr1izeeOMNXnrpJcv2UaNGsWTJEjZs2MBdd91V6Txff/018L8es3OFhYWxe/duDhw4QK9evS6ZW6SpUE+YiDQYKSkprFixosr/b9++/bz2Tk5OzJgxw1KAAVx33XXY2Nhw8OBBy7asrCw2btxIRETEeWOW3N3dmTBhAllZWZZepj+76667KhVgAP/9738pLCzkhhtusBRgALa2ttxzzz1VvrYxY8ZQUFDATz/9VGn7+vXrMZlM1RovVVpaSlZWVrUKsPXr1/PUU08REhLCm2++aSnA4Ezhl5aWxoQJEyoVYADdunXj6quvZtu2beTn51u2n31fv/32W8xms2V7RkYGO3bswNvb+4IF1tm86enpl8wt0pSoJ0xEGow+ffrwyiuvVLu9n5/feYPTbW1tcXd3Jy8vz7Lt4MGDlJeXU1JSUmVPW3JyMgCJiYnnXRLs1KnTee3j4+MB6Nq163nPderUCRsbm/O2Dx8+nHfeeYf169dbeozS09P5/fffLZf7LiU7OxvgvEt+5/r888/55Zdf6NevH8899xyOjo6Vnt+/fz8Ax44dq/L9OH36NBUVFSQlJdGxY0cAPD096du3L1u3biU6OpqIiAjgzDix8vJyRo0ahclkqjLP2SL2bH4ROUNFmIhYrebNm1e53cbGhoqKCsvjnJwcAPbu3cvevXsveLyioqLztrm7u5+37WwPUcuWLc97rlmzZri5uZ233cXFhWuuuYYNGzZw9OhR2rdvzzfffEN5eXm17xo8e6n0UpOfnr3RoG/fvucVYHDmcirADz/8cNHjnPt+XH/99WzdupVvv/22UhHWrFkzRo4cecHjnM17oektRJoqFWEi0uidLdZuu+02HnzwwRrtW1XvztnjZWVlnfdcRUUF2dnZeHl5nffcmDFj2LBhA+vXr+fBBx/k22+/xdXVlUGDBlUri4uLC7a2tpai8kIee+wxPvjgA9544w2aNWvGTTfdVOn5s72HL730UrVuBjirf//+uLu7s3nzZh555BEOHz5McnIyffr0oU2bNhfc72zeqopWkaZMY8JEpNHr2LEjJpPJchnucgUFBQFnBsmf68CBA5SXl1e5X9euXenQoQPfffcd27Zt4/jx4wwbNqxGPUSBgYGkpaWddwfmn7m4uLBo0SJCQ0NZtGgR//73vys9f/YOyZq+H7a2towYMYLi4mJ+/PFHy7QTFxqQf1ZSUhIAHTp0qNH5RBo7FWEi0uh5eHhwzTXXsG/fPj799NNKA8vPiomJqfJyZFUGDBiAk5MT69evrzSVQ1lZGe+9995F9x09ejTZ2dm8/PLLADWewLRHjx6UlJRYxqVdiIuLCwsXLqRjx4689tprfPHFF5Xyt2nThlWrVrFr167z9i0rK6ty7jT4X8H1n//8h02bNuHm5saAAQMumiUmJgYPDw/atWt3iVcn0rTocqSINBgXm6ICuKzZ9P/v//6PpKQk3n77bb777ju6dOlCixYtOHnyJLGxsSQnJ/Pll19WOYbqXC4uLsycOZOXX36Ze++9l2uvvZbmzZuzbds27O3t8fT0vOAg9REjRvDuu++SkZFB586dLb1q1TVw4EBWr17Nzp07LcsDXSznq6++yuzZs3n99dcxm83ccsst2Nvb89xzzzFnzhwefvhhIiIiCAwMBODEiRPs2bMHNzc3Pvroo/OO6e/vT3h4uGVs3Q033ICdnd0FM6SkpJCamsqNN95Yo9cp0hSoCBORBuPsFBUXcjlFmKurK2+99Rb//ve/+emnn4iKiqKiogJ3d3eCg4OZMmVKlQPqL2T06NG4uLjw4YcfsmHDBpo3b87VV1/NjBkzuPXWW/H19a1yvxYtWjBgwACioqJqtYxPjx498Pf35/vvv+eOO+64ZPuzPWKzZ8/mjTfewGw2c+utt9KpUyfef/99Pv30U7Zt28bevXuxs7PD09OTgQMHMnTo0Ase8/rrr7cUYedO+XGu77//HvjfhLUi8j8mc1X98iIiUivJycnccccdXHPNNTz77LNVtrnzzjs5ceIEX375Za3Wf1y7di2vvPIK77zzjmV8V0NUVlbGxIkT8fb25vXXXzc6jkiDozFhIiK1kJubS0lJSaVtxcXFvPnmm8CZy4ZV+fXXXzl69CgjRoyo9QLc119/PQEBASxfvrxW+18p33//PWlpaTzwwANGRxFpkHQ5UkSkFnbt2sU///lP/vKXv9C6dWuys7OJjo4mLS2NXr16ce2111Zq/5///IeTJ0+ybt06HBwcmDBhQq3PbWNjw9///ne2b99OQUFBrYu5+mYymfjb3/52ybFrIk2VLkeKiNRCUlIS7733Hvv27bPMF+br68u1117L7bffft60E+PHjyc9PZ127doxY8aMGs3PJSKNk4owEREREQNoTJiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAVSEiYiIiBhARZiIiIiIAf4f4azNui3rSmMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents), binned_energy_edges, color='purple', label = \"Best fit convolved with response plus background\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents), yerr=np.sqrt(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.project('Em').todense().contents)), color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(crab_bkg.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Total counts\")\n", + "ax.errorbar(binned_energy, crab_bkg.binned_data.project('Em').todense().contents, yerr=np.sqrt(crab_bkg.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.html b/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.html new file mode 100644 index 00000000..1cb635c6 --- /dev/null +++ b/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.html @@ -0,0 +1,1286 @@ + + + + + + + Spectral fitting example (GRB) — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Spectral fitting example (GRB)

+
+
To run this, you need the following files, which can be downloaded using the first few cells of this notebook: - orientation file (20280301_3_month.ori)
+
- binned data (grb_bkg_binned_data.hdf5, grb_binned_data.hdf5, & bkg_binned_data_1s_local.hdf5)
+
- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip)
+
+

The binned data are simulations of GRB090206620 and albedo photon background produced using the COSI SMEX mass model. The detector response needs to be unzipped before running the notebook.

+

This notebook fits the spectrum of a GRB simulated using MEGAlib and combined with background.

+

3ML is a high-level interface that allows multiple datasets from different instruments to be used coherently to fit the parameters of source model. A source model typically consists of a list of sources with parametrized spectral shapes, sky locations and, for extended sources, shape. Polarization is also possible. A “coherent” analysis, in this context, means that the source model parameters are fitted using all available datasets simultanously, rather than +performing individual fits and finding a well-suited common model a posteriori.

+

In order for a dataset to be included in 3ML, each instrument needs to provide a “plugin”. Each plugin is responsible for reading the data, convolving the source model (provided by 3ML) with the instrument response, and returning a likelihood. In our case, we’ll compute a binned Poisson likelihood:

+
+\[\log \mathcal{L}(\mathbf{x}) = \sum_i \log \frac{\lambda_i(\mathbf{x})^{d_i} \exp (-\lambda_i)}{d_i!}\]
+

where \(d_i\) are the counts on each bin and \(\lambda_i\) are the expected counts given a source model with parameters \(\mathbf{x}\).

+

In this example, we will fit a single point source with a known location. We’ll assume the background is known and fixed up to a scaling factor. Finally, we will fit a Band function:

+
+\[\begin{split}f(x) = K \begin{cases} \left(\frac{x}{E_{piv}}\right)^{\alpha} \exp \left(-\frac{(2+\alpha) + * x}{x_{p}}\right) & x \leq (\alpha-\beta) \frac{x_{p}}{(\alpha+2)} \\ \left(\frac{x}{E_{piv}}\right)^{\beta} + * \exp (\beta-\alpha)\left[\frac{(\alpha-\beta) x_{p}}{E_{piv}(2+\alpha)}\right]^{\alpha-\beta} + * &x>(\alpha-\beta) \frac{x_{p}}{(\alpha+2)} \end{cases}\end{split}\]
+

where \(K\) (normalization), \(\alpha\) & \(\beta\) (spectral indeces), and \(x_p\) (peak energy) are the free parameters, while \(E_{piv}\) is the pivot energy which is fixed (and arbitrary).

+

Considering these assumptions:

+
+\[\lambda_i(\mathbf{x}) = B*b_i + s_i(\mathbf{x})\]
+

where \(B*b_i\) are the estimated counts due to background in each bin of the Compton data space with \(B\) the amplitude and \(b_i\) the shape of the background, and \(s_i\) are the corresponding expected counts from the source, the goal is then to find the values of \(\mathbf{x} = [K, \alpha, \beta, x_p]\) and \(B\) that maximize \(\mathcal{L}\). These are the best estimations of the parameters.

+

The final module needs to also fit the time-dependent background, handle multiple point-like and extended sources, as well as all the spectral models supported by 3ML. Eventually, it will also fit the polarization angle. However, this simple example already contains all the necessary pieces to do a fit.

+
+
[1]:
+
+
+
from cosipy import COSILike, BinnedData
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.response.FullDetectorResponse import FullDetectorResponse
+from cosipy.util import fetch_wasabi_file
+
+from scoords import SpacecraftFrame
+
+from astropy.time import Time
+import astropy.units as u
+from astropy.coordinates import SkyCoord
+from astropy.stats import poisson_conf_interval
+
+import numpy as np
+import matplotlib.pyplot as plt
+%matplotlib inline
+
+from threeML import Band, PointSource, Model, JointLikelihood, DataList
+from cosipy import Band_Eflux
+from astromodels import Parameter
+
+from pathlib import Path
+
+import os
+
+
+
+
+
+
+
+
12:04:24 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48
+                  available                                                                                        
+
+
+
+
+
+
+
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69
+                  will not be available.                                                                           
+
+
+
+
+
+
+
12:04:25 WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704
+
+
+
+
+
+
+
12:04:25 INFO      Starting 3ML!                                                                     __init__.py:35
+
+
+
+
+
+
+
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36
+
+
+
+
+
+
+
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37
+
+
+
+
+
+
+
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40
+
+
+
+
+
+
+
         WARNING   ROOT minimizer not available                                                minimization.py:1345
+
+
+
+
+
+
+
         WARNING   Multinest minimizer not available                                           minimization.py:1357
+
+
+
+
+
+
+
         WARNING   PyGMO is not available                                                      minimization.py:1369
+
+
+
+
+
+
+
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94
+                  require the C/C++ interface (currently HAWC)                                                     
+
+
+
+
+
+
+
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144
+                  software installed and configured?                                                               
+
+
+
+
+
+
+
         WARNING   No fermitools installed                                              lat_transient_builder.py:44
+
+
+
+
+
+
+
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+
+
+
+
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387
+                  performances in 3ML                                                                              
+
+
+
+

Download and read in binned data

+

Define the path to the directory containing the data, detector response, orientation file, and yaml files if they have already been downloaded, or the directory to download the files into

+
+
[2]:
+
+
+
data_path = Path("/path/to/files")
+
+
+
+

Download the orientation file (684.38 MB)

+
+
[6]:
+
+
+
fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori', output=str(data_path / '20280301_3_month.ori'))
+
+
+
+

Download the binned GRB+background data (75.73 KB)

+
+
[8]:
+
+
+
fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_bkg_binned_data.hdf5', output=str(data_path / 'grb_bkg_binned_data.hdf5'))
+
+
+
+

Download the binned GRB data (76.90 KB)

+
+
[19]:
+
+
+
fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5', output=str(data_path / 'grb_binned_data.hdf5'))
+
+
+
+

Download the binned background data (255.97 MB)

+
+
[20]:
+
+
+
fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/bkg_binned_data_1s_local.hdf5', output=str(data_path / 'bkg_binned_data_1s_local.hdf5'))
+
+
+
+

Download the response file (839.62 MB). This needs to be unzipped before running the rest of the notebook

+
+
[17]:
+
+
+
fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip', output=str(data_path / 'SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip'))
+
+
+
+
+
+
+
+
+
+
+
+

Read in the spacecraft orientation file & select the beginning and end times of the GRB

+
+
[4]:
+
+
+
ori = SpacecraftFile.parse_from_file(data_path / "20280301_3_month.ori")
+tmin = Time(1842597410.0,format = 'unix')
+tmax = Time(1842597450.0,format = 'unix')
+sc_orientation = ori.source_interval(tmin, tmax)
+
+
+
+

Create BinnedData objects for the GRB only, GRB+background, and background only. The GRB only simulation is not used for the spectral fit, but can be used to compare the fitted spectrum to the source simulation

+
+
[5]:
+
+
+
grb = BinnedData(data_path / "grb.yaml")
+grb_bkg = BinnedData(data_path / "grb.yaml")
+bkg = BinnedData(data_path / "background.yaml")
+
+
+
+

Load binned .hdf5 files

+
+
[6]:
+
+
+
grb.load_binned_data_from_hdf5(binned_data=data_path / "grb_binned_data.hdf5")
+grb_bkg.load_binned_data_from_hdf5(binned_data=data_path / "grb_bkg_binned_data.hdf5")
+bkg.load_binned_data_from_hdf5(binned_data=data_path / "bkg_binned_data_1s_local.hdf5")
+
+
+
+

Define the path to the detector response

+
+
[7]:
+
+
+
dr = str(data_path / "SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5") # path to detector response
+
+
+
+
+
+

Perform spectral fit

+

Define time window of binned background simulation to use for background model

+
+
[8]:
+
+
+
bkg_tmin = 1842597310.0
+bkg_tmax = 1842597550.0
+bkg_min = np.where(bkg.binned_data.axes['Time'].edges.value == bkg_tmin)[0][0]
+bkg_max = np.where(bkg.binned_data.axes['Time'].edges.value == bkg_tmax)[0][0]
+
+
+
+

Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin

+
+
[9]:
+
+
+
bkg_par = Parameter("background_cosi",                                                                          # background parameter
+                    0.1,                                                                                        # initial value of parameter
+                    min_value=0,                                                                                # minimum value of parameter
+                    max_value=5,                                                                                # maximum value of parameter
+                    delta=1e-3,                                                                                 # initial step used by fitting engine
+                    desc="Background parameter for cosi")
+
+cosi = COSILike("cosi",                                                                                         # COSI 3ML plugin
+                dr = dr,                                                                                        # detector response
+                data = grb_bkg.binned_data.project('Em', 'Phi', 'PsiChi'),                                      # data (source+background)
+                bkg = bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em', 'Phi', 'PsiChi'),    # background model
+                sc_orientation = sc_orientation,                                                                # spacecraft orientation
+                nuisance_param = bkg_par)                                                                       # background parameter
+
+
+
+

Define a point source at the known location with a Band function spectrum and add it to the model

+
+
[10]:
+
+
+
l = 93.
+b = -53.
+
+alpha = -1                                       # Setting parameters to something reasonable helps the fitting to converge\n",
+beta = -3
+xp = 450. * u.keV
+piv = 500. * u.keV
+K = 1 / u.cm / u.cm / u.s / u.keV
+
+spectrum = Band()
+
+spectrum.beta.min_value = -15.0
+
+spectrum.alpha.value = alpha
+spectrum.beta.value = beta
+spectrum.xp.value = xp.value
+spectrum.K.value = K.value
+spectrum.piv.value = piv.value
+
+spectrum.xp.unit = xp.unit
+spectrum.K.unit = K.unit
+spectrum.piv.unit = piv.unit
+
+source = PointSource("source",                     # Name of source (arbitrary, but needs to be unique)
+                     l = l,                        # Longitude (deg)
+                     b = b,                        # Latitude (deg)
+                     spectral_shape = spectrum)    # Spectral model
+
+# Optional: free the position parameters
+#source.position.l.free = True
+#source.position.b.free = True
+
+model = Model(source)                              # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)
+
+# Optional: if you want to call get_log_like manually, then you also need to set the model manually
+# 3ML does this internally during the fit though
+cosi.set_model(model)
+
+
+
+
+
+
+
+
+... Calculating point source responses ...
+Now converting to the Spacecraft frame...
+Conversion completed!
+--> done (source name : source)
+--> all done
+
+
+

Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit

+
+
[11]:
+
+
+
plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)
+
+like = JointLikelihood(model, plugins, verbose = False)
+
+like.fit()
+
+
+
+
+
+
+
+
12:04:56 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042
+
+
+
+
+
+
+
+Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.
+
+
+
+
+
+
+
12:05:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
source.spectrum.main.Band.K(3.10 -0.20 +0.21) x 10^-21 / (cm2 keV s)
source.spectrum.main.Band.alpha(-2.8 +/- 0.5) x 10^-1
source.spectrum.main.Band.xp(4.75 +/- 0.05) x 10^2keV
source.spectrum.main.Band.beta-6.8 +/- 1.2
background_cosi(1.65 +/- 0.13) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + + + + +
1.000.97-0.370.20-0.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi42920.049336
total42920.049336
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC85838.098672
BIC85840.098672
+
+
+
+
[11]:
+
+
+
+
+(                                      value  negative_error  positive_error  \
+ source.spectrum.main.Band.K        0.030995       -0.001939        0.002116
+ source.spectrum.main.Band.alpha   -0.276632       -0.050195        0.049825
+ source.spectrum.main.Band.xp     474.650732       -4.896060        4.873162
+ source.spectrum.main.Band.beta    -6.756966       -1.215124        1.201150
+ background_cosi                    0.164969       -0.012573        0.012434
+
+                                     error             unit
+ source.spectrum.main.Band.K      0.002027  1 / (cm2 keV s)
+ source.spectrum.main.Band.alpha  0.050010
+ source.spectrum.main.Band.xp     4.884611              keV
+ source.spectrum.main.Band.beta   1.208137
+ background_cosi                  0.012504                   ,
+        -log(likelihood)
+ cosi       42920.049336
+ total      42920.049336)
+
+
+
+
+

Error propagation and plotting

+

Define Band function spectrum injected into MEGAlib

+
+
[12]:
+
+
+
alpha_inj = -0.360
+beta_inj = -11.921
+E0_inj = 288.016 * u.keV
+xp_inj = E0_inj * (alpha_inj + 2)
+piv_inj = 1. * u.keV
+K_inj = 0.283 / u.cm / u.cm / u.s / u.keV
+
+spectrum_inj = Band()
+
+spectrum_inj.beta.min_value = -15.0
+
+spectrum_inj.alpha.value = alpha_inj
+spectrum_inj.beta.value = beta_inj
+spectrum_inj.xp.value = xp_inj.value
+spectrum_inj.K.value = K_inj.value
+spectrum_inj.piv.value = piv_inj.value
+
+spectrum_inj.xp.unit = xp_inj.unit
+spectrum_inj.K.unit = K_inj.unit
+spectrum_inj.piv.unit = piv_inj.unit
+
+
+
+

The summary of the results above tell you the optimal values of the parameters, as well as the errors. Propogate the errors to the “evaluate_at” method of the spectrum

+
+
[13]:
+
+
+
results = like.results
+
+print(results.display())
+
+parameters = {par.name:results.get_variates(par.path)
+              for par in results.optimized_model["source"].parameters.values()
+              if par.free}
+
+results_err = results.propagate(results.optimized_model["source"].spectrum.main.shape.evaluate_at, **parameters)
+
+print(results.optimized_model["source"])
+
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
source.spectrum.main.Band.K(3.10 -0.20 +0.21) x 10^-21 / (cm2 keV s)
source.spectrum.main.Band.alpha(-2.8 +/- 0.5) x 10^-1
source.spectrum.main.Band.xp(4.75 +/- 0.05) x 10^2keV
source.spectrum.main.Band.beta-6.8 +/- 1.2
background_cosi(1.65 +/- 0.13) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + + + + +
1.000.97-0.370.20-0.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi42920.049336
total42920.049336
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC85838.098672
BIC85840.098672
+
+
+
+
+
+
+
+None
+  * source (point source):
+    * position:
+      * l:
+        * value: 93.0
+        * desc: Galactic longitude
+        * min_value: 0.0
+        * max_value: 360.0
+        * unit: deg
+        * is_normalization: false
+      * b:
+        * value: -53.0
+        * desc: Galactic latitude
+        * min_value: -90.0
+        * max_value: 90.0
+        * unit: deg
+        * is_normalization: false
+      * equinox: J2000
+    * spectrum:
+      * main:
+        * Band:
+          * K:
+            * value: 0.030994516909178687
+            * desc: Differential flux at the pivot energy
+            * min_value: 1.0e-99
+            * max_value: null
+            * unit: keV-1 s-1 cm-2
+            * is_normalization: true
+          * alpha:
+            * value: -0.27663221293105034
+            * desc: low-energy photon index
+            * min_value: -1.5
+            * max_value: 3.0
+            * unit: ''
+            * is_normalization: false
+          * xp:
+            * value: 474.6507320770641
+            * desc: peak in the x * x * N (nuFnu if x is a energy)
+            * min_value: 10.0
+            * max_value: null
+            * unit: keV
+            * is_normalization: false
+          * beta:
+            * value: -6.756965748051311
+            * desc: high-energy photon index
+            * min_value: -15.0
+            * max_value: -1.6
+            * unit: ''
+            * is_normalization: false
+          * piv:
+            * value: 500.0
+            * desc: pivot energy
+            * min_value: null
+            * max_value: null
+            * unit: keV
+            * is_normalization: false
+        * polarization: {}
+
+
+
+

Evaluate the flux and errors at a range of energies for the fitted and injected spectra, and the simulated source flux

+
+
[14]:
+
+
+
energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)
+
+flux_lo = np.zeros_like(energy)
+flux_median = np.zeros_like(energy)
+flux_hi = np.zeros_like(energy)
+flux_inj = np.zeros_like(energy)
+
+for i, e in enumerate(energy):
+    flux = results_err(e)
+    flux_median[i] = flux.median
+    flux_lo[i], flux_hi[i] = flux.equal_tail_interval(cl=0.68)
+    flux_inj[i] = spectrum_inj.evaluate_at(e)
+
+binned_energy_edges = grb.binned_data.axes['Em'].edges.value
+binned_energy = np.array([])
+bin_sizes = np.array([])
+
+for i in range(len(binned_energy_edges)-1):
+    binned_energy = np.append(binned_energy, (binned_energy_edges[i+1] + binned_energy_edges[i]) / 2)
+    bin_sizes = np.append(bin_sizes, binned_energy_edges[i+1] - binned_energy_edges[i])
+
+expectation = cosi._expected_counts['source']
+
+
+
+

Plot the fitted and injected spectra

+
+
[15]:
+
+
+
fig,ax = plt.subplots()
+
+ax.plot(energy, energy*energy*flux_median, label = "Best fit")
+ax.fill_between(energy, energy*energy*flux_lo, energy*energy*flux_hi, alpha = .5, label = "Best fit (errors)")
+ax.plot(energy, energy*energy*flux_inj, color = 'black', ls = ":", label = "Injected")
+
+ax.set_xscale("log")
+ax.set_yscale("log")
+
+ax.set_xlabel("Energy (keV)")
+ax.set_ylabel(r"$E^2 \frac{dN}{dE}$ (keV cm$^{-2}$ s$^{-1}$)")
+
+ax.legend()
+
+
+
+
+
[15]:
+
+
+
+
+<matplotlib.legend.Legend at 0x29adcdf10>
+
+
+
+
+
+
+../../../../_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_42_1.png +
+
+

Plot the fitted spectrum convolved with the response, as well as the simulated source counts

+
+
[16]:
+
+
+
fit_poisson_error = np.zeros((2,len(expectation.project('Em').todense().contents)))
+fit_gaussian_error = np.zeros(len(expectation.project('Em').todense().contents))
+inj_poisson_error = np.zeros((2,len(grb.binned_data.project('Em').todense().contents)))
+inj_gaussian_error = np.zeros(len(grb.binned_data.project('Em').todense().contents))
+
+for i, counts in enumerate(expectation.project('Em').todense().contents):
+    if counts > 5:
+        fit_gaussian_error[i] = np.sqrt(counts)
+    else:
+        poisson_error = poisson_conf_interval(counts, interval="frequentist-confidence", sigma=1)
+        fit_poisson_error[0][i] = poisson_error[0]
+        fit_poisson_error[1][i] = poisson_error[1]
+
+for i, counts in enumerate(grb.binned_data.project('Em').todense().contents):
+    if counts > 5:
+        inj_gaussian_error[i] = np.sqrt(counts)
+    else:
+        poisson_error = poisson_conf_interval(counts, interval="frequentist-confidence", sigma=1)
+        inj_poisson_error[0][i] = poisson_error[0]
+        inj_poisson_error[1][i] = poisson_error[1]
+
+fig,ax = plt.subplots()
+
+ax.stairs(expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = "Best fit convolved with response")
+ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=fit_poisson_error, color='purple', linewidth=0, elinewidth=1)
+ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=fit_gaussian_error, color='purple', linewidth=0, elinewidth=1)
+ax.stairs(grb.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = ":", label = "Source counts")
+ax.errorbar(binned_energy, grb.binned_data.project('Em').todense().contents, yerr=inj_poisson_error, color='black', linewidth=0, elinewidth=1)
+ax.errorbar(binned_energy, grb.binned_data.project('Em').todense().contents, yerr=inj_gaussian_error, color='black', linewidth=0, elinewidth=1)
+
+ax.set_xscale("log")
+ax.set_yscale("log")
+
+ax.set_xlabel("Energy (keV)")
+ax.set_ylabel("Counts")
+
+ax.legend()
+
+
+
+
+
[16]:
+
+
+
+
+<matplotlib.legend.Legend at 0x29bdaa1f0>
+
+
+
+
+
+
+../../../../_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_44_1.png +
+
+

Plot the fitted spectrum convolved with the response plus the fitted background, as well as the simulated source+background counts

+
+
[17]:
+
+
+
fit_bkg_poisson_error = np.zeros((2,len(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents))))
+fit_bkg_gaussian_error = np.zeros(len(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents)))
+inj_bkg_poisson_error = np.zeros((2,len(grb_bkg.binned_data.project('Em').todense().contents)))
+inj_bkg_gaussian_error = np.zeros(len(grb_bkg.binned_data.project('Em').todense().contents))
+
+for i, counts in enumerate(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents)):
+    if counts > 5:
+        fit_bkg_gaussian_error[i] = np.sqrt(counts)
+    else:
+        poisson_error = poisson_conf_interval(counts, interval="frequentist-confidence", sigma=1)
+        fit_bkg_poisson_error[0][i] = poisson_error[0]
+        fit_bkg_poisson_error[1][i] = poisson_error[1]
+
+for i, counts in enumerate(grb_bkg.binned_data.project('Em').todense().contents):
+    if counts > 5:
+        inj_bkg_gaussian_error[i] = np.sqrt(counts)
+    else:
+        poisson_error = poisson_conf_interval(counts, interval="frequentist-confidence", sigma=1)
+        inj_bkg_poisson_error[0][i] = poisson_error[0]
+        inj_bkg_poisson_error[1][i] = poisson_error[1]
+
+fig,ax = plt.subplots()
+
+ax.stairs(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), binned_energy_edges, color='purple', label = "Best fit convolved with response plus background")
+ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), yerr=fit_bkg_poisson_error, color='purple', linewidth=0, elinewidth=1)
+ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), yerr=fit_bkg_gaussian_error, color='purple', linewidth=0, elinewidth=1)
+ax.stairs(grb_bkg.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = ":", label = "Total counts")
+ax.errorbar(binned_energy, grb_bkg.binned_data.project('Em').todense().contents, yerr=inj_bkg_poisson_error, color='black', linewidth=0, elinewidth=1)
+ax.errorbar(binned_energy, grb_bkg.binned_data.project('Em').todense().contents, yerr=inj_bkg_gaussian_error, color='black', linewidth=0, elinewidth=1)
+
+ax.set_xscale("log")
+ax.set_yscale("log")
+
+ax.set_xlabel("Energy (keV)")
+ax.set_ylabel("Counts")
+
+ax.legend()
+
+
+
+
+
[17]:
+
+
+
+
+<matplotlib.legend.Legend at 0x2af24a160>
+
+
+
+
+
+
+../../../../_images/tutorials_spectral_fits_continuum_fit_grb_SpectralFit_GRB_46_1.png +
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb b/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb new file mode 100644 index 00000000..8f0a2579 --- /dev/null +++ b/tutorials/spectral_fits/continuum_fit/grb/SpectralFit_GRB.ipynb @@ -0,0 +1,1728 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "74a86fb5-4e54-4e3f-b349-3e60fbdd0279", + "metadata": { + "tags": [] + }, + "source": [ + "# Spectral fitting example (GRB)" + ] + }, + { + "cell_type": "markdown", + "id": "e7df3443-3ce1-43f3-90b5-1bceb7bc9af0", + "metadata": {}, + "source": [ + "**To run this, you need the following files, which can be downloaded using the first few cells of this notebook:**\n", + "- orientation file (20280301_3_month.ori) \n", + "- binned data (grb_bkg_binned_data.hdf5, grb_binned_data.hdf5, & bkg_binned_data_1s_local.hdf5) \n", + "- detector response (SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip) \n", + "\n", + "**The binned data are simulations of GRB090206620 and albedo photon background produced using the COSI SMEX mass model. The detector response needs to be unzipped before running the notebook.**" + ] + }, + { + "cell_type": "markdown", + "id": "ba543558-7de9-494c-8b72-8cdd368676e9", + "metadata": {}, + "source": [ + "This notebook fits the spectrum of a GRB simulated using MEGAlib and combined with background.\n", + "\n", + "[3ML](https://threeml.readthedocs.io/) is a high-level interface that allows multiple datasets from different instruments to be used coherently to fit the parameters of source model. A source model typically consists of a list of sources with parametrized spectral shapes, sky locations and, for extended sources, shape. Polarization is also possible. A \"coherent\" analysis, in this context, means that the source model parameters are fitted using all available datasets simultanously, rather than performing individual fits and finding a well-suited common model a posteriori. \n", + "\n", + "In order for a dataset to be included in 3ML, each instrument needs to provide a \"plugin\". Each plugin is responsible for reading the data, convolving the source model (provided by 3ML) with the instrument response, and returning a likelihood. In our case, we'll compute a binned Poisson likelihood:\n", + "\n", + "$$\n", + "\\log \\mathcal{L}(\\mathbf{x}) = \\sum_i \\log \\frac{\\lambda_i(\\mathbf{x})^{d_i} \\exp (-\\lambda_i)}{d_i!}\n", + "$$\n", + "\n", + "where $d_i$ are the counts on each bin and $\\lambda_i$ are the expected counts given a source model with parameters $\\mathbf{x}$. \n", + "\n", + "In this example, we will fit a single point source with a known location. We'll assume the background is known and fixed up to a scaling factor. Finally, we will fit a Band function:\n", + "\n", + "$$\n", + "f(x) = K \\begin{cases} \\left(\\frac{x}{E_{piv}}\\right)^{\\alpha} \\exp \\left(-\\frac{(2+\\alpha)\n", + " * x}{x_{p}}\\right) & x \\leq (\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\\\ \\left(\\frac{x}{E_{piv}}\\right)^{\\beta}\n", + " * \\exp (\\beta-\\alpha)\\left[\\frac{(\\alpha-\\beta) x_{p}}{E_{piv}(2+\\alpha)}\\right]^{\\alpha-\\beta}\n", + " * &x>(\\alpha-\\beta) \\frac{x_{p}}{(\\alpha+2)} \\end{cases}\n", + "$$\n", + "\n", + "\n", + "where $K$ (normalization), $\\alpha$ & $\\beta$ (spectral indeces), and $x_p$ (peak energy) are the free parameters, while $E_{piv}$ is the pivot energy which is fixed (and arbitrary).\n", + "\n", + "Considering these assumptions:\n", + "\n", + "$$\n", + "\\lambda_i(\\mathbf{x}) = B*b_i + s_i(\\mathbf{x})\n", + "$$\n", + "\n", + "where $B*b_i$ are the estimated counts due to background in each bin of the Compton data space with $B$ the amplitude and $b_i$ the shape of the background, and $s_i$ are the corresponding expected counts from the source, the goal is then to find the values of $\\mathbf{x} = [K, \\alpha, \\beta, x_p]$ and $B$ that maximize $\\mathcal{L}$. These are the best estimations of the parameters.\n", + "\n", + "The final module needs to also fit the time-dependent background, handle multiple point-like and extended sources, as well as all the spectral models supported by 3ML. Eventually, it will also fit the polarization angle. However, this simple example already contains all the necessary pieces to do a fit." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "ce42ab82-3bbd-4729-8f84-a4e32eb3bb24", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
12:04:24 WARNING   The naima package is not available. Models that depend on it will not be         functions.py:48\n",
+       "                  available                                                                                        \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:24\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The naima package is not available. Models that depend on it will not be \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=258198;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=478015;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#48\u001b\\\u001b[2m48\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mavailable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it  functions.py:69\n",
+       "                  will not be available.                                                                           \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The GSL library or the pygsl wrapper cannot be loaded. Models that depend on it \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=322055;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py\u001b\\\u001b[2mfunctions.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=156430;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/functions/functions_1D/functions.py#69\u001b\\\u001b[2m69\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mwill not be available. \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:04:25 WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=427696;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=920737;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=187003;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=664651;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=970697;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=263503;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=507764;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=140382;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of F to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of F to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=410897;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=483212;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   We have set the min_value of K to 1e-99 because there was a postive transform   parameter.py:704\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m We have set the min_value of K to \u001b[0m\u001b[1;37m1e-99\u001b[0m\u001b[1;38;5;251m because there was a postive transform \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=964303;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py\u001b\\\u001b[2mparameter.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=470707;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/astromodels/core/parameter.py#704\u001b\\\u001b[2m704\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
12:04:25 INFO      Starting 3ML!                                                                     __init__.py:35\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:25\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m Starting 3ML! \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=334693;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=235575;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#35\u001b\\\u001b[2m35\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   WARNINGs here are NOT errors                                                      __init__.py:36\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m WARNINGs here are \u001b[0m\u001b[1;31mNOT\u001b[0m\u001b[1;38;5;251m errors \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=995830;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=95677;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#36\u001b\\\u001b[2m36\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   but are inform you about optional packages that can be installed                  __init__.py:37\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m but are inform you about optional packages that can be installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=547569;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=324296;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING    to disable these messages, turn off start_warning in your config file            __init__.py:40\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m \u001b[0m\u001b[1;31m to disable these messages, turn off start_warning in your config file\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=559824;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=851427;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#40\u001b\\\u001b[2m40\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   ROOT minimizer not available                                                minimization.py:1345\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m ROOT minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=915470;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=32249;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1345\u001b\\\u001b[2m1345\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Multinest minimizer not available                                           minimization.py:1357\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Multinest minimizer not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=809874;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=490059;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1357\u001b\\\u001b[2m1357\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   PyGMO is not available                                                      minimization.py:1369\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m PyGMO is not available \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=817192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py\u001b\\\u001b[2mminimization.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=443308;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/minimizer/minimization.py#1369\u001b\\\u001b[2m1369\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   The cthreeML package is not installed. You will not be able to use plugins which  __init__.py:94\n",
+       "                  require the C/C++ interface (currently HAWC)                                                     \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m The cthreeML package is not installed. You will not be able to use plugins which \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=844985;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=163953;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#94\u001b\\\u001b[2m94\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mrequire the C/C++ interface \u001b[0m\u001b[1;38;5;251m(\u001b[0m\u001b[1;38;5;251mcurrently HAWC\u001b[0m\u001b[1;38;5;251m)\u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin HAWCLike.py. Do you have the relative instrument         __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin HAWCLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=871918;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=23540;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Could not import plugin FermiLATLike.py. Do you have the relative instrument     __init__.py:144\n",
+       "                  software installed and configured?                                                               \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Could not import plugin FermiLATLike.py. Do you have the relative instrument \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=354714;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=655302;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#144\u001b\\\u001b[2m144\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251msoftware installed and configured? \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   No fermitools installed                                              lat_transient_builder.py:44\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m No fermitools installed \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=194521;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py\u001b\\\u001b[2mlat_transient_builder.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=717765;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/utils/data_builders/fermi/lat_transient_builder.py#44\u001b\\\u001b[2m44\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable OMP_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable OMP_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=22466;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=967970;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable MKL_NUM_THREADS is not set. Please set it to 1 for optimal         __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable MKL_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=971686;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=989174;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
         WARNING   Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to 1 for optimal     __init__.py:387\n",
+       "                  performances in 3ML                                                                              \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m \u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m Env. variable NUMEXPR_NUM_THREADS is not set. Please set it to \u001b[0m\u001b[1;37m1\u001b[0m\u001b[1;38;5;251m for optimal \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=980480;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py\u001b\\\u001b[2m__init__.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=239627;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/__init__.py#387\u001b\\\u001b[2m387\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mperformances in 3ML \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from cosipy import COSILike, BinnedData\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.response.FullDetectorResponse import FullDetectorResponse\n", + "from cosipy.util import fetch_wasabi_file\n", + "\n", + "from scoords import SpacecraftFrame\n", + "\n", + "from astropy.time import Time\n", + "import astropy.units as u\n", + "from astropy.coordinates import SkyCoord\n", + "from astropy.stats import poisson_conf_interval\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "\n", + "from threeML import Band, PointSource, Model, JointLikelihood, DataList\n", + "from cosipy import Band_Eflux\n", + "from astromodels import Parameter\n", + "\n", + "from pathlib import Path\n", + "\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "id": "8d1c0168-9823-4eb7-930e-5dc61d6448ca", + "metadata": {}, + "source": [ + "## Download and read in binned data" + ] + }, + { + "cell_type": "markdown", + "id": "dc364649-56e4-4bb1-8403-74e90cf3ed05", + "metadata": {}, + "source": [ + "Define the path to the directory containing the data, detector response, orientation file, and yaml files if they have already been downloaded, or the directory to download the files into" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "cdd53b2a-5176-42cf-bb2c-feb3387fc0a4", + "metadata": {}, + "outputs": [], + "source": [ + "data_path = Path(\"/path/to/files\")" + ] + }, + { + "cell_type": "markdown", + "id": "463043e4-a0c8-49d7-8bcb-19e8d4d6e978", + "metadata": {}, + "source": [ + "Download the orientation file (684.38 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "027c7744-e631-405f-be40-6c552d9392d1", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori', output=str(data_path / '20280301_3_month.ori'))" + ] + }, + { + "cell_type": "markdown", + "id": "134234d9-8fba-42cb-ab71-dba774221201", + "metadata": {}, + "source": [ + "Download the binned GRB+background data (75.73 KB)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5a05bea9-980e-429e-9375-ceb97532047e", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_bkg_binned_data.hdf5', output=str(data_path / 'grb_bkg_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "667a50b3-02c3-4b3c-8d56-607b8fddcb55", + "metadata": {}, + "source": [ + "Download the binned GRB data (76.90 KB)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "ff857371-5c1e-4065-93f6-2ae010c7501d", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5', output=str(data_path / 'grb_binned_data.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "cc399d10-f94c-4008-8f09-ce4aaf664514", + "metadata": {}, + "source": [ + "Download the binned background data (255.97 MB)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "a8a453a3-7e01-4c0d-9264-fc22bc29cef0", + "metadata": {}, + "outputs": [], + "source": [ + "fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/bkg_binned_data_1s_local.hdf5', output=str(data_path / 'bkg_binned_data_1s_local.hdf5'))" + ] + }, + { + "cell_type": "markdown", + "id": "32b1b135-2060-4d14-91fb-133b0786c596", + "metadata": {}, + "source": [ + "Download the response file (839.62 MB). This needs to be unzipped before running the rest of the notebook" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "6cb6c65e-2883-4a2d-b0ba-b28834a55bfa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip', output=str(data_path / 'SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip'))" + ] + }, + { + "cell_type": "markdown", + "id": "d898bbd7-9ed0-4a27-bd5a-67414178733d", + "metadata": {}, + "source": [ + "Read in the spacecraft orientation file & select the beginning and end times of the GRB" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ed2c03a0-63e3-4044-9e16-50f0f17996af", + "metadata": {}, + "outputs": [], + "source": [ + "ori = SpacecraftFile.parse_from_file(data_path / \"20280301_3_month.ori\")\n", + "tmin = Time(1842597410.0,format = 'unix')\n", + "tmax = Time(1842597450.0,format = 'unix')\n", + "sc_orientation = ori.source_interval(tmin, tmax)" + ] + }, + { + "cell_type": "markdown", + "id": "f579870f-c854-450d-84e8-f1d5ef0753d1", + "metadata": {}, + "source": [ + "Create BinnedData objects for the GRB only, GRB+background, and background only. The GRB only simulation is not used for the spectral fit, but can be used to compare the fitted spectrum to the source simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "3b5faaa1-1874-4d43-a6ae-7e1b0aaabb26", + "metadata": {}, + "outputs": [], + "source": [ + "grb = BinnedData(data_path / \"grb.yaml\")\n", + "grb_bkg = BinnedData(data_path / \"grb.yaml\")\n", + "bkg = BinnedData(data_path / \"background.yaml\")" + ] + }, + { + "cell_type": "markdown", + "id": "cf8b5ab1-7452-493e-b516-73fa72e455e5", + "metadata": {}, + "source": [ + "Load binned .hdf5 files" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "620159d2-f01a-453e-9e4c-075c99740086", + "metadata": {}, + "outputs": [], + "source": [ + "grb.load_binned_data_from_hdf5(binned_data=data_path / \"grb_binned_data.hdf5\")\n", + "grb_bkg.load_binned_data_from_hdf5(binned_data=data_path / \"grb_bkg_binned_data.hdf5\")\n", + "bkg.load_binned_data_from_hdf5(binned_data=data_path / \"bkg_binned_data_1s_local.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "a6bdaee8-45d7-41df-9835-413c1e397c12", + "metadata": {}, + "source": [ + "Define the path to the detector response" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "acccab93-7f9c-4167-a8f9-eedcf74b8a05", + "metadata": {}, + "outputs": [], + "source": [ + "dr = str(data_path / \"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\") # path to detector response" + ] + }, + { + "cell_type": "markdown", + "id": "31b5dbd7-8a50-43db-af66-7b8601f7e2fd", + "metadata": { + "tags": [] + }, + "source": [ + "## Perform spectral fit" + ] + }, + { + "cell_type": "markdown", + "id": "2210f6ff-c988-455a-be15-882d0b795072", + "metadata": {}, + "source": [ + "Define time window of binned background simulation to use for background model" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "a29ec8c4-edea-40bf-8a3e-8038ba47bf8e", + "metadata": {}, + "outputs": [], + "source": [ + "bkg_tmin = 1842597310.0\n", + "bkg_tmax = 1842597550.0\n", + "bkg_min = np.where(bkg.binned_data.axes['Time'].edges.value == bkg_tmin)[0][0]\n", + "bkg_max = np.where(bkg.binned_data.axes['Time'].edges.value == bkg_tmax)[0][0]" + ] + }, + { + "cell_type": "markdown", + "id": "7441f3f1-ebe6-467f-b8ab-1baa70f20b15", + "metadata": {}, + "source": [ + "Set background parameter, which is used to fit the amplitude of the background, and instantiate the COSI 3ML plugin" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a9f21e74-5f62-4030-9815-6c77ebaab16f", + "metadata": {}, + "outputs": [], + "source": [ + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 0.1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=1e-3, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = dr, # detector response\n", + " data = grb_bkg.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = sc_orientation, # spacecraft orientation\n", + " nuisance_param = bkg_par) # background parameter" + ] + }, + { + "cell_type": "markdown", + "id": "e6d55283-abb0-4295-9e5c-80a5c717f0ba", + "metadata": {}, + "source": [ + "Define a point source at the known location with a Band function spectrum and add it to the model" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "98b2d026-c24d-4cfe-8b7b-41415fce5d16", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... Calculating point source responses ...\n", + "Now converting to the Spacecraft frame...\n", + "Conversion completed!\n", + "--> done (source name : source)\n", + "--> all done\n" + ] + } + ], + "source": [ + "l = 93.\n", + "b = -53.\n", + "\n", + "alpha = -1 # Setting parameters to something reasonable helps the fitting to converge\\n\",\n", + "beta = -3\n", + "xp = 450. * u.keV\n", + "piv = 500. * u.keV\n", + "K = 1 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum = Band()\n", + "\n", + "spectrum.beta.min_value = -15.0\n", + "\n", + "spectrum.alpha.value = alpha\n", + "spectrum.beta.value = beta\n", + "spectrum.xp.value = xp.value\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value\n", + "\n", + "spectrum.xp.unit = xp.unit\n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + "\n", + "source = PointSource(\"source\", # Name of source (arbitrary, but needs to be unique)\n", + " l = l, # Longitude (deg)\n", + " b = b, # Latitude (deg)\n", + " spectral_shape = spectrum) # Spectral model\n", + "\n", + "# Optional: free the position parameters\n", + "#source.position.l.free = True\n", + "#source.position.b.free = True\n", + "\n", + "model = Model(source) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)\n", + "\n", + "# Optional: if you want to call get_log_like manually, then you also need to set the model manually\n", + "# 3ML does this internally during the fit though\n", + "cosi.set_model(model)" + ] + }, + { + "cell_type": "markdown", + "id": "27ded6d5-4551-4623-8483-b3f4e8b02040", + "metadata": {}, + "source": [ + "Gather all plugins and combine with the model in a JointLikelihood object, then perform maximum likelihood fit" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "d56d3ad6-7226-437a-a037-57fbcd80d196", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
12:04:56 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:04:56\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=963889;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=362192;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + ] + }, + { + "data": { + "text/html": [ + "
12:05:22 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m12:05:22\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=395184;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=957324;file:///Users/eneights/opt/anaconda3/envs/cosipy/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(3.10 -0.20 +0.21) x 10^-21 / (cm2 keV s)
source.spectrum.main.Band.alpha(-2.8 +/- 0.5) x 10^-1
source.spectrum.main.Band.xp(4.75 +/- 0.05) x 10^2keV
source.spectrum.main.Band.beta-6.8 +/- 1.2
background_cosi(1.65 +/- 0.13) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (3.10 -0.20 +0.21) x 10^-2 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha (-2.8 +/- 0.5) x 10^-1 \n", + "source.spectrum.main.Band.xp (4.75 +/- 0.05) x 10^2 keV\n", + "source.spectrum.main.Band.beta -6.8 +/- 1.2 \n", + "background_cosi (1.65 +/- 0.13) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.97-0.370.20-0.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
" + ], + "text/plain": [ + " 1.00 0.97 -0.37 0.20 -0.00\n", + " 0.97 1.00 -0.16 0.18 -0.00\n", + "-0.37 -0.16 1.00 -0.18 -0.02\n", + " 0.20 0.18 -0.18 1.00 0.00\n", + "-0.00 -0.00 -0.02 0.00 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi42920.049336
total42920.049336
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi 42920.049336\n", + "total 42920.049336" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC85838.098672
BIC85840.098672
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC 85838.098672\n", + "BIC 85840.098672" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "( value negative_error positive_error \\\n", + " source.spectrum.main.Band.K 0.030995 -0.001939 0.002116 \n", + " source.spectrum.main.Band.alpha -0.276632 -0.050195 0.049825 \n", + " source.spectrum.main.Band.xp 474.650732 -4.896060 4.873162 \n", + " source.spectrum.main.Band.beta -6.756966 -1.215124 1.201150 \n", + " background_cosi 0.164969 -0.012573 0.012434 \n", + " \n", + " error unit \n", + " source.spectrum.main.Band.K 0.002027 1 / (cm2 keV s) \n", + " source.spectrum.main.Band.alpha 0.050010 \n", + " source.spectrum.main.Band.xp 4.884611 keV \n", + " source.spectrum.main.Band.beta 1.208137 \n", + " background_cosi 0.012504 ,\n", + " -log(likelihood)\n", + " cosi 42920.049336\n", + " total 42920.049336)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = False)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "44542198-aba8-4a37-b9d0-31930718c2bb", + "metadata": {}, + "source": [ + "## Error propagation and plotting" + ] + }, + { + "cell_type": "markdown", + "id": "4ad20f51-3d3f-43e1-a6a3-037bf3ee9f8f", + "metadata": {}, + "source": [ + "Define Band function spectrum injected into MEGAlib" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "02e57ec8-4459-4f99-b62f-73a63aba83f3", + "metadata": {}, + "outputs": [], + "source": [ + "alpha_inj = -0.360\n", + "beta_inj = -11.921\n", + "E0_inj = 288.016 * u.keV\n", + "xp_inj = E0_inj * (alpha_inj + 2)\n", + "piv_inj = 1. * u.keV\n", + "K_inj = 0.283 / u.cm / u.cm / u.s / u.keV\n", + "\n", + "spectrum_inj = Band()\n", + "\n", + "spectrum_inj.beta.min_value = -15.0\n", + "\n", + "spectrum_inj.alpha.value = alpha_inj\n", + "spectrum_inj.beta.value = beta_inj\n", + "spectrum_inj.xp.value = xp_inj.value\n", + "spectrum_inj.K.value = K_inj.value\n", + "spectrum_inj.piv.value = piv_inj.value\n", + "\n", + "spectrum_inj.xp.unit = xp_inj.unit\n", + "spectrum_inj.K.unit = K_inj.unit\n", + "spectrum_inj.piv.unit = piv_inj.unit" + ] + }, + { + "cell_type": "markdown", + "id": "d626f871-fbdf-40b8-b865-140e3ea4b5c3", + "metadata": {}, + "source": [ + "The summary of the results above tell you the optimal values of the parameters, as well as the errors. Propogate the errors to the \"evaluate_at\" method of the spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "4e25c609-e754-43b8-8ea6-0a0a90811cda", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
source.spectrum.main.Band.K(3.10 -0.20 +0.21) x 10^-21 / (cm2 keV s)
source.spectrum.main.Band.alpha(-2.8 +/- 0.5) x 10^-1
source.spectrum.main.Band.xp(4.75 +/- 0.05) x 10^2keV
source.spectrum.main.Band.beta-6.8 +/- 1.2
background_cosi(1.65 +/- 0.13) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "source.spectrum.main.Band.K (3.10 -0.20 +0.21) x 10^-2 1 / (cm2 keV s)\n", + "source.spectrum.main.Band.alpha (-2.8 +/- 0.5) x 10^-1 \n", + "source.spectrum.main.Band.xp (4.75 +/- 0.05) x 10^2 keV\n", + "source.spectrum.main.Band.beta -6.8 +/- 1.2 \n", + "background_cosi (1.65 +/- 0.13) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
1.000.97-0.370.20-0.00
0.971.00-0.160.18-0.00
-0.37-0.161.00-0.18-0.02
0.200.18-0.181.000.00
-0.00-0.00-0.020.001.00
" + ], + "text/plain": [ + " 1.00 0.97 -0.37 0.20 -0.00\n", + " 0.97 1.00 -0.16 0.18 -0.00\n", + "-0.37 -0.16 1.00 -0.18 -0.02\n", + " 0.20 0.18 -0.18 1.00 0.00\n", + "-0.00 -0.00 -0.02 0.00 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi42920.049336
total42920.049336
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi 42920.049336\n", + "total 42920.049336" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC85838.098672
BIC85840.098672
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC 85838.098672\n", + "BIC 85840.098672" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "None\n", + " * source (point source):\n", + " * position:\n", + " * l:\n", + " * value: 93.0\n", + " * desc: Galactic longitude\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * b:\n", + " * value: -53.0\n", + " * desc: Galactic latitude\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * equinox: J2000\n", + " * spectrum:\n", + " * main:\n", + " * Band:\n", + " * K:\n", + " * value: 0.030994516909178687\n", + " * desc: Differential flux at the pivot energy\n", + " * min_value: 1.0e-99\n", + " * max_value: null\n", + " * unit: keV-1 s-1 cm-2\n", + " * is_normalization: true\n", + " * alpha:\n", + " * value: -0.27663221293105034\n", + " * desc: low-energy photon index\n", + " * min_value: -1.5\n", + " * max_value: 3.0\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * xp:\n", + " * value: 474.6507320770641\n", + " * desc: peak in the x * x * N (nuFnu if x is a energy)\n", + " * min_value: 10.0\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * beta:\n", + " * value: -6.756965748051311\n", + " * desc: high-energy photon index\n", + " * min_value: -15.0\n", + " * max_value: -1.6\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * piv:\n", + " * value: 500.0\n", + " * desc: pivot energy\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}\n", + "\n" + ] + } + ], + "source": [ + "results = like.results\n", + "\n", + "print(results.display())\n", + "\n", + "parameters = {par.name:results.get_variates(par.path)\n", + " for par in results.optimized_model[\"source\"].parameters.values()\n", + " if par.free}\n", + "\n", + "results_err = results.propagate(results.optimized_model[\"source\"].spectrum.main.shape.evaluate_at, **parameters)\n", + "\n", + "print(results.optimized_model[\"source\"])" + ] + }, + { + "cell_type": "markdown", + "id": "5eaec533-b5b3-45c4-94df-75453e2df3bf", + "metadata": {}, + "source": [ + "Evaluate the flux and errors at a range of energies for the fitted and injected spectra, and the simulated source flux" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "cc7d6f50-06cd-450a-83d9-115b67d83b30", + "metadata": {}, + "outputs": [], + "source": [ + "energy = np.geomspace(100*u.keV,10*u.MeV).to_value(u.keV)\n", + "\n", + "flux_lo = np.zeros_like(energy)\n", + "flux_median = np.zeros_like(energy)\n", + "flux_hi = np.zeros_like(energy)\n", + "flux_inj = np.zeros_like(energy)\n", + "\n", + "for i, e in enumerate(energy):\n", + " flux = results_err(e)\n", + " flux_median[i] = flux.median\n", + " flux_lo[i], flux_hi[i] = flux.equal_tail_interval(cl=0.68)\n", + " flux_inj[i] = spectrum_inj.evaluate_at(e)\n", + " \n", + "binned_energy_edges = grb.binned_data.axes['Em'].edges.value\n", + "binned_energy = np.array([])\n", + "bin_sizes = np.array([])\n", + "\n", + "for i in range(len(binned_energy_edges)-1):\n", + " binned_energy = np.append(binned_energy, (binned_energy_edges[i+1] + binned_energy_edges[i]) / 2)\n", + " bin_sizes = np.append(bin_sizes, binned_energy_edges[i+1] - binned_energy_edges[i])\n", + "\n", + "expectation = cosi._expected_counts['source']" + ] + }, + { + "cell_type": "markdown", + "id": "8cb8c4aa-ef51-4f19-93dc-2ac7d7d2f189", + "metadata": {}, + "source": [ + "Plot the fitted and injected spectra" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f8dbd36f-4b16-4bec-8835-8f6f876ab169", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlsAAAG7CAYAAAD0aVBuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLqklEQVR4nOzdd3hUVfrA8e+UtEnvlYQUeu+hBBECAiJYELsi9oKyoIJsREHZRUTsosJPQVd3sewqoKKE3jWAFIEQSAgkIaSRSZm0Kb8/RgZjAqTMZFLez/PwPOTeO+e8N2SYN+ec+x6FyWQyIYQQQgghbEJp7wCEEEIIIVozSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCFJtoQQQgghbEiSLSGEEEIIG5Jky87Ky8tJTk6mvLzc3qEIIYQQwgYk2bKz9PR0HnroIdLT0+0dihBCCCFsQJItIYQQQggbUts7gLYqMTGRxMRESkpK7B2KEEIIIWxIki07iY+PJz4+nuTkZB566CF7hyOEEEIIG5FpRCGEEEIIG5KRLSGEEKIBDAYDVVVV9g5D2JhKpUKtVqNQKBrchiRbQgghRD2VlJSQkZGByWSydyiiCWg0GoKDg3F0dGzQ6yXZEkIIIerBYDCQkZGBRqPB39+/USMeonkzmUxUVlaSm5tLWloaHTp0QKms/wosSbaEEEKIeqiqqsJkMuHv74+Li4u9wxE25uLigoODA+np6VRWVuLs7FzvNiTZshMp/SCEEC2bjGi1HQ0ZzfozSbbsREo/CCGEEG2DlH4QQgghWoH27dvTuXNnevfuTZcuXbjzzjspLS1tcHsrV67kxIkTlz2/Z88eevToQZ8+ffjpp58YP348p06dqtNr2xpJtoQQQohW4uuvv+a3337j6NGjFBUVsXLlyga3dbWEadWqVdx7770cOHCA6667jh9++IHo6Og6vbatkWlEIYQQohG+/ftOdNoKm/ah8XTixoVD63x9RUUFpaWleHt7W44tWbKEL7/8Er1eT1BQEB9++CHt2rVj7dq1/P3vf0epVKLX61m4cCG5ubkkJSXx1FNPkZCQwD/+8Q/Gjx9vaWvRokWsXr0ajUbD559/zpYtW+jduzfr1q1jz549V3xtWyTJlhBCCNEIOm0FugLbJlt1NXnyZJydnUlLS6Nfv35MmTIFgC+++IITJ06we/duVCoVn332GU8++STfffcdCQkJfPDBBwwZMgSj0UhRURFeXl7861//4plnnmHChAk1+pkzZw7Hjx+nf//+PPnkk9XOPfjgg1d8bVskyZYQbdyFCxcoKiqioqKCqKgo1OpL/y1kZWWxe/duKioq6N69Oz179qz22tWrV1NRUYGHhwc33nhjtXMnT54kOzsbZ2dnOnfujJubW1PcjhBNTuPp1Gz6+Prrr+nevTt6vZ5HHnmE2bNn8/rrr/Ptt9+SlJREv379AHOtMJVKBcCoUaOYMWMGkydPZsyYMfTu3dtWt9FmSbJlBS+99BIHDhygoqKCoKAgHn74YYYMGWLvsEQbUlhYSGpqKnl5eXTt2pWwsDDLOZ1Ox2233UZRURHdu3fnvffeq/bae++9l3Xr1gFw/NAJgvxC0FcZMFQa+Wn9JqZNvweAvz38LNMfmGl+0R9Vsx956FG0xYVEhkfRM2gQCgWoHFSoHJS89vpSPlq1DICfvktkyNAhqByUqB1VnDp9koEDB+Ll5cW9997LK6+8Ui2mjz/+GIPBQGhoKGPHjm30Y9dC2FJ9pveailqt5pZbbuHZZ5/l9ddfx2QykZCQwLRp02pcu3TpUn7//Xc2b97Mfffdx1133cVzzz1nh6hbL0m2rOC+++7j73//Ow4ODhw9epRZs2bxn//8B09PT3uHJlqRFStWsH//frKzs/nmm2+q1fhZvXo1jz76KABLXn6TW667jfKiSsqKKykrrrAkU7mnL7DGdzcVuiqqdHoqy/TkHbn0tNI3c7cT4B5s+frIudOWv6fuPsfG4gPVYqqq0AOgu1DBprd/q3buxK9nLH/f/v5Rzvyn8lJbBccpLi6muLiYgxtOsN79V5xcHXBydcDR1YGXX1zI6YxUnJ1dyE7LxdXHGbWj+bfwr776itWrVxMaGsr9998vv4ULcRmbNm2iU6dOAEycOJG33nqLG2+8ER8fH6qqqjhy5Ah9+vTh+PHjdOvWjW7duqFWq/n5558B8PDwQKvVNqjvxry2NZJkywoiIyMtf1epVFRVVZGXlyfJlrissrIygGrVp/Py8rjllls4c+YMAwcOZPXq1ZiMJsqKKtEVlPP5J/9my65NAKxZsg1HvQtlRZWUays59HuGpZ1dX/+G59GO1fpzUjtToS+nuKiUnJOF1c5F+3VFb9SjVjrgqKq+71ewRxiTe09DrXQg2q9Ljfu4tfeD6I1VuDhoapzrEtQHR7UzVYZKPJy9qp0zGU0EebRDV1mCutyFjIN51c7n5xYA4K724quZ2wBwdndA4+PMV7vX8c3WbwDoFT6QELf2eAa74uTqQE5ODvfeey8dO3Zk9OjR3HDDDTXiEqI1u7hmq6qqivbt2/PBBx8AcM8995Cfn8+IESNQKBTo9XoeeOAB+vTpw/PPP8+JEydwdHREo9GwbJl5RPrhhx9m1qxZvPbaa/Ve5N6Y17ZGClMb20VTp9OxatUqUlJSSElJQavVMnXq1FqHVnU6HStWrGDz5s0UFxcTHh7OXXfdxahRo2pcu2DBArZt20ZlZSWxsbG8+uqrdaoufLGo6fLlyy2/gYiWz2Qycf78eYKCgqod/9e//sXMmTPJzc1l5cqV3H3n3ZTklVOcqyM/S0uf8R0xmUx0DO3G/JvfofRCBSaD+S26cu+b7Ew1/8b54tj3CPO+lORnac+w6cQa3Jw86BrUh44BPar1W1yhxVntgsMfyZSDiwpHFwccNWocNGocnFSW6T/zHxUqR/Pf1X98rVT98fN88cf6j59vy0+5wpxEGfRGDJVGDFUX/xj+9Hcj+goDFaVVVJRWUVlaRaVOX+P7dzjrVwp0uSgVKuKir6t27v92v8ae05sB+McN/4e/m3kkztnDkYzKFJ7/5DEA7pvyAG+8/gYeQa6o1OZpyPfffx8PDw/69OlD165dpQK4aJDy8nLS0tKIjIxs0NYtouVp7L95mxvZ0mq1rF27lujoaOLi4izTK7VJSEjg+PHjPPLII7Rr147ExETmz5+P0Whk9OjR1a6dN28eer2e/fv3k56eLv+JtwEmkwmdToerq2u14w8++CD//ve/0el0FBQU4OLgSlG2Du25Us4fKiI3NxeAte9tpuqngGqv9XT2ocpQiaPRmZK88mrnrutyC9fEjMfTxQcvZ/Pj3EqVAmdPR3pEdGPAsD44ezjh4uGI8x9/XNwdcXQ1J1WOGjWOLg44aNQolc3n59NoNFGpMydeFSXmJOzakl6UXqhAV1BO6YVySgvK0RVUoLtQzr0DZzCpx71cKMvDV3Pp+1deVEly6qW6PhWnHPjmuR0oVQq827nj296d52c/T1FJESEhIWRmZlaLo6SkBFdXV3nvCiGsrs0lW0FBQXz//fcoFAoKCwsvm2zt3r2bpKQk5s2bR3x8PAB9+/YlOzubZcuWMXLkSMuTHBep1WoGDhzIN998Q1hYGIMHD67Rbl5eHvn5+Zav09PTrXh3oilUVlZyzTXXkJycTLdu3di+fTv6CgOF50rQntNRkF6MTqcD4O1pXxDqEmV5bYlWibfGD19NABo8arS9cMIKHNXmp46cPRxx9XZC4+OMq48z/bw7oPFxwvWPrzVezji6qlt8cqBUKnB2c8TZzRECr3ytyWiirNg8rVpaUG5JYrXZpWjPlTIkMp7uwf04X5yFn5t5VNFoMJF/uojjR05QVFIEgB9h/HfODnzbe+AX6Yl/lAcJi2fzv2//R1xcHG+//Xa1hwyEEKIx2lyyVdcPpu3bt+Pi4sKIESOqHR8/fjwLFizg6NGj9OjRo9bXGo3GGr81X7RmzZpGVfQVTePw4cMsXLiQ33//nYceeoinnnoKgEpdFYVZOk6lpHLhwgUOH/id1U9voTivDP6YkHfI9yTIPQx/92D0ZUa4tCyLUM8IFk/6FDAnU+4BLrj7aXAPcMHN3wV3fxfc/TW4+l5aEC4uUSgVaDyd0Hg64RdZc01kZZmeoj8SL212KdqsUvLTi9FmleDh7MXT1yzgzIVT+LsFUXCmmIIzxaRsM79X1/2wnjxtHmvXrGXJvLcxBhlR/jH9mJqayrlz5xg0aFC10hhCCFEX8r/GZaSlpREREVHjP9aLWxGkpaXRo0cP8vPzOXz4MIMGDcLBwYFt27Zx4MABHnnkkVrbnThxIkOHXnpMOD09vcZj76Jp7N+/nw0bNnD48GEWLFhAVNSlEShdaRmrV68G4OevN9OhNJYLmSWWwoU+qiAMGhNB7mEUZBfhoHKwvHZ055sY3fkmAFx9nPEI0uAZ7IpHkCueQRo8AjW4+2tQO0kyZW2OLmr8Ij1rJGJV5XoKzhSTl9aHvLQi8tKKKMwswWQ0Z8h6o54AtxC0ugsEeYSxafFh1E5HCerkTXBXHz79+QOWvrcELy8vVq9ezZgxY+xxe0KIFkqSrcvQarWEhITUOO7u7g5AUVGR5djXX39tWRAfFhbGSy+9RExMTK3t+vn54efnR2JiIomJiZSUlNjmBgRg3rLi6NGjpKamcsstt1Q7991337FgwQIAhvW8lkEdjBScNY925J7NR4ECpVJFTvoFMg/nV3vt365diEppTpYcnFV4hbrhFeqGZ7DrH4mVBs9AV0momgkHZzWBHb0J7Hhp6xJ9peGPBEzL+eQLPOfzD0oulFFSYX5v6ysMZBzKI+NQHus2/gSY65k5ab0oL67E2d38sEFBQQFZWVl069atxU/pCiFsQ5KtK6jLf5y+vr68++679W47Pj6e+Ph4y9OIovH+XBH5ori4OH799VeUSiXaQi1VWhN5aUXkny5Cf+LS/N4Pn21G3eNScu2ocublCR/h6xqIWml+mzi5OeAV6oZ3qBteoa6WBMvVx1k+ZFsgtaOKgBgvAmK86Do6ApPJRFG2jnPHCjh3NJ9zRwvQFZpHMuOirsPT2RttWQEp/8vn5HebCOzkTUS/ADb+vpa/Pfc0ERERvP/++23+EXchRE2SbF2Gp6dnrQXZiouLAXPBNmF/Op2OBx54gAMHDhATE2N54MGgN3LhTDFhPu35lV8xGo0svv1jwj07WF7rWxHBA7HPEOrVniCPdpbjSrUC7zB3OoSH4t3OHZ9wd3zauePi6ShJVSumUCgsI5OdR7arlnxFHw1mxOHrKC+uAswL9bOPFZB9rIBPtn4OmJcEOFRqMBlNKP542vNiZR35uWn99n2dYrO2+03ucPWLRLMmydZlREVFkZiYiF6vr7ZuKzU1FaheyLQhZBqx7srKykhKSuLXX3+ld+/ejBw50nLOxcWFDRs2kJ+fT15OPjv+7wj5aUXknynCqDfhW9SeQRHX0s47EjcH72rtejh7MbLfOHwjPPCN8LAkVp5BGpQq2R6mrftr8mU0msg5cYH0fTmk7ztPUbb5idNeoYPQG6s4X5xJ2upSVm/eSoe4UDrEhbDn4E5mzZrFXXfdxb333lvr0gQhrKV9+/Y4Ozvj7OxMRUUFffr0Yfny5TXK09TVypUrGTJkCB07dqz1/J49e3jooYdQq9UsWrSIt956i3feeYfo6OirvhZg5syZDBw4kNtvv71B8VnbrFmz6N+/P3fccYfV25Zk6zLi4uJYu3YtW7durVbEdP369fj5+dG1a9dGtS/TiLWrqKhAqVTi4HBpwfm+ffsYPnw4YK5h1b/bIHJOaslL1ZJ7SkuQUwRaZRHuCh9+W5+M85+qmQ9qfy2D2l8LgEeQxvyof3tzcuXb3gOXJthAVrQOSqWCoM4+BHX2YeCdnSjMKuXMvvME7PNi+Mlx6A16lAolJbllHPjvSQ789yRf/P42R44c4fnnn6dTp07cdNNN9r4N0cpd3IjaZDJxww03sHLlSp544okGtbVy5Ur8/PwumzCtWrWKe++9l2effRaA6667rs6vzczM5Mcff+T111+vV0x/HQC53LH6vP6i2bNnExcXx2233Wb1/VjbZLK1Z88eysvLLbWQ0tPT2bJlCwCxsbE4OzsTGxtL//79Wbp0KTqdjtDQUDZu3MjevXtJSEiosTaovmRkq7r//e9/vPrqqxw4cIBvv/2WcePGAeZSCwEO7VAqlRiNRjb8bzNflm6r9tppA2ehcXK3rK1CAZ7BrvhHef7xZJoHPuHuOGoc/tqtEA2iUCjw/mP9Xq+J0egKKzhzIIe0PdlkHcnDZDJPIebkmAvYahzdcEkL5ezBXEJ7+KFUKjh//jznz5+nZ8+edr4b0RpVVFRQWlqKt/elEf0lS5bw5ZdfotfrCQoK4sMPP6Rdu3asXbuWv//97yiVSvR6PQsXLiQ3N5ekpCSeeuopEhISamy5s2jRIlavXo1Go+Hzzz9ny5Yt9O7dm3Xr1rFnz54rvhbMm81PnjzZMsVeVVXFCy+8wKZNm6isrKRz58588MEHeHl5MXXqVDw8PDhx4gRnz57lvffeY8aMGQwfPpxff/2VmTNnEhkZyfTp0yktLcXZ2Zk33niDoUOHcvr0afr3789TTz3Fhg0buPnmm4mJialxv5MmTSIgIIDIyEg2btxYo3B5Y7W57XoApkyZQnZ2dq3nVq9eTXCwefsPnU7H8uXLq23Xc/fdd9e6XU9DtaXteoqKivjll1/45ZdfeO6556r9dvGf//zHMnT7xD0zmDL0fnJOainMKgETfHf4X3i7+BHl26naNjUA7v4u+EV5mpOraE/82ntIYiXsprSgnJM7s0jZlklhZgm5JefI0p6hV+ggAFy8nOg4PJSvk1ay+PVFDB8+nHffffeydftE81Pb1i3NYc3Wn6cR09LS6NevHz///DNqtZovvviCLVu2sGzZMlQqFZ999hlff/013333Hb169WLZsmUMGTIEo9FIUVERXl5ejBgxgmeeeYYJEybU2t/UqVPp378/Tz75pKX/devW0b1796u+dtSoUTzzzDOWX6z/8Y9/YDQaSUhIAODll18mLy+Pt956i6lTp3Lo0CG2bduGm5sbW7ZsYeTIkWzbto1hw4ZRWVlJTEwMy5cv57rrrmPHjh3ceuutnDx5ktzcXCIjI/n888+58847AS57v2Deek+n07Fo0aJq8cp2PQ3w5Zdf1uk6jUbD008/zdNPP23jiNqGBx98kK+++gqA66+/ni4du5F7qpDzJy5Qvt/8wxvoHkrO4RJO6KsXhZ3U427A/ESgf7QXAR088Y/2wj/SE2eP6psnC2FPrj7O9Lohip4TIslLKyJlWyandoVTUWJeXF9WWEHS/5JZtsa8QfCuXbvw9fW1Z8iiFbk4jajX63nkkUeYPXs2r7/+Ot9++y1JSUn069cPqP709qhRo5gxYwaTJ09mzJgx9O7d2+ZxZmRkVNs79ttvv6WoqIivv/4aMO/UcbGuJZgHSdzc3Cxfd+zYkWHDhgHmQQtHR0fLNOawYcMICAjg0KFDBAcH4+zsXG0d1pXuNygoiG3bqs+eWEObTLaag9Y6jfjmm2+yefNmzp8/z549e6qd69OjvyXZWjb7XwzwHcnFcVWTyZE3b16Nq5O75XqFSoFvhAcB0Z74d/AiINoLjyCNPNklWgSFQoH/HyOug+7uzNkDuaRsz+TM/hwwmLih+51sPrGWUK/2JH2YTo/xCiL6B6JUKdmxYwdOTk4MGDDA3rchWii1Ws0tt9zCs88+y+uvv47JZCIhIYFp06bVuHbp0qX8/vvvbN68mfvuu4+77rqL5557zqbxaTQaysrKLF+bTCbef//9ag9A/dmfE62/fm0ymWr9XLh47K97nl7pfsvLy3FxcanRVmNJsmUnLX2BfG5uLnl5eXTp0qXa8W+++YYdO3YAcHz/KYz5as4nXyA7+QIVp9wY0eF6onw7E+3ckz9PYCsUCvwCfAns6E1AR28CYrzwi/SQLWtEq6BSK2k/IJD2AwLRXSjnWOIZ3Da4MiLmesr1ZeSkFLLxrd9w9XWm29j2/O3Fv5G0L4kxY8bwxRdfyMiXaJBNmzZZlqdMnDiRt956ixtvvBEfHx+qqqo4cuQIffr04fjx43Tr1o1u3bqhVqv5+eefAXOJo9pKINXF1V7bs2dPjh8/zpAhQyzxLV26lNjYWDQaDTqdjrS0NLp163bVvjp37kxFRQWbNm1i5MiR7Nq1i5ycHHr06EFubm6N6y93vwDHjh2jV69eDbjjK5NkS9RLaWkp/fv35/jx4wwbNozt27cD5rpWealaYgK6soMduDq5s3L2t8T4X3pqM8wrkrv6m5+KUSjAO9ydwA7eBHT0IqijN27+LjJqJVo9jbcz/W7tSK9J0ZzamcXhH05TmGke4S7NL2f129+RtC8JgIyzmdUWOIvmq7nUwpo8eTLOzs5UVVXRvn17PvjAPF19zz33kJ+fz4gRI1AoFOj1eh544AH69OnD888/z4kTJ3B0dESj0bBs2TIAHn74YWbNmsVrr71W6yL3K7naaydPnsynn35qGWmbM2cO8+fPZ9CgQZbPgdmzZ9cp2XJ0dOSbb77hqaeesiyQ/+qrr3B1da012brc/ZpMJjZu3MjcuXPrfJ911SYXyDcnzXGBvNFo5MiRI2zbto3o6GjLAsaLOnTowMmTJ3F0cGTrp/spOFXK+ZQLGCqN5Jeep9JQSaB7KErFpUdn1U7mat2BnbwJ7ORNQLSnLGIXAvN/8FlH8jn842kyfsulUl/BntOb+fHol0zuN42pD99DzxsicfEwlylJT08nIiLCzlG3bY1dLC3MnzMDBgzgu+++IywszN7hAObSTp9//jmfffZZjXOyQL6Fas5rtg4ePEjfvn0BuOWWWxg3bhz6CgPnUy6QffwC0V7dMfmpifbryt6vf8fV8dI6K1/XQACc3R0I7ORDYCdvgjp549feA6VaCoUK8VcKhYLQHn6E9vCjMLOE339Kx2WrC0Oi4lEqlBz+Po1jiWfoPq49Af01dOnehdjYWObPn09cXJy9wxeiQZRKJR9++CGnT59uNsmWVqvl1VdftUnbMrJlZ/Ya2UpNTeWLL75g69atPP7449WKLRoMBnx8fCgqKsLH05dPnl5LXqoWo8H8o1LbYkRXX2eCu/gQ1MmbwM4+eIW4ypSgEA1Upq3g4NpUjv6cjlF/6b/obw5/zPoj5qe1nn76ad588007Rdi2ychW2yMjW+KqKioqUKlU1epanThxghdeeAEwP0I78YZJ5J4sJOtoPlm/FzAq6iYclU509O/B+RMXqiVOCoUCd38Xgrr4EPzHH1lvJYT1uHg6EXt3F3qMj+S3705xfNNZTAYT4R7RBLiHcEGXy4S+t6OvNMhDJEK0AJJstWJr1qzhzTffZPfu3fz000+WLW8ABscORqVSYTAY2PVTEp8+uAFDpdFyfnyX26q15RGkMY9cXUyufK3/aKwQojpXH2eG3t+NnhMiOfDfkyi2X0PfdsM4c+EUp9dfYPXuLQy8ozMxcSFs376dXbt2MWPGDBltEaKZkWTLTppizdaFCxfYvHkzAJs3b6ZHVB8yj+ST9Xs+544W8MiQ5wnzisTPNahaogXmquzB3XwJ7upDSFdfXH3kP28h7MXdX8PwR3rSa2I0+75JQbVbBSYo01ay9YNDHP45jXnfPMHvx4+wfPlyNm3aJIvohWhGJNmyk6aos9Wvu3l7kCCfEI6vz+Sb5B3VzvcJG2L5u6uPsyWxCu7mg7u/BiFE8+IZ7MrIJ3vTe1I0SatPmAukAnv27OZo8lEAvDy9aNeunT3DFEL8hSRbrdTal/Zw/sQFXp24Ch9X/xrnndwcCOnmS0h3X0K6+kpldiFaEJ927ox5ph8ZB3PZ+cnvdKQ78657h9UHPmJ86D2c3JZFh+GhKJTm9/TlKmyL1uXPexNezrx58+jWrRu33XbbZa+5ki1btlBZWcmYMWMa9NpnnnmGpKSkBvXdkkmy1Uq5+pqn/S4mWmonFUGdfQjp7ktoN198wt0t/xELIVqmsF7+TH4tjiM/nkb1jZJZI/8JwLaPDvP7hnTiHuyOQVNOfHw8CxcuZOLEiXaOWNjbggULGvX6LVu2UFJS0qBkqy2TwketVLte/gR19qbvLTFMmDeIe5bHM3Z2f3peH4lvew9JtIRoJVQOKnpNjObWpcNpPyDQcjw/rYj/zd3JlHF3ceTIESZNmsR7771nx0hbt6VLlxIWFkZYWBhbtmypdi4tLc1ybvr06TVeO3HiRMv5v1q5ciVLly6tVywjRoxg9uzZxMXFER0dzaOPPmo5N3XqVN59910AqqqqmDNnDgMHDqR3797cfvvtFBYWAuaaUw8++CA9evSgV69eTJs2jd9++40PPviATz/9lN69e1sSt59++olhw4bRr18/Bg0aVG0j54SEBGJiYrjmmmtYt25dve6jNZGRLTux9QL5DsND6TA81CZtCyGaHzdfF+L/1pfMw3ns+L8jFOeUUWWo5ML5IgB8vH259dZb7Rxl61VUVERmZiZgLrfzZwaDwXLuwoULNV6bm5trOf9XpaWlFBUV1TueU6dOWab8unbtyu7duxk8eHC1a1577TXc3Nz45ZdfAHj55Zd58cUXeeutt5gxYwZubm4cPHgQpVJJbm4u/v7+PProo5SUlLBkyRLAXLNx/vz5rF+/Hg8PD06ePMk111zD6dOnWb9+PWvWrOG3337DxcWlWj3HtkaSLTtp6RtRCyGap9AefkxeMpwjP6Sx/5uTTB/+ErtPb8JZ7cKx/2bjdZ8Pji7yX7+1eXh4EBpq/gXXycmp2jmVSmU5V9tel/7+/pbzf+Xq6lojeauL22+/HZVKhYuLC7179+bUqVM1kq1vv/2WoqIivv7aXCi3srKS6OhoANatW8e+fftQKpWWGGuzfv16Tp48Wa20EMDZs2fZvHkzt912G25ubgBMmzaNV155pd730hrIO04IIVoZlVpJr4nRRA8NYeuyQwxRjAIgZVsmmYfyGPFET/w7ejJx4kQefvjhNj3iYC0zZ85k5syZtZ6LjIwkIyPjsq9ds2bNZc9NnTq1QfH8udaaSqVCr9fXuMZkMvH+++8zcuTIBvVxsY2xY8fy6aef1npOmMmaLSGEaKXcfF0Y//eBDL2/KyoH83/3usIKflj4K49OnsH69eu5+eabLbtJiLZl4sSJLF26FJ1OB4BOp+P333+3nHvttdcwGs01GHNzcwHzCJ5Wq7W0MWbMGNavX8+RI0csxy5OS44aNYovv/yS0tJSDAYDK1eubIrbapYk2RJCiFZMoVDQZXQEtyyOwz/GEzCPOPx24CBgHvW48cYb7RihaGoXy4DMmTOH3r17M2jQIHr27ElsbCy//fYbAG+88QY6nY7u3bvTu3dv5s6dC8BNN91EUlKSZYF8hw4d+Ne//sWDDz5Ir1696NKlC2+99RYAEyZMYMKECfTq1YuRI0fSs2dPu9xvcyAbUduZvTaiFkK0PSajicM/pJH05QkMVUb2nt7MhfJ8Zs14hkF3dkLlIPss1kVL3oh6/Pjx3Hvvvdx+++32DqVFaey/uYxsCSFEG6FQKug5IYqb/zkMn3APYiNHMq7LrRz9KZ1vZu+g6HwpYC43cLEEgGg94uPjKS4u5vrrr7d3KG2OJFtCCNHGeIW6cdM/htDn5hhLzb2ibB3fzN7BOws/5P7776dfv34cOHDAzpEKa0pMTGT79u24u7vbO5Q2R55GtJOm2IhaCCEuR6lS0m9yByL6B7Dh9f2U5pdTUV7J/H++CJjrJ+3du5c+ffrYOVIhWj4Z2bKT+Ph4Fi1aVGs1YSGEaCp+7T255dVhhPX2Q61U88zIRbT36ciwLvHcPflee4fXrMmS57bj4lOZDSUjW0II0cY5ahy47tn+HFqbStJqeC7+NYwmA9/M3smIx3sS0c+8DVBZWRkuLi52jtb+HBwcUCgUlqrqssl362UymaisrCQ3NxelUomjo2OD2pFkSwghBAqFgl4Towns6M2GpfupKKmiqkzPhqX76XZdBO59jIweM5qVK1dy3XXX2Ttcu1KpVISFhZGRkcHp06ftHY5oAhqNhvDwcEtF/fqS0g92JqUfhBDNTVlRBT+/to/cU+bileVVZby6eRYZ+adRqVSsXbuWcePG2TlK+zMYDFRVVdk7DGFjKpUKtVrdqBFMGdkSQghRjYuHEzfMH8zefx3j9/XpKBQK/FyCyeA0nWI6M3ToUHuH2CyoVCpUKqlNJq5OFsgLIYSoQalUMPjeroz6Wx9cXV15bOhcbuh+J9O6zyHz10J7hydEiyIjW41UWVnJ66+/TlJSEqWlpbRv354nnniCHj162Ds0IYRotMgBQfgu9uDHhb8wUXk3ADs//p0LZ4qJva8rlZUVlJWV4e3tbedIhWi+ZGSrkQwGA8HBwbz//vv88MMPTJo0iblz51JeXm7v0IQQwio8/DXcvGgYgZ3+SKhMcHTDGX74x17uuvNuBg8eTGpqqn2DFKIZk2SrkVxcXJg6dSqBgYEolUrGjRuH0WgkIyPD3qEJIYTVODiruf6FQcQMD7EcW/Hle/z3f9+QnJxMfHy8LBYX4jLa3DSiTqdj1apVpKSkkJKSglarZerUqUybNq3Wa1esWMHmzZspLi4mPDycu+66i1GjRl22/fT0dCoqKggJCbnsNUII0RIplQpGPNoLr2BX9n2ZQmz7UexN38r54kzmPv4SalWb+0gRok7a3MiWVqtl7dq1VFVVERcXd8VrExISWL9+PVOnTmXx4sV07tyZ+fPns2HDhlqvLy8vZ+HChdx7771oNBpbhC+EEHbXe1IM1z7Zi0DvYOaMXsLjw/6O+vcg9v83hapyvb3DE6LZaXO/hgQFBfH999+jUCgoLCxk3bp1tV63e/dukpKSmDdvHvHx8QD07duX7Oxsli1bxsiRI6s98qvX63nxxReJiIjgnnvuuWz/eXl55OfnW75OT0+30p0JIUTTiRocgpufhp+WJNHbcTD6CgO/fZdKcU4ZfW/pQLH+AqGhofYOU4hmoc2NbCkUijoVJtu+fTsuLi6MGDGi2vHx48eTl5fH0aNHLceMRiMLFy5EqVQye/bsK7a/Zs0aHnroIcufV155pcH3IoQQ9hTQwYubFg7FI9A8km8ymDi5I4t35q4gJjqGD5Z9YOcIhWge2tzIVl2lpaURERGBWl39WxQdHW05f7G8w5IlS8jPz+e1116rcf1fTZw4sVpBwPT0dEm4hBAtlpufCzf9YyjrFydxPvkC2UUZzF/9DHpjFY89/hihwWHccOMEe4cphF1JsnUZWq221kXu7u7uABQVFQGQnZ3NunXrcHR0ZOLEiZbrFi9eTK9evWq83s/PDz8/PxITE0lMTKSkpMRGdyCEEE3DwUXN9QkD2fzeQUy7TYzqNImfjn3N4M4jCDLGoD1Ximewq73DFMJuJNm6grpMNwYFBbFt27Z6tx0fH098fLxlb0QhhGjJlColo57qg5OrA7dwP2FekfQPj+PMnlyUBiWBnbwJ6e6HUtnw/eWEaKkk2boMT09PtFptjePFxcUAeHh4NHVIQgjR7A17oDuOLmoU3yvABBcySjBUGTEaTBRkF9FpaDhOrg72DlOIJiXJ1mVERUWRmJiIXq+vtg7rYpXkyMjIRrUv04hCiNZq4J2dUTurOPDfU5iMJorO6zi06QRvbEogfuh1vLjwBbzD3O0dphBNps09jVhXcXFxlJWVsXXr1mrH169fj5+fH127dm1U+/Hx8SxatIjp06c3qh0hhGiO+t7cgYF3dkKpVqI3VPHP/83m91OHeOvT13g54Z+c/vU8hiqDvcMUokm0yZGtPXv2UF5ejk6nA8xPBG7ZsgWA2NhYnJ2diY2NpX///ixduhSdTkdoaCgbN25k7969JCQkVKux1RAysiWEaO16jI/EwVnFns+O0yt0EKfyjuHu7EnfDoPITy+iJK+M9gMDcfN1sXeoQtiUwmQymewdRFObMmUK2dnZtZ5bvXo1wcHBgHm7nuXLl1fbrufuu+++4nY99XVxgfzy5cvp1KmT1doVQojmImVHJrs+Ocr6g/+lo393IoM6EDMsBBdPJxRKCOrkQ3AXHxSyeF60Um0y2WpOJNkSQrQFab+cY+f/HaW8uBIAlaOSmKEhaLydAXD1dab9gECc3RztGaYQNtEmpxGbA5lGFEK0JZEDg1E7qti+/Ai6CxUYKo2c3JFFijKJLp270JUeHE88S1gvP/wiPe0drhBWJSNbdiYjW0KItiTzcC7bPjpCSV4ZPx79kv8dWoW3uw+f/ONLwoLCAfAKcSWiXyBqp8atjRWiuZCnEYUQQjSZ0B7+DH+kBy6+Dhw5lwTAheIC1v78reWawqxSjm5IR3uu1E5RCmFdkmwJIYRoUqHd/bjmod7MmbyIUM8Ibu51P7Hu49BmXUquqsoNnNyZxZkDORj1RjtGK0TjyZotO5E1W0KItqxdL39GPTAAZ8fl6HL0YILUvedoPyCwWsHT3FNainN0tB8QhKuPsx0jFqLhZM2WncmaLSFEW2UymUj75TwH/pvChbOXfvH06uJE+85h1fanVSghuIsPQZ2kRIRoeWQaUQghhF0oFAoiBwTSe1I0vhHm/WazizJ49NU7ee39f1S71mSErN8LSN6aQXlJpT3CFaLBJNkSQghhNwqlgsjYYLqNj0ATqmZx4nPkl57nyy2rWPn5xzWuL80v53jiWXJTtXaIVoiGkTVbdiJrtoQQwkypVBAzOASj3shdRx/kgx+WEOYVSYihA9nHCwjq7FPteoPeyJn9OWjPlRLRLwAHZ/koE82brNmyM1mzJYQQZvpKAye2ZbDyw0+JUHTHSW1eEB/YyZvgrj7V1nBd5OCkIrxvAF6hbk0drhB1JtOIQgghmgW1o4oOw0K578F7iewdajl+PvkCmYfzqG1soKrCwKnd50hPOo+hytCU4QpRZ5JsCSGEaDYcnNV0iAshvI8/Yb38APNTi4lbf+bMgZxaEy6AvNNFHEs8S0leWVOGK0SdyES3EEKIZsVR40DMsFAMehPlVWW8/OHz7M/YxQVdHjcZbyeib0Ct5R8qSqs4sTWDwI7eBHfzRSklIkQzIcmWncgCeSGEuDxnd0dihgSzcddP7M/YBcDq/R/RK3QQJoOJiAGBtSZTJhNkJ1+gKEdH+wGBuHg4NXXoQtRgtQXy+/btY//+/Rw5coScnBy0Wi3Ozs54eXkRFRVF7969GTx4ML6+vtbortWQBfJCCHF5hVklPPnoU3y74SseGPQMPUIGAuARpCFyUBBK1eVXwyhVCkK7++If41Xr4nohmkqjki2dTsc333zD2rVrycm5NJfu6OiIh4cHFRUVlJaWYjSa97VSqVQMHTqUKVOm0KNHD+vcQQsnyZYQQlxZ9ol8fk08hJvRm9Q92ZiM5s8a9wAXImODUamvvPzYI0BDRP8AHDUOTRGuEDU0eBrxu+++45NPPuHChQvExMQwceJEunXrRqdOndBoNJbrTCYTGRkZHD16lF9//ZUdO3awfft2hg4dyhNPPEFISIhVbkQIIUTrFNTRl35VPTl3rIDoocGk7jqH0WCiOKeMUzuziB4SjMpBddnXF+XoOJZ4hnZ9AvBp537Z64SwlQYnW2+++SajR4/mjjvuIDIy8rLXKRQK2rVrR7t27bjuuuuoqKggMTGRf/3rX/z8889MnTq1oSEIIYRoI0K6+VJVpgcgZlgIa77+nsKSAmIZScr2LGKGhqB2unzCpa80krY3G+25Utr19kftePlrhbC2Bidb//rXvwgNDb36hX/h5OTE9ddfz9ixY8nNzW1o90IIIdqY8L4BVJZV8dma/+Odja+hVKjwdw8hms6kbMsgelgoji5X/lgrOFNMSW4Z7QcE4h6gueK1QlhLg+tsNSTR+jOVSkVQUFCj2hBCCNF2KJQKogaHUFCSg9FkRG+sYtPJ7wAoL64iZWsGFaVVV22nskxPyvZMzh7MxWgw2jpsIaT0gxBCiJZDpVbywar3OJF2gr6dB3LHmPtJ25VNZameSp2eE1sziBkWctWSDyYT5KQUUpyjo/2AIDReUiJC2I7sjWgnf66zdejQIXkaUQgh6kFXVM7JrVlUVRioKtNzckcW5cWVAKgclUQPCcHVx7lObSmVCoK7+hDYyVtKRAibsOp2PcXFxaxfv96aTbZa8fHxLFq0iOnTp9s7FCGEaHE0Hs5EDw1BqVbg4KKmw/BQy+iUodLIyR2ZFOfWbeseo9FE5pF8UrZm1mkaUoj6smqydf78eRYtWmTNJoUQQohaufo4EzkgCIUCCkpy+T79M1x8zLW0jHoTp3Zmoc0urXN7xXllHEs8Q95pra1CFm1UvdZsnT9//orn8/LyGhWMEEIIUR9eoW4kF/7GY888jLakENfJbsSHTabovA6T0UTq7nO0HxCId1jd6msZqoykJ+WgPacjom/AFctJCFFX9Uq2pkyZcsX5bJPJJPPdQgghmlRkt3aUlBUDsG7r/7jn9QdRHlJSmFkCJjj9y3kMVUb8Ij3r3GZhZgml+WVE9AvEM9jVVqGLNqJeyZa7uzsPPfQQffr0qfV8eno6L7zwglUCE0IIIeoiNjaWF154gT1bk3j2nnloXDS0H+jC2f1K8tOLADh7IBej3khAB+86t1tVbuDkziz8ozwJ7el31W2BhLiceiVbHTt2pLCwkPDw8FrPV1ZWIg83CiGEaGovvPACprkmUnZkUZpfbt69pK8/SgcFuSfNa7AyD+djqDIS1MWnXrMwualainN1tO8fiKuvi61uQbRi9UrTb7zxRoKDgy97PjAwkDlz5jQ6qJbm22+/5YEHHuDaa6/l448/tnc4QgjR5iiVSlQOKqIHB+PkZl4kr1AoCO3hR1AXH8t12ccvkHkor94DA+XFVSRvzSDr93zLRthC1FW9kq3hw4czZsyYy553d3dn3LhxjQ6qpfH19WXatGnExcXZOxQhhGjTHJzVxAwNwaio4r0vXien4DzBXXwI7elnuSb3lJYz+3LqnTSZjHDuWAHJm89SXlRp7dBFKyYT0FYQFxfH0KFDcXWVRZRCCGFvWbkZTHvxdj7534e89O5zGI1GAmK8CO8bYLmm4Ewxp3/Jxmio/yhV6YUKjm06Q87JQitGLVqzRidbI0aMuGpJiOZEp9OxbNkyZs6cyQ033MDw4cMvO/Wn0+l4++23uemmm4iPj2fatGls3LixiSMWQghRH97e3hRqLwDw2/F9JKcdBcC3vQftB5nrcgEUZpWSuvscRn3990c06k2c/S2XlB2ZVJbprRa7aJ0anWy1tAXxWq2WtWvXUlVVddVpv4SEBNavX8/UqVNZvHgxnTt3Zv78+WzYsKGJohVCCFFf3t7efPbZZ/Ts2ZP1X2+kS3T3S+dC3YgaHIxCZc64inN0nNyZhaHK0KC+irJ1HNuQzoWMYqvELlqnNrcRdVBQEN9//z0KhYLCwkLWrVtX63W7d+8mKSmJefPmER8fD0Dfvn3Jzs5m2bJljBw5EpWq/sXu8vLyyM/Pt3ydnp7esBsRQghxWSNGjGD//v2oVCrS950nL63Ics4jyJWYoSGc2mUe1SrNLydlWxbRw0JwaEARU32lkdQ92fiEl9Kutz9qRymEKqprc8lWXR/33b59Oy4uLowYMaLa8fHjx7NgwQKOHj1Kjx496t3/mjVrWLlyZb1fJ4QQon4u/kIc3ieAyjI9Rdk6yzk3Pxc6xIVwamcW+kojZdoKUrZmEDMsBEeNQ4P6KzhTTEleGe37B+IeoLHKPYjWQRbIX0ZaWhoRERGo1dXz0ejoaMv5i/R6PRUVFRiNRgwGAxUVFRgMtQ9JT5w4keXLl1v+JCQk2O4mhBBCoFAqiBoUxK4jm8ktuLTGWOPtTIdrwnBwNidlFSVVnNiaSXlxw580rNTpSdmeydmDuRgN9V8LJlonSbYuQ6vV4uHhUeO4u7t5f62ioktD0p9++imjR4/mxx9/5LPPPmP06NH8/PPPtbbr5+dHp06dOHv2LJ988glr1qyxzQ0IIYQAzPv6Tp4ymafmP8LST/9R7ZyzuyMdR4RZanNVlelJ2ZqB7kJ5g/szmSAnpZDjG89S2oh2ROvR5qYR66OuU47Tpk1j2rRp9Wo7Pj6e+Ph4kpOTeeihhxoSnhBCiDpQq9Xs3LkTgA07f+TOCffTI6a35byjxoEOw0M5tTOLMm0l+kojKdsziRocgrt/wyvGlxVVcmJzBkFdvAnq5INCKXsHt1UysnUZnp6eaLXaGseLi81PnNQ26iWEEKL58fX15Y033iAgIID//Oc/3HjvOBR/+fRzcFYTExeKq68zYC7tcGpnFtpzpY3q22g0kfV7AclbMho1PSlatkaPbN1zzz24ublZI5ZmJSoqisTERPR6fbV1W6mpqQBERkY2qv3ExEQSExMpKSlpVDtCCCGu7s477+SGG26w/KLcrpc/Zw7kVrtG7agiZmgIaXuzKTqvw2Q0kbrnHBH9AvEJd29U/6UF5RzbeIbQ7n74R3vWa29G0fI1emTrwQcfbJWV0+Pi4igrK2Pr1q3Vjq9fvx4/Pz+6du3aqPbj4+NZtGgR06dPb1Q7Qgghrk6hUFSbkfCP9iKwg1eN65RqJZGDg/EO+2MQwQTpSefJPVXY6BguFkI9uSOLSl1Vo9sTLYfN12yZTCYyMjJwcnIiICDg6i9oAnv27KG8vBydzvwYcHp6Olu2bAEgNjYWZ2dnYmNj6d+/P0uXLkWn0xEaGsrGjRvZu3cvCQkJDaqx9WcysiWEEPZV4pSPa6CG0vMV1Y4rlQoiBgSiclSRl2peTpJxMA99pZGgzt6NHpUqOq/jWOIZ2vUJwKdd40bMRMugMFmpBPz27dvZuXMnTzzxhOWJvXPnzjFnzhxL4c6RI0eSkJCAUmnfpWJTpkwhOzu71nOrV68mODgYMG/Xs3z5cjZv3kxxcTHh4eHcfffdjBo1ymqxXFwgv3z5cjp16mS1doUQQtSuvLycf/7zn/zzn//k5QUvM2ngnZQW1Hxq0GQyce5oAeeTL1iO+Ud7EtrTz2rTgD7h7lIItQ2wWrL17LPPkpOTw6pVqyzH5s6dy86dO+nbty9FRUWcOnWKZ555hgkTJlijy1ZBki0hhGha+/fvZ8CAARiNRpydnflt/0GqTjtQUVr7Hoc5KYVkHs6zfO0T7k543wCrPV3o6KImon8gHoFSCLW1stoQU1paGl26dLF8XVJSwp49exg5ciRvvPEGH374IREREXz//ffW6rJFS0xMZM6cObzzzjv2DkUIIdqUvn37Mn36dNRqNTNnziS8fTuih4agdqz9IzGggxfhfS8tgyk4U0zaL9kYDdbZG7iyTM/JHZmc/S23QZtii+bPaslWYWEhvr6+lq8PHz6MwWCwTLmp1Wr69+9PZmamtbps0WSBvBBC2M/LL7/M/v37WbhwIS4uLrh4OBE5KLhGSYiLfNt7EDkoyHJem1VK6u4sDFZKjkwmyDlZyDEphNoqWS3ZcnV1rVZV/cCBAyiVSnr16mU5plarKS+XHyIhhBD25e7uXmN/W49ADeF9Lv8gl1eoG1GDQ1CqzNOHxTllnNyRib6y9u3ZGqK82FwI9dyxfExG64ycCfuzWrIVHh7Orl27KCoqoqSkhI0bN9KhQwfLYnmA7OxsvL29rdVliybTiEII0bwYjUb8Ij0J7HT5zymPQA0xw0JQOZg/PnUFFaRsy6SqrPb1Xg2L449CqFulEGprYbVk65ZbbiEvL4+bb76ZyZMnk5+fz6RJkyznDQYDhw8fJiYmxlpdtmgyjSiEEM2DyWTiq6++onPnzhw9epTQ7r6X6mzVwtXXhQ7DQ1E7mZ8gLC+q5MS2TCpKrVs7qzTfXAg152QhVnqWTdiJ1ZKtESNG8Le//Y3IyEjatWvHww8/zPXXX285v2/fPsrLyxk4cKC1uhRCCCEa7ZNPPmHKlCmkpKTw7LPPolAoaN8/EFcf58u+xsXTiQ7XhOKoMZerrCytImVrBmVF1h2JkkKorYPVSj+IhpHSD0IIYV9lZWV06tSJs2fPEh8fz7fffourqytV5XqSN5+9bEkIgEqdnpM7M6koNidCKkcl0UNCrpioNZTaUUm73gGN3jpIND3ZiFoIIUSb5uLiwvvvv8+6dev4+eefLVvQOTiriR5yaX1WbRw1ajoMD8PFywkAQ6WRkzsyKc7VWT1OfaWRtF+ySdt7zqqL8oXtyciWnfx5u55Dhw7JyJYQQjRTRedLObkzC9MVqjwYqoyk7s6iJM/8xL1CqaD9wEC8Qi6/9qsxHFzURPQLwDOo9e1N3BpJsmVnMo0ohBDNX26qljP7c654jdFgJG1vNkXZf4xqKSC8bwC+ER5XfF1j+Ed7EtbDD6VaJqqaM/nXEUIIIf7i2LFjfPrpp5av/aM8CezodcXXKFVKomKD8W73x2iWCc7syyHnZKHN4sw9peXYxjO17u0omg9JtoQQQog/efbZZ+nRowcPPfQQqampluOhPfyuWBICzNOHEf0D8YvytBzLPJTHuaP5NivfUF5cRfKWs2T9LoVQmytJtoQQQog/UavVGAwGKisrWbx4seW4pSSE75WfNFQoFIT18iOo86XiqNnHL5B5KM9mCZfJCOeOFZC8RQqhNkeyZstOZIG8EEI0T0VFRfTp04epU6cya9YsNBpNtfPmkhAZdSpimnOykMxDeZavvcPdiegbgEKpsHrcFynVCkK7+xEQ42WzPkT9SLJlZ7JAXgghmp+qqiocHBwue768qJLkLWfRV159I+r89CLO7Lu0uN4z2JX2AwNRqmw7ueQRpCGiXyCOLmqb9iOurt7/0kajkdTUVPLy8mqc0+v1/Pbbb9aISwghhLCbKyVaAM4ejkQNDkZZhxEq3wgPImODUPzxias9V8qpnecwVF09UWuMomwdxxLPcCGj2Kb9iKurV7KVnZ3N1KlTuf/++5k8eTJz5sxBq9VazhcVFTFjxgxrxyiEEELYVUlJCWVlZdWOuftrCO8XUKfXe4W4ET0kBKXanJyV5JWRsj2TqgrbFifVVxhI3ZNN2i/ZUgjVjuqVbC1btgx/f3+++uorPv74Y6qqqnjiiSeqjXLJrKQQQojWwmg08sknn9CxY0dee+21Gud9IzwI7uJTp7bcAzTEDAtF5Wj+6C0rrCBla0aT7HlYcKaYY4lnKM6xfmV7cXX1SrYOHjzIY489RkBAAFFRUSxZsoSePXvy5JNPcv78ecD8FIYQQgjRGqSmpvLwww9z7tw5Xn31VbKysmpcE9LNt877Fbr6ONNheBgOzioAKkqqOLE1s0meIKzU6UnZnsnZg7kYDbadwhTV1SvZKi8vrzaPrVAoeO655xgwYADTp08nMzPT6gEKIYQQ9hITE8Njjz0GwMiRI2tMJV4U0T8Qd3+XOrXp4uFIxxFhOLmZP0+ryvSkbM1Ad8H2hUlNJshJKeT4xrNN0p8wq1eyFR4eTnJyco3js2bNIjY2ljlz5lgtMCGEEKI5ePHFF9m9ezdr164lOjq61muUSgVRg4NxdnesU5uOGgc6DA/FxdN8vb7SSMp222xgXZuyokqSN2dw7liBFEJtAvVKtoYPH86GDRtqPTdz5kxGjhwpa7bqKDExkTlz5vDOO+/YOxQhhBBX4OvrS2xs7FWvUzuqiBkagoOTqk7tOjir6TA81FIk1ag3cWrnObRZpY2Kt66MRhNZv+dzYmsG5SVSCNWWpM6WnUmdLSGEaF1K88s4sT0To75uH69GvZG0X5p2A+u/UqmVhPb0w/9P2wwJ65HteoQQQoh6+O233/jnP/952fOuvi60HxBEXZ8XU6qbfgPrvzLojZzZn8PJHZlUlumbrN+2otHJ1ogRIyxPIgohhBCt2YwZM+jTpw9z587ll19+uex13qFuhPbwq3O79tjAujZaKYRqE41OtmQWUgghRFvx5+Ueb7/99hWvDezojX903afl7LGBdW2kEKr1yTSiEEIIUUcPPPAAsbGxvPnmm6xYseKq17fr5Y9nsGud21coFAR39SW056VRsdxTWs7sy2nypwYLzhRzbMMZis5LIdTGkt0phRBCiDpydHRk165ddS7grVAqiBwUxImtGeguVNS5n4AYL1QOSssG1gVnijHojbQfEIRS1XTFwyvL9JzckYl/tBeh3X1RqmWMpiHku9ZIhYWFPPfcc4wZM4Y777yTX3/91d4hCSGEsKH67pSiUiuJHhKCo6Z+4xu+ER5EDrq00F6bVUrq7iwM+qat/m4yQc7JQo5tPEupFEJtEEm2GumNN97Ax8eHNWvW8Pjjj/Piiy9W25xbCCFE61ZSUoLReOUEyNFFTczQEFQO9fvY9Qp1I2pIiGU0qzinjJM7Mu2ylqq8uJITmzM4dyxfCqHWkyRbjaDT6di+fTv3338/zs7ODBs2jJiYGHbs2GHv0IQQQthYeXk5b7zxBpGRkXzzzTdXvd7F04mo2CAU9fzk9QjUED3sUqKmK6ggZXsmVeVNX6LBXAi1gOStGU2yn2Nr0aaSLZ1Ox7Jly5g5cyY33HADw4cP5+OPP77stW+//TY33XQT8fHxTJs2jY0bN1a7JiMjAxcXFwIDAy3HoqKiSEtLs+l9CCGEsL+tW7cyc+ZM8vLymDdvHgbD1UebPAJdCe8bUO++3HxdiIkLRf1HdfpybSUpWzOp1FXVuy1rKM0v59jGM+SeKrRL/y1No5Ote+65Bzc3N2vEYnNarZa1a9dSVVVFXFzcFa9NSEhg/fr1TJ06lcWLF9O5c2fmz59fbbuisrIyXF2rP2Xi6up62Y1KhRBCtB5jxoxh6NChAPTp04fi4rrVpvJr71mtvENdabyc6HBNKA4u5rVfFaVVnNiSQXmRfUaYjHoTZw7kkiKFUK+q0U8jPvjgg9aIo0kEBQXx/fffo1AoKCwsZN26dbVet3v3bpKSkpg3bx7x8fEA9O3bl+zsbJYtW8bIkSNRqVS4uLhQWlp9D6vS0lJcXC6/83teXh75+fmWr9PT061wZ0IIIZqaQqHg3XffRalU0rNnz3q9NqSbL5WlVRScLanX65zdHOl4TSgnd2RRUVJFVbmBE9syiB4SgquPc73aspaibB3HNqQT3jcA7zB3u8TQ3LWp0g91fYJk+/btuLi4MGLEiGrHx48fz4IFCzh69Cg9evQgLCyMsrIycnJyCAgwDwunpaUxZsyYy7a9Zs0aVq5c2dBbEEII0Yz07t27Qa9TKMwV4yt1ekry6/eEn6PGgQ7DQzm16xxlhRUYKo2c3J5J5OBgPAI0DYqnsfSVRlL3ZOMTXkq73v6oHeu2GXdbYfVky2g0kpubS25uLnp97cOKDf3hbCppaWlERESgVlf/9kRHR1vO9+jRA41Gw7Bhw/jkk0+YMWMG+/btIyUlhfnz51+27YkTJ1qGncE8svXKK6/Y5kaEEEI0W0qVuSTE8c1nqSip39orB2c1HeJCSd2dRUleOUaDidRdWUQMCMI71H5LewrOFFOSW0ZE/0A8Au2T+DVHVku2TCYTn3/+OV9++SVFRUVXvHbLli3W6tYmtFotISEhNY67u5uHR/98fzNnzmThwoVMmDABPz8/XnrpJby8vC7btp+fH35+fiQmJpKYmEhJSf2GkIUQQjRfu3btIisri8mTJ9fperWTipihISRvPou+sn71s1QOSqKHhnD6l/Noz5ViMsLpvdkY+vjjF1n3bYKsTQqh1mS1ZOvDDz/k3//+N97e3owbNw5fX19UqpY7jFjXKUcvLy9ee+21ercfHx9PfHw8ycnJPPTQQ/V+vRBCiOZDr9dz0003sW7dOnx9fbnuuussv6BfjbO7I1GDQzi5PRNjPetXKVVKIgcFceZADgXp5gX6Zw/koq80EtjRq94FWK3lYiHUovM62g8MxNXbPuvJmgurJVvr16+nXbt2fPTRR2g0LXvo0NPTs9bCpBefNPHw8Gh0HzKyJYQQrYdarbZ8NuTn5/N///d/zJgxo86vd/d3Ibx/AKd/OV/vvhVKBeF9A1A7qshJKQTg3O/5GCoNhHT3tVvCBeZCqMmbzxLcxYegTj4olPaLxZ6sNrZXVlbG4MGDW3yiBeZaWenp6TXWnKWmpgIQGRnZ6D7i4+NZtGgR06dPb3RbQggh7G/+/PlERUWxYsUKnnzyyXq/3jfcg+CuPg3qW6FQENrDj5DuvpZjOSmFdtnA+q9MRsyFULe03UKoVku2YmJiqpU0aMni4uIoKytj69at1Y6vX78ePz8/unbtaqfIhBBCNFcxMTGkpKTwwAMP1HjAqq5CuvriG9Hw8gmBHb1p18ff8nXBmWLS9mZjNDTtfoq1KS0wF0LNOVlo71CanNWmEe+9915eeOEFkpOT6dSpk7Watbo9e/ZQXl6OTqcDzE8DXlywHxsbi7OzM7GxsfTv35+lS5ei0+kIDQ1l48aN7N27l4SEBKusRZNpRCGEaH2UysaPYYT3M5eEKM5tWIFsv0hP1I4qTv+ajckI2nOlnNp5jqjBwfXem9HajHoTZ3/LRXuulIj+gTi6tI0KVAqTyWS18cUtW7bwxhtvMHToUKKjo2tUV79o7Nix1uqy3qZMmUJ2dnat51avXk1wcDBg3q5n+fLlbN68meLiYsLDw7n77rsZNWqUVeO5uEB++fLlzTpJFUIIUX+VlZU4OjrW+3X6SgPJmxs37VacoyN1zzmMevPHvMbLieihIZYtf+xN7aikXZ8AfNq1/kKoVku2KisrWbx4MYmJiVxs8q+L8kwmEwqFotmXfmhKkmwJIUTrU1RUxFtvvcV7771HUlISYWFh9W6joqSK5M1nqaq4+p6Ll1NaUM6pXVkY/igr4eTuQMzQUBw1zWdEySfcvdUXQrXad/vdd99lw4YNREdHc80117T40g+2JtOIQgjRer322muWgtWvvPIKH3zwQb3bcHJzIHpIMCe2ZWI0NGxcxNXHmQ7Dwzi1I5OqcgMVxVWkbMsgelgIzm71H3GzhbZQCNVqI1sTJ04kKCiI999/v8ELA9siGdkSQojWJz8/n8jISHQ6HQ8//DDvvfdeg0swXMgwL3JvzKd1RWkVJ3dkUVlqrlSvdlIRPTQEjZdTwxu1MoWCVlsI1Wp3U1lZSZ8+fSTREkII0eb5+vqycuVKjh07xvvvv9+oWlfeYe6EdPdrVDxOrg50vCYUZw/zaJa+wsDJ7ZmU5DdsEb4tXCyEemzjWUov1G+/yObOaplRp06dyMjIsFZzrZ5MIwohROt28803W62toE7eVJRUkpd25e3wrsTBWU2H4aGk7jpHaUE5hiojJ3dkETUoCI+g2h9os4fWWAjVaiNbDz30EL/88gu7du2yVpOtmhQ1FUIIUR/hfQLwCGrcmia1o4roYSG4B7gAYDKYSN19jgsZxdYI0WqqFUItavmFUK02spWUlETv3r2ZO3cuffr0ISYmptbSDwqFgvvuu89a3QohhBDNnslkIjExkZCQELp169agNhRKBVGDgkjekkGZtuEJiEqtJGpwCOlJ2RRmlmIywelfzmOoMtp1A+valBaUc2zTGUK7++Ef7WnXrYcaw2oL5K+55pq6dSilH6qRBfJCCNG6ZWRkcNddd7Ft2zYmTJjA2rVrG9Vepa6K45szqCrTX/3iKzCZTJzdn0t++qWpyeBuvnbdwPpKPAI1RPQLwFHjYO9Q6s1qI1tvvfWWtZoSQgghWg0/Pz/L3rrr1q1j37599OvXr8HtOWociBkSzImtmRj0Dd+GR6FQ0K6vPypHZbPbwLo2Red1HEs8Q7veAfiEt6xCqFZLtnr37m2tptoEWSAvhBBtg7OzM/PmzWPJkiUsWLCAPn36NLpNjbczkYOCOLU7C1Mjtj1UKBSEdPdF5aji3O/m/Y1zUgrRVxoI7xPQ7Ban6yuNpP2STWFWCeF9A1pMIVSrbtcj6k+mEYUQovXT681TftYuj5RzspCzv+Vapa28NC1nD1xqyzPElfYDAlGqmmfNKwcXNRH9AvBsRk9SXo7VvoOHDx/m3XffJT8/v9bz+fn5vPvuu/z+++/W6lIIIYRoEdRqtU3qUAbEeBEQ42WVtvwiPWk/MIiLs4farFJO7TqHoaoRQ2c2VFWm5+SOLM7sz2nUdGpTsFqytXr1anbu3Imvr2+t5319fdm1axdffvmltboUQgghWiyj0ToJQlgvP7xCrDO64x3mRtSQEJQqc8ZVklvGyR2Z6BuxP6Ot5aZqOZZ4htJmVKD1r6yWbB0/fpyePXte8ZpevXpx9OhRa3UphBBCtDj5+fnMnj2bESNGYI2VPAqFgvYDg9B4W2frHY9ADTFxoagczCmC7kIFKdsyqNQ17ulHW6ooqSJ5awZZv+djNDa/1VFWG9MsLCzEz+/K2wn4+Phw4cIFa3XZoskCeSGEaJsmT55sKYH0v//9zyqV5lVqJdFDQkjedJbKRpaEgIsbWIdycmcW+nID5cVVnNiaQcywEJzdm8cG1n9lMsK5YwVos0tpPyAQF4/ms++j1Ua23NzcyMnJueI158+fx8XFxVpdtmhSQV4IIdqmZ599FgAnJydOnz5ttXYdXdREDw1BZaVNnF08neh4TRiOrua6VlVlelK2ZaJr5vsW6i5UcHzjWXJSLlhl5NAarJZsdevWjW3btnH+/Plaz58/f57t27fTvXt3a3UphBBCtDjjxo1j0aJFnDx5kpkzZ1q1bY2XE5GDglBY6dP94gbWLp6XNrBO2Z5FSV7zXR8FYDSYOHswj5TtmVTqquwdjvWSrSlTplBRUcETTzzB+vXrycvLAyAvL48ff/yRxx9/nMrKSm677TZrdSmEEEK0OAqFgtmzZxMWFmaT9j2DXWnXy99q7Tk4q4mJC8XV1xkAo968gbX2XKnV+rCV4pwysn6vvUpCU7Lamq1evXrx1FNP8c4777Bo0SLA/AN1cQhPoVAwffp0KX4qhBBC2Jh/tBflJVWWyvCNpXZUETM0hLS92RSd12Eymkjdc46IfoHNvpp7c5hJtGrRj5tvvpnevXvz7bffcvz4cUpKSnBzc6NLly5MmjSJqKgoa3YnhBBCtHgmk4l169YxevRonJ2drdZuWE8/KkurKMyyzgiUUq0kcnAw6UnnKcwoAROkJ53HUGXAP9rLKn20VlavsBYVFWX1OWghhBCiNfr111957LHH2LdvH2+99RZPPfWU1dpWKBREDgzixNYMSi9UWKVNpVJB+wGBZDgoyUszb2CdcTAPfaWRoM7ezW4/xeaiedbgF0IIIdoABwcH9u3bB8DChQvR6XRWbV+pVhI9NARHjfXGVhQKBWG9/Qns5G05ln2sgMxDec3m6b/mxvp7B4g6kTpbQgghevfuza233kpKSgqvvPKKTcojOTiriRkaQvKWDKttvaNQKAjp5ovaUUXmYfMDcbmntOirjET0bX4bWNubbERtZ7IRtRBCtG1arRZ3d3eUSttONhWdL+XkzixMVt5GMD+9iDP7LtXZ9AjSEDkoqNlsYO0T7k7kwCC7xtA8vhNCCCFEG+Xp6WnzRAvAI9CV8N4BVm/XN8KDyNhLtb2KsnWc2pnVbDewtgdJtoQQQog2wi/Ks9paK2vxCnEjekgISvUfG1jnlZOyPZOqZryBdVNqVLKl1zffTSmFEEKIliYrK4snnniCF154wWZ9hHb3xTvMzertugdoiBkWisrRnFqUFVaQsjWjWVRwt7dGJVs333wz7733nlX3dhJCCCHaotLSUrp3787777/P66+/zrlz52zSj0JhLt9wsSK8Nbn6ONNxeBgOzioAKkqqOLE1k/LiSqv31ZI0KtkqLS3lyy+/ZOrUqTz22GOsW7fO6o+tCiGEEG2Bq6sr9913HwAqlYr9+/fbrC+lSkn04GCc/thk2pqcPRzpOCIMJ7c/bWC9NaPZb2BtS41Ktv73v//x5JNPEhUVxdGjR1myZAk33XQTixYt4tChQ9aKsdn79ttveeCBB7j22mv5+OOP7R2OEEKIFur555/n2WefJTU1leuvv96mfV0sCaF2tP7ybUeNAx2G/2kD60ojKdszKc5tmwMyViv9kJyczA8//MDGjRspLi42Fz0LC+P666/nuuuuw8fHxxrdNEvbt29HqVTy008/0b59e6ZNm1bn10rpByGEEPZUnKvj5PYsjEbrV4IyVBk4tescpfnmUS2FUkH7gYF4hVh/zdjltKrSD506deJvf/sb//vf/5g3bx59+/YlMzOTDz/8kMmTJ/P3v/+dXbt2YTS2vkdB4+LiGDp0KK6urvYORQghhKgXd38N4f2sXxICQOWgImZYCB5BGgBMRhNpe7PJTy+ySX/NldUryDs4ODBq1ChGjRpFTk4OP/74Iz/++CM7duxg586d+Pj48N///tfa3aLT6Vi1ahUpKSmkpKSg1WqZOnVqraNMOp2OFStWsHnzZoqLiwkPD+euu+5i1KhRVo9LCCGEaCiDwcCuXbuIi4uzaT++ER5UlFRx7liB1dtWqpRExQaTvu88F86aN7A+sy8HQ5WRgBgvq/fXHNm0zlZAQAD33XcfixcvpkePHphMJgoKrP8PCeYKvGvXrqWqquqqP5QJCQmsX7+eqVOnsnjxYjp37sz8+fPZsGGDTWITQggh6mvdunX06NGDa665hiNHjti8v+CuPvi0s830nkKpIKJ/IP7RnpZjmYfyOHc0v03sp2izvRHLysrYvHkzP/zwA0eOHMFkMuHs7Mw111xjk/6CgoL4/vvvUSgUFBYWsm7dulqv2717N0lJScybN4/4+HgA+vbtS3Z2NsuWLWPkyJGoVOZHVmfMmHHZH/Dbb7+dBx98sN5x5uXlkZ+fb/k6PT293m0IIYRo/Y4fP86xY8cAmDdvnk1mhf5MoTAnRJU6PSX51n9yUKFQENrTD5WDkuzjFwDIPn4BQ5WR0J5+KBStdz9FqydbBw8e5IcffmDLli1UVFRgMpno3Lkz119/PfHx8Wg0Gmt3CVDnf6Tt27fj4uLCiBEjqh0fP348CxYs4OjRo/To0QOAN99808pRwpo1a1i5cqXV2xVCCNG6PP744yxdupTIyEimT5/eJH0qVUqiBgeTvDmDilLrFyNVKBQEd/VF5agi81Db2cDaKslWbm4u69ev58cffyQrKwuTyYSHhwcTJkzg+uuvJyoqyhrdWEVaWhoRERGo1dVvPTo62nL+YrJVV3q9HoPBgNFoxGAwUFFRgVqttoyQ/dnEiRMZOnSo5ev09HReeeWVBtyJEEKI1kyj0fDLL78QGhrapKM+F0tCJG85i77SNg+1BcR4oXJQcmZ/DpjgwplijFVG2g8MbDYbWFtTo5KtTZs28eOPP5KUlITRaESpVDJgwADGjx9PXFxcjYSmOdBqtYSEhNQ47u7uDkBRUf2fkPj000+rjVZ99tlnPP/884wbN67GtX5+fvj5+ZGYmEhiYiIlJSX17k8IIUTbEBYWZpd+nT0ciYoN5uQO25SEAPOifJWDktO/ZGMygvZcKad2niNqcDAqh9aVcDUqG5o/fz5gXi81fvx4xo0bR0CAbR4ftSZr/4Ywbdq0etXWAoiPjyc+Pt5SZ0sIIYRoTtwDNLTr6096Uo7N+ri4gXXq7nMYDSZK8so4uT2T6KEhqJ1qzg61VI1KtkaNGsX1119Pv379rBWPzXl6eqLVamscLy4uBsDDw6NJ4pCRLSGEEPWRmprKggULuPvuuy0PeNmaX3tPKoqryE6+YLM+3AM0xMSFcmpXFoZKI7rCClK2ZRA9NBRHTfObIWuIRt3FvHnzrBVHk4mKiiIxMRG9Xl9tmjM1NRWAyMjIJolDRraEEELUVVJSEoMHD0av13Ps2DFGjRrVZOu4Qrr7UlFaxYUM2w0OuPo402F4KKd2ZFFVbqC8uMqccA0LwdnN0Wb9NhWrTorq9Xq+/PJLHn74YcaOHcu1115rOZeSksLSpUs5e/asNbust7i4OMrKyti6dWu14+vXr8fPz4+uXbvaKTIhhBCidn379qVLly6A+fM0LS2tyfpWKBS0HxCIq6+zTftx8XCiwzVhOP6xOXalTk/K1kx0hRU27bcpWG18rqKiglmzZnHkyBE8PT1xdXWlvPxSnY7g4GB++OEH3N3dbTaSs2fPHsrLy9HpzBtdpqens2XLFgBiY2NxdnYmNjaW/v37s3TpUnQ6HaGhoWzcuJG9e/eSkJBQ6xOEtiDTiEIIIepKqVSyaNEi9u7dy8yZM/H09Lz6i6zZv0pJtA1LQlzk5OpAx+GhnNyZRXlRJfoKAynbMokeEoybn4vN+rU1q21EvWLFCj777DMeeeQR7rjjDj755BM+/fRTS7ID8Mwzz1BUVMRHH31kjS5rmDJlCtnZ2bWeW716NcHBwYB5u57ly5dX267n7rvvtst2PbIRtRBCiJaivKjSpiUhLtJXGkjddY7SgksbWEcOCsIzuP57EDeHjaitNrK1adMmevfuzZ133gnU/sRfSEgIKSkp1uqyhi+//LJO12k0Gp5++mmefvppm8UihBBCtDbOHo5EDQ7m5HbblYQAUDuqiB4WQtqebIpzdJiMJlL3nCOifyA+7dxt1q+tWC3ZysnJueqehBqNhtLSUmt12aLJNKIQQojGqKysJC0trclnRdz9NYT3C+D0r+dt2o9KrSRqSDDpSecpzDBvYJ3+63kMlQb8o71s2re1WW2BvIuLS60lFf4sKyuryeeZm6v4+HgWLVrUZFswCCGEaB1MJhMrV66kU6dOjB07lsrKyiaPwTfCg+CuPjbvR6k0L873jbxUlinjYB7Zxwpa1AbWVku2unXrxs6dOy87UpOTk8OePXvo1auXtboUQggh2hyFQsG///1vTp8+zenTp/n444/tEkdIV198I2w/padQKGjX25/ATt6WY+eOFZB5KK/FJFxWS7Zuv/12iouLmTlzJocPH8ZgMABQXl7Ovn37mDVrFnq9nttuu81aXbZoiYmJzJkzh3feecfeoQghhGhhLu6pO2bMGAYMGGC3OML7BeLub/unBBUKBSHdfAnt4Ws5lntKy5l9OZhsuHbMWqz2NCLAd999x1tvvYXRWPMpBaVSycyZM5kwYYK1umsV5GlEIYQQDXHkyBG6d+9u7zDQVxpI3pxBeXHTTGfmny4yb2D9B89g1ytuYN2qnkYEmDRpEr169eK7777j2LFjFBUV4erqSpcuXbjpppuarDq7EEII0do1h0QLzE8OxgwNIXnzWaoqDDbvz7f9HxtY//qnDax3nSMqtvluYG31TYfat28vJRWEEEKINsTJzYHoIcGc2J6JUW/7aT2vUDeiHf60gXVuGSd3ZBI9pHluYN3kKWBtU4xCCCGEaLijR49y7733cuGC7TaMvhpXXxfaDwiiibZstGxgrXI0pzK6CxWkbMukskzfNAHUg9WSrXXr1l31GoPBwIIFC6zVZYsmC+SFEEJYw4oVK+jevTufffYZr7/+ul1j8Q51I7SHX5P15+rjTIe4UNTO5tGs8uJKUrZmUFFiuy2FGsJqydbrr7/O9u3bL3veZDLx8ssvV9u+py2TOltCCCGsIT4+HrXavCpo9erV6PX2HdkJ7OiNf3TT1dR08XSi4zVhOGrM34NKnZ4TWzMo0zafDaytWmdrwYIFHDx4sMa5i4nW5s2bmThxorW6FEIIIdq89u3b89xzz7F48WIOHjxoSbzsqV0vfzyDNE3Wn5OrAx2vCcPZwxHAsoH1xb0V7c1qydaiRYsICQnh+eef59SpU5bjJpOJV155hY0bNzJx4kRmzpxprS6FEEIIgbnu1rPPPotG03QJzpVc3Dha4+XUZH06uKjpEBeKxtvcp6HKyMntmRScKW6yGC7HasmWm5sbr7/+Om5ubjz77LOcO3fOMqKVmJjIDTfcwKxZs6zVnRBCCCGaMZWDiughwTi6NN1Im9pJRcywUNz+KLRqNJj47btTnP41u8liqI1Vi5oCnD17lscffxx3d3c6duzI5s2bmTBhAs8++6w1u2nx/rwR9aFDh6SoqRBCCKvR6XTodDr8/JpusfplYyms4MSWDAz6pqtGYDQYOf3LebTnSgFQKGD0rH6E9w1oshj+zOqlH9q1a8drr71GQUEBW7Zs4frrr5dEqxayQF4IIYS1VVRU8O677xIdHd1sPns1Xk5EDgpC0YTFppQqJZGDgvAJN+/d6B3uXm1vxabW4JGtlStXXvH8wYMHOXnyJDfddBNK5aXvsEKh4L777mtIl62SbNcjhBDCWgoLC4mKiuLChQsolUqOHj3abD5bck8VcuZAbpP2aTKZKDqvI/aeLmg8m2792F81eCL1k08+qdN1q1atqva1JFtCCCGEbXh5efHss88yd+5cbrzxxmbxZOJF/tFeVJRUcT6lsMn6VCgURA4MsmuiBY1Itt566y1rxiGEEEIIK3jqqacYM2YM/fr1s3coNYT29KNCp6cws8TeoTSpBidbvXv3tmIYQgghhLAGV1fXZplowR8jTQMCOVGmbzY1sJpC89weWwghhBCtklKtNJeE0DSfKU5ba3CyNXv2bJKTkxv02oqKCv7973/z7bffNrR7IYQQQtRBUlISCQkJ9g6jGgdnNdFDQ1A5tI0xnwanlTk5OTzyyCP07t2b6667juHDh+Pq6nrF1xw/fpyff/6ZxMREysrKmDt3bkO7b/H+XGdLCCGEsIUZM2ZY1ljHx8czYsQI+wb0JxpPc0mIU7uyMDVdCS67aHDpB5PJxA8//MCqVas4f/48SqWS8PBwOnbsiLe3N+7u7lRUVFBUVERGRgbJycmUlpaiUCi49tpreeihhwgODrb2/bQ4UvpBCCGErXz66aeWCgBTpkxh9erVdo6oJluXhPAJdydyYJDN2q+LBo9sKRQKrr/+esaNG8fu3bv58ccfOXjwID///HONa5VKJVFRUcTFxTFhwoRmUdFWCCGEaO3uuusuPv30U2655RYeeOABe4dTK/9oL8pLqshpwpIQTa3Rq9OUSiVDhw5l6NChAJw+fZrc3FyKiopwdHTEy8uLyMhI3NzcGh2sEEIIIepOpVKRmJho7zCuKqynHxUlVZbtdVobqz8K0L59e9q3b2/tZoUQQgjRSikUCiIHBXFiSwa6wgp7h2N1beMxACGEEEIAUFRUhMFgsHcYNaj+KAnh4NL6SkJIsiWEEEK0AaWlpbz66qtERkY2y4XyAI4aB2KGBKNSt670pHXdjR1UVlbyz3/+k1tuuYWxY8fy6KOPcvjwYXuHJYQQQlSzd+9e5syZQ0FBAS+++CJ6vd7eIdVK4+1M+wGBKBT2jsR6JNlqJIPBQHBwMO+//z4//PADkyZNYu7cuZSXt51tCIQQQjR/I0eO5Nprr0WhUDB48OBmXefRK9SN0B6tp3KBJFuN5OLiwtSpUwkMDESpVDJu3DiMRiMZGRn2Dk0IIYSo5p133uHIkSN8+umneHl52TucKwrs6I1/tKe9w7CKVrMKTafTsWrVKlJSUkhJSUGr1TJ16lSmTZtW67UrVqxg8+bNFBcXEx4ezl133cWoUaMaHUd6ejoVFRWEhIQ0ui0hhBDCmrp162bvEOqlXS9/Kkur0Gbr7B1Ko7SakS2tVsvatWupqqoiLi7uitcmJCSwfv16pk6dyuLFi+ncuTPz589nw4YNjYqhvLychQsXcu+996LRaBrVlhBCCNHWKZQKImOD0Xg52TuURrH5yNaIESPYsmWLrbshKCiI77//HoVCQWFhIevWrav1ut27d5OUlMS8efOIj48HoG/fvmRnZ7Ns2TJGjhyJSqUCzHtKHTlypNZ2br/9dh588EHL13q9nhdffJGIiAjuueeey8aZl5dHfn6+5ev09PR636sQQghhDdu2bePcuXPcdttt9g7lsi6WhEjenEFlWfNc1H81Nk+2Grj1Yr0p6vjYwvbt23FxcamxGef48eNZsGABR48epUePHgC8+eabdWrTaDSycOFClEols2fPvmIsa9asYeXKlXVqVwghhLAFvV7PhAkT+Omnn/Dx8WHcuHF4eHjYO6zLctQ4ED00hBNbMjDoW96u1fWaRpw9ezYrVqywZMJ18efE4/PPP6eqqqp+EVpZWloaERERqNXV88zo6GjL+fpasmQJ+fn5vPTSSzXa/auJEyeyfPlyy5+EhIR69yeEEEI0hlqtxt/fH4CCggI+/vhjO0d0dRovJyIHBaFogQug6jWy5efnx6+//srq1aupqqrCzc2NDh060KFDBzp27EiHDh0IDw+vlmD9eWRr+fLljB8/Hm9vbwD+85//MGnSJFxcXKx0O1en1WprXbzu7u4OmCvr1kd2djbr1q3D0dGRiRMnWo4vXryYXr161bjez88PPz8/EhMTSUxMbNaP3gohhGi9XnrpJX755Rf+/ve/c9ddd9k7nDrxDHYlrKc/Z3/LtXco9VKvZOvZZ58FzLWl0tPTSU5O5uTJkxw/fpx169ah0+lwdnZm/fr1tb7+r1OKK1euZPjw4ZZk68KFCzz++OP8+9//bsi91FldpxzrIigoiG3bttX7dfHx8cTHx5OcnMxDDz1ktXiEEEKIuoiOjub48eNW/UxsCgExXlSUVpGTUmjvUOqsQWu2VCoVUVFRREVFAXDq1Cm2bdvGt99+i1arrXM7f02+TCZTnacnG8rT07PWGIuLiwGabM5aRraEEELYW0tLtC4K6+lHZWkVhVml9g6lThq8QP7o0aNs3bqV7du3k5OTQ+/evZk2bRpDhw61ZnxWFxUVRWJiInq9vtr6qtTUVAAiIyObJA4Z2RJCCNHclJeX4+zsbO8wrkqhUBA5MIgTWzMovVBh73Cuql7J1r59+9i2bRvbt2+ntLSUQYMGcf/99zN48GDc3Nzq1MauXbvo06eP3Yp+xsXFsXbtWrZu3VqtiOn69evx8/Oja9eudolLCCGEsJfCwkJef/11li1bxoEDB2jXrp29Q7oqpVpJ9NAQkjefpaK0eZeEqFeyNXPmTPz8/Lj77ru54YYbcHBwuOpr/jxE2aFDB9544w30ej0ajYbKyko+//xzevToQYcOHeqcsF3Onj17KC8vR6czV5pNT0+31PiKjY3F2dmZ2NhY+vfvz9KlS9HpdISGhrJx40b27t1LQkKCpcaWrck0ohBCiOZi6dKlvPLKKwC8/PLLfPTRR3aOqG4cnNWWkhD6yuZbEkJhqkchrAcffJDTp0+j1+txd3ev9iRix44da82E/1rUVK/Xc/r0aU6cOMGJEydISUnh5MmTVFRUoFAoMJlMDS6COmXKFLKzs2s9t3r1aoKDgwHzdj3Lly+vtl3P3XffbZXteurr4jTi8uXL6dSpU5P3L4QQQhQUFBAZGUlZWRmPPvoob731Votaz1Wco+PkjiyMxpopjU+4O5EDg+wQ1SX1SrbgysmSi4sLMTExvPPOO5br61JB3mQycfbsWcvTjY899liDbqYlkmRLCCFEc7B27Vq6d+/eZGuXrS0/vYjTv56vcbw5JFv1XiCvVquJiYkhJiaG8ePHAzWTpdq89tprREdHExMTQ3R0NK6urpZzCoWC8PBwwsPDGT16dANvpWWRaUQhhBDNyQ033GDvEBrFN8KDitIqzh0tsHcoNdQ52WpsslRVVcUPP/xAeno6VVVVBAYGWtq6mLzZa9G8PcjTiEIIIYR1hXT1pbJUT356/QqU21qdky29Xt+oZGnu3LmAeR/B/fv3M3/+fPLy8rhw4QJff/21pSBqVFQU77//fuPvTAghhBANYjKZ+PHHHwkPD6d79+72DqdewvsFUFlWRXFOmb1DsahzsvX8888DjU+WlEolq1at4tFHH+X6668HLo16ffjhh3To0KGRt9QyyDSiEEKI5ujMmTPcfvvt7N69m/Hjx/P999/bO6R6USoVRMUGc2JrBmXaSnuHAzRgzZY1kqVjx45ZRroAHBwcmDRpEhqNhsTExPqG1CLJNKIQQojmKDAwkMzMTAB++OEH9u3bR79+/ewcVf2oHVVEDzHX4GoOGrR39rFjx+jbt6/l64vJ0t/+9rfLll74s5iYGH7++ecax7t168axY8caEpIQQgghrMDJyYl58+bRtWtXvvnmm2qf9y2Jk6sD0UNDUKkblOpYVYMiaGyyNGvWLL744gveeustsrKyAPP05HfffVenQqlCCCGEsJ2pU6dy6NAhbr755hZVb+uvXL2dCenma+8wGrY34qxZs3jyyScpLCzk1ltvJSQkpF7JUocOHXj//fd54403uOOOO9BoNBgMBvR6Pc8880xDQmpxZM2WEEKI5qqpdlNpCmon+99LvYuaXnTq1CneeOMNDh8+XCNZulh/C65e1DQrK4uUlBQUCgWdOnUiMDCwIeG0WFLUVAghREtgNBpRKu0/JdcSNWhkCyA6Opp33333qsnS1XK5kJCQNlVfSwghhGhJcnJyWLRoEbt372bnzp2ScDVAg5Oti66WLG3durWxXQghhBDCTqZMmWL5LP/mm2+49dZb7RxRy1Pv9NRoNJKamkpeXl6Nc3q9nt9++80acQkhhBCiGZgzZw4ALi4unDt3zs7RtEz1GtnKzs7mueeeIz09HYVCQWxsLM8//zyenp4AFBUVMWPGjKtuPC2EEEKIluG6667j9ddf54477iA4ONje4bRI9Uq2li1bhr+/P0uWLKGkpIT33nuPJ554gjfffBM/Pz/g6mu0hJk8jSiEEKIlUCgUzJw5095htGj1mkY8ePAgjz32GAEBAURFRbFkyRJ69uzJk08+yfnz5wFadD2OphQfH8+iRYuYPn26vUMRQgghhA3VK9kqLy+vVkdLoVDw3HPPMWDAAKZPn24p7y+EEEKI1sloNPL1119TXl5u71BajHolW+Hh4SQnJ9c4PmvWLGJjYy2L6IQQQgjR+uzZs4c+ffpw66238sEHH9g7nBajXsnW8OHD2bBhQ63nZs6cyciRI2XNlhBCCNFKaTQaDh06BMA//vEPdDqdnSNqGRpcQV5Yh1SQF0II0ZLcfvvtnDp1ioULFzJ69GhZq10HjSpqmpWVJdXfhRBCiDZk+fLluLm5SZJVD42quX/nnXfy2WefWSsWIYQQQjRz7u7ukmjVU6NGtkwmEwaDodqx77//niNHjjB79uxGBdbaSZ0tIYQQrYXJZJIE7AqsvptkTk4OP/74Y63nvvjiC5544glrd9kiSZ0tIYQQLd3Zs2d5+OGHmTt3rr1DadYavRF1fVRUVPD77783ZZdCCCGEsIHS0lJ69OiBVqvF2dmZ6dOnyzruy7D6yJYQQgghWj9XV1ceeOABABwdHTl48KCdI2q+mnRkSwghhBCtx5w5c3BxcWHmzJn4+PjYO5xmS5ItIYQQQjSIv78/r7zyir3DaPYanWx9++23pKWl0blzZzp16kRpaak14hJCCCGEaBUalWxFRkZy5swZtmzZwpYtW6o99rlgwQKioqKIjo4mKiqKwMDARgfbXL300kscOHCAiooKgoKCePjhhxkyZIi9wxJCCCGalF6vZ9u2bYwcOdLeoTQrjd6up7KykpMnT5KSkkJycjInTpwgLS0NvV5v7uCPBMzV1RUnJycKCgrYsmVLowNvTtLS0ggLC8PBwYGjR48ya9Ys/vOf/+Dp6XnV18p2PUIIIVqD7777jmeffZaTJ09y8OBBevToYe+Qmo1GTyM6OjrStWtXunbtajmm1+s5deoUJ06csCRgqamplJSUtMqiZ5GRkZa/q1QqqqqqyMvLq1OyJYQQQrQGqamppKSkAPDCCy/w7bff2jegZsQmC+TVajWdOnWiU6dO3HDDDYA5ATt9+jTJycm26BKdTseqVatISUkhJSUFrVbL1KlTmTZtWq3Xrlixgs2bN1NcXEx4eDh33XUXo0aNanD/CxYsYNu2bVRWVhIbG0tUVFRjbkcIIYRoUR599FGWLFlChw4deOaZZ+wdTrPSZE8jqtVqYmJiiImJsUn7Wq2WtWvXEh0dTVxcHOvWrbvstQkJCRw/fpxHHnmEdu3akZiYyPz58zEajYwePbpB/c+bNw+9Xs/+/ftJT09vlSN4QgghxOW4uLiQlJREUFCQfAb+Rasp/RAUFMT333+PQqGgsLDwssnW7t27SUpKYt68ecTHxwPQt29fsrOzWbZsGSNHjkSlUgEwY8YMjhw5Ums7t99+Ow8++GC1Y2q1moEDB/LNN98QFhbG4MGDa7wuLy+P/Px8y9fp6ekNul8hhBCiuQkODrZ3CM1Sq0m26ppFb9++HRcXF0aMGFHt+Pjx41mwYAFHjx61LOp78803GxSL0WgkMzOz1nNr1qxh5cqVDWpXCCGEEC1Pm9uuJy0tjYiICNTq6nlmdHS05Xx95Ofns2XLFsrKytDr9WzatIkDBw7Qu3fvWq+fOHEiy5cvt/xJSEho0H0IIYQQzVlKSgp33XUXP//8s71DsbtWM7JVV1qtttaNMt3d3QEoKiqqd5tff/01r776KgqFgrCwMF566aXLrk3z8/PDz8+PxMREEhMTKSkpqXd/QgghRHP266+/MnjwYAwGAydOnGD06NFteh1Xm0u2oO5TjnXh6+vLu+++W+/XxcfHEx8fb6mzJYQQQrQW/fr1o3v37hw8eJDTp0+TlpbWpp/Sb3PJlqenJ1qttsbx4uJiADw8PJokDhnZEkII0VoplUoWLVrEvn37eOqppyyzR21Vm0u2oqKiSExMRK/XV1u3lZqaClQvUGpLMrIlhBCiNRs7dixjx461dxjNQptbIB8XF0dZWRlbt26tdnz9+vX4+flVq4QvhBBCCNFYrWpka8+ePZSXl6PT6QBzDauL+zDGxsbi7OxMbGws/fv3Z+nSpeh0OkJDQ9m4cSN79+4lISHBUmPL1mQaUQghRFtSXl5OampqmxzUaPRG1M3JlClTyM7OrvXc6tWrLcXWdDody5cvr7Zdz913392o7XoaSjaiFkII0ZqZTCZWrFjBggULUCqVnDhxAicnJ3uH1aRa1cjWl19+WafrNBoNTz/9NE8//bSNIxJCCCHaNoVCwX//+18yMjIAWLFiBU888YSdo2parSrZaklkGlEIIURb8fLLL7N+/XomTJjAsGHD7B1Ok2tV04gtkUwjCiGEaAuSk5Pb7Odcm3saUQghhBBNr60mWiDTiHYj04hCCCFE2yAjW3YSHx/PokWLmD59ur1DEUIIIZrUwYMHueOOOygoKLB3KE1Cki0hhBBCNJmPPvqI3r1785///IclS5bYO5wmIcmWEEIIIZrM2LFjcXR0BOC///0vBoPBzhHZnqzZshNZsyWEEKItCg8PZ+7cuXh6evLoo4822c4t9iSlH+xMSj8IIYQQrZtMIwohhBBC2JAkW0IIIYSwq5KSEnJzc+0dhs1IsiWEEEIIuygvL+eNN94gKiqKZ555xt7h2IwkW0IIIYSwi4qKCl5++WVyc3P517/+xbFjx+wdkk3I04h2Ik8jCiGEaOs8PT2ZPXs2c+bM4dZbb8XZ2dneIdmEPI1oZ/I0ohBCiLastLSUkydP0qtXL3uHYjMyjSiEEEIIu3F1dW3ViRZIsiWEEEIIYVOSbAkhhBCi2dizZw9z5syxdxhWJcmWEEIIIZqFJ598ksGDB/Pqq6+yefNme4djNZJsCSGEEKJZiI2Ntfz9o48+smMk1iXJlhBCCCGahTvuuIOxY8eyfPlyPv30U3uHYzVSZ8tOpM6WEEIIUZ1KpeLHH3+0dxhWJ8mWncTHxxMfH2+psyWEEEKI1kmmEYUQQgjRbF24cAGDwWDvMBpFki0hhBBCNDvFxcW88sorREZG8sUXX9g7nEaRZEsIIYQQzc6+fft44YUX0Gq1vPTSS1RVVdk7pAaTZEsIIYQQzc6IESMYNWoUKpWKa6+9ltLSUnuH1GCyQF4IIYQQzdI777yDWq2mQ4cO9g6lUWRky4qOHDnCNddcw6pVq+wdihBCCNHidenSpcUnWiDJltUYjUbeeecdunTpYu9QhBBCCNGMSLJlJWvWrKFHjx6Eh4fbOxQhhBCi1TGZTCQmJrbIJxNbzZotnU7HqlWrSElJISUlBa1Wy9SpU5k2bVqt165YsYLNmzdTXFxMeHg4d911F6NGjWpQ31qtlq+//poPPviAt99+u7G3IoQQQog/0ev1jB07lo0bN+Lt7c3111+Pp6envcOqs1YzsqXValm7di1VVVXExcVd8dqEhATWr1/P1KlTWbx4MZ07d2b+/Pls2LChQX1/9NFHTJkyBTc3twa9XgghhBCXp1arCQsLA8xFTleuXGnfgOqp1YxsBQUF8f3336NQKCgsLGTdunW1Xrd7926SkpKYN28e8fHxAPTt25fs7GyWLVvGyJEjUalUAMyYMYMjR47U2s7tt9/Ogw8+SHJyMidOnGDWrFl1ijMvL4/8/HzL1+np6fW5TSGEEKJNmjdvHklJSSQkJDBlyhR7h1MvrSbZUigUdbpu+/btuLi4MGLEiGrHx48fz4IFCzh69Cg9evQA4M0337xqewcPHuT06dNMmjQJgLKyMpRKJRkZGfz973+vcf2aNWtaXEYuhBBC2FtUVBSHDx+u8+d9c9Jqkq26SktLIyIiArW6+q1HR0dbzl9MtupiwoQJ1RK39957j6CgIO68885ar584cSJDhw61fJ2ens4rr7xSjzsQQggh2qaWmGhBG0y2tFotISEhNY67u7sDUFRUVK/2NBoNGo3G8rWTkxMajeayC/f8/Pzw8/MjMTGRxMRESkpK6tWfEEIIIcx0Ol21z+DmqtUskK8PW2bGc+fO5b777rvqdfHx8SxatIjp06fbLBYhhBCiNSooKGDOnDmEhYVx5swZe4dzVW1uZMvT0xOtVlvjeHFxMQAeHh5NEoeMbAkhhBAN8+abb/Lqq68CsGDBAlasWGHniK6szY1sRUVFkZ6ejl6vr3Y8NTUVgMjIyCaJQ0a2hBBCiIb529/+hqenJ05OTnh7e2Mymewd0hW1uWQrLi6OsrIytm7dWu34+vXr8fPzo2vXrnaKTAghhBB14e3tzRdffEFKSgqvvfZas18436qmEffs2UN5eTk6nQ4wP+m3ZcsWAGJjY3F2diY2Npb+/fuzdOlSdDodoaGhbNy4kb1795KQkGCpsWVrMo0ohBBCNNz48ePtHUKdKUzNfeytHqZMmUJ2dnat51avXk1wcDBgfnph+fLl1bbrufvuuxu8XU9jJCcn89BDD7F8+XI6derU5P0LIYQQwrZaVbLVkvx5ZOvQoUOSbAkhhBANZDKZ+O6774iMjKRXr172DqeGNrdmq7mQBfJCCCFE46WnpzNgwABuuukm5syZY+9waiXJlhBCCCFarODgYPLy8gDzw25JSUl2jqgmSbaEEEII0WI5Ojry4osv0qtXL9asWUO/fv3sHVINreppxJZEnkYUQgghrOPee+/lvvvuQ6lsnmNIkmzZSXx8PPHx8ZanEYUQQgjRME1VtqmhmmcKKIQQQgjRCAaDwd4hWEiyJYQQQohW49y5czz55JMMHjwYo9Fo73AAmUa0G1mzJYQQQljfHXfcYdmS76uvvuK2226zc0QysmU3UmdLCCGEsL65c+cC4OrqaikJYW8ysiWEEEKIVmP06NG8/fbb3HbbbQQEBNg7HECSLSGEEEK0IgqFotnNGsk0ohBCCCGEDUmyJYQQQghhQzKNaCfyNKIQQgjRNkiyZSdSQV4IIYRoG2QaUQghhBDChiTZEkIIIYSwIUm2hBBCCCFsSJItIYQQQggbkmRLCCGEEMKG5GlEO5HSD0IIIUTbIMmWnUjpByGEEKJtkGlEIYQQQggbkmRLCCGEEMKGJNkSQgghhLAhSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCGps2VnFRUVAKSnp9s5EiGEEELUV0REBM7Ozle8RpItO8vOzgbglVdesXMkQgghhKiv5cuX06lTpyteozCZTKYmikfUorCwkF9++YVvv/2Wp59+uk6veeedd5g+ffpVr0tPT+eVV14hISGBiIiIxobaKtT1e2cPTR2brfqzVruNaachr63va+pyvbwHa2rO70GQ96E127H1+7C5fBbKyFYL4OXlxZgxY9i0adNVM+OL3Nzc6nwtmH8Q6nN9a1bf711TaurYbNWftdptTDsNeW19X1Of6+U9eElzfg+CvA+t2Y6t34ct6bNQFsg3E/Hx8Ta5VlTXnL93TR2brfqzVruNaachr63va5rzz1Jz1ty/b/I+tF47tn4fNvefpT+TacRW7OIm13WZTxZCWJ+8B4Wwv+bwPpSRrVbM19eXqVOn4uvra+9QhGiT5D0ohP01h/ehjGwJIYQQQtiQjGwJIYQQQtiQJFtCCCGEEDYkyZYQQgghhA1JsiWEEEIIYUOSbAkhhBBC2JAkW21YZWUl//znP7nlllsYO3Ysjz76KIcPH7Z3WEK0KS+99BKTJk1i7NixTJ06lV27dtk7JCHarCNHjnDNNdewatUqq7YrpR/asLKyMlavXs24cePw9/fnp59+4v333+err7666j5PQgjrSEtLIywsDAcHB44ePcqsWbP4z3/+g6enp71DE6JNMRqNPPbYYygUCgYPHsx9991ntbZlZKsNc3FxYerUqQQGBqJUKhk3bhxGo5GMjAx7hyZEmxEZGYmDgwMAKpWKqqoq8vLy7ByVEG3PmjVr6NGjB+Hh4VZvWzaibkF0Oh2rVq0iJSWFlJQUtFotU6dOZdq0abVeu2LFCjZv3kxxcTHh4eHcddddjBo16rLtp6enU1FRQUhIiC1vQ4gWy1bvwQULFrBt2zYqKyuJjY0lKiqqKW5HiBbJFu9DrVbL119/zQcffMDbb79t9Zgl2WpBtFota9euJTo6mri4ONatW3fZaxMSEjh+/DiPPPII7dq1IzExkfnz52M0Ghk9enSN68vLy1m4cCH33nsvGo3GlrchRItlq/fgvHnz0Ov17N+/n/T0dBQKha1vRYgWyxbvw48++ogpU6bg5uZmk5gl2WpBgoKC+P7771EoFBQWFl72B2z37t0kJSUxb948y67offv2JTs7m2XLljFy5EhUKpXler1ez4svvkhERAT33HNPk9yLEC2Rrd6DAGq1moEDB/LNN98QFhbG4MGDbX4/QrRE1n4fJicnc+LECWbNmmWzmGXNVguiUCjq9Bvv9u3bcXFxYcSIEdWOjx8/nry8PI4ePWo5ZjQaWbhwIUqlktmzZ8tv1EJcgS3eg39lNBrJzMxsbKhCtFrWfh8ePHiQ06dPM2nSJG644QY2bdrE559/zsKFC60Ws4xstUJpaWlERESgVlf/542Ojrac79GjBwBLliwhPz+f1157rcb1QoiGqet7MD8/n8OHDzNo0CAcHBzYtm0bBw4c4JFHHrFH2EK0KnV9H06YMKFaQvbee+8RFBTEnXfeabVY5NO1FdJqtbUucnd3dwegqKgIgOzsbNatW4ejoyMTJ060XLd48WJ69erVNMEK0QrV9T0I8PXXX/Pqq6+iUCgICwvjpZdeIiYmpsliFaK1quv7UKPRVFur7OTkhEajsWr5FUm2Wqm6DLEGBQWxbdu2JohGiLanLu9BX19f3n333SaIRoi2qSFLY+bOnWv1OGTNVivk6emJVqutcby4uBgADw+Ppg5JiDZF3oNC2F9zeh9KstUKRUVFkZ6ejl6vr3Y8NTUVMBdRFELYjrwHhbC/5vQ+lGSrFYqLi6OsrIytW7dWO75+/Xr8/Pzo2rWrnSITom2Q96AQ9tec3oeyZquF2bNnD+Xl5eh0OsBc9X3Lli0AxMbG4uzsTGxsLP3792fp0qXodDpCQ0PZuHEje/fuJSEhoUZ9HyFE3cl7UAj7a2nvQ9mIuoWZMmUK2dnZtZ5bvXo1wcHBgHmLguXLl1fbouDuu+++4nY9Qoirk/egEPbX0t6HkmwJIYQQQtiQrNkSQgghhLAhSbaEEEIIIWxIki0hhBBCCBuSZEsIIYQQwoYk2RJCCCGEsCFJtoQQQgghbEiSLSGEEEIIG5JkSwghhBDChiTZEkKIZuyNN97ghhtusGxLAvDxxx8zfPhwDhw4YMfILlm4cCG33norFRUV9g5FiGZJ9kYUQjSZc+fOcdttt13xmpiYGD7++OMmiqh5O3v2LGvWrOHhhx9Go9HYtK/vvvuO119/nYkTJ/LMM89c8doHH3yQEydOsHz5cjp16sR9991HYmIiX331FXfffbdN4xSiJZJkSwjR5EJDQxk9enSt53x9fZs4mubrk08+wdHRkUmTJtm8r/j4eN577z02bdrE9OnTcXJyqvW6U6dOceLECTp06ECnTp0ACAsLY9iwYXzxxRfccsstuLi42DxeIVoSSbaEEE0uNDSUadOm2TuMZq2wsJBt27YxYsQIm49qAbi6unLNNdfw008/sXXrVsaMGVPrdevWrQNg/Pjx1Y6PGTOGrVu3snHjRiZMmGDzeIVoSWTNlhCiWRs+fDhPPfUUhYWFLFq0iIkTJxIfH8+jjz562TVLOp2Ojz/+mHvvvZf4+HjGjx/PM888w6FDh2pc+9RTTzF8+HAqKyv5v//7P+644w6uvfbaalOZW7du5aGHHiI+Pp5JkyaxePFiiouLmTJlClOmTLFct3DhQoYPH86xY8dqjWvZsmUMHz6cbdu2XfW+N27cSGVlJSNGjLjqtRedOnWKm266iRtuuIGjR49ajmdlZfHqq68yefJkRo0axY033sg//vEPsrOzq73++uuvB+DHH3+stf2qqioSExNxdHSskYzFxsbi4uLCDz/8UOd4hWgrJNkSQjR7JSUlPP7445w6dYrRo0czfPhwkpOTeeaZZ0hNTa12bVFREY899hgrV67Ew8ODG2+80XL9008/zfbt22vtIyEhgR9++IFevXpx6623EhISAsD333/PCy+8QGZmJtdddx1jx47l999/Z+bMmej1+mptTJw4Ebg0+vNner2en376CR8fH4YMGXLVe963bx8A3bp1u/o3CDh48CDTp09HpVLx7rvv0rVrVwCOHj3Kgw8+yPr16+nUqROTJ0+mV69ebNiwgUceeYSsrCxLG7179yYsLIz9+/dz7ty5Gn3s3LkTrVbL8OHDcXd3r3bOwcGBjh07cuzYMcrKyuoUsxBthUwjCiGaXGZm5mUXwXfr1o1BgwZVO3by5EluvPFGZsyYgVJp/h2xb9++LF68mP/+97/VFnS/+eabpKWlMWfOnGpTXQUFBTz88MO89tprDBw4sMaapPz8fD755BM8PDwsx4qLi3n77bfRaDSsWLHCkoA99NBDPPfccyQnJxMUFGS5vkePHkRGRrJx40aefPLJamuXdu3aRUFBAXfeeSdq9dX/6z1y5Aj+/v54e3tf9drt27czf/58QkJCWLJkCQEBAYA5wXvppZcwGo0sX76cmJgYy2sOHTrE008/zdtvv82iRYssx8ePH89HH33E+vXruf/++6v18/333wOXRsD+qlOnThw8eJBjx47Rt2/fq8YtRFshI1tCiCaXmZnJypUra/2zd+/eGte7uLjw6KOPWhItgLFjx6JSqTh+/LjlWGFhIZs3b6Zfv3411hT5+Phwxx13UFhYaBk1+rP777+/WqIFsGPHDsrKypgwYYIl0QJQq9U88MADtd7bxIkT0el0bNq0qdrxdevWoVAo6rSeqaqqisLCwjolWuvWrWPevHl06NCBd99915JogTnBy87O5o477qiWaAH07NmToUOHsmfPHkpLSy3HL35ff/zxR0wmk+V4Xl4eSUlJBAUFXTaRuhhvbm7uVeMWoi2RkS0hRJMbOHAgS5YsqfP1YWFhNRaJq9VqfHx8KCkpsRw7fvw4BoOBysrKWkfOMjIyAEhPT68xldelS5ca1586dQqA7t271zjXpUsXVCpVjeNjxozhgw8+YN26dZYRoNzcXH799VfLNN3VaLVagBpTdX/15ZdfsnPnTmJjY1mwYAHOzs7Vzv/+++8AnDlzptbvR0FBAUajkbNnz9K5c2cA/Pz8GDRoELv+v727C2n6feM4/t58iJhzoZaBaGkR9gSSVEQz2CKkllGQPRjUSQeSEZRUdFhHhZUp0cOBBRVIRColqcuiTmwdJNLECDoQtmpaB1kQKdv8H8jWX/dQGusX+nmd7Xt/73vXdnRx39f3+nZ10d3dTXFxMTBWxxUIBNiyZQsGgyFqPKFkNRS/iIxRsiUi/zyTyRT1elJSEsFgMPz569evALjdbtxud8z1fvz4EXEtIyMj4lpox2fOnDkRY0ajEYvFEnHdbDZjs9lob2+nv7+fhQsX8ujRIwKBwG8/pRc64vxVk9BQwf/atWsjEi0YOwYFePz4cdx1Jv4fDoeDrq4u2traxiVbRqORzZs3x1wnFG+sthEiM5WSLRGZNkJJ2e7du6mqqprU3Gi7NaH1vnz5EjEWDAYZGhpi7ty5EWPbtm2jvb2d1tZWqqqqaGtrIz09nQ0bNvxWLGazmeTk5HDyGMvJkye5desW9fX1GI1GduzYMW48tBt49uzZ3yrKD1m3bh0ZGRk8f/6co0eP8u7dO7xeL2vWrCE7OzvmvFC80ZJTkZlMNVsiMm0UFhZiMBjCx2d/atGiRcBYsfpEb968IRAIRJ23YsUKCgoK6OjowOVy8eHDBzZt2jSpHZ/8/Hx8Pl/EE4//z2w2U1tby5IlS6itraWpqWnceOiJxMn+H8nJyZSWljI8PMyTJ0/C7RxiFcaHeDweAAoKCib1fSLTnZItEZk2MjMzsdls9Pb20tjYOK7AO6Svry/qMWI0VquV2bNn09raOq5Fgt/vp6GhIe7csrIyhoaGqKmpAZh0o8+ioiJGRkbCdWOxmM1mLl68SGFhIZcuXeL+/fvj4s/Ozubu3bv09PREzPX7/VF7j8HPxKqlpYVnz55hsViwWq1xY+nr6yMzM5Pc3Nxf/DqRmUXHiCLy18Vr/QD8UXf5Y8eO4fF4uHr1Kh0dHSxfvpy0tDQGBwd5+/YtXq+X5ubmqDVOE5nNZg4fPkxNTQ0HDx7EbrdjMplwuVykpqaSlZUVs1i8tLSU69ev8/nzZ5YtWxbeJftdJSUl3Lt3j1evXoVfixMvzgsXLlBdXU1dXR2jo6Ps3LmT1NRUzpw5w4kTJzhy5AjFxcXk5+cDMDAwwOvXr7FYLNy5cydizby8PFauXBmufdu6dSspKSkxY3j//j0fP35k+/btk/qdIjOBki0R+etCrR9i+ZNkKz09nStXrtDU1MTTp0/p7OwkGAySkZHB4sWLOXDgQNTC9ljKysowm83cvn2b9vZ2TCYT69evp7KykvLycnJycqLOS0tLw2q10tnZOaXX1xQVFZGXl4fT6aSiouKX94d2uKqrq6mvr2d0dJTy8nKWLl3KjRs3aGxsxOVy4Xa7SUlJISsri5KSEjZu3BhzTYfDEU62JrbSmMjpdAI/G7uKyE+G0Wj77CIiEpfX66WiogKbzcbp06ej3rN//34GBgZobm6e0vsNHzx4wPnz57l27Vq4/upf5Pf72bdvH/Pnz6euru6/Dkfkn6OaLRGROL59+8bIyMi4a8PDw1y+fBkYO+6L5sWLF/T391NaWjrlF0k7HA4WLFjAzZs3pzT/b3E6nfh8Pg4dOvRfhyLyT9IxoohIHD09PZw7d47Vq1czb948hoaG6O7uxufzsWrVKux2+7j7W1paGBwc5OHDh8yaNYu9e/dO+buTkpI4deoUL1++5Pv371NO2hLNYDBw/PjxX9aWicxUOkYUEYnD4/HQ0NBAb29vuN9WTk4OdrudPXv2RLRz2LVrF58+fSI3N5fKyspJ9bcSkelJyZaIiIhIAqlmS0RERCSBlGyJiIiIJJCSLREREZEEUrIlIiIikkBKtkREREQSSMmWiIiISAIp2RIRERFJICVbIiIiIgn0Pz9HG9UI7W5kAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig,ax = plt.subplots()\n", + "\n", + "ax.plot(energy, energy*energy*flux_median, label = \"Best fit\")\n", + "ax.fill_between(energy, energy*energy*flux_lo, energy*energy*flux_hi, alpha = .5, label = \"Best fit (errors)\")\n", + "ax.plot(energy, energy*energy*flux_inj, color = 'black', ls = \":\", label = \"Injected\")\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(r\"$E^2 \\frac{dN}{dE}$ (keV cm$^{-2}$ s$^{-1}$)\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "20a08b36-44d2-4fef-a82e-def1dfd7b9d9", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response, as well as the simulated source counts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "7d1dd8d1-f86d-4e63-8286-db1d5bc14b04", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG+CAYAAACOFDByAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB3VUlEQVR4nO3deVyVZf7/8ReyyCKiAgqyiYC4oSZmmrtSppZWlmPZYpblZOY0LVpjbqON02KLTTWplVN925dxKSsMl0qbUSoXBAGRQEEBBdlluX9/+PNMiCbCOd4ceD8fDx927nOf636fk0c/XNd1X5eDYRgGIiIiIvK7WpgdQERERMQeqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNImIiIjUgYomERERkTpQ0SQiIiJSByqaREREROpARZOIiIhIHahoEhEREakDFU3nsHfvXoYNG8aaNWsu6nVlZWUkJSVRVlZmo2QiIiJiFhVNZ6murmbFihV069btol+bnp7O9OnTSU9Pt0EyERERMZOT2QEam7Vr1xIVFcXJkyfNjiIiIiKNiN0WTSUlJaxZs4bk5GSSk5MpKChg6tSpTJs27Zznrlq1iri4OAoLCwkODmbKlCmMGjWqxnkFBQV8/PHHvPbaa7z00kuX6q2IiIiIHbDb4bmCggLWrVtHRUUFQ4YM+d1z582bx8aNG5k6dSpPP/00Xbt2ZdGiRXzzzTc1znv99deZNGkSrVq1smV0ERERsUN229Pk5+fHhg0bcHBwID8/n/Xr15/zvO3bt7Nz507mz59PTEwMAH379iU7O5tXX32VkSNH4ujoSFJSEgcOHODhhx++lG9DRERE7ITdFk0ODg51Om/btm24ubkxfPjwGsfHjh3L4sWLSUhIICoqil9++YVDhw4xYcIEAEpLS2nRogWZmZn85S9/OWfbubm55OXlWR5rAriI1EdVVRUVFRVmxxBp8pydnXF0dKz36+22aKqrtLQ0QkJCcHKq+VbDwsIsz0dFRXHttdfWKKz+8Y9/4Ofnx6233nretteuXctbb71li9gi0kwUFRWRmZmJYRhmRxFp8hwcHAgMDKz3NJwmXzQVFBTQsWPHWsc9PT0BLHfJubu74+7ubnm+ZcuWuLu74+Xldd62x48fz6BBgyyP09PTWbJkibWii0gTV1VVRWZmJu7u7vj6+ta5B11ELp5hGOTk5JCZmUlERES9epyafNEEdR/K+60nnnjiguf4+Pjg4+NTn0giIlRUVGAYBr6+vri5uZkdR6TJ8/X15dChQ1RUVKhoOhcvLy8KCgpqHS8sLASgdevWDb5GbGwssbGxFBUVNbgtEWl+1MMkcmk09Ltmt0sO1FXnzp1JT0+nsrKyxvGDBw8CEBoa2uBrxMTEsGzZMmbNmtXgtkRERKRxavJF05AhQygtLWXLli01jm/cuBEfHx+6d+/e4GvExsYyd+5cVqxY0eC2RETM1KlTJ7p27UqfPn3o1q0bt956K8XFxfVu76233uLAgQPnfX7Hjh1ERUVx2WWX8dVXXzF27FhSU1Pr9NrGYOHChTzyyCNWbbNTp07s3bu3Xq/duXMnU6ZMASA/P5+nn366xvPDhw8/7xI9cmF2PTy3Y8cOysrKKCkpAU5PxN68eTMAAwYMwNXVlQEDBtCvXz+WL19OSUkJAQEBbNq0iR9//JF58+Y16NbDM2JiYoiJiSEpKYnp06c3uD0RETN9/PHH9OzZE8MwuO6663jrrbeYOXNmvdp666238PHxoUuXLud8fs2aNdxxxx08+uijAIwePbrOr5Xa+vXrx7vvvgv8r2h67LHHGtxuZWVlrbvQmyO77mlavnw58+fPZ9myZQDExcUxf/585s+fz4kTJyznLVmyhKuvvprVq1fz6KOPkpCQwIIFC7j66qvNii4iUktFSQVZ8Vk2/VVRUvf1oMrLyykuLqZt27aWY88++yz9+/enb9++jB07loyMDADWrVtHr1696NOnDz179uTf//43q1atYufOnTz44IP06dOHL774okb7y5Yt44MPPuDFF1+kT58+5OfnW3pZLvRagP379zN69Gh69epFr169eO211wBISUkhJibGkufzzz+3vMbBwYG///3vXHHFFYSGhvLmm28C8M4773DddddZzjMMg9DQUHbv3g3A008/TY8ePYiKimLKlCnnnCvbpUsXdu3aZXn85ptvcuONNwKQnZ3NpEmT6N+/P7169WL+/PmW87Zt20ZUVBT9+/fngQceOO/yEwMHDmT79u0A/PnPfyYwMNDyXHBwMBkZGWzevJl+/foBMGPGDPLz8+nTp4/l2JnrDRkyhLCwMGbMmHHOax06dAgfHx8WL17MkCFDWLFixXnfQ3V1NQ888ABdu3ald+/eREdHU1ZWZmnjkUce4YorrqBHjx58++23lmu8/fbbREVF0atXL8aNG8fhw4eB08Xy6NGjueWWW4iKiqJfv36WKTXJyckMGjSI3r17ExUVxbx584DTN1XMnTuX/v3706dPHyZPnkx+fv4531uDGNJg33zzjTFnzhxj5syZxpAhQ4zExESzI4mIHSgtLTUSEhKM0tJSwzAM48iuI8ZCFtr015FdR343U0hIiBEZGWn07t3baN26tTFixAijoqLCMAzDePfdd43p06cblZWVhmEYxr/+9S9j/PjxhmEYRq9evYzvv//eMAzDqKqqMk6cOGEYhmEMGzbMWLdu3Xmvd+eddxorVqyocf09e/Zc8LUVFRVGRESE8cEHH1iO5eTkGIZhGP379zf++c9/GoZhGAcOHDDatWtn/Prrr4ZhGAZgvPDCC4ZhGEZCQoLRqlUro6KiwigpKTG8vb2NrKwswzAM49tvvzX69u1rGIZhfPHFF0bXrl0t72n69OnG/fffbxiGYSxYsMB4+OGHDcMwjKVLlxozZ8605Bk6dKixdu1awzAM4+qrrza2bNliyT569Gjj008/NcrKyoyOHTsacXFxhmEYxgcffGAAls/gt+bNm2csWrTIMAzDuOyyy4z+/fsb+/fvNxITE40uXboYhmEYcXFxRnR0tGEYhpGWlmZ4e3vXaGPYsGHGxIkTjcrKSqOkpMTo1KmT8cMPP9S6VlpamgEY7777ruXY+d5DfHy80bVrV6OqqsowDMPIz883qqqqLG289dZbhmEYxvbt240OHToYRUVFxp49e4wOHToYmZmZhmEYxpIlS4yxY8cahmEYb775puHl5WUcOnTIMAzDmDNnjnHvvfcahmEYDz74oLF06VJLpry8PMtn/9e//tVyfPHixcaDDz5Y632d/Z27WOprswINz4mINfh09eHeXffa/BoXcmZ4rrKykvvuu485c+bw3HPP8fnnn7Nz506io6OB0+tMnZniMGrUKP70pz9x0003cfXVV9OnTx9bvg2SkpKorKxk0qRJlmM+Pj4UFhby888/c/fddwMQERHB4MGD+e6777jlllsALHN+unXrhpOTE9nZ2QQGBjJx4kTeeecdHnnkEd58803uuusu4PS81SlTptCmTRsA/vjHPzJ58uRame68804uu+wyli9fTkZGBgcOHGDMmDEUFxfz7bffcvToUcu5RUVFJCYmEhYWhru7u2Vx5UmTJnHvvef+MxATE8OTTz7JjBkzcHZ2ZtKkScTGxuLg4GDZJqwuJk+ejKOjI25ubvTp04fU1FQGDhxY6zxXV1fLZ/Z772HkyJFUVFQwbdo0RowYwbhx42jR4vRAlouLC7fffjtwetqMn58fv/zyC7t27eLaa68lICAAgPvvv58lS5ZYetkGDx5MSEgIcLqH7cyc4aFDh/Loo49SXFzMsGHDLO/7888/5+TJk3z88ccAnDp1yrKItTWpaBI5S+pPqbgbpxc6TUhOwLuNNx18O1BcUkxqeioRoRG4ubpx5OgRCosKiQyLBCApNYnWnq3xb+9PaVkpyWnJhHcKx93NnaM5Rzmef5xuEd0AOHDwAB7uHgT4BVBWXsaBgwfoHNyZVh6tyMnL4VjeMXp06QFAyqEUXFu6EugfSEVFBftT9tMpsBOtPVuTdyKPI0ePcMXgK/AKPv9CrGIfnN2d8e/rb3YMCycnJyZOnMijjz7Kc889h2EYzJs3j2nTptU6d/ny5ezbt4+4uDjuvPNOpkyZYpW5NBfrzD+6Z99a/tvHrq6ulv92dHS03F191113cc8993Dvvfeyfv16XnjhBUubv9feGQEBAfTt25e1a9fyyy+/cPvtt+Pk5ERpaSkODg7897//xdnZucZrfvnllzq/t4EDB7J3717Wrl3LqFGjiImJYeHChQDccccddW7nfO//bB4eHpb3WV1dfd73ALBv3z62bNlCXFwcjz/+OFu3bj3vHCgHB4dan+nZn+f5Mk6cOJErr7ySb775hpdffpkXXniBL774AsMweOWVVxg5cmQdP4X6UdEkNlPwawEluSWkpqfi7ORMcEAwlZWVJCQnEBwQTJvWbcg7kcfh7MP06tYLgLSMNFo4tCAkMITq6mr2Ju0lqGMQbb3acqLgBBlHMujRpQeOjo6kZ6ZTVV1F5+DOAOzev5sAvwC823pTUFhAemY63cK74ezsTMaRDMpPlRPeKRyAvUl76eDTAV9vXwqLCknLSCMyLJJfk39l8p2Tuc24DQ88eJZnuZzLGcYwMshgNau5n/tpT3u+5muSSGIWp5eaeJEX6UEPYoghm2xe4zWmM50AAogjjnjieZiHKaSQtaylHe0YwxjyyGMFK7iTOwkllO/5nm1sYy5zAVjFKnzxZQITKKSQ53iOW7mVLnThP/yHr/iKxe6Lmbl/pgonsbpvv/2WyMjTPxiMHz+eF198keuvv5527dpRUVHB3r17ueyyy0hMTKRHjx706NEDJycnvv76a+D0Wnjnmv9TF7/32sjISFxcXPjoo4+4+eabgdP7gfr4+NCnTx/WrFnDXXfdRWpqKt9//z0vv/zyBa83YMAAqqureeyxx7jqqqto164dAFdddRWPPfYYDz74IJ6enrz++uvn7dmZNm0ab7zxBvv27ePLL78ETu9AMWTIEJYtW8aTTz4JwJEjR6iurqZr166UlpaydetWhg4dyscff3ze9+zi4sIVV1zBkiVLeOONN+jVqxcJCQnk5uZa5mad/fmVlJRYZRL3772Hli1b4ujoyNVXX81VV13Fli1bSEhIoFevXpw6dYp3332X22+/nf/85z9kZ2fTq1cvWrduzd///neys7Px8/PjtddeY9SoURdcRyk5OZnOnTtzxx130L9/f6688krg9J/N5cuXM2DAANzd3SkpKSEtLY0ePXo06H2fTUWTFWhxy9oKfi3gH93+QUVJBW/yJq1pzUQmUkIJT/M0k5hEd7qzi12sYx0LWQjAu7yLI45MZjKVVLKEJdzADfSmN3vYwyd8whM8gQsufMiHVFGFH370ox/LWc44xtGPfiSSyPu8z6M8igcefMZnHOc4d3O6y/4pnmI4w7mSK0kllbd5m9nMxgUX/Bz9uPbNa4noEcHg5ME1eppuTr/Z0tN07dFra/Q0DUsdVqOn6fq06y09TRNyJlh6mg4lHiJlaQpT/ziVK668grLyMsYdHGfpaboh74YaPU0jD42s0dN0VcpVlp6miScmcseOO0icl0hJbomKJrGKm266CVdXVyoqKujUqZNlgvXtt99OXl4ew4cPx8HBgcrKSu6++24uu+wyHn/8cQ4cOICLiwvu7u68+uqrANx77708/PDDPPPMMzz11FOMHTu2zjl+77VOTk78+9//5oEHHmDx4sU4ODgwc+ZM7rvvPt59913uu+8+XnjhBRwcHFi1ahVBQUF1uuZdd93FY489Zil4AMaMGcOePXsYOHAgDg4O9OrVi1deeeWcr58wYQJ//OMfiYiIqLGkzbvvvsuf//xnoqKiAGjVqhWvvfYagYGBvPfee9x///2WzeWDg4PPm+9MUTJo0CAcHByIjo4mNTXVMnT4W+3atWPKlClERUXh4eHBzp076/QZnM/53kNVVRXTp0+noqKC6upqrrzySsaMGcPhw4fx9vYmJSWFK664gqKiIv7v//4PDw8PevTowd/+9jfLDVlBQUG8/vrrF8zw0Ucf8e677+Li4oJhGJY/m3PnzmXRokVcccUVlsJrzpw5Vi+aHAxDu0Ray5k5TStXrrT8ZNZcffPeN4y7dRzvLH2Hjt062qynKSMlg0/f/ZQHH36Qk8bJBvc0tXRpiUMrB/y6+Jn58V2U7z//nttvuJ23P3ubQdcPuvALpNEoKysjLS2N0NDQGsMRIk3BoUOH6NevH7m5uWZHsWjod049TWITfr5+jGIU3fp3IyomqsZzQf3/9xOfP/70pOf/Hp81nyOgX0CNc7vTvca5AxjAzX++udb1/fGnK13P2+5vH/vjTxfsdx0YJ0cnPPDAyVFfZxERW7LrdZqk8fJp58MABuDTThsa21pwQDA3cRPBAefv0hcRudQ6derUqHqZrEE/mlqB5jTVVlhUSAopFBYV4k/juRuoKaqqqqKMMqqqqsyOIiLSpKmnyQq0YW9taRlpvMM7pGWkmR2lydt3YB/LWMa+A/vMjiIi0qSpaBKb6BrelYd4iK7hXS98sjRIcEAwN3OzhudERGxMRZPYhIuzC1544eLsYnaUJq9N6zb0oAdtWrcxO4qISJOmoklsIjMrk3WsIzMr0+woTd7x/OP8xE8czz9udhRpAj799FOio6Pp06cP3bp1Y9SoUVRXV5sdy1QLFy7k1KlTZseQRkATwa1AE8FrKy0rJYssSstKzY7S5GVmZfJv/s0fs/5ID6y7kJs0L9nZ2cyYMYP//ve/ln2/4uPjL7hK88WwxurUl9qiRYt45JFHcHFRz3lzp54mK9BE8NoiQiO4l3uJCI0wO0qTF9U1iid5kqiuURc+WeR3ZGVl4eTkhLe3t+VY3759LUXTzp07GThwIL169aJ///58//33wOlFDH18/re8SFFRUa19xZ577jmGDx/O448/TkFBAffccw9RUVH07t3bspddRUUFc+fOpX///vTp04fJkyeTn59/zqwbNmzg8ssvp3fv3vTp04cff/wRgI0bN9K3b1969erFsGHDSEhIAGDz5s3069fP8vq9e/fSqVOnGvnnz59PdHQ04eHhfPHFFwDMmDEDgCuvvJI+ffpw7NgxVq1aRffu3enTpw9RUVGWa0vTZ1/lvojU4uDgQBll/LTlJ8tGmHsS9xDoH0i7Nu3IP5nPr4d/tayk/uvhX6msqrTs2bcncQ8dO3TEu603JwtPcijzkGUl9cysTMrKyywrqe87sI/23u3x9falqLiIg78epEvnLri2dOVw9mGKS4rp0vn0QqH7k/fTrk07Ovh2oKS0hJRDKZYtaLKOZeHi5ULPgT3P+76aq6ysLHJzcy1bVSQkJODp6UlQUBBlZWUkJCQQERGBp6cnR48eJTs7m969ewOndyVwdXUlJCSEiooK9uzZQ1hYGF5eXuTk5FBZWYm///mXAOnduzcDBw4kODiYYcOGceWVV3LrrbcSEBDAqVOnuPHGG1m5ciWjR4/mu+++46abbiIlJaVO76u8vJzNmzcDp7cqadWqFb/88gstWrQgJycHgGeeeYZWrVrxn//8B4C//vWvLFiwgBdffLFGWwcOHODuu+9m69atdOnShYqKCkpKSjh27Bi33XYbcXFxREVF8e677zJp0iT27t17wXx5eXlER0ezePFiNm7cyOzZsxk7diyvvfYa//znP/nhhx9o1aoVAA8//DD79++nY8eOVFRUUF5eXqfPQOyfiiaxiYTkBJ7maQYnD25Uu7Y3RRUuFaxzXMdnD3/GbdxGFVX8lb8ygQlcxmXsYx8f8RFzmYsrrnzMxxRTzJ3cCcBf+SujGU1/+nOAA/wf/8fDPIwnnvybf5NDDn/gD+xkJ7vZTT/6MYhBpJHGGtYwi1l4480XfMEhDnE/9wPwHM/Rl76MYASHOcxKVjKDGfjhxwY2kOqQyo7/7iAiWr2Rv/XPf/6TVatWkZl5ej7g5MmTGT58OC+99BKZmZlER0cTFxfH8OHD+de//sXf/vY3jh8/PZ9t6tSp9OjRg1WrVpGbm0t0dDTr169n3LhxfPjhh+Tk5LBw4cLzXrtFixZ88sknJCYmsmXLFr788kuWLl3Kzp07KS0txcXFhdGjRwMwePBg2rdvz+7du3+3EDvjTG8SwPr169m1axctWpwe7PD19QXg888/5+TJk3z88ccAnDp1irCwsFptffPNN4wdO5YuXU4X6M7Oznh5ebFu3TpL7w/AlClTmDlzJllZWRfM5+HhwYQJEwAYOHAgqamp5z135MiR3HHHHVx33XWMGTPGkkOaPhVNYhM+bX0YyEB82mpFcFsL7hnMR9s+ovBYIZ2COmEYBoMSB9Xoabr78N2WnqZrDl9To6dpYOLAGj1Nd2TeYelpGps1lrLyMpzKnDj83GHuufkeekX3svQ03fLrLZaepnHZ42r0NA1JHlKjp2nioYmWnqYrv7+Sbx78hlYOrcz86Bql++67j4kTJ1oev//++3h6egIQGBjIrl27iIg4XWjecccdlg1PAd566y3Lflo+Pj7s2rXLUnRMmjSJysrKOmXo2rUrXbt25b777uOaa65h7dq1xMTEnHNuk4ODA05OTjUWVy0rK6t13plemt9jGAavvPIKI0eOrFPOc72+vhl/uw+Zo6Pj7y4W++mnn7Jr1y42b97M2LFjWbJkCZMnT65XZrEzhlhNYmKiMWTIECMxMdHsKKY7suuIsZCFxpFdR8yOIo2Q/nycVlpaaiQkJBilpaVmRzEMwzAyMzON7777zvL4+PHjRpcuXYzPP//cKC8vN4KCgoxNmzYZhmEY33//veHn52cUFRUZFRUVRqtWrSx/9z333HPGb/95AYzCwkLL42nTphkPPPCAUVVVZRiGYRw7dswwDMNYvHixMW7cOKO4uNgwDMMoLi429u7dWytncnKy4efnZyQlJRmGYRinTp0y8vPzjWPHjhk+Pj5GQkKCYRiG8d577xk9evSwvDcvLy8jNzfXMAzDePDBB42QkBDDMAwjLS3N8Pb2trRfWFhYI7+np6eRmZlpGIZhVFRUGMnJyZbn5syZYzz00EN1/ITFbA39zqmnSWyiuKSYdNIpLik2O4o0QkmpSaxgBcNSh2n4thGprKxk8eLFpKWl4e7uTmVlJXfeeadl2OqTTz7hwQcfpLi4GFdXVz766CM8PDwAeOmllxgzZgyBgYGMGTPmd6/z/PPP89BDD9GzZ09cXFy4/PLLWblyJXPnzmXRokVcccUVlh6jOXPm0KNHzbtCw8PDWb16NbfccgsVFRU4Ojryz3/+k/79+/P2228zZcoUqqqqaNOmDR9++CEAAQEBPPLII/Tr149OnToxdOjQOn8uDz/8MCNHjsTNzY2vvvqKu+66ixMnTuDk5ISvry9vvvlmndsS++ZgGIZhdgh799slB3bv3s3KlSuJjIw0O5apvnr3K6657Ro2vrOR0VNGmx1HGpldX+7iwbEP8tIXLxE9JtrsOKYpKysjLS2N0NDQGsNDImIbDf3OqafJCmJiYoiJiSEpKYnp06ebHadR6NK5Cw/wgGV+i8hvdezQkau5mo4dOpodRUSkzrROk9iEa0tXfPDBtaV+epbaSstKOcYxLX4qInZFRZPYxJGjR9jIRo4cPWJ2FGmEktOSeYVXSE5LNjuKiEidqWgSmygqLiKVVIqKtbWM1BYWEsbd3E1YSO01eJojTS0VuTQa+l3TnCaxiS6duzCTmZrTJOfk4e5BEEF4uHuYHcVUzs7OODg4kJOTg6+vr1X3eBORmgzDICcnBwcHB5ydnevVhoomEbnkjuYcZQtbmJAzAX+a75IDjo6OBAYGkpmZyaFDh8yOI9LkOTg4EBgYiKOjY71er6LJThT8WsD+n/dTbVQTGhQKwO79uwnwC8C7rbdlf7HuEd1xcnLi18O/UlFZYRn+2Ju0Fz9fP3za+VBYVEhaRhpdw7vi4uxCZlYmpWWlls11E5IT8GnrQ3uf9hSXFJOanmpZ9fnI0SMUFRdZepASUxJp49UGP18/y/5i4Z3C+Xnbz7zIiwxNGap1eKSWvPw8/st/ycvPMzuK6Vq1akVERAQVFRVmRxFp8pydnetdMIGKJrtQ8GsB/+j2D94ueZsqqpjCFAAWspDruI5ookkggQ/5kMd4DHfc+YRPOMlJ7uIuAJaylFGMYgADSCGFd3iHh3gIL7xYxzpyyaUTnehHP17lVQYykCEMIZ103uRNHuABfPBhIxtJJZWZzATgeZ6nF70YxSiOcITXeZ17uRcvvOjt1BvfIF/TPjdpvLpHdOcRHqF7RHezozQKjo6ODfqLXEQuDRVNdqDoWBGlJaU88+wztAtvZ+lpGrB/QI2epmmHp1l6mq45fE2NnqYrk66s0dN0W8Ztlp6msVljSd2fyr/f+zcTH57IGMcxNXqa/pD+B0tP07VHr63R0zQ0ZWiNnqYbD91IeKdw3N3ccWrthG+4iiYREWkatCK4Fdh6RXCtri1NzdZPtvKHm/7ABx9/wNCJdd/OQkTETOppsgJbrwge1DGIG7iBoI5BVm9bxAxurm4EEYSbq5vZUURE6kzrNNmBtl5t6U1v2nq1NTuKiFUE+gcyjnEE+geaHUVEpM5UNNmBEwUn2MMeThScMDuKiFWUnyrnBCcoP1VudhQRkTpT0WQHMo5k8AmfkHEkw+woIlaRlJrEi7xIUmqS2VFEROpMRZMd6NGlB0/wBD269DA7iohVhAaFcju3W+4EFRGxByqa7ICjoyMuuGgdF2kyPFt5EkYYnq08zY4iIlJnKprsQHpmOh/yIemZ6WZHEbGKnLwcfuAHcvJyzI4iIlJnWnLADlRVV1FOOVXVVWZHEbGKo7lH2cxmEv+bSEFhAS1dWhLUMYiKigr2p+wnJDAEL08v8k7kcTj7ML269QLg4K8HcWzhSEhgCFVVVew7sI+gjkG09WrLiYITZBzJoGdkT1q0aEF6ZrrVtx1q498Gr2Av0z43ETGXiqbfWLhwIT/99BPl5eX4+flx7733cuWVV5odi87Bnbmd2+kc3NnsKCJW0X9Qfxa4L2D/X/bzCI/QjnbcwA0UU8wzPMNkJtOVruxkJxvYwAIWAPA2b9OSlkxiEqc4xVM8xUQmEkUUv/ALn/EZ85iHE058xEdUUcU4xuGJp1W2HfJx92Hm/pkqnESaKRVNv3HnnXfyl7/8BWdnZxISEnj44Yd5//338fLSX5Ai1uQV7MXM/TMpyS1h5KGRNXqaRqWMsvQ0TTwxkQeyH7D0NMX8GlOjp2nogaE1epruO3KfpacpamsUb696m4lPTKRT104N3naoIruChY8s5Ko9V3F58OVmfnwiYhIVTb8RGvq/O3kcHR2pqKggNzfX9KJp9/7dLGIRA/YPwL+vv6lZRKzFK9gLr2CvWn+mg68Itvy3P/70pOf/Hp91buDlgTXO7c7/NgC+se+N3PinG8/5Wn/86Ua387Z79rld6MLWT7aSRRalZaV1fo8i0rTYbdFUUlLCmjVrSE5OJjk5mYKCAqZOncq0adPOee6qVauIi4ujsLCQ4OBgpkyZwqhRo2qdu3jxYrZu3cqpU6cYMGAAnTubPyQW4BfAOMYR4BdgdhSRZisiNIJ7uZeI0Aizo4iISey2aCooKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqq2qcO3/+fCorK4mPjyc9PR0HBwdbv5UL8m7rTT/64d3W2+woIiIizZbdFk1+fn5s2LABBwcH8vPzz1s0bd++nZ07dzJ//nxiYmIA6Nu3L9nZ2bz66quMHDmy1vpHTk5O9O/fn08++YTAwEAGDhxo8/fzewoKC0jk9F1G/mh4TsQMCckJPM3TDE4erGFykWbKbtdpcnBwqFMv0LZt23Bzc2P48OE1jo8dO5bc3FwSEhLO+9rq6moOHz583udzc3NJSkqy/EpPt806SumZ6bzP+1qnScREPm19GMhAfNr6mB1FRExitz1NdZWWlkZISAhOTjXfalhYmOX5qKgo8vLy2LNnD1dccQXOzs5s3bqVn376ifvuu++8ba9du5a33nrLlvEB6BbejUd5lG7h3S58sojYRHuf9gxhCO192psdRURM0uSLpoKCAjp27FjruKfn6e0bTp48aTn28ccf8/e//x0HBwcCAwNZuHAh4eHh5217/PjxDBo0yPI4PT2dJUuWWDH9ac7OznjggbOzs9XbFpG6KS4pJp10ikuKzY4iIiZp8kUTUKdhPG9vb15++eWLatfHxwcfHx9iY2OJjY2lqKiovhF/V8aRDD7jM8YcGaO5FCImSU1P5U3e5A/pfyB88Pl/mBKRpqvJF01eXl4UFBTUOl5YWAhA69atG3yNmJgYYmJiSEpKYvr06Q1u72zlp8o5znHKT5VbvW0RqZsunbvwAA/QpXMXs6OIiEnsdiJ4XXXu3Jn09HQqKytrHD948CBQc0HLxiq8Uzh3czfhnfTTrYhZXFu64oMPri1dzY4iIiZp8kXTkCFDKC0tZcuWLTWOb9y4ER8fH7p3736eV9ZdbGwsc+fOZcWKFQ1uS0QapyNHj7CRjRw5esTsKCJiErsentuxYwdlZWWUlJQApydib968GYABAwbg6urKgAED6NevH8uXL6ekpISAgAA2bdrEjz/+yLx582qt0VQfth6e25u0l6d4iiuTrtScJhGTFBUXkUoqRcW2mbsoIo2fXRdNy5cvJzs72/I4Li6OuLg4AD744AP8/U8XGEuWLGHlypWsXr3aso3KggULzrmNSmPUwacDwxlOB58OZkcRaba6dO7CTGZqTpNIM2bXRdOHH35Yp/Pc3d2ZPXs2s2fPtkkOW9895+vty5Vcia+3r03aFxERkQtr8nOaLoWYmBiWLVvGrFmzbNJ+YVEhqaRSWFRok/ZF5MISUxJ5nudJTEk0O4qImERFkx1Iy0jjbd4mLSPN7CgizVYbrzb0ohdtvNqYHUVETKKiyQ5EhkUym9lEhkWaHUWk2fLz9WMUo/Dz9TM7ioiYxK7nNDUWtp7T1NKlJW1pS0uXljZpX0QurKS0hCMcoaS0xOwoImIS9TRZga3nNGVmZbKBDWRmZdqkfRG5sJRDKbzO66QcSjE7ioiYREWTHSgtKyWDDErLSs2OItJshXcK517u1cr8Is2YiiY7EBEawQxmEBEaYXYUkWbL3c2djnTE3c3d7CgiYhLNabICW89pEhHzZedks4lNjM8Zjz9amV+kOVJPkxXYek5TQnICz/IsCckJNmlfRC4svyCf3ewmvyDf7CgiYhIVTXbAu403l3M53m28zY4i0mx1De/KQzxE1/CuZkcREZOoaLIDHXw7MIxhdPDV3nMiIiJmUdFkB4pLiskgg+KSYrOjiDRbBw4e4B/8gwMHD5gdRURMoongVmDrieCp6amsZjU3p99M+GDd7ixihlYerQgjjFYercyOIiImUdFkBTExMcTExJCUlMT06dOt3n5EaAT3c7+WHBAxUccOHbmGa+jYoaPZUUTEJBqeswNurm60pz1urm5mRxFptsrKy8gll7LyMrOjiIhJVDTZgSNHj/A1X3Pk6BGzo4g0WwcOHuBlXtacJpFmTEWTHSgsKiSJJAqLCs2OItJshYWEcRd3ERYSZnYUETGJiiY7EBkWySxmERkWaXYUkWbLw92DEELwcPcwO4qImERFk4hIHRzLPcbXfM2x3GMAJCYm8uuvvwJw6tQp4uPjOXny5Olzjx3j559/trz2wIEDpKWlAVBZWUl8fDwnTpwAIDc3l/j4eACysrJ48MEH2bFjBwDV1dXEx8dz/PhxAI4fP058fDxVVVUAHDx4kOTkZMt14uPjycnJASA/P5/4+HgqKips8nmINEcqmqwgNjaWuXPnsmLFCpu0n5SaxIu8SFJqkk3aF5ELO1Vxip/5GUdHRwBuv/12li5dCpwukqKjo9m+fTsA77//PoMGDbK89t577+XJJ58E4OTJk0RHRxMXFwfA559/TnR0NAApu1NYsWIFTz58+tyKigqio6P54osvAPjqq6+Ijo6mrOz0ZPQ5c+bwwAMPWK7Tv39/Pv30UwC2bt1KdHQ0+fn5Nvk8RJojB8MwDLNDNBVnlhxYuXIlkZHWG0qL3xjP7DGzefHLF+l7TV+rtSsidZcVn8Wz0c9y5zt34tvNl+S0ZNxc3Qj0D+RUxSkSUxIJDQrFs5Unucdzyc7JpmdkT+D0WmvOTs4EBwRTWVlJQnICwQHBtGndhrwTeRzOPkyvbr3Y+sVWJj85mZf//DI3TrmR6upq9ibtJahjEG292nKi4AQZRzLo0aUHjo6OpGemU1VdRefgzgDs3r+bAL8AvNt6U1BYQHpmOtEDovEJ8zHzoxNpMrROkx3wb+9PDDH4t9fO6iJmcfdxx9vdm89u++y85+xgR43HP/BDnc/dwQ4KKWQYw0hbnsbry1//3XPr4gQneNzxcd7a8ha9BvWq02tE5PxUNNmB0rJSssmmtKzU7CgizZZXsBcz98+kJLfEZtcoySkh4dMEut/YHXdf9wa3999N/+XTxz6l4GiBFdKJiIomO5CclsxrvMb1adfT+crOZscRaba8gr3wCvay6TXCRltvSYPLuZy7uZvwTtp+ScQaNBHcDoR3Cmc60/UXn4iIiIlUNNkBdzd3AgjA3a3h3fUi0nzsTdrLUzzF3qS9ZkcRaRJUNNmBozlHiSOOozlHzY4iInakg08HhjOcDj4dzI4i0iSoaLIDx/OPE088x/OPmx1FROyIr7cvV3Ilvt6+ZkcRaRI0EdwKYmNjiY2NpaioyCbtd4voxsM8TLeIbjZpX0SapsKiQlJJpbCoEH+0ZIlIQ6mnyQpiYmJYtmwZs2bNMjuKiIhFWkYab/M2aRlpZkcRaRJUNNmBAwcP8AqvcODgAbOjiIgdiQyLZDaztdm3iJWoaLIDHu4edKKTdlcXkYvS0qUlbWlLS5eWZkcRaRJUNNmBAL8AxjKWAL8As6OIiB3JzMpkAxvIzMo0O4pIk6CiyQ6UlZeRRx5l5WVmRxERO1JaVkoGGdqCScRKVDTZgQMHD7CCFZrTJCIXJSI0ghnMICI0wuwoIk2CiiY70Dm4M3dyJ52Dte+ciIiIWVQ02YFWHq0IJZRWHq3MjiIidiQhOYFneZaE5ASzo4g0CSqa7EBOXg7f8z05eTlmRxERO+LdxpvLuRzvNt5mRxFpErQi+P936tQpnnvuOXbu3ElxcTGdOnVi5syZREVFmR2NY3nH2MY2juUdMzuKiNiRDr4dGMYwOvhq7zkRa1BP0/9XVVWFv78/r7zyCl988QUTJkzgiSeeoKzM/DvWenTpwVzm0qNLD7OjiIgdKS4pJoMMikuKzY4i0iSoaPr/3NzcmDp1Kh06dKBFixaMGTOG6upqMjO1vomI2KfU9FRWs5rU9FSzo4g0CXY7PFdSUsKaNWtITk4mOTmZgoICpk6dyrRp08557qpVq4iLi6OwsJDg4GCmTJnCqFGjztt+eno65eXldOzY0ZZvo05SDqWwilWMPDQS/77adFNE6iYiNIL7uV9LDohYid32NBUUFLBu3ToqKioYMmTI7547b948Nm7cyNSpU3n66afp2rUrixYt4ptvvjnn+WVlZSxdupQ77rgDd3d3W8S/KK4tXfHFF9eWrmZHERE74ubqRnva4+bqZnYUkSbBbnua/Pz82LBhAw4ODuTn57N+/fpznrd9+3Z27tzJ/PnziYmJAaBv375kZ2fz6quvMnLkSBwdHS3nV1ZWsmDBAkJCQrj99tsvyXu5kED/QCYwgUD/QLOjiIgdOXL0CF/zNdcevRZ/1Est0lB229Pk4OCAg4PDBc/btm0bbm5uDB8+vMbxsWPHkpubS0LC/9Yvqa6uZunSpbRo0YI5c+ZcsP3c3FySkpIsv9LT0+v1Xi6koqKCQgqpqKiwSfsi0jQVFhWSRBKFRYVmRxFpEuy2p6mu0tLSCAkJwcmp5lsNCwuzPH9mWYFnn32WvLw8nnnmmVrnn8vatWt56623rJ75bPtT9vMcz3FVylUEXxFs8+uJSNMQGRbJLGYRGRZpdhSRJqHJF00FBQXnnMzt6ekJwMmTJwHIzs5m/fr1uLi4MH78eMt5Tz/9NL179z5n2+PHj2fQoEGWx+np6SxZssSa8QHoFNiJW7mVToGdrN62iIiI1E2TL5qAOg3j+fn5sXXr1otq18fHBx8fH2JjY4mNjaWoqKi+EX9Xa8/WdKELrT1b26R9EWmaklKTeJEXGZY6THfeiliB3c5pqisvLy8KCgpqHS8sPD3G37p1wwuRmJgYli1bxqxZsxrc1rnkncjjP/yHvBN5NmlfRJqm1p6t6UEP/cAlYiVNvmjq3Lkz6enpVFZW1jh+8OBBAEJDQ82IdVGOHD3CV3zFkaNHzI4iInbEv70/McTg3169TCLW0OSH54YMGcK6devYsmVLjcUsN27ciI+PD927d2/wNWw9PBfVNYoneZKorubvgyci9qO0rJRssiktKzU7ikiTYNdF044dOygrK6OkpAQ4PRF78+bNAAwYMABXV1cGDBhAv379WL58OSUlJQQEBLBp0yZ+/PFH5s2bV2ONpvqKiYkhJiaGpKQkpk+f3uD2RESsITktmdd4jevTrqfzlZ3NjiNi9+y6aFq+fDnZ2dmWx3FxccTFxQHwwQcf4O9/ukt6yZIlrFy5ktWrV1u2UVmwYMHvbqPSmBz89SBrWEPMrzGazCkidRbeKZzpTCe8U7jZUUSaBLsumj788MM6nefu7s7s2bOZPXu2TXLYenjOydEJDzxwcrTr/10icom5u7kTQADubuZvByXSFDT5ieCXgq3vngsOCOYmbiI4QAtbikjdHc05ShxxHM05anYUkSZBRZMdqKqqoowyqqqqzI4iInbkeP5x4onneP5xs6OINAka77ECWw/P7Tuwj2UsY/iB4QRerk17RaRuukV042EepltEN7OjiDQJKpqswNZ3zwUHBHMzN2t4TkRExEQanrMDbVq3oQc9aNO6jdlRRMSOHDh4gFd4hQMHD5gdRaRJUNFkB47nH+cnftK8BBG5KB7uHnSiEx7uHmZHEWkSVDTZgcysTP7Nv8nMyjQ7iojYkQC/AMYylgC/ALOjiDQJmtNkBdpGRUQao7LyMvLIo6y8zOwoIk2CepqswNbrNDk4OOCIIw4ODjZpX0SapgMHD7CCFZrTJGIlKprswKGMQ/wf/8ehjENmRxERO9I5uDN3ciedg7XvnIg1qGgSEWmiWnm0IpRQWnm0MjuKSJOgoskOdArqxK3cSqegTmZHERE7kpOXw/d8T05ejtlRRJoETQS3AltPBDcMgyqqMAzDJu2LSNN0LO8Y29jGsbxjZkcRaRLU02QFtp4IvidxD3/lr+xJ3GOT9kWkaerRpQdzmUuPLj3MjiLSJKhosgOB/oFMYAKB/tp3TkRExCwqmuxAuzbtuIzLaNemndlRRMSOpBxKYRWrSDmUYnYUkSZBRZMdyD+Zzz72kX8y3+woImJHXFu64osvri1dzY4i0iSoaLIDvx7+lY/4iF8P/2p2FBGxIxraF7EuFU12QJM5RaQ+KioqKKSQiooKm12jMKuQzQs3U5hVaLNriDQWWnLACmy95ICjoyOuuOLo6GiT9kWkadqfsp/neI6rUq4i+Ipgm1yjKKuILYu2EDk+Ek9/T5tcQ6SxUE+TFdh6yYFfD//Kx3ys4TkRuSidAv//wriBncyOItIkqKfJDlRWVVJMMZVVlWZHERE70tqzNV3oQnlmOVnxWTa5Ru7+3Bq/W4O7jztewV5Wa0/EWlQ02QFtuiki9VHiUMIu510U31aMBx42uUYhhexkJ4W3FeKJdYbnnN2dmbl/pgonaXRUNImINFEnOclXDl/xwLsPENU1yibX2PrFVp578jn++Nc/MnTs0Aa3l7M/h89u+4yS3BIVTdLoqGiyA2e2URmYOBD/vv5mxxERO3HZZZdRXl5u02u02d/m9O+hbfT3kzR5mghuBzp26MhoRtOxQ0ezo4iIiDRbKprsgHdbb/rTH++23mZHERE7kpyczIgRI0hOTqaqqor4+HhOnDgBQF5eHvHx8RiGAUBqaiqpqakAGIZBfHw8eXl5AJw4cYL4+HiqqqoASEtLIzk5uca1CgtPr9NUUFBAfHy8ZW2o9PR0kpKSLOf98ssvHD161PKa+Ph4ysrKAMjIyODAwQM2+SxErEFFkx04WXiSAxzgZOFJs6OIiB1p2bIlfn5+tGnThuLiYqKjo4mNjQVg3bp1REdHWwqhhx56iIceegiAqqoqoqOjWbduHXB6Lbro6GiKi4sBeOKJJ/jjH/8InL7TDeA/e/4DwHfffUd0dDS5uafvpvvrX//K1KlTLZlGjBjBv/71LwB27dpFdHQ0mZmZADzzzDP88fE/2uzzEGkozWmyAlsvbnko8xD/x/9xR+YdRBJpk2uISNMTHBzM66+/jqenJ1VVVezatYvQ0FAArrvuOnbt2mVZNPf555+3vM7R0ZFdu3YREhICnF6LbteuXXh4nL4D76mnnqKy8vQSKB6+p4+NvnE0AIMHD2bXrl34+PgA8OSTT1p6kgDi4uLw8/MDIDo6ml27dhEYeHqbl0cffZSJQyey+ebNNvk8RBrKwTjTNysNlpSUxPTp01m5ciWRkdYrbn798VdeGvASD+540Gar+oqI1Ed8fLyl+Onbt2+D2/v2g2+5fvL1fP7+54z8w0grJBSxHg3P2QFnZ2c88cTZ2dnsKCIiNtWuTTv60pd2bdqZHUWkFhVNdiAzK5N/828yszLNjiIiYlMdfDswghF08O1gdhSRWupdNKWlpbFx40bLxECA8vJynnvuOW688UZuueUWyyRCaZiy8jJyyKGsvOzCJ4uI2LGS0hIOc5iS0hKzo4jUUu+i6e233+af//wn7u7ulmOvv/46a9eupaSkhGPHjvHcc8+xa9cuqwRtzsI7hXMP9xDeKdzsKCIiNfj7+7NgwQL8/a2zsGXKoRRWspKUQylWaU/EmupdNO3fv5/LLrsMBwcHACorK/niiy/o1q0b//73v/nggw9o06YNH374odXCiohI4+Lv78/ChQutVjRFhEYwgxlEhEZYpT0Ra6p30XT8+HE6dPjfmHNCQgIlJSVMmDCBli1b4uPjw6BBg0hJ0U8LDbXvwD6WsYx9B/aZHUVExKbcXN3www83Vzezo4jUUu+iydHR0bLiK8Du3btxcHDgsssusxzz8vKioKCgYQmF9t7tGcIQ2nu3NzuKiIhNZR3LIpZYso5lmR1FpJZ6F01+fn789NNPlsebN2/G39/fsmgZQE5ODl5e2qW6oXy9fRnEIHy9fc2OIiJiUycLT7KPfdoBQRqlehdNV199NSkpKcyYMYMHHniAlJQURo0aVeOcAwcOWFZ6tQeff/45d999NyNGjOCNN94wO45FUXERaaRRVGybFcdFRBqLyLBIZjObyDDtfiCNT72LphtvvJHhw4eTmJjInj17uPzyy7n99tstz+/fv59Dhw5ZZYXYS8Xb25tp06YxZMgQs6PUcPDXg6xhDQd/PWh2FBERkWar3nvPubi4sGjRIoqLi3FwcKix9ACcvqNi9erVNYbrGrszxdJ3331ncpKaunTuwixm0aVzF7OjiIjYVFJqEitYwbDUYfj3tc4deSLWUu+i6eeff8bf37/GHXS/1aZNG06dOkVKSgp9+vSp72XOq6SkhDVr1pCcnExycjIFBQVMnTqVadOmnfPcVatWERcXR2FhIcHBwUyZMqXWcGJj5drSFW+8cW3panYUERGb8mzlSSSReLbyNDuKSC31Hp7705/+xJdffvm753zzzTf86U9/qu8lfldBQQHr1q2joqLigsNp8+bNY+PGjUydOpWnn36arl27smjRIr755hubZLO2w9mH+YIvOJx92OwoIiI21bFDR67majp26Gh2FJFa6t3TZBhGnc45s/iltfn5+bFhwwYcHBzIz89n/fr15zxv+/bt7Ny5k/nz5xMTEwNA3759yc7O5tVXX2XkyJE4OjrWK0Nubi55eXmWx+np6fVq50KKS4o5xCGKS4ovfLKIiB0rLSvlGMcoLSs1O4pILfUumuoiMzMTDw8Pm7Rd12Js27ZtuLm5MXz48BrHx44dy+LFi0lISCAqKqpeGdauXctbb71Vr9dejC6du3A/92tOk4g0eclpybzCK4xPG0/nKzubHUekhosqmpYtW1bj8bZt28jOzq51XlVVFTk5Ofzyyy9cccUVDUvYQGlpaYSEhODkVPOthoWFWZ4/UzRVVlZSVVVFdXU1VVVVlJeX4+TkdN6eqPHjxzNo0CDL4/T0dJYsWWKjdyIi0vSFhYRxN3cTFhJmdhSRWi6qaPrtHCYHBwdSUlLOu02Kg4MDXbt25YEHHmhYwgYqKCigY8faY+OenqcnGZ48+b8F1P71r3/V6Dl6++23efzxxxkzZsw52/bx8cHHx8e6gc9hf/J+nuM5hiQP0d0kItKkebh7EEQQHu62GaUQaYiLKpo++OAD4PRcpcmTJ3PzzTdz00031TqvRYsWeHp64ubWOPYOqutQ3rRp0855992FxMbGEhsbS1GRbRafbNemHX3pS7s27WzSvohIY3E05yhb2MKEnAn4ox8SpXG5qKLpt2suzZ07ly5dujT6dZjOt/9dYWEhAK1bt27wNWJiYoiJiSEpKYnp06c3uL2zdfDtwAhG0MH33Ms7iIg0FXn5efyX/5KXn3fhk0UusXpPBD/fkFVj07lzZ2JjY6msrKwxr+ngwdOra4eGhjb4GrbuaSopLeEwhykpLbFJ+yIijUX3iO48wiN0j+hudhSRWhp891xCQgKJiYkUFRVRXV1d63kHBwfuvPPOhl6m3oYMGcK6devYsmVLjcUsN27ciI+PD927N/yLaeueppRDKaxkJRMPTSRskCZHioiImKHeRdPJkyd54okn2Lt37++u2WTLomnHjh2UlZVRUnK6ByY9PZ3NmzcDMGDAAFxdXRkwYAD9+vVj+fLllJSUEBAQwKZNm/jxxx+ZN29evddoupQiQiOYwQwiQiPMjiIiYlPJacm8xmuMSBuhG1+k0al30fTyyy+zZ88e+vTpwzXXXEP79u0veQGyfPnyGksexMXFERcXB5yetO7vf/oLt2TJElauXMnq1ast26gsWLDAbrZRcXN1ww8/3Fwbx8R6ERFbcXN1I4gg/X0njVK9i6bt27fTrVs3XnjhBZut+n0hH374YZ3Oc3d3Z/bs2cyePdsmOWw9pynrWBaxxHLdset0N4mINGmB/oGMYxyB/oFmRxGppd57z506dYrevXubVjA1JjExMSxbtoxZs2bZpP2ThSfZxz5OFp688MkiInas/FQ5JzhB+alym10jKyuLhQsXkpWVZbNrSNNU76IpIiLinKuBi/VFhkUym9lEhkWaHUVExKaSUpN4kRdJSk2y2TWysrJYtGiRiia5aPUenrvrrruYM2cO+/bto0ePHtbMZHdsPTwnItJchAaFcju3ExrU8OVgRKyt3kVTTk4OAwcO5MEHH+Sqq64iIiLivJvzXnPNNfUOaA9sveRAUmoSK1jBsNRhuptERJo0z1aehBGGZytPs6OI1FLvoulvf/sbDg4OGIbBl19+yZdffllrfpNhGDg4ODT5osnWPFt5Ekmk/hIRkSYvJy+HH/iBG/Ju0I0v0ujUu2iaO3euNXPI7+jYoSNXczUdO9TeeFhEpCk5mnuUzWzmaO5Rs6OI1NLkt1G5FGw9p6m0rJRjHKO0rNQm7YuINBY9I3vyBE/QM7Knza5RnFNc43eRuqr33XPyP7ZeciA5LZlXeIXktGSbtC8i0pyU5JbU+F2krurd03T0aN27Tjt06FDfywgQFhLG3dxNWIj2nRORpi3lUAqrWc3IQyN144s0OvUumiZNmlSnhS0dHBwsW5tI/Xi4exBEEB7u5747UUSkqWjp0pJ2tKOlS0uzo4jUUu+iafTo0ecsmoqKikhNTSUrK4s+ffrg5+fXoIACR3OOsoUtTMiZoLtJRKRJC+oYxA3cQFDHILOjiNRS76LpiSeeOO9zhmHw/vvv89577zFnzpz6XkL+v7z8PP7Lf8nLzzM7ioiITVVUVFBMMRUVFWZHEanFJhPBHRwcuOWWWwgNDeWVV16xxSUaldjYWObOncuKFSts0n73iO48wiN0j+huk/ZFRBqL/Sn7eYZn2J+y3+woIrXY9O65yMhI4uPjbXmJRsHWd8+JiDQXIYEhTGYyIYEhZkcRqcWmRdPhw4epqqqy5SWaheS0ZF7jNS05ICJNnpenF13pipenl9lRRGqxetFUXV3N0aNHWbNmDd9//32z38zXGtxc3QgiCDdXN7OjiIjYVN6JPHayk7wTmsMpjU+9J4IPGzbsd5ccMAyDVq1acf/999f3EvL/BfoHMo5xBPoHmh1FRMSmDmcfZgMbeCD7AXpiu1XBReqj3kVT7969z1k0OTg44OnpSWRkJGPHjqVdu3YNCihQfqqcE5yg/FS52VFERGyqV7deLGABvbr1MjuKSC31Lppeeukla+awa7beey4pNYkXeZExqWPoNKCTTa4hIiIiv097z1mBre+eCw0K5XZuJzQo1Cbti4g0Fgd/PcjbvM3BXw+aHUWklnr3NP3Wnj17SElJobi4GHd3dyIiIoiKirJG0wJ4tvIkjDA8W3maHUVExKYcWzjSkpY4tnA0O4pILQ0qmhISEnjqqafIzMwETk/+PjPPKTAwkLlz59KzpybyNVROXg4/8AM35N2gbVREpEkLCQxhEpO0TpM0SvUumg4dOsRDDz1EWVkZ/fv3p0+fPrRr144TJ07w008/8Z///IdHHnmE1157jU6dOlkxcvNzNPcom9nM0dyjZkcREbGpqqoqTnFKa/xJo1Tvoumtt96isrKSZ599lssvv7zGc7feeis7d+5kzpw5vPXWWyxcuLChOZu1npE9eYIn6BmpXjsRadr2HdjHUzzF0ANDCbxcy6xI41LvieA//fQTw4YNq1UwndGvXz+GDRvGTz/9VO9wIiLSvAR1DGIiEwnqGGR2FJFa6l00FRcX4+//+/Nr/P39KS4uru8l5P9LOZTCalaTcijF7CgiIjbV1qstUUTR1qut2VFEaql30eTt7c2+fft+95yEhAS8vb3rewn5/1q6tKQd7Wjp0tLsKCIiNnWi4AS/8AsnCk6YHUWklnoXTYMHD+bnn39m1apVlJfXXKm6vLycN954g59++onBgwc3OGRzF9QxiBu4Qd3VItLkZRzJ4DM+I+NIBgcPHiQl5X897PHx8eTm5gJw4sQJ4uPjqaysBCAtLY0DBw5Yzv355585duwYACdPniQ+Pp5Tp04BWNo4Y/fu3WRnZwNQVFREfHw8ZWVlAGRmZpKQkGA5d+/evRw5cgSAkpIS4uPjKSkpsepncC6FWYVsXriZwqxCm19Lzq/eRdOdd96Jv78/77zzDjfffDNz5sxh2bJlzJkzh0mTJrFmzRr8/f258847rZm3UYqNjWXu3LmsWLHCJu1XVFRQTDEVFRU2aV9EpLHoGdmTecyjZ2RPHnnkEWbPnm15Ljo6ms8//xyAuLg4oqOjOXnyJABPPvkk9957r+XcQYMG8f777wOwfft2oqOjLUXU2n+vrXHNUaNG8eabbwKni63o6GjS09MBWL58OTfffLPl3GuvvZZXXnkFgMTERKKjo0lMTLTmR3BORVlFbFm0haIs2+w8IXVT77vnWrduzT//+U9eeeUVvv32W3bs2GF5zsXFhTFjxjBjxgxat25tlaCNWUxMDDExMSQlJTF9+nSrt78/ZT/P8AyjUkYRfEWw1dsXEWksWrRogRNOtGjRgmeffZbq6mrLc7t27SI4+PTfgSNGjGDXrl2Wf2P++te/1vjB8vvvv6djx44ADBw4kF27dtG+fXsAxk8Yz4dxH1rO3bRpk+W5Pn36sGvXLkJCTq8T9ec//5l77rnHcu769este6p27drVkmHevHncf//9lmtK09SgxS1bt27N3LlzeeSRR0hPT6ekpAR3d3dCQkJwcrLKYuPC6cXeJjNZi72JSLPSuXPnGo/79u1r+e+2bdvStu3/JouHhtbcZqpPnz6W/27dunWN1/r4+NQ4t1ev/20O3KpVqxrnBgbWXPbgtws2u7u707dvX/bu3cs777zD5MmTbVY0Hc05ShxxTMiZYDeLHCf/nMzSPy3lLy/8hYg+EWbHsYqLrmz+9a9/UVZWxrRp0yyFkZOTE2FhYZZzKioqWLlyJW5ubtx2223WS9tMeXl60ZWueHl6mR1FRETO0rNnTw4dOmTTaxzNPcoWttjVIscH9x1kzZY13LLvliZTNF3UnKadO3fyxhtv0Lp169/tSXJ2dqZ169asWrWKXbt2NThkc5d3Io+d7CTvRJ7ZUURERJqtiyqavvrqKzw9PbnxxhsveO4NN9yAp6cnX375Zb3DyWmHsw+zgQ0czj5sdhQRETlLQkICPXr0qHGXnTRNF1U07d27l+joaFxcXC54rouLC/369WPv3r31Dien9erWiwUsoFe3Xhc+WURELqnWrVszevToZnHjU3N3UUVTbm7uRU1y8/f3Jy9PQ0oiItJ0BQYGsnz58lqTxqXpuaiJ4C1atLAsJFYXlZWVtGhR76Wg5P87+OtB3uZtYn6Nwb+vfdw1ISLSEDn7c2zWdn5avuX3rPisBrdXVl5GXlkePQf2xNXVtcHtSeN1UUWTt7c3aWlpdT4/LS2t1q2djVl+fj5PPfUUP//8Mz4+Pjz00EPn3ZD4UnJs4UhLWuLYwtHsKCIiNuXu446zuzOf3faZza5xhNMren/75LckPtnwhSmPcITXeZ3N6zczbNywBrcnjddFFU29evXim2++ISsr64Kb9WZlZREfH8/o0aMbFPBSev7552nXrh1r165l586dLFiwgPfeew8vL3Nv9Q8JDGESk7ROk4g0eV7BXszcP5OSXNttTbL/h/0kzUriDyv+QLcruzW4vfSf0qm4p4IArwArpJPG7KKKphtuuIEvv/yS+fPn88wzz9CmTZtznldQUMCCBQuoqqpiwoQJ1shpcyUlJWzbto333nsPV1dXBg8eTHh4ON999x3jxo0zNVtVVRWnOEVVVZWpOURELgWvYC+8gm37w+oIRtDtym5Wm/IQQgge7h5WaUsar4sqmiIjI7n55pv56KOPuOOOO5gwYQKXXXYZvr6+wOmJ4rt27WLdunXk5+czadIkIiMjbRK8pKSENWvWkJycTHJyMgUFBUydOpVp06ad89xVq1YRFxdHYWEhwcHBTJkyhVGjRlnOyczMxM3NjQ4dOliOde7c+aKGI21l34F9PMVTDD0wlMDLNdFQRKQxOZZ7jG1s4/rc6+1mtW6pn4teEXzmzJm4uLjw3nvv8fbbb/P222/XeN4wDFq0aMFtt91WY78eaysoKGDdunWEhYUxZMgQ1q9ff95z582bR2JiIvfddx9BQUHExsayaNEiqqurueqqqwAoLS3Fw6PmTwkeHh7k5+fb7D3UVVDHICYykaCOQWZHERGRs+SeyGU728k9kWt2FLGxiy6aHBwcuPfeexk3bhxffPEFe/fu5fjx4wC0a9eOqKgoxowZQ0CAbcd2/fz82LBhAw4ODuTn55+3aNq+fTs7d+5k/vz5xMTEAKf3L8rOzubVV19l5MiRODo64ubmRnFxcY3XFhcX4+bmZtP3URdtvdoSRRRtvdpe+GQREbmkukd05zEeo3tEd7OjiI3Ve1fdgIAApk+fbs0sF8XBwaFO523btg03NzeGDx9e4/jYsWNZvHgxCQkJREVFERgYSGlpKceOHbPsdp2WlsbVV1993rZzc3NrrEOVnp5+8W+kDk4UnOAXfuFEwQl1/YqIiJikyS+ilJaWRkhISK298s5sMHxmzpK7uzuDBw/mzTffpLy8nB9++IHk5GQGDRp03rbXrl3L9OnTLb+WLFlik/eQcSSDz/iMjCMZNmlfRKQ5aeXfimELhtHKv5VV2ktOS+Z1Xic5Ldkq7UnjVe+eJntRUFBwzlXMPT09ATh58qTl2J///GeWLl3Ktddei4+PDwsXLjzvHYIA48ePr1FUpaen26Rw6hnZk3nMo2dkT6u3LSLS3Hj6ezJ84XCrtefm6oY//ri5mj+dQ2yryRdNUPehvDZt2vDMM8/UuV0fHx98fHyIjY0lNjaWoqKi+kb8XS1atMAJJ62uLiLSCAX6B3Id1xHor7ubm7om/6+wl5cXBQUFtY4XFhYCWGWDxZiYGJYtW8asWbMa3Na5pGem8z7vk55pmzlTIiJSf6cqTlFAAacqTpkdRWysyRdNnTt3Jj09vdaeeQcPHgQgNDTUjFgXpdqopooqqo1qs6OIiMhZElMSeZ7nSUxp+JYs0rg1+eG5IUOGsG7dOrZs2VJjMcuNGzfi4+ND9+4Nv0XU1sNzoUGhTGEKoUGNv8ATEWluQoNCuY3b9Hd0M2DXRdOOHTsoKyujpOT0HkXp6els3rwZgAEDBuDq6sqAAQPo168fy5cvp6SkhICAADZt2sSPP/7IvHnzcHRs+Ca4MTExxMTEkJSUZOoyDCIicul5tvIknHA8W3maHUVszK6LpuXLl5OdnW15HBcXR1xcHAAffPCBZVPhJUuWsHLlSlavXm3ZRmXBggU1ep4as937d7OQhQzYP8Bq+ySJiIh15B7PZQc7uPH4jVpLr4mz66Lpww8/rNN57u7uzJ49m9mzZ9skh62H5wL8AriO6wjw0w7aIiKNTXZONpvYRHZONlFEmR1HbMiui6bGwtbDc95tvYkmGu+23lZvW0REGqZnZE/+wl+0ll4z0OTvnmsK8k/mk0AC+SfzzY4iIiLSbKlosgO/Hv6VD/mQXw//anYUERE5S2p6Km/yJqnpqWZHERvT8JwV2HpOk3bQFhFpvJydnGlNa5ydnM2OIjamoskKbD2nycnJCXfca206LCIi5gsOCGYiEwkOCDY7itiYhufswK+Hf+UTPtHwnIhII1RZWUkJJbV2npCmR0WTHaiorOAkJ6morDA7ioiInCUhOYGneZqE5ASzo4iNabzHCmw9pyksJIy7uIuwkDCbtC8iIvUXHBDMJCZpeK4ZUNFkBdpGRUSk+WrTug3d6U6b1m3MjiI2puE5O7A3aS9LWcrepL1mRxERkbPknchjF7vIO5FndhSxMRVNdsDP149RjMLP18/sKCIicpbD2YdZxzoOZx82O4rYmIomO+DTzocBDMCnnY/ZUURE5Cy9uvViIQvp1a2X2VHExjSnyQpsPRG8sKiQFFIoLCrUDtoiIiImUU+TFcTExLBs2TJmzZplk/bTMtJ4h3dIy0izSfsiIlJ/aRlpvMu7+ju6GVDRZAe6hnflIR6ia3hXs6OIiMhZWji0wBFHWjjon9SmTv+H7YCLswteeOHi7GJ2FBEROUtIYAiTmUxIYIjZUcTGVDTZgcysTNaxjsysTLOjiIjIWaqrq6mkkurqarOjiI2paLIDpWWlZJFFaVmp2VFEROQse5P2soQlWkuvGVDRZAciQiO4l3uJCI0wO4qIiJwlqGMQN3ADQR2DzI4iNqYlB6zA1ksOiIhI49XWqy296U1br7ZmRxEbU0+TFdh6yQHtoC0i0nidKDjBHvZwouCE2VHExlQ02QGftj4MZCA+bbUiuIhIY5NxJINP+ISMIxlmRxEbU9FkB9r7tGcIQ2jv097sKCIicpYeXXrwBE/Qo0sPs6OIjalosgPFJcWkk05xSbHZUURE5CyOjo644IKjo6PZUcTGVDTZgdT0VN7kTVLTU82OIiIiZ0nPTOdDPiQ9M93sKGJjKprsQJfOXXiAB+jSuYvZUURE5CxV1VWUU05VdZXZUcTGVDTZAdeWrvjgg2tLV7OjiIjIWToHd+Z2bqdzcGezo4iNqWiyA0eOHmEjGzly9IjZUURERJotLW5pBbZe3LKouIhUUikq1uKZIiKNze79u1nEIgbsH4B/X3+z44gNqWiygpiYGGJiYkhKSmL69OlWb79L5y7MZKbmNImINEIBfgGMYxwBfgFmRxEb0/CciIhIA3i39aYf/fBu6212FLExFU12IDElked5nsSURLOjiIjIWQoKC0gkkYLCArOjiI2paLIDbbza0ItetPFqY3YUERE5S3pmOu/zvtZpagZUNNkBP18/RjEKP18/s6OIiMhZuoV341EepVt4N7OjiI2paLIDJaUlHOEIJaUlZkcREZGzODs744EHzs7OZkcRG1PRZAdSDqXwOq+TcijF7CgiInKWjCMZfMZnZBzJMDuK2JiKJjsQ3imce7mX8E7hZkcREZGzlJ8q5zjHKT9VbnYUsTEVTXbA3c2djnTE3c3d7CgiInKW8E7h3M3d+sG2GVDRdJbPP/+cu+++mxEjRvDGG2+YHQeA7JxsNrGJ7Jxss6OIiIg0WyqazuLt7c20adMYMmSI2VEs8gvy2c1u8gvyzY4iIiJn2Zu0l6d4ir1Je82OIjambVTOcqZY+u6770xO8j9dw7vyEA/RNbyr2VFEROQsHXw6MJzhdPDpYHYUsbFGWTSVlJSwZs0akpOTSU5OpqCggKlTpzJt2rRznrtq1Sri4uIoLCwkODiYKVOmMGrUKBOSi4hIc+Pr7cuVXImvt6/ZUcTGGuXwXEFBAevWraOiouKCw2Tz5s1j48aNTJ06laeffpquXbuyaNEivvnmm0uU1vYOHDzAP/gHBw4eMDuKiIicpbCokFRSKSwqNDuK2Fij7Gny8/Njw4YNODg4kJ+fz/r168953vbt29m5cyfz588nJiYGgL59+5Kdnc2rr77KyJEjcXR0BOBPf/oTe/eee7x58uTJ3HPPPbZ5M1bQyqMVYYTRyqOV2VFEROQsaRlpvM3bTMmYQhe6mB1HbKhRFk0ODg51Om/btm24ubkxfPjwGsfHjh3L4sWLSUhIICoqCoAXXnjByikhNzeXvLw8y+P0dNvsO9SxQ0eu4Ro6duhok/ZFRKT+IsMimc1sIsMizY4iNtYoi6a6SktLIyQkBCenmm8jLCzM8vyZoqmuKisrqaqqorq6mqqqKsrLy3FycrL0WP3W2rVreeutt+qdv67KysvIJZey8jKbX0tERC5OS5eWtKUtLV1amh1FbMyui6aCggI6dqzd++Lp6QnAyZMnL7rNf/3rXzUKobfffpvHH3+cMWPG1Dp3/PjxDBo0yPI4PT2dJUuWXPQ1L+TAwQO8zMtce/BaQgeGWr19ERGpv8ysTDawgbFZY/HH3+w4YkN2XTRB3Yfy6mratGnnvEvvXHx8fPDx8SE2NpbY2FiKioqsmuWMsJAw7uIuwkLCbNK+iIjUX2lZKRlkUFpWanYUsTG7Lpq8vLwoKCiodbyw8PQdDK1bt74kOWJiYoiJiSEpKYnp06dbvX0Pdw9CCMHD3cPqbYuISMNEhEYwgxlEhEaYHUVsrFEuOVBXnTt3Jj09ncrKyhrHDx48CEBoaNMYyjqWe4xtbONY7jGzo4iIiDRbdl00DRkyhNLSUrZs2VLj+MaNG/Hx8aF79+6XJEdsbCxz585lxYoVNmk/90Qu29lO7olcm7QvIiL1l5CcwLM8S0JygtlRxMYa7fDcjh07KCsro6SkBDg9yXrz5s0ADBgwAFdXVwYMGEC/fv1Yvnw5JSUlBAQEsGnTJn788UfmzZt3zjvebMHWw3PdI7rzGI/RPeLSFIEiIlJ33m28uZzLIQey4rNsco38tHzL79a6hruPO17BXlZpq7lotEXT8uXLyc7OtjyOi4sjLi4OgA8++AB//9N3KCxZsoSVK1eyevVqyzYqCxYs0DYqIiJySYR2CyXGPYbvZn3Hd9hm39IjHAHg2ye/JfHJRKu06ezuzMz9M1U4XYRGWzR9+OGHdTrP3d2d2bNnM3v2bBsnOj9b3z2XnJbM67zOiLQR+PfV7awiIo2JYztHLn/nckJ9Q212w87u/bt5/bbXufGdG+nVrVeD28vZn8Nnt31GSW6JiqaL0GiLJnti6+E5N1c3/PHHzdXN6m2LiEjDHDhwgKtvvJpdu3YR3jfcJtfI4vSQnG83X/3wbCIVTXYg0D+Q67iOQP9As6OIiMhZunXrxt69e+ncubPZUcTGVDTZgVMVpyiggFMVp8yOIiIiZ3Fzc6NHjx5mx5BLwK6XHGgsbL3kQGJKIs/zPIkp1pn8JyIi1pOZmcmjjz5KZmam2VHExlQ0WUFMTAzLli1j1qxZNmk/NCiU27iN0KCmsViniEhTUlBQwNq1a8+5Q4U0LRqeswOerTwJJxzPVp5mRxERkbP06NGDpKQks2PIJaCeJjuQezyXHewg97hWBBcRETGLiiYrsPWcpuycbDaxieyc7AufLCIil9S+ffsIDw9n3759ZkcRG9PwnBXYep2mnpE9+Qt/oWdkT6u3LSIiDdOmTRtuvvlm2rRpY3YUsTEVTSIiIg0QEBDA3/72N7NjyCWg4Tk7kJqeypu8SWp6qtlRRETkLKWlpezevZvS0lKzo4iNqWiyA85OzrSmNc5OzmZHERGRs+zfv5/evXuzf/9+s6OIjWl4zgpsvWFvcEAwE5lIcECwTdoXEZH6i4yM5D//+Q+RkZFmRxEbU9FkBbaeCF5ZWUkJJVRWVlq9bRERaRgPDw8uv/xys2PIJaDhOTuQkJzA0zxNQnKC2VFEROQsWVlZLFy4kKysLLOjiI2paLIDwQHBTGKShudERBqh3NxcVq1aRW6uFiBu6jQ8ZwfatG5Dd7rTpnUbs6OIiMhZoqKitFlvM6GeJjuQdyKPXewi70Se2VFERESaLRVNduBw9mHWsY7D2YfNjiIiImdJSEigV69eJCRo3mlTp+E5K7D1kgO9uvViIQvp1a2XTdoXEZH68/T0ZPjw4Xh6epodRWxMRZMV2HrJARERabyCgoJ46aWXzI4hl4CG5+xAWkYa7/IuaRlpZkcREZGzlJWVkZKSQllZmdlRxMZUNNmBFg4tcMSRFg763yUi0tgkJCQQERGhOU3NgP4VtgMhgSFMZjIhgSFmRxERkbNEREQQFxdHRESE2VHExjSnyQ5UV1dTSSXV1dVmRxERkbOcmQguTZ96muzA3qS9LGEJe5P2mh1FRETOcvToUZ555hmOHj1qdhSxMRVNdiCoYxA3cANBHYPMjiIiImfJzs7mb3/7G9nZ2WZHERvT8JwdaOvVlt70pq1XW7OjiIjIWXr37s3x48fNjiGXgIomK7D14pYnCk6whz2cKDiBP/42uYaIiIj8Pg3PWUFMTAzLli1j1qxZNmk/40gGn/AJGUcybNK+iIjUX1JSEgMHDiQpKcnsKGJjKprsQI8uPXiCJ+jRpYfZUURE5Cyurq706NEDV1dXs6OIjWl4zg44OjrigguOjo5mRxERkbOEhISwatUqs2PIJaCeJjuQnpnOh3xIema62VFEROQsFRUVZGVlUVFRYXYUsTEVTXagqrqKcsqpqq4yO4qIiJxlz549dOzYkT179pgdRWxMRZMd6Bzcmdu5nc7Bnc2OIiIiZwkLC2P9+vWEhYWZHUVsTHOaREREGsDLy4tx48aZHUMuAfU02YHd+3eziEXs3r/b7CgiInKWnJwc/vGPf5CTk2N2FLExFU12IMAvgHGMI8AvwOwoIiJylszMTP785z+TmZlpdhSxMQ3P/capU6d47rnn2LlzJ8XFxXTq1ImZM2cSFRVlai7vtt70ox/ebb1NzSEiIrVddtlllJeXmx1DLgH1NP1GVVUV/v7+vPLKK3zxxRdMmDCBJ554grKyMlNzFRQWkEgiBYUFpuYQERFpzlQ0/YabmxtTp06lQ4cOtGjRgjFjxlBdXW16l2t6Zjrv877WaRIRaYSSk5OJiYkhOTnZ7ChiY41yeK6kpIQ1a9aQnJxMcnIyBQUFTJ06lWnTpp3z3FWrVhEXF0dhYSHBwcFMmTKFUaNGNThHeno65eXldOzYscFtNUS38G48yqN0C+9mag4REanNyckJX19fnJwa5T+pYkWN8v9wQUEB69atIywsjCFDhrB+/frznjtv3jwSExO57777CAoKIjY2lkWLFlFdXc1VV11V7wxlZWUsXbqUO+64A3d393q3Yw3Ozs544IGzs7OpOUREpLbQ0FDee+89s2PIJdAoiyY/Pz82bNiAg4MD+fn55y2atm/fzs6dO5k/fz4xMTEA9O3bl+zsbF599VVGjhxp2a/tT3/6E3v37j1nO5MnT+aee+6xPK6srGTBggWEhIRw++23nzdnbm4ueXl5lsfp6bYZPss4ksFnfMaYI2Pw7+tvk2uIiEj9VFVVUVxcjIeHh/YIbeIaZdHk4OBQp/O2bduGm5sbw4cPr3F87NixLF68mISEBMudby+88EKd2qyurmbp0qW0aNGCOXPm/G6WtWvX8tZbb9Wp3YYoP1XOcY5Tfkp3Z4iINDa//PIL0dHR7Nq1i759+5odR2yoURZNdZWWlkZISEitceQzS9mnpaVd9HIBzz77LHl5eTzzzDMXHJ8eP348gwYNsjxOT09nyZIlF3W9ugjvFM7d3E14p3Crty0iIg0TGhrKhx9+SGhoqNlRxMbsumgqKCg45yRtT09PAE6ePHlR7WVnZ7N+/XpcXFwYP3685fjTTz9N7969a53v4+ODj4/PRaYWEZGmpG3bttx8881mx5BLwK6LJqj7UF5d+Pn5sXXr1ot+XWxsLLGxsRQVFVkty2/tTdrLUzzFlUlXak6TiEgjk5eXx7p167juuuvw9tYixE2ZXa/T5OXlRUFB7QUfCwsLAWjduvUlyRETE8OyZcuYNWuWTdrv4NOB4Qyng08Hm7QvIiL1l56ezl133WWzm4Gk8bDrnqbOnTsTGxtLZWVljflHBw8eBGgy48u+3r5cyZX4evuaHUVERM5y2WWXUVFRoTvnmgG77mkaMmQIpaWlbNmypcbxjRs34uPjQ/fu3S9JjtjYWObOncuKFSts0n5hUSGppFJYVGiT9kVEpP4cHBxwcnKy6nQRaZwabU/Tjh07KCsro6SkBDjd/bl582YABgwYgKurKwMGDKBfv34sX76ckpISAgIC2LRpEz/++CPz5s27ZFV/TEwMMTExJCUlMX36dKu3n5aRxtu8zZSMKXShi9XbFxGR+ktNTeWhhx7i+eeft9y9LU1Toy2ali9fTnZ2tuVxXFwccXFxAHzwwQf4+5+eEL1kyRJWrlzJ6tWrLduoLFiwwCrbqDQWkWGRzGY2kWGRZkcRERFpthpt0fThhx/W6Tx3d3dmz57N7NmzbZzo/Gx991xLl5a0pS0tXVrapH0REam/sLAw1q5da3YMuQTsek5TY2Hru+cyszLZwAYyszJt0r6IiNSfYRhUVlZiGIbZUcTGVDTZgdKyUjLIoLSs1OwoIiJylp9++glnZ2d++ukns6OIjTXa4Tl7YuvhuYjQCGYwg4jQCJu0LyIi9RcSEsKbb75JSEiI2VHExlQ0WYGt754TEZHGy9vbm6lTp5odQy4BDc/ZgYTkBJ7lWRKSE8yOIiIiZzlx4gQfffQRJ06cMDuK2JiKJjvg3caby7kc7zba00hEpLFJS0tj0qRJpKWlmR1FbEzDc3agg28HhjGMDr7ae05EpLHp3bs3BQUFeHh4mB1FbExFkxXYeiJ4cUkxGWRQXFJsk/ZFRKT+HB0dL9kG8WIuDc9Zga3XaUpNT2U1q0lNT7VJ+yIiUn9paWnccsstGp5rBlQ02YGI0Aju534tOSAi0ghVVlaSk5NDZWWl2VHExjQ8ZwfcXN1oT3vcXN3MjiIiImeJiIggNjbW7BhyCainyQ4cOXqEr/maI0ePmB1FRESk2VJPkxXYeiJ4YVEhSSRRWFRok/ZFRKT+fvrpJwYMGMCOHTu47LLLzI4jNqSiyQpsvSJ4ZFgks5hFZFik1dsWEZGGCQwMZPny5QQGBpodRWxMRZOIiEgD+Pr6MnPmTLNj1EvO/hybtZ2flm/5PSs+yyptuvu44xXsZZW26kNFkx1ISk3iRV5kWOow/Pv6mx1HRER+o6CggO+++47Bgwfj5WXeP+gXw93HHWd3Zz677TObXeMIp+fhfvvktyQ+mWiVNp3dnZm5f6ZphZOKJjvQ2rM1PehBa08tniYi0tikpqZy7bXXsmvXLvr27Wt2nDrxCvZi5v6ZlOSW2Owau/fv5vXbXufGd26kV7deDW4vZ38On932GSW5JSqa5Pz82/sTQwz+7dXLJCLS2ERFRXHkyBF8fHzMjnJRvIK9bFp8ZHF6SM63m2+TGSVR0WQFtr57rrSslGyyKS0rtUn7IiJSf87Ozvj7N42iQH6f1mmyAltvo5KclsxrvEZyWrJN2hcRkfpLT0/nnnvuIT093ewoYmMqmuxAeKdwpjOd8E7hZkcREZGzlJWVsW/fPsrKysyOIjam4Tk74O7mTgABuLu5mx1FRETOEhkZyfbt282OIZeAeprswNGco8QRx9Gco2ZHERERabZUNNmB4/nHiSee4/nHzY4iIiJn+eWXX2jXrh2//PKL2VHExlQ02YFuEd14mIfpFtHN7CgiInIWPz8/Hn/8cfz8/MyOIjamOU0iIiIN0KFDBx599FGzY8gloJ4mO3Dg4AFe4RUOHDxgdhQRETlLYWEhmzdvprCw0OwoYmMqmuyAh7sHneiEh7uH2VFEROQsycnJjBgxguRkraXX1Gl4zgpsvSJ4gF8AYxlLgF+ATdoXEZH66969O8nJyQQGBpodRWxMRZMVxMTEEBMTQ1JSEtOnT7d6+2XlZeSRR1m5Fk4TEWlsXF1dCQ/X4sPNgYbn7MCBgwdYwQrNaRIRaYQyMjJ48MEHycjIMDuK2Jh6mqyovLwcwOr7Dzk6OjLZYzKOjo4kJSVZtW0REWmYtLQ0tm3bxtixYykpKbHJNTIyMvDw8LD8bg+snTk3I5eTHic5mHGQkx4nrZCwtpCQEFxdXc/7vINhGIZNrtwMff311yxZssTsGCIiIlIPK1euJDIy8rzPq6fJivr37094eDgPPfQQLi4udXrNihUrmDVr1u+ek56ezpIlS5g3bx4hISHWiGr36vK5melS57PV9azVbkPaqc9rL+Y1dT1X38PaGvP30Ixstrhmc/gO1vX8S/EdvFC7KpqsqE2bNrRv356oqKg6v6ZVq1a/W9X+VkhISJ3Pbeou5nMzw6XOZ6vrWavdhrRTn9dezGsutn19D/+nMX8Pzchmi2s2h+/gxZ5v5ndQE8GtLCYmxqbny2mN/XO71PlsdT1rtduQdurz2ot5TWP/s9SYNebPzoxstrhmc/gO1vcaZtCcJjtwZimDC421iojt6HsoYq7G8B1UT5Md8Pb2ZurUqXh7e5sdRaTZ0vdQxFyN4TuoniYRERGROlBPk4iIiEgdqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNDURp06d4m9/+xsTJ07kmmuuYcaMGezZs8fsWCLNysKFC5kwYQLXXHMNU6dO5YcffjA7kkiztHfvXoYNG8aaNWus2q7unmsiSktL+eCDDxgzZgy+vr589dVXvPLKK3z00Ue/u/mgiFhPWloagYGBODs7k5CQwMMPP8z777+Pl5eX2dFEmo3q6mr++Mc/4uDgwMCBA7nzzjut1rZ6mpoINzc3pk6dSocOHWjRogVjxoyhurqazMxMs6OJNBuhoaE4OzsD4OjoSEVFBbm5uSanEmle1q5dS1RUFMHBwVZvW3vPmaSkpIQ1a9aQnJxMcnIyBQUFTJ06lWnTpp3z3FWrVhEXF0dhYSHBwcFMmTKFUaNGnbf99PR0ysvL6dixoy3fhojdstV3cPHixWzdupVTp04xYMAAOnfufCnejojdscV3sKCggI8//pjXXnuNl156yeqZVTSZpKCggHXr1hEWFsaQIUNYv379ec+dN28eiYmJ3HfffQQFBREbG8uiRYuorq7mqquuqnV+WVkZS5cu5Y477sDd3d2Wb0PEbtnqOzh//nwqKyuJj48nPT0dBwcHW78VEbtki+/g66+/zqRJk2jVqpVNMqtoMomfnx8bNmzAwcGB/Pz88/5h2b59Ozt37mT+/PmWDQ379u1LdnY2r776KiNHjsTR0dFyfmVlJQsWLCAkJITbb7/9krwXEXtkq+8ggJOTE/379+eTTz4hMDCQgQMH2vz9iNgba38Hk5KSOHDgAA8//LDNMmtOk0kcHBzq9BPotm3bcHNzY/jw4TWOjx07ltzcXBISEizHqqurWbp0KS1atGDOnDn6CVfkd9jiO3i26upqDh8+3NCoIk2Stb+Dv/zyC4cOHWLChAlcd911fPvtt7z77rssXbrUapnV09TIpaWlERISgpNTzf9VYWFhluejoqIAePbZZ8nLy+OZZ56pdb6I1E9dv4N5eXns2bOHK664AmdnZ7Zu3cpPP/3EfffdZ0ZskSajrt/Ba6+9tkZh9Y9//AM/Pz9uvfVWq2XRv6yNXEFBwTknc3t6egJw8uRJALKzs1m/fj0uLi6MHz/ect7TTz9N7969L01YkSaort9BgI8//pi///3vODg4EBgYyMKFCwkPD79kWUWaorp+B93d3WvM423ZsiXu7u5WXfJDRZMdqEv3pZ+fH1u3br0EaUSan7p8B729vXn55ZcvQRqR5qc+002eeOIJq+fQnKZGzsvLi4KCglrHCwsLAWjduvWljiTSrOg7KGKuxvQdVNHUyHXu3Jn09HQqKytrHD948CBwejE9EbEdfQdFzNWYvoMqmhq5IUOGUFpaypYtW2oc37hxIz4+PnTv3t2kZCLNg76DIuZqTN9BzWky0Y4dOygrK6OkpAQ4vYr35s2bARgwYACurq4MGDCAfv36sXz5ckpKSggICGDTpk38+OOPzJs3r9b6MCJSd/oOipjL3r6D2rDXRJMmTSI7O/ucz33wwQf4+/sDp5ePX7lyZY3l42+77bbf3UZFRC5M30ERc9nbd1BFk4iIiEgdaE6TiIiISB2oaBIRERGpAxVNIiIiInWgoklERESkDlQ0iYiIiNSBiiYRERGROlDRJCIiIlIHKppERERE6kBFk4jIJfD8889z3XXXWbaLAHjjjTcYOnQoP/30k4nJ/mfp0qXcfPPNlJeXmx1FpFHS3nMictGysrL4wx/+8LvnhIeH88Ybb1yiRI1bRkYGa9eu5d5778Xd3d2m1/r3v//Nc889x/jx43nkkUd+99x77rmHAwcOsHLlSiIjI7nzzjuJjY3lo48+4rbbbrNpThF7pKJJROotICCAq6666pzPeXt7X+I0jdebb76Ji4sLEyZMsPm1YmJi+Mc//sG3337LrFmzaNmy5TnPS01N5cCBA0RERBAZGQlAYGAggwcP5v/+7/+YOHEibm5uNs8rYk9UNIlIvQUEBDBt2jSzYzRq+fn5bN26leHDh9u8lwnAw8ODYcOG8dVXX7Flyxauvvrqc563fv16AMaOHVvj+NVXX82WLVvYtGkT1157rc3zitgTzWkSkUti6NChPPjgg+Tn57Ns2TLGjx9PTEwMM2bMOO+cnpKSEt544w3uuOMOYmJiGDt2LI888gi7d++ude6DDz7I0KFDOXXqFKtXr+aWW25hxIgRNYYIt2zZwvTp04mJiWHChAk8/fTTFBYWMmnSJCZNmmQ5b+nSpQwdOpT9+/efM9err77K0KFD2bp16wXf96ZNmzh16hTDhw+/4LlnpKamcsMNN3DdddeRkJBgOX7kyBH+/ve/c9NNNzFq1Ciuv/56nnrqqVq7xI8bNw6AL7/88pztV1RUEBsbi4uLS62iasCAAbi5ufHFF1/UOa9Ic6GiSUQumaKiIu6//35SU1O56qqrGDp0KElJSTzyyCMcPHiwxrknT57kj3/8I2+99RatW7fm+uuvt5w/e/Zstm3bds5rzJs3jy+++ILevXtz880307FjRwA2bNjAk08+yeHDhxk9ejTXXHMN+/bt489//jOVlZU12hg/fjzwv96Y36qsrOSrr76iXbt2XHnllRd8z7t27QKgR48eF/6AgF9++YVZs2bh6OjIyy+/TPfu3QFISEjgnnvuYePGjURGRnLTTTfRu3dvvvnmG+677z6OHDliaaNPnz4EBgYSHx9PVlZWrWt8//33FBQUMHToUDw9PWs85+zsTJcuXdi/fz+lpaV1yizSXGh4TkTq7fDhw+ed7N2jRw+uuOKKGsdSUlK4/vrr+dOf/kSLFqd/Zuvbty9PP/00n376aY2Jyy+88AJpaWnMnTu3xhDS8ePHuffee3nmmWfo379/rTk7eXl5vPnmm7Ru3dpyrLCwkJdeegl3d3dWrVplKaSmT5/OY489RlJSEn5+fpbzo6KiCA0NZdOmTTzwwAM15vb88MMPHD9+nFtvvRUnpwv/Fbp37158fX1p27btBc/dtm0bixYtomPHjjz77LO0b98eOF2oLVy4kOrqalauXEl4eLjlNbt372b27Nm89NJLLFu2zHJ87NixvP7662zcuJG77rqrxnU2bNgA/K9H6myRkZH88ssv7N+/n759+14wt0hzoZ4mEam3w4cP89Zbb53z148//ljrfDc3N2bMmGEpmACuueYaHB0dSUxMtBzLz88nLi6O6OjoWnNu2rVrxy233EJ+fr6lF+e37rrrrhoFE8B3331HaWkp1157raVgAnBycuLuu+8+53sbP348JSUlfPvttzWOr1+/HgcHhzrN96moqCA/P79OBdP69euZP38+ERERvPzyy5aCCU4XatnZ2dxyyy01CiaAXr16MWjQIHbs2EFxcbHl+JnP9csvv8QwDMvx3Nxcdu7ciZ+f33kLojN5c3JyLphbpDlRT5OI1Fv//v159tln63x+YGBgrcnQTk5OtGvXjqKiIsuxxMREqqqqOHXq1Dl7sjIzMwFIT0+vNUTWrVu3WuenpqYC0LNnz1rPdevWDUdHx1rHr776al577TXWr19v6ZHJycnhv//9r2X460IKCgoAag2Bne3DDz/k+++/Z8CAASxevBhXV9caz+/btw+AX3/99Zyfx/Hjx6muriYjI4OuXbsC4OPjwxVXXMEPP/xAfHw80dHRwOl5TlVVVYwdOxYHB4dz5jlTdJ7JLyKnqWgSkUvGw8PjnMcdHR2prq62PD558iQAe/bsYc+ePedtr6ysrNaxdu3a1Tp2pgemTZs2tZ5r0aIFXl5etY57enoyYsQINm7cyKFDh+jUqRNffPEFVVVVdb6r7MzQ4YUWizwzsf2KK66oVTDB6eFFgG+++eZ32zn78xg3bhw//PADX375ZY2iqUWLFowZM+a87ZzJe77lCkSaKxVNItLonCmu/vCHPzBz5syLeu25ek/OtJefn1/ruerqagoKCvD19a313Pjx49m4cSPr169n5syZfPnll7Ru3ZqhQ4fWKYunpydOTk6WIvB85syZw7/+9S9eeuklWrRowQ033FDj+TO9c8uWLavT5PMzBg4cSLt27diyZQsPPfQQKSkpZGZm0r9/fzp06HDe153Je64iU6Q505wmEWl0unbtioODg2VYqqHCwsKA05Oyz7Z//36qqqrO+bqePXvSuXNnvvrqK3bs2MGRI0e46qqrLqoHJjQ0lOzs7Fp36P2Wp6cnzz//PF26dOH555/n008/rfH8mTvoLvbzcHJyYvTo0ZSXl7Np0ybLMgLnmwB+RkZGBgCdO3e+qOuJNHUqmkSk0fH29mbEiBHs3buX9957r8ZE5jMSEhLOOTx3LoMHD8bNzY3169fXuDW/srKS1atX/+5rr7vuOgoKCnjmmWcALnrBxz59+nDq1CnLvKrz8fT0ZPny5XTt2pUXXniBTz75pEb+Dh068MEHH/Dzzz/Xem1lZeU5166C/xVIn3/+OZs3b8bLy4vBgwf/bpaEhAS8vb0JCgq6wLsTaV40PCci9fZ7Sw4ADVot/M9//jMZGRm8+uqrfPXVV/To0YNWrVpx7NgxkpKSyMzM5LPPPjvnHKCzeXp68sADD/DMM89wzz33MHLkSDw8PNixYwcuLi74+Picd1L06NGj+ec//0lubi7du3e39FrV1ZAhQ/joo4/YtWuXZbuS38v53HPP8fDDD/Piiy9iGAY33XQTLi4uLF68mMcee4wHH3yQ6OhoQkNDATh69Ci7d+/Gy8uLd955p1abwcHBREVFWeaGXXvttTg7O583w+HDh8nKyuL666+/qPcp0hyoaBKRejuz5MD5NKRoat26Na+88gqffvop3377LbGxsVRXV9OuXTvCw8O58847zzmB+3yuu+46PD09efvtt9m4cSMeHh4MGjSIGTNmcPPNNxMQEHDO17Vq1YrBgwcTGxtbr21F+vTpQ3BwMF9//TW33nrrBc8/0+P08MMP89JLL2EYBjfffDPdunXjjTfe4L333mPHjh3s2bMHZ2dnfHx8GDJkCKNGjTpvm+PGjbMUTWcv4XC2r7/+GvjfAp8i8j8Oxrn6vUVEmonMzExuvfVWRowYwaJFi855zh133MHRo0f57LPP6rV/3Nq1a3n22Wd57bXXLPOTGqPKykqmTJmCn58fL774otlxRBodzWkSkWahsLCQU6dO1ThWXl7Oyy+/DJweRjuX7du3c+jQIUaPHl3vDXfHjRtHSEgIb775Zr1ef6l8/fXXZGdnc//995sdRaRR0vCciDQLP//8M3//+9+5/PLLad++PQUFBcTHx5OdnU3fvn0ZOXJkjfM///xzjh07xrp162jZsiW33HJLva/t6OjI448/zo8//khJSUm9iy9bc3Bw4NFHH73g3CuR5krDcyLSLGRkZLB69Wr27t1rWa8pICCAkSNHMnny5FrLCEyaNImcnByCgoKYMWPGRa2PJCJNk4omERERkTrQnCYRERGROlDRJCIiIlIHKppERERE6kBFk4iIiEgdqGgSERERqQMVTSIiIiJ1oKJJREREpA5UNImIiIjUgYomERERkTr4f+28zj5Jrf3oAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_poisson_error = np.zeros((2,len(expectation.project('Em').todense().contents)))\n", + "fit_gaussian_error = np.zeros(len(expectation.project('Em').todense().contents))\n", + "inj_poisson_error = np.zeros((2,len(grb.binned_data.project('Em').todense().contents)))\n", + "inj_gaussian_error = np.zeros(len(grb.binned_data.project('Em').todense().contents))\n", + "\n", + "for i, counts in enumerate(expectation.project('Em').todense().contents):\n", + " if counts > 5:\n", + " fit_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " fit_poisson_error[0][i] = poisson_error[0]\n", + " fit_poisson_error[1][i] = poisson_error[1]\n", + "\n", + "for i, counts in enumerate(grb.binned_data.project('Em').todense().contents):\n", + " if counts > 5:\n", + " inj_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " inj_poisson_error[0][i] = poisson_error[0]\n", + " inj_poisson_error[1][i] = poisson_error[1]\n", + " \n", + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = \"Best fit convolved with response\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=fit_poisson_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents, yerr=fit_gaussian_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(grb.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Source counts\")\n", + "ax.errorbar(binned_energy, grb.binned_data.project('Em').todense().contents, yerr=inj_poisson_error, color='black', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, grb.binned_data.project('Em').todense().contents, yerr=inj_gaussian_error, color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "00234bec-2a9f-4557-8a41-0d1a9b71e9c9", + "metadata": {}, + "source": [ + "Plot the fitted spectrum convolved with the response plus the fitted background, as well as the simulated source+background counts" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "06df3b27-d2ed-4214-bda7-d4fda667e145", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxHUlEQVR4nO3deVyVZf7/8RcCyiKgArKDbOKGkjQuuSdpatpiOZWltmi2mDPT+m2srGzGNtucdkdbp2xPM2soTVusEcwNZVFEQFBA2RdZ7t8f/DxJIgKCN3Dez8fDh55zrnPd73PkwIfrvu7rsjEMw0BERETEinUyO4CIiIiI2VQQiYiIiNVTQSQiIiJWTwWRiIiIWD0VRCIiImL1VBCJiIiI1VNBJCIiIlZPBVEjlJeXk5iYSHl5udlRREREpBWoIGqEtLQ05s6dS1pamtlRREREpBWoIBIRERGrp4JIRERErJ4KIhEREbF6KohERETE6qkgEhEREatnZ3aAtiw2NpbY2FiKi4vNjiIiIiKtSAVRA2JiYoiJiSExMZG5c+eaHUdERERaiU6ZiYiIiNVTQSQiIiJWTwWRiIiIWD0VRCIiImL1NKm6AbrKTERExDqoIGqArjITERGxDjplJiIiIlZPBZGIiIhYPRVEIiIiYvU0h0isRsHBApJ2JlFWXkZ4cDgACckJuHdzx8vTi5LSEval7SM8OBxHB0cOHT5EUXEREaERACTuS8TVxRWfnj6UlZeRnJpMWK8wnBydOJxzmITfElizeg133nUnxzsfx9nJGT9vP8oryknan0RIYAhdnbuSk5fDkbwj9O/dH4CUAyk4dHHA38efyspK9qTsoZd/L1xdXHHycMIt0M2090xExFqoIBKrUHCwgH/1/ReflX5GOunMZz4AT/M0f+JPjGEM6aSzghXcxm30pCff8A2JJLKABQA8z/P0pz8xxJBNNq/wCnOZix9+bGADCSTQj358PPNj3uZtetGLyUwmjzxe5EVmM5tggvmRH9nMZu7nfgDe4A088eRSLqWIIp7hGa7lWvzwY6/9Xp795VlCzws17b0TEbEGNoZhGGaHaKtOvux+x44dvP7660RERJgdq01IiU8hNTGVAREDANiXtg97O3sC/QKpqqoiITmBQL9Aurl2I+9YHpnZmQzsOxCA1PRUOtl0Isg/iJqaGnYl7iLAN4Dubt05VnCM9EPpOOPMv5b9i6uuvwqvXl6EBIYAsGPPDvy8/XDv7k5BUQFpGWn0DeuLvb096YfSqTheQVivMAB2Je7Cy8MLT3dPkn5N4t1b32Xa09Nw7eXaKiNER/OP0je8LwBJ+5POeoTotx9+Y+aimax7dx0Trp1w7v5zRUSskAqiRjhx2b0KoloFBwuYGTaTbyq/4e/8HYCVrMQVV6YznVJKeZInmcEM+tGPOOJYwxoWsxiAd3kXW2y5mqupooolLOFyLmcQg9jJTj7mY+7kTraznaMcpZRSrud6AB7hEaYwhfM5n73s5X3e5x7uwRlnPuVTjnKUm7gJgH/wD8Yylgu4wNLvzp92MmD4AFPet6bKis/itejXmBc3D5/BPmbHERHp0HTKTJqsNLeUvpV9mfX4LEZdPAqA8Wnj64wQXZh8YZ0Rotuzb7eMEF2UflGdEaKRiSPrjBDNPTSX/r37Y2trS1pGGtU11ZYRomF7htUZIZqTMccyQjTp0KQ6I0QXJF5gGSEqKi5isf3idlMMiYjIuaWCSJqsqLiIbLKJGhllGbn44whGwJAAy7998GEAvxcif2zrd75fnbb96Hfatiff9sGHPvRpdNv2Zv/B/bzJm8QcjNEIkYhIK9Nl99JkqempvMM7pKanmh2lQ7OztcMZZ+xs9XuLiEhrU0EkTdYnrA9/5a/0Cetz5sbSbIF+gVzJlQT6BZodRUSkw1NBJE3W2b4zbrjR2b6z2VE6tOrqasopp7q62uwoIiIdngoiabKMrAzWsIaMrAyzo3Rou5N2s5Sl7E7abXYUEZEOTwWRNFlZeRlZZFFWXmZ2lA4t0C+Qq7hKp8xERM4BzdZswMkLM8rvwoPDmcc8y+KG0jq6uXajP/3p5trN7CgiIh2eCqIGxMTEEBMTY1mYUeRcOpp/lG1s42j+0Xa5bICISHuiU2bSZAnJCTzJkyQkJ5gdpUPLyMrgcz7XXC0RkXNABZE0mUd3D4YzHI/uHmZH6dAi+0TyIA8S2SfS7CgiIh2eCiJpsp4ePRnFKHp69DQ7SodmY2ODLbbY2NiYHUVEpMNTQSRNVlJaQhpplJSWmB2lQzuQfoD3eI8D6QfMjiIi0uGpIJIm25e2j5WsZF/aPrOjiIiItAgVRNJkvUN6cwd30Dukt9lROrReAb24lmvpFdDL7CgiIh2eCiJpMocuDnjggUMXB7OjdGiGYVBNNYZhmB1FRKTDU0EkTXbo8CHWs55Dhw+ZHaVD27l3J4/xGDv37jQ7iohIh6eFGRuglarrV1xSzD72UVyi96U1+fv4cymX4u/jb3YUEZEOTwVRA7RSdf16h/Tmdm7XHKJW1qNbD87jPHp062F2FBGRDk+nzETaqPzCfHazm/zCfLOjiIh0eCqIpMn2puzlWZ5lb8pes6N0aAczD/IhH3Iw86DZUUREOjwVRNJk3dy6MZCBdHPrZnaUDq1/7/7cz/30793f7CgiIh2e5hBJk3l7ejOe8Xh7epsdpUOztbWlmmq2bdqGra0tUHvlma+XL+7d3SksKuRAxgH6hvXF3t6ejKwMyivKCesVBsDupN30dO+Jp7snxSXF7D+4n94hvXHo4kBmdiYlpSV0Pt6ZF555gakzptIvqh9enl6UlpWSciCF8OBwHB0cyTqSRWFRIRGhEQAk7kvEpasLvl6+lJWXkZyaTGhQKM5OzhzOOYydqx0Dhg8w7X0TEWkOFUTSZKVlpRziEKVlpWZH6dCqHar52vZrPrz7Q+YwB4DHeIyJTGQIQ0giifd4j7u4Cxdc+JzPySGHm7kZgKUsZRSjGMEIUknlTd5kAQtwx511rOMAB7iMy3if9/kh/gdCCWUc48gkk9d5nfnMxxtvYollN7tZyEIAXuRFIohgAhM4whFe4iVu4iYCCOBrvmYnO9n661Yi/hRh1lsnItJkKoikyVIOpPAar3HFgSsIHRFqdpwOy7+fP+9ufpeCwwWEBIYAMHzv8DojRLMyZllGiCZnTa4zQjQiaUSdEaJrDl5jGSGakj3FMkJU+EzhKSNE0w9Mt4wQTT0ytc4I0Zh9Y+qMEE1LnWYZIRr500i+XvA1rraupr1vIiLNoYJImiysVxjzmGf5wSut54+nnnwG+/z+b3yIIKLO7dO1BQgnvN62w68dfspxTy50z9RvyAUhdW7/wA+n9Cci0tZpUrU0mZOjE7744uToZHYUaWOSU5N5hVdITk02O4qISJOoIJImy87J5lu+JTsn2+wo0sY4OjgSQACODo5mRxERaRIVRNJk+QX57GAH+QX5ZkeRNsbfx58pTNF2IyLS7qggkibrE9aHv/JX+oT1MTuKtDEVxys4xjEqjleYHUVEpElUEIlIi0ncl8jzPE/ivkSzo4iINImuMmuAdruvX9L+JP7Fvxi7f+wpVxyJdQsOCOZ6ric4INjsKCIiTaKCqAHa7b5+XZ27EkooXZ27mh1F2hiXri6EEopLVxezo4iINIlOmUmT+Xr5cjEX4+vla3YUaWNy8nL4iZ/IycsxO4qISJOoIJImK68oJ5dcyivKzY4ibczh3MNsZCOHcw+bHUVEpElUEEmTJe1PYjnLSdqfZHYUaWMGRAzgAR5gQIQ2dxWR9kUFkTRZaFAoN3ADoUHax0xERDoGFUTSZM5OzgQRhLOTs9lRpI1JOZDCClaQciDF7CgiIk2igkia7EjuETazmSO5R8yOIm1Ml85d6EEPunTuYnYUEZEmUUEkTZZ7LJef+ZncY7lmR5E2JsA3gMu5nADfALOjiIg0iQoiabJ+4f24l3vpF97P7CjSxlRWVlJCCZWVlWZHERFpEhVEItJi9qTs4SmeYk/KHrOjiIg0iQoiabLk1GRe4zWSU5PNjiJtTJB/EFdzNUH+QWZHERFpEhVE0mSODo744IOjg6PZUaSNcXNxow99cHNxMzuKiEiTqCCSJvP38WcqU/H38Tc7irQxecfy2MpW8o7lmR1FRKRJVBBJkx2vPE4BBRyvPG52FGljMrMz+ZIvyczONDuKiEiTaLf7NqDgYAFpiWkczj1s2fIg5UAKXTp3IcA3gMrKSvak7CHIPwg3FzfyjuWRmZ3JwL4DAdh/cD+2nWwJ8g+iurqa3Um7CfANoLtbd44VHON/P/2P9Z+s58677sSmqw01Rg3BAcEA7NizAz9vP9y7u5NfmM/BzIP0C++HnZ0dBzMPUllVaVmRelfiLrw9vUnYksCzPMvElIkEDdVcEfndwL4DeZiHLV+bIiLthQoikxUcLOBfff/F96Xfs5GNPMADAKxgBT3oweVcTgklPMVTXM3V9KEPW9nKl3zJwzwMwNu8TRe6MIMZHOc4/+AfTGc6kUSyne1sZjO55OI605VNbKKaamYyE4DFLGYqU4kmmgQSWM1q7uVenHDiYz6mkEJu4AYAHudxxjOeKKKY02UO/aJ02b2IiHQMKohMdvjAYfaW7mXB0wu42/duywjRhQcurDNCND5lvGWEaPqx6dyRfYflt/CYgzF1RohGJ42ud4Rozl1zuKHrDXVGiIbtGVZnhOjGzBstI0QXZ15cZ4TogsQL8Pb0xqOHB04eTrgFauKs1LX/4H7e5m1iDsbgM9jH7DgiIo2mgshkqempvM3bzPSeyUXXXGS5/48/TAKHBv7+GD4MYMBp2/r/yb9O237j+jH777PrPf7Jz/XBh770PW2/+gEnZ2LbyZYudMG2k63ZUUREmkQFUQNiY2OJjY2luLi41Y4RERrBQhYSERrRascQOVeC/IOYwQytQyQi7Y4KogbExMQQExNDYmIic+fObZVjdOnche5012aY0iFUV1dznONUV1ebHUVEpEl02b3JMrIy+JIvycjKMDuKyFnbnbSbf/APdiftNjuKiEiTqCAyWVl5GemkU1ZeZnYUkbMW4BvAdKZrt3sRaXdUEJksPDic+cwnPDjc7CgiZ627W3ciiaS7W3ezo4iINIkKIhFpMccKjrGd7RwrOGZ2FBGRJlFBZLKE5ASe5mkSkhPMjiJy1tIPpfMpn5J+KN3sKCIiTaKCyGTu3dz5E3/CvZu72VFEztqAiAEsYpFlgVERkfZCBZHJvDy9GMMYvDy9zI4ictY6deqEHXZ06qRvLSLSvui7lslKSktIJ52S0hKzo4ictbSMNN7nfdIy0syOIiLSJCqITLYvbR8rWMG+tH1mRxE5azVGDdVUU2PUmB1FRKRJVBCZLDw4nNu4TZfdS4cQHBDMTGZaNg8WEWkvVBCZzNHBkZ70xNHB0ewoIiIiVksFkckOHT7EN3zDocOHzI4ictZ27NnBYhazY88Os6OIiDSJCiKTFRUXkUgiRcVFZkcROWt+3n5MZSp+3n5mRxERaRIVRCaLCI1gAQuICI0wO4rIWXPv7k400bh317paItK+qCASkRaTX5hPAgnkF+abHUVEpEnszA5g7RL3JfI8zzNm3xh8BvuYHUfkrBzMPMhqVnPFD1dQWFRIZVUloUGhAOxK3IW3pzcePTwoKi4iNT2VPmF96GzfmYysDMrKyyxXWyYkJ+DR3YOeHj0pKS1hX9o+eof0xqGLA7/+9CsrX17JfX+/j159erE3ZS/d3Lrh7elNaVkpKQdSCOsVhpOjE9k52eQX5NMnrA8ASfuT6OrcFV8vX8oryknan0RoUCiegZ64BbqZ9r6JiPlUEJnM1cWV/vTH1cXV7CgiZ+384efzd8e/s/vB3TzO4xRSyA3cAMDjPM54xjOMYaSQwju8w1/5K264sYY1ZJHFPOYB8CRPMpzhjGIUaaSxkpXcwR144MF61rOFLXjN9MIXX57lWQYykPGM5xCHeI3XmMc8fPHlW75lBzv4K38F4F/8i1BCuZiLySWX5SznBm4gzCmM2/fcrqJIxIqpIDKZT08fYojBp6dGh6T9cw9x556991CaW8qUzCl1RoguSLygzgjRdenXWUaIJmdNrjNCNDJ5ZJ0Roj+n/dkyQuT1vhdbntrChY9dyOjJoxmdMrrOCNEVB66wjBBNy5lWZ4Ro7P6xdUaILtl/CZXZlTx393NM2TuFQYGDTHvvRMRcKohMVlZeRjbZlJWXmR1FpEW4BbrhFuh2yingk2/74ENvete5fbq2AGEjwyz/Ht9pPLN/nc3gSwbjE+VzStvQEaGN7jd4eDDffvAtP/MzucdyG/PyRKSD0qRqkyWnJvMKr5Ccmmx2FJF2ITwqnFUbVxEe1TKru/cL78e93Eu/8H4t0p+ItE8qiEwW1iuMucwlrFfYmRuLiIhIq1BBZDInRyf88MPJ0cnsKCJWKTk1mdd4TaO0IlZOBZHJDuccZgMbOJxz2OwoIlbJ0cERH3y0n6CIlVNBZLKj+UeJJ56j+UfNjiJilfx9/JnKVPx9/M2OIiImspqrzBYvXsy2bduoqKjA29ubefPmccEFF5gdi77hfbmLu+gb3tfsKCJW6XjlcQoo4HjlcbOjiIiJrGaEaPbs2Xz00UesX7+ee++9l8cee4yCggKzY4mIyfam7OVZnmVvyl6zo4iIiaymIAoODsbe3h4AW1tbKisryc01f92RpP1JvMRLJO1PMjuKiFUKDgjmOq4jOCDY7CgiYqI2ecqstLSUN998k+TkZJKTkykoKGDOnDnceOON9bZ944032LBhA0VFRQQGBjJz5kzGjx9/SttHH32UTZs2cfz4cYYNG0ZISMi5eDkNcnZyphe9cHZyNjuKiFVy6epCGGG4dHUxO4qImKhNFkQFBQWsWbOG0NBQRo0axdq1a0/bdtGiRezdu5dbbrmFgIAAYmNjeeSRR6ipqeGiiy6q0/ahhx6iqqqK+Ph40tLSsLGxae2XckZ+3n5MZjJ+3n5mRxGxSrlHc9nCFq44esUpK1uLiPVokwWRt7c3X375JTY2NuTn55+2IPr555/ZunUrDz30EDExMQAMHjyY7OxsXn75ZS688EJsbW3rPMfOzo4hQ4bw8ccf4+/vz/Dhw1v99TSkvKKcPPIoryg3NYeItcrOyeZbviU7J5tIIs2OIyImaZNziGxsbBo1erN582YcHR0ZO3ZsnfsnT55Mbm4uCQkJp31uTU0NmZmZ9T6Wm5tLYmKi5U9aWlqT8jdF0v4kXuRFzSESMcmAiAH8nb8zIGKA2VFExERtcoSosVJTUwkKCsLOru7LCA0NtTweGRlJXl4eO3fuZOjQodjb27Np0ya2bdvGLbfcUm+/X3zxBatWrWrt+ACEBIYwm9mEBJo/n0lERMRateuCqKCgAF9f31Pud3GpnRxZWFhoue+jjz7iiSeewMbGBn9/fxYvXkxYWP37h02bNo0RI0ZYbqelpbFkyZIWTl+rq3NXggmmq3PXVulfRBq2L20fK1nJ+LTx+AzWHCIRa9WuCyKgUafW3N3dWb58eaP79PDwwMPD42xiNVpOXg4/8iOX512uCZ0iJrC3s8cVV+zt7M2OIiImapNziBrLzc2t3sUVi4qKAHB1dT3XkZrsSN4RNrOZI3lHzI4iYpUC/QKZznQC/QLNjiIiJmrXI0QhISHExsZSVVVVZx7R/v37gdrFGM9GbGwssbGxFBcXn1U/Denfuz/3cz/9e/dvtWOIyOlVVVVRSilVVVVmRxERE7XrEaJRo0ZRVlbG999/X+f+9evX4+HhQb9+/c6q/5iYGJYuXcqCBQvOqh8RabsSkhN4kidJSD79Vaki0vG12RGiLVu2UF5eTmlpKVA7sXnjxo0ADBs2DAcHB4YNG8b555/PsmXLKC0txc/Pj2+//ZZffvmFRYsWnbIGUVuUciCFN3iDCw9cqAmdIiYI9AtkBjN0ykzEyrXZgmjZsmVkZ2dbbm/YsIENGzYA8MEHH+DjU1s8LFmyhNdff50VK1ZYtu54+OGH6926oy1y6OKAJ544dHEwO4qIVerm2o1+9KObazezo4iIidpsQbR69epGtXNycmLhwoUsXLiwlRO1Dn8ffy7lUvx9/M2OImKV8o7lEUccecfydKWniBVr13OIOoLKykqKKKKystLsKCJWKTM7kzWsITO7/pXrRcQ6tNkRorbgXFxltidlD8/wDBelXETgUM1hEDnXBvYdyGIWM7DvQLOjiIiJVBA1ICYmhpiYGBITE5k7d26rHKOXfy+u5Vp6+fdqlf5FRETkzHTKzGSuLq70pjeuLm1/EUmRjig1PZV3eZfU9FSzo4iIiVQQmSzvWB6/8it5x/LMjiJilTrZdMIWWzrZ6NuhiDXTdwCTHTp8iK/5mkOHD5kdRcQqBfkHcTVXE+QfZHYUETGRCiKTRfaJ5EEeJLJPpNlRRKxSTU0NVVRRU1NjdhQRMZEmVTfgXFxlJiLm2pW4iyUsYWTiSPzO9zM7joiYRCNEDTgXe5ntP7ifN3mT/Qf3t9oxROT0AnwDuJzLCfANMDuKiJhIBZHJ7GztcMYZO1sN1omYobtbdwYxiO5u3c2OIiImUkFkskC/QK7kSm0sKWKSYwXH2MlOjhUcMzuKiJhIBZHJqqurKaec6upqs6OIWKX0Q+l8zMekH0o3O4qImEgFkcl2J+1mKUvZnbTb7CgiVql/7/48wAP0793f7CgiYiIVRCYL9AvkKq7SKTMRk9ja2tKZztja2podRURMpILIZN1cu9Gf/nRz7WZ2FBGrlJaRxmpWk5aRZnYUETGRLm1qwLlYh+ho/lG2sY2j+UfxwafVjiMi9auuqaaCCqprNI9PxJpphKgB52IdooysDD7nczKyMlrtGCJyeiGBIVzP9YQEhpgdRURMpILIZNq6Q0RExHwqiExmY2ODLbbY2NiYHUXEKu3Ys4NHeIQde3aYHUVETKSCyGQH0g/wHu9xIP2A2VFErJKftx9TmIKft/YxE7FmKohExKq5d3fnfM7Hvbu72VFExEQqiEzWK6AX13ItvQJ6mR1FxCoVFBWwl70UFBWYHUVETKSCyGSGYVBNNYZhmB1FxCqlZaTxPu9rHSIRK6d1iBpwLtYh2rl3J4/xGCP2jsA32rfVjiMi9esb1pd7uIe+YX3NjiIiJlJB1ICYmBhiYmJITExk7ty5rXIMfx9/LuVS/H38W6V/EWmYvb09zjhjb29vdhQRMZFOmZmsR7cenMd59OjWw+woIlYp/VA6n/KpdrsXsXIqiEyWX5jPbnaTX5hvdhQRq1RxvIKjHKXieIXZUUTERCqITHYw8yAf8iEHMw+aHUXEKoX1CuMmbiKsV5jZUUTERCqITNa/d3/u53769+5vdhQRERGrpYLIZLa2tjjggK2trdlRRKzSrsRd/IN/sCtxl9lRRMREKohMdjDzIB/xkU6ZiZjEy8OLsYzFy8PL7CgiYiIVRCarqq6ihBKqqqvMjiJilTzdPbmAC/B09zQ7ioiYSAWRyUICQ5jNbEICQ8yOImKVioqL2Mc+ioqLzI4iIiZSQSQiVi01PZW3eZvU9FSzo4iIibRSdQPO5dYdw/cOx2ewT6sdR0TqFxEawUIWEhEaYXYUETGRCqIGnIutO3y9fJnIRHy9tI+ZiBm6dO5Cd7rTpXMXs6OIiIl0ysxk7t3dGcIQ3Lu7mx1FxCplZGXwJV+SkZVhdhQRMZEKIpMVFhWSRBKFRYVmRxGxSmXlZaSTTll5mdlRRMREKohMdiDjAO/xHgcyDpgdRcQqhQeHM5/5hAeHmx1FREykgshkfcP6chd30Tesr9lRRKSVZGVlsXjxYrKyssyOIiKnoYLIZPb29rjggr29vdlRRKxSQnICT/M0CckJrXaMrKwsHnnkERVEIm2YCiKTZWRl8Dmfa0KniEncu7nzJ/6Eo4Mj8fHxlJXVziXKyMhg9+7dlna7d+8mMzMTgLKyMuLj4ykpKQFqC56dO3da2iYkJJCeng5AeXk5e/bssTx2+PBhtm/fbrmdmJhIWloaAJWVlcTHx1NQUABATk4O27Zts7RNTk4mNVXrJYm0BhVEJiuvKCeHHMorys2OImKVvDy9GMMY8o7lER0dzf79+wF4/vnnueKKKyztLr30UpYvXw7UFibR0dEkJNSOKr366qtMmjTJ0vbqq6/mqaeeAmoLq7nX1S7bUZJTwltvvcW4ceMsbefMmcNjjz0GQG5uLtHR0fzwww8ArF69mmHDhlna3nrrrTzwwANUV1dTWFhIdXV1i78fItaq2esQpaamkpiYyKhRo3B2dgagoqKC5cuX8+OPP9KlSxeuvfZapk6d2mJhO6KwXmHczM2E9QozO4qIVesb1pe4uDhCQmq30Vm4cCFz5syxPP7555/TrVs3AMLDw4mLiyMionYxx1tuuYXp06db2r7//vu4uLgA4O/vz7LHlnHrg7dSmlvKrFmzmDBhgqXtqlWrcHBwAMDDw4O4uDhCQ0MBmDFjBhdccIGl7csvv4ydnR3bt28nOjqauLg4Bg8e3PJvhogVanZB9Pbbb7Nt2zYmTpxoue+1117jiy++wNHRkYKCAp555hl8fX2Jjo5ukbAiIq2lNK0Un74+5O/JJ598bLGlBz3Iiq+d99ODHnAYsg7X3vbBh8LEQgqpXTLDAw9L2+50h3LIyqm93btbb8YwBvtj9tRk1tCTnpa2rrhCCWTl/d5v6b5SSikFwBtvS9uudAXAsdCRVS+tIjg4+Fy8NSJWodkF0Z49ezjvvPOwsbEBoKqqinXr1tG3b1+ef/55ioqKuPnmm1m9erUKogbsTtrNUpYyImmEtu4QMYGThxP2TvZ8et2nrXqccYxj84LNbGZzi/Rn72RPpymdoHuLdCdi9ZpdEB09ehQvLy/L7YSEBEpLS7n00kvp0qULXbp0YcSIEWzZsqVFgnZUPd17MopR9HTvaXYUEavkFujG7XtupzS3tNWOkbsnl0+u+4Qr3rkCj74eZ91f8q/JLLt1GZemXIpboFsLJBSRZhdEtra2VFZWWm7v2LEDGxsbzjvvPMt9bm5ulqsl2qNzsbmrp7snIxiBp7tnqx1DRBrmFuh2TgoLj74eLTISvGPPDj7nc27NupX+9G+BZCLS7ILI29u7zuWgGzduxMfHB29vb8t9OTk5uLm1399ezsXmrsUlxaSSSnFJ6xVdImKurj5dGfPwGLr6dG2R/iL7RPIgDxLZJ7JF+hORs7jsfsKECaSkpDB//nzuuOMOUlJSGD9+fJ02SUlJ+Pv7n3XIjmz/wf28yZvsP7jf7Cgi0kpcfFwYu3gsLj4uLdKfjY0Nttha5nCKyNlrdkF0xRVXMHbsWPbu3cvOnTv505/+xPXXX295fM+ePRw4cECXhJ5B75DeLGABvUN6mx1FRNqJA+n/fw/E9ANmRxHpMJp9yqxz58488sgjlJSUYGNjg5OTU53HfXx8WLFiRZ1TaHIqhy4OuOOOQxcHs6OIiIhYrWaPEP32228cPnwYZ2fnU4ohgG7duuHq6kpKSspZBezoMrMzWcc6MrMzzY4iIu1Er4BeXMu19AroZXYUkQ6j2QXRX/7yF7766qsG2/z3v//lL3/5S3MPYRVKSks4wAFKSkvMjiIi7YRhGFRTjWEYZkcR6TCaXRA15oNoGIYm/Z1B75De3MZtmkMkIo22c+9OHuMxdu7deebGItIorbq5a0ZGhmWfMxERaRn+Pv5cyqX4++gqXpGW0qRJ1UuXLq1ze/PmzWRnZ5/Srrq6mpycHLZv387QoUPPLmEHtyd5D8/wDKOSR2nrDhFplB7denAe59GjWw+zo4h0GE0qiE6eM2RjY0NKSsppJ03b2NjQp08f7rjjjrNL2MH16NaDwQzWNzYRabT8wnx2s5v8wnx80C9SIi2hSQXRBx98ANTODbr66qu56qqruPLKK09p16lTJ1xcXHB0dGyZlB2Yl6cX4xiHl6fXmRuLiAAHMw/yIR9yU+ZN9KWv2XFEOoQmFUQnryl0//3307t3b60zdJZKy0rJJJPSstbbWFJEOpb+vftzP/fTv7f2MRNpKc2eVD1p0iRCQ0NbMotVSjmQwuu8TsoBrdckIo1ja2uLAw7Y2tqaHUWkw2j2StUnJCQksHfvXoqLi6mpqTnlcRsbG2bPnn22h+mwwoPDmc98woPDzY4iIu3EwcyDfMRHXJx5sS7GEGkhzS6ICgsLeeCBB9i1a1eDaxKpIGqYo4Mj3njj6KD5ViLSOFXVVZRQQlV1ldlRRDqMZhdEy5cvZ+fOnURFRXHxxRfTs2dPDd82Q9aRLGKJZeqRqbpaREQaJSQwhNnMJiQwxOwoIh1Gswuin3/+mb59+/Lcc89pNeqzUFhUyG52U1hUaHYUERERq9XsSdXHjx9n0KBBKobOUkRoBAtZSERohNlRRKSd0NYdIi2v2SNE4eHh9a5S3ZHExsYSGxtLcXGx2VFERCx8vXyZyER8vXzNjiLSYTR7hOiGG27gxx9/ZPfu3S2Zp02JiYlh6dKlLFiwoNWOkbgvkRd5kcR9ia12DBHpWNy7uzOEIbh3dzc7ikiH0ewRopycHIYPH86dd97JRRddRHh4+Gk3cr344oubHbCjc+nqQgQRuHR1MTuKiLQThUWFJJFEYVGhLsYQaSHNLoj++c9/YmNjg2EYfPXVV3z11VenzCcyDAMbGxsVRA3w9fJlAhM09C0ijXYg4wDv8R6zMmYRgeYfirSEZhdE999/f0vmsFpl5WUc4Qhl5WVmRxGRdqJvWF/u4i76hmkfM5GW0uyCaNKkSS2Zw2olpybzEi8xLXUaIRdoTREROTN7e3tccMHe3t7sKCIdRrMnVUvLCA0K5SZuIjRI+8KJSONkZGXwOZ+TkZVhdhSRDqPZI0SHDx9udFsvL6/mHqbDc3ZyJoAAnJ3qn5AuIvJH5RXl5JBDeUW52VFEOoxmF0QzZsxo1KKMNjY2bNiwobmH6fAO5xzme77n0pxLdbWIiDRKWK8wbuZmwnqFmR1FpMNodkE0ceLEegui4uJi9u3bR1ZWFlFRUXh7e59VwI4uLz+P//E/8vLzzI4iIiJitZpdED3wwAOnfcwwDN5//33+85//cN999zX3EFahX3g/7uZu+oX3MzuKiLQTu5N2s5SljEgagc9gjSyLtIRWmVRtY2PDNddcQ3BwMC+99FJrHEJExGr1dO/JKEbR072n2VFEOoxWvcosIiKC+Pj41jxEu5ecmswrvEJyarLZUUSknfB092QEI/B09zQ7ikiH0aoFUWZmJtXV1a15iHbP0cGRAAJwdHA0O4qItBPFJcWkkkpxiTaeFmkpLV4Q1dTUcPjwYd58801+/PFH+vfv39KH6FD8ffyZwhT8ffzNjiIi7cT+g/t5kzfZf3C/2VFEOoxmT6oeM2ZMg5fdG4ZB165due2225p7CKtQcbyCYxyj4niF2VFEpJ3oHdKbBSygd0hvs6OIdBjNLogGDRpUb0FkY2ODi4sLERERTJ48mR49epxVwI4ucV8iz/M8k/ZNotewXmbHEZF2wKGLA+6449DFwewoIh1GswuiF154oSVzWK3ggGCu53qCA4LNjiIi7URmdibrWMeU7Cla0FWkhWgvM5O5dHUhlFBcurqYHUVE2omS0hIOcICS0hKzo4h0GM0eITrZzp07SUlJoaSkBCcnJ8LDw4mMjGyJrju8nLwcfuInLs+7XL/piUij9A7pzW3cpjlEIi3orAqihIQE/vGPf5CRUbvjsmEYlnlF/v7+3H///QwYMODsU3Zgh3MPs5GNHM5t/Ga5IiIi0rKaXRAdOHCAv/71r5SXlzNkyBCioqLo0aMHx44dY9u2bfz666/cfffdvPLKK/Tq1asFI3csAyIG8AAPMCBChaOINM6e5D08wzOMSh6lrTtEWkizC6JVq1ZRVVXF008/zZ/+9Kc6j1177bVs3bqV++67j1WrVrF48eKzzSkiIv9fj249GMxgenTTVbwiLaXZk6q3bdvGmDFjTimGTjj//PMZM2YM27Zta3Y4a5ByIIUVrCDlQIrZUUSknfDy9GIc4/Dy9DI7ikiH0eyCqKSkBB+fhodqfXx8KCnRVRAN6dK5Cz3oQZfOXcyOIiLtRGlZKZlkUlpWanYUkQ6j2QWRu7s7u3fvbrBNQkIC7u7uzT2EVQjwDeByLifAN8DsKCLSTqQcSOF1XtfIskgLanZBNHLkSH777TfeeOMNKirqbjtRUVHBv//9b7Zt28bIkSPPOmRHVllZSQklVFZWmh1FRNqJ8OBw5jOf8OBws6OIdBjNnlQ9e/ZsfvrpJ9555x2++OIL+vbtS/fu3Tl27Bh79+4lPz8fX19fZs+e3ZJ5m+X48eM888wzbN26lZKSEnr16sXtt9/eJtZK2pOyh6d4ivEp4wkcGmh2HBFpBxwdHPHGG0cHR7OjiHQYzR4hcnV15dVXX+Xiiy+mvLycLVu28NVXX7FlyxZKS0uZNGkSL7/8Mq6uri2Zt1mqq6vx8fHhpZdeYt26dVx66aU88MADlJeXmx2NIP8gruZqgvyDzI4iIu1E1pEsYokl60iW2VFEOoyzWpjR1dWV+++/n7vvvpu0tDRKS0txcnIiKCgIO7sWWQS7RTg6OjJnzhzL7UmTJrF8+XIyMjIICwszLxjg5uJGH/rg5uJmag4RaT8KiwrZzW4KiwrNjiLSYTS5annrrbcoLy/nxhtvtBQ9dnZ2hIaGWtpUVlby+uuv4+joyHXXXdfkUKWlpbz55pskJyeTnJxMQUEBc+bM4cYbb6y37RtvvMGGDRsoKioiMDCQmTNnMn78+NP2n5aWRkVFBb6+vk3O1tLyjuWxla1MPzZdW3eISKNEhEawkIVEhEaYHUWkw2jSKbOtW7fy73//G1dX1wZHgOzt7XF1deWNN94gLi6uyaEKCgpYs2YNlZWVjBo1qsG2ixYtYv369cyZM4cnn3ySPn368Mgjj/Df//633vbl5eU8/vjjzJo1CycnpyZna2mZ2Zl8yZdkZmeaHUVERMRqNWmE6Ouvv8bFxYUrrrjijG0vv/xy3nnnHb766iuio6ObFMrb25svv/wSGxsb8vPzWbt2bb3tfv75Z7Zu3cpDDz1ETEwMAIMHDyY7O5uXX36ZCy+8EFtbW0v7qqoqHn74YYKCgrj++utPe/zc3Fzy8vIst9PS0pqUvykG9h3IwzzMwL4DW+0YItKxJO5L5EVeZMy+Mdq6Q6SFNKkg2rVrF9HR0XTu3PmMbTt37sz555/Prl27mhzqxAaxZ7J582YcHR0ZO3ZsnfsnT57Mo48+SkJCguVKspqaGh5//HE6derEfffd1+AxvvjiC1atWtXk3CIi54JLVxciiMClq4vZUUQ6jCYVRLm5uYwbN67R7X18fPjhhx+aHKqxUlNT653AfWI+U2pqqqUgevrpp8nLy+Opp54644TvadOmMWLECMvttLQ0lixZ0sLpa+0/uJ+3eZuYgzH6TU9EGsXXy5cJTMDXy/x5kCIdRZMKok6dOlFVVdXo9lVVVXTq1Owr+8+ooKCg3onRLi61vzUVFtZegZGdnc3atWvp3Lkz06ZNs7R78sknGTRo0CnP9/DwwMPDo5VS12XbyZYudMG2k+2ZG4uIAGXlZRzhCGXlZWZHEekwmlQQubu7k5qa2uj2qamprV5YNOb0mre3N5s2bWrVHM0V5B/EDGZoHSIRabTk1GRe4iWmpU4j5IIQs+OIdAhNGr4ZOHAg8fHxZGWdeTGwrKws4uPj6x2BaSlubm4UFBSccn9RURFAm1gU8kyqq6s5znGqq6vNjiIi7URoUCg3cROhQaFnbiwijdKkgujyyy+nqqqKhx56iPz8/NO2Kygo4OGHH6a6uppLL730bDOeVkhICGlpaaecxtu/fz8AwcHBZ9V/bGws999/Py+++OJZ9dOQ3Um7+Qf/YHdSwxvlioic4OzkTAABODs5mx1FpMNoUkEUERHBVVddRVJSErNmzWLFihXEx8eTnp5Oeno627Zt44033mDWrFkkJiZy1VVXERHReguHjRo1irKyMr7//vs6969fvx4PDw/69et3Vv3HxMSwdOlSFixYcFb9NCTAN4DpTNdu9yLSaIdzDvM933M457DZUUQ6jCavVH377bfTuXNn/vOf//D222/z9ttv13ncMAw6derEddddx80339zsYFu2bKG8vJzS0lKg9kqvjRs3AjBs2DAcHBwYNmwY559/PsuWLaO0tBQ/Pz++/fZbfvnlFxYtWlRnDaK2qrtbdyKJpLtbd7OjiEg7kZefx//4H3n5eWduLCKN0uSCyMbGhnnz5jFlyhTWrVvHrl27OHr0KAA9evQgMjKSSZMm4efnd1bBli1bRnZ2tuX2hg0b2LBhAwAffPABPj61l6gvWbKE119/nRUrVli27nj44Ycb3LqjLTlWcIztbOdYwTFt3SEijdIvvB93czf9ws9uFFxEftfsHVj9/PyYO3duS2apY/Xq1Y1q5+TkxMKFC1m4cGGrZWlN6YfS+ZRPueXQLfRD39xERETM0Ha2pG+DYmNjiY2Npbi4uNWOMSBiAItYxICIAa12DBHpWJJTk3mFVxiXOk4Luoq0EBVEDYiJiSEmJobExMRWGw3r1KkTdti16gKWItKxODo4EkAAjg6OZkcR6TD0U9hkaRlpvM/7pGW03gayItKx+Pv4M4Up+Pv4mx1FpMNQQWSyGqOGaqqpMWrMjiIi7UTF8QqOcYyK4xVmRxHpMFQQmSw4IJiZzCQ44OwWkRQR65G4L5HneZ7EfYlmRxHpMFQQiYi0M8EBwVzP9fpFSqQFqSAy2Y49O1jMYnbs2WF2FBFpJ1y6uhBKKC5dXcyOItJh6CqzBpyLy+79vP2YylT8vM9uIUsRsR45eTn8xE9cnne5FnQVaSEqiBpwLi67d+/uTjTRuHd3b5X+RaTjOZx7mI1s5HCu9jITaSk6ZWay/MJ8EkggvzDf7Cgi0k4MiBjAAzygBV1FWpAKIpMdzDzIalZzMPOg2VFERESslgoik/UL78e93KtNGkWk0VIOpLCCFaQcSDE7ikiHoYLIZHZ2djjhhJ2dpnOJSON06dyFHvSgS+cuZkcR6TBUEJnsYOZBPuZjnTITkUYL8A3gci4nwDeg1Y5RlFXExsUbKcoqarVjiLQlGpZowLm47L6yqpJCCqmsqmy1Y4hIx1JZWUkJJVRWtt73jeKsYr5/5HsipkXg4qP1jqTj0whRA2JiYli6dCkLFixotWOEBoVyAzcQGhTaascQkY5lT8oenuIp9qTsMTuKSIehgkhEpJ0J8g/iaq4myD/I7CgiHYYKIpPtStzF4zzOrsRdZkcRkXbCzcWNPvTBzcXN7CgiHYbmEJnM29Ob8YzH29Pb7Cgi0k7kHctjK1sZ88uYVjtG7p7cOn+3BCcPJ9wCVcRJ26SCyGQePTwYxjA8eniYHUVE2om88jzWsQ7f23zxxbdVjlFEEVvZStF1RbjQMpOq7Z3suX3P7SqKpE1SQWSyouIiUkihqLhImzSKSKOMmTKGo2lHKc0tbbVjbFq3iWcefIZbH7uV0ZNHn3V/OXty+PS6TynNLVVBJG2SCiKTpaan8g7vcF36dfSmt9lxRKSdcAt0a9XCotuebrV/B3fDZ7B+WZOOTwVRA87FOkR9wvrwV/5Kn7A+rXYMEelYkpOTueOOO1i+fDnh4eFmxxHpEFQQNSAmJoaYmBgSExOZO3duqxyjs31n3HCjs33nVulfRDoeW1tbXF1dsbW1NTuKSIehy+5NlpGVwRrWkJGVYXYUEWknQkJCeP/998nPz+fo0aMAHD16lPj4eGpqagDYv38/KSm/b/4aHx9Pbm7tFWPHjh0jPj6eqqoqAFJTU0lKSrK0/e233ygsLASgrKyM+Ph4jh8/DsDBgwfZu3evpe2OHTvIzs4GoLi4mPj4eMrLywHIyMggISHB0rYIbQMibZcKIpOVlZeRRRZl5WVmRxGRdqS8vJzo6Gi+/vprANatW0d0dLRlO4+7776bhQsXWtpHR0fz2WefAbBhwwaio6MtRc+DDz7IvHnzLG1HjBjBzz//DEBKcgrR0dEcOXIEgMcff5zrr7/e0nb8+PGsXLkSqC2koqOjSUtLA2DZsmVcddVVQO1SAW/whn75kzZLp8xMFh4czjzmER6seQAi0ngODg7ExcXRq1cvACZPnkxcXBz29vYAPP3005bRIoC4uDgCAwMBGDduHHFxcbi6ugLw2GOP1dkX7ccffyQ9MZ1n336WyGGRxMXF0bNnTwD+/ve/U1r6+9Vt3377reWxqKgo4uLiCAqqXUH7b3/7GzfffDNQu29jBBHY2enHjrRN+soUEWmHbG1tGTx4sOV2jx496NGjh+V2SEhInfYnt+3evTvdu3e33A4ODq7TNioqylJMeQZ51nnuiaLqhIEDB1r+3bVr1zpt/f39Lf/29vRmMpO1CK20WTplZrKE5ASe5EkSkhPO3FhEpJ0qLSvlEIcoLWu9tZNEzoYKIpN5dPdgOMPx6K6VqkWk40o5kMJrvEbKgZQzNxYxgQoik/X06MkoRtHTo6fZUUREWk1YrzDmMY+wXmFmRxGplwoik5WUlpBGGiWlJWZHERFpNU6OTvjii5Ojk9lRROqlgshk+9L2sZKV7EvbZ3YUEZFWk52Tzbd8S3ZOttlRROqlq8wacC627ugd0ps7uIPeIdrHTETaDh8fHx5++GF8fFpmH7P8gnx2sIP8gvwW6U+kpakgasC52LrDoYsDHnjg0MWhVfoXEWkOHx8fFi9e3GL9ad9Gaet0ysxkhw4fYj3rOXT4kNlRRERErJYKIpMVlxSzj30Ul7TeaTkREbMl7U/iX/yLpP1JZ24sYgIVRCbrHdKb27ldc4hEpEPr6tyVUELp6tzV7Cgi9VJBJCIirc7Xy5eLuRhfL1+zo4jUSwWRyfam7OVZnmVvyl6zo4iItJryinJyyaW8otzsKCL1UkFksm5u3RjIQLq5dTM7iohIq0nan8RylmsOkbRZKohM5u3pzXjGawdoEenQQoNCuYEbCA0KNTuKSL1UEJlMO0CLiDVwdnImiCCcnZzNjiJSLxVEJtMO0CJiDY7kHmEzmzmSe8TsKCL1UkFkMu0ALSLWIPdYLj/zM7nHcs2OIlIvFUQm0w7QImIN+oX3417upV94P7OjiNRLe5k14Fxs7npiB+hpOdPwoWU2URQREZGm0QhRA2JiYli6dCkLFixotWNoB2gRsQbJqcm8xmskpyabHUWkXiqITKYdoEXEGjg6OOKDD44OjmZHEamXCiIREWl1/j7+TGUq/j7+ZkcRqZcKIpNpB2gRsQbHK49TQAHHK4+bHUWkXiqITKYdoEXEGmjfRmnrVBCZTDtAi4g1CA4I5jquIzgg2OwoIvVSQWQy7QAtItbApasLYYTh0tXF7Cgi9VJBZDLtAC0i1iD3aC5b2ELu0dZbqTorK4vFixeTlZXVaseQjksFkcm0A7SIWIMTi9Bm52S32jGysrJ45JFHVBBJs6ggMpl2gBYRazAgYgB/5+8MiBhgdhSReqkgMpl2gBYRETGfCiKTaQdoEbEG+9L2sZKV7EvbZ3YUkXqpIDKZdoAWEWtgb2ePK67Y29mbHUWkXiqIRESk1QX6BTKd6QT6BbbaMUpySur8LdIUKohMph2gRcQaVFVVUUopVVVVrXaM0tzSOn+LNIUKIpNpB2gRsQYJyQk8yZMkJCeQm5tLfHy85bGUlBT2798PQE1NDfHx8Rw9ehSAo0ePEh8fT3V1NQD79+8nOfn3XyDj4+PJyckBoLS0thA60fbAgQMkJiZa2v72228cPnwYgMLCQuLj46moqADg4MGD7Nmzx9J2x44dunzfyqggMpl2gBYRaxDoF8gMZhDoF8hnn31GdHS05bGFCxdy9913A1BZWUl0dDTr1q0D4OuvvyY6Opry8trV/O+77z7uuOMOy3OHDBnCJ598AsDevbX7pJ0ojBYvXsxNN91kaTt69GjeffddAH799Veio6MtRc8TTzzBzJkzLW0nTpzIihUrWvZNkDbNzuwA1k47QIuINejm2o1+9KObazcuu+wyBg8ebHns+eefp1On2t/P7e3tiYuLo1evXkBtYRIXF4eDgwNQW7icGAGC2sImICAAgD59+gDg5OQE1BZEJ0aAADZt2oSPjw9QW0jFxcVZbt93332UlPw+9+jrr7/GycmJn3/+mcjISLp21QbcHZ0KIpOd2AF6YspEgoYGmR1HRKTVeXh44OHhYbkdFhZm+XenTp3qFEs9evSgR48eltshISF1+jq57YlCyNbWFsBSVJ0QFRVl+berq2ud5wYG1p3sPXDgQOLj47nggguIi4ur01Y6JhVEDYiNjSU2Npbi4uJWO4Z2gBYRaZv69u3Lrl27TinCpGNSQdSAmJgYYmJiSExMZO7cua1yDO0ALSLSNjk6OtK/f3+zY8g5oknVJjsXO0CLiEjTZWRkcM8995CRkWF2FDkHNEJkspN3gI4k0uw4IiKtKmdPTqv1nZ+ab/k7K/7sL5lP2ZfCZ598xpw5c/D315XAHZ0KIpNpB2gRsQZOHk7YO9nz6XWfttoxDnEIgO8e/I69D+5tkT5vcLoBfxcVQ9ZABZGIiLQ6t0A3bt9ze6uuIr1p3SZee/A1LnzsQkZPHn3W/eXsyeHT6z6lNLcUt0C3FkgobZkKIpOd2AF6fNp4fAb7mB1HRKTVuAW6tWph0W1Pt9q/g7u1yPfTxH2JPM/zjNk3Rt+frYAmVZtMO0CLiLRNri6u9Kc/ri6uZkeRc0AFkcnOxQ7QIiLSdD49fYghBp+eGh2yBiqITHYudoAWEbEGXh5ejGEMXh5eLdJfWXkZ2WRTVl7WIv2dTlFWERsXb6Qoq6hVjyMNU0FkspN3gBYRkebz8vRiHOPw8myZgig5NZlXeIXk1OQW6e90irOK+f6R7ynOar1dEeTMVBCZ7OQdoEVEpO0I6xXGXOYS1ivszI2l3VNBZLKTd4AWEZG2w8nRCT/8cHJ0atXjHM45zAY2cDjncKseRxqmgshkecfyiCOOvGN5ZkcREZGTnKtC5XDuYb7new7nqiAykwoik2VmZ7KGNWRmZ5odRURETnI0/yjxxHM0/6jZUeQcUEFksoF9B7KYxQzsO9DsKCIicpK+4X25i7voG97X7ChyDqggEhGRDqGrT1fGPDyGrj5dzY4i7ZAKIpOlpqfyLu+Smp5qdhQRkXbNxceFsYvH4uLj0iL9Je1P4iVeIml/Uov0J22bCiKTdbLphC22dLLRf4WISFvi7ORML3rh7ORsdhQ5B/RT2GRB/kFczdUE+QeZHUVERE7i5+3HZCbj5+1ndhQ5B7Tbvclqamqoooqamhqzo4iIyEnKK8rJI4+M7Rmtepz81HzL31nxWWfdn5OHE26Bbmfdj7VRQWSyXYm7WMISRiaOxO98/RYiItJWHDx6kBd5kYobK/DFt9WOc4hDAHz34HfsfXDvWfdn72TP7XtuV1HURCqITBbgG8DlXE6Ab4DZUURE5CSDRw9mzftriPCNoKtz6125tmndJl578DUufOxCRk8efVZ95ezJ4dPrPqU0t1QFURNpDpHJurt1ZxCD6O7W3ewoIiJyEhcXF/409k+UupbiM9gHn8E+FDoXctz9OD6DffCI9CCLLJxCnfAZ7INdgB3ZNtmWtsUuxZR3L8dnsA89B/Ukiywcgh3wGexD56DOZJGF93nedAvuBkCFUwU+g33wPs+bLLLoHNQZn8E+OAQ7kEUWPQf1xGewD+Xdyyl2KbYcJ9smG7sAO3wG+9DFvwv55Jv6vrVXKohMdqzgGDvZybGCY2ZHERGRP3jrrbcYN26c5facOXN47LHHAMjNzSU6OpoffvgBgNWrVzNs2DBL21tvvZUHHngAgJKSEqKjo4mNjQVgzZo1REdHU11dbWn/zjvvAFBdXU10dDRr1qwBIDY2lujoaEpKSgB44IEHuPXWWy3PGzZsGKtXrwbgqw1f8RzPkZHVuvOesrKyWLx4MVlZZz/nqa3QKTOTpR9K52M+Zu6hufSjn9lxRETkJLNmzWLChAmW26tWrcLBwQEADw8P4uLiCA0NBWDGjBlccMEFlrYvv/wydna1P2adnZ2Ji4sjODgYgKlTpxIXF4etra2l/XXXXQeAra0tcXFxBAXVXn0cExNDXFwczs61l///4x//oKqqyvK8LVu24O/vX9t2VAzzmY+Xh1fLvhF/kJWVxSOPPMK0adPw8fFp1WOdK1ZTEH322WesWbOG/fv3c/3113PjjTeaHQmA/r378wAP0L93f7OjiIjIH3h5eeHl9XtxERERYfm3vb09gwcPttz29PTE09PTcjs8PNzyb1tb2zpt3d3dcXd3P+VYADY2NnXadu/ene7df59WcaKoOuG88877vd/u7njjjb29feNfpABWdMrM3d2dG2+8kVGjRpkdpQ5bW1s607nObwkiIiLNkZGVwed83uqnzDoiqymIRo0axYgRIyxDjm1FWkYaq1lNWkaa2VFERKSdK68oJ4ccyivKzY7S7rTJU2alpaW8+eabJCcnk5ycTEFBAXPmzKn3NFdpaSlvvPEGGzZsoKioiMDAQGbOnMn48eNNSN501TXVVFBBdU31mRuLiIg0IKxXGDdzM2G9wsyO0u60yRGigoIC1qxZQ2Vl5RlPcS1atIj169czZ84cnnzySfr06cMjjzzCf//733OU9uyEBIZwPdcTEhhidhQREZFGKckpqfN3R9AmR4i8vb358ssvsbGxIT8/n7Vr19bb7ueff2br1q089NBDxMTEADB48GCys7N5+eWXufDCC5s1Nyc3N5e8vDzL7bQ0nc4SEZG2b3fSbpaylBFJI/AZ3HpXf5Xmltb5uyNokwWRjY1No9pt3rwZR0dHxo4dW+f+yZMn8+ijj5KQkEBkZGSTj//FF1+watWqJj+vOXbs2cEjPMKwPcNa9YtXREQ6vp7uPRnFKHq69zQ7SrvTJguixkpNTSUoKMiyzsMJJ9aESE1NtRREVVVVVFdXU1NTQ3V1NRUVFdjZ2dU7gjRt2jRGjBhhuZ2WlsaSJUta5TX4efsxhSnaTVlERM6ap7snIxiBp7vnmRtLHe26ICooKMDX99QN91xcXAAoLCy03PfWW2/VGfV5++23+b//+z8mTZp0yvM9PDzw8PBo+cD1cO/uzvmcj3t39zM3FhERaUBxSTGppFJcUmx2lHanXRdE0PjTazfeeGObWYzxZAVFBexlLwVFBfigU2YiItJ8+w/u503e5JqD1xBO+JmfIBZt8iqzxnJzc6OgoOCU+4uKigBwdXU915GaLC0jjfd5X+sQiYhYKScPpzp/n43eIb1ZwAJcurqQkJBguX/nzp2WfcdKSkqIj4+nrKwMgMzMTHbv3m1pu3v3bjIyahd2LCsrIz4+nuLi2hGnrKwsduzYYWl76NAhDh48CEBFRQXx8fGWszOHDx/mt99+s7RNTEzkwIEDAFRWVhIfH09+fj4AOTk5ln7M0q4LopCQENLS0urs6QKwf/9+4NTlzZsqNjaW+++/nxdffPGs+mlI37C+3MM99A3r22rHEBGRtsvZ07nO32fDoYsD7riz4j8ruPrqqy33T5o0iVdffRWAhIQEoqOjSU5OBmD58uVceumllrZXXHEFzz//PFD78zQ6OpqdO3cCsGLFCiZOnGhp+69//YsnnngCqC2WoqOj+fXXXwF49913GT16tKXtTTfdxOLFiwHIz88nOjqaTZs2AfDaa68REhJialHUrk+ZjRo1ijVr1vD999/XWYhx/fr1eHh40K/f2W2WGhMTQ0xMDImJicydO/ds49bL3t4eZ5y174yIiLSYW2fdyl297rLc/uqrryxzY/v160dcXJxlr7U77rjDsrEswCeffIKbmxtQO/AQFxdH7969gdqiZtq0aWTtrB1tuv322xn/59qfvz4+PsTFxREWVrso5MyZM7nwwgst/a5YsYIuXboA0K1bN+Li4ggJqV2Db968ecybN6/OXnDnWpstiLZs2UJ5eTmlpbVrHKSlpbFx40YAhg0bhoODA8OGDeP8889n2bJllJaW4ufnx7fffssvv/zCokWL2sX+YOmH0vmUT5l0aJIuuxcRkRbh5+2HT7/ff6acvASNs7Nznc1j/fz88PP7/Urn/v1/32zc0dGxTlsfHx98fHwsBZGvry+BgYEAdOnSpU7bpm6Ma7Y2WxAtW7aM7Oxsy+0NGzawYcMGAD744AN8fGr/o5csWcLrr7/OihUrLFt3PPzww+1m646K4xUc5SgVxyvMjiIiIibw8fHh4Ycftvxcs0bJycnccccdLF++3DJyda612YJo9erVjWrn5OTEwoULWbhwYSsnOr3q6moqKyub9dygoCDuDLqToKAgysu1GZ+ItF329vbtYuS9vfHx8bHMrbFWtra2uLq6mvr11WYLovaiuLiYjIwMDMNo1vOr7aoZ8coICu0KKUntOHvCiEjHY2Njg7+/P127djU7inQwISEhfPjhh6ZmUEHUgNjYWGJjYy2XG/5RdXU1GRkZODk54enp2eg1kU5WfKyYisoKvHt607W7vsmISNtkGAY5OTlkZGQQHh6ukaI2LmdPTqv2n5+ab/k7Kz7rrPurrq6mk0snvMK9TPvaUkHUgDNdZVZZWYlhGHh6euLo6NisY9Q41+CCC07OTjg4OJxtZBGRVuPp6cmBAweorKxUQdRGOXk4Ye9kz6fXfdqqxznEIQC+e/A79j64t0X6e43X2Lh2I2OmjDnr/ppDBVELaM7I0Al2tnZ0pSt2tvqvEJG27Wy+18m54Rboxu17bm/1Xeg3rdvEaw++xoWPXcjoyaPP/IQzSPlfCnnz8/B00mX3VqumpoYKKqipqTE7ioiIdABugW64Bbq16jG67elW+3dwtxZbMiaSSLq7dW+RvpqjXa9U3RFUHK8gj7wWu+y+V69e9OnTh6ioKPr27cu1115LSUnzJ2uvWrWKpKSk0z6+ZcsWIiMjOe+88/j666+ZPHky+/bta9Rz24LFixdz9913t2ifvXr1YteuXc167tatW5k5cyZQu5Lrk08+WefxsWPHsnbt2rPO2BEdOHCgRTdlnjNnDsuXL2+x/trT/93ZfA2LNMexgmNsZzvHCo6ZlkEFkckcujjQk544dGm5+UMfffQRv/32GwkJCRQWFrJq1apm93WmoubNN99k1qxZbNu2jYkTJ7Ju3TpCQ0Mb9Vw51fnnn8+7774L1F8QNdcft7eR9kn/j9JRnVikOP1QumkZVBA1oKl7mVWWVpIVn9WkP4e3HyZ/bz6Htx8+Y9vK0qatdVRRUUFJSQndu/8+BPn0008zZMgQBg8ezOTJk0lPr/3iW7NmDQMHDiQqKooBAwbw+eef88Ybb7B161buvPNOoqKiWLduXZ3+ly5dygcffMDzzz9PVFQU+fn5lt8sz/RcgD179jBx4kQGDhzIwIEDeeWVVwBISUkhJibGkuezzz6zPMfGxoYnnniCoUOHEhwczMqVKwF45513mDp1qqWdYRgEBwdbNiF88skn6d+/P5GRkcycObPeTYF79+5NXFyc5fbKlSu54oorAMjOzmbGjBkMGTKEgQMH8tBDD1nabd68mcjISIYMGcIdd9xx2iUYhg8fzs8//wzA3/72N/z9/S2PBQYGkp6ezsaNGzn//PMBmD9/Pvn5+URFRVnuO3G8UaNGERoayvz58+s91onRkkcffZRRo0bx4osvnvY11NTUcMcdd9CnTx8GDRpEdHQ05eXllj7uvvtuhg4dSv/+/fnuu+8sx3j77beJjIxk4MCBTJkyhczMTKC2EJ44cSLXXHMNkZGRnH/++Zb9BZOTkxkxYgSDBg0iMjKSRYsWAbUXKNx///0MGTKEqKgorr76asumj/W9rtNlOpmNjU2dK0Q9PDw4cODAaV9vfbZv38748ePp06cPc+bMoaKidiT3vffeY+jQoZx33nmnfH2f7uv6ZB999BFRUVGW0dS///3vhIWFMXToUO655x7L//fGjRuJiorizjvvZPjw4Xz66ads3bqV4cOHM3DgQIYMGcKPP/5Y5705obi4uM6cn9N9dqDxX8MirWVAxAAWsYgBEQPMC2HIGe3du9cYNWqUsXfv3jr3l5WVGQkJCUZZWZlhGIZxKO6QsZjFrfbnUNyhM2YNCgoyIiIijEGDBhmurq7GuHHjjMrKSsMwDOPdd9815s6da1RVVRmGYRhvvfWWMW3aNMMwDGPgwIHGjz/+aBiGYVRXVxvHjh0zDMMwxowZY6xZs+a0x5s9e7bx4osv1jn+zp07z/jcyspKIzw83Pjggw8s9+Xk5BiGYRhDhgwxXn31VcMwDCMpKcno0aOHcfDgQcMwDAMwnnvuOcMwDCMhIcHo2rWrUVlZaZSWlhru7u5GVlaWYRiG8d133xmDBw82DMMw1q1bZ/Tp08fymubOnWvcdttthmEYxsMPP2zcddddhmEYxuOPP27cfvvtljyjR482vvjiC8MwDGPChAnG999/b8k+ceJE45NPPjHKy8sNX19fY8OGDYZhGMYHH3xgAJb34GSLFi0yHnnkEcMwDOO8884zhgwZYuzZs8fYu3ev0bt3b8MwDGPDhg1GdHS0YRiGkZqaari7u9fpY8yYMcb06dONqqoqo7S01OjVq5fx008/nXKs1NRUAzDeffddy32new3x8fFGnz59jOrqasMwDCM/P9+orq629LFq1SrDMAzj559/Nry8vIzi4mJj586dhpeXl5GRkWEYhmEsWbLEmDx5smEYhrFy5UrDzc3NOHDggGEYhnHfffcZ8+bNMwzDMO68807j8ccft2TKy8uzvPePPfaY5f5HH33UuPPOO0/7uurL9Mf3CzCKioost93d3Y3U1NTTvt4/mj17thEZGWkUFRUZVVVVxtSpU40nnnjCMAzDyM3NNWpqaiyZfHx8jOPHjzf4dX3i8/D0008bo0ePtrz2L774whg4cKBRXFxsVFdXG5dffrnla2DDhg2GjY2NsXnzZsMwDKOiosIICAgw1q9fbxiGYWzevNnw9vau9/UXFRUZJ3+LP91npylfw3/8nifWa/076w3AWP/O+hbp78TPz8b8nGstmlTdgjz6eDAvbl6TnlNSWEJmRiZ+/n44uza807FHn8bNj/joo48YMGAAVVVV3HLLLdx3330888wzfPbZZ2zdupXo6Gigdt2HE5fOjh8/nr/85S9ceeWVTJgwgaioqCa9jqZKTEykqqqKGTNmWO7z8PCgqKiI3377jZtuugmA8PBwRo4cyQ8//MA111wDYJlj07dvX+zs7MjOzsbf35/p06fzzjvvcPfdd7Ny5UpuuOEGoHakb+bMmXTr1g2AW2+9tc4u0CfMnj2b8847j2XLlpGenk5SUhKTJk2ipKSE7777jsOHD1vaFhcXs3fvXkJDQ3FycmLs2LEAzJgxg3nz6v8aiImJ4cEHH2T+/PnY29szY8YMYmNjsbGxISYmptHv3dVXX42trS2Ojo6WUYbhw4ef0s7BwcHynjX0Gi688EIqKyu58cYbGTduHFOmTKFTp9rB486dO3P99dcDtXsIent7s337duLi4rjkkkss+x/ddtttLFmyxDKyMHLkSIKCgoDakbETo6yjR4/mnnvuoaSkhDFjxlhe92effUZhYSEfffQRAMePH7ecev2j02Xy9fVt1PsXEhJy2tf7R3/+858tixDeeOONvPTSS9x7772kpqYyc+ZMMjIysLOzIzc3l7S0NCoqKur9uj5h8eLF+Pr68s0331g2udywYQMzZszA2bn28z979mwee+wxy3N69+7NyJEjgdrPTefOnS27jY8cOZKePXuyY8eORm37UN9n5+jRo43+GhZpLWkZabzP+0zMmGjavp4qiFqQvZN9k/8jj5ccx6mrEx59Pejs3LlF89jZ2TF9+nTuuecennnmGQzDYNGiRdx4442ntF22bBm7d+9mw4YNzJ49m5kzZ3Lvvfe2aJ7GOPED9Y+X9558++T1mmxtbS3zKm644QZuvvlm5s2bx9q1a3nuuecsfTbU3wl+fn4MHjyYL774gu3bt3P99ddjZ2dHWVkZNjY2/O9//8Pe3r7Oc7Zv397o1zZ8+HB27drFF198wfjx44mJibEs1z9r1qxG93O61/9Hzs7OltdZU1Nz2tcAsHv3br7//ns2bNjA//3f/7Fp0ybs7Or/9mBjY3PKe/rH9/N0GadPn84FF1zAf//7X5YvX85zzz3HunXrMAyDl156qc7O2E1R3/+nra0t1dXVltsnTou5ubnV+3pP7NDdmONcffXVPP3001x22WUA9OjRg/Ly8jNelj58+HC+/vprUlNT6dOnD1D/1+fJTl4V+nRtbWxssLOzq/f1nqy+/xdDp8ekDagxaqimmhrDvCuuNYeog/vuu+8sOwxPmzaNl156iaNHjwK18za2bdsGwN69e+nfvz933HEHt956K1u2bAHA1dW13vk2jdHQcyMiIujcuXOdpdpzc3NxdXUlKiqKN998E4B9+/bx448/MmLEiDMeb9iwYdTU1HDvvfdy0UUX0aNHDwAuuugi3n//fYqKigB47bXXTjsic+ONN/Lvf/+bt956izlz5gDg4uLCqFGjWLp0qaXdoUOHyMjIoE+fPpSVlbFp0yagdnTudK+5c+fODB06lCVLlljmSCUkJLBp0ybGjRt3SntXV1dKS0tbZCJtQ68hJyeHkpISJkyYwD/+8Q969epFQkICUDtSc2KS96+//kp2djYDBw5k/PjxrFu3zrIB8yuvvML48ePPWBAkJyfTs2dPZs2axZNPPmn5Ops2bRrLli2jtLR27ZTS0lJ2795dbx+ny/RHoaGh/PLLLwB88sknlqstG3q9f/Thhx9SUlJCdXU1K1eutHzdHDt2jF69egG189eOHau9MuZ0X9cnTJw4kTfeeINLLrmE3377DYBx48bx4YcfUlpaSk1NDW+//fZp378+ffpQUVFhmTf1008/ceTIESIjI/H29qaqqorExEQA3nrrrdP288c+G/s1LNJaggOCmclMggOCTcuggshk5RXlZJNNeUXLbex65ZVXEhUVRf/+/dmzZw/PP/88ANdffz3XXXcdY8eOZdCgQURFRbFhwwYA/u///o/+/ftz3nnn8fbbb1tGLubNm8ejjz562onRDWnouXZ2dnz++ee89tprlom5H3/8MQDvvvsu77zzDoMGDWL69Om88cYbBAQENOqYN9xwA6+++qrldBnApEmTuP766xk+fDiRkZEUFhby+OOP1/v8Sy+9lF9++QUfHx/69etnuf/dd99lz549REZGEhkZyfTp08nLy6NLly785z//4fbbb2fIkCH8+uuvBAYGnjbfRRddxJEjRxgxYgQ2NjZER0cTFhZmOZ13sh49ejBz5kzLxOSzdbrXkJ6ezkUXXcTAgQOJjIxkwIABTJo0CQB3d3dSUlIYOnQoN9xwA++99x7Ozs7079+ff/7zn0yYMIGBAweyefNmXn311TNm+PDDDxk4cCDnnXceV199tWXC8f33309UVBRDhw5l4MCBDBs2zFIw/NHpMv3Rc889x+23386IESOIj4/H3d0doMHX+0ejR4/msssuo3///nTv3p0FCxYA8Pzzz3P55ZczcuRItm/fbvk/b+jr+uQ+//Of/zB9+nR+/vlnpk2bxsSJExk0aBDjxo0jNDQUN7f615Dp3LkzH3/8MX//+98ZOHAgf/nLX/jwww9xdnbGzs6OF154gUmTJjF69GjLBPAzaerXsEhHZWNovPSMTmzd8frrr1tGW6B2SDo1NZXg4OBmb7tRWlBKenI6AeEBOLk5tVRkkbN24MABzj///DojHGZri5laQlFRES4uLtTU1HDzzTfj6+vLkiVLzI51ipb4nicdw9fvfs3F113M+nfWM3HmxDbXX3NoDlEDzrS5a0uws7PDBZfTztcQkY5v1qxZHDhwgLKyMgYPHmzK/D2RpvDy8GIMY/Dy8GqR/vy8/ZjKVPy8/Vqkv+bQT+EGnGlz15ZQU1PDcY5r6w5pc3r16tXmRmLaYqaW8OmnrbsRp0hL8/L0Yhzj8PJsmYLIvbs70UTj3t29RfprDs0hMlnF8QpyyW2xrTtERETam/zCfBJIIL8w37QMKohM5tDFAU88W3TrDhERkfbkYOZBVrOag5kHTcuggshkNjY22GN/xsuVRUREOqp+4f24l3vpF97vzI1biQoik1VWVVJIIZVVTdunTEREpKOws7PDCSdTLzBSQWSymuoayimnplqTqkVExDodzDzIx3ysU2bWrEuXLvSkp2Vfo7MRFRVFVFQU/fr1w87OznL7z3/+c73tf/vtN1avXt2ovk/ehd1MGzdu5JtvvjE7hoiItKC2cLZEl913ICdW9j2xeN3pVvo9uf3atWvrbETZ1m3cuJHi4mImTJhgdhQREWkhoUGh3MANhAbVv6nzuaARogbExsZy//33W3bqboysrCx27txpuZ2QkEB6ejpQu8prfHy8ZU+tw4cPszVuK4c5TEVFBYmJiaSlpQG1+4zFx8e3yJ5Cb7/9tmUbgSlTppCZmcmRI0d46KGHiI2NJSoqivnz5wNw3XXXcf755zNw4EAuueQSjhw5csb+CwoKuPnmm4mMjGTQoEGWzWOLi4u58cYbGTBgAAMGDOCRRx6xPGfs2LGsXbvWcvvKK69k1apVAMyZM4fbbruNmJgYevfuzRVXXMHx48f57bffeOWVV3jrrbeIiori0UcfJScnhwkTJlhe38lbdoiISOvo6tOVMQ+PoatP1zM3bi8MOaO9e/cao0aNMvbu3Vvn/rKyMiMhIcEoKyuz3Pfwww8bfn5+ltuRkZHGggULDMMwjOTkZAMwNmzYYBiGYTz55JNG927djT3/22MU5xcbw4YNM2666SbDMAzj0KFDBmCsXbu2yXlTU1MNd3d3wzAMY+fOnYaXl5eRkZFhGIZhLFmyxJg8ebJhGIaxcuVKY/r06XWem5OTY/n3P//5T+P22283DMMwNmzYYERHR9d7vDlz5hh33HGHUV1dbRiGYRw5csQwDMO49957jZkzZxrV1dVGcXGxERUVZaxevdowDMMYM2aMsWbNGksf06dPN1auXGkYhmHMnj3bGD58uFFaWmpUVVUZF1xwgfHee+8ZhlH7/t51112W5y1btsyYO3eu5XZeXl5T3ioRaYL6vueJtIRv3vvGsMfe+Oa9b0zLoFNmLeyWW25h+vTpltvvv/8+Li4uAPj7+xMXF0d4eDhQu1z/uFHjcMUVezt7Vq1aZdkfyMPDg7i4OEJDz274cMOGDVxyySX4+dUuh37bbbexZMkSjNNsYffuu+/y9ttvU1FRQVlZGd7e3mc8xtq1a4mLi6NTp9oBR09PT6B2hO3555+nU6dOODs7M2vWLGJjY7nqqqvO2OcVV1yBo6MjAEOGDGHfvn31ths2bBjPPvssd911F2PGjGHiRHP2wBERkebz9vRmPOPx9jzzz5zWolNmLczHx4fIyEjL7X79+ll2andwcGDw4MGWAsnLy4vIAZFUUolhGERERBAUFASAvb09gwcPPu2u141lGEadNY4aWu/ohx9+YPny5Xz11Vfs3LmTZcuWUV5e3mLHPvn4dnZ2VFdXW+7/43FO3jjS1taWqqqqeo8xfPhwfvvtN4YOHcrHH3/Mn/70pzr9iohI2+fRw4NhDMOjh4dpGVQQmay8opwcciivaH7h0ZDx48ezbt06srOzAXjllVcYP348NjY2uLq61pmjdOzYMVxdXenRowfHjx/n1VdfbdQxpk2bxlNPPWXZjy0nJweAiy66iNdffx3DMCgpKeGdd94hJiYGgNDQUH755RcAUlNT+eGHHxp1rD9mTk1NpWvXrsyYMYMXX3yRpKSkVt2MV0REWl5RcREppFBUXGRaBhVEJuvSpQseeLTIZff16d+/P//85z+ZMGECAwcOZPPmzZZCZ/z48ZSUlDBo0CDmz5/PpEmTCAsLo0+fPkycOJGoqKhGHePZZ5+ltLSUAQMGEBUVxQMPPADAgw8+iI2NDZGRkQwdOpRp06Zx5ZVXAnDffffx3//+l+joaP7+978zdOjQRh3r8ssvZ+vWrZZJ1Rs3biQ6OpqoqChGjBjBU089ddajaiIicm6lpqfyDu+Qmp5qWgYb43STScTixG73r7/+OhEREZb7y8vLSU1NJTg4uM4pnqY4XnKc3D25ePT1oLNz55aKLCLS4lrie55IfdJ+SeP5Yc+zcMtCgoYGmZJBI0Qmq6qqooii086RERER6eg623fGDTc625s3MKCCyGRV1VWUUEJVtQoiERGxThlZGaxhDRlZGaZlUEHUAs7mrKNDFwe88cahi4afRaRt0wwLaS1l5WVkkUVZeZlpGbQOUQNiY2OJjY097VVL9vb22NjYkJOTg6enZ4OXtJ/O8YrjVFFFeUU5Nbba4FVE2ibDMMjJycHGxgZ7e3uz40gHEx4czjzmER4cbloGFUQNiImJISYmxjKp+o9sbW3x9/cnIyODAwcONOsY5aXl5OTm4GnjiYOTRolEpO2ysbHB398fW1tbs6OItDgVRGepa9euhIeHU1nZvB16d32/i+Xzl/PQqw8RPCa4hdOJiLQce3t7FUPSKhKSE3iSJxmZPBKfwT6mZFBB1AJsbW2b/U3Cz9OP6LRo/Dz9dBmriIhYJY/uHgxnOB7dtVK11SqvKCePvFZbqVpERKSt6+nRk1GMoqdHT9MyqCAyWdL+JF7kRZL2J5kdRURExBQlpSWkkUZJaYlpGXTKrBEqKioASEtLa/G+bW1tudr5amxtbUlMTGzx/kVERNq6n7f+zGrn1YzeOppqz5bfoDsoKOiM01K0dUcjfPPNNyxZssTsGCIiItIMf9x6qz4qiBohPz+fX3/9lc8++4yFCxc26jkvvvgiCxYsOGO7tLQ0lixZwqJFiwgKMmf/lramse+dGc51ttY6Xkv1ezb9NOe5TX1OY9rrM3iqtvwZBH0OW7Kf1v4ctpWfhY0ZIdIps0bo1q0bEyZM4LvvvjtjhXlC165dG90Wav+zmtK+I2vqe3cunetsrXW8lur3bPppznOb+pymtNdn8Hdt+TMI+hy2ZD+t/TlsTz8LNam6CWJiYlqlrdTVlt+7c52ttY7XUv2eTT/NeW5Tn9OWv5basrb+vulz2HL9tPbnsK1/LZ1Mp8xMdmIV7Mac3xSRlqfPoIj52sLnUCNEJnN3d2fOnDm4u7ubHUXEKukzKGK+tvA51AiRiIiIWD2NEImIiIjVU0EkIiIiVk8FkYiIiFg9FUQiIiJi9VQQiYiIiNVTQdTGHT9+nH/+859Mnz6diy++mPnz57Nz506zY4lYlcWLF3PppZdy8cUXM2fOHH766SezI4lYrV27djFmzBjefPPNFu1Xl923cWVlZXzwwQdMmjQJT09Pvv76a1566SU+/PDDM+7LIiItIzU1FX9/f+zt7UlISOCuu+7i/fffx83NzexoIlalpqaGW2+9FRsbG4YPH87s2bNbrG+NELVxjo6OzJkzBy8vLzp16sSkSZOoqakhIyPD7GgiViM4OBh7e3sAbG1tqaysJDc31+RUItbniy++IDIyksDAwBbvW5u7trDS0lLefPNNkpOTSU5OpqCggDlz5nDjjTfW2/aNN95gw4YNFBUVERgYyMyZMxk/fvxp+09LS6OiogJfX9/WfBki7VZrfQYfffRRNm3axPHjxxk2bBghISHn4uWItEut8TksKCjgo48+4pVXXuGFF15o8cwqiFpYQUEBa9asITQ0lFGjRrF27drTtl20aBF79+7llltuISAggNjYWB555BFqamq46KKLTmlfXl7O448/zqxZs3BycmrNlyHSbrXWZ/Chhx6iqqqK+Ph40tLSsLGxae2XItJutcbn8LXXXmPGjBl07dq1VTKrIGph3t7efPnll9jY2JCfn3/aL4Kff/6ZrVu38tBDD1l2Ax48eDDZ2dm8/PLLXHjhhdja2lraV1VV8fDDDxMUFMT1119/Tl6LSHvUWp9BADs7O4YMGcLHH3+Mv78/w4cPb/XXI9IetfTnMDExkaSkJO66665Wy6w5RC3MxsamUb85bt68GUdHR8aOHVvn/smTJ5Obm0tCQoLlvpqaGh5//HE6derEfffdp99MRRrQGp/BP6qpqSEzM/Nso4p0WC39Ody+fTsHDhzg0ksvZerUqXz33Xe8++67PP744y2WWSNEJklNTSUoKAg7u7r/BaGhoZbHIyMjAXj66afJy8vjqaeeOqW9iDRPYz+DeXl57Ny5k6FDh2Jvb8+mTZvYtm0bt9xyixmxRTqUxn4OL7nkkjpF07/+9S+8vb259tprWyyLfrqapKCgoN6J0S4uLgAUFhYCkJ2dzdq1a+ncuTPTpk2ztHvyyScZNGjQuQkr0gE19jMI8NFHH/HEE09gY2ODv78/ixcvJiws7JxlFemoGvs5dHJyqjN3tkuXLjg5ObXo0hcqiEzUmOFEb29vNm3adA7SiFifxnwG3d3dWb58+TlII2KdmjMN5IEHHmjxHJpDZBI3NzcKCgpOub+oqAgAV1fXcx1JxKroMyhivrb0OVRBZJKQkBDS0tKoqqqqc//+/fuB2oXgRKT16DMoYr629DlUQWSSUaNGUVZWxvfff1/n/vXr1+Ph4UG/fv1MSiZiHfQZFDFfW/ocag5RK9iyZQvl5eWUlpYCtatLb9y4EYBhw4bh4ODAsGHDOP/881m2bBmlpaX4+fnx7bff8ssvv7Bo0aJT1j8RkcbTZ1DEfO3tc6jNXVvBjBkzyM7OrvexDz74AB8fH6B2ufLXX3+9znLl1113XYNbd4jImekzKGK+9vY5VEEkIiIiVk9ziERERMTqqSASERERq6eCSERERKyeCiIRERGxeiqIRERExOqpIBIRERGrp4JIRERErJ4KIhEREbF6KohERM7Ss88+y9SpUy1bFAD8+9//ZvTo0Wzbts3EZL97/PHHueqqq6ioqDA7ikibpL3MRKSOrKws/vznPzfYJiwsjH//+9/nKFHblp6ezhdffMG8efNwcnJq1WN9/vnnPPPMM0ybNo277767wbY333wzSUlJvP7660RERDB79mxiY2P58MMPue6661o1p0h7pIJIROrl5+fHRRddVO9j7u7u5zhN27Vy5Uo6d+7MpZde2urHiomJ4V//+hffffcdCxYsoEuXLvW227dvH0lJSYSHhxMREQGAv78/I0eO5L333mP69Ok4Ojq2el6R9kQFkYjUy8/PjxtvvNHsGG1afn4+mzZtYuzYsa0+OgTg7OzMmDFj+Prrr/n++++ZMGFCve3Wrl0LwOTJk+vcP2HCBL7//nu+/fZbLrnkklbPK9KeaA6RiJy10aNHc+edd5Kfn8/SpUuZNm0aMTExzJ8//7RzaEpLS/n3v//NrFmziImJYfLkydx9993s2LHjlLZ33nkno0eP5vjx46xYsYJrrrmGcePG1Tlt9/333zN37lxiYmK49NJLefLJJykqKmLGjBnMmDHD0u7xxx9n9OjR7Nmzp95cL7/8MqNHj2bTpk1nfN3ffvstx48fZ+zYsWdse8K+ffu4/PLLmTp1KgkJCZb7Dx06xBNPPMGVV17J+PHjueyyy/jHP/5xym7hU6ZMAeCrr76qt//KykpiY2Pp3LnzKQXTsGHDcHR0ZN26dY3OK2ItVBCJSIsoLi7mtttuY9++fVx00UWMHj2axMRE7r77bvbv31+nbWFhIbfeeiurVq3C1dWVyy67zNJ+4cKFbN68ud5jLFq0iHXr1jFo0CCuuuoqfH19Afjyyy958MEHyczMZOLEiVx88cXs3r2bv/3tb1RVVdXpY9q0acDvoygnq6qq4uuvv6ZHjx5ccMEFZ3zNcXFxAPTv3//MbxCwfft2FixYgK2tLcuXL6dfv34AJCQkcPPNN7N+/XoiIiK48sorGTRoEP/973+55ZZbOHTokKWPqKgo/P39iY+PJysr65Rj/PjjjxQUFDB69GhcXFzqPGZvb0/v3r3Zs2cPZWVljcosYi10ykxE6pWZmXnaidP9+/dn6NChde5LSUnhsssu4y9/+QudOtX+rjV48GCefPJJPvnkkzqTgJ977jlSU1O5//7765zWOXr0KPPmzeOpp55iyJAhp8yRycvLY+XKlbi6ulruKyoq4oUXXsDJyYk33njDUiTNnTuXe++9l8TERLy9vS3tIyMjCQ4O5ttvv+WOO+6oM5fmp59+4ujRo1x77bXY2Z352+OuXbvw9PSke/fuZ2y7efNmHnnkEXx9fXn66afp2bMnUFuELV68mJqaGl5//XXCwsIsz9mxYwcLFy7khRdeYOnSpZb7J0+ezGuvvcb69eu54YYb6hznyy+/BH4fSfqjiIgItm/fzp49exg8ePAZc4tYC40QiUi9MjMzWbVqVb1/fvnll1PaOzo6Mn/+fEsxBHDxxRdja2vL3r17Lffl5+ezYcMGoqOjT5nj0qNHD6655hry8/Mtoy8nu+GGG+oUQwA//PADZWVlXHLJJZZiCMDOzo6bbrqp3tc2bdo0SktL+e677+rcv3btWmxsbBo1v6ayspL8/PxGFUNr167loYceIjw8nOXLl1uKIagtwrKzs7nmmmvqFEMAAwcOZMSIEWzZsoWSkhLL/Sfe16+++grDMCz35+bmsnXrVry9vU9b7JzIm5OTc8bcItZEI0QiUq8hQ4bw9NNPN7q9v7//KROL7ezs6NGjB8XFxZb79u7dS3V1NcePH693BCojIwOAtLS0U05b9e3b95T2+/btA2DAgAGnPNa3b19sbW1PuX/ChAm88sorrF271jKSkpOTw//+9z/LKakzKSgoADjltNQfrV69mh9//JFhw4bx6KOP4uDgUOfx3bt3A3Dw4MF634+jR49SU1NDeno6ffr0AcDDw4OhQ4fy008/ER8fT3R0NFA7r6i6uprJkydjY2NTb54TBeWJ/CJSSwWRiLQIZ2fneu+3tbWlpqbGcruwsBCAnTt3snPnztP2V15efsp9PXr0OOW+EyMn3bp1O+WxTp064ebmdsr9Li4ujBs3jvXr13PgwAF69erFunXrqK6ubvTVVydO551pocMTk8SHDh16SjEEtaf8AP773/822M8f348pU6bw008/8dVXX9UpiDp16sSkSZNO28+JvKe7ZF/EWqkgEpFz6kTh9Oc//5nbb7+9Sc+tb9TjRH/5+fmnPFZTU0NBQQGenp6nPDZt2jTWr1/P2rVruf322/nqq69wdXVl9OjRjcri4uKCnZ2dpcA7nfvuu4+33nqLF154gU6dOnH55ZfXefzEqNrSpUsbNZH7hOHDh9OjRw++//57/vrXv5KSkkJGRgZDhgzBy8vrtM87kbe+AlLEmmkOkYicU3369MHGxsZyquhshYaGArUTnP9oz549VFdX1/u8AQMGEBISwtdff82WLVs4dOgQF110UZNGToKDg8nOzj7lSraTubi48Oyzz9K7d2+effZZPvnkkzqPn7jSrKnvh52dHRMnTqSiooJvv/3Wcin96SZTn5Ceng5ASEhIk44n0tGpIBKRc8rd3Z1x48axa9cu/vOf/9SZFHxCQkJCvafM6jNy5EgcHR1Zu3ZtncvTq6qqWLFiRYPPnTp1KgUFBTz11FMATV6sMCoqiuPHj1vmMZ2Oi4sLy5Yto0+fPjz33HN8/PHHdfJ7eXnxwQcf8Ntvv53y3KqqqnrXZoLfi5/PPvuMjRs34ubmxsiRIxvMkpCQgLu7OwEBAWd4dSLWRafMRKReDV12D5zVKtZ/+9vfSE9P5+WXX+brr7+mf//+dO3alSNHjpCYmEhGRgaffvppvXNu/sjFxYU77riDp556iptvvpkLL7wQZ2dntmzZQufOnfHw8DjtBOOJEyfy6quvkpubS79+/SyjTY01atQoPvzwQ+Li4ixbZDSU85lnnuGuu+7i+eefxzAMrrzySjp37syjjz7Kvffey5133kl0dDTBwcEAHD58mB07duDm5sY777xzSp+BgYFERkZa5mJdcskl2NvbnzZDZmYmWVlZXHbZZU16nSLWQAWRiNTrxGX3p3M2BZGrqysvvfQSn3zyCd999x2xsbHU1NTQo0cPwsLCmD17dr2ToU9n6tSpuLi48Pbbb7N+/XqcnZ0ZMWIE8+fP56qrrsLPz6/e53Xt2pWRI0cSGxvbrK0soqKiCAwM5JtvvuHaa689Y/sTI0V33XUXL7zwAoZhcNVVV9G3b1/+/e9/85///IctW7awc+dO7O3t8fDwYNSoUYwfP/60fU6ZMsVSEP1xGYM/+uabb4DfF6cUkd/ZGPWNV4uIdAAZGRlce+21jBs3jkceeaTeNrNmzeLw4cN8+umnzdqP7IsvvuDpp5/mlVdescwHaouqqqqYOXMm3t7ePP/882bHEWlzNIdIRNq9oqIijh8/Xue+iooKli9fDtSe2qrPzz//zIEDB5g4cWKzN2edMmUKQUFBrFy5slnPP1e++eYbsrOzue2228yOItIm6ZSZiLR7v/32G0888QR/+tOf6NmzJwUFBcTHx5Odnc3gwYO58MIL67T/7LPPOHLkCGvWrKFLly5cc801zT62ra0t//d//8cvv/xCaWnpOdn1vjlsbGy45557zjjXScRa6ZSZiLR76enprFixgl27dlnWI/Lz8+PCCy/k6quvPuVS+hkzZpCTk0NAQADz589v0vo/ItIxqSASERERq6c5RCIiImL1VBCJiIiI1VNBJCIiIlZPBZGIiIhYPRVEIiIiYvVUEImIiIjVU0EkIiIiVk8FkYiIiFi9/weAkWn56FcVcAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_bkg_poisson_error = np.zeros((2,len(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents))))\n", + "fit_bkg_gaussian_error = np.zeros(len(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents)))\n", + "inj_bkg_poisson_error = np.zeros((2,len(grb_bkg.binned_data.project('Em').todense().contents)))\n", + "inj_bkg_gaussian_error = np.zeros(len(grb_bkg.binned_data.project('Em').todense().contents))\n", + "\n", + "for i, counts in enumerate(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents)):\n", + " if counts > 5:\n", + " fit_bkg_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " fit_bkg_poisson_error[0][i] = poisson_error[0]\n", + " fit_bkg_poisson_error[1][i] = poisson_error[1]\n", + "\n", + "for i, counts in enumerate(grb_bkg.binned_data.project('Em').todense().contents):\n", + " if counts > 5:\n", + " inj_bkg_gaussian_error[i] = np.sqrt(counts)\n", + " else:\n", + " poisson_error = poisson_conf_interval(counts, interval=\"frequentist-confidence\", sigma=1)\n", + " inj_bkg_poisson_error[0][i] = poisson_error[0]\n", + " inj_bkg_poisson_error[1][i] = poisson_error[1]\n", + " \n", + "fig,ax = plt.subplots()\n", + "\n", + "ax.stairs(expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), binned_energy_edges, color='purple', label = \"Best fit convolved with response plus background\")\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), yerr=fit_bkg_poisson_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, expectation.project('Em').todense().contents+(bkg_par.value * bkg.binned_data.slice[{'Time':slice(bkg_min,bkg_max)}].project('Em').todense().contents), yerr=fit_bkg_gaussian_error, color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(grb_bkg.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Total counts\")\n", + "ax.errorbar(binned_energy, grb_bkg.binned_data.project('Em').todense().contents, yerr=inj_bkg_poisson_error, color='black', linewidth=0, elinewidth=1)\n", + "ax.errorbar(binned_energy, grb_bkg.binned_data.project('Em').todense().contents, yerr=inj_bkg_gaussian_error, color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.html b/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.html new file mode 100644 index 00000000..3b8beb38 --- /dev/null +++ b/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.html @@ -0,0 +1,3352 @@ + + + + + + + Diffuse 511 Spectral Fit in Galactic Coordinates — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Diffuse 511 Spectral Fit in Galactic Coordinates

+

This notebook fits the spectrum for the 511 keV emission in the Galaxy. It can be used as a general template for fitting diffuse/extended sources in Galactic coordinates. For a general introduction into spectral fitting with cosipy, see the continuum_fit tutorial.

+

This notebook uses two 511 keV emission models, first a test model and then a realistic multi-component model.

+

All input models are available here: https://github.com/cositools/cosi-data-challenges/tree/main/cosi_dc/Source_Library/DC2/sources/511

+

The toy 511 model consists of two components: an extended Gaussian source (5 degree extension) and a point source. In the first part of this tutorial, we fit the data with just the single extended Gaussian component, i.e. we ignore the point source component. This is done as a simplification, and as will be seen, it already provides a good fit. In the second part of this tutorial we use a model consisting of both components.

+

The realistic input models consist of a bulge component (with an extended Gaussian source and a point source) as well as a disk component with different spectral characteristics. In the third part of this tutorial we use this model.

+

For the background we use just the cosmic photons.

+

This tutotrial also walks through all the steps needed when performing a spectral fit, starting with the unbinned data, i.e. creating the combined data set, and binning the data.

+

For the first two examples, you will need the following files (available on wasabi): 20280301_3_month.ori cosmic_photons_3months_unbinned_data.fits.gz 511_Testing_3months.fits.gz SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5 psr_gal_511_DC2.h5

+

The binned data products are available on wasabi, so you can also start by loading the binned data directly.

+

For the third example, we start with the binned data, and you will need: combined_binned_data_thin_disk.hdf5

+

WARNING: If you run into memory issues creating the combined dataset or binning the data on your own, start by just loading the binned data directly. See the dataIO example for how to deal with memory issues.

+
+
[7]:
+
+
+
# imports:
+from cosipy import COSILike, test_data, BinnedData
+from cosipy.spacecraftfile import SpacecraftFile
+from cosipy.response.FullDetectorResponse import FullDetectorResponse
+from cosipy.response import PointSourceResponse
+from cosipy.threeml.custom_functions import Wide_Asymm_Gaussian_on_sphere, SpecFromDat
+from cosipy.util import fetch_wasabi_file
+from scoords import SpacecraftFrame
+from astropy.time import Time
+import astropy.units as u
+from astropy.coordinates import SkyCoord
+from astromodels import *
+import numpy as np
+import matplotlib.pyplot as plt
+%matplotlib inline
+from threeML import PointSource, Model, JointLikelihood, DataList, update_logging_level
+from astromodels import Parameter
+from astromodels import *
+from mhealpy import HealpixMap, HealpixBase
+import healpy as hp
+import numpy as np
+import matplotlib.pyplot as plt
+from pathlib import Path
+import os
+import time
+import h5py as h5
+from histpy import Axis, Axes
+import sys
+from histpy import Histogram
+
+
+
+
+

Get the data

+

The data can be downloaded by running the cells below. Each respective cell also gives the wasabi file path and file size.

+
+
[ ]:
+
+
+
# ori file:
+# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori
+# File size: 684 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')
+
+
+
+
+
[ ]:
+
+
+
# cosmic photons:
+# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/cosmic_photons_3months_unbinned_data.fits.gz
+# File size: 8.5 GB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/cosmic_photons_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# 511 test model:
+# wasabi path: COSI-SMEX/DC2/Data/Sources/511_Testing_3months_unbinned_data.fits.gz
+# File size: 850.6 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_Testing_3months_unbinned_data.fits.gz')
+
+
+
+
+
[ ]:
+
+
+
# detector response:
+# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5
+# File size: 350.4 MB
+fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5')
+
+
+
+
+
[ ]:
+
+
+
# point source response:
+# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz
+# File size: 3.82 GB
+fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz')
+os.system("gzip -d psr_gal_511_DC2.h5.gz")
+
+
+
+
+
[ ]:
+
+
+
# Binned data products:
+# Note: This is not needed if you plan to bin the data on your own.
+# wasabi path: COSI-SMEX/cosipy_tutorials/extended_source_spectral_fit_galactic_frame
+# File sizes: 689.2 MB, 182.0 MB, 739.8 MB, 697.0 MB, respectively.
+file_list = ['cosmic_photons_binned_data.hdf5','gal_511_binned_data.hdf5','combined_binned_data.hdf5','combined_binned_data_thin_disk.hdf5']
+
+for each in file_list:
+    fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/extended_source_spectral_fit_galactic_frame/%s' %each)
+
+
+
+
+
+

Create the combined data

+

We will combine the 511 source and the cosmic photon background, which will be used as our dataset. This only needs to be done once. You can skip this cell if you already have the combined data file.

+
+
[10]:
+
+
+
# Define instance of binned data class:
+instance = BinnedData("Gal_511.yaml")
+
+# Combine files:
+input_files = ["cosmic_photons_3months_unbinned_data.fits.gz","511_Testing_3months_unbinned_data.fits.gz"]
+instance.combine_unbinned_data(input_files, output_name="combined_data")
+
+
+
+
+
+
+
+
+
+adding cosmic_photons_3months_unbinned_data.fits.gz...
+
+
+adding 511_Testing_3months_unbinned_data.fits.gz...
+
+
+
+
+
+
+
+
+WARNING: VerifyWarning: Keyword name 'data file' is greater than 8 characters or contains characters not allowed by the FITS standard; a HIERARCH card will be created. [astropy.io.fits.card]
+
+
+
+
+

Bin the data

+

You only have to do this once, and after you can start by loading the binned data directly. You can skip this cell if you already have the binned data files.

+
+
[11]:
+
+
+
# Bin 511:
+gal_511 = BinnedData("Gal_511.yaml")
+gal_511.get_binned_data(unbinned_data="511_Testing_3months_unbinned_data.fits.gz", output_name="gal_511_binned_data")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
[12]:
+
+
+
# Bin background:
+bg_tot = BinnedData("Gal_511.yaml")
+bg_tot.get_binned_data(unbinned_data="cosmic_photons_3months_unbinned_data.fits.gz", output_name="cosmic_photons_binned_data")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
[13]:
+
+
+
# Bin combined data:
+data_combined = BinnedData("Gal_511.yaml")
+data_combined.get_binned_data(unbinned_data="combined_data.fits.gz", output_name="combined_binned_data")
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+

Read in the binned data

+

Once you have the binned data files, you can start by loading them directly (instead of binning them each time).

+
+
[ ]:
+
+
+
# Load 511:
+gal_511 = BinnedData("Gal_511.yaml")
+gal_511.load_binned_data_from_hdf5(binned_data="gal_511_binned_data.hdf5")
+
+# Load background:
+bg_tot = BinnedData("Gal_511.yaml")
+bg_tot.load_binned_data_from_hdf5(binned_data="cosmic_photons_binned_data.hdf5")
+
+# Load combined data:
+data_combined = BinnedData("Gal_511.yaml")
+data_combined.load_binned_data_from_hdf5(binned_data="combined_binned_data.hdf5")
+
+
+
+
+
+

Define source

+

The injected source has both an extended componenent and a point source component, but to start with we will ignore the point source component, and see how well we can describe the data with just the extended component. Define the extended source:

+
+
[ ]:
+
+
+
# Define spectrum:
+# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]
+F = 4e-2 / u.cm / u.cm / u.s
+mu = 511*u.keV
+sigma = 0.85*u.keV
+spectrum = Gaussian()
+spectrum.F.value = F.value
+spectrum.F.unit = F.unit
+spectrum.mu.value = mu.value
+spectrum.mu.unit = mu.unit
+spectrum.sigma.value = sigma.value
+spectrum.sigma.unit = sigma.unit
+
+# Set spectral parameters for fitting:
+spectrum.F.free = True
+spectrum.mu.free = False
+spectrum.sigma.free = False
+
+# Define morphology:
+morphology = Gaussian_on_sphere(lon0 = 359.75, lat0 = -1.25, sigma = 5)
+
+# Set morphological parameters for fitting:
+morphology.lon0.free = False
+morphology.lat0.free = False
+morphology.sigma.free = False
+
+# Define source:
+src1 = ExtendedSource('gaussian', spectral_shape=spectrum, spatial_shape=morphology)
+
+# Print a summary of the source info:
+src1.display()
+
+# We can also print the source info as follows.
+# This will show you which parameters are free.
+#print(src1.spectrum.main.shape)
+#print(src1.spatial_shape)
+
+
+
+
+
+
+
+
    + +
  • gaussian (extended source): +
      + +
    • shape: +
        + +
      • lon0: +
          + +
        • value: 359.75
        • + +
        • desc: Longitude of the center of the source
        • + +
        • min_value: 0.0
        • + +
        • max_value: 360.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • lat0: +
          + +
        • value: -1.25
        • + +
        • desc: Latitude of the center of the source
        • + +
        • min_value: -90.0
        • + +
        • max_value: 90.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • sigma: +
          + +
        • value: 5.0
        • + +
        • desc: Standard deviation of the Gaussian distribution
        • + +
        • min_value: 0.0
        • + +
        • max_value: 20.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      + +
    • + +
    • spectrum: +
        + +
      • main: +
          + +
        • Gaussian: +
            + +
          • F: +
              + +
            • value: 0.04
            • + +
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • + +
            • min_value: None
            • + +
            • max_value: None
            • + +
            • unit: s-1 cm-2
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          • mu: +
              + +
            • value: 511.0
            • + +
            • desc: Central value
            • + +
            • min_value: None
            • + +
            • max_value: None
            • + +
            • unit: keV
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          • sigma: +
              + +
            • value: 0.85
            • + +
            • desc: standard deviation
            • + +
            • min_value: 1e-12
            • + +
            • max_value: None
            • + +
            • unit: keV
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          + +
        • + +
        + +
      • + +
      + +
    • + +
    + +
  • + +
+
+

Let’s make some plots to look at the extended source:

+
+
[6]:
+
+
+
# Plot spectrum:
+energy = np.linspace(500.,520.,201)*u.keV
+dnde = src1.spectrum.main.Gaussian(energy)
+plt.plot(energy, dnde)
+plt.ylabel("dN/dE [$\mathrm{ph \ cm^{-2} \ s^{-1} \ keV^{-1}}$]", fontsize=14)
+plt.xlabel("Energy [keV]", fontsize=14)
+
+
+
+
+
[6]:
+
+
+
+
+Text(0.5, 0, 'Energy [keV]')
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_20_1.png +
+
+

An extended source in astromodels corresponds to a skymap, which is normalized so that the sum over the entire sky, multiplied by the pixel area, equals 1. The pixel values in the skymap serve as weights, which we can use to scale the input spectrum, in order to get the model counts for any location on the sky. This is all handled internally within cosipy, but for demonstration purposes, let’s take a look at the skymap:

+
+
[7]:
+
+
+
# Define healpix map matching the detector response:
+skymap = HealpixMap(nside = 16, scheme = "ring", dtype = float, coordsys='G')
+coords1 = skymap.pix2skycoord(range(skymap.npix))
+pix_area = skymap.pixarea().value
+
+# Fill skymap with values from extended source:
+skymap[:] = src1.Gaussian_on_sphere(coords1.l.deg, coords1.b.deg)
+
+# Check normalization:
+print("summed map: " + str(np.sum(skymap)*pix_area))
+
+
+
+
+
+
+
+
+summed map: 0.9974653836229359
+
+
+
+
[8]:
+
+
+
# Plot healpix map:
+plot, ax = skymap.plot(ax_kw = {'coord':'G'})
+ax.grid()
+lon = ax.coords['glon']
+lat = ax.coords['glat']
+lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)
+lat.set_axislabel('Galactic Latitude',fontsize=5)
+lon.display_minor_ticks(True)
+lat.display_minor_ticks(True)
+lon.set_ticks_visible(True)
+lon.set_ticklabel_visible(True)
+lon.set_ticks(color='white',alpha=0.6)
+lat.set_ticks(color='white',alpha=0.6)
+lon.set_ticklabel(color='white',fontsize=4)
+lat.set_ticklabel(fontsize=4)
+lat.set_ticks_visible(True)
+lat.set_ticklabel_visible(True)
+
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_23_0.png +
+
+
+
[9]:
+
+
+
# Plot weights directly
+# Note: for extended sources the weights also need to include the pixel area.
+plt.semilogy(skymap[:]*pix_area)
+plt.ylabel("weight")
+plt.xlabel("pixel")
+plt.ylim(1e-50,1)
+
+
+
+
+
[9]:
+
+
+
+
+(1e-50, 1)
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_24_1.png +
+
+
+
+

Setup the COSI 3ML plugin and perform the likelihood fit

+

Load the detector response, ori file, and precomputed point source response in Galactic coordinates:

+
+
[ ]:
+
+
+
response_file = "SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5"
+response = FullDetectorResponse.open(response_file)
+ori = SpacecraftFile.parse_from_file("20280301_3_month.ori")
+psr_file = "psr_gal_511_DC2.h5"
+
+
+
+

Setup the COSI 3ML plugin:

+
+
[ ]:
+
+
+
%%time
+
+# Set background parameter, which is used to fit the amplitude of the background:
+bkg_par = Parameter("background_cosi",                                        # background parameter
+                    1,                                                        # initial value of parameter
+                    min_value=0,                                              # minimum value of parameter
+                    max_value=5,                                              # maximum value of parameter
+                    delta=0.05,                                               # initial step used by fitting engine
+                    desc="Background parameter for cosi")
+
+# Instantiate the COSI 3ML plugin
+cosi = COSILike("cosi",                                                       # COSI 3ML plugin
+                dr = response_file,                                           # detector response
+                data = data_combined.binned_data.project('Em', 'Phi', 'PsiChi'),       # data (source+background)
+                bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'),          # background model
+                sc_orientation = ori,                                          # spacecraft orientation
+                nuisance_param = bkg_par,                                      # background parameter
+                precomputed_psr_file = psr_file)                               # full path to precomputed psr file in galactic coordinates (optional)
+
+# Add sources to model:
+model = Model(src1)  # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)
+
+
+
+
+
+
+
+
+... loading the pre-computed image response ...
+--> done
+CPU times: user 1min 55s, sys: 37.4 s, total: 2min 32s
+Wall time: 2min 49s
+
+
+

Perform likelihood fit:

+
+
[6]:
+
+
+
%%time
+
+plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)
+
+like = JointLikelihood(model, plugins, verbose = False)
+
+like.fit()
+
+
+
+
+
+
+
+
11:55:08 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042
+
+
+
+
+
+
+
+Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.
+
+WARNING RuntimeWarning: invalid value encountered in log
+
+
+
+
+
+
+
+
11:56:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128
+                  measurements such as AIC or BIC are unreliable                                                   
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + +
1.00-0.40
-0.401.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
+
+
+
+
+
+
+
+CPU times: user 6min, sys: 3min 20s, total: 9min 21s
+Wall time: 1min 36s
+
+
+
+
[6]:
+
+
+
+
+(                                      value  negative_error  positive_error  \
+ gaussian.spectrum.main.Gaussian.F  0.046951       -0.000025        0.000025
+ background_cosi                    0.932137       -0.004667        0.004841
+
+                                       error         unit
+ gaussian.spectrum.main.Gaussian.F  0.000025  1 / (cm2 s)
+ background_cosi                    0.004754               ,
+        -log(likelihood)
+ cosi      -1.527559e+07
+ total     -1.527559e+07)
+
+
+
+
+

Results

+

First, let’s just print the results.

+
+
[7]:
+
+
+
results = like.results
+results.display()
+
+# Print a summary of the optimized model:
+print(results.optimized_model["gaussian"])
+
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + +
1.00-0.40
-0.401.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
+
+
+
+
+
+
+
+  * gaussian (extended source):
+    * shape:
+      * lon0:
+        * value: 359.75
+        * desc: Longitude of the center of the source
+        * min_value: 0.0
+        * max_value: 360.0
+        * unit: deg
+        * is_normalization: false
+      * lat0:
+        * value: -1.25
+        * desc: Latitude of the center of the source
+        * min_value: -90.0
+        * max_value: 90.0
+        * unit: deg
+        * is_normalization: false
+      * sigma:
+        * value: 5.0
+        * desc: Standard deviation of the Gaussian distribution
+        * min_value: 0.0
+        * max_value: 20.0
+        * unit: deg
+        * is_normalization: false
+    * spectrum:
+      * main:
+        * Gaussian:
+          * F:
+            * value: 0.046951164320587706
+            * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
+            * min_value: null
+            * max_value: null
+            * unit: s-1 cm-2
+            * is_normalization: false
+          * mu:
+            * value: 511.0
+            * desc: Central value
+            * min_value: null
+            * max_value: null
+            * unit: keV
+            * is_normalization: false
+          * sigma:
+            * value: 0.85
+            * desc: standard deviation
+            * min_value: 1.0e-12
+            * max_value: null
+            * unit: keV
+            * is_normalization: false
+        * polarization: {}
+
+
+
+

Now let’s make some plots. Let’s first look at the best-fit spectrum:

+
+
[8]:
+
+
+
# Best-fit model:
+energy = np.linspace(500.,520.,201)*u.keV
+flux = results.optimized_model["gaussian"].spectrum.main.shape(energy)
+
+fig,ax = plt.subplots()
+
+ax.plot(energy, flux, label = "Best fit")
+
+
+plt.ylabel("dN/dE [$\mathrm{ph \ cm^{-2} \ s^{-1} \ keV^{-1}}$]", fontsize=14)
+plt.xlabel("Energy [keV]", fontsize=14)
+ax.legend()
+
+
+
+
+
[8]:
+
+
+
+
+<matplotlib.legend.Legend at 0x2b0edbebf520>
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_34_1.png +
+
+

Now let’s compare the predicted counts to the injected counts:

+
+
[9]:
+
+
+
# Get expected counts from likelihood scan (i.e. best-fit convolved with response):
+total_expectation = cosi._expected_counts['gaussian']
+
+# Plot:
+fig,ax = plt.subplots()
+
+binned_energy_edges = gal_511.binned_data.axes['Em'].edges.value
+binned_energy = gal_511.binned_data.axes['Em'].centers.value
+
+ax.stairs(total_expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = "Best fit convolved with response")
+ax.errorbar(binned_energy, total_expectation.project('Em').todense().contents, yerr=np.sqrt(total_expectation.project('Em').todense().contents), color='purple', linewidth=0, elinewidth=1)
+ax.stairs(gal_511.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = ":", label = "Injected source counts")
+ax.errorbar(binned_energy, gal_511.binned_data.project('Em').todense().contents, yerr=np.sqrt(gal_511.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)
+
+ax.set_xlabel("Energy (keV)")
+ax.set_ylabel("Counts")
+
+ax.legend()
+
+# Note: We are plotting the error, but it's very small:
+print("Error: " +str(np.sqrt(total_expectation.project('Em').todense().contents)))
+
+
+
+
+
+
+
+
+Error: [2129.064008]
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_36_1.png +
+
+

Let’s also compare the projection onto Psichi:

+
+
[10]:
+
+
+
# expected src counts:
+ax,plot = total_expectation.slice[{'Em':0, 'Phi':5}].project('PsiChi').plot(ax_kw = {'coord':'G'})
+plt.title("model counts")
+
+# injected src counts:
+ax,plot = gal_511.binned_data.slice[{'Em':0, 'Phi':5}].project('PsiChi').plot(ax_kw = {'coord':'G'})
+plt.title("injected counts")
+
+
+
+
+
[10]:
+
+
+
+
+Text(0.5, 1.0, 'injected counts')
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_1.png +
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_38_2.png +
+
+

Here is a summary of the results:

+

Injected model (extended source): F = 4e-2 ph/cm2/s

+

Best-fit: F = (4.6951 +/- 0.0025)e-2 ph/cm2/s

+

We see that the best-fit values are very close to the injected values. The small difference is likely due to the fact that the injected model also has a point source component (which we’ve ignored), having the same specrtum, with a normalization of F = 1e-2 ph/cm2/s. In the next example we’ll see if this point source component can be detected.

+
+
+

**********************************************************

+
+
+

Example 2: Perform Analysis with Two Components

+

Define the point source. We’ll add this to the model, and keep just the normalization free.

+
+
[11]:
+
+
+
# Note: Astromodels only takes ra,dec for point source input:
+c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')
+c_icrs = c.transform_to('icrs')
+
+# Define spectrum:
+# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]
+F = 1e-2 / u.cm / u.cm / u.s
+Fmin = 0 / u.cm / u.cm / u.s
+Fmax = 1 / u.cm / u.cm / u.s
+mu = 511*u.keV
+sigma = 0.85*u.keV
+spectrum2 = Gaussian()
+spectrum2.F.value = F.value
+spectrum2.F.unit = F.unit
+spectrum2.F.min_value = Fmin.value
+spectrum2.F.max_value = Fmax.value
+spectrum2.mu.value = mu.value
+spectrum2.mu.unit = mu.unit
+spectrum2.sigma.value = sigma.value
+spectrum2.sigma.unit = sigma.unit
+
+# Set spectral parameters for fitting:
+spectrum2.F.free = True
+spectrum2.mu.free = False
+spectrum2.sigma.free = False
+
+# Define source:
+src2 = PointSource('point_source', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=spectrum2)
+
+# Print some info about the source just as a sanity check.
+# This will also show you which parameters are free.
+print(src2.spectrum.main.shape)
+
+# We can also get a summary of the source info as follows:
+#src2.display()
+
+
+
+
+
+
+
+
+  * description: A Gaussian function
+  * formula: $ K \frac{1}{\sigma \sqrt{2 \pi}}\exp{\frac{(x-\mu)^2}{2~(\sigma)^2}} $
+  * parameters:
+    * F:
+      * value: 0.01
+      * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
+      * min_value: 0.0
+      * max_value: 1.0
+      * unit: s-1 cm-2
+      * is_normalization: false
+      * delta: 0.1
+      * free: true
+    * mu:
+      * value: 511.0
+      * desc: Central value
+      * min_value: null
+      * max_value: null
+      * unit: keV
+      * is_normalization: false
+      * delta: 0.1
+      * free: false
+    * sigma:
+      * value: 0.85
+      * desc: standard deviation
+      * min_value: 1.0e-12
+      * max_value: null
+      * unit: keV
+      * is_normalization: false
+      * delta: 0.1
+      * free: false
+
+
+
+

Redefine the first source. We’ll keep just the normalization free.

+
+
[12]:
+
+
+
# Define spectrum:
+# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]
+F = 4e-2 / u.cm / u.cm / u.s
+Fmin = 0 / u.cm / u.cm / u.s
+Fmax = 1 / u.cm / u.cm / u.s
+mu = 511*u.keV
+sigma = 0.85*u.keV
+spectrum = Gaussian()
+spectrum.F.value = F.value
+spectrum.F.unit = F.unit
+spectrum.F.min_value = Fmin.value
+spectrum.F.max_value = Fmax.value
+spectrum.mu.value = mu.value
+spectrum.mu.unit = mu.unit
+spectrum.sigma.value = sigma.value
+spectrum.sigma.unit = sigma.unit
+
+# Set spectral parameters for fitting:
+spectrum.F.free = True
+spectrum.mu.free = False
+spectrum.sigma.free = False
+
+# Define morphology:
+morphology = Gaussian_on_sphere(lon0 = 359.75, lat0 = -1.25, sigma = 5)
+
+# Set morphological parameters for fitting:
+morphology.lon0.free = False
+morphology.lat0.free = False
+morphology.sigma.free = False
+
+# Define source:
+src1 = ExtendedSource('gaussian', spectral_shape=spectrum, spatial_shape=morphology)
+
+# Print a summary of the source info:
+src1.display()
+
+# We can also print the source info as follows.
+# This will also show you which parameters are free.
+#print(src1.spectrum.main.shape)
+#print(src1.spatial_shape)
+
+
+
+
+
+
+
+
    + +
  • gaussian (extended source): +
      + +
    • shape: +
        + +
      • lon0: +
          + +
        • value: 359.75
        • + +
        • desc: Longitude of the center of the source
        • + +
        • min_value: 0.0
        • + +
        • max_value: 360.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • lat0: +
          + +
        • value: -1.25
        • + +
        • desc: Latitude of the center of the source
        • + +
        • min_value: -90.0
        • + +
        • max_value: 90.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • sigma: +
          + +
        • value: 5.0
        • + +
        • desc: Standard deviation of the Gaussian distribution
        • + +
        • min_value: 0.0
        • + +
        • max_value: 20.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      + +
    • + +
    • spectrum: +
        + +
      • main: +
          + +
        • Gaussian: +
            + +
          • F: +
              + +
            • value: 0.04
            • + +
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • + +
            • min_value: 0.0
            • + +
            • max_value: 1.0
            • + +
            • unit: s-1 cm-2
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          • mu: +
              + +
            • value: 511.0
            • + +
            • desc: Central value
            • + +
            • min_value: None
            • + +
            • max_value: None
            • + +
            • unit: keV
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          • sigma: +
              + +
            • value: 0.85
            • + +
            • desc: standard deviation
            • + +
            • min_value: 1e-12
            • + +
            • max_value: None
            • + +
            • unit: keV
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          + +
        • + +
        + +
      • + +
      + +
    • + +
    + +
  • + +
+
+

Setup the COSI 3ML plugin using two sources in the model:

+
+
[13]:
+
+
+
%%time
+
+# Set background parameter, which is used to fit the amplitude of the background:
+bkg_par = Parameter("background_cosi",                                        # background parameter
+                    1,                                                        # initial value of parameter
+                    min_value=0,                                              # minimum value of parameter
+                    max_value=5,                                              # maximum value of parameter
+                    delta=0.05,                                               # initial step used by fitting engine
+                    desc="Background parameter for cosi")
+
+# Instantiate the COSI 3ML plugin
+cosi = COSILike("cosi",                                                       # COSI 3ML plugin
+                dr = response_file,                                           # detector response
+                data = data_combined.binned_data.project('Em', 'Phi', 'PsiChi'),       # data (source+background)
+                bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'),          # background model
+                sc_orientation = ori,                                          # spacecraft orientation
+                nuisance_param = bkg_par,                                      # background parameter
+                precomputed_psr_file = psr_file)                               # full path to precomputed psr file in galactic coordinates (optional)
+
+# Add sources to model:
+model = Model(src1, src2)  # Model with two sources.
+
+
+
+
+
+
+
+
+... loading the pre-computed image response ...
+--> done
+CPU times: user 2min 10s, sys: 41.5 s, total: 2min 52s
+Wall time: 3min 10s
+
+
+

Display the model:

+
+
[14]:
+
+
+
model.display()
+
+
+
+
+
+
+
+Model summary:

+ + + + + + + + + + + + + + + + + + + + + + +
N
Point sources1
Extended sources1
Particle sources0
+


Free parameters (2):

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
valuemin_valuemax_valueunit
gaussian.spectrum.main.Gaussian.F0.040.01.0s-1 cm-2
point_source.spectrum.main.Gaussian.F0.010.01.0s-1 cm-2
+


Fixed parameters (9):
(abridged. Use complete=True to see all fixed parameters)


Properties (0):

(none)


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
+
+

Before we perform the fit, let’s first change the 3ML console logging level, in order to mimimize the amount of console output.

+
+
[25]:
+
+
+
# This is a simple workaround for now to prevent a lot of output.
+from threeML import update_logging_level
+update_logging_level("CRITICAL")
+
+
+
+

Perform the likelihood fit:

+
+
[18]:
+
+
+
%%time
+plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)
+
+like = JointLikelihood(model, plugins, verbose = True)
+
+like.fit()
+
+
+
+
+
+
+
+
+Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
point_source.spectrum.main.Gaussian.F(0.0 +/- 1.3) x 10^-91 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + + +
1.00-0.01-0.40
-0.011.00-0.03
-0.40-0.031.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
+
+
+
+
+
+
+
+CPU times: user 7min 24s, sys: 3min 55s, total: 11min 20s
+Wall time: 1min 46s
+
+
+
+
[18]:
+
+
+
+
+(                                              value  negative_error  \
+ gaussian.spectrum.main.Gaussian.F      4.695126e-02   -2.403110e-05
+ point_source.spectrum.main.Gaussian.F  5.975791e-13    2.623492e-10
+ background_cosi                        9.320815e-01   -4.914467e-03
+
+                                        positive_error         error  \
+ gaussian.spectrum.main.Gaussian.F        2.433950e-05  2.418530e-05
+ point_source.spectrum.main.Gaussian.F    1.929678e-09  1.096013e-09
+ background_cosi                          4.582905e-03  4.748686e-03
+
+                                               unit
+ gaussian.spectrum.main.Gaussian.F      1 / (cm2 s)
+ point_source.spectrum.main.Gaussian.F  1 / (cm2 s)
+ background_cosi                                     ,
+        -log(likelihood)
+ cosi      -1.527559e+07
+ total     -1.527559e+07)
+
+
+

We see that the normalization of the point source has gone to zero, and we essentially get the same results as the first fit. This is not entirely surprising, considering that the two components have a high degree of degeneracy, and the point source is subdominant.

+

Note (CK): The injected model may not be exactly the same as the astromodel, because MEGAlib uses a cutoff of the Gaussian spectral distribution at 3 sigma.

+
+
+

*****************************************

+
+
+

Example 3: Working With a Realistic Model

+
+
+

Read in the binned data

+

We will start with the binned data, since we already learned how to bin data:

+
+
[2]:
+
+
+
# background:
+bg_tot = BinnedData("Gal_511.yaml")
+bg_tot.load_binned_data_from_hdf5(binned_data="cosmic_photons_binned_data.hdf5")
+
+# combined data:
+data_combined_thin_disk = BinnedData("Gal_511.yaml")
+data_combined_thin_disk.load_binned_data_from_hdf5(binned_data="combined_binned_data_thin_disk.hdf5")
+
+
+
+
+
+

Define source

+

This defines a multi-component source with a disk and gaussian component. The disk and bulge components have different spectral characteristics. Spatially, the bulge component is the sum of three different spatial models, with majority of the flux “narrow bulge” with

+
+
[3]:
+
+
+
# Spectral Definitions...
+
+models = ["centralPoint","narrowBulge","broadBulge","disk"]
+
+# several lists of parameters for, in order, CentralPoint, NarrowBulge, BroadBulge, and Disk sources
+mu         = [511.,511.,511., 511.]*u.keV
+sigma      = [0.85,0.85,0.85, 1.27]*u.keV
+F          = [0.00012, 0.00028, 0.00073, 1.7e-3]/u.cm/u.cm/u.s
+K          = [0.00046, 0.0011, 0.0027, 4.5e-3]/u.cm/u.cm/u.s/u.keV
+
+SpecLine   = [Gaussian(),Gaussian(),Gaussian(),Gaussian()]
+SpecOPs    = [SpecFromDat(dat="OPsSpectrum.dat"),SpecFromDat(dat="OPsSpectrum.dat"),SpecFromDat(dat="OPsSpectrum.dat"),SpecFromDat(dat="OPsSpectrum.dat")]
+
+# Set units and fitting parameters; different definition for each spectral model with different norms
+for i in range(4):
+    SpecLine[i].F.unit = F[i].unit
+    SpecLine[i].F.value = F[i].value
+    SpecLine[i].F.min_value =0
+    SpecLine[i].F.max_value=1
+    SpecLine[i].mu.value = mu[i].value
+    SpecLine[i].mu.unit = mu[i].unit
+    SpecLine[i].sigma.unit = sigma[i].unit
+    SpecLine[i].sigma.value = sigma[i].value
+
+    SpecOPs[i].K.value = K[i].value
+    SpecOPs[i].K.unit = K[i].unit
+
+    SpecLine[i].sigma.free = False
+    SpecLine[i].mu.free = False
+    SpecLine[i].F.free = False#True
+    SpecOPs[i].K.free = False # not fitting the amplitude of the OPs component for now, since we are only using the 511 response!
+
+SpecLine[-1].F.free = True# actually do fit the flux of the disk component
+
+# Generate Composite Spectra
+SpecCentralPoint= SpecLine[0] + SpecOPs[0]
+SpecNarrowBulge = SpecLine[1] + SpecOPs[1]
+SpecBroadBulge  = SpecLine[2] + SpecOPs[2]
+SpecDisk        = SpecLine[3] + SpecOPs[3]
+
+
+
+
+
[4]:
+
+
+
# Define Spatial Model Components
+MapNarrowBulge = Gaussian_on_sphere(lon0=359.75,lat0=-1.25, sigma = 2.5)
+MapBroadBulge = Gaussian_on_sphere(lon0 = 0, lat0 = 0, sigma = 8.7)
+MapDisk = Wide_Asymm_Gaussian_on_sphere(lon0 = 0, lat0 = 0, a=90, e = 0.99944429,theta=0)
+
+# Fix fitting parameters (same for all models)
+for map in [MapNarrowBulge,MapBroadBulge]:
+    map.lon0.free=False
+    map.lat0.free=False
+    map.sigma.free=False
+
+MapDisk.lon0.free=False
+MapDisk.lat0.free=False
+MapDisk.a.free=False
+MapDisk.e.free=True#False
+MapDisk.theta.free=False
+
+
+
+

For the Wide_Asymm_Gaussian_on_sphere model, note that e is the eccentricity of the Gaussian ellipse, defined such that the scale height b of the disk is given by \(b = a \sqrt{(1-e^2)}\)

+
+
[5]:
+
+
+
# Define Spatio-spectral models
+
+# Bulge
+c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')
+c_icrs = c.transform_to('icrs')
+ModelCentralPoint = PointSource('centralPoint', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=SpecCentralPoint)
+ModelNarrowBulge = ExtendedSource('narrowBulge',spectral_shape=SpecNarrowBulge,spatial_shape=MapNarrowBulge)
+ModelBroadBulge = ExtendedSource('broadBulge',spectral_shape=SpecBroadBulge,spatial_shape=MapBroadBulge)
+
+# Disk
+ModelDisk = ExtendedSource('disk',spectral_shape=SpecDisk,spatial_shape=MapDisk)
+
+
+
+
+
[9]:
+
+
+
ModelDisk
+
+
+
+
+
[9]:
+
+
+
+
    + +
  • disk (extended source): +
      + +
    • shape: +
        + +
      • lon0: +
          + +
        • value: 0.0
        • + +
        • desc: Longitude of the center of the source
        • + +
        • min_value: 0.0
        • + +
        • max_value: 360.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • lat0: +
          + +
        • value: 0.0
        • + +
        • desc: Latitude of the center of the source
        • + +
        • min_value: -90.0
        • + +
        • max_value: 90.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • a: +
          + +
        • value: 90.0
        • + +
        • desc: Standard deviation of the Gaussian distribution (major axis)
        • + +
        • min_value: 0.0
        • + +
        • max_value: 90.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • e: +
          + +
        • value: 0.99944429
        • + +
        • desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard deviation of the Gaussian distribution (minor axis)
        • + +
        • min_value: 0.0
        • + +
        • max_value: 1.0
        • + +
        • unit:
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      • theta: +
          + +
        • value: 0.0
        • + +
        • desc: inclination of major axis to a line of constant latitude
        • + +
        • min_value: -90.0
        • + +
        • max_value: 90.0
        • + +
        • unit: deg
        • + +
        • is_normalization: False
        • + +
        + +
      • + +
      + +
    • + +
    • spectrum: +
        + +
      • main: +
          + +
        • composite: +
            + +
          • F_1: +
              + +
            • value: 0.0017
            • + +
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • + +
            • min_value: 0.0
            • + +
            • max_value: 1.0
            • + +
            • unit: s-1 cm-2
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          • mu_1: +
              + +
            • value: 511.0
            • + +
            • desc: Central value
            • + +
            • min_value: None
            • + +
            • max_value: None
            • + +
            • unit: keV
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          • sigma_1: +
              + +
            • value: 1.27
            • + +
            • desc: standard deviation
            • + +
            • min_value: 1e-12
            • + +
            • max_value: None
            • + +
            • unit: keV
            • + +
            • is_normalization: False
            • + +
            + +
          • + +
          • K_2: +
              + +
            • value: 0.004499999999999998
            • + +
            • desc: Normalization
            • + +
            • min_value: 1e-30
            • + +
            • max_value: 1000.0
            • + +
            • unit: keV-1 s-1 cm-2
            • + +
            • is_normalization: True
            • + +
            + +
          • + +
          • dat_2: OPsSpectrum.dat
          • + +
          + +
        • + +
        + +
      • + +
      + +
    • + +
    + +
  • + +
+
+

Make some plots to look at these new extended sources:

+
+
[10]:
+
+
+
# Plot spectra at 511 keV
+energy = np.linspace(500.,520.,10001)*u.keV
+fig, axs = plt.subplots()
+for label,m in zip(models,
+                   [ModelCentralPoint,ModelNarrowBulge,ModelBroadBulge,ModelDisk]):
+    dnde = m.spectrum.main.composite(energy)
+    axs.plot(energy, dnde,label=label)
+
+axs.legend()
+axs.set_ylabel("dN/dE [$\mathrm{ph \ cm^{-2} \ s^{-1} \ keV^{-1}}$]", fontsize=14)
+axs.set_xlabel("Energy [keV]", fontsize=14);
+plt.ylim(0,);
+#axs[0].set_yscale("log")
+
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_64_0.png +
+
+

The orthopositronium spectral component appears as the low-energy tail of the 511 keV line.

+
+
[11]:
+
+
+
# Define healpix map matching the detector response:
+nside_model = 2**4
+scheme='ring'
+is_nested = (scheme == 'nested')
+coordsys='G'
+
+mBroadBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)
+mNarrowBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)
+mPointBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)
+mDisk = HealpixMap(nside = nside_model, scheme=scheme, dtype = float,coordsys=coordsys)
+
+coords = mDisk.pix2skycoord(range(mDisk.npix)) # common among all the galactic maps...
+
+pix_area = mBroadBulge.pixarea().value # common among all the galactic maps with the same pixelization
+
+# Fill skymap with values from extended source:
+mNarrowBulge[:] = ModelNarrowBulge.spatial_shape(coords.l.deg, coords.b.deg)
+mBroadBulge[:] = ModelBroadBulge.spatial_shape(coords.l.deg, coords.b.deg)
+mBulge = mBroadBulge + mNarrowBulge
+mDisk[:] = ModelDisk.spatial_shape(coords.l.deg, coords.b.deg)
+
+
+
+
+
[12]:
+
+
+
List_of_Maps = [mDisk,mNarrowBulge,mBroadBulge]
+List_of_Names = ["Disk","Narrow Bulge","Broad Bulge", ]
+
+for n, m in zip(List_of_Names,List_of_Maps):
+    plot,ax = m.plot(ax_kw={"coord":"G"})
+    ax.grid();
+    lon = ax.coords['glon']
+    lat = ax.coords['glat']
+    lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)
+    lat.set_axislabel('Galactic Latitude',fontsize=5)
+    lon.display_minor_ticks(True)
+    lat.display_minor_ticks(True)
+    lon.set_ticks_visible(True)
+    lon.set_ticklabel_visible(True)
+    lon.set_ticks(color='white',alpha=0.6)
+    lat.set_ticks(color='white',alpha=0.6)
+    lon.set_ticklabel(color='white',fontsize=4)
+    lat.set_ticklabel(fontsize=4)
+    lat.set_ticks_visible(True)
+    lat.set_ticklabel_visible(True)
+    ax.set_title(n)
+
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_0.png +
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_1.png +
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_67_2.png +
+
+
+
+

Instantiate the COSI 3ML plugin and perform the likelihood fit

+

The following two cells should be run only if not already run in previous examples…

+
+
[13]:
+
+
+
# if not previously loaded in example 1, load the response, ori, and psr:
+response_file = "SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5"
+response = FullDetectorResponse.open(response_file)
+ori = SpacecraftFile.parse_from_file("20280301_3_month.ori")
+psr_file = "psr_gal_511_DC2.h5"
+
+
+
+
+
[14]:
+
+
+
# Set background parameter, which is used to fit the amplitude of the background:
+bkg_par = Parameter("background_cosi",                                        # background parameter
+                    1,                                                        # initial value of parameter
+                    min_value=0,                                              # minimum value of parameter
+                    max_value=5,                                              # maximum value of parameter
+                    delta=0.05,                                               # initial step used by fitting engine
+                    desc="Background parameter for cosi")
+
+
+
+

We should re-run the following cell every time we set up a new fit:

+
+
[15]:
+
+
+
%%time
+
+# Instantiate the COSI 3ML plugin, using combined data for the thin disk
+cosi = COSILike("cosi",                                                       # COSI 3ML plugin
+                dr = response_file,                                           # detector response
+                data = data_combined_thin_disk.binned_data.project('Em', 'Phi', 'PsiChi'),# data (source+background)
+                bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'),       # background model
+                sc_orientation = ori,                                          # spacecraft orientation
+                nuisance_param = bkg_par,                                      # background parameter
+                precomputed_psr_file = psr_file)                               # full path to precomputed psr file in galactic coordinates (optional)
+plugins = DataList(cosi)
+
+
+
+
+
+
+
+
+... loading the pre-computed image response ...
+--> done
+CPU times: user 1min 56s, sys: 37 s, total: 2min 33s
+Wall time: 2min 51s
+
+
+
+
[16]:
+
+
+
# add sources to thin disk and thick disk models
+totalModel =  Model(ModelDisk, ModelBroadBulge,ModelNarrowBulge,ModelCentralPoint)
+totalModel.display(complete=True)
+
+
+
+
+
+
+
+Model summary:

+ + + + + + + + + + + + + + + + + + + + + + +
N
Point sources1
Extended sources3
Particle sources0
+


Free parameters (2):

+ + + + + + + + + + + + + + + + + + + + + + + + + + + +
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.e0.9994440.01.0
disk.spectrum.main.composite.F_10.00170.01.0s-1 cm-2
+


Fixed parameters (27):

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.lon00.00.0360.0deg
disk.Wide_Asymm_Gaussian_on_sphere.lat00.0-90.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.a90.00.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.theta0.0-90.090.0deg
disk.spectrum.main.composite.mu_1511.0NoneNonekeV
disk.spectrum.main.composite.sigma_11.270.0NonekeV
disk.spectrum.main.composite.K_20.00450.01000.0keV-1 s-1 cm-2
broadBulge.Gaussian_on_sphere.lon00.00.0360.0deg
broadBulge.Gaussian_on_sphere.lat00.0-90.090.0deg
broadBulge.Gaussian_on_sphere.sigma8.70.020.0deg
broadBulge.spectrum.main.composite.F_10.000730.01.0s-1 cm-2
broadBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
broadBulge.spectrum.main.composite.sigma_10.850.0NonekeV
broadBulge.spectrum.main.composite.K_20.00270.01000.0keV-1 s-1 cm-2
narrowBulge.Gaussian_on_sphere.lon0359.750.0360.0deg
narrowBulge.Gaussian_on_sphere.lat0-1.25-90.090.0deg
narrowBulge.Gaussian_on_sphere.sigma2.50.020.0deg
narrowBulge.spectrum.main.composite.F_10.000280.01.0s-1 cm-2
narrowBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
narrowBulge.spectrum.main.composite.sigma_10.850.0NonekeV
narrowBulge.spectrum.main.composite.K_20.00110.01000.0keV-1 s-1 cm-2
centralPoint.position.ra266.4049880.0360.0deg
centralPoint.position.dec-28.936178-90.090.0deg
centralPoint.spectrum.main.composite.F_10.000120.01.0s-1 cm-2
centralPoint.spectrum.main.composite.mu_1511.0NoneNonekeV
centralPoint.spectrum.main.composite.sigma_10.850.0NonekeV
centralPoint.spectrum.main.composite.K_20.000460.01000.0keV-1 s-1 cm-2
+


Properties (4):

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
valueallowed values
disk.spectrum.main.composite.dat_2OPsSpectrum.datNone
broadBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
narrowBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
centralPoint.spectrum.main.composite.dat_2OPsSpectrum.datNone
+


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
+
+

Before we perform the fit, let’s first change the 3ML console logging level, in order to mimimize the amount of console output.

+
+
[26]:
+
+
+
# This is a simple workaround for now to prevent a lot of output.
+from threeML import update_logging_level
+update_logging_level("CRITICAL")
+
+
+
+
+
[21]:
+
+
+
%%time
+# likelihood of data + model
+like = JointLikelihood(totalModel, plugins, verbose = True)
+like.fit()
+
+
+
+
+
+
+
+
+Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
disk.Wide_Asymm_Gaussian_on_sphere.e(9.9985 +/- 0.0005) x 10^-1
disk.spectrum.main.composite.F_1(1.643 +/- 0.011) x 10^-31 / (cm2 s)
background_cosi(9.906 +/- 0.032) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + + +
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi-166772.754018
total-166772.754018
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC-333547.508036
BIC-333545.508036
+
+
+
+
+
+
+
+CPU times: user 30min 29s, sys: 15min 41s, total: 46min 11s
+Wall time: 8min 12s
+
+
+
+
[21]:
+
+
+
+
+(                                         value  negative_error  \
+ disk.Wide_Asymm_Gaussian_on_sphere.e  0.999853       -0.000045
+ disk.spectrum.main.composite.F_1      0.001643       -0.000011
+ background_cosi                       0.990610       -0.003091
+
+                                       positive_error     error         unit
+ disk.Wide_Asymm_Gaussian_on_sphere.e        0.000045  0.000045
+ disk.spectrum.main.composite.F_1            0.000011  0.000011  1 / (cm2 s)
+ background_cosi                             0.003209  0.003150               ,
+        -log(likelihood)
+ cosi     -166772.754018
+ total    -166772.754018)
+
+
+
+
+

Results

+
+
[23]:
+
+
+
# thin disk model to data
+results = like.results
+results.display()
+
+
+
+
+
+
+
+
Best fit values:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
resultunit
parameter
disk.Wide_Asymm_Gaussian_on_sphere.e(9.9985 +/- 0.0005) x 10^-1
disk.spectrum.main.composite.F_1(1.643 +/- 0.011) x 10^-31 / (cm2 s)
background_cosi(9.906 +/- 0.032) x 10^-1
+
+
+
+
+
+
+
+Correlation matrix:
+
+
+
+
+
+
+
+
+ + + +
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
+
+
+
+
+
+
+Values of -log(likelihood) at the minimum:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
-log(likelihood)
cosi-166772.754018
total-166772.754018
+
+
+
+
+
+
+
+Values of statistical measures:
+
+
+
+
+
+
+
+
+ + + + + + + + + + + + + + + + + + +
statistical measures
AIC-333547.508036
BIC-333545.508036
+
+
+
+
[24]:
+
+
+
# Best-fit model:
+energy = np.linspace(500.,520.,201)*u.keV
+fluxes = {}
+
+for model in models:
+    fluxes[model] = results.optimized_model[model].spectrum.main.shape(energy)
+
+fig,ax = plt.subplots()
+for model in models:
+    ax.plot(energy, fluxes[model], label = f"Best fit, {model}",ls='-')
+ax.set_ylabel("dN/dE [$\mathrm{ph \ cm^{-2} \ s^{-1} \ keV^{-1}}$]", fontsize=14)
+ax.set_xlabel("Energy [keV]", fontsize=14)
+ax.set_title("Best fit to model")
+ax.legend()
+ax.set_ylim(0,);
+
+
+
+
+
+
+
+../../../_images/tutorials_spectral_fits_extended_source_fit_diffuse_511_spectral_fit_79_0.png +
+
+

In summary, we fitted the flux and eccentricity of the disk only, with the all parameters of the bulge component fixed. Considering \(b = a \sqrt{(1-e^2)}\), we recovered the following fitted parameters:

+
+

Component….. Injected……….. Best Fit

+
+
b…………………. 3\(^{\circ}\)………………… 1.6\(^{+0.2\circ}_{- 0.3}\)
+
Disk…………….. 1.7e-3/cm\(^2\)/s…. (1.64 \(\pm\) 0.01)e-3 /cm\(^2\)/s
+
Background …..1……………………0.991 \(\pm\) 0.003
+
+

You can play around with the fitting to find the best parameters for fitting the scale height of the disk, changing the initial values for the fit and which parameters are allowed to vary.

+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb b/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb new file mode 100644 index 00000000..fca5e2f4 --- /dev/null +++ b/tutorials/spectral_fits/extended_source_fit/diffuse_511_spectral_fit.ipynb @@ -0,0 +1,4321 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "07c6d97a-7350-4920-9ab8-26c2454bf5a7", + "metadata": {}, + "source": [ + "# Diffuse 511 Spectral Fit in Galactic Coordinates\n", + "\n", + "This notebook fits the spectrum for the 511 keV emission in the Galaxy. It can be used as a general template for fitting diffuse/extended sources in Galactic coordinates. For a general introduction into spectral fitting with cosipy, see the continuum_fit tutorial.
\n", + "\n", + "This notebook uses two 511 keV emission models, first a test model and then a realistic multi-component model. \n", + "\n", + "All input models are available here:
\n", + "https://github.com/cositools/cosi-data-challenges/tree/main/cosi_dc/Source_Library/DC2/sources/511
\n", + "\n", + "The toy 511 model consists of two components: an extended Gaussian source (5 degree extension) and a point source. In the first part of this tutorial, we fit the data with just the single extended Gaussian component, i.e. we ignore the point source component. This is done as a simplification, and as will be seen, it already provides a good fit. In the second part of this tutorial we use a model consisting of both components. \n", + "\n", + "The realistic input models consist of a bulge component (with an extended Gaussian source and a point source) as well as a disk component with different spectral characteristics. In the third part of this tutorial we use this model. \n", + "\n", + "For the background we use just the cosmic photons. \n", + "\n", + "This tutotrial also walks through all the steps needed when performing a spectral fit, starting with the unbinned data, i.e. creating the combined data set, and binning the data. \n", + "\n", + "For the first two examples, you will need the following files (available on wasabi):
\n", + "**20280301_3_month.ori
\n", + "cosmic_photons_3months_unbinned_data.fits.gz
\n", + "511_Testing_3months.fits.gz
\n", + "SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5
\n", + "psr_gal_511_DC2.h5**
\n", + "\n", + "The binned data products are available on wasabi, so you can also start by loading the binned data directly.
\n", + "\n", + "For the third example, we start with the binned data, and you will need: \n", + "
**combined_binned_data_thin_disk.hdf5**
\n", + "\n", + "**WARNING:** If you run into memory issues creating the combined dataset or binning the data on your own, start by just loading the binned data directly. See the dataIO example for how to deal with memory issues.
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "19640dd6-f894-4b9c-9405-aa76f8c8864c", + "metadata": {}, + "outputs": [], + "source": [ + "# imports:\n", + "from cosipy import COSILike, test_data, BinnedData\n", + "from cosipy.spacecraftfile import SpacecraftFile\n", + "from cosipy.response.FullDetectorResponse import FullDetectorResponse\n", + "from cosipy.response import PointSourceResponse\n", + "from cosipy.threeml.custom_functions import Wide_Asymm_Gaussian_on_sphere, SpecFromDat\n", + "from cosipy.util import fetch_wasabi_file\n", + "from scoords import SpacecraftFrame\n", + "from astropy.time import Time\n", + "import astropy.units as u\n", + "from astropy.coordinates import SkyCoord\n", + "from astromodels import *\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "from threeML import PointSource, Model, JointLikelihood, DataList, update_logging_level\n", + "from astromodels import Parameter\n", + "from astromodels import *\n", + "from mhealpy import HealpixMap, HealpixBase\n", + "import healpy as hp\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt \n", + "from pathlib import Path\n", + "import os\n", + "import time\n", + "import h5py as h5\n", + "from histpy import Axis, Axes\n", + "import sys\n", + "from histpy import Histogram" + ] + }, + { + "cell_type": "markdown", + "id": "754b1f19-2b05-47ff-93ce-2b98c477f0a9", + "metadata": {}, + "source": [ + "## Get the data\n", + "The data can be downloaded by running the cells below. Each respective cell also gives the wasabi file path and file size. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e2c3fd76-534d-4567-9b66-477260a169d8", + "metadata": {}, + "outputs": [], + "source": [ + "# ori file:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\n", + "# File size: 684 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8abd531b-b531-4bdc-8ded-4e971767326c", + "metadata": {}, + "outputs": [], + "source": [ + "# cosmic photons:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Backgrounds/cosmic_photons_3months_unbinned_data.fits.gz\n", + "# File size: 8.5 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Backgrounds/cosmic_photons_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "6370eca6-8791-460c-82a4-7b5f5346382a", + "metadata": {}, + "outputs": [], + "source": [ + "# 511 test model:\n", + "# wasabi path: COSI-SMEX/DC2/Data/Sources/511_Testing_3months_unbinned_data.fits.gz\n", + "# File size: 850.6 MB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Data/Sources/511_Testing_3months_unbinned_data.fits.gz')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7aac0743-04cb-4cee-a858-6d1bb2d3b192", + "metadata": {}, + "outputs": [], + "source": [ + "# detector response:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\n", + "# File size: 350.4 MB \n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a9fc7d5f-66a1-4113-b71f-4f34fa295a5d", + "metadata": {}, + "outputs": [], + "source": [ + "# point source response:\n", + "# wasabi path: COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz\n", + "# File size: 3.82 GB\n", + "fetch_wasabi_file('COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_511_DC2.h5.gz')\n", + "os.system(\"gzip -d psr_gal_511_DC2.h5.gz\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "30addfdb-433f-4360-aff7-9425a3716f0a", + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Binned data products:\n", + "# Note: This is not needed if you plan to bin the data on your own. \n", + "# wasabi path: COSI-SMEX/cosipy_tutorials/extended_source_spectral_fit_galactic_frame \n", + "# File sizes: 689.2 MB, 182.0 MB, 739.8 MB, 697.0 MB, respectively. \n", + "file_list = ['cosmic_photons_binned_data.hdf5','gal_511_binned_data.hdf5','combined_binned_data.hdf5','combined_binned_data_thin_disk.hdf5']\n", + "\n", + "for each in file_list:\n", + " fetch_wasabi_file('COSI-SMEX/cosipy_tutorials/extended_source_spectral_fit_galactic_frame/%s' %each)" + ] + }, + { + "cell_type": "markdown", + "id": "0323edb3-d26e-4a13-a2b8-a2637021f80b", + "metadata": {}, + "source": [ + "## Create the combined data\n", + "We will combine the 511 source and the cosmic photon background, which will be used as our dataset.
\n", + "This only needs to be done once.
\n", + "You can skip this cell if you already have the combined data file." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "902e9af4-316b-4961-bd69-6985e675aff2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "adding cosmic_photons_3months_unbinned_data.fits.gz...\n", + "\n", + "\n", + "adding 511_Testing_3months_unbinned_data.fits.gz...\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: VerifyWarning: Keyword name 'data file' is greater than 8 characters or contains characters not allowed by the FITS standard; a HIERARCH card will be created. [astropy.io.fits.card]\n" + ] + } + ], + "source": [ + "# Define instance of binned data class:\n", + "instance = BinnedData(\"Gal_511.yaml\")\n", + "\n", + "# Combine files:\n", + "input_files = [\"cosmic_photons_3months_unbinned_data.fits.gz\",\"511_Testing_3months_unbinned_data.fits.gz\"]\n", + "instance.combine_unbinned_data(input_files, output_name=\"combined_data\")" + ] + }, + { + "cell_type": "markdown", + "id": "f1d1c255-bb2d-4362-8bc1-671d95898e1e", + "metadata": { + "tags": [] + }, + "source": [ + "## Bin the data \n", + "You only have to do this once, and after you can start by loading the binned data directly.
\n", + "You can skip this cell if you already have the binned data files." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "0419e986-5b9f-49eb-a325-0256a8ec50b5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Bin 511:\n", + "gal_511 = BinnedData(\"Gal_511.yaml\")\n", + "gal_511.get_binned_data(unbinned_data=\"511_Testing_3months_unbinned_data.fits.gz\", output_name=\"gal_511_binned_data\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2bab6997-38ea-405c-aea0-6f39e88198be", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Bin background:\n", + "bg_tot = BinnedData(\"Gal_511.yaml\")\n", + "bg_tot.get_binned_data(unbinned_data=\"cosmic_photons_3months_unbinned_data.fits.gz\", output_name=\"cosmic_photons_binned_data\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "236ec730-0327-480f-af51-aa8bc066292e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Bin combined data:\n", + "data_combined = BinnedData(\"Gal_511.yaml\")\n", + "data_combined.get_binned_data(unbinned_data=\"combined_data.fits.gz\", output_name=\"combined_binned_data\")" + ] + }, + { + "cell_type": "markdown", + "id": "1bf53b28-fa03-4ff3-9025-e15c821cabb1", + "metadata": {}, + "source": [ + "## Read in the binned data\n", + "Once you have the binned data files, you can start by loading them directly (instead of binning them each time)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7006c9c0-d8ea-49d2-9ab7-66ecbcf3edea", + "metadata": {}, + "outputs": [], + "source": [ + "# Load 511:\n", + "gal_511 = BinnedData(\"Gal_511.yaml\")\n", + "gal_511.load_binned_data_from_hdf5(binned_data=\"gal_511_binned_data.hdf5\")\n", + "\n", + "# Load background:\n", + "bg_tot = BinnedData(\"Gal_511.yaml\")\n", + "bg_tot.load_binned_data_from_hdf5(binned_data=\"cosmic_photons_binned_data.hdf5\")\n", + "\n", + "# Load combined data:\n", + "data_combined = BinnedData(\"Gal_511.yaml\")\n", + "data_combined.load_binned_data_from_hdf5(binned_data=\"combined_binned_data.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "5d833e94-1fa4-4c15-9648-9bff16c77ab8", + "metadata": { + "tags": [] + }, + "source": [ + "## Define source\n", + "The injected source has both an extended componenent and a point source component,
\n", + "but to start with we will ignore the point source component,
\n", + "and see how well we can describe the data with just the extended component.
\n", + "Define the extended source:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f459d4ec-8949-4e30-98e8-09d68cf3e4b9", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "
  • gaussian (extended source): \n", + "
      \n", + "\n", + "
    • shape: \n", + "
        \n", + "\n", + "
      • lon0: \n", + "
          \n", + "\n", + "
        • value: 359.75
        • \n", + "\n", + "
        • desc: Longitude of the center of the source
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 360.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • lat0: \n", + "
          \n", + "\n", + "
        • value: -1.25
        • \n", + "\n", + "
        • desc: Latitude of the center of the source
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • sigma: \n", + "
          \n", + "\n", + "
        • value: 5.0
        • \n", + "\n", + "
        • desc: Standard deviation of the Gaussian distribution
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 20.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    • spectrum: \n", + "
        \n", + "\n", + "
      • main: \n", + "
          \n", + "\n", + "
        • Gaussian: \n", + "
            \n", + "\n", + "
          • F: \n", + "
              \n", + "\n", + "
            • value: 0.04
            • \n", + "\n", + "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • mu: \n", + "
              \n", + "\n", + "
            • value: 511.0
            • \n", + "\n", + "
            • desc: Central value
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • sigma: \n", + "
              \n", + "\n", + "
            • value: 0.85
            • \n", + "\n", + "
            • desc: standard deviation
            • \n", + "\n", + "
            • min_value: 1e-12
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          \n", + "\n", + "
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    \n", + "\n", + "
  • \n", + "\n", + "
\n" + ], + "text/plain": [ + " * gaussian (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 359.75\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: -1.25\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 5.0\n", + " * desc: Standard deviation of the Gaussian distribution\n", + " * min_value: 0.0\n", + " * max_value: 20.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * Gaussian:\n", + " * F:\n", + " * value: 0.04\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define spectrum:\n", + "# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]\n", + "F = 4e-2 / u.cm / u.cm / u.s \n", + "mu = 511*u.keV\n", + "sigma = 0.85*u.keV\n", + "spectrum = Gaussian()\n", + "spectrum.F.value = F.value\n", + "spectrum.F.unit = F.unit\n", + "spectrum.mu.value = mu.value\n", + "spectrum.mu.unit = mu.unit\n", + "spectrum.sigma.value = sigma.value\n", + "spectrum.sigma.unit = sigma.unit\n", + "\n", + "# Set spectral parameters for fitting:\n", + "spectrum.F.free = True\n", + "spectrum.mu.free = False\n", + "spectrum.sigma.free = False\n", + "\n", + "# Define morphology:\n", + "morphology = Gaussian_on_sphere(lon0 = 359.75, lat0 = -1.25, sigma = 5)\n", + "\n", + "# Set morphological parameters for fitting:\n", + "morphology.lon0.free = False\n", + "morphology.lat0.free = False\n", + "morphology.sigma.free = False\n", + "\n", + "# Define source:\n", + "src1 = ExtendedSource('gaussian', spectral_shape=spectrum, spatial_shape=morphology)\n", + "\n", + "# Print a summary of the source info:\n", + "src1.display()\n", + "\n", + "# We can also print the source info as follows.\n", + "# This will show you which parameters are free. \n", + "#print(src1.spectrum.main.shape)\n", + "#print(src1.spatial_shape)" + ] + }, + { + "cell_type": "markdown", + "id": "eee646f3-d591-4819-ab7e-d7759e4de4a0", + "metadata": {}, + "source": [ + "Let's make some plots to look at the extended source:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a531d3e2-1101-4c34-8613-3831f8ebbf13", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Energy [keV]')" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG2CAYAAADLM3qLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4KElEQVR4nO3deVyU5R43/s+wDJswgIOiCChq7qloLhG4k5rZ4vlVHitTUUxPaR618hhmx2NmHXnsKTiGiNmj1qmTqeFeFJZkmkvnqLiBkCLKOizDNjP37w+c2xlnQJYbZuHzfr18xVz3dd3Xdc80+PVaZYIgCCAiIiIiq+Fg6QYQERERkTEGaERERERWhgEaERERkZVhgEZERERkZRigEREREVkZBmhEREREVoYBGhEREZGVYYBmgyorK3Hx4kVUVlZauilERETUAhig2aCsrCzMnTsXWVlZlm4KERERtQAGaERERERWhgEaERERkZVhgEZERERkZRigEREREVkZBmhEREREVoYBGhEREZGVYYBGREREZGUYoBERERFZGQZoRERERFaGARoRERGRlWGARkRERGRlGKARERERWRkGaERERERWhgEaERERkZVhgEZE1AbcvlKM7FO3IegESzeFiBrAydINICKilvW//Zn45bN0AEDPiABEzBsAmYPMwq0iovqwB42IyI6dP5wlBmcAcDn1Bn5OOgdBYE8akTVjgEZEZKf+OJuHY0nnTdLTv/sDv+/NsECLiKihGKAREdmp8wezxJ8HTg3BmL8MhOzOyOa5g1mcj0ZkxRigERHZoaryGtz4bz4AwMPXFUOfeQDdH+6MLoP8AADqoircvlJswRYSUX0YoBER2aHsU7eh09b2kHUb7i8uCggZ3knMk3k81yJtI6L7Y4BGRGSHDIOvrsP8xZ+DQjvAwbE2WMv8NZfDnERWigEaEZGdqVbX4PrveQAAd28XdOzpLV5zaeeMzv2VAIDygkrkZags0UQiug8GaEREdib7dB50mtqesa7D/E32POs2vKP4M4c5iawTAzQiIjtz7de7QZdhMKYXPKSjGLRl/prLPdGIrBADNCIiOyIIAnIvFgEAXDyc0bGXr0keV085/Hv7AADK8iqgLqpq1TYS0f0xQCMisiPlBZWoLKkGAPh1V8ChjiOdOvTwFn/O5zw0IqvDAI2IyI4YTvpXhijqzGd4jQsFiKwPAzQiIjti2Bum7FZPgGZwLT+TARqRtWGARkRkRwyDLb8QrzrztVO6wtXTubZMhooLBYisDAM0IiI7IQgC8jNKAACuXnK4+7rWmVcmk4m9aJWlNSjLr2yVNhJRwzBAIyKyE2V5FagqrwEA+IUoIJOZXyCgZzgPjcOcRNaFARoRkZ1o6AIBMY/hPDQuFCCyKgzQiIjshGEvmLJb3fPP9AznqLEHjci6OFm6AY2lVquxefNmpKSkoLS0FEFBQZgxYwbGjRt337JFRUWIj49HWloaKisr0aNHD0RFRWHIkCFG+Y4dO4aUlBRcunQJ2dnZ0Gq1SE1NNbnfli1bsHXr1jrrW7VqldiuuvLK5XIcOXLkvm0nIrof/fwzoGE9aO6+rnBTyFGhqkZ+RgkEQbjvsCgRtQ6bC9BWrlyJ9PR0REdHIzAwEEeOHMHq1auh0+kwYcKEOstVV1dj8eLFKCsrwyuvvAIfHx/s2rULS5cuRWxsLAYNGiTmTU1Nxblz59CzZ0/I5XJcvHjR7D2nTJmC4cOHm6SvX78eOTk5GDZsmMm1Dz74AB4eHuJr/jIkIikIOkHsBXP3cYGHT90LBPRkMhmUIQr8cToPVeU1KL2thldHj/uWI6KWZ1MBWlpaGk6ePImYmBiMHz8eABAaGorc3FzEx8dj7NixcHR0NFs2OTkZmZmZiIuLQ//+/QEAgwcPxuzZsxEfH49NmzaJeZcvXw4Hh9rR39jY2DoDtA4dOqBDhw5GaTdv3sS1a9cwYcIEeHp6mpR54IEH4O3t3ehnJyKqT3lhJarVGgBA+673H97UU3b1wh+n8wAARX+UMUAjshI2NQft6NGjcHNzw+jRo43SJ0+ejPz8fJw/f77eskFBQWJwBgBOTk6IjIzEhQsXkJeXJ6brg7Om2LdvHwRBwJQpU5p8DyKixiq+WS7+7N25XYPLKQzyGt6DiCzLpnrQMjMzERwcDCcn42Z3795dvD5gwACzZTMyMjBw4ECTdMOyfn5+zWqfTqfD/v37ERAQYDRkauill15CcXExFAoFhg0bhqioKHTs2LHe++bn56OgoEB8nZWV1ax2EpH9UeXcDa4UnRreC2aYV8UAjchq2FSAplKp0LlzZ5N0/VBiSUmJyTW9kpISs0OODSnbUCdOnMDt27cxb948k2sBAQGYO3euOK/twoUL2LlzJ06cOIGEhIR6g8M9e/bUuxiBiEiV28QAzd/97j0YoBFZDZsK0IDmTaqvr6wUk/WTk5Ph6OiISZMmmVx79NFHjV6HhoZi8ODBWLBgAXbs2IFFixbVed+pU6ciLCxMfJ2VlYU1a9Y0u71EZD+MetA6NzxAk7s7w93bBeriKgZoRFbEpgI0hUIBlcp0r57S0lIAgJdX3RNjvby8zPaS6cua611rjOLiYvz8888YOXIk2rdv36Ayffv2RZcuXeqdOwcASqUSSqWyWe0jIvumD66c3Zzg5iVvVFlFZw+oi6tQWVKNqrIauLRzbokmElEj2NQigZCQEGRlZUGj0RilZ2RkAAC6detWb9mrV6+apOvTQkJCmtW2Q4cOoaampkmLA5qzKIGISFOtRVlBBQDAu5NHo0cEFP4G89By2YtGZA1sKjIIDw9HRUUFfvzxR6P0AwcOQKlUom/fvnWWjYiIQHZ2tlFvlUajweHDh9G3b99m91AlJydDqVSa3RetLufOncP169frbTcR0f2U5KoBofbnxgxv6hktFMhhgEZkDWxqiHPEiBEYOnQoNmzYALVajYCAAHz33Xc4fvw4Vq5cKe6Btm7dOhw8eBA7d+6Ev78/gNqtOHbt2oWYmBhER0eLG9VmZ2cjNjbWqJ7c3Fykp6cDAHJycgAAP/zwAwDA398fvXv3Nsp//vx5ZGZm4oUXXqhzH7ZZs2YhMjISwcHBRosEfH19MX36dMneIyJqe4wWCPg3IUDrzB40ImtjUwEaAKxZswYJCQlITEwUj3oyPFIJqN3uQqvVQhAEMU0ulyM2Nhbx8fHYuHEjKisr0bNnT7z//vsmW2KcPn0a7777rlFaTEwMAGDixIlYsWKF0bXk5GTIZDI89thjdba7a9eu2LNnDwoLC1FTUwOlUolx48Zh5syZnF9GRM3S1AUCYhl/9qARWRuZYBjFkE24ePEi5s6di4SEBPTq1cvSzSEiC/sx/ndcPnoDAPDUu2FoH9zwkwQAQKfVYetLh6DTCvAJ9MS09x5piWYSUSPY1Bw0IiIyZbg9hldH93pymufg6ADPO+VKcssh6PjvdiJLY4BGRGTDBEEQAzSP9q5wdm3azBXvOwsFtDU6lBVUStY+ImoaBmhERDassrQaVeU1ABp3gsC9vIyOfCprdruIqHkYoBER2TDVTbX4c3MCNG+eyUlkVRigERHZsNJbBgGaf+Pnn+l5GazkLL1d0aw2EVHzMUAjIrJhpfl3AzRPv6YHaJ4d3O7eM48BGpGlMUAjIrJhZQbBVDulWz056+fu4wqZo+zOPdX3yU1ELY0BGhGRDSvLv7visp1f0wM0BwcZ2vm6mtyTiCyDARoRkQ0rvdPbJXd3gouHc7PupQ/wqsprUK2uaXbbiKjpmrRhTkhISLMrXrx4MV599dVm34eIqK3S6QRxz7Lm9J7pefq54eadn0vzK9A+qHkBHxE1XZN60K5du4aioiIIgtCkP1lZWSguLpb4UYiI2hZ1USUEbe2u/82Zf6ZneI8yLhQgsqgmH5b+2muviQeIN5aDA0dWiYiayzCI8pQiQDPohSvLZ4BGZEmMlIiIbFSpQRAl1RCneG/2oBFZVJN60C5fvgxfX98mV9rc8kREdE8PmgQBWjvl3X3UOMRJZFlNCtC6d+/erEqbW56IiIx7uaSYg+bh6wKZgwyCTmAPGpGFcYiTiMhGGW1SK0EPmoOjAzzEvdAYoBFZEgM0IiIbpQ+inN0cm70Hmp64F1pZDaorNJLck4gaT9IAraioCNu2bZPylkREZIagE8QArZ3SHTKZTJL7enIlJ5FVkDRAy87OxqxZs6S8JRERmaEuroJO3APNVbL7ci80IuvQqEUC2dnZ9V7PyclpVmOIiKhhSo1WcLrXk7NxDPdT40IBIstpVIDWtWvXervRBUGQrJudiIjqVibxHmjm7sUhTiLLaVSA5uPjg7Vr12L06NFmr1+4cAHTpk2Tol1ERFQPqfdAM3cvDnESWU6jArQhQ4YgLy8PvXr1Mnu9srISgiBI0jAiIqqbUQ9ae+nmoHn4ugIyAAJ70IgsqVEB2ssvv4zy8vI6rwcFBSEpKanZjSIiovqVF1WKP3u0l64HzcHJAe4KF6iLq4zqIKLW1agA7amnnqr3uo+PD2bOnNmsBhER0f2VF9YGTzJHGdy85JLe28PXFeriqtqVohodHJy4ZSZRa+O3jojIBpUX1AZoHj6ukDlIuzjLXT9kKgBqVZWk9yaihml2gObo6Hjf7TeIiEg6mmotqspqAEA8mklKhvfUB4JE1LqaHaBxUQARUevSD28CrRCgFTJAI7IEDnESEdkYowBNwhWc4j19XMzWRUSthwEaEZGNURv1oLnUk7NpDIM+BmhElsEAjYjIxhgGTe4+HOIkskeN2mbDGqjVamzevBkpKSkoLS1FUFAQZsyYgXHjxt23bFFREeLj45GWlobKykr06NEDUVFRGDJkiFG+Y8eOISUlBZcuXUJ2dja0Wi1SU1NN7nfz5k08++yzZutatWqVSZtycnLw8ccf4/Tp09BqtejXrx+io6Pr3PiXiMic8sK7KytbYg6aYdCnLuQqTiJLsLkAbeXKlUhPT0d0dDQCAwNx5MgRrF69GjqdDhMmTKizXHV1NRYvXoyysjK88sor8PHxwa5du7B06VLExsZi0KBBYt7U1FScO3cOPXv2hFwux8WLF+tt07Rp0zB+/HijtC5duhi9Li4uxl/+8hd4enri9ddfh1wux/bt27Fo0SJ88sknCAoKavybQURtUkvPQXOSO8LV0xmVpTXsQSOyEJsK0NLS0nDy5EnExMSIAVFoaChyc3MRHx+PsWPHwtHR0WzZ5ORkZGZmIi4uDv379wcADB48GLNnz0Z8fDw2bdok5l2+fDkcHGpHf2NjY+8boHXo0AH9+vWrN8/OnTtRXFyMuLg4+Pv7AwAefPBBPPfcc0hMTMTq1asb9iYQUZsnblIrA9wV0s9BA2p75ipLa1BeVAlBJ0i+1xoR1a/Zc9D+9re/wdvbW4Km3N/Ro0fh5uZmclj75MmTkZ+fj/Pnz9dbNigoSAzOAMDJyQmRkZG4cOEC8vLyxHR9cCal1NRUhIaGisEZAHh4eCAiIgLHjh2DRqORvE4isk/6AM3N26XFdvl3vzN0KmgFVJRUt0gdRFS3Jn+z9QHF3//+d3h5eUnWoPpkZmYiODgYTk7GHX/du3cXr9clIyNDzNfYsvezY8cOjB07FhMmTMDChQvx008/GV2vqqpCTk5OnfVXVVXh5s2bdd4/Pz8fFy9eFP9kZWU1ua1EZNt0Gh0q7uzu3xLzz/S4UIDIspo8xNm5c2e8+OKLmDNnDvr06SNlm+qkUqnQuXNnk3RPT08AQElJSZ1lS0pKxHyNLVsXZ2dnPP744xg6dCjat2+PW7du4euvv8aKFSuwfPlyTJkyBQBQWloKQRDM1q8PblUqFQIDA83Ws2fPHmzdurXR7SMi+6MurgLu7A/eagFaQSX8QhQtVhcRmWpygKZSqbBhwwbExsZi+PDhmDNnDp599lm0a9dOyvaZkMmaPg+ivrJNua9SqcSyZcuM0saMGYPo6Ghs2rQJEydONOrta2r9U6dORVhYmPg6KysLa9asaXR7icj2tfQpAubuzR40otbX5CHOmzdvIjY2FgMGDMAvv/yCefPmoVOnTpgzZ47JEJ9UFAoFVCqVSXppaSkA1DvU6uXlZbaXTF/WXO9WUzg5OWHs2LFQqVS4fv26eG+ZTGa2fn1afW1XKpXo1auX+Cc4OFiSthKR7THaA40BGpHdanKA5uvri0WLFuHMmTM4efIkXn75ZcjlciQlJWHUqFHo06cP3n//fdy6dUuyxoaEhCArK8tkQn1GRgYAoFu3bvWWvXr1qkm6Pi0kJESydurPJ9UvNnBxcUFAQIDYTkMZGRlwcXFBp06dJKufiOyX4eHlrdWDpi5igEbU2iRZ/hMaGoqPPvoIN2/exI4dOzBu3DhcvnwZb7zxBgIDA/HUU0/h22+/hU6na1Y94eHhqKiowI8//miUfuDAASiVSvTt27fOshEREcjOzjZa6anRaHD48GH07dsXSqWyWW0zvGdKSgoUCgUCAgKM2n7q1CmjgFWtViM1NRVhYWEmCx+IiMwpL2qdAM2dPWhEFiVpVCCXy/Hcc8/hueeew/Xr15GUlIStW7di9+7d2LNnD/z9/XHjxo0m33/EiBEYOnQoNmzYALVajYCAAHz33Xc4fvw4Vq5cKe6Btm7dOhw8eBA7d+4Ut7WYPHkydu3ahZiYGERHR4sb1WZnZyM2NtaontzcXKSnpwOo3f0fAH744QcAgL+/P3r37g0A+Oijj6DRaDBgwAD4+vri9u3b+M9//oPLly/jzTffNNqTbfr06Th06BBef/11zJkzB87Ozti+fTuqq6sxa9asJr8nRNS2tNYcNLmbE5zdnFBToTHqtSOi1tFi3TZdunTBW2+9hWeeeQZRUVH4+eefkZub2+z7rlmzBgkJCUhMTBSPerr3WCWdTgetVisONQK1wWNsbCzi4+OxceNGVFZWomfPnnj//feNThEAgNOnT+Pdd981SouJiQEATJw4EStWrABQO6S6Z88eHDlyBOXl5XB3d0efPn3wwQcfYNiwYUblvb298dFHHyEuLg5r164Vj3rauHEj55QRUYMZn8PZMpvU6nn4uqL4RhnKCyshCEKzFmkRUePIBMMoRiLl5eX497//jS1btuDYsWMQBAHu7u7405/+xO0iJHDx4kXMnTsXCQkJPMeTqI35/NUfUJZfAZd2znjhk/H3L9AM+9/9FTf+WwAAeP6TcXBtJ2/R+ojoLkl70I4ePYotW7bgq6++glqthiAIeOihhzBnzhxMnz5dspWSRERtkSAIUBfX9qC15PCmnrv33ToqiqsYoBG1omYHaDdu3MCnn36KrVu34urVqxAEAe3bt0dUVBTmzJljdLQSERE1XVVZDXSa2kEPd++WHd4Eao+S0lMXVcGnC/+RTdRamhyg/fvf/0ZSUhKOHDkCrVYLBwcHREZGYvbs2XjyySfh7OwsZTuJiNo8dVGV+HNLzz8DjINAdXFVPTmJSGpNDtCee+45AEDXrl0xa9YszJo1C126dJGsYUREZEw/vAkAbt6tMMTpwwCNyFKaFaDNmTPHaPUkERG1HMMeNI9W7kGrYIBG1KqaHKDt2LFDynYQEdF9tPYQ571z0Iio9UhykgBQu4N+bGwshg0bBi8vL6Od8c+cOYMFCxbg0qVLUlVHRNTmGA4ztsYiAeM5aNyslqg1SbLNRkVFBSIjI3Hs2DEolUp4eXmhvLxcvN6tWzckJSXB19cXa9askaJKIqI2x/BMTHeflp+D5uzqBGc3R9RUaDkHjaiVSdKDtnbtWvz888949913kZubi6ioKKPrCoUCo0aNwsGDB6WojoioTTIMktxaoQcNuLsXGuegEbUuSQK0L774AqNHj8by5cshk8nMHgcSEhKC7OxsKaojImqT9PPAXD2d4egk2QyVeukDwZpKLWoqNa1SJxFJFKBlZ2fjoYceqjePl5cXVCqVFNUREbU5hqcItMbwpp47FwoQWYQkAZqnpyfy8vLqzXP16lX4+flJUR0RUZvT2qcI6HGzWiLLkCRAGzFiBPbu3VtnD9n169exb98+RERESFEdEVGb09pbbIh1MUAjsghJArRly5ahsLAQ48ePx7Fjx6DR1M5TUKvV+O677xAZGYmamhosWbJEiuqIiNqc1l7BqefmY7hZLbfaIGotkmyzERERgY8//hivvvoqwsPDxXRPz9qDdR0dHREXF4chQ4ZIUR0RUZvT2nugmauLPWhErUeSAA0A5s+fj1GjRuFf//oXjh8/jsLCQnh5eWH48OFYsGAB+vXrJ1VVRERtjlUMcXKRAFGrkSxAA4A+ffpg48aNUt6SiIhwzxBnq/ag3R1OZQ8aUetpnY107tDpdK1ZHRGR3TAa4mzFOWhyDyc4Otf+VcHNaolajyQB2ubNm++bR6vV4s9//rMU1RERtTmGw4utdYoAAMhkMrE+9qARtR5JArSXX34Zu3fvrvO6IAiYMWMGvvzySymqIyJqc/Sb1LbmKQJ6+iHVqrIaaGu0rVo3UVsl2T5o06dPx9GjR02u6YOzf//735g/f74U1RERtSmCIIg9aK05vKlnvJKzutXrJ2qLJAnQvv32W3Tv3h1Tp07Ff//7XzFdEAS88MIL+PzzzxEdHY2PP/5YiuqIiNqUqtIa6LStf4qAnmGd3AuNqHVIEqApFAocPHgQCoUCEydOxLVr1yAIAp5//nns2LED8+bNQ3x8vBRVERG1OWqVZeafiXX6cC80otYm2USGzp0749ChQ6iurkZkZCSmT5+OnTt3IioqCv/617+kqoaIqM2psNAmtXoe3GqDqNVJOtP0gQcewP79+5Gbm4svv/wSc+bMwSeffCJlFUREbY5V9aBxs1qiVtGkjWrfeeedeq8PGzYMZ86cQUBAgFFemUyGt956qylVEhG1WRVFlu1B43FPRK2vSQHa22+/3aB89wZyDNCIiBrPqAdNYelFAgzQiFpDkwK0lJQUqdtBRER1sPQcNFdPOWSOMghagT1oRK2kSQHaqFGjpG4HERHVwTAossQcNJmDDG4KOdSFVQzQiFpJ625HTUREjVZxZ4jTycURzq6OFmmD/tD0SlUVdDrBIm0gaksYoBERWbmKO7v3uynkkMlkFmmDfmhVEGqDNCJqWQzQiIismLZGi6ryGgB3e7EsgSs5iVpXk+agWZJarcbmzZuRkpKC0tJSBAUFYcaMGRg3btx9yxYVFSE+Ph5paWmorKxEjx49EBUVhSFDhhjlO3bsGFJSUnDp0iVkZ2dDq9UiNTXV5H4XL15EcnIyzp49i9zcXLi6uiIkJATPP/+8yT23bNmCrVu3mtxDLpfjyJEjjXsTiKjNMDz70s1bbrF2uDFAI2pVNhegrVy5Eunp6YiOjkZgYCCOHDmC1atXQ6fTYcKECXWWq66uxuLFi1FWVoZXXnkFPj4+2LVrF5YuXYrY2FgMGjRIzJuamopz586hZ8+ekMvluHjxotl7HjlyBOnp6XjsscfQvXt3VFZWYvfu3XjttdewYsUKTJw40aTMBx98AA8PD/G1pYYriMg2VBgMJ7pbYIsNsW4e90TUqmwqQEtLS8PJkycRExOD8ePHAwBCQ0ORm5uL+Ph4jB07Fo6O5ifQJicnIzMzE3Fxcejfvz8AYPDgwZg9ezbi4+OxadMmMe/y5cvh4FA7+hsbG1tngPbnP/8ZCxcuNEobMWIEoqKi8Omnn5oN0B544AF4e3s3+tmJqG2qsPAKTj2jvdB4mgBRi7OpOWhHjx6Fm5sbRo8ebZQ+efJk5Ofn4/z58/WWDQoKEoMzAHByckJkZCQuXLiAvLw8MV0fnN2Pj4+PSZqjoyN69eqF27dvN+geRET1Mdyk1hJ7oJmrmz1oRC1P0h60oqIi7N27Fy+++KKUtxVlZmYiODgYTk7Gze7evbt4fcCAAWbLZmRkYODAgSbphmX9/Pya3UaNRoOzZ8+ia9euZq+/9NJLKC4uhkKhwLBhwxAVFYWOHTvWe8/8/HwUFBSIr7OysprdTiKyDYZnX1pLDxoDNKKWJ2mAlp2djVmzZrVYgKZSqdC5c2eTdE9PTwBASUlJnWVLSkrEfI0t2xhJSUm4ceMG/vGPfxilBwQEYO7cueK8tgsXLmDnzp04ceIEEhIS6g0O9+zZY3aBARHZP2uZg+amcAFkAARAXVxpsXYQtRWNCtCys7PrvZ6Tk9OsxjREcybV11dWisn63377LT777DM8++yzCA8PN7r26KOPGr0ODQ3F4MGDsWDBAuzYsQOLFi2q875Tp05FWFiY+DorKwtr1qxpdnuJyPpZyxw0BycHuHrKUVlSzfM4iVpBowK0rl271hvICILQoqsSFQoFVCqVSXppaSkAwMvLq86yXl5eZnvJ9GXN9a41xr59+/DBBx/g8ccfx4IFCxpUpm/fvujSpUu9c+cAQKlUQqlUNqt9RGSbxDloMsDNy3LbbAC1w5yVJdVQF1e1+O97orauUQGaj48P1q5dazJJX+/ChQuYNm2aFO0yKyQkBEeOHIFGozGah5aRkQEA6NatW71lr169apKuTwsJCWlyu/bt24f169dj4sSJWLp0aaN/aTV0UQIRtT363ipXTzkcnCz7u8Ld2wWF2aXQaQRUldXA1dOyASORPWvUt33IkCHIy8tDr169zP7p1q0bBKHlzmgLDw9HRUUFfvzxR6P0AwcOQKlUom/fvnWWjYiIQHZ2tlFvlUajweHDh9G3b98m91Dt378f69evx4QJE7B8+fJGBWfnzp3D9evX6203EbVdgiCIE/LdLDj/TI+b1RK1nkb1oL388ssoLy+v83pQUBCSkpKa3ai6jBgxAkOHDsWGDRugVqsREBCA7777DsePH8fKlSvFPdDWrVuHgwcPYufOnfD39wdQuxXHrl27EBMTg+joaHGj2uzsbMTGxhrVk5ubi/T0dAB359X98MMPAAB/f3/07t0bAJCSkoL33nsPPXr0wNSpU3HhwgWj++gXBADArFmzEBkZieDgYKNFAr6+vpg+fXrLvGFEZNOqyzXQaWr/0WvJLTb07l3J6RvYvKkhRFS3RgVoTz31VL3XfXx8MHPmzGY16H7WrFmDhIQEJCYmikc9rVq1yuioJ51OB61Wa9SbJ5fLERsbi/j4eGzcuBGVlZXo2bMn3n//faNTBADg9OnTePfdd43SYmJiAAATJ07EihUrANRunKvT6XDp0iWTDWsB4IsvvkCnTp0A1M7f27NnDwoLC1FTUwOlUolx48Zh5syZnF9GRGYZrpa0igDNh5vVErUWmdCSY5LUIi5evIi5c+ciISEBvXr1snRziKiF5JwrwL5//AoAePDxbhg2vbdF25N5/Ca+23gGAPDQcw9g4NTuFm0PkT3j7HQiIitlOM/LOuaguYo/cw4aUctqdoDm6Oh43/3RiIio8Qz3G7OKIU7D8ziLqy3YEiL71+wAjSOkREQtQ20lm9SKbVDc3VbD8IxQIpIehziJiKyUtRzzpOfs6gRnt9rV8jxNgKhlMUAjIrJS1taDBgDud+ahVbAHjahFMUAjIrJS+iDI0dkBcvdG7YrUYvTDnNVqDTTVWgu3hsh+MUAjIrJS6jt7jbl5u1jNuZduRgsF2ItG1FIYoBERWSGtRoeqshoA1jH/TM+wLdxqg6jlMEAjIrJClSrrm38G3HOaAOehEbWYZgdof/vb3+Dt7S1BU4iISE+turvPmDXsgabnxh40olbR7Fmnf//736VoBxERGVAX3T2H081bXk/O1sU5aESto0WHOAVBwOXLl3H9+vWWrIaIyO5UGPagWe0cNJ4mQNRSJAnQdu/ejdmzZ6OoqEhMu3btGgYMGIDevXsjODgYM2bMgE6nk6I6IiK7V2GFe6ABgJuPYYBWWU9OImoOSQK0f/3rXzhx4gR8fHzEtMWLF+P8+fMYM2YMHnzwQXz++edISkqSojoiIruntrJzOPVcPeXQ7/hh2MtHRNKSJEA7d+4chg0bJr5WqVTYt28fnn32WRw5cgS//vor+vTpg8TERCmqIyKye2orXcXp4CCD651hTs5BI2o5kgRoeXl56NSpk/j6p59+gkajwfTp0wEAzs7OmDBhAq5cuSJFdUREds9oiNOK5qABgPud0wQqVFUQdIKFW0NknyQJ0Ly8vFBQUCC+/uGHH+Dg4IDw8HAxzdnZGeXl5VJUR0Rk9/QBmks7Zzg6WdeWlW53zuPUaQVxM10ikpYk3/revXtj7969KCwshEqlwueff47Q0FCjOWlZWVno2LGjFNUREdk1QRDEOWjWNP9Mz91g2w81N6slahGSBGivvvoqcnJyEBAQgMDAQOTk5GD+/Pnida1Wi59++gkDBw6UojoiIrtWU6GBtqZ21bu1DW8Cxm3iPDSiltHsjWoBYNq0afj444/FRQDPPPMMZs+eLV7/7rvvoFarMXHiRCmqIyKya2or3WJDz7BNPE2AqGVIEqABwMsvv4yXX37Z7LXIyEijPdKIiKhuhmdcWucQJ3vQiFqadc08JSIiqIusuwfNMEDjHDSilsEAjYjIyhj1oCms5xxOPc5BI2p5DNCIiKyM4RmX7j6uFmyJeZyDRtTyGKAREVkZ401qra8HTe7mBCcXRwDGvX1EJB0GaEREVsbwEHJ3b+vrQQPuzkOrKOZ5nEQtgQEaEZGV0Q8bOjo7QO4h2WJ7SennoVWV10Bbo7Vwa4jsDwM0IiIro1/F6aZwgUwms3BrzHMzPE2AvWhEkmt0gKbT6fC///0POTk5JtdqamqQmpoqScOIiNoirUYnnm9pjXug6RkOvXIeGpH0GhWgZWVlYcCAAXjwwQcRGBiIqVOnGh2SXlhYiDFjxkjeSCKitsJogYCP9QZohj1o3GqDSHqNCtCWL1+OLl26IDs7G2fPnkVVVRXCwsKMetMEQZC8kUREbYXhthVW3YOm4FYbRC2pUQHajz/+iPXr16NLly7o378/Dhw4gPDwcISHhyM7OxsArHa+BBGRLaiwkQCNe6ERtaxGLQ9Sq9Vwcbn7pZTJZEhISMDLL7+MiIgI7NixQ/IGmmvD5s2bkZKSgtLSUgQFBWHGjBkYN27cfcsWFRUhPj4eaWlpqKysRI8ePRAVFYUhQ4YY5Tt27BhSUlJw6dIlZGdnQ6vV1jm3TqPR4LPPPsP+/ftRUFCATp064amnnsK0adNM8ubk5ODjjz/G6dOnodVq0a9fP0RHR6NXr15NezOIyO7YTA+a4XmcnINGJLlG9aD16tULJ0+eNEmPj4/H5MmTMWXKFMkaVpeVK1fiwIEDeOmll7B+/Xr07t0bq1evxuHDh+stV11djcWLF+O3337DK6+8grVr18LHxwdLly7FmTNnjPKmpqbi3Llz6Nq1K3r06FHvfTds2IDt27fjqaeewgcffIDw8HB8+OGH+Oyzz4zyFRcX4y9/+QuuX7+O119/HW+//Taqq6uxaNEisfeRiMhWAjQ3HphO1KIa1YP29NNPY8eOHXj++edNrsXFxUEQBGzatEmyxt0rLS0NJ0+eRExMDMaPHw8ACA0NRW5uLuLj4zF27Fg4OjqaLZucnIzMzEzExcWhf//+AIDBgwdj9uzZiI+PN2r38uXL4eBQG7vGxsbi4sWLZu+ZmZmJ5ORkzJ07F9OnTxfvWVJSgm3btuGJJ56Al5cXAGDnzp0oLi5GXFwc/P39AQAPPvggnnvuOSQmJmL16tUSvENEZOuMDkq35kUCnnJABkDgECdRS2hUD9qbb76Jffv21Xk9Pj4eOp2u2Y2qy9GjR+Hm5obRo0cbpU+ePBn5+fk4f/58vWWDgoLE4AwAnJycEBkZiQsXLiAvL09M1wdnDWmPIAiYNGmSUfqkSZNQVVWF48ePi2mpqakIDQ0VgzMA8PDwQEREBI4dOwaNRtOgOonIvtnCKQIA4ODkAFfP2pWcHOIkkp5NbVSbmZmJ4OBgODkZd/x1795dvF6XjIwMMV9jy9bXHm9vb7Rv377ee1ZVVSEnJ6fO+quqqnDz5s0668nPz8fFixfFP1lZWY1uKxHZBv1woUwGuHpZ3zmchvRDsOriKq7gJ5KYdZ4hUgeVSoXOnTubpHt6egIASkpK6ixbUlIi5mts2fraox/CNOTm5gZnZ2eoVCoAQGlpKQRBMFu/vrxKpUJgYKDZevbs2YOtW7c2un1EZHv0w4WuChc4OFj3qvja455KodMIqC7XwKWds6WbRGQ3mh2gOTo6IjMzE0FBQVK0576as41HfWVbYnuQe+/Z1PqnTp2KsLAw8XVWVhbWrFnT/AYSkVXR6QRUqGqPTbLmBQJ67kZbbVQyQCOSULMDtNbs1lYoFGKvlKHS0lIAMNubpefl5WW2l0xf1lzvVkPac+XKFZP0iooK1NTUiO3x9PSETCYzW78+rb62K5VKKJXKRrePiGxLVWk1BF3t71RbCNCMThNQVcOniwUbQ2RnbGoOWkhICLKyskwm1GdkZAAAunXrVm/Zq1evmqTr00JCQprUnuLiYqPjrsy1x8XFBQEBAWL6vXldXFzQqVOnRtdPRPbFcDWkmw0EaO7crJaoxdhUgBYeHo6Kigr8+OOPRukHDhyAUqlE37596ywbERGB7Oxso5WeGo0Ghw8fRt++fZvUQ/XII49AJpPhwIEDRun79++Hi4sLhg8fbtT2U6dO4datW2KaWq1GamoqwsLCTBY+EFHbYyt7oOm58bgnohZjU1HBiBEjMHToUGzYsAFqtRoBAQH47rvvcPz4caxcuVLcA23dunU4ePAgdu7cKW5rMXnyZOzatQsxMTGIjo6Gj48Pdu3ahezsbMTGxhrVk5ubi/T0dAAQzxn94YcfAAD+/v7o3bs3gNoessceewxJSUlwcHBAnz59cOLECezduxdRUVFGw5bTp0/HoUOH8Prrr2POnDlwdnbG9u3bUV1djVmzZrXo+0ZEtqHCYA80dyveA02Pm9UStRybCtAAYM2aNUhISEBiYqJ41NOqVauMjnrS6XTQarVG8+PkcjliY2MRHx+PjRs3orKyEj179sT777+PQYMGGdVx+vRpvPvuu0ZpMTExAICJEydixYoVYvqSJUugVCrx9ddfo7CwEP7+/nj11VdNjnry9vbGRx99hLi4OKxdu1Y86mnjxo0IDg6W6u0hIhtmaz1ohgemcy80ImnJhGbO8ndwcMC1a9dabRUnARcvXsTcuXORkJDAczyJ7Mixredx/lDtPodTV49Ah54+Fm5R/arVNdgWdQQA0Ll/e0xeMczCLSKyHzY1B42IyJ4ZniLgZsWnCOg5uznB0bn2rxEOcRJJq9kB2t/+9jd4e3tL0BQiorbNaBWnwrpPEQBq9290MzhNgIik0+wA7e9//3u9e3gREVHD6HuhXDyc4SR3tHBrGkY/D62qrAZaTcudxUzU1nCIk4jICgiCIPZC2cIeaHpuPlzJSdQSJF3FqdPpcP36ddy4cQM1NTVm80REREhZJRGRXaip0EBbXdsDZQsrOPXu3ay2ndLNgq0hsh+SBGiCIGDdunWIjY012VX/XlqtVooqiYjsitrG9kDTM2yr4TMQUfNIEqC9+eabWL9+PTp06IBZs2ahU6dO3BmfiKgRbO2YJ717D0wnImlIEkVt3boVvXr1wokTJ9CuXTspbklE1KbY2ia1eu4+d7cDYQ8akXQkWSRQVlaGxx57jMEZEVET2WyAxgPTiVqEJAHaoEGDxDMriYio8QxXQNrUHDRvzkEjagmSBGgrV67E7t27cerUKSluR0TU5qiLDE4RUNhOgObqKYfMUQYAqOAcNCLJSDIHbeLEifj0008xadIkTJ06FQMHDqxz89oXX3xRiiqJiOxKhapa/NmWhjhlDjK4K1xQXliJcvagEUlGkgCtqqoKu3fvRn5+PhITEwHUHgFiSBAEyGQyBmhERGboV0A6uTjC2c22VsG7e9cGaJWl1dBpdXBw5B7oRM0lyW+BJUuWYPv27XjwwQfxpz/9idtsEBE1kn7+lru3i8k/cK2dOGdOqO0J9PC1/oPeiaydJFHUl19+iSFDhiAtLY2BGRFRI2mqtahWawDY1h5oem5GCwUqGaARSUCSfujKykqMGTOGwRkRURNU2OgWG3pGpwlwqw0iSUgSoA0ZMgRXrlyR4lZERG2Ore6Bpme0WS0DNCJJSBKgrV27FgcOHMC3334rxe2IiNoUtY3ugabHvdCIpCfJmOThw4cxevRoPPHEExgzZgwGDRpkdpsNmUyGt956S4oqiYjshmFQY4tz0HhgOpH0JAnQ3n77bfHn77//Ht9//73ZfAzQiIhM2fwQp7fhECc3qyWSgiQBWkpKihS3ISJqkypUtt2D5uolh0wGCAJ70IikIkmANmrUKCluQ0TUJhkGNbbYg+bgIIObtwvURVVGK1KJqOm43TMRkYXpz7CUOcrg2k5u4dY0jT6wrFBVQacTLNwaItsnSYD2888/Y8mSJcjNzTV7PTc3F0uWLMEvv/wiRXVERHZFPwfNXeECmYNtnSKgpx+aFQSgUsVeNKLmkiRA27BhA/bu3Qt/f3+z1/39/fHtt98iNjZWiuqIiOyGTqtDRUntQem2OLyp58G90IgkJUmAduLECTzyyCP15omIiGAPGhHRPSpKqoE7I4JuNrgHmp7h4obyQq7kJGouSQK027dvIyAgoN48/v7+uH37thTVERHZDbVBMGPYC2VrDM/fZA8aUfNJEqB5e3sjOzu73jxZWVlo166dFNUREdmN8kKDFZy+ttuD5mG4WS170IiaTZIAbeTIkdi1axf++OMPs9ezs7PxzTff4OGHH5aiOiIiu6EuMuhB87bdHjR3gx60cu6FRtRskgRoS5YsgVqtRlhYGLZt24abN28CAG7evIlPP/0UYWFhqKiowF//+lcpqiMishuG87VsuwfNYIiTPWhEzSbJRrXh4eH48MMPsXjxYsyaNQtA7bFOglA789XBwQEbN25ERESEFNUREdkNw01qDedx2RoXT2c4OjtAW6NDeREDNKLmkiRAA4CFCxdi1KhRiI+Px4kTJ1BcXAxvb28MGzYM8+fPR//+/aWqiojIbhj1oNnwIgGZTAZ3bxeU5lVAXcghTqLmkixAA4D+/fvj448/lvKWJtRqNTZv3oyUlBSUlpYiKCgIM2bMwLhx4+5btqioCPHx8UhLS0NlZSV69OiBqKgoDBkyxCTvyZMnkZiYiCtXrsDV1RUjR47Eyy+/DB8fHzHPli1bsHXr1jrrW7VqldiuuvLK5XIcOXLk/g9ORHZJ39vk5OIIubukv5JbnbuvK0rzKlBVXgNNtRZOckdLN4nIZtncb4OVK1ciPT0d0dHRCAwMxJEjR7B69WrodDpMmDChznLV1dVYvHgxysrK8Morr8DHxwe7du3C0qVLERsbi0GDBol5z5w5g2XLlmHkyJFYu3YtioqKsGnTJixevBgJCQmQy2uPYpkyZQqGDx9uUtf69euRk5ODYcOGmVz74IMP4OHhIb6WyWxz13AikoZ+kYC7j4vN/z4wnIdWXlgJhb9HPbmJqD42FaClpaXh5MmTiImJwfjx4wEAoaGhyM3NRXx8PMaOHQtHR/P/YktOTkZmZibi4uLE4dbBgwdj9uzZiI+Px6ZNm8S8cXFxCAwMxDvvvAMnp9q3qFOnTli4cCH27duHJ598EgDQoUMHdOjQwaiemzdv4tq1a5gwYQI8PT1N2vHAAw/A29u7uW8FEdmB6goNaiq0AGx7/pme4SIHdREDNKLmsKnD0o8ePQo3NzeMHj3aKH3y5MnIz8/H+fPn6y0bFBRkNBfOyckJkZGRuHDhAvLy8gAAeXl5SE9PR2RkpBicAcCAAQMQGBiI1NTUetu4b98+CIKAKVOmNOEJiagtUdvJ/DM94x40zkMjag6b6kHLzMxEcHCwUeAEAN27dxevDxgwwGzZjIwMDBw40CTdsKyfnx8yMzON0u/N+9///rfO9ul0Ouzfvx8BAQFGQ6aGXnrpJRQXF0OhUGDYsGGIiopCx44d67wnAOTn56OgoEB8nZWVVW9+IrINhqsdPWx4iw09w73QuNUGUfPYVICmUqnQuXNnk3T9UGJJSUmdZUtKSswOOd5bVqVSAQC8vLzM5q2vjhMnTuD27duYN2+eybWAgADMnTsXPXv2hFwux4ULF7Bz506cOHECCQkJ8PPzq/O+e/bsqXcxAhHZJsPVjvbRg2ZwHie32iBqFpsK0IDmTaqvr+y91+rKW989kpOT4ejoiEmTJplce/TRR41eh4aGYvDgwViwYAF27NiBRYsW1XnfqVOnIiwsTHydlZWFNWvW1JmfiGyDcQ+aHQRoRj1oHOIkag6bCtAUCoXYw2WotLQUgPleLz0vLy+zvV/6svqeNIVCAQB11mOuFw4AiouL8fPPP2PkyJFo3779fZ6kVt++fdGlS5d6584BgFKphFKpbNA9ich2GB+UbgdDnOxBI5KMZAFadXU1vvnmG3GTWq1Wa5JHJpMhMTGxyXWEhITgyJEj0Gg0RvPQMjIyAADdunWrt+zVq1dN0vVpISEhRvfIyMjAyJEjjfJmZGTUWcehQ4dQU1PTpMUBDg42tVaDiCRieGalux30oDk6O8LV0xmVpTVGZ4wSUeNJEqBlZWVhwoQJuHr1qni8kznNDdDCw8Oxd+9e/Pjjj0Yb0x44cABKpRJ9+/ats2xERAQ2bNiA8+fPi/k0Gg0OHz6Mvn37ij1Ufn5+6NOnDw4dOoTnnntO3Lbj3LlzyM7Oxv/3//1/Zu+fnJwMpVJpdl+0upw7dw7Xr1/HtGnTGlyGiOyH2IMmA9wVtt+DBtTOpassrUF5URUEnQCZg23v7UZkKZIEaK+99hquXLmCF154AbNnz0aXLl1MVlpKYcSIERg6dCg2bNgAtVqNgIAAfPfddzh+/DhWrlwpBlPr1q3DwYMHsXPnTvj7+wOo3Ypj165diImJQXR0tLhRbXZ2NmJjY43qmT9/PpYsWYKYmBg89dRT4ka13bp1Mzu/7Pz588jMzMQLL7xQ5z5ss2bNQmRkJIKDg40WCfj6+mL69OkSv1NEZAv0w4BuChc4ONlHT7q7jysKs0shaAVUlFbbTeBJ1NokiaK+//57jBs3Dp9++qkUt6vXmjVrkJCQgMTERPGoJ8MjlYDa7S60Wq1Rb55cLkdsbCzi4+OxceNGVFZWomfPnnj//fdNtsQYPHgw1q9fjy1btuCNN94Qj3pasGCBeIqAoeTkZMhkMjz22GN1trtr167Ys2cPCgsLUVNTA6VSiXHjxmHmzJmcX0bUBum0OlQU1w5x2sP8Mz3D7ULUhZUM0IiaSCbUNybZQF5eXpg/fz7Wr18vRZvoPi5evIi5c+ciISEBvXr1snRziKgJygsrsfMvKQCAoCEdEPlX0zOBbdFvX13G6a+vAAAm/DUUwUPq3+eRiMyTpE995MiRuHDhghS3IiJqE8qNVnDa/gIBPaOtNoq41QZRU0kSoK1btw4pKSn46quvpLgdEZHdM1zl6G4HpwjoGW1Wy9MEiJqsSXPQ3nnnHZO0MWPG4Nlnn8WoUaMwePBgcT8xQzKZDG+99VZTqiQisit224PW3k38mQEaUdM1KUB7++2367z2ww8/4IcffjB7jQEaEVGtsvy7wUs7pVs9OW2LR3uDA9MLGKARNVWTArSUlBSp20FE1KYYBi/2cMyTntzdCc6ujqip1KKsoMLSzSGyWU0K0EaNGiV1O4iI2pSywrvBi2Gvk62TyWTwaO+K4hvlKC+ohCAIzTpDmaitso+dEYmIbIy+B83VSw4nufkNrm1Vuzvz0LQ1OlSV1li4NUS2SfLt/jUaDS5dugSVSgWFQoEHHnigRU4VICKyVTqtTjzmyZ6GN/UMewTLCirg6mW6wTcR1U+yHrS8vDzMnTsX3t7eGDBgAB555BEMGDAA3t7emDdvHvLy8qSqiojIpqmLq6DfItyeFgjocaEAUfNJ0rV148YNhIWFITs7G35+foiIiEDHjh1x69Yt/Pbbb9i8eTMOHz6Mn376CQEBAVJUSURks4wWCNjR/DO9dr53g84yBmhETSJJD9ry5cuRnZ2N1atXIysrC/v27UNSUhL27duHrKwsvP3228jKysLrr78uRXVERDatLP/uAoF29jjEqTToQSvkSk6ippCkB+3AgQOYOHGi2T3OXF1dERMTg2PHjmH//v1SVEdEZNPsvgfNYLNaw/3eiKjhJOlBq66uRmhoaL15hgwZgurqaimqIyKyaWWF9rlJrZ7hwgfOQSNqGkkCtCFDhiA9Pb3ePOnp6RgyZIgU1RER2bTyfPvcA03PycURLu2cAXCIk6ipJAnQ/v73v+Pbb7/F1q1bzV7fsmUL9u3bhzVr1khRHRGRTdNPnJfJAHdv+zko3ZC+Z7C8sAo6nWDh1hDZHknmoKWkpGDMmDGYM2cO1q9fj7CwMHTo0AG3b9/Gzz//jIsXLyIyMhLff/89vv/+e7Ecz+YkorZIf4i4u68rHBztc79wj/auKLhWAkEnoKKo0ugQdSK6P0kCNMPD09PT080Odx48eBAHDx40SmOARkRtjaZai8qS2vm49ji8qWe4OrWsgAEaUWNJ1oNGRET3Zzhp3nC/MHvjYbD4obyQCwWIGkuSAI2HpxMRNYxhsGK4X5i9adfeuAeNiBrHPic/EBFZqbICg01q7XiI02irjXyu5CRqrCYFaH/+85/x9ddfN7nS5pYnIrJV5QYbt3rY8xCn4Wa1HOIkarQmBWiff/45/ve//zW50uaWJyKyVYbDfXbdg+bjApms9mf2oBE1XpPnoJ05cwbbtm2Tsi1ERHavNE8t/tzOz3570BycHODu64rygkqU5jFAI2qsJgdo33zzDXbv3t3ocoLADQuJqO0quxOsOLvd3W3fXnn6uaG8oBJVZTWortBA7ibJujSiNqFJ35akpKRmVzxo0KBm34OIyJbodALK7gz3tVO6Q6YfA7RTnn7uyE0vAlAbmPoGeVq4RUS2o0kB2syZM6VuBxGR3asoqoROWzuK4NnBfoc39QyHcEvz1AzQiBqB22wQEbUSw7lYnkr7D9A8jQI0zkMjagwGaERErcQoQGsDPWiGz1jGAI2oURigERG1EqMVnEp3C7akdRg+I3vQiBqHARoRUSspa2M9aB6+LpA51i6EKDMITono/higERG1EqMhTjveA03PwdEB7e4c+cQeNKLGsblNadRqNTZv3oyUlBSUlpYiKCgIM2bMwLhx4+5btqioCPHx8UhLS0NlZSV69OiBqKgoDBkyxCTvyZMnkZiYiCtXrsDV1RUjR47Eyy+/DB8fHzHPzZs38eyzz5qta9WqVSZtysnJwccff4zTp09Dq9WiX79+iI6ORq9evRr5LhCRLdIHKS4ezpC72/ceaHqeHdxRmleBarUGVeU1cPFoG89N1Fw2F6CtXLkS6enpiI6ORmBgII4cOYLVq1dDp9NhwoQJdZarrq7G4sWLUVZWhldeeQU+Pj7YtWsXli5ditjYWKN92c6cOYNly5Zh5MiRWLt2LYqKirBp0yYsXrwYCQkJkMvlRveeNm0axo8fb5TWpUsXo9fFxcX4y1/+Ak9PT7z++uuQy+XYvn07Fi1ahE8++QRBQUHNf3OIyGrptDqU3znmyZ5PELiX4bOW5VUwQCNqIJsK0NLS0nDy5EnExMSIAVFoaChyc3MRHx+PsWPHwtHR0WzZ5ORkZGZmIi4uDv379wcADB48GLNnz0Z8fDw2bdok5o2Li0NgYCDeeecdODnVvkWdOnXCwoULsW/fPjz55JNG9+7QoQP69etXb9t37tyJ4uJixMXFwd/fHwDw4IMP4rnnnkNiYiJWr17dpPeEiGxDeWElBN2dPdDaUIDmec9eaO27elmwNUS2o8lz0EJDQ/HJJ58YpR08eBBLliwxm3/16tVisNNUR48ehZubG0aPHm2UPnnyZOTn5+P8+fP1lg0KChKDMwBwcnJCZGQkLly4gLy8PABAXl4e0tPTERkZadTeAQMGIDAwEKmpqU1qe2pqKkJDQ8XgDAA8PDwQERGBY8eOQaPRNOm+RGQbDOdgtdUeNM5DI2q4JgdoZ86cQW5urlHaL7/8go0bN9ZZprnncGZmZiI4ONgk0Ovevbt4vS4ZGRlivvrK6v9bV15zdezYsQNjx47FhAkTsHDhQvz0009G16uqqpCTk1PnPauqqnDz5s06256fn4+LFy+Kf7KysurMS0TWqex221ogoGe4IS8DNKKGs6khTpVKhc6dO5uke3rWHh9SUlJSZ9mSkhIxX31lVSoVAMDLy7Qb3tPT06gOZ2dnPP744xg6dCjat2+PW7du4euvv8aKFSuwfPlyTJkyBQBQWloKQRDM1q+vR6VSITAw0Gzb9+zZg61bt9b5bERk/UrzDQM0+98DTc+zw91n5Wa1RA1nUwEagGYdLlxf2Xuv1ZXXMF2pVGLZsmVG18eMGYPo6Ghs2rQJEydONOrta0z9hqZOnYqwsDDxdVZWFtasWVNnfiKyPqW3DTapbUM9aO7eLnBwkkGnEYw26iWi+tnUPmgKhULs4TJUWloKwHyvl56Xl5fZHjZ9WX3vlkKhAIA66zHXC2bIyckJY8eOhUqlwvXr18V7y2Qys/Xr0+pru1KpRK9evcQ/wcHB9baBiKxPWX7bHOKUOcjQ7s4wZ1leRbOnuhC1FTYVoIWEhCArK8tkQn1GRgYAoFu3bvWWvXr1qkm6Pi0kJMToHvp73ltPfXXo6X8BOTjUvr0uLi4ICAio854uLi7o1KnTfe9LRLar5E4PmqunM5xdbW7woln0Q7o1lVpUllRbuDVEtsGmArTw8HBUVFTgxx9/NEo/cOAAlEol+vbtW2fZiIgIZGdnG6301Gg0OHz4MPr27QulUgkA8PPzQ58+fXDo0CFotVox77lz55CdnY1Ro0bV20aNRoOUlBQoFAoEBAQYtf3UqVO4deuWmKZWq5GamoqwsLBmr3AlIuulqdJCXVgFAPDy97Bwa1qfl//deWgltzjMSdQQzYoK/t//+3/45ZdfxNdXrlwBULvtxb3015pjxIgRGDp0KDZs2AC1Wo2AgAB89913OH78OFauXCnugbZu3TocPHgQO3fuFLe1mDx5Mnbt2oWYmBhER0eLG9VmZ2cjNjbWqJ758+djyZIliImJwVNPPSVuVNutWzdMmjRJzPfRRx9Bo9FgwIAB8PX1xe3bt/Gf//wHly9fxptvvmm0J9v06dNx6NAhvP7665gzZw6cnZ2xfft2VFdXY9asWc1+b4jIeqlulYs/e3VsOwsE9AyfWZVbjo4P+NSTm4iAZgZoV65cMRt4HThwwGz+5kzw11uzZg0SEhKQmJgoHvV077FKOp0OWq3WaK6DXC5HbGws4uPjsXHjRlRWVqJnz554//33jU4RAGo3sF2/fj22bNmCN954QzzqacGCBUanCHTr1g179uzBkSNHUF5eDnd3d/Tp0wcffPABhg0bZnRPb29vfPTRR4iLi8PatWvFo542btzIOWVEdq4k926vkaIN9qAZPrPhe0FEdZMJTZyx2dS9uBiMNN/Fixcxd+5cJCQk8BxPIhtwds9VnPj8EgBgzF8GovvDptsF2bPinDJ8tfQoACBkRCeMfXWQZRtEZAOa3IPGQIuIqGFUBr1GbXEOmmcHd8hkgCDUDnES0f3Z1CIBIiJbZDgxXuHf9uagOTo5iFttlNxSc6sNogZoUg/a7Nmzm1SZTCZDYmJik8oSEdmqkju9Rq5ecsjdnS3cGsvw8vdAaV4Faio0qCyphpvCxdJNIrJqTQrQ6jp2SCaTmf2XkT6dARoRtTU1lRqoi+5ssdEGV3Dqefm748Z/a39W5aoZoBHdR5MCtHsPDNfpdFi0aBF++eUXLFq0COHh4ejYsSNu3bqF1NRUfPjhhxg5cqTJdhZERPau5HbbXsGppzDaC60c/r241QZRfZoUoN27QGDdunU4fvw4zp49a7Qjfq9evRAREYFZs2Zh8ODB+Oqrr7B8+fLmtZiIyIaUGC0QaMs9aNxqg6gxJFkkkJiYiGeeeabO44oCAgLwzDPPICEhQYrqiIhsRklu296kVu/ezWqJqH6SBGjXr1+Hq6trvXlcXV3Fw8OJiNoKVRvfpFZPv9UGwB40ooaQJEDr0qULdu3ahcrKSrPX1Wo1du3ahS5dukhRHRGRzTDqQWvDQ5yOTg5o56ffaqOcW20Q3YckAVpUVBQyMjIQFhaG3bt3o6CgAABQUFCAb775Bo888giuXbuGuXPnSlEdEZHN0PcWteUtNvS8Otb2INZUaFFRUm3h1hBZt2adxam3bNkyXLp0CUlJSXj66acBAA4ODtDpdAAAQRAwa9YsLFu2TIrqiIhsQk2lBuriO1tstOHeMz2FwVYbJTfL4c6tNojqJEmA5uDggMTERLz44ov49NNP8fvvv0OlUkGhUGDgwIF48cUXMWrUKCmqIiKyGaqbd4c32/L8Mz2vTnffA9XNcvj39rVga4ismyQBmt6oUaMYiBER3VF0o0z82SegnQVbYh0M3wPD94aITDV5DlpSUhLy8vKkbAsRkV0pvn43CPHuwgDN8D0oZoBGVK8mB2hz5sxB586dER4ejn/+85+4fPmylO0iIrJ5xexBM+Lu7QK5e+3ATdF1BmhE9WlygHbs2DEsXboUhYWFWLZsGXr37o0+ffpgxYoV+OWXX6RsIxGRTdIHIU4ujmindLNwayxPJpOJvWjlBZWoVtdYuEVE1qvJAdqIESPw7rvv4ty5c7h8+TLee+89+Pn5Yf369QgLC0OnTp0QHR2Nffv2oaqqSso2ExFZPU21FqV3zuH07uwBmYPMwi2yDoY9icU5PFGAqC6S7IPWvXt3LF26FKmpqbh16xY2b96M4cOHY/v27Xj88cehVCoxbdo0fPbZZygsLJSiSiIiq6a6WQ79XqzeHN4UGb4XnIdGVDdJAjRD7du3x6xZs/DNN98gPz8fu3btwjPPPIOff/4ZM2fORMeOHTF69GipqyUisipG88+4QEBk+F5wHhpR3STdZuNerq6umDp1KqZOnQpBEHDs2DHs3r0be/bsaclqiYgszjD4YA/aXT7sQSNqEMl70Ooik8kQFhaG9evXIz09vbWqJSKyCMPggwHaXe6+rnB2cwTAvdCI6tPkHrQFCxY0uoxMJsPHH3/c1CqJiGyGPvhwdHaAZwce86Qnk8ngHdAOeVdUKMurQE2lBs6uLTqYQ2STmvyt+Ne//tXgvDLZ3dVLDNCIyN5pa7TiIenenT3gwBWcRny6eCLvigpA7UpOvxCFhVtEZH2aHKClpKQ0KF92djbeeecdXL161ShQIyKyV6pcNQRd7RJODm+aMlrJeb2MARqRGU0O0O535mZRURHWrl2Ljz/+GJWVlRg5ciTee++9plZHRGQzinjEU72Mz+QstWBLiKyX5AP/lZWV+D//5/9g/fr1KC4uRu/evbF27Vo8+eSTUldFRGSVCrNKxJ99Az0t2BLr5Bt09z0puMYAjcgcyVZxCoKAzZs3o2fPnlixYgXc3d3xySef4H//+x+DMyJqU/Iz7wZoyq5eFmyJdXL3cYGrlxwAUHBNBUG/oy8RiSQJ0L755hv069cP0dHRKCsrw9q1a3HlyhVERUXBwaHVdvIgIrI4QRBQcKcHzdVLDndfVwu3yPrIZDK0D64NXCtLa6AurLRwi4isT7Oip59++glhYWGYNm0aMjMz8dprryEjIwNvvPEGXF35S4mI2h51YSUqS6oBAO2Dvbg4qg7Kbnd7FvOvldSTk6htavIctKlTpyI5ORkODg6YOXMm3nnnHXTp0kXKthER2RzDYMMwCCFj7Q2GfguulSB4SEcLtobI+jQ5QPv2228hk8kQFBSE3NxczJs3775lZDIZkpOTm1olEZHVKzAI0Npz/lmdDN8b9qARmWrWKk5BEJCZmYnMzMwG5WdXPxHZu3wGaA3i1cEdzm6OqKnQGgW1RFSryQFaQ4MyqanVamzevBkpKSkoLS1FUFAQZsyYgXHjxt23bFFREeLj45GWlobKykr06NEDUVFRGDJkiEnekydPIjExEVeuXIGrqytGjhyJl19+GT4+PmKeixcvIjk5GWfPnkVubi5cXV0REhKC559/3uSeW7ZswdatW03qkcvlOHLkSOPfCCKySvpgw9nNEV484qlOMofahQK56UUoL6idt6df2UlEzQjQgoODpWxHg61cuRLp6emIjo5GYGAgjhw5gtWrV0On02HChAl1lquursbixYtRVlaGV155BT4+Pti1axeWLl2K2NhYDBo0SMx75swZLFu2DCNHjsTatWtRVFSETZs2YfHixUhISIBcXvtL5MiRI0hPT8djjz2G7t27o7KyErt378Zrr72GFStWYOLEiSbt+OCDD+Dh4SG+Zq8ikf2oLKlGeUHtisT2wV6Q8YinerXvWhugAUB+Vgm6DFBauEVE1sOmTqhNS0vDyZMnERMTg/HjxwMAQkNDkZubi/j4eIwdOxaOjo5myyYnJyMzMxNxcXHo378/AGDw4MGYPXs24uPjsWnTJjFvXFwcAgMD8c4778DJqfYt6tSpExYuXIh9+/aJ+7r9+c9/xsKFC43qGTFiBKKiovDpp5+aDdAeeOABeHt7N/etICIrlJ/F4c3GUHa9e8RTQaaKARqRgSYFaLNnz25SZTKZDImJiU0qCwBHjx6Fm5sbRo8ebZQ+efJkvPPOOzh//jwGDBhQZ9mgoCAxOAMAJycnREZG4pNPPkFeXh78/PyQl5eH9PR0zJs3TwzOAGDAgAEIDAxEamqqGKAZDnfqOTo6olevXjh8+HCTn5OIbFNBpkr82TD4IPOMV3LyRAEiQ00K0MzNpQJqAzBzO0Lr05sboGVmZiI4ONgocAKA7t27i9frCtAyMjIwcOBAk3TDsn5+fuLcOn36vXn/+9//1ttGjUaDs2fPomvXrmavv/TSSyguLoZCocCwYcMQFRWFjh3rX16en5+PgoIC8XVWVla9+YnIMvIy7gZo7EG7P+8ADzg6O0Bbo0NeRrGlm0NkVZoUoN27QECn02HRokX45ZdfsGjRIoSHh6Njx464desWUlNT8eGHH2LkyJGIjY1tVmNVKhU6d+5sku7pWXuuW0lJ3SuBSkpKxHz1lVWpan/BenmZ/nL19PSstw4ASEpKwo0bN/CPf/zDKD0gIABz585Fz549IZfLceHCBezcuRMnTpxAQkIC/Pz86rznnj176gyKicg6CIKAW5eKAQDObk48JL0BHBwdoAxR4NbFIpTeroC6uAru3i6WbhaRVWhSgHbvAoF169bh+PHjOHv2LDp16iSm9+rVCxEREZg1axYGDx6Mr776CsuXL29Wg5szqb6+svdeqytvfff49ttv8dlnn+HZZ59FeHi40bVHH33U6HVoaCgGDx6MBQsWYMeOHVi0aFGd9506dSrCwsLE11lZWVizZk2d+Ymo9ZXerkBFcRUAoEMPbzhwgUCDdHzAB7cu1i4UuHWpCN2G+Vu4RUTWQZKDMhMTE/HMM88YBWeGAgIC8MwzzyAhIaFZ9SgUCrGHy1Bpae3cBXO9XnpeXl5me7/0ZfU9aQpF7byRuuox1wsHAPv27cMHH3yAxx9/HAsWLLjPk9Tq27cvunTpgvPnz9ebT6lUolevXuIfS62gJaK63bpUJP7csZe35RpiYzo+4C3+rA/UiEiiAO369ev3PXvT1dUV169fb1Y9ISEhyMrKgkajMUrPyMgAAHTr1q3eslevXjVJ16eFhIQY3UN/z3vrMVfHvn37sH79ekycOBFLly5tdC8fD5Qnsn1GAdoDpguIyDzD98rwPSRq6ySJDLp06YJdu3ahsrLS7HW1Wo1du3Y1+6zO8PBwVFRU4McffzRKP3DgAJRKJfr27Vtn2YiICGRnZxv1Vmk0Ghw+fBh9+/aFUlm7vNvPzw99+vTBoUOHoNVqxbznzp1DdnY2Ro0aZXTf/fv3Y/369ZgwYQKWL1/eqODs3LlzuH79er3tJiLboA8uZA4ydOjhbdnG2BBXTzkUnWv3hsy/VgJNlfY+JYjaBkkCtKioKGRkZCAsLAy7d+8WVxwWFBTgm2++wSOPPIJr165h7ty5zapnxIgRGDp0KDZs2IC9e/fi1KlTeP/993H8+HHMnz9f3ANt3bp1GDNmDHJzc8WykydPRrdu3RATE4PDhw/j5MmTWLVqFbKzszF//nyjeubPn4/s7GzExMTg5MmTOHz4MFatWoVu3bph0qRJYr6UlBS899576NGjB6ZOnYoLFy7g3Llz4p/q6mox76xZs7Bz504cO3YMJ0+exGeffYZly5bB19cX06dPb9b7QkSWVVVeg6LrZQAA3yBPOLva1BaTFqfvRRO0AldzEt0hyW+RZcuW4dKlS0hKSsLTTz8NoHbYTqfTAahd3TRr1iwsW7as2XWtWbMGCQkJSExMFI96WrVqldFRTzqdDlqt1mjLD7lcjtjYWMTHx2Pjxo2orKxEz5498f777xudIgDUbmC7fv16bNmyBW+88YZ41NOCBQvEUwSA2o1zdTodLl26ZLJhLQB88cUX4ry8rl27Ys+ePSgsLERNTQ2USiXGjRuHmTNnir13RGSbbl8pBu78uunYi8ObjeX/gA8u/VA7BebWxWJ06tPewi0isjyZYG7jsib68ccf8emnn+L333+HSqWCQqHAwIED8eKLL5oMDVLTXbx4EXPnzkVCQgJ69epl6eYQtXkn/30JZ76pnc865pVB6D7S/IIpMk91sxxf/jUVABA4yA+PLh9q4RYRWZ6k/fCjRo1iIEZEbY7h5HZ/g1WJ1DBe/u5w9ZKjsqQaty4VQdAJPMeU2jwuHyQiagZNlRa3LxcDANop3eDR3s2yDbJBMplMnIdWrdag4Fr9G4ITtQUM0IiImuFmeiG0NbXzbQN42HeTBQy4O+/s+u/5FmwJkXVggEZE1AzXz+aJP3cZyACtqbo8ePe4u+u/59WTk6htYIBGRNQM18/W9vbIHGTo3I+rD5vKq6M7vPzdAQC3LhejWl1j4RYRWRYDNCKiJirNU0N1sxxA7fmbLh7OFm6RbesysLYXTdAKyDlXYOHWEFkWAzQioiYynCvF4c3m6/Lg3feQ89CorWOARkTURPrhTcA4uKCm6dTHFw5OtdtrXD+bDwm36SSyOQzQiIiaQKfRIedcbYDm6ukMZTeFhVtk+5xdneDf2xcAUJZfAVVOuYVbRGQ5DNCIiJrgxrkC1FTUHuwdMEDJjVUlop+HBgDXTt6yYEuILIsBGhFRE2Qcuyn+3G24vwVbYl+6Deso/nzV4D0mamsYoBERNZKmWotrJ3MBAM5uTka9PtQ8nn7u6NDTGwBQ9Ecpiq6XWrZBRBbCAI2IqJGun80Thze7PtQRTnJHC7fIvoQYHDafkcZeNGqbGKARETXSVYOgwTCYIGmEDPeH7M6UvqtpN7mak9okBmhERI1QU6lB9qnbAGpXbwbw9ADJufu4olPf2ve1JFeNgkwenk5tDwM0IqJGyPw1F9rq2sPRuw7zh4MTf422BMOeyctHb1iwJUSWwd8sREQNJAgCzh3IEl/3DA+wYGvsW9dhHeHoXPtX1KXUG6iu0Fi4RUStiwEaEVED3bpYhIJrtcNtym5e4mpDkp5rOzl6PNIZAFBTocHl1OsWbhFR62KARkTUQOcO3u096/doV8hk3Jy2JfV7tKv487mDWRB0XCxAbQcDNCKiBigrqMC1E7U727sp5AgZyc1pW5pvkCc697u7WOD62TwLt4io9TBAIyJqgP/tvyb24PQeFwRHZ+591hr6TQwWf/49OZNbblCbwQCNiOg+SvPUOH+odnjT0dkBfcYHWbhFbUfg4A7w6ugOALh5vhDXz+ZbuEVErYMBGhHRfZz84hJ0mtqem34Tu8Ld28XCLWo7HBxkGPLMA+LrX3emQ8e5aNQGMEAjIqpHXoZKPLTbpZ0zBj0RYuEWtT0hI/zh110BACj6owyXf+SKTrJ/DNCIiOqg0wn4ZdsF8fXgp3tA7u5swRa1TTKZDMNn9BZfn/zyMirLqi3YIqKWxwCNiKgOv+/JwK1LRQAAr47unHtmQf69fRE8tCMAoKK4Cj9t/h8XDJBdY4BGRGTG7SvF+O0/lwEAMhkQET0AjjzWyaIefqkvXNrV9mBe+/UWLnGok+wYf9sQEd2jQlWFlI/OQNDW9tAMfKI7/Hv7WrhV5OHrivC5/cXXaZ9eEE92ILI3DNCIiAxUldfgwLoTKL1dAQDw66FA6NM9LNwq0uv6kD96jQkEAGiqtNi/7gSKc8os3Coi6TFAIyK6o6q8BgffP4mCrFIAgEd7V4x7dTAcOLRpVUa+2AcdHvAGAFSWVGP/2hNQ5ZZbtlFEEuNvHSIiAEXXS7H7rWO4fakYAODqJcekNx9CO6WbZRtGJpxcHPHosqFoH+wJACgvrMTulcfwB4+CIjvCAI2I2jSdVofzh7Ow+600lOSqAdTudzbxjaHw7tzOwq2jurh4OGPiGw/BO6D2M6pWa3Bw/Un8ujMdNZUaC7eOqPmcLN2AxlKr1di8eTNSUlJQWlqKoKAgzJgxA+PGjbtv2aKiIsTHxyMtLQ2VlZXo0aMHoqKiMGTIEJO8J0+eRGJiIq5cuQJXV1eMHDkSL7/8Mnx8fIzyaTQafPbZZ9i/fz8KCgrQqVMnPPXUU5g2bZrJPXNycvDxxx/j9OnT0Gq16NevH6Kjo9GrV6+mvyFE1CQ6nYA/Tt/Gb19eRmF2qZjePtgT418LhWcHdwu2jhrCTeGCqatH4Mf435H1221AAH7fm4krP+Ug9E890SOsM5zkPDOVbJNMsLGNZJYsWYL09HRER0cjMDAQR44cwbfffou33noLEyZMqLNcdXU15s6di7KyMkRHR8PHxwe7du1CWloaYmNjMWjQIDHvmTNn8Nprr2HkyJF46qmnUFRUhE2bNqFdu3ZISEiAXC4X865fvx6HDh3CnDlz0Lt3b/z666/YsWMHoqKi8MILL4j5iouLMXv2bHh6emL27NmQy+XYvn07rly5gk8++QRBQQ3fX+nixYuYO3cuEhISGNwRNYIgCCi6Xoas327h0g/XxYUAeg+M7oKHZ/aFkwv/Urclgk7A2T0ZOPX1ZfFILqC2J/SBUV0QPLQjOvT0hoODzIKtJGocm+pBS0tLw8mTJxETE4Px48cDAEJDQ5Gbm4v4+HiMHTsWjo7mf7EmJycjMzMTcXFx6N+/dpn24MGDMXv2bMTHx2PTpk1i3ri4OAQGBuKdd96Bk1PtW9SpUycsXLgQ+/btw5NPPgkAyMzMRHJyMubOnYvp06eL9ywpKcG2bdvwxBNPwMvLCwCwc+dOFBcXIy4uDv7+/gCABx98EM899xwSExOxevVq6d8wojZKEATUVGigLqqCKrccqpxy5GWocPtKMcoLKk3yt+/qhZEz+8K/l4+Zu5G1kznIMOjJ7ug2wh/H/186sk/dBgBUldXgv8mZ+G9yJlzaOaNDD2/4dVdA0ckD7ZRu8PRzg5vCBTIGbmSFbCpAO3r0KNzc3DB69Gij9MmTJ+Odd97B+fPnMWDAgDrLBgUFicEZADg5OSEyMhKffPIJ8vLy4Ofnh7y8PKSnp2PevHlicAYAAwYMQGBgIFJTU8UA7ejRoxAEAZMmTTKqa9KkSdi7dy+OHz8u9uqlpqYiNDRUDM4AwMPDAxERETh06BA0Go1Rfa1NlVuOa7/m3jdfg/pbG9gnKzQkY0P7dxt0K+nqk7TfuQE3k7K+Bt9LwkobdquG1SfoAG21FpoaHbQ1OmhrtLX/rdahqrwGlSXVqCipMupJqUvAACX6RgYhcHAH9q7YAYW/ByKXDsHty0U4dzALmcdzobuzl11VWQ3+OJOHP84YLyRwdHaAm8IFzm5OkLs7Qe7mBGc3Jzg6OUDmKIODowyOTg5wcHKAg6MMMgcZZPr/VWTG/8/cTdf/R2b0uq50Gf/Xs0pdHvRD+65eFqvfpgK0zMxMBAcHmwQy3bt3F6/XFaBlZGRg4MCBJumGZf38/JCZmWmUfm/e//73v0bt8fb2Rvv27eu8JwBUVVUhJycHERERZu9ZVVWFmzdvIjAw0Gzb8/PzUVBQIL7Oysoym685VDfLceLzS5Lfl8iaOLk4okNPbwSFdkDwkA7w9OM8M3vUoacPOvT0wcgXq/HHmTxk/XYLNy8UoqqsxiSvtkaHsvwKM3ehts6lnZwBWkOpVCp07tzZJN3Ts3apdUlJ3TtKl5SUiPnqK6tSqQBAHJq8N69hHSqVymw+Nzc3ODs7i/cqLS2FIAhm69eXV6lUdQZoe/bswdatW+t8NiKqJXOQwdVLDjcvOVw95XBTyOHV0R1e/h7wDfaETxdP9pS1Ia5ecvSMCEDPiAAIgoDS22oUZJWiNK8CZXkVKM1ToyyvApWl1ahWa6Ct0Vm6yUQimwrQAEDWjL7g+sree62uvI2pv6H3vN+1qVOnIiwsTHydlZWFNWvWNLgdDaHspsCEJaENyyzh328Nej8bWF+DsjX085OqWQ19rxrQrga/7Q1pu5RjKg19SyV6w2QywEnuCEe5AxydHeDo7Hjnvw5wkjtyPhGZJZPJ4NXRA14dPerMo9XoUKPWoKZSA61GB51GgE6rg04rQKe581/dnaFzQRBH5cXBdP0Pd8b07003WpMnGGUlK9S+q2mnSmuyqQBNoVCIvVKGSktrl8ib683S8/LyMtvDpi+r791SKBQAUGc9hr1gCoUCV65cMclXUVGBmpoasT2enp6QyWRm69en1dd2pVIJpVJZ53UpuHu7IHhoxxatg4jImjk6OcDRSw5XL/n9MxO1MJvaqDYkJARZWVnQaIw3IczIyAAAdOvWrd6yV69eNUnXp4WEhBjdQ3/Pe+sxrCMkJATFxcVG88PMtcfFxQUBAQF13tPFxQWdOnWqs+1ERETUtthUgBYeHo6Kigr8+OOPRukHDhyAUqlE37596ywbERGB7OxsnD9/XkzTaDQ4fPgw+vbtK/ZQ+fn5oU+fPjh06BC0Wq2Y99y5c8jOzsaoUaPEtEceeQQymQwHDhwwqmv//v1wcXHB8OHDjdp+6tQp3Lp1S0xTq9VITU1FWFiYRVdwEhERkXWxqahgxIgRGDp0KDZs2AC1Wo2AgAB89913OH78OFauXCnugbZu3TocPHgQO3fuFLe1mDx5Mnbt2oWYmBijjWqzs7MRGxtrVM/8+fOxZMkSxMTEGG1U261bN6MtNbp164bHHnsMSUlJcHBwQJ8+fXDixAns3bsXUVFRRsOW06dPx6FDh/D6669jzpw5cHZ2xvbt21FdXY1Zs2a1wrtHREREtsLmThJQq9VISEgwOurp+eefNzrqae3atThw4AC++OILo6HDwsJCo6OeevbsiTlz5mDo0KEm9Zw4cQJbtmzB5cuXxaOeFixYYPaop23btmH//v0oLCyEv78/nn76abNHPd24cQNxcXE4deqUeNTT/PnzG30aAE8SICIism82F6ARAzQiIiJ7Z1Nz0IiIiIjaAgZoRERERFaGARoRERGRlWGARkRERGRlGKARERERWRkGaERERERWhgEaERERkZVhgEZERERkZWzqqCeqVVVVBQDIysqycEuIiIiosYKDg+Hq6lpvHgZoNig3NxcAsGbNGgu3hIiIiBqrIScB8agnG1RcXIxff/0VnTp1glwul+y+WVlZWLNmDVauXIng4GDJ7mst7P35APt/Rnt/PsD+n5HPZ/vs/Rlb4/nYg2anvL29ERkZ2WL3Dw4OtuszPu39+QD7f0Z7fz7A/p+Rz2f77P0ZLf18XCRAREREZGUYoBERERFZGQZoJGrfvj1eeukltG/f3tJNaRH2/nyA/T+jvT8fYP/PyOezffb+jNbyfFwkQERERGRl2INGREREZGUYoBERERFZGQZoRERERFaG+6DZoNOnT2PRokVmr8XHx6Nfv37i64sXL+Jf//oXzp8/D0dHRwwePBgLFy5E586dTcr+5z//wa5du3Dz5k20b98ekyZNwgsvvAAnp/v/b6LRaPDZZ59h//79KCgoQKdOnfDUU09h2rRpVvGMf/zxB/bs2YPTp08jJycHMpkMwcHBeOaZZzB69Oj7tufmzZt49tlnzV5btWoVxo0bZ9HnA4CIiAiz95s3bx6ef/75+7bJ2j/D/fv34913362zvvs9p6U+w99//x379+/H5cuXkZmZiZqaGnzxxRfo1KmT2bLW8j2U+vms7TsItMxnaE3fQ6mfzxa/g1qtFl999RVOnDiBzMxMlJSUoGPHjnjkkUcwY8YMeHp6mpS1lu8gAzQbNm/ePAwePNgorVu3buLPWVlZWLRoEXr06IG3334b1dXV2LJlC/7yl79gy5Yt8Pb2FvNu27YNiYmJmDFjBh566CGkp6dj8+bNyM/Px7Jly+7blg0bNuDQoUOYM2cOevfujV9//RUffvgh1Go1XnjhBYs/46+//oq0tDQ8+uij6N27N7RaLb7//nvExMRg9uzZeOmllxrUnmnTpmH8+PFGaV26dLH48+mNHj3a5Bdgx44dG9QWa/8MR44cifj4eJP7JyYm4uTJk3X+xXiv1v4Mf/vtN/z222/o2bMnPDw8cPr06TrvZY3fQ6mez1q/g4C0nyFgfd9DqZ7PFr+DVVVVSEpKwrhx4zBlyhQoFApcunQJ27Ztw7Fjx5CQkAAXFxexnFV9BwWyOadOnRLCw8OFlJSUevPFxMQIU6ZMEcrKysS0mzdvCmPGjBHi4uLEtOLiYmHcuHHC+vXrjcpv27ZNiIiIEDIzM+utJyMjQ4iIiBA+++wzo/T169cL48ePF1QqVcMezIDUz1hUVCTodDqT8suXLxcmTJggVFVV1VtPTk6OEB4eLuzYsaNxD1IHqZ9PEAQhPDxc2LBhQ5PaYwufoTlqtVqIjIwUFi5ceN/2WOoz1Gq14s87duwQwsPDhZycHJN81vY9lPr5rO07KAjSP6MgWNf3sCWe717W/h3UaDRCcXGxSXpKSooQHh4uHDx4UEyztu8g56DZKY1Gg2PHjmHUqFHw8PAQ0/39/TF48GAcPXpUTDt+/Diqq6sxefJko3tMmjQJgiAY5TXn6NGjEAQBkyZNMilfVVWF48ePS/BEphrzjN7e3pDJZCb36NOnDyorK1FSUtIibWyOxjxfc9nCZ2jO999/j4qKCjz22GMt0j4pODg07NesrX4PG/p8tvgd1GvoMzaXtX+G5lj7d9DR0REKhcIkvU+fPgCA27dvi2nW9h1kgGbDYmNjMWbMGEycOBF//etf8fvvv4vXcnJyUFVVhe7du5uU6969O27cuIGqqioAQGZmJgAgJCTEKJ9SqYRCoRCv1yUzMxPe3t4mm/rp675f+fpI9Yx1OX36NLy9veHj49Og9uzYsQNjx47FhAkTsHDhQvz000+Ne6B7SP18R44cwfjx4zFu3DhERUVh3759DWqHrX6GycnJ8PDwwJgxYxrcntb8DBvDWr+HUj1fXSz9HQSkf0Zr+x625Gdoq9/BU6dOAQC6du0qplnbd5Bz0GyQh4cH/vSnP2Hw4MHw8vLCjRs3sHPnTixatAjvvfcehg0bBpVKBQDw8vIyKe/l5QVBEFBaWgoXFxeUlJRALpfDzc3NbF79veqiUqnM1uPm5gZnZ+f7lm+NZzTn22+/xenTp/Hqq6/C0dGx3vY4Ozvj8ccfx9ChQ9G+fXvcunULX3/9NVasWIHly5djypQpFn++8ePHY+TIkejQoQOKioqQnJyMdevWIScnB1FRUfW2xxY/w6ysLPzvf//D1KlT4erqet/2WOIzbAxr+x5K/XzmWPI7CLTMM1rT97ClP0Nb/Q7m5eVh06ZN6N27Nx5++GEx3dq+gwzQbNADDzyABx54QHw9cOBAhIeH46WXXkJ8fHyDv3Tmhhuak0/K8i39jL/88gtiY2MxevToBq2uUSqVJhNEx4wZg+joaGzatAkTJ05s0AofvZZ4vpiYGKNro0ePxhtvvIHt27fjT3/6k8mCgsawxs8wOTkZABr8S91aP8OGau3vYUs/n6W/g0DLPKM1fQ9b+jO0xe9gSUkJli9fDkEQ8PbbbzdqeLe1v4Mc4rQTnp6eePjhh3H16lVUVVWJY+7m5nWUlJRAJpOhXbt2AGr/ZVBdXY3Kykqzec39i8CQQqEwW09FRQVqamruW76hmvOMhn799VesXLkSQ4cOxVtvvdXkL52TkxPGjh0LlUqF69evN+kehqR6PkMTJkyAVqtFenp6vfls7TPUaDQ4ePAgevTogd69eze5PS39GTaGLXwPm/N8hqz1OwhI94yGrOl7KNXz2eJ3sLS0FEuWLEF+fj42bNhgslWRtX0HGaDZEcHgWNXOnTvDxcUFGRkZJvkyMjIQEBAgDhvpx9vvzVtQUACVSmW0HNuckJAQFBcXo6CgwKQeAPct3xhNfUa9X3/9FStWrMCgQYPw97//Hc7OzpK0R6pJxM19vrrcr3229BkCwLFjx1BUVCTJxOSW/Awbw1a+h019Pj1r/w4a3lNq1vI9lOL5bO07WFpaitdeew03b97EP//5T7PzXq3tO8gAzU6UlpYiLS0NPXv2hIuLC5ycnPDwww8jNTUVarVazHfr1i2cPn3aaL+a4cOHQy6XY//+/Ub33L9/P2QyGcLDw+ut+5FHHoFMJsOBAwdMyru4uGD48OESPGHznhG4+xfDgw8+iH/84x+Qy+XNao9Go0FKSgoUCgUCAgKadS+g+c9nzsGDB+Hk5GQ0DGCOrXyGesnJyZDL5YiMjGxWe1r6M2wMW/geNuf5AOv/DgLNf0ZzrOl7KNXz2dJ3UB+c5eTk4J///Gedn4O1fQc5B80GvfPOO+jQoQN69+4NhUKB69ev44svvkBhYSHefPNNMd/s2bMxb948vP7665gxYwaqq6uRmJgIhUKB5557Tszn5eWFF198EYmJifDy8sJDDz2ECxcuYOvWrZgyZYrRKpcDBw7gvffew+uvv46JEycCqP1XwWOPPYakpCQ4ODigT58+OHHiBPbu3YuoqKgmdctL/Yy///47/va3v8HX1xfPP/88rly5YlRf165dxW0ezD3jRx99BI1GgwEDBsDX1xe3b9/Gf/7zH1y+fBlvvvnmfSc4t/Tz7dy5E9euXcOQIUPg5+cnTk4+ceIEZs2aZTTvxVY/Q738/Hz8+uuvGDNmjNldwOt6Rkt9hsXFxThz5gyAu/+SPn78OLy9veHt7Y1BgwYBsL7vodTPZ23fwZZ4Rmv7Hkr9fHq29B2sqqrCX//6V1y+fBmvvPIKtFotzp07J97D29tbDAyt7TvIAM0GhYSEICUlBXv27EFFRQU8PT0xYMAA/O1vfxP3dgGA4OBgfPjhh/jXv/6FmJgYODo6IjQ0FAsWLDCZqPriiy/C3d0du3btwueffw5fX1/8+c9/xosvvmiUTxAEaLVaky7kJUuWQKlU4uuvv0ZhYSH8/f3x6quvNvmYIKmf8eTJk6iqqkJubi4WL15sUt/GjRvFnajNPWO3bt2wZ88eHDlyBOXl5XB3d0efPn3wwQcfNGmirdTPFxQUhJ9//hlpaWniqscePXqYPT7FVj9Dvf3790Or1dY7MdmaPsPMzEyTieMbNmwAAAwaNAgffvihmG5N30Opn8/avoMt8YzW9j1sif9HAdv6DhYWFopz/+59DgCYOHEiVqxYIb62pu+gTGipwXYiIiIiahLOQSMiIiKyMgzQiIiIiKwMAzQiIiIiK8MAjYiIiMjKMEAjIiIisjIM0IiIiIisDAM0IiIiIivDAI2IiIjIyjBAIyKycdeuXYNMJhP/+Pv7G11/++23IZPJ8MMPP1imgfd4/vnnjdq7detWSzeJyOowQCMiq3Vv4GHuz73nBLZlAwcOxKpVq7B06dIWr2vTpk2QyWSYP3/+ffMOGTIEMpkMp06dAgA8/fTTWLVqFZ544omWbiaRzeJZnERk9bp3747nn3/e7LV7e4vaskGDBuHtt99ulbqmT5+OJUuW4PPPP0dsbCzc3NzM5vv9999x6tQpDBo0CKGhoQBqA7Snn34aW7duxe7du1ulvUS2hgEaEVm9Hj16tFrgQQ3j5eWFP/3pT9i2bRu+/vprzJgxw2y+xMREAMCcOXNas3lENo9DnERkV2QyGUaPHo28vDzMnj0bHTp0gJubG0aMGFHnHKzS0lKsWrUK/fr1g5ubG7y9vTFx4kT89NNPJnlHjx4NmUyGqqoqxMTEoEePHnB2djYKIL/++msMHToUbm5u6NixI+bOnYuioiJ07doVXbt2FfPNnDkTMpkMJ06cMNuu5cuXQyaTYdeuXc15S+r0+++/o3PnzlAqlTh+/LiYnpmZiaioKAQFBcHFxQWdOnXCSy+9hKysLKPy+qArKSnJ7P2rq6uxfft2uLi41BnAEZF57EEjIrtTXFyMsLAweHl5YcaMGbh9+za++OILPProo/jtt9/Qv39/MW9hYSEiIiJw7tw5hIeH49FHH4VKpcLu3bsxZswYfPnll3jyySdN6nj66adx9uxZPProo/D19UVISAgAYMuWLZgzZw68vb3x4osvQqFQYN++fZgwYQJqamrg7Ows3iM6Ohrbtm1DQkICHnroIaP719TUYNu2bfD398fjjz8u+Xt09OhRPP744/Dy8sL333+P3r17AwCOHz+ORx99FOXl5Xj88cfRo0cPXLt2Ddu3b8f+/fuRlpYmPmtERAR69uyJ77//HteuXTMKPgFgz549KCgowPTp0+Hj4yP5MxDZNYGIyEplZmYKAITu3bsLq1atMvtn//79RmUACACEBQsWCFqtVkzfvHmzAECIjo42yv/nP/9ZACBs2bLFKD03N1cIDAwU/Pz8hIqKCjF91KhRAgBh0KBBQkFBgVGZoqIioV27doKnp6dw9epVMb2mpkYYP368AEAIDg42KtO/f3/B09NTKCsrM0r/+uuvBQDC66+/3uD3aebMmWavr1q1SgAgpKSkCIIgCN98843g6uoq9O3bV/jjjz/EfNXV1ULXrl0FT09P4cyZM0b3OHr0qODo6ChMmTLFKP3dd98VAAhvv/22Sb2TJk0SAAhHjhwx266kpCQBgJCUlHTfZyRqaxigEZHV0gce9f1ZtGiRURkAgoeHh1BaWmqUXlNTIzg5OQmhoaFiWl5enuDo6CiMGzfObP0ffvihAEDYu3evmKYP0Hbv3m2Sf+vWrQIA4bXXXjO5lpaWZjZA09eRmJholD558mRBJpMJly9fNts2Q40J0DZv3iw4OjoKI0eONAkw9UHh3//+d7P3efrppwUHBwdBpVKJaTk5OYKjo6PQtWtXQafTiek3btwwm26IARpR3TjESURW79FHH8WBAwcanL9nz55o166dUZqTkxM6duyI4uJiMe3EiRPQarWorKw0uwjh8uXLAID09HRMmTLF6NqwYcNM8p89exYA8PDDD5tcGzZsGJycTH/lvvDCC3j99dexefNmzJ49GwBw48YNHDx4EKNGjUKPHj3qf9hGiI2NxZ49ezB58mR8+eWXcHd3N7r+yy+/AKh9XnPvR25uLnQ6HS5duoShQ4cCADp16oRJkybh22+/RUpKCsaOHQsA2Lp1K7RaLWbNmgWZTCbZMxC1FQzQiMjuKBQKs+lOTk7QarXi68LCQgDAzz//jJ9//rnO+5WXl5ukdezY0SStpKQEAODn52dyzcHBAUql0iTd29sbzzzzDD799FOcP38effv2RVJSErRaLebOnVtnm5ri6NGjAICJEyeaBGfA3fdj+/bt9d7n3vdjzpw5+Pbbb5GUlGQUoDk4OOCll16SoOVEbQ9XcRJRm+Xl5QUA+Otf/wqhdsqH2T+rVq0yKWuuV0h/v7y8PJNrOp0O+fn5ZtsRHR0NANi8eTMEQUBSUhJ8fX3x9NNPN/nZzElMTERoaCgWLVqEuLg4k+v69u/du7fe92PUqFFG5aZMmYKOHTviP//5D0pKSnD06FFcvnwZEyZMQFBQkKTPQNRWMEAjojbroYcegkwmQ1pamiT3GzhwIADg2LFjJtd+/fVXaDQas+VGjhyJAQMG4LPPPsP+/fuRkZGB559/Hq6urpK0S8/HxwdHjhxBaGgoFi5ciI8//tjo+vDhwwGg0e+Hk5MTXnzxRVRUVODzzz/Hli1bAHDvM6LmYIBGRG2Wv78/nnnmGRw7dgzvv/8+BEEwyXP8+HGo1eoG3e+JJ55Au3btsHnzZmRmZorpGo0Gb731Vr1l582bh/z8fHFYMyoqqhFP0nD6IG3o0KH4y1/+gv/7f/+vUfuDgoKwYcMGpKammpStqakxuzcccDcYi4uLw5dffon27dvzKCeiZuAcNCKyeleuXKn3JIHmnDIQFxeHixcvYvny5fjss88wcuRIKBQK/PHHH/jtt99w+fJl3Lx50+ycrXt5e3tjw4YNmDdvHkJDQ/Hss8+K+6C5uLigc+fOcHAw/+9i/WKBnJwcDB8+HAMGDGjyMzWknYcPH0ZkZCReffVVCIKAV199FS4uLvjqq68wadIkjBo1CuPGjRP3jMvOzsbRo0fRvn17pKenm9yzV69eCAsLE+fyzZ07F3K5vMWegcjeMUAjIqt39epVrF69us7rzQnQfH19cezYMXz00Uf44osvsH37duh0Ovj7+2PgwIF46623zE7ur8vcuXPh4+ODtWvXYuvWrVAoFJg6dSree+89BAcHo3v37mbLKRQKPPHEE9i5c6fkiwPMMQzSFi1aBEEQsGjRIjz00EM4e/Ys3n//fezbtw8//fQTXFxcEBAQgCeffBLTp0+v855z5swRAzT9ilQiahqZYK5Pn4iIJHXlyhX07NkTzzzzDL744guzefr164fs7GzcvHnTZJuQ+ly7dg3dunXDzJkzsXXrVola3PK2bt2KWbNmISkpias9ie7BOWhERBIqKipCVVWVUVpFRQVee+01ADB7bBQA7Nu3D+fPn8cLL7zQqODM0KeffgqZTAZ/f/8mlW8tzz//PGQyGWbNmmXpphBZLQ5xEhFJ6Mcff8ScOXMQGRmJoKAg5Ofni2dVjh07Fs8++6xR/vj4ePzxxx9ISEiAm5sbli9f3ug6vb29jbYCaWqA11qefvppow14Bw0aZLnGEFkpDnESEUno8uXLeOutt3Ds2DFxP7QePXrg2WefxdKlS022zujatSuuX7+OXr164b333jM5sYCI2iYGaERERERWhnPQiIiIiKwMAzQiIiIiK8MAjYiIiMjKMEAjIiIisjIM0IiIiIisDAM0IiIiIivDAI2IiIjIyjBAIyIiIrIy/z8Dqmh5avWMKgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot spectrum:\n", + "energy = np.linspace(500.,520.,201)*u.keV\n", + "dnde = src1.spectrum.main.Gaussian(energy)\n", + "plt.plot(energy, dnde)\n", + "plt.ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "plt.xlabel(\"Energy [keV]\", fontsize=14)" + ] + }, + { + "cell_type": "markdown", + "id": "a3eab551-1228-456d-b44c-a5f85f885238", + "metadata": {}, + "source": [ + "An extended source in astromodels corresponds to a skymap, which is normalized so that the sum over the entire sky, multiplied by the pixel area, equals 1. The pixel values in the skymap serve as weights, which we can use to scale the input spectrum, in order to get the model counts for any location on the sky. This is all handled internally within cosipy, but for demonstration purposes, let's take a look at the skymap:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b13d7c3b-298c-4e22-88b7-18038d39084d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "summed map: 0.9974653836229359\n" + ] + } + ], + "source": [ + "# Define healpix map matching the detector response:\n", + "skymap = HealpixMap(nside = 16, scheme = \"ring\", dtype = float, coordsys='G')\n", + "coords1 = skymap.pix2skycoord(range(skymap.npix))\n", + "pix_area = skymap.pixarea().value\n", + "\n", + "# Fill skymap with values from extended source: \n", + "skymap[:] = src1.Gaussian_on_sphere(coords1.l.deg, coords1.b.deg) \n", + "\n", + "# Check normalization:\n", + "print(\"summed map: \" + str(np.sum(skymap)*pix_area))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "34046df6-759d-442e-891e-d70fc282ffdf", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAGaCAYAAABe77jvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAACaVUlEQVR4nOzdd1gU99rG8e/MdjoIgoqKvfdYYo1Ro1ET03uPacb0fpKcmN5Oct70nPRumumWmNiS2HtHUVFRQJBet828f6ysomChDbDP57q4hN3ZmQeE3Xt/VdF1XUcIIYQQQohqUI0uQAghhBBCNHwSKoUQQgghRLVJqBRCCCGEENUmoVIIIYQQQlSbhEohhBBCCFFtEiqFEEIIIUS1SagUQgghhBDVJqFSCCGEEEJUm4RKIYQQQghRbRIqhRBCCCFEtUmoFEIIIYQQ1SahUgghhBBCVJvZ6AKEEKKu6bqOy+WipKSEkpISXC5XuQ+n01nhbW63G6/X6//QNK3cv0ffBqAoCoqioKqq/+uyz1VVRVEUAEwmE1arFbPZjMViwWw2l/u67KPsdrvdjt1ux+FwlPvcbJandSGEMeTZRwjR4Hg8HgoKCsjPzyc/P/+YzwsLCykpKaG4uJiioiKKi4spLi4ud5vX6zX626gVZrO5XNh0OBwEBwcTEhJCaGgoISEhFX6U3RcWFobD4TD62xBCNECKruu60UUIIQKb2+0mJyeHnJwcsrOzy/1b9nFkeCwuLq6xa5vNZt+HyYzJZDr0r+82i9mMxXqoldBmwWq1go7vAwVd00EDXePw7Yc+FBR0HYrzigmOCiJ7fx6KAoqqoJoUVJOKYlYwW0yYLCZMFt/XiglQwOV04SxxUlriwlXqwuV04Sp143a5cbvdaLoXXdUJjnJQWlpaoyHZZrMRERFBeHg4ERERx3yU3R4VFUWTJk2w2+01dm0hRMMloVIIUWs0TSMnJ4fMzEwyMzPJyMjwf37w4EF/cMzPzz/lcyuKgs1qw2a1YTVbsahWTIoZE2YUrwoeBc2to5XqaE4NT7GOt9SLt1QjKDiIqLhIYhNiiGsXQ3TrKKJahKNpOtn7cslJzSN7fx75GQUUHCyk4GARBQeLKMwuwuvRTqlO1aTy74V38tQZr6N5T+6xqkklJCqI0OhgQqNDCG0STFjTECKbRxAVH05U8wjMVhM5afkc3JNN+o5M0ndlkrEnk5wDeWiKBqoOJh3dpINJA7OObtbBrPluM2v+rzHpRLQIo6CgAI/Hc8r/FyEhIURHRxMdHU2TJk3KfX7k1xaL5ZTPLYRoOCRUCiGqrLS0lPT0dNLS0khNTSU9Pd0fGsuC48mGFEVRCLIHYbfasZhsWLCges0obhWtBLzFGq4CL65cN848N5rT1xp4IhFxYcR3iyO+azNadIkltl00HreXjF1ZHNh1kAM7D5K5O4vslFyKckuq+yM5RlVC5clwhNlpEh9BTEIUTdtFE9s2mth20VgdFjKSs9i/JZ19W9PZtzmd7H25J3VOHV8QxayhW3R0iwYWrcJ/dYuOLdyM0+k8qXMrikJUVBRxcXHExsYSGxtLXFyc/+u4uDiCgoKq8RMRQhhNQqUQolJer5eMjAxSU1NJS0s75iM7O/uE5ygLiw5bEDbVjslrQXGpaEXgyvPizHZTmu066ZB4PKpJoVnHpiT0aUnL7s2I7xaH2WJm39Z09m9JY9+WdNKTMik4WFSt65xaTbUTKisTHBlEXIcYWnSJJb5bM+K7xAH4AuamNJLXprB/y4EaqaUshOpWDaxedKvm+9x2+PO4TtFkZWXhcrlOeL7Q0FB/0IyPjyc+Pp4WLVrQokULYmJi/BOchBD1k4RKIQKcruvk5uaSkpJCSkoKe/fuZd++faSkpLB//37cbvdxH2+1WglxhGI3OTB7rVCq4snTKM1yU5zhQivWUfTqhcXjiW0XTZu+LWnTN57WveMpzith99p97N2Qyr7NaWSl5GDks1xdh8qKRLUIJ75bM1r2aE6bPvGExYSwZ0MqyWtSSF6dQnpSRq3+jHR0X/e73Ytu831g96LbNHSbl5BmDgoKCo57DqvVSvPmzf0hsyxwtmzZkqZNm0rgFKIekFApRIDwer2kpqaSnJxMcnKyP0SmpKRQWFhY6eNMJhMhQaE4zEGYvRb0IhV3rpfSA25KD3rAo1S7hfFUmK0m2vRrSafBbek4uA2KSSV59V6SV6eQvGYfuemnPj6zNtWHUHm00OjgQ0G8JW1Pa4nJbGL70mS2L0lm16q9uEqO/0aiNugmzR8ysXt9AdThoUWvWNLS0o47jMLhcNCqVStat25NQkKC/99mzZrJEktC1CEJlUI0MpqmceDAAX94LPvYs2dPpV2QiqIQ7Agh2BKM2WuDIhXXQY3iVCfuPK1OQ2NFHKE2Og9vT+dh7WjTtyWZu7PYvsQXgmq7la266mOoPFrTtk3oOLgtnQa3Ia5jU/as38+2v3eyZdEOinJqbqZ9VenoYNPQHZ5DYdOLbvcQ3yeO1NTUSgOnxWIhPj7eHzTbtm1Lu3btaNGihbRsClELJFQK0YCVlJSwY8cOkpKSSEpKYteuXezevZuSkoonnJjNZsKDI3AoQSglZtzZGkX7SnFmaSiascHxaLYgK52GtaX7qE606RPP7rX72Pr3TpKWJFOQVXdjIqurIYTKIwVFOOgwMIEuI9rT9rRWpGxKZfP87WxdtIOSgpOblFOXdOVQt3qQxxc2gzzoQR6sTUyVTiKy2+3+gNm+fXvat29P27ZtCQ4OruPqhWhcJFQK0UDk5eX5w+P27dtJSkoiJSWFiv6EVVUlPDgCuxKEUmTClalRlOLEW1D9yTC1STWpdBzchp5ndab9wAT2bUlj07xDgSa/1OjyqqShhcoj2YKtdB7Wju5ndiShTzzJa1LYMHcbiX/vwOOq34vHl7VuaodCZtmHpYlaaYt9s2bN/CGzU6dOdOrUiSZNmtRx5UI0XBIqhaiHCgoKSExMZMuWLWzbto3t27eTkZFR4bFBjmBCbeFYnTbcB3UK9zpxZXtrdXJMTYtuFUmfid3oNbYLBQeLWDtrM1sWJFGYbXzXa3U15FB5pKBwO12Gt6fX2V2JbhXJxj8SWfPbZg7sPGh0aadER/e1aAZ70IPd6MEemnQKJzMzs8LjY2Ji6Ny5M506dfL/Gx4eXsdVC9EwSKgUwmBut5udO3eyZcsWtm7dytatW9m7d2+Fx4YFhxFsCoVCM6X73BTvc4HLVMcV1wyz1UT3UZ3oe053YhKi2Dg3kTUzN5OeVPGLe0PVWELlkWISougzvhu9xnUh70ABa37bxIa5iYZM8KkpullDD/agHQqarQbGsWfPngp7Apo1a0bnzp3p3LkzXbp0oXPnzrKrkBBIqBSizmVkZLBx40Y2b97M1q1bSUpKqrA7Liw4jBBzOEqBmeIUN0V7nb6dYhq4sJgQTjuvJ/3O7c7BPTms+mkDW/+q/92pVdUYQ2UZk9k3XOG0ST1p3iWWtTM3s/KH9eSk1a8Z+FWlqxp6iActxI0e4qFZnybs37//mONMJhMdOnSge/fudO/enR49ehATE2NAxUIYS0KlELVI13X27NnDhg0b/B/p6enHHGez2gi3RaIWWSnd76F4jxvF0/AD5JHiuzVj0MW96XB6G7YsSGL5jHWNrlWyIo05VB4punUkAy/sTc+zOpO8Zh/Lv19L8pp9RpdV43SThh7iRgv1oIe4iewUQlZW1jHHxcbG+kNm9+7dadeunSxvJBo9CZVC1CC328327dv9AXLTpk3k5eWVO0ZRFCJDonBoIXgydPJ3lNb7CTTV0W5Aa4Zd3Z8m8RGs+GE9q3/dRHEtbIdYXwVKqCxjD7HRZ0JXBl7Yh6KcYv7+YiXb/tlZr5d9qg7/hKBQF1qYm/ZntGTHjh1oWvn/a4fDQY8ePejduzd9+vShU6dOEjJFoyOhUohq8Hq9JCUlsWbNGlavXs3GjRspLS0/S9lsMhPhiMRcbKdkr4eSFE+j6MY+HkWBzsPbM+zq/jhC7fzz5SrWz9nSaLu4jyfQQmUZ1aTSfXRHhl3VH12Hf75YyaZ529C8jf8lR1c19FAPWpgLPdRNUCvrMRsMSMgUjZGESiFOQVl39urVq1mzZg3r1q07Zns5m9VOhD0SJddCwQ4n7sza3aawPlEU6DqyI2dcPwhd0/j7i5Vsnr89IIJEZQI1VJZRFOg8rB3Drh6AI8zOX58uZ/3vWwPqd0JH9y1pFO5GC3cR2s5+TA/GkSGzf//+dOjQQRZoFw2OhEohTuDgwYOsWLHCHySPHj9ltViJsEeh5lgp2O7Ena032q7s4+kwKIEzbxqMyWJiwQdLSPy78XZ5nopAD5VHaj+gNWfeNBirw8L8D5aydVFSQP6OHB0yQ9rayM8vP7kpPDyc/v37+z+io6MNqlaIkyehUoijeDweNm3axLJly1i+fDk7d+4sd7/JZCbSEYWaZ6VwuxNPVt3ufV3ftOrZnFE3DyEsJoQFHy1l4x/b0DV5WikjofJYXUa058zJg3E73cx/bwk7VuwxuiRDlYVMLdyNHuHCFq8esytWmzZt6N+/PwMGDKBXr17YbDaDqhWichIqhcC3zM+KFStYtmwZq1evpqjo8DaAZRNrbKXBFO1wUbpPC5ju7OOJbB7OWbcPI75bM/76ZDlrftuE1yOh6WgSKiummhR6ntWFM24YRFZKDr+/8RcZycfOog5EuqKjh7rRIlx0HNuKxMTEcutlWq1WevbsyeDBgxk8eDDNmzc3sFohDpNQKQKS1+tly5Yt/PPPPyxbtozk5ORy99utdsJMUXj2QWFS41vepzpsQVaGXTOA0yb1YMUP6/nni5UNetHr2iah8vjMVhOnX9qXIZefxoa5W1nw0bIGuyVnbdHNGlqECy3CSZMeocfs/pOQkMDgwYMZMmQIXbt2xWRqmBsiiIZPQqUIGE6nk1WrVvHPP/+wZMkScnJy/PcpikJkcBTmfAcFiU682YHdpV0RRYHe47sx6qbB7Nmwnz/e+YfcRrLIdW2SUHlyQpsEM+qWIXQ8vQ2LPlnOyp82yM+rAmXbTGqRTnpe2IENGzbg9R5eVSE8PJxBgwYxePBg+vfvT0hIiIHVikAjoVI0anl5eSxZsoR//vmHlStXllvux2qxEmmJxr1foXCbS1ojjyO2XTTnPDAKs9XM7NcXsmfdsbuKiIpJqDw1zTvHcvadI7A4LPz68jz2bzl2swBxmG7S0CJdaFFOgttZyq1GYTKZ6NOnDyNGjGDYsGFERUUZWKkIBBIqRaNz8OBBFi5cyF9//cWGDRvKLUIcZA8mxB1O0XYP7nRkbOQJWGxmRlw3kNMm9WTRp8tY/v26gFoKpiZIqDx1igJ9JnZn9C1D2PTnNua9twRn8bFbmYrydHT0MDdalJMWg6PZu3ev/z5FUejZsycjRoxg+PDhNG3a1MBKRWMloVI0CllZWSxatIj58+ezcePGcoPaw4MisBUFk7/ZiZarSrf2SWrXvxUT7x9F5u4sZr66gLwDBSd+kDiGhMqqC4kKYuwdI2jdqwWz/28BW//aeeIHCT/N7kFr4qTD2fEkJiaWu69bt24MHz6cESNGyEQfUWMkVIoGKycnh0WLFrFgwQLWrVtXLkhGBTfBlO0gf3MpFMug9VNhC7Iy7s4RtB+UwOz/W8iWhUlGl9SgSaisvvYDE5hw70hStx1g5qsLAmqbz5qi27x4m5TSdVIbNm3aVO75smPHjowaNYpRo0ZJC6aoFgmVokEpKChg4cKFzJ8/n7Vr15br2o4IikLNsFG4xY3ikiBZFW36xjPpkbNI2ZjKrP8uoKTAaXRJDZ6EypphdVg4a8owOg9rx68vz2Pb4l1Gl9Rg6RYvWhMnPS5uz/r16/3Po4qi0KtXL8aMGcOIESMICwszuFLR0EioFPWe2+1m+fLl/P777yxZsgS3+/DyNRFBUZiy7BRsdqGUSpCsKovNzOhbh9B9dCdmvrJAWidrkITKmtV+QGvOfXgMO1fuYc7ri3AWyVjL6tDNGlp0KV0vaMOGDRv8t5vNZgYOHMiYMWMYPHgwdrvdwCpFQyGhUtRLuq6zdetW5s6dy7x588rtkxseFIE1N5i8jU6UEgmS1RXXPoaLpp1NVkoOv748j8LsYqNLalQkVNY8e4iN8fecQeteLfj+ydmkbEwzuqRGQbd58UaXkjA6ttxOYg6Hg+HDhzN27Fj69u0re5KLSkmoFPVKeno6c+fOZe7cueVmLtqtDkKcERRscEOBBMma0v+8noy6eQh//u8fVv280ehyGiUJlbWnx+hOjL93JIu/Ws3iL1cG5D7itUUL8qDFlBDTP4z09MPLOsXFxTFu3DjOPvtsmjVrZmCFoj6SUCkM53a7+eeff/j1119ZtWqV/3azyUykKZqirV48abIYeU2yh9g496HRNG3ThO+emMWBnQeNLqnRklBZu6LiI7j4yfEU5Zbw4zO/U5QjLe01Sce3ZaS3aSlBHUwUFhb67+vXrx/jx49n+PDhshe5ACRUCgPt3buX3377jTlz5pCbm+u/PSooGm2vmeIkL4pXullqWosusVw0bTx71u9n1n8XyBaLtUxCZe0zWUycNWUoXUd25IenZpO8Zp/RJTVKuqqjNSml1xUdWL16tf/2kJAQRo8ezfjx4+nUqROKIg0AgUpCpahTTqeThQsX8ttvv7F+/Xr/7Q6rg6DCcAo2eGTCTS3qM6EbZ90+jN/f+It1s7cYXU5AkFBZdzoPa8e5D43m789XsvSbNUaX06jpNi/epiXEDAwt1z3eoUMHzjvvPEaPHo3D4TCwQmEECZWiTuzZs4effvqJ33//3d99oigKkdZonIk67v2yKHltMplVxt4xgo6D2/DNo7+Stj3T6JIChoTKutWkZSSXP38Oqdsy+PWlP3E7PUaX1Kjp6Ojhbs649zQWLVqEy+WbjR8cHMy4ceOYNGkSCQkJxhYp6oyESlFrvF4vy5cvZ8aMGaxcudJ/e5AtGHteKIUbPLKeZB0IjgzikqfGo2k63z0xSxaOrmMSKuueLdjKBY+NJaxpKF//61fZDaqO6GYNb9MS4oaFs3//fv/tffr04bzzzmPYsGGYzWYDKxS1TUKlqHEFBQXMmjWLH3/8kdTUVOBQq6QlmtKtyKSbOhTXPobLXziXrYt2MPftvyXUGEBCpTEUBUZcN4jTzuvBt4/NZO/GVKNLChg6OnqEi0G39WDx4sX+xdWbNGnCxIkTmTRpEtHR0QZXKWqDhEpRY5KTk5kxYwZz586ltLQUAKvZSkhJJEUbNVSnvEOtS+0GtOaCx8byxzt/s272VqPLCViqSeWxeVN5ZtSbEioN0Hl4O855YBQzX13AlgWyqH9d06xevLHFhPW0kp2dDfgWVh89ejSXXHIJ7du3N7hCUZMkVIpq0XWdlStX8vXXX5dbDijUFgYpdgae3p9Rk4caWKEQQgijzf9wCQt++4uul7Qut3NPv379uOSSSxg4cKAsqt4ISKgUVeLxeFiwYAHTp09nx44dwKEubnM0xZt0tEzfxBtFVWR5iTqkKHDm5MF0H92R6Y/8QsaubKNLCnjSUlk/RDYP4/IXzmXPuv3Mfm0hmlde+uqSruvomu9nroW4GXZvbxYtWoTX6wWgVatWXHLJJYwdO1bWvGzAJFSKU1JcXMzMmTP57rvv/MtImE1mQp1RFK3VUJwy8cYoqknlvH+NISahCV89+DMFWUVGlySQMZX1iSPMzmXPTsRZ7OLbx2ficXmNLimg6TYv3mbF2DspFBX5nq/Cw8M5//zzueiiiwgLCzO4QnGqJFSKk5KTk8OMGTP48ccfKSjwzaS0WezYs8Mo2ayjeKTbwkhmq4mLnxyPNcjK9Id/kQXN6xEJlfWL2WriomnjsYfamP7QLziLXUaXFPB0k4Y3toSYwSH+xgqHw8GkSZO45JJLZFJPAyKhUhzXwYMH+eqrr/jll18Orz9mDUFNceDcqaBo0rVtNKvDwuXPn4ur1M13/5bWl/pGQmX9U9aqH90qii/u/5HivFKjSxL4Zo1r0U7anNOUpCTfpCqr1crZZ5/N5ZdfTvPmzQ2uUJyIhEpRoQMHDvDVV18xc+ZMf5gMs4bj2WbBIwuV1xuOMDtXvXwe2ftz+fHZuRJa6iEJlfWTosDZd48koU88n9/7AwUHZbhIfaGjo0W66HxpPJs2bQLAZDIxevRorrrqKlq3bm1whaIyEipFOenp6XzxxRfMmjULj8e3E0WYJRLXJhUt0yRhsh4JCrdzzf9dyL5Nacz87wL/IHhRv0iorN9G3TyYbiM78smd35OfWWh0OeIIOjp6mJveN7b3b6Chqipjxozh2muvJT4+3uAKxdEkVAoAMjIy+PTTT5k1a5Z/Nl64JRLnBhUtS8JkfeMItfkC5eY0Zr66wOhyxHFIqKz/Rt54Ot1HdeSTO76XCW71lBbiZsDtXVi8eDHga7kcO3Ys11xzjXSL1yMSKgNcbm4uX3zxBT/99JO/mzvcEkXpegWyZbHy+sgeYuPa1y5k/9YDzHxlHvIXXL9JqGwYRt08mC4j2vPJnd9TmFVsdDmiElqIm363dmTZsmWAL1yOHz+ea665htjYWIOrExIqA1RRURHffPMN33zzDSUlvr2gw8wRONebIEfCZH1lD7FxzX8vIH1HJr++9KcEygZAQmXDMea2oXQc3JZP7/qewmwJlvWZFuqi9+TD3eIWi4XzzjuPq6++moiICGOLC2ASKgOM0+nkxx9/5MsvvyQvLw+AUEsYro1m9INm6eaux6wOC9f89wIy92Tzywt/SKBsICRUNixn3T6M9gNa8/HU7ygpcBpdjjgBLcxF92sTWLt2LQDBwcFcccUVXHzxxdjtdoOrCzwSKgOEruvMmzeP9957z78OWLA1BC3RhjdVxkzWdyazyuUvnIuz2MX302bLpJwGREJlwzPx/lHEtm3CZ/f+gLvUY3Q54gR0dPQIFwnnx/iXIoqOjuaGG25g3LhxmM3S+1ZXJFQGgA0bNvDWW2+xdetWAOwWB6bkINy7JUw2BIoC5z82jpAmQXz5wM943bIOZUMiobLhUVSFi58cj8VmZvojv8r/WwOho6PFlBI9IsjfeNK6dWtuu+02Tj/9dNkyuA5IqGzE9u3bx7vvvstff/0F+LZTtGeE49pmkkXLG5Bxd4ygVa/mfHLH97JTTgMkobJhMltNXPnyeeRnFvLTs7/LcJMGRFd0vM2KCe6tkp+fD8CAAQOYOnUqCQkJxhbXyMneeo1QcXExb7/9Ntdccw1//fUXiqIQ5myCuiQC91azBMoGZOiVp9Hh9AS+vP8nCZRC1CGPy8vXj/xK0zZNGHPbMKPLEadA0RXMqcGU/m7j8ssvx2KxsGLFCq6//npef/11/1bDouZJqGxEdF3njz/+4Morr+Trr7/G4/EQpkRiWROFc6UZxW0yukRxCrqN7MCgS/rw+X0/UpRbYnQ5QgQcZ7GLLx/4ia5ndOC0ST2MLkecIsWr8sPt81GWhjF06FC8Xi/ff/89V1xxBT///LN/gw9RcyRUNhI7d+7kzjvv5OmnnyYrKwuHOQjbtiicf1tRimSQckPTokssEx8YxTeP/kZuWr7R5QgRsAqzi/nqoZ8ZdfMQ2vZraXQ5ogqUUjMrX0jCsimChIQE8vLyeOWVV7j55pvZvHmz0eU1KhIqG7jCwkJee+01brzxRtavX49JNRF0MArvohDItBhdnqiC8KahXPb8ucx6dQEpm9KMLkeIgJeRnMUPT8/homnjiW4VaXQ5oorUXBupXxRj3hlKaGgoO3bsYMqUKbz88sv+sZeieiRUNlC6rrNw4UKuuuoqZsyYgaZphHojMS2PxJtoQdFl3GRDZHVYuPzFc1n9y0Y2/rnN6HKEEIckLdvNok+Wc8WLkwgKl/UPGyoFBVNaEM4/7Jx99tnous6vv/7KVVddxZw5c5C5y9Ujs78boAMHDvB///d//j1Qg8zBeDfaIEtaJhu6S56egK7pfD9tlsw2bSRk9nfjMuHekUS3iuLz+35A88ofaUOnhblocW44u3fvBqB3797ce++9Mku8iqSlsgHxer3MmDGDa665hsWLF6MqKkFZkXgWBUugbAQGX96PJi0j+en5uRIohain5ry+CJPVxJk3DTG6FFED1HwrqV8WY0oOwWazsW7dOm688Ua++OILmchTBRIqG4jk5GSmTp3Ka6+9RklJCcFKKKbVkXi3WqWruxFo0zeeYVf159vHf5MdPISox7weje8en0mvcV3oMryd0eWIGqDoCub9wej/hDJo0CDcbjfvvfcet956Kzt27DC6vAZFQmU95/V6mT59OpMnT2bz5s2YTRYc+6Nw/+1ALZZZ3Y1BWEwIFz5xNj89P5eslFyjyxFCnEBBVhHfT5vFuQ+NoUlLmbjTWChOE2v+swvztjBCQ0PZvn07N910Ex999BFut6wTfDIkVNZjKSkp3HHHHbzzzju43W5CtHDUpeFoyRbZXrGRUE0qFz85nrUzN7Ptn11GlyOEOEl71u3nr89WcOmzE7HY5Q1+Y6GgYMp04PzTxrBhw/B6vXzyySdMnjyZbdtk8uSJSKishzRNY8aMGdxwww1s2rQJs2rGvjsS1xIbiksWMG9MRk4+Ha9XY/4HS40uRQhxipZ+s4aslBzG3THC6FJEDVPcJpY/vw3z1nAiIiJITk7m1ltv5YsvvsDr9RpdXr0lobKeyczM5L777uO1117D6XQSpIWiLo9A32eV1slGpk3fePpN7M4PT89B12RmjhAN0S8v/kmHQQl0PaO90aWIGqagYMqyUzzHwogRI/B6vbz33nvcddddpKamGl1evSShsh75+++/uf7661m9ejUm1Yx9XySeJQ4Up7RONjZB4XbOf2wcv778J/kZhUaXI4SoopL8Un545ncm3jeK8KahRpcjaoHiUVn67FbM28MICgpiw4YN3HDDDcyePVvWtTyKhMp6wOl08uqrr/Loo4+Sn59PkBKCuiIcfbe0TjZW5z40hu1Lktn6106jSxFCVNPutftY9ctGLnh8LIoqz9mNkYKCKcOBZ1EQPXr0oLi4mOeff55p06ZRWCgNA2UkVBps165d3Hzzzfz0008AOLLC8fwThFoqA78bq74Tu9GkZSS/v7HI6FKEEDVk4UfLMFlMDLm8n9GliFqkOE1se+cAN998MyaTiQULFjB58mQSExONLq1ekFBpEF3X+e2337j55ptJTk7GarJh2RyJttUu6042YuFNQxlz2zB+eu533E5Zj1KIxkLzavz03FyGXtmfmIQoo8sRtUhB4dNrfkZdHU6zZs1ITU1lypQpzJgxI+C7wyVUGsDpdPLiiy/y0ksv4XK5CPKEwpIw1Byr0aWJWnbOg6NY/ctG9m89YHQpQogadnBvDn99voJJj5yFapLGgcZOLbSQ9YOHYcOG4fF4eO2113j88ccpKCgwujTDSKisY2XvaGbNmoWCgj0tAs8yB4pb/isauz7juxIeG8bCj5cZXYoQopYs/WYN6DqDLulrdCmiDiheleXPb8O0MxSz2cxff/3F5MmTSUpKMro0Q0iSqUNLlizx/7JZVCvmjeHoO20yGScAhMWEcNbtw/n5+bl4XLLGmRCNla7p/PT8XIZfPYDoVrLbTiBQUDCnBaGsCiMuLo60tDSmTJnCvHnzjC6tzkmorAOapvHRRx/x8MMPU1hYiN0bjLIsDDXPZnRpoo6Mv2cka2ZuYt+WdKNLEULUsoN7cvjny5Wc+9BoFGkzCBhqoYXsn7z0798fp9PJk08+yTvvvBNQi6VLqKxlpaWlTJs2jU8++QQAR2442rJg2RkngHQa0pa4DjEs/Ei6vYUIFEu+XoM9xEavcV2NLkXUIcWjsv6/e7j88ssBmD59Og8++CD5+fkGV1Y3JFTWooyMDKZOncrChQtRFBXrrgi0TTK7O5BYbGbOvusM5ry+CHepzPYWIlBoXo3fXpnPmNuG4giVXqlAoqDww+3zMSeGY7PZWLlyJTfffDO7d+82urRaJ6GylmzZsoVbbrmF7du3Y1EsmNeHo6TKE0ugGXbNADKSD5L4tyxyLkSg2bshlaRluxl18xCjSxEGMB20oy0LJi4uzj9Jd+3atUaXVaskVNaChQsXcuedd5KVlYVNd6CsCEfNl+WCAk10q0gGXNCL2f+30OhShBAG+eOdf+g6sgMtusYZXYowgFrkG2fZrVs3CgsLue+++5gzZ47RZdUaCZU1bMaMGTzxxBO4XC7spSHoy0Jk7+4ANe6uM1j6zRpy0gJjLI0Q4lhFOcUs+GApE+4ZKZN2ApTiUUl6P5ORI0fi8Xh47rnn+OijjxrlQukSKmuIruu8++67vPbaa+i6ji07FG1VEIpXfsSBqN2A1sS0jmLxV6uMLkUIYbDVv27EbDXRfXQno0sRBlE0hcVPb+aKK64A4JNPPuG5557D42lcY+0l8dSAsnceX331FQDWfWHoWxyy/mSAUlSFs6YMY977i2VNSiEEmldn7tv/MOrmIZit0nMVqBQUZkyZhzkpFJPJxO+//85jjz2G0+k0urQa0+BC5a5du5gyZQp33HEHDz74IMXFxcybN4/bbruNu+66iwMHfNvfLV26lClTpjBz5sxaraekpISHH36Y33//HQUFy44wlN0SKANZn/Fd8Xq8bJybaHQpQoh6Ysfy3WSl5DDwoj5GlyIMZjoQhLIhFKvVypIlS7j//vspLCw0uqwa0eBCZatWrXj77bd544036NKlC3///Tfffvstr7/+OpMnT+azzz4DfKHyzTffJDGx9l7Yi4qKeOCBB1ixYgUmxYRpczhquqPWrifqP6vDwsjJg5n71t80wuEyQohqmPvW3wy96jSCIuR1ItCZcmzoq4IJDg5m/fr13HXXXeTk5BhdVrU1uFBpNpv9n5eWlhIbG0ubNm2wWCz06NGDXbt2ATBgwABuv/12OnWqnTEsBQUF3HvvvWzYsAGTYkZdF4YpR5YMCnSnX9qX1K3p7F67z+hShBD1zIGdB0n8ayfDrxlgdCmiHlDzrbj+sREREUFSUhJTp07197Y2VA0uVAKsXLmSG2+8kbVr12IymQgKCvLfV7Yd0tChQ3nnnXeYOHFijV8/NzeXu+++m61bt2LGjLomDLVAlgwKdPYQG4Mu6cP8D5YaXYoQop5a+NEy+ozvSlhMiNGliHpALbJQ9KeJ2NhYUlJSuPvuu8nIyDC6rCprkKGyf//+fPjhh5xxxhmsX7+e4uJi/30mU+0Ogs7Ozuauu+4iKSkJMxaUNWGoRZZavaZoGE6/tA+7Vu7lwM6DRpcihKin8jIK2DA3kaFX9Te6FFFPqKVmcn710rx5c/bv389dd93VYINlgwuVLpfL/3lwcDAOh4Pdu3fjdrvZuHEjbdu2rbVr5+Xlcc8995CcnIwFK8rqMNRiCZQCHKE2BlzYm4Ufy/7eQojj+/vzlfQa25nwpqFGlyLqCcVl4uDPLpo1a+YPlpmZmUaXdcrMJz6kflm1ahXTp09HVVUiIiJ45JFHiIiI4M4778RqtfKvf/2rVq5bUFDAfffddzhQrgpFKW1wPz5RS06/rB87lu8hc3e20aUIIeq5/MxC1s3ZyrCr+/PbK/ONLkfUE4rTRNYvbpqd6wuWd955J6+//joxMTFGl3bSFL0xLulew4qLi7nvvvvYvHmzr8t7dRhqiQRK4eMIs3PXN9fzwa1fc3BPw5+9J2qWalL598I7eeqM19G8mtHliHoitEkwU7+8hrev/YK8AwVGlyPqEd3mJeocM+np6bRu3Zo333yT8PBwo8s6KQ2u+7uuOZ1OHnnkETZv3owJM8raUAmUopz+5/dk54o9EiiFECetIKuIDXMTOf2SvkaXIuoZxWki+1cPMTEx7Nmzx78md0MgofI4vF4vTz75pG+WuWJCXSeTckR5ZquJgRf2ZvH01UaXIoRoYJZ+s4be47viCJXl6ER5itNE7hyN8PBwtm7dymOPPVZuTkl9JaGyErqu89prr/HPP/+gKirq+jDUQgmUorxe47qSkZxFamLDXltMCFH3svfnsXPlHk47r6fRpYh6SC0xU7zIhMPhYNWqVTz77LP+ZRPrK+nHrcT06dP56aefADAnhmEqsoNs2SqOoKgKgy/ry+9v/oVqkvdnomJlvxvyOyIqsvTbNVz27Dks/34dHlf9Dgyi7qklNryrwdzTzYIFC4iKiuKuu+4yuqxKyUSdCvzxxx88/fTTAEyYMIGhQ4caXJEQQgghAtWGDRuYPn06APfccw/nn3++wRVVTELlUdavX88999yDx+PBkh6MOTnM6JJEPXX1q+ez8c9trJu1xehSRD2mmlQemzeVZ0a9KbO/RYU6DmnDyBtO5383fmV0KaIeu+qjibz//vuYTCZefPFFBgyof9t9Svf3EQ4cOMDjjz/uC5R5QSg7gtGQFwFxrJiEKOLax/DVgz9LUBAnRfNq8rsiKrTtn12Mu2ME8V3j2Lsx1ehyRD316bU/M/bpsfz+++888cQTvPPOOyQkJBhdVjkyyOcQp9PJo48+Sm5uLmaXDWVzCAqK0WWJeuq0ST1YN2cLbqfH6FKEEA2crums/mUj/c+XCTuicgoKC/69lp49e1JUVMRDDz1Ebm6u0WWVI6ES30zvl19+me3bt2PSzajrQ1E0CZSiYlaHhV5ju7Lqp41GlyKEaCTWztxMpyFtCY4MMroUUY8pukLie2k0b96ctLQ0nnnmmXo1I1xCJfDtt98yd+5cFBTUTaEoTpnmLSrXY3Qn9iemk5Uii50LIWpGYXYx25Yk02dCN6NLEfWc4lHJ/K0Um83GihUr+Oyzz4wuyS/gQ+WmTZt45513ADDtDEHNsxpckajv+p3bg1U/SyulEKJmrfp5A/3O6Y4iHWXiBNRiC/fddx8An3zyCStWrDC4Ip+ADpUFBQU89dRTaJqGOduBmuYwuiRRz8UkRBHRLIztS5KNLkUI0cjsXb8fgFY9WxhciWgIXhn/Ieeccw66rvP0009z4IDxm3AEbKjUdZ2XXnqJ9PR0TB4L6jaZmCNOrNe4rmyatx2vu/6MYRFCNA66Dut/30qvcV2MLkU0EL8/vJyOHTuSl5fHU089Zfj4yoANlb/88guLFi06PI7SG7A/CnGSFFWh51mdWT9H1qUUQtSO9XO20vWMDlhssuKfODFFV9j9ZTZBQUFs3LiRr74ydq3TgExSu3fv5vXXXwdA3RUse3qLk9Kmb0tcxS72bzW+i0EI0TjlpOaRsesgnYa2M7oU0UAoTpN/68aPPvqIbdu2GVZLwIVKj8fD888/j9vtxpxvx5QqyzeIk9NrbGfW/77V6DKEEI3cujnSBS5OzSsTPmTEiBF4vV6efvppSktLDakj4ELld999x9atW1F1E2qijKMUJ8dkMdFpaDs2/WncO0AhRGDYumgHCb1bYA+xGV2KaCAUFJa+uIUmTZqwd+9e/ve//xlSR0CFyj179vDBBx8AoCYFo7hkPUpxctqe1pKc1Dxy0vKNLkUI0ciV5Jeyd0MqnYa2NboU0YAoHpX8Rb6JOj/88AObN2+u8xoCJlR6vV5eeOEF3G43pjwbaobd6JJEA9J1RAe2LEwyugwhRIDYsjCJriPaG12GaGDUXBtjx4717xTo8dTtVsIBEyp/++03Nm/ejKqrmLaFSre3OGmqSaXzsHZsWbjD6FKEEAEi8e+dtD2tFbYg2ZBDnJoFT64hPDycXbt28c0339TptQMiVObl5fH+++8DoOySbm9xatr0jSc/s1C2ZRRC1Jmi3BL2bUmn4+A2RpciGhjFozJlyhQAPv74Y/bv319n166RUFlQUGDoFPYTef/998nPz8dUYsEku+aIU9RxSFsS/95pdBlCiACT+PdOOg6RcZXi1L0y4UP69u2Ly+XijTfeqLPrVjtULlq0iJtvvpnHH38cgB07dvDAAw9Uu7CakpiYyK+//gqAmiSzvcWp6zAwgR3LdxtdhhAiwOxYvpt2/VuhqPK6JU6NgsLG9/dgMplYsmQJq1evrpPrVjtUfvbZZ7z33nuEhoYC0L59ezIyMqpdWE3QdZ3XX38dXddRM+2o+TI2RZyaqPgIHGF29m1JN7oUIUSAyUrJpbTQSYsucUaXIhogtcTMeeedB8Bbb71VJ1s4VjtUWiwWf6Asoyj1413V4sWL2bRpE4quYk4OMboc0QB1GJTAzpV70DXd6FKEEAFox7LddBjU2ugyRAP16wN/ERISwo4dO5gzZ06tX6/aobJZs2asXLkSgKKiIj766CPatzd+GQSv1+ufnKPus8vkHFElHQYlkLR0t9FlCCECVNKy3bQfmGB0GaKBUjwq11xzDeCbX1JSUlKr16t2qLz33nuZO3cumZmZXHbZZaSlpfn3oDTSvHnzSE5ORtFUTPuCjS5HNEBmq4nWvVqwY8Ueo0sRQgSo3Wv30bRtNEHhsrayqJoPrvyeZs2akZ2dzc8//1yr1zJX9wShoaE8+uijNVFLjXG73Xz44YcAqHuDULwBsXKSqGEtusSRm55PUU6x0aUIIQKU2+khdWs6rXq2kFUoRJUousI111zDiy++yNdff815552H3V47b1KqHCo///zz495/9dVXV/XU1fbHH3+QlpaG6jFhSg0yrA7RsLXu3YLd6+pufS8hhKjI7nX7SegdL6FSVNl/z/2YuAvjSE9P55dffuGSSy6pletUuQnP4/Hg8XjYs2cPs2bNIi8vj7y8PGbNmkVaWlpN1nhKNE1j+vTpACgpDhStfkwaEg1PQu949qzbZ3QZoqE5mYmK9WQyo2gY9qzbR+veLYwuQzRgiq74G/u++uornE5nrVynyqHy+uuv5/rrryczM5MPPviAqVOnMnXqVN5//30yMzNrssZTsnTpUvbs2eMbS5kuC52LqjGZVeK7NWOPtFSKU3EqYVGCpThJKZvTiEmIwh5iM7oU0YC9dt6nxMbGkp2dzezZs2vlGtUebJiVlYXDcTi82e120tONW9OvrJVS3W+XsZSiypp1iqXgYCEFWUVGlyIaiiND4vEC48keJ8Qh7lIPadszadWzudGliAZM0RUuu+wyAL7//ns0Tavxa1R7os7AgQO5++67GTVqFOCbdT1w4MBqF1YVmzdvZsOGDSi6gilNxlKKqovvFkfKJuOGcYhGQFFA14+9TYgqSNmUSnzXOLYvSTa6FNGAvXPZVwSPDmbv3r2sXLmyxvNatZvy7rjjDi6++GJSUlLYu3cvF198MVOnTq2J2k7ZTz/9BICSYZN1KUW1tOgcS2riAaPLEA1FZWHxZFolJWiKk5CaeIDmsrOOqCbFqzJ+/HjA11pZ06rdUgkwbNgwhg0bVhOnqrL8/HwWLFgAIK2Uotqad45l2ffrjC5DNAQnCoUnO3Hn6FZNIY6wf+sBxt8z0ugyRCPw84PzUQYoLF++nNTUVJo3r7lhFdUOlZUtdP7aa69V99SnZM6cObhcLpQiM0phjWRlEaDsITbCY0M5sMO4CWeiYVDMvucavbI9dRUV1XGC9eAUFcVkAl1D93hquELRWOSk5qEoCpHNwshJyze6HNGAKU4z/fr1Y9WqVcyePZsbb7yxxs5d7fQ1efJk/+cul4u//vqr3MSduqDrOjNnzgTAlOZAQbqTRNU179SUjOQsPK5KgoIQHA6UAIrJdGywVFRU++HZuqrNhlZccswxisl0+HOzWYKlqFRZF7iESlFd675Igs4we/ZsrrvuOkymmhkyWO1Q2aNHj3Jf9+vXr863ady1axfJycmgK6iZspWVqJ5mnZqSti3D6DJEPXZkoPTfdmSwPCpQAqAqvmBZtj7ckYHSfxIJlqJyqdsO0LxTUzbP3250KaKBU7NshISEkJGRwerVqxkwYEDNnLdGznKEHTt2kJFRty/If/zxBwBqllWWERLVFpPQhIxdWUaXIeqpigKl/z6TqeJAWUZVUW22igOl/yTqca8hAldGchYxCVFGlyEaAUVXGD16NADz58+vsfNW+5lr5MiRKIcGoquqSmxsLFOmTKl2YSdL0zT/D0RaKUVNiEmIYv3vW40uQ9Q3ilJ5ECw7xGxGDQ9DLyis/CCLBXNEON6snOOcSFosxbEyk7OJSWhidBmikZj59CLoAX///Tf3338/5hp4M1vtM5TNuDZKYmIi6enpKF4FNUd2GxDVoyi+lsrM3dJSKY6gKChWq+/zSiblKGYzapMo0DROOI/bYsHUJPK4wVIxm8FkQq+l7dREw3NwbzbhTUOx2M24S+UNh6geJc9CZGQkOTk5rFmzpka6wKvdV3zvvfcec9sDDzxQ3dOetKVLlwKg5Fhln29RbeGxYXjdXgqzio0uRdQXRwZKgApaK/2BUlHAZEINC634XCYTaniY7/NDwbLCS5rUQ5dWUGzyZln4eFxectLyiGktXeCi+hQUhg8fDsCiRYtq5JzVDpV5eXnlvnY6nXU6pnLJkiUAqNnyxCuqLyYhSlopxWFHB8oyRwTLcoGyjNl8bLAsC5RHHldBsCwLlIdLkGApDsvcLV3goubMetYXJpctW4ZeA2vlVrn7+9NPP+WTTz5B0zTOPPNMwLe0j8Ph4KKLLqp2YScjMzOTpKQk0CVUipoR3TqSg3uPM9ZNBI7KAmUZkwlFUY4NlGXKgmWRb3ylGh5GhVvtHtEVfnSgPFyKAjabdIULDu7JJrp1xS3cQpwqJd+K1WolMzOTPXv2kJCQUK3zVTlUXnvttVx77bW8+eabhm3LuGrVKgCUQjOKR2Z9i+qLiAsjJzXvxAeKxk1RUMyWEx+nqsffMcdsRo2M8J+TykZbmkyVBsrDJSlgsaK7XSeuSzRaOWn5JPRuYXQZopFQNIVevXuzYsUKli9fXu1QWe0kZlSgBFi/fj0Aau5xWhOEOAURcWHkysLCge3IQKlV3h2kWK0oLZujB1e+2YNut1LU8wQBwKSiRYahtDr+cbqug6qgWOT5LpDlpucTERdmdBmiESmboFPWUFcdVW6pvPnmm3nvvff8Swrpul7u35pc96gy69atA0DNkydZUTMimoWTmy6hMmCdZAulYrWiNI+FQ62LerADpaj8bjm63Upxp2iw+loySzvEYk1ML38ik4oWFgSKgu6worRqgb53//EvfihYSotlYMpNyyeimYRKUXP+d+NX0Ac2b96MpmmoatXbG6scKt977z3AuCWFMjIySE1NBR2UgpPophLiJEQ0k5bKgFVZoNR8LYT+w44KlACY1HLBsixQahbF3x3kDjGhdYzFvv2A/zFlgbJMZcHymAH0EiwDVt6BfIIjgzBbTbKVrKgRSpEZu91OYWEhe/bsoU2bNlU+V7W7v5977rljbnvhhReqe9oTSkxMBHw/DNlFR9QER5gdk1mlMLvI6FJEXTtRC+WhbvAKA2WZQ8HyyEBZ/hq+YFnaMbbCQFmmLFj6v65sRqZ0hQckj8tLUU4x4bGVLFslxClSUOjSpQsAmzZtqta5qp3Gdu7cecxt27fX/r6kZddQCmU7M1EzwmJCKDhYRA2sqiAaGuXET4WK2Vx5oDzEG+4g7axmxwZK/0mgNMpM6oT4407w8bdYnuiXUVVAPf4uP6LxycsoJKyphEpRc7p37w7A1q3V202uyolsxowZfP/992RmZnLFFVf4by8uLmbQoEHVKupklIVKtVC6vkXNCI4MojBbFj0POIfCne71VroNo2K1oMbGHHenHG+YnbTBIXhtkGcxE77n2B1PvFaV3PYqmhnShkfS7K/Kl6/SrRbUls3RUlKPc9FD3Z+qCTTpCg0URTnFBEdUPkFMiFM1/dFfoDPs2rWrWuepcqgcO3YsgwcP5s033+SOO+7w3x4cHExoaO2/g0pKSgJ83d9C1ITgSAdFORIqA84RrZQVBUt/oDSbQNfBqx3TWnlkoATQK3la0hXQDr0PdkYeJ1h6D8VXm7XyYOn1oh9ndrpovHyhMsjoMkQjUpalkpOTqzVZp8rd3yEhITRr1oxnn32WuLg4/0ddBMqioiKysny7nijFEipFzQiODKIoV0JlQKloTOMRe3uXC5T+Aw4Fy0OODpQAXivktS7/3OS1quS1O+IpVzkcLMsfeDgo6oriD5blj6kgUEo3eMAoyi0hOFJaKkXNUUpMWK1WSkpKSEtLq/J5qp3IkpKSePXVV0lOTsblOjwTsTaXFNq3b5/vE5cqk3REjQmODKIop+TEB4rGQVEqHUupe72oDvuxgdJ/gC9YeiODjgmUZTxBvmAZmeILqXntVDTzUUHwULBMHxZJ3N855QKl/1KKgnJki+XxWiilGzwgFOUUy/7fokYpKLSIj2fXrl3s27ePFi2qtsB+tRPZq6++yj333EOLFi347bffuPnmm5k8eXJ1T3tcZaFSKZF35qLmBEdI93fAOE6gBFBMJpSgoIoD5SFaiI30gRUHyjKeIMht73vvrlU2/FuB0ihIG1H51nu6ooDFjBoacuIub2mxbPSKcooJjpTub1GzmjVrBlCtlspqh0qPx0PHjh3xeDwEBQVx2WWXsWTJkuqe9rhSU33ji5RSefIUNccRZqe0QPZWDnSKqqCGhYCuoRRUvLyUFmonfUg4mg2UivbzPsQdqtP13MQTXlM3HeoKH1lx65OiaSj5RShmM6aoiBOc7DgFiUahJN+JI/Q472aEqIJ6ESrNZt+78Li4OObPn8/GjRv94x1ri388pUtCpag5VrsFV4ksJh0QdL3C8KWoCmpo6OEZ4dqxx2ihdtIHh+O1H3qMXnGwdIfqDDhjK/GOXACaDd1XcSnq4X+dUZUHy7KZ3scNlrqGrInV+LlL3VgcsvKJqFk/vjQHgPT09BMcWblqh8rrrruOwsJCpkyZws8//8wbb7zB3XffXd3THld2djYAikvGU4qaY3VYcJW4jS5D1JWjgqU/UB45s9vrLdda6Q+UR82RODpYlgXKZvY8/23dI9JoPqx8sNSPegqrKFgqmoaSV1j+ehUFSwmUAcNV4sIqoVLUsLKGupycypc6O5FqT9QZOHAg4JsN/tprrwEwa9as6p72uMpCJRIqRQ2yBkmoDDi6DmgoJtOxgbLsELcbpaAIPTQYVPWYQFlG8Z0KV/ixgRLAonjpEZkKwyD17/hjAqX/eir+a/gDpffYyTdlwdKbnSuBMsC4StxYHbKbkqhZitvXQ5OXl3eCIytXK6nso48+qo3T+pV9w4pHQqWoORa7hMqAZTIdd6cc3e37vUgfdPwl09yhOmeNWXNMoCxjUbyc1mQvg8/ecNzzeByQPiKq0kB5ZN2KySSBMsD4QqW0VIoadihT1btQecKtxaqppOTQsi/eyrc5E+JUSfd3AFIUXyjTdPTiypeTUux2nC0jCD5Q+SQYV5jOmLFraOvIJNJc8SoCNtVDz6AUxkRuZsjYyoOl4gFHlkZJl2aVHqPrOnpBoewBHoAkVIraoLh9kbCgoKDK56iVUKkcsaDwW2+9xdSpU3nqqadwu918+umn3HHHHSQmnnhGZGVKS0t9n0ioFDXIZDHh9cgafwGjLFAeWlpId3sqDJaK3U5pxzg0i4qlwEvY7mOD5ZGBEsCuuo8JljbVQxdHKnbFjUXxVhosVReE79JQ3TruMDMl3eOPOaYsUPoXapdgGVC8bi+qSUU1yWugqEGa7/fJ7XajVTBJ8WRUeUzlvffeW+l9ZU2n27dvJzs7mzfffJPPPvuMhQsXkpmZyUsvvcRHH31E586dq3TtslCpaPIHJWqOoijoFSw+LRqhowJlGd3tgeISlCDfoEZ/oLT6jlN0DgVLyE/w3XZ0oCxTFixz3SEAdD4UKMuUBUvGwuLfewKHA6XJ5fs91BVwh5mhezyOTb5JPscEyjKHgqXulhUMGrvDnYEKHHdHeiFOwRG/Sm63G5vt1JetqnKovOaaa054zObNm+nfvz/gm9Aza9YsoqKieOCBB5gyZUpVL43H4/F9IsuxiRqkqEqtD90Q9UAlgbJMWbBUoyLLBUr/w48Ilgd7KhUGyjJ21U0zax4UUy5QljkyWC79tWe5QOmv54hgad+YUnGgLCPBMiCULYCvqApI54qoKUc01OXm5hIbG3vKp6hyqOzdu/cJjyksLCQ6OhqA4OBgCgoKuOeee7jhhhuqelngcPe6alJRtLqbrHP6uf3p0DeBrcuSWDlnXZ1dd9A5/ejYry2Jy3ewYvZauW4tiY6J5vJHLmDjoq0B8f0G7HVX7GDlH5uPe6yigGq3gN1U6RghDfBGa7SzZx27NtAhVtXBFW3/D4cWTUZqCB698JhjLOh0D07n75geWLYDasU9MHqQGZPNgrdARznOpCJMoGsqAyf0pVP/dmxfvYtlv64+7vdbk4y67oCz+9B5YPuAuK6iKkRGRnLttEtIXLmj0X+/gXzdpDW7WfrLyjq5pn5EU6V/7sopUvRabJr56aefsNvtjBs3jsTERGbPns0999xT7fOeeeaZeDweHn74YcLDw2ug0pOTkJBAZGQkWVlZ7N27t86vm52dzZ49e+S6ct1Gcd2cnBx2797dqK+rqiq9evUCYP369VUep1QVgfRzNvK6rVu3JioqSq4r123w1/V6vTz22GMAfPfdd3XbUnkyunbtyjfffMO4ceNYsWIFPXr0qJHzqqrvXfp/L/4ItQ531Znyf9fR+8we/PPDcj6b9l2dX3fxjyv49Ilv6uy6t716HX1G92DJTyv55N9f1/l1l/6yko8fq7vrfrjzFbJSclj8U91e95b/XEO/s3rV+fdbdt1lv67io0en19l1b37pak4b15vlv63mw399VefXXTFrDR88/KWvG9xcfgatYlJRwkNRDj3HoKroIUGUJBzel9sdrJLZT8VrPzzuUY0p5dYef5c7V5ipmEtCD2K3/EKpuxmt4yezuLT8fs1p7kje2jgCd/GhOnQwZ1touvJw+DS5dIK3Z6E4j+jSdrl961MeRXcdPmby81cyYHwfVs5ey/sPfXHSP6fqmvzClQwY35dVc9bx3oOf19l1b3zuCgZO7Ffn173h2csZdM5pdX7dD5NfIWtvDit/X8f/7v+szq57/TOXcfq5/Vnzxwbeve/TOr/u2j838s69n9TZda976jIGn1f31732yUsZcv4A1s3fyNt31811dVUH39LjhIYef/m0ytRqqOzYsSNRUVFMnTqVpk2bcvnll9fIeW02Gy6XCw1vnc4ALwuzXreG5q27Foey7n6vx1un1y2bWVjX1y3j9dTtz9nXaK+geev2umXq+rpl47IM+3413YD/36O+X6/mD5aKSYWQENCPmLDl9UJeEbadOiVtInEHq2T0VfDatMOD2nXwZtp4a+NQpvT8C4BwUzGXhu4mRG1C2TNUU7ONYUH7+bvEt0xQqjuSNzYOx11sxn8yBbxRLtJOsxC7wje+0rEtC93pKj8dw2RGCQ/Hm31454sjA+WR36+u1+3PuexadX5d7fBPyIjvty6vq5p847913TdUw4jvV1GUOr2ux3V4pYM6va7bN4dDNdXtdctWIlFVtc6uq6uHB+ja7fYqnaPaofKJJ57g/vvv96fa/Px8Xn31VaZNmwbA7bffXt1LHKNsfCamup1UsWfLPhyhDlK27a/z6waFBZGyLbXOrxscbsR1UwiJDGZfHf+cdV1HVRS0Op4BvmfLPsKahJKyLa1Or7s3cT/hMWHsTazj/9+t+4hoGkZKYt3+/+7dso+IpuHlf591Hd3jRrXZUMLDDrdQHknTUAqLsR20s394qL+F8kiKBlqmnbc3DOeRPnO4KDSZEPXYrXeamoIZ5kjjm/yuvLHhjMMtlOVOBp4mbjL7Wmj3aUb5FsojWS2YoiLxZuccEygB9m7dR1RcBClb6/bnnLItlegWu9hbx/+/KYn7iW4RVefX3ZuYSszquv1+zVYzuqajo6BUMuGstqQk7idp9S72bEmp2+tuS2XHml2kbN134oNr+Lq+7zcArnsoUzkcDn8j2qmq9pjKG2+8kQ8//PCEt9WkG264gR07dmDZFIGae+pT3oWoyAdJ/8GkWVkw/R8+m/at0eWIuqIoqDYbamRE5cdYLbhbRFHY0sGBQZUfptk1Bvbcwddt5h+6JRilyQxK3M2w5g1FVQpI8xRy/Y5L2ZZc+cLmSomJFvPBccCJZV9W5Rf0angPZKJ7jrNov6xo0OgERTh4bdVTKE4z6xds4o2ptfd6KwKHFuzG3SebJk2a8OOPP1bpHNV+i+P1eikuPrzIb1FR0eElf2pJcHAwALpZnixFzdF1HUWt264kYbBDywvpHg9afiW7SFgteGIjQFGwFla+fotu1QlrVkBKQQS37Du9wmMyvEU8sG8iXl0lJu44W6FpYMn34HGYcMc3qfgYr4Z2qPtbMVUytlwCZaNksZr93aNHbjYiRLWYfa99VR1PCTXQ/T1x4kTuuusuzj77bABmz57NueeeW93THleTJr4nWd0qC3SJmlNcWIK3qITs9FyjSxF1oWy9ykN0pxMtH9SwI55QDwVK3eI7zpLvIXaZ6ZjWSt2qE9oiH4fVjVdT2ZTdjFs4nf/FL8V7cAJrd31I29aZ3LdvApklIajohNtLIQ4y08uvYKGUmGi+6PDXHocJ4puUb7E8FCj1Q+O9UFQUE+XXr5RA2WiZbSaKi0spPVAgz1eixuhWX6gsWwqyKqodKi+66CJat27NypUr0XWdW2+9lX79+lX3tMfl/4at0qIkas7GlVuY995iklfX7VghYYCjAmWZioJlWaAEUDSd4FQnscts/mB5ZKAsc2SwfKfFCgAeSDmbzNJg/zEVBUulxETzBWDNK9/bo1mO6FQ6OlD6izsiWEqgbNTMVjO7t+/m9cs+MboU0YiUhcqyhruqqJHZ3/379/fvnFMXYmJiANBt0lIpao6zyIk9WPZPDgSVdhdzRLCMjvJ1ex/92COCZfrwYwNlmbJgeUnpKO5TILM0hKO31DsyWB5MjqowUAJoZgV3fBMsezIrDpT+4g4Fy1oegiSMZQ+x4SySXZNEzTrv/rHMmDHDmFD56quvcu+991a6B/irr75a5aJOpGxBTt0mLZWi5pTkl+IIP3bGrmh8dK/3+MHS5UYvdZZrpTySoukEZbgI32rH1qbySTKFpTbW7Y6BbpXXoqLj8ao0Wa1izas8KOhmBb2ouPJAWXZcZVs4ikbDEWanOK9qO54IUZn9+30rGDRrVvkkwhOpcqicMGECcHJ7gNe0li1bAqAHeTi0qEKd1yAan+K8UhyhVVubSzQwul55sFRUFKsFSkqx7MnE3Trm2IebFVxhZoIOeCn4sylBozOOOabEZSE/NRSz29d1nbQnjnatj102KrMoGH1OE8ylGq4IM9bcY0Oj6tGxbk9D1zUUuw291Fnxt+VxS9d3AHCE2SnJLzW6DNHIpKT4hn61atWqyueo8uzvTp06AbBz50569+5d7iM5ObnKBZ2M+Ph434w3sw4Waa0UNaMkv5SgcAmVAeNQsCynLFCqqm9x6fwCLHsyyz/MrOCMsKCbFFQvhKZ4Kf6zabljygKl4j78FKsUmti+J67ccWWB0p6r+RY+tyi4Isq/11c9OrZtqeiH9uJVTCqK/dil1CRQBo6gcAmVombpik5amu9Nb1nDXVVUe0mhWbNmHXPb7Nmzq3va47LZbP7mWT1IunpEzSjJL8URJqEyoBwZwo4IlIfvLh8sjwyUZSoKljqUC5S+GxVwHb7tYHHQ4UDpr6F8sDw6UPoPqyhYSqAMGI4wB8V5EipFzdEdXjRNIygoyJgxlYsXL2bx4sVkZGTw8ssv+28vLi7GdJyxSjWlTZs2pKamogW7UfNkcoWovuL8EoJkTGXA0b1eFLPlmEDpv1/XIb8Ay34TBb3iygXKMmXBsuDPpijDcyhIC61wUI7iUti+N5ao6AK02dHlA6X/IF+w9ASbCF2x95hA6T/MpMKhrvDjLn4uGp2gcDsZu46zKL4Qp0gP8T2HtG/fvlprn1a5pTI2NpYePXpgt9vp3r27/2PkyJHlQmZt6dy5MwB6iMxyFDWj8GARoU2CT3ygaFzKusFPsC2ZXlRCyPacSu9XvRC214vltwgUVyXn0hXMGVZM3zepOFAeYnLphG7MQPccvydGURTp9g5AoU2CKcgqMroM0YhMemQMcHhoY1VVuaWyffv2tG/fnhEjRhAUFFStIqqiS5cuAOih8g5dnBpVVXnw06lEt4jiwO5MXr35XYZeMJBLHjyXJi0j+enpP8jcl8WA8X254pHzmf3RfH7/eIHRZYvaoiiga+glJSiOY1uqFUUBixl0DbLzCN0KBV2ijj2PDpZCDUuhxr3nn0nHXnGkFhTw8J+/Ex8fz1cJrXl+3iIO/JOGpVBDsyq4g48NnyanTtj6DCguQTGp6FjBXcGscE1HK9vNTFEkWDYiHfq25bb/Xoeu6eQcyOXFa97g+TmPAWB1WGnWIYa/PltBqy7x3PO/W1BNKp/8+2vWzttIXJum3PverexN3M+bd8j2jeLkbNu2Dah+qKz2mMoHHniAgoLD25vl5+czderU6p72hPwtlQ4vulkm64iTN/SCAaQlH+D+M6exZ2sKQy8YyIX3TOT+M55gX2oKV/37IgAGTujLPcP/Taf+7Y0tWNSeI7p5dK/32LGLZYGy7Div91CwzC5/Hh3MJRqKptOhTQxNbQ5u/9e3JGVnMa59R2w2Gzd/9yOXRHbEUuh7vlJdOpai8s9dZYFSKTy89a1iUsFy1BCfQ4Gy3EQj2a6v0Ti4P5tHxj3DfSOfIHVnOqefexr3nzmN+8+cxs9vziYrK5u8jAJuePZy/nPDWzwy7hmuffJSAIZdOIj/3vI/CnIKCWtS9e32RODQFZ3t27cDh7NVVVU7VJaUlJTbJzIsLKzcXuC1JSwsjNatWwOghcsisOLkNWsby851uwFIWpPMhJvHsGdLCiWFTjL2Z9K+dxsAVs1Zx3//fpqk1TsNrFbUmgpCWEXB8pjjyoJl4qGu8CMCJUC3Li1YtTqZoAwP63/fTd9mzXG5XHw69nwWzd9a7lRHBsuKAuXhA4+ooaJAeZzvSTQ8OQdycZb4Xtc8bi9ez+E3H2dcOpjcvBwKs4qIahbJ/h3pFBeUkJ9VQFiTUBb/uIJ73ruVsCah5GdVsp+9EEfQQ924XC6ioqKqNfMbaiBUKopCdvbhd+1ZWVm+ge11oG/fvoCESnFq9m7dT58zuwPQd3RPwDdJByA/oxCz3TcqZOmvq7h76GPM/nC+MYWK2nOc8FUWLP2tlBXxeiErl9DNWeUCJUBIsI3iYheKpqOlFBNXYCMlJYW7H5zO1u3px5xKdenYszyVB0rKWkytxw+UJ/G9iYYlpmU0fUf1YNlvqwFwhNiJTWhKRkommlcvN6GiKK+Y0KgQUnem8+DoJ3nj9g+MKls0MFe+OgmAPn36VGuSDtTANo1XXnklt912GyNGjADgr7/+4pZbbqnuaU9K3759+fHHH9EjJFSKk7fst9X0GtmNl+c9we7NKRTmFBIU5htLl3cgH1WVF+VGT9dPGCw1pxPVaqn8HF4vSmExihZR7uaCwlKCgnzd1WFWC869eQSfYC1h1a1DXiGYjv8+/4SBEmRsZSMRFOrg4c/u4OUb3sZ7aMLW6eeexuZliRR6CwHQtcMtmCERwRRkFxpSq2jY1q5dC/hCZXVVu6XyzDPP5MUXXyQuLo7Y2FhefPFFRo4cWe3CTkZZqtaDvOhWWa9SnBxd13n33k95YNST5GcV8MNrM2ndJR6zxYzdGkR2RuUzfEUjcoLwpbs96IXHmWGr6+hOJ/ajlnbZkphK/35tUN0agzq3YOvKXQA4Uit+wTe5NOxJB3yThbwVjw/XvRpabh66poNynKdtCZSNgqqqPPzFnXzx9HfsTzq8C9Pwi05n56ZdZO/zPUdlp+fSon0cQaEOQqNCpLtbnDLdpLFp0ybgcO9vdVS7pRIgISGBhISEmjjVKQkLC6Nbt25s2rQJrYkTU1rdz0IXDU9kbASPTr8br8fLmnkb2fRPIj+8NpNXFj6JLcTKkj+XG12iOIrNYeXG569k0MR+FBeUgA6r/ljPR498haZVPlHv6icuxuvx8tWzP1R8wHFaLNv1bEnTVk1ZPncDSkgwHXq1YtxVQ3njga8Ohzddh9x87LugtK1vweAdOzPIOVjIh29fT3hUENePfJ4hF7ZGKS7FkapT0jzEfw2TS8O+/cDhcZy6hu49NDmnrMSyQFluUo7qm40OvLX8eW4f+AjoOlc9fhFfPP39iX6cp/5zEnVqxCWn021wJ4JCHVz52EX8+u5cVsxaQ9NW0XhVL3l78wH46NHp3P/R7agmlU+f+MbgqkVDpEW68Hq9tG7dmvj4+Gqfr9qhMikpiVdffZXk5GRcrsPd0PPn1804tGHDhrFp0ya8URIqxcnJOZDL/WdOK3fbwm+WsPCbJST0jmfsHcMNqUtU7p73bkXXdW7qcS/OEhcWm4VLHjgXi83sn9BQZZUEy3a9E+g+pDNLf1uNWlhE0vq9JK3/6tjWwKOCperW+OjJn1nVuyWXTxmNx+0Lg4qmoxSV4kiFkuYhxwZK//kOB8sKA2WZQ8GyLFACVQ6Von5Z8PViFny9+Jjbp5z2EFe/ej571u0DYO/Wfdwz/PG6Lk80ImdM7c+ff/7JkCFDauR81Q6Vr776Kvfccw8vvvgib7zxBr/88stxWw5q2tChQ3nnnXfQw13oJg3FW+0efRHADqZk06RlpCz7V4/EtWnK6eeexuXxt/gDpNvp5stnZviPuf31G+gysANWu5Wd63fz6uR3cLvKb4zQf1xvrv73xZitZjxuL69PeZ8da5MBGH7RIK545AJQoLTIySNnP8u10y7FHmyjY792zPlkIclb9nPloxfwyEX/B8Ckm0Yy7qph6JrG/uQMnr3xfey7wBUfieKseP1cRdOJjgzizmkXERNix13q4u1/fUPi6mR6Du7Itf+axIG9B2nfsxXpew/y5AWv4PV6iUuI4eHPphIUFsTmxYn0H9ebu4c/wcF9B5njnM4462Xc+uq1mMwm3l3zMnkH83norKeZ4/qacdbLAOg2pDPXP32Z/w3Vra9ey4Cz+5KdlkPmvixStu0HIDQyhDvemkyztrFYbGa+fGYGf89YVlP/naKaoltFcnCPDNER1acrOsuW+f62602o9Hg8dOzYEY/HQ1BQEJdddhlTp07liiuuqIn6Tqhly5a0adOG5ORkXxd4hmyzJ6quMKsYXdMIjQkhP0MGvdcHCd1akrbzgK/buxKfTfvWP0lhymvXc9Z1ZzDzvT/LHbN1WRJ3DXkMXddp36cNd7w5mbuGPEqrzi2Y/MJV3DP0MbLScwmNCqGksJRPp31D9yGdefXm/wHQ84zu/hbDPiO6MOaywdw38SWKC0oJjQz2vQvJycNWWAxBlT8P3fbQBFb/vJqf35tHx96tefSDm7lhkK+1qV23eF6+/WPSd2cy7dNbGTqpH/OnL2bKf6/l908XMfvD+Qyc0JeJt/h2vzjync+7937KeVPP5ta+D5zwZzp4Un869G3LTT3uxRZk453VL/pD5W3/vY65nyxg1dz1hEQE8+aKF1g3fxMFOfL3YDSL3UxokxCy9+caXYpoBLRIJ4WFhTRp0oSuXbvWyDmrHSrNZt8p4uLimD9/PjExMWRl1e2epKNHj+b999/H27RUQqWotoN7cohpHSWhsh45cpmyEZcM5vKHzyc0KoSnLn6FbSt3MHhSf8659SysdivB4UGoFWy5GBUXwcOf30nT1tFoHo3m7eMA6DOqB4t/XE5Wmq/1p9IZtLoGuo5WWES/kV2ZO30JxQWlvsfkFIHmm7ijl5SiOCvpktc0eg5oy0vXvIHu9LB93R4K84tp0TYWgB0b95K+OxMtv5BtK3cQ16YpAN2HdubZK14HYPnMNeRnF4JW9cmJPUd0ZeE3i/F6vBTnF7P011X++/qf3Ye2PVsz+YWrADBbTDRr25SC1fL3YLToVpHkZRTgccnEVFF9w27vy4IFCxg1ahQmk6lGzlntUHnddddRWFjIlClTePXVVykpKeGuu+6qidpOWlmo1MNd6FYviqtmfjgiMKXvzCS2fQw7V+41uhQB7N6cQvP2cThC7JQUlrLo2yUs+nYJ/5k/DbPVTGzrGK554hKmnPYQeQfzmTR1HO16JRxznjvemsys9/9kwdeLcYTY+TH7E98dRw+nPN5yQ7qO7vaAp3zXelmg5NDQH93phIKjZo5rGnp2ru/8mgZeL/qh8FkWmt1OD1p+oW9JI6+GyVzxc9nJLiWnHbF+ptV2+On+eGvRqarCfSOfoCiv9jexEKcmrn0M6UmZRpchGgHdpLF4sW/c7pgxY2rsvNUegDhw4EBCQkJo3bo1r732Gu+99x6DBg2qidpOWrNmzejVqxco4G1aWqfXFo1P2vZMmnVsanQZ4pD05AyW/LySqW/ciNXuW/9RURSsdt8ako5QB84SFwU5hdgcVkZdWfFEq6CwIDL3+XpRJtw82n/72j83MuT8gUTFRQAQGhUCuk5xfgmO0Ap6PnSNFbPWMOaSQQSF2kHTCQk2+wMl4AuQbne58Kln56K7XKz/eyvjrh0BmkbHXq0IDnWQmpzhC6xeb4WTcjYt3saZVwwFYODZvQiNDDnmGIDSYic2x+EtHTP2ZNKudwIAQy8Y6L99/cLNnHHpEExmE0FhQZx+zmn++1bMXstF957j/7qigC6M0axjU9KSMowuQzQCWnQpLpeLVq1a0bFjxxo7b5VbKj///PPj3n/11VdX9dRVMm7cONavX483rgTTviCUY5ofhDg56dszGHRRb6PLEEd47db3uOG5K/hg838pziumtNjJugWb2LV+NyWFpaxftJkPN/+XjL0H2bZyR7lgVebTf3/N/R/dTk56LstmrvbfvjdxPx8+8iXPz/GNtywpKOWe4Y+zdv4mLrn/XN5a/jxzP11I8uYU/2PW/rmBPz5bxKu/PYDX42V/UjrPXv1m+QtqGt0GtuPTBQ8T2iSYzzZ04bNnfuCd+z/nnrcnM/baEbhdHl64/m08BcVoxSWVzg57597PePiz25l482g2/LWF7PRc/y5QR/rx9Vm8sfx5Du7L5l/jn+X9h77g39/dR2ZKFokrd/iPW/LzSnqO6Mp7G17hwO5M1i/a4r/v7bs+Zspr1/Pe+ldQVIXMlCwenfBcne2UJioX17Epf3++wugyRCPQbmJztm3bxsSJE6u9i86RFL2KzxQff/zxce+//vrrq1RQVZWWlnLBBRdQWFiIeXMEphxbnV5fNB4Wm5mH59zGi+PfxVVS8SxeESBO5slWUU+4886/59/OM+PeQ6tkcXPN5faN2axkYXObw4qrxImuaXQb0pl737uFG7vdczLfgWgkFFXhkdm38cYVn1KQdZxF+YU4AS3Ejbt3Nlarle+//56IiIgaO3eVWyrrOjSeiN1u5+yzz+a7775Da1YsoVJUmdvpISsll7j2MezdmGp0OcJIJ9jO0deyqKG53BUGS83lpmzOkO7xVBga/YESKg2WbbrHc++htTo9Lg8vX/9WVb4b0YA1iY/AVeqWQCmqbcy/BjFr1izOOOOMGg2UUENLCs2ePZtdu3aVW/z8gQdOvKxFTZs0aZIvVEa60O0elNIa2TBIBKDUxAO06BoroVJUHiyP3FWHY1sgD4dFX0jUNR1d96CYj3pe0rVjvz4yWOoaicuTuLnXfVX/HkSD16JLHKmJB4wuQzRwusXLn3/6llubNGlSjZ+/2hN1XnzxRXbt2sXixYtp27YtO3fuxGo9djxTXWjVqpVvkpACnniZuSiqbu/GVFp2b250GaK+qGgXnaNoLnf5zysIi7qm+1osK3jM0cf6/5WxjAJo1bM5ezemnfhAIY7j4tfH4nK56N69O927d6/x81c7VO7YsYO77rqLoKAgLrzwQv7v//6PPXv21ERtVXLVVb611bSmJehWWctLVM3eDftp1VNCpThCuZbJCu7Tfd3g+qHPKz6HL1hCJcHzqGMlUIoyLXs0Z++G/UaXIRow3aTx008/AXDFFVfU6ASdMtUOlWWtklarlfz8fCwWCwcOGNdE37NnT3r27AkqeFtIa6Womqy9OagmlagW4UaXIuqT44W8Q2FSd51gL3JdQ3M6TxAodQmUws8RaiOqebh0f4tquf6TCygqKiIhIYHBgwfXyjWqHSq7du1KQUEBkyZN4sYbb+Taa6+lT58+NVFblZW1VnrjStDNdbcPuWg8dB1SNqXRsoe0VopTUBYGTxg+j3OMhElxlJY9mpOWlCk76Ygq01Wd7777DvC1Ula061hNqPZMlrLdcyZMmEC/fv0oLi6mbdu21S6sOgYOHEiHDh1ISkrCG1+EeXeoofWIhmnvhlRa92rB+jlbjS5FNEQVTfCpaGzmkcdIoBQVaNWzBXs3Ste3qLprP57E+++/T7NmzRg9evSJH1BFVY6quq7jdDr9XycmJpKZmUlRURElJccuyluXFEVh8uTJAHibF6Pb5N2dOHW7Vu2l7WmtjC5DNGRHhsQTtUxKoBSVaNe/FbtWpZz4QCEqoJs1vvrqKwBuvPFGzEevQFGDqhwq//e///HNN9/4v3788cf54IMPePvtt/niiy9qpLjqGDRokK8bXgVPq0KjyxENUHpSBla7hSYtI4wuRTRkJxMWJVCKSgRFOIhuHcXe9dJSKarmgv8bRVFREe3bt6/VVkqoRqhcuXIll19+uf/rsLAwXnvtNd566y3WrVtXE7VVi6Io3HLLLQBoTUvRgmRnFHFqdB12rd5Lu/6tjS5FCBGg2vZrRcrGVNxOz4kPFuIoutXLDz/8AMDNN99ca2Mpy1Tr7BbL4R0krrzySt8JVZXS0tLqVVVDunbtysiRI33rVrYpREdaA8Sp2blSusCFEMZp178VO1cat0yfaNiGPdILl8tFr169GDhwYK1fr8qhsqioqNwOOmeeeSYATqeTwsL609180003YbFY0CNdaE2cJ36AEEfYtXIvbfrGo5pq992dEEJUpF3/VuxcsdfoMkQDpIW7mDdvHqqqcscdd9TKupRHq/Ir5emnn87LL79cblJOSUkJr776KkOGDKmR4mpCfHy8vxXV07YA3SRLDImTl5dRQN6BAlr3bmF0KUKIABPXPgZFVTiwM9PoUkQDoys6zSb4Vr4577zz6NixY51ct8qh8tZbb8Xr9XLBBRdw4403MnnyZC644AI0TfOPZawvrrzySpo3bw42DW/LIqPLEQ1M4t876TKsndFlCCECTOfh7Uj8Z5fM4xKn7IbPL2Dv3r1ERERw44031tl1qzyv3Gaz8e9//5vU1FR2794NQEJCgi+81TM2m4277rqLhx56CG+LYtQMO2qx5cQPFAJfqLzsuXOY9X8LjS5FCBFAOg9rxx/v/GN0GaKB0W1ePv30UwBuu+02QkPrbq3uag8Ua968OYMHD2bw4MH1MlCWOf300xk2bJhv0k6HfHRF3vqJk5O6LQNdh+admhpdihAiQEQ2CyMiLozda2R9SnHydHS639KKkpISevbsydixY+v0+gE1++Cee+4hNDQUPdSDN166wcXJS/xnJ52lC1wIUUc6DWtH0tJkvB6ZByBOnhZXwpo1a7Db7Tz88MO1voTQ0QIqVEZHR3P33XcD4G1VhBYsa1eKk5P41w66ntHB6DKEEAGi64j2JP690+gyRAOi2zyYu/tyzS233EJ8fHyd1xBQoRJg9OjRjBgxwtcN3lG6wcXJ2b1uP7YQG806xhhdihCikYuICyO2XTTblyQbXYpoIHR0ukyOp7S0lD59+nD++ecbUkfAhUpFUbjvvvuIiIhAD/bgbV1/1tQU9Zeu6Wyat40eYzobXYoQopHrMaYTiX/vlF10xEm75pNzWb9+PQ6Hg4ceeqjOu73LBFyoBIiIiODBBx8EwBtfjDdKFkUXJ7ZxbiI9RndCUWt/AVkhRODqMaYzG/7YZnQZooHQwlx89NFHANx9992GTpoOyFAJMHToUC6++GIAPB3y0G1egysS9V3qtgycxS4S+tT9OBUhRGCIbRdNULid5NWyi444Md2sETHKjKZpjB07lrPPPtvQegI2VIJvAffOnTuDRcfdKU/GV4oT2vjHNnqeJV3gQoja0XNsZzbP347mldcjcXw6Ov3uaU9mZiYtW7bknnvuMbqkwA6VFouFadOmERISgh7mlvGV4oTWz9lK1xHtsQVZjS5FCNHImMwqvcd1Ze3MLUaXIhqA6z47j6VLl2K1WnnyyScJCgoyuqTADpXgW7z9kUceAQ6Nr4wpOcEjRCDLTc9n78Y0eozpZHQpQohGptPQduSm5ZO+Q/b6FsfnjXLy/vvvA3DnnXfSvn17gyvyCfhQCTBs2DCuvvpqwLfbjhYi61eKyq3+ZSP9zu1hdBlCiEam37ndWf3rRqPLEPWc5vBgPc2FrutMmjSJc8891+iS/CRUHnLjjTcydOhQUMHdJRfdKhN3RMW2L0kmpEmwbNsohKgxkc3DadEljk3zthtdiqjHdJNG7CQHxcXF9OrVizvvvNPoksqRUHmIqqo89thjtGnTBmyaL1iqMlBaHEvzaqyduZl+k6S1UghRM/qe051Nf27DVSI9ZaJiuqLT684E9u3bR2xsLE8//TQWi8XossqRUHmEoKAgnn/+ecLDw9FDPXg65qEjwVIca/UvG+l+ZkccoTajSxFCNHBmq4m+E7ux6mfp+hYV09EZ/exprFy5ErvdznPPPUdERITRZR1DQuVRmjdv7k//WrQTT9sCCZbiGHkHCtixYg/9JvU0uhQhRAPXa2wXMnZmyQQdUSlvqyJmzZqFqqpMmzaNDh06GF1ShcxGF1Af9e7dm8cee4xp06ahNS9B85iw7A81uixRzyz7bh2XPDWe5d+txevRjC5H1FOqSS33rxBHUhQYdElf/vzfP/I7IirkaVqEt1URAPfddx+DBw82uKLKKbquSzNcJWbMmMFrr70GwIUXXshpp51mcEVCCCGECBRbtmzhiy++QNd1rrvuOm644QajSzouCZUn8O677/LVV1+BDtbtkZiy7UaXJOqRriM7MOTyfrx/89dGlyLqKdWk8ti8qTwz6k00r7Roi/Ku/M8ktv29S8ZTimN4w53ovQpwu92MHz+ehx56CEVRjC7ruKT7+wRuueUWsrOzmTNnDq4OOZi3RmDKkckZwmfLgu2MvnkICX3i2bVK9uoVldO8moRKUU6zjjE0a9+Urx/5VX43RDlamAu1TzEup5uhQ4dy//331/tACQ1sos6uXbuYMmUKd9xxBw8++CDFxcUAzJs3j9tuu4277rqLAwcOALB06VKmTJnCzJkzq3VNRVF48MEHOfPMM0EFT5dctAhntb8X0ThoXp1/vlzJiGsHGF2KEKKBGX7tQJZ+uwZ3qcfoUkQ9ooW6MA8sxel0MnDgQKZNm4bZ3DDaABtUqGzVqhVvv/02b7zxBl26dOHvv//G4/Hw7bff8vrrrzN58mQ+++wzwBcq33zzTRITE6t9XbPZzGOPPcawYcN8i6N3zUULd1X7vKJxWDtrC5HNw2ndu4XRpQghGojYdtEk9I5nxQ/rjS5F1CNasBvbEDclJSX07duXZ555BqvVanRZJ61Bhcojk3ppaSmtWrVi3759tGnTBovFQo8ePdi1axcAAwYM4Pbbb6dTp5rZo9lsNjNt2jTfrCsJluIIXreXf75axYhrBxpdihCigRh29QCWf78OZ5G8jggfLcSNfbibwsJCevbsyfPPP4/N1rCG2zWoUAmwcuVKbrzxRtauXUuLFi0oKCggKCjIf7/X69tecejQobzzzjtMnDixxq5tsVh48sknGTBgAJh03N1y8EZKV7iANb9uIqZNE1p2b2Z0KUKIei66dSTtB7Rm2XdrjS5F1BNamAvL4FIKCgro1q0bL774Ig6Hw+iyTlmDCJXffPMNd955J9988w39+/fnww8/5IwzzuCXX34hNDTUP7YSwGQy1WotNpuNZ5991t9i6emSi7dJaa1eU9R/HpeXJdNXccYNg4wuRQhRz51x/SBW/Lie0kJplBCghTsxDSihuLiYPn368MorrxAcHGx0WVXSIELlpZdeyuuvv87555/vvy04OBiHw0F8fDy7d+/G7XazceNG2rZtW+v12Gw2nnnmmcOTdzrn4W1aUuvXFfXbyh83EN0qirantTK6FCFEPdWsY1PantaKJdNXG12KqAe8kU6UfsWUlpYycOBAXnrppXK9rw1Nw5hOdMiqVauYPn06qqoSERHBI488gtls5uKLL+bOO+/EarXyr3/9q05qMZvNPP7449jtdmbNmoWnYz6WIBPa7oYzoFbULI/Ly4KPljL61iG8f9NeZAVYIcTRRt86hH++WCmtlAJvTAl61yJcLi/Dhg3jiSeeaFCTcirSoELl4MGDK9yeaNSoUYwaNarO6zGZTDz44IM4HA5mzJhBSXwOJj0I054QFOr/elKi5q2fs5XBl/al25kd2TRvu9HlCCHqkbantSK6VRTTH/7F6FKEgXR0vPHFeBMKwQtjxozxN5I1dA2i+7s+U1WVO++8kxtvvBEAb8tiPB3z0RVppgpEuqbz5/8Wc+ZNgzGZ5c9LCOGjKDDmtqEs+GgpHpfX6HKEQXR0PG0LfIESuPzyy3n00UcbRaAECZU1QlEUrr32Wh555BFMJhNa01Lc3XLQTbJDQiDaviSZgoNFnHZeT6NLEULUEz3GdMZkMbF+zlajSxEG0VWdgY90QmtegqIo3HHHHdx2222oauOJYo3nO6kHzj77bP8yAHqEG3fPbHSbvCMNRL+/sYgR1w0kOKLhLQkhhKhZVoeFMbcN5fc3FqFr0osViHSLlw43xfD3339jsViYNm0aF198sdFl1TgJlTVswIABvPnmmzRp0gQ92IurVzZaqCxuG2hSt2WwddEORt0yxOhShBAGG37tQPZtTmfnyr1GlyIMoAW7iThHZfPmzYSEhPDKK68wcuRIo8uqFRIqa0GHDh149913ad++PVg13D1y8MbKkkOBZt77S+g8rB0tusQaXYoQwiBNWkZy2qQe/P7mX0aXIgzgbVKK6fRiMjIyaNmyJf/73//o3bu30WXVGgmVtSQ2Npa33nqLESNG+Nay7JCPp00BOtL1ESiKc0tY8OFSxt89EkUWAxAiIJ191wiWfrOG3PR8o0sRdUhHx9OyEE+XPEpLSxkwYADvvvsuLVu2NLq0WiWhshY5HA6efPJJbrjhBgC8LYpxd8tFN8sEnkCx+peNmCwm+kzsbnQpQog61nlYO5q0jGTxV6uMLkXUId2kcfqjXfC2LgLg4osv5oUXXiA0NNTgymqfhMpapqoq1113HU8//TR2ux090oWrdxZaiNvo0kQd0Lw6v70yn9G3DCGkScPdJUEIcWrsITbG3zOSWf9dIEsIBRAtyE3Ti20sWrQIs9nMgw8+yB133NFolgw6EQmVdWTEiBG88847tGjRAuwa7p7ZeJsVS3d4ANi3OY0NcxMZf3fjHJgthDjWmNuGsnvtPpKW7Ta6FFFHvDElqKcXsW/fPpo2bcqbb77JxIkTjS6rTkmorEPt2rXj/fffPzzOsl0BerdCWc8yAMx/fwnNO8XSZXg7o0sRQtSyhN7xdB7WjjlvLDK6FFEHdEXH3S4fT6d8nE4n/fv354MPPqBr165Gl1bnJFTWsZCQEJ566immTp2KyWTCHVmMu1c2WpB0hzdmrhI3v/5nHuPvPRN7iM3ocoQQtcRsNXHOg6OY88YiinNl1Y/GTrN7aHNDJFoz34Lm1113HS+99BIRERFGl2YICZUGUBSFSy65hNdff52YmBj0IC/u3tl4pDu8Udu5Yg87V+xh7NThRpcihKglIyefTta+XDb+sc3oUkQt0tHxNi3BPKyYbdu2ERYWxksvvcQNN9yAyWQyujzDSKg0UI8ePfjwww85/fTTQQVvuwI8XXPRLTKou7Ga8/oi2vVvRedh0g0uRGOT0DuePmd347eX5xldiqhFukljyOPd8HTMp6SkhD59+vDxxx8zcOBAo0sznIRKg0VERPDCCy9w9913Y7Va0aJcuPpk4410Gl2aqAWlhU5+fG4u5zwwSmaDC9GI2ENsnP/YWcx8dT75mYVGlyNqiRbqIvI8lQULFmAymbj55pt59dVXiYmJMbq0ekFCZT2gKAoXXHAB77//Pm3btgWrhqdbLu62+eiqdIc3NsmrU9gwN5FJD59ldClCiBoy/p4z2L12H5sXJBldiqgFuqLjaV2At08eBw4coEWLFrz11ltcddVVAd3dfTQJlfVImzZt+N///sdFF10EgNa8BFefLLQw2Tu8sZn33mLCYkLof35Po0sRQlRT91EdadWjBbP+b6HRpYhaoAW7aXFVMN6WxWiaxtixY/nwww8Dcnb3iUiorGdsNht33nkn//nPf2jatCk4vLh75Pi2eJRWy0bD4/Lyw9NzOPOmwcS1l24TIRqqyObhjL9nJD8++zvOImkAaEx0RcfTqhDttDySk5OJjIzk2Wef5dFHHyUoSIYvVURCZT01YMAAPvnkEyZMmADKoS0epdWyUTmw8yB/vruYi58ajy3YanQ5QohTZLaauOTpCSz9Zg171u83uhxRg7RgN62uDcPbqgiv18uZZ57Jp59+yrBhw4wurV6TUFmPhYSE8NBDD/HSSy/5lh4qa7Vsmy8LpjcSq3/ZyP6t6Zz70GijSxFCnKKxd4ygMLuYf75YaXQpooboqm/spHZaHjt27CA8PJwnn3ySadOmBezak6dCQmUDMGjQID755BPGjx/va7VsXoKrbxbeJqVGlyZqwG//mU/TNtEMuLCX0aUIIU5Sj9Gd6Hh6G358Zg66jExqFLQIJ9EXmfG2LMbr9TJixAg+/fRTRo6ULXZPloTKBiI0NJSHH36YV155xbd/uE3D0yUPb498dKusa9mQuUrcfPv4b4y88XTiu8YZXY4Q4gRiEqIYf+9Ivp82i+I8eXPf0OlmDXfHPNzdc0lNTSUmJobnnnuOp59+mqioKKPLa1AkVDYw/fv355NPPuHqq6/GZDLhCS/B1S8LT3PZjachy9ydzcxXFnDpsxMJjQ42uhwhRCUcoTYuf/5cFny4lJRNaUaXI6pBR8cbW4L9LCda01IUReHCCy/k888/Z+jQoUaX1yBJqGyAbDYbN910Ex999BHdu3cHk463bQHu3tkykacB2zRvG+tmb+Gy587BbJV1z4Sob1STwsVPTSB5TQorZqw3uhxRDVqIm3Y3NcHTIZ/8/Hzat2/PO++8w1133SUzu6tBQmUD1qZNG958803uu+8+QkND0UM8uHvm4O6YJ13iDdT895dQmFXEpIfHGF2KEOIoY6cOx2QxMeu/C4wuRVSRbtZwt8/H0yeHrVu3EhQUxJQpU3jvvfdk3ckaIKGygVNVlUmTJvHll19y7rnnoigKWtNSX5d4fBG6Il3iDYmuww9P/05su2iGXtXf6HKEEIf0ndiNTkPa8e1jv+H1yOobDY2OjrdZMdbRJWhxJei6ztixY/niiy+47LLLMJvNRpfYKEiobCQiIiK4//77ef/99+nRo4evSzyh0DdLPKpUxls2IM5iF9Mf+ZXTL+lDt5EdjC5HiIDXrn8rxtw2jOmP/EJRbonR5YhTpEU4aXF1MJ52BRQWFtKhQwfeeustHn30UaKjo40ur1GRUNnIdOzYkTfffJPHHnuMJk2agMOLp2se7h45aCFuo8sTJyknNY/pD//CxAdG0bp3C6PLESJgxXWI4aJp45nx5GwO7DxodDniFGhBbnre0wp391ySk5MJDQ3l3nvv5b333vM1vogap+i6rLDVWBUXF/Pll1/y7bff4nQ6AVAzbZh3h6A4pam/Ieg0pC2THh7Dx3d8R+bubKPLEVWgmlT+vfBOnjrjdTSvdJs2JBFxYdz4ziXMe28J62ZvMboccZJ0qxdPq0L0Zk50XcdsNnPBBRdwzTXXEBYWZnR5jZq0VDZiQUFB3HTTTXz55ZecffbZvvGWMU7feMs2BehmeYGr77Yt3sX8D5Zw1X/Ok6WGhKhDjlAbV758Hit/3CCBsoHQTRqeVoWowwvR4krRdZ2RI0fy+eefM3XqVAmUdUBaKgPIjh07eOedd1i58tCWYh4F0/4gTKlBKF55f1GfnXnTYDoNacsnd35PSb4sttyQSEtlw2N1WLj6lfM5sCuL3/4zz+hyxAnoqm8STkhvE3l5eQB069aN22+/3bfsnqgzEioD0IoVK3jnnXfYuXMnAIpHxXYgDNvBUEoLZJ3L+mrCfWfSonMsn949A2eR/D81FBIqGxaz1cSVL51HUW4JPzw9G80rL5H1la7oaLElRAyycfCgb7xrq1atmDx5MiNGjEBRFIMrDDwSKgOUpmksWLCAjz76iJSUFAAiwiMoXO1FPeBA0eWPsb5RFJj0yFlExUfwxX0/4iqRiVcNgYTKhsNkMXHZsxPxejS+fXym/H/VUzo6WkwpMWcEk5bm29UoLi6O6667jrPOOkuWBzKQhMoA5/F4mDt3Lp988gnp6em+G0tVzCnBqBkSLusb1aRw4b/PxhFu56sHf8bjkkXu6zsJlQ2DalK4aNp4rEFWvn7kF/nbqod0xRcmm40K9zeGREVFcfXVV3POOedgtVoNrlBIqBQAuFwufvvtNz777DOysw/NMnaqmPcF+1ouNQmX9YXJrHLJMxNRVIVvH/tNXvzqOQmV9Z9qUjjvX2MJaxrCl/f/hNvpMbokcQRd0dGalhAzPMTfMhkWFsbll1/OBRdcgMPhMLhCUUZCpSintLSUX375henTp5OVleW70aX6JvSkOVA0mdBTH5itJi59ZiKqSeXrf/0qL4L1mITK+k01qVz473GENAnmqwd/xlks45XrC131jZmMHGQnMzMTgMjISC699FLOO+882aO7HpJQKSrkdDqZPXs2X375JQcOHPDd6D40WzxNZovXByaLiYueOBtHmJ2vHvpZxljWUxIq6y+z1cTFT47H4rAw/eFfcJfKm7P6QFc1vM1KCO9n9fecRUdHc/nll3POOedgt9sNrlBURkKlOC63283cuXP54osv2L9/v+9Gr4Ip3eFbishpMrbAAKeaVM5/bCwRcWF8+cBPlBY6jS5JHEVCZf1ksZm59Llz0LyaDCOpJ3SLF2/zYoK6migoKAB8E3CuvPJKxo0bh81mM7hCcSISKsVJ8Xg8zJ8/n+nTp/uXIkIH9aAN0/5g1EKLsQUGMEVVOPeh0cS2i+bLB36mKKfY6JLEESRU1j+2YCuXP38uJQWlfD9tNl63BEojaUEevC2KUFt48Hh8rcUtWrTgqquuYuzYsTKbuwGRUClOia7rrFy5kq+//ppVq1b5b1dyLb5wmWNFQSb11DVFgbOmDqfT4LZ8cf+PZO/PM7okcYiEyvolNDqYq/5zHmnbM/nlxT/l/8QgOjp6uAtPfDF65OFxrD169ODSSy9lyJAhmEzSE9bQSPwXp0RRFAYMGMCAAQPYsWMH33zzDX/++SfeCDeeiFyUIhOmtCDUDLtM6qlDug6/v/EXBZmF3PDWJXz10M+kbsswuiwh6pXo1pFc9Z/z2TA3kfnvLzG6nICkKzpadCkJE5qyY8cOAFRVZfjw4Vx66aV069bN4ApFdUhLpai2jIwMZsyYwS+//EJRUREAilfBmhWC9WAormzpWqpLPcZ0YvzdI5nx5Gx2rNhjdDkBT1oq64eW3Ztx2fPnsOjj5az4Yb3R5QQc3ebFG1dMaA8rubm5ANjtdiZMmMDFF19M8+bNjS1Q1AgJlaLGFBYWMmvWLH766Sf27dvnv13NtWFOC0LNtUnXeB1p068lFz1xNvPeX8KaXzcZXU5AU00qj82byjOj3pRQaZCuIzsw4d6R/PafeWxdtNPocgKGjo4W7sITVwTRbjTN9/sfExPDeeedx6RJkwgLCzO4SlGTJFSKGqdpGqtWreKHH35g6dKllP2KRUZGMmjQIPr160dwcLDBVQohhKgNpaWlrF69mmXLlvn35Abo27cv559/PkOGDJHJN42UhEpRq1JTU/npp5+YOXOmf4kINDBl2TFlBKHmy8Se2hQU4eDiJ8fjcXuYMW2OLDlkAGmpNIbFbmbSI2OIbBbOt4/9Rl5GodElNWo6OnqIG0/TYiytdUpLSwEICgpi3LhxnHfeeSQkJBhbpKh1EipFnSgtLWXevHn88MMPJCUlHb6jxITpgANThh3FJTP9aoPJrDLhvjNp3asF0x/+hYN7c4wuKaDImMq6F940lMtfOJfs/bn8+Ozvsqh5LdLNGt6mJbQaFUNycrL/9jZt2nD++edz1llnyc43AURCpahTuq6zbds2fvvtN/7880+Kiw+tqaiDmm1FPeBAzZaxl7Vh4EW9OeP6Qfz68jy2LEw68QNEjZBQWbfaD2jN+Y+NZeWPG1j0yTLkFa7m6ejoES68cSWocV7/2pI2m40zzjiDCRMm0KtXLxRFnscDjYRKYZiSkhIWLlzIzJkz2bBhw+E7XCqmA3bUTAdqsYy7qUmtejbn4ifHs3lBEn+8/Tdej4Sc2iahsm4oqsIZ1w/ktPN68uMzc9mxfLfRJTU6us2DN7aUJqcFk5FxeMmyTp06MXHiREaNGkVISIiBFQqjSagU9cKePXuYOXMmc+bM8S83AaAUmlEz7Jgy7Shu6R6vCcGRQVz4xDisdgvf/XsWeRkFRpfUqEmorH3BEQ4ufOJsrEFWvvv3TPIOyO90TdHNGlp0Kd6mpehhbv/toaGhnHXWWUyYMIH27dsbWKGoTyRUinrF7XazePFifv/9d5YtW4bXe2iNSx2UXCumDDtqlk0WVq8mX6vOIE47rwc/P/8H25ckn/hBokokVNauhN7xXPDvcWxdlMTct6T1vSboqo4W5URrWoIS4/U/D6uqSt++fZkwYQJDhw6VvbjFMSRUinorNzeXhQsX8vvvv7N58+bDd3gVLHkOrDkhmAvsMqO5GtoNaM15/zqLxL93MvfNv3A7ZUJDTZNQWTtMZpWRkwfTd0I3fntlvowTrqaybRO9TUuxt1EPj3cHOnbsyJgxYxg1ahTR0dEGVinqOwmVokHYv38/f/zxB3Pnzi23sHpwUDAlyV5f93ieFUWXgeGnKijCwbkPjia6VSQznppD2nbZ3rEmSaisedGtI7nw32dTkl/KT8/NJT9TlguqCl+QdONtUkpEdwfZ2dn+++Li4hgzZgxjxoyRpYDESZNQKRoUXdfZunUrc+fOZcGCBeTkHLE8jltBzbahHrSj5krAPFV9J3ZjzJRhLJm+msVfrULzylNDTZBQWXMUBfqf34szJw9m0afLWfbtGpndfYr8LZLRTsK72ss9h4aGhnLmmWcyZswYunfvjqrKMCNxaiRUigbL6/WyYcMGFixYwF9//VXuXTYeBTVLAuapioqP4Px/nYXJYuLnF/7gwM6DJ36QOC4JlTWjScsIzn1wNLZgGz8++7v8bp4CXTkcJEM7WcnLy/PfFxoayrBhwzjjjDPo168fFovFwEpFQyehUjQKXq+XjRs3Mn/+/IoDZo7V14qZY0PxyLvv41FUhQHn9+KMGwexYsZ6/vpsBV631+iyGiwJldWjmhROv7Qvw64awOLpq1j81Wr5OZ4E3aShRbjQmjgJaW8lPz/ff194eLg/SPbt21e2TBQ1RkKlqNTatWv59NNP8Xq9XHLJJQwbNox58+bx/fffY7Va+de//kVsbCxLly7l888/Z8KECUyYMMHosv0Bc8GCBSxatKh8wNRBybOgZtswZdlQnPJkWpmIZmGc88AowmJC+OXFP0nZlGZ0SQ2ShMqqi20XzaSHx+D1aPzy4h9k7s4+8YMCmG7zokU58UY5MTfVcbsPLwEUERHB8OHDOeOMM+jdu3e9CpIN9bVGHKv+/FaJesXpdPLNN9/w8ssv+7tDPB4P3377LW+++SaJiYl89tlnPPDAAyxdupQ333yT//73v/XiD91kMtG7d2969+7NXXfdRWJiIosXL+aff/4hOTkZPcKNN8KNt20hSpHJ14KZbUMpsMhOPkfITcvn83t/pM/4rlz+/LlsW7yLP9/9h6LcEqNLE42cPcTGyBsH0XNsFxZ9vJzlM9aha9L+cTTfftse3/I/UU70kMOrN7jd0KJFC4YOHcqQIUPo3r17vQqSZRrya404Vv37DRP1wqZNm7DZbDz88MPY7XbuvfdeCgoKaNOmDRaLhR49evD2228DMGDAAG6//fZ6+Ueuqipdu3ala9eu3HTTTaSmpvoD5vr169GCvXiDi/G2LPZN9Mm1oubYUHOsstj6IWtnbSHxn12MunkIt39xDQs/WsaqnzfIRB5R4xQFep3dldG3DGHXqhTevvpzCrKKjC6rXtHNGlqEEy3SRWTXYLKyDrfeqqpK9+7dGTJkCIMHD6ZVq1b1fqvExvJaI3wkVIoK5eTkkJaWxltvvcXq1av5+OOPGTt2LEFBQf5jyhbEHTp0KEOHDjWq1FPSvHlzLr74Yi6++GIKCgpYtmwZixcvZvny5RQVFaHFONFifOteKoVm31jMXBtKviWgJ/uU5Jfy23/msebXjYy/90z6TuzOrP9bwN4NqUaXJhqJZh2bMv6ekVgdFr57YhZ71u03uqR6QUdHD3P7xkdGOiHMS9motaysUhwOBwMGDGDw4MGcfvrpREREGFvwKWqsrzWBSkKlKOebb75h8eLFnHbaafTo0QOLxULfvn354osvCA0NLbcgrsnUsFvyQkND/euweTwetmzZwvLly1m5ciWJiYnoIR68IR5fK6ZXwVxox5LvwJOhoJSYArKrPHVbBh/e+jV9JnTjkqcmkLI5jXn/W8zBvTknfrAQFYiIC+PMmwbTfmBr/vp0BSt+WB/wY091m9ffGulobaao6IjWWh3atm3LgAEDGDBgAD169GiQO9sE0mtNIJFQKcq59NJLufTSS8nLy+Opp54CICkpiebNmxMfH8/u3btxu90kJibStm1bg6utOWazmZ49e9KzZ09uuukmcnJyWLlyJStWrGDFihXk5ubiCS/BE14CLQGnippn9X3kWlGcgfOkp+uw5rfNbJq3ncGX9WPyu5excd42Fn28jMLs4hOfQAjAEWpj2DUD6DuxO6t/3cgbl39CSUFg7o6lW71o4S5fa2S4C+yHQ3VRkZOwsDBOO+00BgwYQP/+/YmJiTGw2poRqK81jZ3M/haV+uGHH5g/fz6qqvLwww/TvHnzCmfkNXaappGUlMSKFStYtWoVmzdvxuVylT+oVPWNxzwUNBVX4ITMkCZBnHHdILqP6sTyGetY9u2agA0HFZHZ3+VZHRYGXNibwZf1JWnZbhZ8sJTc9PwTP7AR0S1lIdKNHu5Cd5RfsstkMtGlSxd/a2SnTp0adWudvNY0HhIqhThFTqeTTZs2sWbNGtauXcvWrVv9Y37KKMUmlHwLar7VNx6ztPF3l0e3iuSMGwbRbkBrVsxYL+HyEAmVPv4weWlfUjalsuCjZaQnZRpdVq3T0cGmoYW50MIOhcig8s8XqqrSsWNH+vTpQ58+fejZs2e5MYVCNBQSKoWopuLiYjZu3OgPmdu3b0fTjgoPLhU134JSYPG1ZBaZG+3En5iEKIZfO5AOAxNY8cM6ln67lpL8UqPLMkygh0pbkJUBF/bi9Ev6sndjKos+Wd6o95f3L/MT5kYP9QVJbOX/3xVFoX379v4Q2atXL0JCQgyqWIiaI6FSiBpWUFDAxo0b/R+JiYnHdpd7QSk83JKpFpob3RJG/nA5KIH1c7aw7Nu15KQFVjcnBG6oDI0OZuBFfeh3bnf2rNvPok+Wkba98bVM6mYNPcSNFuZGC3NhizNRWlr+TZTJZKJjx4706NGDnj170rt3b8LCwgyqWIjaI6FSiFrmcrnYtm0bmzZtYsOGDWzatKnc3rt+pSpq4aHWzEILSqEZxdvwt5SMbB7OoEv60HtcF3as2MPSr9ewb0u60WXVmUALlbHtohl8WV86D2/P5vnbWfrNmkazE46u6r4AGeJGD3WjhXjAcewWpiEhIXTv3p0ePXrQo0cPOnfujN1uN6BiIeqWhEoh6piu6+zdu5eNGzeyadMmtm7dyu7duznmT1E/NDaz0IJaYMHuDcZUavV3m5cUNqwuZUeojf9v7+5jozgPPI7/npn1y9oYDLbBS8A275AAuYQGouqUqqEpvqAop6DSRPdPVen+aBU1aRUpVaUqUqsqUhu1UVVSKWqlJopSoqpNGrVSTHLlkl5TAUcgkMO8hhgwXoOxMcb2eu2d5/6Y3dldvwEZYNf29yONZvZ55pl9Fj+sf97ZeeYL/75eG7f9i3rO92rvHz9W6wcnp/19xWdCqHRco5VfXKqNj92t+uV12vfWIe178+MpORtAdJYf/qyxSpUnlXD70yFyRKbKG/vVFvl3rlm7dm0QJJuamuQ4U/8PQuBGESqBIjAwMKBjx46ptbVVR48eVWtrqzo7O8fs5ziOYvUL1bioUXve+Ng/bd5fIjMydX6BuSWu1m5eqS88ul7zFs3Rgb8e0f63D6vn/Dif3k4D0zlUzplfpXsfuUv3bF2rgcuD2vfWIR1qadXw0Mi1GxcR63qylSPyZo3oi/9xj86ca1N7R7tGRsa+jpqaGq1Zs0arV68O1lVVVQXoNVB8CJVAkbp06VIQMFtbW3X8+PHxT5tL/ryZ/RGZqyX+RUD9kSlxxXn98jpteHSd1n1lldqPxPXRX/9Px/7nlEaS0+fTy+kWKt0SVyvub9I9D9+ppnsX68juE/rftw+rfQp8pSG4ErtyWHbWiB8kK4fz5oXMNWvWLK1evTovQE6HOSKBW4VQCUwR1lp1dXXp5MmTOnHihE6cOKGTJ0+qvX2C29l5khlMB8wBV2Yg4i9FGDZLoyVa95VVuvvf7tT8JTVq/eCkDrW06rOD7bLe1H6Lmi6hsmHdQq3/6mrd9eBK9Zzv1cfvtOrjllYlrhbftFF+eEzJq0zJRkdkKzJLSnLHH0/19fVavnx53hKLxYr+3tlAMSFUAlNcf3+/Tp06lRc029raNDQ0wS97T9mAOeD6wTORXnuF/wU6NzZb6766WndvWaOSsogO/9cxHfnvkzrfGtdUfLeayqGyfkWd7vzScq17aLWMMTq0q1WH3j2qrrbiuC2nNVY2mpIt9wNjEB6jI9IEkymUlJSoqakpCI4rVqzQsmXLOIUN3ASESmAaSqVS6uzs1OnTp3X69Gm1tbUF6wnDpiQNOf59zYOgmbNdgHk1F65eoPUPrdbqB5bJcR0d/fspHf3gpD472D5lAtpUCpXGMVq8NqY1X1qu1f+6TJGyiI7+/ZQOv3tUZw+fL0iot8bKlqey4TGa3TZRO/YCt7TS0lI1NDSoqalJjY2NWrJkiZqamrRw4UJFItyhGLgVCJXADDJe2Dx37pzOnTs38fc1JcnKD5wJV2bI9dc520o6t/yUemzlfK15YJlWP7BcVTWVOrnnM53c26ZP951R36X+W/rcYRR7qKysjmrpFxq0bGOjlm9q1FB/Ukf/fkqtH5xS+5GOWx4kraxU6smWpfzwWOal1354dCrsuFdcB/2vrNSiRYvU2NgYBMhMeJzOtzYEihGhEoAk6cqVK0HAPHv2bN56YOAaU8N4koZcRUZK5CQjcpKuzHBEI1dSUtKVGXKklLlpwbNmcbWWb2zSsk2Narr7DvV0XNGpfW06tbdNZz/pUHJw+KY8z81QbKEyUupq0V0xLdvYqGX3NaiucZ7OHDqvU/vadHJPmy6cvnRTn8+6nmypJ5WmVDLblVc6Iq80Ja90RKnIsGxZSrrG5AXRaFSLFi0ad6muruZ7j0CRIFQCmJS1Vt3d3Wpvb1c8HldHR4fi8XjeMvre5+NKSSbp+p94Jl2ZpCMN+Wsz7Pifdg7fePh0S1wtXhvT8o2NWraxUXVN89R5qktnD3fozOF2nTl8XlcvFW6+xEKHyorqqBrWLdTidTE1rLtDsRV1unTush/C953RmY/bb3gKICvrX/AS8QOjHxo92dL0J43pEGlLPSly7V8xruuqrq5O9fX1wRKLxRSLxbRo0SLV1NQQHIEpgFAJIJRUKqWurq4xgbOrq0sXL15UV1eX+vr6rv+AnqTh/KBphp1s2YgjM2Ky62En7/ueZZWlWnRXTA3pEHXHnfXq7xlQx/EL6eWiOo5fUH/P7QmatzNUVswpV/2K+YqtnK/YyjrFVs7X7PlVOt8a15lPOnTmULvOfdKhwb7879Vakw6IkZx1iSdb4o1ZZ7YnuhBmPJWVlaqtrVVdXZ3q6uoUi8W0YMECxWIx1dfXq7a2lu85AtMAoRLALZdIJNTV1RUEzcySKbt8+bJ6enqufZp9IimNDZsj/qeejnU0a84sVdfN1rz6uaq9Y57mN9RKKaOrFwfVf2FAV+L9utx+Rd1nrujKhT7pJl6UdCtC5azaCtU2ztXcO+Zo9sJZml1foVnzK+SWObpwpksXz15SV3u3ei5c1pXuPnnyJDcnNLr5IfJGAmKusrIyzZ07VzU1NaqtrQ2Wurq6YF1TU6OKioqb8roBFDdCJYCiMTQ0FATMnp4eXb58Wd3d3cF2T0+P+vr61NfXp6tXr6qvr2/Sizg+L9dx5TiuHGNkrCN5kh2RbMrKjkjeiJWXsv6tNDPvoNb4FzRJ/jodTI2M1n11lQ6/e9Q/bewX5qytlG7quEZOiZGJGDkRf23c9BXQxspaTykvpZGRlLJPdnMYY1RZWamqqipVVVVpzpw5mjt3rqqrqydcR6PRm9oHAFMboRLAlOV5ngYGBoKgOXoZHBzUwMCABgcHr7k9Vd8KHcdRNBq9rqWqqkqzZs0KgmPudmVlJferBhAKoRLAjGet1fDwsJLJZLDOLOOVDw8Py/M8eZ4na61SqZSstUHZ6MUYI8dx5DhO3nbu48w6EomopKREJSUlKi0tHXed2c4sXMQCoBgQKgEAABAa5zoAAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQWqTQHQCKgbVWiUSi0N0AgBtSXl4uY0yhuwFIIlQCkqREIqEtW7YUuhsAcENaWloUjUYL3Q1AEqe/AQAAcBPwSSUwSune+TI2/feWcWQcIxlHcoxkjIyTqUuXGyM5RiazT1BngjbBIuWUZY8ZtFG2jTUm+2dfzjGC8px2uWU2fZigzpGkTLkJ6jJtbLosqJeyx3DS+wdt8p8jr43SZc44dXn7K6+P2TIzpm5MG+W3yatXts1Ez5X3eIJ+jGkz2XGDcpvXfvTxgvqcY9l0uUa1k7E57f16k1sX7Jups8ExTe7+6XJjbHb4pcuzw8MG9Y5s8Nivk5z0Y7/Of5xpF9QZK6NsOyddFiyyQTvHKK8828bL7isrx3hyM3Xpx9ljecHx3Jzju/LLXeONaufJzRxT2ecL9lf2eI789o785/fr/OO56TIjT26mvTL98ORKfjv5z5N5bZnH/nPZ9LbSdVZO+t/FlZEjyU3/sB2ZdJmRa4yc9JuBkdFw0tW2/6wXUGwIlcBoKZN+e5cfKpUOgOnf1tk6IznZBGX8hJY+SCZ5ONntMWnDGZt4jBm7f+7xNGr/vLrR2zn7ZMJkTqgcU5YTAnMfj+5i/v7jtHEmqZvoZYx33InaTVZ+3c91Y8ccN8TmtbvJoXK8eo1+bINj5/Yj9znz24wKoUFdbr0d53h2nOeyeUtuqMwG1fQyUd14YVOZMKq8oJd57Cq/zg+VXjaUmdxQ5m87xviBL71WsG2CdtkAK7kmu3alnAA4Tl36eP5jmw6lNgiRfjt7zVCZezw3XecovywTYJ306waKEae/AQAAEBqhEgAAAKERKgEAABAaoRIAAAChESoBAAAQGqESAAAAoREqAQAAEBrzVAKjuVbW+hMe+/Mumpy1GTUheWads63cMpuzPUldpjxn0sLsFNWaoDy7tnnbymtnJclmyrPHtDKSVdA2tz44Rt7kirl9GeexzevSqH+PCZbR+15r7khNUH6tusnmopysLvcVTtpuvPkmcxc7QR8nnvw8f27JnLpg388/+Xm2HznzVOrzz1NplW1njc1f5K/9OuWVe8HxvOzzyErGy5lP0+bVW+MFx1Pe8dPrzHOlHzvpfTJrSWPKvJy5IT2TXXvKzlPppcuMJpqn0gQTlrvK/swyj510m9FzX17/5Ocm/WMxGk6O9/8SKDxCJTBKcuOFQnfh1sj8zg5hdJwFpPyh5RWyI59b7sjmBB7wefG/B5CUSCQK3QUAAKY0PqkEJJWVlQXbf/7zn1VeXl7A3mCqSyQSevTRRyUxnhDOtcYSYwvFhFAJSDIme0K3vLxc0Wi0gL3BdMJ4ws3CWEKx4/Q3AAAAQiNUAgAAIDRCJQAAAEIjVAIAACA0Y60NOXMdAAAAZjo+qQQAAEBohEoAAACERqgEAABAaIRKAAAAhEaoBAAAQGiESgAAAIRGqAQAAEBohEoAAACERqgEAABAaJFCdwAotIGBAe3cuVPvv/++4vG4HMfR4sWL9eCDD2rbtm0qKSkpdBdRYIlEQgcPHtSxY8d0/PhxHT9+XJ2dnZKkb3zjG/rmN795zWN0d3fr9ddf1z//+U91dnaqrKxMS5YsUXNzs7Zu3SpjzK1+GSgSvb29+sc//qH9+/cHYymVSqm6ulqrVq1Sc3OzHnjggUmPwXhCMeI2jZjR4vG4vvOd7ygej0uSysvL5XmeksmkJGnFihV68cUXVVVVVchuosAOHDigp556aty66wmVx44d0zPPPKPe3l5JUjQaVTKZVCqVkiTdd999ev7551VaWnpzO46i9OUvfzn42UtSaWmpXNfV4OBgULZp0yb9+Mc/Vnl5+Zj2jCcUK05/Y8ZKpVL6/ve/r3g8rpqaGv385z/Xrl27tGvXLj333HOqqKjQiRMn9KMf/ajQXUURqKqq0oYNG/TEE0/oueee07x5866r3dWrV/Xss8+qt7dXDQ0Nevnll9XS0qJdu3bp6aefViQS0b59+/SrX/3qFr8CFItUKqU1a9boe9/7nnbu3Kn33ntPLS0teuONN7R161ZJ0p49e/TCCy+Mact4QjHjk0rMWH/5y1/005/+VJL00ksvae3atXn17733XhAof/GLX2jDhg23vY8oDqlUSq7r5pVt375d8Xj8mp9U/uY3v9Grr76qsrIyvfLKK1q4cGFe/WuvvaaXX35Zruvq1Vdf1eLFi2/Ja0Dx+Oijj3TvvfdOWP/CCy/o7bffliT94Q9/0IIFC4I6xhOKGZ9UYsZ65513JEn33HPPmEApSZs3b1YsFsvbFzPT6EB5I1paWiT542l0AJCkxx57TNFoVKlUSu++++7nfh5MHZMFSknBp5WSf6o7F+MJxYxQiRkpkUjok08+kSTdf//94+5jjNGmTZskSfv27bttfcP0cebMmeCCnsxYGq2iokLr16+XxDiDL/e7kJ7nBduMJxQ7QiVmpLa2tuDNesmSJRPul6nr7u7WlStXbkvfMH18+umnwfZk42zp0qWSpM8+++xWdwlTwMGDB4PtzNiQGE8ofoRKzEhdXV3Bdl1d3YT71dbWjtsGuB6XLl0Ktq9nnPX392tgYOCW9wvFq6+vT6+99pokaf369WpoaAjqGE8odoRKzEi5b7RlZWUT7pc7nQdvzrhRjDPcCM/z9JOf/ESXLl1SaWmpnn766bx6xhOKHaESAIAi8Mtf/lIffvihJOm73/2uli9fXuAeATeGUIkZqaKiItgeGhqacL9EIjFuG+B6MM5wvXbs2KE//elPkqQnn3wy7wrwDMYTih2hEjNS7nclL168OOF+ud+jzG0DXI+amppg+3rGWWVlJSFgBvr1r3+tN954Q5L0rW99S9u3bx93P8YTih2hEjNSY2OjHMcf/qdPn55wv0zdvHnzNHv27NvSN0wfuVfuTjbOMlf1NjU13eouoci89NJL+v3vfy/JD5RPPPHEhPsynlDsCJWYkcrLy4MJz/fs2TPuPtZa7d27V5J/L13gRjU0NAR3Q5lonA0ODurQoUOSGGczzY4dO7Rz505J1w6UEuMJxY9QiRmrublZknTgwAEdOXJkTP3u3bt1/vz5vH2BG7VlyxZJ0t/+9jd1dHSMqX/zzTc1ODgo13X10EMP3e7uoUB27NgRnPL+9re/fc1AmcF4QjEjVGLGam5u1tKlS2Wt1Q9/+EPt379fkj+tx+7du/Wzn/1Mkn/nCu77jb6+Pl2+fDlYMpPnDw0N5ZWPnsLl8ccf17x585RIJPTss88Gt90bHh7WW2+9pd/+9reSpEceeYT7NM8Qud+hfPLJJ/X4449fd1vGE4qZsdbaQncCKJSOjg499dRTisfjkvzT4p7nKZlMSpJWrFihF198UVVVVYXsJorA9u3bg3EymebmZv3gBz/IKzt27JieeeYZ9fb2SvKvyE0mkxoZGZHkn6Z8/vnn827Ph+mps7NTX/va1yRJjuOourp60v2//vWvj/kUk/GEYhUpdAeAQorFYvrd736nnTt36v3331c8HlckEtGSJUu0efNmbdu2TSUlJYXuJqa4VatW6ZVXXtHrr7+uDz/8UBcuXFB5ebmWLl2q5uZmPfzww8GFY5jecu/l7Xmeuru7J91/cHBwTBnjCcWKTyoBAAAQGn/KAAAAIDRCJQAAAEIjVAIAACA0QiUAAABCI1QCAAAgNEIlAAAAQiNUAgAAIDRCJQAAAEIjVAIAACA0QiUAAABCI1QCAAAgNEIlAAAAQiNUAgAAIDRCJQAAAEIjVAIAACA0QiUAAABCI1QCAAAgNEIlAAAAQvt/fJZd8m4UyQ8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot healpix map:\n", + "plot, ax = skymap.plot(ax_kw = {'coord':'G'})\n", + "ax.grid()\n", + "lon = ax.coords['glon']\n", + "lat = ax.coords['glat']\n", + "lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)\n", + "lat.set_axislabel('Galactic Latitude',fontsize=5)\n", + "lon.display_minor_ticks(True)\n", + "lat.display_minor_ticks(True)\n", + "lon.set_ticks_visible(True)\n", + "lon.set_ticklabel_visible(True)\n", + "lon.set_ticks(color='white',alpha=0.6)\n", + "lat.set_ticks(color='white',alpha=0.6)\n", + "lon.set_ticklabel(color='white',fontsize=4)\n", + "lat.set_ticklabel(fontsize=4)\n", + "lat.set_ticks_visible(True)\n", + "lat.set_ticklabel_visible(True)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "ee9bde37-f954-414d-aa8f-2dc187f8eb19", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1e-50, 1)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGyCAYAAADERJFvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADu4klEQVR4nOy9f5ydVXUu/pxJCEkgBGVaElACCf5CKZUCN4pRJGCFi3j9WJXKBSOl2tbehuot9tI0IdygFTVw6w/8ClhorRaUqiHYWMAAQQENoBIpIZAw/BxCQjL5MZlMZuZ8/5jMOe+793r2fs4+k8yv/fiRzNnv2muv85733fvZa629d6VarVaRkZGRkZGRkZHREFqG2oCMjIyMjIyMjJGITKIyMjIyMjIyMhKQSVRGRkZGRkZGRgIyicrIyMjIyMjISEAmURkZGRkZGRkZCcgkKiMjIyMjIyMjAZlEZWRkZGRkZGQkIJOofYiuri6sXbsWXV1dQ21KRkZGRkZGxiAjk6h9iLa2Nvzpn/4p2trahtqUjIyMjIyMjEFGJlEZGRkZGRkZGQnIJCojIyMjIyMjIwGZRGVkZGRkZGRkJCCTqIyMjIyMjIyMBGQSlZGRkZGRkZGRgEyiMjIyMgYB3bt6sPnpbahWq0NtSkZGxn5CJlEZGRljFp1buvDbn7Rh+8ZOKtPb04dH/v1JPHr7BkqQ+vqquP2KB/CDy36GR37wZNN29ezuRW9PX9N6MjIy9i0yicrIyBizuOcbv8H9Nz2G//zyQ1TmtyuexkPfX4cH//VxPPPwRlNmyzPbsbltOwDg4e9zEvXSE1tw8yV3495vPkpldmzahe/+r5X4zl/8FDtfyRv1ZmQMZ2QSRdDd3Y3Pf/7z+OAHP4j3vve9+LM/+zM8+ijv+DIyMoYXXnlmO559ZCP6+nh47flHNwMAtjy7g3qZfnPb+trf6+9/0ZTp3dMr2XTb5Q9g+8ZdeOLu57D9Zdv79asfPoXdO/Zg9449uO+GNZLejIyMoUEmUQS9vb2YPn06vv71r+PHP/4x3v/+9+Oyyy7LR7hkZIwAdHbsxo/+/uf4yRcfwlM/f0Gqs6fLJkI93fWw2rgJ40yZ3p7G86BYe13bu2t/b96wjdbv6+nDK89uzzlYGRlDiEyiCCZNmoR58+bh8MMPR0tLC8466yz09fXhueeeG2rTMjLGNLa9tBN3XP0wHr19A5VZu/JZ9O7pJz/3fP03pkzV8VD17LZJTaUStyklf2nAPhcHTBxft6mbe7hWfGE1/v2z92H1zU8E2ujFk/c9j01PdzRsX0ZGRhzj4yJDi87OTtx0001Yt24d1q1bh46ODsybNw8XXXSRKXv99ddj5cqV2L59O4466iicf/75mDt3btN2tLW1Yffu3TjiiCOa1pWRkZGOu7/2G2x8civafvkSXvvW38GhRxzsCwmcxiU+fb12pUpLnUVVe0lieQqJIgRp3IT63JaRqL6+Kl74bX8o8tfL1uPk895gyv32P5/BL/71cQDA//z/5mLilAkN25mRkcEx7D1RHR0duO2227Bnzx7MmTMnKLtgwQKsWLEC8+bNw1VXXYU3vvGNWLx4Me64446mbOjq6sKVV16JCy+8EJMnT25KV0ZGRnPY+OTW2t9bn99hyighLpf4MIJUEVxRKSQq5GWKta22N0CgAOCZR+yk+IyMjHQMe0/UtGnTcPvtt6NSqWDr1q1Yvny5KXf//fdj9erVWLhwIc444wwAwIknnoj29nZce+21OP300zFuXH8+wyWXXII1a+yEzfPOOw8XX3xx7XNPTw8WLVqEGTNm4IILLgjaumnTJmzevLn2ua2traHvmpEx1tHXV0XnK104uHWSJJ+Si1Sv63qibF0lQkb4FAvNhcBIG4rFpD03FKmAhSszMjLSMexJlDILBIBVq1Zh0qRJOO2000rlZ599Nq644go89thjOP744wEA11xzjaSzr68PV155JVpaWvDZz342asuyZctw4403SrozMjJ8rPiHX+KFNZtxyvlvxO/992Oi8i3El655j8pEhIXzFLi6pDqECBVJG/dEObb3VdHSEv7Ovd38+1WrVfT1VjFu/LAPTmRkDCsMexKlYsOGDZgxYwbGjy9/pVmzZtWuD5AoFV/60pewefNmfPGLX/T0Wjj33HNx6qmn1j63tbVhyZIlDbWZkTFW0b2rBy+s6ffk/uJfH5dIFMv6rqLxcB73REWbQ28CAWPeJKU9l/D1dveiZWK4jwrlVy1f/AC2Pr8D7/3sSfjd170qqCcjI6OOUUOiOjo6zKTvKVOmAAC2beNLhS20t7dj+fLlmDBhAs4999xa+VVXXYUTTjjBrNPa2orW1taG2snIGCuo9lWBSvN5PqU6SkiMwA3B0fAa4qymz9XVVy0lpJt1qO1Ce07d3j19OGBisLnSVg1FPPPQS9i4bisA4Mef+yXm/dN7wooyMjJqGDUkCtBDfwqmTZuGe++9d9D0ZWSMZex8pQvLr3gA4w4Yh3MXz8aEyQd4MinbBLAQnLJ1kus9ouE8RZfr1eqrYlyERFFPVEEV90SV66bkSA1g9849tb9DeVObn96GNSuexqxTj8Brjs+TxYwMYASszlMxdepUdHT4e6Fs395/FMMhhxyyv03KyMjYiwf/9XFs37gLW5/fgYe+t86Ucb05Crj3KA4/J6qJ8JpLogRCyHKiioSMebNcwhfalb2mi9jeIuZBLbv8fqy793ms+PwvJfmMjLGAUUOiZs6ciba2NvT09JTK16/vP7LhmGOE/IqMjIx9guJWBJuf2W7K9CSQKCkkRuCG86iuEsREb0GXsueU7IlS2iMiajJ5MTE975KekdGPUUOi5syZg127duGee+4pla9YsQKtra047rjjhsiyjIyM4gaS7Jy5FE9UM+E8P7Gc6SoqE7ZBgE1qXG8RC8EVCRL7Hq6tSjiPfb+UFXkpWzpkZIxGjIicqAceeABdXV3o7Ow/sLOtrQ133303AGD27NmYOHEiZs+ejZNOOglLly5FZ2cnjjzySNx111148MEHsWDBgtoeURkZGUOA0lZLxJuTkNfDPD7KdgXqZptF23keU3y7hKoYglO8PK6tzXi+2F5UIfR092I8OUcwI2MsYUSQqKVLl6K9vb32eeXKlVi5ciUA4Oabb8b06dMBAEuWLMF1112HG264oXbsy6JFiwbl2JeMjAwbzzy8EQ/fug5vOuMovOHdrzVlSnlFLM8nIbGch8QEUuERnzipUfKmAJsgqSG4ol2Kt4q1F6sTKw8htOdURsZYwoggUbfccoskN3nyZMyfPx/z58/fxxZlZGQM4D+/9BAAYNV1aziJKgzyFRI9krwp1bjHB9BIhUJ8+gULf6qeKIPEWRtk2rqKNmpn9Sk5UfReDeKRNb17erH6lnVoGd+CP/jQ66IbgGZkjHSMCBKVkZExMlCtVs2tRkq7cIsrzkz9ogdGIQY+8SE5UUJ7Xk6U5Ynq04hPUVeVfI2ULQ72hyfqtz9pw6O3bwAAHNw6EW+ae1TDujMyRhJGTWJ5RkbG0IMSkdLeR9oGkha8/ZhI2C7Jq6V4omgIzm3fyIlyZQSvFg3nuQRQ8bw1kT/mgnminvzZC7W/19//YsN6MzJGGjKJysjIoKhWqw2Fe9iu2BAO8XUHeSuUJe/tlLDkv0oIWZHzqZ4oS07xVrl2sXBe1QvnCYn0LJynhAIdWxmJKobvUjxcGRkjDZlEZWRkmOjr7cNtix7Av/7FT/Hyen8jWwu9ZHCVDtV1l+0bY7AXEutjxCAhnMdWxRXMVXOiYDXvbnEg7HFFtzjwPFG2XEmmiSR8l0izcF5lXP1mhYjsi//1yt4NWDujbWdkDGdkEpWRkWGibfVL2PjkVuzesQcr/kHbpVpJllYTyy3vipcM3kw4zyM+zBMVJwaeV8v0RDnNKaE69jW89tJ3SFfquvtCcU9U/ccNhStv/78P4tHbN9QWJWRkjFRkEpWRkWFi98767v+7d+wJSNahJEurBxCbSdViLlDK6jy6PZMQzvO8TIYyNZxnerEiuqSQHAnLpnmibBJV9EQxb2Axr23LcztMmYyMkYJMojIyMkyMn9B496AkZ7OcKC9EZSZnayvqmFcppIvlH5U8USJps1T5yedCfhXLiXIJYIrnLWJHSIYd0VPMiWI25d3OM0YTMonKyMgYNCgbSDIoG0iqR7YpcqpnqJRYLuxqznTJieXF1XlV4tUSj5Apgoc+B287iJZx8cRyd4VlRsZIRiZRGRkZJlKICF+9Vvhb3NupKSIiHZ7n1GFju5ATpZyLpxIfz3TLqyXmV5Vk2NmAiu0q4RTCeSmbe2ZkDFdkEpWRMUaxc0tX2Cug8BBx00fl6BTlWBQ/BGfbRQlRsT2XGFDiVfAMsZvi6YqKaOE8ZldCThS7J1JSvHhEDst3KyKH8zJGEzKJysgYg9jwi3Z89y9X4t8/ex/3UAjeHPX4kRQSZYbzPO+RRmrsBtXwWrGO1pxCfGi+0yB5tSQyZtRt5r6nLCDIyBjJyCQqI2MM4q5rHgGqQMeLO/HcrzeZMspgp54HV4GwTYC7T5TliRLDSoO5Oq90DEtTxEdsT5CTSI3gYbL0NxPOU6DmRG15bjuWLbwfD3z7v5LbysjY18gkKiNjjGNPV49Z3qssfXeIj7bSK340DMA8Ilo4TwlFekSAshpBRFmdp3qGBMKibHHgt2c2p+nySKKtS1qFKYbzfvLFh7Dxya1Y8+OnsUnc7DUjY38jk6iMjDGOZg7xTcmJUpPBbU9UrIDokvZtMlU5q+XEZHCB+ND0qkEK1ckr+FyzhPuueLVYOE/1RO14eVft7+2bdgUkMzKGDplEZWSMcdD9fCQSFV9RB5QHV9kjIuUCEV2el8mSidSp2RXWY9plyXlhOpHUCOlVVq6WlKcFIydKIGR8P7C4C9D1cEqhQXVvi4yM/YxMojIyxjia8kR5BwLHl9FLCdxoLidKIRDqZptSTlRCCE4PDRqCyg7pKuGUPIAJxEcM50n7VGUOlTFMkUlURsYow6YNHXjkB09i55YuSZ4tSk/JiWomJOZvE2CRB7eKGs5rQqboRWtidZ4eEnPKJS+TISPmfEk7qaurIgW4z4zynGUSlTFcMX6oDcjIyBg8VPuq+OHf/RwA8OyvX8a5l78tXol5DBJyoqhXQSAi7jm4JodSE8uFQT/l0GB9dV5chocGy5/N8JrAotQNORUvk3ckjxSCI8WuXXv6gEkxXdz2n33rt9j6/A6885O/h0MOnxy3KyNjEJE9URkZowjFPKaNT2yV6lQIixrMxPI+IZynuVfUcJ6SEyXokomPEF5LJGRmkrq0DUKi7eZ2CY3fd/X79TYRznvuN5vw+F3Pov3xLVj5tV9F9WRkDDYyicrIGEVI2siQeKKkxHLhqJb+Cwl5RUJCtbpaTlqdp4T81BVuChGhtyolFNlEHpPL2QxS43kJlbw2kbRJzyy5WVuf31H7++Un8zYIGfsfmURlZIwiKPs0uWBERPNEaftEaSvc3M9NJEsr+zYleI8YlPa8EJhKACXPUKIeBHLUGmzP1SV7ooR9o3JKVMZwRSZRGRmjCCmeKL7FQXzoUo5qAcoDp5ybI3hgAu6cqFwaaVPDh5bx4fZpm4YuP39MsF29VSYhU+9D4+25KzwtsOdaOKovI2OfIpOojIxRBIX4uGhmiwOZZPQpo6v7OU58OCEL17OFBBHRi6bttq55akzbFa9WanuJhNMrF8O2KVtp1JFZVMbQIpOojIxRBGXPHb+O6BkSVq9RXaXEctsObTCPEx+rruTNkfKYRE+U4s0ZzHyuJsJ5/uae8fuueBPVfbCU3DsqkzlUxhAjk6iMjFEEL9FbyHehBwIrezIJK8n66xb1quTBklG9K+F6VgN23pSgB2n5VSrJkLZekGwi7SkEUD1CplBXJYnSAgbxvL2MjP2NvE9URsYIQc/uXvzsW79FZVwFp170Zowb78+B3LBHta+KyrjwdF0+yy4x3JV68G5TR7WkHAisnHenbrapbJcwmLlhyg7p8r0SSJt0RqIpkrQ6j22DkHOiMoYamURlZIwQ/HrZU1i36nkAwNTpB+GE9830ZNxZfV9vFS3jwnqVZHDrM6ARJNkjktKeeJSJRMiUsJndnEjaoibZF0wPoCvSTB5TvLmkxHLhCCBAW53HcqIa2Tl99449OPDgA2T5jAwFOZyXkTFC8MzDG2t/P/vIRlPGWy2nJIer4Txh00cpOVsezBVCNnh5PoO5TUAz+zYpu4NL3qrE/DE7oV/MiSquwmTbbbhONGFbDka01IUUv/rRU/iXT9yJ+65fI8lnZKjIJCqAdevW4S/+4i/w3ve+Fx/5yEewfPnyoTYpYwyjZVz9dWUDj0ualOM59rsnqpkwVmI4Twp3SYns8VwgZpdCOPt1CTlKCkl0V8Hth/terKySRM0TZcuouVKrb34CAPD4T5+V5DMyVGQSFcCSJUtwyimn4Mc//jGuuOIKfOUrX8HTTz891GZljFFUxtcTQGQSJczymyM1gjdHDOf5S/3SPDBWeTIxEG33zvTb16vzFKLlkTaxvSbCqMUVj+rvrCx+YCRKSUrPyNiXyCQqgPb2dsydOxctLS14wxvegBkzZuCZZ54ZarMyxihaWuokiuWbuINKNeH8u1rdQToPzitSB3NBaDDDa82EIiVioGxLIOwvZdqlhA9Fz5dGlpvxRLkFxK4CWNiukZyojIx9gWGfWN7Z2YmbbroJ69atw7p169DR0YF58+bhoosuMmWvv/56rFy5Etu3b8dRRx2F888/H3Pnzk1q+4Mf/CDuuOMOXHjhhXjiiSewceNGvPnNb272K2VkpEFYiuTlRBkEKSVJmMoleKuaCR96A7C40k/zkA2e58vMK0ogPrTNhBV8+tYSgu3SPlHMbScSsohNwTZCuvqqqLTkZX0Zg4Nh74nq6OjAbbfdhj179mDOnDlB2QULFmDFihWYN28errrqKrzxjW/E4sWLcccddyS1fcopp2DFihU488wz8alPfQp/8id/gsMOOyxJV0ZG0ygOGIRQKeE8j9SwDTpTkpeVbQJkIhIX8khV7ULEBmjhPJ98aQTQsktJ9JbuMbRz+OT8MWklo0gmhXCeGtYMtW+1pyJ7rzIGE8PeEzVt2jTcfvvtqFQq2Lp1K03uvv/++7F69WosXLgQZ5xxBgDgxBNPRHt7O6699lqcfvrpGDeuf633JZdcgjVr7FUa5513Hi6++GJ0dHTgs5/9LC699FKcdtppeOmll/C3f/u3ePWrX41TTz3VrLtp0yZs3ry59rmtra2Zr54xxtDT3YvxEyL7EUTgLgW3CJJLrHh+i0KQ3M9WXpEj00RITE301kJ1grcqdUuFxGNflNBdf2FcJoX4cBsS7ru6ClPxRKkLCAT09VWHv/cgY8Rg2JOoirib2qpVqzBp0iScdtpppfKzzz4bV1xxBR577DEcf/zxAIBrrrkmqu+FF17ApEmTaqHAI444Am9/+9vxi1/8gpKoZcuW4cYbb5Tszcgo4rc/acOD3/4vvPGMo/D2jx2XrMclTZYnyvdWMRZV/igNrpYaNayk7Fek7iCukDspj0lsT9pzKvy5X49IrJSQmHjfPTlLJGFrCd0TZcuF2o/aEYCy2CIjQ8WwJ1EqNmzYgBkzZmD8+PJXmjVrVu36AIlScNRRR6G7uxt333033vWud+Gll17Cfffdhw996EO0zrnnnlsiWG1tbViyZEmD3yRjLOL+mx4DADz2kza87YI3mTkbynhhbbYZ09PMrt8+0bJkVI9IfNCXPUNSsnS4jlmm2i54vuwQnEZUFSJihhSrVW9iqnjR/PCoLwLYZMtrTyVkpTqNlYfAJg27d+zBXf/vEYyb0IK589/atFc4Y2xg1JCojo4OHHHEEV75lClTAADbtm1rSN9BBx2ExYsX4xvf+Ab+4R/+oeaVOuecc2id1tZWtLa2NmZ4RoaD7l09OPCg8M7KzEFrHfviIvVMNfMQX2kVnK07OphbNsmrxOJGKLuR68nZAtkSCKfsnUrwtA0Uuc9Oyo7l+sad8A4Jllc8CjLWMxp7rtjmsg9+53G88Nv+dIxHf7wBb/0fx0btysgYNSQK0EN/Kk4++WScfPLJg6ozIyOG7k5Coop9v5hY3lR+i0JYUvN8+vwz/ZTBVSIPRrm0nYDUntlc4pYDYnjUJGRxUmPudN5XBVoiJEP4DRsJa1YQ8UQJuWguWWe6+nqrGDc+3B5bHfrCmno+66anOkyZjAwXoya/burUqejo8B/87du3AwAOOeSQ/W1SRkYSaI5SAWy6MFiHBpty0rEocZu4XY2HxJrxonkDvqBHJZzSnlMq4TTtiutSVtlZZRJ5HdQNWuO2q3l01qac3kIKYV+0vAVChopRQ6JmzpyJtrY29PT0lMrXr18PADjmmGOGwqyMjIZBN7/kR9bWZVJ24R7UDSt1T1SsrKkjZKQz/RJCcM2QNmnFoGVDoi6BnJhtqroMaN7Exu+V+oxqCykEEjUuk6gMDaOGRM2ZMwe7du3CPffcUypfsWIFWltbcdxx6SueMjL2JxRPFHNFaQNU+HOtXPFQJKyoY7q8wVs6ysSXsfQnh9fUFYnSfRC8aKonKiUpHuphxgqpMYyy2hSeB83zpbWnbelhPzTFe9OSPVEZIkZETtQDDzyArq4udHZ2Auhf9Xb33XcDAGbPno2JEydi9uzZOOmkk7B06VJ0dnbiyCOPxF133YUHH3wQCxYsqO0RlZEx3FFlJ9MLzoCUFW48RBUXUzwG6eE8YTBnm19KYSW3IK5nQJebkqYc9KyEqBTPoWWXmFdO9Cv1wu2zyqkrC3WPo+CJ8nbxtxlZDudlpGBEkKilS5eivb299nnlypVYuXIlAODmm2/G9OnTAfQfGHzdddfhhhtuqB37smjRouRjXzIyhgJ0QC4WU09U+DNgDVBEl5JMnLCijtWT9lryksFJm4MWVjKUG8nZHnlIJK9qXnkKWWHKJCIsb/UQqWeUNRW2dR8HYwLi7Z3GPFEFspVJVIaKEUGibrnlFklu8uTJmD9/PubPn7+PLcrI2HdgJ9YXvS7uiqeajLLizEuoFr05ZngoXKe/zLIz3p6UnO2L7DVMICxS6Cnds+britfRVzcqMlZoMNF2gbTZcpaM87mZVZhCOM8jZEJOVEvOicoQMWpyojIyhiuq1Sp6unuD14uQdlRmnqiUcJ66kaGykaa6Ok9ZkcW8QDE9Rt3UEFVqmCzdA+PrtqAlllsVLbkU2zW7NC+TqShqk6lfuA9SYnn2RGWIyCQqI2Mfoq+3Dz/8u5/jX//sLrQ//oop486M+YHA8fakLQDUWX5SfovoETHk3DCLHKISZOz7oNwrNb4Wh+ZpE0NwKTukU/2D4z3qL3cKhEUFmqfNbE7aA0rJm3Lr5sTyDBWZRGVk7EO0rX4Jm5/ehj1dvbj9yl+YMn7iazOeKPfzIHoVhLCLsk0AE5Pyirxk8DTC1F+URmqSk6UV8irbIMgkbnGQSl4tOWl/LuE7qx5H5XeuWufhOG1kT1SGikyiMjL2Ibp31fctY7kYXuKrsjqPiQzS0v5+XW49QyZxdZ6Sq5XqgZH2VTLqquE1LRQpeHzk0J1V5jUo1jPKhGR9+by7OC/VbE9dnScQfTZJGTe+Phz27uE/ztqVz+I/Pv9LbHxyK5XJGDvIJCojYx+i2DEz+IcGk5lyYTRobsdo97M2QKUvjzcGNqu9lBVnqudGzA+SdCnkRLnvieE2ANomoKKuJO+Ruk+UsDJTIT5qYrlEAAmJmlA4amn3zj2mTO+eXqy6bg2ef3QTli2835TJGFvIJCojYx+iRSBR8maABTmeHOt+TiMiVt3knKhEb1FqSCw1P0gKVxJdKe2pO5anewBFXSlbS4ikRmkvddsFS5fyvLMtDsYfUPBEkRWyIQ9VxthEJlEZGfsQLeMEEuWE71g4r0ic5GTwxP2R+i84H5XQVhOeKM+LoIR51PYEr5MJwfvWr79xD5m8f5ZEJn2ZdE9UYnumXBp5de87SWPyGpR2kycTkGIelLKreUYGkElURsY+hbuztQUvJ4qE84rl8gaZSgiO6PJWyyWGXeRcIyFnSEsk9uspcrLnxmRIbj0hJOZrsSF5tTSiarbp3dO4DU39zinPlUhqmvFEFRdr0HeC5StmjFlkEpWRsS8hkahq8HMNVfqhXirkyihbCViVU/f8sQekNELm22SpTiNW+vYMlqq4J0phbarHTEqwV0Jppi6/okc8RMJpexPj9dTEcmVvMXWLA8kTpZxrmTGmkElURsY+REVwRbk7lCuzbuqJUsIbYk6UT7YEVSoRUTxR6kDtwPQ0JG7PoK4s1FalOZ+b2Jg0OUldIa/K95PvsUK8hZAf+eFTvKWMCBXfVfoOklypjLGLTKIyMvYhlCRkL7Fc8Aypq5WaOVJDOjBX8q6Ig7mUvCx4KJQwoGGCHnaMqiJbOCgEVyoymIElYxQNUj6XbVIqWRZIIvVEJXhLBU8UDanncF6Gg0yiMjL2IZS9gFRPVEkXG1MSEq8phxJCOFI4RS2T9qUybPBkRI+I4D6SPTzuPTXtCn+mFROJiJYAlaarmZWMiudLyY8DLE+UZUO4zgAqhdGQkaXeHM7LcJBJVEZGIl55Zjt+8H/uw33Xr6EySZ4oIVQnnxknhbFEr1ZqaEbeOXsfDuaCpyY1p8dQJRIDgdixMoVwCvUASAsNtP3H1N9C0CX8zqYuxQMo5BzSvdqyJyrDQSZRGRmJ+OlXHsHmtu14/KfP4sX/2mzK0DBEQEYZMJoL56mkzS0Q2pMHV4FYKYO5L6J7opITvVWvT0TG9GgZ9VJDYuJ4Ly008IpUspxIJtXE8pR9ooQDiOn5etkTleEgk6iMjERsfX5n7e8tz+0wZZJIFCNIVfvvYF2J+GgDojRQq3k+iXZJy/HVvXwUT5RVTUjq1nZD16qZWyp4NqV5+yxDNM9QXIbKpRB9Xw0AbfGD772MnwjAyFKv6Ina8tx23L7kQTz0vSck+YyRi/FDbUBGxmjAnq5es1xJRFW2CfDkRE9U6pEaqTuBq3kxkodCIiJpIaT+QsUmoU3xOydtg0D1x2X07+MUCB6lZG8fDBKqLA4QFlswXeoWB0W7+Ia3midqxRdWY+fmLrz42CuY+fYj8KojD5bqZYw8ZE9URsZggHTy7PiIUFVltZwegrMGKKdMPWTXak86GsaoJ3k70oiI3F7ks1pR5ULSakDRdsl7ZFSzc7ziXh/lsZJXCArsWCXUrlMpNW/PLafhPNETtXNzV/3vV7oCkhkjHZlEZWTsQyhnbenhvGpcRjguQ/NExXX3Fzqf1ZQRmXnERXz705iVspKyX867gVp7nkgTDFCQST5PT2KczXii4vddTSyXPFHunEHJiSKTH9cTpUw2WlqEHXczRiwyicrI2IfQPFHaYF5OLI/LAEg/6Ff1RAlhHnPAVVaciXk+SWf8mWapRCTRG5ZAHriuiE0MtntKsCvtmZE8jmqSugFtQ1gxnCfkRPmnC8Tf75ZxmUSNZmQSlZGxD9GX4okSti+QT7VXPAGqF0PKrzJsEkM/2lEmirdDG8yN0dwXMarF29d0qcRH2eNK2cKB6kpIlE/dzsAUTEw+l+1KyYkSvFUhuSJaxudhdjQj/7oZGfsQkicqIWdDT7S19IQ/h9QHbQIL6Rj1Ejd9FBwpUj6SVSSTIWlTUKVBq55fpm1yqhJHo8yrJ+iSv7NAvKVzFH3VgPbu+M87WZ2XsIWIQqIqOZw3qpFJVEbGPoS0xYE6YJRyomwZZc8fyXOjeqIUAmgmtwtiasgoWiB6V1TypTJMv6JgUxoZUomcRF6FA6ObOSInbZNTjdQ0s0+UdDalunFnxKaM0YNMojIyBgFyjpIgo4Tq5PBGYkK16gVKzHmWVo6lrhC0VQtkMtFjlkr29BxygQypN1kJ+yneI/FhkHZlFwigfuB23C6+Y3mRRJF30ClmR8iU6mQSNaqRSVRGxiCAd7oJJIqFElI8Uamr88Sds6UVbk2sHPOFBBFVt0Q4jXqDldRtPjPibyF5LzUi7MkoBElenWfokvL24jKmnHFP3egdIz7KJMUjbUJieSZRoxuZRGVkDAL4MRFOKEHK2SADVLVUYBuiDHbeEn1LjRgKEjZFlIcQ16zUs9gs3You9T5IK9XiupryRClEWPWQJdiV+p0B0RMlPKOWnOR5FVbnqWf1SZ6ozKFGNTKJysgw0Nfbh44Xd8peBravzGBtOaAeUSIt+VbCh8ou0rBs17w56YO54opSvVyJtnvkSyOcEkkTyYkfV4qLMCjfx6+jeaLSk+Ib984ChMiJxEfaQsS97QknEmSMLmQSlZFh4D+/+BC+95l78ci/PynJK8umARa6iJOa5ANZJa+C5j1KTUpOTcSWtwBIzYnyvGhGvcT2VFKT/FsI9dQwqkRqFM+QTJaFeoKMpV/xyNGNNBMmFzknKiOTqIwMB9VqFc/9ZhMA4OFbVRKleaJSPUPyzFzYTTvF88XkUg/jlQiFutJPEUlzYCXXsw8NVr60US01ZKSO3WISd1lGJXvx72zKKHuGGeVNTUAEXR7RyqvzxjwyicrIcJDiOFE355M2rJSSwW07JIKk5DHJZCiNkGkxS63aYOU2qQ1qXiBJlfKVk1cyqrfduwvKdxZsYoLKbVe26gCs98tqz/EeCVsc0DZdrxbZcypkY8bowpgnUT/84Q/xJ3/yJ3j3u9+Nb33rW6bMmjVr8K53vQs33XTTfrYuY0iQ0OnRU99TPFFKOEVMfLVGKGn5uDgCS54veQfxxmX65RoP6ZjtWQOwUU1hFHI+klsget+8EjVLXWJRvogfE9PusX3fGycrNJynkEnXdOY9SiBkiidqz+5es7xareKBf/kv/OSLq/MhxSMYY55EHXbYYbjoooswZ84c83pfXx++8pWv4E1vetN+tixjqKDkOXh1xHCeFF5LPF7FlJOOV2lmQEyrJ3k7Uj1kKgF077u46Wi0fdKeUiarcsOoiSbIR/4MEsG1xPTnw7I1LuOHBm3dHtlq4giZIrq2d5vlz/3qZaz5j6fx7CMv497/79GonozhifFDbcBQY4A83Xfffeb1ZcuW4fjjj8e2bdv2p1kZQ4kU7zsjNcrsVtlygORJVSqVqJxfL/x5QLdWFpfR04NEphipl+r5Un933xGVTkKlBGrbHZZUL/XwZKar+PzJJFT4zuxeOY+79H08MpToMQP891chUT3EE7Xp6fqY8vyjm6J6MoYnhgWJ6uzsxE033YR169Zh3bp16OjowLx583DRRReZstdffz1WrlyJ7du346ijjsL555+PuXPnDrpdHR0d+P73v49vfOMb+Md//MdB158xPJHkiRLDa6mzaUpOIoOKlKSuDHSszEsSsUTSPEqpx4jIhCJFt1GoklDJrtR7ZYoI9SyTxJCs9/zJ5Etoj4Y13Qc+rkuSEZLIrbpNHTMjELCM4Y9hEc7r6OjAbbfdhj179tCw2gAWLFiAFStWYN68ebjqqqvwxje+EYsXL8Ydd9wx6HZ985vfxIc//GEcfPDBg647YxhDTWgR6gzWFgfKHk1We4pNKqSwUmI+kt2e5jKQ8sPNBhJ0i+2ZzSkhxUQiYlZUnhmV7CXuEaatzjNE5Jwrxcvkvl++jDkJUvacMsL4XlhQ3UMuY0RiWHiipk2bhttvvx2VSgVbt27F8uXLTbn7778fq1evxsKFC3HGGWcAAE488US0t7fj2muvxemnn45x48YBAC655BKsWbPG1HPeeefh4osvDtq0du1aPPHEE/jMZz4jf49NmzZh8+bNtc9tbW1y3YzhA4mIuLNN2RMV1yXv/CwMPqmeKHlATPTKqB4QXyZeaBOmRAKT6MJKJ6qiF0i575Lt6TZI5DWRAKrESvEyKYstzDCgYJflTVLzpjKJGh0YFiTKzetgWLVqFSZNmoTTTjutVH722WfjiiuuwGOPPYbjjz8eAHDNNdc0ZdOvf/1rPP3003j/+98PANi1axdaWlrw3HPP4e/+7u/MOsuWLcONN97YVLsZQw8rBBfNPSKDptcRpx77klhmDr/JOSJxOXlgGMzkZfdzanhSJEN+DpaFRK+WpUkKa2rf2f/KIgEUyKuay5dKvC2k3D/VEyVNQAQS1cs8UZlDjQoMCxKlYsOGDZgxYwbGjy+bPWvWrNr1ARKloqenB729vejr60Nvby92796N8ePH45xzzimRta997WuYNm0aPvrRj1Jd5557Lk499dTa57a2NixZsqQhezKGHpanpjKuTKK8M/FoOK/x0EUzITFPTiIr2uiurYxLG8xVXaZ3RUmmN8sGyRMlEGPagEBETAiE0/w+0iaWquewcRnAuDfqsy1s/6CdWagRJvt3dd57ZSKTPVGjGiOKRHV0dOCII47wyqdMmQIASSvo/vmf/7nkPfqXf/kX/J//839w1llnYfLkybXyAw88EJMnT8bUqVOprtbWVrS2tjZsQ8bwguWObxkXllH3bZLyYpoIr6Ucxisfy6LM+lWvQuJu5GaeimZEvOLgVTNLJQ4lDvBKLpBNQuNQyJdpV6Krrald7r3Pwn0Xn1FrH01ldZ7Xf+ScqFGNEUWiAD30p+Kiiy4yVwG6uOyyywa13Yzhi6S8B5VESfs2WTLxev11Gydktm6jLDGvSM1d9sY6kzDFvT6yDZJHzi/SwlhWvXiZHOJJJLQeGWqCfEk56okE0M7nUryCcRtkoqoQfSEc2itsxDvIw1rGfsSwWJ2nYurUqejo6PDKt2/fDgA45JBD9rdJGaMQSt6Df1gp0SXM1t0Zr5z/lOjMkbwfao6Nx3zEekqScHIcUBRRCKCgS3fkiffZlZH2/tKM8H8u7blKZVGKLttTqTSn3c9kop/6rjr1lI14Ky2ZRY1UjCgSNXPmTLS1taGnp6dUvn79egDAMcccMxRmZYwg7N6xBz9a8HP8aOHP0d25x5TxvUzGMmYllAHLSxLvwdUOXdKVuLmnzl8Uj9wghnTMykGT9oooA7w2uirEcTD3ibKQumlmaghJ22hVrZfmiZLqWXxFOSsy0ROl3GMlnJdJ1MjFiCJRc+bMwa5du3DPPfeUylesWIHW1lYcd9xxQ2RZxkjBIz94Ei+v78DLT3bgF99Za8p4xMcK5zlFLJyneKz8uuIAnLhqK32zzTSPjxQuVLmXFB5S2VfEJqJKI71WvXhZqi51cYAn0sRGq5L3K9n21HqJnqjEfamU0KCyxUEmUSMXwyYn6oEHHkBXVxc6OzsB9K9su/vuuwEAs2fPxsSJEzF79mycdNJJWLp0KTo7O3HkkUfirrvuwoMPPogFCxbU9ojKyGDY8tyO2t8v/tcrpkzKChw2SCv5GN7gkJj/tLcw9NHUr3sQos2ZIENIVMYOf8VtSA5HWZDyg8TBXAjnJf8WzRC5lPYAj8Sn2q6nog2O903d1sH2TjkFyoacgieqZVwmUSMVw4ZELV26FO3t7bXPK1euxMqVKwEAN998M6ZPnw4AWLJkCa677jrccMMNtWNfFi1atE+OfckYfZgwuf7I79nVY8q4OQx9RmJocmK5NAvWCJNEahRvhBpKk2b5qncgLiN7pxTvmxDOS12lqOfYCGWJiVkKUe1Xn+hFU+6pSE60GyhUs0SU7yMTpniZ8l5yT1T979CCqT1dPXjht5sx/U2vxoTJB1C5jKHBsCFRt9xyiyQ3efJkzJ8/H/Pnz9/HFmWMRhRnfGzQ7N1T7mWlGSnNiVIGGqdjbmK1nC+j2GTImMqEMtkjkmZD8gpBZbWcTHyU0byJslh7ll3id1bqqWRI8wAK5NWsJtQTt8lI2WZELVPeL77ZZkEu4Ii674bf4qmfvYDpx70a/33Bf+OCGUOCEZUTlZHRLIq5ByzJ1iVR5vlY+3SLA61D1/buMc2K6tfDh5LyaJGpRszXkYiBaZbiRWtcT3+1NFdUeo6S/KWdWmI9S07xoAqq1O0gkicNEuEUiaOwUMTPg7TtVvoiAHjqZy8AAF58zE4/yBhaZBKVMaZQ7LiYm90jUYpbv4nNNhkBi9XTUnq0elIkyxzfBSJi2hU3QA3X+HlgaV/Q5lACqbFUK5uCiqoUkpZ83qKYTK/wSzUHy7crkbArDA3qJMXQlLoPm9g3jDugPvy6fU7GyEEmURljCqXZHwvnOe53e3WeU8bOzpO2OHA+mkdQGNUSk3bNQiXsKAySMn8RwiJ6TDEukhyWSzw7T97jSmJR8bLUfb2S7QSkjTtTF1JY0FbGKfVM5YYuhSDFVTH+Pm58JlGjAZlEZYwpFBM4WeftrqYZzB3LrUFZ8UTZ3jCrQbEH96olDjRKqGQQ6ym5P9o39gX1zRtjBZBJb3puWFwouT05P0hpTykSyZCwGtCE8HvJnihhUiR7qeUHNWM4I5OojDGFSuGJl0Nwg5hYnrpBpt3xp3mi0uspdqWxAD0MKBCd1BCm7A0TdJuC8aLkcwZTbZcLLRMUQmaUSbv9K+63RO+RSjgtC4QXJTXUnzEykUlUxphCSzEnqpltCZxC67BSWZfnSdFIgJbUbRQps+5EIiLnxRhiUj2rorRx5z70yKleDOG3T/VEqY+HtjIz7fkjb5NZGoP0nqhkz9MteswSJzzSZrZMvwPFS50xtMgkKmNMoTIuviLGI0TKjFf1RCmr3vbxPjaJ45o2aomDcupGjVJyu2WWSHRSPE9NrXDzbNd+56hRpLlUQiF5QuU8OoFkKM9D6m8qPmsakbN+r7iefjmBROVcqWGPTKIyxhRKxyuInZt0tIM425TCG+JqpeRjNyyxxBVM3oCo5rdIGelGexa8XaRT3XaGVOo9lsmJIGO2KTxXSq5WOocSj+4RnyNPJm6Y6jFL3spC0mXIDGJOVM+e3mD7GUOPTKIyxhSUM6pSVuCwwc8jV0Yn6MnIm21aZY0TQAt2Xy0MWurEWfJEWWWGDZHPjehyCZgWwlQHc0WXISM9f2leO7PeIHnoWJm0GlX5vcTcQWk1oOjV0vIlRRIlvIfexr+ZQw07ZBKVMabQopCo3sHsKJ3PgnfAJgGqdyquy4KUH64s55aUW4O5WVFRpRmhehoGqT2VhPojfJqhqZ4o/VYJz19irpFswz70RCnkHNDe5+SVuwZ6u50Gc47UsEMmURkZDvoSvDnN7FjutScmJUujz2DuPG4iPpBKHphUwmTpkpPIhULl+6h2JpJQmSAJkMirVSZ4b1RVvlCq284SUZix1pz07ihbWZCbIHmElRzHjCFFJlEZGQ6SlkSrieVq+ESQkVYPmUZZRY173yxdqSGd9BGYNeCKaIZJY5TiSZFtj3xWlVlfTyE+sldG8URZ7cXryc63VKedQrJVT5Q0wXI/k75Bee2FvihjaJFJVMaoQfvjr+A/Pv9LPHnf81RGOmLFy1GKd5TNbZfgfhYJjOLZUL1aiRtWppCO/qI0r0L6obpSkUYKPZu0BrUDbRM9eSKjUHP5BFWGbtWbqNRTnhmVBDf+DgKQ3ns7h61c2Ew4zyPsOZw37DB+qA3IyBgsLL/iQQDA849uwqxTjyjtTj6ANBe6L6Mkg/fXFQiZ11FaegTdKqQcJY3IqXviGA0G9fBq8YFTXsko3VOVfTkiaoJ9skdO8b7FC20SoDWXHNYcJCKneIqaaU/Kr5IOAWeeKF+Xu/Ale6KGP7InKmNUwj26pVYu7LuSEoKjHq6kEIQ6MxdkxINwk3ccSPZQOPfYrCe2lxAeYqTN9+QJNjSRg6Wokpb7J9uQ7kWTnm3ThjTPkDIhIQ2G9UCbIFhyzXmiyp/7ev2HTSVkGUOHTKIyRiX27O41y3sEEuUdGixufmlB85LE2zN1S7NU0QMjyEiDlhoqSfRi6CvhItVYnYT8KmUg5YLxG5FYTfMcikTV/inSbNeYY7yeKSKEr2UPruCls9rzvEeil9o+ozOsu4g9XT30Wsa+QyZRGaMSPYREKaelV50ZodXp+h2l7rI3pCKfSZEwGCnHUtgmGLr8WlJOT6rtFqTcH8VrQvUL7e1D50DquYmyDcqjlqhL9hwK7Q1mWM6DHC436iY87+o+UcpB5yxtYOVXf4V//tM7sXbls7ZAxj5DJlEZoxKMLBXDeUbKFABttil5UkQ5vz1DRsouVgwgRUp4LXETRtOqQQznScdsCEnJpn7FA6OGh6RNVNO9JIpMakK6Ht+N65dCVIJnTV6AoXiwxDw6ZUGEPMFyn1uBRFmeqO7OPXjq5y+i2lvFquvWmG1l7DtkEpUxKmF1SED5GIWW8fbjn5JYznNsFLn4aJRqg5qkrs6efV3xezWo55lJVgnNMQ6VFBvURMykeGXlmBDe1Y8FipMAOUfJtV3deTxBtwnZ9jQ7Fc/uYO5YruRE9Xb7HvY9XbbXPWP/IJOojFEJyzUOlD1ULeNsV5RyVIuWj6Q5QNR9ZfyKcd1SRbWywv8Sw3JNHYSrDFoyi3LF4kROT4AXykRCoW0RYZQpW1moj4dC7iQWJdqgvHNSGFD1OlnqG/eGqRMsy8vklvUYJMoqy9h/yCQqY1Siz80O34syiRI9UdJeS+KgnLjPS3I9dXCIFqQTitRdpAcxqiTnEKUkXjezpYK0yi5x00zReKOa9mOkksl9uTeWlsdkycTbAzQi59nJEstdT1RP/Jmxcj2VPM+MfYdMojJGJcwOCc4WBzQnSugoE1fgJIcbBN36yrh4Z526caKFxDx24sWwSEbaIGlB4sZKLprqUVLCa8qqN/X7JY63UsJ74jOjP6OJ913y9mk2ePehmXCe8LD5nij/h7DCgBn7D5lEZYxKsI6rtMWB7I1Id9lLq96UsSFxZq4ObJoHJj5qyR4Y7/fR6knjpnKPxX29ZGLgySR6okxd8cJErqznzClEzqyWxrJlx5onkzZBsDfBtVQ53qMmNqBVJmKSVzxzqCFFJlEZoxIsJ6q4CSfbc8Wrm3jIqL56SJiaC2WpA0+/oCBieuQEPUIYMDmHyCgjQ5ZZ6klJ5CSNOEoeMlWX1F6cLKjePonAJO7RpD6jqQnifvK+8DwSOa8vMCcIjkgT258oq/PcLVky9i8yicoYlWAu7mKnJM8QUz1RybNpsV7iAKyFPNIGKAu2Y0O4x6llypmCzGzBQRatw6oJtqeGXweXfFk2xO1KdUwln7ln6lfuVVw3K9MImfCbIrGfMSaHJP0zYz8hk6iMUQm2xUGJRJHeTVvG7BYYelQS4O1zJHoH4iKyDa42VZeSOK95KKz2/DLNE5XIVJHmZdKPERHMSCXeamFyXpHwfQaRnCuEU/JwGvWaek8Sn1vlAHElnGdvg5BZ1FAik6iMUQkWzit2jLonKqyHySiu/n4xwZNiqEqdYWv5VVo9LZRm6UqrKA2AqjfHbCDy2VKlfmmpecVbpXqdBPKqJLsT/ZJMatg78Rk1jyYSiH7quyOHFJXjYQQyrhwNk7F/kUlUxqgEzYkqhfPsuoMVzpNnt8l79zg2CAPw3sK4/kRvWFO5TUJ7hC3ERbzBT2vS5l7ufRcUqWUKUSX3LonYKwcsE2jvgPtZJWhp90pW79VLfHdEwm7mXwrk2D/H05DJOVFDivFDbcBQoru7G1/+8pexevVq7Ny5E0cffTQ+9alP4fjjjwcAbN26FZ/73Ofwq1/9Cq2trfjrv/5rnHzyyUNsdYYC2rEUF+exxPKEVTOpHp/+qm57aofufG5mQJRCHkaZsjGpRAwEggbyWwjeFT3kF2dkWig3rtmS03ZMZywK5W07JOJN9ETq0fYjhanc0irTJw3OR9V7JHnDxOfdgBeFE7aRyJ6o4Ycx7Ynq7e3F9OnT8fWvfx0//vGP8f73vx+XXXYZurq6AABXX301Xv3qV2PZsmX4i7/4CyxatAgdHR1DbHWGApkgpXqZBnHFXnLycqInSvJQJNppEwXBrlRvlahLDh+meKLEUVMa7JTBPMChwhUNIZO8as+MRmr8eppyQ045jFd5T0TCpLBedcKjrMpVdiw3E8uzJ2pIMaZJ1KRJkzBv3jwcfvjhaGlpwVlnnYW+vj4899xz6OzsxKpVq/Dxj38cEydOxDve8Q4ce+yxuO+++4ba7DGJnt29ePyuZ/DSE1skeZoTJe27InhXlNyLxITj5IN+5dl03OujkiEpvGHqEmxSQywR3bZQel2J1IguHu34IMF7ZFRWfkM7ryhqgl0o3Ac94V55RgdvgiA/f+7nJry/KcdLWScxZE/U0GJYhPM6Oztx0003Yd26dVi3bh06Ojowb948XHTRRabs9ddfj5UrV2L79u046qijcP7552Pu3LlN29HW1obdu3fjiCOOwHPPPYdJkybh8MMPr12fOXMmNmzY0HQ7GY3jVz96Cr/64VMAgI9+/XRMPvTAoLyyxUHt87iYTFwP0N/pVgrxlNTZrQVzwPBW9Ym6FTnRdjYAViqVmJDRQLw9MSYmiDThikokgMkJ6AIJsORUwhJrjpVq6UGil857ZgwZIYSuECQ13Kblp4mkUJp0xetZnqi8Om9oMSw8UR0dHbjtttuwZ88ezJkzJyi7YMECrFixAvPmzcNVV12FN77xjVi8eDHuuOOOpmzo6urClVdeiQsvvBCTJ0/Grl27cNBBB5VkDjroIOzataupdjLSMECgAOD532yKytMtDoQOVQr5KZ1nYj198BPIg1DNtEEM85hQBocEGWqX4gxTcoFUu0jdGKT7kLgdRLJd4o2XPC6JRMHUJaCZsJy00aVEyBL7BqNNZSsVM+RH+rqM/YNh4YmaNm0abr/9dlQqFWzduhXLly835e6//36sXr0aCxcuxBlnnAEAOPHEE9He3o5rr70Wp59+OsaN63crXHLJJVizZo2p57zzzsPFF19c+9zT04NFixZhxowZuOCCCwD0h/p27txZqrdz505MmjSJfo9NmzZh8+bNtc9tbW3Ct89oFL17/EM4izuRA6Fwnvs57kKXj1pQci+UM8gsKAOwVU3ZUsGqrJIa697AOZZQ0SWzPUtOqCa1Z5QL3g49nKK61iIyjEQleGpk8irYKQ3l5Fl3nxltb7YmCEwVqJCzM2l7gEYKVSI3aFscZBI1lBgWJKoSe5r3YtWqVZg0aRJOO+20UvnZZ5+NK664Ao899lhtZd0111wj6ezr68OVV16JlpYWfPazn63Z8prXvAa7du3Cxo0b8bu/+7sAgA0bNuA973kP1bVs2TLceOONUrsZ6egxTi3f45xuzo50SSFIqR4RNbHcd2CpU2wH5ncWB5WE/BaKanlIVL6PnMzMmit9Vkii9mW0sJw+cMfKNBnV9rT2bGWWrvgzI4fS+qpAS+GZsUxQdMlk3H1GtXqeXKIHyyqTzs4zdyyP/4gbn9yK3yxfj9fNORIz/uDwqHyGjmFBolRs2LABM2bMwPjxZbNnzZpVuz5AolR86UtfwubNm/HFL36xpHfy5Ml4xzvegX/6p3/CJZdcgoceegjr1q3D4sWLqa5zzz0Xp556au1zW1sblixZ0pA9GXH0dvueqF6XWJHeOmX7gvTdjMVZY6IXSAlRyYmviu3iLD8prtTEjD4lp0wmD2Zzii6VAXrKtXpKk5KHM+3ZtqomH7liFSvfeRBtV0OYqUQu9aQCt78yz84TSNSyhfcDAJ7+xUu4+DtnReUzdIwoEtXR0YEjjjjCK58yZQoAYNu2bQ3pa29vx/LlyzFhwgSce+65tfKrrroKJ5xwAj796U/jyiuvxDnnnIPW1lZcfvnlOPTQQ6m+1tZWtLa2NmRDRuPQ8gtI5ZTVeYlLqfXk7HjHnOr5khmZYLq84kzKNwnXaaTMk1F+LxZWUj0nUSPiuu32BdWMiOxv2xO+DwsLpqyIVb+fto2JWTNalLynm2WDsiGnFc7LOVFDihFFogA99Kdg2rRpuPfee+n1Qw89FF/84hcHrb2MwYE5Y+uNd0jVatXrLPsUXamJokLozipMDdfI+1mZuuIsKnmWbyKNcIqJN0nNmReE315eCCA8MwopbSYGlxI+pE1698GSESYkcdWmKuUdZHKKkJLr1sw7oS1ycT4bq46VcF7GvsOwWJ2nYurUqeZml9u3bwcAHHLIIfvbpIyhQHIILl7PqquE0izYhEkZJEVlSj2rWuIeV6mESRqUVdtTiYGanB3RHaqbAtFBpulSuJb3bKd/QWWK4P/MmidK8cooBJeYlXQ+plkvdZJi6DLzqxISy9VJWMbgYESRqJkzZ6KtrQ09PT2l8vXr1wMAjjnmmKEwK2M/I9U9b5+kLhAKdYNA7xgHsZ7iUUoMBakrdzwpdVBJzYNReKOaH5RAQun9VDxyQn7VYJ7F5nu+fBlVl19HLVOIt6BrX4/vKhlPeEZtPeLMInHripTNgb38UK/dTLIGEyOKRM2ZMwe7du3CPffcUypfsWIFWltbcdxxxw2RZRn7E7bbW/BEmccqWPqVQdIocwdXX0Qc4MX2UmegqR4KdZYveTvC7XPdiphAXpvwfCUng6eSO/d+Mm+ORMbNqlEZyRsrPQukzYSzKJvKoxOe0dTjiuTHIYEgKakM0X2jMocaVAybnKgHHngAXV1d6OzsBNC/su3uu+8GAMyePRsTJ07E7NmzcdJJJ2Hp0qXo7OzEkUceibvuugsPPvggFixYUNsjKmN0w+xslJyo1C0A5Nmm+9ka3oWOWT0gVZFJ9IZZSF5anzi42iQ01SMiDuaDZLuk21Kf6j1S63peNJV0KEWJhNNA8m+okppUUp1K5KTJmkCiErdBcNupYPByi8c6hg2JWrp0Kdrb22ufV65ciZUrVwIAbr75ZkyfPh0AsGTJElx33XW44YYbase+LFq0aFCOfckYGdA2yFTrWQ04M7vE877MrkzZwM+qp41ioogwMzc7fass0XOS6M1RBs5Ub5VtlyIjEpHE31Cto4UZBV3y7+x8FJ4Zyv+E5f7SpEGcIfjvqto3uDKq2ymuP9Xb7G+DEAvnBS9nNIhhQ6JuueUWSW7y5MmYP38+5s+fv48tyhiuUMJ5lpC9ikXoPG2XSLRE3i08rrqJDl2dFStGxG2wkB5CEr0WCSyK5RX5Idk4gRYfD414CyE4+gwlENNm8mOkSYNbyjbBTXgvmlr8kLihrtuA4mGi+oVwnseHLD2eFz7cTmZRg4sRlROVkQGQTkrZ98X0ThllXkcpzlKVzkroTPurxgcoJQfL7i/jnWhTISrB26HlSRlFyZuVql/Irdd4HVIkkVDJgUXdOYIuwab0BQSJhBPw302pPUNEDkUKhgmTGdUTpe1YHn+ZJC+8sw1C6v5aGRoyicoYebA8UUJOlLUnlNnpCqEFxSw190giP0oOlpwcm9aevBIpySNiiSQSH6UKTYqKfO6v3HiDYF6tuC51t3WFGEjeI5VQqOROkNFy5NImDdq2GOK7k+Cp3Cso2ODL+AtmDBk3sTyyy3k+a29wkUSiZs6ciV//+tfmtTVr1mDmzJlNGZWREULqKhZ51qjklgjbJeikQ5iBpg6uclnabNVWLwx2kfb1ihZ5SPNiqLqUATg19JlMSi27FBeZ7DUxW4ypkr0g/vMgCInha1NXwmpAU05kcql7s6UcQRULE2ZP1OAiiUQ9/fTT2L17t3mtq6sLbW1tTRmVkeGhsJhkUBPLFQ+PuteSNEAllqUSg9RBMnVQAXxPnjSAaLq1Mwvj9VK9i7JQIrESuAq3ySMZTLBYR5xYSM+McLfU+678zlY9UZdvuvbAJ7/jhl1JoTrLwx7Z4iDnRO1bJIfz2PEr69evr51ll5ExWCg+b5rbW5sNagOuIZN4HpwJdRCOVJPCRaI2qdNnHhGFegijUTI3SfUCWXLCb2/ed0u14tVStsVg38UL1QleC3nAJ21GdElkWdWvhCvVA7eTPVGKZyhezyxScjaV5zEazjPsy0iGvDrvpptuwk033VT7/Od//ufeMSu7du3Cr3/9a7zrXe8aPAszxgx279yDAw86wLxWqdT7D7PjStwnShrYhJmsXTEuottgtCcclJzs+VK8b+qAKAzUcshUUJZ6NIypS/KuaGXqbx/VRclr43bJoUizQeV5Fx4GQ5dGyNLdQMrzoJTJhEnZwkFo0NxupUFPVN6xfHAhk6jOzk68/PLLAPq9Alu3bvVCegceeCA+8pGPYPHixYNrZcaox69+9BRW3/wE3jj3tXjHn7zFu15pqQB7OwctJ8pvQ56lCm52rWNO7+SlfAnvcypjMtqzTFIdIkJz0UqNyEmGacYrREQmZClQngW1bjI/SpxsKOSVbi0RqWjKGHrU12swY++SDQLhVDzlhvJY4rg3wcwkalAhk6g///M/x5//+Z8D6D+j7tZbb8UJJ5ywzwzLGFtYffMTAIDH73rWJFGxF9876qAZT5Qn47c3qOfbmXIKq4krShwHNEOZIukGptmQSsiUAd8StNvTWFS1Wi2nPQg/hnTbxbPzUs81TPZeil4ZE5KHx5UR32fpfExDJHWiZN0I1xNl1RL6GcVjG/dEGY1nJCNps80NGzYMth0ZGTV4gw+Avp7wm6+ddxfv3AC/Q9V3JQ7rYRW1GaihKYVoMV2KJy81N0cZHBLz1SwzpFVpzCMiuDtUjxyqKC+ISB2UxZCYxHFT3xNJlzKJ0MhrssdR5WzS7ywoM98lqz1hkqd4iBOSz70NO/MWB4OKpnYs37hxI9ra2rBr1y7v2jvf+c5mVGeMYfTu6cP4CfwcRGWFir37b3wA7i+Md9bSUmOTMFkNxm1QkrVT97rpL4sV+GUihwpINiIREJTIq1slzUNiljFeAAzKCWVyWlFSwnAaYZJVKR4mo6ryjOoEUHhXxVB/qldH4n+DdBh61BNltL2rYze2v7wLvzNrKl00lmEjiUS9+OKLuOCCC2pn2xUx4EXo7e1t2riMsYme7t4gibJOKU/dJyp5lZ3SV4uDmrIjur1lQ6R9UiZ5FYTBlW7alzJApYb8kOgBGUwvWtC7UlhVmpjzEq1TvxIV1LxVUpFGkNTvpxBFhZyrj5Hk+FKIo9anKDcr9fmI7gvlLUApf+7p7sWtl65C1/Y9mPOJt+ANp73WayODI4lE/eVf/iUeeeQRfOELX8Dv/d7v4cADDxxsuzLGMHr3ND6l9pMnDRnhsOH+orhXK/Xg3eTz4IhUkkyid0X13khWKe0l5p1JuVQa/yOGabpSboT2eGhEJJXUKKSDN+CKiM+MMHFJDdlLHrrEiVKyJ0q0XZqQOIjtWO5OQp/+5Uvo2r4HALDqm2syiWoQSSTqnnvuwZe+9CV8/OMfH2x7MjI8QuRdT9yUTs27UQYjqUxeDWiUSUe6OJ+bOcdLkEklD9JBrpaEeN818iB6j9xqSmhQda4o30eyXbND86Ip7dkN+nwz/szoXjQm11h7rDA5h1L4waS+J7FPkXY1j4TzepxJau+eHDVqBkmbbVYqFbz2tZmtZuwbxM52sjob5Xyo5M02xeMlpEODE/OW5LCcp1usJ3TyGjnSZueaZyjNO6BAJSK2jMomvZrRBqU9yVQiomeahUxqgCxbIiJ5VR6/QQ1fxytKpMY8wDyO5FWECZMp97NLmmKLdjLCSCJRH/rQh7B8+fLBtiUjA4Cd81SCMhuz+qPUs7ZSPSKJ+0tZZcleBQOJY0oDyd8CCfWqiA0qXq1miJbihREGUrPR1HuaSl4lIhxXJBMf6cEiqhJItRzOU0OWLlJXsQl9j3Lf+4san0zFEst7ux1PVE/ewrwZyOG8hx9+uPb3hz/8Yfzpn/4p+vr68L73vQ+HHXaYJ3/iiScOjoUZYw7WKrrYdY94qZ2pQk7UXCAlR0QtTWE1ag5Roi6VHEmERSEYqbwq9fuJUIdkKX9GIstSc0leC8kDQ4mP8M5FC+wLyWf1yRMe91mWVGlpA6n3XdmrSmivr7fP+eyQKCecF0ufyAhDJlEnnXSSc35ZFV/96lfxta99rSSXV+dlNIvoSy0cLmxuZ6Ds3wJtENE28DNkmrAr0pwcykj1aum8o3FdzZ0zGNbdLyLM6C3Vqd4cU1cquXNJvabftqvx+yDyHhvikSMpXjTbJJF5C/UUDypRFi1MzcEy+7XI7+5vxpk9T4MJmUT90z/90760IyOjhnhOlOGJEs6RMz1cgzpICjKaKsmroLsoYvXSIOcVpY5F8plfQoNCPo1Zrnj3mjArKfdNDK9JBLoJr51iu+yJkkh13AuU/Aqo25EIoU5phaA4MUsilxGPcfY8DS5kEvWxj31sX9qRkVFDLJyn5DvJ+0RJg6Q4S1XCXeIMNCUXQt1s0VQlkoyoIqO8qZV+gowSNvN3W9eM1zxRzLsifCllcFWJgSYWrSPn2iX8zs0M3xJ3FcmJb5dAfCwbRI+ZRr4Gp17MyxvrXzMaQ1JieUbGvkTVcTdLHYmwT1RygrhlpFVN8UTJiT5xmeRjNpTRR8mJkqf9cbukAUTVL/72pqqU+y7rNp5bL1SneGBoA46c8MBL3irSXLTA+A1pHp1wT5XfxtRuySn3IY3879sUgXh7fo5U5DfIG5Q3haR9oi666CJ6raWlBYceeihOPvlkfOADH8CECROSjcsYm3DPekrZA0reIFPJMVDzmJTwU6InSkFz7YU/m6rY+XPeMRODRPbYABzV7gvpS+0F21l5CrlTvB9N+HO0XDThOfbFmoNgl3c7xcQ9yUOWPFPSPErKBETps7T3JKw3Odcrw0QSiVq5ciU6OjqwdetWjB8/Hocddhg2b96Mnp4eHHrooahWq1i6dCne8IY34O6778bhhx8+2HZnjGJU+8KrS8yUl2QCo5X5qhRi0ER73gx0kIgPLRSExMFcJVuNWsA9UQLpDVfRjWhEmeBJ879jmvcD8Im9tru7WGbWjb9zfi6Q+MwIRCTVs9wvF395pHdOPgUhKiLmw1n1wr+Da6N3IHHmVE0hKZx36623YsqUKfjud7+LXbt24cUXX8SuXbvwne98B1OmTMFPfvIT3HfffdiyZQsuu+yywbY5Y5QjeoCm0OHJK96UMquTETxRetKGZULCANgEcfSJiFBPdMEo46Fke4J3jtalvCdxoFag5MgpuqljSPiO0qDsfFY9gMLzzvOrBLmUeyXqSv1N7aOdDEFpx3KFfAmTm8ikwk2XyGgOSZ6oT3/60/jf//t/4yMf+UitbNy4cTjvvPPw0ksv4dOf/jTuu+8+fPazn8WXvvSlQTM2Y2wgfqCmX0fZJyrVE6XkslhQk0ftWXCCDaJuS1AbROLkyK4Wv8laUq1kln7fFV3mvYo/j1abNsdQCKcrQ1lUsP2GdAlICV/rZMV63l1dzbii4tVSw/OSM1HWFe4LLV0xEqwuQMnQkOSJ+uUvf4njjjvOvPaWt7wFjzzyCADg93//97Fp06Z06zLGJPyzn5zrQkep7KdCdaUkuRq6ZMKU6n1QjsHQTEia8XJvTrw9CWp70QLfCNm7opydpxqm/D7NeKs011DcJmV3bVWXzx7sqt7AHxdKfbbNuoMYgpNWBgv3XbbBvVexA4i9eF5GM0giUYcccghWrlxpXvvpT3+KQw45BACwa9cuTJkyJd26jDGJ6Dl4SkfSzCQ1tfNMODSYQVq9Jk2nLeVmg1EZiWhZdZUBKvVoGEOZ8pVpa4IuOTSoeCu9JPw4+G0XnhnNdKeO9juLtFTSNZh1lImSNOGRPV+Wrng9bSPN+NOdPVH7F0nhvI9+9KP4whe+gGq1ig996EM4/PDD8dJLL+Hmm2/Gl7/8ZcyfPx8A8NBDD+FNb3rToBqcMTLRs7sXq7/3BA6cfAB+/wOzSrvfu/B22BU6Em0Vi+aJ0tz4yqAfFWmKiGiDWANtRmVE8iARkagJNV2hZ8WE5M0ZPAIoOXxSB1tbmVZXIQaKx1bjrtLkhu6p5REBxSuTPmnwq6b9zkoYsF9OIW1CmZmLGWkrlh5hNJuhI4lEff7zn8eLL76Iz3/+8/iHf/iHWnm1WsUf//Ef43Of+xwA4G1vexv+8A//cHAszRjR+PWyp7Dmx08DAA6ZfhBmvW06lfUSy2P7nAD++K7s/kvKYrqprgSX/WCOh6E9eEpERPk+kky68fIxLFXU9rERHVFamKcJ7urrrgtVKoU6xbqh70d0sbLgvYroilSxC6kawVPj1hBtl2TMZ1QkVl69eHupkylLTA/1x/u++Go8Z1Kq9KcZMpJI1IQJE/Cd73wHf//3f4977rkHmzdvxmGHHYZ3vvOdpVypM844Y9AM3Rfo7u7Gl7/8ZaxevRo7d+7E0UcfjU996lM4/vjjazK33347vv3tb+OVV17B7/zO7+ALX/gCjjzyyCG0emTi8ZXP1f5u++VLJRIVC98pxENJ9k3tuCwk72MjGeWXSxsn0jYQ3VAvxXvEx8OEWTf1UBRMb4ZxhmyqsDoEoQGxpQIMDFLVogwjuFx3paXS/7urP3NSrC5eRLeyEIhB6hE59jYV7m8oEhizUJjwKCF1c6KktKdN8lKIsfesN9i/ZjSGJBI1gDe96U0jOlzX29uL6dOn4+tf/zp+53d+Bz/5yU9w2WWX4Xvf+x4mTpyIn/3sZ/j+97+Pz3/+85gxYwaef/75Wr5XRmMYN74+ivc6S2x7u8uHVUdJlRLaksN5hrGSLqOetIxZaF9EI96VIoeSjqNROlbVq9BMKLKv2k9MiJr+uo0/H0VllUqlXkewPTSQVSp1FSW7RG9OUfWALq+qSMiUOUNTK+oSBng1nKe011x4LW5Xyoa3/WYp7Rn1Er2QsZynmCc/k6jmMKaPfZk0aRLmzZuHww8/HC0tLTjrrLPQ19eH557r95rcdNNN+Mu//EscffTRqFQqeM1rXpMT5RPRMq7+qPXtcUmUc8yL89JHE82hdoq+XckrYiSClM6iBjXvZpC8TFqSq6HLHKc1FlUVZFLCNcWPpZSrFO+DQ8isRqjpPkOq62qpuEXUJlF52nMkEkDJBJmQJcqkZvgo7QknJQCQdp23GWC8XkqumJdjKh/s3Y9HfvAkbl/yIF55dntQbqxC9kSNGzcO999/P0455RS0tLQEkz0rlQp6enpkIzo7O3HTTTdh3bp1WLduHTo6OjBv3jzzeJnOzk5cf/31WLlyJbZv346jjjoK559/PubOnSu3x9DW1obdu3fjiCOOQG9vL9atW4ennnoKn/vc5zBu3DicddZZmDdvXuOJrhkYd0CdRPW6JGpPY54ou5NKkCHwc5tSWZQg0sSgkqpLyVGSklwpZ5MajNSpXShU0UiblCtT+FgphOAC/IgWVl1dlhkiwS2zO1NT4He25WphQfj30A49RWxkdZV7ZWqy2rREhMFfsMEqUsLzKuxd5+P3XSKOwu8V64YaWa3X0b4TD31vHQDgJ19YjT/+6ru58BiFTKIWLlyI17zmNbW/B5NIdHR04LbbbsOsWbMwZ84cLF++nMouWLAAjz/+OD75yU/ita99Le68804sXrwYfX19OPPMM5Nt6OrqwpVXXokLL7wQkydPxqZNm9Db24tf/vKXuPHGG7Fjxw585jOfwbRp03DWWWcltzNW0TKu/rz0OeE8b6PMQQjnmSeVW0XS0vq0sqb2WpIGDJEUCiVpoRmt3BwwBJM8XUU9hTymlMG1JFPhco0OpRWiS75XRbMqJIwpey+rNZtqlxK+n8zNlUdU3J8r9fgb+TWRYp+K7jhBA7R+xnxThZmSP4GM9J8NJJZvf3lX7e+dr3RRubEMmUQtWrSo9vfll18+qEZMmzYNt99+OyqVCrZu3UpJ1P3334/Vq1dj4cKFtaT1E088Ee3t7bj22mtx+umnY9y4cQCASy65BGvWrDH1nHfeebj44otrn3t6erBo0SLMmDEDF1xwAQDgwAMPBACcf/75mDJlCqZMmYJzzz0Xv/jFLyiJ2rRpEzZv3lz73NbW1uCdGMUIkG7fvdzY9f6yhM6G6Uo8viVlb6dmDnf1yYo2UktH4kgDRupc3aiqfF8n1FU1ErgBkVsaZKW/rnIfAp9L4TzpS9GCSguT0VD0RFnJ7kUZv25hRaf6XCnkNWbsAFJDYqbuuC6NaGkTM4n/Ja4eTsoHjfWnARJV7cmbSsXQVGL5YEH1aq1atQqTJk3CaaedVio/++yzccUVV+Cxxx6rray75pprJJ19fX248sor0dLSgs9+9rM1W6ZMmYLW1lb5OwDAsmXLcOONNzZUZ6wgNLbEPE2DdrxEaodnEabUMIg6IEreB02Z36cOzv3Tw0rx0UEK1ZWIT/2jxFWCIbhQvYhNjhDbSULdId30RInhPMmrqrKaKupbSxSK6RYOTbYnPaNuHTFkr+15ZtTz9FjtaTZ4pwsYFikNKN85xv1iOVJF9PY0MVEaI0hOLH/88cfxx3/8x5g+fTomTJiAhx9+GACwePFiupt5s9iwYQNmzJiB8ePL3G/WrFm1643iS1/6EjZv3ozLL7/c03vWWWfhu9/9Ljo7O7Fx40YsX74cb3vb26iuc889F9ddd13t/wsWLGjYntGK0Gw/urok8tnUKXuirA4vPiu2oC2J1maBSbtPpxI0s0goEQdEqb2AR8QSCU68GiavoT20rPvAlRVzoiSOG8rVqhgsRlZcFwvbRJ6/ol1FEZbz1V/JVyTs4m8bYBQpm0Sq6lMmXSphUuRUr7hXLV4v1hc2sjrPTb3I8JHkifrVr36FOXPmYMqUKTjttNNwyy231K7t2LED3/jGN/Dudw9+AlpHRweOOOIIr3xgxdy2bdsa0tfe3o7ly5djwoQJOPfcc2vlV111FU444QTMmzcPV199NT74wQ9i8uTJeN/73of3vOc9VF9ra2vD3qsxg+KYFyNJMaKhdCRqTpSiS8lVsOopHTOD0IFr3qo0XdrkXfsyyZs+unYUCUYLJ1GaWXWhsJc0WNWrw1b6ca9dwMSKLSMfeDyQE1WYKnuPAhsjixzK+X5V64LRfr+auIx5IYWAUrF4X5B+CoLWXuqO5dJKyVgo1L3cSDgvb38QRRKJ+tu//Vv83u/9Hu644w5MmDABN998c+3aKaecgltvvXXQDHQxmAnt06ZNw7333kuvH3DAAbj00ktx6aWXDlqbYxUlT1QsLyhCiKTwkLj6JSXngOlSWFTKIMbsUney1jbSVFiUW4cUKzllbpmQd6Nu4WCL8HtVJmTp37tfWWOr8xRV+jBmS4Z2q5e4XTFc2dLgzqQi8U7zuFh6tPc3CakTIKss0faU7V28z5ED3jMaQxKJ+tnPfoZvf/vbmDx5Mnp7y8vTDz/8cLS3tw+KcS6mTp2Kjo4Or3z79v79K/JGmMMYxcCx54kKv/T+MQW+eo0MCR1sKmEybTDqeSGJxgdXKqTOzBP3xnIbbHRMKebTSMQu0HxpKwFhoAk1EPREmURYeGhUhAY8MmGUdz9XhARiWjZp8O57CKmTFPX9VU448Amn8SwMYoK4ZGfCZCpKsrK3qSkk5URVq1VMmDDBvLZly5bayrbBxsyZM9HW1ubtQbV+/XoAwDHHHLNP2s1oHhXwXIrYsS6KJ0o6t07ppHwRiTCZZYInSotjNeUY0uoKYQPl+9lye/8NhODk/Kq9aNQhHbwFwfwqQTfzalVtGRU1s9RQFxk86d5VAV3lJl1P1IBM/Ev577rSXjpkNcKN0FbbWrrjuqSwnCGXtKClQU9/RmNIIlG/93u/hx/84AfmtRUrVuAP/uAPmjKKYc6cOdi1axfuuecer83W1tbSuX0ZwwulvIzoZpqR68I7b604kciXPLOMswwl70E/U034PjQ0KHofYnYljlADuloCCc7SVg/FsFLIIyLc97Iuu2mKgCOKerXEe2d5fVQOZWjzbFLDedymgC7rkfHeJ5EtK55ehVCYNsR5hy0ktqe89yZpi+saHE9U+XNodd5gkdvRjKRw3vz58/HRj34UBx10UG1fpWeeeQY//elP8a1vfQvf//73G9b5wAMPoKurC52dnQD691i6++67AQCzZ8/GxIkTMXv2bJx00klYunQpOjs7ceSRR+Kuu+7Cgw8+iAULFtT2iMoYhgjETPoaTCyXjl8QOzxPJDUMaIkp5CthcGV1pfPHRF1mPZccqV6Fgc8NbqHktlmqEjiqRSOJBVWBZ1MZgEsoEbKC7SkhOEbu9Ju3V09oHyxiFxlYQ/lVjd73xuWc30ZmMEIDirdZmcioZYkEUOoHIgtxGgrnZRYVRRKJ+shHPoKnnnoKl19+Of7xH/8RAPDBD34Q48ePx+LFi/G+972vYZ1Lly4t5VKtXLmytlXCzTffjOnTpwMAlixZguuuuw433HBD7diXRYsWDcqxLxn7DsG+t+FwntKi2Ll5BE7RRAqF/AXZE5AUXtNUKbqaIm1ErhJwY0gJ9kXiEwoNKkYVUfSSKr9PQBUlGaxOYKCub3GgPf/MI9H0SsaiTOnrSbMS+rmcIxe3S3qOTROE91AhberkwyRDQjWFhAoe9qgnKsGzn8GRvNnmZZddhgsvvBArVqzAxo0b0draij/8wz/EjBkzkvQVt0kIYfLkyZg/fz7mz5+f1E7G0CC4QiiWWC7lRIU/99ezygSyom7qFy0wbGD7RHkdYVyZuvu5NFNW2KQ4mA/MukubWio3yylmYaWUAZh6ohSzAvedhRn5AgI+gg3cL5Uss3LiHAvrojaF3uO4SaXvUtxJXTFMeif8IolsSaSNvatVBHe9N8qSt2CRJoJiv7AXOZzXHJJI1Mknn4wzzzwTZ5xxBi644IJ9lkieMToR7VAaXL1n6lRd/UrHLE95G9cl91GJA0F/seIxcD420R7ztjWcx4SA7SGvluxO9FX5VRu7dxXGWIpqArsElNpn5I4N5sy+EOFk5K5EXosksUFdkfteo1Ap5E58eczblXIKQsiOmGNUeYySPWaRtiJkN+8T1RySEsunT5+Or3/96zjjjDPwqle9CmeeeSauuuoqPPTQQ4NtX8YoQTmxvHwtRoBiJGtvpaiM4omSOZRE5Ix6kY3wmB3SUS22KrEjFpQpRDVgRyicpxEybTC3b1XoJgRyoqpGe8RUgG+9UOZGodi2YZX6O7uq9hrQsKetv7JtU4O6gvtzhbzTqe+qIWd6b+yqQdAcQK/9uE1qrp1Ur8ED2xvJOc0kKo4kErVs2TJs3rwZ9913H/72b/8W3d3d+Pu//3uccsopaG1txYc//OHBtjNjhKORfBj3s5t4rqy8EziAXSYniloNOJ/NDkiYAVsNKESOblgZ0W01V/Q+tNirxBpeDTioHh+NiCjqg6vzBuo1epyLK1eyXbSrdt/5s8B2SC/Klc8GTGRkAyiFZBXi7X72nysLkjdRDV8rMtJqXtJewokKkh6jSY1cRm5AJlGDiuSz88aNG4e3v/3tWLhwIe655x6sWrUKZ555Jl555ZV9umN5xvDGzi1d6N7V418ojkExd3I0M1KYxUmMyS9Tq0mhQaWa2EcppI07c4QZfMgjwqJKpD3W8QfzaYTxsOTFCB0abLpzeHvBjTv3FrQE9keyCKffni3j/TaS7QUZidw1vrWE4kVTvKUh8lD2JjZO7kQOpU1AFKTPUbR+xqymsKiwSPRz4EDiUL5URj+SE8vb29tx55134o477sBdd92FF198Ea997Wvx8Y9/HGecccZg2pgxQtD++Cu4fckvMGHyeHzkmndhwuQDClcDs87Y6jxlwBVW8Cll8rEvhgnRMKRRsbl9ogSjQuUBO4rfpTKQACwmMrHmGj0z2FdWGs4LdfkAXKlU+q+rYwHTpXirHLkqYSLBA4Ed2y2TijItLRX07k3OVu67+BNSocbz2gLvZaOn7ajEp1qtKVfrJPcNhqDkubZkEk8S8D3EkX7I+Rg6Sy8fCRNHEok6/vjj8dhjj+FVr3oVTjvtNCxYsABz587F6173usG2L2ME4Y6lD6PaV8XuHXvw6I+fxh/8UfF54J1Z7EBMKS9AmQ5KPaUlYnV4vlzSQEDruKRGkBFJjRYqKfxtr7QXiU9RT+P7FbFyNb1qIHnZ9044JNFWVedQAQZYbo9tcaASgIKuFqPQVRXc/LK6V48aPyxcJmJK+BABEUbI/HrCBEQJX4vPaPLmuVa5OcPSdPn1nI8JWxxE5QORgaqbS5HhIYlE/fa3v8WkSZPwR3/0R3jve9+L008/PZ9bl4HdO/bU/u7u3FO61tdTfzFbxpU7z+g+UNJsLN6RDKYnyir0zBb6n2Y65mRPlMKhXG8HUW23Z/9gUu5RoJiSBxeF54l50UqfQhzDsj3EQ4RtoiqBfakcbaQ9QkQEL1qM1Aw8/6VNTkvErkF3YuPckdZL4R30lVDfHUVG6EOSPd4pqwgjk8745/rfmUPFkUSiVq9ejTvvvBN33nknPvrRj6KnpwcnnXQSzjzzTJx55pl429velncPH4OojKvUTgh3Twrv662/jXESFek4GvWkBMqSdxCXPFGJnalRtZmZshJuCLqZKvZgzjwBdJxu7oi6spdG9QyxpHimi92GQBiLhfOoTCi0XSJIRMb4aUJNqqvgilsOpOQkNcpDymHNFLIgGEZzeuLtqe+qdi5e5HNAf8P1VLY5IJ6YWF6tVrFx3VYcesTBOPDgA6jcaEdSYvmJJ56ISy+9FP/5n/+JLVu24D/+4z/wzne+E8uXL8e73vUuvPrVrx5sOzNGAIrkyA3RFT+3jCs/dtEddBUOJeUlGBWVHcuFVXZWZZtoJXZ4Eu/RSI00QBb+rm+c3WDv7CCUT1P2iBBDirpCB+E2OJqXPEOkMt3/qd+AgpxNDFzPnnnBUG2JlA0LVvVkQrpprhaTCcVRa/q5TPB3Nl+5wDtObqk4r0gmPpYum/8lEqSUY18ifWFsi5m+4nMbIFG/XfE0brv8Afzgsp+N6QT05NV5A2hvb8fTTz+NtrY2PPvss6hWq9i5c+dg2JYxwlAiUY4nquiZqrieqIiHI2W3X6WzMXVb5MtSFTfBLhH7mkbzHEhzZrn5fQL7V/EVZ6Idez8HQ09FhEiG0F55JVy8usIygisLi5qoqviAXxKrBMyipM3WFdxNm+aGVc2/gxt3NvpbFe0KiNGyEiFrbGPSqG74xIdqUliUsMGldgpCvJ7fn0bkEz1RD/zL4wCAHZt2YdP6Dio32pEUzrv11ltr4bz169ejWq3i9a9/PT784Q9j7ty5OP300wfbzowRgFJn3eu+yUVB51JkFqN01sqeLtqqGcuAtDIl5CclxwIia1OnypYqTibJEW50gKKDaYirFO4VW3HGyFHQUcPOn4OtSw4ZlZUVG4zWDeaGDcgU/hvcsDLokRsggPH2gmBkJeHd8VZ9Ul3SLKVgmC2nhrjNsJ83sRAJmfJ+ifX85zZeL7q3U+QZz/tENYYkEvWhD30I06dPx9y5c7FgwQKcccYZOPLIIwfbtowRBjlPxRlNY4mOWjjP+SzuWK7kYqSW2TNLbXYrjSlK+NDU1egAVRGEOOo7ZxfL3OZtbwcNK6m7fgvbBAR11WQKIoHbQENUhGi5MMUSx7GBauq2BIrtIdLm5VdFSFVopV+jIfsS8RbieVoaU9wmwHjvlPdLPjsvLhP7Ms3sYK6SqMYPBB89SCJRa9aswXHHHTfYtmSMYpReTLdziu4TJcwaJY+BRXwEPWqZIqPObiXPWkAitFy9we/DBnM1Kb6upzHi098GqRJgNaWPQqJ32SyBRQW9diQkxtpjbLlSCa9AtMxyUTVkAs9VaKsHsz1PqFCwd1VkMMQX4q6Nvl80mmcrkrw3ynsDbWIkkbYGJmthYhy+ebGupXgv3LQMBsW7OlqR5OjNBCqjYQRmh94+UbGZleSVEQiTUaZ4j5icQjLU2a0UVgrltwhhpZBdiudEz+/aqyawUzf1UJAGw+G84n0QDFTyigK7mpdAQ4P2b0MJYIFDBXNelEP9gvsxFcVsXcqKQbcO9aIJ7blt1soCy+0bfd7Fl8Kpok0apA0qhb4IgHROaMNbGEQ9UfwaQ/BMxVGOphPLMzJqEFcBNbLZmyVv6lD6RIGImB2gfJhx3AZ9dqvJsfbZeWkpOzjznKjC38FwV9WTCQ6awvK80GI5kwAG2gsuEjNCkanEwGwwJEJsL5PJxnKwgj8/81gR0qYcf+PfKkb0BVdNyANIzvSTc3oERxQPDQovtRDqNz3lUnthNVHzApNaecfyMcwkxvBXz9ifKHVm0bPz3OuGvsDAYuo0K2kdoNCfm4VSYrk6u5VCkczbEahD2qOeE4LQAdN1GS5SvFfSxpahAdgQCw7SgcTyuiLaBJVj4TxJl7J1gafKJst6GJWIlch5wHvEyKTQnifW8CSlMU+IFAJz+xRxxqP1V4IMWD/m1osQtJjnyRUvhPByYnkcmURl7BeUZjcRwiPN7GJ5VIYNUjhP2dsJGqmRwoCU1MQ7ryB5YB4KMUekPHDa7Vkr+MK6AuG8ApjtZU9bQojKMsmVIffHXQwhtVe677ZMmAgbelyw3c8JSQzuVyTdK7vcLvDLSroaXZ0X0M1+Qj5piL+HXl1x4Ub4BxvQHSdHtK772bUrsvddLBE+aXXeGN7ZPJOojP2C0osZnUm5dQ190dlXvA6T8+tZhUKZMCNlg5o0poS8OSScJ3fU1sgZ8jwIpCbl6BRmu57gXLbB1sUTquv5XMUyrkzaKDSUpF6UYdszFG0XPDCVgFuLEWHJIxf6DVsUBli0I/zZKpQImeY8SkmRqiNwbEq9TOifLDpm5XbGtoQJhD33FoQ+Bvtq2uYY9lhlEpWxX1B6yWKhNyXEFp19aYQpur2CaQ8jP24nL3QsbAan9PIBQiatcIvpH9Al1Akd4VFSRBOOGUMqiJSYD2+uUZIRJgYWAwy0R1a4Kbtru5UoDWG5QLaaBkKRcXdOOCneJ2RhD6fIyOzmKKkuh1E1FtXwUUhclQRTVaI3p+mzRwPkVGVRecfyjIx9jPKKD35Nud4vEyEsoidKOy7G1yV5mSS7bSiJ88p39srVcF6RkNXOnxPb83TX/CsNcyjKx2S3FpGhoUhbV3CXgAYhe3wkZ06jxMepTomIrVZdpVgh3kuH4VJdkmeDPjSw/0agXJhz0e8rTMSUHCzVExV97xpdjRf4oordtpKxg0yiMvYJghu4RTpMaXWe27kIhEUKwVlQ+7EEXU2tHpJn+YE6rLmiHBnMSyIsN6coU0HARVGUEwZEeak9W51XkAltFFjnfxKop8ayyWpO+I4lEUZEiJ5gLlqDm44GUbvtfNLQ8LJ49Tcs3XbmPYr3MSqL0l4pQUr0RMVzSl35sCkheXXi1JdzojIy9i1C4Tx/nyi3sqFPmSFJsz/XTqstbYbo64rPSCm8vkv4fiw3J1BHab+267cgE20zzqE4YSHthT0iRKZBUhNMPhe8K6UaQe5QrbVHQ5EKWS42F1oVKYQGmccntmN5zDC2LYFlp9WeEs6TPVFFkGeGPmfCxEjxtJlzPMEzHu0LY972IItyLtFjqrInKiNjn6KR1XnRlx6IzqbMeoInSspjYpC8SlrP7BUrqwbJyFm8D+oOzkXUBrvQAKyQmkqAH1GCVLBdIYmuXdQjZxMf6oFpcjUgC6+pM316lIkQ+izJBSco8d8wvNmmwWoSnxlzf64QyG8oEx/zcYhM7mrljpzQniliJpGbDQY/R9MjGuFQkQlvrHwsIJOojP2CxsJ5gj6JRcVFvMJ97YmKdHBMm5kv4X5mHooAqREMAZ2ai7pqA2KgBebNKcsU21PZQxxhJ9OAK0prLuhdqQkVZdz2CjYxYlAik3HSVmwyeKfIqkhKEoP3geRE0fbKqLUZyMHix+1YinhdV47aTllU5LPZflxGrRvKaTLtaSBHSvGghcrHAjKJytgvKIfznGuxl1rYRVxwMpk9l9+/xMkYhdQzqrNbwQaV0xT/LvwOYe9KUY40ZzgebGUFodpozo0fzAOB6/xPbI80qKfvKN4cccWgxlcKQmSiEtouwRGLNqiSyYia/vZC96q/oEVZ9Qn+zIiOqLKu2kKKgFBRV6Q/M8sUGRByEvAUWWXR/jREsgIESykfC8gkKmO/ILSBm++dCXcCgO+ZUfZmsT1Rkc+knjLzanSX8bAuTX8NgkdEJSI0OdsK30RA86tKQoU2Sg0aNhkwPSeh3zm4+WXMKMcutuWAfKsK5FVIsKJ5TAUUvVohck63xRBtL+lusQrd9lhlEYoumsPjfCzd0wESFe+HzHKhn5H6IoJYzlc0nOdN5Pjn7ImKI5OojIbx3K9fxt1f/zU2Pd0h12lsx3KnskR+UkmNQNiaIDq+EK8THFQU5SS8wdtTiUi86dDSd9PyhPtQ4j2ho1oML5rXPCMizHsU2PVbyvOhpI09+04CGdEltYdA5MwKY7kK6HMVIki2N0d9/gZ0BZ8rg/i4VtG3RiF36isYmlyQMnUrFZOcRA4Ijnq9Ip6o0HNEyVImURkZOlZ8YTWevO8F/PCyn8t1GgnnSZ2S+1npgBrjIcF6ipzmPSp8FgcMBjZA8cGc2OErKxQTj0iQABZkaHpVnACywVwJ1alE2L0P9QRnMRdI8K4Ew2aFe8V3eiA3nranhVElhPLHlN+w9LwHdBWfGaOqVyAQTlJz72dh1pD2CLEGDZl4P9dfVpyQxtU07OmvBmRzYrmHTKIy9guCm21GSJPZ7wt7SXk2mD2OJxTVw+SkzS9VD4xkA7/EBp/iPWhRN05sMEndH+vqI2KFTPOpV8F2iESy1BU5RsgEPaHnl245UGyPquJQCFlJvOrI2WHU0mchvNvoVhYh0HBlucGC+jhZdnWp3iOLQ8nhPGVfu2iB1s95dQUW5XtOw7YEw3mMlI7hfaLGD7UBQ43LL78cjzzyCHbv3o1p06bhE5/4BN7+9reju7sbX/7yl7F69Wrs3LkTRx99ND71qU/h+OOPH2qTRwRCG2hGPU/RY2DETknIiZJ2Blf3e0qZjHnkoWrqb3S/mHJ4w/YeqaO5yx8sp0bIUzPwMeT4avTehZfHlyRtmxh5ZZ4h1S5mR8J9p7lahKxItzBIHkhyNiNHIQ8gkSkTzoBZNQ+gbWvIrioV8vVbkPLoAsWal9p6n4V+zilTPFF++C7c51UDDdCcqGY9nCMYY94T9bGPfQzf//73sWLFClx66aX4v//3/6KjowO9vb2YPn06vv71r+PHP/4x3v/+9+Oyyy5DV1fXUJs8IlDyPEXCavFwntVARIdpVGNEhDTF21M6ysCsNbyho2GEyjxKHMr2iHhVyGDHRnPJi8YXiXlyRhMBGX6vlJWFIPk0pc8hj4iSM8RIm9teIXyoRJVk4kPuu7TZphSmg3PfyQo3kXg3IhOSS4riNhrNkzoR4X22fhtLLpAaUatXUhubKHL7vVCgkFj+8lNbccfVD2PDL9pN2dGGMU+ijjnmGBxwwAEAgHHjxmHPnj3YtGkTJk2ahHnz5uHwww9HS0sLzjrrLPT19eG5554bYotHBoKr8RrMgZJyi5R+S+lQZRZlFQk2BZpTN3RUlCmn2pfDZgEiIg3U2uo1epZdSRXzopHv5zVnDPqBgUPJ54qWDUA4/ia8MdWATKBNRsiIB6E/v4pkS5cNK1QvvL+kvVBOFAe770Ss9FgFyCu978SmgO0snMeSp1MmYlpCuNmc8zMrE7VwOyH72SKKUK7Uj/7+frT98iXcdc0jlvmjDsMinNfZ2YmbbroJ69atw7p169DR0YF58+bhoosuMmWvv/56rFy5Etu3b8dRRx2F888/H3Pnzk1u/4orrsC9996L7u5uzJ49GzNnzvRk2trasHv3bhxxxBHJ7YwGqG7bvoJc7FiX+D4m8V4puVNKIWykrMExxGswnCNs2RBohww+fDbtfiyOnIF2BkRCg11JD1u1ZQ+IjLSJUSVJqCLExGpJ8VVfpmzX4OVEScnzUs6Q6M0RVimG3WhGk6F7xULOsGWCuggjozk8QaJPQsC2qqT33qyS0J50QHGDW8qU6hNPVNIEdZRiWJCojo4O3HbbbZg1axbmzJmD5cuXU9kFCxbg8ccfxyc/+Um89rWvxZ133onFixejr68PZ555ZlL7CxcuRE9PDx5++GG0tbV5Luuuri5ceeWVuPDCCzF58uSkNkYNxJclvC9UuLfQPFHhz4peW49IjiSbFKPqf4bCeXbiJr9PyiG+0sG7ji4+tjJvVYE8oBCiCgxiUggnlOxe0kVEigWB3JwSyYXJocoQVok1fdCvY1NMV1GfHF6jMoH2Bj4XPF8pHs5ivYT0scB9L35/YldwgYTdtr9nXdqETvd8RTrhaFN6/0v344v16QVdDR80PcIwLEjUtGnTcPvtt6NSqWDr1q2URN1///1YvXo1Fi5ciDPOOAMAcOKJJ6K9vR3XXnstTj/9dIwbNw4AcMkll2DNmjWmnvPOOw8XX3xxqWz8+PE45ZRTcOutt+I1r3kN3va2twEAenp6sGjRIsyYMQMXXHBB8Hts2rQJmzdvrn1ua2vTbsAIgrxnUuCYl6hOidjEWZS0ys+rRIqdziBVlzcLLPxdCQ3mjYZKmFeBeL5CoOEu6hoif6dkZ6eINEwMQqHBmpA7ChNdcZvKIT/3GSX3lKhiCRleCI6EUamnxi7Wf8NGQQiZmhPFkvDdcxSrvcSTMiBTVCVNimCfa+kiYbJGv27x+1mbDLufo54oLu/xugFPlNsGuTfVvioq4zKJ2udQmeqqVaswadIknHbaaaXys88+G1dccQUee+yx2uq5a665JsmWvr4+PP/887W/r7zySrS0tOCzn/1s1M5ly5bhxhtvTGp3xEDjUM6+UOFZS9SDk8ahIu4HW4Z2lFXEY0heQqelJvDdgjPzusjA36F7wLxH5ea0nCg+QNm6KEIeirJYwQy7Q6d5U+5nNiAW2xNyosoeH94eyzMrc0nBA+jczyr5ERWPYyiMCmJ7UZBvJmo/70EnWtGs0AamA3+Edt6n5NV+tiotFaA38vKUNujSWE1sB3CrObNPcz8LOVjSBNO7rHSezKiqaZti62jFsCBRKjZs2IAZM2Zg/Piy2bNmzapdb2QLgs2bN+PRRx/Ff/tv/w0HHHAA7r33XjzyyCP45Cc/CQD40pe+hM2bN+OLX/yi16aFc889F6eeemrtc1tbG5YsWSLbMxIQ9ESRTjx6VpPXhtJm4x2Xku8kcyhLRugoQ8QuuB9TtS5TrQ0EXDf3HhXKAzkw6iq+upBd17sFyiyfEoPCByV/x7GLy4iur0ZDYswuNa1ISfxSctFE9xGVUslyiYiUizwZVxf7esGtLBi5KwoVlZlmlD9XCo+oOsGS+rd4fyUzDvY+EzWx/jck79pZy2+NtVErH/0sakSRqI6ODjOxe8qUKQCAbdu2Nazz+9//Pr7whS+gUqngNa95DS6//HIce+yxaG9vx/LlyzFhwgSce+65NfmrrroKJ5xwgqmrtbUVra2tDdswkmB1LJZ3ofyehzuQ6L5QSn+jsBrlfaYsyqFRqboCJoWSs2s5IsXZdAhC6LHoEQk4KGi5loNVGOhE9qBs7hlMBq/acqWQLAlr0nGsUs+J8sAG6pIMIaWUPDjKSqriRMR9fniIqvBBWlnIZUpEhIQPqYfTbafGxwLe0iLYYoRSc8pzBTCizz1RzufE/ioUVmNyKakOcU9UoR8nHqfUjUhHI0YUiQL00J+Cww47DF/96lfNa9OmTcO99947aG2NGhjvn5W0WnqpIjF4r4nY6hFiR0TE9lYphxRD6LiMuiavCxQEO/nCABWzo18XuVDyfAUMKw2I8YGMmk4IRggCxwiGgkr3ylVmDJCMtHnflbkoiiLEe1Ql7YW9WqYq2h6773ruGyFtpD1mVKXw3yCHEs4/VPcyk44KCuYcDgihYLrWNzCSUmmpNLQ5pZ7DaT9X/lUiE+k7g8GGPlJnDIfzRtQ+UVOnTkVHR4dXvn37dgDAIYccsr9NGnMIriAhbubQ/i6ARWTinYl0plPC2XncAxPuuMIXuIyytL+I8KHBzENRsL2sjeuKSpT1stHcHYDZHjylT/HxMJw/VlTDdFFVtvH9KwsZyYjfBw4ywhVCYp4YZTVMJpCLpoTX2O8cAF8NKMxSCs2HQ9y27ZzoK260glxoxmNXLYmFCKdponivSpNMaYIZ6SsD7dLNNj2dpqljwhM1okjUzJkz0dbWhp6enlL5+vXrAfRvnJmxb+FxKLKSI+X8JatufyPCdMvSE9Nr2iZ0lHLuQkSPh2J4w+74VC8GDc2w8TDk6lA8IqEEYFefa6tnF2uwONCZVe22LDmBAJZ1BUSI7VRVkAgXm7OfB8ppQhMXFqKyZNz6KocqGq+kmQV2irc9ryFdRl2490og3pUKJYCNTp7kd5XIJMzJpLZifV75o90PyTuZjwFX1IgiUXPmzMGuXbtwzz33lMpXrFiB1tZWHHfccUNk2RiC4gHy6rgqIjoC2wDIOmC86Ipt7PuQjrlsU9jGGEK5MlVLJqiL5dMUZIKDmE1YaIiKGcJIaUiOEEBme9BDIYzCnIgUhWwZ96OytUTQpAJ50HKnlO8XJ239cnZ75e/HiUGRiCho+NiXEANk5LVkfECT9WOLrIa+96FnRmE/tJ+JdUYuKQqzqtDXZGQp50TVMWxyoh544AF0dXWhs7MTQP/KtrvvvhsAMHv2bEycOBGzZ8/GSSedhKVLl6KzsxNHHnkk7rrrLjz44INYsGBBbY+ojH2H4AtXcgNXzfL+glgbCUTN1lT+aBEtLebCO65StnGCnTKp2SsTGDSl1UqCHaU6wZiYPQIz7oAK32yzLCaEqJgdcGyXxmDiAXRvHAtRMTDC2eBqwL2G2R+UXDTwMKopZNQ3ERyb7fAhdQBSFydvjxNAhSzHn5kUz1DRzpaWCnprdeN9YIpX3ORi0X2gog1TG+ixL+LEcjRi2JCopUuXor29fmDhypUrsXLlSgDAzTffjOnTpwMAlixZguuuuw433HBD7diXRYsWNXXsS4aOIMFhL3dkT5HYS2/b4XxWPFHxSRuN7TM9pQ38lKXOoc4nOOAbs9sQ6IBRIFqhs/MKahpNcOZehaIg/5GlATFEOAdkwHlB+TcEESrqKuZE8QFRsis0mLO8GxrOi+eilW5EgPhIuWGBo1qKRIT+zAKZlCcDii49FlnTw6S8d7Vq21X7KOYv2g2AP0ABkmNWjHiNgn0pUyX0v6Hy0YRhQ6JuueUWSW7y5MmYP38+5s+fv48tyjAhvjy0Qzc/R156a1deaSYU7jxMY9ggRjqWSkXq6wJl9oDByFbKyi4mE94VsUDalDAPS+x1bKyNraGHQtmeIUTarHCKCzIAUwKv3KuIWKFB3l7N9AolSI3+zuFbRZ6/shBpJADqTCzoUshrKeEkQDjjaXR6jhJ7SJ17Vbt3hPwEJx8Kh5Jmk4qecJ3QIg/mQfN1ElvHAIkaUTlRGUMPNdRWDu05F2M5UAqxEWSkjiuSH2BB3cGZ0yu7veASbKNjDobEyIBBQyAE/d+PhbsKgkJPUikmqQc6cj6Wq/edQAkZFcWLIuJ9Z2f6yfd9QM4hr/QbspCY06DgAGyYLLOHtOjNCe9MT55R0p7siVIIJyEa/StIK6Uyq30lwT44KTLrBT/WywObYZp6Ip4oryHJG1+u1EdzpeK6RjoyicpoCKGOhXsgwi9WdDNO60V0dVgvfmxGZsiwt56OT+Ip87S9AsKrh/yOOXSEDE/IJZ6HECGLq6IbabK9lkK5aFJOVGAQq/GQ4p4KcAdqch9Kiso28mX7vky/HHtoiOFOWyUx8j7p+VWNhlHtv6W9xYrKQveKeZkYoRZ1lXfMb3DCo3ocQ16tmpCmi9rEJqjF7yd46WP9ku+JKup3rg18JhNhJc1itCGTqIzGEHpJCKGKvuiRF8/MdxJCdcoZUYKIr6vUmdryDEGbQp38wEdhg8J+XXZxCeIsX9v9UpBBgWyJfavioQgOrkq4i+QoefekJpdAAJlMaLwjngwvN8eozEwPP37xfK5SXTI5kjxtjqDyjIYgeaKEnfBROvelfKVkegt/4KuGjNLPqH1R9MeJkaTYPlElT5ct6lUh5CpvcZCR4SD0QrJcBPOtJ5N067MJIYlb0iuHguwq4UN847pZOI8RA9171GhYyR4Q3dm0Nsu32yuFqFQPBbmHoXwTZrsyuIYHcxbmsckrG+yCq9KKxisEkNnumkTvO3kgSqStOGmIh/PCJ/IUnxnbXsmz5+hSNialifOw3+mQR0fJdwqHD83OyBUyZMp1U7aY8fW54gE2TvaJGlDijw9x80Y6MonKCKJzS1fYa0Q628Y8UeGZke2JCugjek1vVbiKLSjObpXZZhHEIVJSrc7yqYdMHQj2CvZvPqjM8kkjTmiGRnkIMQ0I2TIoiqi7jEdVlWyPtVlrgz3iLVwRJ6+kPSblEjspjEovkfYCchJZtlkGnQy4YJMZyl7tusXPKV40TpYFz3KxSF2lXPqZjT4tkg4RO6uUpmgUmyZ1cjgvI6OA1bc8ge98aiVWXbemVpa0xYGBEIeSoHRKgQ6climzP5KzoX2NEIsSMl8Du5o7ygpVBZeIi9KAQawigwr/PYujeWh0jdsU8qKxe6wcB8K9qVpzfDVZ4Zkhaks2uXJsHqOQyb3/8ysbjQ60we5DYAuHep0iW+YDNCXxxQ+BQ5EZp2H3St47jTyi1ItWlFG9dkJnMWjhvMj5oMF+klxj40DsCK/RiEyiMih+9cOnAABP3P1crWxgT6Ta51pCIX8zzdkIISXmZ8sTJXh9FBe6+pIz8qDlWYQ6XVsXDysxo9wO3JZTVsGVmgskOEuhGU/hgB3lYh4iJWrFhGMKQhJDz6UGMaxplbtqmGuSkXh2r4ptivedyxQvuIJ1GeaIKtuktBeK2xb+Zu8hIzVem9Vae/UmufXKlh6hQ7LNvijiIbLq2l5+s5oswCaMxc/skHjfExWxZRQgk6iMhtDbU34r6scAlOXK/ViEBEUGQZsgCZ2S6BuKtuXYRFd2KZ08n75rjihAGqEaPsMtEgKIQR2ApXCQ4IIJeRUGPju7M1BSoyaDs1wZKcooE4PC8wDyG1JdtkzJMRS0y7ajCOWYmYE27QYJlEmDV4eQSVtEjJcXBEP9kuD5CrmplfeLyZQ5W3z2GHpeY2RO8uajQJaEfnm0IZOojIbQ10Neksgu5C5CL2rKEQnmy60ckhkgNdSmEjkKqfI7+eC4I7hzirwgaUCUPSLVuozs7jAusIEnACXsElodVWxPIwZRkZo+uzni7VCIiKupWpBRvHuEcPrkQXQ7WvXVQHWJTVKhQnONEf3gu1P04pI8HFmXEnFmXi011C94oiQConiiAv1ro16ruifK7e8HymGWA8DunXvQu6cXow2ZRGVIGFjC2ud4omqbrLkVIi5nJmspi3my6BlTQucv8DXvQml8EpOiFE9NKP+jPrpCyjehmz4KNpV1lQdz6uxghwZ7LhHL2PJnvmrLHqQpAXQFGUiD1IsRaE4hZOxe+YK2HPsNGfEJHcKs5fkU2pOOtVGeKzfkbH/BoHdWaZOFuD2xar09YTECfe1LtjfmiQo+xqRyymab3FW3tyiwxUHjOVH9/7781FZ85y9+ipsvuQd7unp8m0cwMonKkDBAntxwXm2TtUDyokVmgp4oT9gwSPGIeLMiS0hkUbSTJ7kRTpV6LlCIPMQ73aKHIkQeeCdf+CRtqcCja+qAUbRJ2Q2aD2JaeyUCyMA8BpEBJqIqkOfDmBZRWnHIT4kJ22SSouC+DHpXGl2ex3Q5tisJ/eWvVyQ+RdLG31XF44iSTUyknhMV2k+JhTXLEwvVxWlURmByyGYypF7IO2Q3QZ61gm72/jJy9Z9ffhi9e/rQuWU3fvuTNqvREYtMojIkMBJVeyFDHUDE5RzfYTfcAXFPlPs5POsyK1nFzGviG1aQs/Ms2PgrOihYc473gegJLcFmDVZJB8tCMxoP4e0RXcpSdHdbAsH0CAEcqMu/FCdkpD0XBvGO2WXKOPK0yaIc85CxEJz8zMRlOKcJkWXy/LHfObT/GLvvRITvS2UTXK8vMhfLBCZhpDzlPFA6qarZxi/XPpPfwpPf+z13bd1dK9uzK3uiMsYgBsiTuzqPnZlUDiFFOowIaTL7CT5ZqpdHzuizGqchQGEgCIbzlH2blJmrmFcEMmBQ8kDQfw6aEsIhF9zBieYV2bqU7RmaH8xFd46UnS2oKtW0Z/rlVWJhz4lhhf87kzBqKUQlLBsM7opRCokV22B2EW9Og0QyZpfZngOryfBmm8p9j+dpUSNcZaRc4VCeTAOeKG6C7XGSiKD0vo0cZBKVIYFtZUBX50U8UUEPhdCZBDfrpGotPZpdjeek2B2q2jHTUAnA84qYXVyI1ld24eYz80In7LTezH1odHsG17AqGRwYwVUjcBIxKFokbovhtBK1KxTnYWHUshBpWbWx9MjEXYAa8SlWDTwzyoHbJRlbVyknKvBDB08XMNpzwUN18ZsdFYl69vk1AGXvvEqWBuoIR3a1jMskKmMMIhYLD724sf2Zgsc5GKp9/abJ/gWFzNEOymYPwVVi8gApmFXyUFRs9WyAIp1m0NMx8Nn1KlBdjYUPXZQJkuD5Cp5LVrxXtMm6Lpa/4+htePuCslG2HvY+VcqC9L6zBQRlpm/b5OpSHKEKAfQS6eK6WPiwX9BuTyKT5L7736/qCYW7BkYSCxIBoqWF6myZWOenkN56f27UN+Q8qPtEGfUbPW90uGOUfZ2MfQW6+oItbY25nEP9gPAihuSZXmmWp4TzWN6Dx6GKM1eWE8Vmt0pP6HwUZt3yHlcFsARnaed2V20tr4g2J63aKoEReHcgZ78h25iUhelCP41AOMsDta3MzeeKhcdDKIfzytdKZrFjWESi1fCYL93TCjPdEYuzNmnhRlFV6Bml4crCO2HoZ+2bgqlEywupWR1woH5o0Q9Zjc09VBaJyp6ojDGIKluFV3upAj1qLHAf642t6qUX3e5tQuE1WrdB7qKf7UXUl2RCnpoBIWhEhHpEikK8PstvofeH5HOVxEvEoDEi4KjVZ7OC7dKqtJLxAcIZHDkVNPYA0i0HHDUNh1FLMoRFkXfeS+gnDbLz7rzmKuyBJ7oYyQg9M6X3i7RH7nvQI0eEaGhaIcuxOaXSf1Jh5xlhJsiTab9uSyZRGWMSA28De4EDL0+MvEQ5VMzlzJI2FRYV0EurssE89EVonoUhY6gaECxuExB2K5ByMmjSWyMmONNuserKEI8cuQ8K8VG5SnCgrpXbA0gxQhXycNKE48LfWu5bwkCTRNoKUH7nICmtGkIhZUSX+xzHOZTTpN1eaNuF2rNR/J3d5qgHmjxX6tl5IhGOtdcQSPgt1FZJnpQrnqicWJ4xJsFW4fHYeuRFD3iSQvuzhJWGRSQ1VC0bgAO5OWY4j3TeiCSrNji4SsQnpEq4D5JXy2Er3Klgz8yZF0P1okmbodLYjCsX0QMEznArqAnucl83STqfjfyIHrET7nu53C4Wt96iEwL27ijhvHB7pLzB96sSYlHF5qTwIbOp/Pu0sFW5dEZXUhS+DkJkCOnplw/oYuSLTbKtcJ5vzYhGJlEZGmovnVYeWuHhFTU4G3Lrsx3R2QqS4FYCUmjQIEflYg+NhvNCuTKsPbqhY5EAMiISIpwNDojcqwWpB1WSpSVvTjDBOU7avHvVTLQrhawIYR5p9/NAGLXEQ0iYpdHfuZRX5Ckr6ioWk2d0QKHZYPw9pB5OhtAzSogw+52DxzgJBJD1AY3um2dOHgMXS78FmdC65X0sZzbO8UY8MonKkMBfEptFNZZYHiYyZp8Rqm/IFAtCAw99wZlXgYWCPDkSxkJRhhtiDdThnChyQSVtAzPzSsguMmAEJ9MkN4eByLEB2G7TL2/cI8LbU+2qyTS6k7VrlmK7pzYeTuZhzQaJgfvsMbKleO0KHjnPdHYfSNvyu0rCfg1PGor9TODoKyl/kZTH+laqh0YQUErN8O85MYptgdNsiHkEIJOoDA3UjYtgef+1GIvil6zrsfoMtidKaCvQtLyBn7DZJg0FFVGaKXOySTt5MgOmLjIl2R1uiMr+bUoeCoEkhhtU8qac8ZwN1NIZboVNR8OjuVmf3XYX9XfF2Z5BySsqirtihHizfC6mKzwBGXhm1DAj0SU/owWxEEGqyfBnpnbXAx5AysiKnpuCSCiBWpo8SXPDyAyTyNRzm6zaAZZW6+/L5X1kfIiemzoKkElUhoTay6AmFEZITiPJkal7mfi5AP2fQx4YbRO8Yk9ZlAkYKcSCgt6VwuBa9+ZwXcrgGiKTtdwcBHJzGMo/TtQm37CKWQxbJDxmNJgcFhzDGs2VYcpCh/gWuSslIr5J/VXtwc8jBgwiYaEytWem3Jiy63xZjSPPPK8lIszCeYX7EMhFQ/H9Yj8hmzRQAhh4bwQ5+hPEdhwPTFA8UatvDh77UvVkijZlT1RGBgHbJ4olFAbDdXA7HufFU+LqffHOxutzFU9UAXTpseOhoIaS0Y7OlFnvXfhcCq+FbBdCRkoOVig3h0+niYgzQJXlioN+Y/ktvu3Fm2XbUoTkCSjc9yB3JR45tn9Q0ONI2ihBXmofD6PSTU6F31lG6d0pltuTruLmshqzC0nFJw39jyhNUrI0OW3bkyJfUJBjEzr6gVQLEa0G86uoJyo2PoxiZBKVIYHuSOtcL1TwhayKhk6j8fB1tsUBKZe9GMLSYzmcxwhZsYKYJEzbI3ZRwqp6hmgxGQgCtteGw1BOSuk+MMLJ2yt50YhcWW/c01bxW01G8PiRQntKkrp034tyoeddIjW8jXpMrKyLO6KEvKLA9yt7mQTiI2xmW4m0WRcU2guu3C3aZcvRexLpDmMnQBRlYhNUb+saZsPAZ2GfqNGGTKIyJNCwnbDJmr2MlvcWIT5WL4xch/Ge722zvEEhb1vJSQmujmIdqiDDUAyvyQfvFptjHMrr5OtMhN2HsgeG3FPXRLpMMQ6P98QcFKEwFhtcWYNBj2NRTPEMkXIEyB1RpmxYGWqTe1WLf1ZNGbYKzF+MULXrsDMLnc/KQgq+krEgEjgqqMi8eX6VTdpYOE/dQ07KfSuJkPtp6DY/l5UFi7yrkYOGpX2iRhkyicqQUHsZxO0EaFjEkDde47But4x1PCmeKBZWYm2HklWFmTLfuThwDxRi0KgngOiqeCxKAPtpQvxCIZPOF6Ecis7g40QkqIYM5iyEk0SWC0xECSdH9cCLanIotgd3/a4ZD9oim1gwIlKyKzThYZMUkQBWCzLELjrBKpke7z+89sXnvdBIVITJu/XM6sX+yU2toO1WzXJ7j6rRRawyicqQwM5Gqr9VTjHxWNi63QLns0HcFA7lTcj6aj0lHYGpd4V18qWBJ/BFhRBBeKZsNuiIkA6c3Sxlc08x5MdtL9hUXHEmEhF6r4rxLha+cPJb6K9Dw2ZlGXorinLKfkWsrvuxwWeGeY/C4Upy3ylCxKAuoqza5zlR7gtW8Yo9q4TfUJ0L8Byloky8b2BkzGuvwXAeDc/XimziYymxVs+FbK1Ppu0HV8lnHW0YP9QGDDUuv/xyPPLII9i9ezemTZuGT3ziE3j7298OAFi3bh2uvvpqrF+/HlOnTsUFF1yAc845Z4gtHhrUSZRTXoutB14eM5xX+sTrIkJObPWWWqd/q6BaNTSzTpcO5gH3ijRTJrq4Kg5CahiUA4hdk5irXxl4ECA+jIjwTrjOahgv8BLZSwMU81DQ1grEm9teDpHao6uyQaZ331mojv2EHg8hYVT2/AXIpNleAFRO8QAWCZlne/GeEk9vUV5cUMKMKeuy7SjdqlBuX4P9TKlqMN5mvQ8hpda1wvch3nw+DtjlJTS7OGGYYcyTqI997GP4u7/7OxxwwAF47LHH8JnPfAb/9m//hqlTp2LJkiV497vfja9+9atYt24d/uqv/gpvectbcPTRRw+12YOO5379Ml5atxVvfs8MTDxkgnedxryr5X+9C9Y1R4+fTxWang/UYb18XE9xyTfbBqEuOFBKOuZAB1j2atkXpAGxoLsYbQgvm7Z1iZHIgMeg+DdpkCDgACzLEUvc5ioRPcEEZ+qhYDcrEoar6Yp7vtSdrJX8Kmk8Cv3O7CcsEQObcFLi7emy/5ZCznaxLyeFUQPtDXx2fmdt01HSnrCFiKsruFt4uDmpLbfM9EQFjn2peZzYpNltLO8TNfpxzDHH4IADDgAAjBs3Dnv27MGmTZsAAO3t7Zg7dy5aWlrwhje8ATNmzMAzzzwzlObuE3Rt68aKL6zGI//+JFZdv8aUqe8PQt7QgCcqnvwYIU2xvoRd98rrTIQ6TpQZIvNiBAzn3o74bLr0ucSi3NYaG+yCIzDJb6EbaSokcUCdU9f9yMOoTiXJMxT3drDfpswvuLdKOUqnTFYEVhNKZGKDecBDoewSIHlLlZwoh0Xx/avYzbLtCnq7FcIZmPHUz1sMvROkOdY3kLpuQfBMP0tZxBMluQir3h+2mHfPB/p7W5+0T9Qoi/ENC09UZ2cnbrrpJqxbtw7r1q1DR0cH5s2bh4suusiUvf7667Fy5Ups374dRx11FM4//3zMnTs3uf0rrrgC9957L7q7uzF79mzMnDkTAPDBD34Qd9xxBy688EI88cQT2LhxI9785jcntzNcseX5HbW/21a/BKC+78cAauRJ41Bxl3Nxn6fIbCXWT0i5A4XPcmhG8TxIhwaDDoiUtBFVquefRmYUkliUc/NblP45RJDVsF8ElZrHgFNX/36SZ1LZTT4EYjvfOTuuKmS6ZhJhUdQFA/pwKYSz+LkSSoov6qIbVjo20XBe0a5iddI5KFuIDLRpyDGiT0yinmyvfbYq0umLzJCZlSrhFVgye3WZnig+CWIRiXrdaNOjDsOCRHV0dOC2227DrFmzMGfOHCxfvpzKLliwAI8//jg++clP4rWvfS3uvPNOLF68GH19fTjzzDOT2l+4cCF6enrw8MMPo62trdZRnHLKKfjc5z6Hf/mXfwEAfPrTn8Zhhx2W1MZwhtUh9PWU34boyxMgI7Edx+O6YrMZpo3YJAzAA3LWBe6K51AIGQLejqIIzxEpNWiXMy9aQmhGGlQcm9xzySrG4K6tlhO9aAIBpJsrus3F7nuFe76Y3mBYySh262iLHyrcdPYsNx1fs21RntEyJ+UNKivhGAH05OikocHZGpsMBDoHvjil8P1a6gQl5ohSwnk6KbeVsUnzWNziYFiQqGnTpuH2229HpVLB1q1bKYm6//77sXr1aixcuBBnnHEGAODEE09Ee3s7rr32Wpx++ukYN24cAOCSSy7BmjV2aOq8887DxRdfXCobP348TjnlFNx66614zWteg+OOOw6f/exncemll+K0007DSy+9hL/927/Fq1/9apx66qmm3k2bNmHz5s21z21tbQ3fi6FAyziDRPXaL4M30yBbH0RX55WuB2ZppH6SJ6oWzisV0krS3keKNweh0GBBpuQR4aRUSciVvEehAbFq3Cu494ERMrvtYi5a7VpsUCYjhvr9lLAL81BUnd85tj9XiHCW5FoUIYSMr4up3LxBbw6VIeUpUBcjSDmAzCNMnxn7RlS8H9GGtKXCwH+qrhDouxOerFX9C7Tvq0ZI40B/7isIRQlqTZM+OxiRcHTu3NKFp372Ao566+/i0CMPprYOdwwLEqXN0oFVq1Zh0qRJOO2000rlZ599Nq644go89thjOP744wEA11xzTZItfX19eP7553HooYdi0qRJtTDhEUccgbe//e34xS9+QUnUsmXLcOONNya1O5RQPFG1TdbYao3QoG+9SGx2an02G4x3JH6d/n+Kq7aC0Q3qgbGJVkgZn+ULRKSI0CjGPBTkBinH35SP3eByKR6KIocqjZvSuWSgvyEPIVSNv0L9T3FADHlEHLsMOxihTgkrlWXi5NXVRZtjKzpLhDPwXA18DBBvviqSTLqKZDJwr2heG5sU0Ve1Iv0+LIzvPgsCh3LeVVsv9/QyFgVOnAtl5qXQM0nIUq3ASwMxVOyVufPLD+Pl9R1YfcsTuOif3xtodHhjRCWWb9iwATNmzMD48WXuN2vWrNr1RrB582bcfffd2LVrF3p6evDTn/4UjzzyCH7/938fRx11FLq7u3H33XejWq2ivb0d9913Xy1fysK5556L6667rvb/BQsWNP4lhwDWaeOeJ6r28rgvycDLA1Pe/dtCLHzXaDiQNlzo5Nl5XHRwpbNbHs4rNc92Z1ZIW2l2WwjNBGe3TFfcDu+zFNYMKCupYiyjqIt52sp6Y2eqVTzDSsoKeuxynZwPsHPv6F1bvsHfmTW3t0nzgs83hVBdqRHzz0geXXWvTALxpreqTmrkCQ97HoRwnuktdWQ8XQHbufElwbiu4sSiwVV7wf4z4ub3932qknJbXWij5JfXdwAA+nrUF214Ylh4olR0dHTgiCOO8MqnTJkCANi2bVvDOr///e/jC1/4AiqVCl7zmtfg8ssvx7HHHgsAWLx4Mb7xjW/gH/7hH2peqdA+Ua2trWhtbW3YhqGG6YnqdXKi2D5RA/8GRuF4OM/WyQtQIm08T8tWEwwFsTAPsSesqygneAyoJ6DwdyA0IxFA4vkKMQYpcsaIj+t5EAgE9a4wsN/Q9Yhw4207SjJ1ffRRd0Jw1BNF86bs9nxlRdMF75F1340QmRA91MgRUGqPvjt0LzNHMZ3wCM9Mqb1CMSMiTjiPh/EVmX6xqmuTaxe58dRrR/SU9Rd+ZPO615xlAg2hsu+j5LNK7/QIwogiUYAe+lNw2GGH4atf/Sq9fvLJJ+Pkk08etPaGK6xly+7soL60VXupaP6Jed29GJCtiZCOK4TCaDfwnYMTRNa5SWE6V5llB5/l02NxioN5iEWVCKBNWIOvEiEGNIwqDMBqyE/KzalwD0XdqxA6OsUmD5aeAZm6nP07u7eKQvH/V9xni8tZ8ENihWusmkKqQ+NylYgxMsneHZeIGHVdOenREscOLYxPZOiEh/Snji4+WbNZqeJZDk1i40dqkWvu99kr6HmoIqv/RgNGVDhv6tSp6Ojo8Mq3b98OADjkkEP2t0mjAiZJIVsc0I0xAy9jw+E8r8xkUaGrZrslj8He3i2U1K55j0jjjm7FY6CGCCp1FkVRYa4ARmpIZ+l6j8r9K/t+hADC4WOW4S5CpC1CalTwsdWzvrHmyESC5gKJai2TnCY8ERZGLT3vNORsK6YnCYSId+mZMYt9os+itvRZjk8aeNiJe0s1j1zh+6Ee1gz9tvzg54IM3f1cYFGGTJVfapikFetEN06GTaKkEPMwxYgiUTNnzkRbWxt6enpK5evXrwfQv3FmRuOIk5j6SyO7d0vXLP2+nFWXXZcOICblpT4+NLsVPSIhOxvSpST2Ajycp8xui2qk41UCs3wyANPB3FXEQlR0D57iAFX/r+pN5N6OeAjOEXMMqxaNKlls2xTRA5QWP/h2xcmr32hcLLShqCXj6xkg3uX2qFVUxn7evb2Witep145NUux+zP1tlFW5g7tyN8QmfV1S19dU3+zc89o2C+74ULXLTcLE7RmJGFEkas6cOdi1axfuueeeUvmKFSvQ2tqK4447bogsG+EwSYrzmRxAHFwqW2NeVptVX46YlPrS+bMlNtgV1RaJCAvnwZRRd1Sm3nISzvPCG4pDRPFqJQ3AgvFFBJiINF4EBoMoEXYGc2ZWo7u7k/F3r9dOIGSKh7MSsEu6V0WhwONQlFM2HZU8Q2pSvMC0KnHPa+Bn9sNrMVT45IKfCGC3VySTtC+qCXqq+MSiQcIRCufFJqj+s763gB0aH+oDDf21shEc4hs2OVEPPPAAurq60NnZCaB/j6W7774bADB79mxMnDgRs2fPxkknnYSlS5eis7MTRx55JO666y48+OCDWLBgQW2PqIzGoGzNz8J5+84TVQXvrQWSZVyocajC6qGU8+fKoRlStxG5iIw//jJmwHQRwhoMb9RlpAN6FT7m5iiVWyyINUZqPE3FUKTdhKaKDIhROau9kpcpqkZN3xEHc/c+2DdCCfkNOMiq4I+773E0mwskVHuG2XqKDSqPTMDzWntm4Pw+AZJrFbufYitIXbsaDudRVxRtrnQ55MUNHdelRiTGQjhv2JCopUuXor29vfZ55cqVWLlyJQDg5ptvxvTp0wEAS5YswXXXXYcbbrihduzLokWLmjr2ZczDelfUTdYCSoKeqGLNwMtqNOnrTOlHpHAeCSuRGaIcViJfTtnAjxri2qXMboPEp+rLeBJMGTXRasJHnCOWyJ3aAdPBThiAi4Lqbt5UVXBvMVsfFRPJluQBVEKyA7pi91wJUYmrX5nntUz04+0FPV81Xa7bjhBONuFhTJhNUlwx0q+x95l3DWL/GiI5VrWByANT5xIk60gvU68hN0IwbEjULbfcIslNnjwZ8+fPx/z58/exRWMH5jvG9gdxZZmHqiAb80RFOFTwZe6/LLKoQqfLwFbgaC95gNRIh4wKeQ+FWbdvk20792oFb8SAVMAjVzarLmM3WPG8Wswwu9jjPfFJfsAjV5BhngDnBjOnAhsQaQhYij1xObYdBIVLMkrKJMOYIbw9xAd9ebsE/sAXrmr3od4cpdT0+ZNCwIwAypO1BAJoIObpr/fNVuVAMwOFbOGR9274WtxzWYv1RyJGVE5Uxj6CSXLIS+K+PES+eDHqSbIux16q4mV2gDF5ocvL412h+p9KWEnbBbmBHIpYexVpuEBRKuUctFKkRAi7aDkboRBcQYoNGKrHqUiWBZJBvYSuTCQU6eZEMW8pHX+DhIYP1PX69m+jQuJ2ARIvrXBzVPl1y39XAu2VHxq7mL9frq66DA3nlWwnnl5f0JQqPWfKhIeE8+jvHH0A+PXwiuuw+tgRXqzpkeyJyiQqw/YEkU7G6zgF12+zhCm2epANfNRDBdAYQXgg84XU3GywgZoQEWVi7v8YRV2kLgsfJhAtBd5vQHlp/J663gJKhIVQJLOJholDutiAwj5ISf/lRqnTTiCcodyw8mBOJgQOEYlwSX91HnuY6ftVlAmQu6KMNAERiL77BVlokO4TVb7vtWeUJWLD8drR+54+sWg0nGe247RHN9VkZ6tG7Rm5LCqTqAx7xtGIx4mUh8N5MWZF/o5cD5EaK4dC5D22HoRDYtLmfAJ58HhILRdItCuFGDQINTlbCq8pnqFgjKouVTKFkgzbXrflOndlg7TuTVSgJeuruuJhVG47J8LMJmVXdn0CYtlU1FNmbYxjBM+TLD4Pgi4I91P+bcjB4/zcP4E4FclMgLOE+EyAQ/nlxLbYAcf1MlvvSEAmURnE5Uq8HPakP6wjQoJSVmvQPj4YVip4KFiyAhlc+Wy6KEPuWQiMPITCG5Kyol22SaFVdyw0w4mIOqgII0ujniHyTPbbZZdLpM19FhTvJfl+dJf7EGtjYN+PQX1kJF38peDvrEIMTJP2NmlPGiRCRkJ+3m9YFGkwFElM2is3YHugbwi8h3UZ0h4lNYV7TiQohHCed//o/lFa0yN5dV4mURliOK+/gCWcu4mGRR2xfaDi9oXfRNIfGbPNmhSPiDFlpYGgIELP/yobppzULr+NioeshbGHgkzIa1Kty5QHDPs+8LyOsl5lJRJf6UdIoidXVCN4tRrcg4c+zRX1+9nlfi4QI6Zx8uq9MsqEgIUPHfnYLtxpRCRAXgmKPF9pr0XJXwyEIun7xUjbgD7DpkY90A2H89iz51QLRvPMbrdKrlVL/9TFA0QsIjdSkElUhj3joKd0k3JTL/hF4mkx27deupK72h5UmMeg5P0PvLs0aZwOYk57xY6yfMGWkVbn2Xrcz9q5a6pXKK5LSbQNHUBMzQr9PrHf0Auvkb8VDhUK2xbIubaXlEba1Nww+0J5kKZhVOK9LIESbyJXqVAyST2AoWeU3vqqp6e/lJBJxbXshSLj5I6/E3a5q1bbSsUup49PjGhV+TWNWNmTLsatyjqqRtiPtznckUlUhjQzoFscDLw8gZBcbB+o2Ozfvmx3lFJydoFEeUud1QHDlLE7Fk+Q5nYQEafzVvZHUsIbKodq/D6E5G3PEAtZ0iT8EkMKsShyqSglhPxKcuQd8O5nwKy6CBvwA6qE590PMcbjT5xoOah4IrZc7EqDISp10qA8o+V7VZzsaERf8VIXyaTXnxbFhHPx+DYItnnxcF4AVedf4yIN/7vl1qKhajWQPjDykElUBvEEEWEWzgsQsdAeUu7fZlnsegHhxPLaVBn0KAnm1SJtS+E8N0RgyfQ3SC4UIbACT8zuUJUdnEOQ+j2HGDT8FQV+JNteZTIiwWB5dATlgaw4UMchJ6mXGzT/dnWZ75YX+rTbLpJ4D0UyybxM1GvMJxZs0iB5aNmkgfUvoXvl2GXKuPJsBYtAANmELtY3KjJsX6d+8YFrgXHBe+eshomOKvz0j7xPVMaIRoAAuTLUExX0NoVZUNRTZdRnHXOwByx18ty0GpST0+PN+X6ARjtKF8wToIQZG53lJ+TmMC+GSP9oaNAbNBv0DPE9oOxGvHwu0lxZF3N3kAbpF+Rypd8gYfdz6wuoHsfILEUSM20q6SHlRNCPEtvPH3uOyzLcGBaKLDuGXMJptOErs20p2RVvr6x/oBn7Ovn2ESMCQlWz1J5A9xnhvJHLoTKJygjMFgwZeSfzQpn5ItEPA0V252UVUiLiVSl0unFHlDhDDDZYECTlBUierxKn4T0Pt73QyZeO3XB+15IucqEImjjvGm/romFUYlXRcUIHEtdrwtqT9ufiocHSWX1q1CXKyMqNNcpDQpKcZJAGVeJd08OtYu9OOc/HYcsxB6DLANl8Rxjt3K0zym2S9znoLrWNL33D0qIMMkkRFoqUGyCsxrlu962+KfVqgXpWe2RsyeG8jBEPugx9AGJiea1ugEWZrwebWdfat2WDZUB4pdXA56IrirnWwPtl1jHT/KpKIXzo6bJJDdjvU2YPdnsAP5esqCpIAAdkzGKvvRTPA9tOQCFa/WLsPlTragYpzKMlVHOPiGO4yaE4WQ7Zxbx2ZWXRHLlQcrZrPvOEDlxHAApZDt2HolhNrnzj6bsqegCVHDkaxidzhkA3I0+eTHPJI1YNXw7Wr/32oQiB+9vXwoOcLNYLq/5kPCeWZ4wkPHHPc/j2J+/CIz98EoBNYryEQPJeCRyKbH8QJnEsn8SqwjubwOyPhsQKMkKoRNsFGRoxEGfmNDWnwXyT8P5B9cFVys0h992PUMXvl3LfyyOULdJPXqPN0TCPR14Vt4/iESnKhX4b4b4r3qOK8vwpz4Kni7MouvVCsQ7dJqDwd8jjU+B/TIzuzxVoL5bz1YguusUBIfH8cW8wnFc7ScK+HnT8BK6xA4gb0VXts/pdWeOwQyZRYxD3/n+PYveOPXjolnUAIgSoXtL/X49cVYl84VrEnpBLmSogbu/gkrPipJtNEYWZKz0AlpAazyNCoHXeqi67vjQzL+pxlbFpvmCUex9CnDPWXDjfJGpKuT162x0PRdGbKJCa8uDqsCirTZdwknvKQ2JFssJhDbwVaM+DzCYF9lrmiKFJE/uhqbK4DPG0ue8XO5KKL5bzfkS7vAh6AHZRxhSh96QauV6fFPMJanBc8HKaBhS68oZ+M55H7BwByCQqA309vi+V7uNhcyjzjQtdC7nTvWYkktePcDivzqLoLsglZXF7yuOOc88MPW6bZc+X3UaDXMUzjI7liu0OqC7hrD4vrYgOGApp26vQq+xIsYT3BslksTlXrpRrR6rS+0kHYDe8Rj4peT6ud8UyJuCtcnXVROjEolyHvjuhla219rjn1duaINYenVjwH70sVmhP2Dy3UgmtArbt4jvmk+c4Yjh/jwMCVTR+rUbKiLxT5obvogfOD2NkEpUhnWVU50P2DMTeJ6r8r3WNXS/P7iLXWYdEJjvhyAXruCL2BC6UOlNPmd1e2L1dMWV4jhJjZIHiws1qxqvlkRU6ChfkbAv954SGNQfaKysLhl3MBgsiCkMSvKD9zREfk/v7xR8Z/iz7CWRRuXJzNuGs2ebYVG4qEAIm9z34iEbue3ATV/KM0v4nFL5mz4wSAvYIoG2XQl7pBMvSz/qREMmqRRB4x+29crUC3ifVy6r+pC2H8zJGKqp9VfT1WgTIfuvVXKlSnQBLkg40Zi5h1wi4IbEAi2IDQWmmXGrQtLMi6pKSc9SwkmR7PBRUajNkU4OhkhTvHs9dYQMUPeK2MRnXJpFo0XFMvVcVQ4YNwCEIOVh+0rj/t09wmS5ih2c7ef7YuxokK5Eb4ZHlAgEsee3iL2ElYHtZLj7BKqoyerC4LvI+l3TRl62qXLb7VrMhR5zMXFgaiKfD80QBm9Z3YPkVD+A3t60nRg9PjB9qAzKGFn19VTOcx9w41F0beuFC6mMvudVm4Do7HqGEQngjvOu31nFVKpW9syvHxAJpazR5lA3mIY8IO4+L34d+klEtN+GFSWiohNjOpXg4jwux9gIXmauGDK7Mdp9vuje1bERoAHbDXf1tBjNleH23zaJJA3+7ciVl5G8q4j/vrk2USAYUCymANG/KBaXL5FGgDbqXhGeU9g2lxD0yoQP4Ct8mwnmx1W6p4Tw+6bXrUE+UEdFYtuh+9PVW0f74FrzunUdi0tQDqf3DCdkTNcbR19OHPiMU1+fOFIhXKXS0S30lB++l6JWIezfkobDKWf5EUK80666TGj+kWd0r4ioqdIJsUAkMUHUnRqBjTkkaZ0I0rBQnbeVQiavL/g3lMKrlzSnIVVxdllBRTwCeQ0QhIipDqqlxyAolBoX7rh403ejvXDasoIuQ+FBeUYDEmzLOS8E8r8VcNPqMFptj5885ZIUmjSukxnmuyCPqhRBjtjecbBciSZHLwX57oJ7d1Ulhuf7NNv02ixGR3Tv2RPUMF2QSNcZhhfPM1RMD8MhVoY6n3PnXabekgFQNyVgojxWsN0Wd+JDOoF+XNphLM1w2YFCPCLGpqCtge3mmTFiNQGg8XQp5LdnkDFBCAjCYN9EhbdH75YbgCPGR9g9yBleTtoXCh6XbHg+bBTfuJMRb8Zq4gnTOoOhitns5UXYVyXmpkDvnXvGQbHxiUW90QCxATBUwFkW8xsHnwVAV8wxFj0AK3Qer3yb16PFfZFzw7HI9Z+r9HQbIJGqMo6+niqqbE1WFsTP5wL/2lIq5bdm1Yluxclu33w4Q6GyKlUvhNXM43KvLbsOf5duGDnx0003odxPIQ6j35vkmRG/Rixa6V0KP1vCg4oCfLRcgdwPFKnlg7aleNKarWhBR7gMh8fwZDemKk9e6cUY7RW+pSqqjNpUbpESkxZYJmF4C/3lsg9VnVCKA7NzJavk5ZquAq/Q+2G3TlbsMEZna5cDk11JBvVSNcKhqlZ/Buhd0gjQMkUnUGEdfb5/pieLuWqc4NKMJvMhs4lK0QQbpkJhXoX+mLHhz6K7E5el7raNkhoX6AzLbVDwB4mQ6KGia5oY+mwhvBBtTPAZERB8R42bpDLBojKEs4PnywjyRJW4B55FmXkmXQ4OZt4N4CV2CW0/zqZryoUmD6000ZUq2F6vaA7erjHsvizKEtAVCg9QTlUC8ua7iPSW2C96x+PEs/IEK9ulGu6WPgbSO2mdzs02n0sjhUJlEjXX0R+58D0ojuU+1Sm5R4FrBtUX0kb8Nne4M3iwnHaVPFuOdvDtAMTvrqrQeocyhyPcryoUIoNJe0TQaplM9IoXqbFAJyFnXqYwry4hdkSx7hrEmA6RGTfyPCbHmgr8fGzjj3y8YEqvpEe3yGJLR9kCbBsqq4hOeMmuzdQY9vYJN9J2HS1hsxsIPtq6Yz6ghaDZBXW3s/bImkLFwn32V1yUV6+kZRrnXLxqJ5Y5nagQ5ojKJGuuw8p+qff7ZRrX3yjvzqFq87Cov/kPaj5dHD0gWPCL+pHXAze58n5Kc2LlRQlZvj8+CC7YLx2CUBnM2M/ecR8X2yrZbXjT/XhWuKeTBNGrvfRAygFUvhtkmG3hCYkJoJkQma/c31B7jBbQ93iA9RJq9ZwG3luI5oTIhslxSQP4mq9Kq5LkyeoEBId6g9IwW4RJv808aXvO4pLGS0f0s5UIKG9DKKV+kDbfMvFS7FqRf4bIq/H0IPaGRw6IyiRrjqPb5DzR8XoXgkthQOROPyjegsNTZEBVezJ00Qztdm/gooZkBOdsuyyhXxmmPtFbgUJKutNmeTUylAdhld4ZW/3KcGShHsMhqiyKhAdj4Db3QJwNZ4Ra6nw2H89znnSX0FwmgEQ5yIUTgvAeLemrE2DRfnVewSUi8VnLfQiv9ypMZ0YsmgO1Hp4Tz6DMqhvOCE9QQI/I6n2r532KxQSBZbu0AsicqYwTB3rPDOzTYfkeCYb5gxC4yKgRDQu71Qjk/1b4kFBj0G5vlh8N5+mxtwKy6jE1WKkEWVZiZx8Jme7WZjfjTafuSO/hYumw1vE3HAxN7DlyEJrSSpyY4mDfGAKV7xbwmvjrbptAxRzVdoee9KKWNXLE5g+clJKSGngdXUgY+ohbuu7TSjx1sXX7BOIciBCkUzhvoQ0KcQdsfjhlVkLFyOMm9CL9LvONmuVZBsmbJOmXWNjsjBZlEjXFU++A/5OY+HrW/SLmlnAsRdYYAEWL5LRUig7JMbRwIfQHBzV7swHk4L3CUBGuOdJSh0bWmNuAQ8Zo2bHcJJx1aSSiSboMA7g0o2iNEBn2PgWUTKgHCYs/yVVjPjR+BYz9iv3WOGf5l8sxIzg73mYmYFfbAuOzOYFHkuTKv1URYuNKW9zwaRS8aa46SV0PPgDJhkYS0+rVoXIB1SN0MI1pFb1WRlPYNXCUTuVrfzK9ZNflvw697RaYnSmxnGCKTqDEOO8nPGCTYmxV6GUPT+tpLx17yQAftC9f/Vnqkohz7Pq4qNoiVBh86WlC7qsR2Nob1E6TwoF+p/cdS4OiKrRILDOaDiVjn7IGNcx55IF6toljJ42j/zmp+FROkzj36QyPwLBfkCHkNhagUj1yjpNrbsLJ4DfYHJfRe1OUPxgNmi5MU8iy477zAoRo4GSEiAzi/oW0XG6mpR6vWwZI2Q+G+QJ/Ow3Z2e9UqjDxag1OSjYpHAjKJGuuoWpOkKk384+E8W3fsWsgut23LHlcVSxKme0kF9NKE40a9CoE2yh24GJop6WKCrGMmM2DWeXuCtphy38PxvL0iAQl6hiALfYpeLSHWVV5pBXZP3d+GtK3cT1GX6kQL0BoCRkTiNvUL2jfLJWSSMsaiqC6iVoqPgn9J1h4xinpLjSbt9uw+i3vhjXsQ/am5QKjfZT8X2z+qrMMfdLyfNnJszXBCJlF7sWbNGrzrXe/CTTfd1NC1kY7+0J0/q5A8REDh6bfeFn4tto9JvJtnHYmmhDtgCMkoSrgzc6KreCyF5LKnBx47imNhl1A4z1FkzZRDK4dCM3hTyJWJkTv3XgU9kg2G4dh3FHvBqGfSs93+W11ZKH07IcwzoM9C/Rlt4LBmK5pnzyuiqmr1SzaR9hRFcL85IyK0Ag2d0fkAI4kF461tZGpS7LDwkk12XToXGCA7kXCeTZQCDIz116RKP2HyyzySlHOiRjb6+vrwla98BW9605saujYa0J9E7pT1wZ8pRGY2diw8QJRq+uIKY1sccC8TmwEX5AKdGx+gSqo4aoNroJcnM0k6HrqhGbO5kNek2B4aHuxKZilhVFcXGTnLtscHO2mPIRF6tDL8HUNXmdrgykKBxEuDufL8BQguI0g0XO82xx5m5dkLyBRfL+k+sC0V5NAR6WeCZNkv9z4r76qw8a+Zl0i/mvCdAwTLeyZYe1XjGTfSReLhveGL8UNtwHDAsmXLcPzxx2Pbtm0NXRstsPKf6EviFpNN1kplAYKlGSiWAeVpARlci+QhGEWg07/yQED3gilrK5TbuijBcDtmr9eteHWkTRgD1pYgRl0a1NowSvetMEDRAd9b6ccGfeIJIANdEty2FW8Oq85+ZwKHH2mhQfruFFbxBd4vapVChH1/aaGZqjEBCjFOoT1XRnntVfcDNcsmZEVjpFMbGNGKcKj6pJhPUBuZ/NY5lNsHWvrjWxyMHAo1TDxRnZ2duPbaa/HpT38a73vf+/DOd74T3/rWt6jsP/7jP+IDH/gAzjjjDFx00UW46667ktvu6OjA97//fcybN6+ha6MFZpJf7T+FstqLxR52kykFGi7rteySIXXMRYTiXcWZndB2aamfbZc/UyYmshVuYjivNKYoqNSFORHRnEx8Zk5Iogv2HLD2av8J2aSH1+rltlAw4bgQiqSkjbVXQqG9QLK0SyZtVYJMEBqppgKCZ0hK6Pd0GWpDvw3I88fewQr4BKQkx7x25R+6YpU7jUpbqSi5ntaWEZRFBdoLhB2ixM7oA02+FNtsM8GjPFQYFiSqo6MDt912G/bs2YM5c+YEZRcsWIAVK1Zg3rx5uOqqq/DGN74Rixcvxh133JHU9je/+U18+MMfxsEHH9zQtdGC/vi0/4Ibr4+tYGDH8gCHMsNxEbXlUFz4ZWbhDb4pnT+7teXE8AZFkUX5xe7fDedgwb191b0igdm0O8u3CGCI+DBiQD2Aru2R+x4Izbi6mnEPlcM8gidKGMy9rSwYKsVcNPb9av+JqSL2EiGnoWLenhTOE7yl/foIqaYeGFuv+zNbX1G8VeXvR1hUUE2V2B4iy7Uf2tVVlFM8ZLYdRZg2NUFGwn26U07GgapZSPYmjLQ9XDEswnnTpk3D7bffjkqlgq1bt2L58uWm3P3334/Vq1dj4cKFOOOMMwAAJ554Itrb23Httdfi9NNPx7hx4wAAl1xyCdasWWPqOe+883DxxRdj7dq1eOKJJ/CZz3zGkwldY9i0aRM2b95c+9zW1ibXHSrYhw370wf2TgbJEIuTF8poWI8NxGZZcTYW75D8FTiwe0/FAwPYAyIKg6tTh+eSxL1oQVJD5VgnL408YDeCEs6QfzLihakEyBH1WkrhSn5Jp2JkEBYa9O+D36o3GaBepqKc/cx49yqWwxPKm3LUmLxAmAx4bYs3nqa80wciLkL1qOG8OP8ryfn9ZtwwLzQdkbGIK2sltLAn4IiKdPgh+bJ+f8yx7RsJGBYkSt3sbtWqVZg0aRJOO+20UvnZZ5+NK664Ao899hiOP/54AMA111wT1ffrX/8aTz/9NN7//vcDAHbt2oWWlhY899xzeN3rXkev/d3f/Z2pb9myZbjxxhul7zJUsJL8zHg0e8gJiwpxKGIIr+iUx14nyXvksihn7KkUPxi6WEiizKJcwwrN0cGuOLs1m+M9s4uSnCBTsIse8xF0+KhT+IIuZguR494V24vm7VckhOrUJPxoNxW6Lgz4IdDngXlXHLOUR0YJM9Y1uka5DTJdhh6nieCChaox4/H4H5s0wCx3Xxs6AQm0WbavKEdZlGkYC+NLiezW6t5Y/xpyN5n1bPJVT2T3LtiyEU+U+l4MBwwLEqViw4YNmDFjBsaPL5s9a9as2vUBEqXgnHPOKRGyr33ta5g2bRo++tGP4oADDqDXGM4991yceuqptc9tbW1YsmSJbM/+gPVAW7OCmLvVKw8wpmbDedby14bPS/Mmm+7I6ZMJnvcqyKDwHSzPl2U6TeDhsGbK5rjj2jRgkklEtPaKoONOSBf7oNwrr1ECNZk40p6HANmqFQteQmP6YsqVSDzs54/+hgJ5DTmiWFgzOElh9cmgT5+rwLtTDqMSQuYp3FsYfI4JYSnKCRtkhtIlyxMsu36V3KuiED1fL0SSLHtK1waIUgP9NudQnqyZh8tI2QjAiCJRHR0dOOKII7zyKVOmAEDDK+gmT56MyZMn1z4feOCBmDx5MqZOnVq7zq5ZaG1tRWtra0M27He4u8eahMmox7hS1fnXUhTSx17nPk/UbtcxSlqVppIa4VwygO8TVedQze3gHPSu2A1KCdUUzr2ig3lRjoZRi18wriucfF7WFYVKDGi0iIyIjrLiXktiUhTxohVFNHeO0lz4nhI58u64t8GS6ZeLuxPppMHTRS8VhIgtzoTH5FCB9iTiXSI1jiLSNxQ4lFkeao+TUv+XofcrEM4L9+lBdUZ51evj7TxccoNGAEYUiQLch3dwcdlllyVdG+7Y09WDl9ZtxfQ3vsq/WK2a0yQ6ESAzhoY5VMTdbHYmlfrfdJwms1u+27U4uNLBLhAS8wZFH0ooMjDJJ3aJ7wizKcA42WNRvp/2oFIJLvWrE0Bmi0syauMTI3YINMdm8KoHUJEjz0w5iZuTFaKKP1f0QXafLePhcglgo4NYwPaSmECE5aYL/YLwM9e/oxtOEsl5WuidKqspUkLO0qTIsinWjwfCeaF+m21RECRlhc9xT5ShZ5hiRJGoqVOnoqOjwyvfvn07AOCQQw7Z3yaNCNx59cN4/tHNeN2cI3Hqn7y5dK1ahXm2ke+CHSBL7qzC/cNA4MWKzZSKqFQqUfKlrfhxBwy7Q6WDq9uZRmabPvGh01uz3OuX2YBYGA85QSoqqouFluNz3mPfK6WT5+ChGV/UUEgGupAuzfMQ+I41oUBzLrmzTZHs4hyKUtyAt822h972knel+Iw6RCTuiAo8M6HfsEiYq74exxav6drzbjftEn0ektVsZ3tc1cTcd5VN1uiu5oF75eoo1fNN93Q20KfXPloTSWMsiUY/RhCLGhZbHKiYOXMm2tra0NPTUypfv349AOCYY44ZCrOGPZ5/tH/F4LpVzxuEyTrixXDBen/EESJYsZlSjSuxDpV5Hxg3QllGSV6m4bWyVL1j9t10dbvjnC0wuw13lDFQglRUqBIfZnsxR4QZ4pIMNmAIHsCSqlCD0jNDBjFDnQX2G5ZNtI0PjhWNhpWU++nqYjJFceLVCtnOkrO1591RxDy0rMEAWTa/pnOvpDwzdiBwqUHw37AgQuvTe8UmPA24osIsioNdI7yrP9DhEqaqrydGqoYxRhSJmjNnDnbt2oV77rmnVL5ixQq0trbiuOOOGyLLRg7Mh9wa+31eVf534GNgn6iai9e2xDaIiAGBgbqgo6WF9MxsAHausfBa0ENRZ1EE2rlkUg6WMxLwWX7hAyFkZHGUoYzoEuAPwEywfr3cHPuCcZM8T4DRXtgmTl6tKYbq+eoX9mVCZxZG9bjNqbaz+xDwTJrw3hvBfo0Jq2lmdU3seScIEU5+T8Pe4H5Vzr5olq4QaSuaJZFlyxXlF5UqBkiUGemrXfMvVsnAYczRqV5eMHwxbMJ5DzzwALq6utDZ2Qmgf2Xb3XffDQCYPXs2Jk6ciNmzZ+Okk07C0qVL0dnZiSOPPBJ33XUXHnzwQSxYsKC2R1RGANYTbWy2yWYK/EDLwEMfehlZlVr4sABphqi5C5ROsDQDpr0bzAGx1KQ3I7WNl8dN+hUHBnOuyL3fdmoO/y2l89KoSJCJGEa5jZcHsWhytmhX2STOSumYX/s74OJ0SYblvQwO5ozp2+aWwRcjlFaQqrl0pp7ANUJq2NQi+DNZt4F5mDwUBInrK7RTfEkT7Yuc36Yo11et9U81071ZA+kbWL9WtMnIB42H8wwy5P1hXCXkyyRM1vDieZ7cz/1lvXv6MH7C8B7Xhw2JWrp0Kdrb22ufV65ciZUrVwIAbr75ZkyfPh0AsGTJElx33XW44YYbsH37dhx11FFYtGgR5s6dOyR2jzT0GflP5ozDc8HWLjj1+UsVmrUE3clmw6HZn01EQuE82hxsXSGSYUXE3Ob4Ds6GIpS/X3BSZn1Jd3ZL7SKCzoAv55mFbNprV/HmW7vSe22Fvnts5q06RJR8Lrc94/eh4SJDl+W99Jsj3ocGZXxbfEGXPJRfL+edsCYNzn2nntAi2BYH5flOYFJQrcmoodZ+Xc4b7D0zhNyRCRaFy6lJm4q3tOxpY32fddOjLMq4Vt17iffbhEP540MV8Dowg1h5x8D0VbH8igfxSts2nPmZP8ARbz7MaHF4YNiQqFtuuUWSmzx5MubPn4/58+fvY4tGKbwzi8gW/N7LEHh7aHlw9B9QbF81XnJ2lh0dVMio4k66aQdOw4duewMDotWDIDCy+p28LeTKNOYxCB8t4l8IEs7Q4GrU9wcxW1epPTqYG/LOhfB+RT5pK4kafb0nw675zTkcw3kAIz9hMCLWIHkNLTSgNgWIvrkateRh4tDC5e7LWrxkfUdPyNYreLJTFiOEwnnMLu6ltptWwnnWo0A9UYH+PJROFbpmNda/xYFX6pW5Jc/+ehNeWrsFAPDjK3+Bi79zltHg8MCIyonKaB7mqgj/iY66gUv1Yc9alJeR0iwjn0o+hd1t3/3gDeaBwSfSXrETpBxKzGOis2mnwZjHwBs0CfERoht+lIcNKtKeWuAjLB83qZDlEPG8GI3m5tDnSqSuyr0CkRFD4tFDZ90PAY7BHRVkNFfgJYML7xcxKfT7FT2ALPnc65cam3/wZ0vKX+R2DVTy+wZCTJXmLCE68Rj4R3vm/Ip2f29u82L1i66cM7nfvb2b2zXMkEnUGIP37FvLTc2KREGIDYVmQ7GX3NWPEEGq/6msqKsEXAFsB2Dm7RAjRg2HxELhjeig77TF+3jGRIpCWlI8R6OdNJzvZwtJucuhWT4ZW8vjXIDZmaQmNCAWGyscQGxb7t33xs/qK8vHHr+Qo8pr2ZCtOtelcJ7GouITEJHgKocie2aRe5rkeSVNKm8YI22l72GM5vykCV+XezE0MbbHiGpQX/2zr8Bty007Gc7IJGqMwU7g84T8rRAGXizGoYLPvPEyOvWZneU8BFtnOVSidczMmwPSKfFZPnPnFOS8AbhgO8tpYDfGcQ3R89KEzrvkRQsxjFL1qinGwhuhPBI7J4obXzYr7pX07bKVSeEup0kzryjg+fJvqe++9GQ09wO5UBRxXVGWYYH9uejvTHQ6KIsRIhJ43pnXWNm4038efLrsPaOCl1pKdgrYUvaihWXc5liM28wZpeZU6eWq94dx0bhm/YRWOM/fQMfoOjOJyhi2MLbbVx7YaGw9cM32RIWmQnYd9bwqyzaPjDWRtFs2qi7nE8wBYqD5cljOV4gYSFGXwM8bTXAO3KtwMonVlnAvXKIVGqhNj0joWWYDNfM4FpsqH95jalJddkXyGjJJ8WIoni/HOJMIBz2c5QbrbZLBHIHHoaSKEU7hhw5cp89MzIOLMBGmtgcmDfGd4kViWok8e55NYdmwJyrSEEi/X+Xl3md3zDH2LxwpyCRqjMH0JHmzgIAzgnlblJfHrKdflzpmmqtQ7OTdvCJ78FGcWjJIRxny1NTbc1kUMaY0u1U6edjjkzvBV7ikeHYea8drMwI62LkDnUhgTVITulcBUm3KuCTDqqs5MRxO07jn1YL/9WxjKoX/Bol3yRY2S7FFyqoChheedzn0HiGvpAlfF/NSF+C+OyW91ZKU2SJrj3qrLJtiX5TkNjnNSLAXJBlN+GLGqvFMojKGKayVeH5OlPHk1+LkrsLSZesSeVGrtB6zV+ooGwxjedeIdyW867ehp6jKG8T4DN4yQ5m9lwS9fBq7bWaSS3zoLSWEk/6mXqiE2EgJJ39YzGtuFIsNPr6orzPgGap5HI02TVDeU35I6e/DdJXuJ/mdg7ri3tmiWJD4UF3kXQ0QreizJbwStQYNL5rXx0geK2HSAMf2Pv87hpLiWXumR8trTCNPthTv1Bs687Smw+iB3L7SSSzv680kKmOYwCNI3n4cBuu3CFHVvhbeZFMhSuQ1tioJ+8ow4hOKPNEDcyX2UO/grONz6npIR1lsj3pzikJuC/531GbAKIVmeHNegzbIiO9+V0ruCoOKlhtmD3begE/MDd1TBebzFwhF0ghVyAsqGC/vPxabNMhEhMgGn1EmRzyvoftgkGrPW8ruO3sxAt+v1IcQ04NpA8LDpTyjPPRp2xSa3JbKreuRuuyaGdUwymBN3LMnKmPYwmP8zsNatbflJ3ygoWheMDwRe1GN67QjAZGhvXdoJhmXCZIM0qS0WqkkQjrvgF31wZzb4dsUdStwF1mJS4qDRcxVKC4TcwfXqiUDcNtLhhVIBpFxc6JAfx/hhy7kykj5O65g8TuWenDykAZQ41AO0aIeQIWcQ3jeGyKu1HVXa2wQ1gUU5CLt7W0z3mBgp/gBAhhIZFfCedRbZckG7CiXheQDiq3YnVVkVc0kKmO4wuNCRmK5R7TgTx/qL5vOooIvcmgmVGyPhvOshkBzFbzcI+qNtzsuJVeGdxa8w2U5DVyI227Z1F890CFZtrsDIozOGeVOHkLORpAYFEXEAdbOiXLvle2p8bcA2EtqSrocwyLEIOQ9EniIr4/d92pZymwvIBLOd1JssjyvzheUiLctEhr52eTClTJRfBzIDQ17AMu6rOZCv7PtvQR9RrmHXbCppsIWlqID1N3EL3njjTGWFJuo1y0X5C0OMoYPIg9n/+QhPnsoXivXD01buEx03xs2SFntNkq0nMkfD1ERz4MXzgsr8hK9SdvyakBSv5wHE/H41NX5EiHyQFQpm5x63iNGtogtSui4BPdeleRLYlGVbo56iHSGTKo1qAx4mlPLlnE5jfhs1WUaJSJFEddr54v5XkLStOvNoY9A/PmT4Mf6TV38WQiRSdIkMYWnINh9UWObbVbp9WiUgMHiS1V4KSQwoh/ZE5UxbOE9rE7CHiNRPlka+NeQNdrhhW49MlMyVLBDOMmELdw+6wUVYlBUU3JFsbbKH8t5Fmxqbpu31zD7YrVgkxJ28dik37iaE0UT58tScVJTCehyBxXjfsldr0sUrXJZ18CND4SVGib6GgNsejAvshrFIzIgG0LokSncKyUkFiJbYKqChMzyojltxrsGJ7UgMHkqeRPjLIpHnOO/TTnkp70QqWkYduTBz3XiJM0fh0qfM4nKGDZwnk4rnCc89zU9fsiKT3kC75swUzKuK54Act5daAUOHXuEPAR/0LfaDMymGWkLhVyYU6E0zVfaKxlry3veIzqqmKpU1L6vO/BQPkYIi8tJ6YBoPw9qWKl4jd32EOzz54oCTmtF4k2edzqYh/ySe5VVKiGZsl0x72U4Gbyup1RfjImZckp+EpznITRJcVq0/mR71rmhVk7uBu576D0sPKPCSG3lRMXDefzLh/pt85rrcQIhVkZ9P1eXmjXskEnUKIf7MJr7cZjEijzU5OEOEyV71hJQVydt7mBnNMgOwpWJDxk42WzTC3dZ5YUqoQhBaOA0FQccFLXxKRQ2c+qwjULr17n/KLiM3mg7mCtTEwkMPKSN0jUaarXbq4kaA7HvtYuQO4+8kmdGQP+tYuy8aBYZzAO6Gx+fir9zsT32goET78Jl6nB07ntsQUmIQrF31VSEgXeHESRO7swKkgfQuxOmKuYeozZF+ms2KS7pDPTbpkpU/faqhg1Wm8IK8eGKTKJGOwTG73uX/HoNeYxqegJvQoBgldSVZn9cXU2mYnfyHnlgg4HboZpmOuRBCG+wwZwSETYxl3I2+EqycljJNlce8MnMnLn2+nmIGDKKtOdfswkZ/XE4ezdLnbE1QNAVL1rdrCDxURwsAjHwjLcMCxFvpovJIEAA3TYte4mIJ1dkUeS9p2HUkpryF5Ruu7RSmLdT+rqDFs4z7gHRZ/WvtnHkGqlnjSXeUGIMOjzCMfyRSdQoh7fqwcuJYu5WR27AcxR5+G0btDK7cv3PRjsS1qAUbgDKoZLATHlAmbWRKQauCnkw5aX21pcYkCs14v8Z4A5UFyGJfntESuIqAaOqcRH/NzS8R25B1G0XU9AAAl7CEvF2SXVNhDD4gF2ceFfLQgJhVvbnovnp7Dl2r9VCcJyI+I2SNgvXteTzAv8LTZxUj1WtnL8Usfy3UDiPphbYJtne1LI5xgV+s8LhPGvMMPRZs3RD90jKgXKRSdQYg+U29TfgNKYPfXV5TwHIzCE4a6kW/6F16eHCoZmyIVOCmxNFRgNlwCh1gt6Uy1DkiLmdXJRDVRwvmi1Sbi9A2qzcHD+MRXQ5YnWZ+ADsonSrmFchoMwMN7s8xBjrBkTipIYMUkViF2BRfNLA7jvofacrsghc34r1vKt8RpEN5YzXf2f3neD3gRHFukgDZMzwooWeGU5qhAmd+xuWFZtC5Z+G/M6h9tzyiI5gOM+42cFV1VUjv9bU75f5k3vezHBDJlGjHC5p6ustMybLtQpYfIA81QGiVPcoB2YiTK3hji7vAWX3JDRHxGmHbpwozcw9ZSZcLsKqm2pC+TSKLskzROCSRElObJDe0jqtUXKiiCPKH4CZx6AmwwkGzUmB/XwGvVqeS8AYzG0JS0Edpb3MuLL4bxggy0yvONBJYVvSHvU4OjY1Gpoum+S+z4QgCV/YXW1LnVrVmojWN7BJCiFJtceTzkGN59exIeyJIpcErxNgkS2BfQ1TZBI1xuBtcWAcNlytwmJRe681MmMIvKg1ifDLUh7H4p6ocmdqj8ChcB4lBoHBNTZA+e0RZlATdvU4HWVssAu5otwBqmHEbzz3fAmek9Dl0KNS9YXcnCg2yy+3azdScW2zxCruQEZ0FcgdfX8YS4R72xsnr1ajvveIkHhifDiHxdBVcf6l1Yk7MUBeWcJ7yENWlxFzouhB5wFYZgX6IppaQFSC7V4/0FRRRx+TMl8l/yJhUV5xtWqPJe44klfnZQxXuA+jtxOsxZgM71TwxYLdiYa8TTFPlOXhUhJ76dJjp9cV0j/Ks3zLNscmOpuqBBaZu0QkNrgi7kWrKKPFXk2x9lxdjP/xsTzEoO2BmnsVnFm+QMioV8sdzGNDpztQ+yobg9Vc4EcXo5q2fOBeNTpYFcd8/k7wZ6Ykg+hd90iGed9dwsmICIutBQhnMFRXk2GTtYorWBCzJzzcw67YZNzz4qSptP1L1btu6Wzgkj0GwP1O5JmziNYIQSZRoxzRgx4hvkd769mviXmhIBFgUZSUuX84nYTQ2Vhm2jL2jFp21Fh5FoWPjUR5omNryItGECRkhgcmGCoRBhXGtLT8nTJCISpTLjAgau3ZfwPkO5aeF96Y/z2sEFWxrdDeYvY9YaGn0HcsC4WJT03OYFHKc2xImqXUSVgUDNz34ITHSmD0CKdpYuMeQEIAix8qgeRzJbWAbu9i6jDsNH+Oqqc7pLdUzSJDge5/AN7WOyOIRWUSNdrhPqxOOM96yE3nFNEX5EIRotR/iV00SJt0PhuZsnmdW3zAKLvsi7PIkMVGQYj4FDs5FORSQhKF9qiI16kaBNC9VwoUz5c7qFgjZ8CrUFalhLrci6S9oiwZzVluTnDQpPe0+Ow1N1iwZ7QspJA7bUPYvaKCYaVGAroMV6h33w1dIeITmjRETPLnV+RGkHM1vTMZS7qMv9W+QZmAxJ6F0iTUb86rGrpIiJGZ7uGNGVXPvpG8T9T4oTYgY/DRu6cXj97+NCYcNB7H/LdppWt+7NmeUvDt+0l5YLbR8ItKrpunlLsyaucWC/N4QpZxDqkJvfjE/a9s4EdDEt61AZsqUsdcHHxC45xjTaFtexZMyQOC4/ne65pXwci8thssXfGvycvsBeagRlGlZyboLS3qipNJW59vE4O0GjDgtrP4Ue1y9PmzQ+HeayrfeEOBx7wVgh6frDnOPXMi5r+q5IFQDkM3EPdEWR03V13v0+1xw6rgyVZ9yUyiMoYV1vzH01h9yxMAgPEHjitds07HVpLFB2ToxDk0ozYvBd5Uope6vQviips9OHA2SgyULOFKONRTFxtw7XP/nByKZIOrx2osIdcTIIR52J5aRS+aYY2lVyK4ribrWiUQKvFEYyzDbi/4+AbjqIK4ct+FZ9T9as16yNyNat175xIDp/UBJbV/vJZCtlO9RSEySSm0G9pSQbun7P0q6ioTwPKEoEajqOc1eriwY5+ZD1rUoXgtUbg3DfbpdJGScRyMx6vcbXaa9NDuT+Rw3ijEb5ZvqP395H0vlK5JjL9qlFedfwc+DpArS01gthMdhAy95gGbzt/Kfipuoi1dRUWJgSNn1A3uHxSwKyoDaIMrsaXREAHc3JyS4oIYbbysCxBsl7JoXbJFSL56T2tqyOAKtz0iRL0YVVMqtFy98Vw0sA/cc1IwSE1St+6p5MF1G2QQ2nO/g3IbKsJkxnNq0b6BiCi2F+u4pA22fLlbsxuMe3n9WiQQYRjjVDBvS9VQ6E8I+8N5RpllwwhAJlGjEMXBv6/H2RdKOPalv9yXA6xXYkDAKuMEK/wWFwlYobDhcF7VEjHc7Ea7CHRczFtFbPImm6S9YocadGIoHbOCwo2QZ370XhV/G/u+hwZqFGynIiUORcIu3qAZ0eWElViYp+I8NPUd/AvylcCqT/e5ksOIPugGtEUZkdSUdtUvN2LCjXZVvT8GBG1bKOcUvXa1fsj9fpRFEZDf2e8cimK0czB1uaoId+V5U0U5+fSEcjl9DoJEKXrJHAfsccS4UPXrWwueRgoyiRrl8FY9eE+nz6Kqff5maOzNqr+sgcc+QNJiY7cU5ilW0JbWcPMIMeBvdcUcgF3y4BhDNBXDTwUiErDd0usNdGymXFQXGuh49YKiuFDoNtRPtQ/8NkFlcTSaE1WWDnjkarq4XfQZDRFqVl8h+qQ5apgY4u43LeLNIV7CYnsD12s75pdMarw9nk9YteWEyYBrV9mmokxg0hBLdPS8VfZ7ryTO297Ggg7jbD2TDIXaiZAvwxFlcSh/HDG33qljT1cPdm7eZTQ69MgkahSi9LL0RBi/RXAspezlCcXWQwRLJk/FjsTvBFwbVI8P6+TdHYctez1OY/WTXjgv5oIJwGmP34dCi3Qw5zNl3l7xms3IpDCqCtGrEI1QucYzJqKY5N4npXpjP63XnhJW4h4RV65BVTzWWv5IB+N0TxudyBQvhog+CV8XPYWhn0YiLPTA7YKMdw+KBGmgrVDelG0U9Yobo3l0/mWSoWr5X+uSUS18wZGJkCi36Vv++h7821/djecf3SQ0sH+RSdQoRPFd8Y55sc7Os4iRF84b6CwJQi9jCEzGeFvZIZxFSIeo9guSdovtsY6rrMxNtLVkSk2wwU7xtBn6XL3+uBMYVGoihEgGk2Vsm1gn7yacKHtABcmycb9YIrFrLvPI0QHY0cVn5MIzU2hPMsoFGxhDppOYUZUJqZMG8z5UwEgb8zhSAij8zi4RYWrrCh2jiIirgHoKje9Xk1EmBMJv2OheUlY6hKnDsClMlPjFatVfiWceK2bJucnnTp1dHd2oVoH/+PwvTauGEplEjUYUflXvYEdvdV7VfyHs5975o/wx6GwiL5xbzxozqKuddSTsifbyHpic0J432Pn13Ukk9UM5378S6eMljwh1MRkDgXnTtfYaDbVWQh6yak2ID4gKm/QILrHLJZyR++CH1waeX2cwF37oUk5UKXxTrMBJRsmbqHgoAs8D3PvgN+ffU+u1IM8xa8/NRauy7+fYJjnIQu+O1Z7wO7uCfOPfsq5ojpxDtOgiEHZ6QrG5iOfSSoYPnygQKGMdvjKWGLq9HFxu1bDDmN/i4K/+6q/w2GOPYdy4/q0A3vjGN+L//b//BwDYunUrPve5z+FXv/oVWltb8dd//dc4+eSTh9JcCcUXPEaiqlX/RTIfYEaWgkyJ1GGNtFSAXpdc2SM19+bYMsG8B0aQYh3ggC7TTR4iWsz4ohzr5Z1mSLky8DCCwYVcMcN2+nz4uqyROpTfUm7L+Q0HSI0nxxRU7esBsqzlyDFdJUW2WQHySkmN0LZ3r6rGhxABLMF2q9IwuNego812yRUFXGVRs6TXi9jXT4TjN6JCNv4t3wZue9EjpxwJJYXLS57zcjt7lfgVzb7ZnyC4JtEuPUKOBgS9biLvEzWycemll+I973mPV3711Vfj1a9+NZYtW4bVq1dj0aJF+O53v4upU6cOgZU6iu+KvzrPESazB/UhNlcpFfWU//Auue94vYqvt0IO2GQz89B3oHkPgbHAlDcGuwrc2W15SspnwYRBODI0n6vszmkIoUG6qdyckkygzcaEfCeaIRcMa5L2OCkV7qkYvlEiPP1tFgWtL+h8TnneiaoQmdTYlj+gy3ArGO15OY4CERFZIrWFhs4CdtGJHxw5q72iSPSdJ78x+frBCELwBwuTL3NjzeDYYKvzIybDFzmcR9DZ2YlVq1bh4x//OCZOnIh3vOMdOPbYY3HfffcNtWkCGvBE1f5TLPR3LK+yty7wrFeDL1y9rZrVVsdEOi5KfEpu72JnU5B3whtm7oo3IBLSBqcDt9zoofE30sk5Ir6goSs4eXfCmpYjQE0SZs62cnNlISm/XvQqKB5AlrTr2W7qMsqcayGHY1BXxAET1CboUoegkpzwAHoeMmOw9uRKRKRq6uFeO9YeIQ+OBvraszBqiAiz+8BmIJXQfbDbo8+74WVyYfWP1cj1IAIEi+YzWsODwtScccnaFHq4Ylh4ojo7O3HTTTdh3bp1WLduHTo6OjBv3jxcdNFFpuz111+PlStXYvv27TjqqKNw/vnnY+7cucntf+UrX8FXvvIVzJo1C5/61Kfwute9Ds899xwmTZqEww8/vCY3c+ZMbNiwIbmd/YWSJ8pNLFeS/AyddOZidGruNXsmYpANtuJl4LoaXrN0hHJXCIeSw4eRGWBdoaHLFTOZiHE9pCtAEqmHjA6agdm7a1el0q+HfEHPW2AMZBXPq1CUKQ9QzJaSUZEBMUw4i7qIqsBgXg3ZbjkcRa9J6Rnd+2/VMTdMMmxlCi/wiIEhIx07tFeJmQPo3qqo667cHn9X689zlXxB33R78gR2rmbgES2jTiaZL1TZ4qDsqTfe+aKOFkNJw/22UVawxbvMuJY/DJU/ZxLVGDo6OnDbbbdh1qxZmDNnDpYvX05lFyxYgMcffxyf/OQn8drXvhZ33nknFi9ejL6+Ppx55pkNt/1nf/ZnOProozFu3Dj88Ic/xN/8zd/g29/+Nnbt2oWDDjqoJHvQQQdh69atDbexv1HebNMhSGI4zydL9kM92OE8V6A0sFidQMEGpsME7eTroyt1mgQGlfr3CpE21lEqIQlhlg/tPhTHcnXQDLr6IwOinyUcMSrQnr+fD3kOS7oaY6/+dhAxw8jDYIkVSW5179EpzrvAJw0OA4yQV9cu8z4EPDDBo3uqpX9MIbqPUkmWMQPfVE+EETtEiLehK/gbkskFf3fK+VVsOxIl5Kds7xKdzBnPk+0ksiq7QqTMYFHhNuzPsit1GGBYkKhp06bh9ttvR6VSwdatWymJuv/++7F69WosXLgQZ5xxBgDgxBNPRHt7O6699lqcfvrptQTxSy65BGvWrDH1nHfeebj44osBAMcdd1yt/CMf+Qh+/OMfY82aNXj1q1+NnTt3lurt3LkTkyZNot9j06ZN2Lx5c+3zk08+CQBoa2uL3YJBxcbOF7CzuwsAML7Sgp7uOnN6pn0CNne31z+/dCBe2rYZW7p31Mo2PPMUXnhlEzZ3F/bk2LYTa9euxaZdL6K7u6dW3LdtB9auXYsXXnkWm7s3lux4+oWDUF27E+0dz2Fzd0fp2vObgLVrx2PTM9tq9hRtffqFg9G3dgd2vLyrdv3Ard3Y3P0KAKBl6y6sXTsVAPDsS8/WZNraD6rLb+nG2rWTAQCb2urtPLepBT27e7G5+yUAwJNPr8Om3QcDAF7a8Ty2du9EpaWCDc8+Vavz7MbxmLK2uvfventPP7se7duew+bu7QCAJ9auRcv4FvR099ZkWrbtAto763WePwQ9a/vl++tu66/75BPYvLsd3d096NoxEWvXru236dktdds3TkDn1t112zesw9Rd/WR/8+529PVW0bNzO55cf0itzsRX9tTuw3Mbn6mVb3j2Kby04/nabz/Q3tbnd9RkXtgE9DxXv3fPtk/ApLU9Bdv7f9d1T67DK7vb0ddXRc+O7TVdz7zYXv9tXpiCHZu7ap/XP7seOyf2/56bdr+I3u4+7NkxGeufPrje/uY+rF07of/vV57F5u6X+7/3+if3Pldb+ttftw4HHnwAtr1Uv88vvNKH7hc6ap+feXEyxq3tfy827nwBO7p3YcK48Xuf6xfQ1b0HnTsn1Gxve+Gluu0vHoRtm+u6n3r6KbzSczB6unrqz++2Ljy5fmLt84St3Vi7tv+3eX7zM7XfbP3T/ff9ldoz8wRQAV5+Zmvhdx6PnRMONu978Rldu3YtNne3o9pXRc/2+n1/9qXn6rY/vx5bXq7/phvansKOA/r7qYGy6vadeKrtwMI7UsXatf3Dw4tbnq29d0+ufxIvbX++9ruvfWItxk8Y5z0zO8ZPLrR/MKpr+/vSlztfQGf3bhzYdUD/fe9qR093L3bvmFS/74Vn5pkXDsamLdtqfcuT69fh4G2TsMe5709tGG8+M+59H+gbJ+waX2tv0zP1Z+T5TeOwpa/+Gz79wkHA2s7++769/pute2pdTeaALbuxdm1///FM+4uF5/0QbNyytWb7U+ufxMHb+8ePTV0voqe7D3s6J6HthZbCMzoJB6zdvdeWuu1PP7e+/n237sbatVP6v+uWZ2v99PObxnn3/KVn689Ud+ckbO/etbediZiwtrvUHwzggJZxWLt2LV58brN3baBfenFr/d0bwJMb1uHFLc+Uyjt3TsD6Zw7y9LQ9P6lUNn5LFzZ3b6193rXjQHR274aFgd9tf2HGjBmYOHEivV6pDrOT/rZu3Ypzzz3XDOddddVVuOuuu3D77bdj/Pg6/7vzzjtxxRVX4Gtf+xqOP/74ptqfN28ePvnJT+KEE07AOeecg3/7t3/D7/7u7wIA5s+fj/e85z347//9v5t1v/Wtb+HGG29sqv2MjIyMjIyM4YHrrrsOb3jDG+j1YeGJUrFhwwbMmDGjRKAAYNasWbXrjZCo7du34/HHH8cJJ5yASqWCH/3oR3jllVfwlre8BZMnT8Y73vEO/NM//RMuueQSPPTQQ1i3bh0WL15M9Z177rk49dRTS/rb2trw+te/HhMmTGjw23K0tbVhyZIlWLBgAWbMmDFoekcb8n2KI9+jOPI90pDvUxz5HmkYTvcp1v6IIlEdHR044ogjvPIpU/pdm9u2bWtIX29vL775zW/imWeewfjx43Hsscfiqquuqun79Kc/jSuvvBLnnHMOWltbcfnll+PQQw+l+lpbW9Ha2loqO+mkkxqyqRHMmDEjyJAz+pHvUxz5HsWR75GGfJ/iyPdIw0i4TyOKRAGR1UIN4tBDD8V1110XvP7FL35x0NrLyMjIyMjIGD0YUftETZ06FR0dHV759u39yX6HHHLI/jYpIyMjIyMjY4xiRJGomTNnoq2tDT09PaXy9evXAwCOOeaYoTBrv+Owww7DvHnzcNhhhw21KcMa+T7Fke9RHPkeacj3KY58jzSMpPs0olbnPfDAA7j00kuxaNGi0uaaf/M3f4OnnnoK3/ve92pbHGRkZGRkZGRk7EsMm5yoBx54AF1dXejs7N+To62tDXfffTcAYPbs2Zg4cSJmz56Nk046CUuXLkVnZyeOPPJI3HXXXXjwwQexYMGCTKAyMjIyMjIy9huGjSfqwx/+MNrb281rN998M6ZPnw6g/9iX6667rnTsy//8n/+zqWNfMjIyMjIyMjIaxbAhURkZGRkZGRkZIwnDJpyXEce+OHx5JOCRRx7B/PnzzWvXXnst3vzmN9c+r127Ft/4xjfw2GOPYdy4cXjrW9+KT33qU+b+Yrfeeit+8IMf4MUXX8Rhhx2Gs846CxdccIG3metwRCOHdu+Le7JlyxZce+21uP/++9HV1YVjjz0WF198Mf7gD/5gn33nRqHeo8997nNYsWKFV/+oo47Ct7/9ba98NN2jhx56CHfccQfWrFmDjRs34uCDD8Yb3vAGzJs3z9ufZ6w+R+o9GsvPEdB/9NJ1112H9evXY+vWrTjwwANx1FFH4QMf+ADe8573lGRH07M0/EeLjBoG+/DlkYZPfOITeOtb31oqK67IbGtrw/z583Hsscfi8ssvR3d3N771rW/hL//yL/Gtb32rtFHqP//zP+OGG27A+eefj5NPPhmPP/44rr/+emzatAl/8zd/s7++UjLUQ7v3xT3p7u7GJZdcgh07duB//a//hVe96lX4wQ9+gP/9v/83rr76avz+7//+Pv72Gho52PzAAw/ENddc45W5GG336Ec/+hE6OjrwR3/0Rzj66KOxdetW3HzzzfizP/szfOlLX6oNQGP5OVLvETB2nyMA2LFjB373d38XZ5xxBlpbW9HV1YU77rgDS5YswYsvvoiPfexjAEbhs1TNGBH4+c9/Xp0zZ071jjvuKJX/9V//dfUDH/hAtaenZ4gs2/d4+OGHq3PmzKmuXLkyKLdw4cLqOeecU92xY0et7MUXX6y++93vrn7961+vlW3durU6d+7c6lVXXVWq/8///M/Vd77zndUNGzYMpvn7BH19fdW+vr5qtVqtbtmypTpnzpzqDTfc4Mnti3vy7//+79U5c+ZUH3300VrZnj17qhdccEH1E5/4xGB9xaah3qMrr7yy+p73vCeqbzTeo1deecUr27lzZ/X9739/9ZJLLqmVjeXnSL1HY/k5CuGTn/xk9YMf/GDt82h7lkbUPlFjGatWrcKkSZNw2mmnlcrPPvtsbNq0CY899tjQGDZM0NPTg5///Od417vehYMOOqhWPm3aNLz1rW/FqlWramUPPvgguru7cfbZZ5d0nHXWWahWqyXZ4YpKpRLdvX9f3ZNVq1bhqKOOwlve8pZa2fjx4/Ge97wH//Vf/4WXX3652a83KFDuUSMYjffoVa96lVc2efJkzJgxAxs3bgSQnyPlHjWC0XiPQpg6dWpt5fxofJYyiRohUA5fHu24+uqr8e53vxvvfe978ZnPfAa/+c1vatdeeOEF7N69u3Y/ipg1axaef/557N69G0D9Xs2cObMk19raiqlTp46ae7mv7sn69eupzqKukYTdu3fjf/yP/4HTTjsNH/zgB3H11Vd7Z3GOlXu0Y8cOrFu3DkcffTSA/BxZcO/RAPJzBPT19aGnpwdbt27FD37wA/ziF7/ARz/6UQCj81nKOVEjBIN9+PJIwkEHHYQ/+qM/wlvf+lYccsgheP755/Hd734X8+fPxxe+8AWccsopteOArKN/DjnkEFSrVWzfvh0HHnggtm3bhgkTJmDSpEmmrHW00EjEvron27Ztqz13RYzUZ/HYY4/FscceW8uv+9WvfoXvfe97eOihh/DNb34TkydPBoAxc4+uvvpq7Nq1CxdeeCGA/BxZcO8RkJ+jASxduhTLli0DABxwwAGYP38+3v/+9wMYnc9SJlEjCIMZmhhJeP3rX4/Xv/71tc8nnHAC5syZg3nz5uHaa6/FKaecIulR799Yus+p9yRUb6Tdvw9/+MOlzyeffDJe97rXYeHChVi+fLl3nWE03KPrr78ed9xxB+bPn++tzgthLD1H7B7l56gfF1xwAc455xxs2bIFP//5z3HNNddg165d+OM//mOp/kh7lnI4b4QgH75cxpQpU/D2t78dTz31FHbv3o2pU6cCsGcc27ZtQ6VSwcEHHwyg/151d3ejq6vLlB0t93Jf3ZNDDjnE1Pn/t3e/IU21bxzAv2eNiWZbbOLCQZAoqCGJFv7DJaw0Zb7IxBLnzKSkkAyCpKhpviipFxVCSSBTsUgRFQKNrDShIgJNxAqiSIlUhsvQMmrq78VD52n5pzi/Z7Nt3w8I7pz7Pp774nJcO+feuX/k4lKfCD2NXq+Hv78/hoeHxW3eHiOr1YrGxkYcPHgQe/bsEbczj/61XIyW44t5pNVqERERgcTERBw/fhxZWVm4fv06pqamvDKXWER5CC6+vNjCT8+JDQkJgZ+fnxiPn719+xY6nU78qvGPe+y/tp2cnMSnT5+8JpauikloaCjevHmz6Jg/tv06h8FTLSwsQCb79y3Sm2NktVphtVpRVFSEgoICp33Mo3+sFKOV+FIeLSUyMhJzc3P48OGDV+YSiygPkZKSgtnZWTx8+NBp+507dxAUFISoqKhVOrPVMT09jSdPniA8PBx+fn6Qy+VISkpCX1+fuP4iAExMTGBgYAB6vV7cFh8fD4VCga6uLqdjdnV1QRAEpKSkuG0cruSqmOj1eoyOjjp9I9ThcKC7uxtRUVEICgpy4ajco7e3F1+/fnX6v/LWGDU0NMBqtcJsNqOoqGjRfubR72O0HF/Ko+UMDAxAJpMhJCTEK3OJc6I8hC8vvlxVVYXg4GBERERApVLh/fv3aG5uht1ux8mTJ8V2Bw4cwKFDh1BeXo78/Hx8+/YNdXV1UKlU2Ldvn9hOqVTCbDajrq4OSqUS27Ztw8uXL1FfXw+j0bjoGzd/qz9ZtNsVMcnMzER7ezssFgtKSkrEB9uNjo7i0qVL7gzBb/0uRlNTU6iqqoLBYIBOp4MgCOKE4E2bNsFoNIrH8sYY3bp1C3V1dYiPj0diYqLTbScA4moAvpxHfxKj8fFxn84jALh48SICAgIQGRkJtVqNqakp9Pb24sGDB8jLyxMfoultucS18zyIry6+3NTUhJ6eHoyNjWF2dhbr1q1DdHQ0TCYTIiMjndr+WE5geHgYa9asQWxsLI4cOQKdTrfouK2trWhvb8f4+DjUajUyMjJgNps9YtkX4M8X7XZFTOx2u9MSC+Hh4SguLsbWrVv/+4H+H34Xo8DAQFRXV+P169f4+PEj5ufnodVqkZKSgoKCAnF+xs+8KUZHjx7F8+fPl93f19cn/u6refQnMZqenvbpPAKAzs5OdHZ2YmRkBDMzM/D390dYWBiMRuOyy754Qy6xiCIiIiKSgHOiiIiIiCRgEUVEREQkAYsoIiIiIglYRBERERFJwCKKiIiISAIWUUREREQSsIgiIiIikoBFFBEREZEELKKIiJaQmpqK1NRUlx2/vr4egiDg3bt3LvsbRORanrG+BRGRm129enW1T4GI/nIsooiIlhAVFbXap0BEfzneziMin1JZWQlBEDAwMIDs7GwolUqoVCqYTCbYbDax3a+386qrqyGTyXD79m2n4+3fvx8BAQEYGhoSt927dw8GgwFKpRIBAQFITk7G/fv3XT42InIvFlFE5JN2796NsLAwtLa2orKyEh0dHUhPT8f379+XbF9eXo6MjAwUFhZiZGQEAGC1WtHQ0ICamhpER0cDAJqampCWlgalUomGhga0tLRArVYjPT2dhRSRl+HtPCLySdnZ2bhw4QIAIC0tDVqtFvn5+WhpaUF+fv6i9oIgoLGxETExMcjNzUVtbS1KS0thMplQXFwMAPjy5QvKyspgNBrR3t4u9s3MzERsbCxOnTqFp0+fumeARORyvBJFRD7p10IpNzcXcrkcPT09y/bRaDRobm5Gf38/kpKSsHHjRtTW1or7Hz9+DLvdjsLCQjgcDvFnfn4eu3btwrNnz/D582eXjYmI3ItXoojIJ23YsMHptVwuh0ajweTk5Ir94uPjsXnzZgwODuLw4cNYu3atuG9iYgIAkJOTs2x/u93u1IeIPBeLKCLySePj49DpdOJrh8OByclJaDSaFftVVFRgaGgIcXFxsFgsMBqNCA0NBQAEBQUBAGpqapCQkLBkf61W+x+NgIhWG4soIvJJN27cQFxcnPi6paUFDodjxQdsdnd34/z58zh9+jSOHTuGmJgY7N27F48ePYJCoUBycjLWr1+PFy9eoLS01A2jIKLVxCKKiHxSW1sb5HI5du7cieHhYZw5cwZbtmxBbm7uku3HxsZgMpmwfft2VFRUQCaTobm5GXq9HidOnMDly5cRGBiImpoaFBYWwm63IycnB8HBwbDZbBgcHITNZsO1a9fcPFIichVOLCcin9TW1oZXr14hOzsbFosFWVlZuHv3LhQKxaK2c3NzyMvLgyAIuHnzJmSyf946ExIScO7cOVy5cgUdHR0AAJPJhJ6eHszMzKCkpAQ7duxAWVkZ+vv7YTAY3DlEInIxYWFhYWG1T4KIyF0qKytx9uxZ2Gw2cQ4TEZEUvBJFREREJAGLKCIiIiIJeDuPiIiISAJeiSIiIiKSgEUUERERkQQsooiIiIgkYBFFREREJAGLKCIiIiIJWEQRERERScAiioiIiEgCFlFEREREEvwPZ+CCLbmhvy8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot weights directly\n", + "# Note: for extended sources the weights also need to include the pixel area.\n", + "plt.semilogy(skymap[:]*pix_area)\n", + "plt.ylabel(\"weight\")\n", + "plt.xlabel(\"pixel\")\n", + "plt.ylim(1e-50,1)" + ] + }, + { + "cell_type": "markdown", + "id": "d523478a-c6fe-4905-90d4-957554ab619c", + "metadata": {}, + "source": [ + "## Setup the COSI 3ML plugin and perform the likelihood fit\n", + "Load the detector response, ori file, and precomputed point source response in Galactic coordinates:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a3508cb-12a5-4174-8171-422960718cde", + "metadata": {}, + "outputs": [], + "source": [ + "response_file = \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "response = FullDetectorResponse.open(response_file)\n", + "ori = SpacecraftFile.parse_from_file(\"20280301_3_month.ori\")\n", + "psr_file = \"psr_gal_511_DC2.h5\"" + ] + }, + { + "cell_type": "markdown", + "id": "8bc970eb-4482-4196-9340-1a113a962a39", + "metadata": {}, + "source": [ + "Setup the COSI 3ML plugin:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1b2ac4e3-fe0f-4ca0-b65a-1cfcf9a143e0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... loading the pre-computed image response ...\n", + "--> done\n", + "CPU times: user 1min 55s, sys: 37.4 s, total: 2min 32s\n", + "Wall time: 2min 49s\n" + ] + } + ], + "source": [ + "%%time\n", + "\n", + "# Set background parameter, which is used to fit the amplitude of the background:\n", + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "# Instantiate the COSI 3ML plugin\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = response_file, # detector response\n", + " data = data_combined.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = ori, # spacecraft orientation\n", + " nuisance_param = bkg_par, # background parameter\n", + " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", + " \n", + "# Add sources to model:\n", + "model = Model(src1) # Model with single source. If we had multiple sources, we would do Model(source1, source2, ...)" + ] + }, + { + "cell_type": "markdown", + "id": "49c2c0fb-6a6f-42b3-b940-8d7a5e75c45a", + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "source": [ + "Perform likelihood fit: " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "371f159b-dfa8-4475-9aec-679dc6aa91cb", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
11:55:08 INFO      set the minimizer to minuit                                             joint_likelihood.py:1042\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:55:08\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;49mINFO \u001b[0m \u001b[1;38;5;251m set the minimizer to minuit \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=641391;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py\u001b\\\u001b[2mjoint_likelihood.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=11475;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/classicMLE/joint_likelihood.py#1042\u001b\\\u001b[2m1042\u001b[0m\u001b]8;;\u001b\\\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n", + "\n", + "WARNING RuntimeWarning: invalid value encountered in log\n", + "\n" + ] + }, + { + "data": { + "text/html": [ + "
11:56:43 WARNING   get_number_of_data_points not implemented, values for statistical        plugin_prototype.py:128\n",
+       "                  measurements such as AIC or BIC are unreliable                                                   \n",
+       "
\n" + ], + "text/plain": [ + "\u001b[38;5;46m11:56:43\u001b[0m\u001b[38;5;46m \u001b[0m\u001b[38;5;134mWARNING \u001b[0m \u001b[1;38;5;251m get_number_of_data_points not implemented, values for statistical \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b]8;id=619529;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py\u001b\\\u001b[2mplugin_prototype.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=819028;file:///discover/nobackup/ckarwin/Software/COSI/lib/python3.9/site-packages/threeML/plugin_prototype.py#128\u001b\\\u001b[2m128\u001b[0m\u001b]8;;\u001b\\\n", + "\u001b[38;5;46m \u001b[0m \u001b[1;38;5;251mmeasurements such as AIC or BIC are unreliable \u001b[0m\u001b[1;38;5;251m \u001b[0m\u001b[2m \u001b[0m\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 1 / (cm2 s)\n", + "background_cosi (9.32 +/- 0.05) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "
1.00-0.40
-0.401.00
" + ], + "text/plain": [ + " 1.00 -0.40\n", + "-0.40 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -1.527559e+07\n", + "total -1.527559e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -3.055119e+07\n", + "BIC -3.055119e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 6min, sys: 3min 20s, total: 9min 21s\n", + "Wall time: 1min 36s\n" + ] + }, + { + "data": { + "text/plain": [ + "( value negative_error positive_error \\\n", + " gaussian.spectrum.main.Gaussian.F 0.046951 -0.000025 0.000025 \n", + " background_cosi 0.932137 -0.004667 0.004841 \n", + " \n", + " error unit \n", + " gaussian.spectrum.main.Gaussian.F 0.000025 1 / (cm2 s) \n", + " background_cosi 0.004754 ,\n", + " -log(likelihood)\n", + " cosi -1.527559e+07\n", + " total -1.527559e+07)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time \n", + "\n", + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = False)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "d7ec9390-e6b4-47ec-be71-c143bc76d7c8", + "metadata": { + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, + "source": [ + "## Results\n", + "First, let's just print the results.
" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "4d1df8b6-a464-41b2-a1cb-2b7d770a7313", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 1 / (cm2 s)\n", + "background_cosi (9.32 +/- 0.05) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "
1.00-0.40
-0.401.00
" + ], + "text/plain": [ + " 1.00 -0.40\n", + "-0.40 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -1.527559e+07\n", + "total -1.527559e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -3.055119e+07\n", + "BIC -3.055119e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * gaussian (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 359.75\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: -1.25\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 5.0\n", + " * desc: Standard deviation of the Gaussian distribution\n", + " * min_value: 0.0\n", + " * max_value: 20.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * Gaussian:\n", + " * F:\n", + " * value: 0.046951164320587706\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}\n", + "\n" + ] + } + ], + "source": [ + "results = like.results\n", + "results.display()\n", + "\n", + "# Print a summary of the optimized model:\n", + "print(results.optimized_model[\"gaussian\"])" + ] + }, + { + "cell_type": "markdown", + "id": "2990c92c-d12d-40a5-ab93-6402345444b3", + "metadata": {}, + "source": [ + "Now let's make some plots.
\n", + "Let's first look at the best-fit spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cf7f47cf-6696-4dfa-949a-307160ccd990", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAG2CAYAAACu3oj0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoIElEQVR4nO3deVyU5f4//tcsDAzbgICCCu65Jy6lprhramaLPeyYaamorWYetVMZmnnM6iTf+pXkQcTsk9WpNC23MrEs99IsFVeEXFDWYRkGmJn79wfO7YwMCMM9K6/n4+HjDPd93fd1XcO57e11Xff7kgmCIICIiIiIHE7u6gYQERERNRYMvIiIiIichIEXERERkZMw8CIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy83odfrcfr0aej1elc3hYiIiByEgZebyMzMxMyZM5GZmenqphAREZGDMPAiIiIichIGXkREREROwsCLiIiIyEkYeBERERE5idLVDSAiIiLnMhqNqKysdHUzPIqPjw8UCkWD78PAi4iIqBEpKSnBpUuXIAiCq5viUWQyGVq2bInAwMAG3YeBFxERUSNhNBpx6dIl+Pv7IyIiAjKZzNVN8giCICAnJweXLl1Chw4dGjTyxcCLiIiokaisrIQgCIiIiIBarXZ1czxKREQELl68iMrKygYFXlxcT0RE1MhwpKv+pPrOGHgREREROQkDLyIiInKZ1q1bo1OnToiNjUXnzp3x2GOPobS01O77rVu3DmfOnKnx/IEDB9C9e3f07NkTO3fuxNixY3H+/Pk6XSsFBl5ERETkUl999RWOHTuGkydPoqioCOvWrbP7XrcLnj7++GNMnToVR48exb333ott27ahXbt2dbpWClxcT0RE1Eh98+qv0GnLHXZ/f40vHvz3gDqXLy8vR2lpKUJDQ8Vj//nPf/C///0PBoMBkZGRWL16NaKjo/Htt9/i1VdfhVwuh8FgwL///W/k5OTgyJEjmDNnDhYtWoTly5dj7Nix4r1WrFiBL774Av7+/vj000+xZ88exMbG4rvvvsOBAwdqvVYqDLyIiIgaKZ22HLp8xwVedfXII4/Az88PGRkZ6N27NyZOnAgA2LBhA86cOYP9+/dDoVDgk08+wXPPPYfNmzdj0aJF+Oijj3DPPffAZDKhqKgIISEh+L//+z/Mnz8f48aNq1bPv/71L6Snp6NPnz547rnnrM7Fx8fXeq1UGHgREXmoMm05Lh3PRXTPCPgFqlzdHPJA/hpft7j/V199hW7dusFgMGD27Nl46aWX8O677+Kbb77BkSNH0Lt3bwBVecjMqRyGDx+OuXPn4pFHHsGoUaMQGxvrqG5IioEXEZEHKrxSgq1vHESZtgKB4X6477V+CIpgXiaqn/pMAzqDUqnEhAkTsGDBArz77rsQBAGLFi3C9OnTq5VduXIlTpw4gbS0NDzxxBOYPHkyFi5c6IJW1w8X1xMReRhtdim2/fsQyrQVAICSXD22LTuI0rwyF7eMqOF2796Njh07AgDGjx+PVatWIT8/H0BVAtijR48CANLT09G1a1c899xzePrpp3HgwAEAQHBwMLRarV11N+TaumLgRUTkQQwVRux48zB0BdbrcopzyrDjrSMwGUwuahmR/R555BHExsaia9euOHXqFN577z0AwJQpU/D4449jyJAh6NGjB2JjY5GWlgYAePnll9G1a1f07NkTn3zyCZYsWQIAmDVrFpYuXYrY2Fhs27atXu1oyLV1JRO4S6ZbOH36NGbOnInk5GQx0iciutWFA1ex+/1jAIDQ6EAMebYHfkw8iqJrOgDA6H/1Qcs7I1zYQnJner0eGRkZaNOmDfz8/FzdHI8i1XfHES8iIg+ScShb/Nzv8c4IiwnGXZNu/mMt4+A1VzSLiOqIgRcRkYcwlBvx99EcAIBvoA+iujQBAET3iIDSt+pNr8wj2TAZOd1I5K4YeBEReYi//8iBodwIAGh9VzPIFVV/hSt9FYiOrZpe1BdX4uqpfJe1kTwDVxnVn1TfGQMvIiIPcdFimrHN3ZFW59r0vflzxsFsENlizoFVUVHh4pZ4HvN3Zv4O7cU8XkREHsBQYUTW79cBAL4BPmjeNczqfHRsBBQ+chgrTbh4+BrumdYVcrnMFU0lN6ZUKuHv74+cnBz4+PhALuf4S12YTCbk5OTA398fSmXDQicGXkREHuDyn7mo1FdNM8b0bgq50vo/mD5+SrSMjUDm4WvQF1Xg2ul8RHUOs3UrasRkMhmioqKQkZGBzMxMVzfHo8jlcsTExEAma9g/aBh4ERF5gOzTBeLnVr2b2SzTqndTZB6+JpZn4EW2qFQqdOjQgdON9aRSqSQZIWTgRUTkAXIv3Mym3bS9xmaZpu1DLMoXObpJ5MHkcjnzeLkIJ3eJiNycYBKQm1EVSPk38YV/qO3/YGoiA+Cjrlr4axmoEZH7YOBFROTmiq7pUFlmAABEtLE92gUAMrkM4TfOl+broSssr7EsEbkGAy8iIjeXYzF6Fd625sALgBh4AUBuBke9iNwNAy8iIjdnOW0YXsuIV9X5YJvXEZF7YOBFROTmLEeuLAMrWyxHxMzrwojIfTDwIiJyYyaTgLyLVQFUYLgf1BrfWssHN/OHyr/qhXWOeBG5HwZeRERuTHu1VEycertpRqAqQaa5nK6wHKUFeoe2j4jqh4EXEZEby63Hwnpb5TjqReReGHgREbkxewKviLY314HlnGfgReROGHgREbmx/L+Lxc/hrWpfWG8W1vpmgFZwqUTyNhGR/Rh4ERG5Me3VUgCAX5AP/IJVdbomMEINhY/8xvUMvIjcCQMvIiI3VVFmgK6gKvt8cFRAna+Ty2UIbuYPACjK1sFkNDmkfURUfwy8iIjcVFF2qfg5pB6BFwBobpQ3GQWU5JZJ2i4ish8DLyIiN2WeZgRuBlJ1ZVlee6W0lpJE5EwMvIiI3FThlQYEXs1vli+8ysCLyF0oXd2A+tLpdFizZg3S0tJQXFyMmJgYTJ48GcOHD7/ttQUFBUhKSsL+/fuh1+vRvn17xMfHo3fv3mKZ0tJSfP311zhy5AiysrJQVlaGyMhIjBo1Co888gh8fa2zRhsMBnzyySfYvn078vLyEBUVhYceeggTJkyQvO9E1LhYTjXWO/CKtBjxYuBF5DY8LvBatGgR0tPTMXv2bERHR2PXrl14/fXXYTKZMHLkyBqvq6iowNy5c1FSUoLnn38eoaGh2LRpE+bPn4/ExETExsYCAK5du4Yvv/wS9957LyZOnAi1Wo3jx48jNTUVR44cwcqVKyGTycT7rly5Et9//z1mzJiBTp064dChQ3j//feh0+kwZcoUR38dROTFzCNeMhnExfJ1ZTnixcCLyH14VOC1f/9+HDlyBAkJCRgxYgQAoFevXsjOzkZSUhKGDRsGhUJh89qtW7ciIyMDq1atQrdu3QAAPXv2xPTp05GUlITVq1cDAKKiovC///0ParVavLZ3797w8/NDUlIS/vzzT9x5550AgIyMDGzduhUzZ87EpEmTxHsWFRVh/fr1eOCBBxAcXLe8O0RElgRBEEe8qtJD2P67rSZ+gSr4BflAX1wJbTYDLyJ34VFrvPbu3Qu1Wo0hQ4ZYHR87dixyc3Nx8uTJWq+NiYkRgy4AUCqVGDVqFE6dOoWcnBwAgFqttgq6zDp37gwAuH79utU9BUHAmDFjrMqOGTMG5eXlOHjwYL37SEQEVO2zaN6jURMVaNc9zCkodPnlqNQbJGsbEdnPowKvjIwMtGrVCkql9UBdu3btxPM1uXDhgliuvtcCwO+//w4AaNOmjVV7QkJCEBYWVu975ubm4vTp0+KfzMzMWusnosbF8k3EkOb1W98lXhfF6UYid+NRU41arRbNmzevdjwoKAgAUFRUVOO1RUVFYrn6Xnv+/Hl89tlniIuLswretFqtzalEtVoNHx8faLU175G2ZcsWrFu3rsbzRNS4WU4PBkfWb32XmeaWwCu8Td32eiQix/GowAuA1cJ2Ka+t6dzVq1fx0ksvoWnTpnjppZckq2/8+PEYMGCA+HNmZiaWLVtWr/sTkfeyHvGyb6rRcoqSI15E7sGjAi+NRmNzFKm4uGoT2doWsgcHB9sc1TJfa2s0LDs7Gy+88AIUCgUSExOr3V+j0eDcuXPVrisrK0NlZWWt7QkPD0d4eHiN54mocWtI8tSb190cKWPgReQePGqNV9u2bZGZmQmDwXqR6IULFwBYr7+yde358+erHTcfa9u2rdXx7OxszJkzBwDw3nvvoWnTpjbvWVhYiLy8vHq3h4ioNuZASemrgH+o721K2xbczB/mgfdCZq8ncgseFXjFxcWhrKwMP/30k9XxHTt2IDw8HF26dKnx2kGDBiErK8vqzUeDwYAffvgBXbp0sRp9unbtGubMmQOTyYT/9//+HyIjI23ec+DAgZDJZNixY4fV8e3bt8PX1xd9+/a1p5tE1MiZjCYU39hfMTjS3+4lFgofBQLDq97SLr6uk6x9RGQ/j5pq7NevH/r06YOVK1dCp9OhRYsW+PHHH3Hw4EEsWrRIzOG1YsUK7Ny5E5999pkYNI0dOxabNm1CQkICZs+eLSZQzcrKQmJiolhHQUEBXnjhBeTn52PhwoUoKChAQUGBeD4iIkIc/WrTpg3uu+8+pKamQi6Xo3Pnzjh8+DC+/fZbxMfHM4cXEdlFV1AOwSgAAIIi7FtYbxbU1B/FOWWo0BlQXloJ3wAfKZpIRHbyqMALAJYtW4bk5GSkpKSIWwYtXrzYassgk8kEo9EIQRDEYyqVComJiUhKSsJ7770HvV6PDh064J133hGz1gPAxYsXceXKFbGuWz355JOYPn26+PO8efMQHh6OjRs3Ij8/H5GRkZgzZw63DCIiuxXnlImfA8P9GnQvy+tLcssYeBG5mEywjE7IZU6fPo2ZM2ciOTkZHTt2dHVziMiFzu69jJ+SjgMA+k3phG5j7F8v+vvGs/j9q6qXgEb+sxda9W4mSRuJyD4etcaLiKgxKLEa8WrgVKPF9ZYjaUTkGnZNNd76BqA95s6dK741SEREN5kX1gNAUET1LczqI9Di+hIGXkQuZ1fgdfHiRWg0GoSEhNhVaVZWFgoLC+26lojI21mPeDUw8LK43jKgIyLXsHtx/YsvvoiEhAS7rpXLOcNJRFSTkhsBko9aCVVAw96BCmjiC5lcBsEkcMSLyA0wAiIiciMmkyAGXkER6gZtkwYAcoUcAWFVbzaWcMSLyOXs+qfU2bNn0aRJE7srbej1RETeqqxAD9ONHF6BDVzfZRYUoUZJThnKSypRoauEyp8pJYhcxa7Aq127dg2qtKHXExF5q2IJ13fZuk9Jrh5NYhh4EbkKpxqJiNyI1RuNDgi8inO4dRCRKzHwIiJyI5brsKScarx5f70k9yQi+0gaeBUUFGD9+vVS3pKIqFGxfPOwoTm8zKxyeXGBPZFLSRp4ZWVlYdq0aVLekoioUXHEGq8gTjUSuY16La7Pysqq9bx5c2kiIrKPecTLx08B30BpFsEHNPGDTAYIArPXE7lavQKv1q1b15pTRhCEBuecISJqrASTgJK8qsAoUIIcXmZyZVUur5JcPacaiVysXoFXaGgoli9fjiFDhtg8f+rUKUyYMEGKdhERNTo6bTlMhhs5vCSaZjQLDFejJFcPfXElKvUG+Pg1LCM+EdmnXk9e7969kZOTg44dO9o8r9frIQiCJA0jImpspNyj8VZV9yuoqie3DKEtgyS9PxHVTb0Cr6effhqlpaU1no+JiUFqamqDG0VE1BjpCm6megi8sc2PVAKa3LxfaUE5Ay8iF6lX4PXQQw/Vej40NBRPPPFEgxpERNRYlebfDLz8m0gceFkEcro85vIichUmUCUichOl+eXi5wCpAy/LEa98Bl5ErtLgwEuhUNw2zQQREd1eqcVIFAMvIu/U4MCLi+mJiKRhGRAx8CLyTpxqJCJyE+aAyDfQB0qVQtJ7+wWpIFfIrOohIudj4EVE5AYEkyC+1Rgg8RuNACCTy8QF+wy8iFyHgRcRkRsoK66AyVi1dCMgVPrAC7g53VheUglDhdEhdRBR7Rh4ERG5AZ0DF9bbui9HvYhcg4EXEZEbcOTCelv3ZeBF5BoMvIiI3AADL6LGocGB16uvvoqQkBAJmkJE1HhZZa13wOJ6AAho4it+1jHwInIJu7enNxgMUCqVeOONN6RsDxFRo+T0ES9uG0TkEnaPeDVv3hzz58/HqVOnpGwPEVGjxKlGosbB7sBLq9Vi5cqV6NatG+655x6kpKSgpKREyrYRETUa5kDIR62ESm33ZESt1CG+kMms6yMi57I78Lp69SoSExPRvXt3HDhwALNmzUJUVBRmzJiBX375Rco2EhF5NUEQxEDIch2W1OQKOdShVfdn4EXkGnYHXk2aNMELL7yAY8eO4ciRI3j66aehUqmQmpqKwYMHo3PnznjnnXdw7do1KdtLROR1yksrYawwAXDcNKOZ+f5lRRUwGkwOrYuIqpMknUSvXr3wwQcf4OrVq9iwYQOGDx+Os2fP4l//+heio6Px0EMP4bvvvoPJxIeciOhWuvxy8bPDAy9zVnwB0BWU116YiCQnaR4vlUqFf/zjH/j+++9x8eJFLFmyBNHR0di8eTMeeOABREdHS1kdEZFXcMbCelv353QjkfM5LIFqy5Yt8dprr2Hbtm0YMGAABEFAdna2o6ojIvJYLgu88socWhcRVeeQV2dKS0vxv//9D2vXrsW+ffsgCAL8/f3xyCOPOKI6IiKPZpU81UEbZIv3twi8ONVI5HySBl579+7F2rVr8dVXX0Gn00EQBNx1112YMWMGJk2ahKCgICmrIyLyCmWFNwMgfwe+1QgA/iEW2esLGXgROVuDA6/Lly/j448/xrp163D+/HkIgoCwsDDEx8djxowZ6NatmxTtJCLyWqUFFiNeIQ4e8WLgReRSdgde//vf/5Camopdu3bBaDRCLpdj1KhRmD59Oh588EH4+PhI2U4iIq9lnvKTyWXwC1Y5tC7/0JuBVxkDLyKnszvw+sc//gEAaN26NaZNm4Zp06ahZcuWkjWMiKixMAdAao0KcrnMoXX5qJVQqOQwVpigK+RbjUTO1qDAa8aMGRg+fLiU7SEialRMRhPKtFWBl6MX1gOATCaDf4gviq+XcXE9kQvYHXht2LBBynYQETVKZUUVEISqz5bTgI7kH+KH4utlqNAZYKgwQqlSOKVeIpIwj5fBYEBiYiLuvvtuBAcHQ6m8GdMdO3YMzzzzDM6cOSNVdUREXqHMYtTJcuG7I1nWw3VeRM4lSeBVVlaGoUOHYv78+cjMzERwcDAE8z/hALRp0wapqalYv369FNUREXkNqzcanTTipQ7lm41EriJJ4LV8+XL8+uuvePPNN5GdnY34+Hir8xqNBoMHD8bOnTulqI6IyGtY5fBycCqJm/Uw8CJyFUkCry+++AJDhgzBwoULIZPJIJNVfyunbdu2yMrKkqI6IiKvUWo51ei0NV4WgRcX2BM5lSSBV1ZWFu66665aywQHB0Or1UpRHRGR19C5OvDiiBeRU0kSeAUFBSEnJ6fWMufPn0dERIQU1REReQ3LXFrOmmpUWyVRZS4vImeSJPDq168fvv322xpHtC5duoRt27Zh0KBBUlRHROQ1nJm13owjXkSuI0ngtWDBAuTn52PEiBHYt28fDAYDAECn0+HHH3/EqFGjUFlZiXnz5klRHRGR1zAHPuoQx2etN/MLVEGmkFnVT0TO0eBNsgFg0KBB+PDDDzFnzhzExcWJx4OCggAACoUCq1atQu/evaWojojIK5iMJujNWeudNM0IVI2u+Wt8UZqv5+J6IieTJPACgKeeegqDBw/GRx99hIMHDyI/Px/BwcHo27cvnnnmGXTt2lWqqoiIvIIrstab+YdUBV764gqYjCbIFZLl0yaiWkgWeAFA586d8d5770l5SyIir6VzQdZ6M3GBvQCUaSsQ0MR5I25EjZlT/4ljMpmcWR0RkVvTuSBrvVgfF9gTuYQkgdeaNWtuW8ZoNOKxxx6TojoiIq9gGfD4hzp3xMk6iSpTShA5iySB19NPP43NmzfXeF4QBEyePBlffvmlFNUREXkFV041cqNsIteQLI/XpEmTsHfv3mrnzEHX//73Pzz11FNSVEdE5BVckbXeTM2pRiKXkCTw+u6779CuXTuMHz8ef/75p3hcEARMmTIFn3/+OWbPno0PP/xQiuqIiLyCK7LWi/VZTG0y8CJyHkkCL41Gg507d0Kj0WD06NG4ePEiBEHA448/jg0bNmDWrFlISkqSoioiIq9hnuKTyeC0rPVmXFxP5BqSvdXYvHlzfP/996ioqMCoUaMwadIkfPbZZ4iPj8dHH30kVTVERF5DdyN5qp/G12lZ683UGhVwo8oyJlElchpJ00nccccd2L59O7Kzs/Hll19ixowZ+O9//ytlFUREXkEwCSjTVgBw/sJ6AJAr5FDfGGXjiBeR89iVQHXp0qW1nr/77rtx7NgxtGjRwqqsTCbDa6+9Zk+VREReRV9SAcFYlbZerXF+4AVUBXxl2grotOUQTAJkTh51I2qM7Aq8lixZUqdytwZoDLyIiKqUFVaIn/1DnLu+y0wd4gdkFkMwCtCXVEAd7JoAkKgxsSvwSktLk7oddabT6bBmzRqkpaWhuLgYMTExmDx5MoYPH37bawsKCpCUlIT9+/dDr9ejffv2iI+Pr7Z59759+5CWloYzZ84gKysLRqMRP//8c7X7Xb16FY8++qjNuhYvXlynNhFR42Re3wW4cMQr1HqBPQMvIsezK/AaPHiw1O2os0WLFiE9PR2zZ89GdHQ0du3ahddffx0mkwkjR46s8bqKigrMnTsXJSUleP755xEaGopNmzZh/vz5SExMRGxsrFj2559/xokTJ9ChQweoVCqcPn261jZNmDABI0aMsDrWsmXLBvWTiLxbmQtzeIn1WiZRLSgHYlzSDKJGRdJNsh1t//79OHLkCBISEsRAp1evXsjOzkZSUhKGDRsGhUJh89qtW7ciIyMDq1atQrdu3QAAPXv2xPTp05GUlITVq1eLZRcuXAi5vOq9g8TExNsGXk2bNkXXrl2l6CIRNRJuMeLFlBJETufUTbIbau/evVCr1RgyZIjV8bFjxyI3NxcnT56s9dqYmBgx6AIApVKJUaNG4dSpU8jJyRGPm4MuIiJHsdymxxVvNQLMXk/kCh414pWRkYFWrVpBqbRudrt27cTz3bt3t3nthQsX0KNHj2rHLa+NiIiwq10bNmxAcnIyFAoF7rjjDkyaNAkDBw6s9Zrc3Fzk5eWJP2dmZtpVNxF5pjLLES8XBV4c8SJyPo8KvLRaLZo3b17teFBQEACgqKioxmuLiorEcvW9tiY+Pj64//770adPH4SFheHatWvYuHEjXnnlFSxcuBDjxo2r8dotW7Zg3bp19a6TiLyDzg1GvCzXljGJKpFzeFTgBVSlpHDEtfbcNzw8HAsWLLA6NnToUMyePRurV6/G6NGjq43OmY0fPx4DBgwQf87MzMSyZcvq3QYi8kzmwEvpq4CPn2v+KrZcW8YRLyLn8KjAS6PRQKvVVjteXFwMAAgODq7x2uDgYJujWuZrbY2G2UOpVGLYsGFYvXo1Ll26hNatW9ssFx4ejvDwcEnqJCLPY17j5arRLgBQqhTwDfBBeWml1YbdROQ4HrWKvG3btsjMzITBYLA6fuHCBQBAmzZtar32/Pnz1Y6bj7Vt21aydgpCVTZqLtInIlsMFUZU6Kr+HnPV+i4zc/26wnLx7y4ichxJI4OCggKsX79eyltaiYuLQ1lZGX766Ser4zt27EB4eDi6dOlS47WDBg1CVlaW1ZuPBoMBP/zwA7p06SLZ6JPBYEBaWho0Gg1atGghyT2JyLtYLqz3d1EqCbH+G4GXscKEyjLDbUoTUUNJOtWYlZWFadOmYerUqVLeVtSvXz/06dMHK1euhE6nQ4sWLfDjjz/i4MGDWLRokZjDa8WKFdi5cyc+++wzREZGAqhKObFp0yYkJCRg9uzZYgLVrKwsJCYmWtWTnZ2N9PR0AMCVK1cAAHv27AEAREZGolOnTgCADz74AAaDAd27d0eTJk1w/fp1fP311zh79ixefvnlGnOKEVHjZplKwtUjXlbZ6wvKofL3cWFriLxfvQKvrKysWs+bgxRHWrZsGZKTk5GSkiJuGXTr9jwmkwlGo9Fq2FylUiExMRFJSUl47733oNfr0aFDB7zzzjtWWesB4OjRo3jzzTetjiUkJAAARo8ejVdeeQVA1dTmli1bsGvXLpSWlsLf3x+dO3fGf/7zH9x9990O+gaIyNPpLPZpVLton8ab9VsvsA9pEejC1hB5P5lQj0l9uVxe69t/giBAJpPBaDRK0rjG5PTp05g5cyaSk5PRsWNHVzeHiBzo1K4s/Lr2BAAgblY3dBwS7bK2/LktAwf/r2qEf8izPdB+QPWUPUQknXqNeIWGhmL58uXVMsebnTp1ChMmTJCiXUREXssqh5ebrPECmFKCyBnqFXj17t0bOTk5NY7I6PV6vhVDRHQb7rrGq4yBF5HD1Svwevrpp1FaWlrj+ZiYGKSmpja4UURE3sxyg2xX5vGqqt9P/KwrYC4vIkerV+D10EMP1Xo+NDQUTzzxRIMaRETk7cTteWSAX7B7La4nIsdihk8iIiczj3j5BakgV7j2r2GVWgmlb1XqGwZeRI7HwIuIyIkEQXCL7YIsmdvBNV5EjtfgwEuhUNw2vxcREVUpL62EyVj1EpLbBF43FthX6AwwVDAdEJEjNTjw4luMRER1505vNJqpLVJaWG5nRETS41QjEZETWa6jUrs4h5eZZQDI6UYix2LgRUTkRJaBjb+Ltwsys06iWlFLSSJqKAZeREROpNNa7tPoV0tJ57HMnq8rZC4vIkdi4EVE5ETuOOJlNdWo5YgXkSMx8CIiciL3XON1MwDkGi8ix2LgRUTkRNYjXu4ReFltG8S3GokcqsGB16uvvoqQkBAJmkJE5P3M6RoUKjl81PXatc1h/IJVkMmqPovbGRGRQzT4qX/jjTekaAcRUaNgnmr01/hCZo52XEwul8EvWIUybQVHvIgczKFTjYIg4OzZs7h06ZIjqyEi8gjGSiPKSyoBuE/yVDO1xbZBTIxN5DiSBF6bN2/G9OnTUVBQIB67ePEiunfvjk6dOqFVq1aYPHkyTCaTFNUREXmksqKbbwy6y/ouM3N7TEZBDA6JSHqSBF4fffQRDh8+jNDQUPHY3LlzcfLkSQwdOhR33nknPv/8c6SmpkpRHRGRR9IVuN92QWbcNojIOSQJvE6cOIG7775b/Fmr1WLbtm149NFHsWvXLhw6dAidO3dGSkqKFNUREXkky4DG301SSZhZZ69n4EXkKJIEXjk5OYiKihJ//uWXX2AwGDBp0iQAgI+PD0aOHIlz585JUR0RkUdyxw2yzaxGvBh4ETmMJIFXcHAw8vLyxJ/37NkDuVyOuLg48ZiPjw9KS0ulqI6IyCNZvjHodmu8QjniReQMkgRenTp1wrfffov8/HxotVp8/vnn6NWrl9War8zMTDRr1kyK6oiIPJLnrPHitkFEjiJJ4DVnzhxcuXIFLVq0QHR0NK5cuYKnnnpKPG80GvHLL7+gR48eUlRHROSRLAMaf4177NNoxjVeRM4hSdrkCRMm4MMPPxQXz0+cOBHTp08Xz//444/Q6XQYPXq0FNUREXkky7VTfm62uF6t4X6NRM4g2X4VTz/9NJ5++mmb50aNGmWV44uIqDEyr/HyC/KBQuleW+X6qJVQ+ipgKDdyxIvIgdzrySci8lKCIIgjSe62vgsAZDKZOOrFPF5EjsPAi4jICSp0Bhgrq3bvULvZNKOZOSAsL6mEsdLo4tYQeScGXkRETmC5bsrdUkmY+fPNRiKHY+BFROQEOjdOnmrGNxuJHI+BFxGRE+g8YMTLMiDkOi8ix2DgRUTkBB4XeHHEi8ghGHgRETmBO+/TaGa5xotTjUSOUe/Ay2Qy4a+//sKVK1eqnausrMTPP/8sScOIiLyJrkAvfnbXES+u8SJyvHoFXpmZmejevTvuvPNOREdHY/z48VabY+fn52Po0KGSN5KIyNN53FQj32okcoh6BV4LFy5Ey5YtkZWVhT/++APl5eUYMGCA1eiXIAiSN5KIyNOZF6srfRXwUUu2aYik1ME3tw3SFeprKUlE9qpX4PXTTz/h7bffRsuWLdGtWzfs2LEDcXFxiIuLQ1ZWFoCq7MdERGRNV1AVePmH+Lrt35NypRx+QT4AgLJCjngROUK9Ai+dTgdf35tD0TKZDMnJyRg1ahQGDRqE8+fPS95AIiJPZ6gwokJnAOC+C+vN1CF+AKpG6DiDQSS9egVeHTt2xJEjR6odT0pKwtixYzFu3DjJGkZE5C08IWu9mX9I1XSjsdIkBotEJJ16BV4PP/wwNmzYYPPcqlWr8Oijj/JfSEREt/CEhfVmaqaUIHKoegVeL7/8MrZt21bj+aSkJJhMpgY3iojIm1gFXqFuHngxiSqRQzGBKhGRg5kX1gPWI0ruyJ/bBhE5FAMvIiIH86SpRiZRJXKsBgdeCoVCTCVBRETVlVnkxFK7+1Qj13gROVSDAy8upiciqp3OIieWu494cY0XkWNxqpGIyMHMI14yhQx+garblHYtrvEiciwGXkREDmaesvPX+EImd8+s9WYqfyUUPlX/aeBUI5H0GHgRETmQyWhCWVHVVKO7TzMCVTuSmNd5caqRSHoMvIiIHKisqAK4sRTW3RfWm6lvZK/XF1fCZGBuRiIpMfAiInKgsgLPSSVh5n9jv0YA4mgdEUmDgRcRkQN5Ug4vM7Xm5gsAXOdFJK0GB16vvvoqQkJCJGgKEZH3sQxc1B4SePkzpQSRwygbeoM33nhDinYQEXmlMk8c8WL2eiKH4VQjEZEDeeJUo/W2QfpaShJRfTV4xMuSyWTCpUuXcPnyZVRWVtosM2jQICmrJCJyax4feBVwxItISpIEXoIgYMWKFUhMTEReXl6tZY1GoxRVEhF5BHHESGa9D6I78w+1eKuRU41EkpIk8Hr55Zfx9ttvo2nTppg2bRqioqKgVEo6mEZE5JHMgYtfkApypWes7lBrVIAMgMARLyKpSRIdrVu3Dh07dsThw4cRGBgoxS2JiDyeIAg3twvykGlGAJAr5FAHq1CmreDieiKJSfLPr5KSEtx3330MuoiILJSXVMJkqEpb70mBF3CzvTptOQST4OLWEHkPSQKv2NhYXLlyRYpbERF5DU/M4WWmvpG9XjAK0Bczez2RVCQJvBYtWoTNmzfj999/l+J2RERewRPfaDTzD2UuLyJHkGSN1+jRo/Hxxx9jzJgxGD9+PHr06IHg4GCbZadOnSpFlUREbq/Mg0e8bk0pEdbKhY0h8iKSBF7l5eXYvHkzcnNzkZKSAgCQyWRWZQRBgEwmY+BFRI2G94x4MYkqkVQkCbzmzZuHTz/9FHfeeSceeeQRh6aT0Ol0WLNmDdLS0lBcXIyYmBhMnjwZw4cPv+21BQUFSEpKwv79+6HX69G+fXvEx8ejd+/eVuX27duHtLQ0nDlzBllZWTAajfj5559t3tNgMOCTTz7B9u3bkZeXh6ioKDz00EOYMGGCJP0lIs/lidsFmfmH3MzlxalGIulIEh19+eWX6N27N/bv3+/w/F2LFi1Ceno6Zs+ejejoaOzatQuvv/46TCYTRo4cWeN1FRUVmDt3LkpKSvD8888jNDQUmzZtwvz585GYmIjY2Fix7M8//4wTJ06gQ4cOUKlUOH36dI33XblyJb7//nvMmDEDnTp1wqFDh/D+++9Dp9NhypQpUnadiDyMZQ4syxEkT2A14sVcXkSSkSRK0uv1GDp0qMODrv379+PIkSNISEjAiBEjAAC9evVCdnY2kpKSMGzYMCgUCpvXbt26FRkZGVi1ahW6desGAOjZsyemT5+OpKQkrF69Wiy7cOFCyOVV7x0kJibWGHhlZGRg69atmDlzJiZNmiTes6ioCOvXr8cDDzxQ41o3IvJ+llN0liNInsCfG2UTOYQkbzX27t0b586dk+JWtdq7dy/UajWGDBlidXzs2LHIzc3FyZMna702JiZGDLoAQKlUYtSoUTh16hRycnLE4+agqy7tEQQBY8aMsTo+ZswYlJeX4+DBg3W6DxF5J3PA4qNWQulr+x+F7sryZYAyjngRSUaSwGv58uXYsWMHvvvuOyluV6OMjAy0atWq2shau3btxPM1uXDhgliuvtfW1p6QkBCEhYXV+565ubk4ffq0+CczM7Pe9ROReyvzwKz1ZgqlHH5BPgC4uJ5ISpLMDf7www8YMmQIHnjgAQwdOhSxsbE2p9hkMhlee+01u+vRarVo3rx5teNBQUEAgKKiohqvLSoqEsvV99ra2mOrn2q1Gj4+PtBqtTVeu2XLFqxbt67edRKRZ6jUG1CpNwLwvPVdZv6hftAXV0JXUC6+mU5EDSNJ4LVkyRLx8+7du7F7926b5RoaeJnv4YhrHfEXSm33HD9+PAYMGCD+nJmZiWXLlkneBiJyDauF9R444gVUtTs/qxgmo4Dy4kr4Batc3SQijydJ4JWWlibFbW5Lo9HYHEUqLi4GgFoXsgcHB9sc1TJfa2s0rC7tsbW2raysDJWVlbW2Jzw8HOHh4fWuk4g8Q5nWInmqxjMDL/UtC+wZeBE1nCSB1+DBg6W4zW21bdsWu3btgsFgsFrndeHCBQBAmzZtar32/Pnz1Y6bj7Vt29au9vz444/Iy8uzWudVl/YQkXfz5OSpZv6hlrm89GgSU/9/oBKRNUkW1ztLXFwcysrK8NNPP1kd37FjB8LDw9GlS5carx00aBCysrKs3nw0GAz44Ycf0KVLF7tGnwYOHAiZTIYdO3ZYHd++fTt8fX3Rt2/fet+TiLyD5VSj2lPXeIUwlxeR1CQZ8fr111/x9ddfY+HChYiMjKx2Pjs7G2+//TYmTpyIfv362V1Pv3790KdPH6xcuRI6nQ4tWrTAjz/+iIMHD2LRokViDq8VK1Zg586d+Oyzz8T2jB07Fps2bUJCQgJmz54tJlDNyspCYmJitfamp6cDAK5cuQIA2LNnDwAgMjISnTp1AlA1onXfffchNTUVcrkcnTt3xuHDh/Htt98iPj6eObyIGjHvGPFiLi8iqUkSeK1cuRLHjx/HypUrbZ6PjIzEd999h8uXL+OLL75oUF3Lli1DcnIyUlJSxC2DFi9ebLVlkMlkgtFohCAI4jGVSoXExEQkJSXhvffeg16vR4cOHfDOO+9YZa0HgKNHj+LNN9+0OpaQkACgakPwV155RTw+b948hIeHY+PGjcjPz0dkZCTmzJnDLYOIGjlP3i7IjElUiaQnEyyjEzvFxMRg+PDhSE1NrbFMfHw8fvjhB+arqsHp06cxc+ZMJCcno2PHjq5uDhE10PY3D+Hyn3kAgCn/HQHfQB8Xt6j+inN0+OKFqqUdre9qhhEv9nJxi4g8nyRrvK5fv44WLVrUWiYyMhLXr1+XojoiIrdXml81QqRQyaEKcOx2ao5itbiea7yIJCFJ4BUSEoKsrKxay2RmZiIwMFCK6oiI3J6uoCrbe0Con8cmHlUo5WIKidICZq8nkoIkgVf//v2xadMm/P333zbPZ2Vl4ZtvvsE999wjRXVERG6tUm9Ahc4AwHOz1psF3Gi/rrAcgqnBK1OIGj1JAq958+ZBp9NhwIABWL9+Pa5evQoAuHr1Kj7++GMMGDAAZWVl+Oc//ylFdUREbs1yWi6giV8tJd2f/432C0YBZUUVLm4NkeeTZOFBXFwc3n//fcydOxfTpk0DULVdjnndvlwux3vvvYdBgwZJUR0RkVsrzb85LWe5TsoTBViu88rXe+wbmkTuQrIVn88++ywGDx6MpKQkHD58GIWFhQgJCcHdd9+Np556Ct26dZOqKiIit2a5HiqgiWcHKv4W7S8t0CMcGhe2hsjzSfqqTbdu3fDhhx9KeUsiIo+j89IRL8uRPCKyj0dtGURE5AlKvXCNF8CUEkRSYOBFRCQxjngRUU0YeBERScxyjZenp5OwXOOlYy4vogZj4EVEJDHdjaz1fsEqKJSe/desb4APFD5VfTBn4yci+3n23whERG7GZBLEDaU9fX0XUJUayNwPjngRNRwDLyIiCem1NzO8e/o0o5m5HxU6Ayr1Bhe3hsizMfAiIpKQN73RaBbANxuJJCNZHq+Kigp88803YvJUo9FYrYxMJkNKSopUVRIRuR3LNxoDPPyNRjP/W95s1EQFuLA1RJ5NksArMzMTI0eOxPnz58Vtgmxh4EVE3s7qjUYPz1pvZjllWsp1XkQNIkng9eKLL+LcuXOYMmUKpk+fjpYtW0KplDQpPhGRR7B8889bRrysphqZy4uoQSSJjnbv3o3hw4fj448/luJ2REQeS2c14uUdgZfVVCPXeBE1iCSL600mE3r27CnFrYiIPFqpF67xstzomyNeRA0jSeDVv39/nDp1SopbERF5NPOIl0IlhyrAO5ZcWI94MfAiaghJAq8VK1YgLS0NX331lRS3IyLyWOY1XgGhfpDJZC5ujTQUSjn8glUAbmblJyL72PXPsaVLl1Y7NnToUDz66KMYPHgwevbsCY1GU62MTCbDa6+9Zk+VRERur0JXicqyqgSj3rK+yyygiR/0RRXQFZbDZDRBrmAaSCJ72BV4LVmypMZze/bswZ49e2yeY+BFRN7Mcn1XYJh3BV6BYX7Iu1gE4caWSIFhalc3icgj2RV4paWlSd0OIiKPV5JnsbDeywITy/6U5ukZeBHZya7Aa/DgwVK3g4jI45VaBF6B4d414hVgMYJXkqdHMxe2hciTcZKeiEgipXll4udAL1vjZTl1atlPIqofyd91NhgMOHPmDLRaLTQaDe644w5msSeiRqGxTDVa9pOI6keyEa+cnBzMnDkTISEh6N69OwYOHIju3bsjJCQEs2bNQk5OjlRVERG5JW+earQe8WLgRWQvSYaiLl++jAEDBiArKwsREREYNGgQmjVrhmvXruG3337DmjVr8MMPP+CXX35BixYtpKiSiMjtlNyYgvNRK6Dy93Fxa6TlH+oLmQwQBE41EjWEJCNeCxcuRFZWFl5//XVkZmZi27ZtSE1NxbZt25CZmYklS5YgMzMTL730khTVERG5HUEQxJGggCbeNc0IAHKFXMxgz6lGIvtJMuK1Y8cOjB492maOLj8/PyQkJGDfvn3Yvn27FNUREbkdfXEFjJUmAN6Xw8ssIMwPpfl66IsqYKgwQqlSuLpJRB5HkhGviooK9OrVq9YyvXv3RkVFhRTVERG5nVIvXlhvZplSopSbZRPZRZLAq3fv3khPT6+1THp6Onr37i1FdUREbqck13uz1psF3pJElYjqT5LA64033sB3332HdevW2Ty/du1abNu2DcuWLZOiOiIit1Oaf3PBeYCXBl4BfLORqMEkWeOVlpaGoUOHYsaMGXj77bcxYMAANG3aFNevX8evv/6K06dPY9SoUdi9ezd2794tXse9G4nIW5RYpZLwzqnGQKvs9XyzkcgekgRelptmp6en25x23LlzJ3bu3Gl1jIEXEXmLUoupxgAvy1pvdut+jURUf5KNeBERNWYljWCqMfCW/RqJqP4kCby4aTYRNXbmESC/YJXXplnwC1ZB4SOHsdJktaaNiOqOm2QTETWQyWiCrqAcgPdOMwJVy0PM/bN8i5OI6s6uwOuxxx7Dxo0b7a60odcTEbkTXWE5BJMAwHtTSZiZp1Erywyo0FW6uDVEnseuwOvzzz/HX3/9ZXelDb2eiMidNIbkqWaWuby4zouo/uxe43Xs2DGsX79eyrYQEXmk4us68XNghJcHXuEWC+xzytAkOsiFrSHyPHYHXt988w02b95c7+sEQbC3SiIit1Sce3OheZCXB15BEf7i5+IcLrAnqi+7Aq/U1NQGVxwbG9vgexARuYPi640n8LIc0SvO0dVSkohssSvweuKJJ6RuBxGRxyrJsQy8/Gsp6fmCmlqs8eKIF1G9MZ0EEVEDmUd+fNRKqAIkSY/otgKa+EEmlwHgVCORPRh4ERE1gMkkiG/3BTVVQyaTubhFjiVXyMWUEhzxIqo/Bl5ERA2gy9dDMFa9NBTkpZtj38q8jq28tJK5vIjqiYEXEVEDWE63BTX17vVdZkFWC+w56kVUHwy8iIgawPLNvsBGMuJl9WbjdQZeRPXBwIuIqAGs3mhs2jgCL8s3N0tymVKCqD4YeBERNYDlVJu3Z60341Qjkf0YeBERNYDVGq9GMtXIwIvIfnYHXr169cJ///tfq2M7d+7EvHnzbJZ//fXXoVR6d34bImp8zFONvoE+UPn7uLg1zqEO9YNcUZU2gykliOrH7sDr2LFjyM7Otjp24MABvPfeezVew30aicibmAwmlOZVBR6NZWE9AMjlMrG/xTk6/t1OVA+caiQislNpvh7mmKOxLKw3M69nqywzoryUubyI6oqBFxGRnYob0R6Nt7Jc51XClBJEdcbAi4jITpY5vIIayRuNZpaBZnEuAy+iumLgRURkJ8vkoY0llYSZ5dRq0TXm8iKqKwZeRER20maXip81kQEubInzBTe7OeJVlM3Ai6iuGpTf4f/+7/9w4MAB8edz584BAMaOHVutrPkcEZG3MAccMlnjG/EKbnYz0Cy6VlpLSSKy1KDA69y5czYDqh07dtgsL5PJGlIdEZHbEARBDDgCI9RQKBvXBIJvoA98A31QXlLJES+ierA78MrIyJCyHUREHqWsqAKVZUYAjW+a0UwTGYDr5wpRmq+HodwIpa/C1U0icnt2B16tWrWSsh1ERB6l6OrN6TXL9U6NSXCkP66fKwRQtcC+SUyQaxtE5AE8bg8fnU6HNWvWIC0tDcXFxYiJicHkyZMxfPjw215bUFCApKQk7N+/H3q9Hu3bt0d8fDx69+5dreyRI0eQkpKCc+fOwc/PD/3798fTTz+N0NBQsczVq1fx6KOP2qxr8eLFdWoTEXkmyzf5ghvpiFdwpMUC+2ulDLyI6sCuwGv69Ol2VSaTyZCSkmLXtWaLFi1Ceno6Zs+ejejoaOzatQuvv/46TCYTRo4cWeN1FRUVmDt3LkpKSvD8888jNDQUmzZtwvz585GYmIjY2Fix7LFjx7BgwQL0798fy5cvR0FBAVavXo25c+ciOTkZKpXK6t4TJkzAiBEjrI61bNmyQf0kIvemtVjXpIlsnCNellOsWq7zIqoTuwKvdevW2Twuk8ls7tllPt7QwGv//v04cuQIEhISxECnV69eyM7ORlJSEoYNGwaFwvYag61btyIjIwOrVq1Ct27dAAA9e/bE9OnTkZSUhNWrV4tlV61ahejoaCxdulTc2DsqKgrPPvsstm3bhgcffNDq3k2bNkXXrl3t7hcReZ4ii1QSjXbEyyqlBN9sJKoLu17DycjIsPpz/vx5jBs3DmFhYXjjjTewZ88enDp1Cnv27MHSpUsRFhaG+++/H2fPnm1QY/fu3Qu1Wo0hQ4ZYHR87dixyc3Nx8uTJWq+NiYkRgy4AUCqVGDVqFE6dOoWcnBwAQE5ODtLT0zFq1Cgx6AKA7t27Izo6Gj///HOD+kBE3sE81SiTyxpd1nozy4CTSVSJ6sauEa9bF9avWLECBw8exB9//IGoqCjxeMeOHTFo0CBMmzYNPXv2xFdffYWFCxfa3diMjAy0atXKKiACgHbt2onnu3fvbvPaCxcuoEePHtWOW14bEREhvq1pPn5r2T///LPa8Q0bNiA5ORkKhQJ33HEHJk2ahIEDB9bal9zcXOTl5Yk/Z2Zm1lqeiNyHIAjiCE9QhBryRpZKwsw3wAd+QT7QF1daJZMloppJsrg+JSUFEydOtAq6LLVo0QITJ05EcnJygwIvrVaL5s2bVzseFFS1oLOoqKjGa4uKisRytV2r1WoBAMHBwTbLWtbh4+OD+++/H3369EFYWBiuXbuGjRs34pVXXsHChQsxbty4GtuzZcuWGqdsici9lWkrUKmvSiXRWN9oNAtuFgB9cSF0+eVMKUFUB5IEXpcuXYKfn1+tZfz8/HDp0qUG19WQJKy1XXvruZrKWh4PDw/HggULrM4PHToUs2fPxurVqzF69Ohqo3Nm48ePx4ABA8SfMzMzsWzZstv2gYhcj+u7bmJKCaL6kWR8vGXLlti0aRP0er3N8zqdDps2bWrwm34ajUYckbJUXFwMwPYolVlwcLDNETHzteaRL41GAwA11mNr1MySUqnEsGHDoNVqaw00w8PD0bFjR/EP86IReQ7LTO3BjfSNRjPrNxs53Uh0O5IEXvHx8bhw4QIGDBiAzZs3i2uX8vLy8M0332DgwIG4ePEiZs6c2aB62rZti8zMTBgMBqvjFy5cAAC0adOm1mvPnz9f7bj5WNu2ba3uYb7nrfXUVoeZ+c1Oubxxrvsg8nZWm2M39qnGSL7ZSFQfkkQGCxYswLRp03D06FE8/PDDaNq0KXx8fNC0aVNMmDABx44dw5NPPlltWq6+4uLiUFZWhp9++snq+I4dOxAeHo4uXbrUeO2gQYOQlZVl9eajwWDADz/8gC5duiA8PBwAEBERgc6dO+P777+H0WgUy544cQJZWVkYPHhwrW00GAxIS0uDRqNBixYt7OkmEbk5Jk+9KZi5vIjqRZI1XnK5HCkpKZg6dSo+/vhjHD9+HFqtFhqNBj169MDUqVNvG7DURb9+/dCnTx+sXLkSOp0OLVq0wI8//oiDBw9i0aJFYg6vFStWYOfOnfjss88QGRkJoCrlxKZNm5CQkIDZs2eLCVSzsrKQmJhoVc9TTz2FefPmISEhAQ899JCYQLVNmzYYM2aMWO6DDz6AwWBA9+7d0aRJE1y/fh1ff/01zp49i5dffrnGnGJE5NkKr1SN7MgUjTeVhJll8ljtVY54Ed2OpFsGDR48WJIAqzbLli1DcnIyUlJSxC2Dbt2ex2QywWg0WiVzValUSExMRFJSEt577z3o9Xp06NAB77zzjlXWeqAqserbb7+NtWvX4l//+pe4ZdAzzzxjlbW+TZs22LJlC3bt2oXS0lL4+/ujc+fO+M9//oO7777bod8DEbmGyWiC9moJgKr1TY01lYSZyt8H/k18ocsvR+GlEjFZNhHZJhNspZqvg9TUVIwbNw4RERFSt6lROn36NGbOnInk5GR07NjR1c0hohpor5biy39WJVJuc3ckhs/t6eIWud72Nw/h8p9Va3sfSxoGf42vi1tE5L7s/qfajBkz0Lx5c8TFxeHdd99tcFZ6IiJPUHCpRPwc0jLQhS1xH6Etb77tXWjx/RBRdXYHXvv27cP8+fORn5+PBQsWoFOnTujcuTNeeeUVHDhwQMo2EhG5jYLLxeLnUAZeAICQFje/hwIGXkS1sjvw6tevH958802cOHECZ8+exVtvvYWIiAi8/fbbGDBgAKKiojB79mxs27YN5eXlUraZiMhlLEd0LAOOxszyeyi8zMCLqDaSrApt164d5s+fj59//hnXrl3DmjVr0LdvX3z66ae4//77ER4ejgkTJuCTTz5Bfn6+FFUSEbmEObCQyWVWb/Q1ZqGWI14MvIhqJfnrOGFhYZg2bRq++eYb5ObmYtOmTZg4cSJ+/fVXPPHEE2jWrBmGDBkidbVERA5nMgliKongZv5Q+DBlDAD4BvrAP6RqQX3hpeLblCZq3CRNJ3ErPz8/jB8/HuPHj4cgCNi3bx82b96MLVu2OLJaIiKHKMnRwVhpAsCF9bcKaREIXWE59MWVKCsqhzqYbzYS2eK0BDQymQwDBgzA22+/jfT0dGdVS0QkGcuF46Fc32XFMhDlOi+imtk94vXMM8/U+xqZTIYPP/zQ3iqJiFzKMqDgG43WQm95szGqc5gLW0PkvuwOvD766KM6l7XMYszAi4g8VQHfaKyRZSDKXF5ENbM78EpLS6tTuaysLCxduhTnz5/nNhJE5NHENxplgCaqcW+OfasQvtlIVCd2B16325OxoKAAy5cvx4cffgi9Xo/+/fvjrbfesrc6IiKXEizeaAxq6g+lim80WvILUsEvWAV9UQWTqBLVQvLF9Xq9HitWrEC7du3w7rvvonXr1ti4cSN+/fVXDBw4UOrqiIicQptdCkO5EQAQGhN0m9KNU5Mb34u+qAK6Ar2LW0PkniQLvARBwJo1a9ChQwe88sor8Pf3x3//+1/89ddfePDBB6WqhojIJfIuFomfw1sHu7Al7ivM4nvJtfi+iOgmSQKvb775Bl27dsXs2bNRUlKC5cuX49y5c4iPj4dc7rSMFUREDpPLwOu2LL+XPAZeRDY1KIHqL7/8gpdeegkHDhyASqXCiy++iFdffRWhoaFStY+IyC3kZdwMJMIYeNnEES+i27M78Bo/fjy2bt0KuVyOJ554AkuXLkXLli2lbBsRkVsQBEEcwVGH+MI/1M/FLXJPmsgAKH0VMJQbOeJFVAO7A6/vvvsOMpkMMTExyM7OxqxZs257jUwmw9atW+2tkojIJUpy9SgvrQQAhLXiaFdNZHIZwloF49qZApTklEFfUgG/QJWrm0XkVho01SgIAjIyMpCRkVGn8szjRUSeKO+iVvwc3oaBV23CWlcFXgCQn1mM5l2ZwZ7Ikt2BV12DLSIiT2c5bcb1XbWzXGCfm6Fl4EV0C7sDr1atWknZDiIit8U3GusujG82EtWKuR6IiG7DHECo/JUIjFC7uDXuLaRlIOTKqmUlfLORqDq7RrymT59uV2UymQwpKSl2XUtE5Aq6wnLoCsoBVI3mcK1q7RRKOUJbBiHvYhG0V0tRqTfAx69By4mJvIpdT8O6detsHpfJZBAEocbjDLyIyNPkXri5sJ7ru+omvE1w1SihUDVaGNmpiaubROQ27JpqNL/JaP5z/vx5jBs3DmFhYXjjjTewZ88enDp1Cnv27MHSpUsRFhaG+++/H2fPnpW6/UREDmV+Qw8AmnUIcV1DPEjT9iHiZ8vvj4jsHPG6dWH9ihUrcPDgQfzxxx+IiooSj3fs2BGDBg3CtGnT0LNnT3z11VdYuHBhw1pMROREVoHXHdyVoy4sv6fs0wXo4cK2ELkbSRbXp6SkYOLEiVZBl6UWLVpg4sSJSE5OlqI6IiKnMBpMyDlfNdUYFKFmxvo60jQPgG+gDwDg+tlCCKbqS1CIGitJAq9Lly7Bz6/2v5D8/Pxw6dIlKaojInKKvAwtjJUmAECzjhztqiuZTCaOepWXVKLwaqmLW0TkPiQJvFq2bIlNmzZBr9fbPK/T6bBp0ybu5UhEHiX7TKH4mdOM9dPsjhDxM9d5Ed0kSeAVHx+PCxcuYMCAAdi8eTPy8vIAAHl5efjmm28wcOBAXLx4ETNnzpSiOiIip7jO9V12s/y+rp1m4EVkJklylQULFuDMmTNITU3Fww8/DACQy+UwmaqG6AVBwLRp07BgwQIpqiMicjhBEMSRGpW/EqEtA13cIs8S3lYDuVIGk0HgiBeRBUkCL7lcjpSUFEydOhUff/wxjh8/Dq1WC41Ggx49emDq1KkYPHiwFFURETlF8XUdyrQVAICmHUIgkzNxan0oVQqEt9Hg+tlCFGXrUKYth1rj6+pmEbmcpOmEBw8ezACLiLzCtdOF4mdOM9qn2R2huH62EABw7UwhWt/VzLUNInID3KuRiMiGKyfyxM98o9E+kRbfm+X3SdSYMfAiIrqFYBJw6XgOAEDpq2DGejtFdWkCmaJqitb8fRI1dgy8iIhukZ9VLK7viurSBAofhYtb5JlU/j5i0FqUrUPRNZ1rG0TkBhh4ERHdwnJ0JrpHhAtb4vla3nnz++OoFxEDLyKiai4dzxU/t7gz3IUt8Xwte9z8/iy/V6LGioEXEZGFijIDsm8k/Axu5g9NZICLW+TZwloFwy9YBQC4eiIPRoPJxS0ici0GXkREFq6eyINgrNrUmaNdDSeTy9DyxvdYqTcymSo1egy8iIgsWE6HtWTgJQnL7/HSH5xupMaNgRcR0Q0mk4DMI9cAAHKlDM27hrm4Rd6hxZ3hwI3E/5lHrkEQBNc2iMiFGHgREd2QfSofusJyAEDLHhHw8ZN0c49GSx3si6jOTQAA2qulyLtY5OIWEbkOAy8iohsu7L8qfm7XP8qFLfE+lt/neYvvmaixYeBFRATAZDAh41A2gKps9TG9mrq4Rd6l9V2RYhb7jANXIZg43UiNEwMvIiIAl//KQ3lJJQAgpmdTTjNKzC9YhRbdqhbZl+Tqcf1coWsbROQiDLyIiACc33dF/NzuHk4zOoLl93p+H6cbqXFi4EVEjV5FmUF8m1Hlr7TKtk7SadW7KRQ+Vf/ZuXDgKoyVRhe3iMj5GHgRUaN39udLqNRXBQFt+kZxU2wHUfn7oFXvZgAAfVEFLuzPdnGLiJyPgRcRNWqCScCJnZniz13vbeXC1ni/Lhbf7187LjKnFzU6DLyIqFG79EcOirJ1AICoLk3QJCbIxS3ybs3uCEF4m2AAQN7FIlw7U+jaBhE5GQMvImrU/tpxc7Sr2+jWrmtIIyGTydDV4ns+seOiy9pC5AoMvIio0crLKsLlP6v2DgyKUCOaubucom2/SKg1KgDAxcPXUHSt1MUtInIeBl5E1Ggd3nBa/Nx1dGvI5TIXtqbxUPgo0HlkDICqNXaHvzjj4hYROQ8DLyJqlC79mYtLx6tGuwLD/dBpeLSLW9S4dBvdGn7BVaNeGQeymVCVGg0GXkTU6JhMAg5tSBd/7jPxDihVTCHhTCp/H/Sa0F78+eCn6XzDkRoFBl5E1OicTvsb+ZnFAICw1sFod09zF7eoceo0NBqaqAAAwLXTBVablBN5KwZeRNSoaK+W4uD/3Rzt6ju5E2Rc2+UScqUcd0/qKP7869oTKMkrc2GLiByPgRcRNRpGgwlpHxyDobwqS32nYdFo3jXMxa1q3GJ6N0XbflV7OFboDNiz6jhMJk45kvdi4EVEjYIgCDj4aTpyM4oAAJqoAPR9vJOLW0UymQwDZnRFYLgfACD7VD5+/+qsi1tF5DgMvIioUTi66RxO3tgaSK6QYehzPeDjp3RxqwgAfAN8MOSZHpDdmPE99s15/LU9w7WNInIQBl5E5NUEQcDx7y7g96/OiccGzuiG8DYaF7aKbhXZqQn6Pt5Z/PnAJ+k4tSvLhS0icgwGXkTktQwVRuxN/guHLBKl9pvSCXcMaenCVlFNuo1pbZVi4te1J7Dv45MwGUwubBWRtDjOTkReKeeCFr+s+Qt5F4vEY70f6YBuY9q4sFV0Oz0fbo9KvRF/bq2aajy5MxO5GVoMnN6NG5iTV/C4wEun02HNmjVIS0tDcXExYmJiMHnyZAwfPvy21xYUFCApKQn79++HXq9H+/btER8fj969e1cre+TIEaSkpODcuXPw8/ND//798fTTTyM0NNSqnMFgwCeffILt27cjLy8PUVFReOihhzBhwgTJ+kxEdae9Woo/vr2AMz9dAm68HKdQyRE3szvaD2C+Lncnk8nQd3InaKICsG/dCZgMAq6fKcSml39BpxExuHNcGwRF+Lu6mUR287jAa9GiRUhPT8fs2bMRHR2NXbt24fXXX4fJZMLIkSNrvK6iogJz585FSUkJnn/+eYSGhmLTpk2YP38+EhMTERsbK5Y9duwYFixYgP79+2P58uUoKCjA6tWrMXfuXCQnJ0OlUollV65cie+//x4zZsxAp06dcOjQIbz//vvQ6XSYMmWKI78KIrpBX1yBv4/l4Py+K7j0R67VOU3zAAx7PhZhrYJd1DqyR6dh0WgSHYi0D/9A8fUyCAJw6ocsnNqVhZheTdGufxRa9oiAb4CPq5tKVC8eFXjt378fR44cQUJCAkaMGAEA6NWrF7Kzs5GUlIRhw4ZBobC97cfWrVuRkZGBVatWoVu3bgCAnj17Yvr06UhKSsLq1avFsqtWrUJ0dDSWLl0KpbLqK4qKisKzzz6Lbdu24cEHHwQAZGRkYOvWrZg5cyYmTZok3rOoqAjr16/HAw88gOBg/mVPJBVjpRFlRRUovq6D9qoOeReLkHO+EHkXi3DrbjM+aiV6TWiPrqNaQa7kclZP1LRDKCa8HYe/tl3Esc3nq/KvCUDWb9eR9dt1yBQyhLcKRkT7EDSJCUJghBpB4WoEhvtB4cMtoMg9eVTgtXfvXqjVagwZMsTq+NixY7F06VKcPHkS3bt3r/HamJgYMegCAKVSiVGjRuG///0vcnJyEBERgZycHKSnp2PWrFli0AUA3bt3R3R0NH7++Wcx8Nq7dy8EQcCYMWOs6hozZgy+/fZbHDx4sNZROGf4a8dFGCuMtZap8/ZodSgn1K2Qc+ur672kzNlYx5tJWWed7iVhhXW/1e0LCgJgqjTBeOOPodJY9bnCiEq9EfqiCpQVVaCyzHDbewWGq9FlZAzuGNISfkGq25Yn96ZUKRD7YDt0HNoS6bv/xqldWdAVlAMABKOAnAta5FzQVrtOrVFBFeADlVoJlb8SPmollCoF5AoZ5Ao55Ep51Wdl1c/mVBY3P9zyo8z8PzKrn2s6LuNmCG7Jv4kfOgxs4dI2eFTglZGRgVatWlkFRADQrl078XxNgdeFCxfQo0ePasctr42IiEBGRobV8VvL/vnnn1btCQkJQVhYWLVy5vM1yc3NRV5envhzZmZmjWUb4timc9AXVzrk3kRuQQaEtghEyx4RaNW7KZreEQo5twDyOmqNL3o+1B49xrdFdnoBsn6/jr//yIH2SqnN8mXaCpRpK5zcSnJ3Te8IYeBVH1qtFs2bV18cGxRU9aZLUVFRtXNmRUVFYrnartVqq/7lZGuKMCgoyKoOrVZrs5xarYaPj494L1u2bNmCdevW1XieiG5S+SvhF6yCOtgXfsEqBIb7QRMVgJDmgQhvEwyVP9f5NBZyhRzNu4ahedcw9JvSGeWllci9oEXRdR1KcspQnFOGkpwylObrUVFmqNMoKZEzeVTgBVS98eKIa289V1PZ+tRfW9nx48djwIAB4s+ZmZlYtmxZne9dV4Of7lG3HDgSDhDU6TuqY311KlbX34l0zapbwTq2q259rNOtGvR82FNn3au7fUGFjxwKlRxKH0XV5xt/lCoF12hRjXwDfNCiezhqGsMQTAIq9QZU6AwwVppgMppgMghV/2sUxJ8F4Ob8ufX/VH24cc7qGKoS9FpXKPGyBZKUb6Dr/5HmUYGXRqOxOYpUXFwMwPYolVlwcLDNETHzteaRL42mKpt1TfVYjpppNBqcO3euWrmysjJUVlbW2p7w8HCEh4fXeF4q0bERDq+DiMhdyeQyqPx9OCpKbsOj/hnZtm1bZGZmwmCwHjq+cOECAKBNm5oTI7Zt2xbnz5+vdtx8rG3btlb3MN/z1nos62jbti0KCwut1mrVtT1ERETU+HhU4BUXF4eysjL89NNPVsd37NiB8PBwdOnSpcZrBw0ahKysLJw8eVI8ZjAY8MMPP6BLly7i6FNERAQ6d+6M77//HkbjzbcBT5w4gaysLAwePFg8NnDgQMhkMuzYscOqru3bt8PX1xd9+/ZtUH+JiIjIu3jUVGO/fv3Qp08frFy5EjqdDi1atMCPP/6IgwcPYtGiRWIOrxUrVmDnzp347LPPEBkZCaAq5cSmTZuQkJCA2bNniwlUs7KykJiYaFXPU089hXnz5iEhIQEPPfSQmEC1TZs2Vqkj2rRpg/vuuw+pqamQy+Xo3LkzDh8+jG+//Rbx8fHM4UVERERWZEK1lYHuTafTITk52WrLoMcff9xqy6Dly5djx44d+OKLLxAVFSUez8/Pt9oyqEOHDpgxYwb69OlTrZ7Dhw9j7dq1OHv2rLhl0DPPPGNzy6D169dj+/btyM/PR2RkJB5++OF6bxl0+vRpzJw5E8nJyejYsWM9vxUiIiLyBB4XeHkrBl5ERETez6PWeBERERF5MgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxEREZGTeNSWQd6svLwcAJCZmenilhAREVF9tWrVCn5+frctx8DLTWRnZwMAli1b5uKWEBERUX3VdecZbhnkJgoLC3Ho0CFERUVBpVJJdt/MzEwsW7YMixYtQqtWrSS7rzvx9j56e/8A7+8j++f5vL2P7F/DccTLw4SEhGDUqFEOu3+rVq28fg9Ib++jt/cP8P4+sn+ez9v7yP45HhfXExERETkJAy8iIiIiJ2Hg5eXCwsLw5JNPIiwszNVNcRhv76O39w/w/j6yf57P2/vI/jkPF9cTEREROQlHvIiIiIichIEXERERkZMw8CIiIiJyEubxciNHjx7FCy+8YPNcUlISunbtKv58+vRpfPTRRzh58iQUCgV69uyJZ599Fs2bN6927ddff41Nmzbh6tWrCAsLw5gxYzBlyhQolbf/9RsMBnzyySfYvn078vLyEBUVhYceeggTJkxwef/+/vtvbNmyBUePHsWVK1cgk8nQqlUrTJw4EUOGDLlte65evYpHH33U5rnFixdj+PDh9esgHPM7HDRokM37zZo1C48//vht2+TOv8Pt27fjzTffrLG+2/VR6t9hXft3/PhxbN++HWfPnkVGRgYqKyvxxRdfICoqyua17vIMOqKP7vYcOuJ36InPYF37527PIFC3PhqNRnz11Vc4fPgwMjIyUFRUhGbNmmHgwIGYPHkygoKCql3rLs8hAy83NGvWLPTs2dPqWJs2bcTPmZmZeOGFF9C+fXssWbIEFRUVWLt2LZ577jmsXbsWISEhYtn169cjJSUFkydPxl133YX09HSsWbMGubm5WLBgwW3bsnLlSnz//feYMWMGOnXqhEOHDuH999+HTqfDlClTXNq/Q4cOYf/+/bj33nvRqVMnGI1G7N69GwkJCZg+fTqefPLJOrVnwoQJGDFihNWxli1b2tU3qftoNmTIkGp/uTVr1qxObXHn32H//v2RlJRU7f4pKSk4cuRIjf/Bu5XUv8Pb9e+3337Db7/9hg4dOiAgIABHjx6t8V7u+AxK2Ud3fQ6l/B0CnvcM1rV/7voMArX3sby8HKmpqRg+fDjGjRsHjUaDM2fOYP369di3bx+Sk5Ph6+srXudWz6FAbuP3338X4uLihLS0tFrLJSQkCOPGjRNKSkrEY1evXhWGDh0qrFq1SjxWWFgoDB8+XHj77betrl+/fr0waNAgISMjo9Z6Lly4IAwaNEj45JNPrI6//fbbwogRIwStVlu3jt0gdf8KCgoEk8lU7fqFCxcKI0eOFMrLy2ut58qVK0JcXJywYcOGevWjNlL3URAEIS4uTli5cqVd7XH336EtOp1OGDVqlPDss8/etj1S/w7r2j+j0Sh+3rBhgxAXFydcuXKlWjl3ewYFQfo+uttzKHX/BMEzn8H69O9WrnwGBaFufTQYDEJhYWG142lpaUJcXJywc+dO8Zi7PYdc4+VhDAYD9u3bh8GDByMgIEA8HhkZiZ49e2Lv3r3isYMHD6KiogJjx461useYMWMgCIJVWVv27t0LQRAwZsyYateXl5fj4MGDEvTIWn36FxISAplMVu0enTt3hl6vR1FRkeTtk0J9+thQ7v47tGX37t0oKyvDfffdJ3nbpCKX1+2vTk98Bs3q2kdPfQ7r2r+GctXvsCH984RnUKFQQKPRVDveuXNnAMD169fFY+72HDLwckOJiYkYOnQoRo8ejX/+8584fvy4eO7KlSsoLy9Hu3btql3Xrl07XL58GeXl5QCAjIwMAEDbtm2tyoWHh0Oj0Yjna5KRkYGQkJBqCefMdd/u+ppI1b+aHD16FCEhIQgNDa1TezZs2IBhw4Zh5MiRePbZZ/HLL7/Ur0M2SN3HXbt2YcSIERg+fDji4+Oxbdu2OrXDE3+HW7duRUBAAIYOHVrn9kj9O6ytf/Xhrs8gIF0fa+Lq51Dq/nnSM9hQ7vAMAvb18ffffwcAtG7dWjzmbs8h13i5kYCAADzyyCPo2bMngoODcfnyZXz22Wd44YUX8NZbb+Huu++GVqsFAAQHB1e7Pjg4GIIgoLi4GL6+vigqKoJKpYJarbZZ1nyvmmi1Wpv1qNVq+Pj43PZ6R/fPlu+++w5Hjx7FnDlzoFAoam2Pj48P7r//fvTp0wdhYWG4du0aNm7ciFdeeQULFy7EuHHj6tU/R/VxxIgR6N+/P5o2bYqCggJs3boVK1aswJUrVxAfH19rezztd5iZmYm//voL48ePh5+f323bI/XvsC79qw93ewYB6ftoiyufQ0f0z9OewYZw9TMI2N/HnJwcrF69Gp06dcI999wjHne355CBlxu54447cMcdd4g/9+jRA3FxcXjyySeRlJRU5wfK1rB/Q8pJdb2j+3fgwAEkJiZiyJAhdXrTJDw8vNqiyqFDh2L27NlYvXo1Ro8eXae3XSw5oo8JCQlW54YMGYJ//etf+PTTT/HII49UW4hfH+72O9y6dSsA1Pkva6l/h1L1r66c/QwCju+jq59DR/TPG5/Bmrj6GQTs62NRUREWLlwIQRCwZMmSek21Ovs55FSjmwsKCsI999yD8+fPo7y8XJzTtrVuoqioCDKZDIGBgQCqIvmKigro9XqbZW1F8JY0Go3NesrKylBZWXnb6+uiIf2zdOjQISxatAh9+vTBa6+9ZveDpFQqMWzYMGi1Wly6dMmue9xKqj5aGjlyJIxGI9LT02st50m/Q4PBgJ07d6J9+/bo1KmT3e2R+nd4a//qwxOeQaBhfbTkrs+hVP2z5M7PoL3c9RkEau9jcXEx5s2bh9zcXKxcubJaSh53ew4ZeHkAwWI7zebNm8PX1xcXLlyoVu7ChQto0aKFOIVjns++tWxeXh60Wq3Vq8e2tG3bFoWFhcjLy6tWD4DbXl9X9vbP7NChQ3jllVcQGxuLN954Az4+PpK0R8rFtw3tY01u10ZP+R0CwL59+1BQUCDJgl6pf4eCnVvaesozCNjfRzN3fw4b2r+auOMzaC93fgYt72mpuLgYL774Iq5evYp3333X5tpSd3sOGXi5ueLiYuzfvx8dOnSAr68vlEol7rnnHvz888/Q6XRiuWvXruHo0aNWOVf69u0LlUqF7du3W91z+/btkMlkiIuLq7XugQMHQiaTYceOHdWu9/X1Rd++fV3aP+DmX/Z33nkn/v3vf0OlUjWoPQaDAWlpadBoNGjRokWD7mXW0D7asnPnTiiVSqvheFs84XdotnXrVqhUKowaNapB7ZH6d3hr/+rDE55BoGF9BNz/OWxo/2xx52fQXu76DAK2+2gOuq5cuYJ33323xt+Fuz2HXOPlRpYuXYqmTZuiU6dO0Gg0uHTpEr744gvk5+fj5ZdfFstNnz4ds2bNwksvvYTJkyejoqICKSkp0Gg0+Mc//iGWCw4OxtSpU5GSkoLg4GDcddddOHXqFNatW4dx48ZZvfWxY8cOvPXWW3jppZcwevRoAFVR/H333YfU1FTI5XJ07twZhw8fxrfffov4+Ph6D69K3b/jx4/j1VdfRZMmTfD444/j3LlzVvW1bt1aTGdgq38ffPABDAYDunfvjiZNmuD69ev4+uuvcfbsWbz88su3XRTsjD5+9tlnuHjxInr37o2IiAhxYe/hw4cxbdo0q7Ulnvg7NMvNzcWhQ4cwdOhQmxmna+qf1L/DuvavsLAQx44dA3DzX70HDx5ESEgIQkJCEBsbC8D9nkFH9NHdnkOp++epz2Bd+2fmLs9gXftYXl6Of/7znzh79iyef/55GI1GnDhxQrxHSEiIGPS523PIwMuNtG3bFmlpadiyZQvKysoQFBSE7t2749VXXxVzkwBAq1at8P777+Ojjz5CQkICFAoFevXqhWeeeabaIs+pU6fC398fmzZtwueff44mTZrgsccew9SpU63KCYIAo9FYbSh33rx5CA8Px8aNG5Gfn4/IyEjMmTPHrm0SpO7fkSNHUF5ejuzsbMydO7dafe+9956Y9dhW/9q0aYMtW7Zg165dKC0thb+/Pzp37oz//Oc/di9QlbqPMTEx+PXXX7F//37xTcD27dvb3IrDE3+HZtu3b4fRaKx1Qa8zfod17V9GRka1BdcrV64EAMTGxuL9998Xj7vTM+iIPrrbcyh1/zz1GazP/0cB93kG69rH/Px8cX3drX0BgNGjR+OVV14Rf3an51AmOGrim4iIiIiscI0XERERkZMw8CIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxGRG7p48SJkMpn4JzIy0ur8kiVLIJPJsGfPHtc08BaPP/64VXvXrVvn6iYRuSUGXkTkVLcGFLb+3LqPXGPWo0cPLF68GPPnz3d4XatXr4ZMJsNTTz1127K9e/eGTCbD77//DgB4+OGHsXjxYjzwwAOObiaRR+NejUTkEu3atcPjjz9u89ytozuNWWxsLJYsWeKUuiZNmoR58+bh888/R2JiItRqtc1yx48fx++//47Y2Fj06tULQFXg9fDDD2PdunXYvHmzU9pL5IkYeBGRS7Rv395pAQXVTXBwMB555BGsX78eGzduxOTJk22WS0lJAQDMmDHDmc0j8gqcaiQityeTyTBkyBDk5ORg+vTpaNq0KdRqNfr161fjGqfi4mIsXrwYXbt2hVqtRkhICEaPHo1ffvmlWtkhQ4ZAJpOhvLwcCQkJaN++PXx8fKwCw40bN6JPnz5Qq9Vo1qwZZs6ciYKCArRu3RqtW7cWyz3xxBOQyWQ4fPiwzXYtXLgQMpkMmzZtashXUqPjx4+jefPmCA8Px8GDB8XjGRkZiI+PR0xMDHx9fREVFYUnn3wSmZmZVtebg6nU1FSb96+oqMCnn34KX1/fGgMzIqoZR7yIyCMUFhZiwIABCA4OxuTJk3H9+nV88cUXuPfee/Hbb7+hW7duYtn8/HwMGjQIJ06cQFxcHO69915otVps3rwZQ4cOxZdffokHH3ywWh0PP/ww/vjjD9x7771o0qQJ2rZtCwBYu3YtZsyYgZCQEEydOhUajQbbtm3DyJEjUVlZCR8fH/Ees2fPxvr165GcnIy77rrL6v6VlZVYv349IiMjcf/990v+He3duxf3338/goODsXv3bnTq1AkAcPDgQdx7770oLS3F/fffj/bt2+PixYv49NNPsX37duzfv1/s66BBg9ChQwfs3r0bFy9etAoqAWDLli3Iy8vDpEmTEBoaKnkfiLyeQETkRBkZGQIAoV27dsLixYtt/tm+fbvVNQAEAMIzzzwjGI1G8fiaNWsEAMLs2bOtyj/22GMCAGHt2rVWx7Ozs4Xo6GghIiJCKCsrE48PHjxYACDExsYKeXl5VtcUFBQIgYGBQlBQkHD+/HnxeGVlpTBixAgBgNCqVSura7p16yYEBQUJJSUlVsc3btwoABBeeumlOn9PTzzxhM3zixcvFgAIaWlpgiAIwjfffCP4+fkJXbp0Ef7++2+xXEVFhdC6dWshKChIOHbsmNU99u7dKygUCmHcuHFWx998800BgLBkyZJq9Y4ZM0YAIOzatctmu1JTUwUAQmpq6m37SNQYMfAiIqcyBxS1/XnhhResrgEgBAQECMXFxVbHKysrBaVSKfTq1Us8lpOTIygUCmH48OE263///fcFAMK3334rHjMHXps3b65Wft26dQIA4cUXX6x2bv/+/TYDL3MdKSkpVsfHjh0ryGQy4ezZszbbZqk+gdeaNWsEhUIh9O/fv1rgaA723njjDZv3efjhhwW5XC5otVrx2JUrVwSFQiG0bt1aMJlM4vHLly/bPG6JgRdR7TjVSEQuce+992LHjh11Lt+hQwcEBgZaHVMqlWjWrBkKCwvFY4cPH4bRaIRer7e5eP/s2bMAgPT0dIwbN87q3N13312t/B9//AEAuOeee6qdu/vuu6FUVv9rdMqUKXjppZewZs0aTJ8+HQBw+fJl7Ny5E4MHD0b79u1r72w9JCYmYsuWLRg7diy+/PJL+Pv7W50/cOAAgKr+2vo+srOzYTKZcObMGfTp0wcAEBUVhTFjxuC7775DWloahg0bBgBYt24djEYjpk2bBplMJlkfiBoTBl5E5BE0Go3N40qlEkajUfw5Pz8fAPDrr7/i119/rfF+paWl1Y41a9as2rGioiIAQERERLVzcrkc4eHh1Y6HhIRg4sSJ+Pjjj3Hy5El06dIFqampMBqNmDlzZo1tssfevXsBAKNHj64WdAE3v49PP/201vvc+n3MmDED3333HVJTU60CL7lcjieffFKClhM1TnyrkYi8SnBwMADgn//8J4Sq5RQ2/yxevLjatbZGccz3y8nJqXbOZDIhNzfXZjtmz54NAFizZg0EQUBqaiqaNGmChx9+2O6+2ZKSkoJevXrhhRdewKpVq6qdN7f/22+/rfX7GDx4sNV148aNQ7NmzfD111+jqKgIe/fuxdmzZzFy5EjExMRI2geixoSBFxF5lbvuugsymQz79++X5H49evQAAOzbt6/auUOHDsFgMNi8rn///ujevTs++eQTbN++HRcuXMDjjz8OPz8/SdplFhoail27dqFXr1549tln8eGHH1qd79u3LwDU+/tQKpWYOnUqysrK8Pnnn2Pt2rUAmLuLqKEYeBGRV4mMjMTEiROxb98+vPPOOxAEoVqZgwcPQqfT1el+DzzwAAIDA7FmzRpkZGSIxw0GA1577bVar501axZyc3PF6cX4+Ph69KTuzMFXnz598Nxzz+H/+//+P6v2x8TEYOXKlfj555+rXVtZWWkztxlwM8hatWoVvvzyS4SFhXFLIKIG4hovInKJc+fO1Zq5viFZ7VetWoXTp09j4cKF+OSTT9C/f39oNBr8/fff+O2333D27FlcvXrV5pqoW4WEhGDlypWYNWsWevXqhUcffVTM4+Xr64vmzZtDLrf9b1jzIvsrV66gb9++6N69u919qks7f/jhB4waNQpz5syBIAiYM2cOfH198dVXX2HMmDEYPHgwhg8fLuY8y8rKwt69exEWFob09PRq9+zYsSMGDBggrpWbOXMmVCqVw/pA1Bgw8CIilzh//jxef/31Gs83JPBq0qQJ9u3bhw8++ABffPEFPv30U5hMJkRGRqJHjx547bXXbC6Kr8nMmTMRGhqK5cuXY926ddBoNBg/fjzeeusttGrVCu3atbN5nUajwQMPPIDPPvtM8kX1tlgGXy+88AIEQcALL7yAu+66C3/88QfeeecdbNu2Db/88gt8fX3RokULPPjgg5g0aVKN95wxY4YYeJnf0CQi+8kEW+PwRER0W+fOnUOHDh0wceJEfPHFFzbLdO3aFVlZWbh69Wq1dBi1uXjxItq0aYMnnngC69atk6jFjrdu3TpMmzYNqampfPuRyAau8SIiuo2CggKUl5dbHSsrK8OLL74IADa3HwKAbdu24eTJk5gyZUq9gi5LH3/8MWQyGSIjI+263lkef/xxyGQyTJs2zdVNIXJrnGokIrqNn376CTNmzMCoUaMQExOD3NxccS/DYcOG4dFHH7Uqn5SUhL///hvJyclQq9VYuHBhvesMCQmxSnlhb+DmLA8//LBVYtjY2FjXNYbIjXGqkYjoNs6ePYvXXnsN+/btE/N5tW/fHo8++ijmz59fLUVE69atcenSJXTs2BFvvfVWtQz5RNR4MfAiIiIichKu8SIiIiJyEgZeRERERE7CwIuIiIjISRh4ERERETkJAy8iIiIiJ2HgRUREROQkDLyIiIiInISBFxEREZGT/P8dS6oUwHgCGQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Best-fit model:\n", + "energy = np.linspace(500.,520.,201)*u.keV\n", + "flux = results.optimized_model[\"gaussian\"].spectrum.main.shape(energy)\n", + "\n", + "fig,ax = plt.subplots()\n", + "\n", + "ax.plot(energy, flux, label = \"Best fit\")\n", + "\n", + "\n", + "plt.ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "plt.xlabel(\"Energy [keV]\", fontsize=14)\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "id": "5b3cafef-b0c4-4cfb-8aaa-533c3be57f7b", + "metadata": {}, + "source": [ + "Now let's compare the predicted counts to the injected counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "a2a754b4-5aef-48cb-bf0f-43cad8029e5d", + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Error: [2129.064008]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAHDCAYAAAADeJEeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlb0lEQVR4nO3dd3hUVf4G8HcyCWmk90J6IYSEUKQIoXcpKiyiSBdEQPkpdllRBBdxBVkUaUoTFrADIrsiQVkR0JEa0nsy6cmk95zfHyyzxgQmhMCZJO/Hh+cxd87c+557k8k39557rkIIIUBERETUBhjIDkBERETUXCxciIiIqM1g4UJERERtBgsXIiIiajNYuBAREVGbwcKFiIiI2gwWLkRERNRmsHAhIiKiNoOFCxEREbUZhrID3A3l5eXYvXs34uLiEBcXh6KiIsyZMwfz5s27o/WePn0ahw4dQlxcHOrr6+Hs7IypU6di0qRJrZSciIiIbqVdFi5FRUU4cuQIfH19ER4ejqNHj97xOj/99FPs2LEDkyZNwuOPPw5DQ0OkpKSgpqamFRITERFRc7TLwsXZ2RnffvstFAoFNBrNHRcuMTEx2LFjBxYuXIjHHntMu7x37953GpWIiIhuQ7ssXBQKRbPb/vDDD/j888+RkJAAhUKB7t2748knn0RAQIC2zZdffgkjIyNMmTLlbsQlIiKiZurQg3P37t2LVatWwdPTE2+++SZee+01lJeX4+mnn0ZycrK23aVLl+Dp6Ykff/wRM2bMwNChQzFlyhRs2bKFl4qIiIjuoXZ5xqU5srOz8cknn+Dhhx/GsmXLtMv79OmDxx57DDt37sSbb74JAMjLy4NGo8HGjRsxf/58eHl5QaVSYf/+/cjJycHrr78uqxtEREQdSoctXH799VfU1dVhzJgxqK2t1S7v1KkTwsLCcOHCBe2y+vp6lJeXY+XKlRgxYgQAoFevXqisrMRnn32GefPmwd3d/Z73gYiIqKPpsIVLQUEBAGDhwoVNvm5g8L+raJaWligoKEDfvn0btOnXrx8+++wzxMbGsnAhIiK6Bzps4WJlZQUAWLVqFZydnW/Z1tfXV1voNOWPRQ4RERHdPR22cOnbty+USiXUajWGDh16y7ZDhgzBr7/+irNnz2LUqFHa5b/88gsMDAzQtWvXu5yWiIiIgHZcuJw9exaVlZUoLy8HAKSkpODUqVMAgP79+8PFxQXz58/H9u3boVar0a9fP1hYWKCgoABRUVEwNTXVzrQ7fvx4HD58GBs2bEBRURG8vLzw22+/4euvv8aDDz6o84wNERERtQ6FEELIDnE3TJs2DVlZWU2+dvDgQbi4uAC4Po3/559/jtjYWNTU1MDW1hZdu3bF5MmTG0wwV1xcjG3btuE///kPiouL4eLiggkTJuCRRx7hpSIiIqJ7pN0WLkRERNT+8FQBERERtRksXIiIiKjNaDeFS2VlJWJiYlBZWSk7ChEREd0l7aZwSUlJwYIFC5CSkiI7ChEREd0l7aZwISIiovaPhQsRERG1GSxciIiIqM1g4UJERERtBgsXIiIiajNYuBAREVGbwcKFiIiI2gwWLkRERNRmsHAhIiKiNoOFCxEREbUZLFyIiIiozWDhQkRERG0GCxciIiJqM1i4EBERUZvBwoWIiIjaDBYuRERE1GYYyg7QFhSlFqE8r1x2DCIiImnM7M1g5WElOwYLF12KUovwftf3gQqgBjXIRS7sYAdjGKMEJShDGZzhDADIRS6MYARrWKMWtchBDmxhCxOYoBSlKEEJXOACAMhDHpRQwgY2qEMdspENG9jAFKYoQxmKUARXuAIA8pEPBRSwhS3qUY8sZMEa1jCDGcpRDg00cIYzDGCAAhRAQMAOdgAANdSwghXMYY4KVKAQhXCCE5RQohCFqEMd7GEPAMhEJixggc7ojEpUogAFcIQjDGEIDTSoQQ0c4AAAyEIWzGEOC1igClXIRz4c4AAjGKEIRahCFRzhCADIRjZMYQpLWKIa1chDHuxhj07ohGIUowIVcIITACAHOTCGMaxgxf3dwv2dgxyYwASWsNTuwxv7uwQlKEd5s/Z36X//u7G/85AHQxjCGtbafXhjf5ehDMUo1u7vfOTDAAawgY12H97Y3zf2oQtcoIACBSgAANjCFgICmcjU7u8b+/DG/i5EIepRr93fmciEJSxhDnPtPryxvzXQoBa12v2dhSx0/u9/zfmeNYMZLGCh/Z690bYYxahEZYP9ze9Zfka0pf3d0s8IIzMjLIlaIr94Ee1EdHS0CA8PF9HR0a263vNHz4v7cb+I2BwhIg5FCADi8M7DQq1SixefelE42jkKtUot1Cq16B7YXcz+y2yhVqnFuSPnBABxYPMBoVapxcpnV4rO5p21be/rcZ+YNmGaUKvU4sqJKwKA2Ll+p1Cr1OKdV98RSqVS23ZI/yFiwogJQq1Si/j/xAsA4sM1Hwq1Si02vbVJABBJvyQJtUotxg0bJ0YMHKF9LwDx7op3hVqlFjve3SEAiMiTkUKtUouHxz0sBvQeoG1ramIqVj2/SqhVarF/034BQPx27DehVqnF4w8/Lnp066Fta2ttK15Z8opQq9Tiqx1fCQDipy9+EmqVWiycsVAE+ARo27q7uItl85cJtUotjn96XAAQxz89LtQqtVg2f5lwd3HXtg3wCRALZywUapVa/PTFTwKA+GrHV0KtUotXlrwibK1ttW17dOshHn/4caFWqcVvx34TAMT+TfuFWqUWq55fJUxNTLVtB/QeIB4e97BQq9Qi8mSkACB2vLtDqFVq8e6KdwUAbdsRA0eIccPGCbVKLZJ+SRIAxKa3Ngm1Si0+XPOhACDi/xMv1Cq1mDBighjSf4j2vUqlUrzz6jtCrVKLnet3CgDiyokrQq1Si2kTpon7etynbdvZvLNY+exKoVapxYHNBwQAce7IOaFWqcXsv8wW3QO7a9s62jmKF596UahVanF452EBQEQcihBqlVosmrlI+Hj6aNt6uXuJpXOWCrVKLU4cOCEAiGN7jgm1Si2eW/iccHF00bYN8gsS8x6ZJ9Qqtfj5658FAPH51s+FWqUWK5atENaW1tq2vUN6i0cnPyrUKrW4cPyCACD2vL9HqFVqsealNaKTUSdt20F9B4nJYyYLtUotYn6MEQDE1rVbhVqlFhtWbhAAROq5VKFWqcWowaPEqMGjhFqlFqnnUgUAsWHlBqFWqcXWtVsFABHzY4xQq9Ri8pjJYlDfQdrtdDLqJNa8tEaoVWqx5/09AoC4cPyCUKvU4tHJj4reIb21ba0trcWKZSuEWqUWn2/9XAAQP3/9s1Cr1GLeI/NEkF+Qtq2Lo4t4buFzQq1Si2N7jgkA4sSBE0KtUoulc5YKL3cvbVsfTx+xaOYioVap+RnBz4h2+xlx/pPz4mk8LRLPJLbq79iWYOGiQ8ShCGEPexFxKEKUl5cLlUolSkpKhBBCqNVqcenSJW3ba9euiZSUFCGEEJWVlUKlUomioiIhhBBZWVniwoULDfImJSUJIYSorq4WKpVKFBYWCiGEyMnJESqVSts2NjZWJCQkCCGEqK2tFSqVSuTn5wshhMjPzxcqlUrU1dUJIYRISEgQcXFx2veqVCqRm5srhBCioKBAqFQqUVNTI4QQIjExUcTExGjbXrhwQWRnZwshhCgqKhIqlUpUVVUJIYRISUkRUVFR2raXLl0SmZmZQgghSkpKhEqlEhUVFUIIIdLS0kRkZKS27ZUrV0RGRoYQQoiysjKhUqlEWVmZEEKIjIwMceXKFW3byMhIkZaWJoQQoqKiosH+zszMbLC/o6KitPu7qqqqwf7Ozs5usL9jYmJEYuL1H7iamhqhUqlEQUGBEEKI3NzcBvs7Li5Ou7/r6uqa3N+1tbXa/R0bG9tgf+fk5AghhCgsLBQqlUpUV1cLIYRISkpq8P154cIFkZWV1WB/V1ZWavf3tWvXGuxvtVrdYH+Xl5dr9/fVq1e1ba9evSrS09OFEEL7PVtaWiqEuP49e/ny5Qb7OzU1tcH+Li4uFkJc/569ePGitm10dLRITk4WQvzve1aj0Qghrn/P/v7779q2sbGx2v1943v2xv7Oy8sTKpVK1NfXCyGEiI+PF/Hx8UIIIerr64VKpRJ5eXlCiP99z97Y34mJiQ329++//67d3xqNpsH+Tk5ObrC/L168qN3fxcXFDb5nU1NTG3zPXr58Wbu/S0tLG+zv9PT0Rvv7xvcsPyP4GdFePyP+WFDKphBCiNY+iyNDTEwMFixYgO3btyMwMLDV1pv5eya29d6GhaqFcOnl0mrrJSIiaiviTsdhzeA1eO2n1+Af7i81C+8qIiIiolvqbN4Z3vBGZ/POsqOwcNElJiEGG7ERMQkxsqMQERFJkZufi5/xM3Lzc2VHYeGii6WFJYIRDEsLS9lRiIiIpMjJz8FpnEZOfo7sKCxcdHFxdMFIjISLI8e3EBFRxxQcEIyX8TKCA4JlR2HhoktFZQWykIWKygrZUYiIiDo8Fi46xCXFYQu2IC4pTnYUIiIiKeKT47EDOxCfHC87CgsXXfy8/LAAC+Dn5Sc7ChERkRQmxiZwgANMjE1kR2HhoouZqRnc4AYzUzPZUYiIiKRwd3HHZEyGu4u77CgsXHTJzs1GBCKQnZstOwoREZEUNTU1KEEJampqZEdh4aJLgaYAv+N3FGgKZEchIiKSIio+Cu/hPUTFR8mOwsJFlyD/ICzHcgT5B8mOQkREJIWXuxcew2PwcveSHYWFCxEREd2apYUlAhCgF5OxsnDRITYxFpuxGbGJsbKjEBERSZFfmI/zOI/8wnzZUVi46GJuZg4veMHczFx2FCIiIinU2Wr8C/+COlstOwoLF13cnN0wHuPh5uwmOwoREZEUIV1D8Ff8FSFdQ2RHYeGiS2VVJfKRj8qqStlRiIiIOjwWLjrEJsZiEzZxjAsREXVYiamJ2I3dSExNlB2FhYsuPh4+mI3Z8PHwkR2FiIhICkOlIcxhDkOloewoLFx06WzeGd7wRmfzzrKjEBERSeHh5oGpmAoPNw/ZUVi46JKbn4uf8TNy83NlRyEiIpKirq4OlahEXV2d7CgsXHTJyc/BaZxGTn6O7ChERERSRMZGYi3WIjI2UnYUFi66BAcE42W8jOCAYNlRiIiIpPBw88Bf8BdeKiIiIiL9Z21pjWAEw9rSWnYUFi66xCfHYwd2ID45XnYUIiIiKQo0BbiACyjQFMiOwsJFFxNjEzjAASbGJrKjEBERSZGemY5v8A3SM9NlR2Hhoou7izsmYzLcXdxlRyEiIpKCU/63ITU1NShBCWpqamRHISIikkKhUEAJJRQKhewoLFx0iYqPwnt4D1HxUbKjEBERSZGcloz92I/ktGTZUVi46OLl7oXH8Bi83L1kRyEiIurwWLjoYGlhiQAEwNLCUnYUIiIiKby6/PeP+C5esqOwcNElvzAf53Ee+YX5sqMQERFJIYRAHeoghJAdRf8Kl6NHj2Lw4MEYM2aM7CgAAHW2Gv/Cv6DOVsuOQkREJMWV6Ct4C2/hSvQV2VH0q3DJzc3F5s2bYW9vLzuKlj7dAkZERCSDPk0NoleFy3vvvYfQ0FD06dNHdhQiIiL6L1trW/RET9ha28qOoj+Fy7///W9cvHgRzz33nOwoDSSmJmI3diMxNVF2FCIiIik0xRpEIhKaYo3sKPpRuBQWFmLTpk148skn4ejoKDtOA4ZKQ5jDHIZKQ9lRiIiIpEjNSMVn+AypGamyo0AvfhuvX78eXbp0wYMPPtjs9+Tl5SE//393+qSkpNyFZNcf5T0VU/XiUd5EREQyBAcE42W8jOCAYNlR5Bcup06dwpkzZ/Dxxx/f1lTChw8fxq5du+5esP+qq6tDJSpRV1d317dFRESkj5RKJUxgAqVSKTuK3MKlvLwc77//Ph5++GHY2dmhpKQEAFBbWwsAKCkpgaGhIUxNTRu9d9KkSRg4cKD265SUFKxevbrVM0bGRmIt1mJo7FC43yd/NDUREdG9lpqRis/xOcZmjIVLLxepWaQWLkVFRSgoKMDBgwdx8ODBRq8/8MADGDRoEN5+++1Gr9nb29+T26Y93DzwF/yFl4qIiKjDqq2rRRnKUFtXKzuK3MLF1tYWGzdubLR83759uHjxIt59911YWVlJSPY/1pbWCEYwrC2tpeYgIiKSxcfDB7MxGz4ePrKjyC1cjI2N0bNnz0bLv/vuOyiVyiZfu9cKNAW4gAso0BTABXJPjxEREXV0enE7tD5Lz0zHN/gG6ZnpsqMQERFJwSn/dXj11Vfxr3/9S3YMAJzyn4iIyNXJFWMwBq5OrrKj6Gfhok8UCgWUUN7WrdpERETtiZ2NHfqiL+xs7GRHYeGiS3JaMvZjP5LTkmVHISIikqK4pBixiEVxSbHsKCxciIiI6NaS0//7R3x6suwoLFx08erihcfwGLy6eMmOQkREJEWQXxCWYzmC/IJkR2HhoosQAnWogxBCdhQiIiIpjIyMYAELGBkZyY7CwkUXfboFjIiISAZ9mhqEhYsO7i7umIzJcHfhc4qIiKhjqqyqRC5yUVlVKTsKCxddbK1t0RM9YWttKzsKERGRFH5efngCT8DPy092FBYuumiKNYhEJDTFGtlRiIiIOjwWLjqkZqTiM3yG1IxU2VGIiIikiIyNxFqsRWRspOwoLFx0CQ4Ixst4GcEBwbKjEBERSeFo54hwhMPRzlF2FBYuuiiVSpjABEqlUnYUIiIiKRzsHDAQA+Fg5yA7CgsXXVIzUvE5PuelIiIi6rBKy0qRhCSUlpXKjsLCRZfaulqUoQy1dbWyoxAREUmRmJqI3diNxNRE2VFYuOji4+GD2ZgNHw8f2VGIiIikCPAJwNN4GgE+AbKjsHAhIiKiWzMxNoEd7GBibCI7CgsXXTjlPxERdXQZWRk4hmPIyMqQHYWFiy6uTq4YgzFwdXKVHYWIiEiKsvIyJCMZZeVlsqOwcNHFzsYOfdEXdjZ2sqMQERFJEeATgMVYzDEubUFxSTFiEYvikmLZUYiIiDo8Fi46JKcnYz/2Izk9WXYUIiIiKaLiovAe3kNUXJTsKCxcdAnyC8JyLEeQX5DsKERERFLYWtuiF3rB1tpWdhQWLroYGRnBAhYwMjKSHYWIiEgKJwcnDMMwODk4yY7CwkWX9Mx0fINvkJ6ZLjsKERGRFOUV5chABsorymVHYeGiS2VVJXKRi8qqStlRiIiIpIhPjsd2bEd8crzsKCxcdPHz8sMTeAJ+Xn6yoxAREUnh7+2PRVgEf29/2VFYuBAREdGtmZqYwhnOMDUxlR2FhYsukbGRWIu1iIyNlB2FiIhIisycTJzACWTmZMqOwsJFF0c7R4QjHI52jrKjEBERSVFcUoxIROrFZKwsXHRwsHPAQAyEg52D7ChERERSBPoGYhmWIdA3UHYUFi66lJaVIglJKC0rlR2FiIiow2PhokNiaiJ2YzcSUxNlRyEiIpIiJiEGm7AJMQkxsqOwcNElwCcAT+NpvXgiJhERkQwWnS0QiEBYdLaQHYWFiy4mxiawgx1MjE1kRyEiIpLC1ckVozEark6usqOwcNElIysDx3AMGVkZsqMQERFJUVFZgRzkoKKyQnYUFi66lJWXIRnJKCsvkx2FiIhIirikOGzGZsQlxcmOwsJFlwCfACzGYo5xISKiDsvX0xfzMR++nr6yo7BwISIiolszNzNHF3SBuZm57CgsXHSJiovCe3gPUXFRsqMQERFJkZ2bjR/xI7Jzs2VHYeGii621LXqhF2ytbWVHISIikiJfk49f8SvyNfmyo7Bw0cXJwQnDMAxODk6yoxAREUnRzb8bnsfz6ObfTXYUFi66lFeUIwMZKK8olx2FiIiow2PhokN8cjy2Yzvik+NlRyEiIpIiLikOW7CFt0O3Bf7e/liERfD39pcdhYiISApTE1N0QReYmpjKjsLCRRdTE1M4w1kvDhYREZEM7i7ueAAPwN3FXXYUFi66ZOZk4gROIDMnU3YUIiIiKaqqq1CIQlRVV8mOwsJFl+KSYkQiEsUlxbKjEBERSRGTEION2IiYhBjZUVi46BLoG4hlWIZA30DZUYiIiKTw7uKNmZgJ7y7esqOwcCEiIqJbs+hsAV/4wqKzhewoLFx0iUmIwSZs0ovTY0RERDLk5ufiDM4gNz9XdhQWLrpYdLZAIAL1osokIiKSITsvG6dwCtl5fFaR3nN1csVojIark6vsKERERFJ0D+yOV/Equgd2lx2FhYsuFZUVyEEOKiorZEchIiLq8Fi46BCXFIfN2KwX0xwTERHJEJ8cj4/xsV48/oaFiw6+nr6Yj/nw9fSVHYWIiEgK407GsIUtjDsZy47CwkUXczNzdEEXmJuZy45CREQkRRfXLngID6GLaxfZUVi46JKdm40f8SOyc+WPpCYiIpKhpqYGZShDTU2N7CgsXHTJ1+TjV/yKfE2+7ChERERSRMVH4V28i6j4KNlRWLjo0s2/G57H8+jm3012FCIiIik83T0xHdPh6e4pOwoLFyIiIro1KwsrdEVXWFlYyY7CwkWXuKQ4bMEW3g5NREQdVn5hPn7Db8gvlD9sgoWLDqYmpuiCLjA1MZUdhYiISIqMrAx8i2+RkZUhOwoLF13cXdzxAB6Au4u77ChERERShAaFYiVWIjQoVHYUFi66VFVXoRCFqKqukh2FiIiow2PhokNMQgw2YiNiEmJkRyEiIpIiMTURe7EXiamJsqPAUHaAuLg4bN++HYmJidBoNDA2NoaHhwceeughjB49WnY8eHfxxkzMhHcXb9lRiIiIpFAaKGEMYygNlLKjyC9cSktL4ejoiJEjR8Le3h6VlZX4/vvvsXr1amRmZmL27NlS81l0toAvfGHR2UJqDiIiIlk83T0xDdP0Yh4X6YVLz5490bNnzwbL7r//fmRmZuLIkSPSC5fc/FycwRk8lP8QXOAiNQsREZEMdXV1qEY16urqZEfR3zEuVlZWUCrln5LKzsvGKZxCdh6fVURERB1TZGwk3sbbiIyNlB1FfwqX+vp61NbWQqPR4KuvvsL58+fx2GOPyY6F7oHd8SpeRffA7rKjEBERSdHFtQumYIpePB1a+qWiG9avX4/Dhw8DAIyMjLBs2TJMnjz5pu3z8vKQn/+/GfxSUlLuekYiIqKOyMbKBiEIgY2Vjewo+lO4zJw5ExMmTEBhYSHOnDmD999/HxUVFXj00UebbH/48GHs2rXrrueKT47Hx/gYw5OHw6UXx7gQEVHHU1hUiEu4hMKiQunjPfWmcHFycoKTkxMAYMCAAQCAbdu2Ydy4cbC2tm7UftKkSRg4cKD265SUFKxevbrVcxl3MoYtbGHcybjV101ERNQWpKnT8BW+wpPqJ9EN3aRm0ZvC5c+CgoLwzTffQK1WN1m42Nvbw97e/q7n6OLaBQ/hIb24rkdERCRD98DuWIEVejHeU28G5/7ZhQsXYGBgAFdXV6k5ampqUIYy1NTUSM1BREQki4GBAQxhCAMD+WWD9DMu7777LszMzBAUFARbW1toNBqcOnUKJ0+exKOPPtrk2ZZ7KSo+Cu/iXYyIHwGPfh5SsxAREcmQkp6CAziAMeljpI/3lF64BAcH49ixYzh+/DhKS0thamoKPz8/rFixQi+m/Pd098R0TNeL2QKJiIhkqBf1qEMd6kW97CjyC5fx48dj/PjxsmPclJWFFbqiK6wsrGRHISIiksK7izdmYIZePLdP/sUqPZdfmI/f8BvyC/N1NyYiIqK7ioWLDhlZGfgW3yIjK0N2FCIiIikuR13GG3gDl6Muy47CwkWX0KBQrMRKhAaFyo5CREQkhZuzGyZiItyc3WRHYeFCREREt2ZnY4fe6A07GzvZUVi46JKYmoi92IvE1ETZUYiIiKTQFGtwDdegKdbIjsLCRRelgRLGMIbSQCk7ChERkRSpGak4hENIzUiVHYWFiy6e7p6Yhmmcx4WIiDqsbv7d8CJeRDd/uc8pAli46FRXV4dqVKOurk52FCIiIikMDQ1hBjMYGkqf/o2Fiy6RsZF4G28jMjZSdhQiIiIpUjNS8QW+4KWitqCLaxdMwRQ+HZqIiDqsmtoaFKMYNbXyHzjMwkUHGysbhCAENlY2sqMQERFJ4evpi7mYC19PX9lRWLjoUlhUiEu4hMKiQtlRiIiIOjwWLjqkqdPwFb5CmjpNdhQiIiIprsZcxRqswdWYq7KjsHDRpXtgd6zACnQP7C47ChERkRTODs4YgRFwdnCWHaX1Cpe0tDQcP34c+fnt6ynKBgYGMIQhDAxY4xERUcdkb2uP/ugPe1t72VFaVrisWLECzz77rPbrEydOICAgAA888AACAgIQGdl+bh1OSU/BARxASnqK7ChERERSlJSWIB7xKCktkR2lZYXLF198gW7d/jd73ooVKxAaGoqvvvoKnp6eWL16dasFlK1e1KMOdagX9bKjEBERSZGUloRP8SmS0pJkR0GLpsDLyMiAn58fACA/Px+//vorjh07hjFjxqCyshLLly9v1ZAyeXfxxgzMgHcXb9lRiIiIpOjq1xXP4ll09esqO0rLzrgIIVBff/0MxM8//wylUonBgwcDAFxcXJCXl9d6CYmIiEiqTkadYAUrdDLqJDtKywoXX19fHD16FABw4MAB9O3bF6ampgCAzMxM2Ni0n8naLkddxht4A5ejLsuOQkREJEV6ZjqO4AjSM9NlR2nZpaInn3wSS5YswZ49e6DRaPDJJ59oX/v5558bjH9p69yc3TARE+Hm7CY7ChERkRQVlRXIRCYqKitkR2lZ4fLUU0/BxsYGZ86cQd++ffH4449rX6uoqMDs2bNbLaBsdjZ26I3esLOxkx2FiIhICn9vfyzEQvh7+8uO0rLCBQCmT5+O6dOnN1q+bdu2OwqkbzTFGlzDNWiKNXCBi+w4REREHVqLxrgolUqcP3++yddUKhWUSuUdhdInqRmpOIRDevEobyIiIhmuxV3DOqzDtbhrsqO0/K6im7lxt1F70c2/G17Ei+jm337G7RAREd0Oext7DMAA2Nu00ZlzAUChUDS5XKVSwdrauqWr1TuGhoYwgxkMDVt8VY2IiKhNc7R3RDjC4WjvKDtK88e4bNy4ERs3bgRwvWh58MEHYWxs3KBNRUUFcnJyMHXq1NZNKVFqRiq+wBcYmzEWLr04xoWIiDqesvIypCAFZeVlsqM0v3BxdHREcHAwACA5ORk+Pj6NzqwYGxsjJCQEy5Yta9WQMtXU1qAYxaiprZEdhYiISIqElATsxE48kvII/Ab5Sc3S7MLl0UcfxaOPPgoAGDZsGD766CN07Sp/6t+7zdfTF3MxF76evrKjEBERSRHgE4ClWIoAnwDZUVp2O3RERERr5yAiIiI9ZWJsAnvYw8TYRHaUls/jIoTAr7/+ipSUFFRUNJ5Jb9asWXcUTF9cjbmKNViD+2Pu5xgXIiLqkNTZahzHcUzIniB9TrMWFS6xsbGYNGkS4uLimrw1WqFQtJvCxdnBGSMwAs4OzrKjEBERSVFaVooEJKC0rFR2lJYVLkuWLEFlZSUOHjyI0NDQRncXtSf2tvboj/6wt5V/7zoREZEMAT4BWIIlbXeMy/nz57F9+/Z2ddvzzZSUliAe8SgpLZF+eoyIiKija9EEdJ07d4alpWVrZ9FLSWlJ+BSfIiktSXYUIiIiKaLjo7EBGxAdHy07SssKl7lz52L//v2tnUUvdfXrimfxLLr6tf9bv4mIiJpibWWNUITC2spadpSWXSrq3r07/vnPf2LSpEmYOHEi7OzsGrV5+OGH7zicPuhk1AlWsEIno06yoxAREUmhTzeqtKhweeyxxwAASUlJOHr0aKPXFQoF6urq7iyZnkjPTMcRHMH4zPEc40JERB1SeUU51FCjvKJcdhROQKdLRWUFMpGJisrGc9UQERF1BPHJ8diGbXg4+WH4DpQ7k3yLCpchQ4a0dg695e/tj4VYCH9vf9lRiIiIpPDz8sNCLISfl9znFAEtHJxLREREHYeZqRlc4QozUzPZUVp2xmX48OG3fF2hUOCHH35oUSB9cy3uGtZhHQbFDeKU/0RE1CFl5WbhB/yASbmTpI/3bFHhUl9fD4VC0WBZXl4eYmJi4OjoiIAA+TPrtRZ7G3sMwADY23DmXCIi6pg0RRpcxmVoijSyo7SscDl16lSTy2NjYzF58mSsXLnyTjLpFUd7R4QjHI72jrKjEBERSaFPc5q16hiXgIAAvPDCC3jxxRdbc7VSlZWXIQUpKCsvkx2FiIiow2v1wbleXl64evVqa69WmoSUBOzETiSkJMiOQkREJEVsYiw+xIeITYyVHaX1C5cvvvgCrq6urb1aaQJ8ArAUS/XiiZhEREQydDbvDF/4orN5Z9lRWjbGZd68eY2WVVVV4fLly7h27RrWrVt3x8H0hYmxCexhDxNjE9lRiIiIpHB1csVYjIWrk/wTEy0qXE6ePNnoriITExN4eXnhlVde0T4SoD1QZ6txHMcxIXuC9FvAiIiIZKisqkQe8lBZVSk7SssKl+Tk5FaOob9Ky0qRgASUlpXKjkJERCRFbGIsPsAHmJA4Ad4DvKVm4cy5OgT4BGAJlnCMCxERdVi+nr6Yi7nw9ZT7nCKghWdcAKCgoAAbNmzADz/8gPz8fNjb22PkyJH4v//7P9jY2LRmRiIiIpLI3MwcnvCEuZm57CgtO+OSkZGBXr16Yc2aNSgqKoKHhwc0Gg3eeust9OrVC2q1urVzShMdH40N2IDo+GjZUYiIiKTIycvBaZxGTl6O7CgtK1xeffVVVFRU4Ny5c4iMjMT333+PyMhInDt3DhUVFXj11VdbO6c01lbWCEUorK2sZUchIiKSIq8wD7/gF+QV5smO0rLC5fjx41i9ejXuu+++Bsvvu+8+rFq1Ct99912rhNMHzg7OGIERcHZwlh2FiIhIim7+3fAiXkQ3/26yo7SscCkqKoKXl1eTr3l7e6OoqOhOMumV8opyqKFGeUW57ChEREQdXosKF29vb3z77bdNvvbdd9/B21vurVKtKT45HtuwDfHJ8bKjEBERSRGXFIdt2Ia4pDjZUVp2V9HcuXPx8ssvo76+HrNnz4aLiwsyMzPx6aefYtOmTVi7dm1r55TGz8sPC7EQfl5+sqMQERFJYWpiChe4wNTEVHaUlhUuL7zwAhISEvDBBx/gww8/1C4XQmDhwoV4/vnnWy2gbGamZnCFK8xMzWRHISIiksLdxR0TMRHuLu6yo7SscFEoFNi6dSuee+45REREID8/H3Z2dhg+fDgCAtrXRG1ZuVn4AT9gUu4kTvlPREQdUnVNNYpQhOqaatlRmj/GpbCwEFOmTMHRo0e1ywIDA7Fo0SK89tprWLRoEWJjYzFlyhTk5+fflbAyaIo0uIzL0BRpZEchIiKSQp/mNGt24bJjxw5cunQJY8eOvWmbsWPH4sqVKw0uH7V1Xf264lk8i65+XWVHISIiksK7izcex+Pw7iL/5ptmFy4HDhzAggULYGh486tLhoaGWLBgAQ4fPtwq4YiIiEg+i84W8IMfLDpbyI7S/MIlNjYWffr00dmuV69eiI2NvaNQ+iQ2MRYf4kPEJrafPhEREd2OvII8nMVZ5BW0oZlza2trYWRkpLOdkZERampq7iiUPuls3hm+8EVn886yoxAREUlx40aVrNws2VGaf1eRi4sLrl27hsGDB9+yXWRkJJydmz89vkqlwvfff4+rV68iJycHnTt3RmBgIObMmYPAwMBmr+ducXVyxViMhauTq+woREREUnQP7I7X8Bq6B3aXHaX5Z1yGDBmCzZs33/JsSk1NDT766CMMGzas2QG++eYbZGZmYurUqVi3bh2eeeYZaDQaLFq0CCqVqtnruVsqqyqRhzxUVlXKjkJERNThNbtwefbZZxEdHY2HHnoIarW60etqtRoPPvggYmJi8OyzzzY7wLPPPouNGzfiwQcfRFhYGIYOHYr33nsPVlZW+PTTT5u9nrslNjEWH+ADjnEhIqIOKyElATuxEwkpCbKjNP9SUWhoKD788EMsXrwY3t7e6N27t/aZRElJSVCpVKivr8dHH32EkJCQZgewsbFptMzMzAyenp7Iyclp9nruFl9PX8zFXPh6+sqOQkREJIWRoREsYQkjQ91jXe+225o5d8GCBejevTvefvttRERE4OzZswCuFxpjx47FK6+8gv79+99xqNLSUsTFxaFnz543bZOXl9dgoruUlJQ73m5TzM3M4QlPmJuZ35X1ExER6TsPNw9MwRR4uHnIjnL7U/4PGDAAR44cQX19PfLyrt8WZW9vDwODFj1oukkbNmxARUUFZs2addM2hw8fxq5du1ptmzeTk5eD0ziNB/Me5JT/RETUIdXW1qIc5aitrZUdpWXPKgIAAwMDODo6tmYWANdn6P3++++xbNmyW95VNGnSJAwcOFD7dUpKClavXt3qefIK8/ALfkFeofx714mIiGS4FncN67AOw+OGo0vfLlKztLhwuRt27tyJPXv2YMGCBZgyZcot29rb28Pe3v6uZ+rm3w0v4kV08+9217dFRESkjzzcPDAN0/TiUlHrXd+5Qzt37sTOnTsxd+5czJw5U3YcIiIi+i9rS2t0QzdYW1rLjqIfhcvu3buxc+dOzJo1C3PnzpUdp4G4pDhswzbEJcXJjkJERCRFfmE+VFAhvzBfd+O7TPqlogMHDuDjjz9Gv379MGDAAERGRjZ4PTg4WFKy60xNTOECF5iamErNQUREJEtGVgaO4AiWZC1Bd8idPVd64XLmzBkAwLlz53Du3LlGr//000/3OlID7i7umIiJcHdxl5qDiIhIltCgULyBNxAaFCo7ivzC5R//+IfsCLdUXVONIhShuqZadhQiIqIOTy/GuOiz6PhobMAGRMdHy45CREQkRVJaEvZhH5LSkmRHYeGii3cXbzyOx+HdxVt2FCIiIikMFAZQQgkDhfyyQX4CPWfR2QJ+8INFZwvZUYiIiKTwdPfEdEyHp7un7CgsXHTJK8jDWZxFXgFnziUioo6pvr4etahFfX297CgsXHTJys3CD/gBWblZsqMQERFJcTXmKlZjNa7GXJUdhYWLLt0Du+M1vIbugXLvWyciIpKli2sXPISH0MVV7nOKABYuREREpIONlQ16oAdsrGxkR2HhoktCSgJ2YicSUhJkRyEiIpKisKgQV3AFhUWFsqOwcNHFyNAIlrCEkaGR7ChERERSpKnT8AW+QJo6TXYUFi66eLh5YAqm6MWjvImIiGQIDgjGq3gVwQFynx8IsHDRqba2FuUoR21trewoREREUiiVSnRCJyiVStlRWLjoci3uGtZhHa7FXZMdhYiISIqU9BQcwiGkpKfIjsLCRRcPNw9MwzReKiIiog6rrr4OVahCXX2d7CgsXHSxtrRGN3SDtaW17ChERERS+Hj4YCZmwsfDR3YUFi665BfmQwUV8gvzZUchIiLq8Fi46JCRlYEjOIKMrAzZUYiIiKS4HHUZb+JNXI66LDsKCxddQoNC8QbeQGhQqOwoREREUrg5u+EBPAA3ZzfZUVi4EBER0a3Z2dihD/rAzsZOdhQWLrokpSVhH/YhKS1JdhQiIiIpikqKEI1oFJUUyY7CwkUXA4UBlFDCQMFdRUREHVNKegoO4ADncWkLPN09MR3T4enuKTsKERGRFEF+QXgBLyDIL0h2FBYuutTX16MWtaivr5cdhYiISAojIyOYwxxGRvIfOMzCRYerMVexGqtxNeaq7ChERERSpKnT8BW+4tOh24Iurl3wEB5CF9cusqMQERFJUVVdhQIUoKq6SnYUFi662FjZoAd6wMbKRnYUIiIiKfy8/DAf8+Hn5Sc7CgsXXQqLCnEFV1BYVCg7ChERUYfHwkWHNHUavsAXenFdj4iISIarMVfxNt7Wi/GeLFx0CA4Ixqt4FcEBwbKjEBERSeFk74ShGAoneyfZUVi46KJUKtEJnaBUKmVHISIiksLBzgH343442DnIjsLCRZeU9BQcwiG9mC2QiIhIhpLSEiQgASWlJbKjsHDRpa6+DlWoQl19newoREREUiSlJWEv9urFc/tYuOjg4+GDmZgJHw8f2VGIiIikCPQNxDIsQ6BvoOwoLFyIiIjo1ow7GcMGNjDuZCw7CgsXXS5HXcabeBOXoy7LjkJERCRFemY6vsW3SM9Mlx2FhYsubs5ueAAPwM3ZTXYUIiIiKSoqK5CGNFRUVsiOwsJFFzsbO/RBH9jZ2MmOQkREJIW/tz8WYRH8vf1lR2HhoktRSRGiEY2ikiLZUYiIiDo8Fi46pKSn4AAOcB4XIiLqsK7FXcPf8Xdci7smOwoLF12C/ILwAl5AkF+Q7ChERERS2Fnb4T7cBztr+cMmWLjoYGRkBHOYw8jISHYUIiIiKZwcnDAEQ+DkwGcV6b00dRq+wld8OjQREXVYZeVlSEMaysrLZEdh4aJLVXUVClCAquoq2VGIiIikSEhJwMf4GAkpCbKjsHDRxc/LD/MxH35efrKjEBERSeHv7Y/FWMzboYmIiEj/mZqYwhGOMDUxlR2FhYsuV2Ou4m28jasxV2VHISIikkKdrca/8W+os9Wyo7Bw0cXJ3glDMRRO9vJHUhMREclQUlqCGMSgpLREdhQWLro42DngftwPBzsH2VGIiIikCPQNxNN4GoG+gbKjsHDRpaS0BAlI0Isqk4iIqKNj4aJDUloS9mIvktKSZEchIiKSIiYhBhuxETEJMbKjsHDRJdA3EMuwTC9OjxEREclgaWGJYATD0sJSdhQWLroYdzKGDWxg3MlYdhQiIiIpXBxdMBIj4eLoIjsKCxdd0jPT8S2+RXpmuuwoREREUlRUViALWaiorJAdhYWLLhWVFUhDml4cLCIiIhnikuKwBVsQlxQnOwoLF138vf2xCIv0YppjIiIiGfy8/LAAC/Ti8TcsXIiIiOiWzEzN4AY3mJmayY7CwkWXa3HX8Hf8HdfirsmOQkREJEV2bjYiEIHs3GzZUVi46GJnbYf7cB/srO1kRyEiIpKiQFOA3/E7CjQFsqOwcNHFycEJQzAETg58VhEREXVMQf5BWI7lCPIPkh2FhYsuZeVlSEMaysrLZEchIiLq8Fi46JCQkoCP8TESUhJkRyEiIpIiNjEWm7EZsYmxsqOwcNHF39sfi7GYt0MTEVGHZW5mDi94wdzMXHYUFi66mJqYwhGOMDUxlR2FiIhICjdnN4zHeLg5u8mOwsJFF3W2Gv/Gv6HOVsuOQkREJEVlVSXykY/KqkrZUVi46FJSWoIYxKCktER2FCIiIiliE2OxCZv0YoyLoewA5eXl2L17N+Li4hAXF4eioiLMmTMH8+bNkx0NABDoG4in8TQCfQNlRyEiIpLCx8MHszEbPh4+sqPIP+NSVFSEI0eOoKamBuHh4bLjEBER0Z90Nu8Mb3ijs3ln2VHkn3FxdnbGt99+C4VCAY1Gg6NHj8qO1EBMQgw2YiOGJAyBSy8X2XGIiIjuudz8XPyMn/FQ/kNwgdzfhdILF4VCITvCLVlaWCIYwbC0sJQdhYiISIqc/Bycxmnk5OfIjiL/UpG+c3F0wUiMhIsjz7YQEVHHFBwQjJfxMoIDgmVHkX/GpaXy8vKQn5+v/TolJeWubKeisgJZyEJFZcVdWT8RERE1X5stXA4fPoxdu3bd9e3EJcVhC7bgwaQH4XO//NHURERE91p8cjx2YAeGJw+XPt6zzRYukyZNwsCBA7Vfp6SkYPXq1a2+HT8vPyzAAvh5+bX6uomIiNoCE2MTOMABJsYmsqO03cLF3t4e9vb2d307ZqZmcIMbzEzN7vq2iIiI9JG7izsmYzLcXdxlR+HgXF2yc7MRgQhk52bLjkJERCRFTU0NSlCCmpoa2VH044zL2bNnUVlZifLycgDXL/ucOnUKANC/f3+YmMg7NVWgKcDv+B0FmgJpGYiIiGSKio/Ce3gPo+JHwaOfh9QselG4rF+/HllZWdqvIyIiEBERAQA4ePAgXFzkDQQK8g/CcixHkH+QtAxEREQyebl74TE8Bi93L9lR9KNwOXTokOwIREREdBOWFpYIQIBeTMbKMS46xCbGYjM268UTMYmIiGTIL8zHeZxHfmG+7sZ3GQsXHczNzOEFL5ibmcuOQkREJIU6W41/4V9QZ6tlR2HhooubsxvGYzzcnN1kRyEiIpIipGsI/oq/IqRriOwoLFx0qayqRD7yUVlVKTsKERFRh8fCRYfYxFhswiaOcSEiog4rMTURu7EbiamJsqOwcNHFx8MHszEbPh58ThEREXVMhkpDmMMchkr5NyOzcNGhs3lneMMbnc07y45CREQkhYebB6ZiKjzc5E4+B7Bw0Sk3Pxc/42fk5ufKjkJERCRFXV0dKlGJuro62VFYuOiSk5+D0ziNnPwc2VGIiIikiIyNxFqsRWRspOwoLFx0CQ4Ixst4GcEBwbKjEBERSeHh5oG/4C+8VERERET6z9rSGsEIhrWltewoLFx0iU+Oxw7sQHxyvOwoREREUhRoCnABF1CgKZAdhYWLLibGJnCAA0yMTWRHISIikiI9Mx3f4BukZ6bLjsLCRRd3F3dMxmS4u7jLjkJERCQFp/xvQ2pqalCCEtTU1MiOQkREJIVCoYASSigUCtlRWLjoEhUfhffwHqLio2RHISIikiI5LRn7sR/Jacmyo7Bw0cXL3QuP4TF4uXvJjkJERNThsXDRwdLCEgEIgKWFpewoREREUnh1+e8f8V28ZEdh4aJLfmE+zuM88gvzZUchIiKSQgiBOtRBCCE7CgsXXdTZavwL/4I6Wy07ChERkRRXoq/gLbyFK9FXZEdh4aKLPt0CRkREJIM+TQ3CwoWIiIhuydbaFj3RE7bWtrKjsHDRJTE1EbuxG4mpibKjEBERSaEp1iASkdAUa2RHYeGii6HSEOYwh6HSUHYUIiIiKVIzUvEZPkNqRqrsKCxcdPFw88BUTNWLR3kTERHJEBwQjJfxMoIDgmVHYeGiS11dHSpRibq6OtlRiIiIpFAqlTCBCZRKpewoLFx0iYyNxFqsRWRspOwoREREUqRmpOJzfM5LRW2Bh5sH/oK/8FIRERF1WLV1tShDGWrramVHYeGii7WlNYIRDGtLa9lRiIiIpPDx8MFszIaPh4/sKCxcdCnQFOACLqBAUyA7ChERUYfHe3x1SM9Mxzf4Bk9lPoVgyB9NTXeurq4ONTU1smMQtXtKpRKGhoZQKBSyo9AdujHl/4DoAXDp5SI1CwsXHTjlf/tSWlqK9PR0vXhQGFFHYGZmBhcXF3Tq1El2FLoDrk6uGIMxcHVylR2FhYsuCoUCSij5F0M7UFdXh/T0dJiZmcHBwYHHlOguEkKguroaubm5SEpKgr+/PwwMODqhrbKzsUNf9IWdjZ3sKCxcdElOS8Z+7MfotNHST4/RnampqYEQAg4ODjA1NZUdh6jdMzU1hZGREVJSUlBdXQ0TExPZkaiFikuKEYtYFJcUwwVyfxey/KUOh2daiO4dnmVpH5LTr/8Rn5yeLDsKCxddvLp44TE8Bq8uXrKjUDvl5eWFrl27IiwsDEFBQXjsscdQVlbW4vXt2rULsbGxN3397NmzCAkJQc+ePfGvf/0L48ePR0JCQrPeqw/eeOMNPP/88626Ti8vL1y9erVF7/3tt98wY8YMAIBGo8G6desavD506FAcPXr0jjMSyRTkF4TlWI4gvyDZUVi46CKEQB3qOJiT7qrPP/8cFy9exLVr11BcXIxdu3a1eF26io/du3dj1qxZuHDhAsaMGYNjx47B19e3We+lxvr06YN9+/YBaLpwaanaWvkTfRHdYGRkBAtYwMjISHYUFi663LgF7Er0FdlRqAOoqqpCWVkZbGxstMv+/ve/o2/fvujVqxfGjx+PtLQ0AMCRI0cQGhqKsLAwdO/eHd988w127NiB3377Dc888wzCwsJw7NixButfu3YtDh48iI0bNyIsLAwajUZ7tkHXewEgKioKY8aMQWhoKEJDQ7FlyxYAQHx8PEaOHKnN8/XXX2vfo1Ao8M4776Bfv37w9vbGzp07AQCffvopJk6cqG0nhIC3tzcuX74MAFi3bh2Cg4MREhKCGTNmoKioqFGegIAAqFQq7dc7d+7Eww8/DADIysrCtGnT0LdvX4SGhuL111/Xtjt9+jRCQkLQt29fLF269KZ/mAwYMAC//PILAOC5556Du7u79jUPDw+kpaXh1KlT6NOnDwBg0aJF0Gg0CAsL0y67sb3w8HD4+vpi0aJFTW4rOTkZ9vb2WLVqFcLDw7Fp06ab9qG+vh5Lly5F165d0aNHD/Tu3RuVlZXadTz//PPo168fgoODcfLkSe029u7di5CQEISGhuKBBx5ARkYGgOsF65gxY/Doo48iJCQEffr0QWJiIgAgLi4OAwcORI8ePRASEoIVK1YAuD5m7OWXX0bfvn0RFhaG6dOnQ6PRNNk3avtuTA2SnpkuOwog2ono6GgRHh4uoqOjW3W9V3+4KiZjsrj6w9VWXS/dexUVFeLatWuioqJCu6y6rFqoVeq79q+6rFpnLk9PTxEYGCh69OghLC0txbBhw0RNTY0QQoh9+/aJBQsWiNraWiGEEHv27BGTJk0SQggRGhoqfv75ZyGEEHV1daKwsFAIIcSQIUPEkSNHbrq92bNni02bNjXY/pUrV3S+t6amRvj7+4uDBw9ql+Xm5gohhOjbt6/YunWrEEKI2NhYYWtrK1JTU4UQQgAQ77//vhBCiGvXronOnTuLmpoaUV5eLuzs7ERmZqYQQoiTJ0+KXr16CSGEOHbsmOjatau2TwsWLBCLFy8WQgixcuVKsXz5ciGEEGvWrBFLlizR5hk8eLA4fPiwEEKI0aNHix9//FGbfcyYMeLLL78UlZWVwtXVVURERAghhDh48KAAoN0Hf7RixQrx5ptvCiGE6Nmzp+jbt6+IiooS0dHRIiAgQAghREREhOjdu7cQQoikpCRhZ2fXYB1DhgwRU6ZMEbW1taK8vFx4eXmJM2fONNpWUlKSACD27dunXXazPvz++++ia9euoq6uTgghhEajEXV1ddp17Nq1SwghxC+//CKcnJxEaWmpuHLlinBychLp6elCCCFWr14txo8fL4QQYufOncLKykokJycLIYR46aWXxMKFC4UQQjzzzDNizZo12kz5+fnaff/WW29pl69atUo888wzjfrV1M8dtT0/ffGTcIe7+OmLn2RHEbyrSAdba1v0RE/YWtvKjkJ3QV50Hrb13nbX1r9QtbBZd6N9/vnn6N69O2pra/Hkk0/ipZdewnvvvYevv/4av/32G3r37g3g+i3dN57OOmLECPzf//0fpk6ditGjRyMsLOyu9QMAYmJiUFtbi2nTpmmX2dvbo6SkBBcvXsT8+fMBAP7+/hg0aBD+85//4NFHHwUA7RiQoKAgGBoaIisrC+7u7pgyZQo+/fRTPP/889i5cyfmzp0LADhx4gRmzJgBa2trAMBTTz2F6dOnN8o0e/Zs9OzZE+vXr0daWhpiY2Mxbtw4lJWV4eTJk8jOzta2LS0tRXR0NHx9fWFmZoahQ4cCAKZNm4aFCxc22eeRI0fir3/9KxYtWgQjIyNMmzYNJ06cgEKhwMiRI5u976ZPnw6lUglTU1OEhYUhISEBAwYMaNTOxMREu89u1Yfhw4ejpqYG8+bNw7Bhw/DAAw9oB8F26tQJM2fOBAD0798fzs7OuHTpElQqFSZMmAA3NzcAwOLFi7F69Wrt2aZBgwbB09MTwPUzTZs2bQIADB48GC+88ALKysowZMgQbb+//vprFBcX4/PPPwcAVFdXay85Uvvj5+WHJ/AE/Lz8ZEfh7dC6aIo1iEQkNMUa6beAUeuz72qPhaqmf2m11vpvh6GhIaZMmYIXXngB7733HoQQWLFiBebNm9eo7fr16xEZGYmIiAjMnj0bM2bMwIsvvtha0Zvtxi++P9+t9cev/3gbrFKp1I7fmDt3Lp544gksXLgQR48exfvvv69d563Wd4Obmxt69eqFw4cP49KlS5g5cyYMDQ1RUVEBhUKBX3/9tdE1+UuXLjW7bwMGDMDVq1dx+PBhjBgxAiNHjsQbb7wBAJg1a1az13Oz/v+Zubm5tp/19fU37QMAREZG4scff0RERAReeeUV/PTTTzA0bPojXaFQNNqnf96fN8s4ZcoU3H///fj+++/xwQcf4P3338exY8cghMDmzZsxfPjwZu4FotbBMS46pGak4jN8pheP8qbWZ2RmBJdeLnftn5HZ7Q9kO3nyJAIDAwEAkyZNwubNm1FQcP1ZWTU1Nbhw4QIAIDo6GsHBwVi6dCmeeuopnD17FgBgaWnZ5HiQ5rjVewMDA9GpUyd89tln2mV5eXmwtLREWFgYdu/eDQBISEjAzz//jIEDB+rcXv/+/VFfX48XX3wRo0aNgq3t9TObo0aNwoEDB1BSUgIA2LZt203PcMybNw+ffPIJ9uzZgzlz5gAALCwsEB4ejrVr12rbqdVqpKeno2vXrqioqMBPP/0E4PrZrpv1uVOnTujXrx9Wr16tHcNz7do1/PTTTxg2bFij9paWligvL2+VgbW36kNubi7KysowevRovP322/Dy8sK1a9cAXD/zcWOw8Pnz55GVlYXQ0FCMGDECx44dQ1ZWFgBgy5YtGDFihM7pAeLi4uDo6IhZs2Zh3bp12u+zSZMmYf369SgvLwcAlJeXIzIy8o77TfopMjYSa7EWkbHyjzELFx2CA4LxMl5GcACfU0R3z9SpUxEWFobg4GBERUVh48aNAICZM2fi8ccfx9ChQ9GjRw+EhYUhIiICAPDKK68gODgYPXv2xN69e7VnAhYuXIhVq1bddIDtrdzqvYaGhvjmm2+wbds27QDPL774AgCwb98+fPrpp+jRowemTJmCHTt2oEuXLs3a5ty5c7F161btZSIAGDduHGbOnIkBAwYgJCQExcXFWLNmTZPvnzx5Ms6dOwcXFxd069ZNu3zfvn2IiopCSEgIQkJCMGXKFOTn58PY2Bj//Oc/sWTJEvTt2xfnz5+Hh4fHTfONGjUKOTk5GDhwIBQKBXr37g0/Pz/tZaw/srW1xYwZM7QDXO/UzfqQlpaGUaNGITQ0FCEhIejevTvGjRsHALCzs0N8fDz69euHuXPnYv/+/TA3N0dwcDD+9re/YfTo0QgNDcXp06exdetWnRk+++wzhIaGomfPnpg+fbp2QPbLL7+MsLAw9OvXD6Ghoejfvz8uXrx4x30m/eRo54hwhMPRzlF2FCiEaB/3+cbExGDBggXYvn279q/V1pD5eya29d7W7LEKpL8qKyuRlJQEb29vzuBJ7VJycjL69OmDvLw82VG0+HPXPujT70KecdEhNSMVn+NzXioiIqIOq7SsFElIQmlZqewoLFx0qa2rRRnKUFvHyaCISL95eXnp1dkWaj8SUxOxG7uRmJooOwoLF118PHwwG7Ph4+EjOwoREZEUAT4BeBpPI8AnQHYUFi5ERER0aybGJrCDHUyM5Y9TYuGiA6f8JyKiji4jKwPHcAwZWRmyo7Bw0cXVyRVjMAauTq6yoxAREUlRVl6GZCSjrLzlT65vLSxcdLCzsUNf9IWdjZ3sKERERFIE+ARgMRZzjEtbUFxSjFjEorikWHYUaqduPJ1Zl9dffx0HDx5s8XZOnTqFf//73y1+b2tMqNbeaTQarFu3TnYMonaNhYsOyenJ2I/9SE5Plh2FOrhVq1bhkUceafH776RwkaU1ps6/l1i4UHsVFReF9/AeouKiZEdh4aJLkF8QlmM5gvyCZEehDmDo0KF46aWXEB4eDl9fXyxatEj72pw5c/DBBx8AuP7Mopdffhl9+/ZFWFgYpk+fDo1GAwAoKirCE088gZCQEPTo0QPz5s3DxYsXsWXLFuzZswdhYWFYtWoVAOBf//oXBg0ahN69e6Nfv37a5/cAwIoVK+Dn54chQ4bg6NGjN828evVqBAUFISwsDGFhYUhJSQEAHD9+HL169UJoaCiGDBmifZbOn8/eXL16FV5eXgCuz/xqb2+PVatWITw8HJs2bUJGRgamTp2K0NBQhIaG4q9//SsAoKSkBAsWLEDfvn0RGhqKRYsWoaampsmMO3fuRFhYGHr06IE+ffogOTkZALB3717t4wseeOABZGRcH3i4a9cuTJ06Vfv+o0ePap8mferUKYSFhWHx4sXo0aMHgoOD8dtvvwEAFi1aBI1Gg7CwMG0fb7Z/iNoSW2tb9EIv2Frbyo4CiHYiOjpahIeHi+jo6FZdr1qlFm/gDaFWqVt1vXTvVVRUiGvXromKiooGy9Vqtbh8+bL268jISJGamqp9j0qlEsXFxUIIIbKyssTFixe1baOjo0VycrIQQojq6mqhUqmERqO5rVyenp7iypUrQgghhgwZIqZMmSJqa2tFeXm58PLyEmfOnBFCCDF79myxadMmIYQQa9asEW+99ZZ2HatWrRLPPPOMEEKIOXPmiKVLl4q6ujohhBA5OTlCCCFWrlwpli9frn1PQkKCGDBggCgqKhJCCBEXFydcXV1FdXW1OHz4sAgJCRElJSWitrZWTJw4UfTu3btR9oKCAmFlZSXKy8uFEEKUlZWJiooKkZ2dLezs7LT79dNPPxXBwcFCCCEiIiIarOvKlSvC09NTCCFEUlKSACD27dunfX3o0KFi3bp12q9v9GfBggViz549Qggh6uvrxfz588X69esbZYyIiBC+vr5CrVZrM5aVlYkrV64IJycnkZ6eLoQQYvXq1WL8+PFCCCF27twppkyZol3HkSNHxJAhQ7TrMzQ0FL/++qsQQoiPPvpIjB49Wpvfzs5O5/7pSG72c0dtiz79LuQZFx3SM9PxDb5Bema67Ch0l2zdulX7gDoAmD59Ot59910AQHp6Onr37g2VSgUA2LNnT4OnAs+ZMwdvvfUWgOtPSu7duzf+85//3FGe6dOnQ6lUwtTUFGFhYUhISGjU5uuvv8ann36q/Sv+n//8JxITr89oefToUbzwwgswMLj+4+3g4NDkdo4fP474+HgMHjwYYWFh2jMMaWlpiIiIwCOPPILOnTtDqVRi3rx5Ta7D0tIS/v7+ePzxx7F161YUFBTAxMQE586dQ1hYGEJCQgAAM2bMQHp6OjIzM3X238TEBI8++igAoLS0FGfOnMGzzz6rff1Gf77++mu8++67CAsLQ8+ePXH69GnExcU1Wt+3336LWbNmwcXl+vNVzMzMYGZmhoiICEyYMAFubm4AgMWLF+PkyZMQzXh8W2BgoPaMyoABA5o8RrfaP0RtTXlFOTKQgfKKctlRYCg7gL6rrKpELnJRWVUpOwrdJU8++SSmTJmi/frAgQOwsLAAALi7u0OlUsHf3x8AMGvWLIwePVrbdteuXdpfRPb29lCpVPD19b2jPH/8xaZUKpsc5yGEwObNmzF8+PAWb0cIgbFjx2LPnj1NvtYcSqUSZ8+exZkzZ3Dq1Cn0798f//znPyGEgEKhaNReoVDA0NAQdXV12mWVlQ1/tszNzZt8b1MZv/76a/j4tGxW6z9n/OP/68rYnGN047Wm9k94eHiLMhPJEp8cj+3YjinJU+A78M4+4+4Uz7jo4OflhyfwBPy8/GRHobvExcVFe2YAALp164YuXboAuP4LqlevXtpCxsnJCT169NC2DQwMhKenJwDAyMgIvXr1gpWV1V3PPGnSJKxfvx7l5df/+ikvL0dkZKT2tXfffRf19fUAgNzcXADX//ovKirSrmP06NE4fvx4gzuazp8/DwAYMWIEDh06hLKyMtTV1WHXrl1N5igpKUF2djbCw8Px17/+FYMGDcKFCxcwYMAAXLx4EVFR1wfyHThwAO7u7nB2doa3tzeSkpKQn58P4Po4k5vp3LkzBg0ahA0bNmiX3ejPpEmTsHbtWm3RUFhYiPj4+EbrmDhxIvbs2YOsrCztviovL8eIESNw7Ngx7fItW7ZgxIgRUCgU8PX1xaVLl1BZWYna2lrs37//phn/yNLSEuXl5dpMN9s/RG2Nv7c/FmER/L39ZUdh4ULUltw4K/Dyyy8jLCwM/fr1Q2hoKPr374+LFy8CADZs2IDy8nJ0794dYWFhePXVVwEADz30EH777Tft4Fx/f398+umneOKJJ9CjRw8EBQVh48aNAIAJEyZgwoQJ6NGjB4YPH47Q0NAm8xQVFeHhhx/WDnCtqanB7Nmz4eDggL1792LGjBno0aMHPvroIxw6dAgA4Obmhueffx59+vTBsGHDYG1tfcs+7927F2fPnkVwcDB69OihHaD8/vvvw9DQEGFhYQgNDcXIkSO1g27/aPDgwVixYgVGjx6NHj16YMiQIcjNzUVwcDD+9re/YfTo0QgNDcXp06exdetWANcv/4wZMwbdu3fH2LFjm30WzdbWFjNmzEBISAj69Olz0/1D1NaYmpjCGc4wNTGVHQUK0dxzwnouJiYGCxYswPbt2xEYGNhq6z1x4AQmPjoRR/55BCOnj2y19dK9V1lZiaSkJHh7e7fJcQbjx4/HrFmzMH36dNlRiJqtrf/c0XW/H/8dy8Ytw8bvNqLX2F5Ss3CMiw6Odo4IRzgc7RxlR6EObOTIkaiqqsIDDzwgOwoRdUDFJcWIRKReTMbKwkUHBzsHDMRAONg1fWcG0b1w4sQJ2RGIqAML9A3EMixDoG/rXdFoKY5x0aG0rBRJSEJpWansKERERB0eCxcdElMTsRu7kZiaKDsKtZJ2MqyLqE24cXcbtW0xCTHYhE2ISYiRHYWXinQJ8AnA03haL56ISXfGyMgICoUCubm5cHBwaNZcIUTUMkIIVFdXIzc3FwYGBujUqZPsSHQHLDpbIBCBsOhsITuKfhQu5eXl2LFjByIiIlBSUgIPDw/MmDEDI0aMkB0NJsYmsIMdTIw5Gr6tUyqVcHd3R3p6epO3zRJR6zMzM4OHh4d2Jmdqm1ydXDEao+Hq5Co7in4ULitWrEB0dDSefPJJdOnSBSdOnMCbb76J+vp6jBo1Smq2jKwMHMMxPJD1AFzgIjUL3bnOnTvD39//pg/jI6LWo1QqYWhoyLOb7UBFZQVykIOKygrZUeQXLr/88gt+++03vP766xg58vo8Kb169UJWVhY++ugjDB8+HEqlUlq+svIyJCMZZeVl0jJQ61IqlVK/p4iI2pq4pDhsxmZMSpoEn/tb9piN1iL93N3p06dhamqqfWT8DePHj0deXh6uXbsmJ9h/BfgEYDEWc4wLERF1WL6evpiP+fD1lPucIkAPCpekpCR4enrC0LDhyZ8bU2wnJSXJiEVERET/ZW5mji7oAnMzc9lR5F8qKioqgqtr48E+Nx5qV1zc9Cx9eXl52oe0AdA+XC0lJaVV8/165ldsNt8M3zO+uM/8vlZdNxERUVsQezkWp8xPodflXggwvztXIDw9PZv1WAjphQuAFg3cOnz4cJNPrF29enUrJGoosFcgth3ahm2HtrX6uomIiNqEXsC7n7wLfHJ3Vt/cZw1KL1ysrKxQVFTUaHlJSQmA64+Jb8qkSZMwcODABu1TUlIQEBDQqvMFpKSkYPXq1VixYgU8PT1bbb36pL33sb33D2j/fWT/2r723kf27841d73SCxcfHx+cOHECtbW1Dca5JCZen6nW29u7yffZ29vD3t6+wbI+ffrctZyenp6t+tRpfdTe+9je+we0/z6yf21fe+8j+3f3SR+cGx4ejoqKCvz4448Nlh8/fhz29vbo1q2bpGRERESkb6Sfcenfvz/69OmD9evXo7y8HG5ubvjhhx9w7tw5rFixgvNtEBERkZb0wgW4PqB2+/bt+Pjjj7VT/q9cuVIvpvy3s7PDnDlzYGdnJzvKXdPe+9je+we0/z6yf21fe+8j+3fvKAQflUtERERthPQxLkRERETNxcKFiIiI2gy9GOPSWi5cuIBly5Y1+dpHH32E4OBg7dcxMTHYsmULrl27BqVSiZ49e2LJkiWNZvHNy8vDtm3bcPbsWZSXl8Pd3R1Tp07FhAkTmpWptrYWe/fuxXfffYf8/Hy4uLjgoYcewpQpU9p8/zIzM/HII480+VpLxyg1t4+XL1/Gd999h7i4OCQlJaGmpgYHDx6Ei0vTT/D+4osv8NVXXyEzMxN2dnYYN24cZs6c2ehRE02RcQzvVf9a+xjejf4dOnQIly5dQlxcHLKyshAWFoZ//OMfzc7UmsdPH/uo78cwLS0Nhw8fxoULF6BWq6FQKODp6Ylp06Y1ekbdzejzz+Cd9q8tfI5WVFTgnXfeQVxcHPLy8iCEgLOzM0aMGIFp06bB1NRUZ6bWPIbtqnC5YeHChejZs2eDZX+cDyYlJQXLli2Dn58f3njjDVRXV+OTTz7B0qVL8cknn8Da2hoAUFpaiqVLl6KmpgZPPfUU7OzscOLECaxbtw5lZWU3/Wb7o/Xr1+Pf//435s+fj65du+L8+fP4xz/+gfLycsycObPN9w8ApkyZon2y9w3u7u4t6ltz+6hSqaBSqeDv7w9zc3NcuHDhpuvas2cPPv74Y8yYMQP33XcfoqOjsWPHDuTl5eGFF17QmUXGMbyX/QNa/xi2Zv8OHz4MExMT9OrVC2fOnLntLHfj+AH61UdAf4/h+fPn8csvv2DMmDHo2rUr6urqcPLkSbz++uuYN28e5syZozOLPv8Mtkb/AP3+HK2trYUQAtOmTYOLiwsMDAxw6dIl7N69GxcvXsSGDRt0ZmnVYyjakd9//12Eh4eLiIiIW7Z7/fXXxYQJE0Rpaal2WWZmphg2bJjYvHmzdtnevXtFeHi4iI6ObvD+5557TowePVoUFxffcjuJiYli8ODBYu/evQ2Wr1u3TowcOVIUFRU1s2fX6Vv/1Gq1CA8PF/v377+tftxKc/tYV1en/f/9+/eL8PBwoVarG7XTaDRixIgRYt26dQ2W79mzRwwePFgkJSXdcjuyjuG96l9rH8PW7t+f286aNUs8/fTTzc7T2sdPCP3ro74fw8LCQlFfX99o+YsvvihGjRolqqqqbrkdff8ZvNP+tYXP0ZvZvHmzCA8PFxkZGbds19rHsMONcamtrcWZM2cwZMgQmJv/7ymXzs7O6NmzJ06fPq1ddvXqVdja2jaaJfD+++9HRUUFzp8/f8ttnT59GkIIjBs3rsHycePGoaqqCufOnWuFHjV0L/snk4FB8751z507h+rqaowfP77B8nHjxkEI0WB/NEXGMQTuXf9kaW7/brftn8k6fsC966Mszc1sbW3d5PPogoKCUFlZedMH6d6g7z+Dd9o/me70++7G2Xtd86219jFsez8tzbBhwwYMGzYMY8eOxfLly3H58mXta2q1GlVVVfD19W30Pl9fX2RkZKCqqgoAUFNTAyMjo0btbixLSEi4ZY6kpCRYW1s3uu/9xraTkpJur2P/pS/9u2H//v0YPnw4Ro0ahSVLluA///lPS7rVwK36eDtu7GMfH58Gy+3t7WFlZaXzGMg4hrfjTvt3Q2sfw9bq3526W8cP0J8+3tDWjuGFCxdgbW0NGxubW7bT95/Bm2lu/27Q58/RG4QQqK2tRVlZGc6dO4eDBw9i5MiRcHJyuuX7WvsYtqsxLubm5pg6dSp69uwJS0tLZGRk4J///CeWLVuGd955B3379tU+0LGphzdaWlpCCIGSkhIYGxvDy8sLKpUK2dnZDQ7MlStXAKDJh0P+UVFRUZPbMTU1hZGRkc7363v/jIyMMHHiRPTp0wd2dnbIzs7Gl19+iVdffRUvvvhiswcw324fb0dxcTE6derU5OAxS0tLvTyGt+NO+9fax7C1+3enWvv4AfrXx7Z4DI8ePYoLFy7gmWee0fnXur7/DDbldvrXFj5Hbzh58iTefPNN7dfjx4/H888/r/N9rX0M21XhEhAQgICAAO3XPXr0QHh4OObMmYOPPvqo2Qfrxmm/iRMn4ptvvsFbb72F5cuXw9bWFj/88ANOnjwJ4M5PszV1evFW9K1/9vb2jQZ/Dhs2DE8++SS2bt2KsWPHNuuunT9qrT421+0egzt9v771r7WP4b3u351qyfHXtz62tWN49uxZbNiwAUOHDm3xnV1/pG8/g7fbv7b0Odq3b19s27YN5eXliIyMxP79+1FUVIQ1a9bc0e/D2z2G7fJS0R9ZWFjg/vvvR0JCAqqqqmBlZQUATV53LC4uhkKhQOfOnQEAXl5eWL16NbKysjB79mxMnDgR+/fvx+LFiwGg0dOp/8zKyqrJ7VRUVKCmpqbJCvR2yexfUwwNDTF8+HAUFRUhPT39Dnr2P3/u4+2wtLREdXU1KisrG71WXFys8xjIOIa3407715TWPoZ30r87dS+OHyC3j03R12N4/vx5rFixAn369MFf//rXZv3C0vefwT9qSf+aom+fo39cR9euXdGrVy/MnDkTzz//PH7++Wedl7Va+xi2+8IFuH5d7gZXV1cYGxsjMTGxUbvExES4ubnB2NhYu6x///747LPPsG/fPuzZswcHDx7UFgc9evS45XZ9fHyg0WiQn5/faDtAw9vS7oSs/unK05oDDkULn0xxY+zHn/dHfn4+ioqKdB4DGcfwdtxp/3Tlaa1j2NL+3al7dfwAeX28GX07hufPn8err76KsLAwvPXWW02Or2uKvv8M3tDS/unKow+fozcTFBQE4PpcNrfS2sew3RcuJSUl+OWXX+Dv7w9jY2MYGhri/vvvx08//YTy8nJtu+zsbFy4cAGDBw9utA6FQoEuXbrAy8sL9fX1+Pzzz+Hv74+wsLBbbnvQoEFQKBQ4fvx4g+XfffcdjI2N0a9fvzbdv6bU1tYiIiICVlZWcHNzu5Ouaf25j7ejX79+6NSpE7777rsGy7/77jsoFAqEh4ff8v0yjuHtuNP+NaW1j+Gd9O9O3YvjB8jtY1P07Rje+KUeGhqKNWvWoFOnTs1+r77/DAJ31r+m6Nvn6M3cmPdFV8bWPobtaozLqlWr4OjoiK5du8LKygrp6ek4ePAgCgoK8Morr2jbzZs3DwsXLsRLL72EGTNmoLq6Gh9//DGsrKwwffr0But8//33ERYWBisrK6jVanzxxRfIzc1tNKvl8ePH8c477+Cll17C2LFjAVyvIh944AHs3LkTBgYGCAoKwq+//oojR47giSeeuO3TY/rWvw8++AC1tbUICQmBra0tcnJy8MUXXyAuLg6vvPKKzkFpd9JHjUaDixcvAvhf1X7u3DlYW1vD2tpaW3RZWlpi1qxZ+Pjjj2FpaYn77rsPUVFR2LVrFyZMmAAvL69b9lHWMbxX/WvtY9ja/QOA6OhoZGVlAQDKysoghMCpU6cAAF27doWzs/NN+9fax08f+6jvx/Dy5ct47bXXYGtri8cffxzx8fENtufl5aWduqEt/gzeaf/awufoN998g8uXL+O+++6Do6MjKisrcenSJXz55Zfo3r07Bg0apF3nvTiG7apw8fHxQUREBA4fPoyKigpYWFggJCQEr732mvaUFgB4enriH//4B7Zs2YLXX38dSqUSvXr1wuLFi7X3pd+Qk5ODjRs3akdF9+vXD2+//bb2g+QGIQTq6uoanYp77rnnYG9vjy+//BIFBQVwdnbGM88806JBafrWP29vbxw+fBgnTpxAWVkZzMzMEBQUhL///e8tHvzV3D4mJSXh9ddfb/De9evXA0Cj6dJnzZoFMzMzfPXVVzhw4ABsbW3x2GOPYdasWTr7CMg5hveqf619DO9G/7788stGf6ndeO8rr7yinRviXhw/feyjvh/D3377DVVVVcjKysL//d//Ndrexo0btbO7tsWfwTvtX1v4HPXx8cEvv/yCbdu2oaioCEqlEu7u7nj88cfxyCOPNBg8fC+OoULo24VZIiIiopto92NciIiIqP1g4UJERERtBgsXIiIiajNYuBAREVGbwcKFiIiI2gwWLkRERNRmsHAhIiKiNoOFCxEREbUZLFyI2qFdu3ZBoVDc9N+N6eTbM41GA3t7exw4cEC7bM6cOdqno9+JjRs3NvnslT/avn07FAoFvvzySwDA4MGDm5xZlYhuT7ua8p+IGtq5cye6du3aaHm3bt0kpLm33nzzTbi6uuKRRx5p9XU//vjjeOmll/DJJ59on8fyZzt37oSDgwMmTpwIAHjrrbcwatQoPPXUUwgMDGz1TEQdBQsXonase/fu6NOnj+wYqKmpgUKhaPBMk7upoKAAW7duxYYNG6BQKFp9/XZ2dpg8eTK+/vpr5Ofnw87OrsHr0dHR+OWXX7B8+XIYGRkBAIYMGYLAwEC899572LZtW6tnIuooeKmIqINTKBRYunQp9u7di6CgIJiZmaFHjx44evRoo7ZxcXF47LHH4OjoCGNjYwQFBeHDDz9s0ObUqVNQKBTYu3cvli9fDjc3NxgbG2ufmrt9+3YEBATA2NgY3bp1w/79+zFnzhztk6yFEPD398eYMWMabb+0tBRWVlZYsmTJLfu0a9cu1NbWNutsy88//wx7e3tMmDABZWVlze7n/PnzUV1djf379zda586dOwFcf1L7H82cORP79+9HSUmJzlxEdBOCiNqdnTt3CgDi7NmzoqampsG/2traBm0BCC8vL9G3b19x6NAhcezYMTF06FBhaGgoEhIStO0iIyOFlZWVCAkJEXv27BH//ve/xfLly4WBgYF44403tO0iIiIEAOHm5iamTp0qDh8+LI4ePSry8/PF1q1bBQAxZcoUcfToUbFv3z4REBAgPD09haenp3YdGzduFAqFQsTGxjbI+uGHHwoAIjIy8pb9Hz58uOjbt2+j5bNnzxbm5ubarw8ePCiMjY3FU089pd0vze1nXV2d8PT0FGFhYQ22UVtbK1xcXET//v0bbf/cuXMCgDh8+PAt8xPRzbFwIWqHbhQuTf1TKpUN2gIQTk5Oori4WLssKytLGBgYiL/97W/aZWPGjBHu7u6iqKiowfuXLl0qTExMREFBgRDif4XL4MGDG7Srq6sTzs7Ool+/fg2Wp6SkCCMjowaFS3FxsbCwsBDLli1r0LZbt25i2LBhOvtvZmYmFi1a1Gj5HwuXtWvXCqVSKd55550GbZrbTyGEWLlypQAgfv/9d+2yI0eOCABi+/btjbZfXV0tFAqFeOmll3T2gYiaxktFRO3Ynj178Ouvvzb4d+7cuUbthg0bBgsLC+3XTk5OcHR0REpKCgCgsrISP/zwAx566CGYmZmhtrZW+2/8+PGorKzE2bNnG6xzypQpDb6OiYlBVlYWpk2b1mC5h4cHBg4c2GCZhYUF5s6di127dmkv35w8eRLXrl3D0qVLb9lnjUaD8vJyODo6Nvm6EAJPPvkkVq5cif379+PFF1/Uvna7/Zw7dy4MDAzwySefaJft3LkT5ubmTV6mMjIygrW1NTIyMm7ZByK6ORYuRO1YUFAQ+vTp0+Bf7969G7X78+BSADA2NkZFRQUAID8/H7W1tdi0aROMjIwa/Bs/fjwAIC8vr8H7XVxcGnydn58P4HpR9GdNLXv66adRUlKCffv2AQA++OADuLu7Y/Lkybfs843MJiYmTb5eXV2NgwcPIjg4GOPGjWuU8Xb66enpiREjRmD//v2oqqpCXl4ejh49ir/85S8NCsE/MjEx0WYkotvHu4qISCcbGxsolUrMnDnzpgNjvb29G3z957t5bhRH2dnZjd6blZXVaJmfnx/GjRuHDz/8EOPGjcPhw4fx5ptvQqlU3jLrje0UFBQ0+bqxsTEiIiIwZswYjBw5EsePH4eNjU2L+zl//nx8//33+Oabb6BWq1FdXY358+ffNF9hYSHs7e1v2QciujkWLkSkk5mZGYYNG4YLFy4gNDQUnTp1uu11BAYGwtnZGYcOHcJzzz2nXZ6amoozZ87A1dW10XuWLVuG0aNHY/bs2VAqlViwYIHO7XTq1Ak+Pj5ISEi4aZuePXvixx9/xMiRIzF06FB8//33cHR0bFE/H3zwQdjZ2eGTTz5BZmYmAgICMGjQoCbbqtVqVFZWdoh5dIjuFhYuRO3Y1atXUVtb22i5r68vHBwcbmtdGzduxKBBgxAeHo6nnnoKXl5eKCkpQXx8PI4cOYKTJ0/e8v0GBgZ488038eSTT2Lq1KmYN28eNBoN3nzzTbi4uMDAoPGV61GjRqFbt26IiIjA448/ftNxK382dOhQfPfdd7dsExQUhNOnT2PkyJEYPHgwTpw4AXd399vup7GxMWbMmIFNmzZBCIG1a9fedJs3xscMGzasWf0goibIHh1MRK3vVncV4U93vAAQS5YsabQOT09PMXv27AbLkpKSxLx584Sbm5swMjISDg4O4v777xerV6/WtrlxV9Fnn33WZLZt27YJPz8/0alTJxEQECA++eQTMXnyZNGzZ88m27/xxhvaW7ub64cffhAAxPnz5xss//Pt0EIIkZ6eLrp27Sq8vLy0t383p59/dOnSJe0dW2q1+qa5Zs6cKUJCQprdDyJqTCGEEHJKJiKi63cBBQQE4MEHH2xyRtk+ffpAoVDg119/va31hoaGYuDAgfjoo49aK+odKS4uhqurKzZs2NCsS15E1DReKiKieyYrKwtr1qzBsGHDYGdnh5SUFGzYsAElJSVYtmyZtl1xcTGuXr2Ko0ePQqVS4auvvrrtba1btw4PPfQQXnvtNbi7u7dmN1pkw4YN8PDwwNy5c2VHIWrTWLgQ0T1jbGyM5ORkLF68GAUFBTAzM0P//v2xZcsWBAcHa9v9/vvv2uJm5cqVePDBB297W2PHjsW7776LpKQkvShcLC0tsWvXrnv2vCai9oqXioiIiKjN4AR0RERE1GawcCEiIqI2g4ULERERtRksXIiIiKjNYOFCREREbQYLFyIiImozWLgQERFRm8HChYiIiNoMFi5ERETUZvw/l6/37toZbdAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get expected counts from likelihood scan (i.e. best-fit convolved with response):\n", + "total_expectation = cosi._expected_counts['gaussian']\n", + "\n", + "# Plot: \n", + "fig,ax = plt.subplots()\n", + "\n", + "binned_energy_edges = gal_511.binned_data.axes['Em'].edges.value\n", + "binned_energy = gal_511.binned_data.axes['Em'].centers.value\n", + "\n", + "ax.stairs(total_expectation.project('Em').todense().contents, binned_energy_edges, color='purple', label = \"Best fit convolved with response\")\n", + "ax.errorbar(binned_energy, total_expectation.project('Em').todense().contents, yerr=np.sqrt(total_expectation.project('Em').todense().contents), color='purple', linewidth=0, elinewidth=1)\n", + "ax.stairs(gal_511.binned_data.project('Em').todense().contents, binned_energy_edges, color = 'black', ls = \":\", label = \"Injected source counts\")\n", + "ax.errorbar(binned_energy, gal_511.binned_data.project('Em').todense().contents, yerr=np.sqrt(gal_511.binned_data.project('Em').todense().contents), color='black', linewidth=0, elinewidth=1)\n", + "\n", + "ax.set_xlabel(\"Energy (keV)\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "ax.legend()\n", + "\n", + "# Note: We are plotting the error, but it's very small:\n", + "print(\"Error: \" +str(np.sqrt(total_expectation.project('Em').todense().contents)))" + ] + }, + { + "cell_type": "markdown", + "id": "55c9c56a-7742-4e3a-8ffa-95fee0323df7", + "metadata": {}, + "source": [ + "Let's also compare the projection onto Psichi:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "18997c67-c643-428a-beb6-57872daeb3ac", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'injected counts')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG+CAYAAAD1MPK+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAADch0lEQVR4nOy9ebglRX3//67q7rPcbfZ9mI1hZtgXZ0BZHFRARBRckEj4IlEEgqgEiXGJUVFxi/klxiUEoybikghqIrggAoogi4DAwDDDMDPMvt59OUt31e+PPtW3T3f1cs7ps956Pc88c+/tOtXVffp0v86n6lNFOOccCoVCoVAoFIq2hja7AQqFQqFQKBSK2lFSp1AoFAqFQtEBKKlTKBQKhUKh6ACU1CkUCoVCoVB0AErqFAqFQqFQKDoAJXUKhUKhUCgUHYCSOoVCoVAoFIoOQEmdQqFQKBQKRQegpE6hUCgUCoWiA1BSp1AoFAqFQtEBKKlTKBQKhUKh6ACU1CkUCoVCoVB0AErqFAqFQqFQKDoAJXUKhUKhUCgUHYCSOoVCkQiEEBBCcPbZZ9d1P9u3b3f2deWVV9Z1XwqFQtFO6M1ugEKhUChak5/97Gf485//DAC44YYbMH369Ka2R6FQhKOkTqFQKBRSfvazn+E///M/AQBXXnmlkjqFosVR3a8KhUKhUCgUHYCSOoVCoVAoFIoOQEmdQqFQKBQKRQegpE6hqCMPPPCAk6n5qU99CgCwadMmvO9978NRRx2Frq4uLFy4EG9605vw8MMP+15/991348ILL8QRRxyBTCaDZcuW4frrr8f+/ftj7f/gwYP49Kc/jdNOOw2zZ89GOp3GwoULcf755+Pf//3fUSwWY9Wzb98+3HTTTVizZg26urowZ84cnHHGGfjGN74B0zRjnw/BI488gr/+67/GMcccg+nTpyOTyWDJkiW49NJLcffdd1dcX60MDAzgS1/6Es455xwsXLgQ6XQa3d3dWL16NS677DJ8//vfRy6XC3z96Ogo/vEf/xHr16/HvHnzkEqlMG/ePJx99tn4p3/6J4yNjYXuf9myZSCEYNmyZZFtjSp75ZVXOtfc9u3bAQC//vWvcdFFF2HRokVIp9NYtGgRLr30Ujz++OOhdYjxdACwfPlyp96w7OMnn3wS1157LY4//nj09fUhlUph/vz5OP7443HxxRfj61//OrZt2xZ5nAqFogq4QqGoG/fffz8HwAHwT37yk/zHP/4x7+rqcv7m/kcI4d/5znc455wXCgX+7ne/W1oOAF+wYAHfsmVL6L7vvPNO3tfXF1gHAL5q1Sq+adOm0HoeeOABPmPGjMA6zjjjDN7f3+/8vn79+sC6xsbG+Dvf+c7QNgHgb3zjG/nw8LC0jm3btjnl3vWud4W2PQ7f/e53I88TAP6pT31K+vo//OEPfP78+aGvXbBgAX/44YcD27B06VIOgC9dujSyvVFl3/Wudzn7femll/i1114b2C5KqXPNBdUR9s97/j/5yU9yQkjk6y666KLI41QoFJWjsl8VigbxxBNP4Atf+ALS6TRuuOEGrF27Fowx/OpXv8IPf/hDcM7x3ve+F2eeeSa++tWv4tvf/jZOOOEEXH755Vi6dCn27duH2267DRs2bMDevXvxV3/1V/j9738v3dfPf/5zXHLJJWCMAQBe+9rX4m1vextmzZqFrVu34rvf/S42b96MzZs348wzz8STTz6JxYsX++p54YUXcOGFF2J0dBQAcPLJJ+Pyyy/HokWLsHPnTvznf/4nHnroIbznPe+JPP5CoYBzzz3XiUguWbIE73znO3HssccinU5jy5Yt+K//+i9s2rQJd999Ny6++GL85je/AaX161D4yle+gptuusn5/YwzzsCb3vQmLF26FJZlYfv27fjd736H+++/H5xz3+ufeOIJnHvuuZiYmAAArF27FpdddhkWLlyIPXv24Pvf/z6eeOIJ7N27F+eccw4eeughnHTSSXU7Hi8f//jH8aMf/QirVq3CFVdcgZUrV2JkZAR33nknfvWrX4ExhmuvvRann346Vq1a5bzuAx/4AC6++GJ89atfxf333w8AuPXWWzF37tyy+pcsWeL8/L//+7/49Kc/DQDIZDK4+OKLccYZZ2DOnDkwTRO7du3Cn/70J/zmN79pwJErFFOUZlulQtHJuCN1APjKlSv5jh07fOU+97nPOWXWrl3LCSH8uuuu45ZllZUbGxvjxx9/vFP2scce89U1ODjI58yZ45T5l3/5F1+ZXC7H3/GOdzhlzj//fGn7169f75R573vfy03TLNteKBT4X/7lX5YdY1Ck7sYbb3TKXHvttTyfz/vKFAoFfsUVVzjlvv71r/vKJBWpe/jhh7mmaRwAz2Qy/Ec/+lFg2V27dvFHHnmk7G+WZfE1a9Y4bbnppps4Y8xX5m/+5m+cMscee6zvPeW8fpE6APyKK67gxWLRV+5973ufU+a6666LrGvbtm2h7XrjG9/IAXBN0/hDDz0UWG5iYoI/+uijoXUpFIrqUFKnUNQRr9QFPcxyuRzv7e11yp1wwgk+gRJ8//vfd8rdfPPNvu3/3//3/znb3/nOdwa2bXx8nC9btswp+/TTT5dtf/LJJ51ta9as4YVCQVrPxMREWT0yqdu7dy9Pp9McAH/d614X2CbObbFbsWKFI8FekpK6c88916nn1ltvrfj1P/3pT53Xn3766T6hEzDG+Ctf+Uqn7P/+7//6ytRL6tasWSOVZ845Hxoa4tlslgPgRx55ZGRdUVK3evVqDoAff/zxkcegUCjqg0qUUCgaxNq1a3HqqadKt6XTaaxdu9b5/eqrr4amadKyZ555pvPz888/79v+05/+1Pn5wx/+cGB7stks3v/+90tf5/39+uuvh2EY0noymQyuu+66wP0AwH//938jn88DAD70oQ+FljUMA5deeikAYMuWLXUZVH/w4EGnG3DFihW46qqrKq7DfX7+9m//FoQQaTlCCP72b/9W+rp6c9111yGVSkm39fX1Odfc1q1bQxNB4tDV1QUA2LNnD4aGhmqqS6FQVIcaU6dQNIggoRPMmzcvVll3uYGBgbJtnHP86U9/AgDMnj07cvzWueee6/z86KOPlm1zZ0a+9rWvDa0navuDDz7o/HzgwAH87Gc/Cy3vPq4XXngBy5cvDy1fKX/4wx+cny+88MKqxu099thjAGxpe93rXhda9pxzzgEhBJxz33muJ6eddlro9kWLFgGwr5vBwUHMnz+/6n2de+65eOqpp3D48GGsX78eH/3oR3HBBRegt7e36joVCkVlKKlTKBrErFmzQren0+lYZd3lvNGVoaEhjI+PAwCOOuqoyDa5B8fv27evbNuePXucn4888sjQelauXBm6XUytAUA6DUYY/f39FZWPw65du5yfjz766Krq2Lt3LwBg/vz5keLS19eHefPmYd++fb7zXE9mz54duj3sWqqUj3zkI7jrrrvw/PPP4+mnn8Zf/MVfQNM0nHTSSTjjjDPwmte8Bq9//euRzWZr2o9CoQhGdb8qFA2ikmhQtRmfIksVALq7uyPLp9Npp5t3ZGSkbJuYW03X9cAuvLj7qqU7Lu5cepUwPDzs/NzT01NVHeJcxznP7nLe81xP6pk57GXGjBl45JFH8PGPf9yJJluWhSeeeAJf/epX8Za3vAXz5s3DP/zDP6BQKDSsXQrFVEJJnULRQbgFRUTswsjn87AsCwB80SYhIaZpRj6EoybXFe3SdR3FYhHcTtKK9a/SyF4c+vr6nJ/dIlwJ4pjinGdg8hzV2h0ppqlpRXp7e/HZz34We/bswZNPPol//dd/xaWXXupEDEdGRvCZz3wGb37zm6VTxCgUitpQUqdQdBDTpk1zBqy/+OKLkeXdZRYsWFC2beHChc7PL730Umg9W7ZsCd0uxm6ZpolNmzZFtqveuOfkkyWbxEGcr3379kWK4cjIiLMKiPc8A5PdoFHyzDmvS3d00lBKcfLJJ+P666/Hj370I+zfvx8//elPMXPmTAD2ChfNWDlEoeh0lNQpFB0EIcTJaDx48CCeeeaZ0PL33nuv87M3OWPdunXOz2IC2iCitr/61a92fv7JT34SWrYRnHnmmU626l133VVV9EucL8YY7rvvvtCyv/3tb53IlCwJZsaMGQDs9yxM7DZs2BAZFU0Sd/dtLZE1Sikuvvhi3Hzzzc7f3MkqCoUiGZTUKRQdxlvf+lbn53/8x38MLJfL5fCv//qvzu9vectbyrZffPHFzs9f+9rXAtd4zefz+MY3vhHapr/4i79wpkT553/+57IkjGYwZ84cnHfeeQCAbdu24Vvf+lbFdbjP81e+8pXAcpzzsvfB/TrBMcccA8COZIbJjvv9agTu7vwkZNK9Xm01awYrFIpwlNQpFB3GX/3VX2HOnDkAgO9973v45je/6StTKBTwV3/1V9i6dSsA4A1veANOOOGEsjKnnHKKE2HbuHEj3v/+9/siWqZp4r3vfW/kXHJLlizB+973PgB2NuvrX//60O5hxhjuvfdefPazn4042ur51Kc+5SSJfPCDH8T//M//BJbdu3evM4WJ4E1vepOTOfv73/8eH/3oR33RLM45PvzhD+Ohhx4CABx77LF44xvf6Kv/DW94g/PzJz7xCWdOPzf/8R//UZV81oJ7Kpknn3wytOzVV1+NDRs2BG43TRO33Xab8/uJJ55YewMVCkUZakoThaLD6Ovrw3/8x3/g4osvBmMM1113HX7yk5/grW99K2bNmoVt27bhu9/9Ll544QUAdtTK/bB1c+utt2Lt2rUYGxvDv/3bv+Gxxx7D//t//w8LFy501n599tlncfHFF0fOPfelL30Jf/7zn/HAAw9gw4YNOOaYY3DRRRdh/fr1mD9/PorFIvbv34+nn34a99xzD/bu3YvXve51+Pu///ukTxEA4JWvfCW++MUv4qabbkIul8Oll16Kr371q3jzm9+MJUuWgDGGl19+GQ8++CDuvfdefOxjHyvrOqWU4nvf+x7OPPNM5HI5fOELX8B9992Hyy67DAsWLHDWfhXzBmazWdx+++3SjNSLLroIq1atwubNm/Hwww9j3bp1eM973oOFCxdi3759+NnPfob77rsPZ511Fl566aWGRTrd8+99+MMfxsGDB7F69Wrouv3oWLRoEY4//ngAwG233YbbbrsNxx57LF7zmtfg2GOPxaxZszA2NoZt27bhhz/8oSPyq1atwtvf/vaGHINCMaVo6PoVCsUUw71M2Cc/+cnQspUsyYSQJbkEd9xxB+/r6ytbpsz7b9WqVfyFF16IPIYZM2YE1nHGGWfw/v7+WG3K5/P8uuuu45TS0HaJf1dccYWvjqSWCRPcdtttvKenJ7Itn/70p6Wv//3vf8/nzZsX+tr58+eHrofKub0s28yZMwPrOO200/iBAwcqWiYs6jqKU/ad73xnYJvc558QEus9PeGEEyLbpVAoqkNF6hSKDuVtb3sbXv3qV+PrX/86fvGLX+Cll17CyMgIZs6ciRNPPBFvfetb8e53vztw+S/B2Wefjeeffx5f/vKX8fOf/xw7d+5Ed3c3Vq1ahcsvvxzvfe97I+sQpFIpfP3rX8cNN9yAb3/727j//vuxdetWDAwMIJVKYd68eTj66KNx5pln4sILL3SiQPXkqquuwkUXXYRbb70Vv/rVr7B582YMDAwgnU7jiCOOwNq1a/HmN78ZF110kfT1Z511FrZs2YJvfvOb+PnPf46NGzdicHAQ06dPx9FHH42LLroI11xzTeR8eCeffDKeffZZfPGLX8QvfvEL7Nq1C9lsFmvWrKn4PCfJ9773Pbz61a/Gf//3f2PDhg0YHByUjofbt28f7rvvPtx333144oknsG3bNgwPDzvv68knn4y3v/3tuPTSSwOXwFMoFLVBOFeTBSkUCoVCoVC0OypRQqFQKBQKhaIDUFKnUCgUCoVC0QEoqVMoFAqFQqHoAJTUKRQKhUKhUHQASuoUCoVCoVAoOgAldQqFQqFQKBQdgJI6hUKhUCgUig5ASZ1CoVAoFApFB6CkTqFQKBQKhaIDUFKnUCgUCoVC0QGotV8VCkVT4JyjUChgfHwcuVwOhUIBhUIB+Xze+Vn2t2KxCMuynH+MsbL/vX8DAEIICCGglDq/i58ppc52TdNgGAZ0XYdhGM4/XdeRSqWcv4vfM5kMMpkMstls2f+6rm6tCoWi8ag7j0KhqIpisYiRkREMDw87/7t/Hhsbw/j4eOg/y7KafRh1wTCMMuHLZrPo7u5GT0+P86+3t7fsd/e/adOmIZPJNPswFApFm0E457zZjVAoFM2nWCxiYGAAAwMD6O/vR39/v/Oz+Ltb3iYmJhLbdyqVQmGsCDACMALCAHBS/jsTv5e2ASC89DOH/Q+un8XvDrz8V/fPojJSqoJy+3eKsv85AUBL5SgHNA5OObpnZpHL5RKV1HQ6jenTp5f9mzZtmu9vM2fOxKxZs5BOpxPbt0KhaE+U1CkUHY5lWRgYGMDBgwedfwcOHMDBgwdx6NAhR9pGRkYqrpsQAl4AYFIQk9j/FylgEhCLAhYBsQhgkdLfCOD9u0VAfIbV4hB/e7mQRo0DlNliqHGAcnCNAzqzJVC3fxZ/E79D45i+qA8jIyMwTbPiJvX29mL27NmYNWsWZs+eXfaz+3/DMBI4AQqFohVRUqdQtDkTExPYt28f9u7diz179mDfvn1lAnfo0KH4ESQGoFgSs4L9v+9nl8DBbEMhqxWJ0MUi5q2WoySDhi183GD2z5L/ucGQ6tNRKBRiNp1g9uzZmDdvHubPny/9P5vNVnd8CoWi6SipUyhaHNM0ceDAAezdu9cRN/Hz3r17MTAwEFkHpRRsAiB5DaRAQfKaLWp5bVLaTG1S0qq5LYTJTivcZtztS/r4kqDKcyQkkKcYkLLA02zy55T987xVs3D48GEUi8XI+qZNm4Z58+ZhwYIFWLRoERYvXoxFixZh0aJFmD17tpNgolAoWg8ldQpFC8A5x8DAAHbu3Fn2b8eOHdizZ090d5xJQHKa/S+vAXlaLnBFLTqiFnYrSEJomn2riXMMQW2st9DFpYZzyFGK/qUZeNoCz1hA2nJ+756fwejoaGgdqVTKJ3qLFy/G4sWLMXfuXJBWOU8KxRRFSZ1C0UBM08Tu3buxbds2bN++vUzgxsbGAl+XSqVQHLRAchqQ1x15IxPU/tmi1YmH+Pg38mHcrFtOteennUSlxnPLtZLwpZktfVkTPGNh4QlzsXfv3tBu/Gw2i6VLl2Lp0qVYtmyZ8/PChQuhaVpN7VIoFPFQUqdQ1AHGGPbt24etW7di+/btzv8vv/xyYBcYIQR8goJMaKATOsiEBjKhg0zodvdoJ41da9Rtp52ErJ4kcL45uB3Zy5b+ZSzwrInFJ83H7t27A4UvlUph8eLFjuitWLECRx55JBYuXKi6chWKhFFSp1DUyPj4OLZs2YIXX3wRL774oiNwuVxO/gKLgIxrIOO6I21kQgPJ6SB8CklIPW49SuIqJwnhI9yWvC7T/pe1fzZm0sAkjmw2ixUrVmDlypVYuXIljjzySKxYsQJdXV01t0ehmKooqVMoKmBwcBCbN292BG7z5s3YvXs3pB8jBlvcXP/ouA7kY4xvmwokcetREldfau3OLUX3WJdL+LrDZW/RokU48sgjcdRRR2HVqlVYs2YNZsyYUVM7FIqpgpI6hSKA4eFhbNy4ERs3bsQLL7yAF198EQcPHpQXzlPQMQNkTAcZM0pROCVvkVR6+2kXiSMU4Kzy1wCVv66RJPS44OB2NK+7CN5tgnWbmLWqD4cOHZKWnzdvHlavXo01a9ZgzZo1WL16NXp7exNpi0LRSSipUygAFAoFbNmyBRs3bsTzzz+PjRs3YteuXb5yhBBgnIKM2gJHxwz7Z1ONDaqaqFtQu4icgEiuhShRk70mzuuaRZ0eG1xn4N1FsG4TvMfE4rVzsXPnTmkkfNGiRY7gHXPMMVi9erVaVUMx5VFSp5iS7N+/H8888wyef/55PP/889iyZYs0gYFMaCAjtrjR0VIEzlIClyjeW1C7SZyXIEETeEUtqrzsNa1CAx4fXGPgPRZYTxG8p4j5J87Enj17fOV0XceqVatw3HHHOf9mz55d9/YpFK2EkjpFx8MYw/bt2/HMM884/w4cOOAvWCSgIylb4EZUBE5RBXEEzQ1n1b2m1WjEY8Ql+05Er9cWvelHdaO/v9/3kvnz5zuCd/zxx2P58uXQdb3+bVUomoSSOkXHUSgUsGnTJjzzzDN49tln8eyzz/rWNdU0DWyQ2vI2YkfhkFNj4BQJUamoVcNUlTuBW/JEQkZfEay3gBVnLcLWrVvBWPk56urqwgknnICTTz4ZJ510Eo466igleYqOQkmdou0xTRObN2/Gk08+iSeeeALPPvusP7POIra8DRugwym7S5WpKJyiAdRb8Ka63Llxi57GwHuKjuh1LTZ8E3wryVN0GkrqFG0H5xzbtm1zJO7pp5/2L29UJLa8Dafs/8em2BxwitZkKgleKzxaPNE83m2C9RXApxXQtdTw3Te6urpw/PHH45RTTsHatWtx5JFHqgmSFW2FkjpFW3DgwAE89thjePLJJ/Hkk0/6x8+YBHQoBTqYAhlK2RP6qq5URaui5K45VCh5M2fOxNq1a7Fu3TqsXbsWs2bNanSLFYqKUFKnaEmKxSKeeeYZPProo3j00Uexbdu28gIW7CjcUAp0KA0yWqPEuT8GSWZfdlpmZ7Nxy1C188DFfW0l5Wupu54k3e4kaPYjJ+Az6EjeNFvy0osoJiYmysqsXLkS69atw7p163D88cerKVQULYeSOkXLsH//fjzyyCN49NFH8cQTT5TdUCml4IMa6GBJ4kaM2rpTgy77WqWrXvVOdZKYx62SOirdXxJ115MkjrFeNOMRFOPzyAkH7y2ATS9g5TmLsWnTprLt6XQaJ510El71qlfh9NNPx/z58+vVWoUiNkrqFE3Dsiw8++yzeOihh/DII4/g5ZdfLi9QoKADKdDBNOhgurbpReoxwW3cj44SuupIev62SuaPq2TflbazGVJXTRua2YXb4ClS4sB1BjY9Dza9gJnHdvtWv1ixYgXOOOMMnH766VizZg00TUuytQpFLJTUKRpKLpfD448/jj/84Q94+OGHMTQ05GxzonEDadCBtJ3cUG2XaiWXddybe6cuadVqVCI9SUqdwk+rjM2r12Oqys8oBwfvMsFmFHDsm5djw4YNZdOnTJ8+3YngrVu3Dl1dXUm1WKEIRUmdou4MDAzg4Ycfxh/+8Ac8/vjj5dONFIktcf0ZO8mhltUaqrmUo27q1X48Olno6rlGadIT8SqRS4ZWkLt6P6pq+MxynYHNyIPNyKNruV6WcGEYBk455RSsX78eZ555JqZPn55AYxUKOUrqFHVh//79eOCBB/Dggw/i2WefLV+7MadB60+DHk6DDKcaE42TIbuJJ/Fx6FShq2ZN0yT2EUalY9wUtdFsuWvS5MaVwAkH7yuAzchj/qkzsHv3bmcbpRQnnngizj77bJx11llqGTNF4iipUyTGwYMH8cADD+D+++/Hhg0byraRUd2Oxh1O2+unNkvknAaRZOvz1ttJhAlSs6N1rTBWbaoxlcROUEs3bdYCm5XDkecuxObNm11VEhx33HFYv3491q9fj3nz5iXVWsUURkmdoiYOHTqE3/3ud7j//vvLInKEEGBQh3Y4A3o4A1KoYdBwO1yiU03m3DQzWlfN2qmKZOj0RIogaummTZuwZuWx5sIleO6558q2rVmzBueccw5e+9rXqgieomqU1CkqZmhoCPfffz/uu+8+PP3002Vdq2TYAD2UgeYVuUrmgWuXS7LSBItmix+hyc+hFvfBHmccXgfLGaH2e89Z9LVNKIlVriVodtQOaKvInRuesmDNyuG4t6zAM888U/aF+JRTTsE555yD9evXo6enp+Z9KaYOSuoUsSgUCvjjH/+Ie+65B3/84x9hmqazjQwboIcz0A6FiJxTOOBm2C6XYZybeSXH3Qi8spTEOLRKZS7sdR0scwIhdYIgaYtbruVoBbkTNOpekuBnmht2F+2ai5aWDV1JpVJ45StfiXPOOQevetWr1GTHikiU1CkC4Zxjw4YNuOeee3DfffdhZGTE2UZGddCDWTsil48QOTfuG2E7XHpJTHfSLKGrZCxc0l2tcSa2nQIyJ/DKmsArbXHLtSStJHaCet5j6vS55mkT1pwcjlg/G9u3b3f+3t3djfXr1+P888/HiSeeaA9xUSg8KKlT+NizZw9+/etf45577inL3EKeQjuYBT2YAR03Jv9eySS87XC5VRuNq7auehB3ot1GydwUJkjU3HDGY5draVpR7AT1uPfU8fPtzIU3J4eZJ3fh4MGDzrZFixbh/PPPx/nnn68SLBRlKKlTAADy+Tx+//vf46677sJTTz01ucEioIfT0A5kQYYk0490yuWTpMjFra9exF0tIEmhUzIXSBxZAzpI7IDWljsg2ftWAz7rHBy8rwhrzgQyKwjGx8dLuyZYt24dLrjgApx55plIpVJ1b4uitVFSN8XZtm0bfv7zn+Oee+7B8PAwgFLmar9hR+UOp0GYd1xUh10yYTflJCc09tZVz4dBnK7XpKRuigpd3ISGSqQuTvm2kDovrSx5bTY3JacMbFYex71jOf785z87f+/r68O5556LCy64AEcddVTD2qNoLZTUTUEmJibwwAMP4Oc//3n5fHJ5Cm1/F7T9Wf8UJJ16mXhvxklPaBxUX70fAnEnCq5F7KaozAnc8hUmWtVG32Sva0uh89KJgtekyDzPmLDmTmDmKeXds2vWrMHFF1+M1772tchkMk1pm6I5KKmbQmzbtg0//elP8Zvf/AZjY2MAAE3TwA/ooPu67GW6OrV7VUbSExDHra9RDwC3dNU6lcgUTXAIotbEh6jXBdXREVLnppMEr4lDLjg4+PQCznr/yXjwwQdRLBYBAD09Pbjgggtw0UUX4Ygjjmha+xSNQ0ldh2NZFh566CHceeed5WPlJjRo+7P2WLniFInKNZtG3/STnpdOTfTrELeLNAmpE/V0nNB56QTBa4GMVK4zWPPGMfdVvdi7d6/z97Vr1+Liiy/G6aefDl3Xm9hCRT1RUtehDA0N4e6778bPfvYz7Nu3D4C97iAOGND2dXV20kMr0gI3eylK0nzEEai4shaXjhc2QdIJOo0mzj2yRT7rHBxsRgGnXnU0/vjHPzqTG8+ZMwdvfvOb8eY3vxkzZsxocisVSaOkrsPYsmUL7rzzTvzmN79BoVCw/1gk9li5vV1TZ6xcK9GMCB2gEhyqJE53Z9JSF7U/9z7bXgCr6cpvJcFrI7ET8LQJa/4Eeo8zMDg4CMCe2Pi8887DJZdcguXLlze3gYrEUFLXAXDO8cgjj+CHP/xhWTYUGdWh7ekCPZwFYSoq1xSaJXQCleBQEXGTE+oldUH7bNuVJoJIOmmnkbRRV6wXTjjY7ByOumghNm7c6Pz9tNNOwzve8Q6sXbtWTWrc5iipa2OKxSLuvfde/OhHP8K2bdsAlBIf9ul2VG7YAPE95NXb3TCaLXQCleQQmzBZc4tUvaUu7v7aWu6SWAe4WYLXhtE6NxwcvLeIV11/HB588EGna3b58uW49NJLcc4556g579oUJXVtyNjYGH7+85/jxz/+8WQau0mg7ctC2yPpYlU0nkbe0JNePWIKk+TqD42iY8VOUGl2dqNoc7ET8IwJa8E4UkdyTExMAABmzpyJt771rXjLW96C3t7eJrdQUQlK6tqIQ4cO4Y477sD//d//YXR01P5jgULb3QVtXxbEUg/tlqEZ05YEoaQOQIIJEHHHLDaYtpY7IJnIXVQ99aBT5E5jsOZPYOa6jBMs6O7uxlve8hZccsklKqmiTVBS1wbs378f3//+93H33Xc78w+RcQ3a7m7QAxkQ3vo3jClHI27ian65ikgsASLu/H9Nou3lDkhuLGgj359OkbvSuLsjXj/TGdaTSqXwpje9CX/xF3+h1pptcZTUtTB79+7F7bffjl/+8pcwTRMAQIYNW+b60yDqnWttmrUMmMD7QFNS5/tbVZMFx12to4l0hNgByV7DSvAqgoODzcxj5Vvm44UXXgBgj9l+/etfj8svvxyLFy9ucgsVMpTUtSC7d+/G9773Pfz617+GZVkAADKYgr6zG3Q4bRdSb1t7kPSNu9bxRVNY7OIkQVQtdZMVVdqsutIxcgckN4xAyV1FcHDwaQUc9/+WORPYC7m74oorsHDhwia3UOFGSV0LsXfvXnz3u9/FPffcMylzAynou3pAhz2ZSOptax+SumknMWBcSV0gsRMg4iamtAgdJXZJowSvIlhvAae89yg8+uijAGy5u+CCC3DFFVeobtkWQUldC3D48GHcfvvt+N///V+nm5X2p6Dt6gEdUTLX9iipazqEknjLpsUtE4ck9pUQSUxqnNRSZUnWAyQgra2WWNHiYgfYcnfiu1fgT3/6EwDAMAxceOGFuPzyyzFnzpwmt25qo6SuiYyMjOCHP/wh7rjjDuRyOQClbtaXe0BHlcx1FI0Suxboem2llQ/KIm9xsla10nRAjAeXSyITM06yRcJZtnGSQ2opE4ek6km8vlaaEqUNpE7A+go47oqlTrdsKpXC2972Nlx++eVqKpQmoaSuCeRyOdxxxx34wQ9+4ExNQkYMW+aG0uWF1dvTOSRxs27xjNekH9q14OtKjSNSmmuOxyCxSyILs9KVPxKUjqhJjeOsoFHNext3X02rt5UmMm4jsQMANi2Poy87As888wwAoLe3F5dffjne+ta3Ip1OR7xakSRK6hoIYwy//vWv8a1vfcuZB4iM6dB29NjZrHB9kNXb0nk0OlrXQKGr1wO7GgLHxcVZcUOTTNztlruksi+rXf0j4ahdLckjlb6/9VwVI7G6mz0eUtz320zqgFK27Iw8jnjjDGcqlLlz5+I973kPzjvvPGiyz5YicZTUNYgnn3wSX//61/Hiiy/af8hp0Hf0gB7MKJmbSjQqWtdAWmUJq8gkhzgyHPTgEWKXxLmPqifO9gYRlTwS9z2Ok6RSK4nso9lSJ+C8LcUOKMnd3AnMOD3tBC9WrFiB6667DqeeemqTW9f5KKmrMy+//DK++c1v4uGHH7b/YBJou3rs5by4krkpRSMTJhpEEg/8erejVACgxJazMOJkv9Z6XHHbEVWmRRIx4rzPcZdfq5XE5LFV5K6N4ZTDWjCG7HFwhhmdfvrpeN/73ocjjjiiya3rXJTU1YmRkRF8+9vfxs9+9jNYlgVN08B3paHv6AEx3WNl1OmfMkwhqWuU0FU0BYkoG5YJqtllg26LhBB7W9jxRe0nRjti11Ga+sjf0ITG40Ula7i217RKB0Q1ySVqJHJt1lPu2rirtRK4znDRP67HT37yE1iWBV3Xcckll+CKK65Ad3d3s5vXcSipSxgxbu7f/u3fMDAwAACg/Wlo23tBJ/TywurUTx06UOgEzUqOqLi71Vveu5qEVl5edmskrvdRKncR+4hVppo63HKX1Fi8KpI5qlqhw0MldVQbJWyZsXbea6yDBY9lTZzy10c6c9zNmDED733ve/GGN7xBjbdLECV1CbJp0yb88z//M5577jkAABnXoG/tUxmtU50OFjqg8VOYVD1BsOx17kxQTX5+3bdI4nkvfWIX1LaoMpVsDyojxC5OEkYcouQwYHtUdm0U1YhhNXLXEhmyHTCtSaVYM/JY8Poe7Ny5EwCwZs0afOhDH8Lq1aub3LLOQEldAgwPD+O2227D//3f/9k3eYtA29EDba8aNzfl6XChA5KbTDbuviIKBG8Ley3jgVIHTIqdV+qcbeL4I/YRWiZuHWHbLSuZJIs4dYTIY+zVOQJ3UcGybZLXRZHINZuU4IU9FzpU7jjhsBaMI3Mcw9jYGCiluPjii3HVVVehp6en2c1ra5TU1QDnHPfeey/+9V//FYODgwAAejADfXsvSEFzF2xOAxXNZQoIXaNIZPmuiDpkwlYpLXE7TSLLs8apW2qVuiRo2FCAWuWuA5YPqxZuWHj1x07EvffeCwCYOXMm3v/+9+O1r31tIp/HqYiSuirZu3cv/umf/skZH0DGdegv9fnXaAWU1E01krwZdYDQ1RoViS0HIeeKaBSgFDwosQAAcVaTCHlIUxq+HeFiRzQtug2MhdchkjXCtlthx1BBkkUttEAGaUOn1VFyVzVsWh7zzu/Grl27AABr167FjTfeiMWLFze5Ze2HkroKMU0Td9xxB7797W/bS3sxQNvZA213d3lXK6BkbipSj5tum4pdEgkUFUV7QsbREUIm56DjXCpWpGw1CckDmtLw7R6kiRaufYS2IUDsorYDkxHHQLFzn1NvG5K+1qaa2Nk7rPH1U1PuOOGwFo9BW1lAoVBAOp3GVVddhbe//e0qkaIClNRVwJYtW/DFL34RmzZtAgCQIQP6S9NUVqtiEiV1AGoflF5V111ItmuZ1AFSsSPeB4dX3KjkfagwaufdR2gbJOIWuV025s8td2EJFkB9rrWpKHb2Tmt8fUSbO1DsAIBnTBx/9VI88cQTAIBjjjkGH/nIR7Bs2bLmNqxNUFIXA9M08f3vfx/f/e53YVkWYBLo23tB92fLV4MAlNBNZep5k20jsat1Comqx2J556Nzb/JKndOwSbnzSZ1AiJtM6tzbAyjLnpXswy12MrGMer27TNA4JEfsgs5tVIJFrUxVsbN3XOPrp57ccXCweRNIn2hhbGwMhmHgyiuvxDvf+U7ouh5dwRRGSV0E27dvxy233IIXXngBAEAPp6G/1AdS9Nxc1Wmc2tT7xtomUlePOcUq2HmgtARKHeCIXaDUAba4BUmd2B4C5zy0/jj7D61DbA+5DrnF4mXn1osmi13TpG6yATW+fgrKXcrCKz6wEn/84x8BAEcddRQ+9rGP4cgjj2xyy1oXJXUBWJaFH//4x/jWt76FQqFgR+e29vnXagWU0CmU1CFayMIeqrGmKgl7KIYIHRAhdUD8cUxR008EJR9Qau8/JEkicnsUNSRwTNbR3mIXJ+u21qSdpk+FMsXkjoODzcmhay3H8PAwDMPA1VdfjUsuuQQ07IvWFEVJnYS9e/fic5/7HJ555hkAAO1PQX9pWvk0JYCSuamCuEnK3u9G3EDbQOiA6qUu9txzASsahC3tVSZz4gEQJD8iszXoc13KTI3cLhMzSkF0vTSPZYC4iXZWK3ZJSB1QP7FrUKQu7hx3tSbvKLlrLNywsPaGo5x11E855RR87GMfw9y5c5vcstZCSZ2H3/72t/jKV75iL0BsEejb1Ni5KY33xuh+35XQlVHNQ7SiyYS9D0GX0AGSpARvdC4qe9UtfbLPt3vKk6jtXjErSZ3TTpm4udtajdglJXVAdWIXNilxg7teK1nVotYknqbK3VQTu9JYO/24AnK5HHp6evChD30Ir3vd65rdtJZBSV2JiYkJ/Mu//At+8YtfAADIsAFj8zSQvMpsndI0U+raSOiAyh+eFa8O4VmiKmit1sCu1qjsVa/0eT/r3ilPora7xcwldU5bveLmbXMlYpek0Dl11rA+apx1Y+tINV8gak3mqUnuVNSuIljGxMrL52Djxo0AgPPOOw833ngjurq6mtyy5qOkDsDmzZtx8803Y8eOHSCEgO7ograjR0XnpjpBN0LOldAFEPfBGVoubO1Sicw5m0WiQNDYuajs1SDpE5/7gMzTwO1C7DxC526vI25BbY4rdvWQOiC+2EmiqIHbGkS13f2VLDVW7WtDdl7j66eO3HHCcdm/vwH/9V//BcYYjjjiCNx8881TPoliSksd5xw/+clP8I1vfAPFYhHIUxibp4EOp2WFG99ARfNo9s2vQ6UuRgXhm0PWZwUQngwRlb0aJn2ch9cd9PrS3wOnGhFiF1Z3HLGrl9QB1S87FjYWskHUkpwTJWi1ZnpH7LzG10+d9WRZbwHTX6fh4MGDSKVS+OAHP4gLL7xwyi4zNmWlbmJiAl/+8pedNefo4TT0LdNATG+3wZQ8PYpm3hDaVOiABKYkCYISZwmtQKJmna8hU45oNHTpLaLr4KYZuj1MziJvw1FiV0+pA8LFrgXmoAujWWIX5/WRqPF2seA6wykfXIFHHnkEAHDOOefgpptumpLdsVNS6nbs2IFPfOIT2LZtG8ABbVsvtL1d5d2tU++0KNw0q+t1qgqdpgWLgxA6IFheDCN0OzFKSQoBYkZ0HeCs+u0pA2BcKnZiW5SYBd6KxTFF3ZMisnrDlhVLZLqTFuyCndx947tiK60jpIIaXz815I6Dw1o0Bhw5AcuycMQRR+Bzn/vclFuJon2fIFXywAMP4Oqrr7aFrkBhPDsT+t7uSaHjXAmdQk4jrosWj3oEUXO3KyCfZ04IHSH2P1m0TQgdIN0uhA6Qd986490CxutFbk8Zvr/5oBHz5CF4NQhXgYh9hEU6g7uAY+0bCJ+4GAj/QkJoU7+wJHJ9hhAVDaw5gl3LuROfnSA65HlHQKDv7gF9ahrmzJmDnTt34pprrsGDDz7Y7KY1lCkTqbMsC//+7/+OH/7whwAAMmTA2DR9cmWIqXEaFHEhIVFblSRRRs0PTF+Cget8U1KeZMC5P2M1Ys1Wt9QB/midN4nBG20L2+4TOk+0Tra9ooidLPpWScTOK3reZcc813KiEbuwhJcm0sjpTmqtT1JBja+fIlE7neHYaxfhqaeeAgBceeWVuPLKK6fEZMVTQurGx8dx8803O5MWaru7oG3vtaNznX/4impo5oTDbSR1iQsdMCkN7iidG7fYGQFRstJ2r9A5VZTETpaV6u5mjdwui9K5xC5oe2yxC+pSjSt2AckbYWvFJiZ2Yddxi4hdvScoTrpeVwU1vr7z5Y4Tjjd95UzceeedAIAzzjgDf//3f4/u7u4mt6y+dLzU7d27Fx/5yEfs7lYG6C9Og3Yoq2ROEU7YklCNuuG1uNzVRejc9cuEzk3Et+7ITNlaz28txx9H7KKSI2rKaI2WgshHQ7PFpEYasaRYveouVVDj6ztf7ADAmjMBetwECoUClixZgi9+8YtYtGhRs5tVN1r7qVEjzzzzDK655pqy8XNK6BSxaPY1MtWFTtdDHyqBC9vDjj6RdCp8/4QCYWPhaEQdlIBkMuH7oGHTq8QYYxcQZXSIyvaNEuIoKY4cw1ff6WvqTSLruIbAGa//WLtaiHp/44wvb/Z9MgbawSz4472YM2cOduzYgWuvvRYbNmxodrPqRms/OWrgnnvuwQ033IDBwUGQUR2pp2eBjkbc6BWKMKIGHCe2n9b+WNZb6GK3I+y9IBSQdZ2KbVFCl4oQumw2vHFC6KoVu9I5DhI7omnhEy07BWtIrkBni50QrnqKXZz6myp2cYiSuzZILqSjBobuBlavXo2hoSHccMMNuP/++5vdrLrQcd2vnHP84Ac/wK233goAoIfS0F+cBsLc6fUddciKRqC6XAEklEUYJ0oXtt3zet/A/7Rr8nDOAHfig0zoCsXJn71Cxzl4vlC+3S10nIPncv5GumWORc0xJ+mK9a4vWvQkb7jOgXTJsbDl7aRtqHGeuyTEqMlLiSW+pquEunXJVnvuKn0Wyu6DjU4kqwFOGdbddBQeeughAMA111yDyy67rKMmKu4oqbMsC1/72tecgZFlCRGCzjlcRaNQQgegNYUOQPmg/7RsNZiS2IVF6ITYyaJ0brGTRem8YieLzoWJnVfqAs6zELvAc+CuI87D19eOqSV2UevD1iuCV9exdtWcv2qeiWGzA3i3txgcHG/+/87CHXfcAQB485vfjL/5m7+BllAPQrPpGKnL5/P43Oc+hwceeAAAoG3thb5XkuXSGYeraBSquxVA6wqdwFn3tRapowTEMAKFiBeLwd2uQuzCulvjil3YRLZFM/A8OGJXy5xkSaxM0ewEgNi7CR/vVs9u2Tifp4bJXS3PxLCEMrG9RTEXjIGvHANjDK95zWvw8Y9/HKmwYRdtQkdI3djYGD760Y/iz3/+c3mGq4z2P1xFI1HTlwBIYNxPyOsjx4ZRak8NUgxehguUAEbEDTniGEjYmElKgXSqvKvWC+fgYduBaLGLehjHeNDXnDU7RcSu3mPp4tASUbt6PxNbWOysWTmQ48dQLBaxbt06fPazn0U2arxsi9MeT5QQRkZGcOONN9pCZxIYz89QQqeonUYkRUQJHWfRN+YaH35xMvAihS5qJYEooTOMmtZlhaaFJy5QAtKdBclIonhOMymQjchmjYKQ0NUliEbtSGAQlAQndwhidBGFRTTtArUnT3RyAkUjqatYipUoos5lrfe5Nl6xQjucAZ7qQTabxeOPP44bb7wRw8PDzW5WTbT1J2dwcBA33HADNm7cCBQJjA0zQYeCb9wKRSxaocs1jqyJMlWKXZzoW2yhkx1PhNA5xYQkyGSCUntqEUIAWSaoptmyRimILpEZSkCyGYglxmRiJ4SOaxSQiR+l4Nk0OCXhWbNRlB5+gWJHSHTWLtASYmdX0QCxq6Pc1XvpsLhETX2SCFHnMokvsY2aHSBh6FAa5iNZ9Pb24rnnnsP73/9+HD58uNnNqpq2lbrDhw/jAx/4AF588UV7DroNM0HHarjhKhRAawqdTNoSiNCF/R70N0+B4N9jCJ0TpQtCCN3kC8rFziV0TnmZ2LnfU+I97pLQldrqE7uS0AkixS4gWlc2EbJM7ITQ2Y1qi4idXUWdxQ6ou9i1ktzVnXpE7doo+zUIOppC7vcpzJo1C9u2bcMNN9zQtmLXllJ34MABfOADH8D27duBfEnoxpXQKWqkFYUubpkKJC/RCF3QtphC55aCsmidV+iC8IqHW+xElK58x060zit0calU7IhG/deWV+xkguwWO9n5VmKXGFNO7FTUzgcdNzDya4K5c+fi5Zdfxg033ID+/v5mN6ti2k7q+vv78Td/8zfYuXMnkKNIPTsTdCLiWy3Q0v36ihag1YWuxq7WySaEjG8TE97WKnRRbZAInXsb0bRgoRPROhGlC8Ld7erbNtkNKxM6J1rnidKVlalE7KKuraDtKmLn2cnUEbuWidolIXdtBMnrGPwlw5w5c/Dyyy/jgx/8YNuJXVtlvw4NDeEDH/iAvexXjiK1YRZIPsbcMu1ziIpG0ypz0NWa7RdHphr1YI1IjAhdrUEQJkyaBtLdBbgnBS7bPwXv6wYZl0wKXIJrFLwnCzI6EdRQ8GwKZDwfWAdhPDwbFrAFNBdcBzgHt2K892ZI5i8QuY4skNBasiGZsZ2SFWvvpj2eGZFTr3CWUO/A1FgnVsAzJqadT3Dw4EEsW7YM//zP/4yZM2c2u1mxaJtI3ejoKG666SZb6PIUqedmxhM6hSKIRt6Imrx4edsIHS3NNRe0L00DeiXzT3rgGgHvkmezco2CTe8GjxGh4l0B0UBCwNMGeHdI1m2qNOddWERR10MzZkFJ62TFAqFRu1iz8ovjaWHaRegEkZ/tOFn0kTtpv+7UWiA5HUO/4pgzZw62b9+Om266CSMjI81uVizaQurGx8fx4Q9/GJs2bQKKFMZzM0FyMbpcFYogWu0GVUvXUsRr20ro3HPNefcphI4Qu/tT1kVLKdi0HgBysRNCZ9dHwHq7ZI0F78449fnEjhDANW4vSB7LysvETkhWxFQoYj8dI3ZAy4tduxEr4SOJL5atdt+sIySnY/BXHDNnzsSWLVvw0Y9+FPl8SNS9RWh5qTNNE//wD/+ADRs22PPQbZgRbwydQhFEs25M9YjWdarQeXEJXalSv9gJoavkruYVO7fQueoNjNgBgEb9ETuvpEVF7GRi5z2nU13smhztbjWqylhXUbuKoDkdI/cRdHd345lnnsEnP/lJmFFDIZpMS0sd5xz/+I//iMceewywCIznZqgsV0X1tPrNqJJoXYw5vFpB6GIRJnRl06T4M0gdsQsQOne0rixK50aIHSGh3a3O/wHz4TliF2cuO5lYucUu6JxOdbFTRBLrc59E4pX7M9HB0DEDhUfSSKVSePjhh/GlL30JLGLVlWbS0lL3ne98B7/4xS8ADuibpoGOtv+6bIom0So3nkS6QNojKQKIEaWLsbwX0fXgcXSEgOtaaISOawSsNysXOoFGwPqyIZmopQieTOgEbrELqAOZdLh0qa7YptJu4+mCUN2xyUKHU2BPd0HTNPzqV7/Cbbfd1uwmBdKyUnfXXXfhu9/9LgBAf6kP2kANS/hMkQtPEUA7vf8JTNuQiNBpWvTDtlah0zSQ7m75hMGiDl0DmzsDPKzrUqMwZwXLFDc0jC3vQ25eSBmdohBWh0Zg9mVgzpCMwXMaS8C60mC94WLHMxFfTsNWnRBEiR0ljRG7JCIWcUWqk5YOS0CoYk190knnrMlo/RmQjfZ43e9///v45S9/2eQWyWnJd/zxxx/HV77yFQCAtrMb2n7JjZTzyX8KRRCtKHQ1dXk0oMs1DkkIXVdJfgJWgiApA2zOdPs9DDpsXUN+QR+YTmHO8MsUNzSMH9ENTgmsFJWKHdcp8jPTYAZBfm6ItFGAGxTmTEnEjxCwtC1inNJAseMatcfoRYkdEE/sorY3KmInoS6zZdVRUhoWpXN3fdZyLyi9PqzdhJJYQzVCKlBi6EI7mMUVV1wBAPjyl79srznfYrTcPHW7d+/G1VdfjZGREdADGegvTgOB56ZSzbIkrXWYikbQikInqGbuqEYJnfch731o1Cp0pX04Uufsh4Gb9lxqJGWAzeorfw8tDuKem64kdO7bAzUZ9AF77jlH6DzXgVZgyOwvlSkJXVkdRY70gXHnd64RWF2pMrEkJofePyYO2BE6ZzvnoMPjZX/j3pUlGAPJBcy1535dMWQuPMb9c9h53x/G6zOPXUSUrq7z1tUhaaLhUuemUnHy1kFo5OefM175efO2SyWrgIPjjL8/Bvfffz/6+vrwb//2b1i8eHGzm+XQUgo+Pj6Oj33sYxgZGQEZMaBv8Qidiswp4tDqCRFA7TdX3+Y6CR1QLgn1Ejp3HbrmFzoA0Ai4yHaVCB2A8ogdIdK56MTfZEIHoCxiJxM6+7UktCuWE1IWrfMJnWhfrRE7bzes7P1pQsSu7rGCTose1SpLpYhdrKhdLXTaea8CAoKHbnkea9aswfDwMD7ykY9gdHS02c1yaJl3iHOOW265xZ5cuEBhvDAdhBOxUcmcIh6tLnNxEd0ejcpyBcIf/DEmja1Z6ErLdzldrtLXE7CerFToBJwQO0q3SC5dzCCT3bABdTCDIDe/Wyp0zn5KXbHeKJ2z3d0NKzue0pePxMUuqExSYkdIY8fSBbYlucdXU6N07m2t3h1rVzLl5Y4wgq3/dRhz5szBjh078PnPf77+X2Ri0jLvzH/913/h97//PcAAY+N0kEKCq0W0yMlW1Jl2E7o4N/hGdXfUeJOOLXTdIWPWAECjYF3B9bC0jqE1vZiYEyw5ZreG/adNk67rKih2URw8KTgblukEowt1DC8LTtDihKDQFz7ujesU1oyQrNu4YheVPBG1Fq0ok4TYAZH1xF5dokVo2FjUOJ+zOJ/5sHo4C+1KdzJja21LzC+dnQopahi8l8EwDDz44IP40Y9+1OwmAWgRqXvyySfx7W9/G4Cd6aqmLqkz7dA9WSntejyym2aFIldzlEHclKusp2KhC3qvDB3FBTPAKQHL+gWFpXUMH9kNriEwwmZlKAaOMmBlgNFFcvFgBsHoQg1WlmB4SXCEi1PASgPDS/xixwlBsUcH1wny8wJElcJOitAoWG/0qhO1iB0hxBapRkXsACV21e+oujG1snrCqrCs6HGSDWpLp0JHDbz//e8HAPz7v/97SyRONP2dGBgYwGc+8xlwzkH3Z6EdiPgmr6gN9422XUXIS6ccB1C15FUtds2K0Hnfs5LQBckaAHseuJJHMA2YmF0uOELohPRZKb/YMYNgdAF17nxWxi92TCcYnz35Oh50ishknT6xE0InRpAEiZ27FyFI7Dyf2bCIXSuKXaTcVStTdYhiN0zs7J2Fb48TqY/x+ZWJne9+0aC2dCJfe9v3ce6558KyLHzqU5/C4cOHm9qepr4LjDHccsstOHz4MMi4Bn1rXzOb0/l0kvwAnRNxjDO7e6OWGKtADhPrcpUInTdax9I6hpe7l/MCmD4pdmVC5yrjFjuv0AncYucInTtJ1SiP1okonRuZ2HHPpekTO9mwEK/YBYzFc4udV5paTeycNkW1p0WINXFvcjuLLhNHpmJE7VqlLZ0GAcHvbn4ay5cvR39/Pz73uc81dcWJpp79//mf/8Gjjz4KMAJ903QQVu03tqgJGFvnhtEUOkV+3HTa8SQ0GWlsWmEMHSGhETohdmXdrmWvnxQ7Toh/e6mMlQKGl2pSoSvbl0ToBKIb1hE6SRlH7EpROul+KumKDbvGS2IXJEttK3ZxZaoBY03bSuxi1KO6Y+sHYRS77hxBOp3Gn/70J9x5551Na0vTzvzmzZtx6623AgD0rb3Ba7rGSXKIulmoRAlFu5PU0mAJfJMmJIYMxInQpQwUFs8M7XI1uwwcPqFHLmwAQIBCL8Hus0OOiZS6UEOKmF3AvlfKhc4pkwUOnZAJLcMMgokF3b4onRuuUXtJsjBijrELEzcS58tcbIlS99C60kCZivXlL6m2TCG5oxM6rrvuOgDArbfeas/k0Yx2NGOnxWIRn//852FZFujhNOj+iBtcGGE3LTUVSjDq3LQPcYUu6iaa0FquQugCv/ULoQuTipSBwqIZ4DoFN+TtsjI6Bo9KwUoRFLvl9ZhZgv4TGVhI4qeVAkbWFDGyMiRKQQCzi2NopXwzp0BhOoGVAQZXBIsUMwhYiiA3N/yexikBmxYgveK8xZzuJDIil1RUO+x+EWdy46QmI+7kCXBr/fyKchHZsQ2Ntk0hsfv623+A0047DYVCAZ/97GdRKERPLp40TTnb3/ve9/DSSy8BRQL9pT7/ihFxiPoWqoRlEu+56IRz0wnHEIdKhC7sNQkLncAndm6hm3xheRkhdFrw/oTQsZAyZpag/wQGrnNwg2Fskf9BZaWA8RVFQOfgGQsjR/rlgxnA+AL7tVY2QOyIPUaOE4Clw8UOQPViV+kExaK8ROy4e6WJoHtl0ZT/PaieZn/uGih0DZu7zkujZCpu8kO195NayrcpBARP/etWTJs2DS+++CK+853vNLwNDT/TL774Ir73ve8BAPStfSDFKmYxV9G56lHnpn2oRuhkr62T0PmQCZ0XidDZkwVPtlEmdEwrj9a5hc5uIMAy5WLnCJ02WYZny8VOCJ07w9UrdpwChWnu9srFjhnlx11zxE5Qhdhx79Jh7nKCSoXO+aPnHtLIKN1UwfuZrWXt1igaFbWbIt2xpKhh7BH7s/ajH/0IL774YkP339AzbJomvvCFL9jdrofSoIciBgx7UdG56ulE2e2043FTi9BVWE+tQsctK1roCAmN0AmxC4vQCbHzCZ2zj0mx8wmdq4wQO5nQCYTYCaHzZbJ6xM4rdE6bKxG7iMSIuGIXKlCVLPUlEzpnY2kfHdrt2rQonZukJCjp8XpqqbFItP4Mzj77bFiWhS9/+cuw4mQfJ0RDz+5PfvIT21qLxI7Sxe12jTPgt5Mf8Ao5nZYBK2ghobPLRCxTpmkgmXT4+2HoKC6YHtrlWuzWcfDkdGiXa6GPYOScMb/QOY0B2DQT09fv8wudqwz6ikiddSh4DjoAVg9D/zozsAwngJUB+lfH6IqdF0PsuqOzYqGHREtL559EvF8AYkXpIunQe25LCJ2bVuuOjYOa0w4Pf/k5dHd344UXXsDPfvazhu23YWf20KFDk6tGbO+N7nYFJqNLYVGmToxAKaJJUugaeQ0lkcyA0oMn6sYZtT2G0DnTWQScH+LOcg2am0kIHQGIJa/H7NJw+DgDVgowe+TVmD0ATh9EdzaPrrlj8kIphqNX7MGc7BiWLj4kLUINC8sXHsLsrnHMXhkwUajGQWcUoHUXMXZU8GBnZthiN3hkSCSTAFaE2BHG7XVtw8SOsXCx49yJnIUuKQYARkRyBQASlYABRAo/gGRWlkgoShe16H3Hk1R3bBySqKeNn+2koOGaa64BYK82ceDAgYbst2FSd+utt2J8fBxkxAA9ECPbNc6b2cZvuKIGkhY62c/1IIlkBhehYhc1oXElQufUyX3by6YtYcwvdi6hE3V4xU4IHXOtFuEVO7MH4K8cQko3QQhH2jD9YlcSuhS1xaYvnfOJHTUsLFtwGAa1QAjHjMyEX+xKQkcIBwGgdZlSsXNn3FppYHCFX7bc3bZBYkfckhEkdoxNlpOJnUvonHplYud+D2sVO/E5rLfYJSh0sp+DynQs9RY792uj7k+h9fDy/9uQr73t+zj22GMxMTGBb3zjGw3ZZ0Ok7plnnsGvf/1rgCO62zVO1ERF56YmSU6i3GrRuaS6I+J0oTRw9n5O/ePRfBA4Que8TjKGLW0UJ19COCj1j5cTQgcAFByG5h/LYrjKECIpQ+y/u34FkYzf8xI4l16FZWR3ZeJb1ineexgrYhchd0TX/XIn9u8Wu6hu+rhLhjXo+pzSUbu44+wSibYlUE+bPu8JCDbfvg+EENx3333YsGFD3fdZd6ljjOFf/uVf7J3tz4KOhtxklMwpgqhXdK6SbdVQZ5kri9bF+VYc84EZuIpA6fz4onQCd7TO0GHOmyatQ0TrzC4Nh4/x3xM4Bcxu+2ezB8BpQ74yhmYhO2fc/iXFcPTyPb4yWb3oROtElM5Lj1GYjNZpHHS6PypHU1ZZtI5JPIgZ5dE6mcwyrTxa55M1ACCeaF1Qt7bu6hoPGYjtiF3YtV1L1M79ZSvpqF0donRB26ak4CUdtYuz1GElUTrv39rw+U/HDVxwwQUAgK9//evxEodq2V9dawdw//3328kRJoH+cq+8UJu+WYo2pA2vs1grRcS5UdYqdE49NHy1CMYAjZZ3u3rhHFZGw+FjDakgAaUlwObZ3a7uKJ3TTsKRSRUxc/FgWbdrWVPB0ZfOYfWyvU63q6yeGZkJLFh9wOl29ZVBqRt2VSF8ouOMLXZh0UnRDSsVOoHohnV3u/obbotdnMy6OEt9xVqRJCRa3saJS1NS6ARqnF3d+c0nH0M2m8Vzzz2H++67r677qqvUmaaJb33rWwAAbXc3iCnZXRu+QYoG04gZ8ZPeV0IIoQsSu9hLg8UVOkKCI0N2AZBMJvxcpgxYs/tArOB6zB4DB062EyOCy3AsOmMXFk3zR+kEPekC/nL5n3DmrJcCy/QZOfy/RY/g4gVPB5ZJ6ybWz9uC16zcHFiGEo6+WWMoHjMe3GgALAUMLwuWKMIBcCA/KzzblXAO3pUOLQPOgVREFyvn0WvBCjEMuU5iLQqfNAkNS2jYOq7tShKZ9KJcnN6JyP111vRlpKjhsssuA2DnF9RzpYm6St3dd9+N3bt3AwUKbY/km32bvTGKJtDuQlfDN9OoB1FdhE4gEztCQLq6AErsLgTZOU0ZsOZMA6cEYBzU9NdT7LWFjmuAsy6rB7OHY/Fpu9FtFGBoFmZ3+UWqO1XEWxc/hR4th5n6KE6dsd1XpsfI4w2znkWGFDHPGMQb5/nHtKQ0CydM2400NbEwM4izj/RPFkoIRzZbACUcPd25QLEjpcO10nKxIxygBW4Lm04CxY6I80YIWE+A/LHJMpFiB0SLnaBaAeI8/AuBU6zCeeuU2DWGJMf2xqknVpnOWWjge1fdhdmzZ2Pfvn34xS9+Ubf91E3q8vk8/vM//xMAoO3qBmGuXbXZm6FoEu0udM7+Kxc72QPI/be6Cp28gCN0At/D2S10Ao/YFXsNHDzJKE8Y8IidW+gAO0LmFTshdF10soxX7NxCBwAauE/shNAZxI5CUXCf2LmFzqlbInbE8zZ7xc4tdIIwsSvtPFzs3OVkYufNWJaJnSwC57luIqN09RI6gRK7xlGv1SyqzfjvkDlqCSP4y7/8SwDA7bffjmLRP6QkCeomdXfddRcOHToE5Ci0fa4oXZu8AYomknSWa5z91ZsKxC7swUMoaZzQuSJBXqFzEOdXJnQepELnNML+zyt0ArfYeYXOXUaIXZdeKBM6gVvsvELn1OMSO5nQCcIidgK/2Pnr8Yod8UY3ZWIXEEktE7uguQXdYhcma6X3sulCJ1Bi1zgaHbGbIt2x37z0R5g1axYOHDiAX/7yl3XZR12kzjRN/Pd//zcAQN/dAxI5p4FCUSKOYMWdw7BVhK4CGv3AqSZC54ZzDmhauNAxDpbWgoWuRHGaXOgElHBMS09Ihc5dZmFqANcuuN8ndAINHAuNAbxrwcM+oXPqKYndOSs3SYVOIMTOG6VzY6WB4aUaaCEkA7Mkdj6hEwix68pEjnlEyoi89kmSX5ySqidOsoISu8aR5DJlSZVr8+5Ywokztu7222+HGbYUX5XURep+97vfYd++fUCRxJtoWKEAkhG6Sj/YjZyrLrJIzAhc3EHNMR6SodETSkFSqdAoI9F18N4ukELwzcnqNnD4mDRoSG9DsYdj6bpd6DXygWWmp8bxwYW/wSnZ7YFlMqSA49O70E3CByJrhGGWNoqTu4LrouBYnj2Ic47YFFpXJltA7piJ4AIcAAGGl4aMZ+MALXKY08ITIwjn4NmI5AnGI8fOcZHEEmOMXWQ2NOe1T2USN/u0AVOcTAnE3HENXE+3ovVlO5hbL/sfzJw5E/v27cNvfvObxOtP/AxyzvGDH/wAAKDt7QZhng9yi0VGFC1CpUIXNI9RK5Kk0EXVmdRNkVKQdNqO0AXMg0Z0Hbyv247mWRw057c2q9vAoeMy4DpALUDL+XdV7OFYtm4XuvXS+Dj438fpqXFcM+8BdJMi+kgea9L+OekypIBj03tgEAaDMBxhyJcA0wjDdGp3m/bRXKDYdWl5aOCYmxoOFDuzNFa4qzsvFzsOaCW/tNLA0DLZuDdAy9sPPKZRudhxbkfxOAcIiRa7qKQI9wM2qJxLfKLmLQRQvdg1WOgUHup9XuOsMOEm7B4WdY8nJNmEjzpAGMEll1wCALjjjjsSn7cu8SN/8skn7XnpLAJtb8hcVgqFoNoIXVJLfNVTBushdEF/k5WpJlrnFrqg5riErlSJT+zcQudU7RE7r9A55Vxi5xY6QZDYGa5+0AyxsEgfKNvuFjpBStIFK4QOQKDYWZ5hJT6xcwkdAIBIxE4InestCBO7yboCxM49jUyA2HHZVDPecpLrJmrZOADJTT5cR1SUTvL+t2LErlYxa2G5+867f4p0Oo0XX3wRTz8dPNVSNSR+xD/96U/tig9k5fPSASpap5ik1i7XpMZR1EPs6il03m1hZSoRuyChcy8W7xU6VxkhdjKhEwixCxI6pxy4VOgEbrETUTovXbToiJ1M6OzXFsuidW6hE3jFzuIEXDJW2BE7r9AJ3GInETpBmdiJKJ2vLo/YyWTNI3bcCulyE+VCrhdH7CK67aNwxE51u7YO9RC7sFVuKo3axY3ShdXRIhCT4rzzzgNgR+sSrZsnGPs7dOgQLrnkEliWBeOpWaDjNSwJpuh8kkqKSIokv2w0QugEnMUrFzXvHSEg2Wx4hM4wwGf0hZ4rc1oWB9Z2S4VOUOwBZpyxD3OyY4Fl5mRGccO8e1GUTWTnogAKDbwsSufbH6cYYeHTggyzDDblF/iEzo0FggOFPvzq5aMDy3BOMDaQRe/zITMrc1tsZ74QPIYQAGiRwegfD/8cWAxkXNKvXd4o8Hwh+kFqsVgrVPA4A7zjZMSGTFA9WSg52ZjyUtfIcW1x37c4+2MxJr4OkrpK29MgWLaI4imHQSnFHXfcgdmzZydSb6IK+4tf/AKWZYEMG+FCp5jaxM2862ChA2I+YKJuRAndqAghgGFETHGhAekUSD4444F1pzG0sgt6LvjYij1AzysPIqOHiwElDNOohWkhGRaUcPSSIrpIcF1FTrHP6sMYD5GsEkcY/aHbDWKhSxqC85TrKmLkmOByhANakWN0UXCbCOcgjMPqjV5VgqcjvkBbFogW83YfIf+8NK4vtIxlRY4V4pxXP9FxFUx5oQPif0lste5YGmOZu6i6WixiRycMHH/88WCM4Ve/+lVy9SZVEeccd999NwCUz0unULiJK08dLnSCmsSu0gHIAftyhA6lB21RIkhUA+nK2OeKMZCcX1hYdxoDa3rAdICYgDHq358Quu5UAYwTjJlyqZmTGcUNc38LADAIpGJHCYeByeN2/+zsryR0FqewOA0Uu+FSFC9Di1hoDEjL0FIkcJo2gfOXbpSW4ZygUNAAwgPFjrDSueGAlYJU7AjnIEV7f1yjsPoCooymNZk8ESZ2gJ3QErpUmJiXMHiOQ+6eky7gc+Oe1y5I7Mr+HiV2CYyNUkLnIu75rEXsKn1tXLELkzsxFCfO/bJF2PiTlwEAv/zlLxNLmEhM6p577jns3bsXsAjo4YjZzwE1rm4qEjc6N0WETlCV2CU02NktdE41XrFzC53AI3ZuoXPq9oidW+gEJqM+sZuVHsON836DXjp5PJrnbfIKncD9N7fQCWRiN+zqlqVgoWJn75thQWrIJ3acExSLroeOELujJ4/XLXT2H/xiJ4TOPT2eVOyE0DkvlIidN3M5SOy83aASsSsTOld9ZWUkkd5YD6ukhiJIUEIXQL3FrlLiRgijonYysWtBoQMAejiDbDaLnTt3YsMG/xKGVdWZSC0Afvtb+1s1PZz2T2OiULRadyvQEkJXEeLGFHaDirp5uaepkAidD5nQOXXZYicTOmcfJbGTCZ3ALXaz0mO4af49ZUIH2DcqEa0LEjqBASYVOoFb7IYl4+xkYkc94/W8YieEzncJEw6j2xY7n9A5ZSbFTiZ0Ap/YyT4vbrELmIoGhIAYxqTcBY1rc4mdVOhc9UXhFrtAyauj2CkCqIfY1SpQ9RK7FoRYFOvXrwcw6VC1ksgnxDRN3HfffXaFhyqYbFhF66YGcdbua1ehSyhtPnY0IYkbldhXiNDZD3EeLHSinKEjNzcjFTqBmSUwjxmTCp1ThlGkNFMqdAKDADO1YqjQAcA41/Hw+FFSoRPkWAqPTywP3C7EbnHqsE/onDIlsTtvyQtyoRMQDq3LxPgCidA5ZQBmAPnphlToBI7YmSFjH4XYRSU8xPwMhAqdu66IMpzz6KgdJSoxotEkKXZJvXdJil2Ly929//QoAHvRBhYjuSiKRKTu2WefxcDAgL2CxGD0YGQHlQE7NYiakqTRJCl0rUbMLFiiaaEPYUIIoFEgHyxiPJ1Cbun00PVeAYATgFCOgyM9gWVmZcbwd4t+iUxIBisDMMbCj2+c67hv7GjkwlJvYWexjloZbMwtCi2XYwZ6aXhmaZqaOH3ptsDtjFFYgykwPfpaZzqQmxOWNctB8hZ4JjzCSopm9KoSYkHxOBGyqGlK4q7rGiVZQkQTeBAroYtJo4UtLkmJXYtDB1Po6enB4cOHE+mCTeSp9PDDD9uV9afjrfPaBmu0KRKmVVaAaGGhq/khVInQAQhaiJ2I9UMJtaecyPmn3RBCxzQCYnJkB+RRoWIPwehae0LeYlGTit2szBg+uvgXmE4LYACKsnnbEF/oikxHkenYWpgrLZfjBjZO2DI3zlJSsWOgGGN21qlBTKnYMU7Rb3YDAOamR3DGMr/YCaEjjIAbHENHydtOGGCM2QduGUQudpyDTpggpWW5eFYuf6RQnJSnGMuAgRC52HFWPuVIkNi5rqPAiYXd13YtUemYYtGyQtdqkaNqulYbmYiQZAJFi0I4wRlnnAEAeOCBB2quL5En0x//+Ee7soEYCRItfHIVdSapFSCqpYWFTlD1w6hSoXN2WC52bqFzinjEzi10TtV5v9gVewhGTp2Anpr8O/OMt3ULnVMG5WIXV+h+N7YGRVc/8LiV9oldjhvYnFsAhsl2eMVOCJ17xQiv2AmhY6UyGlig2DljjAlgdTGf2AmhI6733id2bqETSMSuTOgEslUlip5sYq/YeYXOtc/yivxfDHxiJ7umZX+TdRdXmuGNFhc62c/tSCMTEZJMoGhRfvvPdhfso48+WnNdNT+ddu7ciR07dgAM0V2vLXxSFQ1ECV0oFT+UqhU6Z4f2g1kmdE6RktjJhM7ZhUvsZEIHAJZFnWidTOgEQuwqEboc83dJusVOCF2R+8+DEDuZ0AmE2HmFTuAVOxGlK8MjdjKhEzhiJxM6gUvspEIncK8q4RU6p23EGdMWOimwELuQsXaxlgJztzVs/F8F0a22ELqwvzWSpBIaGnUcHSx2dCgFTdOwc+dO7NnjXxmnorpqbcwTTzwBACDDKRCrBccYKVqLdha6VqRWoXMTIHST+yJgPWmp0Dm7ynNQExhel/MJnaBY1JAzdXx48S+lQidgAOJMYW6BSIVOMG6lsTG3KFDonHZxLVDoBAYx0UXzPqETCLFbe8ROp9vVR0nshlcGC52AaQQsrcmFTiDELkpoNC1Y6Mp2GmeKnejkCUJIdF0sIEN3qtAssUtqZQk1zi4RiEVx7LHHAgAef/zxmuqq2cKeeuopu6KhGAkSnfxwVbQmbXjNxVo+zC4Yv9KwBzAhIIYeerMjugY2azqIyZA+HJw4UOyhGFwNYDBYsnq6cvjgivuQ4+HK1kUAjZDAbFgAGGJp3Dm4DoeL3cFlrCz+b/fxuP/AquB2Mw3bxmfj0ZEVoW0qch0GsbAoHTyPHeMEJqc44siDwRUxAm2CYGRJ8HtIOGCMWmAaQXFGyNAWzkHyJngm4h5smkCY3LvX94363DR4CTDOeGQUrmWjdK1I3HtHAj0TRNPifalMCs7a8r5/6qmnAmiy1HHO8fTTT9sVDVeQ9apQtCsJfDMllASKW+JCFzXPmBA6QkvZif6oiRA6MQMwzZtSsSv2UBw6kYIZgJajKB7wT2/U05XDjat+i+naOHLMwG5LnhErhA4Agh4HQyyNnw69AhOWgSLXpGI3ZGXxh/0rUDB1DOcy+MPBI/3tZhr25/vs9WHNDP40GjzViSBDilKxK3INOydmgHGC2dlRLD7qgP/FFkG6n4IwwEoDw8v8R0g4YIxYIJYtKkwjKE6XiB3nILkinFUlgsSuWJycTkT2gBVC553HUEactWHrtKZrkLi1vNC1aqZ8ULvcf6+h7W6ZS0TuotrivqbaTOz+8wM/AQBs2LChptUlarrSdu7cif7+foABZCTmWq9tdqIVbUy9rrUaxM4tbV6Bq5fQCXxi5xY6gUfsvELn/N3zEHULnb0zQJsoFzshdLO0UXtXoFKxcwsdII/WuYXOaYNH7NxCJ/CKnVvoAMDiJFDsip5pUrxiJ4TOLI0BpIT7xc4ldADsrliZ2HE4Qidgukfs3EInkImdW+gEsoerRIx8YmdZ0fPRJSx0XmGL+r1lkX1uW0H2vG2oczurFrtq2iBbZ7xFHYSMGdB1Hf39/fbqXFVS0zv1wgsv2I0ZNeJNZSJo0ZOq6CDqfY1VsySXRNrE3+otdAJH7GRCJyiJXZDQAQApWk60zid0zs4mxc4rdM6uPGLnFTpByiV2MqETCLGTCZ1AiJ1X6AQysfMKnUCInVfoBGVi5xU6gUfsRLerDEfsZELn1OcSO5nQCdxT24RE3xyxS0roKiAqMtc2QidIKAKWOKItoWNqK2tvmLxVLHa1ju8T13ALuwdhBKtW2UNEapmvrqaravPmzXYlozGjdG5a+OQq2hTxrawFr60waYstdHGJO5lsRFIE0imp0DlV5E1oBYZDJ0iETsABUGDtvJ0+oRMwUGhgWKynpUInSBECBhIodIL9+T7cufEkqdAJ+se68JMXT/QJncAtdkFCJzCIhRn6uE/oBJRw9KVzwIyCX+gEJbEbWaKVdbvK4BoBpzR6wHecFRw0zdftKqVYTE7oYnwh6ugxdK0kc27itCvJtjdwXJ9dT+s9F7yIZImNGzdGlAwmEakjYzEmuFQo6kmjP7BJ35jj1hcnQhjysLNXioj4lkwJSMaOBtGRicBiVlcKw0tSyBwOPvdWD8MpJ7wExil+P7JaWqaXTuDUNEeaGJhBgxMCDlsEdwy9IlCeAKC/0I2HX1wBa8zA4X75eL2CqWFooBv50TQeeXlZcNs5wWAxi6dGlwaWAYA8M9Cl5XF8n3wqggLTse3wTBhpE7kj/RM5CwgDUkMcE3OC76eEA8ZwAdAIeFc6tF0AJtd3DWx8cHsEvBCcoVwxMYWubYkz/UqjpwJJkkq6zeNkNSeZYZvEPTmhZR+r5ae3/BoAsHXr1qrrqLr1nHNs2bIFgN39WhVtYM6KNqANhC70QRWn66O8sugyQeOjNG1ynjHZTZcSkGzWPqel6SZkYmd1pTC4qgtcB/Rxjq69/vfA6mY46fitmGbkwDjBOAtOpjKI5vwvE7vDFsH/DK3FqJUGJRwG8bddCB0v2HVxK2TNWosAHCiOp/DojmXSMoxTME4xbKYDxW68tOqEBo4MlU8XwjiBZVEQwmFki1KxIxaQPcjt5AmDYHye/57qCF0p+sZ1Khc7zkFyJREjJFjs3EIX1F0fU+iSGkfX9kIn+zmoTFi5VqSaxJYAsSt7n1tF7Fqga5yM2Z/7rVu3Vp0sUXXLBwYGMDo6ag/onaghUqfETlELbSB0AukDK84gZXll0WW8mYxuoUNpfJ33puvtvpaInRA64WiE+8XO6mY46YStmJGafN2YmfZF60SUzo1X7NxCJ/CKnVfoAAAm9UXrCqaGkcGuyT9woDDmFzvm6pYNEjshdII0LfqidSJKJ5CJnSN04nAIYKXKxc4rdE7zvd3jQug8yRM+sZNF6LyJNUro4hNncuFGLq+VNDW00St2se6DtbShqoSK1khiIRM6KKUYGhrC4cOHq6qj6lbv3LnT/iGvVZYkIUOJnaIa2kjoBLG+oSYsdjKhc6pwi53odpXUIcTOK3ROk11iJxM6uxqCg4VeR+x66QTWpi0nSudGiJ1M6ARC7KRCJ44vrzliJ4TOF8HziB2TjLPzip1X6AA7WjdNH3fErsB0vHRoFizPpOxC7CZW5P1C5xSaFLsgoStVNhmtkwmdq5wjdmFdrmIKnAYLXVsTdnxxj72Vz1ECbRNiF6vHIqotSU2cHKdsg7tjCSNYsGABAGDXrl1V1VF1a8UOyUQDJxVUKARtKHSx60vyBk+Dhc7ZHecAZ5PdrjIYB6cEZq/hEzoBKd2v6cy8T+gmq7HF7k/jy7E2bSFNgodu5HkRzxYWSIVOMFjswh9fWi4VOgHPazh0sFcudE4hoDBu4LGdwePnGKcYs1LYUZgVWEaI3aqeA1KhExDCoactmF0SoXMK2dmuXCOhSRGiGzZQ6NyYZvj2Ckh6cuG2JM7xVbDMWdsS4/4Y6z1O8gttqyakRCCkrtppTao+arE+GckpqVM0mE6I7CZ1kw+rh7qiM1ErABAKng+OzvC0geL8aQgLyhe7CIaPLoIVKR7ZHSxH041xvGPaE8jxYMEYZwX8ITcNGjjWZOU3t/5CNx7YchRYQZs0ShkWQWpXCvq+kAnSS73OhQkDf9p1hLSIQS3MNMaQYwb2F/sCq7KjelkcPXd/cJNMDWxfBswARpaGX89MIyhMD0mK4BxkLAfo4atFcBGhC0uUYRy8UIgcz6OEDsmKWpICkrRERrWt0jHBte5P0Kilzhos5PPnzwcA7Nu3r6rXV/0uiP5eEvINuSI64UGtqD/NuE4S/sbnPMSSWuRb9hoqGUcVtPi6I34WeM7fNecInU6h5Rl69vhlrNhFMHxMESTNAE4wMZqWit3M1BjeO+sPmE6BPGcYYv6I3jgr4Pe5XoyVujhlCQiO0OVL9x8CudhZBKmDGqhJoOUIjIOSyCABCBXvCUFhwsATu+ViRwkH4wRFrknFrsg1bJ2YgyKnmJUew3EL/EIqhI6axO5mzXCp2BELyB62w3jMoHKx4xx0eMKWNo0ChmR8sxA6t6gFTD7sFrogsVNClzBJC53s51qJO1Sk1iEllZavt9g1IcL6y68/AKAJUtff3w8AIIUk561RYqcIoQOETiAVu1puIO7XyoRO4BG7snKlSYfdYucWOoE+ZpWJXZnQOS/0i51b6AResfMKHWBP8OuO1vmEzjkYlIudS+jsNsEvdm6hc7U9P14udiJKN3mq/GLnFjqBV+zKhM7VBq/YCaFzz1fnEzuX0Dl/8oqdTOgEbrELiND5fldCZ5PUw75eQhf2t2qpl8DF3V8Q9RK7JnWZC6cSjlUpNUsdikmPNVJip5DQQUInKHuoJXED4Sxc6AQlsZOWc4kdTxsw55ULnUAft8VOKnROeybFTiZ0AiF2MqETTNfGHbFjIH6hEwix8wqd0yaX2MmEztX2YrE0zUpJ6KgnEugWuyLXsD03SzqZsRA7qdC52i3ETiZ0zj6F2EmEzmm6ELswoRNoWmSXqxO5S3C1CCV0CZNEskYc4na1JjU9SLPFrhmYdjuHh4erennVZ1vskCQtdYASO0XzaeQg26RS9QkNXoTdDaXh4iceuCkDzAjYJ7f/md2QC51TjsA0Ncw2RqVCJ8hzhv1WQSp0gunaOGYbo/j9lpXBFQGASZHZq8vlqdR2mifQD4XPr8mKFE/uWSwVOqdMSeyGrCzyLPicdukFaLoV3CbATowwOJiB0BUlQAlI3gpPntAokDKiEycAcNNMZgwdEOtabrjQxU1mSKquuLTiPSYOlawEkdSEwHFIcpxyE+VOONXQ0FBVr6/6jE9MlLpMArK7aqLKSfcUisRohW9sbqK+IRMKopW2xfn8hM32rusgvd2AacHoH5cWMbMaBo80QAtA6uVgEdMzRZy9/EUMmVn8ZGRVYLkC59AIsCYVnFxw2OrBfQdWo683eJULFG2hIyZCs0pBOGge0A6EJ08YuoUnDi8JLEKJPekwBccsV/esmwLT8dyh+TAMC1gc3HZiAd17CLgGjM+TCyJhHKmDpTrSwW0njAMTOYCGj3kWXe2hXwbiSlgrC10SYpf0PaFdBbEZJCV2saJ1vLkO0qxInZA6whKOqimhU8hoxnVRZ7GLveZr1FgWt9ABdvdq0PlyT20iE7uS0HGNQiwaLxU7ArCU3dNpjMjFTs8U8ZoVL2K6MQELFCNMvgRYodRWCqCXWlKxO2z14Cd7T8aEaaA7XcD02ZJ1ZEtCR4uloXVcInYE4JQ7WbyBYkc5evomoFGG4Vwajx/yJ324hQ4A0tSUip3FCYqWBkI4MtmCVOyIBXTvJiCm3TZZ0I8wjvSBCZBiac4vsT6vpBzGJ+zoGyWBYsdzrq5ZGhDl7QShC/pd9vdGD5hvpNi12hfVSmmE2Lnvm01yEeFUhSqX56tK6izLmtxhyFI8FaOEThFGB4ld1ULn/btX6AQysfOuJgGUi51b6CYL+sROROmcpkjEzi10goFity9aV/C0USZ2QujGi7bAUML9YucSOne7ysTOI3TOPr1iVxI6nU6+916x8wqdwCt2IkrntEkidm6hE3ijdV6hc8p5xK5M6CYb6xO7MqFzynnErpOELujvtawEkRRK7OJTT7GTPV+a8cwpNb1YLFa1VFjVUueQ1DEroVPEoQPErmahc22XCp3ALXZBq0kAttjJhG6yoCN2ZlbD4Er/BMRusZMJHQBYoNiRn+WInVfoBG6x8wqdU8YtdhKhc7dLiJ1M6Jz6hNhJhE4gxC5I6ARC7ApMxzMHF6BolQuVW+yIBXTtKRc6AOAEsNK22AUJ3WRZW+ykQjd5whyxkwqdU64kdp0odN7tcZILGiVBSuziUw+xC3uuNMlNOOeTw9wqoCqpoyGz0ysUHUmjb4Rxblxx5DBi0mHRRUc0Khe6yYIAA6wsDV1RghbsPCev0AksUAxZXchF3CgpAIMwjLOUT+icMoSDUgaSp1Khc7cLQOjEyQBATIDnNanQCcaLBgaL2UChExjUcrpdpfsiHLphAQSgxYCs01I3rFZggUJXhmVFf7O3whMsAISuPlJeLsb1F/MBHPuLTlIkmTyRFErsADT4WmjxsYjVdMHWfkRJnX+V8aqIQzOvkwRuhLFvWHHn+orzgOY8eOJhQgBdB+ccZDwXvJ90CrlFPaAFju498rqsNDCxtIhiTscvXz5aWmaaNoE39D4Lizu9DFLGOcGf8wvRS3N4zfzN0jITRQP9u6cDlCM/M/x8EQvQ8iHnngJmLwNMgoFDvdIiusawcvohmEzD/kLIihIgOFzoQZpaWDP7gLSMaWrI7+kG04CxRQFNMoHeXSY4ITBnZIOPjXOQsdIYZyMgo5dxZ4mwyClvABDZJMZljSudy7DVKUoPTBJWBpOficQe5i3+oA6lUWLXjHMUI6s01rWQ1GwB7nJhz5VGP3Nc3z71GJ9VL60VqVNipyAk+DpoheujhptuxQ+tiCXAnGJxkiIkYkcIsae9INSeq8w0pWInhI7rBIRzpEaYT+ysNDC+rAiSsleUGB3K+sRumjaBC/ueRi+x5SJI7ITQjbM0NMKwJHXYJ3YTRQOHdk0HKa3KwNIhYlc6PYFiR4FiHwPXuF02T31iJ4Quq9khwbylS8VOCF2RU1DCMM3I+cTONDXkdveAFuy2WBm/2AmhowX7mJhBpWLnCJ24BjTqFzshdOJ6ijOXIULEznsdy6TN80ANEru6RWWU2NnIzkOzhE72swvvtSC9NpIWOnd52fOlyc+cbDb4y1wQVUtdKlXqEtES7m9uhQe3ojm433vvddBK10UVN92qH14BS4D5ioUkRbgKTU487BY6gUTs3EInIJxDc3UZlgmd80K/2GmEOULnvNYjdm6hc7/OLXZlQuc0KkDsPKfFJ3ZuoXO/xiV2XqETeMXOLXRO9YQh43qdV+ic8yATu0L5sXjFzid0ArfYeYVusmHViV3QdeyWtoAHqlfsZJ+JRCVPiZ1NUhMBV0uMZJSg973s7/USOvfrwp5BjUKzjzOdTkOLiHLLqPod7u7uBgBwrQ598630AFc0hrBvSa14PVRw0635QeVZAiywWEhShKuQ/b9X6ARusUsZPqETaDm7G1YqdM6+bLH71ctHO92uMoTYyYTO2V9J7E6ZvdMvdAKv2AV833TETiZ0TtsB5CkGB7qlQicQYicTOoHohg0SOuc8lMROROlkCLELFDqBEDuZ0AkqFbuo61jTIh+oQuzCPhNK7EokLXatInSebVHvN6Gk/kLnfn1Yb1EDEPejrq6uql5f9Rlwdph0pE7Qig9yRbKID08rjWeIS6MHgCd5g2fMGV8l325H9LihSYUOKEXrChzEglzoBJwgX9AxTR/3RencWBwocioVOsE4S2PX+HTMXDQYvD8CMAMwu6LvS1aay4VOoHHMmjWKg7me0HqKTLP/SYQOsKN1KWrBLGqBQifgOmCMc1+UrqyMRsLnIgSCI3T+xoGkwlfWABCvDCHh2diiXIzoQ9zPTaxySuyaQ0LJKG29pFw1NEvqenrsGx3X63jRteoDXVE76r2tHM5Cp5pw5hgLy3glxI7kMQ4U5ZlVRNfA+3pAihYyB+TJE1aKYnwOhT4BZF4KFjEjW8Qbj3wOo1YGD04sC24XgAyxcEx6t3TbiJXFgwMrkbMMdKdCUl2ZHYVjOmB2B2SVUqDYx+3M03zYYHIgrZuYKBrYMTZDWoQSjpkpe166Pl1+riYsA0/vXwhCOdi8fODuqAlMe9EeJ52bFbyihHHInjOQB60o4UqKQDr4vbErtCM4odJWumbConqxlqcDSlOrkFiiFSuCE6NcqVCs5rUk7Sh2FbSZh6xu4whdo5YKa4FzzQ27Db298oStKKq+0mfNmmX/EPYtPQnUw7/zaPf3tJnTNASIne+hKhM78XB25M8vdkLoUFpRgo4XfGJnpSjG5lE7cYIBqSG52BnZIi5cuQGzjDFYnGJvcUao2FEAs2jeJ3ZC6MZNW2J6UnnMWDrgr4ABWo46g/RkYscpUJzGwamdFEFYgNjpHLMXDDm/ysROCJ1BLFDCYRDLJ3YTloGn9i1GsWivKGGkTanYCaHT8nZ7rRTxiZ0QOiIeghr1i50TobPrIYQEi51nrJVU7MSXACBQ7LzXXmC0zv15qFHsYg2q978oukyr0gKyEZsq2ioTO1+Ert5i1yrnuORUs2fPrurlVV/lc+bMAQDwdIz5k2ql3SVAMUm7v5etMO+WR+wCoyRusfMKnVNmUuzKhM7ZV7nYuYXOqVoidm6hE1QrdhaII3SALVPzekbLxc4jdM6fXWJXJnTO8UnETueYuWAIab28u9hk7gSISaFz/80tdm6hc86VROyoCfRtmRQ657hdYkcYh9HvEjqBW+w8Qje5T4nYBWRFlomdW+icxpaLXdC15xM72eehSrGr6bOlxK6+1NBGt9gFdrnW6/1roXPLU/Z5cAJnFVL1GRIWyesdqRO0uwwo2p9WEDpBSewiu70YCxY6pwwHOPMLnbMvl9gRSMfZucVOJnSCSsVuxMri4YEj/WXcYhcgdM7h6XZ3q0/onONziV1J6LKGf/xf0dKwY2yGVOjc7TKIBYMwn9AJ3GInhE7PBXQVa2RS6IImIBZiJxG6yX26xC5i/jKSMuRC5xxkeFesU5W4lsI+DxWKXSIJFu0sdq1MAmLELSt6DF2c96+StrSQ0AHA669ZD6AJUjdv3jwADYrUCZTYtTft/P4l9CDgjDdh2aQI+aME0DSQXPB4L3AOUrQCVz8AbDHScoBlUanQCQxiYbo2jj1W8EBgCqCbmEjTYlmUrrzZHNOzOWB6MXQmY64BxRkWzN6QexW3s8565oxJhU5gMoqsVpAKnSDPdLw4PAfd6eDZ4AnhoBpHaogECp1T1uLRK0pwDmTCx88RQkAymfB6APtaj5qLtFKxC62LhE9i7DQr+v6RqNi1ovy1mIBURJLnsxXfm4TYs2cPAGDBggVVvb7qM7NkyRIAAM+GZNHVgyanGyumIBXeQIKkzf33msUuat1XQenhHDgYmdoRHEIIkC84KxN44YaG4owMtDxD9155XWYGGFtiwRo18IMta6VlMrSIFekDSBELIywbKHY5TrHdnIFZ2iheO3uTtEzR0rB/uBepTBHWfLlAcQ2wei07o0znsLrlD0VmAJmFY9Apw0RRLiuGZmFl3yEAdteqjDzT8dzQAhSYhoxuYnqP/HyaRR3Gi/accxNzA+Z1Y0D2YNFe7WJGSCacaS/9xTUKZEOkrXTvJEEJFoATVYsjbKA0nowlcb+uYEqORCLlYl+tKA+tKnZxVrBIKMpG4kR4GzUNSsLs2LEDAHDEEUdU9fqqj8bZYZrVZ666KJTYtRft+n5V+YH3SptM4qoWuwqFzt4Z94udW+gElv+zzA0NxZlZMI0AjCM1YvnEzswAY0stcIMDjGDsUJdP7ITQZchk9qpM7HKcYqs5E0WuQyMMS1OHfGJXtDTsHpoGy6IgBEh1FXxiVyZ0AonYMQPILBpFuhShY4z6xE4IXVaz91Hkmk/s8kzHs4MLkbdK4+AIl4qdEDqatzNdrbRf7AgDug4UQSwOTgi4QYPFztXlGih2nklVpWInZKhZYhdUTxWT59aUOOH9e4s99AG0rtjJqOZ8hqw6UVHWc5uJHdcY+vv7AUwGziql6iPp7e3FzJkz7YY0OlonaFdRmGq06/tU4wddSFuYvFUsdtUInbMzl9jJhA4ATLMsWlcmdAKP2FlpO0LHDdexSMSOElYmdIIin5QHt9AJvGLnFjpBkNhJ59F0javzCp3zd5fYeYVust3lYsc4cYRusl0cOp18sLiFTuCI3Rz7eESEjlguWQsSO1OSNegVu4CJvcvEzvuAbBWxq2GZq6rELq7otQKtKHZJns84q04kOb6uBd5j4VIzZ850po2rlJqOYsWKFXZDupskdUD7CsNUYYq/P3GkLbbY1SJ0zs4mxS7wIVvqhpUKnaAkdpl+htGlFnhKcgwuscvQIpalDkl3l+MG9lhdUqETCLF75cxtPqETuMXOidLJoIDVzQKFzmk+ozAZlQqdQIid6HaVoVOG6T0TUqETcGKvKJGbRZE9WAQ1JZFdr9iVul2lxFmNRYhdkPxUKnYxqEjsEliQviKxa4GHesW0stglcT4jVp2I1Q3rqieSJl8DvMe+F61cubLqOmo6gjVr1gAAWG/IZKCNYIqLQ0sTNuu9InG4a33XkELRN69SN6xU6EowncDMEHTtDonSMILx4QweG1omjdIJxlgaQywtFTqnSSAwiIV1C3cEliEESHcXYCwbDV/tJs3Qs3QoUOgAe83XJX0DYDz8/pJnBnZOzPBF6SbbVIrYHkxLhc4pZwHZgwxmd/D55ISAaxTc0EI/W5wSIGzsnCjHOUBD3j8hdrV0n3qIVVeCD9fE5rBrRelrdJs4ixakhEWz4+cgdPH6D5wFAFi9enXVddR0Jo4+2l6sm/c0WeoAJXatTLuKXYO+BVdy0+JhD/LStiixI7puT2FSDPjcahp4dxbEZEgNyFdJYCmK8bk6OAXSAxzd2wJkzGCYMWsEe0an4QcHT5MWoWDoLtnOdDouLVPgGl4uzIbFKZZlD+OVR2yXHxvh6Mnm0duVQ/cseV3QGWbOGUZ3ugBDl0fzdI1h+fTDyGhFMBCMmfLMUsYp+gtdYJxgWkp+rnKmjv3bZwIMKEyTv3/UBHp2M2hFDqYTFKYFCKLFoY0XAErBQ7JdicXs6FnIShFcXCOUBItdabobUBIuY6KuKhYglxL1mWjFCFWjaYbQVVImofco9vCVDkic2LTJHmIiAmbVkEikjneZ4LQFPmRK7FoXJXZSKv4Wynio2AmCxM7pSmMcsCy/2GkaeE/X5IoSOVMudsSe/w2wx4BJxc5gmDl3GBnDhMUJtg/P8omdEDoN9jFlSNEndkLoiqUdGsSSih0hHN2ZAjTKQAlHV7rgFzudYebsEaRKMqdR5hM7t9ABgMWJVOyE0JmlNV9TmukTu5ypY9+2WfYceARgKe4TO0foCmJJJHt+Oi9C6Jyxdrpc7Ig72SVA7Lj32pBdh0LoXGWkYuetK6nxdUGfjSo+k4nNHdkqEaFmC53sPajX3HCcJZdo1sJixzWGbdu2AWhipG7OnDmYP3++fRPqa4FoHaDErpVRYldG1d0KErGTiZ5X7Hxjo7xi5xa6yUpssRuc7DdkKYrxOd4lrDxi5xI6gVfsvEIn8Iod49QROoFX7NxCJ/CJnc4wY9aoI3QCt9h5hc7ddobJ98srdAK32JUJnXOiysXOJ3QlOEFZtM4ndAKP2BFJ9rJX7HxC55RzyZhX6JwyHrELqqteYlfDZ7FjxK7ZQif7e5wyUWUj2hBrSqg2Hl/HeouwLAsLFy7E3Llzq66n5lafcsopdoOmBU+02XDUXHatixI7AAk8YFxiF9kly1jwYHchdhbzC91kJaATRaQG8063K5NUJ8Quu1P3CZ3ALXYyoRMIsStwDTuLM6VlhNidfsQ2n9AJhNj1zRnFjFnBSREaZehKF6RC52bMTAcKnSClmdAp8wudoCR2Zg+XCp1TptQNGyh0gpLYSYVOUBK7QKEDJrthg4TOXQ6IHruZtNgl8Blse7FrFaFzb487xi5O2Yh6Yk3e3mzprpJLPns+AOCkk06qqZ4EpS5kBHCzUGLXmrSr2CVIIqtKxOiKJaXlngInHy7VA9OMXlGiYIIWmFTonGKlO8rAVrmIAXDk6/7RY8Kajgwpoo/mfFE6NwaxMDs9KhU6p4xm4eg5+7FixuHQ/WmEo1cPPgciWjdhGYFCBwA5y8DLB2cA6ZBxjRZB5gBBMRuWnVpKeOA8WOgAe3sxYgYCzgGLgUSuFJHgPZPz2FmxjaTtxa6ViHsOGjkGsk3HWz711FMAJp2qWhKTOt5jgusteDKV2LUm7Sh2Cd8skhK7IITQ2TuTTD4s0DR7aotCMXhFCUrBulLQchZ69gRMAaID+RkEIEC6n2LvJn8XQkqzsKh7CAZh2JmbgXtHjw1svwWCLprHMdndgWUAoFfL4ZQ5u+SHRhmW9g4gqxXRa+SxqGdIWs6gDEt6B+yfifx91ggHFWP/AqJ5OcvApn1zYRU10JQF1uc/V8Qk6N5FoBU4mAHkpgWvKJEeLI3rywYkPJRkGwC4HhAZ43xy+hNKw8XONKPXYxXXXMTUOXGIMz7U2V+jM2LjVZRMPXFptLAktUpEvdsiiHN+WlDGuWE5SRJNl7rZs2fjqKOOsrsLZsqzv5qOErvWRIldtNjF2Z+kjjKhc+qSiJ0QOvEZkYgdpxSsJwWuURAOGMNFn9gJoeNiijGrJHab5/jalqb2a02mBYqdVRq/poFhpjYaKnYUHAvTgzhxdnkZIXRpbbKtMrETQifaBfjFzi10YrtX7ITQmYVJuSKeaVXcQmf/wZ4AOd/nX1EiPVAEKdrt4Brxi50QOpdk+cTOLXSCILEzXe9pkNh5o8MBk1yXESB/FQmdoAUfyFNS7Bq56kbcJeKSFLpau4orhM3Ig3OO1atXY/bs2TXVlcg7ceaZZ9oNm9mCXbACJXatiRK7uomdvC6X2HmFTuASO7fQCbxi5xU6p5wFpA9rjtgZlGFRd7lQycTOQnl74ordEZkBR+xkQidwi51M6ARC7LxC594uxE4mdABANOZE63xC5xQCrNSk2HmFTlAmdl6hc06ES+xkQucqV4Ypib56xS6ou9+zHJ0Uz/6qEjpBQgKRWLTOriy5ulqZMMGqxzmIK3NJC12DeeVfnQAAOOOMM2quK1mpm54Hpy38kFZi15oosUtU7KRRurK6SuVkQicoFEFyBZ/QCcrEjsAndE45C9DHKQzKsLhnUCpPQux+PXK8T+gElYodAaRCJ0hRK1ToBAZhUqFzbwcgFTqnXaVuWMIhT4oAnCligoROIMROKnTODktiF7biBDAZrZMJnVOXSIqIGL9JafTnmEbPteiQxNCEGCQqdo2kGdG6RotrktG5FhY6Thn+9Kc/AWghqVu5cqU9tYkGsBkt2gUrUGKnaEESe7jEeRgSAlACHvowpwBj0IaDP8+EA/q4BWM0fHe0AOzYNzNUnhinGDC78PD4UaFlxlgaM/XgHQqxe9XcbaFtympFHD1jX2ibKOFIayZ0GpxkMmEZ2HRobvT3EgKkBsPfY8IBLc8Chc4pM1GMlHZSNKPvdZRGXy9i/eI4ItbIe6saX5ecgCQpMg1cmYNQAhJnsuu4x5fEeaji2NjMPHK5HBYsWFDT8mCCRM4uIQTnnnsuAIDNbXGpA5TYtRrt+H604rdWwJY1MT+dbMoJQkAM3a7PCllVQhQfz0EfkK/MwHWCYq8OY5yhe7f8oc91wOzmwJCB322V37Ao4c7aqvvy06RiV+Q6dpszUOQaMrQYKnZdtIAFqSEsyfbL9weO6cY4+vQceg35/YoSDqMkcxrhUrGbsAw8d3A+CkUdmsahGXL5YyZFZkcK4ECxO2ANSwvIHmIAB8zugNUkOKCNFQCTgQd9ZjgHKRRLSRHBEVtumpNSH/b5E2tvxpp6JOIaZZXU1YJLicWrKJl64lKriLinG0mKpM5BSJvqEmGttd1VJo6su9KeBeDcc8+N99mIILEr0JG66fnWzIL10o4i0Ym04/uQ8I078gZVgdAJOOf+VSXcQicIEjvXgHuZ2HGdoNBngOnE7jIc9osd14Fib2kKFEbADqd9YieEjpbWR7VAsS8/DY+O+wWw6OrjDRK7DC2CEgZKGKZpEz6xE0In9mcQyyd2bqETaKT82NxC55SRiB0zKTIvT675ygy/2BEL6DrIoBUYxGoSXrFzC52DJCnCEbrJg/GPZzNLXbfurFLZ59CdVBO1TJjT0IAyUXPayWjXNT9bsU0y4qwSkSTubtAaukO998tEo3XVUEPXNNcZHnvsMQCTDlUriV19y5Yts5e2oACbI58WoeVoR6FQdBT1EDo3frGT1OcVu5Th+2y4xc4tdM52j9iVCZ3AI3ZeoXOaA4rd+emO2IkonRev2AmhE3jFzit0ArfYyYROIKJ1MqETuMXOK3TOaXCJXZnQCTxiJxU6wI7WuZIifEI3eSImX2MGjMXzip1s+ps4Ykclgihbri7Je28rJk40kkqFpRGZnXXIjiWU1PYe1WO6kxqTRqw5E7AsC6tWrcLSpUsr23cAiX6lOP98e0Zka94EeMjg4pZCrT7RPKb4eW/UQ0SMhyJGyKzBFgM3LanQCchEHtpIzid0zvaS2HXt436hE0jETtocUAxZ2bJuVxlC7LxCJxBityx7WCp0AiF2QUIHTHbDMhCp0Dn7pBzMpEjv8AudgBmAlSF+oROUxM7q0qVCJ+CEABoNFrrJRgULnbPP0uMgbKLqSsUuJEKXWDdsgnR8N2zc1R+SpNZsWc4i35dY0bqkqfE95uBY/Bp7kvYLL7wwiRYBSFjqXv/61yOTyYB3m62zFmxcprhgKGLSil0rUTc88cUlToZtPmK5Pwak+4PL2GLH0b0rbPJaAtafxsO7loXuatRM4/7RowOFDgAsTlHkIbJawiAWekJWi2CcYMxMI2+F11VgOjYenBdaxjI1GPtT0EKGF1ML6NofIHQCDhjDheDxc4I4SRGmGU+iYiTaxEqa8EaIq6VBWbB1odXuFc2YmDeqviTHRSbVDdug9433FfHyyy8jm80m1vUKJCx1PT09TuOsBfLB1S2NErtkiBv9bLepTJoxcWWNc9QRQuw1OCm1H8aBq0qUppswTUC2XBgh4F0ZgALaaB7ZA3JB4tSecy01yNG7PegbOgfXOcYHsrj35dWBbR+10tiX78PGiYXS7RanGGEZR/qYZOkuxilyzAADgUEsdGl+IWWcYNjMwuQUDCRQ7CYsA0/uW4x8QQ+8dC2TAruyoAWApeRlqAV0l9Z8tdIB54gB6YE8iMkAjYAb8gcWyRfsNV/DprFxRfGIbG1fZ5+layPkOudh68sKLCuW0EXKYQsKnegCjB3Ra6TYhd0rGikz7vtfxH5J1Oolosqw6HE9qOVcxLz/n/XBkwAA55xzDrq7u6vfn4fEr7iLL74YAMBm5cBTDX4jkkCJXW1Uev7aTeyicH+YIz7YsZcJq2VViZLQOVXJxM7zoJeKHSHgmlhYnUvFjlPAzBIwzU6eSA1y9LzsHVvDwVMcoBxgBGP9crGbsAwwTsE4xWAx6xM7i1OMs7RU5ARuoRMEiZ17LVeZ2LmFzjlezym3TAq+s8uJ0HGN+8SOWkD3HlvoOClJsFfs3ELnvNB/fI7QOX+QiJ2kW1Yqdswqv4YkD7WWFLo6jA8LEra2GHMnOxeNFroYuMU47nmNI3YN7Yat9lwD4GkTv/vd7wBMOlNSJC51Rx11FE4++WSAANaisaSrbwxqnF0yxD2H7SB21d70mix2suhNaMROlHGLHSHg2bS3kjKxcwudwJ5I1yV2bqFz2uwXOyF0k4dVLnZC6GTdsuJ1MqETuMVOROl89bjETiZ0rtNgt8kjdM52l9g5QpefPH6f2MmEDrDfA1e0zid0rnIOUePsnIO15NeO65pvWaGrE74MS4l4tGS0zk3SKy3E2V+Mv0vPW6tENN1U2qYKrsc3fX49LMvC2rVr7WVWE6QuZ/Iv//IvAZQSJtphepMglNhVhux8dYLY1TobeRPEzonSBVUlxC6kO46bJlA0wbsyk1G68kqgjeaROVTwCZ3AEbsd1C90TpttsfvN9tU+oZs8rEmxCxI6d1kAUqETUPCybldpPSAYLGQDhU5gFjWp0Am4xsE1v9A520tixwyC1GDBL3QCjQA6DRY65+BopNA50bogoXO3b4oJnSBOJKklxa7B65Y6+4xBrVHQlozWVXi+uc5w1113AQAuu+yyxJtUlytt3bp19vQmGoe1sE2jdQIVtauddj+HDbhBJip2gqjJYIHwJaJK01yQifA1nYnFkDkcfLMlHDBGOLpeDsu+JRg/3IXfvxw8ozrjFAfyvXhwIHzW9SLXsGVibmSZl0bnBAodAIyZKTy1J0LoTM0eQxdyiohF0LWPQ5KcO1mGAanBkPcCsKctyRdjJEVY8d57zmKvKBFeJmCiawGlk2M6a6XBwtIWXa7VIOZWa5RsxshgbShJXUNVnL/LvnkB8vk8Vq9ejVe84hXJtMNFXd5RQshktG7BOLjWxtE6QbuLSSOIummHnb9WP7e1dGPE/OBzxqPlLqou95QTId9qnTKMy8WOUJBUafH4ogk6KglDEQKry14/1hgpoutAsJQQDmT6Obq2GcFtZwS5/gz+sGOFdHOeadg1Nh0HJ3rwyOByaZki17B5bB4GC1nszPnntgOAHDOwYWghxswUDuflA5THzBSe2bMQhZxui5sE09SA3XZSRBDEIujew6Hl7WicDGoB6f4iaJEBlIDJkiI4B50oTi7b5Z14WFA0JwUrLFJrmnBWnQiiksHpQfsSckliLukURhPW5Qwj1ufVTaMEKkrWkmxHApJd6XmMlTSR1DHGOY8V7ItrDHfeeScAu0cz0fkaS9TtKnv1q1+NJUuWAHoHROvctLp8NBvOw+WuneW4GrGr4uYSeIOrROgA++EuuQH6biSBYjeZGCEVu9IasoCIxknEjsCZr46wALHjsPsgYf8vE7s807B3fBrypg6LUanYCaGbsOz6R4oZn9i5hQ4AJkzDJ3ZC6Ip5u+HcIj6xE0KniQgdmTwE59CF0InECULAjPJCZULnOmfl56ckdKIbNOjz4xY6gUSkHKFzGhG+mkTog8e9P+++XEIn/o8UuyDJbEGha0nc9wjZ/SJpoauouGToAeMNTXbx7Lzayqs+j5d+/fUYGRnBkiVLcNZZZ1W3/wjqJnWUUlx11VUAAGvROHjAuohtSbtKSSOpJGrXTuezErGr4Qaa2EMjQOz85Vxi547SOQ3yiB0hsLLlZXxiJ4TO/VZ7xc4tdM6+ysXOLXQCr9h5hU7gFjuv0AncYucVOqdJLrHzCZ1zcJOH4hU6AdMmxU4qdABAXNE6r9C52+SO1smEToJP6GTE+SIAyPcnpM0rdJMVVS52nSR09YzWRUWVmih0stc4QlfN7psVravlnm5Y+PGPfwwAuPrqq6HVaexfXePB69evx9FHHw1oHOYRwQtwtyXtHHFqFHHErh3PYYMyysoeHpVG6dy4xC486sIBi9lCJytXEjsyUbC7XWUZgULsDpo+oXPKuMXOK3TOvghyAxn8btuRPqETCLH7Q/+RUqETjBQzeGl8jlToBHlTx66x6Xh2r1/onCZZBIUJQy50zsEFC52Aafb0MOkBidAJKAHXaaDQifeHazRa6EoPj1ChE+9l3C7XqDF0rjbWRCcJnaAeE/yGDf1Ien81vCeiq7UWoYtL4tG6Gru0L7jlDORyORx77LF1i9IBdZY6Qgj++q//GgDA5k+AZSIGAisU7UKLPWwiiTu7PyX2wz8MzqGNhSdP6OMWug6GjOljQPYQR/e2kOQJk4Dt6sKWl+YHFsmZOp7fNx9/2ndEYJlxM4XH9yzBlsOzA8uMFVPYsmMucoOZwDLMpND3pKGPh2TVFgm6d3PoE8EPf2pxZPpNEDNEEDgHHY9Y3QMAKca7p3KLRX/JipoolpDopIjJwrHapQggroglIWyVLDEWVrYZk7PXSpw2c1bzeeYZEz//+c8BANdcc01dxtIJ6j5y86STTsKrXvUqgADWspF6767xqJtXMJ1+bhr5TTNsX6VyodmFmgYwFl0GAEwTvChZ5o8QwNBLGbEFaCP+UBQnsKfeAJAaNtF1IEDsmP0v0x8gdgzQRzVQk0Af0LHzZb+QFRnF4aFumEUdY+NpPHfQL3/jZgovHpqNfM5APmdg33Cvr8xE0cDuvTOAnAZYBCznbw8zKYx9KWg5e2JlYvmv7TKh4wCRnGtqcWQPmdDyFkABLosmlKaKcaY2kU07w7m93quI4oVku/JCsfRgikiKiJzaJEYUTxxz0HUWZ/mwVh2vliRJJTLUeg9KMFIVuTpEAsNS3NTcBRtX6Nz/V7mvdR9YDcuycNppp+Gkk06KrqsGGpKOc+2110LTNLBZeVgzwr/htyXt2o2oqJ1GfuuMsS/Oebi4hYmdWzACbpjcJRikGFDGSbAAtFzUAxzQJSsKEk6cKUAIB+i4ZMA/J2CWGHtGpFOPMBAU8pPdsgXZBMKALXTiF4mwgRNoOdfEyrJTyBEaoRNoedd5k92BOYLnqnMTY/44R+gC67AihY5bVvQDVCRIBUXyxLyIYdcf4/52tNj6qXWdlsPbVVrPY/feS2pMGgid06+RU6f4dl1lexK8r1szcnjooYegaRre9773JVJnGA0508uXL8cll1wCADCXD4PLJiDtBJTYTTLVzkUjs7fc+wooV/bg9A7IlT1YvWU4L4/WiSidG4uVRevcUTqn2gLzR+s8p0rPcXRv18u2a2PltyaaJ2XRuiKj6B/uKitjmho2Hprn/D5upvDSoVnlu7ZoWbRuomhgz17/1CfuaB0zKYz9/oxdd7SOmvY4Ol8Z13kWUTovZdG6oK5td7ROROm8eKJ19hg6fxKGg5C5CKGLJEjm3FG70jUXKnRTjaQErtJ7Ty33Kk+bpevgxjmuZkXrKonOJQCnHHNeZ69Y8453vAPLli1LrO4gGqbPV155JebMmQNkLViLOixpws1UkxnFJI0eJxInahCUYeUWO02T1yW6YUtCx73dgJw73bBC6Lj3+ueebljZKWJA5nCpG7bU7eqdqJdwON2wotvVidI5+yIYGctg46F5TrerO0onyE2ksG+4t7zb1dNm0Q3r7nb1IrphaZGge1fAOLqS2JV1u3oR3bDeblcvGvV3u/rqst8jbprBSQ+EJNvdKovMib+5hK5qOj1a16g55YDwe1SFXbGRq0O0yPvmdAvXGp2rogv2slvfgL1792LOnDl417veFaO1tdOws97V1YX3v//9AABr8VhnJ02I7tipKnhT9bgbSZzVAIDwwfHiwRs1AS3nfqFzQXJF6KMFv9A5bbDFrntfiCSUxK5vkx648gLhgNGv4+CGuX6hc/ZFMDTUhaefXyoVOsH4aBp7N871C52rzSRHkX0pLRU6AS0APTvDEyOIBWQOBwidC20sZIkwUVfRjO52FV2qgdtjdNvGkbA44+MISW5psAbR0DnoWkR8HGKKS5jYcsYbd1wx9pPY+1nhMbGMiR/84AcAgOuvvx5dXV0Rr0iGhl5R69evx6mnngpQwFw5BI7W+jDXhUYIzlQWyFYioRtZRZGAsBuW6I4Leajy0jQloVgWSC48E5Pki9CH5ONlCecgjMMYMdEdkDhBmN0Nmz3M0L0rIAJgAcYQQeYQAd0hz1JlRQptbxqpwxrYAXkZy6TQdmWQGqIwhuRSR0yCrt0ajBH5mD+7DNCzm8MYD14CjDAge9iElmfB0ssAfaQUoQv5HJOJfLREmWa4RMUVutjZ0kHLZNBSBJiC6CEZzrG+mDQuAi4EIEwEGj7xcIO7DGuhoStslF5f9/eqijGBHByrrpiHQqGAdevW4eyzz669HTFpqNQRQvChD30I2WwWfFoR1sKAu2Wn0SjpagWxa4U2NINGC517f5Ibly9lXvagF111QWJHiP1A5vbExIFiRwjAOGiuECh2YACx5GJHGKAVbTEiDEgP+sWOWIA+SkBNlNZJ9YsdK1Jo+1P2sl3cLu8VO8uk0HeXom8c0HLEJ3ZC6LSJ0mkq+MVOCJ2es88r4fB3GZeEjhZCHrhC6AKSTpy63EIXdI2U5qEjhMi73d1CR6i0nthCV7YihefaF0Ln+l0qdi0qdGHbW3YliRagYecmhmRV9V4luAKHtXAczz33HLq7u/HhD3+4rlOYeGl47HfBggWT3bBLR8CyHdwN62WqiJ2ivshuNK4bGCFEHkEJeRD7xE4Infu1MrErW5bML3beaT3CxM79s0zsqFlexi12ZULntLlc7KzSPHNl3akesfMKnXTfJtC9Z1LoJo+1vH2Zfr/QlUXrgoTO8xkmuYJftLxC5plY2Cd20gmMy8WuKqHz4hU699/dtJDQBQmA+29Nl7mkonUJ1eM9Nw0VugiaFZ0TsC4L2mr7Hnj99ddj3rx5Ea9IlqZ06L/xjW/EaaedZnfDHjU4NbphBUlLl6y+ZnXHTlWhbGSULmxf4mYWMmdZrK5Yr9C5X+sWO9l15hI7R+i8ESyX2IkonRe32IkonayMEDvOUS50Tpvt1/LdWVvoJmTTldivDRI6cQz6+KTQGQFj6ES0MdNvd7nK4IRER+hK55XkCsHj48T1ErX0V5JdroHT4dBgoSvhXFMtJnRJlJmq1HxuKplkuR7RuVraJGsDOFZeNhuFQgGnnXYaLrjggtrbUyFNkTpCCP7u7/4Ovb294L0mrCUdnA0rI450qXFyU4q6zn/lJUrswlaUEGJXKAZfnyWx04YL8mxXuMRunxk6Hi3Tz9C3pTxS5i2TPkzQuyEd0mZAn4Bc6ErQPMG0jQFCV0KfAPq2s0ChAwBqcmcMXRCEc2ijhfAuV86BQjF62a4ooYubdRoldGIeujCi7ldhXzbK9lW70CUlay0ldPVYy7QGIs9NC3WdxyZOhmwIl37zHGzcuBE9PT0N73YVNC31Zvbs2bjxxhsBlLJhp3XgpMRRBL3hlSx2H3ajjXtBxSkXR0IV9SfGyhKhD2ixLUIWIpcKMy2QfEjyhBC70eAytMhgjBSROSzfF2GAMc6Q7bfQtS8gMmbZWbPpgTDRIujaC2QOBTeXMCAzwJAektdDTaBrv4XUKINWCGqLvfyXNmFJV5MAXEIXdv5LQkeiHlSFYuDnn4vJfsNwZ1BXGd11iPP5l61SIq2rxiWZWjHZoRG0UiZtiyRuJErEMbFpOdx+++0AgJtuusmewq0JNPUqeN3rXoc3velNAAGKq4bAjZiLSXcScaN2YdQyB1TcfcQtM9VI4EZacZQuxqoSoXOHhYgdEVOXWEwudu7xekUzXOyAcLErZcXqY6ZP7OxsWAZi2uKWHvaLHbGA9ACHVuSgRaBrn2TpLpOgax+HPg4YY1wqdvZrOQgHtDz3iR01ga4DFvRcKZnD4j6xE0LnjKGTDWETQlfKcuWarCvYI3RBshVH6MR26VJkzD8OU16Z/O9uYgodD2tPQrRd9K1SggbzN3I+u6jXJbFSRSsRZyUfw0LPmfbk2hdddBFe+9rXNqhxfpqu9h/4wAewYsUKIMVQXD0UnPbf6dTaHSu7+VYqe0H7qCRyqGgM3puM50EZOUYqKmLHmV/sZAkYQWLnao9M7NxRqECxc+/aAowJVva7EDrAFqbUMC8TOyF0mlj0gvvFjhaBrr2TY+SkYsdRlhQhxG6yLRzpAX9ShDtaVyZ0zh89YieL0MnOeSVC5xyoez8Bcxx691ON0HmvuWKxXOjiUoWkxEl2aGuhk1GtzNUjqlfLUmOtSpykEXAcd80iDAwM4Mgjj8T111/fgIYF0/SzmU6ncfPNN5emOSnAOmKktd/kelJrtCzOuJc49VUqmFNV9JoRpXMjbjhhS4V5o3NuPGJHfCtGSMROhlfsJO1xix1h/uvULXYiSuero8idaB3h/gQLt9j5hM45pkmx8wrdZD32voBSlO6Q/MauFbgjdNIxdMxuk1TonJ2VxC6sy9X9+apG6MoKBU9aXZY1nUSEriRzUqGrNSnIQ5zpSDqOVnpO1jsi1+iIXwVrv/7Fv52LJ598EtlsFp/61KeQToeM720AhNe0fkty3HPPPfjsZz8LANBfmAGtP9sZodt6Uu9uV1H/VJW2MJox0XBQOyLqiBysW8pa9Emdex8aBYm6WRk6eDa8DE/psLpTwdsNivwMoyxKV7ZdA4rdFGaaSLNm7UK2mFlGyES+HIFj4wCAE4DpBHqeQ5+Q34d46XSl+0PGinEObawIEhY1LS23RsKyVDkHcvnwJJeopAkgcqLpWGPxgOh7gmUls5JEhdNrKCog7NxWcn+Leo8aOR1LElTQFmvWBMzVAwCAv//7v8d5551Xz5bFomVU/7zzzsMll1wCwJ7mhHXFHFQ7lUkieSHuckBh26qJELY7CXzhiBK62N1FUVGK2BmQ4e9zZMTOYuErTzAOkitCGwsaYwdo4ybSh0KSK0yOrn1FdO8PbgthQHrAQnpE/h7ZSREWUsPB8kItoOugidRQ8H6oyZEeDElo4Bx6jCzXWEIXJWMxpi2JJWtRWbCM2f9Cp1BpnNApqiAqClUSloZm5LchrKsI/UQ7Xf7SSy9tCaEDWkjqAOCv//qvsXbtWkDjKB7dPzUTJyolKoM2rthF3YTjjNmbimLXgAdPXcWOUucasbtrIx7WQWJHSl2IZsCSYqJeHiF2JoOWM5Ea8n+pI5xDH7fsrNkxE5l+SaKHBaRGmN2FGpSlyrndvcohjcIRBqSGLdACAy1y6YoQhHEYwyZIIUBwSkIH0eUaUCa20IUIGbdiXIeWFX2NiH0ETlXD5D979hNL6MI+OxV+rpR8VEDMqFqi5zRsnw26hya9H65bmHW+hlwuh3Xr1uHaa69NrO5aaSmp03Udn/70p7F48WIgbaG4ehCcTDFRqIaoJIq43afum3GQxFUjf51OFTeLOFG6sN9LlZT/XqnYCaFzDZD3iZ27e7fUNRcasZOJnUvoxP++6BUHqPibxaFNFMvETggdMUt1MPjETggdLZUhFvdF6wgD0kOsVKctfm6xcwudc5o8YucInSNs8EXrCMek0JXa6/18VSV0ns+yT+hkn/VKhC4ImcR5r6dKhC6wISo6VzeionONjtA16r1OeD+ccBz93vnYt28fFi1ahE996lPQQibdbjQtJXUA0Nvbi89//vPo6ekBn1aEedTQ1FpxohaixK4R3bFi+1STu0ZH7ILGl1QjdkFlZOP1ZGInW2dWiJ1X6AQWm4zWCaFzZZT6xI5jUugELrHzCh1QGjc3wRyxIwzIDFpOEoQoI8ROJnTOaRKi6BU6py18Uuw4l0cihdjVGqFzn2/ZdefeXq3QlS1nFtBO99+rFbqEpr9Q0boQKuhubch5bNPoHABwcJz1iePw9NNPo6urC5///OfR29ub6D5qpWUSJbw89thj+Lu/+ztYlgVtdxf07X3NblLn0Mi3fKolWcQYzFtplE76+qj9xEme0LTAedAmt4d072saiGGE7QTQNXBDsuRYaTtP6+ApvVzo3GgELK2Dpahf6kpwjaDYo5cJXdl2ArAUAWEoEzpvGVBbAoPgFNCKzO5yDUGbKJZH6VwQkeVaY5crOA/vdhUJD7VE6KKmxQHs64excKFzZDegLkITefiqhAkJCXS3JrJyhLhf1fI+x02UqDUBJOT15rJhWIvGoWkavvzlL9vDxVqMlovUCU499VR85CMfAQBYi8ZhLhxrcos6CLUEWf2oc7ZesmNdQjIpeVQ3WUkaorpii6UlxQK2k1wRdCxkNRmLQxvKQR8MLmNPKxKSXGFxpA8XkBoMTr6iFochGcfn7INxpIYK0MZCynAObSwfLnT5AogZIVJRQoeIcXSNEjqgdqGL2gbEShhSQlcdYdG5ROf1a2R0Logas2fNhWOwFo0DAD760Y+2pNABLSx1APD6178e11xzDQDAWj4Ca3bIwoyKymmXpb/arTu3BrGLdRONc3OKlVzBAuWBEGLXEfTgF8kVFgsXOyB8QXnGgKIJGpA1SwsmCGPBGaScg+ZN0LwJfVSSXFGa/46aDLRoQR/zt9UpU7Cg5YNFh5S6iKmkLYRz0HF7LrqgJcIATEbogsasFkvTkoQs28VNqzWEDpLufDcJCEHHrxBRJUl9uavpPiTa0Urz5clIYMUNa/YErOUjAIBrr722ZTJdZbT4uwFcdtlleNvb3gYAMI8agjV9Cq4RW0/iZM9WK3dJSGFU8karUoeIXcU38rBJZp0ywWLn1OHd7hnTFSl2nMujdYyBiLFoErEjLpknjPmXG+MctGDZosQ5tFyA2Lmk0tvtKYROSCMp+sXOLlOcbJOnq9gtdM7xeidXLkXpAnELnUA23rFdhS6BFSKiVoyYCrgja4mIneRaqkjokmpHvUhAOK0ZOfBjRgEAb3vb2/DOd76z5jrrSctLHSEE119/PV7zmtcAFDCPHgCbruawS5Qk1p9tFB0sdolF6dxUEbHzTVYcFrED4omdafnEzrtUmFfsvNE5WjAnxc4tdE47ysVOCJt3n+JvXqFz71eInRA6X1uEBHqFztUWpz7R7eqNWLqygX1CJ6Ftha4K4nS3TkWhqydxz2nDEipqodronOfzxablQU4cg2VZOOecc3D99ddHT+beZFpe6gBA0zR84hOfwBlnnAFQoHh0P9i0YuuHfdsNJXbJk1DErqabaJyF2+NG7AIXfq9Q7CTy4BY7WpBIDueg+eLkcmOybl0he0LYJGXc3bBB3brEYoFCJ6J1tGDKhc5VLlDoXO0NFbpStE4JXfztnUgjhK4V2lEzCXS1Cti0IugrxlEsFnHWWWfhYx/7WEtNXRJEy2a/yigUCvj4xz+ORx99FLAIjOdngY6kGjMAU+En6tJJuvu1HvU3giTXiK2lLkrCv2WW5q0jYTcuTQOClhMrtY9oFNADMl4B+/Uh++CUAKmQrFoAnFLwdPgNlhsh20vdvjzgISXmmQsbHwcApBAjUSRsTGFUhI4x8CjhtiK2I0LoRFtDpI5zDkJIbUKnlvyqmFoz5RNZwiuiHTxq7sGkaEQQhzOAULCeAvTTxjAxMYFXvvKV+NznPgcjLNO/hWirUFcqlcJnP/tZ16oTh8F6Cipi1yxqzaKN832iXcStUdQ4C3+c73ChZTgLT3yIsw/TCpUQYlr2wvXyym1RyuVBJwLKMICOF0K2c9BcESQnFzLCATJRBM0HT00CzkHyxeBzUdoemukqjicIIXShq3yU3vewh26NE4aL19db6IA2iAS1G2HPxqjnZumeEpkd20lBFULBevNIvWoCExMTeMUrXoHPfOYzbSN0QJtJHQCk02nccsstOOmkkwCdo3jsYbA+lTyROJUEcGXiVckqFtVE/Kay7NU4I3+4tPHgaSqclSVCxE6UCeqGFfUGiV1pXVFSNMPFTtQha0IpekYKpl/shNBZdtcozUvayTkIExMWy7t4ScG0988k50IIX1R3Zth6rl6hkz2AYywPxqO6VWMKXSgJCZ0iOULHvUV1Ucb4gujIXK3vbSNmNqignWxaHtq6MYyNjeGkk07CLbfcgnQ6Xd/2JUzbSR0AZDIZfPGLX5yM2B1zGNbMkMwyRXVU8oGrVbIa0ZXbDJLsenUTNhO/7AbmqSN0ZYkwsXPvwyszrmPlnPvFzlufTOzcCQZesSutVOHAmE/aaM4skxjveDfC7Xnt3NvdYkc4/BE8dx1uoZMdl0zoZOcxrNu1kgidG9l7XInQebJtldC1J6HRzjjRudDNCUXnKpW5apMeKminNSMHcvIIcrkcTj31VHzpS19CNputfL9Npi2lDgCy2Sw+//nP48wzz7SzYtf0w5qVa3azOpNKxK6e3bFq0uRyGhmxCxJLIXaSJcWkYufFLYay5AkhdkLovG0uFB2x8wqdqNMRP1YSLu8+SmInul290TnCmC12MqGzDzTyOMraXa3QiQdbh0foVBdsdbRVdK7eVNhGa9YE+HFDKBQKOOuss3DLLbcgk8nUqXH1pa0SJWSYpolbbrkF9957L8ABfUsftANdzW5W+yO7LJIWqk5IgoiiXpG6SvYf8npCSOhEtyhtJ2HJEZoWmhjhLDkWBKV28kTQ9UAIeDYd3l0ZtBRZCZE0QYKWIwPACZF3t7rqIOMhQz0IscfQhcmUTEzd+zDNYFkSEh318LVY9UIXFaEF4mW41vjgVwkTNnETJcLGvUUSN5minjIXOfNCjUuEhbzemjsGtmoEjDGcc845+NjHPgY9LNGrxWl7qQMAy7Lwla98BXfddRcAQNvRA21nNwg6RAyaRchDNvZrA6fA6NDuVi81Sl3NUQux/zCxCxOuOFJHaHhGK+P266OmA9DD28EDthNW6sohBDwtGdDsno5FllUrphUBguXQ2/Ura0eYdAL2PhgLlOhQoQPsB1ZE5LNWobOL1DhliRK6xKjl8x/7PDZk+a4a7/e1dBsHvJaDwzpiBNYR9sTCb3zjG3HTTTe1xbQlYXSE1AH2jei2227D7bffDgCg+7ugv9QLwj0XS1LfOqYS3kukEqkLKq+idDGrqDFK50ZSlzPFSVC0TkgdIcFiKPYjEzf3HHlBYifG1WmaX+yEsJXq5x7pIow7yRVORM8LK61oEbSdc5DSpMdco36xc4+TC5BLUjTtKBoNGCIg1nMNiIxyU2wPuWZYaS66gHsXr6QL2Fd3AkIX857KGa8tsjSFiJpKJJHzGBXdqnd3a5z7fTVSF/IaTjjMFYNg8+ylR9/1rnfh3e9+d8tPLByHth1T54UQgquvvho33ngjKKVg88ZRPHoQPEi6E5yksOPpgAu9HUl8bFHYjV4mAa733R6jFTLOyy4Uunsum0/N/btlyaNhYlC1xeTRMHdyhXfMnHs1DM79GbXuKJ3sGLyJD5JjdIRO7M9bRgideL3sXDvbAx6gQugC4BHTzLSS0Ln/l21ThBO28kNiK2200rOx0rZEPNs5ZTj5hiVg8yZAKcVNN92E97znPR0hdEAHRerc/OEPf8CnP/1p5PN5kFEDxsaZIEVt8sYje8NV5C4epYhIrHIyxGtVpC7GyxOM0rkRazbKzrM7iiSJKvkidt79uKNxQWvPurtAZdOaiIidECRv1LcUsSuL0nnazNOGI3TeyX+5rtndsAGTAzvRuqCpSSi1y8AjdN7zIMh5xuF5zqsTpXO2u0W5dHzec+m6XwUKXYiIess0Y1JhcX0rmQvGew/wnquaz6H3vfN+npN4Ljaq6zXG/ZanLCy7bBo2b96MdDqNT33qU/ZKVR1ER0odADz//PP4yEc+gsHBQSBPYWyaCTpaWn0iKgtIUTtK6lpX6oDw1SVKK0s4P3urFmIXtA8hdkFSJ7YHTUBMiJ14ETTtgRgb5xU613aeTkmFTsB1DTB0p9vVt12jgK6BTAQkRlAKTok0m9beXuqGLZry4xTy6RU6Z3vp3AZF6Er3qdAIXdD5cW9Hc4QOsK9vJXThRElbzefQ/f7VK9hR670+qWW/egroPZuhv78f06ZNwxe/+EUcc8wxidTdSnSs1AHA7t278dGPfhTbt28HGKBvmQ7tUIzMWCV2yVCt2HWC1DV7PF1UG+IsGRYyYDg6o5UANHx76P7DsnJL0brI10Z1B+ta+BJeQPQEwlFSFbJyBuc8dLs0QufeHDldTMRqFlGZrjUKnRK22qi70NmV1zfIUe8oXUys2eOgx42jUChg+fLl+PznP4+FCxcmUner0dFSBwBjY2P4zGc+g4cffhgAoO3qgbajNzwzVkldckRNjdKIqVOaQSdIXYhYRUbrSvsIFLvSw0SWVSvG74VmzIos0qCMWbOUlCDLZhWZrGHbxTg7Wf3uTFjZ+SnNzyfWS5XBo6YmiZJNy4oQsgSidED49CohNEToooSkjYkjdGHba63foc2ljoPDWjICa7Gd4XrGGWfgE5/4BLq6Onfas46XOsCe8uQ//uM/JjNj+9PQX5wBYtU2u7aiAirJhlVS56qmTmIXNq4OmJSVALGbzJoNEDvx2dE0v9h5uny8YudEsMQ2r9i5I1CyjFn3XHGaVi5u3kmMKfVvF12mQmzd9YvXi/q981m5hA6Qn1972hEr+DpvkNDZzQ2QBkKCk2NaReiAjpO6uGPogrZXUn/dhQ6oreu1VqHTGF5xw3L88Y9/BABcfvnluOqqq0DD5uXsAKaE1AnuvfdefOELX0ChUAAmNHuc3XiMhXqV3CVD3LnrlNR5qkpY7Dz1+cTDe9PziJ2/vEfsvJ8Xr9hJBmcLsXNEwvXQJt655cqSCiRzz7kzXCkt3+7NdvW+nvPyxAaZ9HnrF+fGI3STu3A9SIXQufdfdmyNEzqnTQHtlUpdKwkd0FFSJ/ucu89nkkIX6/VtHKVj3QXMPt/A3r17kUql8OEPfxjnnXde1fW1E1NK6gBg06ZN+MQnPoF9+/bZ4+y2TgM90BVvomIld8kQlkEbN7u21Un4YZOo2IXNVwfIuxRdYifPmnWJnexzIsQu4DNEdN0vdKV2l0XrZNLijtbJVnQQ0TpvlM59vGK7N7HBHa3zRuncZUpj+HhRsgyZkCSv0NkbJ39ugtAB5VJXJqDi7+Lh32yhq3AusnYhaq65Wueiq/r17bCChHeX4GBzx0GPmUChUMDChQtx8803Y9WqVVXV145MOakDgOHhYdxyyy3OODt6IAt96zQQVuNSJAqFoA4Pm3qvLhFnIuLQ1SeiFhLX9eDPjljOLCATNDJj1i19YduDbncisUJWvxi7F7YEmKZJo3TOIRAiFb7SxqYJHTApb9KuYploe8s0Ojrnps2lrtrJhcX2WuoOpQ2jdJwymCuGwObaEwqffvrp+PjHP47e3t6K62pnpqTUAQBjDD/4wQ/wrW99C4wxkDEd+uYZoBMxumMFSu4UQdTpYVPPdWABkQARY3WJMIL2oWnhN3NCIx/eYcuVcYuBhC01FnRcrhUpqobz6ExSb5TOvS2wXgawqLqrFzoA4QkdURm6hIKHbE8sQzNk/+1KrV/SqpW6RNaDDX1tjUIHVPy+smwRR7ytF1u3bgWlFFdddRUuu+yyjh8/J2PKSp3gqaeewqc//Wn09/cDFoG+vQ90/2R3bMOyhBSdRZ0fNlU9EOKsAxsmdXaB2sTOvaSYmziJMpwDVAvOmBXJFUFiJzsuxsBL0kOC1mRltlhJ6+V8cq447zGHiZy7TFAWZwOELoyy7teg+1tpPkKZ2CU2uXDcBefbiLYVurAhFnFVIsEoHQcHmzcOerTd3Tpjxgx88pOfxCmnnBK7jk6j/T4NCXPyySfjW9/6FtauXQtoHOaRQzBXD4Dr5TepyA9hG95YFHWkzpJf04My6rVRIhA1v1nYPsR5kXU3MtHVx4MfEMwCN83gSXc5A5ctNSatiznCJq8qZDvn4KY1OTWJ9/0WQieOSbp/lyx5X98qQgeER17Dtovoaj2n5gHUF+oYxF4+LCxSnoTQJQjXGU77u5UwjxxCoVDAaaedhu985ztTWugAFalzYIzhxz/+MW699VaYpgkUKIwXZ0AbyZSVq3voWtE5NED0Yz8wZW2pJgvWsz2xiJ0s01KsyiDwJTho5Vmz3qW2KCmPvomfXdE5Z5+esjKZcyJ1Ijony/IVdcpWgnCfC1n0y/3QbBWhc+rztNc7ttITrSOexBkVrZuk3lE69z5in/dKxiy6y1ajDwlE6lhfHtPOJjh06BAMw8A111yDt7/97VOyu9WLkjoPmzdvxs0334wdO3YAALQ9PdB39oHwBqeDKzqDVhG7iPnqgKCsVtfrArYnInZBc6K5xU52qyqJXeDYL02blDVKg6NzLqkLis6RUgZs4MTBYmm0oKW9xHkI6s4UYwpbTegE4vwGJMvw0lQxZUIHOMeqxM6mUV2viXW1Br2mWnWoQeo45bCWDIMtGgfnHEuWLME//MM/TKns1iiU1EnI5XL42te+hv/7v/8DAJAJHcZLM+y1Y12oqJ0iFq0gdlErPyBA6oDyiYgDttcsdpQEd1MKsat2WTnvWMKw/YRsJxoNXwmC0GChE/VHZJK2rNABttSFZT9HjQ+EErtGROkqqCx4W9h5jBonGkWVUsd6Cpj/xix27twJAHjTm96E66+/Htlstrb2dBhK6kJ46KGH8OUvf9lOouCAttcftas5vK2YGjQ7caKWJcOAyfnawrb//+2de5QcZZn/v1U1t55LJncmIRkIJGQISQB/hrCEieGWhEQkuIugoivgrrrrbVd35Xg46x/sHs5Z9XhFvAuKAT2KyQpiggdRLjHJQhDEMIGF3GcmycxkMpee6emq9/dHdVVXdde9q6cv8/2c06e733u/3VP1nfd9n+eBhzDM9OM5Nq+wT4Yg8vqcmvCJCetzo/KKVWvku/0dq5q3MDU+m1v9TL2SWrn6zW8QUec5gKm9DVvw2UJ4328CWxpHFXOFrtABkSxfhSSgLhyCaB+FpmmYPXs2/v3f/x2XX3559HFUMRR1Ppw5cwZf//rXsXPnTgCANJpZtRvRV+1CX6Qo7qYm1SDqAM/VOrOrKMIOyIoKr20fL7csxt+im7Bza9dYXcsN+ZWb79aun4+5zJaq27hdjT7M/gPcTAMIOjOerksehOYu2lRV95vmFCsXyIsC4j6QIgq7MhV0cYg5A6e5Cxr6S5IlT/czmUJuHWeei7Tl6jIGrTmFs9/VjIMHDwIANmzYgE9+8pNTzvdcGCjqAvLMM8/gy1/+sn3V7mgLJE2OdpGiuJs6lFrQ+Y0hjKgDXM/W2bqLIuwsRguO41XVbF0ncZdxaWKSK2By2zS2kYx+c0Vdbr6TqLNux3q4JTHJDdUURNAVuN1qDfflGGc3V5A5zKstuoGDkURuFBD3wcQg6jLt5FFmoi5OMQfkCza/sGJO5UKLujyr7JDfXVjfj5n+haxBbR+CWJCEpmmYOXMmPvOZz6CzszNce1MQiroQDA4O4mtf+xp+97vf6QnjCmrfmg65vz5agxR2U4NSi7pCztOZ5fwtYfO6DSPs3CxFrWO3he+S8gVIrvUrYBdi1raczr5ZRZ1TvrUtQ4x5iZlcQWeM28gusqDLC/OV6T8vtqubFS9gE3QGttU6L6MP14EVYbWujARd3GLOwCsObG6+Uznhd57TK36zmR7ie4vizFuSoc4Yw6x1tejt7QUAXHvttfjUpz6F1tbW8O1NQSjqIrBr1y585Stf0ePHApBPNaDmrVZIEx7nTbyguKteSi3o/MYQdpXO1q7kXwYBxZ2nkYTsLpCswi53FSJ31c4wZHDrzxB1XtarRkgvLyFj5Lm14WcMAcQj6LwMPrzCf1lCtrkKBcPSN8pWaNyrdWUi6Iol5gDYV0p9yriVC7RK53Uvisu5sFvztSrS5w1Bmz0GAGhra8NnPvMZrF69OlJ7UxWKuogkk0n88Ic/xC9+8QuoqgqkJdQcskejCA3FXfVRalEXoH+v0FsAAkWY8O2jkBBcfpaxvp0HsLC1tlWouyKP+oEut0UUdACCWeHC53yW4mE0kqnrGSc4LmFXBhRTzIXBK1as7ypdoA58vq+oYg4CWlsSDRdrGB4ehqIouPnmm3H77bfTsjUCFHUFcuDAAXzpS1/Ca6+9BgCQhmtR82ZrnvuTwFDYVRflLuqibr/a+pD8y/j04RVUPki+iZ+FresAPCxvAft5PicCCJRAq3N6wWDlvPooUJiGcXDrVn8qiLpyEXR++K7SBWokflGntaRw7t/Owuuvvw4AWLp0Kf7t3/6NfucKgKIuBlRVxbZt2/D9738fIyMjAAD5RAI1h6bFuyXrFaaFlC9FEnahbihRnQ/nlffZinWJr+rn8sR6GXIqI1Q1UBtmXu7cuH1+683Ow/LTxGnOLdup3i5DMn+3bnMUdBXPBdulvISizrYN6DSnVSLogCki6oqw7SpqVaTPHYI2V99qbW5uxp133oktW7ZA8fpngPhCURcj/f39+O53v4vf/OY3eoIqQTnSAqW7SfdtF+UMiN9BbFIZFEHYhb6hRAkV5kRYYecgZnL7yb0M5eUbN6WAbUiSZP9sLta0NjGWezNxuhE6GHh4CdLsypnlb9VpfgpYnbP1YxmXL0UQdnlGFblzWkWCDqgMURd567UIlq5CElDnjaL+IhWjo6MAgM2bN+Mf//EfMWPGjPBjJHlQ1BWBv/71r/jqV7+a3ZIdrYFyaBrk/lr7ebso4o7CrnKJUdhFvplYx+DRRqzGE7mCJGfFzesSZJbJFVgOq3auwjDXRUqmLUcRaJRzW9nIOXfnJUZtq3MOY491u9Wx3uSu1rmVN4UdBV1JiLRKF3NMVwEBbcY45m+cZobg7OjowKc//WksW7YsfF/EFYq6IqFpGp544gl85zvfwenTpwEA0uk61BxsgTxSmy0Y142e4q4yiOn7LuiGkhs2y61YXOfsvIRNACTJxWlqwDZsq3CW1TnHcn4EtV4F3MWYMSdxbrc61p2c1bogBI52UCFUiqADQoq6IjgX1pomsPz2duzbtw8A0Nraio985CPYtGkT5BDXARIMiroiMzQ0hIceegi//OUvkUqlAADyiQbUHGqBlLJsTcS5PUeBV75Uk6gDggm7IPhd3IPENA3gVsXvcudnzCFJkn8oryD4teEmhnPG40kZibpqoaLEnPHdBbkfFCH0l6hTkT4ne26urq4ON998M97//vejubk5en/EE4q6SaKnpwff+9738OSTT+oJGqAcb4JytAmS6uP5PpegZ/Mo7sqLchB0xjgCtlHQal22kUB9ubYXNkh9Af/9uxo6OJzpsxFmjDGIwlgEHVB8UVdmvuSiUrViDoh9dU4oGtQFI1DOmzAXMtavX48Pf/jDaGtri9YXCQxF3STz2muv4f777zeXojEhQTnWBKW7EZIWUNwFDcnjVJ6UjgoUdYCHsAsrnoKKO2u7YQWdWzteWAw5HA0dvIwcrPX9iGOFDzEKOrPBIgm7Mo76EIQwf2dBnAMXm9BiDoj17JyQNajzRpFYDgwPDwMALr74YvzzP/8zOjo6wvdDIkFRVwKEENi1axe+/e1vm4GKkZKhHG2C0tOoW8paCWIcQXFX3pSToANCiTqzaoDQYAEaCV42wBZkoDbccDDgsBk6uBpLuBiAeDEZq3NAeEEHFEfUVUBsVjeiiLkodeMikpgzKxce9ktIAmrbKKb9vxoMDAwAABYtWoQPf/jDuPLKKwtzPE5CQ1FXQlRVxe9+9zv86Ec/wvHjx/XEcRk1R5ohn0h4i7ugMfycoLibXMrB6jXbQCRBZ1YPGBosQEPR60bBzc1KThnzzJyX0AojNgt0VZJtpkiCzuwgRmFXyLWpRIT9u/KLszoZFCTmzEYCfK9uYg4C2twkZq5pwIkTJwAAZ599Nm6//XZcc8019DdXIijqyoB0Oo3f/OY3ePDBB3Hy5Ek9Mamg5mgT5JMO4i4IQS+eQS4IfjEBiTflskqnN1KQqDObCRgezKcR/abiJ/DiKuMnxuIeSwyCruhizuwoJlEX9HpSJhSyKhe1nUKwjaFEYb+EpIu5uWubzcWIOXPm4O///u+xadMm1BgxlElJoKgrI8bHx7F9+3Y89NBDphsUjGXEndPKnR9RnRx7tUNxF41yEXYFbL/amgkSGswSSSJAg87pxqqZLBdWxg/jMuhVP0wZP+ISdEDhoi7g33Qswq6MBB0Q7O/J1f/eJK7MxSrmzHZcvk8vMXdWErOuSKC3txeA7p7kAx/4AG688UbU19fHMy5SEBR1Zcjo6Ci2b9+On/3sZ+jv79cTx2XdoKK3EZIW8GIS5QIa9CwMxV14Sr0NGyCiROCmgpyv8wqL5d6w/b1TeK0oZdywRnxwE4W5l8ggZbyIc8sViC7qIvwNFyTsKlDQAaU9N+c438USdV4GEG1JTH97Hfr6+gAAs2bNwnvf+17ccMMNSCQS8YyHxAJFXRkzPj6OX//613j44Yez27IpGcrxRt2gItcVihNRL6RBLdco7sJTqlW7APFfAzfldAPws1qNIu6czrflCrcgZXJxC99lLR9kJaMIYi7bdJi247V49a4a0v9dmYk5ILygK9l5ufyMmDqwtO/lmqRtFM0XKxgcHAQAzJ07F+9///uxadMmrsyVKRR1FUAqlcITTzyBn/70p+jp6dET0xKU3gSU4012J8a5TOYFlQIvOKUQdn59xum7zs/QIFhHzoLNqR2/MlYB6FbeEHVBzxrFuNXqRlFW6wr8Ow21Wlfhgq7kq3L5hWLqzP1sqKhToc4bRcNSYGRkBAAwf/583HbbbdiwYQNqa2sd65HygKKugkin03jyySfx8MMPZ12hCEA+2QDleJM9/JiVyb6wUtz5M9miLkh/cYm6IBjCL65IEn7lgrohiStsUcCoEH7EvloX099mpUaaKEcnwrEaoRSA1jQBdf4IpHkTUDPufNrb2/GBD3wA11xzDQ0gKgSKugpE0zTs3r0bjzzySNaJMaDHlj3WBOl0HSS4XLz8tlHjFoBuFyKjn6koAEtxtq7cRJ2t3xC+5IpN0LHEMGYj7JhbXmj8xEHMf2uVIuwqWshlKxRnHBAQ01NInz0CMT1lpl9yySW49dZbcfnllzM+a4VBUVfhdHV14ZFHHsHTTz9t/ncljdRAOd4I+VTC3ajCz6FxAcLDehH19KUUxKlyuVKIKK3gVTqzyWL4mSsgWoNxGYs6LrO+k2+toOcDI0aFcIxiEQUvoVCEv61yEHWSLJWFz7iglI2YkwW02UksXD8Lb731FgBAURSsW7cOt9xyCyNAVDAUdVVCd3c3fvGLX+Cxxx5DMpnUEyckKCcSegiycZel8yDiJIIIyb2oOprke7VbCQIviiid7FW6oP3FZSwRBxHChOVexoKOzbFemLN6Icbo1J/Zp0teaIppLelAKYSd4z+NoJAL1HR9GmpbEk3LFJw5cwYAkEgkcMMNN+Dv/u7vGJu1CqCoqzKGhobw2GOPYdu2beju7tYTBSAP1Ovizmtr1o8QgsTrAltOF7lYCOrypVy3XYH4okzEScAzaV6XsCjbm5KiBDt7V0xr1qgUw5+ZD5Mh7Jx+75NtyBCG2EKrxYCAgDY9BW3eKMSslPk7bGtrw0033YR3vvOdaGlpKUrfZPKhqKtSVFXFnj178Oijj2L37t1mupRUIPc0QulNBHOJ4kZAseB30Y1d4MV5Vi9oW0HCslWpoHPsNkaR53XuzFrGjzCrYUH6C/IZjXKTeokNEjqqCOdZiyHsylWw+RFbSLVCx1GjQZ2bRNuV03Ds2DEzfdWqVbjpppvwN3/zNwzlVYVQ1E0Bjhw5gm3btuGJJ57A8PCwnqhKkPvqdWfGZ2qjrd7FtHJnpeALYhhHyX43tyhtTQLVIOrCCCO/NoWqxfcZNAFJcZ+3QOMpxiVVE8E/Y+ZsbR5FPsNaqLCrVBFnpdSWrAIComUC6llJ1LZrGB8fBwA0Nzfj+uuvx5YtW7Bw4cKi9E3KA4q6KUQymcSTTz6JRx99FG+++aaZLiUVyL2NUE40QJqI+J/bJAo8o75r6JwwZ/UKMRiJ0bgkKOUu6GxDCLj1GWaL1KmsUK1WqRE/j/VsloOoM8dilJOl+AwcQowt0OfTRLDfZhkYT8TuBLgEVvXlsNUqalWoc8dw9toZOHz4sJm+ePFi3HTTTbj22msZ+WGKQFE3BRFC4K9//Ssee+wxPPXUU1nDCk0/eyf3NkIeiHj2LqSwiSLw3M7XhCaowUaQz1QslzAWYnU0DBRV0FkJKn7CiCRrWZuoMwj62ZwsJy2iLk/MWdqP1cAh4NhCfa4gv90SrNbFHp6rBFb0Ba1KxuUrEALajHFoZyUhzU2b3g8aGhpw1VVX4Z3vfCeWL19evDOvpCyhqJvijI6O4qmnnsLjjz+OV199NZsxLkM5kYB8MgE5GdHpZJEEnh/W/+rLwe1CXFTSKp0TQUVQ2PNvjqLOwO0zevwuJEV2F3OWdot2Xs7vN1uAYM2jSKt1uX97ca3OZ954NRConyjEci2JYXxaQxra3CRmXJrAqVOnzPRly5Zh8+bNuPrqq9HU1FRwP6QyoagjJm+++SYef/xx7NixwzR3BwBpqFaPWnGqgO1ZIDbjCoOw1m9+F+ViiMA42ox9hc6gCs4wAQgmXozPGrRsmDbjJOhvxa/vMjms79+1h7iOW8hJcujPGvs/hRHnWtSqUGePQZszBtEyYaa3trZiw4YN2Lx5MxYtWhTXKEkFQ1FH8kilUnjmmWewY8cO7N2711zW112j1Omrd/0N7o6N/YhR3AVaDXA4ZxPEYWkcF/RCt4qLJuiAqSXqghB2Cz3o+bag5YJgjNHNajHqXEyysAvlMLiQ84ARt2ZjFXNRhZysQZs1Dm12EtIc1bwOK4qCt7/97di8eTPWrFnDWKzEBkUd8WRgYABPPfUUdu7cif3792czDOvZEwlIg8X3fRfW711eeY+Le9BtoqgX+qhtFlXQWal0cVfoDbgQg5eg27sRtoFtOI0xt82456FIBN6WtX4PYcbmFwrRh1Jusxphu9Q5SdSfI2XPOwPo6OjA+vXrcfXVV2PmzJmFj5FUJRR1JDBHjhzBzp07sXPnzqxjYwCYkCD3ZbZnSyTwAomjAi/2QfvzHEOIdidN1AGVLeziXp0qRNR5nMELVC4Xr9+msVoX90plORBmqzSMIZNvsck3gBAQEK0pqLPHMK2jHqdPnzbz5s+fj/Xr1+O6666jKxISCIo6EhohBP7yl79g586dePrppzE4OJjNNAReX0bgickReKGs7oJaBIY8gxPkzF5RiNPitlzEXdzbllbiDOdWjLN6QLxjDEM5CTs/YhRzetGQ5xAjnNEzq0sZITdrDC1L62zX0NbWVlx99dVYv349li1bRutVEgqKOlIQ6XQaL730En7/+9/jj3/8Y77A67es4EUReEW4cQU+gG0Q9AZrdSEhNG9LvqhbS079BsX6ub1uYOUg7IL4ZgvqtsMgji28ySLOVapi9u9EXL/toH3kUuyV9wKEnNaagjZ7DE2LazA0NGTmtba2Yu3atXjHO96Bt73tbaipiehxgEx5KOpIbKTTafz5z382BZ51GwFpSfeB118PeaBeD1EW9D/diI6NI51XK3SL1qO+zYGqUc5p9SZMX4UKtaBnvyaTMFuYQZ1OA77z6vj9+LVTalEV5jOHHWsMv/miEJNfuslwGiwUTfclN3McjYtqshF9AMyYMQNr167FunXrcPHFF1PIkVigqCNFwRB4Tz/9NP74xz9iYGAgm6kB0pk6KP31kAcSkMYtF7MYzjkFPXMXaDs0yqpDgBut6Y4lyIF3t36dLCCjOqwNE4aq2ITZyiwwxJvr7yKoxWUxV/QK+b3FcV4wahvF3MItYMsTiMEIIkDfoj4NdaYu5ORZWatVAJg5cybWrl2Lq666CitXrmTsVRI7FHWk6Kiqiv379+PZZ5/Fc889h0OHDtnypZEayP0NkAcaIA1b4tAWsMrgJ9jC+rgLTZhze1F9jnnVCxtaqpyIcyvMJWyU7ypu0HBT5SDqrOMo1Vk8K2V0Lm8yXJMICIjmCWgZISea0rb89vZ2rFmzBmvWrMFFF11EIUeKCkUdmXSOHDmC5557Ds899xxeeeUVaJrlYjkhQz6tb9HKg/V2Z8cFuJ6IXcAV46afuxVb6JgtcUpLSpjPZF19K+FB+Em1PHYjrECr5HN4BXVrtxiPTch5fB5Rq0KbnoI2fRytSxO2nQhFUbBixQqsWbMGV1xxBa1WyaRCUUdKyuDgIP70pz/h2WefxZ49e2x+mQBAGq7VBd7pekhDNe7GFl7nehzyvBwNh96WdeozbB2nNnLLhxEaUbZhw4qvKGW96hjlwmxzVrOoA8L/liZb2BXz3JzbylhcbkdCbFsLSUC0TECbPg5txjhEs301rrGxEatXr8aaNWtw+eWXY9q0adHHSEgBUNSRsmFiYgKvvvoqdu/ejT179uD111+3F0hLkE/X6St5g3XAmOLuE89rBcND5BXs6d6JuM4mOZX3EkdOhHWCG6Z82LHk1vM6I2dQgGVl0USdXiFc+aBEWZ2eLGEXl6DzEVd531scxjE+K+0CAmjIrsbVL5Dz/uFcsmQJVq1ahcsuuwwrVqxgZAdSFlDUkbKlr68Pe/fuxZ49e7B37167uxQAGJchD2ZFnpSKeFal0PN6cVkVRrHqi3pjDmo1G6V82LatlFFA9rJZrYtCMYVdod+Rzyq3p4jza68QI4p6FVrruO52pDUF1Nvbam1tNUXcqlWrMGvWrMh9EVIsKOpIRaCqKg4cOIA9e/bgf//3f/Hqq68inbZvgSCp6CIv87CdxwtDHEYZcbuPCCP4yk1gBKWAlbcghjFhKZvVuijE5ZOvmAIup33htf1eBESdago4rTUFNKi2fEVRcNFFF+Gyyy7D6tWrsWTJEshyGX3HhDhAUUcqkrGxMbzyyivYt28fXnzxRXR1ddlcBwCANKpAOlMH+Uwd5KFa7+1aPwo1yih0RcTq1w5wXgErJIZpORDTdmrYMHJuBBF1gX3bTTZRVnnjEFMht0Nt30sxV2mN7dSWCWjTUhCtKYhEvohbunQpLr30Ulx66aVYsWIFEolE0cZESDGgqCNVwcjICF5++WW8+OKLePHFF/HGG28g76edkiGfqdWF3lAdpBEPwws/4rC8LUQEBD2/FibiQikpUhSAMGHk3OoG7bdihF2Bvt5s7YTs3/V7iFnQCUlANE1AmzYB0ZKCNm0CqLP3IUkSLrjgAlPErVy5Ek1NTbGOg5DJhqKOVCVnzpzBn//8Z/zlL3/BK6+8gtdeey1/u1aVIA3VQh6qhTSkr+ZJ6QJuyqUSekH91ZUzRTR6KITQsYWjbLuXm984J9EXYYvWc84KjJ2a11yNBq3FEHAp1M2VMT4+bitTU1ODpUuXYvny5Vi5ciUuueQStLS0xNI/IeUCRR2ZEoyPj6Orqwsvv/yyKfSssRdNxhTIw7W62BuuhTRcA0krsdAL2Q6A4FEkwrZTDDEVZZVOVctrVSxDIGE32dvkYc5feolML79tfgIut89CDBpkDaI5Da15Qncz0jyRdx4OAKZNm4bly5dj+fLlWLFiBTo6OlBfXx+5X0IqAYo6MiXRNA2HDx82Rd7+/ftx+PDh/C1bAUijNbq/vKFaPeLFaAHbtkB80THiWtUrNGJFgQjLWcigxgki5/xkOQk8ySliQCkiUxQ57qujkCvKNmpaj9jQPAHRPAGpRbM7LM+wcOFCU8AtX74c7e3tNGwgUw6KOkIyDA8Po6urC/v378drr72G/fv34+TJk/kFNUBK1uhn8kZqIWeeJ2vrVi8e46oeYDfACGv1WaAzWN+QXU7VckVdfsXoYyoQc7UuyrZnKYi69R23gKvR9HNwTWmIpgmIpjSUVuQfmwAwZ84cdHR04MILL8SFF16ICy64gFuphICijhBPTp06ZRN5Bw4cwJkzZ5wLj8mQR2pNsSeN1kAqxOIWKI3YmyRR5yvMcjDPt4Wsl6kcvGwhK1xmteIb4IQmoggz5ztMfFnrbUXKid5iWKI26itwoikNrWkizy+cQUtLCzo6OkwR19HRgdmzZ0f5KIRUPRR1hIRACIETJ07gjTfewBtvvIEDBw7gjTfeQHd3t3MFNbOqN5p5JGsgj9ZMmnsVe7UQgi+oKMldtQkxNpGecO/fs0+LqJNCzGHU0FqTIOxsrlEK6DPIuTdHly9RhDJgF2+5WYZ4a1IhEmmIxswjkQZcXEjOmzcPixcvxpIlS3D++edjyZIlOOussyCF+Z4JmcJQ1BESA0NDQ/i///s/vP7666bgO3ToEFKplHOFPLGn6I+xGkhi8rZxs9U8bppOZ8QA/7BeHmMRqhqtrtA8hYSnyAuz0hRkLL7VojtE9jS4iMtgwZbnUM86l17iTRYQDWmIhCHeVFPAweUj1NXVYdGiRaZwW7x4Mc4//3w0Nze7j5EQ4gtFHSFFQlVVdHd346233sLBgwfNh6fYA4AxWRd3VqGXVCCNx2igEcICM/JWolP/xhm6KBEP/ASdY90Yxx65ajRfeWH95GUyPfKiX+qFJCAaMqItodpeu22bArp4O+ecc3DuuefaHvPmzUNNTU3k8RBCnKGoI2SSsYq9Q4cO4eDBgzh69CiOHDni7GbFQAAYV/RzemMyJON15hkTBZ7f8yKAqAm8MhX1gH2hl6pCBV6hwePjwG/uIs6RgADqNF2s1WdEW72mv06kITfC0eLUoLm5GQsWLMgTcG1tbVDcVnoJIbFDUUdIGTE4OGgKPOvz0aNHkUwmvStrgDSu6Of1xhVI4xnhl5KBVI3+rErFEX4OwsUq8kKvzuUSx2UqjlW7QoLHRxWFnnX850VAAIqAqNOAOotYq1chGvTXqFddt0oNEokEFixYgIULF2LBggW2R2trK8+9EVIGUNQRUgEIIdDX14djx46hp6cHPT096O7uRnd3N3p6enDixIm82LeOqBKkcRlIyZBSGeGXUvT3EwowIUOayBF/xiUi7E27EAFkJa5LVFTR4WHJOWk4zIEh1lCrQdRqEHX6A/Vq5rWqr77Va3o5HxRFwdy5c9HW1oZ58+bhrLPOQltbG+bPn48FCxZg5syZFG6ElDkUdYRUAel0Gn19fTah19vbi5MnT+LUqVM4efIkhoeHgzeowRR4UkrOij3jOS1DmpD053TmOfe8XxwCIM7Lk994gvZVpM8lJAHUaBA1lueMYDOFW62mC7Ua/dlvdc1Kc3MzZs+ejdmzZ2Pu3LmYN28e2trazMesWbN4zo2QCoeijpApQjKZxKlTp0yRZxV8fX19OH36NAYGBjA6OhqtAxV2kZd5hipBUiVAzbzWJCAtAZqRnn2GlnkIFO98YBxIkr5SBgHIme3NzDMUAaFkX0O2vs8RbZb3bm4+/EgkEmhtbcWsWbMwZ84cU7jNnj3b9j6RSMQ6BYSQ8oOijhBiY2xszBR4xnN/f7/5emBgAMPDwxgaGsLQ0BCGh4c9D9FHRkNW5GnQVwIzrw3hh8zqoGRcxUQmHbDlQwCmRjQKm+8zBYyqUqaMDF2wZV4Lh7S4dackSWhubkZLSwuam5sxffp0zJgxA9OnTzdfW99Pnz6dYo0QYkJRRwgpCE3TMDIyYhN5xuszZ84gmUwimUxidHTU93WlXo4URUEikTAfDQ0NtvfGo7Gx0SbarM8tLS1oampivFJCSGQo6gghZYEQAhMTE0ilUkilUrbX1vcTExMYHx9HOp2GpunB3YUQUFUVQggzTdM0W5osy5AkyfZsPHLTa2pqUFdXh9raWtTW1nq+Nh40IiCElBqKOkIIIYSQKoDr/IQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVUBNqQdAiIEQAmNjY6UeBiGEhKKhoQGSJJV6GIRQ1JHyYWxsDBs2bCj1MAghJBQ7duxAIpEo9TAI4fYrIYQQQkg1wJU6UpbU7ZkLSWT+55BkSLIESDIgS4AkQZKNvEy6JAGyBMkoY+ZJZh3zAVjSZHu+XtFME5KU/dfH0oaZLmX7sqYJSW/GzJP1dvV0ycwz6ohMmpkPZNuQM+WNfNj7sNXJDF/IDnm28rCNMZsm5eXl1YF1HDn5cEl3ac9tHHl1vNo100V+fUsdM9/Slsikw1JPzxOW8ej5kjXPLGvkCbNNyVpeEmae+RMz0o3mMmX0n4Iw3xt15Mx7PU9/b9Qz8yQBCdl6cibNfECY9WQJtnS9vpatB6O8BsWok3mfbUsz21Ms7SvQ0xWjPbOsBsVoE8Y4tGx5ZNvW29QgQ+9fz9PbUzJpEjQoRn1LHQXQ60Hvx5gP473el8i8RiZPQM7MiwIJMgAl82XLkDJpEhRJggwZUuabm0gp+Nt/aAMh5QRFHSlPVClzeYUu6pARYJm7ZTZPAuSsgpF0hZRpxLi7y8i7a2cVk11JGG3m3eWRk2btAw5pufWQFXMWUZeXZhFh1ve5Q7SXd6gje+S5fYy8cbh8bK88t6mK2p6lTSfBV1RR55SP3PfCbNs6DmufTnmmCISljLV8Xh3h0JewPayiLisUMw+3PBjCT2/SKgAN8QcY4gymKLLm6aJOy4oiySqK9NeyJOmCK/MM87Vk1tPbQaZNoy4y9TLpTnmWOkpGkCrmOA1RJ3xFnbU9xZgP2NNkWMdo+Q4JKRO4/UoIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAP3UkfJEERBCdziq+12TLM9SjkNg49nyGtY0YXkdIM/itCzrItYtPfssbK9hqycAQBjp2TYFJEDArGvNN9uwOVezjsXhvbANKWc+XB65ZYP4ovPKC9xXwDxrl571hE+bwmWM7s6H7b7lLHlm2ejOh7PjsPipQ3Q/dQLZekIS9gf0Zz0PtnRNEoCkZduE0Zdm8aeXKZPJF5Jmtgdb+5lno6/MezlTxngGkJemWf6sjdeaBGjI+qnTMmkS3PzUSabDYAXZ78x4L2fq5Pq+C+58WELW+bDT3yUhpYWijpQlqctOlHoIxcG4Z0YkV5MQYmD9aWmlHEhkrKqam0iERIF/OYQQQgghVYAkhGCsE1IWCCEwNjZW6mFUHGNjY7jxxhsBANu3b0dDQ0OJR1QZcN6iw7mz09DQAEni2jkpPdx+JWWDJElIJBKlHkZF09DQwDmMAOctOpw7QsoHbr8SQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgXQ+pUQQgghpArgSh0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVQE2pB0DIVGRsbAwvvfQSurq6cODAARw4cAC9vb0AgA996EO44447fNvo7+/H1q1bsWvXLvT29qK+vh6LFi3Cxo0bsXnzZkiS5Fn/2LFj2Lp1K/bu3Yv+/n40NjZiyZIluOGGG7Bu3bo4PmbsDA4O4rnnnsMLL7xgzpmqqpg+fTqWLl2KjRs3Yu3atZ5tTMV5A4Curi48//zz6OrqwtGjR3H69GmMjIygqakJ7e3tuPzyy7FlyxZMmzbNtY2pOneEVAqMKEFICdi3bx8+9alPOeYFEXVdXV347Gc/i8HBQQBAIpFAKpWCqqoAgFWrVuHee+9FXV2dY/1du3bhC1/4AsbGxgAATU1NSCaT0DQNALBp0yZ87nOf871JTzZXXXWV+RkBoK6uDoqiIJlMmmmrV6/GPffcg4aGhrz6U3XeAOArX/kKfvWrX5nv6+rqUFNTg9HRUTOttbUV9957L5YvX55XfyrPHSGVAkUdISVg3759uPvuu3HBBReYj2984xvo7+/3FXXDw8O47bbb0N/fj/b2dtx9993o6OjAxMQEfv3rX+Ob3/wm0uk0tmzZgn/913/Nq3/8+HHcfvvtSCaTWLFiBe666y4sXLgQo6OjeOSRR/DAAw8AAD760Y/ife97X7GmIBJr167FhRdeiOuvvx6XXXYZ5s+fDwDo7u7Gj3/8Yzz++OMAgPXr1+Puu++21Z3K8wYAv/3tbzEwMICVK1eivb0dLS0tAIDR0VH84Q9/wP3334/Tp09jxowZ+OlPf4rm5maz7lSfO0IqBkEImXTS6XRe2s033yw6OzvFD37wA8+63/ve90RnZ6e49tprxbFjx/Lyf/KTn4jOzk6xbt06cfjw4bz8e+65R3R2doobb7xRnDlzJi//v//7v0VnZ6fYuHGjY34peeGFFzzzv/jFL4rOzk7R2dkpenp6bHlTed6CsHv3bnPuduzYYcvj3BFSGdBQgpASoChK5Lo7duwAAFxzzTXmSpWVd7/73UgkElBVFU8++aQtL5lM4g9/+AMAYMuWLeZqjZXbbrsNADAyMoJnnnkm8jiLwdve9jbP/M2bN5uvu7q6bHlTed6CcNFFF5mvT548acvj3BFSGVDUEVJBHD582DSoWL16tWOZxsZGrFy5EgCwd+9eW94rr7yC8fFxz/rz5s3DOeec41i/3LGe5zLOagGctyC8/PLL5uuzzz7bfM25I6RyoKgjpIJ48803zdeLFi1yLXfeeecBAA4ePFhQ/bfeeivKMEvGSy+9ZL42PgPAeXMjlUqhu7sbv/zlL/Gf//mfAHRBd8UVV5hlOHeEVA50aUJIBdHX12e+njNnjmu52bNnA9C3s0ZHR9HY2AgAOHXqFACgpaXF0To0t761v3JnaGgIDz30EACYxgAGnDc71157LVKpVF76ihUr8B//8R+2FU/OHSGVA1fqCKkgrO4n6uvrXctZb57WOobrD6+bqzXfWrec0TQN//Vf/4W+vj7U1dXh05/+tC2f82Zn5syZmDlzJhKJhJl26aWX4hOf+ATOOussW1nOHSGVA1fqCCEVz9e//nU8//zzAIB/+Zd/weLFi0s8ovLm5z//ufl6YGAAO3bswE9+8hN85CMfwQc/+EHceeedJRwdISQqXKkjpIIwtrQAmIfPnTAcvObWMVZmrPle9a11y5X77rsPjz76KADg4x//uM0C1oDz5s6MGTNw66234otf/CIkScKDDz5oCmSAc0dIJUFRR0gFMWvWLPN1rtsJK8Y5pqamJttN0ji3NDQ05HmTNepb+ytH7r//fvzsZz8DAHzsYx/De97zHsdynDd/li1bhhUrVgAA/ud//sdM59wRUjlQ1BFSQVgtOr2sBA2Lw3PPPbeg+l7WiqXmW9/6Fh5++GEAuqB773vf61qW8xYMwxDi2LFjZhrnjpDKgaKOkAqivb3dPMi+e/duxzLJZNL0ObZq1Spb3ooVK8zD7nv27HGs39PTg0OHDjnWLxfuu+8+PPLIIwD8BR3AeQvK8ePHAdi3QDl3hFQOFHWEVBgbNmwAADz11FPo7u7Oy//Vr36FZDIJRVFw3XXX2fISiQTe8Y53AAC2bduG4eHhvPpbt24FoN/YOzs74x5+wdx3333mlus//dM/+Qo6g6k8b6qqQviE+X7hhRewf/9+AMAll1xiy5vKc0dIJUFRR0iJGBoawunTp82HEQFhfHzclp7r4uHWW2/FzJkzMTY2hs997nNmOKyJiQls27YNP/jBDwAAN9xwAxYuXJjX7x133IFEIoG+vj7cddddOHLkCAB9teWBBx7A9u3bAQAf/OAHHUM6lRLrGbqPf/zjuPXWWwPXncrzduLECdx5553Yvn07jh8/bhN4vb29eOihh/D5z38eQghMmzYt72ziVJ47QioJSfj9+0YIKQrvec970NPT41tu48aN+PznP29L6+rqwmc/+1kMDg4C0Fc4UqkU0uk0AH0L695777U5kbWya9cufOELXzAPrjc3NyOZTEJVVQDA9ddfj7vuuguSJEX+fHHT29uLm2++GQAgyzKmT5/uWf6WW27JW8WbivMGAN3d3bjlllvM97W1teZnN/zIAXq4rnvuuQcXXHBBXhtTde4IqSQo6ggpEYWIOgDo7+/H1q1b8fzzz+PEiROoq6vDeeedh40bN2LTpk2QZe+F+GPHjmHr1q3Yu3cv+vr60NjYiCVLluBd73oX1q1bF/VjFY1cYeLHhz70Idxxxx156VNt3gB9Re3ZZ5/Fvn37sH//fvT19WFwcNAUx+effz6uvPJKXHfddZ4Ohqfi3BFSSVDUEUIIIYRUATxTRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVUARR0hhBBCSBVAUUcIIYQQUgVQ1BFCCCGEVAEUdYQQQgghVQBFHSGEEEJIFUBRRwghhBBSBVDUEUIIIYRUARR1hBBCCCFVAEUdIYQQQkgVQFFHCCGEEFIFUNQRQgghhFQBFHWEEEIIIVXA/wdNWSyK1mwWVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAG+CAYAAAD1MPK+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOz9d7wkVZ3/j79OVaeb5s7cmYGBIcwAA0gQRMKSBBQUMe4qgmJas64Bw+7XsLu6u8qui/pzP2vCj7ooYlb8KOiCShAliBKHPDAzDJPzzR2qzu+P6lO3uuqEd1Wd7ntnqNfjMY/p23X6nFOhq579Pu/AOOcchQoVKlSoUKFChfZoObM9gUKFChUqVKhQoUL5VUBdoUKFChUqVKjQXqAC6goVKlSoUKFChfYCFVBXqFChQoUKFSq0F6iAukKFChUqVKhQob1ABdQVKlSoUKFChQrtBSqgrlChQoUKFSpUaC9QAXWFChUqVKhQoUJ7gQqoK1SoUKFChQoV2gtUQF2hQoUKFSpUqNBeoALqChUqVKhQoUKF9gIVUFeoUKFChQoVKrQXqIC6QoUKFSpUqFChvUAF1BUqVKhQoUKFCu0FKqCuUCGC1qxZA8YYGGN485vf3PXxzj777HC8Qvn1qU99KjyeN99882xPp1ChQoW6otJsT6BQoUJ7tm6++eYQlN785jdj2bJlszqfQrOrT33qUwCAZcuW9eQHUKFChWZUQF2hQoVy6eabb8a//Mu/AAgsjAXUPbMlroWzzjqrgLpChXqsAuoKFSJo2bJl4Jz3bLxiibBQoUKFCqVV4VNXqFChQoUKFSq0F6iAukKFChUqVKhQob1ABdQVKkQQJfp12bJlYIyFPmWtVgtf//rXccYZZ2DRokXo6+vDihUr8P73vx8bNmzQjpcm+vWpp57CJz7xCZx88slYvHgxKpUKlixZgvPOOw9f/epX0Wg0SPvIOcfPf/5zvOENb8CKFSswb948VCoV7Lfffjj33HNx2WWXYc2aNWF7EVEqfKgA4JxzzgnnLf6dffbZyjHvuOMOvPvd78ZRRx2F+fPno1ar4aCDDsJFF12E6667jjRvAPjZz36G888/H/vssw/6+vpwyCGH4G1vexseeOABch9p9ec//xnvf//7cdxxx2HhwoUol8sYGRnBKaecgg9/+MO48847tZ9fuXIl3vve9+Koo47C8PAw+vr6sHz5clxyySX49a9/rf3szTffHB5fEZiQp238XE1MTOBzn/scTjzxRMyfPx8DAwM45phj8IlPfAK7du3S9iF0yy23JK4FWfSx53m46qqr8LKXvQwHHnggarUa+vv7sWzZMpx00kl497vfjWuuuQaTk5Pa/SxUqBAAXqhQIaNWr17NAXAA/E1vepO0zcEHH8wB8IMPPphv2bKFn3baaeFn4v9GRkb43XffrRzvrLPOCtvq9NnPfpZXq1XlOAD4ihUr+KOPPqrtZ9WqVfyEE07Q9gOAL1u2LPzMJz/5SWN7APyss85KjDcxMcFf+9rXGj/7kpe8hI+Ojirn3Wg0+Gte8xrl56vVKv/Od77TMdebbrpJeyxMGh8f56973etI+75mzZrE533f5x//+Me54zjaz770pS/lY2Nj0jncdNNNYbtPfvKT2vlS2kbP1apVq/iznvUs7TUg2y/K8Ygf/61bt/KTTjqJ9LlrrrlGu5+FChXivAiUKFTIslqtFl71qlfhtttuwznnnINXvvKV2G+//fD000/jG9/4Bh566CHs2LEDF198MR544AFUKpVM43zkIx/B5z//eQDA0NAQLr74Ypx88skYHh7Gpk2b8POf/xw33ngjHn/8cTzvec/DvffeiyVLliT6eeyxx3Dqqadix44dAID99tsPF110EY477jgMDAxgy5Yt+POf/4xrr722I1jk4osvxvHHH48f/OAH+OEPfwgA+Ld/+zccc8wxHf0vWrSo4+9Go4HzzjsPt912GwDgoIMOwmtf+1ocffTRqFarWLVqFb7zne/g0UcfxXXXXYdXvvKV+M1vfgPHSS4svPvd78aPfvQjAECtVsPf/u3f4tRTTwXnHLfeeiu+/e1v461vfSvOO++8TMc4runpaZxzzjm46667wjFf85rX4PTTT8eCBQswOjqKlStX4le/+hUee+wxaXDN//f//X+4/PLLAQClUgmve93rcPbZZ6NareKee+7BN7/5TezcuRPXXnstLrjgAtx0001wXdfK/E0aHR3FS17yEjz66KN4+ctfjhe/+MUYGRnBk08+ia985StYt24d1qxZgze/+c246aabOj57zTXXAAD++q//GgBw9NFH49Of/nRijOj18fa3vz08lgcffDAuvvhiHHbYYZg/fz7Gxsbw6KOP4ve//73R6lmoUKG2ZhkqCxXaI5TGUif+fe1rX0u0mZyc7LBM/OhHP5L2ZbLU/eIXvwi3n3baaXzjxo3SdldccUXY7sILL0xsb7Va/Nhjjw3bXHLJJXxiYkLaV6PR4L/4xS8S76e1gn3oQx8K27/rXe/i9XpdOtYb3/jGsN2Xv/zlRJuoBWrBggX83nvvTbS54447+NDQkNJSlFbvfve7w36OO+44vnbtWmXb3/3ud3znzp0d7/3hD3/gjDEOgA8NDfE//vGPic9t2LCBH3nkkeE4//Ef/5Fo0y1LHQBeqVT4L3/5y0SbrVu38mXLloXt/vSnP2n7klloo9q8eXNorXzuc5/Lx8fHlW3XrFkjtQ4WKlSoUwXUFSpEUFqoe8tb3qLs64YbbgjbvfWtb5W2MUHd8ccfzwHwRYsW8e3bt2vn/oY3vIED4I7jJCDk6quvDsc544wzuOd52r5kSgN1GzduDJeLX/CCF2jbNhoNfsghh3AA/LDDDktsf9nLXhaOe9VVVyn7+epXv2oF6tauXctLpRIHwBcuXMg3bNiQuo9XvOIV4TyuuOIKZbsHHnggHGvJkiUJ8O0m1P3rv/6rsq+vf/3rYbt/+7d/0/Zlgrrbb789bPv5z39e27ZQoUI0FYEShQp1QZdeeqly21lnnYVSKfB8ePDBB1P3fd999+Hee+8FALzlLW/ByMiItv3rX/96AIDv+/jd737Xse3qq68OX3/605+WLnHa1A9/+EPU63UAwIc//GFt23K5jIsuuggAsGrVKqxevTrcNj09jf/93/8FAOy777547Wtfq+znLW95CxYsWJB36vjhD3+IVqsFAHjf+96H/fbbL9Xn6/V6GACxaNEi/O3f/q2y7THHHIMXv/jFAIBNmzbh9ttvzzjrdHJdF+9973uV21/wgheEr7Ncu1H19/eHrx966KFcfRUqVChQ4VNXqJBl9ff3J/zKoqpUKli0aBE2bdqEnTt3pu7/1ltvDV/7vo+f//zn2vbr168PXz/yyCMd2/7whz8AAIaHh/G85z0v9VzSKjr3LVu2GOcePT6PPPIIli9fDiAA22azCSCAZJ3PWaVSwemnn45rr702x8xnjhUAvPzlL0/9+XvvvTeMRD777LNRLpe17c877zz88pe/BADceeedOOuss1KPmVaHH364FoCXLl0avs5y7UZ19NFHY//998eGDRvwzW9+E0DgY3fSSSd1/cdFoUJ7qwqoK1TIshYuXGhMRVKtVgEEFqe0iqYV+dznPofPfe5z5M+KYAgAGBsbw+joKADgyCOPJKVPyavo3NOWkIrOPZoS5rDDDjN+ltLGpKeffjp8/axnPSv15zdu3Bi+XrFihbH94YcfHr7etGlT6vGyKB7UEpe4boFs125UruviiiuuwKte9So0Gg1885vfxDe/+U3Mnz8fp556Ks444wy86EUvwnOf+9xc4xQq9ExS8XOoUCHL6raVYffu3Zk/K6xbAEKgA4DBwcFcc6LK1twnJibC19FlPJUGBgYyjyskjpfruqjVaqk/Pz4+nmo+0TZjY2Opx8uiXlvIXvrSl+JPf/oTXvnKV4aWy127duHXv/41PvGJT+DEE0/EscceGy61FypUSK/CUleo0B6mKIDdfPPNmZfl5s2bF76OAkc3JeZeKpUwNTUV+hamVRR4KElpoxCYVeJ4eZ6H6enp1GAXPW9p5zw0NJRqrKh838/82V7ouOOOwzXXXIOxsTH88Y9/xG233Ybf//73uO2229BsNrFy5UpccMEFuOqqq3DJJZfM9nQLFZrTKix1hQrtYYr6Na1cuTJzP0NDQxgeHgYQ+KtxSU412xJzb7VaePTRRzP3s//++4evV61aZWxPaWPSAQccEL7O4tgfDax4/PHHje2jbeJBGdFlUFPFkG3btlGnOKsaGhrC+eefj3/913/FzTffjI0bN+KDH/wgAIBzjg996EPwPG+WZ1mo0NxWAXWFCu1higY0/OxnP8vV1xlnnAEgWBa95ZZbMvURXbIzgaGtuR933HHhct3vf/977cO+0Wjgj3/8Y+axhM4888zw9S9+8YvUnz/++OPDRNM333xzGEmr0m9/+9vw9cknn9yxLRrMEA2EkanXiXuFb2beHwkLFy7EF77wBZx44okAgsAaCgwXKvRMVgF1hQrtYTrxxBNDR/0bb7wR119/fea+RLoTAPinf/qnTEt10WVF0zLnxRdfHMLYF7/4RWMNXJVqtRrOP/98AEEQgahoIdOVV16ZO1ITAC666KJw7v/93//dEfhAUbVaxQUXXAAA2Lp1K77zne8o2z700ENh7dslS5bg1FNP7dh+6KGHhta6W265RQlQu3btwlVXXZVqnnklrgcbS94AwlrKAIwgXKjQM10F1BUqtIfJcRz8+7//e/j3xRdfbCwA/+CDD+Ld73534v0LL7wQz372swEEKTve+MY3Kv29Wq1WCBpRiTQjAHD33Xdr53HQQQfh7/7u7wAE0awvetGLtNYX3/fx29/+VlpuSizNAcD73/9+PPDAA4k2d911F/7+7/9eOyeqDjzwQLz97W8HEMz9ggsuwFNPPaVsf8stt2DXrl0d733kIx8JLVkf/OAHpVa0TZs24cILLwwB5oMf/GCilFy5XA5zxq1duxZf+tKXEv1MTEzgta99LbZu3UrfSQsS18MjjzyCqakpZbvrr78e//Vf/6UNnlm1ahV+85vfAAhg8dBDD7U72UKF9jIVgRKFCu2BesUrXoGPf/zjuOyyy7Br1y5ccMEFOOOMM3DBBRfg4IMPRqlUwo4dO/Dggw/i5ptvxsqVK+G6Lr761a929OO6Ln784x+HtV+vvvpq3Hjjjbj44otx3HHHob+/H9u2bcPdd9+NX/7yl6jVanjJS17S0ceZZ56JcrmMZrOJyy+/HIwxPPvZzw4tSSMjIx3Lh//5n/+Je++9N5zXUUcdhVe84hU466yzsGTJEjSbTWzevBn33XcfbrjhBmzcuBEveMEL8I//+I8d455zzjl461vfim9+85vYvn07Tj75ZLzlLW8Ja7/+4Q9/wJVXXgnOOS644AL86le/yn3cP//5z+Ouu+7CXXfdhXvvvRdHHHEELrroIpx22mkYGRnB2NgYHnzwQfzqV7/Cww8/jNWrV2P+/Pnh508//XR8+MMfxuc+9zmMjo7ijDPOwOtf/3qcffbZqFQquPfee/GNb3wjTN9yxhlnKJM0f+QjHwn36QMf+ADuuOMOvOhFL0KlUsGDDz6IK6+8Ek8//TQuvvhi/OAHP8i971S94AUvwP3334+JiQm87GUvw5ve9CYsWrQohNmTTz4ZIyMj2LhxIy699FL8wz/8A8455xyccsopOOSQQ8Jr7q677sKPfvSj0OJ36aWXoq+vr2f7UajQHqlZrGZRqNAeozRlwg4++GBjf6a2pjJhQl/72tcStU1V/3TzeuyxxzpqwKr+LV++XPr5j33sY8rPyMpF1et1/p73vCes/Wn698Y3vlE6bqPR4BdeeKHyc9VqlX/nO99JXZ9Wp7GxMf7qV7+aNG9ZbVjf9/nHPvYx476/5CUv4WNjY9q5/Mu//Ivy84wx/slPfjJVmTBTaS9K26effpovXrxYOS9x/L/97W+TjiFjjH/gAx/IVMKuUKFnmorl10KF9mC9853vxNq1a3H55ZfjhS98Ifbff39Uq1VUq1UsWbIEz3ve8/D3f//3+N3vfocnn3xS2c+KFStw77334gc/+AFe/epX46CDDkJfXx8qlQr2339/nHfeefjsZz/bUVUhqssuuwzf//73cf7552PJkiWJ5cK4KpUKvvzlL+ORRx7BRz/6UZxyyilYvHgxSqUS+vv7sXz5clxwwQW47LLLcP/99+Pb3/62tJ9yuYwf/ehH+MlPfoIXvvCFWLhwIarVKpYvX463vOUtuOuuu/CGN7yBfkAJGhwcxI9//GP88Y9/xDve8Q4cccQRGBoaQqlUwsKFC3HqqafiH/7hH3DPPffgoIMOSnyeMYbLLrsM9957L97znvfgyCOPxODgIGq1Gg4++GBcfPHFuO6663Dttdca8wf+8z//M2644Qa89KUvxeLFi1GpVHDAAQfgoosuwu9//3t86lOfsrrvFC1duhR33303PvCBD+CYY47B4OCgNLH1G97wBtx33334whe+gFe84hU47LDDMDAwANd1MTw8jOOPPx7vfe978Ze//AVf/OIXiyoThQoRxDjvQR6DQoUKpdLpp5+O2267DdVqNXfm/kKFChUq9MxQ8dOnUKE5qO3btwMI0joUKlSoUKFCFBVQV6jQHNOGDRvCiNBjjjlmlmdTqFChQoX2FBXRr4UKzQFNTk7if//3f/HUU0/hS1/6Upgv7lWvetUsz6xQoUKFCu0pKnzqChWaA1qzZk1HvjcAOOWUU3DrrbeGCW8LFSpUqFAhnQpLXaFCc0h9fX049NBD8apXvQp///d/XwBdoUKFChUiq7DUFSpUqFChQoUK7QUqAiUKFSpUqFChQoX2AhVQV6hQoUKFChUqtBeogLpChQoVKlSoUKG9QAXUFSpUqFChQoUK7QUqol8LFSo0K+Kco9FoYHJyEtPT02g0Gmg0GqjX6+Fr2XvNZhOe54X/fN/v+D/+HhDUW2WMhfVDo68dxwm3u66LcrmMUqmEcrkc/iuVSqhUKuH74u9arYZarYa+vr6O/0ul4tZaqFCh3qu48xQqVCiTms0mxsbGMDo6Gv4ffT0xMYHJyUntP8/zZns3uqJyudwBfH19fRgYGMDg4GD4b2hoqOPv6L/h4WHUarXZ3o1ChQrtYSpSmhQqVAhAAGk7d+7Ezp07sWPHDuzYsSN8Ld6PwtvU1JS1sSuVChoTTYAzwGNgPoLXfvCP+QhfQ2wDwHj7NUfwD5HX4u9QvPPP6GvRGWt34fDgbwcd/3MGwGm3czjgcnCHY2CkD9PT01YhtVqtYv78+R3/hoeHE++NjIxg4cKFqFar1sYuVKjQnqkC6goV2svleR527tyJrVu3hv+2bNmCrVu3Ytu2bSG0jY2Npe6bMQbeANBywFoO0GLt/x2wVhvQvOB/tMRrp/N9j4ElCKsLclz1Nu4DaW6FLDlfLqDR8UPYg8sBh4O7HCi13y8Fr8V74m+4HPOXzsPY2BharVbq3RsaGsKiRYuwcOFCLFq0qON19P8ioXWhQnuvCqgrVGgP19TUFDZt2oSNGzdiw4YN2LRpUwfAbdu2jW5B8gE0HbCmG/zfYLHXEWATENcLILMhHdSpJIM9CdCZ+6HfZjnaMFgOgI+X/eC15H9e9lGZV0Kj0SD1zRjDokWLsO+++2LJkiXS//v6+tLvX6FCheaECqgrVGiOq9VqYcuWLdi4cWMIbuL1xo0bsXPnTmMfjuPAnwJYwwWru2ANFxCvm04IbSGkZbktRGFnrtxWVHOyAXhZ4C4i5s7Mgfsc8LMt3QoI5BUfqHjgVX/mdSV4ve/hC7F9+3Y0m01jf8PDw9h3332x3377YenSpTjggAOwdOlSLF26FIsWLQoDTAoVKjT3VEBdoUJzQJxz7Ny5E+vWrev499RTT2HDhg3m5bgWA5suBZBWd4E2uIUAV4fZoqa7FZgAZrZvIxTAosxRBXuU5VmLkCefQnbwA9rwV/YD6Kt64DUPqHrh3wNLahgfH9f2UalUEqB3wAEH4IADDsA+++wDlvMYFCpUKJ8KqCtUqIdqtVpYv349Vq9ejTVr1nQA3MTEhPJzlUoFzV0e2LQLTLdhbbr9r1EB85wAPNJKfP3TPoxn+7bR5SXQUI6b3t9OqMuQF1de6AMA7raBr+oH0NfXAq952P/Z+2Djxo3aZfy+vj4cfPDBOPjgg7Fs2bLw9f777w835b4UKlQomwqoK1SoC/J9H5s2bcKTTz6JNWvWhP+vXbtWuQTGGAOfcsCmXDhTLthUCaz9P+pOYGnLAwqsvWyWBf6A2Qc5IN/+55l/1qXlqOUv7XFXLPWmgT2eIeBC2Rd4YNnra/+reeB9LRxw/BKsX79eCXyVSgUHHHBACHqHHHIIDj30UOy///7FUm6hQpZVQF2hQjk1OTmJVatW4fHHH8fjjz8eAtz09LT8Ax4Dm3TBJksd4MamXLB2qo7M8MIUD8k9GeTiynpssu6Lbjxdnya/Pd05ybgUrgM+m4CX6JvxAPL6W8G/vuB1ecRRBnH09fXhkEMOwWGHHYbDDjsMhx56KA455BD09/d3bZ6FCu3tKqCuUKEU2rVrFx577LEQ4B577DGsX78e0q+RjwDcIv+ciba/G3LAmwrcZMqzJDtXNZegTjdGmmAMcZ7SzjHF3ATwdRPu4hLWPb8/AnwDethbunQpDj30UKxYsQKHH344jjzySCxYsKBncy5UaE9WAXWFCik0OjqKhx9+GA8//DAeeeQRPP7449i6dau8cd2BM1EGmyiBTZTbVjg3GUk61yGOZYh8zep3lmWsXgOdALO0xzXNOYsq63HMo1l4BHDwwJo30AQfaMEfaGHh4fOwbds2aft9990XRxxxBI488kgceeSROOKIIzA0NNTjWRcqNPdVQF2hQgAajQZWrVqFhx9+GA899BAefvhhPP3004l2jDFg0gEbDwDOmSgHr1vCX03xdbINczYtcKq5pV1apABJ/HPdiiq1dVtT7adOWYFONk6eiOTc488C7JV88IEm/IEW+GALB5y4D9atWye1hC9dujQEvKOOOgpHHHFEUVWj0DNeBdQVekZq8+bNuP/++/HQQw/hoYcewqpVq6QBDGzKBRsLwM0Zb1vgPAPAJTpJ+fCNQ0EeB3vtOBnSgFD8xNJ8ZhaS+6YSZQk1fn5sQV1U8ajW2UodMhug5/qBNW+oCT7YxJLjFmLDhg2JdqVSCYcffjiOOeaY8N+iRYt6Pt9ChWZTBdQV2uvl+z7WrFmD+++/P/y3ZcuWZMMmgzNWCQBuLGaBA3q/LEZRL1JtpF3+5Tx9ct+56vuXJUlxt5U16KWb6vFjhJd88MEm/MEW+FAT81cMYMeOHYl2S5YsCQHv2GOPxfLly1EqlXo610KFeqkC6grtdWo0Gnj00Udx//3344EHHsADDzyQqGvqui78XU4Ab2OBFQ7TbjJBbzed67OmGMn7lSVCXaLigUnR/aCAYNRKRwXNLP5+0fFs9GNTUQtcFqtgGkXPCbWfrHkMo5/VzslOFZIwIGNeE/68Jg45cymefPJJ+H7nfvb39+PZz342nvOc5+D444/HihUrCsgrtFepgLpCe7xarRYee+wx3H333fjLX/6CBx54IBlZ57EA3kbLcEYrwZKqbwAPm1YwGeT0GubiUsxVlRZDCXaq/VDts03fPpl0VSG62X9aqRIFp51/WmVJeyM7RjZBz9a5j37UbVvz2qDXf0A5keC7gLxCe5sKqCu0x4lzjtWrV4cQd9999yXLGzWdAN5GK8GS6kQZjGJtmhkk/cSiDyaTpWq2gU6oPWdKQtsOqKPMP2qJ7LbVxpaVq5eAR6n+kCd5sUlUa2r4OuU5pChtZHgeyGMIfPPmNcCHG+g/uJy4b/T39+PYY4/FCSecgBNPPBGHHnpokSC50B6lAuoK7RHasmUL/vSnP+Huu+/G3XffnfSfaTE4u6twdlfBdleCZL5iKbUXAEV9uM8VmGuLpbBKcJ/Prfl3228va+UIyjzmkn9m2sCOtKXI0ub5y5oXMOVcOLgR8kZGRnDiiSfipJNOwoknnoiFCxemG69QoR6rgLpCc1LNZhP3338/7rzzTtx5551YvXp1ZwOPBVa40QqcXdXAEheFuLQWgOiDLc1DK200aNbqBLaVouxUWpgLk9wSa5EKsCS1TwlyzJFYT7kPrqlhKlWatCsUK22Kcx0Fb9K8s/jO6fqgyHTeum3Bk30u5VxCyBsOIK+61MHU1FRHm8MOOwwnnXQSTjrpJBx77LFFCpVCc04F1BWaM9q8eTPuuOMO3HnnnfjLX/7ScUN1HAd8lwtnVwXOaA1srDJTUiuLn5bqoZUX6FRzkc1jNr56KfzossJcog/JMZVZCLVQlwLmOkCuc0PyvbSAl/c6ywF0Hd2o5my7TBylb5lU59EGoPWoD844+FAD/oImDnvBUjz66KMd26vVKo4//niceuqpOO2007BkyRL6vAoV6pIKqCs0a/I8Dw888AD++Mc/4o477sDatWs7GzQcODsrcHZW4eyqgHluOj+tNNaTtEtKaaooiHnM9lfN8CDrsLDlhDmhOKiZlns72uexyskb6AbObr1LG+lsAerCKUTnbNuP06SskNcjy5uxvzSfYw54yYM/3IC/YBojRw0kql8ccsghOP3003HaaafhyCOPhEvwUy1UyLYKqCvUU01PT+Ouu+7CH/7wB9x2223YvXt3uM1xHPCdbghybKKUTDFCEWN2rAp7i7rkj0UJrsgiUvoUMQcTyHU2pk4gPeCR+k13q03t70hvnGoeZKX9znXLd65b/oeR/ePg4P0t+PPrOPrly7By5cqO9Cnz588PLXgnnXQS+vv7uzOnQoViKqCuUNe1c+dO3HbbbfjDH/6Au+66qzPdSJMFlrjtwhqXI9JM3MzT5kij9Ju2SoPNr1XWPrM8NFNYnUxAFbX4kfz20ljoiP1K+2cMrFTW9t0VqAOsWuk6uu0G1NlYyqVayGcT8LLk4ovtFy/58OdPwx+ZRv+yUkfARblcxgknnICzzjoLZ5xxBubPn08fp1ChlCqgrlBXtHnzZtx888249dZb8cADD3TWbpx24G6vwdlRBdtdzmaNA+Q3YeqDKE1NzbT1N20nB+4FzFE+Lzm2MrBTLd/GAUzpQ5ciT1smqAs/rIC7OWCpm3WgA1JZNnP1J7sGeg15efLwxQEv9MWbwpKTF2D9+vXhNsdxcNxxx+Hss8/GmWeeWZQxK2RdBdQVsqatW7fi5ptvxk033YSVK1d2bGPjpcAatyPHsipgvtFSIv/S1BpNW5fUdtmubgGdJX/EKNSZfPFSRcUS87PlgrqOjiKAtwdB3awDXZ5x0kScdwPy0uRFzGjF49wD7/PgL5zGoeftj8ceeyzSJcMxxxyDs846C2eddRb23Xdf+hiFCilUQF2hXNq2bRtuueUW3HTTTR0WOcYYsKsEd1vbIlfP4X9l00cmT9kjSr8UdSPJqu0yW2n9EqnJiKn+ixlKmelETa8CxsBcd1ahritWul4BXZ6xu3B9dCU4Kce9g1db8BbWceRLD8KDDz7Yse3II4/Eueeei+c///mFBa9QZhVQVyi1du/ejZtuugk33ngj7rvvvo6lVba7DGdbDe72Klgj9sBN6xtG9e+arQLn3U4gOxug2IYagAgMtqs0ZHhgGqNvI/53qayEaatmUNoRq0hQAkBC8ExbGUInItCJ+aWyFFLnYfP+kLXPblTPiIlXPHgLp3HMXx+C+++/v+MH8QknnIBzzz0XZ511FgYHB3ONU+iZpQLqCpHUaDRw++2344YbbsDtt9+OVqsVbmOjZTjbqnC31dQgJ2TjAW8juWpWZf26dKsgetoxNHm7pD5vFNmoqZrjAUnNsRdtlyonnu4ak+Who7Qjjq2Du4Q1MW9gQwoLXXxeqeFu5oOK97tw7WSFRRv58gzi5WCJ9shXHNzhulKpVPBXf/VXOPfcc3HqqacWyY4LGVVAXSGlOOdYuXIlbrjhBtx4440YGxsLt7HxEpyttQDk4kurNnzE4n2oisN3Wza+Hnlu/r14uEmALmyaxVrX4/QTCVhTXBfk5MjUQA1D3jtSW+LYCYiiJh/uwrKrCjQzg91MB7G/5xDYqT7fhfQpvNqCt3gaB561CGvWrAnfHxgYwFlnnYXzzz8fxx13XODiUqhQTAXUFUpow4YNuP7663HDDTd0RG6h7sDdWoOzpQ/OZMzvx6afGCU1STeBrhvpSPKoiykcSKlGKEpbz9TiAylcVjVcE+QkydSUKtRlT0o73yONGy57mnz+qMvC8fbE8VXKDXadnbX/t7wca6u/bvnniu5FLrzF0xh5Tj+2bt0ablu6dCnOP/98nH/++UWARaEOFVBXCABQr9fx+9//Htdeey3uueeemQ0eC5ZWt9TAdleSUas2b6RpnPNtQ53tr0Ga42IzojbFA4YSZMA9jw4vlHmKShw9lgh+IO0zEUyYw+iWTJvBB2lALY1fIKlLgq+fTbATmq0AijliDePg4POa8BZPoXYIw+TkJIDA/+6kk07CBRdcgDPOOAOVSmWWZ1potlVA3TNcq1evxi9/+UvccMMNGB0dBdCOXN1RhrulBmd7DczvIshF+zNZ5mz/Mu5G8mHRPu34afJn5R1XNDdZ6aiO+FSLSpoABEvqWJqNWLeMVjtK39RgAbG/tsAurfUtjU8gqVuNn18WoIsCm85aaRvshGylM0l7vDO2444Pf2Edx7xmOe69997w/Xnz5uG8887DBRdcgBUrVtDmXGivUwF1z0BNTU3h5ptvxi9/+cvOfHJ1B+6mPrib+8wBDyrl+QVMLX7ebR+1bgR3mOaRJ4mx7SAD2dIe1adRNuc0gQeWRN0vpZ8dZQxqsEAaXzyT8iynyj6bcS7W/eqoSai7BXZCFpMQB/0Rj3nGdrzWgrd4CiPP7VyePfLII/HKV74Sz3/+81Gr1UwzL7QXqYC6Z5BWr16Na665Br/5zW8wMTEBAHBdF3xLCc6m/qBMV/xqsL28qtxGLHjerSjSXlrKTNF0sxloQHHA14FFdO46q0uXwE5rgdP4oSWCLUzjUK1Vlq1kuZdTo5+3YDlMJJ/OIx2wRa+lboOdEMWSnhgz57Gnnp9oO86D5dn5DZz5/hNw6623otlsAgAGBwdxwQUX4BWveAUOPPBAwg4U2tNVQN1eLs/z8Mc//hE//elPO33lply4m/vgbukDa4plsZTLmzYtSbbzQtnob7YTCtsYk9INNdkuxUeL81S1W22J7B9I6Ccv1IXjEYI32p2Z2wQd0trZDOAgDUf0LaSImMevZ2AnRPF9DcckuCvYPEexH8K85MPbdwr7nDaEjRs3hu+feOKJeOUrX4nTTjsNpRQJrgvtWSqgbi/V7t27cd111+HnP/85Nm3aBCCoO4gtZbib+uVBDxTZBh1qFvluRNfm7adb/ZlkMdggTDSsAx7mBA9uCvgRoI7UV4oxqVUlAHtgR4E6m+PNdGiI8G2XOjOOazN4g9hXeD6p41JKhxG+W6xU6k6FEO2g9iKeSe0kKxwcHP6CBk5++1G4/fbbw+TGixcvxstf/nK8/OUvx4IFC8zjF9qjVEDdXqZVq1bhpz/9KX7zm9+g0WgEbzYZ3M39cDf2J33l0soCOKWqAWroy9q8ulmzlbKsSl16JdZEpci47NoGK22bcKN52ZXUV5oxJe2pyrsUaxvqTOMlO1bk4hP1a01j21yGJfSlPKd5AY9YvzVaem1OAR4lSIQaSBJbku3YVPXgLZnE0LEV7Nq1C0CQ2PiFL3whLrzwQixfvlzdb6E9SgXU7QXinOOOO+7A97///Y5oKDZegruhH862Ghi38Ks8h5VOWq3A1hJK1nnlufSpgQ2UoAtqYIbshp4B7EhBBApYSrSjBEZADkHxhztpPJkygp2sf2rgRKoyXgZlDtaQnPso1CnnYTFggtIX+bxmBTzCd1FWT7fncAck9zFPgAglACkOdw7gL5rGilfsj4cffjh8/5RTTsFrXvManHjiiUVS4z1cBdTtwWo2m/jtb3+LH/zgB1i9ejWAduDDplJglRstB0uss5ECRLzUVSqwYaVLC3S2K0SkDeqgZqTvUsCBMZDAAEgdD0LdvrfnbOwrzXgapVmC1Y1DTXViC+pspFYJa9tKgC4xF5uBG8S+lJGyhiV/ksQ9hGA1l4EdaS7dUHT/KAEilDbUACbGgsCKoSZOfe8xuPXWW8Ol2eXLl+Oiiy7CueeeW+S820NVQN0eqImJCfzyl7/Ej3/845kw9hYL0pFskCyx9rKqAbVKQa+BzpaoYEhZmqW0sRh0QDkvJFiJ1P1VilCUnjJer6AujcjHyZI/INVqp4O6cD69DNwgWFDJATom+R7pPmcroMaqqEm7TffMjL62vNaCt98kKodyTE1NAQBGRkbwN3/zN/jrv/5rDA0Npe6z0OypgLo9SNu2bcNPfvIT/OIXv8D4+HjwZsOBu74f7qY+MC9280sDRTb81gxAZ23Jda5esqIihs3ITmr0G6EPa5BF8Puj9ENOfmwSBR7aYGTjGJBLcDEHvNU0trFRpYE55mosJGsdUgRuEK7zVAmubczL1g8c8cOFcg+11cYkyg/KHD/guevDWzKFkZNqobFgYGAAf/3Xf40LL7ywCKrYQ1RA3R6gzZs34+qrr8Z1110X5h9iky7c9QNwttTAeMqKD9QlQGruuHYfuZdaTXOai5dqdJ5p622Sx8gBdpRlMMKyImnZNWJVpC6pKq+ZlBactMlw8xwLUs6+SBst2BH2QTW/zm4k12H8sx3nUBFokTZoIyfYKYMm8szPkktCh0Wa4iaRp028nUoU14+cKzOccfiLpnHgi0ZCt55KpYKXvexluPjii4tas3NcBdTNYW3cuBHf/e538etf/xqt9g2GjZYDmNueoQ4r9SZArewQ6yNxw00LcrL5zNXLk3LMrI2VEeooDuuEIAApYMXPCyE4glLRIetyHLm6Q4bPJY4bpSKApE0C7gj7IVN8jtLPyMYnBExIA5rMEzK3kfVNCZYgzDFoxuNvkOZk6lvqamAr+ClL5Zo8fropxbkPf6SOw/5mPzzyyCMAAp/tF73oRXj961+PAw44wMo4heyqgLo5qPXr1+Oqq67C9ddfD084cO+qoLRuAM5oNf2XmOrMr3pYpQC6XDAXnc9cvCxNFs24ZgvsNG0p9UrDNpQUJhqfP0o/pDx5Mx2ax8qYBDfNcdGeC8I5COGOsD86kZaU22NQ0pvkDtpIYbXLFCQR6V+7KpBiPsopRH+gqnxI01rN8rRRtY8qSwUMk0S1iuEGjnnj8jCBvYC7N77xjdh///3tjFXIigqom0PauHEjrrzyStxwww0zMLezgtLTg3BGI5FI1MoP1BuE6SH1TL5ETMeYWuzeylzyZ6qnZP8nJf21lGQ4VTUL01g5qxpQj42N88BbTdI+mUT1AaQkIyYFOJknZG5DEeEYk+ZrYz5z7f5nw4ePqti++0MNnPCOw3HnnXcCCODuggsuwBvf+MZiWXaOqIC6OaDt27fju9/9Lv7f//t/4TKrs6MC9+lBOGOSsHKqM77JQtcrmLOVSqTXshGdOsegLlXpoTxzofZhyzmeCEhGS5zrgjfN0b3GKEoK2FGiYzPm30tOxwCrrjly0lrVCwrIM4cM/MY6vBauw6AzQpCCjfscJdLVVkYDQz/MdaWWSn+ogePeeij+/Oc/AwDK5TJe+tKX4vWvfz0WL16cf26FMquAulnU2NgYvv/97+MnP/kJpqenAbQtc08NwhlXwByQ7wZkY7mVqj3BN04lauUJHRynSR+Rt64nYdmP1Cbeljp+nn4MTvEkh3hCJYPOj8p951ipFObsUsJdG9iUYEeYV9q0GTbgTgu0Yl8U5yK1FZQS6KCpKhJvnwfuSEuylOCXjk4N99c897voD0VKJY08IizZhudABnfzGjjmTcvCZdlKpYJXvepVeP3rX1+kQpklFVA3C5qensZPfvITfO973wtTk7DRMkprBwOfubiyOOFT/O7iN7JuwJxsLnNdaecvA7u0+cDyQJ3JST9LBQFbVQcIAQTxNiRnfUK/1DQn0fYd5aQ4l4NdDNoScEc4dllyoXXLakeZf6albcN5BSTHQXYeMwTTGANgKNe3rftslvtffAVABnfdyj9qqgYkg7vhBp51yYG4//77AQBDQ0N4/etfj7/5m79BtSp5phXqmgqo66F838f111+Pb3zjG2EeIDZRgrt2AM6OarL6Qx4LkMnvLk26Eops1lSdTWW1LkbBLmuC17Rgl8fqYCnwgtyHrp80DvA5UreopzgTcBCvOpCw2ilgoGPelDQnORLc2rbamSyOuXwVKec2mqtOojxpbzpqzuaw+Bq/m2lTm5hEqQPbzaTylKpAMbjj4PAXNHDgSxeEqVD22WcfvPWtb8ULX/hCuD1MEP5MVgF1PdLdd9+NL3/5y3j88ceDN6adwDK3tdaZmsTk6wbQbjA2kglTNBerPmRVXp8YakZ3yhKp6fN5/YSoUGej2HsvnN5z1H/t6EZRSiq02pnmQPBNIwUuGGQL7Ci+gXkDUEjnt10yTiUbiaqNgTBUn1STTPdf6j1G569LKY9GlcH3mpyoWfwNDn+faSw4vRoaLw455BC85z3vwcknn5x7uoX0KqCuy1q7di2++tWv4rbbbgveaDG46waCcl6ypMHdBrpuLbF2c6w9RRSosxFgYEM2YI3ST4ogBm03hCha/TQI6T+ghrqo/Ho911xMUEcN2DAuL7da5v2xEKVLUdqlcGUfeYNPfI8WtW2pcoW+D8MYFksE5poHzN8L2ZIsdzi8/SbRdyxCN6PTTjsNf/d3f4cDDzww21wLGVVAXZc0NjaGb33rW/j5z38Oz/Pgui74uiAIgrUkNyZKNKpONrOW69RrC+BsX55U651DWH4L++wy2KVZnlV10bY4Gf3ZcgRmpLE2qR7WWWqn6sZlooi5rzh2jgP4vhbsKFAHaPYpErAhA7voMrGuDq/YlgfsTDn1WDnig5gRQkmWwLZlKtwXwnWn7FdYuSg5Fi1VrdBKd3+xEV1vcsVJcY/VXUuqa5GXfLzi82fjZz/7GTzPQ6lUwoUXXog3vvGNGBgYII9diKYC6ixL+M197Wtfw86dOwEAzo4q3NWDcKY0N1cV1KWBOdFPmvZU9WKZda4EWKT1q4vfePMuwVL7MPWZIdgh7htmxcE8Y+WEji4J1SgSn6HknIv+XYlFnMvAznE6tsfhjgKZuqAJYaVj7WtQBnZS37/4Eljsb4oFMjEvQwUMcmBJ7DNxGaEuFiSQ2BfD9SftPx54EPsOkyqUdMOiTqjUknoeXQjmkF1Puh8YAOAP+DjhXYeEOe4WLFiAt7/97Xjxi19c+NtZVAF1FvXoo4/ii1/8Ih588EEAAJt0UXpyHpzdkioQccWhLmtYvW0r3WzAnK1+884jj+9Lr611FAfvNEDX/qyVdBA5ghjCbgn1YjvaZygTloA6oSjcOU5iWxTsskAdMLN/qmCNKCzJ2gCdD1XZAzYt2Elr1ra3x+FTNVf5EITghagkkZ/SfTFch4mxZBGlhvrFtsqRGRW999i01kVlIeVUB9QboE7shzd/Gvu9aADr1q0DABx55JH48Ic/jCOOOCLTHAp1qoA6CxodHcX//b//F7/4xS+CaDmPwX1qEO7Gtt9cmsoONpIKZ/lcmn7S9pVljF5elnmgUnXD7aW1zkJuOl0EJCVRbMdYiu15nPtD6LFR9UAi5jA11AEzYBeHuvY2AXZZoQ4I9lEJbOJ69DzSEpjqAUsFOynQRbar5inmSgW7tFa6jj5U+0KIQjeWM2x/r3MnNs4rQuWW9mTM/ahkIWkyK5XMUAeE+8IZh7dkArVjPExMTMBxHLzyla/E2972NgwODuaayzNdBdTlEOccv/3tb/Hf//3f2LVrFwDA2VpDac0QWCO6jEU8xHlBylbZsLx9zIUxejEH3c3WBtRR+snpxG50PqdAHWWcHiyv5InSNEKdSW3oMz7YTOfLYQnrVxpxzsENgRyAGe5MtVlZuaScJwXqSDJUVSABqkGm80UZw8b3wygbAXRzQbF7Ji97eN7HjsVvf/tbAMDIyAje97734fnPf36u78EzWQXUZdTGjRvxhS98IfQPYJMllJ6Y11mjVSgvTO1JUGjSbEfN2rRk6pY8qfV5s96sU5RRMvXPSmXlNpM1gpXKJPAzFYvvesWEcgnwPGWbEG4dfQoH7nnq7b7fttRnKFYfDiCqVSiseZwDPlduBwC/0dRWInDayWBNQKON0C2V9XPUHOtUMljqKBZc7Tlrb9d993MBMFXUrAV5fkgyx1x+LK9MJc4U8/eH69j3RX14+umnAQAnnngiPvShD+GAAw7oxiz3ahVQl1KtVgs/+clP8K1vfSso7eUD7rpBuOsHkilKhPJAXS+XTOdCKpRuXY42902XIDqezDkv1Ik+Y58hlVsyyfcAxuRQF/WnU5V8Ep/LCHUdCXC7BHXR6MwobEkjYsW5UICd0a9PQJ1kvMhAitmHEwvbxaFJAN3MHOR9+Y320qmiCoETyfCfBezCfVfAZxRsuwV2Hb5chvNC8ccM2yjuBV0Hu7TJi/P68XYL7kwlzjRQyhmHt/8o3BVNNBoNVKtVvO1tb8OrX/3qIpAihQqoS6FVq1bhs5/9LB599FEAANtdRumJYX1UK5AN6vKAhq055JlP2v5tjZFmTFuBI6ZyazatdZKyVKkfKPGbbRzsCAESifYpoS5NmhGqEn1GlghlFrQEVEbPgwTsjBG4cagDkmCX+lxHAhdiUBeM39lfCHQdb84kqnUkJZvSgl3HPsvmqDnOmWWIgNXOMcP24M3I9dGLZVjTfcMUGZvF5cM23JnKm5n8A30PvNbCse9chr/85S8AgKOOOgof/ehHsWzZMnvz3ItVQB1BrVYLV199Na688kp4nge0GEprhuBs7uusBqFSGqCarZQje5uVrlv7o4M6Vck1W9Y6TRF58gNFYb0Jl1EJqRsSlr2UUKddAs2hMMFw2zoX9cnRLYuGy7+y8xCBO22uPBnQCUU/l3a5PQJNMqibmUPQRgp1QGiVlUEdQAc76fUXn6PkOOUGu8h1qwzQMEB3lu3BBq4d1/h5qlTXjylK1UaOTFtwZypvRgn68L2gKsW+U6ge72NiYgLlchlvfvOb8drXvhYlC76Ue7MKqDNozZo1uOyyy/DII48AAJztVZSemAfWJJqD0/jD2YaNNPPYG6x03R4jT/8WwM7oF2SSxs+Kua4x0arS967dhgJ2Wr83C1CncuA3+roFE5C/3wY7rY8ZY2qoA4Kx8zi7t/39VFAHBGCnhLp2/yqoA2hgp7wGxfw0x8gG2Gkjf3Xnh+B/amzD+eyBHWB+RuStaGMD7AiWOFKbtnjFw3M/sAK33347AGDFihX4+Mc/jkMPPTTvTPdaFVCnkOd5+PGPf4xvfOMbaDQagXXuyXnJWq0m7QmRnLNtpesm0M2V+eeAOkp5JKWVTUh3wzZBnWhmdDbPF6mrhTpKuh9J3rRwfnmgDgiAxSAdFDDGwGpV+BNTyv6Z64I3Guq5GaAODtNGnTLX1QdY1OtdD2jJC3Z5S8rlDi4y1BjOneakFz9uTfeSvHBHscalGJ+Dw188jf6TgvRh5XIZ73jHO3DhhRfCkaUYeoargDqJNm7ciM985jO4//77AQDOjgpKTwx3pimharYiOSnj2wCVbgaB5Om/G36MWccRN7kM0EMFuuA/xVwIQKf9vGiqy2VHeZhlhTpqHjwVsJTbFkY/WB6XghNzwGrVYBlVZe0y1Y3VLNMyxsD6+gDPgz81Le2blUra+YXjq86TyP2mADtxLSkDLAy59oz1cw3niVxP1ZBIW3kdivdFkIahtFxmuDPkXTQFGBnV7R+ipkhaYioZpWVXjGta6jXl+IwdB172cOIHDw/rqJ9wwgn4+Mc/jn322Uc732eaCqiL6Xe/+x0+//nPBwWIPYbS6hS+czLNRjQnZXxblqduw1Pa/rsdENLNEmKSMkxpluxI5ZA6BugMBsgEdVGg7AbUpalWIYOVcmTJ2J95WCTASUBdu50U7IhQBySBIYQ6QA520WS+ivl1jC87V9FKDYqasaIv2bEyVcYwRitrzhUZ6GR9SbYn5hf/OxrpnNWXTiXZ9zSi3FUnuu1bbIqiTZEfUAp2uuwA8f5NUbxxsAOHv18dpaPrmJ6exuDgID784Q/jBS94gXbOzyQVUNfW1NQU/uu//gu/+tWvAABstIzyY8Ng9ZxOmbYPb9qEjGkiMXsBUGksh92GS5lsQl2OtANpgW7mrcicUgCd9POyj8Vqw3Z8zjbUpawp2wEqZYn/X7yWaxSeolDXbpsAuxRQB3TCQgfUAUmwi1doiM1NOnb0XMlKWsVKi3VOthPs4jVs4/sjTRfjGB7eph8cirbS/nJAXdhFitQnRhnqGc8psAPM9y1TKpJoV6a6r6YMAaZUJ7JjFQNRv9bCYZcsxMMPPwwAeOELX4gPfehD6O/v1879maBiQRrAY489hre//e341a9+BcYY3HUDKD8wkh/obIqxfECn+zznNJjJk+HbNEZWoLM9d6p/YuYoZUJAREag61AGoEul+EPWxpxnOtP3ZdouAzppP5oqEk4AeaxC7EvWffsYC3+6DrkunL5aeyxJyS3d3MI5GiCzrLl/cR/c058PE+RQ/eNSA138PdmPl+jcZNey5L3Ap1CzRB7ZbhSltmxH54ZrttuK3idl9zjfI0eoZqornOd+BSTm7EyX8MS3duHNb34zHMfBDTfcgLe//e144okn9P08A/SMttRxzvGzn/0MX/nKV9BsNoG6g/Jjw3BG1RFiGQbJ30dWmNJ9ieNt0o5ty+eumwEOeSE0j3Jkfmeuq38A5KlpaQA6kqVO5zOVw1pHKVmm/bzr6IEubqkL+w3KWiXAK/I53mhqIUoLAzpA4z78qWn1Q7E9Ny3A+Vy7nTdbeuf+HAEkpDJzWaAuOrauookJfHMEReQ9Ltr9zlvjO48oUbQ5SrTxVqs7zxzx2di91R+qY/7zHWzduhWVSgUf+MAH8NKXvvQZW2bsGQt1U1NTuPzyy8Oac872KkqrhsFaFn9NdTuFBmXsbn25KJ83aTaAzsZxocjkBKySJhcdgLDou07a1BQEK13WtCN5oI45LLCuZI2OpNRuVUFd2Icu3YOvPK6sDW06x/EgCEOdMkZbK5VzPWAYoI4xpplbUMfVn1JE5TIHTqWsTZVivJ5McGQoQ8dbmjQt7fkru240clmlTTVwdSJF2pqAtluVH7oNdqZ7gWWw4yUPJ7x/Oe644w4AwLnnnouPfOQjz8jl2Gck1D311FP4p3/6J6xevRrggLt6CO7G/uzBECp1K5Ewdcys4JI3CIOqvFU00vQd77/bEblZ/OkALdSFCWCzQl17n/NAnWn8LGAXAh2QDeooQCeksdYBkC/lRT4rXXqKWOIS26NLr4rEzqHvnuKa5Y2G2q8u2q9ie5gcWerU7gRLzJzLwa4NdYA6sXHu/ImA8poRuRGVYCd8UBVgJ/wSs0b05rLWUaNsDVHdSrgS95is4GfyRyb2L/Wxo0YA513JidxnOTi8/ceBQyfheR4OPPBAfOYzn3nGVaJ4xvnU3XzzzXjHO94RAF3dQfmBEZQ2Dux9QJd17F6ZrLsJdDJR+s9ruVT269P9yRRJfKPvZcr1NceXIhhjwXJJ2jxoaYAOkFvjoudd9wB2nMQDLAp05rFzWL65bwZebQ675Nw7xBicaCAH0AF0ADpeh01s1eQ0+JxpE18Deksn7PkHplG0Cod+ed7gb+e4encO03aTTPeGLD52kUhrvX+s4Zmj8pkWn4n4AjIwlDYMwbl3PhYvXox169bhne98J2699Vbt/Pc2PWMsdZ7n4etf/zq+//3vAwDY7jLKj86nV4ZIq7SHtRswl8ZSlzeqNq3SRtFm7Z9ybNLCnM3cdNLxOq11UqfuNNY6ybmdK9Y6YaVLlPSiPmTTQh0gjYLtENFapwK68NjLAiSAmX3jitQpkWs3b2qTxHmOWuyEla5j8hGLXQzqwi4ic8699Cr90Mz5kcFch9VOFoUasdrJcv6lierNY6mLj0XqzxQFbEoHksZq1+10J4SSg9rxpQPQonh5ycPR79wf99xzDwDgzW9+cxhUsbdr799DAJOTk/jEJz4RAp37dD/KK0fmBtDlsY7pIj+pQNdL65xsHt38TTGb1jkgG9DFu8hbdmgOW+hkQJdKWYAO6LTWyc5/SmtdXMZIwD3NYhfvIkdEMEkmUNoDrXZCVq12qtQgVKudygIWtYKl7J+3WjM/elS5DG1Z7jRRvKzl4sGvbMKrXvUqAMCVV16JT3ziE5iYmFD3vZdor7fUbdy4ER/96EeD5VYfKD02D+62vu4+7GzlTMszBgXqZnOpd7bV7chcG9dXnrJaMD+8ZttaxyoVJdAZrXVZgS4qEzAbjo8WRqN+gjL5HFySGy4qZckwwHhtiLJjWpnuEYbAElNKlKBNjh8l3NcCHG819Uu25ZL2GFJqEdu21EVFstqZarXqAI5itUsZkJC6fxNg5rXcEeTtMwXnmGk0Gg0cdNBB+OxnP4ulS5fm7neuaq+21N1///145zvfGQBdw0H5/hEz0HXbemQSZfy81qW8Oev2BuU5hhTr5iwfQ1NxdtPDSFs/0wAMJKArlbVQZAIm3fiMMW2N07CNyBOXQYwxoKpJfeRzQGcxkuWmi49hspgN6LcbZbhGKdCm/7zhR4Uujx7y++vZsNiZrIJ5lp/N0G2od+yo0wuF2/PcpxjTgxul/7zRuxZ+HLtb+sD/NIjFixfjqaeewrve9S6sXLkyd79zVXst1N1www249NJLsWvXLrDxEir3jsAZ13xBTWZdqrJacagwZ/oSPpOtbzZkOoY2kojm/bwBmKwBnWScjrxkkn6oQBeMY8rXp08xorW0aWqcMsYA0xKiARrRV6MFdajAwvO0YMdKJSSqUIQbnQDoxP95ZFjqzQt2JpnAzhhkpNues8JJ2KyLYEeS0Zpl2s+MwQhC0cTEWfrXfZ5yDiy4CDnjZey+luOII47A7t27cemll+Kmm27K1edc1V4HdZxzXH311fj0pz+NVqsFZ1sV5ftHwBqqvGFz0DJncmCVKS/MFUBHsHBa+LrYAjpFUtcOoJP6zOSz0Ok+TwqQSKkEmDlsxoonAbuOCFoJ2HUAncpaRwE6IZ21jiKDxU4HduL/BNhRll6jil8n0QCNHoEdCe7ybM+g6DG0AXZ5l6Izw61QFqtd9DMyMIveD/LAHUU54Y41Xaz+n504/fTT0Wg08MlPfhJXX3019jYPtL0K6jzPw//5P/8HV1xxBYAgIKL0yDCYH7kQolGRpou426I68nfLOlfA3Iy6DXRxCx+lv/hN2rKFLg6F0odOe0wl0KU8LvGHYypgiAKdrG8BdLHjLMBOaqHLuQwLx7AMCyStdfHjHLP4SdOmCLCTQdwsWOzylhiTaS6CXVSsVNbCHaXMWE+sdtqExl222okxdLKxJJvxmcd8hrs++zhe/epXAwCuuOIKfP7zn4eX97zMIe01gRL1eh2f+cxncPPNNwMA3CcHUdowkL6jubB8SU1w2825znGfMavKCnTcpx1H3eeNc3PUbZkTBiuYqkhoKzmA4PtDKQVFXHaVj2GwIHKuBjrHmYmilT1U21CiXHblHHxqOnidxkoXlc8BQ+ADBLTIjrXPZ6IGFZY7zjn4dB3OoOK+JkqO5fFFa997pAEGEUDOC3XaKhCGsmbiWjQlJM67/Kr1G2019UEcxCCl3BUn8mynPgNMlSfyjJEn9RN1DIVa+02Cr5iA7/s455xz8IlPfAKVvMFXc0B7BdRNTEzgYx/7GO699952hOsw3G2xmy/lAo22y6JeHcpezPGZAHWU42iqRUq9aak+b0NGS67BmpazdJkqYTL58zBDHRxHH43ptHOu6fZVNwbn8pxxkfmxkQXgE5PqPihgZ/LDM6XToNRa1eyHUX7bKmeqcmBQ3iAJU2RybosXkAvqqOq6Zc6GbFcGytJ/L7JBSNp4C6fBnj2JZrOJk046CZ/+9KfRZwhQmuva45dfx8bG8KEPfSgAuhZD+cEF2YEuj3oBOXlN59Qv12xHB1tJB0KIAO62DOH8JgsYZTnH+JAlpEUxAlfaKg+x8Z1KWQttrFzS1101yXXBBgayAx0AOC6c4XmZp8AYAyu5YP2aB0K1CuTNYWeC66ahmLrp++3oa6kCAKuU9W0cZoY2A7zmzRVH+e4Yl0p1NWdB8JPjvvm7k3Mp0sY9wphX0TgJQu45k7pdDYlz6XZ3ew24ewB9fX2466678KEPfQijo6P55jLL2qOhbteuXbj00kvx8MMPA02G8gML4OyOmE/Trr1nedD3yi8tL8zZ+LVEWmrMCUt50rEIOW1YUrWzBXS6MUxAZ7jZk6wE4kaqGivnHDrmYVjmkc5XUZFAKRXYifdl210XbHAggCHVw8kEdMwB668BriMFO+Y6wKIRcNcBG0gWCGeka3ImeCMz2AlQokB2zh81xhyAzAxuqu3htaIAN5GKhPvcCtxJ328vnVLAjgJ32jlQwM4C3Bkmof8BWSp1H+5MsvEsNWYvSG53dlfRur0PQ0NDePDBB/G+970P27dvzzePWdQeC3Xbt2/H+9//fjz++ONBDroHRuBMzES1dd0S00uYMwGdTjasc5R+5oJ1jZJNPe08syx/pIApWQBC/AatAiZbc1CNkWr5KQ52EqCTWeuMFp04yEX/FkAXbtOAnUoC6MI+O8FOAJ24blRgN/MBJrfWlaM/NnOAnWq7sNLF5pLq75gSYBcvKyYDu/h1ldNiBxADejSiWOxsWO20Yzhs77XaxeedO8LfEtyZtkfaOONlTN9SwcKFC7F69WpceumleyzY7ZFQt2XLFrz//e/HmjVrgLqD8soROJOl3sAcMDd853ppnUsLdGnPAeW8mcagwFy3rw0CVFq10MXHlr3OMAflPKiAq7HQRcFO+sCPQluWJdk42OmsdHGgC9/XX2tRsJNa6eJgJ4uOTQt20mO151nspNeVb6gegllYjpVc67mXYxH77skgLm9kKPYSqx3QfatdrI0zWcLYDS722WcfrF27Fpdeeil27NiRbw6zoD0O6nbs2IEPfvCDWLduHTDtorJyEZypUn5LE0VzwTpno+KEaQxqP91cbhV9U5dbs4xhQ8wh11vMA3ThNssWOtkYmR3ECQERYVOtT5ajBzoR7dqvsZgB5mVXZf8MzvC8GSudRCHYaa5f1t9HAy/DXIzbZVa62FyMS1IasUolaaWLfT7rUmyHfK7dDyrYkb5HGbeL5VgdvM2V5Vhj1DrBamcF7vLI5pKsKaAMAKuXsOvXwOLFi7F27Vp84AMf2OPAbo+Cut27d3cC3YMLwaYp+b72oEjNPEutNsYQ48z2cis16KMXQJc36ScIN3ISiOcDOpIsRMpq/egcB6yWM2EvYwHQKY4pK7nAwvn6LkolYIEmMKLkAvss0l4/3HROGQMbHNRsJ1jrAHMePApI6yCZ62EKCKDMlDbHWJqNAnYGUcDOWLPYYH1krmtMNmycA2U51nTuCWBnPB6E76uVSGLDGLnvTZyb703G7QSw4z5YvYTd17MQ7PY0i90eA3Xj4+P4yEc+EtRxrTuoPLjALtBpf8kSLpY88MDaX3DVhW9rKdWWZc2W5Uu1T2kskaobX09SAdDHUN18uc/Jv8pzRaEa5mHaFmuo3qabo+OE5a+UINK2cCkTAgugM8l1gflyaGOlEvjwkPk6djUWQ87Bmi01lDltYGMMrKqBCOZ0+tvFJbaZLLA6UNEFmkSktZJ5XkcuPdU42pq9QHB95L2OCdYf47VMcUHIAXbU76oW7Ij3WRLYmRKX5wU7inWx2z86uU9b9jU+X3ywKScEuzVr1uAjH/kIxsbG0s93FrRHQN3k5CT+4R/+AY8++ijQdFB+cARs2pR93IbZlhCqbQHm9DnALC2l9iKQIa9sLC0TLWe5lbLag7yLTqDr+i9m01wkr1NJV/GhDXRasXZ1h/Yv+wTYxYFOMk/mOOBD7eAJCdiFQNeGCy6zGjIGLkDMYUkYEkAnxqfslw7sAD3YCekeig4z+78B0n2JwpwS7MS+qsAutJwTwK4930QXaa5/1b058h4J7EwuETktdhTZWOYkRQoTwK7rcEd0VdGKAm6mNoRnDZtysOt/OUZGRrBq1Sp87GMfQ92Uh3IOaM5DXavVwj//8z9j5cqVQR66lQsCHzqVegFzgBWLlxHmZss6J2tvow+dKFY7CtB1S9G+M46TAKf4zY9wvrthrcsEcfFjkBLoEta6KNDJpLLQReYeAl10HrI5RY9hHOwE0MXaJGAofsyi+yfzCcwCdjLQSwt2MutcSotd4kFvw2IH5LfYAcb7dOLalt1z04KdjRrQ0nHSR27HNSesdgDNatcruNPJ8Jx1pksYu5FhYGAA999/Pz75yU+iZSrHOMua01DHOcfnPvc5/OlPfwK8ILGwM6n55WTD56xHS63SFBIivUWeJWPTAy2tepUexrR9NoGOOg5xDrol115b67TLwuYPB/8barKqFIKdCuii1jodiPhcDnTic21rXWili0uAnQzo4hJWOpnEQ1k1V8oxEiCns9zZsthpfOk63pddC1Gwk303U4JdruteXDeKezfJikUAu15Z7fIq1XdXcc+yBnazvSQrtudYknUmymjcUUWlUsFtt92G//zP/4Svq24zy5rTZcK+9a1v4corrwQ4UHp4PtydCj8bK9ExFP+8HDXu2uNo6wlS/at6kbbFJLG/vQjsoGguHBOAcPMwlxaj3NjzpnigyGgVZA4J6PT+Xu0UJBRfGVX/rgM+b9B8LbKc/lyeD1ZvkHKr6ebB65K6qlmku1eYrGliOtOEsma6/TVVJPF9UB4xxkAN17UCGlby5uWNbiXKuL95n1nkiRCC5vKUSxTqBQDmeL56I9Pgx4zB8zxccskleOc735l/Pl3QnLXUXXvttQHQASg9Ma97QGcS94MLwRhFRFkGVR9uSkH0nkhYxfKWG+tlLj9KFK2NNDAU5TyHJqDjPrfyUGFlvS8n6cHEfWONTn1qEhZYpHQPJ4eBDQ2CDWjKb7kueJ8GHEsu6gfMR3OJxEonxBh4VWOJYQz+vD74CzR9OAy8rwpe0wVGMHP0LzWYwFBX2BiNSpiLFtgF0JusFoY8dCagC+eSMx0Jc5j5ejUsT1LAkmIZpPRjTA9kmCslipeWsJhwLZp+2FGSL5ugjbB0bP4hSlh5Ujwv3B01sIeDaParr74av/71r/X9zJLmJNTddddd+PznPw8AcNcNwN1MiHbrhigF2ynSpUUQD+k0MNAtYLIBa73K5QfQvpwmRefbkxyE6tJiFKAzLZuIm5o2H52F1BId81JZhNpAJ90ugE4np53rTXOeWaUMf/F8cMcBr0keYCUX9X0HwR3ALzlo7iNJMcIY/GoZnAB2vOzCWzQsnWsYXMGYHOwErDkamIr78uWUCuwErOnATnzWBIcA5GAXt9JZsC4ry35FciwaIUUFVNH3LfzAVro2tMchJSumpKsxgQ5h6ZgEdhb8t0lgR4E7wxjW4C4md2sf3vjGNwIALr/88qDm/BzTnIO69evX41Of+hQ8z4OzpQb3KU2ep24ptM5ZSnqoHGaOWOcA+b7GgxR6Ze2iKAvQxd/rGhynP6epgE4xTqL0l+TG1gF0iqUzK8tHMQsdZSmw8/MxoHOchLUuBLp2mwTYRYAOADiTgF0b6MJ5ysCOMfj9EUgrOZ1gFwU6zf4k9o+Sry+LdSMGClksdvHPJPqQLbtLwY5r/6ZY6Uhl80yfiR9HylJuF8Guow0B7EhWO4OeiVY7Etxpx0k+937wzutxzjnnoNVq4R//8R/x9NNP6/voseYU1E1OTuLjH/84xsbGwMbKKK0aBkMPfaVswRwgv1i4H37J5wzQ5YW1Xlq5hPIkLY62S/O+TcWsdZmALtElbck1oRjYZQW6DmhTLLmGbUxWOpWFLgJ2caALx4iAHWcsBLpwO8PMZ2JAN9MmAnYC6OJzKTnwF2qSF0etdapjGgc7TTutog9ABSB0lGeTfH9IS7FpLHY6XzrLFjuT9U4pz6Mtx4qXGX365spyLNAJdpmPW8oUWqr7mzWrXY+XZBkY/njZQzjyyCMxOjqKj370oxgfH9d/voeaM4ESnHP80z/9E37/+98DDQeV+xaCNSim5zmy1GdLNpIld2O8uSDKPnd5uTxdPwbnf861QEcCf+YYb1rc5/ol17YLQG4LHXPM5aIqZS3QMdcB+mp6C7fDwAf7EkAX9uH7YC2/w0rXsZ0DTstHeeuEFOo65Bpu+C0fzsS0ejvnYA19zVD4HLxBCJ4wwZBvhhTu+cbAFtJcCOJe/tQZxrJdnmfFikWRleAkikWNsM/GPiiRujZSm4gAJN1cCJZV47H1PTvjGCGenkaMlz0MvwTYunUrzjzzTHz605/OlAXAtuaMpe473/lOAHQ+UH54Pg3oeilrjvSESKJejNPLudiQjcgnkzTpZjrUg3JtYSS0hbHMv4gNEYxBJ3pIBcGSE89Nl0G8WsbkikWo76P2s/X7yhh91nwp0AGBta5VczG+Yr56nLKDyYMHMLVEPQ5ngF8zJx6WJjiOipCGhDlOUP5M10fZ/CAnpcww5LGzJgpsmVKNtGvf6oehPKgN+e4ofs+U/aFUwzAtxxJ85EgBHQaXCOa6Vp4RNDg0HDvC/Z+3WundPOJKkcKLNV3s+q2PcrmMW2+9FT/4wQ/yjW1JcwLq7r77bnzrW98CEES6OuOEPEsU2c6xlucB26sAAupy6lwBOso5El9oSgi/ri/DNppTcorlZtWNyrCkQ09t48y0N0l3YxWfVyb+JRx3cexUkZAsAi6KfWOuAwgAkhxfXi1jctl8wAmASiZedTG2rB9ehaE+In/wcZehMc+FV2GYPGhAtUfgDoNfYZjaNxl5yxngV1xwl6G1UOP3W3IB18kPdu2ExlKwE/5tjOnrxLpuAEm6tEpe2yKSB+zEXDWQz1tt66UuerPcLilHjcTWbtZ8Rwx57tKMQ6poQ/iBZMMaRwnE0IGQNg9hSpGqVeiOXZqSjDaSAxPZwRkv433vex8A4Otf//qcCJyYdajbuXMn/u3f/g2cczib++BusRTpOpesTN2AOUogQNa59BLoTGNaSU4Z+YIqEjaTnLHzBlpQsrlTK03EHgqZl4ZMn4s/fGQPI9ftXHaIg50AuujD2Zc487cTAGslgh5chsbiTtgSQCcsdH4JqC/otEwJoBOSgR0vO5hc2h/5jH5KSrCLAlgOsGNRwFKBnYhmdRw92LXHkYFdx0M3L9gBIdgZLbiS70QIdIAa7Ail+qL7REpCnBXsspQNJIAdxWpn6lf6w7HZucRuBCFLRgnpXOLv2QhQsWG1A0jPwi+96mqcd9558DwPn/rUp7B9+/b84+bQrEKd7/u47LLLsH37drBJF6UnNY7HKsUPum3rXB6pvgizBXkU65zseHZDlH6zAh0FFiPbU1no0sqQggSYualpLXTR8bOWKZKUe0oo2jfFchcHurDv9v7KgC7enQroIvscWunCDwF+aQbs4kAXTqPMQrCLA51QFOxCoItMhbud1jphpeuYqsliB2QCOyYrORYFO0kUqhTs4te4wWIXdJQB7CRzjVvtQitdVPFI7vg+WbLYBU0M36WYJU0KVhTw6MZyrKR9r5Zjg0Y9tNpZUC+sdgwMt/zrfVi+fDl27NiBz3zmM7NacWJWoe5HP/oR7rzzTsBnKD06H8zP66it+PxsQF6ei5863zSJdfeE5VaxTRf1lAZoTNeDAejCbbkTMRMfNCmWXJV9mCRupqblKOKSq9Yx2AR0vme20HHeseza2X8M7BRT9ssM04vKUqALh3GYFOjCPtrLsDKgC/uIgp3K/y0t2Kmgqg12TPF9Yo4DVmsnbFdd4xGwUz5kbVjsxHwpFjvuK4NtOsCOUK5PBw42/OxCy7tpLpTlWIN6vRyrhSFLRolcy7FpxhH7lLciiQ7sfAdP/3QM1WoVf/7zn/HTn/4031g5NGtQ99hjj+GKK64AAJSeHFLXdKUuF6YIsc6lXgCUTUvenhTdSlVe3zqxnVIMvFfHj/TL33Tt+bQblzFCktCHCegcJ0iRobOuOC74YL/2XPFaBeOHL1DfqRjQHHCx5QS9lUzlgyfU7GfY8LwhKdAJeTWG3YerffCAAOy8EX0blFx4iwyrEg4Dhgz9OA5gyI9nikAN2hCsOIR+bAVY6HLXkS12hDbU6hBGZbWcx/uw4WdnIVkxAEIqEeK90cI+5f2xm6qNsQ/1deVMlfCe97wHAHDFFVdg9erV+cfLoFmBumaziX//938PEgxvr8LZrCgBZCU9BdHqYEt54dImRFhLzWFxSTvn/llJjNu+JnR9hTfzvGlU0lx/eY4xsfoJNV+W8Wbrc3UeMscB61OU9QvbuMD8IcBxwBVWLV6rYPyIBQEoVeTH0Ks4GD3YBdcEdXoVhl0rHOw+VPOgYkCrH9h1mGIuDjA97KBVYxhdri5ZxnwO7jB48xT73857x11HDXaMgVfKwf99GqteuRRcMxWNhcb3wU0pVYjSgp0J6CJ567QWpfZ3xVfMmXNOShzMGAv88gwpdqRLwYo5ZW6TanVB3w/Jz46QdJcWBZ3TLSVNAAplHEp9WdOcu8wDX37193DKKaeg0Wjg05/+NBqW0gOl0axA3VVXXYUnnngCaDooPTEvmWDYVqRoL2GOIt1D22Z0rCkwYK6LUgIr67mN+sqoyvjEfW6yHsNuXH8qJ+1IVK7qpm9KfB3/XCawSwN0JgvdEQvANQ8nr+Jg9CC3XQIMmFqYPN5ehWHsIAbuAl4NUrDzKgyjy5wA7GpysOMMoRXPq0ILdgDkYCeATqwgysCOMfAoiKjALtYmAXacw5+YDF6rwI6SH4/zDssZyWKnUuR7RcmjFgc7KtCJJWXGWAh3CUUj0FtNKdyZfNkS79v6vttajpVVlIm8x0olOdxFwYiUAJiyOmXp2FCekRQY7RIbMDDc86U1GB4exuOPP47/+Z//6co4OvWceh5//HFcddVVAIDSk8NgzdgJsBFYIKPxPA/nvDJZuuaCda6XUbEp/dBI5V4ootwss0aRxveJEjUqE8WSGwUymYVOAnbx/YqDnRIE0/ihZAU6xjqsdVKgY+iw1oVAF7l9+OVOsIsCHRCAWRzsvArD6HJnph8J2HEHqM/rPH8ysGPxYywBu/gysNZiF3YcAzsZpETBTgBd1Fk7DnYZgC58Ow52Kax0HVOOg53kO6Ky2OkkC7Kg1Ds2Wu3izxVCkIWNH5+qfihRo6RKM72w2gWTmT2rnWz+XbLasaaLiTuDfn/wgx/g8ccftz6GTj2Fularhf/4j/9oL7vW4GyP3PD2JOtcGp+5PXG5dQ5JdVNKba1TtI3CjhLoqD8IxLnMk+8NoIOd5SXXTBLWurwWujbYCR86qYWuDXYyoAunUwamR5wE0AlFwS4BdJFxBNj5brDsKvO1i4JdHOjC8QTYsVj92GgbAXZxK13HnAxLse02IdhJ67CmWIpVAF24WYAdFegUxycEO813w280U1vpEuNEwU4Xid4GO+13omf+WzQ/uzm5HGtrOZoSpKbrb5asdu6OPpx99tnwPA+XX345vLxBGinUU6j72c9+FlBr0wmsdOJOaW3ZsbuOkKnb9Aro5lIaF6pIAScWggcA842Rkr+KKtM1aHMZwnDD455n3C+SBYMUeWfop1QCRob1S679Vew+diG4q27TGHSw6VQJiEVUHwZ2nT+hbMMZ0JjHsflsT91P28du+7FyoBPyqsDuQ/VLsX7JwfTSIX2whuPAn2fI0cmYOqo2It7UgFsb7GyUAiMvxZquQcJSrA4wO/rSRSjastgBVu47QT+2UneY52ws4VcqmSHIcdOvJkgH69LKhUyzBHa3Xf4wBgYG8Mgjj+DnP/+59f5V6hnUbdu2baZqxNohsAabORmGtAj0FB+abNSUkku2gK6XsgWOeQMCbIpqfaJERQWNc86H+HlqXj0blTFMvi7tdC06SyerBqlEHJ2jfVtKsGun3+CcA6oHb6kEzJ/XTqGhsJj2VbD7WcPwykCrKp9zY8DB1hM5vAEfk0vl56TVD9RO2Y6ReZNgR41J2/hlDv/gaZQGmpg+WAE3DGj1c3g1YOxgeRMwhL56u1bIgYw7DM155SD1ygK5pY1xgDW9IGikT1MXV1jZVN8PzsHbfnTK6hSOA1atBJHJBplSkDARqKGS7xOjZs2wRVlG5J6nXa4V1j5rEaLU+4+NsShpkXJYMlOL9LywlKvNxliU1DM2xNvPJd8Da7p45zvfCSCoNrFlyxY7YxjUM6i74oorMDk5CTZWhrPZsEwjZAOgiEtUpCVT20CXt789HehM/pMKp/8E0FnKFWf8nDaFR8qbZVawi6dikfqKdObfiz8QQ6ATct1sYBdLlCsFuyjQheN17rsAOl/4vjlJsBNAx8s+OOPwazwBdq1+oHbydlTLLTDGMTwwlQA7v8zhHTQNxoJrplRrJcGuDXScBVY9vyoBO4aOvHgysBNAh3aQBXeTYBcCnZAC7FgcVmR+lBOTM+/LqlO0gS7okKnBLuxDnVuuA+gUyaepQBf2qVo6TZOehPtSsIsv3+YCu+i9Jw/YxX1jLbRRgl10fxX7TlqtoNwPo+9bKPulVdqxbI1Lke/hS6/+Po4++mhMTU3hK1/5Sk+G7QnU3X///bj++usBDpSelES7xmVjOTGNdY6U02wOWegogRe28vvZjMrNOQ73eZAU09YvZP1gtBsAJTrMhoR1TuurwoKINl1C5TjQCXWziLvpocxYCHTqNgAvRx5ejCeTDTOgWp6BSsY4SiUv0cZxOq8z5koigVnna1OpMEDRhsVed3M1IBGJbKgnyxhYX01vtVOV+orP0cY9sm2xIwGXTtyHX68bgyyY65rHotwH2paZ3KKMRSk1SKnY4Lp2rHakZ4iFJMLU68vSMbQl5vt47LsbwRjDjTfeiJUrV3Z9zK5Dne/7+K//+q9gsM19cMYNFgEbMJfFOqfa1m2YS9v/nm6dk41B9Q3T3ThtWut07aLHLS/MUa11cetcXG0/FyPMqYCuPU4qa50CGDqsdcJKJ1MbEnhfBbuPTLaJWusaAw62Pjd5fnllxlrX6geqJ+5ItBmoNkJrnV/m8A6cTk6l7M9Y69pWusRYpYi1LmalE/LLM9a60Eon2S9hrUtY6YQY67DWJax0YWeRNDYifUlc4jxFrXSS8UKwk32PYqW+tEuljGWy0iXmLNKS5Eki3Lba6QI1gJRWO909KA3YUZYCc7YJj4tu/0RFkbRWurgoz0vKfplEDUK0dAxtyJko44ILLgAAfPnLX1bn97Q1Xld7B3DTTTcFwREthtLaIXVDW9awNFYqG216qV4BXa+sczZFhVTSrzgL1l3qL0YLYg4jOZsbIZK4DAvuay1A4U0rvuwakz9Q61h2TfTjAFMjM8uuie3tZdixw1uonrQDtUoSfsQybOW4nfAOmk5Y6YRKtRbqy+vhsmtyrPYy7DI50Al5NWDnEf0zy66JCc0sw0qBTshxwKsVNdCFA/qdy67SvthMyTCVGKNZax3zKgEJ6IzO7czO94P7QVCIoS/K94cEf4WfnV42zmkaq10v5iOkub/+5p/vRF9fHx588EHceOON9saUqKtQ12q18I1vfAMA4K4fAGt1mSEpqSeoS5e9qGZhc5lUtMvbZq6lWDFYoMJxjHUaib9Ebex/N24muoTM1Mzt3DfWdDQVwNZa+0SbShkYma9t4w9Usf34eWj2q6+RVj/Djuf44FWNNaLPwwtPeAAn7Pu0ss1QtY53Hv4HvPaYPyvbVGtNvOk5t+N5z3tAPecSR/OABnYcr6kp6gCN+Qy7l2kggQPl8Rb8msbi1b4O+YAmslbkmjOdd2FR1rUT8Kj6rkVyzdkoks59WooSK6WxCNc1QAS7sr4sGyuVaDk1KfcrS3nfjJHDnmeeMzUTgWneYs6U52IvA/NsjaVYvWFNF6973esABPEF3aw00VXKuu6667B+/Xqg4cDdYAjXz6vogy1roIPE+Tj3fKhjKfuxZC205YeXZrzo/xn76FiGUQQFGKEmFnxhrMoQ/4xKqn7StsmoTJU1VMssPAAE3TJMCHQai04IdIwFx1DSnz9QxfZjh8BLCKJHJdGurX6GHcf74CU/WKeUDVnz8cJjHsSgW8dQeRpHLdicaDJYaeBV+92NIWcKh9U246Kj/pJoU601cfFhf8FwaRJHD27AWWcmwY67HHxhA8z1wQZaUrDjTlAfVlj1dh8sgQQfqIw2g+PtMDnYcQ54bYByHDnYCaATxzdn5HXHkhDBciOFJENuu7CZKEWnAbtoypVcYBfZLyXYRY6JCuyi76vALprWJxfYpb0PGSEpsFaazo21JO8Afd42+smjtMdaJVPwGoCr3nYtFi1ahE2bNuFXv/pV9rEM6hrU1et1fPvb3wYAuE8PgPldGorya6WXOePEnHR/dxPoVBGTOtmGudm00FGOdRzsVBa6tGDX7eirWJUNZUZ7Qx+Jh1s3gC7SdxTsokAXNomBXQfQhZ3HwC4CdADgwk+AnQC6fido48BPgJ0AukE38LVzmJ8AuxDo2ku3jPEE2EWBDoAc7CJAN/M5BdhFpAO7DskeJqpM+lHJlnij3z1FRYiO6ygl0IV/S8BOlkMvE9iZ5gxIvy82LHZB10Swy2K1y/rdj58jyXFNzDtrvlAbc1b13S3ZMm5IAuiYz3DJJZcAAL773e+iqcsnmWforvQK4Nprr8W2bduAaQfupi5Z6XSZ+6mWIoKjfqr5zEULnU69WG5Nsy+aCM6EtW6uLLn2MuKK+2YLnem4eN7Mw62bQBfOOehbBnRhk/bHpEAXDtIGuxjQCUXBLg50QlGwiwNd2KYNdmeeuTIBdOFUZGAXfxbKwE4GGlGwi1jpOttEwE5X4stUGincgfa5FIEEMrmuEujCebVamYEufD8CdrqkyFaWYqn9RC1zKutduRLCnSr5Ntn6Jc4H5VmU57svAztpNz222Jn2vxvLsbae+zrFvoNfvegHWLhwIbZs2YJf//rXdsaID9mNTlutFn74wx8CAErrB8G0qdQzKm8CV6C3vwBSRTrmPF62+kk7Zi/HojywdOKclvJmTwsYEaKAXbuyQG6gK5XUQNeWX6sogQ4A4ATlvZRAJ8bqb0mBTsiFj/1qu/F3B92UALqZoXwcVN2Olyx/MAF0YRvm49jB9XjRmfcmgC6ciwC753jwavJ9F2A3emApsNIpFIKdBOhm2jjg/bXOZVfp5Glpdni9YY7EIwRP5CozJ/rw84Fhh5hjfGBzzzN+R0jBRwDpWFvxswPsLGsKsCOUF8tspYttp8A26Xj32mpHEcWntX2NMM5C37rvfve7aFnwT00MZ71HALfccgs2bdoENBmcLfoSOqEozpEUWk9jEaGCSC8e/BRnf4p67WQK9AyeSVUkupGDiOKwbJKl4tGpcniZftE7TOs/xVwXrK9PD3SMBRUKpuQABQC8v4rRI4bgaE5dYx4DO3cHhpaOKtuU5zXwrdOvxGsW/knZps9t4nmDj2DImVIPhgD+ak4T4546KtRhPo4eWI9XHnWfsg1jHKV5DYwerXF85kBpChg/QB+B6pcceEPqIBTGOdjkNFhZ8/BzmDyvXHxK09NBfVhZjdiOQQluEO1xteMRYMyplPV59dB+8JtgzGHmsnXMCeZkKYKUVF+Zku/OJCJAkiyWlPKIFp8lFLA1LmtTg+JsPbMpfVHzFLbnfcXrfoSRkRFs2rQJv/nNb2jzSCHrUMc5x/e+9z0AgLtxAMzPkA/NtD6vc3bvtcS8VHOKShXEQXH2TzMX1d/dkG2g44QqErNx/lX7QTlv0W05zm/HjTpXrqcA6LR1Ml3XWEqKMQbW3xdcA54HNpm0evH+KnYfOQ9+CWA+h8zA1pjHUDprOwaqDQzW6pi373iiTXleA9845dvY1x3HEnccF8xPgpYAuprTRJl5WFLaLZ13k5fwdGOk/dpVgl2NNeHCxyF9W5Vg57g8ALv+FsaOSoId84HqTg7GAa/CMH6g/Ecubz/wuMukYMc4BxufDCx0bZA2SQt2UZhTgZ1435QDkbWvJcVDmwp0YV8KsOuw5BC+R6xUMsId99X37bCeKvfVS8eR91WA1PFZSpUKlVLmxSQlV4Zm3jGfSXkj8/2dEkDSUQFHB3YdAZEW4I4qyv4TwY75DBdeeCEA4Cc/+YnZWp5S1qHu7rvvDvLSeQzuRoIvHcnvKaXDehpltdbZumBsWuiyjp9V3bLQxcBOaqGTBTuknV9eUS10WT4X/4js5ky55mWBJDGgiyeTTQ10QjGwiwJd+LkY2Amg62/nmGNAAuzK8xr4+slXYbETJNh1wKVg57LA+iZUc5oJsBNA50eSyHmSxHM1NtOPCuwE0AXHIwl2UaATOycDOx570KnArmPJVQZ2ElCXgR2fliw5x8Eu/rcC7DquIwnYkfzX4mXsNGAX+6C5DST+bjE4koFdCHQzjZJBHqofnyZ18cenDJoS501y3OLzVkU32xDVYpeAO6lBhBgYZ2pDEeVzRLD7n7f+P1SrVTz++OO47z71SkAWWYe6a665Juh4S58+Lx11qVXrONmbjNAdY0b/181JJWGt05V9SvvQz+vwmaWqxVxYchXHm1oBIvdkog9VwnmzAeswLLmmATsZ0LVfC7DLDHRCbbCTAV34+TbYxYEu3I4ZsBNAt6/bab2Lg12f28TpA48lxoqCnQzoAMAH67DWRYFOKA52UaCbOS4zYJcAusjORcEuDnRCUbALrXRxRcFOY3mNgl247CqTeF+1PQZ2svF0FjuVZNa0ONgp/a2Ibg3hGAprVxTsEkA30yj1Uqyu2kUoi8uuym05LHadjbj8tWpcQgCJ1gpcnqlVrA2MNMmmxc7EAYTlWNZy8MIXvhBAYK2zKcYt2v62bduGCy+8EJ7noXzPQjiTii9iLyIu42P1KmiCtObfjrjUfVFFm15WkbDRT9r+bMjGvonz1oVlEKUIQEbyZ6LCo+bBzzkPtun8tRAAAqvVtMecD/Zj13P3kQKdULOfYcdzW1h68HZlm336x/DFZddgQpMOyQfDBC9hl9ffYaWLa8yv4c8ThySALqoy87CoNKaeNIBpXsYduw7B3U8dqJ6T74BvrmLRvZrrkgNug2NgvTxQQ8hp+Sht3KkPjOAcMDhcc87BJ6eMPnSsXDIHLHBu7IcTI2JNFUxMJb7Cds2G2Y8Olixp1O+bjSADIUvBGKT9t1UVg+qPSUmgTAmQIVnJmPmYU9pQpTlvfl8TzedsheM4+MlPfoJFixbZGdJKL2396le/gud5YKNlNdABNDDodXUE6nikFCmGenOkYA9LDqymSNFoOyttCDkDRTQQpfpH3jkRjxE5AIEZIsLC2sOaCM62I7NpTPKcqBUsdFGujAUBEZqbJ2uDrzY7f7WC1j7zUN2pbtPsZ9h5rA+U9Oem5Pg4qDSIgzUP62nu4qH6Umz1FDVmEQDdzaPPws6W2h3E4w62NIawur5YPW9ewprpRehzDfmlGIff72P7szXHm3O4TY7GfPUyo6gN6w8PqMdyGPhQP/i8Qf2cWi0z9LQDYozXHQHogOSyflzMYcaSYrzZohWoh/nBTwEaUpBBD0sAAqDdv33PWDWDDLQWMydQzomxjS2gE+oVfxieFc5UGcceeyx838f//u//mscjyhrUcc5x3XXXAUD+vHTdeJjnIW/dUqlqbFLVgoyVDdLAXJolQN0xTQN0lIAQ6lzyzCkl0CmrVoixjOOZq0nEy3qpHiCpolwVY5G2CUUjXGUJSVkkUtbzwWWJM6sVNJeOgDsMpWkPfVuTDxkBdLzMgaaDDZsWSKezZGAU/3fZtQCAfqciBbtJXsID9QPQ4CVM+FWsay5MtBnza7hx91Go+yX4nGF3Kxmo4HEHo61g+XXKK0vBrslLeGJ6MXzOMOA2cMJB66Tz9jmDNx78oPUG5WDHfI7yJAc44JeZFOwYB5x6cPx42YW/QAJtDgPvb1tNS64Z7By9r1q4TKsDG9MDOPadU4FdaFXiPq1WLNQPd95siMH1ufAMilq6SN+/vOBGuT8RgS7s0maKDEv+1pRzYiMtjlHR/aHkVKU8eyjHSPMj4OGfrQUA/PrXv7YWMGEN6h588EFs3LgR8Bic7Ybi0YDmoW84qHn8uShm17jiYESpLysdW2J9S/xNqGyQZimx470cpzqLhS5+nFRzivdN/ZXYJQudFOxkY1HKgcWHkyUNloBdaqDTzSEWTCJ9gMpSlkRush1AF26PgV0E6AAAPhJg1+xn2HlMG+jElKbdBNgFQPcLDDszAFZmneNHgU4oDnbCQtfkM5+Ng10U6IRUYOe38206zMeiykQC7EKgi0T8x8EuCnTh52JgFwJd5BpOgF0U6IQUYNdxnhRgl4AvGdilBLqwb4LlS3Zd+pJKF4lghWYs4lgCdiQLlURksMtwL7AGdLKuJWCXedm5RxY70YYSjJIQddmV8p6sDcUiJ3uOxSW5TpztNfT19WHdunVYuXKleT4EWYO63/3ud0GH26u0NCZx5SVngL4kSZXSakMAu6gTvy7JbTTYw0ZunbwOpZSLk9pvNCgkT/WPtHPKueTaAXa6sSiBOu1t1DqtmYFONicF5HU8QA3JZaVAJyTALg50QhGwC4Gukjw3UbATQLfA7bT2l5kbWutkQCckwE4AXV3i2CfATgZ0QlGwE1a6qOJgJwO68DC1wU4GdOGc2mAnAzqhBNjJrs0Y2Ektqm2wE3CnXCaNgl0eS0oMEKW+X7HrUgZ0YVNRfSIOdGED85JeXJRUG1qlCdqz+YxSAA1vtUK4y+1HmCWQTjZEBNp0cwrb9Mp6l3ZViPqckil2nJnn4KyzzgIww1B5ZQXqWq0WbrzxxqDDbcRkw0DkgZ+BhONKk0yQMpYNZ3gKZHJur7JBmuVNiqz40BGi05iToiB5b3zoAggz7z+5nI4hjx01pxRpHNOcxAPUVC3A983F3V0X/vxBZRQnfICXGCYOgBTowilNu9gx3i8FOqF+p4IlLpRAJ7S2vgj/8ujLpEAntLvZh+vWHq3cDgRg98jUfuGya1wC7J59wHol0Al5/T7GDnSkQCfE3eBY6a5hXnbhjwwFVjqV2mAnBbqZyQPQAF20nQ0IcRhYuaT/vrTrEuuALmxqeuC3wS7tsqt0O/F7aeX7K2QrMMIWGFHBjtDOhn9kqKxWuiyyxiqdP7h/+4U7AQRFG3xTMnCCrBDAAw88gJ07dwYVJHZV7FvMTOrGWHmDHWyLHHXaAz8PIVKUr4UKD9Tl5xRgb8M5N7yJ543eaqdKyLpMNDOhCNAZIdIxR0K6rv7cVcrgi0fADdem2F7epX5QlYfruPK5/wNPQz3bvAlcvu2v8PDU/uo2zSF8b9WJmGrooyo9zjAxWcUtTx+mbFP3S3h41xKsGlMHTzjMx+GDW3D6MY+rB+PBvms4dKapw+AN6nO08bILv6ZpwznY6DgxQIoaOW2oUEH97hnAJ6y8QPIDNQca2YgITQNGtGhPw5xSAB0l4tdaUAf1Rz4pxQihuoYJ2GxF6QpZyTtL3P9IO2dXBYODg9i+fbuVJVgrUHfbbbcFne2ogkXPVS/AJ8sYeebVa6DL4mOm+sIYv9wpgksoQJdmbFWftiywkvaULPEqGZeTZjbq+43mvuJ+drCLW+hUc2KxElIKsAsfFqqM+22gg8vAfB/upHwprDlUwtbjSgBncBpysCsP1/Hdv/oGlrh1THOObd5Eos02bwJf2HYqxr0qprwynpjeJ9mmDXTNpotm08UfNhwindNYq4Y/rTsYnDNMTVWkYFf3S1gzthAt7qDulfDkuDzdwLzSNMqOh2X923H6s5N58sCB8k4XzAO8CseOIxVL/pyjPN5edtKBnfieuwx+VQKunIPtHJ1ZyswJdh1pSRRgF6YdoV67NqO6FftHqWLQOVS+e3qYR08T/NT5AcWcMqwQKcHOxjNB1idl7nnALgprecGNtCSa0medNK4G7mI++owznH766QCAm2++OffQVqDu9ttvDzrbIUla2k0AygVnKf0MTL5x3RDVlyzDWn5yO3G/SOVZctxAon1TA16ynhOZU3VKoJt5k5ZEOl4yKDFeFrBTLblKgzIk84yBXeIhEQe7CNCFn2klwa45VMKW55ThCz7hDIhdAlGgA4LNcbCLAp1QHOy2NYfw/Seei2YzODecM0xOVxJgN9aq4fanlsFrzbSLg10U6ILdZ1Kwm1eahtv+FesyXwl2LHKKW/1JsGOcozzmgUWjAWVgF/+ex8EuDnRCMlCIX2Oya7Up8e2LgV0ij1wOsFP96DEqtn/SZMYZwY50P4gnRs4LdqaPyapGxPeZ4qifR/H+ZdeYDYsdILfa2Vp2zZpdQjpexoT0zMHvvhgswd55553Zxo4oN9StW7cOTz31FOAHZsSeqJfLu+ES4hxZbk1ElCramUpodbQlLmna+pKaxBzz8RbXQN7zEgG7zEAH4YMXi5LWjqvJTp8G7HQ+dIn0KZo5tcFO+atfgJ0E6MKpRMAuAXRiSq0Za10c6MKhMAN2MqATEmAngK7R6Jx7HOziQBdtJ8AuDnQzu98JdlGgE0qAXdtKF1cU7GRAF84rCnaq77kAOxXQCUUfuqprK2pVlgFd2FfQTpkYOAPYmdwTjGrvn245kgp24ruXCehmBksPdnmrRoh9pwR3xV9nkRhHN++0zwwdrIlttpddZUr7bKHW/lbIGa3BdV2sW7cOGzZsoI8r6yvXpwH85S9/AQCw0TKYp+iu1z52VJGsdcS523LGpPRFXZK14c8WjmkJ6HpV0i2NMkTLyRQmLjUcK2oyVStyguhVLdABgOOY/XOYA9ZXkwJd2KTlg7tMCnQAwmVYAPjOKd9KAJ2QD2Crx/Cz8RVSoBOa8sp4YnJxAujC4dpg97u1h+OOdUmgi7arN+RAF86pDXZPT85PAJ2QALuTjnkiXHaVqdXPsfNwVwl04bwo33OXgVfL5nxvjkurzuCZf8RyT5/MOg3YWfsuWAouANL50WkGo4MdZdmVkjaJ6mNn7blgIZgOoM+JCnRZrXSJfiwFHhpWuJjn4Oijg8Ctu+66K9dQuWd8zz33BB3t1viAhBUENMPNFvjZcLynJiK0kX8NsHehUcakRNRSv5ChdY3guNvriCVLMlrYKMeKObSHjzgvlAe17lp2HLBKWR8167pgA/0A53DGppTNvP4Kxg6sorpT3VVjgY9/OftncBRgBAATvoPbpg5Bk7s4sLZD2W5bfRA3PXo4GpoKNq2Wi6mNg5g2ROb7noN1O+crtzuMw2U+JlsVPDi6n7Jd3S/hqdEFwCFJ30Ah5jO4DWDXobqAB6A00Y4E1Z0/j8PZPaGv2euwAOx1ZbmiVUcsRHLyZouUCkVp7Uorm1UVCDIGEiEFHBLvoXlWE6LbrUXqkpPJp0w6r9vew/t50J8h7RMxIMekk08+GcAsQx3nHPfdd1/QkQzq2qkjosV7FR3JX6tk+6TlWVdPm8CQmgtH2cbp/N+WVMkZs/rPJdrFzjHF7y7vebaVWygibX4lCtCZlBbohFRjCwd2n8vBznHAqtWZX5KysQXQMRb05XlSsPP6Kxg9tA/cBUpTHH2bk101Rjz883nX4KDyDkz6VWySWOEE0E3z4GFfVpi7ttUHcceq5eANF2g5UrDzPAf+9irgMbCGg5bixydjwbFpNV1s2j0kbRPVeLMqBbtJr4JbNx2KRsvFYH8dfEUS7JjPUNkNgAOtPoadK2S+yG2gi/o7ys6fx+HuGg/aOUwOdpGav4wxOdi1ga7jGlE8+Ck1XTvykZlAxGF6sKPc6whVFXJHl0fUAUWK7zVvmVOzJD9kvi/mchOJBnjlhbu0zyByZCjR9SjNZ1Vtybnp5PMmB8wR9O33/wwAsHLlylzVJXKRwbp167Bjxw7AB9h40qlXmq0/7gif2SnRMthFlQfosiTvpbazWSXCNIduAV30PUqEbNbzbPPcRCXxd4v64eg+Z1RWoFMpPqf4Q1sAXbzv6ByiQBftN3ZOBdD5pTY88CTYCaBbVt4WvhcHuzjQAQHUxa11HUAnFAO7EOgi+eNkYCeATqjZKCXATljpooqDXRTohOJgJ4Au7IppwE4WmRw97lGgm5loJ9hFgG5mf+VgJ32QxO7haYAu/JsKdpWKNOjAKMmSXBzsyEBHWeKUgVDsc5mATjUHyZxsWOzStuv8UI5nj60k+DZXc2TvZXjeGg1YKnEfbKKMUqmEHTt2BNW5MioXFTzyyCMAADZeBuOd1iijQ7nNZU8bEmPaGNtklcsCF3mqRKRVt4EubX82f31l6TOuCNhZW86xAXSUKEQBdjKgi44hfPHiQBf244fWujjQhd1EwE4GdEIC7GRAJ9TvNEKwkwKdUBvsZEAXzisCdnGgE4qCnQzohATYyYBOSIBdAujCCcXALrrsKhPncqATEmAnAbpwyCjYRZddZWrfy7MAXfg+BeyATqtdRqALx0xbBzUr0KX4fOq5aPpMnXpJM3eriZMpSgN2ZGtajns61aAReV97PNOAnag65DMcfvjhAJArX10uInjssSDKyxmP3IQdoknXRmWANLLlOEnti+obYM3R1FZ+HQLQUUStpkH1x+uljx1FuujVWDuKrFnoiPnCKEERKJXUx0o8pD0uBbqwGw5wFxg6cFQKdELTvIwxXpYCnVC/00Cf21QDndCUi8pD/doKD+64i9q98soVQgLsVEAnNNmq4OHRJVKgE6pUPHhVngQ6oTbY7Tq0mlx2jcsHnMm6vo3DjBAVgp1qad6y0oCdrcAs3mrRfnjZiqjkPs1KlxNYw+GoYGfz/PYqCwJAf9baqAAVQqRh/yjZGTJKBEs8/PDDmfuwAnVsov2AaJe8Mvod2XqIz4ZFr5vLvirZqG5BzvRNDGQw9UGV7QCZXgfbGI4FK5VJjstGUUHbdG4UBd1l7eB74A1FfU0AvFrB9AFDQT1ThRpDDKPPrWO6Xsannni5Yigf851p1JiHY2vrlH1tbMzHNY8cB66rLd1kGFhbQmkK6NskP2ZOg2Hek0B1J0f1ngF1XwiWcNfvHta2AYLI2IUDk/IpeS4m1w2Blzim9lEfK8cD+rd5qI9oAh4E0HEOrgt6aEtnreKcg49PmMGgvd1YUgyEa5k55h8daSJPTfdjh+DELuCJcO+wUYkmlV+0jTmJGrBpLZeq+ZhgM00dXBuy7WdOrGRh5XjGct9ec9n1AIAnn3wyc5eZjwLnHKtWrQIQLL92XHwKsEsAXa5kuhmAzqbjfa+lKM5OCjKh5k+LLkHbqkpBlc0AmTkCdtEyYhTHZaXSAp3qHEWAjnON1ST6EGy1pGDH+6qYWr4A3AWcBkd1NDmmALpStQXuM0w01DDpgsMFx3xnWgp2W5rz8KOHT0Cr4YI5HChJ9rENdE4TAJcsc7bFOMI2lV1qsGMOB+cMzaarBDuH8fCfyqLHOQvGA+BX5GDntIDB9R5YC+AlhvoiSaRuBOiCCTIl2PHJ6ZnXkoePALrwR5XK6he7RoypcaC+pjveV4EdtVwe5TkSATol2MUf4DkgKhXQqf6WzSPPnOK+haogEtKqQ+czXt6G4Cetez+tbPqZU/Yv9n6uoJxoX+2x2UTwfX7yySczW88zH4GdO3difHw8uHlOyjKWd345lRa6LP5lNgMZqJpNoBOKJ46kRO2SgYAn/05b6stCImCj9hCwSzzYJGDXVQtd/G+JhU4LdlHFwC4EujAogifALgp0QqMTNfzLky+LTSuw0gnJwG5Lcx6+/9CJaEWWXBNgFwU60XcL6NvcefycBsPQ6pm/mS8HO+ZE7l0KsBMwF/07bq0TVrqo4mAngM5ptv00GUuCXRzoNOKT04nzH334dADdzJtJsJNdG44hiXVbpGs9/uDLAnThALH7gsRClwA7JZikh6hMQKd6P2M2Bmr6lATopQU6IeqSdZaSkXmUBexy7F+moBxZ35yDTbpwHAe7d+/G9u3bSePHlRnq1q1r33TrQe0yqdonz7jkSs3zlmapLm/qkDztuylKhYvwl3yOm4h4n2pKtwVRs5HSxrKUsBYBu54suYr3NUuuCbBTWTTaYBcHunCqEbBrDiaBLpgOw4YdwyHYCaBz0XnOo2AnA7pwTAF2EqALBgTc+gzYiWXXeDsBdpV7B2b6TRynTrCLA514r+x4Idg1PRcTT81LzgszYBcHunC8KNjpgC5mrZMBXbit1ZID3cxOzoCd7kGfEuy013r8h79JlOeIZsmV7MCeAqJsJSo2jpsS7LRL72JJNivQCXVYmwxuQqY2aZWzikMo0/4RKlmExzNvDWGfYb/9goj6p59+OlMfmaFODMimNH4WIlN/r6sI7Kk+dDYrXJhEuYmE4/Xw/HUjotmGiM7BFJ+invrQAcoIyLALAXaGBx5jDP68vgTQhds5B3eA6YVIAN3MdAOw+7fVL5UCnZALjkm/iuvXP0sKdKGaDvrXSYAuHDAAu4F1jhTowrn7QGU3B9aogyc4Z2i1XOyu1xJAJyTArr/SVAJd2J8L+GUkgC7czhi4y8DLBsdsxsDLJS3QtXcAmJo2gwMpmMGxl1aDGEBBAjKCDx1r+4vaEBnoSNGednzCuGdOwmxV/iw84ymymBkia+1gqQzXnoC6rGlNMu+1qE/GpnV13ywvldnsr5fLeNRIUNN4qQMQbARYWFwOp4yVN0Fl2jYUURxx2+fYGPlm8eZnfKC0U5NwzoGmel4h9Gn6Y+Uy/EULtMe01edg9zI3KAOmgaN5A9P4zCHXYIipHzzrW/Nw+ZoXwecMg8PyCha87qJvbRnMDwBJOXcPqO3gcKfVbbgL1BcwlMYZ+JNyHzvH4eirNtDyXGyf0kfOcgD9B46p5+QzVHYx+GVgdJkhAMEJYFo9GAdrtoKqIJo2aAaWOhvVIvzpurVrmbeaxms59I0zpOUgP3wp2QlsKQ1cdDP3WlQOccXA1jOiG0nziami9H0Q9k9E1tqIsAWMx2vJkiUAgE2bNmXqPvMRFuu9rOHm811L6RA6Kz5Vefqi7J/Mn83GHFRgNxeBDqAHdIRtLC6xK/shOOLGzrES7KgPQcK+d2TsV/URecCpwC5hxZM8XEOgKzlgTQ+VHcnACQF0fpsryqNMCnbDQ1P476O+j/1LU3AZUJNUi1jfmofPrnkxxupBFKgrsYoJoHPaXMgdOdgxH6iMBqlEGIe0FqsAOrCgjQ7sGOPwOZRg53OG0XoNADDUN43q8iTYMZ+hspPBac+l1S8HO+ZzVHY320uxjhzsOAdrNANrlyr3YBTohHKAXRTo8i49dnxXVAFHcd+4HHMPvy/MUd8jZgvoRPtug13Mmqk8nt1yhZkrYEcEuo5gGxXYpcqlqr/2fv3lmwHMAtTt2BEkAmWN+EMvRR6wrPBiC+zSnIisUJW1TVrYpWquAl3WX0FdzTRO8ElUXMMJsOsC0M10LQmOkVgs4mCXADrRT6T/KNAJuVPNDrCLA51QHOyiQBe2iYFdHOgAoFzyOqx1caAL34+BXRTowvdiYCeAjjudbeJgJ6x0QjKwE0AnzobDOOb1d4JdHOiE4mAngE6cEynYRYFuZqKdYCcDOqEMcJSw0FHzNUok/fETDzhS+cZlCDqSfk9sVJlRKSu8qB76mQAq+RnZMU0cP5vPYdlxmG2wSwl0M91IwC5LbldxjmXnp81UgrHSKjfUoSnMqilgDrC3zJhnHKB7YGcD1mz4z8WDHfYkoMtSBLrbQBfdbriGw4dWF4EufD9qgdAsQQmwU/rZRcBOBnRCAuxUQCckwE4GdGGbNtjJgE6oVm7NgB1HAujC/WuDnQzohATYyYAu2sZpBMdIAF28+kQU7OJAJxQFOxXQCQmwiwNduG9RsJMBXThoG+x0QCeUAuyUS64ZwE7bXmTYN/nGpQg60lq0qYF6aZQXWuJgZ6tagubHc3gcuw10lG1plQbsiM8ubbCNOI55kvULV6P49dcK+hsdHc3UbeajKgZkzQxd5LFgCZEvqh5HSlL953qZcoPzRJJDpWxGIFPGsuWnMBsyzZ3iYydEKMtG8aGjJIg1KgREJgW6cDjO0aoxJdCF4sAxizZKgU7IATDJq1KgE6qVWyjXWuh7Sj8g84C+bb66eoOYFoMU6MI5NQB/9YAU6ISCMrgMJcdXhHwEYDfUV4e3pK4EOiGvAnhVdYJeAXYol/RJfB0HrFbTA53o03Rd+b7Zhy4F2PFW0/wQtvlDyOTAbnPJ06ZYxGCia0at4ERJxGwTtCi1Untdnowqw709KHeaA+g6O+s4x4Kpdu/enam7zDOammrfoD2LF0Fcea15FMf7NIBCAZ5ei2ohtdEm7bEy+bz1ur4sNQiD1BXT+1gIiQhw07y0ffjGBxNz3cBR3nXNJcAcR/+wb9d95c0mnO3yX4t+xcXE0j44TaB/k7qv1iDH0pM2YKJVwde2nyZt43Fgt1/GEnc33rL8NmVf9WYJje01NOepx3NaQP9mH04LcBsqMAqsdI4HVHT3zXa7neuHlU1ch2OfgXGUmIcFNTm0er6D8ekqqn1NjD+rrh7OAwY2+oEFcZEcbhnncCYbAGPgg/rgCd5o6oMngCD/oM/VdV19H36DAGEgWsxSFLo3Vkog1F/Om2Iis0yVZiiF3wmVLpjrghRRnwZ+bazUUICOEPwSjmVhvPCckPZPf/7Ca9NGsFC8j9my1AmoY7qSPSrlXfJMA3Th3wYHd0p/Os0W0Mleq9rlCSzIeqxUviHdAjrVPNMGYWjG73Ayzgt2NoHOafflOEqwCx4CDPB9Odi1gU6cNz41JQc7h4X1XsuTXAp2rUGO/U/egAXVSbR8B7taycACAXQeGMrMw/G1p6RgV2+WMLphCKzF4NU46iPJ8ZwW0L/JD61hzE+CnQA6tE+h2+BSsOMOAnhkHO6kgx1Pz0+0cR2OJYNjKLWd9CpOSwl2vs/AGEdtsCEFO+YBAxt8uO30Jn5Z4mvTBjrmtffJceRgxzl4vRFcw4wpwU4AXfh3HOzSAF2JUrKMDnThZ0zuBrrPUoGuW+k4CIEfeSpdCKBrd6TNjzkzJcUPnej7VMsl5V6rEDn4heKulOV+TngWkiuH5Ll+JJ8VTNXQlGjUKRPUeZ43M6CX0WydFeyyAJ2pT0p/tvqyJaojLcURuFtAJ3uvFxa6+PtZHXVlXzhq8lLJnBI3g24AnZAE7FgE1gAkwS4GdOE0YmAnrHRRxcEuCnRC2+oDHda6KNCF/UjALgp0wY7wBNjFgS7c5wjYxYFOKA52Aui4SELMkQC7ONAJxcFOWOnC+UjALg50Yg5Ra10C6MIdj4FdFOhmBk2AXRzowvcF2M0BoAs/awoMkrw360Cn6F8apJC10oUkMl9WySY5JcKxygp2GYAufJ8SrJFhPPVEzM9CcuWQLNeR6jPtt5vNJsl9Iq7MUBcqD8+kBbu8QJfSUTLszzSvXotqcaOE7Hcb6KLbernkKrbnddSNzIfkOGuYU3hTsAF0DpMDnZATq2AhOz8C7BRAF06nDXZ+xcXkAf2hlS6q8lQAdq1Bjv1O2tgBdADQ8h2smliMr20/TQp0YT8RsKs3SxjdGAG6cOdnwC5cclUZQ/0gwa8M6IQE2CWALjwAbbBbP18JdEIC7ATQ+bHVjCjYyYBOyKsy1BdV1UAnJMBOBnQzg4ZgpwK6cFebrTkDdGEfphQ+kW1zBuhi4+h+EIbbTEmR2/c1StUa3T2GdKzSgl0OoAu3U4I1UowXtCdUIYm/jn6cWjkkzfVEaMs5n3FzS6FMUOeoHiJZlMYnzIYzq9WIm1ny1+il5qIDMZBveSDLcBQL3WwcK9N3kTE10Al5HnijaZ6/78OvuPAkS4MAIKJSuQOM1CakTVq+g831eXi0uVAKdEJl5mFxaQye74A1VT9OggoWpQmujIaNNFUCXdjG4wBHEuiEOMCaDLVSSwl0QiXmo+J6CaALx2IcbjXoQwZ0Qn6JAT5XA91Mh0CrZXyAMVcdhNEhCtApSs9lEukHu4WgiJmGtHa2RBkvzZwsRJWSqk4wB6xsPs89D3ig3tvJATf6mwO5QgdlvBTVTLIsweYnHN2xoDimx8N6jeMRrFSmSgo20pjYDBqgtqGMTVmqzrKcnVfC0kqpckFxiqVeM7ovEDEMnrzkappT21JprIVMHJd7Hvi02vEefiSFjeZa4J4X/JtSl1xg5TK8JQvgtHz0b5HfaPwyMLmEoTzGcO89h0rbDJbrOG14FUb9GjZ585TjrW/Nx5fWnoNKqYXyvvJfq06DYXBd2/9kUH2sOAvgSFPAom2hY2A+UB6V37P8CseCZTvhc4addX1FiYlWBa7jY8HgpHR7s1FC+ZF+cBcY31/+QGQ+0LclOL9+n75aBNs9HrzWPVy94Jpz+mrauVPK3bFKBUxAokHkqgW6gIC2RdAKPFDTX1BLe1EhSmPpmbHgE54T1L50+0moZwrMHG8d2Ak3D+N9khAhnSo1jtGqaQfoKNcneVxC8Av4zHxKpqA3ifJb6vI4psfbUJYLZX/L3jM+NHOAnc2gAWob05yo7+UJPMkyp/j7KrCL59CjXldZwc4i0JGcjGNLz7nBTmT0bzXlYOf75nMf8/PjrZYU7Fi5DG//heBtK4871UqAnV8GJvZz4JcAcKBvs5MAu8FyHWfNfwxDbgBpE35VCnbrW/Px/1tzHkanq2CMY6CvngA7p8Ew+JQT1E1lgF+Sgx1nQdABZwEkycCOO0BjmMEX1YCaSbDzKxwLlu9EXznooOm5SrAba9bgcwaHcVRcLwF2zUYJpUf64daD+Xm1JNgxH+jbXAfz/KDUm8PkYCeArn0eGWNysPNE5F+Qx1AJdlF3AwVACaCbaWf+4Z6nakF8iTcX2KVNVEu1iOUAu6SvLeE5odiPRK11Wbv4/VABR4kEzxKwS/jtGu5X4RxlTaLvU5+DSv9DS5bYrM9+ynEnPC/7+jQR7gplhrqKML27EssKxTFd1YYCcPH3VW3iBzZNBEyir5S0rurfRuBCfE6meVHm3i2wU0Fk/MaT1Sk2C9jZttCZ5qTwJcwMdrHPJMBOBnRh45lrQfqAiYFdB9CF/XOw1kz/HUAXdpQEO5fxEOiE4mAXBbpwDjGw6wC6sFES7KJAFzaLgV0c6ISiYBcHOiEZ2AmgC/thHGVn5nxFgS46zwTYcQRAN9NREuxiQDdzvGJg58XvewqwkwUGxR/sMaCbaZcB7AjfeZXPXiawy1pSKs97smlEf0gpo+LNzwmpE7/qB7OQCoJi7yuBPgJ2ygh7w/0qnKvm76CjjGDXLaAzvZ9oRzjusuelG3yuWq3CzXCdZ15+HRgISuhwV1QrsOSYnibDN2XJMlpNQdUHVTaDBqhtKHOizMtWGyrYmeYlwM5U5YJ6XVHBzjLQGTPVG4JDUoOd6he6ADsd0IWN9bnzBNhJga4tp+mhf0tDDnRhRzNgN1iu44zhx6XjCbCTAZ2QADs20kgCXdhoBuxkQBc2a4OdCuhm9hFwpxnmL9uVADqhKNjFgS469wWDk1KgE4qCXXTZtXNCEbBTAN3MmG2wiwNd2CAGdroUPmIJTgF0M+1SgB3hO28KwkgFdnmLv2ex3umm03Z50M/H8JyILGcqgS7S1rhc2d5OOa6mXJim+xUAWgBCWrDrNtBRt0dFDH4R//NS8H9/v97FQ6XMUBcOWBIPXf3DK7Uo69xkoLG4FFuIJpuBDJacqEl9mfz+ok0tJDYNMpPTfuyQfOyIDr3GBMUA0FeTAh2AwFrXDKo2SIEunFRQKuyJ3YsSVrqoJvwqHq3vJwU6oUarBL69iulFuoi9YD7NATnQReVV1UAHANwFGgs97N6tv7l6voOGX5ICHRBY6xiA1kRZCnTheCwYszza6rTSdXYGMAY2Oa0EulCma4E5gOvCGTAs8TAHTl+fFugAgKvmHOuLBA1zsdIAc+zei2xIgJ2xQofFwAKLVYAo91DSvSrojNDGknGDqhRBEaHcWYK6wcFBAG2qbEfYURwlpa/jbaiwFn7GwkmwDXa9WA61LdsRpUSnX9q4hi9smi9PxqXJzumY4JBwraeRSIugedgxhwWRrKrqAEKu25HuJNFPqQRnZAHAOdzdchDjZReNBRW4dY7B9epj4VeB1rJpbB8dwBVPnSVvwx2MeX0Ycqbx/KVya169Wcbk04NwWoCvC8YTp9BVt+MO0OpnAAc0lcsABsDl8KdL2Lh1WNrEYRz95cC/sKzIqVJvtT/vcEweqL6unCaw4LEmGAe8mmJpy+Nwt48F12pZbcnizRRpRJgDR/UAYU6QCkXlqyfGowBdtE/Ng9rmQzys3JAz4TgAcnBBe2BzG+N8iC4/toCOEIQR+vIa7n8dtaiV4znGNmHFDNM1kebZZeO528XsC7wUHOOhoaFMn8985S1cuDB4UY6txavKn5jW+sXfaaM3TW3TqBdgZytwwbZsXqRpg0Mo4+ssaFl+DaUMIujYlAboNO9lfdjIYKzjPe6rwS7aznWTPlMC6NzAKsEazQTY8bKL+kgFfpmBcaA84UvBzq8CjUOn4JaD1B7rdwwnwM7nDib8Kjw4cBjHobUtCbALga6d2sQvcUzuJ9k38RwR924nCXYC6ETNV+bJwY67wNR+rbBfGdgJoCu1feZKjp8AOwF0ftMFGMD7PCnYOU1g5NEm3On2Q9NlCbALgU5clw6Tgl0H0Jl+aDsszFGYADsBdFFJrr1UQBftW/Kg7njPVGuWkMex43UesCMGF8QmYG6jnEdGB31TPyrFgjCk977YMSdVpwBo/oeSNomKGSqws+nrTVG3jB/i/0pwDS5atIjeR0SZr7rFixcDAHhNHv7eAXamtX7xf17AmetgR40O7bW6BXSq96igJ5tD/FrKAnTR/gzbKdnsYw1I2/I+ZKLfOanFTQZ2snYRsOsAurCfTrCLAl04fhvsBjZEgieqQP2QabiRH31xsIsCnZAM7DhHCHTBgECrPwZ2MaAL346AXRzowu5iYMddYGr/1oxrSbt/v9U5zyjQCUXBrgPoInOPg10c6GbmMQN2CaCbmUgH2EktdCqwi74fBzvmgJUVD9HIdZQJ6IRiD2rpQ1vxAykN0HW8l+U7l+cekwXs8jrop20vu+/GwU5xzDNV8iBkw+gAusj2xDViMysDRbaflbIAmDbUhYazlMoMdSFFVtU7QI4eTGM+tunAqFIvl2KjbeYq0NnoKwwaIC7JqhQFuzw3247+9OZ4Sjb7dgPCeL615SAmsbTFPx+Cna6d68LpqyWBLuxnBuxEAEJiLhyojAdgJ4CuVElaCwXYfXXt2QmgE4qCXb1ZxtSGweScomCnALpw+k4QhCADurC7NthJgU6o5WDj1mEl0AmJ9xNAF5m7ADsV0M3MnamBTshhQKmkX3KN34tl92YBdoMDAdDpvou2fN7aD2rt8lrMlSEL0HVsS/Pd091jqPefNGBn6xlgA1Ii/nq5K3kQllrFdinQRbeLa8UGYKV57nbb+NF+/0XvCn709hzq9t13XwAAr6r9d0iRfWHjHjowUk5kmmTA1DHnomzNq5fBJpRgBsYCh16KUy8BJClJMY2QlUa2gjUICT/DprpExpyDNVtwp9Xfd8aD6ghelUuBTmiov46PLf8Vjq6uV7ZxGMfS6k4sG9kBp6G6AQKtAY7xg9RAByCILK2ogS4qr8blQAcE1rqmi4lGWQl0QFA1Y+dkH6p9GshiAC9xuA0ogQ5AUCJsnBAUUSmDDUngNyoBO7of24ZycTPtHDBKDi3KD3vXNUNiO1Lexg8rVi6RqmGQjBLUCgLW7rPEDBKE+x6lUkReiE7My0a7NMUKTKIGfdgaj8AVGzZsAADst5/Mx8SszFB30EEHAQD8GrF8hk45zZWZx9KNKzKFO4QbnEm2AZE6JlVzDTgtHavQv1P3xRVR23l8+mYGnPmlqWlj/LGTEuiMDzqfB/U+VVNiLCgd1WyATygiBxgDr5bhTDXRv0HeplVlGF3mwGkC/nq54/3w4DT+41k/xaHlnRhxp/Hs6jppuyZ3sbExH8sGduDAZ2+UtgmshhytAY6xg+XTVlkWE+1coDEMMB8o7VAtO3L0D0+h5bnYMiEHqJbvYOvEADzfQbnkoW+eokpHk2FgdQm+C+xeLn+4Mp+jvHUyOH9x37bo3MslcIeBl1w92InrhBJxqIMep+1r5zr6yFkqRBLEfU4GOl07ViqBMWaM5CU76EfGlSrtagIpFRYxpYrmvieAjlK7V5vuJu63aEGmahnc82aez3kkjo/x+UC07or2WbZF9NRTTwEADjzwQNqYMWU+KuGAVR8+mvK1dVshxmmc6rXm5Iw+e3l+GVCCBmwrTVSpEMVymWVbVuXJ8xf7EirBLtouJ9h1gJwK7CgVJTJa6LQPPO4rwa7j4eZz+UOIMfBaJTg+nMMdqyfArlVlGF3uwK8AzGcoTbAE2AmgW1baDQBwwaVg1+QunqovRN0voeR4OHr+pgTY8balK5ifHOzSAh1vpxJwGxKwczn650+h1M7LWW+WEmAngK7lzZx7Kdg1GQaebKc3YUH6lTjYCaBjYvnccbRgF+6LCuzi14cJkBwmBzsnEg0LAKWSHOyoy71RKX4Mkfy0CEu0ieoHCnDN5KCfp4KArt/oe6ZceUTwiFvosoKdLYiTDkepvEGR6p4efx7ong/UpWPdmMRnJHd97NixA8CM4SytMkPd0NAQRkZGgon0tTq+SFaBTqW0By5NGHOeygWm+XQb7NJGlUaVBey6uT9Zgi7aX8T4DScBdrJfXxnBTgVwcdBLdBX/nuRcck0LdlJrhed1WuuiQBf2FYBd38YAVoSFLhppKsDO2zADdiXXC4FOyAVHLVLiIQp04ediYNcBdOGAPFyKTSPuAo15M0AXzqsBlHa25xADOqE42HHOOoAu7Cv6uSjQhXPvBLsE0AlJwI5LghkSYKe6LtKCXRzohOJgRw3MkCn2XUoNdJH3op+VRtqyJLjmctDPUkFApbgxwARxKuCIwYpqyTUt2KmAzibo0SpvUJaj4z8wVNnGDc+HNMpozOF9wXd+ZGQkTBuXVrnsl4ccckgwkQER+k9MhJhGFOd7UzuKxJfNRuUCk7oFQlmjSqNKA3a9sDymSY+iALqwmQA73Rc2JdiZllq1Tr9I6XcK4kNO/WHjUmzHMqwM6MK+OEqj06jubAZAJ8kZzHyG8ngAdsOD0/iXFb+QDtnvtPDs6jop0AkJsDv4uA1JoAsH5GgOBmBHsdKFQKfoz60D7u6SFOiEBNi1fAfbJuVLzg7jqA3V5UAXzj0Au9GDK3KgCzubATsZ0EXbATCDGxXsVEAnJL4H1BQqOrX7ygx0kW3c5/qceBGwMznoRz6knw+1ggBFJrigLEO2YYXkQ2eSCPTSyDbYmStvpAA7kw8d5fmQRimfkXww+N4fdthh6caJKBfUHXnkkQAAfyhFokuhLMuuWduRfx31MBN4r33sqKLMi+IjmKbih43xRFPNDSUtQOUZqz0g6cHEfVogBmk+ppt8G+y0jvfRZVjNcecuA2v6mP+ExufGZyhNMYxO1HBoeae0jQuOIaeB+e6kFOjCaYHBYRwDB46p5844Wn0c9QX6c+OXgcklXA2I7TbOAZNwHP05bLZc1L2S1EoX9uUzDD6hryjhtIB5axrgisTDoUou/OEBfRsATJOcGEBwLXieOQgDAJpN43fQWCYsjSxWnTBVWWFtt4JMVp/EYMT7HfX5ZyWJsU+8r1OiggmJ2T2P5ktIzBZAko1zh8g9NO9YxPHifb3o/WcCAI444gjaGBLlumKe9axnAQD4YEqoswp0poeYxXDltG1tZa7OO16vAyFsJc5MOx7nQd1SykNKV9EEMFqIrZYxokb2wbDsQVmOadf8hO+rH3auG0Q2+j7YtNyqx0sOvMHAPNe/uY6Rh+TH03eDZdHGjhoufuAt0jYN7mCTN4j57gSOH3hK3sYv4cmxhWj5DhYOTCrBTlgH/QrQVKxe+GVgagmHX+VoKfz8/TKAZZOo1oJ7m64E2HBfsAw9VJMTW71RQuneQbjTABSn2GkCI4/U4U614Jdd+EM1RcMgYIWXXfABRRsAaDSD81hVldXwOwMndM7pU1PgnINPKoJoOA8ipx3HGICQRso8eWKbw/TLhu3vgO575dfr8OvBeeMt9XOMt8xQ25U8cnl/hEY+r90/cf4pz1LNvIOVOnFdmStTkHPY2hIh6INkaTRxh9hODWpp69FHHwUwYzDLIiuWOt7fAteE+HfI5gPe9BBLZeZOmTfMBtilUa/Hy6peg6Ui+EWaNFhWwUT3t8KnL169IWuC1MSYOcFO0jD5txOJ/JOBneuCDfQH+95+2CvBTszD41Kw812O1hAHdzlYi2HbuvkJsGtwBxu8ITR5CS44FpdGE2AngK7utRPxMi4FO+YzlEcZmBfMSwZ2IdBVOERakTjYxYEufD8GdgLoXMeHwzjKrpcAu3qjBPeeIZQn2nPkSIBdCHSTM+eClyT3IwF0LgvbyMCOTTdmvhcysIsC3czOJccDwCcmgwTDbWtyAuwE0InxLIBdNDpVBnYd76nALnbty37A+PV652oC51Lw0cHQTKOM97dugh3VRzcO9IRnqTKQIcv+UKtNmUS1oBGCPjIvIctAjugPyV0fq1evBjCLlrrFixdjyZIlwc1xXoYlWJWymoqzmqop48kuqjSgZSN7dZbxspQr6ZZ6CZzxpMEmy5xqe8ynT2mhywBneWCQXAIpGrnlSFI5RMEuCnTh9iTYRa10oWJgFwW6cCptsHvtyr8F0Al0QjKw8zgLgS7sKwZ2caALpx8Buw6gCzvqBDsV0MUVBbroe1GwiwNdOGQE7GRABwCcsU5rXQzownYxsOsAOqEo2MmATij+Q0gAnVAc7OJAF841G9jFU43IwE76/YuDnSIoKQp2IdAlGsbgpZtAl0ZpwU7RPro/Wn+16DEk/HBWAl3UWqf6AZzo23CvtqxcQR+U1RHdZyLv+UNNeJ6H/fffH/vssw+tL4lyL9ifcMIJAAB/WON8DSTBRqW8YJEG7MTSpskHSXcxpQ1CsJBxOtV4VPXKx8/mDZCQLZy3WuabASWRMWk+9GVUioO3SeRi5SqgE/J9cM6TQBdunwE7AXRcdsNrg938R/0E0IVTaTFsfWoBLrzvrQmgE4qCXcMvYe34iHy32mBX239CCnTh9CtAfYEE6MKOArBrDHMj0PmcSYFOSICd6/hSoAuH5IBb51KgC8cSy7AKoBPiJQe8vyoHOiEBdrrrKrIMmwC6SBvxAJcCnVBKsFO17YA819VG1rJSWftdEGCnBDrRrg0+PQM621BouJ/xVpPuw0uotmO00PmE4EnqUislVyhF7YAPK0EdlGAVwnLshZ8+HwBw/PHH55qORajTZ6MnieIYahNUer1UaSOR8VyXaf9s7n8vl6SJTsu5olPTijm0ck06oOvoT9NGgF29JQc60azkoNnP0LdR50sCNFolfHn985VNXHDMdydxQHVnwkon7VIBdEBQJcI5bjdKy8e1c4LLSRa6oVpdCnRCDc/Fzg3DaA6rrwXmA+VxoDFPv2+85GiBDgDgA2xKA3RAAO6eD+giZoEA2qbrxpqufGLS/L1yDIm4AVKgBmMMTqVsjpolWHJoP7hoAVUkv1qKTzT1PmYr+IDYjrR/FEOFo88AkGZO1GAOcxYHe0E9FDCkAOQ999wDYIapssoa1PHBFngph3m0vbSltTxElxQp9N/uVyvdF9hmrr0w7QYxLcpc8E3LKp2V0UYmcMpYceXdP4LTdSqgMxwD442COWBu2xpiyNhvBDrXhTNvSN/GCR5OrNFEecektIlfdTF6UAW8BFRGOfqfTj4UeJmjb9EkXMfHml0j+PqG50n7anAXE34V+5Z34/TFT0rbcM4w0aigWm6hcZjcid+rcVSOGMW8/mkMD0yhslRuOuMljvJiRSBAWywCdKrAielWCRvWLgRrMLT6OCb3l1grfaCym8PxOFo1hqkl6oAH1vKNQOdMTAfXtyo5se+Dt9pA4LhasBNWF20kq8/BPXr5OaWiy3e6CFXHMQNiuy+6k7vK4hcpLaj5joZzIVWr0f3AId4T0wQfUKVKpB4BEGNFDdO9hVqGiyLKc4MCvpq0V0KkCiaYud6M9YYN4qVmGCQx61C3aNEirFixAmCAPyIpiUNcco1+YUmpGUTfFIfKLGBne/0+vvaeBex6FUVqQ8Zfp3sQ2MWdriVf9kwWOsUxMP5CbgNd+KcK7KhAN394Jq+ZTE7E2sA52FQ9AXYC6EQCYuarwa5cCm68nu9Iwa7BXYz5fWhyFy7zsby6NQF2Auh8DjiOj3nzphJgJ4BuqB2dyhiXgp0AuoqmXi1jHPNqdZTdmYdGHOxCoKsLP0YOL7bcGwW64A0owc5pmpa12kDnB/cq7jpJsIsCXdixHOw6ltEcx5yihJiKR3o9yxztZWAXuy4pfaX2hQrHcjuBRmFgSDyrTNVqxN/GNooAhfg1IAMXS88r2bEzVtTQAXJn51knlQ3oZN8dItCZp5S0vEmPHSUAg/vwF9TBOccRRxyBRYsWGcfXycqT9YwzzgAA+COxJdgckJDwF9JZrijr8RSwo1r/op+hSPqlTwF2PQ4wsKZ44mBKVJCNsXRKu3+KOVpbZmWEh1asvexhKwM760AnFAO7ONCF48fATljpooqDXRTowmnGwC4KdOE0Y2AXB7qZY9IJdlmBTkiAXQLoxKFyEVrrEkAXDpAEu7RANzNeBOxkQDezU52fk/lFdQvsqBY+xXVJ6YsGdpE2baAz9SP7fmaqVmPT1SgP0BGqREhlCuJTWehSJ+8lwhylgodFoKO0IQVgtI//X/3tswEAp59+urFvk+xC3fw6uCFRZ0KGnF+kC43oA0GHqC4su0q3OXQ/uz0Z7Gxm6KaMZZKl/esoi5dH7V+ieXPfdYAdIWt/JqATioAdd1kC6MI5+UFlBgF0wkoXlQC7r60/OwF04XTbYHfqotUJoAunGwU7hgTQhXNiHLVKkwR0jgbohCabZSnQBYPxjmXYBNCF7WYqYGQFOiEBdkqgA4Jrrm2t0zq6666PcD5EsGPMCHShtY4yrskXj+DCAMaUQNfRDvofXOHnTfc66v3QdI8SEGPDQkepEiGsdbp7bPtYWltytbjc2iugIwdfRAIwuePjz3/+M4A5BHWHHXZYkNrEBfwFkRsp0XpiPJhU50iKbD30rTr8E6x2aZIQ90K2LYi9hNY0ia0NIke6WnPi1vcjwE5npeOct2u8KkIzg0ZBdGNdE9XOOeD5xnJcThOobHWlQBfVVKuMG3c+S9tmQXkCJ+yzTj2W42N4eBJ9R+7S9jNQbeDIo9dpga7sejh68SYcNLRT2Wa6VcKm9QvAWjq/qWAZVuGG19nU87XfBeZxuLsn1GXEhFoeWMlk9Z1ZUtc2q0lqwEXlsOChb/pR4khqqMYUTz2iFLFSi1F50lDERQ0IsGWhowCNRRn966gGEYoIx4C5rnlOAOB7VqJcSb5xhLJm8e3+SB3T09PYb7/9cpUHE7ICdYwxnHfeeQAAf5/p+EbdB4P/NSkcwhxjvQYaQroMcj+UZV3qcqzpeNo4Tt1Im6ILRrENdMZjRAxBt6FY/jpzc/X3QNwwSGWPVP23jzVvQxsf05Tc8nlg7VGAHa+U0dhvHliLo2+bwmrkBClFKqMMk4/Ml7ZxHR8L+qfAGMfGqXm4ddfhiTYed7DbC2qrHlzbgRP3lYOdw4B5tTpGBiZRVVjXyo6PI+ZvwSGD2/GsxZvlbVwPRy3ajKHyNIbK09ivfzTRRgAdGg4444Bqxclj6NvsgLvA9HzFkqIH9G9su6+olh09Dmd0MrBQ6cCv3gy2u64c7LgPNBtA+zrS1kYtlYKAHBXYCaCjWNYALdhFLd+6+sS8aU5TlNZ6rn3+EPpM9YNMN/e0oGZ51SF7B5EgRu29PsUqmK76g/gB0aMoVirQZWlz0puPAgCcd955mfI7xmXtiIRQN7+ejIIlJvflnpf8EsWrONjI35bX/yrLF4nyK0YFdpQkxHF/jW4qawCHLBglnpTZFuCRALkHS8JxZQC7+PeAAnbSfuOJVVVgxzl4M5KkVAJ2vFJGY/9h+BUHjAPlcS8BdtwBvBoDZwG01LYnwU4AXdkJbnY+Z2qwQ3BOy05LCnYOAwYqDTDW9mFjPAF2ZcfHiuGtGCjV4TAf+1THccSiLZ1tXA9HLtyCgdKMj3Cf25nqJAp04f5KwI55DH2bnLDmq18B6sMxPy0PGNhQh1NvtftBMkAgCnThe5LM+ALohOJgx/0A5nzeYe2SgVYAa+2gARnYyYAuowuB7JrnEmtkN4AuTz/UKElSIF6PLW8doubGlJ1fyvOACnOJ54HkGo/NgWKty3K/BGjLqTLrnLLiRvy9ko8//elPAGYYKq+sPb2WLVsWlLZwAF+WGoACJgDt4uqlNcomaGQBu6wQm/UYZc3tZ9Opt1tgRwnWsAl0OVLldPjrSdpnBbtEP3GwE0AXf8hGwC4KdEJxsIsCXdgmBnZxoBOKg13USicUB7s40IVjRsAuCnRCDvOxpDYWgp0AuqFy54pDyfFCa50M6MLjFAG7ONAJeVUWgl0c6Gb6QQhLMqAT96Uo2CWALtxJ4acVATqJog/HKNCF70XBTmehS7kMq7zfx677bgMdxSpHtdzFPmR+Pw/QWXs+0ZZOO8skEs5dnnt+5H3munKoJN6zKffLRKUeU59E65yqnbd4Cp7n4fDDD8fBBx9s7IsiqyaJ888PMiJ7+06ByypXh06iJnBo50CiRrN2C2A65sTtAF4ei12ineF4pl2OzQp01O1hOz9ppZP1ZS1pcA+DNYTyZkaHGujC7SnALm6li2/j03Xw3aNSoAvbtR3v40AnxDhQnvDRt91PAF3YJgJ2jPEE0An5nGGsVQ2BTljpohJgd8qSp6RAF47JOAYrjQTQCQmwO27fDVKgExLLsJwzKdAJccaVQCfkVRkag0wKdDP9AGAsCXRhgzbYtTw10CHog5VcLdB1NJcAXbitDXbGJVci2JmWNHmjAd5s9cxCR7G8pbLOUYDGhoVuNpZhTffvoMN8/bT7MAWRkXzrUsgG0Jn86zg4DjhnBADw0pe+NN0ENbL6NHvRi16EWq0GPtDKXwuW5PdEAUQDjFFBkzoeeU42o3V7YNlM0w8pvyDFidnS/s+GtAlHnZlE26ZuDDcz3k4ES+nH5K/BOQfq6sowzHXASy5KuzVtfI7SpI/adp2zP1DdybBz9QLtfHbW+/G99SdLgS6qPqeBg4Z2KLeXHB/79e9G1VUDsA+GXY0+jLcMQQEAtm7XJ2pmLYb+9WqgA9oWui2eEuiAAJLZdAtcVwWCc6BliJblHHxqinadaIAulOeZfehMFox2hYu0kYK5ZDGXW+ZceGm2pxHV3cSU9Nw1B3sYy4KFDS1ViCCImgjbCGJEqCWNZzqO85pYu3Yt+vr6rC29ApahbnBwMJyct5886zyAmYuLYjmxWYEgD/xEHey1lrF2G1OqEl0ARZabT16wIwNbTrDrVsSsNo+h+EdYBrH1AAGMYKcLs2cOC2+wxlQK3Nc/sMUDWFGPkzEGlEVuMx440cfbuA7Q3xdYjiamUdkqr77AHQav6qA86aNvm8Li5wB+CajucPHYwwdI2zR9Fxt3z8PGXfNw3YZjFW1K2NnqhwcH88tTOHBwZ6JNCHSOh6bvoiVJl9LiLtaMj6DulTDVKmPj1LB0vIlWFX9+6iD4TReoKLLxtxgGnnJRmg7ATdrGA4bWe3AaHM158lwwjAfLqYxzoOSCqwIVTKDGOfjERHh96Cy2FAUlxDygqfnRTgQ68T3LVVCd2p5aWzTPGPIPmN/P+6ObEvxFeIaykqIiSURkoDMOFrn/EVKg6OrwhttyPuNIy++E6NaOfdMc9zM/cDwA4Nxzz8XAwIC+zxSyvu70yle+EgDgL5wG+ri9XytZwE7qsJkBfuJLd9T8cpRl1Dxh4GkDFmwEmYj21OOUVVmWgk3HQ3as85SIo0jis9fxYJCAXeJmoAC7Tt8WBdjFLSoxsOsAOrQf+gqw4yIRLedSsOMOQ6vPAXcAcKA0lbTYcQfwqgCctsVuaxLsmr6LzaNDaLUc+D7DltHBBNgJoBM57RzGE8EMUaCL9h0HO48zNP2Z96ZaZWyemtfRZqJVxZ/WHozmVPtYOQDKMf+9CNABbTCL3f8F0LnTwbnyK04C7EKgi+a0kyUBTgl0M28b7hOqB9p0vSN6Wgp2KYFOpawpKFQZ+7V/Z+w7c5oMW368MrcSWV+E8RJAJ2lDBjrTalX7nkcpsRXtRwZ2OthT9iMLWKAExRCtc6Z9Y64L3s9xyy23AJhhJluyDnUrVqzAc57zHIABrf3GpQ+ohKggYNNip7s401ijRFuVz1ZasCMXZM4YsGA1v17KJQhbuQQpvhy67dTKIbbBTvXrLQJ2yl93MbCTR6EZLHZCCotd2E0M7EIrXWejDrDrADoxRx8oR5Zio0AXtomBXRTohOJgFwc6oarTCq11MqATioJdi7tYPzk/0WaiVQnBLgF0Qi4PwS4OdOH+RcAuDnTh/kXATgp0AMBYp7UuI9CRFQ+UiQDdzBAxsMsBdGkd1EmyaHXPZU2kPN8y/bAmWOfyWOgin00FdNrtitWJREkxPRjyVlMOdJTsEfG+KEExKYBO9n74sn3fftmnz4DneTjxxBODMqsWxXhee7xEf/rTn/CRj3wE8Biq9+wL1nJnnL67kf9Lut0SQADmOYu56NpR8rHlTbWStj/OLUNezv0P+8kZsEGVxSTEtG705niS2tHhpgz4zHVoucN0S7uMAeUS2PC8GStdshH8eX2YOHCgA+g6puwAzQEH40uZ8mckd4H6iIf+A8Y7gC4qx+FYNDSBUxavkVadAIIAi13NPmyenIeDJMuxYV/Mh8s4nppYgLqnd7Jeu2UkCXRRNRwMriolgK5zYsDgpiTQReXWfVS2TiSBLqqWBzYhX/oORQQ6Uk4sh0mBLtGP6VojWuhsyYbP00yzbFCQWtR7pC7oK4UoFWxCcOom0IVjtWj9mCTmSllJM/ZF9wvU7pvnhceblzzg9J2o1+v4whe+gBNPPNE8Rgp1IewPOOmkk4L0Ji5Ha0mQtZ70QON++vqrKtkCJGq0qg1RImytwqpFoDOOlSKi10YbW7LozGyjYgRxIJrvFGPKUlMdbXRVJQCw6Rb6tuiCJ4DKuI+BjYbgiR0uptaogxB8n2HzriFc+8QxyjYO46g6HnZO9ynbAMBYs4bfrztUC3TjjQqeeGR/PdA1GQaf1AMd83gAdHVNMlUfKI019Nc252DTdfM9wPeBsqJuW7Q7QuQ0bzSN15LRGui3r8de3UdBAxZShHqXLX0ZO9NvJ0bcmpYuQzA2rWoRAw2Nx4Di0kS4r7FSqXeGAQAwlFmL3/df+6XzUa/XccQRR+C5z32uvXm01RWoY4zhkksuAQB4S8bB3ZRfDBs3gDQnTQVSYVi2YcnOkhOudOxuykYQCiUQoWM8zQ3AZvqVXopy82+30VoQTNeRyOFoyuXIHHM9zujxk4CdsNIBwYOdTUqoJdLGHZtG/yY92FV3+xhYr/vBAlRGHTSfljsN+56Dxu4qprf34fon5eXEJlpV3Lt1KaYaZTy0c19Fmwr+8vSBmByvYt32+dI2440KNj++CO6YA2e3AvyaDINPlFHSxYR5HAObfSPQVXZMgzV9cMcBL0m+k5wHFrqW4UHbPues5ILVauqJNZsBbGnAjrdagO/rLXrielSVLRNA5xv8qyMuCnNC0WTfuiovhh9qZN+xcLWH4Oyvu9ekqVqhS3Mk7h3ac5bGTUndT8dx1AXYRZ/HsmEieey0UC8+34Nkz4nE8a6Pn/70pwCASy65hGYtT6mufYOe97zn4aCDDgJKHK39xtN3ICBBm6vOYmSsGJMyJ20bRTRrFkhLGwghlHZJ2aal0WRpNUUQp1GePmwsuwOd+0qMrpXClsmZOwJ0HX/r5qwCO9m+yyx2oh33lWDHRRtfDXYifRzjarALc9opwM73HDTHKoDHAA4p2EWBjnOG0alaAuwE0DWnSwAHGtPlBNgJoCtNOmAAnDpLgl1WoIsd+ijQzbwZaxQHOpVi51oJdlE/OAXYCaCbmZLsmoldj3GwiwJd2FE2R/4symytIwRW2Cj+HvZNNQZEz0HGecdBRhp8EL9nZPBTm2kX8cuTHDPa6gXhWJPOtWEVTNpxtmsxBNXYOXjN/zkXY2NjOOigg3DmmWdm6tukrkGd4zh429veBgDw9huHr8kRBUAOPmksQPHPZZXh10BmsMs7n27LVnSxeN9W5QyTsnyuG0Cnek/RpuPGSY3AVYGeTiaLXUfbdoqJiAWuY6wo2MnaSMAung9YBnZBkt3oWJ1g1wF0kTZRsIsCXdgkBnYdQBfpJwp2UaAL54wY2OW10InYKhnQIQDl0FqnA7ro909xjlncF1IWsRoD+jjQSSVLjB0FOxnQhZOiBA7MEtgpvotpK0mQAitU3/v4/cm0vEkBQ9+TW6Yi15AyXUcCuu34IucCusj7qnNMqnxhyVoXPW4hzMXOie+28OMf/xgA8I53vANuxpJ6JnUlUEKIc453vetdePjhh+Fs6kf5yfmaxgZrFtU5NKtVLItsBzbYkM3AD20bSw69tgA4zTHuJtTFP29ow1yXdAy01SUIOZEQ5r0z+bU4YJWyZoncAatWwIcHZ6x0iT4Ab6iGqX3ViXw5A+rDDsYPYAnr1cxYQHPQhzfP6wS6WJvycB3DQ1MdQNfRhHFUSi2MT9Y6gS7Wj+Ny+NsrHUDXMed2u+oOhvKEctfAPI7+LT5KmqAI+EB1exLoOvvx4OyeMFvoDADGWx749LQ+t5yo8GAAuhDUdNei66iBLuyIEDRn6d5ADpowpVlxXSsWOlOlmJmGlgLZKAF6ts9FXignwJa1mq+EPHmU/Q+vD0XbF1/+V/j5z3+Oo48+Gl/5yle6svQKdNFSBwS/+N/97ncDAPx9J+HXctSqpCzH0ifWmy9LGs0lHzHAzr5Rc/BZSWZJPKe2oNeGk7XJxy5s1kMnc88DVP5RQFBtoOQCDQ0g+IA70UBNFzzBgeqo3seOeUBtq4PaBk2ggg+0ttWwbcOwskm9XsLowwvhPaVO8MkbDsqP96G2VX2Dd5rAvCeAvq2aObc4Bjd6KE3mBDrOwaabxqhS3miG5duUfblO0mKXmJNPstBRf4QYy5FZslKQrD22vhs2gi+obay5qFB+nNp5joXVKExZEHokyr2VVF6MOGfdfZrXWvjlL38JAHjnO9/ZNaADugx1AHD88cfj1FNPBRjgHbxb3ojqJBpvL3uf+qvE9KWhQALVekjtpye/yijAQliCpijik5V5LKqo55TSj05duCmZ6l8C0C5TpSo3Rois5q2WHNpcNyjozhiY54OpwM5lAOcojRvAzgdqu30MPJ2cE/MBtx6AXWkCqG2W3Hw5wJoOmMfAplxMbO9PNGk0XPC1AyhNMpQmGZwtSeshbzqoPV2BOx2AW2kieTxZExhcB5SmAKcFlCYlc261l1ynebDsLLtUqEA3WQ9Ay3WAihxqeaMZ/njQgR1vNoPrpGKIiDUtuTrB90v7IHRYYKXTXZNimyFwwBSIILbl+v5Et2naiGPHtCXbfPN8RL437aqUpaARRq/YoLWMEa1UwZCEYBDKPZRUZUIT5EPIqxdEyRrun2nu95q2J73/CHieh1NOOQXHH388vc8M6kmo0bve9S64rgt/YR3e/CnDkhQxMtKG1Y458jDquK+XZikq/N/0BST3Y8GKqLppZPWbs2K1o1iuLIxl6xj2QjEnYqPVQXWdmc5r/Kali/QWf6p+5QrLEedmCOAcTsNgRfKB8pRsPpiBIg44CjaMBmGwRvI4cN9BaYqFbVxZdhafwY3EgDDJs4LxAOjEfGQlwII2BksXhxbogv5jx1Z1LVOW7RuNGatZ1rQajhMCXfh3XK4bQD9jaiuEwwI3AF0bAakGUDN9V3J9n6JNSmWwSoU0546/402Ev5oJ5mxYFdv9kKJudSLcs6MRp3n6sSXKcWalUgh0wRuyaHNLc+Yc3vxp/PGPf4Truvi7v/u7/H0a1BOoW758OS688EIAQGv5KDgzHLA0D+U0B15lWaNYyXTgF+2HMgft3xajQ9MCks7SmdaiZnoQUcaiShY9l+UYzoKVLjkEwSE7cjNKZaXrGMhwjDnvtNYJK120X58nrXVu53ychqe11gGA2+Ad1jrmJ+HLacWsdW0rXYdarMNa12i4wLrOfHWs1Wmt483k8i7jndY61gQGnkayTcRax1qBH128TYe1rh0YoRPjHGyqc+e5wxLWOh4/7hJrXQfQATRrXVyO5EdS3FqngrnotamCuVjggAzGSDU503xv4q8VbVilEixdx+bcYa2jBFaorHO889wY50wR6yxTFSqttS6FdS45BUIwSBesdRQraAhzvVgi5hzc4Vh8bnAPes1rXoNly5bZ6VujniUFevOb34zFixcDfR68AyZAS1nCOv9XSfSTx8pDsfB03NhyfAmp/dgEOxu/AG35EPbMz86hX0O9Bjpq3ibN5ykJvfXLRXpQD5dhBdDFLTScg7W8GbBzJcc45TKsWHZNLF3yyDKsWHaNTZtxgE0Gy7DhsusUS7QRy7DRZde4xDJsdNk1Ph+xDCuWXWVWuhDsUi67xhVdhg2XXRONZsAuAXRCrksHO0dzDxL9tIEusS+hVW/GOqdtM4escwBC65xyzsGAuskE/1HKa9ny+dP8yEtlrcsBdGn7saXU1rn49vY1aMs6J+byuq9fgI0bN2Lx4sV405velL9vgnoGdf39/Xjf+94HAPAOmAiCJijLbVEfuLwyOe6nATIb/ZgSSdoEux5+wUiyBYjGZW/CMRT59fKKunxMeajYyEDvMPMSqcGZmHte0EblsM85WLMFR1e6igh2fTt9DK/y5b5oAMCBym5g/spSAujCfjjg7iqhevdgAuiibcpjDIOPyoFOyK0D/ZtZEugi83HrHPPWtbTLrsznZqDzfbDxKf35Yiw4FwaY4FNT+kAFhwFlTfBJdDzDdp3DN2NBxLXRKZwCY7ZEDFKw4cgeOM4TLOKE+VDakCo25NkuxjEAHW+1zMfZGsgyOjjrfkhT0z4Z5zMzhl9r4Xvf+x4A4L3vfS/6+5M+v91Qz6AOAM466yycfPLJgAO0VoyCg/5FZmFKhpxTNgEO9cFsE5TyBH6QxyBYRm2qB2lcmOvKlxoSDXWm9sg88ywVdPSTb9+FBU63X+E2zdzCB5Mx55jh+9BqgU8qyEYs007X4YxqErcZwI75HKUJD33bWxhaJ5+P0wQGNvgY2Oxh+FH5sXEaDEOrGWpbOWrb5FNhHlDbDlR2c5QVedGZD5THONw6h6/gH8fj6NvWQmnSg6MANuZzVHbW4TQ8MMV1wXwfbGI6sHoqSm4xnxvLtQEAGk192a729WKMhgWMwA9AH50rtinaRNOeWC2jpVIKR32VEz7nnHZcLECLuLfZOjbafhzCvZSwT+FxowSCUJQ38I0gU7m0mfEMwTaRezYHx+FvWoJGo4GTTjoJZ599dv6JEtVTqGOM4cMf/jD6+vrAh5vwlmoeAuGHOh9u2iWnNHnjZJUPOpxdFXAXf3ib+qGqF7ClS+YcjUC2FWSQx2cu5RxygZ3Q/7+9Nw+zpKrv/9+n6vbePT0bMAPMIMvAgICgwBARZFFAxnFDg2tU9OcSCRpFIebxC2IE18QYDW5RkyDiEzUQF8LIg4oiAeKKyhpWYWaYfbqnb/e9t+r8/qg6dU9Vna2WXqbn83qefrq76tQ5p/Z3fc7n8zllhbpD4IFrP1LXt0bY5Zap+pwtoxJu8jKNsGONRvTinZrSCzuxbUlhx0IOvxnC63CwgKN/e17YeW1gaGOIxlQIL84DlxV2Xoth+FGGngke+8XlhV00x2zkx8c44LXywk4IOk+8n3zkhJ0XcPRv7UTJhXm0D1lhx0KOnh1TxmCRRNC19SMXiaATYkJnKWm1I4uDbvqv7HXiYq2zCRjG1KItuyzzv2qmiWkVdgXv65xfH+fRMQ0Cc0Rt1iLk8hxT9C13LIxuOp6yz87Egs5IJqhLhTUnXJkRN+UxLv6OUs6c0Wm7CTq535pznhXEwQET+MMf/oChoSF84AMfmNYUJllmVNQBwPLly7vDsAeNIxwsbvY0Wu0KBVk4vMRn0monW9KmM4myS3+nW9hVbFs1BFD4S1MnxiyRbM5k63ccRsn+n/uoUbYl9VPjw2QVcZllKWd4lbDjPJ/TrqSw8zpS0IFC2DEONKTZGbLCzmsxDD8WCbrUNpKwkwWdXEYWdllBl3RbOi0pQZcUiMWXqFcj6GRrXUrQyWUkS1tO0CG2wGavfyHoBGGYFmQq4eB79Qk7GVtuPV1i4rqG5HINGj5iTZvFIkVY55Q+e7bgC9ePydQmDh9yrnVnkYdYPV8t6LL7ZGmHdzpugq4Oyr6XstH902CdE4RDIfwjIqv6RRddhP32U89BPV3MuKgDgLVr12LNmjXxMOyOQsOwMtNqtcuWcfGNmO7h2DopEqhSR1uqv6eJqkMIyTXh4mdXh89MjLbfrlYMMbRmOm+OQ7HKXGSysBOCTlVfAWEnrHRZZGHntYHBTfkyKWEXAj27FVauWNgNbOI5QSeXYR2uFXRRochapxR0cp/aodVCxzjXCjrxrGFBqBR0SR2ysMsKuqQqEQhjGKJ3GYZ1wTLUKtbZZpqo1VpX0d2Ehzwl6IwYX/4F7l3XZ1dJkZTUbxhuTZZZgrkAi3WuziC9mkaQSlnnNOtVx4+D47DXLkWr1cKaNWtw3nnnVexxcWZF1DHGcOmll2JkZAR8pINgpcaxBYAtKsoq7IqIu6rUHZAw3SZb03Cs3IfpzJ1XBtuXo20GhumyCJgoY6Urg22KIl5gLlgVYexDN9UyC8RWG2y3IQpBCLtNUykrnQwLOPq3trHooXbKSifjxXOsLvm94RnBAX9SLeiSetrA0JOhWtAlfQYGtugFXRQRGyY+dPp6orQlOUEnrU9y1dnOlUbQAdAPw6bKcLMPHqShRxPMMfiiijgqgFN0pgtVBZ3L+qSYwzO2pqDBqu4qzPfdpuCqI6tATTMFWcWcaYg1U053/P7882fh3nvvxfDw8IwPuwpmRdQBwNKlS/He974XQBwNO2rIZWURdlaKHFiXtCam9XUKF1Pkpiy2ZuLCqSsS1wWr9cvhejCJ1RqHtlmjkQxjmPtjG+YvMGWYtjNe9JLWpSgRVpIgML/IQ4e+2ER6GIJNGYQd50AnhD82hZ5dmgAADviTAXp2ttEzpukPB/xmiL4dpshSoGeCKy15SRkO9I6H6N2lEZgdYPipNvymIeCBc/jjLbBWx+hPypotMNPUXq73WadjTygchvpzHXKEU1Pxtacuk1wztvvNs0eM8rYlKjK2rFW11iWzG5iEXQ0R6IUCGazvFM+a0sXahO2DzmGY1CUtTHJ8XabYMjdmX1+HkcTlHeko6EznOxidxLXXXgsAuOSSS6IUbrPArIk6ADjrrLOwbt06gAHtw3eC95inKuGKrybnyZGLip+iyYinC6Ow82AVf3X1wdaXunEUdsoHUOKXWNFy6rivyY2uEnYuea0kP0qlmMqIWOsDXiHschOxG17kAGLhp+iLx4BGQxra0/RFPPgNwo5xHifbbeeFHUccMRoJLm8qyAu72B+O8ciq17dLMYwbAo1JDi/g8FsaYRcCfTvDuGxe2AlB15gIkvJZYZcIuo7ZjYM1Iwsn9xR+cUD3ehG/NdYv3m5H55N55lyEgFrYCUFnEO/ZoVKtIJAFnUZIpQRdSR83F1JCrkIuURdBVwjjaJLDyIO1erugs+HUjsvxlVG5sLiItbpGvFzEXA2W1NDvYPi5ITjneOlLX4ozzzyzSC9rZVZFHQBcfPHFOOSQQ4DeMBJ2Nv+6uWa1q1K/cz889XRm2TJl2i4z64KtL3XhIOyUgscUoVynlS7zAnOaZ9H2QMsKO831bnTYBtQWO0WUdiFh5zGgpzexDmmFnZ++Pli7kxZ2nKdy0emEnZyLjsVDm906uoJOrPebYUrYCUEnBzDkhF0I9O8Ik6FZlbCLEhZnXk6Z/isFXeY6FIIuWZQVdllBxxigCGZIBF2yXcHHuErQZa4Fpe9bqBiGzVjostY63u64WegylLHWKYOnsiKkhCXG9r9uWb5QNiDBLOicrGYOlkKVoMsuc7HO1TKk7SLoZ9o6Z6vKcIx5yBGGIY5++wHYvn07Dj30UFx00UVFe1srsy7q+vr6cOWVV0ZpTha2zP51Ao3Vzpk6rXYzNfwJdIWb0XI3z4ZjnaKPJeGjtYYVtNpZ9s04RY4QdsZherPVotBQrO7hFAs7o3N6EWHHvNxwX07Y+QrBH/KuxS4WdCpLVyLsYitdvi88Za1TzSghhJ1K0AkSYZcRdEk9IeC3Y5HXAYY2qH1xhKXRaKETgQ9NtQ9iIux0M58IYSfKZwWdKOZqrTNZ6OJrwXi9yMt1Q67xvZGIuYKCTlBE2GkFh6uflGN7lYaGk74It5l8n5IAhDk43FoJV+tcXYLOuL4e65wYJXz1F16IX/3qVxgYGMAVV1yBvr4+7TYzwayLOgBYuXIl3ve+9wEAghW7ESyJv+ptB7/qRSCf/KrDrTMppmzr6xJcNkE114SdLbN4ncEaBpwsdg4OxJU+XASxD53tPtH54QHoCjuND01qW9MMA+1O5E9m8EljrU4y7JpfHw/D7grgaYIeomjXAEMb20pBJ2hMcix4oq0NnmABR/+2MD3smiUEEHD7kGtLEyWca9RwL/X0aAVdtK1nTSWCMLQnz+Wh1X+OdzpGHzqWZPm3+89VxcmCVKP/nBFnNyDze62O2TXqGG5NUocZCzk8/52St1vKOAWa1WCdk6KQXQRdsGQS//Zv/wYAeN/73oeDDjrI3s9pZk6IOgA4++yz8apXvQoA0Fm1E+FQ9HXsMr9lJYqIsZmKmnTNn+eSa862b1VTtcxU/qG6BJnr+ba0ZQ/UsD/IzJHb3ZD5yilaXDAEWADx17ohxQvnHDwMI+d9Qxus3THOjMDaARpjpunEOHp2TaF3p6EODjTG2ujbru4LC4D+zS00duv7ygJgYEsLPePmlA3+VABunEItAGzRpQ0f3DJHL5+YMIuxILBH2nmeZRoyL5rz1Gr140BbH0nIWw4zX9QQxeliQbKKSzhYvFzmnXWJKK8xM0KlKcFcArscsO5zXYYOl5ROluuJNXrAGpbobJe0MlLZcKiNxnGRAeqCCy7A2Wefbd9uBpgzog4A3vnOd+KEE04AfI726u1R4IR4udUxRVgd1BRSbsUlj5zrkGJVwWSLJK3t5q0utlyizJwtjMZjYgjUsCE9pFw/WkoP+xR5keiEnRAtQWAWbYBZ2HksEjqdQC/sghCs1YE/rhB2nMOb6oB1QnjNjjJqNppurAPGObwpfZ44rx1NydUzppp5Aegda0dztXL1EK4QdAhD9VM0K+h015s4toyBNxQv2jAEH98d5wTUXGspv0fNtSTlkWO9vfn1IuDC8V7WRli3Wt11FQIVukU11sAaBJ2TP1rYfQ5rZ1KwRorXNKxYAO1+uUwHZtoe0f5axXIRQ4npOrEJOhc/SRcxV/D88EaIJef2YHJyEieeeCLe8Y53FNp+OpkDKqlLo9HAhz/8YRx44IFAf4j2EdvBGU+d3Dkl7qYblzxyquTJqvJFRUzOyd5BZM4lYefkV1Fd2Kke9kXzwOWEneZBlnPYrsPXxSXAQrQjhnLLCDu573Fy3RzCihTyvLATgi6Ifd04zwm7RNDFdbOA56x1LAD6tnetTP5kJy3sZEEn9zdM3xuJoBOLVGJK3kfVNZndJueLKAm6pKHMcctca4wx6xRdeb89SdCJRTZrHfIWuZSgA9TpVrLXW4nnaClBlzluLh9JucwKmTp4NpBIUWa6xFypj8nM7BFawWwRdLW9B0ok901t6yDmXK1zReCM48i3LcfGjRtxwAEH4IorroBfV17EGpgD6ijNyMgIrr76agwPD4MvaKF9yLZuRKys3OeKsJsNq51KaMzEcKxrsuKiKKPCKg4bZ+tVOSa7BpbUkTdPalMr2ApY7JwEXR1+Kj096WG9MsJO9WDmPG2tCzO+XFlhx5EIuqT7krDLCjqx3p/oJMKOBUD/tlbOgpcIO5WgU/Q7K+iifZSEnbDSZZGvNd0k98JapxJ0QDotjYbU+dLMy5pY6xSCTvTVKOwy4j8n6JJ6PPXfBUgJEct172JFKiXoFO04VFJs+XShmw4sg1JExX11ts65PP/rsM6ZqncVc2UEHTie98Ej8dvf/haDg4O4+uqrMTIyUrie6YRxo4f07HHXXXfh0ksvRRAE8J8aQc8TC9MFxMXmmqeuDmxBG3VR5ZTUYelybYd5diuia13TWUdSxhZ0U2FoV9Tv4ks3HRa2LE7D8oY6Yqu4NsGoiNq0JCBlngf0ah6wYsixp6EfWvQYeI8P3uPnRJ2A+wxhf4/a+geAM4awzzcOyQJA2ONr60i60w6NfmksiCJ9bX50RsIQ2L4zL+hkfN+eY85GEtVssMy0DFn4pTmGje25fPDYAnlC7iTorILXVoctit7xHrdSgzHAaejYUs65jO05X5Nfuktfjdvbzq/DFGGmOtordyLYfxy+7+OTn/xk5C42x5gD5i41J510Ei677DIAQLD/GDrLxtIFXBR93cxEwIANzwfr6dU7uroEFNQVGetiGbStt0aJ1hPYUBmHqLXKQmomcemH6QHpYLFjjAH9ffp6OI8jYg2zyYQcbKoDb9LQTieEP6afkowFIXq2TKCxvalvJ+6Pfh3gj0+BNQ0vhRDRnLcGQcemWmAmoQSATbbMgi5OAG2sw7fP8BAVNH9QGeeGjacYqyrobFYvF7FWq99ayRQsANxGb2bgGeAq1pyGOCs/5z2n41JV0NmwXWe2SOrOsnEE+0cp1/7mb/5mTgo6YA6LOgA455xz8Pa3vx0A0DloB4LFDjnsVDheVEbkoUfTV1wdN7Q1R1o8ZFJDBNO0U9WCJtdTdpjUdu7EshmKgrZNB+T0AJtO67TH7FMAiQewRtgxxoCBfnDfi3Kx6QhCoBOAGSJik3lQNetYqxMJvwlFHSGHvzuaZ5W1A3UZAGEjGorX9ZXFQ6osCMBU1r4Q8HeMR3Pe6kQb59391ZRhU62o3EC/ug4A6OuLxJYuH1YyabvhuLfb5rll6/hICi3PS3RftMYgBGsgV+z+UMOzt5Y8dKb1MyjoXMpoy9bRzxr2t3QwmlyHy5C88NXX9LezaAKdZ+wEALzjHe+YM5GuKua0qAOA1772tTj//PMBAO1DtyMYnahWYdWL1cmvrIab2ybshM+LbWqquUCN2b0LC7ts8EdZn8AaHLzlbawpEqoIuzp86WJfLHU0bOYYqYQdY+CylUf1BRyE3XOiE3ai/VDhpyZywMX1qIQd4wDEPKuhOqdc2PAAn0VPQ18h7DhS9bKswJQEXbIvCtGWWqaw5rGpVtJX1miohd1AfzSkzZjaipYNplFdz4Z0JADS94znma11gNoa5+AW42ahk/z2VENnLv6s0vO2DouPto0q60vgNNOMYr3T8apKDXXUZp0zfFgk1jlDfzujTfCjdgEAzj//fLzmNa+p3K/pZM6LOsYYLrroIpxxxhmAB7QP34pgeEKyrpT4Gqjji2kmrHYWMSSEnXE4di5RV6bvOlO0uEQKuwq9gijnMTb8r6mkUh9yKKx0zv5ZsbBLhl3lOlRznWYFt8liJ9YLYScLOqlMStiFPG+Z4+lliaCTkYUdB/zdU2lByXnXWicLukxfZdhUK99XaRtZ0CXLskEOQtDJyNY6lZUpu0wl6IL0vlVGJegUkaNZUtP9qRKJp64XTZqROj6+ijCHhlsrfyjW8V7cQ6xzKTEn91cqz0OOYKQJduwYgiDAC17wAlx00UVubg2zyJwXdQDg+z4+9KEP4ZRTTomE3eptCIYnk5NW2mQ+F4ZkK1rtWPzFvscNx2qmyYnW1SDsAHdhp6u/rqFjQ7naLXY1WulSTYhjaRxKDaIXejzsmqtDFnYqv7OssFO91GVhp6mDtYNk2DUrlITFz5togTOWF3QCxtSCTqwOAnjNdl7QyWXi5TlBJ4j3VSXoAETnQVjrVIJOttYZzkvyEipiocv0w9laZ7LQiVlSClrolPVMp8Wp4j2drJsjw60zYp2bA2KO+X5azBkEnam/oh/hyCS8Z+9Gu93Gqaeeig9+8INzKnWJjj1C1AHdHHZr1qyJkhMfuQ3h8GR0AlySP5qoKiKKDMnaxJ9W6Dha7Wy+UKK/ValiLRPb2o5XxSFqaxnXtCiz/CXuLOxmOlWCik4HmDQEPnAOPjmlP/bC78y0vhOATZoCFji8ibZaKMXrWTuAbwh6YCFHY+u4OjWJIAi1gi4lUHWBEyKti66fiK11PY28oCuCx+yCzia0XO4VWxoQ16AJQ1vOU+cZ7slahmArOP074zATRi0fhdP8/JqJYwHYh1rBPONQa3Jt8RDh0CQaJzUxNTWFk08+GVdccQUaLu/WOcAeI+oAoLe3F3/3d3/XnXXiqO0Ih/RRbymsCRNrctZ37Yu2G5YoSx4ibLWVc/sxFwHiSl0mZpfgBe22DmlGTCQRq9NsLncRUw4fFlUffsYHOPMiwe/SRsHkyZlORHOUmmi1zakyOh1z4EQQxPPZ6q8t5rIPmjlbWYej8fQusOZUFImqQkx5ppoFItVXm19ZaJynk3cC/fXLObjpOIlihkhaznnyo+9jfCwrzH3q/mFiuoanP5DJPv2f/blVWcQ4fKA5zUNb8UPPxapqw7mftvWG6yKJ4LUYTGyCTrQVjrTQ+9wpNJtNPOc5z8FHPvIR9PRY8t7NIfYoUQcAfX19uOqqq3DccccBDY720dsRjhosA1nqsGjUJex05mFxkaouQM6BMLrZdOLOivPQYsn9NPnCqMpqo1K5eXvnHHZefYK8CtMo7KzRbEB3EnZTG8LyrZypwHE4OgjBdufTh7AgBB+PA506HbWwC+MHeKttFnaA3RKsnSopWs7CEL5iqjFwHqVZ0UXdCkEXhlFbKmHnYMlO7l1d5GernVwzPGvNE4JOnCddHe1OtB+mIXWBYl+dX+pVBJ18/2v9V2v8YNV2Q+qn7tmr+jvZxD79lkMnjKud2hAiyCW9lWrzmsScsZ8u72F5P8q04TDak/W9C0en4J80gd27d+O4447DVVddhT5dlPkcZY8TdQDQ39+Pj3/84ymLXbDI0WInqEPYTYPVTn6wGK12krgrJewAd2FXW167Kla7ikMmyfB2wX2p+0WS2cfcQ0kh7Iq+KFTO413fq/LCrlAfJqdSwi4RdPK1qhJ2spBXCbus8MheF9l9M75YOLypdkrYsQ5HY7OUEzPkaWudLOjkNrN9MCEEnXyeMsdaFnTRgnSQRUrQ6ZoRgk7ZBUXkZGaZ8sWunB2koqCzMc2CzsmXy/L8manhVuv2FUc3Som5zLlx6qdtfXY/5CnsXIRtETEX9ydYNAn27N2YnJzESSedhE984hMYGBgwtzMH2SNFHQAMDAzg6quvxvOe9zzAAzpH7kCwpISwmwvirqzVDoge8HPZapelSvBCyS/PFHUPx5a5frLbKCL2irwknFIbyJaagsKukJVO7kNG2CkTFYfSS0Ql2GRhp7KaydeESz9z6Uq6wk4edk3V3wkiYacSdALbMKxUX07QAeBBN2dcTtCJMp3ALOjk6FGVoDOlqUnqiC2DM2WhMyGeTdOYDsR5uNXA3BluLf98nBPWOVnM5T7WvKQN9aa8W87kT6kJpAiWTIIfM4ZWq4VTTz0VV111Ffr7Dbki5zBzdpowVzqdDq666irccsstAAcaDy2A//Tg7HXI9gCqMASXTNdiGnZiXnmhqvkyUpapY2ovHUkgRQ3+dDpcj1HV82mp2yzY3eo2vZiYSFGicrQP49kAjEO28XRhuqm+ug3p1/X2RG3oPjoaDbCGrz/fvg8+NGCcnks7DCoIuV3wdQL97Ba+B97fZ0+SbPOha7ftsyyYzrsk/rSbm/wNQ8sMEC7YptJCXRa6WbY5hObj7BKUVvU4OE2NBpiflVWzIlTto+tUnia/Ocuxth1nERmr6kew3wTCw8cRhiFe8IIX4IMf/OAeExShYo8XdQAQBAE+/elP4/vf/z4AwH98GP4TQ2Ao8QXFeT2WnLKCwmKlSd0gqlNXVdjVwVy5pKoKO3Et1CEOdQgHXmM/yr88jaIOiF7yJiESb2+b3B0mcepCo2FOm9FogPf3KlexkCfnivcpxGdsYeMei+aZVa2fmIxEp+5cCCug6dlgitqFg6ATIsIUGNFqG/Nkcc7dRF9ZXJMKV71nXLa3fQxVFYUmUceY0xzOlUSdy7vA1EfPj+qvepwqiDp7Zgq3d4VJ1Fmvt6RgxtUJHMHKcQQrdgMA1q5di0suuWSPSFtiYl6IOiB6mH35y1/GtddeCwDwNg2g8X8LwHgBgabyz6lK0YebVF51Q+cmnFb12ZY+pQ5MwrGuS4qx6ta65G+VX6KDqBP16Lav+hEgCUfjS0LTV5uVDszrTryeFXaulrpYFGpFl9i+rLAT9TJ1G+IRxXp6csKOhbwbXOF5auEXhJGFzbR+VzwFIWNqYSdfCyqLYF2CTrShaJ+3oqm9dNdJ8igPDX2J76lSws6WskSu0yQkbNZ+12em7Z6eLlGX5Nq0u0no7k+xnfI8uL4DTH30fBhTnhQ5TiVEXcqCqLmenYn3RdsGUHgfOOPoHLoL4X6Re8gb3/hGXHjhhXM+sbALe6xPXRbGGN72trfhve99LzzPQ7hfE+0jt4P7BYRN9oTW4cNVIY2K0YFXbJv1iZP90qY7+eV01i8nKa6DKgJX5+tni851qVf8Di0+LWWPs3h5GCI5TdsmD2ydRS/1gilxHGQRxw1thBy83VanGJGOI5tq57ZlIqUH50A2vUfI8z50uvp166sKOlN78f9C0EX/WoIcdFbZKvdSEUEH5Mu6OvFXsqxP8+hE7llbrj1rxKYBq+XP87UiKK5g2o+Tdb7egs/L7L7k/P+KCjovxPF//QyE+zXheR4uueQSvOUtb5kXgg6YR5Y6mZ///Of48Ic/jKmpKbDxBnruXQTWcndk1lL1pFf4ApUv7NyNnbXaqSxLdd/IpvrruKSqft3p6mBpEWHEZAUF1F/JRa4R1f54vrPFztVKl+5ebLErYqVLLctY03IBGQWtdSrrn2Sxy/XRY4nFLmWlS7aN9o/3RX58TBJDYj1v+NEwrBh2zebVk611OheHhjQzhuW6tOaSM11HGUGXrJauEeUjXHVcUp0qYK0rKuiSNqURA91xVJVXNmIe1bCuL4ODVdHJnyzVpbxAiVeo6xcfZbr7VFw7sd9crn55uzLHqICVTuvfV9FHWjyDrNeZDvmZ2RvgGa9bhAceeAB9fX244ooropmq5hHzUtQBwB//+Edcdtll2LFjBzDloee+RfDGHRMIWr8mp1ncGdZrTeq2iEpdubK4DK9Uqt8SqFGlDldMLyLm2YdnytQPOAs7q6jT1CG+SK2+dL6v3hch7HTtuwo73XBuLOp0opP5HjA4oB9m9Dzw3p68oEsqiIWd53WHXRVl4BuCN4SwM8wGARQcdlVtr9uHOILZ+PgODD56rqKurKADui4apmMoymkbsIx0OASeVSI0JH+Gu6jTBr9Z/MGss0aEgdEyZw1SqEHUOQVrlEX4BWo74O5LFw63MHIGsG3bNoyOjuLjH/84jjrqqJo6OneYt6IOAJ588kn8zd/8DR599FEgBBoPjcLf7JB3xuWQzITVrswDKRaFVn+KOgJCZkvYJe1Ms/i2WW2rWnUtEWs2YVdW1CUUtdKl1nvm4QoXYWcKjDBtK/qmi3YVw2SmaFkg2n/T7Be24+d51YZdTYIuFKlPTMLbcnwDy2wUNlFXRdAB5g8fQD2ikGuk/Eco8337cKVpe49ZRas1kAHm4VbbPezSf6NgtG9sXu8iqqdTQtieo479D/Zpwju6iVarhYMPPhhXX3019t9//5o6ObeYNz51Kg444ABcc801eO5znxvlsjt8JzoHjYGDmy8Gl9xtVf3trDl7LF9YOqQ0GfbcRiZRUjyaqHaqirZKQRYO+exmefox6/k1CgqLoDOJVh6JIeNLwyWNgen8tFv6FCiA+dgHIfhEM5pXVdf05FQ0B60OnZVSbt9wfHizqZ8XFnC6dyr5+IjZLnT4vlm0V50z1Pb8mOZ7xzQllNP2VZPbOgi6Su1bylXNOefQcNT2HLcJcXB0DhpD5/CdaLVaOOWUU3DNNdfMW0EHzHNRBwBDQ0P46Ec/ite//vUAgODA3egcuSMKoLA5+s+muBMvjRKOrYnJPb7xzAkhNf23DAOnyk2nuLMd3z1Z2BmmRErOWRVhx0P9y9nlvJmiKAHAlrDUJuxC3bXHu3OiZoVd7FMXWeJUvmQcvBUJQt7pKIUdn5yK6g0D9RC0LOiUfpnm+4lPTkYBGdrocGGJ19Qj9stkKTRZ6WwWyiT5tCWa2YBtnmEje7KgsyW3dZmdwtJ2FUFXKIlwGStdvP9WK2ZVXN69NmHtdfCcSw5BcGCUsuT1r389PvrRj2JwcBbz2M4A83r4Ncstt9yCj33sY2i1WkDTR8/9i+FNSH52Or80U164LHUNaWbN2i7+J6lqMkMb2eE6ldnc5LhcNLfUdJjlZ3I4VrXvFsfz0m0pts0NvVoCX3LTy2W3lZdlxZZct7DSyXiSuFVF0fqWoWLbUGw2/1ur3U1jwhggz73oMbDe3vS2MiEHn5iQ1vtgg/369UwxzJz93/XcyoJO4Pvp+nJRoZm6s4JA9ZKuQ9CJ5rPTDOqCsFKLDM732fOcHX4tEhyhaV9Hcg1KdRYRHmXSZhgD2DR16sobgxwUaIMuXCly7OOyqf0tOz2lsU8ln9EZwsEpLH1RLzZs2IDe3l584AMfwNlnn11DB+c+e5WoA4D7778fH/rQh7Bx48bIz+7hUXhPD6YTFeteeDMl7ky+Ci5+KFCIOiDpv9PMFKIfiu0dGp8+X4uZEnamvHSmemzrdaRSUmgcny35B41DPrKwM+XGUok6oCvsdKlRqgo74V8nCbqka41GJIxkK122biBlpetuHIu2vkgIJla61PZ+N6JXN+zqcl45Bx/LBF54DOiJRagtr6PmJc5bkrWxRkEXNc279TvkNDMGaanOry2hck2iTmedcxU61mHMktGpVXzuXEVdaYuZ67HXuPLUKuqKPi81fefgCPedgHdU5D+3//7748orr8Thhx9eQyf3DPY6UQcAu3btwlVXXYVf/OIXAADv6QE0Hh4FCzUipmz6jjqGGWwRmAa0U1AJq11ZJ2ZXcTddl1bVIASX7W1BIJaXe6lzH29nFEeWiD8ecv2LRAg7U2oAnagDklQoWmzCzib6gCjaU9W1RgPo7Ulb6TLkBF2ysRQ0onsRefFUaCax7jrsmkVY60yizvQCF9a6mgVd1HQs6kztO0Rb27bVUoOoMw232gRP2eTBYltrsJKl7rJBFHEB83oTBYantRbMmQiGU3dIuZh7ITqH7ES4b5RQ+LnPfS7+9m//FiMjI1V6uMexV4o6AAjDENdddx2+8pWvIAxDsN0NNB5YBK+ZSXti+gp1sdxNdwQmYLxBjcLOdmNOt7BziSC1WROrtG1iGqPybMLMZfqh6WobgN6BXljrTC9KzzNsb7cym77+WaMBNjyk2TAWVWUfZyEHG9L72vB2O7ISmtpWCTqBbu5czuMoVXM0vDb9TBj5HmqPeRzl6slD2KnV3BwwItrXWaJ6GuCm/Y6312K7z1xSiph83AzXqovvmjGDgO25a6m3iqCcCUFntCBaUvHYKy/5XtT0PRxoY8X5I3j44YfheR7e+ta34rWvfS08W4T4PGSvFXWCX//61/jwhz+Mbdu2AQFD49EF8DZJw7GyZcYmcMoKEBfLjwlL37QPPhdhZ6q/yIPFlnzUtL7KcdVRwVqXfKHr9t9BtGm3V/iuyLh+3ZeNuuMhB/N9KKcEiwUbDwKlsEv84EyRlTrBysOuODDMU8sG+sEGFGmJOI+S/JYZ9o/3hQ0Pq7sWpyZhfWorIZ9qRdG6qpewOA+q48E50O6Ac24QZVGwiy7BcJT2hEdWRkX9PA7Y8DTO4bzTic6nZehV5y/GGo1IGJqEnek+MeFiFWf66fXKWumcLWQWHztT3ZUFpQ6Li0YS5FDQXy/XpyqiroKgy/adgyPcbwLekdFw66JFi3D55Zfj2c9+dvn+7eHsfTI2w/HHH4+vfOUrOOGEEwCfo3PoTnSO2A7eyE57Y3mJu0RKmrBazCyiTxtF63UjorT9d6g/NGzvgq4Nl2PnEglVFJcXv2J/xcNOawG1Rv5Vv+VchsGqROBF14vFkph5kXbnHeV553uBS4odYbnSDCfy5iT4+O4oZYiycwXvQ4Og4e12JOg04oBPtSJBF2osbeIaYV4080Rq466gS/qRa8AQvSwEnU64xELLJGxEHjztcLvtfvd9e75CoNw1L4tz070qPkyzi0sIOmvkqiVi3Pax1fVltj9Htb6LlneQNnpWjlot8WxIHZvpTmWlQuHXxxsh1lx6GDqHRulK1qxZg6997Wt7taADyFKXEIYh/uM//gNf/OIX0el0gJaHngcXwdvRk36o2IY8XSIlc9sUjJwsOiSbCfyQBYlS7BWx3JW5wbPHxhRlbHJa163XlVVR8IWUi3YzRf+pRKE8rY4pChX5l0SZaLkiFrtc/bLFzvMin7lM5KQQFcrpvLIWO1sy5aw/XTbtRnaqLNlqJyx1mTq151+89EWfPZay1OXEHPNSlrpEzCV94+nyKtEvjmVW0IkmslGymfPRFc4KQScfa4WgYz2N1BBsNrGxcvYOU4R1TyM9L3BRa53LsGuqvPk6Zo20pbKIqCvluyb138k6J9Xh4l6hnQpS04/U/igidovsr7XsTA69avofLpjC6OkMW7ZsQU9PD97+9rfjla985V453JqFRF2GBx54AFdeeSUef/xxAID/5CD8x4bBwsyFaItCdYmUTMpahiZdt9H1Tycu4mFC5QPQtf4qX226Ye2suKsSaVpHNKxhSDT1wLYNUau+Ni3bF0mZUCYCL9eX7LZC2Gl85YSwU4qCrLArKuqAtLBTWO8SYacSdXG9uWtAZZ2TRJ3SOieJupygA9KiTmfF9T2toAMkUaex0PE48lhpoWNeNASrsdAxjyVDsLqZKlLWWUMqk5SgE4QhQlOyZblO12HXLI7DsK6CrnQggsVForu52rJVaL5Yy1CrMQ2Lbr1rVK3WSjxDok71vGQcnRU7ER4wAc45Vq5cif/3//7fXhXdaoNEnYLJyUl87nOfw3/9138BANiEj8aDC+CNZXxqXK12JqqKjrqCAWzpFsq24UpVnz0TNVjrKkepGeqo+pB1eUlV8eFhvh+9yDV+X8lwq8anLBF2ZUQd0BV2miFZ1tsbCSnPMl+uGBLW+b4JS5Ym5Qvr61ULOlFnEJiDQTymFXRALOoMQ67Jcdb1Lw5aUIkaIepMU48los6QMkcp6AA3a50LNp9Ii7Cz4TT8aAskchVlFkt9me2jSgwfmVLQTWmfQRvTLeo0/Q+HW9jvRf144oknAADr1q3DRRddhAGVj+1eDIk6A7fffjs++clPRkEUXLLacelic8kbV1Xc1RHpabKquQ6lTqfAc7F6TpfPYtIHiyWgwkOyUqRbDTDfMDF2nMrE9ELODt9lqSzsRECALvrVIuwAgPX3mYXdlCHK02PqYIZUA145QRcHgTDf1wo6hCFYT8OYWoQHAbhuH2JRF2oiWUVQgwlb3jEecnj9mmsgtiAaPyxcImVtaZZM2J4hLr59FQSdixhz+jjUbC8CrGzPodIfoC7HaLoFnSJoiDOOzoG7wFdMIAxDLF26FB/4wAdw8sknV+vLPIVEnYVdu3bhs5/9LNavXw8gtto9MApvPPbhcEwGDKC8aHId6jRsn5rcWuHfkrL26PxfXFK4iP6Woepwtut6bfvlLHZVRV0tgs4ytJUIBo1/EOuJolp1L13mscSnLpsrjsfBDTzrpyYQgkI41ZusFbogCyCJtNRa7Hpi0agTdlVFnTIClSfDz0rRJKJ6RZ45jZUr6oM+lxyAqJ2WYog5Pn9gDGFzUtl15vvGHIQ8MDvwi2tUKeocBR1jLJr+TTM8mljRVMLB5Rno4P5gpKSgq2JZc9m+yHBt6Y9Hl6FxFytqDZkK5PsoHGph/3VDePTRRwEA55xzDi6++OK9LvdcEUjUOfKzn/0Mn/70p9NWu8djXzsHYZcy+xcVZ0UCEzS+KEYH/aiD5iAA1VDtTIu77EOlaBDFNFjr5oSVzsEJnfXED0rduY/9sXTDaPI+sEYjJew450C73f1btCPw0kKwrLATD3s5YCC1PhYuwvKYE3d1izoh6ERKlGxUsCzoBNlcd6p9SDUpiVjO06JOiDkguW5Voi6pUyPqXAWdqCtpM+6/q6BLNlEMs1unn/LSx1VRQbbT5vVZyviu2YIZCgY+VfK907Rh3cb1OLmm7Soa9JfdJp5Nh3shOit2gR/QRBiGWLx4Md73vvfh1FNPtde3l0OirgA7d+7EP/7jP+KWW26JFkx6aPzfAvg7+p1EncCY40xGtjzZHlq6bQWZqadyArOEE/+MizvTl6Ipp50tH56pvKJPhSLnMINWunSj3T+F2BHI5555USBESozwnNUuuw+ysJNFXfK/3I6Xt+65CDsg/YLPDctkrHapl2BsWUyJgbpEnRQUkbI6ycEkKkEHpEWdKvBD/vjKWiVlUSdZ51IEQSKalKIgI+yKCLqkCmGtKyHoRJupyFzVc0e21tmefzbf4LLDrpoIV+NUaZr2imxfKjoW5udMbhvX42TLjGD6cC7hD84aDQQLJ7H4+Q1s2rQJAPCCF7wA7373uzE6OmqujwBAoq4Ud9xxB/7hH/4hmj8WgLelH41HRsHa+ptR+5XmKs7KJgCWtlc9LFxM94m4K/sVlzRQg7irYwigJmE3J6106cajXz0asSJ8cHSJayVhp9oPIeyyoi7aPL1fqum9kpe9i9Uuk04l1U4sfHLXd9ZqV1XUAVG+OXmoOVVHJJATMawq09Nj9gsUEZy6YeY4h6BS0MWEzUm9MJBEXRlBJ/rIfK+UoEv6KFnrtFYwMZuE6bnnMoJRxEpnEGRVhi6tzwselhZz2X4at3U9TqpyLoLNxfdZ8/zlPQE6h+1GuCTKQbls2TK8733vw5o1a8z1ESlI1JWk2Wziq1/9Kr797W8jCAKgw9B4LDMbhYSTk71NoNn8HWxYnP0rC5CZEHc2UVcnFSPtomIlhbIrtmGjrJVOVcwyxZRpWjDhK6eNqOQ8erHrptiCu9VORzKThe58CXFnnN7MUdS12vYJ1E3rbS9uQ/qWBMuLUxtFnLTB9P6Vog6HiGxbGU83NRq61jqjFdth+jQrrla6qvdhBSrNLuFYj/WajSowH1PXFF0mFM9uDo5wWRP9x3GMj4/D93286lWvwpvf/GaKbC0BibqKPPDAA/jUpz6F++67DwDAxnvQeHgU3rh6SqGyzrJ1RG7Jddl8RCpNoTMTaVBcrW1VLu8KU4lFqyzDrpaXSS3pFxQWshQh7wYyKOvnauf8bidT/nha4tkHlFWI42xKB+Ii7ILAGuGp3T4IwAb69QXiYWBt9KbGzy+HmD9XhdhHm8A1RWC22m4ipYKgc3KqRzVRJ+das/ZDRx3RsFVwPE5VPqadc1C6iDrtxjWIuWxdMeFIC8945VI8+OCDAIAjjjgC73//+ynvXAVI1NVAEAS44YYb8JWvfAW7d+8GAHhPD6Dx2ALtkKzV8dYWoWrDZj7P+Nil+iA98Ar72Ym2qwg7V2dbWxteJo1HmUt9GoRdd7ogrh9ekratIuySTPu6h78kJHKCiHfnDtU34EWpRERdJYUdEIs7jbATvnXa6M1YfIohLFdxl/LZG9RYBTqdbg431f7J15Vp/8W+q/ZBJHCGpu/SzB06yyaXrIjaoTyLECqaTNuEbg5h2afOmDzX1E4ZQVc0eMKC9qNLHrFwuL9NWBOKu2RFgEXU6eooE/Rg7ES3Pt4ToPOMcYT7RYE9w8PDeMtb3oKXvexl8B2GoQk9JOpqZNu2bfjSl76EH/7wh9GCgMF/YgT+hqF0bjuJog64RZ30jY6u8QPHJerVOTJWtFnVb801o7xLfj65X7ZtdPUY1xf7EndxBC8cZatLdCrXq3qJ6KaaAuxWuqijXVEn6rMJm+z0X3J1GmGXEl8a3zoucrR5iinKFKQS8XpeXtQJ65w800J233IRsZp9l/dXEdwgP4Zz/c6sV5XhmWFhpagrIugA9X2dpaC1TpXSJHet20RdUUFXZfQjt4nh+Zt9vmgEXW1iLtuuri6doDPV4fr8LQLn4IwjWD6BvqNDTExMAADWrl2Lt73tbVi0aFG1+gkAJOqmhT/+8Y/4zGc+0x2SnWjAf2wBvO19Rn87l8SQZVJqJNsD+pvVMVdd8nVqe1DWMQzrkvPIpQ3dQ77IpV+TsEtZ6Qz9LJsPTz4v2fkwAaSFnephL1u6XIZeRW44mTCsfThWmeJEOPzHgRop8eUxrdUuqUvun4hcFSJEts5l9y1qVL1f2X1W7aNwC4jL5gSbbIlTCDp5n4T/nFIoOb74ja4ftkCEAtY6XY467bylRfpRtGxBQecU6KbIOGCqQ0UhMZdtX1dnEZFcNs+crQ/gCBdNYf9zFyRTcK5evRrvec97cNRRR1Wqm0hDom6aCMMQN910E774xS9ix44dAAC2sxeNRxfA223xczJQeeoXW1qQIg/xMjnzVG2W3d41mtUlcrhqXwG3F4VDWhanrPUWci91GXEN2Rz6HaLlmG6GAVF/TVY7bUJixtJWulwbaaudaZoseF4SCawUdEBXsJqQrH+mMqZHL2s0tIIOgDWRLyBdRzZBZxM/VXzX0L0WjX31WDW/ryIUEHRWnz+HZ2ktPnO2zAOm+m3+idPsBx0OtXH0m1fi17/+NQBgdHQUb3/723HeeefBM90jRClI1E0zY2NjuPbaa/Gd73wHrdjq4T09gMbjI2Ctck7dQLUHhfUmlgMMbKKriiiz1e9ahwu2BNF1RO66vCxs0+wwFlnYNA9r16hZY3oEce245kvUNmIRdWFoDXDQzrIgmkjSbwRGkcRbLf0UW5LVzioyTcfNJuhioWY89hYxB2QskAaM07oJUW8RbLxjiZR1oY6AgyrXYREcA5NKizkgN/KRq6NIJGsFMefalnVqNpc0Jaq2ewN0DhpDuG/kN9fb24tXvepVeN3rXofh4eHC9RFukKibITZu3Igvf/nL+NGPfhQtCAF/wzD8Pw2DBRnrmE18SA64laaFqWP40VX8lam7aB1F2nF5WJYZiqgiHEUuQYO11Jq/Cw4vhDhXWZQLzTKUbgrC6O01WtqcRB1gDaBI6gL05drtfNJjGc1sCrk6dYLMJOgyQk074b2w/vFQ204qMXBJUZey0jq4SdRiIasi7ORn2nRSJWDBxTIntVN5OsGKYs65Td17gEn9cLHUSmW4HyI4cDf8Q9qJIePss8/GW9/6VixbtqxI94kSkKibYe677z5cc801iSkaHQb/yeEomCL7bNUNGTpEseY30zj1AtXEXRGHWtvXrQsudRSxEJYRYWWHYU3HPCvoFNvk/PE0+5C6HlR9kRPQ6oSdbZidefmkxVnBVUTU6eoQ9ZjaAcwzWgBqUaeqR+UfGFWaLxuvT46haEdRRy7Rb6aMcc7XDLIgL+VLlwtCqcFap6jXiezzrG5hV4eQSy3UPAsM/rAuOf8UCzPtFrdklrbS6QLMcuXSZbgXIlg+gYGjgfHxcQDAs571LLzrXe/C6tWrC/ScqAKJulmAc4477rgDX/jCF5KJitHyYnE3kI+Uzd5gGif7wuLOJeJJh4uAKiLuyjzMXeqZLutdUWHnkKFdGdggbWud7ByGl5XoT7w+ZxGyRT5m90El6oC0UCoj6rJ1iHpM7QC5GS0A5MWWfM50Fj+5L67Wuax4lIZ6U9Y5TTumNC0yuem2OM9P5WY6b4bre1asdTYr0TT0pbSYA9TiU/NBVSlZcBG/ZQOFRZ3uQ9eSCoYjQLBsAgue08D27dsBAAcffDDe+ta34nnPe57eQk5MCyTqZpEgCHDLLbfga1/7Gp566qlo4ZSHxhPD8J7WiDtbFGtcrtKUMUXFXV056cre/C6WtOmw3rkKO1uWdp2VTi4WBOYhcxdhzzz9pO6yADL57EkCQSnqgO4ME7YIWMDsw+Yyu4IooxB1QFoYMdNQsdyfota5VH+6otk4DZfhXGj7rljP2x23ITuL4Jpxa52LX29NbVcSckmBzP1eYbjZ2h/H3HM2CqdBcviQS60CR7jvBBY/tw9PP/00AOCAAw7Am9/8Zpx11lmUb26WIFE3B+h0OvjhD3+If/3Xf8XmzZujhU0fjT8NwdusEHeAXaQ4DMtaI98k3z2rg78LVYIuXHGpR5Rx9I9R11GvY7fWSie1p4sAjSpwtNYyT5kQNmnG5JeWrcowYwCAclY6VZ86Haecc1aLgEuknem60FnntJ0yp3Sx9ZcHof1cOfSDB4F1XtEZFXV1RFvKwqeKmCsSLFQxIMR19gcTTufSNr1aUtAi9jXHlzOOcJ8J7HvaUGKM2GefffDGN74R5513HholZ3Uh6oFE3RxiamoKN954I6699tokDQomY3GnstxZvnSdJoi2vXhZPH8oD/XDf3F71n7NZTO8yzCQ7UvWVK8luMLpQV3VUpdqz2K5sQkGHkZCq8KcrQDsok4MMdqmMhMzFJiOsyXFiLGMyTqX64/dOuki6ABoz5OruBTXjemjIbm2TJTJE6dszCHKXHdsHIRKzp9UF2yU7U/FtqrOzWrDmlhaLsN5LkdevrCDNR5IleGMI9xvAkv+rB+bNm0CEKUnecMb3oCXvvSl6OszRMITMwaJujnIxMQEbrzxRnzrW9/Ctm3booVTHvwnh+BvGgQLHcVdHdY6xA8RKW+ZUtwJi54tAMNF2BV5gdSNa1CEi9+LS11ZIaZ40Cpfutm6HRKdptI1CB88lWgQw6cwiDvRHyFQVC+aukRdq5UMVwLQT2cm7bNSNJUJwqjTOucy5Cr74CnEd+pxbehP9wUvDZdnjnWujK7PyPiKlRV2ZWYtcLSOucy0YJ1fW9re5BtXJgF8WUGnShysnYFD/oAsKNhy66Qy3AsR7DeBhSf0YOvWrQCAJUuW4DWveQ3WrVuHgQHN9HrErECibg4zNTWF733ve/jmN7/ZHZZtefCfGoS/cbCbCkWgi6i04GSt65FepDpxJwsL0wO8iLBT1TVTOFrZorIFgk6k+pTnxzU60fIQt718hLjLCbtMsENO2CnOR85q5+p47yrqup3Oi7tMwIBW3GWDOFRIfnwzKeYAqH3wpPNT1DqX64ZkrXO1zjnNzarZtruBxcUj2aaYz5rxY0gOLrL1QxO5Km9bS865AuiOsfy80KZZUVnpika3A+ANIFi2G8PHeti5cycAYN9998XrXvc6nHfeeWSZm6OQqNsDaLVauOmmm/CNb3wDGzdujBZ2GPxNA/CfGgJrZW5i6WXvJOqKWOtkpO2MSXGz1ruiok5X11zGxWfINFwa77/15WsZarENEeWsdgZrljWvnWy1c3nxixklTGRFXbfjXaHkeeqcbVlx5xJ4AXfxFBWub6hVm35EvkaKWOeyVTV6uuVKCrqo+gLWuiLuCVWFXNS5SkKuuxnXrlOVM+Eq6lw+rp1GQlzTkejEXG+AYPkE+o8Adu/eDQDYf//98frXvx7nnHMOenosvrTErEKibg+i0+ngRz/6Eb75zW92U6FwwNvcD/+pIXi7FTdb1UjYbD3a5KwZgaduyNyGok0tshNvXUKvRKJNLQ6irhYrquiTcXV03lxmIEhZZLMI65WtT/FQvc1vLymrQ/jKmdoTosf0clWkcdE36eA3J9qbLuucoh6ngAhLsAPz/WL3uqmtqrORKNrUr3ILXCozvFqa+DlQKgddBtdz4hQxXMF1JRxqI9h/N9jyNoL4nlu5ciXe8IY34KyzzqIAiD0EEnV7IGEY4s4778T111/fTWIMgO3oRePJIbAdvWDIPwitQwhFHvYGceec86qq03XZOl3acnWgdh1aytVjD2wo8pIywTwG1tsLHgR2Yef77tNcOQXZmB39tf54USG1lc7QnhabL1unYz+W8rlyEJpOItIY0ex47Qv/L9Oxiq81471psV4JnJ8XNlyFnKVsIq5KWuUKIYmmKoLOyZqYaa9yxLCqH+DgC1voHLAbfGH3+jnuuOPw6le/GieffDLNz7qHQaJuD+f+++/H9ddfj5/85CfJ1xXb3YD/1CC8LQNRUEXmgagdbigQ2p+qI/tSDgKnYQmpcWt79i4pHJvLvHTEy89UT5GhYZszuM5vyRSc4NKXZHUcNep1h3Od5gxVzYwg42q10wRkKHOwZdsrKuoybabQ5eeLRVUy3KbaZ9XLWbXfcrs2URcHo2iPoYugk3PixfUoRZt0jWnvc9dnRHqBvY86HHxATWXlPij3aTqEXLZN62aGY1j0Q802P2tBuMcRLm1ixdlL8MgjjwAAfN/H6aefjgsuuIBmgNiDIVE3T9iwYQO+/e1v4/vf/z6azWa0sM3gPz0Af8MgWKs3t03O36qCCALQfSkXsdZlKSFcusU0gQElhn21vmiW3Fi5ckBe2Cki/JzTI5ii1zJkBV1SRXxuZstqZ5r+CkD3Oior6qQ2EzIiKyvmupuw3HZK5P3VnQeXqcnCTP7BAtY55QwT2aASaO4Lh+vI6Zos+cxQtWErq2oztS/TKeTk5h2ebdbnR5E2dVa6MmKur4NgWRNDR/nYtWsXAGBgYADr1q3DK1/5SpqbdR5Aom6eMTY2hu9///u44YYbsGHDhmghB7ztffA3DoHt6EsPzcpU/PIuE+qvxdU6luuGxcJQ1hqpqssV+aFsSZGSsxLq6isw7Kqtpm6rHWAflgT0QkkUE8fI86qJOrndWAQJHzbTMWa+b+0jXBK8ukxNJkRdwaFW7QwT4njZhvYdE9Q6X4+uOPjryWVNbSgFeRVczoHjsGtlISejmsqrABwc4cIWwuUT4Etayb26bNkyvPzlL8eLX/xijIyMFK6XmJuQqJunBEGAu+66C9/97ndx5513JstZ04e3cQj+04qUKED0AHGNTq2QuLMQjiIm3YWK/oNRJU5+MXW++BJn9hpgvm8OfACSQASjyCki7myO/1GFdtGE9LCitT7H4+s0bGY5ZgDcImMBfURxUk8BUWfzC5Ry+rlYwGwWJ6frOmm8+v0klzPVyUOe9M12f5ayBKrqCgKn45GUqRCxnqvL9ZmcbaYRIti3iWXPW4Ann3wyWX7iiSfi5S9/Of7sz/6MpvKah5Co2wt44okncMMNN+Cmm27C+Ph4tDBg8Lb2R8mMx6TAiqyp3yVHm9hOsb7IBNe1kRGB/Mn4xwAAJWFJREFUlax3RSwLqrpVfbO05eqAbS0nWZy0YiwjxHR1ykPsxrrkdCAm0e94TK3CLhsdaji+rtdgZVEn9UFrKc1aN12G8zWBJ/LxsU4jFa9jjCFs6aNlXd0BhOA3pkmpIeLU1SrnkluuiJBzwdmNRX6uakRdVZcYDg4+0kawXxM9K0NMTU0BAIaHh/GiF70IL3vZy7BixYpCdRJ7FiTq9iKazSZ+9KMf4bvf/S4efvjhZDlr+vA2DcHfPADWYu7+GxZ/F1Gm1mFZOIgaR6fpIsEIpTPCV2ijSjb7XBoIjZWNB0EusbC1XV19Uv43rbhzHIIF0M0tZxrezQpEg7irQ9QlIlNuq9tArp2ctVS3L47pe5QBJ9kACd31KgvyuB+q4XcXtwPVDA5KYVfXvSMfgxL3SSkhZ/CfVaVZcZr5BYAqJ1/pJM+ibE+AYN9JHHDaIjz++OPJ8sMOOwwvf/nL8YIXvIBmfthLIFG3F8I5xx//+Ed8//vfx6233toNrAgBb3s/vE0D8Lb16H3vWP6Brm5I/yDuFil++VWKzMsIPOdh0wovp25Veuugdj7HEhYKZTlJ/Ii2coIu0zdrAlZZ3GkS+ubEXRErnUI05gSRrj6FuKsi6lRBCdk2dOKC9fba/Q5dPpDicsz3ctY5ZblMAJPqeMrWOtcUHLlgErmcnCuvqpVbIxCdU4lUEXKZdlP1aupO9t0xl5z1eFusdBwc4aIphPs1wfbtJNkP+vv7ccYZZ+DFL34xjj76aKfUOsT8gUTdXs7ExARuvfVW/OAHP8Af/vCH7oopD/6mAXib++E1NZYLxyzwgH3opai4qyWPlvDFqmkfipDqYwHfPZc6jeWyQQPmCt38klxmTZBFUFlRJ8gO85rqk45zGVGn2y95dg3b8CRrNAqlf7E61ntMn75ELhrPAmM7jrzdcbq2k2vBFhnqcE3LdWYW6Au7pjZyKGcVcqI++djZ9tuUdkRU4ZjA13Ruw/4Own2bWHT8ALZs2ZIsP+qoo7B27VqceeaZGBoacmqHmH+QqCMSHn74YfzgBz/AzTffnIS7AwAba8B7egD+ln6wdubB5mq1kzdx/UKtQWwV8p3z/WIv/xpEnpNoqpusH5qJAtHCLo78AOxCTFQpT+2lIhYlwlJofJQVSLPDehr2/XAQdEB8jbhMm+Yi6KSyLrNHgNU0Q4iqnzpcPgTkIA3XxLuGdp1mnJDaslnBXIVcqj4HQQfPd/+4zfSP9wQIlk4i3GcSfKR77kdHR3HOOedg7dq1OPjgg+19IOY9JOqIHK1WCz/72c9w88034+67707M+lFqlF54T/fD29YfJTYWuEzG7ZBPKnngZueINQ1POeansgm8ZH7bEtYdU9tOztvmiuXKim9vq9MF19k/LCk3ckLSNb0JoBd4ogznenHnKOqS3H4Zcn13sNA5kT0PrlG8tgnfdUOuAnGcyuRydPH/M5TXBlWU/TB07I9JzKWOk5Rv06m+ivM866yV3AsRLplCuLQJtk+QPId938cJJ5yAtWvX4pRTTqG5WIkUJOoII9u3b8ett96K9evX49577+2uCBi8LX3wN/crpiUzPHAdghiUD0tdnSUzyesEXiLsBAVe5Olu2KMHC6V3kKkq7KqknHFNY6MQd8Z5VV0td0Be3GUFpErclRR1NuFTOlea7cPHgkqg5K5dKKyd2aHrEm1HFVuuS3m9fC+0O/pyxuYKBD7o/CgNfqzinCuPjak+3eszc01mxbXumcB5AL6whWCfJvoOYl1/ZwCrV6/G2WefjTPPPBOLFy9Wt0vs9ZCoI5x54oknsH79eqxfv76b2BgA2nF6lC19doFXxGdGN6ThWmcZgSeXVVk5SlrxXFD2sahVxN5I8W1c2tbVK4k7o6jLlDeRE3e6oVJZ3BUUda5WLFd/R6kBe5mC1rqsdS7XZHx8tGKuYLtRpfbEy7nqDYmu1U0Ut8ZF/+otbCohlxTRRGxr7/Ps88mQWNwU4MHBwUdbCJY0sWB1L3bs2JGs23///XH22WfjhS98IaUiIZwgUUcUhnOO3//+91i/fj1+8pOfYOfOnd2VssDb2QvGFQIvO7Sqb8hexjWyS444s4jLlEO4qxO+Y4Z+V1wdvp2DGboVu5VzDSBxLefqw5fdxoB2ztgssbgz5WVL1ZtMU1bTUHdSseNxKjrFnmsC2Tp9KAGtNS6HiNJ1jVpV1Z/FMao5e7/rAhWyvoVOuSZdn2OqSFnGwUenECyZxMjhPaln6OjoKM4880ycffbZOOqooyh6lSgEiTqiEp1OB7/5zW/w4x//GLfddptC4PVFARY6geeC6yWajcY1+c+4+KlphhSVqNJLmJy7JeFgHZ41DNUlw3C2NAkFBafIoO+0bd0CMFu2DnHHOcLJKbe2UdL3UdVsJmedlmyuPVeLtq2fRXPhuWA7L44uC2VFXPSvoz+jIrcfkBdxtjrrsGJyxhGOTiFc0sTQYQ2MjY0l60ZHR3Haaafh+c9/Pp797Gej4RglSxBZSNQRtdHpdPDb3/42EXjyMAI6DN62vuhne280RVmZL1DHHFD57RT+NK5+TZahxRSmVBPZ4WBVFKriJai02smCLtOG9mWpStKrItMHo7hzPVbZsq45DuWyRYIqsgJqhkWdMmedStTp2nHNZWfZ3im/XFHBkm1T4ZvnlBBYrtPSp1JBKRlBl7PG2QRvkchvRX94yMH9EOHCKYSLJzF4sN+d0QfAokWLcNppp+H000/Hs571LBJyRC2QqCOmBSHwfvKTn+C2227D9u3buytDgO3qhb+1D972PrCpkg8zx2zt6m1Ds7DLlHUeOgOccoglljXV5PEKkZcTVmLI11S3/BJ3sapI7amrVYg7VyunrmyRl2kBC1XOejcDos5peNFRoKasdUX81yxDnak+lLXOWQIsCkV7a/pSObJYyueXqtd0z5S0xmX7E/Z1EIw2ES6ehLekG7UKAIsXL8Zpp52GM844A8ceeyzNvUrUDok6YtoJggD33nsvfv7zn+P222/HY489llrPdjdiK14/2HhDP5OFDeHjUjQ1Qo2+cElXTHNhpjtgDswAlFY1p/pF3S4vjrgN12ACZwrmXytctoD1ztWnLqrefR8Lpb1xmVdWUMQH0TCrRa4PcyCtTtYPtLC/nWPdRabasqIRchwcfLiNYFET4aJJ8MF0QMjKlStxyimn4JRTTsEzn/lMEnLEtEKijphxnnjiCdx+++24/fbbcc899yCUp5hqefB29MLb0QdvRy9Yu8IDsEC6hFQUY5EEq5bhRudJuYsIMCCfGkJXrSLNhZYgcE/ZItdZc0BB4YjSqLBV4FmjLyXL2LSJOpVlNotrfZnh9DIT0M8UWetdrSIuO4xad4BLXG9KyDUChAunEIxOYvTw/tRIhO/7OOaYY3DKKafguc99LkWtEjMKiTpiVtm5cyf+53/+Bz//+c9x1113pfIyAQAbb8Db3gdvRx/YWE862KIIJaM+dcJNng4p3YzB/03Ub+hjaojTwQnemlC1iKBzDfIo6JtVZDhON6OIc2Jnw3HTijpdImpHClvHbBZZm++hVFcqD2BgGJI39acsButdHUm7deT2UZfPsi6YB/gAH24hWDiJcHQKfDht9R0cHMSaNWtwyimn4OSTT8aCBQvq7wdBOECijpgztNtt/OEPf8Cdd96Ju+66Cw8++GC6QId1rXg7e4FJv/xQbZFIQI3Ic8mMn02p4DTXpRB3rtG3CnFXSdBl+pJbZE0hYn/Ba0Wai5+ga90ZgZcSda5D144USjCdFZ4mwa/xI9TOSTudws4g5GdNxCWV1ivmODjQHyBc2Ea4aAp9B7DcB+eqVatw4okn4qSTTsIxxxxDMzsQcwISdcScZevWrbj77rtx11134e67706nSwGAKQ/ezq7IY62ahmodXvg5XFNQ2IIuVEOApvKiTNZiV4egk5EDOwpQxEfPaai6oP9jKnVMQf+qsta6wjOFuOyzYoYObV/qEHYO1+h0zZHsJOJSDdSUfqYviFKOjLYQjraAvvR5GR0dTUTciSeeiCVLltTSLkHUCYk6Yo8gCAI88MADuOuuu/C///u/+MMf/oBOJzOc1vQjkRf/VPLHK4KwxBV8Ubs6ijvnixMUeYmKAAnLBPEA3KOFZUo68BcRmkX74kpRAetWacGAAykgxEnQxY9zl9kbCl9XDueysIBTTcdlS1uUlHdI/msaIu4NEgEXjraA/vQ15/s+nvnMZ+Kkk07CmjVrsGrVKni6+YcJYo5Aoo7YI5mcnMQ999yDX//61/jVr36F+++/P5U6AADYhA+2qxferl54Yz3Fh2uL+upIQs06zJoNjFCIGKd8dSZcIkPjl5QsApQCj3nVRI5lBoDcvsnlCwwNu/bBhdpEnTwcH+dNUyW/VZVP90eT1DYzx220sEJSa2UjmvyJ+cpT2+SrcZxyK6lPk3PRMZWO6GMYhkBfG+FIG+GCFvhoC3wgL+KOOOIIHH/88Tj++ONxzDHHYGBgQN0OQcxRSNQR84Ldu3fjd7/7HX71q1/hV7/6FR566CHkLu2WB29XTyT0xnrBdjfsgReOE3Z3l7v7fqXKqQSEyVpVQdzl5k7NIASeLO5KWel0KASeUUDpBN5cFnUKIZfqiphbtkhC5oy1znUu11w0cUExp8Ul8tulfrEfqnvK5Oqg8vcUH1WMgw+2EY60EI5MIRxpAb2ZBOSM4fDDD09E3LHHHouhoSF7nwliDkOijpiX7Nq1C7/97W/x+9//Hvfccw/uu+++/HBtwMDGeuCN9YCNRdY81lG9RApMU5b8bXe0V6ZRcZn2qYiPXhaPOYuVxHpXog3ntByuCXYz5Ys45ufacqVgsITYBtBb1VLdEda6sgJ9uo6xfP5cty16XsQ1VUTUZsilGBluJwKudx+Gqal0sulGo4EjjjgCRx99NI499lgcd9xxGBkZKdQmQcx1SNQRewVTU1O4//778bvf/S4RevLciwmTPrzxnkjsjfdEyZBDMeRT8FZRJEI2igSXgIgsushJS13y0KuRMAQPCoghIRrj3IOJRcqAbH1zHWIulVS2RP4yFwGcnd/VJOhSx0PkO3QR2UXObxFUs5kUEeWA3Sqn6nvRDwVIVjgvBB9qIxxuIRxugw+1wPvz18OCBQtw9NFH4+ijj8YxxxyD1atXo6+vr1CbBLGnQaKO2CsJwxCPP/54IvLuvfdePP744/khWw6wiQbYeA+8XdFvNuEwbCtjmeXCloNNK3QM00M5RTXaxF0Y5o+HLWms7+XrMwk8HoJnLaheV+QY8wQWpSZRZ7NGeb3p1BYqIZdqwyRkyw5/5jqlvh4YY2qfPIe+KI9DkeAPB8QwKl/QToQcGw7TCctjVqxYkQi4o48+GitXrqTABmKvg0QdQcSMj4/j/vvvx7333ov77rsP9957LzZv3pwvGAKs2Yh88sYb8Hb3RH+rhm4FrIQ/E6IXvlNgAdC1/Bgy9ivFXixcEoEnizAdygnrFYIut11a4PEg0DvJC2KRl8sRWJQKoq7UrBEOQQvJNmXnZI027v5tEG9ZXH3y8osdEmnrMFz/vBFGfnBDkYDjQ234o8i7TQDYZ599sHr1ahx55JE48sgjcfjhh9NQKkGARB1BGNmyZUtK5D3wwAPYtWuXuvCk1xV44icbcauL5qsJZfStg19Uzom+RFqUIv56CMNoLlaXNBYyXjfvHID6nP51lAzGYL5f2O+v9JysLkmJ5WjbgmlVeHY7l+OYjRyX2uTgQF+QEm/hUAfoUwv1kZERrF69OhFxq1evxtKlS+19IIi9EBJ1BFEAzjmefvppPPTQQ3jooYfwwAMP4KGHHsKGDRvUGwSxVW9C/PjwJhpRehWTYCgY9WfudPEhMefpyrJWG0nUGQVeGCLMOLKnKBOcAlgjMktRts4C56nwPLfiT8l/z5gmBeaheaPl0xSdajhPnCGalWEwssDxgQ74YAd8oAP46u2WL1+Oww47DKtWrcKhhx6KVatWYb/99nPK0UcQBIk6gqiFsbEx/N///R8efPDBRPA99thjaLVa6g2yYm+yAdb0o9+hJZiiQpqJ7t+Z297w0kzEmWp6K1NfMqJOFnm83XFKeKzsqwmTyKsy0XvZekr4UlZpPyfOXPttS/hrEm8eB+/vgA8EsXALIvE22AE0u9/b24uDDz44EW6HHXYYDj30UAwPD+v7QRCEFRJ1BDFNBEGADRs24JFHHsGjjz6a/BjFHgBMeZHgm/Sj30LsTfrqAA2TJUVGHj4rK5Sy89oWQUq0XM4nrsSjqqqFx/XYatsvf7x0U485WdWSDZl+XZG+MA7eH4u2gSD1d3Y6LZne3l4cdNBBeMYznpH6Wb58ORqNRun+EAShhkQdQcwwsth77LHH8Oijj+JPf/oTnnjiCXWaFQEHMOVH4k78nvSSv9Hy9DNm2ERJDYLJ5k+XiJGyQqnqo8qlPdcpqpzaK5DOBopgDJVlbZoe1xwc6A0jsdYXi7a+MPp7oANvEMqIU8Hw8DAOPPDAnIBbtmwZ/OmYbo0gCCUk6ghiDrFz585E4Mm///SnP6HZbJo3DgE25Uf+elM+2FQs+FpeJAZbXpRwuajwK+nflhpuDQJ7PSbRVMdjqg6rlamPDj50xvl+bVHAJeHggM/Be0OgVxJrfQF4f/Q3+gLtUKlgYGAABx54IFasWIEDDzww9TM6Okp+bwQxByBRRxB7AJxzbN26FU8++SQ2btyIjRs3YsOGDdiwYQM2btyIp59+Ojf3rZKAgU15kVWvFQu/Vmzla3lA2wNrG8RfEeEnR6pWsQTOpUeUZijaiazlreJ+CbGGnhC8JwTvjX7QF8R/B5H1rS/UBibI+L6PfffdF8uWLcPy5cux3377YdmyZdh///1x4IEHYvHixSTcCGKOQ6KOIOYBnU4HW7duTQm9TZs2YfPmzdiyZQs2b96M8fFx9wpDJAIvJfbE744H1mbR7078W+XvV5NP16ziOiepTAkBxxkHGiF4Q/odC7ZEuPWEkVBrRL9t1jWZ4eFhLF26FEuXLsW+++6L5cuXY9myZcnPkiVLyM+NIPZwSNQRxF5Cs9nEli1bEpEnC76tW7dix44d2L59OyYmJso1ECAt8uLfCBhYwIAg/jtkQIcBoVje/Y0w/uHQDxNPFwWtUDzqJODFw5vx7+jvMPkbHgcXf/tCtPFImInffgiUdD0bGBjA6OgolixZgn322ScRbkuXLk39PzAwUK4BgiD2GEjUEQSRYnJyMhF44ve2bduSv7dv347x8XGMjY1hbGwM4+PjRif60oToirwQkSUw/lsIP8TWQSaeYjxeDqTWgyMSYEK3sXhh6v/YWgZEFjAWCTIh3Lj0d7ROqq8mGGMYHh7GyMgIhoeHsXDhQixatAgLFy5M/pb/X7hwIYk1giASSNQRBFGJMAyxe/fulMgTf+/atQvNZhPNZhMTExPWv/fUx5Hv+xgYGEh++vv7U/+Ln8HBwZRok3+PjIxgaGiI5islCKI0JOoIgpgTcM7RbrfRarXQarVSf8v/t9ttTE1NodPpIAyjyd055wiCAJzzZFkYhqllnueBMZb6LX6yyxuNBnp7e9HT04Oenh7j3+KHgggIgphtSNQRBEEQBEHMA8jOTxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ8gUUcQBEEQBDEPIFFHEARBEAQxDyBRRxAEQRAEMQ9ozHYHCELAOcfk5ORsd4MgCKIQ/f39YIzNdjcIgkQdMXeYnJzEOeecM9vdIAiCKMTNN9+MgYGB2e4GQdDwK0EQBEEQxHyALHXEnKT3rn3BePzNwTwwjwHMAzwGMAbmiXXxcsYAj4GJMsk6lmyT/ADSMi+9PtowWcYZ6376SHUky1m3LXkZZ1E1yTovqjdazpJ1YhseL0vWA906vLi8WI90G6lt4u5zT7EuVR6pPnaXsdy63DaQ+5FZD81yTX26fuS2MdWbLOf57aVtkvVSXTxeDmm7aB2X+hOtZ/K6pKxYx5M6mVye8WRdcomJ5aK6uEx0KfDkf7GNF/8frYv+F9sl6xgHQ3c7L16W/IAn23kMqeXR9mF3O4jyIXyxTfx/t64wqc+X6vcRLfdFfUnZEL6oE6IfYbc8unVHdYbwELUfrYvq8+NlDCF8sb20jQ9E2yFqRxwP8X/UFo//RryOw4uPiw8GD4Afn2wPLF7G4DMGDx5YfObaLR/n/3/LQBBzCRJ1xNwkYPHjFZGoQyzA4rdldx0DvK6CYZFCiisRb3cPubd2VzGllYSoM/eWR2aZ3AYUy7LboSvmJFGXWyaJMPn/bBfT5RXbeIZ1ut3I9UOz26Z1ukNVtj6pTpXgm1ZRp1qP7P88qVvuh9ymal0iAiGVkcvntuGKtnjqRxZ1XaEY/+jWQQi/qEpZAArxBwhxhkQUyesiURd2RRGTRVH0t8dYJLji30j+Zsl2UT2I6xTbIt4uXq5aJ23jx4LUT/opRB23ijq5Pl8cD6SXeZD7KJ1Dgpgj0PArQRAEQRDEPIBEHUEQBEEQxDyARB1BEARBEMQ8gEQdQRAEQRDEPIBEHUEQBEEQxDyARB1BEARBEMQ8gEQdQRAEQRDEPIDy1BFzE5+D8yjhaJR3jUm/WSYhsPgt/Q15GZf+dlgnJS3rpojVLe/+5qm/kdqOAwAXy7t1cjCAI9lWXp/UkUquJvdF8T9PdSlzPDQ/2bIuuehM65zbclwnN2ncjlvq5Jo+6pMPp3PLSeuSsuWTD3f7IeWpQ/k8dRzd7Tjj6R9Ev6N1SC0PGQdY2K0Toq1QyqcXl4nXcxYm9SFVf/xbtBX/78VlxG8AuWWhdFuLv0MGhOjmqQvjZQy6PHUsSRjso3vOxP9evE0295178mGGbvJh1X1JELMLiTpiTtI66enZ7sL0IN6ZJclqEoIQyJdWOJsdKY2sqmkQiSDKQHcOMWeYnJyc7S4QBEEQxB4LWeqIOUNfX1/y94033oj+/v5Z7A0x00xOTuKlL30pADr/eyN78vnfk/pKzG9I1BFzBsa6A4r9/f0YGBiYxd4Qswmd/70bOv8EUQ4afiUIgiAIgpgHkKgjCIIgCIKYB5CoIwiCIAiCmAeQqCMIgiAIgpgHMM55haxZBEEQBEEQxFyALHUEQRAEQRDzABJ1BEEQBEEQ8wASdQRBEARBEPMAEnUEQRAEQRDzABJ1BEEQBEEQ8wASdQRBEARBEPMAEnUEQRAEQRDzABJ1BEEQBEEQ84DGbHeAIABgYmIC119/PX76059i48aN8DwPK1aswJlnnonzzz8fPT09s91FQsHOnTtx++2345e//CUeeOABbNq0CUEQYOHChTjiiCNw7rnn4rTTTjPWsW3bNlx33XW44447sGnTJvT19eHggw/Gueeei7Vr14IxZtz+ySefxHXXXYe7774b27Ztw+DgIFatWoV169bh9NNPr3FvCVeuvfZafOlLX0r+v+2227Rl6fwTRH3QjBLErLNx40ZcfPHF2LhxIwCgv78fYRii1WoBAFatWoXPfOYzGBkZmc1uEgrOOOMMBEGQ/N/b2wvf99FsNpNla9aswUc+8hH09/fntr///vtxySWXYOfOnQCAgYEBtFqtpM4TTzwRV199NXp7e5Xt33HHHbj88ssxOTkJABgaGkKz2UQYhgCA8847D5deeqlVGBD18fjjj+PCCy9M7l9AL+ro/BNEvdDwKzGrBEGAyy67DBs3bsSSJUvw93//91i/fj3Wr1+Pyy+/HIODg3jwwQdx5ZVXznZXCQVBEODII4/Ee9/7Xlx//fW45ZZbcPPNN+Nb3/oW1q5dCwC488478alPfSq37fj4OC699FLs3LkTK1euxJe+9CXcfPPNWL9+Pd7znveg0Wjg7rvvxuc+9zll20899RSuuOIKTE5O4phjjsE3vvEN3HTTTfjhD3+IN73pTQCAH/7wh/jmN785bftPpAnDEB//+MfRarXwzGc+01iWzj9B1A+JOmJWuemmm/Dwww8DAD7ykY/ghBNOAAB4noezzjoLl1xyCYBIGPzyl7+ctX4Saj7zmc/gi1/8Il72spdh//33T5YvX74cl156KV7ykpcAANavX49Nmzaltr3++uuxbds29PX14ROf+ARWr14NAOjp6cErXvEKXHjhhQCA733ve3jiiSdybX/1q19Fs9nE4sWL8bGPfQwrVqwAAAwODuLCCy/EunXrAAD//u//jrGxsfp3nsjxne98B/fccw9e+MIX4sQTTzSWpfNPEPVDoo6YVf77v/8bAHD88cfj6KOPzq0/66yzsHz58lRZYu7w7Gc/27heWOuAaKhN5uabbwYQnWNZEApe8YpXYGBgAEEQ4Ec/+lFqXbPZxE9/+lMAwMte9jLl0PzrX/96AMDu3bvxs5/9zGFviCo89dRT+MpXvoLR0VH81V/9lbU8nX+CqB8SdcSsMTk5id///vcAgJNPPllZhjGGNWvWAADuvvvuGesbUQ+yL5TwcwIivythuRPnN8vg4CCOPfZYAPlzf88992Bqasq4/fLly3HQQQcptyfq55Of/CSazSbe9a53YeHChcaydP4JYnogUUfMGo899ljyoj/44IO15cS6bdu2YdeuXTPSN6IefvOb3yR/H3LIIcnfYsgdMJ97sc2jjz6aWl50+0ceecSpv0Q5vve97+GXv/wlTjjhBJx77rnW8nT+CWJ6IFFHzBpbtmxJ/t5nn3205ZYuXarchpjbjI2N4dprrwUAHHvssVi5cmWybuvWrcnfLud+9+7dmJiYSJaL62BkZEQZVZvdXm6PqJfNmzfjmmuuQV9fX+IDa4POP0FMDyTqiFlDfkj39fVpy8kPbXkbYu4ShiE++tGPYuvWrejt7cV73vOe1Pqq516kTDG90OX1dN1MH5/61KcwPj6ON7/5zUrfOBV0/glieiBRRxBE7Xz2s5/FL37xCwDAX//1X+Owww6b5R4R08H69etxxx13YNWqVfjzP//z2e4OQez1kKgjZo3BwcHkb+H0rEIkFs1uQ8xNPv/5z+O73/0uAOCiiy5KRcAKqp77gYGB3HrT9nTd1M/27dvxT//0T/B9H+9///vRaLhPUETnnyCmBxJ1xKwh+8pt3rxZW072o5O3IeYe11xzDb71rW8BAN75zndqrTdLlixJ/nY590NDQ6kXs7gOxsbGjC92sb3cHlEPX/jCF7Bz506sW7cOK1euxMTEROqn0+kkZcWydrsNgM4/QUwXNPcrMWscdNBB8DwPYRjikUce0aY1EZFrixcvxoIFC2ayi0QB/vmf/xnXX389gEjQveY1r9GWlSNhH3nkETzjGc9QlhNRjtn12e2PPPJI4/amCEmiHBs2bAAA3HDDDbjhhhuMZUVE7Ctf+UpcfPHFdP4JYpogSx0xa/T39ycJh++8805lGc457rrrLgCwZqgnZo/Pf/7zzoIOAFauXIn99tsPgP7cN5tN/O53vwOQP/fHHHNM4mAvro8sGzduxGOPPabcnphd6PwTxPRAoo6YVcQX/K9//Wv88Y9/zK3/8Y9/jKeeeipVlphbfP7zn0+GXP/yL//SKugE55xzDgDg1ltvTaw+Mv/5n/+JZrMJ3/fxwhe+MLVuYGAAz3/+8wFElqLx8fHc9tdddx2AyJ/q1FNPdd8hwonPfvazuO2227Q/Yv5VAMmyiy++OFlG558g6odEHTGrnHvuuTjkkEPAOceHPvShZH7XMAzx4x//GJ/85CcBRFnjn/Oc58xmVwkFsg/dRRddhFe/+tXO27761a/G4sWLMTk5iUsvvTSZRqzdbuOGG27Av/zLvwAA1q1bl8zrKXPhhRdiYGAAW7duxWWXXZbMD9psNvH1r38dN954IwDgL/7iL5TTSBGzC51/gqgfxjnns90JYu9mw4YNePe7342NGzcCiIZlwzBEq9UCAKxatQqf+cxn6ME8x9i0aRNe9apXAQA8z7NODXXBBRfkrHj3338/LrnkEuzcuRNAZFVptVqJk/2JJ56Iq6++OjXdmMwdd9yByy+/PHGWHx4eRrPZRBAEAIAXvehFuOyyy8AYK72fRDm++tWv4utf/zqAyFKngs4/QdQLiTpiTjAxMYHrr78eP/3pT7Fx40YwxrBixQqcddZZOP/889HT0zPbXSQybNiwARdccIFz+Te96U248MILc8u3bduG6667Dr/4xS/w9NNPo7e3F4cccgjOPfdcnHfeefA884DCk08+ieuuuw533303tm7disHBQaxatQoveclLcPrppxfdLaImXEQdQOefIOqERB1BEARBEMQ8gHzqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gEk6giCIAiCIOYBJOoIgiAIgiDmASTqCIIgCIIg5gH/P/n4KRagEuQgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# expected src counts:\n", + "ax,plot = total_expectation.slice[{'Em':0, 'Phi':5}].project('PsiChi').plot(ax_kw = {'coord':'G'})\n", + "plt.title(\"model counts\")\n", + "\n", + "# injected src counts:\n", + "ax,plot = gal_511.binned_data.slice[{'Em':0, 'Phi':5}].project('PsiChi').plot(ax_kw = {'coord':'G'})\n", + "plt.title(\"injected counts\")" + ] + }, + { + "cell_type": "markdown", + "id": "2ee20295-ca20-4736-bad8-c87e6fc6a846", + "metadata": {}, + "source": [ + "Here is a summary of the results:\n", + "\n", + "Injected model (extended source):
\n", + "F = 4e-2 ph/cm2/s
\n", + "\n", + "Best-fit:
\n", + "F = (4.6951 +/- 0.0025)e-2 ph/cm2/s
\n", + "\n", + "We see that the best-fit values are very close to the injected values. The small difference is likely due to the fact that the injected model also has a point source component (which we've ignored), having the same specrtum, with a normalization of F = 1e-2 ph/cm2/s. In the next example we'll see if this point source component can be detected. " + ] + }, + { + "cell_type": "markdown", + "id": "c72fd667-9826-42eb-b996-7f39764d6b49", + "metadata": {}, + "source": [ + "## **********************************************************\n", + "## Example 2: Perform Analysis with Two Components" + ] + }, + { + "cell_type": "markdown", + "id": "807821ac-3063-4a53-a613-2fee043e9662", + "metadata": {}, + "source": [ + "Define the point source.
\n", + "We'll add this to the model, and keep just the normalization free." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "ec211c66-d974-48e2-86a8-2c0f63b34fc2", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " * description: A Gaussian function\n", + " * formula: $ K \\frac{1}{\\sigma \\sqrt{2 \\pi}}\\exp{\\frac{(x-\\mu)^2}{2~(\\sigma)^2}} $\n", + " * parameters:\n", + " * F:\n", + " * value: 0.01\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * delta: 0.1\n", + " * free: true\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * delta: 0.1\n", + " * free: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * delta: 0.1\n", + " * free: false\n", + "\n" + ] + } + ], + "source": [ + "# Note: Astromodels only takes ra,dec for point source input:\n", + "c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')\n", + "c_icrs = c.transform_to('icrs')\n", + "\n", + "# Define spectrum:\n", + "# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]\n", + "F = 1e-2 / u.cm / u.cm / u.s \n", + "Fmin = 0 / u.cm / u.cm / u.s\n", + "Fmax = 1 / u.cm / u.cm / u.s\n", + "mu = 511*u.keV\n", + "sigma = 0.85*u.keV\n", + "spectrum2 = Gaussian()\n", + "spectrum2.F.value = F.value\n", + "spectrum2.F.unit = F.unit\n", + "spectrum2.F.min_value = Fmin.value\n", + "spectrum2.F.max_value = Fmax.value\n", + "spectrum2.mu.value = mu.value\n", + "spectrum2.mu.unit = mu.unit\n", + "spectrum2.sigma.value = sigma.value\n", + "spectrum2.sigma.unit = sigma.unit\n", + "\n", + "# Set spectral parameters for fitting:\n", + "spectrum2.F.free = True\n", + "spectrum2.mu.free = False\n", + "spectrum2.sigma.free = False\n", + "\n", + "# Define source:\n", + "src2 = PointSource('point_source', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=spectrum2)\n", + "\n", + "# Print some info about the source just as a sanity check.\n", + "# This will also show you which parameters are free. \n", + "print(src2.spectrum.main.shape)\n", + "\n", + "# We can also get a summary of the source info as follows:\n", + "#src2.display()" + ] + }, + { + "cell_type": "markdown", + "id": "e71243c5-3c9f-4ec7-b928-2cdbdee045e0", + "metadata": {}, + "source": [ + "Redefine the first source.
\n", + "We'll keep just the normalization free. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "5bbdd2c6-39b0-4c69-bcaf-5a5b8becefdb", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "
  • gaussian (extended source): \n", + "
      \n", + "\n", + "
    • shape: \n", + "
        \n", + "\n", + "
      • lon0: \n", + "
          \n", + "\n", + "
        • value: 359.75
        • \n", + "\n", + "
        • desc: Longitude of the center of the source
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 360.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • lat0: \n", + "
          \n", + "\n", + "
        • value: -1.25
        • \n", + "\n", + "
        • desc: Latitude of the center of the source
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • sigma: \n", + "
          \n", + "\n", + "
        • value: 5.0
        • \n", + "\n", + "
        • desc: Standard deviation of the Gaussian distribution
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 20.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    • spectrum: \n", + "
        \n", + "\n", + "
      • main: \n", + "
          \n", + "\n", + "
        • Gaussian: \n", + "
            \n", + "\n", + "
          • F: \n", + "
              \n", + "\n", + "
            • value: 0.04
            • \n", + "\n", + "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", + "\n", + "
            • min_value: 0.0
            • \n", + "\n", + "
            • max_value: 1.0
            • \n", + "\n", + "
            • unit: s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • mu: \n", + "
              \n", + "\n", + "
            • value: 511.0
            • \n", + "\n", + "
            • desc: Central value
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • sigma: \n", + "
              \n", + "\n", + "
            • value: 0.85
            • \n", + "\n", + "
            • desc: standard deviation
            • \n", + "\n", + "
            • min_value: 1e-12
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          \n", + "\n", + "
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    \n", + "\n", + "
  • \n", + "\n", + "
\n" + ], + "text/plain": [ + " * gaussian (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 359.75\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: -1.25\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 5.0\n", + " * desc: Standard deviation of the Gaussian distribution\n", + " * min_value: 0.0\n", + " * max_value: 20.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * Gaussian:\n", + " * F:\n", + " * value: 0.04\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma:\n", + " * value: 0.85\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * polarization: {}" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define spectrum:\n", + "# Note that the units of the Gaussian function below are [F/sigma]=[ph/cm2/s/keV]\n", + "F = 4e-2 / u.cm / u.cm / u.s \n", + "Fmin = 0 / u.cm / u.cm / u.s\n", + "Fmax = 1 / u.cm / u.cm / u.s\n", + "mu = 511*u.keV\n", + "sigma = 0.85*u.keV\n", + "spectrum = Gaussian()\n", + "spectrum.F.value = F.value\n", + "spectrum.F.unit = F.unit\n", + "spectrum.F.min_value = Fmin.value\n", + "spectrum.F.max_value = Fmax.value\n", + "spectrum.mu.value = mu.value\n", + "spectrum.mu.unit = mu.unit\n", + "spectrum.sigma.value = sigma.value\n", + "spectrum.sigma.unit = sigma.unit\n", + "\n", + "# Set spectral parameters for fitting:\n", + "spectrum.F.free = True\n", + "spectrum.mu.free = False\n", + "spectrum.sigma.free = False\n", + "\n", + "# Define morphology:\n", + "morphology = Gaussian_on_sphere(lon0 = 359.75, lat0 = -1.25, sigma = 5)\n", + "\n", + "# Set morphological parameters for fitting:\n", + "morphology.lon0.free = False\n", + "morphology.lat0.free = False\n", + "morphology.sigma.free = False\n", + "\n", + "# Define source:\n", + "src1 = ExtendedSource('gaussian', spectral_shape=spectrum, spatial_shape=morphology)\n", + "\n", + "# Print a summary of the source info:\n", + "src1.display()\n", + "\n", + "# We can also print the source info as follows.\n", + "# This will also show you which parameters are free. \n", + "#print(src1.spectrum.main.shape)\n", + "#print(src1.spatial_shape)" + ] + }, + { + "cell_type": "markdown", + "id": "1677d2c7-8127-4383-a1d3-d0a5c3425e4d", + "metadata": {}, + "source": [ + "Setup the COSI 3ML plugin using two sources in the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "79816fcd-525e-4892-b179-b4cc8b502743", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... loading the pre-computed image response ...\n", + "--> done\n", + "CPU times: user 2min 10s, sys: 41.5 s, total: 2min 52s\n", + "Wall time: 3min 10s\n" + ] + } + ], + "source": [ + "%%time \n", + "\n", + "# Set background parameter, which is used to fit the amplitude of the background:\n", + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")\n", + "\n", + "# Instantiate the COSI 3ML plugin\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = response_file, # detector response\n", + " data = data_combined.binned_data.project('Em', 'Phi', 'PsiChi'), # data (source+background)\n", + " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = ori, # spacecraft orientation\n", + " nuisance_param = bkg_par, # background parameter\n", + " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", + " \n", + "# Add sources to model:\n", + "model = Model(src1, src2) # Model with two sources." + ] + }, + { + "cell_type": "markdown", + "id": "d46ba4c1-9698-4114-9000-1a02feafa4ec", + "metadata": {}, + "source": [ + "Display the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "a9423539-928d-41f6-9aab-04a18c1ea0b7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Model summary:

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
N
Point sources1
Extended sources1
Particle sources0
\n", + "


Free parameters (2):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
gaussian.spectrum.main.Gaussian.F0.040.01.0s-1 cm-2
point_source.spectrum.main.Gaussian.F0.010.01.0s-1 cm-2
\n", + "


Fixed parameters (9):
(abridged. Use complete=True to see all fixed parameters)


Properties (0):

(none)


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
" + ], + "text/plain": [ + "Model summary:\n", + "==============\n", + "\n", + " N\n", + "Point sources 1\n", + "Extended sources 1\n", + "Particle sources 0\n", + "\n", + "Free parameters (2):\n", + "--------------------\n", + "\n", + " value min_value max_value unit\n", + "gaussian.spectrum.main.Gaussian.F 0.04 0.0 1.0 s-1 cm-2\n", + "point_source.spectrum.main.Gaussian.F 0.01 0.0 1.0 s-1 cm-2\n", + "\n", + "Fixed parameters (9):\n", + "(abridged. Use complete=True to see all fixed parameters)\n", + "\n", + "\n", + "Properties (0):\n", + "--------------------\n", + "\n", + "(none)\n", + "\n", + "\n", + "Linked parameters (0):\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Independent variables:\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Linked functions (0):\n", + "----------------------\n", + "\n", + "(none)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "model.display()" + ] + }, + { + "cell_type": "markdown", + "id": "e57b7109-e602-4a83-b575-abf8d602b579", + "metadata": {}, + "source": [ + "Before we perform the fit, let's first change the 3ML console logging level, in order to mimimize the amount of console output." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "c83d4333-90e1-4f55-b3f9-e5da1fd40598", + "metadata": {}, + "outputs": [], + "source": [ + "# This is a simple workaround for now to prevent a lot of output. \n", + "from threeML import update_logging_level\n", + "update_logging_level(\"CRITICAL\")" + ] + }, + { + "cell_type": "markdown", + "id": "17f87aa8-eade-410e-a793-c15ad4604703", + "metadata": {}, + "source": [ + "Perform the likelihood fit:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "85eae192-0970-406c-bbd3-fa9a133d32dc", + "metadata": { + "scrolled": true, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + ] + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
gaussian.spectrum.main.Gaussian.F(4.6951 +/- 0.0025) x 10^-21 / (cm2 s)
point_source.spectrum.main.Gaussian.F(0.0 +/- 1.3) x 10^-91 / (cm2 s)
background_cosi(9.32 +/- 0.05) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result \\\n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F (4.6951 +/- 0.0025) x 10^-2 \n", + "point_source.spectrum.main.Gaussian.F (0.0 +/- 1.3) x 10^-9 \n", + "background_cosi (9.32 +/- 0.05) x 10^-1 \n", + "\n", + " unit \n", + "parameter \n", + "gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + "point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + "background_cosi " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "
1.00-0.01-0.40
-0.011.00-0.03
-0.40-0.031.00
" + ], + "text/plain": [ + " 1.00 -0.01 -0.40\n", + "-0.01 1.00 -0.03\n", + "-0.40 -0.03 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-1.527559e+07
total-1.527559e+07
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -1.527559e+07\n", + "total -1.527559e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-3.055119e+07
BIC-3.055119e+07
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -3.055119e+07\n", + "BIC -3.055119e+07" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 7min 24s, sys: 3min 55s, total: 11min 20s\n", + "Wall time: 1min 46s\n" + ] + }, + { + "data": { + "text/plain": [ + "( value negative_error \\\n", + " gaussian.spectrum.main.Gaussian.F 4.695126e-02 -2.403110e-05 \n", + " point_source.spectrum.main.Gaussian.F 5.975791e-13 2.623492e-10 \n", + " background_cosi 9.320815e-01 -4.914467e-03 \n", + " \n", + " positive_error error \\\n", + " gaussian.spectrum.main.Gaussian.F 2.433950e-05 2.418530e-05 \n", + " point_source.spectrum.main.Gaussian.F 1.929678e-09 1.096013e-09 \n", + " background_cosi 4.582905e-03 4.748686e-03 \n", + " \n", + " unit \n", + " gaussian.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + " point_source.spectrum.main.Gaussian.F 1 / (cm2 s) \n", + " background_cosi ,\n", + " -log(likelihood)\n", + " cosi -1.527559e+07\n", + " total -1.527559e+07)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "plugins = DataList(cosi) # If we had multiple instruments, we would do e.g. DataList(cosi, lat, hawc, ...)\n", + "\n", + "like = JointLikelihood(model, plugins, verbose = True)\n", + "\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "5c045f61-bd7a-44e3-933f-a4f1541b7aa3", + "metadata": {}, + "source": [ + "We see that the normalization of the point source has gone to zero, and we essentially get the same results as the first fit. This is not entirely surprising, considering that the two components have a high degree of degeneracy, and the point source is subdominant. \n", + "\n", + "Note (CK): The injected model may not be exactly the same as the astromodel, because MEGAlib uses a cutoff of the Gaussian spectral distribution at 3 sigma. " + ] + }, + { + "cell_type": "markdown", + "id": "0e47eea2", + "metadata": {}, + "source": [ + "## *****************************************\n", + "## Example 3: Working With a Realistic Model" + ] + }, + { + "cell_type": "markdown", + "id": "672fa8bd", + "metadata": {}, + "source": [ + "## Read in the binned data\n", + "We will start with the binned data, since we already learned how to bin data: " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "9bce7e04", + "metadata": {}, + "outputs": [], + "source": [ + "# background:\n", + "bg_tot = BinnedData(\"Gal_511.yaml\")\n", + "bg_tot.load_binned_data_from_hdf5(binned_data=\"cosmic_photons_binned_data.hdf5\")\n", + "\n", + "# combined data:\n", + "data_combined_thin_disk = BinnedData(\"Gal_511.yaml\")\n", + "data_combined_thin_disk.load_binned_data_from_hdf5(binned_data=\"combined_binned_data_thin_disk.hdf5\")" + ] + }, + { + "cell_type": "markdown", + "id": "3466ee97", + "metadata": {}, + "source": [ + "## Define source\n", + "This defines a multi-component source with a disk and gaussian component. The disk and bulge components have different spectral characteristics. Spatially, the bulge component is the sum of three different spatial models, with majority of the flux \"narrow bulge\" with " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "3ca51102", + "metadata": {}, + "outputs": [], + "source": [ + "# Spectral Definitions...\n", + "\n", + "models = [\"centralPoint\",\"narrowBulge\",\"broadBulge\",\"disk\"]\n", + "\n", + "# several lists of parameters for, in order, CentralPoint, NarrowBulge, BroadBulge, and Disk sources\n", + "mu = [511.,511.,511., 511.]*u.keV\n", + "sigma = [0.85,0.85,0.85, 1.27]*u.keV\n", + "F = [0.00012, 0.00028, 0.00073, 1.7e-3]/u.cm/u.cm/u.s\n", + "K = [0.00046, 0.0011, 0.0027, 4.5e-3]/u.cm/u.cm/u.s/u.keV\n", + "\n", + "SpecLine = [Gaussian(),Gaussian(),Gaussian(),Gaussian()]\n", + "SpecOPs = [SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\"),SpecFromDat(dat=\"OPsSpectrum.dat\")]\n", + "\n", + "# Set units and fitting parameters; different definition for each spectral model with different norms\n", + "for i in range(4):\n", + " SpecLine[i].F.unit = F[i].unit\n", + " SpecLine[i].F.value = F[i].value\n", + " SpecLine[i].F.min_value =0\n", + " SpecLine[i].F.max_value=1\n", + " SpecLine[i].mu.value = mu[i].value\n", + " SpecLine[i].mu.unit = mu[i].unit\n", + " SpecLine[i].sigma.unit = sigma[i].unit\n", + " SpecLine[i].sigma.value = sigma[i].value\n", + "\n", + " SpecOPs[i].K.value = K[i].value\n", + " SpecOPs[i].K.unit = K[i].unit\n", + " \n", + " SpecLine[i].sigma.free = False\n", + " SpecLine[i].mu.free = False\n", + " SpecLine[i].F.free = False#True\n", + " SpecOPs[i].K.free = False # not fitting the amplitude of the OPs component for now, since we are only using the 511 response! \n", + "\n", + "SpecLine[-1].F.free = True# actually do fit the flux of the disk component\n", + "\n", + "# Generate Composite Spectra\n", + "SpecCentralPoint= SpecLine[0] + SpecOPs[0]\n", + "SpecNarrowBulge = SpecLine[1] + SpecOPs[1]\n", + "SpecBroadBulge = SpecLine[2] + SpecOPs[2]\n", + "SpecDisk = SpecLine[3] + SpecOPs[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "008ec971", + "metadata": {}, + "outputs": [], + "source": [ + "# Define Spatial Model Components\n", + "MapNarrowBulge = Gaussian_on_sphere(lon0=359.75,lat0=-1.25, sigma = 2.5)\n", + "MapBroadBulge = Gaussian_on_sphere(lon0 = 0, lat0 = 0, sigma = 8.7)\n", + "MapDisk = Wide_Asymm_Gaussian_on_sphere(lon0 = 0, lat0 = 0, a=90, e = 0.99944429,theta=0)\n", + "\n", + "# Fix fitting parameters (same for all models)\n", + "for map in [MapNarrowBulge,MapBroadBulge]:\n", + " map.lon0.free=False\n", + " map.lat0.free=False\n", + " map.sigma.free=False\n", + " \n", + "MapDisk.lon0.free=False\n", + "MapDisk.lat0.free=False\n", + "MapDisk.a.free=False\n", + "MapDisk.e.free=True#False\n", + "MapDisk.theta.free=False" + ] + }, + { + "cell_type": "markdown", + "id": "d4dc7eca-6881-45cb-801a-3e796a13dbfc", + "metadata": {}, + "source": [ + "For the Wide_Asymm_Gaussian_on_sphere model, note that e is the eccentricity of the Gaussian ellipse, defined such that the scale height b of the disk is given by $b = a \\sqrt{(1-e^2)}$" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "924aec1c", + "metadata": {}, + "outputs": [], + "source": [ + "# Define Spatio-spectral models\n", + "\n", + "# Bulge\n", + "c = SkyCoord(l=0*u.deg, b=0*u.deg, frame='galactic')\n", + "c_icrs = c.transform_to('icrs')\n", + "ModelCentralPoint = PointSource('centralPoint', ra = c_icrs.ra.deg, dec = c_icrs.dec.deg, spectral_shape=SpecCentralPoint)\n", + "ModelNarrowBulge = ExtendedSource('narrowBulge',spectral_shape=SpecNarrowBulge,spatial_shape=MapNarrowBulge)\n", + "ModelBroadBulge = ExtendedSource('broadBulge',spectral_shape=SpecBroadBulge,spatial_shape=MapBroadBulge)\n", + "\n", + "# Disk\n", + "ModelDisk = ExtendedSource('disk',spectral_shape=SpecDisk,spatial_shape=MapDisk)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b5784f63-3712-496b-a724-e64c2b66b180", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "
  • disk (extended source): \n", + "
      \n", + "\n", + "
    • shape: \n", + "
        \n", + "\n", + "
      • lon0: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: Longitude of the center of the source
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 360.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • lat0: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: Latitude of the center of the source
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • a: \n", + "
          \n", + "\n", + "
        • value: 90.0
        • \n", + "\n", + "
        • desc: Standard deviation of the Gaussian distribution (major axis)
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • e: \n", + "
          \n", + "\n", + "
        • value: 0.99944429
        • \n", + "\n", + "
        • desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard deviation of the Gaussian distribution (minor axis)
        • \n", + "\n", + "
        • min_value: 0.0
        • \n", + "\n", + "
        • max_value: 1.0
        • \n", + "\n", + "
        • unit:
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      • theta: \n", + "
          \n", + "\n", + "
        • value: 0.0
        • \n", + "\n", + "
        • desc: inclination of major axis to a line of constant latitude
        • \n", + "\n", + "
        • min_value: -90.0
        • \n", + "\n", + "
        • max_value: 90.0
        • \n", + "\n", + "
        • unit: deg
        • \n", + "\n", + "
        • is_normalization: False
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    • spectrum: \n", + "
        \n", + "\n", + "
      • main: \n", + "
          \n", + "\n", + "
        • composite: \n", + "
            \n", + "\n", + "
          • F_1: \n", + "
              \n", + "\n", + "
            • value: 0.0017
            • \n", + "\n", + "
            • desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution
            • \n", + "\n", + "
            • min_value: 0.0
            • \n", + "\n", + "
            • max_value: 1.0
            • \n", + "\n", + "
            • unit: s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • mu_1: \n", + "
              \n", + "\n", + "
            • value: 511.0
            • \n", + "\n", + "
            • desc: Central value
            • \n", + "\n", + "
            • min_value: None
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • sigma_1: \n", + "
              \n", + "\n", + "
            • value: 1.27
            • \n", + "\n", + "
            • desc: standard deviation
            • \n", + "\n", + "
            • min_value: 1e-12
            • \n", + "\n", + "
            • max_value: None
            • \n", + "\n", + "
            • unit: keV
            • \n", + "\n", + "
            • is_normalization: False
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • K_2: \n", + "
              \n", + "\n", + "
            • value: 0.004499999999999998
            • \n", + "\n", + "
            • desc: Normalization
            • \n", + "\n", + "
            • min_value: 1e-30
            • \n", + "\n", + "
            • max_value: 1000.0
            • \n", + "\n", + "
            • unit: keV-1 s-1 cm-2
            • \n", + "\n", + "
            • is_normalization: True
            • \n", + "\n", + "
            \n", + "\n", + "
          • \n", + "\n", + "
          • dat_2: OPsSpectrum.dat
          • \n", + "\n", + "
          \n", + "\n", + "
        • \n", + "\n", + "
        \n", + "\n", + "
      • \n", + "\n", + "
      \n", + "\n", + "
    • \n", + "\n", + "
    \n", + "\n", + "
  • \n", + "\n", + "
\n" + ], + "text/plain": [ + " * disk (extended source):\n", + " * shape:\n", + " * lon0:\n", + " * value: 0.0\n", + " * desc: Longitude of the center of the source\n", + " * min_value: 0.0\n", + " * max_value: 360.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * lat0:\n", + " * value: 0.0\n", + " * desc: Latitude of the center of the source\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * a:\n", + " * value: 90.0\n", + " * desc: Standard deviation of the Gaussian distribution (major axis)\n", + " * min_value: 0.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * e:\n", + " * value: 0.99944429\n", + " * desc: Excentricity of Gaussian ellipse, e^2 = 1 - (b/a)^2, where b is the standard\n", + " * deviation of the Gaussian distribution (minor axis)\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: ''\n", + " * is_normalization: false\n", + " * theta:\n", + " * value: 0.0\n", + " * desc: inclination of major axis to a line of constant latitude\n", + " * min_value: -90.0\n", + " * max_value: 90.0\n", + " * unit: deg\n", + " * is_normalization: false\n", + " * spectrum:\n", + " * main:\n", + " * composite:\n", + " * F_1:\n", + " * value: 0.0017\n", + " * desc: Integral between -inf and +inf. Fix this to 1 to obtain a Normal distribution\n", + " * min_value: 0.0\n", + " * max_value: 1.0\n", + " * unit: s-1 cm-2\n", + " * is_normalization: false\n", + " * mu_1:\n", + " * value: 511.0\n", + " * desc: Central value\n", + " * min_value: null\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * sigma_1:\n", + " * value: 1.27\n", + " * desc: standard deviation\n", + " * min_value: 1.0e-12\n", + " * max_value: null\n", + " * unit: keV\n", + " * is_normalization: false\n", + " * K_2:\n", + " * value: 0.004499999999999998\n", + " * desc: Normalization\n", + " * min_value: 1.0e-30\n", + " * max_value: 1000.0\n", + " * unit: keV-1 s-1 cm-2\n", + " * is_normalization: true\n", + " * dat_2:\n", + " * value: OPsSpectrum.dat\n", + " * polarization: {}" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ModelDisk" + ] + }, + { + "cell_type": "markdown", + "id": "ed7ac3ec", + "metadata": {}, + "source": [ + "Make some plots to look at these new extended sources:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "73d61cb7", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAG2CAYAAADLM3qLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvV0lEQVR4nOzdd3iUVfYH8O/09EnvhQQCJLSE3jsooCDiuio/YWkiuCKyoi6wWJdFdGFBISIEEHbVVZcivffeAlICpCekt5kkk8m09/fHZN7MpGfmnSSTnM/z+DiZ3Pfemyjh5N57zuUxDMOAEEIIIYS0GvyWngAhhBBCCDFFARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDARohhBBCSCtDAZoNUiqVePToEZRKZUtPhRBCCCFWQAGaDUpNTcW8efOQmpra0lMhhBBCiBVQgEYIIYQQ0spQgEYIIYQQ0spQgEYIIYQQ0spQgEYIIYQQ0soIW3oChBBCCKmfVquFWq1u6WmQRhKJRBAIBBb1QQEaIYQQ0oqVlpYiIyMDDMO09FRII/F4PAQGBsLJycnsPihAI4QQQloprVaLjIwMODg4wMvLCzwer6WnRBrAMAzy8vKQkZGB8PBws1fSKEAjhBBCWim1Wg2GYeDl5QV7e/uWng5pJC8vL6SkpECtVpsdoFGSACGEENLK0cqZbeHivxcFaIQQQgghrQwFaIQQQghpMf/617+Qm5tr1rMpKSnw9PRkP+7QoQO6du2KqKgoREZGYuPGjQ32MXHiRCQmJjbYbu/evbh27ZpZ8zQHBWiEEEIIaTH1BWg6nQ46na5J/f3666+Ii4vD0aNHsXz5cty9e7fe9ocOHULHjh0b7Le5AzRKEiCEEEJsxN7lF6GQVVitfwepBC/8fUiD7S5fvoz3338fcrkcDMPgs88+Q2RkJBYvXozc3FyoVCrMnz8fCxcuBKA/k7V69Wrs3r0bubm5WLlyJWbNmoVPP/0UmZmZeOmll2BnZ4cdO3Zg7969SExMRFlZGRISEnD48GH861//wpkzZ6BWqyGVSrF161aEh4fXO8egoCB07twZjx8/ho+PD958800kJCSAYRgsWrQIb7zxBgD9qtuBAwfQvXt3jBw5EgMGDMClS5eQmZmJcePG4dtvv8WhQ4fw22+/4cSJE9i6dSv+/Oc/Y+7cuZZ/w+tBARohhBBiIxSyCigKrRegNUZhYSGmTp2K3bt3Y/DgwdDpdCgqKsKzzz6LXbt2oWvXrlAoFBg4cCAGDhyI3r17AwDs7Oxw9epVPHz4EP3798frr7+OlStXYtu2bfj111/RvXt3APqVqtOnT+PWrVvw9vYGAHzwwQf48ssvAQA//fQT3n33XRw4cKDeef7++++Ij49Hr169sGjRInTt2hV79uxBbm4u+vTpg6ioKPTv37/Gc4mJiThz5gxUKhUiIyNx+fJlTJw4EZMnT0bfvn3x5z//mctvZ50oQCOEEEJshINU0uL9X758GZGRkRg8eDAAgM/nIycnB/fv38crr7zCtispKcGDBw/YAG369OkAgIiICAiFQmRnZyMwMLDWMZ577jk2OAOAY8eO4euvv0ZJSQl0Oh3kcnmd8zOsxjk4OGDbtm0IDw/HiRMncOfOHQCAt7c3XnzxRZw8ebLWAO2VV16BQCCAvb09oqKikJiYiEGDBjX4feEaBWiEENJGqdRqxCclIa+wEBKxBIG+Pgj08YFQSD/6bVVjth9bAsMw8PT0RFxcXJ1t7Ozs2NcCgQAajabOtsYV+NPS0rBo0SJcu3YNYWFhuHv3LkaPHl3ns8arccaql76oqxRGU+ZpTZQkQAghbVBOQQF+OngIF27ewqPkFNx99AiHzp7Djj17cSc+nq4NImYbPHgwHj58iEuXLgHQH+T38vKCg4MDdu7cybZLSEhAYWFhg/25uLhAJpPV+XmZTAaxWAxfX18wDINvvvmmyXMeO3YsvvvuOwBAXl4e9uzZU2+QZ848uUYBGiGEtDGFxTIcOHUapQpFjc+p1GpcvHUbF27epCCNmMXNzQ179uzB0qVL0bNnT0RHR+PKlSvYv38/fv75Z/Ts2RPdunXD3LlzUV5e3mB/ixYtwqxZsxAVFVXrClyPHj3whz/8Ad26dcPIkSMRHBzc5Dlv2LABd+/eRc+ePTFq1CgsX7681u3N+rz++uv44YcfEBUVha1btzZ5Dk3FY+hPqM159OgR5s2bhy1btqBLly4tPR1CSCui1Wrxy5GjKKz8Td/XyxODo6OhKFciKT0dj1NS2LYj+vdDt06dWmimpDGUSiWSk5MRGhpqsvVGWjcu/rvRQQRCCGlDbt5/wAZnHq6ueH7kSIhEIgBAWFAgAn19cOrKVQDAxZu3EOznB2dHxxabLyGkdrTFSQghbYSivBxxDx8C0GfWjRk0kA3ODLqGhbGrZhqtFpfrOdRNCGk5FKARQkgbcevBQ2i0WgBAt04d4enmVmu7gVG9YCfRl1NISE1DQXFxc02RENJIFKARQkgboFKr8aDyPkGhQIDe3brV2VYiFqOP0ecNq26EkNaDAjRCCGkDHiUls/WauoSGwtHevt72kZ06QiIWAwCepKSirJaMT0JIy6EAjRBCbBzDMLj35An7cffO9d9RCAAioRDdK+8y1DEMHiWnWGt6hBAzUIBGCCE2LregEEWVV9/4eXnBw9W1Uc917RjGvo5PSqK6aIS0IhSgEUKIjUtITWVfdw0LbfRzUicn+Ffed1hcUoLs/HzO50ZIc9mxYwdcXV0RFRWFqKgo9OrVC/v27WvUsyNHjmzw8vXmRgEaIYTYMJ1Oh4S0NAD60hqhQUFNet44oEtMS+d0boTUpfr9llzddzl27FjExcUhLi4OW7Zswdy5cznptyVQoVpCCLFhWXn5KKu8TifYzw92lQf/Gys0MBB83jXoGAbJGRkY0ju6zkukSct79eFa5KtLrNa/p8gZP0YsqbcNj8fD6tWrsXv3buTm5mLlypWYNWsWAGDp0qU4c+YM1Go1pFIptm7divDwcKSkpKBv375YtGgRjh8/jhdffBH79u3DkCFDcOXKFQDAsWPH8MEHH+DIkSMAgFGjRuGf//wnVCoVgoODkZOTA5FIhN69eyMiIgL/+c9/kJSUhHHjxiGxMoPZWGFhIdyMSs106NABBw4cYC9S79u3L7766iuMHDnS5LmnT59ixowZyM7ORmio/heYZ599Fn/+859RUlKCJUuW4M6dO1AqlRg8eDC+/vrrGvUGuUAraIQQYsOSM6pWvTqFNP2OQolYjABfHwBASVkZ8ouKOJsb4V6+ugS5apnV/mls8GdnZ4erV6/i0KFDWLRoEbsC9sEHH+D69euIi4vDggUL8O6777LPFBQUoFOnTjh//jz7flxcHI4cOYKTJ0/iu+++w82bN3Hz5k3ExcUhMTER69evh5OTE7p164bLly+joKAAWq0W169fBwAcP34cY8eOZcc4ceIEoqKi0LlzZ0ybNg1r165t8vd40aJFGDVqFO7fv49Nmzbh3Llz7Of+8pe/YPjw4bh27Rru3LkDjUZj1uXtjUEraIQQYsNSn2YC0K9qhPj7m9VHWFAQ0rOyAQCJ6enwcnfnbH6EW54i51bR//Tp0wEAEREREAqFyM7ORmBgII4dO4avv/4aJSUl0Ol0kFcmrwD6oO7VV1816ef1119nV59OnDiBOXPmQFJZRHnevHn49ttvsXTpUowdOxYnTpxATk4OnnnmGTx8+BD37t3DiRMn8PLLL7P9jR07Fr/++isA4N69exg7dixu3boF/yb82Th9+jQ2bNgAAAgODsaYMWPYz+3duxdXrlzBP//5TwBAeXk5xE1ctW4sCtAIIcRGFctLICstBaDP3pSY+RdFaEAAzkK/IpGWmYmBvXpxNkfCrYa2H5uL8QXgAoEAGo0GaWlpWLRoEa5du4awsDDcvXsXo0ePZts5OjrW2D53cnJiXzMMU+Pzho/Hjh2LpUuXIjc3Fy+++CICAgJw/PhxnD17Ft9++22tc+zevTuCg4Nx8eJF/OEPf4BQKIS28qYNQH+heV3q2uZnGAZ79+5FWFhYrZ/nEm1xEkKIjUrNzGRfh/j7md2Pg709vCrP6uQXFUNReaaNkKaQyWQQi8Xw9fUFwzBN3vobN24cduzYAZVKBY1Gg9jYWHb7csCAAYiPj8eJEycwbNgwjB07FuvXr0dQUBA8PDxq7S8jIwNPnjxB586dAQAdO3bE1atXAQDXrl3Do0ePan1u5MiR2LFjBwAgPT0dp06dYj83efJkrF69mt3SLSoqQkJCQpO+zsaiFTRCCLFRaSYBWoBFfQX5+SGv8vxZRnYOOod2sKg/0v706NEDf/jDH9CtWzcEBwdj3LhxTXr+jTfeQGJiInr37g1AHygtWrQIACAUCjF06FCUlpbC3t4e3bp1g1qtNjl/BlSdQWMYBhqNBqtWrUKvyhXhv//975g5cyZiY2PRu3dvdKvjOrT169djxowZ+O9//4vOnTtjyJAhkEqlAIB//etf+OCDDxAVFQU+nw+RSIQvvvgCnTp1atLX2hg8xsYqEyoUCmzduhWnT59GSUkJgoODMX36dJM94roUFRUhJiYGly9fhlKpRKdOnTB37lz06dOnRtsbN24gNjYWCQkJsLOzw6BBg7BgwQKTjBBAnxq8a9cuHD58GAUFBfDz88PUqVMxbdo0k3bbtm1jI3JjYrEYJ06caNL34NGjR5g3bx62bNmCLl26NOlZQkjboNZoEPvr/6DT6eDk4IDXp0y2KPvyaU4O9p3UrxR0Ce2AMYMGcTVVYgGlUonk5GSEhoaabCsS6ykvL4dIJIJQKERWVhb69euHkydPNunvWy7+u9ncCtqKFSsQHx+P+fPnIygoCCdOnMAnn3wCnU5Xb7SuUqmwePFilJaW4u2334abmxv27NmD9957D+vWrUNUVBTbNi4uDkuXLsWgQYOwatUqFBUVYfPmzVi8eDG2bNliciBw7dq1OHbsGObMmYOuXbvi2rVr2LBhAxQKBV5//fUa8/jqq6/g6OjIfkzp7IQQc2Tn50On0wHQr35Z+rPE19MTQqEQGo0G6VnZtZ4HIqQ9ePLkCWbMmAGGYaBWq/HRRx+1yGKITQVoly9fxo0bN7By5Up2WbN3797Izs5GTEwMRo8eDYFAUOuzBw8eRHJyMjZt2sTWQImOjsbs2bMRExODzZs3s203bdqEoKAgfPrppxAK9d8iPz8/vPXWWzh06BBeeOEFAEBycjIOHjyIefPmsZkp0dHRkMvl2LlzJ6ZMmQIXFxeTeXTu3BmujbyGhRBC6pKZk8u+DvDxtrg/gUCAAG9vpGZmQqFUokgmh7ur1OJ+CbE1PXv2RFxcXEtPw7aSBM6fPw97e/saReUmTpyI/Px8PHjwoN5ng4OD2eAM0O9pjx8/Hg8fPkReXh4AIC8vD/Hx8Rg/fjwbnAH6vfWgoCCTeijnz58HwzCYMGGCyVgTJkxARUUFexiREEK4lplbFaAZrmuylL9RoJeZl1tPS0KItdlUgJacnIyQkBCTwAnQZ2YYPl+XpKQktl19zxr+XVdb4zGSk5Ph6upaI4Okvvn86U9/wsiRIzFlyhT8/e9/R05OTp1zJoSQ2qg1GuQUFAAApM7OcHJw4KRffy8v9nVWbh4nfRJCzGNTW5wymazWYnPOzvrCesYF8aqTy+Vsu/qelclkAFBja9LQ1ngMmUxWazt7e3uIRCK2LwAICAjAvHnzEB4eDrFYjIcPH+LHH3/E9evXsWXLFngZ/WCsLj8/HwWVP4wBINXoYmRCSPuTY3T+LICj1TMA8HR3h1AggEarRWZeHp1DI6QF2VSABlh2qL6+Z+sqjmfJ+MZtn3nmGZPP9e7dG9HR0Vi4cCF++OEHvPPOO3X289tvv9WaAUoIaZ+ssb0JAAI+Hz6enniak4MyhQIlZWVwMSokSghpPjYVoEmlUpNVKYOSEv3dYbWtZhm4uLjUusJmeNawkmaodVLXOMarcFKptNYCdeXl5VCr1fXOBwAiIyMRGBhY79k5QF8Yb8iQIezHqamp+Pzzz+t9hhDSdpkEaBwkCBjz9/bC08qjF1l5eRSgkRp4PB5KSkpMbgGwJsNF6/n5+ez4PXr0AJ/Ph1KpxLhx4/Cvf/2rziRBgx07duDAgQPsVVCtnU2dQQsLC0NqaipbwdcgKSkJANhb5+t6trbb7g3vGa5tMPRh6LP6OMZjhIWFobi42GT7sbHzMcbn1/+fwdPTE126dGH/CQkJaVS/hJC2R6vTIaegEADg4ujI2fkzAz86h0Y4Uv3vai5dunQJcXFx+P3333H+/HkcOXLEamO1FJtaQRs2bBj279+Ps2fPmhSmPXLkCDw9PREZGVnns8OHD8fatWvx4MEDtp1Go8Hx48cRGRkJT09PAICXlxciIiJw7NgxvPLKK2xEfv/+faSlpeEPf/gD2+fQoUOxdetWHDlyhL04FgAOHz4MiUSCAQMG1Pv13L9/HxkZGTWK2hJCSF0Ki4vZ+wR9Kn9uccnH0xM8Hg8MwyC7IJ/z/ollZiz6CAVFNXd4uOLhJsXODZ802O6rr77C8ePHkZeXh08++YQtNcXj8fDVV19h//796NevH9577z28+eabSEhIAMMwWLRoEd544w0AwNKlS3HmzBmo1WpIpVJs3boV4eHhAICNGzdi3bp18PPzw4gRI+qch0KhgFKpZIvIf/zxxygtLcVXX30FAPjmm29w48aNWo8JLV++HP/973/h4eGB4cOH4/Tp07hx4wYAYNeuXfjmm2+gVqvh7OyMjRs3mlSBaA42FaANHDgQffv2xdq1a6FQKBAQEICTJ0/i6tWrWLFiBRtMrV69GkePHsWPP/4IX19fAPpSHHv27MHKlSsxf/58tlBtWloa1q1bZzLOm2++iSVLlmDlypWYOnUqW6g2NDTUpKRGaGgoJk2ahO3bt4PP5yMiIgLXr1/H/v37MXfuXJMtzlmzZmH8+PEICQkxSRJwd3dn/8cmhJCG5ORXrdj7eNZ+B6ElREIhPFylyC8qRpFMDrVGA5HQpv6qaNMKimTILShq6WmAx+Ph4sWLSEpKQv/+/TF06FAEBQUBACoqKnDmzBkAwB//+Ed07doVe/bsQW5uLvr06YOoqCj0798fH3zwAb788ksAwE8//YR3330XBw4cwN27d/H3v/8dt2/fho+PDxYuXFhj/MGDB4PH4yEhIQHTpk3D4MGDmzT//fv348CBA7hz5w7s7e3x0ksvsZ+7ePEifvrpJ5w7dw4SiQTnz5/H9OnTcefOHTO/W+axuT91n3/+ObZs2YLY2Fj2qqePPvrIZEVNp9NBq9XC+BYrsViMdevWISYmBuvXr4dSqUR4eDi+/PJLk1sEAH2x2TVr1mDbtm348MMP2aueFi5caHKLAAAsWbIEnp6e2L17NwoLC+Hr64tFixbVWBXr0KEDfvvtNxQWFkKtVsPT0xNjxozBzJkz2dU7QghpSHZ+1aqWj4d1fnZ4e3ggv6gYDMMgr7CQ00QEYhkPN+sWD25s/3PnzgWgP+ozdOhQnD9/Hq+99hoAYPbs2Wy7EydOsIGNt7c3XnzxRZw8eRL9+/fHsWPH8PXXX6OkpAQ6nY49J37mzBlMmjQJPj4+APR3dP78888m41+6dAlOTk5QKBSYNm0avv76a7z99tuN/jpPnz6Nl19+mb3ZZ+bMmfjss88AAPv27cOdO3dMdsHy8vKgUqlqxADWZHMBmoODA9555516sx6XLVuGZcuW1Xjf3d0dy5cvb9Q4/fr1Q79+/RpsJxQKMXv2bJP/IWvz0UcfNWpcQgipj6H+mYDPh6ebq1XG8PbwwIME/fnc3IICCtBakcZsP7YE46oF1ZMHaquSkJaWhkWLFuHatWsICwvD3bt3MXr0aABAU64Id3BwwPPPP4+DBw/i7bffhlAoZI8AAPo7MWtTXwkZhmEwe/ZsfPrpp42ehzXYVJIAIYS0Z8qKCsgqM8893dwazFozl49R8W1DQgIhxrZt2wZAn2F54cIFDB06tNZ2Y8eOxXfffQdAvwq1Z88ejB49GjKZDGKxGL6+vmAYBt988w37zKhRo3Do0CHkVmYrx8bG1jkPrVaLM2fOsHdlduzYETdu3IBOp4NCocD//ve/Wp8bNWoUfvnlFygUCuh0OuzatYv93PPPP4+dO3ciPT0dgH5XznA2rTnZ3AoaIYS0VzkFxufPrHc0ws3Fhb04PbdaljohACCRSDBkyBDk5eXh66+/Zs+fVbdhwwa8+eab6NmzJ3Q6HZYvX47+/fsDAP7whz+gW7duCA4Oxrhx49hnevbsiWXLlmHw4MHw9fXFpEmTavQ7ePBg8Pl8qFQq9OrVi92lmjZtGn799VdERkaiQ4cOiIqKQnl5eY3nJ0+ejEuXLqFXr17w9/fHwIEDUVSkP9s3fPhwrFq1ClOmTIFWq4VarcakSZPQt29fi79vTcFjmrKWSFqFR48eYd68ediyZQv7WwMhpO27dvd33Lh3DwAwbshghFux5M7eEyeQWVlm408vToWDnZ3VxiJ1UyqVSE5ORmhoKOzovwGnDLVNdTod5s6dC39/f85qjHLx3422OAkhxEbkFBgnCHCfwWnM26h/WkUjbdGMGTMQHR2NyMhIKJVKvP/++y09JRO0xUkIITZAn1Gp34Kxk0jgXJl9Zi3e7sYBWiE6BARYdTxCmtuePXtaegr1ohU0QgixAWXl5VBWVAAAvNzcrH6JuZe7G/u6oLjl624R0t5QgEYIITYgr7Aqm9LTKHiyFhcnJ7ZAbX5RsdXHI4SYogCNEEJsQH5R1SqWl5u71cfj8XjwrLw+p6SsDEqVyupjEkKqUIBGCCE2wHD+DAAbOFmbcSHcgiLa5iSkOZmVJBAWFmbxwIsXL8aiRYss7ocQQtoDwwqaSCiE1Nmpgdbc8DAKBPOLihBQefUOIcT6zFpBS0lJQVFRERiGMeuf1NRUFBcXc/ylEEJI21SurECpQgFAv3pm7QQBA89qARohdeHxeCgtLa2zMKxBSkoK3T/dSGaX2Xj33XexcuVKs57l82lnlRBCGiu/qCpBwKsZEgQM3KVS8Hg8MAxDiQKkUeLi4lp6Cm0G1UEjhJBWznj1qrnOnwGAUCCAm9QFhcUyFMlk0Gq1Vrv/kzTOL0eOQlHPCpWlHOzt8Ydnn2mw3e7du7Fs2TK4ublh4sSJ7Ps8Hg8lJSVwcHDAokWLcOLECUgkEgiFQly8eNGkD5VKhdmzZ8PJyQkbN26k/7eqMStAe/LkCdzdzc8isvR5QghpT1oiQYAdz9UNhcUy6BgGhTIZvOhnd4tSlJejzIoBWmPk5uZi3rx5uHTpErp06YI1a9bUaHPnzh2cPHkSDx48AJ/PZy9HNygqKsK0adMwfvx4fPjhh805fZthVoDWsWNHiwa19HlCCGlPDCtoAj4fblJps47t6eaGxykp7DwoQGtZDvb2Ld7/lStX0Lt3b/Yu6DfeeAMffPCBSZuwsDCo1WrMnj0bo0aNwqRJk9jjTUqlEkOGDMGKFSvw2muvcf9FtBG0xUkIIa2YWqNBcUkJAMDd1RWCZj7Da1Jqo1jWrGOTmhqz/WhtDMM02EYqleL+/fs4e/YsTp8+jb/+9a84d+4chEIhJBIJhgwZgv379+Pll1+GUEihSG3otD4hhLRihbKqoMjDtXlXzwB9okBtcyHt16BBg3D79m08fvwYALB169YabfLy8lBWVobx48dj1apV6NChAx48eABAf07tu+++g4+PD1588UVUVF5hRkxxGqAVFRVh586dXHZJCCHtWqFRSSIPV9dmH9/ezg52Ev3ZIQrQCAB4e3vju+++w/PPP4/BgwfXWpkhPT0d48aNQ8+ePdGjRw90794dEyZMYD/P4/Hwr3/9C7169cKkSZNQVlbWnF+CTeB0XTEtLQ2zZs3CjBkzuOyWEELarUKjbUX3Zj5/Buj/InWXSpGZmwdF5YXtdhJJs8+DtC4vvvgiXnzxRfbjJUuWAKja/uzduzdu3rxZ47kOHTogPz+f/fizzz6z8kxtV5MCtLS0tHo/n5mZadFkCCGEmCqQFbOvW2IFDQDcpa7IzM0DoF9F8/f2bpF5ENKeNClA69ChQ70VrBmGabYK14QQ0h4YDubbSSSwt7NrkTlUP4dGARoh1tekAM3NzQ2rVq3CyJEja/38w4cPMW3aNC7mRQgh7V65UolypRJAVVX/luBulJxQROfQWkRjMidJ68HFf68mBWh9+vRBXl4eW/ukOqVSSf8TEUIIR0wzOF1bbB7GK2hUaqN5iUQi8Hg85OXlwcvLi3apbADDMMjLywOPx4NIJDK7nyYFaAsWLKg30yI4OBjbt283ezKEEEKqGAdD7i1QYsPAsL1arlTSClozEwgECAwMREZGBlIqCwaT1o/H4yEwMNCi66uaFKBNnTq13s+7ublh5syZZk+GEEJIFZMSG1LXFpuHfnwpMpRKlFdUQKFUwqGFzsO1R05OTggPD4darW7pqZBGEolEFt8tSuV7CSGklSqQtY4VNABwk0qRkZMDQH8OjQK05iUQCOgy8XbG4kK1AoGgwfIbhBBCmoZhGHYFzdnREWILzrJwwfgWAzqHRoj1WRygUVIAIYRwr6SsDGqNBkDLFKitzs2k1EZxy02EkHaC7uIkhJBWqLAVbW8CpkFisVzegjMhpH2gAI0QQlqhgha+g7M6iVjMnjsrogCNEKujAI0QQlqhIllVENQatjgBwNXFBQBQrqyAsqKihWdDSNtGARohhLRCxqtUrs7OLTiTKoYADQCK5SUtOBNC2j4K0AghpJVhGIYN0FycnCAUto6KSG4uVYFicQltcxJiTRSgEUJIK1OqUEBTmcHpZrRq1dKM50Ln0AixLosDtOXLl8O1FRxgJYSQtsI4+HGTtp4AzXSLkwI0QqzJ7HVzjUYDoVCIzz77jMv5EEJIu2ecINCaVtCcHR0hEAig1WppBY0QKzN7Bc3f3x/vvfceHj58yOV8CCGk3TNZQXNpHRmcgP4CaEPCgrykFFqdroVnREjbZXaAJpPJsHbtWnTv3h2DBw9GbGwsSktLuZwbIYS0S8XyqiK1rq1oixOo2ubUMQzkJfQznxBrMTtAy8rKwrp169CjRw9cuXIFb7zxBvz8/DBnzhxcuHCByzkSQki7YlhBs7ezg51Y3MKzMUWJAoQ0D7MDNHd3d7zzzjuIi4vDjRs3sGDBAojFYmzfvh0jRoxAREQEvvzyS+Tk5HA5X0IIadOUFRUoV+qLwLam82cGVGqDkObBSZmN3r1745tvvkFWVhZ++OEHjBkzBk+ePMGHH36IoKAgTJ06FQcOHICOzisQQki9WmsGpwFlchLSPDitgyYWi/HKK6/g2LFjSElJwccff4ygoCDs27cPU6ZMQVBQEJfDEUJIm2Oawdl6EgQMjAM047kSQrhltUK1gYGB+Nvf/oZDhw5hyJAhYBgG2dnZ1hqOEELahCKjBIHWuIImEgrh5OAAQL+CxjBMC8+IkLbJKveHlJWV4eeff8a2bdtw6dIlMAwDBwcHvPTSS9YYjhBC2owiozsuW+MZNEC/ilaqUKBCrUa5UgkHe/uWnhIhbQ6nAdr58+exbds2/Prrr1AoFGAYBv369cOcOXPw6quvwrmVXPhLCCGtVbFMv4ImEgrh2EoDHzcXF2RU7ogUyUsoQCPECiwO0J4+fYrvv/8eO3bsQGJiIhiGgYeHB+bOnYs5c+age/fuXMyTEELaPI1GA3lZGQB9EMTj8Vp4RrWTGv2yLSspQYCPdwvOhpC2yewA7eeff8b27dtx4sQJaLVa8Pl8jB8/HrNnz8YLL7wAkUjE5TwJIaTNKy4x2t5shefPDFydndjXMqM5E0K4Y3aA9sorrwAAOnTogFmzZmHWrFkIDAzkbGKEENLeFMmMEgRaYQangfEKWjEFaIRYhUUB2pw5czBmzBgu50MIIe2WSYJAK15Bc3Z0BJ/Hg45haAWNECsxO0D74YcfuJwHIYS0eyYlNlppBicA8Pl8uDg5obikBLLSUjAM02rPyxFiqzirg6bRaLBu3Tr0798fLi4uEAqrYr+4uDgsXLgQjx8/5mo4Qghpc4orV9D4PB5cnJwaaN2yDNucWq0WpQpFC8+GkLaHkwCtvLwco0aNwnvvvYfU1FS4uLiYFC8MDQ3F9u3bsXPnTi6GI4SQNodhGMhLSwFUbiHyrVZHnBPVMzkJIdzi5CfAqlWrcPHiRfzjH/9AdnY25s6da/J5qVSKESNG4OjRo1wMRwghbU55RQXUGg0AwMW5da+eAYCrSYBW2oIzIaRt4qRQ7X//+1+MHDkS77//PgDUehYhLCwMt2/ftngshUKBrVu34vTp0ygpKUFwcDCmT5/eqGSFoqIixMTE4PLly1AqlejUqRPmzp2LPn361Gh748YNxMbGIiEhAXZ2dhg0aBAWLFgANzc3k3YajQa7du3C4cOHUVBQAD8/P0ydOhXTpk2rdy6fffYZjh8/jkGDBuGLL75o2jeBENLmyI2CnNa+vQkAUqMgkjI5CeEeJytoaWlp6NevX71tXFxcIDNKITfXihUrcOTIEfzpT3/CmjVr0LVrV3zyySc4fvx4vc+pVCosXrwYN2/exNtvv41Vq1bBzc0N7733HuLi4kzaxsXFYenSpXBzc8OqVavw9ttv4+bNm1i8eDFUKpVJ27Vr1+I///kPpk6diq+++grDhg3Dhg0bsGvXrjrncvnyZVy4cAGOjo5mfx8IIW2LrLQqyJHaRIBGW5yEWBMnK2jOzs7Iy8urt01iYiK8vLwsGufy5cu4ceMGVq5cibFjxwIAevfujezsbMTExGD06NEQCAS1Pnvw4EEkJydj06ZN7O0G0dHRmD17NmJiYrB582a27aZNmxAUFIRPP/2UTXbw8/PDW2+9hUOHDuGFF14AACQnJ+PgwYOYN28eXn31VbZPuVyOnTt3YsqUKXCplolVWlqKr776CnPmzMGvv/5q0feDENJ2GM6fAYCLU+u/Fs/JwQF8Ph86nY4CNEKsgJMVtIEDB2L//v11rpBlZGTg0KFDGD58uEXjnD9/Hvb29hg5cqTJ+xMnTkR+fj4ePHhQ77PBwcEmV08JhUKMHz8eDx8+ZAPMvLw8xMfHY/z48SaZqD169EBQUBDOnTtn0ifDMJgwYYLJWBMmTEBFRQWuXr1aYx4bN26Eh4dHg1ughJD2xfgcl9QGzqDx+Xx2pU9WWgqdTtfCMyKkbeEkQFu6dCkKCwsxduxYXLp0CZrKg64KhQInT57E+PHjoVarsWTJEovGSU5ORkhIiEngBAAdO3ZkP1+XpKQktl19zxr+XVdb4zGSk5Ph6uoKDw+PRs3nxo0bOHr0KN5///06V/pqk5+fj0ePHrH/pKamNvpZQohtMF1Ba/0BGlC1zanT6ajUBiEc42SLc/jw4di4cSMWLVqEYcOGse87V/7hFQgE2LRpU62H8ZtCJpPB39+/xvuGceRyeZ3PyuVytl19zxpWAatvTRraGo8hk8lqbWdvbw+RSGSyoqhQKLBmzRq88sor6NSpU53zrM1vv/2GHTt2NOkZQohtkVUGaA52dhAJOfnRbHXVz6HZSmBJiC3g7KfAm2++iREjRuDbb7/F1atXUVhYCBcXFwwYMAALFy5Et27dOBnHkmrV9T1b/XN1tW3K+MZtN2/eDKFQiJkzZzb6eYPJkydjyJAh7Mepqan4/PPPm9wPIaR1UqvVKFcqAdhGiQ2D6qU2gvxacDKEtDGc/poWERGB9evXc9mlCalUWus5t5LKA6q1rWYZuLi41LrCZnjWsJImleovKK5rHONVOKlUioSEhBrtysvLoVar2fk8ePAAe/fuxeeffw6VSsVmgup0Omi1WpSUlEAikUAsFtc6d09PT3h6etb5tRFCbJvMaHvTFjI4DajUBiHW06ylqi09RBoWFobU1FT2jJtBUlISAP2NBfU9m5iYWON9w3thYWEmfRj6rD6O8RhhYWEoLi5GQUFBvfNJTU0FwzBYvnw5Jk2axP6Tm5uLa9euYdKkSdi7d2+9XzshpO2ytQxOAyq1QYj1cBKgbd26tcE2Wq0Wr732mkXjDBs2DOXl5Th79qzJ+0eOHIGnpyciIyPrfHb48OFIS0szyfTUaDQ4fvw4IiMj2RUqLy8vRERE4NixY9BqtWzb+/fvIy0tDSNGjGDfGzp0KHg8Ho4cOWIy1uHDhyGRSDBgwAAAQP/+/bF+/foa/7i7u6Nbt25Yv359jcxUQkj7YasraE4ODmzCEwVohHCLky3OBQsWwMvLC1OmTKn18wzDYPr06fjll1/w008/mT3OwIED0bdvX6xduxYKhQIBAQE4efIkrl69ihUrVrA/KFavXo2jR4/ixx9/hK+vLwB9KY49e/Zg5cqVmD9/Ptzc3LBnzx6kpaVh3bp1JuO8+eabWLJkCVauXImpU6eiqKgImzdvRmhoqElJjdDQUEyaNAnbt28Hn89HREQErl+/jv3792Pu3LnsFqeHh0eNTE8AEIvFcHFxQXR0tNnfE0KI7TNZQbOhM2g8Hg9SJycUymSQV5baaO13iBJiKzgJ0AYOHIhXX30VR48eNcniBKqCs59//hkLFiyweKzPP/8cW7ZsQWxsLHvV00cffWRy1ZPhbJfxhe1isRjr1q1DTEwM1q9fD6VSifDwcHz55ZeIiooyGSM6Ohpr1qzBtm3b8OGHH7JXPS1cuLDGObElS5bA09MTu3fvRmFhIXx9fbFo0SKqc0YIaTTja55saQUN0G9zFspk0DEMSsrKTLY9CSHm4zHGUYyZZDIZhg4dioyMDJw7dw49evQAoA/OXn/9dfzwww+YP38+YmJiLJ4wAR49eoR58+Zhy5Yt6NKlS0tPhxBioX//th/y0lKIhELM/cNLFmWrN7fLt+Nw++FDAMBzI0cguJZSSISQpuNkLVoqleLo0aOQSqV49tlnkZKSAoZh8H//93/44Ycf8MYbb1BwRgghtdDpdCgtKwOgz4q0peAMqJYoYLRVSwixDGeHBfz9/XHs2DGoVCqMHz8er776Kn788UfMnTsX3377LVfDEEJIm1KiUEBXuZFhSxmcBsalNoy3agkhluH0NGfnzp1x+PBhZGdn45dffsGcOXPw3XffcTkEIYS0KXKj7EdbO38GmF5LRStohHDHrCSBTz/9tN7P9+/fH3FxcQgICDBpy+Px8Le//c2cIQkhpE2S2WgGp4GjvT34fD50Op1JNiohxDJmBWgff/xxo9pVD+QoQCOEEFNyG62BZsDn8+Hi5IhieQnkpaVgGMbmztER0hqZFaCdPn2a63kQQki7JCsxvkXA9gI0QH92rlheAo1WC0V5ORwdHFp6SoTYPLMCNONq+oQQQsxnWEHj8/lwstHARlrtHBoFaIRYjko+E0JIC2EYhj2D5uzoaLNV+I1X/ugcGiHcsM2fBoQQ0gaUK5XQaDQAbPP8mYFxqQ0ZldoghBMUoBFCSAsxyeC04QDNtNQGXZpOCBcoQCOEkBZiksFpgyU2DEy2OGkFjRBOUIBGCCEtpC1kcAKAUCBgEwOoWC0h3KAAjRBCWoi8jWxxAlVn6CpUKlSoVC08G0JsHwVohBDSQtrKGTSArnwihGucBmhFRUXYuXMnl10SQkibJa88UO9gbw+R0KyylK0GXZpOCLc4DdDS0tIwa9YsLrskhJA2SaVWo1xZAcC2S2wYUCYnIdxq0q9saWlp9X4+MzPToskQQkh70ZbOnwGmQSYVqyXEck0K0Dp06FDvJbh0SS4hhDSOzMYvSa/OxdmZfU3FagmxXJMCNDc3N6xatQojR46s9fMPHz7EtGnTuJgXIYS0acbntFxsuAaagZ1YDIlYjAqVilbQCOFAkwK0Pn36IC8vD126dKn180qlEgzDcDIxQghpy9raChqg36rNKyxEqUIBrVYLgUDQ0lMixGY1KUlgwYIF6NChQ52fDw4Oxvbt2y2dEyGEtHlyo4P0Lk7O9bS0Habn0MpacCaE2L4mraBNnTq13s+7ublh5syZFk2IEELaA8MWp1gkgp1E3MKz4YbxVq2stARuUpcWnA0hto0K1RJCSDPT6nQoUSgA6LcF20pyFWVyEsIdCtAIIaSZlZaVsed128r5MwCQUiYnIZyxOEATCAQN1kcjhBBSRdbGMjgNXGgFjRDOWBygUdYmIYQ0jbwNZnACgKO9PZu5SfdxEmIZ2uIkhJBmJjPJ4Gw7ARqPx4OLkyMAoKS0lH6BJ8QCFKARQkgzM1lBc24bJTYMpJUlQ7Q6HUorEyEIIU1HARohhDQzw/Yfn8+Ho7291cdLe5qNUxdvICE53epj0Tk0QrjRpDpohBBCLMMwDFvE1dnREXy+9X5P1mg0WBOzC3sOn2Hf6xwWjPcXzkCvyHCrjGl8pk5WWooAHx+rjENIW0craIQQ0ozKlUpoNBoA1k8Q+Mc335sEZwDwOCkNby1fgwePk60ypnFWqpxKbRBiNgrQCCGkGRlnN1ozQeDs5Vv47dg5AIBIKMSrL4xHx5BAAEBFhQp/+/JbVKhUnI9bfQWNEGIeiwO05cuXw9XVlYOpEEJI2ydvhgBNo9Fg7Xf/YT9e/s4sLHljOnZu+BiRnUMB6M+l/e/gKc7HdnZ0ZG9GoDNohJjP4gDts88+g4sL3bdGCCGNYVykVmqlIrXHzl1FZk4+AKBfVCQmjh4CQH/v5/JFs9l22/97AMoKblfRBAIBnBwcAADykpIGWhNC6mLVLU6GYfDkyRNkZGRYcxhCCLEZ1l5BYxgG//7fYfbjua9OMbnrs3NYMMYNHwAAKJaX4MT5a5zPwfB1VajVUFZUcN4/Ie0BJwHavn37MHv2bBQVFbHvpaSkoEePHujatStCQkIwffp06HQ6LoYjhBCbZe0A7VFiKp5UltPo1jkM0d271Gjzx8nj2NfW2Oakc2iEWI6TAO3bb7/F9evX4ebmxr63ePFiPHjwAKNGjULPnj3x008/Yfv27VwMRwghNssQsDjY2UEk5L7S0aFTF9nXk58ZbrJ6ZtAzohPCQ4MAAPceJSI9M4fTOZjUQqNMTkLMwkmAdv/+ffTv35/9WCaT4dChQ/jjH/+IEydO4Nq1a4iIiEBsbCwXwxFCiE1SazQoVyoBWOeSdI1Wi6NnrgDQnzcbO7R/re14PB4mjBrMfsz1NqdJqY0yCtAIMQcnAVpeXh78/PzYjy9cuACNRoNXX30VACASiTBu3DgkJCRwMRwhhNgka1+Sfi8+EYXFcgDAkH694OLsWGfb0UP7sa+5DtBMtjhpBY0Qs3ASoLm4uKCgoID9+MyZM+Dz+Rg2bBj7nkgkQllZGRfDEUKITTIOVqxx/uz8tTj29chBvettG+DrhYhwfcmNx0lpyMzJ42wedN0TIZbjJEDr2rUr9u/fj8LCQshkMvz000/o3bu3yZm01NRU+NCVH4SQdszaCQIXKgM0Ho+HQX17NNh++IBo9vWVW/c4m4dELIadRAyAkgQIMRcnAdqiRYuQmZmJgIAABAUFITMzE2+++Sb7ea1WiwsXLqBXr15cDEcIITbJdIvTmdO+M3PykJT6FADQvWtHuEkbrk85qE939vWVm9wFaADgUvn1lSkU0Gi1nPZNSHvASYA2bdo0bNy4Ed26dUPnzp3xj3/8A7NnVxVDPHnyJBQKBZ599lkuhiOEEJskK60q3OriVPf5MHMYB1hD+zXul+GunUIhrTyndv3OA04DKSltcxJiEc5yvBcsWIAFCxbU+rnx48eb1EgjhJD2SF6qP4crFAphb2fHad+3fo9nX/eP6taoZwQCPvpHd8fxc1dRWqbA/UdJ6BUZzsl8qp9Dc5dKOemXkPaCLksnhJBmoNPpUFKZKCV1cqq1Ppm5GIbBrXv6AM3eToKunUIa/Wz/qEj2ddz9x5zNyfgaK8rkJKTpKEAjhJBmUKpQsLepcJ0gkJGVi7yCYgBAr8hwCJtQADfK6KYBLgM0yuQkxDIUoBFCSDOwZgan8fZm7x5dm/RsSIAvXF30B/rvPnjC2ZV8dN0TIZahAI0QQpqBSQYnx7cImARotdy9WR8ej4eobvpzZ/LSMiSlZXIyJwd7ewgEgsp+KUAjpKkoQCOEkGZgvIrk4shtgGbYmpSIRYjsHNbk53t168y+vsPRNiePx2MzVUtKS8EwDCf9EtJeUIBGCCHNwForaEUyOTJz8gEAEeGhEImanpwfFWkUoD14wtncDLXetDodShUKzvolpD2gAI0QQpqBvDKTkcfjwcmRuxpoDx4ns6/NWT0DgM4dgyGqTCx4mJDcQOvGo0QBQszX5ABNp9Ph3r17yMyseU5BrVbj3LlznEyMEELaCoZh2C1OJwcHCPjc/W58/1ES+7qbmQGaWCRCp9AgAEBqRjZKFeWczI0SBQgxX5N+SqSmpqJHjx7o2bMngoKCMHnyZJNL0gsLCzFq1CjOJ0kIIbasQqWCSq0GYBq0cOHBE+MVtFCz+4kM7wBAH0w+Sky1dFoAABejrVw51UIjpEmadFjh/fffR2BgII4ePYri4mL85S9/wZAhQ3Dq1Cn4+/sDgNUPgioUCmzduhWnT59GSUkJgoODMX36dIwZM6bBZ4uKihATE4PLly9DqVSiU6dOmDt3Lvr06VOj7Y0bNxAbG4uEhATY2dlh0KBBWLBggckF8ACg0Wiwa9cuHD58GAUFBfDz88PUqVMxbdo0k3YnTpzA3r17kZ6ejtLSUri4uKBLly6YPn06evRo+FJjQojtMkkQ4PD8GcMw7Aqa1MUJAb5eZvcVER4K4DQA4OGTZPRpYrmO2tAKGiHma1KAdvbsWRw9ehSBgYEIDAzEkSNH8MYbb2DYsGE4ffo0JBIJp9Wxa7NixQrEx8dj/vz5CAoKwokTJ/DJJ59Ap9Nh3LhxdT6nUqmwePFilJaW4u2334abmxv27NmD9957D+vWrUNUVBTbNi4uDkuXLsWgQYOwatUqFBUVYfPmzVi8eDG2bNkCsVjMtl27di2OHTuGOXPmoGvXrrh27Ro2bNgAhUKB119/nW0nk8nQo0cPvPTSS3B1dUVBQQH++9//YtGiRTXGJ4S0LcarR1yuoGXm5KNYrr/fs1vnMIt+/uoDNL2HT7g5h+bs6AgejweGYegMGiFN1KQATaFQQCKRsB/zeDxs2bIFCxYswPDhw/HDDz9wPkFjly9fxo0bN7By5UqMHTsWANC7d29kZ2cjJiYGo0ePZuvuVHfw4EEkJydj06ZN6N69OwAgOjoas2fPRkxMDDZv3sy23bRpE4KCgvDpp5+yFbn9/Pzw1ltv4dChQ3jhhRcAAMnJyTh48CDmzZuHV199le1TLpdj586dmDJlClxcXACgxooaAAwYMACTJ0/GwYMHKUAjpA2Tl1mnSO2Dx1XnzyzZ3gSAsJAASMQiVKjUePgkxcKZ6QkEAjg5OKCkrAzykpKGHyCEsJp0Bq1Lly64ceNGjfdjYmIwceJEPPfcc5xNrDbnz5+Hvb09Ro4cafL+xIkTkZ+fjwcPHtT7bHBwMBucAfoLi8ePH4+HDx8iLy8PAJCXl4f4+HiMHz/e5LqUHj16ICgoyCQJ4vz582AYBhMmTDAZa8KECaioqMDVq1fr/XocHBwgFovrDCoJIW2D8V2UnAZoRitd5iYIGAgFAnTuqL/DMz0zB/KSMov6MzB8vRVqNZQVFZz0SUh70KQA7cUXX6xzlWzTpk344x//aNUzaMnJyQgJCalxz1zHjh3Zz9clKSmJbVffs4Z/19XWeIzk5GS4urrCw8Oj0fPRarXQaDTIysrCP//5TzAMg6lTp9Y5bwDIz8/Ho0eP2H9SU7k5wEsIaR7WuubpcWIa+7prpw4W9xdh1MeT5LS6GzaBlEptEGKWJm1x/vWvf8Vf//rXOj8fExODmJgYiydVF5lMxiYjGHN21hdDlMvldT4rl8vZdvU9K5PJAIDdmqze1ngMmUxWazt7e3uIRCK2L2MzZ85EWpr+B5+Hhwe++uordOlS/9Usv/32G3bs2FFvG0JI62UITOwkYkiMzrBagmEYNohykzrDw01qcZ/hlaU2AOBJcjr69IywuE+XaokC3tV+oSWE1K7pJadbmCWHYOt7tvrn6mrblPFra/vZZ5+hvLwcubm52LdvH5YuXYp//OMfiI6OrrOfyZMnY8iQIezHqamp+Pzzzxs9D0JIy9FqtWwVfRenmr8kmqugSIYimf5cV3hoMCcJWsYBWkJyusX9AdVKbdAKGiGNZlMBmlQqrXVVqqTy8Gltq1kGLi4uta6wGZ41rKRJpfrfQusax3gVTiqVIiEhoUa78vJyqNXqWucTGqo/yBsZGYmhQ4dizpw52LBhA7Zv317n3D09PeHp6Vnn5wkhrZe8tOosF5cZnE+MAqjwsKB6WjZeWEggm3X5JIWbAM2k1AbVQiOk0SwuZy0QCNgtO2sLCwtDamoqNBqNyftJSfpMJkPwU9eziYmJNd43vBcWFmbSh6HP6uMYjxEWFobi4mKTYr2NnQ+gT1Lo3Lkz0tO5+UFICGl9rHX+7ElS1c9d45UvS9jbSRDk5w0ASEx9Cq1WZ3GfdN0TIeaxOECzdmFaY8OGDUN5eTnOnj1r8v6RI0fg6emJyMjIOp8dPnw40tLSTDI9NRoNjh8/jsjISHaFysvLCxERETh27Bi0Wi3b9v79+0hLS8OIESPY94YOHQoej4cjR46YjHX48GFIJBIMGDCg3q+noqICDx48QEBAQMNfPCHEJsmslSBgvIIWGsxZv4YrnyoqVMjIyrW4P4lYDDuJ/twdFaslpPFsaotz4MCB6Nu3L9auXQuFQoGAgACcPHkSV69exYoVK9hyFatXr8bRo0fx448/wtfXF4C+FMeePXuwcuVKzJ8/ny1Um5aWhnXr1pmM8+abb2LJkiVYuXIlpk6dyhaqDQ0NNSmpERoaikmTJmH79u3g8/mIiIjA9evXsX//fsydO9dki3PBggUYMmQIQkJC4OTkhOzsbOzduxeZmZl0noyQNkxeWlX/S8rhLQKGBAGhUIDQoJrJU+bq1CEQpy7qyyklpKQjJNDX4j5dnJyhrChAmUIBjVYLIZUWIqRBNhWgAcDnn3+OLVu2IDY2lr3q6aOPPjK56kmn00Gr1Zqs7onFYqxbtw4xMTFYv349lEolwsPD8eWXX9YoEhsdHY01a9Zg27Zt+PDDD9mrnhYuXGhyiwAALFmyBJ6enti9ezcKCwvh6+uLRYsW1ShM2717d5w6dQrZ2dkoLy+HVCpFt27d8Oc//5mueiKkDTM+g8bVCppKrUZqehYAIDTIHyIRdz/KO1XL5BwztJ/FfUqdnJBbeRREXloKd6nlGaeEtHU2F6A5ODjgnXfewTvvvFNnm2XLlmHZsmU13nd3d8fy5csbNU6/fv3Qr1/DP5iEQiFmz56N2bNn19vurbfeatS4hJC2RVa5gibg8+Fob89Jn8lpmdDq9OfDOnXg5vyZgVUyOaudQ6MAjZCGWXwGjRBCSO30d1DqV9BcnJw4u6v4sXGCAEcZnAb+Pl6wt9Nf6cdZsVpnyuQkpKkoQCOEECspKy9nk424TBAwXtnqzGGCAADw+Xx0DAkEoL+MvVxp+fVMlMlJSNNRgEYIIVZivFokreUmE3MlpWeyrzt2COSsX4MOQX7s69SMLIv7o+ueCGk6iwO05cuXw9XVlYOpEEJI2yIrsU4GZ3LaUwCAs5MDJ1c8VWecFZpsFAyay8Hens2yp1IbhDSOxQHaZ599Vm8Ff0IIaa9kJiU2uFlBK1OUIyevEIA+kOLqXJuxDsFGAVqa5QEaj8eDi5MjAKCktLRZ62cSYqtoi5MQQqzEGlucKUZbjlzWPzMWFsztChoASCvvIdXqdOzdpISQunFaZkOn0yEjIwNPnz6FWq2utc3w4cO5HJIQQlotwxYnn8eDs4MDJ30ar2iFBlvnFhI/by+IRSKo1GqkcBSgVU8UcHZ05KRfQtoqTgI0hmGwevVqrFu3rsa9lNUZX59ECCFtFcMw7HkrZycn8PncbFgYzp8BQGiwdVbQBAI+QgJ98SQ5HemZuVCrNRYXwzW5NL20FAE+PpZOk5A2jZMA7a9//SvWrFkDb29vzJo1C35+fhAKba4GLiGEcEahVEKj0QDgOIPTaAUtzEoraADQIcgfT5LTodVqkZ6VY/FYLkZJEnKqhUZIgziJonbs2IEuXbrg+vXrcOKw1g8hhNgqkwxODn8uGlbQHOzt4OPlzlm/1RmvzqWkZVocoFVfQSOE1I+TNffS0lJMmjSJgjNCCKlkWmKDmxU0ZYUKmTn5AICQQD+rZHAacF1qw9nRkZ0v1UIjpGGcBGhRUVHIzOTmICkhhLQFxhmcrhzVQEvNyGJLVIRZ6fyZQQeTAM3yYrUCgQBOlYkSFKAR0jBOArQVK1Zg3759uHXrFhfdEUKIzbNGDbTmyOA0CA7wAZ+vX/HiOpOzQqWCUqXipE9C2ipOzqA9++yz+P777zFhwgRMnjwZvXr1qrN47YwZM7gYkhBCWjXDFiePx4MTRyUlmiOD00AsEiHQzwdpT7ORkpEFnU5ncSaq1MkJT3NyAADykhLYeXhwMVVC2iROArSKigrs27cP+fn5iI2NBYAaZyMYhgGPx6MAjRDS5jEMw25xujg6QsBRiQ3jOzitvcUJ6O/kTHuajYoKFXLyCuHn42lRfy7VEgW8KUAjpE6cBGhLlizBf/7zH/Ts2RMvvfQSldkghLRr5Uol1FYosWHY4pSIRfDz9uKs37qEBPgBuA0ASHuabXmA5kyXphPSWJxEUb/88gv69OmDy5cvU2BGCGn3TK944iZBQK3WICNTvz0YHOgHgcD6N/UFBVQVk019mo0Bvbtb1J9JqQ2qhUZIvTj5E65UKjFq1CgKzgghBKYJAi5O3KygpWflQKvTAQBCg/w46bMhwQG+7Ou0p9kW91f9uidCSN04CdD69OmDhIQELroihBCbZ1pig5sALS2jKkDqENg8AVqIUYCWXrl6ZwmJWAw7iRgAFaslpCGcBGirVq3CkSNHcODAAS66I4QQm1ZsUqSWmy1O4xUs45Uta/Jwk8LB3q7G+JYwrCiWKRTQ0N3MhNSJkz3J48ePY+TIkZgyZQpGjRqFqKioWsts8Hg8/O1vf+NiSEIIabXkRiU2nDkqsdESARqPx0NwgA/iE1KRmZPH2aXpuQUFAPTbnO5SKRdTJaTN4SRA+/jjj9nXp06dwqlTp2ptRwEaIaStYxiG3b5zdnSEQCDgpN9UowAtqJkCNEAfDMYnpEKnY/A0O9fkhgFzVD+HRgEaIbXjJEA7ffo0F90QQojNK6+ogEqtBsDtJemGFTQPNymcHOw567chxqt1qU+zLQ7QpFRqg5BG4SRAGzFiBBfdEEKIzbPGJeklpWUoLJYDaL7tTQNrZnJSqQ1C6mb9QjqEENKOWKMGWppRBmVIoG0HaFIqtUFIo3ASoF28eBFLlixBdnbtf3izs7OxZMkSXLlyhYvhCCGk1bLGClpLJAiw4/lXFatNe2p5qQ0He3v2XB6V2iCkbpwEaGvXrsX+/fvh61v7Dw5fX18cOHAA69at42I4QghptYyL1Eo5KlLbkgGas5Mj3KTONeZhLh6PBxcnfWZrSWkpGIaxuE9C2iJOArTr169j6NCh9bYZPnw4raARQto8mbyqxIYhELGUcWAU0swBGlAVFOYXFkNRrrS4P0PgqtXpUKpQWNwfIW0RJwFabm4uAgIC6m3j6+uL3NxcLoYjhJBWiWEYtkgtpyU2Km8R4PN5CPD15qTPpgjm+EYB47N5xlvChJAqnARorq6uSEtLq7dNamoqnDhMOSeEkNZGUV4OtUYDgLsrnhiGYVfQ/H28LC4Uaw6TUhsZlm9zujpXFTIvpgCNkFpxEqANGjQIe/bsQXp6eq2fT0tLw969ezF48GAuhiOEkFbJONhwreU2FXPkFxajXFkBoPnPnxlwnslpvIImpwCNkNpwEqAtWbIECoUCQ4YMwc6dO5GVlQUAyMrKwvfff48hQ4agvLwcf/nLX7gYjhBCWqUiuZx97erCfYJAc5fYMOA6QDMOXmkFjZDacbJWPmzYMGzYsAGLFy/GrFmzAOgPyBqyc/h8PtavX4/hw4dzMRwhhLRKxqtBXG1xprZgBqdBoJ83+zOdiwDN0d4eQoEAGq2WzqARUgfODjO89dZbGDFiBGJiYnD9+nUUFxfD1dUV/fv3x5tvvonu3btzNRQhhLRKRVbY4mzJEhsGdhIxvD3dkJNXyEmSAI/Hg9TZGQXFxZCXlkKn04HPp7rphBjj9LRp9+7dsXHjRi67JIQQm1FcucUpFArhaM/NfZmtIUADgCB/X+TkFUJeWoZieSlcXSxL+jIEaDqGQUlZGWdFfQlpK+hXFkII4YBWq0VJWRkA/fYmj8fjpF9D1qREIoa3hxsnfZojJKDqRoH0TC4yOasCMjqHRkhNFKARQggHZEZV8blKENBoNHianQdAf+VSS24DBvlznclpFKBRJichNVCARgghHCg2SRDg5vxZZk4+tFotgJa5QcBYUAC3d3IaB7GUKEBITRSgEUIIB2Ql1i2x0ZLnzwDTS9O5uU2AtjgJqQ8FaIQQwoEiuZUzOFuoBppBgK83+Hz9uTouzqDZSyQQi0QAaAWNkNpQgEYIIRwoNl5B4ygjsTWtoIlEQvh6ewIA0p/msOftzGUotQEAJWVl0FRu5RJC9ChAI4QQDhiK1DrY27MrQ5ZKNTrr1dIBGlC1zVlWrkRhsbyB1g0zDmTlpaUW90dIW8JZHTSVSoW9e/eyRWq1tfw2xOPxEBsby9WQhBDSKihVKpRX6O/L5Gr1DADSMvTX5kldnEzur2wpQf4+uHLrHgD9OTQPN6lF/VXP5HSXWtYfIW0JJwFaamoqxo0bh8TExHqXvSlAI4S0RcVWuINTUa5EbkERgNaxegbUvJMzqltni/qjTE5C6sZJgPbuu+8iISEBr7/+OmbPno3AwEAIhZxeUkAIIa2WNUpsGGdKtnSJDYMgyuQkpNlwEkWdOnUKY8aMwffff89Fd4QQYlOK23iJDQPjeXARoBlvB9MKGiGmOEkS0Ol0iI6O5qIrQgixOdZYQTMO0FrLCpqfjycEAgEAbm4TkIjFsJdIANAKGiHVcRKgDRo0CA8fPuSiK0IIsTmGM2h8Hg8uTo6c9NkaV9CEAgECfCpLbWRaXmoDAKSVK46K8nKo1WqL+yOkreAkQFu9ejVOnz6NX3/9lYvuCCHEZuh0Onb1R+rszNl9mcbXKQUanf1qaUGVwaKyQoW8yiQGS9Cl6YTUzqwzaJ9++mmN90aNGoU//vGPGDFiBKKjoyGtJV2ax+Phb3/7mzlDEkJIqyQvLYNOpwMAuHFUJoJhGKQ+1ZfY8PXygJ1EzEm/XKieKODt6W5Rf1KTc2il8HK3rD9C2gqzArSPP/64zs+dOXMGZ86cqfVzFKARQtqaIrmMfe0u5eb8WbG8BCWlCgBASAtf8VSdcYCWlpmDPj0jLOrPdAXN8uK3hLQVZgVop0+f5noehBBik4pkVUGFG1d3cGa0vvNnBsYJC+lPOS61IactTkIMzArQRowYwfU8CCHEJhXKqlbQuNriTG2FCQIGQQHGW5yWZ3JKqdQGIbWyuWqyCoUCW7duxenTp1FSUoLg4GBMnz4dY8aMafDZoqIixMTE4PLly1AqlejUqRPmzp2LPn361Gh748YNxMbGIiEhAXZ2dhg0aBAWLFgANzc3k3YajQa7du3C4cOHUVBQAD8/P0ydOhXTpk0zaXfgwAFcunQJCQkJKCwshJeXF/r27YuZM2fC09PTsm8KIaTFFMnb9iXp1fl4ekAkFEKt0SCNg1poIqEQzo6OKCkrQ5FcDoZhwOPxOJgpIbaN8wBNo9Hg8ePHkMlkkEql6Ny5M6e3CqxYsQLx8fGYP38+goKCcOLECXzyySfQ6XQYN25cnc+pVCosXrwYpaWlePvtt+Hm5oY9e/bgvffew7p16xAVFcW2jYuLw9KlSzFo0CCsWrUKRUVF2Lx5MxYvXowtW7ZALK46sLt27VocO3YMc+bMQdeuXXHt2jVs2LABCoUCr7/+Ottu27ZtiI6Oxrx58+Dl5YW0tDR8//33uHDhAmJjY+FOB2MJsTkMw7ABmouTE2c/69Ja2SXpxgQCPgL9vJGcnomMzFzodDqLM1fdXFxQUlYGlVoNhVIJR3t7jmZLiO3iLHLKy8vDsmXL8OOPP6K8vJx9397eHq+99hr+/ve/w8vLy6IxLl++jBs3bmDlypUYO3YsAKB3797Izs5GTEwMRo8ezRZRrO7gwYNITk7Gpk2b0L17dwBAdHQ0Zs+ejZiYGGzevJltu2nTJgQFBeHTTz9lf+D6+fnhrbfewqFDh/DCCy8AAJKTk3Hw4EHMmzcPr776KtunXC7Hzp07MWXKFLhUnkmJjY01WX2LiopC586d8cYbb2D//v2YOXOmRd8bQkjzK1UooNFoAHB3/gyoWkETCgXw8259K+xBAT5ITs+ESq1GTl4h/Hwsm6OriwvSsvRZq8VyOQVohICjOmhPnz5Fv379EBsbC0dHRzzzzDOYMWMGnnnmGTg6OmLr1q3o378/nj59atE458+fh729PUaOHGny/sSJE5Gfn48HDx7U+2xwcDAbnAGAUCjE+PHj8fDhQ+Tl5QHQB5rx8fEYP368yW/DPXr0QFBQEM6dO2fSJ8MwmDBhgslYEyZMQEVFBa5evcq+V31rFAC6dOkCgUCA3Nzcxn0DCCGtSpHMOIOTm/NnWq2OvUYpyM8HAgE3ddW4VD2T01LGwa1x0gUh7Rknf/Lff/99pKWl4ZNPPkFqaioOHTqE7du349ChQ0hNTcXHH3+M1NRUfPDBBxaNk5ycjJCQkBrbCB07dmQ/X5ekpCS2XX3PGv5dV1vjMZKTk+Hq6goPD48mzwfQb6VqtVqEhobW2y4/Px+PHj1i/0lNTa23PSGkeRQaZ3ByVGIjJ78AqsqK+q2txIZBsL/xnZyWJwoYf++Mz/QR0p5xssV55MgRPPvss7XWOLOzs8PKlStx6dIlHD582KJxZDIZ/P39a7zvXHkwV17PH2y5XM62q+9ZWeVvxC61bFc4OzubjCGTyWptZ29vD5FIxPZVG4VCgbVr18Lb2xsTJ06ssx0A/Pbbb9ixY0e9bQghzc84mHBz4WYFrTUnCBiYFKvloNSGq/EKmrzun5uEtCecBGgqlQq9e/eut02fPn1w8eJFi8eyJLunvmerf66utk0Zv662FRUVWLFiBXJycvCvf/0LDg4O9fYzefJkDBkyhP04NTUVn3/+eaPnQQixjiKTEhvcX5LeagO0AG63OO0lEkjEYlSoVCiiWmiEAOAoQOvTpw/i4+PrbRMfH19rOYumkEqlta5KlVTWzqltNcvAxcWl1hU2w7OGlTTDFVV1jWO8CieVSpGQkFCjXXnlpb+1zUelUmHFihW4e/cuvvjiC0RGRtY5ZwNPT08qxUFIK2Ocweno4ACxSMRJv605g9PA28MNEokYFRUq9rycJXg8HtxcXJCdn48yhQIqtZqz7ychtoqTM2ifffYZDhw4UOc23LZt23Do0CGLV33CwsKQmprKZk0ZJCUlAUC9Z7nCwsKQmJhY433De2FhYSZ9GPqsPo7xGGFhYSguLkZBQUGj5qNSqbB8+XLcvn0bq1atsjhgJYS0nHKlEhUqFQDAncMMztZcpNaAz+cjyM8bAPA0OxcardbiPo23OYvpHBoh3ARop0+fxqhRozBnzhxERkZi3rx5WL58OebNm8d+PHLkSJw6dQqffvop+89nn33WpHGGDRuG8vJynD171uT9I0eOwNPTs97VqOHDhyMtLc0k01Oj0eD48eOIjIxkV6i8vLwQERGBY8eOQWv0Q+f+/ftIS0szuUVh6NCh4PF4OHLkiMlYhw8fhkQiwYABA9j3DMHZrVu38Nlnn6F///5N+toJIa1LoRW2NwEgLUNfbsLRwR7urtz1y7WgykQBjUaL7NyCBlo3jBIFCDHFyRan8eXp8fHxtW53Hj16FEePHjV5r6mXpw8cOBB9+/bF2rVroVAoEBAQgJMnT+Lq1atYsWIFWwNt9erVOHr0KH788Uf4+up/iEycOBF79uzBypUrMX/+fLZQbVpaGtatW2cyzptvvoklS5Zg5cqVmDp1KluoNjQ01KSkRmhoKCZNmoTt27eDz+cjIiIC169fx/79+zF37lyTLc6VK1fi6tWreP311+Hi4oL79++zn3N0dESHDh0a/X0ghLQ8kwQBjkpsVKhUyKoMdkICfVt1RX3TK59yEFi5omYuN5MVNDqHRggnAVpzXp7++eefY8uWLYiNjWWvevroo49MrnrS6XTQarVgGIZ9TywWY926dYiJicH69euhVCoRHh6OL7/80uQWAUBfbHbNmjXYtm0bPvzwQ/aqp4ULF5rcIgAAS5YsgaenJ3bv3o3CwkL4+vpi0aJFNa56unTpEgBg165d2LVrl8nnoqKisGHDBi6+PYSQZmKNS9IzsnLZn1utdXvTINjf9E7OQX16WNSfG2VyEmKCkwCtOS9Pd3BwwDvvvIN33nmnzjbLli3DsmXLarzv7u6O5cuXN2qcfv36oV+/fg22EwqFmD17NmbPnl1vO+MCt4QQ21coK2Zfc1Wk1hYyOA1MitVyUGrD2dERfD4fOp2OtjgJAUdn0AghpD1hGAYFxfpVHkd7e9hJJJz0axzohLTyAM04gDQOLM3F5/PZy+ZlJaXQ6XQW90mILTMrQHvttdewe/duswe19HlCCGlJZeXlVRmcrtysngG2tYLm4SaFg70dAHBSagOoShTQ6XSQl5Zy0ichtsqsAO2nn37CvXv3zB7U0ucJIaQlFRYXs689XF0569c4QDPeQmyNeDweO8esnPwa5Y/MYXoOjbY5Sftm9hm0uLg47Ny5k8u5EEKITTBsbwKAu9SVs35TK0tseHm4wtHBnrN+rSXI3wePElOh1enwNDvf4rtDXasFaPXfUkxI22Z2gLZ3717s27evyc8ZZ1YSQogtKjBZQeNmi1NeUoYimb68RGvf3jSonslpaYDmRsVqCWGZFaBt377d4oGrl7YghBBbYcjg5PF4nNVAS8+0nfNnBkHGiQIcnEMzXkErlFGARto3swK0mTNncj0PQgixCTqdjq2BJnV2hrCyQLalbOGKp+qMz8mlc1BqQyQUwsXREfKyMhTJZGAYplUX6yXEmqjMBiGENEFxSQm0lSUguNreBGzjkvTqggNMtzi5YFiRVGs0KFUoOOmTEFtEARohhDRBoVGCgAeHCQK2VGLDwNXFGU6ODgC4KVYLmJYtMT7rR0h7QwEaIYQ0gXHQ4G6FEhsCPh8BPl6c9WtNxqU2svMK2NpwljAOeo0vpCekvaEAjRBCmsD4iieutjgZhmEDNH9fL4hEnNzC1ywMq30Mw+Bpdp7F/RmvoBmvVhLS3lCARgghTWCogSYUCuHi5MRJn7kFRShXVgBo/Vc8VRfMcaKAq4sLmxhAK2ikPaMAjRBCGkmtVrNXELlLpZxlGBoK1AJAcKAfJ302lyCjRIE0DhIFhAIBpM76wLdIJqM7OUm7RQEaIYQ0UoHRig6XGZypGVWBjaXFXpubabFajhIFKs+haelOTtKOUYBGCCGNlF9UxL72dHXjrF/jFbQQW1tB868KKLnY4gT0q5MGtM1J2iuzA7TevXvju+++M3nv6NGjWLJkSa3tP/nkEwiFtnPwlRBCqssvNArQ3DkM0IxKbNjaGTQXZ0dIXfRbklzcJgBQogAhgAUBWlxcHLKzTc8bXLlyBevXr6/zGbqHkxBiy/JMVtBcOes3rXIFzdHBHh5u3G2dNhfDNmdufiGUlckOljBeQSugFTTSTtEWJyGENIJWp0NhZQ00V2dniEQiTvpVVqiQlVsAQH/+zBavNjK+8ikjK9fi/qTOzuDz9X89GZc1IaQ9oQCNEEIaoVguZ6948nTjbnszIzOH3V0ICbCt82cGxufQjG9EMJeAz4db5cXpMnkJtFqtxX0SYmsoQCOEkEbIs9L5sxSTBAHbOn9mYHw1FWfn0Cq3OXUMg+KSEk76JMSWUIBGCCGNYJLByeEKmi1ncBqYXppOiQKEcIECNEIIaQTjAM2L0wDNdmugGQSZ3CZg+RYnQKU2CLGo7sW///1vXLlyhf04ISEBADBx4sQabQ2fI4QQW8MwDBugOdrbw97OjrO+U5/qV9D0F4/bZoDm6GAPdzcpCotknG1xehhlyRpfUE9Ie2FRgJaQkFBr4HXkyJFa29tidhIhhMjLyqBSqwFwu73JMAy7gubn7QE7iZizvptbsL8PCotkKCiSoUxRDkcHe4v6c3Z0hFgkgkqtNlm9JKS9MDtAS05O5nIehBDSahkXqPXiMEHAEMwAtncHZ3VB/j6Iu/8YgL7URpeOIRb1x+Px4OnmiszcPJQqFFBWVMBOIuFiqoTYBLMDtJAQy/7wEUKIrbBagoAN3yBQnfE5tLSn2RYHaADg4eqGzNw8APr/BoG+tv09IqQpKEmAEEIakFdYyL72cnfnrN+2kMFpYFxqg6tMTk83V/Z1flExJ30SYivMWkGbPXu2WYPxeDzExsaa9SwhhLQEhmGQU6Cv9G8vkcDJwYGzvttCBqeBcakNLorVAqarlXQOjbQ3ZgVoO3bsqPV9Ho9X632bhvcpQCOE2Bp5aSkqVCoAgLeHB6fJTinpmexrW19BC/IzCtA4WkFzk0rB5/GgYxjkF1OARtoXswK06gkCOp0O77zzDq5cuYJ33nkHw4YNg4+PD3JycnDu3Dls2LABgwYNwrp16ziZNCGENJfcgqrtTW8PD077Tk7TB2iODvbw9uDubFtLsLOTwNvDDbkFRUh/yk2AJhQI4Cp1QWGxDMUyObRaLQQCASd9E9LamRWgVU8QWL16Na5evYo7d+7Az6/qt8AuXbpg+PDhmDVrFqKjo/Hrr7/i/ffft2zGhBDSjHIrtzcBwNuDu/NninIlsnLzAQBhwf5togxRUIAPcguKUCwvQUlpGZydHC3u09PVDYXFMugYBoUyGadnAAlpzThJEoiNjcXLL79sEpwZCwgIwMsvv4wtW7ZwMRwhhDSbnEKjAM2duxW0ZKPtzbDgAM76bUkmmZycJQoYn0Mr5qRPQmwBJwFaRkYG7BqorG1nZ4eMjAwuhiOEkGah0+nYGmgujo6wt+OuDldS6lP2dWgbCdCCjW5C4Gqb0zSTk86hkfaDkwAtMDAQe/bsgVKprPXzCoUCe/bsQWBgIBfDEUJIsyiUyaDRagFY7/wZAISFtI0AzeROzkzuMzkLKFGAtCOcBGhz585FUlIShgwZgn379qGg8sxGQUEB9u7di6FDhyIlJQXz5s3jYjhCCGkWpufPuA7QjFfQ/Dntu6UEBXC/xWknkcCxsrRJflFxrZUCCGmLLLqL02Dp0qV4/Pgxtm/fjhdffBEAwOfzodPpAOjrCM2aNQtLly7lYjhCCGkWOSYZnNweTk+qDNAc7e3g42m9g+8Mw+CpqhBFmlJIBQ4IkHhAwLNOjfJAP2+2rBJXW5wA4OnqijKFAiq1GvKyMkidnDjrm5DWipMAjc/nIzY2FjNmzMD333+Pu3fvQiaTQSqVolevXpgxYwZGjBjBxVCEENJsDCtoPB6P0+zBcmUFMnP0GZyhwQFWyeDUMFrszr+KnTmnkV5RtRIo4Qkx2rUH5vuPR6idTz09NJ1ELIavlweycvORlpnN1r+0lJe7G1Iz9VvCeYWFFKCRdoGTAM1gxIgRFIgRQtoEtVqNQpkMAOAmdYFIyN2PS+PzZ9bY3sxXy/FB0i7cKE2s8bkKRoPDRbdxsvh3LA16AS97DeZ07CB/H2Tl5qOkVIEiWQncXV0s7tM4ezavoBCdgoMt7pOQ1s7sde7t27cjLy+Py7kQQkirkVNQwJ538vX04rTv5PSq82dcJwjkqeWY9WijSXDW16kj/ug1BGNce8BNqK9NpmI0+Hvar/g28yin4xsHnMaZqpbwMtpezjUqe0JIW2b2r4Rz5syBQCDAwIED8cILL2Dy5MkIDw/ncm6EENJisvLy2dd+Xp6c9m1SYiOIuxU0hbYC8x9/i7QK/S/P3iIpVof+H/o4d2TblOtU2PD0IH7IPQ8AiMk6Cm+xFC96DuRkDsYBZ1JaBvr2irC4T0d7ezja26OsvBx5hUWcbZ0S0pqZvYJ26dIlvPfeeygsLMTSpUvRtWtXREREYNmyZbhy5QqXcySEkGaXZbRD4OfF7QpaktEWZ8cQbsoPMQyDj1P/i0SlvrxFgNgdO7suMgnOAMCeL8YHQVOxJOB59r2/p/6K38tSOZlHR6OablytoAFVSRoqtRrFJSWc9UtIa2V2gDZw4ED84x//wP379/HkyRN88cUX8PLywpo1azBkyBD4+flh/vz5OHToECoqKricMyGEWJVOp0NOvn4FzcHeHs6Oll9ZZMyQwelgbwcfL26SD/YVXMfRojgAgBPfDpvC34CfuO77PWf6jsJ072EAAA10WJb8AxRay39Wm66gZdbTsmm8qp1DI6St4yTXumPHjnjvvfdw7tw55OTkYOvWrRgwYAD+85//4Pnnn4enpyemTZuGXbt2obCQ/mARQlq3QpkMao0GAODn6cnpdpqiXIksQwZnEDd3cBaoS/DPjH3sx590eAUd7LwbfO7dwMno5hAEAEiryMPGzCMWz8XZyRFeHq4A9IEoV3XLvN3pHBppXzgvhuPh4YFZs2Zh7969yM/Px549e/Dyyy/j4sWLmDlzJnx8fDBy5EiuhyWEEM4Yb2/6cnz+LCElgw1aOoUGcdLnmvS9kGvLAQAT3XtjrFvPRj0n4gmwKnQ6JDz9ceSfcs8jsdzyGwAMd4vK5KUoLJZb3B9gWocul37RJ+2AdaoVVrKzs8PkyZMRGxuLrKwsnD9/Hu+++y6ys7m5AoQQQqwh2yhBwJfj82dPktLY153DLA/Q7pSm4EjRbQCAq8ARSwNfaNLzHey8Mdt3DAD9Vuea9L0Wr3qZbHNydA7NTiKBS+VWc35hEVsInZC2yqoBmjEej4chQ4ZgzZo1iI+Pb65hCSGkyQwraEKBwOQuSC48SUlnX4eHWlbPi2EYrHu6n/34zwET4C5qehHXP/mOgr9Yv0J1peQxrpU8sWheYcaJAmncJQp4VV63pdFqUSTnZmWOkNbK7DIbCxcubPIzPB4PGzduNHdIQgixulKFAqUKBQD9/ZsCPre/xxqvoHXqYFkG51nZA9wuTQYAdJB4Y6rnALP6seOLsShgEj5M3gUA2JR5BP2dw80+HxdmlJnKdSZnYpr++5dbUAAPV1fO+iaktTE7QPv2228b3db4DzkFaISQ1iwzJ5d9zXV5DZ1Oh4SUDH3f3p5wdjI/O5RhGGzKPMx+vChgIoQ8gdn9jXfrhe+yjiFJmYO4shRckj/CEGlXs/oKMy5Wy+EKmkmiQEEhIjp2rKc1IbbN7ADt9OnTjWqXlpaGTz/9FImJiVRYkBDS6j3NrbrkO8Cn4UzIpsjMyYeiXAkACLfw/NlFeTwelevLWHRzCMJo1x4W9Sfg8bHA/xksTdoJANicdczsAM3J0QHenu7IzS9EUupTDu/kdGcvY88pyG/4AUJsmNkBWkN3bhYVFWHVqlXYuHEjlEolBg0ahC+++MLc4QghpFk8zdYHaHw+H76e3GZwPkmu2t609PxZbPZJ9vUc3zGcBEBjXXuio50vEpXZuFOWgjulKejl1MGsvsJCApCbXwh5aRkKimTwdHe1eH5ikQjuUikKiotRUCyDSq2GWCSyuF9CWiPOkwSUSiVWr16Njh074p///Cc6dOiA3bt34+LFixg6dCjXwxFCCGfkpaWQl5UBAHw9PSHk8IJ0AHiSZJwgYP4K2u3SZNwqTQIAhNp5Y5Rrd4vnBgB8Hh8zfEayH+/KOWt2X8aJAokcnkMzlD1hGAa5BVQPjbRdnAVoDMNg69atCA8Px7Jly+Dg4IDvvvsO9+7dwwsvvMDVMIQQYjVPjc6fBfj4cN6/aQan+QHa9uxT7OtZPqPB53H3u/ZE997wEDoDAE4W30VGhXlBUEcrlNoAYLKqaVwOhZC2hpM/1Xv37kW3bt0wf/58lJaWYtWqVUhISMDcuXPB5zgDihBCrOVpjvXOnwFVGZx2EjEC/czrP02Zh7Oy+wAAX5ErJrr35mx+ACDmC/FH7yEAAB0Y/JB7zqx+jAO0BKPA1FLGdemy8ylAI22XRev3Fy5cwAcffIArV65ALBbj3XffxfLly+HGcd0gYwqFAlu3bsXp06dRUlKC4OBgTJ8+HWPGjGnw2aKiIsTExODy5ctQKpXo1KkT5s6diz59+tRoe+PGDcTGxiIhIQF2dnYYNGgQFixYUONr02g02LVrFw4fPoyCggL4+flh6tSpmDZtmkm75ORk7NmzB0+ePEFiYiKUSiXWr1+P6Ohoy74hhBBOMAyDp7n6FTShQAAfD48GnmiaUkU5nmbr66t16hBk9i+vP+ddYl+/4j0UIj6327AA8LLXYMRmnUAFo8FvBdfxdsAk2PPFTeqjY0gg+HwedDrGpLSIpVwcHWFvZ4dypRLZ+fmcJSAQ0tqYvbw1efJkjBgxAteuXcPMmTPx5MkTfPXVV1YNzgBgxYoVOHLkCP70pz9hzZo16Nq1Kz755BMcP3683udUKhUWL16Mmzdv4u2338aqVavg5uaG9957D3FxcSZt4+LisHTpUri5uWHVqlV4++23cfPmTSxevBgqlcqk7dq1a/Gf//wHU6dOxVdffYVhw4Zhw4YN2LVrl0m7+Ph4nD9/Hs7Ozujdm9vfeAkhlpOVlKKssv6Zr5cXBALzS1bU5lFiKvu6S0fzEgTKdSrsLbgGABDzhHjBsz8nc6vOTeiEZ9z1vzyWaJU4WhjX5D7s7CQIDvAFoD+Dpqm829RSPB6P3eZUqdUolMk46ZeQ1sbsX70OHDgAHo+H4OBgZGdn44033mjwGR6Ph4MHD5o7JC5fvowbN25g5cqVGDt2LACgd+/eyM7ORkxMDEaPHl3nD9WDBw8iOTkZmzZtQvfu+gO10dHRmD17NmJiYrB582a27aZNmxAUFIRPP/2UPSTs5+eHt956C4cOHWLP1CUnJ+PgwYOYN28eXn31VbZPuVyOnTt3YsqUKXBxcQEAPPPMM5gwYQIA4MyZM7h0qeq3YEJIy8vIqbqCzhrbm/FPUtjXEeGhZvVxuPAWSirv3HzWPRpuwqbfGtBYf/AajN8KrgMAfsm7ZFYwGB4ajJT0LKjUaqRkZFtcmNfA18sTyRn6enLZ+flUsJa0SRatjTMMg+TkZCQnJzeqvaXL0OfPn4e9vX2Ny9YnTpyITz/9FA8ePECPHrXXAjp//jyCg4PZ4AwAhEIhxo8fj++++w55eXnw8vJCXl4e4uPj8cYbb5hkcPXo0QNBQUE4d+4cG6CdP38eDMOwgZfBhAkTsH//fly9ehXjxo0DADqLR0grl56Vxb4O8vXlvP+HT6p+TpoToDEMg59yL7If/9FrCCfzqksPh2B0sffHo/JM3FOkIV7xFF0dAhp+0EjnsGAcP3cVgL7ECGcBWrVEgW6dOnHSLyGtidkBWmODMi4lJycjJCSkRup7x8pq0snJyXUGaElJSejVq1eN942f9fLyYr+ujrVUqO7YsSN+//13k/m4urrCo9pZFeM+uZCfn48Co3Ty1NTUeloTQppKq9Uio7L+mb1EAi+jivVcMQRoErHIpNJ+Y8WVpeBRuT4bsrtDMLo7WlZHrSE8Hg8veQ3G39N+BQD8mncZK0JealIfncOq5vg4KQ0TRg3mZG5e7u7g8/nQ6XSUKEDaLLMDtJCQEC7n0SgymQz+/jV/sDk761PC5fVcniuXy9l29T0rqzzPYNiarN7WeAyZTFZrO3t7e4hEIrYvS/3222/YsWMHJ30RQmrKzs+HuvKMVJCfH+eHzktKy5CWqQ8Aw0ODzaqv9nNe1erZK97WXT0zmOjeG2szfkO5ToWDhTexJPB5OAgkjX7eOEDjMlFAKBDAy90dOfn5kJWUQFFeDgd7e876J6Q14D79x8os+cFZ37PVP1dX26aMz9UP+cmTJ2PIkKofyKmpqfj888856ZsQAqRlVm1vBvv7cd5/fELVqndEeIcmPy/TlOFE0V0AgKvAEePdojiaWf2cBHaY6N4b/8u/AoWuAseL7mBKE86iebhJ4e7qgsJiOR4npXGacenv7YWcytWzp7m5CG+BRQNCrMmsAG327NlmDcbj8RAbG2vWswAglUprXZUqKSkBUPuql4GLi0utK2yGZw0raVKpFADqHMd4FU4qlSIhIaFGu/LycqjV6nrn0xSenp7w5PjKGUJIldSsTPZ1kK81ArQU9rU5588OFt6CitGv8D3n0QcSfvNdb/SCR3/8L/8KAOC3gutNCtB4PB46hwXjyq17KJKVIL+wGF4e3GT6B/j44PaDhwD0BYYpQCNtjVkBWl3bbYZLbOt639IALSwsDCdOnIBGozHZIkhKqrzyJLTuH3xhYWFITEys8b7hvbCwMJM+kpKSMGjQIJO2SUlJJmOEhYXh5MmTKCgoMDmH1pj5EEJah1KFAoXF+l/IvD08YG/X+C28xnpgQYIAwzDYUxkgAcALngM4m1dj9HAMQQeJN1IqcnGjNBEZFQUIlDS+Rlx4qD5AA/Tn0LgK0Pw8PcHn8aBjGGQaXXBPSFthVmqhIXPT8E9iYiKee+45eHh44LPPPsOZM2fw8OFDnDlzBp9++ik8PDzw/PPP48mTJxZNdtiwYSgvL8fZs6b3wx05cgSenp6IjIys89nhw4cjLS0NDx48YN/TaDQ4fvw4IiMj2RUqLy8vRERE4NixY9BqtWzb+/fvIy0tzeSS+KFDh4LH4+HIkSMmYx0+fBgSiQQDBjTvD1JCSNOlGWVvBvtxv3oGVCUI2EnE6BDUtDEeKDLwuFw/xx6OwQi3t84c68Lj8TDZsx/78YGCG016vnqiAFdEIhG8K38xLpaXoKy8nLO+CWkNzFpBq54gsHr1aly9ehV37tyBn9EPuC5dumD48OGYNWsWoqOj8euvv+L99983e7IDBw5E3759sXbtWigUCgQEBODkyZO4evUqVqxYwdZAW716NY4ePYoff/wRvpXp8hMnTsSePXuwcuVKzJ8/H25ubtizZw/S0tKwbt06k3HefPNNLFmyBCtXrsTUqVNRVFSEzZs3IzQ01KSkRmhoKCZNmoTt27eDz+cjIiIC169fx/79+zF37lyTLU6lUokrV/S/Bd+/r7+mJS4uDjKZDHZ2dhg4cKDZ3xdCiPmS0zPY1yFWOH9WLC9lbxDoHBYMYRML4O7Jv8q+nurRMr/0PefeB18/PQQGDH4ruI43/MY1+v7PzkZFeR8ncpuB7u/jzWZxZubkILxDB077J6QlcZIkEBsbi5dfftkkODMWEBCAl19+GVu2bLEoQAOAzz//HFu2bEFsbCx71dNHH31kctWTTqeDVqs12W4Vi8VYt24dYmJisH79eiiVSoSHh+PLL79EVFSUyRjR0dFYs2YNtm3bhg8//JC96mnhwoUQi02vO1myZAk8PT2xe/duFBYWwtfXF4sWLapx1VNRURFWrlxp8t727dsBAL6+vvj5558t+r4QQppOpVYjI1tfoNbR3p5dkeHS7w+rzql279q0el3lOhUOF94CANjzxXjWvWWuhvMRu2KgS2dclj/CU1UhbpUmoa9z476W4ABfSCRiVFSo8NDoLB4XAry9ceu+flfkaW4uBWikTeEkQMvIyICdnV29bezs7JCRkVFvm8ZwcHDAO++8g3feeafONsuWLcOyZctqvO/u7o7ly5c3apx+/fqhX79+DbYTCoWYPXt2g4kTfn5+OHfOvEuHCSHWkZ6VBa1OBwAIDQy0yp2Odx9WHe3oFdG0AO1E0R2U6pQAgPFuUXAU1P9z1pqmePTDZfkjAMC+guuNDtCEAgG6hAXj7sMEPM3OQ7G8FK4u3NyA4OvlxdZDe5qTy0mfhLQWnJS3DwwMxJ49e6BUKmv9vEKhwJ49exAYyE0VaUII4UKS0fZmaGDTquQ31l2jFbQeTQzQdhttb77YzMkB1Y1y7Q4nvj5APF50BwptRaOf7dYljH1tfKOCpURCIbw99EWFZSUlKK28S5WQtoCTAG3u3LlISkrCkCFDsG/fPrbqfUFBAfbu3YuhQ4ciJSUF8+bN42I4QgixmFarRWqmvryGRCSCv48P52NoNBrcf6zP6vb38WxSBmOKMhe3Siszwu280cuxA+fzawo7vhjPuEcB0G+9nii+2+hnI8OrArT7j5I4nVeAd9V/N8NtEIS0BZxscS5duhSPHz/G9u3b8eKLLwIAu+wM6NPEZ82ahaVLl3IxHCGEWOxpbi5UajUAICQgAAIr3Jf7OCkdFRUqAECPiPAmPWuSHOA50Crbr0012aOfSU20yR4NHwMBgMjOVaVFHjzhNkAL8vPFzcrEq/SsLHQNo/JGpG3gJEDj8/mIjY3FjBkz8P333+Pu3buQyWSQSqXo1asXZsyYYVKeghBCWlpiWlXJh1ArHb8wPn/Wswnbm2pGi/2V5SyE4OM59z6cz80cvRw7IFjihbSKPFwvScDTikIESBq+tzTI3wfOTg4oKVXg/uNkTm8U8PH0hFgkgkqtRnp2FnQ6HfhWCLYJaW6cXvU0YsQICsQIIa2eVqtFYlo6AP05JmuU1wBMz581JUC7IHuIAo3+lpORrt3hIap5j3BL4PF4mOzRF99kHgYAHCi8gfl+4xv1XGR4KK7evo/CIhly8gvh68VNxqyAz0egrw+S0jOgrFAhr6gIPlbIxiWkudGvGYSQdic1M4vd3gwLCjTr8vKGMAyDOw/0K2h2EjE6hQY1+tndRjcHTG3h5IDqnvPoCx70q1/7C67XentMbSI7V51De8DxObQgoxJP6Ub3qhJiyyhAI4S0O09SUtjX4SEdrDJGRlYucvMLAeizNxtboDZHVYwLMv0dkz4iVwxy6WKV+ZnLT+yG/pUlNtIrCnC7rHFZmZFGV1zd5zCTEzC9AcL4ZghCbBkFaISQdkWlViPl6VMAgL1EgkBf7rM3AeDG3Yfs63696r6Grrr9BTegg35VaopnPwgaWbG/ORknB/yWf71RzxiX2uB6Bc3Z0RFulTe35BQUQKlScdo/IS2h9f3JJ4QQK0pKT2eL03YKCbbagfIbd6ru/e3bK6JRz+gYHfYW6LM3eeDhhRa62qkho117wIGvv1T+WFEcynUNB0ReHm7w9tQnFNx/nASNRsPpnAzbnAzDsLdDEGLLKEAjhLQrDxIT2dfWuhqIYRjcuBsPAHCwt0NEp8aNc6M0EekV+jqSA5zDG5Uh2RIcBBKMd+sFACjTVeBU0e+Nei6qm77USLmyAo84vDgdMN3mTMl4ymnfhLQECtAIIe1GoUyG7Dz95druUqnVsv1S0rNQWCQDAER169zoJATj2mcvtLLkgOpMtjkLGrfN2SuyM/v6zv3HnM4nwMcbosrvc2pmJrtKSoitogCNENJuPEyoWj2L6NjRasVfjc+fNXZ7U65R4ESRvjq/VOCA0a7drTI3rkQ7hSJQrA9wr5Y8QbaqqOFnulcFaHH3n9TTsukEAgFCAvwBABUqFbJy6W5OYtsoQCOEtAsarRaPUvTZgwI+H11CO1htrOtxRufPejYuQDtUeAsqRn8ua5JHH0j4IqvMjSt8Hh/Pe/QFADBgcLDgZoPPhAUHwsnRAQBw58HjRpfoaCzjgsPJGRn1tCSk9aMAjRDSLiSlp0NZee1SWFAQ7CQSq4yj0WhwLU5/9ZDU2RGdw0IafIZhGJOL0ae20uSA6p6rDNAAYF8jaqIJBHy2YG9hsRxpT7m9OzPE359N+kjKeMp5AEhIc6IAjRDS5jEMgzvxj9iPIzs1vqp/U915mIAyRTkAYGCfnhAIGv4x+0CRgUfl+oPt3RyC0NnB32rz41KgxAN9nToCAFIr8vB7WWqDz0R1MzqH9oDbc2hikQiBlZfelykUyCtqeNuVkNaKAjRCSJuXnZePvEJ90VhPN1f4e3tZbaxL1++wr4f069moZ/6Xf5l9/ZLXIM7nZE3GyQL7GpEsYByg3b73qJ6W5gkNqtrmTEpP57x/QpoLBWiEkDYvLj6efd2ra1erJQcAwMXr+oP+PB4Pg3r3aLB9mVaJQ4W3AAAOfAmedYu22tysYaxbT9jxxQCAo0VxqNCp620f2TkUYpH+fN3Nu/Hcn0MLCGD/+yakptE2J7FZFKARQto0WUkJe2Dc0d4enYKDrTZWdm4BElP1Y3Xv2hGu0oYvOT9ceJst9DrRvTccBNY5G2ctjgI7jHPVrxSWaMtxpvh+ve0lYjF6RurroWXl5iMji9tsSwd7ewT4eAMA5KWlyC0o4LR/QpoLBWiEkDbt5v2qjMoenTtD0Mg7Mc1x/loc+3pI37a/vWnwvElNtGsNth8Q3Y19fe12/QGdOYzvV32c0vC5OEJao8ZVTySEEBskKynBo2R9aQ2xSIRu4dZLDgCAUxdvsK+H9o9qsP1DRQYeKPQrbpEOgYhwCGzgicarKFMj/XYu8pJkkGcroFFpIRDxYS+VwMXXAQHdPODZ0RV8vuXbvf2cO8JP7IYsVREuyR8hR1UMH7Frne37R3XDRvwCALh6+z6mTRpt8RyMhQUF4tz169DqdEhIS8OQ3tFWu9KLEGuhAI0Q0mbdvH+fPYPUq2sXSMRiq41VWCzHrd/1BWqD/H3QOazhrdRf8i6xr1/0HMjJPArS5LizNwkp17Oh09Z9/uomnsDZyx4R44IROS4EQon5K4t8Hh9TPPrh26xj0IHB//KvYKH/s3W279IxBC5OjpCXluHG3QfQanWNynZtLIlYjJAAfySlZ6BcqcTTnBz2rk5CbAX9SkEIaZOK5SV4lJwCAJCIROjZpYtVxztz+SZ0On1ANHpI3wYTEWSaMra4qyNfggnuvS0aX1miwtlv72LPhxeRdCWr3uDMoCSvHNd+eISf/3IWiZcyLTpQ/6LnQAgq/0rZnX8FakZbZ1uBgI9+UZH6OZQqEJ+QbPa4dTHe5jT8f0CILaEVNEJIm3Q57rbR6llXq66eAcDJ81UlJsYM7VdPS73d+VehZPQZj1M8+8NJYGf22Gm3cnHuu9+hlKvY9+xcxOg42A9BUV5wD3aB2EEIjVILRXEFchOLkXI1Gxl39feSKgorcPqbO0i9kYshs7tB4tT0Wwx8xK4Y7hqJ08X3kKeW42zxPYytvFC9Nv2juuHkBf337Ort++jWpWOTx6xPSIA/JCIRKtRqJKanY6iqD+ys/P8AIVyiAI0Q0uZkZGcjOUNf+NXB3h69ulp39aywWI6blfdv+vt6oWunDvW21zBa/JR7AQDAAw+veA01a1ydjsHt/z3B7T1Vd4yKHYToPa0Tuo4JhlBsum0pFAtg5yKGe7Azuo4KQtHTUlz7IR7pt/MAAElXspCXVIzxS/vCLcCpyfP5o9cQnC6+BwD4Oe9SvQHagN5Vd41euH4Hs1+Z3OTx6iMUCNA5NBS/P34MrVaLJ8kp6NGlc8MPEtJK0BYnIaRN0el0uHDzFvvxwF49IRJZ917Lw6cuQavTAQDGDuvf4Pbm6eJ7yFYXAwCGSiMQYtf0wrkalRYn1982Cc5C+njjpS+HofuE0BrBWW3cApzwzNK+GL0oChJH/feoJLcc+z+6jKe/5zd5TgOcwxEs8QSgv0A9RVl3CY0AXy+EhQQAAO7FJ6KgSNbk8RoS2alqVe5+YgLVRCM2hQI0Qkibcic+HoUy/V/2Xu7u6BIaatXxGIbB/uPn2Y+fHzeswWd+yK1qP9274fbVqRRqHF1zA6nX9XdZ8nhA/9e6YOyS3nBwa/pWadhAP0xdPQQeIc6V/Wtw9MsbSL3ZtLsy+Tw+XvIazH78S97leloDwwfoi/IyDIMLRiVKuOLh6gofT33AWFgso5poxKZQgEYIaTOK5XJc+/0e+/Gwvn2semsAAMQnpLDFaXtEdEKHwPqzBe+WpuBWaRIAIMzOBwOdm7btpixV4dDfryHrgf7qKqFEgGc+6Iuez4VZ9LU6edjjuY8GIri3vsirTsPg5L9uI+V6dpP6meLRD2Ke/vTMvoJrUGgr6mw7YmBVYsS5q7fNmHXDIjsaraIlJFhlDEKsgQI0QkiboNPpcPrqNWi1+uzBXl26wLdy9cSafjvWtNWzrdkn2dev+4xoUlClUqhxdPUN5CfLAQASJxEmLu+PwJ7c3C0qshNi7LvR6DhYH2TqtAxOro9D2q3GV/t3FTqyGakl2nLsyb9aZ9vIzqHwcJMC0CcKKJV1B3Pm6hQSzF4t9TglFYrycs7HIMQaKEAjhLQJN+7dR1ae/rC7i5MT+vdqXCV/S5SWKXDo1EUAgEQixrhh/ett/1iRibMyfeV8X5Ernnfv2+ixNBVaHPvqJvKS9Nu39lIxnls5AN6dXM2bfB34Aj5GLOyF8GH682GMjsHJ9beRHV/Y6D5m+IxkX/879yw0dZTc4PP5GDYgCgBQUaHClVv3am1nCZFQiG6d9AWKdTodfn/8hPMxCLEGCtAIITYvIzsbN+7p/3Ln8XgYPXAARELrJ6n/duwcFOVKAMBzY4bAydGh3vaxRqtnM31HQcRv3By1ai2Or72F7PgiAPqVswnL+sMtsOG7Ps3B5/MwfH4PdiVNq9bh2Fc3UZhW0qjnO9n7YqhLVwBApqoIJ4ru1tl25KA+7Ovj5+tebbNEjy6dwa9cqbz35AnUGo1VxiGESxSgEUJsmry0FMcvVlXk79+zB/y9va0+rlarw3/3n2A//uPk8fW2T1Hm4lhRHADATeiEqZ4DGjWOTqvDqW/usFmVInshJnzYD+5B1gnODHh8Hoa/2RMBPfTbxCqFBkdWX0dJnqJRz8/0HcW+/j7ndJ0ZlAOiu0Hqoi/pcfbKbTbg5ZKTgwM6hYQAACpUKjxK4r4wLiFcowCNEGKzlCoVDpw5i/IK/dmlID9f9I6MbJaxT128jsxs/ZbqwN7dERrsX2/7b54ehg76IOV1nxGw5zdcNJVhGFzc9oDN1hRKBHjm/b7wDJNaOPvGEQj5GPtuNLw66cdTFFfgyOobUJaoGngS6OfUib1b9IEiA9dKaj+gLxQKMbaysG9FhQpnLt/kaPamoiK6sq9vP3zInlUkpLWiAI0QYpPUGg0Onz2HYrn+wLyriwvGDRli9axNQL96tuWHvezH01+s+95JALhXlobjxXcAAB5CZ7zayMK0t/6XgEen0wEAfAEPY5f0hm8XN/MmbSaRnRDPLO0LqZ8jAECWVYZjX92ERlV/gMPj8TDT6Cza5qyjda6iPTNyEPv66Jkrlk+6Fp5ubgiuvI+zpKwMD5OSrDIOIVyhAI0QYnPUajUOnjnDJgXYSySYNHJEs13lc/LCNSSnZQLQl9YYEN29zrYMw2D904Psx/P9xsNBIGlwjAfHU3F7d9Wq04gFPRHYw/pZqbWxcxbj2Q/7wt5VP+/cJ8U4/XUce/doXca7RaGDRL/dfLM0CddKaj+g3ysyHL5eHgCAq7fuIb+wmLvJG+nXswf7+ua9+9DQKhppxShAI4TYFIVSid9On0Fmrj44E4tEmDRyBKROTb+ayBxqtQabd+1mP57/fy/Wu2p3Qf6QDUyCJB540Wtgg2MkX83CpR0P2I8Hvh6BjoPr30K1NmcvBzz7fl+I7PU3FKTezMXlHQ/qrc4v4PHxpv8z7MebMo/U2p7P52PCaH2BW61OZ1L4l0s+Hh7oEKDPTi0rL8f9J1QXjbReFKARQmxGQXEx/nf0GHLy9QfmJSIRJo8eBW8Pj2abw497jyItU38mLLp7F/SPqvvMW4VOjS/S97Af/9l/IkS8+q9gynxQgNMb76DyuBp6Ph+G7hM6WDxvLnh0cMHYxb3BE+gD0ocn0nBnX/1bhePdeqGjnS8AIK4sBZfkj2ptN+WZqppwew6fgVar43DmVfobraLduHcPygrua68RwgUK0AghrR7DMLj/JAH/O3oMJWVlAABHe3tMGTumWYOz3PxCbP1xHwB9KYq/zJ9e7+rZ9uxTSK/QXy/U16kjnnGLqrf/glQ5jv/zFnQafXQWPjwA/V5pXRd8B/TwxPD5RkHOz4/x+GxGne0FPD4WGK2irX96AFqmZvAV4OuFQX30/Wbl5uPyzbpLc1jC080NnTt0AKDP6Lx293erjEOIpShAI4S0arLSUhw6ew5nr19nzwx5ublh2jPj4enWfAfmGYbB3zdsR3lltfupE0ahS8eQOtunKfOwrbLumRB8/DV4Wr3BXEmuAke+uAF1ub5GV1CUF4bN7d4sSQ9NFT40AP1e7cJ+fH7LPaTfyauz/RjXHoiszOh8VJ5Z5+0C0yaNZl//bFTChGuDonpBWFkn735CAvKLiqw2FiHmogCNENIqKVUqXL1zFz8dOIjUzEz2/W7hnfDCuLFwcqi/KCzXdh86jUs39Ks6Hm5SLJgxrc62WkaHFSk/ooLRB1vTfYajk71vne0Vsgoc/sd1lBfrgz/vTq4YvSgKfGHr/RHd87lQRD6jD1AZnf7ezvzKWw6q4/P4WBr0AvvxN5mHUaKteeXSkL694OetT4S4fPN3PEpM5X7iABwdHNC3ezcA+sD77LXr0Omss6VKiLla759+Qki7VFJWhstxcdi1dx9u3r8PbeVfnA729pg4fDhG9OvXLLcEGLv/OAnrtvzAfvy3xXMgda47KWFH9incKUsBoE8MeNPvmTrb6u/XvA55jr4ArGuAI8Yv7QORXfN+jU3F4/Ew8PUIdOjvA0B/FdWRNTfYr6O63k5h7BZvkaYU32YerdFGIODj/6ZVlSz5/peDNdpwpVeXLnB11hf7zSkowJ342s/GEdJSKEAjhLS4CpUKT1JSsP/0aeza9xtuP3jIXsfD5/MRHRGB156bhA6BAc0+t7yCIiz9bD0qVGoAwEuTxmBIv151tr9blopNWfrggw8ePuvwWp1lNTQq/RVOBan6K5QcPezw7If9YOfcPOVCLMXn8zByYS/4dtVvNSvlKhz54jrK5bUfvF8c8BwkPH3g+UPuedwtq7lCNnn8CLi7ugDQlzNJe5ptlbkLBAKMGlh1m8O1u3dRKKt9BZCQlkABGiGk2anUamRkZ+Pm/fvYe+Iktv1vN45fuoz0rKq/jPl8PiI7dcJrz03CoOgoiEWiZp9nQZEMC5d9gbyCYgBAVLfOWPLGa3W3V5fgL4k72MvBZ/qMQrRTaK1tNSotjv/zJrIe6C8hlziJMOHDfnDysOf2i7AyoViAcUv6wDVAv6Ioz1bg2Jc3oVbWvO/SX+LOlt3QgcFHKT9BpTNtZycR49UXKtvoGMTs/J/V5u7n5YVeXfU3DGh1Ohy7eJHu6SStBgVohBCrUGs0kJWUICs3D/FJSbgSdwdHzp/HjwcPYusvv+K3U6dx9c5dZObmmtTGcnZ0RL8ePfB/k5/HyP794NJM9c2qy8zJw4IPVyMlPQsA4O/rhS+Wvw2RqPatR5VOg6VJ3yNXrV+FiXYKxVsBE2ptq6nQ4thXN/H0d32Gp8hOf4WTIcixNRInEZ79oC8c3PQrhXmJMpz6Og66WkplzPAZySYMJClz8G1Wza3Ol54bw66inTh/DXcfWq9e2YCePeAm1Y9VWCzD2WvX663tRkhz4TH0f6LNefToEebNm4ctW7agS5cuDT9Amp3hjxXDMPpyVoaPK18ztbQz+bz+RY1nq7evdQyTZytfMew7tY7JMAx0Oh10OgY6Rlf5uuofra7y85Wf02p1UKnVUGvUUKk1UKvVUGnUUKs1UFZUoKy8vEkrEVInJ4QEBCA0MAD+3t4tnrl48+5DfLhqI4rl+q1HXy8PbF7zV/j7eNXaXsvo8EHSLvY6Jy+RC36KWAJPkUuNtiqFGifW3Ubm/crgzF6AZz/oB5/OzXuFkzUUpMlx4JOrbCZq55GB+kxUvul/z8eKTLz6cC000IEHHjaFv4HBLqY/y/538BRWb/wegP62hq1fLgefb501hUKZDP87eoz9f3ZI797o1ZV+tpKW1bpPoZJmk19UhDvx8Ya/403/UmcMNTOrXlcFCEzVMzWCEaNn2aCkqr3hdfV2lSNVjVHtWaZqQjXmxzDG7ateVw+ATMeov48awRNQ7xikfnw+H+5SF/h4esLHwwO+nl5wdXFu6WkBABTlSny763/4ad9x9r9ncIAvNnz2Xp3BmY7R4fO0X9jgzI4nwtqOs2oNzsqKlDi65gYKK8+cieyFmPBhX3iH235wBgAewS4Yt6Q3jqy+Dp2WweMzGdBpdBj+Rg+TjNTODv54K2AC1j89CAYMliX/G/+N+At8xK5smynPjsBPvx1DSnoWfn+YgN2HT+OlSWOsMm93qRSjBg7AsQsXAQAXb92Co4M9OgUHW2U8QhqDAjQCAChVKPAoOaWlp0HaAJFQCAd7ezja28HBzh4O9nZwdnSEq7MLXF2c4ezoaLWVEHMpypX47dg5bPvpNxTJStj3B0R3w6oP34KLs2Otz6l1GqxI+RFHim4D0Nc7W9vxT+jpWLM+WmFaCY5+eQNlBUoA+m3BZ97vC+9Ortx/QS3Iv5sHRizshTMb74DRMUi4kAmVQoPRi6IgFFfdovAnn1G4VZqM87IHKNKU4d3E7djaeSGbUCEUCLB0wet4a9kaAMDX237Wl+Hwsc59pJ2Cg1HQrRg3798HAJy4dBkSkQhBlResE9LcaIvTBlljizPl6VMcOnuOk764Ytjm4uk/YN/jVTVgX7Pvs+30T/KM29XybK1jGN436aPyFY99p3Fj1NLe8NrQX80xTL8uk7GqtTe8ZrcEq41XtVVY/VnTMXk8fa0qPt/wD6/qNY8PQbX3BHw+REIRxCIRRCJh5b9FEAmFELSy4KsuGo0Gcfef4OSF6zh8+hLKFFV1uSRiERbMeAmvTBkPgaD2r6dQXYoPk3fhauU9mwLw8ffQ6ZjgHl2j7ZMLT3Ex9j40FfrkAWcvezzzQV+4+tvmmbPGSLmeg1Nf32ZvRfDu7Iqx7/aGg7Qqo7VYU4ZXHq5FlkpfKHa4NBLrOs6C0Og6rL9v2Ia9R84C0CdpxPzjA7bILNcYhsHpq9cQn6S/vkrA5+OZoUNbJHuYEArQbJA1AjS1Wo3S8nLDX+36v8xrCRQMr2sPeAxBQM1nqwdAtQU0VcFI66ucTmybUlmBrNwCpGVmIz4hBQ+fpCDu/mOToMxg3PABWDBjGoL8fers71ZJEj5M/jdy1MUAAAlPiC/DZmKEazeTdmqlBlf/HY/4U+nse55hUoxf2sckUGmrMu8X4Pg/b0Kt1Aemju52GLekNzzDpGybJ+WZ+FP8NyjV6VcWn3fvi487/JEN0krLFHhl4XLk5OmzXV+ZMh5/mT/danPW6XQ4euEikjP011fxeTyMHNAfXcPCrDYmIbWhAM0GUZKAeRiGqfyn8mMwJgfrGTBGB+hR4xxazYP81Z9lGxsdyDd9tra+qs7aGc7xmT6LGh9XjdnQ/A1fp/GzNeZglEBgSFCoMYc6EhWqJydUn39dc6j572pJDMZtK5/VaLTQaDX6f1e+Vqu10Gi1UKs10Gi1KFdWoLRMAXlpGUpL9f/OLyxGYbEc9bGTiPHMyEH4w3Nj6r2+Sa4px4anB/FL/iX2PQ+hM77qOBO9nUz/As+8X4Dz3/2OkryqILDzyEAM/lOkyVZfW5efJMOxtTehKNTXRhOI+Bjwf10RMTaY/WXsqvwJFiZ8x5YnGe8WhVWh09mL5e8/SsS8pavYQ/xLF/wfXn5+nNXmrNXpcOryFTxJrarT1qNzZwzuHW0zK8TE9lGAZoOsEaDdvPsQ//jme/Yv4+qBicmBeJOkgJqBSY2kAfa5msGR8cfGz1k6h8qXdHCf1MnVxRkD+3THsP5RGNy3J5wc6746qlSrxI+55/F9zhmTK4p6O4VhTdgMeBklBJTklePGz4+ReLHqeiqBmI8hf+qGziMDrfPFtHKK4gqcWHcLuU+K2feCorww7I0ecHDVrySeLLqL95N3sUFaP+dO+DJsBtyE+m3g3YdP4x9f72CfX/nuXDw/bpjV5qzT6XDh5i3ce/KEfc/L3R1jBg2Eu1Raz5OEcIMCNBtkjQDtwrU4vPvxOk76IqS1EAgE8HB1gZ+PJ/x8POHv44XOYcGICO8AP2/PerfTdYwOv5elYV/BNRwqvIVynYr9nD1fjLf9J+IV76EQ8PQrKqUF5bh3OAUPj6dBq66q/+Xb1Q3D5vWA1K/2RIP2QqvW4sq/4/HweBr7nsheiD4vhSNyXDD4Qj7Oyx5gSeIOqCrvMPUXu+OL0P9DT6cOAICY73/Ftv/uZ5//86yXMeOliVY9FvEgIRHnbtxg7+rk8/no0y0SURERzX7lGGlfKECzQdYI0K7euoe/rt4IoOrQeNWZMZ7pgfPq58uMDqbXPBhf81ya8VmzGgkA7Fn3ygP51eZgaNeYOVQ914g5sM9Vn0P1vuqbQ80Egaoxqs+h+udbwRyqnzOsaw6Vz1Z204g5mCZGVJ8D+7la51B1blEoFFT+I4RQIIBIVPlvoRBCof7fEokYzk4OcHZ0gLOTI+wk4kb/5a1jdEhR5uGeIg03SxJxXvYQBZoSkzZ88PCcR18s9H8WfmI3MDoG2Y8K8eh0BhIvZ4HRVv04lTiJ0OcP4YgYE1yjDlh7ln47F+e++x3lsqqA1zXACb2ndUKH/r64q0jBksQd7PeeDx5m+IzEfL/xsOeLsfa7H/DTvmPss+OGD8CHb82sM9OWCzkFBTh5+QqK5VVb5Q729ujXvTu6hIVCKGg/W9ak+VCAZoPoDBohjcMwDFSMBhU6Dcp1FZBpFCjSlEGmLUOxRoFsVRHSKwqQUZGPVGUeynS13yHpwJdggns0ZviMRJDAAzmPi5F+Jw/JV7JQmq80aSsQ8dHt2RD0mtwREsfmv57KFijlKlz76REen80AjP4Gkvo7osfEUDj1dcBfM/9tclenp9AZ8/3HY4p7f/zw6xFs+v5X9nPeHm5YNOePGD9ioNVW0zQaDa79/jvuxD8yOTphbydB9/BwdA0Lg7Nj+14lJdyyuQBNoVBg69atOH36NEpKShAcHIzp06djzJiGCxgWFRUhJiYGly9fhlKpRKdOnTB37lz06dOnRtsbN24gNjYWCQkJsLOzw6BBg7BgwQK4ubmZtNNoNNi1axcOHz6MgoIC+Pn5YerUqZg2bVqNPjMzM7Fx40bcvn0bWq0W3bp1w/z585scZFkjQHtSnomfcvVFGhnU/F/C+D2Tc2Ts52u+Z/K88QH7am3Ne8Z0dvXPrYF51vP11DkmU3PuDT1T2x+1huZm3jM1Z9TQ972271ttY9b29dT536KB70F9/8/U/vXU/9+fAQMNo0OFTg11ZVBm2Cozhx1PhAHO4RjA64yo/BCUJZcjP0mO3IRitlyGMYmTCJHjghExPqRdZGhyIS+xGJd3PjQ5mwYAQokAIQO9catfKn7EBaiZqu+3m9AJL3kOgtdjMTbH/IqSUgX7uYhOHfDa1GcxZmi/Oq/kslSRXI4rcXFIznha43N+Xl7oGByEID8/uDo7U0Y6sYjNBWhLlixBfHw85s+fj6CgIJw4cQIHDhzA3/72N4wbV3dWj0qlwrx581BaWor58+fDzc0Ne/bsweXLl7Fu3TpERUWxbePi4vDuu+9i0KBBmDp1KoqKirB582Y4OTlhy5YtEIvFbNs1a9bg2LFjmDNnDrp27Ypr167hhx9+wNy5c/H666+z7YqLizF79mw4Oztj9uzZEIvF+M9//oOEhAR89913CG5CxWprBGjnZA/wdsJWTvoixNbwGB48tE4ILHNHYLE7vLNc4PbYEap8dfVo0PQ5Pg+BPT3Raag/Qvr4QCihra6mYhgGT+8VIG5PArLji2p8vsRHiZvjU/D7/7d373FR1fn/wF8HBobhMjMiCEoCcjEwSSTUvADeBcNqWX+aiaai2CNb2azV7SLYZStrw8e6reYql/Ch5tfUTVPUXNmkICQxbXM1lAEvoHKHBAZm+Pz+UI4c5gwXGeQMvp+PBw+Zz/mcz/m85/hh3nMunzPgqsEyb60zmv9Vjev/LRGUq5UOCHtyJELHBmHEMF+oHEw/39zN8nKc/d8FXL56VfSLlL2tLQY6O8PZ0RHOjo5w6qeGvNVnByEdMasELTs7G2vWrEF8fDymTp3Kl69atQqFhYXYs2cPLI1cC7B//35s2LABmzZtwvDhwwHcOfq1ZMkSKBQKbNmyha8bGxuLhoYGJCcn8xMi/vzzz1ixYgVWrVqFZ599FgCg0WiwaNEiLFu2DNHR0fz6H3/8MY4dO4a9e/dCqbxzd9fmzZuxZ88e7Ny5E66urgCA27dv47nnnkNQUBDefvvtTr8PPZGg7T/7A9bp/s8kbREzdvevASf4q8CJlAnr36nFGZSLHT/gmEhpV9phIvXustBzkOktYKmzhKWeg6XO8u5rC8h0FrBpsIJNvTUU9VawqbeC3W05VFUKONQoYNncuekTbPvJ4RbghEced4LbcCfYKOlD11TKCqpxIeMqLmcVo6leeJTyhms1fnqiCJeG3gKzEP5n5PIbITtWB+6G4ZFNABj8iAt8vdwxxG0g3N1c4eLkiH5qJRxVSigduvdki9rbt3FRU4j8wkJU1nQ8nYvS3gEqe3vY2Spga2MDhY0NFHIbKGzksJLdnfhZJoNMJqMjcA85s7oFJTMzEwqFAhMnThSUz5w5E++88w7Onz+PgIAAo+u6u7vzyRkAyGQyTJ8+Hf/85z9RWloKZ2dnlJaW4sKFC4iNjRXMVh0QEIDBgwfj5MmTfIKWmZkJxhgiIiIE24qIiMDBgweRk5PDH9U7efIkgoKC+OQMAOzs7BAaGopjx45Bp9P12OzYneGnH4Tn0p40KBf7UBb9gDVSt70Pd7EkwGg7jGtTC0aSgI7aaanVURLQqh2RZjrfTuuecQZl9/pquJUOk5JOvqei7714VKQVGwcrOAywhcMAW6gG2sFpiBJOXirY9bPp7a71WU5eKkzwUuHJaH9c/7kMRXm3cCXvFhpqGuF6Q4XwQ4/jt28b8KvfDVwaehM3B95JiJivNZp8rMAV6WCR0wCLXxvB3bsHAVev3cTVazeNbpez4sBZWYCT3fmxkHF3buzgWv5tuSnn7r8W917fbQEAoLa1hYtaDReVCs5KpcGcaQ3aRjRoy3GrvLxT74dOf2eev+a7Uw013/1hIv8CEM5L2Kodg0sLOqhD7hjo6oo//L/ZvbZ9s0rQNBoNPDw8DBIZb29vfrmxBK2goAAjRowwKG+9rrOzMzQajaC8bd2ff/5Z0B+1Wo3+/fsbbRMAtFotiouLERoaKtqmVqtFSUkJBg8eLNr3srIylLca0JcuXQIAFLWaRLG7ym9Uwa62SVjY5jPc8Mtc2wrtvjQs6OK3Q4Nvkwbtda35jjffJvXrYHtd3UBH72fH71/bl51/f5hY+x1tz2A5J/arkapd3dftd6bjfSEssLAELKwsYXn3w9fSyhKWMg4WVhaQWVnC2k4Ga4UV5HYyWCmsYGMvg8ym9d+ZZjSgCtduVQG3uhQKuV8OgEuYNVzCHsFvZfWouFKL8qJasFt6+OTZwSPLA3W2WpQNqEXpgFqUOf2GWqUOunEW0I+2AXetCRbXdeBu6ICyZnDN7WxLD7CGewmL+HG4jtUBaJn9zsKCg4O9AmqVA1QqO9jbKWBnawMbm87fWdwRDgCdVO85BZfycfHixR5p28PDAzY27X/ZM6sErbq6GoMGDTIod3BwAADUtHN4uaamhq/X3rrV1dUAwJ+abFu39Taqq6tF6ykUClhZWfFt1dbWgjEmuv2W9aurq40maAcOHEBqaqpB+XvvvSdanxBCHhqF935V9FonxGlvAzdvAsaP3RGpW5ae3iPtduYSJbNK0ICufxPv7Lptlxmr25Xtd7bNjpY9/fTTGD9+PP+6trYWRUVFGDp0qOCGhe4qKirCe++9h7feegseHh4ma1cq+np8QN+Psa/HB/T9GCk+89fXY3wQ8XWmXbNK0FQqFX9UqrXa2jsTGoodzWqhVCpFj7C1rNtydEt19xEexrbT+iiYSqXiTze2Vl9fj6amJr4/DndvtxbbfktZe313cnKCk5OToCw4ONho/e7y8PDo0/Or9fX4gL4fY1+PD+j7MVJ85q+vx9jb8ZnVU1+9vLxQVFQEnU44t1FBQQEAYMiQIe2ue/nyZYPyljIvLy9BGy1ttt1O6214eXmhqqpKcH2YWH/kcjnc3NyMtimXyzFw4ECjfSeEEELIw8WsErSQkBDU19fj22+/FZQfOXIETk5OGDZsmNF1Q0NDceXKFZw/f54v0+l0+OabbzBs2DD+CJWzszP8/f1x7Ngx6PX3LhX95ZdfcOXKFYSFhfFlEyZMAMdxOHLkiGBb6enpkMvlGDNmjKDveXl5uHnz3tUIdXV1OHnyJMaPH9+rd3ASQgghRFrMKit48sknERwcjMTERNTV1cHNzQ3//ve/kZOTg7feeoufA+3DDz/E0aNHsWvXLn5ai5kzZ2L//v2Ij48XTFR75coVbNggfEj4iy++iFWrViE+Pl4wUe2QIUMEU2oMGTIETz31FFJSUmBhYQF/f3/k5ubi4MGDWLp0qeC05bx583Ds2DGsWbMGMTExsLKywo4dO9DY2IjFixc/gHevY/3798eiRYsM7krtK/p6fEDfj7Gvxwf0/RgpPvPX12OUSnxmNVEtcOeo09atWwWPeoqOjhY86un999/HkSNHsHv3bsGpw4qKCsGjnnx9fRETEyN6PVdubi6Sk5ORn5/PP+rppZdeEn3UU1paGtLT01FRUQFXV1dERUWJPurp+vXr2LRpE/Ly8vhHPb344ot9+hw+IYQQQrrO7BI0QgghhJC+zqyuQSOEEEIIeRhQgkYIIYQQIjFmdZMAuePMmTOIi4sTXbZ582Y89thj/OuLFy/is88+w/nz52FpaYmRI0dixYoVok9k2Lt3L/bv34+SkhL0798fERERWLBgQafuMNXpdNi+fTvS09NRXl6OgQMH4ne/+53otXi9EePVq1dx4MABnDlzBsXFxeA4Dh4eHpgzZ47Bs13FlJSUYO7cuaLLEhISBNdA9kZ8AEQfJQYAsbGxiI6O7rBPUt+H6enp+OCDD4xur6M4e2sfnjt3Dunp6cjPz4dGo0FTU5PB9bGtSWUcmjo+qY1BoGf2oZTGoanjM8cxqNfr8eWXXyI3NxcajQY1NTVwcXHBhAkTMH/+fNEn/EhlDFKCZsZiY2MxcuRIQVnredqKiooQFxcHHx8frFu3Do2NjUhOTsbLL7+M5ORkqNVqvm5aWhqSkpIwf/58jBo1ChcuXMC2bdtQVlaGP/3pTx32JTExEceOHUNMTAz8/Pxw6tQpbNy4EXV1dViwYEGvx3jq1ClkZ2djxowZ8PPzg16vx4kTJxAfH48lS5Zg0aJFnerP73//e0ydOlVQ9sgjj/R6fC0mTpxo8AfQxcWlU32R+j4cO3YsNm/ebNB+UlISfvzxR6MfjG096H14+vRpnD59Gr6+vrCzs8OZM2eMtiXFcWiq+KQ6BgHT7kNAeuPQVPGZ4xjUarVISUnBlClTEBkZCZVKhV9//RVpaWnIysrC1q1bIZfL+fUkNQYZMTt5eXksJCSEZWRktFsvPj6eRUZGst9++40vKykpYZMmTWKbNm3iy6qqqtiUKVPYRx99JFg/LS2NhYaGMo1G0+52CgoKWGhoKNu+fbug/KOPPmJTp05l1dXVnQusFVPHWFlZyZqbmw3WX716NZs2bRrTarXtbqe4uJiFhISwnTt3di0QI0wdH2OMhYSEsMTExPvqjznsQzF1dXVs+vTpbMWKFR32p7f2oV6v53/fuXMnCwkJYcXFxQb1pDYOTR2f1MYgY6aPkTFpjcOeiK8tqY9BnU7HqqqqDMozMjJYSEgIO3r0KF8mtTFI16D1UTqdDllZWQgLC4OdnR1f7urqipEjRyIzM5Mvy8nJQWNjI2bOnCloIyIiAowxQV0xmZmZYIwJ5ohrWV+r1SInJ8cEERnqSoxqtVr0eaf+/v5oaGgQfQxXb+tKfN1lDvtQzIkTJ1BfX4+nnnqqR/pnChYWnfsza67jsLPxmeMYbNHZGLtL6vtQjNTHoKWlJf8Ix9b8/f0BALdu3eLLpDYGKUEzYxs2bMCkSZMQHh6OV199FefOneOXFRcXQ6vVwtvb22A9b29vXL9+HVqtFgCg0WgA3HvcVQsnJyeoVCp+uTEajQZqtdpgUr+WbXe0fntMFaMxZ86cgVqtNpjfzpidO3di8uTJmDZtGlasWIHvvvuuawG1Yer4jh8/jqlTp2LKlClYunQpDh8+3Kl+mOs+PHToEOzs7DBp0qRO9+dB7sOukOo4NFV8xvT2GARMH6PUxmFP7kNzHYN5eXkAAE9PT75MamOQrkEzQ3Z2dpg9ezZGjhwJpVKJ69evY9euXYiLi8P69esxevRo/mHvYg9hVyqVYIyhtrYWcrkcNTU1sLa2hkKhEK0r9uD41qqrq0W3o1AoYGVl1eH6DyJGMV9//TXOnDmDlStX8k+hMMbKygqzZs1CcHAw+vfvj5s3b2Lfvn144403sHr1akRGRvZ6fFOnTsXYsWMxYMAAVFZW4tChQ/jwww9RXFyMpUuXttsfc9yHRUVF+O9//4unn34aNjY2HfanN/ZhV0htHJo6PjG9OQaBnolRSuOwp/ehuY7B0tJSbNmyBX5+fhg3bhxfLrUxSAmaGRo6dCiGDh3Kvx4xYgRCQkKwaNEibN68udODTux0Q3fqmXL9no7xhx9+wIYNGzBx4sRO3V3j5ORkcIHopEmTsHz5cmzZsgXh4eFdep5qT8QXHx8vWDZx4kT8+c9/xo4dOzB79myDGwq6Qor78NChQwDQ6T/qUt2HnfWgx2FPx9fbYxDomRilNA57eh+a4xisqanB6tWrwRjDunXrunR690GPQTrF2Uc4ODhg3LhxuHz5MrRaLX/OXey6jpqaGnAcB3t7ewB3vhk0NjaioaFBtK7YN4LWVCqV6Hbq6+vR1NTU4fqd1Z0YWzt16hTeeustBAcHY+3atfc96GQyGSZPnozq6mpcu3btvtpozVTxtTZt2jTo9XpcuHCh3Xrmtg91Oh2OHj0KHx8f+Pn53Xd/enofdoU5jMPuxNeaVMcgYLoYW5PSODRVfOY4Bmtra7Fq1SqUlZUhMTHRYKoiqY1BStD6ENbqqV2DBg2CXC5HQUGBQb2CggK4ubnxp41azre3rVteXo7q6mrB7dhivLy8UFVVhfLycoPtAOhw/a643xhbnDp1Cm+88QYCAwPx7rvvwsrKyiT9MdVFxN2Nz5iO+mdO+xAAsrKyUFlZaZILk3tyH3aFuYzD+42vhdTHYOs2TU0q49AU8ZnbGKytrcUrr7yCkpISfPLJJ6LXvUptDFKC1kfU1tYiOzsbvr6+kMvlkMlkGDduHE6ePIm6ujq+3s2bN3HmzBnBfDVjxoyBtbU10tPTBW2mp6eD4ziEhIS0u+0JEyaA4zgcOXLEYH25XI4xY8aYIMLuxQjc+2B4/PHH8Ze//AXW1tbd6o9Op0NGRgZUKhXc3Ny61RbQ/fjEHD16FDKZTHAaQIy57MMWhw4dgrW1NaZPn96t/vT0PuwKcxiH3YkPkP4YBLofoxgpjUNTxWdOY7AlOSsuLsYnn3xidD9IbQzSNWhm6J133sGAAQPg5+cHlUqFa9euYffu3aioqMDrr7/O11uyZAliY2OxZs0azJ8/H42NjUhKSoJKpcJzzz3H11MqlVi4cCGSkpKgVCoxatQo/O9//0NqaioiIyMFd7kcOXIE69evx5o1axAeHg7gzreCp556CikpKbCwsIC/vz9yc3Nx8OBBLF269L4Oy5s6xnPnzuHNN9+Eo6MjoqOjcenSJcH2PD09+WkexGL89NNPodPpEBAQAEdHR9y6dQt79+5Ffn4+Xn/99Q4vcO7p+Hbt2oXCwkI88cQTcHZ25i9Ozs3NxeLFiwXXvZjrPmxRVlaGU6dOYdKkSaKzgBuLsbf2YVVVFX766ScA975J5+TkQK1WQ61WIzAwEID0xqGp45PaGOyJGKU2Dk0dXwtzGoNarRavvvoq8vPz8Yc//AF6vR6//PIL34ZareYTQ6mNQUrQzJCXlxcyMjJw4MAB1NfXw8HBAQEBAXjzzTf5uV0AwMPDAxs3bsRnn32G+Ph4WFpaIigoCC+99JLBhaoLFy6Era0t9u/fjy+++AKOjo54/vnnsXDhQkE9xhj0er3BIeRVq1bByckJ+/btQ0VFBVxdXbFy5cr7fkyQqWP88ccfodVqcePGDfzxj3802N7f/vY3fiZqsRiHDBmCAwcO4Pjx47h9+zZsbW3h7++Pv/71r/d1oa2p43N3d8f333+P7Oxs/q5HHx8f0cenmOs+bJGeng69Xt/uhclS2ocajcbgwvHExEQAQGBgIDZu3MiXS2kcmjo+qY3BnohRauOwJ/6PAuY1BisqKvhr/9rGAQDh4eF44403+NdSGoMc66mT7YQQQggh5L7QNWiEEEIIIRJDCRohhBBCiMRQgkYIIYQQIjGUoBFCCCGESAwlaIQQQgghEkMJGiGEEEKIxFCCRgghhBAiMZSgEUIIIYRIDCVohBBi5goLC8FxHP/j6uoqWL5u3TpwHIf//Oc/vdPBNqKjowX9TU1N7e0uESI5lKARQiSrbeIh9tP2OYEPsxEjRiAhIQGvvfZaj29ry5Yt4DgOL774Yod1n3jiCXAch7y8PABAVFQUEhIS8Mwzz/R0NwkxW/QsTkKI5Hl7eyM6Olp0WdujRQ+zwMBArFu37oFsa968eVi1ahW++OILbNiwAQqFQrTeuXPnkJeXh8DAQAQFBQG4k6BFRUUhNTUVX3311QPpLyHmhhI0Qojk+fj4PLDEg3SOUqnE7NmzkZaWhn379mH+/Pmi9ZKSkgAAMTExD7J7hJg9OsVJCOlTOI7DxIkTUVpaiiVLlmDAgAFQKBR48sknjV6DVVtbi4SEBDz22GNQKBRQq9UIDw/Hd999Z1B34sSJ4DgOWq0W8fHx8PHxgZWVlSCB3LdvH4KDg6FQKODi4oJly5ahsrISnp6e8PT05Ou98MIL4DgOubm5ov1avXo1OI7D/v37u/OWGHXu3DkMGjQITk5OyMnJ4cs1Gg2WLl0Kd3d3yOVyDBw4EIsWLUJRUZFg/ZakKyUlRbT9xsZG7NixA3K53GgCRwgRR0fQCCF9TlVVFcaPHw+lUon58+fj1q1b2L17N2bMmIHTp09j+PDhfN2KigqEhobil19+QUhICGbMmIHq6mp89dVXmDRpEvbs2YNnn33WYBtRUVE4e/YsZsyYAUdHR3h5eQEAkpOTERMTA7VajYULF0KlUuHw4cOYNm0ampqaYGVlxbexfPlypKWlYevWrRg1apSg/aamJqSlpcHV1RWzZs0y+XuUmZmJWbNmQalU4sSJE/Dz8wMA5OTkYMaMGbh9+zZmzZoFHx8fFBYWYseOHUhPT0d2djYfa2hoKHx9fXHixAkUFhYKkk8AOHDgAMrLyzFv3jz069fP5DEQ0qcxQgiRKI1GwwAwb29vlpCQIPqTnp4uWAcAA8Beeuklptfr+fJt27YxAGz58uWC+s8//zwDwJKTkwXlN27cYIMHD2bOzs6svr6eLw8LC2MAWGBgICsvLxesU1lZyezt7ZmDgwO7fPkyX97U1MSmTp3KADAPDw/BOsOHD2cODg7st99+E5Tv27ePAWBr1qzp9Pv0wgsviC5PSEhgAFhGRgZjjLF//etfzMbGhg0bNoxdvXqVr9fY2Mg8PT2Zg4MD++mnnwRtZGZmMktLSxYZGSko/+CDDxgAtm7dOoPtRkREMADs+PHjov1KSUlhAFhKSkqHMRLysKEEjRAiWS2JR3s/cXFxgnUAMDs7O1ZbWysob2pqYjKZjAUFBfFlpaWlzNLSkk2ZMkV0+xs3bmQA2MGDB/mylgTtq6++MqifmprKALBXXnnFYFl2drZogtayjaSkJEH5zJkzGcdxLD8/X7RvrXUlQdu2bRuztLRkY8eONUgwW5LCd999V7SdqKgoZmFhwaqrq/my4uJiZmlpyTw9PVlzczNffv36ddHy1ihBI8Q4OsVJCJG8GTNm4MiRI52u7+vrC3t7e0GZTCaDi4sLqqqq+LLc3Fzo9Xo0NDSI3oSQn58PALhw4QIiIyMFy0aPHm1Q/+zZswCAcePGGSwbPXo0ZDLDP7kLFizAmjVrsG3bNixZsgQAcP36dRw9ehRhYWHw8fFpP9gu2LBhAw4cOICZM2diz549sLW1FSz/4YcfANyJV+z9uHHjBpqbm/Hrr78iODgYADBw4EBERETg66+/RkZGBiZPngwASE1NhV6vx+LFi8FxnMliIORhQQkaIaTPUalUouUymQx6vZ5/XVFRAQD4/vvv8f333xtt7/bt2wZlLi4uBmU1NTUAAGdnZ4NlFhYWcHJyMihXq9WYM2cOPv/8c5w/fx7Dhg1DSkoK9Ho9li1bZrRP9yMzMxMAEB4ebpCcAffejx07drTbTtv3IyYmBl9//TVSUlIECZqFhQUWLVpkgp4T8vChuzgJIQ8tpVIJAHj11VfB7lzyIfqTkJBgsK7YUaGW9kpLSw2WNTc3o6ysTLQfy5cvBwBs27YNjDGkpKTA0dERUVFR9x2bmKSkJAQFBSEuLg6bNm0yWN7S/4MHD7b7foSFhQnWi4yMhIuLC/bu3YuamhpkZmYiPz8f06ZNg7u7u0ljIORhQQkaIeShNWrUKHAch+zsbJO0N2LECABAVlaWwbJTp05Bp9OJrjd27FgEBARg+/btSE9PR0FBAaKjo2FjY2OSfrXo168fjh8/jqCgIKxYsQL/+Mc/BMvHjBkDAF1+P2QyGRYuXIj6+np88cUXSE5OBkBznxHSHZSgEUIeWq6urpgzZw6ysrLw8ccfgzFmUCcnJwd1dXWdau+ZZ56Bvb09tm3bBo1Gw5frdDqsXbu23XVjY2NRVlbGn9ZcunRpFyLpvJYkLTg4GC+//DL+/ve/C/rv7u6OxMREnDx50mDdpqYm0bnhgHvJ2KZNm7Bnzx7079+fHuVESDfQNWiEEMm7dOlSu08S6M5TBjZt2oSLFy9i9erV2L59O8aOHQuVSoWrV6/i9OnTyM/PR0lJieg1W22p1WokJiYiNjYWQUFBmDt3Lj8Pmlwux6BBg2BhIf69uOVmgeLiYowZMwYBAQH3HVNn+vnNN99g+vTpWLlyJRhjWLlyJeRyOb788ktEREQgLCwMU6ZM4eeMu3LlCjIzM9G/f39cuHDBoM1HH30U48eP56/lW7ZsGaytrXssBkL6OkrQCCGSd/nyZbz99ttGl3cnQXN0dERWVhY+/fRT7N69Gzt27EBzczNcXV0xYsQIrF27VvTifmOWLVuGfv364f3330dqaipUKhWefvpprF+/Hh4eHvD29hZdT6VS4ZlnnsGuXbtMfnOAmNZJWlxcHBhjiIuLw6hRo3D27Fl8/PHHOHz4ML777jvI5XK4ubnh2Wefxbx584y2GRMTwydoLXekEkLuD8fEjukTQggxqUuXLsHX1xdz5szB7t27Res89thjuHLlCkpKSgymCWlPYWEhhgwZghdeeAGpqakm6nHPS01NxeLFi5GSkkJ3exLSBl2DRgghJlRZWQmtVisoq6+vxyuvvAIAoo+NAoDDhw/j/PnzWLBgQZeSs9Y+//xzcBwHV1fX+1r/QYmOjgbHcVi8eHFvd4UQyaJTnIQQYkLffvstYmJiMH36dLi7u6OsrIx/VuXkyZMxd+5cQf3Nmzfj6tWr2Lp1KxQKBVavXt3lbarVasFUIPeb4D0oUVFRggl4AwMDe68zhEgUneIkhBATys/Px9q1a5GVlcXPh+bj44O5c+fitddeM5g6w9PTE9euXcOjjz6K9evXGzyxgBDycKIEjRBCCCFEYugaNEIIIYQQiaEEjRBCCCFEYihBI4QQQgiRGErQCCGEEEIkhhI0QgghhBCJoQSNEEIIIURiKEEjhBBCCJEYStAIIYQQQiTm/wOgtM9bys6nzQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot spectra at 511 keV\n", + "energy = np.linspace(500.,520.,10001)*u.keV\n", + "fig, axs = plt.subplots()\n", + "for label,m in zip(models,\n", + " [ModelCentralPoint,ModelNarrowBulge,ModelBroadBulge,ModelDisk]):\n", + " dnde = m.spectrum.main.composite(energy)\n", + " axs.plot(energy, dnde,label=label)\n", + "\n", + "axs.legend()\n", + "axs.set_ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "axs.set_xlabel(\"Energy [keV]\", fontsize=14);\n", + "plt.ylim(0,);\n", + "#axs[0].set_yscale(\"log\")" + ] + }, + { + "cell_type": "markdown", + "id": "db4cfb6e-e812-4f16-9c4c-95176bcc0dee", + "metadata": {}, + "source": [ + "The orthopositronium spectral component appears as the low-energy tail of the 511 keV line." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "8b588f46", + "metadata": {}, + "outputs": [], + "source": [ + "# Define healpix map matching the detector response:\n", + "nside_model = 2**4\n", + "scheme='ring'\n", + "is_nested = (scheme == 'nested')\n", + "coordsys='G'\n", + "\n", + "mBroadBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mNarrowBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mPointBulge = HealpixMap(nside = nside_model, scheme = scheme, dtype = float,coordsys=coordsys)\n", + "mDisk = HealpixMap(nside = nside_model, scheme=scheme, dtype = float,coordsys=coordsys)\n", + "\n", + "coords = mDisk.pix2skycoord(range(mDisk.npix)) # common among all the galactic maps...\n", + "\n", + "pix_area = mBroadBulge.pixarea().value # common among all the galactic maps with the same pixelization\n", + "\n", + "# Fill skymap with values from extended source: \n", + "mNarrowBulge[:] = ModelNarrowBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", + "mBroadBulge[:] = ModelBroadBulge.spatial_shape(coords.l.deg, coords.b.deg)\n", + "mBulge = mBroadBulge + mNarrowBulge\n", + "mDisk[:] = ModelDisk.spatial_shape(coords.l.deg, coords.b.deg)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "b80ae9d2", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAADz9ElEQVR4nOydZ5gc1Zlwz62qzt2Tk/IoB5SIAoEQIopgwGvDGq+NAxivMZjguGu8NmadP+MFpzW2WZzAgSByMiCRo3JOI2lyzp2r6vvRYTpUt8KM1BrpnueZR6Oet+99u7q66vSNwjRNE4lEIpFIJBKJZBgohU5AIpFIJBKJRDL6kVIpkUgkEolEIhk2UiolEolEIpFIJMNGSqVEIpFIJBKJZNhIqZRIJBKJRCKRDBsplRKJRCKRSCSSYSOlUiKRSCQSiUQybKRUSiQSiUQikUiGjZRKiUQikUgkEsmwkVIpkUgkEolEIhk2UiolEolEIpFIJMNGSqVEIpFIJBKJZNhIqZRIJBKJRCKRDBsplRKJRCKRSCSSYSOlUiKRSEYIIQRCCM4555wRL3vPnj3J8j/96U+PePkSiUQyXLRCJyCRSCRHEiGE5eN2u52ioiKKi4uZOHEiJ510EosWLeKyyy7D5XId4SwlEolk9CGlUiKRSIBwOExHRwcdHR3s2rWLV155BYDi4mKuvfZavvvd71JSUlLYJCUSieQoRkqlRCI5bnnssceSv5umSW9vL93d3axdu5ZXX32VPXv20Nvby89//nMeffRR/vKXv7B06dKc5ZmmeSTSlkgkkqMSKZUSieS45corr8z5N9M0efbZZ7n11lvZsWMHjY2NfOhDH+KNN95g3rx5Ry5JiUQiGSXIiToSiURigRCCSy65hPfff5+zzjoLgP7+fq666ioMwyhwdhKJRHL0IaVSIpFI8lBUVMTf//53SktLAdi2bRt//etfLWMPZPb3jh07+PKXv8zJJ59MSUkJNpuNyspK5syZw8UXX8z/+3//j82bNx9yvm1tbZx88snJXG6//XbZLS+RSI4IUiolEolkP4wZM4Ybbrgh+f/777//kMr53e9+x9y5c7n77rtZvXo1vb29RKNROjo62LJlC8899xxf/epX+fjHP35I5dfV1XHmmWeyevVqAL7//e9z991355zxLpFIJCOJHFMpkUgkB8A111zDj370IwDeeustIpEINpvtgJ+/Zs0aPv/5z2MYBqqqcskll3DeeedRVVUFQHNzM2vWrOGFF144pPzWr1/P8uXLaW5uRlVVfvOb33DdddcdUlkSiURyKEiplEgkkgNg7ty5eDweBgcH8fv9bN68mQULFhzw83//+98nx2L+5S9/4V//9V8t43Rd55133jmo3F577TU+9KEP0dvbi9Pp5K9//StXXHHFQZUhkUgkw0V2f0skEskBoKoq48ePT/6/vb39oJ6/c+dOIDZG8+qrr85bz+LFiw+43Mcff5wLL7yQ3t5eiouLef7556VQSiSSgiClUiKRSA6QxGQdgM7OzoN6rtvtBmBgYID6+voRyef+++/nIx/5CMFgkJqaGlatWsXZZ589ImVLJBLJwSKlUiKRSA6Q1KWEDnbyywUXXJAs45xzzuH3v//9QYtpKj/84Q+57rrr0HWdqVOn8sYbbxxUd7xEIpGMNFIqJRKJ5ADp6elJ/l5WVnZQz73uuuuSSw3V1dVx/fXXU1lZybx58/j85z/PQw89RG9v7wGVtWLFCv7jP/4DgAULFvDGG28wZcqUg8pHIpFIRhoplRKJRHIARKNRGhoakv+vrKw8qOfb7Xaef/55fvKTn1BbWwvEdu3ZuHEj9913Hx//+Meprq7mi1/8In19ffvNJUEgEEDX9YPKRSKRSA4HUiolEonkANiwYQN+vx8Aj8fDnDlzDroMu93OV77yFerq6ti0aRP33Xcfn/rUp5ITgEKhEL/61a84++yzCQQCOcv56Ec/ys033wzA9u3bWbZsGU1NTYfwqiQSiWTkkFIpkUgkB8CDDz6Y/H3x4sUHtUalFXPmzOFzn/scDzzwAPX19bz88svJFsx169bx+9//Pu/z7733Xr70pS8BUiwlEsnRgZRKiUQi2Q9NTU387ne/S/7/cCwqvmzZMn7xi18k///666/v9zn33HMPt9xyCxATy3POOUeKpUQiKRhSKiUSiSQP/f39/Ou//mtyks7s2bO56qqrDktdiZZKSB83mY//+Z//4dZbbwVi+4qfc845NDY2HobsJBKJJD9SKiUSicQC0zR59tlnOeWUU5KthkVFRfzjH/9AUQ7+0vnlL3+Zt99+O2/Mr3/96+TvB7M80M9+9rM0sVy2bJkUS4lEcsSR2zRKJJLjlhUrViR/N02T/v5+urq6WLt2La+++ip1dXXJv48fP56HHnqIE0444ZDqeuSRR7j77ruZPHky559/PvPnz6eyspJwOEx9fT0PP/wwa9asAaC8vJwbbrjhoMr/2c9+hhCCn/3sZ0mxfOWVVxg3btwh5SuRSCQHi5RKiURy3PLhD394vzElJSVce+213HnnnZSUlBxyXYnWzbq6On7729/mjJs0aRKPPvoo1dXVB13H3XffjRCCu+++O9kVvnLlSimWEonkiCClUiKRSACbzUZRURFFRUXU1tZy0kknsWjRIi677DJcLtewy1+9ejUrV67k5Zdf5p133mH37t309vaiKAqVlZXMnz+fyy+/nGuvvXZY9f30pz9FCMFPf/pTdu7cKcVSIpEcMYRpmmahk5BIJBKJRCKRjG7kRB2JRCKRSCQSybCRUimRSCQSiUQiGTZSKiUSiUQikUgkw0ZKpUQikUgkEolk2EiplEgkEolEIpEMGymVEolEIpFIJJJhI6VSIpFIJBKJRDJspFRKJBKJRCKRSIaNlEqJRCKRSCQSybCRUimRSCQSiUQiGTZy72+JRHLcYZom4XCYQCBAIBAgHA6n/YRCIcvHIpEIuq4nfwzDSPs38zEAIQRCCBRFSf4/8buiKAghAFBVFbvdjqZp2Gw2NE1L+3/iJ/G40+nE6XTicrnSftc0eVmXSCSFQV59JBLJqCMajdLf309fXx99fX1Zvw8MDBAIBPD7/QwODuL3+/H7/WmP6bpe6JdxWNA0LU02XS4XHo8Hr9eLz+fD6/Va/iT+VlRUhMvlKvTLkEgkoxBhmqZZ6CQkEsnxTSQSobu7m+7ubrq6utL+TfykyqPf7x+xujVNi/2oGqqqxv+NPWbTNGz2eCuhw4bdbgeT2A8C0zDBANNg6PH4j0BgmuDv9eMpc9PV2IsQIBSBogoUVUFoAs2motpUVFvs/0IFBIRDYUKBEMFAmHAwTDgUJhyMEAlHiEQiGKaOqZh4ylwEg8ERlWSHw0FJSQnFxcWUlJRk/SQeLysro7y8HKfTOWJ1SySS0YuUSolEctgwDIPu7m7a29tpb2+nra0t+XtHR0dSHPv6+g66bCEEDrsDh92BXbNjU+yoQkNFQ+gKRAVGxMQImhghg6jfRA/q6EEDt8dNWU0p1bWV1EytpGJSGWXjijEMk66GHrqbeulq7KWvrZ/+jgH6Owbp7xhkoGsQPWocVJ6KqvBfK7/Ed8+5F0M/sOcqqoK3zI2vwoOvwouv3ENRlZfSsSWUjS+mbGwJml2lu7mPjr1dtOxsp2V3O2172+lu7cUQBigmqCamaoJqgGZiaiZoRuwxzUj+H9WkZFwR/f39RKPRg34vvF4vFRUVVFRUUF5envZ76v9tNttBly2RSEYPUiolEskhEwwGaWlpobm5maamJlpaWpLSmBDHA5UUIQRupxun3YlNdWDDhqJriIiCEQDdbxDu1wn3RAj1RjBCsdbA/VFSU8T4E2oYP2cM42ZXUz21gmhEp213J627O2jd1UH7nk666nsY7AkM95BkcShSeSC4ipyUjy+hsraMqqkVVE+poHpqBXaXjba6Tho3t9CwpYWGTS10NfQcUJkmMRFFMzBtJqbNAJth+a9pM3EUa4RCoQMqWwhBWVkZNTU1VFdXU11dTU1NTfL/NTU1uN3uYRwRiURSaKRUSiSSnOi6TltbG01NTTQ3N2f9dHV17beMhCy6HG4cihNVtyHCCsYghHt1Ql0Rgl3hA5bEfCiqYMyMKmpPnMCEuWMYf0INmk2jYUsLjZubadjcQsuOdvo7BodVz8HldHikMheeUjc10ysZN7ua8SeMYfzsGoCYYG5spm5NPY2bW0ckl4SEmnYD7Dqm3Yj97hj6vWZmBZ2dnYTD4f2W5/P5kqI5fvx4xo8fz7hx4xg3bhyVlZXJCU4SieToREqlRHKcY5omPT091NfXU19fz759+2hoaKC+vp7GxkYikUje59vtdrwuH07VhabbIagQ7TUIdkbwt4Ux/CbCHJ4s5qN6agWTT5rA5JPGM2nhePy9AfasaWDf+iYaNjXTWd9NIa9yR1oqrSgbV8z4E8YwYd5YJp84nqJKL3vXN1G3up66D+pp2dF2WI+RiRnrfnfqmI7YD04d02FgOnS8Y1z09/fnLcNutzN27NikZCaEc8KECVRVVUnhlEiOAqRUSiTHCbqu09TURF1dHXV1dUmJrK+vZ2BgIOfzVFXF6/bh0txoug1zUCHSoxNsjRDsiEJUDLuF8WDQ7CqTT57AzMVTmLF4MkJVqPtgH3Uf1FO3uoGeloMfn3k4ORqkMhNfhScu4hOYcsoEVE1l+1t1bH+zjt3v7yMcyP9F4nBgqkZSMnHqMQF1RRm3oJrm5ua8wyhcLhcTJ05k0qRJ1NbWJv8dM2aMXGJJIjmCSKmUSI4xDMOgtbU1KY+Jn7179+bsghRC4HF58dg8aLoDBhXCHQb+phCRXuOISqMVLp+DWWdPY9aSqUw+aQLtezrZ/mZMgg53K9twORqlMpOqKeXMWDyFmYsnUzOjir3rGtn22i42r9rJYPfIzbQ/VExMcBiYrmhcNnVMZ5TxJ9bQ1NSUUzhtNhvjx49PiuaUKVOYOnUq48aNky2bEslhQEqlRDKKCQQC7Ny5kx07drBjxw52797Nnj17CASsJ5xomkaxpwSXcCMCGpEug8GGIKFOA2EUVhwzcbjtzFwyhbnnzWTyiePZs6aBLa/tYsebdfR3HrkxkcNlNEhlKu4SF9MX1TJ76TSmnDKR+o1NbHp5O1tW7STQf2CTco4kpoh3q7ujMdl0RzHdUezlas5JRE6nMymY06ZNY9q0aUyZMgWPx3OEs5dIji2kVEoko4Te3t6kPG7fvp0dO3ZQX1+P1UdYURSKPSU4hRsxqBJuNxisD6H3D38yzOFEURVmLJ7M/AtnMW1RLQ2bm9n4Ulxo+oKFTu+QGG1SmYrDY2fWkqnMPXcGtSeOp251Petf2MbW13YSDR/di8cnWjeNuGQmfmzlSs4W+zFjxiQlc+bMmcycOZPy8vIjnLlEMnqRUimRHIX09/ezdetWNm/ezLZt29i+fTttbW2WsW6XB5+jGHvIQaTDZGBfiHCXflgnx4w0FRNLOfGyE1hw0Wz6OwZZ88wmNr+yg4Guwne9DpfRLJWpuIudzD57GgsunkPFxFI2vLiV1U9tonVXR6FTOyhMzFiLpieK6YlgeqKUzyymvb3dMr6yspJZs2Yxc+bM5L/FxcVHOGuJZHQgpVIiKTCRSIRdu3axefNmtmzZwpYtW9i3b59lbJGnCI/qgwGNYEMEf0MYwuoRznhk0Owqc8+byUkfmktlbRkbXtjK6qc30bLD+uY+WjlWpDKVytoyTrzkBBYsn01vaz+rn9rI+he2FmSCz0hhagamJ4oRF82Ji2rYu3evZU/AmDFjmDVrFrNmzWL27NnMmjVL7iokkSClUiI54rS1tbFhwwY2bdrEli1b2LFjh2V3XJGnCK9WjOjX8NdHGNwXiu0UM8opqvRyypXzOfnyuXTs7eb9FevZ8urR3516qByLUplA1WLDFU65Yj5jZ1ez5ulNvPfoOrqbj64Z+IeKqRiY3iiGN4LpjTLmxHIaGxuz4lRVZfr06cydO5e5c+cyb948KisrC5CxRFJYpFRKJIcR0zTZu3cv69evT/60tLRkxTnsDoodpSiDdoKNUfx7I4jo6BfIVMafMIbTr1rI9DMms/mVHbzzyNpjrlXSimNZKlOpmFTKoo8sZP6Fs6hb3cA7D6+hbnVDodMacUzVwPRGMHxRTG+E0pleOjs7s+Kqq6uTkjl37lymTp0qlzeSHPNIqZRIRpBIJML27duTArlx40Z6e3vTYoQQlHrLcBleom0mfTuDR/0EmuEw9bRJLPnkqZSPL+HdR9fxwZMb8R+G7RCPVo4XqUzg9Do48dI5LPrIiQx2+3ntz++x7fVdR/WyT8MhOSHIF8YoijDtnAns3LkTw0h/r10uF/PmzWPhwoWceOKJzJw5U0qm5JhDSqVEMgx0XWfHjh2sXr2aDz74gA0bNhAMps9S1lSNElcpmt9JYF+UQH30mOjGzocQMOvsaSz55Km4fE5e/8v7rHtu8zHbxZ2P400qEyiqwtzzZ7DkE6dimvD6n99j40vbMPRj/5ZjKgamL4pRFMb0RXBPtGdtMCAlU3IsIqVSIjkIEt3ZH3zwAatXr2bt2rVZ28s57E5KnKWIHhv9O0NE2g/vNoVHE0LAnGUzOOczp2MaBq/9+T02vbz9uBCJXByvUplACJi1ZCpLPnkariInr/7hHdY9v+W4OidMzNiSRsURjOIwvqnOrB6MVMk89dRTmT59ulygXTLqkFIpkeyHjo4O3n333aRIZo6fstvslDjLULrt9G8PEekyj9mu7HxMP72Wcz+3GNWm8srv3mTra8dul+fBcLxLZSrTTpvEuZ9bjN1l4+XfvcWWVTuOy3MkUzK9Uxz09aVPbiouLubUU09N/lRUVBQoW4nkwJFSKZFkEI1G2bhxI2+//TbvvPMOu3btSvu7qmqUuspQeu0MbA8R7Tyye18fbUycP5bzbjiTokovr9z/Fhte3IZpyMtKAimV2cxeOo1zr19MJBTh5fveZOe7ewudUkFJSKZRHMEsCeMYr2TtijV58mROPfVUTjvtNBYsWIDD4ShQthJJbqRUSiTElvl59913efvtt/nggw8YHBzaBjAxscYR9DC4M0ywwThuurPzUTq2mAu/uITxJ4zh1QfeYfVTG9GjUpoykVJpjaIK5l84m3M+ezqd9d08//NXaavLnkV9PGIKE9MXwSgJM+OiiWzdujVtvUy73c78+fNZvHgxixcvZuzYsQXMViIZQkql5LhE13U2b97M66+/zttvv01dXV3a3512J0VqGdEGGNhx7C3vMxwcbjtLrj2NU66Yx7uPruP1P783qhe9PtxIqcyPZlc5419P4sxrTmH9C1t45f63R+2WnIcLUzMwSsIYJSHK5/mydv+pra1l8eLFnHnmmcyZMwdVHZ0bIkhGP1IqJccNoVCI999/n9dff50333yT7u7u5N+EEJR6ytD6XPRvDaF3Hd9d2lYIAQsvOYHzPreYvesbefHXr9NzjCxyfTiRUnlg+Mo9nPf5M5lxxmRWPfAO761YL4+XBYltJo3SEPM/Mp3169ej60OrKhQXF3P66aezePFiTj31VLxebwGzlRxvSKmUHNP09vby5ptv8vrrr/Pee++lLfdjt9kptVUQaRQMbAvL1sg8VE+t4ENfPQ/NrvHsvSvZuzZ7VxGJNVIqD46xs6q5+EtLsblsPPmTl2jcnL1ZgGQIUzUwSsMYZSE8U21pq1GoqsqJJ57I0qVLWbJkCWVlZQXMVHI8IKVScszR0dHBypUrefXVV1m/fn3aIsRupwdvpJjB7VEiLcixkfvB5tBY+ulFnHLFfFb94W3eeXjtcbUUzEggpfLgEQJOvGwu53/+TDb+cxsv3fcmIX/2VqaSdExMzKIIRlmIcYsr2LdvX/JvQgjmz5/P0qVLOfvss6mqqipgppJjFSmVkmOCzs5OVq1axcsvv8yGDRvSBrUXu0twDHro2xTC6FFkt/YBMvXUiVz2lfNo39PJ03e/Qm9r//6fJMlCSuWh4y1zc9HNS5m0YBzP/s8rbHl11/6fJEliOKMY5SGmXzyerVu3pv3thBNO4Oyzz2bp0qVyoo9kxJBSKRm1dHd3s2rVKl555RXWrl2bJpJlnnLULhd9m4Lgl4PWDwaH287yLy1l2um1PPs/K9m8ckehUxrVSKkcPtMW1XLp7cto2tbK03e/clxt8zlSmA4dvTzInCsms3HjxrTr5YwZMzjvvPM477zzZAumZFhIqZSMKvr7+1m5ciUvv/wya9asSevaLnGXobQ5GNgcQYSlSB4Kk08azxX/cSH1G5p45mevEOgPFTqlUY+UypHB7rJx4Y1LmLVkKk/+5CW2vbG70CmNWkybjlEeYt5V01i3bl3yOiqEYMGCBVxwwQUsXbqUoqKiAmcqGW1IqZQc9UQiEd555x2ef/553nzzTSKRoeVrStxlqJ1O+jeFEUEpkoeKzaFx/r+fydzzZ/L0T1+RrZMjiJTKkWXaaZO4/BsXsOu9vTx37ypCg3Ks5XAwNQOjIsicf5nM+vXrk49rmsaiRYu44IILWLx4MU6ns4BZSkYLUiolRyWmabJlyxZeeOEFXnrppbR9covdJdh7PPRuCCECUiSHS820Sj76nYvprO/myZ+8xECXv9ApHVNIqRx5nF4Hl9x2DpMWjOPhO5+lfkNzoVM6JjAdOnpFkNrzq9N2EnO5XJx99tlcdNFFnHTSSXJPcklOpFRKjipaWlp44YUXeOGFF9JmLjrtLryhEvrXR6BfiuRIceqV8znvhjP5529e5/3HNxQ6nWMSKZWHj3nnz+SS25fxxoMf8MZf3jsu9xE/XBjuKEZlgMpTi2hpGVrWqaamhuXLl3PxxRczZsyYAmYoORqRUikpOJFIhNdff50nn3yS999/P/m4pmqUqhUMbtGJNsvFyEcSp9fB5V8/n6rJ5fzj28/Ququj0Ckds0ipPLyUjS/hqjsvYbAnwGP//TyD3bKlfSQxiW0ZqVcFcU9XGRgYSP7t5JNP5pJLLuHss8+We5FLACmVkgKyb98+nnrqKZ577jl6enqSj5e5KzD2afh36AhddrOMNONmV/PR71zC3nWNPPOzV+QWi4cZKZWHH9WmcuGNZzFn2Qwe/e6z1K1uKHRKxySmYmKUB1nw8el88MEHyce9Xi/nn38+l1xyCTNnzkQI2QBwvCKlUnJECYVCrFy5kqeeeop169YlH3fZXbgHiulfH5UTbg4jJ156Ahd+cQnP//xV1j67udDpHBdIqTxyzFoylcu/fj6v/ek93vrb6kKnc0xjOnT0qgCVi3xp3ePTp0/nyiuv5Pzzz8flchUwQ0khkFIpOSLs3buXFStW8Pzzzye7T4QQlNorCG01iTTKRckPJ6qmcNHNS5mxeDJ/++aTNG9vL3RKxw1SKo8s5RNKueYHH6JpWxtP/vifRELRQqd0TGNiYhZHOOf2U1i1ahXhcGw2vsfjYfny5VxxxRXU1tYWNknJEUNKpeSwoes677zzDo888gjvvfde8nG3w4Oz18fA+qhcT/II4Cl1c/V3L8EwTP7x7WfkwtFHGCmVRx6Hx86/3HERRVU+/vqfT8rdoI4QpmagVwWoWVJMY2Nj8vETTzyRK6+8kiVLlqBpWgEzlBxupFRKRpz+/n6eeeYZHnvsMZqamoB4q6StguAW5KSbI0jNtEqu+eHlbFm1kxd+9ZqUmgIgpbIwCAFLP306p1w5j7/f8TT7NjQVOqXjBhMTsyTM6V+YxxtvvJFcXL28vJzLLruMK664goqKigJnKTkcSKmUjBh1dXU88sgjvPDCCwSDQQDsmh1voJTBDQZKSH5DPZJMPW0S/3LHRbz469dY++yWQqdz3KKoCne8dBP/fd4vpFQWgFlnT+VDXz2Pp+9+hc2vyEX9jzSGXUev9lM0305XVxcQW1j9/PPP5+qrr2batGkFzlAykkiplAwL0zR57733+Otf/5q2HJDPUQT1ThadcSrnXX9WATOUSCQSSaF5+fdv8spTrzLn6klpO/ecfPLJXH311SxatEguqn4MIKVSckhEo1FeeeUVHnroIXbu3AnEu7i1CvwbTYz22MQboQi5vMQRRAg49/rFzD1/Bg/9xxO07e4qdErHPbKl8uigdGwR1/zwcvaubeTZe1Zi6PLWdyQxTRPTiB1zwxthye0LWbVqFbquAzBx4kSuvvpqLrroIrnm5ShGSqXkoPD7/Tz99NP84x//SC4joakavlAZg2sMREhOvCkUiqpw5X9eQGVtOQ9+7XH6OwcLnZIEOabyaMJV5ORj37uMkD/M37/1NNGwXuiUjmtMh44+xo9zpmBwMHa9Ki4u5sMf/jAf/ehHKSoqKnCGkoNFSqXkgOju7uaRRx7hscceo78/NpPSYXPi7CoisMlERGW3RSHR7CpX3XkJdredh77xhFzQ/ChCSuXRhWZX+eh3LsHpc/DQ158g5A8XOqXjHlM10KsDVC72JhsrXC4XV1xxBVdffbWc1DOKkFIpyUtHRwcPPvggTzzxxND6Y3YvSr2L0C6BMGTXdqGxu2xc84PLCQcj/OO/ZOvL0YaUyqOPRKt+xcQy/vyVx/D3BgudkoTYrHGjIsTkD1WxY0dsUpXdbufiiy/mmmuuYezYsQXOULI/pFRKLGltbeXBBx/k6aefTspkkb2Y6DYbUblQ+VGDq8jJJ35yJV2NPTz2vRektByFSKk8OhECLr51GbUnjudPtz9Kf4ccLnK0YGJilIaZ9a/j2bhxIwCqqnL++efziU98gkmTJhU4Q0kupFRK0mhpaeHPf/4zzzzzDNFobCeKIlsp4Y0KRrsqZfIowl3s5Nr/+QgNG5t5+mevJAfBS44upFQe3Zx3w2JOWDaDB770MH3tA4VOR5KCiYlZFGHhddOSG2goisIFF1zApz71KcaPH1/gDCWZSKmUANDW1sYf/vAHnnnmmeRsvGJbKaH1CkanlMmjDZfPERPKTc08ffcrhU5HkgcplUc/y647g7nnzeCBmx+WE9yOUgxvhNO+OJs33ngDiLVcXnTRRVx77bWyW/woQkrlcU5PTw9//vOfWbFiRbKbu9hWRnCdgC65WPnRiNPr4FP3fITGLa08/dOXkJ/goxsplaOD825YzOyl03jgSw8z0OkvdDqSHBjeCCf/+wzefvttICaXl1xyCddeey3V1dUFzk4ipfI4ZXBwkL/97W/87W9/IxCI7QVdpJUQWqdCt5TJoxWn18G1P/sXWna28+SP/ymFchQgpXL0cMEXzmLG4in84ZaHGeiSYnk0Y/jCLLx+qFvcZrNx5ZVX8slPfpKSkpLCJnccI6XyOCMUCvHYY4/xl7/8hd7eXgB8tiLCGzTMDk12cx/F2F02rv3Zv9C+t4snfviiFMpRgpTK0cWFX1zCtNMm8X83/YNAf6jQ6Uj2g1EUZu6nalmzZg0AHo+Hj3/841x11VU4nc4CZ3f8IaXyOME0TV566SXuu+++5DpgHrsXY6sDvUmOmTzaUTWFa354OSF/mIe/86yclDOKkFI5+rjsK+dRPaWcP97+KJFgtNDpSPaDiYlZEqb2w5XJpYgqKir47Gc/y/Lly9E02ft2pJBSeRywfv16fvnLX7JlyxYAnDYXap2byB4pk6MBIeDDdyzHW+7mL199HD0i16EcTUipHH0IRXDVnZdgc2g89B9PyvdtlGBiYlQGqVjqTjaeTJo0iS984QucccYZcsvgI4CUymOYhoYG/vd//5dXX30ViG2n6GwrJrxNlYuWjyKW37yUiQvG8sDND8udckYhUipHJ5pd5d9+ciV97QOs+N7zcrjJKMIUJvoYP56FCn19fQCcdtpp3HTTTdTW1hY2uWMcubfeMYjf7+dXv/oV1157La+++ipCCIpC5ShvlhDZokmhHEWc9W+nMP2MWv7ylRVSKCWSI0g0rPPX/3iSqsnlXPCFJYVOR3IQCFOgNXkIPu/gmmuuwWaz8e677/KZz3yGe++9N7nVsGTkkVJ5DGGaJi+++CL/9m//xl//+lei0ShFohTb6jJC72mIiFroFCUHwQnLpnP61Sfypy8/xmBPoNDpSCTHHSF/mL98dQVzzpnOKVfMK3Q6koNE6AqPfvFlxFtFnHXWWei6zsMPP8zHP/5xHn/88eQGH5KRQ0rlMcKuXbv40pe+xF133UVnZycuzY1jWxmh1+yIQTlIebQxbnY1l331PP72zafoae4rdDoSyXHLQJefB7/+OOfdcCZTTp5Q6HQkh4AIarz3wx3YNpZQW1tLb28vP/3pT7nhhhvYtGlTodM7ppBSOcoZGBjgnnvu4brrrmPdunWoioq7owx9lRfabYVOT3IIFFf5+NgPLueZu1+hfmNzodORSI572uo6efSu5/jody6hYmJpodORHCJKj4OmP/vRdvnw+Xzs3LmTG2+8kZ/85CfJsZeS4SGlcpRimiYrV67kE5/4BI888giGYeDTS1HfKUXfakOYctzkaMTusnHNjy7ngyc2sOGf2wqdjkQiibPj7T2seuAdPv6jK3AXy/UPRysCgdrsJvSik4svvhjTNHnyySf5xCc+wXPPPYecuzw85OzvUUhrayv/8z//k9wD1a150Dc4oFO2TI52rr7rUkzD5OHvPCNnmx4jyNnfxxaX3r6Mioll/OnLj2Lo8kM62jGKwoy7vJg9e/YAsHDhQm6//XY5S/wQkS2Vowhd13nkkUe49tpreeONN1CEgruzlOgqjxTKY4DF15xM+YRSVvzgBSmUEslRynP3rkK1q5z7uTMLnYpkBFD67DT9xY9a58XhcLB27Vquu+46/vznP8uJPIeAlMpRQl1dHTfddBP33HMPgUAAj/ChflCKvsUuu7qPASafNJ4lnziVv3/rKbmDh0RyFKNHDf7xradZsHw2s8+eWuh0JCOAMAVaowfzdR+nn346kUiE++67j3//939n586dhU5vVCGl8ihH13Ueeughrr/+ejZt2oSm2nA1lhF5zYXil7O6jwWKKr185NsXs+IHL9BZ31PodCQSyX7o7xzk4e88w+Vfv4DyCXLizrGCCKms/n+70bYV4fP52L59O5/73Oe4//77iUTkOsEHgpTKo5j6+npuvvlmfv3rXxOJRPAaxShvFWPU2eT2iscIiqpw1Z2XsObpTWx7fXeh05FIJAfI3rWNvPrHd/nX712GzSm/4B8rCARqu4vQPx0sWbIEXdd54IEHuP7669m2TU6e3B9SKo9CDMPgkUce4bOf/SwbN25EUzSce0oJv+lAhOUC5scSy64/A103ePl3bxU6FYlEcpC89bfVdNZ3s/zmpYVORTLCiIjKOz/YhralmJKSEurq6vj3f/93/vznP6PreqHTO2qRUnmU0d7ezpe//GXuueceQqEQbsOH8k4JZoNdtk4eY0w+aTwnXzaXR+96DtOQM3MkktHIEz/6J9NPr2XOOdMKnYpkhBEI1E4n/udsLF26FF3Xue+++7jllltoamoqdHpHJVIqjyJee+01PvOZz/DBBx+gKhrOhlKib7oQIdk6eazhLnby4TuW8+RP/klf20Ch05FIJIdIoC/Io//9PJd9+TyKq3yFTkdyGBBRhbe+twVtexFut5v169fz2c9+lmeffVaua5mBlMqjgFAoxN133803v/lN+vr6cAsvyrvFmHtk6+SxyuVfv4Dtb9ax5dVdhU5FIpEMkz1rGnj/iQ38y7cuQijymn0sIhCobS6iq9zMmzcPv9/PD37wA77zne8wMCAbBhJIqSwwu3fv5oYbbmDFihUAuDqLib7uRgnKgd/HKidddgLlE0p5/uerCp2KRCIZIVbe/zaqTeXMa04udCqSw4gIqWz7dSs33HADqqryyiuvcP3117N169ZCp3ZUIKWyQJimyVNPPcUNN9xAXV0ddtWBbVMpxhanXHfyGKa4yscFX1jCiu8/TyQk16OUSI4VDN1gxfdf4Kx/O5XK2rJCpyM5jAgEf7j2cZQPihkzZgxNTU3ceOONPPLII8d9d7iUygIQCoX40Y9+xI9//GPC4TDuqA/eLELpthc6Nclh5kNfO48PnthA45bWQqcikUhGmI593bz6p3e54j8uRFFl48CxjjJgo/PRKEuWLCEajXLPPffwrW99i/7+/kKnVjCkVB5hEt9onnnmGQQCZ3MJ0bddiIh8K451TrxkDsXVRaz8v7cLnYpEIjlMvPW31WCanH71SYVORXIEELrCOz/YhrrLh6ZpvPrqq1x//fXs2LGj0KkVBGkyR5A333wzebLZFDvahmLMXQ45Gec4oKjSy4VfPJvHf/AC0bBc40wiOVYxDZMVP3iBsz95GhUT5W47xwMCgdbsRrxfRE1NDc3Nzdx444289NJLhU7tiCOl8ghgGAb3338/3/jGNxgYGMCpexBvF6H0OgqdmuQIcclty1j99EYaNrcUOhWJRHKY6djbzet/eY/Lv34+QrYZHDcoAza6VuiceuqphEIh7rzzTn79618fV4ulS6k8zASDQb7zne/wwAMPAODqKcZ42yN3xjmOmHnmFGqmV7LyftntLZEcL7z519U4vQ4WLJ9T6FQkRxARVVj3s71cc801ADz00EN87Wtfo6+vr8CZHRmkVB5G2trauOmmm1i5ciVCKNh3l2BslLO7jydsDo2LbzmH5+5dRSQoZ3tLJMcLhm7w1E9f5oIvnIXLJ3uljicEgke/+DLa1mIcDgfvvfceN9xwA3v27Cl0aocdKZWHic2bN/P5z3+e7du3YxM2tHXFiCZ5YTneWHLtabTVdbD1NbnIuURyvLFvfRM73t7DeTecWehUJAVA7XBivO2hpqYmOUl3zZo1hU7rsCKl8jCwcuVKvvSlL9HZ2YnDdCHeLUbpk8sFHW9UTCzltH9ZwLP/s7LQqUgkkgLx4q9fZ86y6YybU1PoVCQFQBmMjbM84YQTGBgY4Mtf/jLPPfdcodM6bEipHGEeeeQRvv3tbxMOh3EGvZhve+Xe3ccpy285h7f+tpru5uNjLI1EIslmsNvPK797i0tvWyYn7RyniKjCjt+2s2zZMqLRKN///ve5//77j8mF0qVUjhCmafK///u/3HPPPZimiaPLh/G+G6HLQ3w8MvW0SVROKuONB98vdCoSiaTAfPDkBjS7ytzzZxY6FUmBEIbgjbs28fGPfxyABx54gO9///tEo8fWWPtRZzy7d+/mxhtv5Oabb+ZrX/safr+fl156iS984QvccssttLbGdip56623uPHGG3n66acPe06Jbx4PPvggAPaGIszNLrn+5HGKUAQX3riEl377hlyTUiKRYOgmL/zqdc674Uw0u+y5Ol4RCB658SW0HT5UVeX555/njjvuIBQKFTq1EWPUSeXEiRP51a9+xc9//nNmz57Na6+9xt///nfuvfderr/+ev74xz8CMan8xS9+cdg3eQ8EAnzjG9/g+eefRyCw7SxC7JFCeTxz4iVz0KM6G144vOeeRCIZPex8Zw+d9d0s+uiJhU5FUmDUVjdivQ+73c6bb77JV77yFQYGBgqd1ogw6qRS07Tk78FgkOrqaiZPnozNZmPevHns3r0bgNNOO40vfvGLzJx5+LobBgcH+epXv8q7776LKlTUTcUoLa7DVp/k6MfusrHs+sW88MvXOAaHy0gkkmHwwi9f46xPnIK7RN4njnfUbgfm+x48Hg/r1q3jlltuobu7u9BpDZtRJ5UA7733Htdddx1r1qxBVVXcbnfyb4mV68866yx+/etfc9lllx2WHPr7+7n99ttZv349qtBQ1hahdsslg453zvjXk2ja0sKeNQ2FTkUikRxltO7qYOuruzj72tMKnYrkKEDpsxN+3UFJSQk7duzgpptuSg7hG62MSqk89dRT+f3vf88555zDunXr8Pv9yb+p6uEfr9LT08Ott97Kli1b0NBQVheh9Mslg453nF4Hp199Ii//7q1CpyKRSI5SVt7/NideMoeiSm+hU5EcBSiDNgb/qVJdXU19fT233norbW1thU7rkBl1UhkOh5O/ezweXC4Xe/bsIRKJsGHDBqZMmXJY6+/q6uKWW25hx44daNgQq4tQBm2HtU7J6OCMfz2R3e/to3VXR6FTkUgkRym9bf2sf2ErZ33i1EKnIjlKUIIa3U/qjB07lsbGRm655ZZRK5ajTirff/99br75Zm655RZWr17NpZdeylVXXcWXvvQlfve733Httdcetrp7e3u57bbbqKurw4Yd8UERil8KpQRcPgenfWQhK/9P7u8tkUjy89qf3mPBRbMorvIVOhXJUYIIq3Q8HmbMmDFJsWxvby90WgeNMI/F1TcPA/39/dx2222xbRexI973IYLa/p8oOS4493OLKR1bzCN3PlvoVCRHGYqq8F8rv8R3z7kXQzcKnY7kKOHiW89BVRWe+unLhU5FchRhOnTKL7fR3NzMuHHjuPfee6msrCx0WgfMqGupLAR+v5+vfe1rbN++HQ0bfCCFUjKEq8jJaf+ygFUPyFZKiURyYLz+p/eYd8FMiqtla6VkCBFS6XwiQk1NDY2Njdx+++309vYWOq0DRkrlfgiFQvzHf/wHmzZtQkVDrPGhBKRQSoY49cPz2fXuXjr2jv7lICQSyZGhv3OQ9S9s5YyrTyp0KpKjDBFS6XoySmVlJXv37k1u9DIakFKZB13XufPOO2NLFwkVZa2clCNJR7OrLPrIQt546INCpyKRSEYZb/1tNQsvmYPLJ5ejk6QjQio9zxkUFxezZcsW7rjjjrSJykcrUipzYJom99xzD6+//jqKUFDWFaEMSKGUpLNg+Rza6jpp2jq61xaTSCRHnq7GXna9t5dTrpxf6FQkRyFKQMO/SsXlcvH+++/zve99L7kW99GK7MfNwUMPPcSKFSsA0LYWoQ46QW7ZKklBKILFHzuJ53/xKooqv59JrEmcG/IckVjx1t9X87HvfYh3Hl5LNHx0C4PkyKMEHOgfgDY/wiuvvEJZWRm33HJLodPKiZz9bcGLL77IXXfdBcCll17KWWedVeCMJBKJRCKRHK+sX7+ehx56CIDbbruND3/4wwXOyBoplRmsW7eO2267jWg0iq3Fg1ZXVOiUJEcpn7z7w2z45zbWPrO50KlIjmIUVeGOl27iv8/7hVxSSGLJjDMns+yzZ/Cb6x4sdCqSo5hP3H8Zv/3tb1FVlR/96EecdtrRt92n7P5OobW1lW9961sxoex1I3Z6MJA3AUk2lbVl1Eyr5MGvPS5FQXJAGLohzxWJJdte383ym5cyfk4N+zY0FTodyVHKHz71OBfddRHPP/883/72t/n1r39NbW1todNKQw7yiRMKhfjmN79JT08PWtiB2ORFIAqdluQo5ZQr5rH2uc1EQtFCpyKRSEY5pmHywRMbOPXDcsKOJDcCwSv/tYb58+czODjI17/+dXp6egqdVhpSKonN9P7JT37C9u3bUU0NZZ0PYUihlFhjd9lYcNEc3l+xodCpSCSSY4Q1T29i5plT8JS6C52K5ChGmIKt9zUzduxYmpub+e///u+jaka4lErg73//Oy+88AICgbLRhwjJad6S3Mw7fyaNW1vorJeLnUskkpFhoMvPtjfrOPHSEwqdiuQoR0QV2p8K4nA4ePfdd/njH/9Y6JSSHPdSuXHjRn79618DoO7yovTaC5yR5Gjn5Mvn8f7jspVSIpGMLO8/vp6TPzQXITvKJPtB8dv48pe/DMADDzzAu+++W+CMYhzXUtnf3893v/tdDMNA63KhNLsKnZLkKKeytoySMUVsf7Ou0KlIJJJjjH3rGgGYOH9cgTORjAZ+esnv+dCHPoRpmtx11120thZ+E47jVipN0+THP/4xLS0tqFEbyjY5MUeyfxYsn8PGl7ajR46eMSwSieTYwDRh3fNbWLB8dqFTkYwSnv/GO8yYMYPe3l6++93vFnx85XErlU888QSrVq0aGkepH7eHQnKACEUw/8JZrHtOrkspkUgOD+ue28Kcc6Zjc8gV/yT7R5iCPX/pwu12s2HDBh58sLBrnR6XJrVnzx7uvfdeAJTdHrmnt+SAmHzSBML+MI1bCt/FIJFIjk26m3pp293BzLOmFjoVyShBhNTk1o33338/27ZtK1gux51URqNRfvCDHxCJRND6nKhNcvkGyYGx4KJZrHt+S6HTkEgkxzhrn5Nd4JKD46eX/p6lS5ei6zp33XUXwWCwIHkcd1L5j3/8gy1btqCYKspWOY5ScmCoNpWZZ01l4z8L9w1QIpEcH2xZtZPaheNweh2FTkUyShAI3vrRZsrLy9m3bx+/+c1vCpLHcSWVe/fu5Xe/+x0Ayg4PIizXo5QcGFNOmUB3Uy/dzX2FTkUikRzjBPqC7FvfxMyzphQ6FckoQkQV+lbFJuo8+uijbNq06YjncNxIpa7r/PCHPyQSiaD2OlDanIVOSTKKmLN0OptX7ih0GhKJ5Dhh88odzFk6rdBpSEYZSo+Diy66KLlTYDR6ZLcSPm6k8qmnnmLTpk0opoK6zSe7vSUHjKIqzFoylc0rdxY6FYlEcpyw9bVdTDllIg633JBDcnC8cudqiouL2b17N3/729+OaN3HhVT29vby29/+FgCxW3Z7Sw6OySeNp699QG7LKJFIjhiDPQEaNrcwY/HkQqciGWWIqMKNN94IwP/93//R2Nh4xOoeEans7+8v6BT2/fHb3/6Wvr4+1IANVe6aIzlIZpw5ha2v7Sp0GhKJ5Dhj62u7mHGmHFcpOXh+eunvOemkkwiHw/z85z8/YvUOWypXrVrFDTfcwLe+9S0Adu7cyVe/+tVhJzZSbN26lSeffBIAZYec7S05eKYvqmXnO3sKnYZEIjnO2PnOHqaeOhGhyPuW5OAQCDb8di+qqvLmm2/ywQcfHJF6hy2Vf/zjH7nvvvvw+XwATJs2jba2tmEnNhKYpsm9996LaZoo7U6UPjk2RXJwlI0vwVXkpGFzS6FTkUgkxxmd9T0EB0KMm11T6FQkoxAloHHllVcC8Mtf/vKIbOE4bKm02WxJoUwgxNHxreqNN95g48aNCFNBq/MWOh3JKGT66bXsem8vpmEWOhWJRHIcsvPtPUw/fVKh05CMUp786qt4vV527tzJc889d9jrG7ZUjhkzhvfeew+AwcFB7r//fqZNK/wyCLquJyfnKA1OOTlHckhMP72WHW/tKXQaEonkOGXH23uYtqi20GlIRikiqnDttdcCsfklgUDgsNY3bKm8/fbbeeGFF2hvb+djH/sYzc3NyT0oC8lLL71EXV0dwlBQGzyFTkcyCtHsKpMWjGPnu3sLnYpEIjlO2bOmgaopFbiL5drKkkPjd//2MGPGjKGrq4vHH3/8sNalDbcAn8/HN7/5zZHIZcSIRCL8/ve/B0DZ50box8XKSZIRZtzsGnpa+hjs9hc6FYlEcpwSCUVp2tLCxPnj5CoUkkNCmIJrr72WH/3oR/z1r3/lyiuvxOk8PF9SDlkq//SnP+X9+yc/+clDLXrYvPjiizQ3N6NEVdQmd8HykIxuJi0cx561R259L4lEIrFiz9pGaheOl1IpOWR+dvn/UfORGlpaWnjiiSe4+uqrD0s9h9yEF41GiUaj7N27l2eeeYbe3l56e3t55plnaG5uHskcDwrDMHjooYcAEPUuhHF0TBqSjD5qF45n79qGQqchkUiOc/aubWDSwnGFTkMyihGmSDb2Pfjgg4RCocNSzyFL5Wc+8xk+85nP0N7ezu9+9ztuuukmbrrpJn7729/S3t4+kjkeFG+99RZ79+6NjaVskQudSw4NVVMYf8IY9sqWSolEUmDqNzVTWVuG0+sodCqSUcw9V/6B6upqurq6ePbZZw9LHcMebNjZ2YnLNSRvTqeTlpbCremXaKVUGp1yLKXkkBkzs5r+jgH6OwcLnYpEIjnOiQSjNG9vZ+L8sYVORTKKEabgYx/7GAAPP/wwhmGMeB3DnqizaNEibr31Vs477zwgNut60aJFw07sUNi0aRPr169HmAK1WY6llBw640+ooX5j4YZxSCQSSSr1G5sYP6eG7W/WFToVySjm1x97EM/5Hvbt28d777034r427Ka8m2++mauuuor6+nr27dvHVVddxU033TQSuR00K1asAEC0OeS6lJJhMW5WNU1bWwudhkQikQDQtLWVsXJnHckwEbrCJZdcAsRaK0eaYbdUAixZsoQlS5aMRFGHTF9fH6+88gqAbKWUDJuxs6p5++G1hU5DIpFIAGjc0solty0rdBqSY4DHv/Yy4jTBO++8Q1NTE2PHjtywimFLZa6Fzu+5557hFn1QPPfcc4TDYcSghhgYEVeWHKc4vQ6Kq3207izchDOJRCJJpbupFyEEpWOK6G7uK3Q6klGMCGmcfPLJvP/++zz77LNcd911I1b2sO3r+uuvT/4eDod59dVX0ybuHAlM0+Tpp58GQG12IZDLCEkOnbEzq2ir6yQa1gudikQikSRJdIFLqZQMl7V/3gGz4Nlnn+XTn/40qjoyQwaHLZXz5s1L+//JJ598xLdp3L17N3V1dWAKlHa5lZVkeIyZWUXztrZCpyGRSCRpNG1rZezMKja9vL3QqUhGOUqnA6/XS1tbGx988AGnnXbayJQ7IqWksHPnTtrajuwN+cUXXwRA6bTLZYQkw6aytpy23Z2FTkMikUjSaKvrpLK2rNBpSI4BhCk4//zzAXj55ZdHrNxht1QuW7YMIWLdzYqiUF1dzY033jjsxA4UwzCSB0S2UkpGgsraMtY9v6XQaUgOBCHANIcfM5LInA6MozGno5z2ui4qa8sLnYbkGOHpu1bBPHjttdf4yle+gqYNfz7KsEtIzLguFFu3bqWlpQWhC5RuuduAZHgIEWupbN9TwJbKA73ZwsjclEeqvoPJaSTKEgcxdnp/r1HmVJicRuL8PBzHaX9xBRLdjn1dFFf5sDk1IsFoQXKQHDuIXhulpaV0d3ezevXqEekCH3Zf8e2335712Fe/+tXhFnvAvPXWWwCIbrvc51sybIqri9AjOgOd/oN/8oHcvIXIH5d6sx1OPQdb1nDrS4050LJyxY1UzJGuT+Z04PXles5oyWl/5ezvc36gMRlEwzrdzb1UTpJd4JLhIxCcffbZAKxatWpEyhy2VPb29qb9PxQKHdExlW+++SYASpdspZQMn8raskNrpTxYObOKy3zsUGNGsqxDicnFkc7hYGW4UDkdyffhaMjpSNZ3OM+VIy26cdr3yC5wycjxzPdiMvn2229jjkAL/CF3f//hD3/ggQcewDAMzj33XCC2tI/L5eKjH/3osBM7ENrb29mxYweYUiolI0PFpFI69nUf3JOGczNPfIjz3XwOJmY4+RQqp0TsSMUMN/eRzint9xwX7WP9GBSqvuHkNFLn+cHmsx869nZRMan0gGIlkv0h+uzY7Xba29vZu3cvtbW1wyrvkKXyU5/6FJ/61Kf4xS9+UbBtGd9//30AxICGiB6BWd+JC8bRNHBcCBAKGEdoTUVFRSgCM3qExvMoKkJVMSPhI1JdSU0R3U29eWOEpiE0DSMUyhFwkEK1H4SmIex2jEBgWOUcaIuI0DSEw4Hhzz0EQGgawuXCGBgYdn0HEitUFcXtRu/vH1Y5BxpzpOs7kDihqiheD3rvftYoHKmchIJa7D2y9fk8+Y/5gcSMaE4Cxesd/nl+oIIKKC5X3s9ed3MftQvH7b/OEURxOjGCwSNWn7DZj9g1H2LXsyN2TztQFPWI3NeFIViwcCHvvvsu77zzzrClctgmViihBFi3bh0ASo/dOkCI9J9cCBF7A/cXI/ZzuBLlHEBZQtMOLEbJsyCpEAjNhlDV/HGKirDZDyhG5Jv9pagI2wF8D1FUhMOx/7IcjlheeWIUu22/dSlOJ4rTuf+y3G6EI3eLttA0SsaV0dORW94SwoXNhrKfshSPB8WZe0WCmCR4UfJsFpCQmwMRDtXn229Zqs8XKy9vTh5Qcp/riRihaSheb/76iov2H1NSst8YxecDm4bq8+23rJGIUYqLwG5DLS7KX1ZZ6QHElOT8+8GUoxQXgabljUMosdc3EjHFRRB/D0eirHzHHKGgFnlj9eWLg/3HCAXV59tvOarPl/e8SxYXF8t8KF5v3s8VELseeDz5Y9xuUNW8cT0tfZSMK8lfnxAobvf+Y+LXznzXqVhiyn5jhMOR9/p6oDGx+kT+6zkx8RyRGE0DoeS/XzHUmDDcmKQj5Lsfp8YeSFn7i9mPAyUm6CQa6obDIUvlDTfcAMCyZcs499xzs/49EqxduxYApdfipElIYOInF6myKJTc3RcHGCMUgVD2I4vxleuFmkM+U2MUYX3SxIUyLwlRTK3Pqqx4ayCKyP3hShVKVc0d43AgbBpCiLxxit2GEAKhKtYf+oRQKkr+GKcjJkCKEsvfAqFpsbi4qFtd1BKPl9T46G0fzBuTT7ggdpyFyxWLyyGfiRgRz8lKBpNCqcTOh1zCmBZnt+Uuy+uJvSc2zfJmk4yJnwP7i0kcE6sbblIE4+dA3phE3vuJAXKK5VB9Sv6Y4qJYjN2WPybxucxx7UiLyyF6mWWpxfupb7/CGM8pV1xSBJUDi8kljImYxDE/kLh8MXFZzPmlIBGTONa5pDERt7+Y+HmOklsG1cR5pyp5hVHxemNxecRS8Xrj1zI1p8TFPp+x61Re0UtcWxTFWiyFoK8nTEm1LymOVjGKy5UUif3Wl8grhzQmH88TIxyO2DEQIqc0Zsbki4vVl1ssY40kYv8xKb/nlMuUe3suIUx9fDgxsWrEkCfkEsLUx4cTM1RpbncBfnP9QwBs2rQJwzDyl7UfDrn7+7777gMKt6RQW1sbTU1NYIIYyDhZrFoVhQIY6V0Q+2t5PMiyUmVSqCqmrqfFJOQuqywzpYnbIk4oApOUpnALoRSqGhutlYhJiGJWdQIz9ZxJFUqI/Wso6d0BVi2UqoqArBiRctIKITAzj51F66NQFSCluyNFKGP/V+Ibb2bEOB0Z5aiQ0W2S6DpO/TAlPvBmvPs6VTRLqr30tA7kjkkVSpsNBdK6wZNCmUpGXKpQpuakuFzJLu5UUYy9XpE7Jv73ZFn2eH2pcSkiiFCSYpnoZsuKAYTdHisnTwyQ9jqScakimMg9pRsxKyaR935iMl9rWpyaeH0iKTCJbtIsWYSkWOaNUZW0mJxxcYlLdBWPVExaXCqZcamyeKAxYkgGs7q4M495ZlymeOaKSQhlgoz3ZehFZlwn4tKYjMsUz1wxCaGM/1+oZHVfq5nnXfw9Nk0zLU7xeuPXptjxEEZ2WQmhHCpLTftcQYpQJh9QsmKScWkPxMTSGByMFx6TxZ62QTwlLlSbih7R08tKFcpkUiK7PiGyv+zGpTG1m1txOrNzz4hJyOJQ0QIcjuS1M+3xzN8z4rJEMy6Nadf0hFDmiclFVlmZ8icy7n1WMfHH9tddnryHpMYp+7m3W8QkH9tfV3jieUa6T2RUSJq7xGPEoIbT6WRgYIC9e/cyefLk/HXlS+OQnxnn+9//ftZjP/zhD4db7H7ZunUrAGJQi+2ik2xZyCOLCVM/kJiDLMuqdTLZEplLKImdVKn15Y2LN2PnaqFMtkTmEMpk3omTL1MoE6R9YPN0eSdaIi2EMrWs5IfyQLuzU4Uy+XhKi6WFUCZfnk1LfiO1Esqs+BShdPkcqJrKQLc/7W95WyjjLZGJm0mWUKbkD9ZCmZqL4nJlC2WyDGEdY9VCGy8/lwimimXOGOJiuZ8Y4t34yfpyiGBCLHPGMCSW+WJSW6myhDL19ccFxlLeEsTF8kBikvXliotL3EjFHGh9lkJ5oDEpYhn7v5K7tTQRZyWUVjGZQpkgtcUytfXRqiyfz1oorWJShTL5+pTs1kirvDNaLdOEMjUmpcUyUyiTVWa2WFpdN+JimYjLEs/UOI8nTRb1iM5gT4DiqvhrymyNzNH7lYxJCGWu+uKtkVlCaRETK87iGGS0WOZslUyJy9ktntkamev9y2iZzEXq/cHynEppsczb4nigLZMp9z9LT0htsdzPEDXL33PF5fKXTMcBBILZs2cDsHHjxtxlHwDDlspdu3ZlPbZ9++HflzRRhxhMkZQDaH1UHI68Y+GSMW73fstKNCnn6+5W3O4DGo+jFhXlFsFkdfvv8la9HtTS4vwxRV7UinJroRyqLN5lkL8xWykuQquutBZKYhcNpaQYbdzYvEIp1NiFylIok5UpsbIm5h+krpSVoE2pzSuUie7d1AtZUYWH/s7BtAm6alkpyvTJuXMClPIylJlT88aQIp25jlUs91LE3Bm53xdFoJSXwYKZuWOIyXVszFgOEQQQCkpZKcapJ+Q915WKMoxFc/PGiLi85BTBZO6l6GfOy5u7Ul5KdMn8vDHYtNhYTCuhTCYlEGUlRJYuyP/ForSY8LkL88Zgt8XqyyV4ibKKiwidl78s4fPtNwZNO7D6vF7CF56U+xgkYi44Me9xIjHWNJcsJkJdLiLnn7j/mHMXWgtlAlvsfMkpiwlcTqLnLMwf43Cgn70gd31xsTyQcZbCYcc4c0G2UCaID9Uwz5if93OcHC+9n65nYdMQp8zNe+0Qqoo4aU7aedDXPkhxZUr3eGIMZZ4x1QgRG9d5wsz9XqvUOTPyx8TFMu8Y9fiYTXX6lPzHSgi0KbW564LYcd/vGPyYWGoTxucvC9DGjc1/Th3AGEuIX/cqK/cbp1aU5/WEvF3hqSgqakn++zuAWlS039eXeV2ZO3cuAFu2DG83uUOWykceeYRrrrmGvXv38vGPfzz5c+WVVzJjxoxhJXUgJKRSGYiJirDbY98c80iQYrchnPnHxCl2W+zG73DkbA0DUJwO1NJiFFeeiRgOB8Ltzv+BcrlQPG6E25V/AoXLhVpZEZOEXDm5nIgiX96TU/G4EMVFCK8HJc/JqXg9qOPH7DeGspK8Nw/h9UB5KWaRB6Ui99pqwudDTJ6AUp37Ayp8Xswx5ZhantdX5MMcU4Fe6kGMrc4d5/Nizp6MGFeTfMxT4mKwZ2iSjlLkIzqhEtOWv77IpEoipS6YlFt2leIi9IXTYUruC54o8hGaVo1hz3M8fT6C06sJl7swpk3IHVdcROjU6eizJuWpz4t/Tg2mPc8NrcjL4JwaQmV2IifkKavYh3/xDCLza/Pk7mVgXg1RZ77X56V/QQ3BMhuhBbm7YITPy8DZ0wmePCV3jNdD34ljCJZpBE+yLkt4PfSdPJZQiUbg5Dz1edz0nzODwKlT88YkyzrFOi/hcdN36jhCJRr+U/Pk7nLRf84M/Kflqc/lou/U8YSK1ZxlCaeTvlPHEy7eT31OJwNnTyewaFr+mFMmEi5S8x4HgEhR7mMAIGw2/ItnEDwld33YbQROnETUoxI6KXdZKIKoRyW8ME+Xnc1O6NTphE/KU5+mEZ43iahHIzIvT32A7tKI5otRVfT5U9Hn5zmeqkJ0di26U8OYXZu7LEVgODTM2UOvb7AngLs4pbVQVWN/n5GvHAWmTcR0ajBtYu44wLRriMm5ry9A7Ho9JU85ioKYOA5sGmLC2Pz12TTUcWPyxqhja1BTrtfWMdWgqag1VXnj0FTUqor8ZVVWoFbmj1HKyxCaGvuin7cwNe+9FEAtLT6gBiFUNXfrfjIxEWu5zxfi9aY1eD30zScA2L17d/6y98MhS+VFF13E3XffzaJFi7j77ruTP3/605/4xje+MaykDoQdO3YAxLq/7fbYjxCxfy3EMimUEOtis2g1SwhlcgBwDrFUnA6EyxlrCXFZf1tLCCVKbHyJVbdoQiiTXeQ5xDLW2hmfZOF2WYplUihVBeF0oFicdAmhRIl9SxEeF0pRdleX4nYjSosxVQXhcVt+GJJCqSiYbidKaUn264sLJWqsPtPnthRL4fNBZSmmTcXweVAqrWK8mNVlsfo8Tkv5VIp8GDXlmFqsPqPYjRiTfXFRfF708TFZNIrdSbF0lziTUpkqlLrHgRiffTFLCKUZf33REqelWCrFRYRrKzHsCtESJ+bk7JikUGqCqNeOMTlbPhNCadgEpoBwmdNSLEVxEYHpVegOhXCJA326RVlFXvyzqjFsChGPRnR29s0hIZSGXWAqEC61FktR7GPwhGp0h0Ko1EZkjkWMz8vA3Bp0uyDqVgnPq7WM6V9Qg2ETICBUqlmKpfB56V9YE399GqEFFmXFhVK3C0xFoOcSZyHiMRAuthbLhCzqDkGoWLWUpWSMPZa77szVAyCSMeEiaxmMyeI4dIfIH3NKLAYBhiN/faaAiC9HWQ4H/aeMjx1Pn2IpjMLpZOCk8bH6gIhXsT4OdjsDJ0/EFBD1qJbSL2w2Bk+aiO5QiHqtYxJCqTti703UnUMsNY3ggomYIn5eWYmlqhCaH6/PpRJeaCHEcaFMnCdRt2otlqpKZM4kTAG6U7UWS1UlOmcShl3BcKrocy2OQVwoTS1Wn+GwFkshBMb0ibHrmV3FnBWLGewN4ilxxctSMaZPiF3PnBpMt/jypygwZXzyC7JpzyGWQkBcJk2bmlMsxaRxmDY1d4yiIMaPgUQDQB6xFOPHxOvLLZbq2BpMVcHUVNQx1o0Fak3VUINRHrFUE/eOPGKpVpTFGktUFTVHY4hSXoZIDGtSlJximbx/5hHLZI+EEDnFMm04SR6xTMpkHrFUPO7kpKnk0CV/zInq6uqGNVnnkKXS6/UyZswYvve971FTU5P88e1vOYgRYHBwkM7O2K4nqihOCiVgKZapQplAOB1pYpkmlMkHU8Y7Jh5KEcpkWRlimSaU8XKE05kmlmlCmXwwe3yc4nYjfCknU0I+U06WVKFM1ud2p4llmlDur77SYsz446YissQyVSgT5Zg+T5pYpgllan0Z3UpJodQSuZMllqlCmSjHKHKniWWaUKbUlymWSaGMx5mqSIplrKUymN1CqQiiJe40sUwTypT6MsUyIZSmTUkez0yxTBXKWAxESp1pYpkqlAmsxDIhlIZdSZYVLnOmiWWqUCZyCpfY08QyVSiT9VmIZVIoE/UJQag8XSyTQukYen2hUlu2WAqR9vqsxDIplPah3GMxQ2WlCmWCqEtktVbG4obeUyuxTJPFRE4ZYpkVA0Qd2dIlPG76Tkq5aVqIZVIoU+qzjEkIZUp9mcIonE76Tx66kVuJZapQxh4QWWKZKZQJdGfGZzkulMn3WUAkQxpThTIWI7LFMkUok7lbiaWmETxxUtq5lyWWqkJoQW3K6yNbLDOEMnlMM8UyLpRDuVuIZYpQJsgUy0yhTMZliKUQAmPmpKGeCxFvsZxVy2BPAE+JK00oh+rLEMsMoUwe00yxTAhlSl5W0pgQynwxwJBQJrAQSzF+TFpPl5VYJoQyGZNLLDN7IC3EUq2uzJjMli2WSaFMxmiWYiky6rMSS6WkOL0sC7HMGuKSSywzewQtxFL1erIcJlMsE0I5VF1MLFW1GLvdTiAQoLm5Obv+A2TYYyp37NjBF77wBZYvX865556b/DmcNDQ0xH6JqChm9gSRhIGDtVAm4+JiaSmUiRi7HcXpSHZ3ZwplMi4ulllCmSBFLC2FMpmTMzmAW62sQFjFpYhlllCm1hcXS0uhTMk70VqZKZQJUsUySyhTckqIpaVQJspyO5OtlVlCmcwdTK8bpbI8WyhT6kuIpaVQpsQlPoyZQpnMKS6W3vEV+AO6dZd3ilhaCmVqffHyM4Uy9XgmxFIU+QhPrUoK5VDMkFhaCWUyToARz1X4fGlCmVpWQiwzhTI1p3CJneisiZZCmVZWSUwsM4VyKCdBqCwmlplCmVpOqlgKn5f++RY3ihSxzBTK1NwTYmkllMmYYpXgwnh9OeOGxNJKFpM5FasHFpMiln0nWceFi2JxWUKZEeM/dYqlUGbGQFwoTxlH1JH53sTEMnDKlGyhTJY1JJa5hBLAsInk6xN2O4MnTch+n1PEMlMoh2JSxNJCKJNxqWKZIZRpZSXEMlMoU45V1KUSWTD03uRqyU6KZYZQpr6+pFhaCGXyWGWIpeW1iiGxzBLKZO4xsRy0u/CUujGmTrAcnpMplrmG8CTF0kIoU5+bkMZMoUyLmRT/4ppopbQiRSwzhXKorJhYCiGyhDIZkyGWalWOYVMpYqlWVeSYzDYklllCmYzRYt3h8XtXrlbJVLHMEspkskNimXPMdFwsE3KZdzJb/G9ZQpkgQyxzTaxShML48bH3MOlYh4Awh7nZ4xe+8AVuu+02fvSjH/Hzn/+cJ554AsMw+PjHPz6cYvPy0ksvceedd6IMOnHusm6eT7ysnAOu44j4zDozz24lwu0GVcEcGNx/ckLJP8HAF+/G7su9Q4NZ5MW0aSg9+9k1IkGe12gUezCcNrT2vpwxepkXw6Fha+nNEsoshMg7JjVa7iHis+Gqz10fpgmGGTumOS6uAJFyN6FSG97duY9DqMpNsFSjaFeeHS9ME6GbmFr++i795AnsDQTY8NienDHBSjsDNSrlm/LsLpGoTxVZQplKoNJO30SFyrU5duYBApU2+moVqlbnXi5DmKBEDAxVWN7QkmVVaPTMgJq3cy9NEahQ6Z4FY97Kv3yFMEAYZu5uZSBQrtA1z2Tsq7kvMcIANWxgaMJSmpNllSl0naQz9uXc9QVLBV2nRhjzYp6ZmIaJGjZjXeK5uoyBULGge3GImmdzTwwIFQu6zwxR80yeyQMm2KLww1tP56u/fgfDsD4WoSJBz9lBqp/KPY477BN0L80fgwlaKNZ1lSmUqUTcgs5lIcY8lTv3iFvQcU6YsU/ln7CgBk2EaRJ15rkuOAWtS3XGP5s7RpgmStjMex4A6HZB81KY8Fzu80p3CJrPEkx4Mc95bIIaMhBm/vPY1ARNZ2mMfyn3Z9DUFJrPsDF+Zf5dZ5SQjjDM5BfBXPW1nOZk7Ou5d9WZd2I105bUsOJna/LWJ0I6wjDyjgs3FUHHQi9V7/bmjlEFXfOKKF+dfwtbEdFBN7JbKdOCBL1zSihe35m3LPT97yYjdIPBWVV4trbljQtOqcC5M38MUd1a8DKITKjAtqc1b4w+rgKlfj/1HcDrA6CqHFo78seUl0LbfmIME9M0887xOPELVbzxxhvcfvvtXHnllQeWXwbDbqmMRqPMmDGDaDSK2+3mYx/7GG+++eZwi81LU1MTAELPPUlG8XoQ1RUxacyB8Hoxizx5PwDC68Eo9WIUxbuhc8UV+TAm1EBJnu7/Ii96hY9omQez1HrZDrPER6TKR7TchVGWuyyjxEdoejV6dUnumFIfgXE+QhVOotXW4zT0ch/+CR4C1U7C40pzlqVX+OhbUEVoYu6YaIWXvsku/FU2/JNyDziOVHnpOL2Sgem5cw9Xeuia6SCa58YfrHbTNcvO4FiF3hm535tgtZvGc0vompv7eAYrnahVNno8Op0nWM+gDFQ7aDtRY3ACdCzIPcvSP8bB3kvdtJ6We+KVv9pO6yIYnKjTdoq1JASqbLQuNvFPitJ6Wu6b/2C1jV1XaTQuzR3jr9RoWxohWhuk+azc57thA2XyIE1n5740+CtVGj8WYd9F+QRWYfCiAUomd9N4fu6bv79Koe0zAeovzRNToWBc2o29NPcNO1AmUD7UybTJrbRcmvvmH6hQCHyuh+aP5o4JlgqcH25lzqRm2i+3rjNYInB9uJW5k5rouDL3zT9YKohen/9iHyoWuP6llXkTmuj8sHVZoSKB4yOtnDChOWcMxMQzcH0PLR/LfawiHoHxL51MH9dG+4dzf5k2FZg0roOWf8n9pSfiVmj/tJ/6a3Kv2Rd1CXquGKRibC+NV+SOi7gUGv4tSv3lucdz6Q6F5ssiKKW53z/dIWhcbiCqg+y7NM8Xbodg90dV6q7I/bkxbAr7LlSJlEfZd5F1nGFTaDhXI1yus++C3MJvqIK9l7jZe3Hua5WpCRrPdhIuMWk4x/r6YSqChikKLpdK09l5ylIETcuKaVqW+5ptKoK203xEfIKWxSU54wAiXkH7abnLQgg6Tqug8/Q8k2SEoHt+KRG3Qs+J+SfB9C2oon9+/rIG5lYTdSsMnJB7UqZ/RiVRl4p/Vu4YgNCMGkLT88dEJlViOFQiU3JPGIpOqMSwq+iT8pdlTKjBHJ8/xqypjLUm1+xnhrlNgzyTXAGoKkdU5z/mY8bEWpgL2v2txafd19TU8PLLL7Nhw4bkeMfDRaJ8RbjAYva18Lgxve7kJBIrsRReL6YvHuOKd1lnxXgwiuNb1ikKhs9lKZbC50Uv9YCmYBS5wKqpusiLXu6NtQQKMC1a+8wSH5EKb6yFSwiipdZiaZT4CFd70O0K4VInekW2oBolXgJjPLGyFGHZhaCX+/CPc2OoscHwwQo7kTEl2XEVPgYmuNDtgkCFjdD4bGGMVnjpq3ViaLGyAhWapVhGKj30THGiO8BfoTI4OTv3cIWH7ul2DJsgWKrQPy37GASr3XTPtKPbwVDBX20tlsEqF51zbOhO8NcIumdlnwvBSicd8zTsdpWgaVh2+waqHbQvUDEcJqYK/jGmpVj6a+y0n6QQdZv4x5i0nZh9fvqr7bSdAobTBBV0i/tQoMpG6xkmpsMAxSQwzlos/VU22s7UEZ4o4XERms/IblXyV2q0nx1Bc0VRFBN9vLVY+qtUupaEUFUDdbzfUiz9FSq95wbweIK4xw/QuMwi9wqFwQsH8LmDaKpB6bheGs/LlsZAuUJ4eS9lXj/V47tpvDBbJgLlCubF3ZR5/FSX9NO0PFtKAmUC9bJOyt2DqMJg8tgOWi7Jlo5gmcD+oXbG+PqYNqaN1suyZSlYKnBd0Uq1ux+7EsXryZazYInAfWUrNZ4+7EqUWWPa6LgiW84SceO8sRagzsuzZTBUHBPYGk8fmqIzs6bNUhpNBard/Wgid0zYK1A+3BF7fdUddFjERDwC48OdVHoGEcJkclWnpVhG3ILw5T0owmRCZbelWEbcCgNX9FHm9VNT0UvzldnHPOoSdH/IT5EniBAm5RX9lmIZdQraPxTE4wniKx+k/kPZ54LuUGi+NIzTE8Zmj7LvsqyQpFBqnggCUEpDlmJp2AX1F4LwRDFLIuy7OPtzY9gUGs5XMF2xFiW9OLdY6h4j1q1eZFiKpaEKGpfZibpNol6DhvOyrx2mJmhc4kR3mbGyvCaNS63FMqAaOFSVqBualmRf90xF0HK6B90JURc0n5l9nU0IZdQZ78Z3QesZ2ddsUxV0nFQU7+oXtJ9qIZZC0LmwBN0BUSd0nmwxuSUulInhHVGHyCmWfXPLY5P6HMJaLIVgcFZFsizdIXKKZWKoj2FTCMy0jglNqUS3K+h2hdA065jIpMq0snKJZXK8vqZgTMyR09hK0JTYZKccYmnWVCaHI5g2NbdYVsS74jU1t1hWlCU9hirriUeirIQnfv8uAC0tLdblHADDlspPf/rTDAwMcOONN/L444/z85//nFtvvXW4xealq6sLAGHY05pyhccNVeUxoUxZ3DNTLFOFEoiJpdeVJpZpQpnAQiyFz4te5k0rK0ssU4Uyju5zpLVWpgpl8jELsUwIZXJShyqyxNIo8RIYm15WuNiW1lqZFMqUsXxWYpkQytRJJJlimSqUqWWZGeMEE0JpxOdHmWq2WIYrPHTPsCe7wEwVBqvUNLFMFcrka7YQy4RQGvahnDLFMiGUugOcqkJQ1wmWkdZamSqUyddnIZYJodTjcaaaLZZJoXQNlRUqM9JaK9OEMoGFWCaF0hW7SQvVyBLLVKFMFmUhlv4qlc5zQjjdMTGwEkt/hUrveQHc7phgqIqRJZapQplAUw1Kx6eLZaBcIXxxL8WuWJymGFliGShXMC6JCSWATdWZMK4zTSxThTKBTdGZPC5dLBNCWeWJDZOwqzrTx6aLZapQJhhX3EtbSmtlqlAmsCtRZo1tTRNLq7jZY1rTWjUTQjkmo6xMaQwVCRxXDHWlWYllQihrvP3J45kplqlCmcBKLCNuQejKHiq8sTgrsUwIZaknvmsTUFOZLpYJoSz2DpVtJZZJoYyfVwLwVaSLZapQJspxlgfSxDJVKJP1kS2WqUIZCzKzxDIhlIY7vYsyUywNm0LjshQhtRDLpFDGP/Oxca3pYpkUSreZVlbEly6WpiJoOstFKKrjUJX4LPt0sUwVymRO7nSxTBXK5GMCom6RJpYJoYw6hyZf6a4MsUwRygRRl7VYZo4XthLLhFCmxqSJZYZQJsu2EEv/jHTJ0u3ZYpkQyqFyssUyVSgTWIlldEJlVkymWCaEMoGVWKYKZWpcllhWlKX3tFqJZUIoEyTEMlMuFQURv6l2d+cf5pCPYUvlokWL8Hq9TJo0iXvuuYf77rvvsLdUJqVSt8VaKl3OtNZJq4ktCbHMEsoEKWJpKZSpcfFWvyyhTIlJiqWFUMaeDNFiF2aJz1IoE6SKpVnsTRPKZEyKWFoJJcQnKpQ5iFYXo5d5s4RyKG5ILDOFMjUmIZZWQpkgWKImWyszhXIo9yGxDFd46JluzxpTlSqWVkKZwFCHLlqZQpmae0IsU4USwKGqhKJGLKcaQecJLgJVDjrmpwtlWu5xscwUyqGYIbH0V2ULJQCaiX9MTCwDVTZaT88QygQJsTzVniWUCRJi2XK6ZimUyaIUM3mT81emC2WCpFguUbKEMhmTEMtzBIEKhYEL0oUy+RJTxDJQrhBa3pcUymRMQiwvMLKEMkFSLC+KWgplMi5FLIOl6UKZIFUsg6UCx+VtaUIJQ8KYEEtTFWmimBnXcUUg1jWeIZSx16czJy6WVkKZWlZCxEJFAvuH27LiNKEzvbqdjiv9WUKZejwTYmkllAmEMJlU1UXblcEsoUygCJPxFT20fDicJZTJchgSy6gzWyhT60uIZdQpaL8slBTK1LISYqk7FJoviSSFMrWcNLEUpAllallKaYh9lyjZQpkMiovlci2nUCbQi6PUX2hPCqXuyfispoiloQoazxkSygSpYmkplCllJcTSVATNZ7rQnRDUDZxxmUgVyyyhTM0pQyyjFqPHUsUyUyhTY5JiaSGUyfJTxTLeSmlF1CHoWRgTy0yhTI3pn18VE8qZ2UKZQHcIBufEBNQ/I1sEIV0sM4VyqJwhsbQSygSpYhmdkD0JNBGTEEtzTEXOyVBpYplj7H+aWGYKZfK5KWKZKZQJ4q2WIt7KKcpKYv8asS9Ivb25x9fuj2FP1LHiox/9KA8//PBIF5vkk5/8JHv37sXZMQs1XIxp02KTY/T9rK1k0zBVgdBzv2TTpmJqCiKap6z4Gk6mTc07acWwqxg2BSWce0Cu4UjE7H9dKFMVlvI2VJ+CbheooTwD2J1ivzEQ+3BGHQItmDsu6hToDtByD8tKmdAhsoQyrSyXQHeBlmculO6KXajyxSg6iGisSzlTKNPrM4l6TWx9Q+/fj86Yzy827KB+IPaCdKdJtEjH1pt/p4Ooy8T0RVF6ck9oMNwGWlEYvTv3mCvTpeMpCTDYkWcXDkBxRykvHaCjI/cYUbsrwriyXva1Wc9SBDAMgRHQEA49SyhT8TjDzC5vYV1r7sXdi11B5pc18W5b/kWVdUMQitgocec+aUqcARaX7ealtpk5Y0odfpaW7eDp1rl56ytz+DmnbBtPtc3PXZ/dz/mlm1nRdmLOmLCh0TboxabqliKYoNgW5JKy9TzUelryMQXBbfwbP+MvGJiWMVb1tQz4UBUjb31uLcJl5et4sGVRnpgwl5Sv58Gm3DGJuOWVm/hb4yk5YxxqlAurNvNw/Uk5Y0yge8CN15V7LCbEpP7M6t08t3d2zhhN1VlUs4+Ve3MvIm6agmC/A3RhKZUJhGIwo6adzXtzL7ItFJMJ1d3s3bOf8WmKSVl1H9378oxXFCauKj+hfXkWqhZAZQi1Iff8AIgd02hFBEdj7KJWYrfxvdPn8cVXV6eUZRIuN3A15rlemaAFQQnHrqX5CJeauFryT1wJF4OrLf+9RAuCEjFziiAQW73AJ3B15L8Phn0CV+f+75URj4KzK/9EmIhXwdGdf/9uNWzAARhS1K1i78m/97ju0rD15Y8RER2iRk6pTGA4NdT+/J8vw66hDOafOAZg2m0o/licrg0SrNpIWVkZK1as2O9zrdj/PkSHwGHw1DQCiZnaporpsGE64rvqRHSIWJ8kpjMeFzUQunWM4dQwnDZMAWpIj5VnFee2o7s0lLCRUxh1p0bEGzu8qiJQg9l16i6NiE/FFAJVFWgB67KiLpWIT0UNG6gB6w+U7lIIFamYAmyqiebPjou6FULFsYWQNVVgs4iBWNdWqESghk3IcU5G3IJQuYgvaQP2Puv3POwThMoEagjsvdYxUY8gUGnG1qjUBHaLL0lRDwSqjFiMXWDvtr5AhYsgWB1F9Ss4uqw/mBGvSXRsGBSTsN2GvSN2EXaoKsH4F5Oox0AZ78epmgTtDmzt1kYc9Rr4xvcRCmtEckil4dWZMKkDm6rT6vThb7a4yXgjzKttwq5EaXCW0NpgfbPSvBHOmLwblxphj7OcHQ3Z441c3hDLa7fgUiOUOwdZs896hYTiIj8fmreRllARr+2z3iGl1OvnkxPfwacGGePssxSACu8gn5+4iiIlyARnF4/sW2hZVoV7kC9OeJn6cDl/3mctOFXufr42/jmKlRBTHG38tn5JVky1q59vjnuGYkVnkr2dX9VbDOwEqlz9fHvsM5QpClPtrdzTcEFWTKVjgDvHPkeZYmeGvZUfNyy3LGucu4f/nfIPWnU7P2i4xDKm3DHI98b8k1LFxdTxT/PfDZfmjZk+4Sm+W28xMBCodvbzq8kP06HbcsYU24PcNfZZyhQ70yc+wZ37Ls+KKbIFuXPcU7FjUNvGXXs+ZFlWkT3IHeOfplKJMnVyK9+vy87dYwvznxOepkwNMmVqGz/eZX2svLYw/7nwGXp0D/fsPNcyxqlFubF2JWXqABNndHLf9rOyYuyazqenvEW5OsD4Gd38efuplmXZbFE+dvIHDOgOVmxdYBmjqAYXT9tMsRZgjKuPl7Zmf2ERqskZU+oosQWocA3wwZbJlmWhmpwwtRGvLUSnO8CurdmLepuKybjJHXhsYbpdITq35dhNTEB56QCDrjCRHTkmbwJikh+XTSfs0tF2ugjpBs7U5WqESWhCGMVm4HeouHdbf6M2FeibHkUYAs+e3PIZGGNg2GKz4r37rK+1gRoz1jvkAG99zqLonyjAFHgbcniBgECliPVI2RU8TbmlMeoWDNpUPC25hTFYpsTysql4Wq3jgqUqpgpGpYarPbdYBirtYJq42nN/WQkXa7GewHIHjk5r0YsU2TEVMMocOLryTHwrdcZWjOjJLYO6x44pwCx2ovXmjjNtsR5TpS/PZDxXbCtjw+dC6Q8kWyr7+w9w5RkLht39bUXqOMdf/vKX3HTTTXz3u98lEonwhz/8gZtvvpmtW7cecvnBYPxA2hxJoYR4y6HFbjoJoTQFycGxmaQKJYDuUHPGRd22+JIkquWWekmhFICINaXrzvS8UoUy9pzYbg+ZRF0q4SI1tkabQ0F3WTTVJ4RSidUXcQmi7vS4hFAaany9N1dMHjNJCKWpxlorI97sC0pSKOP1Rd0QLrKI8whC5WBq8Zhii26NuFCaSvzbuNckXJwZExNKUzMxFZOoxyRcmn2BinogWBMFzUT36YTKsi9OCaEUmoFQTPBFCFfELjyaEOiGmRRKm01HUQycRSEildkXlYRQOmxRfO4Qoib7A54QSpcWQRMG1UX9uMdkL38kFBO3FkZTDMb7eqgenz2mJSGURVoImzCo9XUyfXz6shUJoSzSgtiEzgxvGydOzL7i+7wB/qV2HVW2PmZ7mlkycVdWTEIoy7QBbCLKfHc9yyel7wubEMpyNRazwLWPj0xcm1VWhXuQWye8SI3ax0LnPj4x8Z2smIRQVqoB7MJggaORz014Lfs4KDqVqoFdCE5ytHHjhFeyy4oLZbWqYRMKlWp283ZCKKtVFzahMt+u87Xxz2XHOQe4a8w/Ga95mW9X+Y/xz2TFJGSxQvWgCoV5dht3jH86LabM7k+LOcFm578mPJVVVqk9wPfGvsB4zcsJds0yJiGUidxn2+DbE5/IilOEkTwGc2xBvlX7ZFZMQihrVB1VCGrU7PMzIZSVagAVk1n2dr42NftYeWxhbpsUe5+n21u4ZdrLWTEJoazU+lCFwXR7CzfMeD0tJiGUlVofijCY4mjjEzPeyypL03SunrKGCls/tc4Orpy1LvsYxIWyVPOjYDLW2cN5s7alxaQKJUCNs5+TZ9dllZUqlAA+W/ZnPlUoAUqdAcpnWgwJU8BTG/sG7XGGsU3PbpFOCKXNHkUIE7sjQnRagIhpoAgRW70uRSgBFKeOf0p2i5gpIDAudn007QaDtdbClRBKAMNhMDDRYpJdXCgh1qgwkGNHx0CVwNTAtMHAeKv1GIeEMlHW4FhrLQlUKEMxNdZCnBDKZFx1dlxCKCHWiBGotG4MiMlirIcwUGndqJAQykRZofLsnqiEUEKsrFCZdW9V1GuLT6oVREqsW64TQgmxIW3RYus4w21PxhhF1k3SCaEEkmIp4koYiUQOeVedQ5bK22+/PedPoj9++/btdHV18Ytf/ILa2lpWrlxJe3s7P/7xj3nppZcOteqkVJq27DcnUyzThJLYByuxvVSCTKFMkCmWCaEkESfIEss0oWQoLvX/mUI59Nx0sUwIZWp9mWKZJpQp9aWKZapQJo+LhVimCuVQTLpYpgllSn2ZYpkUSjUjJkUsU4UymRcpzyFdKIdyzxbLpFCqZrK+TLFMFcpk6iliKQSEXXpSKBNYiWWqUEJsfFdpkT9NLFOFMoGlWHojnDBxaAkHK7FMFcoENmGklZ0qlEMx2WKZEMrS+DgCm9CzxDJVKIfKShfLVKFMjckUy4RQlqtD9WWKZapQJrASy2pXP18f83xKTLZYpgplggmqwS3jX0z+P1Uoh3LPFsuEUFapnpSYdLFMFcoEVmJ515iXsmIyxTIhlKn1ZYplqlCm5p4plkW2IN8e+0xKTLZYpgplgjJF5z8nD+WdKpTJ3C3EMiGUlWp/MiZTLFOFcug4pItlqlAmsBLLhFCWpoyHyRTLVKFMPpZDLBNCmSBLLDOEEmJd+FNnNSX/nymUCbLEMi6UTttQK1mmWKYKZYKkWE6JT5ASpAllsvgMsUwVyuRjFmKZKpQJrMTSyHA1K7FMCGWyvkyxzBDK1LIyxTJQoaTFWYllqlCmxaWIZapQJmMsxDIhlMncLcQyVShTy8oUSzPDsqzEMiGUqTGZYpkqlENlZ4ul4U6PsxLLNKFMIASGZ2joVSSSu3U2H4c8pnLt2rV5/75w4UIee+wxXC4Xy5cvZ9u2bTzzzDMUFxezevVqbrzxRubMmXMoVXPOOedgGAbOwcUIM8duORE9tpyOI1sWIbZgdCLGSihTUUOxuDShTMWMxyiCqEfLOomGYoz4wOtsoRzKy0SJj3dME8qMshILHGcJZUYc8e7pzA9bsj5jaExkqlBmx5hgQKjMOiaZlx+ETrpQWsQoUbKEMlkfoA2IWEyGUKbnJdAGBUpYpAtlRn1qv4oSFkTGZF98k2GG4HeTFvP11rfxq9bdBYahEOxzIPwqvglDQpmKbgh6+93oAzbGTezMurkkiJoKrX0+/P0O5kxqTrtRJWMMhYb+Ejp7vFlCmSBiKuzur6Cpp4gLarel3TzT41S2D1Sxs6siTSgzYzYNjGNzd3WWUKbHafTrTkpUf9qNPzNmXWAiqzqmpwllZn1rgxN5oWNOllCmEjYVVocm8HTHfL4x7tk0ARqKMVkdquLhjlOyhHKoPoPVYR8Ptp+RJZTpcTprwhp/7DgzTSgzY9aHde5rX5ollKnopkFrNMTefX9j0ZTrUER27rppsCEc4Zdt56YJZWZ9m8JR7mk9P0soM+M2RgT3Nl/AneOeynkcNkec3NN0QZZQDuVksjlSzD0NF/D1Cc9Qo1qfVzqCreFKfrnv3DShzIzZEa7hN3vOzhLK9DoVWqLF9BuunDGGqbA7VMVfd5+UJZSp7AlW8MSOeVlCmVYWgqZgCS/vmJHWSplJS9DHB9trmT2liSK7dXdje8DL7h01jJ3cgTfHZ95A0Bt00rmjPEsoUxkM2gnvKMoSylQUU+G+6vO4dufrGLY8Y/aDKq46e5ZQpiLCCp49qqVQptUZinWFp7ZSZsVEYl3hmUKZFhMGT5NpKZSZZXmaDILlCkausiLgadEthTItLgpqKMc9KRlj4mqPZgllKkKPdYVbCWVmWY7OUForpVVZjq5QllBmxth6gpZCmRZnmGi9wSyhzIxR+gLWQhnHxCDoXQXAP/7xD6qr86+jacUhj6lcuHDhfmMGBgaoqIjN6vJ4PPT393Pbbbfx2c9+9lCrBYa614UiUHIcQRFfm9FQhaWXAQhDQaix5uZ8w5GFKkBVWHLWDKZPr2bzlkbefa8uK0aoAqHlLktRY2MQharkqU+gqDH5VOIzuM86aSqzJlezaVczb62ti9engIjXm7uo2AdNy9MkrYJQ45Kdkfs5cyZzwoRq1u9r4a3VdbHNdPJMFIrlE6tLyXVmCVDi9Sk5PuDnTp3CgopqNuxp4fm+XVibNaDE8lF0Ed8Ny7p7RdEEqi7AZuYtq6qsnC9Wnsn7Xft4tXVHVoiqmES12DqVLptuWZaigEMzCCngs0Vy1mcXJk5NJ6zAsspZTPFOYkd/HWt7NqbFuDWdPtWkWI1kf+UF7IBPi2BToEwNWsbE4kyK1DA2BUrVAJgKkz1nUOWaQUtgK3sH38GGSakWxCagTPXnLMuGQY3Wj08J5rxK2zApVQPYFZMyJYiZElfiOh+PfR4D4bWURTZgFyYVSjgtJr0sqFQGsQuDagXLuFiMHzsmVYoDq6/KTsdFzPXM58RIlErldXJsboOKSrUSQENQoRRZxqmoVCgD2IGyHDEAAh9ja/5BWfkYjB4fkC1dApUqJYQKeeurUsLYMKlUvAeQu8lY18Wo9oXo4fVEQ/9MxmioVCshNMh5PBWIlwPVSijne6MA1eoAqoAKxY9pqhS7zsVrX8BgeAM9gX+iADVqP5ogNgwhR1kqUKMO4BR6znNPAaq1fhRE8jxOMMmziBrXLNoC2xmMrkET+T8TKlBuC6AiKNVCOePKbEFUBCW2EFZ37IUlc5kybgr/DIfYa2sm12deAXz2CD0I3DmuHwBuexRdEdjtuWOEMCktLeXLJ5/Fus5mXmrMvl4BKHYTVQhi3y1yXPtsJqoiEDZQ890J7aAIwbLpk1kwtoYNLa28vGt3el72+MTifLsi2WPzavPeSxJxigBbrFN2yexa5k+sYVN9Kys3x++/tniMJvJ3u9pijR15a7QJFCX7Hn7GwsmcMHUMW+taeX31rnhMvns4YLcuKw1F5C1r0WlTmT1rDHVr6nnt/d3564uXlddlFBFzkDw78JkpRzGQZ5fBfByW2d8JVqxYgdPpZPny5WzdupVnn32W2267bdjlnnvuuUSjUb7xjW9QXJx755aRpra2ltLSUjo7O9m3b98Rr7erq4u9e/fKemW9x0S93d3d7Nmz55iuV1EUFiyITR5Zt27dIY9TOhSOp+NcyHonTZpEWVmZrFfWO+rr1XWdO+64AyhAS+WBMGfOHP72t7+xfPly3n33XebNmzci5SrxZXzu/c9XEFpGV1HUQESjJJsqhMB02tPGPYqIgRIe6lYwhcB02dAd6d+glaiBkjJr+9+/ejELFzl49Y19PPDH2PgfJWyghKIIM1EW6B5b1qQbNWSgBmJlJbrJo+6MmPjsbhFvhojFqdz0BTennOBk1fsN/P7Bt2Mzu1NeX8SrEPYoGWWZ2PwGQo81DEQ8CiFf+ncYNQT2QQMRv8+ZCoQ9SnLc49evdHP6NCevrm7kN/94ZyjGK4iUpJelBGMzwBO9e6YSG2MZKU2JCYG9Jz0mUiwIZUy6+Zbm5kzVyStbm7n3mfeIFkGwIr2LRw0oOLpFsiwUCBebhCtSxh8FFZwdanpOJQZmdXo3suHXsHdovDhpEi2BAM+3NvLLtn+mxQT9dkSrEyVRloBoSZSKcT3JmMGAg2CTB6EnBj+DWRZm2rj0yTRdATedjcWIaOw9+0+fg6VeOxvZwF/F4wC0B73saajEDMffV9XEW+Znybj0loHGQDEb9sSW+hGKSVnZAJeM25wW0xQq5o36KUTCWjzOYExZHz9zLsKlnkKL802e8jzKc/WzCUdiMYpiMqG0m2vHpm+52hgu5+GGhfhDdlTFYFppB58b82paTH2kjD81nM5gODZYXFUMZpa0cWN1bNyj4v1Pouq5vKnXcc9gbJyjTdWZVdzGbVXpY60bokX8omkZveFYd68mDGYVt/KNqqE666M2/qfpArrCsfFAmmIwp6iFb1a+kxJjsF78lrnmAt4ztvJn81Fm+1q5ozJ9YkeLHuCupgvpicTqU4TJHF8L/1U5dExbogN8t+X8ZH0KsZg7KtMnMbXrg/yg9VIm8G3KKGal9xd8teKDtJhOfZBvNZ+XVtYsX2tafe36IN9qSqlPmEz3tPNfVWszygpwR9NFdIVj18TPGJezWMyivOgZvLXfj5cV5TuNl9AR8iSP1SR3N3fUvJJSjuC7DZfSGY9RhMkEdzffGPNCWn09hp3/rr+MrsBQXmM9vfzMexJCW4biXUVozN38YO/F9AadyZgqzwA3j0t/n/sNJ3fvvoD+oANFmJR5/HxuQvp51a+7uG/3EvzBoZnNRZ4AH58YG2fpdHwOh3IG/ww08L36WBeeECZud4grJm1IK8tv2Hl8+zyiofhnQjW5aEb6+xcyVFbumIERiN8mBSiuKKfUDn0Bi5oK53ddy/luF6vam/n++rcxnTrTa9N3JImaCnu2jUGEh66bhsOgYtLQuGndEPTuLENNidHtJs6J6a3bhqGg7/by0qRJtPgDvNrcyn/vTT9WmGDf7UJJ6Yk37BAcE0mLce+1oaQ8ZNggUJPRnW4KPPVKsqybL7Oz9EQXbzS38r03302GeeoFSsRMKUsQyliZyd1gZtUXqshuW3M3mSjRlLJUwQ2ftLNsrou3d7fxo8few9NqpMWYqiBQml6WMMHdbiTzMjUIFme3lLvbo2lLDZqKIByP+/xVGmef4mLNe8386hdD47tNVRAuylYoZ1cYERn68hguyZ6Jb+8Oo6QsW2iqgqgnfczm9f+qc+YyB2vebeB/f/IiphDonuwJQ1pfMD13ITDc6XHqQDB9ycW4F2XhH4T4WvQ+X54tp/NwWGZ/J5gxYwZlZWXcdNNN7Nmzh6VLl45IuQ5HbBylEQpihqIYhhn7CeuYoQhG1MDQzdhP1MAcDEEwFmeGdAhGhp5jmJi6gTkYRgSGyiKsgz89TlFEbFP2kB6LCeoQiGDqqWWZiP4wymBKWUEdUso2owZKfwRlYOgxEdQRgzpm1MiIi6LGPcmIGCgDOoY+FGPoBmqfjtavY5gmhmkiggbqgI4ZiZcTMVH7dWy9RkqMidavY0ZTco/GHtN6YnGqIRAG6Gk5mWh9Bmq3gW6a6KYJAROt14iVFS/f1GOPqV2xGDNoonVnx6g9BloXybJEANRwbDiorhuYuonSa2JrV9Ax0THBL9C6wIiayefpuonaA2q7io6JERTY2pW0GEM3UbsFRos9WVbEr6K2qxgRAIEwBQRhoMmTjBn02zBaHJipZRkmolultbEYA5O+gJ3BJjdGdOi16IaJ0WVjW2MlBiYGJh0BF22NRRhRkSxfmAITEYsRJq1BD7saKoiGh2J0HXq7XKxsnIwpDExh0BzysKGxJhkTNaC9y8NTjbOTMY1hH6/WTyYYVlPiBA1dPnYMxK74/bqDZ+pnEYgMxUQM2NNdwgNNZyQWG6UhUsrfGxYwELJhYBIxBNu7y/lNy5J435JOfbSEPzQsoj9sS77miCHY0lPJL9vOQQidAdNJT9RNUFeSMSFdYXNvJXe3L0MIHSF0GnQP9zadQ3fYmYwLm4LOiDMlRuHu5vPpCLuGYgzBxr5q/rvj1GRcVJgEDQ0zWY7Cpv4q7uqYhyJ0FKHTagzw3eYL6IoM1Rc1YWN/NXd2zIrF6L3c2XpuWn1RYONANXd1zEyW1WH08V8ty+gIu5LL3G0brEyL6TL6uCMek1rW5oGqZH0dRh93NJ+XHmPCtsEK7myfn1LWAN9svpCOsDsZZxCTGYGJEDodRoj/arqYtpA77VjV+Uu4q3Vp8liZwqA9JSZqwl5/CT9ouSAZ02uqfLf+UjoC6Xk1DBbx7sAkAMKmyvf2Lqc76EiLaRn0cE/juclzpt+08/92n09v0J6M6Rh08Zv6Jclzr99w8L+7z6I/aBv6TGDSPejkz/tOAWEQAXojLvRoyrluQr/fzmN75yY/E4OmxqPb5xIKpcTp8M+905IxQVPhpR3TiQSGYnTTJBJQeWfPRAwR+6xGTTAiIvYeC+LXHoWte6rTztld22owQinXBtPEDApa95bEPyPQtaMUMmIIweBeb8rnUhDe5UGEYkv3mSYoBtDgSMtT3eXEDJnp9YVMbE1aMsaxR8MMZ8SETezNSkpZ4NonIDR03TYMAxGNDUNLPM+1DwgP3V8M04Swga1tqGxnvQFhMyPGxNZupOXgbDRiZaXce4kYmAN6fJqAwNWsZ8WYEQNH51AOpmHibNUhlHL/CpvYu6NpOThbI5iRjLKiBlp37P4ciRqIqImCyKpP60l3BHtHKOkHiR+1Nz1G6wxBWM8qS+kPDz2nK4AeNWLvryKSniJSYgzDROkJZOeuGzAwFCd6AxhhfciJUrwo7Xn9AczokPE7nfnXTs3FsKXy29/+dtqaRn19fXznO99J/v+LX/wiv/jFL/iv//ovbLY8q18fBJ7klotRCIWTC4aKSEoLZSqmiQiE8y5CLkwTEYighvSsFsoE+3a3s2NLE/U7WrH1hdNaKNPLAnUwghbQUcIGalBPtj4mYwwTbTCK5tezWigz4/btbGPH1mYadnfmfH22AQP7gIEaGmqhTCtHB9uggaPPjLVQDgy1UKbXF/ubvddkd3Mn2+pa2dfclR3Tb2LvMVEzWiiz4vpM3M0mjp48Mb0mjm6BGhLYe2BXUxeb69vY09adjLH1gbNdja0/mdpCmYoB9l6Ba68NZ7uau74eBdHiiLVQtmuIaHxJCMzYOFTdxNajEGj2xlooW4ZaKNPKMkHr1mhvLMEwRLKczJxEl50djVV0Bdx0pLRQJtjR3cmG1lbeagzTHvBSl9pCmYouGOhys6phKi1BH+vqx6NH0uNMQ9DZ5eXphhNoChXz2r6pyRbK9DiFde39vNHWzUuNJqGIxd7HhmBfdykPNJ5JQ7icf9SfiD+U/u1WNxR2dZfzm+ZzqI+U84f6M5ItlJlxW7ur+Gbdh3m6VWNzbzN7B9rTYiK6ypaean7adj710SLubTwv2UKZSqu/iO+3LaU+auOnTRfRFcpeLD5qKGzqHcNd7adTHzX4WcsF7PO3snOgnoZArBUpaqps7qvhzvaFNOsB7mq+iG6L+gxTsKW/hhsbT+c7LRckW/AyYzb1j+HO9jm06YN8q/n8rLioqbBloIY72+fQoQ/yTYuY1PpualzEN5supNPi9RmmYPtAFd9uO5EOPcAdTcuzyqoPtLC9v4EV3SZdRpRvNV5GRzC7vqihsGewjO+2nEunLrizIXtdTMMU7Bss5fvNy+kx7Ny57/JkC2Vm3ObuXt7u7uGRFneyhTIzpm3Qyz0NF9BvuJItlJkxXYNuflt/Nv26i//ddTaDQYuWFaB30MX9u87gyX12NnS2sKuvI+3vpikY9DtYsWc+fsPOiu3zky2UqYT8Nl7aM4OQofHy9pQWyrTCwAhovFc3iaihsGb7JHb2dLGhvYWd3UPXSRFU2b6nhqipsHt7DSKUY5xlWEE3BD070lsoU1HDguA+X6yFcpcXJSSwK0pMnGK1oYREbAF1E+y70lso0+sDZ6MN9570Fsq0mAi4mtXY2pL7lKyy6lq72byvjT11sdfrbUhvoUwvy8TZBp5GM299zo7Y8z1NZs6y6hs62VLfRsOOzrQWylSEbuLqMmMtlG2GZVkiCs6e2AXd3RbNuRmKMEzsvTrN29vZvq2FvXs7smN0E3tfzBUyWyiHYgxs/bGYzBbKzLK0wQi2nljLY8OeDnZsaWLf7qHrpDBN1MHYgcxsoUwrK+4Jan9GC2UqcS8CEINBhG5gxm+aLpcr2SN8sAx7TOV1113H73//+/0+NpJ89rOfZefOnTg6Z6KFSiAUjm2f6Mq9WwmASMS5cxu4CIRia0V5c283IAaDiAE/ps+DUZx79xPFH3vDcq0lBaD6YydIrnWpEmgDYTBNQhW587INRMEwLdfKSo0RukmgKs92M4BtQEeJmPirc38RsPcbKBGDwZrcMY4+A0/9IKEKF30Tc4+2sPeb2AIGfRPyxPTFhLlvUu4pfI5uk5JdIQKVNnqm546z98bK6502dCF//tNXIdxunty0jZ+veht7b6y83twbuwBg6xU4O016ZuX+KNl7FJwd0HtC7i82th4FV4ugd17+pRy0Hg13s6B/YZ7dEnrseOoVgidZz3wF0LsdVL0lCFQqRM7MvWtLoMeJe5cdbVH22pkJ+ntdOHc48Z7RnjMGoLPbi2uDi5JlLTljOvo8iM0+xp7VkDOmtc9HdEMxtUvyjwVt7fcRWFfKjKUWaw7Gae4von91OXPO2ZkzpqG/hMjTlYSLYfYl23OXNVhE57vVzF0WmzjhVJz8aMHXKKeYG9bdgd8I0DJYRMc7Ncw9N385/idqiPhgxqXWkzAA2vw+Ot+sYfp5u3PGdAbcdL9ew8Rz8x+r3pCTvteqqTk393HvCzoJvF5ByTm537/+oAPln6XYLs5/LgTCNsRrJYizc59XobCG4w0fkSW5z89wWKP8WReGDXrOzz25QI8qlL7hoHtx7sWnzYhC+Vs2Ohfl32kFXVD5tkrHaXnGyEYFVe9C+8m5Q4QuqH7PpP2k/JNWhA5VHxi0L4hd03w2jX9cczmG28s7exq487mXYzFronTMyzOqzYQxb8euG60n57kPGlCxPkTX7Nz3EmFA+aYg3TPyxJhQsTa2ikTXnDw7CwGlWwbom2q9ikKirKId/QzU5i9HmODd2Yt/ovVi8gk8u3sITMgdI0xw7ewgNDH3rmQJHPu6iNTkn99ha+pGr8wfozbEPjNGdf46ldYuzLL9zCfp6IbiA+jC7upBFMXiEjvqlJeX89hjj+3/uVa5HdKzUtB1Hb9/6MY1ODhINLqfD+QwSbZUCh0CQczBQcz+foQ/901WBEKYA4OYff2IQesLj/AHMfv6oacPMZBn5pNpYkYi0NuP0mt901YGQ4iuXkRXL1qPdVnqYBiloxeloxdbd+76tIEwansvakcfjg7rOFtfBFtzD7aWHpxt1jH2/gj2xh5sLb24W3JfWO29UVz7enE09uJptv7K6+jVce/pw9XQj7cxR0yfgbeuH8UfxtnUT9E+6/PC2WNSvGMA995BiuusYxw9JqXbBvHt8VOyK7eYKXrseHkagpTssI5zdJuUbwpSVBegdGvKuBYR61oxDBNHN1SuC1GyO0jpppzV4egSVK2JULIzTNkG6xuDo0uh+oMIpTvDlK3NMaO6S6H6XZ2SnRFKV+e+KWhdGjVvG5Ruj1D8rvVNQXTaGfO6Sdm2KJ6382z5GBU4egyK9ujY3rC+uAa6XFS/olG6Xcd4vdQypq/bTeVLDkq36QRW5d7errPbS/k/nRTtMehZWWMZ09bjxfecl9KtBi0vjbeMae4pwvlMEaVbDepfnJSzvqa+IpSnSyndarLr+SmWMQ29xRhPllOyzWTbc9OtY/pLiD5ZgavLwJ7bbWjoLyGwopqSbSZbnplhnftgEf4V1ZRsN3LGQKzV1tVl4G0w2P6MdV6tfl+srJ0GdU9bv752v4fgY9UU7zJofCb3seoKuAk/VkXxboP2Z6yPe0/AibminOLdBv3PWr9//UEHtidL8LToRJ7NfS74Q3acTxRTvEdHfb7EMiYU1ih+ykvx3iiuF6xvjuGwRsUzTpzdOo6+3IKnRxSqn7Xja4hS+ZK1BJkRhbEvaPgao1SvyrP2jC4Y90+BtzFMzas5ZDAqGP+Kgac5wpg3crTiRQXjVum4W0PUvJWnF02Hsa9FcbWGqHkn9oXTpijo8Z4tIWIxY94M4WwPUv1+jmbKuFBq/eFka5dlfQZUv+vH3hmkcm2Oe6UBlasHsXX5Kd9gfQ9MCKUyGEIZDFG22XqJMoCy9X2ovQFKtlh/wIQJxZt7UHr9+Lb15s7dBN/WbpT+AJ5dub+seLZ3IgYDuHZ3Wf49IZSEIzj2WcckcOzpgEAQW2PuOFt9J2YgiNqcO0ZtaMeMRGJukQfR3IEZDsekMRdtXRAKQVdP3rLo7IZwBLM7fkyV2P33UMdTwghI5WWXXcYtt9zCo48+yqOPPsqtt97K5Zdnbxc2kpSXx7a8MtVY6x1G7MccGIDO7iy5FIEQpt8Pug66jtk/kCWWwh/E7B+IlWeaOcVSDAahP742mq5biqUyGEJ092EaBqZhILr7ssRSHQyjdPYlc1I6+yzFMiGU6AbohqVY2voi2Fp7Y2UZBlp7X5ZY2vsj2Jp6EVEdEdXR2vosxdLeG8XZ2Bfb7lLXsTf3ZYmlo1fHta8/NtwgquNsHrAUSyVqIuITokTUsBRLZ4+Jb/cAIhxF6DquxmyxdPSYlOwYRAlGEREdT4O1WDq6TYp3xl63EtEtxdLRbVK2JYQajKJEDbz1waRYDgZCdPQP0NM2SMWGUGzYQtSkaJ+1WDq6BBXrI2iDUZSIQdHebLF0dClUrYmg+fV4TCRLLG1dCtXv62iDiZiopVhqXRo17xpog7G8ivdki6XotFPzlolt0EDoJsV11mKpdzuoeYv4sTItxTLQ5aJ6lYp9IDYgvrguWyz7ut1UvWKPtVpHoajOWiwTQhmLMymqyxbLth4vxS94cPQl6ssWy+aeItzP+XD0mSg6FO2xFsumviJsz5Tg6I0NuyjaY2SJZUNvMeLpMhy9sbJ8e40ssUwIpbMndgN39BhseTZbBhv6Swg/UYmzJ17Wvpg0Bo0gt625izVr1lDXbyewojorJpPmwSKiT8ZGyys6eOuzxbLV70uWJQzwNmSLZbvfQ3hFVWzoiQHeRmux7Aq40R+vGCqrKVssewJOxOPlOHtiw3S8zdlimRBKZ09sv+RcYukP2XE9WTQU12pkiWVCKB29eiymTc8Sy4RQOnpin181ZFLyz+yeHD2iUP2cPVmWqzNbLBNCae+NDaFyderWYhkXSntvvMuzM5ItlnGhtPdGEaaJozuaJZZKVDD2VR17bwQMcPRELMUyIZS2/pho2Hsj1LwTwaYo/7+9+45vo77/OP66k2R5x07iJM5wdshehAQyGAkhgQBhz/YHZZW9N5SyWkoptECAlpRVNi2j7BUChTASQsgiew87Trxtbd3398dJsqbteEQen+fj4Ydt6aPvfXU+S2/dfe97OF0uCiur2FtVQ/63bmzVgcBZ6YkNlmGBEsxDu91+in39DwZKa7XHPNRa7YkJlsFAaakxH2+pcccEy/BAGXrOjvhht/OKSnSHWac5PTHBMhgotWCNyx03WAYDpeYM1nniBsuM9SXmUUtA83hjgmV4oATqDJb2rfvMI6WBunjB0rajxAyBgPJ64wbLYKAM0vckCLuF+yC4087nix8si0vB66mtiRcsS8rMr+Blrf3mtmdYzMcFp4JsjCaHytNOO41LLrmEoqIiCgsLufTSSzn11FOb2mydgk/YUE6UKyxAGgq8PlR1dShYRgTKoKhgGREog+IES63GBZXVMW2FB8vwQBlqKl6w9KuYdqKDpbXag2VfZeSYiKhgGREoQ+shNlhqPoXm84f9HhssIwJlWL/Cg2VEoAyKEyztlQbpOyI/mQaDZdYOX6Ct2kAZqgkGy62BmrBAGaoJBsvNtc/HXqbIXeeMuMZ6KFhuNEI1wUAZqgkGy3UGyzZs5N73P+Wtb1ZhcYWvq0CwDDupOjxQ1i4vMliGB8rImshgqfs0rDXRNZHB0lpqpfsSI6IuFCyXmMFSK02hx/fm2Nna9anI3uYj/YfaYOkvs9P9Gw1bdW1dMFhavzWDZXigrO1nZLAMD5S1NbHBMjxQhrcVHiyLyzPJ/iwjYm9TdLAMD5ShmjjBMjxQ1q6HyGAZHijD24oOll6fJRQow2vCg+Wu6k543suLrdseWed8t3v8mrBgWViTjfO/sXUpYb+HB8rQ8wsEy80fms8vPFBG1Owy2PVR7boKD5QRdWHBstyZivauGShrawLB8mPz7xcRKIMCwdLzce22EBEow+rSi2uDpdtjJfuDQKAMbyssWEYHylA7e/10WlAbLCMCZVhdWomPrl+YwVJ5dfI/s4aConljnGAZFSiDUirD2g4LlKF1FRUsIwJlUJxgqfkh/5vaQBlkq/KRYtHYtGsXF734Nm8/8L9QoAzVVHrottQTer7hgbK2xh0RLDUDui9xmkOtwvoeHiyjA2VQeLCMFyjNfqiYvZXhgTK0TKeHTmurQm2FB8pQTVSwjA6UtXWRzzk8UIZqPF7StpSF2kndXFIbKIPiBMuIQBlWFy48UAZFB0vL7pKYvZPK640JlnpRSW2gDIoOluGBMrwmPFgGw6Q3si1VVoGymP0I7rhrjBadp7KlvP766zzxxBNYyrOwb49/GAZdIzAjdmTgCmexoGWZ4zNUVYJd85oGOdnm9+hAGd2W1QqBvZNxm9J1VG42ymap3UsZpx2ji1lj2VcJvkTL01E2q3lyT6I+6Tq+vGyMNCu2wsrIIBigrBZ83bLxpVliA2VUv1SqDfwqbjsAWC248jPxZlnJ3FIVERYjl6ljpNrQDJW4xmLB2SsDT5ae8JCIslmo6ZOOM1ePCZThDJsFf5q5rhLWWHXOvXwsC3fuZecnRRGhsrbfGpV9U3H0iA2UkcvT8WVYzJOxHPH/NoZNp7KvjaoCQnsp49dYqeoH3ZcY2Krjt6WsGp4si3lCU4Iaw6ZR0c9K1RA/3b/RIgJeuJp8CyWH+GICZURbVg13tm6GnQTtGFao7G/BMdoZEyij2/Jka2BAakXimor+Or6x1XR9M/7hfMMClf10LJPKYgJlOGUBV46O7lcJawwLVPXVyZiyN2IvZbya7Gl7cL/bjdSyxG15O1uYd8Yh3PTUD+aZrPHaKtDJOaLIDJRx2jIsUN1Hp9ORRTGBMuL56WHPr46a6t46aUfujQmU4TyZGsbJJWagLEtwJSpdw5VjnjgXERTDaVCdb8F3VEVsoIzql7uTHmgrwWuaBjXdLFQc4aLXqwnGcgdqSg93xwbKqDp3tvl/Yy9P8JqmaTi7WNgz1YgbKINcXWwUTSYmUEY8P03Dm21B8xEZKMPp4M6xsWeihfxvfKRUxq/rObILs08cwNN//SkmUIbzZZivs9GBMpw3287esXYzUFbFHxalLBp7Du0UN1CGM9JT0PwqNlCG12TYKR2eGTdQRiwzLQUMIyZQRtSk2qke0iluoKytSaFmYG7cQBlRl2IzT15xJa4hxYa7oHP8QBlW4+3VOW6gDKfZzOUpd+Lnp9lsGN07oxfFBs8IPfLiB8pwVqu5syzR+zdw7D2jefPNNznnnHO49NJLE7dVh0aHykceeSR0re9E97eUL7/8krvuugu9JpXUTX3i1iiPB+XzoaWkoKUkPpFE+Q3zCj22OgY3e31mSLXWM61n8FNKWh0n3QQ+aWgpiU+UUYEgqdnrPplGuVzmP0Fm4sHNoT6l1nESk9eHqnGYz69T4kHQmssDPh+qjsG/mtdnBuv6ToYqK0fLyMDoUsdAabd5CL7Ok6a8fvD6Yq5tGk6vcUNxCVpWJr4eOQnrTjtrOFvX7GXJqpLEbbl9aB4fvk6Jl2dxeNB37oWsDDx94o9DNNvyozt9eLrUcSKX28Di9OKuo8ZW7cO2tRiVmY5jYOLlWdwG1ioPrm519N1jYK3y4upW90lv1ho/qburqDqo7uWlVHhx9KjjxLEag/Q1RajMdCqH5SSs070Ke4kHR8/E60H3KlL3eajpWcfyHAaZK4tQGWmUj6rjb+NVpO3zUJOfuC3zsm5111jcipyVe7j9uZMShspQW3s81PSqZ3lFbmp617W9KLKXFaLsKZSPTXwIS/cp0ovc1PSq4//Ur0gvdNW9zn2KrGWFKJuVyjHdEtf5FWm7nTh61XFio1eR+UsxVaMSt2P2C9KKHDh7JG5LMxSphQ5c+XXU+BXpq3aDruMYnmDnBObeK3tRNe5udZxEYoB9TzWeOmsUtrW70DQNz+CeCetQCltxFb68xK+zQ4d3YdLBPfjX8ysT1mAoLJvN65Ib/fIT1wGWfZUYOXWfAKOXVGLk1lFjgLaz0Py5Z92TZmtllajsOtpSClVYjNa97sOwqrAYLT0dLbOOseOYO420jLprjL0l6J0TvyaE2qquRktL/BoKmO+ndeUAwCivQM+qe50DKKcLra7372BNHTkHwKg2h+3p6YnXw+hLuvD9999zww03MHfu3Hr7Fk+jJz+fM2cOAP/3f//X2CYarU8fM0gadg8KRaILEylDQeCTQrwVrjxeM3wCmt0e9w+nPF5U8HJFmo6Wao8f9jxeDKd5yF2H+BuU240ROOSuZ6TF3TCVxxP642uahpaWFvefQblcGIG9qzrEDZbK5UZVmHv5tMyM0F7ZCC43RkUlyu83l6drkBXbluZ0Y5SVh5YXL1hqDhdGaRkohd4pG5UbGxg1pxtjXyl4vSivDx3iBkvNYQZBpRS6Kxuja+yZbmbNPpTfwOLOSXxmnaFQLjd4fVghbrDUqz04i8pJ87qw7S7D2zP2xcVS7UbbucccEtA5F0+v+C9Aml+hHE40j5cUiBssrdVe9K1F4PORWp2Lq2+cmhof1s2F4PORVpmLs3+CFzxDoWpqwOUiHeIGS1uNj5R1u1E+HxlVnalJUGNfuxvl9ZJZ3pnqIfGXZ6v2k7q2EOV2kwVxg6XV4Sd9dSHK7SG7LJfKYfFqDNJX7Tb/vxwusiFusLQ6DDJWFqJcbjqVdaZiRPy2MpfvRrnc5JR2pnxknOfnMMhcUWi+4Dtd5KwkbrC0Og2yfjaXl7MvN36NyzDDVB01Frci+6fdKJf5P5+zopTSOP0KBcEaJzkluZSPjj3z0+JRZP8UrMmhfEzs4SmzZrf5/Gqc5PxM3GAZqnO46LSvExVj4tUEnl+Ng+x9OVSOjq0JBcrqGtA0sldoVI6OHUNp8Sgyfzb/zlml2XFDo+5V5t/P4SBrJQmDpe5TZCw328rcl0n1yNgwqPkVGSt2oRxOMkozqRkRvyZ91W7z/6aOnQWaX5G2ehfK6SStNBPn0Ni2dL/CvsZcnr08E/eQOMsLBErlcEIdl8lDKWzrdqFcLqwVVfgGxQmfhiKzshrHviosmwrxD4wTGA2FZdMu83WvrqlhlELfWojhdKFVVaP6xA/X2rZCDLcbrboG1SdOYAwESuUKjGfcvSdxsNxZhOHxoNU4ID/O3zkQKJXHA3v2JQyWqrAY5fOhKivRHA70bvHrjOJ9KI8XzeFEz4t/WNfYW4Ly+jBKyxIGS2OfubNB+XxoLjd6bk78urJylM8Hbjd6Tvz3JKPcHLJmVFUnDJZGhTkEQPn9aB4veoIQblRWmzVeH3pG/LBrVNeYeageO3bsAKCgoKDe2kQaPabyoIPMeVY2bdrE2LFjI762bEk8fUdz6N27t7l30WpgeKtjxyz4fBiBPXTKUGZwjBrrEAqUhjlJqnK7Q/8QEQyjtsbvRzmdqDjjKAynC5QByjB/dkadiR4MlMGaGmdtWA0XOHEHv998Hg6H+SYR3vdgoAycoGRU15gv7BE1ZqBUfsP8qq6Je4hfGQYqcPhcKWWG0KrItoKBUvn9KL8fo7IKrSLyKg+hQBk4WcioqEQri3PY2jAguBvf7zc/rZVEDcwOBkqfuafSqKhE31cRp8Z8scDvxygtN09oiqI7PLDHnKZB+f2o0nKsReWRNdUetF17cFY4SMtMQZWUYdsdOQA6GCiVx2uuz9IyUnbFDpK2ODxm8MTcDikpJ2VHZF0oULrd5vraV0bqtqiaYKAM1pSUhcb9hLNV+7BtKQqtT/aVkh41OD0UKN0ec3zu3tKYAeyhQOlyh2oy18dbXiBQOpxmXXEJWeui+h4MlE4nGH7YW0b2mugag4yVu2v/Bwx/3NkbQoHS4TDbKi6l0+rYtjIDQQNlQHEpOauinl94oAytqzJyVka1FQyUNY7ENa7awJWoJhQow/93S8vJWVEaWxcMZsqAvWWxNcFAGazZV07O8pLYmqVhy1MGlFaQ8/O+OG0F6gI1nZZH1xi1YVEpKC0ne0XsHH0oal93lIKyCrJX7I1qKxAoHY7QOPWslZFXmAoFyuoa8wNSRWwNhAXKGodZV1VN5qrIqY3CAyWAqqwmY3VsTShQAvgN0n+JnSIpPFCCuYcqbW1kXXigBHOPmH191PLCAyWAoUjZWBizvPBACaAcTqwbd0fWGArrhp2kpeo4K10olwvLpsKYmlCgBDAM9K3xl6dvLUQF3quU04W2I8562FYYOkSr3G60HXuilhcZKIGY99uQnUW1J614PFAY9XcOD5SBGrUndtsLBsrQ7wlmnAkGSsAMjXtjj0IFA2WopjT2dc/YZ74fBZeTcHnBQAmh97eYmvKwcyACwTKmpqIq9H4LhL7H1AUCZbDGiDOzTXSgNByO2BqHA7+zhsJCczsJ7rhrjCafqPPhhx/G3PbRRx81tdk62e128vPNT2eG3Y0RCIgQCJRR4TA6WCqvLxQoI2qigqXyeGPGOyhDRQbL8EBZWxQZLMMDZXhNVLBUHk9ob2eI3x8RLCMCZVBUsAwPlKG24wVLlzsmaEYHS83lCQXK2rYig6XmctcGylCfYoOl5nRjRJ+JFhUsIwJleE1FZVTNvsgXrjjBUnd4oHBv6AUj2PfwYBkMlMrjwVnpJi071awJC5bhgTJifUYFS4vDg76tKOJDR3SwtNSEBcqwvocHy4hAGV4TFSytNT5smwojT1aLCpa2Gh8p6wsjPwhFBcuIQBlVk7mhPGx5YYEyvC4sWEYEyqBgsFxbHqiJCpTBdVXtIHtN2PLCA2V4W2HB0uowyFwZtTxlmEEvPFgqYj6c4Y8MslZXWKCMWJ+1odGsKaqzBswTHOpbnsUTFijD+15SGz4jAmXE84sMlpoRZ3nKiF1edNCNCpa6N2zvY6gmNljqPkXWz1FBJSpYRgTK8JqwYBkRKIPiBMuIQBleV1VN5moz5EQHytAiK6vJ+KW2JiJQBtaBqq6JCJbRgTJUGhYsowNlqCYsWMYESgKvsTWOyGAZFShDNzuc2IKh0VBYN+5GOV2kZafirHKZOz3Cg2XgkHf0DhLldEUGy6hAGV4XHizDA2WoJjxYxgmU5u0G7I4Kn2GBMtRWeLCMCpThNeHBMjpQhhZZvC/m95idSV6feaQsWBMWKCNqwoJlMFDGLC9w5C7895i6qGAZESjDa8Leh4OBMmZ5ldUxv0fXRQfLeHsolaEigqXhcJiPS3FjGAbp6elNOlGn0Ye/Fy1axKJFiyguLuahhx4K3e5wOLBY6pjjq5n079+f3bt3Y6T70CsMDI8XzedLuIs3/FB46Pd4NcF/IF03w2OiOqfT3PgNFRkWa4swnK7a1J6opsZp1lgs5mHveJ9IAsFSczpRwSmUogWCpQ6gWyICZWhxfgOCh9ZtttBh75g6paCiEhzOiE9LkW2ZwVIH8/BRvH4HgqUOkGoPHfaO+/zKK9BqAnsq4n0KDIZPpVCpKfE/CQeDJaAy0sxAGWegtPL7obQcS3UN+I1QjaPKRVqWvbampAwbYGSlxV2e8htQWkYK4M/NiAmUoTqfD62kHHu1w3xMvIHZwWAZaCthTUkZaYC3WxYpGwtj3oRq2yolo9oReNOJ11YgWALebpmJa4pLyARcPbNIW1MY8wYaXpddY+69jLsHPhAGswFn76x6axx9s2MDZVRdTo3TfCOKDlOhdVBGziqoGdDJDJ6xVSiHk5yVZVQP7lS79zFBW7k/mGOYo48KRCxvJVQNyTGDZ7zlOV3krCilamhubFgMb6uknNwf3ImXFwqWUDWsc+LludzkrCihamjn2EAZ3lZpBTmLPXUsLxgsoXp4l9jgGVanVTviB8rwtsoryf7JF5gKLk47oWAJNcPyYgNleJ3DmTBQhhZZUUXGCn9ge4m/PoPB0nlQ97iBMlTqdCYMlKGaqmrzfqXi1iilIBAsPQN7xA2UoVqXqzZQBtZnWradvVsDwScYLDfuCvQvQTuBYGn07RE3UNYuL3AIO06gDNUEg6VK8PoSaCd0GDxOoAzVeczpi+IFyvAa9uwzn2uCvYTK58Mo3oferWvcQFnblnl7vEAZqgkGy/qWV1aOnpsTP1AGBafriRcow2qCO4sS7ZU033Or0bMz4wbK8Dqo+5B3eLAM7enMMPs/aNAg80hwIzX6RJ2NGzeyYcMGnn32WS644ILQ7RkZGYwfP57MzPoHoDbFCy+8wDPPPIO+NxXb+pzIO7VmuKR5MATW1VagRmuGEB3842t64j9mqKY5QrsyD+triU5QCoRJzWKpPYu+DvVthMpvHvbXEoxfUn4D5fOiWSx1nsTUYIZ52D/eWFpd17jpHxfTJT+HPdv28bdrXmDqiQdz1k3Hk9E5jRumP8DeXaVMnDWGs248no9f/JpPX/qmaf3x+zFcbjSbFd1e96Brs5ON/6eGwPp0OsFiqXNgdrMJfPDBYkGv68Sx5lxedY25vAYMdm/68gyMqqoGL++iu09l6Ph+FO8q42/X/YvHv76Jyt1unr7rP2xYvr3+5SmFUVF54J+fpiccu9WsDFW7vAOxvSij9kSFpi6vAWPTAPzVNWi6Vu9JHfEMGtuXyx44G8NQlO+t5M+XzOcPb5knxdpTbeT17cz9v3mc6j0urnn8fHSLzvO/e41lC1bRc1gfrn38N+xYt5snbnwpsutOF3o9J300lBEI3XW9nhlud4Ne7xoSQ1To/Ig6TnL1eNCszXM56OD7UZ01wffIZlmeD/R62jL89dc0lOE3Z7UJOP6RKbz55pucfvrpXHXVVY1uttF7KgcNGsSgQYM44ogjSD8Qb1pRhg0bBoDKDPs0EtowjfhhUBm1NZpWf00D20q0YSlDmX84AN0SNzBG1ACK+usU8YOl8vsjlxdvY1eRn7yUl8TBUpl7DTWIHywNVXsB+uCUSjF9MsMiSoU24ETBEhX4lObxxH3hUH5/7QuL1Ra336Ga8OVFBcspJ06gcEsxD5zzV864aS5TjhvLKVfO4vfn/I0rnjyLc245kUevfp6Jx4ziuql3ctW8C/nE5Y5/Bl4gLKLM7USzWBKfqafMvaIG8V+Ild8fGkqhpaSgxznZS3l99dYAgVBtjs01iH/Gn/L5MAJj67SUlPjh0+/HHxjLV1dN8BCKGfYSvHEHgqDy+822mqGmzsHugaAUaqsZahqyvAGj+pCbm86NJz7MWdcey9Tjx2O327nr3Ec49/o5rPtqZd3LCwTKepcXVteQthr0/KjdGxIjEASV349mtTVLDZh/y0RBL6KteDWBsBh8DdbjXQkkrKZOhqrd1hN9OIquSfDeF6xRfhKcRor5vxfoH5qOHnZCZsnuMm4/5RHcTg/n33Yik6YP5caj7kZPS2X6mYdxwlVHUrm3mgvvPouHL3uG0m3F/PGDW1n2+Qqmzp3Ao1c/x8xzp5HdJZPKEvOwqeF0gRH48KdbEoZLw+UOhZeENU5n1PtknBq3uafdcLlA0xKGy2AdmpYwMIZe0+sQrFFej9lWgnAZ/n5UX01doVH5/aH3SEj8vhb+fltvTV2hMfjeHvYeX2ddQ2rC3ifXrVsH1J4v01hN3qV30003UVVVe9JGZWUlV155ZVObrdfQoUMBUGl+lDUqCKo4h6Sjw6IKhLR4h6UjHtewtmLGNkSFRQzzxJt6z8Ay/HHHQMS0FWcsRX01CZcXfQgg6pB38ISZyMep2n/OwPNPuPs/uK4S1IWCZ3hN9Lia8LCozGXHjIUJrwm25fPGHAbJ79uFjT9tAmDDT5s57sKj2Lp6B6W7K/ApD/1H9Aa/nyUfLuWv/7uXDUs3me1EH+YJD5QQCOx11AX76fGYL6RRfQ8fmxtvfG14oAzVVNfE1vmNiNuUxxMzODs8UCaqCQ+UCWvC+h+xvOhDmuFBsCk1iZYXPdg9Iig1X01D6oYfOoQfP1mGUVXNj1+sZtiEAXg8Hu57+Uq+euV/dS8vPFDWtbyoukbXxHt+cYeyqMh15fPGjPFqTE3C5UFsW9HbQlRYVH6/ufezjhogtp3A0KGIbT24JzyqLqYmzv9DeA0Q9zB66H8v7LXDCDu8X1Zcidvpwahx4PN48XvN9yrD6eLwkw+horKMyr01dO7eiZ2rtuGoqKaypIrszpl88+9vufbx35DdOSMmUNZ2wB9z7gGEBcq6aqICZfRrWei26PfbOCLqlIo/XCkqUDakJtHyQu9ZweX54gxriq5JMPyr3pAbdmJP+G3x6iIY8f7/GvZeHlPXkLaUQmmK9evXA7XZqrGaHCqdTmfEdSKzs7MjrgXeUrKzs+nbty8ARnacMR3xwmA84XUxeyn3ryZi40u07LDQGBMW97em3k/efjPkBOtUgvEh4cEyGCijnmNEsAwPlKEC8/kbbnftGXLhYTGqLqYmTluhk6+iw2KwJk6wjPnbRAdLv59tq7Yx7qgRAIw/ejQAjooavFUunNVubHYrhtvNd+/+yLVT7+SjZ76obSf8RdYw4v6dI+qig2ewJixYRgfKiJrgmZlRgTJUE1g3oTq/EREWI9oKjqGJCpTxaqIDZdya4POL8/8eEQijwmKja8Lq4i4vGJjiBKVG1QRvi/emUkdbmTkZOCrNMdfVhSVk5WSwY8cObpx+N2t/WJ+4nTiBMvx51z4ofl1D2mrIOkAZkWEwThCEqNDYhJrwQ9OhRSZqK3S2efy9jxHBsq6aYDuBoGi+5sX+b0XXxa0J2/4T1YQHy3j/e8H+RqyDGgd5vXIZP2MU37+/FJQiLSOFvF6d8SkvVaUOoPb9oabCQVbnTHZv2M1NM+5l3vUvmu1EB8pEywsPlKEbI4Nl3D2USkUEy5hAGX572M9x66KCZdw9lA2pgYj3HuXzxr7PBNqKeUy85UV/CIq7vPrPRq/rMRGiPgA0uqaux4T3I9ODx+Ohc+fOTTrzG5pw+DtI0zRKS0vp3NmcW62kpKRB4yOaw/jx49m2bRtGJw+WkjiHAZUC1YCV3ZA6pYD692o2aGMy/PXnXcOPUlrdn4YMf+3g/EQbVeC5qURhOLwtj1H7mHhNBQ+FJ6oJGw5QG2QTB/CG1ODxmMMPEtVEheb4HQ+rUwbfv7eUMUeO4KEFv2fr6h1Ul1WTnp2G8nmp3FOF1quOPvm84DKHDBiJps0g8CJWU3e/lMeDPxiK66gxCBw2qWOjUR4Phj/wYaSuthpSQ2DcUj01ut1ee9g7UV1F7V6kJtVUg56WWudhTOXxhM60bHJNVTV6enrsnq8GtFVVbm5PABkZNiqLy+jSPaNpfQoeBs/MSBw89+f51VcTCIN6Zkb8IBheF5gLt8k1gcPgdS4v8D9c53YQFizrrAmeyFDX/5XfnzBQhtf4w8JuopqI6Z4SMGoc6BnpGDUO0jNSuPVfV/HQBU/iD1wQ47ATDubnr1aSUZCCv8ZJ+AmZmTkZVJUGA7y/9mhFHe8NEXsi6wkvdR7yDg+WTakJu6/OQ97hwbKumrAjYAkX5/OiWW3xA2V4W3W9X4Xaqv/9v6GBE6g/LDZ0D2Y9zn1kLs8//zzjxo1r0kk60Ax7Ks8991wuu+wynnzySZ588kmuuOKKAzYh+vjx4wFQOXVcmqg5BQ69HjANWVa8Xd6NbasBzy/eLv2E7dT3wtGAGnN5dVyeKjiMwajncERouINCKcXfr3+Bm2bcQ2VJFW89+gF9h/XGarVgt9op3rG3znaUzxt4ga3jk0F4v+rSgJq6DjtH9stXf1sNqfF4Ig7FJarx1/HGHr68+raXOodOhC+vjjMe92t5DanxePDXEd4i2oqqWfP9Bg6eOQaACceMYfU3a+psA/ZjHZRVHLh14PM2eh202PKU0azbQUNeO+sKlCENGUrVkNcDZWBUV6OjuPWlq3npvn+za0PtVECHn3YYq79fS0VxFRh+SovK6TWoB+lZaWR1zqSyJOxD0P68/tRT15AxlA16f2zge2hDxlA22/JUYBxmM/W92TR072MzWLZsGQDjxo1rcltN3lM5ffp0BgwYwE8//YRSigcffDB0WLqlBVO1SvejUvxonpafykgkQTP/I+d2z+GOV6/F7/Pz04KVrPpmLW89+gEPf3kPmV3TeecfsXOv1tmf6E928Q6xxPv0Fz0GqL6aeMtq7uUF7wvuuW9qTUOX11x9qm95zb0O4rSz6eetlBWV88iX91C8fR//eeQ9Dr9sQoP2zrSXddCiy9ufdZBIa1sHUX0+4szJjJh8EOlZaZx752m89/dPWfzhT3Qr6IrH66Z0ZxkAz97xKjc+ewW6ReeF378ef9nN4UCGqWQsrwNTFoNVq1YBtTvqmqLRUwq1FpdffjmrVq3CuikLS+GBPwtdtC8HnziKfuN68+Y9+zmBf/ibRKJ/qQNZE12XqPZA1jShLXtaChc+cC6HHn8wjionKPjxs+U8e/sr5vW0Eyzv178/A7/Pzyt/fGu/+z5wTD+6FXTlu/d+BE1jyMEDOPbCGTx6+fwGtTP68GGce8ep3HbsH7jry6u598jHMPxGs6/zJ354gCsm3QZK8avfncZL9/1n/9qhaetpv2uas6320Kf9fAs+9tojqS6p4esXl+zX44SIx9/VhW9oBX379uXFF19scntNPvy9YcMGLrvsMmbPns306dNDXwfKtGnTAPB3jj8BqxD7o2R7GV0LElxjuy7heysOVE1D+1TXY1qipgX6dN3Tl5LVOZOLR13PpeNu4qrDbsdZ5cJmt9Wz7MY/v4Fj+3HYiRNCt69fujlxoKyjnUbV7UdNMFAC/Op3pzWuT01YT41bXoLHtMTyWnOfGrFPp2tBLiVRl34VorGOvPIQAKZMmdIs7TX58PcjjzzCddddx4MPPsjjjz/Ou+++i2E04KzrZjJ16lSeeuopVCcPymKg+Zth4nPRYe3bUUqXPrlo9ZwjFdf+HnZr6ZrmXl59A7iDNfW1t5996tG/G4edOIGze/8Wt9McP+11e3n5/v+E+nTFYxcwbNJgUlJT2LR8K49c9BRejy+ivUNmj+XXd52ONcWKz+vnscvns3HZFgAOP+1QzrntFNDAVePmttn3c949Z5KaYWfIwQP5+Lkv2LxiG+fecSq3HHMfACdddSzHXXQ0hmGwa0MR953xcIPWU9denbn+n5fRJT8Xr9vLE1c/y5ofNjD6iOFccP/ZFG4pZsjBAyjaUszdp/4Fr9tLj37duPXFq0jvlM7qRWs5ZPY4rp16J/t2lfKx5zVmp5zFpY+ch8Vq4e8/PUTFvkpuOea+0H1oGiOmDOU3953FjdPvBuDSR85j4rHjKS0sY+/OEnas2w1KkZWbyVVPXET+gO7Y7FZevv9Nvn7z+0b97eqsaeg/WTNvT22qT3F0Lchl3zYJlaLplKb4/nvzf7vVhEqfz8eQIUPw+Xykp6dz1llnceWVV3LOOec0R//q1adPH/r378+WLVswurixFO//1QuECKoucaAMg6y8TCqLq+t/QEfSgm+Udek3og+Fm/aYh70TLO9fd78ROvP18kd/wzHnH8kHT38eLALME2iumXInSikGjevPVfMu4popd1AwtBcX/elXXDf1TkoKy8jqnImz2sULv3+dkVOH8sjFfwdg9BHDQ4sdf/RojjnvSK6d9jscleZULg1dB1c8egGLP/yJdx7/iCETBvK7N67n/CFXAzBgbD/+9H+PU7SlmPvevZVpp07ii1e+4fK//YZPXviSj/65gElzxnP8b4+Jaffv17/ASVcey6Xjb0q4noImzz2EweMHcPGo67Gn23lq6YPsWGde5u+yv57Pp88v5MdPl5OZk8G8xX/i5y9WUVXWzP8PSdqemry8JI4Ys6VayeqSSemu8qT1QbQfRq6b6upqunTpwvDhw+t/QAM0OVRaAzPE9+jRgy+++IK8vDxKSkqa3LH9cfTRRzN//nz83VwSKkWT7dtWRl7fzhIqW5Hwod9HnDGZs289mazOmdx7+sOsW7KRyXMP4YRLjyElNYWMTunoeuwRi849crj1xavp1rcrhs+g56AeAIybMYpFb/9ASaG59yc0LUsdJswawyfPL8RR6WjwY4JGHzmCB8+bB8D6HzdRU+6g1+B8ADb+tIWiLcUArPtxIz36dwNg5LSh/OHsvwLwwwc/Ubkfy4vbhyOG8+Xri/D7/DgqHea40YBDjh3HgNF9uehPvwLAarOQP6AbVUvl/yHZuhbkUlFchc9z4M4MFu3XtCvGs3DhQmbMmIGlmS432eRQef7551NdXc3ll1/OI488gtPp5JprrmmOvjVYMFSqTh45C1w0WdGmvXQflMemJQ24RrNocVtX76DnoB6kZabirHbx1Rvf8tUb3/KXL+7GmmKle988/u/3Z3D5hFuo2FfJ3CtnM3BMv5h2rnriIj6c/zkLX1tEWmYqb5c+b97RiGnZmjqXW4xAaPa6a6fPMvwGFmv817KGLt4IuzpXir325b6u/uu6xg1H/Z6aipa/iIXYPz0G5VG0oY4pz4RoIGUxWLRoEQAzZ85stnabPABx0qRJZGZm0rdvXx599FGefvppDj300OboW4Pl5+czZswY0MDfzVX/A4SoQ+H6veQP6ZbsboiAoi3FfPvfJVz5+IWkpJrXBtY0jZRU87q9aVlpuJ0eqsqqsaelMOPcw+O2k56dzt6d5lGUOZccHbp92ecrmXLyJDr3yAEIHcp2VDpIy4x/5GPxR8uYdf5RpGenRzymIVZ8uZpjLzRPZhwyYSAZOens2lhU52NWfbOW6eeaJyVOmjOerNz4y3M53NjTaq+fXLxtLwPH9gNg6imTQrcv/3I1R545BYvVQnp2OoedMCHiuZ12/Qmh3+MFdJEc+UO6UbihONndEO2A0dWFx+OhoKCAIUOGNFu7jd5TWd+p57/+9a8b23SjzJ49m+XLl+Pv4cSyMx2tMbsfhACK1hdz6Gljk90NEebRS5/mgj+ewz9X/xVHhQOXw83PC1exeflWnNUuln+1mmdW/5Xi7ftYt2RjRLAKeuGu17jx2SsoKyrn+w+Whm7fvnYXz9z2Mg98bI63dFa5uO7w37Hsi1WccdNcnlj8Jz594Uu2rKrdc71swUo++9dXPLrofvxePzvX7+b+s/4as8yRU4fy0pYnyc7L5KUtT/Kvu9/giWue5fr5lzH7gul43V7+eM6joSumJPLUdc9z64tXc/xvj2HF/36htKgcR2XsGNO3H/uQx394gH07S7n9uD8w/5aXuOvfN7B3Rwlrl2wM1X373yWMPmI4T694mD1b97L8q19C9z15zXNc/uhveHr5w2i6xt4dJdwx54+08dnn2oUeQ7rx9YuLk90N0Q4MPL4n69at4/jjj2/WIy+Nnqfyueeeq/P+3/zmN43qUGO5XC5OOeUUqqursa7OwVJmP6DLF+2HzW7l1o8v48Hj/o7HWcfVfIRoAN2iR85T2Qj2tBQ8Li9KKUZMGcr1T/+WC0dc18w9Fa2Zpmvc9tFlPH7OC1SV1NT/ACESMDK9eMeWkpKSwn/+8x9ycnKare1G76k80KGxPqmpqRx77LH8+9//xsh3SKgUjeZ1+yjZUU6PQXlsX7k72d0Rgv6jCrh+/mUopfB5fDz0myeS3SVxgHXpnYPH5ZVAKZps5u2H8uGHH3LkkUc2a6CEZppS6KOPPmLz5s14PLXX4L7ppjjTWrSwuXPnmqEy14NK9aG5mvz0RAe1e+0eeg3vLqFStAprF2/kkjE3JLsbIol6DevB7rV7kt0N0cYpm5/PPzenW5s7d26zt9/kE3UefPBBNm/ezKJFixgwYACbNm0iJSV2PNOBUFBQYJ4kpIGvt5y5KBpv+8rd9BnZM9ndEEIIAApG92T7ysJkd0O0cac/NguPx8PIkSMZOXJks7ff5FC5ceNGrrnmGtLT0zn11FP529/+xrZt25qjb43yq1+Zc6sZ3ZyoFJnLSzTO9hW7KBgtoVII0Tr0GdWT7St2Jbsbog1TFoN33nkHgHPOOaf5p0ajGUJlcK9kSkoKlZWV2Gw29uxJ3i760aNHM3r0aNDB30v2VorGKdlehm7R6dyrU7K7IoTo4NKy7HTu2UkOf4sm+c3zp1BTU0O/fv2YPHlyiyyjyaFy+PDhVFVVMXfuXC688ELOO+88xo0b1xx9a7Tg3kp/DyfKeuCuQy7aD6Vgx6pC+oySvZVCiOTqM6onhRv2ypV0RKMpXfHvf/8bMPdSxrvqWHNo8pkswavnzJkzh4MPPhiHw8GAAQOa3LGmmDRpEoMHD2bDhg34e9dg3ZqV1P6Itmn7it30HdOL5R+vSXZXhBAdWMHoXmxfKYe+ReOd99xc5s+fT35+PkcffXT9D2ikRkdVpRRutzv0+9q1a9m7dy81NTU4nbGT8h5ImqZx0UUXAeDv6UDZ5dOd2H+bf9zOgAkFye6GEKKDG3hIAZt/3JHsbog2SlkNXnnlFQAuvPBCrNaWmxmn0aHyH//4B6+//nro99/97nf885//5Mknn+Sll15qls41xaGHHmoehtfBV1Cd7O6INqhoQzEpqTa69MlJdleEEB1Uek4aXft2Zvty2VMpGueUv82gpqaGQYMGteheSmhCqFyyZAlnn3126Pfs7GweffRRnnjiCX7++efm6FuTaJrGb3/7WwCMbi6MdLkyitg/SsHmpdsZeEjfZHdFCNFBDTi4gB0rd+N1+5LdFdEGqRQ/b731FgCXXHJJi42lDGpS6zabLfTzueeeazao67hcrqb1qpkMHz6co446ypy3sn81Crl2rdg/m5bIIXAhRPIMPKSATUuSN02faNum3TYGj8fDmDFjmDRpUosvr9GhsqamJuIKOtOnTwfA7XZTXd16DjdffPHF2Gw2VK4Ho4u7/gcIEWbzku30H98b3dKyn+6EECKegYcUsGnx9mR3Q7RBRicPCxYsQNd1rrrqqhaZlzJao98pDzvsMB566KGIk3KcTiePPPIIU6ZMaZbONYfevXuH9qL6BlShLDLFkGi4iuIqKvZU0Xdsr2R3RQjRwfQYlIema+zZtDfZXRFtjNIU+XPMmW9OOukkhgwZckCW2+hQeemll+L3+znllFO48MILueiiizjllFMwDCM0lrG1OPfcc+nZsyfYDfx9apLdHdHGrP16E8OmDUx2N4QQHczQwwey9pvNKBm5JfbTBS+ewvbt28nJyeHCCy88YMtt9Hnldrudu+66i927d7N161YA+vXrZ4a3VsZut3PNNddwyy234O/lQC9ORXfY6n+gEJih8qw/nsCHf/sy2V0RQnQgQ6cN5LOnvkl2N0Qbo+x+XnjhBQAuu+wysrIO3FzdTR4o1rNnTyZPnszkyZNbZaAMOuyww5g2bZp50s7gSpQmH/1Ew+xeV4xS0POgbsnuihCig8jNzyanRzZbf5L5KUXDKRQjf1uA0+lk9OjRzJo164Auv0OdfXDdddeRlZWFyvLh7y2HwUXDrf1mE0PlELgQ4gA5aNpANny3Bb9PzgMQDWf0cPLTTz+RmprKrbfe2uJTCEXrUKGya9euXHvttQD4C2owMmTuStEwa/+3keFHDk52N4QQHcTwIwax9utNye6GaEOU3Yd1pJlrfvvb39K7d+8D3ocOFSoBjj76aI444gjzMPgQOQwuGmbrz7uwZ9rJH5KX7K4IIdq5nB7ZdB/YlfXfbkl2V0QboVAMu6g3LpeLcePGcfLJJyelHx0uVGqaxg033EBOTg4qw4e/b+uZU1O0XspQrFqwjlEzhya7K0KIdm7UzINY+/UmuYqOaLD/e/5Eli9fTlpaGrfccssBP+wd1OFCJUBOTg4333wzAP7eDvydZVJ0Ub+Vn65l1NEHoektP4GsEKLjGjVzKCs+W5fsbog2wsj28OyzzwJw7bXXJvWk6Q4ZKgGmTp3K6aefDoBvcAXK7k9yj0Rrt3tdMW6Hh37jDvw4FSFEx9B9YFfSO6WyZalcRUfUT1kNcmZYMQyDWbNmceyxxya1Px02VII5gfvQoUPBpvAeVCHjK0W9Vn62jtHHyCFwIUTLGD1rKKu/WI/hl/cjUTeF4uDrBrF371769OnDddddl+wudexQabPZuPvuu8nMzERle2V8pajX8o/XMPyIQdjTU5LdFSFEO2Ox6oydPZxlH/yS7K6INuD8f53Ed999R0pKCvfccw/p6enJ7lLHDpVgTt5+2223AYHxlXnOeh4hOrLyokq2ryxk1MyDkt0VIUQ7c9DUgZQXVlK0Ua71Lerm7+xm/vz5AFx99dUMGjQoyT0ydfhQCTBt2jR+/etfA+bVdoxMmb9SJLb03ZUcfOKoZHdDCNHOHHziSJa+tzLZ3RCtnJHmI2WCB6UUc+fO5cQTT0x2l0IkVAZceOGFTJ06FXTwDitHpciJOyK+9d9uIbNLhly2UQjRbHJ7dqLXsB6sWrA+2V0RrZiyGHSfm4bD4WDMmDFcffXVye5SBAmVAbquc+edd9K/f3+wG2aw1GWgtIhl+A2WfbCag+fK3kohRPMYf8JIVn2+Do9TjpSJ+JSmGHN1P3bu3En37t257777sNlsye5WBAmVYdLT03nggQfo1KkTKsuHb0gFCgmWItbSd1cycvoQ0rLsye6KEKKNs6ZYGH/8CH78rxz6FvEpFEf/YQJLliwhNTWVP/7xj+Tk5CS7WzEkVEbp2bNnKP0bXd34BlRJsBQxKvZUsXHxNg6eOzrZXRFCtHFjZg2jeFOJnKAjEvIX1PDhhx+i6zp33303gwcPTnaX4rImuwOt0dixY7nzzju5++67MXo6MXwWbLuykt0t0cp8/++fOePe4/jh38vw+4xkd0e0UrpFj/guRDhNg0PPGM/n//hGthERl69bDf6CGgBuuOEGJk+enOQeJaYppWQ3XAJvvvkmjz76KACnnnoqEyZMSHKPhBBCCNFR/PLLL7z00ksopTj//PO54IILkt2lOkmorMff//53XnnlFVCQsj4XS2lqsrskWpHhRw1mytkHM/+S15LdFdFK6RadOxdcyf0z5mH4ZY+2iHTuX+ay7uvNMp5SxPB3cqPGVOH1ejnuuOO45ZZb0DQt2d2qkxz+rsdvf/tbSktL+fjjj/EMLsO6JgdLmZycIUy/LFzP0ZdMod+43mz+Ua7VKxIz/IaEShEhf0ge+YO68dpt78m2ISIY2R70cQ48bi9Tp07lxhtvbPWBEtrYiTqbN2/m8ssv56qrruLmm2/G4XAAsGDBAi677DKuueYa9uzZA8B3333H5ZdfzgcffNCkZWqaxs0338z06dNBB9+wcowcd5Ofi2gfDL/im5eXcMR5E5PdFSFEG3P4eZP47o2f8Lp8ye6KaEWMLA/WSS7cbjeTJk3i7rvvxmptG/sA21SoLCgo4Mknn+Txxx9n2LBhfP311/h8Pt544w0ee+wxLrroIv71r38BZqicN28ea9eubfJyrVYrd955J9OmTTMnRx9ejtHJ0+R2Rfuw7MNfyO3Zib5jeyW7K0KINqL7wK70G9ubxW8tT3ZXRCtiZHixT/HidDoZP348999/PykpKcnuVoO1qVAZntRdLhcFBQXs3LmT/v37Y7PZGDVqFJs3bwZg4sSJXHHFFRx0UPNco9lqtXL33XebZ11JsBRh/F4/37zyI0ecNynZXRFCtBHTfj2RH/7zM+4aeR8RJiPTS+rhXqqrqxk9ejQPPPAAdnvbGm7XpkIlwJIlS7jwwgtZtmwZvXr1oqqqivT09ND9fr95ecWpU6fy1FNPcfzxxzfbsm02G/fccw8TJ04Ei8I7ogx/rhwKF/DTe6vI69+FPiPzk90VIUQr17VvLoMm9uX7fy9LdldEK2Fke7BNdlFVVcWIESN48MEHSUtLS3a39lubCJWvv/46V199Na+//jqHHHIIzzzzDEceeSTvvvsuWVlZobGVABaLpUX7Yrfb+cMf/hDaY+kbVo6/i6tFlylaP5/Hz7ev/siRFxya7K4IIVq5I39zKIvfXo6rWnZKCDA6ubFMdOJwOBg3bhwPP/wwGRkZye5Wo7SJUHnmmWfy2GOPcfLJJ4duy8jIIC0tjd69e7N161a8Xi8rV65kwIABLd4fu93O/fffX3vyztAK/N2cLb5c0boteXsFXQs6M2BCQbK7IoRopfKHdGPAhAK+fXVpsrsiWgF/rhvtYAcul4tJkybx5z//OeLoa1vTNk4nCvjxxx959dVX0XWdnJwcbrvtNqxWK6effjpXX301KSkp3H777QekL1arld/97nekpqby4Ycf4htSiS3dgrG17QyoFc3L5/Gz8NnvOPrSKcy/eDsyA6wQItrRl07hm5eWyF5KgT/PiRpeg8fjZ9q0afz+979vUyflxNOmQuXkyZPjXp5oxowZzJgx44D3x2KxcPPNN5OWlsabb76Js3cZFpWOZVsmGq1/PinR/JZ/vIbJZ45nxPQhrFqwPtndEUK0IgMmFNC1oDOv3vpusrsikkih8Pd24O9XDX6YOXNmaCdZW9cmDn+3Zrquc/XVV3PhhRcC4O/jwDekEqXJbqqOSBmKz/+xiOkXT8ZilX8vIYRJ02DmZVNZ+Ox3+Dz+ZHdHJIlC4RtQZQZK4Oyzz+aOO+5oF4ESJFQ2C03TOO+887jtttuwWCwY3Vx4R5ShLHKFhI5o/bdbqNpXw4STRie7K0KIVmLUzKFYbBaWf7wm2V0RSaJ0xaTbDsLo6UTTNK666iouu+wydL39RLH280xagWOPPTY0DYDK8eIdXYqyyyfSjuiTx7/iiPMnkZHT9qaEEEI0r5Q0GzMvm8onj3+FMuQoVkekbH4GX5zH119/jc1m4+677+b0009PdreanYTKZjZx4kTmzZtHly5dUBl+PGNKMbJkctuOZve6YtZ8tZEZv52S7K4IIZLs8PMmsXN1EZuWbE92V0QSGBleck7QWb16NZmZmTz88MMcddRRye5Wi5BQ2QIGDx7M3//+dwYNGgQpBt5RZfi7y5RDHc2C+d8ydNpAeg3rnuyuCCGSpEufXCbMHcUn8/6X7K6IJPB3cWE5zEFxcTF9+vThH//4B2PHjk12t1qMhMoW0r17d5544gmOOOIIcy7LwZX4+lehkEMfHYWj3MnCZ77juGuPQpPJAITokI695gi+e/0nyosqk90VcQApFL4+1fiGVeByuZg4cSJ///vf6dOnT7K71qIkVLagtLQ07rnnHi644AIA/L0ceEeUo6xyAk9HsfTdlVhsFsYdPzLZXRFCHGBDpw2kS59cFr3yY7K7Ig4gZTE47I5h+PvWAHD66afzpz/9iaysrCT3rOVJqGxhuq5z/vnnc99995GamorK9eAZW4KR6U1218QBYPgV7z/8BUf/dgqZXdruVRKEEPsnNdPOcdcdxYd/XShTCHUgRrqXbqfb+eqrr7Bardx8881cddVV7WbKoPpIqDxAjjjiCJ566il69eoFqQbe0aX48x1yOLwD2Lm6kBWfruW4a9vnwGwhRKyZl01l67KdbPh+a7K7Ig4Qf54T/bAadu7cSbdu3Zg3bx7HH398srt1QEmoPIAGDhzI/Pnza8dZDqxCjaiW+Sw7gC/mf0vPg7oz7PCBye6KEKKF9Rvbm6HTBvLx418luyviAFCawjuwEt9Blbjdbg455BD++c9/Mnz48GR37YCTUHmAZWZmcu+993LllVdisVjw5jrwjinFSJfD4e2Zx+nlvb8s4Ljrp5OaaU92d4QQLcSaYuGEm2fw8eNf4SiXWT/aOyPVR/8LcjHyzQnNzz//fP785z+Tk5OT7K4lhYTKJNA0jTPOOIPHHnuMvLw8VLof79hSfHI4vF3btHgbmxZvY9aVhye7K0KIFnLURYdRsrOclZ+tS3ZXRAtSKPzdnFinOVi3bh3Z2dn8+c9/5oILLsBisSS7e0kjoTKJRo0axTPPPMNhhx0GOvgHVuEbXo6yyaDu9urjx75i4CEFDJ0mh8GFaG/6je3NuGNH8P5DC5LdFdGClMVgyu9G4BtSidPpZNy4cTz33HNMmjQp2V1LOgmVSZaTk8Of/vQnrr32WlJSUjA6e/CMK8Wf605210QLcFW7efuPn3LCTTPkbHAh2pHUTDsn33kMHzzyBZV7q5PdHdFCjCwPuSfpLFy4EIvFwiWXXMIjjzxCXl5esrvWKkiobAU0TeOUU05h/vz5DBgwAFIMfCPK8Q6oROlyOLy92bJ0Bys+XcvcW49JdleEEM3kuOuOZOuynaxeuCHZXREtQGkKX98q/OMq2LNnD7169eKJJ57gV7/6VYc+3B1NQmUr0r9/f/7xj39w2mmnAWD0dOIZV4KRLdcOb28WPL2I7LxMDjl5dLK7IoRoopEzhlAwqhcf/u3LZHdFtAAjw0uvX2Xg7+PAMAxmzZrFM8880yHP7q6PhMpWxm63c/XVV/OXv/yFbt26QZof76gy8xKPstey3fB5/Lx138dMv3gyPQbJYRMh2qrcnp047rqjePsPn+CukR0A7YnSFL6CaowJFWzZsoXc3Fz+8Ic/cMcdd5CeLsOX4pFQ2UpNnDiR559/njlz5oAWuMSj7LVsV/Zs2sfnf1/E6fcehz0jJdndEULsJ2uKhTPum8N3r//EtuW7kt0d0YyMDC8F52XjL6jB7/czffp0XnjhBaZNm5bsrrVqEipbsczMTG655Rb+/Oc/m1MPBfdaDqiUCdPbiaXvrmTXmiJOvOXoZHdFCLGfZl11BNWlDr55aUmyuyKaidLNsZPGhAo2btxIp06duOeee7j77rs77NyT+0NCZRtw6KGH8vzzz3PccceZey17OvGML8HfxZXsrolm8P5fvqBb/65MPHVMsrsihGigUUcfxJDD+vP2/R+jZGRSu2DkuOl6mhV/Hwd+v58jjjiCF154gaOOkkvsNpSEyjYiKyuLW2+9lYcffti8frjdwDesAv+oSlSKzGvZlnmcXt743fscdeFh9B7eI9ndEULUI69fZ467/ij+c/eHOCrkw31bp6wG3iEVeEeWs3v3bvLy8vjjH//IfffdR+fOnZPdvTZFQmUbc8ghh/D888/z61//GovFgq+TE8/BJfh6ytV42rK9W0v54OGFnPmH48nqmpHs7gghEkjLsnP2Ayey8Jnv2LGqMNndEU2gUPi7O0k9xo3RzYWmaZx66qm8+OKLTJ06Ndnda5MkVLZBdrudiy++mGeffZaRI0eCReEfUIV3bKmcyNOGrVqwjp8/+oWz/ngC1hSZ90yI1ka3aJx+7xy2/LSDxW8uT3Z3RBMYmV4GXtwF3+BKKisrGTRoEE899RTXXHONnNndBBIq27D+/fszb948brjhBrKyslCZPryjy/AOqZBD4m3UF/O/pbqkhrm3zkx2V4QQUWZdeTgWm4UP/7ow2V0RjaSsBt5BlfjGlbFmzRrS09O5/PLLefrpp2XeyWYgobKN03WduXPn8vLLL3PiiSeiaRpGN5d5SLx3DUqTQ+JtiVLw1n2f0H1gV6b+6pBkd0cIETD++BEcNGUgb9z5Pn6fzL7R1igU/nwHKUc7MXo4UUoxa9YsXnrpJc466yysVmuyu9guSKhsJ3JycrjxxhuZP38+o0aNMg+J96s2zxLv7JLxlm2I2+Hh1dve47AzxjHiqMHJ7o4QHd7AQwqYedk0Xr3tXWrKncnujthPRo6bXr/OwDewiurqagYPHswTTzzBHXfcQdeuXZPdvXZFQmU7M2TIEObNm8edd95Jly5dIM2Pb3gF3lFlGJneZHdPNFDZ7gpevfVdjr9pBn3H9kp2d4TosHoMzuO0u4/jzXs+Ys+mfcnujtgPRrqX0dcV4B1ZzpYtW8jKyuL666/n6aefNne+iGanKSUzbLVXDoeDl19+mTfeeAO32w2AvteOdWsmmlt29bcFB00ZwNxbZ/LcVf9m79bSZHdHNIJu0bnry6u598jHMPxy2LQtyemRzYVPncGCp7/l549+SXZ3RAOpFD++gmpUvhulFFarlVNOOYX/+7//Izs7O9nda9dkT2U7lp6ezsUXX8zLL7/Msccea463zHOb4y37V6Gs8gbX2q1btJkv/vktv/rLSTLVkBAHUFqWnXMfOoklb6+QQNlGKIuBr6Aa/fBqjB4ulFIcddRRvPjii1x55ZUSKA8A2VPZgWzcuJGnnnqKJUsClxTzaVh2pWPZnY7ml88Xrdn0iydz0JQBPH/1f3BWymTLbYnsqWx7UtJs/Prhk9mzuYT3/7Ig2d0R9VC6eRJO5lgLFRUVAIwYMYIrrrjCnHZPHDASKjugxYsX89RTT7Fp0yYANJ+OfU829n1ZuKpknsvWas4N0+k1tDsvXPsm7hr5O7UVEirbFmuKhXP/fBI15U7euu8jDL+8RbZWSlMY3Z3kHGpn3z5zvGtBQQEXXXQRRxxxBJqmJbmHHY+Eyg7KMAwWLlzIs88+y44dOwDI6ZRD9VI/+p40NCX/jK2NpsHc246hc+8cXrrhbTxOOfGqLZBQ2XZYbBbO+sPx+H0Gb/zuA/l7tVIKhZHnIu/IDAoLzasa9ejRg/PPP59jjjlGpgdKIgmVHZzP5+PTTz/l+eefp6ioyLzRpWPdkYFeLOGytdEtGqfedSxpnVJ55eb/4vPIJPetnYTKtkG3aJx293GkpKfw2m3vyv9WK6Q0M0zmz+gU2hnSuXNnfv3rX3PCCSeQkpKS5B4KCZUCAI/Hw/vvv8+//vUvSksDZxm7daw7M8w9l4aEy9bCYtU54/7j0XSNN+58X978WjkJla2fbtE46fZZZHfL5OUb38Hr9iW7SyKM0hRGNyd5h2eG9kxmZ2dz9tlnc8opp5CWlpbkHoogCZUigsvl4t133+XVV1+lpKTEvNGjmyf0FKahGXJCT2tgTbFw5v3Ho1t0Xrv9PXkTbMUkVLZuukXn1Ltmk9klg1du/i9uh4xXbi2Ubo6ZzD00lb179wKQm5vLmWeeyUknnSTX6G6FJFSKuNxuNx999BEvv/wye/bsMW/0Bs4WL5SzxVsDi83Cab8/lrTsVF655b8yxrKVklDZellTLJx+z3HY0my8euu7eF3y4aw1ULqBP99Jp4NTQkfOunbtytlnn80JJ5xAampqknsoEpFQKerk9Xr59NNPeemll9i1a5d5o1/DUpRmTkXktiS3gx2cbtE5+c5Z5PTI5uWb3sFV7U52l0QUCZWtk81u5cw/noDhN2QYSSuhbH78PR2kD7dQVVUFmCfgnHvuucyePRu73Z7kHor6SKgUDeLz+fjiiy949dVXQ1MRoUDfZ8eyKwO92pbcDnZgmq5x4i1H031gV16+6b/UlDmS3SURRkJl62PPSOHsB07EWeXiP3d/hN8rgTKZjHQf/l416L18+Hzm3uJevXrxq1/9ilmzZsnZ3G2IhEqxX5RSLFmyhNdee40ff/wxdLtWbjPDZVkKGnJSz4GmaXDMlYdz0OQBvHTj25Tuqkh2l0SAhMrWJatrBr/6y0kUrt/Luw9+Ln+TJFEoVCcPvt4OVG7tONZRo0Zx5plnMmXKFCwWORLW1kj8F/tF0zQmTpzIxIkT2bhxI6+//jqff/45/hwvvpxytBoLlsJ09OJUOannAFIKPnn8f1TtreaCJ87glVv+y+51xcnulhCtSte+ufzqLyez4tO1fDH/22R3p0NSmsLo6qLfnG5s3LgRAF3XOfzwwznzzDMZMWJEknsomkL2VIomKy4u5s033+Tdd9+lpqYGAM2vkVKSScq+LDylcmjpQBo18yCOu/Yo3rznIzYu3pbs7nR4sqeydegzMp+zHjiBr577gcVvLU92dzocZffj7+Ega1QK5eXlAKSmpjJnzhxOP/10evbsmdwOimYhoVI0m+rqaj788EPeeecddu7cGbpdL7djLUxHL7fLofEDpP/BfTjt98eyYP63/PTeqmR3p0PTLTp3LriS+2fMk1CZJMOPGsyc64/i/b8sYM1Xm5LdnQ5DoTA6efD1qIGuXgzD3P7z8vI46aSTmDt3LtnZ2UnupWhOEipFszMMgx9//JG33nqL7777juAmlpuby6GHHsrBBx9MRkZGknsphBCiJbhcLpYuXcr3338fuiY3wPjx4zn55JOZMmWKnHzTTkmoFC1q9+7dvPPOO3zwwQehKSIwwFKSiqU4Hb1STuxpSek5aZx+z3H4vD7evPtjmXIoCWRPZXLYUq3MvW0mufmdeOPO96kork52l9o1hUJlevF1c2Drq3C5XACkp6cze/ZsTjrpJPr165fcTooWJ6FSHBAul4sFCxbw1ltvsWHDhto7nBYse9KwFKeieeRMv5ZgserMuWE6fcf04tVb32Xf9rJkd6lDkTGVB16nblmc/acTKd1Vztt/+EQmNW9Bymrg7+akYEYeW7ZsCd3ev39/Tj75ZI455hi58k0HIqFSHFBKKdatW8f777/P559/jsMRmFNRgV6agr4nDb1Uxl62hEmnjeXI3xzKew8t4JcvN9T/ANEsJFQeWIMm9uXkO2ex5O0VfPX898g7XPNTKFSOB38PJ3oPf2huSbvdzpFHHsmcOXMYM2YMmiav4x2NhEqRNE6nky+//JIPPviAFStW1N7h0bHsSUXfm4bukHE3zalgdE9Ov+c4Vi/cwGdPfo3fJyGnpUmoPDA0XePI30xiwkmjefv+T9n4w9Zkd6ndUXYf/u4uukzIoLi4dsqygw46iOOPP54ZM2aQmZmZxB6KZJNQKVqFbdu28cEHH/Dxxx+HppsA0Kqt6MWpWPamonnl8HhzyMhN59TfzyYl1ca/7/qQiuKqZHepXZNQ2fIyctI49ffHkpKewr/v+oCKPbJNNxdlNTC6uvB3c6GyvaHbs7KyOOaYY5gzZw6DBg1KYg9FayKhUrQqXq+XRYsW8cknn/D999/j9wfmuFSgladgKU5FL7HLxOpNZO7VOZQJJ43ivw98xvpvt9T/INEoEipbVr+xvTnlrtms+WoDnz4he9+bg9IVRmc3RjcnWp4/9Dqs6zrjx49nzpw5TJ06Va7FLWJIqBStVnl5OV9++SWffPIJq1evrr3Dr2GrSCOlLBNrVaqc0dwEAyf25aTbj2Ht15v4dN7/8LrlhIbmJqGyZVisOkddNJnxc0bw/sNfyDjhJgpeNtHfzUVqf712vDswZMgQZs6cyYwZM+jatWsSeylaOwmVok3YtWsXn332GZ9++mnExOoZ6Rk4t/jNw+MVKWhKBobvr/ScNE68+Wi6FuTy5r0fU7heLu/YnCRUNr+ufXM59a5jcVa6eOePn1K5V6YLagwzSHrxd3GRMzKN0tLS0H09evRg5syZzJw5U6YCEg0moVK0KUop1qxZw6effsrChQspKwubHseroZfa0felopdLwNxf448fwczLp/Htq0tZ9MqPGH55aWgOEiqbj6bBISePYfpFk/nqhR/4/o2f5Ozu/RTaI9nVTafhqRGvoVlZWUyfPp2ZM2cycuRIdF2GGYn9I6FStFl+v58VK1awcOFC/ve//0V8ysanoZdIwNxfnXvncPLtx2CxWfjvnz5jz6Z99T9I1ElCZfPo0ieHE28+GnuGnbf/8Ilsm/tBabVBMuugFCoqKkL3ZWVlMW3aNI488kgOPvhgbDZbEnsq2joJlaJd8Pv9rFy5ki+++CJ+wCxLMfdiltnRfPLpuy6arjHx5DEceeGhLH5zOf/712L8Xn+yu9VmSahsGt2icdiZ45n2q4ksevVHFr2yVNZjAyiLgZHjwejiJnNQCpWVlaH7OnXqFAqS48ePl0smimYjoVIktGzZMl544QX8fj9nnHEG06ZNY8GCBfznP/8hJSWF22+/ne7du/Pdd9/x4osvMmfOHObMmZPsbocC5sKFC/nqq68iA6YCrcKGXmrHUmJHc8uLaSI5+dmccNMMsvMyeffBz9mxqjDZXWqTJFQ2XveBXZl760z8PoN3H/yMvVtL639QB6bsfozObvyd3Vi7Kbze2imAcnJyOPzwwznyyCMZO3ZsqwqSbfW9RsRqPVuVaFXcbjevv/46Dz30UOhwiM/n44033mDevHmsXbuWf/3rX9x000189913zJs3j7/+9a+t4h/dYrEwduxYxo4dyzXXXMPatWtZtGgR33zzDVu2bEHlePHnePEPqEarsZh7MEvtaFU2uZJPmPLCSl68/m3GHTecsx84kXWLNvP537+hptyZ7K6Jdi41085RFx7K6FnD+Oq5H/jhzZ9Rhuz/iGZeb9tnTv/T2Y3KrJ29weuFXr16MXXqVKZMmcLIkSNbVZAMasvvNSJW69vCRKuwatUq7HY7t956K6mpqVx//fVUVVXRv39/bDYbo0aN4sknnwRg4sSJXHHFFa3yn1zXdYYPH87w4cO5+OKL2b17dyhgLl++HCPDjz/Dgb+PwzzRpzwFvcyOXpYik60HLPvwF9Z+s5kZl0zhipf+jy+f/Z4f/7tCTuQRzU7TYMyxwzn6t1PY/OMOnvz1i1SV1CS7W62KshoYOW6MXA+5wzMoKande6vrOiNHjmTKlClMnjyZgoKCVn+pxPbyXiNMEipFXGVlZRQWFvLEE0+wdOlSnnvuOWbNmkV6enqoJjgh7tSpU5k6dWqyurpfevbsyemnn87pp59OVVUV33//PYsWLeKHH36gpqYGI8+NkWfOe6lVW82xmOV2tEpbhz7Zx1np4v2/LOCn91Zy3PXTGX/8SD7820K2r9id7K6JdiJ/SDeOu+4oUtJs/Pv3H7Lt513J7lKroFCobK85PjLXDdl+gqPWSkpcpKWlMXHiRCZPnsxhhx1GTk5Ocju8n9rre01HJaFSRHj99ddZtGgREyZMYNSoUdhsNsaPH89LL71EVlZWxIS4Fkvb3pOXlZUVmofN5/Pxyy+/8MMPP7BkyRLWrl2LyvThz/SZezH9GtbqVGyVafiKNTSnpUMeKt+9rphnLn2NcXNGcMa9c9ixupAF/1jEvu1l9T9YiDhyemQz/eLJDJrUl/+9sJjFby3v8GNPld0f2huZ1tdKTU3Y3loFAwYMYOLEiUycOJFRo0a1ySvbdKT3mo5EQqWIcOaZZ3LmmWdSUVHBvffeC8CGDRvo2bMnvXv3ZuvWrXi9XtauXcuAAQOS3NvmY7VaGT16NKNHj+biiy+mrKyMJUuWsHjxYhYvXkx5eTm+Tk58nZzQB3Dr6BUp5ld5Cpq747zoKQU/vb+aVQvWM/msg7no72excsE6vnrue6pLHfU3IASQlmVn2v9NZPzxI1n63koeP/t5nFUd8+pYKsWP0clj7o3s5IHU2lBdU+MmOzubCRMmMHHiRA455BDy8vKS2Nvm0VHfa9o7OftbJPTWW2/xxRdfoOs6t956Kz179ox7Rl57ZxgGGzZsYPHixfz444+sXr0aj8cTWeTSzfGYgaCpeTpOyMzsks6R5x/KyBkH8cObP/P9Gz912HAQj5z9HSklzcbEU8cy+azxbPh+Kwv/+R3lRZX1P7AdUbZgiPSiOnlQaZFTdlksFoYNGxbaG3nQQQe167118l7TfkioFGI/ud1uVq1axU8//cSyZctYs2ZNaMxPkOawoFXa0CtTzPGYrvZ/uLxrQS5HXnAoAyf2ZfGbyyVcBkioNIXC5Jnj2bFqNwuf/Z6iDXuT3a0Wp1BgNzCyPRjZgRCZHvl6oes6Q4YMYdy4cYwbN47Ro0dHjCkUoq2QUClEEzkcDlauXBkKmevXr8cwosKDR0evtKFV2cw9mTXWdnviT16/zhx+3iQGT+rH4rd+5rs3luGsdCW7W0nT0UOlPT2FiaeO4bAzxrN95W6+ev6Hdn19+dA0P9leVJYZJLFH/t01TWPQoEGhEDlmzBgyMzOT1GMhmo+ESiGaWVVVFStXrgx9rV27NvZwuR+06to9mXq1td1NYRQKl4f2Y/nHv/D9G8soK+xYhzmh44bKrK4ZTDptHAefOJJtP+/iq+e/p3B9+9szqawGKtOLke3FyPZg72HB5Yr8EGWxWBgyZAijRo1i9OjRjB07luzs7CT1WIiWI6FSiBbm8XhYt24dq1atYsWKFaxatSri2rshLh29OrA3s9qGVm1F87f9S0rm9uzEoWeMY+zsYWxcvI3vXvuJnb8UJbtbB0xHC5XdB3Zl8lnjGXr4IFZ/sZ7vXv+p3VwJR+nKDJCZXlSWFyPTB2mxlzDNzMxk5MiRjBo1ilGjRjF06FBSU1OT0GMhDiwJlUIcYEoptm/fzsqVK1m1ahVr1qxh69atxPwrqsDYzGobepWNVH8GFldK6LC5s7ptHVJOy7Iz4aTRTDx1LGW7K1j85nLW/G9ju7+ueEcIlbpFY8jkAUw8ZQw9BuWx5J0VLHl7eZucDSAt0wx/SlP4Uz24LDWBEOlDyzJih7ZgXrlm5MiRoSDZr18/dL3tfyAUYn9JqBSiFXA4HKxbt441a9awdu1a1qxZw549e2LqdF0nv0dP+vbuyw+vLzcPm9fY0Hxt5w3MYrMwcsYQJswdTefenVj2wS8sfXclZbvj7L1tB9pzqOzULYvxJ4xg3JyROMqdLHlnBSs+WYPX7av/wa2IshioDB9Gpo/J545j+85t7Crchc8X+zy6dOnCsGHDGDp0aOh7VlZWEnotROsjoVKIVqqkpCQUMNesWcP69evjHzYHc97MGitatc08CajG2ibOOO8xKI+D545i1NEHseuXIn76YDXrvtmEz9N+9l62t1BpsVkYfGg/xh03nH7j+/DLwg38+O5KdrWBIQ2hM7EzvKhMnxkkM7wR80KGy8zMZOjQoREBsj3MESlES5FQKUQboZRi3759bNy4kQ0bNrBhwwY2btzIrl0JLmdngOYMBEyHBc1hNb9aYdhMSbMx6uiDGHPscLr178Ka/21kxSdr2PrzLpTRtl+i2kuoLBjVk9HHDGXE9CGU7a5g+cdrWP7JGlzVrW/aKDM8+jEy/Kg0Hyo9+OUHS/ztqUePHgwaNCjiKz8/v9VfO1uI1kRCpRBtXE1NDZs2bYoImtu2bcPtTvBmb1AbMB0WM3i6At+N5L+B5uZnM+qYoYyZNQyb3crKBev45cuN7F5TRFt8tWrLobLH4DyGHzGIUTOHomkaKz5dw4rP1rJvW+u4LKfSFCrNj0o1A2MoPKb5IMFkCjabjX79+oWC4+DBgxk4cKAcwhaiGUioFKId8vv97Nmzhy1btrBlyxa2bdsW+p4wbAK4dfO65qGgGfZzEubV7Dm0O6NnDmXo4QPRLTprv97E2v9tZOvPu9pMQGtLoVLTNfqMzGfYEYMYOnUgVruVtV9vYuVna9mxcndSQr3SFCrVXxse02p/1tJU7AluASkpKRQUFNCvXz/69u1L//796devHz179sRqlSsUC9ESJFQK0YHEC5s7d+5k586dicdrAijMwOmyoLkt5vewn/HoLX5IPX9IN4YdPpChhw8iq0sGG3/YysbF29i8ZDtVJTUtuuymaO2hMiMnjQETChg4sS+DJvXFXeNh7debWPO/Tez6pbDFg6RCQYqBsvvN8Gg3At/N8Kinq7hnXIf6n5FB79696du3byhABsNje760oRCtkYRKIQQAlZWVoYC5Y8eOiO8ORz1TwxiA24LVZ0P3WNE9FjSvFV+lHzwWNLcOfq3ZgmeXPjkMmtiPgZP60m9ML8oKK9m0ZBubFm9jx6pCPE5vsyynObS2UGlNsdB7RD4DJ/Zl4CEF5PXtzPYVu9m0ZBsbf9hG8ZaSZl2eshioFANS/NiyLRgpPowUP0aKD7/Vi7L7oZ7JC9LS0ujdu3fcr5ycHBn3KEQrIaFSCFEnpRSlpaXs2rWLoqIiCgsLKSoqiviKvvZ5XH7QPBZzj6fHgubRwW1+17y6ubfTu//h02Kz0GdkPoMm9mXgxL7k9evMnk372LGykO0rd7F95W6qS5I3X2KyQ2V6ThoFo3rSZ1Q+BaN6kT84j5Kd5WYIX7Kd7ct37fcUQAplnvBiNQOjGRoNVEpgT2MgRKoUA6z1v8VYLBby8vLo0aNH6Cs/P5/8/Hx69+5Nly5dJDgK0QZIqBRCNInf72ffvn0xgXPfvn3s3buXffv2UVVV1fAGDcAbGTQ1r157m09H82m13716xHhPe0YKvUfkUxAIUb2G96CmzEHh+uLA114K1xdTU3ZgguaBDJXpnVLpMbgb+UO6kT8kj/wh3cjulsXuNUVsX1XI9hW72LmqEGdV5LhapQUCojXsu81A2YyY78GfE50IE09GRgZdu3YlLy+PvLw88vPz6d69O/n5+fTo0YOuXbvKOEch2gEJlUKIFudyudi3b18oaAa/greVl5dTVlZW/2H2RPzEhk2fuddTVzqZnTLJycumc49cuvbqTLeCruDXqN7rpKbYQWVRDeW7KindXkllcRU040lJLREqM7um07VvLrm9OpHdM5PsHulkdkvHYtcp3r6PvTtK2LerlLLicipLqzAwwBIWGi2RIXJ/AmI4u91Obm4uXbp0oWvXrqGvvLy80PcuXbqQnp7eLM9bCNG6SagUQrQabrc7FDDLysooLy+ntLQ09HNZWRlVVVVUVVVRXV1NVVVVnSdxNJZFt6DrFnRNQ1M6GKB8oPwK5QPDpzD8yryUZvAVVGnmCU1gfg8EUw2NUcccxMrP1pqHjc0bw74rCDxUt2joNg3NqqFbze+aJXAGtKZQysBv+PH5/NQurHlomkZGRgZZWVlkZWXRqVMncnNzycnJSfg9LS2tWfsghGjbJFQKIdoswzBwOByhoBn95XQ6cTgcOJ3Oen9uqy+Fuq6TlpbWoK+srCwyMzNDwTH854yMDLletRCiSSRUCiE6PKUUXq8Xj8cT+h78ine71+vFMAwMw0Aphd/vRykVui36S9M0dF1H1/WIn8N/D363Wq3YbDZsNhspKSlxvwd/Dn7JSSxCiNZAQqUQQgghhGgyOdYhhBBCCCGaTEKlEEIIIYRoMgmVQgghhBCiySRUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJJFQKIYQQQogmk1AphBBCCCGaTEKlEEIIIYRoMgmVQgghhBCiySRUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJJFQKIYQQQogmk1AphBBCCCGazJrsDgjRGiilcLlcye6GEELsl9TUVDRNS3Y3hAAkVAoBgMvlYtasWcnuhhBC7JdPPvmEtLS0ZHdDCEAOfwshhBBCiGYgeyqFiJKyuBuaCnze0nQ0XQNNB10DTUPTg/cFbtc00DW0YE3oPi30mNAXhN1W22boMdQ+Rmla7ce+sDZCt4c9Lvw2FWgmdJ8OELxdC90XfIwK3Ba6H2rb0AP1ocdELiPiMQRu0+PcF1FPRB9rb9Ni7ot5DJGPibif2sckWlbE7wn6EfOYutoN3a4iHh/dXuj+sLZU4HaiHoemwh5v3q+F3xeqDd6nQm1q4fWB2zVN1W5+gdtrNw8Vul9HhX437wM98Lt5n/l78HGh+zSFRu3j9MBtoS9U6HG6RsTttY8xamtR6JqBJXhf4PfatoxQe5aw9i2Yt1s0I+pxBpZgm9QuL1RPbXs65uN1zOWb95ntWQK3aRhYgo8n2A8DC5iPw1xO8LkFfzeXpQI/E7hPoQfWiwUNHbAE/tg6WuA2DYumoQdeDDQ0vB4Lp17cAyFaGwmVQkTza4GXd8xQSSAABt6ta+/TQK9NUJqZ0AKNBJOHXvtzTNrQYxOPpsXWh7dHVH3EfdE/h9UEw2RYqIy5LSwEhv8e3cXI+jiP0eu4L9HTiNduosfVdXuDl7V/bcYNsRGPa+ZQGe9+on9XobbD+xG+zMjHRIXQ0H3h96s47ak4y1IRX+GhsjaoBr4S3RcvbBIMo0QEveDvFiLvM0OlURvKtPBQZv6sa5oZ+ALfCf2shR5XG2DBotV+t0BYAIxzX6A983cVCKUqFCLNx6l6Q2V4e5bAfTqRtwUDrB543kK0RnL4WwghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFkEiqFEEIIIUSTyTyVQkSzKJQyJzw2513Uwr5rUROSB7+H/Uz4bSrs5zruC94eNmlh7RTVJLi99ruK+JmIxykAFby9tk2FBorQY8PvD7URMblieF/i/K4iuhS1PhJ8RdfWN3ckCW6v77665qKs677wZ1jn4+LNNxn+pRL0MfHk55FzS4bdF6pt/OTntf0Im6eSxs9Tqah9nNJU5Bfmd/M+Im43Qu0ZtctBgWaEzaepIu5XmhFqj4j2A9+Dywr8rgdqgt+BmNuMsLkhDa32u0HtPJVG4DaNRPNUaqEJyy3U/s2Cv+uBx0TPfdnwyc+1wJ9Fw+uJ938pRPJJqBQiimdicbK70DKC79lNEB1nhYDITctIZkcaLXzLlgN4QjSW/PcIAbhcrmR3QQghhGjTZE+lEIDdbg/9/N///pfU1NQk9qbtcLlczJ07F5D11lCyzhpH1lt8sh5EayKhUghA02oP6KamppKWlpbE3rRNst72n6yzxpH1JkTrJIe/hRBCCCFEk0moFEIIIYQQTSahUgghhBBCNJmESiGEEEII0WSaUqqJM9cJIYQQQoiOTvZUCiGEEEKIJpNQKYQQQgghmkxCpRBCCCGEaDIJlUIIIYQQoskkVAohhBBCiCaTUCmEEEIIIZpMQqUQQgghhGgyCZVCCCGEEKLJrMnugBDNzeFw8Nprr/HVV19RVFSEruv06dOH6dOnc+qpp2Kz2RrddmlpKa+88grfffcde/bswW63079/f2bPns2cOXPQNK0Zn8mB0xLr7Nlnn+X555+vt+6VV16hd+/ejeh18rhcLn7++WfWrVvH+vXrWb9+PXv27AHg/PPP54ILLmjyMtrjttaS6609b29CtBUSKkW7UlRUxNVXX01RUREAqampeL1e1q5dy9q1a/nss8/429/+RlZW1n63vW7dOm688UYqKioASEtLw+FwsGLFClasWMHChQt54IEHSElJadbn1NJacp0BWK1WsrOzE95vsVga1W4yrVmzhptvvrnF2m+v21pLrzdon9ubEG2FhErRbvj9fm699VaKioro0qULd9xxBxMmTMAwDBYuXMhDDz3Ehg0buPfee3nooYf2q+3q6mpuueUWKioqKCgo4M4772To0KF4vV7ee+895s2bx5IlS5g3bx7XX399Cz3D5teS6yxo5MiRPPbYY83c8+TLyspiyJAhoa/HH3+c0tLSJrfbXre1oJZab0HtdXsToi2QUCnajY8++ojNmzcDcN999zFy5EgAdF1nxowZKKW49957+eGHH1i6dCkHH3xwg9t+7bXXKC0txW638+c//5mePXsCYLPZOOWUU3A4HDz99NO89957nH766fTp06f5n2ALaMl11p6NHj2aDz74IOK2f/zjH83Sdnvd1qBl15sQIvnkRB3Rbnz88ccAjBs3LhSOws2YMYP8/PyI2ob65JNPQm0E3+TDnXLKKaSlpeH3+/nss8/2t+tJ05LrrD1ryUOo7XVbAzn0LER7J6FStAsul4tVq1YBcOihh8at0TSNSZMmAbBkyZIGt719+/bQyQTBx0dLT09n9OjR+912MrXkOhON0163NSFExyCHv0W7sG3bNgzDAKB///4J64L3lZaWUllZWeeA/qDg4eH62h4wYAA//PADW7dubWCvk6sl11m4LVu2cN5557Fr1y4sFgtdu3ZlzJgxnHTSSQwZMqTxT6Adaq/b2oEk25sQySN7KkW7sG/fvtDPeXl5Ceu6du0a9zF1KSkp2a+2a2pqcDgcDWo7mVpynYWrqKhg27ZtpKam4vF42LFjB++//z4XX3wx8+fP3+/22rP2uq0dSLK9CZE8sqdStAvhb6x2uz1hXWpqatzHtETb6enpDWo/WVpynQH07t2byy67jKlTp5Kfn4/VasXr9bJs2TLmz5/PunXrePHFF8nKyuKss85q3JNoZ9rrtnYgyPYmRPLJnkohRIs45phjOPvss+nTpw9Wq/n51WazMXHiRObNm8fQoUMBeO6556iurk5mV0U7INubEMknoVK0C+F7atxud8I6l8sV9zHJajuZkvm87HY7l1xyCQBOp5OlS5c2S7ttXXvd1pJNtjchDgwJlaJdCB/3t3fv3oR14WMCwx9Tly5duuxX2xkZGW3ijb4l11lDjBgxIvTz7t27m63dtqy9bmutgWxvQrQ8CZWiXejbty+6bm7OW7ZsSVgXvK9z584NPot5wIABMY+PJ3jmbr9+/RrUbrK15DoTjdNetzUhRMcgoVK0C6mpqaHJu3/44Ye4NUopFi9eDMAhhxzS4LYLCgro3r17nW07nU5WrFix320nU0uus4b45ZdfQj8HJ1jv6NrrttYayPYmRMuTUCnajdmzZwOwbNmyiDeQoIULF4YOewVrG2rWrFkAfPHFFxQWFsbc//bbb+N0OrFYLMycOXN/u540LbXOlFJ13u/xeELTu6SlpcnlH8O0122tJcn2JkTrIKFStBuzZ89mwIABKKX43e9+FxqMbxgGCxcu5KGHHgLMK5VEv6k8++yzHH744Rx++OFx38jPOussOnfujMvl4pZbbmHdunUAeL1e3nnnHZ555hkATjjhhDZ1LeaWWmfLly/nuuuu49NPP6W4uDh0u8/nY+nSpVx55ZWhEHveeeeRlZXVkk+zRVRVVVFeXh76Ck4k73a7I26Pnoapo25rQS2x3jrC9iZEWyDzVIp2w2q18sADD3DNNddQVFTEddddR2pqKoZh4PF4ABg8eDB33XXXfredmZnJgw8+yI033sjWrVu5+OKLSU9Px+Px4PP5APNQ5JVXXtmsz6mltdQ6U0qxdOnSUEi12+2kpqZSU1MTWl+6rnPuuedyzjnnNO+TOkAuvPBCioqKYm5/9dVXefXVV0O/z549m9tvv73B7bbXbS2oJdZbR9jehGgLJFSKdiU/P5/nn3+e1157ja+++oqioiKsViv9+/dnxowZnHrqqdhstka1fdBBB/HCCy/wyiuv8O2331JcXExqaioDBgxg9uzZHHfccaETX9qSllhnAwYM4PLLL2f16tVs3ryZiooKqqurSU1NpV+/fowePZoTTjiBgQMHttCzatva67bWUmR7E6J10FR9g1GEEEIIIYSoh3zUFUIIIYQQTSahUgghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFkEiqFEEIIIUSTSagUQgghhBBNJqFSCCGEEEI0mYRKIYQQQgjRZBIqhRBCCCFEk0moFEIIIYQQTSahUgghhBBCNJmESiGEEEII0WQSKoUQQgghRJNJqBRCCCGEEE0moVIIIYQQQjSZhEohhBBCCNFk/w8P8cCe7IkhUwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAACk2ElEQVR4nOzdd1yVdf/H8dd1JocNgoIi4t57b03NWdqwsmlqyxzZ7q7uLNvD+2fLyjIry5Zp5i5X5t57i6CAgux55vX7gzhJIiLrYnyejwcPD+dc57o+wBHe5zsVVVVVhBBCCCGEKAGd1gUIIYQQQojKT0KlEEIIIYQoMQmVQgghhBCixCRUCiGEEEKIEpNQKYQQQgghSkxCpRBCCCGEKDEJlUIIIYQQosQkVAohhBBCiBKTUCmEEEIIIUpMQqUQQgghhCgxCZVCCCGEEKLEJFQKIYQQQogSk1AphBBCCCFKTEKlEEIIIYQoMQmVQgghSkW/fv1QFAVFUbQuRQihAQmVQlRheX/g8z62bdt21ed8//337uOnT59e9kWKIlu/fv1lP9NLPwwGA4GBgXTq1ImpU6eyZ88erUsWQlQjEiqFqEb+85//aF2CKENOp5Pk5GR27drF+++/T8eOHZkyZQoul0vr0oQQ1YBB6wKEEOVn7dq1/PHHHwwcOFDrUkQJtWzZkldffTXffXa7ndjYWFatWsWKFStQVZUPPvgAT09P3nzzTY0qFUJUFxIqhagGPD09ycrKAuC5556TUFkFBAUFMWrUqAIfmzp1Kl9//TX33XcfADNnzuTZZ5/F39+//AoUQlQ70v0tRDVQt25dbrrpJgB27tzJL7/8onFFoqzde++9tG/fHshtwdyyZYvGFQkhqjoJlUJUE6+++io6Xe5/+RdeeAGn01mi8+3evZsZM2YwZMgQwsPD8fDwwGKxULduXUaNGsX8+fOveo158+a5J5nMmzcPgC1btjB27FgaNmyIp6cniqKwd+9eAKZPn+4+fv369QCsXLmS0aNHExERgdlsRlEUUlJS8l3HZrPx6aefMmTIEGrXro3ZbCYoKIhu3brx8ssvk5iYeMUaGzVqhKIotGrV6orHDB8+3F3XkCFDrnhc27ZtURSFunXrFvp9KS3NmjVz305LS7vs8TNnzrjrHjt2bKHnupZjryYnJ4d33nmHzp074+fnh6+vL61bt+all17i4sWLwLXNJI+Ojub555+nS5cuBAcHYzKZCAkJYdCgQcyePRubzVaieoUQRaQKIaosQAXUpk2bqqqqqvfdd5/7vi+//LLA5yxYsMB9zEsvvVTgMdOnT3cfU9hHx44d1ZiYmCvW9+WXX+arZ8aMGapOp7vsPHv27FFVVVVfeukl931r165VH3rooQKvm5yc7L7G4cOH1UaNGhVap5+fn7p48eICaxw/frz7uAsXLlz2uMPhUH19fd3HeHl5qTab7bLjEhMTVUVRVEC95557rvg9Kcy6devc1+nbt+9Vjx80aJD7+M2bN1/2eGRkpPvx++67r9BzFeXYvn37uo+5kujoaLVZs2ZX/FmEhYWp+/btK9K5VFVV33rrLdVsNhf6823cuLF67NixQs8jhCg5GVMpRDXy8ssvs2DBAmw2G9OnT+fOO+/EZDJd83mys7MxGAx0796dnj170qhRI3x9fUlKSiIyMpL58+cTExPDrl27GDlyJJs3b8ZoNBZ6zh9++IGVK1fi7+/P/fffT/v27VEUhV27duHl5XXZ8W+//TYrV66kdu3ajB07lpYtW2Kz2di0aRN6vR7IbcHq3bu3uyWyWbNm3HfffdSvX5+LFy+ycOFC1q1bR2pqKrfccgtLlixh2LBh+a7Tv39/vvjiCyB3SZ/bbrst3+O7du3K1wqYmZnJjh076NGjR77j1q9fj6qq7nOWtRMnTvDnn38CEBwcTNu2bcv8mleTlZXFwIEDOX78OABhYWGMHz+e5s2bk5aWxtKlS1myZAk33XRTkcZ/Pvnkk7z33nsA+Pj4cMcdd9ClSxf8/Pw4f/48ixcvZu3atZw4cYI+ffqwd+9eQkJCyvJLFKJ60zrVCiHKDv9qqVRVVZ08ebL7/lmzZl32nKK0VG7fvl2Ni4u74nWtVqv62GOPuc8zb968Ao+7tKUSUFu2bFnoeS9tqeTv1rq0tLQrHn9pS90dd9yhWq3Wy46ZOXOm+5iaNWtedr6YmBj34w8//PBlz3/rrbdUQA0NDVXr1aunAuqrr7562XGXft9Pnz59xZoLc7WWSrvdrkZFRalz5sxRa9eurQKqoijq3LlzCzxfebdU/uc//3E/3qNHjwJ/dl9//bW7Rbewcy1ZsiTfua70uvn000/dx40ePbrQr1EIUTISKoWowgoKlRcuXFC9vLzcISo9PT3fc4oSKovC4XCoDRo0UAF1wIABBR5zaahUFEXdv39/oee8NFR6e3sXGkD37NnjPrZBgwZqdnb2FY+9/fbbCw3ajRs3vuz7mGfIkCEqoN55553q2LFjr/j1tmrVSgXUevXqFfo1FubSUHm1D71er/br109dunTpFc9XnqEyJydHDQwMVAHVw8NDjYqKuuK1xo0bd9VQ2a5dOxVQg4KC1MTExEJrv+eee1RA1el0hV5XCFEyMlFHiGqmZs2aPPbYYwDEx8fzf//3f2VyHb1eT5cuXQDYvn27u+v3Svr27Uvr1q2LfP5bb7210K7MRYsWuW9PnjwZDw+PKx779NNPF/i8PP369QPg2LFjxMbGuu93OBxs2rQJyO3SzuvW3rx5M1ar1X3cxYsXOXTokPu48qDT6TAajRgMFWOU019//UVSUhIAo0aNIjw8/IrHTp48udBz7du3zz15a9y4cQQGBhZ6/N133w2Ay+VizZo111C1EOJaVIzfNkKIcvXUU08xe/ZskpKSePfdd5k4ceJV/zD/m8vlYvHixSxcuJA9e/YQGxtLenp6gbu3pKenk5aWhp+f3xXP16tXr2u6/tWO3759u/v2oEGDCj22Q4cO1KhRg8TERHbs2IGqqvlmHffv3585c+YAuWMj77zzTiB3eab09HT3MXnjU7Ozs9m2bRt9+vRxPycvVOcF1JIqaPFzl8tFcnIyu3fvZsGCBfz+++/8/vvvPPnkk7zzzjulct3i2rlzp/v21b4H7dq1w9/f/7JZ/Hk2btzovp33OixMTEyM+/bRo0evWqsQongkVApRDfn5+fHMM8/wzDPPkJqayptvvsnbb79d5OefO3eOUaNGsWvXriI/52qhsnbt2kU+V1GOj4uLc99u1KjRVc/XuHFjEhMTyczMJD09HV9fX/djl4agtWvXukNl3rJGdevWpWHDhgA0bNiQU6dOsXbt2nyhMk9ptVQWtvj5+PHjmT59OgMHDmT//v28++67tG7dmnvvvbdUrl0cl/486tevf9Xj69evf8W9y8+cOeO+/e677/Luu+8WuY681lIhROmT7m8hqqnJkye7g9mHH36Yr1u3MHa7nSFDhrgDZVBQEOPGjWPmzJl8++23LFy4kEWLFrFo0aJ8Aepqa1ZaLJZrqv9qx2dkZABgMBgwm81XPd+lM8zzWh/zhIaG0rRpUwDWrVvnvj/v9qVfZ97tgo5r0KBBod2+pSk4OJgPPvjA/fmMGTPK5bpXkvfzAAqczf9vhR2Tmppa7DrsdnuxnyuEKJy0VApRTVksFl588UUeeeQRsrOzeeWVV/jkk0+u+rwFCxa4xwcOGjSIRYsWXTEAfPvtt6Va87Xw9vYGcsc92my2qy6dlJmZ6b7t4+Nz2eP9+vXj2LFjnD59mujoaEJDQ/ONp7z0uM8//5ytW7eSnZ1Neno6hw8fvuy48tCrVy/3Fp0nT54kOjq62KG2oGEN1+LS10jelqGFKeyYvJ8t5LYC9+3bt0S1CSFKh7RUClGNjR8/3t1t+8UXX3Dy5MmrPuePP/5w3/7f//5XaItSVFRUyYssptDQUPftonxdecd4eXkVGCovDYTr1q1jx44d7iBaUEulzWZj8+bN+bq+S2s8ZVHpdLp86z1eOrYQyNeCe7VdZ/J2uimuS38ekZGRVz2+sGPq1Knjvn3w4MES1SWEKD0SKoWoxoxGI6+88gqQ26L33//+96rPuXDhgvt2XiAtSHx8vHuGrhbyZp5D/iBckL1797pDU+fOnQvcGvDSQLhu3Tp3WGzQoAH16tVzP1a7dm2aNGly2XH/Pkd5cDqdJCcnuz/39PTM93hhgfPftm3bVqJaOnXq5L596fekIPv27ctX97/ljVUFZB97ISoQCZVCVHNjxoyhTZs2AHz//ffs27ev0OMvDSanTp264nFvvPGGpuPXbr75ZvftDz74IN8SP/926SSlS593qVq1atG8eXMgNywWNJ4yz6XjKvOOa9y4MWFhYdf4VZTMxo0byc7OBsBkMl32JsBisbgnzezcuTPfuMdL2e32Ig2NKEzv3r3dKwwsXryYs2fPXvHY999/v9BzderUyf2zWLt2LatWrSpRbUKI0iGhUohqTlEUXnvtNQBUVc03uaMgl7YAvvjiiwWOtfvss8+uGgzKWtu2bbn++uuB3K7tCRMmFBhyP/jgAxYsWADkruE5duzYK54zr6UxOjra3dpWWKjcvn27ewmb8m6lvHDhQr71Hm+44YZ8YxHzDB06FMgdw/jSSy9d9rjD4eChhx5yjwstLrPZzMMPPwzkLrk0ZsyYyyZEAXzzzTd8+eWXhZ5Lp9PxxhtvuD+/4447WLFiRaHPOXToEI888kgxKhdCFJVM1BFCMGLECHr06MHmzZvzTVgpyLhx43j99dfJyMhg0aJFdOjQgXvuuYewsDAuXLjAL7/8woYNG6hVqxZt2rTh999/L6ev4nJz5syhQ4cOJCYmMn/+fHbt2pVv7+9ffvnFvRi2Xq9n3rx5BY6nzNO/f39mz54N5IatvPv+LS9A5h1zpeNK4uLFi5etz6iqKsnJyezatYsFCxa4u5Br1KhxxSWjpkyZwueff47NZmPmzJkcPXqUm2++GR8fH06ePMnXX3/NsWPHuOOOO/j+++9LVPPzzz/Pzz//zPHjx9m0aRMtWrRgwoQJNGvWLN/e3w0aNMDPz489e/YUOBQBYOTIkfznP//h9ddfJyUlhWHDhtGrVy+GDRtGvXr1MBgMJCUlcejQIdavX8/BgwfR6/Xun58Qogxoup+PEKJMUcA2jVeyYcOGy7b6u9I2jb/99ptqsViuuEVg7dq11W3btqn33Xef+77IyMjLznPpNo1ffvnlVWu8dJvGdevWXfV4VVXVw4cPq40aNSp0S0M/Pz910aJFVz1XfHx8vuc1adLkise2aNEi37GxsbFFqrcw17JNY95HixYt1H379hV63i+//FLV6XRXPMeECRPUU6dOlXjvb1VV1aioKLVp06ZXvFZYWJi6d+9etWfPniqg+vr6Flr7J598ovr4+BTpe1GSLTKFEFcn3d9CCCB38sOQIUOKdOyIESPYvXs3999/P+Hh4RiNRgIDA+nQoQOvvPIK+/fvz9dNrqXmzZtz6NAhZs+ezfXXX0+tWrXc9Xbp0oXp06dz8uTJKy4kfqng4GBatmzp/ryw1sdLH2vatGm+2c9lRVEUfHx8aNSoEbfddhvff/89e/fudY+ZvZKxY8eybds2br/9dkJDQzEajYSEhDB8+HCWLl3KnDlz0OlK589FeHg4e/fu5e2336ZDhw54e3vj4+NDq1atePHFF9mzZw9t27YlMTER4Ko7PT300ENERUXxzjvvcP3111O7dm3MZjNms5mQkBD69OnDU089xZo1azh9+nSpfA1CiIIpqnqVDXmFEEKIcpSWlkZgYCBOp5MbbriBJUuWaF2SEKIIpKVSCCFEhfLpp5+6d2Aq7wlOQojik5ZKIYQQ5WbXrl00a9bsiovmL1++nFtuuYWcnBwsFgvR0dEEBQWVc5VCiOKQ2d9CCCHKzezZs/npp58YMmQIXbt2de+Oc/bsWVauXOmejQ/w5ptvSqAUohKRUCmEEKJcpaWl8eOPP/Ljjz8W+Lher+eVV15hypQp5VyZEKIkpPtbCCFEuYmOjua3337j999/5/jx4yQkJJCSkoKvry/16tWjf//+PPzwwzRu3FjrUoUQ10hCpRBCCCGEKDGZ/S2EEEIIIUpMQqUQQgghhCgxCZVCCCGEEKLEJFQKIYQQQogSkyWFhBDVjqqq2Gw2srOzyc7Oxmaz5fuwWq0F3me323E6ne4Pl8uV799/3we5+3EriuLeO/vS2zqdDkVRgNxldEwmEwaDAaPRiMFgyPd53kfe/R4eHnh4eGCxWPLdNhjk17oQQhvy20cIUek4HA7S09NJS0sjLS3tstsZGRlkZ2eTlZVFZmYmWVlZZGVl5bsvbxvAqsZgMOQLmxaLBS8vL7y9vfHx8cHb27vAj7zHfH19sVgsWn8ZQohKSJYUEkJozm63k5ycTHJyMklJSfn+zfu4NDxmZWWV2rUNBkPuh96AXq//+9/c+4wGA0bT362EZiMmkwlUcj9QUF0quEB18c/9f38oKKgqZKVm4RXoSVJMKooCik5Bp1fQ6XUoBgWDUY/eqEdvzP1c0QMK2Kw2rNlWcrJt2HJs2Kw2bDl27DY7drsdl+pE1al4BVrIyckp1ZBsNpvx9/fHz88Pf3//yz7y7g8MDKRGjRp4eHiU2rWFEJWXhEohRJlxuVwkJyeTkJBAQkIC8fHx7tsXL150B8e0tLRrPreiKJhNZswmMyaDCaPOhF4xoMeA4tSBQ8FlV3HlqLisLhxZKs4cJ84cF55engSGBFArIpiQhsEE1QsksI4fLpdK0rkUkmNTSYpJJS0+nfSLGaRfzCT9YiYZSZk4Ha5rqlOn1/Hf9VN4pd/7uJxFe65Or8M70BOfIC98grzxqeGFb01vAmr7ExjmR2BtfwwmPclxaVyMSuL8yQTOn04gPiqB5AupuBQX6FTQq6h6FfQuMKioBhUMrtz7DC735+hV/Ov4kp6ejsPhuOafhbe3N0FBQQQFBVGjRo18ty/93Gg0XvO5hRCVh4RKIUSx5eTkcP78eeLi4oiNjeX8+fPu0JgXHIsaUhRFwdPDEw+TB0a9GSNGdE4Dil2HKxucWS5s6U5sKXasqXZc1tzWwKvxD/ElrGUIYS1CqdO8FrUaBuGwO4k/nciF0xe5cOoiCWcSSTqbQmZKdkm/JZcpTqgsCouvBzXC/AmOCKRmwyBqNQiiVsMgTBYj8ZGJxBw+z7kj5zl36DxJ51KKdE6V3CCKwYVqVFGNLjC6CvxXNaqY/QxYrdYinVtRFAIDAwkJCaFWrVrUqlWLkJAQ9+chISF4enqW4DsihNCahEohxBU5nU7i4+OJjY0lLi7uso+kpKSrniMvLFrMnph1HuidRhSbDlcm2FKdWJPs5CTZihwSC6PTK4Q2qUlE+7rUbRVKWMsQDEYD546cJ+ZwHOcOn+f8iQTSL2aW6DrXVlPZhMor8QrwJKRxMHWa1yKsZShhzUMAcgPmwTgi95wl5vCFUqklL4SqJheYnKgmV+5t8z+3Q5oGkZiYiM1mu+r5fHx83EEzLCyMsLAw6tSpQ506dQgODnZPcBJCVEwSKoWo5lRVJSUlhbNnz3L27Fmio6M5d+4cZ8+eJSYmBrvdXujzTSYT3hYfPPQWDE4T5OhwpLrISbSTFW/DlaWiqCULi4Wp1TCI+h3qUr9DGPXahZGVms2ZPeeI3h/LuUNxJJ5NRsvfcuUdKgsSWMePsJah1G1dm/rtw/AN9iZqfyyRu88Suess50/El+n3SEXN7X73cKKacz/wcKKaXahmJ96hFtLT0ws9h8lkonbt2u6QmRc469atS82aNSVwClEBSKgUoppwOp3ExsYSGRlJZGSkO0SePXuWjIyMKz5Pr9fj7emDxeCJwWlEzdRhT3GSc8FOzkUHOJQStzBeC4NJT/2OdWnaowFNetRH0euI3BVN5K6zRO4+R8r5ax+fWZYqQqj8N58gr7+DeF0adKqL3qDn+JZIjm+O5PTOaGzZhb+RKAuq3uUOmXg4cwOoxUGdtrWIi4srdBiFxWIhPDycevXqERER4f43NDRUllgSohxJqBSiinG5XFy4cMEdHvM+oqKirtgFqSgKXhZvvIxeGJxmyNRhu+giK9aKPdVVrqGxIBYfM836NKJZ74bU71CXhDOJHN+cG4LKupWtpCpiqPy3mg1q0KRHA5r2qE9Ik5pE7Yvh2MZTHN5wkszk0ptpX1wqKphdqBbH32HTierhIKx9CLGxsVcMnEajkbCwMHfQbNCgAQ0bNqROnTrSsilEGZBQKUQllp2dzcmTJzlx4gQnTpzg9OnTnDlzhuzsgiecGAwG/Lz8sSieKNkG7EkuMs/lYE10obi0DY7/ZvY00bR3A1oNaEr99mGc2XOOIxtPcWJzJOmJ5TcmsqQqQ6i8lKe/hcZdI2jetxENOoVz9mAsh9Ye58iGk2SnF21STnlSlb+71T0duWHT04Hq6cBUQ3/FSUQeHh7ugNmoUSMaNWpEgwYN8PLyKufqhahaJFQKUUmkpqa6w+Px48c5ceIEZ8+epaD/wjqdDj8vfzwUT5RMPbYEF5lnrTjTSz4Zpizp9Dqa9KhPm+ub0ahrBOcOx3Fwzd+BJi1H6/KKpbKFykuZvUw0692QVtc1IaJ9GJG7z7J/9TGObjyJw1axF4/Pa910/R0y8z6MNXRXbLEPDQ11h8ymTZvStGlTatSoUc6VC1F5SagUogJKT0/n6NGjHD58mGPHjnH8+HHi4+MLPNbT4oWP2Q+T1Yz9okpGtBVbkrNMJ8eUtqDwANqPaEnbwc1Jv5jJnuWHOLzuBBlJ2ne9llRlDpWX8vTzoHmfRrQd2oKg8AAO/H6U3UsPceHURa1LuyYqam6LppcD1cuO6uWgRlM/EhISCjw+ODiYZs2a0bRpU/e/fn5+5Vy1EJWDhEohNGa32zl16hSHDx/myJEjHDlyhOjo6AKP9fXyxUvvAxkGcs7ZyTpnA5u+nCsuHQaTnlYDmtLhhlYERwRyYPVRdi87xPkTBf9xr6yqSqi8VHBEIO2HtaTtkOakXkhn99KD7F99VJMJPqVFNbhQvRy4/g6a4V1DiIqKKrAnIDQ0lGbNmtGsWTOaN29Os2bNZFchIZBQKUS5i4+P58CBAxw6dIgjR45w4sSJArvjfL188Tb4oaQbyDprJzPamrtTTCXnG+xNp1Ft6HhjKy5GJbNz8X6O/Fnxu1OLqyqGyjx6Q+5whU4j21C7eS32LDvEjl/2kRxXsWbgF5eqc6F6O3B521G9HYS2r0FMTMxlx+n1eho3bkyrVq1o1aoVrVu3Jjg4WIOKhdCWhEohypCqqkRFRbF//373x/nz5y87zmwy42cOQJdpIifGQVaUHcVR+QPkpcJahtJtdDsad6/P4XUn2LZwb5VrlSxIVQ6VlwqqF0DXW9rR5vpmRO4+x7af9xC5+5zWZZU6Ve9C9bbj8nGgetsJaOpNYmLiZcfVqlXLHTJbtWpFw4YNZXkjUeVJqBSiFNntdo4fP+4OkAcPHiQ1NTXfMYqiEOAdiMXljSNeJe1kToWfQFMSDbvUo/c9nakR5s/2X/ax67eDZJXBdogVVXUJlXk8vM20H96Crre0JzM5i43zd3Dsr1MVetmnknBPCPKx4fK106hfXU6ePInLlf9nbbFYaN26Ne3ataN9+/Y0bdpUQqaociRUClECTqeTEydOsHv3bnbt2sWBAwfIyck/S9mgN+BvCcCQ5UF2tIPss44q0Y1dGEWBZn0a0fuezlh8PPjr253sW3m4ynZxF6a6hco8Or2OVgOb0Pvuzqgq/DV/BwfXHMPlrPp/clSdC9XHgcvXhupjxzPcdNkGAxIyRVUkoVKIa5DXnb1r1y52797N3r17L9tezmzywN8jACXFSPpJK/aEst2msCJRFGjRvwn97u+G6nKxcf4ODq09Xi2CxJVU11CZR1GgWe+G9L6nCxZfD/78ahv7Vh2pVq8JFTV3SSM/Oy4/Gz4NPS7rwbg0ZHbu3JnGjRvLAu2i0pFQKcRVXLx4ke3bt7uD5L/HT5mMJvw9AtElm0g/bsWepFbZruzCNO4WwXUP9EBv1LPu880c3Vh1uzyvRXUPlZdq1KUe1z3QA5PFyNrPt3Bkw4lq+Rr5d8j0bmAmLS3/5CY/Pz86d+7s/ggKCtKoWiGKTkKlEP/icDg4ePAgW7duZdu2bZw6dSrf43q9gQBLILpUExnHrTgSy3fv64omvE1tBjzYE99gb9bN3cKB34+huuTXSh4JlZdr3rcR103ogd1qZ+1nmzm5PUrrkjSVFzJdfnZUfxvmMN1lu2LVr1+fzp0706VLF9q2bYvZbNaoWiGuTEKlEOQu87N9+3a2bt3Krl27yMz8ZxvAvIk15hwvMk/ayDnnqjbd2YUJqO3H9Y/2JqxlKH/O28bupQdxOiQ0/ZuEyoLp9Aptrm9Ov3HdSDybzKoP/iQ+8vJZ1NWRqqioPnZc/jaaDA7n6NGj+dbLNJlMtGnThh49etCjRw9q166tYbVC/ENCpaiWnE4nhw8f5q+//mLr1q1ERkbme9zD5IGvPhDHOcg4UfWW9ykJs6eJ3vd2odPI1mz/ZR9/zd9RqRe9LmsSKgtnMOnpfnsHeo7pxP7VR1g3d2ul3ZKzrKgGFy5/Gy5/KzVa+1y2+09ERAQ9evSgZ8+etGjRAr2+cm6IICo/CZWi2rBarezcuZO//vqLzZs3k5yc7H5MURQCvAIxpFlIP2rFmVS9u7QLoijQblhLBjzQg6j9Mfw++y9Sqsgi12VJQmXR+NTwYsBDPWnSvT4b5m1jx+L98v0qQN42k64AK21uacz+/ftxOv9ZVcHPz49u3brRo0cPOnfujLe3t4bViupGQqWo0lJTU9m8eTN//fUXO3bsyLfcj8loIsAYhD1GIeOYTVojC1GrYRA3PDUAg8nAivfXE7X38l1FRMEkVF6b2s1qMXRKX4wWI7+9s4aYw5dvFiD+oepduAJsuAKteDU05luNQq/X0759e/r27Uvv3r0JDAzUsFJRHUioFFXOxYsXWb9+PX/++Sf79+/Ptwixp4cX3nY/Mo87sJ9HxkZehdFsoO/YrnQa2YYNX21l2897q9VSMKVBQuW1UxRoP6IVAx/qycE/jrHms81Ysy7fylTkp6Ki+tpxBVqp0yOI6Oho92OKotCmTRv69u1Lnz59qFmzpoaViqpKQqWoEhITE9mwYQNr167lwIED+Qa1+3n6Y870Iu2QFVeKTrq1i6hh53BGPDmAhDOJLJu5jtQL6Vd/kriMhMri8w70ZPDkvtRrW4cV/7eOI3+euvqThJvLw4GrhpXGQ8M4evRovsdatmxJnz596Nu3r0z0EaVGQqWotJKTk9mwYQPr1q1j7969+YJkoFcN9EkW0g7lQJYMWr8WZk8TQ6b0pVG3CFb833oOrz+hdUmVmoTKkmvUNYLhj/cn9tgFls1cV622+SwtqtmJs0YOLUbW5+DBg/l+XzZp0oQBAwYwYMAAacEUJSKhUlQq6enprF+/nrVr17Jnz558Xdv+noHo4s1kHLaj2CRIFkf9DmGMfO56zh6IZfn/1pGdbtW6pEpPQmXpMFmMXD+xN816N+S3d9ZwbNNprUuqtFSjE1cNK61HN2Lfvn3u36OKotC2bVsGDRpE37598fX11bhSUdlIqBQVnt1uZ9u2baxatYrNmzdjt/+zfI2/ZyD6RA/SD9lQciRIFpfRbGDgwz1pNbApy95bJ62TpUhCZelq1KUeNz47iFM7olj5/gasmTLWsiRUgwtXUA4tbq7P/v373fcbDAa6du3KoEGD6NGjBx4eHhpWKSoLCZWiQlJVlSNHjrB69WrWrFmTb59cP09/TClepB6womRLkCypkEbB3Dp9KIlnk/ntnTVkJGVpXVKVIqGy9Hl4mxk2rR/12tbh55dXcPZAnNYlVQmq2YkzKIeIgbXy7SRmsVjo06cPgwcPpkOHDrInubgiCZWiQjl//jyrV69m9erV+WYuepgseFv9Sd9vh3QJkqWl86g2DHiwJ398+hc7fz2gdTlVkoTKstN6YFOGPd6fTd/tYtO3O6rlPuJlxeXpwBWcTXBnX86f/2dZp5CQEIYMGcLQoUMJDQ3VsEJREUmoFJqz2+389ddf/Pbbb+zcudN9v0FvIEAfROYRJ444WYy8NHl4m7nxmYHUrF+Dn15azoVTF7UuqcqSUFm2AsP8Gf3yMDJTsln06ioyk6WlvTSp5G4Z6ayZg2djPRkZGe7HOnbsyLBhw+jTp4/sRS4ACZVCQ9HR0SxdupSVK1eSkpLivj/QMwhXtIGsE04Up3SzlLY6zWtx6/RhRO2LYfn/1skWi2VMQmXZ0xv1XD+xFy36N+GXV1YQufuc1iVVSapOxVUjh7Z3NmbXrl3u+729vRk4cCDDhg2jadOmKIo0AFRXEipFubJaraxfv56lS5eyb98+9/0WkwXPDD/S9ztkwk0Zaj+8Jdc/2ptVH/zJ3hWHtS6nWpBQWX6a9W7Ijc8MZOM3O9jyw26ty6nSVLMTZ81sgrv65Oseb9y4MaNGjWLgwIFYLBYNKxRakFApykVUVBSLFy9m1apV7u4TRVEIMAVhPapij5FFycuS3qBj8OS+NOlRnx+e/4244wlal1RtSKgsXzXqBjDmjRuIPRbPb2//gd3q0LqkKk1FRfWz0+/xTmzYsAGbLXc2vpeXF0OGDGHkyJFERERoW6QoNxIqRZlxOp1s27aNhQsXsmPHDvf9nmYvPFJ9yNjvkPUky4FXgCe3vTIMl0vlp5eWy8LR5UxCZfkze5m4+YXB+Nb04fv//Ca7QZUT1eDCWTObkN5+xMTEuO9v3749o0aNonfv3hgMBg0rFGVNQqUodenp6SxfvpxFixYRGxsL/N0qaQwi5wgy6aYchTQKZsybN3Jkw0lWf7xRQo0GJFRqQ1Gg79hudBrVmh9fWEb0gVitS6o2VFRUfxvdHmnNpk2b3Iur16hRgxEjRjBy5EiCgoI0rlKUBQmVotRERkaycOFCVq9eTU5ODgAmgwnv7AAyD7jQWeUdanlq2KUeN78wmN9nb2TviiNal1Nt6fQ6XlgziVcHfCihUgPN+jTkhqcGsGzmOg6vk0X9y5vL5MRZKwvfNiaSkpKA3IXVBw4cyG233UajRo00rlCUJgmVokRUVWXHjh18//33+ZYD8jH7wlkPunbvzIAJvTSsUAghhNbWfrGZdUv/pMVt9fLt3NOxY0duu+02unbtKouqVwESKkWxOBwO1q1bx4IFCzh58iTwdxe3IYisgyquhNyJN4pOkeUlypGiwHUTetBqYBMWPLeE+NNJWpdU7UlLZcUQUNuXMW/eSNTeGFbMWo/LKX/6ypOqqqiu3O+5y9tO78fbsWHDBpxOJwDh4eHcdtttDB48WNa8rMQkVIprkpWVxbJly/jpp5/cy0gY9AZ8rIFk7nGhWGXijVZ0eh2j/jOI4IgafPf0r6QnZmpdkkDGVFYkFl8P7nhtBNYsGz++uAyHzal1SdWaanbiDM3Co6lCZmbu7ys/Pz9uuukmbr31Vnx9fTWuUFwrCZWiSJKTk1m4cCGLFi0iPT13JqXZ6IFHki/Zh1QUh3RbaMlg0jP65WGYPE0seHaJLGhegUiorFgMJj23Th+Gh4+ZBc8swZpl07qkak/Vu3DWyia4h7e7scJisTBy5Ehuu+02mdRTiUioFIW6ePEi3333HUuWLPln/TGTN7qzFqynFBSXdG1rzWQxMuaNG7Hl2Pnpv9L6UtFIqKx48lr1g8IDmf/kIrJSc7QuSZA7a9wVZKX+DTU5cSJ3UpXJZGLo0KGMGTOG2rVra1yhuBoJlaJAFy5c4LvvvmPZsmXuMOlr8sNxzIhDFiqvMCy+Htz9ziiSYlJY9NpqCS0VkITKiklRYOhj/YloH8Y3j/9C+kUZLlJRqKi4Amw0uz2MgwcPAqDX6xk4cCB333039erV07hCcSUSKkU+58+fZ/78+SxfvhyHI3cnCl9jALaDOlwJegmTFYinnwf3/t8tnDsYx7L/rXMPghcVi4TKim3Agz1o2b8J86b8TFpChtbliEuoqKi+dtqNb+TeQEOn0zFo0CDuu+8+wsLCNK5Q/JuESgFAfHw8X331FcuXL3fPxvMzBmDdr8OVKGGyorH4mHMD5aE4ls1cp3U5ohASKiu+/uO702pAE+ZN/lkmuFVQLm87XR5tzqZNm4DclsvBgwdz7733Srd4BSKhsppLSUlh/vz5LF682N3N7WcMJGefAkmyWHlF5OFt5r5ZtxBz5ALL3luD/A+u2CRUVg4DHuxB876NmDflZzISs7QuR1yBy9tOx4ebsHXrViA3XA4bNox7772XWrVqaVydkFBZTWVmZvLDDz/www8/kJ2duxe0r8Ef6z49JEuYrKg8vM3c+7+bOX8ygd/e/kMCZSUgobLyGPRIL5r0aMBXU38mI0mCZUXm8rHRbsI/3eJGo5FRo0Zxzz334O/vr21x1ZiEymrGarWyaNEivv32W1JTUwHwMfpiO2BAvWiQbu4KzGQxcu//biYhKoklb/4ugbKSkFBZuVz/aG8adanHl5N+IjvdqnU54ipcvjZa3RfBnj17APDy8uLOO+9k9OjReHh4aFxd9SOhsppQVZU1a9bw2WefudcB8zJ54zpqxhkrYyYrOr1Bx5g3b8SaZePn6StkUk4lIqGy8hnx5ABqNajB14//gj3HoXU54ipUVFR/GxE3BbuXIgoKCmLcuHEMGTIEg0F638qLhMpqYP/+/Xz00UccOXIEAA+jBX2kJ/YzEiYrA0WBm14YgncNT7596lecdlmHsjKRUFn5KDqF0S8Pw2g2sOC53+TnVkmoqLiCcwjq6+luPKlXrx6PPPII3bt3ly2Dy4GEyirs3LlzfPLJJ/z5559A7naKHvF+2I7pZdHySmTI5L6Et63NvMk/y045lZCEysrJYNJz1zujSEvIYPFrq2S4SSWiKirO0Cy82ulIS0sDoEuXLkyaNImIiAhti6viZG+9KigrK4uPP/6Ye++9lz///BNFUfC11kC32R/7EYMEykqk112daNw9gm+fXCyBUohy5LA5+f6536hZvwaDHumtdTniGiiqgiHWi5xVZsaMGYPRaGT79u3cf//9vP/+++6thkXpk1BZhaiqyu+//85dd93F999/j8PhwFcJwLg7EOsOA4pdr3WJ4hq07N+Ybre155snFpGZkq11OUJUO9YsG98+tZgW/RrTaWRrrcsR10hx6vjl0bUoW3zp1asXTqeTn3/+mTvvvJNff/3VvcGHKD0SKquIU6dOMWXKFGbMmEFiYiIWgyfmY4FYN5pQMmWQcmVTp3ktRjw1gB+eX0pKXJrW5QhRbWUkZfHdM78y4MGeNOhYV+tyRDEoOQZ2vHkC40F/IiIiSE1N5b333uPBBx/k0KFDWpdXpUiorOQyMjKYNWsW48ePZ9++feh1ejwvBuLc4A0JRq3LE8XgV9OHO964keUz13H2YJzW5QhR7cVHJvLLjJXcOn0YQeEBWpcjikmXYiZ2fhaGUz74+Phw8uRJJk6cyDvvvOMeeylKRkJlJaWqKuvXr+fuu+9m4cKFuFwufJwB6LcF4DxqRFFl3GRlZLIYGfPWjexacoADfxzTuhwhxN9ObD3DhnnbuPOtkXj6yfqHlZWCgj7OE+vvHgwdOhRVVfntt9+4++67WblyJTJ3uWRk9ncldOHCBf7v//7PvQeqp8EL5wEzJErLZGV324zhqC6Vn6cvl9mmVYTM/q5ahj/en6DwQL554hdcTvlPWtm5fG3UudGPM2fOANCuXTsef/xxmSVeTNJSWYk4nU4WLlzIvffey6ZNm9ApOjwTA3Bs8JJAWQX0GNORGnUDWPzGagmUQlRQK9/fgN6k57oHempdiigFujQTsd9moY/0xmw2s3fvXsaPH8/8+fNlIk8xSKisJCIjI5k0aRKzZs0iOzsbL8UH/a4AnEdM0tVdBdTvEEbvuzvz44tLZQcPISowp8PFTy8uo+2Q5jTv01DrckQpUFQFQ4wX6l8+dOvWDbvdzmeffcbDDz/MyZMntS6vUpFQWcE5nU4WLFjAhAkTOHToEAa9EUtMIPaNFnRZMqu7KvAN9uaWl4ay+I3VJJ5N0bocIcRVpCdm8vP05dz4zCBq1JWJO1WFYtWz+93TGI754uPjw/Hjx3nggQeYO3cudrusE1wUEiorsLNnzzJ58mRmz56N3W7H2+WHbosfrkijbK9YRej0Oka/PIw9yw5x7K/TWpcjhCiiqL0x/Pn1dm5/bQRGD3mDX1UoKOgTLFj/MNO7d2+cTifz5s1jwoQJHDsmkyevRkJlBeRyuVi4cCHjxo3j4MGDGHQGPM4EYNtsRrHJAuZVSf8J3XE6Xaz9fIvWpQghrtGWH3aTeDaZIZP7al2KKGWKXc+2N45hOOKHv78/kZGRPPzww8yfPx+n06l1eRWWhMoKJiEhgSeeeIJZs2ZhtVrxdPmg2+aPes4krZNVTP0OYXQc0YpfZqxEdcnMHCEqoyVv/UHjbhG06NdI61JEKVNQ0Cd6kLXSSN++fXE6nXz22WdMnTqV2NhYrcurkCRUViAbN27k/vvvZ9euXeh1BjzOBeDYbEGxSutkVePp58FNLwzht3f+IC0+Q+tyhBDFlJ2Wwy+vrmLEEwPwq+mjdTmiDCgOHVteO4LhuC+enp7s37+fcePGsWLFClnX8l8kVFYAVquVmTNn8vzzz5OWloan4o1uux/qGWmdrKpufGYQxzdHcuTPU1qXIoQooTN7zrFzyQFufnEwik5+Z1dFCgr6eAuODZ60bt2arKws3njjDaZPn05GhjQM5JFQqbHTp0/z4IMPsnjxYgAsiX44/vJElyMDv6uqDiNaUqNuAKs+2KB1KUKIUrJ+7lb0Rj09x3TUuhRRhhSrnmOzL/Dggw+i1+tZt24dEyZM4OjRo1qXViFIqNSIqqosXbqUBx98kMjISEx6M8ZDAbiOeMi6k1WYX00fBj3Sm8Wvr8JulfUohagqXE4Xi19fTa+7OhMcEah1OaIMKSh8de+v6Hb5ERoaSmxsLBMnTmThwoXVvjtcQqUGrFYrb731Fm+//TY2mw1Phw9s9kWXbNK6NFHGbnh6ALuWHCDmyAWtSxFClLKL0cn8+c12Rj53PTq9NA5UdboMI4m/OOjduzcOh4NZs2bx4osvkp6ernVpmpFQWc7y3tEsX74cBQWPOH8cWy0odvlRVHXth7XAr5Yv67/cqnUpQogysuWH3aCqdLutg9aliHKgOHVse+MY+lM+GAwG/vzzTyZMmMCJEye0Lk0TkmTK0ebNm90vNqPOhOGAH+ops0zGqQZ8g725/tE+/PrGahw2WeNMiKpKdaksfmM1fe7pQlC47LZTHSgoGOI8UXb6EhISQlxcHBMnTmTNmjVal1buJFSWA5fLxdy5c3n22WfJyMjAw+mFstUXXapZ69JEORk2rT+7lx3k3OHzWpcihChjF6OS+evbHdz4zEAUaTOoNnQZRpIWO+ncuTNWq5WXX36Z2bNnV6vF0iVUlrGcnBymT5/OvHnzALCk+OHa6iU741QjTXs2IKRxMOvnSre3ENXF5u934+Ftpu2QFlqXIsqR4tCx739RjBkzBoAFCxbw9NNPk5aWpnFl5UNCZRmKj49n0qRJrF+/HkXRYTrtj+ugzO6uToxmA0On9mPl+xuw58hsbyGqC5fTxdL31jLokV5YfKRXqjpRUPjl0bUYjvphNpvZsWMHDz74IGfOnNG6tDInobKMHD58mIceeojjx49jVIwY9vmhxMovluqm971diI+8yNGNssi5ENVN9P5YTmw9w4AHe2pditCA/qIHrq1ehISEuCfp7tmzR+uyypSEyjKwfv16pkyZQmJiImbVgrLdD12aLBdU3QSFB9Dl5ras+L/1WpcihNDI77P/okX/xtRpEaJ1KUIDuszccZYtW7YkIyODJ554gpUrV2pdVpmRUFnKFi5cyEsvvYTNZsMjxxt1q7fs3V1NDZnajy0/7CY5rnqMpRFCXC4zOYt1n29h+LT+MmmnmlIcOk7MSaB///44HA5ef/115s6dWyUXSpdQWUpUVeWTTz5h1qxZqKqKOckH105PFKd8i6ujhl3qEVwvkE3f7dS6FCGExnb9dgCDSU+rgU21LkVoRHEpbJpxiDvvvBOAefPm8frrr+NwVK2x9pUu8Zw+fZqJEycyefJknn76abKyslizZg2PPPIIU6dO5cKF3J1KtmzZwsSJE1m2bFmZ15T3zuO7774DwHTOF/WwRdafrKYUncL1E3uzZs4mWZNSCIHLqbL6478Y8GBPDCbpuaquFBQWTlyD4YQPer2eVatW8cILL2C1WrUurdRUulAZHh7Oxx9/zAcffEDz5s3ZuHEjP/74I++//z4TJkzg66+/BnJD5Ycffljmm7xnZ2fz7LPPsmrVKhQUjCd9Uc5IoKzO2g9rgdPh5MDqsn3tCSEqj5PbzpB4Npmut7bXuhShMf0FT5T9PphMJjZv3syTTz5JRkaG1mWVikoXKg0Gg/t2Tk4OtWrVon79+hiNRlq3bs3p06cB6NKlC48++ihNm5Zdd0NmZiZPPfUU27dvR6/o0R/yQ3feUmbXExWfyWKk/4QerP5oI1VwuIwQogRWf7SRXnd3wtNf/k5Ud/pkM+pOL7y8vNi3bx9Tp04lOTlZ67JKrNKFSoAdO3Ywfvx49uzZg16vx9PT0/1Y3sr1vXr1Yvbs2YwYMaJMakhPT+fxxx9n//796BUDur2+6JNlyaDqrvvtHYg9cp4ze85pXYoQooK5cOoiR/88RZ97u2hdiqgAdGkmbH+Z8ff358SJE0yaNMk9hK+yqpShsnPnznzxxRf069ePffv2kZWV5X5Mry/78SopKSk89thjHDlyBAMGdLt90aXLkkHVnYe3mW63tWft51u0LkUIUUGtn7uV9sNa4BvsrXUpogLQZRrJ/ENPrVq1OHv2LI899hjx8fFal1VslS5U2mw2920vLy8sFgtnzpzBbrdz4MABGjRoUKbXT0pKYurUqZw4cQIDRpTdvugyjWV6TVE5dL+9Pad3RHPh1EWtSxFCVFCp8ensX32UXnd31roUUUHocgwk/+akdu3axMTEMHXq1EobLCtdqNy5cyeTJ09m6tSp7N69m+HDhzN69GimTJnC559/zr333ltm105NTWXatGlERkZixISyyxddlgRKARYfM11uacf6L2V/byFE4TZ+s4O2g5vhV9NH61JEBaHY9Fz81UZoaKg7WCYkJGhd1jVT1Kq4+mYZSE9PZ9q0abnbLmJC2emDkmO4+hNFtXDdAz0IqO3HwpdXaF2KqGB0eh3/XT+FV/q9j8vp0rocUUEMfawfer2Ope+t1boUUYGoZic1bjQSFxdHnTp1eP/99wkODta6rCKrdC2VWsjKyuLpp5/m+PHjGDDCLgmU4h8WXw+63NyWDfOklVIIUTR/fbOD1oOa4ldLWivFPxSrnsQldkJCQoiJieHxxx8nNTVV67KKTELlVVitVp577jkOHTqEHgPKHh902RIoxT8639SGU9ujuBhV+ZeDEEKUj/TETPavPkr32zpoXYqoYBSrnqTfHAQHBxMVFeXe6KUykFBZCKfTycsvv5y7dJGiR7dXJuWI/AwmPV1vacemBbu0LkUIUcls+WE37Ya1wOIjy9GJ/BSrnpSVLvz8/Dhy5AgvvPBCvonKFZWEyitQVZVZs2bx119/oVN06Pb5osuQQCnyazukBfGRicQerdxriwkhyl9STCqndkTRaVQbrUsRFZAu20DWBj0Wi4WdO3fy2muvudfirqikH/cKFixYwOLFiwEwHPVFn+kBsmWruISiU+hxRwdWffgnOr28PxMFy3ttyGtEFGTLj7u547Ub2PbzXhy2ih0YRPnTZZtx7gJDGzvr1q0jMDCQqVOnal3WFcns7wL8/vvvzJgxA4Dhw4fTq1cvjSsSQgghRHW1f/9+FixYAMC0adO46aabNK6oYBIq/2Xfvn1MmzYNh8OB8bwXhkhfrUsSFdQ9M2/iwB/H2Lv8sNaliApMp9fxwppJvDrgQ1lSSBSoSc/69B/XnU/Hf6d1KaICu3vuCObMmYNer+ett96iS5eKt92ndH9f4sKFC7z44ou5gTLVE+WkFy7kj4C4XHBEICGNgvnu6V8lKIgicTld8loRBTr212mGTO5LWIsQog/Eal2OqKC+uu9XBs8YzKpVq3jppZeYPXs2ERERWpeVjwzy+ZvVauX5558nJSUFg82McsgbBUXrskQF1Wlka/auPIzd6tC6FCFEJae6VHYtOUDnm2TCjrgyBYV1/91DmzZtyMzM5JlnniElJUXrsvKRUEnuTO933nmH48ePo1cN6Pb5oLgkUIqCmSxG2g5uwc7FB7QuRQhRRexZdoimPRvgFeCpdSmiAlNUhaOfxVG7dm3i4uJ49dVXK9SMcAmVwI8//sjq1atRUNAd9EGxyjRvcWWtBzYl5uh5Es/KYudCiNKRkZTFsc2RtB/eUutSRAWnOHQkLM3BbDazfft2vv76a61Lcqv2ofLgwYPMnj0bAP0pb3SpJo0rEhVdxxtbs/NXaaUUQpSunb/up+MNrVCko0xchS7LyBNPPAHAvHnz2L59u8YV5arWoTI9PZ1XXnkFl8uFIcmCLs6idUmigguOCMQ/1JfjmyO1LkUIUcVE74sBILxNHY0rEZXBe8O+4IYbbkBVVWbMmMGFC9pvwlFtQ6Wqqrz99tucP38evcOI7phMzBFX13ZICw6uOY7TXnHGsAghqgZVhX2rjtB2SHOtSxGVxKpnt9GkSRNSU1N55ZVXNB9fWW1D5ZIlS9iwYcM/4yid1fZbIYpI0Sm0ub4Z+1bKupRCiLKxb+URWvRrjNEsK/6Jq1NUhTPfJuHp6cmBAwf47jtt1zqtlknqzJkzvP/++wDoTnvJnt6iSOp3qIsty0bMEe27GIQQVVNybCrxpy/StFdDrUsRlYRi1bu3bpw7dy7Hjh3TrJZqFyodDgdvvPEGdrsdQ5oH+lhZvkEUTdvBzdi36ojWZQghqri9K6ULXFyb94Z/Qd++fXE6ncyYMYOcnBxN6qh2ofKnn37iyJEj6FQ9uqMyjlIUjd6op2mvhhz8Q7t3gEKI6uHIhpNEtKuDh7dZ61JEJaGgsOWtw9SoUYPo6Gg+/fRTTeqoVqEyKiqKzz//HADdCS8Um6xHKYqmQae6JMemkhyXpnUpQogqLjsth+j9sTTt1UDrUkQlojh0pG3Inajzyy+/cOjQoXKvodqESqfTyZtvvondbkefakYX76F1SaISadG3MYfXn9C6DCFENXF4/Qla9G2kdRmiktGlmBk8eLB7p0CHo3y3Eq42oXLp0qUcOnQInapDf8xHur1Fken0Opr1bsjh9Se1LkUIUU0c3XiKBp3CMXvKhhzi2qx7eTd+fn6cPn2aH374oVyvXS1CZWpqKnPmzAFAOS3d3uLa1O8QRlpChmzLKIQoN5kp2Zw7fJ4mPeprXYqoZBSHjokTJwLw5ZdfEhMTU27XLpVQmZ6erukU9quZM2cOaWlp6LON6GXXHHGNmvRswNGNp7QuQwhRzRzdeIomPWVcpbh27w3/gg4dOmCz2fjggw/K7bolDpUbNmzgwQcf5MUXXwTg5MmTPPXUUyUurLQcPXqU3377DQDdCZntLa5d464RnNx2RusyhBDVzMltZ2jYORxFJ3+3xLVRUDgwJwq9Xs/mzZvZtWtXuVy3xKHy66+/5rPPPsPHxweARo0aER8fX+LCSoOqqrz//vuoqoouwQNdmoxNEdcmMMwfi68H5w6f17oUIUQ1k3g2hZwMK3Wah2hdiqiEdNkGRo0aBcBHH31ULls4ljhUGo1Gd6DMoygV413Vpk2bOHjwIIqqwxDprXU5ohJq3C2CUzuiUF2q1qUIIaqhk1vP0LhbPa3LEJXUb0/9ibe3NydPnmTlypVlfr0Sh8rQ0FB27NgBQGZmJnPnzqVRI+2XQXA6ne7JObpzHjI5RxRL424RnNhyRusyhBDV1ImtZ2jUNULrMkQlpTh03HvvvUDu/JLs7OwyvV6JQ+Xjjz/O6tWrSUhI4I477iAuLs69B6WW1qxZQ2RkJIpLh/6cl9bliErIYNJTr20dTm6P0roUIUQ1dWbPOWo2CMLTT9ZWFsXz+V0/ExoaSlJSEr/++muZXstQ0hP4+Pjw/PPPl0YtpcZut/PFF18AoIv2RHFWi5WTRCmr0zyElPNpZCZnaV2KEKKaslsdxB45T3ibOrIKhSgWRVW49957eeutt/j+++8ZNWoUHh5l8yal2KHym2++KfTxe+65p7inLrHff/+duLg4dA49+lhPzeoQlVu9dnU4s7f81vcSQoiCnNkbQ0S7MAmVotj+d+OXhNwSwvnz51myZAm33XZbmVyn2E14DocDh8NBVFQUy5cvJzU1ldTUVJYvX05cXFxp1nhNXC4XCxYsAEA5a0FxVYxJQ6LyiWgXRtTec1qXIYSo5qL2nqNeuzpalyEqMUVV3I193333HVartUyuU+xQef/993P//feTkJDA559/zqRJk5g0aRJz5swhISGhNGu8Jlu2bCEqKip3LOV5WehcFI/eoCOsZShR0lIphNDY2UNxBEcE4uFt1roUUYnNGvUVtWrVIikpiRUrVpTJNUo82DAxMRGL5Z/w5uHhwfnz2q3pl9dKqYvxkLGUothCm9Yi/WIG6YmZWpcihKjm7DkO4o4nEN6mttaliEpMURXuuOMOAH7++WdcLlepX6PEE3W6du3KY489xoABA4DcWdddu3YtcWHFcejQIfbv34+iKujjZCylKL6wliGcPajdMA4hhLjU2YOxhLUI4fjmSK1LEZXY7Du+w2ugF9HR0ezYsaPU81qJm/ImT57M6NGjOXv2LNHR0YwePZpJkyaVRm3XbPHixQAo8WZZl1KUSJ1mtYg9ekHrMoQQAoDYoxeoLTvriBJSnDqGDRsG5LZWlrYSt1QC9O7dm969e5fGqYotLS2NdevWAUgrpSix2s1qsfXnvVqXIYQQAMQcucCwaf21LkNUAb8+vRali8K2bduIjY2ldu3SG1ZR4lB5pYXOZ82aVdJTX5OVK1dis9lQMg0oGaWSlUU15eFtxq+WDxdOajfhTAghLpUcm4qiKASE+pIcl6Z1OaISU6wGOnbsyM6dO1mxYgXjx48vtXOXOH1NmDDBfdtms/Hnn3/mm7hTHlRVZdmyZQDo4ywoyDJCovhqN61JfGQiDptT61KEEMItrwtcQqUoqb3zT0AzWLFiBWPHjkWvL50hgyUOla1bt873eceOHct9m8bTp08TGRkJqoIuQbayEiUT2rQmccfitS5DCCHyiT12gdpNa3Jo7XGtSxGVnC7RjLe3N/Hx8ezatYsuXbqUznlL5SyXOHnyJPHx5fsH+ffffwdAl2iSZYREiQVH1CD+dKLWZQghRD7xkYkERwRqXYaoAhRVYeDAgQCsXbu21M5b4pbK/v37oyi53c06nY5atWoxceLEEhdWVC6Xy/0NkVZKURqCIwLZt+qI1mUIIUQ+CZFJBEfU0LoMUUUsm7EBWsPGjRt58sknMRhKPh+lxGfIm3GtlaNHj3L+/HkUp4IuWXYbECWjKLktlQlnpKVSCFGxXIxOwq+mD0YPA/Ych9bliEpOSTUSEBBAcnIyu3fvLpUu8BL3FT/++OOX3ffUU0+V9LRFtmXLFgCUZJPs8y1KzK+WL067k4zELK1LEUKIfBw2J8lxqQTXky5wUXIKCn369AFgw4YNpXLOEofK1NTUfJ9brdZyHVO5efNmAHRJ0kopSi44IlBaKYUQFVbCGekCF6Vn+Wu5YXLr1q2oqlri8xW7+/urr75i3rx5uFwurrvuOiB3aR+LxcKtt95a4sKKIiEhgRMnToAqoVKUjqB6AVyMTta6DCGEKNDFqCSC6gVoXYaoIpQ0EyaTiYSEBKKiooiIiCjR+YodKu+77z7uu+8+PvzwQ822Zdy5cycASoYBxSGzvkXJ+Yf4khybevUDhRBCA8lxaUS0q6N1GaKKUFwKbdu1Y/v27Wzbtq3EobLESUyrQAmwb98+AHQpJs1qEFWLf4gvKbKwsBCigko5n4Z/iK/WZYgqJG+CTl5DXUkUu6XywQcf5LPPPnMvKaSqar5/S3PdoyvZu3cvALpUCZWidPiH+pFyXkKlEKJiSolLwz9UQqUoPZ+O/w7aw6FDh3C5XOh0xW9vLHao/OyzzwDtlhSKj48nNjYWVFDSjZrUIKoe/1BpqRRCVFypF9LwCvDEYNLLVrKiVCiZBjw8PMjIyCAqKor69esX+1wl7v5+/fXXL7vvzTffLOlpr+ro0aNA7jdDdtERpcHi64HeoCMjKVPrUoQQokAOm5PM5Cz8avloXYqoIhQUmjdvDsDBgwdLdK4Sp7FTp05ddt/x42W/L2neNZSMkq8ALwSAb7A36RczKYVVFUR1pSgo5qusRKHTo/OQ3b9E8aXGZ+BbU0KlKD2tWrUC4MiRku0mV+xEtnDhQn7++WcSEhK488473fdnZWXRrVu3EhVVFHmhUpchXd+idHgFeJKRJIuei2JSFHRmM+h0YDajWq2XH6PTo7N4gE6HDnDl5JR7maLyy0zOwsvfonUZogpZ8PwSaAanT58u0XmKHSoHDx5Mjx49+PDDD5k8ebL7fi8vL3x8yv4d1IkTJ4Dc7m8hSoNXgIXMZAmVohguDZSQO2nxSsfmDYI3GiVYimLJDZWeWpchqpC8LBUZGVmiyTrFTmTe3t54e3vz2muvFfcUxZaZmUliYu6uJ0qWhEpROrwCPMlMkVAprtG/AiUAOh3Kv1srdXp0pn+tVCHBUhRDZko2XgHSUilKj5Ktx2QykZ2dTVxcHHXqFG8t1BInshMnTjBz5kwiIyOx2Wzu+8tySaFz587l3rDpZJKOKDVeAZ5kJmdrXYaoTAoKlHkP6fVgNoPDDoDOYsalKpefQ4KluEaZyVmy/7coVQoKdcLCOH36NOfOnSt2qCxxIps5cybTpk2jTp06LF26lAcffJAJEyaU9LSFyguVSra+TK8jqhcvf+n+FtdGMZkKDJTux/WXTMoprDvJaETnKd2Zomgyk7PwCpDXiyhdoaGhAMTFxRX7HCUOlQ6HgyZNmuBwOPD09OSOO+5g8+bNJT1toWJjYwFQciRUitJj8fUgJ72AyRVCFEAxm1EUBVyuKx6jC/An/p52RTuhXi/BUhRJdpoVi89VVhkQ4hpViFBpMOT2oIeEhLB27VoOHDjgHu9YVtzjKW0SKkXpMXkYsWXbrn6gqPbcgTJPAcFSF+BP3A31sHvnHpd8Q8urn1iCpSgCe44do0VWPhGla9HbKwE4f/58sc9R4jGVY8eOJSMjg4kTJzJz5kyys7N57LHHSnraQiUlJQGg2GQ8pSg9JosRW7Zd6zJEBXdZoMzjcrm7uPMCpcNLcb9zzw7W4bqxJQFLDhV+gb+DpStLhmKIgtmybZgkVIpSltdQl5ycXOxzlDhUdu3aFcidDT5r1iwAli9fXtLTFiovVCKhUpQik6eESnEVilJwoMzjcqGrEegOlJdSdZBdUwdFCZaFXUNUe7ZsOyaL6eoHCnENFHvu753U1NRin6NMUtncuXPL4rRueV+w4pBQKUqP0UNCpSic8u8lgf5FFxxE1N0RlwXKPKoOMurqOPN468IvpNNJN7i4otxQKS2VopT9nakqXKhUy3ifu+zsv5d9ccq7eVF6pPtbXI1qd1zxMV1wEGfuDsfmp2LzLfgYpwkyG9nIibAWHixdLlw5MmlMFExCpSgLij03Eqanpxf7HGUSKi/tHvroo4+YNGkSr7zyCna7na+++orJkydz9OjRYp8/J289NwmVohTpjXqcDqfWZYiKzOXEZbv8jUdeoLT75L6hdhkvD5YuE2Q1tKGYXCh69crB0uXClZ0Dqku6wUWBnHYnOr0OnV5eH6IUuXJfT3a7HVchq1oUpthjKh9//PErPpbXdHr8+HGSkpL48MMP+frrr1m/fj0JCQm8/fbbzJ07l2bNmhXr2nmhUnHJfyhRehRFQXWWbSu7qAJcTlw20JlyW4r+HSjdhxlVbL4KHn+/6c9qkBso81waLCNmHvj7SZcESveBCpRx74+oXP55OShw5Q1Bhbg2l7yU7HY7ZvO1L1tV7FB57733XvWYQ4cO0blzZyB3Qs/y5csJDAzkqaeeYuLEicW9NA7H311QxQvSQhRI0SllPnRDVBF/B0tDndACA6X7MKOKNSj39qWBMo87WE5rTcR7+y4PlO4DJViKf6iu3NeColNAOldEabmkoS4lJYVatWpd8ymKHSrbtWt31WMyMjIICsr9jerl5UV6ejrTpk1j3Lhxxb0s8E/3uk6vQ3GV32Sd7jd2pnGHCI5sPcGOlXvL7brdbuhIk44NOLrtJNtX7JHrlpGg4CDGPHczBzYcqRZfr1y3hHQ6FD8vXL6gp+BeE0+TiZ/vvYNQiwWfs9tJdxQwTlIPjhoqhqAAHDFxFDoq6RqCZdfhHWjauSHHd51m62+7ivy8ktLqul2GtqdZ10bV4rqKTiEgIID7pt/G0R0nq/zXW52ve2L3GbYs2VEu11Qvaap0z125Ropahk0zixcvxsPDgyFDhnD06FFWrFjBtGnTSnze6667DofDwbPPPoufn18pVFo0ERERBAQEkJiYSHR0dLlfNykpiaioKLmuXLdKXDc5OZkzZ85U6evqdDratm0LwL59+4o9Tqk4qtP3Wcvr1qtXj8DAQLmuXLfSX9fpdPLCCy8A8NNPP5VvS2VRtGjRgh9++IEhQ4awfft2Wre+yjIaRaT7e4Hh/42ei64cd9WZ+H9jaXdda/76ZRtfT/+p3K+7adF2vnrph3K77iMzx9J+YGs2L97BvP9+X+7X3bJkB1++UH7X/eLUeySeTWbT4vK97kPv3kvH69uW+9ebd92tv+1k7vMLyu26D759D52GtGPb0l188Z/vyv2625fv5vNnvy3+iXR69IF+oM/93aPodNgahBA91JLvMLu/kyVDvsTDuIQceyiJwU8zdevw/OdKM9JofhaGxEtmW2bn4Dgfn/+4Yrz3n/DmXXQZ1oEdK/Yw55n51/z84sq77s6Ve/ns6W/K7brjX7+TriM6lvt1x702hm43dCr3634R+R6J0cnsWLWXT5/8utyue/+rd9D9xs7s/n0/nzzxVblfd88fB5j9+Lxyu+7YV+6gx6jyv+59L99Oz5u6sHftAT5+rHyuq+pUyF16HB8fn2Kdo0xDZZMmTQgMDGTSpEnUrFmTMWPGlMp5zWYzNpsNF85ynQGeF2addhcuZ/m1OOR19zsdznK9bt7MwvK+bh6no3y/z7mN9gouZ/leN095XzdvXJZmX69L1eDnW8KvV6dH7+eLCx3kTepyOjGciCPMFULUsNxgaQ9wsnToLFqYgtwd4wM803mv+wIe23JH7h1pRhp/nYnuYnr+4eEmM7rgYBznL+QVXqxS836+qlq+3+e8a5X7dV3/fJ+0+HrL87o6fe74b1XNHW6rxderKEq5Xtdh+3vwqK6cr/v3MmI6ffleN28lEp1OV27XVXX/DND18PAo1jlKHCpfeuklnnzySXeqTUtLY+bMmUyfPh2ARx99tKSXuEze+Ez05TtwPerwOSw+Fs4eiyn363r6enL2WGy5X9fLT4vrnsU7wItz5fx9VlUVnaLgKucZ4FGHz+Fbw4ezx+LK9brRR2PwC/Yl+mg5/3yPnMO/pi9nj5bvzzf68Dn8a/oV//Ws06MP9He3UF5KdbkwnTpPveUhnLzLxK9D36elKX/LpVHRMdQzBbp/z2Or7qHx/GwMF6+wHpzFA0NILRxxxd+DN/poDIGhAZw9Ur7f57PHYgmqc5rocv75nj0aQ1CdwHK/bvTRWIJ3le/XazAZUF0qKgqKUr6bgJw9GsOJXaeJOny2fK97LJaTu09z9si5cr9u7tdbDa77d6ayWCzuRrRrVeIxlePHj+eLL7646n2lady4cZw8eRLjQX90Kdc+5V2Ignx+4l30LhPrFvzF19N/1LocUQEpZjM6/yuP41YsHsSOCGPPfz7++x4vlBoLybaHYkrthU5JZ3WWkZefG4f/rgtXvpDTiTMmDtVx5cXWRfXl6W9h1s5XUKwG9q07yAeTyu7vrag+XF527O2TqFGjBosWLSrWOUr8FsfpdJKVleX+PDMz858lf8qIl5cXAKpBltgQpUdVVRRd+XYlicqlsB11FKMRe51A/E/YaP5JwUum/ZkDz8x8AEOOSk5EjcKvJYFSXIHRZHB3jxa6F70Q18KQ+7evuOMpoRS6v0eMGMHUqVMZOnQoACtWrODGG28s6WkLVaNG7i9j1SQLdInSk5WRjTMzm6TzKVqXIioqlxNXSuplrZWK0Yi9XjAuow691UXINhvNmciRhz/GeXE4e05/gb12FlPfm4hPjANVBw4vPTkRNfA4k5j/Gk4nzthCWjFFtWcw68nKyiHnQrr8vhKlRv17Ld28pSCLo8Sh8tZbb6VevXrs2LEDVVV5+OGH6dixY0lPWyj3F1zAYsJCFNeBHYdZ89kmIneV71ghUbmoVmu+YHlpoMzjDpbKRA49+CkA0/73MD4x/2zxWGCw/DtQqnZb+X1BotIxmAycOX6G9++Yp3UpogrJC5V5DXfFUSqzvzt37uzeOac8BAcHA6CapaVSlB5rphUPL5PWZYhKIC9Y6oODLguUefRWFyFbbXS98BDv3wU+MY7LNgHLFyxPxUugFEXi4W3GmimvE1G6Rj05mIULF2oTKmfOnMnjjz9+xT3AZ86cWeyiriZvQU7VLC2VovRkp+Vg8bNc/UAhyA2WakYGLuOVFwg2ZjgIWR0Pd3W58nl0oBoUnOfjJVCKIrH4epCVWrwdT4S4kpiY3BUMQkNDi32OYofK4cNzF/Etyh7gpa1u3boAqJ4O/l5UodxrEFVPVmoOFp/irc0lqidnWgamQ2extax72WM6uwtj9EVw5U648T6RTFpD/8uO0+e48Nh6HKfNJnt8iyKx+HqQnZajdRmiijl7NnfoV3h4eLHPUezZ302bNgXg1KlTtGvXLt9HZGRksQsqirCwsNwZbwYVjNJaKUpHdloOnn4SKkURKQqoLpyJSZgO5R+H6w6U9n/GUCop6XgfT853nD7HhWXLcZzpl6xXKbN5xVV4+kmoFKVLVVTi4nLXSs5ruCuOEi8ptHz58svuW7FiRUlPWyiz2exunlU9ZVylKB3ZaTlYfCVUiiK4NPjlBctLF2VW1XyBMu8+Jdvq/rTAQFnQ+YX4F4uvhaxUCZWi9KgWJy6XC09PT23GVG7atIlNmzYRHx/PO++8474/KysLfQE7TpS2+vXrExsbi8vLji5VJleIkstKy8ZTxlSKqyko8KkunAmJmABHo9oYzyZefgyA1Yb38WSyw/2uHCgvvY50hYsCePp5EH/6Cq8xIYpB9c59E9yoUaMSrX1a7FBZq1YtWrduzY4dO2jVqpX7fi8vLzp06FDsgoqqWbNmbNq0CdVbFggW10an0/H0V5MIqhPIhTMJzHzwE3rd3JU7/3MTXkGerPl4MwnnEukyrAN3PncTK+auZdWX67QuW1R0fwdLQ3YOE968k6bt65EQk8z/PfktYWFhvPnTFOZMX8TxfVFYYi4UHihBAmU11rhDAx7531hUl0ryhRTeuvcD3lj5AgAmi4maETWYcdd7hDcPY9qnD6HT65j33+/Zs+YAIfVr8vhnDxN9NIYPJ8tOO6JoRj43iIULF7qHNhZXsbu/GzVqxNChQ/nqq68YOnSo+6NPnz54e3uXqKiiaN68OQCqj/0qRwqRX6+buxAXeYEnr5tO1JGz9Lq5K7dMG8GLN79F5Okz3PXirQB0Hd6BaX3+S9POjbQtWFQshYU9l5OIBoH4+3nw1E3/R/Tx8/Qc3g6z2cxL935Cnxs74EpMwpmWVvh5JFBWaxdjknhuyKs80f8lYk+dp/uNnXjyuuk8ed10fv1wBRfi4kmLT2fca2N4d9xHPDfkVe57+XYAet/Sjf899CnpyRn41ij+ziiiejl27BiAdqEyz1NPPUX6Je+409LSmDRpUklPe1XNmjUDcscBqAaZrCOKLrRBLU7tPQPAid2RDH9wEFGHz5Ick4JDtdGgde7Mt50r9/K/jTM4seuUhtWKCqmg0Pf3fS26N2Hnyt04k1PYue4wzTs2wGaz8crXj7Bh/vr82y8Wch5RfSVfSMGanbu8lMPuxOn4529cn1u7k5qeQmp8OoGhAcScPE9WejZpien41vBh06LtTPvsYXxr+JCWeJXWcCHInaRz/Phx4J9sVVwlXvw8Ozs73z6Rvr6++fYCLyu+vr7Uq1ePqKgoXH429IkywUIUTfSRGDoNbstfv2yjw8A2QO54SrvVQXZ6DsbQ3P8WW37byZbfdmpZqqjIVPWf8ZWXBEFvfy8SY5NRrVbSz8Xj4+/J2bNnmTHwY5zWAtahvMJ5hAiuG0SHAa359tWFAFi8PahZL4i4tHNkJGbmG/uWmZqFT6A3MSfieHrgy1qVLCoh1ceO3WYjMDCwRDO/oRRaKhVFISkpyf15YmIiajn9Yswbu+nykwWDRdFtXboLu83BO2tewsPLTEZyBp6+uRN00uIzUHQy81YUkapeFgTTkzPdrycvTwNp53N/P+ZroSzCeUT15ulj4dmvJ/POuI9xOnJXOel+Yyf2rj9IRmImLqeK6vqnBdPb34v0pAytyhWV2F0zRwLQvn37Ek3SgVIIlXfddRePPPIIH3/8MR9//DGPPvpouS2InhcqVX8JlaLoVFXlk8e/4qkBL5OWmM4vs5ZRr3kYBqMBs8FM/LmLWpcoKrEjW4/TcVBbADoNbsehv45oXJGobHQ6Hc/On8L8GT8RcyLOfX+fW7tzaNtRUuNzw2PS+RTqNArB08eCT6C3dHeLYtmzZw+QGypLqsTd39dddx0NGjRg9+7dqKrKW2+9Rb169UpcWFHkpWrV04lqcqLYyn4pI1H5BdTy5/kFj+F0ONm95gAH/zrKL7OW8d76l/EO8mTxp5evvSpEUZ3ae4bkCynM3PAK8dEX+Xnmb/R5pJPWZYlKpO9t3WnZoymePhbueuFWfvtkNduX76ZmeBA2u5Wkc7mL6M99fgFPzn0UnV7HVy/9oHHVojJS9S4OHjwIUCor9yhqefVVl5GJEydy8OBBDKd80Md5al2OqOQ63tiaiPZhLHy5bBfwF9fGbDEx/o276DaiI1np2aDCzt/3Mfe573C5rjxR756XRuN0OPnutV+u+ZoN20ZQMzzIPa62SccGDJ0wgFmPzCnS89v0bcFdz9/Cc0Nf47/rp/BKv/dxOUt/UuFH29/k0S7PAnD3i7cyf8bP13yOknyfRPka+lg/MhIz2fjNDq1LEVWAMygHR7NU6tWrxzfffFPi85W4+/vEiRM88sgjDBkyhOuuu879UV569+4NgDPQepUjhbi6xOhkgsIDtC5D/Mu0zx7GJ9CbB1o/zsPtn2Jy9/+QnZ6N0VzizpYratgugu43/tPCeHzX6SIHyvKUFyghN1SKqi0oPIDEs8lXP1CIIug3qTMAPXv2LJXzlfg38syZM5k2bRpvvfUWH3zwAUuWLCm05aC09erVi9mzZ6P62VD1LhRniXOyqMYunk2iRt0A2cykAgmpX5PuN3ZiTNhD7mVW7Fa7e0YswKPvj6N518aYPEyc2neGmRNmY7flnxjTeUg77vnvaAwmAw67k/cnzuHknkgA+ozuzp3P3QwK5GRa3ev+eXiZadKxISu/XMvp/VHc9fwtPHP9DABGTR7KsAkDcblcxJw4z4zb3ivS1xNUJ5DH5zxCjdoB2K12PpoylyPbTtCmbwvGvTqGuMh4mnRswPnIeKbf8i52q52QiJo8+81kPP08ObTpKJ2HtOexXi9wMSaJlbbvGWK6g4dn3ofeoOeT3e+QejGNZ66f4X4MoGXPZtw/4w6evG46AA/PvI8uQzuQFJdMwrlEzh6LAcAnwJvJH00gtEEtjGYD3766kI0Ltxb75ydKV1B4ABejJFSKklMVla1bc/9vV5hQ6XA4aNKkCQ6HA09PT+644w4mTZrEnXfeWRr1XVXdunWpX78+kZGRuGpY0cfLNnui+DISs1BdLnyCvUmLl5mUFUFEy7rEnbqQ2+19BV9P/9E983XirPu5fmw/ln32R75jjmw9wdSeL6CqKo3a12fyhxOY2vN5wpvVYcKbdzOt1wskxiXjE+hNdkYOX730A616NWPmA58Aud3ZeToMbMP19/Xjsd4vkpWWu5RLUT06axzbV+xm8QcraNKpIS/++Dhjm0wBoEG7CN689wPOR8YzY8mz9L6lK2u/+4uJ/3c/q75az4rP19B1eAdGPHT9Zef95PGvGDVpKA93eOqqNfQY2ZnGHRrwQOvHMXuamb3rLXeofOR/Y1k9bx07V+/D29+LD7e/yd61B0lPlv8PWjN6GPCp4U1STIrWpYgqwBVgJSMjgxo1atCiRYurP6EIShwqDYbcU4SEhLB27VqCg4NJTCzfPUkHDhzInDlzcNbMkVApSuxiVDLB9QIlVFYglw797ntbD8Y8exM+gd68Mvo9ju04SY+Rnbnh4esxeZjw8vNEp7u8xyIwxJ9nv5lCzXpBuBwuajcKAaD9gNZsWrSNxLjc1p+iLMvSaXBbVs1bR1ZaVpGfk6dNv5a8dd+HABzfeYrMlCzqNA4F4OTuSM5HxgNwbOdJQurXBKBV72a8NuZ/AGxbtpu0Ei4d06ZvC9b/sAmnw0lWWla+9Vg7D21Pgzb1mPDm3QAYjHpCG9QkfZf8f9BaUHgAqfHpOGxOrUsRVUDvRzuwbt06BgwYgF5fOhOdSxwqx44dS0ZGBhMnTmTmzJlkZ2czderU0qityPJCpepnk1ngosTOn0qgVqNgTu2I1roUAZw5dJbajUKweHuQnZHDhh83s+HHzby7djoGk4Fa9YK596XbmNjpGVIvpjFy0hAato247DyTP5rA8jl/sO77TVi8PViUNC/3gWIsy1bStdwu83dotlv/2XbW5XShNxT8u6yol3e5/gnjpkvGnxZWv06n8ET/l8hMLftNLMS1CWkUzPkTCVqXIaoAVe9i06ZNAAwaNKjUzlviAYhdu3bF29ubevXqMWvWLD777DO6detWGrUVWWhoKG3btgUFnDVzyvXaouqJO55AaJOaWpch/nY+Mp7Nv+5g0gfjMXmYgNxQZPIwAmDxsWDNtpGenIHZYmLAXX0KPI+nrycJ53J7UYY/ONB9/54/DtDzpq4EhvgDuLuys9KysHgX3POxfcUeBo/tj6evZ77nFMX+9YcYOj53MmOTTg3x8vck5uT5Qp9z8K+jXHdX7qTErsM74BNQ8PVysqyYLSb35/FRCTRsFwFAr5u7uu/ft/4Q/W7vid6gx9PXk+43/DMhafuKPdz6+A3uzwsK6EIboU1qEnciXusyRBXgCsrBZrMRHh5OkyZNSu28xW6pvNrU83vuuae4py6WIUOGsG/fPpwh2ejPeaIUp/lBCOD88Xi63dpO6zLEJWY9/BnjXr+Tzw/9j6zULHKyrOxdd5DT+86QnZHDvg2H+OLQ/4iPvsixHSfzBas8X/33e56c+yjJ51PYumyX+/7oozF88dy3vLEyd7xldnoO0/q8yJ61B7ntqZF8tP1NVn+1nsiD/7Rc71lzgN+/3sCsTa/itDs5dzyWV+/432XXbNWrGfMjP8Y32Jv5kR/z9fQf+WjqXB6f8whDxl2H3Wrn9TtnuXdMuZLZ0+bx7DdTGPHQ9ez/8zBJ51PISrt8jOmi95fzwbY3uHguif8Me405z8znvz89QcLZRI7uOOk+bvOvO2jTtwWf7X+PC2cS2LfhsPuxj6d+ycRZ9/PZvvdQdAoJZxN5fvjr5bZTmriykCY12fjNdq3LEFVAwxG1OXbsGCNGjCjVnpdir1P55ZdfFvr4/fffX6yCiisnJ4ebb76ZjIwMDIf80Seby/X6ouowmg08u/IR3hr2CbZs+9WfIEQhdHpdidepNFtM2HLsqKpKy57NePyzhxjfclopVyoqMkWn8NyKR/jgzq9IT8zUuhxRibm87djbJWEymfj555/x9/cvtXMXu6WyvEPj1Xh4eDB06FB++uknXKFZEipFsdmtDhLPphDSKJjoA7FalyME9VuH8/icR1BVFYfNwTv3f6R1SaKc1Qjzx5Zjl0ApSmzQf7qxfPly+vXrV6qBEkppSaEVK1Zw+vRpbLZ/9uB+6qmrL2tR2kaOHJkbKgNsqB4OlJyyWxhZVG2xRy9Qp0UtCZWiQji6/SQPtn1C6zKEhuo0DyH26AWtyxCVnGp08scfucutjRw5stTPX+KJOm+99RanT59m06ZNNGjQgFOnTmEyXT6eqTyEh4fnThJSwBEmMxdF8UUfiKVuq9palyGEEACEt6lN9IE4rcsQldzo9wdjs9lo1aoVrVq1KvXzlzhUnjx5kqlTp+Lp6cktt9zC//3f/xEVFVUatRXL3Xfnrq3mqpmNapK1vETxRO+PIbyNhEohRMVQt3VtovfHaF2GqMRUvYvFixcDcOedd5b+0miUQqjMa5U0mUykpaVhNBq5cEG7Jvo2bdrQpk0b0IGzjrRWiuJJjE5Gp9cRWMdP61KEENWcxcdMYG0/6f4WJXL/vJvJzMwkIiKCHj16lMk1ShwqW7RoQXp6OiNHjmT8+PHcd999tG/fvjRqK7a81kpnSDaqofz2IRdVh6rC2YNx1G0trZVCCG3VbV2buBMJspOOKDZVp/LTTz8Bua2UBe06VhpKPJMlb/ec4cOH07FjR7KysmjQoEGJCyuJrl270rhxY06cOIEzLBPDGR9N6xGVU/T+WOq1rcO+lUe0LkUIUY2Ft6lD9AHp+hbFd9+XI5kzZw6hoaEMHDjw6k8opmJHVVVVsVqt7s+PHj1KQkICmZmZZGdfvihveVIUhQkTJgDgrJ2FapZ3d+Land4ZTYNO4VqXIYSo5hp2Duf0zrNalyEqKdXg4rvvvgNg/PjxGAxltzJOsUPlp59+yg8//OD+/MUXX+Tzzz/n448/Zv78+aVSXEl069YttxteB47wDK3LEZXQ+RPxmDyM1Kjrr3UpQohqytPfQlC9QKL3SUulKJ6b/28AmZmZNGrUqExbKaEEoXLHjh2MGTPG/bmvry+zZs3io48+Yu/evaVRW4koisJDDz0EgKtmDi5P2RlFXBtVhdO7omnYuZ7WpQghqqkGHcM5eyAWu9WhdSmiElJNTn755RcAHnzwwTIbS5mnRGc3Go3u23fddVfuCXU6cnJySlZVKWnRogX9+/fPXbeyfgYqsnetuDandkgXuBBCOw07h3Nqh3bL9InKrfdzbbHZbLRt25auXbuW+fWKHSozMzPz7aBz3XXXAWC1WsnIqDjdzQ888ABGoxE1wIarhvXqTxDiEqd3RFO/Qxg6fdm+uxNCiII07BzOqe3RWpchKiGXn401a9ag0+mYPHlymaxL+W/F/kvZvXt33nnnnXyTcrKzs5k5cyY9e/YsleJKQ1hYmLsV1dEgHVUvSwyJokuNTyf1Qjr12tXRuhQhRDUT0igYRadw4VSC1qWISkZVVEKH5658M2rUKJo0aVIu1y12qHz44YdxOp3cfPPNjB8/ngkTJnDzzTfjcrncYxkrirvuuovatWuD2YWzbqbW5YhK5ujGUzTv3VDrMoQQ1UyzPg05+tdpVBm5Ja7RuG9uJjo6Gn9/f8aPH19u1y32vHKz2cx///tfYmNjOXPmDAARERG54a2CMZvNTJ06lWeeeQZnnSx08R7osoxXf6IQ5IbKO16/geX/t17rUoQQ1Uiz3g35ffZfWpchKhnV7OSrr74C4JFHHsHHp/zW6i7xQLHatWvTo0cPevToUSEDZZ7u3bvTu3fv3Ek7jdNQFXnrJ4om9lg8qgq1m9bUuhQhRDUREOqLf4gvZ3bL+pSi6FRUWj0UTnZ2Nm3atGHw4MHlev1qNftg2rRp+Pj4oPo4cIZJN7gouqN/naKZdIELIcpJ094NObElEqdD5gGIonOFZLN79248PDx49tlny3wJoX+rVqEyKCiIxx57DABneCYuL1m7UhTN0T9P0qJfY63LEEJUEy36NuLoxlNalyEqEdXswNAqN9c89NBDhIWFlXsN1SpUAgwcOJC+ffvmdoM3kW5wUTRn9sZg9jYT2iRY61KEEFWcf4gvtRoGcXxzpNaliEpCRaX5hDBycnJo3749N910kyZ1VLtQqSgKTzzxBP7+/qheDpz1Ks6amqLiUl0qB9cco/WgZlqXIoSo4loPasrRjadkFx1RZPfOu5F9+/ZhsVh45plnyr3bO0+1C5UA/v7+PP300wA4w7JwBsqi6OLqDqw+SuuBTVF0Zb+ArBCi+mo9qBn7fz+mdRmiknD52pg7dy4Ajz32mKaTpqtlqATo1asXo0ePBsDROBXV7NS4IlHRxR6Lx5plI6J9+Y9TEUJUD7UaBuHp50HkLtlFR1ydanDhP8CAy+Vi8ODBDB06VNN6qm2ohNwF3Js1awZGFXvTVBlfKa7qwO/HaHO9dIELIcpGm8HNOLT2OC6n/D0ShVNR6TitEQkJCdStW5dp06ZpXVL1DpVGo5Hp06fj7e2N6muX8ZXiqvatPEKLvo0we5q0LkUIUcXoDTraDWnBnmWHtS5FVAJjvx7Fli1bMJlMvPzyy3h6empdUvUOlZC7ePtzzz0H/D2+Mjj7Ks8Q1VnK+TSiD8TRelBTrUsRQlQxTXs1JCUujfMnZa9vUThnoJU5c+YAMGXKFBo1aqRxRbmqfagE6N27N/fccw+Qu9uOy1vWrxRXtmvJATre2FrrMoQQVUzHG1ux67cDWpchKjiXxYGpkw1VVRk5ciQ33nij1iW5Saj82/jx4+nVqxfowN48BdUkE3dEwY5vjsS7hpds2yiEKDUBtf2o0zyEg2uOa12KqMBUvYtaIy1kZWXRtm1bpkyZonVJ+Uio/JtOp+OFF16gfv36YHblBkudDJQWl3M5XexZdoiOI6W1UghROjrc0IqDfxzDli09ZaJgqqLSdkoE586do1atWsyYMQOj0ah1WflIqLyEp6cnb7zxBn5+fqg+DhxNUlGRYCkut2vJAVpd1wSLj1nrUoQQlZzBpKfDiJbs/FW6vkXBVFQGvtaJHTt24OHhweuvv46/v7/WZV1GQuW/1K5d253+XUFWHA3SJViKy6ReSOfk9ig6jmyjdSlCiEqu7eDmxJ9KlAk64oqc4ZksX74cnU7H9OnTady4sdYlFcigdQEVUbt27XjhhReYPn06rtrZuBx6jDE+WpclKpitP+3ltleGse2nPTgdLq3LERWUTq/L968Ql1IU6HZbB/749C95jYgCOWpm4gzPBOCJJ56gR48eGld0ZYqqqtIMdwULFy5k1qxZANxyyy106tRJ44qEEEIIUV0cPnyY+fPno6oqY8eOZdy4cVqXVCgJlVfxySef8N1334EKpuMB6JM8tC5JVCAt+jem55iOzHnwe61LERWUTq/jhTWTeHXAh7ic0qIt8rvr3ZEc23haxlOKyzj9rKht07Hb7QwbNoxnnnkGRVG0LqtQ0v19FQ899BBJSUmsXLkSW+NkDEf80SfL5AyR6/C64wx8sCcR7cM4vVP26hVX5nK6JFSKfEKbBBPaqCbfP/ebvDZEPi5fG7r2Wdisdnr16sWTTz5Z4QMlVLKJOqdPn2bixIlMnjyZp59+mqysLADWrFnDI488wtSpU7lw4QIAW7ZsYeLEiSxbtqxE11QUhaeffprrrrsOdOBonoLL31rir0VUDS6nyl/f7qDvfV20LkUIUcn0ua8rW37cjT3HoXUpogJx+dgwdM3BarXStWtXpk+fjsFQOdoAK1WoDA8P5+OPP+aDDz6gefPmbNy4EYfDwY8//sj777/PhAkT+Prrr4HcUPnhhx9y9OjREl/XYDDwwgsv0Lt379zF0Vuk4PKzlfi8omrYs/wwAbX9qNeujtalCCEqiVoNg4hoF8b2X/ZpXYqoQFxedsw97WRnZ9OhQwdeffVVTCaT1mUVWaUKlZcm9ZycHMLDwzl37hz169fHaDTSunVrTp8+DUCXLl149NFHadq0dPZoNhgMTJ8+PXfWlQRLcQmn3clf3+2k731dtS5FCFFJ9L6nC9t+3os1U/6OiFwubzsefexkZGTQpk0b3njjDczmyjXcrlKFSoAdO3Ywfvx49uzZQ506dUhPT8fT09P9uNOZu71ir169mD17NiNGjCi1axuNRl5++WW6dOkCehV7y2ScAdIVLmD3bwcJrl+Duq1CtS5FCFHBBdULoFGXemz9aY/WpYgKwuVrw9gjh/T0dFq2bMlbb72FxWLRuqxrVilC5Q8//MCUKVP44Ycf6Ny5M1988QX9+vVjyZIl+Pj4uMdWAuj1+jKtxWw289prr7lbLB3NU3DWyCnTa4qKz2FzsnnBTvqN66Z1KUKICq7f/d3YvmgfORnSKCHA5WdF3yWbrKws2rdvz3vvvYeXl5fWZRVLpQiVt99+O++//z433XST+z4vLy8sFgthYWGcOXMGu93OgQMHaNCgQZnXYzabefXVV/+ZvNMsFWfN7DK/rqjYdizaT1B4IA06hWtdihCiggptUpMGncLZvGCX1qWICsAZYEXpmEVOTg5du3bl7bffztf7WtlUjulEf9u5cycLFixAp9Ph7+/Pc889h8FgYPTo0UyZMgWTycR//vOfcqnFYDDw4osv4uHhwfLly3E0ScPoqcd1pvIMqBWly2Fzsm7uFgY+3JM5D0QjK8AKIf5t4MM9+Wv+DmmlFDiDs1FbZGKzOenduzcvvfRSpZqUU5BKFSp79OhR4PZEAwYMYMCAAeVej16v5+mnn8ZisbBw4UKyw5LRq57oo7xRqPjrSYnSt2/lEXrc3oGW1zXh4JrjWpcjhKhAGnQKJyg8kAXPLtG6FKEhFRVnWBbOiAxwwqBBg9yNZJVdpej+rsh0Oh1Tpkxh/PjxADjrZuFokoaqSDNVdaS6VP74dBPXPdADvUH+ewkhcikKDHqkF+vmbsFhc2pdjtCIioqjQXpuoATGjBnD888/XyUCJUioLBWKonDffffx3HPPodfrcdXMwd4yGVUvOyRUR8c3R5J+MZNOo9poXYoQooJoPagZeqOefSuPaF2K0IiqU+n6XFNctbNRFIXJkyfzyCOPoNNVnShWdb6SCmDo0KHuZQBUfzv2NkmoZnlHWh2t+mADfcd2xcu/8i0JIYQoXSaLkUGP9GLVBxtQXdKLVR2pRieNHwhm48aNGI1Gpk+fzujRo7Uuq9RJqCxlXbp04cMPP6RGjRqoXk5sbZNw+cjittVN7LF4jmw4yYCHempdihBCY33u68q5Q+c5tSNa61KEBlxedvxv0HHo0CG8vb1577336N+/v9ZllQkJlWWgcePGfPLJJzRq1AhMLuytk3HWkiWHqps1czbTrHdD6jSvpXUpQgiN1KgbQKeRrVn14Z9alyI04KyRg757FvHx8dStW5dPP/2Udu3aaV1WmZFQWUZq1arFRx99RN++fXPXsmychqN+OirS9VFdZKVks+6LLQx7rD+KLAYgRLU0dGpftvywm5TzaVqXIsqRioqjbgaO5qnk5OTQpUsXPvnkE+rWrat1aWVKQmUZslgsvPzyy4wbNw4AZ50s7C1TUA0ygae62LXkAHqjnvYjWmldihCinDXr3ZAadQPY9N1OrUsR5UjVu+j+fHOc9TIBGD16NG+++SY+Pj4aV1b2JFSWMZ1Ox9ixY5kxYwYeHh6oATZs7RJxedu1Lk2UA5dTZel7axn4UE+8a1TeXRKEENfGw9vMsGn9Wf6/dbKEUDXi8rRTc7SZDRs2YDAYePrpp5k8eXKVWTLoaiRUlpO+ffsye/Zs6tSpAx4u7G2ScIZmSXd4NXDuUBz7Vx9l2GNVc2C2EOJygx7pxZk95zix9YzWpYhy4gzORtc9k3PnzlGzZk0+/PBDRowYoXVZ5UpCZTlq2LAhc+bM+WecZcN01JYZsp5lNbB2zmZqN61F8z4NtS5FCFHGItqF0ax3Q1Z+sEHrUkQ5UBUVe8M0HE3TsFqtdO7cmc8//5wWLVpoXVq5k1BZzry9vXnllVeYNGkSer0ee0AW9rZJuDylO7wqs2Xb+e3dNQx7/Do8vM1alyOEKCMGk54bnh7Ayg82kJUiq35UdS4PB/XHBeAKzV3QfOzYsbz99tv4+/trXZomJFRqQFEUbrvtNt5//32Cg4NRPZ3Y2yXhkO7wKu3U9ihObY9i8KQ+WpcihCgj/Sd0J/FcCgd+P6Z1KaIMqag4a2Zj6J3FsWPH8PX15e2332bcuHHo9Xqty9OMhEoNtW7dmi+++ILu3buDDpwN03G0SEE1yqDuqmrl+xto2DmcZr2lG1yIqiaiXRjth7Zk6TtrtC5FlCFV76Lniy1xNEkjOzub9u3b8+WXX9K1a1etS9OchEqN+fv78+abb/LYY49hMplwBdqwtU/CGWDVujRRBnIyrCx6fTU3PDVAZoMLUYV4eJu56YXrWTZzLWkJGVqXI8qIy8dGwCgd69atQ6/X8+CDDzJz5kyCg4O1Lq1CkFBZASiKws0338ycOXNo0KABmFw4WqZgb5CGqpPu8KomctdZ9q8+yshnr9e6FCFEKRk2rR9n9pzj0LoTWpciyoCqqDjqpeNsn8qFCxeoU6cOH330EXfffXe17u7+NwmVFUj9+vX59NNPufXWWwFw1c7G1j4Rl6/sHV7VrPlsE77B3nS+qY3WpQghSqjVgCaEt67D8v9br3Upogy4vOzUudsLZ90sXC4XgwcP5osvvqiWs7uvRkJlBWM2m5kyZQrvvvsuNWvWBIsTe+vk3C0epdWyynDYnPwyYyXXPdCDkEbSbSJEZRVQ249h0/qz6LVVWDOlAaAqURUVR3gGrk6pREZGEhAQwGuvvcbzzz+Pp6cMXyqIhMoKqkuXLsybN4/hw4eD8vcWj9JqWaVcOHWRPz7ZxOhXhmH2MmldjhDiGhlMem6bMZwtP+wmal+M1uWIUuTyshN+ny/O8EycTifXXXcdX331Fb1799a6tApNQmUF5u3tzTPPPMPbb7+du/RQXqtlgzRZML2K2LXkADFHznPjMwO1LkUIcY0GT+5LRlIWf83foXUpopSoutyxk65OqZw8eRI/Pz9efvllpk+fXm3XnrwWEiorgW7dujFv3jyGDRuW22pZOxtbh0ScNXK0Lk2UgqXvrqVm/SC63NJW61KEEEXUemBTmnSvz6JXV6LKyKQqweVvJehWA866WTidTvr27ctXX31F//6yxW5RSaisJHx8fHj22Wd57733cvcPN7twNE/F2ToN1STrWlZmtmw7P764lP7juxPWIkTrcoQQVxEcEciwx/vz8/TlZKXKm/vKTjW4sDdJxd4qhdjYWIKDg3n99deZMWMGgYGBWpdXqUiorGQ6d+7MvHnzuOeee9Dr9Tj8srF1TMRRW3bjqcwSziSx7L113P7aCHyCvLQuRwhxBRYfM2PeuJF1X2zh7ME4rcsRJaCi4qyVjcf1Vlw1c1AUhVtuuYVvvvmGXr16aV1epSShshIym8088MADzJ07l1atWoFexdkgHXu7JJnIU4kdXHOMvSsOc8frN2AwybpnQlQ0Or3C6FeGE7n7LNsX7tO6HFECLm87DR+ogaNxGmlpaTRq1IjZs2czdepUmdldAhIqK7H69evz4Ycf8sQTT+Dj44Pq7cDeJhl7k1TpEq+k1s7ZTEZiJiOfHaR1KUKIfxk8qQ96o57l/1undSmimFSDC3ujNBztkzly5Aienp5MnDiRzz77TNadLAUSKis5nU7HyJEj+fbbb7nxxhtRFAVXzZzcLvGwTFRFusQrE1WFX2asolbDIHrd3VnrcoQQf+swoiVNezbkxxeW4nTI6huVjYqKMzQL08BsXCHZqKrK4MGDmT9/PnfccQcGg0HrEqsECZVVhL+/P08++SRz5syhdevWuV3iERm5s8QDc2S8ZSVizbKx4Lnf6H5be1r2b6x1OUJUew07hzPokd4seG4JmSnZWpcjrpHL30qde7xwNEwnIyODxo0b89FHH/H8888TFBSkdXlVioTKKqZJkyZ8+OGHvPDCC9SoUQMsThwtUrG3Tsblbde6PFFEybGpLHh2CSOeGkC9dnW0LkeIaiukcTC3Th/GwpdXcOHURa3LEdfA5WmnzbRw7K1SiIyMxMfHh8cff5zPPvsst/FFlDpFVWWFraoqKyuLb7/9lh9//BGr1QqALsGM4Yw3ilWa+iuDpj0bMPLZQXw5+ScSziRpXY4oBp1ex3/XT+GVfu/jckq3aWXiH+LL+Nm3seazzexdcVjrckQRqSYnjvAM1FArqqpiMBi4+eabuffee/H19dW6vCpNWiqrME9PTx544AG+/fZbhg4dmjveMtiaO96yfjqqQf7AVXTHNp1m7eebufvdUbLUkBDlyOJj5q53RrFj0X4JlJWEqnfhCM9A1ycDV0gOqqrSv39/vvnmGyZNmiSBshxIS2U1cvLkSWbPns2OHX9vKeZQ0Md4oo/1RHHK+4uK7LoHetC0ZwPmTfmZ7DRZbLkykZbKysdkMXLPezdx4XQiS99do3U54ipUXe4kHO92elJTUwFo2bIljz76aO6ye6LcSKishrZv387s2bM5deoUAIpDh/mCL+aLPuSkyzqXFdXwJ66jTrNafPXYQqyZ8nOqLCRUVi4Gk5673h5FZko2v8xYgcspfyIrKlVRcdXKxr+bmYsXc8e7hoeHM2HCBPr27YuiKBpXWP1IqKymXC4X69atY+7cuZw9exYAfz9/MnY50V2woKjyn7GiURQY+dz1BIb5M/+JRdiyZeJVZSChsvLQG/Xc8doInA4XP764TH5eFZSKiis4h+B+XsTF5e5qFBISwtixY7n++utleSANSais5hwOB6tXr2bevHmcP38+984cHYazXujiJVxWNDq9wi3/HYrFz4Pvnv4Vh00Wua/oJFRWDjq9wq3Th2HyNPH9c0vk/1YFpCq5YTJ0gJ+7MSQwMJB77rmHG264AZPJpHGFQkKlAMBms7F06VK+/vprkpL+nmVs1WE455XbcumScFlR6A06bnt1BIpO4ccXlsofvwpOQmXFp9MrjPrPYHxrevPtk4uxWx1alyQuoSoqrprZBPfxdrdM+vr6MmbMGG6++WYsFovGFYo8EipFPjk5OSxZsoQFCxaQmJiYe6dNlzuhJ86C4pIJPRWBwaTn9ldHoNPr+P4/v8kfwQpMQmXFptPruOW/Q/Cu4cV3T/+KNUvGK1cUqi53zGRANw8SEhIACAgI4Pbbb2fUqFGyR3cFJKFSFMhqtbJixQq+/fZbLly4kHun/e/Z4nEyW7wi0Bv13PrSUCy+Hnz3zK8yxrKCklBZcRlMeka/PAyjxciCZ5dgz5E3ZxWBqnPhDM3Gr6PJ3XMWFBTEmDFjuOGGG/Dw8NC4QnElEipFoex2O6tXr2b+/PnExMTk3ulU0J+35C5FZNVrW2A1p9PruOmFwfiH+PLtU4vJybBqXZL4FwmVFZPRbOD212/A5XTJMJIKQjU6cdbOwrOFnvT0dCB3As5dd93FkCFDMJvNGlcorkZCpSgSh8PB2rVrWbBggXspIlTQXTSjj/FCl2HUtsBqTNEp3PjMQGo1DOLbp34lMzlL65LEJSRUVjxmLxNj3riR7PQcfp6+AqddAqWWXJ4OnHUy0dVx4HDkthbXqVOHu+++m8GDB8ts7kpEQqW4JqqqsmPHDr7//nt27tzpvl9JMeaGy2QTCjKpp7wpClw/qQ9NezRg/pOLSIpJ1bok8TcJlRWLT5AXd787irjjCSx56w/5mWhERUX1s+EIy0IN+Gcca+vWrbn99tvp2bMner30hFU2Ev/FNVEUhS5dutClSxdOnjzJDz/8wB9//IHT347DPwUlU48+zhNdvIdM6ilHqgqrPviT9IQMxn10G9898yuxx+K1LkuICiWoXgB3v3sT+1cfZe2czVqXUy2pioorKIeI4TU5efIkADqdjj59+nD77bfTsmVLjSsUJSEtlaLE4uPjWbhwIUuWLCEzMxMAxalgSvTGdNEHW5J0LZWn1oOaMuyx/ix8eQUnt0dpXU61Jy2VFUPdVqHc8cYNbPhyG9t/2ad1OdWOanbiDMnCp7WJlJQUADw8PBg+fDijR4+mdu3a2hYoSoWESlFqMjIyWL58OYsXL+bcuXPu+3UpZgxxnuhSzNI1Xk7qd6zLrS8NZc2czez+7aDW5VRrOr2OF9ZM4tUBH0qo1EiL/o0Z/nh/lr67hiMbTmldTrWhouLys+EIyYQgOy5X7us/ODiYUaNGMXLkSHx9fTWuUpQmCZWi1LlcLnbu3Mkvv/zCli1byHuJBQQE0K1bNzp27IiXl5fGVQohhCgLOTk57Nq1i61bt7r35Abo0KEDN910Ez179pTJN1WUhEpRpmJjY1m8eDHLli1zLxGBC/SJHujjPdGlycSesuTpb2H0y8Nw2B0snL5SlhzSgLRUasPoYWDkc4MICPXjxxeWkhqfoXVJVZqKiuptx1EzC2M9lZycHAA8PT0ZMmQIo0aNIiIiQtsiRZmTUCnKRU5ODmvWrOGXX37hxIkT/zyQrUd/wYI+3gPFJjP9yoLeoGP4E9dRr20dFjy7hIvRyVqXVK3ImMry51fThzFv3khSTAqLXlsli5qXIdXgwlkzm/ABwURGRrrvr1+/PjfddBPXX3+97HxTjUioFOVKVVWOHTvG0qVL+eOPP8jK+ntNRRV0SSZ0FyzokmTsZVnoems7+t3fjd/eWcPh9Seu/gRRKiRUlq9GXepx0wuD2bFoPxvmbUX+wpU+FRXV34YzJBtdiNO9tqTZbKZfv34MHz6ctm3boijye7y6kVApNJOdnc369etZtmwZ+/fv/+cBmw79BQ90CRZ0WTLupjSFt6nN6JeHcWjdCX7/eCNOh4ScsiahsnwoOoV+93el06g2LHp1NSe3ndG6pCpHNTtw1sqhRicv4uP/WbKsadOmjBgxggEDBuDt7a1hhUJrEipFhRAVFcWyZctYuXKle7kJACXDgC7eA32CB4pdusdLg1eAJ7e8NASTh5Gf/ruc1Ph0rUuq0iRUlj0vfwu3vDQUk6eJn/67jNQL8pouLarBhSsoB2fNHFRfu/t+Hx8frr/+eoYPH06jRo00rFBUJBIqRYVit9vZtGkTq1atYuvWrTidf69xqYKSYkIf74Eu0SwLq5dQbqtONzqNas2vb/zO8c2RV3+SKBYJlWUrol0YN/93CEc2nGD1R9L6XhpUnYor0IqrZjZKsNP9e1in09GhQweGDx9Or169ZC9ucRkJlaLCSklJYf369axatYpDhw7984BTwZhqwZTsjSHdQ2Y0l0DDLvUY9Z/rObrxFKs//BO7VSY0lDYJlWVDb9DRf0IPOgxvydL31so44RLK2zbRWTMHj/q6f8a7A02aNGHQoEEMGDCAoKAgDasUFZ2ESlEpxMTE8Pvvv7N69ep8C6t7eXqRHenM7R5PNaGoMjD8Wnn6W7jx6YEEhQew8JWVxB2X7R1Lk4TK0hdUL4Bb/juU7LQcFr++mrQEWS6oOHKDpB1njRz8W1lISkpyPxYSEsKgQYMYNGiQLAUkikxCpahUVFXlyJEjrF69mnXr1pGcfMnyOHYFXZIZ3UUPdCkSMK9VhxEtGTSxN5sX7GLTdztxOeVXQ2mQUFl6FAU639SW6yb0YMNX29j6426Z3X2N3C2SQVb8Wnjk+x3q4+PDddddx6BBg2jVqhU6nQwzEtdGQqWotJxOJ/v372fdunX8+eef+d5l41DQJUrAvFaBYf7c9J/r0Rv1/Prm71w4dfHqTxKFklBZOmrU9efGpwdi9jKz6LVV8tq8BqryT5D0aWoiNTXV/ZiPjw+9e/emX79+dOzYEaPRqGGlorKTUCmqBKfTyYEDB1i7dm3BATPZlNuKmWxGcci778IoOoUuN7Wl3/hubF+4jz+/3o7T7tS6rEpLQmXJ6PQK3W/vQO+7u7BpwU42fbdLvo9FoOpduPxtuGpY8W5kIi0tzf2Yn5+fO0h26NBBtkwUpUZCpbiiPXv28NVXX+F0Orntttvo3bs3a9as4eeff8b0/+3de3RU5aH38e/ek8kk5EK4BAhCEu4Bk3ARgkVeak0VlGN1SRG73r7nqK3nfVtvrZdqW11dS5fLnmJXXVa07aqtx1oX6NJiPbVFj3KgIjdBIZGEm5AASYCQAEkmySSz9/vHzOyZyYWLA0yS+X3W2mvv2c9+9jzzkGR+7Muzk5P5yU9+wsiRI9m4cSN/+tOfWLx4MYsXL453s52AuXbtWtatWxcdMG0wTrkxGzy4Tngw2vXHtDdZOZnc+HApmdnp/PU//ptD5bXxblK/pFD55Y2cMJybHr0Wf6fFX//jfY4fbDh7pQRme/xYQ9vxD20naYRNR0d4CKCsrCwWLFjA1VdfzYwZM/pUkOyv3zXSXd/5qZI+pb29nVWrVrF8+XLndEhnZyevv/46zz//PJWVlbzyyis8/PDDbNy4keeff55f/epXfeIX3eVyMWPGDGbMmMH9999PZWUlGzZs4KOPPuLAgQPYWR34szrwj2/GaHEFjmA2eDCa3HqST4STtaf50wN/YeYN0/jW099g94Yv+O/ffETLydZ4N00GuJR0D1/7zpUUL5zKuj9uZvObn2FbOv7RVeB5252B4X+GtmOnh0dv6OiAyy67jPnz53PVVVdRWFjYp4JkSH/+rpHu+t5PmPQJ5eXleDweHn30UVJSUnjggQdoampi3LhxuN1uioqKeOGFFwAoKSnh7rvv7pO/5KZpMm3aNKZNm8Zdd91FTU2NEzB37NiBlebHn+bFP9YbuNHnZDJmowezMVmDrQd9+u4uKj/6gtJ/v4q7X/1X/ucPm/jk7Z26kUcuOMOA6ddP4+v/9yq++OQQL/yfP9F0oiXezepT7CQLK6sda4iPIdPSOHEifPTWNE0KCwu56qqrmDdvHrm5uX3+UYkD5btGAhQqpUeNjY3U1tayYsUKtm3bxh//+EcWLlzIoEGDnG1CA+LOnz+f+fPnx6up52X06NEsXbqUpUuX0tTUxKZNm9iwYQObN2+mpaUFK7sdKzsw7qXRnBS4FvOkB+O0O6Fv9mk93cZ/PfMB298p44YHrmHWvxTy7rNrqd5ZE++myQCRM3kEN/zwaySnunnjZ+9S9dmReDepT7CxsTM7AtdHDmmHTD+hq9ZOnGgjNTWVkpIS5s2bx1e+8hWysrLi2+DzNFC/axKVQqVEWbVqFRs2bGD27NkUFRXhdruZNWsWr776KhkZGVED4rpc/ftIXkZGhjMOW2dnJ7t27WLz5s1s3bqVyspK7PRO/OmdgaOYfoOk5hTcp1PpPGZgtLoS8lR5ze5jvPT/VjJz8eXc+sRiDn1eywe/3UB9dePZK4v0IGtUJtfcNY+Jc/NY/59b2PLWjoS/9tT2+J2jkal5SbS0RByttWH8+PGUlJRQUlJCUVFRv3yyTSJ91yQShUqJsmzZMpYtW8apU6d44oknANi7dy+jR49mzJgxHDx4kI6ODiorKxk/fnycW3vhJCUlUVxcTHFxMXfddReNjY1s3bqVLVu2sGXLFk6ePEnn4FY6B7fCWKDdxDyVHJhOJmO0J84fPduG7f/1OeUf7GHebVfw3d/cRtkHu1n3x000N3jPvgMRIDXDw//61xJm/Ush294p49ffepnWpsR8Opad7Mca7AscjRzsg5RwqG5paSczM5PZs2dTUlLCnDlzyM7OjmNrL4xE/a4Z6HT3t/Tqrbfe4sMPP8Q0TR599FFGjx7d4x15A51lWezdu5ctW7bwySef8Pnnn+Pz+aI3ajMD12MGg6bhS5yQmT5sEFfffiWFpVPY/OZnbHp9e8KGg57o7u9oyaluSpbMYN5ts9i76SBrf7+Rk3Wnz15xALHdoRDZgT3Yh50aPWSXy+Vi6tSpztHIKVOmDOijdfquGTgUKkXOU3t7O+Xl5Wzfvp1PP/2UiooK55qfEMPrwjjtxjydHLges23gny4fnjuEq++8kgkleWx5c4fCZZBCZYATJpfN4lB5DWv/sIm6vcfj3ayLzsYGj4WV6cPKDIbIQdF/L0zTZPLkycycOZOZM2dSXFwcdU2hSH+hUCkSI6/XS1lZmRMy9+zZg2V1CQ8+E/O0G6PJHTiS2ZI0YG/8yc4fyoJ/m8ukuflseeszNr7+Ka2n2+LdrLhJ9FDpGZRMyZLpfOXWWVSX1bDu5c0D+vnyzjA/mR3YGYEgiSf6390wDCZOnOiEyOnTp5Oenh6nFotcOAqVIhdYU1MTZWVlzlRZWdn9dLkfjObwkUyzOWnADWHkhMsr89nxj11sev1TGmsT6zQnJG6ozBiextxvzuSKbxRS9dkR1r28ido9A+/IpJ1kYad3YGV2YGX68Ixy0dYW/Z8ol8vF5MmTKSoqori4mBkzZpCZmRmnFotcPAqVIheZz+dj9+7dlJeXs3PnTsrLy6OevetoMzGbg0czm90YzUkY/v7/SMkhowdz5a0zmbFoKvu2VLFx5XYO76qLd7MumUQLlSMnDGfebbMoWDCRzz/cw8ZV2wfMk3Bs0w4EyPQO7IwOrPROSO3+CNP09HQKCwspKiqiqKiIgoICUlJS4tBikUtLoVLkErNtm+rqasrKyigvL6eiooKDBw/S7VfRDl6b2ezGbHKT4k/D1ZbsnDZvbe5fp5RTMzzMvrmYkiUzaKw5xZY3d1Cxft+Af654IoRK02Uwed54Sm6ZzqiJ2WxdvZOtf9nRL0cDSE0PhD/bsPGn+GhztQRDZCdGhtX90hYCT64pLCx0gmR+fj6m2f//QyhyvhQqRfoAr9fL7t27qaiooLKykoqKCo4ePdptO9M0yRk1mrwxeWxetSNw2rzFjdHZf77AXG4XhaWTmX1TMUPHDObTv+1i21/LaKzp4ejtADCQQ+XgERnMuvFyZi4uxHuyla2rd7JzTQUd7Z1nr9yH2C4LO60TK72Tef97JtWHqzhSe4TOzu6fY9iwYUydOpWCggJnnpGREYdWi/Q9CpUifdSJEyecgFlRUcGePXt6Pm0OgXEzW5Iwmt2Bm4BakvrFHeejJmZzxU1FFH19Ckd21bH9b5+z+6P9dPoGztHLgRYqXW4Xk67MZ+YN08ifNZZda/fyyV/LONIPLmlw7sRO68BO7wwEybSOqHEhI6Wnp1NQUBAVIAfCGJEiF4tCpUg/Yds29fX17Nu3j71797J371727dvHkSO9PM7OAqM1GDC9LgxvUmDqg2EzOdVN0denMP36aYwYN4yK9fvYuaaCg58dwbb695+ogRIqc4tGU3xdAZdfM5nGmlPs+EcFO9ZU0Nbc94aNCoRHP1aaHzu1E3tQaPKDq+efp1GjRjFx4sSoKScnp88/O1ukL1GoFOnnWlpa2L9/f1TQrKqqor29ly97i3DA9LoCwbMtOLfi/wU6JCeTousKmL5wKm5PEmUf7GbX/+yjpqKO/vjXqj+HylGTspn21YkUXVuAYRjsfK+Cne9XUl/VNx7LaRs2dqofOyUQGJ3wmNoJvQym4Ha7yc/Pd4LjpEmTmDBhgk5hi1wACpUiA5Df7+fo0aMcOHCAAwcOUFVV5cx7DZsA7WbgueZO0IxYjsO4mqMLRlJ8bQEFCyZgukwq/7mfyvX7OPjZkX4T0PpTqDRMg7GFOUz96kQK5k8gyZNE5T/3U/Z+JYfKauIS6m3Dxk7xh8NjanjZSLW73+AWlJycTG5uLvn5+eTl5TFu3Djy8/MZPXo0SUl6QrHIxaBQKZJAegqbhw8f5vDhw71frwlgEwicbS6MdldgHrGMz7zop9RzJo9g6oIJFCyYSMawNPZtPsi+LVV8sbWaphMtF/W9Y9HXQ2VaVirjZ+cyoSSPiXPzaG/xUfnP/VSs38+RXbUXPUja2JBsYXv8gfDosYLzQHg0B9k93nHttD8tjTFjxpCXl+cEyFB4HMiPNhTpixQqRQSA06dPOwHz0KFDUXOv9yxDw1hAu4ukTjemLwnT58LoSKLztB98Lox2E/zGBQuew8ZmMbEknwlz88iffhmNtafZv7WK/VuqOFRei6+144K8z4XQ10JlUrKLMZfnMKEkjwlzcsnOG0r1zhr2b61i3+Yqjh04cUHfz3ZZ2MkWJPtxZ7qwkjuxkv1YyZ34kzqwPX44y+AFqampjBkzpscpKytL1z2K9BEKlSJyRrZt09DQwJEjR6irq6O2tpa6urqoqeuzz3vkB8PnChzx9LkwfCa0B+ZGhxk42tlx/uHT5XYxtjCHiSV5TCjJIzt/KEf313OorJbqsiNUl9XQfCJ+4yXGO1QOykolt2g0Y4tyyC26jJxJ2Zw4fDIQwrdWU73jyHkPAWRjB254SQoExkBotLCTg0cagyHSTrYg6exfMS6Xi+zsbEaNGuVMOTk55OTkMGbMGIYNG6bgKNIPKFSKSEz8fj/19fXdAmd9fT3Hjx+nvr6epqamc9+hBXREB02jwwyv6zQxOo3wvMOMut7Tk5bMmMtzyA2GqMumjaKl0UvtnmPB6Ti1e47R0nhpgualDJWDBqcwatIIciaPIGdyNjmTR5A5IoOaijqqy2up3nmEw+W1tDZFX1drG8GAmBQxd1vYbqvbPLTc240wPUlLS2P48OFkZ2eTnZ1NTk4OI0eOJCcnh1GjRjF8+HBd5ygyAChUishF19bWRn19vRM0Q1No3cmTJ2lsbDz7afbe+OkeNjsDRz1N2yR9cDpZ2ZkMHTWE4ZcNZUTucPAbNB9vpeWYl9N1LZw8cpqG6tOcPtYEF/CmpIsRKtOHD2J43hCGXDaYzNHpZI4aRPqIQbg8Jseq6zl+6AT1RxpoPHaS0w1NWFjgigiNrugQeT4BMZLH42HIkCEMGzaM4cOHO1N2drYzHzZsGIMGDbogn1tE+jaFShHpM9rb252A2djYyMmTJ2loaHCWGxsbaWpqoqmpiebmZpqams54E8eX5TJdmKYL0zAwbBMssDvB9tvYnWB12lh+O/AozdBfUNsI3NAEgXkwmBoYFF03hbL3KwOnjQMrI+Y2BKuaLgPTbWAkGZhJgbnhCt4BbdjYtoXf8tPZ6Sf8ZheGYRikpaWRkZFBRkYGgwcPZsiQIWRlZfU6T01NvaBtEJH+TaFSRPoty7Lwer1O0Ow6tba24vV6aW1tPetyf/1TaJomqamp5zRlZGSQnp7uBMfI5bS0ND2vWkRiolApIgnPtm06Ojrw+XzOPDT1tL6jowPLsrAsC9u28fv92LbtrOs6GYaBaZqYphm1HPk6NE9KSsLtduN2u0lOTu5xHloOTbqJRUT6AoVKEREREYmZznWIiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMwUKkVEREQkZgqVIiIiIhIzhUoRERERiZlCpYiIiIjETKFSRERERGKmUCkiIiIiMVOoFBEREZGYKVSKiIiISMyS4t0Akb7Atm3a2tri3QwRkfOSkpKCYRjxboYIoFApAkBbWxsLFy6MdzNERM7LmjVrSE1NjXczRACd/hYRERGRC0BHKkW6SN4yAsMO/n/LMDFMAwwTTAMMA8MMlQXXGwaYBkZoG6fMcOo4E0SsC+/TqUO4jm0Y4f/2RezDWR9RL3KdHdyNU2YChNYbTlmojh1c55RDeB9mcHunTvR7RNUhuM7soSxqe6LaGF5ndCvrVofoOlHlhOv09l5Rr3tpR7c6Z9qvs96Oqt91f055xL7s4Hq61MOwI+oHyo3IMmfbUJnt7NOI3D643jDs8I9fcH34x8N2yk1s53WgDMzg60BZ4HWonlNm2BiE65nBdc6E7dQzDaLWh+tY4W2xMQ0LV6gs+Dq8L8vZnyti/y4C612G1aWehSu0T8Lv52xPeH8mgfomgfcPlAX25wquM7BwheoTaoeFCwL1CLxP6LOFXgfeyw4uEyyzMYP94sLABFzBf2wTI7jOwGUYmME/BgYGHT4XS+4ahUhfo1Ap0pXfCP55JxAqCQbA4Ld1uMwAM5ygjEBCC+4klDzM8HK3tGF2TzyG0X37yP3RZfuosq7LEduEwmREqOy2LiIERr7u2sTo7XuoY56hrLeP0dN+e6t3pvXn/F7nt88eQ2xUvQscKnsqp+tr29l3ZDsi3zO6TpcQ6pRFlts97M/u4b3sqCkyVIaDanDqraynsEkojBIV9EKvXUSXBUKlFQ5lRmQoCyybhhEIfME5zrLh1AsHWHAZ4bkLIgJgD2XB/QVe28FQajshMlDPPmuojNyfK1hmEr0uFGDN4OcW6Yt0+ltEREREYqZQKSIiIiIxU6gUERERkZgpVIqIiIhIzBQqRURERCRmCpUiIiIiEjOFShERERGJmcapFOnKZWPbgQGPA+MuGhFzo8uA5KF5xDKR6+yI5TOUhdZHDFoYHqKaXtaH53bUMlH1bAA7tD68TxsDbJy6keXOPqIGV4xsSw+v7agmdemPXqau255t7Eh6WX+2sjONRXmmsshPeMZ6PY03GTnZvbSx98HPo8eWjChztv3yg5+H2xExTiVffpxKm3A927CjJwLzQBlR6y1nf1b4fbDBsCLG07Sjym3DcvZH1P6D89B7BV+bwW1Cc6DbOitibEjLCM8twuNUWsF1Br2NU2k4A5a7CP+bhV6bwTpdx74898HPjeA/i0GHr6ffS5H4U6gU6cJXcizeTbg4Qt/ZMegaZ0Ug+kfLimdDvrTIn2ydwBP5svTbIwK0tbXFuwkiIiL9mo5UigAej8dZfvvtt0lJSYlja/qftrY2brrpJkD992Wo/2KTyP2XSJ9V+j6FShHAMMIndFNSUkhNTY1ja/o39V9s1H+xUf+JxI9Of4uIiIhIzBQqRURERCRmCpUiIiIiEjOFShERERGJmWHbdowj14mIiIhIotORShERERGJmUKliIiIiMRMoVJEREREYqZQKSIiIiIxU6gUERERkZgpVIqIiIhIzBQqRURERCRmCpUiIiIiErOkeDdAJN68Xi8rV65k3bp11NXVYZomY8eO5ZprrmHJkiW43e54NzEuTp06xYYNG9i2bRt79uzh6NGj+P1+srKymDJlCosWLWLBggVn3EdDQwOvvfYaGzdu5OjRo3g8HsaNG8eiRYtYvHgxhmFcok/TN7z66qv87ne/c16vX7++123Vd2EtLS2sXr2ajz76iMOHD+P1esnKymLMmDFMnz6dpUuXkpGR0a2e+lDk0tITdSSh1dXVcd9991FXVwdASkoKlmXh8/kAmDRpEs8++2yPX1gD3de+9jX8fr/zOjk5GZfLRWtrq7Nu7ty5PPnkk6SkpHSrv3v3bh566CFOnToFQGpqKj6fz9nnnDlzePrpp0lOTr7In6RvqK6u5s4773R+tqD3UKm+C9u+fTtPPPEEDQ0NALhcLlJTU2lubna2eemll5g0aVJUPfWhyKWnUCkJy+/3853vfIcvvviCYcOG8dOf/pTZs2djWRZr165l+fLleL1e5s6dy/Lly+Pd3EtuwYIFTJ06leuvv56SkhJGjx4NQG1tLa+88gp/+9vfALjuuut47LHHouo2Nzfz7W9/m4aGBnJzc3nssccoKCigo6ODd955h+eff57Ozk5uvvlmHnjggUv+2S41y7K49957KSsr4/LLL+fzzz8Heg6V6ruwsrIyHnjgAdrb25k9ezZ33HEHl19+OaZp0t7ezsGDB1m/fj2LFy92fj5BfSgSL7qmUhLW3//+d7744gsAnnzySWbPng2AaZqUlpby0EMPAbB582a2bdsWt3bGy7PPPstvf/tbbr755qgv7JycHB555BG+8Y1vAPDee+9x9OjRqLorV66koaEBj8fDL37xCwoKCgBwu93ccsst3HnnnQC88847HDp06BJ9ovh58803KSsr49prr2XOnDln3FZ9F9DW1sZTTz1Fe3s7X/3qV3nmmWcoKirCNANfWx6PhylTpnDXXXdF/XyC+lAkXhQqJWH94x//AGDmzJkUFhZ2Ky8tLSUnJydq20Qya9asM5YvXrzYWd69e3dU2Zo1a4BAH3b9wge45ZZbSE1Nxe/38/7771+A1vZdNTU1/P73v2fw4MHce++9Z91efRewZs0aampq8Hg8PPjgg06YPNe6oD4UudQUKiUhtbW1UV5eDsCVV17Z4zaGYTB37lwAtm7desna1l9EXotmWZazXF1d7Ry5DPVfV4MGDaK4uBgY+H27fPlyWltbufvuu8nKyjrjtuq7sFAwnD9//ln7LZL6UCR+FColIVVVVTlBaNy4cb1uFypraGjg9OnTl6Rt/cVnn33mLI8fP95ZDl1SAGfu21CdgwcPXvC29RXvvPMO27ZtY/bs2SxatOis26vvAnw+n3P0e8aMGdTU1PDzn/+cJUuWUFpays0338yPf/xjNm3a1K2u+lAkfjSkkCSk+vp6Zzk7O7vX7YYPHx5VJzMz86K2q79oamri1VdfBaC4uJjc3Fyn7MSJE87yufRtS0sLXq+XQYMGXaTWxsfx48d58cUX8Xg8zvW5Z6O+C6irq6OjowOAY8eOcccdd9Da2orb7cbj8dDQ0MCGDRvYsGEDN910Ew8++KBTV30oEj86UikJyev1Ossej6fX7SKHyomsk8gsy+Kpp57ixIkTJCcn84Mf/CCqXH0b8Mwzz9Dc3Mwdd9zR43V9PVHfBTQ1NTnLf/7zn3G5XPzsZz9jzZo1vPvuu7zxxhuUlpYC8Pbbb/PGG28426sPReJHoVJEzstzzz3Hxx9/DMAPf/hDJk6cGOcW9T3vvfceGzduZNKkSdx6663xbk6/E3mNrmVZPPjgg5SWlpKUFDi5NnLkSB5//HFnbMpXXnmFzs7OuLRVRMIUKiUhRZ7qam9v73W7tra2HuskqhUrVvDWW28BcM8990TdAR6S6H3b2NjIr3/9a1wuFw8//LAThM5FovddSORnGjFihHNUMpJpmixbtgwIPP1pz5493eomch+KxINCpSSkyGsljx8/3ut2kddeRtZJRC+++CKrVq0C4Hvf+16vR+CGDRvmLJ9L36alpQ2oL/Xf/OY3nDp1ihtvvJHc3Fy8Xm/UFHlELbQudP1govddSOS1kJHX63aVl5fnLIeeiqU+FIkf3agjCSkvLw/TNLEsiwMHDvQ6rNCBAwcAGDp0aELfpPPCCy+wcuVKIBAov/Wtb/W6beSd4AcOHCA/P7/H7UJ36fZW3l/V1tYCsHr1alavXn3GbUN3hH/zm9/kvvvuS/i+C8nMzCQ7O5vjx4+f8/O5Q9upD0XiR0cqJSGlpKQ4A55v3ry5x21s22bLli0AZ30KykC2YsWKcw6UEDiyNHLkSKD3vm1tbWXnzp1AYvdtV+q7sNBnq6qqorenCVdVVTnLoQcVqA9F4kehUhJW6CjRp59+yq5du7qVr127lpqamqhtE82KFSucU97f//73zxooQxYuXAjAhx9+6By5i/SXv/yF1tZWXC4X11577YVrcB/w3HPPsX79+l6n22+/3dk2tO6+++5z1iVy30W6/vrrgcCQQh9++GG3csuynJ/N7OxsJk+e7JSpD0XiQ6FSEtaiRYsYP348tm3z+OOPO8/3tiyLtWvXsnz5ciDwVI4rrrgink2Ni8hrKO+55x5uu+22c6572223MXToUNra2njkkUecgaw7OjpYvXo1L730EgA33ngjY8eOvfCN78fUdwHTp0/n6quvBuCXv/wlH3zwgXM96tGjR3nyySfZu3cvAN/97nejHuOoPhSJD8Pu7byCSAKora3l/vvvdy7yT0lJwbIsfD4fAJMmTeLZZ58lIyMjns285I4ePcrSpUuBwF22Z3tM3rJly7odxdy9ezcPPfQQp06dAgJ32Pp8PicYzJkzh6effjrqcY+J4A9/+AMvv/wyEDhS2RP1XUBrays/+tGP2LFjBxB4NKjH44kax/L222/nzjvv7FZXfShy6SlUSsLzer2sXLmSdevWUVdXh2EYjB07ltLSUpYsWYLb7Y53Ey+52tpaZ7iWc9HbF3tDQwOvvfYaH3/8MceOHSM5OZnx48ezaNEibrjhhqijS4niXEIlqO9CLMvi3XffZc2aNRw4cACv18uQIUMoLi7mlltuoaioqNe66kORS0uhUkRERERipv+miYiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISM4VKEREREYmZQqWIiIiIxEyhUkRERERiplApIiIiIjFTqBQRERGRmClUioiIiEjMFCpFREREJGYKlSIiIiISs/8Pb5bYec6bJQoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApUAAAG+CAYAAADC0v/PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAABcSAAAXEgFnn9JSAAC+8UlEQVR4nOzdd3xUVf7/8de909MTCL33XkRAEUQFV8S6trUXYFGxgmXd7+pPXXfXVVd37bu6unbFrggiijQB6R1CDRBqQnqdds/vj8kMKTOTkDYpn+fjkQfJ5OTczyQwvHPOPedoSimFEEIIIYQQtaBHugAhhBBCCNH0SagUQgghhBC1JqFSCCGEEELUmoRKIYQQQghRaxIqhRBCCCFErUmoFEIIIYQQtSahUgghhBBC1JqESiGEEEIIUWsSKoUQQgghRK1JqBRCCCGEELUmoVIIIYQQQtSahEohhBBCCFFrEiqFEEIIIUStSagUQgghhBC1JqFSCCFq4YknnkDTNDRNY/HixZEup974n+M555wT6VKEEI2UhEohRCAwBHvTdZ24uDj69+/PjTfeyHfffRfpcpulsuE02JvNZqNt27acc845/OUvf+HIkSORLlkIIcqRUCmECEspRX5+PikpKXz44YdccsklnHPOOWRmZka6tBbF5XKRnp7OkiVLeOyxx+jTpw/vvvtupMsSQogAc6QLEEI0Ll999VW5jw3D4MSJE/z66698/PHHlJSUsGTJEi655BJ++eUXdF1+N61rv/vd77j22mvLPVZcXMzevXv57LPP2Lx5M4WFhdx22220adOGCy+8MEKVCiHESRIqhRDlXH755UEfnz59OrNmzWLMmDHk5+ezcuVK5s+fz+TJkxu2wBagX79+IX8O//d//8f06dN56623UErx+OOPS6gUQjQKMsQghKi2QYMGMW3atMDHS5YsiWA1LZOu6zz33HOYTCYA1qxZQ1FRUYSrEkIICZVCiFPUr1+/wPt5eXlB29x6662BBSb79+8H4JNPPmHy5Ml06tQJi8VCQkJCpa8rKCjgH//4B+PHj6dt27ZYrdbA4pQXXniBwsLCKutLSUnhueee49JLL6VHjx5ERUVhs9lo3749kyZN4rXXXqOkpKTaz/fLL79k0qRJtGnTBofDQY8ePZg2bRpbtmypdh91LTExkTZt2gQ+zs/Pr9TmnXfeCfwM3nnnnbD9nUrbqhw5coRZs2bRt29fHA4HycnJjB07ln//+994PB7g1FaS//rrr9x5550MGDCAhIQE7HY7Xbp04Xe/+x1z586tVa1CiLol099CiFNy4sSJwPtdunSpsr3T6eTSSy9lzpw5YdstX76cq666imPHjpV7PD09PbBA5R//+AdffPEFZ555ZtA+3nvvPW655Zagnzt27BjHjh3jhx9+4IUXXmDOnDn0798/ZD1ut5sbb7yRTz/9tNzjqampvPXWW3zwwQe8+eabYZ9TffF4POTm5gJgt9vLBcxI+umnn7jqqqsCtQGUlJRw4sQJli9fzscff8w333xTrb6KioqYNm0aH3/8caXPpaWlkZaWxqeffspFF13Exx9/TGxsbJ09DyFEzUioFEJUW0lJCR9++GHg44kTJ1b5Nffffz/z58+nd+/e3HTTTfTu3ZvCwkJWrVoVaLNu3TrOP/98iouLATj99NO5/vrr6dChA0eOHOHDDz9k3bp1HD16lIkTJ7J8+XKGDRtW6VpFRUVomsaIESM4++yz6du3L4mJieTl5XHgwAFmz57Nrl272Lt3LxdeeCEbN24MOmIKcOeddwYCpd1u57bbbuPMM89EKcWyZct49913mTp1Kueff/4pfAfrxscffxyY8p4wYQKapjV4DRVt2bKFSy+9NPAzHDlyZOBneOjQIT744AOWLl3K9OnTq+zL5XJx/vnns2LFCsD3y8t1113HwIEDsdls7Nmzh/fee4+dO3cyd+5cLr/8cn788UdZNCZEpCkhRIsHBN4q8nq9KiMjQ82ZM0eNHj060O7WW28N2d8tt9xSrs9rr71WOZ3OoG29Xq/q169foO2DDz6oDMOo1GbmzJmBNgMHDlRer7dSX1u3blX79u0LWZfX61X/+Mc/Av088cQTQdstWrQo0CYxMVFt3LixUptff/1VxcbGlnueixYtCnntqjz++OOBfh5//PFKny8uLlbbtm1Tjz/+uLLZbApQ8fHxatOmTUH7+9///hfo73//+1/Ya1enrf/z48ePD/r5MWPGBNrcd999lX6GHo9H3X777eW+X6H6mjVrVqDNHXfcEfTvjsvlUjfffHOg3auvvhr2OQoh6p+ESiFEuf/oq3obOHCgev755yuFhrLKhsouXbqooqKikG2/+uqrQNsxY8aE7NcwDHXGGWcE2n7zzTc1fr7jx49XgOrZs2fQz19yySWB67z//vsh+3n99dfrJVRW9RYTE6OuvvpqtWPHjpD9NWSoXL16deDzgwcPVh6PJ2gfLpdL9e3bN2xfR48eDYTmCRMmhK3b5XKpHj16KED16tUrbFshRP2TuQIhxCmxWCzY7XYMw6hW+ylTpuBwOEJ+vuy+mA899FDIqVxN03jooYeCft2p8t+TuXfv3nL3iIJvin/+/PkAtG3bluuuuy5kP1OmTCExMbHGddSUyWTCbrejlGrwawfz7bffBt6/6667AivTK7JYLNxxxx1h+5o9ezZOpxOABx54IGxbi8XC7373OwD27NlDamrqqZQthKhjck+lEKKcYGGtoKCAlJQUZs+ezcaNG7nrrrv47LPP+O6774iOjg7b39ixY8N+fvXq1YAvNE6YMCFs24kTJ6JpGkqpcvdkVvTTTz/xySefsGbNGg4ePEh+fj5erzdo28OHD9O6devAx5s2bcLtdgMwfvz4kAEJwGq1ctZZZ9X50ZXBNj/3eDwcP36cpUuX8tVXX/H+++/z2Wef8cEHH3DllVfW6fVP1dq1awPvV7Wiu6rPL1u2LPB+eno6X3/9ddj22dnZgfdTUlLo3r172PZCiPojoVIIUU6oTbcBHn/8caZNm8Z7773H4sWLueeee3j77bfD9tehQ4ewnz969CgA7dq1q3IFb1xcHG3btg2s5K4oNzeXa665hgULFoTtp6yK2yKVPVO7V69eVX59ddqcqnCbn991112sWbOGCRMmkJ+fz4033sjgwYPp06dPnddRXf6fIVBlqOvRo0fYz/u3oALf1lSnIisr65TaCyHqlkx/CyGqzWKx8MorrxAXFwfAu+++y8GDB8N+Tbipb/CNggJVjnj6+dsF25vx6quvDgTK2NhYrr/+ep599lnef/99vvjiC7766iu++uqrwJQpUGkEs+xemFFRUdWupyGNHDmSBx98EPBN1z/33HMNXkNZ/p+h2WzGarWGbVvV96vsdkSnyj/CLISIDBmpFEKcktjYWM4880x++OEHDMNg8eLF3HzzzTXuLyYmhtzc3GqfCuMPfRVHNZcuXcqPP/4IwNChQ/nxxx9JTk4O2sfy5ctD9l829FSnpupsyF4ffvOb3/D4448DsHDhwlr1Vd37Y0Pxf888Hg9utxuLxRKybVXf05iYGMAXUIuLizGb5b8pIZoKGakUQpyyVq1aBd4/fPhwrfpq37494Nuc3D/iFUp+fj7Hjx8v93V+P/30U+D9v/71ryEDJcCBAwdCfq7sdP2ePXvC1lPdNvWhqp+BzWYLvO9yucL2VXGx0qkq+7OoarHMvn37wn6+Y8eOgC+g7ty5s1Z1CSEaloRKIcQpKxtCqjNFHM6oUaMA32jZzz//HLbtwoULAyue/V/n5w+bAD179gzZh8vlYvHixSE/P3To0MBI29KlS0Mu8PH3FW7Usz5V9TMouyq9quAfbtFTdZx++umB98N9b6vz+bPPPjvw/pdfflmbsoQQDUxCpRDilOTl5bFy5crAx+GOOqyOK664IvD+888/H7KdUop//OMfQb8OygervXv3huzn9ddfJyMjI+Tn7XY7kyZNAnyjp7Nnzw7Z9p133im3+rgh/fDDD4H3g/0MBgwYEHh/0aJFIftJTU2t9er1yy67LPD+q6++GjKIu91u/v3vf4ft69prrw2E+n/961/lFk4JIRo3CZVCiGpzu93MmDEjsEimffv2VW4RU5VLLrkkEIqWLl3KH//4x0r7LyqlePjhhwOjggMHDuSiiy4q16bsyOWf//znwF6HZX333Xc88sgjVdY0c+bMwPv33nsvW7ZsqdRmzZo15fbNbEirVq0qF8Cvv/76Sm26dOkSCJbLli0LevZ6RkYGV111VZXT41UZOXIkY8aMAWDz5s088MADlX6GhmFwzz33kJKSEravLl26cNdddwG+1dwXXHABu3fvDtneMAx++ukn/vKXv9TqOQghak/ugBZClBNsX8DCwkJSUlL45JNPAvcQ6rrOq6++WuVq36rous7777/P2LFjKSkp4e9//zs///wz119/Pe3btw+c/e3fC9HhcPDBBx9UOuf5t7/9LZ07dyYtLY3Vq1czYMAApk6dSo8ePcjJyWHevHnMmTOHqKgorrjiirBTq+eeey5Tp07lrbfeIjMzk1GjRjFlypTA2d+//PIL77zzDkopJk+ezLx582r1PagoJSWl0s/B4/GQnp7OkiVL+PLLL/F4PIAvTN9+++1B+3nooYe47bbbALjyyiuZMmUKZ599NkopNmzYwP/+9z9ycnK4+uqr+eyzz2pV87///W9Gjx5NcXExL774IitWrOCGG26gffv2HD58mPfff58NGzZw1VVX8fnnnwOEPKv72WefZePGjSxevJitW7cyYMAALrvsMsaPH0+7du1wu90cP36cTZs2sWDBAo4ePcqECRN49NFHa/UchBC1FKmjfIQQjQencEwjoJKSktTs2bND9lf2mMbU1NRq1bB06VLVtm3bsNdt166dWr58ecg+Vq9erZKSkkJ+fXx8vPruu+/KHYkY6mhFl8ulrr766pB92Ww29d5771Wrr+o4lWMa/W+XXHKJysrKCtvvlClTQn691WpVb775Zp2c/a2UUgsWLFBxcXEhrzdu3DiVkZER+PjSSy8N2ZfT6VQzZsxQuq5X63tx8803V+fbLISoRzL9LYSoksPhoGPHjkyaNIl//etf7N69m2uuuaZOrzFu3Dj27NnDs88+y7hx42jdujVms5nWrVszbtw4/vGPf7B79+7ANGswI0eOZNOmTdxzzz306tULm81GfHw8gwYN4g9/+AObN2+uNG0eisVi4dNPP+Xzzz/nN7/5Da1atcJms9G9e3emTJnCmjVruOmmm+rq6VdJ13USEhIYOnQo06dPZ+nSpXz77bdVHhP51ltvMXv2bCZMmEBiYiI2m41u3boxZcoU1q5dy7Rp0+qsxvPPP58dO3Zw//3307t3b+x2O61atWLMmDG8/vrr/Pzzz+Xut0xKSgrZl9Vq5dVXXyUlJYVHHnmE0aNHk5ycjNlsJioqiu7duzN58mT+9re/sXnzZt599906ex5CiJrRlGokh8cKIYRo9ubOncvFF18M+BZmzZo1K8IVCSHqioxUCiGEaDCvv/564P3aLvISQjQuEiqFEELUiWXLloU8nUcpxRNPPMHcuXMB396Wp512WkOWJ4SoZzL9LYQQok706tULp9PJ5MmTGTZsGMnJyTidTnbu3Mnnn3/Ojh07AN/9qitXrmTEiBERrlgIUZckVAohhKgTvXr1CrvxPEBCQgKffPIJF1xwQQNVJYRoKBIqhRBC1In169czb948fv75Z9LS0khPT6e4uJjExET69+/PpEmTuOOOO0hISIh0qUKIeiChUgghhBBC1Jos1BFCCCGEELUmoVIIIYQQQtSahEohhBBCCFFrEiqFEEIIIUStmSNdgBBCNDSlFC6Xi+LiYoqLi3G5XOXenE5n0MfcbjderzfwZhhGuT8rPgagaRqapqHreuBj//u6rqNpGgAmkwmr1YrZbMZisWA2m8t97H/zP26327Hb7TgcjnLvm83ysi6EiAx59RFCNDkej4f8/Hzy8vLIy8ur9H5BQQHFxcUUFRVRWFhIUVERRUVF5R7zer2Rfhr1wmw2lwubDoeD6OhoYmJiiI2NJSYmJuib/3NxcXE4HI5IPw0hRBMkWwoJISLO7XaTnZ1NdnY2WVlZ5f70v5UNj0VFRXV2bbPZ7HszmTGZTKV/+h6zmM1YrKWjhDYLVqsVFL43NJShwABlcPLx0jcNDaWgKLeI6KQosg7nommg6Rq6SUM36WhmDbPFhMliwmTxfayZAA1cThfOYiclxS5cJS5cTheuEjdulxu3242hvChdEZ3koKSkpE5Dss1mIyEhgfj4eBISEiq9+R9PSkqiVatW2O32Oru2EKLpklAphKg3hmGQnZ1NRkYGGRkZpKenB94/ceJEIDjm5eWdct+apmGz2rBZbVjNViy6FZNmxoQZzauDR8NwK4wSheE08BQpvCVevCUGUdFRJLVLpG23ZNr1TKZ11ySSOsZjGIqsQzlkH8kl63Aueen55J8oIP9EIfknCinIKsTrCX62dSi6Sef/Lb6XP5/zEoa3el+rm3RikqKIbR1NbOsYYltFE9cmhsQOCSR1iiepQwJmq4nso3mcOJDFsT0ZHNuXQfqBDLKP52JoBugKTAplUmAywKxQZgVmw/eY2Qh8jEmR0DGO/Px8PB7PKf8sYmJiaN26Na1bt6ZVq1bl3i/7scViOeW+hRBNh4RKIUSNlZSUcOzYMY4ePcqRI0c4duxYIDT6g2N1Q4qmaUTZo7Bb7VhMNixY0L1mNLeOUQzeIgNXvhdXjhtnrhvD6RsNrEpCuzg6DWxHpwHt6di/LW17tsbj9pK+L5Pj+05wfO8JMvZnkpWWQ2FOcW2/JZXUJFRWhyPOTqtOCSR3S6JNz9a07dGatj1bY3VYSE/N5PD2YxzacYxD246RdSinWn0qfEEUs4GyKJTFAIsR9E9lUdjizTidzmr1rWkaSUlJtGvXjrZt29K2bVvatWsX+Lhdu3ZERUXV4jsihIg0CZVCiJC8Xi/p6ekcOXKEo0ePVnrLysqqsg9/WHTYorDpdkxeC5pLxygEV64XZ5abkixXtUNiOLpJo32fNnQb3pnOg9rTaWA7zBYzh3Yc4/D2oxzafoxjuzPIP1FYq+ucWk31EypDiU6Mol3vZDr2b0unge3p1L8dgC9gbj1K6oY0Dm8/Xie1+EOoshpg9aKshu9928n32/VtTWZmJi6Xq8r+YmNjA0GzU6dOdOrUiY4dO9KxY0eSk5MDC5yEEI2ThEohWjilFDk5OaSlpZGWlsbBgwc5dOgQaWlpHD58GLfbHfbrrVYrMY5Y7CYHZq8VSnQ8uQYlmW6K0l0YRQpN1S4shtO2Z2u6n9aZ7qd1ouuwThTlFrN/wyEObj7CoW1HyUzLJpKvcg0dKoNJ6hhPp4Ht6Ty4A92HdyIuOYYDm4+Quj6N1HVpHNudXq/fI4XyTb/bvSib7w27F2UzUDYvMe0d5Ofnh+3DarXSoUOHQMj0B87OnTvTpk0bCZxCNAISKoVoIbxeL0eOHCE1NZXU1NRAiExLS6OgoCDk15lMJmKiYnGYozB7LahCHXeOl5LjbkpOeMCj1XqE8VSYrSa6j+hM3zE96DOmO5pJJ3XdQVLXpZG6/hA5x079/sz61BhCZUWxraNLg3hnepzeGZPZxK6Vqexakcq+tQdxFYf/RaI+KJMRCJnYvb4A6vDQcWhbjh49GvY2CofDQZcuXejatSvdunUL/Nm+fXvZYkmIBiShUohmxjAMjh8/HgiP/rcDBw6EnILUNI1oRwzRlmjMXhsU6rhOGBQdceLONRo0NAbjiLXR7+xe9BvXk+6ndSZjfya7VvhCUH2PstVWYwyVFbXp0Yo+Y3rQd0x32vVpw4FNh9m5bC/bl+yhMLvuVtrXlEKBzUA5PKVh04uye+g0vB1HjhwJGTgtFgudOnUKBM0ePXrQs2dPOnbsKCObQtQDCZVCNGHFxcXs2bOH3bt3s3v3bvbt28f+/fspLg6+4MRsNhMfnYBDi0IrNuPOMig8VIIz00AzIhscK7JFWek7rgeDJvSl+/BO7N9wiB3L9rJ7RSr5mQ13T2RtNYVQWVZUgoPeo7vRf3wvepzehbStR9j28y52LNlDcX71FuU0JKWVTqtHeXxhM8qDivJgbWUKuYjIbrcHAmavXr3o1asXPXr0IDo6uoGrF6J5kVApRBORm5sbCI+7du1i9+7dpKWlEeyfsK7rxEcnYNei0ApNuDIMCtOcePNrvximPukmnT5jujPkN/3oNbobh7YfZevC0kCTVxLp8mqkqYXKsmzRVvqN68mg8/rQbXgnUtensXnBTlKW7cHjatybx/tHN43SkOl/s7TSQ47Yt2/fPhAy+/btS9++fWnVqlUDVy5E0yWhUohGKD8/n5SUFLZv387OnTvZtWsX6enpQdtGOaKJtcVjddpwn1AUHHTiyvLW6+KYuta6SyLDLx7I0Av6k3+ikA3ztrF90W4KsiI/9VpbTTlUlhUVb6f/2b0YeuEAWndJZMuPKaz/bhvH956IdGmnRKF8I5rRHlS0GxXtoVXfeDIyMoK2T05Opl+/fvTt2zfwZ3x8fANXLUTTIKFSiAhzu93s3buX7du3s2PHDnbs2MHBgweDto2LjiPaFAsFZkoOuSk65AKXqYErrhtmq4lBE/py2iWDSO6WxJYFKayfu41ju4P/595UNZdQWVZytySGTx7I0En9yT2ez/rvtrJ5QUpEFvjUFWU2UNEejNKg2WV0Ow4cOBB0JqB9+/b069ePfv360b9/f/r16yenCgmBhEohGlx6ejpbtmxh27Zt7Nixg927dwedjouLjiPGHI+Wb6YozU3hQafvpJgmLi45htMvH8KISwdx4kA2a7/ezI6ljX86taaaY6j0M5l9tyucftkQOvRvy4a521jz5SayjzauFfg1pXQDFePBiHGjYjy0H96Kw4cPV2pnMpno3bs3gwYNYtCgQQwePJjk5OQIVCxEZEmoFKIeKaU4cOAAmzdvDrwdO3asUjub1Ua8LRG90ErJYQ9FB9xonqYfIMvqNLA9Z1w9jN5ndmf7ot2s+mJjsxuVDKY5h8qyWndNZPSVwxjym36krj/Eqs83kLr+UKTLqnPKZKBi3BixHlSMm8S+MWRmZlZq17Zt20DIHDRoED179pTtjUSzJ6FSiDrkdrvZtWtXIEBu3bqV3Nzccm00TSMxJgmHEYMnXZG3p6TRL6CpjZ6jujLuppG06pTA6i83sW7OVorq4TjExqqlhEo/e4yN4RcNYPSVwynMLmLZB2vY+cveRr3tU20EFgTFujDi3PQ6pzN79uzBMMr/rB0OB4MHD2bYsGEMHz6cvn37SsgUzY6ESiFqwev1snv3btavX8+6devYsmULJSXlVymbTWYSHImYi+wUH/RQnOZpFtPY4Wga9Du7F+NuGokj1s4vH65l0/ztzXaKO5yWFir9dJPOoIl9GHfjSJSCXz5Yw9aFOzG8zf+/HKUbqFgPRpwLFesmqou10gEDEjJFcyShUohT4J/OXrduHevXr2fjxo2VjpezWe0k2BPRcizk73HizqjfYwobE02DAef24ZzbzkAZBss+WMO2n3e1iCARSksNlX6aBv3G9WTcTaNwxNlZ+u4qNv2wo0X9nVAo35ZG8W6MeBexPe2VZjDKhsyRI0fSu3dv2aBdNDkSKoWowokTJ1i9enUgSFa8f8pqsZJgT0LPtpK/y4k7SzXbqexwep/RjfN+PwaTxcSi/64gZVnznfI8FS09VJbVa1RXzvv9GKwOCz//dyU7luxukX9HKobMmB428vLKL26Kj49n5MiRgbfWrVtHqFohqk9CpRAVeDwetm7dyq+//sqqVavYu3dvuc+bTGYSHUnouVYKdjnxZDbs2deNTZchHZgw/SzikmNY9PZKtvy4E2XIy4qfhMrK+o/vxXnTxuB2uvn5jRXsWX0g0iVFlD9kGvFuVIILWye90qlY3bt3Z+TIkYwaNYqhQ4dis9kiVK0QoUmoFALfNj+rV6/m119/Zd26dRQWnjwG0L+wxlYSTeEeFyWHjBYznR1OYod4fnPXODoNbM/Sd1ax/ruteD0SmiqSUBmcbtIY8pv+nDPlDDLTsvnh5aWkp1ZeRd0SKU2hYt0YCS76XNCFlJSUcvtlWq1WhgwZwpgxYxgzZgwdOnSIYLVCnCShUrRIXq+X7du388svv/Drr7+Smppa7vN2q504UxKeQ1Cwu/lt71Mbtigr424exemXDWb1l5v45YM1TXrT6/omoTI8s9XEmb87jbOuO53NC3aw6O1fm+yRnPVFmQ2MBBdGgpNWg2Mrnf7TrVs3xowZw1lnncWAAQMwmZrmgQii6ZNQKVoMp9PJ2rVr+eWXX1ixYgXZ2dmBz2maRmJ0EuY8B/kpTrxZLXtKOxhNg2GTBzLh92M4sPkwP77+CznNZJPr+iShsnpiW0Uz4faz6HNmd5a8s4o1X2+W71cQ/mMmjUQnQ67szebNm/F6T+6qEB8fzxlnnMGYMWMYOXIkMTExEaxWtDQSKkWzlpuby4oVK/jll19Ys2ZNue1+rBYriZbWuA9rFOx0yWhkGG17tuaShyZgtpr5/qXFHNhY+VQREZyEylPToV9bLrx3PBaHhTnPLeTw9sqHBYiTlMnASHRhJDmJ7mkptxuFyWRi+PDhjB8/nnHjxpGUlBTBSkVLIKFSNDsnTpxg8eLFLF26lM2bN5fbhDjKHk2MO57CXR7cx5B7I6tgsZkZf+toTr9sCEve/ZVVn29sUVvB1AUJladO02D4xYOYePtZbP1pJwvfWIGzqPJRpqI8hULFuTGSnHQc05qDBw8GPqdpGkOGDGH8+PGcffbZtGnTJoKViuZKQqVoFjIzM1myZAk///wzW7ZsKXdTe3xUArbCaPK2OTFydJnWrqaeI7tw8YMTyNifydwXFpF7PL/qLxKVSKisuZikKC64Zzxdh3bk+38tYsfSvVV/kQgw7B6MVk56X9iJlJSUcp8bOHAgZ599NuPHj5eFPqLOSKgUTVZ2djZLlixh0aJFbNy4sVyQTIpuhSnLQd62EiiSm9ZPhS3KyqR7x9PrjG58/6/FbF+8O9IlNWkSKmuv1+huXDTrXI7sPM7cFxa1qGM+64qyefG2KmHAZd3ZunVrudfLPn36MGHCBCZMmCAjmKJWJFSKJiU/P5/Fixfz888/s2HDhnJT2wlRSejpNgq2u9FcEiRrovtpnbjsj78hbcsR5v1zEcX5zkiX1ORJqKwbVoeF38wYR79xPZnz3EJ2Lt8X6ZKaLGXxYrRyMvjqXmzatCnwOqppGkOHDuX8889n/PjxxMXFRbhS0dRIqBSNntvtZtWqVfzwww+sWLECt/vk9jUJUUmYMu3kb3OhlUiQrCmLzczEO85i0MS+zH1+kYxO1iEJlXWr16iuXPrI+exdc4D5Ly3BWSj3WtaGMhsYrUsYcEV3Nm/eHHjcbDYzevRozj//fMaMGYPdbo9glaKpkFApGiWlFDt27GDBggUsXLiw3Dm58VEJWHOiyd3iRCuWIFlb7Xolc9UTF5KZls2c5xZSkFUU6ZKaFQmVdc8eY2PyzHPoOrQjnz/5PWlbjka6pGZB2bx4W5fQbWLbcieJORwOzj77bC644AJOO+00OZNchCShUjQqx44dY8GCBSxYsKDcykW71UGMM4H8zW7IlyBZV0ZePoQJ08/ip//8wtpvtkS6nGZJQmX9GTyxL5Nnncvyj9ax/MM1LfIc8fpiRHkwkotJHhnHsWMnt3Vq164dkyZN4sILL6R9+/YRrFA0RhIqRcS53W5++eUX5syZw9q1awOPm01mEk2tKdzhxXNUNiOvS/YYG5f+YSJturfis8fncXzviUiX1GxJqKxfSZ0SuPrJyRTmFPPVX36gMFtG2uuSwndkpLdNCVG9TRQUFAQ+N2LECCZPnszZZ58tZ5ELQEKliKCDBw/y3XffMX/+fHJycgKPJ0W1xjhopmi3F80r0yx1rWP/tlz1xGQObDrMvH8ukiMW65mEyvpnspj4zYyxDDi3D1/++XtS1x+KdEnNktIVRqsShl7fm3Xr1gUej4mJYeLEiUyePJm+ffuiaTIA0FJJqBQNyul0snjxYr777js2bdoUeNxhdRBVEE/+Zo8suKlHwy8ayG/uGscPLy9l4/fbI11OiyChsuH0G9eTS/8wkWXvr2Hl7PWRLqdZUzYv3jbFJI+OLTc93rt3by6//HImTpyIw+GIYIUiEiRUigZx4MABvv76a3744YfA9ImmaSRaW+NMUbgPy6bk9clk1rngnvH0GdOd2X+aw9FdGZEuqcWQUNmwWnVO5LqnL+HIznTmPPsTbqcn0iU1awqFindzzqzTWbJkCS6XbzV+dHQ0kyZN4rLLLqNbt26RLVI0GAmVot54vV5WrVrFF198wZo1awKPR9misefGUrDZI/tJNoDoxCiu+fNkDEPx2ePzZOPoBiahsuHZoq1c8egFxLWJ5ZP/myOnQTUQZTbwtimm3bh4Dh8+HHh8+PDhXH755YwbNw6z2RzBCkV9k1Ap6lx+fj7z5s3jq6++4siRI0DpqKSlNSU7kEU3Dahdr2Su+/ul7FiyhwWvLZNQEwESKiND02D8rWdw+uWD+fTRuRzcciTSJbUYCoVKcHHGnYNZvnx5YHP1Vq1acfHFF3PZZZfRunXrCFcp6oOESlFnUlNT+eKLL1iwYAElJSUAWM1WYooTKdxioDvlN9SG1HNUV6549AJ+fH0ZG7/fEelyWizdpPPowrv5y4RXJFRGQL+ze3LJQxOY+8Iiti+STf0bmmH14m1bRNwQK1lZWYBvY/WJEydyzTXX0KtXrwhXKOqShEpRK0op1qxZwyeffFJuO6BYWxyk2Rl95kgmTBsbwQqFEEJE2s9vrWDRd0sZcE3Xcif3jBgxgmuuuYbRo0fLpurNgIRKUSMej4dFixbx8ccfs2fPHqB0itvcmqKtCiPDt/BG0zXZXqIBaRqcN20Mgyb24eM/fkv6vqxIl9TiyUhl45DYIY7r/n4pBzYe5vsXF2N45b++hqSUQhm+77kR42bcrGEsWbIEr9cLQJcuXbjmmmu44IILZM/LJkxCpTglRUVFzJ07l88++yywjYTZZCbWmUThBgPNKQtvIkU36Vz+f+eT3K0VHz38DfmZhZEuSSD3VDYmjjg71/71YpxFLj59bC4elzfSJbVoyubF274Ie1+NwkLf61V8fDy//e1vueqqq4iLi4twheJUSagU1ZKdnc0XX3zBV199RX6+byWlzWLHnhVH8TaF5pFpi0gyW01c/eRkrFFWPn7kW9nQvBGRUNm4mK0mrnpiMvZYGx//4VucRa5Il9TiKZOBt20xyWNiAoMVDoeDyy67jGuuuUYW9TQhEipFWCdOnOCjjz7i22+/Pbn/mDUGPc2Bc6+GZsjUdqRZHRaue/pSXCVuPvt/MvrS2EiobHz8o/qtuyTxwYNfUZRbEumSBL5V40ZrJ90vacPu3b5FVVarlQsvvJDrrruODh06RLhCURUJlSKo48eP89FHHzF37txAmIyzxuPZacEjG5U3Go44Ozc+dzlZh3P46q8LJLQ0QhIqGydNgwvvP5duwzvx/qwvyT8ht4s0FgqFkeii3+86sXXrVgBMJhMTJ07kxhtvpGvXrhGuUIQioVKUc+zYMT744APmzZuHx+M7iSLOkohrq46RYZIw2YhExdu5+V9XcmjrUeb+c1HgJnjRuEiobNwmTB/DwHP78M69n5OXURDpckQZCoWKczNsaq/AARq6rnP++edzyy230KlTpwhXKCqSUCkASE9P591332XevHmB1XjxlkScm3WMTAmTjY0j1uYLlNuOMveFRZEuR4QhobLxO3fqmQya0Id37vlcFrg1UkaMm1F39Wf58uWAb+Tyggsu4Oabb5Zp8UZEQmULl5OTwwcffMDXX38dmOaOtyRRskmDLNmsvDGyx9i45cUrObzjOHOfX4j8C27cJFQ2DROmj6H/+F68c+/nFGQWRbocEYIR42bEHX349ddfAV+4nDx5MjfffDNt27aNcHVCQmULVVhYyOzZs5k9ezbFxb6zoOPMCTg3mSBbwmRjZY+xcfM/r+DYngzmPPuTBMomQEJl03H+nWPpM6YH7973OQVZEiwbMyPWxbBpJ6fFLRYLl19+OTfddBMJCQmRLa4Fk1DZwjidTr766is+/PBDcnNzAYi1xOHaYkadMMs0dyNmdVi4+Z9XkHEgi2///qMEyiZCQmXT8pu7xtFrVFf+d/dnFOc7I12OqIIR52LQLd3YsGEDANHR0Vx//fVcffXV2O32CFfX8kiobCGUUixcuJA33ngjsA9YtDUGI8WG94jcM9nYmcw61/39UpxFLj5/4ntZlNOESKhsei5+cAJte7TivVlf4i7xRLocUQWFQiW46Pbb5MBWRK1bt2bKlClMmjQJs1lm3xqKhMoWYPPmzbz66qvs2LEDALvFgSk1Cvd+CZNNgabBbx+dREyrKD586Bu8btmHsimRUNn0aLrG1U9OxmIz8/Ef58jPrYlQKIzkElqPjwoMnnTt2pU777yTM888U44MbgASKpuxQ4cO8e9//5ulS5cCvuMU7enxuHaaZNPyJmTSPePpMrQD79zzuZyU0wRJqGyazFYTNzx3OXkZBXz91x/kdpMmRGkKb/sioofp5OXlATBq1CjuvvtuunXrFtnimjk5W68ZKioq4rXXXuPmm29m6dKlaJpGnLMV+ooE3DvMEiibkLE3nE7vM7vx4YNfS6AUogF5XF4++eMc2nRvxfl3jot0OeIUaErDfCSakh9sXHfddVgsFlavXs1tt93GSy+9FDhqWNQ9CZXNiFKKH3/8kRtuuIFPPvkEj8dDnJaIZX0SzjVmNLcp0iWKUzDw3N6ccc1w3n/gKwpziiNdjhAtjrPIxYcPfc2Ac3pz+mWDI12OOEWaV+fLu35GWxnH2LFj8Xq9fP7551x//fV88803gQM+RN2RUNlM7N27l3vvvZennnqKzMxMHOYobDuTcC6zohXKTcpNTcf+bbn4oQnM/tN35BzNi3Q5QrRYBVlFfPSHb5gw/Sx6jOgc6XJEDWglZtb8fTeWrQl069aN3Nxcnn/+eaZPn862bdsiXV6zIqGyiSsoKODFF19k6tSpbNq0CZNuIupEEt4lMZBhiXR5ogbi28Ry7dOXMu+FRaRtPRrpcoRo8dJTM/nyqflc9cRkWndJjHQ5oob0HBtHPijCvDeW2NhY9uzZw4wZM3juuecC916K2pFQ2UQppVi8eDE33ngjX3zxBYZhEOtNxLQqEW+KBU3JfZNNkdVh4bpnLmXdt1vY8tPOSJcjhCi1+9f9LHlnFdc/cxlR8bL/YVOloWE6GoXzRzsXXnghSinmzJnDjTfeyPz585G1y7Ujq7+boOPHj/Ovf/0rcAZqlDka7xYbZMrIZFN3zVMXoQzF50/Mk9WmzYSs/m5eLpp1Lq27JPH+A19ieOUfaVNnxLnoeGk8+/fvB2DYsGHMmjVLVonXkIxUNiFer5cvvviCm2++meXLl6NrOlGZiXiWREugbAbGXDeCVp0T+frpBRIohWik5r+0BJPVxHm/PyvSpYg6oOdZOfJhEabUGGw2Gxs3bmTq1Kl88MEHspCnBiRUNhGpqancfffdvPjiixQXFxOtxWJal4h3h1WmupuB7qd1YtyNI/n0se/kBA8hGjGvx+Czx+YydFJ/+p/dM9LliDqgKQ3z4WjUL7GcccYZuN1u3njjDe644w727NkT6fKaFAmVjZzX6+Xjjz9m2rRpbNu2DbPJguNwEu5lDvQiWdXdHMQlx3Dl4xfy9dMLyEzLiXQ5Qogq5GcW8vkT87j0D+fTqrMs3GkuNKeJ9f/Yh3lnHLGxsezatYvf//73vP3227jdsk9wdUiobMTS0tK45557eP3113G73cQY8egr4zFSLXK8YjOhm3SufnIyG+ZuY+cv+yJdjhCimg5sPMzS91bzu79ejMUuv+A3FxoapgwHzp9sjBs3Dq/XyzvvvMO0adPYuVMWT1ZFQmUjZBgGX3zxBVOmTGHr1q2YdTP2/Ym4VtjQXLKBeXNy7rQz8XoNfv7vykiXIoQ4RStnryczLZtJ94yPdCmijmluE6ue3ol5RzwJCQmkpqZyxx138MEHH+D1eiNdXqMlobKRycjI4IEHHuDFF1/E6XQSZcSir0pAHbLK6GQz0/20Toy4eBBfPjUfZcjKHCGaom+f+YneZ3RjwDm9Il2KqGMaGqZMO0XzLYwfPx6v18sbb7zBfffdx5EjRyJdXqMkobIRWbZsGbfddhvr1q3DpJuxH0rEs8KB5pTRyeYmKt7Obx+dxJznfiIvvSDS5Qghaqg4r4Qv//IDFz8wgfg2sZEuR9QDzaOz8q87MO+KIyoqis2bNzNlyhS+//572deyAgmVjYDT6eSFF17gT3/6E3l5eURpMeir41H7ZXSyubr0D+eza0UqO5bujXQpQoha2r/hEGu/3cIVj12ApstrdnOkoWFKd+BZEsXgwYMpKiri6aef5oknnqCgQAYG/CRURti+ffuYPn06X3/9NQCOzHg8v0Shl8iN383VaRcPpFXnRH54eUmkSxFC1JHFb/+KyWLirOtGRLoUUY80p4mdrx9n+vTpmEwmFi1axLRp00hJSYl0aY2ChMoIUUrx3XffMX36dFJTU7GabFi2JWLssMu+k81YfJtYzr9zHF//7QfcTtmPUojmwvAafP23BYy9YSTJ3ZIiXY6oRxoa7978Dfq6eNq3b8+RI0eYMWMGX3zxRYufDpdQGQFOp5NnnnmGZ599FpfLRZQnFlbEoWdbI12aqGeXPDyBdd9u4fCO45EuRQhRx04czGbp+6u57I+/QTfJ4EBzpxdYyPzSw7hx4/B4PLz44os89thj5OfnR7q0iJFQ2cD8v9HMmzcPDQ370QQ8vzrQ3PKjaO6GTx5AfNs4Fv/v10iXIoSoJytnrwelOOOa0yJdimgAmldn1dM7Me2NxWw2s3TpUqZNm8bu3bsjXVpESJJpQCtWrAj8ZbPoVsxb4lF7bbIYpwWIS47hN3edzTdPL8Djkj3OhGiulKH4+ukFnH3TKFp3kdN2WgINDfPRKLS1cbRr146jR48yY8YMFi5cGOnSGpyEygZgGAZvv/02jzzyCAUFBdi90Wi/xqHn2iJdmmggk2eey/q5Wzm0/VikSxFC1LMTB7L55cM1XPqHiWgyZtBi6AUWsr72MnLkSJxOJ08++SSvv/56i9osXUJlPSspKeGJJ57gnXfeAcCRE4/xa7ScjNOC9D2rB+16J7P4bZn2FqKlWPHJeuwxNoZOGhDpUkQD0jw6m/55gOuuuw6Ajz/+mIcffpi8vLwIV9YwJFTWo/T0dO6++24WL16MpulY9yVgbJXV3S2JxWbmwvvOYf5LS3CXyGpvIVoKw2vw3fM/c/6dY3HEyqxUS6Kh8eVdP2NOicdms7FmzRqmT5/O/v37I11avZNQWU+2b9/O7bffzq5du7BoFsyb4tGOyAtLSzPu5lGkp54gZZlsci5ES3Nw8xF2/7qfCdPPinQpIgJMJ+wYv0bTrl27wCLdDRs2RLqseiWhsh4sXryYe++9l8zMTGzKgbY6Hj1PtgtqaVp3SWTUFUP5/l+LI12KECJCfnz9Fwac25uOA9pFuhQRAXqh7z7LgQMHUlBQwAMPPMD8+fMjXVa9kVBZx7744gsef/xxXC4X9pIY1K8xcnZ3CzXpvnNYOXs92Udbxr00QojKCrOLWPTflVw081xZtNNCaR6d3W9mcO655+LxePjb3/7G22+/3Sw3SpdQWUeUUvz73//mxRdfRCmFLSsWY20Umle+xS1Rz1FdSe6axPKP1ka6FCFEhK2bswWz1cSgiX0jXYqIEM3QWP7UNq6//noA3nnnHf72t7/h8TSve+2bXOLZt28fM2bM4J577uHhhx+mqKiIhQsXcuedd3Lfffdx/LjvpJKVK1cyY8YM5s6dW+81+X/z+OijjwCwHopDbXfI/pMtlKZr/GbGOBa+uVz2pBRCYHgVC177hQnTz8JslZmrlkpD44sZCzHvjsVkMvHDDz/w6KOP4nQ6I11anWlyobJLly689tprvPzyy/Tv359ly5bx6aef8tJLLzFt2jTee+89wBcqX3nllXo/5L24uJhHHnmEH374AQ0Ny544tP0SKFuy4ZMH4PV42bKgfv/uCSGajj2r9pOZls3oq4ZHuhQRYabjUWibY7FaraxYsYIHH3yQgoKCSJdVJ5pcqDSbzYH3S0pKaNu2Ld27d8disTB48GD27dsHwKhRo7jrrrvo27f+phsKCwt56KGHWL16NSbNhGlbPPoxR71dTzR+VoeFc6eNYcGry2iGt8sIIWphwavLGHvj6UQlyP8TLZ0p24ZaG010dDSbNm3ivvvuIzs7O9Jl1VqTC5UAa9asYerUqWzYsAGTyURUVFTgc/6d68eOHcvrr7/OxRdfXC815OfnM2vWLDZv3oxJM6NvjMOULVsGtXRn/u40juw4xv4NhyJdihCikTm+9wQpS/dy9s2jIl2KaAT0PCuuX2wkJCSwe/du7r777sAtfE1VkwyVI0eO5K233uKcc85h06ZNFBUVBT5nMtX//So5OTncf//97NixAzNm9PVx6PmyZVBLZ4+xccY1w/n5vysjXYoQopFa/PavDJ88gLjkmEiXIhoBvdBC4U8m2rZtS1paGvfffz/p6emRLqvGmlyodLlcgfejo6NxOBzs378ft9vNli1b6NGjR71ePysri/vuu4/du3djxoK2Pg690FKv1xRNw5m/G86+NQc5vvdEpEsRQjRSuen5bF6QwtgbR0a6FNFI6CVmsud46dChA4cPH+a+++5rssGyyYXKtWvXcs8993Dfffexfv16LrroIq6++mruvfde/vvf/3LzzTfX27Vzc3OZOXMmqampWLCirYtDL5JAKcARa2PUlcNY/D8531sIEd6y99cw9IJ+xLeJjXQpopHQXCZOfOOiffv2gWCZkZER6bJOmaaa4+6b9SA/P5+ZM2f6jl3EirY2Fq3EXPUXihbhvN+PIbFDPF88+X2kSxGNjG7S+X+L7+XP57yE4TUiXY5oJC68/xxMJp3vnv850qWIRkTZvLS61MLRo0fp2LEjL730EsnJyZEuq9qa3EhlJBQVFfHwww+za9cuzFhgnQRKcZIjzs6oK4ay5B0ZpRRCVM8v769h8Pl9iW8ro5XiJM1pIvNbN+3atePw4cPMmjWL3NzcSJdVbRIqq+B0OvnjH//Itm3bMGFG2xCLXiyBUpw08rdD2Lv6ACcONP3tIIQQDSM/s5DNC1I485rTIl2KaGQ0p4msOR6Sk5M5cOBA4KCXpkBCZRher5cnn3zSt3WRZkLfKItyRHlmq4nRVw5j+cfrIl2KEKKJWTl7PcMmD8ARK9vRifI0p4mc+Qbx8fHs2LGDRx99tNxC5cZKQmUISilefPFFfvnlF3RNR98Uh14ggVKUN3TSANJTMzmS0rT3FhNCNLysw7nsXXOA0y8fEulSRCOkF5spWmLC4XCwdu1a/vrXvwb24m6sZB43hI8//pivv/4aAHNKHKZCO8iRraIMTdcYc+1p/PDKUnST/H4mgvP/3ZC/IyKYlZ+u59q/XsKqzzficTXuwCAanl5sw7sOzEPcLFq0iKSkJO67775IlxWSrP4O4scff+Spp54C4KKLLmLs2LERrkgIIYQQLdXmzZv5+OOPAZg5cya//e1vI1xRcBIqK9i0aRMzZ87E4/FgORaNOTUu0iWJRuqmF37Llp92snHe9kiXIiJF006+H+ylVNPQTTqP/nQXf5n4KoYnyEhUVX2IZq/PWd05d8qZ/GfqR5EuRTRiN759MW+++SYmk4lnnnmGUaMa33GfMv1dxvHjx3nsscd8gTI3Cm1PNAayr5yoLLlbEu16JfPRw9/I3oMtlaYBFUJg2VBY4fOG18AwVNg2lfoQLcLOX/Yx6Z7xdBrQjoNbjkS6HNFIvXvLN1zw1AX88MMPPP7447z++ut069Yt0mWVIzf5lHI6nfzpT38iJycHs8uGti0GDa3qLxQt0umXDWbj/O24nZ5IlyIiQQvx2hDq8frqQzQLylCs+3YLI38rC3ZEaBoai/7fBoYMGUJhYSF/+MMfyMnJiXRZ5UioxLfS+7nnnmPXrl2YlBl9UyyaIS/sIjirw8LQCwaw9ustkS5FREJ1Ql+4NrX9etEsbZi7jb5n9SA6MSrSpYhGTFMaKW8cpUOHDhw9epS//OUvjWpFuIRK4NNPP2XBggVoaOhbY9GcssxbhDZ4Yl8OpxwjM002O292qgqDugm0MC+bmo5mruKuomq00Uwm37XCNpLg2ZwUZBWxc0Uqwy8aGOlSRCOneXQyvivBZrOxevVq3nvvvUiXFNDiQ+XWrVt5/fXXATDtjUHPtUa4ItHYjbh0MGu/kVHKZscf0oKFNU3zhUE9XOjUfWFQ09HMIfa0rU6bQFMtdLAMV6tostZ+s5kRlwySH6uokl5k4YEHHgDgnXfeYfXq1RGuyKdFh8r8/Hz+/Oc/YxgG5iwH+lFHpEsSjVxytyQS2sexa0VqpEsRdaka/4v7A6Wma5VHK/1hsexDFUNjsDamyqEx2GPhC5ME0lwc3HQYgC5DOka4EtEUPD/5LS655BKUUjz11FMcPx75QzhabKhUSvHss89y7NgxTB4L+k5ZmCOqNnTSALYu3IXX3XjuYRG1FGpksuz7FUJkuWAZJCwG2pUJlkHbVPjaSqEz2GhlVfWKJksp2PTDDoZO6h/pUkQT8cMjq+jTpw+5ubn8+c9/jvj9lS02VH777bcsWbLk5H2U3hb7rRDVpOkaQ37Tj03zZV/KZqOqeyjDTHsHHbEM1k0V09z+PkIG07LBsrYLgESjt2n+Dgac0xuLTXb8E1XTlMb+D7OIiopiy5YtfPRRZPc6bZFJav/+/bz00ksA6Pui5UxvUS3dT+uMq8jF4R2Rn2IQdaA6U95mS9j7KDVdQ7fbaleHrqE7wt96o+kamqUa93tLsGzyso/kkr7vBH3H9ox0KaKJ0JymwNGNb7/9Njt37oxYLS0uVHo8Hp5++mncbjfmPDumI7J9g6ieoRf0Y9MPOyJdhqgL1QyUvndCv0xqNlv4vnQN3VGN0KlpaNYwodE/mlnVqGdpX6Jp2zhfpsDFqXn+orcYP348Xq+Xp556ipKSkojU0eJC5WeffcaOHTvQlQk9Re6jFNVjspjoO7YnW3+K3G+Aoo6cSqAM18Z2MixqliBTlbqGXraNPUho1LWT2wtVFSxPoTYJlk3bjiV76DasI/aYWo6CixZDQ2PlM9tp1aoVBw8e5D//+U9E6mhRofLAgQP897//BUDfHY3mkv0oRfX0OL0z2UdyyT6aF+lSRG3UNFBWXKhjq/CfvaaVD5YVAqWviYZWdqq8bKAs20/FYBlkpFSCZfNWnFfCwc1H6Du2R6RLEU2I5tHJW+JbqPPll1+ybdu2Bq+hxYRKr9fL3//+d9xuN6ZcG3q6PdIliSZkwPjebF+8O9JliNqo7Qilfwq6YqAs079mMQcNlCeblAbLYIGybD/+YBlu6l2CZbO2ffFuBozvFekyRBOj59i44IILAicFejwNe5RwiwmV3333Hdu2bUNXOqadsTLtLapNN+n0G9eT7Yv3RLoUUVNVhStNr3LqWTPp6LGx4duYzZiSEqtuk5gQvh6TCT0mOnwbvXrT5RIsm6aUZXvpcXoXbFFyIIc4NYueXE98fDz79u1j9uzZDXrtFhEqc3NzefPNNwHQ9sm0tzg13U/rRF5GgRzL2FRVJ1BazGiaBiFWemsmHS06KmyQ00wmtNgYMJl8bYPxf85sRo8LEVB1Hc1q8QXL6BCrwnXNN+pZzfswJVg2PYU5xRzafow+Y7pHuhTRxGgenRkzZgDwv//9j8OHDzfYteskVObn50d0CXtV3nzzTfLy8jAVWzDJqTniFPU5qwcpy/ZGugxRE6cSKCFosAwESr8gwTIQKP3XCxYsTSa0KEe5jysFS3+gLNumYrAsDZQnn6IEy+YqZdle+pwl91WKU/f8RW9x2mmn4XK5ePnllxvsurUOlUuWLGH69Ok89thjAOzZs4eHHnqo1oXVlZSUFObMmQOAvltWe4tT13t0N/as2h/pMkQ90WoStoKNaFbsRw/y8lqTa1Vjg3XRPO1ZtZ+eI7uEP3NeiCA0NLa8eQCTycSKFStYt25dg1y31q9W7733Hm+88Qaxpfca9erVi/T09FoXVheUUrz00ksopdAz7Oh5cm+KODVJnRJwxNk5tP1YpEsRp6qao5SVv+zkaGWlUcqy7UpHBwOjlEGuX/Zry41S+pUdraw4SumnaydHKyuMUpatWUYrm5/MtBxKCpx07N8u0qWIJkgvNnP55ZcD8OqrrzbIEY61DpUWiyUQKP1q9Jt/PVi+fDlbt25FUzrm1CAv+kJUofcZ3di75gDKUJEuRZyKU5z2rvzlvpXcIe+NBF/Ac9jLT3tXVDZwhmmjx8UGD5Rl28REh31tlWDZPO35dT+9z+ga6TJEEzXnoaXExMSwZ88e5s+fX+/Xq3WobN++PWvWrAGgsLCQt99+m169Ir8NgtfrDSzO0Q/ZZXGOqJHeZ3Rj98r9kS5DnIpqBErdagn/y68/DIba9gd8n0tOQsWECZ5mE9624VeDY9JRiXHQKkw7TUOzWdGqWn0uwbLZ2f3rfnqN7hbpMkQTpXl0br75ZsC3vqS4uLher1frUDlr1iwWLFhARkYG1157LUePHg2cQRlJCxcuJDU1Fc3QMR2qYmsOIYIwW010HdqRPasPRLoUUV3VDJRhmUxopaOCmqYFD5ZmM7RK8N03aTahgq3SNpvwtooN1GQkxQW5lu77Wk0Dizl4sNRO7mmpmXQJli3M/g2HaNOjNVHxsreyqJn/3vA57du3Jysri2+++aZer1XrUBkbG8uf/vQnvv32W+bMmcOf/vSnStPhDc3tdvPWW28BoB+MQvPKje7i1HXs346cY3kUZhdFuhRRHXUcKE92WyFY+gNl2etVDJYVAiWAspgwWpUJlmUDpV/FYKlV3iRdgmXL4nZ6OLLjGF2GdIx0KaKJ0pQWGK385JNP6vVc8DBzO+G9//77YT9/00031bTrWvvxxx85evQouseE6UiYqSkhwug6rCP7Nzbc/l6iFuoiUOp6pUB5snsN5Q93FQOlX2mw1JyuSoHSzx8s9ZyCyoHSzx8ss3JCnrqjmXSIjUXl54d8OpqmgdWKcrlCtiltCEruGW7M9m88TLdhnWRrM1Fj/7z0f7S7sh3Hjh3j22+/5ZprrqmX69R4CM/j8eDxeDhw4ADz5s0jNzeX3Nxc5s2bx9GjR+uyxlNiGAYff/wxAFqaA82Q38RFzXQb1okDGw9FugxRlboaoYyNCb8QJtgIZQXKYaWoX9uwbQyHpco2WMyQlBC2ZBmxbDkObDxE12EyUilqTlNaYLDvo48+wul01st1ahwqb7vtNm677TYyMjL473//y913383dd9/Nm2++SUZGRl3WeEpWrlzJgQMHfPdSHpONzkXNmMw6nQa254CMVDZu1VzlrcKNxJlM6LExaMH2lfSzWPC2T8IIc2Sespgo6hSDqmJNoNI0vHad4s5B7rEs08aIj8Jo1ypsX5rZVGWw9LWrxjnhotFK23aU5G5J2GNCnDsvRDW8ePm7tG3blqysLL7//vt6uUatbzbMzMzE4TgZ3ux2O8eORW5PP/8opX7YLvdSihpr37ct+ScKyM8sjHQpoqYq7EMZNFiWBspAOA06HW3B2y4RZdZRuobhqBzQAoHSDIZZoyQ5+C+0yqzjbG0DDbw2LWiwVJqGEWVBmTQMqyl0sPSfAhQmWAaes65VHSxltLLRcpd4OLorgy5DOkS6FNGEaUrj2muvBeDzzz/HMIw6v0atU9fo0aO5//77+eabb/jmm2+YNWsWo0eProvaTtm2bdvYvHkzmtIwHZV7KUXNdRrYjrStkbuNQ1RDuBAUYmPzcsGyYqAM1q8/UJpKH9O1oMFSaRrKfzkNDGvlYKnMOiXJ9pMjmRqoCq/A/kAZOLFHDxEsK9QcLFhWCtESLJu0tK1H6DRANkEXtfP6tR8RHR3NwYMHA9tB1qVah8p77rmHq6++mrS0NA4ePMjVV1/N3XffXRe1nbKvv/4aAC3dJvtSilrp2K8tR1KOR7oMEUoNAqWfUip0oCzbf8VA6VchWCqLieKOFbYtCxIsywXKUobl5GhlpUBZ5nrlgmWoDdvLBMuQ0/0SLJusIynH6SAn64ha0rw6kydPBnyjlXWtxqu/yxo3bhzjxo2ri65qLC8vj0WLFgHIKKWotQ792vLr5xsjXYYIporQEy5QQumxilFR4fuxWvC0D7MZua6hAE+8HWeS7eQoZbkL+YJlcTvf65EyARVnm0qnwYu6xGHLLAl+pnjp9Qy7GdUpGdPhE6Gfm9kE0VGogjC3bZQGS+Vxh24jK8IbncM7jjN55rmRLkM0A988/DPaKI1Vq1Zx5MgROnSou9sqah0qQ210/uKLL9a261Myf/58XC4XWqEZraBOsrJooewxNuLbxnJ8T+QWnIma0UwmMFTIcKaZTGjR0aHDW6ChbzQSQAtxRKfhMJPb3Q4K7LnBz9T1WjXyuoZ/PVImjcJ2JpyJ0cTtC70nqtK1qusG0H1HOhrhgqUy0EwmVAOcBSzqRvaRXDRNI7F9HNlH8yJdjmjCNKeZESNGsHbtWr7//numTp1aZ33XOn1NmzYt8L7L5WLp0qXlFu40BKUUc+fOBcB01IGGTN+ImuvQtw3pqZl4XPIfbqOkVNBRRs1UOresDDD0SgGsYqBUhhF8xbfVgqddwsnL6VqlYGnYTOR2t2OYAQUl8aZKwdJr0cjvYkIrfZXN62wm5kD50UGla5Qk6Cgd3A6NvB5RQYOlP+Aqs463Y+uQo5XKMEqfX5hgWSZIhgyWMkrZKPmnwCVUitra+MFu6Afff/89t956KyZT3dwyWOt7KgcPHhx4GzFiBDNnzmTHjh11UVu17du3j9TUVFAaeoYcZSVqp33fNhzdmR7pMkQ4FUKPVvEFURm+Ecsynw82Qqkqrn4snfZWYUYEywVK8E1zm33B0s8fKI0yv7Ybdl+wDFy7TKD09+MPluEYVhPeDpVXhJd7LroWGLEsJ0iArPy9k0DZWB3ZeZwOfdtEugzRDOiZNmJiYkhPT2fdunV112+d9VRqz549pKc37H/IP/74IwB6plW2ERK1ltytFen7MiNdhqhKafipFIoCn/cFy6qmvANhLEyg9D9WKVD6lQmWwQIlgNLA6/AFy0qBskw/FYNlsHoMm7lcsKwUjqFysAwz1X1ylFcCZWOWnppJcrekSJchmgFNaUycOBGAn3/+uc76rfX097nnnhs4hULXddq2bcuMGTNqXVh1GYYR+IbIKKWoC8ndktj0Q8OOtosa0qr4JVLX0KxBVlRXZDJVOULpdZjJ62qrHCgDtYA7RiNrsIY9xO24SgN3LBwbrRO/O0w/pcEydn9xyHoMmxk6tEI/FObe39KpcM1qRRWH7ks0DRmpWSR3C78hvhDVNfepJTAYli1bxoMPPog5xLGwp6LWPfhXXEdKSkoKx44dQ/Nq6Nly2oCoHU3zjVRm7JeRykZPP4V7gFxuCHFUo2Y2401OCLvAx2s3k9PbitJBD7Fo2mvTyO3nhSoG+5QGnjgvOX1NJOwM0UiHkgQdT98oEneGXryDpqHaJqEdzwr+eUOB2+U7uzx8WaUB3ZDRykbsxMEs4tvEYrGbcZd4Il2OaOK0XAuJiYlkZ2ezfv16Ro0aVes+az1XPGvWrEqPPfTQQ7XtttpWrlwJgJZtlXO+Ra3Ft43D6/ZSkBnmP3IReWUCpQqxOhuTCd1m8zfyBcsKNLMZb5tEMPkW42ieytPI/kBpmEv3pwySTf2BUlkUyqIobhf8pAplgpIOXt9WQjFecvoGaaT5Vo2jgSdKI7tv8HssdbfvGspqRrUNMiVaGih9jTW0MAsoA99DTZd9Khsxj8tL9tFckrvKFLioPQ2Ns88+G4AlS5bUSZ+1DpW5ubnlPnY6nQ16T+WKFSsA0LNklFLUXnK3JBmlbOyCjFBWCpb+QBlmOrtsoAw8ViFYlg2UgWtVCJZlA6WvEzDsRqVgqUxQ3NGLMp1sVylY+gNlGZ4ojZw+5YOl7i4/ohgyWJbt2qQHDZaVvncSLBu1jP0yBS7qzry/+sLkr7/+GvrQhFNQ4+nvd999l3feeQfDMDjvvPMA39Y+DoeDq666qtaFVUdGRga7d+8GJaFS1I3WXRM5cTA70mWIUMJMeStDoela6EDpH620WoIGSj/NUOAx8MRYKwXKQFe6hmFRKL1CoAx04g+WEHPcV3NxhzKBskw7X7A0kbCrcqD0c0f7gmXCrqJKgTJQk9UM/qnwsqOUZS9n0sHhCNxfGXKUV6bCG60TB7Jo3TXMxvxCnAItz4rVaiUjI4MDBw7QrVu3WvVX41B5yy23cMstt/DKK69E7FjGtWvXAqAVmNE8supb1F5Cuziyj+RW3VA0vGqOnoUdoVS+0cNQgdLPsJrI6xo8UAa60jW8NioHykC9vmBZ1Km0fcVAWbadVeG1hn8Nc0dp5Hd1EL+7IHRNVjMkJ6EdCn1uvT9YGoVV3OKh6aBkr9bGJvtoHt2GdYx0GaKZ0AyNocOGsXr1alatWlXrUFnrJBapQAmwadMmAPQca8RqEM1LQrs4cmRj4cZLBb9X0U8zm8OfEmM2Q1wMuiv0Igev3UxuTwdKB5Mr9EidxwEFQ0vQo8Mcd2gzGDj4QNia0RRaKyc5g8MsvFC+WjwOjdzeMWHaKTS3By0pzEiWocDrrfI4S5Qh0+CNUM6xPBLaxUW6DNGM+Bfo+AfqaqPGI5XTp0/njTfeCGwppJQq92dd7nsUysaNGwHQcyVUirqR0D6enGMSKhudsuFGGUG3EtL9q7u9XhRBzgA3myExHnQdPF70YjAc5Vfd+ANlYNugEJnS44DCwSWYLKUhN9qNUVhhBY/VYHDPQ8SYXKCgS490UvclV3heClOMB01TaHEucgZDwpYQL8uqdOV4abCsNGKpFHqRb8pbmU1oSYmorAq3chgK5fGAYfi2grOYUe4gYbZseJdzwBuVnKN5JLSXUCnqzn+mfgTDYdu2bRiGgR7spLFqqnGofOONN4DIbSmUnp7OkSNHQIGWH3yrECFOVUJ7GalsdKoxWqZX3C6oYrAsGyj9KgTLSoESAiOEZe91rBQoAd2kygdLf6A0O31JEGgXlYfRQ3FgX+mJKGUCJYAGmIIFS1V+xDRosPQHysAqbq1ysCwTKP3CBsuyJFg2GrnH84hOjMJsNclRsqJOaIVm7HY7BQUFHDhwgO7du9e4r1pPf//tb3+r9Njf//732nZbpZSUFMD3zZBTdERdcMTZMZl1CrKCnJcsIiNUoCwzklYpUPp5vb6wFCxQ+nm86MXu4IHSzzgZ6oIFykAdJuWbCi8bKMt+HkW76Dy69kivFCgDTxd/sCwNef5AWSHPlQ2WlQJloLOTwTJYoDzZTCs/qhvqFgOZCm8UPC4vhdlFxLeNjXQpopnQ0Ojfvz8AW7durVVftU5je/furfTYrl27atttlfzX0ApqvwO8EABxyTHknyiUAZnGoiYjlMG6sdmCB8pSyqThbG0NfVIO+BZCm0IHSr+oGCc3nLaqUqAM1IuiS2wWl52+oVKgDNRLabAc5AkaKAN1a77tjJytHZUDZaAzDWXSwWYLGihPNisNllXcsyoah9z0AuLaSKgUdWfQoEEA7NhRu9PkapzIvvjiCz7//HMyMjK4/vrrA48XFRVxxhln1Kqo6vCHSr1Apr5F3YhOjKIgSzY9bzSUChssNV1DeQ3fauZgTCa0mGjf/YNFJaioyse4KpuZ4k6xoMCea1ASH7wvr0Mjt78HwhywYHe4uLn3KuJNxcSaStiU16lSG5vJw+lx+zFhYOpr8O3OISH7w2qQPVAncWvwa+pesOUaGFadkq4J2A/kVG5U+twx6RAbi8rPD309r7d0xXeIYCm/bTUahdlFRCeE3sxeiFP18Z++hX6wb9++WvVT41B5wQUXMGbMGF555RXuueeewOPR0dHExtb/b1C7d/sOztUKZaRS1I3oRAeF2RIqG5UQwVIzle5XqQyUl8rBsjRQav57AcOM0hkWX/+6WwUNll6HRs5AD1gMMDQ8ThNmW/l72coGSgBbiLMcdRQWzfe1vR3HubTv5krBUgHeEjMoMGK8ZA80kbit/PfAHyg1Q6F0MMJsj0TpangtTLBUHt90u6ZrKCNIsJRA2aj4QmXwk5aEqAl/lkpNTa3VYp0aT3/HxMTQvn17/vrXv9KuXbvAW0MEysLCQjIzfaeeaEUSKkXdiE6MojBHQmWjUyHQBAJl4PMGylsmBJUNlH7+EbuyX+YfpSzDHyz9ygVK8CW+0mDpVzFQAkTpLobGHSrXt9XkYVhs2slraSoQLAM1URoo/SVoCiPWS/bAk9+DsoEy8HVmjZKuCeW/L0Ges2bS0Sq8RvsDZaCNrpVfXS+BstEpzCkmOlFGKkXd0YpNWK1WiouLOXo09D63Van1PZW7d+/mzjvvZNKkSZx33nmBt/p06FDpi7VLl0U6os5EJ0ZRmF1cdUPR8EqDTaVAGfh8abAMFij9X+/xBEKWP1D6RynL8gfLSoEy0BeBYGl3uLix15pygdIv0VxYLlieFptWaQSzbLCsFCj9ygTLYIESQOngtemUdI73PeAPlEH27CwbLCsGykAbf7CUQNkoFWYXEZ0oI5Wi7mhodOrku2UnkLFqoNaJ7IUXXmDmzJl07NiR7777junTpzNt2rTadhuW/wlrxaGPbBPiVEUnyPR3U6eZTJUDpV9psMTrDRkoA011jeJkKgfKQAMw2bxc0m0riebQuwUkmgs5IyEVAGuoKXFN0cORwbgeeysHSj9NYUQZFLfRKgXKkzWD12HC2Sk+ZKAsc1EIFdD9l9Q1WfHdSEmoFPWhffv2AJEdqfR4PPTp0wePx0NUVBTXXnstK1asqG23YR05cgQArURCpag7jjg7JfnBV+2KCKsq3Gg6mtWCUgpVUhK6ndmMERuFNTf0KThem05OTx3NAEtG8IWApigPl/XdTJTJRa439DRkgqmQW+LD74ZhKI1cTxTdHJmMGxiirVfDlm7CY4ecXqFv+dEMhTnfhZEYenNspRQU+75HmrUaB0dIsGx0ivOcOGJtkS5DNDONIlSazb4XuHbt2vHzzz+zZcuWwP2O9SVwP6VLQqWoO1a7BVexK9JliIrKhJqgRzCWBkr/tkHKawQPlhYLRqs4MGnoTg/2E5V/1v5AaZRmLS3I5fyBMtHiG9V2GpagwTLBVMjFURlE675V5xdH767UxlAaWZ4YDDRMmkHPqBOcNWBP5YsqDc2rgQbu6ODBUvcobBklvsU7NhNG68pHNfoDpVLK9/3StJDBstz3WoJlo+IucWNxyM4nom599ex8AI4dO1bjPmodKm+99VYKCgqYMWMG33zzDS+//DL3339/bbsNKysrCwDNJfdTirpjdVhwFYc5x1k0vCBhpnzYKR8oT7apECxLA6Uyn2xXMVhWDJQAulvDcuLkf94VA6VfxWDpD5RR+snO2pljuCT65Ehk2UAZ6F8z6B2dXj5Ylo5SnnzOlYNl2UDpa6NVCpblAmXgC4MHy+DhXYJlY+EqdmGVUCnqmH+gLjs7u4qWodU6lY0ePZqYmBi6du3Kiy++yBtvvFHvI5X+UImESlGHrFESKhuVMCFGle6pGCxQnmxTGiyDBEo/f7AMFij9TMUng6UGlQKlnz9YBguUfu1Lg2WwQBm4nmaQZC29T9OrYTtu9o1SllUmWFYKlIE2J4Nl0EAZ+CaUD5ZBA2WZPkXkuYrdWB3VuHVBiFOguX3/vnNzc2vcR72ksrfffrs+ug3wP2HNI6FS1B2LXUJlk1OdvdRMetBAGaAUHrsWNFAGuijW0AvM5bb/CSZKd3G+42jQQOnXxhTF+dE7gwZKv1aWQkb03R88UPpp4LWCx66HXLyDpoFZR9P14IHSrzRYiqbBFyplpFLUsdJM1ehCZdgXrzpQXFy6fUeoF1shakCmvxuZMK8j/q2FlCv0PbCapqFFR4PXQM8JvkLbsJoo7GhHdyuiD4e+ntemsHfOZ3NOx5Bt4k3FXB2bQpRuwa1Cj/Z58NLeZOWa+HUh2xQZVg7lJ+DpGXrRke6GmEMKw6JR1CnESmCvQs/OB5MJPTrMamHDQLl8f/dDbtsEssVQIyGhUtQHze2LhPnhTt6qQr2EyrJberz66qvcfffd/PnPf8btdvPuu+9yzz33kJKSUuP+S/z3SkmoFHXIZDHh9YSZ+hMNL1yIUQYYKmiw1DQNLTbGN/qmFFqQn6s/UCqThqbAUhg8WHptCnOffGwWD1lFDpZk9K7UJt5UzO/ithNfOkJpYAQNlk7lC24mTaOTyRI0WOZ77Sw91hOXx0R0dAnuPpX3wNTdEJOmMLl99XrsetBgqSkF/o3hzebgwdIfKKs691sCZaPhdXvRTTp6uJOUhDhVpcfQut1ujDCnkIVT4+NoZs2aFfJz/qHTXbt2kZWVxSuvvMJ7773H4sWLycjI4Nlnn+Xtt9+mX79+Nbq2P1RqYc7hFeJUaZqG8sp/nI1OhaMay42kKQMMHeVyBe4JLBco/UpHK42EaKB8oAz0GwiWUNjR97g/UNqt7tJStECwHJ/sW81dMVD6+YIlmPDV61LuciWVDZaf5o4ATgZKp9v30mzSDaKjSyjsA5ZdvoVAFQOlnz9YRh0qvefTP0pZVmmwNApL24QIlJrJVP7eSgmUjcrJH4eGbzd+IepAmb9Kbrcbm+3Ut62qcai8+eabq2yzbds2Ro4cCfgW9MybN4+kpCQeeughZsyYUdNL4/GfAlGzIC1EUJqu1futG6KGSoNl0KnZMsFSt9kqB8rSr9ecbvScQjxt4ijqUD5Q+mkKLEW+YJnXg3KB8mRXJ4Plpe02Bw2UfgYGXhX6loqywfKtrLPKBcpAmzLB0rbNQcyhyoHSLxAsDxRiyso7OUpZlj9Y5heEHaEMBEv5N9HoqNJ7aDVdA5lcEXWlzEBdTk4Obdu2PeUuahwqhw0bVmWbgoICWrduDUB0dDT5+fnMnDmTKVOm1PSywMnpdd2koxkNt1jnzEtH0vu0buz4dTdr5m9ssOuecckI+ozoQcqqPaz+foNct560Tm7NdX+8gi1LdrSI59vkrqtpaKYw/941Dd2io4VYlDN64iB6D+vCtoOZ/Hz4SNh7f5RHw2SCKKsHgi2oURolbis6EKc5wuSuaGzJXzI8oQMqOxaofK+SDsTgRRkm3G5L0Lp0XWG3etHRsHiU70ScUKw6Jg3OOK8/fYZ1ZffmNFb9tLVCh2YwaSjdX0FwCnXKoXL0RafRd2RPdq3bx69zQt83WtdGXTicfqN7tYjrarpGYmIitzxxDSlr9jT759uSr7t7/X5WfrumQa6pygxVBtaunCJN1ePQzNdff43dbmfSpEmkpKTw/fffM3PmzFr3e9555+HxeHjkkUeIj4+vg0qrp1u3biQmJpKZmcnBgwcb/LpZWVkcOHBArivXbRbXzc7OZv/+/c36urquM3ToUAA2bdpU4/uUaqIlfZ8jed2uXbuSlJQk15XrNvnrer1eHn30UQA+++yzhh2prI4BAwYwe/ZsJk2axOrVqxk8eHCd9KuXbiPyz6vfRm/AU3Vm/OtWhp03mF++XMV7T3zW4Ndd/tVq3n18doNd984XbmX4xMGs+HoN7/y/Txr8uiu/XcP/Hm24676193ky07JZ/nXDXvf2f9zMiN8MbfDn67/ur3PW8vafPm6w605/9iZOnzSMVd+t463/+6jqL6g4la3pvmm/sh9bzeW2F9LMZrSyi1LMJqY8fgUjz7Kyavl+3nplIZ4YK0Xtyk9bey0ahZ00DP/CWg1ccQZxPU9uBmyzeBjXdh+xJt+93TqKLrYTXBlzvFLpVi0e3fIZJe72DOtyN0rLKff5XMPFZ3n9Axune5XOcVccq451CbRxuix4dsdicpY+ZwXmYog5VOE+SK8i+lAJuts3Hzr17gmMHmNh7cJdvPW3b0u/VqHyC07e5mEYvsdcFab4g+1VWc3xh2l/v4FRk09j7fyNvPHw+9X6mrow9W/XM/riEQ1+3Sl/vY4zLjm9wa/7VurzZB7MZs0PG/nPg+812HVv+8u1nHnpSNb/uJl/P/Bug193w09beH3WOw123Vv/fC1jLm/4697y5O8467ej2PjzFl67v2Guq3QFo33vx8bG1qiPeg2Vffr0ISkpibvvvps2bdpw3XXX1Um/NpsNl8uFgbdBV4D7w6zXbWAEu1epnvin+70eb4Ne17+ysKGv6+f1NOz32fcfrYbhbdjr+jX0df33ZUXs+Rqq6utqwRYiGCfvrdR0NKsJpTQou8jK60bzFp4MlppCaRrKf11Doec5sRsqECy9Vo2CjmCY1clLKjDlamTvSSC+VzY2i4ex7fYSYyoJNPECB1xJfFFocFXMyePNbJrFV2vpxxbdN7nkKb0JLtdw8Wn+AHING2i+74OuGbSx5TCqvcGvR7tS4rLg2RWDyQneMt8Hrx28HTVi03xfp3kVUYdKwO0N3GquFCh89wkbXlU5UPq+EgwFJnO5VfQq1M+lGsHS/zP1Xbfh/l4ZZfbqbNDrlrlWQ11XN/l+rv41bJF4vpqmNeh1Pa7SX3T0Br6u27eGQzc17HX9O5Hout5g11X6yV8m7XZ7jfqodah8/PHHefDBBwOpNi8vjxdeeIEnnngCgLvuuqu2l6jEf38mpoa9gfzA9kM4Yh2k7Tzc4NeNiosibeeRBr9udHwkrptGTGI0hxr4+6yUQtc033/ADejA9kPEtYolbefRBr3uwZTDxCfHcTClgX++Ow6R0CaOtJQqfr7hTtQxFJrJFP5EHY8HCovQ4mMxEmI4mJpOQmIUhw6cPPHLXOAi6hjkd7FR0LHMCGW5jsCap5NzMIGrz1oVGKEsy0DjgLM1nwNXxRwrDZSVmTQdFGQaxczOGxD0zHCTZtDWmke/VumsXdLv5AhlWRp4HJDfWSduv7fcCKVf2v4TJLWK4cCR3BCBspSug2GgWa0ol6vqE3WqCJZpO4/QuuM+Dlb1861jaSmHad0xqcGvezDlCMnrGvb5mq1mlKFQaGhawx4CkpZymN3r9nFge1rDXnfnEfas30fajkMNfl3f820B1y3NVA6HIzCIdqpqfU/l1KlTeeutt6p8rC5NmTKFPXv2YNmagJ5z6kvehQjmv7v/gcmwsujjX3jviU8jXY6o4oQXzWxBs4f/969pGlpiPN7k0PdeGxYTBV0dZPcN/SJqmBWuth5ikgv5Xc/1IdvZdDeD7YeYFOUsfSQardUXFLvbY80di67lU2CU8E1hR1KdySH7yXZH8U3KUIwca/lzvyvQXdB6iwfHseBHRwJoHgP9WObJbYRCPkkD5XSGD5Ugq8EbgagEBy+u/TOa08ymRVt5+e76+/9WtBxGtBv38CxatWrFV199VaM+av0rjtfrpajo5ItVYWHhyS1/6kl0tG+vOWWWFzdRd5RSaHrDTiWJMKo6UUcZVZ6og8MOLjemzOAnRCizjivRirnEIC41+PUMs8KV7AVdUVIc+vhFHUWsXsJhdyILioKPVBYZLuYVtaXQsJFoDn7KD4BbmfAWm1A2L842wUOe7oKEvQZo4GwVfKpK8xjoJ0qPtQ03nVXmRB3CjXxJoGwULFZzYHpUk+M1RV0x+/7vq+n9lFAHofLiiy/mvvvu48svv+TLL7/k/vvv59JLL61tt2G1atUKAGWVDbpE3SkqKCbrWA5Zx3IiXYrwCxJiyu1V6fWGPFEHh933p1JQ4qwULJVZx5lkw7BooMCW560ULAOBsvTF1lNiZvbe0ypdT0eRZC5A1xRedNLcrUqDZSHeExexYcMGio0cvitKJsfr+6XYonmDBstsdxTzdg08WWeQYOkPlCangdLBsOqVgmUgUJb+kq+Z9ODBssIG6JquBQ+WEigbDbPNRFFRCekHT8jrlagzyup7DfBvBVkTtb6n8qqrrqJr166sWbMGpRR33HEHI0aMqG23YQWesFVGlETd2bJmOwvfWE7quoa9V0hUocyJOkE3Py8NlmVP1AkEyrJ9lDgxZYK3VWz5QBlo4w+WJvK6lz6uEQiUABhQkB3F7L2nBabBywbKQEmBYJnJRIfv6+cWtSbHKH8PpT9YZnt8QTPbHcU3O4fgLSr/0qzK3D9eNlAGPl8mWNoySyoFSj/NpIPdjvIfdRvqRB1dQxn6ycclUDYqZquZ/bv289K170S6FNGM+EOlf+CuJurkDt+RI0cyY8YM7rrrrnoPlADJyb57kZRNRipF3XEWOrFHh57eFBFUVajxB8tggbJsHyVO9NyiyoEy0ObkiKVhVrhaB3mNKRMsgwXKQEmlwfKrAt9Ukn+EsqJAsAwRKAEwGziTvUEDZaD00mDpSrAFDZR+gRHLKs78DmzbJIGy0bHH2HAWhr71Q4iauPzBC4Dahcoaj1S+8MILzJo1K+QZ4C+88EKNi6qKf0NOZZORSlF3ivNKcMRXXo0rmghDBVbwh6TroGnY04sp6hgVvI0CS6GBPcuEq32I1xgDCnMdzDk8iNu6rQx5uSLDxsqc3kytovQCr53vUwcED5T+snSFI0MFDZR+mldhO1aIslvRCsLc265r4PWGDJSicXPE2SnKrdmJJ0KEcviwbweD9u3b17iPGofKiy66CKjeGeB1rXPnzgCoKA+lmyo0eA2i+SnKLcERW7O9uUTDUF5v8ClwSqd2vV5UUTFaVJBfDkwmVJTdd5xjoZOowwQNlkrXcMXqWAoUMbusFPQJMiKkg271kpkbzbsHzuCWrr9WauI0LGzM74zT61u0s6WgM4NjK59clO2J5oM9I3G7zOh2L0ZJkOfn1knYbkYzFM44E7a8yiOoulvhOJSP5vb4wnOUA4oqBw+lFKqgMPA9IcRq7ypXgYuIccTZKc6rvLWVELWRlua79atLly5VtAytxtPfffv2BWDv3r0MGzas3FtqamqNC6qOTp06+aa3zAos8pu2qBvFeSVExUuobJTKjD4GCzuaufT3Y8NAeTyoimHKHyj9e68ZqjRYlt9mR+kazngdwwQYYMv2BctydDDZPWiAMnQycmJ498AZ5Zr4A2Wx9+Qq8GyXg80Fncu18wdK/6pyXVfo9grPz62TsM2MqVihNDAs4IwrHzwDgdLpCXy/lNnkC5Zln58/UHrLrBwOEtLLfY9ldXGjExUvoVLULaUpjh717ZXsH7iriVrfUzlv3rxKj33//fe17TYsm80WGJ5VUfLbtKgbxXklOOIkVDY6QUJN2dATCJR+oYJlxc18DYXmOjlFXC5QBtpUCJZlAmXg60qD5XtlgqUXrVyg9CsXMj3RfLj39ErbFJULlmUCZeB6wYKl4mSg9NM0lOnkc64YKE82Kx8sg45QSrBsVBxxDopyJVSKuqMcXgzDICoqKjL3VC5fvpzly5eTnp7Oc889F3i8qKgIU4jpqbrUvXt3jhw5ghHtRs+VxRWi9oryiomSeyoblypO1dGtwfeD9AdLiorRYmN8o5TBund7iTpcRGHn6MqBMtCXL1iq3VZKhhYFvdlGGTrpOTG8xxn8rvM6tuR3Cnq9Yq+FzQWd6WzP4sO9p1NcFHzzdl1XGBqVAmXgemWCpSPTg+Nw8H040TSIcqAKi4IGypPNNJTJFHbfz+qcpiMaRlS8nfR9mVU3FKKaVIxvn9pevXrVau/TGofKtm3bMnjwYNasWcOgQYMCj0dHR3PaaZX3catr/fr1Y/ny5aiY+t1oXTQ/uq7z8Lt307pjEsf3Z/DC9H8z9orRXP9/vyW6dRQLX1tBxqFMRk0+jev/+Fu+f/tnfvjfokiX3fJU44VNeTyVRyr9/MHS5YaYEItyDIVe5MKWY6U4KczpPAosheBNicLTL/jJNMrQOZ4Vx6t5Z/PCmDPoFdOdE84s/rPnXTp17MRjCQ/w/oHP2Jx7jPm7+4e9E9zrMhGTYkULc2So0gANbCdKKo9S+vlHK53OkIEy0J9bXksbi96n9eDOf96KMhTZx3N45uaXeXr+owBYHVbadGvFUzc8T5f+nZj5n9vRTTrv/L9P2LBwC+26t2HWG3dwMOUwr9wjJ+2I6rnsj+fzxRdfBG5trKkaT3/36tWLCy+8kHfffZcLL7ww8Hb22WcTExNTq6Kqo3///gCoWHe9X0s0L2OvGMXR1OM8eN4THNiRxtgrRnPlzIt57IpnSN23nxseuwqA0Redxsyz/x99R/aKbMEtVbhRsdLNuZWhfMExGF33BU6PBy03xEiermE4LJgK3cQdCDFKp4HXWrpBejaYU4IHVKU0PPkWemld8bja88S25zhUfJTRrU7DZrPx7I6XGZF4Blv2dcSbZ8UTYqW312UiepsNc5FvSt4IMRFjckPcvmI0Q6EcIRoZBmSXnqhjDT2jY8hpOo3KicNZ/HHSX3jg3Mc5svcYZ156Og+e9wQPnvcE37zyPcePppOXns+Uv17HP6a8yh8n/YVbnvwdAOOuPIN/3v4f8rMLiGtV85NRRMuyc+dOgMiFSr+HHnqI/PyTL9h5eXncfffdte22Sv369QN89wEosyzWEdXXvkdb9m7cD8Du9alcNP18DmxPI/twDh7losdg38q3tfM38s9lT7F73d4IVtvCVSPIBA2W/kCpa77jHJ2uysFS1zCirKBpaIbCkueqHCz9gdK/F7oRPFgqpeEtMIPSOK1tB5akprHmQFc25WylT2xPXC4XD/S/j3c3HwJn6Ry7R68ULMsGykDfQYKlP1CaSnzPW5n1ysHSHyj93xtdCxosA4Ey8JzlNJ1Iyz6eg7PY93fR4/bi9Zz8P+7sq84kNz+H3PR8ktoncnjPMYryi8nLzCeuVSzLv1rNzDfuIK5VLHkhjicVoiylKXbt2gWczFY1VetQWVxcXO6cyLi4uHJngdeXuLg4unbtCoARL5vAiuo7uOMww8/z3bJx2sQhgO9+SrfTQ3F+CRab7z/6lXPWcv/YR/n+rZ8jVqugcqAJEnrKBcuygfJkg/LBskygDHQbJliW+7BCsCwbKAHirDYKXE48eVZWHUwi2hxNWloal379BZsOp5fvrEywDBYoA+WXqbNioAy0KRssKwZKvwrBslKgDEYCZcQkd27NaRMG8+t36wBwxNhp07U1HuWmILOw3L1vhblFxCbFcGTvMR6e+CQv3/XfSJUtmhgV68blcpGUlFSrld9QB6FS0zSysrICH2dmZqIa6EXIf++mhEpxKn79bh1ul4fnFj6OPdpGQXYBUXG+BTp56QUnTxIRjYf/NSXM9KwyFMprVA6UJxv4gmVeQaVA6VcuWPpHKYPwB0vL9qhygRIg1+kkxuq7PzPKFcPezNKRSWeIBYweHW+2LWSg9F0QDGvoQBl4imYdZTMHD5R+ugYWS/hA6f8+S6CMmKhYB4+8dw/PTXkNr8d3P+yZl57OxsVbKcgsxPAqlHFyBDMmIZr8rIJIlSuasBteuAyA4cOH12qRDtRBqLzhhhu48847ee2113jttde46667GmxDdH+oVAkSKkX1KaX496x3eWjCk+Rl5vPli3Pp2r8TZosZm9lG+qETkS5RBFOdgKOM8CuYAWUYmMJMC/qDZcwRT6VRynLtvGDNo1ygBNiQfoSzO3UDYHzH7mzZml75iyv25daw5oZ/fpoXYtOcIQMlAF6FnpkX/mKG8h1pWdUvT+HurxT1Std1HvngXj546jMO7z4aePzsq85k26oUctN94THrWA4de7UjKtZBbFKMTHeLGtmwYQPgC5W1VePV337nnXcePXr0YP369SileOaZZwLT0vXNn6pVlBdl9aK56n8rI9H0JbZN4E8f34/X42X9wi1s/SWFL1+cy/OLnySmdRRf/6fy3quikVBGyLDjD0nKa0CJE81uq9gASleKq+ISTCfA2zouSEcayqxjyXMTvx9yuwXZtkiBya3ADTF7zRT0PBn0tmWmk1FUyGcXX8fxjHw+2rSBy9uPwJZupqhN5dFBzaURu1dHMxS6WwU9k1x3KxL2utCdXgyLCd0dZCW3V2FKz/bdBuB/rhVHKw2FUWYluKZrKCNEmDVkD+BIGX/NmQwc05eoWAc3PHoVc/69gNXz1tOmS2tcbidZh7IBePtPH/Pg23ehm3TefXx2hKsWTZEyGWzduhWgTnbu0VRDzVXXkxkzZrB161bMe2MxHQ2xbYgQ1TTi0sF0G96JL56s3w38xamxOaxMffoGzrh4BEX5xaBg7U+befv/PsYwVOVRN01HM+nc9PjVeD1ePn5+ri9oVdjXUoty4C27QlbTMCy+0NqzV1uS28ezZNsB8rqaGdC5LVeMGcRfPlnoC5T+V04NnAlauWCpeTTOtnflzrNHM/3tL/n3RSO5Y94anHaFs22Zdi6NuN0mzGU3N9cpFyz9gdJUXCYgKgLB8pV3f8/dN76BKSOH6+6eyEf/LP27ayhwlxm1rRAoy7rx0Svxerx89LevSttKoGysLrz/HAoyC1n2/ppIlyKaAW/rEjz9cunatSvvv/9+rfur9fzG7t27ufPOO5k0aRLnnXde4K2hjBs3DgBvkrPBrimar8yD2bTukhjpMkQFM9+4g9ikGH4/eBZ3DH+Ie8b8qXRRlSX4NK4yUF7j5OKdMqOU5ZoVFZ+cCi8TKAF69m7LmDG9sea4iDvgYXva8cqBEnxbDeUoYvb6+tc8GvZjJrSKs9QKzMVgO17aLkigBN/9mrrb91jQQAm+eywtvpkZf6BUbjc3zLqwfLvA8ZWhA2XpUz9JAmWj1rpLIplp2ZEuQzQT59w9EoCzzjqrTvqr9fT3Cy+8wMyZM3nmmWd4+eWX+fbbbzGMhtviZ+zYsbz++uuoeBfKZKB55T4gUXMn0rJo1TlRDg9pRNp1b8OZl57OdZ1uD2yz4i5x8eFfPveNSOoaM/55K/1H98Jqt7Bv80FemP4f3C6PL/zpGpjNnD5xIDfMmozFasLjNnjlkU/YsyUNVVTMOZOHcs2956NpGiXFLh6Z9TG3ThuP3W6hT7/2zJ+3iV3Hsrjh5jHc+c8vALj2vOH8dtxglKE4mJ7Nw298B3vNFHb2oodaA6OgvT2GP18wkfaWGNwuL89+vIgtqUcZ0acTd11+FkdO5NG/axsOZ+Tx50c+xyj20K59Ao88dhnRMTa2bk5j1Bm9uO/Od8g6ksv3qx7los73Mv3JKzGZTbz64x/Jyyrgj797mblpr3JRh7vA5Wbg6F7c+uQ1PHT+UwDc8dxNjLxwGFlHczhxOIuDKYfB8BKbGMM9r06jfY+2WGxmPvzLFyz74tcG+EmL6mjdJZETByRUitpTmuLXX33/thtNqPR4PPTp0wePx0NUVBTXXnstd999N9dff31d1Felzp070717d1JTUzFaOTGlyzF7ouYKMotQhkFscgx56bKSsjHoNrAzR/ce9017l6UUYAAm3n/q88DK1xkv3MJvbh7P3P8uBKVQHi/oGinrUpl1yfMopeg1uDN3/e0aZl7yPJ17t2XKQ5OZdcPrpCuIi3NQXOzinf8uYdCQzrzwzFwAhg7riqnE95vG6P5duGTMAKY++wkFxS7io+2+EcsshT1Tpzg59PN5bNI5rP5lPx8v2cCArm159vaLufyx/wHQt3MbHnt7PkeP5vLy9Es5d1QvFv60jRn3/YYF329m3pwNjB7Ti0suH4FmKEwZuYF+33j8Cy6bMp67zn+60jUrLl4ac+np9D6tO9OHPYwtysprq57m4I5DANz5z1tZ8M4i1i7YRExCNK+s/jsbf95Kfrb8e4g0i91MbKsYsg7nRLoU0QwYiU4KCgpo1aoVAwYMqJM+ax0qzaXTK+3atePnn38mOTmZzMyGPZN04sSJvPnmm3jblEioFLV24kA2yV2TJFQ2ImVv/R5/zRiue+S3xCbF8Odrnmfn2lTGXHI6F98+EavdQnRclG9KXNN987peL6qomMTebXn4lVtp0ykJr8egQ3df8hs+rj/Lv99E9v4MzFF2gq2d1gwFSqF7FLFpbs68qhvfLt9GQenIaW5hCZoXbHkGmgEmlwbdK/eju2FU90488/RcbIZi+4Hj5Bc76dwmAYCUg8c5ejSXuANOdm07TLsOCWiGYvDQzvz18S8BWLViD3l5xZgz8sDpu76maSG3clNFxb7PlZnjHjKuP4s/XYnX46Uor5iVc9YGPjfywuH0GNKVaX+/EQCzxUT7Hm3IXyf/HiKtdZdEctPz8bjkFgVRe+PuOo1FixYxYcIETKa6Wehc61B56623UlBQwIwZM3jhhRcoLi7mvvvuq4vaqs0fKlW8S1aBi1o7tjeDtr2S2bvmYKRLEcD+bWl06NUOR4yd4oISlny6giWfruAfPz+B2WqmbZdW3PTYldx1xv+ReyKfy2ZcQI8hXcvtValcLu7+y9V8//FKFn+9Dke0jc9TnkPT9ZNZyzDQikowZ4AnOdTxdgpLnhtbfvlbfPyBUi89q9tSCPbMCvdKuiH6sBG4H9PkMrDl+feD9P3hcnmJO+DbNsgwDEymyrfzaIZCU8p3pnngQa3y7kdeL4ahUKX3UVrs1nLtA8+o7H2Wmoauazxw7uMU5tb/IRbi1LTrlcyx3RmRLkM0A8pksHz5cgDOP//8Ouu31jcgjh49mpiYGLp27cqLL77IG2+8wRlnnFEXtVVb+/btGTp0qG+z4jYlDXpt0fwc3ZVB+z5tIl2GKHUsNZ0V36zh7penYi0NRpquY7X7VnI7Yu04i13kZRZgc1iZcP3YoBubR8XYyUg9DsCFN44NPL5h2U7OunAoiW3iwDCIs+qYM/IpKnQSFWX1jVKWoSnFuqW7+e3IAcQ4rGheSDasgUDpb2MpVpicJx+LOWJgdhps2JbGxRMGAzCwSxvi7DbSMnLQPWAuMYLuQ7l1UxoTfjMYzVCMGdCe2PggO11oGs5iFzaHJTA6m37wBD2H+rZ4G3vZ6b7vi6azeel2zrnmTHQNouIcnHnJiEA3q+dv5KpZlwQ+7jm0W/AfjGhw7fu04ejuqvc9FaIqRusSXC4XXbp0oU+fPnXWb41HKqtaen7TTTfVtOsamTRpEps2bcLbrhjToSiC/N4uRLUc25XOGVcNi3QZoowX73iDKX+7nv9u+ydFuUWUFDnZuGgb+zYdoLighE1LtvHWln+QnpZJyrp92OyVz7h+58+fM+vVKWSn57H6522Bx9P2HOd/T3/LXz+cgQKKC0p48NrX2LB+P7+7/kxefWsqC+ZtInXfyRGiDWv28eN3rXl35u9wozh0OIv/9/ycctfTlGJo744sfHAq8dFWvn5pCG99spx/vbWQR2ZM4qIJQ3B7PDzx/HdYMjxE2d2VAqzf6y8u4JHHL+fiy4azdWkKWel5FOVX/gX667eW8OLchzhxKJP/u/RZ/vunT3jso3vJOJTFzrWlZ9jrGivmrGfw2H68sekfHD+QwaYl2wN9vHbf28x4cQpvbHoeTdfISMvkTxf9rcFOShOhtevThmXvr450GaIZ6HlxB3bu3MnFF19c61N0yqrxPpX/+9//wn7+tttuq1FBNVVSUsIVV1xBQUEB5m0JmLJtVX+REEFYbGYemX8nz0z+N67iapyNLBpWVS+Amo5mCf/7sm6zoUWH2ddW11EOG97WoabBQfMqNJcHw2GhuJ09eBsPOHJcPP70OfzxnysxgoRG3a2wHytC8xgYjiAbrQM2mxl3kQs9PZeBQztz73PXcfs5f63cUCmM/IKTWymFoNwe30byIRtIgGxsNF3jj9/fycvXv0t+ZmGkyxFNmBHjxj0sC6vVyueff05CQkKd9V3jkcqGDo1VsdvtXHjhhXz22WcY7YskVIoaczs9ZKbl0K5XMge3HIl0OaKiCotOKn/eQLk9IYOlpmmB1dAhg6XXi1ZYjAmCBkvNq9CcbjSvQi9w4ThGpWCpecCW6UT3+sKbLdNNcWL5mvyBUi+d8taL3UGDZY9uycz8w0VgGLjdXl6Y+UGQ5+0LlHi94RfuSKBsklp1SsBV4pZAKWrt/P87g3nz5nHOOefUaaCEOtpS6Pvvv2ffvn24ymxb8dBDD9W261N22WWX+UJlogtl96CV1PrpiRbqSMpxOg5oK6GysaphsCw7zRMyWPpDlVJBg2XZQAm+aW7NWX41ruYBW5bTd+pN6YIhU4kHW6bC2apMaFQEAqXv64xKwVLzGOxevJ0ZP2wsX2fZ518mUJZ9rhWDpQTKpqtj/3YcSTke6TJEE6csXn766SfAl5nqWq0X6jzzzDPs27eP5cuX06NHD/bu3YvVWvl+pobQpUsX3yIhDTydZOWiqLmDW47QeVCHSJchwqkqAJUGS79g9w0plwtVWOa1omKf/mB5wnfqTsVAGejb7cV+3HeqVyBQVtz2RanSYOm7pUJ3K+zHK79O+YOl/31TRm5g66CK/fn/rBgogz1nCZRNW5chHTi45WikyxBN3NUvXYDL5WLQoEEMGjSozvuvdajcs2cP9913H1FRUVx55ZX861//4sCBA3VRW43ceKNvbzWjTTHKKnt5iZo5uPkwXYZIqGz0qhEs/dPBIZv4g2WovkqDpfl4btBACb7RSlO+E/txJ5pSlQNl2b48RqVp70r9eQxM+c7QgTLw9IyQgbJcu6oCpWj0Og/uwMHNhyNdhmjClMng66+/BuD666+v0wU6frUOlf5RSavVSl5eHhaLhePHIzdEP2TIEIYMGQI6eDvKaKWomcyD2egmnaSO8ZEuRVSlimCpvN6qF664XKii4jANFBSXoGflh2yiKYU5r4So1NyQbQB0l4eofTkhAyXg2zMzMyd8oFQKVVAYNlAqpaoXKGWUslFzxNpI6hAv09+iVm575woKCwvp1q0bY8aMqZdr1DpUDhgwgPz8fC677DKmTp3KLbfcwvDhw+uithrzj1Z62xWjzPLbuTh1SkHa1qN0HiyjlU1CVcHSULUOlsrjQZWUoOWGOFlGKbSCIrT8IvRQG4d7FaasArSCYrSiEHvqGgZadh7K7UZ5g79+SaBsWToP7sDR3Rlyko6oMaUrPvvsM8A3SqnrtY5/QdV6JYv/9JyLLrqIESNGUFRURI8ePWpdWG2MHj2a3r17s3v3brydCjHvD70tiBChHNx8hK5DO7Jp/o5IlyKqI9ziHWWgDB08HjRz6Je9wOKdqPLHvSqPJxC+VEkJGqDiY8pdWysshtIQqJW40AGj7CblXoUppwD893l6vGhFJaioMqvGywRK38deFKCVOVlHAmXL02VIRw5ukalvUXO3/O8y3nzzTdq3b8/EiRPr7To1jqpKKZxOZ+DjlJQUMjIyKCwspLg4zDRSA9A0jWnTpgHg7VCEsslvd+LU7Vt7kB6nd4l0GeJUhAtJyqjRiGXZQOm/RrkRywqBMvBYiavciKUpt0yg9NdaGiyByoHSz/AGRiwlULZMPUd2Yd/atEiXIZooZTb46KOPAJg6dSrmML9Y11aNQ+V//vMfZs+eHfj4scce47///S+vvfYaH3wQZA+1BnbGGWf4puF18HQJMV0lRBjHdqdjtVto1Tkh0qWIU1FHwdIoLKocKMtcQ5WUoGXlVg6UZdpoJS5M2aWvP+4g1/QHy4Ki4IHSz/D6psMlULY4UQkOWndN4uAmGakUNXPFvyZQWFhIr1696nWUEmoRKtesWcN1110X+DguLo4XX3yRV199lY0bN9ZFbbWiaRq33347AEabEowoORlFnBqlYN+6g/Qc2TXSpYhTVVWwrO7ineIQ9z2WXkMVFvmCXiiGgcrNC19raZuwC4WM0muFqVkCZfPUY0QX0rYcwe0M//dViGCU1cuXX34JwPTp0+vtXkq/WvVusZzcoPeGG27wdajrlJSEeSFuQAMGDODcc8/17VvZvQCFvJiKU7N3jUyBN1m1WBWulPIFOY8HVeIM3sbl9vXhcqOC3fKjlC8olo5QqmCvi0qhCgtRbo/vmsFGMw2FKi72TYEbKuhJORIom6+eI7uwd03ktukTTdu4Pw7F5XIxdOhQRo8eXe/Xq3GoLCwsLHeCznnnnQeA0+mkoKDxTDf//ve/x2KxoBJdGK2C/+cgRCj71hyk+2md0E31+9udiAwV5Cxuf6AEfH+Gmm42jJN/BguDUP5rg02RG2U2aDeM0EcrhlgFXr6R7HTRHPUc2YW9qw9GugzRBBnxLhYuXIiu69xzzz31si9lRTX+n/LMM8/kueeeK7cop7i4mBdeeIGzzjqrToqrC506dQqMonp65KNM8sIrqi83PZ/c4/l0HdYx0qWImqjOqTtVTYMrVWm0UrnclduUHa30j1JWvFbZ0cqKX+NXNqAaQdpUGK0MjFJWRUYpm5x2vZLRdI3jezMiXYpoYpSmaH+Rb+ebyy+/nD59+jTIdWscKu+44w68Xi9XXHEFU6dOZdq0aVxxxRUYhhG4l7GxuOGGG+jQoQPYDLydw9z/JEQQKcv20n9cz0iXIWrqFKbBy41S+lWYBlcu98lRykAb4+Q0uD9QVhzhNBSU7nVZdtq7Uj/+afCy094VlQZLmfZu3vqd3ZOUX/bJj0+csinvX8HBgwdJSEhg6tSpDXbdGq8rt9ls/L//9/84cuQI+/fvB6Bbt26+8NbI2Gw27rvvPv7whz/g7ViEnm5HL7JU/YVC4AuV1/7tEub9a3GkSxE1FW4PS0qDpaHQTKbgDfwrxgu9ELKNgSpxokqcYfvB5cYItwDIMFCAcjorB9yKNXm9EiibsX7jevLj679EugzRxCibl3fffReAO++8k9jYhturu9Y3inXo0IExY8YwZsyYRhko/c4880zGjRvnW7TTOw+lyQutqJ4jO9NRCjr0bRPpUkRtVGcqPNwZ2qUjmmFXYHs8vhFLV+jjFQ2n0zfaGW5rIP/nwwRGCZTNW2L7OBLaxbF/vexPKapPoRh0exeKi4sZMmQIF1xwQYNev0WtPpg5cyaxsbGoWA/eTjINLqov5Ze99JMp8KavpsGybHgLsWpceTyBkUXlNYIGS6PM6KPyGkGDpXK5y18vSHCUQNn89R3Xk90rU/F6ZB2AqD6jXTHr16/HbrfzyCOP1PsWQhW1qFDZunVr7r//fgC8XQoxomXvSlE9KUv3MOCc3pEuQ9SF2o5YQqVgWTZQBh6rECwNpytom7LBslKgDFaeBMoWYcD4XqQs2xvpMkQTomwezIN8ueb222+nU6dODV5DiwqVABMnTmT8+PG+afA+Mg0uqmf/xsPYYmy075Mc6VJEXTiVYBkqwJUNliHuffQFS3f4Nv4zxcMFytLHJVC2DAnt4mjbszW7VqRGuhTRRCgU/ad1oqSkhOHDh/Pb3/42InW0uFCpaRoPPPAACQkJqGgP3q6NZ09N0XgpQ7F14U4Gn98v0qWIulJXI5bO8PvfVrnHpKF8fYS7f9JQKE/Vo5gSKJuHwef3JWXZXjlFR1Tbze9cyqZNm3A4HPzhD39o8GlvvxYXKgESEhJ4+OGHAfB2KsKbJJuii6ptWZDC4Il90fT630BWNJCqQpjhDRksVenq62AbqJdrV1UwhbD9KEP5wmSVIVgCZXMx+Px+bP5xZ6TLEE2EEefi7bffBuD++++P6KLpFhkqAcaOHcvVV18NgKd3LspW9Qu/aNmO7EzHWeSi2/CGv09F1KNQYcz/uFKVgmEg6Pk+CB08y0xXh23j76fiPZcVA2VVtYomr23P1kTF20ldJ6foiKops0HCBDOGYXDBBRdw4YUXRrSeFhsqwbeBe79+/cCicPfNlfsrRZW2/LiTIb+RKfBmp2IoCxPSygXKkw9WDp5B7n+ssk2QYFllbRIom5UhF/Rj28+7MLzycxXhKRQjZvYiIyODzp07M3PmzEiX1LJDpcVi4YknniAmJgYV55b7K0WVNs3fwYDxvbBFWSNdiqhr4cJZkNHKym1OBsugC2oqjFiGXHTjbxcsvJ5KzaLJMZl1hk0awIa52yNdimgCbn3vclauXInVauXJJ58kKioq0iW17FAJvs3b//jHPwKl91cmBzmLV4hSOcfyOLjlKIPP7xvpUkR9CTPFXOXqa2WEX1CjjKrbUCZwhpvulkDZ7PQd25Oco3kc2yNnfYvwvElO3nzzTQDuvfdeevXqFeGKfFp8qAQYN24cN910E+A7bceIkf0rRWjrvt3CiEsHR7oMUR+qsximtgtmqtuHhMYWZ8Slg1g3Z0ukyxCNnOHwYD3dhVKKyy67jEsvvTTSJQVIqCw1depUxo4dCzq4++egrLJwRwS3a0UqMa2i5djGlqwai3vqvG/RrCV2iKdj/3ZsXbgr0qWIRkyZDNpe5qCoqIihQ4dy7733RrqkciRUltJ1nUcffZTu3buDzfAFS11e3EVlhtdgw9xtjLhMRitbtJosmCnbJlh7CZQt1mmXDGLrTztxFctMmQhOaYqh93bj0KFDtG3blqeeegqLxRLpssqRUFlGVFQUTz/9NPHx8ahYD54+uSjkRV5Utu7bLQw6rw+OWFukSxGRFG5ksjqhs6qQKVoEs9XEaRcPZO03MvUtglMoJv71dNasWYPdbudvf/sbCQkJkS6rEgmVFXTo0CGQ/o3WTjw98iVYikpyj+ezZ/UBRlw2JNKliEirYtV4tb5eAmWLNvSC/qTvzZQFOiIkb5dC5s2bh67rPPHEE/Tu3TvSJQVljnQBjdGwYcN49NFHeeKJJzA6FGN4TFgOx0a6LNHI/PrZRq7582RWfbYBr6eKrV9Ei6WXnsCkm+R3eFGZpsEZ15zGT//5Rf6OiKA8bQrxdikE4IEHHmDMmDERrig0TSn5FTmUL774ghdffBGAK6+8ktNPPz3CFQkhhBCipdi+fTsffPABSiluvfVWpkyZEumSwpJQWYV///vffPTRR6DAuisRU5Y90iWJRmTAub0567oRvDn9k0iXIhop3aTz6MK7+cuEVzC8MqItyrvhH5exc9k+uZ9SVOKNd6KG5uN2u5k8eTJ/+MMf0DQt0mWFJdPfVbj99tvJyspi/vz5uHpnY96RgClbFmcIn+2LdjFx+ll0G96JfWvlrF4RmuE1JFSKctr3SaZ9rzZ88sc58ndDlGPEudCHF+Fyuhk7diwPPvhgow+U0MQW6uzbt48ZM2Zwzz338PDDD1NUVATAwoULufPOO7nvvvs4fvw4ACtXrmTGjBnMnTu3VtfUNI2HH36Y8847D3Tw9M/BSHDW+rmI5sHwKn75cA3jbxkV6VKEEE3M2beMZuWn63GXeCJdimhEjFgX5tElOJ1ORo8ezRNPPIHZ3DTGAJtUqOzSpQuvvfYaL7/8Mv3792fZsmV4PB4+/fRTXnrpJaZNm8Z7770H+ELlK6+8QkpKSq2vazabefTRRxk3bpxvc/QBORjxrlr3K5qHDfO2k9ghnq7DOka6FCFEE9G2Z2u6DevE6i83RboU0YgY0W5sZ7kpLi7mtNNO4y9/+QtWqzXSZVVbkwqVZZN6SUkJXbp04dChQ3Tv3h2LxcLgwYPZt28fAKNGjeKuu+6ib9+6OaPZbDbzxBNP+FZdSbAUZXjdXn75aC3jbxkd6VKEEE3EuJtGserzjTgL5f8R4WPEuLGf7aagoIAhQ4bw9NNPY7M1rdvtmlSoBFizZg1Tp05lw4YNdOzYkfz8fKKiogKf93p9xyuOHTuW119/nYsvvrjOrm2xWHjyyScZNWoUmBTugdl4E2UqXMD6OVtJ7t6KzoPaR7oUIUQj17prIr1GdeXXzzZEuhTRSBhxLixjSsjPz2fgwIE888wzOByOSJd1yppEqJw9ezb33nsvs2fPZuTIkbz11lucc845fPvtt8TGxgburQQwmUz1WovNZuOvf/1rYMTS0z8Hb6uSer2maPw8Li8rPl7LOVPOiHQpQohG7pzbzmD1V5soKZBBCQFGvBPTqGKKiooYPnw4zz//PNHR0f+/vfsOr6LM9wD+nZlTk5wUUkgoCb0mNCEgHSI1IiAC8qzuoiv3Xte6uiq2VXHdInh3r4K4uioqLJYFEQEBhQgr0lEIEOrSkxBCek6fmfvHSU4SSEA8SeaU7+d5zjNzpp1f2jnfvDPvO1qX9bMERKicOXMmXn/9dUydOtW7LDw8HGazGW3atMHp06fhcrmQnZ2NDh06NHk9RqMRf/jDH2o673QrhZxga/LXJf+2+/MDiEtugQ79k7UuhYj8VFKXBHTon4zvl+/VuhTyA3KMA8JNVtjtdgwcOBCvvvpqnbOvgSYwuhNV2bNnD5YvXw5RFBEdHY2nn34aOp0O06dPx8MPPwyDwYBnnnmmWWrR6XR4/vnnYTKZsG7dOri7lEEfJkE5HTgX1FLjcjtlZL23Hbf8zxC8M+cs77xHRFe55X+G4Lulu9lKSZDjbVB7VMLplDFs2DC88MILAdUppz4BFSoHDx5c7+2JMjIykJGR0ez1SJKEJ598EmazGStWrICtTTEkNQzSmQgI8P/xpKjx7V+fg8Ez+6Hn6C44uOmY1uUQkR/p0D8ZccktsHzuaq1LIQ2pUCG3sUJuVwHIwJgxY7yNZIEuIE5/+zNRFPHwww/j17/+NQBAbmuFu0sZVIHNVKFIVVR88/dtGD1nMCQd/7yIyEMQgDH3D0XWe9vhdspal0MaUaHC3aHcEygBzJo1C88++2xQBEqAobJRCIKAX/3qV3j66achSRKUBDtcPYuhSrxDQig69v0plBdWov+UXlqXQkR+Im1MN0h6CfvX52hdCmlEFVUMfLorlFY2CIKAhx56CPfffz9EMXiiWPB8JX5gwoQJ3mEA1GgXXL2KoBr5H2ko2vDGFoyYPRDh0YE3JAQRNS6DWY8x9w/Fhje2QFV4FisUqXoZnefE49///jf0ej1efPFFTJ8+XeuyGh1DZSNLT0/HwoULERsbCzVchrN3ERQLB7cNNblHC5Cz5QQy/nuI1qUQkcaG/2ogzh/Kx8ndZ7UuhTSghLsQPUnEoUOHEBERgddeew2jRo3SuqwmwVDZBDp37oy33noLnTp1AgwKXGnFkFtyyKFQs+md79FtWEe07t5S61KISCOxbWPQf3IaNizcqnUppAE51g7pZisKCgrQtm1b/P3vf0efPn20LqvJMFQ2kZYtW2LRokUYMWKEZyzLzmVwty+HCp76CBXWEhuy3t2OiY+OgsDBAIhC0oRHRmD7J/tQkl+mdSnUjFSocLetgLt7Kex2O9LT0/HWW2+hbdu2WpfWpBgqm5DZbMZLL72Ee++9FwAgt7bC1bMEqo4deELF3tXZkPQS+t6aqnUpRNTMug3riNi2Mdj2zz1al0LNSJUU3Pxsd8gplQCA6dOn489//jMsFovGlTU9hsomJooiZs+ejZdffhkmkwlqjBPOPpehRLi0Lo2agSKrWPPaZtzy30MQERu4d0kgohtjijBi4m9HYd1fsziEUAhRwlxImG7Eli1boNPp8OSTT+Khhx4KmiGDroehspmMGDECixcvRuvWrQGTAlevIshJVp4ODwHnD+XhwMYjmPhocF6YTURXG3P/UJz+4TyO7zitdSnUTOR4G8SbK3H+/HkkJCRg4cKFuPXWW7Uuq1kxVDajjh074p133qm5zrJjOdSeFRzPMgRsfud7tOraEt2Hd9S6FCJqYu36tEG3YR2x/o0tWpdCzUAVVLg6lsHdtQwOhwMDBgzAP/7xD/To0UPr0podQ2Uzi4iIwLx58/Dggw9CkiS4Yqxw9S6CEsbT4cHMaXPhywWbMPGx0TBFGLUuh4iaiM4gYdKTGVj/xhZYSzjqR7BTTG60vzcGSpJnQPPZs2fj1VdfRXR0tNalaYKhUgOCIGDGjBl4/fXXER8fDzVMhqtPEdw8HR7UTu46g5O7zmDcg8O1LoWImsio+27G5fMlyP76qNalUBNSoUJOsEE3zIqjR48iMjISr776Ku69915IkqR1eZphqNRQWloa3n33Xdx8882ACMgdy+HuUQJVz4u6g9X617eg44BkdBvG0+BEwaZdnzboO6En1szfpHUp1IRUScGQ53vC3aUMNpsNffv2xfvvv4+BAwdqXZrmGCo1Fh0djT//+c949NFHYTAYoLRwwtm3CHKMQ+vSqAnYKxz4/I8bMemJDPYGJwoipggjpj43Fmv/dzPKLlVoXQ41EcXiRMwUEVlZWZAkCf/1X/+F//3f/0V8fLzWpfkFhko/IAgCbr/9drzzzjvo0KEDYFDg7lkCV4cyqCJPhwebU3vP4cDGI5g8d6zWpRBRI5n425E4/cN5HMo6rnUp1ARUQYU7pRxy31JcvHgRrVu3xqJFi3DXXXeF9OnuKzFU+pH27dvj73//O+644w4AgNLKBmffy1Aiee/wYLPp7W2IjI/AgKm9tC6FiHyUmtEFyWmtse5v32pdCjUBJdyF1neFQ25rhaIoGDduHN59992Q7N19PQyVfsZoNOLhhx/GggULkJCQAJhluNKKPbd4ZKtl0HA7Zax8eT1GzxmMxE48bUIUqGJaRWHib0fh81c2wFHJBoBgogoq3MkVUPqX4tSpU4iJicErr7yCZ599FmFhvHypPgyVfio9PR1LlixBZmYmIFTd4pGtlkHl4slCfPPWNkyfNxHGcIPW5RDRDdIZJMx4ORPbP9mHM/svaF0ONSIl3IXkX0VCTq6ELMsYPXo0PvjgAwwbNkzr0vwaQ6Ufi4iIwFNPPYVXX33VM/RQdatlhzIOmB4k9q7OxoWcfNz21C1al0JEN2jcQyNQUWTFd0t3a10KNRJV9Fw7qfQvxYkTJxAVFYWXXnoJL774YsiOPXkjGCoDwKBBg7BkyRJMnDjR02rZygZnv8uQY+1al0aNYM2CzUhoH4f0ab21LoWIfqK0W7qiy83t8fkf1kPllUlBQYl2IO4OHeS2VsiyjBEjRuCDDz7AqFG8xe5PxVAZICwWC+bOnYvXXnvNc/9wowJ391LIaWVQDRzXMpA5bS58+vwajPr1zWjTI1HrcojoOuLbtcDEx0bhXy+ug7WU/9wHOlWnwNWlFK7UEuTm5iI+Ph5//OMf8fLLL6NFixZalxdQGCoDzIABA7BkyRLcfffdkCQJ7igbnDddhrsV78YTyC6dLsLa17Iw85VbYYkL17ocImqA2WLErD/dhqx3t+PcwTytyyEfqFAht7TBNNYBJcEOQRAwbdo0fPTRRxg6dKjW5QUkhsoAZDQaMWfOHLz33ntITU0FJBVyh3K4+hSxI08AO7jpKH786jDu/OMk6Awc94zI34iSgOnzMnFq3znsWrFf63LIB0qECx3nxMLduQxlZWXo1KkTFi9ejEceeYQ9u33AUBnA2rdvj4ULF+Lxxx+HxWKBGuGGq1cxXF1KeUo8QG1+53tUXK7E5LljtC6FiK4w7sHhkPQS1v01S+tS6GdSdQpcncrg7luMnJwchIWF4Te/+Q3efvttjjvZCBgqA5woipg8eTKWLVuG2267DYIgQEmwe06Jt6mEKvCUeCBRVWDlyxvQsmMcht41QOtyiKhKv1t7ouuQjvj0uTWQ3Rx9I9CoUCEnWWG4xQYl0QZVVTFu3DgsXboUd955J3Q6ndYlBgWGyiARHR2N3/3ud3jnnXeQlpbmOSXersLTS7yFnddbBhCH1YnlT3+Jm2f0Rc9RnbUuhyjkdRyQjDH3D8Pyp1ejssSmdTl0g5RoB1rfHQ53x3JUVFSgc+fOWLRoEZ599lnExcVpXV5QYagMMl26dMHChQvx3HPPITY2FjDLcPcohSutGEqES+vy6Ccqzi3F8rmrcesTGUjp01rrcohCVmLneNzx4kSseOkrXDxZqHU5dAOUMBd6/TYZrtQSnDp1ChaLBY899hjefvttT+MLNTpBVTnCVrCyWq1YtmwZPv30UzgcDgCAeMkI3ekICA429QeCrkM6YPLcMXj/oc9w6XSR1uXQzyBKIn7/7cOYN/J1KDJPmwaS6MRI/HrxDGx6+3v8+NVhrcuhn0g1yHAnV0BNckBVVeh0Otx+++345S9/icjISK3LC2psqQxiYWFhmDNnDpYtW4YJEyZ4rreMd3iut2xfDlXHDzh/d3Tbf7D5H9/jrgVTONQQUTMyW4z4xfwp2P35AQbKAKFKCtzJFRCHV0BJtENVVYwaNQofffQRHnzwQQbKZsCWyhBy4sQJLF68GLt3V91SzC1AuhAGKTcMgsz/L/zZ6DmD0XVIByx5+F+wlXGw5UDClsrAYzDrcfdrU3HxP5exZsEmrcuh61BFTyeciD4SSktLAQA9e/bEAw884Bl2j5oNQ2UI2rVrFxYvXoyTJ08CAAS3COPFSBgLLbCXc5xLf5X5+Gi07tYSHzy6Ao5K/pwCBUNlYNEZJPzi1SmoLLFh5ctfQZH5EemvVEGF0tKG6EFGFBZ6rndNTk7GfffdhxEjRkAQBI0rDD0MlSFKURRkZWXhvffew7lz5wAA0VHRqNgrQ7xohqDyj9HfCAIw+emxaNEmGksf/xxOGzteBQKGysAh6SXc+cqtkN0KPn1+LX9efkqFCiXejviR4cjL89zVKDExEbNnz8bYsWM5PJCGGCpDnNvtxsaNG7FkyRLk5+d7FtpF6M6FQyxguPQ3oiRg2u8nwBxlwj+f/AJuJwe593cMlYFBlATc8eJEGMIM+Pjp1fzb8kOq4AmTSRlR3saQFi1a4O6778akSZNgMBg0rpAYKgkA4HQ6sWbNGnz44YcoKqrqZewQoTsf7mm5VBgu/YWkEzHjD7dCEAV8+twafvj5OYZK/ydKAqY8Mw6RCRFY9rtVcDncWpdEtaiCCiXBhvjhEd6WycjISMyaNQu33347zGazxhVSNYZKqsNut2P16tVYvnw5Ll++7FnoFD0devLMEBR26PEHOoOEmX+4FaIk4uNnvuSHoB9jqPRvoiRi2u/HIyI2HP988gs4rLxe2V+ooueayZhBJly6dAkAEBMTg5kzZ2LKlCm8R7cfYqikejkcDnz11VdYtmwZLl686Fnoquotnsfe4v5A0ku444UJMEea8M+nvuA1ln6KodJ/6QwSpr80EXqzHsvnrobLzn/O/IEqKpCTbIi6yeA9cxYXF4dZs2Zh0qRJMJlMGldIDWGopGtyuVzYuHEjli5digsXLngWygKkfLNnKCKHpG2BIU6UREx9bhyiEyOx7IlVsFc4tC6JrsBQ6Z/0Rh1m/nESFFnhZSR+QtXLkFtZEdZDQnl5OQBPB5xf/OIXGD9+PIxGo8YV0vUwVNJP4na7sXnzZixfvtw7FBFUQCw0QroQDrFCr22BIUwQBdz21C1o2TEOy574ApXFVq1LoloYKv2PMdyAWX+6DbZyO/714leQXQyUWlLC3JBbV0Js7Ybb7Wktbt26Ne666y6MGzeOvbkDCEMl3RBVVbF79258/PHH2LNnj3e5UKL3hMtiAwSwU09zEwRg7IPD0XVwByz93ecoulCqdUlUhaHSv1jiwnHXginIO3YJq//yDX8mGlGhQo1ywt3GCjWm5jrWtLQ0zJw5E0OGDIEk8UxYoGH8pxsiCALS09ORnp6OEydO4JNPPsE333wDOdoFd3QJhEoJUl4YxAITO/U0I1UFNryxFeWXKnDvohn451NfIPdogdZlEfmVuJQY3LVgKg5sPILN73yvdTkhSRVUKHF2tMtMwIkTJwAAoihi+PDhmDlzJnr27KlxheQLtlSSzwoKCrBixQqsXr0alZWVAABBFmC4HAFDoQXOIp5aak5pY7pi4qOjsOKlr3Bi1xmtywl5bKn0D21Tk3DnnyZhy/s7sWvlfq3LCTmqUYacaIUlzYCSkhIAgMlkQmZmJqZPn45WrVppWyA1CoZKajQVFRVYt24dVq1ahfPnz3uXiyVG6PLCIJYYeWq8mbS/qS3ueGECNr3zPfZ9eVDrckKaKIl4btOD+EPGQoZKjfQY1RmZj43CmgWbkLPlpNblhAwVKpQoJ9yJlUCcC4ri+f2Pj4/HlClTMHnyZERGRmpcJTUmhkpqdIqiYM+ePVi5ciW2b9+O6l+xmJgYDBo0CDfddBPCw8M1rpKIiJqC3W7H3r17sWPHDu89uQGgX79+mDp1KoYMGcLON0GKoZKaVG5uLlatWoW1a9d6h4iAAkiXTZAKwiCWsWNPUwqLNmP6SxPhdrmx4sX1HHJIA2yp1IbepMPkp8cgJikKnz63BqUFFVqXFNRUqFAjXHAnWKFPUWG32wEAYWFhGD9+PKZMmYJ27dppWyQ1OYZKahZ2ux2bNm3CypUrcfz48ZoVNgnSRTOkAhMEJ3v6NQVJJyLz8dFI6d0ay+euRuHZYq1LCim8prL5RSVYMOvPt6HoQgk+f2UDBzVvQqpOgZxgQ3JGPE6dOuVd3r59e0ydOhVjx47lnW9CCEMlNStVVXH06FGsWbMG33zzDazWqjEVVUAsMkC8aIZYxGsvm8LAO/pg5D2D8OX8TTj87fHr70CNgqGyeXVKT8HU58Zh9+cHsGXJDvATrvGpUKFGOyEn2iAmyt6xJY1GI0aOHInMzEz07t0bgsD38VDDUEmasdls+Pbbb7F27VocOHCgZoVThHTRBPGSGaKV1900puRerTD9pYk4lHUcX7/5b8huhpymxlDZPARRwMh7BqL/lF74/A8bcWLnaa1LCjqq0Q25pR2x/cNRUFAzZFnXrl1x6623IiMjAxERERpWSFpjqCS/cObMGaxduxbr16/3DjcBAEKFDmKBCdIlEwQXT483hvCYMEx7YTwMJj0++/06lBaUa11SUGOobHrh0WZMe2ECDGEGfPb7tSi9yN/pxqLqFChxdsgJdqiRLu9yi8WCsWPHIjMzE506ddKwQvInDJXkV1wuF7Zt24YNGzZgx44dkOWqMS5VQCgxQCowQbxs5MDqPvK06gxC/ylp+OJPX+PY96euvxP9LAyVTatdnza4/ffjkbPlODYuYut7Y1BFFUoLB5QEG4R42fs+LIoi+vXrh8zMTAwdOpT34qarMFSS3yopKcG3336LDRs24NChQzUrZAH6UjMMxRHQlZvYo9kHHdNTMOWZsTjy75PYuHArXA52aGhsDJVNQ9KJGHXfYPTL7Ik1r23mdcI+qr5topxgh6m9WHO9O4AuXbpgzJgxyMjIQFxcnIZVkr9jqKSAcOHCBXz99dfYuHFjnYHVw8PCYTsle06PlxogqLww/EaFRZtx25O3IC45BivmrUfeMd7esTExVDa+uJQYTPv9BNjK7Fj1x40ou8Thgn4OT5B0QY61IzrVjKKiIu+6xMREjBkzBmPGjOFQQPSTMVRSQFFVFTk5Odi4cSOysrJQXFxreByXALHICLHQBLGEAfNG9bu1J8b8Zhi+X74X2/65B4rMt4bGwFDZeAQBGDC1N0bfNxhbPtiJHZ/uY+/uG+RtkYxzIKqHqc57qMViwejRozFmzBikpqZCFHmZEd0YhkoKWLIs48CBA8jKysLWrVvr/JcNtwDxMgPmjWrRJhpTnxkLSS/hiz9/jYsnC6+/E10TQ2XjiG0bjduevAXGcCM+f2UDfzdvgCrUBElLVwNKS0u96ywWC4YNG4aRI0fipptugl6v17BSCnQMlRQUZFlGdnY2Nm/eXH/ALDZ4WjGLjRDc/O/7WgRRQPrU3hj560HYtWI/tn64C7JL1rqsgMVQ6RtREnDzzH4Ydlc6ti3fg23/3Mvv40+gSgqUaCeUWAciOhlQVlbmXRcVFeUNkv369eMtE6nRMFRSg3744Qd88MEHkGUZM2bMwLBhw7Bp0yb861//gsFgwDPPPIOWLVti+/bt+Oijj5CZmYnMzEyty/YGzKysLGzZsqVuwFQBoVQPscgI6bIRgoNvpg2JTorEpCcyEBkfgdV/+QbnDuZpXVJAYqj8+Vp2jMPkuWMguxWs/svXuHS66Po7hTDVKENp4YDcwgFdggqXq2YIoOjoaAwfPhwjR45Enz59/CpIBupnDV3Nf36ryK84HA588sknmD9/vvd0iNvtxqeffoqFCxfiyJEj+PDDD/HEE09g+/btWLhwIf7617/6xR+6JEno06cP+vTpg0ceeQRHjhzBtm3b8N133+HUqVNQo12Qo12QO1RAqJQ8LZhFRgjlet7Jp5aSvDJ89Njn6DuxB2b96TYc3fYffPPWd6gssWldGgU5U4QRo349CL3GdceW93di54ofoSps/7iS537bbs/wPy0cUCNqRm9wuYDWrVtj6NChGDJkCFJTU/0qSFYL5M8aupr//YaRXzh48CCMRiPmzp0Lk8mExx57DOXl5Wjfvj30ej3S0tLw5ptvAgDS09PxwAMP+OUfuSiK6NGjB3r06IE5c+YgNzfXGzD3798PJVyGHG6F3Nbq6ehTYoBYbIRYbOBg61V+WHcYR777DzL+awgeWPpLfPveDuz54gA78lCjEwSg94QeuOW/h+A/e87hzbs/QvnlSq3L8iuqToES7YAS40RMj3BcvlzTeiuKIlJTUzFkyBAMHjwYycnJfn+rxGD5rCEPhkqqV3FxMfLy8rBo0SLs3bsX77//PsaNG4ewsDDvNtUD4g4dOhRDhw7VqtQb0qpVK0yfPh3Tp09HeXk5duzYgW3btmHnzp2orKyEEu+AEu8Z91Ko0HmuxSwxQijTh3RnH1uZHWsWbMK+L7Mx8bHR6HdrKtb9LQtnD+RqXRoFiaQuCZj421EwmPX47IV1OPPjBa1L8gsqVKiRLs/1kTEOIFJG9VVrly/bYTabkZ6ejsGDB+Pmm29GdHS0tgXfoGD9rAlVDJVUxyeffIJt27ahf//+SEtLg16vR79+/bB06VJYLJY6A+JKUmC35FksFu84bG63G4cPH8bOnTuxe/duHDlyBGqEG3KE29OKKQvQVZigLzPDXSBAsEkheao892gB3v2fj9E3sydmzMvEuUN52PT3bSg8W3z9nYnqEZ0YidFzBqPTwBRs/WAXdq3cH/LXnqpG2dsaaU7RobKyVmutCnTo0AHp6elIT09HWlpaQN7ZJpQ+a0IJQyXVMXPmTMycOROlpaWYN28eAOD48eNo1aoV2rRpg9OnT8PlcuHIkSPo0KGDxtU2Hp1Oh169eqFXr16YM2cOiouLsXv3buzatQu7du1CSUkJ3FE2uKNsQFsADhFiqcHzKDFAcITOm56qAvvWHMLBTccw+M6bcN9bdyJ701FseX8HKoqs1z8AEQCzxYhhv0xHv1tTsffLbLwxawls5aF5dyzVIEOJcnpaI6OcgKkmVFdWOhAZGYn+/fsjPT0dAwYMQHx8vIbVNo5Q/awJduz9TQ1auXIlNm/eDFEUMXfuXLRq1areHnnBTlEUHD9+HLt27cKePXtw6NAhOJ3OuhvZRc/1mFVBU3CGTsiMiA3DyNmDkJrRFTtX/Igdn+4L2XBQH/b+rstg1iN9Wh8MvrMfju84jax/bEdJftn1dwwiqr46RLqgRjmhmusO2SVJErp37+5tjezatWtQt9bxsyZ4MFQS3SCHw4GDBw9i3759+OGHH5CTk+O95qeaYJUglOkhlhk812Pag/90eVxyDEbeOwgd01Owa8V+hssqDJUe3jA5sx/OHcxF1ns7kH/8ktZlNTkVKmBUoEQ6oURWhciwuu8XoiiiS5cu6Nu3L/r27YtevXrVuaaQKFAwVBL5yGq1Ijs72xsyjx07BkW5Ijw4RYhlegjlek9LZqUuaDv+xLdrgeG/GojOA9th18ofsf3TH2Ars2tdlmZCPVQawwxIn9YbN8/oh7PZudiyZGdQ31/eO8xPpAuqxRMkYaz7cxcEAZ06dfKGyN69eyMiIkKjiokaD0MlUSMrLy9Hdna293HkyJGrT5fLgFBR05IpVuiCbggjb7gc1A771x/Gjk9/QHFeaJ3mBEI3VFriwjHwjr646bZUnPnxArYs2YG8Y8HXMqnqFKgRLiiRLiiRThgTJdjtdf+JkiQJXbp0QVpaGnr16oU+ffogMjJSo4qJmg5DJVETczqdOHr0KA4ePIgDBw7g4MGDde6962UXIVZUtWZW6CFU6CDIgX9LyZhWURg0oy/6jO+OE7vOYPvH+3D+cL7WZTWbUAuVLTvGYfCd/dBteCcc2nwM2z/ZFzR3wlFF1RMgI1xQLS4oEW7AfPUtTCMiIpCamoq0tDSkpaWhW7duMJlMGlRM1LwYKomamaqqOHv2LLKzs3Hw4EHk5OTg9OnTuOpPUa26NrNCD7FcD5McDslu8J42t1UE1ills8WI/lN6IX1aHxTnlmLXiv3I2Xoi6O8rHgqhUpQEdBncAem390Zip3jsXnUAuz/fH5CjAZgjPOFPFVTIJifsUmVViHRDsChXX9oCz51rUlNTvUGyXbt2EMXA/4eQ6EYxVBL5AavViqNHjyInJwdHjhxBTk4OLl68eNV2oigiKbEVUtqkYOcn+z2nzSv1ENyB8wEm6SWkZnRB/8m90KJNFH5Yexh7V2ejOLee1tsgEMyhMirBgn6TeqJvZiqsJTbsXnUABzbkwOVwX39nP6JKCtRwN5QINwb/oi/Onj+DC3kX4HZf/XXExsaie/fu6Natm3dqsVg0qJrI/zBUEvmpy5cvewNmTk4Ojh07Vv9pc8AzbmalDkKF3tMJqFIXED3OEzvF46bJaUi7pSsuHM7HvrWHcPS7k3A7g6f1MthCpaSX0HlQO/Sd2APt+rXF4azj2LM6GxcC4JIGb0/scBfUCLcnSIa76owLWVtERAS6detWJ0AGwxiRRE2FoZIoQKiqisLCQpw4cQLHjx/H8ePHceLECVy40MDt7BRAsFUFTKsEwarzPPwwbBrMeqTd0hW9J/RAQvtY5Gw9gQMbcnD6xwtQlcB+iwqWUJmc1gq9xnZDz9FdUJxbiv3rc7B/Qw7sFf43bJQnPMpQwmWoZjfUsOqHDEj1/z4lJiaiU6dOdR5JSUl+f+9sIn/CUEkU4CorK3Hy5Mk6QfPMmTNwOBr4sFdQEzCtkid42qumivYfoDFJkUgb2w29x3WH3qhD9qajOPztCeTm5CMQ360COVQmdo5HjxGdkDamGwRBwIGNOTjw9REUnvGP23KqggrVLEM1eQKjNzya3UADgyno9Xq0a9fOGxw7d+6Mjh078hQ2USNgqCQKQrIs4+LFizh16hROnTqFM2fOeKcNhk0AcIie+5p7g2ateQ3G1WzVrSV6jemGbsM7QpREHPn3SRzZegKnf7wQMAEtkEKlIApom5qE7iM6odvQjtAZdTjy75PI/voIzmXnahLqVUGFapJrwqO5Zl4wq1d3cKtiMBiQnJyMdu3aISUlBe3bt0e7du3QqlUr6HS8QzFRU2CoJAoh9YXN8+fP4/z58w1frwkAKjyB0y5BcEieaa15OMUmP6We1CUB3Yd3RLfhnWCJDceJnadxYtcZ/Gf3WZRfrmzS1/aFv4fK8GgzOvRPRsf0FHQamAJHpRNH/n0SOVtP4sLhvCYPkipUwKBANcqe8GhUqqae8CiGqfX2uPbWHx6ONm3aICUlxRsgq8NjMN/akMgfMVQSEQCgrKzMGzDPnTtXZ2q1XmdoGAWAQ4LOrYfo1EF0ShBcOrjLZMApQXCIgCw0WvCMbRuNTunt0HFgCtr1bo3ivDKc3H0GJ3edwbmDeXDaXI3yOo3B30KlziChTc8kdExPQccByYhPaYGzB3JxcvcZnNh5BgWnLjfq66mSAtWgAAYZ+kgJisENxSBDMbgh61xQjTJwncELzGYz2rRpU+8jOjqa1z0S+QmGSiK6JlVVUVRUhAsXLiA/Px95eXnIz8+v87jy3uf1kgHBKXlaPJ0SBKcIODxTwSV6WjtdNx4+Jb2EtqlJ6JSego7pKYhv1wIXTxbiXHYezmZfwNnsXFRc1m68RK1DZVi0GclprdA2LQnJaa2R1Dkel8+XeEL47rM4u//CDQ8BpEL1dHjReQKjJzQqUA1VLY1VIVI1KIDu+h8xkiQhPj4eiYmJ3kdSUhKSkpLQpk0bxMbGMjgSBQCGSiLyiSzLKCwsvCpwFhYW4tKlSygsLER5eflPP6ACwFU3aAousWaZW4TgFmqmLrHO9Z7GcAPa9ExCclWIat0jEZXFVuQdK6h6XELesQJUFjdP0GzOUBkWZUJi5wQkdUlAUpd4JHVJQGSCBbk5+Th7MA9nD1zA+YN5sJXXva5WFaoCoq7WVK9A1StXTavnG+oIU5/w8HDExcUhPj4e8fHxSEpKQsuWLZGUlITExETExcXxOkeiIMBQSURNzm63o7Cw0Bs0qx/Vy0pKSlBcXHz90+wNkXF12HR7Wj1FVUREVASi4yPRIjEGca1bICE5DpAFVFyyobLAirL8SpRcKEPR2TKUFZQDjdgpqSlCZURcGOJSYhDTOgqRrSIQmRiGiIQwSEYRBWcLcencZRReKEJxQQnKisqhQAGkWqFRqhsibyQg1mY0GhETE4PY2FjExcV5H/Hx8d5pbGwswsLCGuXrJiL/xlBJRH7D4XB4A2ZxcTFKSkpQVFTknS8uLkZ5eTnKy8tRUVGB8vLya3bi+LkkUYIoShAFAYIqAgqgugFVVqG6AcWtQpFVz600q99BVcHToQnwTKuCqQABaWO7IvvrI57Txp6FtaYqULWrKAkQ9QIEnQBR55kKUlUPaEGFqiqQFRlut4yaF2scgiAgPDwcFosFFosFUVFRiImJQXR0dINTs9ncqDUQUWBjqCSigKUoCqxWqzdoXvmw2WywWq2w2WzXnQ/Ut0JRFGE2m3/Sw2KxICIiwhsca8+Hh4fzftVE5BOGSiIKeaqqwuVywel0eqfVj/qWu1wuKIoCRVGgqipkWYaqqt5lVz4EQYAoihBFsc587efVU51OB71eD71eD4PBUO+0er76wU4sROQPGCqJiIiIyGc810FEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPtNpXQCRP1BVFXa7XesyiIhuiMlkgiAIWpdBBIChkggAYLfbMW7cOK3LICK6IRs2bIDZbNa6DCIAPP1NRERERI2ALZVEVzDsSoCgVv2/JYgQRAEQREAUAEGAIFavq1ouCIAoQKjexrtO8O7jfQC1ltUc07sPavZRBaHm375ax/Aur7Vf7WVq1WG860QAqF4ueNdV76NWLfOuB2qOIVZt792n7mvU2QdVy8R61tXZHnVqrFkmXLXuqn1Qd58661GzT0OvVed5A3Vctc+1jutdrtbZ/8rjedfXOpZatRxX7AdBrbW/Z71Qe5132+p1qveYQu3tq5YLglrz61e1vObXQ/WuF6F6n3vWAWLVc886z/Pq/bzrBBUCavYTq5Z5H1C9+4kC6iyv2Uep2RYqREGBVL2u6nnNsRTv8aRax5fgWS4JyhX7KZCqj4ma1/Nuj5rjifDsL8Lz+p51nuNJVcsEKJCq90d1HQokwLMfPK9T/bVVP/e8llo1j6p1KsSq74sEASIAqeqHLUKoWiZAEgSIVW8GAgS4nBKmzUkEkb9hqCS6kixUvb3DEypRFQCrPq1r1gmAWJOgBE9CqzpIdfIQa+avShvi1YlHEK7evvbxcMX2ddZdOV9rm+owWStUXrWsVgis/fzKEutuX88+4jXWNfRl1Hfchva71vKf/Fo3dsx6Q2yd/Ro5VNa3Hlc+V73Hrl1H7desu88VIdS7rvZ6tZ7jqfW8llrnUTtU1gTVqkdD6+oLm6gOo6gT9KqfS6i7zhMqlZpQJtQOZZ55URA8ga9qCu+84N2vJsACklAzlYBaAbCedVXH8zxXq0Kp6g2Rnv3U64bK2seTqtaJqLusOsCKVV83kT/i6W8iIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZxynkuhKkgpV9Qx47Bl3Uag1Fa4YkLx6WmsetZepteavsa56ea1BC2uGqEYDy2umap151NlPBQC1ennNMVUIgArvvrXXe49RZ3DF2rXU81ytU9IV348GHldue72xI9HA8uutu9ZYlNdaV/srvOZ+9Y03WfuhNlBjw4Of1x1bstY677Y/f/DzmjpqjVOJnz9OpYqa/VRBrfuAZ+pZhzrLFe/xlJrXgQoISq3xNNU661VB8R4PdY5fNa1+rarnYtU21VMAVy1Tao0NqQg1UwU141QqVcsENDROpeAdsFxCzc+s+rlYtc+VY1/+9MHPhaofiwCXs76/SyLtMVQSXcGZXqB1CU2j+jPbB1fGWSKg7q+WomUhP1vt32yewCP6ufjXQwTAbrdrXQIREVFAY0slEQCj0eid/+KLL2AymTSsJnjZ7XZMnjwZAL/PTY3f6+ah9feZP1fyJwyVRAAEoeaErslkgtls1rCa0MDvc/Ph97p58PtMoY6nv4mIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5TFBV1ceR64iIiIgo1LGlkoiIiIh8xlBJRERERD5jqCQiIiIinzFUEhEREZHPGCqJiIiIyGcMlURERETkM4ZKIiIiIvIZQyURERER+UyndQFEWrNarfj444+xZcsW5OfnQxRFtG3bFqNHj8a0adOg1+u1LjGglZaWYtu2bdi7dy+OHTuGixcvQpZlREdHo2vXrhg/fjyGDx+udZlBa+nSpXj77be9z7du3aphNcGnsrISq1atwnfffYfz58/DarUiOjoabdq0Qe/evTF9+nRYLBatyyRqFryjDoW0/Px8PPzww8jPzwcAmEwmKIoCp9MJAOjcuTP+9re/8UPBB6NGjYIsy97nBoMBkiTBZrN5lw0cOBAvv/wyTCaTFiUGrbNnz+Lee+/1/j4DDJWNad++fZg3bx6KiooAAJIkwWw2o6KiwrvNu+++i86dO2tVIlGzYkslhSxZljF37lzk5+cjNjYWzz77LPr37w9FUZCVlYX58+fj+PHjmDdvHubPn691uQFLlmV0794dEyZMQHp6Olq1agUAyMvLw4cffoi1a9di586dWLBgAZ577jmNqw0eiqLgL3/5C5xOJ3r27IlDhw5pXVJQyc7OxlNPPQWHw4H+/fvjnnvuQc+ePSGKIhwOB06fPo2tW7ciPDxc61KJmg1bKilkrVmzBq+++ioA4M0330Rqamqd9d988w3mzZsHAPjrX/+Km266qdlrDAb79u1Dv379Gly/YMECrF69GgDw2WefoWXLls1VWlD77LPP8MYbb2DMmDFo3bo1lixZAoAtlY3Bbrdj9uzZyM3NxYgRI/DSSy9BFNlFgYh/BRSy1q9fDwDo27fvVYESADIyMpCUlFRnW7px1wqUAJCZmemdP3r0aFOXExJyc3Pxj3/8A1FRUXjooYe0LifobNiwAbm5uTAajXj88ccZKImq8C+BQpLdbsfBgwcBAIMGDap3G0EQMHDgQADA7t27m622UGMwGLzziqJoWEnwmD9/Pmw2Gx544AFER0drXU7Q2bBhAwBg6NCh/P4S1cJrKikknTlzxhtg2rdv3+B21euKiopQVlaGyMjIZqkvlPz444/e+Q4dOmhXSJD48ssvsXfvXvTv3x/jx4/Xupyg43Q6vS3qffr0QW5uLj788EPs3r0bJSUlsFgs6N69OyZPntzgP6xEwYqhkkJSYWGhdz4+Pr7B7eLi4ursw1DZuMrLy7F06VIAQK9evZCcnKxxRYHt0qVLWLx4MYxGI373u99pXU5Qys/Ph8vlAgAUFBTgnnvugc1mg16vh9FoRFFREbZt24Zt27Zh8uTJePzxxzWumKj58PQ3hSSr1eqdNxqNDW5Xe4ib2vuQ7xRFwSuvvILLly/DYDDg0Ucf1bqkgLdgwQJUVFTgnnvu8fayp8ZVXl7unV+2bBkkScILL7yADRs2YN26dfjss8+QkZEBAPjiiy/w2WefaVUqUbNjqCQiTbz++uv4/vvvAQC//e1v0alTJ40rCmwbN27E9u3b0blzZ8yYMUPrcoJW7et+FUXB448/joyMDOh0nhN/LVu2xPPPP+8dm/LDDz+E2+3WpFai5sZQSSEpLCzMO+9wOBrczm6317sP+WbRokVYuXIlAODBBx+s0wOcblxxcTHeeOMNSJKEJ554whtwqPHVfh9ISEjwtkrWJooiZs6cCcBzR6ljx441W31EWmKopJBU+1rJS5cuNbhd7Wsva+9DP9/ixYvxySefAADuv/9+tqo1grfeegulpaWYNGkSkpOTYbVa6zxqt5RVL6u+LpBuTO1rsK91DXBKSop3vvqOXUTBjv/OUkhKSUmBKIpQFAWnTp1qsJfmqVOnAAAtWrRgJ51G8Oabb+Ljjz8G4AmUs2bN0rii4JCXlwcAWLVqFVatWnXNbat7hN9xxx14+OGHm7q0oBMZGYn4+HhcunQJgiD8pH1+6nZEgY4tlRSSTCaTd8DznTt31ruNqqrYtWsXAGDAgAHNVluwWrRoEQMlBYXq94MzZ86goZvSnTlzxjtffRMFomDHlkoKWePHj8eBAwfwww8/4PDhw+jRo0ed9VlZWcjNzfVuSz/fokWLvKe8f/Ob3+DOO+/UuKLg8vrrr19z/XvvvcfbNDaiCRMmYN26dSgoKMDmzZuvuq5SURTv73t8fDy6dOmiRZlEzY4tlRSyxo8fjw4dOkBVVTz//PPYu3cvAM8HQlZWFubPnw8AGDhwIO/77YPa11A++OCDDJQU8Hr37o2RI0cCAF577TVs2rTJe93qxYsX8fLLL+P48eMAgPvuu4+3caSQIagNtd0ThYC8vDw88sgj3gvpTSYTFEWB0+kEAHTu3Bl/+9vfYLFYtCwzYF28eBHTp08H4OkRe71b2s2cOZOnxZsAWyobn81mw5NPPon9+/cD8Nxu1Gg01hnHcvbs2bj33nu1KpGo2fH0N4W0pKQkLFmyBB9//DG2bNmC/Px86HQ6tG/fHhkZGZg2bRr0er3WZQasK8f0Kyoquub2NputqUsiahRmsxn/93//h3Xr1mHDhg04deoUrFYr4uPj0atXL9x+++1IS0vTukyiZsWWSiIiIiLyGS/0ICIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZwyVREREROQzhkoiIiIi8hlDJRERERH5jKGSiIiIiHzGUElEREREPmOoJCIiIiKfMVQSERERkc8YKomIiIjIZ/8P6aJnBuZt95QAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "List_of_Maps = [mDisk,mNarrowBulge,mBroadBulge]\n", + "List_of_Names = [\"Disk\",\"Narrow Bulge\",\"Broad Bulge\", ]\n", + "\n", + "for n, m in zip(List_of_Names,List_of_Maps):\n", + " plot,ax = m.plot(ax_kw={\"coord\":\"G\"})\n", + " ax.grid();\n", + " lon = ax.coords['glon']\n", + " lat = ax.coords['glat']\n", + " lon.set_axislabel('Galactic Longitude',color='white',fontsize=5)\n", + " lat.set_axislabel('Galactic Latitude',fontsize=5)\n", + " lon.display_minor_ticks(True)\n", + " lat.display_minor_ticks(True)\n", + " lon.set_ticks_visible(True)\n", + " lon.set_ticklabel_visible(True)\n", + " lon.set_ticks(color='white',alpha=0.6)\n", + " lat.set_ticks(color='white',alpha=0.6)\n", + " lon.set_ticklabel(color='white',fontsize=4)\n", + " lat.set_ticklabel(fontsize=4)\n", + " lat.set_ticks_visible(True)\n", + " lat.set_ticklabel_visible(True)\n", + " ax.set_title(n)" + ] + }, + { + "cell_type": "markdown", + "id": "915bc5ee", + "metadata": {}, + "source": [ + "## Instantiate the COSI 3ML plugin and perform the likelihood fit\n", + "The following two cells should be run only if not already run in previous examples..." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "5b3abf0b-7631-419c-b5b7-a31dbfe1b65c", + "metadata": {}, + "outputs": [], + "source": [ + "# if not previously loaded in example 1, load the response, ori, and psr: \n", + "response_file = \"SMEXv12.511keV.HEALPixO4.binnedimaging.imagingresponse.nonsparse_nside16.area.h5\"\n", + "response = FullDetectorResponse.open(response_file)\n", + "ori = SpacecraftFile.parse_from_file(\"20280301_3_month.ori\")\n", + "psr_file = \"psr_gal_511_DC2.h5\"" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "522db694-3a1d-4d0d-a3d9-0e028bb5cbcc", + "metadata": {}, + "outputs": [], + "source": [ + "# Set background parameter, which is used to fit the amplitude of the background:\n", + "bkg_par = Parameter(\"background_cosi\", # background parameter\n", + " 1, # initial value of parameter\n", + " min_value=0, # minimum value of parameter\n", + " max_value=5, # maximum value of parameter\n", + " delta=0.05, # initial step used by fitting engine\n", + " desc=\"Background parameter for cosi\")" + ] + }, + { + "cell_type": "markdown", + "id": "34287711-a61b-4496-bc3e-b5f2f9e02298", + "metadata": {}, + "source": [ + "We should re-run the following cell every time we set up a new fit:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "5ca19bc5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "... loading the pre-computed image response ...\n", + "--> done\n", + "CPU times: user 1min 56s, sys: 37 s, total: 2min 33s\n", + "Wall time: 2min 51s\n" + ] + } + ], + "source": [ + "%%time \n", + "\n", + "# Instantiate the COSI 3ML plugin, using combined data for the thin disk\n", + "cosi = COSILike(\"cosi\", # COSI 3ML plugin\n", + " dr = response_file, # detector response\n", + " data = data_combined_thin_disk.binned_data.project('Em', 'Phi', 'PsiChi'),# data (source+background)\n", + " bkg = bg_tot.binned_data.project('Em', 'Phi', 'PsiChi'), # background model \n", + " sc_orientation = ori, # spacecraft orientation\n", + " nuisance_param = bkg_par, # background parameter\n", + " precomputed_psr_file = psr_file) # full path to precomputed psr file in galactic coordinates (optional)\n", + "plugins = DataList(cosi)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "774aba03", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "Model summary:

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
N
Point sources1
Extended sources3
Particle sources0
\n", + "


Free parameters (2):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.e0.9994440.01.0
disk.spectrum.main.composite.F_10.00170.01.0s-1 cm-2
\n", + "


Fixed parameters (27):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valuemin_valuemax_valueunit
disk.Wide_Asymm_Gaussian_on_sphere.lon00.00.0360.0deg
disk.Wide_Asymm_Gaussian_on_sphere.lat00.0-90.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.a90.00.090.0deg
disk.Wide_Asymm_Gaussian_on_sphere.theta0.0-90.090.0deg
disk.spectrum.main.composite.mu_1511.0NoneNonekeV
disk.spectrum.main.composite.sigma_11.270.0NonekeV
disk.spectrum.main.composite.K_20.00450.01000.0keV-1 s-1 cm-2
broadBulge.Gaussian_on_sphere.lon00.00.0360.0deg
broadBulge.Gaussian_on_sphere.lat00.0-90.090.0deg
broadBulge.Gaussian_on_sphere.sigma8.70.020.0deg
broadBulge.spectrum.main.composite.F_10.000730.01.0s-1 cm-2
broadBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
broadBulge.spectrum.main.composite.sigma_10.850.0NonekeV
broadBulge.spectrum.main.composite.K_20.00270.01000.0keV-1 s-1 cm-2
narrowBulge.Gaussian_on_sphere.lon0359.750.0360.0deg
narrowBulge.Gaussian_on_sphere.lat0-1.25-90.090.0deg
narrowBulge.Gaussian_on_sphere.sigma2.50.020.0deg
narrowBulge.spectrum.main.composite.F_10.000280.01.0s-1 cm-2
narrowBulge.spectrum.main.composite.mu_1511.0NoneNonekeV
narrowBulge.spectrum.main.composite.sigma_10.850.0NonekeV
narrowBulge.spectrum.main.composite.K_20.00110.01000.0keV-1 s-1 cm-2
centralPoint.position.ra266.4049880.0360.0deg
centralPoint.position.dec-28.936178-90.090.0deg
centralPoint.spectrum.main.composite.F_10.000120.01.0s-1 cm-2
centralPoint.spectrum.main.composite.mu_1511.0NoneNonekeV
centralPoint.spectrum.main.composite.sigma_10.850.0NonekeV
centralPoint.spectrum.main.composite.K_20.000460.01000.0keV-1 s-1 cm-2
\n", + "


Properties (4):

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
valueallowed values
disk.spectrum.main.composite.dat_2OPsSpectrum.datNone
broadBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
narrowBulge.spectrum.main.composite.dat_2OPsSpectrum.datNone
centralPoint.spectrum.main.composite.dat_2OPsSpectrum.datNone
\n", + "


Linked parameters (0):

(none)

Independent variables:

(none)

Linked functions (0):

(none)
" + ], + "text/plain": [ + "Model summary:\n", + "==============\n", + "\n", + " N\n", + "Point sources 1\n", + "Extended sources 3\n", + "Particle sources 0\n", + "\n", + "Free parameters (2):\n", + "--------------------\n", + "\n", + " value min_value max_value unit\n", + "disk.Wide_Asymm_Gaussian_on_sphere.e 0.999444 0.0 1.0 \n", + "disk.spectrum.main.composite.F_1 0.0017 0.0 1.0 s-1 cm-2\n", + "\n", + "Fixed parameters (27):\n", + "---------------------\n", + "\n", + " value min_value max_value \\\n", + "disk.Wide_Asymm_Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.a 90.0 0.0 90.0 \n", + "disk.Wide_Asymm_Gaussian_on_sphere.theta 0.0 -90.0 90.0 \n", + "disk.spectrum.main.composite.mu_1 511.0 None None \n", + "disk.spectrum.main.composite.sigma_1 1.27 0.0 None \n", + "disk.spectrum.main.composite.K_2 0.0045 0.0 1000.0 \n", + "broadBulge.Gaussian_on_sphere.lon0 0.0 0.0 360.0 \n", + "broadBulge.Gaussian_on_sphere.lat0 0.0 -90.0 90.0 \n", + "broadBulge.Gaussian_on_sphere.sigma 8.7 0.0 20.0 \n", + "broadBulge.spectrum.main.composite.F_1 0.00073 0.0 1.0 \n", + "broadBulge.spectrum.main.composite.mu_1 511.0 None None \n", + "broadBulge...sigma_1 0.85 0.0 None \n", + "broadBulge.spectrum.main.composite.K_2 0.0027 0.0 1000.0 \n", + "narrowBulge.Gaussian_on_sphere.lon0 359.75 0.0 360.0 \n", + "narrowBulge.Gaussian_on_sphere.lat0 -1.25 -90.0 90.0 \n", + "narrowBulge.Gaussian_on_sphere.sigma 2.5 0.0 20.0 \n", + "narrowBulge.spectrum.main.composite.F_1 0.00028 0.0 1.0 \n", + "narrowBulge.spectrum.main.composite.mu_1 511.0 None None \n", + "narrowBulge...sigma_1 0.85 0.0 None \n", + "narrowBulge.spectrum.main.composite.K_2 0.0011 0.0 1000.0 \n", + "centralPoint.position.ra 266.404988 0.0 360.0 \n", + "centralPoint.position.dec -28.936178 -90.0 90.0 \n", + "centralPoint.spectrum.main.composite.F_1 0.00012 0.0 1.0 \n", + "centralPoint...mu_1 511.0 None None \n", + "centralPoint...sigma_1 0.85 0.0 None \n", + "centralPoint.spectrum.main.composite.K_2 0.00046 0.0 1000.0 \n", + "\n", + " unit \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lon0 deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.lat0 deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.a deg \n", + "disk.Wide_Asymm_Gaussian_on_sphere.theta deg \n", + "disk.spectrum.main.composite.mu_1 keV \n", + "disk.spectrum.main.composite.sigma_1 keV \n", + "disk.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "broadBulge.Gaussian_on_sphere.lon0 deg \n", + "broadBulge.Gaussian_on_sphere.lat0 deg \n", + "broadBulge.Gaussian_on_sphere.sigma deg \n", + "broadBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", + "broadBulge.spectrum.main.composite.mu_1 keV \n", + "broadBulge...sigma_1 keV \n", + "broadBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "narrowBulge.Gaussian_on_sphere.lon0 deg \n", + "narrowBulge.Gaussian_on_sphere.lat0 deg \n", + "narrowBulge.Gaussian_on_sphere.sigma deg \n", + "narrowBulge.spectrum.main.composite.F_1 s-1 cm-2 \n", + "narrowBulge.spectrum.main.composite.mu_1 keV \n", + "narrowBulge...sigma_1 keV \n", + "narrowBulge.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "centralPoint.position.ra deg \n", + "centralPoint.position.dec deg \n", + "centralPoint.spectrum.main.composite.F_1 s-1 cm-2 \n", + "centralPoint...mu_1 keV \n", + "centralPoint...sigma_1 keV \n", + "centralPoint.spectrum.main.composite.K_2 keV-1 s-1 cm-2 \n", + "\n", + "Properties (4):\n", + "--------------------\n", + "\n", + " value allowed values\n", + "disk.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", + "broadBulge.spectrum.main.composite.dat_2 OPsSpectrum.dat None\n", + "narrowBulge...dat_2 OPsSpectrum.dat None\n", + "centralPoint...dat_2 OPsSpectrum.dat None\n", + "\n", + "Linked parameters (0):\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Independent variables:\n", + "----------------------\n", + "\n", + "(none)\n", + "\n", + "Linked functions (0):\n", + "----------------------\n", + "\n", + "(none)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# add sources to thin disk and thick disk models \n", + "totalModel = Model(ModelDisk, ModelBroadBulge,ModelNarrowBulge,ModelCentralPoint)\n", + "totalModel.display(complete=True)" + ] + }, + { + "cell_type": "markdown", + "id": "5de3240f-7d7e-4cb4-9f23-6f976525cdf1", + "metadata": {}, + "source": [ + "Before we perform the fit, let's first change the 3ML console logging level, in order to mimimize the amount of console output." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "a9d24b46-70a6-4b3c-be9a-df701d9f26e8", + "metadata": {}, + "outputs": [], + "source": [ + "# This is a simple workaround for now to prevent a lot of output. \n", + "from threeML import update_logging_level\n", + "update_logging_level(\"CRITICAL\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c424a2e2-9bf9-457d-a54b-23d8ea30fd56", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Adding 1e-12 to each bin of the expectation to avoid log-likelihood = -inf.\n" + ] + }, + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
disk.Wide_Asymm_Gaussian_on_sphere.e(9.9985 +/- 0.0005) x 10^-1
disk.spectrum.main.composite.F_1(1.643 +/- 0.011) x 10^-31 / (cm2 s)
background_cosi(9.906 +/- 0.032) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "disk.Wide_Asymm_Gaussian_on_sphere.e (9.9985 +/- 0.0005) x 10^-1 \n", + "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (cm2 s)\n", + "background_cosi (9.906 +/- 0.032) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
" + ], + "text/plain": [ + " 1.00 -0.33 0.09\n", + "-0.33 1.00 -0.60\n", + " 0.09 -0.60 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-166772.754018
total-166772.754018
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -166772.754018\n", + "total -166772.754018" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-333547.508036
BIC-333545.508036
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -333547.508036\n", + "BIC -333545.508036" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 30min 29s, sys: 15min 41s, total: 46min 11s\n", + "Wall time: 8min 12s\n" + ] + }, + { + "data": { + "text/plain": [ + "( value negative_error \\\n", + " disk.Wide_Asymm_Gaussian_on_sphere.e 0.999853 -0.000045 \n", + " disk.spectrum.main.composite.F_1 0.001643 -0.000011 \n", + " background_cosi 0.990610 -0.003091 \n", + " \n", + " positive_error error unit \n", + " disk.Wide_Asymm_Gaussian_on_sphere.e 0.000045 0.000045 \n", + " disk.spectrum.main.composite.F_1 0.000011 0.000011 1 / (cm2 s) \n", + " background_cosi 0.003209 0.003150 ,\n", + " -log(likelihood)\n", + " cosi -166772.754018\n", + " total -166772.754018)" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time \n", + "# likelihood of data + model\n", + "like = JointLikelihood(totalModel, plugins, verbose = True)\n", + "like.fit()" + ] + }, + { + "cell_type": "markdown", + "id": "3e61859f", + "metadata": {}, + "source": [ + "## Results" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "dd097a0a", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
Best fit values:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\u001b[1;4;38;5;49mBest fit values:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
resultunit
parameter
disk.Wide_Asymm_Gaussian_on_sphere.e(9.9985 +/- 0.0005) x 10^-1
disk.spectrum.main.composite.F_1(1.643 +/- 0.011) x 10^-31 / (cm2 s)
background_cosi(9.906 +/- 0.032) x 10^-1
\n", + "
" + ], + "text/plain": [ + " result unit\n", + "parameter \n", + "disk.Wide_Asymm_Gaussian_on_sphere.e (9.9985 +/- 0.0005) x 10^-1 \n", + "disk.spectrum.main.composite.F_1 (1.643 +/- 0.011) x 10^-3 1 / (cm2 s)\n", + "background_cosi (9.906 +/- 0.032) x 10^-1 " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Correlation matrix:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mCorrelation matrix:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "
1.00-0.330.09
-0.331.00-0.60
0.09-0.601.00
" + ], + "text/plain": [ + " 1.00 -0.33 0.09\n", + "-0.33 1.00 -0.60\n", + " 0.09 -0.60 1.00" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of -log(likelihood) at the minimum:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of -\u001b[0m\u001b[1;4;38;5;49mlog\u001b[0m\u001b[1;4;38;5;49m(\u001b[0m\u001b[1;4;38;5;49mlikelihood\u001b[0m\u001b[1;4;38;5;49m)\u001b[0m\u001b[1;4;38;5;49m at the minimum:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
-log(likelihood)
cosi-166772.754018
total-166772.754018
\n", + "
" + ], + "text/plain": [ + " -log(likelihood)\n", + "cosi -166772.754018\n", + "total -166772.754018" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n",
+       "Values of statistical measures:\n",
+       "\n",
+       "
\n" + ], + "text/plain": [ + "\n", + "\u001b[1;4;38;5;49mValues of statistical measures:\u001b[0m\n", + "\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
statistical measures
AIC-333547.508036
BIC-333545.508036
\n", + "
" + ], + "text/plain": [ + " statistical measures\n", + "AIC -333547.508036\n", + "BIC -333545.508036" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# thin disk model to data\n", + "results = like.results\n", + "results.display()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "5b6c0a71", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmgAAAHOCAYAAAAsQvUnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDh0lEQVR4nOzdd3hUVfrA8e+k9x5ISCGEXk0AKdIFUUFBBF0VFaWIFRHBymJnscHi7gosICA/21oAUZoUFZCqRqWEGhIChPReZ+b+/pjMZYYUksxNfz/Pw+Nk5t5zTsYQ3jnnvO/RKYqiIIQQQgghGgy7+h6AEEIIIYSwJgGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEIIIUQDIwGaEEKUIycnh2eeeYY2bdrg6OiITqcjJiaGH3/8EZ1Ox6uvvlrfQ2xSIiIiiIiIsLkdnU7H0KFDbW5HiPomAZoQQjM6na7MH2dnZyIiIpg0aRLHjx+v0/E89NBD6HQ6zp07V+17n3/+ef75z3/SrVs3XnjhBV555RWCgoIqvH7o0KHodLpq9/Pqq6+i0+n48ccfq32vEKLpcqjvAQghmp5XXnlFfZyVlcXBgwf5+OOP+frrr9mzZw9RUVH1N7gq+vbbb+nQoQMbN260et7Ly4vjx48TEBBQTyMTQjQHEqAJITRX3vLfU089xb///W/++c9/snr16jofU3VdvHiRwYMHl3nezc2NTp061cOIhBDNiSxxCiHqxMiRIwFISUkp9/XPPvuMYcOG4evri4uLC507d+bNN9+kqKiozLU//vgjt912G6GhoTg5OREYGMj1119vFRjqdDrWrFkDQJs2bdQl12vtczIvVSqKwk8//aTeZ97XdPUetHPnzqHT6fjpp5/Ufq++pyIRERG89tprAAwbNszqXksXL17k8ccfJyIiQv1+x40bx6FDhypt/2rmMV2+fJnJkyfTsmVL3N3dueGGG9i9ezcAubm5zJo1i/DwcJydnenatStfffVVue0VFhbyj3/8g+7du+Pm5oaXlxeDBg3i888/L/d6RVH497//TdeuXXFxcSEkJIQnnniCrKysSsddnZ8NIZoKmUETQtSJ7du3A9CnT58yr02ZMoWPPvqIsLAwxo8fj7e3N/v37+fvf/87O3bsYNu2bTg6OgKwadMmbrvtNry9vRkzZgwhISGkp6dz/PhxlixZogZOr7zyCuvXr+ePP/7g6aefxsfHB0D9b0Ueeughhg4dymuvvUbr1q156KGHACoM7Hx8fHjllVdYvXo18fHxVsu71woGZ86cyfr16/npp5+YNGlSudefPXuWgQMHcunSJYYPH869997L+fPn+fLLL/n+++/58ssvGTt2bKX9WMrMzGTAgAF4enpy7733kp6ezueff87NN9/ML7/8wrRp08jKyuL222+npKSEzz//nLvvvptffvmFfv36qe0UFxczcuRIdu/eTZcuXXjiiSfIz8/nyy+/5N577+X333/n7bffLvP9fvDBBwQHB/PII4/g6OjIhg0bOHjwIMXFxTg5OZUZb3V+NoRoUhQhhNAIoADKK6+8ov555plnlIEDByo6nU4ZO3askpOTY3XPqlWrFECZMGGCUlBQYPXaK6+8ogDKokWL1OfGjRunAMrvv/9epv+UlBSrrydNmqQASlxcXI2+lyFDhpR5fteuXer3aGnIkCFKTX6lmr/HXbt2lfv6TTfdpADKggULrJ7fvXu3Ymdnp/j6+irZ2dlV6sv8/2f69OmKwWBQn//4448VQPH29lZuu+02q/8Pe/fuVQDljjvusGrrrbfeUgDltttuU0pKStTnk5KSlLCwMAVQdu/eXaadtm3bKmlpaerzBQUFSr9+/RRAad26tVUf1f3ZMH+P5f1/E6KxkQBNCKEZcwBQ3p8uXbooa9euLXNPVFSU4ujoqGRkZJR5Ta/XK/7+/krv3r3V5+68804FUE6cOHHN8TT2AO38+fNq4GIZBJndd999CqCsWbOmSn0BipubW5mATq/XKw4ODgqgnDlzpsx9bdq0USIiIqyea9u2raLT6cr9//Df//5XAZSHH35YfW7q1KkKoHz00Udlrje/p1cHaNX92TB/jxKgiaZAljiFEJpTFEV9nJeXx9GjR3nhhRd44IEHOH78OG+99RYA+fn5/PHHHwQEBPDPf/6z3LacnZ2JjY1Vv544cSLffPMNffv25Z577mHYsGHccMMNhIaG1ur3VB9+//13AAYNGoSDQ9lf1yNGjODTTz/lt99+48EHH6xSmx06dMDT09PqOXt7e1q2bEleXh6RkZFl7mnVqhUHDhxQv87JyeHMmTOEhobSoUOHcscF8Ntvv6nPmR8PGTKkzPXlfX81+dkQoimRAE0IUavc3d3p06cP33zzDaGhobzzzjs8+uijhIWFkZGRgaIopKSkqJvlr+XOO+/ku+++4/3332flypUsXboUgN69e7NgwQKGDx9em99OnTJvnq+o/lpwcLDVdVXh7e1d7vMODg6VvqbX620al/lxy5Yty1xvb2+Pv7+/1XM1+dkQoimRLE4hRJ3w8fGhY8eO6PV6dTbFHBBER0ejmLZcVPjH0ujRo9m5cycZGRns2LGDZ555hiNHjjB69Og6L4Zbm8zvT1JSUrmvX7p0yeq6ulKTcZkfX758ucz1BoOBtLS0cvuo7s+GEE2FBGhCiDqTkZEBgNFoBMDDw4OuXbty9OhR0tPTq92eu7s7N954IwsXLuSll16iqKiIzZs3q6/b29sDpgCgttW0r8rui46OBmDPnj1WM1hmu3btAqBnz57V6tNWnp6etG3blgsXLnDq1Kkqjcv82FyOxNLu3bvLfH+2/mwI0dhJgCaEqBPr168nLi4OR0dHbrjhBvX5WbNmUVxczOTJk8nMzCxzX0ZGhtVeph07dlBQUFDmOvPMjIuLi/qcedns/PnzWn0bFappX5XdFxoayk033cS5c+fK7MM6cOAAn376Kb6+vowbN65mg7bB5MmTURSFOXPmWAWXqampvPHGG+o1ZuZyJW+99ZZVwFVYWMiLL75Ybh/V/dkQoimRPWhCCM1ZFozNy8vj2LFj6szW/PnzrfYhTZ48mV9//ZUPP/yQtm3bcvPNNxMeHk56ejpxcXH8/PPPPPzww+pes2effZZz584xdOhQtXDrr7/+ys6dOwkPD+eee+5R2x4+fDjvvvsu06ZNY/z48Xh4eODj48OTTz6p+fc8fPhwvvzyS+68805uvfVWXF1dad26NQ888ECl9w0bNgw7OztefPFF/vrrL3x9fQGYO3cuAEuXLmXAgAHMmTOHbdu20bt3b7UOmp2dHatWrSqz6b8uzJ49m82bN7Nhwwauu+46Ro0apdZBS05O5rnnnmPgwIHq9QMGDOCpp57iX//6F926dWPChAlqHTRfX19135ql6v5sCNGk1G3SqBCiKaOc8hr29vZKUFCQMmbMGGXbtm0V3rtx40Zl9OjRSmBgoOLo6Ki0bNlSuf7665WXX35ZOX78uHrdF198odxzzz1Ku3btFHd3d8XT01Pp2rWr8tJLLynJycll2n3//feVTp06KU5OTuWWcqjse6lOmQ29Xq+8+OKLSps2bdSSFVUt97B27VrluuuuU1xcXNT3zVJiYqLy6KOPKuHh4Yqjo6Pi7++vjB07Vjl48GCV2r/W96QoitK6desK35uKSogUFBQob731ltK1a1fFxcVF8fDwUAYMGKB8+umn5bZjNBqVf/3rX+r/j+DgYOXxxx9XMjMzK+2/qj8b1/oehWhMdIoiOyyFEEIIIRoS2YMmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIAmhBBCCNHASIDWCBUWFnLixAkKCwvreyhCCCGEqAUSoDVC8fHxTJs2jfj4+PoeihBCCCFqgQRoQgghhBANjARoQgghhBANjARoQgghhBANjARoQgghhBANjEN9D0AIIYSoCwaDgZKSkvoehmgGHB0dsbe3t6kNCdCEEEI0ebm5uSQmJqIoSn0PRTQDOp2O0NBQPDw8atyGBGhCCCGaNIPBQGJiIm5ubgQGBqLT6ep7SKIJUxSFlJQUEhMTad++fY1n0iRAE0II0aSVlJSgKAqBgYG4urrW93BEMxAYGMi5c+coKSmpcYAmSQJCCCGaBZk5E3VFi581CdCEEEKIehAREUGnTp2Iioqic+fO3HfffeTl5dW4vdWrV3Py5MkKX9+/fz/du3cnOjqarVu3MmrUKM6cOVOle2vTuXPn+O9//1vj+1999VVmz54NwI8//oibmxtRUVH06NGDgQMH8ueff1Z6/+HDh5k4cWKV+youLq7xWKtDAjQhhBCinnz11VfExMRw7NgxsrOzWb16dY3bulaQtWbNGh588EF+//13br75ZjZt2kTbtm2rdG9tulaAptfrq9Vely5diImJ4c8//+Suu+7i4YcfrvT63r1788knn1Sp7ddee00CNCGEEKK5KCoqIi8vD19fX/W59957jz59+tCzZ09GjRrF+fPnAdi4cSM9evQgKiqKbt26sWHDBlasWMHhw4eZMWMGUVFRbNq0yar9BQsW8MUXX7B48WKioqLIzMwkIiKCI0eOXPPe8rz99tt0796d6667jn79+pGfnw/A2rVr6du3Lz179mTIkCEcOXIEMAWAN998M/feey/du3end+/enD17FoBHH32UY8eOERUVxZgxYwDT7OJbb73FsGHDmDRpEklJSQwbNoxevXrRtWtXZsyYUaWM3JtuuokTJ04AsGXLFnr27EmPHj0YMmQIx44dA0yzbr179wZMwWJAQADz5s2jV69etGvXTn0/Hn30UQBuuOEGoqKiSE5Ovmb/tpAkASGEEM3O+pf3kp9VVGvtu3k7c8dbA6553YQJE3BxcSEuLo5evXpx9913A/Dpp59y8uRJ9u3bh729PWvXruXJJ59kw4YNzJ07l6VLl3LDDTdgNBrJzs7Gx8eH//u//2P27NncdtttZfp54YUXiI2NpXfv3jz55JNWr02dOrXSe6+2Zs0a1q9fz969e/Hy8iIjIwNnZ2f27t3L559/zs8//4yzszO7d+9m4sSJ/PHHHwAcOHCAP/74g9atW/PCCy/w9ttvs2zZMpYuXcrs2bM5fPiwVT8JCQns3LkTnU5HYWEhGzduxMPDA4PBwNixY/n666+ZMGFCpWP9/PPP6dWrF8nJydx///3s2rWL7t2788knn3D33XerAaSltLQ0evXqxeuvv86WLVt4+umnGTVqFEuXLmXZsmX88ssvNpXPqCoJ0IQQQjQ7+VlF5KfXXoBWVV999RXdunVDr9czffp0nn/+ed5//33Wr1/P4cOH6dWrF2AqFWLOBhw+fDgzZ85kwoQJjBw5kqioqDod83fffcdjjz2Gl5cXgDrrt2HDBv744w/69u2rXpuSkqIuCQ4cOJDWrVsD0L9/f/71r39V2s/DDz+sbrY3Go08//zz7NmzB0VRSE5OJioqqtwAzTwbB9ChQwfWrFnDgQMHiIqKonv37gBMnDiRJ554gkuXLpW5393dnbFjx6rjNO/Tq2sSoAkhhGh23LydG1T7Dg4OjB8/njlz5vD++++jKApz585l8uTJZa5duHAhR48eZdeuXUyaNImJEyfy3HPPaTX0GlMUhcmTJ/P666+X+7qLi4v62N7e/pp7yyxnqRYuXEhaWhoHDhzAxcWFWbNmUVhYWO59Xbp0KTMb9+eff5abWVnec1eP02AwVDrO2iIBmhBCNFH5BQUcOXWK/IJCPNzd8ffxpnWrVtjZyfbjqiw/1rWdO3fSsWNHAMaMGcPixYu544478PPzo6SkhCNHjhAdHU1sbCxdu3ala9euODg4sG3bNgC8vLzIysqqUd9X33vhwgWGDx9ObGxsmWvHjBnDhx9+yB133IGXlxeZmZl4enpy++238+CDDzJt2jTCwsIwGo389ttv6v6uqvZdnoyMDIKCgnBxceHy5ct8+eWX/O1vf6vy99e/f3+mTJnC8ePH6dy5M59//jmhoaEEBQWV+z1WxNPTk6ysLFniFEIIUTOpGRls+ulncks3b5t5eXjQs0tnOkVGSqDWAJj3oJWUlBAREcHSpUsBeOCBB0hLS2Po0KHodDr0ej1TpkwhOjqaF198kZMnT+Lk5ISbmxtLliwB4JFHHuHZZ5/l3XffZf78+YwaNarK47j63sDAQBwcyg8RHnjgAS5evEj//v1xdHTEzc2N7du3M3jwYObPn8/YsWPVc09Hjx59zQCtR48edOzYkW7duhEZGcm3335b5poZM2Zw1113ERUVRUhICCNGjKjy9wamwrFr165l4sSJGAwGfHx8+N///letNgCeffZZbrzxRlxdXdm2bRstWrSodhtVpVPkYLJG58SJE0ybNo3ly5ern7aEEMIsMSmJzT/vpqSSJaROkW24sV+/OhxV/SksLCQuLo42bdpYLV+Jii1cuJAWLVpw//331/dQGiUtfuZkBk0IIZqQ4pIStv+yTw3OWvj7MyA6mryCAo6dOUNiUhIAsWfjCA9uRbvW4fU5XNFAzZo1q76H0OxJgCaEEE3I78eOk1+6eTo0qCWjBg9Wl6ratQ4n9uxZdu4/AMBPhw4RHBiAu5tbvY1XCFE+2YAghBBNRE5eHjGlG57t7OwYcv31ZfYRdWzThrbhplmzouJidh08VOfjFEJcmwRoQgjRROyP+UMtCdC9Q3u8PT3LXKPT6RhyfW/cXF0BSLh4kZT09DodpxDi2hrdEmd+fj4rVqxg165d5OTkEB4ezsSJExk+fPg1783IyGDJkiXs27ePwsJC2rVrx9SpU9VCgJYOHz7MypUrOX36NC4uLvTv35/HHnvM6hgOMJ0RtnbtWjZv3kxaWhrBwcGMGzeO8ePHW1330UcflXvGmpOTE9u3b6/emyCEEFfJzs3lVHw8AC7OTvTu1q3Ca12cnendrSs/HzLVijpy6hTDLIqLCiHqX6ML0ObOnUtsbCzTp08nLCyM7du389prr2E0GrnpppsqvK+4uJiZM2eSm5vLU089ha+vL+vWrWP27NksWrTIqhJzTEwMc+bMoX///syfP5+MjAyWLVvGzJkzWb58OU5OTuq1CxcuZNu2bUyZMoVOnTpx8OBBPvjgA/Lz83nggQfKjOO9997D3d1d/bq8InlCCFFdJ+LOqY97dOyIs8XvqfJ0jIhgf8wfFJeUcPJcPP2jonBxrt3irUKIqmtUAdq+ffs4fPgw8+bNU2ug9OzZk6SkJJYsWcKNN96oHoVxte+//564uDg+/PBDupV+soyOjmby5MksWbKEZcuWqdd++OGHhIWF8frrr6v7N4KDg3niiSfYtGkTd9xxBwBxcXF8//33TJs2jXvvvVdtMzs7m48//pixY8eqR2GYdejQAR8fHy3fFiFEM6coCidKD54G0z6za3F0dKRTZBv+PHESg8HA8bNnie7cuTaHKYSohka1B2337t24uroydOhQq+dHjRpFamqqejJ9RfeGh4erwRmYjtYYOXIkx48fJyUlBTCdGxYbG8vIkSOtNtd2796dsLAwfv75Z6s2FUXh1ltvterr1ltvpaioiAMHDtjy7QohRJVcTE4hOy8PgNCgIDwtZukr0619e/Xx0ZOnMBqNtTI+Ub6IiAg6depEVFQUnTt35r777iOv9P9jTaxevZqTJ09W+Pr+/fvp3r070dHRbN26lVGjRqnnTF7r3sZi6NChREZGEhUVRbdu3Rg1ahSXL1++5n3nzp0jICCgDkZYdY0qQIuLi6N169ZlspLatm2rvl6Rs2fPqtdVdq/5vxVda9lHXFwcPj4++Pv7V3k8Dz30EEOHDmXs2LG89dZbVfrBEUKIypyIuzJ71jny2rNnZj5eXoQFBwGQnZfHxeRkzccmKvfVV18RExPDsWPHyM7OLnevclVdK8has2YNDz74IL///js333wzmzZtUv+9qusAzWg0lvlAcK2zOavqgw8+ICYmhiNHjhAREcF7772nSbt1rVEFaFlZWWWWDMF0NhZAdnZ2hfdmZ2er11V2r/k8sIr6seyjovG4urri6OhodbZYSEgI06ZN44UXXmDhwoXcfffd7Nu3j+nTp6uzdxVJTU3lxIkT6p/40o3AQghRUlLC6YTzADg5OtImNLRa93eKjFQfxyVe0HRsouqKiorIy8uzSkR777336NOnDz179mTUqFGcP2/6/7xx40Z69OihzhJt2LCBFStWcPjwYWbMmEFUVBSbNm2yan/BggV88cUXLF68mKioKDIzM4mIiODIkSPXvPdqq1ev5uabb+bee++le/fu9O7dm7OlS+xJSUkMGzaMXr160bVrV2bMmIH5wKJXX32VBx54gDvvvJOoqCj27dtHQEAAr7/+OoMGDeJf//oXp0+fZsSIEer3t379egCWLVvG9OnTgSsHn//www8A/P3vf+eNN94oM069Xk9OTo76nv74449Wx06ZA7jyfP3113Tq1Ino6GjefPNNdDodubm5ABw6dIgbb7yR3r1707NnT77++utK36+aalR70MC2TfWV3Xv1axVdW53+La+9+eabrV7r2bMn0dHRPP7443z66ac8/fTTFbbz7bff2vSpSgjRdJ27cFGdeWhXzgrDtYQHB2NnZ4fRaCQuMZGBvXo2i+Sle48vJLUkp9baD3D05LPO167Gbz6LMy4ujl69enH33XcD8Omnn3Ly5En27duHvb09a9eu5cknn2TDhg3MnTuXpUuXcsMNN2A0GsnOzsbHx4f/+7//Y/bs2dx2221l+nnhhReIjY2ld+/ePPnkk1avTZ06tdJ7y3PgwAH++OMPWrduzQsvvMDbb7/NsmXL8PHxYePGjXh4eGAwGBg7dixff/01EyZMAGDXrl389ttvtGjRgnPnzpGWlka7du2YN28eAH379mXKlCk88sgjnDp1in79+tGrVy9uuukm3n77bQB27NhB//792bFjBzfddBPbt29n4cKF6thmzJjB3LlzuXDhAsHBwfz73/+u0vdklpyczCOPPML+/ftp3749//znP9XXMjMzmT59Ot9//z3BwcGkpqbSq1cvBgwYQFBQULX6uZZGFaB5e3uXe+J9To7pL1l5s1lmXl5e5c6wme81z6R5e3sDVNiP5Syct7c3p0+fLnNdQUEBJSUllY4HoEuXLoSGhla6dw5gzJgxDBgwQP06Pj6eN998s9J7hBDNQ8Kli+rjduFh1b7f2cmJVi1akJiURG5+PmmZmQRcVU6oKUotySG5pOzv+br21Vdf0a1bN/R6PdOnT+f555/n/fffZ/369Rw+fFgtA2UwGNQkuOHDhzNz5kwmTJjAyJEjraoQ1JWBAwfSunVrAPr378+//vUvwLR0+fzzz7Nnzx4URSE5OZmoqCg1QLvtttusDhh3cXFRk+xycnKIiYlhypQpALRv356BAweyZ88e9ZqzZ8+yfft2/vGPfzBnzhyys7M5efIk119/vdrmBx98wG233YaiKLz66qtMnjy5WrNc+/fvp2fPnrQv3aP58MMP88wzzwDwyy+/cPbsWau954qicOLEieYdoEVGRrJ9+3b0er3Vp0Tz1GqbSjKXIiMj1c2QlszPRZZO85vbOHv2LP3797e69uzZs1Z9REZGsmPHDtLS0qz2oVVlPJbs7CpfaQ4ICGhwmxeFEPVPURQSLl4CwNHBgeDAwBq10yY0RD2jMy7xQrMI0AIcy255qc/2HRwcGD9+PHPmzOH9999HURTmzp3L5MmTy1y7cOFCjh49yq5du5g0aRITJ07kueee02roVWJ5ALi9vb06i7tw4ULS0tI4cOAALi4uzJo1i8LSo8cAPDw8rNpxd3dXZ2zNS6EVrWgNHz6czZs3c/r0aYYMGYLRaOTrr79m4MCB5c4c63Q6/va3v6l70BwcHNRCzoDVuCwpilLhLLKiKPTo0cMqYbC2NKoAbdCgQWzcuJGffvrJqjDtli1bCAgIoEuXLhXeO3jwYBYuXMixY8fU6/R6PT/88ANdunRRA6DAwEA6d+7Mtm3buOeee9RPLEePHiUhIYG77rpLbXPgwIGsWLGCLVu2MHHiRPX5zZs34+zsTN9rFH48evQoiYmJZYraCiFEVSSnp1NQVASYsjcrKjN0LREhIew+/CsA5xITub57xUVum4qqLD/WtZ07d9KxY0fAtHKyePFi7rjjDvz8/CgpKeHIkSNER0cTGxtL165d6dq1Kw4ODmzbtg0wrRSVt/pTFVffe+HCBYYPH05s6dFhVZWRkUFQUBAuLi5cvnyZL7/8kr/97W9VHkNUVBRr1qzh4Ycf5syZM+zdu1ddohwxYgTPP/88gwcPBmDYsGG89tprPPvssxW2uWPHDvU9bdOmDXFxceqkytq1a8u9p1+/fkyePJnTp0/Trl071qxZo752ww03cOrUKXbu3MmNN94ImGqndunSxapGqhYaVYDWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dq/5yWrBgAVu3buWzzz5TpxxHjRrFunXrmDdvHtOnT1cL1SYkJLBo0SKrfh599FFmzZrFvHnzGDdunFqotk2bNlbTmm3atGH06NGsWrUKOzs7OnfuzKFDh9i4cSNTp061WuJ8+OGHGTlyJK1bt8bJyYnjx4/z2Wef4efnp07dCiFEdZhnzwDCWwXXuB1Pd3cCfH1JzcggJSOD3Px8POQA9Tph3oNWUlJCREQES5cuBeCBBx4gLS2NoUOHotPp0Ov1TJkyhejoaF588UVOnjyJk5MTbm5uLFmyBIBHHnmEZ599lnfffZf58+czatSoKo/j6nsDAwOrvZ8RTPu/7rrrLqKioggJCVFrllbVJ598wvTp0/nnP/+JTqdjxYoVhIWZlu6HDx9OQkKC2uZNN93Ee++9V6YP8x40o9GIr6+vGmCFhIQwe/ZsevfuTUREhBroXa1ly5YsXbqU0aNH4+/vz+23346joyNubm7Y2dmxceNG5syZwzPPPENJSQnh4eFqMoOWdIp5TrGRyM/PZ/ny5VZHPd1///1WM2rz589ny5YtfPHFFwQHX/mllZ6ebnXUU/v27ZkyZYpVVofZoUOH+Oijjzh16pR61NPjjz9e7lFPH3/8MZs3byY9PZ2goCDuvPPOMrNir732GrGxsaSnp1NSUkJAQAB9+/Zl0qRJ1V6+PHHiBNOmTWP58uXqJwMhRPPz9dZtXE5LA+CBsWOqXP+sPIf++otDfx0BYPD1va1qpDV2hYWFxMXF0aZNG6ulOVGxhQsX0qJFC+6///76Hkq9sNxzvmrVKlauXMmePXuqfL8WP3ONLkATEqAJIaCgsIhV33wDgJ+3N/eMrvpsSXmS09P5astWANqGhXHzoIE2j7GhkABNVNdbb73Fl19+iV6vx8/Pj2XLltG5GidtaPEz16iWOIUQQpicv3RlebN1q1Y2txfg44OToyPFJSVcTEmudKO0EE3dyy+/zMsvv1yvY2hUhWqFEEKYJF5OUh/bsv/MzM7OjqDSLNCCwiIys2uvRpgQ4tokQBNCiEboUrLpBBI7OztaalSGJ6TFlTIdcuyTEPVLAjQhhGhk8gsKyCo9dqalvz8ONSyvcbVgiwKiEqAJUb8kQBNCiEbmksX5vUGB2hWxDvTzU0srXExORnLIhKg/EqAJIUQjYxmgtQpsUcmV1WNvZ0dQ6XJpXkEB2aWzdKJ2RERE0KlTJ6KioujcuTP33XcfeXl5NW5v9erVnDx5ssLX9+/fT/fu3YmOjmbr1q2MGjVKPU3nWvde3Y/56Ka68uqrrzJ79my1fx8fH6KiooiKiuK6665jw4YNVWpn6NChfPfdd7U5VM1IgCaEEI2Mef8ZaDuDBtDKah9aSiVXCi189dVXxMTEcOzYMbKzs1m9enWN27pWkLVmzRoefPBBfv/9d26++WY2bdpE27Ztq3RvTVkeraSlESNGEBMTQ0xMDMuXL2fq1Km10k99kgBNCCEakeKSElIzMwHw9/HBWePjZVrJPrR6UVRURF5enlUx9Pfee48+ffrQs2dPRo0axfnz5wHYuHEjPXr0ICoqim7durFhwwZWrFjB4cOHmTFjBlFRUWzatMmq/QULFvDFF1+wePFioqKiyMzMJCIigiNHjlzz3vJkZWUxfvx4oqKiGDJkCAkJCYAp0Lvlllt48MEH6d27NwcPHmTLli307NmTHj16MGTIEI4dOwZAUlISw4YNo1evXnTt2pUZM2aoy+pZWVlMmDCBLl26cPPNN3P69OkKx5Kenm71vpm/L7PevXvz448/lrnPfJxV165due2227jtttvUY6VycnKYNm0affr0oUePHjz66KOUlJRc833RktRBE0KIRuRyaqr6j1hND0evTEt/f+zs7DAajVxOTdW8/YbiwRmvkJZRs3Mrq8Lf15uPP3jtmteZj3qKi4ujV69e3H333QB8+umnnDx5kn379mFvb8/atWt58skn2bBhA3PnzmXp0qXccMMNGI1GsrOz8fHx4f/+7/+YPXs2t912W5l+XnjhBWJjY+nduzdPPvmk1WtTp06t9N7y7Nmzh5iYGDp27Mg777zDo48+qgZ2e/bs4ffff6d9+/YkJyfTpUsXdu3aRffu3fnkk0+4++67OXLkCD4+PmzcuBEPDw8MBgNjx47l66+/ZsKECbz++ut4eXlx7NgxUlNT6dmzp/reAGzfvp2oqCjy8/O5cOECX3zxRZXGbWnGjBkMGzaMuXPnkpCQQLdu3bjlllsAePbZZxk8eDDLly9HURSmTZvGv//9b5555plq91NTEqAJIUQjYrn/LFjj5U0Ae3t7Anx9SU5LIzMnh6LiYs1n6RqCtIwsktMy6nsYfPXVV3Tr1g29Xs/06dN5/vnnef/991m/fj2HDx+mV69egGmp0Hze9PDhw5k5cyYTJkxg5MiRREVF1fm4Bw4cqJ5k88gjj/DKK6+oHxwGDhxI+9Kjwg4cOEBUVBTdu3cHYOLEiTzxxBNcunQJb29vnn/+efbs2YOiKCQnJxMVFcWECRPYtWsX//rXvwAICAjgzjvvtOp/xIgRfPXVVwAcOXKEESNG8Ntvv9GqGkWbd+3axQcffABAeHi41ZGR69evZ//+/bz//vsAFBQUaH4Y+rVIgCaEEI2IVYDWQrsEAUst/PxILj3jMyU9ndCgoFrppz75+3o3qPYdHBwYP348c+bM4f3330dRFObOncvkyZPLXLtw4UKOHj3Krl27mDRpEhMnTuS5557Taug28/DwUB9XdCKFTqdj4cKFpKWlceDAAVxcXJg1axaFhYXqfVXVrVs3wsPD2bt3L3fddRcODg5We9/MbZanotMyFEVh/fr1REZGVnkcWpMATQghGglFUUhOSwfAw80NDze3Wumnhb8fnDI9Tm6iAVpVlh/r2s6dO9VZqTFjxrB48WLuuOMO/Pz8KCkp4ciRI0RHRxMbG0vXrl3p2rUrDg4ObNu2DQAvLy+ysmq2bHv1veb9WbGxseVev3fvXk6ePEmHDh1YsWIFN954Y7nBTv/+/ZkyZQrHjx+nc+fOfP7554SGhhIUFERGRgZBQUG4uLhw+fJlvvzyS/72t78BplnCVatWMWDAANLT01m3bh133XVXuWNJTEzk1KlTdOjQAYC2bdty4MABrrvuOg4ePMiJEyfKvW/o0KGsXr2al156ifPnz7Nz5051Fm3MmDEsWLCADz/8EAcHBzIyMkhLS6Ndu3ZVf1NtJAGaEEI0EpnZOZTo9UBpEFVLWvj5q4/NAaGoHeY9aCUlJURERLB06VIAHnjgAdLS0hg6dCg6nQ69Xs+UKVOIjo7mxRdf5OTJkzg5OeHm5saSJUsA01Ljs88+y7vvvsv8+fMZNWpUlcdx9b2BgYFqTbzyDBkyhFdffZVjx47h7e3Nxx9/XO51gYGBrF27lokTJ2IwGPDx8eF///sfYNoDdtdddxEVFUVISAgjRoxQ7/v73//O5MmT6dKlC61bt+amm26yate8B01RFPR6PfPnz+e6664DTAedT5o0iZUrV9KzZ0+6du1a7tgWL17Mgw8+yBdffEGHDh0YMGAA3t6mmc9//vOfPP/880RFRWFnZ4ejoyNvv/12nQZoOkUqETY6J06cYNq0aSxfvlz9tCWEaPpOxMWxY99+APpe14NeFfzDYyuj0ciKr75Gr9fj4ebGg3eMrZV+6kphYSFxcXG0adMGFxeX+h5Oo7Bw4UJatGjB/fffX99DqTUFBQU4Ojri4ODApUuXuP7669mxY4cm/65q8TMnM2hCCNFIpKRfmc1q4Vd7M2h2dna08PPlYnIKufn55BcW4iaBTbMya9as+h5CrTt16hQPPvggiqJQUlLCK6+80qAmPSRAE0KIRiLZIkALrMUAzdS+v1qoNjktjYiQkFrtT4i61qNHD2JiYup7GBWSQrVCCNEIGI1GUtNNZSG8PDxwcXau1f4s97jJPjQh6p4EaEII0QhkZGejLy0dUNuzZwAt/C0SBdIlQBOirkmAJoQQjYDlLFZt7j8z83J3VwvUpqSlVasulRDCdhKgCSFEI2CVIFCLJTbMdDqdOlNXUFREfkFBrfcphLiiRkkCWlTWnTlzJjNmzLC5HSGEaA7qMkHALMDXh8SkJABSMzNxr6XCuEKIsmo0g3bu3DkyMjJQFKVGf+Lj48nMzNT4WxFCiKbJYDSSlmFKEPDx8sTJ0bFO+vX38VEfp8nvbM1FRETQqVMnoqKi6Ny5M/fddx95eXk1bm/16tWcPHmywtf3799P9+7diY6OZuvWrYwaNYozZ85U6d5r9TthwgQAvv32W+bMmVPp9a+++iqzZ8+uUV/NSY3LbDzzzDPMmzevRvfa2cnKqhBCVFVGVhYGoxGAQN+6mT2DqwK0jMw667c5MR+WrigKt99+O6tXr+aJJ56oUVurV68mICBAPfLoamvWrOHBBx9UA6ibb765yvdW1ZgxYxgzZoxNbQgTiZSEEKKBs5y98vf1qbN+fb281A/UMoNWu4qKisjLy8PX11d97r333qNPnz707NmTUaNGcf78eQA2btxIjx49iIqKolu3bmzYsIEVK1Zw+PBhZsyYQVRUFJs2bbJqf8GCBXzxxRcsXryYqKgoMjMziYiI4MiRI9e892rFxcVMnz6dDh06MGzYMA4cOKC+ZjmbdurUKQYMGMB1111H9+7dmTt3bpm2jh07Rvfu3dm8eXON37umqkYzaKdOncLPhj0Qtt4vhBDNiWVwFGAxq1Xb7O3t8fXyIi0zUy3z4WBvX2f916Yvt2yt1cQHN1dX7rrl5mteZz6LMy4ujl69enH33XcD8Omnn3Ly5En27duHvb09a9eu5cknn2TDhg3MnTuXpUuXcsMNN2A0GsnOzsbHx4f/+7//Y/bs2dx2221l+nnhhReIjY2ld+/ePPnkk1avTZ06tdJ7r7Zs2TLi4uI4evQoJSUlDB48mIiIiDLX/fvf/2b06NG89NJLAKRfVa5l586dPPXUU3zyySdERUVds9/mpkYBWtu2bW3q1Nb7hRCiOUm1WF70t5hhqQv+Pj6kZWaiKAoZWVl1lqBQ2/ILCshrAJmp5iVOvV7P9OnTef7553n//fdZv349hw8fplevXgAYDAbsS4Pj4cOHM3PmTCZMmMDIkSPrPLjZtWsXkyZNwtHREUdHR+6//3727NlT5rrBgwczZ84c8vLyGDJkiNVh6D/88AObNm1i69athIWF1eXwGw1Z4hRCiAbOPIPm4uxc52diWi6pNqVlTjdXV9xr8Y+bq2u1xuPg4MD48ePZsmULAIqiMHfuXGJiYoiJieGvv/5SjyVauHAhq1atws3NjUmTJvHOO+9o/fZUqqo18caPH8/evXvp2LEj//73v61m59q3b4+iKBw8eLC2htnoyVmcQgjRgOUXFFBQWAiYljd1Ol2d9h/QRBMFqrL8WNd27typHtY9ZswYFi9ezB133IGfnx8lJSUcOXKE6OhoYmNj6dq1K127dsXBwYFt27YB4OXlRVZWVo36vvreCxcuMHz4cGJjY8tcO3z4cNauXcvf/vY3SkpK+PTTTwkPDy9z3alTp4iMjOTBBx+kT58+3HDDDeprERERfPDBB9xyyy3k5eXx4IMP1mjcTZmmAVpGRgYbN26UN1oIITSSapkgUIf7z8rrsynNoDUU5j1oJSUlREREsHTpUgAeeOAB0tLSGDp0KDqdDr1ez5QpU4iOjubFF1/k5MmTODk54ebmxpIlSwB45JFHePbZZ3n33XeZP38+o0aNqvI4rr43MDAQB4fyQ4RHHnmEP//8ky5duhAaGsqgQYOIj48vc92XX37JJ598gpOTE4qiqN+bWatWrdi5cye33HILubm5PP7441Ueb3OgUzQ8v+OPP/6gZ8+eGErPixO148SJE0ybNo3ly5ern7aEEE3T78ePs+/3GABu7NeXThoUCq+uVd+so6CwEBdnZx6+c1ydz+LZqrCwkLi4ONq0aYNLHS8RN1YLFy6kRYsW3H///fU9lEZJi5+5as2gJSQkVPr6xYsXazQIIYQQ5bNcVgyo4wQBM38f04kChUVF5BcW4l7N/VWi8Zk1a1Z9D6HZq1aAFhERUeknJ0VRGt0nKyGEaMjMy4p2Oh2+Xl71MgZzgAamgFECNCFqX7UCNF9fX+bPn8/QoUPLff348eOMHz9ei3EJIUSzZzAYyMjOBsDHy0sts1DX/H281ccZ2VmEtwqul3EI0ZxUK0Dr1asXKSkpFe57KiwsrHL6rRBCiMplZGdjLD3iqS5PELiar9eVAC09K7vexmEr+fdJ1BUtftaqFaA99thjlR7kGh4ezqpVq2welBBCiPo7QeBqvt5XllYzaljGoT45Ojqi0+lISUkhMDBQtuKIWqUoCikpKeh0OhwdHWvcTrUCtHHjxlX6uq+vL5MmTarxYIQQQlyRbhEM+Xn71Ns4nBwd8XBzIzc/n4ysrEa339je3p7Q0FASExM5d+5cfQ9HNAM6nY7Q0FCbtiVIoVohhGigMiyWE/0s9oHVB19vL3Lz8ykqKWmUmZweHh60b9+ekpKS+h6KaAYcHR1t3jNqc4Bmb29PXFxcuVWEhRBC1Jx5Bs3BwQEPN7d6HYuflzfnL5kyOTOyshpdgAamf6/qK9FCiOqy+SxO2XQphBDaK9Hryc7NBcDPy6velxR9vZtGooAQjYUcli6EEA2QubwG1P/yJjT+RAEhGhsJ0IQQogFKz7wSBFnOXtUXyzFkZEuAJkRtkwBNCCEaoAyrDM76D9BcnJxwK913JkucQtQ+CdCEEKIBSm9gARqY9sIBFBYVUVBYWM+jEaJpkwBNCCEaIHOA5tgAMjjNJFFAiLojAZoQQjQwJSUl5JSe2uLn7V3vGZxmkiggRN2xOUB7+eWX8anHI0iEEKKpsczgbAgJAmZ+kiggRJ2pcaFavV6Pg4MDb7zxhpbjEUKIZs96/5lXJVfWLR9PT/VxRnZOPY5EiKavxjNorVq1Yvbs2Rw/flzL8QghRLPXEBMEAFxdXHAqPfw5M1v2oAlRm2ocoGVlZbFw4UK6devGDTfcwMqVK8ktrXothBCi5izP4GxIS5w6nQ6f0kzO3Px89Hp9PY9IiKarxgHapUuXWLRoEd27d2f//v088sgjBAcHM2XKFPbs2aPlGIUQolkxz041hDM4r2a5zJmZI8ucQtSWGgdofn5+PP3008TExHD48GEee+wxnJycWLVqFUOGDKFz5868++67XL58WcvxCiFEk6Y3GMguzeD09fRsMBmcZuYZNJAATYjapEmZjZ49e/Lvf/+bS5cu8emnnzJ8+HBOnTrFCy+8QFhYGOPGjeO7777DaDRq0Z0QQjRZWTk5KIoCgE8DShAw8/WymEGTfWhC1BpN66A5OTlxzz33sG3bNs6dO8err75KWFgYGzZsYOzYsYSFhWnZnRBCNDmWQY+vV8ML0Kxm0CSTU4haU2uFakNDQ/n73//Opk2bGDBgAIqikJSUVFvdCSFEk2CVIODVcBIEzLw9PNTHMoMmRO2pcR20yuTl5fG///2Pjz76iF9++QVFUXBzc2PChAm10Z0QQjQZGQ18Bs3BwQFPd3dy8vLILF2ObWj75IRoCjQN0Hbv3s1HH33EV199RX5+PoqicP311zNlyhTuvfdePC2yf2oqPz+fFStWsGvXLnJycggPD2fixIkMHz78mvdmZGSwZMkS9u3bR2FhIe3atWPq1Kn06tWrzLWHDx9m5cqVnD59GhcXF/r3789jjz2Gr6+v1XV6vZ61a9eyefNm0tLSCA4OZty4cYwfP77Ssbzxxhv88MMP9O/fn7fffrt6b4IQoskyz0rpdDq8PT2ucXX98PHyJCcvj+KSEgoKC3Fzda3vIQnR5NgcoF24cIE1a9awevVqzpw5g6Io+Pv7M3XqVKZMmUK3bt20GKdq7ty5xMbGMn36dMLCwti+fTuvvfYaRqORm266qcL7iouLmTlzJrm5uTz11FP4+vqybt06Zs+ezaJFi4iKilKvjYmJYc6cOfTv35/58+eTkZHBsmXLmDlzJsuXL8fJyUm9duHChWzbto0pU6bQqVMnDh48yAcffEB+fj4PPPBAuWPZt28fe/bswd3dXbP3RQjR+CmKos6geXl4YG9vX88jKp+PpxfnL5m2rGRk50iAJkQtqHGA9r///Y9Vq1axfft2DAYDdnZ2jBw5ksmTJ3PHHXfgWFptWkv79u3j8OHDzJs3jxEjRgCmDNKkpCSWLFnCjTfeWOEvtO+//564uDg+/PBDNWiMjo5m8uTJLFmyhGXLlqnXfvjhh4SFhfH666/j4GB6i4KDg3niiSfYtGkTd9xxBwBxcXF8//33TJs2jXvvvVdtMzs7m48//pixY8fiddUSRW5uLu+99x5Tpkzhq6++0vT9EUI0brn5+egNBqBhLm+a+VqV2sgmpGWLehyNEE1TjZME7rnnHrZu3UpYWBivvfYa586dY/Pmzdx11121EpyBaQnV1dWVoUOHWj0/atQoUlNTOXbsWKX3hoeHW83oOTg4MHLkSI4fP05KSgoAKSkpxMbGMnLkSDU4A+jevTthYWH8/PPPVm0qisKtt95q1dett95KUVERBw4cKDOO//znP/j7+19zCVQI0fxYJwg03ADNR0ptCFHrajyDds899zBlypQq7f3SSlxcHK1bt7YKnADatm2rvt69e/dy7z179izXXXddmect7w0MDCQuLs7q+auv/euvv6zG4+Pjg7+/f4VtWjp8+DBbt27lv//9b4NduhBC1B/LBAGfBh2gSakNIWpbjQO0Tz/9VMtxVElWVhatWrUq87w5+SC7kk9y2dnZ5SYpXH1vVukhxVcvTZqvtewjKyur3OtcXV1xdHRU2wJTcsM777zDPffcQ7t27SocZ3lSU1NJS0tTv46Pj6/W/UKIxsGqBloDLFJr5u7qioO9PXqDgaxcCdCEqA2aZXHq9Xr+9a9/8dlnnxEbG0u+xUG6MTEx/Pe//2XmzJl06NDBpn5sSeeu7N6rX6vo2ur0b3ntsmXLcHBwYNKkSVW+3+zbb79l9erV1b5PCNG4NJYZNFOGqSdpmZlk5+ZhNBqxs6u1sppCNEuaBGgFBQWMHDmSX375hYCAALy8vMgrPUsOoE2bNqxatQo/Pz/efPPNGvfj7e1tNStlllN6Hlx5s1lmXl5e5c6wme81z6R5e5sKQ1bUj+UsnLe3N6dPny5zXUFBASUlJep4jh07xvr163nzzTcpLi6muLgYAKPRiMFgICcnB2dnZ6vsUEtjxoxhwIAB6tfx8fE2vY9CiIYpq/T3kauLMy4V/D5oKLw9PUjLzMRoNJKbn4+XR8MsCSJEY6XJR5758+ezd+9e/vGPf5CUlMTUqVOtXvf29mbIkCFs3brVpn4iIyOJj49XZ+bMzp49C5gCwcruPXPmTJnnzc9FRkZatWFu8+p+LPuIjIwkMzPTavmxvPHEx8ejKAovv/wyo0ePVv8kJydz8OBBRo8ezfr16ysce0BAAB07dlT/tG7dusJrhRCNk16vJ6+gAAAvD9trRtY2b4sxZsmh6UJoTpMA7YsvvmDo0KE899xz6HS6cpcBIyMjSUhIsKmfQYMGUVBQwE8//WT1/JYtWwgICKBLly4V3jt48GASEhKsMj31ej0//PADXbp0ISAgAIDAwEA6d+7Mtm3bMJSmuwMcPXqUhIQEhgwZoj43cOBAdDodW7Zssepr8+bNODs707dvXwD69OnD4sWLy/zx8/Oja9euLF68uExmqhCiecnOvbLq4N0IZqMsi+hm5ebW40iEaJo0WeJMSEhg3LhxlV7j5eVV7rJhdfTr14/evXuzcOFC8vPzCQkJYceOHRw4cIC5c+eqmZELFixg69atfPbZZwQFBQGmUhzr1q1j3rx5TJ8+XS1Um5CQwKJFi6z6efTRR5k1axbz5s1j3LhxaqHaNm3aWJXUaNOmDaNHj2bVqlXY2dnRuXNnDh06xMaNG5k6daq6xOnv718m0xNMh8t7eXkRHR1t0/sihGj8si2CnMawXOjtKTNoQtQmTQI0T09PtY5YRc6cOUNgYKDNfb355pssX76clStXqkc9vfLKK1blPsx7uxRFUZ9zcnJi0aJFLFmyhMWLF1NYWEj79u159913rU4RAFOx2XfeeYePPvqIF154QT3q6fHHHy+zT2zWrFkEBATwzTffkJ6eTlBQEDNmzJA6Z0KIarHMhmyoRzxZsg7QZAZNCK3pFMsopoZuv/129u/fz+nTp/H29ua1117j9ddfV5cIExMT6dixI3fccQeffPKJzYNu7k6cOMG0adNYvnw5HTt2rO/hCCE0sPvwYf46eQqAcTeNIFiDD7S1SVEU/vu/LzEYDPh6eXHvbaPre0hCNCma7EGbM2cO6enpjBgxgl9++UXdxJ+fn8+OHTsYOXIkJSUlzJo1S4vuhBCiybGchWoMe9B0Op06zqzcXIxGYz2PSIimRZMlzsGDB/Of//yHGTNmMGjQIPV5c0kKe3t7PvzwQ3r16qVFd0II0eRk55kCNAd7e1xdXOp5NFXj7elBelYWRqORvIICPN3d63tIQjQZmhWqffTRRxkyZAhLly7lwIEDpKen4+XlRd++fXn88cfp2rWrVl0JIUSTYjQa1SxOLw8Pmwpy16WrEwUkQBNCO5oFaACdO3dm8eLFWjYphBBNXl5BgbpE2BgSBMysa6HlEhpUj4MRoomp07M5ZI+CEEKU1dhKbJhZ10KTUhtCaEmTAG3FihXXvMZgMHDfffdp0Z0QQjQploVevRvBKQJmUmpDiNqjSYD22GOPsWHDhgpfVxSFiRMn8uWXX2rRnRBCNCnZOZYzaI1nH5e7q6t6SLoUqxVCW5oEaP369ePee+9l9+7dZV4zB2f/+9//ePTRR7XoTgghmpQsqyXOxjODZmdnpy7JZufmokFZTSFEKU0CtO+++462bdsyZswY/vrrL/V5RVF44IEH+Pzzz5k+fTr/+c9/tOhOCCGaFPMeNJ1Oh6e7Wz2Ppnp8Spc59QaDeti7EMJ2mgRo3t7ebN26FW9vb2655RbOnTuHoijcf//9fPrppzzyyCMsWbJEi66EEKLJMQdoHm5u6pnCjYVlUV1Z5hRCO5plcbZq1Ypt27ZRXFzMyJEjuffee/nss8+YOnUqS5cu1aobIYRoUgqLiykqLgYaVwanmSQKCFE7NC2z0aFDBzZv3kxSUhJffvklU6ZM4b///a+WXQghRJOSbTHr1BiOeLqal5TaEKJW1KhQ7euvv17p63369CEmJoaQkBCra3U6HX//+99r0qUQQjRJ5hMEwDrYaSxkBk2I2lGjAO3VV1+t0nVXB3ISoAkhhDXLWafGuMTp6eaGnU6HUVFkD5oQGqpRgLZr1y6txyGEEM1StlWR2sYXoJlLbWTm5JBVWmqjsZwlKkRDVqMAbciQIVqPQwghmqWsnMZ5zJMlL09PMnNy0Ov15BcW4u7qWt9DEqLRq9OzOIUQQlgzz6C5ODvh7ORUz6OpGSm1IYT2JEATQoh6YjAYyM3PB8DLvXHOnoEkCghRGyRAE0KIepKd17gzOM28pdSGEJqTAE0IIeqJdYJA4zmD82o+MoMmhOYkQBNCiHqSbZUg4F6PI7GNh7u7mrkpe9CE0IYEaEIIUU+yci0DtMY7g2ZvZ4enuynAzMrJQVGUeh6REI2fBGhCCFFPrJY4G/EeNLgy/hK9noKionoejRCNn6YBWkZGBh9//LGWTQohRJNlDtDs7ewafe0wyz10sswphO00DdASEhJ4+OGHtWxSCCGaJEVR1ADN08Oj0Vfft8rklEQBIWxWrZMEEhISKn394sWLNg1GCCGai/yCAvQGA9A4j3i6muUMmuXSrRCiZqoVoEVERFT6KU/OYBNCiKqxThBo/AGal9RCE0JT1QrQfH19mT9/PkOHDi339ePHjzN+/HgtxiWEEE1aU0oQAPByv1ImJFuWOIWwWbUCtF69epGSkkLHjh3Lfb2wsFDSq4UQogqym9gMmoODA+6uruQVFJCdJwGaELaqVoD22GOPkWdxNMnVwsPDWbVqlc2DEkKIpi4rp2kFaGD6PvIKCigoLKK4pAQnR8f6HpIQjVa1ArRx48ZV+rqvry+TJk2yaUBCCNEc1PUMWlFxMXq9AXe32ivn4e3pwaWUFMD0/QX4+tZaX0I0ddUK0IQQQmjDHKC5u7riYG9fa/0c+O0IG7b9zM8HfkcxKjz64J1MHHcLdnba1ym3DDSzJEATwiYSoAkhRB0rLilRq+3XZoLA19/vZMF/1lg998HKL9j361+89fxj+Hp7adqfZbkQSRQQwjY2f4Syt7e/Zn00IYQQV9TF8mZGVjb/Xv2lRT9XDjQ/FHOM1xau0LxPy/NEs6QWmhA2sTlAk6xNIYSonro4JH3Z/60jNy8fgFuH3cDWTz/gP289h6+3qb+9h/4g9vQ5Tfu0nA3MllpoQthEDksXQog6Zrn85+3hXsmVNXP6XCLrNu8CwM3VhRlT/oaDgwPXR3Vh2sQryV5r/vedpv06OzmpmZuyxCmEbSRAE0KIOlbbM2jL1n6N0Wha3Xjo7tsI8PNRX7v9pkH4+Zj2nu3Ye5j4xCTN+tXpdOo+tJz8fAxGo2ZtC9HcSIAmhBB1zHL5T+skgZzcPPYc+gOAAD8f7ht3s9XrLs5O3HuH6TlFUVj71fea9m8+8klRFHIrqZsphKicBGhCCFHHsnNNgYuToyPOTk6atr37QAx6vekQ9hGD+pTb/oTRN6r10Dbt/IX8gkLN+rcqtSHLnELUmARoQghRhwxGIzmlM0teHh5qZqVWduw9pD4ePvD6cq/xcHfjlqH9ACjR6zkUc0yz/q1KbUgmpxA1JgGaEELUody8PDX73VvjEht5+QXs//UIYFre7NG5XYXXDrg+Sn2851CMZmOwLlYrmZxC1JTNAdrLL7+Mj4+PBkMRQoimz6oGmsb7z/Ye+oPikhIAhvbvVelpAddf11nNuPzl0J+alUzy9ryS9GBeyhVCVJ/NAdobb7yBl5e21aiFEKKpyqrFIrU79x5WH1e0vGnm4uJMrx6dAEhOy+BU3HlNxuDu6qoGhjKDJkTN1eoSp6IonDp1isTExNrsRgghGg3LGTQtlziLiovZW5q96evtSVS3Dte8Z2Cf69TH5nttZWdnh5e7qbZbdm6eFDMXooY0CdA2bNjA5MmTycjIUJ87d+4c3bt3p1OnTrRu3ZqJEydilJo4QohmzjKzUcsZtOOnzlFYVAzADddfV6UD2C33oWkVoMGV70uv11NQqF2GqBDNiSYB2tKlSzl06BC+vr7qczNnzuTYsWMMGzaMHj168Pnnn7Nq1SotuhNCiEbLPINmp9Ph4eamWbsxR0+qj3t261ile0KCAmkT1gqAv2JPk5mtTdalZW03OZNTiJrRJEA7evQoffr0Ub/Oyspi06ZN/O1vf2P79u0cPHiQzp07s3LlSi26E0KIRklRFDVA83R3r3QTf3VZBmjXdbn28qbZDdf3AMBoVPj9SKwmY5FaaELYTpPfDikpKQQHB6tf79mzB71ez7333guAo6MjN910E6dPn9aiOyGEaJQKiooo0esBbTM4jUYjfxw7BYCfjxfhIS2rfG+URTB35MRZTcbj7WGZySkBmhA1oUmA5uXlRVpamvr1jz/+iJ2dHYMGDVKfc3R0JE+O/RBCNGPWh6Rrdwbn2fgL5OblA6bZs+oUv+3Wqa36+OiJM5qMx8tTaqEJYStNArROnTqxceNG0tPTycrK4vPPP6dnz55We9Li4+Np2bLqn+qEEKKpsaqB5uGuWbu/WyxvRnVtX617A/x8CAr0B+DYyTj0BoPN4zFncYJ1UCqEqDpNArQZM2Zw8eJFQkJCCAsL4+LFizz66KPq6waDgT179nDddddV0ooQQjRt1jXQtJtB+8MqQKtagoAl8yxaQWERZ+Mv2DweBwcH3F1NZ33KEqcQNaNJgDZ+/Hj+85//0LVrVzp06MA//vEPJk+erL6+Y8cO8vPzueWWW7ToTgghGqVsi+U+bw33oMUcMwVori7OdGgbXu37u1sscx7RapmzNFGgoKhIPd1ACFF1Dlo19Nhjj/HYY4+V+9rIkSOtaqQJIURzZHn0kVY10C5dTuVySjpgmgmrSv2zq3XtaBGgxZ7hzluH2Twub08PLqWkAKZZtACLLS9CiGuTw9KFEKKOmJc4XV1ccHTQ5vPxX7FXZryiqlFew1LHtq1xcDAFdkditZ1BA6mFJkRNSIAmhBB1oESvJ7+gAND2iKcTZ86pjzu3b1OjNlycnWjfxrQ0Gnf+IjkaHHJu+T1KooAQ1ScBmhBC1IHsWjok/cSZePVxxxrsPzOz3Id27GScTWMC6yQImUETovo024NWV/Lz81mxYgW7du0iJyeH8PBwJk6cyPDhw695b0ZGBkuWLGHfvn0UFhbSrl07pk6dSq9evcpce/jwYVauXMnp06dxcXGhf//+PPbYY1alQ8B01tzatWvZvHkzaWlpBAcHM27cOMaPH2913fbt21m/fj3nz58nNzcXLy8vOnbsyMSJE+nevbttb4oQosGzOiRdowQBRVE4eTYBMB2QHuhf831e3Tq15X8btwOmRIG+PbvZNDbL7zFbaqEJUW2NLkCbO3cusbGxTJ8+nbCwMLZv385rr72G0WjkpptuqvC+4uJiZs6cSW5uLk899RS+vr6sW7eO2bNns2jRIqKiotRrY2JimDNnDv3792f+/PlkZGSwbNkyZs6cyfLly3FyclKvXbhwIdu2bWPKlCl06tSJgwcP8sEHH5Cfn88DDzygXpeVlUX37t2ZMGECPj4+pKWl8cUXXzBjxowy/Qshmp7amEFLScsgI8sU/HRs27paBWqv1qlthPr4dNx5W4eGs5MTTo6OFJeUyBKnEDXQqAK0ffv2cfjwYebNm8eIESMA6NmzJ0lJSSxZsoQbb7wR+woymL7//nvi4uL48MMP6dbN9MkwOjqayZMns2TJEpYtW6Ze++GHHxIWFsbrr7+OQ+lG3uDgYJ544gk2bdrEHXfcAUBcXBzff/8906ZNU4+1io6OJjs7m48//pixY8fi5eUFUGZGDaBv376MGTOG77//XgI0IZo4yzMptQrQTpxJUB93aNvaprbCQlqqAdWpc4m2Dg2dToe3hwcpGRnk5OdjMBqx1/DsUSGaukb1t2X37t24uroydOhQq+dHjRpFamoqx44dq/Te8PBwNTgDUzHFkSNHcvz4cVJK08FTUlKIjY1l5MiRanAG0L17d8LCwvj555+t2lQUhVtvvdWqr1tvvZWioiIOHDhQ6ffj5uaGk5NThUGlEKLpsFri1CxAs9h/FmlbgOZgb09k61YAnL+YRGFhkU3twZUjnxRFIVeO+hOiWqodoBmNRo4cOcLFixfLvFZSUmIVwGgtLi6O1q1bWwVOAG3btlVfr8jZs2fV6yq71/zfiq617CMuLg4fHx/8/f2rPB6DwYBer+fSpUu8//77KIrCuHHjKhw3QGpqKidOnFD/xMfHV3q9EKLhMQdoDvb2uLq4aNLmibOWCQK2BWgA7SLCADAaFc4mlP0dX11WpTZkmVOIaqnWEmd8fDyjRo3i+PHj6HQ6Ro8ezapVq9QAJT09nWHDhmHQ4Cy38mRlZdGqVasyz3t6mrKFsrOzK7w3Oztbva6ye7OysgDUpcmrr7XsIysrq9zrXF1dcXR0VNuyNGnSJBISTMsS/v7+vPfee3TsWPnRLN9++y2rV6+u9BohRMNlNBrJLp1B8vb0tGmvmKWTpTNobq4uhLVqYXN75gAN4PS583TpULOyHWZWpTYkk1OIaqlWgPbcc88RGhrK1q1byczM5Nlnn2XAgAHs3LlTDZwURamVgZrZ8outsnuvfq2ia6vTf3nXvvHGGxQUFJCcnMyGDRuYM2cO//jHP4iOjq6wnTFjxjBgwAD16/j4eN58880qj0MIUb9y8/MxGo2AdvvPsnPyuHg5FYD2bcKw02B/V7s21gGarayL1UompxDVUa0A7aeffmLr1q2EhoYSGhrKli1beOSRRxg0aBC7du3C2dlZs0+G5fH29i53Vionx/QXv7zZLDMvL69yZ9jM95pn0ry9vQEq7MdyFs7b25vTp0+Xua6goICSkpJyx9OmjekTaZcuXRg4cCBTpkzhgw8+YNWqVRWOPSAggICAgApfF0I0bFm1UGLDXF4DoENkzeufWWpvEaCdirM9UcDb4velzKAJUT3V+siVn5+Ps7Oz+rVOp2P58uWMHDmSwYMHc+aMNkeEVCQyMpL4+Hj0er3V82fPngWuBD8V3Vve+MzPRUZGWrVhbvPqfiz7iIyMJDMzk7S0tGqPB0xJCh06dOD8eds/qQohGi7LMhPeHmW3WtSEdYFa2/efAfj5eOHnY/pgeTruvM0rIu6ururMnuxBE6J6qhWgdezYkcOHD5d5fsmSJYwaNYrbbrtNs4GVZ9CgQRQUFPDTTz9ZPb9lyxYCAgLo0qVLhfcOHjyYhIQEq0xPvV7PDz/8QJcuXdQZqsDAQDp37sy2bdus9tIdPXqUhIQEhgwZoj43cOBAdDodW7Zssepr8+bNODs707dv30q/n6KiIo4dO0ZISMi1v3khRKNlubyn1QzaKYslSK1m0ODKPrTM7BzSMsquJFSHnZ0dXu7ugGkGrba3wAjRlFRrifPOO+/k008/5f777y/z2ocffoiiKFb1xLTWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dq5arWLBgAVu3buWzzz4jKCgIMJXiWLduHfPmzWP69OlqodqEhAQWLVpk1c+jjz7KrFmzmDdvHuPGjVML1bZp08aqpEabNm3URAk7Ozs6d+7MoUOH2LhxI1OnTrVa4nzssccYMGAArVu3xsPDg6SkJNavX8/FixdlP5kQTVxt1ECLS7gAmFYy2oSVTZ6qqXZtwjgYcxQw7UML8POxqT0vDw8yc3LQGwwUFBbi5uqqwSiFaPqqFaC9+OKLvPjiixW+vmTJEpYsWWLzoCrz5ptvsnz5clauXKke9fTKK69YHfVkNBoxGAxWn9acnJxYtGgRS5YsYfHixRQWFtK+fXvefffdMkVio6Ojeeedd/joo4944YUX1KOeHn/8catTBABmzZpFQEAA33zzDenp6QQFBTFjxowyhWm7devGzp07SUpKoqCgAG9vb7p27cqTTz4pRz0J0cSZ91/Z2dnh4eZmc3tGo5G40jIYIUGBuLg4X+OOqrPeh3aefj1t+/3k7ekBl0yPs3JzJUAToooa1UkCYCru+vTTT/P0009XeM1LL73ESy+9VOZ5Pz8/Xn755Sr1c/3113P99ddf8zoHBwcmT57M5MmTK73uiSeeqFK/QoimRVEUNUnAy91dk2zLyynpFJQWkm0Trt3sGUC7iFD18RkNThS4uhZacGCgzW0K0Rw0qpMEhBCisSkoLFQTm7zKqcVYE2dLlzcBIsO13cPaJrwVdnambPzTGgRolkkRkskpRNXZHKDZ29urhVeFEEJYy8rR/oin2gzQnJ2cCAkyFb2NT7yk1m+rKS9PqYUmRE3YHKBJVo4QQlTMMijRKkHgbLxFgNZa+yzw1qHBABQWFZOclmFTW+YsTrAuNyKEqJwscQohRC2ymkHTqMSGOUFAp9MRURpMaSki7Eqb8ecv2dSWg4MD7qWJAbLEKUTVSYAmhBC1yDIo0aJIraIoxJ03BWitWgZomsFpZhn0nUu0LUCDKzOHBUVFFJeU2NyeEM2BBGhCCFGLsnIslzjdK7myai6npJNfUAhAG433n5lZBWg2zqCB9cyhzKIJUTUSoAkhRC0yl9jwcHNTi2nbwipBoBb2nwG0tih8q+UMGsiRT0JUlQRoQghRSwqLiykqLgasDw63hXUGp7Y10Mx8vDzw8TKN91zpcqotLLNXsyWTU4gqkQBNCCFqSbbF8qZWJTbMCQKgfYkNS+ZEgdT0THLz8m1qy8ti711Wbp5NbQnRXNgcoL388sv4+PhoMBQhhGhasnK1z+C0LLERoeEZnFdrbbEPLd7GZU7rPWgygyZEVdgcoL3xxhtWh4ILIYQwsT4kXZsMTvOesOAWAbjWQganmWWpDVv3oTk7OeHk6AhILTQhqkqWOIUQopZYzhZpMYOWkZWjLje2Dg2yub3KaJnJqdPp1CXenPx8DDaeTiBEc6DpYelGo5HExEQuXLhASQW1bgYPHqxll0II0WBZz6DZHqBZLjWGh9RygKbhDBqYjnxKychAURRy8/I0S5oQoqnSJEBTFIUFCxawaNEi0tLSKr3WYDBo0aUQQjR45ppfri4u6hKfLSwDtNqeQQtuEYiToyPFJSU2nyYAZUttSIAmROU0CdBefPFF3nnnHVq0aMHDDz9McHAwDg6aTs4JIUSjUqLXk1dQAGiXwRl/IUl93DpE+yOeLNnb2xEe0pLT5xJJuHgZvcGAgw113CxPUZBitUJcmyZR1OrVq+nYsSOHDh3CQ6NfREII0Zhl10IGp/UMWu0GaABhrYI4fS4Rg8FAUnIaocEtatyW5SkKWZLJKcQ1aZIkkJuby+jRoyU4E0KIUlpncALEJ5pm0JydnWgR4KtJm5UJa3UlIEu8dNmmtiyXNGUGTYhr0yRAi4qK4uJF26tNCyFEU6F1Bqder+dCUgpgShCws6v9JPzQVi3Vx+cvJtvUlrurqzpmOe5JiGvT5G/43Llz2bBhA7/99psWzQkhRKNnGYRosQctMSlFTbJqXcsZnGbhFgFa4kXbZtDs7Ozwcjctc2bn5qIoik3tCdHUabIH7ZZbbmHNmjXceuutjBkzhuuuu67C4rUPPvigFl0KIUSDZnmKgBZLnHVZYsPMagbNxiVOMGVyZubkoDcYyC8sxN3V1eY2hWiqNAnQioqK2LBhA6mpqaxcuRIwFSa0pCgKOp1OAjQhRLNgPofTydERF2cnm9tLSLTI4KzlEhtmgX4+ODs5UlRcQqKNS5xQutRbGmdm5+ZKgCZEJTQJ0GbNmsUnn3xCjx49mDBhgpTZEEI0awajkZx8U8V/bw+PMh9Ya6KuMzjBtCwZEtyCs/EXSLyUjMFgxN6+5jtjrq6FFhwYqMUwhWiSNImivvzyS3r16sW+ffskMBNCNHu5eXnqHisvjQqyJljWQKujAA0gLLglZ+MvUKLXk5KWQVAL/xq3JbXQhKg6TZIECgsLGTZsmARnQggBZOVYZHBqXKTW39cbD7e6WxoMtSi1cd7GRAEvi2xWqYUmROU0CdB69erF6dOntWhKCCEaPasMTg1KbOTk5pGemQ3UXYKAWViwdokC5ixOgGwptSFEpTQJ0ObPn8+WLVv47rvvtGhOCCEatcycbPWxj2f5Ge3VkWAxc1XXAVqoVakN2xIFHBwc1MQAWeIUonKarEn+8MMPDB06lLFjxzJs2DCioqLKLbOh0+n4+9//rkWXQgjRYGVmX1m+8/GyfQ/a+QsWAZpFwFQXLE8T0KrURl5BAQVFRRSXlGhyiLwQTZEmAdqrr76qPt65cyc7d+4s9zoJ0IQQzUFm6R40Z0dHXJydbW7PMjAKC6nbAK1lgD8ODvbo9Qabi9WCacn3UorpRITs3FwCfGv/yCohGiNNArRdu3Zp0YwQQjR6eoOBnLw8ALy9vDQpsWE5g2a5J6wu2NvbERLUgvjES5y/lKzWtKypq0ttSIAmRPk0CdCGDBmiRTNCCNHoWW5+99GoxIZl9mRocItKrqwdYcGmAK2oqJjU9EwC/WseVFlmtWZLJqcQFar903aFEKIZsU4Q0CpAM5XYaBHgh4uL7Uum1WV9aLqNmZwWtdCyJFFAiAppEqDt3buXWbNmkZSUVO7rSUlJzJo1i/3792vRnRBCNFiWCQLeGiQIZOXkkpVjWjKt6wQBM8tEgcRLtmVyWpYdkVIbQlRMkwBt4cKFbNy4kaCg8tO/g4KC+O6771i0aJEW3QkhRIOl9Qya5cZ8y6KxdSnUYt+b5YkGNeHs5KRmbkqpDSEqpkmAdujQIQYOHFjpNYMHD5YZNCFEk5dpcYqAFgGaVQ20VnVbA80szLIWmo0zaDqdTt2HlpOfj8FotKk9IZoqTQK05ORkQkJCKr0mKCiI5GTb/mILIURDl1W6xOnu6oqjBjW+LGfQwuppiTO4hT/2dqZ/LmzdgwZXjnxSFIXc0oxXIYQ1TQI0Hx8fEhISKr0mPj4eD43OpBNCiIaosLiYgqIiQJsCtWA9g1bXNdDMHBwcCG4ZAJhm0MwHwdfU1aU2hBBlaRKg9e/fn3Xr1nH+/PlyX09ISGD9+vXccMMNWnQnhBANUpZlgoAGRzyBdQ20kKD62YMGVzI58wsK1XNBa8rbIpNT9qEJUT5NArRZs2aRn5/PgAED+Pjjj7l06RIAly5dYs2aNQwYMICCggKeffZZLboTQogGqXZKbJgCtJaBfrg4O2nSZk2EWdRfs/VEActMzqwcqYUmRHk0KVQ7aNAgPvjgA2bOnMnDDz8MmDaCmqfB7ezsWLx4MYMHD9aiOyGEaJC0PoMzKyeX7FzTHq2wekoQMLOqhXYpmeu6dqhxW94WwWumBGhClEuTAA3giSeeYMiQISxZsoRDhw6RmZmJj48Pffr04dFHH6Vbt25adSWEEA2S1hmc9XlI+tUsj5iyNVHA3dUVB3t79AaDzKAJUQHNAjSAbt268Z///EfLJoUQotHIKl3i1Ol0eGqQFJVw8UrNsfqqgWZmXazWtgBNp9Ph7elJWmYm2bm5GIxGNUtUCGEifyOEEEIDiqKoS5xeHh6aBBznG0ANNLNWQYHqIennL9peMsm8BGxUFHJypdSGEFeTAE0IITSQV1CA3mAAtEwQuBII1VeJDTMnR0eCAv0BU+Boa6kNH4ssV8vkCiGEiQRoQgihgSyN95/BlUPSdTodIUGBmrRpC/Mya25evno+aE1ZJlFYJlcIIUwkQBNCCA1YZ3DaXgNNUZQrJTYC/HB2qr8SG2aWiQK2ltrwkUxOISolAZoQQmggM9uiBpomJTbyyMnNB+p/edPMMlHhvI2JApalNrJkiVOIMiRAE0IIDVjOAnlrUWLDIoOzvktsmGk5g+bi7IyLszMgS5xClEcCNCGE0IA5QHOwt8fd1dXm9ixroNV3kVqzUMvTBC5pl8mZV1BASUmJze0J0ZRoVgetuLiY9evXq0VqDaXZTJZ0Oh0rV67UqkshhGgQDEajeqakj5enWo7CFpaHpNd3DTSzEK0DNE9PklJSAVOAG+jnZ3ObQjQVmgRo8fHx3HTTTZw5c6bS1GsJ0IQQTVFObq76u0+rQ9ITG1ANNDNXF2f8fb1Jy8giMSnF5vasS21IgCaEJU0CtGeeeYbTp0/zwAMPMHnyZEJDQ3Fw0PSQAiGEaLC0PuIJrsyg2dnpCAmu/xIbZqHBLUjLyCI9I4v8gkLcXF1q3Ja3RTJFluxDE8KKJlHUzp07GT58OGvWrNGiOSGEaFS0zuC0LLERFOiPk6OjzW1qJTS4BX8cOwXAhaRk2rcJr3FbUmpDiIppkiRgNBqJjo7WoikhhGh0tJ5By8zOITfPVGIjNLhhZHCaabkPzdvivFIJ0ISwpkmA1r9/f44fP65FU0II0ehYlonw1qBIbUM64ulqWmZyOjg44OnuDkBWdrbNx0cJ0ZRoEqAtWLCAXbt28dVXX2nRnBBCNCrm2R8XZ2dcNKj43xBroJmFBF0J0C5okihgmnEsKimhsKjI5vaEaCpqtAft9ddfL/PcsGHD+Nvf/saQIUOIjo7G29u7zDU6nY6///3vNelSlZ+fz4oVK9i1axc5OTmEh4czceJEhg8ffs17MzIyWLJkCfv27aOwsJB27doxdepUevXqVebaw4cPs3LlSk6fPo2Liwv9+/fnsccew9fX1+o6vV7P2rVr2bx5M2lpaQQHBzNu3DjGjx9vdd13333HL7/8wunTp0lPTycwMJDevXszadIkAgICbHpPhBD1p6i4mPyCAgB8NZg9A0hogDXQzCxn0C5oVAvtfJIpIM3MzsHVpeZJB0I0JTUK0F599dUKX/vxxx/58ccfy31NiwBt7ty5xMbGMn36dMLCwti+fTuvvfYaRqORm266qcL7iouLmTlzJrm5uTz11FP4+vqybt06Zs+ezaJFi4iKilKvjYmJYc6cOfTv35/58+eTkZHBsmXLmDlzJsuXL8fJ4hPywoUL2bZtG1OmTKFTp04cPHiQDz74gPz8fB544AH1uo8++ojo6GimTZtGYGAgCQkJrFmzhj179rBy5Ur8JL1ciEYpI+tKgoCvtzYB2vmLlgFaw6iBZubr7Ymbqwv5BYWa1ELztiq1kU1wi4aTsSpEfapRgLZr1y6tx1El+/bt4/Dhw8ybN48RI0YA0LNnT5KSkliyZAk33ngj9vb25d77/fffExcXx4cffki3bt0AiI6OZvLkySxZsoRly5ap13744YeEhYXx+uuvq+VCgoODeeKJJ9i0aRN33HEHAHFxcXz//fdMmzaNe++9V20zOzubjz/+mLFjx+JV+ol65cqVVrNvUVFRdOjQgUceeYSNGzcyadIkbd8sIUSdyMjOUh/7epVdOaiJRMsSG0ENK0DT6XSEBLfg1NkELiWnoTcYcKjg925VSCanEOWrUYA2ZMgQrcdRJbt378bV1ZWhQ4daPT9q1Chef/11jh07Rvfu3Su8Nzw8XA3OwLRBdeTIkfz3v/8lJSWFwMBAUlJSiI2N5ZFHHrGq5da9e3fCwsL4+eef1QBt9+7dKIrCrbfeatXXrbfeysaNGzlw4IA6q3f10ihAx44dsbe3JznZ9k+hQoj6kZGt7QyaoihqDbSgFgE4Oja8mpKhQaYAzWAwkJScZrXsWV2WZUnkTE4hrmhUZ3HGxcXRunXrMkVw27Ztq75ekbNnz6rXVXav+b8VXWvZR1xcHD4+Pvj7+1d7PGBaSjUYDLRp06bS61JTUzlx4oT6Jz4+vtLrhRB1J91yiVODPWgZWTnk5Zv2tDW0BAEzLfehebi5YW9n+qcoS2bQhFBp/tFMr9dz8uRJsrKy8Pb2pkOHDpqdKpCVlUWrVq3KPO9ZOkWebfFJ9mrZ2dnqdZXdm5VlWq7wKucXraenp1UfWVlZ5V7n6uqKo6Oj2lZ58vPzWbhwIS1atGDUqFEVXgfw7bffsnr16kqvEULUj8zSv+eODg54uLnZ3J7l/rOGVgPN7OpSG31taMvOzg5vT0/Ss7LIysnBaDRiZ9eo5g6EqBWaBWgpKSm89NJLfPbZZxSUZjSBKVi57777eOuttwgMtH3zpy2HEFd279WvVXRtdfqv6NqioiLmzp3L5cuX+ec//4nbNX6pjxkzhgEDBqhfx8fH8+abb1Z5HEKI2lGi15OdlweYZs+0OCTdKkGggdVAM7MqVpukRaKAKUAzGI3k5ufjZVHAVojmSpMA7cKFCwwYMICEhAQCAwMZPHgwLVu25PLly/z666+sWLGCH374gT179hASElLjfry9vcudlcopnRYvbzbLzMvLq9wZNvO95pk0c3mQivqxnIXz9vbm9OnTZa4rKCigpKSk3PEUFxczd+5c/vzzT95++226dOlS4ZjNAgICpBSHEA1Qpsb7zwDOX2i4NdDMtCxWC2X3oUmAJoRGe9Cee+45EhISeO2114iPj2fTpk2sWrWKTZs2ER8fz6uvvkp8fDzPP/+8Tf1ERkYSHx+PXq+3ev7s2bMAle7lioyM5MyZM2WeNz8XGRlp1Ya5zav7sewjMjKSzMxM0tLSqjSe4uJiXn75ZX7//Xfmz59fbv01IUTjYZUgoFEGZ8LFhlsDzaxloJ+aMa9JLTTJ5BSiDE0CtC1btnDLLbfw97//HZerigy6uLgwb948Ro4cyebNm23qZ9CgQRQUFPDTTz+V6T8gIKDS2ajBgweTkJDAsWPH1Of0ej0//PADXbp0UWeoAgMD6dy5M9u2bcNgMKjXHj16lISEBKsM1oEDB6LT6diyZYtVX5s3b8bZ2Zm+fa/szDAHZ7/99htvvPEGffr0qdmbIIRoMGqjBlripSslNlq1bJgz5w729urYEi8l23xEk4/FakNWTsV7iYVoTjRZ4iwuLqZnz56VXtOrVy/27t1rUz/9+vWjd+/eLFy4kPz8fEJCQtixYwcHDhxg7ty56ie6BQsWsHXrVj777DOCgkyfQEeNGsW6deuYN28e06dPVwvVJiQksGjRIqt+Hn30UWbNmsW8efMYN26cWqi2TZs2ViU12rRpw+jRo1m1ahV2dnZ07tyZQ4cOsXHjRqZOnWq1xDlv3jwOHDjAAw88gJeXF0ePHlVfc3d3JyIiwqb3RghR97SugaYoCudLTxEIbqAlNsxCgltw/uJlCgqLyMjKwc+n5gGq1QyalNoQAtAoQOvVqxexsbGVXhMbG6vJkt6bb77J8uXLWblypXrU0yuvvGJ11JPRaMRgMFh9qnNycmLRokUsWbKExYsXU1hYSPv27Xn33XetThEAU7HZd955h48++ogXXnhBPerp8ccftzpFAGDWrFkEBATwzTffkJ6eTlBQEDNmzChz1NMvv/wCwNq1a1m7dq3Va1FRUXzwwQc2vzdCiLplnkGzs7PDy8Pd5vbSM7PJKygEICykYS5vmoUGWe9DsyVAc3F2xtnRkaKSElniFKKUJgHaG2+8wU033cTq1at56KGHyrz+0UcfsWnTJn744Qeb+3Jzc+Ppp5/m6aefrvCal156iZdeeqnM835+frz88stV6uf666/n+uuvv+Z1Dg4OTJ48mcmTJ1d63c8//1ylfoUQjYPBaFTrdvl4eWpSGsIyg7OhJgiYWScKXKZH53Y1bkun0+Ht5UVyWho5eXno9XrNyjMJ0Vhp8jdg165dDBs2jClTpvDOO+8wYMAAWrRoQXJyMnv37uXEiROMHDmSnTt3snPnTvU+Lc7mFEKI+pCVk4OxdJZeqwSBxlADzUzzQ9M9PUkuTbjKzMkhoJzTV4RoTjQJ0CwPT4+NjS13uXPr1q1s3brV6jkJ0IQQjVW6RSkef2/tA7TwBloDzSwk6EpdSy1KbfhZvIcZWdkSoIlmT7MZNCGEaE7SM68EaH4+GgVoFjXQwhr4EmeIxrXQLLNgMyo5FUaI5kKTAK2+Dk8XQoj6kp6VqT728/bRpM3zpYGOvZ1dgy2xYebq4oy/rzdpGVkkJqXY3J7lOaYZlRyTJ0RzIQeeCSFEDZhn0Ozt7TXJ4FQURV3iDG4Z0Cg2yZv3oaVnZJFfmn1aU14eHmqihcygCVHDAO2+++7jm2++qXGntt4vhBD1Sa/Xk5WbC4Cfl5cmGZxpFkFOQ1/eNLNKFLDxTE47Ozu1Hlpm6aHpQjRnNfqt8vnnn3PkyJEad2rr/UIIUZ8ysrPVOoua7T+zShBo2DXQzGprH5rRaFQDYCGaqxrPocfExPDxxx9rORYhhGgULDM4Ndt/ZnUGZ2OcQdNiH5o3cB4wZXJa7ksTormpcYC2fv16NmzYUO37bD2zTQgh6lutZHBa1UBrUcmVDUdorWZyZgGhNrcpRGNVowBt1apVNnd89fFKQgjRWKRZzaA13yVOrYvVXl0LTYjmrEYB2qRJk7QehxBCNBrpmZkAODk64uHmpkmbCaUBmr29PcENvMSGmY+XJ+6uLuQVFGoyg+bj6YlOp0NRFMnkFM2elNkQQohqKC4pITc/HzAtb+p0OpvbVBSFxNIALaRlAA729ja3WRd0Op2aKHApOQ29Xm9Te/b29ni5m0qWZGRlyZYY0axJgCaEENVgtf9MowSBtIwsCgqLAAhtJAkCZuaEBoPBQFJKms3t+ZYuc+oNBjUQFqI5kgBNCCGqIc3qBAFt9p8lNKIjnq5muQ8t4cLlSq6sGstEgXQ5UUA0YxKgCSFENaRmZKiPA3x9NGmzMR2SfjXLhIbES7YHaJZBrwRoojmTAE0IIaohLSNTfezv46NJm9Y10BpHBqeZ1jNoVgFapgRoovmSAE0IIapIURRSSzM4Pd3dcXZy0qRd6wCtcdRAM7OeQdOgFpqXl5p4ITNoojmTAE0IIaooOzdXzVTUankTrgRo9vb2BLVoHCU2zPx9vXF1cQbgvMVeuppycHDA28MDMGVyypmcormSAE0IIaoo1Wp501eTNhVFUQO0kKDARlNiw0yn06mZpxcup6I3GGxu03w6g95gICcvz+b2hGiMahyg9ezZk//+979Wz23dupVZs2aVe/1rr72Gg0ONT5YSQoh6VxsJAilpGRQWFQONL4PTLKx0H5rBYCApOdXm9izLl6TJPjTRTNU4QIuJiSEpyXo6e//+/SxevLjCe6TooBCiMUsr3X8GEOCrzQya5cb61o3kiKerWdZuO39RgyOffCwTBTJtbk+IxkiWOIUQoorMM2hOjo54lla8t1V84iX1cevQYE3arGvhVgGa7fvQLDM50yRRQDRTEqAJIUQVFBYVqZXt/X18NDniCSD+wpUArbEckn41rWfQvD09sbMz/fOUblEYWIjmRAI0IYSoAuvlTR/N2o1PvDLj1Dq0cQZo1jNottdCs7ezw9fLdKJAVnYOBg0SD4RobCRAE0KIKrBMENAqgxOuLHG6uboQ4OejWbt1KcDPBxdnU004LQI0uLLMaVQUMnNyNGlTiMZEAjQhhKgCqxIbGs2gFZeUcKk067F1SJBmy6Z1TafTqRmoF5JSNC21AZIoIJonm+pe/N///R/79+9Xvz59+jQAo0aNKnOt+TUhhGiMUtLTAbDT6TQ74inxUjJGoym7PbyRJgiYhQa35FTcebXURmiwbSVD/K8qtdHexvEJ0djYFKCdPn263MBry5Yt5V7fWD8dCiGatxK9nozsbMA0s6NVMVmrDM5Gdkj61cIsxp9w4bLNAZrlDFqazKCJZqjGAVpcXJyW4xBCiAYrNSNDreMY6OevWbvWCQKNewbNsoZbwoUkbujdw6b2PN3dcXJ0pLikxGr/nxDNRY0DtNatW2s5DiGEaLDMy5sAgX7aJwhA4w/QLEuEWAaeNaXT6Qjw9eFicgp5BQUUFBapZ34K0RxIkoAQQlyDZYDWws9Ps3YTLA4Xb6w10MwsS4RY1nazhWW2bFqmzKKJ5qVGM2iTJ0+uUWc6nY6VK1fW6F4hhKgvyeYEATs7zRIEAOJLA7QWAX6NfnbIx8sTLw93snPzrAJPW1jWm0vNyCQ0qHEHsUJUR40CtNWrV5f7vE6nK/e8TfPzEqAJIRqbkpISMrNNdbj8vb2x1yhBIDM7l6zsXKDxz56B6fd869Ag/oo9w+WUdE2WJC3PO5V9aKK5qdESZ1xcnNWfM2fOcNttt+Hv788bb7zBjz/+yPHjx/nxxx95/fXX8ff35/bbb+fUqVNaj18IIWpVakbmlQQBf+2WN633nzX+AA2sS4VoMYvm6+2tZv+nyhKnaGZqNIN2dYLAggULOHDgAH/88QfBwVf+gnbs2JHBgwfz8MMPEx0dzVdffcVzzz1n24iFEKIOJVslCNRSgBbSuBMEzFpflSjQsa1tyWQO9vb4enmRnpVFZlY2BoNBsxlMIRo6TZIEVq5cyd13320VnFkKCQnh7rvvZvny5Vp0J4QQdaa2EgTizl9UH0eGt9Ks3fp0dakNLZhPbTAqCulZWZq0KURjoEmAlpiYiIuLS6XXuLi4kJiYqEV3QghRZywTBMznQ2rhbPwF9XGbJhKgWS5xapXJabkPTQrWiuZEkwAtNDSUdevWUVhYWO7r+fn5rFu3jtDQUC26E0KIOlFUXExm6QkCAT4+mi6vxSWYZtDc3VwJ9Neutlp5iowlnCtM5nxRarmJXFoJa9VC3TOmRS00ML3vZpIoIJoTTQK0qVOncvbsWQYMGMCGDRtIS0sDIC0tjfXr1zNw4EDOnTvHtGnTtOhOCCHqxOXUNPVxy4AAzdrNLyhUD0mPDG9Va8fgbc/4k7FHFtDn9+cZe3QBtx2Zz81/vcFr8V+QWJR27QaqydnJieCWpvcpIfGSJsGgv1UmZ6bN7QnRWNh0FqfZnDlzOHnyJKtWreLOO+8ETMsBRqMRAEVRePjhh5kzZ44W3QkhRJ24nJaqPg4K0O6Ip3Pnryz/RYaHaNauWaY+j/kJX7M1I6bMa5dLMvkm9QA/ZPzJO5EPcoNXR037bh0SxMWkFPIKCknLyCLAz8em9txcXHB3dSWvoEA9ckvOdRbNgSYzaHZ2dqxcuZJdu3YxadIkoqOjiYiIIDo6moceeohdu3axcuVK+UslhGhUamsGLe685f4zbQO0fEMRj5xcahWcdXQN4VbfaPp7dcRZZ/pcnmMo4IlT/+WL5L2a9t/aah+aNsuc5uzZ4pISsnJyNWlTiIZOkxk0syFDhjBkyBAtmxRCiHqhKAqXU00zaK4uLni6u2vW9tmEKxmcWiYIGBQjz8et5USBKQD0tnfjhfBx3OrbU/2AnGMo4OW4T/kp6yhGFP5x/hvCXAI0m0mzPpPzEr26d7K5zUA/P85dMH1PKelp+Hh52tymEA1djWfQVq1aRUpKipZjEUKIBiMzO4eikhLAtLyp5QpAXMKVGTQtlzgXJn7Lz1nHAPC0d2F1x6cY5dfLauye9q78s+3DPNhyKAAKCi/F/R+XizM1GYPVmZzntcnktCxvYlmXToimrMYB2pQpU2jVqhWDBg3i/fffl1MChBBNSlLqlf1nLf21W96EKxmcbq4utAzUprbawZxT/F/yzwA4YMf7kQ8T6dqy3GvtdHY8E3Ibg7w6A5Chz+O5sx+jVww2j8My4LSs9WaLQL8riQIp6ZLJKZqHGgdov/zyC7NnzyY9PZ05c+bQqVMnOnfuzEsvvcT+/fu1HKMQQtQ5ywQBLfefFRYVcyHJtPoQERasycxcsVHPW/Ffq1/PDhtLX6/2ld5jp7PjzTb3EexkCn5i8s7xdYrtv7v9fb3x9HAD4KzFTKEt3FxdcXcztZmSnl6rpUKEaChqHKD169ePf/zjHxw9epRTp07x9ttvExgYyDvvvMOAAQMIDg5m+vTpbNq0iaKiIi3HLIQQtc48g6bT6Wih8Rmc5gBDqwSB1Zd3ca4oGYAe7q35W+CAKt3n4+DO/DYT1a8/vLiFbH2BTWPR6XS0CTPtq7uckk5uvm3tmZmXOUv0ejJzcjRpU4iGTJMszrZt2zJ79mx+/vlnLl++zIoVK+jbty+ffPIJt99+OwEBAYwfP561a9eSLvsHhBANXHFJCemZpmOF/H28cXTQLp/KclYpMsz2BIHEojSWX/oBAHvsmBs+ATtd1X+19/SI5BbfaAAyDXksT/rB5jFZBp7xmi1zXgmSU9Lk3xHR9GkSoFny9/fn4YcfZv369aSmprJu3Truvvtu9u7dy6RJk2jZsiVDhw7VulshhNCM1f4zDZc34cr+M9BmBm3Fpe0UK3oAJrYcTEe36rf5dMhotfzGp8m7SSi0LQHM8mxRy4xVW7Sw2IcmiQKiOdA8QLPk4uLCmDFjWLlyJZcuXWL37t0888wzJCVpUxtHCCFqw8XkZPVxq8AWmrZ9+tx59XFka9sCtMSiNDamHQJMWZvTgm6qUTutnP14oDSrU68YWJ603aZxWX5fcRoFaFYzaBKgiWagVgM0SzqdjgEDBvDOO+8QGxtbV90KIUS1XUq+MoPUqkWgpm2fOmsK0NxdXWjV0rbZuRWXtqPHdGLL/S2G4OXgWuO2JgfdiKe96f5N6b/ZVHbDcmZQq0QBy1p0KRkZ6kk1QjRVNd5Y8fjjj1f7Hp1Ox3/+85+adimEELVOr9dzufQ8YW8PDzV7UAs5uXkkpZjabtcmzKYMzqtnz+5rMdimsbnbu3BP4ACWJ21HrxhYe/knZoeNrVFbLfx9cXd1Ia+g0Krmm60C/fzIyctDr9eTkZ2Nv8VB6kI0NTUO0JYuXVrlay1/CUmAJoRoyC6npamzM8EttF3ePBV3ZXmzfZtwm9pac3mXZrNnZve2GMTHl3+kSNHzVeo+pgWPwNuh+ico6HQ62oSHcOTEGS5eTqWgsAhXF2ebx9fS35+z503v4eXUNAnQRJNW4wBt165dVbouISGB119/nTNnzshZnEKIBu9ibS5vWgZokWE1bidbn8+3aYcBcLVz4r4Wg2weG4C/oydjA/rwv5RfKDAW80XKLzwSXLN9bW3CW3HkxBkAzp2/SOf2bWweX5BFwkZSaipd2rW1uU0hGqoaB2jXOnMzIyOD+fPn85///IfCwkL69+/P22+/XdPuhBCiTlyyTBCo1Rm0mgdo36Tup9BYDMAY/+vxctBuGXZSy2F8lbIPIwr/S9nLw0E34qizr3Y7lmeMxiVoE6AF+vlip9NhVBSrQsJCNEWaJwkUFhayYMEC2rZty/vvv09ERATffPMNe/fuZeDAgVp3J4QQmjEYDGqJDQ83N00PSAc4FZcAmJYA27YOrVEbesXA5yl71a+1mj0zC3X2Z4hPVwBSSrL5KfNojdqxPPLpjEb70BwcHPD3NZXbyMjKpqi4WJN2hWiINKu+qCgKK1eu5LXXXuPChQu0atWKd955h8mTJ2Nnp10cmJ+fz4oVK9i1axc5OTmEh4czceJEhg8ffs17MzIyWLJkCfv27aOwsJB27doxdepUevXqVebaw4cPs3LlSk6fPo2Liwv9+/fnsccew9fX1+o6vV7P2rVr2bx5M2lpaQQHBzNu3DjGjx9vdV1cXBzr1q3j1KlTnDlzhsLCQhYvXkx0dLRtb4gQQjMp6RnoDabzKINbBGq6LcNgMHIm3hSohAa3wM3VpUbt/Jh5hEvFpvMoB3l1JsJF21k+gLsDB7Ar8wgAX6b8wgjfHtVuwzJAOxuvXaJAUECAWmbjcloa4cHBmrUtREOiSeS0fv16unbtyvTp08nNzWX+/PmcPn2aqVOnahqcAcydO5ctW7bw0EMP8c4779CpUydee+01fvih8urXxcXFzJw5k19//ZWnnnqK+fPn4+vry+zZs4mJibG6NiYmhjlz5uDr68v8+fN56qmn+PXXX5k5cybFV31iW7hwIZ988gnjxo3jvffeY9CgQXzwwQesXbvW6rrY2Fh2796Np6cnPXv21OS9EEJo60LyZfWx1sub5y9dpqjI9PvDluXNz5L3qI/va2lb5mZF+nm2J8zZH4D9OSeJr0Hh2paBfmpiwNn4RM3G1jLAX318OTVNs3aFaGhsmkHbs2cPzz//PPv378fJyYlnnnmGl19+ucwsk1b27dvH4cOHmTdvHiNGjACgZ8+eJCUlsWTJEm688Ubs7cvfK/H9998TFxfHhx9+SLdu3QCIjo5m8uTJLFmyhGXLlqnXfvjhh4SFhfH666/jUHrES3BwME888QSbNm3ijjvuAEyzYt9//z3Tpk3j3nvvVdvMzs7m448/ZuzYsXh5eQFw8803c+uttwLw448/8ssvv2j/BgkhbHL+0pUi2qFBQZq2fepsgvq4phmccYWXOZxr2ngf4dyC/p4dNBnb1ex0dkwI6M+iC98B8FXqPp4NHVO9NuzsaBcRyl+xpkzO3Lx8PNxt3ytnmShwOVX2oYmmq8bTW2PGjGHIkCEcPHiQSZMmcerUKd57771aC84Adu/ejaura5mjokaNGkVqairHjh2r9N7w8HA1OAPTfoaRI0dy/PhxUlJMnxBTUlKIjY1l5MiRanAG0L17d8LCwvj555+t2lQURQ28zG699VaKioo4cOCA+pzWM4lCCG2VlJSo+8+8PDzw9vDQtH0tEgS+TtmvPp4Q2L9WM+PHBvRRkwM2pB6k2KivdhuWgejpc9rMonm6u6szc5fT0tSD54Voamo8g/bdd9+h0+kIDw8nKSmJRx555Jr36HQ6vv/++5p2SVxcHK1bt7YKnMB0WLv59e7du5d779mzZ7nuuuvKPG95b2BgIHFxcVbPX33tX3/9ZTUeHx8f/P39y1xnfl0I0ThcTE5R65+FaTx7BraX2Cg26tlYWlrDUWfPbf5l985qydfBg5t8r2NT+m9kGfLZnXWM4dXci2b5fZ6KO09UV9tn/HQ6HUEBAcQlXqCouJjM7Bx8vb1sbleIhsamJU5FUYiLi6tyIGLrp72srCxatWpV5nlPT08AsrOzK7w3Oztbva6ye7OysgDUpcmrr7XsIysrq9zrXF1dcXR0VNuyVWpqKmlpV/ZaxMfHa9KuEOKK80mX1MehwdoHaCfPmP7euru5Etyi+kc87cj8i0xDHgAjfHrg66DtDF95bve/nk3pvwGwMf1w9QM0ixk0cwarFlr6mwI0gEupKRKgiSapxgFafc0O2RLkVXbv1a9VdG11+tdq+eHbb79l9erVmrQlhCjf+STT/jOdTkdoy5aatp2anklyminzsnO7iBr9bvg6dZ/6eHxgf83GVpm+nu0JdPQipSSb3VnHydDnViswbBdxpZSI+QxSLQRbFBC+lJxMl3JWPIRo7GocoLVu3VrLcVSJt7d3ubNSOTk5QPmzXmZeXl7lzrCZ7zXPpHl7ewNU2I/lLJy3tzenT58uc11BQQElJSWVjqc6xowZw4ABA9Sv4+PjefPNNzVpWwgBufn5ZGSZfj+08PPD2clJ0/aPnbrygbZLh+oXbD1flMqhHNPvmnDnQHp71E1AYq+zY5RfT9Zc/hG9YmBregz3tKh6PUt3N1dCggK5kJTC6XPnMRqNmuzHbeHnh729PQaDwerkByGakka1cz0yMpL4+Hj0euvNqmfPngWgTZuKf/FFRkZy5syZMs+bn4uMjLRqw9zm1f1Y9hEZGUlmZqbV8mNVx1MdAQEBdOzYUf1TH8GxEE1ZYtKV7M2wWljePHbySoBWk4r635Yeig5wR0CfOj0273b/3upj8x646mgfaVrmLCwqJvFS8jWurhp7e3uCSstt5OTlkZOXp0m7QjQkNZpBmzx5co060+l0rFy5skb3AgwaNIiNGzfy008/WRWm3bJlCwEBAXTp0qXCewcPHszChQs5duyYep1er+eHH36gS5cuBJSmbgcGBtK5c2e2bdvGPffco5btOHr0KAkJCdx1111qmwMHDmTFihVs2bKFiRMnqs9v3rwZZ2dn+vbtW+PvVQhRdxIuWew/q4UEgeM2zKAZFaMaGNmh4za/2k0OuFp711Z0dA3hRMEFjuQncK4wuVrFcdtHhPHjL78CpkSB8BBt3t/gwBZcuGwK+C4mJ9NRow/EQjQUNQrQKtoPpdPpyk15Nj9va4DWr18/evfuzcKFC8nPzyckJIQdO3Zw4MAB5s6dqwZTCxYsYOvWrXz22WcElf6yHTVqFOvWrWPevHlMnz4dX19f1q1bR0JCAosWLbLq59FHH2XWrFnMmzePcePGkZGRwbJly2jTpo1VSY02bdowevRoVq1ahZ2dHZ07d+bQoUNs3LiRqVOnWi1xFhYWsn+/KUX+6FHT0SkxMTFkZWXh4uJCv379avy+CCFqzmA0knDRFKA5OTrSMqD6G/groyiKOoPm4+VZ7QSBQzln1JMD+nt1pKWTj6bjq4rb/XtzonRT/ndph3kyZFSV7706k3P4wOs1GVMrq31oKRKgiSanRgHa1QkCRqORp59+mv379/P0008zaNAgWrZsyeXLl/n555/54IMP6N+/f5lAqCbefPNNli9fzsqVK9Wjnl555RWrGTWj0YjBYLAKFp2cnFi0aBFLlixh8eLFFBYW0r59e959912ioqKs+oiOjuadd97ho48+4oUXXlCPenr88cdxumpvyqxZswgICOCbb74hPT2doKAgZsyYUeaop4yMDObNm2f13KpVqwAICgrif//7n83vjRCi+pJSUiguKQGgdatW2Gtcs/BSciqZ2aa9rp3bVz9BwHJ5c6x/H03HVlW3+kWzKHEjBox8l/4rj7e6BTtd1d6nWsvkDAjAzs4Oo9HIxRRtlk6FaEh0igZV/hYsWMCiRYuIiYkhuJxz0S5cuEB0dDSzZ8/mueees7W7Zu/EiRNMmzaN5cuX07Fjx/oejhCN2p5ff+PPEycAuOmG/rSPiNC0/e27D/LiP/4DwJR7x/LoA3dW+d5cQyHD/3iFQqUET3tXdvR4FWc7R03HV1VPnPove7JjAVjR4XGu92xXpfuMRiPD7nqM/IJCglsE8O3q9zUb0zfbflCLCz807g7cXF01a1uI+qbJR8WVK1dy9913lxucAYSEhHD33XezfPlyLboTQghNKIrCuQumpTs7nY6wcuos2sqW/Wc/ZPxBoWKa3bvVL7regjOA2/yvLE1WJ1nAfOQTmGYTs3O029BvWW7jYopkc4qmRZMALTExERcXl0qvcXFxITFRuwNzhRDCVhnZ2WTn5gIQ3KIFLhqX1wDrDM4u1czgtFzeHOOvzd6tmhrm0xUPO9Pv+R8y/qDAWFzley0zV4+fPqfZmEIsDrS/eFmWOUXTokmAFhoayrp16ygsLCz39fz8fNatW0doaGi5rwshRH04V7rxHSAiJETz9o1GoxqQtPD3JcDPp8r3JhSm8FuuqWRPpEtLurnV7IB1rbjYOXGTr+m4vHxjEbsy/7rGHVd0bh+hPj52smwJo5oKCgzErnRP33mLUilCNAWaBGhTp07l7NmzDBgwgA0bNqh1wdLS0li/fj0DBw7k3LlzTJs2TYvuhBBCE3EXLAK0UO0DtHOJl8jLLwCqv7y5Mf3KMuIY/+vrtPZZRSxron2f9muV7+vSPlJ9bFm011aWWbdZOTnqbKgQTYFNZ3GazZkzh5MnT7Jq1SruvNO0AdacXQOmfR4PP/wwc+bM0aI7IYSwWU5eHpdLN5j7eXvj7aH92ZYxR06qj3t0aV/l+66ufTa6jmufVSTaow1Bjj4klWSyL/skaSU5+DuWPeP4aq1Dg3B3dSGvoNBqyVcLYcFBXCrdf5aYlESXdlVLXhCiodNkBs3Ozo6VK1eya9cuJk2aRHR0NBEREURHR/PQQw+xa9cuVq5c2SA+AQohBMCZhCslH9qF187y4e9HT6iPo7tWPePasvbZDV4daeHkrfnYasJOZ8etfj0BMGBkW0ZM1e6zs6NT6TJncmo6qemZmo0pzKKwsCxziqZEkxk0syFDhjBkyBAtmxRCiFpxKt4iQGtdOwGaeQbN2dmJjm2rfkSbdXJA/dQ+q8ho/56surwTgE3pv3Fvi0FVuq9z+zb8+qepTMexU3EM7hutyXgC/fxwdnSkqKSExKTLmp33KUR9k59iIUSzk5WTQ0p6OgCBvr74WJz6oZWk5DSSUkz7cbt3bIujY9U+D+cZCtme+ScAnvauDPXpqvnYbNHetRXtXU0llf7Mi+d8UWqV7rPMYD2u4T40Ozs7Qkpn0YqKi0nJyNCsbSHqkwRoQohm53RCHcyeHb2y/yyqW4cq3/dDxp8UlpawqO/aZxUZVbrMCaZZtKro0sEiUaAW9qGZnb8ky5yiaZAATQjR7JyKj1cft62l/WcxFvvPorpUPUD7Nu2g+ri+a59V5FbLAC3tt3LPYL5aq5YBeHuZEjGOnYyr0j1VZbkPLTHpUiVXCtF4SIAmhGhWUjMySM/MAkznOXrVQvYmwO+lM2j2dnZ071y1zMLzRan82oBqn1Uk2MmXXh6mGbFzRckcz792EXKdTqcWrM3MzuFSctWWRqvCy8MDb09TNumllFQKi6teRFeIhkoCNCFEs3L8zJVCqR0iqr5xvzqycnI5G2+qsdahbWvcXCs/acXM8gilhlL7rCKjLEp/fF/VZU6LfWhHYs9oOp6IENMxXYqikHDxoqZtC1EfJEATQjQbeoOBk+fOAWBvb6/5wehmVvvPulat/pmp9pkpe7Mh1T6ryEjf63DU2QOwNeN3DIrxmvf0sJhJtHyPtBARcuWkGssTIoRorCRAE0I0G3Hnz1NUuvzVNiysVs7eBDj4+1H1cc9unap0z+HcM1xsgLXPKuLl4MZA784ApJRkcyjn9DXvua5Le3VWMObYKU3HExwYgHPp/8+ES5cwGAyati9EXZMATQjRbByzWN7s3LZtrfWz/1fTOZX29vb0jupSpXu+TW24tc8qMtpqmfPaRz95uLvRvk0YAKfjzpOTm6fZWOzs7GjdyrTMWVxSwsXS0wWEaKwkQBNCNAtZOTlcuHwZAG9PT1q1CKyVfhIvJZNw0dRPj05t8XBzveY9eYZCfmjAtc8qMti7Cx52pv11OzL+pMB47c350d1MJyooisKfx68961YdlgfeyzKnaOwkQBNCNAtHTl1ZUuvSNrLWNuDv/+0v9XG/Xt2rdE9jqH1WHmc7R0b49gAgz1jErsy/rnGHaZnT7PcjJyq5svrCgoPUUwTOXbigaSkPIeqaBGhCiCavqLiYY6dNWYP29vZ0ioy8xh01t//XI+rj/lUM0Cxrn41tJMubZrf791Yff2uRhVoR8wwawB8a70NzdnKiVYsWAOTk5amnRQjRGEmAJoRo8o6fOUOJXg9AxzYRuLpUrexFden1eg7/cQwAX2/PKp2/GV+YYlX7rKtbWK2Mrbb09IgkxMkPgAPZJ7lcnFnp9QF+PoQGm4KooyfOqkkbWmkbfuX9szwxQojGRgI0IUSTZjAa+fPElZIO13WsWlZlTfx5/DR5BYUA9InuVqVDu79J3a8+vsO/T4OufVYeO52dOotmRKlSskBUV9PJCiV6vebHPkWGhmFX+h6ejk+QZU7RaEmAJoRo0s4mJJCbnw9A61at8PXW/mB0s32/XtmD1b9Xt2teX2LU821p7TMHnT231+LRTka9EaPh2rXKasJy3BvTDl8zKDIHaKB9PTRXF2dCS49+ys3PJylVuxMLhKhLDvU9ACGEqC1Go5Ffjx5Tv47qXHuzZ4qisOsX0+yRTqejb/S1A7Sfso6Srs8F4Eafbvg5anPslEFvJDEmhfMxKVw8mkZeRiGGYiPowM3XGa8WboRFBRLZPxjPQDeb+wt19qenRyS/5Z7lbOFljuQn0N294uXdXj2u/H848PsRHv7b7TaPwVK71q1JuGQ6k/N0fDzBgbWTsStEbZIATQjRZJ1OSCA9q/TcTX9/dQN5bThzLpH4RFNQENWlPQF+Pte852uL5c07A/rZPAaD3sipnxKJ2XCG3NTCshcokJ9eRH56EUmxGRz6/CRh0YH0va8TPiG2BYdj/K/nt9K9dN+k7q80QAsNbklIUCAXklL449gp8gsKq3wcVlVEhoXy00E7DEYjpxPOM6BnzyotNwvRkMhPrBCiSTIYjRz688qSY9/retTq/q4de68Umh0+6NqZmBeK0tmXbVreC3Hyo69n1Y6EqkhqXBbrXtzLnpVHrYIzOwcdvmEetOzgS0CkN67e1qcnnP89ha+f38P+tcfRF9e8+v7NvlG42TkDsDn9d/IM5QSIFswlSPR6A4f/PF7jfsvj5OhI69KzOQsKC7mQnKxp+0LUBZlBE0I0SSfOxpGVa1o+DGnZQt2XVFt27DYFaDqdjhsH9L7G1fBlyi8omPZqjQvoi52uZp+XFaPCHxvP8utXp1AMV/Z+hV4XSOcRYbTq6o+ji/Wv+uzL+Zzdd4lj2+PJTy9CMSoc2XyOS8fSuPHpaLyD3Ks9Djd7Z0b59eSr1H0UGIvZkv474wP7V3h9/57d+fr7nYDp5IXBfaOr3Wdl2rduzdnziYApizeslv//C6E1mUETQjQ5JSUlHPrryuxZnx49arW/M/GJxJ2/CJgKsQb6+1Z6fYGxWM3edNDZ13h5U19sYOe/Yjj8xUk1OPOP8GLMa/245fnetO7VskxwBuDV0o2oO9py9/tD6DWhPfZOpn8K0uJzWP/yXhL/rNkxSeMtvg/L5dvy9L6uM/b2psPWLZMrtBIREoKLs2lG7+z5RAqLijTvQ4jaJAGaEKLJOXzkKHkFBYApc7O2N4mbZ88Ahg+8dibm5vTfyDKYMktv8Y3G39Gz2n0WZhez6a2DxB1IAkCng6g72jLm9f60aF95gGjm4GxP9J3tGPvGDXi3Ms2alRQY2Pbur5zZd6naY+riHkYnV9NxS0fzzxObX/FxS+5uruqpAomXkkm8dLna/VXG3t6ejm0iAFOyyIm4c5q2L0RtkwBNCNGkpGdl8UdsLAD2dnYM7NWzVvtTFIVtPx9Qvx52jeVNRVH4NHm3+vW9LQZWu8+C7CK+f+sgyacyAVOgddPsXvS+uwP2DtX/te4X5skdb95A6+tbAmA0KOz6dwyxu85Xu63xgVdm0b5M+aXSa/v1vJLpus/iBAatdG7bVn18/MwZqYkmGhUJ0IQQTYaiKOw+fBhj6T/E0V264O1Z/dmp6og5elLN3ozu1pGWAX6VXv9r7hlOFZiuv849gm7u4dXqLz+riE1vHiTjfA4Abj7O3P5KP8KjbctQdXRxYPjT0XQcFmp6QoE9K45wek/1Dh0f5ddLTRb4Lv1XsvX5FV57Q+8rS8/7fv2z+oO+Bj9vb4ICAwBT4H45LU3zPoSoLRKgCSGajKOnTnPhsiljz8vdnZ5dOtd6n99s3qU+Hnfr0Gtev+byj+rj6s6eFeeXsGXBITISTckP7n4ujJ7XF/8IbYrv2tnpGDi1G91GRZieUOCnpX9x7lBSldvwsHdhTGnh2kJjMesszhm9Wvs2Yfj7egNw8Pej5BdUnvlZE10sZtGOnNT27E8hapMEaEKIJiE9K4u9v/+ufj34+t44ONRuonpmdi4795gOCPf2dL9m9ubJ/Iv8nGUqnBvk6MMIn6onLxj0RrYv+p30eNPMmbu/C6P/3qdGGZeV0el09J3Yic4jTDN7ilFh17//4PLJjCq3YRl4fp68B4NS/gkGdnZ2DL2hFwBFxSXsORhT84FXoG14OM5OptIipxMSyMuveEZPiIZEAjQhRKNnMBjY/ss+DAZTHa9u7dsT3qpVrff7/fY9FJeUADB6+EA1EKjIR0k71MeTgobhaFe1AFIxKvy87C8uHjUt0Tl7OHLri9fj1VLb4MxMp9Nxw0NdaDfQ9B4aSoz88P6vZF+uWnAT4dKCAV6m0wIuFqerQWl5Rgy8UjNuu0WyhVYcHRzo2q4dYEoW+POktkdLCVFbJEATQjRqiqLw8+HDpGaYZnh8vby4ITqqTvpdt+VH9etrLW8mFKawNSMGAF8HD8YF9K1yX4e+OMGZvaYyHvaOdoyc3QufVtocC1URnZ2OwY90p1VXfwAKc0rY+u5hinJLqnT/fS0GqY//7/JPFV4X3a0jfj6mJdpfDv9RK8uc3Tt2UE8SOHbqNCUlVfsehKhPEqAJIRq1P0+c4PgZ0xFD9nZ2jLihf60vbQL8fOB3NTmgZ/dORIRVPmO36vJOjKWFae9vMRhXu8pn28yObj3HnxvjAFMpjRufiqJlh6qV0bCVncP/t3fe4VFV28N+z6RMJr2S0JIAoRMJEDqhd7GhV0SKdGwXrngFK2C5XssVfnIVRKpwAflQUFACiKC0SA1FEAwkoYWSRhJSp5zvjyEnM5mZJMAEZuJ+nyfPzNln7b3XOnt2Zs0ua6voM7WNEoIjJy2fnz9NRK+r/ND1Lr5NiVQbNy4cunmOYzdTrcq5uKjoZTbNecw+ypvgpdHQJNJ49FSxVssfySl2r0MgsDfCQRMIBE5LyqVL7Es8qlz36tSRkMCKd1HaA1mWWbL6e+X66UcHVCh/viid7zOM03feKg+eDOlapXpSDlwlYUXZMUhdxrYkIjb0DjS+c9Tebgx4JRYPX6NDmXYyk71LT1YaskIlqRgb1lu5XmIyvVuePibTnD/vsb2p4G5o3azsgPajf/yhTIcLBI6KcNAEAoFTcv5yGlv37FUchXYtW9IkMvKe1L334DH+OJsKQJOG4XTvVPExRZ+lxaPHOOo0KrQHvq6aSuu4ejqLXz4/xq1BN2IebaQs3L/X+IZ60m9aW1zcjF8Zf/5yieObkivN92BgW8Lc/AH4NeckfxakWZVrE92UAD9jOJS9h45zs6DQPoqbEOTvr6xLvFlQwKlz5+xeh0BgT4SDJhAInI7zl9OI370bg8Ho9DSOiKDDA9H3pG5ZlllsMno24elHKjyE/WT+RbbdWnsW6OrNqNAeldaRffkmP31yBL32ln3d69Lub3d3mPrdEtokgO7Plu06Pbj2z0rDb7ipXBkd1lO5XmpjFM3VxUUZRSsuLmHLzooD3N4ppp+Rw7+fRKvTVUs9AoE9EA6aQCBwKn7/M4nNu3Ypzlmj8HD6dO5UoZNkT3b9lsjJP42jR40b1KdHJ9snFciyzKeXf1CuJ9Xuh5eLR4Xl52cXsfXDgxTnGxey13sgmLgJre6ZfRXRqHNt2j1xy1GU4Zf5x8lIzakwz9DgTgS4Gtewbck+ytlC607dowPLHNf18b9US9T/WoGBNKxvDMRbUFQk4qIJHBrhoAkEAqdAp9ez6+Ahdh06pHx5NwoPp1+XzsoOveqmsKiY/3zxP+V6wtOPVlj3zzdOsD/P6ATUcw/iieDOFZZfUqBl64eHuJlh3MkYFOlL76ltUN3B8U3VRcxjjWjUpTYAumI92/5zmPxs2zsvNSp3ngntBYCMzH8v/2hVrmmjCFo2aQhAUvIFTp6pfAr1TugQXTYKeOTUKXGIusBhcZxeLxAIBDbIyM7mmy1b+T2pbMQjpnmze+qcAXy5agNX042xyDrEtFR2H1ojX1/Ehxc3KNf/qDekwrhnSiDaC8ZAtN4hGgZMj8VdU/07Um8HSZKImxRNrcb+ABRkFfPTfw6jK7a96H54rW7UcjOeGPBLzkmO3LTufA0d3Et5b3pCgz0J9PdT1ioWl5Sw/5j9j5gSCOyBcNAEAoHDUqLVsi8xkW+2biMrxziVplKp6NWxA13atLmnztmZc+dZs2ErAO5ubrz64jMVTjvOT9vCda1R526+zSo8NUA2yOz64rhZINqBM2Lx9Ffb0QL74eruQt9pbfEONm52yEjJ5ZcFx5AN1qclPVTuPFenbKfrp5d+tDqF2b97R7y9PAHYtms/eTfzq0F76BTTWgnFcvLsWXFGp8AhEQ6aQCBwOEq0Wo7+cZpVmzZx9I/TynqzIH9//jZwAM1Nzle8F9wsKOSNDxegv6XH2GEPUb+O7XAXv+dfYPX13QCoJVdeC3+8QmfuwJoznNtnjKl2rwLR3i2efmr6v9ION40LAKkHrnH4G9truh4Oak9DD+MzO5qfwrZsy3hnHh5qBvfuAhg3C3zz445q0By8PT3pEN1Kud518JDyGRMIHAXhoAkEAochKyeHfYmJrPx+I/sSEyksMq4PclGpaNeyJU8M6E+Qv/891clgMPD2J18qQWmjIusx+m+Dbcrn64t4NWWlEpR2Uu3+1FMH2ZT/PT6FEz+aBKKdcu8C0d4tgfV96P1iDKW+59HvzpG0+7JVWVfJhal1hyjXH1/6jpt6y7Vrwx7uh0plLHDVhi3VcrIAQHTTpgT6Gadd07OyOHbmTLXUIxDcKcJBEwgE9w2DwUBGdjaHfj/Jui1b+frHzRz94zTFJSWKTKPw+gwf8iAdWz+Ai4vLPddxyZrv+SXhCAA+3p58/NYU3N3cbMq/f2E9F4uNU2bRXuE8E9bLpuy5hCv8tvK0ct11XEsi2t3bQLR3S/02teg4srlyvXtR2Zmh5enh14Iefi0BSNfm8tnlzRYy4XXDGNDDuJkiJ/cm636wHeD2bnBRqejevuxw+/3HjivHhQkEjoBw0AQCwT1BlmVuFhRwIS2NA8dPsHHHTpZ+u57/F7+FA8ePk56VpciqVCqaNmjAUw8OZkC3bvh635/pviVrvufLVd8BxsXx777yLPVq23agvss4wA9ZhwDwUqn5oMEo3CTrTuXFo+n8uqBsmq/N0Cia9bk/gWjvlpYDI2jWpz4ABp3MT58cJj3ZMvyGJEm8Wv8xPG4dc7U2fS+/51+wkBs3/GFlFO1/38ZX2yhanVq1iGluPGHAYDDw0959IjaawGFwrO1BAoHAqZBlGa1OZ/zTainWaiksKqKwqJjCoiIKiorIy88nJy+P3Js30VVyvE5wgD9NGzSgSWQDNB73b4G8wWDgi5XrWbZ2k5I2ZfwwurZvbTPPwbyzvHthnXL9ZsQTNqc2Lx5N56c5hzHojNOgTXrWo+3jUXbS/t4jSRJdxrSgILuYC0euoy3Ss/XDgzw4sxMBdc2d6zrqQJ6t3Z//u/wDBmReT1nF182n4elS1t6R9WrTr3sntv6SwI3cPNZ8t5Xxwx+pFt07PvAAl65eIyM7m+zcXHYdPEjvTvcurp5AYAtJro5ogIJq5cyZM0ycOJFFixbRtGlTu5RpMBjQ6/Wlp8ogy7Lx/a2Ph/GlLM3s9Za82Wu5vDIyyEoJynvTj59pXtmYyaROyzJKdSqvb1myXFa3aRlm8uXqkGXLOs3sq1in8mnmOpbpZLMOWZEufXwmz6W8/eWeg2zy7MqXYaqLWR0yBoOMwWDAIBss3996lQ0G9Cb3dTodJTodurscbfDUaAgLDqZOrVpE1q1z30bKTMm6kcus/yzktyO/K2lTxg9j1OO2150lF15j9Jl55OmNRxQNC+nK6+GPW5U9f/gaP3+aqDhnDTqG0evF1qhcnH9CQ1eiZ8sHB7l62jhVqPFzZ/CbHS2cNK2sZ/TpTzlVcAmAR4I68E7kU2YyqRfTGPbc6xgMMmp3N75e8D71ateqFr2zc3JZt2WL8gOiU0xr2rZoUS11CQRVRThoTkh1OGiply+z+ddddilLICiPSqXCz9sbPx8f/Ly9qRUURFhIMN6eng4zUqHXG9i8Yy+fL19HZrZxek6SJKZNepqnHulvM19y4TUmJS0gXZsLQJxvc/4vahyuVqY2T++8yN7FvyuOc01yzkopKdCy+V8HyEgxPg+NnzuD3+hAQD0fM7nzRekM++MTCg3G9YYfNBjJoEDzUxnmfrma1d8ZQ5t0ahfNvHderrbPy7kLF9i6Z69yPSCuG43q16+WugSCqiCmOAUCQaWoJAmVSoVKpUKSJNxcXXFzc8Xd1e3WezclTaP2wFPjgcbDA0+1B95ennhpNPc0ZtntUKLV8vOeg6z8Np6k5LL1UIEBfrz7ymQ6xLS0mfdMwWUmJy0kW3cTgKaaunzUcLSFcyYbZI6sP0vi+rNKWqMutenx3AM1yjkDcPd0Y9BrHdj8/gEyU3MpzCnhh3f2M+CVdtRqXLY7NcIjhDfCH+fN1DUAzE5dS111EA94RSgyk0cNZfueg1zPyOK3wyf4add++vfoVC16NwoPp8MDuRw4fgKAn/buwyWuG5F161ZLfQJBZYgRNCekOkbQrmVkGCNqSwASEpT9UpWM19xKk27J3LqlyCtykpKivFfklB+/krEspSjzvFbrKFeGZBQ2f7Umb1qHmbxSobm9VvKW3iuf17pdtuowsatcGVJZgnleqdyzVfS0fA5K+5SzqzSv6ciDYo8k4XLL6Sp1wFTl3ku3/moSRUXFHD5xmt0HjrJjz0Gyc/LM7vfo1JbX/j6GoAA/m2X8nH2cmalfc9NgXMDeTFOXBY0nE+hmPp1XUqDll/nHuXDkupLWalAkHUc0Q1LVrOdqSvFNLfEfHCTj1mYBF3cVfaa0Ibxt2TSlLMvMPP81GzMPAhDg6s3/mk01W7v3y77DvPLePMC4i/ar/5tdYQy6u0GWZX5O+I0/U1MB48jvQOGkCe4TwkFzQqrDQRMIaholWi1Z2blkZt8gIzuHi2nXSL14hdNnUzmbclEJOmtKs6gIpo4fTmzr5lZKNFJs0PJ5WjxfXftFSWvtFclnURPxddWYyV5PyuaX+cfJvVYAGH88dHi6GdEPNrCPkQ5OSYGW7XMTy8JuSBD7tya0fqSh4vSXGHQ8l7SQQzfPARCuDmFxk+cIdfdXynn1/c/4eY/RiYuKrMfSOTOrbROJwWBge0ICZ88bR1NVkkRcbCwtGzvvJg6BcyIcNCekOhy0Eq2W3DzjsSqyLNtYsF+6uL78AnaTzQCy+cJ05PIL1cuusVqWST2VlmWSp9yGBdnkujSf6WJ7o9rlrsvZXnZtZSG/zbLMN0xYbGSwuinA/PmB9VezDQClz9oir7Wyyp6f6bVlWRU9g8rKMmlDG2XJJm1R9uwq/zzo9Qb0Br3xVa9Hd+u1NF2n01NcUnJr52gxRUUl5OUXcDO/gKrg5upKzy7teOLB3rRp1bTC0cLfcv/kXxe+5UJxupI2MKANsyKeNNuFqCvRc/S7cxz7/pxij9rLjV5/b029B0KqpFdNQa/V8+sXJ0hOuKKkRbQPJW5iKzy8jeE2cnUFjD4zj5Qi4yhjHfdAFjV5ThlJu1lQyNiX3ib1orGMPt3a868Zz+NSTdPD5Z00gOgmTejSJua+xOIT/DURDpoTUh0O2p4DR3lp9ly7lCUQODKSJNEwvC7RzRvRJfYBOrZphafGo8I8R24ms+jKT+zLLYs274qKafUf5umQOMWpk2WZC0eu89vKP8i7XqjIhkT50euFGHxDPavHKAdHNsgc/f6c8SioW984ngFquj/7APWigwFIK85iUtICJchviJsvcxqNVdakpV5MY8w/3ib/Vky0AT06Mfufk3CtJofJYDCQcPQox06XtXlwQAB9u3RWTiAQCKoT4aA5IcJBEwgskSQJD7U7Gg81Xp4aAv19CQrwI9Dfj8AAX+qGhhBRL4zI+nXw8tRUWl6mNo+t2UfZmHmQP26FgyglxiuSNyOeoLGmDmB0zC7/nsmRb5O4/ueNMp1cJNoOjaL1ww1r3GaAO+FC4nV++fwYJQVl4VmiutWhw/CmeAZ4cL0kh8lJX5BcdA0wHg/1Sr1HGBbSFUmS2HPgKK+8Nw+dzhgOo1eXWN755yQ8qjFm3qlz58zO6nRRqWjTogVtWjTHzVXssxNUH8JBc0Kqw0H7IymFpV9vNF5IksmCdpOF5yYLy5WF7aXyJgvWJZNF9eUXqFuWZb4A37j+XbJaluVr6QL5qpRVqnfZNabX5TcZ3HoGpuWWX2QvlSvbfKF+ZWUpJZldS5jUUyprpU7Ta4tNE+WfgfLMyrWpSdmlbVimp6U95mWVa9MKPw8m9lb6eSivB7i4uODiojK+qozvXU3SVCoVHu5uqNXud7yZQZZlMnR5nMy/wPH88/yW+ycnCy5ayNVxD2Ry7f48HBSLSlJRUqDl3L4r/PHzBbLOm280qN0ikC5jWliEl/irk59ZyK4vT3D5RNlxUG4eLkQPaUDLAZHkuxczLXkZiTdTlPudfZvyev2hhHuEsHv/UWb8679KxP+GEXV5/9XnaRRRr9p0Ts/KYntCAtk5uUqal0ZDbKtWNG3YoNpG8QR/bZzOQSsoKGDx4sXs3LmTvLw8wsPDGTFiBH369Kk0b3Z2NgsWLCAhIYGioiKioqKYMGEC7dq1s5A9dOgQS5Ys4ezZs3h4eNC5c2eee+45AgICzOR0Oh0rV64kPj6ezMxMateuzWOPPcbjj1sGqUxLS+Pzzz8nMTERvV5Py5YtmTx58m07WWKTgEBgiSzL6DFQYtChlXVoZf2t93pKZB15+kJydQXk6ArI0ReQrs3lUnEml4ozuFicqcTjskYLz3oMrxXHoMC2aG9ouXwik9SDV7l0PAO91nyzgX9db9o9EUVkh7Aat/vVXsgGmdM7LnJo7Z8U52uVdHdPV5r3DSeqdx2WFO9g5fVfy+5JrjxVqxujQ3ty9vh5pr83j6JiY5up1e6M+dsQRgwdWG2bB3Q6HQdOnOD46TMYTL42NR4etGrcmGYNG+Dj5VUtdQv+mjidgzZt2jROnz7N5MmTqV+/Ptu3b+eHH37grbfeol+/fjbzlZSUMHHiRG7evMnkyZMJCAhgw4YNJCQkMHfuXGJiYhTZo0eP8tJLL9G5c2cee+wxsrOzWbhwId7e3ixatAh3d3dF9qOPPmLbtm2MHz+eZs2aceDAAVavXs2ECRMYNWqUInfjxg3GjRuHj48P48aNw93dnVWrVnH27Fm+/PJLwsOrfgZfdThov+df4MsrPwEmUfGh7J3ponFr903SzdJsfLysypqWayVfpfXK5tIV62hal/U6Kq1XtrTBvF7LfGaL723UYTW/DR2tv6s4n219q66jVX0ryWezXqs6Wi/LdBOEaR6drKdE1lvV605pqqlDR48mdMyNwueiB1nnc8lIzSUnLd+qfEiUH9GDG9CgQ1iNDp9hT4pySzi07k/O7LyEbDBpOwnqRQeT1bWA5b6/cE2Xo9xyl1wZHNiWDkUN+N+8jZxNLZt+DgnyZ8Rjg3iwbzf8favnVIobubnsSzxK6uXLFvfq1KpFg3r1lFMxhIMuuBucykFLSEhgxowZzJw5k759+yrp06ZNIzU1lXXr1tncYbNhwwbmzp3L/PnzadWqFWD8RTRu3Dg0Gg0LFy5UZCdNmkRRURFLly7F9dYagxMnTvDCCy8wbdo0Hn30UQBSUlIYM2YMEydOZOTIkUr+jz/+mG3btvHtt9/i6+sLwIIFC1i3bh2rV68mLCwMgPz8fJ566inatm3L22+/XeXnUB0O2q6cU/z97GK7lCUQOBMusopgvQ/BxT6E5foTdtWP4BQfXK6Atqjis0M1fu5Edgijaa96BEeKheN3Su61fI5+n0zS7svIevOvJK27jt8HXmZ/o3NoVebtUVvyw+9nmdRfUzGYOHjubm5069CauI5t6NS2FcGB/nbX+XpmJol//EHyxUtWf1B6engQGhxMaHAQoUHBBAX442Hy414gqAynWuG4e/duNBoNPXv2NEsfPHgw77zzDqdOnSI6Otpm3vDwcMU5A3B1daV///58+eWXpKenExISQnp6OqdPn2bSpEmKcwYQHR1N/fr12bVrl+Kg7d69G1mWGTRokFldgwYNYtOmTezfv18Z1du1axdt27ZVnDMALy8vunfvzrZt29DpdGb13WsyUnIqF6rpmP6AN/t/K1lJs5EPySLd1m9oSbZyp5KyLMqTrcjaLK80TbJMq7AOy7Jt3S+ro+plgfVna/X52LivMki46FW3/iRUyvuyNPdiVzyK3PAockNd5IamwB2/HA3eeR6oytVlQI9llDTjov/gBr7UbRVM3ehgQpsGoBKjZXeNb6gX3SdFE/u3xpz59RJndlziZoZxF6xbiSttNkbQxDOMo7HnOfHAJbRqo6N2Rc7hSm8g2g/XbfmoThunS0u0WnbsPcSOvYcACA72p2lUBBG1w6gbFkLtWiHUCQsmwM8Xby8N7m5ut61zraAgBnTrRl5+PmdSUjmTkkJOXtk6xIKiIlIuXSLlUtkIn9rNDV8fH3y9vfD18kbjocZD7YGnhxoPDw/Ubm64urri5uqK6631lYK/Lk7loKWkpBAREWHhyDRq1Ei5b8tBS05OpnXr1hbppnlDQkJISUkxSy8ve+LECTN9/P39CQoKspArvQ9QXFxMWloa3bt3t1pmcXExV65cof59PPettSGCCfN7WL9pzWmoxGGwJWuKrS9g61/y1p2VsrKslmDTqbLp0AgEgKvaBa9AD7yCPAgM9yEo3JfACB/863rj4iq+NKsLzwAP2jwaRczDjUg/d4OUA9e4eDSdG5dv4lWgpuuuJnTY14hzja9zukUal+tnY3CRIcQF3QhfSNfjcqgI1dFipIKyzp+RcYOMjBvs5Zj1il0kVGoVkpsKyUVCUknKK6XvTTfHyFB6Oogx0fhfx0ejoW5QICG+fgT6eONe7ruqWKslPSuL9KysKj0PvcGATq9HZzAoMQUNSozIstiI1tKsYW3JitX7NnCiCTe7UDssjL//7Yn7Vr9TOWg5OTnUqVPHIt3Hx7hLKjc31+JeKbm5uYpcRXlzcowjSaVTk+VlTevIycmxKqfRaHBzc1PKysvLQ5Zlq/WX5s/JybHpoGVkZJCZWbbj6exZ43l+58+ftyp/J2Rcz0HlVmh5o5wfU5UlFZXLWBmRKZ9U7tri30K5DNb+bZT+H62w3soSrNhi4dxVKU8lVMVfLGdz1dri9h1Ryyy331539hCqoEslj94ik2Q8rsfF1fjF6+IiIbmpcHGRULmpcFO74ubhcuvPFbW3Gxpfd1w9zP81GrhJRtFNMs7dvg2CO8c/VsI/thZFef5kpuaSe7WAG1eKCU9VE3KsLlrXMNJDc0kPzSUzKJ/swGK0rUDfUo10TYfqvA7pqg7S9UjaCirSg1xSuYNSGfnAVcqC23p7aQjw9yEgwBsvTw1enmo0GrVd16ZJgNhDWj0kn03izJkzlQveAREREXh4VBx/0akcNLizL5yq5C1/z5bs7dRf1TIru7dx40aWL19ukf7ee+9VWReBQCCokaSVvfW49eco6AohPQPSKxcVOCgT4+OrpdyqrCF3KgfNz89PGZUyJe/WvL+10axSfH19rY6wleYtHd3yuxUh2lY9pqNgfn5+ymiWKYWFhWi1WkUfHx8fJEmyWn9pWkW6P/zww3Tt2tVMj/Pnz9OkSROzHaV3y/nz53nvvfd48803iYiIsFu5jkJNtw9qvo013T6o+TYK+5yfmm7jvbCvKuU6lYPWsGFDtm/fbrGgPjk5GYAGDRpUmPfcOcv5idK0hg0bmpWRnJxM586dzWSTk5PN6mjYsCE///wzmZmZZuvQyuujVqupW7eukl6+TLVaTe3atW3qHhwcTHBwsFlabGysTfm7JSIiokbHV6vp9kHNt7Gm2wc130Zhn/NT02283/Y51WrXuLg4CgsL+fXXX83St2zZQnBwMC1atLCZt3v37ly4cIFTp04paTqdjp9++okWLVooDlBISAjNmzdn27Zt6PVlW7pPnjzJhQsX6NGjbCF9t27dkCSJLVu2mNUVHx+PWq2mY8eOZrofOXKEa9euKWkFBQXs2rWLrl273tcdnAKBQCAQCBwLp/IKOnXqRGxsLHPmzKGgoIC6devy888/s3//ft58800lBtoHH3zA1q1bWbNmjRLWYvDgwWzYsIGZM2eaBaq9cOECc+ean0H57LPPMm3aNGbOnGkWqLZBgwZmITUaNGjAgw8+yLJly1CpVDRv3pyDBw+yadMmJkyYYDZtOXz4cLZt28aMGTMYP348bm5urFq1ipKSEsaOHXsPnp5AIBAIBAJnwakcNDAujF+0aBFLlixRjnqaNWuW2VFPBoMBvV5vtiXY3d2duXPnsmDBAj799FOKiopo3LgxH3/8sdkpAgBt2rTho48+YunSpbz66qvKUU/PP/+8xZqvadOmERwczPr168nKyiIsLIwpU6ZYHPXk7+/PZ599xvz583n//feVo54+/fRTh5nDDwoKYsyYMRZhQ2oKNd0+qPk21nT7oObbKOxzfmq6jY5in1OdJCAQCAQCgUDwV8Cp1qAJBAKBQCAQ/BUQDppAIBAIBAKBgyEcNIFAIBAIBAIHw+k2CQggMTGRqVOnWr23YMECWrZsqVyfOXOGL774glOnTuHi4kKbNm144YUXrB6Z9e2337JhwwauXLlCUFAQgwYNYtSoUVUKAaLT6Vi5ciXx8fFkZmZSu3ZtHnvsMYvNEvfLxosXL7Jx40YSExNJS0tDkiQiIiJ48skn6dmzZ6X6XLlyhWHDhlm9V36Tyv2wD7B61ivApEmTGDlyZKU6OXobxsfH8+9//9tmfZXZeb/a8Pjx48THx5OUlERKSgparZa1a9fajH3oKP3Q3vY5Wh+E6mlDR+qH9rbPGfugXq/nm2++4eDBg6SkpJCbm0toaCjdunVjxIgRVo9gdJQ+KBw0J2bSpEm0adPGLM00kO758+eZOnUqUVFRzJ49m5KSEpYuXcqLL77I0qVL8ff3V2RXrFjBkiVLGDFiBO3bt+f06dMsXryYjIwMXnnllUp1mTNnDtu2bWP8+PE0a9aMAwcOMG/ePAoKChg1atR9t/HAgQMkJCQwYMAAmjVrhl6vZ8eOHcycOZNx48YxZsyYKunz+OOP07dvX7O0evXq3Xf7SunZs6fFP8DQ0NAq6eLobdi5c2cWLFhgUf6SJUs4dOiQzS/G8tzrNjx8+DCHDx+mcePGeHl5kZiYaLMsR+yH9rLPUfsg2LcNwfH6ob3sc8Y+WFxczLJly+jTpw9DhgzBz8+PP//8kxUrVrBv3z4WLVqEWq1W8jlUH5QFTseRI0fkuLg4eefOnRXKzZw5Ux4yZIh88+ZNJe3KlStyr1695Pnz5ytpN27ckPv06SN/9NFHZvlXrFghd+/eXU5JSamwnuTkZLl79+7yypUrzdI/+ugjuW/fvnJOTk7VDDPB3jZmZ2fLBoPBIv/06dPlfv36ycXFxRXWk5aWJsfFxcmrV6++PUNsYG/7ZFmW4+Li5Dlz5tyRPs7QhtYoKCiQ+/fvL7/wwguV6nO/2lCv1yvvV69eLcfFxclpaWkWco7WD+1tn6P1QVm2v42y7Fj9sDrsK4+j90GdTiffuHHDIn3nzp1yXFycvHXrViXN0fqgWINWQ9HpdOzbt48ePXrg5eWlpIeFhdGmTRt2796tpO3fv5+SkhIGDx5sVsagQYOQZdlM1hq7d+9GlmWzIL6l+YuLi9m/f78dLLLkdmz09/e3eiB98+bNKSoqsnpO6v3mduy7W5yhDa2xY8cOCgsLefDBB6tFP3ugUlXt36yz9sOq2ueMfbCUqtp4tzh6G1rD0fugi4uLcsa2Kc2bNwfg+vXrSpqj9UHhoDkxc+fOpVevXgwcOJCXX36Z48ePK/fS0tIoLi6mUaNGFvkaNWrE5cuXKS4uBiAlJQUoO4+0lODgYPz8/JT7tkhJScHf398iqF9p3ZXlrwh72WiLxMRE/P39CQgIqJI+q1evpnfv3vTr148XXniBPXv23J5B5bC3fdu3b6dv37706dOHCRMmsHnz5irp4axt+OOPP+Ll5UWvXr2qrM+9bMPbwVH7ob3ss8X97oNgfxsdrR9WZxs6ax88cuQIAJGRkUqao/VBsQbNCfHy8uKJJ56gTZs2+Pr6cvnyZdasWcPUqVP58MMP6dChAzk5OQBmx02V4uvriyzL5OXloVaryc3Nxd3dHY1GY1W2tCxb5OTkWK1Ho9Hg5uZWaf57YaM1fvjhBxITE5kyZYpyTJgt3NzceOihh4iNjSUoKIhr166xfv16Xn/9daZPn86QIUPuu319+/alc+fO1KpVi+zsbH788Uc++OAD0tLSmDBhQoX6OGMbnj9/nt9//52HH34YDw+PSvW5H214OzhaP7S3fda4n30QqsdGR+qH1d2GztoH09PTWbhwIc2aNaNLly5KuqP1QeGgOSFNmjShSZMmynXr1q2Ji4tjzJgxLFiwoMqdztp0w93I2TN/ddv422+/MXfuXHr27Fml3TXBwcEWC0R79erF5MmTWbhwIQMHDrytA++rw76ZM2ea3evZsyevvvoqq1at4oknnrDYUHA7OGIb/vjjjwBV/qfuqG1YVe51P6xu++53H4TqsdGR+mF1t6Ez9sHc3FymT5+OLMvMnj37tqZ373UfFFOcNQQfHx+6dOnCuXPnKC4uVubcra3ryM3NRZIkvL29AeMvg5KSEoqKiqzKWvtFYIqfn5/VegoLC9FqtZXmryp3Y6MpBw4c4M033yQ2Npa33nrrjjudq6srvXv3Jicnh0uXLt1RGabYyz5T+vXrh16v5/Tp0xXKOVsb6nQ6tm7dSlRUFM2aNbtjfaq7DW8HZ+iHd2OfKY7aB8F+NpriSP3QXvY5Yx/My8tj2rRpZGRkMGfOHItQRY7WB4WDVoOQTY5VrVOnDmq1muTkZAu55ORk6tatq0wblc63l5fNzMwkJyfHbDu2NRo2bMiNGzfIzMy0qAeoNP/tcKc2lnLgwAFef/11YmJiePfdd3Fzc7OLPvZaRHy39tmiMv2cqQ0B9u3bR3Z2tl0WJldnG94OztIP79S+Uhy9D5qWaW8cpR/awz5n64N5eXm89NJLXLlyhU8++cTquldH64PCQash5OXlkZCQQOPGjVGr1bi6utKlSxd27dpFQUGBInft2jUSExPN4tV07NgRd3d34uPjzcqMj49HkiTi4uIqrLtbt25IksSWLVss8qvVajp27GgHC+/ORij7YnjggQf417/+hbu7+13po9Pp2LlzJ35+ftStW/euyoK7t88aW7duxdXV1WwawBrO0oal/Pjjj7i7u9O/f/+70qe62/B2cIZ+eDf2geP3Qbh7G63hSP3QXvY5Ux8sdc7S0tL45JNPbLaDo/VBsQbNCXnnnXeoVasWzZo1w8/Pj0uXLrF27VqysrJ47bXXFLlx48YxadIkZsyYwYgRIygpKWHJkiX4+fnx1FNPKXK+vr6MHj2aJUuW4OvrS/v27fnjjz9Yvnw5Q4YMMdvlsmXLFj788ENmzJjBwIEDAeOvggcffJBly5ahUqlo3rw5Bw8eZNOmTUyYMOGOhuXtbePx48d54403CAwMZOTIkZw9e9asvsjISCXMgzUbP/vsM3Q6HdHR0QQGBnL9+nW+/fZbkpKSeO211ypd4Fzd9q1Zs4bU1FTatWtHSEiIsjj54MGDjB071mzdi7O2YSkZGRkcOHCAXr16WY0CbsvG+9WGN27c4OjRo0DZL+n9+/fj7++Pv78/MTExgOP1Q3vb52h9sDpsdLR+aG/7SnGmPlhcXMzLL79MUlISf//739Hr9Zw8eVIpw9/fX3EMHa0PCgfNCWnYsCE7d+5k48aNFBYW4uPjQ3R0NG+88YYS2wUgIiKCefPm8cUXXzBz5kxcXFxo27Ytzz//vMVC1dGjR+Pp6cmGDRv4+uuvCQwM5Omnn2b06NFmcrIso9frLYaQp02bRnBwMOvXrycrK4uwsDCmTJlyx8cE2dvGQ4cOUVxczNWrV/nHP/5hUd+nn36qRKK2ZmODBg3YuHEj27dvJz8/H09PT5o3b85//vOfO1poa2/7wsPD2bt3LwkJCcqux6ioKKvHpzhrG5YSHx+PXq+vcGGyI7VhSkqKxcLxOXPmABATE8O8efOUdEfqh/a2z9H6YHXY6Gj9sDo+o+BcfTArK0tZ+1feDoCBAwfy+uuvK9eO1Aclubom2wUCgUAgEAgEd4RYgyYQCAQCgUDgYAgHTSAQCAQCgcDBEA6aQCAQCAQCgYMhHDSBQCAQCAQCB0M4aAKBQCAQCAQOhnDQBAKBQCAQCBwM4aAJBAKBQCAQOBjCQRMIBAInJzU1FUmSlL+wsDCz+7Nnz0aSJH755Zf7o2A5Ro4caabv8uXL77dKAoHDIRw0gUDgsJR3PKz9lT+G5q9M69atmTVrFv/85z+rva6FCxciSRLPPvtspbLt2rVDkiSOHDkCwNChQ5k1axaPPPJIdaspEDgt4qgngUDg8DRq1IiRI0davVd+tOivTExMDLNnz74ndQ0fPpxp06bx9ddfM3fuXDQajVW548ePc+TIEWJiYmjbti1gdNCGDh3K8uXL+f777++JvgKBsyEcNIFA4PBERUXdM8dDUDV8fX154oknWLFiBevXr2fEiBFW5ZYsWQLA+PHj76V6AoHTI6Y4BQJBjUKSJHr27El6ejrjxo2jVq1aaDQaOnXqZHMNVl5eHrNmzaJly5ZoNBr8/f0ZOHAge/bssZDt2bMnkiRRXFzMzJkziYqKws3NzcyBXL9+PbGxsWg0GkJDQ5k4cSLZ2dlERkYSGRmpyD3zzDNIksTBgwet6jV9+nQkSWLDhg1380hscvz4cerUqUNwcDD79+9X0lNSUpgwYQLh4eGo1Wpq167NmDFjOH/+vFn+Uqdr2bJlVssvKSlh1apVqNVqmw6cQCCwjhhBEwgENY4bN27QtWtXfH19GTFiBNevX2ft2rUMGDCAw4cP06pVK0U2KyuL7t27c/LkSeLi4hgwYAA5OTl8//339OrVi3Xr1vHoo49a1DF06FCOHTvGgAEDCAwMpGHDhgAsXbqU8ePH4+/vz+jRo/Hz82Pz5s3069cPrVaLm5ubUsbkyZNZsWIFixYton379mbla7VaVqxYQVhYGA899JDdn9Hu3bt56KGH8PX1ZceOHTRr1gyA/fv3M2DAAPLz83nooYeIiooiNTWVVatWER8fT0JCgmJr9+7dady4MTt27CA1NdXM+QTYuHEjmZmZDB8+nICAALvbIBDUaGSBQCBwUFJSUmRAbtSokTxr1iyrf/Hx8WZ5ABmQn3/+eVmv1yvpixcvlgF58uTJZvJPP/20DMhLly41S7969apcv359OSQkRC4sLFTSe/ToIQNyTEyMnJmZaZYnOztb9vb2ln18fORz584p6VqtVu7bt68MyBEREWZ5WrVqJfv4+Mg3b940S1+/fr0MyDNmzKjyc3rmmWes3p81a5YMyDt37pRlWZa/++472cPDQ27RooV88eJFRa6kpESOjIyUfXx85KNHj5qVsXv3btnFxUUeMmSIWfq///1vGZBnz55tUe+gQYNkQN6+fbtVvZYtWyYD8rJlyyq1USD4qyEcNIFA4LCUOh4V/U2dOtUsDyB7eXnJeXl5ZularVZ2dXWV27Ztq6Slp6fLLi4ucp8+fazWP2/ePBmQN23apKSVOmjff/+9hfzy5ctlQH7ppZcs7iUkJFh10ErrWLJkiVn64MGDZUmS5KSkJKu6mXI7DtrixYtlFxcXuXPnzhYOZqlT+O6771otZ+jQobJKpZJzcnKUtLS0NNnFxUWOjIyUDQaDkn758mWr6aYIB00gsI2Y4hQIBA7PgAED2LJlS5XlGzdujLe3t1maq6sroaGh3LhxQ0k7ePAger2eoqIiq5sQkpKSADh9+jRDhgwxu9ehQwcL+WPHjgHQpUsXi3sdOnTA1dXyX+6oUaOYMWMGixcvZty4cQBcvnyZrVu30qNHD6Kioio29jaYO3cuGzduZPDgwaxbtw5PT0+z+7/99htgtNfa87h69SoGg4E///yT2NhYAGrXrs2gQYP44Ycf2LlzJ7179wZg+fLl6PV6xo4diyRJdrNBIPirIBw0gUBQ4/Dz87Oa7urqil6vV66zsrIA2Lt3L3v37rVZXn5+vkVaaGioRVpubi4AISEhFvdUKhXBwcEW6f7+/jz55JN89dVXnDp1ihYtWrBs2TL0ej0TJ060qdOdsHv3bgAGDhxo4ZxB2fNYtWpVheWUfx7jx4/nhx9+YNmyZWYOmkqlYsyYMXbQXCD46yF2cQoEgr8svr6+ALz88svIxiUfVv9mzZplkdfaqFBpeenp6Rb3DAYDGRkZVvWYPHkyAIsXL0aWZZYtW0ZgYCBDhw69Y9ussWTJEtq2bcvUqVOZP3++xf1S/Tdt2lTh8+jRo4dZviFDhhAaGsq3335Lbm4uu3fvJikpiX79+hEeHm5XGwSCvwrCQRMIBH9Z2rdvjyRJJCQk2KW81q1bA7Bv3z6LewcOHECn01nN17lzZ6Kjo1m5ciXx8fEkJyczcuRIPDw87KJXKQEBAWzfvp22bdvywgsv8Pnnn5vd79ixI8BtPw9XV1dGjx5NYWEhX3/9NUuXLgVE7DOB4G4QDppAIPjLEhYWxpNPPsm+ffv4+OOPkWXZQmb//v0UFBRUqbxHHnkEb29vFi9eTEpKipKu0+l46623Ksw7adIkMjIylGnNCRMm3IYlVafUSYuNjeXFF1/kv//9r5n+4eHhzJkzh127dlnk1Wq1VmPDQZkzNn/+fNatW0dQUJA4ykkguAvEGjSBQODwnD17tsKTBO7mlIH58+dz5swZpk+fzsqVK+ncuTN+fn5cvHiRw4cPk5SUxJUrV6yu2SqPv78/c+bMYdKkSbRt25Zhw4YpcdDUajV16tRBpbL+u7h0s0BaWhodO3YkOjr6jm2qip4//fQT/fv3Z8qUKciyzJQpU1Cr1XzzzTcMGjSIHj160KdPHyVm3IULF9i9ezdBQUGcPn3aosymTZvStWtXZS3fxIkTcXd3rzYbBIKajnDQBAKBw3Pu3Dnefvttm/fvxkELDAxk3759fPbZZ6xdu5ZVq1ZhMBgICwujdevWvPXWW1YX99ti4sSJBAQE8P7777N8+XL8/Px4+OGH+fDDD4mIiKBRo0ZW8/n5+fHII4+wZs0au28OsIapkzZ16lRkWWbq1Km0b9+eY8eO8fHHH7N582b27NmDWq2mbt26PProowwfPtxmmePHj1cctNIdqQKB4M6QZGtj+gKBQCCwK2fPnqVx48Y8+eSTrF271qpMy5YtuXDhAleuXLEIE1IRqampNGjQgGeeeYbly5fbSePqZ/ny5YwdO5Zly5aJ3Z4CQTnEGjSBQCCwI9nZ2RQXF5ulFRYW8tJLLwFYPTYKYPPmzZw6dYpRo0bdlnNmyldffYUkSYSFhd1R/nvFyJEjkSSJsWPH3m9VBAKHRUxxCgQCgR359ddfGT9+PP379yc8PJyMjAzlrMrevXszbNgwM/kFCxZw8eJFFi1ahEajYfr06bddp7+/v1kokDt18O4VQ4cONQvAGxMTc/+UEQgcFDHFKRAIBHYkKSmJt956i3379inx0KKiohg2bBj//Oc/LUJnREZGcunSJZo2bcqHH35ocWKBQCD4ayIcNIFAIBAIBAIHQ6xBEwgEAoFAIHAwhIMmEAgEAoFA4GAIB00gEAgEAoHAwRAOmkAgEAgEAoGDIRw0gUAgEAgEAgdDOGgCgUAgEAgEDoZw0AQCgUAgEAgcDOGgCQQCgUAgEDgYwkETCAQCgUAgcDD+P7SyxYwOWgBNAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Best-fit model:\n", + "energy = np.linspace(500.,520.,201)*u.keV\n", + "fluxes = {}\n", + "\n", + "for model in models: \n", + " fluxes[model] = results.optimized_model[model].spectrum.main.shape(energy)\n", + "\n", + "fig,ax = plt.subplots()\n", + "for model in models:\n", + " ax.plot(energy, fluxes[model], label = f\"Best fit, {model}\",ls='-')\n", + "ax.set_ylabel(\"dN/dE [$\\mathrm{ph \\ cm^{-2} \\ s^{-1} \\ keV^{-1}}$]\", fontsize=14)\n", + "ax.set_xlabel(\"Energy [keV]\", fontsize=14)\n", + "ax.set_title(\"Best fit to model\")\n", + "ax.legend()\n", + "ax.set_ylim(0,);" + ] + }, + { + "cell_type": "markdown", + "id": "b9fea8a7-5e10-46fa-a094-87c260c5f6b2", + "metadata": {}, + "source": [ + "In summary, we fitted the flux and eccentricity of the disk only, with the all parameters of the bulge component fixed. Considering $b = a \\sqrt{(1-e^2)}$, we recovered the following fitted parameters:\n", + "\n", + "##### Component..... Injected........... Best Fit \n", + "b...................... 3$^{\\circ}$..................... 1.6$^{+0.2\\circ}_{- 0.3}$ \n", + "Disk................. 1.7e-3/cm$^2$/s.... (1.64 $\\pm$ 0.01)e-3 /cm$^2$/s \n", + "Background .....1........................0.991 $\\pm$ 0.003 \n", + "\n", + "You can play around with the fitting to find the best parameters for fitting the scale height of the disk, changing the initial values for the fit and which parameters are allowed to vary. " + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:COSI]", + "language": "python", + "name": "conda-env-COSI-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.15" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/tutorials/ts_map/Parallel_TS_map_computation_DC2.html b/tutorials/ts_map/Parallel_TS_map_computation_DC2.html new file mode 100644 index 00000000..c1ff7c47 --- /dev/null +++ b/tutorials/ts_map/Parallel_TS_map_computation_DC2.html @@ -0,0 +1,1074 @@ + + + + + + + Parallel TS Map computation — cosipy __version__ = "0.2.1" + documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Parallel TS Map computation

+
+

Fast flux and TS Map calculation

+
+

Possion distribution

+

A discrete random variable \(X\) is said to have Poisson distribution, with parameter \(\lambda>0\):

+
+\[f(k;\lambda)=\text{Pr}(X=k)=\frac{\lambda^ke^{-\lambda}}{k!},\]
+

where: - \(k\) is the number of occurrences (\(k=0,1,2,...\)) - \(e\) is the Euler’s number - \(\lambda\) is equal to the expectation and variance of \(X\): \(\lambda=\text{E}(X)=\text{Var}(X)\)

+
+
+

Maximum Poisson log-likelihood ratio test statistic (TS)

+

Here, we will examine two contradictory hypotheses: - There are source photons emitted from a sky location (pixel) with likelihood \(L(f)\), where \(f\) is the source flux. - There are only background photons emitted from a sky location (pixel) with likelihood \(L(0)\), where \(f=0\) since no source is present.

+

The log-likelihood ratio test statistic is defined as:

+
+\[L L R(f)=2 \log \frac{L(f)}{L(0)}=2 \sum_{i=1}^N \log \frac{P\left(b_i+e_i f, d_i\right)}{P\left(b_i, d_i\right)}\]
+
+\[T S=\max L L R(f)=L L R(F)\]
+
    +
  • \(P(\lambda, n)\) is the Poisson probability for n photons with mean \(\lambda\) (also called expectation)

    +
      +
    • \(\lambda=b_i+e_i f\)

      +
        +
      • \(b_i\) is the background counts

      • +
      • \(e_i\) is the expected excess per flux unit obtained from the detector response and source model (spectrum and location)

      • +
      • \(f\) is the free parameter representing the flux from the source

      • +
      +
    • +
    • \(d_i\) is the measured count data, including both source and background photons

    • +
    • \(F\) is the best estimated flux norm that maximizes \(L L R(f)\)

    • +
    +
  • +
+

One good news is that \(L L R(f)\) has analytic derivatives at all orders. What’s more, the second-order derivative is always negative. Therefore, \(L L R(f)\) has only one maximum, which can be solved by Newton-Raphson’s method.

+
+\[L L R^{\prime}(f)=2 \sum\left(d_i \frac{e_i}{b_i+e_i f}-e_i\right)\]
+
+\[L L R^{\prime \prime}(f)=-2 \sum\left(d_i \frac{e_i^2}{\left(b_i+e_i f\right)^2}\right)\]
+
+
+

Parallel Computation

+

The way we generate a TS map is to iterate through all pixels in an all-sky map. Although this generally works, it needs a tremendous amount of time when we want an all-sky map with a good resolution (3072 pixels or higher). A solution to speed it up is implementing parallel computation in our method. The idea is very simple: The computation of pixels is independent of each other. Thus, we can perform the computations together, depending on the number of available CPU cores per user.

+

Here let me describe the steps in the computation for a single pixel:

+
+

Step 1: Data Preparation

+

We need several data files to perform the TS map calculation - Measured (observational) data in hd5f format (in this case, the measured data is simulated) - Background model in hd5f format - Response in h5 format (we have both detector and galactic responses) - Orientation file in ori format (needed when using detector response)

+

With those files, we can then:

+
    +
  • Read all the data files

  • +
  • Generate a null all-sky map with a customized number of pixels

  • +
  • Choose a pixel from the all-sky map

  • +
  • Convolve the response with the pixel coordinate and spectrum to get the expected excess per flux unit \(e_i\)

  • +
+
+
+

Step 2: Data Projection

+

The data themselves have multiple axes. However, we only need Compton data space in a specific energy range. So, we will process the data to obtain the portion needed for the TS map. - Slice the energy range we want - Project to Compton data space (CDS).

+
CDS is a 3D data space (Compton scattering angle, Psi, and Chi); here, I use a 2D slice (PsiChi) to represent CDS in the image below.
+
+
+
+
+

Steps 3: Newton-Raphson’s Method

+

With the data we obtained from Step 2, we can construct the log-likelihood ratio function and find its global maximum. The returned maximum will be feedback to the pixel we picked as the TS value or the flux norm. At this point, the calculation of a pixel is completed.

+

Xnip2024-01-11_00-36-07.jpg

+
+
+
+
+

Importing modules

+
+
[1]:
+
+
+
%%capture
+# import necessary modules
+from threeML import Powerlaw
+from cosipy import FastTSMap, SpacecraftFile
+from cosipy.response import FullDetectorResponse
+import astropy.units as u
+from histpy import Histogram
+from astropy.time import Time
+import numpy as np
+from astropy.coordinates import SkyCoord
+from pathlib import Path
+from mhealpy import HealpixMap
+from matplotlib import pyplot as plt
+import gc
+from cosipy.util import fetch_wasabi_file
+import shutil
+import os
+
+
+
+
+
+

Example 1: Fit the GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)

+
+

Download data

+

The cells below contain the commands to download the data files needed for the GRB TS map fitting.

+

The files will be downloaded to the same directory as this notebook.

+
+
[2]:
+
+
+
data_dir = Path("") # Current directory by default. Modify if you want a different path
+
+
+
+
+
[3]:
+
+
+
%%capture
+GRB_signal_path = data_dir/"grb_binned_data.hdf5"
+
+# download GRB signal file ~76.90 KB
+if not GRB_signal_path.exists():
+    fetch_wasabi_file("COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5", GRB_signal_path)
+
+
+
+
+
[4]:
+
+
+
%%capture
+background_path = data_dir/"bkg_binned_data_local.hdf5"
+
+# download background file ~255.97 MB
+if not background_path.exists():
+    fetch_wasabi_file("COSI-SMEX/cosipy_tutorials/ts_maps/bkg_binned_data_local.hdf5", background_path)
+
+
+
+
+
[5]:
+
+
+
%%capture
+orientation_path = data_dir/"20280301_3_month.ori"
+
+# download orientation file ~684.38 MB
+if not orientation_path.exists():
+    fetch_wasabi_file("COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori", orientation_path)
+
+
+
+
+
[6]:
+
+
+
%%capture
+zipped_response_path = data_dir/"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip"
+response_path = data_dir/"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5"
+
+# download response file ~839.62 MB
+if not response_path.exists():
+
+    fetch_wasabi_file("COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip", zipped_response_path)
+
+    # unzip the response file
+    shutil.unpack_archive(zipped_response_path)
+
+    # delete the zipped response to save space
+    os.remove(zipped_response_path)
+
+
+
+
+
+

Define a powerlaw spectrum

+
+
[7]:
+
+
+
index = -2.2
+K = 10 / u.cm / u.cm / u.s / u.keV
+piv = 100 * u.keV
+spectrum = Powerlaw()
+spectrum.index.value = index
+spectrum.K.value = K.value
+spectrum.piv.value = piv.value
+spectrum.K.unit = K.unit
+spectrum.piv.unit = piv.unit
+
+
+
+
+
+

Read the data

+
+

Read the GRB signal, background component and assemble the data

+

We will read the GRB signal and extract the background component from the simulated 3-month background. After that, we can assemble the GRB signal and background to get the observed data.

+
+
[8]:
+
+
+
# Read the GRB signal
+signal = Histogram.open(GRB_signal_path)
+
+# get the starting and ending time tag of the GRB
+grb_tmin = signal.axes["Time"].edges.min()
+grb_tmax = signal.axes["Time"].edges.max()
+
+# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)
+signal = signal.project(['Em', 'PsiChi', 'Phi'])
+
+
+
+
+
[9]:
+
+
+
# load the background file
+bkg_full = Histogram.open(background_path)
+
+# Extract 40s background from the 3-month one
+bkg_tmin_idx = np.where(bkg_full.axes['Time'].edges.value == grb_tmin.value)[0][0]  # the time idx corresponding to the tima tag
+bkg_tmax_idx = np.where(bkg_full.axes["Time"].edges.value == grb_tmax.value)[0][0]
+bkg = bkg_full.slice[bkg_tmin_idx:bkg_tmax_idx,:]  # It slices the Time axis
+
+# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)
+bkg = bkg.project(['Em', 'PsiChi', 'Phi'])
+
+
+
+
+
[10]:
+
+
+
# assemble the data
+data = bkg + signal
+
+
+
+
+
+

Read the background model

+

Since we don’t have a tool to estimate the background counts during a burst yet, here we average the full 3-month background down to the duraion of the burst (40s) to ensure good statistics.

+
+
[11]:
+
+
+
# calculate the duration of the background
+bkg_full_duration = (bkg_full.axes['Time'].edges.max() - bkg_full.axes['Time'].edges.min())
+
+# average the background model down to 40s
+bkg_model = bkg_full/(bkg_full_duration/40)
+
+# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)
+bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])
+
+
+
+
+
[12]:
+
+
+
# plot the counts distribution
+ax,plot = bkg.project("Em").draw(label = "background component", color = "purple")
+data.project("Em").draw(ax, label = "data(GRB+bkg)", color = "green")
+signal.project("Em").draw(ax, label = "GRB signal", color = "pink")
+bkg_model.project("Em").draw(ax, label = "background model", color = "blue")
+
+ax.legend()
+ax.set_xscale("log")
+ax.set_yscale("log")
+ax.set_ylabel("Counts")
+
+
+
+
+
[12]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_38_1.png +
+
+
+
+

Read the orientation

+
+
[13]:
+
+
+
# read the full oritation but only get the interval for the GRB
+ori_full = SpacecraftFile.parse_from_file(orientation_path)
+grb_ori = ori_full.source_interval(Time(grb_tmin, format = "unix"), Time(grb_tmax, format = "unix"))
+
+# clear redundant data from RAM
+del bkg_full
+del ori_full
+_ = gc.collect()
+
+
+
+
+
+
+

Start TS map fit

+
+
[14]:
+
+
+
# here let's create a FastTSMap object for fitting the ts map in the following cells
+ts = FastTSMap(data = data, bkg_model = bkg_model, orientation = grb_ori,
+               response_path = response_path, cds_frame = "local", scheme = "RING")
+
+
+
+
+
[15]:
+
+
+
# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source spectrum.
+# note that this nside is also the nside of the final TS map
+hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)
+
+
+
+

Below is the actual parallel fit: - In default, the maximum number of cores it can use is max_number-1. You can also customize the number of cores you want to use by the cpu_cores parameter. - energy channel is [lower_channel, upper_channel]. Lower channel is inclusive while the upper channel is exclusive - This might take long in a personal computer

+
+
[16]:
+
+
+
ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [2,3], spectrum = spectrum, ts_scheme = "RING", cpu_cores = 56)
+
+
+
+
+
+
+
+
+You have total 56 CPU cores, using 55 CPU cores for parallel computation.
+The time used for the parallel TS map computation is 1.896751336256663 minutes
+
+
+
+
+

Plot the fitted TS map

+
+
[17]:
+
+
+
# This the true location of the GRB
+coord = SkyCoord(l = 93, b = -53, unit = (u.deg, u.deg), frame = "galactic")
+
+
+
+
+
[18]:
+
+
+
%matplotlib inline
+ts.plot_ts(skycoord = coord, save_plot = True)
+
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_48_0.png +
+
+

The image above plots the raw TS values, which is also an image of the GRB. However, for the purpose of localization, we are more interested in the confidence level of the imaged GRB. Thus, you can plot the 90% containment level of the GRB location by setting containment parameter to the percetage you want to plot. However, because the strength of the GRB signal is very very strong, the ts map looks the same under different containment levels.

+
+
[20]:
+
+
+
ts.plot_ts(skycoord = coord, containment = 0.9, save_plot = True)
+
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_50_0.png +
+
+

As you can see, the GRB region shrinks only to a single pixel. This is caused by the fact that the GRB signal is very very strong in this case. In the next section, we will manipulate the strength of the GRB signal to see how the front source signal affects the TS values and the 90% confidence region.

+
+
+
+

Example 2: Fit a fainter GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)

+

This example uses exactly the same data file as example 1, so I don’t repeat the downloading scripts here.

+
+
[21]:
+
+
+
scaling_factor = 0.02
+
+
+
+

Here we will set up a scaling factor to manipulate the strength of the signal to see the affects on the final TS map. Since all the steps are exactly the same execpt the scaling factor, I will put the main codes in a single cell for simplicity.

+

If you encounter any errors, please try to restart the notebook kernel or the whole session.

+
+
[22]:
+
+
+
%%capture
+# download data
+
+data_dir = Path("") # Current directory by default. Modify if you want a different path
+
+GRB_signal_path = data_dir/"grb_binned_data.hdf5"
+# download GRB signal file ~76.90 KB
+if not GRB_signal_path.exists():
+    fetch_wasabi_file("COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5", GRB_signal_path)
+
+background_path = data_dir/"bkg_binned_data_local.hdf5"
+# download background file ~255.97 MB
+if not background_path.exists():
+    fetch_wasabi_file("COSI-SMEX/cosipy_tutorials/ts_maps/bkg_binned_data_local.hdf5", background_path)
+
+orientation_path = data_dir/"20280301_3_month.ori"
+# download orientation file ~684.38 MB
+if not orientation_path.exists():
+    fetch_wasabi_file("COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori", orientation_path)
+
+
+zipped_response_path = data_dir/"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip"
+response_path = data_dir/"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5"
+# download response file ~839.62 MB
+if not response_path.exists():
+    fetch_wasabi_file("COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip", zipped_response_path)
+    # unzip the response file
+    shutil.unpack_archive(zipped_response_path)
+    # delete the zipped response to save space
+    os.remove(zipped_response_path)
+
+
+
+
+
[23]:
+
+
+
# define a powerlaw spectrum
+index = -2.2
+K = 10 / u.cm / u.cm / u.s / u.keV
+piv = 100 * u.keV
+spectrum = Powerlaw()
+spectrum.index.value = index
+spectrum.K.value = K.value
+spectrum.piv.value = piv.value
+spectrum.K.unit = K.unit
+spectrum.piv.unit = piv.unit
+
+# Read the GRB signal
+signal = Histogram.open(GRB_signal_path)
+# get the starting and ending time tag of the GRB
+grb_tmin = signal.axes["Time"].edges.min()
+grb_tmax = signal.axes["Time"].edges.max()
+# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)
+signal = signal.project(['Em', 'PsiChi', 'Phi'])*scaling_factor
+
+# load the background file
+bkg_full = Histogram.open(background_path)
+# Extract 40s background from the 3-month one
+bkg_tmin_idx = np.where(bkg_full.axes['Time'].edges.value == grb_tmin.value)[0][0]  # the time idx corresponding to the tima tag
+bkg_tmax_idx = np.where(bkg_full.axes["Time"].edges.value == grb_tmax.value)[0][0]
+bkg = bkg_full.slice[bkg_tmin_idx:bkg_tmax_idx,:]  # It slices the Time axis
+# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)
+bkg = bkg.project(['Em', 'PsiChi', 'Phi'])
+
+# assemble the data
+data = bkg + signal
+
+# calculate the duration of the background
+bkg_full_duration = (bkg_full.axes['Time'].edges.max() - bkg_full.axes['Time'].edges.min())
+# average the background model down to 40s
+bkg_model = bkg_full/(bkg_full_duration/40)
+# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)
+bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])
+
+# plot the counts distribution
+ax,plot = bkg.project("Em").draw(label = "background component", color = "purple")
+data.project("Em").draw(ax, label = "data(GRB+bkg)", color = "green")
+signal.project("Em").draw(ax, label = "GRB signal", color = "pink")
+bkg_model.project("Em").draw(ax, label = "background model", color = "blue")
+ax.legend()
+ax.set_xscale("log")
+ax.set_yscale("log")
+ax.set_ylabel("Counts")
+
+# read the full oritation but only get the interval for the GRB
+ori_full = SpacecraftFile.parse_from_file(orientation_path)
+grb_ori = ori_full.source_interval(Time(grb_tmin, format = "unix"), Time(grb_tmax, format = "unix"))
+
+# clear redundant data from RAM
+del bkg_full
+del ori_full
+_ = gc.collect()
+
+# here let's create a FastTSMap object for fitting the ts map in the following cells
+ts = FastTSMap(data = data, bkg_model = bkg_model, orientation = grb_ori,
+               response_path = response_path, cds_frame = "local", scheme = "RING")
+
+# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source spectrum.
+# note that this nside is also the nside of the final TS map
+hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)
+
+ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [2,3], spectrum = spectrum, ts_scheme = "RING", cpu_cores = 56)
+
+
+
+
+
+
+
+
+You have total 56 CPU cores, using 55 CPU cores for parallel computation.
+The time used for the parallel TS map computation is 1.9408295631408692 minutes
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_57_1.png +
+
+
+
[24]:
+
+
+
# This the true location of the GRB
+coord = SkyCoord(l=93, b = -53, unit = (u.deg, u.deg), frame = "galactic")
+
+
+
+
+
[25]:
+
+
+
%matplotlib inline
+ts.plot_ts(skycoord = coord)
+
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_59_0.png +
+
+
+
[27]:
+
+
+
ts.plot_ts(skycoord = coord, containment = 0.9)
+
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_60_0.png +
+
+
+
+

Example 3: Fit Crab using the Compton Data Space (CDS) in galactic coordinates

+

The Crab case is similar to the GRB one. The difference is that the Crab data (signal and background) are binned in the galactic coordiates instead of the spacecraft coordinates. Therefore, we will need to use the galatic response for Crab. In addition, the orientation file is not needed since Crab is a fixed source in galactic coordinates.

+
+

Bin data (optional)

+

If you want to binned the data by yourself, you can run this Bin data section. Otherwise, you can skip to the next section and use the binned data downloaded from Wasabi, which is faster.

+
+

Download unbinned data

+
+
[33]:
+
+
+
data_dir = Path("") # Current directory by default. Modify if you want a different path
+
+
+
+
+
[ ]:
+
+
+
%%capture
+crab_unbinned_path = data_dir/"Crab_DC2_3months_unbinned_data.fits.gz"
+
+# download 3-month unbinned Crab data ~619.22 MB
+if not crab_unbinned_path.exists():
+    fetch_wasabi_file("COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz", crab_unbinned_path)
+
+
+
+
+
[42]:
+
+
+
%%capture
+albedo_unbinned_path = data_dir/"albedo_photons_3months_unbinned_data.fits.gz"
+
+# download 3-month albede background data ~2.69 GB
+if not albedo_unbinned_path.exists():
+    fetch_wasabi_file("COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz", albedo_unbinned_path)
+
+
+
+
+
+

Getting the binned Crab data

+
+
[3]:
+
+
+
# Here is the code I used to bin the Crab data if you want to generate it by yourself.
+from cosipy import BinnedData
+# "Crab_bkg_galactic_inputs.yaml" can be used for both Crab and background binning since the only useful information in the yaml file is the binning of CDS
+analysis = BinnedData("Crab_bkg_galactic_inputs.yaml")
+analysis.get_binned_data(unbinned_data = crab_unbinned_path,
+                         make_binning_plots=False,
+                         output_name = "Crab_galactic_CDS_binned",
+                         psichi_binning = "galactic")
+
+# After you generate the binned data files, it should be saved to the same directory of this notebook
+crab_data_path = data_dir/"Crab_galactic_CDS_binned.hdf5"
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+

Getting the binned background data

+
+
[3]:
+
+
+
# Here is the code I used to bin the background data if you want to generate it by yourself.
+from cosipy import BinnedData
+# "Crab_bkg_galactic_inputs.yaml" can be used for both Crab and background binning since the only useful information in the yaml file is the binning of CDS
+analysis = BinnedData("Crab_bkg_galactic_inputs.yaml")
+analysis.get_binned_data(unbinned_data = albedo_unbinned_path,
+                         make_binning_plots = False,
+                         output_name = "Albedo_galactic_CDS_binned",
+                         psichi_binning = "galactic")
+albedo_background_path = data_dir/"Albedo_galactic_CDS_binned.hdf5"
+
+
+
+
+
+
+
+
+binning data...
+Time unit: s
+Em unit: keV
+Phi unit: deg
+PsiChi unit: None
+
+
+
+
+
+

Read data and background

+

Here you can download the binned data to avioding the binning steps above.

+
+

Download the binned data

+
+
[28]:
+
+
+
data_dir = Path("") # Current directory by default. Modify if you want a different path
+
+
+
+
+
[29]:
+
+
+
%%capture
+crab_data_path = data_dir/"Crab_galactic_CDS_binned.hdf5"
+
+# download 3-month binned Crab data ~158 MB
+if not crab_data_path.exists():
+    fetch_wasabi_file("COSI-SMEX/cosipy_tutorials/ts_maps/Crab_galactic_CDS_binned.hdf5", crab_data_path)
+
+
+
+
+
[30]:
+
+
+
%%capture
+albedo_background_path = data_dir/"Albedo_galactic_CDS_binned.hdf5"
+
+# download 3-month binned Albedo background data ~457.50 MB
+if not albedo_background_path.exists():
+    fetch_wasabi_file("COSI-SMEX/cosipy_tutorials/ts_maps/Albedo_galactic_CDS_binned.hdf5", albedo_background_path)
+
+
+
+
+
[31]:
+
+
+
# Read background model
+bkg_model = Histogram.open(albedo_background_path)  # please make sure you adjust the path to the files by yourself.
+bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])
+
+# Read the signal and bkg to assemble data = bkg + signal
+signal = Histogram.open(crab_data_path)
+signal = signal.project(['Em', 'PsiChi', 'Phi'])
+
+# Here the background is the same as the background model since they are simulations, thus we know the background very well.
+bkg = Histogram.open(albedo_background_path)
+bkg = bkg.project(['Em', 'PsiChi', 'Phi'])
+
+# Assemble the signal and background
+data = bkg + signal
+
+
+
+
+
[32]:
+
+
+
# plot the counts distribution
+ax,plot = bkg.project("Em").draw(label = "Background component", color = "purple")
+#data.project("Em").draw(ax, label = "data", color = "green")
+data.project("Em").draw(ax, label = "data(Crab+bkg)", color = "green")
+signal.project("Em").draw(ax, label = "Crab signal", color = "pink")
+bkg_model.project("Em").draw(ax, label = "Background model", color = "blue")
+
+ax.legend()
+ax.set_xscale("log")
+ax.set_ylabel("Counts")
+
+
+
+
+
[32]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_80_1.png +
+
+
+
[33]:
+
+
+
# clear redundant data from RAM
+del signal
+del bkg
+_ = gc.collect()
+
+
+
+
+
+
+

Start TS map fit

+
+
[34]:
+
+
+
# define a powerlaw spectrum
+index = -3
+K = 10**-3 / u.cm / u.cm / u.s / u.keV
+piv = 100 * u.keV
+
+spectrum = Powerlaw()
+spectrum.index.value = index
+spectrum.K.value = K.value
+spectrum.piv.value = piv.value
+spectrum.K.unit = K.unit
+spectrum.piv.unit = piv.unit
+
+
+
+
+
[35]:
+
+
+
%%capture
+zipped_response_path = data_dir/"psr_gal_DC2.h5.zip"
+response_path = data_dir/"psr_gal_DC2.h5"
+
+# download the galactic point source response ~6.69 GB
+if not response_path.exists():
+
+    fetch_wasabi_file("COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip", zipped_response_path)
+
+    # unzip the response
+    shutil.unpack_archive(zipped_response_path)
+
+    # delete the zipped response to save space
+    os.remove(zipped_response_path)
+
+
+
+
+
[36]:
+
+
+
# here let's create a FastTSMap object
+ts = FastTSMap(data = data, bkg_model = bkg_model, response_path = response_path, cds_frame = "galactic", scheme = "RING")
+
+
+
+
+
[37]:
+
+
+
# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source
+# note that this nside is also the nside of the final TS map
+hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)
+
+
+
+
+
[38]:
+
+
+
# Perform the parallel fit
+ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [1,2], spectrum = spectrum, ts_scheme = "RING",
+                                cpu_cores = 56)
+
+
+
+
+
+
+
+
+You have total 56 CPU cores, using 55 CPU cores for parallel computation.
+The time used for the parallel TS map computation is 1.1570752302805583 minutes
+
+
+
+
+

Plot results

+
+
[39]:
+
+
+
# This the true location of Crab
+coord = SkyCoord(l=184.5551, b = -05.7877, unit = (u.deg, u.deg), frame = "galactic")
+
+
+
+
+
[40]:
+
+
+
# plot the raw ts values
+ts.plot_ts(skycoord = coord)
+
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_90_0.png +
+
+
+
[41]:
+
+
+
# plot the 90% confidence region
+ts.plot_ts(skycoord = coord, containment = 0.9)
+
+
+
+
+
+
+
+../../_images/tutorials_ts_map_Parallel_TS_map_computation_DC2_91_0.png +
+
+
+
+
+

Improvements in progress

+

The current method can generate the TS map for a GRB and Crab. However, the computation time needed on a personal laptop is still long and requires a massive amount of RAM (~30-40 GB). The future improvements will include: - Optimization of the speed - Faster algorithm for Newton-Raphson’s method - GPU computation - Optimization of the RAM usage - Share memories among parallel processes

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/ts_map/Parallel_TS_map_computation_DC2.ipynb b/tutorials/ts_map/Parallel_TS_map_computation_DC2.ipynb new file mode 100644 index 00000000..7d23a00f --- /dev/null +++ b/tutorials/ts_map/Parallel_TS_map_computation_DC2.ipynb @@ -0,0 +1,1398 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "54329e0c-b926-45f1-bd4a-f6a1c6e68d52", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Parallel TS Map computation" + ] + }, + { + "cell_type": "markdown", + "id": "0ead2b89-59f2-49dd-ae7b-30068d9ba290", + "metadata": {}, + "source": [ + "## Fast flux and TS Map calculation" + ] + }, + { + "cell_type": "markdown", + "id": "b39635ea-ab7c-488e-b09f-26730d79024e", + "metadata": { + "tags": [] + }, + "source": [ + "### Possion distribution" + ] + }, + { + "cell_type": "markdown", + "id": "76e69ae4-f016-4f4d-a9af-db88ca8b184e", + "metadata": {}, + "source": [ + "A discrete random variable $X$ is said to have Poisson distribution, with parameter $\\lambda>0$:\n", + "$$\n", + "f(k;\\lambda)=\\text{Pr}(X=k)=\\frac{\\lambda^ke^{-\\lambda}}{k!},\n", + "$$\n", + "where:\n", + "- $k$ is the number of occurrences ($k=0,1,2,...$)\n", + "- $e$ is the Euler's number\n", + "- $\\lambda$ is equal to the expectation and variance of $X$: $\\lambda=\\text{E}(X)=\\text{Var}(X)$" + ] + }, + { + "cell_type": "markdown", + "id": "0a2f765f-79b2-4f9d-88a4-5b6d9c42e9be", + "metadata": { + "tags": [] + }, + "source": [ + "### Maximum Poisson log-likelihood ratio test statistic (TS)" + ] + }, + { + "cell_type": "markdown", + "id": "4c74dc69-dae9-43b7-9bbc-b7b5bc7677e0", + "metadata": {}, + "source": [ + "Here, we will examine two contradictory hypotheses:\n", + "- There are source photons emitted from a sky location (pixel) with likelihood $L(f)$, where $f$ is the source flux.\n", + "- There are only background photons emitted from a sky location (pixel) with likelihood $L(0)$, where $f=0$ since no source is present." + ] + }, + { + "cell_type": "markdown", + "id": "ea18a011-38f3-409f-a1b0-49ad666ee6c7", + "metadata": {}, + "source": [ + "The log-likelihood ratio test statistic is defined as:\n", + "$$\n", + "L L R(f)=2 \\log \\frac{L(f)}{L(0)}=2 \\sum_{i=1}^N \\log \\frac{P\\left(b_i+e_i f, d_i\\right)}{P\\left(b_i, d_i\\right)}\n", + "$$\n", + "$$\n", + "T S=\\max L L R(f)=L L R(F)\n", + "$$\n" + ] + }, + { + "cell_type": "markdown", + "id": "19a5f5b2-8a25-461b-8380-cfd1af01940a", + "metadata": {}, + "source": [ + "- $P(\\lambda, n)$ is the Poisson probability for n photons with mean $\\lambda$ (also called expectation)\n", + " - $\\lambda=b_i+e_i f$\n", + " - $b_i$ is the background counts\n", + " - $e_i$ is the expected excess per flux unit obtained from the detector response and source model (spectrum and location)\n", + " - $f$ is the free parameter representing the flux from the source\n", + " - $d_i$ is the measured count data, including both source and background photons\n", + " - $F$ is the best estimated flux norm that maximizes $L L R(f)$" + ] + }, + { + "cell_type": "markdown", + "id": "98b7b13f-992f-40e1-9fcf-d05cd2a10b49", + "metadata": {}, + "source": [ + "One good news is that $L L R(f)$ has analytic derivatives at all orders. What's more, the second-order derivative is always negative. Therefore, $L L R(f)$ has only one maximum, which can be solved by Newton-Raphson's method.\n", + "$$\n", + "L L R^{\\prime}(f)=2 \\sum\\left(d_i \\frac{e_i}{b_i+e_i f}-e_i\\right)\n", + "$$\n", + "$$\n", + "L L R^{\\prime \\prime}(f)=-2 \\sum\\left(d_i \\frac{e_i^2}{\\left(b_i+e_i f\\right)^2}\\right)\n", + "$$" + ] + }, + { + "cell_type": "markdown", + "id": "4e1443e2-dfd9-47fd-a9db-1956b78ce33f", + "metadata": { + "tags": [] + }, + "source": [ + "### Parallel Computation" + ] + }, + { + "cell_type": "markdown", + "id": "bc922c16-5e70-44b6-9da6-e6afadb0ae14", + "metadata": {}, + "source": [ + "The way we generate a TS map is to iterate through all pixels in an all-sky map. Although this generally works, it needs a tremendous amount of time when we want an all-sky map with a good resolution (3072 pixels or higher). A solution to speed it up is implementing parallel computation in our method. The idea is very simple: **The computation of pixels is independent of each other. Thus, we can perform the computations together, depending on the number of available CPU cores per user.**" + ] + }, + { + "cell_type": "markdown", + "id": "9954578b-7d9f-43fc-9ad4-02a20d1e36ac", + "metadata": {}, + "source": [ + "Here let me describe the steps in the computation for a single pixel:" + ] + }, + { + "cell_type": "markdown", + "id": "0f887e07-6590-4814-9dc6-7ceb1c581393", + "metadata": {}, + "source": [ + "#### Step 1: Data Preparation" + ] + }, + { + "cell_type": "markdown", + "id": "53d7afaa-e1af-47e2-a10b-f538d095708e", + "metadata": {}, + "source": [ + "We need several data files to perform the TS map calculation\n", + "- Measured (observational) data in *hd5f* format (in this case, the measured data is simulated)\n", + "- Background model in *hd5f* format\n", + "- Response in *h5* format (we have both detector and galactic responses)\n", + "- Orientation file in *ori* format (needed when using detector response)\n", + " \n", + "With those files, we can then:\n", + "\n", + "- Read all the data files\n", + "- Generate a null all-sky map with a customized number of pixels\n", + "- Choose a pixel from the all-sky map\n", + "- Convolve the response with the pixel coordinate and spectrum to get the expected excess per flux unit $e_i$" + ] + }, + { + "cell_type": "markdown", + "id": "a039e477-d5ad-4c35-b0a6-6b51b19a5f2d", + "metadata": {}, + "source": [ + "#### Step 2: Data Projection\n", + "The data themselves have multiple axes. However, we only need Compton data space in a specific energy range. So, we will process the data to obtain the portion needed for the TS map.\n", + "- Slice the energy range we want\n", + "- Project to Compton data space (CDS).\n", + "\n", + " CDS is a 3D data space (Compton scattering angle, Psi, and Chi); here, I use a 2D slice (PsiChi) to represent CDS in the image below." + ] + }, + { + "cell_type": "markdown", + "id": "aa0e9b71-7ac2-44db-a791-9f5e59c6ad6c", + "metadata": {}, + "source": [ + "#### Steps 3: Newton-Raphson's Method\n", + "With the data we obtained from Step 2, we can construct the log-likelihood ratio function and find its global maximum. The returned maximum will be feedback to the pixel we picked as the TS value or the flux norm. At this point, the calculation of a pixel is completed." + ] + }, + { + "attachments": { + "4acba1f5-5083-4b35-9183-e711c3f39490.jpg": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAkACQAAD/4QB0RXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAIdpAAQAAAABAAAATgAAAAAAAACQAAAAAQAAAJAAAAABAAKgAgAEAAAAAQAACiigAwAEAAAAAQAABgQAAAAA/+0AOFBob3Rvc2hvcCAzLjAAOEJJTQQEAAAAAAAAOEJJTQQlAAAAAAAQ1B2M2Y8AsgTpgAmY7PhCfv/iDSBJQ0NfUFJPRklMRQABAQAADRBhcHBsAhAAAG1udHJSR0IgWFlaIAfoAAEAAQAOAAUAMmFjc3BBUFBMAAAAAEFQUEwAAAAAAAAAAAAAAAAAAAAAAAD21gABAAAAANMtYXBwbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEWRlc2MAAAFQAAAAYmRzY20AAAG0AAAB6mNwcnQAAAOgAAAAI3d0cHQAAAPEAAAAFHJYWVoAAAPYAAAAFGdYWVoAAAPsAAAAFGJYWVoAAAQAAAAAFHJUUkMAAAQUAAAIDGFhcmcAAAwgAAAAIHZjZ3QAAAxAAAAAMG5kaW4AAAxwAAAAPm1tb2QAAAywAAAAKHZjZ3AAAAzYAAAAOGJUUkMAAAQUAAAIDGdUUkMAAAQUAAAIDGFhYmcAAAwgAAAAIGFhZ2cAAAwgAAAAIGRlc2MAAAAAAAAACERpc3BsYXkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABtbHVjAAAAAAAAACYAAAAMaHJIUgAAABIAAAHYa29LUgAAABIAAAHYbmJOTwAAABIAAAHYaWQAAAAAABIAAAHYaHVIVQAAABIAAAHYY3NDWgAAABIAAAHYZGFESwAAABIAAAHYbmxOTAAAABIAAAHYZmlGSQAAABIAAAHYaXRJVAAAABIAAAHYZXNFUwAAABIAAAHYcm9STwAAABIAAAHYZnJDQQAAABIAAAHYYXIAAAAAABIAAAHYdWtVQQAAABIAAAHYaGVJTAAAABIAAAHYemhUVwAAABIAAAHYdmlWTgAAABIAAAHYc2tTSwAAABIAAAHYemhDTgAAABIAAAHYcnVSVQAAABIAAAHYZW5HQgAAABIAAAHYZnJGUgAAABIAAAHYbXMAAAAAABIAAAHYaGlJTgAAABIAAAHYdGhUSAAAABIAAAHYY2FFUwAAABIAAAHYZW5BVQAAABIAAAHYZXNYTAAAABIAAAHYZGVERQAAABIAAAHYZW5VUwAAABIAAAHYcHRCUgAAABIAAAHYcGxQTAAAABIAAAHYZWxHUgAAABIAAAHYc3ZTRQAAABIAAAHYdHJUUgAAABIAAAHYcHRQVAAAABIAAAHYamFKUAAAABIAAAHYAEMAbwBsAG8AcgAgAEwAQwBEAAB0ZXh0AAAAAENvcHlyaWdodCBBcHBsZSBJbmMuLCAyMDI0AABYWVogAAAAAAAA8xYAAQAAAAEWylhZWiAAAAAAAACDIQAAPXn///+8WFlaIAAAAAAAAEvQAACzvQAACtpYWVogAAAAAAAAJ+UAAA7KAADIl2N1cnYAAAAAAAAEAAAAAAUACgAPABQAGQAeACMAKAAtADIANgA7AEAARQBKAE8AVABZAF4AYwBoAG0AcgB3AHwAgQCGAIsAkACVAJoAnwCjAKgArQCyALcAvADBAMYAywDQANUA2wDgAOUA6wDwAPYA+wEBAQcBDQETARkBHwElASsBMgE4AT4BRQFMAVIBWQFgAWcBbgF1AXwBgwGLAZIBmgGhAakBsQG5AcEByQHRAdkB4QHpAfIB+gIDAgwCFAIdAiYCLwI4AkECSwJUAl0CZwJxAnoChAKOApgCogKsArYCwQLLAtUC4ALrAvUDAAMLAxYDIQMtAzgDQwNPA1oDZgNyA34DigOWA6IDrgO6A8cD0wPgA+wD+QQGBBMEIAQtBDsESARVBGMEcQR+BIwEmgSoBLYExATTBOEE8AT+BQ0FHAUrBToFSQVYBWcFdwWGBZYFpgW1BcUF1QXlBfYGBgYWBicGNwZIBlkGagZ7BowGnQavBsAG0QbjBvUHBwcZBysHPQdPB2EHdAeGB5kHrAe/B9IH5Qf4CAsIHwgyCEYIWghuCIIIlgiqCL4I0gjnCPsJEAklCToJTwlkCXkJjwmkCboJzwnlCfsKEQonCj0KVApqCoEKmAquCsUK3ArzCwsLIgs5C1ELaQuAC5gLsAvIC+EL+QwSDCoMQwxcDHUMjgynDMAM2QzzDQ0NJg1ADVoNdA2ODakNww3eDfgOEw4uDkkOZA5/DpsOtg7SDu4PCQ8lD0EPXg96D5YPsw/PD+wQCRAmEEMQYRB+EJsQuRDXEPURExExEU8RbRGMEaoRyRHoEgcSJhJFEmQShBKjEsMS4xMDEyMTQxNjE4MTpBPFE+UUBhQnFEkUahSLFK0UzhTwFRIVNBVWFXgVmxW9FeAWAxYmFkkWbBaPFrIW1hb6Fx0XQRdlF4kXrhfSF/cYGxhAGGUYihivGNUY+hkgGUUZaxmRGbcZ3RoEGioaURp3Gp4axRrsGxQbOxtjG4obshvaHAIcKhxSHHscoxzMHPUdHh1HHXAdmR3DHeweFh5AHmoelB6+HukfEx8+H2kflB+/H+ogFSBBIGwgmCDEIPAhHCFIIXUhoSHOIfsiJyJVIoIiryLdIwojOCNmI5QjwiPwJB8kTSR8JKsk2iUJJTglaCWXJccl9yYnJlcmhya3JugnGCdJJ3onqyfcKA0oPyhxKKIo1CkGKTgpaymdKdAqAio1KmgqmyrPKwIrNitpK50r0SwFLDksbiyiLNctDC1BLXYtqy3hLhYuTC6CLrcu7i8kL1ovkS/HL/4wNTBsMKQw2zESMUoxgjG6MfIyKjJjMpsy1DMNM0YzfzO4M/E0KzRlNJ402DUTNU01hzXCNf02NzZyNq426TckN2A3nDfXOBQ4UDiMOMg5BTlCOX85vDn5OjY6dDqyOu87LTtrO6o76DwnPGU8pDzjPSI9YT2hPeA+ID5gPqA+4D8hP2E/oj/iQCNAZECmQOdBKUFqQaxB7kIwQnJCtUL3QzpDfUPARANER0SKRM5FEkVVRZpF3kYiRmdGq0bwRzVHe0fASAVIS0iRSNdJHUljSalJ8Eo3Sn1KxEsMS1NLmkviTCpMcky6TQJNSk2TTdxOJU5uTrdPAE9JT5NP3VAnUHFQu1EGUVBRm1HmUjFSfFLHUxNTX1OqU/ZUQlSPVNtVKFV1VcJWD1ZcVqlW91dEV5JX4FgvWH1Yy1kaWWlZuFoHWlZaplr1W0VblVvlXDVchlzWXSddeF3JXhpebF69Xw9fYV+zYAVgV2CqYPxhT2GiYfViSWKcYvBjQ2OXY+tkQGSUZOllPWWSZedmPWaSZuhnPWeTZ+loP2iWaOxpQ2maafFqSGqfavdrT2una/9sV2yvbQhtYG25bhJua27Ebx5veG/RcCtwhnDgcTpxlXHwcktypnMBc11zuHQUdHB0zHUodYV14XY+dpt2+HdWd7N4EXhueMx5KnmJeed6RnqlewR7Y3vCfCF8gXzhfUF9oX4BfmJ+wn8jf4R/5YBHgKiBCoFrgc2CMIKSgvSDV4O6hB2EgITjhUeFq4YOhnKG14c7h5+IBIhpiM6JM4mZif6KZIrKizCLlov8jGOMyo0xjZiN/45mjs6PNo+ekAaQbpDWkT+RqJIRknqS45NNk7aUIJSKlPSVX5XJljSWn5cKl3WX4JhMmLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6unx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKoxKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LCszizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TTxtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXrcOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK+Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//cGFyYQAAAAAAAwAAAAJmZgAA8qcAAA1ZAAAT0AAAClt2Y2d0AAAAAAAAAAEAAQAAAAAAAAABAAAAAQAAAAAAAAABAAAAAQAAAAAAAAABAABuZGluAAAAAAAAADYAAK4AAABSAAAAQ8AAALDAAAAmgAAADcAAAFAAAABUQAACMzMAAjMzAAIzMwAAAAAAAAAAbW1vZAAAAAAAAAYQAACgRAAAAADZk12AAAAAAAAAAAAAAAAAAAAAAHZjZ3AAAAAAAAMAAAACZmYAAwAAAAJmZgADAAAAAmZmAAAAAjMzNAAAAAACMzM0AAAAAAIzMzQA/8AAEQgGBAooAwEiAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/bAEMAAQEBAQEBAgEBAgMCAgIDBAMDAwMEBgQEBAQEBgcGBgYGBgYHBwcHBwcHBwgICAgICAkJCQkJCwsLCwsLCwsLC//bAEMBAgICAwMDBQMDBQsIBggLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLC//dAAQAo//aAAwDAQACEQMRAD8A/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACivy9/ae/4LTf8ABLH9jvVbjw78e/jZ4d0/V7NilxpmnyyavfwuP4JbbT0uJYm9pFX8q/LnxZ/wd9f8EcvDk7xaPqfi7X1U8PYaE6K30+1SwH8wKAP6iKK/kdvP+D0H/glHasVg8J/Ey4A7x6Rpwz/33qi1jv8A8Hqf/BLBT8vgP4qN9NK0n+usCgD+vqiv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaP8AiNW/4JZf9CD8Vf8AwVaR/wDLmgD+v2iv5Av+I1b/AIJZf9CD8Vf/AAVaR/8ALmj/AIjVv+CWX/Qg/FX/AMFWkf8Ay5oA/r9or+QL/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMuaAP6/aK/kC/4jVv8Agll/0IPxV/8ABVpH/wAuaUf8Hq3/AASy/wChB+Kv/gq0j/5c0Af1+UV/IbD/AMHpv/BKyU4fwT8UY/8Ae0rSv6aua6/SP+Dyj/gklqThL3SfiDp4PVrjRrVgP+/V/IaAP6w6K/np+FX/AAdLf8EU/ihfRaXcfFK48L3U5ComuaNf2yZP96ZIJYE+ryKPev27+DHx9+Bv7R3g6P4hfs/+MdF8baFKdq3+h30N/b7v7peF3CsO6khh3FAHrdFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+Uf23/wBsX4Q/sC/sueLv2rvjhcNFoXhOzM3kRkefeXMhEdvawg8GWeVljXPAzuYhQSADxb/gpV/wVE/ZV/4JY/A9vjH+0lqrG6vS8OiaBY7ZNT1e5QAlLeNmUBEyDLM5WOMEZO5lVv8AMS/4KWf8HFP/AAUS/wCCkmu3vhK2164+HHw8unaG28J+GJ5IBPC5wFvblNs14zDAZW2wkjKwqa+Qf2hPj3+2z/wXE/b+i16+s7jxT4+8d3y6Z4f0GyJNtp9mCzRWtuGO2K3t03PLIxA4eaVsl2r/AEkP+CM3/Bur+y3/AMEyPCul/FD4n2Vl8QvjY8aTXXiC6iEtppUx5MWlxSL+6Cfd+0svnycnMaN5YAP4If2OP+Da3/grb+2bpFt4t0D4fL4D8PXgDQ6p41mOkI6tyGW22SXrIRyHFsUYcgmv2U8G/wDBkN+1PfWyN8Qvjh4U0uYgb107Tru/UH2aU2pP/fIr/R8ooA/z57L/AIMavEsig6j+0vbRHuI/CLyD9dUStlP+DGOQj95+1CB9PBWf/cyK/v8A6KAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1R/xAxf9XRf+WT/9+q/v8ooA/gD/AOIGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+q/v8ooA/gD/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36r+/wAooA/gD/4gYv8Aq6L/AMsn/wC/VH/EDF/1dF/5ZP8A9+q/v8ooA/gD/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqv7/KKAP4A/wDiBi/6ui/8sn/79Uf8QMX/AFdF/wCWT/8Afqv7/KKAP4A/+IGL/q6L/wAsn/79Uf8AEDF/1dF/5ZP/AN+q/v8AKKAP4A/+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqv7/KKAP4A/8AiBi/6ui/8sn/AO/VH/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VH/EDF/wBXRf8Alk//AH6r+/yigD+AP/iBi/6ui/8ALJ/+/VH/ABAxf9XRf+WT/wDfqv7/ACigD+AP/iBi/wCrov8Ayyf/AL9Uf8QMX/V0X/lk/wD36r+/yigD+AP/AIgYv+rov/LJ/wDv1Qf+DGM9v2ov/LJ/+/Vf3+UUAf5+83/BjNfqP9H/AGno2P8AteDCv8tYNcbrP/Bjn8UYI2Ph79orSrp+wuPDc0AP1K30v8q/0OqKAP8AL7+NX/BmN/wUy8BaXNrHwj8V+CfHgiBK2cN5cadeynsFW5txb8/7Vwtfg54k8B/8FNP+CPXx0g1DW7Pxh8D/ABnESILuJ5bOO8SM5YRzxE215BnhgrSxN0Oelf7c9eNfHz9nj4G/tS/DDUfgx+0T4V03xj4X1Rdtxp+pwLPETggOmfmjkXOUkQq6HlWB5oA/jU/4Ix/8Ha2hfGjX9J/Zq/4Ke/YfDniG9eO103x1aotrpl1K3yqupRAhLV2b/lvGBb5PzJCo3H+42KWOeNZoWDo4DKynIIPQg1/lMf8ABwF/wbw+Kv8AgmHqj/tK/s1teeI/gfq10sUnn5mvfDlzMcJBdOAPMtpGO2C4IB3Yil+co8v7L/8ABp3/AMFu9f8AG1zY/wDBLT9qjWGvLy2tmPw91a7fdI8NsheTSpHJy3lxqXtC3RFaLOBEtAH96dFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9L+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/OD/AODzz9vm+8d/tA+Df+CePgu+YaP4EtY/EfiOKNvll1fUUP2SORfW3tD5i+10fQY/0fK/xMv+CpXxF8SftV/8FXvjV4rtXN5deIfiBqmm6duOSbeC7ayskz7QxxL+FAH9wv8AwZ9f8Ew9C+Dv7NV7/wAFHfibpyyeL/iR51h4badPnsdBtpDHJImeVe8nRiTjmGKMqcSNn+0ivJ/gN8H/AAr+z38EPB/wH8DxCHRvBmi2OiWSqNv7iwhSFDgdyEBPvXrFABRRRQAUV/mRf8HCFnbXP/BXf403LTrDND/wjgjjZWJmL6LYBtp2lVKLzzjOMDmvxUspptMvLbXLcRTXFpIsixzp5kbGPBXep4IyORXpwy1ygpqW67f8E8upmahNw5dnbf8A4B/tEUV/i03m7UvENxr2p2cMk15NJNJDEDFEGk5+RUxgAnhRx2rP03wbquvXjadotq0s2x5WRR82IxudsYHQcnir/st/zfh/wQWZp/Z/H/gH+1NRX+J/FptvCrKY1YFSPmGSD6jpjFV205oVNsgeOOQqZFDDD7c7ePQZOPqaf9lP+f8AD/glf2j/AHfx/wCAf7ZFFf4kC6DGjHdwPQYHX9BXSWen/ZoxBKgTuAVOcH8PypvKX/P+H/BK+v8AaP4/8A/2u6K/xddW0/wrPFZHw2lyk6w4umnKlWlzx5eMELj+9zmrHhvQtEuNSFnqkEk/2lTDGIXCMJZPlUkkHKgnkYyfWhZS7Xc/w/4JEsySdnH8f+Af7QVFf4ff7T2jwav8bfED6dtkjsJVs1C/eVbZFj6dcZU9K+fLrT4J8JqCFjjAcffGfX1/H86872HmeipH+8PRX+D34e8GXdzrNv8A2UxkMk6RxvESGDMQBwOQc9P0r9aP+CqXhxtItvAHw7EjSXEAihd3Jd2fyFUk9SST1PWpdJ3SvuO5/sOUV/kB/tk6f4T+Ef7GvhT4BaDfQvrVtNavqsELgzQyMpnYyAfMueACfSvib4YftKTQ6fF4R+OVhJ4p0lFEcN2snl6lZr/0zlPEij+5J+BFCpX1W39f1uCZ/tq0V/jZWnws0nxbpc/in4G6oninSIRumhTEeoW3tNbnDf8AAlyD2rzVILTzmEo2yDIZCMEYrspYKFRXhU/DX7rkOUo/GtO99D/aXor/ABQ9a02wvdSa4sLdbePAyoJIzjk5Pr1qWHT0jttwkTOcbSMnHqD0ruhkUpK7nb5f8E4a2Yxg7JX+Z/tb0V/imrA0kixR8luBk4pfKmjZgVOF4JHQH61f9gP/AJ+fh/wTH+11/J+P/AP9rGiv8UcRTyy+VGMl2AAPOSa1rvwzqVna3FxfKIXtZFjkidgsgLdMJ1Puaa4ffWp+H/BF/a6/k/H/AIB/tRUV/ihpCJAP6+ldl4e8O+JfG2qW2h6fHJdTuVhgiRfm5PCgZ5qP7Csrup+H/BK/tX+5+P8AwD/aKor/ABhPFfgbV/hz4rfQPHNlPa3FnJtuLdhslUdxhhgNjpkVyurRxJqMy2kMsMLEtEkuC4Q9MkcE+pAp/wBhaXVT8P8Agk/2trbk/H/gH+1LRX+KgyKACnpgnoB/StS11S708IdMmYbkYOHUMqlxhgAcjkd8Zqf7C/6efh/wS/7VX8n4n+03RX+K9YwKtyJHiScDqku7ac/7pB469a0YdPBXOBnuFz1/Gm8isv4n4f8ABBZpfaH4/wDAP9pCiv8AGSg02KKNJ7oFWboAM0+O6vtMv49QsW8uSBgyNjOCOhweD9CDWTye32/w/wCCarHt/Z/E/wBmqiv8WfV7iWe4e6nO55GJZjgZJ69OKwREu/3o/sb+/wDh/wAEf1/py/if7W1Ff4xvgyIxXqyv6iv12/Z38RQWllBY6hcpawyD5pWyVUe4UE/kK4MZhHQ2dz38pwSxl+afL+P6o/0/KK/zi/Ffivw1p1mJfCtyLiV/9Zjsa+U/HWp3uol7wS/Pjdn0IrjgpS3R6VfI4U3ZVr/L/gn+pBRX+RJ8QrDXrjSm8T3CM1m0xhaZiOZAMkdc9PavmfXbi9njGo+WxhLmMPjjcOozXo0svc1dS/D/AIJ4GLUaDte5/s50V/i5WuqSwSKwHOc819HfDE+JvFUptfDsD3cqqzFIQXbC8ngUq2AdNX5hYaVOq7OVj/X/AKK/yY/DXjzUtP1ZNP2M9wDjy1Us2R14HPFfUfg348Ih2s4LdM4rz6kZx2Vz3MNlFKt/y+t8v+Cf6fNFf5ifiT4ya74iljs7aQHB4QkDeADxk8V8razPY+Kb2/m1J1VfLITB/j7D6etOnGUt9ArZNCCdqt/l/wAE/wBZWiv8bTX/AArBNfxnUWleIqDKyICwbngAnBGcc8Z9K8ul0naCjLgjuBj/AD7V3rApr4vw/wCCeHUTi2rH+05RX+J7e2xAKHtWWLWdwdqkhcnIBPFWstur8/4f8E5amI5Oh/trUV/iOPb+adzdfepLW/m0uR5bOTy3kjaNjtDHY/DAZBwSO/UdjVf2Z05/w/4Jk8b2j+J/tv0V/iIXU73hEjMc4xyemOgHtX+3fXJisL7G2t7m1Cv7S+lrBRRRXKdAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAed/Fz4TfDv48fC/X/gx8W9Kg1zwz4osZ9N1OwuRmOe2uFKOp7g4PDAhlOCCCAa/xfP27v2Zfi9/wSB/4KV+IfhH4W1S5s9Z+Guv22r+F9aUbJZbUMl3p10CPlL7CnmAZUSK69jX+2PX+eL/AMHvX7P+kaT8TfgX+1DpcCrea5p2reGdRlAwSunSRXNpk9z/AKVcdewFAH9wX7Bf7WHhf9ub9jf4c/tZ+EVSK28b6Lb380EZ3LbXgzHd2+ec+RcpJET3KV9cV/In/wAGZHxl1Hx3/wAExPFHwq1aYyt4F8cX0FohORHZahb290qj0zcPcN+Nf12UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8QH9mRB8T/wDgqN8PUvf3o8RfFPSRJnnd9r1ePP57q/2/q/xBf+CYY/tX/gqZ+zyJOftPxV8JZ99+r23+NAH+31RRRQAUUUUAf5k//BxHrF9ef8Fc/irpVxIpgsv7D8pQoBUy6Np7NkgZbJAIyTjtX4lNlANvP1r9of8Ag4c2j/gsH8Xs9/7A/wDTJYV+LC5kUKTnpx9a+tw0f3MPRfkfKYlfvZ+r/MQS3UNwtzbOY5YyGVl6gjofwpbu+u9XUWuoSlwHaTLf33OS2cdc89afKCcFRz9KhvpoJraKH7OFkTdmQEjcGPGR047Vty3M011JLm2k0O3iYSW9z9tg3YVhIYtxxhh/C4xxnkVTj0tpdIm1nzoVEMiR+UzjzWLAncFPJUY5I6EiqRYjK/h+VaOnBoy+oTWrXdvD/rFGVXLAhcsOnPPvitIwY3UQyBtEGlTSTNN9tzGYAqr5e0n59xJzkcbcAjrnFM8+61CdFkkaRmCxruJY8cAZJJ4zgCtrwzP4KsINRXxfZ3N00lpItmbVwgiumA8t5M5yg5yBya5SPcCkhyrDof5flRyatWKcrJWZsiRkJhHBUkH6ivT/AISQR6j8SNGgn5jS5WZ8/wB2HMh/9BryeEF3LDnv9a9Q+G96dIXxH4nkyi6Xod7IrDs8ieUuPxeislGjOXZMKPvVYx8z4Y8X31zrnirUvFSSeYby8muN68EGRy3PcVzF3dW16D9r/dOQf3q8gn/aH9R+VWdl1Z7Z4XBAHDL0/H/A1lXptL0HeRDMfwRv8D+lfMH05oeHpdX8OXtvrOlymKdJBJBNEejKcgg9OozX6ufFK7svHn7S/wAOtQ+O2oeZY+GdOh1jxBcsmQPLijkYuqjjJYDp3r80vhh4fv8AXPG2ieEEBzqV9bW5VhkHzHAyPwPWvsb4ra9Bq9v8XPF9qVJ1LVbXQ7fnGYvOJYD/ALZ24/CsZ6yiir9T56/ad+II8f8Ax48W+PtOlD22p37/AGaQco8CAKhGeCCBXgSmyu1wuLabsP4G/wAD+n0q3c3skUYt7hQ6E7jG+cA+3oapLZRXaGawPQfNGx+YfT1FbtW0JR9ifsDeEtU8Q/tW+GLdDJCLSV7mVkYrmKJSSCQeVJxkdDXpf7cnxFj8LftPanHYRQBYbnCxGIeX8qrncoxkEnPNeH/sXeMfiB4Y/aI8NWPgWdYpr67S0lWVN4MEh/eDnkfKO2K5r9urVjqv7TuteVlm+2TAe/zBR/KlhnbGUn6/kaNXo1E+y/M9c0TStT1nwdB4z03Tb2eBZXS8uPLzaK/3lVSuSOOu7HtWTcXS3V086ARhyTsXkDPpnmv0M8eeI/EX7HX7A3h+18OPHbeINWnt3l82MSKzXB3yKyNwQEG018OaD8T/AIEfHqUReIAngDxPLgCRDu0u5kPf1hJPrxXt0s6ipyU4+7eya1+9f5fceLPKXKPNCXvdn+j/AM/vORILkFTyOmPWrcF3dQW01pG5WO4IMig4DY5GfXFdV4h+H/iX4c6g0XjqJ7e2eMvbXkAE1vM38O11+Ug1jXd7perPFNptoLYLGqyAOXDOOre2fSvdo1IVYqVN3XdHiVoTpS5aiszH+wzSQmYAtGmNxK5HPvUHlnI8nIIHAB4/TFdRFbwG2kG5xIxXaoPyY7k8/lxWdLalWBXIIraxjGeow23m6fugibzIcmVyw24b7uB1479a6bTPFk/hg2F/4fEtlf2Z3tcLJkmQHKMuACpX61iQfPGS3BYcVvaNd6HZW12mq6eL15ItsDeYU8l8/ewPvcdqxcLbmqd3uQeNPiB4q8favPrvie9mv7y7bfNNM253b1LHkmuVurG8tp44r1WVtu4ByeFPfJqWW3iEpVM+vNSWsUUk672MalgrsOu09f0pqnZaA52eo6eO+tv+JXcR7MsH2OnPTg5Izg+lWbLTJNxDJz6V6r40vvDOoQWXh7wlZrKlguw6m28T3QPILqxIG3oMdqo2WjrBsP3ianoap3ZnaboWnf2bc3F3K8dymzyI1Tcr5PzbjkYx29adZ2gt/wB8wAPfHNd3N4du7PTIdbuIiLWeR4kfsXj+8PwqBr60j02a0ltUkeUrsnYndFtPOAODnvmsn7zsbJcquccLmU3C3PIMZ+TKggfgf61Fq+o6Zeadu8qU37SM0jgqISp6AKACD+ldNr1lpEumwXnh95mYLi7aXCp5hPGwdcY9a4a5uUlsks/LQJExO/HzsW988+1Qoa6FSq6WMCFlt7pLp1VxH82x87W9jgg81YnsLb7Z51uytuAJCg4BPbn06VZjs3uZNkcRbHfFbCWjIvluuCO+KmUEUm2tzY8N2olnAAx9K+tPA/ifUvDNvI1nFDc+bC0OLhdwUPxuXlcMOx7V4T8NfBet+MNbtvDvhi3e8vrtwkUUQy7sewA5NevTWV74Mv5LHX4/KntXKSRPncCOCD6Ed68zEwUpH02WVuWB7PYT6jpkUlrekSKuPnjbcp+jDrVDVtdglsZ3UgLEu5i7BTj2z1PtWG/iOO+t45ICUt5BhMnk7eD09DWz8TLL4R23wh0/UdH1S4l8SSTOL20KYijjH3Sr9yf0rgdBXStueusY6avc+UfHeveH59OuQY5Dfb1ELoU2bCDndnDZ9McV88NqN7a2l3a20aOLqII25FZ12HI2Mfun3HUcV33ima11LUpb2ztxaxseEDFwPfPvXA3USgdOfSvWo0eSNrHyuPxLqz5mReLL+w1rWX1PRdPXSbeRU22yOXVSAAxBPPJ5/GvYPgL+0J8SP2evEZ8W/DS//s2/aKS3MuwP+7mUq4w3HIPXFeRWGkz6nexadZpumnO1Fz1OM9fwqWSySJcT4YjsOKqpCMo8sloclOo73i9TrW+Knim08UDxbp189tqCymXz4vlO49emOvfsamtPiNrM2oSX9zcFpJ3MjHpkscngcVyVtf6ETFD4ksy9tCkuPshCTNI4+QszcEKcdhxx1riIruKG7zMC/HAHABxWTw0JK1jpp4+rTejPp+y8canqkTxhg4jXzJMn+HOO/Xk16Z4PUa1JDaL8qn7zHrivjCw1DbMpduR69Qa+g/A3io2U4BbH49a4q+G5Voe9gswlUfvvQ+r9b8D6BDabL2UCR+VGOCK+XvHXhW2sFYw/xHg+or30a3d6rZG9uSzI/wAqO3I46gH2zXzv4vv7uRpY1VsLzXLRUr2bO7FKm1e2h4Brtr5Q2+ma7/4Z/Ezw94B8L+IdE1vw/Z6zNq9i1tBcXBYPZPnPmRYIG/jHzZGK8+1e5eaXEgxg85rlLlkc/KOnWvUjSTjZnzNepZ6FCWZHlZh3OcfX6cVmXY6FV5PpW0VVuXAHqaqNEXkC26mQsQAByST6CqcLM4G0YiMiLhhg1/t71/iS2EEj38DpbLckyqvkNnMp/ujHI46n0r/baryM0+x8/wBD0MB9r5BRRX+eJ+zl/wAEu9G/4K4f8Fe/23/CvxX+KnjXwbY/DjxxM2nxeHr5UVxqN7fqyssyyKFQW67QgHU+1eSegf6HdFfyIf8AEIR+zt/0cT8Wv/Bja/8AyPR/xCEfs7f9HE/Fr/wY2v8A8j0Af130V/Ih/wAQhH7O3/RxPxa/8GNr/wDI9H/EIR+zt/0cT8Wv/Bja/wDyPQB/XfRX8iH/ABCEfs7f9HE/Fr/wY2v/AMj0f8QhH7O3/RxPxa/8GNr/API9AH9d9FfyIf8AEIR+zt/0cT8Wv/Bja/8AyPR/xCEfs7f9HE/Fr/wY2v8A8j0Af130V/Ih/wAQhH7O3/RxPxa/8GNr/wDI9H/EIR+zt/0cT8Wv/Bja/wDyPQB/XfRX8iH/ABCEfs7f9HE/Fr/wY2v/AMj0f8QhH7O3/RxPxa/8GNr/API9AH9d9FfyIf8AEIR+zt/0cT8Wv/Bja/8AyPR/xCEfs7f9HE/Fr/wY2v8A8j0Af130V/Ih/wAQhH7O3/RxPxa/8GNr/wDI9H/EIR+zt/0cT8Wv/Bja/wDyPQB/XfRX8iH/ABCEfs7f9HE/Fr/wY2v/AMj14n8dv+DZX9gb9mTwnB45+PP7VvxP8M6VdXKWcNxd6lb7ZLiT7sahbZmLNjgAUAf2t0V/E/8AAz/g2d/4J+/tMaDdeJfgP+1n8SvE9nYy+RdNZaras8EuM7ZYzbh4yRyAyjI6V7j/AMQhH7O3/RxPxa/8GNr/API9AH9d9FfxpfFD/g1X/Y8+DHgLU/id8S/2mfivpehaPCZ7y6kv7dlijHUkLbFj+ANdfpf/AAaNfs0azplvrGm/tG/FmW2u4kmicahbAMkgDKebfPIOaAP6/qK/kQ/4hCP2dv8Ao4n4tf8Agxtv/kej/iEI/Z2/6OJ+LX/gxtv/AJHoA/rvor+RD/iEI/Z2/wCjifi1/wCDG2/+R6P+IQj9nb/o4n4tf+DG2/8AkegD+u+iv5EP+IQj9nb/AKOJ+LX/AIMbb/5HrzTXf+DWn9i/wz8StD+D+uftO/Fa38R+I4bi402yN/AXnjtRulYEW20bR1yR7UAf2dUV/Ih/xCEfs7f9HE/Fr/wY2v8A8j15nrP/AAa1fsXeH/ifo3wa1f8Aad+K0HiXxBbXF3YWJv4C80NrgysCLbaAueckGgD+zuiv5EP+IQj9nb/o4n4tf+DG1/8Akej/AIhCP2dv+jifi1/4MbX/AOR6AP676K/kQ/4hCP2dv+jifi1/4MbX/wCR6P8AiEI/Z2/6OJ+LX/gxtf8A5HoA/rvor+OWL/g1B/ZEn8Yy/DyH9p34otrsNst5JYDVbT7Qtux2iQp5GQpPGcYzXV/8QhH7O3/RxPxa/wDBja//ACPQB/XfRX8cXj3/AINQ/wBk34Y+DtQ8feNf2kvi1aaVpURnuZhewSlEGATtjtmY9egBNb2k/wDBo5+zRrmlW2t6X+0Z8WpLa8iSeJ/7Qtl3JIAynBtwRkHoRmgD+v8Aor+RD/iEI/Z2/wCjifi1/wCDG1/+R64Zv+DVT9jhdU1nQk/af+KMl/4egW51K1j1S1ee2iZS6s8a25YBlBI457UAf2UUV/G98Pv+DUf9kr4peDrDx94H/aT+LV5pWpx+bbTG9giLpkjO2S2VhyO4Brsv+IQj9nb/AKOJ+LX/AIMbX/5HoA/rvor+RD/iEI/Z2/6OJ+LX/gxtf/kevnjQv+DbP/gn94o+OGo/s5+Gv2pPi3qHi7R0339pbzrJFanAOyW4FmYEkwQdhk3+1AH9u1FfyIf8QhH7O3/RxPxa/wDBja//ACPR/wAQhH7O3/RxPxa/8GNr/wDI9AH9d9FfyIf8QhH7O3/RxPxa/wDBjbf/ACPXm/xZ/wCDWb9ir4FeBLz4m/F39qL4o6DoOn7ftF5dalbCNC5wo4tySSeAACSelAH9m9Ffw5fB3/g3Y/4Jo/H7wdrXj74Tftf/ABJ1XSvDYY6tKdTgt2sQi7yZ45raOSIbfmyygEcjNdL8BP8Ag2o/4J5/tSeHb7xb+zz+1v8AEjxfpmmXTWV1dabq1rLFFOgBKFvs+MgEGgD+2iiv4Z/hp/wbzf8ABMT4xfFK++Cvwx/bF+Ius+KNP80y2NvqtuWbyG2yeWxtgkuxuH8tm2ng4pbH/g3m/wCCYmpfHB/2brH9sX4iS+No5GgOljVrbf5yDc0Qf7N5ZlUctGGLgckUAf3L0V/Ih/xCEfs7f9HE/Fr/AMGNr/8AI9cn4n/4NQ/2Q/BU2nW/i79p34oabJq90tlZLcaraRm4uGBYRx5g+ZyASAOcCgD+xuiv5EP+IQj9nb/o4n4tf+DG2/8AkesXxJ/waV/sseD/AA/e+K/FP7SvxVsNN02B7m6uZ9TtUjihiBZ3Zjb4AUAkmgD+wmiv4W/gR/wb6f8ABL79pnxHe+D/AIHfthfErXtWsIftEtmmoRQzGAnHmok1qjSRZ48xAy571mfDL/ggb/wSr+M3xLHwe+Fv7ZHxI1zxIZZ4BZWuoRMxkts+au77IEymDn5u1AH929Ffwzar/wAG9P8AwTB0P44R/s3at+2P8RIPG0sy2y6W2rW28XDruWFn+zeWszLyIi4cjotTfFD/AIN4f+CZHwW+KGn/AAY+Kf7YnxF0TxPqnk+RY3Gq2wcfaG2xeawtikPmNxH5rJvPC5oA/uTor+HT47/8G63/AATR/Zj1LS9H+PH7YHxH8NXWsqZLSK61S3LtECFMrBLZikQJAMr7UB6tX0hp/wDwaMfsz6tYQ6ppf7SHxWuba5RZIpYtTtWR0YZDKRBggjkEUAf190V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/Ih/xCEfs7f8ARxPxa/8ABja//I9H/EIR+zt/0cT8Wv8AwY2v/wAj0Af130V/m5/8Fiv+CNnhr/gkfZfBH4t/Bz4x+PvFNx4r8f2GiXVtrt+jQrDgzbl8hIjnKYIbIINf6RlABX5D+Jf+C9n/AAR+8H+ItQ8JeJvjz4ds9S0u5ls7uBxcbop4GKSIcQ4yrAg49K/Xiv4RP+Ddj/gnl+xH+2R4l/as8YftTfDLQvHmpaT8ULyzsp9Yt/tDW8BeZykYJwoLEk4GTxnoKAP6Kf8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxh/wR//AOjdvBP/AILk/wAaAOK/4iDv+CMf/RwXhv8AK5/+M0f8RB3/AARj/wCjgvDf5XP/AMZrtf8Ahxf/AMEf/wDo3bwT/wCC5f8AGj/hxf8A8Ef/APo3bwT/AOC5f8aAOK/4iDv+CMf/AEcF4b/K5/8AjNH/ABEHf8EY/wDo4Lw3+Vz/APGa7X/hxf8A8Ef/APo3bwT/AOC5f8aP+HF//BH/AP6N28E/+C5f8aAOK/4iDv8AgjH/ANHBeG/yuf8A4zR/xEHf8EY/+jgvDf5XP/xmu0/4cY/8EfR1/Z38E/8AguT/ABqhcf8ABEX/AII1Wn/H1+z/AOBIv9+wjX+ZoA5r/iIO/wCCMf8A0cF4b/K5/wDjNH/EQd/wRj/6OC8N/lc//GauTf8ABGf/AIIlW3Nx8Dvh5H/vWsI/m1c3ef8ABJf/AIIQafn7b8HvhpFjruhgH/s9AGx/xEHf8EY/+jgvDf5XP/xmj/iIO/4Ix/8ARwXhv8rn/wCM1wNz/wAEy/8Ag32sztuvhb8L0I9Y4P8A4qsuX/gnL/wbwQf634a/Cxfqlv8A/FUAepf8RB3/AARj/wCjgvDf5XP/AMZo/wCIg7/gjH/0cF4b/K5/+M15Wv8AwTo/4N3n+78NfhYf+AW//wAVV63/AOCa3/BvbdHFv8MPhc/0jg/+KoA9G/4iDv8AgjH/ANHBeG/yuf8A4zR/xEHf8EY/+jgvDf5XP/xmuZtP+CVX/BBG/YLZ/CT4ZSE9NsUB/wDZq6q3/wCCOf8AwRAugGtfgl8OpAf7ttAf5MaAI/8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmty3/4Io/8EX7r/j1+AngGT/dsoj/Jq1V/4Iaf8EenG5P2ePBBB7jTkP8AWgDjv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguT/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgDiv8AiIO/4Ix/9HBeG/yuf/jNH/EQd/wRj/6OC8N/lc//ABmu1/4cX/8ABH//AKN28E/+C5f8aP8Ahxf/AMEf/wDo3bwT/wCC5f8AGgDiv+Ig7/gjH/0cF4b/ACuf/jNH/EQd/wAEY/8Ao4Lw3+Vz/wDGa7X/AIcX/wDBH/8A6N28E/8AguX/ABo/4cX/APBH/wD6N28E/wDguX/GgDiv+Ig7/gjH/wBHBeG/yuf/AIzR/wARB3/BGP8A6OC8N/lc/wDxmu1/4cX/APBH/wD6N28E/wDguX/Gj/hxf/wR/wD+jdvBP/guX/GgDiv+Ig7/AIIx/wDRwXhv8rn/AOM0f8RB3/BGP/o4Lw3+Vz/8Zrtf+HF//BH/AP6N28E/+C5f8aP+HF//AAR//wCjdvBP/guX/GgA+G3/AAXJ/wCCTPxf+IehfCf4afHHQNX8ReJtQttK0uxgFx5tzeXkixQxJuiA3PIyqMkDJr9Xa/hh/wCCxv7C/wCx/wDsW/8ABVP/AIJy/wDDKPw60TwD/wAJL8UR/an9j2wt/tf2PVNB8jzMfe8vzpNvpvPrX9z1ABRRRQAV/Fx/we16DFcfsJ/CTxOVy9n48NqG9Bc6fdOR+Pkj8q/tHr+PT/g9atw3/BMX4d3WOU+KGnJn/e0nVT/7LQB8p/8ABjtrklx8Jf2h/DZb5LTV/DtyB6G4hvVJ/Hyh+Vf3b1/Aj/wYzTltN/adteySeDW/76GsD+lf33UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/gk/8AN/wVN/Zq3d/ir4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooA/zD/+DhwqP+Cw3xfJH/Qv8ev/ABJLCvxs0y408ajBFrQY2bSK0vl48wIp5CnsSCce9fs//wAHBF1aWP8AwWW+Lt1qFsLuFRoOYmJUEnQ7ADkc8HB49PSvxMBCjYeCQAfU/wCTX3GDj+4p6dF+R8fi3++m79X+ZfvPIW8cWSusO9wnmHLBATtz/tYxn3qxp2oW2mXLTXFnHe5jdEEucI7DAcYI5XqO1Z0MmGCsMZbnH/161Z9NW31X+z7qVYYw6hnB3hFbHOVznAOTj0xXUqbXQ4XO73Ofkj3yDcOWPPbk1f8AtmqaXBcaTDMyQzFTNGjfI5Q5XI6HaemfWm6nBZW2ozWtjdC7iidhHKFKiRRwGwRkfTFUEG49OnFKNNtms52ViTU76TUZI5DCkXlxpGViUKrbBgHA7nue9SWlpo82mXU99dtDdRqhghEZYSEthstn5cDnvmnKj8LGvmM3Rf6Vq3/hm1s9Ikv7y+ijvIsK1gyuswJbaecbeOvXp71qoWYQnzGbpmo6Za6XdWl5afaLmZV8ibcQIWB5O3o2RxzWpqeo22j/AAG8W3UxKtqE1hpysvXDu0rfhhOafrOn3/h/Trfwvq9jb291GwuhMm2SV4pU+VWkRiCuOQvBB61yvxbMVj8G9IsXZkGratPOMdMWkYUZ79ZDXHmjthpedjvy+N8QvK58oSRXGngSRncsg4IOVI9/8K526FvfyCKE+VIT90/dJ9jW7K1zprsvBU/irVhCGC9uVktflZefLJ/9BJ6/TrXyp9Mj6y/ZIszH8Y7PV74Zt9BtrvU2DjO37LC7KR6fPtqr48lvU+Bvhu0kGZta1bUdXmGfmZYUS2ViO/zs5rf/AGe3nsPhv8RfFjnDRaVFpkTEfMr38wUgH/cRq5f49iew1Lwx4Zi4Gj6BZq+OqTXha6kyO3LrWcVer6A3aJ853d8s0vl3f71AAAejL9DVCW1KL9os2MiA9RwV+vp9au3dxa3V2Rdrtbp5i+vuP8mqMi3GnP5kTbQejLyD/n0rV7gkfRf7K3xPf4Z/Hnw54tfTV1eVbkQRxltjZm+TcD3K5yM16l4L+G7/AB//AG/Y9Iu4vMs4L+a+vc/MoihkZyD9cAV5f+ytpena78b9Hv72PbHpAl1GXb9zbbIXyR25Arov+Ek1Pwx8Mte+Luh3b2esa7rqWdtcQNskSK2Uzy4Yc8swBrnbtWTW9n+Juv4cvVfqUP2t/jv4q+JvxU8Q+G9X1Ca68PafqsxsLYt8sHljysp7cHjpXyWun7ojNanzo++PvD6j/Iq/eXMWtTvdXrbLqZi8jnlXZiSSfQknJ7VSZbuykDAGMjow7/jWyjZWRk3ZHs/wx/aF+JHwwRdMsLoanoxP7zSdQH2i0kB7BGzsPuuDX6R/GL4W+EvBnwg0H4y6banSp/E8KM+nB2aK2dhuzG2RwR2Oetfkhotzo9zq1odezDCsqebLGM/JkZJX6elfsp/wUJ8deFtU/Zw8G3/ga7S60mVQLaRARlUQJ0OCMHqKIV6lGrB0nZtq/nr1JdGFaDhUV1Z/k9ux8g288iSeRLjzMA4BB689QcV3lx4M8RwaoNGazkmujCLjy4R5jGMruz8ueAOT6V47+yh4T1H4wePdK8Dw79t3IPOdRkpEv3j+Vfon8RfgXqvw/wDHl1pXwZ8TDUtZ06H97p4l2agkMi/wqcb1K8HbmvtKuY0KVSNOpKzav5fPsfJQy2rNSlTV7ff8u58qXWm3es6e2pQ6a0exEjWSBdsShepYY+83c1zEiW0wigs1ZpslWBHU9tte4aR8efGnhD4a6t8FngjhtNQnWW5SaEeerx8AbiNyj1Arxm0Se6u0ltDiTO5cHbjHueldkfe16dDhmuRpdepo3txb6vJez+KI5Uv0jWOAQosa7lwPnGPT8SetVdM0FJF8t1YOxygxwRXR6fosut6kZiXZmbJMh3Ek9ye9er2XhZ4AqzcY6ZpTko6I2p0pT1OO0Tw0A4wnH0rfk05c7Y1yV5NemxaE0Vu0VmE8wIzncwTheuCSOfbvXI6w9laWAm0suZ2iHm7mHBP932/WsNZM7HFQWu5wV1PEH+zRjOOfbNcjqc2ZVgjP1ArQuZJbTL7iWfnNc5Hayzz992c5HetVSSOR1rjtQ07U0s4b2YbYZyQjZB3beoIySMe9GnRTxykxIjFlKHeofr3GehHY9a6ax8LXMsNxcMwY2672VmCkKeOMkZ+got0gt0dmXeSCAVOAp/rUTiraGkW29TY1PT/D1uLf/hGmmK+Uhm87APm4+bAHbPSsWaO1tYHluT2JHHpWfJfBB5q9z371W1ASSWMd80qOsxdRGGy6hePmHbPaslRdzp9uuiO207XvFnwq8WwXumTS6df24jnhmiYrIm4Aghhgjg5FQ+JPGWva9qMl/rMssk9yfNaSUku+7+LJ9a821DUru/nF3fzPNKAF3OcnC8AfgOlb1tc6t4jufPv7gyvbwqieaekcfCqPoOgpyoR+JoKeJnfli9D0rw9cyXCLGXYd854Fdd4sstunR29rKtyzICzJnAJ7HPcd64eC0uNMjjndk2yoHVVbccH1A6Ee9dZplys+wTtuYkADPJz2rz6tKz5kfQUq14qLPJ73RZhHukTB9K4O/wBJkQ5Gc19ReI9HvbTUHsNQga3mjwGjZcMPqK8+1Dw5IczoOnXPSiNW25nWwnMm4ni8UJtzuCbm7Z7Gs67fYplkwq9MD+lfdH7O3wy+AvjfxGdE+Mmtz6DBLuxfKm+ODapI3KOWLHgAdOvNfLnxD0qw0/XdS0PwtdC409ZGYScLvSM/KecHPOcda1jKM24o8mrSlTXMzxy4O/7tc1fsQuwLknua7RINOtbm3e6l+0QPtaVYhtdVPVfmAGffmufuo4DM5gz5eTsBHIXtn3rRQsc6k7mnrUnh2W8iPhYTrAsMfmfaCCxmx8+MAcZ6e1aujazJbyAZ+7XNjTjJBc3ltKixwbAwdsO249VHfGOajt2YSBn4PWsZ0LrQ6aWIlCV0fVnhDxd4j1Gwk0fTmM9vbJJdmJnwqhQN7AEgZxjpyfetqzX/AISNLqKIAu68Fu1fOlnZXS6Zb6uLqAmW4aFrdWPmqqAHeR02tnA57V9bfCOx0q90i5ZVMt3GhIQnAK/415mIo+zVz6bAYp1/dk9j5J8T6NLb3ksM4IdcgFRwWHrXm1xBJFI24cE19ueLfAt3dxsYojnk4xmvmbXvDz2lw0cwIYdulaUKqtY5cfhHH3keZk/IWPGK0dN1G80K6j1bSZTBdRnMUsfVeOGBPQjpTJ7eRG+TIFQfY9oAB6cc11HkODKoklSZp4jiTOVbng+tf7atf4l7R/L8pwc1/toV4ubq3J8/0O7AK3N8v1Cv5EP+CBv/ACmd/wCCkX/Y7Wn/AKX6vX9d9fyIf8EDf+Uzv/BSL/sdrT/0v1evGPRP676KK+Cv+CoXizXPBH/BP/4q+JPDHi0+BtTh0KZLTWkDmS3nlKxxrH5as4klZhFGUUsHcEDIoA+8kkSQZjYNj0OaVXRyQpBI647V/JH4G+LPxJ/ZQ8WfFnxD4G8OeKPg9Np3wRu/EFj4L8W6pLrUuq6vZkl9Uhdp7iNGtsrHOvmJI5dS0agA19L+APDep/sW/E/9mjxj8L/Emu65d/F/wrrX/CYpqup3GoR6teW+jnVYr/y5nZIpUnQoDEEXyn2Y4FAH9IokQsUBGR1GaN6b/LyN3p3r+Vv4O2vij4VfAz9lD9vHRfFmu6j8Qvi74v0e08XyXepT3Npq1p4laQTW5tHcwRpa5U2/lopj8vqcmsLUNa8X/wDDHmsf8FUm8Ra0fivafFKS2gH9pXAsotKh18aQNKFl5n2cwNa5yDHvMjb92cUAf1gl0VgjEAnoO5p1fy3fGS08S/GrwL+13+2T4h8Va3pPjX4L63dWfgs2epXFtbaPDoVlDdoBbI4hkF3I7ef5qPvQhRgCv3S8P/GD4s+N7f4f2GgWltps/ijw4mtXd3eRGWISmKF2hRElRwQZSSWGMDg5oA+v6K8X/sn4/wD/AEGtE/8AAGb/AOP0f2T8f/8AoNaJ/wCAM3/x+gD2iivF/wCyfj//ANBrRP8AwBm/+P0f2T8f/wDoNaJ/4Azf/H6APaKK8X/sn4//APQa0T/wBm/+P0f2T8f/APoNaJ/4Azf/AB+gD2iivF/7J+P/AP0GtE/8AZv/AI/R/ZPx/wD+g1on/gDN/wDH6APaK/GD/gswuvt4c+Bw8L6zYeHtQ/4WfonkajqcAuLS3fL4eWMyRblHcb1+tfpv/ZPx/wD+g1on/gDN/wDH688+JfwN8U/GfQF8KfGC08I+KdLWRZltNW0Y3kAkXowSWVl3DscZFAH4EeFfjlZfs2/Fr9qnxN8VNdTx9rsnh/RL278R+BJF0a3RJGe3gshhp1trhCxkadpXOw5wAornfC/7TX7VH7OHjD42fC3wrrUlxcaZ8Mm8VWOnv4mm8aPpl+JljEwuLiJJFJjcsYssh2hhgdf388M/syP4L8E33w18HaH4H0nw7qYZbzTLPQFgtLgOMMJIkkCPkcHcDVD4afsoWXwYgNv8IvD3gbw0phe2b+zdBFuWhkILIxSQEqxAJBJBxQB+Uv7QHwz+GXhf/gmB8QPiV4F+KfiD4j6z4j8ELd3I1fxE+pW91LIqO0yW7M0cGXO390qqg4xxXmvh79qH9oyb9jn4rfF7xL4m1Hw/8W/Cmi2tiPBsKlLbw3pTBVW/gTpfNJF+9F0QVBGwKuDn9iPCX7FPg3wFLrE/grwf8P8ASm8QoY9T+y+HljF2jHcVlAkwyk8lTwTzXeeKPgd8S9f87VLC58LWOuf2fJpltqg0XzZ7e3kGPLXfLzHwP3Z+U45FAH4jaJ8QIfhP+1jp/wAN/wBn344+IvHOg3vwp1rX7q2v9bbWFS/REMV4JWLFHckkJkKv8KiuY8Kx/EvS/wBnX9mu6+IXxc8ZQW/xvvrWHxn4luNalikCrFJLDbWz5Edl57hYy8QV29cmv0P/AGfP+CY3jf4LfF66+NeueKPDWsanLpUujwWVj4Yg0fTIYLhg9w5trWQLJLMVAd3J4GAK+0vEv7Put+Mvh5/wqLxbp/g7UvCojWIaPc6KZLIRr91RCZdgA7YAx2oA/ECy/aB+LHwwvPEXw88K/EfV9d8B+Cfi54d0iz8QX999pl/s+8Aa7sri9P8Aro4nIUs7EgNtY1e/bJ/au+Keo+Mf2ldE+DPxHvbS38N23hW2sJ9Lug66bcXkzLOYsZVXZSNw57Zr9mbT9lwWHwqk+BVlongmHwXMjRyaGmh4sHVuSGhEuw5PJJGc1T8Mfsmad4K8PS+EvCPhzwJpulzrEktrb+H1jhkWE7ow6iTDbDyu7ODzQB+U3xn8V/G79ijxf8SfCPwe8a+JfEn2v4ZyeJE/4SC+k1WS11OGVImubfzc+WNjsxiTCZAwoxXLfBLwz4C8J/8ABSH9nX/hCvirrPxDl1zwVq+q3kesar/azLNPAjNcRsxJhWRiR5SkIMYAGK/c25+GXxLvNXPiG7k8MS37WzWRuX0p2lNs3JiLGbPlnuuce1eX/Df9kXR/g7qra98JvDPgTw3fM8khudN0AW026b75DpIGG7uAcGgD5r/by8Ua74l/au+EP7NnivxpqngH4f8AiuHU7nUb7Sb06XcX97aIDBZfbFIeIPy5VGVnxjNfNPxs/Z58K+M/26fgJ8HfDHxA8TS6FD4d8RiTVLTWZJdUuI1AzE2oKTMADwSrB+Mbq/Vr4o/AjxN8b/DDeC/jLaeEvFOkM4kNnqmjtdQ716MFkmIDDsRzUHhD9n7XPh/BpVr4F0/wdo8ehQvb6aLPRTD9kil++kO2UbFf+ILjPegD8SNI+PXjnVf2ePD/AOzh4m1nxD4m8Q3fjvXfD2k6hL4ol8OPJZaUd6/btTiRpnKocBV+eQgZNeI/Db9of9pL4q/Ajw/8IJPiTquntZ/GVPCLazpGrG/u5NKK7mt/t7Ro0+OVErJu9yRmv6BvGn7Kdr8R/CsngXx9oHgfWNFluzfvZXehebA12xyZihlx5hPV+p7mtTQf2brzwtYW+leGNI8Fada2lyt7BDbaEIo4rlBtWVVWUASAcBxyB3oA/Fj9uDX7nwP4z8U/BH4N6/4otLv4VeF01i41rWviFdaRHEZwzxusXlzPfSZX5jMSn8OOa0Pgt8afHf7a3jv4VeBv2l/iPrHg3w9qXw3t/EcH9iak+hvrmqNJ5crtdRGN2EKAN5aEAk5YY4r9gPiL+ydYfF/xTZeN/iv4e8DeJNZ01THa3upaCLmeJD/CrySsce3SofHn7I+lfFHwnp3gL4j+HPAuuaJo5BsLG80ESwWuP+eSNKRH/wABxQB+YU3wm+H+if8ABVafXYPHfiKa4tPhzaXOj7vEMirq01tMQsT4YC5VsDeozk8nmvmD9lbx5+3d8a9S8OftDafrhtfENx4rlg1ptV8cKunLZJO8clgNAMASKRUA8vB83dzuOa/fTUv2Z5tYl0KfVtE8EXT+F9o0ZpdBDtp4Xp9mJkJix22Yrmbj9jTw1d/E9fjZdeFfAUni9XEo1lvD4N75g6P5vmbt4/vZ3e9AH5IeH5fi9qH7K37RH7Vuv/EnxXd+JPDet67p+h2/9pyx2GnW0MqKqx26ERuRnh5AzL2xV39oO6s/2hfjV4O+Bvwk+LHinwp4xl0bR9U8X61D4onstN0e1aJGEcdn5ixS3d1zheiglm7Cv2vT4OeN4tAv/CkUXhRdL1WR5b2zGjsILmSU5dpU83a7MRklgSe9eS+K/wBiHwL478Q/8Jd438FfDrV9V2xr9svPDMc0+2IYQeY7lsIAAvPHagD8QP21v2jPG+leJfH3xT+C3iHWtIb4U6vp2jSanqnjiW1S5uVaJWSLREheGeOZW5Mp3SEkgivoX4feD/DS/wDBQT47fFHUvGWuaT4jfwnpGsWOnprUkFvdSyae7H/RdwEscbfcXBCmv1F1v9jHwr4m8Z/8LF8R+EvAF/rwhS3/ALQuPDqyXHlR4CrvaQnCgAD0A4rsde/Zz1HxT4osPHHibSfBeoa3pURgstQudCEt1bxEbSkcrSF1XacbQQMUAfiJ8Kfif8QP2jdf+CXwZ/aC+Jmv+E/Cmq+AbvX5b7TtVfSLrVdUimZD5l4hVyIEAfywwB6sCK5z4JfEz9oL9qHxZ8CPhH4y+Jvia38O6rP4rtLrUdKvDY3WvadpkoS0mknjAbLLyZY8M2Mg81+4Xjv9k2w+KHg+x+HvxH8PeBtc0HS2D2en3ug+bb27DvGjSlU/4CBmu50/4N+NdJm0q40uHwnbSaDCbbTGi0cobOFhgpARKPLUgAELgGgD5x/4Jl6/41uvhx45+HPjHxDqXiWPwb4u1TRdPvtWnNzfGzhf92kszfNIUBwGbLEdTX47XfgXxJ8HPBX7W/xN+FPjnxVo2vj4gR6dDcjVZZUhW5ngVpVifKeaFYgMQeOOlf0YaF8P/ix4W+1f8I1c+G9P+3Ttc3H2bTHi82Z/vSPtmG5j3Y8msK4+C3jK7tNRsLq38JSQaxcC7v420Ylbq4UgiSUGXDuCAdzZPHWgD8jvHPw7XSf2sfB/7JfxC+LfjTw14GvvCNz4na/k8ST2t7qurl9smb1mDrHbp+8FvGyoM5K44rxv4G/ET48ftSH4C/DDxv8AErxLBoer3Piy0u9S0m8Njd67p+lyLHZzSzxANl1+YyR7S3UHmv21+K/7Nd38d9FtvDfxr0nwZ4ssLJxJb2+q6IbqOJxxlBJK20444xxXT6f8IPHWktpT6VH4Utm0GI2+mmLSGQ2cTAApDiYeWpAAIXAOKAP57NDvPjr4M+AmrfH2b4s+MtU1v4dfFKPwrpMd1qbtayaOL9bYwXkI+S7ZkY5mlDSZAweK/o++Pfxm+D/wJ+C+qfGj493trp/hrRLdby6mulDqGH3FRTndIzEKgHJYjFcU3wR8WvpM+gSWvhFrC6u/t81udGPlSXe7f5zL5uDJu+beQWzznNW/Hvwh8efFXwvN4H+JyeFfEWi3BUy2GpaQ11bPsOV3RySspweRkcUAfBv7AujaX8Z/ir8Rf27viHPpOmTfEOws7S28MxTQyvYaHZBvJk1DaxBuJgxZwwwgwvavBf2VfEvhzUtN/bT8J/BXU9PfWbrxHrTaRa6dNEXY/wBnKqNCkZ6bsAFRjNfpT4B/ZE0T4UwalbfDDwv4B8Ox6zD9nv103w6lqt1CcjZKI3XeuCflbI5qr8OP2NvDHwd8Rnxh8JPCXw+8MasUaM3uleHI7O4KN1XzInVsHuM0Afjb8M9W+HuufBH9iTw98D5rJvFtnqm+eG0KG7ht4rOVb/zlX51AmKCTdj58Z5rxrw9qPgt/+Cdvw88C2MlqfivH8Z4FktgV/tRdVj1OR7p3X/W/8e+8uTxsPPGK/oN8HfsrQfDvx9qPxU8A6D4I0XxNq+77bqlloXk3c+45bfKkoY5PJ55PJzTrb9lmKz+Ksnx1tNC8ER+NZlKPri6FjUGBGDmfzd+SOCc5I4oA/KK28afET4Eftrab4m/aN1zXfFul+L/GEml6FrnhvxeW063M4fyLC78PqVRViClXkXzDuG5iK99/4LJeAPDPjG5+Al94t1/VPDthbfEK1hmvNP1J9NEKzW8wDtKpAVwQAjEgjJA619kaL+xx4e8N/E6X41eHvC/gOy8Xzu0j6xBoAS9Lv95vNEobc38TA5PevUPHnwl8f/FPw3N4M+Jq+FfEWkXODLY6npDXdu5XpujllZTjtkcUAfiH8bvEM/iT4ifH208bfGvxL4Hh+DHhyxufBCWeuNbLMhshcLqFxzjUDPcZhIl3oQNoGTX7U/s3fFDVfGn7HHhL4u/tBiDT7m+8N2+pa414ojhjzCHmaQNhVXGS2eAK4HxZ+xt4Z8d3Oh3njTwp4B1WXwyiR6S114eWU2SR8qsO6Q7FU8hRwDyBmvatY8EfGDxDoVx4X1+88O3umXcLW89pPpskkEsLjayMjTFSpHBBGMUAflV+zf4t+H/7e/7aGn/tp+HtQ03QvBngbSdR0DwfaLLCuoa3FcspudRkjDB47UbAsEbLkjMhxkV5N4Hi8Yf8E6fir8I/hn8G/i9p3xR8I/EXxVeaa/hZ7CzF5aw33n3cl5a3VqxlKW78SebuUqw5U1+nfgH9inwZ8KvEK+Lvhh4M+Hfh3VUjeFbzTfDUdrOI5OGUPG6ttYdRnBqT4cfsYeFfg74wufiH8J/CfgHw3r14GE2oad4fFvcsHOWHmJIGAY8kAgHvQB+F2s6n8PoP2APif4I1qW0HxQk+NUiLbOV/tJtZfXUe2dV/1hPkYZWA/wBX/s1vfFrUvAGh/A79vjw78bJLaPxhfajutIbsqLue3nsLZNI8kN87DzsCLZnDg45zX7oXv7K1vqfxUi+Oeo6D4In8aQKFj1yTQt1+oAwMTGXfkDgHOQOM4p/jT9ltPiR470v4o/ELQ/BOt+JNEx9g1S+0Lz7u22nI8uV5Sw2k5Xng8jBoA/HT4Oan4Q8DftKfGc/thzWltd3Pwa8ONbtrBVRJpkVnOt8sZk4I+0E+aB/ERnnFfPGjaV+0r4O/ZD+DnxO8ZaprGr+DPC3w1tbjUvC+i+MW8J63YtGXkF+V+X7Xm2CIkckiAMhABJr+hX4p/swH45XOm3nxn0TwV4rl0aTzbB9V0P7W1u+c5jMkrFeQDgcEisP4m/sc+HvjTrth4n+LvhfwH4l1HSkWKzudS0AXMsMaHcqKzyE7AeQv3Qe1AH0Z8AvHPh74m/BHwl8Q/Ccl7NpmtaTaXtq+pZ+2NFNErKZs8+YQfm969crxC18P/HWxto7Oy1bQoYYlCJGmnyqqqOAABPgADoKn/sn4/wD/AEGtE/8AAGb/AOP0Ae0UV4v/AGT8f/8AoNaJ/wCAM3/x+j+yfj//ANBrRP8AwBm/+P0Ae0UV4v8A2T8f/wDoNaJ/4Azf/H6P7J+P/wD0GtE/8AZv/j9AHtFFeL/2T8f/APoNaJ/4Azf/AB+j+yfj/wD9BrRP/AGb/wCP0Ae0UV4v/ZPx/wD+g1on/gDN/wDH6RtK+P4Un+2tE4/6cZv/AI/QB/Lx/wAHdX/JFv2av+ys2H/oiWv68K/jG/4OjPFmr+OP2Uv2WPE+vrEl5cfFi0WYQAiMtEk8eVDEkA7c4JNf2c0AFfyH/wDBqD/zd5/2Vm7/APatf14V/If/AMGoP/N3n/ZWbv8A9q0Af14UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUhIHJ4ryL4i/H74LfCWwfUviP4n07R4YwSxubhEPHsTmgD16ivw5+On/AAcH/wDBOn4MedbWniR/Ed3DkeXpybxuH+0cCvxm+On/AAdq2kBls/gV4GTIyEn1CQtn0O1cV00cHXq/w4N+iNqWGq1Pgi38j+1+s3UtZ0jR7drvVrqG1iXkvK4RR+JIr/M1+M3/AAcof8FGfiY0kHh7xDF4dt3ztSwgjRlB/wBoqT+tfl38Uv8AgoV+2N8ZLiS4+IHj/WL7zM7la6cIc/7KkD9K9ajw1jqmril6s9GlkmKnurer/wCHP9XH4jft0fsg/CVHk+IPxE0PTfL5YPeRsR+Ck1+e/wASP+Dgz/gmf8PTLDH4xfWJUzgWEDSq2P8Aaxiv8unUfFviXVpWm1K9llZzlizEk1gvNLLzKxY+5zXp0uEJ/wDLyr9y/wCCjup8OS+3U+5f8Mf6F/xH/wCDrv8AZS0IyW/gHwpqepuudrzMkaH8M5r4T8f/APB3H8QZy8Xw++HthbAfde4leQ/lwK/i3zRk16FPhPDL45Sf3I7YcPYdfFJs/qA8a/8AB1J+3n4hDxeH7PRtKQ/dMVuSw/Eua+TfFv8AwcP/APBTLxSXUeNGs43/AIYIlQfyz+tfhjRXZDhzAx/5d39WzpjkuEX2L/Nn6aeKP+Cv3/BQbxY5fUfiTq6buvlXDx/+gkV4brn7fP7XviRidZ8f6zPu67ruQ/8As1fHtFdMcmwcdqKN45ZhVtTR7jqf7Sfxz1nP9p+KNRmz/euHP9a5ab4vfEyf/W63eH6zN/jXm9FbLLcMtqUfuRqsFh1tTX3I7eT4kePJP9Zq10frK3+NQH4geND97U7k/wDbRv8AGuPoq1gqH/Ptfcivq1H+Rfcjr/8AhP8Axn21O4/7+N/jUqfEXxzGcpqtyP8Ato3+NcXRTeCof8+19yD6tR/kX3I9Ch+K/wARbdg0Os3akf8ATVv8a3LL49/GHTpPMsvEV9G3qJ3H9a8hoqHl2Ge9KP3Il4Og96a+5H1No37a37Unh8r/AGT431aHb02XUg/rXsvh7/gqj+3j4YlEmlfEjWlA6K13Iyj8Ca/PSisZZPg5b0V9xm8twr3po/Znwl/wXs/4KV+DyosvH91MF7TASZ/PNfV/gr/g59/4KHeGgv8AbF3p2qbR/wAvFtnP1wy1/NvRXPPh7Ay/5d29GzCWTYR/Y/Fn9g3gP/g7Y/aEsdg8eeCtIv8AH3vK8yLP/jxr7h+G/wDwdq/BzUlU/ErwHc2fQN9kmDdfQPX8DFFcdThTCP4XJfM5p8P4Z/C2j/Tn+Gn/AAcn/wDBOjxwsQ17Ub/QnlOP9Ity6g+7LkV+g/w0/wCCpv7AfxZMcXg/4naLJNJ0imnET8+obFf5CYZlO5Tgj0rTt9b1e0YPbXMiEdMMa4KvCD/5d1fvX/BOOpw4/sVPvR/tWeHPiD4F8YQi48KazZakhGQbadJRg/7pNdcCGGQc1/jJeAv2qP2gvhjIsngXxZqemFCCPs9y8YyPZSBX6WfB3/gvr/wUe+EpjgtfHV1qNtEAFivVS4Xj/fUmvMrcL42GsUpej/zOKrkWKj8Nn6P/ADP9UKiv4JvgV/wdjfGrR3gsvjZ4WsdXjH+smg/cOfy+X9K/ZH4Ff8HOP7CvxN8i08fRX3ha5lwGMqiWJT/vL/hXk18vxNH+JTa+R51XB16fxwaP6SKK+Q/g/wDt6fsifHe3im+GfjzStQabGyLz1SQ5/wBliDX1rbXVreRCe0kWVG6MhBB/EVxnMT0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676/kQ/4OK/8AlKn/AMEyf+yo3H/p08OV/XfQAUUUUAFfyA/8HqwH/DrPwCf+qq6V/wCmjWK/r+r+QL/g9W/5RZeAf+yq6V/6aNYoA+Af+DGMnH7UQ/7En/3NV/f3X8Af/BjF/wA3Rf8Ack/+5qv7/KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/xBv+CTv/KU39mn/sqvg3/072tf7fNf4g3/AASd/wCUpv7NP/ZVfBv/AKd7WgD/AG+aKKKACiiigD/MU/4OGAX/AOCwvxfH/Yv/APpksK/HK0lXw3r+7UbWG9Fsw3RM26JjjIGUPTnnBr9lf+DhGdLf/gsJ8Yt6hvMXQEyRnbnRNP8Am+or8WWhjLfKuBX6Bgo/7PT/AMK/I+Hxj/f1F5v8ytIyvJ8gIz61JnC7lzz07VLCgSUSKN23selejar4A1u28vWNdSPTLa+VpIMnKn5Q4VQNx5B4zXYk2cknbc4LUpoL2VZba1S3UIq7UJIYgctyep6ntWa0ahwgOfXAzj/Gu1stNtDrtvZ2EqSxmWIB58xIckEhs9FHQn05qPV08vWJ5LZUgHmuVSFt0agk/dOTkehz0oUbbEcz5tTlrezuZmJt1LFVZuBn5VGSfpjrVuxOnmG+/tGCSWZosQOr4CS5HzOCDvGMjHFSLE6tvjJXrzUs1n5ARiAzSLuOOqnPQ+h/pVcprF21Kq3PlaUdOCxTeeVZ5Xj/AHkew9Fc9Ae4HWuR/aZu7LTdC8EeGJiY5YNNlu2zyA13L3HuqDmuvNnvZY1HzMcD8a8Y/a+uoNQ+Md3oqOE/se1tLBD/AA7oIVLA+nzMa8XPJ2pwj53+7/hz2skjzVJSfRf1+R4Q801rGUlCtHJnKkZB9wf61z6WiXEnmWJJ5B2N94f4/hX7afsY/swfs7eM/wDgnZ8S/it8fZxb6lY3jnRlUYnZoISx8twcqC3XKlT3r8T7a0Lzpc2JJQHOejIff/Gvk6OJhVlOEb3i7PTrZPTvv0PpWmrM/Zn9izwp8Q/+GTvEOteFvCGkeME1/XIrG8ttVkMbrZWyAvJCEkjkZ0ZycqWKjnaRmvzn+Oetf218a/E+u2BH2X7fLDBtbcoit8QqB9Fj6V9Z+E2PhvVvhNpc0mz+w9JvPEc+eAGmE1xuI6A7I0Ge4Nfngt1ewLLe33zS3P7yQHkMX+Yn82Nb0ne7M5bGK/k3k25cRyZ6fwnP8v5VUNxPYOY5FyCfmQ8hv8+tWntoJctZNhgMmM9fw9azTckExXCmRR2JwR9KZaPrr9ndLPRPAvj/AOICbkMGmLp8YPOJLxwpwec/KD71y3xfvX8O/C/wH4KeNQ8llcatcRnkb76U7T658tBXW6RY/wBi/sr2uj2WXuPGGukIAMM0cAES/wDj7155+0/rNhJ8X73w7Goa20SKDTIWTqq2saofY/NmuaDvVk/l/X3m8v4cV6v9P0PC2sY7hfM05t57o33h9PWoIbuS3XyZFEid0bp/9Y1PLam3hE0bB4zgh16Z/oaaLuG6wl+OcYEi/e/H1/nXSczJ7fTBqk6Q6WcyOQvlMfmyTjg9/wCdfpn+39o8PgH4G/Dr4dQgJ9m05Gdf9t8E/qa/L+aznt1FxES0fZ09f6Gvsb44eG/F3iDwn8NfAd7cz3+pX9nGwM7l3RZ3+QZJyAAKm16tO+3Mv8zantJrs/8AI+4f+CaGk+B/hF4EvPj98U72PS7K+uE0yynnBCAtyxz2BPGelfA/7RPxM1Pxd+0R4h+JGiXUkLtfubO4icqyxx/KjKwwegyMV9IftZ/En4aj4D+C/gV8KLxbmHQJJBqYVSpW4iG07gcdWyQe9fnzbaiqqLa4TzY1wACcEfQ4OP5V0ym6tWVZ9dvRHGoqEVFH254Q/ap8L+OrSLwp+0/pz6mqgLDr9gqpqMJ6AyAYWdR3zhvrXrVx8HdWs7GPx18LL+Dxn4czkXdiN7wE/wAM8J+aNh3BFfmhLYLKDNp7eYO6H76/Ud/qK7b4M+MviR4O+JGmH4Y6nc6Zqd9cxW+YGwJN7AbXQ5V155DAiroYqthnei9Oz2/4HyJq4eliFaqrvv1/4Pz/AAP02+GekWEn+nXhCiIdDxzXUahrHnaixgVSinjjgV9K/t6+GfCHwd0/wtqum2aw6trClL94v3cbvGgLNsHAJbsOK+EdO1W6uIjJu5YZr6DLcbHGpztZp2t/l/SPHx1GWEUVF3TV7/hr/TO18Va1dXSwpJGAoT5HChdwz6jk/jXmt2l62HXr6itRoru5kXzWJC9MngV7K3jzw1B8NF8DLodtLd+a0ragxYTDIxtGDjA7ZFe6qVkeDUrOTPBLC6trW7gvre1jkkhBEiz/ALyORuRkqf8AOaitoreGUyzLjnJx6H0rc0q2slukl1EP9n8xfN8v74TPzbc8Zx0zUni2PRDqtzH4bMp0/efIM4Hm7O27aSM+uDUOOtjWEtNTnbu4SdriS2YLHGMhXIDEeg45P0qhGfDt3prR3jTw3hkGx8jyFi75XG4t6YNWLKx059QQaw0otucmJQzjjjAJA69ealK6YNL+ww2he7eTPnF+QvZQo4+vNT7O2wObOJnjf/Vg70Unbjjj156VteJ/DqeG786cl5b6gNiOJbVt8fzDOMkDkdD71XFtMXZXXlTjFRS2FxIj3JTagbBPoev1pum0xcz3MJIkLZbrXbaTZxKokXANZltp+nmCV7qVkcKDGAhIY/XPFaFjOgiUxsCpOMfxflWdSOjOjCO0k5HSSRsASgJFb/huxmu5gAu454GK1/D2lxXKqZFyDX078N/CUMdx5bQQstwpjzKu7ZnncOeD715Neqopo+qw2ElUakmeRf8ACOXSj7Teg5Pqcn86l0uKeLVFNh5KybJB+/2+XjYc53fLnHTPOenNfRnivwtbadGbTzQwXofWvkvxW01lI1uSUQ8nHSuOnebO+uvZJo838c6de6Be/Yy0bloklBhkWQbWUEAlSRnnkdQa8A1KaaWRtzZGea9b1W/iiPlxOp3AqcrnAJ5PQ15VfIPOfyyH5OG6Z969WlCyR8xjaictDmphvxxWdIQrHK5962pInDEg8DrVb7OzYbB2k8Ejg1soNnnudjMQpJ0HNXYoTnGBzVkWvzYIzj0pyxlG44FJwBVDZ01E3YYete7+C9evNIfdYNsZvlPOOK8Ihmiij+cFXzx/d/Ous0vXNmOeRXn4ijzI9nL8Ryux+gGia1pukeHodW1oJcSSZOGOeK8f8btp91qJ8T+F7KK4WGFjIksIliVWBUnaeMjOQex5qX4babYeMdO+zXFx5Wwfzr1XW7zxB8KNG1Hw/wCGJx9h1iz+zXjBFYSx53beQcc+mDXiL3Klup9fUvUo36H5o39iA5OOMkZA4yKxpbbbkHtX0N4w1PxB4tt9H8O3zRCDS4/stoVjWLajtn52AG7BJ+ZsnFcJ458GT+CfEl74Zvbq2vJLVtpktJRNC3AOVdeCOcV6MKiej3Pl69KUbtbHj5hAyw/Sv9sGv8V2S1YrgdeDX+1FXl5s/g+f6G2B+18gr+RD/ggb/wApnf8AgpF/2O1p/wCl+r1/XfX8iH/BA3/lM7/wUi/7Ha0/9L9XrxjvP6768Z/aE+Anw3/af+DWvfAj4t2r3nh/xFAILpIpGhlXawkR45FwyPHIqujDoyg17NRQB+eXw6/4Jy/DTQvHWpfE34zeJde+KWvX/h648Jx3PiWaJxb6NdkNPbxx28cKEzEL5kjAyNgDdim/s/8A/BNz4S/Afx1ovjebxB4g8Xf8IfpVxofhSz166W4t9C026CrLDbhUQuWjRYvMlLuI1Cg4zX6H0UAfmj8LP+CW3wM+Fnjnwzrlrrev6p4a8B6hPq3hPwrf3ay6Tot7cb8yQKEEr+X5j+SssjrFu+UDipp/+CXvwPn+I03iH+2dcXwhdeIx4wn8Fi4T+w5NcEgm+1FNnnAGdRMYhKIjIN23qK/SiigD82vi/wD8EwPgh8X/AIg+JvFd5rWu6Ronj6a1uPGHhzTrpYtN12WzCrG1wChkTciqkvkunmoAGzX1lrlpbWHxs8HWNlGsUMOl6nHGijCqq/ZwAB2AHSvc68U8T/8AJdvCf/YO1T+dvQB7XRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVzeueMfCfhmVIfEWp2ti8gJRZ5VjLAem4810leA/GH9mf4TfHXULTU/iLaT3MtkjRxGG4khAVjk5CMM9KaaWrV/nb/ADNaEKcppVZ8se6XN+F1+Z33/C2Phh/0MOnf+BUf+NH/AAtj4Yf9DDp3/gVH/jXy9/w7u/Ze/wCgXe/+B8//AMXR/wAO7v2Xv+gXe/8AgfP/APF1XtIf8+3/AOBL/wCRO/6rgP8AoJl/4K/+6H0rqPxo+Eek2M2p6l4m0yG3gQvI7XUYCqvJJ5qroXx1+DPibSINe0HxTpd1Z3S74pUuoyrL6jmvlvxD/wAE1f2WfEWhXeg3GnX8cd5E0TMl/MWAYYyNzEZ+orN8D/8ABML9lTwN4Vs/CllY6hcR2abBJLfSh29yEKqPwApe1ht7J+vOvuty/jf5Gn1PLvZ831yXNfb2PTvf2vysfZn/AAtj4Yf9DDp3/gVH/jTk+KvwzldYo/EGnMzEAAXMZJJ7da+XP+Hd37L3/QLvf/A+f/4urVl/wT6/Zm0+9hv7XTLwSQOsiE305G5Tkcb6PaQ/59v/AMCX/wAiZPC4HpiZf+Cv/uh9rKyuoZTkHkEUtRQQpbwpBHwqKFHfgVLUnmBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQ3Mpht5JhyUUt+Qqaql/8A8eM3/XNv5UAZltZ6hcQLPJeOC4zhVXAz+FT/ANnXv/P7J/3yv+FXLD/jyi/3RXBfEbx9qHgK0t7qw8P6lr5nYqU02IStHjuwJGAa0pUpVJKEN2KUlFXZr2+pWF1rk/hm31fff2saSywDZvRJPusRjoccVtf2de/8/sn/AHyv+Ffmb4W/aS8Rr+1r4rQfDjxQd2kWHAtV3Dbu5I39DnjntX6L+BPFl34z0BNbvdJvdFdmZfs1+gjmGDjJAJ4PbmvRzLKquE5XNaNRe6e6v0OehiY1b27vv0Zt/wBnXv8Az+yf98r/AIVHJZ3EK75r91X1IUD+VbdfjV/wXVutXg/Yis7XRre6vpL3xl4ctXsbO5NpLeRzXaq9uJQybfNB2klgOeTXlHSfrhuiLpENVy0h2oMpliOcDjmrn2G627vt0mPXC/4V/Pl4J8O6R8BviP8ABnw14f8AgmPhrqfi3xNq0MS65qbatNDJDphZbqFobqRBuPyMrHoOADzXx5pvjD9v8/8ABKlvHc3xI0pnl+IMFpa3As7v7cg/t8wusk32r5oidoCADEYK55zQB/Wl/Z17/wA/sn/fK/4Uf2de/wDP7J/3yv8AhX4Z/H/9vP8AaZ+Ffxl0X9kaz1vQ7LxTYeGYvEOt+IR4f1DUrSVrmV47e3gs7aVpIwfLJllklOB90E1e+Hf7fP7Yn7TGq/C74MfDTQtL+H3jTxLoGo+IvEN14isrmWGCDTrkWipbWpeCU/aZPnDOwKR84JNAH7b28El2pe11FpFVipK7CAw4I4HUUQQPdhja6i0mxijbdhww6g8dRX5Uf8EYdS8a6t+zP4rvPiKIV1s/EDxWt4ttI0sCyrqUwYRM/OzP3Qegr87fhB8e/wBr79nH4bftC/tL+Crnw/d+AvAnxV16XUdGv4p5dS1Cza8jS4aG5Eojt3iDkxRmJw23BIyKAP6aYoJJpZIIdRZniOHUbCVJ55GOOKn/ALOvf+f2T/vlf8K/nS+Hf7YXjjw//wAFEPjN+zD8DbWCfx34+1/TdSs7rW2ePStP02HS7MzyE5UzzDPyW0RDEncxVQTXrvxi/bg/bgn0L4/fF34GP4Ut/DfwBku9Kk0/V7Wd7rWb7T7ZJ7qbzY5lW2jBfESbZC2OSMigD90P7Ovf+f2T/vlf8KP7Ovf+f2T/AL5X/Cvk34r/ALVP/Clf2FtU/a+8T6d9vl0fwsuvS2VudglmaEOI1JztVnYDJzgc9q+RvE37R37bH7M37JPin9sz9ou+8LeIrO38OxalZeHdFsp7V7bULx40t4Wu5J5BLCGlUSP5SHgsBjigD9a/7Ovf+f2T/vlf8KP7Ovf+f2T/AL5X/CvxO8Sftr/tl/sx+N774Y/tHN4Z8S3+vfDnXfG+hXmi209pHaX2hxK81nPHJLKZYj5iFJlZC3IKjivouH9tL4jya9+zLpZsrDZ8ZtB1PVNXO18wS2WlxXqCD5uFMjkHdk7ffmgD9Jv7Ovf+f2T/AL5X/CkGn3bfdvpD+C/4V+EHwo/bx/bivvBnwS/aN+KC+FD4P+LfiiLwo+iWFtcLe2f21547W8Fy8pRzuhUyw+WAFbhyRXkf7MPxs/4KIfDD9jj4x/GjSL3TviNd6P458R2GnabFp15PeQOutGCafCzu81vbQF5Eto0D7VChqAP6PDp17/z+yf8AfK/4UadcTz2sqXLb3ido92MZx0OK+GP2A/2hda+PnhLX5fEvxA0Hx1f6RdxQyjStMn0a6sDJHu8q8tLmWWSNyeUJ25XtxX3Fpf8Aq7z/AK7v/IUAfxff8HL/APyZr+yr/wBlci/nc1/a7X8UX/By/wD8ma/sq/8AZXIv53Nf2u0AFfyH/wDBqD/zd5/2Vm7/APatf14V/If/AMGoP/N3n/ZWbv8A9q0Af14UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV89fG39q39nf9nTRpdc+Mvi7TdCiiBJS4nUSHHomdx/KgD6FqCe5t7WIzXTrGijJZjgAfWv5Nf2xP8Ag6e+Anw4e58Nfsx6HL4nvULIL66PlWwI7qo+Zvav5dP2sP8AguV+3b+1PcT2mseJ5tG0yUtiz04mCMKe3ynJ/OvTwmT4vEa04ad3ojuw+W4it8EdO72P9HD9of8A4KUfsZfsw2ksvxT8b2EFxECfs0EgmmOPRVJr+fP9pv8A4Oufg34Ta40f9nbwpNrM6ZVLu/fy489iEXkj6kV/BZr/AIw8T+Kbx9Q8QX013NISWeVyxJP1rmySTk19HhuE4rWvU+S/zPcocOretP5I/eX9pH/g4f8A+ChPx6mntdM8TN4X0+XIEGlD7PgH/bB3/rX49+P/AI//ABm+KF7JqHj3xNqOqyynLG5uZJM5/wB4mvHsnpSV7+HyfB0fgpq/nr+Z69HLMNS+GCv56k0txPO26ZyxPqc1DRRXpJJKyO5JLRBRRRWi2GFFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiihgFPR2jO5CQfUGmUVmB1vh/wAeeMvCt0l94d1O5s5Y+VeKVkI+hBr9KfgF/wAFlP29/wBn27t/+ET8e6nJaQ7R9nupmuYiB1yshYflivyporhxGWYWv/Epp/g/wOStgMPV+OCP7Vf2Z/8Ag7D8YWcsGi/tFeE7fUohhWvLI+RLgdypypP4iv6Gf2aP+C4n7A/7ScUFtYeJ18P6hOFP2bU/3XLdAG+6fzr/ACks54NaWn6zqmlSifT53iZSCNpxyOleBieFKUtaE2vXVHj1+Hqb1pSt66n+154d8W+F/F+npqvhfULfULaQZWS3kWRTn3BNdDX+QN+zv/wUn/a4/Zm1GG9+GPiy+s0iI/dCVjG3POUYlT+Qr+lr9j7/AIOr/F2mrb+H/wBqfw7FqcKlUe9sm8qfB4yUPynHfBr53F5DjKGrjdd1r/wTxcRlOJpauN15an9z9FfnV+zJ/wAFUf2KP2q7K2/4V74ys7fULhVb7BfOLe4BbttYjP4Gv0QgnguYlnt3WRGGQynII+orx2raM81q2jJaKKKQgooooAKKKKACiiigAooooAKKKKAP5EP+Div/AJSp/wDBMn/sqNx/6dPDlf131/Ih/wAHFf8AylT/AOCZP/ZUbj/06eHK/rvoAKKKKACv5Av+D1b/AJRZeAf+yq6V/wCmjWK/r9r+QL/g9W/5RZeAf+yq6V/6aNYoA+AP+DGL/m6L/uSf/c1X9/lfwB/8GMX/ADdF/wByT/7mq/v8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP8xj/g4Zi8z/AILA/F/Bwf8Ain//AEyWHH41+Q2marpFveRyalpiXUKQNFsDsm9yCA7Hk5BIPHBAA9TX7K/8HCdiF/4K9fFW5kOEmGhZO3kbdG08de/X9a/FxIiM7Rxk1+iYGP8As1P/AAr8j4PGu2Iqer/MsaNFp0U+dUDspjYDyyM7yPlJz2z1qa0srq4kkNsN4hTczE9EX3/GqYikjwRg81bLFpN54bHUV2JNnFJk16unywQLaRvE6piUswIZ/UDHAxjirw1a+Ogr4dKw+RHcG5V9g83eU2Y39duP4emeapwRLI4V/lXI3H0FXYrVZGaOPLDIAx3B71ooLqZqo0y14i1GXV9TudRWXzVndXz5SxAsFAPyrwADnGOvWucs445J8XcoiU5beQTgjp0B616hpeqaDbeHotKOmB9bS+VormRv3QhK4aN07ndgg9hXJ+KNBv8Aw/r1x4f1BMXNq7RyLGdw3DB+Ug8qQcinFLsbKV3c1/B1jceNvF+mpctHH5MlvGVXCGRVbnA7kDqfSvzu+LniGHxr8TNf12Vgsl3qV06E9CvmMoz+Civ0k+Gj6HpS6l4lvTKL3SLS5vIuB5QSKJjknOd27GO1fkmh+33SGQgTcFyeAzEZP45Jr5TPZ3rRh2X5v/gH1ORwtSlPuz3bw18evip8OPAut/C7RdSkGga9bm3urJ/mQBsFmjz91jjBxwR1ryTRbC6ubyJdLbcZ5FjUgc7nOACPqaoXmoOWFldqSozj+8M/56V7Z+zV4b/tz41+GLDIa3bUIZZCOQY4D5r5H0Q14m12e2fY/wAW5IdO1/4jXluwVNC0G18OWzdAJJ/Jt8A9uFlr877yaS1hMEkYZWJwjdue3pX1b8TNan1X4Ya1ratmbxT4oeTBPLRWUTS/+hzj8q+ePB3hfUfiB4x0j4eWClrnVLmK1hOMsryMFH1AJ6UUnanqTLWR5vPbrLi5tDlR1HRl/wA+tUWvFvGKXucjgSL1/H1/nXvn7Rv7N3xV/Za+IEvgf4l2jWsylmgnAwsyA43AHke4NeU+CNDTxh4v0vw8oCz3t3DD8o+Vg7AH6GiM4yipRd0Wkfr9B+y/cw/D/wCFHiiDXdNMXh+zOqalpLTxreRxAtOZfKZtzKxCjgV+N/iPV08X+J7/AFu6+Se9uJZ2bPBMjFvw61+zXxv+K3wT8W+DPGvibw14Zk0nxH4I01fD8eorNlL1LjEBLJtADDacEMeK/FKO0glJktDz3jPX8PWoppWuupTcr2l0LBmubBvLTI9VPII9xSFLO8A8nEUndT90/Q/41Et3ID5U43p/dPUfT0prW4YeZakuvf1H1FaGb3On8GaRqGr+LtP8M2wbzL+6ih2HkNuYDp3r9LNUvbG//ao1nXtqmy+H+jS+UOqhraLykA/4Gc18qfseaeurfGix1HVAJLTQoptSkZhyot0LDn0zitu01u/X4T/ET4isS0viS+h0xTjn5mM0n6CsZa1F5L89P8zaGlOT72X6nzFFcagt7NezsyTSuZHJ7ljk59a14PsOoMN37ibJJIH7tv8AD+VZ9nehIFgvEMsff+8Pof6Vfis0lVrqyYyR46fxL9RXXFHJJkd1Bc2jBnyjDkEfzBr2H4A/Efw38OPjF4e+JHjbTpNTttHvI52jgwJJNnTIJwcH6GvHE1KWFvs/Dx90b+npXqvwd8HWHjf4oeHfDKzpDDeajBHKJjt2ozjJyeMYpTV9xrQ/XX/grH8XrbWH+H2v6bE8cV1Y/b0hmXa4WcgjcO3FeI/CzW779oPxnpHh7T7CG2mvDFABApUKq/eYj6das/8ABWnVLMfHjRPDdvGstrpmnW0Kxg/KV7YI7cZr3L/gndF4O+EHhXVv2j/ipOmn6NZ7LK3nkGQskp5I9h0rpyqoqGEniOt3b8kc+ZU/a1adHpZX/Fntv7SP7PvwT+GniLSPB+heJoNH1rVYN9vaag+I52Xg7ZOgJPQGvh/xn4U8UeANXOmeLrN7VgflYjKMPVWHBFeJf8FJvjPpfxs/aQutU8O3K3uiadbRW1lKhzG4A3FlPQ5JrzT4SftifEP4faang3xrGni/wwTtaw1El5Yl/wCmEx+dCOwJIq8HnGKo253zrs9/k/0f4GeJyrD1louV91+q/wArfM+jvtazjfGflHSqU9w7Mdtd34a8P/Db452j61+ztqbfbY1Mk3h6/IjvI/XyyeJF9CK4eaz1LSr19O123ezuITtkSZSrK3pg19bgsyw+KVoO0uqe/wDXmtD5rF5bXw+stY91t/Xk9Rmm3F7bXsd9CweSBtyBl3Dj1ByDVe5R7q5e4kA3SsWOBtGT6CtOE+VLujYgkEcehp42qN7dR0r0eU8/n0sZMsAUCLv14rHniDMAewro5mjIIHU1kzxYIbIGT070uSxUL3MuZmMRjHQcHFVrRFhcVp38kNwwS2gMKAFdxPLEHqapmwu2t/tUCMY0YKz4+UE9B+NQ1dWZvGdnc9g8Fagq3K72A6V90/Di5tbu+SxSZHzjEmCByPfBr83PD959nlG/huK+tvBPiVFkU2O5VAXG7rnvXgZhhnuj7jJMamuWTPtz4g+BILXRo724cTEDh4xxz2NfKnxY8MfDez+GNpqel3s0/iGSZ1ubd12xxRr90hudxPp2r3aXx3c3vh9NMnlwr8DHXivln4qaNJcJi2JO/k15eFbUkpHqZnSjKHNA+F9bJLbGPIz0rkpIGZc44HfoM16prOifYywkJJHaum+FA+FcOp3o+KkVxLbNbSiBbYjIuMfuyd3G3PWvo00o8y1Pz6spe05djxddZuo/DVx4bFtBJHczJO0xjzOpQEbVfPCHPI709tQ1G50S10O6mZ7OzZ5IYjgBGk+9zjJzjua1r+1sbeeSSE/KzHaAegrmLqfcMJwPWtFFPYw9o1uy/oms3HhvVItX09Y/Ni3ACVBIhDgqcq3B4NZOrRaeqwy2dwZpJIg0oKbBHIScqM9RjHNUJJWPOevFReUCpMrYoce4JskfVJ2006VhDG0vnE7Rv3AbeG64x29eaktGkVwpHFVTDG6hxW5o9ld3sxhsoXmdVLEINxVV6scZ4HeuarFJanVRfM0e1/Dd9QgkH2NickcCvvayTT/Fvg5NF1OydrqEHMjdDnpivhD4eyyKypa48wkY9q/Qn4feINXubCOyhhVw5G44596+bx9k7o/Q8lg5QSex8veJ/h3FDbStDEcjJwO1eDWPw0fXrfV5Yrq1sv7LtjclbhwhlAYLsjH8T852jsK/btPhhpOsaJGbe3CPLkOSM5r87/jH8MRpVxctaQ4j37d+3jP+OOa48NjeZuN9T0cyyVxiprY/PCe0SASwS/fXOzHQ8859vSv9oGv8a7xHozWk7qAQFbA9sV/so1eayuqb9f0PlKFLknNen6hX8iH/AAQN/wCUzv8AwUi/7Ha0/wDS/V6/rvr+RD/ggb/ymd/4KRf9jtaf+l+r1450n9d9cN8SviR4M+EPgXUviT8Qr0afoukReddXDKzCNMgZwoJPJHQV3NQXQtzbv9rCtEASwYZGB65oA+P/AII/t/8A7Iv7RfjS++Hnwf8AGlpq2taZYHVLq0CvFJFZhthlYSKuE3HGelbXwP8A23/2Vv2j/F+o+A/gt4zsNe1XTImnkggYgyQI/ltLEWAEsSv8pkjLKDxmvxo0TRfF/wC05+zd+2D+3N4Bs3GreN9M1nwf4IaBcSNoXh6CaGN4cAH/AEm8a4kGOuF9qydH1/4cfET4hfsV2H7KU1nNqGleAvEEl2um7d9rpZ0NYNk4TlAb7ylCv/y1U9waAP2j+H/7dn7JnxS+L1x8CfAfjfT9S8UQSTwi0jc4lltf9ckMhASV4v41RiV7gVLL+3P+yjB8dR+zbL40sB4xNwLP7DuOBdMm8W5lx5YmK8iItvI7V/PN8KNa+HevfsX/ALC3w6+GTW7fEDSvHujG7tIMfb7WWyaf+2mnUfvFAXzPOLYB3DPUVi32o6J/w7J8Q/B9ZYR8ZG+OMiGzyP7TOsv4nSeOUL/rD/oe1w/Tyh120Af0afEn9ub9lH4RfFi0+CPxF8a6fpfiW8MCi0lc4ia6bbCJnAKQmVuIxIy7j0zXo3ic5+O3hMj/AKB2qfzt6/m4+K2tfD7w1+z5+354G+MTwL441jxDM1jbXGPtl3Hd6dbx6P8AZ1PzP++BWLZnDg45r96fh5pnjrTvF3wsi8bXO+7i8IyQ3cLp+9F6kVqJmZ885bIxjr3oA+yaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApMgdaWvi/41fBT4p+NvHEmu+FbueK0aNFCprVzZLkdf3UcbKPrnmqjTnN2ha/m7L72b4eNFytXm4x7qPN+F0fZ+Voytfmt/wAMzfHf/n/uv/Clvf8A41R/wzN8d/8An/uv/Clvf/jVX9UxP9z/AMGI7fZZb/0ET/8ABT/+SP0neWKMbpGCj1JxTty+tfjL+0L+xt+1J44+Hb6H4J1C5W+NzBIM+JLs/Ijgtw0ajp717NYfsw/HuCxhhmv7rekaq3/FS3nUDn/llT+pYq3M/Z2/6+Rv93Ty7lujlPImsVPm1uvYvRdHfm1vrp0t5n6aZWjIr81v+GZvjv8A8/8Adf8AhS3v/wAar0L4WfAj4ueFPHdhr3iG8uJLO3YmRX126ulIx3ikjCt+JpPC4havkt/jRjOll6i+SvJvp+7t+PNofdFFFFZHnBRRRQAUUUUAFFFFABRRRQAVUv8A/jxm/wCubfyq3VS//wCPGb/rm38qACw/48ov90VbqpYf8eUX+6Kt0AeRaN8O9S034za18SpZ0a11OytbVIhnerQbsk9sHPFeu14loXxJ1fVPjtr/AMMJoo1stKsLS6jkGd7NcbtwPbAxxXttVLFOv7ze3u/+A6fobV8HPDNRn9pKXykuZfgwrwn9oX9nX4c/tN+DLHwH8T0uHsNP1ax1mEW0vlP9q0+QSwknByu4cjuK92r5r/aV+NvxE+B3hm38R+Afh9qnj8sZDcw6XLbxPbRRruLt9okjBBxjAJNSYnQfEr9nn4e/Fbx74G+I3ioXB1H4e3lxfaV5Um2PzbmEwP5i4O4bDwMjmvlmP/gmD+z3H4C8X/CYap4j/wCES8XXf9of2P8A2j/o2m3n2n7X59j8m+F/P+fl2Ge2OK4n9lf/AIKgeH/2h/Dmn/EXxx4Mvfhv4Q1jT21DT9Z8Q31lFFcIj7CFRZ2kBB7lQK/Rm3+Jnw8u9Cu/FFrrljJptgA1zdLOhihBAYF2zheCDz2NAHxZ4o/4J1+Bdfl8O+JtL8deMNH8Y+HLBtKTxTZ38X9qXdi7l/Iuy8DQzIrElN0W5STgjJq/49/4J6/Dvx5a+DtUl8YeLdP8WeCYLi0svFVrqCjWJra7IM8NxI8TRyRyEA4MY2kArgivqXxn8dvgv8OrrTrLx74q0rRptW2/YkvLuOFrjdgDywzDdnIxitP4p/EGz+GXwo8R/FSSE3tv4f0m81UxRsAZUtIWlKqemWC4B96APLf2U/2UvhZ+xz8L3+EnwhN8+lyaheam76jcG6ne4vpWmlZpCATl2J5r5K1P/gkl+zxqniTX71/EHiqLw/4v8Rv4p8Q+G01EDSdU1BpVmzNH5W8Rh0XMaSKrBRuzX1F+zj+178Hf2kvBGi694T1iwXW9U0m31afREu45by0SdA+2RFO4bcgE4qj+y9+134G/aO+B3hj4zXIj8Of8JVNcW9lY3k6ea8lvK8RVem4nYWwB0oA4rx5/wTq/Zu+Id54o1nW7a+h1TxNq9pry6ja3Hk3mm6jYwR28M1jKq7oSI41DD5lYZDAg4r8z/wBu3/gnR8YfjB418ZeDfgd4V1KLTviTZWllruuL4oSw0y8lEawy3l/pqIJJp40HSLasxVd/FftzbftC/Am98Vz+BLTxho8utW06Wstit5EbhJ5OFjKbtwZscDGa9J8Q+I9A8JaLc+I/FF7Bp2n2aGSe5uHEcUaL1LMxAAHvQB5wvwV8F6t8C0/Z/wDHNpHrWgzaMui3tvOvyXFt5XlOrDtuX05HavlXwT/wTk+GfhvwDrnwd8Y+LvFfjXwPrWjyaCvh/X79LmztbF8YWMpEkxdAAI5JJHdQBg55r6n0r9of4Ea54Fu/ido/jDR7nw5YOY7nU47yJrWJxjh5Q21TyOCe9bOg/GX4S+KPDFp418OeJdNvtIv7hbW2vILmOSCWdzhY1cEguTwFHJNAHx/8J/8Agm18E/h14k1Dxf4x1nxB8QdTu9Al8KwXHii9W7az0WfPmWsIjjiAEn/LSRg0j4GWOK5z4Pf8Etvgj8IfHvgz4hDxP4s8RXXw6tL7TfDMGs6ktxb6bYX8It3t40WJNyrGAFdy0mAAWIGK+/tX+IHgXw+9/HrmsWdmdLijnvBNMqfZ4pSQjyZI2qxBAJwDXj3in9rX9nzw38OfGPxNtfFOm6rYeBLKe91hbC6imkt0gQuVYBvlZtuFBIyaAODsv2E/gZYfCf4d/BmBb/8Asb4Ya3aeINFBnBlF5ZPJJH5rbfnTMjZGBniuNsf+CePw88M3vjS4+GfjTxj4Rt/G17NqlxZ6Tqax21nqFzOLia4tUkify2lkB3qSyEMw2816v8P/ANtP9mf4gfBHR/2gbXxhpdh4b1m3tplnvLuKIQvdRLKsMpLYWUKw3JnIr6I8LeK/DXjfQLXxV4Ov4NU0y9TzLe6tZBLDKh7qy5BH0oA+a/2Z/wBj7wH+zPrXirxtpmr6v4o8VeN5rabW9c1ydJry6Fkhjt0xFHFGiRISFVUHUk5NfS+l/wCrvP8Aru/8hW5WHpf+rvP+u7/yFAH8X3/By/8A8ma/sq/9lci/nc1/a7X8UX/By/8A8ma/sq/9lci/nc1/a7QAV/If/wAGoP8Azd5/2Vm7/wDatf14V/If/wAGoP8Azd5/2Vm7/wDatAH9eFFFFABRRRQAUUUUAFFFFABRQTjk1+fv7Zv/AAUu/ZW/Ye8Oy6n8W9fhOohC0WnW7q9zIe3yg8fjTSbdkCV9EfoCzKoLMcAdSa/Of9r3/gql+xn+xdYzL8V/Fdu2qxqSunWh8+4YjsVXO38a/i3/AOCgX/Byv+0V8fZ73wV+zzv8HeHXzGJIj/pUin1cdM+gr+aPxn8QfGPxB1ifX/GOoz6hd3Dl5JJ3LsxPXJOa+hwHDmJr2lU9yPnv9x7WEySvV96fur8fuP6qv23f+Dov44/Etrzwn+zFYr4X0xwyLdv89yynjIPReK/mU+Lv7R/xn+OmvTeJPif4gvdWup2LM1xKz9fqa8Nor7HBZHhcOk4xu+71PpMLlWHoaqN33Y5mZjuY5NNoor1+U9IKKKKOUAoooo5QCiiijlAKKKKpAFFFFABRRRQAUUUUAFFFFJsAorStNG1fULG71OxtZprawVHuZUQskKuwRS7AYUMxCjOMk461m1KmndIAoooqkwCiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUVPKAUUUUcoBRRRRygFKMd6SijlA7Lwt8QPF/gzUE1Tw5fy200f3WViNv054xX7k/sV/8ABwN+2H+y6bfSPEOrSeJtHhKg2l+TLlM8hXJ3LxX4CUV52MyjDYlfvIa91ozixOX0K/xx179T/T5/Ym/4OEv2M/2pIbPQfHF7/wAIZr1xhPLvf+PdnPYS9B+OK/eHRNe0XxJpsWseH7qK9tZlDJLC4dGB7gjiv8TjS9Y1PRLpb3S5mhkU5BU4r9iv2HP+C1v7WH7HGp29po2tzX2jIQJNPumMtuy8dFY/Kfda+Px/C9aneWHfMu3X/gnzeLyGpD3qL5l26n+qnRX4G/sD/wDBfr9lP9riO08KeOblfCPiWQKpjuXAt5XP9x88c+uK/eaw1Cx1S0jv9NmSeCUBkkjYMrA9CCK+YnCUG4yVmeFKLi7SVmXKKKKkkKKKKACiiigAooooA/kQ/wCDiv8A5Sp/8Eyf+yo3H/p08OV/XfX8iH/BxX/ylT/4Jk/9lRuP/Tp4cr+u+gAooooAK/kC/wCD1b/lFl4B/wCyq6V/6aNYr+v2v5Av+D1b/lFl4B/7KrpX/po1igD4A/4MYv8Am6L/ALkn/wBzVf3+V/AH/wAGMX/N0X/ck/8Auar+/wAoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooA/zTf+DgzSFuv+CvvxKttLuFuLm+XQQ0I48p/7JsVVWJwMsAG+hr8UVjeP903UHBHuK/Zr/g4GjB/4K+fFxwSpz4fOR7aLYV+OkKgkzMu4KcnPcV+k4Ff7NSf92P5H5/jX/tFT/E/zHWWmXOqStBa43JG0pywA2oMnqevoO9O/s29GnjVmjP2Z3MQkPQsAGx9cEH8a0tZv7bUtTnvNOtks4JZCyQJkqgwMKCeccfrWYJJXhNu7NtyW2g4Xd0zj9K6opvY5WlsaG3TWsIBCWFzufzMgbdvG3Hv1zU1vFNADLDwVIOc4PtViGyW1lBmTzYpACCMgFe+0nv1Fa+moianFJHAJF80FY35DD0Prx1raMTJxad2Yk22Vy6qfm+Yk+vc/jRDfS2V4mpKzGeNgyOfm6eoPWr6QebcGNRyzYCjpkntV290Q2Czi8YLNbyCJ4urZyQSO2BjnmtOU2j0OV8Ty3WhfBbxt4ijBWS6tIbGI9ybuUBsf8BBr8wrZo769kn4V8M3PAPpX6H/tEahPo3wDs7KAkPqutl8A8mOyhLD/AMecV+dVjsuVl3YR/lHoD/8AXr4PN582Ln5afgfbZVDlw0f66gZA8zQXwyoAUH+Jf8a+s/2W7KbRta8QeM4umi6DfTROOgmnUW8f45kNfI8FwGk8m+U7skA4wR/iK+1fhHYXOhfs/wDjPWY/ml1W7sNMgI/i2h52A/HYDXly+Fo9E5v4rB7bwf4K8Mwn95Hpk2pyL0O7ULhmU/Xyol/Csf8AZ0+MGj/BP47+G/ip4jtmu4tAvI7oBMFt0Zypweu0849qv/H0Rr8Vb7SbF90eiQ2umKO4FlCkZ/DcW/GvnK/eG+DR3B2OTw3r7H/GtJwi4cr2ZCfvH3p/wUw/ay1D9q/9oCL4mf2r/bFu1giJMIwiZc7jHt9UAAOefevnr9lPT9PvvjHaa9Iu2PRLefUZVPI/cRkgg/72K+Z98thK0DDMZOSp6EV9WfAlbXQPht468dQfK/2OLTo8nkG5fLD/AL5U1yqlChQVKkrJKyS/A2g+aav3Oo8ZavJo37N7XF781z4x8QS3EnZmhtFwP/H2r5AEDD97at5ig5yOq/Wvo39oe8ttJ0TwT8PZgV/s/RkupCDyst4xkbI+mK+aY5J7CdZVb5T91h0P410Rio6LoTKXM79zR+1JeOI7/g9N4HP4+tV5Lee0YTqeP4XXkGpP9GviTGdkp7fwsf6U1JrmydopAQDwyt0NUZps+zfgJIvhn4FfED4jSKI7i5ih0iCQcZa4OX/HaKxvitcnwZ8A/APgyBjHcam1zrc4HfzD5cefw6V9tfCj4d/s/SfsaaD4O+MF7qWiaj4x1RrjTbq2tzPCj58tfN5UFT0HUjrXw9+1xqNjF8c7zwbpcguNP8NW9vpMHGARbr8xA7Esc1nGOrl3f5f8Oayl7qj2PA4Da30YE+IpD/EPun6+lWRFc6YNzAowzgjuKgS0WaBXsyWBPKH7wH9RVma8e0gdJQJIsfcP9D2rqSsrnK9WZcOpWOoMzXg8p1PMqjg/Uf1FdBa6XqN1f2dnZAl7mVI4nTuzEBcEd+a5CDTEuodmm5YO25o2++oH8xX1h+x54cbxX+0FoVjdjOnabI2o3QblRFaKZCT+QrFytFs25bvQ9Q/aY8O6zqf7RmkfDXTpHvr3T4LCwDSkyMZFjG/JOScE859K+g/2x/jN8KG/Zj8O/AT4PX63EumX7JrESKVYSwj5iw7gvnBryP4JeIYfF3xy8f8A7QuuL5g0Kzvb+JicjzpiViH16Yr89Hvb5LqW/mJW4ldpJCepLEk5/E0Xao06b6a/N6/kwmk6spfL7tBLS/lSJocK8IONjcj8PT8KvGxtb1Q9gdkn/PJzz+B71Gv2C7iAOLebrkfcY/0qrc209q4EoI9COmPY1DAW21DVvD14mqaXPLZ3du2YpYmMciMO4I5Ffsp+wXr3jD9snWdX+H3x3WLWLHRbFZYtVKeXexSscIpkXAcd/mBNfjVNfiXyre/USr2boyge/f8AGv3r/wCCRmufC/RfA2uaRZarDJ4l1K68+W1b5ZhbxDCEA9R1JxnFZ1HZc0dGuvUpM+WPi7YaJ8M/izq3w80q7e6j02fyQ8gAJ4zx64ziqenNBqTxxmdYlfq7dBXzB+0T45utY/aR8QT28hKTX859yN+B/KvafB8jTWSkAqpAwDzX3uR4mpVwtN1Xdtb/ANeR8rm+Ep08TNQVl/X6nWSRlZCvULwD61HAts0zrdBtpUgbfXt+FbEtkhcCJty469KhmtMEbDXtuPU8qTS3ZjGzV02HqG/DGP51J9pu7Oxk02GRhBKQzx5+UlehI9q1CnkpyMk1jXCu7Ybgdqlx0IVmZ1vujk3jnNfQHgBr/wA+3EmUWU/KSOGx1rxCwsprm7jtLVGlklO1VUZYsegAr03w0L/T9QW3ufMR4WKmJs5Ru4IPQ1x4qHNFrqepllZwqrsfbkXhvUJbKC4yJI05A/8Ar1zfixrW2tTFOvmuB2r1rwVqEd94ahtbciSRF5FeU+P7U2SytMhJYV8zGPv2Z97Ws6V4nxV4zMs87/utqnkDpxXkF9Yy2KxzyHAkyV57KcH6c17v4u1G/wBeu/teoNuZUWIHAHyoMAcewrxvUdODu23c5AJwozj/AD3r3qSSWh+f5gm53Zy8mXyRwBWY8YPOcVsCM4247c5qpKE4UCt7Hl3exgTRgN8vSlhuZ7dWWLayyoVbcM8H09DxV6VgBuAwOaqXGx5jLBGUTAwOvOOcUNG1OTKiYXj3ruPBPjrxH4Dv7m98LXRtJr61ms5mCq26CcAOp3A9R3HNcasLZyeOM1qWlo7FZCMDpmueqotO51UZyjLQ9t+Glv5lyig56c1+sPwE0S1knt/ta5iBGa/KTwRYapp62+ryQutrNI0aSkYUvHgkA9yAea/Wv9l/xnolhe41mzW9jlgaJVLFdjtwH/4D1r5DOoyjsfq/CThONmforb3Pga1sU0e1hUSFck9xXx78cvANpq+lNa6fbFQMsx5OSe9faOmeBrCdYb+M7mfDEDqBS/ErRNH0ewlWPEhMYPI9a+Upz5Zqx+iVKcZUnGWx/Nx418AS3OvpokKDzLiVYl3kKNzHAySQBn1Nf64Nf5Vf7RlrbQ6zK0SjqT09P/r9K/1VK9vEzcqcG/P9D8rzOjGnXaiFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8AKZ3/AIKRf9jtaf8Apfq9cZ55/XfTJYo542hmUMjghgRkEHqKfRQBheHPC/hrwfoNv4W8J6fbaZplonlwWlrEsMEakk4VEAUDJJwB3rz/AOHnwA+B3wk13VfE/wALvCGj+HtR1x99/c6dZxW0tw2c/vGRQW5OcdM89a9dooA8f8N/s+fArwd8RL/4ueFPB2jab4o1QMLvVbayiiu5t33t0qqGO7+I5+bvmiT9nz4FS/FNPjhJ4P0c+MUTYutGyi+3AY2/67bvzt+XOc446V7BRQB5D4q/Z++Bnjnx7pvxT8ZeENH1XxJo+PsWp3VlFLdQYORskZSw2nleflPIxVLxP/yXbwn/ANg7VP529e114p4n/wCS7eE/+wdqn87egD2uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKqX/8Ax4zf9c2/lVuq14jSWksaDJZGAHuRQA2w/wCPKL/dFef/ABI+G5+I1pb2o13VND+zsW36ZMsLPnsxZHyB+FdbZ6xp0drHHLIFZVAIPBBFWf7b0v8A57LUzgpLllsbUK86NRVKbtJf11Py58I/suPJ+2H4vP8Awn3ioeXo2n8i8j3tu3cMfKxgY4+Wv0n8B+Dm8C6AmgnVL7V9jM32jUJBLMdxzgsqqMDtxVmFfCVvrE3iCCOFL64RY5Zwo8x0T7oJ6kDPFa39t6X/AM9lrlwuChQu4rVtvr1dz2s64hxOY+zjVfuxjCNrRWsYpX0SNWuU8d28954H1m0tUMkstjcIiqMlmaNgAPcmtb+29L/57LR/bel/89lrsPnz+ZL9kL9kPxHrni/9km0+N3gSa6sPCPgzXlvodUsy8FpeyTR+UJkkUqHK7toYe4q3+1JqHiT4X/Dj9rD9mDT/AAN4g1DxD8QL577wzb6Vpc01pd2VzBAu6OaNPKRYdrB1LAjGAOlf0xf23pf/AD1Wj+29L/56rQB/KX8bPgZ4x8P/ALQnjq+/aPN5Y+GvG/hXRtP0C9/4RN/Eqx28ViIZ7SFkDNaTpMWfAVSzEMCSOP3Tj+G2reHf+Ca+o/CvRLnU9evYPAN7p9rLqEDRahcyGxdI/MiPzLKxwCvXPFfcP9t6X/z2Wj+29L/56rQB/MB+yF4B0DWG/ZY+HPwX+F+q+CPHfw5ha48b3t3pEli0NibJ4poLi7ZFFybm4aN0Xe+du7jFVP8Agm98A/jd8CNU8Ma7+0p4T1PWo/EdnqOneDdVe3cp4PuZJ5ybee1wfKM5IkW9xlgdhKgDP9RX9t6X/wA9Vo/tvS/+eq0Afx9aZ4Y8J/D3wJ+zF8CPGPwu1HR/ix4W+LWmjX9euNPMazzNJdPNML8gC7F1kSAK77QMkLiv3P8A+Csfw88ZePPgt4M1DSNFu/E/hrw1410fWvFmiWUZnmvtFtWYzL5C5M6xuUleLB3qhGD0r3/w9+xx+yz4c+LifHCDS5LzxBbTzXVpJfXlxdw2c9xkSSW8MrtHE7AkbkUEAkDAr63/ALb0v/nqtAH4KftO3PwX+LvgH4b/ABc+CHw+u7j4WeDvH0Go+NdHtvD0tmb63WzkiiuDZGFGuo7ad4mfCNjZnnbXyP4y+FPi/X9L+Jv7SvwN8B6tpfwrj+KfgnxVpejQ6fJbTz2+iqE1a/tdP2q6pIxDbVQF/LZgOa/qj/tvS/8AnstH9t6X/wA9VoA/mN/alsvGX7XWkftYeM/ht4N8QS6H4q8DeFtK0eS70+e1k1Rre6kafyI5FWQhQ+DwDxnpivov4+fsZxQftJa14W+CvgG2stD8SfAjWdDuY7OySKyutSS4T7JFPhdjzKGYoXy2Cea/ef8AtvS/+ey0f23pf/PVaAP5hZvBv7Pmofsf/Am7vND1r4a+K/hlCtpMs3gma/05tZXToba6+32QgAm3DiK4BzuB2vmv2v8A+Cc3ib4peLv2QfCmufGLwhZ+B9bkW5DaXYWZ0+DyVncQzLan5oPPjCymJuULYNfZf9t6X/z2Wj+29L/56rQBq1h6X/q7z/ru/wDIVP8A23pf/PZar6QS9rcTgHbLK7KT3HTP6UAfxf8A/By//wAma/sq/wDZXIv53Nf2u1/FF/wcv/8AJmv7Kv8A2VyL+dzX9rtABX8h/wDwag/83ef9lZu//atf14V/If8A8GoP/N3n/ZWbv/2rQB/XhRRRQAUUUUAFFFBIHJoAK8s+L3xr+F/wH8HXPjz4r6zbaNplqpZ5bhwucDOAD1PsK/Nj/gpP/wAFg/2dP+Cf3hC6s769i1vxk8Z+y6TA4JDdjKR90D86/wA7f9vP/gqT+01+3j4xn1b4k6u8OlBybbTrclLeJewC55OO5r0svyqvjJWprTq+h24PAVcTK0Fp36H9GP8AwUw/4OcdY1FtQ+FH7F8H2K3O+GTW5eZmHTMS4wv1PNfx3fFD4x/Ej4x+JbnxZ8RtXudWvrpy8ktzI0jEnnqSa8zZ2clnOSe5ptfoGW5Jh8KrpXl3f6dj7HBZXRw6uleXdhRRRXs2R6QUUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA7D4e+EH+IPj3RPAUd/a6W2t39vYLeXzMlrbtcyLGJJmRXZY0LbnKqxCgkAnivtj9rH/gln+3L+xfZXPiH42+BrpPD1swVtc05lvtNAZgqs8sJPkhmIVRMsZJIGORX59wxTTTLDbqXkchVVRkknoAB3r+8f/gnj8PviL/wV08FeFv2ov27bc3/AMP/AAbbW2k+GvCUrF7DV9V0+JYb7Wb9DgXBecOkMTgomHUg8mT8x8ROLsZw17DM24fU1zKqmm5uWnIqVpL3pe9fm92KTk9tYlK2p8Qf8Ecf2dv2VfiT/wAE3fif8KvGsOqan4k+J9vN/bN5a6NdzRaTBZFv7PWOYxCOaWGYfa8Qs+SyqeVxX84vwy/YZ/av+NnxW1P4M/B3wPqniTW9Il8u7W2gaOGBWYqjzSziNIUfadpmKZx6giv9WDTNL0zRNOg0jRreK0tLZFjhghQRxxoowFVVACgDgADAr89v2yv2L7n4g3sf7TX7Mk6eEfjb4VjafStVt12RaqiYZtP1GMbVuLe4C7Pn+aM4ZWGMV/NfDHjpWw+bZhWcOWOLkpR9pJzjTmlyx5uVQfJZRi2tYxjF+8074e0km30P87H9sD9iv4u/sQfETTPhF8bZ9N/4Sa/0yLVZ7HTrg3RsY53dI455Aoj80+WX2xs6hCp3c4r5TvNOubHBmHDd6/QX9vH4ufEv4/8A7WvjT40fFzSJND1rXL3P2CUlvs1vbqLeGJWYLuEccYUsAAxBOAa+PLy1S6tzDN09fSv7P4fjjJ5bh6mYSi67gnPl+Hmau1HV6J6J3d0rkwxSlaUdUzy6ipp4vJmaIHOD1qGvTOwKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooqeUDoPDvijXPCl8NR0K4aCXjJHQgHODX9Bf/BN//g4A/aM/ZEmg8IfEK7fxR4XV1H2K7cs0ad/LkOSuOwORX86lKOua8/HZVh8XG1WOvfqcWLwFHEK01r36n+vj+xR/wUh/Zr/bj8IQa38MdXih1QoGuNLuHC3ETH2/iHuK+/q/xi/gV+0h8Vv2evFtp4x+G2rXGn3VpIJVaGQo2R2z6e3Sv7s/+CVX/BxB4N+MVhpXwm/a2uINN1qWNY4NWjOInYfLicH7jE9+hr8/zPJK+EfN8UO6/U+Px2V1cN728e/+Z/WDRWfpWraZrmnxato86XVtOoeOWNgysp6EEcVoV4p5gUUUUAFFFFAH8iH/AAcV/wDKVP8A4Jk/9lRuP/Tp4cr+u+v5EP8Ag4r/AOUqf/BMn/sqNx/6dPDlf130AFFFFABX8gX/AAerf8osvAP/AGVXSv8A00axX9ftfyBf8Hq3/KLLwD/2VXSv/TRrFAHwB/wYxf8AN0X/AHJP/uar+/yv4A/+DGL/AJui/wC5J/8Ac1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//Q/v4ooooAKKKKACiiigAooooAKKKKACvn79oz9q39mv8AZF8Dt8SP2nPHOi+BtFG4Jcaxdx23nOoyUhRjvmf/AGI1Zj2Ffi5/wXz/AOC7Xgr/AIJK/C+1+HnwzgtfEXxp8XWrzaNplwS1tptoSyf2heKpDFN4KwxZUzOrchUav80jQvCv/BSj/gtZ+1RdXGlQ+IfjL8RtU/e3E8jgw2VuW43yOY7WxtVY4RSYoVJCqASBQB/oy/Ez/g7q/wCCNvgLUpdP8N694o8ZLESPP0bQpUjbH937c9oxHvtrwa6/4PS/+CVduxWLwV8UJwO6aTpYH/j2rLX4kfBb/gyc/bP8V6Db6p8dPiz4U8HXU6h2s9OtrnWZIc/wux+yR7h32M6+jHrX03af8GM2pugN9+07FG3cR+DS4/M6uv8AKgD9Dv8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD7//AOI1b/gll/0IPxV/8FWkf/Lmj/iNW/4JZf8AQg/FX/wVaR/8ua+AP+IGL/q6L/yyf/v1R/xAxf8AV0X/AJZP/wB+qAPv/wD4jVv+CWX/AEIPxV/8FWkf/Lmj/iNW/wCCWX/Qg/FX/wAFWkf/AC5r4A/4gYv+rov/ACyf/v1R/wAQMX/V0X/lk/8A36oA+/8A/iNW/wCCWX/Qg/FX/wAFWkf/AC5o/wCI1b/gll/0IPxV/wDBVpH/AMua+AP+IGL/AKui/wDLJ/8Av1R/xAxf9XRf+WT/APfqgD7/AP8AiNW/4JZf9CD8Vf8AwVaR/wDLmj/iNW/4JZf9CD8Vf/BVpH/y5r4A/wCIGL/q6L/yyf8A79Uf8QMX/V0X/lk//fqgD9DbX/g9L/4JVXDBZfBXxQgB7vpOlkf+O6s1e9fDP/g7q/4I2+PdSi0/xJr3ijwaspA8/WdCleJc/wB77C92wHvivxpu/wDgxn1REJsf2nYpG7CTwaUH5jV2/lXzH8af+DJz9s/wpoVxqnwL+LPhTxjdQKXWz1G2udGkmx/CjD7XHuPbeyLnqw60Af6E/wCzn+1b+zX+114HX4kfsx+OdF8c6Kdoe40e7jufJdhkJMinfDJj+CRVcdxX0BX+JJrvhb/gpR/wRU/aotp9Vh8Q/Br4jaX+9t543AhvbcNzskQyWt9asww6gywsRtYEgiv9Lf8A4IGf8F2vBX/BWr4X3Xw8+JcFr4d+NPhG1SbWdMtyVttStAVT+0LNWJYJvIWaLLGF2Xkq6mgD+iSiiigAooooAKKKKACiiigAr/EG/wCCTv8AylN/Zp/7Kr4N/wDTva1/t81/iDf8Enf+Upv7NP8A2VXwb/6d7WgD/b5ooooAKKKKAP8ANF/4OBY9/wDwV0+LbY4/4kPP/cFsK/G4L5UQMeTnqPx/wr9oP+Dga6WT/grT8V7URIhiOhkyDO592jaf97nHGOOBX42IikFEGdo/Ov0zL43wtL/DH8kfBYtfv6lv5n+ZTKBBkDrVi1hDckZNXbW2M7CNATIxCoP6VZWBopijZGK9BQObkuy60t9JbwR3LO8MIKRA/dAJyQO3Xmoyrhf3eevGKneW4kgEDOTGjFgCcgFuuB2qSBeM5xitOXQUo6m1rnhnUPDlyllqaCOZ1DbOjKeMhgeVIJ6H60lhqV7pssk1uFeSWFrf5kDYVxg498d6ZdXV1ezSXl/K9xPKQzSyMWdiBjknk8Y61FBeXlhdx31mxjlgYOjjqGHI6iqSCELnzX+2RqMdtbeDPCtovlPaabPeyoCSd9zMEB/FY6+HEj+0WzSrhZGYtjoGI9Pevu39q/4feJviLfD4v+E5TfLY2MEF/aKMT2/k7syBR96NyxYlfunrivg9ZhPYKSQshXI98/1r82xvP7efOrO7/M+8wnL7GHI7qyKdrFHNciO7yCCMN3GPX1r9KfhdosC/Dz4beEpCNmta7catP6GG3dVB+nlwvX5yaT/pTlLgAOnRu/HrX6caubfwYsdq77JfBXgY7VHT7VdRBM59d9yfxrjau0jobsfBvi7W5PEPiTVvFsb7mvbma5JHUGZ2cf8AoQrg3MN0pBwkuCenB/wrWmRreDfAflzjP6YI/CsedEuCzQkK/Tb2P0rWTJiYXnvCTb3ablzyD1H0r638F6JLF8E9J8P2Z3v4q11QOMZSABP5vXyI9z5reReAnsD3Br9J9CtbXw7qngLw5cxgr4e0WTWLhv7rOGlz+OFrN6yivO/3a/oawbV35fnp+p8lftG6vZ+JfjPrklsdgs5Vs4Rn5SlsojA9ule4/wDBOn9lmf8Aa3/ai0r4H3Soba+hnkmErmNAETglhnHJ4Ir4s1K9HiDVLjVw2ZriR5WB7lyScfnX0F+y1+1B40/ZW+JUfj/wmPMdkMEuGKSiMnny3HKn9KyxEasqM1QaU7Oze17aXFFJO72Oj/bV/ZZm/ZG+P+r/AAWi1KPVH03DM0ZDFAxOFyOGxjqP0r5g0ZrjUtQt9IlTzWnkWNP7wLHHX+leoftC/Eyf4v8AxY1X4mWolW2v5FMIlbdIiooADHJ5znNbf7Mmg2vjf44+H7DUI/kguBdTN/CY4BvOfwHWqp88aS9q7yS19eonrKyP2H8KftC63o3jGw/ZT1DTNNvfB3hHSRcTedaxvNHdW8PmGRZWBZCHIHB5r8Q/EXiYeM/Feo+JtVJabULmWcSjr87EjPqMY96+2bXxbLb+Cvi18bJCPtGpk6das3PzXkhyB/wACvgWxt7a7KLb/u3XHydjj0P9KuCdo37L8df1HUUVJ2/qxu20N1bXCFxkAZV1PFGrXcNxGIro7Hc8OB/Mf1qezluLNmjxhf4kPSsnUbaLUbxVsTgqPmjJ5/A966JP3TnjuV4hNZSCUHBH3XXofoa++P2Zbj/hGPg18SPjBcKqXCWcei2kp4JlvD834hB2r4LtZpLdGVxuiZv9W3Q4/ka+8/HcP/CBfsj+CfAdrmO88UXNxrtxGeWK58qEcde+K5pxc7U19ppfedFNqL5301+4yIC3gD9jXUb9cJd+OtZW3Q9D9lsxuPPoTivj171JEW11EFgRgOD8y/4j2r6//a51FvCEvgz4M2Tr5PhrRYXuUP3Tc3n7xsj1AxXxreLBqMoaxOyTr5ROf++T/TrW1WSlNyW36dPwMqafKrli4sWXMsB86PONy9vqO1MivpbfbbMA8bHlW6YHp6VRgnubSfEJKsDg+n4itCJ7K/cyNiGVRj/YY/0rMuxXnsobuR5dOb5sbPLc/Nn2Pf8AnX6r/wDBLbwI9vrPjH4xX6bE0jT2s7dyMYd1LPj6AAV+TcttPaSiO6UrsBkJ7E9ua/QD9i/45fE7SfD3jH4fWxil0BdIur24aRMSRSbdikOOu4nGDms6ukGyoK8kj5E1W4k134rX+oyfM0s7MT65YmvuXwTYP9gjDKegr4t8C2lnfeIXuUZ3naU7wRhQO2K/RPwnbIlhHFlVOMZbtX6BktHlowi+iX5HyOdVuavNruzQhsIUiPmgg4+Xjiofs8XJ/i7eldDdS3M1olqWysXC+wqteeH9ai0j+1GtpFglOyOTaQrOeAAe+Tivck1HdniczbstTWh+HXig6fYeJY9IudUsLrczC2RjwpI5YKcZ7da+hPAfwV/Z1+JEMGiXev6r4Z1WQ5kttQt1JDeiPwGHtkGv6Hvh7o3wE+EvwA+G3w9+Jktt4f8AEWo6ekelvJcCAXEwQNJGWJAL5PRsV5D8fPhJ8QfHOjG5+D+oaWuo6aAJ9K1e080TRd2WRTuHH8Sgg+1fBYriKpOUowi1ZuzT/Rpo+qpZRTik5vfuj8oP+Hc/iSzI8XfDPxjbXktm6yQEwNFIrDkMNpbke1efXX7Ef7Ql9rE14LzT7u+uJGkYSzmOWVyckguADn619cal8L/28/DPjCDVfhF4a0rVNERV8+zj1FVkX1MRmww/3WJ9jXu9z8afFWgxpoPxX0SONo1DOk2YbiJj3R+QSD6HFY085xb6p+qQ5YKlF6aejPzDbwt8W/gTqS2XxB0iaxdjgS/fhYf765X9a9IOr+FPEemCTxBceRby8SSRr5jIMHkL35wK/SnTvij4J8RtHomr39rqVpeoqC31PaXUMcKM4IbnjnmuS8TfsXeCNXlk13TYLjw9DcFlEdni5tiw6lVLB1+nNN5gp61Y2fdbHsYPEqMfZyeh+Dni7R7vzF1CBWWzlZ1jcrgOUODj6eleew3l3o1y95YSCOR43iLADlZBhhz6jiv1P+In7DXi/VL678PfDHW7XVtStVMzabcA21xtzgugOUOSR/FX5kfErwB45+GWtzeGviFplxpF5GSNlwpXd/unoR7ivewWNo1laElft1Pncxw84ty6dzzq/j0qS1a4gYWskKoqQnLmU/xEHGB64P4VyUMNvcTk3MpijAJ3Bc84yBj68VtTxow+8Dj0rHlUOcL0r0W+h4EtGUbe2sJYpmvJvLZE3Rjbnc3p7euay5A+xf8AZ6Ads1qfZg0mFPPUD1NXtftNIs74R6HcNcxeWjF2TyyHKgsMf7JyM98ZoLhKyuYCxt25PpW1qGpWuo6pJPZQpaW5YFYY8lFwAP4iTUU7aO9hapZLIt4pkNyzkFGBI8vaByMD72ep6VlNIMB/bPpUOCZsqlnoes6BrU6CG2kmZ0ViyxEnClupx0yQK+zPhH4ylsNQg8pufl4zX516dPtVF6Or7t46kelfTvgHXJjqK3lzKvmOdzHAA/IfSvHzDCqSbPsuHszcJKKP6Dvg54u1q7gh1C7P3xhV7Hitj4r6jrENs91NHlXGQB3FfEvwn+N9nBbWekrJl0K7fev0Z0rw2/jbw2uqao5KvFuj/ugfWvgMVh3TnzM/ZMJi41adrn4R/HyC7v8AU5rl02gk4Ff6pNf5v37QvwdNvYm4g8uTzUaRcNkqFYjDDscjp6V/pA12Tqc1OPz/AEPhM+w/s6/N3Cv5EP8Aggb/AMpnf+CkX/Y7Wn/pfq9f131/Ih/wQN/5TO/8FIv+x2tP/S/V6xPDP6768p+Ofxo8A/s7fCHxD8b/AIoXf2LQPDNlJfXkuNzBIx91R1ZmOFUDksQBXq1fn5/wVQ/Zv8a/tb/8E/8A4m/s/wDw3bGva7pimwXf5fmT2s0dwkYb+EyGLYD2JzQBQ+DP7cXjDxd4N8T/ABW+N3w+ufh94S8PaRJrZvru+trmQQRKXdJ4YHd4JVjG4o4BHTrXEfs+/wDBSW7+J/xA8J+Efi78PtT+H1j8SdFu9f8AB19qE0Ui6jaWSLNIkixsWgm+zsJxG+CY8nqCK/Lbw9+yL4u/aK8W+NvDn7NHw91z4SeDdc+EWreFPEEGuq9tHqPiK82izby2ZvNlgAk825H3g4GT296+GvhP45/tdfE74A+G/Enw/wBa8CQfBHw3q8HiS81eEQwSand6X/ZUVvZuCfOUszzF1+XYF7nFAH1L8I/+Cqdr8RPFXgbWPEfgDVPD/wAOPipq0ui+EPFNxLE0V9dDf5HmQKxkhS68tvIZx83HTIp9x/wVT06Hxdc+J18DagfhFZeLB4Kn8bedEIF1TzxaFxBu802y3TCAzAbd+ewzXwJ8Ivhd+0Z8Qfhb+zV+whr/AMPNY0HUvgj4p0rUvEuu3UQTSjZeHGcxvaz5xKbs+XsVeRk7sYrEvvgZ+0If2bNU/wCCVn/CCawdSvviRJqsPigQ50Y6DLrY1g3RuM4Eix7ovL+/5gA6c0Afo98aP+CpMHwz8ceO/wDhFfAOp+JvAvwmuba08aeJLWWJY9PluEWWQRwswkn+zROsk+wfIp9a+7dS1XT9c+MfgrWdJmWe2u9J1GeGRDlXjk+zsrD2IIIr8IfjF8M/2iPhT4e/ae/Y88NfD/V/Et18etYuL/wvrVnDv01I9atIbSf7XN0h+ytGztu+8hG3Jr9n/CHw3tPhv8QPhp4daRp7vSPCs+kvNvba62iWqZCk7QSRnOM0AfXVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANKITkgflSeXH/AHR+VPooAZ5cf90flR5cf90flT6KAGeXH/dH5UeXH/dH5U+igBnlx/3R+VHlx/3R+VPooAZ5cf8AdH5UeXH/AHR+VPooAZ5cf90flR5cf90flT6KAGeXH/dH5UeXH/dH5U+igBnlx/3R+VHlx/3R+VPooAZ5cf8AdH5UeXH/AHR+VPooAZ5cf90flR5cf90flT6KAGeXH/dH5USf6tvoafTJP9W30NAH8Uv/AAcv/wDJmv7Kv/ZXIv53Nf2u1/FF/wAHL/8AyZr+yr/2VyL+dzX9rtABX8h//BqD/wA3ef8AZWbv/wBq1/XhX8h//BqD/wA3ef8AZWbv/wBq0Af14UUUUAFFFVry8tNOtJL6/kWGGFS7u5wqqOpJPQUASTTQ20LXFwwREBZmY4AA7mv5QP8Agsh/wcD+E/gHa6l8Af2Ub6PUvE+Ht7zVIiHitWIwVQ9Cw9egr5K/4Lk/8F7Jjcan+y7+yXqbRxRM9tqerWz4ZypIZI2Hb1Ir+JvV9X1HXL+XVNVmaeeZizu5JJJ6nmvpMmyGWJaq1tIfn/wD28symVdqpU0h+Z3HxU+Lnj/4zeLrzxv8RdSn1PUb2QySTTuWYlj715pRRX6HRowpRUKaskfZU6cYRUYKyQUUUVqWFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH9Q3/BDz9qn/gnn4HuoPhh4p+Fs2jfFO5gkjt/G8mdYQyspAcAqH0/BOB5EbAjl3Ff1i/8ABOvwB4f+FP7F3gH4ZeG2DQaFYNaOR3mWVzKT7s5Le+c1/nhf8E9v2jfDvwL+KEFhqegHVLrW54rOCaIbp1aVgqqi9yxIGK/v68X+MtC/4J6eBz4+8YXyTeDTbRSarbGZBdW92qKrzW6Oy+ashHzRg5HUcCv448dOGuXHLD4SU3VxUozjGU3NTlTUlaHM2429q+WLfL0ilex8Vjczx9DNW61FrCRjbm3u5NWlbsmrNLVc13ofoxSEgDJ4Ar80/Cn/AAWK/wCCZnjDw0vinT/jFoNrCV3GG+kezuV9QYJkSUkeynPbNYHwT/4KefsyftxfEnWPgb+zR4hS6XT0QXWq3WLJbhJCQUsoZylxMeCGcRBVyOSCDX87z4OzynCrVrYGrCFPWcpU5RUVe2raX3bn0leo6VNzUW30S6vp/wAP0PDv29fEP7Fnhr9kfxDrn7Q3gKw8dpaXF5dWVi7rZzxvPISDFegeZblupMWWPdTmv89Lxl4m03WdevbrwvZtpmmzTSPb2rSmdoYmJKoZCFL7RgbiAT1xX7e/8HAnjP4yeFf20NX+AOvXElv4Rsbe01DRoVYhLi2uowd7f3ikokiye6GvwMr+6vBPhueV5BDFTruo8QlUS5pOMYyV0lFvlT/maSd9G3Y5ckwuJp0EsXa60SXRLz6t7+QUUUV+yo9sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAFq9p+qX+k3AutNlaGQfxIcGqFFRKCaaewmk1Zn9UP8AwSK/4L4fEH9nLXtK+DnxrmuNb8IS7Im81t81tzgtGTyQBzt/Kv8AQC+EPxi+Hfx18CWPxH+F+pw6rpOoRiSKaFg3XsfQjuDX+LHbXM9ncJd2rmOWNgyspwQR0Ir9xf8Agkr/AMFg/i7+wp8ULfS9evZtV8I6hNi9sZXJTDdWTPCsOvvXw+c8PcqdfCrTqv8AL/I+VzTJuW9agtOq/wAj/Ukorwv9nX9or4XftQ/C3Tfiz8J9Rj1DTdQjV/kYF4nI5Rx1BHvXulfHHzQUUUUAfyIf8HFf/KVP/gmT/wBlRuP/AE6eHK/rvr+RD/g4r/5Sp/8ABMn/ALKjcf8Ap08OV/XfQAUUUUAFfyBf8Hq3/KLLwD/2VXSv/TRrFf1+1/IF/wAHq3/KLLwD/wBlV0r/ANNGsUAfAH/BjF/zdF/3JP8A7mq/v8r+AP8A4MYv+bov+5J/9zVf3+UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKACiiigAooooAKKKKACuJ+JfxD8KfCL4ceIPix48uRZaH4Y0271bUbg8iK0sommmf/gKIx/Cu2r8af+DhTx3ffDr/AIIwftA+INOkMUlx4cXSyQcZj1S6gsnH/AknIP1oA/yvPjL8R/2if+Cy/wDwUvu/EttG1740+MnimGw0m0kcmKyguJFgtINwB2wWluEVnxwiFzzk1/rtf8E2P+Ccv7P/APwTE/Zj0f8AZz+BNhH5kUcc2t6y8YW81nUduJLm4YZPJyI48lYo8IvAyf8AOE/4NDvhjpPxA/4LG6P4k1SFZn8GeFNc1q33DOyZ0jsd31C3jY9M1/q9UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8Af8FJ/+Ccv7P8A/wAFO/2Y9Y/Zz+O1hH5ksck2iaykYa80bUduIrmBjg8HAkjyFljyjcHI/wAiX4M/Ef8AaJ/4Iz/8FL7TxNcxtZeNPg34olsNWs43IivYLeQwXcG443QXduXVXxyjh15wa/22a/yhf+DvD4Y6T8P/APgsbrHiTS4Vhfxn4U0PWrjaMb5kSSxLfUraLn1xQB/qifDT4h+FPi78OPD/AMV/AdyL3Q/E+m2mradcAYEtpexLNC//AAJHB/Gu2r8af+Dezx3ffEX/AIIwfs/eINRkMslv4cbSwxOcR6XdT2SD/gKQAD6V+y1ABRRRQAUUUUAFFFFABX+IN/wSd/5Sm/s0/wDZVfBv/p3ta/2+a/xBv+CTv/KU39mn/sqvg3/072tAH+3zRRRQAUUUUAf5qn/Bf2Iy/wDBXD4uADoNBOf+4NY1+OMavHKHXqK/Z3/gvnNPB/wVt+L6wNtE6aHE/uraNYZHtX44JCw+Zjk1+oZav9mpf4Y/kj4TF29vUS/mf5seiFm3g4IPBFbVilmJSb5GkUo2FVtp3Y+U556HqKueHreykupGv4zIiwSEAMFwwXg5PXB7d6qhkY4zXpGSsVPJI+QnnrWtpenz6ldR6baqXmkJCAd8AnH1NV44RySc8dK6K3S40C7triYSwzbRKpX5WAYZUqfcc/SmRJq+xztzAqu3kZ2r/f4NWbQ27pJ5ylsoQpBxhux9/pUhUysWlPXrV2GGD7MWP+tB49Me9XygpKxxF/b6lZXC6lpEzQXEXKuv6g9iD3B4NfOHxM+Cln8Rkk1rwFZx2OvRAvdaanyx3SqOZLcdm/vR/lX2lb2lu8LlvvZGOOPeue17QJL2CKK3wht2Lxug2uGOOdw54xx6V5eY5VHExvtLuduDx8qD027H5g/DTw5PrvjnTfCl9E0c91fQ2jBhhgXkCkMPUDNfZ/xn122l0v4i+JBzHqer2mkRH1iti0xA9tqJXsvw/wDDPw81X4zaD4s+Jsw0e9sLnzZdRVf3VxhWAaZR0cEg7h97HPNeCftW6Ho3w/0XRfBei6rBrlrqVzeawLy2PyypKVijPPfajZHavhq+Dq0KnLUW3X+vQ+qpYmFWPNBnxHc74HQxMCvX2I96wbkwS5lhxu5JX/D1rXvPMt7gspyhAGe2KwLqINGZrfI9u4xXOzoRr+D9OPivxVpugSKWkurmOIEDn5mAwa+6/iVrdtZXXxJ8T2xytjbQ6FbDthisfH/AUavm79l2xt9S+MWn6leDCaUk1/IccFbdC3PvkVsfEfW7iD4SJPd5ZvEmsS3LHuVt1Jz/AN9SVmtZ69F+en5XNFpB+b/r9D5na0V08+yPTqvcULMLgBLs7W7OB396bultsXMByOzen1qwrwXrYwI5fTorfSq0FcRftmnvnqGHXqpFfYf7MEMGiaL42+KSAo2l6RJbQ+gnvCIxg/QmvjyG6aD/AEa4G5CeVPUfSvuDwzpy+H/2YrXT7TPn+L9b3DIwWitF4H/fbVNRcy5Fu2l95VNrm5n01+4i+KNzF4O/Zo8KeFZFBl8RX1xqk46ExwDy4z+fSvkuC03L59q/mJn6EfWvp39ri9tB8SLH4fQnbF4Y0q0sFI5AlK75Mj/eNfPXh3Tb9tUttNtRmW5lSJNvIYuQPxra6lJtGLulqa9vcRyweXegnHHmfxD/ABrlmgmiu3vAcoBlXB71+0v7c/8AwSn8Yfst/BHRPj5aTiHS9VtIJJbe4cbvMkUZ2H6n7p5Ffi5p0lxYMyuOXb5kboR71jRxdHEQVShNSjtdd1oxcji7SWp2fh3Tm8V6vp3hx0LXV3PHAjqOS0jBRkDr161+6/xf/ZO8GfEb4r+FLXwT4w0y5fwfYWiaxpTzBbi3gs13ttT+LcQc46Gvy2/Y50DRtV+P2k+J9QybDw6k2r3cZ/uWilxg+7cCv0O8R/Gv4P8AxG8B+Nv2uPDHh0+GPEVpbz6YIkn3JcC6AVZduBhjnnrzWtOSU3Lqlp6vRDlfl02f/Dn5MfHfx5D8Tfiv4g8Wyg7bq9l8qT0ijOxBj0wK8f8AsbpGJZcYPKuvStG6t47mDzLM5Yj5kP3s98evNVYpWsk8sDK8ZRulQirireCRfLvQXGP9YPvD/Gq8unyw2KzQt5scp4Zf6+lWZreO5i32Z+Y/wE8/h61SN1PZ3BaE7di8jsfYigAOoGOBlmQSxMcKreg9D2r7j+FsNh8Mv2RvFPj/AGn7R4uvItLtw3DeTB88mPx718L3SQahIllbfup+FCfwszdh6c1+kvxe+HPiPXLf4d/sp+BvLF9Z6cktwJWCJ9puxvbcegwuBzUuKnKMHpd6+nX8C4Plbmuiv/l+J80/BvTpLmf7eY8JJISpI557Z9q+/dFj8mzRcYA9q77wB/wTe/ac8G6VFc32lRXMIOQIJlfBPfAr3aT9j/8AaJs4kj/4Ri5kLDIEYBNfoeX47CKNvax+9HxGNoYhyb9m/uPnHS1sn1KD+1Di28xPN/3M8/pX9ov7PXhr9hj4t/sp6Zoug6Tpmrm1tYXceWjyGZMHOeoKke1fyn+Cf2Nf2i/HnjKy8B6b4Xuobu/k2K9wPLjQd2ZjwAK/aP8AYT/ZE1v9g7x14k8R/tFa3awafqFqI9MSyuN9vPJH802AON4OFri4hq050lOnUTa6LXf0N8khUhUcZ02k+r0OF+LnhHRv2rf+CgMHgr+zv7Q8M/DbSftDWlyA0PnSH5iR9TgfTNX/ANq/9hX4y2t1afGf9i3xhqWha3ZW0cUGk30zTWhjXkxoXzxnorZ9jX0l/wAE/wC68BWfjT4g/GTxjKmn6n4u1eQ29tcuN6WcJ2oGz2b7341+m0fijSZbhbC2aCfT7phDC4w0e8DpnoCe1fn/ACSWtj666eh/OX8Dv+CjVtpOrr8If29dAm8CeJI5Vtm1SONhY3D5wrE/wbj65Hoa/TTxL8O/hX8cPCT6LrljaeKdJZQ0N3ayjzVXIKlXU5z0NfQXxk/Zj+CHxx0LUfBXxc8LxagqOVhkJAlRmHBjbqOPqK/m9+OXhH40/sKftVXPg79gix1PX9JtNNXUNY0CaU3McXbCdxxzwOKqNRp6mM6PWJ9z6p/wS7+Gl94gsNY8Maxqf2KCZ5Zrd5f3/wA7BsKxA+6RleOKz/jX8GvjB4L0CXw98C/E93qOkQ3D3Jtrxcy29w2AwZ2ySGHGMACvJvCP/Bej4aS2UejfFvwXf6Rqahbe5tTAXeObAHy7eevQV7h8Rv8AgpR+zr4ajg0z4leE/EWhXFwpxcXOnTK2CoZWyFwwI6Zq/aS6MXKtpRuZPhXW/il8JNDufin4/m0a/l1HTYrWazh8yKS2mDE/KWLAgsQSQR0r9Atd/ZX+HX7UfwF0jSbdIPGWpDTxfXiahEVEZbJTyrhQGXK9jxX56fBb9qH9mn9py+1Hw98G9YbWdQ01FlvI5oTFJBFKdgyGHrX6N/D7xV41+HmkT6X4du31TSQqQyRo5wBIcBOCCPp2zSpVnGXM1r+IVKKlHli7H5pad/wT/wD2NtbtDpuseGbvSr6GRoX8i7by3Zeu1mDA+3SvhL9pX/gkz4j8NadL48/Zs1Jtf0wB3bTbr5L2Pb/Cp+7J7YwT6V/RZ4ytp/GukafYeD7a3gTy3hvbW7AEhwfkKdPmAyp6Hoa+D/E8njbwH4nmi0y5urJC/wAtncFioHcZJyR6da9ejjq0Xz06l/J6nlVsLTa5asPmj+THWtP1jw1q0ui+JLSbT76BirwzoUdSPUGsy3tdQ1i+h03SI2uLu4dYoYlGWklkYKigdyzED8a/rz8Yfs/fB39p7w4th8eNBtVujGFg1C3Ihukz0xL/ABf8CFfQX7Gn7M/7CHwc8P8Ahnwr8dvh7G+rfD+7iu9O8WIjPJcmOQukl2qnAZGxzgrwMV67z+Ead5QfN2OKGUXlZT90/Hf/AIK7/so/sx/sGfsy/CD4QaPpSP8AFPUdLS61zUPM+ZsqrOWUcZ3kqvHQda/n6g1C98QTzXcKB2VTI+xcKFGBnA4A/rX7F/8ABxn4x8L+P/2toPid4Z8YReIDqcCxW9jbo3l2llGvyMHPGGbOa/FX4bzQWV8y6sZGiwySLC2N57AnoRkDPtWmSOSwycpNybbd7736eXpoLM6aVV2VkkrHZxYA8z8q9E8N6/dW8T2KMBFKyM/A3ZXpg9QPUDrXnrgBz5X8Xb0rUsTPBcJHKMMSDg8cGvWqw5onHgqsoTTXc+3fhpq5fUIrlDl0AwM9AK/aH4QfHVrzwrB4aQg7FC4PpX4P/DmO5uAkUBwzEDPoTX6mfs+6FLJcQyrl1k2kt718TmlKOrkfsnD1apKC5ep9D+M1uL77U0VukkVzC0bFxuOCQePQ8da/vyr+LbV/A2i/8I0bhRiTaPzr+0mvCpyT0QcUJ/uW/wC9+gV/Ih/wQN/5TO/8FIv+x2tP/S/V6/rvr+RD/ggb/wApnf8AgpF/2O1p/wCl+r1ofJn9d9FFFABRRRQAUUUUAFeKeJ/+S7eE/wDsHap/O3r2uvFPE/8AyXbwn/2DtU/nb0Ae10UUUAFFFFABRRRQAUUUUAFFVr29tNOtJL+/kWGCFS7u5wqqOpJ7AV5D/wANF/Af/ob9J/8AApP8aai3si405S+FXPZ6K8Y/4aL+A/8A0N+k/wDgUn+NH/DRfwH/AOhv0n/wKT/Gq9nLsV7Cp/K/uZ7PRXzsf2tf2aR4mHg//hNtI/tFoTOIftKZ8sHGc5xXRf8ADRfwH/6G/Sf/AAKT/GlyS7FSw1aNuaDV/Jns9FeMf8NF/Af/AKG/Sf8AwKT/ABruPCXj/wAEePIZbjwXqtrqiQELI1tKsgUnoDjpQ4SWrREqU4q7i/uOvoooqTMKKKKACiiigAooooAKKKKACiiigAoorzf4tQfE648B30Pwdls4PEJUfZXvgWgBzzuC89KaTbsv6+8qCTkk3Zd9dPuu/uR6RRX5m/2F/wAFTv8AoL+Dv+/U3+NH9hf8FTv+gv4O/wC/U3+Na/Vq3Zf+Bw/+SO/6nh/+gqH/AIDV/wDlZ+mVFfmb/YX/AAVO/wCgv4O/79Tf415t8PNF/wCCvjz6wPFep+FY1F4wtfPjZg0XYpsPC+m7mk8PWulyr156en/kxrDL8M4Sk8ZBWtpard37fu+nU/XuivzN/sL/AIKnf9Bfwd/36m/xpG0L/gqfg7dY8HZ7fupv8af1at2X/gcP/kjL6nh/+gqH/gNX/wCVn6Z0VyfgWPxhD4Q0+P4gSQS6yIVF41sCITLj5tgPOM9K6ysmraM8+SSbSdwooopCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZJ/q2+hp9Mk/1bfQ0AfxS/8ABy//AMma/sq/9lci/nc1/a7X8UX/AAcv/wDJmv7Kv/ZXIv53Nf2u0AFfyH/8GoP/ADd5/wBlZu//AGrX9eFfyH/8GoP/ADd5/wBlZu//AGrQB/XhRRRQAySSOJDJIQqqMknoAK/iy/4OBf8Agtj/AGLFqX7H37M2qDzDmHWtRtn5ORzEjDp6Ma/R/wD4L4f8FX9M/Yu+D83wQ+F16D478TW5UtGebO1fIL+zN0H51/mv+J/EuseL9duvEWvTtcXV3I0kkjnJZmOSSTX0OQ5P9an7Sqv3a/F9v8z2cpy36xPnn8C/Ey76+utRu5L29cySysWZmOSSaqUUV+kxgopJbH20YpKyCiiiqGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBu+F/E/iDwV4k0/xj4SvJdO1XSrmK8s7uBtksFxAweORGHKujAMpHIIyK7bxN8cPjD41t7+38aeJ9U1j+1JRNdvfXUlzJPIP4neRmZj9TXllFZSw9KU/aOC5tr2V7b2v6mdSlCaSnFO2uvdbM/pJ/wCCb3/BUz4Wfs9/8E6/iX8N/ifpmlaj478DwmfwE99axTzTHVH8vy1LqSVs7hzcMM8xuVH3a/BX4T6z4Yvvihbz/FSNtQstUmZLqaSV0dZZjkTF1YNkPyxJ6E968gor5fBcG4HCVMwrYZyjPFvmk02nF8tvca297mn/AIpPpY68HX+r14V+VS5WnaSunbo090+p+1fxX/ZzsvjGunN418VeINRk0a2+xaeb+9a++zWwYuIYzPvdYwzMyoHCgkkDk18va5+wLq8eX8N+IoZvRbmBo8f8CRnz/wB819Mfsr/FP/hZXwyht9Qk36no+20ucn5mUD93If8AeUYJ7spr6Wr+cqvGHEuQ4qpl0sQ/3bas4xafW6ur2e++tz+qcLwXwvnODpY6jhUo1EmuVuNu6tFpXTunpuj8cNc/Y1+OWkZNnZ22oqO9tcKP0l8s/pXjuufB/wCKfhvc2teHtQhRer+Q7J/32oK/rX7z317aabZS6jfyCKCBGkkduiqoySfoK+BPin+3Fpdj5mk/Cm1+2S8r9uulKxD3SPhm9ixX6EV99wp4icT5rV9jQwcKqW8tYJesruK9Er9kz4finw94Zyul7atjJ0m9o6Tb9I2T+bdl1aPzPkjeJzHKpVl4IIwRTK6nxf418VePdYfXvF99JfXTcbpDwo9FUYVR7AAVy1fu9B1HTi6ySl1Sd0n5NpN/cj8MrKmqklSbcejas7eaTdvvYUUUVqZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABShiOnakoqWgP3X/4Iy/8FVviZ+w98arbQdQmk1Hwnq5Ed/ZO3y7QR+8UHgOo/Ov9Mz4P/F3wL8c/h7pvxN+HN9HqGlapEssUsbZAyOVPoR0Ir/FiguJ7WZbi3Yo6HKspwQa/rb/4N9P+CsjfAvxhB+z98UrueXwxrLokss7ZSyunYqki+iPkBh2IzXwnEWTqF8VRWnVdvM+TzrLFD/aKS06r9T/QPoqtZ3lrqFpHfWUiywzKHR1OQynkEVZr5A+bP5EP+Div/lKn/wAEyf8AsqNx/wCnTw5X9d9fyIf8HFf/AClT/wCCZP8A2VG4/wDTp4cr+u+gAooooAK/kC/4PVv+UWXgH/squlf+mjWK/r9r+QL/AIPVv+UWXgH/ALKrpX/po1igD4A/4MYv+bov+5J/9zVf3+V/AH/wYxf83Rf9yT/7mq/v8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//S/v4ooooAKKKKACiiigAooooAK/Ar/g6Dna2/4IW/HSROCU8OL+D69pq/1r99a/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+Pj/gyxt1m/wCCqfjeRhzD8LdVcfU6rpC/1r/UFr/ME/4Mqf8AlKb4+/7JVqv/AKd9Hr/T7oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAMzWta0fw3o934i8Q3cNhp9hDJc3NzcSLFDDDEpZ5JHYhVRVBLMSAAMmv5Hv2vP8Ag8g/4J9fAzxhceCv2cvDGufGB7Qskup2rrpGlM6nG2KW4R55BnOXFuEIwUZwc1pf8HkP7RXxM+D3/BNvwz8Lvh9fXGm2nxH8VxaZrU1uzIZtPtraa4a2ZlI+WWVYyw/iVCpyCa/Dr/g1O/4I+fsJft9eBfiF+0Z+1vp0fjjUPCWswaPYeGZrqSG2to5IFn+2XMULI8olZmihDt5X7qTKscFQD9G/hH/we9fs56/rVvZ/HD4F+IPC9lLKEludH1e31kxRk43+XLBYlsDkgHPpmv64v2O/22v2YP2+fg9B8dv2T/Flt4s8OySm2lkhV4p7W5VVZoLiCVUlhlVWUlXUZBDDKkE/g5/wUx/4Ngf+Ccfx1/Zo8Val+yz4Ag+HHxL0jTbm90K60J5lt7q6gQyJa3Fo0jQuk5Xy96qsiFtwJwVb+Yz/AINb9K/4KGfsi/8ABT7w/wCBNf8Ah1420L4dfEi1vdN8TDUNFvrbT0Nraz3NncyNLCI0eKdBGshIISV1z82CAf6QH7Q37Vv7NP7Jfhyx8YftOeO9E8BaVqdz9jtLvXL2OyhmuNpfy0aVlDNtUtgc4BNb/wADP2g/gZ+034Cj+Kf7PHi7SfG3hyWaW2XUtFu47y2M0Jw6eZGzLuXIyucjI9a/ge/4O0P+Cn/7C37Y/wAAvCH7Ov7NvjyPxL4y8C+Ork65py6ffWptBbW1xay5kubeKJ9sx2fu3bPUZHNfQX/Br5/wV5/4J1fspfsF6L+yV+0D8SIfDnxB1nxpffY9Kl07UJvM/tJreO3Pnw2sluod+MtKAvVsCgD+8CisPxP4n8NeCfDl94w8ZahbaTpOlwSXV5e3kqwW9vBECzySyOQiIqglmYgADJNfzwfEr/g62/4Iv/DrxfL4RtPHuqeJPs8nlS3ujaLdTWYYdSskixeYoP8AFGHU9VJHNAH9HdFfDv7EP/BSL9ir/gov4Ou/Gf7H/juy8WR6Z5Y1CzCSWt/ZGTO3z7W4SOZAxBCuV2MVO1jg12f7Y37cP7LX7AHwrtvjZ+114qXwf4XvNSh0iG+e0ur0NeTxySpH5dpDPINyQyHcU2jbgnJGQD6vor8cte/4L/f8EivD/wCzrD+1Lc/GSwk8JXmoXOk2RWyvlv7y9tEjeaOCxe3S7cIJY90oi8lS4DOM18pfDH/g60/4IwfEnxbD4Su/HuqeGTcSeVFea1o11BaFjwC0sayiNT/ekCKP4iBQB/R1RWN4d8R+HvGGgWXivwlf2+qaXqUEd1aXlpKs9vcQSqGSSORCVdGUgqykgg5FbNABXOeMPF3hn4f+EtU8eeNL2LTdG0Sznv7+7nbbFb21shklkc9lRFLE9gK+R/8AgpF8f/in+yv+wl8Uv2ivgjp9vqvizwfoNxqWl2l3BJcwSzxYwHiieOR1wSSFdT71/lhf8FCf+C23/BYT9vX4b3vw7/aG1S88OeAZ9jX+jaFpL6Tp84U8C5lIaeVC2P3cs7RFgDtyAaAP9Hv/AIJ8f8F5v2Af+Cmvxwvv2fP2Xb3XbnxFp+jz65KNS01rOH7JbSwwuQ5dstvnTC45GfSv2dr/AC5/+DMD/lK74q/7Jpq//px0yv8AUYoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8vr/g9Ot1g/4Kp+CJF6zfC7SnP1Gq6uv9K/1Ba/zBP+D1b/lKb4B/7JVpX/p31igD+wf/AINfbhrn/ghb8C5H5ITxGn4Jr2or/Sv30r8Af+DXH/lBR8DP+5m/9SDU6/f6gAooooAKKKKACiiigAr/ABBv+CTv/KU39mn/ALKr4N/9O9rX+3zX+IN/wSd/5Sm/s0/9lV8G/wDp3taAP9vmiiigAooooA/zaP8AgvpCkn/BW74rI52h/wCwiWPb/iS2P+Ffj9FbqWw3btX7I/8ABe2FpP8AgrR8V2bOP+JCB/4JrL/GvyNttOyc8gf4V+rZb/ulH/DH8kfA4uX+01V5v8zOSIpwPTFP+yF8CMYJ4AFeieH/AAle63c/ZbBPMkwXAJAyFGT19q1F0d9RMt/GoCwgSNjAwMgcV321OZ1Gloc5Y+BfEtxpU2v29nM9nasFml2HYjHorHpk1mNHcXcwa5YvtAUEnOFUYAr6K0X4r+MNB8A6l8NLW4H9l6tMk9xGRnfImdpJxnjNcRotlpepanBo8pSE3LqpkfhUBIyc+gHNOKlrzLToYyrKTXK/U83/ALNViOK6iTwrHJIkOnSifcIhgcMXkHKgd8dK7vxR4S0vRJ1TRrxL6GVSUlXg5UlSNvYZ5Geoqpb+FNWtNLt/EL4WCaVo42DDduQAngcjjvW8EpETqtJpI5DUNBbSr6TTxuLQna24YYMOoI9jVm00+14lvEZ0wQQpxzjiuvksPtsxmhRstgtu5JbufxrRi8NX7J8qEd66FSW7OF4yT2R43rHhi0v7TyniG7qT3NeLeN/h9o3ifS4PD3i9GWGzVls7uIfvLfdzgj+KPJyR1Ga+zRo720qteW5f1HTNYWpeDBcwrNdDEUncc/56VyY3K4YiDjJHXg83nRknc/E34kfDzxP8NtVOm67GJIbg7re4j5hnQfxKfbuOorya4Vs/aLXJ29R3Wv2P8W+A7C90i48Na9a/bdKnOWi6PE39+Jv4WH5HvX5v/Fj4G+IfhfINfs2a+0K4ciC8VcbST9yUfwsPyPavzjMssq4SdpL3ejP0HAZhSxMbxevY6b4Cq2l+BPGvjdlCyrZR6dEenz3bgHH/AAEGsf8AaAnt9OtvCnglhj7BpguJMdRJdsX/APQQK9U8GaB5PwM0DQ4Iytx4q10yMB3jtgFU/Tc1eA/tA6xb638YtdWNh5VpOLKFh0CWyiMD8wa8mO0n3f5L/gnpT0UV8/v/AOGPHMT2x3A/KfTkEVJ5Mdwubfhu6n+lRq72zGNuVbt2NOeEn99akkDk+q0zMt28qzgW1wpY5wGH3ga/U7RfC0D/ABO+HHwqnH+ieHdNhvLzPZpAbmQn6AAV+fPwg8Njx98TNC8MuuHvLyFCQOCoYbs/gK/QKTxUkF78WPjRGAUsbOexsyega4YW8YB/3VNOPxp9k3+i/ForaD87L+vkmfAHxE8U/wDCwPiFrnixjiXUL6aUZ6FSxC4/ACr/AMOfEt34I8V2HiRbdLo6dOlwsE33S0ZyAa86isPlWS1+ZQBkdxiux0+5ikiK3OemFYdR/wDWrSCM5vsfrH+3p/wUNvf2tvgF4f8ACqXNytzbSxrd6e/+qgjgX5SmOoJ79a/IO0vldBBeDeBwrfxD/GrOppcRXkQUnaOQy9DUDm3u1aXIilB4/ut/ga56OGpYePs6MVGPZab6spSb1kfbPwTtk8Efs9eOPiMG3T6u0GhWjjrtkO+bHvgYNdb8TrrRvAf7MfhXwBfGSA+JrqTUbjyxl9kQ/d5HHBYioNc0KfRvhB8M/g3Cmy61Pfq12q9d94+1M+vyCuE/bM1u21D4rQ+E9JkzF4YsINPEf+3je+PfJGa0h8Dl3f4L/gsc94x7K/3/APAX4nyJqEUtpOmDwCCGHQ1Za6gvCFvhhv746/jWOt5MlxtIDBjyrdKubI51aW0J46oeox6etAcotzazWk6ZOVHzBh0NQi4jvGAvBnec7x1wP50y3vpYUdx8yNxtPQ/4U+aGOSJnsPvKu3yyeR649aAPZP2avh2vxH+O+haRejzLBLj7XcuOght/nbPp0FfavwR+OPhS+/bP1LxR46U/YtY8+0tpF/5YOTthI9sKBXif7JGmX/hf4afED4uRQu0sFoulWpVSSJLj7549FrQ+AXwCvvH/AIB8XfGuWZ7aHwyYniAHDSMc8ntgc/Wt8LCEpVJ1PhivxloiK05Rgox3b/Bav9D+uP4OfELWvEngKGCYC4ntyEkccEFeATj1Fe3WeuPbu93epPsCBX8lske4B9K/OH/gnZrJ+MnwgkbTLopqcEm2+AbLgoMIx/3vT0r7j0zTNfu7V9AiCv5ZZ53GScDvXk1qfLNo0i7o9b8C+D/C3xi13VPhX8SdSvdK03XIgtlqVhObea2njYOmJOzE9uh6V8F/8FL9Q+PP7KHw68OfBDXNaHj921ltT0i4tLZhfRWiRhJhdMuQzOzDBGM4zivpy40u20uTTorO9dIVuklljKsQWU/p7Gus8RnwX+0D8cJvCmvaitxZaZZLBFJbsUkZ87pPm6ghzgH/AGa2p1+SHJbXuS6d3e5/OPJ+3T8QPAt4up+IfDl7ZWrHYzXcLqMjqASMV+xn7Ef7dfiHx5+z/qxvbVP7NutXtbPTJWH7z7SXBcIe+3vVP4uf8E8vFOuNHdWPirUNf8OvLltKv8Sug6Eq2OcfyrZ+AHwY8D+APib4Y8C3msWOk6R4FW5vzFfMsUSTykCSV8HaxUcZPQmrVaUk0LkSP3l1X4k6NaSLfzj57G3knlZxwoRQSc1+b/7AGiT/ABN1/wAc/tb6sm+88QazNBbzHqbOBtoA/wBnPSvU/wBuyPVpf2dfEo+EurQSS6oIdNe+jJCWwnAOcjqGU8Ecc15D+yJ8avB/wS+D+nfBu4c/8S6BY1li53tjLsR6k5NRKhUTs4lKpHufRP7Qn/BO79lj9qq7s/iDqmjxaL4l0+4S4j1OyRUYzxHcpmTG2Rc4yD1rhfHPiDVfB0ieAf2tfD1r4l0f5Vg1zTIMrCicKZYuWjx3KkivsD4Y+M9M8T+Hptdj3v4cSZVurlVO6PPBb6A4zXDfG6xvLbxxYXPhAPeWcmmTvArfdkwCO/c5PFROnKDtIpNPU+KtV/Yv+DnhTWb74ofBKyGnyarAj3eqaayLIVVt48yM4VwBkdjg1+TfxOX9pb9nj47XOu/BL4nqtz4h1IyrY6jD5llM7YOxkDHAwNoIxjFfSvxe0L41ftI/tMR/DX4P6ze6BaeEbRIdRjspfJWYuNziUHKsMkKO+Fr8n/2wPiFb+FvFGjS+C9QuL/XNKe5F5NI42wurGJFGB/dDc9yaiN1sxNJ7n64eBv22/B/iDUrXwN+17pk3hTxTKC76np0hfTJgOBIrKSUz6N0r7g1nwRfeI9Kt9b0e9i8QQxKr2twJN5aNvuk9dwI96/kK1r4/RWvhu90bX7NZLv8AdRwtBJkMXG5g5bJPXHHeua/Z1/4Km/tH/syfECfRvAzrqeg3LEPpV8TJDGo7RH7yevHFbwq2OepQvsf1t/F74CeH/jt4G/4R3xtbX2k3KAGK80m6aJ4mXpkLggcdwa6LwJ8N/D/gfw6+k6Rqd+TcxCCUXN200bFBwRn7uep9a/IK0/4LgfFHTvA48Q6/4F0xVmVVnJndGCP3X5Sd3pXK+If+Cu/g248MWE/jbwpK1xcOWezsJisyQuPkYsQMyMcnGDgD3q51Yz0ZEKU4bLQ+Vv8AgoT/AME5v2rfEni/Ufj14U1E+MNNUNBHZ2kQW4t7RTny9gHzgHuOa/LTwTZT6epsrtDFLCxR0cYZXU4II7EHtX7y6T/wVf8Ahp8QHmFtoniXw7Y6JF59xcMyhnQcgbR1ZsbePUV+GPiX4tW/xU+MfiL4h2Fi9ha65qU95Dbum0xpK2VU8YyB19Tk19HkWKm705apbP8AQ87NKF4qdrM9FitHcDHIPWtTy7medJZ2LFAFBPXavAH4Vp6LDe31hILOBpcFCxAzt5Pftn9aAqj738+hr6WVrHh042eh758H9Vn0rWLa7tiFkibcCwyM4I5B4PWv2Z+Aes6TPPDesscTfL8icLkDk/jX4QeDtW/s+/U9hX6d/Ab4h6XDcWv27gEK2FPavkM7w8mrxP1jhDHwjaMtz9xDpl9rlrbzx5EY2sSoz068e3av7BK/jx+Fni6LXtPgFiNkKjIDHn3r+w6vksMmuZM9bjBpujb+9/7aFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8pnf+CkX/AGO1p/6X6vXUfFn9d9fIv7e/jv4s/DH9jT4k+P8A4ERyS+MdJ0K6uNIWGH7RIbtF+TbH/Gc9F719dV558Vrb4m3fw+1OD4N3Fja+JjGDYSamjPaCQMCRIE+bBXIyOhOaAPxf+Av7dT/D74EfF74k+N/iNq3jfxR4A8LP4gm8O69pA0a6t0ghkcSIn3pIZZF2b+gI9af8Jv2iv2tPgF8Svgtf/tIeL4fGWkfHPw7qmoXNlHaLbDRtTsrD+1I47ZlOXgaEPEd/O5Q2ecV7HpP/AAT7+LPx6+KXjn40/travpUl/wCKvAtx8PbXTPDySC3ttMvJGlnlkklCtJKzkbRjaoHqTUPwO/YF/aBf4ifDnWP2q/FOla9ovwa0G/0Lw1HpkMkc169/bCya7vN4wsi2gMYRMjczNnpQB8t/CL9rb9sbQfBnwB/bM+J/iuDV/DHx28SWWkX3hZbVY4dJtddLixe3mB3s8REYl3cNuOMYrPvf21f2rk+Dmo/8FJE8URr4FsPiC3hxPBotU8l9Cj1UaO07T58z7SX3TDHyjAXFe+/CP/gmn8fPD7/Cn4JfE/xdpeo/Cj4Ja4mueH0toZF1S+az3mwhuiw8tVtt/JUkuVXpzUN1/wAExvjTLYXv7MMfibSv+FF6h41PjSS3MUn9roGvV1JtPU48sxG7Gd+chCRjNAHlPxj/AGr/ANsDxbaftC/tPfB/xVBonhj9n3VG0+y8OParLFrI0y2iu783MpO9C6yeXFs+6Rk5zX61aF8RtD+I3xP+HfiHTCUbV/DV1qywt1WG7W2dcnp3xX5/fGb/AIJufHnX9c+LXw3+D/i3TNJ+Gnx3vo77xLFdRSNqNg7wpb3gs9o2N9qijUfORsbJ5r9JT4c0nwj8VfAfhfQ4xFZ6Zot/ZwL3WKAWyIM+wAoA+iKKKKACiiigAooooAKKKKAKmoafY6rYy6bqUST286GOSNxuV1bggg9QRXhY/ZT/AGagMDwJof8A4BRf/E17/RUyhF7o6KOLr0U1SqON+za/I8B/4ZU/Zr/6ETQ//AKL/wCJo/4ZU/Zr/wChE0P/AMAov/ia9+opeyh/Kjb+08Z/z/n/AOBP/M+XD+xP+yg3igeMT4C0b7csPkBvsqbNh5+5jbn3xmul/wCGVP2a/wDoRND/APAKL/4mvfqKmNClG9orXyNJ5xj5258RN2VleUtF232PAf8AhlT9mv8A6ETQ/wDwCi/+Jr0TwR8Mfh38NYJ7b4faJZaLHcsGlWzhWEOV6FtoGcV3VFWoRWqRz1cdiakeSpVk12bbQUUUVRyhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRXjOq/tD/BDQ9Rm0jV/E9hb3NuxSSN5cMrDqCKz/APhpz9n7/obtO/7+j/CutYDEtXVKX/gL/wAjP2sP5l957tRXhP8Aw05+z9/0N2nf9/R/hXOa7+2T+zD4bu7Gx1jxppsUuoy+Tbgy/efGcVSy7Ft2VGX/AIC/8g9rD+ZfefTNFeE/8NOfs/8A/Q26d/39H+FH/DTn7P3/AEN2nf8Af0f4Uv7PxX/PqX/gL/yD21P+Zfee7UV5p4Q+Mnwt8f6k2j+DNdtNSukQyNFA+5go749K9LrnqUp05ctSLT81YuMk1dMKKKKzGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUyT/AFbfQ0+mSf6tvoaAP4pf+Dl//kzX9lX/ALK5F/O5r+12v4ov+Dl//kzX9lX/ALK5F/O5r+12gAr+Q/8A4NQf+bvP+ys3f/tWv68K/kP/AODUH/m7z/srN3/7VoA/rwr5l/bA/aY8Gfsj/s/eIfjj42mWODSbZ2hRjgyzkfIg9STX01X8GP8AwdJ/t+y+LviPpn7HvgK8zYeH1Nxqvltw91IBhTj+4v8AOujCYaWIrRow3bNsPQlWqRpx3Z/Mb+2f+1L48/a8+Pmu/GPx3dPPPqNw7RqxyI48nao9gK+T6XJ6UlfrWFw8KFONKnsj9EoUY0aapw2QUUUV1GwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHv/AOzX8Uj8Lfiba317Js03UMWl5noEc/K//AGwc/3cjvX7cggjIr+cev2R/ZP+KyePvhimnarLnUNBC285Y8tEB+7c/VQVJ9VJ71+CeM3DPNGnnVCOqtCfp9mX3+6/WJ+7+DnEnLKpk1eWjvOHr9qP3e8vSXc+iF8VeG20+91Zb6E22mtKl1IHGIWhzvD/AN0rjkGvwz+MPivw341+Ieo+IfCWnx6dYTSYiSNdu/HBkZegZ+pAAA9zknC1vxnrmo6vrV5a3U0MGuXEk1zErkLKGkMgDgcHB5Ga7X4EfCv/AIW78QbfwxPOtvaopnuW3ASGJMZVAeSxzjjOByelfS8KcGYbhSGJzTFV21y+a5YpXd0vid9F+GrZ83xTxjiOKp4bK8LQSfN680m7Kzfwq2r/AB0SPGyrLjcMZ5pK/bX4s/AP4X+NfBa2GpRR6QNJttttexAKbaKMdGzgNGAMkMfUgg81+Kd5DBb3ksFrKJ4kdlSQAqHUHhgDyMjnB5r6Tg7jTDcQ0ak6NOUJQdmnqtb2als7pbbr01fzvF/BuJ4frU4VqkZxmrprR6WunHdWvvs/W6Vaiiivsj44KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKUgCug8NeItS8L6xDq2lzPC0bKTsbBIBzjiuforKUVKLjJaMUoqScXsf6bf8AwQG/4KJ2H7VfwFHwZ8Waj9r8SeFIlEMsh+e4s8AA88koflNf0K1/kzf8Env2x/EP7JH7SOieM9LlZVtLkSSxhsCa2bAniPrlMsPcV/q0fD7xxoPxL8D6V4/8LzLcafq9rHdQSKcgpIARX5Xm2BeExMqfTdeh+fZhhHh6zh06eh/KD/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676/kQ/4OK/8AlKn/AMEyf+yo3H/p08OV/XfXmnCFFFFABX8gX/B6t/yiy8A/9lV0r/00axX9ftfyBf8AB6t/yiy8A/8AZVdK/wDTRrFAHwB/wYxf83Rf9yT/AO5qv7/K/gD/AODGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9P+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAooooAKKKKACiiigAooooAKKKKACiiigAooooA/KX/AILLf8Ew/DX/AAVi/Yo1T9mu81OPQfEVleQ634a1WZDJFa6paq6L5qr8xhmikkhkxkqH3hWZAp/zCPHX7EX/AAWq/wCCKvxck+KGm+HPGHw8vdODL/wlHhkyXekTwA5xLdWvmWzxtjcYbnBx96MEYr+63/g4U/4LrftV/wDBH74tfDrwj8F/A/hvxHofjfSLy8a811Lsut3ZTKkkcZgnhXCpJExBBOW9MV+oP/BFf/gpI/8AwVN/YO0D9pvxHBpem+LTe3+m+IdK0l2aCwu7W4cRLtkeSRfNtTDMA7E/PxxigD+ET9mT/g8g/wCCm3wkFvpfx/0fwx8V7CPHmzXVodI1JwP7s1kVt1z3JtGNf2hf8EiP+DgD9kT/AIK1yXHw98J2t14D+JmnWv2u58L6tLHKZ4V/1kljcptF1HHxvzHFKoOTHt+avp79sr/gjX/wTZ/bs0LUrP48/CrRP7Z1CJ1/4SLSbaPTdahduki3cCq7sh+YLN5kZP3kIJB/yp/+CeF/r37L/wDwWs+FOjfBPWm1VtA+LGn+HrPULY7BqVjNqQ0+XG3I2Xds7qQCRtkNAH77/wDB0t/wRz/Y9/YH+FWg/tV/AUa4PFXxI8dXi6x/aN8tzbYvIbi8k8qMRIU/ejj5jhePevbP+Dbj/ghJ+wv+3F+xtoP7a/xvHiH/AITXQ/GV0lt/Z+orb2mNKeCWDdEYXJ+Y/N8wyPSvun/g9r/5MW+Ef/Y9t/6b7mvq7/gz1IP/AAR9ix28aa3/AOg29AH4Lf8AB4D/AMFMPiH8Sv2mbD/gmJ8J767tPDXg2G0vfE9vayMv9q6vqMcdxbQSKh/eRW0DxOingzSklcxoa/Vf9i3/AIM5v2HfDn7O2lJ+2xfa94l+JOq2Uc+qPpeofYbLS7iVQzQWqxo3m+ScoZZS4kILBFBCj+ST/g5S8A3vhP8A4Lk/GbTfE100Vtq99o1+l0ylgtteabZtuCjBYRZZMd9lfvNo3/Blp8V/EWj2niDQP2qrO9sb6GO4triDQZnilhlUMjow1IhlZSCCDgg0Afh3+3R+zn+0n/wbVf8ABVTSr39nHxjdz28Fvb+IPDWqSfuzqejTysktlqEUZCSDzIXhnThZFCyqqFlC/wBTX/B0/wDHjwv+1H/wQT+D37SPgpGi0rx34r8Ma7bROcvEl/pOoTCNunzJu2N7g1+OX7Rv/Brv+zz+zJ4tsvB/7VH7dngfwVrl9aC8tbPxFYJZ3MtqXZBIiTamGMZdXUMBjcpHUGv0b/4OC/gP4e/Zj/4NpP2fvgV4R8WWvjzSvD3ibw5FZeIrFQtrqdvLpupyx3EIWSUeVIrhoyJGBXBBxQB+EH/BvB/wQ20z/grn458S+P8A4+axqWjfCj4fPDa3C6cVS61LULpWkFrBK4dIUjUCSdtjNh0VQC+9P3G/4LFf8Gm37M/wo/ZK8TftJf8ABPi51vTvEXgTT5dXv/D+o3R1G31LT7RC9x5DMgmjuURWkUbnSTaUCKWBH0X/AMGS/wAUvA2p/sOfFj4K2c8I8S6L45OtXcAP702OpWFrBbuQeq+ZZzrx0I5xnn+sP9r34leBvg5+yp8SPip8S547fQNA8M6rfX7y/dMENtIzLjuW+6qjJYkAAkgUAfwwf8GYv/BQ7x/J8RPGX/BN34gX9zqOgS6ZL4p8L+fKZF0+a2kjjvLaIMTtjnWZZlRcKrxyNjdITX+hTX+Tz/waLeGNe1//AILMeHNV0iRkt9E8Ma9e3wXo8DwC3Ab286eM/UCv9YagAr8rf+C4f/KIX9or/sRtV/8ARRr9Uq/K3/guH/yiF/aK/wCxG1X/ANFGgD+Dn/gzA/5Su+Kv+yaav/6cdMr/AFGK/wAuf/gzA/5Su+Kv+yaav/6cdMr/AFGKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/ME/4PVv+UpvgH/slWlf+nfWK/0+6/zBP+D1b/lKb4B/7JVpX/p31igD+v3/AINcf+UFHwM/7mb/ANSDU6/f6vwB/wCDXH/lBR8DP+5m/wDUg1Ov3+oAKKKKACiiigAooooAK/xBv+CTv/KU39mn/sqvg3/072tf7fNf4g3/AASd/wCUpv7NP/ZVfBv/AKd7WgD/AG+aKKKACiiigD/Or/4LsrZ/8PVvimZVy3/EkP8A5SLGvyu0G60e3lM19bLMGVl2sSANykA8dweR9K/Uz/gu1Oq/8FWfinG54H9h4H/cHsa/KGzuEjf5h71+s5ZC+Eo/4Y/kfB4+SjXqP+8/zOpEenxXTtp+826n5GPysR74qdJLcKVkXbwcVQhulkG0DHQCun0Lw9qniOaax0i3+0SRwvO4LBcRxjLHnHQdq9DkS1Z5Mqsm+U5aVEB3oMkUoNvcxrFNGI2RSN46uc8Z9PSt1rCOYtPFHtSPG7HQZ4/WpBYmQDyQp+ta8quZcxDpHhq+v7W61G1C+XZx+fJlgMJuC8A9Tk9BXWaBp8WH+0LvyuFBP3T6iq1vC8EKmQAjkFceneuhgns5FxbpzgZIpxT6GjlFWVzZ8PaRaz6isbnjPJr7Z+LPgL4ceFfh94au/DOsRaneXcLPcwKmxrdyR8pP8Wa+I1v4dOiEiocuMr6/WtH/AISHUr2FbcFm3HCA/wBKU8POc4yUmkuncVPFUqcJRtdvqdLPbWE96omUD1A7VjaroFl5mYcAPjg1nHX7qFoLOeJI5EYh5T95iT/ET6Ulzram4aNyH2HAYHgj2r0qVF3PLq14crvuczrfhSC8UOIlVAuCAep9fxrxrxt4Skg81dPtjJpMymNrW4AdJFIG4MPryD1FfSUWuBRJHDgLKpQ7hkgHrj0NWE0+zvkUShWHcGnisBTrQcakbmWFzCdGd6crHy3F4Q/Z3/4Q7w7/AMI8mpWGu+DLW7uxBJGJLeREzLs35znI4OOnFfhpqQbW72bUbr5Z7mR5Sf7xkJY59+a/pH8R/DlluF8Q6F+6nOSyovyqvTHuCOor88/2gf2Uj4gluPGvwutEj1BQXvNMjGBIRyZIF9e7J+Vfmec5DLC/vKa9z8v+Afo+T54sT7lX4/zPype3lgHkXIyvp3H0piWtxbMJ4Tlc/e7fQ13s1oVlazv42RoyVIIwyEdiDVA2MtrIf7revKmvnHGx9Dzo+iv2SLGC08aaz8RZhsTwzo93e+3muvlx499zCvQPihPb+EP2VtO0mfd5/izWvNlz94xWKZJ9x5hq18GfDZ0z9nbW9Rt1In8WaxaaXEO/k2oM8oHsflrH/bF8jTfEXhn4Wqdo8OaND5mOguLwmZ8j1xgVnCWsvkv1f6Gk4+7F9Nf6/M+NBFPaSrNG+5egZeldXAqXVuHGEm647NWFbRT2cvlyKNp6g8g1pXS7o5JbbO1FwV9P/rVtDRXMZa6FCO6nhuJFcfIvBRq7Pwh4Mn8aeLdJ8MaT87ahdxQ7P4gXYA/pXFWdysqpbXfO453DqP8AEV9f/sgaIIfi7L46vgDZ+FdOutVZ+q7kUrHz/vEVnOXLFtlxV2kj6r023sPF37W15d5H9keD4PLRgflWKwj2j9Qa/L34ja9d+JvGGp+KpWMn9oXUtx5gP99jj6YGK+/vC95N4V/Z68efEq4YJf6666bBITyXuGy/8zX5t3Hn2c4RRg/dKnkEdKclyqMOyX3vV/iwUuaUpLv+C0X5F2xjOovHDMuZ5CEjYDkk8DPrWt458AeNPhrq39jeLrKWwuWVXQsOGVuQVPQivWf2efDfh7xP8avDVhrUyW1kbyJphKwUbVOSAT69q/fH/gtL4v8A2Rz8FPC2jfBjQ4m1b9zHPeBWA3BQWALc7h3xxXn4jHOliKWHVOT576paRsur6X6GijeLlfY/mXeS3uRHDdfK4Gd4GAceorHv0ks1QTDrlwQeD+NXbm2S53T2Z3gnBU/eUV0Hw18PX3j34jaT4HgXzY9SvIoNnYKW+Y+2AK7mRc/eT9nS0+Jn7O37Etv470bwDD43stYDS6vBMjtiOX2TkHb0btWv+1L8UPhN8M/gzp3wa+AWjjw7ZeM7C21LU7NckpuAJBLZPJHSvCPAnx7+KFr+1RB4Z8BahNN4f0yRdNi0tpWS0kQ4i+YKRnoz89xXjX7SfipPiN8f9U1CzI+yi4FnAAeFhg+Xj24JrZRTpR5lo9fu2/zMp6Sa67H19+wV+0PY/s0/E/RZPEUxi0jW5Ftbtc/KDMDskYf7HH51/Sv4k0PWdB1SHxPp6C4tL9V2KuSoRhktx6g5Ffw//FHVZn1KGwg5W1i/h9W/wGK/rI/4I9/tP6T+098E/wDhVvxUuTLr3hS3WzYsSTLbDiJz6nsa4alNyh7Tq9fv2NnL3uXsfUviNpNRs9+lcOoxvkO1QDwOQOPxrU+Dnw7+HnhC1HjHQLu31LUBcvbTyRMGyyNk8cH7xPJHNe9av+zxqsljdReDLpQJOFikG7vncuf5V8K/FL4MfEjwFrEetaVFNo975nmS3tpETGCSPmeI/KQe4z+Vc5SPpz4ufEHxN8LvDt/4z0bRJb/ToYpZGSJgGik2nAGT91m6E9K/nW/YQ8efDfQP23v7Q/agjSbwf46ttS0u/t7lzPDG16VYM7ZwAGXBI6ZFfq9+2b8Q/HWqfs4SeFfE0UdtfMjTCeNvKhv4YV+bYh53ZOdhr+fNtC8T/brC70CwluFe0LROoBAZgd3y56j0qoScZJiaurH7j/t/6t8K/wBgn4Hap4G+F3xQfXvDXjRraHTvDl1MLtdOdZBIJIpQSyptAVVJPtX5peNfil+0D8NdF07xT450ifw5p14EKXtyhCuHGQQBzgivJvC37B3xM+Iv7Tfw1+H3jq7hufDtl5Gva1ciYOVRjuVGXrngKR2zVT/gsJ8YPGGpftDz/DG4d7fR7FY2hiz8vkRAbNvbB68V0TxMm9FYzVNW1P1q/YS/at+JepfCXxn4kkvnGi6i8eiWUBYhbm8mYZ2IeuB1x6V+2p8YR+A/hreeMPHcqwQeHtOcJ5x5Z9nzYz0yelfjZ/wRm/ZS8NXPwy0j46+Plm1DUrLdPZ2t07GG1jl5DpHnbvx/ERmv0W/4KRZ8VfCLw18ENAlEWo+NNViXC/fMOfmY+ihck1lUqORcYpHx7+zlqGtfBf8AZm8Z/tRXQeXV/Gc0zWayHMha4YxwKCeeFyx9hX8suq694q8efHnWLLw3jWLeW7khZgdkcgUlRITgkLuO6v3q/wCC0/xA8R/szfA3wf8AAn4fyzTx2cAuGa0QyIpK7UJdQQNq5I+tfK//AAQNX4RxfEG58b/HXTkFtGFktjeKBG1xNIYoxluMgKcD1OaKNPnkosU5WVz8gPjt8NfFnwe11H8ZSW84uk82CS3JK7ujDkAgr0rt/wBmL4Kr4e+FOs/tN+MbTzxqiz2ejxSAcxRgm5nGfRQVU1/eF+13/wAEk/2Vv+CgXgv7StosF6gMkF3ZN5csRP8Au8EevFfk18Y/+CKfxk+KXifw3+zdYa3YeDPCVrbxafFfyqx8uFWHmFOi75FGMHqTW9bByg7rVEQqpn81n7J1n8Yf2mPiMfgd8L/Bz+Ntc1UhNNhQfLaDPMrk/IAFwMucCv7vf+CVv/Bu18Kf2ahF8dv2xobXxn8RLlCYbMjzdO0oSDbtjVuJJADguRgdq/WH/gnL/wAEw/2Vf+Cb/wAKYvAfwF0yOfUJ1DajrdwFkvr2XHJeT+FfRBwBX6QScRkgZwK5DY/ysviNoGtfDr4w+JvhdHr2qNqum63e6YlnBZwTlnhneONAp5JOFAyOpr7h/b9/4J/+NfgD/wAEudc+LPxeuIL/AMX+HPHumQyGO2it2s9PmjEex/LAy7GdS/JHTHSuv+L3hPQ/gB/wdHXNp4jto5NN8R+IE1COGUZi338EVzGwU8ZEivg+tf0M/wDBaH4Tr8Rv2E/2p/A3k75G8PWHiu1ULn95aRhiV982nX1NdGFqOnVjNdGZ1IKcXFn+eH4M8X3Mmm+VazNGkqrvVWwG28jPrg9K15J1UnnAr5i+FeuPc2yc/Qex5H6GvqPw7PpyPcXeobWaKFjFHIpZZHPGOOnXIPqK/R6XvI+IxEnGXKLY3zLL8hwQetfTfwu8SfYr+D95jtjPpXybaERy57Z4r2HwZKRcxkHBBrkxtFSg7ns5LiZU6i1P6O/2YvHb3GnxLI3mHy+MduAK/vAr/N4/Zj8V6roflSIpkHQZ9+1f6Q9fnlSl7OpJH6Rn+JVajh5dfe/9tCv5EP8Aggd/ymd/4KRf9jtaf+l+r1/XfX8ev/BDO51yz/4K8/8ABTG78MW8d3qUXi2F7SCVtkcs63usGNGb+FWbAJ7CkfMn6afEH9vX9oPx/wDFfWf2P/g1qGmeHviRN481bTIp721knj0rwxpNml0t9PHwGFyfkjbO3L+oNfpr+xV8afE37RX7KPgP42eNLRLLVvEWkw3V3FECI/O5VmQHkI5Xeuf4SK/HLwX8df8Agox8NfF/j66+LXw/+Hlpr2ta3dtZT6t4ghguYtNliiWKFSVEj26sGK7uuTX7TfskeEvEfgT9mTwJ4P8AGGsW3iDVdO0W0hu9Rs9v2a4mVBveLYAuzPC4GMYoA+iKKrRXtnPPJawyo8sOPMRWBZc9MjqM+9UtP1/QtXuJ7TSr2C5ltm2zJFIrtGfRgCSD9aANaisi28QaFealLo1pewS3kAzJAkitIg/2lByPxFB8QaENXGgG9gF8V3i28xfN2+uzO7H4UAa9eKeJ/wDku3hP/sHap/O3r1W61/QrHUYdIvb2CG7uc+VC8irI+P7qk5P4V5V4n/5Lt4T/AOwdqn87egD2uiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlnxB+xf+zn4p1u68Ra5oHnXl5IZZn8+UbmbqcB8Vj/8MI/svf8AQtj/AMCJv/i6+vqKz9jD+VHqRzzMIpRjiJ2X95/5nyD/AMMI/svf9C2P/Aib/wCLrhfF/wDwTR/ZH8Z6npOqaloEkb6PP9oiEdzIAzejZJ4+mK++KKieGpSVpRVjalxHmlKXPTxU09ftPqrPr2PkH/hhH9l7/oWx/wCBE3/xdH/DCP7L3/Qtj/wIm/8Ai6+vqKv2NP8AlRl/buY/9BM//An/AJngvwz/AGZvgx8INefxL8P9I+w3kkRhaTzZHyhOcYZiK96ooqoxUVZI4cRia1eftK83KXdu7CiiiqMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSf6tvoafTJP9W30NAH8Uv/By/wD8ma/sq/8AZXIv53Nf2u1/FF/wcv8A/Jmv7Kv/AGVyL+dzX9rtABX8h/8Awag/83ef9lZu/wD2rX9eFfyH/wDBqD/zd5/2Vm7/APatAH9Qn7R3xf0f4CfA3xP8XdckWO30PT57nLdCyqdo/E4r/H2/aa+MXiD49/HPxJ8U/E0xnu9Yv5rl2Jz99icfgOBX+iP/AMHMfx/uPhF+wI3g3TJ/KuvFmoJakKcExRqzMPoeK/zQJGZ3Lt1Y5/OvsOE8KnOeIfTRfPc+l4dw95TrPpohhooor7lH1Z+9H/BPX/gkX+yb/wAFEBpfgv4e/tQWWifEO6sEu7vwrf8AhidJ45RGHmjt55LyKO7ER3ZMXzFVLlAtfOP/AAVX/wCCS/xt/wCCWHxS0zwv42vl8U+FPEMHm6P4ktrZraC4ljA8+CSIvJ5U0ROdpdgyFWB+8q+R/wDBKWaWD/gpn8AXhYoT4/8AD65U4OGvYgR9CCQfav8ARv8AHviT9jX/AILG+Efjb/wTz+JUP2fX/h9rM+l31q7K17ZywEiz1ayYgZGTg8fK2+KTKODJ87j8fiMFiotycqTV2rK8dbXukjw8XjK2Grpt81O13otNbdEf5YPgDSfCGveN9J0X4gaw/h/Q7q6iiv8AU4rU3r2luzAPKturxmUouSEDqWxjIr+hfRf+CHn7H2vfsZXn7fNl+1rZj4aWExtLm+fwfdLcR3gdY/sxtvtvnGYu6gKEOQwYHZ81fjr+3L+xX8Zf2Av2jdc/Zw+Nlrsv9MfzbK9jUi21GxkJ8m6gJ6xyAHI6o4ZGwykD9dfh3cTn/g188eRlztHxthTGf4fsFi2Pz5+tehjas5RpVKFSylKK0s7p+qf9dDtxNSTjTnSnZNpaW2fqj8B/iZovgPw7491XQ/hhrk3ibQLWdo7HVbizOnyXcQ6SG2Mkpiyc4UuTjrg8Dhq/WX9k7/gi5+2r+258PIPiV+zb/wAIt4htJI1lntYvEVj9vsw7Mqi6tvNMtuzFCVWRVJHI4r5K0L9jL4x6t+1Lq/7HmrT6JoHjLQr+90y9GtavaafYx3VgzJJGLueRYWYspWMKxLnG3NdkMVRblBTTcd9Vdep0xr07uPOrrf8A4J8n1/Vn/wAEbv8Agg7+x3+3v4Qf4k/E/wCNq+IbrT7SyutU8KeEUNvdaW2oIzwx3l3dxHLgo6OkMJUOjBZWGDX5Gfttf8Eff23v+CfHwu0z4xftL6Lp2naFrGpx6Ray2eowXjNdSwyzqCsTEhSkLnd04A71+/X/AAZ1yMPij8dYgflOlaESPcTXf+NeZm+LbwM6+FqbdVZ9Uv6scOY4h/VZVaE9uqt3sfzHfD39nH4V+OP2ste+Bfjz4jaX8MvC+kajqMDa/r0c1yiQ2UzRqqx20ZMk7qMqp8tGIPzLwD+1H/BZ3/gir+zZ/wAEzf2M/h58XPhV4r1jxh4j8Sa+mn3uo3bwpYz28tpNOr28ESExgmNSuZpOCeTxj+fj9pP/AJOK8ff9jHqv/pVJX9nX/ByTI83/AAR//ZrlkOWa/wBEJPudFmoxlatDE4VRm+WTd1p2+8WIqVI16CUtJbr5H8Ldfsl/wSV/4JHv/wAFRrX4latd/Ee0+G+m/DW2066vLy9sPtkLx34uiWdjc26xLEtqzMzEjB7Yr8ba+t/hT+1743+EH7KHxS/ZT8KWqxWPxYvNCn1W/WVklFvob3EiW4UDDJLJOGfJ/gAwQTXp4uNaVJxoStLTXeyur6Pyud2IVRwapO0tNe2uv4H7gfCX/ggh+xd8efilY/BT4L/tteEvFHirUjMLTTtN0Q3Es/2eN5pNhXUCrBY43ckHGATW18b/APg3t/ZL/Zq+IkPwm+P/AO2h4V8IeIp4IrpLLVdDNu/kTFlSQltRCqrFWGSQOK+Mv+DcD/lMt8If9zxD/wCmS/r6V/4Otf8AlKLbf9iXpH/o66rxZTxax6wnt3Zx5r8sb3u12PMlLELFrD+1dnG97R7+h8+/8FOv+CLOlf8ABPP9mrwb+1B4L+MWmfFbw9401ddLs59KsFhtmV4Jp1mjuEu7lJVPksvy8e/GK0f2NP8AgiHefFj9l1/27P22fiZp/wACvhDInmaff39q15qGoqWKq0VvviwkpB8kgySy4ykTKQx/M66/bC+IWofsOwfsJapCt14csvGS+MrK6lldpbWb7HLaSW8SH5Vik80ysB/y0GR95if7z/8Agp3/AME/vEP/AAVL/wCCTfweH7Eup20x8JaZpmtaFpDTrHa6lafYBALcSEhI7iJfljMhChg6OVzuUxeLxGGjTpVqluaTTnZaLppsm/TTcMRiK1BQp1J25pNc1lt+Vz+dz4d/8EUv2BP227ifwn/wTY/aw07xN4yt0d10DxZo9zpEtyqDLPEzokzKo5YxW020HnGK/Kj/AIKf/sN2/wDwTs/avvP2YItdbxFLpmkaVeXN4Y/KU3N5bJLMsY6+WshYRkgNtxnnNfMt1pvx/wD2OfjtbPq9lqvgPx/4L1CK6ijuYntL2zurdg8b7WAPUAg8qy9Mg191/wDBZz9rL4dftt/tqN+0Z8NL2O8tdc8MeHjdiOOSNbfUEsYxdW+JFVj5M25MjKnGQSOa76MMRDERXtHOm090t9LapK/kddKNaNZJz5oNPot9Oqt8j8oqKK/U79ij/gjJ/wAFCP287W08S/BnwRJp/ha85TxHrznTtLZM43xu6mW4UEEE28UuCCD0rvrV6dKPPVkkvM66lWFOPNN2XmfljRX7cfs7/wDBvv8A8FF/2mPiB4x8H+B9I0qw0rwVr2o+HLrxHqt1Ja6Td3ul3ElrP9jbyWuJ4xJG3zrb4GMNtbKjxf8AaQ/4Iw/8FB/2Zv2iPC/7MniXwU/iDxD438z/AIR6bQZPtlnqPk4M2yUiPy/IBDTecsfloQ7YQhjgswwzn7NVFzb2uZLGUHLkU1f1Pyvor+h34l/8Gwv/AAVG+GvwgvPiw2n+HdcmsLZrufQtJ1F59WCIu5wiNAkMrqM/JFM7MRhAxIB/Ajwd4M8W/ELxbpvgLwLptzq+t6xcx2djY2kbS3FxcTMFSONFBZmZiAAB1q6GMoVk5Upppb2ZdLE0qqbpyTSOZor9+/D3/BuH+3Td3ui+FfiH4q+HPgTxb4hhE2neF/EHiRItZuc5+WO3t4rgOwxztcgdzkGvzM/a5/YG/an/AGIfjhb/ALPnx98MTWfiLUVifTFsz9sh1KOZtkbWjxZ83c/ybQN4b5WUHippY7D1ZclOom/Umni6M5csJps+N6K/YGz/AOCFP/BSO3/Zs8R/tTePPBP/AAiHh/w7ZfbvsetyGDVr1dwUJBYokk4kJYALOsWe2a+ofA3/AAa+f8FUfG3wst/iVLpfh3Rbu6hWePQdT1Mw6rtcZAdVheCN8Yykk6spOGAIIETzPCR1lVjvbdbkyx2Hjq6i7bn87tFekfF34QfE74B/EnV/g/8AGXQ7vw54m0Gc29/p16myaGTAYZHQqykMjqSrqQykqQa83rtTTSaeh0ppq6CvR/hp8SdY+GmqXt/pZLLf2VxZypnAPmoQjfVH2t9AR3rziisMXhaWJoyoV480JaNM6cLiquGqxr0Jcs46poKu6dqN/pF9FqelTPbXMDB45Y2KujDoQRyDVKit5RUk4yV0zCMnFqUXZo+kvH/7UPxD+Inw9t/AesFI8N/pdzF8rXSrjYrKOBg8tjhjjgYOeW+Bnwd1b4yeMk0WDdDp9tiS9uAP9XHnoO29uij6noDXi1fWH7Nn7R6/B6aTw34gtVm0a8l8ySSJAJ4nIA3f7a4HKnkdj2PyGbZfWyvJ8RT4cw8VVd2ktNXvJLq0vhW2iS0SifW5VmFHNM3oVOIsRJ01ZNvXRbRb6Jv4nvq29W2R/Hv9l7xH8KZJfEPh7fqWgE583GZbcHtKB29HGB64OM/Kdff/AO1Z+0pYeJ7Ffh58ObsTWEyLJe3UROJQwyIl74HV/f5exB+NvBfw58afEOW7h8G2El89jCZ5gmOFHYZ6sf4VHJwcCseDsyzJ5LDFZ+1CXeXuvl0Sc72SbfppbS7NuMMuy5ZzPC5CnOPaPvLm3aha7aS9db9DiaKklilglaCdSjoSrKwwQR1BHrUdfbJnxbQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSkAUUUVAGjpOp3ejalBqlgxSWBw6keo/pX+mP8A8G5P7WT/AB7/AGLYvhvrdyJtT8HSGEDdlvs0pLIP+A5x7V/mUDr6V/Vl/wAGun7QLeBP2rB8L7m6kNv4ltZrVoiMRI6fPGc92PNfL8U4VTw8ay3i/wAH/wAGx4HEFBSoqqt4v8Gfqd/wcV/8pU/+CZP/AGVG4/8ATp4cr+u+v5EP+Div/lKn/wAEyf8AsqNx/wCnTw5X9d9fn58cFFFFABX8gX/B6t/yiy8A/wDZVdK/9NGsV/X7X8gX/B6t/wAosvAP/ZVdK/8ATRrFAHwB/wAGMX/N0X/ck/8Auar+/wAr+AP/AIMYv+bov+5J/wDc1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9T+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAooooAKKKKACiiigAooooAKKKKACiiigAooooA/Gj/AILe/wDBJDwj/wAFdv2Tl+FMeoQaB478L3D6p4T1m4VmhhumTZJb3GwF/s1yoVZCoLIypIFbZsb/ADo9D/Zv/wCC/n/BCv406nqPwl8PeMvCEs4X7VqPh6zOu+HNUhiLeW0uyO4spdoZiizoJogx+VCTX+vnRQB/kx/Ez/gsR/wcd/t2eDrr4B6Zc+L7yx1mMWV5aeEPCv2O7uVlGCjT2doLhFkVsMqSIrKcEEGv3O/4N1v+Daf40/AT45aT+3d/wUM0pfD2qeFnW78JeE/OinuBeMp23t8YmdI/JBzDAGMnm4aTZsCv/edRQB/OL/wc+f8ABOr47f8ABRL/AIJ7af4e/Zn0s694y8B+JLfxFDpUbIk9/aC3uLa4ig3sqmVRMsqqTlxGUUF2UH+O3/gkt8eP+Dgv/gnx4q0L9lH4PfCvxzpngTW/F1neavp2qeB7u4FuLiWCG7kWWS1EkKNDGN537FwXG1iWP+qZRQB/KD/wcn/8EE/Gn/BTXSNE/ag/ZPSxT4seEbCSwu9OuXFuNf05SZIYlmb92lzA5cRGQqjrIVZ1CpX8sf7OP/BXf/g4i/4JleALL9kW48F65dWGgINP0nTvGXha8urqxhUARw20oEUjxIBiFWaRFTAT5AoH+q1RQB/lvfsnf8EZv+Cs/wDwXL/bJj/an/4KP2viDwp4Qv7iNtc8QeILUaXeTWdt9yy0qwdY2RWHyJIsK28eWcl3+R/6Kv8Ag8V8NaB4M/4I9+CPB/hS0jsNL0n4gaFZ2drCu2OC3g03UUjjQdlVQAB2Ar+vev5JP+Dzv/lFB4Y/7KVpH/pv1OgD+K3/AIJffA//AIK+fBn4U3H/AAVJ/wCCX9rqmqw+H9dvPCWt2Wgw/wBo3e2G2tLoi600q5u7SRblcFEkMTxlz5ZCPXuf7Zv/AAUj/wCC9v8AwVn0C3/ZV+IXhLxHPpM9xC1x4Z8K+GLqzF7PFyhugqPNIqsPM2O/khgH2gqpH9Wv/BlRDNH/AMEwPiBJIjKsnxQ1EoSMBgNK0oZHryCK/sFoA/l9/wCDan/giP4y/wCCXHwk8QfGv9pJbX/hbHxGt7aGeygIl/sPTIiZBZmZSVeaWQq9xsJjDRxqpbaWb+oKiigAr82v+CxHgLxx8Uf+CW3x6+Hnw00a98Q6/rHgzU7aw03TYHuru6neI7Y4YYwzyO3RVVSxPABNfpLRQB/nGf8ABpN+w1+2t+zj/wAFL/E3j/8AaH+D/jXwFoU3w91Syj1HxHoF9pVq9zJf6c6QrLdQxo0jKjsEBLFVY4wDj/RzoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8wT/g9W/5Sm+Af+yVaV/6d9Yr/T7r/ME/4PVv+UpvgH/slWlf+nfWKAP6/f8Ag1x/5QUfAz/uZv8A1INTr9/q/AH/AINcf+UFHwM/7mb/ANSDU6/f6gAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP85n/gu46r/wVe+K24Zx/YWP/BPY1+TEcyM2Wb8q/Vz/AILx/wDKWL4rbTjP9hD/AMo9jX5IxFAQmMetfrmWf7pR/wAMfyR+e5jG9eov7z/M6eO7GcQN059K0Ir+4V8pIRnrgkcH3FYst1DMkMcUIiMS7cg5L89T71ZgXf2/GvRT6HmShbqdRBq1xBBJaROyxzbd6g8HbyM/jWvYeZPbzXKlQIAGYMcEgnHHrXNW8sMayxzR796hUYn7rZ61E7NGpVhketbLY53T10Z31tcW8ljdXU1yqPAFMcZHMpZsED6Dmvpv9neT4ceL9XTwB8Sr2HRdKuXEr6gY9zxlFbCjHYk818WpM5XIHqR+NaVnJqDI0kSErF8xIHAHvVygpxcb27MuHNCSmle3fqeweNbGzs9UujotwLiytJTFG+eoJ4OPeuWhvY1ALZBHQ5rBN0l0YnUbSFw+T1PrVyKT5SCuc8Cu2kklY4atN83MzpYU1HVrKW5t0LpafPIwGSA3HPtWYGYHFbel6/JZGe1iVora6h8mWOM48wjoT+PNQWljbyW8s07EMuAoA6sfWumCZwVkt2xIZAOtej+E7E6jqUFhEHbzD8wXGSBycZ46Vx1voztprakGXCyBNmfmORnOPTium8P20L3kMVzJ5KSEZfsue/FdkE2medNpSTier2cQiQAKGjflSCD8p6Z96xNe8BrqIXU9OXZKvIZOGU+oxWvottHDetbWkg8k8At04716lpl/ZSx+XdDGyMhfLH3m9/aufFYKNSDTVzvwuPdJp7H5Q/tEfsn2HxQV9e0VI9N8SoDiTG2G9AHCv2WT0boe9fkF4h0DXfBus3HhnxTaSWl1bMY5YZQVZSPT/HvX9bt94S07XbYLcIoLDIwO1fIX7QH7Jnhv4yaeuk65F5N/FgWmpRrmSMZHyyd3Qj8RX5fneQyw7dSkvd7f5H6dk+cRxMVCb1PjP4UeBg9t8L/hyoyIdPk1m6BHSTUpcJn3ESn8K/Ov4/8AiuD4hfG3xR4ngbifUZkiz0MUJ8pMfgtfvb8UvhLpvwEsvFPxystTgvrPS9CiihRThoHgt/Jjj2/7xzketfzYSxvMGuoSWkJy4PJDHkn8Tmvi8PGV5SkfV4ia5YQXRGhbNgeXcruVeB6iql/E1pCJ4WyrnIYfyNalvIk9sIZ+Hxw3+NY2oNPa3QgPKbfmHYiuuWiOaO5TjEF05K/u5iMD0b/Cvuf4OafL4T/Zk8SeI5Mx3PijU4NJh3cEw248yXHsTgGvg+WNZE+1WgO1RkqfvA1+q0ng2WPw98NPgxz5tvp6X9yoGT9o1FwRn3CVyzSbjF9Wv+D+Bum4pyXRX/y/E83/AGn528JfBbwR8MbfiS5STWLtV65k+WPI9q/P77bG90I7kFlUcN/EK+qf2yPFg1n4+6qlg5W10dYtMt9p422ygN+bZr5LtvJv5j5ZCSk5K9m+npWkpczcu5FOHLFI2J4pbWVLmEng7ldT0P8AQivQfGnxm8c/EPw3p3g7xvqD3Vvo+TbPJywLDGGPfA6GvK1vrqydww453Kehoe2F3D59ocljlkPUf/WqSiqyTWDLKzbSo3Aj3r66/Y4s7eDxJr/xdvYgo8L6dLIjY+U3E42R/jzmvkI3pjgeCZd8btyD1GPT0r7u8J6ePAX7KEEdlkXnjPUDcc8MYIPlQfixqZpv3Y7vRfMqCXNrstWe5fsvxLoOkeJvjVqOd+nWs88RPeeTMMX1O4s1eIeBrWa+1G51S8YtsBOT3Z85/TNe++NUX4dfsz6J4RgBS48RXf2mQdzb2g2r+DOSa8lghj8P+ClvTxJcjp3xJwP0FdWMslyR20ivT+rnPRd3zvzbOBmthqGoTXM7cSyHr/dPSvevhv8AGT4p/staK3xA+DWpPpeuXcqQwsoDCRXbAVlPVfavBHjlnlRLcckheO4rv9fvdO1DxVoOgX0hjttOjNzIVGSG4VfyJzXPXeiiv6t/wSqfWTP2q/Zy/wCC/wB420nxTB8L/wBozwwdQkSUQ/2tpQYMWA5JhPJ/4DX9HnwG/ao/Z9/ad0+XS9B8V2F1cCILLYXDiO7XcPumN8NX4i/8EvPhb+z542+OS+OfGT6Pead4Lsvtk9/dqghEhXHzM2ASO4r8/viH4n/ZF8C/tO+JPF1nqMvjrxJql/Lc/bdHY6fploqOW2QsMNLIB8uB8orD6urXuP2vkf10+Pf2VfhT8ZvCUngXxlElxHHnyDjEkZJyCjdj/Ovx2+Lv/BMFvhbHca18P7qW5S2lMoUj5mGc7cjvX5J+D/8Agtd+1F8F/i/p/hPTpYfEfh5zme1vyTJCjMSFWbrlVwOa/cD4S/8ABZP9nj4oWItdeSbw7rEzCM214A0Ls391xwRn1qatCdO3N1Vy4VFLY+EvhbP4q+HXivXfEHiX7TeXV1F5OmWzRhGjYcvGzYGc9hXc3f7IHw//AGpNY0f4r/FTwz50drgGQTESjaf9XNH3APTtX6Y6H8JbP9p3VX8a+IdMgttJ0q4ie1mjcRtPKvJC44bIPT2rE8VfDSXwJrAh+Ft3Lfaes6tdyXH7po4pM4ZQeGwcAisLln29+z74a+G3hnw1D4S8Hf6NbeWEkBAXYo9ugHGK/PG81i6/ag/a217xxpM2dK8Jwx+HtNZeUSaT/XMvqViXr6tXokPjDWdJsdUudDtJ/tunxus6FSEePGHYeuAcj3rvP2PdL+C3hHWn8F6TqOy+dW1CRLhPLMtzdnc+1jw21Qq0AfR3if4MeEPHXh1dKs9IgZ4LZIXiljEqTkD5mZWzjd7dK/Mb4x/sZ/DfwBpUujXOn2+i2Gpz70tXby8yIPvxEEfd7EcrX7uS6RZSwySW7G3kA+Rl6Z9DX81n7d/7Q1l8Sv2hJ/Dct2Bovg23kSSX1nUF5Ap6Z3EL+FClbVA1c6n4EftNftF/sk67cRaJrcPiXwtanMEE10v2tYgeVUsRvIHbqa/Sn9p3/gsV8EYf2PvEHi3SUg1LxfEYdMt7aICWSG9uVBBZVzygOfrX8ZnxZ+INrPZXvia8bEcIaUZJACoMgAe5ryHwJ8bNK8TaCPFXhzQodA1O9RW1KGGRpILqVTtWfY33HI6gd67KWKk1Z/8ABMJUluf1Y/8ABEj/AIKvP8P/AI7aj8Hf2pdZ1N9R+Ic1qmg2txKblUnJYMXYnEW5RkDpgV/bdaa7ot8m+zu4ZQOuyRWx+RNf4wmv/ETUbP4lw+MtPmMmqaDJFOjKxTZMc7HO0g7VPbPWvsT4D/G746fD+e7v9e+JnjDRE1eIlytzK0TuTuV8OThc5PHUVzVJa3No7H9Hv/Bdv4FaX4b/AOCv3wy/aabVxpZj0fTtRbETSLO+mTywuNyA4JSQD8K/b7wl+1j+z9+3frHifwF8Obq5uDqvgG90rUhd20lvGH3bY8NIAGz5r4we1fwgTftVftO65fLN4w8c6p4h0yzjlhgu5JfNkSKXJ+ViCy4JyPQ18C/HL45fttfCXxFbwaV8UtdutH1SNZbWaG8IIB6xybcbWU9q1w1J1ZqEXqKclFOTPB/Ctpf+HPFd54S1NAlxpNzLYsAMYa3dozn3ypr6gEE9qVjmUqSAw3DBIPQ/jXy34E0zU7/UX1jVJXuLq5laaWVzuaSRzlmJ7kkkmvq5DqFw/wDxNGdpY1CnzOGAUcD8BX6PhIOMIxfY+HzBxlNyj3Jre2BhEgYA7sY717T8PrBJ7tA7AZZQB6kmvP8AwTpltq3iKGwuhmN1kYguEzsQkcngcivV/AEBg1SF+oDA/iM1ljNISOnJZXrxTP3h/Zj+FvhK8+G6+IZ7vbqi3EaLaleDFtzv3fXjFf341/npfs+eJrmDS0sbMndIBgfSv9C2vzuvJupK5+qZ3SUKGHs9+b/20K/kQ/4IHf8AKZ3/AIKRf9jtaf8Apfq9f131/Ih/wQN/5TO/8FIv+x2tP/S/V6yPnD6n8X/CH/hGP2mfi7ffGD9mW9+Lqa54mk1PSvEkt3AzNZTQxBbZY5ZAY44GVlQADIOTzX6rfFD9o3wh+x7+wefjnd+FJfDtpoWkW6WXhxcM9vcTlYbe1JjyABI6qzDhVyegr8y/2zdP/YT1f4yeN9J8f+AfiXqfie4keO4u9BS/FvJO0YCtbvG4jHbBAxmv1b/Yd8C+L7H9iL4b+BfjzpATWrXQLOHUbG+xcsrovyiXfu3SBdpcnPz5oA/nQ+Bf7TM3wz1L9sLWvBXxFPjH4gzfDiw8UC4hlkki/tdLW9e5NpGwwkVuTEiAAZVQTkk19T+EPA+g/slfEz9lLxZ+z9cXJv8A4leENdXxMxuZLj+2fJ0T+0Uu5g7MDIl0oIcAcSbemK/bnQP2Pv2evDXxJ8X/ABT0nw1Zxal440620rVlEKCKW0tVkRUCBQFDLKwfH3uM9K8m/Z5/4Jy/s5/s1+OIfHvgqPUb+702wl0rR49Uu3u4dJsJyDJBaK/EaNhVOMnaAuccUAfhv8IvDen/AA0/Zo/Y6/bG8F6jdyfEn4j+NNEg8S6m11JJLrEWvtKL6GZCxQog5UBRs8sYxisLUIJf+GENb/4KKfaro/Ge3+LkkcWo/aJPOjii8Rrpi6cI92zyTafu/L287s9ea/c74X/8Eyf2YPhL8VNO+KHhm21CRdBu7nUNE0i5u3l0zSrq73eZLa25+WNjubb/AHdxxip5v+CaP7Ms/wAZpPjC1vfhZtZHiOXQxdN/Y8mrrgi7a1+55u4B/TeN2M0Afi98XvDmn/F34Vftp/tS/EK/uofH3wv126tvCt6LmSKTRYtGsILm0ECqwUCWV2Z8qd+7Ffu/8P8AxX4q8YeL/hZ4g8TWZim1LwjLfXEpYD/SZ47VpE2dRgnrXA/Fz/gml+zL8Z/ipf8AxT8V29/E+uyWk2uabaXbw6fq8liR5LXcC/LIVAAP95QAcivpTxFDFb/HHwhbwKERNN1RVVRgAA24AA9qAPb6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACmSf6tvoafTJP9W30NAH8Uv/AAcv/wDJmv7Kv/ZXIv53Nf2u1/FF/wAHL/8AyZr+yr/2VyL+dzX9rtABX8h//BqD/wA3ef8AZWbv/wBq1/XhX8h//BqF/wA3e/8AZWbz/wBq0AfLf/B3J8TJZvE/w9+F0EhCW9tLdyJngs5wD+Qr+KOv6tP+DsLUp5f21dC0wk7IdCtmA92Z6/lLr9G4Yglgr92z7bIY2wt+7YUUUV9Gj2j76/4JVf8AKTH4Af8AZQfDv/pdDX2v+2j+118ZP2G/+C6fxY/aP+Bl99k1nRPGd95kLkm3vbV2HnWtwoI3xSqMMOoOGUh1Vh8gf8EjtA1fxJ/wU9+Alholu9zNF450W6ZI1LEQ2tyk0rkDskaMzHoACTxXb/8ABbHQtV8O/wDBVr452WsQPbyy+Jp7pFdSpMVyiSxsM9mR1YHoQa86pGM8b7OaunB6eXMcE4xliuSWqcP1P7ZP2kfgn+y9/wAHJH/BODSvjJ8FZrfSvH2jxyvo89wQbjSNXVVNxpd6VG7yJTt+YDoY51BHyt/Nvc/DPx78Gf8Ag3C+K3wo+KOlz6J4i8PfHoWOoWNyu2WCeGxsVZT2PPIIJDDBBIINfnn/AMEjf+CofxG/4JhftIwePtP8/U/AuvmK08VaIjcXNqCds8QJCi5t9xaInG4FoyQrkj+wb/g4t+IHwg+Mn/BGT/heXwPurLU9B8beJNB1eLUbJQovd6GJZJCAGMqxxJEwf508sI2NmB4To1sFiKeE3pSmnF9tdV/Xr3PK9nUwtaGH3puScX212/r/ADPxC/4NFbm4T/gox45s1ciKT4cag7Jngsmp6WFJHqAxx9TX4w/8FYf+Um/x9/7H3Xv/AEskr9c/+DTPxVo3h7/gprr2kapOkU+u+AdUsbRWODLMl5YXJVfUiKCRseik9q8q/wCCkn/BJj/goD8Wf+CsnxR8N/Cz4Ya7rFn4z8UXes6drKWjrpBtNTkM6ySXzAW8ax7ysm9wVZSuM4B9GNWFPNKrqSS9xb6dTsjUjDH1HN291bn7Bf8ABwhdXN9/wQl/Zkvbx2lmmvvCbu7HLMzeHrskk+pNeJf8Gdn/ACVX46f9gnQ//R11X6Ff8F3f2Ofj58Tv+CPHwQ+CXwH0C7+I2u+DNU8NR3SeGIJNR863ttHurRrmFY1LvAZXjw+0YVwxwM18E/8ABnjourQfEj486jPbSRwwWGhW0jMpAWUy3h2HPRsKeOvFePGpF5LWSfV/+lI85Ti8sqpPr/7cj+R79pP/AJOK8ff9jHqv/pVJX9m//ByL/wAoe/2af+v7Q/8A0yTV/Gx+1PpWo6L+098RtF1WF7e7tfFGrwyxSKVdHS7lBUg8gg8Yr+0T/g5S8M6/p3/BH79nmO9tJY20rVNDt7sMhBhk/saddr8fKdykc45GK9jHtfWcF6v8j0cW/wB9hvV/kfwg0UUV9AewfuJ/wbgf8plvhD/ueIf/AEyX9fSv/B1r/wApRbb/ALEvSP8A0ddV4F/wbWaBq+sf8FiPhjqOm27zQ6Vaa/dXbopIihbSruAMxHQGSVFye7AdTX0p/wAHYeharpv/AAUz0jWLyB0ttR8EaY9vKVOxxHc3aMAehKkcjtketfPza/tmP/Xv9WePNr+04/4P1Z/MfX7nf8Emv+C6f7Qv/BMpl+GGo2Y8b/Cy6uWuJ9BuJfKnspJSPMlsZ8N5ZY/M0ThonOSAjMXr8Ma/qx/4Lxf8ExPjRdaH8Nv2/fgv4eutf8M654E8PWvif+z4Wnm0+9sLKKGO4lRAWEElusSeZghHjIcjcme/Hyw8nDDYlJxnffurfjr/AFc68XKjJxo1lpK/3o/ps0XxX/wSG/4OE/gudLu4bPxDq+n225rW5A0/xVoRf+JGUmQIGIyY2ltXbAbf0r+Db/grh/wS98ff8Euf2jl+Gmp3j634P8QxSX3hjWXUI91bRkLJFMq8LPAzKsgHysGVwAH2jyz/AIJcaL+1Nq/7d3w3n/Y8gv5fGVnrNrMslkG2Q2nmKty10w+VbUxMyzl/kKEg5ziv6N/+Dvz4/fDrxP8AEP4R/s4+H7qC88R+FYNU1bVkjbc9nHqQtlto3xwrSrC8hU/Nt2NjDAnx8LQqYHHwwtKblTkm7P7Nuv3/AHnm4elPCYuNCnK8JJuz6H8Y9f2O/wDBpH8cfi94i/aZ8e/BrxJ4m1TUfC+neDBc2Ol3V3LNaWjwX0KqYInYpFxPJkIBnca/jir+tX/g0H0vUJf21fibrUcLtaW/gkwSSgHYsk1/bMik9AWEbkDvtPoa9LPkngKt+36ndmyTwlS/Y/Mr/gq9/wAFBv2yvHH/AAUT+Jljc/ELWdMsfh/421nS/D1lpV3JYWthFpd9NFC8cULKvnEIGkmIMjuSSegH9Xf/AAW1/bm/aL+EH/BGz4Q/tCfCLXG8PeMfiUfD9hqWsWiKl9DbavpE19dC1lA3W7SSwRgvGQwUfKQcEfxEf8FOdNv9J/4KQ/H6z1KJ4Zf+FieJ5ArgqSkuozujDPZlYMD3BBr+tL/gv/4c16x/4IFfs22d5ZzRTaVfeDkvI3QhoCvh+8jPmAjK4chDnGGIHWvNxdClz4GPKrX7eSOLEUqfNhVyq1/0PF/+DTH9pn45+Pv2g/it8IviD4q1TX9Gn0GHXFh1K7luxHexXKQtIhlZirSJNiQjG/auc7RX4q/D/wDah8Ef8E4f+C4vjH9oHVPDX/CQaD4G+IHi61/syArHIIJZr2zVoS+VDwiQOgPB24yudw/T7/g0E06/l/bE+KWrRwu1rB4NSGSUKdiyS30DIpboCwRyB1IU46Gqf/BNL9nX4W/GL/g5S+Meh/HbTYL1fC/ibxr4g03T7+PfFPqEGqEQMUbhtkczXCZBGUVh0BoqSpUsXjHKPu8iul10FN04YjE8y93lV0vQ80/aM/ZO/bL/AOCl/wC17r//AAVT8WW9j+zX8M7660u70jxB8QtSGmm3h0y3hit3gi/18ksnk+dHtRY2dsJIetfpL/wd839/4e0b9nTx/wCGbqWw1jS9S16WyvrSQxTwSKunyI8UqEMjK6KyspBBAI5r4Y/4LRfsP/8ABWL9uj/gqxr/AIE0vwZr+u+Eont4/Cd4VdPDdhpbQpukN2wFtC5cO1wGbzS4wAw8sV+v/wDwc1fsV/tEftc+AvgzpXwO0NtSg8MTa/d61qEjiGx021S1glM1zM2Fjj2wSYJ5ZgFALECuSNaCxOClOcbWlovsrl0Te7+dvQwjVj7bDSlJWs9F0VtLvqWv+CcX7Z3xw8Df8G5/iD9q3xJqcvjHxh4OtvENxYXXiCWS/Zpra7c2xmeRi8ghdgygtnChQQAMfzcf8E1v+C4v7dHw7/b08K+Kvj38Sdf8beE/GGsQab4g0rVbtri0WC/kEXnW0DnyrZ4GcSKIFiBC7D8pIr91f+Cbfwz8ZfGL/g108ffDf4eWEuqa3qdh4rFnZ26l5riWKd5BHGo5Z327VUcsxAHJr+O//gn5+zJ8RP2r/wBtD4f/AAI8BafNcXl/rdq96yq2LSyt5Ve6nlIGUSKMMST3wo+YgHpwOHw0vrvtYrSUr+S/Q2wtGhL6zzpfE/kv0P6X/wDg8A+A3hTw78U/hB+0bodlHBqniey1TRtVnT5TMNMa3ktSw/iYLcSru67VVScBQP40K/q8/wCDsb9rjwV8Zf2sfBv7M/gm6+2N8KbC7OrSRkGJNR1jyHaEEdWihgiLH+FnK8FWFfyh16mQxnHAUlU3t+F3b8DvylSWEpqe/wCl9PwCiiivXPRCiiigAooooAK/Zv8AZRf4Yx/DCCz+H04muFw+o+YAtx9oYc715wvZMEjA6k5r8ZK6Pwt4u8TeCdVGt+FL2WwugpTzIjglW6gjoR7Hvz1r43jjhWefZf8AVKdZwknzL+VvtJb27W2etmfY8E8UQyLH/WqlFTi1yv8AmS7xe1+991pdH1N+2drXw51D4gLYeFLVP7WtsjUrqI4R34whA4Lr/E3X+E5I4+Nq6Hw54e17xx4ktvD2iRtdX9/LsQE8sx5JJPYDJYnoOTX6t2/7HXw6b4YReCr0Y1VcytqiL+989hzwTzGMYCHtzw3NeZic/wAs4PwWDy3FVZTei7yS6ya6RT0SXTRJ2Z6WGyHMuLsbi8xwtOMFv2i30inbWTWrb66u10fkHRXY+P8AwVqPw88X33g7VZYZ57F9jPA29DkZHuDg8g8g8GuOr9Aw9enXpRrUpXjJJp909Uz4GvQqUasqNVWlFtNdmtGgooorUyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiilIAoooqACv1C/4JDfES9+G/wC2/wCB/EMV6LaC21a0eSMnHmhnCEfka/L2von9k3UZdK/aL8IX8PDR6pakH6SLXnZvBTwVVPs/w1OHMoc2FqLyP7dP+DiWVZ/+Cpv/AATGmTo/xPnYfjqnhyv686/j4/4OCpPO/wCCmn/BLub+98SZD+epeG6/sHr8oPz0KKKKACv5Av8Ag9W/5RZeAf8Asqulf+mjWK/r9r+QL/g9W/5RZeAf+yq6V/6aNYoA+AP+DGL/AJui/wC5J/8Ac1X9/lfwB/8ABjF/zdF/3JP/ALmq/v8AKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9X+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAor8uf28v+Cyn/AAT6/wCCavjzRPhn+194wufDuteILA6nZQW+l3t+HtRI0W8vbQyIvzow2k7uM4xivhT/AIitf+CIf/RUNR/8JzVv/kWgD+jGivwe+GP/AAcyf8ETPiprtv4a0r422uk3ly+xP7a0vUtMgHu9zcWqW6D3eVa/b7wh4x8I/ELwvYeN/AOq2euaLqkK3FlqGnzpc2tzC4yskUsZZHRh0ZSQaAOjooooAKKKKACiuZsPGvg3VdQGk6Zq1lc3ZLAQxXCPISvJ+UEngA59K6agAooooAKKKKACivHP2g/j58Lv2W/gp4l/aF+NeoNpXhTwjYyajqd2kMlw0UEeMkRQq8jnJAAVSa/DH/iK1/4Ih/8ARUNR/wDCc1b/AORaAP6MaK/nRj/4Os/+CITuFb4o6ggJ6nw5q2B+VqTX6d/sc/8ABT/9gT9v4XEP7IvxQ0fxhe2kfnT6dGZLPUY4s48xrK7SG5CA8F/K254zzQB950UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVzOq+NfBug3f2DXNWsrOfAby57hI3wehwxBwa6YEEZFABRX4x+G/8Agv8A/wDBLbxb+1nH+xH4f8eXk/xGl8SyeEk0/wDsXUFiOrRTm2aLz2txFgSqV37tnfOOa/ZygAooooAKKKKACiiigAr/ADBP+D1b/lKb4B/7JVpX/p31iv8AT7r/ADBP+D1b/lKb4B/7JVpX/p31igD+v3/g1x/5QUfAz/uZv/Ug1Ov3+r8Af+DXH/lBR8DP+5m/9SDU6/f6gAooooAKKKKACiiigAr/ABBv+CTv/KU39mn/ALKr4N/9O9rX+3zX+IN/wSd/5Sm/s0/9lV8G/wDp3taAP9vmiiigAooooA/zsf8AgutpNvP/AMFUvirLNvEs39grARjbuOk2IO72xn8a/IVIILSWSO/UsyFk+TjDDjr6ZFfuT/wWy8Ky+K/+CqHj3RIp4rQ3s2hwiec7Yoy+l2Q3MeyjvX4leIdLk8P+IbvQZpYrprKd4WkhO6OQo2Mqe6nHBr9ZympGWFpLqox/I+HzWlKFaUraNmOFVBu3datx3LBdgGOaUygQPEsa/M4cHuuOwPpWlPY6lqVtL4lkjCwtKImZQAocrkDH0HpivTPJlYtaesEglNxKVCruQYzl/T8qesoWQGRd6g5IPfGKo2UblQACc9hWjFGxk8thg5xz2reCMZuzuTRKt5d7YFEYdjgE8KD2/Cuw0PVNZfSb7wzpcRf+0TGX2DL4hJbA9j3+lYFrp7yW8k8fAjxn159K6a28vT7xJ9BmkQhB85+VgxGGH05IrojTvpY562IUUZUNsxdD2I7V7bF8H/Et34Bk+Jllbu+j28iwSTnAxKwztxXBaVpN5qEcjWCbvIQu3sBXbaN4s8THSW8Gw3brZ3Dg+SzYj39MkdOK7VB/Yt5nk1sRzXUr67GBoiada3sVxq0TT2y5DopwxyDjB+tPs4oUlIYnae1bf9iW9vEkk8xkJlKyCMfKFHQg+/NRHTrf7TIbbIjySm7rt7fjXdTSvoeVUnJqzZpW0UlpG8OFxMoznnAPPHvWnaWjSyh1XHTpWZBA5YZPHHNdjp9vEHAZuK9CnFJXOSTNqxs5EAkZj1+YV21pLBsVYFO4ZDH19OKwLRkRjs7dM966i0tGkHmq6kjHA681Tj3E58qO+8OIsqn++vqe3pX0z4P8G6BrdhFJIVa5aUgp3C44/Wvm3w/YyJONyldwyCepr6m+H9i1s8UgbBJH614Wb0I1IOLPouHMW6VRSRD+0N+xT4V+M/wl1Pwdqe9LXUIQshh4YMp3Kc+xGcV/HT+1H+yP8SP2W/F0trrUbXmjPKVtdQQfKR6Sf3W/Q1/pMfBn4T3HiXwk7XyFopo8o5HynI7V+aX7Yv7Gtlr9tf6bqWnpeWV0rLLFKmVYH+R96/EsRhlTrzhTd9T91qWq0IVmrOx/n/Hyp2OMK+OnY1zjXTGZ4LkZXOPdfpX6Mftp/sHeM/gFqdz4v8C28994bYlpIwC0tmc9D3Kf7XavzjgZLmIC6xub7r/41yzfQ44Lqdt8JfBVz8Qvin4f8GWQLJqN9FEzL2QNls/gDX7HeEdT0/U/ih4q+LtyF+waCLiSDdwoisU8qID2JFfnz+xhosmi+MvEXxJuVxH4Y0e4njPb7ROPLjx75PFfT3xGu7j4d/sd6hk4u/ElxDp6t/EUB8yU/wCNck9aiS6fqdcWlTb76f1+B+WPiTxHfatrd5qepfO97M88it13SMWPP41jpYqsTXVqdy9Md1zTZrmK4HkXWcg/K4HI/wDrUuZ7FI9mf7wI6GtjIV7pLqMQ3nAztV++B/OrrQS2sokjOFx8rLVMLHf3G+PCOgyV7E+1aVvM9qpilXep6qaLgizZaN/wlWr2uj242XF1KkKYHDM5x09a/Sjxr4e/tv4teG/g5oa77fw/bwWahehdACx/Fz+lfMv7KXhez1j4u23iK4Aax0GGXUpg3byVO0H/AIFX2n+zCw1X4ieI/jbrq5g0WG4vWLdC6glR9S5FaYfWrzP7Kb/Rfi/wIqu1NpdbL9X+C/E5X9pXVYdY+LcfgnTW3Wnh6CHS4cdN6D94fxYk1458RNXjtri30OL7kCbz9Dwo/IUvh+7uvFHjS41+7yz7nupCeu+Qn+WTX0j8BP2UPFPx/wDGbeLPFEEtl4eMhcEjDzxrwAo7L70qk17Rcz0ir/N/0yYr3Hbr+h5T8AfC0PiHxEuu+IYJG0izyZHU7dxYYAUnqea+if2X/iP+zb8OP2kr7V/jl4dPiHwpqgk0koXAaCNcb7nJ/uHivfP2ifh3Z/Cf4d6hqHhq3FpZadF5ccaDAz0X6nJr8U/E+j3uu+I4NJhLFbKEROem6Vvmk/U1WDw7xdZxWiRnia0aFLmZ/Td8Sv2Y/wBhX4t/ALVPDn7HHxqg0zSrq7+2XNvfRmKQMM5j35G5R0A71+Zy/s9/ADRbuCw174i2KmyAUGJApBXqRzwW7mvmz4jeD9W8Dfsu6StlOLW2u5ADGRhmdz94HvmvlzVLjQPEk8a6no/lXccaRtJHIQ0rqANzDpzTpYZzxEqOtlpdK/39iJ1YRpKpprqfeFx+zj+zJpGrah4wk+J0d011IRsSNcqDzgE9cdDXpPwD/ZN8G/tF/FzS/h98KfF4vIN6yanPLHtW2tEb53yOA3ZQepr817fwFd+KtesPBfh6xkmvbtktbOGA75JZpDgDHqSa/sR/YT/4J16n+yV8FLXwzf2L3/iLXQLrV7i2UmVpivEKt2SPOPc5NcmLqc1R63S0Xojoox91aH61/D/xF8KPgh8FNM+HHhN4zDpcSW1qzfOSyjG9ic5bvmvlP4n/AB98A/CC90mLxsl3qNt4ivyZRENzBUUuSAcfLkDpXaaN8DNftri1tbiz8q3i+YeY5Pluexz1r8pP+Cw2nand+K/h/wDDu61620t54Lho7psrHGSMAErggt0HvXIlrY1P1x+Gvx7/AGXP2kNCkf4ReKLO8mDtBJZFhHdK/QqY2wT+Ga5H4m/Axr7UbWw0x2WSzlEiG3YrLGR1yfSv4lNaS++HV1bWWkXkmn6utwMXEUjQybg3DAg55r9J/gR/wVi/a4/Zo1L+z9buYfGulMFWS31Qbp9uP4Jh8w9qqULCTuf0o+LP2iPif8MvD02haf5GrWQjW3Z3Y+fCz/L5gx1VScsD2HFfildfs5eJ/H1t4wXw3eW+s6v9pdTdStst/Lc7t6jqQT1PrxX1XF/wVM/Zy+KHhc3njLQLjwprV1Y+fCZlzDJ5oIBSQDDD0z6Vwf7Pvwg8WeM9Yl+JHwVvNQ1O1uPMj+Z0FruY5bdjqo9O5qGirnwv42/4JY+OfF3wHSC41eGfxLqd1NC9mnENvAoBSUv1O4jG2via+/4J/ePfhY0dv4umm0+AssKTRITGWHqfT61/TX4sttO07VP+JzaX8M9s/lG4sSfKUJjccHqN2eK5DxF8avh9DcDwprtq+u6VdgQsXiCspPB/LrVJ6CZ/Pgv7AOu+Lrm21nTNXsprh5ESWRVCl41IOZFH3l4xX7pw/s2+B/inP4c8YePYIdTsNK086ZLpVntgEqAcMcjIZD0PpXgMHjz4M/DDxvdz+CtFvpZLktFGJCCFYdl9u9amq/tp6RpEctpa+Gp5L23+bzkm2fMv0461EmMwfit/wTVt/B2qSeIPg/p00mmSKxCR3CtKm/8AhdOmcHj3r4f+Lv7E9r4a+0eFvHeizW014ivbvO4WJi/Rww+44PBVuK/Rv4a/tR+Ofi/8Uf7C0HTRYX0tv5ksjSkht+FVAvQse57YzXtfiDxdf3epPoHxEbTWuNQtyUt7h/OmOD5UQYDo0jdT2xRFyT5ovVCaTVmfyoeNPhJ4r+A3ihdD8SQMlvI2be4IyrY7ZGRn8ea6a/1c65ejVZ52uLi5G+ZmAHzdMfkBX7Nft2al+yj8OP2YfEviTRZYdUuJitnp9lNKJHWcsVDAZJBXGeOAK/AHwBrj6nbRs55wOa+/yXHzr0r1FqtL9z5HN8FGlK8Hoz3awgImB7EV714Jh8tlY/wmvD9HjluJ4o4wXeQhVA7sxwB+JNe3ab9r0K+fT9VjaC4hcpIjdVZeoOK78bFyjY58jmozuz9RP2a9fa31KFQBgEDn3r/R4r/Mq+AHipLG+WBiNk7Jk9/l5H86/wBNWvz/AB1PkrM/TsfiPa4ahd7c3/toV/Ih/wAEDf8AlM7/AMFIv+x2tP8A0v1ev676/h3/AOCb2u/EXwx+3F/wVv8AEfwiEp8UWN/dT6X5A3Si6jn1oxmMd3DDKjucVyHkH6IftEeLvhE/7RXxWh/bm8W/ETw94nsdXkTwVa+GzdR2X9iiKM2klmLdSk07yFzKHOQ/HSv3Y/Yp1P4zaz+yZ8PtV/aFSRPGk+iWr6qJlCTGYr1kUcCQrtMgHRyRXgvw/wD2kv2Q9W/Yv0bx3r3xD0u50eDwzEJ9Xur2I38Z+zhZHYsfMW4DZyMbg/bNdF+x98ZPFOg/8E7/AAJ8a/2iZL19Rg8M299qUskDSXkqBfkd4lG4yyR7GZQM7iaAPviivjz4H/t1/s6/HzUtd0DwpqVxpuqeG7RdR1Cw1i2ewuYrJs4udkoBMOVI3jgEYNZvwC/4KB/sxftKeNG8BfDDWJpL+S0k1Gx+120ltHqNlC2x7i0eQATRKSMsvQEHoc0AfatFfDPw3/4KM/so/Ff4r2/wf8Ha9LLqGoXNzZ6ddS27x2GoXNnnzorW4YbJXTa2Qp5wcZxU8v8AwUQ/ZZh+NjfAh9bl/tSPUxoj3ot3OmpqjDItGuseWJzkDZn7xA68UAfb9eKeJ/8Aku3hP/sHap/O3rwz4qf8FD/2WPg18VJfhD451yWLUbJ7WPUriK3eWz01704gW7nUFITJ/DuPTk4Fe4+JXST46eEpIyGVtN1QgjkEE29AHttFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTJP9W30NPpkn+rb6GgD+KX/g5f8A+TNf2Vf+yuRfzua/tdr+KL/g5f8A+TNf2Vf+yuRfzua/tdoAK/kP/wCDUH/m7z/srN3/AO1a/rwr+Q//AINQf+bvP+ys3f8A7VoA/M//AIOyvDVxa/tb+GfEzKRHd6LDGD2JjZs/zr+S+v7tv+DuD4RXN94J+HvxhtYspbyzWErgdyN65/AGv4Sa/ReF6ilg+Xs3/mfa5BNPDcvZsKKKK+kR7Z9+/sof8FQP22/2H/DUnhX9l7xXZeGLaWeW4eX+wdJvbsvMFVx9qu7Oa42EKPk8zYOSACTm3+1X/wAFTv25f22/Cg8GftP+LrLxRZiSKQSHQdIs7sGEkoBdWtnDcBASSUEmw9wa/PeisvqlDn9r7Nc3eyv9+5j9Xpc/PyLm72V/vCvqTTv2y/2gtP8A2TNS/YiOtG4+HOo6xBro02dBIba9hB+aCQ/NGsmcyIPlZhuwCWJ+W6K2nCMrcyvbX5mkoKVro9F+Efxb+JHwG+JmifGP4QavPoPibw5dpe6df2xHmQzR9DhgVZSMqyMCrqSrAqSK/WH9o7/g4F/4Kh/tOfC66+D3jPx1DpGialbm11FdDsYdPnvYm+8sk6Ayqrj5XWJo1dSVYFSRX4s0VlVwtGpJTqQTa2bWxFShTnJSnFNrbQ/VP4u/8Fp/+CjXxd+DHh/9nub4g3Phrwf4d0m10aGw8OqNMae2tIlhT7RPFieXKKA6mTy2/ucmo/2fP+C1X/BSn9lT4ZWHwc/Z8+IFr4Y8O6au2G1tvDuiszHu8ssli8s0h7ySu7nuTX5YUVH1HDcvI6cbb2st+5H1Wjy8vIreiP0J8b/8FTv23viR8ftD/ai8c+JdK1Lx34cjnjsNTl8NaLlftA2u8kIsRBNIBwkksbvH/Ay19HeL/wDg4H/4K2/EDw9c+EvHPxRtdY0u8XbNaXnhnQZoXA5GUfTiDg8g9jyK/Giih4HDO16UdNtFp6DeFou16a020WgUUUV1G5+mH7NX/BYH/goV+x98P7P4Y/s3eNrLwvpFkjxosPh7Rprh1eRpSJbmexkuJvnYkebI2BgDAAA6H49f8FrP+ClP7T/w/v8A4XfHvx9Z+JtE1G3mtZYbnw5oiyLHcLtk8qZLBZoWYcb4nRx2Ir8rqK5XgsO5+0dKPN3sr/fYw+q0ebn5FfvZXCv2E8N/8F5/+Cpfgvxlp/izwd8TrnTrbTdNsNKh0dbeGfSRb6fAkC4tJ1kjV5Am6WRArM7EggYA/HuitKuHpVf4sU/VXLqUadT44p+p++/iv/g5Y/4Kma94bm8PeGdd8P8AhR7mN45bzRtEtorlw+cndKJVVssSGVQQTkc81+F3jPxr4w+I3iq/8dfEDVbvXNa1WZri8v7+Z7i5uJX6vJJIWZ2PqSTXM0VNDCUaN/ZQUb9kTSw9Klf2cUvQK/Tj9mf/AILG/wDBRb9jv4Y2nwd/Zt8e23hfw/Z7ikEWgaPPK5d3kJluJ7KSeYhnbaZJGKqdq4UAV+Y9FXVo06seWrFSXZq/5l1KUKi5ZxTXnqfpR8QP+Cun7e/xV+L2gfHr4i+KtI1fxf4Y+0f2dqVx4W0JpEN1GsTl1/s8JMwRFEbSq5i58sqSc+7+Jf8Ag4R/4K6eNNEn8M+MPinbatpt0As1peeGNAngkAIIDI+nFWwQDyOtfjBRWLwGGdr0o6be6tPTQyeEoO16a020R+qPwA/4LXf8FL/2W/hpp/wg+AfxEg8OeHtMQpBbQ6Bo0rYZ2kO+WaxeWQ7nY5kdiM4zjivOfin/AMFV/wBvj4zfHHwn+0p488fM3jvwQ8smj61YaZp+mXMJnCrIJDZW0AnVkUIVnEi7CyY2swP56UVSwWHUnNU43fWyvrv941hqKk5KCu+tkfrl+0z/AMF0P+CnX7WXwyuPg78VfiPJD4dv4vJv7XSLO20w3qdGWeW3jSVkYHDxhxGw4KmuM+Of/BZP/go1+0b+zvafst/Fb4i3N54PggitbiCC3gtZ76GHAjS7nhjSWZVAGVZsOQC+5ua/MCul8G6xovh3xfpWv+JNIh1/TrG7hnutMuZJYYb2GNwzwSSQPHMiyqCjNG6OAcqwODUxwOHgly0o6arRb+XmJYWjFLlprTVaLc/vG/4JmfFj4j/Ab/g2K8XfGX4SajJo/iXw5H4iv9NvY0SRoZorzIcLIrIwHOQylSOCMV/OP4l/4OC/+ClesaJqdh4Y17QfCep67G8eq63oGgWNjqt6JPvNJcrEWV+4kj2Op5BBwa+uPA3/AAchTfDb9m5/2QvBX7OPgey+G0tldafLoX2q9kt5Le9LmdXMjtI5kLsWdmLknOc4r+eL4y+MvAnxA+JWqeMPhp4RtfAmh3rRtbaFZXVzewWgWNVcJNdySzuHcNId7nBYgYUAV5WAy797WniaK96Tkm7PTt/Wh5+EwX7ypKvTWrbV7P5f1oef6pqmpa3qVxrOs3Et3eXcrzTzzuZJZZJDuZ3ZiSzMSSSTknk1Roor6A9gKKKKACiiigAooooAKKKKALVle3mm3cWoafK8E8LB45I2KsrLyCCOQRX2/Yftu+K4vhpcaFf2/meIgBFBfrgJsIIMjr/z0XtgbSTkgYwfhaivEznhzLs19n9foqbg01fdeXmn1T0Z7WT8RZjlftPqNZw5007bevk10a1Ru6RpOv8AjTxDFpOlxyX2o6hLhRnc8kjnJJJ/Mk/U1638Yf2evHPwcEF5q6reWE6qPtcAJjSUjlGzypznaTww5HOQOs/ZW+Kvgj4X+NJp/GVoMXyLDHqAyzWwzzlf7rcbmHIx6E191ftL/HDwp4I8AtpNsLfVb3XYCLaFtssXkuP9c45BX+7/AHj04BI+K4g4qzrB8QYXLcHhOajLT/H3altHkXfzbVnFn2eQcL5NjMgxOY4zF8taOv8Ag7Jx3lzva3kk7qSPxxopyqznagJPXj2ptfqB+ZBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRSkAUUUVABX1Z+xP4R1Dxj+014P0ywiaUf2rab8dgZVHNfKYOOa/ZL/AIIY/CK/+K//AAUA8DWNq+Y7fUorieLHDxQHzGJ7YGK8zOanJgqr8rffocGZz5cLUfl+Z/S5/wAHCMXkf8FOv+CX0GMbPiXKv5al4cr+wKv5D/8Ag4qAH/BVL/gmQB0HxRuP/Tp4cr+vCvyo/PgooooAK/kC/wCD1b/lFl4B/wCyq6V/6aNYr+v2v5Av+D1b/lFl4B/7KrpX/po1igD4A/4MYv8Am6L/ALkn/wBzVf3+V/AH/wAGMX/N0X/ck/8Auar+/wAoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1v7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+QL/gyp/5Sm+Pv+yVar/6d9Hr/AE+6/wAwT/gyp/5Sm+Pv+yVar/6d9Hr/AE+6AP8ANT/4PbP+T5vhF/2Ijf8Apwua95/4JRf8Grf7En7e3/BPX4a/tcfE7x7440jX/GtldXN3aaXPYLZxPBdz26iNZbKSTBWIE7nPJPOK8G/4PbP+T5vhF/2Ijf8Apwua/ru/4Nvf+UJfwD/7BWof+nO7oA/mL/be/wCDK7xH4M+HOo+O/wBg74nXHivWNOheZPDPia2it5r3YCxSC+hKRLK2NqJLCiMx+aVBzX5Yf8G5v/BWn4yf8E3v22tI/ZM+Mt/eQ/Cvx1ra6BrWjagSq6Jq88nkR3kaSYMDRzkJdqNoaPcWBeNMf6wNf47X/Byb8N9J+EP/AAW3+OOleFYls7e+1HTNbXyflP2jVNOtLyd+OQzXEsjE+pzQB/sS1+dnxv8A+CuH/BMn9nDxLdeC/jP8c/B2ja1Ynbc6f/acVxdwN/dkhgMkiN/ssoPtX4pf8F8v2nP+CiPiD/glR8KPD37CnhTxX4g8QfGjTrOTxPqXhLS7rULu00uWwjmmizaxSPbm7kmVd+VJjSRB944/n6/4JE/8GmHjX9sf4Ky/Hv8Abr13xJ8JYbq8ntNN8MLpZs9ZaO3ba1xcfbkBhR3DCNPIYuo37gCAQD+/n9m//gol+wp+1/qT6F+zL8WvC/jTU4k819P03UoZL1U67jbFhMFHdtmBXsPxn/aV/Zz/AGcLKw1L9ofx/wCG/AVvqjvFZS+ItVtdLS5eIAusTXMkYcqCCwUkgEZ61/k7f8Fs/wDglLff8EMf2p/AD/An4m3mtLrts+vaHfACx1rSbjT51UM7QNj7xVoZkEe4q42jZk/2j/ED/gni/wDwci/8Er/2YPi3+0J4+vPB3iHT9FOqahd6dYRXH2++uYo7aeRoy8ax73gMmEGAXwAABQB/EV/wSK+LPwv+G3/Be/wJ8XPH/ibS9A8K2vjXW7ifWtQvYbXT44J4bxUd7mR1iVHLqFYthiwA6iv9cr4PfHr4G/tDeG5vGXwB8aaF450e2uGtJr7w/qNvqdtHcIqu0TS2zyIHCurFScgMDjBFf4wH7DP7Cugftdf8FMfDf7BOs+IbjRdP17xDqOivq8MCzTRpZJO4kETMqkt5IBG7AzX+kJ8If2A/iV/wb+/8EkvjloX7FV9rXxi8eXs8+vaDBFo/nXi6lew2unx+XZ2/nmdbfYLhlwcqrAjaCaAP2d/aN/b1/Yq/ZDnhsv2nPip4X8D3dyu+G01fU4Le7lTruSAt5rL7hCPevDPg9/wWM/4JafHvxRbeCfhV8efBuo6xeSeVbWUmpR2k88n92JLgxmRj2C5J7Zr/ADs/+CbP/Bv1+3p/wVd/ai8YeNf28F8Z/C3TYNura54g8VaLdxaprF7eyNiO1+3LCsjna7SyZYQjaNh3KK94/wCC6P8AwbQ/Cb/glz+yhD+1p8EvifqGvWNtqtppV7pHiCGBLiVr3cFktpoBGGZSuWiMROzc2/5cEA/0/QQRkUV/J9/waD/thfGn9pn/AIJ4+Ivhz8adXn15/hf4hXRdGvLpjJOmlS2sUsNsznLOIG8xYyxJWMqg+VFA/rBoA/I7/gvR/wAodP2hv+xQu/8A0JK/zSf+Dfn/AIJdfBX/AIK1ftkeJv2c/jtrut+H9I0TwZeeJIbjQZII7lrm2vrG1VGNxDOnllLpyQFDbgvOMg/6W3/Bej/lDp+0N/2KF3/6Elf5z3/Bs1/wUK/Zc/4Jr/t2+Lfjl+1trNzofhzVvAd9oVtPbWU987Xs+oadcIhjgR2AMdvIdxGARjOSKAP6ntV/4Mmv+CfU1hLHonxU+IdvdEHy5J5dNmjU+rItjGWHsHH1r+Kv9uj9lD9o3/ghJ/wUlj8BeEPF7v4j8Fy2XiHwz4m09WtGurOfJikaLexTJWSGeEs6Nh1y6HJ/0Ltf/wCDtb/gizo+kz6lp3jPX9VmiUstra+H71ZpSP4VM6RRgn/adR71/nsf8Fbv2/vFn/BZL/gohcfGvwD4YurGDVEsPC/hPQ+J797aJ2W3SQISpnnmmdyiEqpcIC2NxAP9Z74Kft6fArxl+xF8Mv21vjZ4m0L4daF8QtA0jVDNrmpQWFnBeanbLObUT3Lxozo29QM5bYSBwa9Ntv20P2P734N6l+0Tp3xU8I3fgHR5mt77xJb61ZzaVbzoFJikuklaFZAHT5C+75l45Gf5Fv8Ag4o/Z41P9kv/AINsfgf+zRrzxSan4I1XwjpGoPAd0T3ttpt2tyyHurTbyvsa/kB/4JqfsUft1f8ABXbWNL/YG+A+rC08CeD7u68U6jJqErRaRpUt+IreW8mVAWmuJViSKGNQzkK23YnmuAD/AFu/2VP2/wD9jP8AbhufENp+yX8Q9J8eP4UNuurf2W7OLX7WZBCWLKoIk8mTaVJB2nmsr9pf/gpB+wZ+xxqyeHf2nfi34Y8GarIglXTb/UIxfmNhkP8AZULT7COjbMHsa/jM8c/s++Pf+DSH9hj4s+MvB/xQtPHHxN/aDfRNA8KNBpJsxpFxpS3sl3eMs01wkywxXQ8rcoHnGPchUsK/Nb/gjr/wb2fGr/gtRoGvftz/ALW/xG1TQPC2s6pcxRakynUNb1+9iYC5n824bakSPmPzW8xmkVlCgLmgD/Ru/Zn/AOChH7D37ZNzPp/7LvxV8NeN762TzZrHTNQikvY4/wC+9sSJlTn7xQDPGc19Y65rmi+GdFvPEniS8g0/TtPgkubq6uZFihghiUs8kjsQqIigszMQABk8V/lQ/wDBXz/giT+0T/wQO8c+CP2xf2XfiLqOreF31VbfTfENuhsNW0XVlRpI4p/KJjdJ41k2SLhXCvHIgBXzP7If2Bf+Cmuqf8FTf+CD3xO+Nfj4QR+PPDvhLxP4d8UpbqI45L+1015FuUjGAi3MMkchAAVZC6LwtAH7XfDX9uL9iv4z32o6X8H/AIweCfFlzo9hLql/Do3iCwvpLWxgKrJczLBM5jhQuoaRsIpYAnkV8k6t/wAFy/8AgkHovit/Bl9+0R4K+2xuY2aLUkltgwOD/pMe6DGe/mYr/Io/YQ/Z9/aO/bA/aJ0r9jr9mO7kttb+KI/sW8UzPDaPYROl7M14YwxNtCbZbhxtbmIEKWAB/tO+In/BkN4ZtPglPJ8K/jleXnxFt7VpIl1LS44dHurlVysR8uR54EZuPN3TFQc7DjBAP7sfAHxE+H/xY8H2PxC+Fuuaf4l0DU082z1LSrmO8s7hASN0c0LNG4yCMqxGRXXu6xqXchVUZJPAAFf5Pf8AwQU/4KK/tGf8Em/+Clln+xr8c76/0/wHr/ieTwj4t8NXD+ZBp2sPL9jS8jXkRyQ3AQTPH/rYAQdxEZX+qL/g7C+JP/BRfVfgZ4K/ZM/YX8EeMfEOh+Pl1GXxnf8AhPSLzUHNnbeSkNjJLaxSGKO4MkjSqSpkWMJyhdSAftr8Wv8Agsp/wSt+B3iK58I/Ez4+eDLLVLKTyrm0h1OO8mhk7rIlsZSjDuGwR3xX0D+zf+3X+xn+2AtwP2X/AIoeGvHU1ou+4ttI1GG4uYVPRpIFbzUU9iyAV/Bj/wAEs/8Ag0GvP2nf2bdM+P8A+3V4u8RfDfVPEJmez8J2enLa6lZQRSNGr3rXqFkkl2l1hEI2xlSXyxVPxQ/4Kq/sLfEL/ggZ/wAFFfDnhj9nn4n3GparZabZ+LfD+uWqiz1KxE008AiuI1Z03gwPn/lnNE43LhmWgD/X2+IvxJ+HXwg8GX3xH+LOv6b4X8PaYqveapq91FZWVuruqKZZ5mSNAzsqgswyxAHJrybwF+2N+yL8VfCWvePvhf8AFTwh4k0LwrGsutalpWuWV5aabGwZg11NDM6QKVRiDIyghSexr8Mf+Cyfxg1j9oX/AINivE3x98QxJBqHjjwB4N8QXMcQwiTandaZcuqjnADSEAZ6V/m6/sB/BL9tT9u7xWv/AATc/ZPuZGsvHuowa1rFm8xttPI0lHCXd/IAT5Fqsrsq4bMjgKjyGMUAf7AH7N//AAUw/YI/bA+KOpfBf9mD4qaD458TaRYyaldWWkTm4KWcUkcTzCQL5bosk0akozDLCu+/aM/bk/Y4/ZEjtz+098T/AAz4Eluxut7fWdSgtbiZfWOF2ErgY5KqRX8o37EP/BCT9pr/AIIH+FfjF+3x8MfGMfxi8e/8Kw1jQ9G8LaJoFw0p1e6ubO4tpIwss0lzHG9tl4xCjMpPTFfzt/sB/wDBCX/gov8A8Fdf2yvFHi79vKDxp8M7SdH1zxD4q8W6FeQ3upXErhFt7RbtII3kYZ6N5cES8IQEQgH+ij8Kv+Czn/BKj41+J4PBfw4+Pvgy81W7l8m3tZ9Sjs5JpOyxi48vex7Bck9s1+g/jbx94E+Gng+++IfxG1qw8P6BpcJuLzU9SuY7Szt4R1eWaVljROfvMwFf5rP/AAW2/wCDYH4Qf8E0/wBjDUf2xfgh8U9S1qDw9eWFpqGj+IYYFluhfzpbq1rLAI/nR3DtE0bZjDtvGzB/R3/g2/174p/8FXP+CO3x4/4JtfHjxdero+htaaBo2sOgurvT9L1OJnW3QOy+ZHA9u3lKzfIr7AdioqgH4C/8HVfxp+Dnx7/4Ks3Xj74F+LdG8aaE3hPRrcaloV/BqNoZo/O3p51u8iblyNy7sjPNf6U37An7YX7Jvxr+Cfw/+GPwh+KXhHxb4osfCWly3Wk6Prdnf38KwW0KStJBBM8qhHYK5ZRtYgHBNf5PP/BaX/gm54Y/4JV/tqzfsp+EvFN14wtItEsNW/tC8tktZC155mU2I7jC7ODnnNf3uf8ABDr/AIN3fht/wT1+KXhX9vPw58TdT8S6h4h8HrE+kXOnxW8MQ1eKCZiJVlZj5ZXA+Xn2oA8A+G3/AARh/wCCR/hn/grBbftY+Gf2s9K1D4mRfEi48Sp4LGtaM9w2sSX73Daf5CS/aS6zMYtgXzMjBG6v7M6/yGv2c/8AlaD07/s4W+/9Pk1f2R/8HU3/AAV4+In7AH7PPh79mz9mnWbjQfiX8UPOmk1ezbZcaVolqQsskL9UnuZGEUUi/MiLKylXCMAD9xv2h/8Agqj/AME5P2T/ABRN4F/aF+NHhPwzr1t/r9Ln1GOW/h6EebbQl5o8g5G9Bntmu0/Zq/4KG/sM/ti30uj/ALMHxY8MeNtRgQyyafpmoxSXyRrjLtbFhOEGfvFNueM1/nT/APBGX/g2Q+In/BUj4Nn9sz9pvx5eeCfB3iG7nOkLawC91bWTFK8dxdPJMwWGPzlZVZlleVgzYVQrP4X/AMFhv+CGv7Rn/BCnxX4P/aq+APxBvtc8I3Gppbab4lslbStX0bVwryRxS+TI2BJGjGOeNwGKurIny7wD/WUJxya+WvhZ+3L+xR8c/GEXw9+Cfxh8EeMdfnjkli0zQ/EFhqF48cQ3Oyw287yFVXliFwBya/MH/g3p/wCCo2r/APBUP9gO08YfE+YTfEjwJcf8I94qkCLGLydIw8F6FQBV+0xEFwoUCZZAqhdtf5U37C3gf9pn4w/tL+H/ANnz9kfUbjTPGfxJZ/C0c1vK1v8A6JqI23QllQF44BCHa4ZefJDjBBIIB/sDeP8A/gs//wAEpPhf49l+GXjj4/8Aguz1q3lMM8C6nHMkMi9UlliLxRsp4YO4IPB5Ffe/wv8Aiv8AC/43eB7H4mfBvxFpnivw5qaF7TVNIuor2znUHBKTQsyNg8HB4PB5r+DT43/8GVeg+Bv2Uta8X/DH4w6jr3xR0XSZr+Ozn06KHSb+5t4jIbaMBzNF5hBSOVpHwSCyYzj85f8Agz4/a9+JXwo/4KVr+yhbapK3g/4qaTqBuNMcloRqWlW0l5DcoOiSCKKWNiPvK2GyVQgA/wBSSv8AME/4PVv+UpvgH/slWlf+nfWK/wBPuv8AME/4PVv+UpvgH/slWlf+nfWKAP6/f+DXH/lBR8DP+5m/9SDU6/f6vwB/4Ncf+UFHwM/7mb/1INTr9/qACiiigAooooAKKKKACv8AEG/4JO/8pTf2af8Asqvg3/072tf7fNf4g3/BJ3/lKb+zT/2VXwb/AOne1oA/2+aKKKACiiigD+D3/guF4ea9/wCCgXxFvLZcv5OlyNzjiPTLXOPfFfgTe26Rz8ADk5Br+g//AILYanprf8FCvHmmTH50XSifqdNtTj8q/CHXNLBv5JY0yoJr9SyJS+rQv2X5HzPEEIycZQ3/AFOR0vSp7+7S3t1LlzjaO9d94j8K6z4IEugeJLB7W4m2TKJgUeNTnHyn+8O9YunxajotxBq8QaPa+6NiMAsvp64r0L4hfELxt8Y9fPiLxfO2oXwgVGk28iKIYBOOwFe8oS5lorHycno09zz7SLiHTmd4o98w2tE5ONjKc5A7+nNaMYeZmlC7nfkn3PWqSWyLafa0deGCbc/NkjOQPSr8LKEC52n0rqpwOCopMvwQSHgr7ED2ro9Nv9NXbBfW4dVLHcp2sSVwMn0B5xVWw1+8ttQk1N3DzyRtHuIHAZdmcfSptK1K202OaN7eOcyqFDOPu854/LFdcItHHUi7mpbXWpWNmYoHMUVyATg8ttP+NLbSWsYK7iTkYNVoxJPbm9ygTeQFB6Z54HpUtvbRO+WcLxnJrrpRPPrJ9Tr2tLwaNHeqQls0mzbu+YsBnJHpSxMdyljkLxiudil2kLvJA9atwu0zYZq7aVORwT8zs7Vo3xK64jY4B7e+K9Z1fw5YaRpen3OnXsd49zEZHSPOYWzja2e/f6V5TpyXd5HHYJJlEbKqeACev5136WkstpBOEEMZ+TKt1ZOpx2zn6V1NSTV2Y8poWto32ZLosMs23bn5h7muy02Roo/Ljx83U454rNj0aWwgtp5mQi6QyLtYE4BxyOxz2rdsoVVsvjFVdNGNd8qseheHFupJFnPzBMdegzX094LKahHHbRljc+YAFX7u3vz618uaOZEffEx+gr60+Cnh7WPFmvQWOixNJcythVHU15ePSUHJ9Dsymo1JU11P6B/2TbJrf4eWtjdymVAOFP8ACfaup+OHgTStX01lkth8/Gcc1xH7KMtzBaJod6nlTW/yuvfI/wAK+0vHXh611DTdzrnatfhGOk6eOk5dz+ksJJVcBBR7H4V+O/2INL+IFjd3H2USxFWDArkEHqCO9fyAf8FKP+CTuv8Awi1G9+JXwX06RrUMz3emxjIQdS8Q/mtf6WXwn0vSpZLjQ7pFYSdM181/tO/skaN41sJ2gtVJOf4a4sZN+2bWxw0Famk9z/MV+AXhPUNH/Z5ELwulz4w11ImyMFbXTxuYHPQF+Ks/t/6qdBTwd8LbRto0yyN7cKO0110z9Fr+rj44/sl2Hw5hOj3fhq0u9NhuHuFPllJY2c/MUZeme471/F/+2B4v1TxR+0h4q1TU4JLdY7xoIoJlKkQxfKnBHTA4rnpq8nO+5tJuyjbY+YzaQXx8yH5JO6jo30qk115U7W0q7olxlT6+1aTRgv51s2UXrnqprOLx3WROcPkkP/jW4imkOyRp4zuQkDI6j61srdxXa+Vcna+Plb+hrnovtVgznkFuOOhFaEcRvQTYAmUkLs9zwMfjSBH3Z8F9NfwN+z34j8azgJc6/cJp9u3rDF8zkexNfTUsMvwr/Y2t7ONWOp+N71Y1RR87Qx/M2B1OSQK5BPBmmf2v8Nf2fb+OWSCJIHv44c+Yz3J3v07gfpX9jWt/sR/ssfB//gmlq3x28Q6LaX3ibTLeD+xUupFZ7WSSRUjVDzt35y2eTVU5clJzt8T/AAj/AMG5NRXmo9l+L/4Fj+Zr9jj9nTU/C8d3f/Eu1jSfXFj2WsqhmEGM85+6c+nav1l+GllZafrd9YWkSraWMHlRhRgKCOABXiH7bXwK8dfBPxV8K/jZHrtrp1hcWcn22FstHNcEA7PlPDOvCZGMiut8JfFDQ2+K8Pwh0qyuxrd5px1W5EqFFS2UArweTnPFceIjU5rzCFraHxt/wUS8bR6X4G0f4blS91e3b3tysYLObe1G4cDn5mIFfj98PtDvYmufGHiS2mtbVS0skkiMFBbnAyOSewr9ZfF48V/Gn47eMPi94XsGv9L8JiPR4k2kglPmmK8YyD1+lfOXxJ+IUnjiePwToOnRXMF2WV4bo+Q8Ui91Y4X6Zruy/NHg1LljeT6vocmMwKxKSlKyR8nftIfHzw9478MeGPCttbvbaVpC7UaXh5CTy2PT0rhtP8Fa2bEeOobGSfT3XzYp4xuRgOnIz+Oeler+BP2Y9G+MXjdp/FVvfvYWpMchs4zM+2M4YDYGAA7kCv28/Zi/Yu8PfEnxJ4d8C/CaKew8IaDN9r1q5X5zNEcbbYZH3piDuGMhajDZnOjKo0rue7+//MutgYVFBXsonX/8EVf+Cel28SftvfFq0W3lfePDEF2nARxh7sqeSTysfoOe9fUPxY/4OB/2Zf2Yv2p7n4Ha5bX2sWOlgQ3uu2BVkguTw8Yi/iCjqQc5rS/4LCf8FCdE/Ys+ANl8JvBjrY+LdftvsVjbWuB/Z9mBtMm0cAgcIPWv4VW8PReI2uddluBqM9zI0zSSnEpLcncD1JPvXnbnYf6jn7Ov7av7I37WHh1fE/wp8WadrKlPMa3DhLpP9+JsMMdzgiv5y/8AgvT8SvB2iftD+E4dBs1urWbTZIJYT82XY5BT0Knmvzr/AODdfwRb3/7b2rXl5I8cNh4euSI36Au6ADB5r6b/AOC7F74d8PftI6DfaxMksWn2CP5aLkHexyDyMZHejqDPEf2f/wBkm7/ad+FVx468D6zY634s0eRmu/D02Fvo4x911B5YY9M14Z4y+GF3pt9LZ+JrSSxvbdjHJFKhR1K+x9K8P/YH8RNrn7YPh7VbbX38IzXV6Vi1B5zGqovQPzjb7HOa/oT8Y/tPfseftJeONT+BP7S3k6Vr1nMbbTfGenpiGdl4H2hR93J/i6VpKKfqCPkr9lP4M+Gv2qvBOmeCvELxxv4BvJZLqN/lebR7n51Rf9ybKj0Vqv6x8JP2nf2Ovh5rn7VP7InjhvDfhO21/wDsu00m6zOupTysIkRY2ypUyH06AmvVtd/Yq/a//Zamufil8GBb+KtE1W1ltI9R0aRbpJYLgcEhTwynBHoa4C5+MvxY+NkHw+/Zv8WeHl0Sy+Ecc2t30Dg/6XeTkx2jzIf4hmRyPXBrRShyNSWpFnzaPQ/Qtvj18R7jT7Tw+bS01DUXgT+0blUxGZ3A8zYvQDdmmeHvh/beJ7s3WowpHHCdxWMYUMew/GuB8H2TeGtHhe6vf393lnIUADPYZ5r6I0nT9P0Lwk2sXV1KBgucNjPp+tcjNTwbxr8HfCX9sMllCzTKrMWDdCw5ryv4XfCLwLH4svY/ENil5ZxJlwxyoY9M17DZ39vrVzPqsSPdISwIZick9Pwqn4Wg8L+C52tnjE93eyiWUE7ggH8IoEVvE9t4M8LXdto/g+yt9P1S7Bla7iI8yNCegI5Hp+FfGv7ZnxW0L9mr9njxH4/tJEm8QXEQ0/Tpm5kN1c5CsCeT5aln/CvrDxU1v4b1K/1u4hUXWonEIwC+z2HYYr+cT/gqX8cL34ofF/TPgnp7/wCheF033Uang3twAWz7xx7V/E114Kg61aMOnUipNRi5M/MbR7LxH4vvt97c3E0LPvCyyM4yfqetfY/gLw1PpUCkjrUvwp+HipbRPLHg8ZyK+jj4dFnECqjiv0PC0IxSSPkMwrTqXfQx9Fe8MiadA4Q3MkaAnjB3Dbz2wTya7KO6urW/mtbyTzJIpGRm3bsspwTnv9a5hEj37SMYqYI6TKpIyT1FdtSneJ4lCbhM+qvhp4mltbxWQ8L39K/1ca/ya/h7DghepYda/wBZSvhc8go1I28/0P0XB1JSw8eYK/kP/wCCB6q//BZv/gpEjjIPja0BB7/6fq9f14V/Ih/wQN/5TO/8FIv+x2tP/S/V68I6D+ge9/4Jn/sH6j8Rj8Vrz4YaG+tNP9qaXyP3bT5zvMWfLLZ5zt619XfEHxp4J+F/ga98X+Ob+DRtE06JfPuphiGBCQik8YABIHoK7qs3V9H0nxBpk2i67axXtncqUlgnQSRup7MrAgj60Afyr+N7Dxp8Xvjx+0J4e+Ffi1PjFrGv/BHUbOy8TWESxDSZPOl8nSwYR5btcFzKOS4288GvXPCvj3wJ+0h8Sf2QfDf7MMq3GpeCvBOvSa4lshR9JtpNEFittc8Dy3a8KKI25LIWxxmv6LPB3w78A/Dyyl07wHotlo0Ezb5I7KBIFdvVggGfxp3hz4e+A/B+oXmreE9GstNutRbfdS2sCRPM3q5UAt+NAH8svwi8YeDPH37Kn7FX7M3w7XPxK8G+ONGk1vS0jK3mljRmmOqS3K4BjUjcCzYD7xjOaxb/AFjSv+He2vfsV78fG2X4zSbdK2n7e9zJ4kW+S9AxkxfY8Seb93YMZ4r+rLTPh34B0bxLc+M9I0WxtdXvBie9igRJ5B/tOAGPvk0N8O/AL+LV8fPotidcVPLF+bdPtIXpjzMbunHXpQB/MB8XvF3g34Z/Br9ub4AfFYf8V/451+4m0CwkjLXWrxarp9vBpxtRjMgSVSny/wCrIJOK/ev4f+G/Fvhrxf8ACzTPFt20l3ZeEZbS6hYA/wClQxWqyvu6klga+ldW+HngLXvEVp4u1vRbG71Ww/49ruaBHni/3XILD8DXC+J/+S7eE/8AsHap/O3oA9rooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKZJ/q2+hp9Mk/wBW30NAH8Uv/By//wAma/sq/wDZXIv53Nf2u1/FF/wcv/8AJmv7Kv8A2VyL+dzX9rtABX8h/wDwag/83ef9lZu//atf14V/If8A8GoP/N3n/ZWbv/2rQB+p3/Bev9nKX9oj/gnj4ottNh86/wDDhXVYABlsRAhwPqDX+V1eW0lndyWkow0bFSPpX+2F4y8LaX438Kaj4Q1uMS2mpW0ltKp5BSRSp/nX+R5/wU6/ZS139j/9r/xd8KNUgaK2hvZJbNiMB7eQ7o2H4HH4V9Xwri1CtKhJ/Ft6r/gH0PD+IUasqT+1+aPz3ooor75H14UUUVYBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU95ZJAokYttG1cnOB6CmUUAfqh+x98EfD+j+Govihqrw3+oajGwgCkSJbRHgr3HmN0buo+X1rwX9rz4L+B/h1qFt4m8KXMdo2pyNu0z0xyZI8fdTPBU4AJ+XjgeJfBr45eLvgzrButHP2mwnObmykYiOT3B52uOzAfUEcVxHj7x34i+JPii58WeJpfNubg8KPuRoPuog7Kvb8zySa/MMv4Xz2lxRWzOvi74eS6faWvLT5dUuTfm67p3lK36bmHE+R1eGKWW0cLbEJ9fsvTmqc275tuXp1VoxvxtFfX+jfsdfEDWPhf/AMJqjCPVZP3sOmuNrvBjuxPyyHqFPbqQTgfJF1a3VjcyWV7G0M0TFHjcFWVl4IIPIIPUV9zlme4DMJVYYKspum+WVuj/AFXZrR2dmfEZlkePy+FKeMouCqK8W+q/R909VpdFeiiivWPJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooopSAKKKKgBRX9oX/AAamfs4ahq3xD17476xD/omiWphti6YInuTzhu/yj9a/jr8DeE73xr4mttBslJMrDeVHRB1/wHvX+q//AMEYP2TE/ZK/YZ8MeGdRt/I1jWo/7SvQwwwablFP+6uK+S4rxajShh1u9X6L/g/kfOcQ4hKEaK3evyPxy/4OK/8AlKn/AMEyf+yo3H/p08OV/XfX8iH/AAcV/wDKVP8A4Jk/9lRuP/Tp4cr+u+vhD5IKKKKACv5Av+D1b/lFl4B/7KrpX/po1iv6/a/kC/4PVv8AlFl4B/7KrpX/AKaNYoA+AP8Agxi/5ui/7kn/ANzVf3+V/AH/AMGMX/N0X/ck/wDuar+/ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9f+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwC/4OjQT/AMEKPjnj/qWf/Ug0ygD+QH/gyp/5Sm+Pv+yVar/6d9Hr/T7r/MD/AODKkgf8FTvHwPf4Var/AOnfR6/0/KAP81P/AIPbP+T5vhF/2Ijf+nC5r+u7/g29/wCUJfwD/wCwVqH/AKc7uv5Ev+D2xT/w3J8IWxwfArjP/cQuK/MD9kH/AIOY/wDgpX+xF+zb4X/ZW+CR8KDwv4Qgmt9PN/pTXFyEmmknbfIJ1DHfI2PlHGBQB/rw3t7Z6dZy6hqMqQW8CNJLLIwVERRlmZjgAADJJ4Ar/GR/4K3fGi2/4KU/8Fk/iT43/Z7B12Hx54qsfDvhswncL8WsdvpNo8ffbcGFXTjOHGea9t/aC/4LKf8ABbv/AIKtaFJ+z+2t67r2ia5/o03hvwNoxgW+DZDRS/YomuZ0YfeikkaM45Wv6Uv+DcH/AINufix+z58WtI/b+/4KB6Smi65oa/aPCPhGYrLc211IpAvr4KWSOSJTmCDJdJDvfY6KtAH6Y/8ABdL/AILL3v8AwRB/Zw+G/wCzl+z1pVpr/wAS9d0iO00ubVEZ7DTdM0tIrdrqaJHRpJZT8kEYYJlXZyQgST+fr9l3wP8A8HX/APwWI+GkHx98KfGa98B+BteeU6dqdxqa+FoLmNHKMbeLSLY3RiVgVWRowGxwzcmvur/g8k/4J1/Hv436f8Ov23vgnoF54m03wZp13oXiaCwje4uLK1aX7RbXXkoGJgVmmWaQf6vKFvlJK/jr/wAE6v8Ag7O/aV/YS/ZS8PfspeJPhjonj3T/AAdaf2foeovezabcRWqkmOO4VI5km8vO1SoiJUANk5YgH54f8Ftf+CXn7TX/AATZ+JHgib9rn4oQ/FDxr8Q7C7v7m8jmu7xoY7J44kD3V6RNMW3HGY1ChcDPb/Sy/wCDfv8A5Qz/ALPn/YsL/wCj5a/zJ/8Agq18Zf8Agpr/AMFCLrRv+Cmn7Z3gi90DwPr5Xw74WuobCSy0aKCIPcJDaCZmlkVy0knnuziV94V8JsT+3D/g0b/4KReJf2rf2UNT/Yz17wvb6VF8A9L0q0ttWhuWkbUo9UnvnXfCYwIjEsIXId9+c4XpQB/IX/wRZ/5WL/h5/wBj5r//AKJvq/00f+CqX/BQ/wAC/wDBLz9i3xN+1n4002TXJ9OaGw0jSo3EZvtTvDtgiMhzsjGGklbBKxoxVWbCn/K+/aI0j9q7/gir/wAFg9T+LV14bax17wX4z1DW/D0mrW0p07WNOlnl8uWNx5ZlgngkKs0bhkJKkq6kD+qr4i/HH9qT/g53/wCCDfxT8TaF4I03SvH/AMOPHdvdaNomjSzMupJplnDNLGvml2ad4bycRJnDuqKME5oA/Nb9nD9vr/g5z/4LoePvEMX7JfjFfCHhrR3jXUJtGW30DR9MafJSMXbLLfSuwBOxZZpAOSACCfC/+Cvn/BEz/gp1+zD+yPd/tof8FF/j/D8TLnStTstOstMOq6prsgk1F9rFZ9QWERBVXJEaNnGOAM18tf8ABJD/AILn/tQ/8EQ7jxn8Dp/h/aeJNC1nUhd6poGtedpeo2WpQoIWKy7GaMsiqskcsL/cGNp3Z9Z/4KW/8FUf+Cn/APwXm+E2pXPhv4WT6P8ABf4Vb/Emq2/h+2nu7WCWBDF9ov7+QBZHhjmfZFGseEZ3KNtLqAf0T/8ABkV/yaJ8av8AscLP/wBIlr+22v8AMq/4NBv+CkXiX4JftWw/8E4ovC9vqWl/GXVLrUm1lrlop9Ol0nSrq4IEIjZZllFuicumzJPzdK/01aAPyO/4L0f8odP2hv8AsULv/wBCSv8ANQ/4N8v+CXnwM/4K0ftl+J/2dP2gNa13QtG0XwXeeJIbjw9Nbw3LXNtfWFqqM1zb3KGMpdOSAgbcF+YDIP8ApYf8F51Lf8Edf2hgoz/xSF2fyZK/h2/4MqP+UpXj/wD7JXqn/p30egD97IP+DKX/AIJkJMrXHxE+J7oDyo1DSlJH1/so1+s3/BPz/ggB/wAEz/8Agm/4wg+KXwS8IXGt+NbRWW28R+Jrn+0b+2DAgmBQkdvA5UlTJFCkhUlS2CRX7T0UAfye/wDB5R/yiS0r/soOjf8ApLfV82f8GSPgjRbD9iX4w/EiCNRqOq+N4tNmfA3GHT7CCWIE9SA13Jgds+9fSn/B5OrH/gkjpZAzj4g6MT7f6LfV49/wZPo4/wCCcXxMkIO0/Ei6APYkaXp2aAPiv/g+S0TxFJB+zX4jUltJibxXbMB0S4k/sxhnt86Icem0+tfnP/wS+/4Jlf8ABwb+0d+w94L+Lv7C37Qz+DfhhqR1FNI0SPxjqumfY2gvp4rhTa20DxRF7hZJcKx3B955av7af+C8P/BLVP8Agqx+wvqPwi8IGC2+IPhm5XXPCV1cv5cX26JSklvK+DiO5hZoyTwsmxzwmK/z+/2B/wDgrz/wUk/4N4vG3in9kH4reARdaOb5r298IeJlktJLW8cKjXNldRbvknRF+ZRNBIAHTklmAP0u+Pv/AAb2f8HIvx9+H7eAv2mf2htK8W+F/tEVy9h4h8batd2Rnjz5bmOe1aMsuTtJGQTxX60f8Elf+CVP7S3/AAS0/wCCX/7W3hP9onXPDusHxf4d1O808eHL+S+gjFrpN0kpkaSCHa7b04G7IXnHFfy+/wDBQH/gr3/wUg/4OIvE3hv9kf4L/DR7XQrS9XUYPCvhhJtQuLm7AMa3N9dMFURQB22kpDDHuLSEkKy/21fsV/8ABM9/+CVn/BCX4lfs8eJbm2v/ABlqnhHxTr/ii7tMmB9TvNOkTy4mYAslvDHFCGwN5QuAu7AAP4zf+DPbXPB+k/8ABYKGx8TOiXup+C9bttJDsFLXitbzMFB+8fs0c5wOcAnoDX+q7X+Gp+wh4T/bL1D48RfFP9g6w1O/+IPwztH8XQf2PGLi9ht7GWKOSWO3IY3AXzlEkIR90ZbcpQNX9M3jn/g9H/b51L4NXHw90b4a+FfD/jlreS0m8RKbmRYJiuwzRWErFUmRssBLJJGGwGQgEEA/MX/gvbd2XiT/AIOA/iwPgdLGbt/FWh2tq8RDAatFZWMU/wB3+JbxZAw6hgQea/tC/wCDjb/g4G8d/wDBLXVfD/7MH7LWl2N58T/EumrrV3qeqxG4s9K02WSWGIpCHXzLmWSJyvmHy40TLK+8bf5kP+Dcn/gkZ+0R/wAFA/229F/4KEftIaZdzfDLwvr0niW91fV9wk8R67G5uIkh3jNwouis1zIQYyFaMks2B93/APB5L/wTr+PeufHjwt/wUK+GmgXmu+C/+Ebg8P8AiGaxje4bS7qxmuJY57hVBMVvLFMEEv3FkjIcqXTcAcj+zx+zN/wdl/8ABVT4VaX8eLz443/w88I+KoFvNNub/WW8NG8s5hlJorXRLYzLFIpzGZI0EikMMowY/wA9P/BaT/gnL8ZP+CZ/7U2h/CT9oH4hp8TPGPi3wva+KtT1ZPPfZLc3V3aeSZrl2mnKi0D+a6oSHxsG3J/Zb9kL/g8Q/am/Zm/Zd8Nfs7+LfhV4f8Z33g/SLbRdK1pr2ewZrayiEMBuoESQSuqKoZo3h34zgEk1+JP/AAVL8R/8FJP2mviFpf8AwUO/b98H6l4eg+KYkg8O3E9g+n2Bs9PVNkFnDITIkCJKrRtISZgzSB5DuagD++T/AIKGf8qhemf9kg+HX89Ir8dP+DHjwRot/wDGT9oT4kTxqdR0nRvD+mwPgZEOoT3csoB6gFrSPI74HpXSeE/+CkHib9vb/g1S+OXw28R+FrfQH+BmgeDPBcV1b3LT/wBpRWdxYRpcNGY18likS7lDOM5IIHAv/wDBjUj/APCQftMSYO37P4RGe2d2q0Af2V/8FJv27/h9/wAE2P2NPGP7X3xFsZtWt/DcMMdnplu4jlvr+7kWC2gDkEIrSODI+G2RhmCsRtP8B/wC/wCClH/BzB/wXM+K/iDw9+xv4nj8IaDo4jfUf7CjttF0nSUuC3lB76ZZb15H2ttRZZJCFLBAoJH9n/8AwX7/AGIPiT/wUB/4JdeP/gT8F7YX3jK2ey1zRbMv5Yu7jTZ1leAE8b5YPNSINhTKUyQMkf5yf/BJ3/gtF+1X/wAELvG/jj4WXXw/g1nTtfuYG13w34gSfS9QtL6zDIrJJtLwvtcrIksLggLgKRkgH3J/wVh/4Iff8FVfgF+xj4i/bW/4KN/tCw/EYeFLiwS00dtX1TXZGm1K6itcLJfpAkGxZCx8tHyF2jg7h+tn/Bjr/wAkl/aH/wCwv4d/9E3tfiv/AMFEf+Crn/BVH/gvx8GNb8OfC74STaP8G/hsr+JPEEHh+Ga9jRrOMsJL7UJQiuYULvHbxJGSCXKSFFKegf8ABpX/AMFIvEn7Mf7Y3/DD9r4Xt9Z0347arZxyam9y0E2mSaXbXkm5YwjiYSBtpUsm3GcnpQB51/weCf8AKYa7/wCxN0P/ANr1/px/smf8mrfDP/sVNG/9I4q/zxf+Dy79kL41aH+3D4e/bEsNAvbzwD4h8LWOlz6vBC8ltaanYzTq0E7qpWIvE8TxbyPM+fbnY2P1R/4Nw/8Ag4D/AGlP26vjn4U/4J9/F7wjoFvp3hfwTKU12wM8d5cto628ETSRvI8QLoSZNoUF+VCj5aAP5hP2c/8AlaD07/s4W+/9Pk1ffn/B6zYa7F/wUy+Hep3Yb+zpvhnYx2zYITzI9U1MygHoWAdCfYrXwP8As5RSt/wdDafGqksP2hL8kY5GNbmJ/IV/dN/wcg/8Eb/EH/BVH9mHSfE/wGtrd/i98OZpbjRI55Vt01Kxudv2qxaV8IrsUSWBpCFWRCpKrIzAA/Qz/gjNrvgnxF/wSb/Zz1D4fPHJpyfD3QLZzEwYC7trSOG7Ukcb1uUlV/8AbBzg1+fH/B1zrvgnSP8AgiT8SrDxY8a3uqan4etdHV2AZ75dTtpmCZ6sLaKdiBzsDds1/El/wTt/4Lsf8FEv+CF8WufsZfErwOms6DpV9LI3hTxVHPp97o91Ixab7NKo3RxzMd7I6SRs3zx7S7luJ/bM/wCCh3/BT7/g5I+PPhb4B+AvBn2my0uUzaT4Q8NRubO3mfKPfX1zM2Nyo2wzzPHDEmQqqXcuAfvp/wAGOFhrsfhf9pnVJ1YaZNceE4oSQdpnjTVDKAemQrx5+or+fv8A4NZbW3uf+C5fwaNwiv5cPiR13DOGGiX+CPcV/o3/APBE/wD4JiaN/wAEqf2E9G+Al69ve+NdXkbW/F2oWxLxT6rcIqtHEzAEw28apDGcLu2mTaC5Ff5zX/Bq9FIf+C5Xwfwp+S38SluOn/Ekvhz6cnFAH+u8QCMHkGv8hn/g1m4/4LofBkf9MvEv/pi1Cv8AXnr/ACGP+DWf/lOh8Gf+uXib/wBMWoUAf689f5gn/B6t/wApTfAP/ZKtK/8ATvrFf6fdf5gf/B6sQf8Agqd4BA7fCrSv/TvrFAH9f3/Brj/ygo+Bn/czf+pBqdfv9X4Bf8GuQI/4IUfAzP8A1M3/AKkGp1+/tABRRRQAUUUUAFFFFABX+IN/wSd/5Sm/s0/9lV8G/wDp3ta/2+a/xBv+CTv/AClN/Zp/7Kr4N/8ATva0Af7fNFFFABRRRQB/AH/wW91i2h/4KXfEqzCATRvozb88kHSLLAx+tfmt4K8PS6neR63cLHLFbsJ2jkPyuqEZX3zX29/wXQ1FoP8Agqp8U4AD10P/ANM9lX50eDNXup5o7TzBGm4ck8Dmv1jAUv8AYaTX8sfyPlK1eP1mSl3f5nrHxh0fU/FWoTeIobRNO0+eV5oLW3GIIt/UIPTivmdLq70iaRYpGjYqY2wcZU9QfY19mXvxN0/UPDsukXUIkaNCiEdB2yBXxvrNuqTvu5YnJrswMpuNpLY4c4o0YyUqb33KslwJpHkjGxT0UdBUgkkkIL5OKhjgkdGYdBjntViKBVlXz8hSecelelG54jt9o07NofMbznKqEO3HJ3gcD8TWlbzEj5iTxxWLEFjuRJHyqtkA9xmteBN48w8Z6Cuqne5hUUbXZqRFj8/atgXc06qH/hAUYHYVU068Ony71RZMqy4YZHzDGfqKv6VLa2d1HPdx+fEh+ZM43D612RbTPLrpXLMDNnNa0UrqomA+XOM+9ZCESsXVQAe3pWjDCY4xk5BIyK7qbtueTVS1O7sNTSWyhsooQkiOzNLk5YHGAR7V3ViXkiDTHIyAcCuB0iSzs5XW8iMu5CFGSuGI+Vv/AK1dlYPKyho+2DXbG9rHG3qeiaO0QinQW+84+VySNh9feu0gmE5iVIRBtUAnJO4jvzWF4E1+y8OeIbTW9SthdpbyB3gf7kgHOD9a9O8X+PdJ8UeI77VtP06Cyt7whkhj6Q+yVk3Ln5VHTvcyrxi4OV9e1uncfockUUhNwPu9DmvqP4XeLz4anh1TRmeO6jfIYdhXyDpNzLcSmO3BfAJPrgdfyFeteGtTeMq8Lht46DtisMZSU4tMjL6sqc04qz7n71fsh/EE3+ria8mJdiCcnJJNfrgL+38Q2v2WM7sjHFfzA/Aj4i3nhfWIblpSiZBOOOK/dz9nr4yWfi+MQqw3kV+NcU5XOnXdaK90/oPhTMoV8JGlJ++j2OGMeDvE0N2B8hPNfSVzDZ6vaJOPmSQc14l4zgtb+18wfeC5BrjfBfxkTQg+k6r+8WIkLXzXJKtBOO6PVr01Slfo/wAzkf2hf2f9B8T6HNceQpLA9q/jw/4Kdf8ABLjwl8VVudd0q2XT9cgyYbyNcbsdFcD7y1/Zn4v+LFv4hjMMQ2pmvjH4qeCNE8c77UqrM/XIrWnhJKHvIx+KSaP8oj4r/Cjx78DvGF14N8dWjWl5CxCsR+7lX+8h7g15q6R3SFrf5Xxyv+Ff32/t9f8ABMjwX8Y/CFzBrNgPNVWaC5jXEsTeqn+lfxP/ALSn7LnxD/Zn8YyaF4piM1i7sLa9QfI4B6N/db2rmjK+h1VaThufNkTARrb3ILJ191+le3/s6/D0+NPjLoejEb7RZxczP2EUPztn06V5Auy6HlyDbJn73Y4r7O/ZVhk8LeG/GvxGuBta3s1sLYnj99cHnH0WipLli2RGN3Y/Wf8A4JoeCNE+O37beu+PvEiiW28PWc91bRfxM5bYgX6KOK/ZH4zeGPjV8ZdFX9mTQpVstOvfMuLWGQYXzM70eVhydh6dhXwf/wAEWtA8NfDvw7P8WvFUatdeJtS/smzLf7uSfoTX7mG80z4e+PZ/EWsyme4tI5Ukdhnyg4ygzXXGEbqi/spJ+u7/ABucXtHK9Vddfl0/Cx+Sv7Y/irR/BnhnRvgZ4y1CPWdZ0CytvMZvmJaLgy8/7WQK/NjRPjl4r+F/xO8cfHDxPfPqeoS+Hf7M0+aU/NHGw6D6cBa9y/aW0DVvF3xC8T/EbXJ0dtTv0igaNt3l2kI4BPYkkkivgnxhpt5458feG/hPo6faJNWv44pEBwXijYHGfckCuXEatm1PRH50ePf2i/2ifAOtN4a+H/iPU9MtJG864WzkZEnvJvmkZsdWycV2fw5/au8X+NvJ+HfxrvriVFJIunVfMQ/7WQCcevWv1r/ai/Z0+FXww1LUNG8SLdaTqOhbLxbO7hxDPLkZ8iYAbufevyw8Qfs56z+054kfxT4Rlj0m/ndkFvNv8shMDJldjzzgCuFrubXP0d/Y78CeKfFWraV4V+FM+qWviHV7qSLQr60kdbd2bgu5AIUKMlgcg1/XN498R/D/AP4JYfsTt4v+Iup/2rqml2/m3t7KFFxqOoyLgBcAZJbgccCvkX/ghL+xBrX7Bn7P9z8Z/wBomaKTX7n98tpMxeCysByZOchWYckjHFfzJf8ABcL/AIKj+IP23/2jrvQfh/K9v8PvC8z29pboSkd1Ju+aYjvnHy+1TYZ+Rn7U37SPxQ/ap+Out/Gb4l3LyXmq3BdIXJ2Qwg/JGoPQKOK8s0+9tCd9iWGB+8jJ447qazJdRN1fG9mTduOGT72R6VdvfskV4b2yiFpKmCI+eo9j61Qj+nf/AINrNPm8UfHj4g65cTcWWiQojOM53ynjPOOBXzr/AMF99U1C8/bFOhywOv2a0hCIT13Dg8V+g3/BsFpVnc2/xV8WXloIJW/s2246tne5NfF//BYOfQ/GX/BQPxDNeeeqWkcJDpCZR/o4UlT/AHc+tLqB+NGufCfxdZ2cFzMpSGKNSrbsFzjPDDpXReGJPGugGLWlle+s1Yh1bJkBxzuHU/WvedJ1bTviR4nax+HE5sDKwWVLkgRquP7rcHnt2r3j4R/DPwx4r8YXOgeNru28O31upiifdtguQR1DcrVN3YbHoX7N37Q/xg8IeE7q9+FWt65odkkuy4aJ2+yKwG5iyElcBeelfeP7HUviDXdI1X4meNRLf6v4yumv5ZZGALQINkAJ7fIM4968C+NPwAtPhX4E034baBc3U+r+MLoW+2OT9x9nVQ9xKFXr8gC5P96vqP4eWF/4D8LiC4LLsh2RRqpBCqMDHpxgVMrrQFbc9a0nxNqWueNv7J1CCOZ4G2iKJzsQe5xzXt/xJ+IV7p2k23h8W0JWYhAoDEhTwO9fKPw98WXmhzSajFaSK7E/Pj8+TXZ2HxBW/wDFUF/eoryNIBCkp6sTxxUDPd4NHj+H+lLZw6k4k1DDMpVeCeyiqD6X4Sk8Rrpdosy6lKVLO8hJGPTsM9au2/gjxXf+KoPFGuyxyOWAt4cEgH1/CqnxIhg+H/iVNbu5pG1jUj+7jUABVHGcUAeM/taeJNF+Ffh7VfiD4gVYrXwzYtPJK5y80gH7uMHtucqo+tfyYfD7T9X+JXja98c6/J5t3qN288pJyzPKxYnnt2r9cv8Agst8WrzS7Dw78DrK+ee91sLq+pLuOVhUlYEYf7Tbn/AV8Efs2+C7i5urdLePe4G8geiDJP4AZr6bJcPaDqvr+RwY2orqB+lDfBfwNoHgDRdU8L3kl3e3NuWvkZNohkBwAD3yOa8z1Lw7NFA2/pjivsXw5qUX/CGxR21uJtiZOB047181fEPU3tLxYlZG85N5VP4CTjaeOte7hpz+F62OPG0KUYc3c+cdRsngkYLnGaZpVjJNdKDk816dYeH7rWJTLDGW8tS5+grqk8MsEiZYRGI0Ccd8dSfeu2piklZvU8fC5POpLn6HTeA7IrtK9ecfSv8AV8r/ACqvCaxWMoDjGOK/1Va+LziblOLfn+h9rGnGFKCiFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8pnf+CkX/AGO1p/6X6vXjkn9d9FFeefFfW/iD4d+Hup6z8KtHh1/xDDGPsVhcT/ZoppCwGHkw21QCSTg9KAPQ6K/KPwV/wUL8cfD34g/EP4R/tleGbLw3rXgLwcPHklzolyb2zl0gPLGwYsFZJleJgFPDDkVV+BX/AAUO+KOv/ELwL4d/aQ8CweDNJ+LWiXuu+Erq3vPtMnl2MAu3t7xdq+XMbVvNG3I4ZeooA/Waivxo+Ev/AAVB+IfjDUvht8TPH3gKPRfhT8Y9ZGieFdXS782+E0+/7HJdwbQEjuvLO3axK5XPWm3P/BUjxpFcXfxuTwTD/wAKOsPGH/CFzeIDd41A3Iuxp7Xa2+3abZbs+Xndu2gt7UAfszXinif/AJLt4T/7B2qfzt6/N/4y/wDBTf4g+DPE3xN8V/DTwJH4g+G/wUvIrHxhqr3flXZl8pJ7n7HDtIkFrDIrPuI3HgdK/QefX9J8UfFvwN4h0SYTWuoaNqF1A4/iimFsyNj0IIoA+hKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqOpXNzZ6dPd2cJuZYo2ZIlOC7AZCgn16VeooGj8xvFn7Y/7XGieKtJ0bTPgNqk9tezPHLJ9sibCqOCCOFz/tV90fCLxp4z8eeEV17x34an8K37SMpsbiVZnCjo25OOa9RoqVCzbu3fvbT00R6OLx1GtShTp4aEGt3Hnu9XvzTkvLRLYKKKKo80KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyX4w/DHUfir4di0HTPEepeGXjlEpudMkEcrADG0kg8V81f8MX+Lv+iu+MP/AAKX/wCJr7vopa9397R3UMwrUYckOW3nGL/Fps+EP+GL/F3/AEV3xh/4FL/8TXA/Ej9gLx5418N/2Jp/xl8W20nnxS75LgOMRsCRgAde1fpbRUzhzRcXJ2f95/5nXQz7F0qkasOS6d1+7pv8HE+C4P2LPGEUKRN8XvGBKqAT9qXnH/Aal/4Yv8Xf9Fd8Yf8AgUv/AMTX3fRVWf8AM/8AwJ/5mX9sYn+7/wCC4f8AyJ89/Bf4G618Jb69vNU8Z614oW7RVWPVZhIsW3PK4AwT3r6Eoop/P9Thr15VZuc7X8kkvuSSCiiigxCiiigAooooAKKKKACiiigAooooAKZJ/q2+hp9Mk/1bfQ0AfxS/8HL/APyZr+yr/wBlci/nc1/a7X8UX/By/wD8ma/sq/8AZXIv53Nf2u0AFfyH/wDBqD/zd5/2Vm7/APatf14V/If/AMGoP/N3n/ZWbv8A9q0Af14V/KF/wc5f8E+JPjX8H9P/AGrPANl5useF0aDUhGuWktTgqxx12HP4Gv6va5bxt4N8PfELwlqPgnxXbJd6dqkD29xDIMqySDBGK1o1ZUqkakHqtS6dSVOanHdH+J7NDJbytDKMMpwQfaoq/ZL/AILOf8E5fEn7Bf7T+oaVYwO/hfWma80y4C/J5bsfkz0yvSvxtr9Xy/GwxVGNWHz8mfoeDxUcRSVSPz9Qooor0DqCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK6Dwp4gk8K+JLHxJFbw3bWUyzCG4XfG5U5wwrn6Kzq0o1ISpzV4tNP0ZdKpKnONSDs07r1R+0ejftUfDDU/hrP8Qri4+zyWgCTWDEG4EzD5UUcbg2DtYcYBJxggfkt8SfHup/Ezxne+M9Wijhlu2BEcQAVUUYUZwCxAAyx5NcLX11+yN8JvCXxG8Xzap4quYpV0rbKmnMfnnPZmB6xqeoGcnAOBwfzjBcN5RwdRxebx5pLp1cY6WgvWVvefld6Nv8ARcZxHm/F9bCZTLli/uUpa3m/SN/dXnZapL5MuLa5tJPJuo2ifAba4KnDAEHB9QQR7VBX7CftWfCr4feJvA9z4016ePStQ02L9zd4/wBZ/dhYDltx4XHKnkcZB/Huvf4O4so5/gvrVOm4Si7ST2T30ls1+K6ra/hcX8K1shxv1WpUU4yV4tbtecd0/wAH0e9iiiivrD5QKKKKACiiigAooooAKKKKACiiigAooooAKKKKUgClHWkr3D4A/BDxf8e/iLYeAvBVubq8u54okiAJZ2kYAAAfr6CuevWhSpupUdkjOrVjTg5zeiP3D/4N+f2Abv8Aap/aOtPE3iiyc+HNAlS+1F2UhWWIho4v+BsASPQV/pbW1tBZ28drbKEjiUIqjgBRwAK/O7/gmL+xBoH7Df7NOmeAUjR9ev1S71a5A+Z52UfLn+6gGBX6MV+UY/GSxVeVaXXbyXQ/PMZiXXqyqvr+R/Ih/wAHFf8AylT/AOCZP/ZUbj/06eHK/rvr+RD/AIOK/wDlKn/wTJ/7Kjcf+nTw5X9d9cZzBRRRQAV/IF/werf8osvAP/ZVdK/9NGsV/X7X8gX/AAerf8osvAP/AGVXSv8A00axQB8Af8GMX/N0X/ck/wDuar+/yv4A/wDgxi/5ui/7kn/3NV/f5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//Q/v4ooooAKKKKACiiigAooooAK/Bv/g5w0+TU/wDght8draIZK22hS/hDrenyH9Fr95K/OH/gr98B9a/aY/4Jg/HT4LeGbdrvVdV8IajLp9ugy015ZJ9qt41H955YVUe5oA/gG/4Mv9Sisf8Agq54rtZDg3vwz1eFfcjUdMk/khr/AFF6/wAd3/g25/as8Nfskf8ABXv4YeK/HNytloPiuS58J31w52rF/bEZitmYngILsQb2OAqZJ6V/sRUAFFFFABRRRQAV43D+zp+z5beLD49t/Anh6PXTydRXS7YXZ5z/AK7y9/XnrXslFAGN4g8OeHvFmjT+HfFVhb6np90uya1u4lmhkX0ZHBVh7EVzXw++FHwu+Eulvofwq8NaV4ZspW3vb6TZw2UTMO5SFUUn3xXfUUAZmraLo2vWv2LXLSG9hzny541kXPrhgRVixsLHTLVbLTYY7eFOFjiUIo+gHAq3RQB5P41+AvwM+JWsQ+IfiL4L0LX9QtyrRXOpadb3UyFRgFXljZgQOmDxXpVhpem6XYR6VplvFbWsS7EhiQJGq+gUAAD2Aq9RQB5V4T+BPwP8BeJbnxp4F8G6HousXpY3F/Yadb21zKW675Y0V2z3yTmvVaKKACiiigAooooAKKKKACuB8f8Awp+F3xX0+PSfil4a0rxLaxElIdVs4byNS3BIWZXAz3wK76igDivA/wANfh18MtM/sT4baBpvh6y4/wBH0y1itIuOnyRKq8fSvB/28P8Akx34zf8AYi+Iv/TfPX1bWTr2g6H4q0O98MeJ7KDUtN1KCS1u7S6jWaCeCZSkkckbgq6OpKsrAggkEYoA/wAt3/gzZ/5S3ap/2T7Wf/Sqxr/TO8V/s2fs6+O/En/CZeOPAPhzWdXyG+3X2lW1xc5AwD5skbPnHHWuH+C/7D37Ff7N/iqXx3+zx8H/AAT4C1ye2ezl1Hw54fsNLu3tnZWaJpraGNzGzIrFCdpKg4yBX1FQBBbW1tZW0dnZxrFDEoREQBVVVGAABwABwAKldElQxyAMrDBB5BBp1FAHjuh/s7/s/eGPE7+NvDXgXw9p2syEF7+20y2iumI6ZlSMOfzrvfF3gvwd8QNBm8K+PNJs9b0u5GJrO/gS5gkH+1HIGU/iK6WigDjfA3w6+H3ww0RfDPw10LTvD2mq24WmmWsdpAGPcRxKq5/CuyoooAK8q8dfAr4IfFHUIdW+Jng3Q/EV1bFTDNqenW93JGV6FWlRiMdsHivVaKAM7S9I0nQ9Pi0jRLWGztIV2xwwII40X0VVAAH0Fec+HPgP8DvB/i648f8AhHwZoWla9dkmfUrPTreC7lLcHfMiCRs98tXq9FAEc0MNxE1vcKHjcFWVhkEHqCD1FZOkeG/D3h8ONBsLay8w5f7PEse4++0DNbVFABRRRQB5x4/+Dvwi+LCQx/FPwro/iVbbPkjVbGG8EeeTt85Hxz6Vp+B/hv8ADv4Y6SdB+Gug6d4esWbebfTLWK0iLYxnZEqrnHGcV2lFABRRRQAUUUUAFf5c/wDweganFf8A/BV3wraxnJsvhppELexOo6nJ/JxX+oxX+O7/AMHI37Vnhn9rf/gr18T/ABX4GuVvdB8KSW3hOxuEbckv9jxiK5ZSMgobsz7GBIZMEdaAP9D7/g2Q0+TTP+CG3wJtpRgtba7L+E2t6hIP0av3kr84f+CQXwH1r9mf/gmD8C/gt4mga01XSfCGnS6hbuMNDeXsf2q4jYeqSzMp9xX6PUAFFFFABRRRQAUUUUAFf4g3/BJ3/lKb+zT/ANlV8G/+ne1r/b5r/EG/4JO/8pTf2af+yq+Df/Tva0Af7fNFFFABRRRQB/nP/wDBdmbb/wAFXfisp6D+wv8A0z2NflPp99LGvnL9wEA4Pfn/AANfqJ/wXnkKf8FXvisR/wBQL/0z2NfkrYSZ6H3xX67lj/2Oiv7sfyR8Hjb+3qer/M9s0cTNbm4jfn7p9ee+K1/+EL1DWHMkCk461U+HltFd3Mc11J5YXLA4zkjoPxr9LvhRo3gzXdHW1ezP2yUqAR90jvmrxOMdHWx6eXZX9bdpbH5b6jouoaLI1lLwH6r64rMM0kwSKY4CEhR2Gea/Wz4s/suaMttPfIMuCDHtPQ/4dq/ODx94HufC9/sKFFXpx1rpwOYUsSvdep5mcZDiMFJykrxPOrmBLS7eFGEqoxUOOhx3rQtGypGe9ZpmkEZt3PyglgPc4/wq3abixUe2a9amz52o7o3QoPI5q3D0FQ2zPFMkkRG5CCO/Iq7O8hnc3I2yliWBGME8niuuJ5tRN7GvZRwGeNJiVQsNxHUDvitGG6eFXt4W/dFt3I5ODxXMicM3PH6VtWstqqyfbGYfJ+724+92z7V1wmup59SnLY7GbXJNSvZNQvNvmORkKMAYAAwPwrpdK1uEXUaq4jAI+ZuQPrXkkc3zADn0rtdIupPD+qx3dzDFc+UMlH+ZG3DvXZCquWyRxTp+9dnpdzq9yZvtF4MNc5kU9MgnGfatiy1EzSrHvEYYgZ5OK8y0zUmtrmO5ZVlwThHG5efaum0mULLg87zj1xXQtrGVz2uG7tbNIv7PnaRyreYQNoB6YHqCK7Tw1rMdmdx+VsjBrxS0vvLkdEIZQSMjv712Ok6hY29wkmpI0sG4b1B2sc+hqJQ93UwlTaknE+stF8eRm5R0YybcKSeOBxX2h8Dfj5f+ANSjms5mKOwyT6V+WGjanBBOdShkbMTjy43HG33PqK9V0fxO32lIxJuJwcr93mvFx2WU60HCS0Z7mU51Ww1VTTtI/ql+FHxHvvinpazW77kcDJPvVb4ieCr/AMPS/b7fLK55Ir8/v2KPjjZ+HVgstYfbDMcKxI7de9frU3iHw945h8u0lWZNueDX4tmFGeBxcope6f0Pl1SGPwkKl7tr8T4n1rxJNpsJDcDdjms3wz4ml1DVvMKZAxgda7/4r+BVa5W3sR8zHIA6816V8J/guYEiudRAHSt542iqHM92RDLaiq3fwoxPF+kaf4r8OiyaBd8qY5Ffy9/8FBv2ZtAvtV1DRdWskvLafd5kLgFSD3B7EdiK/qL/AGlvFGhfDPw7LPBKqOi/Lt7mv51Pit8R4PHeqXkmqy5kkY43c108PZT9ccqnL7pw8UZlTwlGEL2k9j+Oz9o/9j/XPhMZvFHgkS6hoiEmWNhme1/3gPvL7/nXfx+Grjwp+zn4R8JIjNfeJbhtQkGOSrHZEP61+3/xU8BwXLSXMAB8wEHA3BvYjuD6VufBWD4UfGXx74U+EPxF8CxSLoCSXUF9AxQq0I3fMBxsGOlTmWQVMLP2lr01q/lqeJgs7hXi6TdpvT79D1jwP8JdI+FHgrwf4J0yZluNAsoL+dh0+1yAPn6jpX61+NtC0z4g/DPTfHdg6qdRsnS5JOFLAZ7/AMQPQV+V3j7xfBeXM+vW/wArXcrRgeiocKPyFfoT+yxr1n45+DOq+B9Vfe+gyC6EXd1cZUL79QPevlaFZ+0k31PbcUopdj8UfiR4JutK8SX/AIYfcbbUJg4OPuseG/WvxB+PHjG2+HHxT1Brq5uImt7wadFPbSGOVPL+eV0cdCCQM1/UT+0D8PtZh1d9fFmbZLsiSFW5wzZwDj6V/OD48/YR/aP/AGjvite2/gKzT7FoRE17dXBIU3E7lmbZjcwJxyOMVeKhZqY6UtLHReBv2g/2gNC8Jx3ngNZviH4TIb7Zp2v41SHc38K5/eRn3Br+oX4SfsR+BPGFr8MfjxefDy18EaLZ6VFe3Gn20jSGW9kwxEmScx55Gfxr8QPhp/wS1+MHijxPDJc6v/wiAgSMXzaTA9vHO3RmJY4J2+gr+iL4i/tZeHf2Kv2brL4c+Dbd9furTTRaabYO5lnBVSvnPuySobkj8qzpSjrGfUqSejiflx/wXT/4Kn29t4Mu/wBj34CahNBr95CkesSaehdVt/8Anhlfukj73txX8jqfDT4n61Cv27TLi4a5iHlyOuwZ7Bs88fSv1l+F3hHVPir8a9a8cahfWuneJ5y07TXS7YJHYk+XIpHygkgZ7V9wfs8/s1fHH9r7wB4sOkeCoLPWPBOorYy+W7D7TO4z+4YAqVXI5PFZqLbtHUu9ldn4D+F/2OfiDfaJ/abyQO0ud0KEvKuznIA71674S/ZC8P6zc28fimS+nk/ijxsyD2z7V+5n7VuheHv2W7nw7c+OdLm0DXo/KS6mSEojOBhicfIfTrzmvlq+/aj+D+sXlxM1n58jOWKuBEBjurE/pRODi7ME09j90f8Aghv8EvCnwd+E3im08KWk1g+o3sZkllbe7LHHxtPPHOK/Of8Aab8EeIb/AOKXjr4m2SrqFpeazdRSrKMyOkZCfIcYHTp3r7j/AOCan7RYf4N6zd/D3SHu1k1GVfIjfznUhBnG3tX583H7SfxFvU1bw/omjoZF1W8Msc8RZ8yStkEn5SQagZ85af8AAT4Xalf6f4kbT1W1vHBEkI2usmcNn3Hoa9ttf2TTb+In1DwrbW2raSVM0scww4IGANnTB7471j2+vfFd55NED22nxXMhZ4iirhj7Y4PvVPxjafEv4c+GNQ8aS+IlklhjCW0CSNvmmlISOMYx952A+lMLH23+x34X0H4lfELxZ8dfFVotroHgO0/4R7SrdPnQzJh7yRd3+1tj/wCA16N4WtLD4m+NLjXdQkWCz37Y4gOAmeOg9Kr/AAx+FM3gb4IeHfgr4bkaS4ggE+sXSt/r7y4/eTE+vzk5+lfV3wo8F6P4dg3fu0jtRyTgbmpMaRzfiD4a+CNK0tmsojMoG0KicZ+pr4T0D4fS+JvjZbfYYZUW0kMiAY5KHI9q/Szxrrel3+pR6JbXA2ovz7RkFj9M15D8MorWL4g3t5o1tIz2KHcWUAMzcAZPSpsByniXVPHfhe9m8T6r5f2TTgVTOfvf418pL4+ufFviy/8Aih47lNja2cTyHPSOGJSWI3eij86+2viQL7xVr8fhryhBa6eplujI2VdzzgAYzX4z/wDBV34r6f8ACb4EDwdoUqRan4xkNnGkXVLSLBmb1+Y7U9+aulSdSaguopOybPwp+LvxN139pn9ofXPinrMjOt5clbZWP+rto/liQfRAPxr7O+EunppFtGsZKMABxwcEV8e/AnwjYTXNu+rM0UDsvmOoyyrnkgV9uaaLfT4/9HOQOAT1IHSv0bBYVKCitkfH4vG/vrtn0zoXjK9021eytZmRHG1lzwQOefxrm9X019TY3ZyxJyTXC6dr3nW62MqIFDbt+PmyeME+g6j3r2OLWIv7L+zxxopMeMj+Z96ucOR3R3UKqrQUZEngzSj5u1uBgg+9ekalbQxBbdFGDXiWmXur2Ma6nGshthKIWlx8gkxnbn1xzj0r6b8HPpPiO2aPUIRLM4QRtnBjIOSR65HFeXi01LmZ9Nlc4zp+zgtThl8I6u9l/akUTeSXKB8fKWAzjPriv9TSv87yPwno9v4XVJGEMDOWVD93ft6jPcgYr/RDr5vMK/tHHyuduPwTw6gm97/oFfyIf8EDf+Uzv/BSL/sdrT/0v1ev676/kQ/4IG/8pnf+CkX/AGO1p/6X6vXnHnH9d9eI/tIeN/in8OPgb4l8a/BLwyfGPiyws2fStGEywC6uSQqqZG4VQTub2Br26igD+er9nf8AZo+Nvxx/Z2+NPwu/aC8FaxofxM+Lfh27h1rxfq80EkM1xcRNFDZ20cRLRWttu/dpnGMk/MTW/wDDD4NftR/tM/Er4GaR8afAU/gHTvgd4d1Wz1W9uLiOaPU9UvNN/sqMWYj58kKzzlnwfurjqa/faigD+bz4R/s5ftc+Lfh7+zx+xF4+8By6Fp3wM8Tadqus+KXuI3sb+z8Ps5tfsiKfML3JMe4MBsw3Xisq+/ZP/aob4C6n/wAEw18EztoV/wDEN9di8aieP+z10GXWBrDbkz5v2kfNBsxgths4r+liigD+c34w/s8ftafD/SP2kP2UPhn4Fl8R6X+0Bq02oaN4kSeNLTTV1e1itLwXisd4MHlmRNoO8EDiv2C8NfDnSPhx8Rfhv4atAJZ9G8MXOk/aCPmkitEtUXP5Z/GvrCvFPE//ACXbwn/2DtU/nb0Ae10UUUAFFfNX7Q3xA/aD8Cxaa/wK8HQeLGuGcXQmuPI8kAfKRyM5NfMf/DQn/BQv/ojdj/4MB/8AFVpGjVkrxjdeq/VndRwPtIKftYLycrM/TGivzO/4aE/4KF/9Ebsf/BgP/iqw/E37SP8AwUW07w9e39h8GrMzwwu6Bb4OdwHGF3c/TvTeHrJX5Pxj/mbRyvmko+3p6/30fqbRX5OfDz9pv/go9r3gnTNY1n4NWguriFXl8y78ltx9ULfL9K7L/hoT/goX/wBEbsf/AAYD/wCKpRw9ZpPka9XFP5q5VXKeScofWKbs7XU00/R9V2P0xor85vD3x6/b2vtes7LXfhFZWllLMiTzLfhjHGThmAzzgc4r9GaUqc4fGrfNP8mzhxGH9k0ueMr/AMruFFFFQc4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFMk/1bfQ0+mSf6tvoaAP4pf+Dl//AJM1/ZV/7K5F/O5r+12v4ov+Dl//AJM1/ZV/7K5F/O5r+12gAr+Q/wD4NQf+bvP+ys3f/tWv68K/kP8A+DUH/m7z/srN3/7VoA/rwooooA/Pr/gpD+wV8O/2/v2eNT+FniqCOPVoo2l0q9KjfBcAcc9drdCK/wAqr9qz9mP4k/sn/GTWPhD8TNPlsr3TJmjG9SFdezKT1BHINf7LVfiJ/wAFiv8Agkn4J/4KE/Cy48Q+FbeKy8faVEzWVzgL9oCj/Vuffse1evlGaywVW71g91+p6OW4+WGqX+y90f5ZVFex/HP4G/EP9nz4ial8M/iXps2m6npk7wSxTLtIZDj8R6GvHK/T6OIhVgqlN3TPu6VWNSCnB3TCiiitjQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArZ8P+INa8K6zb+IPD1y9peWrB4pYzgg/wBQehB4I4PFY1FRUpxqRcJq8Xo09U0+jLp1JQkpwdpLVNbp90ezfFz45+NfjJPaHxIyQ29nGAlvBkRmTGGkIPVm7f3RwO5Pa/Az9mbxJ8Y7C612eb+zNNiR0gndN3nTjoFGR8in7zfgOc4+ZK/Wb9m79pTwf4h8KR+EvFDW2i32k2/HSK3lhiXlk6BWAGWX8RxkD894yrY7I8lUOHsOkk7PlV+Rb3Udb3e71tu+6/QOD6OCzvOXPiDENtq65nbne1nLpZbLS+y7P8xvG/gjxJ8PPEc/hbxVbm3uoD9VdT0ZD/Ep7H8+RiuSr6X/AGlvjnD8Y/E8UOjQLHpWmF0tpGQCWUtjc5OMhTj5V/E89Pmoo4UOQQrdD2OK+vyPE4yvgKNbMKap1pL3op7P9LrW2ttrux8jneHwdDHVqWX1HUop+7J9V+ttr6X3srjaKKK9Y8oKKKKACiiigAooooAKKKKACiiigAooq9p2n3eq3kdhYxtJLIcKq8kmonJRV29BNpK7NLwx4a1XxdrcGgaNH5lxcNhRX+hd/wAG/H/BJaH4C+BbL9qD446XGviK+hH9kW0seHgibkyuD/G3b0FfCH/BBH/gh1e6le6d+1r+0/pZjsIws2kadcLgzNwRKyn+Eds9a/uKtra3sreO0tEEcUShUVRgBR0AFfnOfZx9Zl7Gk/cX4v8AyPi83zP28vZ0/gX4k9FFFfOHiH8iH/BxX/ylT/4Jk/8AZUbj/wBOnhyv676/kQ/4OK/+Uqf/AATJ/wCyo3H/AKdPDlf130AFFFFABX8gX/B6t/yiy8A/9lV0r/00axX9ftfyBf8AB6t/yiy8A/8AZVdK/wDTRrFAHwB/wYxf83Rf9yT/AO5qv7/K/gD/AODGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9H+/iiiigAooooAKKKKACiiigAooooA/wAiX/g4z/4JOeK/+Ca37beq+PfAmmyR/CX4lXs+r+GbyFSILG4lYyXGmsQAEe3ckwjPzW5QgllcL/T7/wAEJf8Ag6M+C3xY+Guhfsq/8FJfEkPhLx7o8Mdhp/jHU5PL0zW4YwFjN5cN8ttdhQBJJKRFKRvLq7bD/Wn+1X+yf8Av22PgdrP7Ov7S3h238S+FdcTE1vMNrxSrnZPBIuHhmjJykiEMp9iQf84v/gpD/wAGhf7an7PGvaj44/YYnHxg8D7nlh09nitfEVnFknZJC5SG62jADwMJHOf3C0Af6dWia5onibR7bxD4bvINQsLyNZre5tpFlhljYZDI6kqykdCCQa1K/wAPdfC3/BTf9iy8m8Pw2HxO+FE0TkyQRx6rohDdyQoi/PvV4f8ABTv/AIKl6H+4H7QvxUs9vG3/AIS3V48fh9pFAH+31RX+IN/w9h/4Km/9HLfFX/wstX/+SqP+HsP/AAVN/wCjlvir/wCFlq//AMlUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f8A+SqP+HsP/BU3/o5b4q/+Flq//wAlUAf7fNFf4g3/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqj/h7D/wVN/6OW+Kv/hZav8A/JVAH+3zRX+IN/w9h/4Km/8ARy3xV/8ACy1f/wCSqP8Ah7D/AMFTf+jlvir/AOFlq/8A8lUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f/5Ko/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV/wD5Ko/4ew/8FTf+jlvir/4WWr//ACVQB/t80V/iDf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSqP+HsP/BU3/o5b4q/+Flq/wD8lUAf7fNFf4g3/D2H/gqb/wBHLfFX/wALLV//AJKo/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV//kqj/h7D/wAFTf8Ao5b4q/8AhZav/wDJVAH+3zRX+IN/w9h/4Km/9HLfFX/wstX/APkqj/h7D/wVN/6OW+Kv/hZav/8AJVAH+3zRX+IN/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Ko/4ew/8FTf+jlvir/4WWr/APyVQB/t80V/iDf8PYf+Cpv/AEct8Vf/AAstX/8Akqj/AIew/wDBU3/o5b4q/wDhZav/APJVAH+3zRX+IN/w9h/4Km/9HLfFX/wstX/+SqP+HsP/AAVN/wCjlvir/wCFlq//AMlUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f8A+SqP+HsP/BU3/o5b4q/+Flq//wAlUAf7fNFf4g3/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqj/h7D/wVN/6OW+Kv/hZav8A/JVAH+3zRX+IN/w9h/4Km/8ARy3xV/8ACy1f/wCSqP8Ah7D/AMFTf+jlvir/AOFlq/8A8lUAf7fNFf4g3/D2H/gqb/0ct8Vf/Cy1f/5Ko/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV/wD5Ko/4ew/8FTf+jlvir/4WWr//ACVQB/t80V/iDf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSqP+HsP/BU3/o5b4q/+Flq/wD8lUAf7fNFf4g3/D2H/gqb/wBHLfFX/wALLV//AJKo/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVQB/t80V/iDf8PYf+Cpv/Ry3xV/8LLV//kqj/h7D/wAFTf8Ao5b4q/8AhZav/wDJVAH+3zWXreuaJ4Z0e58Q+JLyDT7Czjaa4ubmRYoYo1GSzuxCqoHUkgCv8Rk/8FO/+CpeufuD+0L8Vbzdxt/4S3V5M/h9pNUW8Lf8FN/207yHw/NYfE74rzSuDHBJHqutkt2IDCX8+1AH91f/AAXa/wCDoz4LfCj4a67+yr/wTa8SQ+LfHuswyWGoeMNMfzNM0SGQFZDZ3C/Lc3ZUkRyRExRE7w7OuwfzBf8ABuX/AMEnPFX/AAUp/bb0rx7480yST4S/DS9g1fxNeTKTBfXETCS301SRh3uHAMy5+W3DkkMybvtz/gm9/wAGhf7an7Q+vad44/bonHwf8Ebklm09XiuvEV5FkHZHCheG13DILzsZEOP3DV/o6fsqfsofAL9if4HaN+zr+zT4dt/DXhXQ02w28ILPLK2N888jZeaaQjLyOSzHvgAAA+iqKKKACiiigAooooAKKKKACv8AEG/4JO/8pTf2af8Asqvg3/072tf7fNf4g3/BJ3/lKb+zT/2VXwb/AOne1oA/2+aKKKACiiigD/OU/wCC7Flc3/8AwVq+K0dtC0vlposjheuxNGsSzfgM5r8ltC1CDTbibzreO5SeJ41EgzsL9HX/AGl7V+rn/BeS4lt/+CsnxXaJymRoanacZDaNYgj6GvyEV4/MzENo7Cv1rLH/ALJR/wAMfyR8Ljb+3qer/M+pfhbJo5vrZNTV5IS2HVDhsfWv1s/Z60nTobP7WsZxu+Td1x2r8VvApvbDULZ71WiSdPMjyMBlJxke3Ffrr8EPEjR6bHZK+QcH3rgzhWifZ8Le/r2Ptjx1fWGn6QsNmv2iR4szbwPkYZ4H4V+Zfxzt9L8XaKn2WCNZbfzCzKME7znk98Y4r9A77wrr/iDTWdQQkvVvavk/4g/DW+0KwuHuwy7ssARjj/8AXXk5XXhTkrPU+lzvAzrUuVrQ/KHXILKzvDFZ7sKoDbv7/fHtWZBc7Dubt+tdp41t207VZiIUYSFgC4zjPGR7jtXC2uoXNrFJbowKuGByM/e9PQ1+gU614qSPxPE4d0qkoNbHU2Syz3cVtMy2rScq8uQoHY9DwaZ/aE17K0k53Oep9aydS07VrKWCPVFIaWJZI8sGzG3ToTj6U6zt2aKSUttKEADB+b8a6YVXc82pBLU6iKU317Gs8gQttUseijpk/QVqxWbO8kCjeQcBhwOO/wCNUbW0tV083LyjzQ2NnfHrnpWm/wBqsykcoKBkVx7g9DXZTvfU8nET/lL8FoQNjA+YTwOta0O5cq/VevrVbQ7C91e8WxsWTzWDMDI4QfKM9TgdqiinBJMjZY967qckmeXNN6s7q0Y6RCJ9Tsw6XUTeQX4xzjeMehqxZavOlz9qjcrIOhHFZ2mwNLPBNLG99bpy8UZO4KOSOnFCR2srTMqPGp3NEg5wM8Ak9cCuyE11MpR7Ha29/KW+1XDcOc7j1Yiukt9TEjAtyinI9Aa8vt5EEZDThCgJCtnt2HuauW2rSOwiU4Vsda20Znseypfyo6CVim/DD6HvXo2l3wtWd45C0I+7IVwGP58V8/2N/NDlzhww25YdB7V6X9j1nSfJj1WKS3FzEs0SuNoeNujD2NZTt8LYRg200j6s+Hfj7V4Z4IrN9pQ4XHXJ/nX6/fs0eNviDcaHda9azs8FlsEowSQrcZ/D3r8UPCz6pbQx2lxbYNuBLvA+YIRwSR2r7a+GfxN8Q+GfDs9nps7xxXS/vFU4DD3r4niDCqvBxhFXP03hXFVMPZymz9pNJ+Jfh67uhqWsShpFGQW46fWr/if9sfwF4Y0RkSZPNAI2qcEEV+Bfir46+J7K2ltYbll+UnuSQP5V8033xU1bV7oyXVwWC8kE8fjXzNDg1VZc05aH22L41o04qKjeR9s/tW/tWXXju4e1tZyYnPAzwK/Mm/8AEE01w07sckk9am8U+I47onB65+leaXF0FHmXcogRkLoSN27HQYB4zX6NlWX0sLRVOCsfknEWbVsdiHUm/Q7V9da9geO4wVXk56n6V7P+z2mnaFP4j8d2kIBa1/s+InqGn+8R+FfIP2+J1WaQskG4CRk5Kg+me9fdUc/hnwr8KtD0PSLd7aXUQ+oSea25yD8qE+meuO1fOceV4UMvcV8U2kvzf4I7ODKc6uNvf3YK7/JfmeA+I9Hl1HXG0VSyxwMZCR2zzX2x+xrr+l+FvidDHJJ58Org28qE8fKMr+JPAr4C1v4kQw63d3QAA8sIxHv0r239lTTrvxZ8YrbSraVktYWS+ZwekUXzYz7txX4jB2kmj9ctfQ/RzxP4I8T+KvH+r2ulob65njjgEMkB8pLeNy2Fk+5vA+X1NY/hLTv2dPDF7caVqmn6l4f8RWw8+4TYV8tlIwpOdrE5BAz37V9saT4m0XRrQ6TaHaZAXM8fJDsc/jisfVfDem+JdPOh6jo1rqY1K6WS4vWJMm0nLM2e/GBxXrc0asFGOv6HNyuMnK581+IPgd8UfF3jJp7O8iCyAOqM7LIY2/iKD1HoSK/mQ/aY+Hv7bfir9o/4nfCbVIEtbuxaB9MmSVoIjA+fKZHP8OAcjrmv67ZfB+r6Tr1vb/BS5lgNjC6P9skRgi7iQi7iC31OcV8KfHrSfE/jHxJZ+I/ja1vomn6fvnTWVhcDcpwN7xnaVH8ORjNckqMeey2N1N2uz+YC4/YE/aE8DNHqfxev73QNavrNpYJ53LW079UIIHzKeh6mv70/+CVHwf1P9jP/AIJx+DjeaeniHxbrkyXGrsZY4y1zeN8zGSTACRrzjqQOK/JPxJ8NPFH7Tknhb4e694ktvEHhe3ntrxtSspP3qWgYOEcMMoJMAEcHFfvNp8t1pfhd/C2jzCKxkhEQTCugCjCsAQVyvY4roWCum4P0M/bpWufzrf8ABcj496J8GvFeg+MNM0/TdW0nx7pOqWeo6XdKskcN3DJ5Md5bk52qxy3HDFciv5LrnQfgF4a8Nw+MtO1ZJNXkmIa2eMyBGHUk5OQ30r7z/wCDhTSvFHw4/aV03wP4j8bX3jbWNUtRfSpMgRrKFiRBAix4UDAzgKBX4V/8Id8QdFe11WGzvNkuFw8LAoT/ALwGfY1x1eZPll0Notbrqf6Jv/BLD4c6X4E/YXtfFd9axaff6iLm+UxRhCY5BlM4AzxX4m/B19N8feHvFF5ZwXVtdWd3NO4vEEJZmnYLJk/NskPAYgc96/b/APYR/aj1uL/gnN4N8eePtBhjvbLRW862jPlqy2wZQTnIBcLk+5r8IE+J2lfDTxLrn7QthJLotxrvmh/NkW5jEEzmRYXhddsi54xxjtTlCktVK4k5dj2fw6PC/iy7ubTxJpy2ur2qACUSEtjPB9D+ua4PX/BGl+L/AI/eF/hr4TiJtvDSN4n1UyjcvmgmO0jYcjG4s+PYVy3wT/ag/Yx+LnxWs9G8fXU3giR1lludR0uVY7KYxIW8uW3l3rGWxlWjIGeMV7v+w9o2pa3/AG/8aZYhIfGV7JNbeeCWSwhJS3UgY/gG4jpk1k1ZXRafQ+pbea18JaNFNfXUsl3duxkbO3OewA7VwHxB/bP+D3wD+Iug/Am8s7nWPE+ssjXUNjGZl01bj/VNcsOELEg7eoHJq5t8Sa18UWg0u585YH+WeRFESEHoqkdBXyD8OP2NfjV4o1vxL8HvFXimyXW/GWt3fiPUtetw0klrYx4LOxbGCseFRM7ckelVSp88uUJS5Vc+6NE+JWgXmoXl3rup2mlvA2B9omWPDHgAZPJ9AOa2pPE2v2GyLQrOZrVm8yW5C7fMP4kE14rD/wAEh9V1v4VeEPiT8NrmG6+06gL6wttSuXllNvbsf9Nu2LbV+UbwCMe3avR/E93rOm+OpfClpcS3drojKl7MImjRmAzlRIFIUjpkDIpVabg7MIyvqWPihr17Z2FtPaxCKTUzscu2ZWz6AdB6mv5E/wBu34zL+0H+1FeR6S2dG8PAaZZKrblKwn53B7733Gv6Kv8Agob+0ZafCX4Fav8AELTbf7Nd3Ft/Zmmuz4c3E4K7l6/dXJ49q/lK+EOiQalcTX+ohpJ5juVj/eJ5J/A17GSYbnqOo1sceYVvZ0nbc+sPh5oEGmWEARw+9Axx2Poa9cDMBgVz+jWaWOnRrHjcfvY7elXnmnLYxX3tFcsbHw1f3pXNuG8e3PmE8it9fFbhMF9pxg4NeZyXUu4jH1pbS/gXzhdxF2ZP3Zzjaeze4p1IpmuHqyppHrlj4pvja/2eJmNsZPM8vPy78Y3Y9ccV7Z4P+KGmeGBFMik3EbkyFmyhQ424GOo5zXxvb6rFE2MbiemOxqU+I7hMxsenFctfDRnoz1sNmrpap6n6UeJP2on10wWkap5ECkrH/CSRgk/zr/Udr/GrbxFdh8oetf7KlfI57hY0fZqPW/6HvYPNJ43mc+lvx/4YK/kQ/wCCBv8Aymd/4KRf9jtaf+l+r1/XfX8iH/BA3/lM7/wUi/7Ha0/9L9Xr587T+u+iiuM+Inh/xD4r8Dar4b8J6xL4e1K+tpIbbUoESSW1kYYEiLIGQsvUBgRQB2dFfg9+y7+1X8a/hF+wh+0r8U/ir4ku/HmsfBvxV4tsdOvtTC+dNb6RbxSQJIIwq43MegHBrD+GXxY/aX/Zd+JfwI1r4sfEHUvH9j8cPDeq3Wt2WoBPJsdVs9N/tWJ7EIB5UOFkgMfTG1utAH7+0V/Nn8JPj/8AtX+Dfhv+zl+3B43+IN/r8Pxy8UadpeveGZwn9l2ll4hLi1FnGFBje1Pl5YHL/Nu61l337UP7Tqfs96p/wVCHjvUhYWPxGfRYfBo2DSD4fi1gaOY2j27jcMN03m53B8AccUAf0wV4p4n/AOS7eE/+wdqn87evwx+MHx6/ao+I2h/tLftZ/Dzx/f8Ahu0+AOry6foHh63Cf2depo9rFd3n25CpMpuDIY1OfkUArzX7D+GPiJZfEf4i/DfxRBDJA+s+GLjVQhU7VS7S2cLu6EjOMdaAPrKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApkn+rb6Gn0yT/Vt9DQB/FL/wcv8A/Jmv7Kv/AGVyL+dzX9rtfxRf8HL/APyZr+yr/wBlci/nc1/a7QAV/If/AMGoP/N3n/ZWbv8A9q1/XhX8h/8Awag/83ef9lZu/wD2rQB/XhRRRQAUUUUAfh9/wVv/AOCOnwv/AOCg3gi48U+GbeDSvHlnGTb3iqFFxgcJJgc+xr/Nc/aV/Zd+L37K3xJv/hl8W9Jm02/sJGQiRSFYA8MpxyD2Nf7Mlfmz/wAFEf8AgmT8BP8AgoP8Nrjw947sYrPxBFEwsNWjQedE+OAx/iXPUGvXyrN6uCnprB7r/I9LL8yqYaWmsXuj/I1or9Qv+Chf/BLD9on9gTx7caP4306S70V3P2XUoEJglTPHPY+xNfl8ysp2sMEV+k4PHUsVDnpO6/Fep9thsVTrw56bEooorsOgKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA9X+Cvw5s/in8QbPwjqF/Hp8MuXdmOHdV6pHngue2egyecYP61eO/gB8NvFPw4i8CG2j06302MmzuEADW7YyWJP3g3V8n5up5wR+IlvcT2k6XVq7RSxMHR0OGVhyCCOQQa+jPHH7UfxI8dfD+28B6jIsQAK3lzGcSXSj7oboAP72PvH0GQfzLjXhjO8yzHB4jLsVyU4PVbcj19/8Av3Xu2fptKTX6XwZxNkuXZfjMPmGF56k1o9+dfyf3bP3rr13UU/n7WLCLS9WudNhuI7tLeV41nhJMcgUkblJAOD1HFZ1eo/Cb4S+KPi/4mXw/4dTZGmGublxmOCM9z6k/wr1J9skZfxI+G/if4W+J5vC3iiHZKnzRyL/q5oz0dD3B/MHg8193TzTCfWv7O9snXUVJxv71u9vxt89j4WpleL+q/wBoexaoOTipW0v2v+vy3ucFRRRXpHnBRRRQAUUUUAFFFFABRRXunwP/AGdPix+0H4ws/BPwz0i41G9vmCxJFGW3ZOO3Qe9Y169OlB1KkrJGdWrCnFzm7I8s8LeGNX8X63b6DokTTT3DqihQSck47V/a9/wRN/4IA3Fvfab+0x+1rYj7OhFxp2kzL80ndXlUjgdwK+/f+CSH/BAf4ffsuQaZ8aP2jrW31nxdHGklvZsgaG1frubP3nH6V/ThFDFBEsMChEUABQMAAV+eZxn08U3SpaU/xfr/AJHxuZZvKv8Au6ekPzK2nadY6RYQ6XpkKwW9ugjjjQbVVV4AAHQCrtFFfOHihRRRQB/Ih/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676/kQ/4OK/8AlKn/AMEyf+yo3H/p08OV/XfQAUUUUAFfyBf8Hq3/ACiy8A/9lV0r/wBNGsV/X7X8gX/B6t/yiy8A/wDZVdK/9NGsUAfAH/BjF/zdF/3JP/uar+/yv4A/+DGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooA/zd/+C977f+Cs3xYBOP8AkBf+maxr8gVnXAAIzX63f8F9Jdv/AAVs+LKr1/4kP/pmsa/IW38hrZ53kAdXVQh6sDkk/hiv1jLX/slH/DH8kfFYtJ1ql+7/ADO30fWprW4jkLFtnAyc4HXFff8A8DfiIkupW9mZlQswXLthR9TX5lQ3REg+bGea9i8CaxPBdqinGTxzV42iqlOzPQybGTw1b3ep/Sp8NPjLpmo2qadeupCcYzw2OK1vinY6JrXhmS+KNI8gbaOoAPSvz8/Z1voNRKLeZYBRg56Gv0y0+bS9T8Px6Zex425wQOvpXweIpqjV90/YKFX29C7W6Pwp/aA8MPbaltji2qowuBXyzqWlwabqBgguFuYwqHegIGWAJGCOqng1+wXxr+Hmm634ph0y6YadFJJtknnB2KrHhsDnAHWvzM+IOjRaDeXGn27B4RKV3p0YJkAjjPPWvucoxqqQULn5HxRlUqVSVe2h5tHceZLGbtmdFIHXkKOwrRlvJltzbRORAZNyoTznsT74rGuJLVrgpabvLGNpbr0/xrZN9ZyG3Bt0zCRuwTiQDnn6+1fQxPgZQvqzUsdQkt4ZEjCsJU2NuGcDIPHoeOtbZglXId1bAABBzXNmW1MjzxgKrsSEHRR6D6VPHKGG3oK7acras4q0ea6SOrWKeK2W8bmPcUyCOoGenXpT1ljXGFyTWbYWs9xbT3aYKW4DPlsHBOOB359Kda3KxXCyy5Kj0/8Ar10xqnmVaOx22hzQTRM81w8CxkBxGPmKN15yM49K07PW5YHli86WQHAi243EoflyP6CvP/tLR4H3eOBWjZ3t5ZTRXloSkisCjjsfatlK+5i4tdDqJL2a/aZ7hMzSMZGY9c96n0+B7qYRLwByz9Qo7k47Csa9juoblmuGPmdX3cHJ5NWoNRt1sDaqv74vkybsfJj7uPrXRGq0tDncNdTsLK/FheMsgE6KSATkqfevTNG1PVdXcrZt5xt4icysOI16gbvTsBXiJjmSF7klQsQUlS2CQ3THrXT6ZqVpcx24O1ZEyAI+OCc/N6+1FSaav1LopqVujPrzwVf3oRdsrKXAVgD1X0r6ng1620nw/g7clMYI5H4+tfJ/w9lmkjCxAYwAc9fwrrvG3iQ2MBs0kBCDscfzr5zEfvKvKfdYG1KhzM53xp4muheG608cOGjHcN6jFeHRam9gqThkO5z8pOT8vXI9K4DxF4skuLt3jkPJOMVw41q5mnE8rFsnGa9uhQ5YnzOKxvNUbR6br3iWOa6kfcAGycKMAZ9BXL3M0t1pE96iSGON1QOD8gLc4P17VLf6JeS2K61bQyxWMwKrJKOGYdRnpXG6f4o1DRJ52sNhWeNonV1DjDcEjPQ+hroVRKP7vc86abl7+x2PgLTbjxn410rwdZ5Zr+6ji49CeT+AzX1N8X/GFleeONR/sx8W2nMNNtgOgjgGzj6nNan7Iv7P/iUpcfGq5jMQtraX+y4ZBlppih+f2Udq+YdVuppNXS2ZsyylpJM/3snP61+Ocf5vHFYqFCm7qCd/8T3+6x+pcGZXLDYaVaorOb09Ft95Do+mJqtprd1efMqyLgd8Dmv1B/4Jv+AjrljrfjllKrLL9gtySFGyL5n5PbPFfnT4Z0triyiez/5fp2Uj1xX7h/A6w8L/AAU+B+m6AkBuXjtZLifnaolJLsTjrg9K+CR9mj82P2+dT+JOifG21tPAOuXejXHh+IMjWs7BTJL8xz2PGMg5FUfg5/wVS+NfgOJNC+Pfh6LxRbwNtXUdP/0a8VO5ZB+7f8Ap968q+KXju/8AEviS/wBc1A5lupncrL1OTwM/SvIrKCxvnxBENy/fVuRzWsZpKwtT+gr4Q/tX/sx/tLW32bwd4hi/tSVNr2N2DaXq56ja3DfVcivpDxDo1jq2l2/hu5tPtmkwhFkspDtD7M4579enQ1/JB4u8G2Flq0N7awmCVWBSeA4Ib6jBFfor8C/j5+0P4Z1LRfB8Orvrmn3EkcP2XUGLsgbqVlHzcDnkmumOIlaz1X4/eZ8qbP3A+Bfwk+FnhPxZrvxC8LaL/wAI5d6uqWrEZKvHAMDcn3ceny19CTacLORLfRLtYnlBJEJ+Qn/rmxP/AI6c+1fEmr/FDxR4GgiuLCVLhSfmt5jkH1weorufC3x80TxjZC01SwudMuZlIjaWMtAW/wBmQDHX1xXZRr02vdlZ+ZlOnJbo/OT9of8A4JyeHfEf7Wt1+1pNHaeJfFgIvDbag5xHHDGQqqrfIqqq/dYDiuZ8afs4L8ZPDOn6Nd/DxtAltZgs2sW6L/q2+b50fAZQTwynOPWv1K168/tjTNc0zxKtzLc+Jkjs3kg2bWjG1URWwSqhRg4PIzXmfjzRfixoarpnh7XX1aaY+SluU3GOKEAAsOg6gDuaxqSlyvS1y4pXWp8+fFH4c3/wz/Yv1zwB4Fjm1KWw0iaGDyIyCyICzEADqeelfxI/Gj4iftL/ALQt9pXwr0fQLiGz1CISWMFqhYzpGdhYtx0Iwc9DxX98p+O1toZs9B8W6e9pb3kj2sRljKjzAduGyMZflhntX5s/Gv8AZ00n9nnxJqXxO+FGnQazpOuXQnsLWMgHT7uY5uVV1zthc4fA6P8AWuJ0JrW25qqkX1P5Yfhn+xr8WNC1fR/AWrhl1bxJP9lbTmTMkaLzK5JGRtTI9Oa/p9+F8N78EtBsvCt1bKsywrBBC7/dRRgcAH0rwzwv4j8Wx/HaP9onx/4a+2ajpemPpen228CJTI25pXK8szDA6A4FeXeOPEX7U/jHx7deLdP/ALJ0lJuUkuAf3eeyrk8D6iq9hN9B88e5+gfh3wn4ouZptWvcWwlJYbFwcdT146fzry/xH8VdA8Dfs1eNPiD4cmkfX/FV/L4WhuX4Oy2bdc+V/sIMIWHVyfSvgPUfEvjKTUnuvi38bJg1p8zWml7IlXHVeN5yBn0rif2pv25fgF4xTw/4f8Cw3Z0XwrYC1t7KxjCrJMx3TTM7Z+aVuWOM1vSgqabb1M5y5rJH1x+zn/wUu0f9jf4Y6joXxJvZdUu9TvYFs4bhzIEtYUdvLQYOFMxRiOhC4r5D+Nn/AAVZ1fxBajRPDnhy6vReXHnXWt6r+5nvj1xsiAGFJIGWJxj6V892o1XxX9m8S+Evh+q6xf3EEEMmphrnypHQONyuQq4j+bha9km+F3xf+LF9p2keIxY2Ntpdol7OUQK+ZZcLuQ4VdqKWAxnFYyUW7tlptbHzj+218Tbn9qf9mqz8R+I72y0A+ELkG10tSwe8achWYbjyQPQHAFfB3wm0mBLKNwoBwOlc3+1x4ri8a/tD3un6TcLdW+mN9m82NQiOyHkhBwOfSvRvh3aywWaY44r63JqPLTR4GcVrWXU+hG1y4h8MDw3GE8j7R9pb5Rv37dmN3XbgdOmea5Z7zKlK1otS042Nxb3NqGmdI1ikDEbGVssxHfcvHtWH4k0vU9B1JtM1RNk6Kp2ggjDgMOR1yCK+m6HzyWl2Pa3tDpU1/NdBLlJUVLcqdzIwOXzjAC8cd81jTajczgNM24IgQcAcDtU+r6xc6xdi8vtgkKLHiNQqgRgKvAAGcdT3NYrFS3zc4qb6F6W0NDUZbAXrnSi4gONnmY3jjvjjrWdJOhI9R1qszANtWprO0N7I6b0iCI0mX4B2DJA9z2qW9NSG3tYhMu0ebHw3+Ga/2ha/xbF2lZGMgBHG3Gd2M1/tJ18nxM/4X/b36H0PD/8Ay9+X6hX8iH/BA3/lM7/wUi/7Ha0/9L9Xr+u+v5EP+CBv/KZ3/gpF/wBjtaf+l+r18qfRn9d9cz4zsfE+p+EtS07wVfRabq89tKlldzRefHBOykI7R5G8K2CVyM101FAH5E/sv/8ABOP4r/C/wd8WfhT8ffH1n428JfF271fU9UsrfSxYype60iR3DLIJH/d7EwqY4POa0fgF/wAE6fiT4T+IXgfxJ+0V8QB460r4T6He6B4QtEsltHjhvoVtXnvHDN504tV8kEBVwWOMmv1looA/Gn4R/wDBLfx14K1n4cfD/wAdfEM678Kvg7rJ1vwnof2JYrsTxb/siXdzuPmx2nmHywFUnC7icU65/wCCWfiyXU7v4QJ47UfA+/8AGH/CbTeGTZA3gvDdC+a1W63cWjXaiUrs3YJXdg1+ylFAH47/ABp/4JheOfHXiz4leHfhx8Qf+Ec+HHxpu4L3xlo32MTXLSpGkFx9jn3DyRdwoqS5VsYyuCa/Qi70XTPDfxc8D+HdFiEFnYaPqFtBGvRIohbKqj2AAFfQFeKeJ/8Aku3hP/sHap/O3oA9rooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDy74mfEHX/AcFrNoXhm/8Rm4Zg62JjBiA7t5jL19q8j/AOGiviD/ANEu8Qf9923/AMdr6torKcJt3U7fJHo4fF4aEFGph1J93KS/JpHyl/w0V8Qf+iXeIP8Avu2/+O1ma1+0z8RtK0e61OD4U+Ip3t4nkWNXtsuVBOBiTPNfYFFQ6VT/AJ+fgjeOPwSabwcf/Ap//JHw/wDD39rL4neM/B1j4m1D4ReI9Pmu497W7tAGQ+mGdT+YFdn/AMNFfEH/AKJd4g/77tv/AI7X1aBjgUUo0qqSTqXfoi6uY4GU5ShgopN6Lnm7Ltfm6HyvB+0N8QJZ0ib4Ya+gdgpYvbYAJ6n972r6licyRq7KVJAOD1FPorWEZL4pX+48/FV6NS3sqKh6OTv97YUUUVocgUUUUAFFFFABTJP9W30NPpkn+rb6GgD+KX/g5f8A+TNf2Vf+yuRfzua/tdr+KL/g5f8A+TNf2Vf+yuRfzua/tdoAK/kP/wCDUH/m7z/srN3/AO1a/rwr+Q//AINQf+bvP+ys3f8A7VoA/rwooooAKKKKACiiigDyD42/Aj4V/tD+BLz4c/FvSINX0u9Qo8cyBiue6nGQR2Nfww/8FUP+Dbfx58Imvvi/+yKJvEGhbmlm03Gbm3Xr8oH31H51/f7TJESVDHIAytwQehFdOFxdXDz9pRlZm1DEVKMuem7M/wATjxT4P8S+CtXm0LxRZy2V1AxR4pVKsrDsQa5mv9Uz/goR/wAERv2VP25dOudfXT4/DfitlYx6haLtDuf+eijAPPev4Of2+/8AgjD+1n+w3rdxd6/o0ureHAxMOp2SmSEr23YB2nHY191lvEtGr7mI92Xfo/8AI+swWeU6lo1vdl+B+PNFT3FtPaSmC5Qo68EEYqCvp1NNXR7qaaugoooqhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfpp+xj8YPBiaMnwru7eLTdT3tJFKvAvCeTknnzAOMdCo46Yriv2yvjN4O8UGP4c6Bbw39zYTb5r7r5LjgxxkHkn+PqvGOoyPgOKWSGRZoWKOhDKynBBHQg103grwfrPj7xTZ+EdACG7vn2J5jBFGBkkk9gATxk+gJr87fAWW4bOqnEVSq0lebTeilrzScr35bfZ236aH6F/r3mOJyWnw9TpJt2hdLVx05YqNrc1/tbvTrdnLUV+vifsdfDpfhg3gojOqt+9/tTb+988D0z/q+2zPTnO7mvyq8Z+ENZ8B+KLzwj4gVVu7KTY+xtynjIIPoQQR39ea9XhnjbLc8qVqWDk+aD2ejcduZeV/mtLpXR5fEvBWY5JTo1cZFcs1utUpfyvzt8nrZuzOYooor68+RCiilAJOBQAlT29vPcyCK3Uux6ADNfV/7L37Fnx7/az8Zw+DfhL4fvNSmlIBaGIlFyf4m6KPcmv7a/8Agm7/AMG0nwz+EFvafEL9rZ01vVwVlXS4jmCMjkB2/iPqOleBmPEOHw14R96fZfqzyMbnFGheMfel/XU/mJ/4Jw/8EWf2lP26PEVpqiadLo3hcSKZ9SulKxeX32Z5ZvpxX+hN+wV/wTD/AGcP2B/Bdvo/w809b7WvLVbjVblQ07kDnbx8q57Cvvfwd4L8KfD/AMP23hXwXYQ6bp9ogSKCBAiKo9AK6ivgcdmVfFy5qstOi6I+RxeNq4iV6j+XQKKKK4DkCiiigAooooA/kQ/4OK/+Uqf/AATJ/wCyo3H/AKdPDlf131/Ih/wcV/8AKVP/AIJk/wDZUbj/ANOnhyv676ACiiigAr+QL/g9W/5RZeAf+yq6V/6aNYr+v2v5Av8Ag9W/5RZeAf8Asqulf+mjWKAPgD/gxi/5ui/7kn/3NV/f5X8Af/BjF/zdF/3JP/uar+/ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9P+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP83L/gvhbafJ/wAFWvjJcTXJjuYv+Ee8mELnzAdHsd+TnjaMH3zX40w2cvltcS4G3HDcMd3TAr9if+C932L/AIe9fFNb0MImbQBIUIDBP7GsM4zxnHT3r8erfUYILqU3Mf2hdjRxmQ/dB4Vvqvav1PLX/stH/DH8kfEYlf7RP/E/zNnRZdJ+yajb6iyLNNGqwSOpJQg5JXHfHHPrXe/DxLG7vJvt0zQSRxb4FC7g75A2k5445zXkMUpcgqenQ16p8PXgXU1MjIgU5O7occ121LqLsa4dXqxR+w37K+mG6kt4ZPl8zHX64r9oPDngnTItLyxHmxqVYEevWvwH+C/xTvNMms4lmIFqdsY7AE5x+dfu18APFzeNrf7fqUvmNPguzHqSOa/Ps2jOM+Zn7Nk9SM6KjF6o+Lv2q0L3IvLlt52iJc9dqDgfQCvxt+Ks9hLNMspZWH+r29N2e/4V+/P7W3w/e9Zr6MBl24UgfwjpX4F/HHSH0+9kR+NpNe9w3Wg2knqfNcZ4SosPKcloeDoklw8aQgZk4XnFWgyRRnex80MVK9sDvn61j6e+mO5F+7RgKxUqMncBwPxNVYrlzwAT3455r7VVLM/Hp0rnWJNZ/Y8MWE+4/wC6Vx+ec1d0+e5jl85EEgj+Yg9OPWqXhzV7C3stSs9RTd9ptykTYBKyBgRyRkDg5xzWZBcFRgEitY1TnqUUd1bLdbBcyDCP0APWtZrzTTcfvFdYwACoPO4DrnGOv6U74feOovBseoG6sLe/F7ayWyi4Xd5RcffT0YdjXD/aTkuerc10wqHnVKF5XOwsZbdpgb0sU9V6/rXQ6fdXW1Ikc7Im8xR2DVxNrJvUDBwe9dBavK6tHAQMKWBY44FdCn1OOpB3sjttcMs91F5d1HdTXih2K/LtZv4TnjP6VgvMkCC2ZAk0RIY5zk5rJ0UW99qEUV9N5ETN80hBYKPoP8aiupC1w4ibcuSAcdRWsKjWjZjUpp6rS5t3F7vtQwlPmEhSuOw6HNdv4KuIU8qK1ZmuJZD5isoKbRyCD1zmvKUjuGKtCjFGYKGI+XJ9+le1+HtA1LwhqkkeulUmgVTtRw6/ONwO5cg8GlOvFLU1pYVua5VofU/gGeeKxnu4FaRoVOdoztUdT7CvC/iR44OoTnT7chjkgEdSTWjceMJNN0WSLT5/s7zIyu2doYHqDj1r5r1i4ubiSS5eWP8AdY+6eTurjwsffdSXyPXxtW8I0afzLOpX9sZEFn5gYKPM3kH5x1xjtVewEt3K6RsqlVLncdowvPHvXO/2jF9mFq0a7g24yfxH2+lSpcK1ykoiGyUjCdA3qB/9au/2yS0PL+pWlqe8av8AHXxbqnw4svhbcyxvpVlI00QCjcGcc5bGTXkli9rdwz2kihZiu5JGfao28kYwck9qwNTDQajNAbdrQhj+5bOU9jnmqEryEh8Hnpx1qFJRi+VW6/Mt0eaV5u/Q/a79mz4pzX3wv8J3ZJKaNI1tdbW+8pOOfoDXxD8QPCsemfFTXFt3K21vdypCT3VzuH6Gt/8AYm8Qi4tvEPhS7clfL85F6/N7fjXbftMW3l+KLPWohsh163WZcDGJYV2sD78V+G8RYf2WNqxW3M39+v6n67k9X2mEpPyS+7T9DpP2dvAQ8W+NtO8KI+Vt2M7P2CINxP8ASvuH4h/Eq40z4T6j4d0/KXdzIbdS6FWRQfmwe4I9DXAf8E7Phzq3ii01XxqsSs/lLZW5bj5idzkn9K3P2r7i+sPGH/CHXkyLNp8YLrCwwrPz/KvBvZHqWsfmL4vhuL2b7NqkTKSc71GRxT9C+Hii1Gqefh0O5XRuoHZlrqfF+o3LxSPIvmBOAyjDYHtXEfDq5k8R64+kGVgJeA3KkUkyTQvHhgvAxtPO28nacg/hX1v+yhY/8J54+a/tbCRP7Iiz8kbE+Y/C9vSvnC++FXiHTtR+2CdmhzyR97A/Q1+8X7Dfgmw+G/wXi12YD7drkhnZpMBhEOEzz6VSHE4K4+Gnh+81yNNctL24vDhRFMSEGe/bP0ro9Y0rxPphMehxmysohtKO+4HH91e30r7A1GXQ7t1m1eSInccMCN4GOxHNcLrPh3wzq9obnSr1hGDjBbdgnv60yjyT4ayyT6hHZeHbySxhXHnPdDK+Yepx/hX0c/w/1G9mfWNFumjmXI+1RAojk9wD/jXj6WVloUp0CzXz0k+dWdecivqb4a/E5rTTv7L8QWa3ahGjjjzgBiMKR9K2hWlFWT0IcEz5+8afD/UV8KrpV/ZfbmeNhJczR5kV5DzIoP8AERnB7V8ieI/2f9Mt9Nubf4c65Npdhp8fmXMV3AJY/NkOfk3HIPTJBr9d4l1DU1e1ursyyTqN8TD0/wAK+DP2/PHnhT4Gfs+XOpW7b9XvLgW8NuzBY52PLEt1AVc9K6o4qF7y0/IxlRPxT1N5fD9h400T4iX19Pqx0me80IWiqqM5wsOUALHLZwSRwa/Lef8AZ++JvjH4h6zqPiPxtK9vpwtUKySGKNGk2vKCCcZRQeAOWNb/AMevjz+0L4t8dat488JQRabFdpHDGsLbnWKJQFVc9APzr5E8LeHvjZ8TNTuobuS6eND9ou5dxRVA65zgFj0HvWFWupN22LhTsrH0h4c+EvwL8KaVfeMdcupbx5tRuZoLWRGYTxKrRRIWAwAWJc9zjFcloXhnwNo2mtqtrp0GYJ0ieIoPMZiC23nnG0cn3r6N8deFvD0vwy8Jx6Ez2mp2TSx3Gnxyb1RY+A5HUsxbqep56mul0rwx4H8J39hrXjiBEj0XSR5cFwhEU97cZceao+aQjcpPrgDgVj7V9DTlR54PjB4u8VavZ+MrOxj0mx092IEC7cyyDaTvYbWkEY/AV8H/ALZ/7Rj6L4d1GXwhqd3Jc6yRb/aGfy2cjq2B2UcD0r7l1jxdd+LtI03QblY4rexjkmhtUhMWd3DuFA5z61+H37a/j3S/Hvxqh8H+GJEl0vw/ElsjR4KvM2Glbj/aO38K6MFSlVrRj0JqNRi2eGfDfQ7rUNQ/tK7YyPI2WZuSSeSSTX3HoFjY2ulodzCbPIxxj61498NPDccNuHKgbF3HJxX06mm+GbnRLJ7S6+y3ccUgu1ZSwdwSY9nP8S4B6AV+i4akoJHxWLqurUbOVadw5TOOOtbXi620i2lsG0i5S58+yglmKEnZMwO9Tn+IcZA4rlXc+ZuY0yRsruHXFdMmcvn2ICCDuHQd6jJKtkd6stql19hbTBJ+4Z1kKdtwBANUnbKjvS5hpkJO4+ZmmSlmUYOc0uckpWtplktzYX032dpmgiWQMrhRGNwBJB+9nOMDkdamTJkc1vAOAK/2nK/xX2Qp8rHOO9f7UFfKcS/8uv8At79D6Dh/er8v1Cv5EP8Aggb/AMpnf+CkX/Y7Wn/pfq9f131/Ih/wQN/5TO/8FIv+x2tP/S/V6+WPpD+u+iiigAooooAKKKKAOM1n4jfD/wAOeIrHwh4g1ywsdV1LP2SzuLmOOefH/PONmDN+ANcP4n/5Lt4T/wCwdqn87ev5y/jB4I+HXxS8C/t5/Gb41Rwy+NfAupvBoOo3JAu9GttP0uG405rRz80O+dmkUpje+euK/cb4Sa9488S6r8INc8cwqt3feCzdXkjMRN9ulhtGmVkKgDDE87s54xQB9s0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVDcxyy28kUDmJ2UhXAyVJHBweOK+W3+Df7QjOWT4r3qgnIH9m2XH/AJCrOpOUfhi36W/Vo7cJhaVa/tK8adv5lN39OWMvxsfVVFfKf/Cmv2hv+isXv/gtsv8A41R/wpr9ob/orN7/AOC2y/8AjVZe3qf8+n98f/kjs/szDf8AQbT+6r/8rPqyivg/wz+zx+1npnjXXtb1n403lzp1+0Rsrf8As62JgCLhuGQoMn+4q+/Neif8Ka/aG/6Kxe/+C2y/+NVMcRUau6Ml84//ACRrWyjCQlaOPpvRO6VXqrtfw+mx9WUV8pn4NftDf9FZvf8AwW2X/wAar6M8K6ZrOjeHbTS/EOovq17BGFmu3RY2mYdWKoAoz6AAVtTqSk7Sg162/Rs4MXhKVGKlTxEZvtFTXz96MV+J0FMk/wBW30NPpkn+rb6GtTgP4pf+Dl//AJM1/ZV/7K5F/O5r+12v4ov+Dl//AJM1/ZV/7K5F/O5r+12gAr+Q/wD4NQf+bvP+ys3f/tWv68K/kP8A+DUH/m7z/srN3/7VoA/rwooooAKKKKACiiigAooooAKwPE3hXw34z0abw94ssYNRsbhSkkFwgkRgexBBFb9FAH80v7ff/Bt3+zL+0it54x+BCx+C/EEuX8qJf9Ekb/dH3c+1fxZ/tof8Ejf2vv2LtZuI/Hnh2e50uNmEd/aoZYHUHg7gOPxr/WmrF17w3oHinTZdH8SWUN9azKVeKdBIjA9iCMV6eCzfE4XSnLTs9Ud2FzGvh9IS07PY/wATG4tLm0kMVyjIw4IIxUGDX+nV+21/wbvfsY/tRi78R+A7Q+CdfmDMJLFR9ndz/ej6dfSv5Ev2zP8Ag3l/bX/ZinutY8K6W3i7RIsstxpymRto7sgyR+tfY4LijD1LRrLlf4H0uFz6jPSquV/gfgDg0V2fi34e+NfAmpSaR4u0u50+5hYq6TxsjAj2IFcZX0VOvCpHmg015HtQqRmrwd0FFFFaplhRRRTAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqxaXd1Y3Ud7ZSNDNCwdHQlWVlOQQRyCD0NV6KmSTVnsNNp3R90XH7bnit/himgw2+3xIcwvf8eX5eOJAv/PU9MY2g/N/sj410vS/EPjTxBHpumRy6hqV/KcKMvJI7ckkn8SSTx1NYNfpf+w1P8Njpt7BbQlPE4yZpJsEvb548k4GFH8Y655JIwB8BmkMDwllmJx+W4S8pO7S7vZt7qEey0V9LXbX3mWVcbxXmWGwOZYu0UrJvst0ls5y7vV9b2SPzy8V+FNf8Ea/ceGfE9s1re2rbXRv0IPQgjkEcEVzyqzHaoya/oyuv+Cc/xc/bwa1034SeF7u+1G3lEa6qieXbRJnLJLKRtI5yFHzA88AnP7mfsS/8Gtnws8AC08T/ALVGsnXLpdrvp1n8kJI52s55I9cVGQ8e08dltPFVaTjVejXRtdU39l9OvTpd/Jcd0MLw/mlXL6VVVbaqz1V/sz6KS6r0el7H8TP7P37I3x3/AGmPFFv4U+E/h+71O4uGCgwxFgM+p6D8a/rw/YE/4NdWhex8dftf34iTCyHSrY5kJ4OHbt9BX9ffwY/Zy+CX7PfhuHwp8H/DdjodnAoUC2iVWOPVsZJ+pr2yuHHZ9icT7t+WPZfqz8zxebV6+l7Lsj5/+AX7LnwJ/Zj8LxeEvgt4bs9Eto1Cs0ESrI+O7NjJP1NfQFFFeKeWFFFFABRRRQAUUUUAFFFFAH8iH/BxX/ylT/4Jk/8AZUbj/wBOnhyv676/kQ/4OK/+Uqf/AATJ/wCyo3H/AKdPDlf130AFFFFABX8gX/B6t/yiy8A/9lV0r/00axX9ftfyBf8AB6t/yiy8A/8AZVdK/wDTRrFAHwB/wYxf83Rf9yT/AO5qv7/K/gD/AODGL/m6L/uSf/c1X9/lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9T+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP82//gv3aaFb/wDBWP4tXN9ObmS4t9GKRxZQ2866PYCMSEjDAj5iFPQ4zmvxf0to/twuGtvtCRDcyMCVKr6lcHHrX7B/8F+bS/1X/gr/APFTStOglubiU6AkUcQyzFtHsAFA7kk4HvX5Dw2WraJq02i6kktncQyNb3EbKVkXBw6spwcjGCDjkV+nZc19WpK/2Y/kj4TGP9/UfTmf5mlfaRPpLxJclCZ4lmXY4b5XzgHBODxyDyK1NMla3kzbkbvTvVEWImv2s7QvMWkKRgLhzk4HHPPtmryRnRdVWG6DQywOUcNwysOCCPavUW1mTCdlpufU/wAL9ent7qNWIUjBr9pf2dfGurS2lparM8cCjkE8F2649q/CHwDcifU/OllM2CNrnhjj27cV+1P7MkS67YhbaSNVtFjd97BWwxxwDyfwzXymeQikfqHCeIckrn3B8UvFa22nTW2oRJcMIXiAb5grEfeBHcdj61+Bf7RdteX2qT3UcbeXuIzjjJ6D8a/f/wAVeF9Pv7Py4I2YhAUJ5B/ya/Lv9ov4ZCw0+5Qu1uHTzdjcq8gJ7cY4PFebkeIjRqpnu8T4eeKwsqaPxynBiY5/KnWc8tuGltmKlwVOPQ9a6TxTZmC/M4t0SKMqDGDw2OvfPPfHSq+sySa5eXGv6HpUen2krqgt4MlEYLzjcS3IGTX6Ip3sz8KqwdOTg+hkeagOTkn1q1azuzZdhj3rHe4RUKrwD6nn+VWNMvbW0vIrm9gF1CjZeIsV3gdsjkfhVqVtTDlTZ2aR3Hkx3EqOsMhIWQqQpK9cHuRVm3jNxemCA+amT8ydSo7gH+VckdWvZ7VLNpGNvG7PHGxO1C/XHv2zXQ6fqazzQvdx7kiAXC/JlR7gdffrW8KjZz1Kaij0G5t4tFiRWdxcYzJBLGyMgPIPPUEc9qhtTcNZOZxIsT/c4+VmHuapX2s3+rvMbmVpvOZWJkO+QBRhRvPzYA4rbsLnUxHC8KNNaWbA/Ou+JGbsQeOf1raM2lqefOkuhHavf2Mcttu2rINrqCOQOccZre8M2GnazqkWm6pdGyhlDfvVTzDuAO0YyOp4zniqiy6fMPJnbykJMjMqZIPpxjism1urGSSUylwiqxTYMHd2znt61sql01szldHlab1R0ul6jbw2U+mX3mOFIaJA2IxIOCWHfjIrqrPWVOlvAoRfLJcsfvsvYZ749K4HTZJbe6WdIyWjYcngBuoP9cVs+IItUsrf+1r0LIL5nzIwHJ7nHY/5FKpNOyNaEJJOZU1/xDPfqsanCrXLNcT6htjU7vLGOB0HvVO41JmdZ5FDJFhSOFz9cetXLvV4r61ht7O1EIDsEKuWY7v4TVqolsbQjvJ7sqxgecrtGZVQhnA/ug889q6PVPFF7fJ/Y2kI0Vgkga2ts+YyEnOFbG7JNchqK3+mag9nGksEn3WRz82T2OKXz5tOuItRsZXingZXDHh1kXkEfQ96znNPU1ej5kXb+fUWvZW1dJEuVb955wIfd/tA4Oas22rXunMJrRyHClc9cBuvWsPVfEGra/qk+t67cPd3d0/mTSynLOx7k1YgWSa0m1CKeOM2+0hGOHbJx8owc4704VHbUUoNy0PoX9kfxTBonxutLC4b5L5TEQeAT2r7Z/aJjE+gWSvEGbw/czKSvLfvzlMjtX5v/DTx8NA8S2NuulRXchu4nikO4tE2fmKgHGWHXNftroHw6j+KXiB/DOsAC21Fbe/eU9zAw+UD3r8z4wo/7Qqn8y/I+74cqN4dwfR/mfoB+xrouj/Bn4DWA8QvBFJHatez7mG4vIN+Mdc44r8Y/jT8Vl8b+NtU8VP80l3cSOOocLnj36elfqF+1FPb/D74S3er+HV8q+1JUtEjckqq45KjtwPevwh8VakdYn+y6iptp85DHoce44/lXw8ux9Gzu9M1GK+iMLHz1IIIPBBPvWLbLpvh7xPFJb7opc42nhjn0x1/Cm+G/DWpW1st/LI6t1IOGjdf5g1Yu5dHkvl+3RPmP5sNyAfYj+tSSfUekaVq3irWdO0DSpzL9tlSIhs7lB+8fXgZ61+63hfwtovh3wTZaNcrhI0UA528AYAHpX5ff8E+fhxb/E3xpe+OXytjokYjXcxKmaTsvB5Ar9fdb8JX18+x2eNE6KoDAAenI5+taR2HG9jy+6tbrSbvzLKNGik4j9QT9TWfc+DdT8TSefc3EemhGGGt85Yj+8OhrtT4ZvLm/gstLgDLGcu8vBA9s5r0Gyh/slRYXkELEHiQjgD6Z/nVIo89uPh5BZ2r6hBfyyOuCZZfmQYHrjgfSvMdQ8TeLNIvYtQ8Lhr6OJtrmFPNU5+gr6iuNBs9V05/JmbOCCFbb+IAryXxD4M8Q+GbE3fhNTPkYlRR87Kfp1IoA9E8PeKvFesaQt14iKaddBeikEhfU89fWv51v+Cpfxlm8d/GK28B2V15+j+Fo/nlydklzLy2D0O0YFfb/wAaPGnxE8NXR0zRjdwzuQFLBgGz9eMDvXJeEPgn4B1K0ufiJ8TLaz1KwtcWdrZMomZ9Tn+eW4l6r8q4Cg+vahjPw98JWep+ONPa98LaFda9c3DtDGtvGzxQgdXO3gn0ycCvtb4WfsZfHW9+C/iPT9QsYdIvdeeBYG1BgpiRG3F9qZJbHCDPHWv1Rs0s/DXkaB4fs4NPslAOVARQp9gAP1ro9T1NdQuLa0nuXeAEZEa4Vif4Qcj+dTzLoFj8vfhB/wAEt7Twfv1L4l+Mbi5muX82b7KCrkAYwrMWbn2wK/RTTf2fPgvYMPETaGdWvLdFQy348xyVUKvLeigDgdq9ms/Dc8d/jUHhsIWjO1c7ikY7nGOSfrXg3xa+MOlfB/wvJrNyZ7qGS5S1s4yQpuJjzuOSMKACSewpXuB+Qn/BTfxP4e+EnhTX/it8QmbSry3VrDQNKsmWI3G1QAZCBuCB23FVxnua/kO+Hln/AG3rs2oaoXkklLOWHPzsc85//XX6H/8ABVT41W3xQ+NkfhVNTk1C+EzXepzLM88Eck53JFEWPKopycDGTx618w/DbSV0K1m022eK5iuNhMpiww2nPylhuX3xjNfVZDhtPaPdnk5pXUIcp734L0EXm3T4nSKUozK0j7EGwZOT3J6AdzXdaFpmlayG0mSVYtQlOYppJPLt1VFZm38E5JACkd+O9cPAWgTg4wODWnpmnaprNybbSozPNtkmKg4IjjG5zz2A5r69OyPkOe7uZ0jD7uaru2znqMdqeQwOSOnaoGy7kelFzNau7HalfXWo3Ru7xtzsqjoBwoCjp9B9arxlfl9VO78RUssbK3lyYGBkY5496qlSDx+fWp5katX3GSlYwSoznrioVeXnYcA9RTydrbXHNIQOo4ockKxXkYdMV/tQ1/isTNsk2jocV/tT18pxG7un8/0Po8gVlU+X6hX8iH/BA3/lM7/wUi/7Ha0/9L9Xr+u+v5EP+CBv/KZ3/gpF/wBjtaf+l+r18wfQn9d9FFFABRRRQAUUUUAfFfxc/wCCev7JHxy+KY+MfxL8JxX+tyfZvtbCWWOC++xNvt/tcKMIrjyj9zzVbb2r1L4j6j/wi3xS8L+JZrK7nsbay1CB2tIGm2PJ5OwEJyMhTjjtX0FRgHrQB41/wvDwv/0D9X/8F83/AMTR/wALw8L/APQP1f8A8F83/wATXsMiMY2ERCsQcEjODX5Kfsq/ET9qfRv+ChvxO/Zr+O/jyLxro2m+FdL8RaYsemQ6cLN767uIjEPLLM4VIlG52JJ54oA++m/aF8DJqiaI1rqou3iaZYv7Pm3GNSAW+72JA/GtD/heHhf/AKB+r/8Agvm/+Jr8Qvg3+1R8ebD9r6+0b9qzx94w8F6Xc+OdS0bQbG88MW0Phy/sxKUsoBqflGQPOPulmXc2ADk1a+MH7U37Zfiy3/aC/ae+EXjOLQPDXwC1dtMsPDDWME1vrA02CO5vzdyupmUyCTy4fKdNmMnNAH7Z/wDC8PC//QP1f/wXzf8AxNH/AAvDwv8A9A/V/wDwXzf/ABNdn8O/F9n8Q/h/oXj+wjMUGuafbahGjdVS6jWQA+4DV2OFoA8b/wCF4eF/+gfq/wD4L5v/AImoY/jx4SlkkhSw1ctEQG/4l8/Gf+A817Vha/O79ujw18XNI8Mar8a9H+ONx8KPC3hjSpbmWO30+znSS5jyyvNJcpIzIeFESbSxPBzQB9P6n+0F4I0bT5tV1S01WC3t1LySNp8+FUdT901cX45eFXUOun6uQRkf8S+bv/wGvzz8LTftX/tI/sXfD348fEj4m3HwXu/+EefU/EiWenWhMr4JjmkN6kogQxgSNGFz820kYr5U+H/7a/7YHxc/Zx+Cnw+OsR6D4y+LfizUNFt/Fq6eivNoGnebKuoxWsoMazXMEQ2BlKAtuAxigD9uf+F4eF/+gfq//gvm/wDiaP8AheHhf/oH6v8A+C+b/wCJr5B/YN+NXxa8RePfiz+zP8btYHifWvhXrNtaQa40EdvLfWN/AJ4TNHEFjEqHcjFFAIAOM1+kWFoA8b/4Xh4X/wCgfq//AIL5v/iaD8cfC4Gf7P1f/wAF83/xNeyYWqGqW13dabcW2mz/AGW4kjZY5tofy3I4baeDg84PWgDySD47+ErmITw2GrlWzg/2dOOnHdaqJ+0N4Fk1STRI7XVTdxRrK8X9nzbgjHAP3e5HrX5E/CX9o346eGv+ChGifsraP8YpfihDf2epP4ls9Y0WHSTpLW6Zhls5Fhg+0fvCFaNDMNvJYYrtvGHij9q39mz9sX4WfDxfi1P8Trz4hatPHrXhi40y0t47HRkVma8ha3RZYUgO1cyu4kJx1NAH6o/8Lw8L/wDQP1f/AMF83/xNH/C8PC//AED9X/8ABfN/8TX4deFf2r/2gfD/AO2DrGkftO+P/GXgXwz/AMJk2l6HBJ4Xth4cvLMhBBE+pGJpFMzFl3EqM8Bq/ooAUjIxigDxef47eE7aFp5rDVwqjJ/4l85/QLmpF+OPhZlDDT9Xwef+QfN/8TXsu1fSjC0AeN/8Lw8L/wDQP1f/AMF83/xNVL/4/wDgvS7KXUdQs9WighUu7tp82FUdT90180f8FBP2m/HXwT+Gz+BfgEkNz8TPEdpdvo6TJ5kNnFaxmSa8nXn91Eo7/eYgV+Ov7Z//AAUI/bY8A/8ABLL4OfHn4f68lj4g8YxRprus2mnw3l80hVtq2tiQQzSsMHZG5Uc4oA/ofi/aB8F3EUE8FlqzpcgNGw0+fDAjIP3eOPWo7L9ofwLqNzc2dja6rJLaMEmUafNlGIyAfl9K/lD/AGQf+Cp/7Ufxp8D33wm0b4xXN/8AEXxh4psvD/h9tf0C2sZ9P0yUDzr8WqRoJJEYMmxmIU4LKM19t/szftH/ALfnwH/4KZfEj9kj41eMpPi74B8N+FT4kk1m50+2s7ixcRlkjd7VEXdIykBGBOORQB++X/C8PC//AED9X/8ABfN/8TUMvx48JQMiy2GrgyNtX/iXznn/AL5r8Sfhb+1l+2LoXhz4P/tj/EvxnFq/hL4u+JRpF14UWxgig02zvZHjtHt5lUTGVNoMnmOwbPAFf0QbV9KAPG/+F4eF/wDoH6v/AOC+b/4mj/heHhf/AKB+r/8Agvm/+Jr2TC0YWgDxWL48eEZ3eOOw1cmM7W/4l045/wC+f5VV1L9obwLo8cc2p2uqwrLIsSFtPn5d+g+73r8zf+CoOo/tUfBLwtP8Vfgr8ZtT0TUfEOoWOi+HfDMOl6fcQSX924QAvLC0xUDLv83AFfOv7WH7d/xn8K/tI2v7Htv4u1zQZ/BnhWy1vxJq3hjw9Hrep3dzMvzOI3RoILePBZ22lm6KKAP3HPx38JC4+ymw1feV3Y/s+fp9duKl/wCF4eF/+gfq/wD4L5v/AImvxa/aj/ak/aB/sv4O+J/gX468Wal8Ptb8P3l9rXirwj4Zt9VuZposeU80EkbLCPvb1VQQQeK/X/8AZP8AiT4X+Ln7P/hvx74S8XN46s722B/tqSFbaW5dThjJCioI3B4ZNowR0oA3/wDhfXhH7T9j+wav5m3dj+zp+n124qf/AIXh4X/6B+r/APgvm/8Aia9k2r6UYWgDxv8A4Xh4X/6B+r/+C+b/AOJo/wCF4eF/+gfq/wD4L5v/AImvzw8F/En9qbwZ/wAFUZfgH8RPHcXiPwXr3hW416x0tNMhtBYNHceWieapaSU7epYjJ7UvxS+I37VHwr/4KX/DPwFe+PItQ+H3xDj1fHh5dMhiNqLGNGQm6y0sjEsc/dHtQB9+6V+0P4F1yyXUdJtdVngckB10+fBKnB6qO9aP/C8PC/8A0D9X/wDBfN/8TX5t/wDBSC5/aU/Z/wDAPiP9pr4e/GS40FdL+zJ4e8IxaXZy2l/eO6oLWQvG1xM85JA8t0K9R0rlvHXxs/a9/aJ/aNsP2Zvhn4n/AOFWXeheBbXxTrdzb2kF5PLqd5kRW2LhXVYEKnzAAGOcBhQB+pv/AAvDwv8A9A/V/wDwXzf/ABNH/C8PC/8A0D9X/wDBfN/8TXiH/BPj9ojxN+1J+yl4b+LPjmGKLXZfPstS8hdsT3VnI0MjoOysy5A7Zr7TwtAHjf8AwvDwv/0D9X/8F83/AMTR/wALw8L/APQP1f8A8F83/wATXgP/AAUOufj9oP7Lfijx7+zv40j8Eav4Z0681aS6fTotRaaO1heQRKsxCpuYDLYOB2r4v/aN/b++IfwQ/wCCdPwv+Lr36x+NPiSdI0qPU/sJuxBc3yb5JltIsea+FIjjAwXIzxmgD9Prn9oXwNZ3tvpt1a6qk91u8pDp82X2cnHy9s1of8Lw8L/9A/V//BfN/wDE1+L1h+1B8c739jX4sXPwa8feKfGvxW8KvZhNO1nw1b2Ovab9pkjDFLKOMJKjxF3iJDA9CeK2/hD+3brXw0/Ze+MHxH8XeOfEfjHxx4D0gag/h/xjocGg3tm8iYhYRQRxiSCSQj5wzDgjINAH7Df8Lw8L/wDQP1f/AMF83/xNQz/HfwlbR+bNYauFyB/yD5z147Ka/Lj4F/F79rj4J/tK/Cf4cftDeOV8e6T8Z9BvL7Y1hBaNpOqWaRzMluYFQtbtHLgCTcwK53c1+2O1fSgDxv8A4Xh4X/6B+r/+C+b/AOJo/wCF4eF/+gfq/wD4L5v/AImvFP2uvAXxS1/Rf+Ez8OfGS4+Efhrw/ZXF1qlza2VnMXKDcJJJrtJAkcYHKqoLetfFPwj+NH7Q/wAbf+CcHhn48/F/4iXnwyv4pJpr7X9M0VLq41DT0laK3nW0eKcxfaE2SkLGSM8YFAH6XyftE+A4tWj0KS11UXksZmSL+z5txRTgn7vr71pf8Lw8L/8AQP1f/wAF83/xNfgr4e/bI/bT+JX/AAT81j4ofC7Xr3xXqlh8QItB0vxNoWiwz6xe+HFn2zXMmmsCkVwq7gUdE6AlVzXrkP7e/iT4b/sJ/EH4heD/AB1qvjj4iaJq1noaWvi7R4dHv9Iv9Umit4FubOFIwY180SqeQ46NigD9jv8AheHhf/oH6v8A+C+b/wCJo/4Xh4X/AOgfq/8A4L5v/ia/Pn9nL4k/tI/B39tGL9kX4++Nm+Ill4n8Gr4s0zU7iygs7m0uIJ/s91bkW6ojREsrxZG5RkEnrX61YWgDxZ/jv4TjkSF7DVw0mdv/ABL5u3/Aal/4Xh4X/wCgfq//AIL5v/ia9O16y1G/0O8sdFuvsN7NBJHb3OwSeTKykK+xuG2nB2ng4xX4Z/s7/tN/GXR/+Ch9r+y5B8XJPitoS6JqN74nTWtIh0afSLq0kVIjaOsVv9ojc7w4VZVQKCX5xQB+ul98fvBmmWU2pahZ6tFBAjSSO2nzYVVGSfu9hTrP49+DtQtIr6zstWkhmQOjDT5sMrDIP3e4r8n/AAf+3H8efjB/wUp8CeFfBt7aw/A7xbpniO2063NsrXGqXGhtAkl95rDcsLSSOkQU4dFDnqK8f+E37V3x70f9rq98P/tVfEHxj4G0e68eajovh+wu/C9tD4bv7RZ3Sxt11LyTIHnjA2szLubgGgD9yP8AheHhf/oH6v8A+C+b/wCJqEfHjwkbg2osNX3qoYj+zp+h99uO1fil8eP2rP2xNY0n9of9q34TeMotB8L/ALPWuTaTZeFzYwTQaymjxwy6i13M6mZTKJHWDynQJtUnOTX7y/Dvxba/EDwFovju0j8uLWbG3vUU9VWdA4H4ZoA43/heHhf/AKB+r/8Agvm/+Jo/4Xh4X/6B+r/+C+b/AOJr2TC1/PHoH7V3xy8MftlatpH7TfxD8Y+A/DD+PJdG0G3n8MWy+Gb20LKtpA2pmJpFa4OVDsygscBs0AftyPjf4YJx/Z+r/wDgvm/+JrN0z9obwLrVsbzSrXVZ4lkeIsunzYDxMUYfd7MCPwr8ZvjN+1J+2B4yT9o/9pf4R+NY/DXhf9nLVLjTrHw0LGC4h1s6LbR3WoG8mkUyr5wdoofJZNmAxyTXa+Kvj/8AtV/ta/F/x94d/Zh8ar8NtH+GXgjRPEMSLYW942qazr9tLfxx3JnVttrHEiIyx7HZnJ3cCgD9df8AheHhf/oH6v8A+C+b/wCJpr/G/wAL7D/xL9X6f9A+b/4mvxr+G37Z37Qv/BQbxd8IvhN8HPE7/Cw+I/henxF8QalY2kF5cm5nnSzhtIVuVkjWETGWSQ7dzBVUEZJr9Cf+Cbf7R/jj9qH9lbTvHXxUSAeLNI1PVfDmtyWqeXbz32iXktnJNGvO1ZfKEm3+HdgdKAP5nv8Ag5rsNQ039jv9lS21O3ktZj8WbeQxTLsdRILh13DsSpBxX9qdfyH/APB3V/yRb9mr/srNh/6Ilr+vCgAr+Q//AINQf+bvP+ys3f8A7Vr+vCv5D/8Ag1B/5u8/7Kzd/wDtWgD+vCiiigAooooAKKKKACiiigAooooAKKKKACmSRRzIY5VDKeoIyKfRQB8K/tKf8E3P2Ov2rtOktPi34Msri4kBxdwIIZwT33qAfzr+aD9r3/g1F0PUxceIf2UfFHlSHLLp2pDAz2CyL/UV/aTRW9DE1aL5qUmn5GtKvUpO9OTR/ky/tLf8Eav29P2Ypp5fGngi8uLGHJ+12YFxEVHfKE4/EV+ZOs+FvEfh66ax1uymtZU4ZJEKkfga/wBsS+06w1O3a11KBJ4m4KSKGU/ga+Bf2gf+CXH7EP7SlvKPiN4FsDczZzc20Yhlye+VAyfrX0GF4pxNOyqxUl9z/r5Hs0M/rw0qJSX3M/yFsGkr+/v9o7/g1F+C/itp9T+AHiubR5my0dvfr5keT23KM4/Cvwi/aB/4NrP+ChXweW41DwvpFv4qs4skNpsu+RgP9hgDX0GH4owlTSd4vz/4B69HPsNP47xZ/PDRX0Z8UP2TP2iPg3fS6f8AEfwlqekvCcN9otnRQf8AeIwfzr5/udPvrNil1C8ZH94Yr2qONo1f4c0/mepSxNKp/DmmU6KKXBrp5mbiUUUUJgFFFFUAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUm7AFFLg5xSYNLmYBRUscE8zbYkZj7DNegeE/hJ8SfHN4th4T0W7v5nIASCF5GOfZQTWNXE06SvUkl6syqVqdNXnJL1Z51RX7G/AD/ghZ/wAFEvj+YLjRfA9zpdnNgi51H/Ro8H/e5/Sv3T/Z2/4NMfFEktvqn7Q/jK1tU4aS208GV/cbmAH5V4+I4lwdP4Zcz8v8zza2d4WGzv6H8VNtZXl5IIrWNpGPZRmvr74EfsD/ALV37R2pR6f8KvBmo6l5hA8xISEAbuWbAH51/pG/s4/8EIP+Cfn7PXk30XhdfEOoRYP2jUsSZP8Au4xX61eEPh74G8AacmkeCtJtNLtoxhY7aJYwAPoK8DFcWVpaUYKPm9X/AJHkV+IastKUUvXU/gg/ZN/4NXP2hvHstvrf7R2q2/hSxbDPbownuSO4wp2g/Umv6Z/2Zv8Aggp/wT+/Z10U2k/hw+J7+WJopbvUXJYhhglQhXYcHgqQR1BzX7U0V83i8ZWxN1Xk5J9Ht92x5EsfiJTVT2j5k7pp2s1s1bZo850bQfhd8B/h4LHRrew8MeGdAtSxxtt7a2giGWZmOAABkszHnqTmvw51D/gu58O1/antfCOnaVu+FilrK41llcXjTMwAu1j7W6Yx5ZXzGUl+GAjr9wPjH8IfAnx5+GWsfCP4l2n23Rdbg8i4jB2sMEMjo38Lo4DoezAV/KJpv/BEf9oW8/aku/hDdTfZ/A1oVuv+EpZP3ctk7Hakceebrgq0ecIRuJ2FS3xXEVfNKMqEMuh7t1e3fon2jbr+XX9X8M8BwnjaeOrcTVmqqi2uZ2VnvOL1cqib0jbzSk27f17aPrGleINJtde0K5ivbG9iSe3uIHEkUsUgDK6MuQysCCCDgitGvLPgn8HfBPwA+FujfB/4dxzRaPocHkW4nlaaQ5JZmZm7szFiAAoJwoAwK9TBBGRX1NNzcE5q0ra22v1PyTExpRrTWHk3Tu+VtWbV9G1d2bW6u7dwoooqzAKKKKACiiigAooooAKKKKAP5EP+Div/AJSp/wDBMn/sqNx/6dPDlf131/Ih/wAHFf8AylT/AOCZP/ZUbj/06eHK/rvoAKKKKACv5Av+D1b/AJRZeAf+yq6V/wCmjWK/r9r+QL/g9W/5RZeAf+yq6V/6aNYoA+AP+DGL/m6L/uSf/c1X9/lfwB/8GMX/ADdF/wByT/7mq/v8oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKAP81v/gvfrF9ov/BYL4qarpc7W15aSeH5YJUOGR00awZWUjoQeh7V+QN7q2sa5q02r6vM95e3sjTTTSMWeWRzlmYnkkk81+rv/BwTJAv/AAV1+LxcneD4eCgDg50Wwzn6DFfkRp8iSbklZlPzYIHccr+fev0zAW+r0nbXlj+SPgcXJ+3qxe3M/wA2bxv0jufNtg0LI2VGfmGPf2rQt7+5WaW7uNsxnVgWkAcjd356H361oeINbuNY0DQtEF1HPDpdtN8qwrE8ZlfcylwAZc9QSTjoK29f0TwbpvhrSdT0jU/tl7dI5urYxlfs7KflBbo2evFd0Kr0TW5MtNYlvwhrD212qL3xya/WH9nPxXJYeQ4ILnAz7V+O3h2VXuQ4+8CMYr9LvgFdTu1uG4yVxzXkZyk4an3HBlaSqWZ+/vwzhn8Y6TAqyDciYY/rXzt+0h8NdSudHm+2DKquAeua9k/Z+8Q2Gl6dE18flZcH8utaHxk1ay1m0nttPdnUqetfBRqShV90/XJU1KDUluj+an4s+DDpl5KbxSOu0Aehr5inma1dlViD0Nfpf+0PpUVwClvbGCeMkMRyrL/ewe/6V+aHiBGtb14CvJPU1+l5VieelZs/C+JsAqddySsjPt72GCUSXEfnrzlGOB+nNVUaWRsjJz0AquHjx83Wrdmdr7m4x3r1Uz5d6I98+Cfw60f4keIZNH8QazBodvFbyTedc52sY1JCjHdsYHvWRcWtvaXr29uRJGjEAjjIHSuOPiSWSwtbFI4ovsoceZGu15N5z85746D0Fan9oWkGwW0pmDIpbcu3DHqPcD1qouSd7mM1zJK3zO/tb62ubWHT5YI44oycyxrh2z/ePfFVo7yeyDQCU+W7cjnBx0JFc7HfSyRgWwJyMvx0FTv58rL9mAleNfMZOeVHP1rWMkYzi7GuNXaPdFFyMYLeoqqHdQJYzu6Hisz+2Yr67nuFt44EuMfImSFA/uk5P612mjWIeSK7eIOq84PQitPbWRg8O5bGrp1zcXjy6lfytLMwDMW5PHGc+wrn9R1q2uLiSW/3SRYKptbBB7H/ACKh8RXtvYEpbkrgYIzXmi3izzFXJw2ehxz2pe0W6NI0W/dvoejv4q1NbOxia3t1htTuT9wp81h/fyDu/HismGSW+aSO1ty9xIxkBjBG0dThRxj6dK5y48SalqNtbafdMGitAViAUAgN1yQAT+NSJrmr6awjgla3Zc42/Kw3DB568inzm/sbKyRvz31i9jvYytel+WY5Tbj885p0iWTaGl29wrXRmKmEZ3BAPvHjByff8K4r7W5b5h37VfvZbIS7bRmeEnguNrdPSjn1EqN9i28zKcMPxPSrInURZC1tf8LNuodDTw3pumWcW2XzhcbS8hymwghyRjv7GuHF5MEETHd0AA6k9qUKrd7mjwqdrMv3WoyWxW4gYrIhDAg9xX7+fsq/GLwp4p8M+GfGNvqcWLcCw1EE4a3LAA7h1GT0PQ1/Pxc20K2jidnS5WRU8opwAepLZ4PtivR/CPxX074E6bbeLvBRmk8Q/aMXtrJj7FcWg/gbvuzyD2rws9wP1ukrfEtj0crxSwtS1tGf2DeOPglpfxo0S3e41BL3S4x+6eJMSKT1KndtYY9R+FfAHxy/4J2+MnsptX+EWowa+VXmycCC8XHba3yt+BH0qt+x/wD8Fjf2UPG+k2Hw08SzSeENRgVYhbasQiSOevlzjMbZPQEg1+sMkug+NZ7LVvCd/HKJNrrhwGKn+6wOCPoa/Na+ClCXLNWZ9rCrGaundH8veieBfiPovim48C+MLS60i9TOIblDERj/AGWAH5darXHgzx5oWsie5kxAzcuASAo9utf1XeMPD+l+K7VdM8a6VbatHGpUC5QCQA/3XAyK+L/iB+w34J1m6stY8F649jEsscl1Y3S7lWPdllR856cdx71xypSRp6Huf7F3heD4L/ASwN/bbLvWQdQmdE2k+Z930/hr3WXxrPfWs+oRRNHCDgMx5dj2Hqa6u914WfhK38N2kSS7FEUIYbgqAYGPwryzxFrQ8NQpYKEvZFwCqDAU/XoBTLR2NvFq15ZRi4AtWky2+TkhRzkkHArzafSNQ8RzSPBqkRiDEKwyg46nHJNYl74n+3o/9oNIWddoSLhcfXvXX+D9Kb+wxIrCEFmOJAc49zQBraRZy+ErIHUtVDkZZCmSrH0GR/OpNY+N1no+kzxGERyIpOf4iw7e1eX+KdX1Wdm0zShE0MR8yWd2zGgX+L6+nrXj9nqrXUkmo6mBKYQW86ZR5Uqjsh56ep5oA+KP21/2ldU8TeCYdOEqSajfXflW1oxDN8owG6dAxz15OBXotz8K9T+Fnwg8N+DmunmvdNs/tV3DA2ZZdQu8PIz55+XIHtivmj4OaT4R/a0/biTxe8iLovhWRr+4thGVtlisjiJQ3QmSTBJr7v8AjV+0T8FvDOr3d78RfElhFf3EjFLW3dZHA9Nq5JP4VMtUUjyzwQdQsrQazrww4XbunbIBHJGD/jXR3Wv/AG3UbW9ZmkVXVsRfKgyeSemMfWvjv4jftp/D+40G5Twlosv2eAL5d1et5YlduixryxJ6npxX59/ED9pD4qeO9PFhDqDaRAoJcWY2Ej6/eP51HKxtn70fEP8AaD+GfgPTVv8Axl4h07RbWU/MZJQJHVeAqg/MxPsDX8/v7fX7XWhfGrWxc+DZJZvCvhG2lne58plDy4/ekBtvbain3NeKeHvhdb+LvEp8Q6oJtUu4sSGe6Yy7QOe5Pbmvl3/god8bJfhr4Dh/ZvstsT+KpLe/1W4g2mRbRfmWBRgcFzuY5+YgDtW1Gk5zUV1Ik7K5+Og1LU/iF46u/FWpndNeTtK3XC5PAHsBwK+y/BekGOCOFFzI5CgerHpXz/8ACfwrBdX8aq/lRSOMPKOik9SBnt1xX1ZbWgtojDGc4JAI7+9fo2BoKnTSR8bmmI56luhrX9nc2M72F7H5csbFWU9iOo44qkVIO7lTitvXv+EcOo7fC/2j7IETi4wHD4G7hSRjdnHtWDJJhto/M13I8pxu9BJZkxszzRvZYyRUTxMIjdxjKggZPvn/AApltC107ksECKWO44Bx2HvUyf3GqikXp5tNfTrZLGKX7WBIs7u4ZHycrsUAFcDg5JyeeKysSA7GXBrt/AWoeFrDxlZXXjS3kuNKimQ3UMLbZHhBG8KeQGIzg1s/ELxHoa6jrEPw7tZLTw1qdzutkuQrzCOM7o18zGQyg/NtxnvWN7N6FNXPJndlBJ+8egqokjLIJTkoT9QfY+1MDKwzuxjpW7o954YXZD4jtJ5Qpmy8EoVjvTES7WBGFk+Zj1K8DpSch21sc/I0krsQ3qcHsAa/2rK/xUITGrRPer5oQ4YdCegIz+Ff7V9fM8Qu/svn+h9Bka/ifL9Qr+RD/ggb/wApnf8AgpF/2O1p/wCl+r1/XfX8iH/BA3/lM7/wUi/7Ha0/9L9Xr5s98/rvooooAKKKKACiiigAooooAa+7adnDY4z61+T3w4/ZJ/bX8L/t4a3+1x4l8aeErrSvEWm2eg3umW+lXMc66ZYzzTReXK1ywE584hmKlTgYUV+sdFAH5RfGP9kT9sT9qPxPpngX9oLxl4Xj+Gmk+IrTXhBommXEOr3Q024W5tYJJpZ5IkG9E81kTLAEDbmvP/i//wAE0/jT4j1/4peAfhN460/RPhl8b76PUPFVnc2TzapaytEkF0LCZZFiUXMUahvNRyjZIr9naKAMTw14e0vwj4c0/wAKaHH5VlpltFaW6f3YoVCIPwUAVt0UUAFflX+3T+xv+1J+078X/BvijwD4x8PQeCvCZN6/hbX9NmvLO+1NTmG4uPJniMiwfejjb5d/zEHAr9VKKAPyP/bH/Y2/bO/as8CeAPB8vjvw1Z2Wiym78U6PJply2l67NG2YI3VLlZVt0wC0RkIcjk44rufil+yD+0J8WPhv4A8Sap4k8PaX8VfhjrP9raHe6fp0seilBG0JtpbZpjL5TwuyNskBHBGMV+m9FAHxL+x1+y54s+BF743+J/xa1m217x58SNUTVNauLCFreyi8iIQwQW8bs7iONF6uxYsSa+2qKKACsfxBDrdxod3B4bnittQeJxbSzIZI0lI+UsoILAHqARmtiigD8pdL/Y9/az+Kv7QPgr43/tS+LvDDr8OJLq70a28MaZPavc3lxE0O+6luJ5W8tVbPlR4BPU1yf7L/AOxX+2t8D/2gNf8AjR498beEPFdz4u1FptX1KbSbldV/s9SfJs7eQ3RihiiXGFVMFssQTX7DUUAflV8e/wBlD9s/9qLVT8L/AIt+NPC1r8L21iDUJY9L0udNantrWUSxwGaWd4UJIAaRY8kdAK/VCCGO2gS3i+7GoUfQcVLRQAUUUUAfBP7V/wDwTs+AH7Wer3XjrxrFqNp4oOjz6PbahYaneWOyGYHCulvLGrqGwSrA5xXxBoX/AASN8e/Bb4IfB3RP2c/G1tB43+EE1xcW8/iKG41TSr5rtCkoeFphLENp+Ty3G09BzX7q0UAfy96T/wAEFfj94i+Mvi79sb4k/FjTbL4w3uprq/hmXQ9JMWi6RdAAEtBLI0kwcABgXHr1r6d/4Ju/8Etv2n/2Q/iD8QvF/wAe/iBofjxfiopfxHcx2NzFfzTbGQbJZLh1VMMfl2YHAGK/eeigD8X/AIX/APBM74yeHdT8BfCr4h+OdP1b4S/C3W31zQLCGxeLVZpAzPBDdzGQxNFAznGyNWbjJr9oKKKACiv5+/2/fjX450b/AIKLeFPg1c6v8SF8J3Pg261KTTfh1C89012k4VZZVjUttC8dcV9E337WfxX+FEnwp/Z9+AvhDWPFeu/ECx1C6guPiDeyabe2YshuJvR5MkpznACruoA+rvjR+yld/G79pv4cfGjxPrI/4R74dfary30Xy8ifU5xsjuHfOP3SZ2jHU5zXh3x+/Ys+Nt1+0dq/7UH7KvibRtD1/wAW6Cnh3XYNfsZLy3e3hJ8qaHyZImWVAx4YlG7ivnfxJ/wWMh8LfCHQZPEfhzStE+I+teI77ws+n6rqwtdFtbvTeZ55L4xbvI2kFQIt7ZxgVDZ/8FgPEN78IZNa8O+DtK8U+M7TxfY+EJrTQ9ZFxpM8uoAmK4gvTCCY8DLK0e5enJoA+iPC37K37Xv7N3wG8JfAf9kzxf4Z+x6TYS2+pXXifTZ7iaW6ndnaeEW88SqAWOI2BHTmvpD9ib9lmz/Y8+AOn/BuLVpNdu0uLi/vr+RBEJ7u8kMsrLGvCJuJ2rzgd6+LvEX7eP7X1p4u8TfDfwd8NPD2ta58NtGGs+LyNamhtUMqNLHa2LtalpZfLXLNIqIDwPWum+Dn/BTzT/GJ8D6t8VvDi+FNF8eeD7nxPZXjXPmiOewy1zaPlVG9IxuUg/N6UAfq/RXyl+zp8d/Ef7RX7Mlv8c9V0VvDh1y1urqxtjIZJBajcIJGO1cM6gPjHGa/Da2+MWvfBD/glX4L/aM8ReONXsrjVPHNhda9q+oajNMVtRdyrKu6Rm2Q7FAKLhfagD9FPE37In7Z2qft82X7X2k+M/CkOkWGnNoUWly6VcNOdNkl81t0ouQvn9QG27f9mp/2jf2R/wBsr4r/ALYHgj9ovwH4z8K6Zo/gF7pdO0+90u4nnkivlRJxLKlygLAL8hVQATzmuF+J/wDwVeu/Afwn0/4xnwhb6Xo/jjV49H8Dy+INRGmrqKlSzX12xRha2oUbkzvkcEfKCa+b/G//AAUd+L3xf+E2t/ED4c3unaf4k+CHiPTLzxNH4X1EatomsaFdkCYxzNEjELG24qyhkZfSgD6k/aD/AGKf2zvin+1xpv7R3h/xv4UvNI8N2yR+HtC17Srm5t9NumGJrpRFcxB535Cu4JReBXoHxt/Y5/aK1T42Wv7UH7PPi/RtC8caj4cHhrX01OxluNOuIQSyTwpHKkiSxMzbAzspGAawF+LvjH9qr9vSL4V/DfX7q0+G/gvwol/4gFhL5Yvr/W1zbRGRfnHlQ/P8rAgsK6L/AIJQav4j1D9n/wAR6Z4i1e/1n+yPGOu6faz6lcyXdwttb3LLGhllLOwVRgZJoA+rf2SP2cNC/ZO+AGgfAzQbyTUl0iJjPeTAK9zczMXllIHA3OScDpX0jRRQB8qftnfCf4z/AB0+AOvfCH4KazpWhXviO1n067utWtZLuNbW5jaOTYkckREgDZUkke1fGcX/AAT++Ofir9j/AMJfA34m+LdDl8YfDXUbDUvCur6fp0kdpHJpq7YhcwSTO0m9SyvsdeDkYIr9d6KAPyt+Gv7IP7V/gzxf8Qf2mdU8YeG7j4u+NrfT7CIx6bOug2lnpwISPyfP892fJLOZeCeBgVz+nf8ABOr4jfGvWPiT4/8A20PE+m6nr/xA8MDwikHhm0ezsbDT0LurqJ5JZJJvNcvuZsDAAFfrlRQB+VPwB/Yc+Pul/G3wb8W/2o/GumeJl+GGjT6L4Xt9JsZLPetzsWS6vDJJJunKRqoEYVBycc1+q1FFAH5l/wDBQv8AZF/aP/a1uvCGh/DLxfouleENFujfazoGtWEt3a6zPGQYFuDDNExhjYbzFna7AbsgYr1fVvCH7eFh8HdD0fwVrvgZPFtnI6X/ANo0q6GkyWw4jWGJLkSRsoxnLsD6Cvt2igD8tPgx+yB+1J+zx8OPGXiH4c+L/Dt38TPiB4lbxJrM19pkq6IrSRrEYLe3imWWNQqL85kZick5zXnDf8EvPFvxZ8B/F/U/2kvF9tc+P/i7Jps019oVobaw0uTRPLNgbeGVpHfY0atI0jkvkjgV+yVFAH5w/s3/ALJPxz0T9oSf9qT9qrxTpXiLxTaeHovCukQaHZyWdlbWCSGaWRxLJK7TzyYLkMFUAACv0eoooA5/xXb+JbvwzqFt4NuYbPVpLeRbOe5jMsMc5B2M6AqWUNjIDAkd6/Lay/Ya/aG+OP7QPhz42fto+JfDl7a+DtO1XTtO03wpYT2P2oaxGIZ3up5ppZCPLGEjQqAx3ZzX600UAfi7pH/BFX4AeAv2ovhb8dPhVqGr6Tovw4tb+FdIl1fULhXe4MRgEZe4KxxR+Wd0QGxwQGBxXovxt/ZF/bI/al8U6X4F+OfjTwxbfDLR/E1l4iWDRdLni1i7XS7gXNrbyTTTyRIN6J5rxx7mAwNua/V2igD8YvjX/wAE0fjL4v1b4p/DT4V+OdP0b4W/HHUk1TxZZXVk82qW00iRR3i2EyyLGq3aQqG81HKFmK9Rj9gfDHh3TfCPhuw8K6Mmy0023itYF9I4lCqPyFblFABX5PftF/sgfti/tb3v/CoPjR418MWnwoOv2erzR6Rpc8euXNvp1yl3b2zTSzvDHl40EkiR7ioONua/WGigD8aPjD/wTZ+NOu+IPix4F+DXjjTtF+Gnx4vFvPF9je2L3GpWsk0Mdtff2dMsiRr9qhjAPmo+xyWHXFdX8Wf2BPjh4f8AiZ4k8efsZ+M9L8JweP8Awrp/hLxDbazYyXoii0qOSC1vLIxyRbbmOCVoysm6NsKSOOf1sooA/Il/+CcPjr4A6n8NfHf7D3iPTtG8ReAfBY+H8y+JLWS8s7/SA8cySOsDwutxHPH5isG2sHYEcg19m/sXfsv6X+x/+z1pHwTsdSk1u7t5rvUNT1OZRG97qOozyXV1OVXhQ80rbVH3VwMnGa+qaKAP5D/+Dur/AJIt+zV/2Vmw/wDREtf14V/If/wd1f8AJFv2av8AsrNh/wCiJa/rwoAK/kP/AODUH/m7z/srN3/7Vr+vCv5D/wDg1B/5u8/7Kzd/+1aAP68KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKCM9aKKAOI8W/DT4fePLRrDxnotlqkLDBW5gSQY/4EDX5u/G3/gix/wAE8Pjkssuv+ArPT7ibJaewHkPk/wC7xX6s0U02tUNNrY/ky+M//BqJ+zX4qMt38J/F17ocrZ2RXEYmjHpyCGr8q/i7/wAGoH7VPhjzLj4Y+JdN16JASFbMDn6Ak/zr/Qhoruo5pi6XwVX+f5nVSx+Ip/BNn+U78VP+CE3/AAUb+FTSvqPgK9vYY84ktF84Nj0CEmvz+8cfsk/tGfDiVoPGng/VNOZDgie2kTp9Vr/ZiKg9Rmud1bwf4T15WTXNMtbwMMETQpJkfiDXp0uJ8bD4mn6r/Kx3U89xUd2n8j/FRvvCviPTX8u+spom9GQisZ7aeI4kRl+or/Yr8d/sBfsYfEpZP+Ez+GugXjyZzIbKNX5/2lANfEXj7/ggV/wTM8emSWbwN/Z0r5+ezuHjAz6Lkj9K9CnxfP7dJfJ/8A7IcRy+3T+5n+VYQR1pK/0jfGX/AAaz/sA+IN8mg6jrumSHoFmjdR+DJn9a+UvFv/Bo98F70u/hP4iX9t/dWeBH/liuyHF1B/FBr7n/AJHVHiKi/ig/wP4H6K/tF8V/8Gjfj2It/wAIh8QrSUdvPiK/yBr598Q/8GnX7Xum7jo/ibR70DphmUn8xXVHijBPdtfI3jn2Fe9/uP5PKK/pZ1n/AINd/wDgoHY7v7Pi066x023Cj+deY6j/AMG1P/BS6xY+X4bt5lHdLqM1quJMC/t/g/8AI1Wd4T+b8Gfz6UV+617/AMG7f/BS2zJDeDi+P7symsOT/g33/wCClMXXwPMfo61a4gwP/P38H/kV/bGE/n/Bn4i0V+28f/Bv3/wUofr4GnH1da07X/g3n/4KV3JA/wCELdc/3pVFP/WDA/8AP38H/kH9sYT+f8GfhrRX782P/Bt1/wAFML0gDwrEmf79ygr0XSf+DYj/AIKKXpH27TrG2z13XKnH5VD4jwP/AD8/B/5EvOsJ/P8Ag/8AI/nBor+p7w9/wan/ALa2qY/tXV9JsvXfKWx+Qr3fwx/waQfHCV1/4Svx5psK9/IVmP6ispcUYJbNv5Gbz3Crq/uP468Gkr+63wn/AMGivgtQsvi74lTk/wASwWw/mTX1N4N/4NSP2KtKCv4t8S65qDL18toowf8Axw1zT4twy+GEn9yMJcQ0F8MW/uP868RSNwqnmtC30XVrtxHbW0jk9MKTX+n74E/4Nyv+CZvg0I1/4bvNYdO91dNz9Qm2vtr4f/8ABK39gD4ahW8OfDDRGdMbXuLdZ2GPd81x1OL39il97/4BzT4jf2af4n+Tf4Z+BXxc8YXK2fhzw/fXcj8KsULMT+Qr7X+F/wDwSH/b++LMka+F/h1q+2TGGmt2hX83AFf6vHhr4PfCnwbbra+FfDmm6eidBBaxpj8hXoccMUShIlCgcAAYrgq8U4yfwpL5f5nJUz/Ev4bL5H+bx8If+DXn9vLx2Y7nxobHw5C2NwuZQXH/AAFc/wA6/U34Of8ABpH4QsjHdfGT4gtccgtFY2+Pwyzf0r+z6ivMrZxjKnxVX8tPyOGpmWJqfFUf5fkfhd8Ev+Deb/gnT8ITDc6j4dk8RXMeMtfyFkYj/Y6V+q3w1/Zc/Z5+D9pFZfDfwdpWkpCAEMFsgYY/2sZ/Wve6K8+UnJ3k7nE5N6tjI4o4l2RKFX0AwKfRRUiCiiigAooooAKKKKAP5s/+Cxv/AAUN+MngDxVefsm/DOxvPC9tNaxyahrL/u5r+CdfuWjKflh6rJIDvZgyfKFbd2X/AARW/bz8ZfEu2H7JfxOiu9TudFs2n0fVVRpQlnDgG3uXAOwJkCGRiAR+7zkIG/T79uX9h34c/tvfDJPCXiWUaVrmmsZdJ1hIhJJau2N6MuV3xSAYZNw5AYcgV6F+yv8Asl/B79kH4cR/D34T2OxpNr3+oTANd30yjG+VwB052oMKgPA5OfkYZXmSzh4p1v3Vvw/lt5d/nq9D9mrcW8LPgmOURwVsZfW3Sa/5eub1aaduT1jorM+mqK+dPDf7WX7Pvi/47al+zb4b8S2t54v0m3+0XFnGcgbSRJGsn3GliGDJGCWUHkcNt+i6+qpVqdRN05J2dtNdVuj8jxWCxGGlGOIpuDklJcyavF7NX3T6MKKKK0OUKKKKACiiigAooooA/kQ/4OK/+Uqf/BMn/sqNx/6dPDlf131/Ih/wcV/8pU/+CZP/AGVG4/8ATp4cr+u+gAooooAK/kC/4PVv+UWXgH/squlf+mjWK/r9r+QL/g9W/wCUWXgH/squlf8Apo1igD4A/wCDGL/m6L/uSf8A3NV/f5X8Af8AwYxf83Rf9yT/AO5qv7/KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8Qb/glL+4/wCCpv7Nu7jZ8VfB36ava1/t81/iCf8ABOk/8I3/AMFS/gSZfl+wfFTwxuz28rV7fP8AKgD/AG+6KKKACiiigD/NG/4ODbVP+HtPxY1I3MRcSaFD5AyJAo0SwbeeMYJOAc5zxjFfj1G08FpFPLEyRS7tjleG2nBwe+DwfSv1j/4OEbho/wDgsB8XkXv/AGB/6ZLCvx5S41GW0VWaSS3gOAf4Y/MOSB6E4zj2zX6VgJWw1L/CvyR8DjE/rFW3d/mdjryR2V/5MLRshAKiNt+3gdWwMnn04qrbtIV2sx5OR+FYKMW4wSSeMV2cVwItOhsXto1eOVpTOM+YysAAp7YGMj3NdinoYwXNLU9B8E6d5lyrbd244r9MPgtocvhjUJrTWbctLFGAELgFXbBUjGQeuSPSvzy8Hatpiw20dvAI5oy2+QE5fJ446DA9K/Rr4L3P9rX8VzcHLEgn37foK+ezbEPVH6TwthUrNH64/BnQJtb0RZQxUIm7GOmOx+prptQ8P31zOS4O0ZHNaPwfvzpGkrbWajdIoxx7V9J6N4Pnv4ftV+oWMqScCvhKle02z9bVJ8iuz8Zv2jvA8Nm7tcBSso3EKei+h9DX4t/FXT7Fdfm/sqNo4dxKBzlse5r95f2xrSG2u50sX3AZGa/DX4iLLFePsQSNzgHoa+0yDEO1z8z40wqcWeJzf2fDbRhN5nBPmhgNox02nqeOvvWgonh00TSWwKXTHyZieRsOGAAPuOtYeoW8lnceVLIkm5Q3yHcBntnHUd6lstRSzuEeVPNRN2UbpyP8mvs1LQ/IndXibQuLeCRQyExjaGPqe+KdDIZrjEAIBY7QeuD0rntOFvdyO9xIyIoOzAzlscA/U966fTfFWs6Vol54ds2QW2peX5oKAk+Udy4YjIwfQ80+drYa7PY6KS+jRcWDSR4TZKrHq/fp2PpV/RJ9TtorrXLO8S1khTYV3bZHV+CFHfjr7VwMM0jyqsJ3dzjjmvVvD9pfRAxCRY/toEcm9fur68jI+opuaW4vZcz0IfDunTajOsiqEVOx716A2pxaSk63ZcBYyIwOBu7Z9qv+GPEHhrwRf7tXh+1REFSqY49DzWt+058V/hF461K0m+EejPolpFaxJNC0nmb5gMOxJ5+Y846Cud15Ooo8t4vr2NlSUINqXvdu58++JpdW8mDUb2B4re83GGVxhJNhw2D3weuK5+5TTrG5eIXKXOzaVaMExsCMkAkAjB46VlwSapr1slvcTnyrYMbWKQthmYjKR8YyetVbqSG1f7PDG0UiqVmDnP7wHBx6V08zIULK73N661G1lnaazj8hDjamd/bnnirFlqkC3K3N+vnY/hbkN9eaztFmsL7T2sZGt4H81P30hbzMHggY42+vGaei2eh6+LTxXbXPkpktEAYHYH7pG8Z2nrnHIqlMe+iOt0fxpP4cttRt7C2hli1CIxEzoHaMZ6qex96yZp7l7WPULlf3cuVV+OSvUfhWfc6toc63s8FutmsgUQxDL7MdeSc8/jWPaf6VKtuJhGHOAZDhVz69cD1p8zBUupqtcpGP3XJ681Jp120l3CiuIXLgB242nPB9sVR1TUBaiDTXgiWWzLK0ijmUE5BJPX246VnPcXbRz3lhG8dsWBLEEgfVsY/WkpM3tZXOn1nVb5r+6W9uDcO7EySBiwkYfxZPX61Nq3gu9i0201CC6g1C1uofNd7Zs+Se8b7to3juBmuLutQN3MboqkalVAVBgDAx+vei51q6vk23EpO0BQq8LxxnA4zik22ZKMjy/wAWeArDVI3hZRIWzlSMjHavQ/gf+1X+1x+yJqsdz8J/E08mmxc/2XqBNzZlR2Cscp6fKRViVojZxXFssodDh3A+QHsAccHHYnNVpfDsutW4TT0NxMVd2jjBLKqdSfw5rixGCp1VaauddGvOm/dZ+9/7NH/Bwt8NtZhtfC37TuiXXhm+b5ZL2FftdhkdyciVB/wFq/b74d/tB/Bv43eHIfE3w/1e01XTrlQySwSLLHz645X6MAa/gr+Jvww8JW929v4Rl/tS2NrDI8x58qRh844AHB45rzT4bap8VPgx4ztdf+FPiW78M3KSA+fDK4Qj0eMHDD2Ir5rFZFHV0nbyf9f5ns0M1/nR/ox3JvRpb2mh3fkrJ93+MAexzkVz2PJeOPUBJJNIwMkp5jz6ev51/LT8FP8AguJ4u+Gc1n4c/aC09tetmCiXV9LjEMqHuXgJ2OPddpr93f2fP25v2fv2ltJ+3fCjxLZ6syrultlby7qL13wPiQY7kAj3r5zE4CrS+NW8z1aOJjUV4O5+gsGnan9nUuls8LYCkYDD8RxTp7y4tYZIoknMeQpEceTIf9n2+teM2niKBLiLUNMm2tGdy45TPuvT8xXrXhvx+Y7LztUWR5mPzTxkEf8AfPb8K4JU2joUkYXiW2TSNIk3WYzdEMUJGAB0DYr8/v2xvilN8KvgRqGpL+7n1L/QrRVGAJZQckf7q5PFfpGmpeHvFOtLc3F+YraL7y7MtKw/hH93A5JNfzr/APBYb9ofw3e/Fi1+Eml3cVtpXhG3WSeNWyWvLjBOcdWC4GOvNZso/N3Q/F3inSml07wrf3WnRagnl3AglaIzrnhW2kZGeea6j4N/BtfiL4zudGie3sLext5b2+vLgGQRRR8Fjg8sThVGeSa8m8J2Xxs8eQ2Unwv8KXV4kz5e7uE+zW6xj1aTnn/ZBr6z+HX7M/xX0S9l1Pxz4nXTrK9UfadL0scSbfuq8rDJAz0AAzzQosVzwb4peK7b7SiahdJ/Zem5itTsCO+eNxAJyx9qn8NeE/F3i0wR+G7GeVJsASsuxcHv82K+6vDn7P8A4S0u5e78PaIsk8hy1xcjewHrls4/CvL/AIqftG/su/AJZYvil44tI7yIEf2fprfaLjP93Eedp/3itaKkxc3Y0Pg1+zx8bG+J1rpVj4is9KXU5FtIrOzT7RK6OQG8x3AUZAJbGcAV/M9+2jptz4k/bK8UeGdFvW1iKwvTYwPnosORtyeOCDz3r9QfG/8AwXYHgO/aL9lLwRDbzRJJFHqmtfvJRvUr5iRIQAwB43M1fiRol34l8Z+NL3xrrzmS91O4e5uJAMbpJGLMcDpkk17WV4OXtVNrQ5MXW5Kbdz6o8D2mi2vg23sY4XXUIpnZ5ABsMTADGeuQQfwr0VdPvvsP9rPE32VXEbSKON3XH1xXEaDC8VmIVAHHPvXSfb5YYTCWPlk5K54z64r7WnHlij4qq+aV2TSng/Y17cbhjn3xW9qul6bqN9Pc+DIruSytoUlkM6jevRWJ25AXecKfpWf4avvDtr4lsrjxlDLd6VFMrXcFtJ5UrxD7yq2PlJ9cVT1HULY6leSaAsttaTsypGzlm8ndlVcjGSOO1TKV5WLULRvf/MyJpQTtzgUzdiJo8fKecjr0xVSR3PLDilSeIAKTjOQOaAS1JcZ/eEHnHXrV7WG1iyt4tE1R3ESfvo4mbKr5ozuA5A3CsW4llhY28ylWHBU8EeoqCWZ5RliSRwo9uwyayb6s1UCFlCng8Gt3QtDTWLa+vJryGzWzgMyG43DzmyB5cZAILkHdzjgGodR0/TrNrb+z71b0SwpJIUUr5TsMsnPUqeMjg1mTzz/ZltQzLCG3hM/LuxjOPXFZyaa0ZSjZ6gYoBAG80+ZvO5cfL0GDn61/tW1/ifmR2BVck7sdK/2wK+dz9/w/n+h7uTq3tPl+oV/Ih/wQN/5TO/8ABSL/ALHa0/8AS/V6/rvr+MXXf+CMH/Be34Fft2fH39qj/gnZ8cfh38PtJ+Nfia51i4h1CN767ktftE81qkyXWiXscbxi4fd5L4JPLMAMfOHtn9nVFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB/XhRX8h/8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH9eFFfyH/wDDGP8AweI/9Hb/AAv/APBTa/8AzL0f8MY/8HiP/R2/wv8A/BTa/wDzL0Af14UV/If/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB+7P7Q/7D/xL+J37Tej/tUfBb4pXXw98QaZokuguiaTaapDNbyyCQki5+6wI7V3Og/sjeKrr4rfD342/Fvx3ceKfEvgO01C0NwLC3sY70X4A3PHD8qFAONvXvX89v8Awxj/AMHiP/R2/wAL/wDwU2v/AMy9H/DGP/B4j/0dv8L/APwU2v8A8y9AH7A+Mf8Agkz4H17SH1Dw/wCLLnTvFdn4rvvFmk6vNY294lrNqAAlt5LaYGOeBgMENhu4INejxfsBeIvE3gfw/wCG/i145i1O+0DxRZ+JYp9J0O00eAtZ52weRDn5Wzy7Ozelfhv/AMMY/wDB4j/0dv8AC/8A8FNr/wDMvR/wxj/weI/9Hb/C/wD8FNr/APMvQB+hX/BRL4M/Ffw98X/EXjX9mOx+IMGtfEbw+dI1geFrCwvdLv2VWih8+W7YPZyKGw06D7nvXlfx2/YQ+Ifjj9kX4AfsF3vhjWbnXtHlsZtU8T2DqtjpVpEc3kUtyWDOZk/dlFB3g56V8k/8MY/8HiP/AEdv8L//AAU2v/zL0f8ADGP/AAeI/wDR2/wv/wDBTa//ADL0Af1d2vg7TvD3w9XwF4WhS3tbSw+w2sSjaqokexB7DpX5IfAv9gbx/wDEj9iHQ/2S/wBqjSYfDq+FfEcepKba4h1ODU7e3neZQ6FQESQPtZWBIr8s/wDhjH/g8R/6O3+F/wD4KbX/AOZej/hjH/g8R/6O3+F//gptf/mXoA/YPxj/AMEnfCGs+FG8D+E/G2paTpOiaymv+Draa3hv4/Dt3giWKEXAYS2kgJBt5BtUcKRxX0t8Hf2T/Evhn4Y+Kvhv8cPE1h4vh8V28tpMLDQrTRIIreWMxsojt9xckHO6R256YFfzzf8ADGP/AAeI/wDR2/wv/wDBTa//ADL0f8MY/wDB4j/0dv8AC/8A8FNr/wDMvQB+8X7Df7Ceh/8ABPH4J6/4M+H+qah481rU7yfUpL3VpEjurpsYgtzJyqpEgWNCeAoq5/wTh+Cvxd+CHwS1jSfjZpcGi63rXiXVtZNlb3S3iwxX07SRqZUAVmCnnAr8Ef8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AP68KK/kP/wCGMf8Ag8R/6O3+F/8A4KbX/wCZej/hjH/g8R/6O3+F/wD4KbX/AOZegD+vCiv5D/8AhjH/AIPEf+jt/hf/AOCm1/8AmXo/4Yx/4PEf+jt/hf8A+Cm1/wDmXoA/rwor+Q//AIYx/wCDxH/o7f4X/wDgptf/AJl6P+GMf+DxH/o7f4X/APgptf8A5l6AD/g7q/5It+zV/wBlZsP/AERLX9eFfw7ftFf8ESv+Dj/9uLU/AulftvftCfDPxt4b8FeIrTxBbWkUDWEiTQHDMrWegWzOxjLKFd9mT2PNf3E0AFfyH/8ABqD/AM3ef9lZu/8A2rX9eFf56P8AwTu/aQ/4Kw/8ElfiF8efCfhD9iPx78T9N+IPju/1231BLe/06NIlllRNm3TroSrIpDqwZePXrQB/oXUV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14UV/If/AMRAn/BYb/pGv4//APArUf8A5SUf8RAn/BYb/pGv4/8A/ArUf/lJQB/XhRX8h/8AxECf8Fhv+ka/j/8A8CtR/wDlJR/xECf8Fhv+ka/j/wD8CtR/+UlAH9eFFfyH/wDEQJ/wWG/6Rr+P/wDwK1H/AOUlH/EQJ/wWG/6Rr+P/APwK1H/5SUAf14V8j/ty+D/2hPHP7NHiLQP2YtYOj+K3i3xMgCzXEKg+bBDLkeTLIvCSdQeMrnev84//ABECf8Fhv+ka/j//AMCtR/8AlJR/xECf8Fhv+ka/j/8A8CtR/wDlJWOIoqrSlSbaTTV07PXszty7GyweKpYuEYycJKSUkpRdnezT3T6n5g/s7eBP2i/EX7QekaB8A7O/Xx7YX3mweUDHNazQNh3mL4EaIciQyYXGQ3XB/wBATwMPGa+DNKX4jG0bXxaQjUTYbvsputo80xb8NsLZ27ucda/j38Lf8Fq/+CnXgjxXrnjnwj/wS68ZadrHiWVJ9UvIJb9JrqRFCqZGGiZOAM46biW+8ST3Hgn/AIORP2vvFf8Aaek/EX9my3+F+o6dOIDDreuTXd0JI3HmpJZiytXjwoZcvIpDYOxhmvlMsy+hkFCpVxVe6k/l5WWrcn1/yVz9f4r4jx/iLmGGweVYCzpx30ctbc3NPRKCfwp+u8uVf19UV/H9Zf8ABxb/AMFPfFN3fS/Cn9gTxL420mzuntV1bQNXu7+ymZMH5ZYdGdc7SpKkhlzggGtH/iIE/wCCw3/SNfx//wCBWo//ACkr62lVhUgqlN3i9Uz8bxeErYWtPD4iDjUg2pJ6NNaNM/rwor+Q/wD4iBP+Cw3/AEjX8f8A/gVqP/yko/4iBP8AgsN/0jX8f/8AgVqP/wApK0Oc/rwor+Q//iIE/wCCw3/SNfx//wCBWo//ACko/wCIgT/gsN/0jX8f/wDgVqP/AMpKAP68KK/kP/4iBP8AgsN/0jX8f/8AgVqP/wApKP8AiIE/4LDf9I1/H/8A4Faj/wDKSgBf+Div/lKn/wAEyf8AsqNx/wCnTw5X9d9fwCftDfG//gqN/wAFV/8AgpF+xj8Qvih+xt46+EGg/Bn4i2WoX+oXNvfX1s1pf6jpck000kmn2iwR26WRZmJYEMSdu3n+/ugAooooAK/j/wD+D1dwP+CW3gCPufippZ/LSNY/xr+wCv45v+D169WP/gmv8NtOJ5l+JdnIB7R6XqY/9noA+H/+DGNCI/2oX9T4KH5f21/jX9/NfwPf8GNVmyeHP2mNQI4lufCMYPvGuqn/ANmr++GgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8PuwmX9nz/gp/Dcar/o48D/FFWm3cbP7M1bLZ9MeWa/3BK/xwv+Di39mHVf2Wf+Cwfxi0K4t2h07xjqp8ZaZKRhZoNezcysnsl008X1jNAH+x7RX51f8ABJn9sfSP29P+CeHws/aXs7kXGo6vosFrrQzlo9YsB9mvVYdRmeN3XPJRlboRX6K0AFFFFAH+Yl/wcM7/APh8N8XyvH/Iv8/9wSwr8d7eWZYjCWO04JGeCR0OK/rR/wCCy3/BHP8A4KO/tYf8FHfiF8ePgH8NE1vwnrS6QtjqC6tpdobj7LplrBKWjuLyKUFZY3jy6DIUEZUg1+YMX/BvZ/wWDQkP8Icjt/xP9E/+T6++wWOw6w9OMqiTUV1XY+PxeDrOtOUYPVvo+5+RdtdtbYmjwWHTufw4xXWTabpn9r2lmmsQ3MF3Cks1xHG+Ld2zmNgQCWXHJXjniv1Pi/4N8v8AgsIvDfCDH/cwaJ/8n1s6d/wb6/8ABXcyBbz4TmNCcEjXtFPB6nAv+v41v9fw3/P2P3owjg63/Pt/cz8y/C07R3X2eFWmIzgqCeB3xz9a/Qj4Ia3eacllqcm3yrksI/mBY7GwcjORz6gZr6r+HH/BAT/govoMp1zxf8Mby8SFGWTTYNe0i3e53ZVQk63zhAvyuwZcHlR616h8N/8AgiP/AMFNPDk1rc3/AMOmh3cyxnWNKPl89Mi9bdxzwBXiY/EUZp8s0/mj7jh6tOjOPPovM+/P2Y501WW3TVYHRmCN8ykEqehwexr9P9Rbwrb6E1nLiI+XhcjHavNPgF+xH+1NoFta3HxL8Plbm1tYrZCb21kIWIYUZWdhwOPSvdPiF+yx8f8AW9OFto2glnQcEXdsp4+sor4OpzuV+Vn6z/aGEdl7eP8A4Ev8z+eT9sTQTHcy/ZpoxHKzfOx4UE98f0r8IvifMtnqU1vvSVYmYF4ySG56gnFf1P8A7Qf/AATH/b28e2k0nhnwaLgodqRHU7BGcHuC1wF49yDX5SePP+CGP/BVbXJy+nfC3zAc/wDMc0gfzvRX12R1oQVqkkvV2PhOMK9Krf6vJS9Hf8j8Q9Kn0n7e8urWr3cbJIFSOQxEOwwjZAOdp5I/i6VSurSSFHV1McsXLK52MVbGPlYA/wAzjrX6+Wv/AAQR/wCCuFiy3dr8K3WZCcbde0YY+h+3U6b/AIIN/wDBXi71Eane/CYXMpYM5ude0aQPjs2b/kV9asww62qx/wDAkflc8FWa+B/cz8epb8yokDlRtG1eMAAn2rQtze6gscMz/LECq56AE5r9eov+CBX/AAVdldvtHwlVC77gU1zRgiD0Ci+PFdeP+CCX/BU3T2CQfDFJ8BTuXW9JwT6Ya8HTvxj0qnm2HWntI/eiY5bWeri/uZ+ZtvZeAbXwSmmPbMNchl8xrtZRJC8ZH3NoHDZ759sVnXfiGSzkDTSbmIC7v9kdK/Wu5/4Is/8ABW6SyudKg+EcENldmNpYINY0WJWaIYUgi9JHqQCMnrXAa/8A8EKv+Cst1tXR/hC6KEAYPr+inL9yv+nDA/Wohj8M3eVWP/gSNJ4WslaNN/cz8kPFWtPf38v2NnmijALMinaoPc+n41S0vQbnxBLcaZZXNsktvBJc/vZAqsIhkrvzjJHQc5PHWv1m0D/ghX/wWE0KHULP/hVEj2+pQGCaJPEekRq4PI3bdQG7aecHINc7L/wQR/4LCSKiH4UOUiTy0X/hING+VfT/AI/xx7V0/wBpYa1lWj/4Ejmjg8Re/s3f0Z+RcOq6pdaemnKzNDbsZgqj7hIwSSOQMevFME5kZlckkjJr9kI/+CCv/BViLwo2nRfBaZNYe43NfDxNo3ltb4/1Rh+2/wB7ndu9sVkRf8EB/wDgrqmWk+EqsTx/yHdG4H/gf2pxzLDdasf/AAJf5lLCYhf8u5fc/wDI/Kq/8Wa3rWl6douruv2TSAyWxWNUcBzuOWUBm56Ek1taj418UeIdZ/4S3VLma+vlVIVuLgeYu1F2qp3Ag4HAFfrDH/wQe/4K4GO3mk+E6yTwr5ISbWtEaER9jxfZJHuKzp/+CB3/AAV3s4vsVr8MDPHu3HZr2jqm4dCA18OnrgVSzHCf8/Y/+BIawldaqnL7mflloenpPcJBc6VPqUriVpI1YwspA/kvXnGelV/DXiHT9CMsU1qk32iMxmSVA5i5zujBI+YYxnNfqa//AAQd/wCCxE873E3wrkZ5Pvs3iDRiW+p+38/jSL/wQL/4K5y5M/wp+4AFzr2jc+3/AB/Uv7Rwr3rR/wDAl/mWsPXTv7N/c/8AI/JLUtdur3WG1nVk+0uzAsJfuMBwAcdsViS6xeyRTW0Uuy3Y7jGrHb7DB9K/X2f/AIIC/wDBXecGNfhSFBGTnXtGwcduL41Wh/4N/P8AgrhbTxSSfCXzk4ZlXxBoyn6ZN9+ozR/aWF/5/R/8CQpYXEP7D+5n5FWl0ZYlgQF3Y8KOpP8AWtW7tdUvbJ9QkjKxWmEdsBdp7Ajg5r9cD/wQU/4K72+qvqWjfCOSzAfdEv8AwkWjOyA9g324ZPvgUaj/AMECf+CtUs7my+EkjRvhj5viDRdxY9ScX+OtP+0sLb+NH/wJf5g8JiLWUH9zPySsbvWLrTm022eRrZXErRrkoGPAY9h9TTbt9X8Maq0KS+XdQHlonB5I7FSR096/XjS/+CDf/BW/T7O5guPgvFdyyhRFJJ4g0geVtPJ2rqIV8+jA+1Y6/wDBAP8A4K5SXAMnwkMaE8lde0U4HsDf0v7Swv8Az+j/AOBL/Ml4XEf8+39z/wAj8gZbl5RKWL+a/LEHAx1+bjnP1FY2oNeXBF7e73WT5UkKkKwHGAehxX7KXX/Bv/8A8FdA3l2vwnYrjJb+3tF5PoP9PHFRWX/Bvz/wVsa6jfV/hLLJbRuC0cfiDRQ5Un5gub4qD7molmOF/wCfsf8AwJf5hHC4j+SX3M/D7VvDdtfRtvAYfyNeeHwzrnhXU4fE3gm9uNK1G3YPHc2kjQyow5BDKQa/oQ8Q/wDBvr/wVdhmQ+F/hTLNBIu9ln1vREeMk/cJGoENgfxDGT2rLsf+Dfb/AIKzFZv7W+D8rMYyIjF4g0MAP2LZv/u+uOawni8JJa1Y/ejaNHExd1CX3M+K/gB/wWS/an+Dc8Oh/Gi1j8d6QmF89z9n1FEHpKo2yYH/AD0Uk+tfvx+y9/wU4/Zh/aJeDSPCHiVNN1yUDOlaoRZ3W70QMfLl/wCAMT7V+d2l/wDBv1/wVh/tJIG+DdtZ2k4RLgy61o10vy/xbG1DJz6AgV4T4t/4Nqf+CtU+qy3Hhv4ROYwx8t217Q42+u0agQPYZ4rw8ThMDO/JUjF/4lb7r/ketRxGISXtIN/Jn9T2neJfKlfU4ZjFLGCcjjgcmvzqu/gV8FbDx3qPxLj8ORan4j1a4kuZ768HnvvkOflMmdoHYKOK/InR/wDght/wcj+B1ji8A6J4ksYoSPLij8a6UIgB22HVNuPbGK6fxT/wSJ/4OlfHXh2fwp4j0bVWspV+YDxRoMLuB/D5kV+H59CQPWvHngYp6VYv/t5HpwrXXwtfJn3L8a/2i/gF8CLZpvi/4w03QTgkWaOJLlh/swx5k/8AHa/Ij4xf8FuPht4fkm0X9nPwjLrV0Ttj1LV28qHPqIUJdh9XX6Vwz/8ABr//AMFvdTu2vdX+D7SzSEtJJN4l0KRmY9SSdRySfeus0v8A4Nev+CxsGHuvg6Nw5/5GHQ+v4ahWtLBUft1Y/JomdZraLfyZ+U/x3/by/a9/aAuJtH8UeKriDTXyPsWmr9jt8HsVTBYe7Emvl7S/h3q+qS/aLrczNyWY7ifqTX9K+n/8G2X/AAV+gs4bW5+D0REQIX/ifaJlcnJ5F+CfzrtND/4Nw/8AgrUZXt9Q+E4tYhE7K/8AbmiyZdR8q4GoDG49+g969SjDBw2nH71/mcFbEYlq0YP7mfzj6F8LLeP55V3EV9Q+Fvh34B1HVtO07T7mTSYWt1F3PeMjqLjax+UDZhGYADJ+XOSa/ZuP/g3d/wCCvw+RvhABjv8A2/on9L+rMP8Awby/8FflkUz/AAeLJn5lHiDRASO/P284+uK71icMtqsfvR50qeJn8UG/kz8btNsLKC1uLjULhLeaGLdDE6mQTMWwQCOBtGTk1l6nqVzqt8by527yFH7tAgwBgcKAAfWv2el/4N3/APgr+ZC8XwgwD2/4SDRSfz+3j+VNb/g3h/4LBoAE+EGT3P8AwkGif/J9b/2hh/8An5H70c31Gt0g/uZ+Ouq+JtY1DRdP0C8kU2ulhxbqqKpUSHc2WADNk/3icVhROWU/mK/aST/g3k/4LEHlfg/n/uYNE/8Ak+np/wAG8v8AwWJAG74Qe3/IwaJ/8n1Cx2HX/LyP3oHgq97uD+5n4zaTa6Xf6pBp+qXYsbeRsPcFDIIxgnO1eTzx+Oao6tpi6SlnMbi3uPtcCXAFvIHMW4n5JB/A645U88g96/ZZ/wDg3c/4LGCT938H8qeM/wDCQaIP/chTpf8Ag3M/4LBxWUd5F8JkeWRmDQjX9GDoBjBJN8Fwe2GJ45xU/XaH/P2P3ot4Srt7N/cz8SJiXcyyEsx5JPOTW/4S8U6x4H8S2HjDQHjF7ptxHcQebEssZkQ5Xcrgqwz2Iwa/Ys/8G6//AAWOJAPwe6YOf+Eh0T/5YVaP/BvD/wAFkntvsb/B9jGrlwD4i0QjLdePt9RLF4dpr2i+9f5lxwtZa8j+5n4sanqVzfahNqVxtM107SyFFCpuckngcAZ7Va1y50m8lgbS7V7SNIFjZZJfMLPgb2BwuAx5A5wOM1+ysP8Awbr/APBYvkS/B44J7eIdE6f+DCo5P+DdX/gscWyPg+TjpnxBofT/AMGFZfXKOymvvRp9Wq3vyv7mfjNqGq3up2lpZXjKY7GIwQ7VCkIWLckAFjknk5PbpX+1PX+Xkf8Ag3W/4LG8L/wp3j/sYNE7f9xCv9Q2vCzirCfJySTtfZ37Hr5ZSlDm5k1t+oUUUV4p6gUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/KH/wUQ/4JG/EnTfj1ZeKP2UdCk1TQPG14yvYwYVNKvHy772OFjtWALq5IVDlOPk3f1eUV5Wb5PQzGkqVfo7prdd/v/rY+w4M42zDhnGSxeAafMmpRlfll2uk1rF6ppp7q9mz86/+CdX7BOn/ALDXw4vdMvtam1nxD4gMM2qOjstjHJECFS3iOOF3EGVhvf0UYUfopX5b/wDBS7/gokf2IfC1hoHhTRZdT8WeI4ZX0+a4jYadbrGQrPI/HmOpIxChzggsVBXd+Y//AASy/wCCqPjnVPi7dfBf9qjXpdUh8YXpl0vVbthm1v5iALc4AVIJTgRqoCxvgABWJXzo5xl2X16eVQ06eSb1V2+rv+Op9LV4K4m4iy/E8XYhc9/e/vTS0k4xSslBLbS6Xupn9QFFFFfTH5UFFFFABRRRQAUUUUAFFFFABX8QX/B7z4ytrH9ln4H/AA9ZwJtU8VajqKp3K2FoImP4G6H51/b7X+Xd/wAHjH7Y+kfHn/gofoH7M/hS5Fzp3wZ0U2t2VO5V1jWClzcqCOPkgS0Ru4dWU8igD9iv+DIPwnPZ/szfHTx0yERaj4n0uwVuxaytHkI/AXI/Ov7h6/m+/wCDU/8AZh1X9m//AII++Etd8RW7WupfE7VL/wAZSxuMMILvy7a0b/dktbWGVfaSv6QaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv48/8Ag72/4Jm6v+05+ylo/wC3F8J9Pa78VfB2OZNZhgTdNc+HLlg0r8ZJ+wyjzsdFikncn5a/sMqpf2FjqtjNpeqQx3NtcxtFNDKoeOSNxhlZTkFSDgg8EUAf5cX/AAa1f8FnPD37BHxwv/2Qv2kdVXT/AIVfEu8jmtdRuX22+ia6VESzSE8Jb3SBIp3PCMkTkqgkNf6kyOkqCSMhlYZBHIINf5aP/Bw5/wAG8fjj9gfxxrH7W/7JGkT6t8DdWnNzd2lsGln8LTytkxSgZY2JY/uJ+fLyIpSCEeWx/wAEY/8Ag6V+OH7BHh7Sv2bv2vrC8+Jfwq09UttOuoZFOu6JbrwI4WlZUurdBwkEro0YwElCKI6AP9Siivzq/Y4/4Kzf8E8P29NItrz9mj4p6Lq+o3AGdFupxYaxGx6q1lc+XOcHjciMhP3WI5r9FaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlz9sH9lTwH+2F8FNQ+EvjRRBO37/AEy/C7pLK9QHZKvqOSrrkbkJGQcEfGP7AX/BKD4Y/slpbfEb4ktb+KvH4AZbraTZ6efS1RwCX9ZnAf8AuhATn9ca8W/aK8R/Fzwh8EvEnif4EaTb654ssbN5tPsrpmEcsi8kYXl2C5KJld7ALuGc15eKy7COt9eq07zgu19tdur7dT6vKuJ85hgXkGFxLhQrSV02oq70d5P4YvTm1s7a9T0268TeG7LX7XwreahbRapfRyTW1m8qrPNHDjzGSMncypuG4gEDIz1rcr/PZvP2q/2itR/aFtP2kdX8Q3l143sbtZ4bqXkoyEjyViGFWIglDCoCFSVxgmv7yPgF8RfEvxa+DXhz4j+MdAuvC+q6vZRz3Wl3i7JbeU8MMHkKSNybgG2kbgDkDz8h4jp5nOrCMHFx28159n5fdfU+m8QfDHE8LUMLXqV41FUVpW0tNatJPVxttK26d0rq/r1FFFfSH5cFFFFABRRRQAUVxnj34jfD34VeG5/GXxP17TvDej2wzNfapdRWdtGOuWlmZUX8TX8uP/BSH/g7W/YN/ZY0bUfBX7IEq/Gvx2geKGSxLReHrWXGA816QDcqpwwW1Dq4yvmxnmgD9XP+Cxf/AAVY+En/AASe/ZO1H4w+Kpre/wDGusRzWXg/QHb95qOo7RhmUEMLa33LJcScALhAd7oD/lb/APBPb9kP46f8FlP+CkGl/DPW7671LUPGmr3HiDxnrzDe9tYGXzr+7dsbQ7F9kQOFaaRE4zXO+P8A4j/8FCP+C4X7bdtPq4v/AIkfEvxbKLXT9PtE8u1sLRCSI4Y8iK0s4ASzuxCr80kjlmZj/qM/8EPf+CNnw1/4JFfs3v4cmlg174n+LVhufFuvRKfLeWMEx2druAYWtuWYKSA0rlpGAyqIAfsl4O8IeGvh94Q0rwF4Ls49O0fQ7ODT7C0hGI4La2QRxRoOyoihQPQV0lFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9H+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAqX9hY6rYzaXqkMdzbXMbRTQyqHjkjcYZWU5BUg4IPBFfx/f8FMv+DQn9lL9pzV9Q+LH7DmsR/B3xVds882jPC1x4cuZW5+SJT5tjknnyfMiUYCQLX9hlFAH+OF+09/wbpf8ABYP9lrVbiDXfg7qvjHToWIi1PwaP7egmUfxrFbBrpF/66wRn2r45hv8A/gp/+z4o0q3m+KPgcW/yiFW1bTNmO20eXjH0r/cDooA/xBB/wUW/4Kl+G/3Q+O3xUsNvGP8AhJ9Xix+H2gU7/h6z/wAFTYPl/wCGkviqn/c46uP/AG6r/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/EG/4ew/8FTf+jlvir/4WWr/APyVR/w9h/4Km/8ARy3xV/8ACy1f/wCSq/2+aKAP8Qb/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/b5ooA/xBv+HsP/AAVN/wCjlvir/wCFlq//AMlUf8PYf+Cpv/Ry3xV/8LLV/wD5Kr/b5ooA/wAQb/h7D/wVN/6OW+Kv/hZav/8AJVH/AA9h/wCCpv8A0ct8Vf8AwstX/wDkqv8Ab5ooA/xBv+HsP/BU3/o5b4q/+Flq/wD8lUf8PYf+Cpv/AEct8Vf/AAstX/8Akqv9vmigD/EG/wCHsP8AwVN/6OW+Kv8A4WWr/wDyVR/w9h/4Km/9HLfFX/wstX/+Sq/2+aKAP8Qb/h7D/wAFTf8Ao5b4q/8AhZav/wDJVH/D2H/gqb/0ct8Vf/Cy1f8A+Sq/2+aKAP8AEG/4ew/8FTf+jlvir/4WWr//ACVR/wAPYf8Agqb/ANHLfFX/AMLLV/8A5Kr/AG+aKAP8Qb/h7D/wVN/6OW+Kv/hZav8A/JVH/D2H/gqb/wBHLfFX/wALLV//AJKr/b5ooA/xBv8Ah7D/AMFTf+jlvir/AOFlq/8A8lUf8PYf+Cpv/Ry3xV/8LLV//kqv9vmigD/EG/4ew/8ABU3/AKOW+Kv/AIWWr/8AyVR/w9h/4Km/9HLfFX/wstX/APkqv9vmigD/ABBv+HsP/BU3/o5b4q/+Flq//wAlUf8AD2H/AIKm/wDRy3xV/wDCy1f/AOSq/wBvmigD/CYtf2yf2vrHxh/wsOy+KvjCHXxctef2mmuXq3n2liWMvnCYSeYWJJfduJOc17d/w9h/4Km/9HLfFX/wstX/APkqv9vmv4fP+Crnwa+O3wu/ay1S8+L2r3via18QFrrQ9TueRJZluIFVQERoCdjRoqjowUBxXgZ1mayugq1OhzJvW1kl5vR7+n6H6LwJwpLi7MHgcTj/AGcoxvHmTm3bdRTlFaLV+9tqk1dr+In/AIew/wDBU3/o5b4q/wDhZav/APJVH/D2H/gqb/0ct8Vf/Cy1f/5Kr/Vz/wCCNPw8/at+GX7PVx4c+Ptl/Z3h2SVbnw5aXjMuoQRy5aVXiI/dwsxDxqxDhi5K4Za/YavTy/FPE4eFeUHFyV7Pdf108j5XiPKIZXmVfAU68a0abspx2l+Ls+jV3Z3V3uf4g3/D2H/gqb/0ct8Vf/Cy1f8A+SqP+HsP/BU3/o5b4q/+Flq//wAlV/t80V2HiH+IL/w9F/4Kmal8n/DRXxVnz2/4S7V2/wDbmmN+19/wVI+Ig+yv8UPiprvmcbDrer3W7Pt5rZr/AG/aKAP8Rfwv+wD/AMFTv2rtehutF+EvxI8aXUx2i9utJ1CeJd39+5nTy0B9WcCv6Av2F/8Agzg/bk+NN9aeJv21de074QeHiVeXT7d49Y1yVeu0JA5tIdw43tO7IesRxiv9OaigD89f+Ce//BLj9jD/AIJi/DiT4f8A7KXhZNOuL5UGqa5et9p1fU2Tobm5IBKg8rFGqQoSSqKSc/oVRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiq15eWenWcuoahKkFvAjSSyyMFREUZZmY4AAAySeAKTaSbb0Gk27Is0V5v/wuT4Q/9DXo/wD4HQ//ABdH/C5PhD/0Nej/APgdD/8AF15/9r4D/oIh/wCBR/zOr6hiv+fUv/AWekUV5v8A8Lk+EP8A0Nej/wDgdD/8XR/wuT4Q/wDQ16P/AOB0P/xdH9r4D/oIh/4FH/MPqGK/59S/8BZ6RRXm/wDwuT4Q/wDQ16P/AOB0P/xdH/C5PhD/ANDXo/8A4HQ//F0f2vgP+giH/gUf8w+oYr/n1L/wFnpFFeb/APC5PhD/ANDXo/8A4HQ//F0f8Lk+EP8A0Nej/wDgdD/8XR/a+A/6CIf+BR/zD6hiv+fUv/AWekUVwFn8V/hbqN5Fp+n+JdKnuJ3WOKKO8hZ3djhVVQ5JJJwAOSa7+uqhiqNdN0aikl2af5GNWhUpO1SLXqrBRRRW5kFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXl3xa+LXhz4NeHIPE/ieC5nt57lbVVtVV3DsruCQ7oMYQ985xxXLjcbQwlCeJxM1GnFXbeyRth8PUr1I0aMbyey7nqNFfE/wDw3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/Xy3/EROG/8AoOh97/yPb/1Uzf8A6BpfgfbFFfE//DePwh/6B2sf9+Yf/j9H/DePwh/6B2sf9+Yf/j9H/EROG/8AoOh97/yD/VTN/wDoGl+B9sUV8T/8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P0f8RE4b/wCg6H3v/IP9VM3/AOgaX4H2xRXxP/w3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/R/xEThv/AKDofe/8g/1Uzf8A6BpfgfbFFeJ/B348eEPjb/aP/CKW15b/ANmeT5v2tETPnb9u3ZI+cbDnOO1e2V9Nl+Y4bH4eOKwdRTpyvZrZ2bT/ABTR42KwlbDVXQrx5ZrdPzV/yYUUUV2nOFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFcT48+Ivg34ZaPHr3ji8+w2k0wt0k8t5cyMrMBiNWPRSc4xxXkv/DXP7PX/Qwf+Slz/wDGq8fG8Q5Vg6vscXi6dOe9pTjF29G0zvw+VY2vD2lChOUe6i2vvSPpCivm/wD4a5/Z6/6GD/yUuf8A41R/w1z+z1/0MH/kpc//ABquX/XDIf8AoYUf/BsP/kjf+wcz/wCgWp/4BL/I+kKK+b/+Guf2ev8AoYP/ACUuf/jVH/DXP7PX/Qwf+Slz/wDGqP8AXDIf+hhR/wDBsP8A5IP7BzP/AKBan/gEv8j6Qor5v/4a5/Z6/wChg/8AJS5/+NUf8Nc/s9f9DB/5KXP/AMao/wBcMh/6GFH/AMGw/wDkg/sHM/8AoFqf+AS/yPpCivm//hrn9nr/AKGD/wAlLn/41XbeA/jn8LPibrEmg+B9U+3XcMJuHj8iaLEasqk5kRR1YDGc81thuJ8nxFWNGhjaU5y0SjUg235JO7M6uT4+lB1KuHnGK3bhJJeraPWqKKK9w80KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK8B1n9qL4F+H9Yu9B1fXPJu7GaS3nj+zXDbZImKsMrEQcEEZBI9Kzf8Ahrn9nr/oYP8AyUuf/jVfPz4tyOEnCePoprRp1YXT/wDAj1I5HmMkpRw1Rp/3Jf5H0hRXzf8A8Nc/s9f9DB/5KXP/AMao/wCGuf2ev+hg/wDJS5/+NVP+uGQ/9DCj/wCDYf8AyRX9g5n/ANAtT/wCX+R9IUV83/8ADXP7PX/Qwf8Akpc//GqP+Guf2ev+hg/8lLn/AONUf64ZD/0MKP8A4Nh/8kH9g5n/ANAtT/wCX+R9IUV83/8ADXP7PX/Qwf8Akpc//GqP+Guf2ev+hg/8lLn/AONUf64ZD/0MKP8A4Nh/8kH9g5n/ANAtT/wCX+R9IUV83/8ADXP7PX/Qwf8Akpc//Gq+kK9HL84wGO5vqOIhV5bX5JRla97X5W7Xs7X3szkxWAxOGt9YpShfbmi1e29r+oUUUV6JyBRRRQAVx/ib4feBfGmpaTrHi7R7PU7vQrk3mnS3UKyvazlSvmRFgdrYPUex6gV2FFKUVJWkrounVnTlzU5NPutN9H960PnX9pP9qr4I/sn+CG8cfGbWEsY3DC1s48SXl5Iv8EEWcsemWOEXILMo5rxj9hL9vb4eftzeENX1nw5Ztomr6JdtFdaXNKJZVt3J8icMAoKyKMNgfK6svI2sfzt/4Lb/ALEGqfEzwtB+1f8ADeCW61bw5bra6zaR5cy6erEpOijPzQsx3gDmM7jjZz5H/wAEiv8AgnX+0v8ADL4kaf8AtPfEK9m8FacbeSJNHkTN5qVvMPu3EbcQxZ2uAw8zcoO1eGr5KrmuZLOI4WNG9Lrbs/tNvaz6eq10P2PB8JcLT4KqZtUxlsY27KTtacf+XSgrt8yafNra6l7qUkf0v0UUV9cfjIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK83+Mn/JIfFX/YHvv/RL16RXm/xk/wCSQ+Kv+wPff+iXrzs4/wBwxH+CX/pLOvAf71S/xR/NH4D0UUV/n4f1CFFFFABRRRQAUUUUAekfBv8A5K94V/7DFj/6OSv34r8B/g3/AMle8K/9hix/9HJX78V/TngP/uGM/wAcf/ST8f8AEv8A3nD/AOF/mFFFFfvB+ZhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8T/ALeP/JIdN/7DEP8A6Jnr7Yr4n/bx/wCSQ6b/ANhiH/0TPXxniJ/yTeO/wP8ANH0PCn/I3w3+L9D8l6KKK/h4/osKKKKACiiigAooooA/SD/gn1/zN3/bh/7Xr9IK/N//AIJ9f8zd/wBuH/tev0gr+z/Cf/klcH/3E/8ATsz+fuN/+R1iP+3f/SIhRRRX6KfKBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxP+3j/ySHTf+wxD/wCiZ6/Jev1o/bx/5JDpv/YYh/8ARM9fkvX8heM3/JST/wAEPyZ+78Af8iiP+KX5hRRRX5QfahRRRQAUUUUAFfbH7B3/ACV7Uv8AsDzf+joK+J6+2P2Dv+Sval/2B5v/AEdBX2nh3/yUmB/xr8mfP8Vf8inE/wCE/Wiiiiv7gP5zCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPwH+Mn/JXvFX/YYvv/Rz15vXpHxk/wCSveKv+wxff+jnrzev8/c4/wB/xH+Of/pTP6iwH+7Uv8MfyCobi4t7SB7q6dYoo1LO7naqqOSSTwAKmr+LT4k+FP2ov+C6X7eXj74XeGvFbeGfhd8OLqW1i81WltbaKORoInFvGyCe5u3ieUGRxtQMA4CKp9bhjhuOayrVK9dUaFGPNObTdk3ZJRWrbey/WyfBnGbPBRpxpU3UqzdoxTtfS7bfRJf11P7SIpY541mhYOjgMrKcgg9CDT6/lo/4LO/tP/tAfCK4+En/AATU/ZU1u9tvEWtaZYw393pjG1vLsSMLGzt0dG3QiV45HlAbJGwbtu7d8vfDvxN/wUa/4I2/tVfDPw3+1J4zfxd4C+ItwtndWyalc6nZxo0scc5j+1LG0NzbmWOQlAFkU7dzDOPfwPh1WxWBhio4qCq1FOVKk7qVSML3a7NpNpduq1PMxPFdOjiZUZUZOEHFTmvhi5dPO19Wf2cUUUV+cH1gV/SBX839f0gV/RXgF/zMv+4X/uQ/KfE7/mE/7f8A/bAooor+ij8pCiiigAooooAK+cf2m/2rPgt+yR4C/wCE/wDjLqRtIpi0dnaQr5l3eSqMmOGPjJGRliVRcjcwzX0dXyn+2f8AsseFf2wPgJq3wh8Q7ILxx9p0q9YZNpfxA+VJ67TkpIByUZgOcEcuNddUJvDW9pbS+1z1cijgJZhQjmjksO5JTcd1Hq1o9t3pe22p+XH7HX/BZz/hoX9quX4VfEXSLXw14c8QhbXw6wcvNHeKTtS4kOFY3AO1dqgK4VRncWr986/lW/Yv/wCCIHxL8Ra/D46/arupPDGm2Fxuh0qwmU39y0TcM0yErBGSMgqTIR02cNX9UsMSwQpAhJCAKCxLHA9Sckn3PJrxeGauYzw8pZitW7q+js+66W6f5H3nirhOGcPmVOnw1NOKjaajdwTWiam2+ZtfFa6ur3bbtJRRRX0h+XBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9T+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf4yf8kh8Vf9ge+/9EvXpFeb/GT/AJJD4q/7A99/6JevOzj/AHDEf4Jf+ks68B/vVL/FH80fgPRRRX+fh/UIUUV4F8aP2qf2bP2dYlk+OfjrRPC0kib44NQvY4riRfWOEt5jj/dU1tQw9WvNU6MHKT6JNv7kZ1asKcXOpJJd27I99or83dL/AOCvn/BNbWNS/sq0+LujJKWC7pxPBHk/9NJIlTHvuwK+8fAvxE8AfFHw7F4v+Geuaf4i0mckR3umXMd3buR1AkiZlJHsa6sZlOOwiUsVh500/wCaMo/mkY0Mdhq7tRqxl6NP8jsaKKK886j0j4N/8le8K/8AYYsf/RyV+/FfgP8ABv8A5K94V/7DFj/6OSv34r+nPAf/AHDGf44/+kn4/wCJf+84f/C/zCiiiv3g/MwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+J/28f+SQ6b/wBhiH/0TPX2xXxP+3j/AMkh03/sMQ/+iZ6+M8RP+Sbx3+B/mj6HhT/kb4b/ABfofkvRRRX8PH9FhRRRQAUUUUAFFFFAH6Qf8E+v+Zu/7cP/AGvX6QV+b/8AwT6/5m7/ALcP/a9fpBX9n+E//JK4P/uJ/wCnZn8/cb/8jrEf9u/+kRCiiiv0U+UCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPif8Abx/5JDpv/YYh/wDRM9fkvX60ft4/8kh03/sMQ/8AomevyXr+QvGb/kpJ/wCCH5M/d+AP+RRH/FL8worwz9pv40j9nL9nvxl8eG03+2B4R0m51T7D532f7R9nQvs8zZJs3Yxu2Nj0NfzOf8RS1v8A9ENb/wAKUf8Aytr5DIeDM5zmlOtltDnjF2b5oRs7X+1JHuZlxBgMvnGni6vK2rrST0+SZ/WtRX8lP/EUtb/9ENb/AMKUf/K2j/iKWt/+iGt/4Uo/+Vte7/xCfir/AKA//KlL/wCTPO/12yX/AKCP/JZ//In9a1FfyU/8RS1v/wBENb/wpR/8ra/qE+BvxMT41fBPwd8ZI7M6cvi3RNP1kWhk80wC/gSfy9+1d+zft3bVzjOB0rwM+4OzjJYQqZlQ5Izdl70JXa/wyf4npZZn2AzCUoYSpzOOr0kvzSPUq+2P2Dv+Sval/wBgeb/0dBXxPX2x+wd/yV7Uv+wPN/6Ogru8O/8AkpMD/jX5M5+Kv+RTif8ACfrRRRRX9wH85hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH4D/GT/AJK94q/7DF9/6OevN69I+Mn/ACV7xV/2GL7/ANHPXm9f5+5x/v8AiP8AHP8A9KZ/UWA/3al/hj+QV/GP+w5+1x8Pv+CQ37cPx8+Bf7VFpfWOl6/qaT2l/awNcEC0luJLZigw7R3MFyGVhnawAIGWI/bH9v3/AILJfB7/AIJ+fGiw+Cnj3wlrOu3t/o8GsLcae8CxLHPNNCEPmOrbgYSTxjBFfjh+0l/wWT/4JbfteG2m/aK+AOseJLmyiMEF280NvdxxE7ti3FvPFMFzkhd+AST3NfpvA/D2ZrC14YrL6lXBYqMbuDgpe7LmjKPNJLR9Hb9H8dxHmmD9tTlRxUYYii3ZSUmtVZp2Xbt/wSr+w54tuP8Agpv/AMFwtW/a3sNPuV8HeDYHv7RLpQPJhtoPsdgr4JCyySsbnYGOGV8EhSa539r39prUf+CyP7fvws/Zr+BPhnULPw74H1i4N/c3yr5pj8+L7bcyrE0iRQxR24EWXy7Pg4ZlWvZf2f8A/gu9/wAE7f2WPBreAP2ffghrXhfSpJPOljtXtjJNJjG+WV5WllYDgNI7EDgcV/RN+xl4d/Z4vfgnoPxw+AHgfTfBdr8QNNtdamjtbSGC6lF2nnKLmSIZldd55Zm5JxXs59mlfJsWsyr5bOmoU1RwvNKNoWjJOUlFu8rS2/G+p5+WYKlmFD6pSxcZOU3UrWT97VNJXSsrr/gdD63ooor8HP0sK/pAr+b+v6QK/orwC/5mX/cL/wByH5T4nf8AMJ/2/wD+2BRRRX9FH5SFFFFABRRRQAUUUUAeQ/Hr40+Ff2d/hHrfxm8bQXlzpegwCeeKxhM87AsFAVcgDlhlmIVRksQATX8wuo/8F0vjdrv7SOheNF0+LSPh3p93sutCgCyz3NrJlHeWZgC0yKd8apsQMACDyT/WHruh6P4n0S88N+IbaO8sNQgktrm3lXdHLDKpV0YHqrKSCPSv51Ph7/wQO0RfjprerfEzxGT8Pra9Z9JsLJj9uurdsOqTysMRBM+WxUM0m0kFMg18pxHRzapUorL5WjfXpqtbt/y+X53R+weGON4Ow+GxsuJKV6ij7rd5XjJcrjCK2mnqpPVJ3Tjytn9EPhXxR4f8b+GdP8ZeE7uO/wBL1W3iu7S5iOUlhmUMjqfQqQa36434e/D3wX8KPBWnfDr4d6fFpWiaTCILS0hzsjQEnqSSSSSSSSSSSSSa7KvqYc3Kuffrba/kfkuI9l7WfsL8l3y3te19L2ur23tpcKKKKoxCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf4yf8kh8Vf9ge+/9EvXpFeb/GT/AJJD4q/7A99/6JevOzj/AHDEf4Jf+ks68B/vVL/FH80fgPRRRX+fh/UJ/O9/wW5/4Kx+Jf2RLO2/Zq/Z1ukt/H2tWoutQ1MBZG0mzkJCCNSCv2ibBKlh+7T5gMujD+aH9mr/AIJl/t8/8FBrqX4q+GdKnm03VZHll8UeJbl4be6kBKsyyyCSe4O4FS0aSAEEEgivbviL4NtP21v+C6eufDX4mSvNpmrfES60i8UsUZ9P0eVoPJBBBXdb2wjBHIznrX9+/hzw5oHg/wAP2XhTwrZQ6dpmmwR21pa2yCOGGGJQqIiKAFVVAAAGAK/oPG57T4HyrCYPLaMXi68FUnOSvv06N2d1FbJK7TbZ+XYfLZcR42vXxdRqhTk4xivL77aat7u9rpI/iG1r/g2h/bk0/SBe6X4o8GX90FJe2S8vIyT6Iz2YU/8AAttfnha/8PBP+CRHxztNTu7bU/AWtSEsscpE2marBEQHUlGa3uo+RnDFkJBBRsGv9KKvzx/4Knfs4fDz9pP9h/x/onjeyimvPD2jX2uaRdMuZbS+sIHmRkbqA+0xuB95GIINeZkPi9jsTiY4LO6UKuHqNRl7tmk9Ntml1TV+zOzMuBcNRovEZdOUKsFda72/FPzudj/wT6/bZ8F/t6/s4aZ8bvDMK6fqKu1jrOmh95stQhALpnqUZWWSNjyUYZwwIH27X8cf/Br/AOO9Ztvin8U/hj5rHT7zSrHVPKPKrNbTNFuHoWWbBx1wM9BX9jlfn/HmQ0snzzEYKh/DTTj5KSTt8r2+R9Pwzmc8fl1LEVPid0/VO1/nuekfBv8A5K94V/7DFj/6OSv34r8B/g3/AMle8K/9hix/9HJX78V+2eA/+4Yz/HH/ANJPz3xL/wB5w/8Ahf5hRRRX7wfmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfE/7eP/JIdN/7DEP/AKJnr7Yr4n/bx/5JDpv/AGGIf/RM9fGeIn/JN47/AAP80fQ8Kf8AI3w3+L9D8l6+F/8AgpuSv/BPb4yMpwR4T1P/ANEtX3RXwt/wU5/5R6/GX/sU9T/9EtX8aZD/AMjPC/8AXyH/AKUj9+zP/c63+GX5M/zv/gD+yp+0t+1NJqsX7PnhTUPFTaGIDfiy2nyBc7/K3bmX7/lvj/dNek/Fj/gnl+3J8C/h/qHxU+Lnw71jQvD2leV9rvrkIIovOkWFN21yfmkdVHHU1++v/BrZ/wAhT43/APXLw7/PUK/YX/guZ/yix+Kf+5o3/p2s6/pjOfEjHYPiqGQQowdN1KUOZ83NaooX62uuZ20PyHL+EsNiMkeZyqSU1GcraW93mt0v011P4Zfgb+w5+2H+0t4Pm8f/AAJ8C6r4m0aC6eyku7QKYxcRqjsmWdTkK6k8Y5rivj1+zH+0V+y9qen6L+0B4Yv/AAtdatE89pHe4DTRxkKzLtZuASBX9l3/AAbYn/jADWP+xz1H/wBJbOvzc/4Ogv8Aks3wp/7Auof+j0rsy7xAxmI4tqcPypQVKLmubXm92La626djnxfDFClkcc0jOXO1F20tq7dr/if1B/sLu8v7EnwckkJZm8D+HiSeSSbCCvqevlX9hP8A5Mh+Df8A2I3h7/0ggr6qr+Vc2/36v/jl/wClM/acD/u1L/CvyP0g/wCCfX/M3f8Abh/7Xr9IK/N//gn1/wAzd/24f+16/SCv6/8ACf8A5JXB/wDcT/07M/CON/8AkdYj/t3/ANIiFFFFfop8oFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfE/7eP/ACSHTf8AsMQ/+iZ6/Jev1o/bx/5JDpv/AGGIf/RM9fkvX8heM3/JST/wQ/Jn7vwB/wAiiP8Ail+Z5v8AGH4U+Efjn8Ldf+Dvj6OWXRfEtjNp96kLmKRoJ1KsFccqcHg1+QX/ABDzf8E3P+gTrv8A4NpP/ia/cWivgcs4hzPLoSp4HEzpxbu1GTV330PpsXlWDxUlLE0Yza2ukz+Ir/gtt/wTL/ZY/YW+D3gzxn8AbLUbW+1vWZbK6N7eNcqYkgaQABgMHcOtfcf/AAT0/wCCKH7DH7Rf7GHw/wDjb8TdP1ifXvEWntc3jwai8MZfzpEG1FXCgBQK4z/g57+LnhGXw78MvgbZXkM2uR3d5rV1bI2Zbe38tYYWcdhKxk256+Wa/W//AIIneOfDvjj/AIJo/DX+wbhJpNHt7rTLyNWy0Nxb3MuUcdiUZHAP8Lqehr9izTP87pcEYHHrEVFVlVknO75nH37Xe9tFb5HwWCyzLp8RYnDeyi4RgrRsrJ+7ey766n8sP/Bbv9g/9n39hP4jeBPDXwAtb21tfEGm3d1di9umuWMkMqou0sBgYJ4r+0r9hP8A5Mh+Df8A2I3h7/0ggr+Vb/g5y8Y6Bqv7Snw88E2Fwkt/pHh6ae7jU5MQu7g+WG9CRETjrgg9CM/1c/sU6ZeaJ+xt8JNG1FdlxaeDNBhlX0eOxhVh+BFeXxxi8RieEcnrYublUk5tuTu3q7PXyt8js4coUqOe4+nQilBKKSWy2/W59NV9sfsHf8le1L/sDzf+joK+J6+2P2Dv+Sval/2B5v8A0dBXxnh3/wAlJgf8a/Jn0HFX/IpxP+E/Wiiiiv7gP5zCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPwH+Mn/JXvFX/AGGL7/0c9eb16R8ZP+SveKv+wxff+jnrzev8/c4/3/Ef45/+lM/qLAf7tS/wx/I4LxP8K/hf431BdW8aeG9L1e7SMRLNe2cVxIIwSQoaRGIUEkgZxkmv5eP+CR/wx/Z3/aj/AG6v2gPiR+0FoGk6j4z0LWTHougXttCbawsUmnhdobUjYxg8uGIvsJj4Od0mT/WJX8y//BTD/gkV8GV+LV1+2H8MfjFpnwN13Wrx7q6bWLsWFnNfyAtLNb3IljlilkJLuiiTcxLDbnB+v4JzGg6eLyzEYiVKVeEYwqRUpcrUuZxtHW01o7fPQ8DiLC1FKhjKVJTVOTcotpXurJ3el47q57b/AMF0f2cP2QtA/Yd134sajoOj+GvGWkXFmPDuoWEEVnezXbzoDApjCNKpi8xihyECmQAFc1+mn/BPTx/4x+KX7Dvwr8f/ABAB/tjU/DdjJcuVVTKRGFEuFAUeaoEmAAPm4Ar+aP8AZj/4JJ+F/wBsr4mWWs/tD/tS6R8WotJXzZdK0HWZNW1B4VYZQy3MnmwRNwGYQn0BBww/sI8M+GtA8GeG9P8AB/hSzi0/S9JtorOztYFCRQW8ChI40UcBUUBQOwFdHF9TC4PLMPkscTKvVhOU3JxlFQTilyR59bNrmfS5nkUa2IxlXMJUlShKKikmnzNNvmfLpdXt3NuiiivzY+tCv6QK/m/r+kCv6K8Av+Zl/wBwv/ch+U+J3/MJ/wBv/wDtgUUUV/RR+UhRRRQAUUUUAFFFFABWH4m1W90Hw3qGuadYzapcWdtLPFZ25UTXDxqWWJC5VdzkbV3EDJ5NblFJq6sioNKSbV12P4q/2mv+Cvn7WXxl8e2154RvH8B6Not9Hc22lWLHe0tu4ZftcpAabDD5oyFiPQpnmv6wf2SP2kvC37WHwE0L40eGNsTX8XlX1qpybW+iwJoT3+VuVJwWQq3evz3+KX/BF74HfF/9qzVfjv4m1O4tvDWrlLy60CyXyTNfsT5zGfOUikIDsqLvLs2GUYr9Xvht8L/h38HPCFt4D+F2jWmg6PZj93a2kYjQHuzY5Zzj5nYlmPJJNfJ5DgM0o4qtUxtTmg9NXq7PRpbRVun4H7F4h8Q8JY7KcDhciw3s60Em7KyipL3oSb1nK9ve12fvatHe0UUV9afjYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//W/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK83+Mn/JIfFX/YHvv/RL16RXm/xk/wCSQ+Kv+wPff+iXrzs4/wBwxH+CX/pLOvAf71S/xR/NH4D0UUV/n4f1CfwA/wDBTvwt8TP+Cf8A/wAFbNQ+PXhaAr9t1yDxvok0oPk3X2iQS3ETbcfKJ/Nidc7thB43Cv7C/wBif/goz+zR+3H4H07WPhtrtpaeJZrcSX/hu5nVdRtJVH7xfLOGljU/dlQFSuCdpyo0P28/2Bfgt/wUA+Eo+HPxSR7HUbBmn0fWrZVN1p87AAld3DxPgCWIkBwAQVZVZf4wP2iP+CFn/BQj4A67NN4R8N/8J7pELboNS8OyCWQjPy7rVityr46hUdQejnrX7xhMRkXGGV4bCZjiVh8bQioKTtaSWi3aTvva6kpXtoz80rUsyyHGVq+Eo+1w9R8zS3T+SbXrZq1r6n+g/JIkSNLKwVVBJJOAAO5r+bn/AILO/wDBXX4LeB/gbr/7L37PGuWfirxb4ttZ9J1O606ZZ7XS7KZfLnDSoSjTyKWjWNWJTLM5UhVb+ZZv2LP+CoXjYJ4P1H4bfEa6t0IRIb7T79LZc+hmURAe+cV+pP7FX/Buj8f/AIh+IbPxX+2NPH4I8NROHl0q1njudWulHOzdGZIIFYdWLu46bAeRtgOBeHMgrRzLN8zjVUHzRhG15NarRSlKWvRJLu7EYniTNszpvCYHByg5aOTvonvq0kvXV9lc+xv+DZX9nTxF4e8DePv2n/EFu8Fn4ikt9F0hnGBNFZs73Mi55K+YyICONyOOSOP6o64z4d/DvwR8JfA2lfDX4b6ZBo+haJbpaWVnbLtjiiQYAHcnuWJJYkkkkk12dfkfFmfyzrNa+YyjZTei7RSSivWy187n3OSZYsvwVPCJ3cVq+7bu/wAXp5HpHwb/AOSveFf+wxY/+jkr9+K/Af4N/wDJXvCv/YYsf/RyV+/FfvXgP/uGM/xx/wDST808S/8AecP/AIX+YUUUV+8H5mFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXxP+3j/ySHTf+wxD/wCiZ6+2K+J/28f+SQ6b/wBhiH/0TPXxniJ/yTeO/wAD/NH0PCn/ACN8N/i/Q/JevnP9r/4Zap8aP2UviT8JdCTzNQ8R+GdU0+0X1uZ7Z1iH/fwrX0ZRX8S4bESoVoV4fFFpr1Tuj+h61JVKcqctmmvvP8+D/gjP/wAFD/BX/BPj45eIoPjNaXf/AAivjC1hs7+a1jMk9lc2bsYZWiyCyKJJFkVQXGQQDgqf0c/4LH/8Flv2a/2lP2ZLj9mT9mG6u9ePiS6tJdV1Ga1ls7eG2s5VuFjRZwkjyNNHHn5NgUHkkjH3P+3L/wAG+Pwc/ad+KOqfGn4NeKpPh/rGtyvdajZNZi90+4upDl5UUSRPA0jEtJgupY5CrznxP9mf/g2i+G/gXxxY+Mf2k/HT+MLGxkSb+xdPszZW87Ic7Z5nkkd4j0ZEWNiP4hX9D1+JOB8bjafEuJqTWKiov2aUtZxXu/Zs2rKzU1HRX7H5XSyniPD4eeUUoxdF3XPdfC9+t0nrdcreuh+Q3/BMj/grF46/4Jkafr/wf+IfgyfXvDmt3EWrrZtIbC8tLqeGMCZfMjYPHPAIjhgMgKytgkN86/8ABQn9uT4gf8FQv2lNF8R6T4bOkxxQwaFoOiwS/apmaaUkFpNqb5ZpJAMBQAAqjJBY/wBtX7X3/BKL9jH9tW+s/EHxT0CXTdbsbeO0i1TRJRZXP2eIYSJxteKRUGAm+NioACkLxXL/ALJf/BHX9iD9jrxrb/Ev4eaJd6z4kslItdS124F5LbserxIqRwpJ2EixhwMgEAnPNh/EjhanWnnsMFJZhKLTW8b2te/NZJ2V3y81r6b32q8JZzOnHLZYhPCp387Xv2vp0V7H3n8CPAEvwn+B/gz4WT7d/hrQtO0pthyubO3SE4PcfLxXq1FFfz9Wqyq1JVJ7ttv1Z+oQgoRUI7LQ/SD/AIJ9f8zd/wBuH/tev0gr83/+CfX/ADN3/bh/7Xr9IK/svwn/AOSVwf8A3E/9OzPwDjf/AJHWI/7d/wDSIhRRRX6KfKBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxP+3j/wAkh03/ALDEP/omevyXr9aP28f+SQ6b/wBhiH/0TPX5L1/IXjN/yUk/8EPyZ+78Af8AIoj/AIpfmfJv7d/xH8Z/CD9jP4nfFD4dXp03XdB8OX95YXQRJDDPFESjhZFZCVPOGUj2r+CfTv20v+Cs3xih+0+E/HXxF1eOcnDaNLehSc8hTagDr2HSv9HPxB4f0DxZod34Z8U2Nvqem38TQXVpdxLNBNE4wySRuCrKw4KkEEda/n7/AG7/APgvl8E/2S/GV58Cv2fPDkfjjX9DY2d7MJxa6TYyxfKYVZFZpnjIKuqBEQ8byQVF+GmaVqaqYHBZXHFVpPm5pcqUIpW1bi7K/mvK7I4uwVOThiMRjXRppWsrvme+ya6eTP5/f2R/+CPn7b/7ZvxfXUfjjouv+DdAuGa41bxD4kgliu5MqSvlR3RWaeRyAN2Nqjlm6A+OePfgZ/wU0/4JneONZ8KaK/i3whbTPtk1Tw7NdJpeoRjIjkE1uRG5wchXxImcFVPFf26f8Ewf2xPGv7c/7Ktp8fPH2l2Wj6jc6le2RttP8zyQls4Cn94ztkg884z0Ar5U/bE/4Lw/shfsn/Ea/wDhDp1pqfjnxDpMjQagmkiNbS1nT70TzyuA0inhhGrhSCrEMCB9hQ4/4kxOb18seXQrRh7sqS2jyvfnd1vpqraKyT38KrwxlNHA08YsXKm5aqb3d1ty6Pz013vc/ln/AGNf+CbP7Yf/AAUB+P1pr/xN0vXofD11eQ3fiLxRrwmR5bbcPM8qa5Be4uHQFUC7sEguQvNf6H2j6Tp2gaTa6Fo8QgtLKFIII16JHGoVVGecAACvyT/Ye/4LUfsmftt+No/hTpCX/g/xZcKTaafrIiVL0ryVt5o3ZXkA58tgjkAlQwBx+vtfnniRn+b4/GU6GZ4b2Cpr3KfRJ7u+0r2tdaK1u59TwllmBw2HlVwdb2rm/el6dLdN+uuvoFfbH7B3/JXtS/7A83/o6Cvievtj9g7/AJK9qX/YHm/9HQV5nh3/AMlJgf8AGvyZ2cVf8inE/wCE/Wiiiiv7gP5zCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPwH+Mn/JXvFX/YYvv/Rz15vXpHxk/wCSveKv+wxff+jnrzev8/c4/wB/xH+Of/pTP6iwH+7Uv8MfyCv44fgf+yvF/wAFov2zfjb8b/2l/FGpQ+F/AOpvpekaTp8ixSrBvnW2jHmLIIo0jgDSbUDSysxyDmv7Hq/n/wDAP/BOT9p/9lD/AIKY6h8d/wBm/Vkn+D/xKub258VaWJUjltpJYbiVFeKX/WRpdODDJCfMQSMhUJuZvrOCc0p4KjmDp1lRxLpr2c3/AHXecU7O0pxVo+em9jw+IsFLEVMKp03Oip+/FeatGTXVRer8j+ez4M/sMwQ/8ExLn/gpn8J/FepeHPiB4C16RiI5VSCS3imgiQwkKJI5lMu7JdlcArt5Br+3P9in416z+0b+yV8PPjf4ljWPVPEmh2l3fBE8tDdlAszIvZGkDFB/dI5NfyRfs1/8EsP+CsXxq+F2m/sk/E+Y/Dr4NQ6r/at9HdTWrNPI7KXKx2xead12ho0mZYQwByDzX9oHwr+G3hb4N/DLw98JPA8TQ6N4Z0620uyRzucQWkaxJubA3MVUFmxycmvqPFPNMNXiqLxMK9X2s5RcGpezpNK0HJbu+trvl27HjcF4OrSbqKjKnDkimpac003eSXRW0v1O9ooor8ZPvwr+kCv5v6/pAr+ivAL/AJmX/cL/ANyH5T4nf8wn/b//ALYFFFFf0UflIUUUUAFFFFABRRRQAUUUUAI24KSgyewPFfxP/wDBQj9v79sL4s/EbxB8FPiJK3gvStFvZbK40DTJGVGaJsZnn+V7gNgMpO2JhhlQda/thr81v2j/APglt+zt+1F+0JYfHv4kNdoYrRLfUNOtGEMeovCcRPNIP3g2p8jbCrMoTDDbz83xNl2MxmHjTwk7O+qvZNPu/Lt17N2P0/wr4nyXJMyqYnOcOprlvCXLzShJa+6np723Numlqk2Xf+CXn7XLfta/sy2Op+I5/N8VeGSulayW+9LJGo8q49/OjwWP/PQOBwBX6OVwvgT4ffDv4PeDofCHw80qy8P6JYISlvaxrBCgA+ZmxjJOMszZJ6kmu2iliniWeBg6OAyspyCD0IPcV7OBpVaWHhTry5ppJN9z4jP8XhMVmOIxWAounRnJuMW78qettNPRdFpd2uSUUUV1njhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/X/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK83+Mn/JIfFX/YHvv/RL16RXm/xk/wCSQ+Kv+wPff+iXrzs4/wBwxH+CX/pLOvAf71S/xR/NH4D0UUV/n4f1Cfyrft5/8F6/2jP2UP2ufGv7PXg3wd4b1LTPDN1DBBc3ouvPkWSCKUl9k6rkFyOFHAr5D/4icv2s/wDoQPCP5Xn/AMkVwP7dujXP/BSj/gtA37LPhKCw8PWdtqz6BJf21lEt1L/Z0Jkv7m4kVVknkVYZFiEjlVSNFG3LE/1C/CX/AIJH/wDBO74QeE4PCmmfC3RNcMabZL3XrZNUu5mPV2kuAwUnriNUUfwgV/QeOnwjkmW4FZll3PialKMnFN7NW5pNtL3mnok9brzf5dho55mOLxP1TF8tGE5RTa89krPbv6H83H/ETl+1n/0IHhH8rz/5Io/4icv2s/8AoQPCP5Xn/wAkV9df8Fov+CQH7NfgD9m/W/2rP2a9Gj8Iar4WaCbUtNsy32G8tJpUgYpExKwyRl1fMe1GVWBUsQa9w/4Ix/Cv9jD9tX9jS18WfE74PeDLrxV4X1CXQdTuv7FtFN20MccsU7AR4DPFKocjq6scAHFdVTEcF/2Ks7oZXz01Pkkr2lCVrq/vWaemqfVedsIUuIP7QeXVcbyz5eZPdSX3XT8rdH5X+kv+CPH/AAU0+K3/AAUas/iDP8UNA0nQm8Hvpa239l+diUX4ud2/zpJPu+QMYx1Oa/amvFvg/wDs4fAH9nxdQT4GeDNG8IDVjEb0aRZxWn2gwbvL8zy1Xds3vtz03HHWvaa/C+IMXgcVmFWvltH2VF25YdrRSffdpv5n6TldDEUcLCni6nPUV7y76u34WR6R8G/+SveFf+wxY/8Ao5K/fivwH+Df/JXvCv8A2GLH/wBHJX78V/QfgP8A7hjP8cf/AEk/LvEv/ecP/hf5hRRRX7wfmYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfE/7eP8AySHTf+wxD/6Jnr7Yr4n/AG8f+SQ6b/2GIf8A0TPXxniJ/wAk3jv8D/NH0PCn/I3w3+L9D8l6+U/26PD/AMRfFf7HXxK8N/COK7m8T33h6+h0uOwYpctdPGRGImUgh89CCOa+rKCccmv4mwmIeHr066V3Fp2ezs72Z/Q1ekqtOVNu10195/ngS/sef8FroYmmfQfiOQgJO2/uWOB6ATEn6CvhzRPjT+1z4i8X23gHSvG3iltZvLpbGK0fVrmKQ3LtsEZ3yqFYt8uDjniv7N/+Cg//AAXh+AH7LH274bfAH7P8Q/HUO6JzDJnSbCUcHz50P751PWKE9QQzoRiv5E7T4V/tn/8ABSP4o+Nvjt4N8JXXi3VnMuq63c6XaR21tGVTO1QvlxmVlX5Yl3TSkE4diSf674RznH47DVMbnWCpYejZckn7t2+8ZfZelm3G/S97r8Lz3L8Lhq0cPl+InVqX95LX7muvlZ+drWf05/wxv/wWw/6APxG/8GFx/wDH6P8Ahjf/AILYf9AH4jf+DC4/+P1+u3/BGf8A4LQTX02l/seftj6mVvVKWXh7xHetgyMPlSzvXb+PosUzfe+453YY/wBYtfCcTeIOdZHjZYPGZfR7xkoytJd1r963T0Z9Lk/C2X5lh1Xw+Kqeaurp9np/w54H+ynpXjTQv2XfhtonxIS5j8RWfhbR4NUW8YvcLex2kSziViSTIJA28kkls8175RRX8+4is6tWdVq3M27LbV3P1ClT5IRgnskvuP0g/wCCfX/M3f8Abh/7Xr9IK/N//gn1/wAzd/24f+16/SCv7J8J/wDklcH/ANxP/Tsz8C43/wCR1iP+3f8A0iIUUUV+inygUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB8T/t4/8AJIdN/wCwxD/6Jnr8l6/Wj9vH/kkOm/8AYYh/9Ez1+S9fyF4zf8lJP/BD8mfu/AH/ACKI/wCKX5nxv/wUJ+Omu/s1/sVfEf41+FZFh1bRdHk+wStyI7u5ZbeF8d9skisB3IxX8YH/AARq/wCCaugf8FCPiv4g8Y/Gm5uh4K8I+S9/HBIUn1G8uixSDzfvKm1GeV1+fG0AgtuH9ZP/AAWc8Hah45/4Jk/FjRtMR3lt9PtdQIjBJ8vT7y3upCQOwSJifQDPavxu/wCDYn40eCLTR/iT8ANRuorfX7q6tdasoXIWS6t1jMM2zu3kkIWHYPnpnHqcH4uvgOCszx+Xu1f2ii5LdQtDX5c0rPpq+hw59Qp4riHB4bFa0uVtJ7OXvafgvXY/ZL9pMfCb/gln/wAE4PHOofs5aVH4asdA0+YaTAs0s5XU9SdYIpC8zySOwmkVzljwvYDj+NX/AIJTf8E6bv8A4KOfHTVfD/ivU7vSfCXhu1W91vULUK1yz3DFYII2kDqskpV23srALG3BOK/d3/g5i/aT0jRfhD4M/ZW0W9RtV13UP7d1K3RsyR2VmrRwCQdlmmdmX1MJ/H3T/g3W+EmmfCP9g3Vfjf4meKxPjbWrm8N1OwjRbDTv9Fj3MxAAWZbg5Jxhq9HI8fisj4MxOcqT+tYqpaMnrJ62vrdt6VJJu+rTOXMcLRzHiCll9l7GjC7S0S6202WsUz+ez/gq3/wTduP+CYvxa8I+IfhR4hvtS8O+IPNutJvbrat/Z3unvGzo7xKiErvjeORVTPI2/Lk/3Kfsb/Gy9/aO/ZV+H/xy1VUS+8TaHZ3l4sX3FumQCcL6KJQ2B2FfyRf8HEv7afwf/aG+JHgr4JfBjWLXxDbeCUvrnU7+xkE1qbu98pVhSRco5iSIlyhZcvtzuVgP6if+CZXw61P4U/sA/CXwVrUElteReHbW5nhlBWSOS9BuWRgeQVMpBB6EYrh49q4rFcJ5VjM1X+1OUldq0nB31a03Sg/nfqdPDMKNHO8bQwT/AHKS2d1zabfNyPumvtj9g7/kr2pf9geb/wBHQV8T19sfsHf8le1L/sDzf+joK+F8O/8AkpMD/jX5M+k4q/5FOJ/wn60UUUV/cB/OYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+A/xk/5K94q/wCwxff+jnrzevSPjJ/yV7xV/wBhi+/9HPXm9f5+5x/v+I/xz/8ASmf1FgP92pf4Y/kFfx4eJ/A37Wv/AAXO/a++JXhHR/HT+Cvg/wDDfU30yGNN80D7ZJIonFsjxC4nnETyu0jgRKwUHBAP9h9fyseF/gZ/wUH/AOCY3/BQ7U7v4AeHJPF3wb+Lviqzkv5YbR72Oztry6wxmEOJLWW1E7hZT+5kUKWzjav2fh/iI0frtTDzhHGKCdF1LWVpXny811z8vw/Ppc+e4opOp9XjVjJ4dyftFG99vdvbXlvv/nY+a/2gf+CXv7YH/BIjwVL+2F+yj8XZ9Z07w3NDJq1kLZ9PYW8kiIPMg8+eG6hLsBIrbSoO4A4JH9YH7LXxvtf2k/2cvBPx5tbdbT/hK9HtNRlt0besE8qAyxBjgkRybkyQM4r8bv8Agt0f25PjfceGf2Hv2WfCc+reHvHlstxruoxW0hSE29yhjjmuyRBbwgqrvu+ZgAAcEq37G/sq/A62/Zp/Zv8ABPwFtrgXh8K6RbWEtwows08aDzZAOMB5CzAHkA81vxXmc8wyPB4zMqkJ4yc5WcVFS9la37xRSV+dPlutvmZ5Jg44XMsRh8HGUaEYq6d3Hnvf3b3+zv5/I9/ooor8zPrwr+kCv5v6/pAr+ivAL/mZf9wv/ch+U+J3/MJ/2/8A+2BRRRX9FH5SFFFFABRRRQAUUUUAFFFFABRRRQB/Fr/wVH/as/bG8QfHXxR+z78XtVOkaHo920cGlaWGt7O5tW+eCaQ5LzeZGVfEjFVbICqQRX7l/wDBGP8Aak1L4+fsxD4e+K2kl1r4fvFpjTuCRPZMpNs248FkVTEw5ICKx+9X05+0h/wTz/Zu/as+KugfFj4w2Fxd3ehWz2rW8ExghvYt2+NbgqBIViYuVCOud5BJGBX1n4V8IeBPhX4Si8N+DdOstA0TTYyUt7WNLa3hRRknCgKPVifqa+Ry3JMbh8zq4urWvB3STu21uvS36dEz9m4p48yLMeFsJk2EwPJiI8sm4pRjGa0k1a7nzre9t0224nYUVWsr2z1Kzh1HTpkuLe4RZIpY2Do6OMqysMggg5BHBFWa+uPxppp2YUUUUCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzf4yf8kh8Vf9ge+/9EvXpFeb/GT/AJJD4q/7A99/6JevOzj/AHDEf4Jf+ks68B/vVL/FH80fgPRRRX+fh/UJ/n8/t4t8Z/8AgnJ/wV91z9oLSbD99L4in8WaNLcKwtb+01Is80YYEEr+9lt5MEFSDjtn+jP4Vf8ABw3/AME8fG/hOHWPiDqWreC9U2fvtPvNPnuyJAORHLaJMjKT91m2Ejqq9K/QL9uT9nH9jv8AaH+Ehsf2zItNttB0tmkt9Wv7xdOfT5ZRgvHdM6bC2BlWJR8DcrYFfz/+H/8Ag3O/Zb+Ovh21+Jf7NnxyvL/wtfSzC3uvsVvqccqwyNE6pNDLbqSrqylguMg8V+5wzzhjP8twz4ijUo1aMVT9pBNxkktFdRkru17ON027Ox+cSy7OMrxdVZU4ThUblySaur7u14+l09dL6nz3/wAFcv8Agt54D/as+EV5+y9+zDp94vh3VpoW1nWdRjED3MVvIkyQ28W4uqGRFLvJtYhdoXBJr9kf+Df79nDxr8Av2FRrnxBs5NPv/Hery6/BbzLtkSxeGGG3LDqPMWMyrnna44rwT9mP/gjl/wAEsPgH8WrbTPiP490/4jeMYpEFromsalZxIsyng/2fE4klbPGyUyJ/s55r+j1ESNBHGAqqMADgACvF4w4iymhlMOH8hpSVFy55TmmnN9LX1fS7stkkrHoZDlWOqY6WaZnOLqJcqjFpqK+X5Xe7bHUUUV+TH256R8G/+SveFf8AsMWP/o5K/fivwH+Df/JXvCv/AGGLH/0clfvxX9OeA/8AuGM/xx/9JPx/xL/3nD/4X+YUUUV+8H5mFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYGv8Aizwt4UhjuPFOp2umxykqjXUyQhiOcAuRk/Ss6tWFOLnUklFdW7L7yoQlOSjBXfkb9Feb/wDC5PhD/wBDXo//AIHQ/wDxdH/C5PhD/wBDXo//AIHQ/wDxdcX9r4D/AKCIf+BR/wAzp+oYr/n1L/wFnpFFeb/8Lk+EP/Q16P8A+B0P/wAXR/wuT4Q/9DXo/wD4HQ//ABdH9r4D/oIh/wCBR/zD6hiv+fUv/AWekUV5v/wuT4Q/9DXo/wD4HQ//ABdH/C5PhD/0Nej/APgdD/8AF0f2vgP+giH/AIFH/MPqGK/59S/8BZ6RXxP+3j/ySHTf+wxD/wCiZ6+kP+FyfCH/AKGvR/8AwOh/+Lr5C/bT8feBPFXwtsNP8Ma3YalcJqsUjRWtzHM4QQzAsVRicZIGemSK+P8AEDM8HU4dxsKdeDbg7JSTe68z3uF8HiIZrh5SpyS5uzPzEr4t/wCCjdprt/8AsGfF2y8MRTzX83hXUkgjtVZpmZoWGECfMSfQV6X+1f8AtIeDf2R/2evFH7Q/jyN7jT/Ddr5wt42CyXE8jLFDCpPAMkrqmcHGc4OK/nM/4JK/8FQP2r/2yP25PFerfHfXltfAmm+FtR1E6ZbQJDpunCKeAozSbd5ZUMnzyOWIz24H8vcN8N4+vh6ueUYr2OGak7trmaafLGyeu1+mqP2XNs2w1KrDLqjfPWTSt0TuuZ6rTf7j5w/4J1f8G9/j34o/YPi1+259o8L+Hm2zQeGoj5eqXa9R9pb/AJdYz3QfviMg+UcGv7CPhb8KPht8EvA9j8NfhJolp4e0HTU2W9lZRiKJfUkDlmY8s7Esx5YknNfxMft1/wDBcr9qz9pP4p3/AMMv2PdSvvCng03X2XSzpETJrWp7ThZGlXM0fmNykUOxgpAfcc18t3nw8/4LeeE7ZviteQfF61KIZJLw3GqGdYxyTIu8yBR1O5cY61+s57wjn+fqGIz3H08Pzawot2UfK1173d+8+l+i+Hy3PcsyzmpZbhp1baSqJb/PXTtsvzP35/4Km/8ABGz/AIWN8V9L/a//AGTtMVdfGrWlz4k0KABFvh5yl7y3HAE4+9MnAlGXH7zIk/pTr+PP/glL/wAFy/i4/wAV9G/Zp/bX1JNW0vV5Rp+n+IrmPy760vHYLFHduuFkidvk8xl8xGILsVyV/sMr8148w2d4H6rlWcNSVJS9nNXfNCVtLvfltazV1e21j67hqtl+J9tjcArObXPHa0lfp539H63Ciiivz4+oP0g/4J9f8zd/24f+16/SCvy7/Yb8ZeEPCX/CUf8ACV6rZ6Z9o+xeV9rnSHfs87dt3sM4yM46ZFffn/C5PhD/ANDXo/8A4HQ//F1/YXhZmWEpcL4OnVrRjJe00ckn/Fn0bPwbjTB155zXlCm2vd1Sb+xE9Iorzf8A4XJ8If8Aoa9H/wDA6H/4uj/hcnwh/wChr0f/AMDof/i6/Qf7XwH/AEEQ/wDAo/5ny/1DFf8APqX/AICz0iivN/8Ahcnwh/6GvR//AAOh/wDi6P8Ahcnwh/6GvR//AAOh/wDi6P7XwH/QRD/wKP8AmH1DFf8APqX/AICz0iivN/8Ahcnwh/6GvR//AAOh/wDi6P8Ahcnwh/6GvR//AAOh/wDi6P7XwH/QRD/wKP8AmH1DFf8APqX/AICz0iiuY8P+NvBniySSLwtq9lqbQgGQWlwkxQHoSEY4z7109dlGtTqxU6UlKPdO6+9HPUpzhLlmmn56BRRRWpAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFYmu+JfDnhe0W/8TahbadAzbBJdSrChY9gXIGfauS/4XJ8If+hr0f8A8Dof/i6462YYWjLkrVYxfZySf4s6KeEr1FzU4NryTZ6RRXm//C5PhD/0Nej/APgdD/8AF0f8Lk+EP/Q16P8A+B0P/wAXWX9r4D/oIh/4FH/Mv6hiv+fUv/AWekUV5v8A8Lk+EP8A0Nej/wDgdD/8XR/wuT4Q/wDQ16P/AOB0P/xdH9r4D/oIh/4FH/MPqGK/59S/8BZ6RRXm/wDwuT4Q/wDQ16P/AOB0P/xdH/C5PhD/ANDXo/8A4HQ//F0f2vgP+giH/gUf8w+oYr/n1L/wFnzf+3j/AMkh03/sMQ/+iZ6/Jev07/bT8feBPFXwtsNP8Ma3YalcJqsUjRWtzHM4QQzAsVRicZIGemSK/MSv5N8YK9KtxFOdGakuSGqaa28j9v4EpTp5VGNSLT5pb6GTr+g6P4p0K98MeIrZLzT9Rgktbq3lGUlhmUo6MO4ZSQR6Gv4Jf22v+CL37Yf7Inxdm8Sfs1aPrfjbwmZTcaTqmgxST6laBif3U8VvmZZIxx5qL5bjBypJRf7df2pvjRc/s6fs5eNfjtZ6euqy+EtHutUSzeQwrObdCwQuFYqDjGdpx6V/Ll/xFF+Of+iOWH/g6k/+Ra6vDD/Wag62JyShGrRbUZxlKKTdrreSd0nutNbO5hxj/ZFRU6OY1HCa1i0m3brsmraevY/LP9nn/gk9/wAFCf2x/ipC3jjwxr3h2yu5kbU/EfiyCe38uHoXUXWya5cKMKkeecBiq5Yf2TftXfskX1h/wS+8S/sd/s26S1/cWfhqLSNIs98cUlw0LRklnkZE8yQqzsSRuYk9TX4S/wDEUX45/wCiOWH/AIOpP/kWj/iKL8c/9EcsP/B1J/8AItfY8R5Xx1m2Kw1aeChCFCSlGCnC3MmneXv3e1tLWW27Z4OU43hvA0a1OOIlKVRNSk4yvZ9vd079dTF/4J3f8G9vxbn+JNh8T/257eDQ9D0eaO5i8OwXMN5c38sbblS4eEyQxwcDequzuCV+TrX9kIAUBVGAK/j4/wCIovxz/wBEcsP/AAdSf/Itf1YfAX4mSfGn4GeC/jHNZjT38W6Fp2staq/mCA39uk5jD4Xds37d2BnGcCvgvEijxPUq0sbxDTUIu8YKLi4rq7JSk9erbu++iPpuEqmTQhPD5XJyas5Np3fa7aS+SPWK+2P2Dv8Akr2pf9geb/0dBXxPX17+xZ4l8OeFfilf6h4n1C2023fSpY1lupVhQuZoSFDOQM4BOOuAa8Hw/qwp8RYKdSSSU1dvRbM9PiiEpZViIxV24n7B0V5v/wALk+EP/Q16P/4HQ/8AxdH/AAuT4Q/9DXo//gdD/wDF1/aX9r4D/oIh/wCBR/zP58+oYr/n1L/wFnpFFeb/APC5PhD/ANDXo/8A4HQ//F0f8Lk+EP8A0Nej/wDgdD/8XR/a+A/6CIf+BR/zD6hiv+fUv/AWekUV5v8A8Lk+EP8A0Nej/wDgdD/8XR/wuT4Q/wDQ16P/AOB0P/xdH9r4D/oIh/4FH/MPqGK/59S/8BZ6RRXm/wDwuT4Q/wDQ16P/AOB0P/xdbug+PPA3iq5ey8L61Y6lNGu9o7W4jmZV6ZIRiQPerp5ng6klCnWi5PZKSb/MmeDxEE5TpyS80zq6KKK7jmCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/Af4yf8le8Vf9hi+/8ARz15vXpHxk/5K94q/wCwxff+jnrzev8AP3OP9/xH+Of/AKUz+osB/u1L/DH8gr+VD4p/8Fmv+Cj3xC/aS8f/AAr/AGHvhLY+KdB8DarcaZJMul32p3OIJXhWWZ7e4jjjEzRO0abQcAjLYJr+q+v4+bL/AILM/sv/ALB/7QnxZ8LfBn9n+ez1PVPE17Fr18niaZ11G6sLm4TzxFPBMsO5nkbZHhRuxyAMfZ+H+WvFSxTpZesVVjGPLGTioK8tXK8o9NrX13stT57ijF+xVBTxXsYNu7Sbk7LRK0X13vbTueOfto/t5f8ABZn4i/syeKvBf7QnwfXwh4NvorddS1eDRNQsZLZFuImQieW5dE3SBEOVOQ2OpzX3f/wSM/a6/wCCnXjHxN8J/gl8S/hmtn8HRoxt08TtpN4kklpa2Ej2kpu3naEmaRIgW8vD7sAAkY+afjJ/wcQ/Bj9pD4ban8Evi1+z/c654e18RRXdiPEjwmby5ElRQ8FokoPmIp+VgTjHTIr+nn9jLVfCGu/sl/DbWvh/oD+FdDuvDemy2GjSTvdNYW7wIY4DNL88hjXC72+ZsZNfX8VYmtluR/VcfktOjKpOXLZxcVeFueNpuXOvNctktbnh5LSp4vMfbYbMJVFGKvdNN2lezvFLlfk73bPpeiiivws/Rwr+kCv5v6/pAr+ivAL/AJmX/cL/ANyH5T4nf8wn/b//ALYFFFFf0UflIUUUUAFFFFABRRRQAUUUUAFFFFABX8Wn/BVz4/8A7X15+0T4n+BHxk1+SHw/p1z5mn6bp6m1sJ7KX57eVkBJlYoRuMjvtcMBjGK/tLr47/aC/YQ/Zs/ah+JHh/4n/GjRn1S+8PQSW0cQlaKC4iZg6LOEwzrG24ou4L87bgwOK+f4jyuvjsKqWHnyu+urSa6p2+8/R/DHi3L+H81ljMyoe0hyuzUVKUZLVON7Wb+F6re99D4l/wCCJH7SWs/GL9mSb4WeKVmkvvAEyWMF06sUmsJgWgUPjaXhw0ZUfdQJ61+z1cromheCfhn4Uj0fw9aWWgaHpcR2QwIlra28S8nCqFRFHU9BXRWd5aahaRX9hKk8E6LJHJGwZHRhkMpHBBHII4Ir0stw08PhqeHqz5pRVr7en3bHzHFGZ0MzzTE5jhaHsqdSTko3vZvV62S1d3bpe2yLFFFFdx8+FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKr3dtHe2slpMXVJVKkxu0bAH0ZSGU+hBBFWKKTSas9hptO6PzY+PPwq+PvgDzvFHgHxVrmp6MMu8X26dri3HfIDfOg/vAZA6jjNfF3/C5Pi9/wBDXrH/AIHTf/F1+/FfFHx5/ZD0Lx153in4eCPTdXOXkg+7b3B78D7jn1Hyk9RyWr8H468Ncf72OyCvPu6XPL/yR3/8lf8A269on6Xw3xdhtMNmdOPlPlX/AJNp+P39z83v+FyfF7/oa9Y/8Dpv/i6P+FyfF7/oa9Y/8Dpv/i65HxD4c13wnrE2geJLWSyvLc7ZIpRhh/iD1BGQRyKxa/nmpmmZU5unUr1FJaNOUk0+zVz9Uhg8JKKlGnFp9bI9I/4XJ8Xv+hr1j/wOm/8Ai6P+FyfF7/oa9Y/8Dpv/AIuvN6Kj+2cf/wBBE/8AwOX+ZX1HDf8APqP/AICv8j0j/hcnxe/6GvWP/A6b/wCLqtefFf4pajZy6fqHiXVZ7edGjlikvJmR0YYZWUuQQQcEHgiuAoqZZvjmmniJ2/xS/wAwWBwyd1Sj9y/yCiiivPOo/hN/4K9/Fr47ft7f8FKm/Y6+F5nvLHw7qEXh/RdIE2y3kvwubq6kGdgYMXUyH7kMfb5q/Sf9rbVvi9/wSK/4IxeFv2ZbbX7b/hPdd1G70calo8kiiC3vLi4vriS3d1jkysbLBv2qwMm4YIBH5t3PxD8N/sRf8HBut/Ez42FrHRIfFuqXVxcyqWENr4htpvKn4ydiC7VzgEhARjIxUX/Bfr9ub4V/ta/Gjwf8OfgRrMXiHw74Ks7lpb+0Ja3nv9QZN6xtjEgjjhjAcZG5mA71/UtPLK2KxOR5RRoJ5fCnCvKXLo5qMt3tq2m115m3c/GZYynRo5ljqlT/AGqU5U0r6qLa2W+iT16WPzT0r9gX9p3Vv2P739vC00uMeBbC7EJnabF3IomEDXEcWMtEk58tnzkMCcYBI/tn/wCCIv7V/jL9rL9hjTdb+JV7LqXiPwlqNx4evr2c5luhbpHNBI56s3kTRoznl2QsSSSa/NX/AIKZ/H7wF+wz/wAEtvB//BOT7LcDx14k8JaTDKsceLe3jSVHvppHOAWlmjmRUXJy244A5+kP+DbP4d694U/YX1vxnrMLww+KPFV3c2Jb7sttbQQW5kX/ALbRyof9yvA45zOpnPC9XMcbTUeXEWoO1nKntfzv719k+W9tEenw5g44DOYYTDzbvSvUXRS3/DT0vvqf0J0UUV/PJ+plmzvLzTryLUNPleC4gdZIpY2KujqcqysMEEEZBHINd/8A8Lk+L3/Q16x/4HTf/F15vRXVh8diaCaoVZRT7Nr8jGrh6VR3qQT9Umekf8Lk+L3/AENesf8AgdN/8XR/wuT4vf8AQ16x/wCB03/xdeb0V0f2zj/+gif/AIHL/Mz+o4b/AJ9R/wDAV/kekf8AC5Pi9/0Nesf+B03/AMXR/wALk+L3/Q16x/4HTf8Axdeb0Uf2zj/+gif/AIHL/MPqOG/59R/8BX+R6R/wuT4vf9DXrH/gdN/8XV3Tvil8btXvotM0rxJrdzczsEjiivJ2d2PQABySar/DD4R+Nfi3rY0jwnbbkQjz7mTKwwqe7Njr6KMk9hX69fBf9nzwV8GrES6en23VpFxNfSr85z1VBzsX2Bye5NfoPBfCef8AEE1VWInTw63m5S18oq/vP8F1d9H8txDnmWZXFw9lGVXpFJffLTRfi/xPO/gP8GPijpQh8V/F3xPqtzc8PFpv2+Zoo/8ArqQ+HP8Asj5fXPQfXtFFf1XkuS4fK8NHC4e7S3cm5Sk+7b/4CXRI/FMxzGrjazrVbX7JWS8kv6fdhRRRXrHCFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVi+IfDmheLNHm0DxJax3tncDbJFKMqff2I6gjBB5FbVFRUpwqQdOok4vRp6prs0VCcoSUouzXU/JP49fsi674D87xT8PhJqWjjLyQ/euLde+cffQf3hyB1HBNfFdf0gV8U/Hr9kTQ/HXneKfh4sem6wcvJB923uD36fcc+o4J6jnNfzxx14O/FjsgXm6X/wAg/wD21/8Abr2ifqnDfHvw4bM35Kf/AMl/n9/c/JWitrxD4d13wnq82geJLWSzvLc7ZIpRhh/iD1BHBHIrFr+eKlOdObp1E1JaNPRp9mj9UhOMoqUXdPqFFFFQUFFFFAH4Gf8ABx9PrEP/AAT1tY9MBMMvizTVu8HpCIblhn/toI64D9in4c6Pa/8ABvb4hX4N2aHWfEvg/wAVXF68Cfv7u9zdQuG28s4jjEKd8Kor9Wv+CiH7KSfto/sh+LvgLayi31S+t1utKlY7VXULRhLAGPZHZfLc84ViRyBX8P8A8C/26/8AgoT/AMEnNf1r9n1bUaTHHctPd+G/ElmZ4EmcAGaIqyOFkVR80UvlyD5hng1+48G4OpnXDcctwFSKxFCuqrhJ2U42+fXysrK9ro/Oc/xEcvzd4vExbpVKThzJX5Xf/L8/U/Uj/g2F+H3ws1rxx8UPiLrNvb3Pi/Q4NMt9NeVQZbW0u/tH2h4s9DIURHYchRjIDkH+xCv8uPwp+1t8XfhZ+0HeftKfAKS2+HWu3c0sot9ARksIlnwZIlguHnBhZhu8qQugONoAVQP0+v8A/g4q/wCCi954ZbQbefw3a3TIUGoxaXm5BIxuCvK0GR15hIz2xxX0PHvhhnGc5tLMsLUjyzUfdlJpwtFJrRNNX106t6dX5fDPGOAwGCWErRd4t6xWkru99079Ne2/Q63/AIOI/hr8PPB37fGjXnwqtY7XXfEug2uoarb2KbWkv3uZ40mIT/ltKqLuwMkqGOS2T/c14fXU00GxXWiDeC3iE5HTzdo3frmv8yj4JftNfEK4/bO8P/tH/E2G08e+J7nWrW4lk8RLLcRNcF0RJSkUsOWhwDEpPlrtUbMACv8ATur5bxXwNfLsDlGWV5c7pwmufu/cul1tGySvuvQ9ngnE08VicdjKa5VOUfd7L3tfV63CiiivxY/QQooooAKKKKACiirunadqGr30WmaVA9zczsEjiiUu7segAHJNVGLk1GKu2JtJXexSr6q+BP7LXir4rvFr+u79L0HOfOIxLOPSJT2/2zx6Z5FfSfwF/Y2stI8nxZ8W40uboYeLTuGij9DKejn/AGR8o756D9AURIkEcYCqowAOAAK/feBfB6dblx2fJxhuqWzf+Psv7q1722f5jxJx5GnzYbLXeXWfRf4e/rt2ucr4K8DeFvh7oUXhzwjZpZ2sfOF5Z27s7HlmPqf5V1lFFf0hQoU6FONGjFRhFWSSskuyS2PyWrVnUm6lRtye7erYUUUVqQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAGbq+j6Vr+mzaNrdvHd2lwpSSKVQyMp7EGvzB+PX7HeqeGPO8V/CxJL7Thl5LHl54R/sd5FHp94f7XJH6oUV8rxVwdl2f4f2WMh76+Ga+KPo+q7p6P11PayXP8XllXnw8vde8Xs/8Ag+a1P5wCCDg8EUlfsJ8ef2UPDfxNE3iXwl5el66csxxiC5P/AE0A+6x/vgfUHqPyf8WeEPEngbW5vDniu0ksryE/Mkg6jsVPRlPYgkGv5I4v4GzHh+ty4mPNSb92ovhfk/5ZeT+Ta1P3LIuI8JmlO9J2mt4vdf5rzXzsc3RRRXxh9AFFFFABRRRQB5/8Vvhh4M+NXw21z4SfES2a80LxFZy2F/AkjRNJBMu11DoVZcg9VIIr8rP+HBv/AATB/wChGvP/AAc3/wD8fr9k6K9bL8+zLAQdPBYmdOLd2oycU33dmjhxWWYTEyUsRRjNrbmSf5o/gq/4LqfsOfs3fsR+Pvh7oX7OeizaNba/p99cXqy3c92ZJIJI1Qgzu5XAY8DGa/b79kj/AIIlf8E6Pit+yn8Mfij438HXd1rXiTwnouq6hMurXsYkuryzimlYIkwVQzsTtUADoOK+E/8Ag6K0G+i8Z/B7xPsY201lrNrvx8okie2fBPqQ/H0NfuD/AMEiv2nPhX8fP2FPh5pXhLVbZ9X8HaDY6Dq2nmRRc2s2mQrb7njzuCSLGJEb7pVuuQQP2XPc8zlcF5ZmGHxNTncpqc1KV370kuZp36WV/JHwOW5dgP8AWDGYWrRhy2i4xaVto3srW69D+WP/AILo/sQfs4/sS/ErwD4c/Zz0aXRrTXdMvLm8SW7nuy8kUqqpBndyuATwMCv7NP2E/wDkyH4N/wDYjeHv/SCCv5DP+DjT9oT4Z/GH9qjwx4D+HGqW+sHwXo8ttqU9pIssUd5czFmg3qSC8aopcD7pbafmBA/sP/Y60C/8KfsjfCzwvqqNFdab4Q0O1mRhhlkhsoUYEdiCORXm8d1sVU4SyeeOlJ1pObbk25NdG767NfKx18N06Mc8x8cMkoJRStsu+3nc+jqKKK/Fj9BCiiigAooooAKKntra5vbiOzs42lllYIiICzMx4AAHJJ9K/Rv4C/saAeT4t+MEfo8WmZ/IzEf+gA/7x6rX0nDXCmY57ifq+BhdL4pPSMV3b/JK7fRHk5vnWFy2j7XEy9Et36L9dkfOHwO/Zp8YfGC4TVLgNpuhq3z3brzJjqsSn7x7bvuj3PB/XT4f/Dfwf8MdCXw/4PtFtoRgyOeZJW/vO3Vj+g6AAcV2dtbW9nbpaWkaxRRKFREAVVUcAADgAelTV/WvBvAGXcP0uamueu171RrX0ivsry3fVs/Ds/4oxWaTtN8tNbRW3q+7/pJBRRRX3Z80FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxl8efgv8WbnzvFnwf8T6vHJy8umG/mCn1MJL8f7h49COBX5u3nxX+NWnXclhqHiXW4J4WKSRyXk6urDggguCCPQ1+99fPXxs/Zz8GfGO0a9lUafrKLiK9jXlsdFlXjev6jsccV+OcdeHGJxfNjskryhV3dPnajL/DraL8vhflu/vuG+LaVDlw+Y01KHSXKm169157+p+Rn/C5Pi9/0Nesf+B03/wAXR/wuT4vf9DXrH/gdN/8AF1H8Sfhb4z+FOuHQ/F9qYi2TFMvzQzKP4kbv7jgjuBXndfzRi8bm2FrSw+Iq1Izi7NOUk0/S5+vUMPgq1NVaUISi9mkmn+B6R/wuT4vf9DXrH/gdN/8AF0f8Lk+L3/Q16x/4HTf/ABdeb0Vz/wBs4/8A6CJ/+By/zNvqOG/59R/8BX+R6R/wuT4vf9DXrH/gdN/8XR/wuT4vf9DXrH/gdN/8XXm9FH9s4/8A6CJ/+By/zD6jhv8An1H/AMBX+RZvLy81G8l1DUJXnuJ3aSWWRizu7HLMzHJJJOSTyTVaiivObbbbep0pJKyCvJPiT8dvgR8G3iT4v+MtB8KNcLviGsajb2Jdc4yvnumRnjI7163X8Wn7I/8AwTt0X/gql+158fviH+1z4q1mwv8Awp4mksZdP02WJbtXea4RUaSeOZUhgSDykRY+QOCoXn6vhnIsHjqeJxeYYh0qFFRcnGPNJuUuVJK667vpp3ueLnGZV8NKjQwtJTqVG0ruyVldtv06H6G/8FgNO/YS/a6/Z3m1f4H+PfhxdfFbRr20udHvoPEukWN08fmqJ43uXuYwUEbNIFd+HUFea/ZT9hzVfijrf7IXw71P40XtvqfieTRLb7de2t3DfxXTKuFnW5t3eKbzUCuXR2VixINfkp/xDT/sD/8AQw+OP/BhZf8AyDX7k/Bf4UeGvgT8I/DPwX8GyXEuk+FdMttKs3umV52htIxGhkZVRS5C5YhVGegFepxJmeVvKaGW5diJ1VCbknOFpRTVnFO791tX5bb63OPKcHjVjqmLxVKMHKKXuyum092rb9L320PTKKKK/Pz6cK9I/wCFyfF7/oa9Y/8AA6b/AOLrzeiunD4zEUL+wqSjfezav62MqtClUt7SKdu6TPSP+FyfF7/oa9Y/8Dpv/i6P+FyfF7/oa9Y/8Dpv/i683orp/tnH/wDQRP8A8Dl/mZfUcN/z6j/4Cv8AI9I/4XJ8Xv8Aoa9Y/wDA6b/4uj/hcnxe/wChr1j/AMDpv/i683oo/tnH/wDQRP8A8Dl/mH1HDf8APqP/AICv8j0j/hcnxe/6GvWP/A6b/wCLo/4XH8Xv+hq1j/wOm/8Ai65fwv4V8Q+NNah8PeFrSS9vJzhI4xk47knoAO5OAO9fqz8Bv2S/D3w68nxN438vVNbGGRcbre2P+yCPmcf3iOOwHU/Y8I5BxDxBW5cLWnGkn71Rylyr0196XkvnZangZ5mmV5XT5q1OLm9opK7/AA0Xm/lfY8v+A3wj+PHjPyfFXxK8U65p2lHDx2v26dbi4HbPz5jQ+v3iOmODX6JQQpbQJbxlisahQWYu2B6sxJJ9ySTUtFf1fw3w3h8mw3sKU5Tk/inNtyk/nsuyWnq9T8SzfN6uPq+0nFRS2jFWS/zfmwooor6I8kKKKKACiiigD+Ij/gqB8bf2t9S/aM8U/BL47+JLibS9HvWNjp9qPsunvaSYktpfJTh2MbKd0hdlbK7uK/fz/gi3+0TrHxq/ZLi8EeJ1mfUPAUy6StxIrbJrIrutsORtLRqDEVHKqik/er69+NX7Cf7Mn7Q/xZ0n4y/GLw8utaro9p9jiilkZbaWNXLp50a483YWbaGJXDEFTxj6Ytrbwd8OvCy21pHZaFomlxfKqBLW1t4l9ANqIo/ACvkcsyHFYXMauMqVrwd1Z3ba3V29rfP5XP2bivxCynNeGcJkmGwPLWhytyioxjGa0lyxim5c6ve9tWt2jpqKAQRkUV9cfjIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPJvix8GPBPxg0f+z/E8G25jBFvdxYE0J9j3X1U8H681+Qfxh+A/jb4N6l5etx/adOlbEF9ED5T+gb+4+P4T+BI5r91azdX0fStf02bRtbt47u0uFKSRSqGRgfUGvzrjXw4y/P4Osv3eJ6TS38prqvPdemj+r4e4sxWWSVN+/S6xfTzi+nps/wAT+dGivvL48/sc6n4a87xX8K0e908ZeSx5eeEf7HeRR6feH+11HwcQVJVhgjqK/k3iDhvMMlxLwuPp8r6PeMl3i+q/FdUmft+V5thcwo+2ws7rquq8mun9WEooorwj0gooooA/F3/gqX/wR78Ef8FBrmw+Jvg7V4/CfxA02EWpvZYmmtb+1XJSKdVIZWjJJSVQSASrKw27Pg/9h7/g3Sk+DXxn0b4wftO+LrDxFB4duUvrTRtKhk8ie5gcPE08swQtGpG5ohH85wC23Ib+pKivs8F4gZ7hcueV0MRalZpaJtJ7pStdLt26WPAxHC+W18X9cqUrz33dm+7Wz/Xrc/I79vH/AIJGfDH/AIKBfH/wr8Yfir4p1DTdK8O6YNNm0nT4UWS7UTPMD9pdm8sHeVYCInHRga/T/wCHnw88EfCbwPpfw2+G+mQaNoWi26WtlZWy7Y4YkHAHcnuScliSSSSTXZUV4GLzrHYnDUcHXqt0qXwR6K/pu/N3fmenQy/D0a1TEU4JTn8T6v8ArstAoooryzsCiiigAoorW0PQtZ8TarDofh+2kvLu4bbHFEpZmP0HYdz0A61dOnKclCCu3oktW32RMpKKcpOyRk19ifAf9kzxH8RzD4m8aeZpeiHDoMbZ7lf9gH7qn++Rz2B6j6Y+A37H2jeD/J8U/ExY9Q1QYeO0+/bwH/a7SOP++QemeDX3JX9B8C+Drly47PlZbql/8m+n+Fa92tUflvEnHqV8Nlj16z/+R/z+7uc94W8J+HPBWiw+HfC1pHZWcAwscYxz3JPUse5JJPeuhoor+iqVGFKEadKKjFKySVkl2SWx+VTnKcnObu3u3uFFFFaEBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeSfFn4LeCfjDpH2DxLBsuolIt7yIATRH2PdfVTwfY81+QXxg+Bfjb4N6p5GuxfaLCViLe+iB8qT0B/uPjqp/DI5r92Ky9a0TSPEWlzaLrttHd2lwuySKVQysPcH9PSvznjbw4wGfwdaP7vE9Jpb+U11XnuvNaH1nDvFuJyySpv36PWL6ecX09Nn+J/OnRX3T8ev2PdW8J+d4q+F6SX+mDLyWfLzwD/Z7yIP8Avoe/Jr4XIIODX8m5/wAOY/JsS8Lj6fLLo/syXeL6r8Vs7PQ/b8szbDZhRVbCzuuq6rya6f1YSiiivDPRCuM8ZfDj4efEWy/s34g6Dp2u2+MeVqNrFdJg9tsisP0rs6KqE5QkpQdn5ClFSVpK6PmP/hif9jP/AKJH4L/8EFj/APGaP+GJ/wBjP/okfgv/AMEFj/8AGa+nKK7f7Vxv/P8An/4FL/M5/qWH/wCfcfuR82Wf7Gf7H+nXcWoaf8KPB0E8DrJHJHoVkro6nIZSIcggjII5Br6Toornr4qtWs603K3dt/ma06NOn/Dil6KwUUUVgaBRRRQAUUV9e/Ab9lDxJ8TDD4l8XeZpehHDKcYnuB/0zBHyqf75H0B6j18lyLHZtiY4TAU3Ob+5Lu3sl5v89DhzDMsPgaLr4mfLFfe/JLqzw34Y/Cbxp8WtbGjeErYuqEefcP8ALDCp7u2PyAyT2Ffr18Fv2e/BfwasRNYr9t1aRcTX0qjec9VjHOxfYcnuTxj1fwn4Q8N+B9Ei8O+FLOOys4R8scY6nuWPVmPckkmukr+ruB/DLA5Eo4nEWq4r+a2kfKCf/pT1fSydj8S4j4wxGZN0aXuUe3V/4v8ALb13Ciiiv08+OCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzX4nfCbwX8WtDOjeLbbeyA+TcJ8s0LHujY/MHIPcV6VRXNjMHQxVGWHxMFOElZpq6ZtQr1KFRVaMnGS2a3Pw6+NP7PfjT4NXxmvl+26TI2Ib6JfkOeiuOdjex4PYnmvBK/oz1HTtP1exl0zVYEubadSkkUqh0dT1BB4Ir8z/AI8/sbXuj+d4s+Ecb3NqMvLp2S0sY7mInlx/sn5h23dB/MvHXhFXwXNjslTnR3cN5R9Oso/+TLz1Z+wcN8dU8Ry4fMGo1Oktov17P8PTY/PyinOjxOY5AVZTgg8EEU2vw4/RgooooAKKKKAPz6/4KT/sFeFv+Cg37O83wo1C8XSde02cajoepMhdbe7RSpWQD5jDKrFHA5HDAEqAf4ofib/wRW/4KTfDDxPP4fHw6udfhSTy4r/RZoru2nU/xLhlkVT/ANNY0I7gV/ox0V+g8JeJOa5BQeFoKM6Td+WSeje9mmmr9Vquu7Z8tnnCWCzOoq1VuM9rxtr6pp/5n8T3/BPr/g36/aA8XfEzR/iN+2XYQeF/CGl3SXM2iSTpcX+pCI7liZYS8cULkYkLOJCuQqjIcf2wKqooVBgDgAUtFePxVxhmHEGIjXxzVoq0YxVoxvva7bu9Ltt7LokehkuQ4XK6Tp4ZPXdvd/lt2sFFFFfLHshRRRQAV3fw9+G3jD4oa8vh7wfaNcSnBkkPEUSn+J26KP1PQAmvaPgV+y/4r+LUseuavv0zQc5Nww/eTgdREp6+m8/KO2SMV+tvgfwF4U+HOgx+HPCFolpbJyccvI3dnbqzH1P0HFfrXAvhZjM55cZjr0sNv/emv7qey/vP5J9Ph+JONKGAvQw1p1vwj6935L52PHvgd+zX4P8Ag9bpqcwGo64y/PeOvEeeqxKfujtn7x+nFfSNFFf1TlWU4PLcNHCYGmoU49F+be7b6t6s/Fsbjq+LrOviZuUn1f6dl5IKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDl/GHgzwx490OXw54ts0vbSXqrjlT2ZSOVYdiCDX5OfHf9lTxP8L2m8ReGN+qaEMsXAzNbj/poB1Uf3wMeoFfsXSMoYFWGQeCDXxfF/AuXcQUbYiPLVS92ol7y8n/NHyfyaep9BkXEmLyupek7we8Xs/Ts/P77n84FFfqZ8ef2OdN8Sed4r+FKJZX5y8lhwkEx/wCmfaNj6fdP+z1P5iatpGqaBqU2j61byWt1bsUkilUq6sOxBr+SeKeDsxyDEeyxsPcfwzXwy9H0fdPVemp+5ZLn2EzOlz4eXvLeL3X/AAPPb8jOooor5U9oKKKKACv5Dvir/wAExf8Agscv7YXjz9pf4GeKbDQbrxFqt4be8stVFlLPppmb7NHcRxxBZNsQQYkDHKjJJGa/rxr+YL4y/wDBHz/gpt4++MHivx14O/aJn0nSNa1i+v7GxGrarGLa2uZ3kii2p8i+WjBcL8oxgcV+heH+ZwwdbEc+JpUlKKT9rTdRSV9kl8r30eh8txRg5V4UuWlObTb9ySi1pvr+B5t/wyX/AMHH/wD0VSD/AMG0P/yNX9L/AOznonxU8N/APwb4f+OV6NR8ZWWjWcOt3SuJBNfpEonfcAobL5OQADX8cn7Zv/BP3/gq7+xn8I7r466/8bNX8T+GtKeIam+la9qX2q0jlcRiUxTNGHQMyg7XJGckBcsP64f2Jb2DUf2P/hjfW3iJ/Fyy+GdMY6zLv8y+byE3TP5paQOxyWDksGyG5zXr8eqNXLsPiqNXD1Kbm1ejSdNppXak7vo1ZOz6rQ4eGbwxdWjOFWMlFO1SfNo3ul8t/kfUNFFFfkx9uFFFFABRRT0R5XEcYLMxwAOSSaAGV7v8GP2fvGvxlvxJpqfY9KjbE19Kp2DHVUHG9vYcDuRX0X8B/wBja91jyfFfxbR7W1OHi07JWWQespHKL/sj5j329/0x03TdO0awi0vSYI7a2gUJHFEoVEUdAAOAK/cOBfCGvjuXG50nTo7qG05ev8sf/Jn5aM/OeJOOqeG5sPl7UqnWW8V6d3+Hrsee/C74Q+CvhHov9k+FLbEjgefcyYaaYjuzenoowB6V6fRRX9N4PBUMJRjh8NBQhFWSSskfj+IxFWvUdWtJyk929wooorpMQooooAKKKKACiiigCOZZHiZYW2OQQrEZwexx3r+C/wDbo+Of7Wnjb4z+Ifhh+0v4lur+48O6jNamwj/0fT0MTEJJFbptTDLhlcguVIJY1/epXxh8QP8Agn7+yl8VvjvL+0R8S/C8Wua9NbwQNHdsXs2a3BVZHg4SR9m1D5m5dqrhQRk/N8S5PXzCjCnQqctnqm3ZrzS3a6fM/UfC3jbLuG8bXxOYYf2ilH3Goxc4yT0s3blUk3zNPotGeb/8Er/2iL/9oz9jnw7rPiAyPrHh7Oh30kgP757NVEcoY/e3xFCzf89Nw7V+i9ZdlZaL4b0yDTNOigsLK3CQwxRqsUSAkKiKowo5IAA+grUr28HRnSoQpVJc0opJva9uvU+CzvG0MZj6+Lw1L2dOcpSUb35bu9r2W1+2iCiiiuk8sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5I+O/wCyl4Z+J4m8R+Ftml66cszgYhuD/wBNAOjH++Bn1B7fW9FeTnWR4LNsNLCY+mpwf3p9090/Nfkd2X5jiMFWVfDT5ZL8fJrqj+ebxf4M8TeA9cl8OeLLOSyu4eqOOGHZlI4ZT2IJFcxX79/En4WeDPivoZ0PxfaiULkwzJ8s0LHujY49wcg9wa/Ij42fs6eM/g3dteTqb/RnbEV9GvAz0WQfwN+h7HsP5S448MMbkblisNerhf5vtR/xpf8ApS0722P2vhzjHD5ilRre5W7dJf4X+m/qfPdFFFflx9mFFFFABRRRQAUUUUAFFFfcvwG/Y91jxf5Pir4mrJp+lnDx2n3bicdt3eND/wB9EdMcGvcyDh3H5ziVhcBT5pdX9mK7yfRfi9km9DzszzXDZfRdfFTsundvsl1/q58+fCL4H+NvjHqv2Xw9D5NlEwFxeygiGIemf4mx0Uc+uBzX6+/CP4IeCPg5pX2Tw9D5t7KoFxeygGaU+mf4Vz0UceuTzXpeh6Fo3hrSodD8P20dnaW67Y4ol2qo+n8z1J5Na1f1jwT4b4DIYqvP95ies2tI+UF09d35LQ/EeIuLcTmbdOPuUf5V1/xPr6bLz3Ciiiv0c+SCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+Pfjz+yd4d+JIm8TeDfL0vXGyzjGILk/7YA+Vj/fA57g9R9hUV5Gd5Fgc2w0sJj6anB/en3i90/Nej0O/LszxOBrKvhp8svwfk11R/PB4p8J+IvBWtzeHfFNpJZXkBw0cg7diD0ZT2IJB7Vz1fvl8UPhF4K+LmiHSPFltudAfIuY8LNCx7q3PHqpyD3FfkJ8Z/wBn7xr8Gr8vqSfbNKkbEN9EvyHPRXHOxvY8HsTX8occeGWOyJyxNC9XC/zJax8pr/25aPybsftvDnGGGzJKlU9yt26P/D/lv67nhFFFFfmJ9gFFFFABRRRQAUUUUAFaWj6PqviDU4dG0O3ku7u4YJHFEpZ2J9AK9F+FHwZ8bfGDWP7O8LwbbeMj7RdyZEMIPqe7eijJP05r9fvg78B/BPwa0zy9Fj+06jKuJ76UDzX9Qv8AcTP8I/Ek81+i8E+HOPz+arP93hlvNrfygur89l1d9D5TiHizC5ZF0179XpFdPOT6em7/ABPnv4C/sd6X4X8nxX8UkjvtRGHisvvQQn/b7SMPT7o9+DX3cAAMDgClor+suH+HMBkuGWFwFPlj1f2pPvJ9X+C2SSPxDNM2xWYVnWxUrvouiXZLp/Vwooor3TzQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+VPjt+y14W+KyS6/oOzS9ewT5wGIpz6SqO/+2OfXdwK/Jbxp4H8U/D3XZfDni6zezuo+cNyrr2ZGHDKfUH9a/oUrz/4jfDHwb8U9CbQfGFqJkGTFKvyywsf4kbsfbkHuCK/I+OvCvCZxzYzAWpYnd/yz/xJbP8AvL5p7r7rhvjWvgLYfFXnR/8AJo+ndeT+TR/P/RX0V8bv2cPGXwdumvyDqGiu2I72Nfu56LKv8De/3T2OeB861/LGaZVi8uxMsJjabhUjun+a6NPo1oz9owWNoYukq+HmpRfVf1o/IKKKK846gooooAKKKKACiivRvhr8K/GfxX10aH4QtTIVwZp3+WGFT3dscewGSewNdGEwlbFVo4fDwc5ydkkrtv0Mq9enRpurVkoxW7eyOEsbC91S8i07TYXuLidgkccalnZj0AA5JNfpT8Bf2NbbT/J8WfF6NZp+Hi03O6NPQzEcMf8AYHy+pPSvov4Kfs7eDPg3ZrdW6i/1h1xLfSL8wz1WMc7F+nJ7noK+ga/pngXwho4Plx2dpTq7qnvGP+LpJ+Xwr+9ufkHEnHdSvzYbLm4w6y2b9Oy/H0GRRRQRLDCoREAVVUYAA6ACn0UV+5pW0R+bhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXiXxi+A3gn4y6bs1qP7NqMS4gvogPNT0Df30z/CfwIPNe20VxZhl2Gx2HlhcZTU6ct09v8AgPs1quh0YXF1sNVVahNxktmj8F/iv8GPG/wf1j+z/E8G63kJ+z3cWTDMPY9m9VOCPpzXk9f0S+IvDeheLdHm0DxLax3tncDbJFKMg+/qCOxGCDyK/K/48/sia74E87xR8PhJqejjLyQ/euLde/A++g9RyB1HBNfy9x14S4nLObG5Veph93HecF/7dFd1qlutLn7Lw3xxRxlsPjbQq9H9mX+T8tu3Y+KqKKK/GT78K/mC+M37V/8AwX70P4weK9F+F3wugvfDNnrF9BpFwdKVzLYRzutu+77QN26IKc4Gc9K/p9r+bj4u/wDBx/8AB/4R/FjxP8Kb/wCGesXk/hjVr3SZLiO9gVJXspnhLqCuQGKZAPIBr7rgbC42tWrLB5dDFNJXU7WjruryjufOcR1sPTp03iMXKiruzj18noz8o/28v2sv+CznjP4LTfC79rfws3gjwP4jubezv75dJ+zWrZkVkSe6Bm8tN6hiAVZgpHIyD/YD+xN8ILL4CfskfDr4Q2GpW+spomg2cTX9nJ5ttdSOgkklhf8Aiid2Zoz3Qiv5Vv26v+C8+g/tmfs3a7+y78L/AIY31pfeMvs9mbi7ukuWQLPHKBFBFGTJIzIFX5hgnIBIAr+oX/gnt4B+IHwt/Yg+Fvw9+KUclvr2k+HLKC7t5hiS3IQFYXHZoUKxkdiuK+r49o4ujkOFp4vCQwkvayfsoW973Vapo21bWLu308jxOGalCpmVaVCvKuuRe/K/u+8/d1S3327n2NRRRX40ffBRRX0j8D/2a/GPxhuE1OUHTdDVvnvJF5kx1WJT949s/dHqTxXo5VlGMzLExwmBpudR9F+beyS6t6I5MbjqGEpOviZqMV1f6d35I8c8E+BPFXxE12Pw54Qs3u7mTkheFRe7Ox4VR6n+dfrV8Cv2W/CvwoSLXtc2aprwGfPYfuoD6RKe/wDtn5j2xnFe2fDz4aeDvhdoS6B4PtFt4uDJIfmllYfxO3Un9B0AA4rvK/qjgbwrweT8uMx9quJ3X8sP8Ke7/vP5Jbv8X4k40r4+9DDXhR/8ml69l5L53Ciiiv1s+GCiiigAooooAKKKKACiiigAooooAK4z4jDxu3w/1sfDN7ePxF9huP7Ma6UvALvYfJ8xQVyu/GeRxXZ0UpK6aNKVTknGdk7NOz1T9V2P8+v42/tdftT/ABj8cx+IPjB4s1K51LR7wTQWzN5EFncwPkGO3QLFG6MOoTdkck1/cj+yp8dNN/aU/Z48J/GvTtqtrliklzGnSK7jJjuIx7JMrgeoANfP9h/wTB/Y2j+M+u/HbxD4XXXtZ16+fUXh1J/OsYJpTuk8u2wIyHfLnzRJhicYHFfe+n6fYaTYxaZpUEdtbQKI4oolCIirwAqjAAHYCvlOHclxuCrVauJq8yn6tuz0bb8r6a7n694l8dZHnuCweEyrBuk6Ot7RjFKSXNCMY7q6Wumz0d7lyiiivrD8dCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKrXtlZ6laSWGoRJPBMpSSORQyMp6gg8EH0qzRSlFNNNaDTad0fml8ef2NJrTzvFnwgjMsXLy6YTll9TCT1H+wefQngV+eM0M1tM9vcI0ckZKsrDBUjggg9CK/o7r5l+Of7MvhH4vQyavY7dM10L8t0i/LKR0Eqj73puHzD3AxX4Lx14P08RzY7Iko1N3T2i/8HSL8vh7WP0zhvjydLlw2ZO8ek+q/wAXdee/qfizRXb+Pvh34v8Ahnrr+HvGFo1tOMlG6xyr/eRujD+XQ4PFcRX824nDVcPVlQrwcZxdmmrNPzTP1ulWhVgqlOScXs1qmFFFFYGgV0XhXwn4j8ba3D4d8K2kl7eTn5Y4x27knoqjuSQB3r1j4L/s9+NfjLfCawT7FpMbYmvpVOwY6qg/jb2HA7kcV+vXww+Engr4SaINH8J2213A8+5kw00zDu7Y/IDAHYV+n8D+GWOz1xxNe9LDfzNay8oL/wBuei6XasfHcR8YYbLU6NL363bov8T/AE39Dwj4D/smeHPhv5Pibxn5eqa4uGQYzBbn/YBHzMP75HHYDqfsOiiv6uyTIsDlOGWEwFNQgvvb7ye7fm/TY/E8xzPE46s6+JnzS/BeSXRBRRRXrnAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVHU9M07WbCbStXgjuba4UpJFKoZHU9QQeDV6iplFSTjJXTGm0009T8vfj1+xvfaH53iz4Sxvd2Yy8un5LTRD1iPV1/2eWHbd2+A3Ro2KOCrKcEHggiv6Pq+UPjv+yv4X+Kiy+IfDuzS9eIJMoGIbg+koA6/7YGfUNxj8B468HoVebHZCuWW7pbJ/wCDs/7r07W2P0/hvjyUOXDZm7rpPqv8Xf13733PxuorqvGXgnxR8P8AXZfDni6zezu4v4XHDL2ZWHDKexBIrla/nCvQqUakqVaLjKLs01Zp9mnsfrNOpCpFTpu8Xs1swoorZ0Dw9rfirV4dB8O2sl5eXDbY4ohlif6AdSTwByamnTnUkoU03J6JLVt9khynGMXKTskY1faPwF/ZG17x/wCT4o8fiTTNGOHji+7cXI7YBHyIf7x5I6DnNfSvwF/ZC0TwP5Pin4irHqWrjDx2/wB63tz/ACdx6n5QemcA19tV/Q3Avg9flx2fx81S/wDk/wD5Ff8Abz3iflnEnHvxYbLH5Of/AMj/AJ/d3MPw54a0Hwjo8Ph/w1aR2VnbjCRRDAHue5J7k5JPJrcoor+iKVKFOCp04pRWiS0SXZLoflU5ynJyk7t7thRRRVkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFe7s7TULWSxv4kmhmUo8cihlZTwQQeCD6V+bvx6/Y0lt/P8W/CCMvHy8umZyw9TCT1H+wef7pPAr9KqK+a4m4Ty7PcN9Xx0LtfDJaSi/J/mndPqj18nzvFZbV9rhpadU9n6r9d0fziTwTW0z29yjRyRkqysMMpHBBB6EVFX7TfHP9mTwl8XoX1ix26ZroHy3SL8kpHQSqOvpuHzD3AxX5HePPh74t+GmvP4d8YWjWs68o3WORf7yN0ZT7dOhweK/knjLgHMeH6t6q56Dfu1EtPSS+zLyej6Nn7jkHE+FzSFoPlqLeL39V3X9NI4qiiivhj6QKKv6XpWpa3qMOk6PBJdXVwwSOKJSzux7ADk1+nHwF/Y40/wAP+T4s+LCJeXww8Wn8PDEfWQ9Hb/Z+6P8Aa7fU8LcH5jn2I9jgoe6vim/hj6vq+yWr9Ls8XOs+wmWUvaYiWr2it3/wPPY+bPgP+yr4n+KTQ+IvE2/S9BOGDkYmuB/0zBHCn++ePQHmv1l8H+DPDPgLQovDnhOzSztIeiIOWPdmJ5Zj3JJNdMqqihUGAOABS1/W/CHAuXcP0bYePNWa96o/ifkv5Y+S+bb1Pw7PuJMXmlS9V2gtorZevd+f3WCiiivtD54KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+LPjz+yLoPj3zvFHw/EemawcvJDjbb3Dd8gfcc/3hwT1GTmvyu8R+Gte8I6xN4f8AEtpJZXludrxSjBHuOxB7EZBHSv6JK8p+K3wa8E/F/R/7N8UW+J4wfs93HgTQk+h7r6qcg/XBr8a468JsLmfNjcrtSxG7jtCb/wDbZPutH1Wtz7/hvjitg7YfG3nS6P7Uf815brp2PwVrirv4a/Dq/upL6+0DTZppmLySSWkTM7Mckklckk8kmvqP4x/AXxt8G9R26xH9q02RsQX0QPlv6Bv7j/7J/Akc14jX8wY7A4zLsRPC4qEqdSO6ej/4K7NaPofseGxNDFUo1qMlKD2f9f8ADnLaT4G8E6Bdfb9C0exsp8Y8yC3jjfB7ZUA11NFFcMpyk7ydzpUUtEgqe1tbm+uY7OyjaaaVgiIgLMzHgAAcknsBXcfDr4ZeMvinrq6B4PtDO/Bllb5YoVP8TtjAH6nsCa/XX4Ifs2+Dfg7bLqJA1HW2XEl5Iv3M9ViX+Ae/3j3OOK+74M8Psx4gqKdNclBPWo1p6RX2n+C6taX+a4g4owuVw5ZPmqvaK/N9l+L6I+bvgN+xmF8nxZ8YI8nh4tMB/IzEf+gD/gR6rX6L21tb2dulpaRrFFEoVEQBVVRwAAOAB6VNRX9acNcK5dkeG+r4Cna/xSespPu3+SVkuiPw/N86xWZVfa4mV+yWy9F+u76hRRRX0Z5IUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfHf7e3xQ+NHwV/ZX8UfFb4Dx2kmuaFEly4u4TOFtAwE7ooZRvjQmTLbl2qcqa/kO+GH/BQ/9om2/am8I/H/AOMPi3Utej0XUUkubeSQi3FpNmK5WK3TbChaF3A2oOcHtX9z3iDQdI8VaDfeGPEEC3VhqVvLa3ML8rJDMpR1Psykg1+bfwC/4JE/sWfAqSLVbjQG8YarEdwuvEDLdKp6/LbhVt+D0LRsw/vV8ln+T4/F4qjUwtXlit027Jp3Tst3/kfsvh3xrw9k+VYzDZtg/aVZ3UXGMXJwnHllFyfwpW+fNs7H6YWF/ZapYw6np0qz29zGssUiHKujjKsCOoIOQat1DbW1vZ28dnZxrFFEoREQBVVVGAABwABwAKmr61eZ+Nytd22CiiigQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOM8d/D/AMJfEnQX8O+MLRbq3blSeHjb+8jdVYeo+hyOK/JH46fsw+LfhHLJrWmbtU0InIuVX54QegmUdPTcPlPsTiv2hqOWKKeJoJ1Do4KsrDIIPUEdxXw/GPAOXcQUr1lyV0vdqJa+kv5o+T26NH0eQcTYvK52pvmpveL29V2fn96Z/ONHHJNIsUSlnYgKoGSSegAr9A/gN+xrd6r5Piv4uxtb23DxabkrI47GUjlB/sj5vXHQ/aPhX9nz4T+DPF1x420HS0jvZjujDHdHAe5iU8Jn9OgwOK9pr4Dg/wAGaOErfWs6lGq0/dgr8mmzldJu/wDLt3vsvp8+8QKlen7HL04JrWT+L0Xb137WKen6dYaTYxaZpcKW1vAoSOKJQqIo6AAYAFXKKK/doxUUoxVkj82bbd3uFFFFMQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAee/Ef4X+DfiroTaD4vtRMoyYpl+WaFj/Ejdj6joe4NfkP8bf2cvGXwcu2vZAdQ0V2xFexrwueiyr/AAN+h7HOQP26qteWVnqNpJYahEk8EylJI5FDKynggg8EH0r4HjPw+y/iCm5zXJiEtKiWvpJfaX4ro+j+n4f4pxWVy5Y+9Se8X+a7P8H1R+Fvwg+Bvjb4yap9n0CLyLGJgLi9lB8qP2H95sdFH44HNfr98JPgp4J+DukfYfDcPmXcqgXF5KAZpT9f4V9FHH1PNek6NomkeHdMh0XQbaOztLddscUShEUewH6+talc/BPhvgMgiq0v3mJ6za28oLovPd+S0NeIuLcTmbdOPuUf5V185Pr6bL8Qooor9GPkwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArifHvw78I/EzQX8O+MLRbmBuUbpJE395G6qf59DkV21FY4nDUsRSlQrwUoSVmmrprzTNKVWdKaqU5NSWzWjR+LHxz/Zl8XfCGeTV7HdqWhE/LdIvzRZ6LKo+76bh8p9icV5v8LfhB41+Lutf2T4Ut8xIR591JlYYQe7Ng8+ijJPp1r96p4ILqB7a5RZI5FKsjDKsp4IIPUGsrQPDmgeFNMTRvDVnDY2iElYoECIC3JOB3PrX4ni/A/L6mZKvSrOOGerp7u/aMn9l+d2tru91+h0PEbFRwjpzpp1tlLp6td/Syf5+TfBn4A+Cvg1p4Olp9r1SVds99Ko8xvUIOdiew69ycV7nRRX7Jl2W4XAYeOFwdNQpx2S/rVvq3q+p8Di8XWxVV1sRNyk92/6/AKKKK7jmCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAz9W0nS9d02bR9at47q1uFKSRSqGRlPYg8V+Yvx5/Y41Lw753iv4UI95YDLyWHLTQj/pmesij0+8Pft+pVFfLcU8H5dn+H9jjYe8vhmvij6Pqu6ej9dV7WS59i8sq8+Hl7r3i9n/wfPc/nAZWRirjBHBBr6t+BP7LHin4qtF4g8Qb9L0EkESkYlnHpEp7f7Z49M81+k+v/s8/CXxN41h8eavpUcl7GSzqOIZn7NInRmHv1/izxj2lESNBHGAqqMADgACvybhzwRhRxkqub1VUpRfuxjdc67y7L+6m/wDFbf7fNvEWVTDqGBg4za1bs+Xyj39X919uV8F+B/C3w+0KLw54Rs0s7WPnC/edu7Ox5Zj3JNdZRRX77QoU6NONKjFRhFWSSskuyS2PzGpUnUk51G3J7t6thRRRWpAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5Df8ABWb9tL9ob9jfwh4a1L4MWGnfZPEUlza3Gp3kTTyWk8Sq0aom4R5dSxBcOPkPy1+vNfKv7Zf7Kfhf9sn4H3PwY8T3z6X5l3bXttfRxCZ7eW3fllQsoJeMyR9eA+ecYrzs2o4irhKkMLK1S2jWmva/nsfS8HY3LsLnOGr5tSU8Mpe+mm1Zpq9lvy35ra3tazPwT/4JJ/t//Gv4kftgXvgT9oHxXea8njXT3jsxdSAQwXtnmZBFEoWKIPH5oIRV3NtHYV/UtX5u/s0/8Eqf2Rv2ZNZsPGWgaVc694k051lg1XVpzLJFKv8AFHEgSFSD0Pllh/er9Iq4+HsHjMNhfZY2XNK7e7bs+jb63ue54lZ3kma5v9ayKk6dLljFrlUE3G6vGKei5bLVJ6bBRRRXun58FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5wf+ChX/BXj9oz4BfG3xF+z18NPDem6FNozog1W8LXs00c0ayxyxRkRxJuVxwwlAOR1r7y/wCCSP7WXjD9qv8AZuu774oal/anivw9qk9pfXDIkbyxT/voJCsaqijDtGoVQP3dch+3b/wSn0n9tb466L8Wf+EmHhmC200WGpLFa/aJrnyZGaIpl0VTtdlLNuwAvBr6l/Y6/YM+CX7Emm6nb/CiXUrq81tYFv7rULnzGm+z7yn7tFSJdpdsEJuwcZNfI4LC5vHNZ1a070NUrtbPVWiuq0V2u+p+zZ7m3BlTg+hhMDRUcwahKTjFt80dJ805fZkuZqKbV+XRWPtaiiivrj8ZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9f+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK+Cv25v+CnH7EP/AATi8Ix+Kv2t/Hll4cmu0Z7HSk3XWq3uMj9xZwhpmXcNpkKiJSRuda/jl/at/wCD3DXP7VudG/Yh+DdstnGxEGreNrp3eUdi1hYugT1/4/Gz6CgD/QPor/KG8Y/8Hef/AAWR8TXDzaJrPhTw6rHITT9CjdV+n2t7g/mTXjl9/wAHUn/Bce6YtB8XrW2B7ReG9FIH/fdk1AH+u5RX+QQ//B0h/wAF1WOV+OAX6eGfD/8AXTTTP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gX/iKN/4Lr/9Fz/8tnw9/wDKyj/iKN/4Lr/9Fz/8tnw9/wDKygD/AF+qK/yBf+Io3/guv/0XP/y2fD3/AMrKP+Io3/guv/0XP/y2fD3/AMrKAP8AX6or/IF/4ijf+C6//Rc//LZ8Pf8Ayso/4ijf+C6//Rc//LZ8Pf8AysoA/wBfqiv8gYf8HR3/AAXWHX45Z/7lnw//APK2r9v/AMHTX/Bc+EgyfGiKb2fw1oQ/9B08UAf69VFf5KWg/wDB2V/wWt0eVZNQ8faLqoHVbrw9p6g/XyIYj+Rr7i+B/wDweq/t9+EdSgj+Pfw38F+NdMQjzBpwu9GvXHf98ZrqEe3+j0Af6ZdFfzof8E+P+Dnz/gmb+3VqOn+APEOtT/CbxvfssUekeKykNrPM38NvqCE2z5JCospgkdjhYzX9FwIYBlOQehoAWiiigAooooAKKKKAOA+K3xAtPhR8MvEHxOv7K51G38PafcajNbWYVp5I7ZDIwQOyqW2qcAkV/NL8Rf8Ag4E+JOqeIrWL4W+CLHSNHjuYzcPqEz3l3LArAuECeVHGzLkciTHrX9R2oWFlqthPpepRLNb3MbRSxuMq6OMMpHoQcGv5cvB//Bv58SdW8YahJ468bafougJeTiyWzie9vJbVXIjLhvJjjZkwThnxnkdq+U4lWbOVKOWt2d72t5W1e33n6/4XS4OjTxVTiiK5o8rhzc7TTvdKMd2rLdPc/qF0TWdM8R6NaeIdFlFxZ38MdxBKvR4pVDKw9iCDWnXmXwY+Gdr8GPhN4d+E1hqFzqlv4csINPhurzaZpIrdQibtgVeFAAwOgHU816bX1FNycE5qztqvM/J8TGnGtONGXNBN2e11fR26XQUUUVZgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//0P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5Uv8Ag4O/4OJfD/8AwTX06f8AZY/ZWe01z436nah7m4kCz2fhmCZcpLPGcrJdup3Q27DaqkSSgoUSX9Y/+CyH/BRrw/8A8EvP2DfFf7S04huPEsgXR/CtjNyl1rd4reQGXI3Rwqr3EoyCY4mAO4iv8p3/AIJ8/sT/ALSf/Baj9v8AT4aDVrm81bxReXHiHxl4oux55s7NpQ13eS8jfI7yBIkyA8rouVXLKAY37NX7IP8AwUV/4LU/tO6tP8OrXVPiJ4u1OZbvxB4l1m4b7JZrIcCS8vJMrGoAIjiXLlV2xRnbtH9u37FH/BmD+yR8OdLtfEP7c3jTVPiRrhCtLpWiO2kaPGT95DIM3k+D0kElvkHlAa/qn/Yz/Yw/Z5/YH+AOjfs3/sz6DFofh3SEBdgA1ze3LACS6upcAyzykAu57AKoVFVR9UUAfjl4G/4N9v8AgjN8PbWOz0H9n3wzcJGAAdTFxqbnHq15NMx/Emvb7H/gjz/wSh05Qlv+zb8NGA/56+GNPlP/AI/A1fo9RQB+fif8Emf+CWEYwv7NXwrP18HaSf52pqT/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB+f5/4JOf8EsW6/s0/Cv8A8I3SP/kWqFz/AMEiv+CVN0Nsv7NfwwGf7nhPTE/9BtxX6H0UAflb4h/4Ief8EhfE8TQ6l+zp4GiDdfsmlRWh/AwCMj8MV+dv7SP/AAaY/wDBH/436NcR/Dnwxq/wu1eRSY77w7qk8qCTsWt79rqHb6rGsZI6EHmv6ZKKAP8AJT/4Kof8Gxv7cf8AwTm0PUfjF4DdPi38MtPVprnWdGt2iv8AT4V5L3tgWkdI1HLSwvNGoBLmMYr3L/ghR/wcrfGP9grxHo37NX7YepXvjL4JzNHZ29zMWuNS8MqSFWS3Y5eazQfftiSUUZgwQY5P9Th0SRDHIAysMEHkEGv83j/g6O/4IK+Ff2Zhc/8ABRr9jPRU03wPqN2kfjHw/ZR7bfSLu5cLHe2yLxHazyMI5IgAsMrKUGx9sYB/oyeDPGfhL4i+EdM8f+AtSttZ0PWrWK+sL+zkWa3ubadQ8csbqSrI6kFSDgg10tf59v8AwZ5/8FYNZGv3v/BK342am09nPDc6v4AlnbJhkiDTX2nKT/CybrqEcBSs3J3KB/oJUAFFFFABRRRQAV8Q/tift+fA/wDYlg0xPivDqd3e61HNJY22nWwkMogKh8ySNHGuCy5BfODnFfb1fkd/wWA/ZC+In7VvwU8Nx/B3Sv7X8UaBrAaKDzI4SbS7jKTfPKyIMOsTHLDhTXm5vVxNLB1KmEV6iWitfrrp3tsfUcF4PK8VnWGw2cy5cNJtSfMo20dm5PRLmtfy6o0f2Ef+CpPh79t/4xeIPhhp/hh/DaaZpo1Gyee6E81yiSrHLuUIioV8xCFDP35r9YK/nR/4Jv8A/BKX9p79mf4+aL8ffiNrWkabb2cVzDc6VbSPdXE8VxEyFHZVWJdrFXBV35UV/RdXLw/Wx1TCc2YRaqXe6Suumi27fI9bxIwWQ4XN/Z8O1FLD8kfhbklLVNc0r3vZSum1rp2CiiivcPgQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wA0H/g8/wD2wtU+JH7afgr9jTRbo/2J8NNDXVb6FWwG1fWvn+cdD5dpHAUJ5HnPjrz/AEFf8GjH7COl/s1/8E4l/ad8RWap4t+Nd4+ptMy/vYtFsXeCxhz/AHXYS3PB+ZZlzyor+FP/AIOFfHVz8Q/+Cz/7QGvXTmRrbxEmmAk5wul2sFmo/AQgV/rbfsKfDuz+EX7Evwf+FlhGIovDngrQdNCgY/49rGGMk+5K5J7nmgD6qooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAor+cz/gul+0F/wVW/4J/wD7P/jH9uv9mD4i+Er3wL4dudMS48K6r4ZZr2zt72WCyMiX4vCLkm6lVyht4tsbn5js5/MD/gl7+3F/wcsf8FV/gpc/tE/A/wAVfB3QPC1nq1xozvr+n3cdy9zbRxSPsito58riZOWde/pyAf25UV/HP+1f/wAFNv8Ag44/4JV6O3xY/bF+D3w4+LfwxsmH9oa74Ie/tzbBiApneR2kt0JO3zJLExhiBvyQD+0P/BJn/gs7+yn/AMFc/hxe658GWuPD/jHw/FE+v+FdTZTeWXm5AlikXCXNszAqsqAEHAkSNmVSAfrvRRRQAUUV8++Gf2oPgz4x/aT8VfsmeG9UN3428FaRp2t6zaJG2y1ttVaVbYNJ93zGEJcp1CMjHhhQB9BUUUUAFFFFABRXhf7S/wC0j8Hf2RPgV4l/aP8Aj5q8eh+E/Cdm97fXUnLYGAkca9XllcrHFGPmd2Cjk1+WP/BNr4kft0/8FDNa0H/goj8eL+f4VfCm8iuLjwJ8NdO2NNqdhdxNHDqmu3bKXmMiOZba1iEcSfu5TvOCQD9wqKKwfFOhf8JR4Y1Lwz9sutO/tG1mtftdjJ5N1B5yFPMhkwdkiZ3I2DhgDigDeor/ADftF8DfGX4l/wDB0n4c/YV8J/G34k/ET4d/DfxPY6zdHxZ4judT2NodjHql1C4Bji8sXiG2AES8nBz94/6Av7T3wh8cfHX4Ha58Mvhn461X4aeIr5YJdM8S6Mscl1YXVrMk8bGKUGOaFmjCTwv8ssLOhI3ZAB75RX4Jf8E4P+CqHxU8WftQ+J/+CV//AAUd0/T/AAz+0N4JjNxZahp2YtI8Y6WF8xL2wV8FJTFiSSAdg7KF2SRxfvbQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV/ID/wXo/by/4LI/8ABInwrof7QHgL4jeCvGPgTxd4hn0e3tLjwq1ne6XJJHLc20LP9tmW5XyYpFMuIjuT7nzcdb+wz8U/+DlX9uP9lPwp+1x4I+JPwV0nSfGdm19pmn6jpGoGfy1keLFwYkKxnKE/u2k4xzQB/WjRX8Tnxf8A+DhD/gqp/wAEmv2itH+Df/BYv4L+GtV8K687Np/ifwFLPAt1axOFmntvtEssdw0W4ZtpFs5QGUttDKT/AGJfBL4z/DX9or4ReG/jr8HdUi1rwt4s0+DU9MvYshZbe4UMpKnDKwzh0YBkYFWAIIoA9RooooAKKKKACivlr9sGx/bL1P4NT6d+wnfeE9M8dT3Cot54yiuprCC1KPvdI7T5mnD+XsD/ALsDcWDYCn+S3/g1l/4KF/t3ftwftg/H63/bP+IWp+LZtI0mwaHT52SKwsbgXUsUn2e1hVIIeBtJjQbgBnJ5oA/t3ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8Y/aFj/AGhZfg9rMX7Ksnh6Hx86RLpUnipbh9JRjKgladbQidtsW8oqEbnCglVJIAPZ6K/hJ/4Ir/t/f8FNvjr/AMF/PiT+zB+3N8S7jxBH4G0nxNpVxommYtNAS70m9gtxLBaxJGrAfN5csqmYo3zNkmv7tqACiiigAooooAKKKKACiiigAorO1g6uNIuj4fEJv/Jf7MLgsIfO2nZvK5bbuxuxzjpX8An7VX7fX/BaX4Uf8F7/AIB/sY/tT/FDTNN8P614t8I3raL8PllsNGutN1W+SGSGZ5lF5cKdkkTpcSOjAZCjdigD/QMooooAKK86+Ln/AAtr/hWWuf8ACh/7I/4TL7HJ/Y39v+d/Zn2vH7v7T9n/AH3lZ+95fzY6V/Db+xD+39/wVh8Uf8HNGk/sRfttfE9dS03w5N4gsrzQfDafYfDsyJo1xeW7LAFWSUD93IjXJklU8buKAP716KKKACivxp/4Kaf8FQfFH7MPxL8CfsRfsfeHrL4g/tG/FmVo9B0O8maOw0qxVXMuqamY/nFtEEdgilWkWOQhhsOfvf8AZH+C/wAYPgd8JR4e+PvxH1D4peMtSvJdT1XWr2GK0gFxOFBgsbWEBLaziCARRZYglmZizGgD6for/Nl/4LIfCr4w6t/wXF+GH/BND4MfHT4peKtF8cS6D/wkNhr3ii5vINPn1a8la4WCKPykjhisBHNt2EgE84wK/wBJeKNIY1hiGFQAAegFAD6KK/Fz/gqTf/8ABQP9lmWT/goX+xVrj+MtD8G6Wg8Z/CnVFD2WraTZvJNNe6ZMqma11GKN23BdyTRouUZowkgB+0dFfHX7Bn7cnwI/4KK/syeH/wBqb9nq+NzoutoUuLSbaLvTr6IDz7S5RSQk0RIzyVZSroWRlY/YtABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUV4t8fvCfxx8a/Da50H9nbxlY+BPFDyRtBq+o6R/blvGinLo1p9ptN28cBvNG3rg1/C9qv8AwWj/AOC79h/wVkn/AOCSsXiz4df8JSPEJ0GDW5tAljsZA0P2mKdkWZ5EDwlSVAYqTjJxmgD/AECqK/nik+DX/BzoIyYfjJ8D2bsDoeogfnsP8q47/gmN+2L/AMFbrv8A4Ke/EH/gn1/wVDh8LGTQvA48XaHfeGLVorXULc30NoLiGV2DtES8iFJI43V0OVHGQD+k6iiigAooooAKKKKACiiigAooooAKKK+ff2ef2ofgz+1Lp3ivWPgnqh1ez8G+JdR8JalOI2SMappRVblI2PEiIzgCRcqxzgkc0AfQVFFFABRRXz7+zr+1D8Gf2q9B8R+KPghqh1fTvC/iLUvC17cCNkjOo6TIIrlYyeJI1c4WRcq/VSRzQB9BUV/OT/wXc+C3/BcP4r+NPhHdf8EkfE76Jo9hcXX/AAkkVtqFrpzrcM8Jt57o3TD7RaogcGGNXOc7o33Lt/om0lNTi0q2j1uSOa9WJBcPCpSNpQBvKqSSFJyQCSQO5oA0KKKKACiiigAooooAKKK/AD49/wDBQz9oL9r/APbg1v8A4Je/8ExL+y0m78G2yzfEz4oXEK6hB4WEhZRZWFs2IrjUnKlR5jNHEwcFGaOQxgH7/wBFcT8NPBkvw4+HHh/4eT6xqPiF9B02005tV1eYXGoXxtYliNxdShVEk8u3fK4UBnJOBnFdtQAUUV5T8c/htq/xh+EPiD4Z+HvE+qeC9Q1mze3tdd0SRYr/AE+c8xzQlgykowBKsCrrlTwTQB6tRX8937Ef/BT346fC39ti8/4JG/8ABUt9Pi+KyW32/wAFeN7CEWWl+NtMbd5beR923viEfdGn7ppI5EUKyr5v9CNABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFebfGT4SeAvj58JvEnwS+KVgmp+HPFmm3Ok6layDiW2u42jkHIODtY7T1U4I5Fek0UAf4h3ifTfjF/wAEj/8Agpjd2Gkzk+LPgb42Jt5v9Wl4um3G6NiB/wAsruEAlT1jkwRyRX+1z8MviF4b+Lfw28PfFbwbL5+j+J9MtNWsZD/HbXsSzRN+KODX+Ul/wdnfDuz8D/8ABaPxrrtnGIv+Er0PQdXcAYBdbNLMn8fs2T6nJ61/ogf8EJvHVz8RP+CPn7PHiC7kMjweDLHTMnn5dMBs1H4CED8KAP1looooAKKKKACgkAZNFFAH5lfFf/gr3+wl8KzLap4sfxLeRZzb6HbvdZx6TNstz/39r75+FvxF8P8Axe+GugfFPwpv/s3xFp9vqNsJQBIsdygkVXAJAdQcMATggiv4tf2gf+Cef7TWo/tYePfA/wAHvAWr6rpUGt3T2V1FbNHZ/Z7h/OhX7RJshysbqD8/Udq/qj/4JyfDL4zfBf8AZF8MfCn472Kafruhm5gESTx3H+jvM8kQLxMyZVX2YDHhRXyOR5xmGKxlWliqXLCN7NJ2unbd/wBaH7Nx/wAF8OZTkuFxeU4v2labi5RlODlySg5X5IpNJOy26n3HRRRX1x+MhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//0v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AEq/4LGag2p/8FYP2kblzkr8SfE0X4RX8yD/0Gv8Aav8ABWnJo/g3SdJjG1bWyt4QPQIgX+lf4mP/AAVnkMn/AAVQ/aVY/wDRU/GA/LVroV/t3wRiKFIh0VQPyoAlooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD8H/+Dmv/AJQcfHf/AK9dD/8AT1YV8N/8Ga3/ACiT1f8A7KFrP/pJYV9yf8HNX/KDj47/APXrof8A6erCvhv/AIM1v+USer/9lC1n/wBJLCgD+q7X9B0PxVoV74X8T2cOo6bqUElrd2tzGssM8EylJI5EYFWR1JVlIIIODX+UZ4h0/UP+CDf/AAcmjQPhFLLa+EdG8XWUaWvmMEm8LeJkike1cknzBBBclFZ8/vYFkPzAGv8AWJr/ACi/+C9c0f7Zf/Bx5qfwa+EpF/dz694V8FxPAc7r4R20MwyuSDDPI8bk/dMZ9KAP74v+Cvf/AAWc+CP/AASW8GeGrfxJoN946+IPjuWWDw14W02RYZLpoiqtLPMyv5MIeRIwRHJI7thEYK5T8wf2t/8Agur/AMFUv+Cb3hnwv8c/29P2TdI0f4deJr6PT3l0LxZHfX2nXEiNIsM5WF4jKUR2QALG+wr5imvpz/gvF8Cf+CRmm698Lf28P+CmfifVdA1D4Y3hPh/TdHuENx4haGVLkWRtDFJLOiSqrM0bQhA58yVVYGvw+/4L+ftif8FEf25P+CWutfFbWvgRa/B74AjV9Hu7W68Y3rN4w1VpJwtrLBYQDy7OMl8yLcFi0fMbEEUAf1h/Gb9uD4wePP2BtD/a4/4JifDl/jdrHjm0trjw9pst7b6RFFDdxu32m8a7lh+S3ZQksCN5rSHaCo3Ov8Mf/Bvb+3n/AMFKJf2xv2jfj34H+C1/+0l4/wDGqadN4pP/AAklj4efT5Ip7gIc3aOjxnmKOKLCxJGFA27QP7Gv+DciWSX/AIIofAJpDkjR71fwXULoD9BX80n/AAZm/wDJ3H7U/wD1x0z/ANLb2gD+jj/gpL/wXE8E/wDBM/4H/DO++LHw+1DVPjV8U7C2l034c2F7FLLa3siRefDc36I0flw3Egt1liiczuMxoVDFPgX9rf8A4Luf8FR/+Ca2keFPjH/wUC/ZQ0nR/h14qvk08z+H/Fcd/e6fcOjSeRMVieJpzGjui/LHJsZRICCR9J/8F2Pgp/wSI8KePPhT/wAFBv8AgpT4m1bRNb+GV2p8OaTo08bXHiJrSdbtLRrMxSSzRxzYZmjkgVBJiSVVYV+G3/Bwf+11/wAFFf23P+CYV78VfF/wItPg38B11/SLqyl8XXzP4x1OSRmW2mjsYB5dlGd58xLglyvKMQeQD+6r4BfHP4bftNfBTwt+0H8Hr46l4X8Y6bb6rplyUMbPb3Kh13I2GRxnaynlWBB5Feu1+M//AAb0yyS/8EX/ANn5pDkjw66/gt1OB+gr9mKAP4J/+DkL46a/+3b/AMFbP2fv+CL/AIYv5YfCUet6Jc+Ko4GZfMvtamUfvFB5+yacTLH05uGz0BH942i6NpHhzR7Tw9oFtFZWFhDHb21vAgjihhiUKiIowFVVAAAGABiv83XwZe3fjT/g9Ymn8WFi8PjW/jTzeTssNBlS2x7bYo9voMV/pF6xq+l+HtIutf1y4jtLKxhe4uJ5WCpFFEpZ3YngKqgknsKAPiv9v/8A4KLfsq/8E0PghL8df2qNf/syxkdoNN0+2UT6jql0q7vItIMgu2MbmYrHGCC7qOa/GXU/+Cz/APwU6tv2cLn/AIKJah+ylaeHfgDpSxandQ6v4jEfi650F2UNqEFl5CRIBGfNWKVwXXBVihElfz9/sLf29/wcrf8ABeTW/wBpL4+QyX3wU+EEbalpeg3a7rVdPhn8vS7KSPld93Lm7ugwIlEckZ+XaB/S/wD8HRf7VXhf9mX/AIJBePfCdzOseufE57bwjo9uMZkNzIJbpsdQiWcU3zYwHKA/eFAH4Wf8Gh3gDxN+1B+2z+0r/wAFP/iXDv1LVJpLCGV/mU33iO7fUb3YT0MSwwrng7ZcDgmv796/ne/4NbP2X/8Ahmr/AII8eAdU1G3+z6t8Srq98ZXoIwWW/YRWjZ6kNZQW7D/eOK/Xn4Z/tufsp/GP9orxn+yZ8MvG1hrHxF+HsUc3iDRIfME9lHIVGSzII32s6rJ5bv5bMFfaSBQB/Kn/AMHgPgfXvgTpv7O//BT34MyjR/Hvw68XrokOoxL+8cSxyajaLL3eOKSzmG0naRO6nIav6wP2N/2kfDv7YP7KXw7/AGovC0awWfjzw/Yaz9nVt/2aW5iVpYC3doZd8TH1U1+AX/B4D4Xt9f8A+CPF7qs2N2ieMdDvY89dz+dbce+2c/hXt3/Bqt4j1LXv+CIXwptNRDY0u88Q2cLMc7oxq13IPwBkKj6UAf0R0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Hv/AMHrP/KMD4e/9lR07/006tX6xf8ABvHf2L/8EW/gI6TRkQeH5VkIYYQi7nyG9CPevyd/4PWf+UYHw9/7Kjp3/pp1avNv+CPP/Bu9/wAEmv2tv+CYHwm/aA+Ofw7u9U8YeL9He71LUYtd1O2Lyi4ljBWGG5SBQFReBHjigD5p/wCDyb9vn9k34n/BrwL+xJ8M9bsfFPxD0bxRH4i1J9OkW5TSbSO0ubfyJZUJQTXDzo/lBiyrFudRujJ/pE/4N6/gL8Wv2Zf+CO/wZ+FvxztZ9M8QRWF/qctjdKUms7fVb+5vbeKRWAZHWGdC6OA0bEoQNuK/kG/4LT/8EFbv/gi3pmg/8FN/+Cbvi/VIdI8KaxbJe2WsLBfXWiXF03lW91BK8PlzQGVliKTRs6O6Hc4Y7P6t/wDg34/4KmeJf+Ctf7C9144+NVjbQ+O/COpSeHfEn2ZBHbX5MSSxXaRAkRiaKTa6fd81HKgIVUAHzJ4O/wCC+H7RX7ef7Q3jj4G/8EdfgbafFLRfh2Uj1jxl4m11NF0svM8qQmCEI8skc5hk8lt4dwpZo0UZruP+CZH/AAX/AL79rX9tPxH/AME2f2xvhdJ8HPjVoL3cMFjHf/2lZX8+no0tzCriNPLdYVM0ZDSxSxKzLIPlDfB37JnxY/YL/wCCSnxv+JH7Cv8AwRB8B+Lv2mvjH4vv4rnxBbLqNuuiaGNPMscUF1q5hjhihtWndT8sp3sY5JhJha/Jz9m+b9p0/wDB5B4b1L9sCw8PaR8R725efV7PwpJPLpduJ/BzmCOOS4/eO62xjWdvutNvKfIVoA/uw/4KHf8ABRf9mf8A4Jj/ALP1x+0N+03qU1vYNOLLTNOso/Ov9TvmRnS3to8qCxVGJd2SNAMsw4z+Fv7TP/Bcn/grR+y18ArT9t74s/sXQeHvhAxtWu0vfF0Ta5aQ3siR28t1AltvtvNZ1XY8DNG7BZCp6/m1/wAF4fiRZ/Fn/g5Y/ZF/Zs+KEjzeBvDt54TlOnXXz2k17q2sOZWKN8jLMsVtDJkHIQg8cV/b1+0X+z58KP2rfgd4n/Z0+OWmf2v4T8X2L6fqVoJHiZ4nwQVdCro6sAyMpBVgDQB84/8ABNr/AIKK/AX/AIKh/sv6f+1D+z+bq3sZbqbTdS02/VVu9N1G3CNLbzbGZCQkkciMrENG6ngkqP44f+DPVQP2/f2qQOALeEf+VG4r+y3/AIJ9/wDBOf8AZd/4Jk/BW7+A/wCylpV1p2i6jqcusXsl9dPeXNzeTRxxF3kfoBHEiKqhVAXOMlif8qz9lH/gof8Atbf8E7NR/ag8cfsm6MVvvFd1Hod/4qCmX/hHYpr65KSpHtK+bOwMcUsh2RuBwzsmAD+9b9o7/gvr+0R8Lf8AgpHrH/BNL9n39mOT4w+LbAxSw3Gg+LolVbWYBhLfKdPkj08oGUyrcTARhlJbDLn9rPDP7SfirwD+y3qv7SX7dHhzT/g7/wAI7aXeo61ZLrKa3BZWdsCwc3UcEAkd1HEaRk7iFXcSM/l9/wAG5Pw6/YTsP+Ce+i/G79ju7n8Q6943b7T488Qaw4m8QXfiNRuu4b9yWZfKkdjFHuKGNxKC5laR+r/4OSvhJ8WfjV/wRk+Mng74N29xfanb2+m6pcWdqpeW4sNNv7e6ulUAEnZDE0pA5IjI5zigD5x+Av8AwWT/AOCh3/BRDwJ4p/aA/wCCaf7Nml6v8MfDl9PZadqXjXxJ/ZWpeIpLZQ0qWVpDbyxxMCQu6a4MW4437g6p8r/AX/g78+B/xPd/h/4r/Z0+KD/EPTBMNX0LwpZ2+ui1NvIIpDuaa0nwrkK2+3XYxCkk9fb/APg0Z/aT+FfxJ/4JIaN8EtD1C2TxH8L9X1e01qzZ1SdI9QvJr+C4Zc5MTpOY1kIwWidf4TX4vf8ABG3wldfH/wD4OnPjt+0v+zWTffDPw/qniy71TVrQbrGddTeSCFVlHyN9pui08WM70iZhkAmgD9dv+Con/B0Z4e/YOisPC3gD4C+N9Q13V0b7Jf8AjKwm8NaMzxKhmW3kkSSS9aAyKsohVYwWGJWBGflH9pf/AIPCU+EvjPwle/CD4GXvjD4f36Qwah4mnu5rG0v9RWNPtttpMhtnjmFpKxjMjMfMZeFVSrnG/wCD32CJv2aPgVdEDenifVFB7gNaoT/IV/Vt+wh8Ivhj4I/YT+DXw78MaFZWuiaP4U0OeztBCrRxTC2jl80Bgf3pkZpDIfnLsWJ3EmgD5R/4KTf8FkPgd/wTu0rwV4Ofw7q/j/4sfE1oI/CXgHSU8vVL17hhGhnLBvs0ZlYRAlHdpMqiPscp+ZH7UH/Bb3/grP8A8E+PCml/Hz9uj9jqz0v4Y3txDb3174e8Vw6nd6U87bUW5MUUkYYkhVLBInchBKGYCvxw/Zq+Lc37Tn/B59rmsfFpjct4T1nxPoOg20wPlwr4e0u6tYQingDEctwCODIxccnNf3e/tcfs+eDv2r/2YfHv7N3j2zS+0vxpod7pcsb8YeeMiORT/C8cm2RG6q6gjkUAfOXwi/4KC6P+2Z+xPZfthf8ABOjQrf4pS6kVjt9B1LU18PzRXCOq3NtdTNDdLBcQA5KFGV/lKuUdXP5l/wDBLf8A4OCtc/4KIft4+Mv2BPiD8Drr4V+KPA+narc6nJPryaqYbzR7yGzuLVo0s7cBlklb51kYZTABByPwX/4Mh/jD43tfid8df2d7qa4fQJdN0zxBHbsT5NvfQyvbSMF/heaN0Df3hCufuit7/giF/wArXn7Wn/Xx8Q//AFIbagD93P8Agr1/wXM/aF/4JF+IrTWPiJ+zePFPw81y/OnaJ4otfF0Vubq4SESsk1n/AGfNJbvgPtBdgyoSGzwPq/8AaI/4LDeCP2aP2B/h7+3J4q+F/jTxPH8QPCNr4sXSPCenSatHpcE1lBeSnUL4JFBa28InAaebZvCsyodrAfjD/wAHsX/KOn4Yf9lHt/8A02ahX7K/Cq1hvv8Ag3x8N2VyoaOb9nmzRlPIKt4bUEUAfjH+zP8A8HbmkfHj4Q+Kdds/grqfiD4o3OuHTfBPw48JSz6tqmo2iQLLJc3cyW58qKMttLpbsWPCRsFdl9D/AOCff/Bzl4/+Nn7fNh/wT4/b4+CFz8FfFfiG6XT9MeaecSwahMnmW1teWt1BFIv2lSqxTKSGdkGza+9flT/gyK8C+C/+GevjX8S/7JtD4iPiKy0z+0zCpuxZC2EvkCXG8ReYd5QHaWwSMgV86f8ABw9pNj4d/wCDl/8AZG8T6NGtvd3y+A553QAF5YfE10iuxHVgiquT2UDtQB/cz+1d+1R8Ef2KfgB4j/aY/aI1hdE8J+F7fz7qcjfJI7EJFDCg5kmmkZY40HVmHQZI/n6+HX/BZT/grj+1J8G7z9sT9j39jmHVvhHEJ7jS01zxKlp4h1uyt87p7S0SIgZ2naiibew2xGU4r8lv+D2z9o3xZHffA79kPTNRks9BvU1DxTq0Az5c8yOlpZu+OT5Km6wB/fyRkCv7u/hd4B8IfCn4aeHvhh8PraKy0Hw5ptrpmnQQKFiitbSJYolQDgKEUAY7UAf50v8Awbo/H6y/aq/4ORPi5+0np+kT6BD460nxZra6bdMHmtPtt7ayGF2AUFkLbScDJHQdK/0la/z1P+CMXhvQ/CP/AAdj/tJ+HvDdslnY28/jvyoYxhED6pAxCjsMk4A4A4HFf6FdAH5Mf8FVf+CtPgb/AIJZfDQ+O/FHw18a/ECR7Rrvf4f0yRtJskEiwq2o6mw+z2ivIyoud8hLDCEEGvxm/Zp/4OndZ/aO/ZobxH8MfgTq/wAQ/jjqmt6hbaZ8OvBjz6gbTSLVYDHf6neC3c28TPKyBhAd7JwqLlh+1v8AwXEtIL3/AIJC/tFQ3ChlHgbVZADz80cRZT+BANfjj/wZk+GPDen/APBLLxL4rsNPt4dU1Lx9qUV3eJEqzzx21pZ+UkkgG5lj3vsBJC7mxjJyAcX+xP8A8HYnhbxV+0pr37L/APwU6+Go/Z81TSIr121C8uZjFa3FlE07Wt5b3EMc0UrxqRCV3mWQqipl1z5/+1D/AMHUf7XHwnsIv2gPhr+x74nX4ETXUcNj4u8VC80tdUilP7qWNltHgt1mH+qzJMG7HOVHwf8A8Fi/hv4D1/8A4OzvgJoXiLSLPUbDxLdeBpNUtbqFJoLs/bJIMTIwKyAxxIhDAgqoHTiv60/+C82iaXrn/BHP9obT9UhSaGLwhdXCowBAktmSWNgD3V0Vh6EAigD6p/YA/bd+E/8AwUU/ZN8JftcfBlZrfSPE8EnmWV1j7RZXdu7Q3FvLtJBaOVGAYcOu1xwwr8xP2iP+C3nibVf2wdX/AOCfH/BMX4TT/H74p+F0kfxNcNqUWjeH9B8lwkiXF5KrCSWJiEdF2gOdis0gZB+VH/Buj8bfFP7P3/Btd8afjx4VO/VfAU3jnWtOBXeBcafpcNzFle6+YMntjOa8/wD+DI+20PVvhJ+0N49v3N34o1HxBoyX91MS88kAhuZIyzsSSWlkmYk8k8nNAH2xqX/ByB8Zv2K/2qdJ/Ze/4LHfAOX4OQeIQsmn+K9D1QazpRhdgnnMFjG+GMkec0UryxcboRkV/U5deNfB9l4Nk+It3qtpHoEVkdSfUmmQWi2ap5pnMudnlCP59+du3nOK/lt/4PDf2ePCXxP/AOCVifHG+slfXPhj4k066s7wf6yK11WRbK4iz/cleSBmH96ND2r8U/il+3t8Y9C/4M5PAWnTareR6r4o8Rv8MGvmJMsuj29xeziEN2jFnarZn1jUr3oA/fDwB/wXM/bC/wCCgPxB8Xab/wAEev2e4fiN4C8EXTWN3428XayNCsL+7UBvJs4Sm8sykOpaTcEdGlSLcoP8q37Qv7Z/xP8A22f+Dlf9m7xb8cvhnd/CPxx4N8W+DPCmv+HLu6F55N7Y6y83mRTBI98MsdxG0bBcMDlWdCrt/aj/AMG2fw88GfDz/gi18Eo/B0MKnWtPvNWvpolAae9u7ycyNIerOmBFk9FjAHAFfzQ/8FmvDeh6F/wdo/sxappNskFxrOofDy8vXUczTrrEtuHb3EUMafRRQB/bP+3X+3X+zv8A8E6P2d9T/aX/AGl9TlsNCsZY7S3gtY/PvL++mDGK1tosjfNJtYjJVVVWZ2VFZh+Bv7TP/Bbr/gr7+zZ8E4v2y/Gv7EX9k/COKJLm8F74rik1u1tZmVYpru3ht2ksw24b1e3k8onEhXv8Df8AB0r8SPGvi3/gqT+xf+zFoniMeF7NNYsNYiv7q0F/YWt/qOrQWkV3NaSPHFdC1EBYxOwBRmXIDnP7ZfFH/gnJ/wAFkPjL8M/EXwg+IX7amh32geK9Mu9H1K2/4VZYL51nfRNDMmRqQI3RuwyORmgD7j/4Jg/8FOv2ef8Agqx+zfH+0J8AzcWL2lydO1rRb/YL3TL5UVzHJsJV0ZWDRSr8si9lYOi/yB/CYAf8HwGuAf8APzqP/qImv37/AOCGf/BCfXf+CMWvfEjUG+LY+Itj8Q7fS43tF0M6SLaXTGuCkm43t1vytw64wuPU1+Avwn/5XgNc/wCvjUf/AFETQB/oK1538X/ij4T+B/wm8UfGnx7MbfQvCGk3utajKOSlpYQvPMw+iITXolfj/wD8F+td1jw7/wAEbP2hNQ0IuJ5PCstq2zg+TdSxwzfh5Ttu9s0Afzs/8GrF140/b4/bp/ab/wCCtHx9xeeJ9SmtdF0zfmVLKPUneeWCAtyiW1vb2tvFjnyiQepz/dNX8cn/AAZQ2FlH/wAE2fiVqkePtM3xLvIpOOdkel6aU/V2r+gD/grt+09/wxz/AME0PjR+0LbXH2XUNG8M3dvpkucFNT1ECysiPpczxnA5wKAP4MP2PP26/gP4g/4L3fH7/grz+0Hc3Gp+GvBF1qcHg+x06P7XqWtalfH+xdEsLKDI8yebT0mdRkKnlliQoLD9jP2kv+DoP/goH+xf458OeJf2uv2NNR8BfDzxVK/9nNqWpyR6lLChBbEhtxCtwiMGNvIiN2JA+avkH/gzf/4JjeG/Fo8Sf8FL/jHpYvBpF82h+CIblcxR3cSZvdQVWGDJGJFt4JB9wmcfeAI+qf8Ag9r+OfgzT/2Uvg9+zDvSXxLrvi2TxNHGuGkistLs57Ri2OVEsl8oT+8Y2x900Af2Kfs//HP4eftN/A/wn+0N8Jbprzw1400q11jTZXXZIbe7jEiiRcnbIudrrk7WBHavXXRZFKOAysMEHkEGvyf/AGBLHwp/wTQ/4I8/C4ftV6rF4T0/4d+CLC68SXV5vK2EsyCaaNgqs7NHLKYgqqWZgFUEkCv0O+CHxv8AhR+0l8JtB+OnwN1u38SeEvE1qt5pmpWu4RzwsSMgOFdSGBVlZQysCrAEEUAfw2f8Eqfi2P8Agl1/wcq/HH/gmFprJZfDf4p6xcy6XYZ2wafevanV9N8odFH2WZ7TaAC5MWSdgr++ev8ANL/4K9RXXwz/AODuP4aeNtD+a51Txd8Nb10Q4Z/nsrRkP+/HFt+hr/S0oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8034qarpmif8Ho0ep6zcxWltF430vfLM4jRc6HABlmIAySAPev9LKv8wD9rr4EfCf8Aac/4O9dW+Avxz0hNf8JeJ/F+mWmp6e8ssK3EP9iW7bS8LxyL8yg5VgeKAP8ASf8AFn7QvwD8B+H7rxX438b6Do+l2UbTXF3e6lbwQxRoMszO7hQABkkmvg7/AIJl/tDfCT/go98ObT/gpHpfhawsdeuLjxJ4O0fVofMNxJ4btNWcQqxfaQLj7NDO6FflfIGBmvlPxj/wa+f8ERPFnhq88P2nwa/sWa6ieOO/0/W9VS5t3YYEkfmXckZZTyBJG6E/eUjivfP+CGX7HPxM/YH/AOCf2nfssfFS0ktr/wAM+JvE0ds8rxu11p8mqXDWlz+6ZlAuICkoUkMu7DAHIoA/Jr/goX/wcx/tOf8ABMX4q23wu/aq/ZCutK/tZJrjRtSh8aQ3FlqVtC+xnhli0x1DLlTJExEke5SygMpP2x+1b/wW8+I37KX/AAS3+G//AAU38RfBvTdUsPHYtJbnQrfxjCGsoNUy9iYbn7AwvJJYsSSxRxKYfnyWCM1fXv8AwWP/AOCdHwe/4KXfsOeKfgt8T7qz0LUdJgl1rw/4ivCEj0fUbSNmWeSQ/dt2XdHcjp5TMeGVSP8AP8/4N0fH3gP9q39uX4S/sW/t6eOZ9Y8BfChtV1n4aeE7vY+jXXiSWRJdkjnBkCgS3FvHJuVpAUUgO0coB/fX+zz/AMFH/jp4p/Y11L9sj9rj9nvxP8L7UCzm0bw3o8kni7xBqlve7ViYWNnaxTwOzuo8uZFKg7pCgBr8N/hp/wAHif7Pvi749+PfDPxE+GeqeCPBHg7QLy8sjqNwsniXV9agure2h06PT0URxTSGZ9yGeTyxGzswVWx/ZjX+dL/wRv8AhH8MviV/wdfftLXXj7Q7TV28J698Qtd0gXUYkW01KLXo4Y7hFPy+YiTybCQdpbcuGCkAH1Bbf8HlXxN+GXxxs/DP7WH7MOp+CfCWpvHKm6+nj1m3sJGIFwsN1aQR3Xy8hVMKsQcPX9rnw3+PXwi+LHwN0j9pLwNrtrdeCNb0ePXrXVmcRwf2fJF53muXx5YVMlw+ChBDYINfgX/wdX/sk/D79ob/AIJLeMPizq9gj+KfhPNZ6/ot6qjzY0kuIra8hL43eVJbys7IDgyRxsfuiv5wPgf+018TfB//AAZn/EPSLS5vLSQ+MpvBlhco7caZqF9aXV0gIPEUqzXMDDgHew70Af0hJ/wWm/bg/bA0jxJ8Qf8AgkP+zFP8V/h14euXtLfxl4k1uHw9b6zPbnEy6dY3CpNMi4IEjSpz8rIr/LW//wAEf/8Ag4d+E/8AwUz+LOs/spfFbwRefCL4yaGt07aBfXH2mC8WxbbcpDI8UEqXMJDGW2kiDKilgzhX2fJH/BHz9k//AIKoeLv+CZHwX8T/ALOH7XWieD/Bd94chm07RG+G9jqDWG53M0DXTX8bTuk3mBpWRWdskgEmtD4F/wDBtD8bvh3/AMFQNC/4Kj/FH9pG28U+LbPxD/b+rWlp4NTSY9QeSMwzxgxak6Q+bGzBmETckkgk0AfrR/wUp/4K8fCH/gnv4h8KfA3QvDep/FH41fEJ0Twr4C0IhLy9EkhjE087K6W0G5WUSMrsxVtqFUkZPyO/ar/4OFP2/P8Agmj8QfCV3/wUs/ZUt/CngLxvNKllf+GvFNvrF3b/AGcI00bBY1ilnjEinY7W6yDJRm2tj8/P+CbfxIs/2jv+Dvr49+Mfi1I93f8Ag+38VaP4aW7G82z6LPb6WghDfcBtBcMNuMh2P8TGv6+P+Cgv/BOP9ln/AIKb/Bi0+Bf7V2k3Oo6RpupR6tYzWN09ndWt3GjxB45E6gxyOrK4ZSDnG4KQAflH/wAFnP8AgpL+2F4f/wCCaUX7SH/BLXwg3ifwn4z8LS67e/EZL+2tR4c0mREPmxWc0iXMl2yO20qp8hlJKs4wPxr/AODXj9rX9v74cfsVWvw1+Cn7M158UfA+reP7yTU/HC+LdP0xbJ7pbRLndZXKNcTG3QCUlW/eZ2rzX9D3/BUL4AfCz9lf/ggn8Y/2dvgjp39k+FPCHw5v9O021MjTMkMcZ+9I5LOzElmZiSzEk18Cf8Gb/wDyiNvv+x+1r/0nsqAPq/8Abw/4LoSfAz9tzRf+CY37EvwwuPjZ8d9WVHudNOoxaPpmmq9u13ie6lV90i2y+e6hVRY2H7zf8lfJHiX/AIOIP2kv2IP20PCn7JP/AAVx+Bdh8NdO8aLDLYeK/DmtHVbGKCdzEszRmLLxpKNk+JEliHz+WwK7pP25rj/gkl/wTM/4KwL+39dx+LfiB+1N48tFtNG+G/hVo9QknuLq1WwF0LVYg9u08K+XmSch8u8ULsDj+Z//AIOnPiT/AMFC/jBqvwL+K37cXw08PfCSx1GHxEvhXw9p2pvq2t28Mbae1wdUuFC22474fJSFQVPmCQA7aAP7Dv8Ag4g/bA/4KG/sq/sZ+Ib/APYb8AS3dncaRczeIvH41G1g/wCEZswyxube1eVbiW5dXJSVFIh+8Azfd/Ev/g17/ay/b7+Hv7EugfCn4OfsyXfxH8Aan45vP7R8dr4t0/TUshdvbrdM1hcI1xL9mT94drZl6LzX9Jf/AAXlYt/wRu/aEY9T4QuT/wCPJX5tf8Gev/KH2L/sddb/APQbegDzD/gqf/wdSad+wh8ST8E/hf8AAjxXqOtCeVE1TxpbT+G9NuoreZoZJrBJImnvIi6MglxEmeQWAwf6zfFPijw54H8Maj408Y30GmaRpFrNe315cuIoLe2t0MkksjtgKiIpZmJwAM1/AB/wfEWkCePf2aL5VHmSWnimNmxyVSTTCB+BY/nX7T/8Hcnx38Z/Bf8A4I/6p4d8GzSW3/Cw/FGleF76WLIYWUiT30q7h91ZPsYjfsyuVPDUAaXgb/gt7+2d+3rrfifVP+CQH7N3/Cyvh74UvJdOk8a+LNci8PWWoXkShvKs7aVRK+VIYMzgqrL5qxFgDof8E7P+DizwZ+0v+1de/wDBPj9tf4bX3wF+Ntpdvp8GmX9yLuwvbyMbvISYxxNFNIhDwKyvHMuDHKxZFb6D/wCDarQ/CWif8ES/gZ/wh8SJFd2Gp3NyyjBku5NSu/PZj3IkBXnoFA6ACv5Yf+DzP4TQ/AX9tr4G/tn/AArMmheKvEum3SSalaN5cv2/wxPbSW1wCORNGt1GofrtjQfw0Af0e/8ABYv/AIOEvC3/AASrvbrwNpvwb8Y+MddWWK0h1i8spdJ8KNdTwLcLFHqkkbi5lWNgzRW8bAYZS6Mpx8aa3/wc9/Fb4lfAfwrqf7CP7O2v/HH4gv4es9X8a/8ACP295PoHhq6uYBM1o08EE8k80YPzp+7CdN7OGRcD/g7K8WTfFP8A4Ib/AAz+JmrW/wBnutZ8W+GNVaJhgxS3el3zsuOxHmEV+1n/AAQe8C+C/Af/AASF+ANt4J0m00lNU8Iadqd4LSFYftF7dxK888m0DfLIxy7tlj3NAHzd/wAEMv8Agu94F/4LEeH/ABX4W1rwp/wgfxD8ErDcX2lJdfbLa6sbhii3NvIyRuNki7JY3U7CyEO275f6Aa/z3/8Ag3U0ix8Hf8HL/wC174I8PxrbaZYWvj22hgQBUSO28U2KRgAcAKvA9BX+hBQB+Rn/AAXO/br1T/gnh/wTM+Ivx+8HXItvFlzbx6D4bf8AiTVNUbyY5V7breMyXIB4PlY5zX59/wDBpX+zfZ/CL/glBpvxy1RTN4j+MWvap4i1C7m+a5kitp3sbdHkPzMuLd5lyTzOx6sa+Of+D2bXNYtf2B/hT4cty4sLzx8J58fdMlvp92sYPviRyPpX7vf8ELLCy03/AII/fs7W+n48tvBWnSnAx88ql3/8fY5oA/Vi6urWxtZL6+kWGGFS8kjkKqKoySSeAAOST0r+djUv+C9d5+09+0rqv7JH/BIX4XS/HvXPD3Ou+LLvUBo3hHS13Mu43hime4DMjKnloolwWhaVQTX50/8AB4d/wUr8a/s9/ALwt+wT8HdRk07VvivBcX3iW4t32TLoFuwiW2BHIW9m3q5BGY4HjOVkIrxD/gl38a/2hP2W/wDgmtoP7Iv/AAR5/Z38V+N/i94qtRqXin4ieI9JPh/wxZ6vfrl3W41HyTfGwQiGKLCRkIJPn3sjgH7Mf8Eov+C13xJ/bb/bS+Lv/BPH9pb4e6d4M+JXwmW9mubnQNRfUdLuk067jsrlFaSNGR0lmj2kk71JyEKkH+huvwA/4Ia/8EVLj/gl/oXi/wCNPx68UDx78cfifL5/iXWo2ke3hR5DO8ELygSTNJOzSz3Eiq0rbflULlv1X0T9tz9lPxH+1frH7DWi+NrCf4saBpser3/hweYLmGzlWN1csUERbZLG5jVzIEcMVCnNAH82n/B4Z8EXf9ij4eftseApG0vxx8IPGdk9lqtv8lxBa6gDnY4+YMl3FayJzhSDjk1+/v8AwS+/bHh/b9/YE+F/7WjJFFf+LNHRtUig/wBXFqdo7W16iDqFFzFJtB524r88/wDg6K8MW/iX/gh38Z3lwJNNOgXsRboGj1myB/EozAe5r5O/4M4/Eepa5/wSKu9Mvgwi0fx5rVnb56GNoLO4OPbfM/45oA/qzooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/Le/wCDzjTksv8AgrF4buVGDefDfSJj7kX+pR/+yV/aP/wbN6g2p/8ABDv4D3LnJWz1qL8ItZvkH/oNfxs/8HqUYT/gqh4EYfx/CzSj/wCVbVx/Sv7B/wDg13kMn/BCv4GMey+JR+Wv6kKAP35ooooAKKKKACiiigDnfE/jDwl4J0xta8Z6paaRZr96e9nS3iH1Zyo/WvHfhp+1h+zh8ZfHd38NPhP4y03xHrVjatezQadL9oVYEdI2fzUBiIDOowHJ56V+TH/Bfz4bf29+zx4Q+KFvHvl8O621o5H8MGoxHcfp5kEY+pr8sP8AgjVovxc8Mftm+HPGWleGtWuPDmo215p+oahDZzPaxRTQsyM8oXYq+ckfJbFfJY7iKtQzWGAVJcrcddW7PrbpZ+ux+y5D4Z4HH8JV+Ip4tqrCNS0LRS5oXfK27t8ys0lZ3dvX+zqiiivrT8aCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5YP+Dpv9vL9knwh/wAExPiv+yDN4/0S6+KXiKXQ7GDwta3sVxqkBW/s79nubaNmkt0+yxtIrzKitlAM71z+UP8AwbA/8Fkf+Cbv7D//AAT/ANV/Z5/at+JUHgzxXJ4v1LWI7W60++mjezuLe0jRxPBbyw5LRONhcNxnGDX93Gv/AAf+EnivVZdd8UeFtI1K+m2+ZcXVjDNK+0BRud0LHAAAyeAMVjD9n34CjkeCNA/8Ftt/8boA/l0/bi/4Ok/hH4i8MX/wP/4I9eHNe+OfxX1iI21hfafol42naa8vyiYwyRLcXMik/u4xCIiwyzkDa3if/BvH/wAG+nxw+APxwm/4KZf8FJlY/E27ku7zQ9Buplu7q0u9R3faNS1CVWZGu5FkcRxbmMe8u5EuFj/s+0Xw/oHhu0+weHbG3sIP+edtEsSfkoArXoA/zqP+DqzxD8QPgF/wWY/Z6/ar+L/h248TfCrw3YaHeWdljbaXj6Tqst1qNluOUE8kZi3ZHKPGDkKa9R/4Lu/8Frfhp/wVF/4Jl+Lfh/8AsNfDnxd4i8E6Le6NqPjHxrqVkNP0vRMXUQt7UZZzPcyzyIjKpARTvBdclf7zviF8Mfht8XPDb+Dfiv4e0zxPpErB3sdWtIr22ZlyATFMroSATg470zTPhZ8MdF8Dv8MdG8OaXaeGpImgbSYbOKOxaJxhkMCqIyrDgrtwaAP5a/8Ag1a/b7uvj1+xp4D/AGPfAvw+1tNI+FOgalF4m8Y3vlw6WurT6i0tlYWYBZrh5LWZ5pmPl+RsVSreYrV/Nf8A8EWf+Civgb/giT+31+0Z8M/2s/B/ia613xBM2j2Ol6PZCe9k1WwvJjDb+U7xnFyJv3bruB+UgEMDX+nn4H8BeBfhl4ZtvBXw20Ww8PaNZgi3sNMto7S2iDHJ2RRKqLknJwBzWPffCH4Tan49t/irqXhfSLjxRaJ5cGsS2UL38SYxtS4KGVRjjAYDFAH+cP8A8HBnxh/aB+G//BVf9lf9vb9sj4aXOneFLbw74V11/Cn2j7Xb21xp9897qWlG4KRRyXUZdRKTGoIZAQyDNfUn/BfD/gtD8Of+Cov/AATV8ReCf2IPh14t1/wFoGq6PqPi7xxqdl/Z+l6RJ5ypb2i7mZp7iWaVFcAgIvzDepyv97vxE+F3wy+L/hxvB/xZ8OaX4o0h3EjWOr2kV7bF1BAYxTK6ZAJAOM80ll8LPhjp3gV/hfp/hzS4PDMkLW76RHZxLYtC/wB5DbhRGVbuu3BoA/mI/wCDWr9vu7/aI/Y28Cfsn+B/h7rcGg/Cfwxd2viLxlfeXDpp1t7/AHWmn2QBZrhntJZJ5n+TyNqKVPmq1f1Z1yvgrwL4J+G3hm18F/DrR7HQNGsgVt7DTbeO1toQSSQkUSqigkk8Ac11VAH+d3/wUm+Ht5+wx/wds/B79pXVQ9r4b+KmueHNRiu2XEMZvEXQ71d/TKFfOkHVVlU9CK/ug/bk8B+OPin+xR8Yfhj8MUaXxL4j8EeINL0lFxua+vLCeKADJAyZGXqRX53f8F2f+CT1r/wVV/ZKj8M+BrpNI+KfgK4k1vwXqbN5YF5tHmWkknVIroIgLggxypHIchCrdz/wSH/4KPz/ALa/wZf4V/tAWzeEv2hvhqiaV8QvCV/H9lvoLyHCC+jhOC1rdjbKjpmNWfYCQFZgD+IH/g1//wCCsP7G3/BKuT46+AP24L298HXviJ9Jnspl027u5pbjSftcc1lJFBE7xSq04KeYqpneHZSBnwz/AIOTP2rv2qP23viN8Ivj58a/DeofDP4SeJbbU2+HegatGRqP9lxyW6z6texKSFmvSyFIQxKQxJjcHEkn+nVq37JP7Kmv/Ej/AIXJrvwy8J3vi8SLL/bk+i2cmpeYhyrfaWiM24EZB35Brofi1+zv+z/8fRpY+O3gXw941/sOZrnTv7e0y21L7HM4AaSD7RHJ5bkAAsmCQKAPyG/YC/bl8TeNvg/rHxv+HfgTVtJ/ZP8Ah74e0rw38PxDoV9feK/EzWOy3fUbewtg8yackYSKFPs7SOA0zNGiMot/8EkPjV/wS6/bk+Lvxh/b1/YJ8AahpPiXWL+30XxR4r1K1e0/tafy0nKQRtcShAoETz4ihLsUZg55H1R/wV4/aUh/Yx/4JhfGf476XKtjd6J4XubLSWT5BFqGogWNkVA7LcTxnA7DtXw3/wAG23wE8O/sb/8ABF74eaz42nttGn8WWl34+1u5upFghjg1Ql7eeV3ICILCK3y7EAbSc4FAHxF/webfF3TvBf8AwTA8M/C0Sp/aHjTxzYIsJPzG10+2ubiVwPRZPIU/74r9iv8Aght+zHrf7IX/AASf+CXwS8U2xtNZh0EatqMDgiSG71qaTUZYnB53xNceWw7FcDgV+Nd78Cz/AMHDn/BTrw5+0z4osLofskfs7vJB4Xnu4Gii8b680yvcz2wcfvNODwRI8nKyJCqLzLJ5f9edABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8G3/B4z+3p+yT8Xv2VvA37J3wf8f6H4t8a6X48GrarYaLexX7adHptle2kqXTQM6wy+dcqvlORJ8rfL8pr6i/4Iof8F+f+CS/7OP8AwTM+E/7Onx1+LEfhnxh4O0aS21SxudI1NxHJ9olkASaG0khkyrAgI5PbFf1qX/wL+CWqX02p6n4O0O5ubl2llll0+3d5Hc5ZmYoSSScknkmqo/Z++AykMPBGgAj/AKhtv/8AG6AP4Lf+C83/AAXZ8B/8FUvg8v8AwTU/4JZ+GvEXxMTxTqNjca3q1ppN0v2qKzlSe3trO1ZBdMTcJG8kk0MYXywFDbiy/s7/AMEb/wDglD+0t/wTm/4IyfFP4e3Kiy+O3xP0fW9Yhs4JFc6ZqEunNb6ZaeYpCmWJwryENtWSRlDEKGP9PGieG/D3hm2Nl4csLbT4T1jtoliU49lAFbVAH+YT/wAG2X/BYz9kv/gkz4d+L/wW/a+8Na/p3ijxDqlpc21zpmnm6vbiayV4Dps0LNG8cscjM0W75S0kgcoQu7zH4lf8FEPEHwb/AODmzS/+CkP7Vfwm8UeAbW7lsr1PCBijuteGn3nh8aVZP5RaJfPmUxyvDuDRMzRfM6c/6czfs+fAR/iMfjE/gjQD4uJB/tw6bbf2llcY/wBJ8vzeMDHzVua78JPhT4p8a6Z8SfE3hjSdR8RaIpXTtVurKGa9tFbkiGd0MkYJ67GGaAP4Kf8Ag5y/Ym/a2/aW+E/wc/4LIeDvAer+E/EujeHYLLxf4at3+06j4btoZ5r+xu5HiVW3Qmd1um2gwNszgBivsf7NX/B6f8N3/Z/0zw5+0D8IvEev/GGG2jtFTw4bYaVq999xH3SSefbGZtuUjguNrEhcjAr+7KSOOaNoZlDo4IZSMgg9QRXzp4U/Y6/ZF8CfEB/iz4H+FfhDRvFUjb21mx0Oyt9QZh3NxHCspPJ53UAfkr/wT08feJv2Sv2ZfHX/AAUi/wCCvPiXSfhf4x+OviCLXLyy1e6+xw6JpsNqIdJ0ZI5iGNxFbxSSGFQZizsHUyK9fx2f8G0/xl/YV8V/tQftJ/A79tXW9D0rwh8btDaytbbxLcx2Nrfh75m8hZpWRVucTK8IDiTeu6P5lGP9OnxN4P8ACXjWwXSfGWl2mr2qSCVYb2BJ4xIAQGCuCAwBIzjOCa4q2+A/wOs7iO7tPBmhRSxMHR0063VlZTkEEJkEHkGgD/Ml+Bv7Vfib/g1//wCCxXjj9nnQ/FMfxI+DF5ew23iCxsLiOe4+wy/PBK6KQkWq6eHKSxtsEg3KQqyIyf3H/tZ/8FXvh5r3/BKz4rftv/8ABNLX9K+LGs+FNCS5tbfS2F5Lp8120a+be2eRNCbWJ3upIZ0RtkTZXGa/VjWPgx8HvEWpza14g8J6NfXlw26We4sIJZXbplmZCScepr+WD/g6+/ac+L37EP7Bnh/4T/sraCfCug/FnVrnSvFWv6Jbra/ZrKGJG+x74lURyX4Zl3k5MUMichjgA/ld/Yh/b+/4ID+EPglZRft9/s9+OPG3xYvru/vfEniXRtSaGHU5r6d5W/c2+p6ZGsO0qv2cwlBjOWJJr+qr/gmd/wAHEv8AwQS8PXWh/sl/s2eFtU+A2l6rdrDaJq+j21jYTXk52qbi5s7q8O9zhTNcsAONzgCvQP2Sv+Chv/Brv8SP2fvC3hLRP+FceG7DQtNgsItH8caJbW2oWqwoAUmkvIGSeQ9XlSaUSOSd7MTX51/8FLvDf/BHj/gptotj+wR/wSA+E3hLxd8afE+p6c0njHwV4eXS9L8J6bHcI91fahf20EEcsbQo8IizICX4xII1cA8m/wCD0T9rf9nD4meFvhb+zT8N/GOma/418I+INUude0zTrhbmXSwII4wl15ZIilZm4jYh/lOQMV/Wj/wSP/bZ/Zp/bM/Yo+H998BPF+l6/qfhvwpoNr4h0q0uFe+0e8NqIzDdwcSREyQzLGzqFl8tmQsozX2zbfs/fBn7Hbxa34Z0rVrqGGKKS9vrGCe5nMShN8sjJlnIGST1Ndr4U+H3gLwJ5/8AwhGh6fo32rZ532G2jt/M2Z27vLVd23ccZ6ZPrQB/njf8F1v2Yv2g/wDgkd/wWV8L/wDBaL4HaHea14B1nXbPXdRmgyIrXUiot9R0+4kVW8lNQgLmOVxhjM6jJTB/o9+NH/BzF/wTC0n9ivU/2gvgx8QrTxB4zv8ASXGheDUSQa4+szxfuLWe2ALRBJmCyy5MWAxRn+UN/QxrOi6P4j0m40HxDaQ39jeRtFPb3EayxSxsMFXRgVZSOoIINfOPw5/Yf/Ys+D/i4fED4SfCDwT4W15WLjUtI8P2FjdhiME+dDCkmccZ3dKAP56/+DU3/glR8Tv2CP2WfEnx/wD2jNJl0Lx98XJbSVdKu02XenaNYiQ2yTKeY5p3leWSM4ZV8sOA4ZV/AS1/aS0v/ghv/wAHQfxf+NX7XGj6la+C/iHd69di9s4fPf8AsrxNcC+t7yFMjzo0njEUoQ7lKyAAumw/6WFeJ/GD9mj9nH9oU6efj78P/Dfjg6S5ksf+Eg0q11P7M5IJaL7THJsOQDlcdBQB/nj/APByn/wVatf+Cnn7Hvg7Xf2avAGtWvwP8P8AjaOJfHOuw/Yf7W102V2FtrC2LF3gih81ppW5EhRCqfx/t7+zb/wWB/ZYu/8AggNJonxUTV/h5c+Fvg9F4SsZ/FVoNNtPE2r22jPZtBoUkjk6i3mRoziFT5azIWx82P6gfGf7OX7PXxH8N6J4N+IXgPw7r2j+GrmO90ix1HS7a6ttPuYVZY5raKWNkhkRWYK8YVgGIBwTXdeJfAXgbxnZwad4w0Ww1a3tjuhivLaOdIzjGVV1IXjjjtQB/Bt/wZeftZfs4fDn4bfFL9m74jeNNI8PeNPEniTT7zRdL1O7jtJ9TSS3MOy0ErL58iunMce5wCDjBzXxZ/wcF/t2/so/Ej/gvV+z78b/AIU+N9L8WeEvhhB4TGv6votwt/ZwSWOuXF9OiTQF0laKB0ZvLLYY7fvAgf6Pek/BT4NaBqMWsaF4S0Wyu7dt0U8FhBHIjeqsqAg/Q1n/APDP3wF/6EjQP/Bbb/8AxugD+Oz/AIOof2N2/wCClP7Ivw6/4KJ/sJalZ/FHTfh4NRtdSbwxMmqLdaRdMhkuIXt2cP8AYZ4GWZFyyiR2YL5bVvf8Euv+Ds/9iuP9jnw/4D/b21HV/D/xL8G6bBpksttp0+pR+IfsqLHFPC1ujCO4mAHmpN5aeZkq+Dgf2c+H/Dnh7wnpceh+FrC30yyiLFLe0iWGJSxJOEQBRkkk8cmvCtL/AGOf2RdD+Ip+L+i/CvwhZ+LSwc63BodlHqO5TuB+0rCJcg8g7utAH+a3/wAEyP8Agoxonws/4OLfid+1n46+HPjNIviHfeKoF8L6bpUmoeIrSTUpxcQxSWUeJDKDGqSKudjN1Kgmv9Rvw/q48QaBY68La4shfW8Vx9nu08q4i81Q2yVOdrrnDLnggiuD8D/Az4J/DHxRr3jj4beDtD8Pa14puWvNa1DTNPgtLrUblzuaW6liRXnkY8l5CzE85r1OgD8Nv+Dh39qT4AfAP/glj8X/AAH8VvFmmaP4h8d+FtQ0nw9pE9yi3+p3M4WEi2t8+bKsZlUyuqlY1OXIFfjh/wAGc/7YP7MegfsH6/8Asu+KvHOiaN8QY/GerarDoOoXsVrfXVg1hbStcW8UjK00caW87SmPd5Sxsz7VwT/ZN4p+HXw+8cyQzeNtC07WHtwVia+tY7gxhsZCmRWxnAzj0rF0r4LfBzQb5dT0Pwlo1lcqroJYLCCNwsilHAZUBwykqRnkEg8GgD/N7/4Kpft8fsjeNf8Ag5w+DH7TPgXx1peu/D3wHf8Ag621nxFpswvNOi+yXjT3EiTw70mjhjmBd4i4yGAyQRX9VH/Bdn/goh+w2v8AwSE+J1rpHxX8LaxcfE/wpfWfhOHS9Ut7+XWHeb7IzWiwO5ljimDJLIuUjZGDkFSK/cv/AIZ++Av/AEJGgf8Agtt//jdat78GvhBqdjaaXqXhTR7i2sFZLWGSxheOBXO5hGpQhQWOSBjJ5oA/jL/4NMPjH+yl8aP+CYvjv/gnT8QvFenQeMPE+ueIYrnw1LdJBqV5o+p6fbxyTW0b8yqEEoYoG8vYS4AwT+WX/BLb41+PP+DZb/gqx45/ZU/b2tb7S/hh8QUWwHiFYHazmSzmZtN1iIIH82DZLJHOkeZITKQw3RFD/pE+HfhN8K/CGprrXhLwzpWl3iqVE9pZQwShW6gMiA4PcZql8Vfgn8Gvjt4dHhD43+EtF8ZaSH8wWWuWEGo24f8AveXcI6Z98UAfx6/8HAv/AAUe+C//AAUt/Z28Of8ABLv/AIJg6rD8bfiJ8U9b065u4fDZNzbWGmWD/aN89wAIo2MyxFw7AQxq7ylMLu+v/wBtf/ghZrup/wDBvPov/BNn4KSxat44+GVrbeJLAxrtTVdet2muL5I9+Cpujc3KQbiMFowxC5x/Rj8Hv2cP2ef2eLCfSvgB4D8O+BrW62+dD4f0u20yOTZnbuW2jjDYycZHGa9noA/zrf8Ag30/4OFPhD/wTt+Ct/8A8E6f+ClcGseDbfwRqV6dF1WXT7i4ewWaUyXGnXtpFG11G8Vw0siMI3++yME2Lu/Pz/gp9/wVN+Ff7R3/AAXm+B/7fnw58LeJI/APgy68JT6c17YPb3viDTtI1aW4lu7G3cBmjmYywwZJLNGd21sov+mf8Qf2Rf2UPi34xt/iJ8Vfhh4S8TeILQhoNT1bRbO9vIiBgFJponkUgcDDDiurHwA+BC/Ey0+NK+CdBHjKwsU0u217+zbf+04bGMkrbR3Xl+csKlmIjDhBk4HJoA/jN/4OYf2PPil/wU+/Yy+GP/BS/wDZZ8F+LLXUvAY1G31Lw3q+ky6frx0SaXKXos2zMohkh80LgsYJ/NwoRhXz5+w1/wAHoWj+Af2f9N+H/wC3J8OdZ8T+NNCtFtE13w9NBs1XyVCxy3UVzJGYZmx++eNpFZssqLnaP9BCvmmX9i/9juf4gj4tz/Cfwa/itW3jWm0KyOoBs7s/afJ83Oec7utAH5L/APBJDxf+0x8YY/ix/wAFdf8AgoBaj4W6f8RbOxt/DPhrVblre38N+DdBFxMtxdPceUqNcvPLPLLIiZRRIAkbhR/JF8MP2+v2SbH/AIO7NS/bF1Hxvplv8LrzWtR01PE8kwXTNzaA+mJMZz8n2d7oBRPny9rCTds+av8ATO1LTdO1nT59J1e3ju7W5RopoZkDxyIwwysrAggjggjBry//AIZ++Av/AEJGgf8Agtt//jdAHe+EvFvhXx94W03xz4F1O01rRNZtYr2w1CwmS5tbq2nUPFNDLGWSSORCGR1JVlIIJFfM37fX7PEv7Wn7EnxX/Zps2CXfjbwrqmlWbkgBLueBxbsc8YWbYT7Cvq6wsLHS7GHTNMhjtra2jWKKKJQiRogwqqowAoAwABgCrdAH8Of/AAZM/Eaey+C/x+/Zq19HstW8MeJdO1eWynUxzRtfwSWsoKtggo9iFcYypIB6175/weifFbx74U/4J2+B/hX4ZsLttH8W+MYpNYv4o2a3ih06CSSG3lYDapmmdJEz1MBx0rZ/bD/Zw+IH/BFT/gqfP/wWU+AOi3etfAr4n+Zp/wAY9H06AzzaJ9rkSSTV44owWaHz0W5kYKxR/NQkLOu3+qfwf4v+D/7SHwosPGngy90zxn4L8VWaXFrcwmO9sL61lGQR95HU9wRwRgjIoA/m4/YT/wCCsv8AwSn/AOCbH/BG74JaJefE/Q9b1fTfBemzS+FPDV1DqWv3Ot38YuLu3FjC/mRStezSqxnESq2d7DBr47/YM/4Jf/tYf8FYP+CiH/D5n/gq/wCGpfB/hjTJ7eb4f/Dy/DC4W2sm32BuonAaO2gYmYpIqvdXDM7IkJ2yf1o+Af2QP2S/hT4qPjr4XfC7wj4b1tmLnUNK0Szs7osRgnzYYkfJHGd3SvoqgD8WP+CyX/BQ3/gnt+yb8Eb/AODP/BRTwt4l8R+CfHtoLCe2sNEu59PvfM3uLdb8GC2S5HkmRUW5SZAocY4av00/Zl+F3wo+C37Pvg/4Y/A3wy3gzwlpWl26aZobgiSxhkXzPKky8hMqlj5hMjkvuJZicn+V3/gvch/bZ/4LDfsXf8EurP8A0rSo9Ufx34ntR8yS2EUjNhuylbWwvQM/89R6jP8AQf8A8FFP+ChPww/YB+A0vj/VI38S+NdeDWPgrwjpqm51TxFq8oxBb21vFmV0DMrTSIpEcfPLFVYA/i9+JXgC5/4KAf8AB5dHpnhZBeaH8KtZ0jU764T5kgTwjY280m/HT/iZBbf/AHmANf6JFfz8f8EGv+CU3i79hz4e+K/2q/2qpBqX7QnxyupNd8X3B2sNOF3K919hQrxv82RpLllO1pcKNyxIx/oHoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPi78aPhB+z/AOA7z4pfHXxTpPg3w1p+wXOqa1eRWNnEZCFRWlmZEDOxCqucsxAAJOK/yyPiL/wUO/ZXj/4Oh3/b/TxEJ/hRZeOLSWTXLeCWaM2drYx2ElykaIZZIg6FxsRmZOVByAf9WbxF4Y8NeL9MbRfFmnW2qWbsGaC7iWeIsvIJVwRkHpxxXn3/AAz98Bf+hI0D/wAFtv8A/G6APyZl/wCDkn/giRFbm5b496YVAzhdN1Rm/wC+RZk/hjNfmB4e/wCCvmkf8Frv+Cr3wk/Y6/YRvtYtPg58MdQk+IPjLxGqzabLrf8AYmPsVvHESky2Ju5YFlSdUaZn5jCxjf8A1S/8M/fAX/oSNA/8Ftv/APG66bwv8M/hv4Iu5L/wX4f03SJ5k8uSSytIrd2TIO0mNVJGQDg8ZoA/j3/4Kxf8FWfgH/wUQ/a+8E/8ESvgR8V9N8K+AvF2rLafE3xxHdrFBNBCS39h2Nyf3bTXToIpHBMbSOkWWHmofib/AIOtf+CeH7Kf7G3gj4NftffsoarpXwu8eeFWsvD9hoVjOLS91Gx0gJ9lvrRVPmvcac3lLNNyxSSMu4ZEDf3jp8DvgrFqA1aPwfoi3SyecJhp8AkEgOd27ZndnnOc5ro/FXw/8B+OxAvjfRLDWRa7vJF9bR3Hl78btvmK23OBnHXA9KAPwg/4IZf8F0/gZ/wU++Bnh3wH8Rdf0/Rfjzp9s1trXh6V1gl1KS0Tc99YxnAkilQGWSOPLQMHUjYqu38kv7Cf7dHwN/YE/wCDor9ob4mftGakND8J+JfGHj3w1c6tIrNBYSXesmaGWfaCViMlusbPjCbwzYUEj/Sm8O/CT4VeENTXWvCfhjSdLvEUqs9pZQwShW4IDIgOD35r/Pk/4Iuj4U/Er/g6J/au8N+ModM17QvFVz8RYILW+SK6tNQH9vwThRHIGSUGOJpAMH5V3dBmgD9YP+Dhb/gqb+z7+0f+xvN/wTk/4J8+JNN+N3xV+Nt5Y6Xb6d4Kuk1r7LYQzpdTSyS2jSRKz+SsQRnBCO8jAIhNfVFj/wAEMdS07/g3ivP+CUFtqUJ8cX2jDV5b5ipgPicXaaoIg/QQfaEW08zGfI+bGeK/dr4Rfsrfswfs/XU998Bvhv4W8ETXW7zpNA0e001pN5y2428UZbJ5Oete9UAf5cf/AASL/wCC9v7QX/BDF/EH7Af7bvw21fVPC2ialPMmlt/oet6DeTkNMkaTkRS20pzKqZQb3MiSFXwf6S/2OP8AgoB8ff8Agvz+2v4A+Inwe8Ea18Nv2ZPgdqkniTUNS1STy7vxN4ijgkhsrMNATEI7ZpjNLCkky4UGVgXiUf0tfFz9lr9mP4/3Vve/Hj4c+F/G01oVMEmv6Raak0RQ5XYbiJyuDyMdDXrHhfwp4X8D6BbeFPBWm2uj6XZLst7OyhS3t4VyThI4wqqMknAA5NAH+bV/wXT/AGf/ANrX/gjd/wAFl7X/AIK5/s66fNeeFPFGrpr9tqTwu9hDqd1G0OoaXetGVKi6XzGXJQvHMQjF42I/VRP+DvWD9qDwRYfBD9gj4CeK9b+P3i1fsGl6bdm3n0m0u5lx5/mwyNNPFATvYSQW6bFJeRFBI/tE8SeGPDfjPQ7nwx4w0+21XTLxdlxaXkSzwSrnOHjcFWGRnBBryb4Rfsufszfs/Xd3f/AX4deGPBE9/u+0yaBpFpprzbjuPmG3ijLZYAndnJ5oA/Ib4y/sK/Fj4P8A/Bvf8Qf2NrWefxr8RW+Huu3OqT2++5n1bxFqIm1G/MWR5krT3csoiGNzZUYB4r+Yz/g2j/4LK+GP2ZP2WB/wTr8A/DfX/iF8aPEvjuS60DS7LbbabLZ6glpHPNd3mJXtUtFinlmY27qEVeRlin+jDXnfhj4Q/CbwR4n1Hxr4M8L6RpGs6xzf39lZQ291dcg/vpY0V5OQD8xPSgD/ADYbb9sTS/8AglX/AMHSnxc/aP8A+Cg+g6ld6Xf6zr8VhfxQGa4stL1bjS763jLDzY1sgluwRsrGzgAumw+a/wDBz1/wULuP+Clth8FPjd8LPhr4k8NfCHR38Q2PhvxZ4ggFoPEV1cfYGujb22WZIIBDGI5WY+cWcAKYnA/01viL8B/gd8YL2w1L4teDNC8U3OltuspdX063vntmznMTTI5Q55+XFanjj4SfCn4m+F4fBHxJ8MaT4h0W3eOSLT9Tsobu1R4f9WyxSoyAp/CQPl7UAfz4/Gn9q34gf8FhP+CIn7RHxC+C3wt8ReHtD1jwvdweD01ZF/tPxEltapPcTQWkRkITzleCDa8nnlNy9do/An/g2h/4LL+Fv2ff2VdM/wCCcPw6+G+v/ED4zeIPHMs2j6dZ7bbS207UDbC4uru9xK9ulmiTyy/6O42ovI3MU/0P7W1tbG1jsbGNYYYVCRxoAqoqjAAA4AA4AHSuC8K/CH4TeBPEWpeL/BHhfSNG1bWTuv72xsobe4ujnOZpI0V5DkfxE0Af51n/AAefftUfAD40/H34N/CP4QeLNM8T658O7bxEniKDTLlLoadc3c9pGttO0ZZY7hWtZfMhYiSPA3KMjP8AVr/wUf8AhF8Df+C+H/BJTxZ4V/Y58ZaR4vuLgW+r+HbvT7yKWKLXbBEuY7K7wT9mmkil8mWOXY8PnBmAxz+x998DPglqd7NqWpeDtDuLm4dpZZZdPgd3dzlmZihJJJySeSa7Lw14S8KeC9POkeDtMtNJtGcyGGzhSCMuwALbUAGSAMnGeKAP4Lv+Da//AILGfCr9gv4deJP+CWX/AAUs1CX4U6z4K1m7udCuvEaPaW9ut24e50643qPszpO0lxG8mI5Flb5lKrvuf8FJbPQ/+Dlv/gqt8Jf2cP2N3m8SfBP4MQzyeM/HVtHImmRnUpopLyGCVgokd4bWGG32cySs7AGKMyV/bF8Yf2SP2U/2htRt9X+P3wx8J+Obu0ULBP4g0Wz1OSJQcgI1zFIVAPOARXqngP4eeAPhZ4Zt/BXwx0PT/DmjWmfIsNLto7O1i3HJ2RRKqLk8nAoA/jX/AODyD9pn9m/Sv2D/AAx+xt4Z8T6RN49t/GWlX0nhmzuY3vtP022sLvEs9uhLQRkSwiLzAu8OCmQCR+o3/BEL/goh+w1/w6F+FMmtfFnwnpEnw28Iabp/imHUtWtrKbR5oCLQfa455EaFZZgFhdwFlLLsLZFfuh4i+Efwp8X6m2t+LPDGk6peuArXF3ZQzykLwAXdC2AOnPFVLX4KfBuysLnSrPwlosNre7PtEKWECxy+Wdyb1CYbaeRkHB5FAH+cB/wQu/bz/ZL+G3/BxJ+0N+0T8TfHGleF/A/xQ/4TdNB1vWbhdPsZTqWu2+o23mTTlEh823hcr5hXLYX7xAP+mWrBgGU5B5BFeR/8M/fAX/oSNA/8Ftv/APG69dAxwKAP5mv+Ds79mLWv2h/+CQ+ueL/DMElzf/CzXdP8XGKFdzvaxiWyuuMfcihu2nc8YWIntX0L/wAG0Hxcsfi9/wAEV/gxdwzCS68PWuoaBdoOsT6dfTxxqfcweU/0YV+4Hi3wp4b8eeFdT8D+MrKLUtH1m0msb60uF3xXFtcIY5Y3U8FXRirDuDX8iH/BP/RvEf8AwbqftreJf2E/2hLyVP2YPjPrB1X4c+OL3i00zXJVWNtN1GfhIJJYY0TzHKo7QpIoAkl8sA/ML/g8b+Cfxd+HX7c/wW/b2h0STWPA1nodjobyMhe1i1PSdRur77POwUrGLmK4Gzd9/ZJjO0iv6B9J/wCDqL/glV4w+E+l+JvhjqfiTxZ4/wBajjjsvh7pOhXs+vTahIOLVT5QtGbdxvSdlI+7uPy1/RL4m8L+FfHXh658L+MdOtNY0m/TZcWl7ClxbzIecPG4ZGHQ4IIryn4Vfsufsy/ArUJtX+CPw68MeDbu4Vllm0PSLTTpHVjlgzW8SEgnk5PJoA+dv2UPjZ+13cfstan+0J+3r4Mt/CuvXdzc6pZeEPCtrdaxqWl6MVQW1pcCHzpLzUOGeU28SL8wUICrV8Kf8E2f2h/+CWH/AAUM/bj+Ln7X/wCyV8O9Xtviv4YsdP8AD/ijxfrOny6eZ0n3xR20cMs5KzIlkElY20UgREVmIwtfqV+2z+0Pp/7JX7IHxN/aZ1EpjwN4a1LWIkfpLcWsDvBF9ZJQiD3avwf/AODTv4CN8Ff+CUkfxz8dShNc+Lmv6p4uvrm6YCX7JE/2OFpGb+Ai2knDHtMTnmgDpv8Ag7T+LunfDb/gi/4y8IXcqR3Hj3XdB0K2DHDO8V4mosF9/Lsnz7Zr2v8A4NnP2Y9a/Zg/4I7fDDTPFVsbTV/Ggu/F91EwIITV5C9qSDzk2a25IPQkivz3/ab+F0f/AAcc/wDBQTwp8O/Cv2if9kP9n67mu9c8SRKyWXjHxGzBHstOnHE9vCieVJcRHCq021v3kDn+uywsLHS7GHTNMhS2traNYooolCJGiDCqqjAAAGAAMAUAW6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/zBP+D1b/lKb4B/7JVpX/p31iv6/f8Ag1x/5QUfAz/uZv8A1INTr+QL/g9W/wCUpvgH/slWlf8Ap31iv6/f+DXH/lBR8DP+5m/9SDU6AP3+ooooAKKKKACiiigDP1LSdK1m3FprFtFdxKyuEmQSKGU5U4YEZB5B7VPd3dnp1q95fSpBBEMs8jBUUDuScACodWsW1PS7nTUmktzcRPEJYmKyRlwRuUjkMM5BHQ1/nXfFvxv8X/EfizUNF+LviLVNd1DTrqW3mbUruW6YSwsUbmVmPUGvm+IM/WVqD9lzOV+ttrb6Pufp/hv4cy4snXgsWqSpcra5eZvmvsuaK+zrr1R/ouxyRyxrLEwZWAIIOQQe4p9fK37DnxA/4Wh+x/8ADfxq7+bNcaBZRTv13T20YglP/fyNq+qa9+hWVWlCrHaST+9XPzzMMHPCYqthKnxU5Si/WLaf5BRRRWpxhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPMPjZ8YvAH7PPwf8UfHf4rXjaf4Z8HaXdazqtykTztDZ2UbSzOI4wzuVRSdqqWPQDNfhD/xFZ/8ABEL/AKKlqH/hOat/8i1+hf8AwWL/AOUT/wC0j/2TbxN/6QTV+Xn/AAbxfsW/sc/Ez/gjZ8EfHXxI+E3g3xBreoWOqPdahqWg2N3dTsuqXigySyws7kKAoLE4AA6CgDuP+IrP/giF/wBFS1D/AMJzVv8A5Fo/4is/+CIX/RUtQ/8ACc1b/wCRa/Wv/h3l+wF/0Q34ff8AhM6b/wDI9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/0VLUP/AAnNW/8AkWj/AIis/wDgiF/0VLUP/Cc1b/5Fr9a/+HeX7AX/AEQ34ff+Ezpv/wAj0f8ADvL9gL/ohvw+/wDCZ03/AOR6APyU/wCIrP8A4Ihf9FS1D/wnNW/+RaP+IrP/AIIhf9FS1D/wnNW/+Ra/Wv8A4d5fsBf9EN+H3/hM6b/8j0f8O8v2Av8Aohvw+/8ACZ03/wCR6APyU/4is/8AgiF/0VLUP/Cc1b/5Fo/4is/+CIX/AEVLUP8AwnNW/wDkWv1r/wCHeX7AX/RDfh9/4TOm/wDyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf8ARUtQ/wDCc1b/AORaP+IrP/giF/0VLUP/AAnNW/8AkWv1r/4d5fsBf9EN+H3/AITOm/8AyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf9FS1D/wAJzVv/AJFo/wCIrP8A4Ihf9FS1D/wnNW/+Ra/Wv/h3l+wF/wBEN+H3/hM6b/8AI9H/AA7y/YC/6Ib8Pv8AwmdN/wDkegD8lP8AiKz/AOCIX/RUtQ/8JzVv/kWj/iKz/wCCIX/RUtQ/8JzVv/kWv1r/AOHeX7AX/RDfh9/4TOm//I9H/DvL9gL/AKIb8Pv/AAmdN/8AkegD8lP+IrP/AIIhf9FS1D/wnNW/+RaP+IrP/giF/wBFS1D/AMJzVv8A5Fr9a/8Ah3l+wF/0Q34ff+Ezpv8A8j0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/AEVLUP8AwnNW/wDkWj/iKz/4Ihf9FS1D/wAJzVv/AJFr9a/+HeX7AX/RDfh9/wCEzpv/AMj0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/RUtQ/8ACc1b/wCRaP8AiKz/AOCIX/RUtQ/8JzVv/kWv1r/4d5fsBf8ARDfh9/4TOm//ACPR/wAO8v2Av+iG/D7/AMJnTf8A5HoA/JT/AIis/wDgiF/0VLUP/Cc1b/5Fo/4is/8AgiF/0VLUP/Cc1b/5Fr9a/wDh3l+wF/0Q34ff+Ezpv/yPTX/4J6/8E/41LyfA74fBR1J8M6aB/wCk9AH5Lf8AEVn/AMEQv+ipah/4Tmrf/ItH/EVn/wAEQv8AoqWof+E5q3/yLX6S+KP2Uf8AglZ4Jtzd+Lvhj8LNNjXq1xoWlRgfnDXyF48+IX/BAL4c7x4i8OfCVinBFtoGm3ByP+udu1AHi/8AxFZ/8EQv+ipah/4Tmrf/ACLR/wARWf8AwRC/6KlqH/hOat/8i15N4x/4KCf8G9fhguumfCTwnrZXp9g8GaewP03QrXzR4o/4Ktf8EarDP/CIfso6Dqg7GTwzpNvn84DXRTwtafwQb9EyHUit2feH/EVn/wAEQv8AoqWof+E5q3/yLR/xFZ/8EQv+ipah/wCE5q3/AMi1+S3iH/grH+wrNk+C/wBjLwHjsbzRdN/XZb15JrH/AAUz+G2rR+Z4Z/Y/+E1oh+6z+H7OX/23FdUcnxr2oy+6xjPG0I/FNL5n7if8RWf/AARC/wCipah/4Tmrf/ItH/EVn/wRC/6KlqH/AITmrf8AyLX8+lx+3hq2ssf7J/Z0+DenKehk8I2D4/OGudvv2qPGeoZb/hVHwets9ovBGm8f+QKr+xcat6f5f5nJUzvAwdpVV+f5H9Fv/EVn/wAEQv8AoqWof+E5q3/yLR/xFZ/8EQv+ipah/wCE5q3/AMi1/NPdfHvxjcEu3gL4XQj/AGPBelgfrb1y118fdejy0vhT4aLg4ITwbpXX/wAB6tZFjXtT/FGaz/Av4Z3+T/yP6gf+IrP/AIIhf9FS1D/wnNW/+RaP+IrP/giF/wBFS1D/AMJzVv8A5Fr+WuT9pHWrdgB4P+HEn08GaV/8j1etP2rNbtcbvAPwyl/66eCtLP8AKCr/ANXcw39l+X+Zqs3wr+0/uf8Akf1Df8RWf/BEL/oqWof+E5q3/wAi14l4g/4OIv8Ag3I8U/G3QP2kte8TLP4+8LwXFrpniD/hFdVXUILe6jaOWHzltAzxMrt+7csgJ3ABua/B/Sf2zNUtE80/DH4PzH+7ceB9NP8AKGvSND/bugj+e/8AgZ8FL5V4I/4RCwhz/wCQaylkeOjvSYf2xg1vO3yf+R/QL/xFZ/8ABEL/AKKlqH/hOat/8i0f8RWf/BEL/oqWof8AhOat/wDItfi/of8AwUH+Htqqyar+yh8G9SU/889CsoyfcYt69g0P/gpR+yFBt/4Sz9i74fSD+L7Fo+m/pvt655Zdio7039w45xgnoq0fvLP/AAV5/wCC0X/BEv8A4Kj/ALEOvfsi2H7QGo+CbjVL2wv4tSPhLV72IPYzCURywiGIsj4xkOCrYbBxtPPfsuf8FUf+Ddr4Tfsxah8Av2mvi9f/ABr1HxSujjxRqmueEdSt7fUY/D/l/wBmWkdlFa+TBYWQiUQ2gLRktIz72lk3fQXh7/gpl/wSTldIvGX7Imh6aW4YxeGdJuAD+EAr3rwn/wAFA/8Ag348QyLDrfwc8LaC5O1vt/gvT1AP1WFqwlh6sfig18jsp4mlU+Cafo0em6X/AMHT3/BC7Q9MttE0T4k3dnZWcSQQQQeGdVjiiijAVURFtAFVQAAAAABgVf8A+IrP/giF/wBFS1D/AMJzVv8A5Fr1zwD8UP8Ag39+I5VfD3hv4ToX6C68Pabbn/yJbivsDwn+y9/wSi8eQi48G/DT4VamjDINvoekvkH6Q1jY2Pzj/wCIrP8A4Ihf9FS1D/wnNW/+RaP+IrP/AIIhf9FS1D/wnNW/+Ra/WiP/AIJ7f8E/pkEkXwP+HrKeQR4a00g/+S9P/wCHeX7AX/RDfh9/4TOm/wDyPQB+Sn/EVn/wRC/6KlqH/hOat/8AItH/ABFZ/wDBEL/oqWof+E5q3/yLX61/8O8v2Av+iG/D7/wmdN/+R6P+HeX7AX/RDfh9/wCEzpv/AMj0Afkp/wARWf8AwRC/6KlqH/hOat/8i0f8RWf/AARC/wCipah/4Tmrf/ItfrX/AMO8v2Av+iG/D7/wmdN/+R6P+HeX7AX/AEQ34ff+Ezpv/wAj0Afkp/xFZ/8ABEL/AKKlqH/hOat/8i0f8RWf/BEL/oqWof8AhOat/wDItfrX/wAO8v2Av+iG/D7/AMJnTf8A5Ho/4d5fsBf9EN+H3/hM6b/8j0Afkp/xFZ/8EQv+ipah/wCE5q3/AMi0f8RWf/BEL/oqWof+E5q3/wAi1+tf/DvL9gL/AKIb8Pv/AAmdN/8Akej/AId5fsBf9EN+H3/hM6b/API9AH5Kf8RWf/BEL/oqWof+E5q3/wAi0f8AEVn/AMEQv+ipah/4Tmrf/ItfrX/w7y/YC/6Ib8Pv/CZ03/5Ho/4d5fsBf9EN+H3/AITOm/8AyPQB+Sn/ABFZ/wDBEL/oqWof+E5q3/yLR/xFZ/8ABEL/AKKlqH/hOat/8i1+tf8Aw7y/YC/6Ib8Pv/CZ03/5Ho/4d5fsBf8ARDfh9/4TOm//ACPQB+Sn/EVn/wAEQv8AoqWof+E5q3/yLR/xFZ/8EQv+ipah/wCE5q3/AMi1+tf/AA7y/YC/6Ib8Pv8AwmdN/wDkej/h3l+wF/0Q34ff+Ezpv/yPQB+Sn/EVn/wRC/6KlqH/AITmrf8AyLR/xFZ/8EQv+ipah/4Tmrf/ACLX61/8O8v2Av8Aohvw+/8ACZ03/wCR6P8Ah3l+wF/0Q34ff+Ezpv8A8j0Afkp/xFZ/8EQv+ipah/4Tmrf/ACLR/wARWf8AwRC/6KlqH/hOat/8i1+tf/DvL9gL/ohvw+/8JnTf/kej/h3l+wF/0Q34ff8AhM6b/wDI9AH5Kf8AEVn/AMEQv+ipah/4Tmrf/ItH/EVn/wAEQv8AoqWof+E5q3/yLX61/wDDvL9gL/ohvw+/8JnTf/kej/h3l+wF/wBEN+H3/hM6b/8AI9AH5Kf8RWf/AARC/wCipah/4Tmrf/ItfpX+wR/wVA/Yw/4KZaL4k8Q/sdeJp/Elp4SntrfU3n0+608xSXau0QAuooi+4RtyuQMc16B/w7y/YC/6Ib8Pv/CZ03/5Hr+br/g1k8O+H/CHx+/bq8J+E7G30vStL+KJtLOztIlgt7e3gudSSOKKNAFREUBVVQAoAAGKAP7B6KKKACiiigD8s/27v+Czn/BPX/gmx8RtI+FH7X3jG58Oa5rumjVrOCDSr2/D2hlkhDl7aGRVO+NhtJB4zjBFfD3/ABFZ/wDBEL/oqWof+E5q3/yLXwZ/wVK+Hnw/+K3/AAdKfseeAfijoWn+JdCv/BmofadN1W1jvLSbyl1mRPMhmV0bbIquuVOGUEcgV/S9/wAO8v2Av+iG/D7/AMJnTf8A5HoA/JT/AIis/wDgiF/0VLUP/Cc1b/5Fo/4is/8AgiF/0VLUP/Cc1b/5Fr9a/wDh3l+wF/0Q34ff+Ezpv/yPR/w7y/YC/wCiG/D7/wAJnTf/AJHoA/JT/iKz/wCCIX/RUtQ/8JzVv/kWj/iKz/4Ihf8ARUtQ/wDCc1b/AORa/Wv/AId5fsBf9EN+H3/hM6b/API9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/wBFS1D/AMJzVv8A5Fo/4is/+CIX/RUtQ/8ACc1b/wCRa/Wv/h3l+wF/0Q34ff8AhM6b/wDI9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/0VLUP/AAnNW/8AkWj/AIis/wDgiF/0VLUP/Cc1b/5Fr9a/+HeX7AX/AEQ34ff+Ezpv/wAj0f8ADvL9gL/ohvw+/wDCZ03/AOR6APyU/wCIrP8A4Ihf9FS1D/wnNW/+RaP+IrP/AIIhf9FS1D/wnNW/+Ra/Wv8A4d5fsBf9EN+H3/hM6b/8j0f8O8v2Av8Aohvw+/8ACZ03/wCR6APyU/4is/8AgiF/0VLUP/Cc1b/5Fo/4is/+CIX/AEVLUP8AwnNW/wDkWv1r/wCHeX7AX/RDfh9/4TOm/wDyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf8ARUtQ/wDCc1b/AORaP+IrP/giF/0VLUP/AAnNW/8AkWv1r/4d5fsBf9EN+H3/AITOm/8AyPR/w7y/YC/6Ib8Pv/CZ03/5HoA/JT/iKz/4Ihf9FS1D/wAJzVv/AJFo/wCIrP8A4Ihf9FS1D/wnNW/+Ra/Wv/h3l+wF/wBEN+H3/hM6b/8AI9H/AA7y/YC/6Ib8Pv8AwmdN/wDkegD8lP8AiKz/AOCIX/RUtQ/8JzVv/kWuZ8Zf8HP3/BA/4jeF73wR8QvHb69oupRmG70/UfCmp3VrcRnqkkUlmyOp7hgRX7I/8O8v2Av+iG/D7/wmdN/+R6P+HeX7AX/RDfh9/wCEzpv/AMj0Afx5a3+0j/wZOeIPE6+Lr/wlYR3auZBHbaF4jtrXJ55toUSAj0Ux4HYV+lH7Pf8AwcHf8G2X7Jvg1/h7+zNrVp4E0WaXz5rXRPB+pWaTS4x5kvl2YMj443OWbHGcV+8v/DvL9gL/AKIb8Pv/AAmdN/8Akej/AId5fsBf9EN+H3/hM6b/API9AH5Kf8RWf/BEL/oqWof+E5q3/wAi0f8AEVn/AMEQv+ipah/4Tmrf/ItfrX/w7y/YC/6Ib8Pv/CZ03/5HqOT/AIJ7/wDBP2Fd0vwP+Hqj1PhrTR/7b0Afkx/xFZ/8EQv+ipah/wCE5q3/AMi0f8RWf/BEL/oqWof+E5q3/wAi1+j3ij9lv/glH4JRpPF/w0+FWmhPvfaNE0mMj8DDmvkrxz8Qf+CAfw8Lx+IvDnwl81M5jh8P6bK5x6Bbc0WA8W/4is/+CIX/AEVLUP8AwnNW/wDkWj/iKz/4Ihf9FS1D/wAJzVv/AJFrzLxb+3z/AMG9nhtmi074T+EdXkXoLTwXYMp/4EYAK+dPEX/BU3/gi3Zlo/DH7K2iak3RWPhXSYlP5xZreGGrT+CDfyZnKrCO8l959sf8RWf/AARC/wCipah/4Tmrf/ItH/EVn/wRC/6KlqH/AITmrf8AyLX5ca1/wVX/AOCf7ymPwj+xh4Knzwv2nRdMjP5LamvL9a/4KYfBG8fHh39jb4X2gPTz9CsZP5W4rojlWMe1KX3GE8fho/FUX3o/Zf8A4is/+CIX/RUtQ/8ACc1b/wCRaP8AiKz/AOCIX/RUtQ/8JzVv/kWvxAl/bmTVhu039l74Laeh/wCe3hm0dh+UVc/d/tZ69eZ8r4EfBW2B/ueELE/zhNH9l4r/AJ9s4p8QZdF2dZfifu//AMRWf/BEL/oqWof+E5q3/wAi0f8AEVn/AMEQv+ipah/4Tmrf/Itfz9XX7S/icAu3wj+DkI/7E3TsD84K5yb9qjV7eQrN8M/g8D6DwZpv/wAj1ccoxb2pslcRZe9qt/k/8j+ij/iKz/4Ihf8ARUtQ/wDCc1b/AORaP+IrP/giF/0VLUP/AAnNW/8AkWv5yF/bGvYm5+FPwhfHr4K07H/oit6z/bgMDKsnwV+DU2T/AB+DbAD9Ia0eR45f8umbf21g/wCf8H/kf0M/8RWf/BEL/oqWof8AhOat/wDItH/EVn/wRC/6KlqH/hOat/8AItfhLZft6aRaEJdfs8/A27Hr/wAItaIT+UWK9S0X/goB8MIWVdX/AGT/AIO3xPa30Oxjz+cBrCWWYuO9J/cL+28D1qpet1+h+xH/ABFZ/wDBEL/oqWof+E5q3/yLR/xFZ/8ABEL/AKKlqH/hOat/8i1+aOkf8FFv2Sbdgnif9iv4eso6vaaVpjfo1r/WvWdD/wCCkv8AwSsGF8Y/sd6JaerW/hrSJlH5wg1g8JWW8H9xtDNcHP4a0fvR9q/8RWf/AARC/wCipah/4Tmrf/ItH/EVn/wRC/6KlqH/AITmrf8AyLXinh3/AIKEf8EEdRAPif4FeHtD5Ck3HgnT2UE+pWE19OeCv2gP+DerxzsWx8LfC+ykfol74Z0+BufY29ZOnJbo7IVIzV4tM47/AIis/wDgiF/0VLUP/Cc1b/5Fo/4is/8AgiF/0VLUP/Cc1b/5Fr7x8H/Bb/gjp4/hSbwd4E+EmoB/uiLRdJLH8PJBr260/YD/AOCeV/GJrD4KfDqZG6NH4b01gfygqCz8oP8AiKz/AOCIX/RUtQ/8JzVv/kWj/iKz/wCCIX/RUtQ/8JzVv/kWv1r/AOHeX7AX/RDfh9/4TOm//I9H/DvL9gL/AKIb8Pv/AAmdN/8AkegD8lP+IrP/AIIhf9FS1D/wnNW/+RaP+IrP/giF/wBFS1D/AMJzVv8A5Fr9a/8Ah3l+wF/0Q34ff+Ezpv8A8j0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/AEVLUP8AwnNW/wDkWj/iKz/4Ihf9FS1D/wAJzVv/AJFr9a/+HeX7AX/RDfh9/wCEzpv/AMj0f8O8v2Av+iG/D7/wmdN/+R6APyU/4is/+CIX/RUtQ/8ACc1b/wCRaP8AiKz/AOCIX/RUtQ/8JzVv/kWv1r/4d5fsBf8ARDfh9/4TOm//ACPR/wAO8v2Av+iG/D7/AMJnTf8A5HoA/I65/wCDqr/ghzeW8lnefE6+lilUo6P4a1ZlZWGCCDaYII4INeP/AAO/4OK/+DdH9mjwzfeCfgB4q/4RDRdR1G41afT9L8Larb2v2y62+bIkS2oSPftBKoFXPIGSa/dH/h3l+wF/0Q34ff8AhM6b/wDI9H/DvL9gL/ohvw+/8JnTf/kegD8lP+IrP/giF/0VLUP/AAnNW/8AkWj/AIis/wDgiF/0VLUP/Cc1b/5Fr9a/+HeX7AX/AEQ34ff+Ezpv/wAj0f8ADvL9gL/ohvw+/wDCZ03/AOR6AP4eP2tv22v+CMX7UX/BUA/t+2X7XPiLwhoWseGYvC2v6BpngzU/7QudOCmO4t7XUmi3WaXUZ2SSRRCZFaQI48zK/s14W/4OBf8Ag2w8E/E7T/jP4V12Cy8VaRoFr4W0/U4/CeqfaLLRrIuYbO3Y2n7mFd7ZWPbuGA2Qqgfvb/w7y/YC/wCiG/D7/wAJnTf/AJHo/wCHeX7AX/RDfh9/4TOm/wDyPQB+Sn/EVn/wRC/6KlqH/hOat/8AItH/ABFZ/wDBEL/oqWof+E5q3/yLX61/8O8v2Av+iG/D7/wmdN/+R6P+HeX7AX/RDfh9/wCEzpv/AMj0Afkp/wARWf8AwRC/6KlqH/hOat/8i0f8RWf/AARC/wCipah/4Tmrf/ItfrX/AMO8v2Av+iG/D7/wmdN/+R6P+HeX7AX/AEQ34ff+Ezpv/wAj0Afkp/xFZ/8ABEL/AKKlqH/hOat/8i0f8RWf/BEL/oqWof8AhOat/wDItfrX/wAO8v2Av+iG/D7/AMJnTf8A5Ho/4d5fsBf9EN+H3/hM6b/8j0Afkp/xFZ/8EQv+ipah/wCE5q3/AMi0f8RWf/BEL/oqWof+E5q3/wAi1+tf/DvL9gL/AKIb8Pv/AAmdN/8Akej/AId5fsBf9EN+H3/hM6b/API9AH5j/Dn/AIOdP+CNXxX+IWg/C3wP8S7661rxLqNrpWnwt4f1SMSXV5KsMSl3tgqhnYDcxAHUnFfv1X8Uv/Bxh+zV+zn8Cf2kv2HNT+CHgDw34NudQ+K1tFdS6HpVrpzzol1p5VZGt40LgE5AbIBr+1qgAooooAK+av2yf2iof2Rf2UPiL+1FcaQ2vx/D/wAPX+vNpqz/AGY3QsYWl8oSlJPL37cbtjY64NfStfmZ/wAFn/8AlEt+0f8A9k78Qf8ApHJQB+B3w6/4OlP2yPjB4LsfiR8Jf+CfnxI8U+HdUVns9U0i5vr6yuFRijGKeHRHjcK6spKscMCOoNdr/wARJX/BQ7/pG78Wv++dT/8AlFX6Z/8ABt//AMoTPgH/ANgm/wD/AE5Xdft5QB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/Ih/xElf8ABQ7/AKRu/Fr/AL51P/5RUf8AESV/wUO/6Ru/Fr/vnU//AJRV/XfRQB/FD+0P/wAFvf2rf2q/hbe/Bb47/wDBMn4vaz4a1F43ubSK61yxMhibcoMtpo8Mu3PVQ+GHBBFflpoeo/s2eGdXg8QeG/8Agjj8UtPv7Vt8Nzbaz4rimjb1V1sAyn3Br/SpooA/j70L/g4v/b98N6JZ+HdH/wCCbXxbjtLCCO2gRjqsjLHEoVQXfQyzEADliSepJNav/ESV/wAFDv8ApG78Wv8AvnU//lFX9d9FAH8iH/ESV/wUO/6Ru/Fr/vnU/wD5RUf8RJX/AAUO/wCkbvxa/wC+dT/+UVf13FgOpxWHqPifw1pGf7W1C2tcf89ZVT+ZFAH8lv8AxElf8FDv+kbvxa/751P/AOUVH/ESV/wUO/6Ru/Fr/vnU/wD5RV/Td4p/at/Zq8Fbh4q8daJYlevm3sQxj8a+cvFn/BV3/gnt4M3f2x8UtFbZ18ibzf8A0HNFgPwe/wCIkr/god/0jd+LX/fOp/8Ayio/4iSv+Ch3/SN34tf986n/APKKv1d8Rf8ABe//AIJg+Ht4PxBS7ZP4YLeRv5gV4jrP/Byh/wAE19L3C21TVb3b/wA8bTOfzYVpGlN7Rf3FqnJ7I+EP+Ikr/god/wBI3fi1/wB86n/8oqP+Ikr/AIKHf9I3fi1/3zqf/wAoq+sb7/g5z/YQiXfpukeIblT0P2dFz/48a5C7/wCDof8AZCiP+ieENelHvsX/ABrZYLEPanL7mLkl2Pn3/iJK/wCCh3/SN34tf986n/8AKKj/AIiSv+Ch3/SN34tf986n/wDKKvZpv+DpX9lyPmPwJrjD182Mf0rEH/B1x+yCG2v4M1oEdf3sf+FP+z8V/wA+pfcyo0akvhizzT/iJK/4KHf9I3fi1/3zqf8A8oqP+Ikr/god/wBI3fi1/wB86n/8oq9ksf8Ag6t/YonwbvwxrkXrgo3+FdtpX/B0h/wT8uxnUdP162A/6YI//swqXg663pv7mU8PVX2X9zPmX/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKvuXRP+Dlr/AIJp6u6pPqmq2ef+e1p/gxr3Dw7/AMF9/wDgmD4gVWPj9bTccDz7eQc/gDWUqU1vF/cQ6clumflV/wARJX/BQ7/pG78Wv++dT/8AlFR/xElf8FDv+kbvxa/751P/AOUVfuz4W/4Kz/8ABPHxgVGkfFLRl3dPOl8r/wBCAr6O8Mftcfsw+M9v/CLePdCvd/3fKvYjnP8AwKs7EWP5mP8AiJK/4KHf9I3fi1/3zqf/AMoqP+Ikr/god/0jd+LX/fOp/wDyir+s/TvFnhbWMf2RqVrdZ6eVMj5/Imt8MrdDmgD+RH/iJK/4KHf9I3fi1/3zqf8A8oq4H4of8F9f2w/jb4D1L4W/GH/gl98SvFHhvWIjBfaZqlrf3VrcRns8cmgspweRxkEZGCK/stooA/ji+H//AAcG/tw/CzwFonww8Af8E0Pivpug+HLC20vTbRP7VZbe0s41ihjBfQyxCRqqgsSTjkk113/ESV/wUO/6Ru/Fr/vnU/8A5RV/XfRQB/BX/wAFKP8Agrx/wUL/AOCh37EPj79jZ/2A/i94O/4Te2tYBrEVpqV41sbW6hugTAdGh8xXMOx18xMqx5r5X/Ya/a+/a7/Zl/Zm1H4A/tGf8E//AIv/ABtvNc8P2HhHUdQ1Sx1DTrX/AIRzSVKWel2tnBorrb2yZaSb948lzO7yzO5IC/6PlFAH8eHhT/g4d/bl8B+GrDwX4H/4JlfE/RtH0uBLaysbG31C3treCMYSOKKPQVREUDAVQAB0roP+Ikr/AIKHf9I3fi1/3zqf/wAoq/rvooA/kQ/4iSv+Ch3/AEjd+LX/AHzqf/yio/4iSv8Agod/0jd+LX/fOp//ACir+u+igD+RD/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKv676KAP5EP+Ikr/god/wBI3fi1/wB86n/8oqP+Ikr/AIKHf9I3fi1/3zqf/wAoq/rvooA/kQ/4iSv+Ch3/AEjd+LX/AHzqf/yio/4iSv8Agod/0jd+LX/fOp//ACir+u+igD+RD/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKv676KAP5EP+Ikr/god/wBI3fi1/wB86n/8oqP+Ikr/AIKHf9I3fi1/3zqf/wAoq/rvooA/kQ/4iSv+Ch3/AEjd+LX/AHzqf/yio/4iSv8Agod/0jd+LX/fOp//ACir+u+igD+RD/iJK/4KHf8ASN34tf8AfOp//KKj/iJK/wCCh3/SN34tf986n/8AKKv676KAPxR/4Iz/APBYW4/4K26B8SdR1P4X3fws1D4barbaReaffagb6dp51lLq6m1tWheJoijIyk564IxX7XV/Ih/wa5/8ly/bn/7K1cf+lF/X9d9AH+YJ/wAHq3/KU3wD/wBkq0r/ANO+sV/X7/wa4/8AKCj4Gf8Aczf+pBqdfyBf8Hq3/KU3wD/2SrSv/TvrFf1+/wDBrj/ygo+Bn/czf+pBqdAH7/UUUUAFFFFABRRRQAV8rWH7Dv7INh4r1Dxz/wAK50K61fVLua+ubq9tEvHa4uHMkjjzw4QlmJwuAOgwK+qa/nI/4LB/tt/tdfszfHbSfAHwd8Tf2H4f1fQ4b4eVaW8kpn86aKQebLG7DARD8pGM15Oc4zDYSh9ZxNPmSfZNpv1tY+y4HyXNM4zB5ZlWI9lOcW3eUopqOtnypt90rH9E+laRpWhadFpGh2sVnaQDbHDAgjjQdcKqgAD6CtCvwD/4Ig/tS/F3483fxI8PfGjxNf8AiO+szp17ZtfTNKY45PPSUIDwi5WM4UAZNfv5W2V5hTxuFhiaSsnfR9LNr9Dh4t4cxGRZrWyvFTUpw5byV7PmipXV9ev3hRRRXoHzYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3NooooAKKKKACiiigAooooAKKKKACiiigAooqre39jpts97qMyW8MYy0kjBVA9ycAUAWqK/N/wDaF/4Ky/sJ/s2edaeNvG9rf6jDkGx0r/TJ93phDtH4mvxa+Nn/AAcr3+ovNo/7Lnw1lnkbKxXuuy7QffyIct/49XRQwtas7UoN+iM6lanTV5ySP6xa8m+Inx5+C3wlsn1D4l+KdM0SKP7xu7lIyPwJz+lfwx/EL9uz/gqp+1FI41vxtP4W0u44+z6Uv2GMKe24Zdvr1r56g/ZZuvE2pf238XfEl/4iuWwXNxM8rE9wWkYnH0reWBVP+PVjF9r8z+5XX3tHzmN4vy3DXTqcz7LU/rh+MH/BeT/gnp8KZZbHT/EVz4pu4uPK0e3MwJ9nYqv618B+MP8Ag4v8VeK7iTTv2dPg9eXZP3LnWZ/Kj56FkjGR/wB9V+R/hv4NfDHwpCsekaNbKyjbvdQ7H65r0dUtrWPEarEgHYBQAK55VMPHSKcn52X4a/mfKYvxFk7rDUfnJ/oj3nxl/wAFSv8Agq38WN8NhqWg+ArORiCtlbedcIPVXck18neMfHH7TXjhlufjb8c/E98CT5sMF8bOJs9sRFTiqfjHxd4L/s2bTdQ1PymPB+zt84PbpXw7q2vxNeSiKR7lQxAkc8sB0NezlmUyxacmuRL+69fmzzYcQ5vjb3quC/uxt+J7hf8Ah74Awh5NeN54huGc7pLy4luJD+LtyK4m8sPgTbh10bwba5B+Vn4yPcA5/WvKJNYunGFwv0q7pcDX0nnX04SJOeWwTX0lDIaNH3uaX3tflYzccRrOrXm/+3n/AJmheeBvCOsXz6jb2C2MRxthhY7Bj681s2nhLw3ZMZILKPJ4O4bv509/EugWsf8Ar1IHGF5NWLfWrS+h82zywPQsMV6DlVUba2+ZnOriXH3nK3m2W1gsLGPZDEkY9FUDmqE9xPIPLjwqe3FNd2dst3qLVLDxJHpZvtGszctgkDOOnfHeoT1V395lGOqu9X3My8uLewiM95IsajuTivM9W+I0UbGLSI9/+2/A/AVx3iS18YPP5viGCZDjIDKQoH9Ki0Dwlq/iFs2qbIx1d+B+HrXsUsLSjHnqST/I+lw+X4enD2teafz0/wCCZ9/4g1jUmJu52IP8IOB+VULdLtm/0cMSfSvfdN+GGh2sAF6zTy/3s4A/Cs7VvC0+lKZbbDwj0GCK0WNpfDBG0c1w9/Z0l+iPO7ayvJFBmAU1pjRJCAQ4qWS5gj+8wog1e3WXy2ztPenzTeqQ3Oq9UhiaI28CSQBc8kDOK7dPhddXFqLmyu45AwyvBGfxrJBDDI6Guj0jxZc6BbtE0fnxdQucEGuerOtb929ThxFbEWvSevbQwpfh34sststuVc9tjEEV0nhyLxZoW+WXzBKDg7/nXH45FasHxU0lowbm3lV+4Ugj+ldFp3jnw/qdxFaQSMJZiFVWXue1ctWpXcWqlO69Dhr1sW4ONWlp6G/p3xc1OzYjUdNsrhcAYMIQj3yOtd/ZfFH4X6sv2fX9Dii3EDmJJF56noMVyt7oUsbFb21IOOcr2+tc1c+GdMlBKqYz/s/4V408Jg62vK15xf8ASPHccPPWzXoz17T/AIefs2eJDm302wd5c/K42sfwJqxafsyfDfT5xeaBPqGnyBi6PaXkkRXPoVI49K+P9TtbmO6dbdztQkDsa09H8eeN/DU4lsL+ZQMfKzFlOO2DWFfhyrNN0a9/KWv4/wDAO6OHxsFzYfFSXk2/6/A+/fCd5+1d8MVM/wALfjX4s06RP9Uk941xCvoNrluK+v8AwF/wUu/4Kl/DI29nP4p0Pxnar/rP7VtPLlOP9tMHnvX5W6B+0zrEDLH4hsknQAAvEdjZ7nByPwr3HQ/jL4B8Uwm2W8azkcY2y/IwzxweRmvnsXk+No61KV13Sv8AkX/b2f4X4p8y80n+lz9rPA3/AAXx+L+hQ4+OXwdeVUba0+g3fmDH94RyDJz9a+1vhh/wXe/YL8eTLp/irU9R8HXrNsMWs2piAbv86ll49TX8yOp2nj2xQXnhe9h1BAvENwMZ9CHXr+NeL+LvGWlz7dL+KXhjYxB3TR4YZ/2cjn8TXPh8udZ/u2n6PX7nZ/cezgOOMXJ2q0oz/wALs/uZ/oFfDb9ov4EfGCzW/wDhj4u0rW43xj7LdI559s5/SvZgQRkV/mXppXgzTbv+2fAOpXGkXCjfvtZXs5k/GMgE/Svr/wCEH/BQf9vf4FbB8Pvibe6raR422euAX0OB2y3zDI75zW9XIcTFXhr+D+52PqMNxXg6n8VOD81/l/kf6CVFfynfBv8A4OJPH+grFY/tLfDhb2POHvvDkxLADuYZu59mr9f/AIAf8Fdv2FP2hpI9O8P+L49E1KTA+w60v2ObcewLHafwavLq4erSdqkWj38Pi6FdXozUvRn6ZUVQ03VNM1m0TUNIuIrqCQZWSFw6MPUFSQav1idAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Ih/wAGwv8Ayc9+3x/2Vqb/ANK9Tr+u+v5EP+DYX/k579vj/srU3/pXqdAH9d9FFFABRRRQB/Ih/wAFDP8AlbA/Yx/7EzU//RWtV/XfX8iH/BQz/lbA/Yx/7EzU/wD0VrVf130AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc34n8Y+E/BOmSaz4w1O10u0iBZprqVYkAHuxFAHSUV+P37QP/AAXH/YF+BEk2mW3iKXxdqcWR9l0OP7R8w7GQkIPrk1+PHxc/4OLf2iPiJcSaJ+y38OINISTIS71Z2up/r5UeFH/fVdNHB1qqvTg2u/T79jCtiaVJXqSS9T+wWSSOJDJKwVR1JOAK+e/ij+1n+zX8FraS6+J/jbSNI8oZZJrpPM4/2QS36V/Ex4w+KH/BUP8AahZp/ir8S9Q0awmz/o1pKbOMK3bZFyR9TXLeFf2HfAkVwurfEm/uvEd7ncxuJGZc9+WJY5+orlxFfCUL+2rxv2j7z/D3f/Jj5zGcY5dQuoycn5f5n9JvxU/4ODP2BfAM0th4RutV8YXSZ2rpdrmNiPR2IH6V8aeKf+C/f7QPjmF2/Z7+CkqQMcR3WtXJXGehKIBkfjXwv4Z+Efwz8HRrH4c0S0tygIDeWGbB9zzXdz3Flp0G+4dII1HchQAK8itn1FaUKTk/N2/BX/M+ZxXH9V6Yeil6u/5WN/xR+3h/wVp+K7s2oeMNE8B2jnBj0m0Ekmw+jSbsEfWvmLxcPi/4o82f45/HXxXq+5smFNQa2iwe3lxn+Vct8bvFegvB9p0XX385RhreJyUYH0xx+tfIdx4kMh3AM7ernmvosrybFY+kq06nIn0UbP75foeTPiLNsTr7VxXkkvx3PdfEXgL9le5djrNtf65KvO64up5tx+rua801XwR+z2YntfDfhFYS64SVpm3Kx745FcE+s3szBY8Lz2rtNHhg06MXmr3Ch36KzcCvpMPkNPCJS9rNv/G/yVjhq4rFpXnWk3/iZzmnfB7whafPNG8uR91mwB+WK6228E+FLSNY4rCI7ehZcn8zVuTxRoUUogNwpY9AvP8ALNW5bwSKPJ6Hv0r0qlau/jkzjqYjEy1nJ/iMkg0225gt4969MKBj9Kyrj7bctlzx6DpWhHFJNIIogWZuAB3rz/x7N8QdKP2PStLnRWB/fBd+R7Yzj8amj781G6T82OhTc5qCav5sl1rXdM0BN2oSAN2VeWP4V5Nq/wATL24UxaTGIR/eblq87u/t8t0TehzKx53g5J/GvRvDnws1jVwlzqJ+ywHnnlyPYV9DHD0KEeatK/8AXY+jjg8LhoqeIld/1sup53eatqeoOWvZ3kz6nj8qLWK+lP7pGda+i5vhNo1vAG05m80d5Pmz/hXB6hptzpEpgvE8sjp6VrSx1KppTNIZlRmuWijjU0q5b72BUv8AY8v98f5/CtV7+1j6uD9KW3vILrPlHkdjWjnLcHVqWvYdo/g+fWJzbx3Ecb9g2ea3p/hd4mtpAbV4391bbis+CeS2mWeI4ZTkGu8/4Wta2Aji1G1ck43OhGPy61x16mKUl7LVdjkq1sVzL2WvlY4X+wfHmlMyoJ1QHkoxIr0/RfG+v+HkEd1bQ3K44FzFk/XPBpbf4r+ELiURF5I8/wATpgV2mj6jpXiiN30lhdLH97C5xmvOxVWUo2xFHT7jgxNaq1+/o2XpY09M+MPhCdBB4l8OW7rjlolBBP0bpXRXFj+zJ49Ty9T0u1t3JH3ovKYk+61w914a0i4G2W3CYzyvy1534u8O22i6W99ZSNu6BW55PvxXkvLMLWkvZSnCT7Sf63OWlGnKa9lKUJPs2fQ7fsufAzV4Vm8LRvYyKciexuGVxjtkGux0X4X/ABS8BgS/Cf4p+LfD0ytuzFqMjIMf7JOK/Nq31vxjpM5n069nhb1icr/KvXfCv7TfxJ8NbINRZNShX+Gfh8DtuHNc+K4Vx8VehWU/JrX8b/me4qOb0VfDYty8rv8AW6P1e8Fftc/8FQPhXcQx+GPi4viGzTBaLXbVZycdtw+b9a+v/BP/AAWw/bo8Gw7viz8NtE8TRIwUvpNw9tMy/wB4I24fhmvxr8K/ta+DtT2W/ia1l0+U4Bdfnjz/ADA/CvcbfX9N8bwJeeCNcjDqM7VAdTn+8hwf1r5jE4TG4aVsVS5V3s7feroS4pzzCu2Is13lHT742P3k8Gf8HAP7OTzJY/Gbwd4l8Gy8B5JLdbqAE998Z4H4V+iPwi/4KOfsUfG8JH4A+IWkzTyYAgnmFvLk9tsmOa/jE8R+Kfit4XT7P4l0C312wGTJNbZyU/65sDg/ia+Yte1H4A+M7o3ElhLoGobiMtGNqn13IQy/hXZhcrrVo80Vdd42kvml7y+4+iwPGdaavWw913g7/huj/SnsNS07VIBdaZcR3ETDIeJg6kfUE1dr/N68AfGv48/Bi7iuPgn8T9a0cL88cUN881ucesUhIx9RX6dfBv8A4Loft1fC8wWHxJsNH8f2CYDSSBrK7x3O5Nyk/gKurk2Khqo3Xl/V/wAD6LDcR4Gro58r/vK3/A/E/tLor8F/gv8A8HBf7IfjieLR/i9pmr+A79iFZ7uIT2mfXzYz0+q1+w3wr/aC+CXxv0pNZ+E/inTdegcAg2lwjsM+q53A/UV5k4Si7SVme1TqQmuaDTXkexUUUVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wdC/8nCfsI/9lag/9KdOr+u+v5EP+DoX/k4T9hH/ALK1B/6U6dX9d9ABRRRQAV+Zn/BZ/wD5RLftH/8AZO/EH/pHJX6Z1+Zn/BZ//lEt+0f/ANk78Qf+kclAHzt/wbf/APKEz4B/9gm//wDTld1+3lfiH/wbf/8AKEz4B/8AYJv/AP05Xdft5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDPc29rEZ7l1jReSzHAH4mgCaiviX47f8FGf2Kv2b7eV/ix8Q9IsZ4Qc20dws05I7bEJOfY4r8H/wBpL/g6w/Ze8AGbTvgN4Yv/ABTOmQlxdkWsDHtxy/6CtqWHq1Xy04tvyRpTpTm7Qi36H9XVYus+JPD3h21a91++t7GFBlnnkWNQPcsQK/zhfj9/wdC/t7/FHzrD4ef2d4Qs3yo+xwlpdp/23J59wBX43/Fz9v8A/bD+PF48/wASPHmr6k02QY2uXCEHttBA/SvYocN42pq4qK83/lc9OlkmKnq1b1P9Tj4t/wDBTL9hL4JRyn4gfE3Q4JYusMNys8p+ixlq/Lj4v/8ABzl/wTy+Hhlt/Brar4qmTIX7LCIo2P8AvSEHH4V/nMWmh65rY+2+IruVmY/ddiTj3ya6CDwvpUONylyDn5jXvYfgttXrVfuX9fkbLKqUdJ1L+iP7Cvip/wAHcupOJIPg78LYYzyEk1G8aTPvtjRfyzX5z/Er/g5u/wCCj3jgSr4XbTfD1u2eLa1DMo9nfJr8HPs9hZriGJQfTFYl7ZPqDH7RK2wnhF4Ar1afCWBh8Scn5v8AysdNLAYXrF/N/wCVj72+If8AwWO/4KMfEppF8R/E7VgjZ+WCXygAew2AYr478UftPftE+OWZvFPjLWNQL9fNu5Xzn6sa4ZdJ0yAGRkGP9rmq8uoQQ5W0QA9M4rvp5Jgqe1KP3X/M74YfDr4KSM2813xfqS+Zf3lzKG7vIT/M1npbXk/MspPrzk1dlnlmbdI2abG21ga7IYWjD4YJfJHUopLSKXyCOwhQ5bLH3NdJodzcadPutIgyngjHb61sabptjLAtyMvuHet2ONYxtQAD2rrhTtqjirYhO8WrnUxSI8ayJ35xT8EmofD8SXczW0rYAGR713MVhaw8quT712J3R4FarGnLl6nHtbTSRMUU4wecV8zzsBO4z/Ef519nXAxbuB/dP8q+JLr/AI+ZP94/zrmxT2PWySq5+0+X6lmp4LeS7mW3hXc7nAFZYdh0Nen/AA9043E0mqSj/V/Kvpk9a5oLmaR7OIq+zpuZmDQvsalLqI7iMHcP5VQm8P2E3Kboz/snivdmRJBtcAj3rA1PSNNSB7l/3WwZ+WumdBWPIp49t67nhs+jana/Pazkjtzg1asdV8e6TmfTrm5jCcbkc4/nWtM5kcnt2+lPhup7d98DEVwzwlGfxRX3I9Fu696Kfqjr/DH7TH7RXgFlPhjxZq+nFfu+Vcyp/JhX2J8NP+CxP/BQ/wCGmyHw58TdXAUjHnz+aMDsd4brXxZb61bTjy9SiVu27GatN4b8OX6LKkK49UOK5KmR4KpvTj91vyOSpDDbVKK+X9I/dv4af8HLv/BSXwNFAdfnsfENsPvfa7VcsR/tpg1+iXws/wCDuLxRbtHb/GP4X204HDyafdtEfrh1YfhX8jGm6G+jOv8AZty4jz8yP8ykf0rppLHTL1cTwo3fkVw1eEcDNe6nF+T/AM7nnVsNhb6RdvJ/53P7/wD4Qf8ABz1+wB8QGhtvGsGreGJnUFzNGs8a590Of/Ha/Uj4T/8ABUX9gj40xw/8IP8AE3RXlnxshuJxbyc/7Mm2v8p658FaFcbmVGjZjnKmsK78Ma1o6/bdAu5d6HhVJBA9q8mvwV1o1fvX+X+Rz/2fQm7QqW9V+qP9lrQ/FfhfxParfeG9RttQhfpJbyrKp/FSa36/x4/hd+3D+1h8EL6Kb4c+N9W0prbCqsVy4UY9Vzj9K/YD4C/8HM//AAUD+FCw2XjS5sPF1pGApF/D+8I7/OhU5/OvDr8MY6nrGKl6P9GRVybEw1Sv6H+k5RX8mX7OH/B1f+z14yFtpv7QPhO88OzyHbJc2Di5hXHUlDh/yzX7u/Ab/gpn+w/+0fbwt8MviFpctzOoYWl1MLa4G7oCkhByfavErYerSdqsWn5o86pSnB2nFo+8KKrWl5aX8C3NlKk0bDIZGDKfoRVmsTMKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5EP+DXP/kuX7c//AGVq4/8ASi/r+u+v5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvoA/zBP+D1b/lKb4B/7JVpX/p31iv6/f8Ag1x/5QUfAz/uZv8A1INTr+QL/g9W/wCUpvgH/slWlf8Ap31iv6/f+DXH/lBR8DP+5m/9SDU6AP3+ooooAKKKKACiiigAr4W/a4/4J7fAr9tPxL4f8TfF641SGXw7DPBDHp08cCzJOyMRKXikY7Svy7WX7xznivumvjT9vH9qPXf2Pf2fbr416BoUXiCS2vLa1e3mnMCItwSvmFlRycNtG3jOetcWYxwzw03i1emld3V9tdj3uGamZxzOhHJ5uOJk+WDTUXeXu2u9Fe9i1+zR+wh+zP8Asj6nea/8E9EmsdS1G3FrdXU95PcPLEGDhSsjmMfMAcqgPvivsGv5pv2YP+C03x5+PX7Uvgz4T+JdA0HSPD3iDUVsp/s8c73WZlZYwJHmKD95t/5Z81/SzXJkuOwWJov6hG0Iu1rW132PY47yDPcsx0P9YJudepHmu587tdxs3rtba9krBRRRXsHxIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//W/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3NooooAKKKKACiiigAooooAKKZJJHDG0srBVUZJJwABX5Mfthf8ABZr9jj9km4uPCr6q3jDxTECBpWibZ2V/SWUHYnvkk1UYuT5Yq7E2krt6H61V8fftIft7fsm/soaZLe/GrxlY6fcRjIsYnE9459FiTLZ+uK/js/ap/wCC1f7a/wC0rJcaL4Lv1+HPhybKi30xib1kP9+fgg/7tfkzNby6zqsms6/dS399Md0l1eSNNKxPcs2TX0OC4axNa0qvuR89/uPHxWeUKV1D3n5bfef0zftHf8HI+uav9o0L9kjwK8cZyser6+2wH/aWBCT9NzfhX4Y/Gn9sP9tX9qO8kn+Lvj/U7q1lbmws5WtbNQewRCOPrXhEEvh+zj33JMjD244qZPHWlRsI1gk2j+7ivp8Jw9hqOqp877vb7tj5zE57jat1RjZFXRfhzpdpJ9ovl81yQeOSfXJPJzXveg63N4ftkt/DWn21iVO7zdm9z+LZNeYWniqaZlbT7Aqh6vKcflXa6fqcd4u2TCSAZI7fhXViaHNHlnH3e3T7lofKY6pXqfx9fn+h6fF8TPGy4Ml2p9tgArU0/wCLHie1uBJeFLiPuhG39RXieoeJNH03IuJgW/urya4y9+ILN8unQ4Hq/wDhXEsnpVFb2Kt6WOGnlrq/DT0+4+jNf+O3iOZzBpEEdoBwWPztn9BXmt9r3jXxNKXup55c5OASFwfbpXVeH9Itn06C/voVNxIgZu4yfSunke3tYGmkIRIxknoABXPThhsO+WhSV11/rU51OlSfLTgrnheuaTd6RYfabtlV3OFTOWPvXAnPesfxx8V4NX1eRrSJnSI7EycLgd68/TxRrmqXAgtSsf0HavqMPhavInPRn1eFyvEunzVFbrqemXdx9nXC8selYbMxyWOc9TUabyo8xix7k103h/QzqU3nXAIhT/x41o+WnG7NbQoQcpEmgeHm1BxdXQxCOn+1/wDWr09EWNRHGAFHAAoREjQRxjCjgAU6vKrVnUd3seHiMRKrK72O30LRLRSl5fyKT1Eef513bSQwRb3IVF/IV4ta29xdzLb24LMemK9RsNCgt7PyLomRm+9k8Z9q8vERs7ykeTiYpO8pHPazrq3atawKDGeCSM5FcnHHHEgjiUKo6ADArd8XpoXhmybU725WBB/A3LN/ujqa5DSdb0vW4BPpsyyDuAeR9RXXRguTmgtDqo037Lngny9/MzvE2vy6DbLLFA0pbuPuj614vq3inWNYO2eTYn9xOBX0TcJBJEyXABQjnPTFfPXiSx0q3vC2jOXQk7h2B9vavVwLg3Zx17nu5RKi3yyh73f+tjma29P8NeIdXdI9NsppjJ93ahwfx6ViV9afAn4mo4Xwdr8iqVGLV24z/sk/yrozDEVaFF1KUOa39XPUzLE1sPRdWjDmtv6dzz/w78JviLcW2+ez8tOwkcKw/CuiPwe8ckc28f8A38FfZVWbWyvL5zFZRPMwGSEUscfhXxtTiKvrJqKX9eZ8PPP8ROTfKvuf+Z+dPjH4c+JfCUK6lqsKpDI20FW3YP4VwEUskMizRHaykEEdiK/UTxR8PtR8TaJPpF9p8zLIpxmNuGHQ9K/NXXfDmq+H9XuNHvoXWWByp+U/hXvZLnEMbCUZSXMu3Y+kybMniYOFX4l+KPv/AOGPi+08ZeEre4mZWuEXy5kOM7l4zj3rr7zw7o18uJ4FBPccGvzz+HviCTRta+xu5RLj5TzjDdq+nbXxJrdqwMdw+AMYJyK8PH5NOlWboysnqj5vMcslQrvkej1Rr638EtMu5WuNKungLEttcbhz+teT618KvFujgyGEXKD+KI7v0PNej6l8ZL/w8YRqFoLiJzhnU4bj9M11Gi/GnwPqzLDLM1rIwGRKuAD6ZHFFOtmdGPM480fv/LX7wp1cdTipW5o/f+Wp8baxb/Yj5c0Rjk9CCD+VYIlPev0W1LRvC3iq3BuYoLuM5w64bnp1FeQ6/wDALQr3dNoU72rnkK3zL/iK9LC8Q0WuWsnF/ejvw2eUX7tVOL+9HzZpvi/xLpLiTTb+eIgbRhz0rvLf4y+LJLdLLWWi1CBQQUuEDBs+p61z3iL4WeMvDh3z2pnjPR4PnH44GRXnx8xDtfII9a9X2GExK5koy81a56ao4bELmik/M7jUbvRtQcS2dubNj94A7o8+o7gfnXQW3grxS9oNR0Nft1uwJ3QHJAH95eo/KvK47h4+nSvo74KfBv8AaA+J0Vz4h+DOh32oRWDBZpbfARWPO0kkA8dua4s0xNLAYd169aFOC61GlHXZOTatrtr8h/Uq8vcoLmfazf8AwTzb+0dWsnEN4rxt12yqQTn61BfjSNXQDUbZGcdGxzz79a+sIPGCrdp4X+NWgS6Zf5xuu7cxqRkgE7gCB79K1dZ+CPg3XIhdaOxtS/zK0Z3Ic98f4V5H9t0NPrFOyezTUovzTW6PGnjvq9TlrwcJd0eXfBz9qL9p39nm+S/+Bnj/AFTR0Q5+xyzNcWj4HAMUhIx9K/az9nr/AIOH/iV4V8vR/wBq7wSurWqbVbVfD7AS46bmt5CAfU7Wr8Qte+BPizSojcaYyXqg/dTh8duD1ryS9s9W0qY2+oQyQMP4ZAR0+tEssy7GpuhJJ+X+X/APpMBxPXj8NRTXZ7/5n+gn+zb/AMFDv2Rv2rLZB8JfF9rJfsAW068P2W8XPYxSEE/8BzX2uDkZFf5gm23+1LqMG+1vIx8lzbsY5UPYqykEEV+n/wCzP/wVh/bg/ZftLWO41V/iB4bBC/Y9ZZmlVB1Ec/JB9mrwcZw9iKOsPeX4/d/kfV4TiXDVLRre4/Pb7z+72ivx6/ZI/wCC1v7I37TN1B4S8UXcngLxPLhfsOtFYopXPaKfOxuemSDX6/29xBdwLc2rrJHIAyspDKQe4I4NeFKLi7SVmfQxkpLmi7omoooqSgooooAKKKKACiiigAr+RD/g2F/5Oe/b4/7K1N/6V6nX9d9fyIf8Gwv/ACc9+3x/2Vqb/wBK9ToA/rvooooAKKKKAP5EP+Chn/K2B+xj/wBiZqf/AKK1qv676/kQ/wCChn/K2B+xj/2Jmp/+itar+u+gAooooAKKKKACiiigAooooAKK53xT4t8L+B9En8S+MNQt9L0+2UvLcXUixRoo6ksxAr8Cv2rv+DhD9nX4ZT3Pg/8AZqsJviDrcW5DdR/utNicccynl/8AgIq6dKdSSjBXfkROpGEeabsvM/oQubq2s4GuruRYokGWdyFUD1JPAr8wv2o/+Cwf7D/7LAm0vxD4mHiLW48gaXoYF5PuHZip2L+LV/Hd+0n/AMFEf20v2sruVPib4wn0rRZCcaRo7tbW4U9mIIZ/xr430vw/o9qDMSkWT8zH5pGPv3r6TCcMV5pSrvlX3s8HGcRUKWlJcz/A/dT9or/g4X/ah+J3n6N+zj4ZtvBOnvlVvb8/ab0qehCj5FP51+OXxG+IX7Sf7RGpvq3xs8Zat4hZzu23dy4gGf7sYIUflWVHqHhXSQGQGZz6jNb1j428PuwR4Z3Y/wAKKP8AGvoKGUYbDq9OlzPvLX8Nj5bGcQ4+qn7ONl5EXg34e+ENBmSa9sP7QK4JjzsTd+AyQa+otC+IviLQwU8OafYaZAeiRwjIx79TXi+leJ3mI3WH2eLPVj82Ppiu5W5haIT7gFPcmuLMMNCu7V4XXZu6+7b8D43G4itUl+9d/nf/AIB7Cnxq8chf3jwsf+uf/wBeuhs/2gbywsmbWbITyDo0Z2j8RXyvqHjXQrDKCTzXHZOaq+GvEk/izX4tIjtgIGyXJPzACvKq8M4KdNynQSite3+RyrCz5XNx0R7Vrf7QfjfVWaHSwlmjcDYNzj8TXnMz+OPFDbryW4nDEnMjEL79eK9jsdA0jTwPs0CgjuRk1zHxC8Z6f4G0B7+5PzN8qKOpJqcIsPSkqeCw6Tflr/n+JnTq80lCjDV7HgPiO2l0+8OnysrMnXacjNc5XneofEjz5HktoCzMc7nPrUOl63rmqs0kzCOHsAOv419zTwtSEFzn1EMurQp3mrHYX16xJhhJHqazV825ZY1JcnoOtRhSzADk17B4T8MpYwi/u13SvyAR90VFarGlG7M6tSNGN3uM8M+GU05Bd3gzM3Qf3a7+xsZtQuVtoMZPc8AUw8dsUAkcivCrVJVG5N6nh1akptyb1PaPD/h6x0qLIKzTd364+lamp6raaXCZLlhkjhe5ryrw3pV/qc5aN2jiB+ZgSM16PfeGdPv0AlLb1GA2cmvm8RThGr+9nfuebUilP3pXPJdcns9cu1uZrWIGP7h2DI/GqXQVB4k1PQPDWqppF3fRGaToueR9ewqdCrjchBB6Ed696nG1OPKvd6HbytRTtp0PHvEvxMuNPuXsLC2KuuQWl4/IV43qes6lrM3n6hM0h7A9B9BX0j4z0XQtSsd2quIWX7sg65/rXzHdwfZrhogcqD8rdMivpct9i43jG0v66n0+VOhKN4QtL+upAqu7bUBYnoAMmuo0bwh4v1V1l0fT7iUbtu5UOM+5qj4c1678N6zDrNiFaSFgcMMg1+mHgLxjpfjXw/Fq+nFQxGJY16o/cGuPPc2r4GKlCkpRfW+z9P8AghmuYVcLFONO6fU+OIfg58SXjDSacVY9RvX/ABqG8+CHxDuoDG+nH2+df8a/QKrkenahKgkigkZT0IUkV8bLjHFR1cYr7/8AM+Zjnde94xX4/wCZ+OWt6HqXh7U5dI1eMxTwnDKT0r0H4PeMW8JeLYfPbFtdERyDPHPQ19MftL/Cu9udPXxtY2ciyQ8TnaRlfX8K+EA2PmBwRX3mX42jmuB5u6s0uj/rVH1+GrQx+FfNu9Guz/rVH6wvaaffR72RJFYcHANcZ4l+HOieI7BrFmaDPIK9j9K+bvh74y1K70dRDO6ywfI2G7V6zZePNetFBkYTBez9T+NfJTyzFYepalPVHx1TCVaFRxT1R53rPwB8Q2qtLpFzFdAZ+VvlbH8s14zrXhDWtHcxa1YvEQSMlePzHFfRlh+0v4aTUZNN8R2ktmyNt3r868d/WvW9G8c+B/Glow0q7gucjmNyA3Pqpr0lmeY4bXE0rrv/AMFaHqfXcfh1evTuu/8AwVofllqmrwQXjQ2iZVTg5NXtH8VXWnTi40y5ls5cfeRip/MV9p+KPgt4H8QyyTG2+yTMSS8Py8/TpXz/AOJv2c/EOnKZ/Ds63iZ+43yuB/Kvo6GbYStHlm7X77f5H02EznL68VCb5X57ffsXNB+O3xO0JY0tdVkmijP3JTvBz655NXNY+KWneM0/4rLR4JJyTm5tR5MvtxyD+NfOV9p+ueHblrTUYZLeRTghwRRFrc68SKD9OK3/ALKwjl7WnBJ946P71Y7ZZRQk1UpRXqtPyPSYNOjv7vydIlwzfcWQ7WJ9M9P5VuGXxboTbL6OdF9SCQceleWwa3FIyptbcxwAOTmvq3TfDHx28AaLB4g8T+GdS/sW4A2vcW77Crc5Bx6evFY4/FU8PyRqzjeWiUmk5P8Au33flY5sVhq8Y3UOZdn/AJnnUHiw3Efl38SToevFaXh7xDceFNVXXfAOq33h2+Q7lmsZnt3DevyEA/jXqGmWXw68dRNNZQLFNxuUfI4P0rE1T4PSgl9HuR/uyf4ivMq1cHUbp14WfZo8WjmVOlUsnKnI/RT4Af8ABZr9u34D+TY65qdt8Q9GiIzBquVugg7LMvU49RX7r/s2f8F8P2SPi7PbeG/i9De/DvWpsDGoqJLJmPHyzoSBz/eAr+NDU/C3ibw9IftELhR/GnKn8qyhqryoYbtFmUjBDDnBrzcRw1hqq5sPK34o+qwfEeIilzWqR+5/5H+nZ4Q8b+DvH+ixeI/A+qWur2E4DR3FpKs0bA+6kiuor/NU+CX7QHxv+Auvwar8AfF2peGp1YE2sMrNayn0aIkqc9Olf0Afsz/8HCeteHJYPCX7YvheWSNSsZ1zRk3ADu0sBII9TtzXy+MybFYdvmjdd0fSYTOsLXajzcsuz0/4DP6q6K8H+A37TnwJ/aa8Kx+Mfgj4lstetHGWEEg82M+jxn5lI9CK94ryj1gooooAKKKKACiiigAooooA/kQ/4Ohf+ThP2Ef+ytQf+lOnV/XfX8iH/B0L/wAnCfsI/wDZWoP/AEp06v676ACiiigAr8zP+Cz/APyiW/aP/wCyd+IP/SOSv0zr8zP+Cz//ACiW/aP/AOyd+IP/AEjkoA+dv+Db/wD5QmfAP/sE3/8A6cruv28r8Q/+Db//AJQmfAP/ALBN/wD+nK7r9vKACiiigAooooAKKKKACiiigAorP1TV9L0Oxk1PWbmO0toQWeWZgiKB3JPAr8K/22P+Dg79hz9k9Lvw/wCGNVHjbxFAGX7Lpp3Qq47PL93r6ZqoQlN8sFdlRg5Plirs/eMsFG5jgV8Y/tI/8FCf2Pv2T9MlvvjX4503TZ4lLCzWZZbpvYRKS35iv8/r9s3/AIOOP23/ANpSa70H4f6l/wAIToM25Ft9O+WUoc/elxuzj0Ir8HfFXjfx18RNVl1vxdqNxqN1MxZ5biQuzE9ck5r6LB8MYqtZ1PdX4/cezhsir1Nanur8T+4v9qv/AIOv/BOkXFz4b/ZR8JNqUi5VNR1Q7U+ojU5/Miv5zv2mv+C0X7fX7UM08Pi7xpc6Zp82R9i01jbQhT2wpyfxNfkfZWv2UFm+8au5NfVYThnB0bOa5n5/5bfmexRyfD091zev+Rua54n1vXbl9S168mu5nOWeVyxJ9ya8+uJZLyb5BnHQCuujsI7hQZ+V7CtGK2hgXEKgfQV70MPGK5YKy8j0IShT0gjjLfRL6cgEbQfWvSvD/hS300reXR3ydQD0FU4ZTA/mKASOmaklu7mc/vGJzW8IxjqZVqk5rlTsjrptTtIOGbJ9uagGoSy52JtHbPWoNL0UyAXN5+Arp47aCL7ijNbq7POm4R0WrOdS3nlOVUmryaW5H7xsH2rbop8pk6r6Hluqx3kFyYrnOO3oRVO2s57ptsQ49e1eg6tBbXyqjclT1qCOOOFdqDArNx1O6Nf3VpqcTfWL2ThWOQR1qG3tZ7ptkClj7V3smnR3yYlHGevetK2tYLSPy4VCgUKBMsUkvMoaNYz2NuY5mznnA7VrsyqMscVXkuVXheTVJnZ/vGrulocjTk+aR0mhX4h1aIDhWO0/jXreDnArwW1ZkuY2U4IYc19JQQxogYckjOa1pO6PGzVKEoy7mU9rJJbuW+UbTXxNf2ciXUpTkB2/nX3fcf8AHvJ/un+VfEt3/wAfUv8Avt/OssQr2R28PVHep8v1OYIK8EYr23wYY7HR0WRcGQliRXlzQxy8MOfWvWbGJYbSONBgBRWVFWlc9rHyUqaidkhWX/VkH6Vz/iG1nvrX7NbsAQcketRxTSQtuiOKsfafMJaTqa6nK6szyIQcZKSPLLi0uLRts6ke/aprGxa8cqpxgda9LuLaC5Ty5lDCs2LTEsUxb8g8n1rF09fI9BYq8fM4K5s57R8SDj17VoaGmoXF6sNkT1y3oB711MkUcy7ZBkGtbw6LHTS8eNrSH739KFT1JqYl+zel2a76PIB+7YH61Qe0uYTkqePSutBBpcA9a6HBHkLESW5x5vHj++vFTx3lu7YDYPvXQy2sE3+sUGue1DSPKXz7bkDqKlxZpGdOWj0OU8R+ErbVib21OyUdQP4q8tu9CvrZjhdwGenbFexJJJGfkJFZ9/G0zGcde+KwqU09T1MPXnT91u6PGkDwyfOCPXIrrtJ1zXtFuI9S0S7lhlQgq0bkEY6flW5NawTjEyBvrWZLpsduha24XriuWdCE1yzV15na60Zq0kfpJ+zP/wAFhf26f2XZ7eDwZ4yvLiwg2j7JeObiEqOo2ue/tiv6Rv2Uf+DpmPVbW3sP2n/B4K/Ksl/o5wQe5aJz0Hsa/iGKq3DDNbGh6tJosjCMbo3xuU+3pXiYnhjBVndLlfdf5bHm4vLKM43pxtI/1of2av8AgpH+xr+1dp8M/wAJPG+nz3koGbC5kFvdKT28tyCSPbNfcyOkih4yGU8gjkV/jr+FfiDNpepQ6hol3JZ3Nu2+MqxQg9eCK/Zz9k7/AILl/tufszG00i611vFmiROA1nqp83Efokn3x+Zr5nG8IYuleVBqcfLR/ceBVwdSD1R/pHUV+B37IP8AwcE/se/tAPaeF/ircnwL4gnCjZeHdaOx/uzAYGT2bFfuxoHiPQPFWlQ654avIb+zuFDxzQOJEYHuGBIr5WpTnTk4TTTXRnK01ozZoooqBBRRRQAUUUUAFFFFABRRRQB/Ih/wa5/8ly/bn/7K1cf+lF/X9d9fyIf8Guf/ACXL9uf/ALK1cf8ApRf1/XfQB/mCf8Hq3/KU3wD/ANkq0r/076xX9fv/AAa4/wDKCj4Gf9zN/wCpBqdfyBf8Hq3/AClN8A/9kq0r/wBO+sV/X7/wa4/8oKPgZ/3M3/qQanQB+/1FFFABRRRQAUUUUAFfLP7af7PF1+1X+zT4k+BOn3sWm3WtC1MF1OpdIntriKcEheeRGV49a+pqyPEGtW3hvQL7xFeo8kNhby3MixDc7LEpYhQSMkgcDI5rHEUoVaU6VT4ZJp+jWp25bjK+ExdHFYV2qwlGUXv70WmtOuqPwE+AH/BCZ/hH8TvDXxY134mtdXnhvU7TVIra00vy0aS0lWUKZHuGO1iuD8g4r+hKvwX8T/8ABwF+zXZbl8IeDfEmosOhuRbWqn8VmmOPwr9wvBXie08b+DdJ8aaepSDV7KC9jUnJCXCLIBnvw1eLkTyqCnSy1ro3Zt+m/wCh934gri6tKhjOKYSV7xg2oR2s2rQS7rdHTUUUV9Afm4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNf4g3/BWL/lKb+0t/2VXxl/6d7qv9vmgD83f+Cxf/KJ/wDaR/7Jt4m/9IJq+VP+Dav/AJQhfAX/ALB+q/8Ap2va+q/+Cxf/ACif/aR/7Jt4m/8ASCavlT/g2r/5QhfAX/sH6r/6dr2gD9zaKKKACiiigAoorxX48/tDfB79mjwDdfEv4063b6JpVopYvMwDuf7qL1Zj2AoA9qr8vf23P+CtP7Kf7E9vPoPiLU/+Eh8Whf3Wh6YyzXG49PNIOIx9Tmv51v27f+C73xt/aMlvPhv+yUlz4L8KyZifVT8upXSdymP9Up9ucV+FL6SbJrnxL4huGknmJluLy6cvI7HqXdskk19HlvDlbEWnV9yH4v0X6s8jG5xRoPkj70ux+lX7X3/BWv8AbF/bFubnRX1WTwR4QmJC6TpUjRySp6TSg7m9wOK/NW3tLe1BEKgFjlmPLMT3JPJNeFeJfjlZWV0bXw7B9pCHBkk+VT9AOa82vvjN41vQ8VvIkCv93YvzL9DX3uCyWjhl+5hZ93ucrybNMbadRcsezdvw3+8+xXdY13OcCsx795G8q0Usx4HGTXLfBb9nD9oD9oF0vri6m0rSkIJurncm4H+4oxur9IPD/hv9nv8AY60VrjxHqR1PWGALNOwmuGI/uJ/AK4Mwz7DYWf1einVr/wAkdfvfQ+azN4fBz+r05+1r/wAkE397Ph2y8Ja5qLCS6jeNT/eBz+VdbY+HtP09s7dzjqW7GpPi9+3L4w8XebpHw8tl0WxbK+dgG4YfXov4V5n8HPEWr+I1u7PUpmuZ1bzN8jFnO7qSTXoYeWNqUXVxVNU/7qld/PRL8WKvgMwWFeJxMVBL7Kd3bz/4c9jAA4FZWsuE0+Rs7T7HFdnBorHm4P4CuD+JxtrHRorWJfmkcc9+KmlOMpqKPFwzVStGC6s88n1SzhJy24+3NbfgmOTxP4nttNiTbFu3OevyjmvLa9y+FlzLoNrNqcSK0s/yqW5wBXfibxpScd+h7+YRVHDylH4tl8z622hFCjoo/Svnv46eOLfT9I/4RewfNxc4MmP4U/8Ar1Lq/inUzBJd3dwyogJIU4FfJ2q31zrmqS3mGdpDwBycdq8nLMs/eKpUei/M8PIco563tqr92Ovz6GPXR6ZcSWERMajc3c+lbOh/DjxnrUqfY9OmKsNyll2qR9TXpA+BfjaKwbUr0Q28aKWcO/KgV7tbGUIvlnNfefWYzMsLH3J1F955Y+q3znO/H0qc+INa4C3MigDACnA/IVlyqqSMiNuAJAPrWroUEL36T3K74ozll9fatJRja9hTjTUeZx2PX/A2ma4FGq6xM7K6/u0ZieD3Nejk4Ga4OPxtbIBGLcqo44PQVpR+LNJmYhmZAPUV4dalVnPmlE+RxNKvUm5yhb0PQdI1xtKLFY1bd3PUfjW7qnxBt7DS5L2G1knmTpEvevPbe5t7pPMt3Dj2qeuSWGpuV5I8+WHpuV5RPlrxj4q1nxZrEmoawSGBIWM9EHoBWLpmq3+j3Iu9OlMbj0PX619F+JvC2j60heZNk+OHXg/jXz7rOg32hziK7HDfdYdDX0OGq05wUEreR91l+Mw9amqMY20ty9Pl3O/j8bX/AIiUQXz7GH8K8A1KQuMN0rym2ineUNBwy969K026WZBFL/rAPzpzpRh8OxlicNCj/CWnbsRPpzu+6PgH1q5a2K20qz5O9CCCOMEVfqK4mS0QPP8AKG6e9Q5N6HI6s5LlPuv4Y+NI/F2gqJ2/0u2ASUHv6GvcfCHiW68Ka7Dq1uxCqcSKP4k7ivyz8KfEi98G6uNW0uISHaVZHOAwPriu71D9pLxxczB7GK3tkxyu3dz9TXxmZcMTrynThFOnJdfPofL4jhzEus5UElHfV7eR/QlpmoWesafFqdkweGdQyn2NRyaFokrF5bOBmPUmNST+lfn/APsMfH7WPiCNR8AeKNhuLRftNuyDaPLJwy/gea/QLWI9Sm0m5i0aUQ3bRsIZGG4LJj5SQeozX8w5/ktfKMyqYCpKzT0d9Gnqn925jWoVKM/Z1NzzTXvgL8HvEUE8Oo+HrPdcHc8scQSTd1zuABBzX5pfErwZN4B8Y3nh1/8AVxNuiPrGfu/pXg+tf8FYvjj8MvEl74A8a+HNN1C+0i7ltbi4UvF5nlsRkKOBkdK7HS/2vfDH7YvjaLRfD+hSaLqltatI7zSqyTKuMgYAORnj2r9f4TyXiHK67lj7yw0ot83OpJW1UrN3Sa029dj3cfwzmeHw/wBaqwvSSvdNNW773/AyPE2ltq2mNBEBvU7lzXi93pWoWR/0mJlHrjivq3UPB/iHTY/Mu7ZtuDyvOPriuGniaNzFKuMHoa/UsHj0o2g00eNhMc4K0dUeI6brmsaNL5umXMkDD+6xFe06B8e9as9sOuwLcpwC6/K+P5Gl0/wtoOu6klrqMZUSZG6Pg5pmu/A7UIEabQrkTAciN+G/PpVYivga0uTERs+//BRvVxGCrPlrqz/rqfV3w18UaR42s59U0gMUiYIwdcEE81c8T/C7wT4uBfVbJBKQQJIxsYZ9xXD/ALMekah4f0jVtP1eMwymdCFbuAp6etfTMlrDLywwfUV+bZnXeEx9SOHk0lazT6WR8xif3GIkqEnZbO58C+Kv2Y9atP3/AIUukuk5ykvyMPoehr+jj9hbSPhj8MfgHoPgXRNRs/7VkiNxfxrIvmNcty+c4JA6D2r8q7m3EDAZzmq6O8bb4yVb1Bwa+N8RMpxPF2WUsuxGJcIwlz3UU+Z2aXMrq9r6bH03D/GuIyys6k6aqaW10fya/wAj+hPxN4M8FeMNNlg8XaZZ6jayph/tMSSKUHPJYdO9fh38ZYvhLa+NLnT/AIQ6V/ZljbSOjlHJjlfPJVMkKAemO1ZNr8W/iVomlTaTYa3drbTxeQ0TSFk8v+6ASQB9K8uS6IHzDNfFeHfhti8gxNWviMW5w2jGLlGPm5RvZvot++9j0OLeN4Zvh4UaNDk6ybs35JO10u+z6F6s7UdI0zV4Tb6nAk6Hs6g1JNqNlbANcSLGDwNxxzVxWVgGU5Br9gXNFqS0PzxXWqPnjxN8DdDndrjS3a2Ldhyv5Vh+CrHxF8NdRa01+H7Zo1ySJAg3hCeA2O3vX1E6q6lXGQa4q/u9LtbkWjTx7n6KWGa9mjmlerTdCr70fPf5Po0d9PHVZRdOfvL+upz3i/4CeCfFVr52nxLbSsNykDKEnkcdvwr2f4BftnftyfsJXEUfhDV5fF3hKIjfpGoyPPEqDtExy0XHTtXHWmpXVqu2Nsr6HkV0tprtvOPLuRsJ6+hrzp1q8VaquePnv9+/5o9DLOIcdgX+6nePZ6o/pd/Yn/4K/fswftg/Z/C09y3hDxdIMHSdVIi81xwfIkJ2yDPYHNfq+CCMjkGv8+jx9+z/AOCPHIGoWIbTL5G8yO4tTsIcdG47j1HNfeH7KH/BVD9rH9i+4h8G/tAw3HxG8AxFY0u1cy6lZx9OGbl1A5wx+hrJxpz1oy+T3/yfy+4/Usm4wwWNtTm+Sp2ez9Gf2UUV8+/s5/tRfBH9qzwLD8QfglrkGr2TgeYiMBNAx/hlTqrD3r6CrE+tCiiigAooooAK/kQ/4Nhf+Tnv2+P+ytTf+lep1/XfX8iH/BsL/wAnPft8f9lam/8ASvU6AP676KKKACiiigD+RD/goZ/ytgfsY/8AYman/wCitar+u+v5EP8AgoZ/ytgfsY/9iZqf/orWq/rvoAKKKKACiiigAoor86P25P8Agpz+zX+wroJ/4T+//tTxHOhNpoliRJdSMOm4Z+Rfc04xbdktRNpas/QfVdW0vQ9Pm1bWbiO0tbdS8k0rBERR1JJ4Ar+fj9tj/gv98C/gvdXfw9/Zotf+E98Sxbo2uYzjTrdxxzIPv4PZa/nO/bJ/4KUftY/t66tLp3ifUpvDfg4ufJ0LTpGjjdO3nsCDIfrxX5/ardeG/h3pYuNSZLdQOEGN7fQV9Xl3C9SpaWJfKu3X/gfmeHi86jGfscMueb/r5n1L+0P+1t+0/wDtfa6+uftB+KLm/tCxaHSYHaKxhB6ARA4OPU5rwOGC2tkEVuioo6BRgV8war+0RcMXj0exVRn5HkbP5gVyqfF74meJNRjsNBX9/Kdqw28e9mJ9sE19xhcrpYaNqUVFf1uzkqcP5piX7SvZLze3yV7H2XJOie5qvH9svpPKs0LMfQZr234Af8E7Pjh4/SDxl8atfm8P6ZKBL9mif/SGU8854SvuHxl+0N+yr+y74fXwV4Ts4Nb1G3TaY4USVmdeMyyHue9fF5hxzQWJ+o5RSliq19VD4Y+s7Nfp3aPnMVRjTqKjhpKrPry3svn1Pzi03wJcyjzdUYoP7o5P413Wn6RYaam21jCn17n8a8f+L37XfxJ+K2obY1g0fTVfK2lnGqAgH+NgMtXuHhmK88QaNbanGoAmQMTnjPevoX9cVCNTGxUJP7KlzW+dlr6feeZm2DxWHhCeIatLoug+uM8T3DxyojSkIVztzxXs1v4cgj+e5YuR2HSvmzx5NDN4lnSBSqR4XHuKeCcalSy6HnZelVq2XRFOXVLZDhMsfavpb4CaXJNBc+IJ1A3Hy0/rXyVBE08ywL1YgV9iaL4judB0G30bTY1iES4LdyT3ozqEvYeyp7y/I6M5jy0VThu/yPeZ547eJppWCqoySfQV+dfxl8cL4y8Uv9jfdaW3yR+hPc16Z8UPG+pWujG3e4cy3HygbsAA9a+X7Sxvb6QQ2UTzOegQFifyrPIcqVFvE1Hrsv1NOHctUL4qo/JfqyGKMyOFH412sWpSW8Iht0CqBiuk8N/CH4gauizWmlzBZDt3uNoH1zWj4v8Ahb4o8CWi3niTyohIcIqvuZj9K9iePw0qipe0Tl2vr9x7NfGYepUVPnTfa5x8Ot6lbuJIXAYd8ZxWxY+IfGOo3SWVneTPI5wADXI16d4F1HTfD4e9vIWknfhSOwp4hRjByULswxcYQg5KCcumh7joVlfWOnJDqMxmmxlmY55rXLhT0zXCw/EHSJCRKkkf4ZrYtPEujXxHkzgMezcGvmKtGrdylE+SqUqibconsmleOLS0hS1mttiqMZT/AArzv4tfGd9D09tL8OQyedMuPtBXCKD6e9RggjIqvc2ttdQtDcoHRuoYZFcNHB4eNVVZwvbpcxoU6UKinON12PiW4uJ7qdrm5cvI5yzMckk13Phr4i674ej+yhvOh7K/O36V1Pi34dQpm68OjpktGT/KvGpI3hcxyAhlOCDX3EJUcRC1rrsfc054fGUrWuu3Y9am1i41tvtdxKZN3IyeB+FULqCO5j2N17VxukXNxaybs/uz1FdvFJHKgkj6GsXT5HaOxxVaXsXaOxhR6RMxzIQB+teu/CnxQfAevrPkm3nISUHnj1x61woBJwBms641S1tmKscsOwqMRSWIpyo1FdMxrc1eLpy1TP1StriG7gS5gO5JAGBHoa+vv2evHkZDeD9VcEnm33D8xX4m+Ef2jNQ8K6INFNiLoJnY7vgqPStTSP2t/iDo+rQapa21qphkDjCnOAemc+lfkHEfhzjMzwlXCcq7xba3Wz/R+R42AyvG4bEKpCOi890f0i6ho+k6tbm11W1iuYj1SVA6n8CK4DWvgp8IfEVg2m6v4a06WBuSv2dFz+IGat/Cbx/Z/E/4faZ43shtW+hV2X0buPzr5a/bt/aJ+Kn7Lfw8tPi14E0+z1XTbWdU1K2uchyjdCjDofwNfyhleAzSeZRyvCzcK/M4pczj7y6Xvo7qy8z7vD0XWqRpw3lov0MH4+fshfDTTPCV14u+Gekppl9aJuaO3yI3Qcn5emfevzCOFODxXS+Hv+C7Xg/W1udL+JHgKeGymiKD7FcCRiTwQQ4UYrF8L3tr8W9CX4i/D+zlTSdQkdoIpceagB6MBxxX9UeH+G4iy7D1cJxJGSs1yTlJSvfePNzPa1zyOKMjxWBca+Ihyxel9LXPm74k+F73+1zqVlGXSUZbHXIrykfabOUMpaKReQRwRX2Z4n0m9tbfF3C0bIf4hivM7izs7pSlzEsgPqK/ZcHjb0knqjnwGatUlCaulocD4c+LHjLw6wCXRuohxsmO4fn1r3fw58fNB1Ei212FrSQ4AYfMpJ/lXnC/C3TNZtmuNPlaCQHoeVrhdV+HPiTRp1byvPjBB3x89/Spq0MDiG01aX3f8AurSy3FNp+7L7v+AfZWq6bYavHjUYUnjcZG9cgg+leJeI/gT4f1IGbQ3NnIc8H5kP4dq+pNJijl0e2WRQf3SDn6VFc6LC/zQnZj8q+Xw+YzoytGTX5fcfKYbMq2Gl+6m1+X3Hz7+zH8AFvP2gdAtfiG8MWiwXAmlldwEby+VXn1OK/qwsJ9C1fTVg054bu02+WAhWRCAMY4yK/mpYbWKk5xXSaB408W+FbhLrwzqd1YvHnaYZWUDPXgHFfl3ih4e4ri7EUcWsZ7OVOPLGLjeO927p3Tel9Hoj63BcX1KatXpqXmtP8AM/Xz9o74P/s1aV4Rn8Z+M/DtvFcQALDJZKLedm7KGXHfrX4+3hsjdSHTVdICx8tZDuYL2BPc1c+IHx3+JHjiK00rxbqL6hDYjEfmfe565Pc+5rh7bxNaTcXKmNvXqK9Dw/4LzHI8A6WPxMq029uaTjFdFFS2vu9PLoeRn2YfXqinShaKXZX+Z0ZAYYbkehrkdb8EeH9aQmSBY5D0dBtNdFb6hY3TbLeVXYdQDyKuV95CpUpu8W0zwIVJ03eLsz571L4XajZSC50WYSFGyqtwwx719DeBG0T4h6UfD/jazVdVtR87bdjOvQMD396gnVAhlchcdzxWfYanBJJ9p02dWdON0bcj8RW+Kq1MVSs3aS2ktGv+AddXF1K1O091s+qN/Sfht8RfhJ4qTx98A/EN34e1SBg6S2krQyEjs235XHs1fsR+y1/wXl8f/DK8tPh5+3Fokt3AzLCmv6fH84zxmaLv6kr+Vfk7pnj6+t8R6gomQcFhw1dZdweEvHunmy1KJLhD/C4w6n1B6g/Svm68aif+1Quv5o7/AD6P52fmetlXFuOwTUa3v0/x+TP7lfg58cfhR8f/AAbb+PvhBrtprul3IBWW2kD7T/dYDlWHcHBr1ev8+P4c2Px4/ZW8b/8ACzf2U/FN3o9ypDy6e0h+zXGP4ZI/uuCOORn3r+kH9hz/AILXfDr40ahafCP9p+yHgTxu+2JJJTjT7tzwNkhPysT/AAmuGdJJc0Jc0f63XT8vM/Ucqz/B5hH9xP3v5Xo/69D926KignguoVubZ1kjcBlZTkEHoQR1qWsT2gooooAKKKKAP5EP+DoX/k4T9hH/ALK1B/6U6dX9d9fyIf8AB0L/AMnCfsI/9lag/wDSnTq/rvoAKKKKACvzM/4LP/8AKJb9o/8A7J34g/8ASOSv0zr8zP8Ags//AMolv2j/APsnfiD/ANI5KAPnb/g2/wD+UJnwD/7BN/8A+nK7r9vK/EP/AINv/wDlCZ8A/wDsE3//AKcruv28oAKKKKACiiigAoor86f25v8Agp5+zD+wf4Zku/iZqyXmuuv+i6NaMHupW7ZGflHuacYtuyWoH6F39/Y6XZyahqUyW8EKlnkkYKqgdSSeBX4N/t2f8F9f2Xv2XbXUPC/wpceO/FForhorM/6JCyg53yjg4PYV/MV+3R/wV1/am/ba1CfRjqM3hHwazHy9I0+Ro2lTt58ikFsjqOlfjD8SdXsLTwxd6Zay7J5l25Xrk9cn3r7DLOEa1Ze0xT5Y9ur/AMiaMvaVY0oa3Z9Hftxf8Fp/20v22tRubDxP4im0nw+7N5elaeTDAEPZtuC3H94mvyhaz1LUs3l85YnklzkmuistKt7fAjXc/qea6keHL2aNTcfulbsepFfZ4LKqGHjajC3n1+bPvaaw+GXLSSXn1Z51b6fGpwBuY1vSaRPa232m4AjB6A9TXpemaJBE4hsotznvjJrH8R6fO9+LS4O0RdQPU16HsrK4vrqnPlX/AATz1Y2kbbGCTV5NPlTDT8D0711EFtDbrtiXHvVpNP8AMbzJzkdhSUTSeIsc/HE8h2RDNTzWzW6gynk9q7ZNLnismu9myJRwx4GfQVzIgaabe/zMewq2rHNCspt22RkKjuflGa6bRtIJb7TcjIHQVJNplzYxpLdRmNX6A8E4olvp3URp8qjoBQrLcUpuatB/M6KW6t4Bhm6dhXZL4T1NvDy6/twp52dwvrWV8MdC0zWdfI1U58pd6Rn+I+/0r6paKFoTA4GwjGMcYrRSPlc3zT6tVjSpq73fp2X+Z8hVDfx3MMIkH3T1rsNS021tNUm+ztujDHbVNrc3Sm3Azu4rXkuj04YhO0lsefPIsa7n4FLp88F47Y/hrC1k3MF69ncDaYzjFW/DOnahfXubNcqgy57AVzp62PUkoqm5tnWqpJ2qKp3okjfyycCt+KIRDaevc1Wu7VLh0BOD/StmtDghUXN5GDFDJO+yMZomiMLmNuorp4okhXZGOKiFhFd3HmyH5V7ClyFKvq+xhW1pPdNtiH419Faft+wwhTkBAM/SvMLa0aVxBZpkngKo5r6J8K+F1hsYpNQ+ZlH3ew+tXpBXZ4Gd42EYRcvuMK30W91CByq7U2n5j06V8KahC8d7MvXDsM/jX6Xa3q2maLpryXjiNdpAHc8dhX5u3jrNeSyR8hnYj86wnJy1NuE8RUqutKStHS34mfZQvcXccMYyzMABXr9xZzWpAkHHY1xPhDRrrVvElpaaeu6QtuxnsBk17ld2ckDtbXibSOqtV0oppnt5jioxqxp36Xt1PPY0MjhB3okjeJtrCtq5tIbGdZQcK2RRJGsq7W6VTVjD2qdmtjKgMjvsHNW+V4P4ikt1jhlaMt81W3QOPemn0G52duhzOp3NvZsm7qxpsciSoHjOQayPFVhf2l0JLtMIwGxu1ZuhPdy30djbAuZTjbWTl71jtjCLpc6Z6jo9zOVIlOUHAJrogQRkVlfY3sh9mcYK9a19GCTX0cV0cRZG4+1dS0R41ZrWa2No+H9R/sZ9aVfkXnb3K+orlre/tLtcRt+HevqeGOBbdYYgNm3AA6Yr5b+J2iaXo2uIdLO1pgXdBwF9MfWsVVZ5GVZgsTVlRmrN6r/JnP6vp5iP2mBfl/ixXPq6vwKs2+s3UKmKX94h4Ibmo4dOudQEkunxlgh5UckZpNrofUQvBe+/mUf7Nedz5BGeoBqhNbywkpKpFaayT2smGBDKe/au1GnyXtgt4E8yJupHOD71HKnsVOv7Ozlszxi4tHRyydDVIgqcGvS77QFdS9scEc4NcdLDj5JV5FS4WO2lXU1oQQ6bcXNr9otvn7EdxVix1vUtLfyw2VHVWrY8MxzHUfscHPncAe9dJqeiRu7R3se1/pg1UY6XRlUrxU/Zz1Q3TPFVpcSKGPlSdiema/Tf9kH/AIKf/tYfsc6lAfhn4muG0pCC+m3LGe0cemxs7c+q4r8m7vwxeqrS2f71V7Driqllreo6W/lkkqOqtXJjMDh8VHkxVNPz6/ectXA06q/dv5H+jr+xF/wX/wD2dfj3HY+Efj0F8EeIbhUVZpSTYzuf7sn8GfRq/frR9Z0nxBpsOs6HcxXlpcIHimhYOjqehBGQRX+RP4H8S2GsaRCrnEqcFX6ZH86/W79ij/gqr+1D+xfrkVv4d1Z9Z8LA5m0W+dpIMd/JJJMR9Mce1fCZpwjVpJ1MI+aPbr/wT5ac3TqOnUVmj/R9or8wf2Dv+Cr/AOzD+3dosdt4O1EaP4lRAZ9IvWCTbuhMfOHXIPIr9Pq+NlFxbjJWZoFFFFIAooooAKKKKAP5EP8Ag1z/AOS5ftz/APZWrj/0ov6/rvr+RD/g1z/5Ll+3P/2Vq4/9KL+v676AP8wT/g9W/wCUpvgH/slWlf8Ap31iv6/f+DXH/lBR8DP+5m/9SDU6/kC/4PVv+UpvgH/slWlf+nfWK/r9/wCDXH/lBR8DP+5m/wDUg1OgD9/qKKKACiiigAooooAKr3drBfWktjdLvimRkdT3Vhgj8qsUUDTtqj+LLSv+CJ/7eWq3skM2h6dp0IdlSS71KA5UHg4haUjI5xjNf10/s7eDPFXw4+AXgr4d+OGhk1jQND0/Tbx7dy8TTWkCRMyswUkErnJA+leRfEH9v79jT4Wa/feFfHfxC0qy1PTZnt7q1DvNNDLGcMjpErkMCMEYyK9z+D3xl+Gnx98BWvxP+EeqLrGhXryxwXSxyRB2gcxuNsqo4wykcrz1GRg181kmVZdga044SrzTa1Tkm7J9lY/UuO+MOJc/wdGpnGE9nRjK8ZKnOMW5Lbmk2ndK6V+lz06iiivpT8sCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9D+/iiiigAooooAKKKKACiiigAooooAK/n6/wCCj3/Byd/wTf8A+Cdut6h8MrzWLj4k/EDT2aKfw/4W8ucWky8FLy7dlt4GBBDxq0kyH70Vfi3/AMHSH/BfLxr8ENcv/wDgmt+xbrcmleImtl/4TjxHYyFLiyjuUDJptrIvMczxsHuJUIZFZY1IYybf5mP+CQv/AAb+ftef8FabhviLpE8fgL4W2tw0F14t1SFphcyocSR2FuCjXUiHh2LxxKQQZN42EA/Zz4l/8HvP7TupalK/wd+B/hfRbPJ8tdZ1G71OXHbc0Ashn6LXgt1/wetf8FPHYmy+HfwvjXsH07VnP5jVl/lX9I3wX/4M9v8Agkn8O9Ct7T4mp4r+IGoqo8+51HVmso3fvsisUtyi56KzuQOrGvpu0/4NZv8AghhboFm+C0s5HeTxLroJ/wC+dQUUAfyI/wDEat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8gX/Eat/wAFTf8AoQfhV/4KtX/+XNH/ABGrf8FTf+hB+FX/AIKtX/8AlzX9fv8AxC5f8EKP+iGf+XN4h/8AlnR/xC5f8EKP+iGf+XN4h/8AlnQB/IF/xGrf8FTf+hB+FX/gq1f/AOXNH/Eat/wVN/6EH4Vf+CrV/wD5c1/X7/xC5f8ABCj/AKIZ/wCXN4h/+WdH/ELl/wAEKP8Aohn/AJc3iH/5Z0AfyBf8Rq3/AAVN/wChB+FX/gq1f/5c0f8AEat/wVN/6EH4Vf8Agq1f/wCXNf1+/wDELl/wQo/6IZ/5c3iH/wCWdH/ELl/wQo/6IZ/5c3iH/wCWdAH8gX/Eat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8gX/Eat/wAFTf8AoQfhV/4KtX/+XNH/ABGrf8FTf+hB+FX/AIKtX/8AlzX9fv8AxC5f8EKP+iGf+XN4h/8AlnR/xC5f8EKP+iGf+XN4h/8AlnQB/IF/xGrf8FTf+hB+FX/gq1f/AOXNH/Eat/wVN/6EH4Vf+CrV/wD5c1/X7/xC5f8ABCj/AKIZ/wCXN4h/+WdH/ELl/wAEKP8Aohn/AJc3iH/5Z0AfyBf8Rq3/AAVN/wChB+FX/gq1f/5c0f8AEat/wVN/6EH4Vf8Agq1f/wCXNf1+/wDELl/wQo/6IZ/5c3iH/wCWdH/ELl/wQo/6IZ/5c3iH/wCWdAH8gX/Eat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8gX/Eat/wAFTf8AoQfhV/4KtX/+XNH/ABGrf8FTf+hB+FX/AIKtX/8AlzX9fv8AxC5f8EKP+iGf+XN4h/8AlnR/xC5f8EKP+iGf+XN4h/8AlnQB/IF/xGrf8FTf+hB+FX/gq1f/AOXNH/Eat/wVN/6EH4Vf+CrV/wD5c1/X7/xC5f8ABCj/AKIZ/wCXN4h/+WdH/ELl/wAEKP8Aohn/AJc3iH/5Z0AfyBf8Rq3/AAVN/wChB+FX/gq1f/5c0f8AEat/wVN/6EH4Vf8Agq1f/wCXNf1+/wDELl/wQo/6IZ/5c3iH/wCWdH/ELl/wQo/6IZ/5c3iH/wCWdAH8gX/Eat/wVN/6EH4Vf+CrV/8A5c0f8Rq3/BU3/oQfhV/4KtX/APlzX9fv/ELl/wAEKP8Aohn/AJc3iH/5Z0f8QuX/AAQo/wCiGf8AlzeIf/lnQB/IF/xGrf8ABU3/AKEH4Vf+CrV//lzR/wARq3/BU3/oQfhV/wCCrV//AJc1/X7/AMQuX/BCj/ohn/lzeIf/AJZ0f8QuX/BCj/ohn/lzeIf/AJZ0AfyBf8Rq3/BU3/oQfhV/4KtX/wDlzR/xGrf8FTf+hB+FX/gq1f8A+XNf1+/8QuX/AAQo/wCiGf8AlzeIf/lnR/xC5f8ABCj/AKIZ/wCXN4h/+WdAH8iFr/wetf8ABTtGBvfh38L5F7hNO1ZD+urNXvPw0/4Pef2ndN1KJ/jF8D/C+tWeR5i6NqN3pkuO+1pxejP1Wv6Z7v8A4NZv+CGFwhWH4LSwE94/Euuk/wDj2oMK+ZPjT/wZ7f8ABJP4iaDcWnwxTxX8P9RZT5Fzp2rNexo/bfFfJcF1z1VXQkdGFAH1J/wTh/4OTv8AgnB/wUS1vT/hlZaxcfDb4gagyxQeH/FOyAXc7cBLO7Rmt52JICRs0czn7sRr+gSv8e//AIK9f8G/n7Xn/BJa4X4i6vPH49+Ft1cLBa+LdLhaEW0rnEcd/bku1rI54Rg8kTEgCTedg/pn/wCDW/8A4L5eNfjfrlh/wTW/bS1uTVfES2zf8IP4jvpC9xex2yFn026kbmSZI1L28rnc6q0bEsI9wB/dTRRRQAUUUUAFFFFABRRRQB/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmv8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNAH5u/8Fi/+UT/7SP8A2TbxN/6QTV8qf8G1f/KEL4C/9g/Vf/Tte19V/wDBYv8A5RP/ALSP/ZNvE3/pBNXyp/wbV/8AKEL4C/8AYP1X/wBO17QB+5tFFFABRSEhRuPAFfzdf8FYf+C1em/A/wDtH9m/9k24j1HxswMN/rAIe20sHqEIPzzY4A6Ka1o0Z1ZqnTV5PoTOcYRcpOyPtz/got/wVr+CP7Cujy+FtO2+KPH1wh+yaNbuMRsej3DA/Io646mv4n/2g/2iv2gP21viNN8S/wBoHWpdQLOWtrBGK2NmnZIYunHqeTXk0dpr/izXrnxt46vp9V1TUJDNc3l05kmmdupZjk49q9k+H3giw8c6/F4WuLt7COZWAeJQX4H8OeB+INfcYPKaGX03iMT70oq76qPourPhs54junCi7RW7Pn3xd478L/DXTSkhWS6wNsCn52z6+gr4y8WeOvGPxI1AxMJHi5MdtACQF9wOv1r92/C/7EXwF0GUXusafJrl2V2yTahIZN59dvAB+lfQnh74a/D3wokSeHNEsrPyF2o0UChgPTdjP61y1ePMHSv7ClKb7uy/zZ5WB4vyzL/foUJVav8ANK0V8l71vzP5vfAP7Pnxf+JF/BaeHNDujHPJ5fnyxlIkPcsT0Ar9if2f/wBgz4e/CqO38W/ELZrOsQoXZZAGtYjjnapHzY9TX3paRRo+2NQo64AxXK/FLXT4Z+HWta6pQNbWkrL5hwpO3gGvnMy4xx2YyjhqP7uMnbR6u+mr/wArHnZzx3mOZ2w9P93B6Wi3d37v/Kx+avx2/bl1iG8uPB3wdiWwt7fdC14VG8leD5YHAHocZr84dX1nVdf1GXV9buJLq6nYtJLKxZmJ7kmoJTPqN5JLGhZ5XZsKM8k5r0Hwx8KfFXiWTCILZMZ3S8cewr9cy3KsFltLloxUe76v1e5+j4LA5flFHS0XbVvd/Pf5I8zr6J/Z4t5/7fu7rYfLEW3djjOeleoeGfgV4V0fbPqu6+lA5D8Jn2H+Nev2ljp2kw+VZRR28a9lAUVGLzKE4OnBXv1Pn864moV6E8NQi3zaXen4b/kaFfO3xTvluNcS1QgiFOx7mvUtX8f+HtKBUSefIONsfP615BeWyavfyare8tKc49B2rmwNGUZc8keBlVCVOp7apFpW0OHs7SW8uEt4hkucV9B2NqtnaR2ygDYAOK5TQbOIXQMagKgzxXp1n4f1y/ge6s7SaSKNWdnVCVCqMk56cCtMbXirczsjbNMX7SSjskdD4R8Fad4qSR9aj8y2QgbM4DH39q9i0nwb4V0JFTSdPgg2ZwVQZ59+tfB2oft4fCHwLpf9keHLS61a6jUksoEcRkz0LMc49wK9B/Ze/aN8f/H3XtVudT0q3sdFtABE6FjJvP8ACSTg/gK8DGUsVJSm7qC8/wBDgx3DucQw1TGVqbhRj/M7XvppG92/kfaaqFGFAAFfM/7QfjZ7Czi8KafKUkn+eYqcHZ6fjX0RrGqWui6XPqt622KBC7H6V+VXjLxNd+LPEl1rdyxPnOSoPZewrTIsF7Wt7WW0fzMOF8s+s4j2svhh+fT/ADLysrMFDDJ46119o9pbQiMSLnvzXjW5vWtDTLSfUr6OziJy5/Svs5Qutz9Dr4JON3KyR7OCCMipIonmkWGMZZjgVr21jbW9slqoyEAHPXitPSng0u+F6sYcjsf6Vwyq6Oy1PmZ10k+Veh6VoOhQaTYCErmR+XJ9avXFowQmDk9gaqad4gsr8iPPlyHsf6Vu14c5TUm5bnzNSVRTbnuzgpBIHIl+93rL1TS7TV7VrS8Xcp6HuD7Vo+OfE2maBAiTL5lw/KqODj1NUNN1K11W1W7tGyrdfY+hrup83KqlrHo0o1VCNZJpdGeP6losuizeQw+T+FvUVRjkaNxIhwRXt+o6VHq1o1tJx3B9DXi15aS2Ny9rMMMhxXo0a3OrPc9/B4r20XGXxHufg7TNJvtPTUcCWT+IHnafpV/xp4dj1jR9sChZYPmTA64HSvM/h7rDafq/2OQnyrjg+zDpX0Aw49a8nEudKte/oeBjfaYfE8yfmj46COz+WqktnGAOc1sReG9emiWaO0l2OcBipAr7R8MaNoMUBkt7SFZg25m2jOfXJrd1qzF1p7xxgZX5h+FKedWnyxh95tV4lanywp/ez56+CV14y+FvxM0vxhbJ5ccEoWf5uGibhgQOvFftD/w1H8Gs86i4/wC2Rr8k6K+P4n4TwWeVoYjFNxlFWvGyut9bp7dDz8ZiZYiSnNJPyPAf+Cg3w1j+Jvx2/wCE9+CFhNqsGqWyveLbQMCkyHaWb1LDH5V8d/B678Z/A/4x6R4m1vTrmyFldLHciSIjEcnysOeM4PrX7FfC3WRpPiqOORsR3IMbc4GT0/WvqXUdF0fWLdrTVrSG5ifG5JUVwcdMgiutZp/ZlCnlsoOdNR5U2/ea210totNj3qfH1bC4RZbiKCnS5eW92nZ6ea0Wmxct54ry2juYTuSVQynrkEZFfN/xd0wWmvR38a4W4QZ/3hX0nDDDbxLBbqERAFVVGAAOgArxj44L9n8Ow6mIt/kygMe4Vh/jXz+T1OXFxS2eh+cYKVqyS66Hg2n3BtL2K5UkbGByOte82urWV2BsbaT2NfM9trFjcYAba3o3Fep2cglto5Ac5Ucivqsfhuazloz1MVQvbmWp61HLJGwkiYqfUGup03xdqVlhZz5yDs3X868+8CwHUtVaxuGJTy2IGeh4r0G98K3MJL2pDD0PWvmMWqCn7KqeTUSi+Vmt/wAJpot9dmCWTyXUAYfjP41vKyuoZDkHuK+aPEdvcW+pMJkK9OopNK8SazpTqtpM23P3G5Xn2qZ5NFwUqMvv/wAy3heZc0WfX+meEZNcsDcNJ5R3YXjII71mXvgbW7Uny1Eq9cqa9i0aF7fSbaKTBYRrkgYGSKn1C7j0+xmvpSAsKM5JOBhRnrX5+s4xEajULNX0RCprY+AfHl+0uttpTHDWvDJ3DH1rBsPEGsaaR9kuHCj+EnI49q+Wtf8AEF9qfiW+1yOV43uZ3k4YkjJ4Ge+K6zwp4w8Qahqtvo8irP57hATkEe/Fftiyd08PFSs7LVefU+hqZTKFO6aaS1PpHX/Heu6lpy2tji3c58x0OCR7eleNyrMjbps7j3PWvSrzRb6y5ddw9V5rEnSLyyZgCB2Nc2DdOkrU4qzOCjKMVaC0K2k+Mdc0plCymWMfwPyK9X0Xx1pOqbYZT5EvTDHgn2NeAMVZiUGBTa2xGX0autrPyNKmGhPpZnvXjTV/Enh2OLxJ4euGCxcSxn5kZT0JFb/hH4y6B4kj/s/xAq2k7/LhuY3z15P8jXjmh6p4gntm07Z9qtJFKFX6AexrzjWvD2oaNIWmjIiJ+Vuv515/9kUKsXRrWUltJb/Mzp4WnNOnU3WzW59Zy+LvGP7J3iWH46/s5a3P4Y1xGVDbWzYsr3JyRPD911xnPGfSv6eP+Cdf/BXv4TftlxR/Dnx8ieFPiBbqFls5WxbXhHV7Z2PIPXaeRX8Yup6zrOraVHpF5cvJBC29Fc5wcY781xLrqNjcR3mm3M1jd28izQ3Nu5jljkTkMjDkEGkuGr0Lc96ib16NH3XD2dVsJTVDEy54/il5f5fcf6f1FfzJf8EvP+C0EXiG/wBN/Zp/bA1FV1eRUi0nxHJ8kd32EVyTwso4AccN9a/prR0lQSRkMrDII5BBr5WtRnSm4VFZo/RqVaFWCnTd0x1FFFZmgV/Ih/wbC/8AJz37fH/ZWpv/AEr1Ov676/kQ/wCDYX/k579vj/srU3/pXqdAH9d9FFFABRRRQB/Ih/wUM/5WwP2Mf+xM1P8A9Fa1X9d9fyIf8FDP+VsD9jH/ALEzU/8A0VrVf130AFFFFABVPUdRsNJsZdT1SZLe3gUvJLIwVUUdSSeABXMfEH4heDPhX4PvvHvxA1GHStJ02Jpri5nYIiKvPU9/Qd6/iB/4Ka/8FhfiV+2jrtz8Hv2fZrrw78ObeRo5J0Yx3eq4OMtg/JF6LnJ7114PBVcVUVOirv8ABebMa9eFGDnUdkfox/wUo/4Lz23h641D4E/sQsl/qq7re98SsN0FuehFsP43H948Cv5fzp/iTxrr9z4++JOpXOr6reuZLi7vZDLNITySWboPYVb8M+ELLR7dGlQeYOQOw/8Ar19e/Db9kvRfjx4bTVtb8Q3NlaxzlZrWyXYzrjo0h5GfYV9ZUll+RYf6ziZeTlZvV9Elt6/ifAZpxD7efs1Lkp99/wAj84viR8d9I8Jq2ieEVS4ugMGQYMafl1NfHOo3vijxhfHUb3z72VzgEKzgZ7DHT6V/T/4J/YC/Zd8E+RLD4dTULi3ORNesZmY/7QOFP5V9LaD8M/h14XtPsPh3QrCyh3btkVuijPr0r5qv4vZfR0wmGnN95NR/+SN8DxbluWxtg8O5S6yk0m/zsvI/mq/Zz/YI+NHx41rF7Zy6BpMDL591doUbaf8AnmpHzGv298OfBz9m39gT4bSeLLiyF7eKQDezosl1LIRwEJ+6PYdK+9NKRUtVCgD6V+VX/BU3xO1r4V8P+E1RGW6mkmZs/MuwY6ehzXxVLirMeMM6oZVXk6eGk/ehB2ukm3d7vb08jmxOfYzOK9OjUfLTk17sdvO/f5nxX8ff26viz8Zkm0HS5P7D0VyR5FuSJHXtvfr+Ar4kZmclnJJPJJ5q3Z6df6jIIrCF5mPZATXu/g79nnxPr6x3msypZWzckfek/LoK/ozA4DLcmw6oYWEacOy3fm+rfm7n0kq2Ay2nZtRX4v8AVnz5X6U/ByKWD4eafFMpRgh4IweTVLwx8E/AfhtFY2ou5l6yTfNk/TpXqE1xYaXbhp3SCJRgZOAK8rNMzhiYqnTi9HufCcRZ/Sx8I0aEXZO931+QahcLaWUtw/RVJ5r4svZzdXktw3V2Jr37xV480rUrSXRNHYySOMF8fKB9a8qg0azhALAufeqy2DpRlKas2cmVx+rxlKorNk3gbSWvdT+1yLmOHnn17V7p5bMwUdTxXPeGrHyLEbFw0h4AFbmu+JPDfwwt7bxT8S3fTdMMm0SSI3zsOdqjHJrjx2J5qnn0XV+nc58VOpia3LTi29klqz2rSfgp4M1CKHVfE1r9suCAwEjHavtgV6rpfhvw9oiCPR7GC1AOR5aBea/Nzx3/AMFNPAGnQ/ZfhvotzqVwflVrnEMYPQcAliDX3x8J/FmveOvh/pvizxLYrp13fRCVoFJYKD05PPIr4fM6GZQpqti7qLdkm/0ucWbZNmuDoQrY6DhCTsk3r/4De6XyPQpZUhiaaU4VAST7CvzN+L/jqfxt4tmkWQm0tiY4VzwMdT+NfWP7RPj4+EPBzadZvtu7/KLjqF7mvzNLuxyxJJ719PwblfuSxk1vpH9X+h6XDGW8yeKl6L9WdzYwi4n5I2ryc11gZfuqR9K8aDMvQn8677wPpT3t019MTsi4A9TX2laCScmz6LGYdRi6kpbHUV03hfQJNd1BYzkRpy5HpU0lhaydVx9K7XwzrNholv8AZHiPJ5cda8vEVpcj9mtTwa9eXs37Nanpa2UKRLFGMBRgVjajDcwp8gyvc1t2l7a30fm2rhx7VYfbtPmfd75rwE7PVHz6k4vU86brXnnizwdDqROpWSgTLyV7N/8AXro7vxr4efXm0m1JGON5+7u9BXQe9enCVSk1K1rnqQlVoSU7Wb/I+YZI3iYpICGHBBre8OGKbUI7G5fy45Gxn0ruPG/hhjGdYtF5/jUD9a8nUlSGXgivVp1FVheJ71KrHEUrr/hmfXOm+HdJ06ICCIM395uSa8D+Jfhk6TqX9pW4xDcHkAdGr2HwFrh1nRUE3+th+U5712E+laXq7R2+sRLNDuBKt0rxKWJnhq7c9e589RxNTC4huevc+Jobe4uHEdvG0jE4AUZ5rWg8M6/cyFIrSQFeoIx/Ov0t0rw34c0yIHS7OGIMAcqg5rzLx5phtNRF2igJL6eoqqPEyrVPZxp29Wda4ic5csIW9WfQn7Bnxxtvh14X1HwT8ULoWFnE4ktGlyfvdVGM19V/HL4q/s7/ABe+E2u/D3VtYtp01KzliRZFYqHKnaeBng+lfkpRX5fnPhfluYZtLOFVnTqykpWhypKStqrpvVq713NY53Wi00l+J+EniX4SePtAvb0tpF41nbSuouBA4jZFJAYEjoa/Vb/gmP8AEKV9F1j4YanuSS3cXMKsCDtbg8k+voK/Rf4c30Os+HPsF4qzeSdhVwCCvbiultfBHg+x1r/hIrLS7WC/27PPjiVX2+mQBxX2GccQ+3o1MFXparZp9Vs9up63EHiE80wFTL8Vhkno1JS2a62a669epe17SrfVNIuLSaMMXjYDgZ6dq/O29tpLO8ltpAVMbFTnrxX6WEZGDX54/FKa20Px3eafPG0Ks29T1BB71nwlWbqVKPlf7j4vJpScpQXqM8P6hFabo5ycN0rtYp4p1zEwIryWxu7edh5Lhs+hraSSSM7kJB9q+rr0veuelWo3lfqepW2o3tmQbeQgDt2/Kt8+MY4LSSXUExtUksvT8q47SUlu7BZ2bLc5z3qrr0Eq6TcgjP7s9K86VCnOdpLU4HShKXKzfsdY03Vl82wmWTPOAefyrTRC7hB3r41t7q6spxNbO0bqeoODXvnwo8Ua1retf2dfssqIpfcw+auzG5a6MJVIO6R3YvLXSg6kXdI9D1DwVfyyNcW0itu52ng1xGt6fqGiWUt3eRFFRSd3avocZ718w/tU+IX0rwAumQlkkvZQuVbHC8nPsa83L8TVq1oUXrdnHlftMTiaeGX2mkeLpqN4ly19bzMkjHO5Tg16DoXxP1zTnCakftcXT5uGH0P+NfD2l+Kda0k/6PMWX+6/Ir3DwVrGoeK7SWdoAnknaSD1+gr7HFYCLj+8SaPvMzyL2UOaqk4rqdv428aeIvEt0d7tFaqfkjQ8D646muJ0zWdU0WcXGmTvC4OflOM/Ud66eSKSMlZFx9awdTjt0UHbhj6U6MYRj7OMdDHDKmoKioLlPXvDPxnnhAtvEkXmgf8ALVBhvxFe8aN4i03WoRdaPchuOqnDD+or4NrR0zVNR0m7W60yVo5R0K1xYnKKdS7p6P8AA4sbkNGpeVL3X+B9raf8a/EngrVm0XxOn2+1ByknSUKenPf8a9xng+HHxi0dUuEivQoyueJYm9QeoINfC0+peIPFljG+q2JSeLgSgY3D0IJrK0vVta8NX/2vTZpLWdP7pwfx9q+fxfDtKsuak+Sou2z+X+R4s8tTanTlyVV1T/HQ/bD9jz/grJ8UP2EvFkPwe+Ll9d+Ofh5GUUy3DeZqGnbzjETZ/eRqOqtyOxr+vr4JfHX4W/tE+ALL4mfCLVodX0m+UMskTAshPVXXqrDuDX+alq+s3mvajLqmpkPNOcufU19SfsfftpfHL9iv4lx+O/hbqTPpcrKdS0Sdj9ju416/KPuSEfdcDr1rzcfw3OFJVKLvJLVefVr/ACP0LJs9lyRo4x+9p73+f+Z/oy0V8bfsVftw/Bb9uT4Ww/ET4VXXl3MWI7/TZyBc2k2OVdcnj0YcGvsmvlGmnZn16d9UFFFFID+RD/g6F/5OE/YR/wCytQf+lOnV/XfX8iH/AAdC/wDJwn7CP/ZWoP8A0p06v676ACiiigAr8zP+Cz//ACiW/aP/AOyd+IP/AEjkr9M6/Mz/AILP/wDKJb9o/wD7J34g/wDSOSgD52/4Nv8A/lCZ8A/+wTf/APpyu6/byvxD/wCDb/8A5QmfAP8A7BN//wCnK7r9vKACiiigArM1jWdJ8PaXPrWuXMdpaWyGSWaVgqIqjJJJ4AFcR8W/i98O/gZ4Ev8A4k/FHVINI0jTo2lmnnYKMKOgz1J7AV/nzf8ABXH/AILp/FD9szXL34QfAaSfw/8AD6FmiPlsVnv8ZG+QjGFPZR2612YHAVsXUVKirv8ABeptQoTqy5YI/Xv/AIKq/wDBxp4a+Gy6j8EP2LJU1HWAHguteI3QwNyCIB/Ew/vHiv4rvE3xb+IHxf8Aia3xA+J+rXWs6jdz+bPcXUjSuxJ9+3tXDWmgz3TmfUWPPPua7Cz0+OICO1QAV+oZPw9RwaU3rPu/07HuQw9GjBreTW/+R3eueMZ7vNvp37uPoW7n/CvNtV02+1dUt4c/M2WY+ldbBpyL80hyfSty1sZZ/lhXA9a+l5LrU4adSnhlaktupymkeGrDSwH2+ZL/AHj/AErZHhu71W78+b93EvHPU121ppkNt8zjc9aftT5VayOOpj5uTknr3MI2mneH9OkuIEC+WpO49Tivna6lkvLmS6k6yMWNe6+OZnh0Fwh++Qp+leEVhWeyPTyhPklUe7NTSNHvNWuPIs1zjknsK9h0fwbp9kFmvB50noegrJ+G8aCyuJcfMXAz7Yr0mnCKtc48xxlT2jpxdkjhfEOjXuv3MenQ/ubWLlmx1PtWjYeH9D8OW5udoLKMl36/hV7WNestHiLTNufsg6mvHdY8QX2syFpztjB4QdBVSaTv1Jw1OvWgoXtD8/8AMztcvZta1J7yTIQnCr6Cs4iOIfL1p0kgUYWqyqztgDJNY9bn0EIqMVFbIvaZqVzpV9HqFqcPGc/Wvo7UfGR1HSYPsJ2PMoMmO3sK8X0fw7tIub4fRf8AGuxVVQbVGBW0IdWeLmNOjWqRla7iMlTzB6mt/TrBLdBKw+dh+VYg45rq4XEkSuO4rY4682o2Wx5t4w8IXGs6tBc2gCqwxI3pjvXaaVpVnpFmtnZrgDqe5Pqa2GGRUNSopO4pYqpOnGm3ojzrVEFndPF68j6VjK2GDGuy8T2m6NLtRyvB+lcXWctGethpKVNMsSy/wp+da/h7TLzVrs2topYkZJ7Cs3T7CfUryOythl3OBX0l4b8OWvh60EUODKw+d/Wle2pw5nj4Yanyx+J7f5sXQvDtlokI2ANMR8z/AOFWdb8b2WgWptYf3lyckKOg+tVvEWuR6NZM6kGZuEU14LcTS3ErTzcsxJJojHm1kfPYLAPFydbENtfn/wAAtaxq19rEr3d85d2H4D6CvnKc+XcNt4wxr37JzmvN/F2h7G/tO3GQfvj096K0dLo+3y+UKb9mlZdDoPgtNGPiDZFmA+/1/wB019m6/wCG7HXYCJVCygfK46ivzcsru4sbpLu1bbJGQykdiK+/fhr48tvGmirJKyi8iGJUHt3/ABrBNrVHznFmErQqwx1J6JWflq39zueBeNNJ1DR79LS9XaMEqex965u1u2iOyQ5X+VfYHizwpY+K7A21z8sq8xyDqp/wr5D1jSrrRNRl028GHiOM9j7itVK51ZNmUMXS9nLSa3X6ooyyF5S9b2iuby5S2fk56+1c5Xd+DrH/AFl+4/2V/rVx1Z6mKkoUm38jq9T0qz1azazu1BVhx6g1x3grwVPo2uTXl1hkjGIm9Sf/AK1eh1pQLtiHvzWjim7nhLFVIU5U4vRmXq+mR3sRkUfvFHB9fauWtYDCp3fePWu9ncRws57CuNqgw9SXK49DtdI8Yf2Xpky3x3+UhMfr9K+ctU1O61fUJNSujmSU5+nsK9XYBhtYZBrjdX8O5JuLEY7lf8KxnDqjsy6nRo1JztZyOUXbKPmHNauh6jNoeqR38RJVTh19VNYRDI2DwRVhJA/yngis0z2pwUouMtmfQt7omgeKLQXGwZcAh0+8M1neHNDvvDl49ix860m5Df3W9x715boviC+0SbfbNlCRuQ9DivbND8R2GtwhomCS/wAUZPIqz5jF0K+Hg4X5qb/D/L8iLU/C1jfbpIAIpP8AZ6E/SvDPEug3Oj3YS7UbZMlT2NfTFeafE+NG0u3mI+ZZCAfYiiWqDKsbUVaNNu6Z4VEstpdJd2/WNgw/CvpeKCw8R6ZFdXCAmRRz3FfOFe8fD+eSbw+qyc7HZR7ClTfQ9POk1TjVi7NP8zLl8OXWmXX2iD54jx7jNc/rXhfT9WVmZfLm7MOPzr2oqp61l3umQXOWTh/UVrZNWZ5NHM58ycnr3PDdC0u/0USWtz90NlWHQivSNI8Tz2pWC8/eRjjP8Qp93YTW3Eq5HrWJNYq3zRcH0pqKSsehVqQxGtRbnJaR8TPGvwx+Ib+LvA2oXGm3MNwJYpbd2icbTkbWHI/Cv7I/+CVv/BxTZ6vZ6V8GP20LgNO2IYNeXgoMhVFyO+c/fH4iv47b7T4bhfLu4w2a4TUPC9zbSfadKY8c4zgivnM44do4xOdrT7r9e56EqdCvBRekkt/8z/ZJ8M+KPD3jPQ7bxL4VvIb+wu0EkM8Dh0dW5BBHFb1f5vP/AASd/wCC1nxi/Yz8YWfwz+IG7WPA1yypPZSufMg7NJCzZAOOdnQ1/oPfAP8AaA+Ff7S/w10/4rfCDVYdV0jUYw6PGwLIT1Vx1Vh0INfluOwFbCVHSrLX8H6Hj16E6UuWaPaKKKK4jEKKKKAP5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvr+RD/AINc/wDkuX7c/wD2Vq4/9KL+v676AP8AME/4PVv+UpvgH/slWlf+nfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/AIPVv+UpvgH/ALJVpX/p31iv6/f+DXH/AJQUfAz/ALmb/wBSDU6AP3+ooooAKKKKACiiigAooooA/iF/4KF/s5/GnXP25/iS/gbwdresW11qxuY5bDT57hH+0RpKcNGjA8seh61/RV/wR08HfEf4f/sY2vg74oaDqPh3ULLV7/Za6nbSWkxhlKSK4SVVbaS7YOMEg1+qFVre9s7sutrKkpjOGCMG2n0OOlfM5bw3TweNnjY1G3Lm0tpq7/gfqnE/ihic6yGhkdTDRjGlye/zNtuEeW9rJK92WaKKK+mPysKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//0f7+KKKKACiiigAooooAKKKKACvnn9rb4/6N+yl+y58RP2l/EEYntfAfh3UtdaAnHntYwPKkQPrIyhB7tX0NX4e/8HI/iO48Lf8ABEj496nauUaXS9NsyR/dvNTs7dh+KyEUAf5dv7Ef7PvxP/4K2/8ABTTwv8I/GOpz3OtfFfxPPqXiPVBzKtuzSXupXIyCN6wrKyA8F9q96/2j/hF8Jfhz8BvhhoPwY+EWkW+g+GPDFjDp2mWFsu2KC3gUKijuTgZZiSzEkkkkmv8AMD/4M4PCln4i/wCCud9q9ygd9B8A61fRE/wu9xZWxI/4DOw/Gv8AVBoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzr4u/CX4c/Hn4Ya98GPi7pFvr3hjxPYzadqdhcruint51Kup7g4OVYEMpAIIIBr/Fv/bc/Z9+J/8AwSS/4KaeKPhH4O1Oe21r4UeJ4NS8OaoeJmt0aO9025OMDe0LRM4HAfcvav8AbVr/ACvv+Dx/wpZ+Hf8AgrnY6vbIEfXvAOi30pH8TpcXtsCf+AwKPwoA/wBLv9kn4/6L+1Z+y58O/wBpfw/GILXx54d03XVgBz5DX0CSvET6xsxQ+619DV+Hv/Btx4juPFP/AARI+Amp3TF2i0vUbME/3bPU7y3UfgsYFfuFQAUUUUAFFFFABRRRQB/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmv8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNAH5u/8Fi/+UT/7SP8A2TbxN/6QTV8qf8G1f/KEL4C/9g/Vf/Tte19V/wDBYv8A5RP/ALSP/ZNvE3/pBNXyp/wbV/8AKEL4C/8AYP1X/wBO17QB+5tFFfhH/wAFmv8Agpf/AMMt+CR+zz8FrsP8R/FEBzJGcnTLNuDK+OQ7DhB+NXTpynJQgrtkVKkYRc5uyR8tf8Fm/wDgr/cfD4al+yP+yrfE+ImXytd1yBvksEbrDEwPMzDhj/CPev5DFEjPJc3MjzzzMXllkJZ5HY5LMTySfWvWfEHhrXrfw5ca9qSTTvPMJbm7nyXmlkOSzMeSSa8qr9S4eyqlhaXPo6j3fbyR8nUzP65dw+FOy/4J7H4bd5NHhZzk4Ne8/BKfT7Px5BqWp3UVrDbI7s0rBQeOgz3r5S0+/u0sUgRyFHTHFPZ3flySfeuvG4D6xTqUnK3MmvvPlsTl7quacrXufqrrP7Rfwm0bbu1L7SWz/qFL4x69K8g1L9s/wnFHKul6VdSyLkIZCqqfrzmvgVzhSawmOSWr5/DcDZbD4+aXq7flYww3DmF+3d/P/I/QOw/a91jU7KV7PRo4JOis0hYZ+mB/OuF+IXxs8TfErwjd+C9eggW0vVUSGMENgEHg59q+efCqM1gQoJy3FdpHpd5JGZCu0AZ5rojkGXYarz0qSTTunduzXqzCpgsNQrXhGzT036HG6P4U0DQ1A062RGAxuxlvzrqbTVNP0qRri+kEaKp+tcNdaxeSsUjIQZxx1rjteZ3gVnO456k176w8p/Gz1VhZ15fvpPX5s9H1j4r28eYtFhL8fffjn6V5XqvijXNYbN7OxX+6vA/KptC8IeIfEMyx6ZbMyt/GRhPzrtIfh0tlctFqsu9kOCE6fnWkVh6Lst/vZ2RWBwjsrc33v/gHmWn28l1dpEi7uea9ZtdFuZQN+EX9a6Sz02wsF22kSp7gc1rWtrPeXCW1upZ3IUAeprKrir7aHBi8zdR+4rI+4P2ZvgV4Nu/CMXi3xHZm5uZZWMfmnKbV4GF/xrR/bt8eQfB79lvxHqehLHa3FzELSARsImDTEKSuOpA7CvqH4daEvhnwTpuihAhihXcAcjceTWB8Wfgr8OfjfokHh34l6eNRs7aZbhImJA3r0Jx1+lfzxic8VfOfrWLlKVKM7pb6J6JK9uh8thcZT+vU6+KvKCkm13Sd7fM/it0fQNf8R3i2WhWc99cSZISCNpGOOvCgmv3Y/Zd0Xw58H/g7p+lXzst/d5uLtCp3rI3YjtgYr9X9T8FfDf4NeAL6+8FaFZaallC7Ri3hRCC3ocZr8pbi4ku7iS6lOWlYuT7nmv1rJ89WeU6jVNwpxaW92392nQ+94j4zln9FYaNL2dKLvvdyetr6ad/U6z4m+KT4w8PyeG9GzCk7ASyOP4BzwPevmqL4QebIsS3hyxAHyev417ESFGTxXQ+F7eG71RXdl2xfNyRX0lKX1Wk1S0W54GFxdTBUXCg7Lf5nna/s1xEAnVT/AN+//r1taR8BhoUrXFrfCeRhgb12gD8M19DCWI8B1+mRUuCOteY81xT0cvwRxVM+x84uM6mj8l/kfOmreENZ0iNp51DRKcblOa5fHUGvY/iFqLDytNQkA/Ow/lXC+H9DfxFrVvo8PDTuFz6DvXp0MRL2XtKvr8jrw+Ik6XtKpR0y3x+/br2rutFl1K+nGnWURuJmB8tAeSRXZeLvhLq/heI3WnZurRRyVHzKB6ivS/gr4VW1sX8R3afvJvliz2UdTXmYvNKKw7rwal0XqedisdTdN1U79j82fFVxq8+u3K64rx3COytG/VMHpTvDXiB9Cvgz5MUnDD+tfcX7UPw20q90E+OrUxW1zakCUkY80HoPrX55Hk5r6DK8dTx2FU4q3Rrsz7bKcVRzDBq0bLZrs/I+u4JYpYVlgOUYZBHcGuf8UeBtS1PTz4jtoWEUXEj44Iq9+z/o194sElpfq/2O1IIkI4P+wDX23PpNlLpT6QsaiFkKbccYxXh47Mvqdf2cdWt/T/M+PxuMeAxPs4atPX0PzdtoUtVHkjBHfvXueh6gt/piXDnBUYbPqK8Z8YonhHV7nTb378TlQo7jtXG6d4mv72SSy3mOJvmCqeMivZlQdeCknp3PdqYKWKpqrHbe59YaB4t0eHWo9LE4Z5jswORu7c160Rxg18JWF5Jp9/DfxcPC4cfga+47K6W8s4rteBIiuPxGa8TM8KqUotdT5vN8EqEouOz/ADPjTxz4o8VeHvFd7pSThESQlAAD8h5H6UnhDxnrWp372uoTb8rleO4rZ+PmnRQ+ILfVISv+kR4IXrle5ryTwvcG31uA8/M23jvmvew8IVMNGXKr2/I+sw1CjXwEaigubl7dV/wx9J2es39jdx3kDYeJgy+mRXtFj8fvEMMmb+0imTGMLlTn1zzXiJ069HJjNVGR0+8pH1FeRiMFhsR/FimfNVMPRq/HFM+sdL/aA8NTkR6vbzWzbckqA659B3rX8Z+KPCnjHwTf2uk3UVzKIt6x5w27qMA45FfFs45BquGdWypI9xXmvh3DxnGpSbi0791/n+JzrKKXMpwbTQg5HNe4eDZ45tBiVM/uyVOfWvEB717Z8M7OfUdIuUtxzBJkgnruFejmNlSu+jOnMbeyu+jPSPDuuWvh7VY9TvmZYUyH2jJwfb619E6P4g0bXbYXOl3Cyqe2cEZ7EV8oa1ZypZSw3ClCBnn2rzq1vbuykEtpK0TA5BUkdK+axOUQxi51K0l9x4csJGsuZPU+/wC+0uw1KIwXkSup9RXnt78P9PsruLVrBiqQOsjxtyCFOSK9a+C3hy58bfDS2127uGN4zyKWboQpwKh8b+Gdc0TRLl5Ym2qpAdORXxFDNIU8VPBRq2lGTi131s7X3OF06tKVuh6ToPjfwz4hVV064USEf6tvlYfhU3i5rZtDmtLlQ6XA8sqeQQeufavheOSSNw8bFWHQg4NexeDdb1nVrWWLUbh5khYbQ3JBPvUYrhiOHkq9Kfup7Pf70VUXKro878S/s+eBtb3Taar2EpyQYvuZ7fKf5V5Fpnw3t/hZ4yS71+8ilheNvs7DIYHvuHbivtavhz4p+JbbxD4wuFtJVkjtP3Q2sGAI69PevrsixmMxM5YedRunZ3vq/vO3A4nEVuajKb5banvkFxbXcQmt3WRD0IORWJq3hqw1WIoR5bf3lr5r0/VtS0uUS2MzRkeh4/KvatI8cTeWq6ugJIHzJ/hXo1suq0Hz0nf8yKuDqUneDucpq3hDVdL+dV86P+8n9RVjwV4Vk8Uat9lclIYhukPt6fjXsdpfWd/H5lq4cV3+g6Ta6bbGSGNUeb5nIGM+lcuKzipTouLXv9GZyxs1BprU5u68Hx2MIXSV/dr/AAHrXK3NrHKDBdICOhVhmva6+nP2aPgxpfjvxE3i/wARW6S2OmMNqOMiWU5x+C9a+LzfiyllGBq47G6xgum7fRLzb/zHlmFq43Eww9P4pde3dv0PiVf2HfjL4u0JvFvhLSxFCV8xYZ3EbyLjPyKfXtmvjPxN4X1rwzq0/h3xRZyWV5bNskhlXaysK/rhVVRQiAADgAcACvnf49fszfDv4/aStr4hhFtfw7mhvIVAkViOjH+JemQa/KOGPpGYlY3kzqhH6vJ6OF+aHrdvnXfZ9V2P1GrwmoUV7Co3Nd+v+X4n8seq6TFOnlXA4zlGHBVh0IPYiv6Uv+CQP/BW+/0jU9O/ZH/av1MypNiHw7r9y/XHAtrhmPXpsbv0Nfzw/ELRY/CfjnVPBH2uK9fSLl7d5YSSjshwSM4//XXEy2ttcNG1ym/y2DrglSrLyCCOQQehFf1PjcDSzHDQrU3q0nF901dX9V9xx5VmNXBT5Z/D1X6+p/qDKysoZTkHkEd6Wv58P+CMP/BSa/8AjVoUX7L3x5u8eLNLgLaLezOCdTs4uCpOc+bEMZB5Zea/oPr8+qU5U5uE1Zo/RKdSNSKnB3TCv5EP+DYX/k579vj/ALK1N/6V6nX9d9fyIf8ABsL/AMnPft8f9lam/wDSvU6gs/rvooooAKKKKAP5EP8AgoZ/ytgfsY/9iZqf/orWq/rvr+RD/goZ/wArYH7GP/Yman/6K1qv676ACuO+IHxA8H/C3wdqHj/x9fxaZpGlwtPc3M7BUREGTyf0HeuruLiCzt5Lu6cRxRKWdmOFVRySSegFfw8f8Fef+CkmqftnfEqf4B/Bm8lX4deHLhormWAnGrXUZwT8vWJCDj1rpwmFqYiqqVPd/h5nPisVTw9N1aj0R8+/8FPf+CoXjv8Ab78dSeFPBz3OjfDHS5WFlZlikmoFTjzpgD0OMqvYV+YOhH7PqMIh+UAgcelaHifSb3RtRW0voGt2MasqMNvynocVj2LtHdxunUGv1fLMvo4XDqFLW61fc+PxOLli4Oo9mtD32v0d/Zj8QeGPA3w1e88VapaWS3lwTGJZAp445FflZJe3Uow7n8Krl3cYckj0JzXgcQcOLNcL9UqVOWLabsrvTofJTwLmkmz9jvE37X/wU8ORv5d9JfyRttKW0ZbPuCcAj8a8k1n9vrwVDKiaBo13dK33jIyxkH6ZOa/L68IEYHrVCAZmUD1FeDhfC7JKSXtFKb85W/8ASUjSnldFRvK7P1suv22NVMcR0TRI412/MJ5MnP8AwGvj3476zb/H/wAVWninxZarE1nF5SQxsdhBOcnNYFtDLLGixqWOB0pmtLdaNZi6mT7xwBmuvKOGMry2uq2BoqFTVXu27Pfds82lWnCadOVpdChpujaXo8AttMgSFB2UV1a+LtB8P6co1CcB+cIvLH8K8jutYvbnPzbAey155qQeS/ZRlmPQdSa+qWB9q/3jOqGB9vL97LzPVtb+MN7cZi0SEQj++/JryrUNZ1TVXMmoTvKSc4Y8V1Wj/DXxXrFm+orbmC3T+OX5c/QdTXZ6V8PtMs8Pfnz29DwtaxqYShdU7XXbVnWquDw2kLX8tX95554YsJ7mRpIkLdhXtngz4fXfiXxBZaPKTm5lVNqDc2CecVpW9pbWkQitUEajsBivqX9kjwhJ4o+LtnO8ReCyzM7A4Ax0r5ziTPfqeX4jG7KEZP5pafiefUxU69VRirXdj9Mvht+zR8J/h3ZRtY6at1c7FJluQJGBA7AjA5r+er/guF8VW1L4paD8I9PxFZ6XAbmRUK7GkfgcDkED1r+poEHmvjvxD+wf+zL4w+K158ZPGnh5NY1m92ljeMZYlKdCqHgV/IPA3HVLL88edZ5KpWlGMuVXu+Z6dWkla/8AkfoGTzoYLEwrOF1G7surtZf5n8Z37PHwvuviP8TNJsb2OWLTfPVprko3lqqnOC2MD86/o4k8c+D9FtVsraYyLAoRVjGeFGBz0r6B/bQi8J+A/D2m/D/wZpVrpcFw5mdLWFIlO3/dA5r85cHOPWv6gyvOFxTgaOZVaTpQfNyx5r6Xtduy3tsfLcb5vLNsZHmXLGmrJXvq93t6fcc38XdK1L4n+JRqaTLbWsK7IVYZYjuTiuI0L9n7UddnaKPUI4wgyTsJr1sg45r2bwPYC2037Q4w0pz+FfTVMwqYPDKnRdktFojwFmuIw9FU6UrJaLRHzR/wyvqv/QWi/wC/Z/xrrbb4La7oNh9msWinCdwcFj9DX1EGDdKY7qqMx6Ac15Tz7GS0lK/yX6HHVzrF1UlUldei/Q+NtS0fUtIn+z6hEY296z0Qu4QdTxXpHiG/bVNTlnkO4ZwM9gK7r4afCCbx3FdajbyCE2/CZ6Mx9a9etmdPD4f2+KfKtL/M61ibQvNanA6dCdPhVIjg9T71V8e33iS18HSappdrKYt3lyToMqmfWvQb/wAEeIdK12Pw/qEDRzSvtQ44b3B71906L4G0Wx8Ir4WuoElikj2zBhwxI5Jr53N+I6GB9jWSU+Z336dX/kcft4QnGclfU/BsuxbzCTu659692+HniePVI/7KvG/fRD5ST94VQ/aB+Gi/C3xvLpdtJG1vc5lhVT8yKT0I7V4ppd9c6dfxXloSHRgRiv0CE6WPwsa1F+7JXTPs6lGGMw6lHrqj7Oe1F4htCu7zPlwO+a8Y1/4fX/hnVzFqsbRI/wA8YYYytfdXwf8ABkU2kW3irWIj50yhkjcY2574NQ/tB+Ff7V8OJrVtHulszliOuzvXxeH4hjTxywsfhbs35nyGHzB0q3sls9H6nx14Yvl0u/VVGEf5SBXsNxd21tEZriQInqTivlbVPFMNkxis/nkHfsDTJdd1HWolnvZmfjGOw/CvqK+AdRqb0R6tbLZ1Gqj0R9/+BfElh4h0o/YpRIYDsOKxPi9Hfp4MudQ0oA3FuN659B1rxj9n/XGttZuNEP3Z13jjuPevqHXrS31HSLnT7jbiaNlw3TkV8di6SwmPVlpdP5HgV6Sw2JS3SafyPzO/4Wn4s/vx/wDfH/169N0LxdqWpaYlzIylzwcDHNfPmrWZ0/VLixbGYpGXjpwa9K+H32m7spbaIM+xs4A6Zr9BxGHo+z54xR9xj8HQVFVIQSPoLwl8UNa8JvKYY45lk6q3GD+Feq6b+0NbbF/tewZcfeaJgfyBr5nlsryFcyxso9xVbn7prwcRk+DxDc5w1fVNnzk8FQqauJ9q6H8dvhxrjCH7b9klIOVuBsxj36V8z/tLJp934hsta0srLHPFhpUO5SR05HtXztqUax30idearGWUx+UWJUc4J4q8Bw5RwmIjiaE3az0fn56HoYPJ6dCrGvSk7dn5lnTZBBfxOTgbhnFexA5Ga8TicRyq7dAQa99bSb6O3S4CFkdQwI54Nenj7JxbNcyspRbNXQ/E+j2LDSb6cRzMcqG4GPr0rvwUkUEYZT+Ir5N8cwBLyKXoWWp/AfiDWoPEFppsVw4hnlVGUnIwfauOrlqlT9tCXS7OOplXPS9tTlru0z33WPA2hauTK8flSH+JOOfeq3gew074f6tMNYmXZcgCKQjpjqD6V7ZqHg29tl82yPmrjp/FXzr8SkuLfUIra4DLhc4YY5rzMLiPrUXQ5/df3nm4arKuvYOXus+mLW8tb6Hz7ORZEPQqciuU8ZfDLwh8Q7VYvE9t5zICqODhkz6V8v6Vr2raPLu0ydoskZAPFfaWjtcPpcD3bB5GQFmAwCTXFjMLUwcozhP0toznr0KmCnGpTnZ9GtGfEXi/9jt1El14M1EHAJENwP0DD+tc/wCC/DsvhTSBo15tFyjMZQDkbvrX3V4u1ePRPD11fSMFIQhenU9OtfE7yGWQzN1Y5/OvdyvHYnE0pKtK6W3c+gwmb43GUHSxM7xT001+82pIo5RtlUEe4rjdX8LvcMZ7J+f7rf0rXa+mth13545q5balBLhHO1vevTi5w1RvTdWk+aB5Fc2dzZyeXcIVPvXsPgDwVFLbprmojJbmJCOnua07bTLfVp0trhA6k859K9QiijgiWGFdqqMAD0rHF42XLyR0bJx+azlT9nHRvczpIXj69Kig8IXHjC8XStMtWuLqThRGuW//AFVuJG0zrEo3FjgD1zX6Y/Aj4U2XgLw4mo3sKHUrwB3fHzIp6Lz6d6+J4l4nhlGG9s1eo9Irv5vyXU8WNRrVbn5QePPgL8Tvh5aDU9f0yRbQjPmph1Uf7WOn4146G28Hmv6NLuztL+2ezvolmikGGRxlSPcGvzD/AGr/ANnTwx4D0G7+Knh65SytEkHn20h2qN5wPL+p7V4/CfiVHH1o4PHwUKknaLjezb2TWrT/AA9D08NinNqnJavbzPnD9nb9of4sfsm/Fax+MnwVvmtb61dTdWhYi3vYQfmilUcEEcA9RX97f7Cf7cnws/br+Dlv8SfAT/ZdRt8Q6rpcrDz7O5A+ZSM8qT91uhFf53cTpLGJIW3KwyCOhr6f/Y9/al+I37G/xosfiz8MRLMzzImpaejkR31qTho2XON2OVbsa+uz/I1UTxNBe8t13/4P5n2uS5rKk1h6z93o+3l6H+j9RXh/7Of7QPw8/ae+EGj/ABm+GV0LnTNWiDbSf3kMo4eKQfwujZBBr3Cvgz7I/kQ/4Ohf+ThP2Ef+ytQf+lOnV/XfX8iH/B0L/wAnCfsI/wDZWoP/AEp06v676ACiiigAr8zP+Cz/APyiW/aP/wCyd+IP/SOSv0zr8zP+Cz//ACiW/aP/AOyd+IP/AEjkoA+dv+Db/wD5QmfAP/sE3/8A6cruv28r8Q/+Db//AJQmfAP/ALBN/wD+nK7r9vKACvJPjh8cfhl+zr8NtS+K/wAWtUi0nRtLiaWWWVgC2Bwqjux6ACu78VeKfD/gjw3feL/Fd3HY6bp0L3FzcSsFSONBkkk+gr/PB/4K7/8ABT7xP+3h8Xrjwd4OuXtvh34duJItPgUkC8dTjz5B3zj5R6V35bl1XG11QpL1fZdwPH/+Cpf/AAU/+MP/AAUb+JEmk2Ek2g/D7TZXWw09WwZQDgSSgdWOOnQV+Rd7o1ho2y0tF5xuLHqTXa32q2tiu3OW7AVxN7eS383nSfQAdhX7Fl2WUMFSVKivV9WenhPaadI/mUq6LT1AtgR3pNM8P3V+BI42J6mtSe1jspDbRZ2r0zXoxNK9aEnyRepGOSK7I3FvaW67zt44HeuDkuNpwtWjI8uGcknpzVHHVo81r7G02py3FyiJ8q5FWdW1+y0tCHbdJ2UVgeTL5TSIdpUZBrzkme7nLNl3Y8+tTJ2Lo4OFSW+iH+ItZvtXIaY4QHhR0FVdK8PXeokPIPLj9TXX6f4cQoJr4ZI6LXRSSw20eWwoHQVn7O7vI7ZYqMI+zoo1PDtna6datBDgAYJPr70mpa6kI8qz+Zu57CuNbWZZ5DDH8sbcEetSwW8tw+yMc1okmcLwvvOdVnGat5st+7NkluaihtMjdJ+VdjrelLaLHcdWPBNU9N0m61KQCIfL3PpWTjqenHER9mpXsjhorK4uJ/IhUsc44r0fSfD0OnRmWX55SPyrpBotrpJxbj7/AFJ9aoXt+lquF5f0q4wS1Zy1cZKt7tPYmiieVtqD8au3NqkMG5Oo6mnaTcpc2u5eCDzVm4lUoYl6nitDglKSly9jlLu+jt1Kjl+wrS8Nag06vbzHLDkfSuNvIpIbho35OetdHouj3DI1yxKEj5feoTbZ3VqVNUtXv1NrUtZSIGC2OW6E+lT6beC5td0h+ZOGrj2hkWQxMPmBxiuwtvDk6aa8rkiRhkKP60Jts5KsKdOCTe5j6pf/AGoG3i+53PrXHeS5l8pRk1ulWDFCOemK0YbIRr5xHzmnKNzshONKNkXfC0q6HfJcsM54Yn0Ne53OoW1tai6LblYZXHevAndUXc1amm61LcBbG4b5V+5n+VTKCdjxsdgnXkqvbf0LviMSakzX2OR29qy/D+hTaveKGB8lTl2rpghkOwd66/QBbW0AsYgFOSfrVPRaE1MVKjQcKa1/I4Pxb4ZGnsL2wX9yeGHoa8c8QakkcRso8Evw3sK+t72OK4t2t5gGVxgivkvx54YuNA1ZpF3PBLyrn+VZyk+U7Mixiqv2VV+8tvM8nuLV4pPl+72NfRXwl0Sfw+g8QTgiaX7qnj5f/r1x3gzwo2t3Iu7xc2qHJz/ER2r3pUWFRGgwF4GPSohT6s9HOMapReGj13/yPX7LVLW8tftSsAFGWB/hr568cyL4lv3uEwPLyqEdwKs6prs1kGsrVsb+Hx6elZMciyKGWtIU0rnzuXZe8NUddfI8zNrMs/2dhhs4rv8ASL4WKLav/q+x9Kju4Y5n8xVG4cZqgFZ2C96uMbH0NSarRsztry6WG33IeW6Yp+mazGyiC6OG6A9jVf8AsGY6ajhiZAM7TXOlXD+XjDDjFM82FOnOLimdP4ivfJiW3jbDNyfpWDbXazDa3DUy+tpnVZidxAwaz7eF55ljQYJNM3pUoKnudpaWazQFn6npWfLC8JIcfjXR25VYxF/d4qhrd1Ha2JdgCx4XPrSOOFRuVl1ON1PQINQj3p+7kGeR3rzueyuLe4+zzqQxOPrXq1hqKXY2PhXHatJNGtdVbFyv3OQfQ1lKKZ6FLGyo3jU2PLJbMBcxnkU2weaC8R4yVZTnjiup1TSLvTZT5gymeGHSp9G0VNRWSduGUYU+9PlOn61H2blLVHa6L4rinxb6kdj9A3Y/WpfGMVteadHDJg7myPyrzu7sriyk8ucY9D2qxHf3DQpDM25E4XPbNEVrZnnfUoqoqtJ/15HF3+jz2mXj+dPWtPw5rV7o4LQHKE8qe9dVlJBjqDVG50JfJ821GD1x60ezs7o9J14zjyVVuekaT4hsdWjCq2yTup6/h61kf21PY38sb/Om48d68vH2i0nDLlHU8V3sthO8QuM72YZbPUmqi7nm1MDSpS392R3C3lpf2zGMhuOR3rz5bgqxV+metQxyzW75jJU9KjYHqe9WkKjhlTulsyxe7XtmZeq8isBJhnBrfs4Fup1tX+6/BxVbUvD1zYkyR/vE9uoqXc6YVIwfI3qUo9F0/Wt0N2vzYyrLwRX6Z/8ABM//AIKL/Gr/AIJzfFWC70maXWPBl5Iq6jpjudjoepUdFcdQe/Q1+YdrezWMnmR/iDXYWOq218u37r91NefmOXUMbSdKsvR9Ux1/aJd4/l/kf6wH7NX7Snwp/au+E+m/GD4Q6il/pmoRglQR5kMn8Uci9VZTwQa99r/Nz/4JV/8ABRzxX+wZ8XYWu7me78JaxcJHqem8snltwZYx2kXr7iv9Ff4dfELwj8VvBGmfETwHex6hpOr26XNtPEcqySDI/H1HY1+O5nltXBV3Rq/J913POO1ooorzwP5EP+DXP/kuX7c//ZWrj/0ov6/rvr+RD/g1z/5Ll+3P/wBlauP/AEov6/rvoA/zBP8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINTr+QL/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1OgD9/qKKKACiiigAooooAKKKKAP45P+C551Kw/bW8jz5Rb3nh+wnEe87M7pYyducfwV95/8G9Wp+b8O/iZo+f8AUajp02P+usUq/wDtOv3P8a/AP4F/EnX08VfEXwXoWv6pFCtul5qWnW91OsSEsqCSWNmCgsxCg4BJPc10vg34b/Dv4dQzW/w+0DTtCjudpmXTrWK1EmzO3cI1XOMnGemTXyOG4bqUs2lmLqLlbk7Wd9U+p+y5r4oYbF8HU+GVhpKcY01z3Vrwkne1r6pW3O0ooor64/GgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9L+/iiiigAooooAKKKKACiiigAr8Bf+DomQx/8ABCr45sO48ND8/EGmiv36r8Af+Do7/lBR8c/+5Z/9SDTKAP4/v+DKyMP/AMFUPHbH+D4WaqR/4NtIH9a/0/6/zBP+DKn/AJSm+Pv+yVar/wCnfR6/0+6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4a/wCCjH7fvwV/4Jo/speIP2q/ji0s1hpey1sNPt/+PjUtSnB+z2kROQGkKks54SNWc5C4r/Nu8af8Fyf+C/3/AAVf+NNx4K/ZGvPEGkgI8sPhv4aWckQtLYsF824u0D3OPuhpZZ0jDH5Qm7Ff0t/8HqXgbx14h/4J2fD3xjoEMs+ieHvHUL6qI1LLD9psrmKCaTH3VDkxgnjdKo6kV+Of/BqT/wAFff2Ev2DPCPjv9mv9q+9XwTq3jTXINUsfFVxCz2M0SQLCtndSoGaAROrSRu48o+c+5kIG4A/Pr4hftd/8HO3/AATINh4/+Pnin4qeH9L+0rsu/FrS65pcsmQRE8159qgy3QIXDEdOnH9n/wDwb+f8HBOj/wDBV7TNU+Bfx90/T/C3xl8PW/20W+n70sdZ09NqvcWyyO7RyxOQJoS7fKyuhK71j/anxsn7Kn/BSP8AZc8X/Cnwr4l8PfELwZ400m50u5udJu7fVrVRcxkJIGhd0EkbYkjOQyuoYEEAj+Yb/gld/wAGrHxd/wCCcP7eHgT9sa6+OGn69a+EXvvtGmWujTWz3kV7Zz2pj8xrplA/fBuVb7vTOKAP2B/4Lnf8Fd9e/wCCPPwE8HfGjw/4Ft/HkninXzorWlxqDaesKi3ln8wOsM245j27do65zXsP/BGn/gpVqX/BVv8AYxh/as1fwhF4JuW1q/0h9NhvTfp/oewiQStFCfmEgyu3gjrzX+eH/wAF+/8Agrp+2x+3Tq1/+y/+0P4A0fwv4Q+HfjnU20XUrDTr+1uLs2jXFpH5ktzcSxPuhO8+Wi5PIwOK7/8A4Iff8Fvv2/f2KfAng39jf4HfDLRPE/gDWvGUb3mq3emajPdxjU5oIrgLPb3KQKUQZUtEdp5YMOKAP9Viivy2/wCCrn/BWj9m7/gkl8CIPiz8bxPq2t6681t4b8O2JAu9UuoVDON7ArDBFuQzTMCEDABXdlRv4WdV/wCDrX/gt/8AHbWtT8b/ALPvgbRbPw3pbl5rbR/Dl1q0NtEOQLm4eSU5wQWYeUD1AUcUAf6d9Ffxdf8ABGT/AIOwvDf7XXxN039mD/goJpOleBvF+uTw2eheIdKEsWkX91KQiW1xHLJK1rNIxAjk8xoXYlT5R2hv2E/4L+/8FNPjd/wSi/Yn0f8AaU+AejaHrmtah4tsdAkt/EEVxNai3urW7nZwttPbv5ga3UAlyuCcgnBAB+4NFf5xN/8A8Hov7YHiD4Aaf4W8E/C/wzP8YdU1O5jkuoLa8bSLaw2xrbpDZm6knnu3cyFmM6xoAgCOWbb886d/wdlf8Fqv2e/H9ov7SPg7QLq1nImfSNb8P3OjyyW7Y/1LpJE68H5XZZBzkhulAH+n5RX5m/8ABK//AIKofs7f8FY/2dz8cfgWLjTL/S5ksfEGg32PtelXzIH2Fh8ssTjJhmXCyAEEK6ui/plQAV/n9/8ABX//AIOxPjjp/wAd9T/ZQ/4JVWlvb/2JqUuj3Pi64s49UudSv45DDs0y1cSwmHzAQkkiStOSCiKuC/8AZN/wUt8RfFDwr/wT3+NWr/BHTtU1Xxl/wheswaHbaLBLc6g2o3FrJDbmCOANK0iSurgIM8Zr+FX/AINQf+CWnx08H/8ABQrW/j9+1/8ACLxP4StvA3huafw9L4o0K606E6vdzRQrJC13CivJFb+djZ8ylg3GBQB8Va3/AMF7v+Dln9jXW9K8dftN3fiCw0nUpBJBZeOfBVvpthf5G7akgsbObBUE4gmU45r+9X/gi/8A8FgPhV/wV/8A2cr34m+GtLbwx4x8K3EVh4n0B5RMLaeZN8U8DjDPbT7X8tnVWDRuhB2hm1f+C8vh74J+If8AgkH8fl+PEds2l2XhG/u9Pe5A/d61EhOltGT0kN75KLjBO7b0Jr+Lj/gyXm8YL+3v8WLexz/YDeAC17ycfbF1G0+zcdM7DcUAf6XVFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX+X/wD8Hqcax/8ABVDwIw/j+FmlE/8Ag21cf0r/AFAK/wAwT/g9W/5Sm+Af+yVaV/6d9YoA/sB/4NdpDL/wQq+BjN2HiUfl4g1IV+/VfgD/AMGuP/KCj4Gf9zN/6kGp1+/1ABRRRQAUUUUAFFFFAH+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5r/EG/4Kxf8pTf2lv+yq+Mv/TvdV/t80Afm7/wWL/5RP8A7SP/AGTbxN/6QTV8qf8ABtX/AMoQvgN/2D9V/wDTte19V/8ABYv/AJRP/tI/9k28Tf8ApBNXyp/wbV/8oQvgN/2D9V/9O17QB+jP7bX7V3g79jP9nfXfjf4uIdrKPyrK2B+e5u5OI41HfJ6+1fxM2n/CRfFDxbqnx5+MEn9p+LPFU5vbqaX5/JVv9XCmc4WNcKAPSvr/AP4LIftPa1+1X+12Pgt4NufM8G/DKcQzYb91c6owBkOBw3l/dHuK+dol2xKvoBXbGk6dONW+sr/d/wAE/MOOs4blHA0paLWVu/RHzb+07qH2HwLBpsaDZczgHHGNvPFfBCRSyHbEpY+wzX6C/tE20Fx4fsvPUNtmJGfpXyYkUcYxGoA9hX6Jw5VUMDGy1u/zPNyLFKlhEktbs5S3VkhVWGCBW5pWmjUWZWbbt5rNmI81vqa6Xwsskt28ESs7MucKM9K9urJqLkj1K82qbktzTh8N6eWVZNzeuT1rsIPCXh+FxItsuR68irNh4e1u+k/0S0lk24Jwpr1jSfhv4p1NA/k+QvrIcfpXi4rHRgveqW+Z89icbKO9S3zPObeytLRdltGqD0UYqSbAhf6Guu+IfhC98E6Xb3hmWR5nKEAdOK8Wku7iZg0jk45rPDSjXiqsJXRlQj7Zc6ehnaT8O9f1d/NkUW8TE8v1x7CvT9L+F3h2zAbUE+1uDn5+n5V3mnzF9OhmlIGUBJrgfGXxU8N+D7bdIxuZmyFSPnkep7VMsViq8uSn+H+Zp9bxeJn7Kle/ZHoqQQ28Pk26BFUYAUYFfNPiXxNpGh3MrX8w3bj8o5br6V5b4s+OPi3xFGbSyYWMByCIiQxHuev5V43NPNcSGa4cu7cksck162AymcLyrPfofR5ZwxUXv4mVr9Fv959tfCmTTfiFJeXDKyRWjKAOhbNfVHhXQtOTWLSyt4QivKinaOcZr5l/Zls7aPwfc3iLiSSchm9QBxX1Pomr3Og6pFq1mAZYSSu7kZIxXzGeTn7SrSpdNEr9bf5nymdpQxdSlT+FOyR+gq+XbQKGYKqADJOOleQ+Mvjz8NfBTPb6jfCa4TrFB87Z9OOB+dfM+teMPEuuljqd3I6n+AHC49MCvjfxHc/a9dup8Yy5/Svhcm4DhWm3jKraXSP+b/yOTBYVVptSeiPoT45/tR/8Jp4bm8NaJp5gt5mH72Rvn+U56DjBr4luNe1J1ZjJtGO3FaXiWZYljDsAOTya4n7TDfP/AGfaMJJZcqoHrX65k+UYXAYf2WGhaN79/nqfY5fgqdOn7sdDkbvVtSumZZp3ZSc43HFUhcXCnKyMPxr0EfDLxCwyWiGf9r/61NPwy8QA8tF/31/9avbVejspI+hjjsGlZTRyGnXl8t7G8czqynIIY9vxr0yw8beKtPctBeyNnqHO7+dYSeCdY0p/Nn2NuGAFOTU9vpt0byOKSM8sAc9Kzqeynq0mjkxM8PW10a+R7NNHf65DHqd4QJ5FBYYwOle0fAbw+ja3dapeAbrdQqA9ct3FeZRqqRqidAABWjp+pX2lXS3mnytFIvQqa+cxlOVWhOjB2ufGYjmnSlTjpc+6XVXUo4yDwQaZDDFBGIYFCKvAAGAK8r8EfEy01+WPR9T/AHV4V+UnpIR6e9dt4u8Q2nhTw3ea/fPsjto2bPvjj9a+Aq4StTqKjJe89vM+XlQqRmqbWrPhX9qv4gXWpeIF8D2kn+i2eHkCnOZD6/T0r5p8H+F9Q8ZeILfw/pozJM3JPGFHU/gKzNZ1W61zVrjWL5i8tzI0jE9fmOa9T+FM914evV8S23EinC+69/zr9ZoYb6lglSpW5kvvff7z9ahR/s/LlTp25kvvkz9EPCvhrT/CWhW+g6aoEcCBc4wWPcn3NdFXKJ4w0lvCzeK2cLAkRkYE8ggdD715D8GPjC3jnUL3RNW4uA7SwHoDET936ivz76pXqRqV2vhep+Y/U8RVhVxDV+V+8/U8U/ah8MHTvEtt4jhXEd4mxiOm9f6kV8yWdwtrcLO3Rev0r70/alj08+B7eSfb563K+VnrjB3Y/CvgFhkEetfeZDWdXBQ5ul19x+k8NVnWy6Cn0uvkXL/xfO52aeoVf7zda+w/hfrU+s+CLKaVmyimM5OcleM18FsNrFfSvrf4EajJ/wAItNBMxKxTEIPQEVvmtFewTS2ZtxNgqccEpQWqa/E1fjNaGXQ4LpUyY5cFu4BFfOlhO9tew3Ef3kdSPwNfZOtaHbeMbI6LO7RKxDbhyflrnbD4G+HbWbzLueWcDoPu4P4Vw4XMKVGl7Oo9Tw8tzahh8N7Ks3fXS3RnU27mWBJD1ZQT+IrOvU/fZI6ith4Ut2MEf3U+UfQU5dLa/XerBccV58JpO/Q8GM0nfocrJbwyj51zVGXS425iJWunvtLnsLd7qXBRBk47CsWG6t7gZhcN9K6YSurxOqE3a8XoaN18O/EkGmx6rBGLiKRQw8vlgCPSvTfgur20WoWlwDHKHQlG4PftXqnhj/kXrL/riv8AKtgQQrL5yoA+Mbsc4r5vFZnOpCdGa67+jPFxGYTqQlRmuu/oxs9tBcxmKdA6sMEEV53q3w1s7jdLpcnlN/dP3a9Rt7eS7nS2i+9IQo+pq/e6be6bJ5N5GUPv3ryIYyVGajCVn2OCnVnB+6z339m+5s9H+H0Hh2+njS7jlkJjJ5wTkEV9FSQxTIY5VDKeoPQ1+daM6PvQlSOhHBFeoaB8X/Evh+IQXRF5EMACQ/MB7GvzrPeFK+IxFTF4ad5Tbk09NXro/wDOx0RxN37x7X4r+DPg/wATL5kEIspv78Ix+Y6GvnLUY9F+GWuv4Q1C4DSsBL5uMDDdAT619O+Gfit4T8QxhWm+yzcZSU45Poe9fBPxtlSf4n6rLGwdS64IOR90V1cIUsfWxU8vx0pKEYt2fe6Ss3019C3ThUVj1zxF4ksdH8L33iKOQSx2sDy5T5ug/wAa/Fu61i+n1SbVUkKSTSNISh28scmvrr4la9d6L4Mu47Wd4jdAQ4U8MG6g/hXxhX7ZwxlSwkKsr35mvuX/AA59hwrgVTpVKj1u7fd/w57D4G8V61f6pHYXmJo1BZmPUAe9fQ0Gp2s2BnaT2NfM/gHWND0sSR3b7J5T95hwAO2a9jt7mC5QSW7q6nupzXoY2knPaxjm1CPtnyx5UelQzSwMJIHKkcgg4r1bw/8AFK9tNtvraecnTevDD/GvEtKSZbbdKc7umfStOvBxWDo1ly1Fc+fq0Yy0kj7M8L39p4xu4LDQHE09w6xrGPvbm4HHWv3D+Gnw7sfAXgiy8NwACSJA0rD+KRuSa/J//gnf8D7vxD4wl+L2uQkafpQMdoWHyyTtwSPXYP1NftWcV/FPjtxBTlmcckwdS8KWs/8AG/s+fKvxbW6P0ngTIIUKU8bUWs9I36Jbv5v8vM56W0mh6jI9a+Cf29/2lrP4C/CabSdJl/4n+vI9vZhCN0SkYaQjIIABwD6196+LfFWgeCPDV74t8U3C2lhp8TTTyv0VVr+Rj9qr446p+0P8XL/4i3iGG2Y+TZwZyIoE4Ufj1Pua5vAzgF8S5ysTi4f7Jh7Sm+kpfZh895eSs90fSZzXhhoqMX70vy7nzmbiczm5d2aVjuZycsSepJ75rutIu5tThkcIf3ON5HQZrgK91+D+lmS1vb2cZim2xgEcHHWv9B8bONOk522PgsxnGnRdR7oq+FfF3ir4feJ7Dx54GuDZa5pE8dzYXSsVaKZCCCCOzD5WHcGv9Aj9gD9sHQP2z/2fdO+I9sBba3aAWes2X8VveIPm46hW+8vtX8B3iDwnc2NwJLBTJE54A6qfSv0x/wCCSP7Uuo/si/tMWlt4qkkt/CXjeaLSdVEmQkVw5ItrjngYc7GPoa+J4hwlOrTWLp7rf0/4B63DObRclhpS0e3k+3zP7na/kQ/4Nhf+Tnv2+P8AsrU3/pXqdf12qyuAynIPI+lfyJf8Gwv/ACc9+3x/2Vqb/wBK9Tr40+5P676KKKACiiigD+RD/goZ/wArYH7GP/Yman/6K1qv676/kQ/4KGf8rYH7GP8A2Jmp/wDorWq/qJ/aF+N3hD9nL4MeIvjV45mEWneH7OS5fJ5dlHyIOnLNgD60Afix/wAFp/22NY8OWdh+xN8F9Sa08SeLIjJrV3A2HstN/iUEHIeUcD2r8IPCfw88H+CbCHT/AA7YxQLCoUNtBc47k9cmvK/AfjT4hfG741eKf2hviizS6r4qka5/eHc0MTN+7jXPRVXAxX0RV4uM6ElTvuk389bH4lxnnUsXi3Rpy/dw0Vur6v8AQ/Mb9obVf7T+J96uzZ9mCxfXA615LpUT/alkKnaO+OK+mPiho2mt4/1G6kiDO0mSSM84rgNRSOOyKooUZHTiv1nLq0Y4SjCK+yvyPSweOUcNTpRj0SOZrsdP8LLdQJcyy4DDOAK46vXtBD3GlxPEjEAY6elXiajhFNMyxlSUIpxYui+BdEvJGS9DSADI5xj8q7Sy8DeGLEDyrVSQcgtyR+Nbnhfwx4huJt0NlMwcDadhwc17bpPwX8X6jhrkJaqf755H4CvlsfnNKi37WskvX9D5/EYupzNc7t6nj6RRRrtjUAVx3jayu9RsorSxjaWQvwFGTXTeMIr/AMOa9c6CzqTA23co603wReTjXlDHdvBBzWtOo4wWIhqrXXmZ03KH73tqcjoXwX1u9xLq8i2ycfKPmY17JoHwx8J+H5vtUFuJJ+P3knzHPtnpXdXN3a2kXm3Uixr6k4r548b/ALRfh/w7O+naFC19cIcMxO1Afr3riWIx+OlyU727LRfNhCeMxkuSnd+mi+f/AAT1nxzti0XI+Ubue1fMGs/ELw3o7mF5POlH8MfP614t4x+LHjTxnIy6hdNFAekMXyp/9euF0qOO41O3hl5V5FB/E19Nl2SOjStXeu9l/mfSYHh32dO+Il8l/mfqn4J8C6NPpNtrd8vntcxrIFboNwz071+gH7K+hWMWp319bKIzEgUBQACDXyZo9rBY6Ra2dsMRxRIqjrwAK9Z8K/FDxD4M0abSfD+yFp2DNNjLfQV+G8aUcZmeBrYXDy96bS1dklfX8PI+UwOMhTxarVb8qbf+R+lGo6ppukWzXeqTpbxIMl5GCgfnXzF45/bD+EPhHdBY3D6rcL/DbDK5/wB48V8LfFTxjruqaBcT63dzXJk+UbmJAz7V8jHg18xwv4LYOrD22Z1nLX4Y+6vv1b+Vj6R8R1Kqbox5V56s7n9oX48XXxZ8bHXILQ2iRp5YjZ9/418wa74i1aK2HlTFCT1Xg1e1S6QX0hmcA7iOvpWSNB1LxX8uiqJBH95icAGv6SynLMJl+GpYahBRpQSS62Xqx0lHm9pV9W2cXNqup3D+ZNcSM3ruNOXWNXRdqXUwA7B2/wAa7YfCvxb/AHI/++6P+FV+Lf7kf/ff/wBavY+s4bbmR6P1rC/zRK3h3xT4msY5Da38y7iP4zXrfhn4ieLb+5GkXMgnjkUqSw+YD1zXlKeGtX0xTb3EeWXrtORXe/D6wYahJcSoQUXAJrzsZToSjKfKmeVjlQlCU0kzsLjSLmFi4+ce1foZ8JfD0Hh7wVaQoF8yZRI5HctXxH9K9K8EfEvWPCUywys1xZ5+aMnJH0PavhuJcFiMdhVTovVO9u58/UnKSsfaVxp1jdzR3FzEkjxHKMwyVPtWf4l1qDw5oN3rdwfkto2kOfYVF4a8UaT4s01dT0iTeh4Yd1Poa+Rf2z/H7aN4Tg8HafNsnvzmQDr5Y/xr85ynK6uMx9PAyTTvZ+SW4sLh3WrRpLqz85PiP431T4g+LbrxLqrZaViFHZVHQCvdf2ZfhL/wlmt/8JZrMe6xsm+QMAQ7/wD1q+VoYnlnWBerHFfof+z34qh8Mxx+EL07YpuUPHDn1PvX71xA6mGy2VHBq1lbTpHrb5H2OdVZYfCeyoadPkfZKIsahEGAOgFYviTSYdc0K60mYZE8TLyM9RXj3x0+LT/DTTbX+zyGu7iQEKefkHWvUvBvivTvGvhy38QaY2Y7hQSD1B7ivyN4LEUqNPG2tFvR+a/r8D4J4erCnHENe63o/Q/GTxHpNxoWu3ekXQKvbyshB4PBqC31u10y2K3GSc8Ad69d/aIs9Ps/ipqC6fja5DNg5+Y9a+etWTdAG9DX7vgqv1jD06kvtJP8D9TwdsTSpufVJnofgDx3eW3jaxkjBjjaQKQvU596/QN5ZZhukYtn1NflRo1xLaatbXMBw6SqQfxr9OrTVY3s4pGyzFFJx64rxOIMOlOE4ro0eBxVhIU6lKUFumvuPhj4nWB07xpex+X5as+4D2Peul+D93Imo3FoANrru9+K9x8VfByPx7qra8b02+4bdm3PSrWk/CLRvA9u2pW88k05XaxbG0/hWss1w8sMqLfv2StZ7jq5vh54JUG7zslaz3J5l3xMO5FcC0ShiCK9Cxu+X1rGn8MXoJkiZWyelclOoo6N2PHpVFHdnnd74fsLxjIw2se4rEXwRe3M3lWLhmOcBuK7jUSmk3K2uoMI3cZAJ6itnw8Q2qRkcjmuz6zUhDmT0PQWLqwhzReh4bqmgavpEhiv4GTHfGVP419aaKY5dItmBDDy1/lWjLBFOmyZQynsRmkgght4hDAoRB0A4ArgxWNdeMVJao87GZg8RCKkrNHlnxA0DTdReISIFbBwy8GvM9C8Lz6V4msb4OHijnRmPQgZr37xFoep6jELyyiMqRD5tvJFebsjI2xxgj1rowuJl7J01LTVM6cJi5xpckZaH3La3VtdxCS2dZFx1U5FZms+HNE16PytWto5wBgFhyPoa+RNI8Qatoc4n02Zo/Vc/KfqK9j0T4yWzOttrsOz/ponI/EV8vWyivRfNRd/TRnjzwVSDvDX8zF1/wCCWnWc39q6ZPsgiIkeJ+RtXkgH6V3OieJ/D+rQrHps6/L8oQ/KePar/i/XNL1TwXfT6dcLIDEfutzXxcrMjbkJB9Rwa9DBUKuNpP283eLsv+CdVGjPFQftZO62PSv2lvEC2ui2vh9PvXDeYeOgWvj+z1q/s2HlSEj+6TkV1Pj3Wr7U9QitLudpltkwu45K57ZrhUVGcCTgZ5r7HLMGqGHjTevU+3ynBxo4SNOSve7fzPT9PubnVLMXUiAY6Ad6mIwdrjB96fpd7p0lskVq4woxg8GtGYR+WWcZFEnZ2sckp8smrWQumaxfaTN51q2fUNyK9O0rxnp1/iK7/cyHjnoT9a8cGR1qaGCa6mS1t0MkkjBVVRklj0ArGtQpzV5feY18JTq6y0fc+/fgH4I/4S/xjFfzKHtLHErk9Gb+EV+mMVyFG1hgD0r53/Zx+G0nw0+G1tYagCL66/f3GeoZui/gK99r+X+M81jmGYz5HenD3Y/Ld/N/hY+Zm+WTUXdGsHVhuB4r8Gv+Cg37QY+Injdfht4YuXOlaKStwFOEluAeTwcMF7Gv0D/bR/aHsfgj8MrjS9OlB1zWo3gto1bDRowIaUj0HQe9fzxC4e7JuZSWdySxPJJPWv0Lwl4R5qjzrErRaU0+r6y+Wy879j7vhHKXN/Xqq0WkfXq/kdt4V8ZXPh+XybjMts3Vc8r9K+jLScXNrFdx5CyqHXPBwelfICRtK4ijGWcgAD1Nff1h4Z/4peysJyBPbwIu4eoFftuPnCm4t9Tv4mVGhKnUStKTd/8AM/Un/gj7+3lqH7KXxzh+GHi2Rl8CeMZ0iutzkpaX8h2pcYPCh+Fft0Nf3JwzRXESzwMHRwGVhyCD0Ir/AC+m0nUgzQNFLtzhimR0Oeox06iv7iP+CNX7XF9+0P8As2j4d+Orky+LPAbJp10ZD+8uLQqDbz88nK/Kx/vLX5jxFl8aFb2tP4Zfgz18izFV6XspSvKP4r/gH5I/8HQv/Jwn7CP/AGVqD/0p06v676/kQ/4Ohf8Ak4T9hH/srUH/AKU6dX9d9fOnvhRRRQAV+Zn/AAWf/wCUS37R/wD2TvxB/wCkclfpnX5mf8Fn/wDlEt+0f/2TvxB/6RyUAfO3/Bt//wAoTPgH/wBgm/8A/Tld1+3lfiH/AMG3/wDyhM+Af/YJv/8A05XdfZX/AAUl/a/0b9iX9krxN8Z7uVV1NYfsmlRE8yXk/wAqADvt+8fpTSbdkB/Ol/wcRf8ABTOa5vH/AGIPg3qWy3iIfxLcwPySPu22R+bj8K/j7n1h1zHa8DpmtTx9458S/EnxnqfjrxbdPealq9zJdXErnJaSVixJ/OsbT9JmvW3MNqdzX7Fw/lKwWGSa9+Wr/wAvkepTw8KceeoUILe4vJhHCpZmrvdL8NQ2wE1587+nYVuWOn2tjEFgUe571l6n4jstPk+zqd8h4wO1e8ctXFVKz5KS0Nqe4gtI90pCgVwWpX4vJzIgwOlVbm7nu5PMmbJNRwqjOA/SqSLoYZU/ee4RwySnCCukt7IIoMnJqeCGONAE6VY2kDIpNkVKze2w1lBXZ2rMtNKtbOQzRjJbnJrU3ADJrnNU1kRKYrU/N3NIVJTl7sepd1HVILSMqOW9K4e6u5rp98h+g9Khd3lYu5yTW9pOkfaJFkuuE7Cpu2ejGEKEeZ7lfStKmvZQ+CqDvXoEFvHboFQfjT0SOCMIgCqoqraanZ3F79kDds57VaSR51atOrd20RcksI7+IwzD5DWja2kFlCIYBgCrHCj0Fcv4i1C6gtwbQ4U8MaZyw5qjVNPQq6/rcAU2tv8AM394dq4YtJKfmOTTcluO5Nbum2Ued8457Cp3PahThh4eZZ0eG4twZScKwxitigccVbtUjYnd1qkjz6s7tyZFFpUEswup1yR0FbCoFAC9qbJJHCheQ4UU7Q9QstQdgv31PAPpQclSc3FyeqRbtdGt/tP22Vfmx0rbd0RCzcAU2WZYULvwK5K/1CW4YqOEpHJGM60tXoZl3FavetcQjGahllSJC71JWJqnmiUK4+XHFNux69ON2otlGeYzOT0HapbK1uLqdYrcZPX6VWRGkYKgyTXovh+2ht7YheX/AIjWaV3c3r1VShdGxbQeTEquctjk1et1lMo8ngiqzyLGu5q2NMkhkh3R/e71o9D5+tJqLdjUJY8tXBfEHUtGstBlh1TDPIMRp33e30rumO1SR1r5J+IJ1lvEcr6uCMn93/d29sVlJ2RtkuDVfEJOVktfN+h7N4Q1HSr3SI00wBBGMMncH3rppELoQpwccV82eBZNUi11H09cqP8AWDPG33r6URxIu5auEro7sywyoVmk7p6/8OeX39rcWtwyXHU859ahhmaI4HQ16DrVpFdW21vvj7przx4niYqw5HFWdWHrKrHXc0lYMMrVmyNvHeJNOMqDWZaLIWKjpVwgg4NBM42vG56lFJHJGrocg9KxdR0iOV/tUQw47etYekXtzC/l9Yu4NdvHIky7l5FS1Y8WcZ0JXi9DhCCpwwotYYIpzLjBIxWtrj2kBDf8tCentWOrq4DL0pbHZBtwv0Zs571z+v2l1doJkOQg+7WtblyCDyKs8Hiq3JhJ05KSPKlZkbK8EV33h7XoSBZ3XyuTwx6GqOraOkime1GH6ketcedytzwRU7HpSjCvA9uubaG7hMEwDK1UrewisIfJgHyisfwxfXlxbt9qOUXAUnrXWfK4qjxpqVOTg2Y91aRXkRilHWuG1DSZrFsrlo/Wu3ur+2gufIY9uTVhlSVNrcq1B1Ua06dn0Z5ckjRniuktL2KdQnRvSs/VLOCC5K2x+Xv7VlKzKwK8EUbnpNRqxTR01xYW11Kskg+6e3tW2jqwwK5a01ZGPkzcHPWtwHjIOKSOKrCXwy6DrmwjnG4cN61hywyRHEgxXTRuSuGolhSVdrdKomFZx0exztjOtncCYjOK7aC4gu48xkEdxXBzIqSlU6A06GeS2fzYjgig1rUVUXMtzY1bw1Dd5ltPkf07GvPbm3uLGcxTqVZa9M03xBaXreQ52yZxg960NQ060v4yLhRx37ipaW6FRxdSi+SqtDzzTfEN3ZzxTbyrwkMjj7wI6Gv6xP8AggD/AMFMh4H8Zw/sl/FC/Y6DrZ3aZcXDfLbX7nmJSTwknYdjX8lF9p72rnb8yDoa6PwF4y1nwR4ktta0W5e1kjkRt6HDLtYMCD2IIByK8LPspjjsM4pe+tYv9Pmd1XDRqR5qZ/sGAgjIor81P+CVX7Ytr+2J+ynpHiTVLhZPEmgqmmawufmM0ajbL9JUww981+ldfjbTTae55R/Ih/wa5/8AJcv25/8AsrVx/wClF/X9d9fyIf8ABrn/AMly/bn/AOytXH/pRf1/XfSA/wAwT/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1Ov5Av8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINToA/f6iiigAooooAKKKKACiiigD+dr/gs5+17+0v+zh8XfCPh/4J+LLnw/p2p6O89xFBHC2+ZJ2XdukjZh8uBgEDitH/AIIqftXftA/tEeP/AB7pPxt8VXniKPT7CymtUudu2JmkkVyoVV6jGfpX6e/tTfsBfs9fth+IdJ8T/GeC/mudGt3tbf7JdG3Xy5G3ncADk5qx+y9+wR+zv+x/rmqeIvgrZ3ltdaxbpbXLXV09wGjjbcMBuAc9xXyKyrMf7X+t+1/cX+Hme3Lbbbc/ZpcX8MPgv+x1hf8Ab+VL2ns4bqpzX5783w6Xt5bH2fRRRX1x+MhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/0/7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+QL/gyp/5Sm+Pv+yVar/6d9Hr/AE+6/wAwT/gyp/5Sm+Pv+yVar/6d9Hr/AE+6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzD40fBb4U/tFfCzXPgj8cNBtPE3hTxJbNZ6lpl8m+GeJsHnurKwDI6kOjgMpDAEfw/wD7Y/8AwZOeEtb1a78T/sH/ABYfQ4ZdzRaD4xga5hRjztXULVRIsY6APayvjq7HrR/4PVvgp8ZdIm+Df7XHgS71CHw3bw33hbV3tJZI47a5dxc2hk2ED98v2hQTjmMDPIFej/8ABsX/AMF4/wBk3wv+yLpH7B37Y/je18D+K/B93eDRdW8RXXk2GqWF9cS3QVryXEUM0Ekrx7JpFDJ5flljuVAD+ZD9oz/gg9/wWm/4Jnz3fxqsPCuqNp2gxvO/irwBqTXX2eKPl5CLZo76GNQNzPJAigDJPBx+3H/Buf8A8HHv7TfiL9pjwt+wd+3l4km8caH43nj0jw54k1Ng2qWGpuCLeC4nxvu47qTEKtKWlWV0+cpkD+yH9on/AILD/wDBMr9mH4aX3xO+JPxr8JXFvaQGeGw0jVbbU9SvDglUt7W2kklkLngELsGcsyrkj/Kw/wCCangnxJ+2R/wWw+GN78E9CfS4NX+J9r4qWytFwul6VaaiNRmwUGFW2t0YKeBlQB1FAH9mP/B7X/yYt8I/+x7b/wBN9zX1f/wZ7f8AKH2H/sdNb/8AQbevlf8A4Paba4f9g34S3ioTFH4+2M/YM+nXRUfUhTj6V1P/AAaH/tVfs1+Gf+CY8vwb8W+PNA0bxXZ+NtRVtI1DUYLW9cXy232do4ZXV3WVjsQqCGcFR8wIoA/ll/4Onf2lPFfx6/4LHeNvAPii/nPhv4Zw6b4c0q3TDi3iNtFc3bqmVUyPcTSEkkFlVFJwox/S3+zF/wAHUv8AwQ6/Y9+Bfhz9nT4A/Dz4iaF4X8MWcdpawQ6LpqtIUUBppmXUh5k8pG+WVvmdyWJya/nj/wCDsL9mvxj+z9/wWB1r47ajpC/8I18UbLS9d0qV1321xNp9tBZ3kLdi4lhDyJ12zKejCv7K/wBhj4V/8G5f7e37P2ifHT4UfCf4RwS3llHNquj3Wm6dFf6RdBAZ7e5ikRHUxOSok2+XIAHQlSDQB/np/wDBbP8Aao/YR/bK/bbuP2nP+Cf/AIb1rwfpXiTT4LjX7LVLK208NriSSCW5gjtZ50UTRCJ5DlS029zkuTX9Tn/BeX49+Kf2n/8Ag1+/Zs+PHjqVrjXfEWt+FZtTnf7097HpWoxTyn/rpKjP/wACrwn/AIKT/wDBUn/ghv8Asj/tPzfs9fsmfscfCv43WOmW8SahrtnFaW1p/aUjNutbYxWNytwI12bpUfaZGKAZQk/oF/wdP+F7TwZ/wQV+EHhqz8GWHw6Ft4t8NeZ4W0wqbPR5n0rUHls4WSOJWSCQsgYRpuxnaM4oA+dv+DK79iD4Vat8N/iP+394v0q31PxRZ69/wiOg3FzErtpsdvaw3N3LblgSsk4u442cYYIhUHDuD/VH/wAFdv2DvhP/AMFCv2EfHnwW+Iul29zqltpN5qXhvUJIw0+m6vbQs9vNE/DKCwCShSPMiZkPBr+MH/g0I/4Kufs/fsyQ+OP2Ef2k/ENj4QtvF2rx+IvDWqalKLezl1B4Etrq1lmciOJ3jggaEuVDkOmdxRW/qs/4LKf8FhP2VP2Ev2LvGmqWXjXRtY+IOv6Pdab4X0KwvI7u7nvr2FkhnkihYsltFu82SVtqkLtVt7KCAfxK/wDBnL8fPEfw4/4Km33wWhv5I9G+I3hXULe4ss/uprzTNt5bykf34o0uFU9lkb1r/Uwr/L7/AODNT9mnxb8SP+CkHiD9pBLInw78NfDN1FNeMPlXUdZIgt4l45Z4VuW9gnPUV/qCUAFfGv7cP7fn7Kv/AATr+DU/xw/au8UweHtKy0VlbD97f6jcKMiC0t1+eaQ8ZxhUB3OyLlh67+0p8ffAP7K/7P8A4y/aP+KM/keH/BGj3esXpBG947WMv5aZ6ySEBI1/idgBya/x+/iV+0f8RP8AguD/AMFIIPG37afxS0n4Y+H9duZQNR1q5b+yPDOjQ5dba0iYrvfaAqKNpnmbfIy5dwAfbX/BTf8A4K2/txf8HDH7Qeg/so/sz+DdRtvBa6iX8O+DNNPnXl9OoKi91KUERbo0LNyVgtkLEsfmlP8Ad7/wQP8A+COejf8ABI79ly60Pxhc2+r/ABR8dSQX/irULcZhhMKEQWFu+AWhtt7neQDJI7tgLtVfmv8A4J1fH7/g26/4JffC4fDv9l74y+Bba/u40XVvEN9qcU+sao687ri42qdoPKwxhIUOSqAkk/sv+zd/wUf/AGEf2wfHF38Nf2X/AIreHfHWv2Ni+p3FhpF4txPHZxyRxNMyjoiySxqT6sPWgD7XooooAKKKKACiiigAooooAKKKKACiiigAooooAK/zBP8Ag9W/5Sm+Af8AslWlf+nfWK/0+6/zBP8Ag9W/5Sm+Af8AslWlf+nfWKAP6/f+DXH/AJQUfAz/ALmb/wBSDU6/f6vwB/4Ncf8AlBR8DP8AuZv/AFINTr9/qACiiigAooooAKKKKAP8Qb/grF/ylN/aW/7Kr4y/9O91X+3zX+IN/wAFYv8AlKb+0t/2VXxl/wCne6r/AG+aAPzd/wCCxf8Ayif/AGkf+ybeJv8A0gmr8kP+CUn7Rlt+yr/wbHfDj4zlsXen6DrEdivd7ufVr2OID1O45/Cv1v8A+Cxf/KJ/9pH/ALJt4m/9IJq/kA8A/FWS4/4IV/sffs42Uny61/bOrXyA/ehs9VvdoYf75yKunBzkorqc+LxEaFGdaW0U39yPJPAljqFho8eo6/K0+pX8j3t9Mxyzzztvcknk8mvU9R+LXgHSYgbi/RznaVj+Yg+4rlmUMpUcA8V8V+I7T7Drt3a53FZG5+tfcYXKKOKahNtKK6H4fhsMsfXnOtJ3ev3s+hPin8UPCfjOwTStJ85pIX3K5ACEd/evCa562bZOp966ZYZWG5VNfR0MHTwtNUqe3me1HCQw8VTht5nluuXlzFqUkMbFVU9BXt/7L+rR23xNjtbrL/aYnRe4BxnmvFvGNu9rfrJIMeYuRWn8KvEw8M+P9M1bcUVJgrHGflbg8V142j7bB1IR6xf5HuYmh7fL5xit4v70fsSscacoAPoKfTUdZEEi9GGR+NfM3xa8T+KdK11tMt7oxWzqGUJwcHg5NfkeCwcsVV9lF2fmflGHoOtPkTNz4+yaXJ4ZjeWdRNDKNqAjJz14r40k1FAcRjP1rpdcklu7OSS4dnYYOScmuD749a/RspwKw9BUnK9mfZZbhlTpcrd9TbvPEOsXsItpp2EYAXavAwK8a+Iv+pt/qa7+4vY7ZjG4O4dq5jU4odWdHukBEf3RXtYeKg00tD38vSpVY1EtEeRWumXl4N0S/KOrHpViLT0Q5l+Y16fLGiWzJEoAxwBXBMCGOa71O59FSxcqt+h9s/s7qqeCpQowPPb+Ve5Xl/ZafEZ76VIUH8TkKP1r4T8JfFq98F+FX0PSIAbiSQv5r9FB9B3NeZ+NPGHiXxSpuNZunlwR8ucKPwHFfM1skq18TOpJ2i36s+Nq8OV8Xjak5Plg5b7v7j7A8W/tF+CdBD22lbtRuAcYThP++v8A61cAmoDVh/agXZ9o/ebc5xu5r4xHBzX2J4cs7q50i1ECM37teg9q7Xl9HCwXJu92zvzDJcNl1ODpt3e7bPJ/iLJIdSij3HaEzj61h+DP+RmtP9+un+KWm3en6vCLpdu6MY9K5bweSPEloR/fr06bTw+nY9fDtPL7r+V/qfVVRMCTntQZGxXwZ4h+JXjfSPFt4tpqEuyKdwqMcrjPp0ryqFB1L2Z89lGTVcfKcKUknFX1PtPWXAZErCK5NfI8Xxt8bmbzb2SO4AGArLgfpXt/wk8bah8TfEMXhGG1C3siM6lT8rbBkj2rqlSdKDlJqy3PWxPD2LwdF1aiTjFXbT2XzsesW2p3doBtbco7H0roND1+x16BpbPIaM7XU9Qa4PXnk06zuFlGHjypB4IPSvK9B12+0K/F1aHhjhlPRhUrDKpFyW55tPLlXpSnDdbeZ9ISX9za6it3ZuY5ITlWHUEVd+NvxguvEPgCz8NBtlzNJ/pWM/MidPzPUVx1hqcGqQfaYjyfvA9Qa8p8QXK6lfyMR8oJVfwrnp4GnUrQnUjrDVf1+JlgsDCeIhKpHWGpxMMLzyrCnVjivetKWKKxjt4uNigEV5Z4c05vtpnl6R9Pc16DDcfZm8w/d716WJ97RHr5pL2jUI9C14p8VajZ+HJvC9u58m6YOy56Y/xrzXwh4ju/CfiK112zJDQOCR6r3FWdSuze3jzk5BOB9KPDPh6TXPEEVio/d53Oe20daUKdOFKUZLR7lUKVKlhpxqLRpuX3Hb/Gn4if8J94gjezLCzt4wI1PHzMOTj9K8RciMEt0Fe3/FfwxHYSw6zZLtiYCNwOxA4NbnwT/Zf+IH7QsN9J4Rmt7SGx2h5bncEZm/hBUHmuX6/gsBgVXrTUKUd2+nT8ystr4alg4ST5YLTXoz5PY7mLDua+ofgb/wAi/df9dv6V9iaV/wAEtNal0+KTWfFUUN0R+8SKAugPsSQT+Ved638FLD4D6xP4KtNWGrOCJJZBH5YRiPu9TmvDp8Z5PmcpYTA1+ea10jLZPe7VvxOfO85wmIwzo0Z3lddH0+RFppIvY8HHNdwXQHDED8a86BKnKnBoklYKXck4GetRVo87vc+HnT5nuT3F1bNdOiyKTuPGRmtzSiDEwHrXyle3LPqEtxESu52I55617X8KZpptNujMxbEg5Y57V3YnB+zpc1+x6OLy72NH2nN2O68Tf8gC7/65mvnRWdGDIdv0r6vttGg8QO2kXLFEmUgletcRrPwI1i2VpNGuknxk7HG0+wz0rmwuOoUm6dSVmzDA42jSTp1JWbOp8JeLtWsdEtY2YSqI14b6ete1+Fb+fxZ5qWELF4EDuBzweOK+eLGxuNMs49PuxiWFQjAc8ivq/wDZzs4fJ1O+I/eBo0z/ALOCa+ez+dOhhqmJhHVWt82eTjIQ96aXUk0eKSLW7VJVKnzV4I96+j7qztbyMxXcayKezDNZmr2Fg8BvZYl8yH5kbHIIrPsPE8EuEvRsb1HSvzjHYmeM5atONuXRnltrY8M8aSwaL4kmsbePEQCkAds1htdwXMWYz+FO8e3cl54puZpBxkKp9QB1rj846HFfbYOhehTcvisvyOj2aaR1ArLvtIsr7LSphz/EOtU/7Te0iLzfMijJJqvpnjDQ9TwqS+W542vwf8K640qivKC26oSp1FdxPAPjr4cvV0m1srFldJJGY7uvyjj+dfI13pWoWTbbiIr79q+3fi9dpLqlrao+4Rxlio7Emub+GnhlPF3jzS9BkjMkc06mQAA4RTljz2wOa+twOPeHwXtauyTb9Fr+R9nlOYzw+FXMrrVnxuQV4PFdj4Js9W1DWY7fT5HjQEGQqeAtfuT4k/Z9+D3ikTHVNCthJMoVpIk2OAPQjoa84k/ZF+Gum28g8I+bYTOMbi3mAn3zz+Rr5aj4n5bVhy1IShJ90mvw1/A0q8UUqlJx5GpP0a/r5HxlDcMihGHA4Fdx4E8Kan8QvFdj4Q0IZub6QRrkZ2juT7Ac11fiP4CeP9BBkhhW9jH8UByfyOK/S/8AYf8A2dZvAuht8TPGdsY9V1FQLWKVfmgh/vDuC/8AKvn+NOPcBk+T1MfRqxlUfu04p7ye112W78lbdo87LMH9crKENur7I+1/hb4RtPhZ4K07wboZ2xWUQViOjufvMfqa9ZtfEOcJdL/wIVy/Xmvif9tr9qjTv2cPhy0WlbLnxDq6tBZw78GIEHMzAc4Xt6mv4awGTYziLNI4WhF1MRWlv3b1cm+y1bfY/UqOIeGglB2iuh8df8FNv2sYfFOor8BfAF2TZ2T7tVliYjzJR0hYdCF6n3r8cWUMpX1rJtdYv9V1K4vNWme4ubpzLJLIdzM55JJPc1txxvK4jjBZmOAB1Jr/AEd4J4OwnDGUUcpwmqjrKXWUn8Un+nZJI+XzHEVK1eVSo9f0KujaDf67rEWjWClpJWCjjIAPc+wr7ei8Fw+FdEt7Ox5SJQHx3bufxNRfCn4ex+E9P/tS+G69ukBbI+4vXH19a9ckCNE3mAYxznpiufNs4dWqoU/gj+L/AK2Phs2zZ1qihD4Y/iz5T+I+oyWenW8NvIY5Hk3DHGQv/wBeptG1s+NvDN1otw4W9WPCkHBLLyrDuCCAeDXA/EbVbbVPEkqWDbreD5FI7nviuR0+/udLvY7+0O2SM5HvXrrAxrYVQktWvzPUw+GaownHSa95Ps9z/QU/4Jj/ALScv7UH7Hnhbxzq8m/WrGH+zNUBPzC6tfkYn/ewD+Nfgh/wbC/8nPft8f8AZWpv/SvU69O/4N4vjREfHHxF+CTTkw3sVtrttDt2rHJkxzKvqSSGJFeY/wDBsL/yc9+3x/2Vqb/0r1OvzKvRlSqSpy3Tsfr+Fre2owq90mf130UUVkdAUUUUAfyIf8FDP+VsD9jH/sTNT/8ARWtV71/wcG/Hu61i48D/ALHvh64KxanK2t64qN1trbAhjbHZnOcHrivBP+ChpA/4OwP2Mien/CGan/6K1qvgb9sf4rz/AB8/bm+JvxNkkMtpZXw0WwychYbPKsB7Fs9K68DS9pWjF7bnicRY54XAVKkX7z0Xq9DgPBOp6Vot1I2oTJbxlAoLnavHaul1P4v/AA80p5I59RR3jGSsY3Z+h6V84fEW1a48NSspx5ZDV80fWvrKfD1DGSdapN9rKx+P4PKqeJTqTk/Q9y8Za/pHifxBPrWis7QzHP7xdpB/WuE1c7dPlfuBkVR0CUtG8XpyBXQT2cs8DxbM7lOM9K+jpU40VGmtlpqeqqcaTUFsjxd7u6fhnP4V+s/7I91pGtfCeKBoVkltZWSQugPJ5HPevyPlYRStE3VTg1+jP7DHilJbTVvCkjjKFZ41xz6E5rwvEDDOplEpw3i0/lt+p059RTwvNFbNM/QVI441CRqFUdABxSlgoJY4A7mqOqyXcWmzyWGBMqEpu6Zr8/8AxH8SPGuuzPDqF66KCQUiO1ffpX43kuQ1cycuSaSjvffXyPjKdNy2KXxxWwsfiBdvFOJfNw5x2JHSvIrTxLc6Zci604AOOhYVD4iBN4JmYszDnNc+ehY9q/bsDgo08NTozfNZJettD2qNGPIk9TV1PXNW1h/M1CdpD6E8flXyzr/OtXAHJ3n617/NqcSjEXzH9K45dJshdPesgaRzkk17WEcaSdlZHt5bNUG3y6WPLF0i9ZBI67VPc10fh/TYodVtmf5j5idfrXSa2uETHrWRYzJbXkNxJkrG6scdeDXa6jlBnq+3lUpv5n67Wf8Ax5w/7i/yrI13xT4e8M2rXmu3cdsi9dzc/l1r4t8UftKeI76MWXhaEWUKoE8x/mkOBjPoK+VvEOsatrOoSXWq3Ek7sckuxNfnuA4PrVXzYmXKuy1f+S/E+NwXDNaq71nyr72fdfiP48eE/GN4fCXh+OWXdz55wq/L6DrXMzsVhZh1wa+YPhd/yNkXf5TX1muiapeW0jwQsQFJyeOle3VwFDAWpUtF5vqbZhgqWDqKlT2t1Pkq9lkmupJJWLMWPX617x8Hcf2ddD/bFeC3aNHdyxuMEMQR+Ne9fB3/AJB91/vivYzH/dn8j1c1t9UdvI9mpCcDNeY/F7WtU0DwVcalo8pgnQjDr1FfIWnfHj4i2MBie6W43c7pV3H+leThcsq4im6kGt7HmZdkGIxtJ1qLVk7WbPr+/kEl27r0JqvFLJC2+MkH2r5csPjvrKEf2paxy5PzMh2k/QdK+nfDC3vinwUvj2yt2WwMvksx/hf0NdGJw8sPGPtbJN2Xm+iOjGZTicLFOtHTa+6Nk+LYdMRW1UnYxChh2z611091GLM3MRypXIIPXNfOfjy65itRn1PNWvCvjO4+yjRNQYlB9xvT2NRPL701Uh80cksuvSVWHz9D6W+F/wATdQ8B6vlzvsp2/eoe3uPevmr4/eP3+IfxGu9UiffbQ/uoMdNorq9VvFtLB589RgfjXhOoWrT5mjHzdT70ZdleGhjHjuW02uW/6+vQ7crowjVdVrXYt+ELFZ9UF3MMpH/Ovb45mgdZ4zgodwPpivOvD1p9jsFyPmbk1r6jqhtdOePOHbha78SvaT09C8Y3Wq6ehzfxP8Z6l4111LzUWJEMYiXnjjvXqvwO+NMfgDQdT0XU2JUxmS274fHSvALuDzojk8jkGvWPhX4Kh1XT7nU9SjysqmOPI/WssfhMI8D7CrH3FbRevQ6MXDDxwfs6i91W0PEtZ1K71vUJ9XvWLTTuXYn1NclqzqsAQ9TXd65o9xpGsS6PKp3q21ffPSvtfwN/wS//AGhviNYab4jmuNP07Tb+NZQ0sjGVEbkZQL19s1Ob8T5Rk1GFbMsTGlCXw8zteyvZLVvTsfQYLllyuG3Sx+aun/8AH/D/AL6/zr9H9N/48If9wfyr2HWP+CRnjPwppk3iTU/GenrBZKZXPkSdF5x1715RHbrZoLVXEgj+UMOAcd6+do8ZZNn8efKMQqqhpJpSVr7fEl+B4XFktaS66/odXoBPlOD0BpviaWMaU5LAfjXOLJIgwjEA9cGvPPiReeToJiJYGRgARTo4XnrrXdnx9HD89aKvuzXR0c5Qg/SunT7g+lfI9tfX0MirFM6jcOATX1fYEtZRM3JKivSxuH9lbW9z0MdhHRtd3ueA/Gf/AJCdp/uGuI8G6rqFprkKwSsF54zxX1J4h+D0nxEtY9StbwW80RKBWXKkfhzXj8/we8Y+DNUTUL9EltY85ljbgZ9Qea7cJmGFlQ+rua50mrM9TCY7DPC+wlJcyT0Z6RZ+LnXC3yZH95f8K76KOaW0jvQjCOUZUn0rw2vtTQLK3g0G1tVXKCNeDzXhZnVjh1GUVuz5/GqNNJpbnO+B+Vn78iq/jrwroNxol5qrW6rPFEzh14OR61e1O/t/C96ptYhsmGXUH09KyPGniqyl8FX8tkd0hjKlG688V40fayrxrU7pSa/pnFTU3UjKPWx8hWmu2852zjyz+laEjKzZXmvO6sw3dxbnMbHHp2r790FvE+teHV7xO63uEMYYhT1GeDVJ7VTynHtWIfEtpb7RegpuOMjkVuQXdtdRmS2kVx7HNTySjrYh05x1seNeJNG1R9RluvL3KTxt56Vxzq0Z2yAqfQ8V9DthiSec1+iv7D/wO8E+PdB13X/HOlxX8ErLaxrPGCuMZYq3UHnHFedxHxVRyLLp4/ExcoxsrLd3aWl/vPZw+YtJQlE/GEOwOU4x6V7f4C8MXus6W93qcrqhOIv8a/bvxN/wT3/Zv8Q3SXNvp02nbF27bWUqrH1IIPNeU+Mv2GNU0S2X/hW96lxBGvEFx8jADpggYP418ThfGfh7HctJTlSk/wCdWX3ptfeRmWLlOlalHU/LLUfB2p2e57fEyDnjr+VfTX7IfwdufGPjQeMtWixp+kPwrj783bjHIFdDN8D/AImWWvweH9U0qeB5nCeZt3IAep3Djgc1+kvgTwZpfgTw5B4f01VAjUF2AwXfux+tY8a8bU6WXewwdRSnVVk4tO0er077I8CpjqvI4S3Ope2U/c4ri/HXizRfh54UvvGPiWZYLKwiaR3Y4HA4H1J4Fd4zKilnOAOSTX8+H/BST9rlvH/iJvgn4DnddJ0qQ/bpkcFLmYfwjHVU/nX5Rwhw9XzrHwwsPgWs32j/AJvZeZ05FktTMsXGhD4d5Psv60R8sfH34y638cviRe+NdWdxCzGO1hZsiGEHhR/OvH7WXy32noaydOuVu7RJV64wfrXoPgLwVqHjvxDFolkfLQ/NJKRkIg6/j6V/YWHoUMJh40qS5acFZLskfss4UcHQcX7sIL7kj2D4IeApPEeujXrtf9EsmDDP8T9sfSvseRDG5Ruop3hzQbDwxo0Gi6auI4FCg92Pqfeq/inULfStIlv5ThlBC+pJ6V81icU8RWuttkfjmaZlPH4vmW20V5f8E8nj8fX2geMZpo3820LBHQ9MDuPcV+r/APwTi/aPf9n79tLwb4wiuCNA8XkaBqZU/JtnbMDt2yknGT0BxX4jSSNLI0rnJYknPvXfeEvGF1pFq2n+csBhkS7tpnyfJngIdCMe4/OozzKlWwzdNe8l99j6DDYb6riKOJpbqyl5p6P7tz+i/wD4OgyG/aD/AGEGU5B+LMH/AKU6dX9eFfw9f8Fvvi7B8d9B/wCCbHxXifzG1j4h2EkrHr5qz6cr5/4ECa/uFr8uP0UKKKKACvzM/wCCz/8AyiW/aP8A+yd+IP8A0jkr9M6/Mz/gs/8A8olv2j/+yd+IP/SOSgD52/4Nv/8AlCZ8A/8AsE3/AP6cruv5+f8Ag5W/a7u/il+0rpv7MXh27LaP4IhE13Gh+V7+4APPrsTA/Gv3X/4N/wDxbY+Av+CCXwb8bam2230nw7q13IT2WG/vGP8AKv4V/j/8RdT+NXx18V/F/X3aW61/U7i7DMc4RmIQD2CgV9JwrgViMfFyWkPe+7b8SoSSldngVloYMv2i54HZa6T91BH2VRU6RvI21Bk1514g1K8knewkUxhDgjua/Xm0jogp4idmzU1jxSxjNnYEg5wXH9K4ZmaRizZJJ70BSxwtbFrZhBvfk1nq2enTpwoxtFFm38zylEgwcVOoLHC8mnxo0riNOSa6my05LbEj8v8AyrU5qtZRJbKOUW6+dwfSrjMqKWc4A71IqM5woya4bXL26adrRwUVTjHrQ3Y4acHVnZCanq7TEw2xIXPX1rBwXO3ualhtpriUQxDJPpWzHZfZXKyj5qnVnq3hSXKtxmm6ZHnzJ+SOgrowMcCslGKMGFaqsGGRVJWOGtJyd2Y+s6hdbfs2Nqnv61zsMrwSCWM4IPWu3k099SxbxLlz0rjby0lsrhra4G11OMVL3OrCzptci3PRLHVf7StgehH3h71NNEk8ZikGQ3FcNoS3rX6R2KGRn42j0r0O4t5raUwzqVYdQapO552IpxpVOWL8zhm04WcxB55yPpUgJU5FdPcW32lNij5u1c5NBLbSGKYbWFCN4Vufd6l+KQSLnvUyOUbcvWsuDf5gEYyT2rTIIODTImrGLrV/cTP5BG1B29aztOubm1u1ktDh/wCddDcWX20eWg+btT7PTfsP+tH7zvUPcv2kIw5bfI27m/mugN4x7VTxuG2pYIJLiQRRjJNSSxNbyGKQYYdaDhhZOyK0cWDlqju4I54ircHsavRI0zBIxkmqdwkscpjlG0jtT3NlL3t9TMtbRbdeeW9a1LaaWGQNF1qvWhboFTcOpqiqkrrUuyytK2Wq1p888NwBBznqPWoLW1nvJ1t7dSzN6V1tvpn9nM0cgzIOppNrY86vVhFcj37FwsW5NcP4907Sr/QpP7SIRkGY3PUH2ruoopJnEUSlmPSvnbx9qWpXOsvZX0bQrB8qof51lJpCyqg6mIXLK1tfM6PwlpWnafpqtZNvaTl27k118UhiPHSvGvCd3qK6rFZWIL+e20r/AFr2i5tZrKYwXA2sKuEk1Y78wpuFZ80rt6+ZUkkaRsvWXfWKXS5Xhq1HAIyKjqzOnK1mjChhECbPzoeLccitlrV7lwkQy56e9UZ4JbaUwzDaw7UGyqJvfUuQJGkYWM5HrV6C5ktydnIPasqyimnuVgtxlnOMVq3VrNZzGCcYYUvIwqKN+VvU5K8nuJ7hpLj72afYmVpfJTkHrWxcWBvSFiHz9qs29gbH924w/ejyN5Vo8nL17E6KEXaKGOOaUkAVCW3c0zmSuBOTmsu60aG/kBT5WzyR3FbEMMlxIIohljWkLZrUmOQYbvSY/a8j916kVvBHbQLBEMKopLm+FlFuPOegq7b2811KsFupZm4AFchrkN5a6g9tfIY3XjaalbkUoxqT5W9dzLlkaaQu5ySck1fttTmt4zEeR29qpQwyXEqwxDLMcCnXFtNaSmGddrDtVnoz5H7rIWYuSzck9apzwEjdGOauAEnAoIIODQVGVtjmGDK2GGDW3p2qmIiK5OVPf0p8lkbtwkf3jWNcW01pMYJxtYVDVja8ZrlZ6OjK6hkOQaSZ5BCwj5Ncdo17crcLaoC6scYrtmRkbawwapO559SHJKzOWIIOG61XuPMMLCIZJrpLizFxyn3v51iyRvExjkGCKZ006ifqciCVfP3Sv6Gur0/xNMlr9kuzuJ4D98e9ULu1SUbl4b+dYLo6HDDGKjY7pQp1laSO6PlzJ/eU1jTaUqyebF09Kq6RPdNcJZwr5nmHAFdXNDLBIYplKsOOapO5xy5qM+W5+/8A/wAG937Zdz8Gf2sLb4Q+JLkx6R41gXTpNx+UXEWTbsffkpn0xX9/lf5Ifwg8S6x4G+JekeMPDsvk3enXUV1G24qA0DBwSR9P1r/Vk+BPxHsPi/8ABnwv8T9NffDrum294D7yICf1zX5HxZgVh8c5RWk9fn1/HX5nJVtzXR/LR/wa5/8AJcv25/8AsrVx/wClF/X9d9fyIf8ABrn/AMly/bn/AOytXH/pRf1/XfXzBmf5gn/B6t/ylN8A/wDZKtK/9O+sV/X7/wAGuP8Aygo+Bn/czf8AqQanX8gX/B6t/wApTfAP/ZKtK/8ATvrFf1+/8GuP/KCj4Gf9zN/6kGp0Afv9RRRQAUUUUAFFFFABRRRQB+Rf/BTP/goz4+/YX8Q+EtG8F+HtP1tfEVvdzStevIpjNu0agL5ZGc7znPpXMf8ABNP/AIKZ/En9uD4o+IPAfjXw7pmjW+kaWL+OSxaVnd/OSPa3mMRjDZ4HWvRv+Cjf/BN/V/279d8K6zpfiyHw0PDkF1Cyy2bXXnfaWjbIIlj27dnvnNc5/wAE7v8AgmDrX7DHxL1zx/qfjGDxImsaZ/Z4hismtjGfNSTduMsmfuYxgda+RnHOP7Xur/VrrrG1uX79z9mo1eCv9S3CfL/anK+lS/N7R21tyfBbr+J+vFFFFfXH4yFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/1P7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AH/g6O/wCUFHxz/wC5Z/8AUg0ygD+QL/gyp/5Sm+Pv+yVar/6d9Hr/AE+6/wAwT/gyp/5Sm+Pv+yVar/6d9Hr/AE+6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigDyH49fAT4O/tQfCLXfgN8ffD9r4o8JeJLY2uoadeKTHKhIIIKkMjowDxyIyvG4DKwYAj+J79rD/gyY8A+JPGd14l/Yv+L83hjSLjLx6H4nsTqHkOTnal7A8bmMdFV4HcAcux5r+7+igD/OP8Bf8GQv7TF9rMcfxP8Ajl4Y0vT9675NL026v5tnG7CSm1XPXGXwf0r+vj/glX/wRU/Y5/4JJeGNTj+A1vea54t8QRRw6t4n1po5b+eJDu8iLy0RILff83loMsQpkZyqkfrxRQB+fX/BTX/gnD8Ef+Cpn7K+ofst/HKe7061e7g1TTNUsNhutO1G2DrFPGJFZGGySSORSPmjkYAqSGH8mHwh/wCDKjxJ8LPjh4a+JZ/aLtr3T/DesWWqLF/wizJNMLOZZhGf+JkVUtt27stjOcHpX96lFAHwT/wUO/4Jsfsqf8FO/gg3wQ/ak0Vr2C2d7jStUs38jUtKunXb51rNhgCRjcjq8UgADo2Bj+KD4gf8GQPx1tfFckXwr+O+g32htJ8kmq6TcWt2kZ7FIZJ0dl6ZDqG64XpX+irRQB/KN/wSn/4NS/2XP2BfilpX7Rnx98Ty/Fzx3oM32nSY5bJbLRdPuF+5MLZnmeeeI/NHJJIERsMIw6q453/g87/5RQeGP+ylaR/6b9Tr+tuvw2/4OBf+CZvx3/4KtfsR6P8As2fs8atoOja7p/i6x1+SfxFcXFvaG2tbW8gdVa2trp/MLXCEAxhcBssCACAfxgf8ETP+Df74Df8ABYP/AIJmeKviZf8Aii98BfErw38QdR0qx1qCEX1pPYDTtNmW3ubRnj3BJJZGR45Y2UyNu3jao+qPBn/BkF+0FceLorf4hfHbw9Z6CJB5k+naVc3N4Y++2KV4Ywx6DMpA684wf6fv+Der/glx8ef+CS/7G3if9nz9ojWtA1vXNd8Y3fiKKbw5PcXFoltPZWVsqM9zb2r+ZutnJAj2gEYYnOP3ioA+Gv8Agnx/wTw/Zn/4Jn/s+WX7PH7MukmzsUYXGpajckSX+q3pUK9zdSgDc7AABVCpGuFRVUYr7loooA+EP+Cmf7Ft/wD8FD/2HvHf7GuneLT4GfxvFZQNrQsv7RNvHa3kF04+z+fb7/NWExH96u0Pu5xg/wAeX/EDF/1dF/5ZP/36r+/yigD+AP8A4gYv+rov/LJ/+/VfsD/wRT/4Nv1/4I9/tR+IP2lf+Fy/8LEOu+Fbrwz/AGd/wj39keV9pu7O687zf7Qu9237Js2bBnfncMYP9PdFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/mCf8Hq3/KU3wD/2SrSv/TvrFf6fdf5gn/B6t/ylN8A/9kq0r/076xQB/X7/AMGuP/KCj4Gf9zN/6kGp1+/1fgD/AMGuP/KCj4Gf9zN/6kGp1+/1ABRRRQAUUUUAFFFFAH+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5r/EG/4Kxf8pTf2lv+yq+Mv/TvdV/t80Afm7/wWL/5RP8A7SP/AGTbxN/6QTV/Av8Asm+KbjxP+zN8CdAdyYPDPgy7jReyyXOq3khI+oIr++j/AILF/wDKJ/8AaR/7Jt4m/wDSCav88v8A4J9yvP8ABHwsshyIdAgVfYG4uD/Ou3LlfERPn+Kajjlla3Wy+9o+/wDJr5k+KmlyWfiL7bj5LhQRx3HWvpqvL/ivo0+o+HDe2ihpLU78YySvevucuq8ldX2eh+SZXW9niI32en3nzQjFWDDtzXpNvIJYFkXowzXi39pT+gr6g+BNt4a8VabcaZq0W+7gbcMnqh9PpXvZjP2NL2sldLsfTZrB0qPtZK6XY8O+INg0+mpdpz5Tc/Q149bTva3MdzEcNGwYH3FfqHrPw48OXOgXmmWdsqvPGyqxGSDjjGa/L++s5tPvZbG4BDwuUIPqDillGYQxMJRitv1OzhzMIYmlOlb4fyZ+y3gTxPZa74J07XZJgBLbqzF8KcgYJPPqK8L+MeteG9b1K1i0S7gubhUO8RMGIXtnHH61+d8Wtas0AgNzLsUbQu84A9MV2Hw71A2niWJGJxMChxzmvGocMLDVpYlVL2u0rfgeO+F/q7nXVS9rtKx9AnSvPjMdwflYc1LZ6Jp9lzGgZvVua1qgluYYvvH8q39pJ6I832k3omeJeNYY4ddfyxjcAa5u2tLm8k8q3QuT6V6/rOk2es3a3M+cIMYHGatW1rbWiCO3QKB6V6cMUo00ktT2qeYKFKMUtbHF2Hgxgvm6i2ePuL/jXgt/F5N7LFjG1yMH619e14jqfgHVtU8R3EoKpA7bg5759q1w2J96XtGdmV49Kc3WlZWPJsVBf20zWEkgHAFex+IfB+naBp0LwgyOW+ZzXEXcPmWkkS8ZU1306ykuaJ7uHx0alpw2ueQ1+h3w+vF1Dwdp90ECZiAwPbivz6htLi5l8i3Qu3TivuL4OyXY8GRWd8f3kLMuPQdq4s3jekn2ZzcYRjLD05J6p/g0cV8eY3K2EuDtG4Z7ZNeF+Hbn7HrdtcYztcV9W/FrTo73wz50n/LBwwHrXzLGkaEMgxj0p5fUUsPy+qOXJcQpYH2bXdff/wAOfSLX1nGu95VA+tfAXxaiEfjq9dF2pI25cdCD3r6qgfzIVcdxXzr8ZtNMOp2+pqDiVdpPbIqsLBRm0ejwpBUca4t/Emv1/Q8Wr7e/YL0mx1D4xS3l0u6S0s3kiOejEgfyNfEQUswVRknoB3r9Of8Agnv4bu7a91zXb6yeMNGiQzuhAPPzBSf1rk4hq+zy6s/K336H0PGmIVLJ8Rrq1b72jsP20LDwp4E06w8SH/R21W68iQDhd2Cdx9PevjSzCSyK6nK4yCO9eqf8FSNQia/8LaZHMDIizSPGG5AOMEj+Rr4i+DnxDjhkHhzXpj82BA7dB/s5/lWHDU5vLqTqO7d/zPE4ZyepPIKWMi25PmuvJO2npb7j6y0/UbjTmdoP4xgiqBOTk96QHPIqKW6jtAJZRkZHFe3bqZKCTbS1Z22nQeRbKvduar6vceVB5a9Wq/bzRTQLNEQVIyMV67qvwjmvvAcOsWiE6gB5hUH7yHt9cVx1sTTpOPtHa7seLVxVOlUj7Z2u7HzVzXvvwv0RrPT31SdRun+7nqFH+NeMaNpkupatFpzAgs+G46Y619ZWkMVtbpbQjCxqFA+lZZjWtFQXUxzvE8sFRj139DK8S6Ouu6JPpp4Lr8p9x0r9Dv2Xtf8AhT8G/g/ZaBqGswfb5gbi6AByJGH3enbpXwdRXxfEOSwzfCLBVqkow5uZ8ttWu90z5320/Zexv7t7/M/TjVP2svhVb6fPJaz3BlVG2ZhOC3bv61+XOt+LG1/V7nWtQdnmupGkckZ5Y59ayNeu0ULa7gD1PNcz5idAQfxo4b4PwOUKc8LzXna7bvou2iNKNBW5md3pwbVCwtATs6k8CtaTQL2WBgpUMQcA1p+GtOew0xd4+aT5j+Nb9enVxDU2obHHUrWk1HY+eZ/hJruHlSeFm5IUZGa6bwheWXhezbRNYdYrhGLMRyvPbPrXr7MEUu3Qc18xa3efbtWuLk8hnOPpXfhq1TFJwqvRdj0qNeri06dV6I+qvA91Y6lqyyWsyvtQtgHJ9K9fmZUiZmOAATXzn8A9OOb3VGAI4jU9wepr3bxHdmx0S4ugMlUPFfLZnBfW/Zxd9kfPY6mo4h04u+yPCbpxJcyODkFic/jXbeBvirf/AA8mmt4rdbiG4wzgnByOBg15hFqcT/6wbT+lUbqQSTFgcjtXs18HTr03RrxvF9D0PZJ+7JaH37o/xV8L+OdJkt7BzFdYBMLj5uOpHYioq+afgpYiXWrnUM/6mLbj13n/AOtX0Ze3cNhZy3twcJEpZvoK+CxuXUsHXlQw97b6930PDxdNQq8kRt3YWd8nl3UYce/WvLPEek2+k3Kx27lt4ztPUCur8P8AjzQPEBEMUnkzH+CTgn6etc54wnMurmMjiNQM/XmuzBQrU63s5pryYUozjPlkcBrk4t9JnkYZ+Uj868GBIORX0TcQQ3ULQTjcrDBBrgL7wGZZAdNcDcfutX1eBxFOmnGbsevhK0IXUjzG4jF2d85LN6nrXrHwL1HSvCXjhfEuoxyzC2icRrHj7zjHOe2Ca5vxB4C8VeGZCNTtH2AZ8xBuTH1Fafg232W8s5yCxA/KujGOjicJOCleElbR9H/wDqrVk6L5Xoz9E9P+MfgK9jaWa7NtsGT5qkfl61v6f8Q/AmqWq3llq9q0bZwTIFPHsea/OTxJd/Y9GmkHBYbQfc14YMjpXw0PDzCVk5Qqyj9z/wAjiw+DVSLk3Y/o+/ZY8E+FPi14ye7m1GzuLPSyrzW4lVnlLfdG0HOOOTX63XnhnQr2BbW4tY9ijaoCgYHtX8NmieI9f8N3q6j4evZ7GdCGWSByjAjkcgjpX2v4B/4Kf/tNfBzSG/tHWk1eyhQADUR5rAAknDHnJ6c1+LeIvgBnuaYpYvK8bGaSSjTleDXezV023rrbt0P1vgniPLcqwzwdfDtyk9ZK0ubsrO1ktkk336n7+ftWeLPhr+zL8JtR+LviaeRIbQBYbVCC9xM/CIgJHfknnA5r+Nv4xfFnxN8a/iBqHxB8USMZr2QskW4ssSdkXPQAV6V+1f8AtrfFH9s3xXD4r8aP9j0y2XFlpkTEwwA9Wx3Zu5NfMMR3IMV+xeCnhRPhTAPE5o1LHVfia1VOP8ifV31lLq9Forvuz7FYetiG8NT5YLT187dPQt20pgnWUdjX1b8N/CpsmXX9RjHmZDQq3YepFcj8Nvhi6smu+JI9pGDFCw5+rCvokAAYHAFfqGaY9SvRp/N/ofmud5lGb9jS+b/Q9ct5luYFnTowBryD4veNZfD+lDR7DcLi7BG8dFUdfxNdFa+IfsGltCOZAcJ9D/hXknjXTpNd02SZjunj+dSe/qK+ZwGEisQnVXupnzOCoxVdSqfDc+fCeee9IQelXrK3MreZIOFrRg0mfU9Uhs7UczNg+3qa+2c0nqfYyqJbn6n/APBFXxPe+Bf2/vB0812Ut/EVpf6b9mPRiybgw/EV9if8Gwv/ACc9+3x/2Vqb/wBK9Tr4J/YSxoX/AAUI+BsFkpA/tp4cL3UxNmvvb/g2F/5Oe/b4/wCytTf+lep1+W5zPnxk5rqfdcNYl18vhN92vxZ/XfRRRXlnvBRRRQB/Gr/wVd8Rx+EP+Dnf9lHxVMcLp3w7125J/wCudtrjf0r8ovh3LPqmgSeIdQO+41S6uLyVj1ZpZGOfyr9AP+C7V3LY/wDBwV+z3eQHDx/CjxMwx6iz12vgT4YqF+H2j/7VrGx+pGa9PK/jk/I+D49qNYWlBdZfkv8AgnUanp0WoadNaFR+8Qrzzya+N7iF7a4e3kGGRip/CvtvPFfKPxT0250XxC1zEo8m5+dT796+1yWt78qTe+x8RklX95Kl3/Qp+FLhYtR8p+jj9a9PIXpivnmw1aW3vIppOFVgWx1x3r9N/Dnw0+HviPQ7XWrGNnjuI1cHeepHNXnmNp4HkqVU7S008jpzeSoSjOS0f6H5jeLbA2Gtyp2c7hjpzX0F+yD4rHhz4sw2U0gSLUUaA8ZyeoHtzXf/ALUvw303SPD1hr2gWyxJA5jmKjkhuhJr4m07Ur7Sb1NQ02VoZozlXQ4YfQ10U50s5yqcI6Kacdej2/yZ6uGqRx+BcVu1b5o/oS1G/wBMsoGOpzxwIwIzI4UH8zX5wa7Da3Ou3b6O6S2xlbY8ZypGexr4vvvEniDV41XU76e4UcgSSFsfma+ifhJqf2zw81mxy0DY6djXy+V8JTyeE6rrc7lZNWsl57s+fxOUywtP2vNf5HXzeG4L5kkumPy9hU17ounxaVNBFGFGw8gc10NVJ54SjRnnIxXo+1lpdnmqpNtanyyx2nFbGmaFqerOBax/LnljwK9MtPB+mw3DXM/7wk5CnoM12NpGkQ8uMBQOgFelVzBLSCPXq5hZfu0eGeMvCUei+H/tcjGSXcMkdBXj1fXHjHTp9T8P3FpbDc7LwK8e8P8Aws1K92z6u3kR/wB3qxrrwWOiqTdWWtzuy7MIRot1pa3PKQCxwoyaxdXgkhmXzBgkV7Dqmj2ek6nLaWqYVDxnk1wPi+FtkcwxgEg16dGupSVtmevhcWpzjbZm58Fr6Gx+INl50fmiQlMehPev0kdEVDtGOOlfl14DTVLfxNZajYRnEUqkvjgDPNfqNE4lhWQchgDXyHFUP38J91+TPmeKYr6xGS6r8j84vGaFPFV+CMfvmxxivTvg9eqsd1Ztgchtxp3xZ0W3tPGU0zgMZwG+lc54cZLe88tPlDjtXtuoq+Dil1SO2rVVbBpLsvwPUPiaLW88GX9qdsj+WSF68ivzUwRweor9D72AXVpLbt/GpH518A6vZvp+qT2UgIMbkc9etduSpQjKF/M9/g6SjGrSv2ZnV/Qb+xd8MvC2ufsuW2m38PmR6k7yS7ucOOAR6Yr+fe3ikuJkhgQuzEAKoyST7V/UX+zlo1t4a+AmhWcMH2QCzDyIRtwxGSTnpX5v40Y+eHyzD06UmpSqJq391N/nY6+Kpr2MKfdn4ffGiLSPD3xa1fwJYzmSTTJNh3cEg8iuJtflXcK+Tvjd4n1K3+PviTXLK6aSQahKQ+7dlQ3TPcV9D+B/FeneLNGju7Vx5qACVD1DV+i4OnUjgqPtHeXLG787K7HmGRzwmEo1ou8JRV/JtHpFxq89zYpZS9E71TsoTcTqlVK09HvLVL37LIcOw4p2snyo+dceWL5Udbt2gKK4zV7ozXXl/wAK8V6x4T0GTxHrsGlIuVkb5/8AdHWs/wCLXw2uPAmr+baK72M/KOecH0JrjhjKMcQsPJ++1dHLh69NVlTk/ea0PK7K0l1C7js4Bl5GCivsXR9Oi0nTYbCIACNQDj1714d8KtHSe9fVpgCIvlXPqa+g683OK/NNU1svzPOzjEc1RUlsvzM/wv8AC7SfG3xk0G81q7gsbCOZXupJjhdsZz6c5r96NS/aJ+BvhLT4IW123eJQI0W3/eYCjjhRwK/CehmCgseAK/KeNeAqHE9fD1MdiJxhSTSjG3V3bu09dvuOjL+I6+EpeypxT83c/Qn9rT9qnwR4o8DReE/h/qBma7f/AEn5GQhB259a/MkaxYDox/Kud1W6+13ryA5HQVJounyanqEdug4zk+wr63hTg/AcPZf9Twl+W7k3K1233aS22Whjj8VUxU/b4h626bfqegW2n3d1Gs0a/K3QmuW8a+A9b8QWkdrYtENrZJYkV7EiCNBGBgAYp1ehDG1ITU4dDxaeKnTmpx3R8h3Xws8S6DLHfXgikgjYM7K3AA9c16vZa/olxGiwXCDsATg8V0fxK1EWPhmRMjdMQoB/pXyzGu+RVXqxwPxr3cO54ylz1Xa21j2qXPjKfPVdrH374NiCaMsqsGEhLDFcd8X7gR6DHAHwzyD5c9QK7fwfYf2Z4as7PbtKxjIHqa8g+NF/tubSxZeils18xg4+0xyt3b+48ahHmxCS7niEr+XGZP7vP5V694T+PWm+XFp2v25hCgL5icj8RXil/cIllI2cHFcBnPvX11TL6OJhy1l6H0H1OnWjaoj7Z8Satp+s3aXumTLPEUGGU5Fc2yK6lW5B6iuZ8HW32Xw/AhOdw3fnS6/4t0rw3LDFqJIMx7c4Hqa8mnhuV+xp62PIVB8/s6etjM1vwNpF+jXEX7iQAnK9PxFeCShI53hRt20kZ9a+lbrWLG70Oe/sJFmQRn7p9q+YGbexb1Oa9rLnNqSm9j2ct55KSm9jA15wWSPHTmsSG4nt23QOUPscV1V5ZR3Zy/3h3FVrHwhreqGUaZF55iXcwXrj6V7UZwjH3mfR0qtONO03b1G2nii/gASbEg9T1r9nv2Pvjd8O/BHwntNC1lrmCad5LiR3TKBmPQY56V+JP2C5ivEtLqNo2ZgMEYPJr9BdDs0sNHtrOPOI41Xnr0r4jjzIsJm2BjgsS2ouXN7rtqk7dH3PIznELDqEqKV3+R+yUHxl+Fdw1vGuvWaPdECNHkCsSe2D3rrx4o8ME4/tK1/7/J/jX88vxIvzLqUVqh/1S5+hNeefabn/AJ6v/wB9GvyJeBGGqwjOljZRv0cE/wAnEzw+KnOmpSWrP7Rvg98NdEg8OrrWrxW99JeruVhiVRGegB5HPtU/iv8AZx+HHiUtPBbmwmbJ3QcDJ746V/JZ8Lv2pvj58HLiOTwJ4lvLeGMg/Z3kMkJC9AUYkY9q+i/if/wXk+Mfw18ES+E9Q0qxvPEOo2xgs7qP5GhkIx5zp0PsB3r8gzv6PfGmFxzr5Rio1VJ7qTptK/WL0svJv0P1/Is6yPHUKeWVsHrbS6Ur93zaNetkT/8ABXH49aR+zIsv7PXgPU3u/Eeq24kuZYhs+x28mcAsD99gOnYV/MPJJJNI0srFmY5JPJJPrXV+O/Hni/4m+Lb7xz47v5tT1XUpWmuLidi7uzHPU9vQViaPo+oa9qEemaZGZJZDgADoPU+gr+zuBOE1w/lNLBVKntK1r1J2tzS62XRLZLtvrc9nBZZgsuhN4aChFu71b/F9jqPBNtd6tdf2RZrvkcggegPf6V+ivwc02y8Kp/Y8aDzJ13NJ3LD39K8h+Hvw/sPBWngECS8kGZJMfoPavT7K5ayvI7xOsbBvyr6PGT9rB01sfmnE+arHuVKj8H5vv6H0eSAMntzXzN4+8UNr2pm3gyLeA7VU8Zbua9e1bXvtkYisziNgCx9c14T4o0/7Lf8AnRj5JefxrzsuopT5p79D5PJqMY1eaa16HMVc0+2nvL6G1tf9ZI6quOcEnr+FadvYqsBWXq1esfBfwmbzV5dfu1/dWp2R57ue/wCAr0MViI0qUqj6Ht4nHxo0p1H028+x6r+094tvdc+Cf7BHhfVLoXdz4c+OU9g0inI2/a9MdQPTAav9JSv8v74wXjyL+yzp5zstv2jML6AM2kn+df6gNfi9RWnJeZ9/hKjqUKdR7tJ/egoooqDoCvzM/wCCz/8AyiW/aP8A+yd+IP8A0jkr9M6/Mz/gs/8A8olv2j/+yd+IP/SOSgD8U/2M/iJcfDL/AINPPB/iCykMdxP4Xv7OJgf4rjVblP5E1/J14r03TLLRoLyaVIXjVV5ON2a/os8LazPof/Bop8LLuHnMSKwHcf2xdEj9K/kZ8UeLNW8Uai17fOQvRUz8qgV99wTC3tqnovzHSy6riq0JRlyxjv8APofUVjbRQwhkw2ecjvXJ+L/Df9px/bLNf3y9fcVzHwy8S3F2p0S7DNsGUftj0Nev19/e+py1VVwmIeuq/FHzzFbfZ8q/3u9Woyd2M4B4ruPFmjxQk6jCQu4/MPU+1cHT21PdpV1Wjzo7qysorVAV5Y96vgZOK5nSNQkLC1k5HY+ldLWqd9jz6sZKXvHRW1qsSAjknqa53xLoa30YuIABKP1rRs7x0/dMMg1ZZtxyaVjipupTq86ZhaRo8Wnxbm5duppusWkbp564Vh+tbUjiOMuewrjLu7lupCz9Ow9KZ10uec+dspBQvXrV6ygnubhYIAWLVWRS8ioO5xXrWi6PBpkAZTudhktRJ2KxmKjRh5vYl0nSYtNi/vSN1NZHifwqmuRebari4Xpjv9a64DPFdFZWqQrv6k1hKVtT5t42pSn7ZP3jmPCHhC18O2wkkAe4YfM3p7CofHKaba6d/ad5IsJj7nv7V2V5ciztZLpgWEaliByTj0r4S8e+O9T8YamzTZigjJCR+n196z53fmOvJ8HiMwxTrOVkt3+iPpXTkt2t1ngYOHGQwqprGki/XzY+JAPzrxn4XeKLmG6/sK4DSRyfcxztNfQVaqbep3YyhUwmIav6PujhLWzFquGHz96lmhEgyODXRahaoVM6fKR196w62TujWnV5/eNPTbJbdBKcFjUl9Z/aBuXhhVS0uGjcIeQe1bg55oZzTclO7LemadFZxBhgsepqLVdLF2vmRcOP1p9vO0Z2nkGtEsTU2scTlOM+e+pladp6WUeTy56moNYsILi3MzEKy8g1tE4Ga4DVtTlvJTEPlRT0oRvQU6lTmTMardmJZJ1giBYscACqgHOK9v8ACHhu1062XUHIklkAII6DNE58qudmOxccPT5pbvY0fDOgrpVt5k4HnP1Pp7Vp6jpaXy7k4kHQ1q/Wr1tGAPMNccpu/MfF1cTPndVvUzdH0ePT4974aQ9T6VxHxN8FaR4g0mS/nZYLiBSyyHjOOxr1FjtUse1fJPxF8b6hr2oPpyAw20JxsPBYjuamHNKVzuyWhicRi1UpSs1q35Hc/DPwhpel6amrblnuJR94fwj0Fdxr2jrqVvmIYlXkH19q8G+H/iy50a+XTWUyQTsBtHJB9RX0wOn1rV3i7o7s3hiKGLdScr31T8ux4LPHJDKYZRtZeCKhr1jxFolvfQNdDCSIM59RXlBGDiumEuZXPSweJjWhdb9TutEsIIIBcAh3cZz6U7WNHi1KIleJB0NczpWpy2MuzG5G6ivQQcgN61Mrp3PPxHtKVXnv6Gd4Z8PRadH9qmw8x/StTWtJg1G3+b5XXo1PilaN8iobu7aVtoGAKjXmucjqVZ1vaX1OZ0zTvsYLyYLGpNRtI54jIcKw5zWkeOa4vW9Slkc2qfKoPPvWtzvpc9SpdPUw5pS7bR0FJBvMgjUZJ4xUJ4OK77w3pEKoL+XDMfuj0pOVtT0a1aNKHMzT0XSBYL58wzK36VpXmnpfrtA+c9CPWrldXoVjHs+1vgk9PasJVGtT5rEYuUX7VvUp+FfDn9lxm5usGZ+nsKh8a+F7LXNPa4kKxTRDIkP8jXb9a+WPi549v7u+l8MWYaGCI4c9C5/wrKLlKVzHK6WJxuMUqcrS3b7L+uhqeGtOtI7f7WjLIxyMjkDHpWpq+kxalDjGHHQ+9eD+F/Ed1oV4AuXhc4ZP6ivoyOQSxrIONwB5rsTufTZjQq4etzt3vszyOSzls5THMMMKjeMOPevT9V0yG/hJI2uo4NeayJscoexxVp3OvDYlVVfqbWjWaRp9oYgsf0qTV9Ji1OE9pB0NZNrdSW0m5eR3FdYjb0DjvTIqOcJ86Zi+GtDWwj+03ABlPH0FdHdWyXKY6MOhqNJChzT5JcjA4rPldzkqynKpztmdb2/lHc3JqO9sYLuMlxhh3q/XMa3qMiMbOLKjufWtDopqUp6bnMyYDkA5xVaa2FwNoHzHpU1d14S0aKdhqczA7D8q+/vSb01PSq4hUYuoy34O8MDTIvtt4uZ26ewrp9U0mLUotnRx90itYNg5FbujWaSP9ofBx0FYOVtT5XE42bm68nr/AFoZXgrwu+kqb+6CmduFDDKgf/Xr/Qk/4IkePbzxx/wT18I2+pyia60WS606QqcgeTIdoHsFIr+BnHav7Q/+DbvUpbz9hzWbOUki08UXsa57ArGf618FxrG8aVR73a/IeVYqdarUlN6ux8O/8Guf/Jcv25/+ytXH/pRf1/XfX8iH/Brn/wAly/bn/wCytXH/AKUX9f1318Ae6f5gn/B6t/ylN8A/9kq0r/076xX9fv8Awa4/8oKPgZ/3M3/qQanX8gX/AAerf8pTfAP/AGSrSv8A076xX9fv/Brj/wAoKPgZ/wBzN/6kGp0Afv8AUUUUAFFFFABRRRQAUUUUAfBv7Yf/AAUR+CH7EmuaH4f+LOn61eza/BNcW7aVBDMqrCyq2/zZ4iCSwxgGq37If/BRz4Eftq+K9V8HfCax1q0u9HtFvZzqdvDChjZwgCmOaUlsnoQOO9fB3/BYT9iD9pj9rH4geDdd+BWhR6xaaNp1zBcs95b2xWWWUMABNJGTwOo4rM/4I8/sPftNfsq/FLxh4k+PHhsaJaanpcNraSC9tbrzJFm3sMW80jLgDOWAFfIvMM0/tf6v7N/V778rtblv8W25+zR4b4TfBf8AaTxMf7R5b8ntY3v7S38O9/h1t8z9/wCiiivrj8ZCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/9X+/iiiigAooooAKKKKACiiigAr8Af+Do7/AJQUfHP/ALln/wBSDTK/f6vwB/4Ojv8AlBR8c/8AuWf/AFINMoA/kC/4Mqf+Upvj7/slWq/+nfR6/wBPuv8AME/4Mqf+Upvj7/slWq/+nfR6/wBPugAooooAKK/mO/4Lm/8ABwt4k/4I8fHbwb8GNC+Fdt49XxToLa093cau2nmEi4kgEYRbWbd/q927cOuMcZP4g/8AEcd8Q/8Ao3HTv/Cnl/8AlfQB/oX0V/BB8Mf+D4rwzd67b2fxm/Z2urDTGf8Af3mi+I0u540/2Laeyt1c/W4QV/XR/wAE+/8Agpf+yD/wU3+E0nxa/ZP8Sf2pHYmOPVdKu0+zappc0oJWO6tySV3YbbIjPE+1tjttNAH3vRRRQAUUUUAFFfjD8Bf+DgD/AIJcftK/tO6d+x98JfHd5e+PNWv7rTLWym0a/t43urNZHkTzpIBEMCJ8EsASODyK/Z6gAooooAKKKKACivkD9v39qW5/Yl/Yx+I/7WNnoi+I5fAejTaqmmPcG1W5aPACGUJIUBJ5Oxq/iP8A+I474h/9G46d/wCFPL/8r6AP9C+iv89OP/g+P8fhwZf2cNPZc8geKJAcfX+zz/Kv2I/4Jp/8HYP7FP7dfxS0r4C/GLw7ffBzxhr86Wulf2heR6hpF3cyHCQC9WOBo5ZDgIJYERmIUPuKqQD+qSiiigAooooAKKKKACiv46br/g6i8XQ/8FZR/wAE0Y/grZ/Yz8VU+G39vnXX83Y2qjTDefZ/seM4Pm+V5mP4d/8AFX9i1ABRRRQAUUUUAFFFFABRX42/tif8F8P+CYn7Bvx51D9mr9pvxve6H4u0qG1uLm1h0a/vESO8jWWI+bbwOhyjAkAkjoea/YbTtQs9W0+DVdPfzbe5jWWJwCNyOAVPPPINAFyiv46f2Vf+DqLxd+0p/wAFN9G/4J9TfBWz0ez1fxbfeGv7aXXXnkjS0eZRN5H2NAxbyuV3gDPXiv7FqACiiigAooooAKKKKACiiigAr/ME/wCD1b/lKb4B/wCyVaV/6d9Yr/T7r/ME/wCD1b/lKb4B/wCyVaV/6d9YoA/r9/4Ncf8AlBR8DP8AuZv/AFINTr9/q/AH/g1x/wCUFHwM/wC5m/8AUg1Ov3+oAKKKKACiiigAooooA/xBv+CsX/KU39pb/sqvjL/073Vf7fNf4g3/AAVi/wCUpv7S3/ZVfGX/AKd7qv8Ab5oA/N3/AILF/wDKJ/8AaR/7Jt4m/wDSCav8+j9h3R5NE+Avw3upBgax4V+0p7iK+uoj+q1/oL/8Fi/+UT/7SP8A2TbxN/6QTV/Ed8H/AIaSeGv+Cb37H/xngjPka/oGu6NPIB/y0i1a9eMfiCa68DPlrxbPE4jourlteK7X+7U6j4gya74A8K2Hja7sXuNNv3eNZU/hZDjDccZ7V5DD8bfDN5btHqVvLHuyCoAYEGv3Ll+DHh3x5+z5b/DTXEDw3FmrKzjBSQjcG/A1/Nn488ON4F8aan4NuZknl02d4GkjOVbb3Br0+AeJsHxA8Vh5RtVoze19YXai/Xo/+CfnWX5Th6sFGonzWvdP+tju9K+FOreOTPrPhCSI2hkIVZDtZfYivSvAHwg+IvgzxRb62jQeWp2yKH6oeoryP4SfESPwP4jWW8djZ3A2SqO3oce1foTpuradrFst1psyTIwBBUg9a+uznGYvDt0mk6bWja/B+ZjnWMxmGbouzptaNrp5+ZoV+dPxd+HOrWfjy9k0uDdBO3mLg4xu5PWv0Wrx34q6Zuhh1RByp2NXj5JjHQxGn2lY8XJMwnhcRzQ6qx8HW3gDxD5XnSqsY9Cea6bSvBM9lcpeST7XQhhtr1t13KVrKIxxX2DxdSR9TUzavUTTaXyLkmoXcowz4+lSW7lo+TkisO6v7KyTzLqVYx7muLvviVpdiGWwUzvjjstZQoSlpCJy0cHVq6UoXPWMEnAroNO8Nahf4cjy09Wr5Mb4ieIJdThvHl2JFIrbFGBgHv61+gOkX8WqaXBqEP3ZkDD8a5cwjUw6i+5jm2ErYKMHK3vfgeP3MD2s7W79VOKgrqfEunyJqeYVLebyMetVZ/Dt7Bpb38nysvO32qI1o8sW3ucsaseVNvc898V2outEmT+JcMPqK8JIBGDX0BNmeNkc53AivC9QtnsruS3k6qa9jBS0cT6TKKmkqb9SzptpaQQf6OgXPXFexfDa+2XU2nsThxuUduK8jsIbhITK6MI88MRxmta0vbiwnW7tWKOvQjrzVYin7SLiXjaXtoShfU+ifEiWN1pM9jdyKnmqVGTjntXzBF4P1eRiCFVQcZJ6j1ro5bia5YyzuXY85JzXTaTcCa38s9U4/CuelTlh4Ozvc8/D+0wkHyO9zkDpc2lRLBMwb0IrIv8Awt4f8V3FrY+JmkSzWVWkaLG/b3xmvSdTtRc2xx95eRXm19q9hp4InkG4fwjk1pCUp7PU7cJXqzfNTbU+639T9DPhj+z/APBHwzp1tq/hfTIbouqulxOBI57g5PQ19AQW9taR+VbIsaeijA/SvzW+DX7STeEtQTw5ru5tJkOFc8tET3H+z61+ilpf22o20d/ZyiaKVQyspyCD0xX5jnuX4yhXf1mTkns273/4KPic8wmNpV74yTlfZtt3/rsfip/wU1sb0fFvSdUMTi2fT1jWXHyFwxyM+tfmurMjBlOCOQRX9Rfxa+E/hH4yeEZ/CXi23WSNwTFJj54n7Mp6iv55Pjx8B/F/wI8XSaF4gjMlpIxNrdKPklTPHPZh3FfZ8NZpSq4eOG2nFW9V3R+2+G/E+GxGCp5XP3atNaJ/aV27rzXVfM95+EVzrWr+Bor/AFMtIUcorEclB0Oe9dNrUp+WJfqa1/hHp0unfDzTba4wS0e/j0bmsPxAVOqyrGMBTjivq4O7aOKpVVTH1lFaJu1vWx3nwhsr7XfFttoUamSB23SDsqjqa/SyOKOKEQRrhFGAB0wK+RP2XvDO1b3xVOvX9zGSPxOK+stS1C20uykvrtgqIMkmvj88r+0xPs4/Z0+Z+b8U4hVcc6cNo6fPr/keBat4P0nSPGVzq9gAPOGdoHCsev51dU4NSXNybud7pushz+dch4x12PQNBmvi21yNqY67j0rempz5YN3eiMqcalVxg3eWiOxqGeaO2haeY4RAST7Cvjr/AIWJ4zz/AMf8n+fwq9Z+MvFmpl7e8vZHiK4ZT3z+Fel/ZVRauSPblw3XiuaU1b5/5Gzr+rTatqkt8SQrHCj0A6VwnijXZtF0tp4pGEjfKhB7mt+qWseBG8T2qSPcNEV+6uOM+pr1YqMEk9j38KqFKcFV0gjxNfH/AI3XGNWuhjp+9b/Gv0N/Z+n8V6z4MHiDxbeNdG6b9yrfwovH6mviyT4QXVtNE73KvFvHmcYO3vj3r718OeP/AARpei2+l2rNbxWyLGqsvZR14rzc4tOko0YXu90tjDi/E4ethoU8FTTberUdUl02vr+h6dc2UFzbvbtlQ4IJHXmvO7r4XaTLg20zoe+ec1vQ/EHwbOoYahEpPZjg1a13xFZWOjS3sEqyHG1dpz8x6dK+dp+3ptRjdXPz2n9ZpNJXVyl4F8deFPBto3h663h1lYNKF4PufpXV+OfFWmar4fiXSJ1lWZ+dvXA9fSvkt2aRy7cljk/jXaaHA0Npvb+PmumtldJVFiLvmv8Aed1bAQUvbXfNf7zaqxWJqepxaVEs8qltzYwOtWbDVrHUVzbuN3dTwa6OSVua2hTpy5ea2h7p8LfGWleHfOsNTBQTsCJewwOhr1vx7r1tF4PmuLGVZBcYjUjkHd1/SvklRgYq/DNP5Jh3t5ec7c8ZrxMTlFOpiFiL63Ta72/I82rg4yqKpceCVO5Tgityz8Q6hbtulcyg9dxyfzqvo2i6pr97/Z2kQtPOVZwijJIUZNUbm2uLOVre6Ro3XgqwwRXoS9nOTpuzfbrY3lGL0Z63pjTapp/9pQRt5QO0n0Iro/DFq15r1tAmPvg/lzXX+AtJTTPC1tEQC0q+Y3HUt/8AWrqrSytLG+GoWsapIBjgdjXx+Kx6TqU4LukeLUrrmlFHo0kUUq7JVDD0IrmLnwT4Yul2tZonU/INvJ78V0nh/wC2+I9Uh0XToWkuZztRV7muw1fwT4r0Nymp2M0eG252kgn2Ir4iWPhhqyoyqqM2rpc1m13sYwpVXFzhF27rY8i039l3Q/iRDJAt/LZx25BO0btxPTr6V558Tv2Lh4G0G88VWuuL9isoTI/nId5I7DHrX6NfDPSX0vw4rzoUlnYuQeuO30r5k/bl8YxaR8OLbwxE5E2pzdFbB2R8nI7g9K8nKOMc7xOf08vwtf8AdOdrWi9F8TvbsmfS4KnKNKKb1Z+R45FfH/xX8W3+sa9Lo6yYtbVtqqp4Y9ya+r9WvotM0ye+lO1YkLcdeBX5/wB1cPd3Ml1IdzSMWJ7nNf1Fl9O8nN9D73hLBqdWdeS+HRer/r8T1rw+C2k26rySAAB3Jr9Fvg1+zPq/h+4t/EnxRsmt5WjSe2s5hg7XGVdwfUcgV9+/8ErP+Cael6r4d0P9pH42pFfWk8S3OkaaQSucn95MrDkgj5R0717v+2eiR/HzU44wFVYoAABgABa/EM18YcJmHEVThjJ3zKnCTqVP7ycVyR9LvmffRdWPjTB4nC5Y8Xfl558q7tNSd/LY/N3xpGI9fl+XAIXHHtXK5GceldT8RtUtv7Y8u3YO6IFbB+6a8/052eV2YkkjNfaYKLeHhJ9kfltKL5E2aFyuUz6VnMAylTyCMVeuriOJCp5J7VRzxmumN7XNFseIarZf2fqEltjAByPoam0K+/s7VoLvsrYP0PWpPE+r2F/r0lpYsHaBAJCP7xzxVPT7GTULkQocdyfSvdV3T9/qj31rS/eaXR+oP/BOnwxL4q/4KNfCfyCrf2bc3V8U/i2xxH5voM19df8ABsL/AMnPft8f9lam/wDSvU6zv+CFHw4PjH9svWfiTLEHh8H+HzbrNu3fvr1tu0jsdoJrR/4Nhf8Ak579vj/srU3/AKV6nX5pmMr4iflofpHDNB0stoxfW7+9t/kf130UUVxHvBRRRQB/E1/wWs0GXxT/AMHGP7NvhyEbnvfhd4jhUepaz10V+dfwbtLjWPCGj6TZjdMwFso/2lbbj86/Xv8A4KQ2EWq/8HVv7HWlzcpc+B9WibPo8Gtg/wA6+Mv2YvhZL4X/AGsde+DepqYX8J6/fJsZc/u1cunB7EGlWzKOAwmIxktoQlL/AMBVz43jPByr4eio/wA6X/gWh8h+NPHw8A+J7vwl4m0+eC8spDHIpx1Hceorz/xp4t8H+NdMXTLSRluSw8ouuACexNfq/wD8FO/2ctO1vwwPjtoIjgvNNAS+3Nt8yI4CkDHJFfgqsinDIce9fVeHWe4HiTKKOa4e8ai0nG/wzW69HuvJnzcsipUKtldSj179n/XofQCfs0/FSRFkS1iKsAQfMHQ19g/ADwv488GaFP4e8YRqsMbbrcq+7APUVyP7OPxesNc0KPwfrtxi/tRiNpD/AKxO3J7ivq8EFQw5Brg4jzjHNzwOLhGyejs16Na9T5bNcfipOWGxEVo+34o82+LnhYeL/AGoaQoy5jLpnj5l5FflIPBHijzPLNm/XGe1ftE6h0KHoRivjXxbpbaRr1xaHpuJH0Nb8I5rOjGph1r1X5P9AyjM6mHUqcUmnrqfJVv8OvEQYRXISMY6k5r1bwVot74U80rN5nmgZXsCK7G6TIDVSIr6+rjKlaPLLY76+Pq1ouM9mXpL67mcGRjgHp2rYVtyhvWuD1DXNJ0xc3s6r7Z5/KuJ1b4tpDGINDi3MP45On5Vh9TqVbKETCngatW3s4/5Hu8UMsziOJSxPQAV0beGNStLI31yAoH8PevHvgJ4+1DUPFs2ma1J5n2pMpkcKV9PSvsPUrYXljLbnuprxcyqVMLXVGS7O5w46nUw1X2U/I8Fx2pcCr1vpl5dz+RBGWYHB46Uut6Xc6NIkMpDFhnIrb2keZRvqZ8yvY8L8e2vlamtyOki9fcVwLWVpeyJHeKHUHofWvY/Gdk91pvmxjLRnPvivIEBJGwZPbFfQ4Opekrbo+hwVS9JK+qOmgSO3CiFQoXoAMCvsXwnfjUvD9vc53HaAfqK+OwsiqPNUq2Oh612GieItVtbFtLgmKRHnAODXn5ng3iILleqZ5+NoOrFWeqO4+MGgtqjwXum4eZDtdQRnBryrT/A+urMJpNqBcHk11FtdyRXK3DksQecmvQY3WVA69DWdOpUw9KNJO67mUa9ShTVNao80ZGjYo3UV13wV/Zs+D/xW8c3Evj+9limkKtDbRnYkmOoLdc1la7aC2l+0dFbr6VyMPj6DwpqUWp6dORdQMHQx9iKWLo4nEYWpSwdV06klpJbpnZg69ePvYdtNroftJ4E/Z8+Dnw6tVtvC3h+zh24/eNEryEr0JYgnNegeLwieE9RhjHJtZQFH+6egr5h/Z8/ae0z4w6Z/ZGoOtprEC4eMn/WD+8v9a+lWy5O/nPrX8s5vgcyw+OcM1lJ1Yu/vNu/mm+j7k1qslJqafN5n8WPi6Ce28V6nBdIySLdShlYYI+Y+tX/AANrmraJ4ht30pyDI4Rl6hgT3Ffu9+3Z+wna/Ei1n+Kfwqtkg1uFS9zboNouQOpAH8X86/Dr4d6HqY+ItnpNzE0NxBN+8SQYZSp5BFf13wzxLhM5wSxGHeqVpRe8X5+XZn7flufYXMctnNJXjF80X0svyfRn3dNBJAo81cEgH864W5uXa8adDgg8fhXr+u+X/Z0sjDJUcV41bwvdXKW8Yy0jAAe5r1MO002z81y9qSlOSPvH9mfTZtQ0+bxNqMXzqfLjY9x3NfQXjnw3p3inw3c6ZqQG0qWVj/Cw6Gqvw48Op4W8F2GkKMMkYZv95uT1qPx1rMNpZf2bGw82b+HPIWvyfFYmeKzN1KTtrp5JH59iq7q4uVSnprp6I8B0HRYtB05dPiO7b1YdzXTRPuXHcVTrw34meP8AVNB1CLT9Bn8uQDMhAB+g5r6uGHnianKt2dtDD1MVV5I7s+gq4P4heIBomhPHGcSz/Kv9a+aT8WPHf/P6f++R/hUd94k1zxDHHLrc3nMn3eAMA/SvRw+SVIVIyqNWX9dj1aWQ1aU4zqtW/ryK3228/wCer/8AfRry/wAV/EfxNomoi08PX81syD5yjEEk16XHC8ziJOrdK4PWfg9ql9etdQXiuXOTvH+FfRR9knapY+ry2WDhWvirWts1dEHgj4u/F6+8SWulWGsTSSXUixASneoyfQ1+rFjazRWUUd6/mTKoDtjGW7mvzu+CHg7TPA/jFtb8YMHEA/cbBuG49/wr7si+Ing2Zgi3yAn+9wK+U4hgp1Yxw9PRLVpb/d2PnOLp0auIjHB01ypauKtdv07DvFHguy8UrGl3LJGsfOFPBNeT6r8NdP8ACzJrd1db7eKRSUI5I9K9xtPEWg38hisryGVh1CuCa8b+L+vJI0OiQHO353wePavNy+piPaKim1Hr6Hz+CnX51RTaXU9q0P4leDdVCW1tciJuFCONv5V8+fETVjqviedwwZI/lUjpgV5PEpZ1XuTW+STyea9PC5VTw1V1IN7dT0KeAhRnzRZi6zLtgEX941zIYIQx6A1JrWtWv9oG1c42cZ7Zqq0iuMocg+le7CDUVc9mnSlGKutz6O8NeJ9I1O0S3hcRyKANjcHivGPivqK3evLaIQRAmOOuTXKrI8R81SVI6EHFYF5dTXtw1xcMXY9ycms8LgI063tExYPL406/tYvQWC9u7ZWS3kZFbqAeD9atW96zMI3GSeBiozpWpCwGp+Q/2diQJMfLke9WfD9mL7V4bc9N24/QV6EnDlcux6VTk5ZS7GnLDLC2yZCp9DX0B8GrIrY3V+2MOwUevFYM9jaXS7J4wwHrXV+GNah8PWY05YgYgSQR15r5/H1nVoOEFqfNY3EurQcIrU9MvNF0nUJFlvLeOR0IZWKjII6c1oeUOADVnw/Z6h4msZNS0i3kliiO1iB0NdL4X0G71DxPZ6VPC4LyruBGCAOTXyNbFKnGXPL4E7q+3U+efNflZqP+x/eeK7ZfEDayI5LhA6x7MgZHAzXy58V/hBq3wkvbaw1q7guJblS4WLOVUdzn1r9poIo7eBYUGFQAD6Cvx9/aY8UL4n+K180Dl4bTECZOQNvXHtmvnOBOJs1zPMJUa006MU3blWnRK69fwPbwdSbajfRHyH8TPF7eBfA+oeJ4wrSW0RMascAselfj+/ivW/GnjceINfmae4mckk9APQegHpX3N+2f4o+w+FbHwxDIQ95J5jr6qnT9a+NPgN8NfE/xf+LGjfDnwciyajqkwihDnaufUnsK/Z/bU6EHWqySitW3skt2/Q/euAsvpYfLKmPqpJyvr2iv+Dc9k8GeCfE3xA1xPDvhS0kvLpwWKoM7UXqzegA6mv0l+Hnwd0f4Z+D7hCqz6lPHmabGTn+6voBX6+/AP9ivwb+yn8ANbDpHfeJr2wla+viuSDt+5GeoQfrX55agyx2kzyEKAjcmvicm47oZ/WxMcCv3NKSipfz9W7dF277n55xdxLVxU44eg7Uvxlbv5dl9/l870EZ61cjgy5d+meBVV8byB619zc8lSudNpknmWoB/hOKg1q0S5td5XJjORUej5UOD35q7qV3a2NhLd3rBY0Ukk1zu6noceqq+6cLX0H8HtVVtPuNIbG6J/MX6N1/Wvna1uEu7dLqMYWQBhn0NepeBIptJE+vysVRYZAFzgtgZ6npz0pZrGLw0ubpr9xrmNLnpOm976epb+O/hqfR/C/7H2uTYI1b9oaWZWU5DBJdKTr+Ff6bNf57f/BQT4VyfCf4Cf8E2dMuYTBPq3xVGrSo33g15eae/PqcYr/Qkr8im7ybP1ehT9nShT7JL7kFFFFSahX5mf8Fn/wDlEt+0f/2TvxB/6RyV+mdfmZ/wWf8A+US37R//AGTvxB/6RyUAfzw/C3w6/iL/AINH/hoiLvFnZ/anHX5Y9Yus/wA6/lY+IHwfZCdd8PECOTaWiPGC3cV/bv8A8Ew/hafjP/wa9+CvhzGnmS3/AIP1cxqOSXi1G7kXHvla/jF1rWry5jTTJQYzbjy5FPXenBz9CK+84IqXnWpejMJVsRSrQqUHZa37WMHwn4ag8N6cIFw0r8u2O9dFcXEVrC08xwqjNZlnfhB5U34GuL8R6y15ObWI/u0/U1+h8mpEaNTEVm5vfdmPrWrSapcmQk7B90egrIRGkYIgyTTmXPIrp9IsRFGLh/vN09qOV3PcbjShZIt6fYrZx+rHrWkASQB3pKu28P8Ay0b8K02PNnNvV7mpZ2iwrubljTLlEgXzGOFp0M2z5T0rlNa1F7mQ26H5FP5mktzlpU5zqeR0R2uvqDXO6jpuz9/D07iotN1EwEQSn5f5VrzTCXhelUdSjKnM5Cu08O+IGhZbK8OVPCn0rBubIHMkXX0qaxs9g8yQfNSaua4hU6lNqR64CCMitC1v1thic4Qdz2rhdM1XyALe5Pydj6Vj67rTXjm1tz+6HUjvWfs9bHgfUJTn7N7dz3BWWRdy/MCK+cfir8KVut3iDw8oWTrJGOAfcV2vhfxS1kwsb9v3R4VvStvW9XF8/kW5/dr39az9m72DBxxWBxSdN6fg0eXeBPBqeG7Q3FzhrmUAn/Z9hXoDEKNzHAFVo5dnDnI9azru581tkZ+WtFDodtaVSvVc6j1ZXu7pp3wPujpVIDPFSMmORV21twB5j/gK1Om8YRsixaWojG9+Sav/AEqFW29a0raM48w9+lJuxx1JW1ZPbW4Ub361ZdQBu6U0MRxVWecsdo6VBx6yd2WK57WNIW5U3Nvw46j1rXjlK/K3SpWbPAovY0pzlCXNE8tIKna3BFdz4R8TzabMtjcZeFzgdytV9W0oXCme3HzjqPWtTw5oJtcX1198/dHpRJpx1O3FV6M6D9ovl5nsKsrqGXvzViGUo23qDXOWN55f7qTp2rutNs1AFxJyTyK4ami1Pi8RaC94hrx34jfD231mB9Y0wBLmMEsOgYD+te53MCsDInbrXzf498bT3kz6NpxKRJkOehJ9KKCk37p2ZH9YliIyw7s1v2t5jvhz4PTTLUavfqDPJ9zvtFeq14h4N8VS2FxHpl2d0MhwCf4Sa9yQZGT0repF3O/OI1liHKs7329DyvxLrst3K1jCCkaHnsTXIgFjtHU16f4n8PG7H260Hzgcj1rJ0XRBAourkZfqB6VtGaUdDvw2Loww6cN+3mQ6Rowg/wBIuhluw9K6XrUjL3qhJKTwOlTfmOGdSVWXMzZtYAw8xvwpt7Zh13x9fSqVndGN/Lc/Ka0pp93yp0qHdM5pKUZ3OeIKnB49qxtU0pL5N6DEg6H1rqJ4d/zjr3qxY2QIE0n4VpzK1zqjiOT31ueKyxNDIYpQVZTg1s6Nqsunzhc5jbGRXaeJPD63iNeW3Eg6j1rmNK0gR4nuR83YU000eosTSq0ry+49CVg6h16GtjTNQNlJhuVbrXKW0/lsEf7v8quyTDG2Pv3rJwvoeFVo3vGWx6rHIkqiSM5U15t8Rfh9ZeK7JryHEV5EMq/Y47Gr2iav9jk8mY/u2/Sua8XeLWvGbTtObEQ4Zh3rONKXNZHNgaGIpYpOg7W6+Xn/AJHlnhHwStk/9oaoA0gJCr1Ax3r07pXKaZqDW7CKQ/Ia1Lq83fu4unc118ttD6LFSq1qvNN3MPXNZLE2dtwBwxrkq6PULMSp50Y+YfrVWzsMjzZuPaqSsehQcIQsh2n2HSeb8BW70FQIQnXgVmXd35jGKM/KO/rTMnzTkdBAqyDzAcip3QOPeua029MMohc/Kx/I11qLjk1lJtO5y1oyhPUyyCDg1m6hp8d9Fg8OOhroZ4t43L1FUlTPNaJ3Lp1ftLc8vkjeJzHIMEVqaNqsulXYmBJQ8MvqK6HW9OWeH7RGPmQZPuK5GCDdh26elB60ZwrU/e+aPb7a5hu4FuIDlWGRWrZXjWU3mDkHrXlOgas1hMLeQ/unPPsa6m81ISKYoOB61m4Hz1fAvndPoz2C2uIryETwHcp/nX9uX/Bu74SvPDH7CFzd3i7TqXiG+uBjkEDYvB79K/hC8K6nPBdfYdrSpLnCL1z7V/pI/wDBKP4UP8G/2Bvh34TnjaKabT/t0qv94PdsZMH35r8+42mo+xper/QeW4OVCpUvtpY/CH/g1z/5Ll+3P/2Vq4/9KL+v676/kQ/4Nc/+S5ftz/8AZWrj/wBKL+v676+BPYP8wT/g9W/5Sm+Af+yVaV/6d9Yr+v3/AINcf+UFHwM/7mb/ANSDU6/kC/4PVv8AlKb4B/7JVpX/AKd9Yr+v3/g1x/5QUfAz/uZv/Ug1OgD9/qKKKACiiigAooooAKKKKAPnr4t/tYfs4/AfxHbeEvjF4w07w7qN5bi7hgvJCjPCWZA44IxuVh17V0Hwm/aI+Bnx2a9T4N+K9M8Stpwja6XT7hZmhEu7YXAOV3bWxnrg1/NX/wAF0Phr8VfHX7Vuhat4Q8NarqunWnhW1ga5s7KaeES/art2UuiFdwVlJGcgEV9A/wDBv94F8UeEx8WLzxVpl1pskx0SKNbqF4Sdn2wtgOBnqua+Ro8QYmebvL3TXJdrm1vpFv06H7NjfDnLKPBi4kjipOvywbheNrymo225tE77n9HFFFFfXH4yFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//W/v4ooooAKKKKACiiigAooooAK/AH/g6O/wCUFHxz/wC5Z/8AUg0yv3+r8Af+Do7/AJQUfHP/ALln/wBSDTKAP5Av+DKn/lKb4+/7JVqv/p30ev8AT7r/ADBP+DKn/lKb4+/7JVqv/p30ev8AT7oAKKKKAP8ANT/4PbP+T5vhF/2Ijf8Apwua/oH/AOCCP/BMX/gnV8c/+CRHwW+Knxl+B3gfxT4m1nTL6S/1XVNDtLq8uXTULqNWklkiZ2IRVUEngADtX8/H/B7Z/wAnzfCL/sRG/wDThc1/Xd/wbe/8oS/gH/2CtQ/9Od3QB4T+29/wa8/8Erv2q/hzqOmfCzwRb/CPxiYX/s3XPDO+CGGYA7BPY7/s00RbG8BElKjCyIea/wA979gv9oj47f8ABDL/AIK3W0Pj+Z9NfwZ4jk8KeOrGJy9veaQZxDd46CRQgFzbNwC6Rt0yD/sq1/kBf8HQul6PpX/Bcn42xaOwImPh+eZQOEml0SwZx75J3H3NAH+tv8V/i98MfgX8MdZ+M/xf1yz8PeFfD1o99qOp3sgjt4LdBksW754CqMszEKoJIFfyafG//g9F/wCCd3gPxLdaB8GfA3jHx7bW52pqXlQaXaTn1jE8huNv/XSBG/2a92/4K1/8E3P26f8AgrZ/wTJ/Z7+C/wCzX4l0DQoYNO0nXfFMPiK8urVbyZdNiW3Aa2tbkyBJJJWZXCjdsbkgY+V/+CcH/BBj/gll/wAE3fgpcal/wV61n4ZeI/ile3c73Euva7GNGsLJTiGK3hvvsiszKN8kkkJcM21TtHIB9Qfsdf8AB3X/AMEzv2mviDp/ww+J9lr/AMJtR1SaK2tb3X44ZdJaaU7VV7q3kcwjcRmSaKOJRyzqM1+pf/BUT/gsJ+y7/wAElPCXg7xp+0lpfiPWLPxxc3Vrp/8AwjdtbXbK9oiSOZPtF1bAKRIu0qWzzwK/zcv+DinQv+CRuiftReG/+HUF3pc1lLpkx8VReHZJJtDjvRIPINq7Ex72jLeatuxhGExhy9f3h/8ABOH9jX9mD/gpX/wRq/Zhf9uPwdafEU+HfC0K6cdSkmBg8sfZQQYpEJJihjU7ifu0Af5vP/BPX9tz4Tfsof8ABWLwp+3N8RrHVbvwhonibU9YuLbToYpNQNvex3CIFjkmiiLgzKWBlAABwTxn/WG/4Jjf8FSP2c/+CsHwU1r47/s2WGu6ZpGga1JoV1D4gtobW5+0xwQ3BZVguLhDGUnXB3g5ByBwT/ln/wDBLD9nH4I/HH/gt54K/Zq+K/h631rwLqXi/WNPudImZxDJbW8V20cZKMr4UxqRhs8V/plfHr/glz4b+Fn/AATY+L37Gv8AwSm0bRfhRrvxHtZY4pJbm6hsxPeCG2upJJQLmZGeyRo1KIcNt6csAD4J/bV/4Oy/+CY/7JfxE1H4TeCV134ra3pFxJaXsvhqGEaZDNCSroLu5liWXDDG6BJYzzh/X5W+D3/B6j+wD4x8UW2h/F74deMvBllcSbG1GMW2pwQA9HlSOSObb6+XHI3oDXxv/wAE0/8Ag1r+E/7G/wAUtZ+MX/BaXxJ4B1rw5ZWkQ8PaVDrs8GnyXTOxmmvTdQ2O5YlVRHGGeNy7F1+VQfmb/g5A8Ef8G9Xhv9mKy/4YKuvBUfxkt9Wto7SD4fXKXVq9jyLoXv2Rns1CrgqWImMmAuV30Af6GXwO+OXwk/aU+E+h/HP4E6/aeJ/CfiS2W707UrJt0U0TcHggMjqwKvG4V0cFWAYED1av4uP+DJnxh4i1T9hr4seC9Qunm07SPGyT2kLsSsLXdlD5oXPQMY1OBxnJ6k1/aPQB+R3/AAXo/wCUOn7Q3/YoXf8A6ElfwE/8Gkn7NP7PX7U//BRvxt8Pv2lPBOiePdCs/hvqOowafr1jFf20d3HqelxrMscyuokVJZFDAZCuw6E1/ft/wXo/5Q6ftDf9ihd/+hJX+W9/wRw/4Kq+If8AgkJ+01rv7SfhrwZbeOZ9c8MXPhprC5vWsUjS5u7S6MwkSKUkqbQLt2gENnPGCAf6rmq/8EXf+CSmsWEum3f7OPw8SOUFWMGgWkEgB/uvHGrqfcMDX+Yh/wAHDH7Afwf/AOCaP/BS3VPg7+zc01h4T1XSbDxNpVi07zyaZ9raVGtxK7NKQksDPGXYuEZQSxG4/ubr/wDwfB/Hi40meHwv8AdAs79lIhmutbuLmFG7Fo0t4WYewkX61/OJYaH/AMFBf+DgD/goRca9FYzeK/HXjK6gF/c2tu0elaHpyYjVnOWW2s7aMfLucs5GMySv8wB/pU6X/wAFkvhp+yR/wRo+Bf8AwUN/bItde10+MND8O2OpNoltDPeT6teWTPLOY557ZBHI8Ejkh8jcMAjkeT3P/B01/wAEv7P9jdf2xtQl8SWVvfa1e6DpPhi5s7ca/qN1YRQSzSRQRXUsKW6rcIDNNPGu7K8ttDfDH/B018D/AAr+zN/wQQ+GX7Ongd5JdG8B+I/Cvh+ykmx5skGnaddwI7443uE3Me7E1/LV/wAG8P8AwRQ03/grp8Y/EXiH436rf6T8Kvhwlt/aQ09lS61C9vGZorOGRwwiQqjyTSBWYDaoAaQOgB/fj/wR5/4Ln/CD/gsDJ8TZPAHgvU/A9t8NF0yW5m1e6glWeLU/tW1v3fEfli1YvkkfMMHg18Yftp/8HcP/AATU/ZZ+Il98Kvhhaa38XdT0yQw3N94cFumjLIvDIl5NKvnEH+KGKSI9nNfkl/wcD/A79lf/AIIUfsNyfszf8E8dCu/B+pftR3C6b4pu5dTu76SfRfDCl5Y0+0SSeW08moJHLs2q8TOhXB44P/g2K/4N/v2Yv2sP2d5f2+P24dBPi/Tda1C6sPCnh+eaSKwMFhJ5U17OIXR5XNwksKRM3lqI2ZlcsuwA/WD9l/8A4PH/APgnH8avHdj4D+NXhrxN8LRqMqQpq2oJBfaXCzHA8+W3fzo1zgb/ACGUdWKgZr+sbwr4r8L+OvDVh4z8E6la6xo+qQJdWV9YzJcW1xBKNySRSxlkdGByrKSCOlfxGf8ABxJ/wbn/ALHXg39jPxN+2l+w34Ti8BeJvh5B/amsaRpsj/2dqelh1FwwhkdlgltkJmUxbFZFdWVmKFeS/wCDLT9vLxx408JfEL/gnj44uWvNO8I26+K/DJckvbW1zOIr63HbyvPlimQDGHllPORgA+jLv/goR/wbvH/grkPgXP8As8aqfj3/AMLYTQh4oGi2Qt/+Es/tYW4v/PGo+bs+24mMnkb8fNsz8tf2O6/r+heFNDvPE/ii9g03TdOhkubu7upFhgghiUs8kkjkKiKoJZmIAAya/wAi++/5WpV/7Ojj/wDUqFf0q/8AB5/+334z+Gvwm8B/8E+/h/ctZwfEBJPEPiaRGKvLp9jMEtLb0Mctwryyd8wIOhYUAfV37U//AAeN/wDBOj4H/EK/+HvwW8NeJPimNNleCXV9OEFlpUzIcH7PLO5llXOfn8lUbgozKQa+s/8Agm//AMHOP/BPH/goj8TrL4EQDVfhr431RvL02w8TCBLbUJjjENtdRSujTNnCxyCJnPCBjgV+EX/BCT/gnJ/wQd8K/sfeHfj7+358QPhp4v8AiX41tzfy6P4j8T2McGh2rsRDbGye5j/0goA87ToWRzsULtJb8nv+Djb9hP8A4Jl/s3+K/CH7Rf8AwS++IXhTUNH8S3UtjrXhXw74httXOmXkSCWG6t1inmmjglCuHDNsjkC7CA4VQD/Vur+e3/gpL/wcsf8ABO3/AIJw/EG5+CmtXGp/Ebx1Y5W+0nwssM0enSA/6u8uZZY4o5OuYk8yRCPnRcg1+Z3wP/4Lb/GSL/g1r8Qftk3Gote/FjwSrfDoanM+ZZNUkngtra9LHJaeKyuorli2fMmjJbhq/n4/4NjP+CNPwr/4KffGTxn8ev2tIJtZ+Hfw9e2ibSxPJCdX1i8LSKs0sZDmGGNC8qq6s7SRjO3eCAf0TfB//g9R/wCCfvjDxNbaH8Xvh34z8GWdzMIzqMa2up28CE/6yVY5Y5to7iKKRvQGv6Hfir/wU7/ZK+G/7Amqf8FK/Dusy+OfhZplnFfC78NolxcTxy3KWu2OKeS3CyJK+2SOVo2QqwYBhtr8b/8Agq//AMGy37D/AO0N+ybry/sRfDLSvAnxb0O2+0+HZNHk+wW9/LEQWtLpXcQMJlBVZXAeOTa2/bvDfJf/AAb6/wDBHH9uT9mz4c/Gn9jP/gqB8P7S7+CfxItNPvotMk1q3vrb+07KYb1WKzuGePz08tpHG0E26AnoKAP4xv8AguL+3j8HP+Ckv/BRHxP+1h8B7HVtO8N6zp+lWsEGtwxW94HsbWOCQskM06AFlJXEhyOuOlf6Rn/BJf8A4L9fsWf8FPfiOP2W/gDoni7SvEvh3wv/AGzcvr9jaW9q9vZyW1rIEe3vLli/mToQCigrk5yMV/no/wDBxv8AsxfAb9kD/gqt4x+Bn7Nnhq28JeE9O0vRZ7bTbRpGijkubKKSVgZGdvmdiTlu9f6eP7C3/BLT/gn/APsZ3th8b/2Yfhlpng/xXq2gR6fd6jaSXDSy21z5M0sZEsrrhpIkY4UHKjtQB+AP7J//AAUI/wCDd/x7/wAFQtF+DvwK/Z41XQfjXdeLr6xs/Ecmi2UEEWrxvMJp/OTUXkVXZZCGEJPP3R2/sE8f/EHwL8KfBep/Ef4nazZeHvD+jQNdX+pajOlta20KfeeWWQqiKPUkV/kk/wDBLX/lZK8Gf9lU1n/0bd1+4n/B6b+3l44j8b+AP+CcvhG5a18PnTYvGfiHyyQbu4lmnt7KB+nyQiGSYryGaSNjygoA/SD9on/g81/4J3fC3xte+D/gn4O8V/Ei3sZXiOrQJBpun3BU43QGdzOyHqC8EeewIr6L/YU/4Ovv+Can7Y/xGsvhB44XV/hHr+puIrKXxR9nXSp5WwFiF7FKyxu3OPPSJCcAOWIU/Gf/AAQV/wCDbf8AYng/Yq8G/tR/tveDIPiF45+I+nW+vW9jqru2n6Tpt4pktY0gR1SSWWBklleYMUZgiBdrF/ys/wCDoP8A4ILfs6/sP/DLRP24v2J9Ifwz4YudTi0XxJ4dSaSe1tZblXa3vLczO8iK7oYpY97KGaMoqjdQB/o7+I/EWn+GPDF/4tvt0lrp9rLdyeVhmaOJC525IBJA45A96/nD/Zn/AODrj/glf+0n4n13QifFXgSx8OaJc69f6t4psbS2sUt7V44zGptr26mknkeVEiiSJmkY7RyQD4P/AMG0P7eXjj9sL/gjz4w+FnxTuTfa/wDBq3vPDUV05LST6O1kZbAyE/xRL5luMf8ALOFCcsSa/gC/4JDfsJWn/BSP/goV8PP2SdcvptM0PXbme61q7tsCaPTdOgkurgRkhgskqReTGxVlWR1JBAIoA/uS8X/8HsH7COkeOpdG8I/CzxtrGgRSFP7TY2VtNIo/jS2advlPUB5EbGMgHgf0R/8ABN7/AIKpfsf/APBVD4WXnxL/AGV9ZuJp9GaGLWtF1KH7NqelyzhjGs8YZ0KuFbZJFJJE21gG3KwH5uftk/8ABt9/wSp8SfsReMfhx8H/AIUab4T8S6ToF5caDr9k8x1KHULWBngead5C9wjOoEqSlgyk42thh/G9/wAGfnxJ8ReDf+Cvdr4N0uaRbHxd4S1mwvYg5CMtusd3GzL0JV4AFJ5AY46mgD/VeooooAK/zBP+D1b/AJSm+Af+yVaV/wCnfWK/0+6/zBP+D1b/AJSm+Af+yVaV/wCnfWKAP6/f+DXH/lBR8DP+5m/9SDU6/f6vwB/4Ncf+UFHwM/7mb/1INTr9/qACiiigAooooAKKKKAP8Qb/AIKxf8pTf2lv+yq+Mv8A073Vf7fNf4g3/BWL/lKb+0t/2VXxl/6d7qv9vmgD83f+Cxf/ACif/aR/7Jt4m/8ASCav53P2WvgZffFv/g1v+C3jDw7b/aNZ8BxX2v2oUZcpb6xeeco+sea/oj/4LF/8on/2kf8Asm3ib/0gmr4+/wCDcjRNM8S/8EKPgj4e1qFbizvtJ1iCaNxlXjk1W+VgR7g0EzgpxcJLR6HxD8MviP4Y+Kvw0s/GfhOcTW11aK2B1RtnKkdiDX8pXj27eP4ja5vOQb+fOf8AfNft34n03xV/wTp/az8Z/sz6ykk3hwXMl7pW7pLp93l4ymccx7tp+lfh58SLW8Txtqt7PC8SXN3LLGWGMq7Ej9K7fCfheeT47HtO9GooOD66OV4vzV/mrM+Ey2l7LGVcNU3ivvV9GvkU1ZXG5TkVuaT4i17QphPpF3LbsOmxiB+Vedxzywn92cVt6fcvdzC3bAY9Ce9ft0oqStJaHq1sMuV8yuj6G8K/G74gwk2U98Zc8hpAGb8zXf6v8Ztf1bSG027toHyB82CDkd+tfLcMF3Z3CzBSdpzxXpUMFxPEssaMVYccV5dbL8LzKfs1f7j5fG5dhVNTUF8tChc+OtZkIWIJHjrgZ/nWLc+ItYumLPMRngheKh1OzkiuSQp+fnp3qsdO1DGTBIP+AmuuMKa1SR6NKjh0k1FGBrXnToJnYtjrk5rmq71rGedDHtxkd6htvCifeuXJ9hXRGaitT0qWKp042kzjoYJ7h9luhdvQDNfaXw01/UdK8Gw6bqULCaLITdwNvauD8DW+l28DWsMSrKvO7HJFeiV42Y11V/dOOiPls8zFYn9w4WSd79TqtJ1iaXVQ922Q/HPavQJ4VngaJujDFeLqSrBh1FcX8Q/jXquiS/2HokGyUIN0789fQV5H1OdaaVJHgUsuq4mqoUFr/Wpv6lbfYr6W2P8AAaw/7E0y6vft1xGHkx36flXmPgHxZd6jqM9nq0pklnJkVmOcnuK9fVthyK9adOdJ8rep6+Iw9XCzdOT1tuupHqNil1YPaxgLxlcccivKGVkYq/BHBHvXtCsGG5eQa5LVtKgjnN4iff6+gNOhV5bxY8HiOS8WJ4L8G6t4vuDbWJVQn3mY4wPp3r3WL4Jwadpss6XLTXYU7R91a8e8J+IrjwvrEWowfdBw6juvpX2tp2o2uq2Ud/ZsHjkGQRzXj5vjMVSmuR2g/wCtTyc2xeIhNOLtF/1qfF8sTwyNDIMMpII+leLeN/BjRF9Y0wZU8yJ/Wvsn4n+ETZ7vEWmRlkPMyr1B9a+c7vUHulMWMIeCPWvTy/Fe0iqsPmeplGMmmq1J+q/Q+bY4ZJThBmvrT4BfG688DTL4b8UStNpchARicmEn09vUV4frOimzY3FsP3Z6j0rnq9XF4WjjKLpVVeL/AA9PM+qxkKOPoOnUWj+9M/bW3mjuIEuoGDJIodSOhU8ivnf9oG3+D/jPwnceDfiEyTFwTF5YDSxSAHDKexr4q0T4yeO9O0oeHm1GX7JjaOfmUDsD1xVeW6NwTdTSFt3JZjnP418bg+E50a3tKlXZ6cu58VhuHa2GrqpKpbld047/AH9DM0rS7bQNLh0i1dpYrVNiOwwWVehI9cV45eusl5LIvILE16Jqvi+ytt0FsDK3Q+leZhxJJn1Nfc0oNas+/wAvpVE5VKi1Z9efA74i2/hqyi8M6xhbeU7kkH8LN6+1d18e/E0aafbeH7ViTPiViOhXt+dfKkQCxqq8AAYq5c3t3elWu5GkKKFXcc4A7V5k8spvErEL5rz7nz1TKacsYsUu92vPue1eA/ETalaHTr1sywj5c9SteT/FvX2v9ZGjxH91a9fdz/hUehTXsGqRSWBxJn8MU/UPh/dXk0t4brfLIxY7hwSa2hRp067qN6GtChh8PjHVm7K2i82eS1rWOpR2ieXsJ7k1v3XgLX4MmFFmAGfkPP5Vy13p19YuUvImjI/vCvRU4T2Z9FGtRrK0ZJ/M6zTbqHUrlbWLILH9K9MVPLQIvAAxXEeDNM8i3bUJB8z8L9K7K6mEEJc1xV3eXKjwMa4uryQ2RnX02+Ty16Dr9axb65FrbNKevQfWkLsSTnk1BcWX2+MLKSAORitIpLQuEFFrm2OFZ2dy7HJJzVqLUb+FdkUzquQcBjjI9q0NT0yGxj8xXJzwBWIOtdGjPYg4VI3S0O68Pa9q13fRWL4lVjyT1AHXmvoCz1G2kVYvuEDGDXlPhjw1d6Lbi61OF4ZpgGUOCDsPI6+tdHdTeRCW79q8rExhUl7v4HyuYRpVatqS08iLxNfG6v8AyEOUi469+9ReGrOS61WPbnbGdzH6VgkszbmOSete1+F/COp6boaazNGdt38wx1C9s0q9SNGko330RniZxoUFC+r0Rrck4FaLW8tuAsqlak0a0a6vV/up8xr0FrQXpFvs3lyABjueleDWrqDsz5urV5XY+hP2SvC/m32oeLbhciICCInHU8t+lfUHjH4VeCvG6Z1qzTzR0lQbX/MU/wCF/hCDwT4NtNGjjCSbd8uO7tya9EaORVWRgQrdDjg1/O2f59Vr5tUxmHqOOtotO2i0/Hc52+Z3PnzU/hlqenIf7MYTRIAAOjYFcDc2d1Zv5d1G0Z9GGK+xrSBri4SFe55rrtT8PaNrEIg1G3SUL03DmsYca1MPJQxMOdd1o/8AJ/gYf2f7RNxdjyf9lfwvLqPjC48TSxhoLCLarHtJJ0x+Gc1+gLoknEihh7jNfO/gR9P+H1i+maLbKIpX8x8n5mPTr7VyHxd/bO+FPwO1bSdL+ISXEI1RZW8yFRIIhGP4lyDgk4FflHFOFzPiLOpVMBQlO6tCK1lyxTb0vvu9PzPv+HZUMPhY4fm993b9f+GPq7+z7FjnyUyf9kV/N9/wUW+KzeJv2hLrw34emKWWgxra4RvlMx5c47HPB+lfqzp3/BRn9nHxLdDQ/CV3d3Op3CsttE8BRXlwdoLZ4BPevxB8U/s8fHXxb4lv/E+rWkclzqE8lxIzzBjukJPJ74r9Y8DeEsVlebV8wz6m6DhC0FU927k9Wk97JNf9vHoY3GYOm1GrKKe+tj4s8c61dx6X9jaVj5x5BOeBXJ/DPwZqHxF+Imh+BNLi8+fVr6C1WPON3mOARntxX2hJ+wr8bfGVy9xO9np8cICoJpCS+epG0H9a/Ur/AIJn/wDBOSx8I/H2y+KXivVBqMnh2H7QsCRgRLO4KjO7OQOSDwRiv6C4w8RMpyTJsXjVXjKcIScUtbytaKuu8mke7kmb5fKdLBUailUm9km/xtbRbn9H3gbwrpvgjwbpPg3SI/KttLtYbWNOpCxqF696/mz/AG7vjxdXHx68Q6VogVLq1n+zPIBkKsYAGPc1/SP4/wDFNp4J8Eav4vv5Ehi060muC8n3QUUkZ/HFfxU+J/EF/wCK/El/4l1Nt9xfTyTuck8uSe/NfyB9GLh/69mmPzjErmUIqOvWU3zP1so6+qO7xNqU5UMPhH3creisr/edDoM01zby3Fwxd2csWJySTWtbarFFem1iJLkc46CuBj1NoLL7JbgqxOWatfwlbTXuoPHCpkkYYXHJya/tKrRSUpy2PxqrRXvTkdeWLvnqa8O+IfxVktpJdA8PcOoKSSnqD6LX3H4X8BW2lwHVfEChpEG8J1Cgevqa/NuDwhrHxH8bX7eHYi0Et07GUjCorMev4dqyyivhq9SpKXwwS16XZ1ZHHD1alSpX+GCW+1yH4cW99qOszRx7mDLlyemc9zX01b2lroti8jHCxqXdu+AM11sXgbR/AvhWHTdLQGQuDLKR8ztg9fb2rsfg18EfE37Snxg8OfAHwgrG88S3iRTSKDiCyQhriViOgVMgHnkijMM1hOEqy+FbefY6favNcZGnRVot2+S3f3H9QX/BBb4CXXw3/ZQu/jBrtv5OpfEO+OoDK7XFpFlIQfqMn8a/Nr/g2F/5Oe/b4/7K1N/6V6nX9YfgTwXoPw58GaX4D8Lwrb6do9rFaW8ajAWOJQo/lX8nn/BsL/yc9+3x/wBlam/9K9Tr84lJybk92fr9OChFQjstD+u+iiipLCiiigD+RD/goZ/ytgfsY/8AYman/wCitar239rvwZ4e/Zf/AOCo8vjnWwlpo3xb0nfbzkYRdStMB1J6Aup/SvEv+Chv/K2B+xj/ANiZqf8A6K1qv2A/4LL/ALJmqftM/smXXiHwNFu8XeA5v7c0oqPnfyRmaIHr86Z47kCvOzfLKeY4Ktgasmo1E4trdX6nNi6TqUnGKXNur91qvxPxR/4KsTyL+y3I0LkK97BnacZB+lfzU6deedH5Un3h096/Vj46/tPT/Hb9juLwjqUTy6pBPA6OozuROGDDsy96/IVgyMVOVI7dK+r8EuHsVk3D08vxitONabutnFqNpLyf/APlKNeni+ecdHfVdU0ldfed1HLNbuJYWKMOhU4P6V6hoHxr+J3hyIW+natMYxj5ZDvGB257V4HDqdxFw3zD3rq7CGXUbb7RbjPOCM8iv1XEYWlUjatBSXmkzlxWEg1++imvM+4PDf7S/jK6gjur+GCZejKF2kn65rmvHvxiu9buo9SawSMgbThic189+FJbi3nezmVgH5XjjNdtf2Uk9q0bqR6EivAWT4KjW54Ukn5Hy1XL8PSr/DoVJ/iLrspbYI1U9BjOK5658S65dDbJcMB7cfyrHEE5coqEkegzTvst13jYfUV6caVOO0UenHD0YbRRg3fmGcmQkk85PNVhXTSaNd3RXaNvua2NP8O2tvOs14fNAOSvY11utGKOz63ThHXcp+BZNUsvEtnqOmxM7RSKxwMjGea/QPUPGctxAE05ChYDLN1z9K8w0O30xNPik02FI0I/hFbVfI5lOGKqRnKPw/1qfF5pjFiqqk4Wtoeq+FLxbqxZXwZFPPqc1U8a6d9q0/7Un3oufwrhtP1+Lw4ZNRuQxiRCWC9Tivmzx38fPEfifdY6Sv2G1z0B+dgPU15mGymvWxPNRXurqzmwWW1sRU/dLRdT2aeFLiBoZBlWGCKZo3hjRtNXzYIwz/3m5NYfhXXItf0WK+Q/NgBx/tCuwtJQjFG6GvQnz026bdi6inC8Nu5w/jXTysyXqDgjBxXFWzOs6mMEnPSvdb6zhvrZreYZDVyMGnW1ixSNMEd+9ddDEJQ5XubUcQuTle56t4K+A3ifxXax6ldSJZ2z4ILfMxB9BXU+Ofha/gO0hltZWuIDwztwQ1dl8CfiAP8AkUtUf3gY9PpX0b4g0Ky8RaXLpd+MpIPxB7V+a5lxBmGEzH2eJf7tPZLeL697/M8+rVnzWkfm5rOk2+t2D2VxnDjgjqDXyt4j8OXvhy9NtdDKn7rdiK+0PG2l3ngvVH02+jbqTG2OGXsc1454htV8QwlLrGV+6fQ1+kZXjPdU4u8Janq5bipUnr8LPDvD2r6z4c1WDWtDma3uIGDI6nBBFfs3+zt+0Fp3xY0tdI1UiHWrdB5idpAP4l/rX443llNYTm3mXBHfsa1fDHinX/BusRa94buXtbmHo6nt6H2rl4s4Vw+d4Xl0VVfDL9H5P/go9nFUFXjzLfof0IXVxbW0LT3TrHGv3ixwBX4/ftT/AA5+Bur/ABFt/iR4Bu44dajYrdxQJ+6l9yRjDe9cj4m+PPxC+IsS2uv37BEGDHGdiN7nHWvM7q7htITPcNtA6k96+U4P4DxOU11iq2Iantyx2a7Nta/ccOFhXoTbhJptW06p9DnPFsqJpbKTgseK890GeS11e3u4gC0LhwD7VteI/EFtqkYt7dSApzu9ax9FVTcFj1A4r9apwtTakj6HDU3DDyUlqz9Qvh58StK8baR5wIiuYF/exZ5GO49RXyL438fXV58QJtXtHJijby1B6bR1ry7TtV1HSJzcabM0LkFSVOODVFnZ2Luck8kmvm8DkVHDYipVjrGSsl27nzuHyunSqznun0/M+qZtdtY9DfWlOUWMtx64r4m1fUp9X1KbUbg5aVifwr16yt9a1rw/Jo1vMIoWbJJyT9K5S7+GusQnNtLHKMc9Qa9XAU6VCUuaWr/I78qjQw0p88vef5HnakBgT0rbj1KELgqRilu/DGvWKlrm2fA5yBkfpWRFbyyzC3UHcxxivWUoyV0z3n7OquZSuvU9H8PRpcE3nVV4FdS7BFLntVXTrNLK0W3Too/WqOrXBVRAh56mvOk+eZ89P95U02Ksshkcsa4nxRqBjAs4jgnrXSJJKeM81i3fhtbuZrh5Tuauinyxlqd+G5ITTqPQ4SC5urZt8EjIfVSQa2U8Ta4JjPNcNKx/vnd0+tZt9arZ3BgD79vUin6bpt3qt2tpaRtIep2jOAOp4rskoNc0j2ZqnJc8krHrfhfWJNRhNxdJtxwCO9dRe3sdrZSXYIIUHH1rDsrSOytlt4hgKK5TxPqDcWKHjq1eYoKpU02PnfYxrVvcVl+hyVxO9xO00hyzHNdHo8brAXbOD0FZOj6Te63qEem6eu6WQ4ArtrzS73RpjY38RjdeMGuypOK9y+p6WJqxVqaevYpSw3M0TC2QuQMnHaueWJ3kEKg72IAHua9m8LWDRWrXMn/LTpx2r0TwX4B0vxP4tt554crAwkcjodvTNefWzGFCM5SWiPLlmUaPNzLRH0n8PfB2n6R4As9Bv4ElDRhpFdQQS3JzXGat8BPDa3r6v4Z/0SZgR5fWM/Qdq97jTAEca8DgAUp61+WwzTEQqyqwm05O7XR/I+GWMrKcpxlbm3PjbWvB2v6Af9OhJU/xryK5jaSdo69MV92uiSLskUMD2IzXI3ngLwtfXiX0tsFdGDHZ8obHY17OH4iVrVo6+X+R108wW00e2fBLw3J4c+H9pBdRCOacGVx3JbkZ/CvVlt4EmFwiKJB/EAM/nXnFh48traBYbqDYkYxlTwAPrXz8n7fn7MsV3dafq2tPYXFnO8DxzREklDgkFcgg9q/LMTleZ4zEVa8KMpNu75Vff0NMLha+Lcnh6bm1vZN2v6H0Z8YPiEfhv8Mtb8ZzzFDY2kjx84JkIwoGeM5r+XjxB8W/iB4iu5rzUNTlJlkaQlflOWOe1frn+1f8abD9o74SL4U/Z7lbWo5bsC+kT92EVBkKQ3JyTnj0r8srz9mr43rbSGDRWL7Tj516/nX634c5VDL8JUq4pKFWctpaNJbXT1Wt2fqPBVDA4SjUlmMoRquVrTaTSXk9Vc+G/iR4n1PxL4gaTUbiS48gbFMhzjFfsZ/wQy+EUfif47a18U9Qtmkh8PWflQScbBPP2IPfb0r420T/AIJ4fGjWL1ZNfvLGwhlBdn3NIynrgrgfzr+nb/gmx+yxY/svfAVdKNwLzUNanN5cT7AhOQAqjuVAHGa8fxc4jpYTh+vSpzXPVtBW7PWX4Jr5n22f8V5XLL5YDL6ylNpK0b2Svrra3y8z6g/aN8UweDfgtr+uXAGxbcxnPo/FfzTeLPiBfeI7oWVqfKs94wvdvr/hX7G/8FOviDNoXwz0zwNZSKH1acyTKGw/lx9OO4Jr8LYDGkyPIMqpBOK8/wACcl9hkU8bUWtWba9I+7+aZ+cYfCU5P201drb+u57O8scEHmSnAAyTVOze3vlN1DyhPGfavNtU1m41F8DKxjotezeAPCep+I7SG20qL5eN7nhVz3NfsVZKlT55uxyYiiqFL2lR2M651ay0S1kv75tsaKST/T8a+ZfGvj+/8WSfZ0Hk2qnhAfve5r7N/aL8N+H/AAZ8KP7PjObu7uIwHI5Yrycegrxn4G/ADUPF18niLxbC1vpkJDLG4w0x6/8AfPvWWEx2HVCWLnok2l527HfkuJwNHCSzPEdG1G/W3Zd9fkbfwu0G51bw/aX2o58sL0PBbB4/Cvp/4cfDXUPjP8WvCHwN0GHzJ/E+q21mV2khYN4MrHHQBAeaj1XSki1iWw02JY4osKqqMKoAFfuf/wAEJf2WR41+L2uftX69Bv0vwwjaPo7OvEl64DXEqdeEUhAR3zXzWeZpeg31lsu1ziyWLzHMVVatCPvW7dl955N/wcpeF9N8EfFb/gn74O0dBHa6X8T7O1iUdAkU+mqP5V/YpX8iH/B0L/ycJ+wj/wBlag/9KdOr+u+vgj9QCiiigAr8zP8Ags//AMolv2j/APsnfiD/ANI5K/TOvzM/4LP/APKJb9o//snfiD/0jkoA+bP+Dcyzg1D/AIIf/Amwul3RT6NqMbg91bUbwGv4tP8Ago58Ar79l79tjx58J5oTFaR6g95ZZGA1tdfvFI9uSK/tV/4Nv/8AlCZ8A/8AsE3/AP6cruvz8/4OXP2MLjxN4M0L9szwZa77nQNum61sXLNayH91Icf3G4z2Br2+HsesJjoTl8L0fo/8mNJPRn8bakMKyb/S1uAXi4f+dTLLtO5eQeavwt5zCNOp6fjX7QmmZpypu8WcBLDLA+yQEEVfstRe2Ijbla95u/Clhf6UllMoVwAdw6g14trHhjUtIuvJkQsjHCsOhqYzT0NsLmVHE3hLR/1sbMciSrvjORVmKZozg9KW309Le2WFeo6mhLeR5lgHVjgVZlJxdzQRlcblPFZF/pazgyxcP6etejDR4fsawAYYDr71zlzaSWsmxxUJ9jjoYuMpe69TzZkZDtYYIq3a3ZiOx+V/lXZXulRXUQHRh3FcZLYXEM/kuPx7VZ6lLEQqqz3NyMrIAynIqxVaICJAi9BV62iNzII1/H6UHNN216GZdTYGxOves2u5vdJguINsQCuOhrE0rQ7m91NbKVSoHLH2qeZBTxFPkcnpYq6bZmVvNlHyjp710gAAwK72/wBDgntlS1AVkGBXDXMMtrIYphhhSjNM4aeMjXd19xn3E3/LNPxqnVqSLdyvWrGmWD3lyEI+VfvGqvpc6XKMItsq28Rdt7fdrQrqLzS45I824Csv61T0XSJL68CyghEPzGpU1a5x/XIOLm+hx1/dFP3KHnvU2k6qYSLe4Py9j6V6R4o8Jx38JurJQsyjp6iub8EeDptZ1IyX6EQQn5s9yO1Q6qtdkrHYeWHdSWlt+5ayD0qtLBuIYV634i8LRzxfadOXa6j7o7gVw+l6a9zLvmGFQ8g+tTCqpLmR51HHU5wdRPbocsepU9qeHxgGu11nQlnUz2gw47etYujaU1zN583CIeh7mnzpq5vHFQcOf8DJrRs7kJ+6kPHatvVdJEgNxbjkdRWr4N8MC/m+336nyozwD/EaiU4qN2YVcXS9i6kjHHB5rrND1toSLW5OU6A+la/iPw1kG9sVx6qK634X+Aft8v8Abmsxnykx5St/EfWuOtiKcabnI8XE42g8O6k/u63KvJHPFeHfE3wK93nXdIjG5R+9UdT719d+MPC0gdtUsF+X+NR2x3r5x8WeI1VG0yzbJPDsO3tWeCrc7UqfzMMjxlX20amH36+nmeXeDfBgi2arqq/P1RD29zXquAOlc1o2plz9lnPP8J9a9n8NeGg+L6+Xj+FTXXXq8ivI9TNcZPnc679F/keT3dzuPlr2rPFej+NPC4sX/tCwU+W5+ZR2rB0rSMAXF0PcClCqpR5kZ0sVTdJTicRNcE5jTp3qqAScDk10uuaPJBN59uuVc9B612nhjwqlqgvb8ZkI4HoDWsq0YxudNTG0qVJT/A8ygtyPnf8AAVcFdX4i0R7K4+0QLmNzjHoTXYeFfCUcCC91NdzsOFPYGsqmIio87OatmFONP2re/Q8Dv78yEwxH5R1I71paPqJZhaSH6VveOvB8mkX4uNOjJgnIAx2b0ro/CvhKPToxe3yhpmHAP8NautD2akjqq43DfVlUXXZdbmGcEEGsDULIofOjHHeu31fTpLW6xEpZJD8uPX0rd03Q4o4i92NzOOnYVn7VJKRyxxsaaU11PE6swv8AwGtnxDo0mmX5SMZjk5T/AAqK2sFQbpOW/lXQppq56ntoTgpLqUq5fV9O2sbmEcHqBXbR2M9zdC3t1LM3SvTNF8MW9nbML1Q8kgwc8gCpnWUFc5p5hHDe9u+x8uZHSr9vLuGw9RXQa/4TvLDXn061QurfMh9j/hXdaN4UtbGyKXADyyDk+ma1dWNk0erWzGjGnGad77Hl9QSbYxuPAra1HTJrG9a1I46qfalFnF5RRxksMGq5la6N1XjZSWqZxVxdGU7FHFQBS52IMnsK0BpV0939kjXOO/bFd5p+iW9jCVHzO3VqTkjprYunSiras5rT9KS3xNLy/XHpWySAMmrSWkrzeSB071sjTYhbNE33iOtQ5dzzKuJu7ydzkpJmb5R0qtJIkS75DgCrLwOkphPVTipJrJJrZ4W6sK1XkbqcVbscRe6jJc5jXhP51nJGzttQZJrZ0/QdQ1C6+zxqQAcMx6CvUbXw5aWWmvaooZyD8x65qZTSOuvjaVBKK1Z5jaWCxjfKPmrQd1jG5zgUTMIWMbfeHGKz5RJN8o5JPAFO19WXfmd2fTP7HHwZ1X9pL9pnwh8H9KiaQ6vqMKSBQeIVYNIxI6YUGv8AUw8OaHY+GfD9j4c0xQlvYQR28ajskahR+gr+R7/g26/YyI1jW/2svFdp+6sY/wCzNIdx96Z+bh1z2UbUz65r+vqvxviPHrF46cov3Y+6vl/m7m1ktEfyIf8ABrn/AMly/bn/AOytXH/pRf1/XfX8iH/Brn/yXL9uf/srVx/6UX9f1314IH+YJ/werf8AKU3wD/2SrSv/AE76xX9fv/Brj/ygo+Bn/czf+pBqdfyBf8Hq3/KU3wD/ANkq0r/076xX9fv/AAa4/wDKCj4Gf9zN/wCpBqdAH7/UUUUAFFFFABRRRQAUUUUAFFfxK/8ABXLxz4gh/wCChvjsaHqFxarZrpkCmCVo+VsLct90j+JjX7d/8EJdV8VeIv2UfEXiDxZqN3qUsnii4ghe7meZliitbUgKXJwNzNwOM18vgeJVicxnl6pW5XJXv/K7bW6+p+s5/wCFk8r4aocRyxakqkacuTks17RJ25uZ3tfsr9kftfRRRX1B+TBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1/7+KKKKACiiigAooooAKKKKACvwB/4Ojv8AlBR8c/8AuWf/AFINMr9/q/AX/g6JjMv/AAQq+Oar2Hho/l4g000Afx/f8GVP/KU3x9/2SrVf/Tvo9f6fdf5gH/BlZIE/4KoeO1P8fws1UD/wbaQf6V/p/wBABRRRQB/mp/8AB7Z/yfN8Iv8AsRG/9OFzX9d3/Bt7/wAoS/gH/wBgrUP/AE53dfh7/wAHSP8AwR//AOCin/BRj9qv4c/Ev9jT4ef8JlouheE20y+uP7W0zT/JujeTShNl9d27t8jqdyqV7ZzX4C+Ev+CEX/Bz94A8NW3gzwJ4X8V6Lo9krJb2Nh4/0q2tolYliEij1hUUFiSQAMkk96AP9Ob9qz9r/wDZv/Yk+EWo/HD9p7xbYeE/D+nxu4ku5Qs1zIilhDbQ58yeZsYWKNWY+mK/yA/iPrnxL/4Lg/8ABYa91PwZp81pqXxt8ZxwWcG3zZNP0oFYY3l25BFnYRB5mHGI2bpX6JaF/wAGt/8AwXj/AGgfGkFz8bPDtpo00xEUmreKfFNnfiJB3Y2c9/OVHoqMfav7X/8AgiN/wb5fA7/gklZXPxX8U6onj34v6xa/ZbrXDD5Npp1u+DJb2ETEsA5AEk7nzJAoAWNSyEA/I3/g7d/4KVfH/wDY38L/AA0/YF/ZS1q68Dad4l0WTUtZ1HSpntr5tPtpBbWtnDPGyvFETHIZ9pDSKETITer/ABP/AMEj/wDg08+GX7bf7KfhP9sj9r74oa3ap8QbY6tZ6P4ZWBZ47aR22PcXt1HchpZANzIsA2ZwWY5x++f/AAck/wDBEH4jf8FXPhr4R+KP7Nt7aQfEz4eLd28Gn6hKLe21bT7so7w+cVIjnjkjDQlysZ3uHK5DD+T79lv9mv8A4O0v2PPD7fsz/s0aB4+8M6ErOYrAyafcaZbmRiX+z3F28tvBuYlj5MqAsS3Uk0AeEf8AByP/AME1P2KP+CWvxp+GP7P/AOyXNqdxqOoaBdavr8mr33227YS3HlWrPsSKKMERTYCRqT1OeK/0Jf8Ag37/AOUM/wCz5/2LC/8Ao+Wv4Sv2p/8Ag2G/4LXeKfhKn7YPxYm/4Wh8UvEd+X17w8uqLqOt21uIvknmu55RDcOpURmG3kl2Ls2FhuCf04/8Grfwn/4KsfAn4ReN/g5+37oWu+GvAPh230q28BabrkVvC9uXlvZb5Y1X/SduXhP77KjICcAigD+OP/gi7LHD/wAHFvw8eVgoPj3XVyfVor0AfiTiv9CL/g4e/wCCgnxV/wCCcH/BNPX/AIz/AALkjtPGWv6nZ+GdIv5UEosJr8SPJcKjfK0kcMMnlbsqJCrMGAKn+Nv/AIKB/wDBtX/wVp+BX7eHiX9oX9gXRJfFOgXviS68S+G9Z0HV7XTtU0l7idriOKRLia2lWaBjtEkO9GADblJKD96P2a/+CXP/AAU0/wCCgX/BGv4sfse/8Fcta1bSviXrXioav4O1PXr+11WS0SytrU2xdrSWfZA86zxyISJAkjsq5IJAP5nv+CKf/BEvx7/wXi1bxz+1D+1T8XdXttH8P6lFpl5du7arr2p3skYmfM927CKNEdcSOspZmICjaTX3F/wXh/4IE/8ABN7/AIJOf8E6m+L/AMKNW8S6x4/1rxFpuj6XceItSimJEglmuPLgtbe2jP7qJsl1faMchiDXwd8IP+CYX/BzJ/wSu+LWraf+yX4Y8U6TLqUi28974TubbU9H1JY8+XLJG7PEQAx2Ncwo6ZIwpJFfSnxK/wCCA3/BxV/wUp0LXvj9+3VrrS+IvDmmTSeHND8R6zbT3V9MShNtaQWkhsrBZQDuaRocyKu5cEuoB+uX/BkV/wAmifGr/scLP/0iWv7ba/zsP+Dbb9if/gt3+w3/AMFAtH+H/wARvAniXwN8EtWub648bxXsdp/Z9xLb6bdpZOsrF3ci6aEA2rHdxuygOP8ARPoA/I7/AIL0f8odP2hv+xQu/wD0JK/gP/4NHP2cf2fv2n/+Cj3jbwF+0h4I0Lx9odn8NtR1CDT/ABDp8GpW0V3HqmlRrMsVwjosipJIocDcFdhnBNf6Jv8AwVt+BHxV/ad/4JsfGX4AfA/S/wC2/Fvivw3cWGlWHnw232i4cqVTzbh44kzjq7qvqa/lY/4Nfv8AgjP/AMFJv+Cdv7fHi/41fti/Df8A4Q/wzqngC/0S1vP7Y0vUPMv5tR02dIvLsby4lGYreVtzIEG3BOSAQD+qyD/gkX/wSqt5lni/Zs+GG5DkZ8J6Ywz9DbkV9kfC/wCDnwi+CHhseDvgv4V0fwhpCtuFjoljDp9sG9fKgREz+Fej0UAfye/8HlH/ACiS0r/soOjf+kt9XiH/AAZNabYxf8E9/inq8cYFzP8AEOWGSTuyRabYsgPsC7EfU1+kP/By7+w5+1F/wUD/AOCdth8C/wBkXwx/wlviq38Y6Zqr2P220sMWlvBdpI/m3s0EXytKg279xzwDg15t/wAGu/8AwT8/a4/4J0/sU+OfhP8Atj+Ex4P8Q6142uNXs7P7fZ6gZLJrCyhWTzLGe4jXMkTrtZw3y5IwQSAfkb/wfEfCrxNqXgH9nr42WMEj6Po9/wCIdFvZgCUjuNRjsp7ZfQF1tJ+vXb7V+rX/AAaV/tMfDz4y/wDBIjwv8GdAu4v+Ei+FWparpGsWYKrKgvr2fULabYDny5I7jYHIw0kcg6qa/bf9uv8AYt+Dv/BQf9lnxZ+yd8coXOieKLYIt1AF+02N1EwkguoCwIEsMihhkYYZVgVZgf8AOM+IP/BBD/gvP/wSe/aFv/H/AOwDNrPibTyrW9p4o8D3aW9xd2jEOIbzT3l84cqpeNkmh3AbXYgGgD+5L/g4H/aY+Hn7Mn/BIz416p46u4orjxj4bvvCGk2rFfNur7XYmtFWNSRuMaSPO2OVSNm7V/Hx/wAGSfwq8Tap+2z8XfjfBA/9jaH4IXQ55sHZ9p1W/triJc9CdljIfUD618t3/wDwR4/4OP8A/grX8YNEP7aVr4gtdP09zENa8dX0VtY6XDMR5rQWUbeYWcKMi3t/nIXeQMMP9CL/AIJWf8Ezfg5/wSm/ZQ0/9mf4T3Ums3T3Mmpa5rlxEsNxqmozgK8rIpIRERUjij3NsjUZZmLMwB/me33/ACtSr/2dHH/6lQr9aP8Ag92+FuqaZ+1T8FPjY0chstb8KXuiK+D5Yl0u8M5GegYrej3IHtX5L3xB/wCDqVcf9HRx/wDqVCv9Lr/gq7/wTJ+Ef/BVz9kzUP2aPidePol7Fcx6noWuwQrPNpeowBlWUIxXzI3Rnjlj3LuRjhlYKwAP48v+CV//AAa//wDBOD/goz+wh8P/ANrK2+KnjaLVPEFiY9bs9Pm08Q2WrWzGK6gCyWbyKFkUlA7EmNlbJDAm9+3n/wAG6n/BCL/gmh4b8P8Ain9sb9oH4ieGYPFNzNa6XHFDa309w9uoeVhFbabI4RAyhnICguozlhX54eHf+CVf/By5/wAEh/iVrujfsaWniOfR7+fLal4JuoNS0vVFiyI5pLGUsyuFOB59srjJAJHJ9L+Gv/Bv3/wXT/4KyftEWPxW/wCCmGral4V0iLyYrvW/Fl9Fc36WIfc8Gnafbs4iYZLBHW3hDMWJLZBAPtn9rP8AY0/Y18E/8GsHjrW/+CbXjDxL4++HZ+IFp41fU9etGtLqeZJ7XRrlViNrakwQ7Fbd5ZAZGJb5SF9L/wCDIz9obwJ/wrz40/sqXt1HB4lTU7LxTaW7kB7mzlhFrOyc5YQPHFv4481fU4/sk+F/7F/7Ovwl/ZB0/wDYV8N6BHP8NLHQH8NPpd2fNFzYzxtHOJ24LvPvdpW4LO5PGa/zwf2xf+DZL/gqV/wTt/aMg+O//BLfUdV8b6HYTPc6Pquh3seneJNKEmVMM8RkiM3yMUMlvuWVc744wdtAH+g/+39+2j8Ov+Ce/wCyL40/a4+J8X2zT/CVmJorFZlglv7uVljt7aN2BAeWRlUHa2BlsEA1+XP/AARj/wCC9Wj/APBY74jeNvBvgn4T6j4K03wPptte3mqXepx3sbT3kpSC3CJBGQzrHM4bd0jIxzx/GT8RP+CcH/B0R/wVb1Xw/wDD79qzSvFN3oWm3IEMvjC8ttI0qxfGw3MlshR5WVcjzEt5piCQucnP95H/AARg/wCCS/w4/wCCRf7Ko+DuiXsev+MvEM66l4r15EMa3t4oKxxxKxLLb26EpEp5JLuQC5AAP88v/g7J/wCU13j7/sDeHv8A03w1/q5/C6WOf4ZeHZoWDI+l2bKRyCDEuDX8Tf8Awcwf8G/P7ZP7bv7Utn+2v+xLpdp4vm1HR7TS9d0F72CxvkuLHesdzC100MEkbQlEZDKJFZMqrBvl94/4Nzv2dv8Agvd8Cf2kr3RP+CkJ8UW/wf0jwTcaXotnrmuWWowQ6jHdWQtUjhiuZpxstknVHK7FT5cjKggH8oP/AAS1/wCVkrwZ/wBlU1n/ANG3dfcP/B558KvE3hX/AIKbeEvileQSf2P4s8DWSWlwQfLa40+6uY54gTxuRXhdgOgkU96+nP2B/wDggz/wVb+C3/Bbvw1+118TfhYNM+HWnePtU1ufV/7c0iYLYzvctHJ5EN69ydwdcKItwzyBg4/sO/4K/wD/AASi+EX/AAVx/Zf/AOFF+P8AUG8O6/o11/afhzxBDCs8mn3mwowdCVMlvMp2zRh13YVgQyKaAOi/4I0/tMfDz9rD/gmL8F/ih8O7uKdLXwtpui6lDGV3Wmp6TAlrdQuoOU2yxlkBALRsjgYYV+Mf/B4p+0x8PPhp/wAEyLX9nPUbuKTxR8SvENgLGyBUzLZ6VILq4uSCchFdIotw6tKB0zj+YXwr/wAEp/8Ag5f/AOCTXxG1zQf2QdO8TLpupTYk1DwPfQ6hpeprFlI5ntHYsGAY7TcWySKCcYHNdn8F/wDg3h/4Lc/8FTf2jIfip/wUUvNX8H6ZKEi1HxP4xvI77UxbRHIt7OxWZpQRuOxXEEC5Y7s/KQD9Zv8Agz7+FXibw/8A8E5f2kvjFqUEkWmeJtQOnWTuCBK2lafI8rJnqoN2q7hxuUjqpr8Gv+DSb/lNH4P/AOxf8Qf+kbV/pqfBL9j/AOG37JX7Elj+xz+zvYGDRfDnh240nT0kZRLczyxvvmmcBVM1xM7SythVLuTgDgfxKf8ABu1/wQy/4KlfsL/8FOfDv7Q/7VXwwHhXwfp2jaxaz351vSb7bNdW5jiURWd7PKdzHqEwO5FAH99nxg/5JL4p/wCwRff+iXr/ACo/+DSv/lNP4K/7APiD/wBIpK/1bfiRpOoa/wDDvXtC0mPzbq9066ghTIXdJJEyqMsQBkkDJIFf5/X/AAbwf8EMf+Cpv7C//BT3wv8AtD/tT/C7/hFvB2naTrFtcah/bekX2yW6tXjiXyrO9nmO5yBkIQOpwKAP9DmiiigAr/ME/wCD1b/lKb4B/wCyVaV/6d9Yr/T7r/L/AP8Ag9TkWT/gqh4EUfwfCzSgf/Btq5/rQB/YF/wa4/8AKCj4Gf8Aczf+pBqdfv8AV+Av/BrtGYv+CFXwMVu48Sn8/EGpGv36oAKKKKACiiigAooooA/xBv8AgrF/ylN/aW/7Kr4y/wDTvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2va+q/wDgsX/yif8A2kf+ybeJv/SCavlT/g2r/wCUIXwF/wCwfqv/AKdr2gCf/gtv+xHfftAfBGH49/DCz87xr4AVrhEjH7y8sD/roeOSQPmUV/InAvh/x1ocd5PCs0Uy8q4+ZWHBU9wQeDX+ldNDFcQtbzqHRwVZWGQQeoIr+LL/AIK0fsFX37G/xkufj98ObU/8Kz8ZXW66iiX5dK1GTrkDhYpTyD0B4r2cox/sJ8knZP8ABnyfFGUSxFNYqh/Eh23a/wA0fhp4q+A4kLXXhaUKf+eUh4/A14Vq/hfxF4Zutuo2zxmMj5wMr+dfogbd9gljIdGGQw6EGq09tBPH5dxGrr3DDNff4fNqkVaXvL8T47B8TYikuWqudee/3nxbZ3K3dskoPUc17B4D1VZYm0ubBKcrn0r1aLwH4Rvw1tJaLGWBw0fy4NVofhFp1jqEd9p1zJHs6g85qq+ZUKkXCV0zPE5rhq0HBpp9CobKzc7jGp/AVJLBFLGYmUYYY6V2B8LXGeJVx+P+FedeOdWk8DmJ7qFpopujp0BHY1w0p+0kowd2ebRl7Wap03ds8g1zTTpmpPbkfLnK/Q1j9D9aua944sdemiEVuYyP4iapHEicdxX0NNS5VzrU+rpQqKmlVVmXrDU10m7S7ZsKp+b6GtzWPiXZQoY9KQyOf4m4Arx2/SaK4aOVifr6VSNVLCwm1KWp0f2ZRqNVKmp9H+DfEh1+xPn/AOvjPze4PesT4meGm1fSft1qoM9tz7le9eT+H9an0PUkvIz8ucOOxFeyan41tntwumjfvHJboM1yToTp1lKmtDzK2Eq4bFxq4dab/wCaPmC0up7G5S6t2KvGcgivpXRtcXW9PS6hbHGGHfI614F4hsXgvGulHySnPHTNWfCmvyaLfjeT5MnDjPAz3/CvQr0vaRutz6LMMLHF0VVgveX9WPpexn2t5LdD0+taF15H2dvtJCpjkngCuZimjmQSxkEHkEV5N8TLzxAGRXlP2RhjC8fnXm06HPNK9j5fD4L29ZQUrH0b4D8BJ41jOoW15GbRHKsUOWyPbtX1J4d8O2HhmwGnafu2Zydxyc1+Wnw1+JOs/DnW11CwYtbuQJoSflZfp61+m1p4+8LXPhqLxVJeRR2siByzMOD3H1Brws+w+JhNRveD2suvZ+Z5fEmXYrD1VFvmpy2t37PzOwkjSVDHIAysMEHoRXyb8WvAtn4Yz4gsZEjtpG+ZGIBUn0HcVm+Pf2qLC232HgeEzP08+QYUfQd6+RPEnjLxH4uujea9dyTsTkAn5R9BW+T5TioSVWb5Y9ur+XQ7Mi4cxymqtT3IPo938unzOy1LxAZVMFoOP7x71y1YlnfMGEcxyD0NdXZ2D3J3twlfWqKitD7J0Y0FYx57mO3Xc5+grEudYvLiL7PuIjHRa6bWvDu5Dc2eSw6rXP6F4e1bxHq0ei6XEZJ5DjAHT3PsKtSilzN6I66EqHI6kntvfoYyI8rhEBYmutsPDyriW7PPoK+wtO/Z50O08NLbu2dSxuMvbd6fSvCPEnhfWPC10bbVYio7OOVb6GuGhmdGvJxpy1X9aHlQz+jiZOnQla34+hzvQYoqlJIzHjiprW+0izu4G1+bybQyKsj4yQpPNdLdlc0SdtFd+R9SfC74CeK/E3hj/hL7MxoJsiFJMhmUd+nepvEfw38Y+Ftz6rZt5QOPMT5l/MV+g/gW+8LX3hWybwbPFcafHEqRPCQVwB7d/WuplhhnXy51DqezDIr8pqcYYqOInzwXLfZ6NL/M/M6+eV3XlKa0vs915H5Y2cHlR5YfMadcWVpdp5dzGrqexGa+9PFvwb8MeJS1xbL9jnP8UYwD9RXzl4n+C/i7QZGks4/tkAyQ0f3gB6ivbwfEGFxD+Lll2en4nTRzKnUd72f9dTwd9BsNmyBfLA6beleY6y6i8a3ibesZxn1NejeKtSk0eE2bqyTvkYIwRivIiSxLE5J5r6vCKTXPJ6H02XQm17ST06CqMsB0q2zLGm4nAAqlXa+GdAS8H2y+QNERhQe9dVSooLmZ3YipGnHnkzxnUbo3dyXH3RwK+xP2Pf2epfin4rXxX4hjKaNpbrJhl+WeQHhOeCPWtf4V/ArSfil4xg0kWoW3iHmXDjKgRg8jjue1fsR4Z8M6H4O0O38O+HbdLW0tlCoiDA49fevzfjvjZYKg8DhP401q/wCVP9X07bnlZnxAvY+ww6ab3fZf5s5Txr8K/APjPTDaeILGIJGuFkUBGQAdj2Ar8kfiT8L1sdcuh4Pla6sYnKxh+HwP0NfoX8afi7aiWfwN4flVpQNtyysCQD/Dx+tfK6q0jBU5JrwuBaePwdB1q83yy+GL2t38rny+GxVWhLmi/kfMXgTwXdeI/EiafexskMJ3TZGMAdvxr7ajgggt1tkUCNFCgdsCqOnabb2KGVEAlcDewHJx61f1Gx1RtIfULWFmgDbXcDIFfUZjmH1ipFydlsvUyx+Oliqib0SODuILRLuR7NAgY9u+K9u+A/g5fEnioapeDNvp+HIPd/4R/WvEYIZbmZYIQWdzgAepr7B8GaN/wimlR21sxWU/M7Du1eDxJipU8HKjTlac1ZPy6v7tDCpUULXPqixsZ9QvI7GzUvLKwRFHcnpX6O6T8J/C0fg618M6vbJOYk+ZyPm3tySD1618pfsneEdQ8R3cnjbXFBt7M7ICRy8nc/hX6BBSegzX8N+JOeVI46OX0J29k7tp/a9fJfi2fs/AGRU3hJ43EQv7TRJr7P8AwX+R8q6r+zhDZzG78MXWePuTf0IrxHxPpN74Lkij8TqtmJnMcTSMArsOyk9fWv0YAPav5Vf+Cun7Us/xL+N9v8KfB92w0vwfuSR4nwJLyTG85B/gAC/XNfQeEuFzjizOo5XKd6ai5Tm1dwilp1V25NJJ979Gdme8JZfGnz4e8JPZLb7v8j9ejcQCA3O4GMAsXByuB1Oa/m9/a1+K0fxb+NGo6zYOzWFmfstsCcjbHwSPTJqX9nfx/wDGLWNak0S31+9GkQ27R3ERlZl2SfwgEnBPrXrt9+z94E1K5DQxyQk8bUbqTX9ecGcF0eFsxrV8XWVSTjaLStZPV3T6uy2vpc/Pvb0MsxTp13d26dL9/Mx/2LfALal4kvPHd9CGgsV8qBm/56t1I+gr9Mo0MjhB3rzv4Y+AtM+G/hG38M6VuKIS7FuSWbk5NeUfHL4o634S1G10fw1MYJ9pkkcc8HgCubM6tXPM1n7B6bRvskuvz3+Z8rmGIlmGMlOGz29EfYgMcMY3EKoHU8Cvvr4B/EX4NfA74Zy+IfG/iG0trzU5N8kO8NKgUHYpQZYZHPpyK/mxu/iD478XXi2uo6lMyyYVlDFVIHsK7R5ZpcGZy5wBljnpXzvE3hN/a2FjgsZi3CDaclBatLZXe2uu3RHsZFj6mS4r63CEZ1LNK97K/XS19Lo/TT9tX/gonoPxJ+Gmo/Cv4b2FxBDqbCKS9lbYWiUgnaozw3Qg9q/E+uy8RC51PUfKgU7IvlyemT1rpPAPguHV/ENvbXo8xAd7jttHb8a/QuEOE8p4Tyx4TLYOMG3OV23KTsldt+SWisvI7czz3E42X1nGz5pW7JWW9kkc54W8Ca/4suFSxiKQnrM/CD/GvrjwX8P9H8G25+zjzbh8b5G68enoK6qSTStA08u+y2toVz6AAVyX/CYwa1aC40Zj5T5AcjBOOOKxxmY4nG3UFy0/63Z8hicZVrrTSJ0Os6nbQwPajDu4KkegPrXk+h+H9E8J6cbPSYlghBLNjuT1JPeptd8Q6XoNsbzVpggPQE/Mx9h3rhNV1y41I5U7IscL659a6MFgpxhyrZ79nYVGlNxsrqL/ABsQ+MPFFnHayXV24jtLYF2Y98V/Tp/wQ6/Ytv8A4aeBL/8Aav8AiVZtDr3jKNY9KgnXEtppgOR24aU4J9sV+P3/AATF/Yb1H9uP4xL4p8SwyR/DbwlcK+pvIuE1G7Q7o7eM4+ZVI3SH8O9f262NjZ6XZQ6bp0SwW9uixxxoMKqqMAAdgBXn5nioyao0vhX4s/X+Esk+q0vrFVe/JaeS/wA2Wq/kQ/4Nhf8Ak579vj/srU3/AKV6nX9d9fyIf8Gwv/Jz37fH/ZWpv/SvU68g+xP676KKKACiiigD+RD/AIKGf8rYH7GP/Yman/6K1qv66pooriFredQ6OCrKRkEHqDX8iv8AwUM/5WwP2Mf+xM1P/wBFa1X9d9AH8M//AAUo/ZGuP2J/2proaRBs8B/ECaW+0lwP3dtdE7pbc9hknKjuK/O/xX8LPC/icNIYhbz/APPSMY/Md6/vu/ba/ZE8BftqfAbVPg342QRTTL52nXoH7y0u05jkU9Rg4zjqK/hq1nwD8QfhP4/1j4FfF22Nl4r8NymG4RhhbmIfcniJ+8jjBzX0WUZlKn7nNZrY/OOK8tq4Wr/aOFbSfxW6Pv6Pr5+p8LeIvgt4v0bfPZRi8gTnMf3sfSuP8OTzabqLWd4rRb+NrDHP41+jMIms5sTKQDwai1Twj4a1oh9Ss4pWByGKjP519fDPnblrRuu6PChxPNwdLEw5k+q0f+X5Hx7Z3T2dzHcxcMhzX1Hpk9jrWmx3exWDgZGOhrWk+CnhDWYlns2e2YZ3BTnmtHw78LL7w5bSW0V2JkZsqCMYrzsXmmFrRTUrSXc8jGY2hWinFtSRixaZp0DF4YEUnqQorn/FmiR6hpbNAoDx/MMCvWW8IakFJBU47V4HqnxQ0rSr2bTL62mEkLFGBx1FZ4SpKrO9F8zRz4WNWpO9LVo8pIKnB6ipVORUEmrWWq3ks1pGYlY5Ck+tUtRW4MBMDYK88V9NyuSs9GfSqLulLRnp/hjxjp+i20lrq0u1F5TufpVO9+Lqvfxx2EJEAYbmbqR7V4YzMxyxyfem0v7NouTlJXbLWVUXJzmrtn29bzw39qs8eGSRc+2DXyb8R/DEmga280S4t7gllPYHuK7/AOHHjaGygbSdWkwijMbHn8Kd4212LxNaNYxRAKp+ViOf/rVwYSnUw+Icbe7+h5+BhVwmKcbe719O5wXw78UnQ9R+x3LYgn4Ps3avoX7RI5D56civjiWOS3lMbAqymvePAHij+0rT+zb1szRdCe4rrzDCpv20V6nbm+CT/wBoh8/8z32xuhdRbu461T1EWvnxRPLHHJKwRQ7Bck9K5hrm8tYnksSPM2nG7pmvmLxFqut3uqu+rSs0sbcc8L9K8zC4B1ZO0rWPHwWXutN2lZI/VXwR8BZ4ZItW8R3Gwrh1SE8/i1fUyII0CDoBivz/AP2Wf2g7rUpI/h74xm3OBi2nkbk4/hJPX2r648e/FvwJ8N7Q3Hia+SN8ZWJTukb6Cvx7iTB5pLMPquJTnL7PKtGn1S/M87E4WtCt7KSvLpbqanjjwPpPjjSm0/UEAkA/dyDqpr82vHumSfDzVZdJ1plMicrtOSw7GtD4l/tmeJPERk03wNGdNtzkea3MrD29K+P73W9W1K+fUdSuHuJn+88jFifzNfoPB/DeY4Wm/rkkoPaG7T9dl6ans4HJq1uatou3X/gHeazrMmrSg7QiL09fzrFOMc1Ts7oXS7R9/wBK6BNKMsZE5K59OtfeWjTXKetaNJcpy15q62jfuDlx+lc3eahd37+ZcOWPp2q/rOjz6bMc/Mh6N1r0r4SfCPU/iNqQllBh0+EjzZfX2HvV1sRRoUnXqO0V1O11aFCl7eT07nkVtaTXLbYxx3NdPZ6fHZ5YHLHivqfx/wDs+yaJB9v8FqZYVBLxHlhj09a+bZYJoZTDMpR16gjBFcmFzOjjIc9CV1+PzOKGZQxUb0np26/MhrX0LRb/AMRaxbaJpib57l1jQe5rOCgV9bfsaf8ACv5PidJJ4jv4YtQt482sEpC7mPGRnqRXHnePeBwNbFqLk4RbSSvr0+XfyJrNxg5RV7HX3f7LvxN8M6eggto7sKm5vJbJB9MHGTXkF9ouraTeGx1W3kt5QeVkUqRX7Z4zXM+IPBvhrxRA1vrdnFOGGMso3fn1r8Py/wAUcSpWx1JSXeOj+56P8D51ym7tn4+bF27CARWNceHNFuZhcyW6CQdGAwa+7/Gn7LCAyXng+6291gl/kDXyt4k8E+KPCUhXXbKSFeQHIypx71+kZTxLgcer4Wr73Z6P7v8AIiNRxejszxvWdFtbC0e8WTaqDODXkTytM5kbvXa+MNf/ALRn+wWxPlRn5vQmuIr7XCxkoXnue/g6clDmnuyeBMksao6zqCWFoWzhm4FW4oZJ5BDEMs5wPqa9Y0/wRo/2FV1WFZpcclucfSrq1oU7OZpVr06UlKpr5HyekdxeXKxRBpJJWwAOSSfQV++n7Ef7KenfDbwQfFvji2iudV1mMN5cseTDEw+783c964D9jv8AZL8GmZPip4jsBJsbNnHJyuR/Fg/pX6c63rOm+HNIn1jUnEVvbIWYngADtX85+LfiPLFzeQZS3a6VSS3b6QVuz389Duq41V4JpWj59f8AgH59ftQ/sv8Awos/Ds/i7RCdIv2OI44hmORz6r2+or8Y/FfgfxN4duWk1KEuhJ/eJ8y//Wr9Uvi98Vbr4o66LyP93ZQZWBB6ep968cuLaC6jMFwiujDDBhkGvv8AgKrmeWZbCnmdR1JvVqTu4rpG+7t53Pm45y6NZunG8P627HgPwS8Fi0tT4mv0Ilk+WIEdF9a9d8V2OkXGmO+pQrJxhSRzmult7eOBEtrdcKAFVQK868cjU7bUhY38LwbBlVcYznvX0f1iWJxXtG7f5I86eInicS6rdv8AI4ONI4o1ijGBjAFfVXww8ODRdDF5OuJrn5j7L2FeIeAvDL+I9aRJB+5i+dz247fjX17a2zSPHaWy8sQqge/ArzuIcakvYJ+bMcxrbU18z2X4H+C28V+Lkurhc2tl+8kz0J7CvqLxf8CfB3iZzdWifYZz3iHyk+4rb+EXgn/hCfCsdtcAfap/3kpHqeg/CvVMEcmv5H4n4xxVXNpV8DVcYw92Nnulu+zu/wAD6vLcopRwqhXhdvV+R+enir4C+NvDitPaRi+hzwYeWx7rXikqNBcPZy/LLEdrofvKfQjqK/ST4z/FHQvgx8MNa+JfiJwtvpVtJMATje4HyqPcniv4ifG37RfxT8WfEzVPiXDrF1a3Wo3b3O2ORgq7jwAM44FftXhVVzTiWlXniuWMKdkp2+KT6W20Wra7rQ7MF4evMHOWFqciXfVX7f1c/dP9pj4l2nws+EWq61NIY7m4ia3tgDhjJIMAj6da/nFdrnULws2ZJpn+pLMf8a/TfwloXif44/DPT5vjXe3F+ULSWoZiCFboW9T6e1W/A37IPgy18U2urxXc7izlWbY2Cp2nIBr92yfD0sroTjUleV9WttNke7wtmeXcO0cRQxEnKtzO7SvF20ST/PTqfRn7OHw9X4dfCyw02aIR3dyvn3GOpd/X6CveDyeahlkitLZpm4SJST7Ba+Otc+MviybUbhdNmEduWIQYGQPrXk0MNWx1WdRerv5n5zGjiM0xNXEdW23fzZ92eE9FXxF4kstFeVYUnlVXdzhVXPJJPTiv0X8a/tG/Bj4PaPHpt3qcd1Laosa21mRI/A46cD86/no0PxB4l1SZ7++vZX+Xy/vnkVd1K8a3tZLqQlioPuc9q+d4j8NqOdYmi8diH7Knf3Iq12925Py02+Z6uFwUsLJwTTk/6sdv+1/8fU+P/wAS11uwiktrCwhFvBFIwJ4JJbjpnuK+VER5HEcYLM3QDkmuhtfD2qanMZZF8tXO4lvevrr4J/DTRLKwPiG/gWe434iZxnaB6Cv0HD08HkmX08Lho2p00lFX/X8Wz3MXmVLB0dXdrou55F8O/gPrXiUpqXiEGzs88KRiRvw7A19s6Loel+HdPTTtKiWKKMAcDk49fWlvta0zTJorS6lVJZiFRO5P0qy8jNXy2PzCvimnU0j0XT/gnwmY5lXxclKrpHouhyfi/wAGeHvG0lkviCHz1sZRNGpPylvcdxW3cXFvp1uAAAAMKo4rLu/EmnQ3babA4kuFXcVHOO3NcXr3iC30q2/tDU3ZssEVUUs7Oxwqqo5JJ6AVlGE3Fe0dooxpU61Xko6vsvXsvM6Xwp4G8V/G34n6N8Efh1G0niHxVcpBFsXPkxMQJJn9ERcnNf3ofsy/ALwj+zF8D/D/AME/BcYW00W2WN5AMNNMeZJG9Wdskmvyt/4I6/sAan8CvBjftIfG2yVfHPiiEfZYJFG/TtObmOPpxIw+Z/yr9y68HG4n21S62Wx+38P5Qsvwyg/jesn59vkfyIf8HQv/ACcJ+wj/ANlag/8ASnTq/rvr+RD/AIOhf+ThP2Ef+ytQf+lOnV/XfXGe4FFFFABX5mf8Fn/+US37R/8A2TvxB/6RyV+mdfmZ/wAFn/8AlEt+0f8A9k78Qf8ApHJQB87f8G3/APyhM+Af/YJv/wD05Xdfrn8YfhZ4T+N3ww1z4T+OLdbrS9etJLSeNhkbZBgEe4OCPcV+Rn/Bt/8A8oTPgH/2Cb//ANOV3X7eUAf5Zf7aP7IvjL9j/wDaG8Q/BHxTE6ixuHksJmGFuLRifLdT344PvXyEVmtpeflZTX+ir/wWT/4JwWn7b3wOPivwHCkPj7wor3OnSgYNzEoJe3Y9w38Poa/gKvPCF1FqF94d8S2r2Wo6fK0E8Ug2yRyocMpB96/VOF86WJo/V6r/AHkfxX/A6nJXr+x96fwnP6J4uJK22pcZ4D13Tpb3cO1gHVhXkWr+Gr/SiWYb4+zCt7wrezw2zZJYBsc19S4p6o87FYanKPtqDLuqaBJCTNafMncdxXNAvE4YcMpr1aG5inXKn8DWDqulwXbs0Y2v6jvTjU6MnD41r3KpnWOsI4Edzw3rWzLFFcJtYZBrhbi2ltn2SjFeg6fZEafGQTuIB5olZak4unCnacHuc1dWckHKjK1lTQJOu1hXcuCmQ46VyDHLFjxk1SZeHqto5i5tXgOf4aihmkgfzIzzXXRW/wBqmSH+8cVc1vwk0a/adP5/vL/hT51sztWNgmqdTqZdpex3I29G7itW2upbWTzYuvQ1yWmWskuoJCRjB5/CuzuLRo/mQZWpkl0McQoRlydzq7S+ivFBU4butRajpcGop+8GGHQ1zFgr/aAynG3muwguFI2vwTWTjZ6Hk1IOnO8GeX3tjPYTGOUdOh7UWV7JZybk6HqK9nttGg1eOSO5X5cYB96808ReGLrQ5s/fibo1VGrGT5ep34bMKVZ+xqfF+Zs29xHcxeZGePStC1uTbN8o4PX3qPwP4dF5ay31xkBvlT6+tWr/AE6exmMcg47Gs21dxR51WdL2sqKex0UMsc6Bkq9ZXP2EkRj5WOSBWRpVowt/Nzjd0FXmyDg9aydnoebUUW3HodrFKkyb0OQayLzSY2Bktxhjycd6k06F4IQW4JOSK1lORXNez0PO5nCXus4FlKkqwwR1qAx7SSvSuv1DThcDzYuGH61gW9nNc3S2kY+djjFbxqJq53068ZRuzNrqNC1VIR9juOFPQ1sa14R8i0Waz5dB8w9awPDfh678Raoun2/y45Zj2A61m6kJQcm9EYyrUatJyb0X4Hd/K68nivQvCuvRxxLpd2cEfcP9Kq+IvC0enWqXFiCVQAMv071Y+H/g648W6ssbhltozukcfyrx69ajKg6kn7qPnq1WlUoucnoj0NlV1KsMg18kfFn4cXGk3sniHSUzaycuq/wH/CvujxN4ZbSG+0WvMBwPoa8N8deIrWys30gKJJJlwQegBrkyrFvnU6Oqe5jk2OqUqynQ1vuvI+a/h94Nku511vUkxCnKKf4jXvowAB0FYmiX8dxarBgKyDG0dMCvYPCHg1NYhe91IfuiCqr0z71347F8rc6nQ780x8pzdStpbRI8E8QatHKDZW5yM/Mf6Vy3QV1Hi/wxd+FdYfT5/mU5ZG9Qelavh7wqZoTd33G4fIv9a7YVacKSlF3TOuFalSoqcXdP8Tl7GyJPmzD6A9q2v9kdasT20sE/2Zh8wOMetdXp+gpFAZJ/9a3T2rOpWS1ZzVsQvibOchsYyoecBj1AParzusaFm4Aqw0LrJ5R60t9pxmsyqfeHIx3rncrv3noczndq7OTvrkXhCso2KcgH1FVScVPDbyTy+Sg5/lWrdaUILTevLg5P0rr5oxsjquotRZgMiuQXGcdKgu7yGzhMspxitzTNKu9WuBBbKcd27Ck+Jfg+PT9Kt9RsASIvll989DQqsPaKm3qzenVp+2jRk9zx3UdQk1KUM/3VPyj0qGzs576cQwDr1PYV0Hhnwpe+JJzs/dwp95z0r1TUPDtrocMS2Q+TGCe5NdU8RCDVNbnqYjH0qDVGn8X5HKaZpFtpyfIMuerVburuO2X5jz2FTs4+7XM6jGy3O487ulZxXM9TzoRdSd5srTzNdSCWTqOlYeo6tb2C7Ty5HArpLeyMnzScLXlviG0kt9YlhAJyQV/Guqnyt8p62Dp06k+R9DNu7ua9mM03XtTYoHk57V3Oh+DnmH2nUvlHUL/jWLdwfZLiS3b+EkVsqsW3GPQ9OOLpuTp0uhVjiSMfKPxqwkZYg9qr7ssCK04kaQAIOTRJkydtWNCogzWbc6gEBSI5auhudPxYyO5O7bxiuMtrS4vJPLgUse9Omk9WVRcJJyb0RXOXbceSa1bTTXkO+cYX0rp4tBhsbQzSfNJ6+lVZJljHvQ6t9IililO6pigQ28fZVHf6Vxmr+J8E2+n/APfdO8TzSNaKwJA3YwK5/TNAvdSIZBtT+8acYq15HXhcPTUPbVnoY3zzSYHzMTz6mvpr9lf9m3xj+018a9F+DvgqJ5dS1WdFG0ZWKMMN8jnsqrk59a83t/DEcdza2FlG8sk8gjGxdzsznAAHc+1f3Zf8EVP+Cb3/AAyl8LU+NfxStkbxv4ntk2o6ANY2TfMkXs7Zy5/CvmuJ87WFoexpP95L8F3/AMj08PW9t70PhP1q/Zv+BnhL9mz4I+Hfgr4KiWOy0Kzjg3AYMkmMySN6l2ySa9woor8nO0/kQ/4Nc/8AkuX7c/8A2Vq4/wDSi/r+u+v5EP8Ag1z/AOS5ftz/APZWrj/0ov6/rvoA/wAwT/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1Ov5Av8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINToA/f6iiigAooooAKKKKACiiigDwTxz+yt+zN8TdYuPEXxC+H3hzWdSuyDNeXmmW8tzIQAo3Sshc4AA5boBXafC74QfDH4J+HH8IfCXQ7Tw/pck73TWtlGI4jNIAGbaOMkKB+Ffx6/GD/gql+3F4R+O3jSz8CePp7fSYNe1FLK2ktLS4jitluJBGi+dA52qmAOc4Ff1J/sE/E34jfGX9kTwT8UPizeLf+INatZri6nSJIA4M8oj+SNVQYjCjgDOM9a+ZyjO8DjsVOnQpNTim22l3tunfU/VOMuBM+yHKqGJzDFqdCo4qMFObs+VyV4yioqyVtG7dD6+ooor6Y/KwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9D+/iiiigAooooAKKKKACiiigAr8Pf+Dkfw5ceKf+CJHx70y1Qu0Wl6beED+7Z6nZ3DH8FjJr9wq+ef2tvgBov7Vv7LnxE/Zo8QSCC18eeHdS0JpyM+Q19A8SSgesbMHHutAH+aJ/wZweK7Pw7/AMFc77SLlwj694B1qxiB/idLiyuSB/wGBj+Ff6oNf4lf7Ef7QXxP/wCCSX/BTTwv8XPGOmT22tfCjxPPpviPSxxK1urSWWpWwyQN7QtKqE8B9rdq/wBo/wCEXxa+HPx5+GGg/Gf4Ravb694Y8T2MOo6Zf2zbop7edQyMO4ODhlIDKQQQCCKAPRaKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivH/jX+0L8Av2a/Ctv46/aL8ceH/AGiXd2lhBqHiTU7bSrWW6kR5FhSW6kjRpWSN3CA7iqMQMKcAHsFFfAH/D2H/gll/wBHLfCr/wALLSP/AJKo/wCHsP8AwSy/6OW+FX/hZaR/8lUAff8AX4b/APBwB+3r+1v/AME6v2LtB+O37Geh2niDxPe+MLLRru3vdPn1KJNPuLO9leTy7d43UiWGIBy20ZwQc1+tHwU/aF+AX7SnhW48dfs6eOPD/j/RLS7ewn1Dw3qdtqtrFdRokjQvLaySIsqpIjlCdwV1JGGGfYKAP8sv/ghZ/wAE1P28/wBuD/grT4e/bv8A2gvB2saH4a0PxbL8QPEXiLV9PfT4L3VTM99HHapKsfnPNdlS3lArEmWJHyhv9TSiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr/K+/4PH/ABXZ+If+CudjpFs4d9B8A6LYygfwu9xeXIB/4DOp/Gv9Pz4u/Fr4c/Ab4Ya98Z/i7q9voPhjwxYzajqd/cttigt4FLOx7k4GFUAsxIABJAr/ABcP23P2gvif/wAFbf8Agpp4o+Lfg7TJ7nWviv4ng03w5pZ5lW3do7LTbY4yN6wrErkcF9zd6AP9RL/g248OXHhb/giR8BNMulKNLpeo3gB/u3mp3lwp/FZAa/cKvnn9kn4AaL+yn+y58O/2aPD8gntfAfh3TdCWcDHntYwJE8pHrIylz7tX0NQAUUUUAFFFFABRRRQB/iDf8FYv+Upv7S3/AGVXxl/6d7qv9vmv8Qb/AIKxf8pTf2lv+yq+Mv8A073Vf7fNAH5u/wDBYv8A5RP/ALSP/ZNvE3/pBNXyp/wbV/8AKEL4C/8AYP1X/wBO17X1X/wWL/5RP/tI/wDZNvE3/pBNXyp/wbV/8oQvgL/2D9V/9O17QB+5tee/Fb4WeBvjV8PdV+F/xIsItT0XWIGt7m3lUMrK3cZ6EHkHsa9CooA/gj/bU/Y1+IX/AAT2+LR8HeI1lv8A4f6xM3/CPayQWVAefs0zfwuvRc9RXw98U213SdOj8UeHZcG3/wBYnVWU98V/os/Hv4C/C/8AaW+F2qfCD4vaZFqujapHseORQWRx92RD1V1PIYc1/Dr+3R+w58ZP+Ce3jCXS/FCya/8ADfUZDHpetFS/kq3SG5OPlYdAx4NfSZNmihUjCr+PXyZ8HnnDnJW+vYSF1vKPfvb/AC+aPzd0b46PGFXV7bLAj5ozj9K9u0X4weCNXVFNz5EjcbZRjp79K+WNb+Heo+e95o+2WCQ7kAPIBrz6602/smKXULIR6ivv55bha6vB29DzpZNl2KV6UuV+T/Rn6TWet6PqEYlsbmKVWOAVYVm+L/Dlv4p0GfSJuC4yp9GHQ1+c1veXdo6yW8jIyHIwSMGvpXwf4yvNc01RNcP58Yw4LHJ964K2TyotVKc9vI8jG8P1MJatSqXSfbbseC6zpF7oeoy6bfoUkiYjnv71taLdvcqLU5Zx09TXpfjnQJNbgOox5e5jHc8la8c0nU73QNUi1KzO2aBsjI717lOp7Snf7X6n0tCv9aoXXxr8/wDJnenwTr/iFANNs5HY9G24HHvXd+GP2etbvglz4imFqmeY15fFfRvw98ZWHjLQY72Dak6jEsa/wt9K72vlsXneJjJ0lHla+bPkMVxBjKblRS5Wvmz86viP4Eu/A2uPZ/M9q/MUhHBHp9RXJademJhDJ90n8q/RXxp4SsvGWhy6RecFuUfHKsOlfAniLwVrXhnVn0rUU27T8r/wsPUV7OVZksTT5Zv31+Pme/k+bQxdH2dZ++vx8/8AMLq2hvIDDMMg1wMukS285Sfgdsd69BhjMUYjJyRUd1brcxFD17GvWjKx6tDEOk3FPQl8Ka8lgRp90T5Z+6T/AA16Ne2Nrqdq1tdqHjcdK8Lmglt22SCu18M+JRBtsNSb93/Cx7fWsa9H7cDnxuEb/fUt/wCtTzfxR4YudAudwBa3Y/K/9DXM+fOYvJ3ts/u5OPyr61ubWx1W08i5RZYpB0PQ14f4k+H1/ZXBm0dDNE5wqLywJ7VeHxal7s9GejlubwqJU8RpJde//BPNavWNjeX0nl2kZf6dK+q/hr+zgdQt01jxuWjRxlbYcN7Fj/Sug8WfCyfwkpudIQPZ5wAo+Zc+tYf2vhnVdGMrv8DHEcUYRVXQpO8u/T/g/wBanzdp/hlLVg998z/3ewrpwoUYXituaBZAVPX1rnr6ZbH5XOW9K6OZy3Ob6xKs/e3Oi8P+HtR8Tagunaam5j95uyj1NfWfgX4e6T4MgMsSK95KP3k2OT7D2r4l8PeM9c8M6l/aOlSlCfvJ/Cw9DX1r4N+M/h3xDGltqbC0uschvuk+xrw85p4pxtD4Ott/meHntDGcvuK9Prb9T2SSRIkMkhAVQSSewr4u+L3jseJ9T/sixwbS1fhh/E3rX0f4s1+KaBtMtCHWQfMw6EHtXzzqnw80+6cy2DGFj26jNcWUUqdOXtau/Q83JVRpVPa19+n+Z4ieleVfEya9ikgsZVKRMvmA/wB6vom78G3OlXMI1CZPLlfaMHk1L458C2Xi/SVthiOeEfun9Pb6V9RHEwTTWzPusDmlCjiKc5ax79vM8C+Evx0+IHwd1IXfhe7Y25+/ayEmJs9fl6A+9frn8Ev2vvh78VEt9H1SQaZrDrhoZOEZu+1ia/DrVtH1HQ7+TTtSjMckZxz0PuPas3zZLdhPCxR16MpwQa83N+HcHmEXKatPpJb/AD7nu53wngM2j7X4aj2lHr69/wA/M/qQVldQynIPIIoIB61+D3wh/bL+KXwzMWnanOdY01MDybgkuo/2W6iv0j+Fv7aPwl+IUQt9Vn/sa8AyY7k4U/Rq/MMy4Tx+EblGPPDvH9VufkWb8GZlgG5OHPBfajr963R9CeK/hp4L8ZxbNesY5WHR8YYfiK+bPEP7IOkTl5fDeoNATjako3AevPWvsDT9T07VrcXel3EdxE3Ro2DA/lV6vNwudY7Ce7SqNJdHqvuZ4WGx+Jw+lObXl/wGfmjffstfETTrsbFiuod5GY25Kjvg+tdPpPwk8dXusweGbHTJjLI4jUKpKjPfI7Cv0X0vS77Wb6PTdNjMs0pCqqjJJNfoN8JfhJp/gKwF/fKsupTL87nkIP7q/wBTXl8V+L08nw168Yzqte7FaXfd9kvx2R9Llk8dmdRRlblW7tt/mz4p+FPwph+F/hddHjjL3LfPcSlcEt3GfQV8vfH39qi20I3fgvwCfMvBmOS7B+WM9CF9/evfP29v2tH8LRt8H/hlcILydSNQuoj88Knjy1I6E9z2r8VXdnYySElmOSSe5ro8O+H8RnVJZ/nlK3tHzQi3e6/mkrKy/lj21eljeWT06dZ3nzpeVtTSivtWn1L7VBJJJdTPncCS7Mx/XNffvgz4V+NIvC0Ota+E+1uu7yR94Kemfeua/ZX+HHhK5gHjO9niu79SRHAcHycd8Hv7191kdAK+i4s4pdOv9Uw0bcm7a38l5ef3HjZtjFOfsoLbr/XQ+TtH8P6jrGqDS4UIcH593G0D1r6p0vQ9P0jTE0yFF8sD5sjOT3NXLbT7a3la5RFEj/eYDk/jXLXfjnwy2uTeEba+hfVIUEkluHHmIjdCRXwuYZnWzGSjTjaMdXb835Hkxi7NpbHLS+B/DGn64NW0+HZIuTj+EE9wK9V+HvgbVviJ4qtvDGkKS0zDzHAyI4+7H6VwF9fW2nWcuoXziOKFC7u3QKoyTX4v/E39uf4r23xii8afBXW7vRLbSsx23lNtEmeGLr0YN6HtXq4PIc0zmjVpYKolUjB2nO7inb3b213/AKfX3eGsjqZri1Fr93HWT8uyfdn9v3hHwrpXgvw/beHNHjWOG3UDgY3Hux9zX8wX/BVr/goT4yvvjhafDP4BeIrvS7Pwk7LeT2chjE16DyDtPzKmMeler/Cz/gp5+1b+0L8Bdd8K6L4dtU8QfZzbpre4xRHeMMQn/PTHTHANfgj4j+D3xZ0jxGukeJdKuxfXkxUPIrN5jscE7uc8nk18T4M+C9bLc9xWZcVuEqtO6hByjNSck+ao/Kzsk1e7baVkfu7zfAOX1KnOMeRaxbStbZW8l2P2q/Zf/wCCoH7Y/wAYbDUPhldRWV9ILTyzq8imOW2BUrv+X7zk818TfED9kL41wajd6/JImtSTymSSYP8AvZGflmbd71+gn7N/wS0/4H/DyDQwofUbkCa9l4JMpHKg/wB1egrs/iD4lFnbf2RZt+8lHzkdl9Pxr9IyutgMpzWv/q1g6dKFVrmtG3Ny9dNlvZKy62ufkObca4mpjZPCy/dLRJ638++v5Hxp8GvAL+AfCa2l6oW9uG8yfHY9h+Ar33wrdeHrfUvtWtXcUAh5VZGAyf8A61chf3sOn2r3dwcKgzXznqWoT6nePdznJY8ew9K+tnhp491JTla+7X5I+YaqYyrOtUerd2foTqHxH8FadZyXsmowuI1LbUYFjjsBX51+LvEd14s8Q3Ou3ZOZnJUHsvYfgKyryUHEYqtBC08ywoMljXZk2Q0cvcqkW3J9X0R34TBxo3lfU6fw2n2YtelcseFz+tdJJdzynliB6CqcUaxRiNOgFeieC/CMWvLJd32RChwMdz3/ACrpxVeEL1Z7GFaorucjg44ZZ5BHAhZm7Dkmuht/E138OJ5DJb77ueMbAx4Vc9xX0Hp2h6VpSBbKFVI/ixz+dfKnjGG98QeKrq8ziPfsUn0XiuLC4mGMnKnKPuJa36mVCpGtNxkvdOe1/wAW+IPE0xk1S4Zx2QHCj6CupvfihpXhLw9b6TpKiW7EeGH8KMfWqNpo9tZLv++4HU14rHot9qN3Jc3HyIWJLN6Zr2Y4ehUSi1aMemyPUpUKFXSekY9O5V1bW9a8TX5udQlaeRiSozwufQdq/QH9i39lL4qft4fE+2+GPw18yx0PTPLfxDrRB2W0X/PJG6GV8HA7Vh/sT/sF/F79ub4hf8Ih8MkOm+F7J0Os+IJAfLiQ9Y4jj5pCOw6d6/u1/Zl/Zj+Ef7JXwnsPhB8HNMjsNOs1BlkAHnXMx+9LK3VnY9z06V89nucwa+rYbpu1+SPuspyKNRwr14WjH4Y/q128jpvgZ8EPh3+zr8MNK+EnwusE0/SNKiEcaIAC7fxO57ux5JPJNeuUUV8efaBX8iH/AAbC/wDJz37fH/ZWpv8A0r1Ov676/kQ/4Nhf+Tnv2+P+ytTf+lep0Af130UUUAFFFFAH8iH/AAUM/wCVsD9jH/sTNT/9Fa1X9d9fyIf8FDP+VsD9jH/sTNT/APRWtV/XfQAV+R//AAVJ/wCCcVn+2L4Mh+IvwxMWmfEnw1Gz6dd42i7j6m3lI5Ktj5c9DX64UU02ndEVKcakHCauno0f53uk6rf3GoX/AIQ8YWEmk+INHla21HT7hdssMqHB4P8ACeoPcV8/+K/iH4s+HHieTTL5Rd2ch3xFuG2ntn2r+yX/AIKff8EtdL/ausv+F1fA9odB+JulRHZOo2RalGv/ACxuMD5jxhWPIr+O/wCJ2k+JNRvr34YfEjSn0LxdocpjuLW5XY6sOCRn7yN1BHFfVZHi6U6vs66TT0f+aPyzMeG1l+J9py82Hl98f67m94T/AGh/CRuMamktqGwDkbhk175pXxC8F61H5mn6jC/O3BYA5/GvzM1XwZ4i0ck3NuzKP4k5FcxmWJsjKEdO1fS4jhrCV3z0ptfic1ThzCVveoVLfcz9iUlik/1bBvoc18tfH7wDJOF8W6XHkqNsyqOSPWvlvwV8QNd8M6qsv2uUwyELINxPH4mvqwa/f6jZ7vtLyRSr0LZBBry6eU18uxEasJpr8+6PInl9fLsRGaldfn3R8iW8728wlQ9Ov0rurUm9jVoAW3enNZ3i3w5Jod6ZYgTbyHKn0J7V6H8FfiJb+EdZGlatFHJZ3bDLMozG3YgmvpcVWl7B1qMeZpbbXPfxUueh7eirvsc/bfCnxrrdyv8AZVhJsc4LMNoB9816t/wzHrNvoNxe3V2rXiJujjQZBI5xmvt2GSGaJZbchkYZBXoQamAzX59iOL8ZJpU0opfNnydTP8U7KNkkfj7NDPZ3DQTqY5Izgg8EEV1+nXwvI8N95etfUfx2+D8+rs3i7w3GDKo/fRKMFsdx718i6fpl5HN5j5i2noev5V9zgswo47DqrB2fVdmfTUMXSxVFVE7Pt2JNc0n7Sv2i3X5x1965/T1msLhblGKuvIx2r0Wuf1PTyT51uPqBXbRq6ckjoo13y+zlsey+HfEFtrdoNpxMg+dT1+tZHi7wjDrcJubUBbhRwR/F7GvHbG+udOuVurZirKfzr6B8NeIbHW4AQwWYD5kP9K4K9KWHl7SnseXiKE8NP2tLY+Xrg3umXfl/NDLGeoOCDVe91C/1GX7RqEzzv/ekYsfzNfT3ivwVp3iKJplUR3IHyuO/1rxXTPhp4v1fXk8P2NqzysQCwHyAHuTXdRx1GcXObSaWtz2cJmNCpDmk0mt7nADI5FdLpWiajqY3LGQg6uelfcOi/sm6Vp+h+bf3Hn6mBkf88s+mK8x1vw7qXhm8Om6jF5bL04+Uj2rz6PEOFxEnDDSu1/V13OKpntKo3Chq+7/Q8o03SLfTl+UbnPVq1q2LiyVvnj4rjr7VRCTDByw79hXRGTqO5zRcqrvuz2zwL8Kb7xpi51AeVYg4YsOWHtX2Poeh6X4d02PSdIiWGCIYCqMfjXxR8NvjpqXhcR6Rr6m5shgBh99B/WvsPQ/G3hnxHZG/0m6SRQMkZww+or4LiSnj3UtUX7vpbb5+fqfP5rTxMZWqL3eltv8Ahx/i7xPYeEtEm1e+I+RTtUnBY+lfm/4h1ufxFrM+s3KhWnYtgdh6V9X/ABA+zeOZfJuwRFFxHg8/WvB9R+GN/D82nyrIPRuDXs8OYejhablUdqkvwXY7MndCim5u0meVSmTYxhBZgCcDrxXyzqOt6j/bratFI8M8b5RlJDKV6YI6V9z6FoRs7+UXZUyRfLtHOM14B8WfhdNZTyeJNEXfC5JlQdVPqPavssLiaftHB9T7jIcxw8cTKlU+0rJ9PT5n1j+zz/wUO8T+EPs3hf4sq2p2CkKbvOZ0X1P97FfsT4A+KPgj4n6GviDwRfx31u3XafmU+hHUV/J+Qa63wd8UfHnww1aPV/A2pz2EqnJEbkI3sy9DXwfFPhXgMxcq+B/c1X2+B+q6eq+49DM+E6VdueFfLLt0f+R/WIx3H5qpXunWOoQG2voUmjPVXAYfrX5EfCD/AIKdQiCLSvjBprGXIU3dr0x6spP8q/TTwH8Zvhn8SrGO98H6vb3XmjPl7wJB9VPNfhGc8I5vlE74mi1FbSjrH71t87M/P8flGLwjtiKbS77r7zx7xz+yF8MPFbyXmlxtplzJk5hPy5P+zXzB4o/Ya8d6crzeGr6G+UDhXyjE/wAq/VVUA5PWn5A6115dx9nWDSjGtzRXSS5vx3/E5aeLqw0jL9T8bNK/Z1+JPhiWa81rSndoujJ84A9RX0X8Bv2fPEnxE8Qre6tbS22m2bq0rSIQHx/CMjFfq58KvhRrXxO1oW1uDHZRkGaYjgD0HvX6Svp3w++EHgOW5vlgs9N06IyyySAAHaOSSepNfOcZ+PuLw8HgMPRUsTPS8W/dv5a+8+i+Z93wzwZis5jLG4mfs6K+01vbtrsur/pfmf4i13wz8MPCj6rqxSysLKPAGNowo4AHrX43ftI/tTav8YbkaF4d8yx0WI/6snDSn1bHb0Fbn7aP7XHiD9pHxzLb6eBY+HbB2jtLWLhXAP33x1Jr478P6Uut6zbaSZktxPIqeY5wq571+n+Gnh1HLsPDOM6p/wC1Nc3K3zKnfX5z7vo9F3PFx7pQqyhRnzU1s7Wv52107Ho/wk0zxr4p8RRaD4bUzK339+SiL6k9q+mvFnw88R+DnH9pR74z/wAtE5Wvrf4R/DLw18NfDMdhoeyWSUBpbgYJkP19K7nW5LOe3ayuY1lWQYKsMiufNPECVXMGsNSvRWmukn5+XkvvPlsVyzfMtD47+F/gZ9Vu11vU4/8ARozlAf4mH9K9o8ceC/C3irSnh1+EFUGVkAw6/Q11hOm6Lp7SNstraBSxJ+VVUdT7CvINb8Z6d4nhSTw/cLcWjdJI23K/0INcH1zF5hjViKbcYx2a6L17s4G3Bcx5xoXhnSvDED2Wk7ijMTub7xr6z+Afw2Ot6iPFWrR/6NbH92GH339R9K/PL9oX416L8EfAc+vXz5vJ1aOzjAyWkxwSPQd6/Ov9nT/gqb+0Z8G9bNnq8w8SaPczl2srjlk3nkRMOR7Cvo864ZzvN8qrSyyS9o9PednJdeV7X6a2XmfXcK8KYvMlLH8t4RfX7T8umnU/qy+M3xX8L/BD4Z6t8TPF04gstLgaTJ/ifHyqPcniv5LtF/4K0ftV+Fvinqnjey1c6jpl7O7Jpt4N8EceTtCj+HA9K+m/+Cjvxn/aL/ak8EaHceGPDN3pPhRIxPNbK5eeWVuhkRf4R/CK/NH9ln9nLXfjH8UItL1i2kt9M01xLfM67SAp4TB/vEYrn8NPDfAZZlFfEZ9ShOrU+KL5ZKEVsuvvN6uz7LofqmSwyujl9fHYycZJXurptW6adW/0P1o+PHxV/ab/AOCgPwH0w6VYW/hrTW/ey2hlOb5h91unAz0Br8vrL9kf4t6F41tNJ8Z6W0FkJVMs6kNGVHJAPev6DdP0/TdA0uLT7GNLe1tkCoqgKqqtfLvj/wAVP4j1cpCT9mg+VB6+pr7LhPExwcZYLLsPGnh020lfS/m3q/X8kfnOA49zCDq0cPCMaTvbR3jfbW+rXnc85s7W30+0jsrZQkUShFA4AAr07w7Po+nWWZLmLzJOW+YflXiHijVPslt9lhPzydfpXl8kojUu5OBzX1ksC8RDWVkePHAPERvKVr/ifQ/xa8eWOmaA2l6ZOr3F18vynOE79K+Po45JpRGoyznA+pqa7uGuZjIenb6V1ng3S/tN2b+UfLF0/wB6vTwmFhg6LS1PewuFhgcO7avf5na6Vo62VokLdQMnHrVm8jhRRGAPXmtdEeRxHGMsxwB7mvozwz8HdHjjh1HXN00xAYxn7o9q8rGZhTw/v1Xqzwq+NVN89R7nzLpeh6prLlNOhaQKMkgcAD3rtm+JV5peiRaDoSeT5S7Wlbk574r6N8cRW3h3wZdW+hwpC0q+WiouMlvpXyzpXga9uj5uonyl9P4q5MNi6WLg6laNop6IwpYmniE51lonoiDwtqK3PimHVPEE5ZYsu0jnpjp+tbPjX4xXF5v07wzmKM5Bm6Mfp6VB420mPTfD0djpUfMsoDYGWPFcJa+FobC1OpeIn8tF+7GPvOewHuegFdqhhZf7TW2WiXTTrY66VKhVkqsld7KP/AF8Ga2NI1aTXNXlZbYIxlkbkZ/qc1/SR/wSM/4Jt6z8VNd0/wDa8/aN04waHayrceGdFukwZWXlbqZSPXlAfrXE/wDBLL/gkZrHxb1TS/2lP2q9KNh4ZtHS50Xw3MuGuWXBSa6Uj7ueQh696/rbtLS1sLWOysY1hhhUIkaAKqqOAABwAPSvjc8zZYqralpH8z9CyXIlSmsZXj+8tov5V/n+ROAANoGAKWiivAPqD+RD/g6F/wCThP2Ef+ytQf8ApTp1f131/Ih/wdC/8nCfsI/9lag/9KdOr+u+gAooooAK/Mz/AILP/wDKJb9o/wD7J34g/wDSOSv0zr8zP+Cz/wDyiW/aP/7J34g/9I5KAPnb/g2//wCUJnwD/wCwTf8A/pyu6/byvxD/AODb/wD5QmfAP/sE3/8A6cruv28oATGa/lx/4LYf8Em77xrJdftffsz6aG1mBGk17SrdcG7jXnzYwP8AloOcjvX9R9NdElQxyAMrDBB5BBrbD4ipQqKrSdpIipTjOLjJaM/ylY5oLxGjlQqykq8bjDKw6gg9CKij8JwSWzy6cAjZ5Wv6w/8Agrz/AMEXJtem1H9qD9kPTwupHfcavoUIws46mSEDo3Ule9fym6Xqs2nXU1jqUL288TmOaKVSkkbrwVZTyCDX6pk+eQxtO0dKi3X6ryPmMbha2Gu6T0OJntrmylMcwKsOa7CHQp7zTItQgO5nGSK7GSHTdXhw4V8/mKs6bbDTrZbQHcqk4J7CvYnXbXmeXXzCTgrK0kzySexV2+z3SdwOeK9X1HwJfWVnHc6f+9iKBsdxkVNeaZaX65kHPUEV6tousW09slrKdrooXnoccVzYjEzSTh8zzsbmdTlhKmtr3R86WumR6hfR6fdAqJGCnsRmsjxh8OtV8MTvNEpntc/K46ge9fUF94V029votRQeXJGwYlehxXRzRR3CNFMoZW4IPSsv7SaknHbqjKPEE6c4yprTqj4T8PRrPqaKewJr0FkK8GvRvFPgbStId9c00eWXOGTtz6VwxAIwa74V41FzRPWlj4Ym1SGxqeGvh1b+KI7rUIv3U0SgI3Yk9jXF6xoOp6Fcm21GIoRxu7H6V9IfCxQmlXAH/PQfyruda0HTNftTaalGHXse4NefLMJU60oy1iePLO6lHEyhU1h+K0Pjmx0H7RYG6gGHJ6eorKeKSKQo4wRXveo+DLrw7DtgzLApOGHauOvdMtr3DSDDDnIrshiVJ3Tuj1KOZxm3K94ho0X2eyTcOW5NazafFqxWxlUOJCBg89ahUBVCjoK19EvotN1OK8nUsqHJArCcnrJbnBVlLWcdzc1PwJL4ftF/s8boEAzjqD3rAsNDj8QXsemyj5XPJ9AK+ira7s9TthNARJG45H1rK0/w5YabqD6hbAguMY7DNeVDHyUWp/EeLDMZpSU/i6PzPB/EHhO88PyFQu6AcKw6YqXwj4WPiW+ZXO2OJck+/avou7tIL23a2uFDIwwQapeG/Dtp4egljtST5rbiT/Kh5lL2TX2inm0vYtP4+54PqmkXujzm3u1OAcBscGu58HfDy78UaRdamreWU4iz0YjrXqmoaNa63D9huVzuOAe4Nep6JpFtoWlw6XafciXH1PeuPF5tKNJKOk/0OLEZvL2SUdJHw/fWF1pt29leIUkQ4INdbovhPbaf2ww/euOAR/DXv3j/AMLaPqkMd/cjZOrDBH8Q9DXLqqooRRgDitoZj7WknHR9TX+0XVprl0fU8+tNPur+8j061jLzTOERR1LHgCvtPX/2Ur/4e+A7PxNpcRlvJUD3yAcqT6ew71xHwDHg/Tvivp2peKkzHvxGxOFSQ/dJr9kGS3u4NrASRuPqCDX5N4g8b43KsbhqOHh+7tzSvtPpy38t/WxN/aRcU7H4YWmnyahcrZKuSxwQRXtmg+HrDw3p4sNPXauSxPqTXvPxQ+DEPg7XLjxboyZtLpslQOIif6V5Rwa9nD55RzPDQrYaXuPddn2fmjwsXKal7NlG4tIr2BracbkYYNfAfxT8Jal4X8Ry/aCzwTndHIe49Pwr9CQAOleR/GODQp/C0kergNKf9R67q9rJMZKhXUUrqWj/AMzoynFujXWl09D4l8PJJDfx3mMohyQeh9q+2dCv7TVNMhubHARgBgdj6V8jwQpBEI06Cv0H/Yr+Cmu+MtUPivW49ugwNkB/+Wrr2Ht616fGGY4XAYCePxUrRh/5M+kV5voe3mNB4lrk3O20D9lW8+KHgq817V4vJnjj32AYYLOOefY18Lajpl7o+ozaRfxmK4t3aJ0I5DKcEV/R7HFBaQLFCBHHGMADgACvyD/aKt/BepfFq91Tw3HznE7A5R5R1Ir8g8OfEDHZpmGJw+Jhem1zRttC2lm/P8ycTh44WlFJ3Pkt/CJa2/taRf3qDge1UbDT7vVLxLGxjMkshwFAr2IqCMGvavg34V8P2dpNrEI8y7LkEn+AdgK/VcZnTw1CVWau+n/B8jyZYtxi3L5Hzz4/+EN54P8ADtt4gdvMlc4uABwmeleceGvCms+K79LDSoi244Z8fKv1NfpV4h0Oz8R6PPot8MxzrtJ9PesLwp4R0rwfpaaXpiY2/eY/eY+pr52hxdUjhZKor1b6drP/AC7GUMxkqdnrI+EPib8MD8O7yAwkyRXKAl8fxjqKwfCngjUvFVwqouy2z88h6Y9q+8fiT4MsvGehi0uyQYHEikdeOo/GuN07T7TS7RLKyQJGgwAK9LBcSzqYNJ61dm/yZf8AaUlSS+13PmnUPDUHhW8bSbVcInKnuQa3tM8AyeJ7GRNSXbbSqRg9TXseqeGtP1a/jvroEmMYx2P1rUu7yy0u1M1wwjjQfoPStJ5tUlCKp/H1fn5GDxk2ly/F3PjZ9Hh0GZ9LhjEYiYrgDHSsrW7YXWmyJjJUbh9RXZ+J9St9X1qbULZSque/tWDs3jaehr6qjOTjGc9+p7FOb0nLc8ZjiklcJGCxPQCtnUfDTW2mfbbnmRWHHoK7/T9HtNPJaIZZj1NdnY+CrvxPbNFKTFA/V/XHpXVWx0YWk3ZHZVzJKSa0ieA6LoGq+ILtbPS4jIxOCew+prqvHHwvt/CVtYarP+9uJQySE/dB6jFfXGgeG9J8NWf2PS4wg/iPcmvN/jZEJdAtQe02f0rzKecTrYqEIaQ/M5aebzqYmMYaR/M+WEjZzgCvL/F9ssGrlU/iUE/WvZAAowvFd94Q+HOi+IpI/EerDzDCxVY/4Tj1r3pYuGHTqT2Pdo5hDCydWpseD+BPhZrni64SaZDb2YYF5GGCR7etS6zolvouu3OkWCllhkKL3JAr7whghtolgt1CKowABwBXG2HgTRbLWbjXJx5s80hcFui59K8yGfNzlKotLaJHB/rDOdSU6nw20S/U8C8O/CnVNVt2vNXH2eAIWA/iPFeY22nxW7G3s07496+0/EHiSy0+1e2hIkldSoA6DNeDWWl2tgCwHzdSxrowmOq1FKVRaO1kXhMzqzU5VNnayPO9T0GeDQri+uTtKLkL+NeW2tpc3sohtkLMa+h9ciTVLFrAMQrYyR6elYscWl6JDkBYgO5616NHEtRd1qerhcfKNN3V5N6Hml94Pit7BJ9SIZy3CdqoyTW9jFgDGOAqjk+wrf17WTrN1FZaahdidqAcs7HoAOpJ7V/Sn/wSG/4Iw6p4mvNM/ai/a408wWiEXGkaBOvL4+7LOD+YWuHNM6hgqPv61Hsv8+yPfy/CV8RFOq7I6D/gif8A8EpdX1S7sf2vP2ldOMNsjCfQNHuU5yPu3Eqn81B+tf1sKoUBVGAOABUNrbW1lbJaWcaxRRKFRFGFVR0AFT1+V4nE1K9SVWq7yZ9ZTpxpxUIrRBRRRWBZ/Ih/wa5/8ly/bn/7K1cf+lF/X9d9fyIf8Guf/Jcv25/+ytXH/pRf1/XfQB/mCf8AB6t/ylN8A/8AZKtK/wDTvrFf1+/8GuP/ACgo+Bn/AHM3/qQanX8gX/B6t/ylN8A/9kq0r/076xX9fv8Awa4/8oKPgZ/3M3/qQanQB+/1FFFABRRRQAUUUUAFFFeTfHr4jTfB/wCB/jH4r2sccs3hrRb/AFOKOXPlvJawvIitgg4ZlAOCDz1qKk1CLnLZam2HoTr1YUaavKTSXq3ZH5teNf8AgiH+xP4z1K61cf8ACQaZcXkrzSNaagG+eQlmP7+KXua/TH4MfCnw78DfhToHwg8JSzz6b4dsorG3kuSrTOkQwGcoqKWPUkKBntX823hb/g4P+KcUkcXiz4a6XqDMQMWV9Nakk+m9J/61/UhbvNJbo9wgjkZQWUHcFYjkZ4zj1xXgZHXyqvKdTLopSVua0Wt9vLp0P0fj7A8X5fSw+F4lqylTbbp3nGavFJNqzbVlJb230JqKKK+iPzIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9H+/iiiigAooooAKKKKACiiigAooooA/hW/4OkP+CBvjX4365f/APBSn9i3RJNV8RLbL/wnHhyxjL3F7HbIFTUrWNeZJkjUJcRICzqqyKCwk3fzMf8ABIX/AIOA/wBrv/gktcN8OtJgj8e/C26uGnuvCWqTND9mlc5kksLgB2tZHPLqUkiYkkx7zvH+whX8/X/BR7/g2x/4Jwf8FEtb1D4m3mj3Hw2+IGoFpZ/EHhby4BdztyXvLR1a3nYkkvIqxzOfvSGgD5c+C/8AweE/8Ek/iJoVvd/E1/Ffw/1FlHn22o6S17Gj99kti9wXXPRmRCR1UV9N2n/B0z/wQwuEDTfGmWAntJ4a10n/AMd09hX8zHxL/wCDIb9p3TdSlT4O/HDwvrVnk+W2s6dd6ZLjtuWA3oz9GrwW6/4Mpf8Agp4jkWXxD+F0i9i+o6sh/IaS386AP68P+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/r9/4ijf+CFH/AEXP/wAtnxD/APKyj/iKN/4IUf8ARc//AC2fEP8A8rK/kC/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKagD+v3/AIijf+CFH/Rc/wDy2fEP/wArKP8AiKN/4IUf9Fz/APLZ8Q//ACsr+QL/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKagD+v3/iKN/4IUf8ARc//AC2fEP8A8rKP+Io3/ghR/wBFz/8ALZ8Q/wDysr+QL/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApqAP6/f8AiKN/4IUf9Fz/APLZ8Q//ACso/wCIo3/ghR/0XP8A8tnxD/8AKyv5Av8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pqAP6/f+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/r9/4ijf+CFH/AEXP/wAtnxD/APKyj/iKN/4IUf8ARc//AC2fEP8A8rK/kC/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKagD+v3/AIijf+CFH/Rc/wDy2fEP/wArK/KD/gqX/wAFbP8Aglf/AMFT/FX7Jv7Lf7OfjW0+JV3N+0V4EvNa0K/0HUYLW40ZnubS5Ew1Kyht5onNykbxEsXVzlSobH4w/wDEFT/wVN/6H74Vf+DXV/8A5TVz/h7/AIN6f20P+CTX7aH7KX7Rf7RfifwVrWia18dfAvhuCDw3e31zdLdXN8LpXdbrT7VBEEtXBIkLbioCkEkAH9vv7bv7BH/BNz9mv9i/4vftF+Bf2Yfg/d634A8Fa/4k0+C/8FaXJay3WlWM11EkyxwRu0TPGA4SRGK5AZTzR+xF+wR/wTc/aU/Yv+EP7Rfjr9mH4P2mt+P/AAVoHiTUILDwVpcdrFdarYw3UqQrJBI6xK8hCB5HYLgFmPNfEH/BWL/gkR/xix+0t+1H/wANP/H/AP5FXxl4q/4RH/hNf+KV/wCPS6u/7N+wfZP+Qb/yw+zeZ/x7/Ju70f8ABJ3/AIJEf8Ysfs0/tR/8NP8Ax/8A+RV8G+Kv+ER/4TX/AIpX/j0tbv8As37B9k/5Bv8Ayw+zeZ/x7/Ju70AfD/8AwS0/4K2f8Er/APglh4q/ay/Zb/aM8a2nw1u4f2ivHd5ouhWGg6jPa2+jK9taWwhGm2U1vDEhtnjSIFSioMKFK5/V/wD4ijf+CFH/AEXP/wAtnxD/APKyv44vEP8Awb0/tof8FZf20P2rf2i/2dPE/grRdE0X46+OvDc8HiS9vra6a6tr43TOi2un3SGIpdIATIG3BgVAAJ6D/iCp/wCCpv8A0P3wq/8ABrq//wApqAP6/f8AiKN/4IUf9Fz/APLZ8Q//ACso/wCIo3/ghR/0XP8A8tnxD/8AKyv5Av8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pqAP6/f+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/r9/4ijf+CFH/AEXP/wAtnxD/APKyj/iKN/4IUf8ARc//AC2fEP8A8rK/kC/4gqf+Cpv/AEP3wq/8Gur/APymo/4gqf8Agqb/AND98Kv/AAa6v/8AKagD+v3/AIijf+CFH/Rc/wDy2fEP/wArKP8AiKN/4IUf9Fz/APLZ8Q//ACsr+QL/AIgqf+Cpv/Q/fCr/AMGur/8Aymo/4gqf+Cpv/Q/fCr/wa6v/APKagD+v3/iKN/4IUf8ARc//AC2fEP8A8rKP+Io3/ghR/wBFz/8ALZ8Q/wDysr+QL/iCp/4Km/8AQ/fCr/wa6v8A/Kaj/iCp/wCCpv8A0P3wq/8ABrq//wApqAP6/f8AiKN/4IUf9Fz/APLZ8Q//ACso/wCIo3/ghR/0XP8A8tnxD/8AKyv5Av8AiCp/4Km/9D98Kv8Awa6v/wDKaj/iCp/4Km/9D98Kv/Brq/8A8pqAP6/f+Io3/ghR/wBFz/8ALZ8Q/wDyso/4ijf+CFH/AEXP/wAtnxD/APKyv5Av+IKn/gqb/wBD98Kv/Brq/wD8pqP+IKn/AIKm/wDQ/fCr/wAGur//ACmoA/r9/wCIo3/ghR/0XP8A8tnxD/8AKyj/AIijf+CFH/Rc/wDy2fEP/wArK/kC/wCIKn/gqb/0P3wq/wDBrq//AMpqP+IKn/gqb/0P3wq/8Gur/wDymoA/ruu/+Dpn/ghhboWh+NMs5HaPw1roP/j2nqK+ZPjR/wAHhP8AwST+HehXF38Mn8V/EDUVU+RbadpLWUbv23y3z25Rc9WVHIHRTX83Nr/wZS/8FPHcC9+InwujXuU1HVnP5HSV/nXvXw0/4Mhv2ndS1KJPjF8cPC+i2eR5jaNp13qcuO+1ZzZDP1agD8Y/+CvX/BwH+13/AMFabhfh1q0EfgL4W2tws9r4S0uZpvtMqHMcl/cEI11Ih5RQkcSkAiPeN5/pn/4Nb/8Aggb41+CGuWH/AAUp/bS0STSvETWzf8IP4cvoylxZR3KFX1K6jbmOZ42KW8Tjcis0jAMY9v7Sf8E4f+DbH/gnB/wTt1vT/ibZ6PcfEn4gaeVlg8QeKfLnFpOvIeztEVbeBgQCkjLJMh+7IK/oFoAKKKKACiiigAooooAKKKKAP8Qb/grF/wApTf2lv+yq+Mv/AE73Vf7fNf4g3/BWL/lKb+0t/wBlV8Zf+ne6r/b5oA/N3/gsX/yif/aR/wCybeJv/SCavlT/AINq/wDlCF8Bf+wfqv8A6dr2vqv/AILF/wDKJ/8AaR/7Jt4m/wDSCavlT/g2r/5QhfAX/sH6r/6dr2gD9zaKKKACuG+JHw08B/F7wXf/AA8+JelW+taLqUZiuLS6QSRup9j0I7Ecg9K7migD+J3/AIKGf8Egfil+yDf6h8XP2eYbjxT8Nyxlm09cyX+lqeuBj95EPzAr8f7C/wBF8Q2nn2pSZDwQw5BHYg8giv8ATdngguoWt7lFkjcFWVhlSD1BB6iv58/+Chv/AAQ18CfHG5vvjH+ydLB4O8avmWawxs02/fvuVR+7c/3gMZr3stzqVG1OtrHv1R8xm3DlPEN1aHuz/B/5M/j68SeC9KdjdRxBVY87eMGuY0vw+2jXqX1jMwKnkHoR6Gvbfib4H+LfwC8bT/C749aFceHdct2K+VdL+6mH96KT7rqeoINecSqyNu/hPSv0LB4xVqd4S5kfLP61QvQr3+Z21rdR3cQkTr3HpXMD4UN4x8RxWWl3UNk9ycbpyQm76jPWq9pcvaTCVeR3Fd5ZJPeRC6s0ZgO6joaipz003Tla/U85zqYaTlTla56x4O/Y3+NfhLV4tV07UrELkb1DsVZfyr5l/ad/ae+I37PvjK58B3fhxFnhZTHduzNBNGwyCuMc+2eK/Rf4DfHZlaHwZ4zc/wBy3uH/APQWP8jXs3x7+AHw/wD2h/Atx4P8Y26kyLm3uVUebDJ2ZT/MdxX5jiOJ8ZgszVPO6cZU9lKKtpf4vO3VHPg8yoLHwq5vRVSGzto7d9LXt2Z+Ln7Nf7Zq+PtWbwj8TDHbX08hNtMvyxsD0Q+hHY96+3/F3hHTPF+lm0ulAcDMcg6qa/Cv45/s0/FL9n/4lt4I1W0luHZ91jc2yMwnTsVwPvDuOxr9Hf2U/iB+0HqujjR/iD4W1KfTrNTGmoCEhwV5w4bBPHcCvt8ZRo8scbg6iSeq1ST81/kfWcXcMYSnCOcZLViqbSfLzJfOKf4x3T+4w/EfhvUfDGpPpuorgr91uzD1FYMQSS4S2ZwjOcDdxXqfxW+K2n6+suhW2nMkkLYEsw2upHX5ev5186tI7tvYkn1r6fBurUpKVWPLL+tTmwFOtVoqVaPLL+tT6CTwPps+mmC6G6Vh98dj7V41r/hrUPD8+y5G5G+646Gup8K+O5tNIs9WJkhPAbqV/wDrV7FjS9fssjbPC44PWsPa1aE37TWLOP2+JwVR+11i/wCtOx8/+H/El3psi2smZIc/d7j6V9pfDjQ9Eks01uOVLmVxkD+57Y9a+ZNQ8C/2UzXenZkTrg9RVfRfEGseHbn7RpUzRN3A6H6is8dh1iqb9hKz/P1M8xowxsL4eVn18/U+/qx9c1rRtCsTe65MsMGcZfoT6V5H4b+N2g3CJa+JT9klOBv6oT/SvW7i30TxRphhmWO8tpR7MOa+NqYSpQqJV4tLy/RnxlTCVKE0q8Wl/Wz2Phr4kePfCF/qJPg6B05+Z+it7gV5Kbk3TeazbifXrX0t8QP2cpIy2oeB2yvJaCQ/+gmvmDUdF1nRbw2Wo28kMwONrAj8q+9y+thqlJKhK9u+/wAz9MyipgqlFRw09V3+L5lmu98F+FpdYvFvLtCLaPnJ43EVseCPhzqF8yahr6+XCDkRn7zfX2r6Egtre2iEFugRF6ADArHF41QvCnqzgzPN4wvRou779jERVjQRoMKowBRJIkSGSQ7VXkk1tPbQt2x9K8j+LbalY+HlFjnypH2ykdQO1eZRh7Sahfc+ewtL29aNK9rs8T8b+KLjXNcaWFiIYGKxY46d69L8KeIk1qxCzcTRgBh6+9fPlXtP1C60y6W7tG2sp/A+xr6GeHi4KC6H6BiMrhKhGlDRx2/rzPorXvA2heLtOMGrwjeeVkHDL6c18j+NfhH4k8Ls8tshu7UdHQcge4r688L+NNO8QRCA/uZ1AyhPX6V2rKhBVwCD2I4rhhXqUW4vbseJgc5xmW1HB6x6xe3y7H5XsrIxVhgjqDTHDFSF644r7y8e/CzwjrVlNqJiFrcKCQ8fAJ9xXyhq/wAOtasGL2eLiPtt+9+VehSrKoro/Qss4iwuLjf4Zdn/AJnAeDvjJ8Uvhzd+b4R1y7tNhI2LISnXJ+U8c19h+E/+Ck3xm0ePyPEVrZ6oC4JdlKMF7gbTivgLVtJ1PTrySO9geNtx6isc8cVxYvK8JiP49KMvNrX79z3MZw9lWPXPXoRk+9tfvVn+J/RX+z7/AMFf/gX4Nhurvx94Tv479iBFNbMkvy9x823b/Wuv+Nv/AAXE+GGr+GpvDnwy0+/0m6u4ypvbtVzGDwdgUnnHc9K/mpjPUVgeKLT7TphdfvRnI+lfnuK8H+GK+Yf2pWw7nUTTtKcnHTb3W7W8tvI5cPwfl9OCw9LmjDya/Npv8T9Grf8AaQ+HPivXNk2qPLd3khJknB+Z25JLH1r12OWKaMSxMHRhkEcgivw1DYII4I7ivpX4Z/tG+I/BukHw7qC/aoeBDI5yYv8AEV+hRjGyjHQ83OPD7kgp5dJt9VK33p6fcfphJ8Urn4Vn/hIdNvHtrhPuqjYZ89sehr79/Zi/ba8HfGaQ+GPE6LpGsxICvmOPLnxwSp7HPavwAvddvvEk39pXczXBk5Bznr6V9SfA39nPXfFd5H4k8Uedp1hHtki2nbLIeoI9BXi8RcO4DHYZvE+7NbSW6/zXl+R8tnPC2W4bASqY6py1ekl37Jdf62P2H/ac/a+8EfAOwfRIz/aGvXMTGG3jIxGSOGkPYfrX8/P/AAsnx7d+OZfHNpqFyNXupjL5qOd5YnIX3HbFfbfx9/Zqv/FN3L4z8ITvPelczxTuWaTA42k9/bpWP8DPgKvhlV8UeMoQb9uYoGGREPU/7X8q5eG8qy/K8G3TfNOXxN7t9rdEc3D+MyXLMsliIvnqyVpRe7fa3SPn19dD1L4heOP2i/if8GrDQtRliguGDNerFmOSdONgOOnfI718hfBz4HeKvi18Q4PAttE9qAd1zMynEMY6k+56D3r9F+O3Fauga1f+F759R0JhbyyY3soALhegPrXTSxMsNhqlHBU4xk7tdEm+r726fdseDgeJ62Dw9WjhqUYuV2mlazf526f5H3J8Nvh54b+FnhC28G+FofKtbYdT95mPVifUmu3ltraZg00asy9CwBI+lfGdj+1bHpt2LPXrP7QqghpIDgg/Q8HnrXo9v+058M7ixNy0sscojL+Uyc5H8OemTX5Ti8gzVVHUqUpSctbrW9z4ithMVKTqTi23rfe53fxV+JGm/DnwzJqMrq124It4ieWb/AV+fT/GzxXcO014kUsrEksQec1zfxH+IGq/EfxHJrmo/IgGyGIdEQdPx9TWbofhq/vAt88RMf8AD71+hZJw9QwOGviUnUlv5eS/rVnu4bLqNGjeuryf9WO8vPFus+IrNBfhYl67Ezz9a565nEEeccnpWtJp13DG0sybFUZJPSuPmmadyzfhXsUKcNoKyHShF/CtBhdick11ug2ZjQ3Ug5b7v0rlYY/MkHoOTW493cOoTdhR2HArWu7rlRpWTa5UdlbqLm6js4iC8jBQB3NfVOjabFpGmxafEOEXk+p718qeCta8LeGLiTxJ4nuFjWH5Yk6uzHqce1Hij9qCAI9v4Vs2LYIEkxwM+uB7V8/j8BicVUVKhBuK3eyv/wAA82rgMRXmoUYNpdeh9T69fDT9InudwDBDtz3Jr5oJLHc3U1454b8e+IfF3iRrvxNeM8cMRZVzhAenTpXpvhNPGvxX8Y2/w2+Ceh3fifxBdMFS1tELbcnG526Ko7liK1p4D+z4P20l5vp6eZ1UMlxEavsILmk+3+ZPqOo2Wk2cl9qMgiijGWY+lfop+wL/AMEn/i5+21qEPjv4nxXHhH4aJKriVwY77U0BzthUj5I27ue3Sv1X/YE/4IdaP4Gu7P4xftqTQeJfESbZbbQostp1meo8wH/WuPptz61/RVZWVnp1pHYafEkEEKhEjjUKiqOgAHAA9q+ex+czqXp0dI/i/wDI/Rsk4YhhrVsT70+3Rf5s87+EPwb+GXwF8B2Pw0+EmjW2h6Lp8Yjit7ZAo4/iY9WY9SxySa9Noorwz60KKKKACv5EP+DYX/k579vj/srU3/pXqdf131/Ih/wbC/8AJz37fH/ZWpv/AEr1OgD+u+iiigAooooA/kQ/4KGf8rYH7GP/AGJmp/8AorWq/rvr+RD/AIKGf8rYH7GP/Yman/6K1qv676ACiiigAr8x/wDgoV/wTH+EH7c3hj+1wF8PeO9OQ/2drtsgWTPaObA/eRk9jyO1fpxRTTad0TKMZJxkrpn+dF8bPg78ZP2VPiA/wk/aQ0k6XqGSLS+QE2V8gOA0UhGMnup5FeYaj4c0XVYmW4t423DAYKM/hX+hj+0P+zL8Ff2p/ANx8OfjZodvrFhMpCNIo82Fj0eJ/vIw9Qa/j1/bg/4JJftIfsZXNz44+Ei3Hj74fAs58lS+pWCDtIg/1iAfxLz7V9Nl2dWahWdn3/zPgs24UnCTr4B2/u/5f5H46at8P7GGYxxs0R/MV2XgwzaEh066mMsJ5Qnqp/wqaHxFY+JbQyW7B2Q4PZ1PcMDyD7GqJDIeeDX2ftXWp2k7o+Zq1a04OjW6dz0jVdNttWsXs7jlHHB9DUnw6/ZE+J/xUgmufBc1lMIGwySS7JAOxxiuf0PVRgWdwef4Sf5V7T4D8ceKfhnr8PiLQZHhdCNw5CuvoR3rws0q5jRw1SGWziqu8edXi32eqevfoclDFVMNLlv7v9bHsmj/AAL/AGjvgl8PdU1rxVYRavaaZAZ44IJszEL94LkelflP4z/4Kb+IxqTWXhbw6lnFHIu43TEy4B+YEdAa/qW+Dvxg8MfGfwz9qs9q3SKFurZ8ZBPXjuDX5Ef8FLv+CZNp8Q7K5+N3wDso7fWbdTJfafEu1blRyWQAY3j9a/GeEfEOlUzmplvFmGjTrSlZSs4xT7SV2td1LbX5n12RZbks8R7XHU+eM+t2lF+aVlbv2LPwT+N3g/45eEo/EfhqQCQAC4t2PzxP3BHp6GuN+LHwmFx5niTw1Hhx80sS9/cV+EnwT8dfF74O+Nv7V8EWd3JPBJ5VzaCJ2ViDgo4A4Nfvl4e+Nt6fh7B4t+Inh3UdBunXD289uygt/sseCD71+qY3LK+WYuNTBPmjJ2Ub6+luq8+h4nE/CtbJcWquCkp0pPTVNrya39GfH7BkJR+CK3fDuinX7hkikUJGfn55rmviD43sPFWtPqOhWn2CKT7y5ySfXjpXFaXrGoaPdC8sJSj9/f619rDD1Z0uZ+7JrZ9Clhas6V/hl2Pc/FPw0ilgFzoQw6D5lJ+9/wDXrxVJLzSrvcuYpYz9CDX0T4T+IOma9GtrdN5NyAAQ3Rj7Vf8AE3gnS/ES+bjyZh/Go6/WuKjjJ0ZeyxK0/r7zzqGNqUH7HErT+vvRlfDjXV8XX0ej6jItvKxx5jcKf/r197eG/Dem+HrFYLJVLEfNJ3Y/WvzWm0K68PsICpXHRh3/ABr17wL8aNf8MOlnqZa7s142k/Mo9jXgcQZTWxUebCS93+Xv8/0PPx+E9q+eg9Ox93V438UfFnww0uwktfGM0bSqOI15lz2xXTeFfib4O8X4i0q7UT94XOHH4Vg/Ef4M+E/iPD5t+nkXaj5Z4+G/H1FfEYKlDD4qKxvNBLto/wDhvQ8mhCEKqWIul5bn5x674wtb69kh0jzIrYnC7/vEe+K54HPIrvfH3wO8beBZ3lktzdWgJ2zRDdx7jtXmWk2eq392tlp0bSuTjaB0+vpX7NhqmHqUVUw80497/mff0FQdLnoSXL/W5pAFmCKMk9MV9BfD3wtJpNt/aV7lZpei56CtXwN8O4NGi+260iy3J6DqF+lepPBE45GK8TH5lGV6VPbqz57MMyU70qe3V9zFrkfGniOHw3okl2SPMIwgPc13j2J5MbV8a/FS/wBVuPE8lpqA2pDxGvbHrWWXUY16tnstTDK8KsRXUW9FqzD0LxTdafrDX1yxdZmzIM+v+FfQMDwahArJh45B9QQa+Tz1r0Hwd40fQZRbX+Xt2/Na+ixeF5lzQWqPp8xwHOvaUl7y6dyf4gfAyw1dW1PwwFtrjqY+iN9PQ18deJtB1jw/e/ZNXt3hcf3hwfxr9QrO/tdRgW6s5A6sM5FZ+teHtG8RWxtNZt0nQjHzDJH41zYXNalL3KquvxHlPFWIwjVPELnivvX9eZ+VNUbzWtd0Ex6hoV5NZyxsCHhcocjp0r6t+InwN0/S7kS+Gp9nmAnyn6D6Gvmfxd4R8R6fZsLi1cheSVG4Yr34V6dandbPufpmWZvg8ZyuElZ9H/kz6A+Gn/BQn9pP4cQrZ/2uNXtlAAS+XzSB3w3WvuDwL/wV7tRdAfETwmzQDbzYzYY46/f4FfiEyOjFXBBHY02vlsy4IyTHXdfCxu+sbxf3xsdeL4SyrEvnlRSfdaflp+B/aL4B/wCC7H7A/hPwpa6bZ2Gt2TrGDJELZG+fHOW3DPPevzK/bQ/4LFeC/wBp+dfDnhfUJdC8NQ5zayEiWZh3kxx+Ffz314n4wsfsmqs6DCyfN+NfAZD4FcKZJmCzbDUpzrJ3TqTc1Fvqk1v2bu101PcrZX9fw6wE60oU10ioq6XR6bH7Q+E/iF4P8cRPJ4YvUuRGcMAcEfga7Tdt+YHGO9fhH4V8Wa74O1eLWdBnaGWJg3B4PsR3zX2jP+1HqvjXS00iwT7BPsAlYHlj32+1fqSw/M7RZ8Bm/h3iaNaP1OXNSe7e8fXv8kfp94S/bul+BOqxeHtWaXWLBuJIlYExZ7gn+VfqZ4D+Lfgj4l+EI/HXh2/jks3j8yQswBiAHIcdsV/J/pmla14m1NLDTIZLu5mOAqgsxJr9N/g9+zdqnh7wVfaf4i1a7tpNZg8ua3tpCiop559T618TxXwVlle2IhL2dVvVpX5l1uu/n99z5vinhvK8Bh6blWcat9evN3fL0t+Iz9u79ubSPGulyfCf4Q3UwgDst9dodqyAcbFxyVPrXyP+yt8bfjH4T8UQeHfCztqGmyMPOt5yWjjTuQf4TWB41/ZK+JHhvxfFotlGLqyunPl3S8qqZ/j9DX298MfhhoXw00NNO05Q9wwBmmI+Z2/wr6HB5dl2CwCwmHipQffW77s9nG4vIsBkyweEUa3tFfXXX+aXVNdFufG/7Wk3xk8WeLZfEnjRC+mqStqsBJiiTtx2Pqa9f/Yi/ZWHjW7h+LPjZSun2kubW3IIMrrzuOf4Qfzr6tu7O0v4Gtb2JZY3GCrjIP513Xh74kXfgbTFtEWMWMC4SLG0KB2GKzx1eu8H9XwUVGW3bTy8z53EcX4r+yVluEpqD2vHT3eyXd9WfXoRFUIANo4xjiqlrpum2LvLZW8ULScu0aBS31x1r5/0T9pjwNqDLDqkc1mxJG4gMoHrxzVb4iftAeGrPw80XhGb7VdXKsqkDAjHQk+/pXwEMjx/tVRdJq/3ffsfnkcsxfOqbg039xifHP4wnSrkeFNAKyHrcOD0/wBnj9a+bB8QLyRti265Pua4PN3qN2cbpppTn1JJrpbbwzrcS5a1kz/u1+l4PLMNg6Kpder7vufY0svw2GpKErN/mQ3V3Pe3BnuDlj+gqpLapdR7JMge1al3pN9Yqj3kfl7+gPX8qr4ruUlb3TZTSS5ClbaPab1jRNzE45r0S0tYrOBYIVAAHb1qjo9htT7TL949PpXQLGCwRRyfWuerUb0uceIrSk7Nno3wt8NHWtdF9MuYLX5jnoW7CvrGvnjTPiH4D+GmhrYXdwJ7tvmkSEbjk9s9OK8o8VftJ65qBMPhmAWkeCCz/M//ANavk8RgMXj67lCFoLRN6L+meLLA4nF1OaEPd6N6I+k/Hl4S8Vkp4xuP1rzqvP8Awt4lC+GE1nxFdl5Zdzu8h6cn8hX0l+zD+zF+0f8Atw+KB4e+AGkNb6KrhLzxFfKyWUCfxbDjMjgdAv50ThDBw5Kj2/F+R04HJsTXquhRjdp6vp954hfS3+p6vZ+EPC1lNq+u6jIsdnYWq+ZNK7HAwB0HqTwK/pQ/4Jvf8EZLXwZqdj+0N+2RbQ6p4jTZNpugZ8y008jkPKDxJKD+Cmv0T/YY/wCCZXwI/Yp0NNR06H/hIvGE6j7Xr1+gecseqxZz5aZ6Ac1+kVfO4zMJ1vdWke3+Z+p5Jw7RwC55e9U79vT/AD3I4oooIlhhUIiABVUYAA6ACpKKK88+iCiiigD+RD/g6F/5OE/YR/7K1B/6U6dX9d9fyIf8HQv/ACcJ+wj/ANlag/8ASnTq/rvoAKKKKACvzM/4LP8A/KJb9o//ALJ34g/9I5K/TOvzM/4LP/8AKJb9o/8A7J34g/8ASOSgD52/4Nv/APlCZ8A/+wTf/wDpyu6/byvxD/4Nv/8AlCZ8A/8AsE3/AP6cruv28oAKKKKAEIDAqehr+fj/AIKg/wDBFHwT+0/9t+Nf7Piw+H/HSI0ksCqEtr9hk4cDo59a/oIorSlWnSmqlN2a6ilFSVnsf5W/jzwL8R/gt45u/h38UtJuNB1ywdo5be4QpuwcbkJ4ZT2IzU+j6tcajdxaeELyyHaoHUmv9FT9tf8A4J5/s9ftx+D5NF+KGmJFq0SMLPVYAEuYG7HcOSM9jX8WP7WH/BM39pH9gH4iweJ/EunS+IfBFvcq0WtWaFwiZ485RkqR3PSvvst4ohWh7PFK07aPo/Xt+R83meVfu5VKSu0nZdT4fmgns5mgnQxupwVYcinxb3yR/DX2vrngrwf8TtJXWdIkQvIuUniII59cV856n8PvEPhDUmW8j8y3IP71RkGu/BZxRxEbXtLs/wBD88oZnSqpqS5ZrozldO8QXNniKb509+or0K2mS6gW5j+6wrhLvSI5MvD8rH8q67wkXFk9jcL9w5H0Nb1+Tl547meJUHHnjuUvE9k19o0sUa7mA3Ae4rwKSKSJtsilT719VzWWBlOQe1ec6zodtcM0VwmDnhhWuDxKj7r2N8uxqgnB7EHwtvARcWBxnhx6mvXq8AsNNvvDurRalZneiN8w77T1r6GjEdzClwnAdQR+NcuPSVTnWzObM4x9r7SD0f5lV1ikBhkwc9q898QeDVlzdaWMNyWT1+legXUDhd46iqqXDrw/NY0pyjrBnJRqzpvmgz57mgmt2KTKVI7Goq911HTLHURiZN2fzBrhtR8Gui+ZYNnH8Jr0qeJjLfQ9qjmEJaS0Zz2i69e6JcebbnKnqp6GvpNbPUU0y01O9gaFLyMSR7h1BrivgV8I774i+O4tOv4yllafvbgkcbR0H41+pPjb4Z6N4q8OR6NEgha1QC3I/hx2r4ribijC4HGUsNJXb1k10T2/z9Dy81r01USitep+dMUTzSCKMZZjgVeaJoWMTjBXgiu90XwrdaRqs41WMq9uxQAjqfWp/EHh8XIa8tB8/cetbvHU3NRT07nkTrJy5TkNDWFtQQSnGOR9a9CIxXjkjSJNk5VlOPQiu/8ADusf2g62M/8ArTwD61OLpNr2i2Ir0nbmRi+MvtQuIhIpEW3KnsTXHIjSOI0GSxwPxr6m1Dw9ZappY0+5XoOD3BrybTfBGoaf4nt4bld8AYtvHTj1rLB5nS9k4vRq/wAyqGJjyNdUebzwXNlOYp1Mbqehr9Af2X/jXf6qx8C+J5N4gj3QTN1wONpNeGeJvB1lr6eavyTKPlYf1rS+BPhu90nVdQur5djIojGe/PUV89xPDB5plNSGIXvrbunfdfqaU8auXnW6P031PTLHW9PewvVEkMowR2r4c+IXwp8T+CGGqy2sj6ZcM3k3CglMKcYJ7EV9E+GfG81hts9TO6FRgHuK/U74O+EfD/jb4LJoviS2jurO9MhwwByrHgj0r+dMVxVjODpRqzhz0pySavurPWPaSPrOHeHocQ1p4enPlmouSfmmtH5O+5/OhJJ5cTSH+EE18UeOvFN14m1p5JSRDESsaHtiv3l/aW/Ya8R+C/tnij4YxtfaVtLG3HMsQwc/UCvws0/wTeXepSzamDFGsrAqeCcGv6R8PeKspzrDTx+CqqVkrr7UW+jXR/h2Z5VbJcTlGJnSzCnyyWz6Nd4vqaXwU+GF98WviHp/hGA+XDO+6WQ9NickD3wK/oU8JeFNE8EeHbbw1oESwWtqu1VH8z9a/Jv9ma50jwz8WtIkuGWCFfMQE+rKQPzNfoz4p8fS3e6x0klYyMF+5r8z8X6mYZnmlDA07qhGCl5czck2+7slbt8zbD5hSjTlVnveyXU8b/aa+M95ocK+DfDEm2S4QmaZeoXpgGvz5hhub+5EUQLySH8ea+mPjX4futXubGezG+QkoR7etZvhnwfZ6CnnP+8mYDLHt9K+p4UpYLKcppwoL35Xu+rd935dj5/F42VWbnLft2PnSVHhkaKQYZSQfwr1T4UXd3Dq8lsoJgkXLHsGHSoNW8GXmp+KJktRthOHL9hntXrWjaRZaFarbWq4xyx7k17+Z5jSnhvZrVyX3HLOonGx22ay/tdtNcvBE4Z0+8B2rk/FPi6Owj+yWLAzMOT6CvPPC2sSWetCWc5E3ysT79K+foZXUqUZVnp2Xcwse5OnmqY8Z3cV5DdwPbXUlvIMFGIr3/T7DZieYc9hXLeJvCN3q+p250aIyTXDiMqoyST3rjy/MadOrKM3aNt+mhSg3seVLp2rXen3l/plu9wLKFppNgzhRXyL4j8Vaj4jnElwdqL91R0Ff0C/DD4RaJ4F8MSaXOgnnvo8XTMPvZHK/Tmvx2/ad+BV38JfiM1rpURbTNT3TWpHRRnlPwrbgLxBy7Nc2xGXpWa1pyf2kl73o+q8j6h5JPCUY16u738ux8wKmRk1ZihlmYJCpYnsK7TTvCDuN9823/ZHWu70zTLDTvuoBj16mv1ytj4Q+HVnnVcVFbamB4e8EqgW81XluCqf416NGsUKiGIAAdAKzZb6RztiHWrdpGyqZJOWavDr1Z1HzVH8jzqk5T1ky5XhPxq1FfIs9LUjJLSMO4xwK9ymkWCFp5PuoCx+gr5X1iy1HxVrcurXp8uNjhQeoUdK7Mopp1vaS2j+Z15dBe19pLZHm8cUkzbIlLH2r6S8F6e2neH4YpF2s2XYe5rltG0WztJljhXqRkmvRWn2jbFwBXqZjifaJQitNzuxuI9paC2HX19b6fbtc3BwqDJryfWvF95qBaG0/dx+3U10Hi6d/sa2iDJlOT9BXBwWKphpeTU4PDwUeeSuycNSjbnluYd1cNDh35ZulZga5vZhDEpdmOAoHU16HaeCNe8VaikVpGY4FHMjDA5r3rQPBPhjwFpx1PUXTfGuXmkIAGOe9a4rNKOHj3l2/wAzpqY2nSSS1l2R8E+IPEc2lXkumLGVmiO193Y1zfhzw349+Kniuz8HeB9OuNZ1jUHEVta26F2ZicdugBPJPAr7u/Zg/wCCev7R37fnxMvNW+G2lSaZ4Wmui02t3iFIAmcHy843nA4xxX9pH7C3/BNH9nv9hnwtHB4MsV1HxFKv+lavdKHndj1CE/dXPYVjj+JaVCmqeFV6jWr6J/r+R+l5Vk6VOFSpGzaV+/8AwD81f+CYX/BELwz8FZdP+O/7UkEWq+LFVJbTSz89tZHqCwP3pAfwFf0exxxwxrFEoVVAAAGAAKfRXwVatOrN1KjvJ9T6aMVFWitAooorIoKKKKAP5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvr+RD/AINc/wDkuX7c/wD2Vq4/9KL+v676AP8AME/4PVv+UpvgH/slWlf+nfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/AIPVv+UpvgH/ALJVpX/p31iv6/f+DXH/AJQUfAz/ALmb/wBSDU6AP3+ooooAKKKKACiiigArxP8AaO+D8vx/+Bnif4Lw6odFPiSxexN6IftBhWQjcfL3x7sjIxuHWvbK+QP20f2x/BH7Evw0034neO9Nu9WttS1SLS0t7EoJg0kUspfEhUEKIiDyOSK5sZOjChOWIdoWd/R6dNT1Mkw+NrY+hTy2PNX5k4JW+JarfTp10PxG0z/ggJ8RfC3jnSNc0z4gaXq2nWV9bz3CXFnLaSPDHIrOFCtONxUEAE4z3r+nivzE/Zl/4KzfsxftUfEzS/hB4FtNdsNf1YTG3h1C0jVD9nieZ8yQzSqAERiCcZ6dTX6d15eRYTLqUJ1Mtd4yetm3qumvqfWeIGc8TYvEUcPxPFqrTi3FOMYu0nq/dSTTcbX8gooor3T8/CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/S/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/IH/gsj+xV+1P8Ato/Cz4Qf8Mdah4VsPG3wm+Kvh/4j2v8AwmUt3FpU39gw3eyKT7DDNM26aaLcg8vMYfEitjP6/UUAfzw+LPCf/Bzj498K6n4F8daZ+yXrWia1aTWGoaffw+K7m1u7W5QxywzRSBkkikRijo4KspIIINHhPwn/AMHOPgLwrpngXwLpn7Jei6JotpDYafp9hD4rtrW0tbZBHFDDFGFSOKNFCIiAKqgAAAV/Q9RQB+QP/BG79ir9qf8AYu+Fnxf/AOGxdQ8K3/jb4s/FXxB8R7r/AIQ2W7l0qH+3obTfFH9uhhmXbNDLtQ+ZiMpmRmzj9fqKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8Qb/grF/ylN/aW/7Kr4y/9O91X+3zX+IN/wAFYv8AlKb+0t/2VXxl/wCne6r/AG+aAPzd/wCCxf8Ayif/AGkf+ybeJv8A0gmr5U/4Nq/+UIXwF/7B+q/+na9r6r/4LF/8on/2kf8Asm3ib/0gmr5U/wCDav8A5QhfAX/sH6r/AOna9oA/c2iiigAooooAKKKKAPm/9pL9kv4B/tZ+CpfA/wAcfD1tq9u4IinZALiBuzRyAblI9jX8l/7aX/BCn9on9ntr3x1+zPO3j/wjETJ/ZrnGq2yeij7soHsd3tX9sFBGeDXThcZWw8+ejKzOfE4WlXjyVY3R/lpXWprpuozaLrMM2n39sxSa1uozFNEw6hkbBFdf4Y8YXOh3S3FhKGjJ+aPPBFf38ftff8EyP2Sv2ztMlf4l+HIbTXGX91rNgqwXqN2JdR8w9mzX8qn7XH/BBT9rr9n2S78UfA9l+IvhuLLCO3+TUo0HrEcB8f7JJr7PA8S0K0fZY2Nr9d1/mj5jGcMqUWoO67M+WfD2s6F4htEvdPEe/GSuBuU19J+BPinNphXTfELGSDGFfqVr8drXX/Ffw78UvpOpxXGkarZsVls7xGhlBHUFGwa+w/h/8VtK8XRpY3h8i9A+ZTwrH2rjznh+jiaLlF89Put1/X/Dn51m2Q18I3JJuP4r1P1Il0zw54g+z6tcW0F20fzQyugcrnupI4rXSKKNdkahQewGBXxl4W8fa34XcJC/mwd42PH4eleh/wDC8rv/AJ8l/wC+jX5Vi+FsdGfJSfNDpr+jPC5jiP2gf2UPD/xQSfxN4Y22Wt7OAPlilI/vY7+9fkj4z8CeKvh/rMmheK7N7WdDtG4fK3up6EV+uviH4z+PXJm8OLBGB/BIuf1r47+JPi/xT46ulj8bASm3ctGrIBtz6V+n8FV83w0Vh8XKMqSWmvvR8lpqv6TPpslzavS/dt80O19V6HyT4e8Jalr97HbD9xG55kk4UV9e+HPh/o+haP8AYLVy7N8xkPOT7e1ecKqqMKMY9K6DS/EN/pxCq26MfwmvscdUq1l7jsux05li6+JSUXZLoa2o6Nd2BzINyeorg9d0PTrmBrqQiFlGSw/rXtdh4k0rUUCOwRj1V+K53xh4Fj8SWgSxl8hs5wPut9a4aGJcJpVPd8zzcNiXColUfL5nxDry3c10zsMxqSFI9K0PDXj/AMV+EnJ0a7dFPBQnK/lXoniLwJr/AIeZvtcJkh/voMrXnN5ptmUaY/JgZJr6iFSlVhZpSj959/QxGHr0lCSUo/ee/af+0/eR6eY9R08SXKgYZThWPv6V4z4s+KfiPxZqaajdbIxC26NFUYH+NeRDVbfzCjZxnGauR3UEv3GFRRyzDUZOdOCTNqGQ4TDzdSFKzfzPf9C+M80X7rXYNy9A0fWvYNK8Z+G9YjD2l0gJx8rHaQT2wa+IpJ4Yhl2Ar9Qf2IP2Y/hz8TdBX4oeJroaiYJmi+wjgRuuCC/rXhcS4zAZVg5Y7E3UVpor3b2Xlfu2keNnOV4SjS9vZx6abN/p95wfPeqWoWFtqdnJY3a7o5AVI+tfUH7SHwuXwN4jXXNMQLp+oH5VUYEbgfdr5sryMqzKljsNTxeHfuyV/R9V6pnx8JvSS3Ph7xZ4cuPDOsy6fKPkzmM+qnpWXLps0dusw5PUj0r6F+KGpaZeNHpsaK8sZ3F+6+1eTEAjBr7bD1pTpqUlqfomCzCrUoQlNWfXz8zhYpJYZBJCSrqcgjrmvpDw9r12thENWJdioye/NeSWuiRXl+jrwF5YV6KABwKVdRkkmc2bVKdZRjbU6TxRf276GxgYPvIX6V5JW1q8uWWIfWsUDtSoQ5Y2McFR9nTt3K09laXJzcRI+P7wBrT0f4VeAvEWnONS06MlZM7k+U8+4qPyWxkGuv8ADuv6To1s9vqUojZmyB7UV3Lk93c1xFevCn/s8mn5N/odD8M/2Qfg/wDEnxjb+GdSEthFIrNvifDMwHA5zX1bN/wSi+Ac8bRPqOpYYYPzr3/CvGvhb4+0HR/HGla2tzEUjuFzubHBODmv2miljniWeIhlcBlI6EHpX5Dx1nWa4DFU/q9aUYSjtpunruvNHzeO4gzihNJYiaXqz+Oz9sX9ljxJ+y/8TbjQpYZZdBunLabeuMrIn90kcBh3FeHfDz4TeO/ifqkem+EbCScMwDTFcRID3LdOK/s3+Lnwd8A/G3wlJ4P+IOnxX9qxDp5g5R16Mp6g18Dar8PNO+D7nw7FaQ6daxf6vYoRGUd8969fhrjKOOoKlVX7+K17S81+qPt8L4sYiOAjRlR5sQtOZvR9nbdvutuvkfH/AMAf2U9D+FkKX/i6ZdXvgQygjMUR9getfa0IjWJVhAVQAAB0Ar558U/F6ysGaz8PqJ5B/wAtD90H29a8z0T4peJdK1Y39xK08Ttl4ieMH09K+lngMViV7Sbt2T/rQ+JxuHzLNJyxeKleT2vp8kun4H2tXEeLdf0bSI9tyN85BKqvX8fSuBvfjDZ6jZqmhqY5mHzb+q+uK8ynnmuZTNcMXZuSSc1lhsumnzVdPI8vD5ZUUr1lbyPT9P8AFthdDbdfuW9+lZGv+KQ6tZ6ax9Gf/CuBre0Tw7f63Ji3GEGNzHpXoewpQfPLY7/q9KD55bGByeTRjr7175F4K0GOBYmi3EdWPUmn/wDCGaB/zxH+fxrN5pS7MP7UpdmeZ+FfCsutSi7uQVt1PX+8fQV7iiQ2sIRAFRBwPQClt7eOFFt7ddqjgAV22maTHbJ5t7jc3Y9K8fGYx1HeW3RHj4vFupLmlt0R4JrVxqXiCVbfToJHhBwCAcMaqN4L16C0e+vYhBFH1Lnn8BX0hLquiWC7d6L14UV5J4s1G58Q3KxxPst06A9z61rh8ZUlaEI8se7KoYubtCMbI8yijES4HXuaJpRBC0zDhRmujOn2dspe6fgdycCuN8QeJtLleHw/4fR9Rv7pwsdtZoZpXJ6AKuSc12yrRXvTdl36HpUIzr1FCnFtvseUz6fqus3b3Uw2hzkbuw7VKmlWNpPHZvvu7uchYreBS8rseyouSa/ZP9lP/git+2d+0mbbxD8RLVfht4al2sZNQBN/Kh/uQgZXI7tiv6hv2Qf+CVv7JX7HsEeqeEtDTW/EeAZNZ1RVnuSw7puBEY9lrzcfxZCC5MKrvv0/zZ97hMlrzS9u+SPZb/8AAP5mv2LP+CIX7SX7S8Nn4y+M6P8ADfwjMQ5imH/E0uoz/djxiMEd3IPtX9bn7Ln7Fv7O/wCx94TXwv8ABLQILCRlUXF86iS7uGH8UkpG4/TgV9VgADA6Clr4rF42tiZ89aVz6XDYWlQjy0o2/P5sKKKK5ToCiiigAooooAK/kQ/4Nhf+Tnv2+P8AsrU3/pXqdf131/Ih/wAGwv8Ayc9+3x/2Vqb/ANK9ToA/rvooooAKKKKAP5EP+Chn/K2B+xj/ANiZqf8A6K1qv676/kQ/4KGf8rYH7GP/AGJmp/8AorWq/rvoAKKKKACiiigAqOaGK4iaCdQ6OCGVhkEHsRUlFAH4j/tyf8ES/gL+0vNc/EH4NungHxo+5/tFomLO5c/89ol459RzX8pn7TH7Kf7Sn7G2vnQP2i/DktpZsxW31uyUz6dOB38wD5CfRsV/o11y/jDwT4Q+IOgz+F/HGmW2radcqVltruJZY2B9VYEV6GCzOvhn+7enZ7HmY/KMNi1epG0u63/4J/mZW2rWE+2W2nQ55VgeK+jfhx8S7aV10TxWEmjYgRysAcH0Nf0Pftjf8G8vwk+IU9141/ZL1P8A4QnV5C0h02XL6dIx7KBkx59uK/mZ/aN/ZC/at/Y+1ZtO+PXhS80+0ViItUtVM9jIB3Eq5C/RsV9VDMcDmFP2Vd8kvPv5P/M+LzLhGo4vlfMu/VH6CeDtcuPBupJrfhdlgf1Tow9DjqK+/wD4a/F3RfHVqmn3bCHUMYeNuje4/wAK/ne+FHx+vvDpSz1CX7dpzsOQdzIPavvzwp4vstYt4tf8MXOQDlXQ4ZSP5V+W8deHkMZHmrfH9movwT8vL7j4uM8ZlNW0tYP7n/kz9UdK+GHw50K7uL3SNCsLea7fzJnSBAZG9Sccmr/i3wV4Y8caDP4c8S2cVzazoUKso4B9PSvk7wz+0nrGmWAtNctvtjpwJM4Y/Wty4/aicwsLbTMPj5SzZGa/CqvBXEkMSpxTlKL0lzrps027o9+Of5fKF27X6WPzK/ab/YT8V/C2WXxP8O0k1XRcF3UDMsPPTHcV+fHkzeaYNjbxwVxyD9K/cDx3+1J8YYbCWKztLVYn48xE3ED3Br8+dXMGra9c+IbmCNLq6cvIyIFBY+gHSv6v4DznP/qXs8+jCUo/DOMryf8AiVrX8193UxWdUv8Al0m15nm3ww+EN34puF1HVJvssEZzsBxIT9PSvrLUfBypCp00/cAGD3xXi9vdT2kizWzFGXuK9O0L4gMuIdYGR0Dj+tetmlTF1antYu6XT+tzwMfXr1587enRdjmb/TlbNtfx59Qa8X8b6XBoVubmycb3+7Ga+zCmj69BuQrID3HWvnLx58HPEl5eSanpkwuU6iMnBA9BSyzMIe05asuXyfUMBiYqovaSsj5BW91GyvPtcLvDMDncpIOa+g/BX7Tnjnw4Y7bWSNQtk4If7+PrXl+qaPd2E5s9UgaN17MMVw2ti20uIT5+8cba+srYXC4yKhWpqS/rZn2Lp4fFpQqQT7f8Bn2r4n/a5gu9M+zaDpmJpF+YzEFVP07182aN8TNZ0nVJtUEULm4bLLtCj8MdK8gh1WzlH3sH3rQSVGGUYfhWeEyPB4WEoUqdk992VTyTDUYuChvvc+xfD3xi8N6qVh1DNpKepb7ufrXqNpqFjfJvs5UlGM/KwPFfAPhu0tde8SWPh2a6jtvtsyRebJ91Nxxk1/Rf8K/+Cf3gDwF8NLm0W4/tDW76DP2wk7ASMjaOwr854+4nybhiNF4yUlOq7RilfS6TbeySvr17I8yvw053eGvdK9nt95+bVePfFjwQviDSzqdmo+024J9Mr3r3rxFoV/4Y1u60DUl2z2khjYH27/jXO3lxBa2zz3JARQSc9MV62CxdnCvRd07Neaf+Z8xh606FVTjuv6sfnPFA8s3k4wehpbi3e3fa34V6R4iuNNvtbnvdNhEKMeg7+9YM0Ec67ZBmvvo1rpNqx9/DFOSUmreQeDdX1Ww1JYrJzsb7ynkYr6FstatboBXOx/Q14p4a0r7GHuH5LcD6V1mdoLV5+LpwqS0PGzGNOrUuir41nE+r7APuKBXHtGjja4BB9as3MrTztIxzk96iVS5wK6KceWKR00YckFHsc3c+DPC+qOI72yicMwJ+UAn8a6qf9mf4W3z/AGs20kW8A7UfCimxho5FdxgAg17DbeLvDZVIReR7uBjPescTVqq3s2x18wx1Ll+r1ZL0bPR/gv8A8EpfhX8YPCh8Vv4hvLFjIyeRGFYKB7nmsX9oz/ginoml/C/U/E3wy1681LWtPhaaC1kRcTbeSox3x0r9FP2DfF+n3Ntq3heKWNpAVmGHBJHQ8V+i5AIwelfy1xf4jcTZRn9bDRxLdKMk1FxjZxdnba9ul73PYy7iDMVGFX28uZd3pp3R/nA6lpOp6LqU2j6rA9vd27mKSJ1Kujg4II619SfAj9kv4pfFi7TVYozpGnRkE3NwCpYf7A71/VT+07+wf8H/ABX4sf45aL4dt5dbUZuQEG18c79nQt718h6trGh+ErMi+dLZIhgIMDp2Ar9w4e48w+d4OOIwMff2lF7xfbTfyfU+gz/xRxKprDYGhy1GtZPVX/urr8/uPPvhZ8FfB/ws0xLfSYVmu8DzLmQAux74PYe1ev8AWvkvxf8AG3UNRBtPDqm2jz/rP4zj+VbPgj42iKI2fiws5H3ZVH869evleMqRdaprLt1PyrF5bmFdPFV25Te93dn0vKkTIfOAK9814B4p8T+H7PUPI0oGTB+fH3R9KwPFXxJvPEINtppMVtnscM31rzjFdeX5XKHv1X8v8zTA5W4+9W+7/M9VPiLSRam6MowO3f8AKvJfEHiCfWpsKSsK/dX+tSkA8EZrvPDHw+/tF1vdUj2Q9Qvdq9NRpUL1JHpQjRwv7yer6HjdORGdhFGCzMcADua+mH+GvhZ2LeURn0Jq9pngXw7pN2L22hy69NxzioebUbaJ3KlnVG3up3Ob8A+B/wCyVGr6kP8ASG+6v90H+td7rOsW2j2pmm+Zjwqjksa6nS9LudVuRb26/U9gK9Zt/D+g2Vui3MUbsnO5wCc/jXzOMzJKpzVNX2R8zicbz1OepqfCkukeKvE97Jdw2c0pJ/unCg9BVq78D6xoU8Y11BEW5CZycV9t6n4j0zTbWQ2W15cHCrxzXzveaHqes3z3+rTZdzn14rtwma1Kr96KhBet2ddHMZS0soxR52AAMKMAVzniW6uYbQWtmrNLLx8o7d69q/snQNJXzr2RRjJzIQOBXJ+HNM8Y/GfxyPA3wQ8PX3irVXYIsOnQmRVJ7u4G1R6kmuv6/Sg+eeiXc9DAxqYiqo0abkeI2vhHU7o+bdERjqS3Jrvfhv8ADLxH8TvGNt8O/hHoN74t125cItvZRmQIT3dvuoB3JNf0Cfsp/wDBAb4rePTa+LP2wdbXw/pzFXOh6U++4deu2WXGFz3C5r+l39n39lX4BfsueFo/CPwQ8NWeiW6jDyRRjz5T6ySEbmJ9zXiZhxXOV4Yf7/8AgH3WEyCtO0sXOy/lj+r/AMj+ff8AYs/4IETm5tPiJ+23fx3TJtkh8M6e5NugGCBcSYG8+oXj3r+l/wAD+AvBfw18NW3g/wAAaXbaPpdmgSG2tIxFGgHoFArrqK+Rq1p1Zc9SV2fUUMPTowUKUbLyCiiisjYKKKKACiiigD+RD/g6F/5OE/YR/wCytQf+lOnV/XfX8iH/AAdC/wDJwn7CP/ZWoP8A0p06v676ACiiigAr8zP+Cz//ACiW/aP/AOyd+IP/AEjkr9M6/Mz/AILP/wDKJb9o/wD7J34g/wDSOSgD52/4Nv8A/lCZ8A/+wTf/APpyu6/byvxD/wCDb/8A5QmfAP8A7BN//wCnK7r9vKACiiigAooooAKxvEHh3Q/Fej3Hh/xJaRX1ldIY5YJlDo6nqCDxWzRQB/PL+1z/AMEQ9C1C9vPiX+xlfjwvq8rGWbR5iWsLg9SFX/lmT7cV/P78ZND+JPwenuvhz+0Z4eufCuqcpHLMhNrOR3jlHynOPWv9ByvK/i18EfhP8dPC0/g34taDZ67p06lWiuog+M9wTyD9K3o15U5KS6Hz2bcM4PHP2ko8tT+Zb/Puf5xjW8Uy+bbsCDyCDwa3vCUq2+tJb3YBSb5Dn3r+hn9qz/g39udOuLrxj+xjrn2IMWkOhakxe3PfbG/VfavwK+Lfwo+NX7Oeunw98fPDF54duEbatwyF7VyO6ygYx9a+yoZxQxEHCT5W+/8AmfGZlw5i6EXZc0e6/wAjrL/wurZexOP9k1l6fpFtcSvperw538qT2P1rD0Hx9I0KsXW5hPRlOT+deiafr+kamQyNhh2bg1M3XpxtLVd0fGVI1qd1JHm+tfDmeLdNpR8xf7p611Hgi3jvLRvD+tReXPDzGTwStd8ORkdKagRJlnAG5eh71jUx1SdPknv0fUiWLnOHLL7zm9Q8H3kDF7X94g596bBoVhrVsY54/InThiBjNeowSrMgZabJbxN82AD61xLHVNnuuph7eVvM8Ubwzq+hXkd/ZqJxGd2Oo49RX0Bp3w58FfFDRk1PTP8AQb5RiZE4AYe1c6QV+Uitrw3rk/hzURfWoGDw49RXPmVbEVaanQly1I7NdfJ9xyxEnr1MDS/B3xH+EGuf27o8X2q3ztkCc709xX2n4f8AE1r4h0GLWLcFDIPmRvvKw6g1kaPrFjrlkt3aHcD1B6g1oRW8EBYwIE3HJx3NfnOdY945p4qmlVjo5LS67NfqTKs5brU5Lxb4Vi16JrmD5bheQfX2NeJ2ej3L6j9jukKmM/OD7V9QZPWsfUdIt73MqgLJ6+v1rXLs3nQg6U9Y9PIxZ8weO/h8mpKdT0ZAs4+8g/i/+vWV8GvBc994kfUdRjKpYnkEdXPave7i2ltXMcwwe1S6Zd/2bIzRKAshy4HevoHnFf6nPDwd7qyfW3X8C415KPIx+ueGmQteWPK9Svp9KxNJs0kV5J16/KAa9RtruG8j3xn6iqt1pcUmXiG1q8CnmE4w9lU+8xceqPML3TJYCZIvmT9RWzoLS21v5sZxuNa80EsJ2SDBqBVCjAGK6p4h1KfK9RWOmtdRjmwkvDV9+fBz4h+JfAWh2UVu5aHYC8L8g9a/OOFGklWNerEAfjX3fpsL22nW9vJ95I1B/AV+W+ImGo1MPSoVEnGTbs/Jf8E+n4XxNbD4iWIoScZJbr+vI/QzSPip4Z8ZeHru3ilEVybaQtE/HO05xX8mfjXWrLTvEOoITlvtEuFH+8a/cS+mmt7C4mgYowifBHB6Gv53deeSXXb2SRixM8mSf9417P0fOHaWDr5jOnJ8slT07W5+p9bxZn1XOIYeOJilKnzarre3T5Ha+CfEkjeP9Ju75/LhjuUJ9BX6B+MPifpHh1DBZkT3PZR0H1r8t7d/JuY5x1RgfyNfQKTtcoJ3JJcZyevNfumf5FQxdelWq7RTVu+tz4PGws422PVdE8ZaprniyO51aQsHDKq5wFzXQeJfHNtp6taacRJNyM9lNeHI7RsHjOCOhFSxQTXMm1BkmuOeVUHUjO1opWstjz3BN3Z6b4A12eXU5re+kLGUbgWPcV1ms+JOGtLPr0LV5jp2m/Y284n58dq2ERnbA71zV8JSlWdXp26GU7X0Mu5RjMCcsWrU0+wMJE0v3uw9KvR26IQx5atvTNIvtXuBb2KFyeuOgp1sUow1dkuor9Eez+E9XGsaciHmWMBWHrXqejxSaZcx36HEsZDD2IrlvCXg+18NweYTuncfMa7SvybNK1KrVnGj8D/r7jrpJxs+p9L3XxJ0bT/Bkniu7YfuU+aMfeL/AN0D3r81/G0PxI+OPiP+3taj+zWsZKwRvwI0PoP519HyIsyCKX5lBzg9M1R1DULbTLU3E52gdB6mvG4Wy+jktWpXwsFKtJ2jJ68sX0iu76vtoevmObVsXCMJu0UtfN9z5+uvh/4V8AaZJqWpf6ZdEYiRuhY9BivIF8L6vrl297dqIQ5zgDGK901rUn1m8+1TKMLwo9BWUSFFfqWBxuJpwc6suapLdvp5JbHz8qmuh55caDp2h2m2JPOuH4XPPPrVSy8MXlwwe4+RTyfWvRiqF/MYAmoLu5S1gaZ+1d0cdVtZayfUjmZ478QDFYaeugaOm+5nxvx1C/8A16850rwLczYk1FvLX+6OteuXLi6umu3A3tUWG3YAzmvfw2JqUaKpx33b63No15RjyxPP9S0uGBo9N0uLkcsR+mTV3T/C4xvvjnP8Ir2Pw94A8Q+I5/8AQbcqp6u4wK9z0T4ReHvDlsdW8YXKFYxube22Ncdc5rxcy4swuCjyTqXl2Wsn/kbU41allFfM+BLjwN4k8f8AixdF8M2bMkYCb9uEHckmvrb4ffsp+G9AiXV/HMouZY/mKZxGv1r07QPiJL4x1z/hBf2bfDF14w1UnZ/oEWLWM/8ATSbG0AfWv0O+DH/BIz40fGKeHxL+2L4kOl6Y5D/8I7ozlVK/3ZZRyffFeDiM9zvNIKlhV7Cjbd/E/wBdfK3qfZ5ZwzjMRFcy5Y93/luz8UUn8T/Fj4kXPw+/Z08Oz+J9T84wpFYpm3hVflBeT7qgfWv2p/ZR/wCCIrare2nxF/bU1D+1ZkxLD4ftGK2kR64lI/1hHftX7p/Bb9nj4Mfs9eGIfCPwe8PWeh2cKhcW8YV3x3ZurE9yTXtNe9C8acad9Ekj7nKeF8FgX7RLmqfzP9F0/rU5vwl4P8L+BNAtvC3g6wg03T7RBHDb26BEVR6AYrpKKKD6MKKKKACiiigAooooA/kQ/wCDXP8A5Ll+3P8A9lauP/Si/r+u+v5EP+DXP/kuX7c//ZWrj/0ov6/rvoA/zBP+D1b/AJSm+Af+yVaV/wCnfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/g9W/5Sm+Af+yVaV/6d9Yr+v3/AINcf+UFHwM/7mb/ANSDU6AP3+ooooAKKKKACiiigAr8iv8Agrh+yF8ff2v/AAB4R8M/BCGyuV0a9uby9hurkW7MzRqkWzcNp4MmcsMcetfrrXyl8UP24v2Uvgr8Rm+E3xW8Z2mha8sEVybe6SZUEU2dhMvlmIZweN+R3HIrzs1o4ethpUcVPlhKyvdLz3fofS8I4zM8FmlLHZTQdWtSvJRUZT0s4ttR1sr76Wdj8PP+CV3/AATx/af/AGef2w4/H3x18Kto+m6Zo98ba7Fzb3MT3E2yJUBglkIJR3PIHANf04V538OPi78KvjBpcmt/CjxJpniW0gYJLLpl3FdLGzDIVzGzbWI7Ng16JWeTZbQwOH9lhpOUW27tp7+asuh1cb8U5hn2ZfXMzpqFWMVDlSlFJK72k21vfcKKKK9U+QCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AEG/4Kxf8pTf2lv8AsqvjL/073Vf7fNf4g3/BWL/lKb+0t/2VXxl/6d7qv9vmgD83f+Cxf/KJ/wDaR/7Jt4m/9IJq+VP+Dav/AJQhfAX/ALB+q/8Ap2va+q/+Cxf/ACif/aR/7Jt4m/8ASCavlT/g2r/5QhfAX/sH6r/6dr2gD9zaKKKACiiigAooooAKKKKACiiigD48/aX/AGCf2T/2t9Mls/jb4OsNRu3XauoJGIr2M+qzKA+fqa/nA/aa/wCDb34h+GLi48S/sgeLk1C3Ql49K1liko/2UnUYPtur+wKiunDYutQlzUZuL8jOpShUVpq6P82n4q+Ef2vP2TtRfw/+0J4L1DTVg+UXMsLPbMPVZlBUj8a4DSP2lLO6gMlzZhznjymyMfjX+lx4j8L+GvGGlyaH4s0+21OymGHgu4lmjYe6uCP0r8gv2kf+CE/7Bvx8luNb0DQpPA+szZb7VoT/AGePd6mHmM574Ar2cPndNu2KoqXmtH/l+R8xi+D8BVblCFmfx52nx/8ACc0Ia6imic9VxnH40/UPil4A1238q5jkcdjt5Ffpt8ef+Dc/9rH4fSXGpfAvxFpvjSwTJjt7rNpeY9M4KE/jzX47fFj9mD9pb9ny/ksfjF4J1fQTETume3aS3wO4kQFcfXFe/ha2UVWnCo4S83b8dvxPCr8Gwpvmgn8nf/gkup634eWbOlvIyHswwRWHL4iQZEKE+hNeeWGpx3REcciSn2OD+IPNbhikABx1r6KnThZOLuvW5x/UoU3yy/E4vxRceKLqQzSSEwg5Aj4xWx4S+Mfirwwy2145u7deNknJH0NbnlSEYxVGbw3b6s2xoRv9Rwa6n7KUeSrHQ9JVsNKl7HEU04n0H4e+MPgzxMn2a5cW8jDlJuh/GofGfw+8J+JbIpbKIWkHDwnAwfpXzNd/C7V9nn2TKR12seazIdT8d+EJcLJNGq8YJLJgdq4o5fBT5sNUs+39f8E8+GT0XP2mX4iz7N/1+Rp698ANes902izLcoM4VvlbivIdT8JeJdFkK6hZyx7TtztOM/WvozRfjhdJiPXLcP2Lx8H8q9R034i+D9b2w+cqs/8ABIO9dKxeLpfxIcy8j01m+a4XTEUudd1/mv8AI/P9sg4bt619zfsJ/H5vhD8TB4d1hz/ZGvFYZMn5Y5c/K/8ASr2p+CvDGoEi7sYiNxbIXGT+Fctc/CXwdPOtxDC0DLjHlsRyO9cmavCZlg6uCxUXyzVn5dmvNPUeJ4iweLoSoVoNXXk7Po+h/QD8QvCmheOPCNxpOssqQyLuSY4+Q9mBNfi141m/4R/WrrQbSRZvIdkEqnKkDuK6mf4mePbvwtb+D7zVbiaxto1jVGc5Kr03Hqa86vLRbtOeG9a+A4L4ZxGTRqU8RX54N6JLReevV9VsfEUYJTvLY8T8RaJJHI2oQZZWOWHUg+tcXI6xqZJDhVGSa90mhMbGKX6Y9a8++IPwq8UX/h5r/wANKCXOXh6Ns9q/TaOJirRm7H12BxtNyjSrTUU9E2c14U8QaJqivHZyjzgTuU8Hj0rts45NfETJf6VdGNw9vNGcY5Vga+iPhPrXinxvqJ8OCNZSkZYynjaBxzXVWpqKc76HvZvkfsYSxVOd4LV36L9TrbvM07SDn0qnjyyC/A9a6/VfCmu6PIY7uBsA43KMg1wPiGRoLIxEYLEDn2qKc1JLld0eXhpRqWjTd0bKsp4U5rj/ABLGRMkueCMVzyzzp9xyPxpHlll/1jFsetbKNnc9ejhHTmpXGKxUhlOCORX68fszftZ+F4vhkmh/ES8cajpeY0JBZpYh93n1HSvyJWN3O1QSa6bw9Z6vb3yXMEbBeN2eAVNeNn+Q4XNsOqGK6O6a3Xz136nJneX0cXQ5ajs1qn+nzP1e8dftptJG1r4CsSjZ4muPT2Wvij4geOPF3xJuWvfEt6878lFJwi+wFYUNmzgOx4NX0t4Y+VHNebleQZfl2uFpJS7vV/ez5KhhqGHalTjr3PJbm0ms5PLnXBqvgngV67dWVteJsuFDe9ZkOgWls+6EZPbdzX0SxCtruezDMI8vvLU42x0m6nbzG/dr6967SJWhjCBiccc81fWwnI6AUosLg+n51hOrzbnLVxCqfExLW4iiuUkuU8yMH5lz1FetaP4zS5kj0zR9PZmPAVK850rTLKS4zq0jRxDGdgyx/wAK9e0Txz4f8N232XSNP24z85I3N9T1rzcbaStGHM/uR5GO5ZaQg5P7ker2Xh6aW2WW8/duwyV64qS40vTdOiae8kOBXmifEnxDqCYijigH98/0zXP+IfH+jwyGXWr+NWUY25/kBXhPC1k71HZHiRwdeUuX8Fqdheas3n508GNAMAnqazJb68nAE0rMB0yav/DbwJ8Z/jfeppvwP8Eaz4mkl4WS3tmSH8ZGwuPxr9T/AIN/8ELv24Piq0V58WdW0r4f6bJgvHGTeXu0+wAQH6msquY4WjpzXflqfQ4ThnHVrWp8q7y0/wCD+B+JfiH4oaJoc72/MjJncc4ANdD8KfA/7TX7TWqroPwA8IajrcrEDzbaBvJXnq0pG0D15r+xf9nP/ggp+wz8FLiHXvHOm3Hj/WIyGM2tv5kG/uRAMJ+YNfsb4T8FeD/Aekx6D4I0q00iyiACQWcKQRgD/ZQAVxV+I+mHppeb1f3bfmfb4PhTCUknV95n8jH7OP8AwbufHHx5NDr37W/i9NDsJMM+l6U/nXBz1DSEbV/DNf0X/swf8E6f2Qv2RbKJfg74Os4NQRQG1K6QXF6xHfzXBYfhivt+ivn8Ri61d81WTZ9HRw9OlHlpRSXkFFFFc5sFFFFABRRRQAUUUUAFFFFABX8iH/BsL/yc9+3x/wBlam/9K9Tr+u+v5EP+DYX/AJOe/b4/7K1N/wClep0Af130UUUAFFFFAH8iH/BQz/lbA/Yx/wCxM1P/ANFa1X9d9fyIf8FDP+VsD9jH/sTNT/8ARWtV/XfQAUUUUAFFFFABRRRQAUUUUAFYfiLwz4d8X6RNoHiqwt9SsbhSstvcxrLG4PYqwINblFAH4RftVf8ABAb9kX43SXHiX4OrL8Otely+7Tf+PN3P9+A/KBn+7ivwG+Mv/BKb/gon+xteT+IfDulr420OLJNzoxMj7B3eA/N+Wa/vWoIzwa7cPmFejFwjK8X0eq+5nFi8uw2Ki4V4Jpn+bNH+1fqOk3R0TxXo72WoRErLDcK0EgI6jawBr0G2/ag8HzMizWlwgOMtwQK/um+P37DP7J37TunSWPxn8DaXq0rggXXkLHdJnusqAPn8a/Bv9oH/AINsPCNy02sfss+OLrRZDlk0/Wf9Kg9lEgG8fjXdQxWXT0xNC3nFv8mfH4rgPBy1o6eV3/X4H41RfH74bXTeULh+f7yVyOv+JfhlrBNzZTPBKeeE+U1vfHH/AIJR/t//ALPZlufFHgpvEGnw5ze6E32pSB32YDj8q+Exf6p4f1A6RriS2Fwp2mC+jaBwR7OBXuYPA5Y3zYau0+zdvzR87ieEpYb3o8y/L7z6An13TI2bynLgdMDGa5zWfEl81oy6MoEp6F65iyuDeruVce4OR+dWyjehr3o0IRd9zhjh4QequeYr4v8AHOg6t/aK3c0MwPYnbj6dK+kfBP7TsTKtn40gIYf8toh1+orzeW1juBsmjDD3GawLn4crqA8zT1MX8q2xOHweJjavBLzR6FX6liIqOIhyvuj7ih1D4d/EWzWVWguwRkA43j+tfNvxA+AFlrdyZ/D10YdmdqPyteGz+DPGnhuUXljvBX+OFjn9K6DRPjL420Bhb6l/pKjgrKMN+dcOHyuth5OeCrXXZnNQy2vQl7XL66l5f1oee+Ivg7458O5eW1M8Y/ji+YYrzie3vrFjHcI8JHUMCK+8NC+PPhfUQItVje0c9SeV/OuwuR4I8Z2ZeCO3vBnJ+UE/j3ruWcYil7uJpfNf1b8T0Y8RYuhaOMofNaf5o/NeOWSKUTRkh1IIPcEV/Uf/AME5v2mI/jd8J08J6y5/tjw8iwybjkyRj7rV+L138IPAd7K0zWYRm/ukgD8K6/4QaRqXwO8WR+MPh7qVzaXKcMob5HX0YdxXwPihw5g+LMmlg17teD5qcmtFLqnbpJaP5PodseKcLdTUWmummq7H64/tq/CbRls/+Fl6bLFbzxjE8XAaX3Hqa/HnxVfnxDbPYITHGf1Ne4eOviX42+JOof2j4wv5Lt8YCk4QD2XpXjWp6YY/38A+XuK4PD7IcZk2WUsFmFdVKkNmlpFdIpvV26Npdj5PGYqjXxcsRShy3/Pv8z5v1DT7jTbgwTj6HsRWDf6tp2lbH1CTy1cgZr6GuNAXxFiwCZc/dYdRXyP8aPh/408Map5mrwl7IcRypyv4+9fquEr06s1TlK0vzPo8oqUsXWVGrPlf5+h7tYz2lxbJJZOHjI4Ip14+yBsdTxXxx4f8Xa14cnElnKWQdY2OVP4V9heFdK8T+N/C8fia2sykRzwDy2O4FViqCoe9OS5Ss0ymWCanOS5G9/0OZ8mReTzToWUMQSM1qXFndWjFLqNoyOoYYry7xBdu+pERnbtGODV01z6Izw8PbPlTPRJVLxlV7ivIbhDFcOh6gmrA1PUAMec2PrVNmZ23Ock966qVNwvdnqYXDSpXu9z2X4DfF7W/gv8AEiw8YaXO6RLIq3Kg8PCT8wP4V++uvftufAzR9Fh1Wzvmv5J4w6wwLlgT2OelfzSxxTTNtiVmPsK9V8Hx6ibY290pVR90txxX59xp4c5Vn+IpYzGXUoKz5WlzLono3p0t3OfMI8q9pGST6n6VfFD9vnx34mWfTPAtumlWkgKiRhumwffoK/NvxfHrOvX0ms3Mr3MkhLuWOTk9TXax2SjmQ5q2saKNqgAV6OQ5BluS0/Z5dQUE931fq3qzxIYhwnzrV+Z89kEHB606OOSVtsYya9g1Dwtpl8/mqvlt3K96pJ4ZktxtttpH619QsVBo9VZlTa03OR0+wmgIkkcj/ZFbgc1rNoV+oztH50o0HUPQfnWMqybu2ck8QpO7kjR8NapommyG41SFpZAflx0Fe8+EL258YTiPTLSRIgcNIwworzjwtoHhTT9moeIXe5kUg+Qgwv4mvb0+K+l6dbpaaDpwjUfw9B+leDmVSU21Rpty7t2S/r7jwsdPnk/ZxbffodiPALYy1wPyqhqmj6HpChZHaSXH3R0zWUnj/WrlXmnWO2iK8Dv9a831b4i+E9OuBFe36PO54jQ+Y7H0AGSa8OFKunetOy/rqeZSw9epLlSbfZa/kd9Dqd3arttG8sf7PFZWq62tlavfalMQi8sSa9G+E/wB/aq/aEnSH4IfDjVtRhlOBe3sZs7UZ773xkfQV+ovwn/4N+/j58TVgvP2nvGtp4esCwZ9N0NDNMR6NK4xn6ClLH4WnLXX0PpcBwljq8k5w5I9W9/u3PwG1v456Hpx2W0Zd2OAGPJ+gHNfRPwH/ZP/AG6/2urpB8HfB93b6XNgf2lfKbS1QH+Lc4yw+ma/sV/Zt/4JD/sKfszLDf8Ahnwbb63q8WD/AGlrQF7cbh3HmAqvtgcV+ldlY2WnWyWenxJBDGMKkahVUegA4Fc1fPW9MPTUfN6v8dD7rB8I4GjrNcz89j+ZX9mj/g3Y8LW09t4r/bG8Vz+JrtCHbStOdobPPo7fecdj0Ff0H/Bj9nr4J/s9eGo/CXwX8M2Hh2xQAFbOFY2fHd2A3Mfck17LRXiVa1SrLmqSbfmfS0qNOlHkpxSXkFFFFZGgUUUUAFFFFABRRRQAUUUUAfyIf8HQv/Jwn7CP/ZWoP/SnTq/rvr+RD/g6F/5OE/YR/wCytQf+lOnV/XfQAUUUUAFfmZ/wWf8A+US37R//AGTvxB/6RyV+mdfmZ/wWf/5RLftH/wDZO/EH/pHJQB87f8G3/wDyhM+Af/YJv/8A05Xdft5X4h/8G3//AChM+Af/AGCb/wD9OV3X7eUAFFFFABRRRQAUUUUAFFFFABXB/ED4X/Dz4q6FL4a+I2jWmtWM6lXhu4llUg/UV3lFAH8+X7T3/BAH4D+Pbi48Vfs2apP4C1R8t9ljPm2Lv7xt90H2r8Ivj1/wTd/bj/ZjlluvF3hY+JNJiyRqOiZl+X1aP7w/Cv76qjlhinQxTqHU9QwyK7cNmNehpCWnZ7HmY3J8Jiv4sNe60Z/nK/Cbxvoepa7J4O8RyPaXLAhI7kGKVHHYhsV9B3vga9iHmWTCVe1f2P8Ax7/4J/fsm/tI27j4meD7Ka7b7t5boILhT6h0wc1+QnxX/wCCFHi3wzLLqn7LHxEns4hkrpmtp9qhx/dWThh9TmpxOPrTqe1hZd10/wCAfC5nwHUcnUwdRektPxR+I9jayWFz5OqIyo3GfQ10s2gy7fMtm3qeRXvHxP8A2YP23fgQ0ifFP4cya1YxHBv9Cb7QhA7+WfmFfN9t8WvArXQ0zUZZNJuxwbe/ia3cEdsOBXLUxtVy5uWz/A+Jx2RZhhdatF27rVfernQeHY9Ks9ajXxTbNJZOdsm3qB6j6V73qX7NtprWnrrXgO/WaCUbkWT+WRXklvdWOoRCW0lSdD0KEMD+Ves/DX4hXfgq8FrLl7GRvnT+7nuK+dz6rmaj9ayypapHeD1jJej2f57HHhKtHm5MRHR9eqPM4/BnxE+HGpebc2MkkOQGCDcrA/1r1nS9RtNYh821OGH3kbhlPuK+xNJ1jSPENkt9p8izRt+hrOvPBvhy8dpjaokjDG5Rg1+cYjj515Wx2H5aq0bjp98X/mevPJLrmozuv66ny60Tr1FRV6Hr/hO/0WRmC74ezD0965Bo43BBHWvaw2Pp14KpTd15Hj1aEqcuWSszxnxp4hiMi2NkQWQ5Zv6ViWeqw3OEk+Vq6XxF8P5d73ulNuzyUPX868unt7i1kMc6lGHrxX3+XRwtWgo0Zar7zlkmnqdff6xNp+0WjYc9x6V0uieNba5UQal8jj+Lsa8mZ2c5Y5NNrqqZZSqQ5ZLXuJOx7L4z1iKx8Pvc27KXkwEIPc15to/jVWIg1IY/2hXD6jezTt5DMSidBnjNZddODyanCg4T1bd7lWue2a/rqad4fudXspAWhjLKc9+1T/Cv9tB7aCHR/iPAZAgCi5i+9x3Yd6+YPG+pTW2iGySQgTsAVz1FeJ12R4Jy/MMJKljoc2vuvaUfR/0j1MvcqcXOL3P3f8P/ABK8F+PtBuLvwzepNmJ/kJw4+U9RX8/njbxNovh7Ur6fVJ1jxPJxnk/MegrsrTXdY0FZLzR7mS3kVGwyMR2r8v8AxDq2oarq1xc6jK8ztI+Sxz3NejwD4e08lr4p0qzlTny2TWqtzddnv2Pscky55nOXtJWUbXt1v+Wx9AeLfjqpR7XwwnUY81v6CvtrwF4vtdR+Hum+ItWnRDJAC7E8bhwa/IgKT0r1fwvruoT6IukvMxigYlUzwM1+jY7KKdanGEdLPc97OeFqEsPCNH3bPV7tr+rH2l44+PNvZlrHwoolfoZW6D6Cvcfgl42h8SeBlvtSlUXFu7JMzHB9QTX5qV0ega3eaczWccrJDMRvAPB+tcWKyGjUw/saejve/U8LGcN0JYb2dHSSd79WffPjj426Ro8LWXh4/abg5G/+FT/Wtb4JfEmTxTaz6Rrbj7ZCS6sTjch/wr4eOTyeas2l7d2E3n2cjRvgjKnBwa5anD2HeHdGHxfzdbnlyyOj7B04/F3Pvjx58YPD/g+Nra2YXV5gYRTwPqa2/wBlr9oaC51y48J+NpFje9k3WsuMDcf4Cf5V+eNta6jq10IbZHnlc9ByTX0r8OvgXei4t9e8SyGHy2DrCvDZHTJrxs24fy2OXzw2Jl70lo+t1tZHNWwODwtBqpL3n16/JH7GzXVtboZJnVQOeTXJal4+8OacpzL5jDIwvPIr5hn1PULlQLiZ3wAvJ7Cuv8IeAdZ8VTq6qY7cEbpG9Pavx2XDuGw0HWxlb3V8j5xVZSdoI7e8+KN3ev8AZ9CtuT/E3PWprfSfFniEjz1ZyO7cKDXueheC9A0C3WGzgUkdWYZJrbvb+w0q2a6umCItfNVM/oQlyYCh6N6tnUsG2r1JHjtv8OVtITea5OEjQZIFea61cabJeldLUrCvAz1PvW94y8Y3HiG5NvbkpaoeB/e9zXn1xdWtpGZrqRYlHUsQB+tfUZVhsU17fGT957R6L/gnFWlC/JTX/BLLS7Ru7CuP1Oe51ObybVWZF9uprDv/AIueArO6/s+3um1G5PC29lG1xIx9MIDXvXwy/Z8/bO+O8iR/CH4bXNjZy9NQ1o/ZogD32feIr3qTcHeMbs9DA5DmGK/g0W13ei+9nkdv4bunG64IQV2mh+JPg/4DgOoeL72KW6c4gt0/fTNj0Rcnmv1A+FP/AAQy+Jni549S/af+Ijrbthn0zQo/IX3VpSSx+oxX67/AP/gnR+yL+znCj+AfCVrJerjN5ej7TOSO+588/Ss8dh6+Lp+ylVcU9+Xe3a59rlnANRSU8ZUS8lr+L/yZ/PL8Nfh5+15+0W6W3wD8Ay6VpshA/tbXgbaIKf4lj+83qK/Rv4Mf8EV9C1C8h8Vftf8Aiu78aXasH/su3Y2+nIfQouC4+tfu1Bb29rEILZFjRRgKowAPoKmrnwWSYPC604Xl3erPvMFkuDwutKGvd6s80+Gfwc+Fvwc0KPw18L9BstEsogAI7SJYxx6kDJr0uiivWPVCiiigAooooAKKKKACiiigAooooA/kQ/4Nc/8AkuX7c/8A2Vq4/wDSi/r+u+v5EP8Ag1z/AOS5ftz/APZWrj/0ov6/rvoA/wAwT/g9W/5Sm+Af+yVaV/6d9Yr+v3/g1x/5QUfAz/uZv/Ug1Ov5Av8Ag9W/5Sm+Af8AslWlf+nfWK/r9/4Ncf8AlBR8DP8AuZv/AFINToA/f6iiigAooooAKKKKACv4xf8Agq/8G/2jPGf7Z/jX4lL4H1+Xw+72tvZX8enzyWrw2ttFEWWVUKYLqzde9f2cO6RIZJCFVRkk8AAVieH/ABT4Z8W2A1TwrqNrqds3Sa0mSaM5/wBpCR+teLnmUQzKhHDzqctnfTXZNfqfdcAcZ1uGMdUzKjh1VvHkd21ZNp6NXs3y/mfjd/wQj8AXHhP9kXV/EeowNDda54jun+dSreVbRQwqCDzw6yfnX7XUUV25dglhMNTwyd+VWvtc8LifPJ5zmuIzSceV1ZOVr3stkr2V7LS9kFFFFdp4QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3Nor8jf+Cp//AAVn8A/8E4tP8IfDfwz4bufiT8ZPifeppngzwTp0ywzX1xJIsQluJSG8i3EjqgfaxdztUYV3Tl9B0L/gvxd+E4/iLrvif4JWmuvH5x8FrousNZqD8whbWBqBkEoGFaVbJ4w2SEZcZAP2aor+f79j/wDb4/4KRftjfs1fHfxbH4S8J/Cz4tfCXx7f6D/wi3iK3u9WslsLDSrScQvcW1zZuZZ7iV5I7tVeIwlQsTAiQfHP/BKn/gp1/wAFv/8Agq/+zvq/7THwf0H4G6Fo2la3c6AtnrC6/DdTXdrDBOxLQS3CJEVuEAb52yDlAMEgH9Y9FfzQ/D3/AIL0fFT9nr9tXR/2Bv8Agrz8J7f4PeIvFMiReHfGGi6kdR8Mao0r+XGweVI5IInfCb2d2R2AmSEZavtD/gqR/wAFKPiP+yR8RfhB+yH+y34f0jxJ8avjvqs2neHl8QzyQaJplvaBDPe33kkTSIu8BIYiryYfa25QjgH7HUV/M3+2/wDtj/8ABcf/AIJy/DbTviZ8S9H+GHxS8I6prGm6Rfa94fstR0q60F9TuobdJbmznurhJ4C8nkxtHIrB2QuOef6ZKACivxk/4KX/APBSb4sfs5fH/wCEH7BX7H+g6Jr/AMbPjdcXR0uXxPNLDoekadYoZJ7y7WBlnmyqSCKGJkZyjfNuCo/yJ+11+2R/wW2/4J9R+CdS+L+jfDT4l+C/F/izQ/Dl34o8O2eoaXc6IdUvoIc3djcXVwskcqu8MMkcoCyFTIMlQ4B/StRRRQAUUUUAFZer6JoviCzbTtes4L23f70VxGsqH6qwINalFAH5y/G7/gk5+wL8fPNufGHw80+yvZck3mlqbGbce+YtoJ+oNfkl8Yv+Da3wZO8t/wDs6/EjUdGPJjs9YjW8iz6eYoVgPwr+oeitqWIq0nenNr0ZlVoU6itUin6o/hF+KP8AwQ1/4KL/AAv8y40PTtI8a2sXRtMuDFM30jkA/nX55/EL9n79pT4QzvD8Ufh3r+jeV9+RrRpIhj/bTI/Wv9Maqd9p2n6nAbXU4I7mI9UlUOp/AgivYo8SY6no5cy81/wx5lXI8JPaNvRn+XRb+LbOKQQPciNv7kwMbfk2DXXw3ovoQssIlVh2wwNf6KvxF/Yq/ZL+LCSL8QPh3oOovL96R7KNZOfR1UMPzr4J+IH/AAQe/wCCeXjUyS6P4fvvDUrkndpN68WD7BtwrvhxS3/EpK/k7HkV+FIvWlUt6r/I/iNv/Avh3U1LPa+UxP3lG01zFp8LLG01aC8E7GGJwzIRycH1r+s3xt/wbg+B5C8/wt+KutaaedkN9BHcoPTLcN+lfIvjD/g3s/bQ0RnfwT488M67HnKJcwzWr/iwDCvQpcWU7WfMvxOV5JmlJONOomvX/M/HqPWdJnAEo29uRUog0e4X92V69jX3L4q/4I2/8FNPCG7/AIo/SdcC99M1IMT+EqpXzv4l/YW/b28Flv8AhJPg9ryhOptRHc/l5bGlDNMHLapb1ufPVOGMdDam/k0/1PHLvR4PJLW33hzXMkEHB7V0eq/Dr4/+Fmb/AISP4feKtO29TNpsoH8jXgviTW/GGmXrsunalbZ+8s9nKpz7fLXZQxWHm7e2j82kZU8ixvNyypteqZ6xEtus6zTRh9vrXe213BdpmI/h6V8eP8QNfi/17PHj+/Ey/wAwKpj4s3kZ2jUEjP5V1ujTntVj/wCBIufD2Kf9P/I+h/HXwi8H+O0abUIBDdEcTxjDe2fWmfCn4V6X8MbKdYpTcXNw3zykY+UdAP61wOgfHvTkiEOuOkhA4dGGT9RXpdj8WvAF8u5dQjjIxkOcdayq1Kqpuk53j6pmFeOaU6Dwk+Z0+260/rY9OZVcYYZHvzWDqXhXw5q0fl6hZRSDO7lR1/DFeb+J/i34ZsbY2+kXkUsz8bgwwo9a8p/4WZcFsf2so+sgFY0MM2uZVVH5nNhcpxUlzxvH70fQn/CtfA3/AEDYfyrkPGvw+8I2ujm4sLKOORGH3R1z2ryv/hZUzMIxq6knjiQGrWkeK3ttUivftJnCNuK7XkVvwANdUJ+yfPLEp26c2/4no08BjoS5/aN26e9qWrHwjqFySbKxYleOErvNP+FPiS5wZwkC8fePY+1eiaX8VLG+RUtdK1GaY9Vt7OVx/wCgCvSdHsvix4jA/wCEZ+HPivUd3TyNMlOfzArhr8Qy6OK+aZlOObVPgw8vuf6nl0Hwmt4bTYLtjL9Plrn7z4ca/A37gLKCexxxX2Z4f/Zf/bp8ZOo8J/BfxDIH6G7VLX8/MYYr3rw1/wAEtP8AgqF4ywtv4D0rQd3fVNSVcD38oPXn/wCsDi7uaf8AXkVQybO5O7pfe0v1PyuHw/8AEpOWiGP96s/UtDn0OEzam8cKrycsM/l1r91dC/4IIft6eLiD418f+GvDkTYLpaJNcsPUA7Vr6F8Gf8GzvgGWZL34u/FTWNVk6vFZwJCh9cMxLD8qtcTU/t3fov8ANnt4XhjHzd8RKMV5av8AyP5YL7xxodnM0SMZFHRxwD+dc7/wsyzlYw2kRlk7KmXP5DJr+5z4c/8ABAL/AIJz+BPLk1fw/f8AiSRMEtql40gJ9cIF/Kv0A+HP7C/7H3wmjjXwB8ONBsHixtkFlG8nH+24Zj+dZVeK42tSo/e/0Vj3qXDOHivfbZ/ni+Afg/8AtTfGJ47f4XfD7WtUMpG2SK0dYzn/AG3AWv0T+E//AARD/wCCl3xTaK913TdM8HW7YydUuMyLnuY4w2fzr+8XTtJ0vSIBbaTbRWsY/ghQIv5KAK0K8ytxJjZ6RaivJfq7s9CnkuDh/wAu7+p/LV8If+DbTTnMV3+0b8T7/UgMF7PQ4xax++JHDN/47X6zfBL/AIJCf8E/vgSUu/DvgCz1W+TB+16xm+lLDv8AvcqD9FFfpfRXjVcRVqu9SbfqzvpYelSVqcUvRGLofhvw94Yshpvhqwt9Pt1GBFbRLEgx/sqAK2qKKxNgooooAKKKKACiiigAooooAKKKKACiiigAooooAK/kQ/4Nhf8Ak579vj/srU3/AKV6nX9d9fyIf8Gwv/Jz37fH/ZWpv/SvU6AP676KKKACiiigD+RD/goZ/wArYH7GP/Yman/6K1qv676/kQ/4KGf8rYH7GP8A2Jmp/wDorWq/pC/bY/bP+BP7AH7N3iH9qT9ovUWsPDnh6NcxwKJLq8uZTthtraMsvmTStwq5AAyzFUVmAB9W0V+A37MXx3/4LXft+/DHT/2nPBNp8OPgD4F8SwJqPhjRfEWmX/ifXruwlG6Ge9eG906CBJ0KuixoZApyccZm+BP7cv8AwU01T/go9e/8E7f2qvBng/wfeD4ba14m0LxdoovNS0bXdRgvLG3tp47eaS3mihtlmlF1ZG4MpYriZUKOwB++dFfyVfB7/gqb/wAFqfjp/wAFQvil/wAEwPA+j/BWDXfhVYnVb7WtRtddhtbqyLWgQwxxXkziVheREoxCjDfOcDPsH7VX/BYX/gpN/wAEqNc0Xxd/wUt+BnhzxJ8J9Xu47Kfxr8LtTupk06WQnCz2eoxJJ5jAZVWkijbosrMNtAH9OtFfmT+15/wVS/Z0/Zh/4Jtal/wUx8N3C+NvBr6XaX2gx2EojOqz6jIkNrCHZSYsyuBMWQvCquShZClfE1n8Xv8Ag4Qtv2drT9rXTND+D/i+XUdJj1z/AIVvp8Gp22opayoJo7e21VruWCe88pgHDQrC0gxGSCMgH9B9FfAn/BLj9qXx5+2x+wJ8NP2qfidZ2mn674106W/urWxVkt4T9oljVEDszfKiKCSeTk8ZxWf/AMFSf+ChPgX/AIJgfsX+J/2t/G+mSa6+ktBZ6ZpMUoha/wBRvH2QQmQhvLTOXkfaxWNGIVjhSAfoXRX8+fi34t/8HCXwn/Z+k/am1DQfg/4/lh0waxf/AA90aDVLLUYLcKJGhs9Se7nhubhIyS4aEI7KREWyob9M/wDgm7+0V43/AGuP2DvhR+018SILW217xx4cs9XvorFGjt0muF3MsaszsFHbLE0AfbNFFFABRRRQAhAYbW5Br5/+LH7KX7Nvxys5LL4s+CNH1wSAgvc2kZk59HADD86+gaKAPwX+Mf8Awb2fsZ+OGl1D4VX2s+BLx8lRY3HnW4bt+6lBAH0Nfl18UP8Ag32/bN8FNJc/CbxjoXi61UkrFeo9ncEdhkBlJ/EV/ZbRXVRx2Ipfw5tHHXy7DVv4tNP5a/fuf54HxM/YX/bp+DLuPiF8LNVeGLO640zbew4HfKc/pXyrc+JX8PXf2LxBDd6PODjy76CS3OfTDqK/052RXXY4BB7HmvLPGvwL+C/xHheDx74U0nV1cYb7VaRSEj6lSf1r1KfEOJjpNKXy/wAjxa/CmDn8F4/O/wCf+Z/nK6V4sgvuIJI7gf7DAn8s1q3elaNrK7b6zDk9yvP5iv7Z/iR/wRs/4J4fElnnuvAFtpEz5Jl0qR7Ns+vyECviXxx/wbt/AG8L3Hwu8eeJPD0n8EckiXUI/BgG/WuqHEUb3dOz8meJW4MqxfNh6qv81+Vz+T7VfhJol0d9i72xPbqK7X4U+F7XwNNc3Goy+a82FXaOAPev3Y8Y/wDBvn+1DpG5/hv8VNH1ZR91NVs5ID9CYt9fMHir/gjf/wAFNfCZZrPQfDviNF72Oo+SSPZZVBrslxDCtTdKpJpM4cVw9nDpOi2pRfZr9bM+OFuNCugdpX+VSHSLCU7o2wPY5rt/Ev7D/wDwUB8HM3/CQfBnXJkT7z2DRXKcfRhXh+r+E/jl4PYp4n+HvivTWH3t2myyAfigYVyKrQfwVvvPnanDOYw/5dS/P8rm/qNh9jcFDlDWWQGGD0Necax4/urCze31e11OxOOPtFlLGQf+BKK8gf42zQt5a3UZA6FkIP45FehhoxqK3tY39URTyTGta02mu6a/Q+vNAbTdPkbdGFdv4q6zUNN07WLNrLUYknhkGCrjI5r4ZPxsuANzXduB74FbGl/H6/tJ1ke8t5YhwULjn9a0qZZUk/aQmr/4iKmRYu/Mlr8ze8W/sleHNT1SO+8N3JsomcGWI/MNuedvpX1d4f0Ww8O6PBoumrtht0CKPpXj2kftAeAb9VW9uRbuRzlgVz9Qa72P4jeBJYfPTVrYrjd/rBnH51x42tjKkY08Q20tv66nPj6+ZVoQpYrmajtdfr1OsvNJ0y/Ure28coP95Qa4W++D/wAPNRuWu7nTk3t12kgV5N4v+NNvPdfZ/D19HFEnV94yx9ua4z/hbWsbd/8AbEeP+uiVth8FiYxUo1eW/m0Xh8uxkY80JON/VH0B/wAKR+Gv/QOH/fRrwTxp8PtC0HxE9rpNtlNu7bgtjNUZvilf30RSbWowoP8Az1UH9K7TwH8Y/CmgeYPEd3b3PmEfOTvcD8jXTGtWwydSdbn/ALvN/md1Kjj6N5uUp+WpzOl+AdeuyE03TnGRkHbgYr07R/gh4junD6jKlsnB45avRLT4+/D+9Pl6Ot5eHoFtrWST/wBBWur0/wAa+KNdYReF/A/inUWb7oi0qcKf+BFQK8uvxBiJaRSX4kunm1X4MPL/AMBf6nmOqfBbUoBu0u4Wbjo/ymuLl+HHi6OQx/ZS2O4PFfbGgfB79tbxlt/4RL4IeKJlbpJPFHAn47mz+le6aD/wTj/4Ki+N1B0/4f6XoETjiTUtTTcv1RATXPTz+vHSTT/ryOmhkedy09h99l+p+Wo+HfitRuktG4965fWEi8Phl1WWOFwMhM5J/Kv3I0f/AIIN/t8ePMf8LK+I3h7QIHxuj09Jp3X81VT+dfQfgT/g2j+GCMs/xe+Jus6w4OWWyiS2VvbLbziuynxDTWtXXyiv1b/Q97CcJY6WuJnGPktT+Xe78f6NbLvyT67sLWEfihaXdwtro8LXUrHAjiUyMT7BQc1/cZ8Nv+CDv/BOn4fvHc3/AIWn8QTpjL6pcvMrY9UGFr9Avh7+x5+yx8KYki+Hnw/0LS/LxtaKyi3DHoxUn9airxPH/l1R+93/ACt+Z7tLhLDr45Nn+fZ8Of2fv2yPjRcInwt+GmuX8cpAWV7VoYhnuWkxgfhX6R/CP/ghn/wUa8fKlz4vn0LwXbSEFjdzNc3Cg+iRjb+ZFf2821paWcYhs4kiQcBUUKPyFWK8uvn2LqKyaivJfrqz0qfD+Agv4d/U/m7+EX/Buf8ACSxMWoftD+P9a8Vz5BktrIixtT7fLl/1r9ZPgt/wTe/Yl+AMcZ+HXw70mO5ixi6uoRdXBI7l5dxz7jFfcFFeVOrObvOTfqerSoUqStSikvJWK1pZWenwLa2ESQRKMKkahVA9gKs0UVmahRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wdC/8AJwn7CP8A2VqD/wBKdOr+u+v5EP8Ag6F/5OE/YR/7K1B/6U6dX9d9ABRRRQAV+Zn/AAWf/wCUS37R/wD2TvxB/wCkclfpnX5mf8Fn/wDlEt+0f/2TvxB/6RyUAfO3/Bt//wAoTPgH/wBgm/8A/Tld1+3lfhj/AMG7Gs6R4c/4IafA7xD4guobGwsND1O4ubm4cRxQwxaheM7u7EKqqoJZiQABk14p8BP+Con7cX/BWD4j+Kj/AMEsPD/hfwj8GPB2ovo9x8SfH1td6hJrF6ihnXS9LtZrUhUDI5e4nwY3UlVc7AAf0c0V/Od+1B+2t/wV8/YI8b/Cjwz8dfDvgL4h+BfiD8QPDPha98d+Gra+0uXSLbUtQhhnW80u4nu1Dzws6W9xHdeUkmA6bigfyL/gqP8A8FSP+Cpv7Cv7ePwh/ZI+FOnfCzxNp3x81k6Z4VvdX0/VrOSweS8htkjvzDfyh/L+0xb5oYx5mGYQpwtAH9R1Ffz3/tJftW/8F6v2L/hrd/Hfx18IPhb8ZvDGhQm61nTvAepatp2sw20alpZY4r+KdZEjAyfL8yQjny8AkfdP/BN3/gqh+y//AMFOP2Ypf2mfgpeS6ZBo7PB4h0nUiiXuj3MSeY6zhCymNk+eKVTtkT0ZXRQD9J6K/m1/ZE/b2/4Krf8ABVfwXr/7V/7DCfDL4ffCa01q70rwvY+NLPUdU1fW1sW2ST3slldQJYxuSCkaRyyIwIO9QrP9Zf8ABKb9uT9sr9rD4m/HX4S/tseBdJ+Hvij4Q6zpOinTNJmkuYpDd2rXDXKzuT5kVwpjlgwBtjYZJOaAP2YornPGHizQPAXhHVfHXiu4W00vRbOe/vJ2+7Fb2yGSRzjsqqTX87v7IP7cH/BXf/gqJ8J7v9s/9jiD4W/D/wCGF5qd9Z+E9E8Y2upanq2rW9hM9vJNf3NldRR2e+RG2JHDIykHO9drOAf0i0V+O3/BJP8Abi/a3/bHu/jT4a/bK8Dab8O/Fnwt8Ww+GX0XTZXuUjxYwTvIZ2YiVJmkMsLKAPKdRlvvH9iaACiiigAooooAZJHHKpSVQynqCMivAfij+yt+zv8AGizey+JfhDTNVWQYLSwLv/76Az+tfQNFAH4g/FH/AIISfsseJpZNR+FOoar4JvGyQbKcvCD2/dvkY+lfCvjv/gix+2X4FD3Pwq8daV4qt0yVt9SgNvKR6blJBPua/qoopNJnm4rJ8Fif49GL+Wv37n8SPjL4Cf8ABQf4KAjxZ8NNRaGFtxudFnW6j47leD+GK8hi/bP8a+CLhbDx9Y3+mtG/zjUrOSEn23YxX95Toki7XAI9DzXD+Jfhh8OfGMLW/irQ7HUEcbSJ4Efj8RXFiMqwOIVsRQjP1Wv37/ieHU4MwW9CUoej0/G5/Gl4c/bi8Ea5EIb5IJi7YIjlHCn2PNV/EXjTwPrqXGreDtSks5i27yZRlWz6Y6V/TV8Q/wDglt+wt8SxI2vfD/ToZJc7pLVPIc590xXxj4w/4IC/siauzzeC9U13w6x5RbW7LIv4MDkV52H4WyzD1fa4WMqb6pO8X5NSujycZwTXqRssQpf4o6/ej8K4fidq1vIYrlUlPHTpWpc+OPDusp5OrWpBx94dc1+lnib/AIN//GGnFpfhv8WbsD+GLULZJB7fMMGvAvEn/BF/9vrw1ubw54h8O6+o+6HWSBvxPIr2HlmCbUoxcX3Wh8/W4FzOPwOMvn/mfD1/baOwE2mXGQx+44wRXmXifXDaI1hb53ngt2FfW3iH/gnL/wAFLPCO43ngLT9UVec2F8GJ/BgK8V139nD9tvw+pHij4L67tXq8Plzj8NrE16eFlTptc8uZeZ5suE80pu8qDfo0/wBT57ttZvLc4Y719DW5B4gtH/4+AU9+1P1fwV8WdLZl1z4YeLrNh1K6ZK6j8QMV4p48tfGzWf2XT9D1uwDZEn2jTZ1YD/vk17lOvha0lFy5fMX9gYxyUZ0JR87P9Dy/4qfEG61XxQU0eUi3tPkQqeGPc1zen/EK8hG2+jEg9Rwa4rUNL1awkkFzY3oKk9bWYE/mlYxmlX79tcr9YJB/7LX2lCpgFSjTjUjZeaufWU8niqUafsnZeTPeR430O7tJVZjG2wj5vUivzQ1rxTpNvfzhWLnzH6fWvqy4vAbdwIp+VI/1T/4V8MXng7xdLdyyR6VdkM7EEQv0J+ldmGxGFpXcasdfNH1/B+U0qUqzndLTf5lm98Z3EhK2abB6nrWp4F8Y3GneIVOoyEwT/I+egz0NYkXw98dzLuh0a9b6QOf6V1Gk/BL4l6vs8jR7wbzjH2aXIHrgJW0szwy3qx+9H3Nelg/ZSpyas9PM+iX1CHGYvmzzkdKpSXsznCnaPavQfh3+z18UnhNrrWk6xdouBGLbTp3Yr35219QeGf2WPiNcOn9mfDHxbqTc4ZtNlVTn6gCuStxBgKf/AC8T9D88xE1Rk40qcp+ai7fjY+ZPB93fasyaWkTySdFYDr9TX0j4W+ExuT9q8S3At41PMScs1fV/hb9jb9tHUY1j8H/BbWlU45lRIR/48Qa+gfDX/BLz/gpT4t2m18CWWlhu9/equP8AvkNXz+M4lpTuqUuX8WfMYvA5riJP2GHcE+7V/wDgHytobeEPCcAh0Oy+bHLn7xP1raTxVq9/MsFlGAx9a/RPwp/wQ5/b08Qsp8S674d0JT94DfcEfTGK+oPCP/Bvz44uQp+IPxXniXjdHp1qqA/Rm5r5mtjcM25Wcpd2edHgjMKj5p8t/N3/ACPyq8Hw+ENIjg1nxtftczBtwt4xhVx6k9a7nXP2svBHhy3NtZfZ4BGcKHkH3R7Dmv228If8EAP2T9LdZvHGt6/4ib+Jbi62Rn8FAx+dfZfw7/4JTfsIfDTy30XwDYXEkf3ZLtTO3HfL5r5XG5XhMXV9rik59k3ZL0Sseph+A6q/iV0vSP6tn8lEv7W+ueLLlrHwXa3mpMzAKunWkk5B9MgV7b4H+CP7eXxiAXwP8L9VeOdtwudYlW0i57gHJwPpX9nXhf4S/DDwVAlt4T8P2GnpGAFEFuiYA+gr0BI4412RqFA7AYq6eBwtJWo0ox9Fr9+57FHgfAR/jOU/V2X4H8p/gX/gjN+294/WO5+JnjLR/B9u/wB6Cxha6nA7gsxC59xX3J8Mf+CDn7NehzR6l8Ydb1fxrdLglbmcxQZ/3Exx7Gv3PorpUUtj38Lk2Bw38GjFfLX73qfNvwn/AGQf2avgjaR2vwz8HaZpvl/ddIFMn/fRBP619HRQwwII4ECKOAFGBUlFM9MKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+RD/g1z/5Ll+3P/wBlauP/AEov6/rvr+RD/g1z/wCS5ftz/wDZWrj/ANKL+v676AP8wT/g9W/5Sm+Af+yVaV/6d9Yr+v3/AINcf+UFHwM/7mb/ANSDU6/kC/4PVv8AlKb4B/7JVpX/AKd9Yr+v3/g1x/5QUfAz/uZv/Ug1OgD9/qKKKACiiigAooooA+b/ANsTx6fhh+yp8RPHcb+XNp/h/UGgb/pu8LJF/wCRGWv8/wC8HX3iyz8R2kXgm7uLPUriVIYHtZWikLyMAoDIQeSR3r/SPdEkQxyAMrDBB5BBrwfxH+yz+zX4t1u28T+IfAWgXOp2c8dzDeHT4VuUliYMrCVUD8MAeuK+T4j4cq5lUp1IVeXlW1u73vf9D9i8M/E3CcL4bE4avhHUdVp8ykuisk4taq7bvzddj1vwpojeGvC2m+HHne5On2sNsZpWLvIYkC7mY5JJxkknJNb9FFfVpJKyPx+c3KTlLdhRRRTJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAPxCu729+MP/B68NH+J2Z7T4eeGUj8OQ3HzIif8I8LkbB04nvbmUejc9Rx/cVX8qn/AAWm/wCCbX7Wfhr9uD4Z/wDBav8A4Jq6FH4p+JXw5Edt4m8KK4jn1vTolkiLQ5PzyNayy2sqL+8MZjMQLpg/b3wo/wCC8Hwc+I3hyCy1b4I/GjRfHpRUn8Hv4G1Ga+S56MizrGLQJuBAlmmhXby4TkAA/VzxL8MfAPgzRfiH468LaXDY6t4vtXu9ZuYgQ95Pa2YtYpJOcFkgijjBAHyoAelfzH/8GX//ACij8V/9lM1f/wBN2l1+v138df2nPhT+zH47/aN/a+8MeIbnVfGTPB4a+G/grRbjxRfaJbfZpBb2076ZbSvJd3DBpLu4kcWcLlIY3G0PN/PN/wAG3vx/+LH/AATV/YZ8Q/s5/tNfs5fHG38TX3jG/wBetUsPh9qs9vLbXNpZQIvnNFGiPvt3z5hRQMHdzQB7X/wen+AfA2q/8E4Ph/8AE3VY4Y/EWhfEC1stNuSoM3kX9jeNcwI3UK5t4pG5wTCvtXtP/BQL/glN8dv+CtX/AATq/Zn/AGkvhb4sl8HftHfDjwno2u6ZqE9w9uLm8v7G0uLqKS5iBlhnW4iWSCcZCPuDABy6eQ/tRfsS/t8/8HAf7V3gp/2n/AWofAX9ln4Y6kNQj0XxBcRnxH4nmcjzHe1tpHFqzRAwqXk/0dJHKNKzMq/oJ/wUT+P/AO1D+xp/wUG+Anj39nH4TeJvif8ADu08G+JdK8X6J4StXuJbLTGutK8i4t4FwklxbvGvlQjDvEZFXaCWAB+InwL/AOC+Hxv+DfitP+CZP/ByF8KrjTE1R7ezfxa9v9mimjjmQxXN5HARBPAsqK322wfapUHy2IZh/dnY31lqdlDqWmzJcW9wiyxSxMHR0cZVlYZBBByCOCK/jv8A+C0Hxj8G/wDBa/8AZZ0X9i/9jL4MeOPFfxN1PXrG4tdY8Q+Fb/w/YeEFikBu5ry/1CCGNPMg3RGOJpA4bPLqit/Vx+zx8LZ/gb8APA3wTur99Vl8H+HtM0R72TO+5bT7aOAytnnLlNxz3NAH4d/8F6P+CO/xc/4KHaf4F/aY/Y48WHwZ8dPhDJLPoFyZ2tI72F2WXyftCAvBPHKga3k+5lnV8Bt6fkJ+zd/wcAfErwl49sv+CZ3/AAcX/C2Xw1qs99pwTxVNB9itpJ7O6jns7q+hjKwmFbmFJBfWTmDKgmMIGev2g/b/AP2o/wBrH9kf/gqL8NviZ8KPhV4u+K/wzuvAOo2HjOz8K2kl7cWCvqELwXsMC8T3ERUr5IO94ncjoK/M/wD4LS+OPC//AAXS+Bvgr9jz9iX4QeMvEPxBl8R2t4fFHiPwvf8Ah7TfCNmoIvGur7UIIRmRCoaCEyeYFyN0iRqwB6Z/wXf+OP8AwUp+Bf8AwUG/ZS8Ffsm/GU6Zovxk8Vvp9h4bmtEtdLgubGTTo0a+ubbN3e20z3bPLCzBNi7Qpzmvk79unx3/AMFWv+CDP7Vfwf8A2qfir+0drnx6+EnxE12PQ/F+m63bR2VtbStteVbe1WSWG23wiSa3e3EexoSsgZT8/p//AAcK3+p/sr/tT/8ABNS70nTNV8dXHw/8T3aCy06I3GqaqNNk0JWWGIZMlxMqHYg+85A719Hf8FJba/8A+C8Hj/4Efsj/ALOPg/xXD8N/DHjK28b/ABA8W+I/DuoeH7LT7fTYpYF06Eapb2z3N5OtxKjJCrrGdjMSu8oAfQf7c9v+09q37e3iLW/2x/jFqH7P37H3hrwjD/YGs+G/E1r4dv8AWfFFyY98csqsb53iUz7IFURt5cW1WLuD8sf8EUv+CqvxS/4Zi/bD8U/tLeMtU+KXhb9mTWtVudD1zVoTba3qWiWkV3JHHceZHC/nSLaAqJo1lV5Sj9Aq+SfGjxP+03+zv/wcX+NP2h/2m/2eviB8dvBcvh20sPhLd+FtIOsWWhzvFamR4fOeO1tJHlW4W5meVJIi2/HlOCPJv+CaH7OH7Z3xQ+Nf7ff7Hn7RXwK8SeALP9pTXNfv73xLfbW0TQotUi1R4/s92VRdUmW4vLURLbDY0fmSsybFSQA+zfhX8Cv+Clv/AAUq/wCCYqf8FAvCnx88W+FPjp47tZvEfg3w74e1RdJ8I6bbpORa6dJaiMi5EsEZ8ya6dyJJASSqnd3X7cX/AAUF/b//AGXf2Vf2V/2W/i+JtH/aF+O+of2R4r1XwhYJrV9p+n6UIzqdzptpCkkUuoSQzRFAkTwRyNIVG1UI/PH/AIJgf8FD/wDgpz/wSy+Dcf8AwSz/AGif2SPH3xE8WeC7q6svB2peHrdjpl7bTzNKiTXzRtbi1jkkOLtHdUiIV0Uxkn6p/wCCu37CH/BULxZ+zB+zl+3T8L3Xxt+0l+z7r2o+K9W0jTI/PWZNbuEvJ7KyjBVrmDTzDFZxQLmSe2DEFn4YA8/sfin/AMFH/wBm3/gpF8JfEP7HMH7QXxP+CnjC9g0v4haN8UdEv549KSeeOFr21ubm3RolSOQz7Y9qq0LKx8uQKv8AZfX8yP7LP/BVn/gor/wUz8XeEPgr8N/2cPFvwItrPU9PvvH/AI08TI8FnZWOnzpNd2Gmpc20bXFxfeX9lBI3QJKzsnAdf6bqACiiigAooooAKKKKACiiigCrcWNldjF1Ckn++oP86wL3wN4K1JDHqGj2U6nqJLdG/mK6migDxnUP2c/gDqxJ1PwVodxnr5lhC380rib79iz9kXUjuvvhp4akJ7nTYM/+gV9OUUAfHN3/AME9v2Ir07rj4XeHCfaxjH8hWTJ/wTc/YTl+/wDC3w/+Foor7cooA+Io/wDgm5+wnH934W+H/wAbRTWra/8ABPT9iCz5g+Fvhz8bGM/zBr7IoouB8w2P7FH7IWmkNZfDPw1GR0I02An9UrtNP/Zu/Z80kg6Z4I0O3K9PLsIVx+S17VRQBydj4C8DaYgj07RrGBR2jt41/ktdDb6fYWn/AB6wRxf7ihf5VbooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv5EP+DYX/AJOe/b4/7K1N/wClep1/XfX8iH/BsL/yc9+3x/2Vqb/0r1OgD+u+iiigAooooA/kQ/4KGf8AK2B+xj/2Jmp/+itar5x/4PLte13XZf2UvgFqc0kPg7xX4q1W51YBsRNPamwt4WbHIZIby5wfRjjvX0d/wUM/5WwP2Mf+xM1P/wBFa1X6X/8ABfD/AIJRXH/BWD9i4/DrwBcW+n/Efwbef234VurpikUlwEKTWkjjOyO5TA34wsqRsflBoA/bPTdNsNH0630jSoUt7W1jSGGKMbUjjQBVVQOAAAAB6VyOsfDHwD4g+IGh/FXWdLhuPEXhu3vbTTL9gfOtoNR8r7TGpB+7KYIiwIOSinqK/ng/Y0/4LdfE/wCGvw00n4Ef8FS/gh8T/AvxZ8N28em32o2HhW+1zStdlt12farWfT4ptzzbS0iorRBidkjLwv6PfB39oX9pn9oD4g3P7ROueE/EXws+CHg/S7ya20bV9KaTxX4qu2jyZ30yGO4vLW1tkD/Z7ZFF9dzsCY1VVjlAPwk/4J3/APK3F+2H/wBiLB/7gK/oD/4K7fD/AMCfE7/glx+0H4V+JEUMmlDwBr96XuEDpBPYWct1bzgH+KCeJJUPUMoI5r+W/wDZI+N3xd+Cv/BwR+0P/wAFBfG/7O/xuPwz+JGgf2Jot7a/DzWpJ3kibSwJZLdrZJEjdbKRhlS4yoKgkgfoH/wUi+J3/BSv/grj8L5P2Ef2Hvgr4r+E/gbxuFg8X/ED4kQDw/5WmK4aS2trDfJeOJwArkorspaMoFZpFAPhr/ggn+yHD/wVE/4NtfGn7FPxu1C60vSLvxfqtl4c1FAJXsPsxs9QgmjRsZjW/ebzIwV3qZFDLuyPm/4Xf8FCf+CyX/Btxquk/s4/8FF/BU/xd+ANlImnaH4l0+Qym2tV+WOOz1BlAwqg7LG/WOQKoWN44wDX7rftUfsi/Eb/AIJcf8EXvBf7PX/BPDSL/wAW+Nfh94o8H3tlDZxMtxruqLrdrcXbzqjErFdPvEqs5SOA7C2xc1rfG3/gr58CPjh+yx4q+Cnxt/Zy+K95468RaLNp138Mb7wTqVzLeXVxHt8pLxLdrNoBIQVuvMUhQJFTcAtAH6tf8E9vi1+yZ8cf2QvB3xN/YheEfDbVIJp9Nt4QytaSSzO9xbyxszNFLFO0ivGSQrcL8u01w3/BUf8A4J9+CP8Agp1+xZ4r/ZI8aajJokmsCG70vVIkErWOpWb+ZbylDjem4FJVBBaNmCspIYfGf/Bun+wJ8bv+CdP/AATS0X4M/tFD7J4v1zV77xJfaWJVnGl/bliSO13oShZUhV5AhKiR2AJxk+o/8FsvGP7UHw6/Za8JfEH9jzw5f+MPHmhfEPwxf2eiafv36jFBclpraQp92GWMMkjH5VVsnpQB/L18I/8AgqB/wWB/4N3de0f9mD/gqd4Fu/il8FbR003QvFmnyefLFax8IlnqDBUnCIDts74RXCqAFdI1Ar9Z/wDgqR+0XeeEP+CBVv8Atkf8Ee/im3w8+HfhrSdP/s220eyillubO+1G1082ouLjfNYyWjSyhxGBKsi7CygV6v8AtV/8FXvgR+03+xv43/Z38cfs7/FfV/iD4s0KfS/+Fb6l4H1Jp3v7mLbGTeeQ1msMM5VxdCbcoUSou4KK/L34/wD7Cnxh/wCCeH/Bn58Q/wBn/wCPrrH4vmfTNa1KwSVZ49Ok1HxDp8i2quhKM0aBfMKEp5pfazLhiAU/2m/g3/wXK8M/8Ev/AAn/AMFY/C/7Vur/APCR+FfCOi+KJfBGmW/l6V/YgtYHeSeaWRvt94If9Ku2u4XWRzKqYATd+jPjX9rD/goT/wAFIf8Agnf+yv8AH79lTVYfhv4R+ImoRTfGfxVYajZ6dd6Do+nS/Z9Rkspr1v3SPJDclXjDzRlY1ztZyfCP+G+PEv7Rf/BDDQf2G/2f/hJ8QNW+Nnjf4Y6Z4Ch0G48M6ja2EMV/p0dhJqkmrTW6aatgbdmnimNz825AQvzFfl3/AIKW/sMftNfsQ/sxfsK/s76R4B8Q/HL4G/CbUPP+KHhjwnZy3w1bUDPBdFp7OMEzW5ke7+ziUCLcdsrAupoA+gf2HP259X8Gf8F6NK/Yf/Zr+PfiL46/Anx14LvNV87xPfya39h1ez+1O4sNTljVriEfZcB45JoT5rJuLx/J9ifAv4pfGf8A4LJ/tkftEeE4vif4r+F3wb+BOvnwLo9j4Fv10jVNX1iAut7f3d+qSTeUjxYtooyqFHBcEg7vzR+JHxG/bb8Vf8F5vgV+3v8ADn9kX4g6b4Mj+G9z4Q8N6TeW0NjKBnUVhl1QxmS30WJZbxBJFO7SRW4EgRmYQ1R0bXv25v8Ag31/4Kj/ABz8W6f8FPFPxl/Z8/aB1yXxLZ3PhCykvJ9PvriaWdYwI1dY5ImuZLdopjGZ0WORG+UrQB+ifw+/aF/4Ki/8Eiv+CYf7RHxk/wCCleqWfxHufhjeeX8OtYuLmO4vdXt76VLO0N+0O1vL+0zQsfMP2ja0ikkLGa/Nf4/+PP8Agpre/speDf2nv2UfGP7Set/tHqNM1fVdIu/C14ngjUfthWS7toNPNolnHBb7/wBw5DGSJCGyzhl/Vr41/s7/ALcP/BZT/gm/8ftO+Ovhq4+Ej/E/T9Li+HHgbWZFa701fD8/2+G61IhVMF1qlyBHLGQfs9vHECCwfd+f37DH/BY3/grl8JPgtoP/AAT5+Jf7G/jbxP8AG3wnaxeG9M1qeKWx0KeK1XyLe81C6eExJHGFXzJo5jFcBdyyIXFAH9an7LfxH+Ifxg/Zt8B/FP4u+G5/B3izxBoOn3+taFcxvFLp2oTwo1zblJAHHlSllG4BsAZ5r3ivJPgH4T+JHgT4I+EfBvxj8QHxX4u0zSLO31vWdixC/wBQjiUXE6oqqFSSXcyLtGFIB5r1ugAooooAKKKKACiiigAqGS2t5V2yxqwPYgGpqKAOO1D4eeANWydV0PT7nPXzbaN/5qa8+1n9mP8AZ08QZ/tnwLoVxnrusIf/AIgV7lRQB8hal+wF+xRrGf7T+F3hubPXdYR/4Vw95/wS7/4J832fN+Enh1c/3LRV/lX3rRQB+ck//BJP/gnfOxZvhdo4z/dix/WqR/4JCf8ABOstu/4Vjpf/AHycfzr9KKKd2KyPzej/AOCRn/BO2Nt3/CsNJP1Qn+tdBaf8Erv+Ce1mAE+E+gPj+/bBv51+gNFF2FkfGGm/8E6v2FdIx/Z3wo8NRY6YsI/6ivRdI/ZE/Zc0AhtH+H2gQEdNthD/AFWvoqikM8/0/wCE3ws0rH9meGtKt8dPLs4l/ktdlbaZptknl2dvFEo7IgUfoKvUUAIABwOKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+RD/g6F/wCThP2Ef+ytQf8ApTp1f131/Ih/wdC/8nCfsI/9lag/9KdOr+u+gAooooAK/Mz/AILP/wDKJb9o/wD7J34g/wDSOSv0zr8zP+Cz/wDyiW/aP/7J34g/9I5KAP5tn8f+NPhr/wAGTaeIPAcksV7c+Ff7LleI4YWeqeJPsd2D/stbzSK2OzHtX7Z/8G2ng3wx4K/4IpfAy38MRoq6jp1/qNy6dZLq6v7l5Sx6kqTs9goA4Arwn/gjd+zb8Pf2wv8Ag25+HP7MHxVjZ9B8ceE9Y0q6ZP8AWQ+dqF3smjzx5kMgWWPPAdRmvgn/AIJkfH79sv8A4IK+GdQ/4J1/8FB/hL4w8W/C/RNTvLrwX8RvA+kza7py2l5K0zw3MVuGkhRpTJMqsDOjyMpjKBXAB/X18Sfhj4B+MHhOTwL8TNLh1nSZLi0u2trgEp59hPHdW8gwQQ0U8UciEHhlBr+SP/g4L/5TR/8ABOD/ALHpf/TtpNfstZ/tq/Hb9ujV9L+HP7D3g7xb4H8Mz3UM3iH4j+MNDk0SK10+J1aSDSLHUohPeXtwoMSyvbi1twTIzSOqxn8Hf+C5vi34v/F7/grR+yn8VPgr8Efix4z8L/s9+Kft/inVNH8DazLbSCPUbOWRLGR7VEu9qWjlZYmMMm5SkjA5oA/tiIDAqwyD1Ffwff8ABvH4a074cf8ABef9uP8AZn+HMEf/AArFZfEEclhCoWyiex1zyLW38v7uIobi6iXjG0Hsa/d39oL/AIKtftX+Ofhfe+Gf+Cef7LfxT174g6pH9m0+88a+H28J6Lp0swK+fcSam8Ly+SSG8tU2PjBkUcnhv+CNX/BHjxP/AMEw/wBnP4mfEL46a9F4y+OPxXW41LxNq9qZJUjOySRLWGWQB5W86SWWWbYhlkcDbhFJAPwT8cfsp/8ABYn/AINmvih4l+LX7BUUvxl/Zg1O/k1O/wDD86PePYQnqbuCMCe3mjiG031qDC6orXCgBYx/Sv8A8EbP+CnP7E//AAVM8P8AjP8AaE/Z+0R/CPxJuv7Ni8c6JeyCS9RraJ47OUOp2T2+3fHHMqIx27ZEUhRXxH/wTJ/4LBfED4IfsXfDn4Sf8FMPg98T/BPivQ9BsbGz12Pwrqet2GvWcMCLazedZQTyR3cke0TxSqGEnzFhuKrgf8EP/wBiP4g6f/wUd/aP/wCCoEXw41T4LfDT4ogaZ4Q8Jazbf2dqFxE0sM1zqE9h1tRLNAZIo3AP79wo2BWYA/qO8WeF9C8ceFdT8FeKLdbvTNYtJrK7gb7ssFwhjkQ+zKxBr+AbX/gR/wAFl/8Ag2A8ea/43/ZQt5Pjh+ytd38upXWlzK1wbCBjy11HEvnWNwsY2veQK1rJtVpkztjX+679pVNTk/Zz8fx6IJWvW8N6qLcQZMplNrJs2bfm3ZxjHOelfgL+wB/wWR8X/Cf9knwJ8MP+Clvwb+KHgTx7o+hWViL+Pwnqet2GvpBAiQ3EU9lBOVuZ1wZoZQpjkJBOCMAH0B/wTj/bv/Zy/wCCun7OnxJ+Mv7AesSfB74seIbmwHjCS7s4NU1HTdQht47e3uGt5mNvcRPbW/k2821VYRnegdGQfgl/wSS8Df8ABZ7/AILE/sE+LviHqX7XetfD1NL8Varbadc2MLy6nqOqLBbSFLq6SSFrTTocosNvaAAmSVmXART+mf8AwQM/YV+I/wAPP2vf2kv+CiGo/DvUPgx4B+MGopD4M8FarCLK/SwSZ53u7myX/j03uR5MBwU3yADywjP+bX/Brl/wUa+G37K/7AHjb4YfFnwb46um/wCE11XUtFvfDvhbU9etdXmltbVWsYJbC3mRLxGjGUnaNdsqNvA3YAPrX/glN/wUj/4Ko/tVf8Eyf2jvgTpFvB4p/au+Al83hzTrm/e1R7qS4d4UacylLZ7q1a3ugryERzNHH5m4ly3xR+2p+2D8Yf8AgmxoH7P/AI9+GX7Vnir4h/Hn/hINC0r4ueC7/XF8R+Ho5r6CSa+geOGNrSxeOeNoIoY5Y5miPmIp8suPa9O/4J8f8FJ/hX/wR1/a6/aO+HPh7VPDPx8/ad8WyeMrjwtpTE61p2gz6gZ5LJDCdxu3t7i6Z4k/eeW/lBRNla+Hf21h+0H+0L/wRr+A37Pv7JX7GHxG8FaT8JPFnhzWPExudE+yTXmr21ndWszWVige+v0uJp2kmvnijCuUVwWc7AD+mj9vP9rH43fFn/gqB8KP+CQP7Pfiu7+Htv4j8PXXjjx14o0oRHV49Ht3ljgsdPklWRIJp5YGE0xQukboyEfMGv8A7MH7K3/BUD9kz/gprqelW3xG1f4l/soeINBa5Z/G+srqut6TrCIMRwyyKLlg0qkj/lj5MhDfvEUn8nf+CoHgP/go18Nv2zPgN/wX6/Zl+C2tX9/pOhzeH/GPw5TF7rMGktcXf2d7mO0ErCW5sroGdYlmFjPGoYyKpY/rh+xP+3F+2J/wU3+NHhvxzZfB3xR8C/gr4QhurzWZPGMYttR8U6lc2z20Fjb2xQH7Bb+a1zLcZ/eyxxINoV1IB+OPw4/bX+OH/BVz4ZfE79oyfxb8fvA9td63qem/DG2+E+h3z6JY2GnfLa3F/PZwP9vuZ5txuo3n2Ko2Js6j9uf+CDPx6/4KEfHD9iVrX/gpj4Q1rwx8SPCurzaSt3rmntptzrGnLFFLBdvGUjUuDI8Lsi4YxBj8zNX87n7FPxz/AOCjf/Bub8RvHn7BfxE/Z58ZfG34Q6lr13q3gbXfCVnNdOwuiFRA8UU0f75I0aW3ZklglDsA6uCf62/+Ce/iL9sL4k/CnWPjn+2fo3/CF67451d9T0jwV5qXDeGdFWCGC2tJplRTJcymN7q4JxtefZtTYVAB960UUUAFFFFABRRRQAUUUUAFIVDcMM0tFAFd7S1lG2SNWB9QDWTP4W8NXR/0nT7eT/eiU/0reooA4m4+Gvw9ugRc6HYyZ/vW6H+lc9c/Ar4M3nNz4X0x/raxn+ler0UAeLP+zj8BpPv+ENJP/brH/hSJ+zj8BY/ueENJH/brH/hXtVFAHk9t8CfgxZnNr4W0tPpax/4V0Ft8Mvh1ZjFrodhH/u26D+ldxRQBz8HhPwvbEG3062Qj+7Eo/pWvHZ2kQ2xRIo9AoFWaKAECqv3RiloooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5EP+DXP/AJLl+3P/ANlauP8A0ov6/rvr+RD/AINc/wDkuX7c/wD2Vq4/9KL+v676AP8AME/4PVv+UpvgH/slWlf+nfWK/r9/4Ncf+UFHwM/7mb/1INTr+QL/AIPVv+UpvgH/ALJVpX/p31iv6/f+DXH/AJQUfAz/ALmb/wBSDU6AP3+ooooAKKKKACiiigD+dn/gup+0p8SPhTr3w48D/CbxHqPh3UNl9ql1Lpt1JayshMcUILRMpK5EuQeDXPf8EZ/2tf2uf2h/jbrXg34r+L7nXvDGiaK920d3DC8v2p5Y44h54jEv3TIcFyDtr9pPj/8AsWfsx/tQ30OrfHHwpb61f21uLWG782a3uI4VZnCCSF0baGdmAJIyT61y37KX7CHwH/Y01TxHqnwXS/jPicWy3Ed7OLhYltfMKLEdgcAmU7tzNnA6Yr5GWT5g84WM9r+5b1Sk1oo2Sa2d2fs1LjXhyPBbyR4S+NUWlOUINXlO7andyTUW7aLZI+zKKKK+uPxkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/W/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aAPzd/4LF/8on/ANpH/sm3ib/0gmr5U/4Nq/8AlCF8Bf8AsH6r/wCna9r6r/4LF/8AKJ/9pH/sm3ib/wBIJq+VP+Dav/lCF8Bf+wfqv/p2vaAP3NooooAKKKKACiiigAooooAKKKKAP5rP+Ct37Dv/AAUV/bA/by/Zy+P/AOz54O8KyeFv2c/Ej+IYn1bxDJa3WuG5lsJpIvKSxlFqE+xtGrl5SxfcVAG0/wBGnhS+8Q6n4X03UfF1hHpWq3FrDJe2UU/2qO2uHQGSJZtkfmqjZUPsXcBnaM4rfooAKKKKACiiv5uP+Dl79oX43fs4/speEPGHwM8Ual4W1GbXjFLPptw9u8kfksdrFCCVzzj1q6VN1JxhHdu33lQg5SUVuz+keiv8k60/4Kv/APBRe4+/8YfFH4alN/8AFV0dp/wVJ/4KGzqC/wAYvFXP/USm/wDiq+iXCmPfRfeelPKMRHe33n+sdRX+Upa/8FM/+CgsrAN8YvFeMf8AQTm/+KroLf8A4KPft+ykbvjJ4t5/6ic3/wAVVrg/MX0j95yzwlSO5/ql0V/loW3/AAUN/b2lA3/GTxdz6apN/wDFVu2/7ff7d8pwfjL4v/8ABpL/AI0/9T8x7R+845yUNz/USor/ADBIP27P26ZPvfGXxh+GqS/41sw/tu/txyAbvjN4x5/6isv+NS+EcwXSP3nLPH0o7n+nFRX+Ztb/ALZn7bsrbW+M/jL/AMGsv+NbEP7Xv7azn5vjR406f9BWX/GofCuPW6X3nLLO8LHdv7j/AEsaK/zY4f2rv20WGW+NHjXn/qKy/wCNbEP7T37ZrjLfGrxr+Gqy/wCNZS4bxi3S+85pcS4KO7f3H+kJRX+cfb/tJftjS43fGrxv/wCDaX/Gtq3/AGgf2wJQM/GvxwM/9RaWsZZFilul95jLizL47uX3H+itRX+d/D8c/wBruV8N8bPHA/7i0tbMPxj/AGtXwW+Nvjrn/qLSVjLKa8d7feYy4yy1buX3f8E/0J6K/wA/CD4qftYSnn42+Ov/AAbyVtW/xD/aqlOD8bvHf/g3krmng6kdzJ8cZWusv/Af+Cf360V/BJD4x/akkA3/ABw8edP+gvJWxbeIv2nZsb/jh4+5/wCoxJXNNcm4v9esr7y/8B/4J/eHRX8K1vqH7S8v3/jj4/H01iSt23X9o+VtrfHL4gf+DiT/AAriqY+lD4gXHWV95f8AgP8AwT+4yiv4kbbSv2iJWw/xz+IPPprL/wCFdBaeFv2gJ/vfHP4hj/uMv/hXn1eIsHT+Jv7jWPGmWy2cv/AT+06iv40bXwF8eJsB/jp8RM/9hl/8K6G1+F3xwmwH+OvxF/8AB0/+FebV43yun8Tl/wCA/wDBOqHFGBn8Lf3H9htFfyJ23wY+M833vjr8R/8AwdP/AIV0Nt8A/jBNjd8d/iRz/wBRt/8ACvLq+JuSU/ilP/wH/gnfSzbD1Phb+4/rLor+Va3/AGbfivMfm+PHxKH01t//AImuitf2VvihODu+PPxL/wDB2/8A8TXnVPGHh2HxSn/4B/wT0aUlU+E/qHor+Zq0/ZA+I0/3/j18Tef+o4//AMTXSWv7FHj2fG749/E/n/qON/8AE1yS8buGY7yqf+Af8E9Olldep8NvvP6QaK/EH/glFcfEfw78e/jx8HfGXjXXvGen+Fr7SE0+bXrtruaJbi2MjgMQMZY9h2r9vq/Usvx1LG4WljKHwVIqSvo7SV1f5M4atN05uEt1oFFFFdhAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Ih/wAGwv8Ayc9+3x/2Vqb/ANK9Tr+u+v5EP+DYX/k579vj/srU3/pXqdAH9d9FFFABRRRQB/Ih/wAFDP8AlbA/Yx/7EzU//RWtV/XfX8iH/BQz/lbA/Yx/7EzU/wD0VrVf130AFFFFABRRRQAUUUUAFFFFABX4z/8ABdL9l39rT9uj9g3xN+xf+ytoGiX1x48Nkt/q2t6s2nx6dHp19a3q7IktpzO03kFPvRhAd3zdK/ZiigD4l/4J1+Df2gvhd+xz4C+DX7S3h/TPD/iXwNomm+HGGkakdUtbyLTLSGAXSu0Fu0RlZGPklW2Y++2a+2qKKACiiigAoor/ADxv+CvX/BVv9v79nv8Ab88d/C74T/EvV9I0CxukW2s4ZAI4VManCjae59a6cJhKmJqKlSXvM2oUJ1p+zhuf6HNFf5WNv/wW3/4KgzAZ+L+uf9/V/wDia6C3/wCCz/8AwU5mPz/GDXv+/wAv/wATXsrhXMX9hfejqnleIjuvxP8AUuor/Lvtf+CxP/BTScc/GLXwT/02X/4mtyD/AIK6/wDBS+Xg/GXxCP8Atqn/AMRVrhLMn9hfejmnh5x3P9PSiv8AMlg/4Kxf8FKpuvxn8RD/ALap/wDE1rw/8FUf+Ck0oyfjT4j/AO/qf/EU/wDVLMv5F96OWdSMdz/TDor/ADUoP+Cn/wDwUikI3fGrxJ/39T/4itiD/gpd/wAFHpevxs8S/wDf2P8A+IqXwpmK+wvvRyzzCjHd/gf6StFf5wUH/BR7/go1IPm+N3ib/v7H/wDEVpwf8FEP+Ci0oG743+Jv+/sf/wARWb4Zx63ivvRzSzvCR3k/uZ/o1UV/nVw/8FAP+CiUpx/wvHxOP+2sf/xFaaft4f8ABRBiA3xz8Uc/9NY//iKylw9jVvFfejnlxJgVvJ/cz/RBor/PTi/bh/4KFzYz8dPFP/fyP/4iteH9s/8A4KDyfe+O/ir/AL+R/wDxFZSyXFLdL70ZPivLlvN/cz/QVor/AD/YP2wP+Cgkoz/wvjxWP+2kX/xFa8H7V/8AwUAlOG+PXiz/AL+Rf/EVjLLK8d1+Jk+McsW83/4Cz++uiv4KYP2n/wBv6br8fPFo/wC2kX/xFbdt+0X+31P1+P3i0f8AbSL/AOIrnnhqkdzN8a5Uvtv/AMBZ/d3RX8LMXx8/b1kxn4/+Lv8Av5D/APEVswfGr9vGUZP7QPi//v5D/wDG65ZyUPiF/rvlP87/APAWf3G0V/EZbfFf9uyb737QnjD8JIf/AI3W1B8Qv26Jhk/tDeMh/wADh/8AjdcdTMaEPif4DXG2VPab/wDAWf2s0V/GDb+L/wBuKfr+0R4zH/A4P/jdb8Gs/tuy4L/tFeNOfR4P/jdcFXiTA0/ik/uZrHi/LJbTf/gLP7H6K/j+t3/bYl6/tGeNf++4P/jdb9vpn7aU33v2jvGw/wCBwf8AxuvOq8cZTT+Ko/8AwFnVT4jwM/hk/uZ/XFRX8nlv4V/bMn6/tI+OB/wO3/8Ajdb1t8P/ANsafhv2k/HP/fdv/wDGq82r4m5BT+KrL/wCR3U8yoT+F/gf1S0V/Lzb/Cj9sGY4P7S3jof8Dt//AI1XQW/wQ/a8mI3ftMeOxn/at/8A41XDPxf4ah8VaX/gEv8AI9GlF1PhP6ZqK/m6tv2eP2t5zhv2m/Hn4Nbf/Gq85+P3wt/bD+EHwQ8S/FXSv2lPHN3c6FZPdxwSvbiOQpjhiIwcH2qMP4xcMVq0KEK0uaTSXuS3bsuh3xyvESi5Jaep/UXRXif7N2v614q+AnhDxJ4juHu7++0q1mnmk5aSR4wWY+5Ne2V+onnBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wAHQv8AycJ+wj/2VqD/ANKdOr+u+v5EP+DoX/k4T9hH/srUH/pTp1f130AFFFFABX5mf8Fn/wDlEt+0f/2TvxB/6RyV+mdfmZ/wWf8A+US37R//AGTvxB/6RyUAfO3/AAbf/wDKEz4B/wDYJv8A/wBOV3X7eV+If/Bt/wD8oTPgH/2Cb/8A9OV3X7eUAFFFFABRRRQAUUUUAFFFFAHmfxh174p+Gvh1qWs/BXw9aeKvE8SL9h0y/v8A+y7aZ2YA+ZciG4MaqpLcRMTjAHOa/CX/AIN3/wBg39uL/gmb+z14h/ZW/ap0Hw42mXuu33iWz13RNZe7czXcdpD9le1e1i2gCF5BMJT2XZ/FX9E1FABRRRQAUUUUAV7q7tbGBrq9kWGJBlnchVA9yeBWF/wmfg//AKC1n/3/AE/+Kr8//wDgr9fX2mf8E2Pi7f6bM9vPFoUrJJGxV1O5eQRyK/yvLf49/GmSZlbxTqZAJA/0mT1/3q9XLMpq45yVJpctt/O/+R3YPATxPNyNadz/AGQ/+Ez8H/8AQWs/+/6f/FUf8Jn4P/6C1n/3/T/4qv8AHlsfjT8X5cB/E2pnp/y8yf8AxVdVa/Fz4pvjd4j1I5/6epP/AIqvZXBuLf24/j/ka1Mqqw3aP9fD/hM/B/8A0FrP/v8Ap/8AFUf8Jn4P/wCgtZ/9/wBP/iq/yOLT4mfEiQZfxBqRP/X1J/8AFV0Vn8QPiA6fNr2on/t6k/8Aiq0/1Jxv88fx/wAjiqUXDc/1pf8AhM/B/wD0FrP/AL/p/wDFUf8ACZ+D/wDoLWf/AH/T/wCKr/J8tvGnjeQgNrmo8/8AT1J/8VXQW3ifxe7YbWtRPH/P1L/8VS/1Jxn88fx/yOGpiIw3R/qx/wDCZ+D/APoLWf8A3/T/AOKo/wCEz8H/APQWs/8Av+n/AMVX+V1a634mdRu1fUD/ANvUv/xVbtvqGvOwDatqB4/5+pf/AIqolwbi19uP4/5HFPN6Ud0/w/zP9Sf/AITTwd/0FrP/AL/p/wDFUv8Awmfg/wD6C1n/AN/0/wDiq/y9oJtWYgNqd/8A+Bcv/wAVWzAl+xG7Ub/n/p6l/wDiqyfCeKX24/j/AJHJPiPDx3jL8P8AM/08P+Ez8H/9Baz/AO/6f/FUf8Jp4O6f2tZ/9/0/+Kr/ADLbSwuJF3PqF+f+3uX/AOKrbtdF8zG6+vv/AALl/wDiqwlw3iI7yj+P+RzS4twsd4S/D/M/0t/+Ez8H/wDQWs/+/wCn/wAVQfGng4cnVrP/AL/p/wDFV/m0W3hm3kAd7y+/8C5f/i62rbwdYO+Gu77/AMC5v/iq55ZHWjvJfic8uNcGt4S/D/M/0ff+Ez8H/wDQWs/+/wCn/wAVR/wmfg//AKC1n/3/AE/+Kr/Oht/AukOo3XF8f+3ub/4qt+3+HOgOQDNe/wDgXN/8XXPPLKkd2jCXHmCX/Luf3L/M/wBD/wD4TPwf/wBBaz/7/p/8VR/wmfg//oLWf/f9P/iq/wA9+D4WeGJPvSXp/wC3yb/4uty2+EHhBvvten/t8m/+LrknQcd2ZvxAwP8Az7n9y/zP9AT/AITPwf8A9Baz/wC/6f8AxVH/AAmfg/8A6C1n/wB/0/8Aiq/getPgn4HfBf7YeP8An8m/+LroLP4EfD6U4dLw5/6fJv8A4uuCriIw3F/xELAf8+5/h/mf3g/8Jp4P/wCgtZ/9/wBP/iqP+Ez8H/8AQWs/+/6f/FV/DJafs9fDWRsPHef+Bk3/AMXXQ2f7NnwrlcB4Lsj/AK/J/wD4uvNq55Rp7xf4f5mkePsC/wDl3P8AD/M/t6/4TPwf/wBBaz/7/p/8VR/wmfg//oLWf/f9P/iq/iws/wBl74QyL89rdH/t8n/+LrpbL9lD4LzAM9ndHI/5/J//AIuvKrcZ4Ol8UJfh/mdVPjPBz2hL8P8AM/sq/wCEz8H/APQWs/8Av+n/AMVR/wAJp4OH/MWs/wDv+n/xVfx/2X7IHwMkwXsLk/8Ab5P/APF11Vn+xh8ApFzJptyc/wDT7P8A/F15FfxMy6l8VKf3R/8AkjvpcRYeptF/h/mf1rf8Jn4P/wCgtZ/9/wBP/iqP+Ez8H/8AQWs/+/6f/FV/KjafsSfs7ykB9KuD/wBvs/8A8XXVWf7CX7NcgzJo9wT/ANftx/8AHK8it4yZTT3o1Puj/wDJHq0cZCpsmf1Cf8Jn4P8A+gtZ/wDf9P8A4qj/AITPwf8A9Baz/wC/6f8AxVfzSWX7AH7MEyhn0W4Of+n24/8AjldZZf8ABPD9lSU/PoM5/wC364/+OV50/HfJI74er90f/kj16GDnV+Fn9F//AAmfg/8A6C1n/wB/0/8Aiq27O+stRt1u9PmSeJujxsGU/Qjiv53B/wAE4v2SjaSyf8I/PlUYg/brjqB/10r7N/4Inyzv/wAE9vC8dxLJN5OoavErSuXbZHeSqoyxJOAAK+x4L8QcBxLKvHB05x9ny35kvtXtazfYrGYCeHUZTa17eR+sFFFFfenCFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8iH/Brn/yXL9uf/srVx/6UX9f131/Ih/wa5/8AJcv25/8AsrVx/wClF/X9d9AH+YJ/werf8pTfAP8A2SrSv/TvrFf1+/8ABrj/AMoKPgZ/3M3/AKkGp1/IF/werf8AKU3wD/2SrSv/AE76xX9fv/Brj/ygo+Bn/czf+pBqdAH7/UUUUAFFFFABTJZY4ImmmYIiAszMcAAdSTT6xfEmg2Xinw7f+GNRaRLfUbaW1laJtkgSZSjFWHRsHg9jSd7aFQUXJKTsj+QMf8Fwf2w/DXxG1vUdKutK1zw/PqV1LYWWpWKjybR5WMUYktzBIdqEAF2Y8c5r+pz9l34o+Kvjd+z34R+L3jXTodJ1HxJp0WoPa27M0SJPloypb5sNGVbn1r8bvid/wb8/BzV/MufhD451XQ3OSsOpwRahFn0Bj+zsB7ksR71+8/gzwtpngbwfpXgnRV22ej2cFjAOmIrdBGo/JRXyfDuEzajWq/2hNuNtNU1dvp1VvPufsXiZnHB+NwWF/wBW6MY1bvnag4NRSSSeii+Zu91d3Wr79JRRRX1p+NhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9f+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/ABBv+CsX/KU39pb/ALKr4y/9O91X+3zX+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5oA/N3/gsX/yif8A2kf+ybeJv/SCavlT/g2r/wCUIXwF/wCwfqv/AKdr2vqv/gsX/wAon/2kf+ybeJv/AEgmr5U/4Nq/+UIXwF/7B+q/+na9oA/c2iiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Ov8Aguv/AME+vjt/wUR/Z68NfC34DmwW+03VzeXJv5/IQRGNl+U7WycnpX7i0VUJuElOL1WpUZOLUluj/OWt/wDg1n/4KMW+MXPh0n/r+P8A8brat/8Ag2A/4KNW4A83w4f+38//ABuv9E+ivYXEWYrar+C/yOyWZYmW8/yP867W/wDg21/4KIeENBvfE2pt4eNtp1vJcS7b8ltkSlmwPL5OBXJfAD/gg3+3Z+0P8ItD+Nvw5GgtoniCBri0+03pjl2B2Q7l2HByp71/oy+ItCsfE+gXvhvVAxttQgkt5dpw2yVSrYPY4NeefAj4KeCP2dPhJonwV+HCzJomgQm3tFuH82QIWZzubAzyx7Va4lzL/n8/uX+RhLE1Jbs/hOi/4Nwf+CkcQA8rw0cf9RFv/jdakX/Bur/wUoiORB4Z/wDBi3/xuv7+aKP9Zcy/5/P7l/kc8oqXxH8C8f8Awby/8FKo+lt4ZP8A3Em/+N1pRf8ABvv/AMFK4gB9j8MHH/USb/41X961FL/WTMv+fz+5f5HPLCUZbxP4O4v+CBH/AAUuiOVsfDH/AIMm/wDjVaEf/BBj/gpjH00/wuf+4m//AMar+7SiofEOYPer+C/yMJZXhZbw/P8AzP4XI/8AghR/wUyjAA03wsf+4m//AMarRj/4Ic/8FNoxj+y/Cx/7ib//ABqv7kqKh55jnvU/Bf5GMsjwL3pfi/8AM/g1+K3/AASW/wCCiPwO+F+v/F3xppXhr+yPDdjNqF55Oou8nkwKWbavljJwOBkV0nw0/wCCSn/BR/4meANE+JXhbSPDB03XrGDULXzdSdX8m4QOm4eWcHBGRX9sXxb+GPhf40/DHXvhJ42WR9I8R2M2n3ghfZIYZ1KsFbnBweDitH4deBNB+F/gHRfhv4WDrpug2UGn2okbe4ht0CJubucAZNZvN8W95/gjKXDuXPekvvf+Z/GhF/wRo/4KfRNuGi+Ez/3FH/8AjVaMf/BHn/gqBGB/xIvCZx/1FZP/AI1X9qNFZSzHEPef5Gb4Xyx70V97/wAz+L6L/gkV/wAFQosY0Dwnx/1FZP8A41WlD/wSc/4KjQ4x4e8JH/uLSf8Axqv7L6Kxliar3ZD4Tyl/8uF98v8AM/jij/4JXf8ABUqPp4c8In/uLSf/ABqtOD/gl/8A8FSoMY8M+ETj/qLSf/Gq/sKorCXvbk/6o5T/AM+F98v8z+QmP/gml/wVNj+74W8IH/uLyf8AxqtOL/gnL/wVRiII8KeDz/3F5P8A41X9cdFc08JRl8URrhLKV/y4X3y/zP4vvjr8AP8Agoj+zZomieIviJ4T8L/Z9e1qz0G1+zapJI32u+JWLcPLGFyDk9q+i4P2Ef8AgqtABt8HeDj9dYl/+NV/SJ8d/wBnr4eftF6JougfEdJ3t9A1mz121+zyeWRd2LFoixwcrknI717iBgYrknkuCn8VP8X/AJmkeF8rW1Ffe/8AM/lgg/Ym/wCCrUHTwZ4NP/cZl/8AjVa9v+x5/wAFXYCP+KJ8GHH/AFGZf/jVf1E0VxVOFMqn8VBffL/M3jkGAjtSX3v/ADP5joP2VP8AgrBB08DeCz/3Gpf/AIzWvD+zV/wVkhxjwH4KOP8AqNTf/Gq/paoriqcB5DP4sKvvl/8AJHVDLcND4YfmfzfQfAP/AIK0QdPAHgk/9xub/wCM1sQ/Br/grZB934e+CT/3G5v/AIzX9FNFcU/DPhmfxYNf+BT/APkjtpxUPhP57rf4Zf8ABXC3xt+HXgc4/wCo5P8A/Ga3IPBn/BXKDGPht4HOP+o5P/8AGa/fWiud+FPCr3wK/wDAp/8AyR208fXh8Mj8lf8Agm9+zf8AtPfCb4q/Fv4w/tM6ZpOj33j6602a2tdJu2u40WzhMTZZkUjPBr9aqKK+6weEpYWhTw2HjywglGK7JKyWuuiOWc3OTlLdhRRRXSSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfyIf8Gwv/Jz37fH/AGVqb/0r1Ov676/kQ/4Nhf8Ak579vj/srU3/AKV6nQB/XfRRRQAUUUUAfyIf8FDP+VsD9jH/ALEzU/8A0VrVf131/Ih/wUM/5WwP2Mf+xM1P/wBFa1X9d9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/CH/wVO/4IWft//tW/tweM/jb8K9CsZ9B1a5R7WWW9jjZ1CKCSp5HIr+7yiujDYqph6iq0naSNaNedKfPTdmf5pkH/AAbYf8FQIMAeHNOOP+ohFXnngn/giB+3v4z+KPiL4O+HdCspte8KpBJqMLXsarGtwDswx4bOO1f6e1fPngD9nDwX8O/jZ4u+O2jT3MmreMoraK8jkYGFBa5C7AACOvOSa9ZcS5iv+Xv4L/I6ZZliJby/BH8A1t/wbwf8FP7cD/ildOOP+ojFWvD/AMG+v/BUCE5/4RHTj/3Eov8ACv8ARloqlxTmf/P38I/5HPPETluz/Oxh/wCCBH/BT6L/AJk/Tj/3Eoq1Yf8Agg1/wU+i4/4QzTj/ANxOL/Cv9Dmij/WnM/8An7+Ef8jmlCMt0f57MX/BCz/gp9ER/wAUVpxx/wBRSL/CtWH/AIIf/wDBT2HgeB9P/wDBpF/hX+gjRSfE+ZP/AJe/hH/I55YChLeP5/5n8AEX/BFD/gp/Fx/wgunH/uKxf4Voxf8ABF7/AIKfR/8AMh6f/wCDWL/Cv77qKzfEWYPep+C/yOeWT4SW8Pxf+Z/BJF/wRu/4KfRn/kQNOP8A3FYv8K474o/8Ez/+Ch/wW8Bah8TPH/gWxt9I0mPzbmRNTjdlTpkKBk1/oGV5N8cvg94b+Pnws1f4S+LpZodO1mHyZntyFkC5z8pII/Ss3n2Oe9T8F/kYvh/APen+L/zP4g/CH/BLT/gpP4t8N2HizQPh/p8tlqMCXEDtqsSlo5BlSRjjg12MP/BJ/wD4KfRDB+HOnf8Ag3i/wr+3vwP4S0/wF4O0zwVpLO9rpVtHaxNIcsUiUKCffArqazecYt7z/Bf5GT4Zy170vxl/mfw2w/8ABK//AIKfQjH/AArfTj/3GIv/AImtSL/gmD/wU+iOR8NNOP8A3GIv/ia/t+orKWY4h7y/BGT4Tyt70fxl/mfxKQ/8E0v+Cn0P/NMtOP8A3GIv/ia17f8A4Jzf8FP4f+aYacf+4zF/8TX9qlFYSxNSW7IfB+U/8+f/ACaX+Z/F7F/wT2/4KexY/wCLW6ccf9RqL/4mtaH9gr/gp5CMf8Kp08/9xqL/AOJr+yyiuecVLcn/AFNyj/nz/wCTS/zP46bf9h3/AIKewcf8Km08/wDcbi/+JrXg/Yy/4KfQ/wDNJNPP/cbi/wDia/r/AKK5J5fQn8UfxY1wdlK2o/8Ak0v8z+LiH4d/t623xqP7PzfCuzPif7ANT8j+2I9n2Ytt3b9mM57V71F+y7/wU8iAA+D2nnH/AFHYv/iK/pLP7OPgs/tHn9pwz3P9unShpHlbh5Hkht2cYzuz719BVxVOH8BU+On+L/zNY8K5XHal+Mv8z+UyD9nP/gp7B/zRvTz/ANx2L/4itq3+BX/BTyHr8F9PP/cei/8AiK/qZorgqcG5RU+Kj/5NL/M6YcP4GPw0/wAX/mfzAwfCL/gp3AQf+FKaef8AuPRf/EVs2/w5/wCCnkDZPwQ08/8Acfi/+Ir+mWiuCp4c8Pz+LDf+TT/+SOynl9CHwx/Fn821v4R/4KdQf80NsD/3MEX/AMRW5BpX/BTqEg/8KK084/6mCL/4iv6LaK4p+FPDEviwn/k8/wD5I76cnT+A/ntt5P8Agp5Af+SC2B/7mGH/AOIrg/jb4M/4Kc/GP4QeIPhQfgbYWH9vWj2huf8AhIIn8oPj5tuwZx6V/SdRU0fCfhelVhWp4S0otNe/PdO6+0dkcyxCTipaeiPH/wBn/wAJa34D+CXhXwb4kjEV/pmmW1tcIp3BZI0CsAe/Ir2Ciiv0Y4QooooAKKKKACiiigAooooAKKKKACiiigAooooA/kQ/4Ohf+ThP2Ef+ytQf+lOnV/XfX8iH/B0L/wAnCfsI/wDZWoP/AEp06v676ACiiigAr8zP+Cz/APyiW/aP/wCyd+IP/SOSv0zr8zP+Cz//ACiW/aP/AOyd+IP/AEjkoA+dv+Db/wD5QmfAP/sE3/8A6cruv28r8Q/+Db//AJQmfAP/ALBN/wD+nK7r9vKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD5c/bU/Z7vv2rP2W/Gf7PWm6imkz+KtPayW8dPMWIsQdxUEZ6etfyTp/wAGi/iGNi6/FW1yTn/jyf8A+Lr+3uiujD4utQv7GbjfszWlXqU7+zk1fsfxLQ/8Glfi2D7nxXtf/AF//i60I/8Ag0+8bx42/Fez4/6cH/8Ai6/tZorqWcY7/n9L72U8TVe8395/FtH/AMGqPxBj+78WLP8A8AG/+Lq9H/waxfEmIYT4sWX/AIL2/wDjlf2d0U/7ax//AD/l97MpTk92fxoxf8GuHxRjOB8WrHH/AGDm/wDjlfNH7M3/AAQY+JH7RV947stN+JFppp8D+Jbvw5IXsmfz3tMZkHzjAbPSv7xa4bwX8NfAnw7l1SbwTpkGmtrd7JqN8YV2+fdS/fkf1Zu5o/trH/8AP+X3sylTi90fyRR/8Gx3xij+78W7D/wXN/8AF1bT/g2b+NMZyvxcsP8AwWt/8XX9hdFL+2Md/wA/pfezJ4Si94L7j+P9P+Daj44J934u6f8A+C1v/i6tp/wbafHZMbfi7p/H/UMb/wCLr+vWipea4zrWl97Mnl2Fe9NfcfyKx/8ABuD8fohhPi9p3/gsP/xyrcX/AAbnftDRfd+L+nf+Cs//ABdf1v0VDzLFPeq/vIeU4N70Y/cj+SyP/g3d/aNi4T4wab/4Kz/8XWJ4v/4IF/tIeC/COq+LH+LumyrplpNdlBpZBcQoXxnfxnFf1255qnqWnWWr6fPpWpxLNbXMbRSxtyrI4wQfYg1Dx2Ie9R/eQ8lwD3oR+5H8av7Lf/BGv9pD9pT9n7wr8eNM+KenaZD4nslvUtX03zGiBYjaW3jPT0r6FT/ggL+1In3fjHpn/gqP/wAXX9Q/gfwP4T+GvhOx8C+BbCLTNI0yMQ2trAu2OKMEnao7DJrq6h4mq95Mh5Flz3w8fuR/Kyv/AAQT/asQ5X4yaX/4KT/8XVyP/ghB+1nH934yaX/4KT/8cr+pqis3Uk92T/q/lv8A0Dw/8BR/LlH/AMEMf2vIvufGbS//AAUn/wCLq5F/wQ//AGw4jlfjNpX/AIKP/s6/qBorGVOMt0H+r2Wf9A0P/AUfzGx/8EUP2zovufGfSf8AwUf/AGyrsX/BGD9taEgp8aNI/wDBP/8AZ1/TLRWEsFh5fFTX3FLIcuW2Hj9yP5Rf2g/+Caf7a37PXwM8VfGu6+Luk38PhfTZ9Ra2XSdhlEK52hi5xn1rsvhB/wAExf24vij8LvDvxMsvjFpFpHr2n29+sLaPuMYuED7Sd/OM4zX9Mvi/wj4b8feGL7wX4xs49Q0rU4Wt7q2mG6OWJxhlYdwRVzw/oGj+FdDtPDXh63S0sLCJILeGMYSOOMYVQPQDgVzzyfAy+KhF/JGkcmwMdqEfuR/PBF/wSX/b1i+78a9G/HRf/s6vx/8ABKr9v+IYT42aKMf9QT/7ZX9E9Fc0+Gsql8WFg/8At1G0cuwsfhpr7j+emL/gl7/wUJi5X426L/4JB/8AHK0Yv+CaX/BROLlfjbon/gjH/wAXX9AtFc0uDsjl8WCpv/t1HRGjCPwxSPwKi/4Jy/8ABR+EYT436Hx/1Ax/8XWjF/wT4/4KUQ/c+OGh/wDgiH/xdfvJRWEuBeHnvgKX/gCOmFacfhlY/CkfsFf8FNAjR/8AC8tCwwIP/EhHQ/8AbSv0M/YG/Zg1z9j39mPRfgR4k1iPXr7TZruea9ii8lJHupnmOEJOMFsda+yqK9PK+H8ty1zeX4eFJytflile217drsdXEVKiSnJuwUUUV7BiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH8iH/Brn/yXL9uf/srVx/6UX9f131/Ih/wa5/8AJcv25/8AsrVx/wClF/X9d9AH+YJ/werf8pTfAP8A2SrSv/TvrFf1+/8ABrj/AMoKPgZ/3M3/AKkGp1/IF/werf8AKU3wD/2SrSv/AE76xX9fv/Brj/ygo+Bn/czf+pBqdAH7/UUUUAFFFFABX5j/APBTf9vHxH+wz4J8J6x4J02x1bVfEOpSxNbX/mbDZ20WZihjZSHDvEAx3AAnKnIx+nFflJ/wUd/4Jsa1+3Xq2heJdI8Zjw/P4dtJbe3sp7Q3FvI0zhncusiMhbagOFfhRxXl519b+pzWBX73S23fXfTa59bwN/Y/9tYd59JLCq/NdSafuvlXu3fxW1OO/YV/4K4aR+2R8Ubb4MXvgW70PWJrWe6a5t7pLu0VLdcszlkidAxwoAV/mYAnGTX7GV+If/BLj/gmn8U/2L/i54v8efFu60y+e706HTtLuNNleVXjll82fcJI42QgxRdjnJwTiv28rHIJ42WEUsw/iXfRJ22W33nZ4iUshpZzOnw7b6sox1UpSTk1d2cm3pdK3RphRRRXtHwwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/Q/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/wAQv/grPGY/+CqH7Sqnv8U/GB/PVro1/t3wSCWFJR0ZQfzr/Ev/AOCxmntpn/BWD9pG2cYLfEnxNL+Et/M4/wDQq/2r/BWoprHg3SdWjO5bqyt5gfUOgb+tAHwH/wAFi/8AlE/+0j/2TbxN/wCkE1fKn/BtX/yhC+Av/YP1X/07XtfVf/BYv/lE/wDtI/8AZNvE3/pBNXyp/wAG1f8AyhC+Av8A2D9V/wDTte0AfubRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAfnB+1R+2R8S/Bnx08PfskfsxeH7TxF8Q9ftJNRkfUpWh0/T7KLrLOyAv83RQoJNJ+yz+2P8TPF/x01/9kn9p/w/aeHfiFodpHqMT6bKZtP1Cyk6SQM4D/L/ABBhkV83+GnTw9/wXL8QR+JCFfXfAlv/AGUz/wAYgfMqpnuBnIFN8VuviD/guX4YTw587aF4Huv7UZOdgnP7oPjue2aAP1a+O3j7UPhX8GvE/wASNJhS4udE064vIo5MhHaJSwBxzg4r8wf2bvjr/wAFT/2hvhr4W+NGl6R8PLXQPEcUd2IpLm8+1Jbs5B4EZXfgHHOM1+sHxD8F6H8T/Aer+ANedvsGsWslncGM4bZKNrYPY4NfhP8AtgfsIeA/2Ef2WNT/AGgf2YPGXiLwrrngKCO6tUn1WaezulVwDbtA7GPD5IAUCgD9OP21f2uP+GTvhzo97pmlHxB4v8V6hBo2haTE20XN9N/eY/djQZZj6Cvm/wAG/to/tN/CD49+Efgp+3H4W0fRrf4hs9voWraDcvPbLeou/wCzT+YFKuVzgjg4r5X/AGsfHms+Nvij+xd8fvHkP2PT77Vw19vG2OK8vLb93nPAyc4z616z/wAFfv8Aie+Pv2cPBOgnzNcu/iJZ3NvGnMghgRmlYY527cgnpQB+2tFFFABRRSMCVIXg0Afkv4u/bT/ad+MXx88YfBH9h7wro+qw/DwpBrmr6/cvBbPeOCRbW4iDMzgDknAFfSX7EX7XsP7WHgfWH17SW8PeLfCWoyaPr+lOwf7PdxcEo38UbYyp9K+Kv+CRksOj/ET9o3wVrJC67afEG7ublG/1hhnX903rtODg9Ki/4Jmumr/thftReMtEYHQ5/E9vbxyL/q3ngRhJg9Mg8GgD9Of2hJf2j4fBcT/sww6HPr/2hfMXX3ljtvIwd2DCrNuzjHGK/KT4h/tg/wDBSn4K/H74bfBD4iaH4F1C6+IGo/Zki0me7kngto8GWZg6KAqr39a/dEMpXeCCOua/Eb9lDzP2tv8AgpT8TP2qLz/SPDfw4RvB3h5m5Q3CHN1KnbqCMigD3D9rH9qT9qnwj+1b4P8A2Xf2ZtL8O3V94i0e51WW51+WaONBbvtKqYgx57cV9T/s2XH7YVwmqn9q228M25Bi/s7/AIR2WeXI53+b5yrjttxmuD/aP/YC+Bn7UvxL0r4o/EuXVItT0Wyextm02+ksmWORtxy0RDc/Wvhr9jvV/Hf7Ov8AwUd8Z/sN2HivUPF/ghPDkPiGxXUpzd3OlSvJsMDSsS20jkBjnpQB+4tFFFABRRRQB+Lv7RX7b37cfwE+OPhjSPEfw/0TT/AXibxTH4es76W9M17NHLkrMI4+EyoJw3NftCDxmvxv/wCCvAJm+A4H/RRdP/8AQHr9ji6xpucgD34oA+Kf23/2vP8Ahk/wRof/AAjejt4j8X+MtUi0Xw/pSsEE93KCdzt/DGijcx9K+dfAv7Z37Tfwo/aB8J/An9uHwto+jR/EDzItC1fQbh57UXka7/s0/mBWVyucEcE15t/wUkZdA/bb/ZX8ceIiF0GDxNeWkjv/AKtbme2cRZPQEk4FM/4K0H+3PjD+zP4M0I79bn+IlleQon+sFtbKWmbA52hevagD3b4/ftkfGq6/aTH7IH7Hvh7Ttc8X2GnrqusX2szPBp1hbucIrGMM7SOSMACuy/Y3/bG8W/Grx14v/Z7+OegxeGfiR4EeP+0bW2k820ubeX/V3Fu5wxRs9xkV8qfslkeHv+Cu37Qmh+Ij5eoarpmmXliH+9JarwdueoBIzij4NuniD/gtz8UNW8PHzLTSfBljZag6cqLp3RlViP4goPB5oA/bKiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/kQ/4Nhf+Tnv2+P+ytTf+lep1/XfX8iH/BsL/wAnPft8f9lam/8ASvU6AP676KKKACiiigD+RD/goZ/ytgfsY/8AYman/wCitar+u+v5EP8AgoZ/ytgfsY/9iZqf/orWq/rvoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvjb9sz9r7Rf2TPB2mXcWlTeIfEfiO8TTtF0m3IWS6uZOmSfuqOrHsK+ya/FP/goky6f+3N+zbrOv4/shdXvIiX+4J3jGzPbJ7UAexfDj9u74x+F/jt4f+AP7ZHgODwTqHjGN20O90+8F7ZzSRjLQyMQpSTHbGK/UqvxL/wCCsDRXnxq/Z40XSedak8YxSwBfviFB+8PrjHWv2P8AF3iODwf4S1HxVeI0senW0lw6RjLMI1LEAdycUAfn9/wUV/4KAJ+xL4HguPCOhf8ACWeKb1Xmh0wOY1W2i5kmkYcqijv619gfs7/FO5+N/wADvC3xcvbRbCXxFp0F81ujFljMq52gnk4r+Vb4g/txfs4/Er4GfGD4tfFvWbk/ETxhZ3Gn6Tp0thc7dOsUJCRK5j2KX6sc4r98/wDglf8AHP4b/Gb9jTwZaeALyS6k8P6Xa2N6HheLZOicqN6jd9RkUAfo5RRRQAUUUUAFIxCjcTgDrS1ma0k8mj3aWvEhhcL/AL204oA/KrxL/wAFAPjr8Q/ib4r8Gfsc/DmDxppfgSU2+salfXos43nUZaK2GD5jAeuBmvsH9kL9qnwl+1z8KV+Inh20m0y7tbiSy1LTrjHnWl3CcPG2M556HuK/Pf8A4IxzWlr8KfihpOpYXVbTxjqn24N9/wCZiVLd+nSl/wCCQqtc+MPj1rGlf8ge58aS/ZSPuFlXDle3XrQB+kP7UH7S/gn9lj4ZyfEPxhHNeSSzJaWNjbANPd3UpwkUY9Sfyr58+Evxw/b68VeMdKm+JHwk0zQ/CupuC88WrCa+tY2GQZYcAZ9QCa+Fv+C42mfEDUr34KQeDdQOlpL4riha7xlYJJBhXweMgfdz3rB/aV8J/Fv/AIJ1eMPhv8XPh78S/EXia28Ra3a6VrWk67eteQ3QuSAXiRv9WVzkBaAP6F6Kht5fPt458Y3qGwe2RU1ABRRRQAUUUUAfM37WX7T/AIO/ZL+EN18U/FkE184kS2srG3AM11dTHbHGme5Jr4j0j/goL+0H8M/G3hTT/wBr34ZQ+D/D3jidLbTNSsb4XnkTS/6uO6XA2M2e2RmuR/4LGLNbaV8I9X1D/kD2vjTTzeE/cALAKW9s1d/4LLXGnXH7OPhDT7PDX954m0oWAX7xbzFPy9+npQB+yiOroJEOVIyD7V+Susft8ftEfFX4x+Lvhf8Asa/De08VW3gW4+x6tqGr34sYmuQMmOEAMWIHrgV+p3h7zrbwzZfbOXjto9/1CjNfzpfCP4KfET9rP9pb4w/Ez9k/x1ffB7TLTU30rUYrHEzalfRL807xvlYwemRyaAP15/Yr/a/tv2tPCGsXWpaHN4b8Q+GL99L1fTZmEghuY+ux14ZT2NfaVfjZ/wAEiNZi0HSfiN8BtasoW8SeDdeeHVtWiYudUllG4TuTzvI6jtX7J0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/Ih/wdC/8AJwn7CP8A2VqD/wBKdOr+u+v5EP8Ag6F/5OE/YR/7K1B/6U6dX9d9ABRRRQAV+Zn/AAWf/wCUS37R/wD2TvxB/wCkclfpnX5mf8Fn/wDlEt+0f/2TvxB/6RyUAfO3/Bt//wAoTPgH/wBgm/8A/Tld1+3lfiH/AMG3/wDyhM+Af/YJv/8A05Xdft5QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+GX/BSjxT+3X+z9c23x28GfEq10/wAIy+I9J0yDQ7exUytDeShH8yZ85PXoBX6C/to/tPP+yd+yZrnx5W2XUNRsra3isrdjgTXt2yRRKfbe4J9hXxN/wWu8d+B4P2ZdK8NTazYpqUPjHQJJLRriMTqguASxj3bgAOSSMVrf8FX9Ng+NH/BObWdW+Fd3D4gPhq50nV5006VbnMVjPHJKP3ZblUBbHXigDxL4qfEb/goD+xb8IfD/AO2T8WPHsHjLRZbixbxL4aNklvFZ2t8wDG3lUliYd3O7rivp/wDa9/ag+LevfFP4Z/sq/st6hDo/iD4j2z6rPrM8Ym/s/S4kDtIsZ4Z2yNueK+af+CnP7Svwk+OH/BNm18DfCvWrLXde+Jq6ZpmkadZTLPcvLcMm792hLL5YyWyOMVL8WrSD9lz/AIKCfs9/Fb4nyrYeHp/CUnhCfUJztt7e/wDKUIskh+Vd5U4JIoA9v+EHxk/aO/Zu/bN0j9kD9pLxSnjvS/G2mTahoGuNbra3KT2x/ewSomVPHKkdq4jTviz+1j+3b+0L8SvCX7O/jhPhx4N+F98uipdx2iXc+p6ls3vu3kBYl4HHNU/jB4l8PftDf8Fb/hDpXwovoNbh+HGk6hqWt3Vk6zQ232sbIo3kQlQzdQuc1zX/AATb8c+Df2avj1+0V8B/jNqlr4e1VPFkviG0OoSrbi6067TcJYzIVDqpyDjOKAPs3/gnZ+1B8Qvj34U8YfDz42JAvjn4a65NoOrSW42xXOwBop1X+HzFPI9RX6LV+Lf/AAScjfx98TP2gv2k9HVj4c8a+MSmkT4IS5gsY/LaVPVWY4BHBxX7SUAIc4O3rX5NfED9n/8A4KMnTtd+I8Xx0tdKu7P7Rd2elQaXGdPEUeWSOWRzv+6AGYfWv1mJAGTX4W/tIftOTftz/FLVv2Lv2f8AxRZ+H/BulyG38beKmuY4TsB2vZWZZhukbozAYAoAur/wVC+IM/8AwTP0L9pyDRoD488RX6eG7K2yTayam0pgEq9zGSpfH4VmfFL4i/tuf8E/pfBXxm+N3xAj+InhXxBqdtpfiCweyS1OnveHCyW7oSSqscENziqX/BSn4R+A/hR+w38Orn4EW8d14S+FPiXSL+VbFhOq2Vq+JZGKZDEfeY+5NTf8FY/jR8Nv2gP2ffAnwV+Des2XiTXviB4g0uTT7bT5luJPIikWV5SqElVUdScYoA96/ar/AGg/jt4+/a18MfsM/sx6zF4Yvr/Rm8Ra5r7Qi5ktLLeUjSKNvlLuR1PGKj/Zl+P3x3+FX7YOs/sLftOa7F4tuH0QeI9A8QLCLaW4tlbZNFNGuVDRkZyOxrxnxbqGkfs2/wDBZLQ/HPxMuU03QPHfgGLQ7HUbphFbC+spSTEZGwoZlwQCRnNFnf6R+0j/AMFml8WfC+6i1bQ/h74EutN1PULRhLbreak/yQ+YuVLKBkgHgGgCfwB4/wD21/2+fEXjz4kfArx/F8O/CPhbVbnRtCtY7JLttSns/lkkndyNqFxgBecGvtP/AIJ2/tS+J/2pvgXNrXxFtorPxZ4a1K50PWo4P9Ubq0YqXUdg4wwHbNfEn/BK/wCMHw1/Z5+F3xL+A/xl1uz8Oa74H8U6teXkGoTJbyNaXLmWOZQ5BZWXoRmvQ/8AgjPpGp6h8JfiD8ZpYHg03x94x1HVtN3qV8y13eWkgBx8r7cg9xQB+xtc94sstf1HwzfWPha6Wx1KaF0trh13rFIR8rFe4B7V0NYXibxP4e8GaDdeKPFl7Dp2nWSGW4uZ2CRRIOrMx4AHqaAPwr/au1L9s79jL4Vaj+0BdftBWfiO+0Nkkk8OX1hBDFeZYAwxbGMu8g/LxXtX7SX7Ynxv8Va58Gv2b/gGI/DPjX4t2H9q3t9dR+adJsIkVpWEZ+8+5sKDXz//AMFLPg9/wT1tfhJ4l/at0LVdIt/iGrLqekX1nfJczXWo/L5aiAO4k34A2ha5bxp448U+Bf2z/wBlj9rz9oC3GiWPiHwjceH9UuZ18q3s9SvFV0WQnAj3jpnAzxQB9WfCn4z/ALSH7Mv7avh79kD9pDxUvj3SPiBplze6Drb2y2tzFd2fzSW8iJ8pBQFlI9K54fE79rH9t39pH4ieAf2fvHC/DnwZ8NLpNKN7DaJeXGoaiV3ODvwFjXpxzXPfHDxP4e/aH/4K4/A/QPhRfQa5D8OtO1TWtburGRZ4bZbmJoYkeRCVDOWyFznFR/8ABPrx54K/Z1/aX/aE+Avxc1S10DVJvEp8Q2Z1CVbdbqwuYx+8jaQqGCnrjOKAPWf2Z/28vGFl8Cviw/7SyQy+LvghPd22ry2o2RXyQoZIZVX+HzBgY9a+Yrbx7/wUn1T9lAf8FDoPHNrGk1j/AMJHF4I+xJ9l/stv3giM+fM83ysHOMZryv4c/DrXf2pfhR+2d8UvhnE93pPxAuZrXQZowdt7/Z8JBaI/xB2GARwTXvGh/tk/A61/4I0215ca5ZLrFt4OTw/JpBlX7aNUSH7ObfyM+Zv8wYxtoA/Yf9nr4v6T8f8A4HeFPjVoieVbeJtMt9QWMnJQzICy/wDAWyPwr2Oviz/gnP8ADvxB8KP2G/hf4B8VRNb6jYaDa/aInGGjeUeZtI7Fd2CK+06ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+RD/g1z/5Ll+3P/wBlauP/AEov6/rvr+RD/g1z/wCS5ftz/wDZWrj/ANKL+v676AP8v7/g9SkD/wDBVDwKo/h+FmlD/wAq2rn+tf2Ef8Gu8Zj/AOCFfwMU/wB3xKfz1/UjX8a//B5xqKXv/BWLw5bKcmz+G+kQn2Jv9Sk/k9f2j/8ABs5p76Z/wQ8+A9s4wWs9al/CXWb5x/6FQB+7VFFFABRRRQAEgDJr8QfCf/BeD9lm+8V3/hvx1o2saLb293NBBqECpe20sMblUlbYVlXeoDbVjfGcZPf9fPi1oHizxX8LPEnhfwHdQ2Ot6lpl3aWFzPuEUNxNEyRyNtBbCMQxwCeK/jP+I/8AwR1/bs+Hepx2sHhqDxDZySrF9s0e5SeMbjjcY38ucKOpPlYA618pxLj8ywzpPAU3Ja83u3XS3mup+v8Ahbw7wvmkMVDiHEqnP3VTvPkfXmav7r6JJ366H9n3w6+IXhH4seBtL+JPgG6N9outW6XVncGN4fMhf7rbJFRxn/aUGu0rjfh14J0r4a/D/Q/h1oQxZaDp9tp1uMY/dWsaxrx9FFdlX1FPm5Fz/FbW21+p+T4r2Xtp/V7+zu+W+9r6X21tvogoooqzAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/0f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP8AGf8A+DhXwLc/Dz/gs/8AtAaDdIY2ufESamARjK6pawXin8RMDX+tt+wp8RLP4u/sS/B/4p2Egli8R+CtB1IMDn/j5sYZCD7gtgjseK/z6/8Ag8//AGPdU+G/7afgr9svRbU/2J8S9DXSr6ZVyF1fRfk+c9B5lpJAEB5Pkvjpx/QX/wAGjH7d2l/tKf8ABOJf2YvEN4r+LfgpePpjQsw82XRb53nsZsf3UYy23A+VYVzywoA/ZH/gsX/yif8A2kf+ybeJv/SCav5ZP+CMP/ByT/wTJ/Ym/wCCZnws/Zc+PGp+IrXxZ4StdQg1CK00h7mENPqFzcJskV8MDHKp9s4PIr+63VtI0rX9LuNE121ivbK7jaGe3nQSRSxuMMrowKspHBBBBFeO/wDDMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Pp/xF4/8ABG3/AKDfir/wQy//ABdH/EXj/wAEbf8AoN+Kv/BDL/8AF1/QX/wzD+zV/wBE88M/+Cm1/wDjVH/DMP7NX/RPPDP/AIKbX/41QB/Jv+07/wAHD/8AwQY/aivNH8T+IvEfjrQPE/h5mbS9e0XSZrTULUP95VkV+VbupyKr/s2f8HC//BBf9miTXNe0HxL4817xN4lwNT1/WdJmutRuFUYVTKz8KvYDAr+tD/hmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+Sz4b/APBw/wD8ENvhv8CPEHwCs/HXxHvtO8RXl3eS3lzp1w17C92+8iKYOGRUP3AOgr50X/gsj/wQb1/UbBPjB8V/i9490TTZknh0XXba4uLAvGcpvj3DeFOOGJr+17/hmH9mr/onnhn/AMFNr/8AGqP+GYf2av8Aonnhn/wU2v8A8aoA/l1+PP8Awcsf8ED/ANoz4TP8GfiPc+KZNHXymtvI0KWKW0lgwYpIHVwY3TA2kYr56+BP/Bdv/ggt8GfijbfGbX/HPxJ8d+JNMt2tNMvPEunTXrWEL4yIAzAISBjdjOO9f2H/APDMP7NX/RPPDP8A4KbX/wCNUf8ADMP7NX/RPPDP/gptf/jVAH8+n/EXj/wRt/6Dfir/AMEMv/xdH/EXj/wRt/6Dfir/AMEMv/xdf0F/8Mw/s1f9E88M/wDgptf/AI1R/wAMw/s1f9E88M/+Cm1/+NUAfz6f8ReP/BG3/oN+Kv8AwQy//F0f8ReP/BG3/oN+Kv8AwQy//F1/QX/wzD+zV/0Tzwz/AOCm1/8AjVH/AAzD+zV/0Tzwz/4KbX/41QB/Hd8cv+C7P/BBT4w/FC6+M3hvxz8SfAXiXVIBa6pe+GtPmsm1CFeizgNhiOgbGfeu+0D/AIODv+CA3gz9mPVv2WPAWt+N9D0bW4ZUu7600iZdQkmn5edpy+4yseSxr+tP/hmH9mr/AKJ54Z/8FNr/APGqP+GYf2av+ieeGf8AwU2v/wAaoA/mh8D/APB07/wRe8A/B3T/AIOaR4s8by22m6aumRXs+jSyXZVE2CRnL8yY5ye9cJ+yv/wcpf8ABCn9kf4TW/wi+G+u+Mp7SOea7murvRJHuLi4uGLvJIwYbmJPWv6mf+GYf2av+ieeGf8AwU2v/wAao/4Zh/Zq/wCieeGf/BTa/wDxqgD+Rn9oD/g4a/4IufHTx0nxE074s/FjwXqP2dbWT/hH7Oe1ikRM43R7iueeuM1sfsu/8HCf/BAX9lK71jxJ4L1rxvq3iXxCytqmu6vpM93qF3t6B5WfO0f3RgV/Wd/wzD+zV/0Tzwz/AOCm1/8AjVH/AAzD+zV/0Tzwz/4KbX/41QB/Pp/xF4/8Ebf+g34q/wDBDL/8XR/xF4/8Ebf+g34q/wDBDL/8XX9Bf/DMP7NX/RPPDP8A4KbX/wCNUf8ADMP7NX/RPPDP/gptf/jVAH8+n/EXj/wRt/6Dfir/AMEMv/xdH/EXj/wRt/6Dfir/AMEMv/xdf0F/8Mw/s1f9E88M/wDgptf/AI1R/wAMw/s1f9E88M/+Cm1/+NUAfxLftEf8FlP+CHv7SvxCl8feOPjX8Y4VXUv7VsdPtrORbSwuBwpt0Odm3tjpXuV//wAHBH/BFXXv2aLv9mnxb8V/irq9td3a3bazdWMzaoNrBggnDAhOMYx0r+vf/hmH9mr/AKJ54Z/8FNr/APGqP+GYf2av+ieeGf8AwU2v/wAaoA/lh+Nn/ByN/wAEE/2hPgvbfA/4pal4vv8ATbJbc2tz/YsyXcE9qAI545Q+5ZVxncK8Q+A3/Bd3/ggt8Fvihb/GjXfHPxJ8d+JtPtmtNOvvEunT3r2ML8MsALAJkcZxnFf2G/8ADMP7NX/RPPDP/gptf/jVH/DMP7NX/RPPDP8A4KbX/wCNUAfyO/tJf8HBH/BBv9o3xhpvxQfxb8QPCHjDSomt4Ne8P6XNZ332dusTOGIdD6MDXZfsv/8ABxr/AMEFv2UdF1Kz8Ba140v9U1y4N1qusalo81zf305/jmlZ8n2HAHpX9WH/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF0f8AEXj/AMEbf+g34q/8EMv/AMXX9Bf/AAzD+zV/0Tzwz/4KbX/41R/wzD+zV/0Tzwz/AOCm1/8AjVAH8+n/ABF4/wDBG3/oN+Kv/BDL/wDF18mf8GlnxL8N/Gj4k/tpfGLwb5v9j+LPiJBrNj56eXL9mv5dRni3qCdrbHG4ZODxmv6vv+GYf2av+ieeGf8AwU2v/wAarvfBvw2+HXw5ing+HugaboMd0VaZdOtYrUSFM7SwiVdxGTjPTNAHa0UUUAFFFFAH8Pn/AAXL/au+Ev7D3/Bxn+yv+1N8dZLuHwn4T8EXcuoPYwfaZ1S5fVrZCsYKlv3kq5weBk89K/Qb/iLx/wCCNv8A0G/FX/ghl/8Ai6/o58Y/CH4TfEO+i1T4geF9I125gj8qObULKG5kSPJO1WkRiFyScA4ya5H/AIZh/Zq/6J54Z/8ABTa//GqAP59P+IvH/gjb/wBBvxV/4IZf/i6P+IvH/gjb/wBBvxV/4IZf/i6/oL/4Zh/Zq/6J54Z/8FNr/wDGqP8AhmH9mr/onnhn/wAFNr/8aoA/n0/4i8f+CNv/AEG/FX/ghl/+Lo/4i8f+CNv/AEG/FX/ghl/+Lr+gv/hmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+fT/iLx/4I2/8AQb8Vf+CGX/4uj/iLx/4I2/8AQb8Vf+CGX/4uv6C/+GYf2av+ieeGf/BTa/8Axqj/AIZh/Zq/6J54Z/8ABTa//GqAP59P+IvH/gjb/wBBvxV/4IZf/i6P+IvH/gjb/wBBvxV/4IZf/i6/oL/4Zh/Zq/6J54Z/8FNr/wDGqP8AhmH9mr/onnhn/wAFNr/8aoA/n0/4i8f+CNv/AEG/FX/ghl/+Lo/4i8f+CNv/AEG/FX/ghl/+Lr+gv/hmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+fT/iLx/4I2/8AQb8Vf+CGX/4uj/iLx/4I2/8AQb8Vf+CGX/4uv6C/+GYf2av+ieeGf/BTa/8Axqj/AIZh/Zq/6J54Z/8ABTa//GqAP59P+IvH/gjb/wBBvxV/4IZf/i6P+IvH/gjb/wBBvxV/4IZf/i6/oL/4Zh/Zq/6J54Z/8FNr/wDGqP8AhmH9mr/onnhn/wAFNr/8aoA/n0/4i8f+CNv/AEG/FX/ghl/+Lr5r/ah/4OS/+CEX7WHgBPA3xD1nxjA9rOl3Y39poksV1Z3MfKyROHyGB/Ov6n/+GYf2av8Aonnhn/wU2v8A8ao/4Zh/Zq/6J54Z/wDBTa//ABqgD+N34I/8F4P+CJfw6+LVn8cPiz8UPiR8TPEujwNbaTc6/ozutjG/DeUiELuI43EZr6D+GP8Awc1f8EdPhz8X/F/xWuPiL8QNZj8WeVjS73RpXs7Ly/8Angm87d3ev6n/APhmH9mr/onnhn/wU2v/AMao/wCGYf2av+ieeGf/AAU2v/xqgD+Xr4/f8HN3/BDv4+/CDXvhDq+s+KNOttdtmtpLm38ON5sYbuuTjNdH8D/+Dpf/AIIo/Av4T6B8JvD+v+LLi10Gyisknfw+6ySrEMBm2sBk1/TF/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBGz/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/F/8Vv+C4n/AARJ8WfEvW/iZ8IPiv8AEz4a3HikD+3LfQtHdIL84wWZGYhWI4LLg16va/8ABwV/wQr8K/svyfsw/Cfxj498J2kp8x9VsNHmW/eYtueRpd+S7nqTX9dP/DMP7NX/AETzwz/4KbX/AONUf8Mw/s1f9E88M/8Agptf/jVAH8qvxV/4OQv+CE/xu+A1t8Bvihr3jPVLW0hhWLUH0WUXiTwAbJ1k35EgIzn1r5a8Cf8ABbb/AIIl2XxG0L4hfHL4ufE74mf8Iq4k0Wy13R2a2tJF+6+xCN7DsWya/tP/AOGYf2av+ieeGf8AwU2v/wAao/4Zh/Zq/wCieeGf/BTa/wDxqgD+fQf8HeH/AARsHA1vxV/4IZf/AIuj/iLx/wCCNv8A0G/FX/ghl/8Ai6/oL/4Zh/Zq/wCieeGf/BTa/wDxqj/hmH9mr/onnhn/AMFNr/8AGqAP59P+IvH/AII2/wDQb8Vf+CGX/wCLo/4i8f8Agjb/ANBvxV/4IZf/AIuv6C/+GYf2av8Aonnhn/wU2v8A8ao/4Zh/Zq/6J54Z/wDBTa//ABqgD+fT/iLx/wCCNv8A0G/FX/ghl/8Ai6P+IvH/AII2/wDQb8Vf+CGX/wCLr+gv/hmH9mr/AKJ54Z/8FNr/APGqP+GYf2av+ieeGf8AwU2v/wAaoA/mM+P3/Bzt/wAEJ/2lPhhqHwn+KGoeK7rTL9RyuhyrJFIvKyRsHyrqeQRXxH8N/wDgtt/wRJ0Dx9oPjb4v/Fv4nfEaHwmwbRNP1zSHe2s2XhWCqw3so6F8mv7T/wDhmH9mr/onnhn/AMFNr/8AGqP+GYf2av8Aonnhn/wU2v8A8aoA/lhsf+Dmz/gjrZftI3f7QR+IvxAkhutPWw/sJtHlOnJtOfMWPfgOe5r5J8e/8Ftf+CKN18U9d+K/wE+MHxP+F954pfzNXg0LR2FvdSHguY5CwViOpXBr+1T/AIZh/Zq/6J54Z/8ABTa//GqP+GYf2av+ieeGf/BTa/8AxqgD+Un9k/8A4ONf+CEP7Ing288M+A9f8aX95q1y15qWp3+jSzXd5cN1eRy/J9u1fVf/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/Pp/wAReP8AwRt/6Dfir/wQy/8AxdH/ABF4/wDBG3/oN+Kv/BDL/wDF1/QX/wAMw/s1f9E88M/+Cm1/+NUf8Mw/s1f9E88M/wDgptf/AI1QB/BJ/wAFbf8Ags5+xR/wVL/at/Y38I/smXes3tz4R+J9jeak2paebJES6vLBIwpdyWLFG6DAA5IyM/6JteL2P7N/7O+l30Op6Z4C8OW9zbussUsWl2yPG6HKsrCMEEEZBByDXtFABRRRQAV+Zn/BZ/8A5RLftH/9k78Qf+kclfpnXlvxv+DHw7/aL+D3ib4DfFyxbUvC/jDTbnSNVtFlkgaa0u0McqCSJkkQspI3IwYdjQB/Pn/wb7/tw/sV/DH/AII7/BDwH8Sfi/4J8Pa5pumX0d3p2p+ILC0u4HOo3TBZIZZldCVIOGA4INfsj/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfqr/w8d/4J5/9F4+Hf/hUab/8kUf8PHf+Cef/AEXj4d/+FRpv/wAkV+VX/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFH/Dx3/gnn/wBF4+Hf/hUab/8AJFflV/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB+qv/Dx3/gnn/0Xj4d/+FRpv/yRR/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfqr/w8d/4J5/9F4+Hf/hUab/8kUf8PHf+Cef/AEXj4d/+FRpv/wAkV+VX/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFH/Dx3/gnn/wBF4+Hf/hUab/8AJFflV/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB+qv/Dx3/gnn/0Xj4d/+FRpv/yRR/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfqr/w8d/4J5/9F4+Hf/hUab/8kUf8PHf+Cef/AEXj4d/+FRpv/wAkV+VX/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFH/Dx3/gnn/wBF4+Hf/hUab/8AJFflV/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB+qv/Dx3/gnn/0Xj4d/+FRpv/yRR/w8d/4J5/8ARePh3/4VGm//ACRX5Vf8Qqv/AAQ8/wCiS3n/AIUms/8AyZR/xCq/8EPP+iS3n/hSaz/8mUAfRnxb1X/ghL8d/G1z8Rvi742+Euva3eBFmu7rxHpryOIxhcn7T2HSvV/g1+0R/wAEfv2e/Cl54G+DXxS+FugaRqDmS5tLbxLpgilYjaSym4IORxXw5/xCq/8ABDz/AKJLef8AhSaz/wDJlH/EKr/wQ8/6JLef+FJrP/yZQB9XeAviB/wRB+GHj9/ij4B8dfCPS9fdmf7bB4g0sSKzdSv+kYUn2Ar2X4nfti/8Eq/jP4Um8DfFT4vfDDXtJuMF7W88SaXJGSOhwbjgj1FfnZ/xCq/8EPP+iS3n/hSaz/8AJlH/ABCq/wDBDz/okt5/4Ums/wDyZQB9z/Bb9oz/AII/fs66XPo/wR+KHwr8N290waYWXiPTEMhHTcftGTj3NYfxo+M3/BGD9ojULTVvjV8RvhR4iurIbYZrvxFpbSKvXG77QDj2PFfGn/EKr/wQ8/6JLef+FJrP/wAmUf8AEKr/AMEPP+iS3n/hSaz/APJlAH6ZeEf27f8AgmX4C8O2vhHwX8afhppmmWKCOC2tvEulxxxqOwUT4FdH/wAPHf8Agnn/ANF4+Hf/AIVGm/8AyRX5Vf8AEKr/AMEPP+iS3n/hSaz/APJlH/EKr/wQ8/6JLef+FJrP/wAmUAfqm/8AwUa/4J4yIY3+PHw6IYYI/wCEo03of+3ivgS+8I/8G+Wo6ndaxeeJvhA9zezPPPJ/wkenAySSEszHFz1JJJryf/iFV/4Ief8ARJbz/wAKTWf/AJMo/wCIVX/gh5/0SW8/8KTWf/kygD73+HX7UP8AwSR+E3w7b4TfD74sfC/TfDb7w2nx+JdMMDCX7wKtcEEHvXnvwp+JX/BEr4HeLJvHXwn8ffCXQ9XnyGurbxDpayDd12n7QdufbFfJX/EKr/wQ8/6JLef+FJrP/wAmUf8AEKr/AMEPP+iS3n/hSaz/APJlAH6A/Fz9q7/gkz8efDP/AAh/xh+LPwu8Q6bu3iC98SaXIqsO4zcZB9xiofg9+1N/wST+AHhxvCPwZ+K/wt8O6c7+Y8Nl4k0uMM/TLEXGSfrXwJ/xCq/8EPP+iS3n/hSaz/8AJlH/ABCq/wDBDz/okt5/4Ums/wDyZQB9dfFr4of8ETfjt4nh8afFzx/8Jde1WAAJdXPiHS2kwvQE/aBuA9819DaH/wAFAP8Agm14Y0i38P8Ah743fDaysbRBHDBD4m0xI40XoFUXGABX5f8A/EKr/wAEPP8Aokt5/wCFJrP/AMmUf8Qqv/BDz/okt5/4Ums//JlAH6q/8PHf+Cef/RePh3/4VGm//JFYviP9vr/gmt4v0K68M+J/jd8Nr7T76Nori3m8TaY8ciNwVYG4wQa/MT/iFV/4Ief9ElvP/Ck1n/5Mo/4hVf8Agh5/0SW8/wDCk1n/AOTKAPoPwnc/8EF/A/iiLxn4X8XfB+11KBxJHMPEGlsUYdwGuCB+VfSfxI/bI/4JW/F/wjP4D+Jvxf8Ahhrej3AAe0u/EmlyRnHTg3HBHYivzp/4hVf+CHn/AESW8/8ACk1n/wCTKP8AiFV/4Ief9ElvP/Ck1n/5MoA+5Pgr+0R/wR7/AGc9PudL+CHxP+FfhqG8YNOLLxHpiGQjpub7Rk49zWP8afjR/wAEYf2iby21H41/Eb4UeI7iz4hlu/EWmNIo9N32gHHt0r4z/wCIVX/gh5/0SW8/8KTWf/kyj/iFV/4Ief8ARJbz/wAKTWf/AJMoA/S3wb+3P/wTG+Hnhm18G+B/jP8ADPStKsU8uC1tvEulxxRr6BRPivnmTxv/AMEOZviWfjBL43+ELeJDN9oN8df0reZc534+0Y3Z5zjNfLH/ABCq/wDBDz/okt5/4Ums/wDyZR/xCq/8EPP+iS3n/hSaz/8AJlAH6qL/AMFG/wDgnkoCr8ePh0AOAB4o0z/5Ipf+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD9Vf+Hjv/BPP/ovHw7/8KjTf/kij/h47/wAE8/8AovHw7/8ACo03/wCSK/Kr/iFV/wCCHn/RJbz/AMKTWf8A5Mo/4hVf+CHn/RJbz/wpNZ/+TKAP1V/4eO/8E8/+i8fDv/wqNN/+SKP+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD9Vf+Hjv/BPP/ovHw7/8KjTf/kij/h47/wAE8/8AovHw7/8ACo03/wCSK/Kr/iFV/wCCHn/RJbz/AMKTWf8A5Mo/4hVf+CHn/RJbz/wpNZ/+TKAP1V/4eO/8E8/+i8fDv/wqNN/+SKP+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD9Vf+Hjv/BPP/ovHw7/8KjTf/kij/h47/wAE8/8AovHw7/8ACo03/wCSK/Kr/iFV/wCCHn/RJbz/AMKTWf8A5Mo/4hVf+CHn/RJbz/wpNZ/+TKAP1V/4eO/8E8/+i8fDv/wqNN/+SKP+Hjv/AATz/wCi8fDv/wAKjTf/AJIr8qv+IVX/AIIef9ElvP8AwpNZ/wDkyj/iFV/4Ief9ElvP/Ck1n/5MoA/VX/h47/wTz/6Lx8O//Co03/5Io/4eO/8ABPP/AKLx8O//AAqNN/8Akivyq/4hVf8Agh5/0SW8/wDCk1n/AOTKP+IVX/gh5/0SW8/8KTWf/kygD4c/4NVNf0LxX8Vf22vFHhe9g1LTNS+KT3Vpd2sizQXEE0188ckciEq6OpDKykhgQQcV/YLXwN+wd/wTI/Yx/wCCaXh/xF4X/Y48LS+F7LxVcQXWppLqF3qBmltlZIyDdzTFMK7DCkA55r6w+Mfxb8BfAP4T+JPjb8U79NL8N+E9NudW1K6kPEVtaRmSQ84ydqnaOrHAHJoA/wAqP/g7O+Iln44/4LR+NdCs5BL/AMIpoeg6Q5ByA7WaXhH4facH0OR1r/RB/wCCE3gW5+Hf/BHz9njw/doY3n8GWGp4Ix8upg3in8RMD+Nf5OXifUvjF/wVw/4KY3eoaTAR4s+OXjYi2h5kSzXUrjbGpI/5ZWkJALHpHHkngmv9rn4ZfD3w38JPht4e+FPg2LyNH8MaZaaTYxn+C2solhiX8EQCgDuKKKKACiiigD43/al/bt+AH7HWueHNE+NdzeW7eJhcNBLaW/2hYUtjGGaVVPmAEyALtRs4PpXpPwT/AGqP2dv2jYnb4J+MNO8QTRRefJawS7bqOLIG97eQLMi5IGWQDJx1r8Af+CyX7KP7Yvxv/aCT4meB/B15r/hHSNKt7CyfTWS5myC0sxNsjGfPmSFchCCFHNexf8EFP2fte8E6B8QPi7410y407ULm7g0K3iu4mhmjW2Xzp8q4DAM0kQ6dUr5GlnWOlm7wTpWpXdm007Jbp7NN7ep+zYzgbIKfBcM9hjObFpR5oRnCS5py0i4/FFxi9dej0P6G6KKK+uPxkKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9L+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD8tf8Agsh/wTl8P/8ABUP9g3xX+zTOYbfxLGF1jwrfTcJa63Zq3kFmwdscys9vKcEiOViBuAr/ACnv+CfP7bH7Sf8AwRX/AG/0+JX9k3Nnq3he8uPD3jLwvdnyGvLNZQt3Zy9dkiPGHifBCSojYZcq3+1XX8qX/Bwd/wAG7Xh//gpRp0/7U/7KyWmh/G/TLUJc28hWCz8TQQrhIp5DhY7tFG2G4Y7WUCOUhAjxAH9Av7Gf7Z/7PP7fHwB0b9pH9mfXotc8O6ugDgELc2VyoBktbqLJMU8RIDoexDKWRlY/VFf4nX7NX7X3/BRX/git+07q0Hw6utU+Hfi7TJltPEHhrWbdvsl4sZyI7yzkwsikEmOVcOFbdFIN24/27fsUf8Hn/wCyR8RtLtfD37c3gvVPhvrgCrLquiI2r6PIR95zGMXkGT0jEdxgDlzQB/afRX45eBv+Dgn/AIIzfEK1jvNB/aC8M26SAEDUzcaY4z6reQwsPxAr2+x/4LDf8EodRUPb/tJfDRQf+evifT4j/wCPzrQB+j1Ffn6n/BWb/glhIMr+0r8Kx9fGOkj+d0Kf/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K+AP+HsP/AASy/wCjlvhV/wCFlpH/AMlUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/AKK+AP8Ah7D/AMEsv+jlvhV/4WWkf/JVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/yVR/w9h/4JZf8ARy3wq/8ACy0j/wCSqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8AJVH/AA9h/wCCWX/Ry3wq/wDCy0j/AOSqAPv+ivgD/h7D/wAEsv8Ao5b4Vf8AhZaR/wDJVH/D2H/gll/0ct8Kv/Cy0j/5KoA+/wCivgD/AIew/wDBLL/o5b4Vf+FlpH/yVR/w9h/4JZf9HLfCr/wstI/+SqAPv+ivgD/h7D/wSy/6OW+FX/hZaR/8lUf8PYf+CWX/AEct8Kv/AAstI/8AkqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/ACVR/wAPYf8Agll/0ct8Kv8AwstI/wDkqgD7/or4A/4ew/8ABLL/AKOW+FX/AIWWkf8AyVR/w9h/4JZf9HLfCr/wstI/+SqAPv8Aor4A/wCHsP8AwSy/6OW+FX/hZaR/8lUf8PYf+CWX/Ry3wq/8LLSP/kqgD7/or4A/4ew/8Esv+jlvhV/4WWkf/JVH/D2H/gll/wBHLfCr/wALLSP/AJKoA+/6K+AP+HsP/BLL/o5b4Vf+FlpH/wAlUf8AD2H/AIJZf9HLfCr/AMLLSP8A5KoA+/6K/P8AP/BWL/glkBk/tLfCr/wstI/+SqoXH/BXT/glTaruk/aU+F5/3PFulv8A+g3BoA/Q+ivyu8Q/8Fwv+CQ3hiJptS/aL8CyqvX7Jq0V2fwEBkJ/AV+dv7SH/B2d/wAEfvgfo1w/w68T6v8AFHV41IjsfDulzxIZOwa4v1tYQvq0bSEDoCeKAP6YXdI0MkhCqoySeAAK/wA3j/g6O/4L1eFf2mRc/wDBOX9jTWk1LwPp12j+MfEFlJut9Xu7Zw0dlbOvElrBIokklGVllVQh2Juk/N3/AIKo/wDBzn+3F/wUZ0LUfg74CjT4SfDHUFaK50fR7hpb/UIW4KXt/tjd42HDRQpDGwJEgkGK9w/4IT/8G1Pxj/b28R6N+0r+2Hpt74N+CcDR3dvbTBrfUvEyghljt1OHhs3H37kgF1OIMkmSMA/Sn/gzz/4JP6ydfvf+CqXxs0xoLOCG50jwBFOuGmklDQ32oqD/AAqm61hPIYtNwNqk/wCglXM+DPBnhL4c+EdM8AeAtNttG0PRbWKxsLCzjWG3traBQkcUaKAqoigBQBgAV01ABRRRQAVz/i3xV4f8CeFdT8beLLlbLStHtZr28uHBKxW9uheRyFBJCqCcAE8cV0FfnN/wVXHxb1D9izxL4R+DGg6hr+q6/Jb2E0WmwtPPFZs3mTv5aAsylIzGcAn95XLjcQ6GHqVkruKbt3aWx6uRZdHH5jh8FOajGpOMXJtJJNpN3emi1PqP4Q/tPfs9fHu3Wf4P+MdK192Xcbe2uF+0qP8AbgYiVP8AgSCvdq/z9P2R/gX4h+K/7XPgr4LanaXFlcXWsQ/bopFaGaK2tj51xkHDKwhRyM45r/QLrxuG86q5lRnUq01HldtHu+uj2tp1e59z4ocC4PhjGUMPhMS6qqRcrNK8Ve0dU7S5tei2630KKKK+jPzEKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/0/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD4K/bm/wCCY/7EP/BR3wjH4V/a38B2XiOa0RksdVTda6rZZyf3F5CVmVdx3GMsYmIG5Gr+OX9q3/gyP1z+1bnWf2IfjJbNZyEmDSfG1q6PEOwa/sUcP6f8eaY9TX+gfRQB/lDeMf8Ag0M/4LI+Gbh4dE0bwp4iVScSafrsaK30+1pbn8wK8bvv+DVv/guPaMVg+EFrcgd4vEmigH/vu+Wv9d2igD/IIf8A4Nb/APguqpwvwPDfTxN4f/rqQpn/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kC/8AELl/wXX/AOiGf+XN4e/+WdH/ABC5f8F1/wDohn/lzeHv/lnX+v1RQB/kDD/g1x/4Lrk8/A3H/czeH/8A5ZVet/8Ag1m/4LnzkCT4LRQ+7+JdCP8A6DqBr/XrooA/yUdB/wCDTb/gtdrEqx6h4B0bSgerXXiHT2A+vkTSn8hX3D8D/wDgyq/b88X6lDL8eviR4L8FaY5HmHT2u9ZvUHf9z5NrCfb/AEmv9M2igD+c/wD4J8f8GwX/AATN/YV1HT/iB4i0af4s+N7Bllj1bxWEmtbeZf4rfT0AtkwQGRpRPIjDKyCv6L1UKAqjAHAApaKACiiigAooooAK4ux+JHw91Pxhe/DzTtd0+fX9NCG702O5ja7gEiCRS8IbeoZGDAlQCDmuuuJ47W3e5mzsjUs2AWOAMnAGSfoOa/zzf2kvil4w+Jf7SHi74s67HdaXqmqavcXiRShobi1Uv+5jwcMpijCqO4xXznEWf/2ZCnJQ5nJvS9tFvrZ90fpvhr4dviutiqbr+yVKKd7c3vSeitdaWTvZ9j/QZuvCnhe+1+18V3um2s2qWSslvePCjXEKuCGCSEblDAkEAjINb9fBP/BMrQ/iVpX7FfgzVPi1rOoa3rOt27aoZtRne4ljt7pi1tGHkJbaINhAJ4JOK+9q9rCVfa0YVuXl5knb1XU+FznBvB42tgva+0VKUoKSvZ8raur9G7tBRRRXSeYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//1P7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK/Lv8AaK/aK+MngT4yax4U8Kax9lsLX7P5UX2eB9u+CN2+Z42Y5ZieTXzHFfFeE4fwkMbjYSlGUlBKCTd2pPrKKtaL69tD2MkySvmleWHw8kpJc3vXSsml0T7n6iUV+J//AA1z+0L/ANDB/wCSlt/8ao/4a5/aF/6GD/yUtv8A41X5/wD8R0yH/nxW/wDAYf8Ayw+p/wCIb5n/AM/Kf3y/+QP2wor8T/8Ahrn9oX/oYP8AyUtv/jVH/DXP7Qv/AEMH/kpbf/GqP+I6ZD/z4rf+Aw/+WB/xDfM/+flP75f/ACB+2FFfif8A8Nc/tC/9DB/5KW3/AMao/wCGuf2hf+hg/wDJS2/+NUf8R0yH/nxW/wDAYf8AywP+Ib5n/wA/Kf3y/wDkD9sKK/E//hrn9oX/AKGD/wAlLb/41R/w1z+0L/0MH/kpbf8Axqj/AIjpkP8Az4rf+Aw/+WB/xDfM/wDn5T++X/yB+2FFcT8NNX1HxB8OfD+vavJ513fabaXE8mAu6SWJWY4UADJJOAAPSu2r9hw1eNejCtDaSTV97NXPgq1J06kqct02vuCiiitjMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+J/i5+2J/wAKr+IWoeA/+Ed+3/YPK/f/AGvyt/mxJJ93ymxjdjqc4zXi57xDl+TYeOKzKryQclFO0patN2tFN7J+R6GW5VisfVdHCQ5pJXtdLS6XVruj7Yor83/+Hgv/AFKP/k//APaKP+Hgv/Uo/wDk/wD/AGivlP8AiLHCn/QZ/wCU6v8A8ge3/qRnf/QP/wCTQ/8Akj9IKK/N/wD4eC/9Sj/5P/8A2ij/AIeC/wDUo/8Ak/8A/aKP+IscKf8AQZ/5Tq//ACAf6kZ3/wBA/wD5ND/5I/SCivzf/wCHgv8A1KP/AJP/AP2ij/h4L/1KP/k//wDaKP8AiLHCn/QZ/wCU6v8A8gH+pGd/9A//AJND/wCSP0gor83/APh4L/1KP/k//wDaKP8Ah4L/ANSj/wCT/wD9oo/4ixwp/wBBn/lOr/8AIB/qRnf/AED/APk0P/kj9IKK5vwb4h/4S3whpXivyfs/9p2cF35W7fs85A+3dgZxnGcDPpXSV+g0asKtONWm7xkk16PVHy9SnKEnCW60YUUUVoQFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfN/wC0H+0H/wAKJ/sj/iUf2r/av2j/AJePI8vyPL/6ZvnO/wBsYrzs2zbCZZhJ47HT5aUbXdm7XaitIpvdpaI68Dga+Mrxw+HjzTleyulsrvV2WyPpCivzf/4eC/8AUo/+T/8A9oo/4eC/9Sj/AOT/AP8AaK+L/wCIscKf9Bn/AJTq/wDyB9B/qRnf/QP/AOTQ/wDkj9IKK/N//h4L/wBSj/5P/wD2ij/h4L/1KP8A5P8A/wBoo/4ixwp/0Gf+U6v/AMgH+pGd/wDQP/5ND/5I/SCivzf/AOHgv/Uo/wDk/wD/AGij/h4L/wBSj/5P/wD2ij/iLHCn/QZ/5Tq//IB/qRnf/QP/AOTQ/wDkj9IKK/N//h4L/wBSj/5P/wD2ij/h4L/1KP8A5P8A/wBoo/4ixwp/0Gf+U6v/AMgH+pGd/wDQP/5ND/5I/SCivE/gN8Yv+F2+ELnxX/Z39mfZ7x7TyvO87OxEfdu2JjO/GMdute2V9xl2YYfHYanjMLLmpzV4uzV16NJr5o+cxeFq4atKhXVpx0a0f5aBRRRXac4UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFS41CwtJ4bW6njjluWKxI7BWkYDJCg8kgDJA7V5L8XP2d/gX8edO/sz4xeE9M8QoF2o95bq80Y/6Zy4Ekf1Rga/mf8A+C83x7uvEH7QHhn4JaFcvHD4Nsft1wY2Klb6/wAMOndIUjZT28w19Jf8EMvit+1D8XNd8WN8RPF+pa14M8O2UFtDbag4uT9tuXymyaUNKFjijcFFcL865HSvlf8AWKhXzGWVypcyva+jWiu7p9Fr3P15+GmPwPDNLi2njFTlyqXL70ZJSlaHLOLd3JNO1lvuf0R6TpWnaFpdtomkQrb2lnEkEESDCpHGAqqPYAACtCiivqkraI/Im2223qFFFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/1f7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/E/9rn/AJOF8Qf9un/pNFX7YV+J/wC1z/ycL4g/7dP/AEmir8Y8c/8AkQ0P+v0f/SKh+g+G/wDyM6n/AF7f/pUD5vooor+Uj9rCiiigAooooAKKKKAP34+Df/JIfCv/AGB7H/0SlekV5v8ABv8A5JD4V/7A9j/6JSvSK/0Dyf8A3DD/AOCP/pKP5ex/+9Vf8UvzYUUUV6JyBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4n/tc/8nC+IP8At0/9Joq/bCvxP/a5/wCThfEH/bp/6TRV+MeOf/Ihof8AX6P/AKRUP0Hw3/5GdT/r2/8A0qB830UUV/KR+1hRRRQAUUUUAFFFFAH78fBv/kkPhX/sD2P/AKJSvSK83+Df/JIfCv8A2B7H/wBEpXpFf6B5P/uGH/wR/wDSUfy9j/8Aeqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr83/APgoL/zKP/b/AP8AtCv0gr83/wDgoL/zKP8A2/8A/tCvzrxY/wCSVxn/AHD/APTsD6vgj/kdYf8A7e/9Ikfm/RRRX8YH9AhRRRQAUUUUAFFFFAH60fsHf8kh1L/sMTf+iYK+2K+J/wBg7/kkOpf9hib/ANEwV9sV/cPh3/yTeB/wL82fzpxX/wAjfE/4v0Ciiivsz54KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivye/4LKftAy/BP9jnUPDmi3Jt9Y8b3CaPblG2yLbn95cuMdvLXyyexkFcmOxcMLh6mIntFN+vl89j2OH8mrZtmWHy2hpKrJRvvZPd+kVdvyR+g3xZ+AnwW+O2k/2J8YfC+m+IoFUqn223WSSLP/POTG+M+6MDXM/s6fswfBr9lPwlf+B/glpjaXpmo38moyxPM87ebIiJgPIWfaFRQoLHHPrX8q//AATg/bd/bk1T9oPwb8A/DHi2fXdJ1m/jhuLTWl+3rDZx5kndJHImTy4VdlVZVXIAxX9lNeVkuY4XMk8XTpWnHS7Sv6J9UfXcdcNZtwtOOTYnGc9GoudRjKXLZNpOUHondO1r9dQooor6A/OQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/9b+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvxP/a5/wCThfEH/bp/6TRV+2Ffif8Atc/8nC+IP+3T/wBJoq/GPHP/AJEND/r9H/0iofoPhv8A8jOp/wBe3/6VA+b6KKK/lI/awooooAKKKKACiiigD9+Pg3/ySHwr/wBgex/9EpXpFeb/AAb/AOSQ+Ff+wPY/+iUr0iv9A8n/ANww/wDgj/6Sj+Xsf/vVX/FL82FFFFeicgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV+J/7XP/JwviD/ALdP/SaKv2wr8T/2uf8Ak4XxB/26f+k0VfjHjn/yIaH/AF+j/wCkVD9B8N/+RnU/69v/ANKgfN9FFFfykftYUUUUAFFFFABRRRQB+/Hwb/5JD4V/7A9j/wCiUr0ivN/g3/ySHwr/ANgex/8ARKV6RX+geT/7hh/8Ef8A0lH8vY//AHqr/il+bCiiivROQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/N/wD4KC/8yj/2/wD/ALQr9IK/N/8A4KC/8yj/ANv/AP7Qr868WP8AklcZ/wBw/wD07A+r4I/5HWH/AO3v/SJH5v0UUV/GB/QIUUUUAFFFFABRRRQB+tH7B3/JIdS/7DE3/omCvtivif8AYO/5JDqX/YYm/wDRMFfbFf3D4d/8k3gf8C/Nn86cV/8AI3xP+L9Aooor7M+eCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzD4q/BT4SfHLw/wD8Iv8AF/w5p/iOxXcUjvoFlMTNwWjYjdGxx95CD70vxq+KWhfBH4SeI/i54lI+xeHdPnvpFzgyGJSVjH+07YRfciv4rPhT/wAFVv23PhP4qu/EGm+LZNYtr+7lu5tN1dftloXmcuyxhj5kSZJwsUiCvns7z7CYGUKOJi5Kd72Sdl5p73/Q/SuAvDzN+IKVfG5XVVOVFxs25RvJ3doyinZpW+9H9TX7Pf8AwTN/Zm/Zf+Odz8dPhFb31pdT2M1jFYXFx9otbbzmQs8JcGUNtUp80jfKxr9B64H4Vax408RfDPw/4g+I9lDpuv32n21xqFpBu8u3uZYw0ka7iWwjErye1d9Xr4PDUaNPloQUYvWyVt/I+LzrM8fjsS6mY13VqR93mb5tI7a9V59dwooorqPJCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP//X/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/2uf8Ak4XxB/26f+k0VfthX4n/ALXP/JwviD/t0/8ASaKvxjxz/wCRDQ/6/R/9IqH6D4b/APIzqf8AXt/+lQPm+iiv5w/+Dg39v/x7+zl8OtD/AGZvg5ey6Vrnjq3mutT1K3kMdxbaZE4QRxMuCrXD71ZwcqiMo+/kfzbw7kOIznMKWXYbSU3u9kkrtv0X37H61muZUsBhZ4qttHp3eyXzZ+tfxm/4KKfsP/s+67c+Fvi38TdD0vVbI4uLFZ/tN1C3914YBJIrf7JUH2rkPhb/AMFUP+Cenxl1uHw34D+K+iyX1wwSGG+aTTmkduAqfbEh3MTwFGSfSv5Lv2Mv+CA/7Tv7Vnw7sPjH4/12z+H+h63EtzYC9gku9QuIX5WY24MYRHHzIXlDMCDt2kE6/wC15/wb1/tP/s5fD3UPil8M9esfiLpekQvcXttaW8lpqKxJyzx25MqyhVyzBZd+BwrV+rLgXgyNb+zp5vL6zfl2ShzbW+Frfpz+R8U+JOIHT+tRwK9lv15rfffb+6f3cghgGU5B6Glr+Vf/AINxP24PiR8Rx4j/AGOfiZqMur2/h3TV1jw/NcuXmt7SORIJrbcxJaJWliaJf4BuA+XaF/qor8u4o4dr5JmNTLq8lJxs01s01dPy810d1rufZZNmtPMcJDFUlZPddmt1/XQKKKK+fPUP34+Df/JIfCv/AGB7H/0SlekV5v8ABv8A5JD4V/7A9j/6JSvSK/0Dyf8A3DD/AOCP/pKP5ex/+9Vf8UvzYUUUV6JyBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX4n/tc/8nC+IP8At0/9Joq/bCvxP/a5/wCThfEH/bp/6TRV+MeOf/Ihof8AX6P/AKRUP0Hw3/5GdT/r2/8A0qB830UV/Nb/AMHAfx1/bU+AEvgHxn+zTrPiHw/4aFrfrrl9pKP9jjmMkCwC5lVWSNm3MI95G7kDNfzdw5kVTOMwp5dSqRhKd7OW2ibtpfe1l5n61m2ZRwGFnipxclG2i31dvwP6UqK/zePB/wDwUc/4Kp/ELUzovgH4j+MtcvANxg0/fcy46Z2xoxxn2qz41/4KI/8ABV74a3qaZ8RfiF400C5kyUi1ISWrtt64WWNScZGa/Uf+IH5jz+z+uUubteV/u5T4z/iI2E5ef2E7d9Lfmf6P1Ff50PhT9uT/AILEePNGTxF4G8X+P9Z0+RmRbqxt57mFmQ4YB44mUkHgjPFfp9/wSb/aG/4KjeOP29PBXhb9o/U/G9z4Nuo9U+3x6zZzx2RKWFw8W9pIlUESqm3kZbA715ua+EeMwOFr4qpjKT9nGUnFN3fKm7LTfSy8zswXHNDE1qdGGHmudpJ2VtXa++x/ZBRRRX5IfcH78fBv/kkPhX/sD2P/AKJSvSK83+Df/JIfCv8A2B7H/wBEpXpFf6B5P/uGH/wR/wDSUfy9j/8Aeqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr83/APgoL/zKP/b/AP8AtCv0gr83/wDgoL/zKP8A2/8A/tCvzrxY/wCSVxn/AHD/APTsD6vgj/kdYf8A7e/9Ikfm/RRXnnxa+KvgT4HfDTW/i78Tb9NM0Hw9aSXl7cydFjjHQDqzscKijlmIUckV/GdOnOpONOmrybskt23skfv85xjFyk7JbnodFfwhftE/8Fz/ANv39qr4knwr+ytHd+DdJdpEsdK0K2F9qtyg5DzS+XI5cDnbAqKo67sbq+LvA3/BRv8A4Kl+HvEGpeIPDPxI8ZX9xoO6fUY7t5dRgtFRtrGeCdZYo1DfKd6gA8V+w4XwUzepR569elTnZPlbbavtzNJpfK58HW8Q8DGpy06c5Rv8SSs/S7v99j/SOor8E/8Agkh/wWWtf25dUl+BXxysrPQfiHa232izltGKWusRRAmUxxuSY5owN7RhmDLuZcBSB+9lfmWeZFjcoxcsFjocs18009mn1T/4Ds00fYZdmWHx1BYjDSvF/en2a6P+tgoooryDuP1o/YO/5JDqX/YYm/8ARMFfbFfE/wCwd/ySHUv+wxN/6Jgr7Yr+4fDv/km8D/gX5s/nTiv/AJG+J/xfoFFFFfZnzwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcn458B+DPib4TvfAnxC0u21nRtRQJc2d5GJYZVUhhlWyMqwDKeoYAjBAr8pNY/wCCJ/7JqfF3Qfin4Bkv9CttJ1KC/udGMn2uxuUgcSeUPNJlQORhv3jDbwFFfkB+0F/wV7/aX8Mftf8Ai7xR8DfESyeELa9NjZaXdxLc2E8Fn+680KcOvnMrSbo3RiGAJ4r+jr9gr9pPx1+1n+znpvxs8e+HofDtxqFxPDBHbzNLFcxW7eWZ1DqGjDSB1CFn+7ncc4HylDMcrzfESw8qfNOF7Nronumunk7H7Bj+G+LeDMtp5jSxPs6NZJSjGe0pxvyyhKyckk1eKdrbo+zKKKK+rPx8KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/Q/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/2uf8Ak4XxB/26f+k0VfthX4n/ALXP/JwviD/t0/8ASaKvxjxz/wCRDQ/6/R/9IqH6D4b/APIzqf8AXt/+lQPm+v40P+Dnb4UeKrX42/Dn44+RI+h3+hyaF5wBMcd3aTy3G1j0VpEnyoPLBGx901/ZfX8zf/Bwt8IP2x/jYfh94J/Z30DxJ4l8NTW9/JrVjo0M1xatcRyQG3aeOMFd6jf5ZYZ+9jvX4r4WYz6txJh5ynGMWpJuTsrcr69+3d6H6DxpQ9rlNWKi2/dskru9107dz9zv2Rv2ivhF+1B8A/DvxU+DN7bXGl3NnDHJbQN81jMiAPbSJ95GiIK4PUAMMqQT3nxx+Nvwu/Z3+F2r/Fz4xapDpOg6RA8s8sxGXwCRHGp5kkfG1I1yzHgV/nd/D/8AYn/4Kp/CbVX134V/Dz4ieGb6RQjXGlWt7ZSsoOQC8IRiM84zV74jfsdf8FZfjDdRX3xb8C/EnxTNAWMcmr29/fMhbrtM28jOBnHWvt6nhNlcsa5xzan7Bu9rx57dr81r9Ob526HzsOOMYsPyvAy9pa17Plv3ta/y/E/U7/g25+D2u+Lv2rvH37SVjp7WPhnSNJn0yHAPli71GeKVIUY/e8qGJtw5xuQnGRn+0Kv85LwL+zV/wWT+F+gL4U+Gfhn4qeHdKR2kWz0walaW4d+WYRxFFBY9TjJr9Tf+CTPgf/gq7oP7efgvUP2lofiUngkR6muonxDNqD6dzY3Hk+aJ3Mf+u8vZkffxjmunxF4Up5liMTnMcxpWhD3YJpyahG9r31cnfpu7GXCmdywlKjl7ws7ylrK1leT322X6H9kFFFFfz4fqJ+/Hwb/5JD4V/wCwPY/+iUr0ivN/g3/ySHwr/wBgex/9EpXpFf6B5P8A7hh/8Ef/AElH8vY//eqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/wBrn/k4XxB/26f+k0VfthX4n/tc/wDJwviD/t0/9Joq/GPHP/kQ0P8Ar9H/ANIqH6D4b/8AIzqf9e3/AOlQPm+v44f+Dnb4zeKLj4sfDr9nuG5ePRbPSJPEMsCnCS3VzNLbRu47mNIXCHt5jetf2PV/MR/wcWfsLfET4x+F/D/7XHwss31R/BljLp2u2cKl5108yGWK4jUDLLC7yebjJCsGxtViPxbwrxOFocSYaeLaS95JvZScWl9+y82j9B40o1quUVo0E29G0uyd3/m/I/dT9jv9mP4Ofsn/AAG0D4XfBmwtoLOKzge5voVBl1GdlBa5mkADSNISSCeFUhVAUADvPj9+z/8ACX9pr4W6p8IfjRpEGr6LqkLxusqjzIWYECWFyCY5U6o68g1/Fv8AsWf8HB/7QP7Mnw0034Q/FXwxbfEXR9FgW10+5lvHsNRigThI5J/LnSVI1wqZiDgDBY8Vo/tf/wDBxH+0R+0L8Ob/AOF/we8L2vw3sdXge2vb2K9e/wBRMT8MsM3l26Q7lyrMI2cA/KynmvoavhVxVLNnVutZ39tzrvfmtfnv5W3PLhxrkscCoW+zb2fK+223Lb5nrv8Awbd/GPxV4P8A2q/Hf7MltqB1DwxqmlXGqRhCTEL3T54oVnQHhRLDIwYjG7amfuiv7Qa/lr/4N0v2C/HvwtsNa/bP+KVnJpb+JtPOkaBZzoyTPZNKks10ytjasjxIsWRllDN91lLf1KV4PitisLX4jrywrTsoxk1s5pWf3aJ+aPS4Ko16eU01XVrttJ9It6f5/MKKKK/OD6w/fj4N/wDJIfCv/YHsf/RKV6RXm/wb/wCSQ+Ff+wPY/wDolK9Ir/QPJ/8AcMP/AII/+ko/l7H/AO9Vf8UvzYUUUV6JyBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABX5v/8ABQX/AJlH/t//APaFfpBX5v8A/BQX/mUf+3//ANoV+deLH/JK4z/uH/6dgfV8Ef8AI6w//b3/AKRI/N+vwW/4ONte1/R/+CeCafo5cW+q+KdMtb7b0Nusc843e3nRRfjiv3pr4z/4KAfsnWH7a37J/iv4ASzR2moajAtxpVzKSEg1C1YSQM5UE7Cw2SYBOxmwM4r+UeE8fRwWc4TF4j4ITi35K+/y3+R+253hqmIy+vQpfFKLS+7b57H52/8ABvX8Dfhj4H/YI0j4yeH7O3fxN41vNQk1W9ADThLO6ltoYCx5VFSISBBgbnLd81+d/wDwQQiin/4KEftCQTqHR4b1WVhkEHUjkEdwa8l/4IvePP2zv2P/ANvqx/4J9fFi2utF8Pa/Nqk99pGow7kW4s7OaVbmzl6bZDCgLxs0cic8nDD8qPCH7bvx8/Yl/aR+LniD9n68tdN1PxLqGpabPdz263EkMYvHcNCHygcEdWVh7V+8PhnGYzG57hqVaM3ioU6lOV9OSVSXKm7P4VFpWvolY/M1nGHoYfLa06biqMpxkra8yir6ebd9batn2t+054G8Gfsyf8F69C0L9naKPT7VPGfhq5FhZ4WOCfU2tnubdAOFSTzW+QYVVk2AADFf3k1/Gt/wRU/4Js/GX40/H2D/AIKBftUw6hBYadetq+k/2orC71nVJCXF23mDeYYmPmLJx5km3aSqtX9lNfnXinjaEsRg8up1fa1MPSUJz7y6q/W1rvezdm73PrODMPVVLEYqUOSNWblGPZf1+XawUUUV+Vn2h+tH7B3/ACSHUv8AsMTf+iYK+2K+J/2Dv+SQ6l/2GJv/AETBX2xX9w+Hf/JN4H/AvzZ/OnFf/I3xP+L9Aooor7M+eCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACoLm2gvLaSzuV3xyqUdT3Vhgj8qnr+bH/gp5/wVC+NnwF/axsvht+zxq8NvaeFLJV1eCaFLiC7vLvbKY5ARuxHF5eCjKwZnGRXm5rmlDAUPb172ulpvr/wNT6nhDhLH8RY76hl9lNRcm5NpJLu0nu2ktN32Poj9on/ghX+zl8RzPrfwN1G68Cak+WFvzfaczdf9XIwlTJ7rKVXsnav2F+E3w28PfB34Y6B8KvCibNO8PWEFhBxgssCBdzf7TEbmPckmvgj/AIJq/t8+Lv26PCWu6h4r8JJoNx4ce3hnvbWYvZ3U04ZisaON6FAuWUu+Ay/Nziv04rDKMNl7X13AwSU1uk1s+3TXstT0OMs04jjNZFn9eU3Qd0nJSacktXJXctLWu21d7ahRRRXsnwwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8T/2uf8Ak4XxB/26f+k0VfthX4n/ALXP/JwviD/t0/8ASaKvxjxz/wCRDQ/6/R/9IqH6D4b/APIzqf8AXt/+lQPwj/4LO/Fb4k/BX/gnh41+Inwl1u88O67Z3GlJBf2EphnjWa+gRwrryNyMVOOxIr7a/Zh1zWPE/wCzV8PPEviK5kvdQ1HwzpNzdXEzF5JZprWJ3dmPJZmJJJ6k1+cv/Be3/lF74+/6+tG/9ONvX6C/sif8mn/DD/sUtE/9I4q/AcRSguGMPVUVzOvUV7a2VOnZX7avQ/TqU5f2xVhfT2UHbpfmmfQ9FFFfIHuhRRRQAUUUUAfvx8G/+SQ+Ff8AsD2P/olK9Irzf4N/8kh8K/8AYHsf/RKV6RX+geT/AO4Yf/BH/wBJR/L2P/3qr/il+bCiiivROQKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/E/8Aa5/5OF8Qf9un/pNFX7YV+J/7XP8AycL4g/7dP/SaKvxjxz/5END/AK/R/wDSKh+g+G//ACM6n/Xt/wDpUD8hv+CkX7VXi79iz9kDxL+0V4G02z1bU9FlsI4ba/3+Q32u6igYt5bK3CyEjDDkCvpn4IeOtQ+KHwW8IfEvV4Y7e78RaJp+pzRQ58tJLuBJWVdxJ2gsQMknHWvzD/4L2/8AKL3x9/19aN/6cbev0F/ZE/5NP+GH/YpaJ/6RxV/PVfBUFw7Qxah+8dapFvryqFNpfJt/efqVPEVHmtSg5e4qcXbzcpJv7kjwb4y/8Esf+Cffx81668VfEz4X6VPqd6d1xdWRm06WVz1d2s5IdznuxyT3JqL4P/8ABKr/AIJ7fArXLTxP8OfhdpMWpWDCS3ub4zalJHIOjqbySbDDqGGCDyMV+gtFcH+sWa+x+r/W6ns9uXnly27Wvax1f2Vgvae19hDm78qv99rhRRRXjHeFFFFAH78fBv8A5JD4V/7A9j/6JSvSK83+Df8AySHwr/2B7H/0SlekV/oHk/8AuGH/AMEf/SUfy9j/APeqv+KX5sKKKK9E5AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr83/8AgoL/AMyj/wBv/wD7Qr9IK/N//goL/wAyj/2//wDtCvzrxY/5JXGf9w//AE7A+r4I/wCR1h/+3v8A0iR+ZHiC5nstBvby2bbJFbyOjdcMqkg8+9fkV/wQ5/aJ+NP7T37F1z8Sfjzr8/iPXF8SX9mLu4WNGEEUUDKmI1RcAux6d6/W7xV/yLGpf9es3/oBr8KP+DcD/lHtd/8AY26l/wCibav5dy7D0pcPY+tKCc41KCTsrpNVbpPdXsr97H7Li6s1mmFgpPlcal10duS115H7z3Gl6ZeXlvqN3bxS3FoWMEroGeIuNrFGIyu5eDjqOK8M0L9kz9lfwv4lk8aeGvhp4V07WJpjcvfW2jWkVy0zHcZDKsQcsW5LZznnrX0DRXzNLE1qacac2k9HZtXXmexOjTm05RTt5BRRRWBoFFFFAH60fsHf8kh1L/sMTf8AomCvtivif9g7/kkOpf8AYYm/9EwV9sV/cPh3/wAk3gf8C/Nn86cV/wDI3xP+L9Aooor7M+eCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvxv/AGuP+CMfwI/aM8Sat8TPA+rX3hHxXq88l3cylje2VxcSks7PFIwdSzH/AJZyKq9kPSuQ/wCCun/BQv4i/snav4N+HXwKv4bTxHdu2raiZYUnX7Cu6KKJkcH5Zn3kldrjyhgjNdn/AME3v+CpOvftq+K7j4VeMvBrabrmnWD31xqWnSb9PKIyp8ySHzIizOAqhpc8nIAOPmcbj8rxmJeV4pc0ltppdro1qn32P1XIuHuLclyqPFmVT5KTTbtJX5VK15QlpKLa0Xvd7H2L+wf+ypb/ALHP7Oel/B6WeC91QTT3uqXduCI7i7nb7y7gDhY1SMZAOEFfY9FFfQYfDwoUo0aStGKsvkfnGZZjiMfi6uNxUuapUk5Sfm3d+i7LotAooorY4QooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9L+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK+VvjN+0F43+DV75mpeD/tulSNthv4r0hCT0DjyDsb2JIPYnmvLzfOcJleHeKxsnGmt2oylb15YyaXm7LzO3AZfXxlVUcOk5Po2lf05mr+iPqmivzf/wCHgv8A1KP/AJP/AP2ij/h4L/1KP/k//wDaK+O/4ixwp/0Gf+U6v/yB73+pGd/9A/8A5ND/AOSP0gor83/+Hgv/AFKP/k//APaKP+Hgv/Uo/wDk/wD/AGij/iLHCn/QZ/5Tq/8AyAf6kZ3/ANA//k0P/kj9IKK/N/8A4eC/9Sj/AOT/AP8AaKP+Hgv/AFKP/k//APaKP+IscKf9Bn/lOr/8gH+pGd/9A/8A5ND/AOSP0gr8T/2uf+ThfEH/AG6f+k0VfSH/AA8F/wCpR/8AJ/8A+0V8T/Fz4g/8LU+IWoePPsn2D7f5X7jzPN2eVEkf3tq5ztz0GM4r8x8V+N8kznKKWFy3Ec81VjJrlnHRQmr3lFLdrzPsOCeHcxwGOnWxdLli4NXvF680X0b7M/Cv/gvb/wAovfH3/X1o3/pxt6/QX9kT/k0/4Yf9ilon/pHFXofxU+Evw0+OHgi7+G3xd0S18Q6DfNG1xY3qeZDIYXEiFlPXa6hh7ivyU/4Kd/8ABUKT/glxc+APh/4I8AWniDT9bsLkQRfbDYR2cWnmKOOONEhkBXa4AHG0ACvy/K4V83wOH4fwNJyr+0qVFqkmnCKtdtarkb1+R9njJUsDiauaYmdqfJGOzbupPsn/ADI/a+iv4/P+Io3xn/0Rqy/8Hb//ACJR/wARRvjP/ojVl/4O3/8AkSvY/wCIScU/9Aq/8GU//kjg/wBecl/5/wD/AJLP/wCRP7A6K/ED/gln/wAFe9e/4KM/FDxL8O9W8CQeE00DS11FZ4dQa8MpaZYthUwxY+9nOT06V5F+xV/wXM8Qfta/tqaX+ybe/De30O31OfVIRqSao1w6f2fbzzg+UbdAd/k7T84xnPOMHxa3AudUp4qnOhrh4qdT3oe7FpyT310T0V2ehT4ky6caM41NKr5Y6S1aaVttNWtz+hyiiivkD3T9+Pg3/wAkh8K/9gex/wDRKV6RX5d+Df25P+ES8IaV4U/4Rf7R/ZlnBaeb9t2b/JQJu2+ScZxnGTj1rpP+Hgv/AFKP/k//APaK/sLLfFPhelhKNKpjLSjGKf7urukk/sH4Ni+DM5nXqTjQ0bbXvQ7/AOI/SCivzf8A+Hgv/Uo/+T//ANoo/wCHgv8A1KP/AJP/AP2iu3/iLHCn/QZ/5Tq//IHP/qRnf/QP/wCTQ/8Akj9IKK/N/wD4eC/9Sj/5P/8A2ij/AIeC/wDUo/8Ak/8A/aKP+IscKf8AQZ/5Tq//ACAf6kZ3/wBA/wD5ND/5I/SCivzf/wCHgv8A1KP/AJP/AP2iut8FftmeKviHrsfhzwj4Fe8upOSFv8Ki92djBhVHqf51rQ8UeGa9SNGjinKcnZJU6rbfZJQIq8G5xTg51KKUVu3OCS/8mPvOiqti97JZxSajGkM5UGRI3MiK3cBiqkj32j6Var7+Luk0fMNWdgooopiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor53+J/wC0j4a+EWrDS/F+iauqSf6m5iiheCXHXaxmHI7ggMPSvPzPNcJl9H6xjanJT2u72XrZO3zOrB4KviqnssPHml26n0RRXxP/AMN4/CH/AKB2sf8AfmH/AOP0f8N4/CH/AKB2sf8AfmH/AOP185/xEThv/oOh97/yPX/1Uzf/AKBpfgfbFFfE/wDw3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/R/xEThv/oOh97/yD/VTN/8AoGl+B9sUV8T/APDePwh/6B2sf9+Yf/j9H/DePwh/6B2sf9+Yf/j9H/EROG/+g6H3v/IP9VM3/wCgaX4H2xX4n/tc/wDJwviD/t0/9Joq+2P+G8fhD/0DtY/78w//AB+vzx+OfjzR/ib8U9U8caDHNDaX3keWlwqrIPKhSM5Csw6qcYJ4r8q8XuK8ozPJ6VDAYmNSaqxk0t7ck1fbu1959pwLkmOwePnVxVFxi4NXffmi7fgz8Gf+C9v/ACi98ff9fWjf+nG3r9Bf2RP+TT/hh/2KWif+kcVc/wDtofsqeFv21f2d9a/Z08ZandaPp2tyWkkl1ZBGmQ2k6TrtEgK8mMA5HQ14x8av20v2RP8Agml4L8C/B745+I7vTohpMdlpT/Yp7ySeDTI4oC0ht4mVWwVzwMknAxX5DQqPHZPQyjBwlPEKtUnyxi2+Vwgrq2/wu/ZK593UisPj6mOryUaXs4xu2lqpS7+qP0Oor8av+H+n/BML/od73/wTX/8A8Yo/4f6f8Ewv+h3vf/BNf/8AxisP9Ss//wChfW/8Fz/yNf8AWDLP+gqn/wCBx/zP2Vor4U/ZQ/4KRfsj/tr+KtU8F/s7eIJ9Y1HR7QXt1HNY3NoEhZxGCGmjQH5iBgHNch8EP+Crv7D/AO0V8cLb9nX4T+KbjUPFd5JdRQ2r6ddwI7WUbyyjzZIlQYSNyMsM445Irhnw7mkJVYzwtROkuafuS92LTactNFZN3fRHRHNcHJQlGtFqbtH3l7z2stdX6H6NUUUV4x3n78fBv/kkPhX/ALA9j/6JSvSK/PrwD+2n8LfCvgTRfDGoWGqvcabYW1rK0cUJQvDGqMVJmBIyOMgHHaut/wCG8fhD/wBA7WP+/MP/AMfr+08s8QOHaeDoU542CahFNXe6S8j+fMZwvms8RUlHDys5N/ifbFFfE/8Aw3j8If8AoHax/wB+Yf8A4/R/w3j8If8AoHax/wB+Yf8A4/Xd/wARE4b/AOg6H3v/ACOf/VTN/wDoGl+B9sUV8T/8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P0f8RE4b/wCg6H3v/IP9VM3/AOgaX4H2xRXxP/w3j8If+gdrH/fmH/4/V3Tv23/hjrF/FpelaPrdzczsEjiit4Wd2PQACckmnHxC4ck1GOOg2/X/ACE+Fs2Su8PK3yPsuiqOmXk2oafDe3FtLZvKoYwzbfMTPZtjOufoxq9X2EZKSUl1PAas2mFFFFUIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivM/id8TrT4WaOPEGq6TqGoWS582WxjjkEPu4aRGAPqAQO5HFc2MxlHC0ZYivK0I6t6uy76dO/Y2oUKlaoqVJXk9kemUV8T/8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P18r/wARE4b/AOg6H3v/ACPb/wBVM3/6BpfgfbFFfE//AA3j8If+gdrH/fmH/wCP0f8ADePwh/6B2sf9+Yf/AI/R/wARE4b/AOg6H3v/ACD/AFUzf/oGl+B9sUV8T/8ADePwh/6B2sf9+Yf/AI/R/wAN4/CH/oHax/35h/8Aj9H/ABEThv8A6Dofe/8AIP8AVTN/+gaX4H2xX5v/APBQX/mUf+3/AP8AaFekf8N4/CH/AKB2sf8AfmH/AOP18l/tR/Hjwh8bf7C/4RS2vLf+zPtXm/a0RM+d5W3bskfONhznHavhvEjjPJMfw5isLg8XGdSXJZJu7tUg307Js+i4S4fzHDZrRr16DjBc12/OMl+bPi3xV/yLGpf9es3/AKAa/Cj/AINwP+Ue13/2Nupf+ibav3uubaG8tpLS5XdHKpR19VYYI/KvzU+Ovi74D/8ABHr9i/V/HnwU8BqfDulajBI2jWt28Jkn1CWOFpPOmE7ZHynBzwuBiv5/yfEutgK+TUYOVbEVKXJta8edWbbVm3JW6b3aP1DH0VDE08wqSSp0oz5t768rvounK7/qfplRX8o//EUb4Q/6Izef+DxP/kSj/iKN8If9EZvP/B4n/wAiV7X/ABCvin/oCf8A4HT/APkzz/8AXXJf+gj/AMln/wDIn9XFFfze/sxf8HD3hj9pT9oPwh8BLT4VXWkSeLNTh05b19YSZYDMcbzGLVS2PTcPrXrf7dP/AAXM8NfsR/tOah+zbqPw4uvEUmnw2Uz6hHqaWyt9siWXAjMEh+UNj73J9K8+Xh9xBHGLL3hX7Zxc1Hmh8Kdm781t9LXudS4oyt4d4pVv3afLe0t2r2ta+3yP3nooor4098/Wj9g7/kkOpf8AYYm/9EwV9sV+UH7NH7S/gT4NeBLvwx4ntL+e4nv5LpWtY43QI0caAEvKhzlD2xjHNfQ//DePwh/6B2sf9+Yf/j9f1vwRxvkWEyLB4bE4yEakYJNNu6d35H4dxHw5mVfMq9ajQk4uWj7n2xRXxP8A8N4/CH/oHax/35h/+P0f8N4/CH/oHax/35h/+P19V/xEThv/AKDofe/8jxf9VM3/AOgaX4H2xRXxP/w3j8If+gdrH/fmH/4/R/w3j8If+gdrH/fmH/4/R/xEThv/AKDofe/8g/1Uzf8A6BpfgfbFFfE//DePwh/6B2sf9+Yf/j9H/DePwh/6B2sf9+Yf/j9H/EROG/8AoOh97/yD/VTN/wDoGl+B9sUVwPw78fR/EbQl8R2mlX+mW0uDCb9EjaVT/Eqo7nb6FsZ7ZFd9X1mFxNPEUo16LvCSunqrrvrY8OtRnSm6dRWktwooorcyCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor8qf+Csf7bPiX9j74LaVB8LryO08Z+Jb5UsneNJvJtbUrJcSFHDKQcpFyOkhIwRmuXHYynhKE8RV+GKv/wAD5nr5DkmKzjMKOW4NXqVHZX2XVt2vokm3o9EP/bd/4JQ/Bz9sbxNc/FBNYv8Aw34wnhjhN4jG6tJFhUIge3kYbQAAP3TxjOSQxJNbP/BMn9gbUf2HPAviS18aXlnqniTxBqAaS7st5i+w24xboPMVWDZaR3GMZYDJ2gn5e/4J8/8ABYLxB+078SNJ+AfxS8HNH4i1JZPK1PRjm0IhjaR3mhlbdEoVTlld8sQAor9268fLKGV4yr/aeEj7+qb1Wr3utr67+fU+24pzDizJcG+FM4qtUbRajeMvdT93lkteW60i3py7IKKKK+iPzIKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//T/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACqWo6bp+r2Mul6rAlzbTqUkilUMjqeoIPBFXaKmUVJOMldMabTutz8wvjz+xteaR53iz4Ro9zajLy6dktLGO5iJ5cf7Jy3pnoPz/kjeJ2ilUqykggjBBHY1/R7Xyv8AHX9lzwr8WI5dd0TZpevYz56j91OfSVR3/wBsfMO+elfgXHXg9CtzY7IUoz3dLZP/AAPo/wC69O1tn+ncN8eSp8uGzN3j0n1X+Lv67977n4z0V1/jbwJ4r+HeuyeHPF9m9pcx8jdyrr2ZGHDKfUfzrkK/nDEYerQqSo1ouM4uzTVmn2aZ+tUqsKkFUptOL2a1TCiiisSwooooAK+WP2i/2Jv2Wv2tb7StS/aJ8H23iifRI5YrF7iWaMwpOVLgeVImdxVeuelfU9FdGFxdfDVFWw1RwmtnFtNX03VnsZVqFOtB06sVKL6NXX3M/Mb/AIc0f8Eyv+iS6b/4E3n/AMfo/wCHNH/BMr/okum/+BN5/wDH6/TmivW/1pzr/oOq/wDgyf8A8kcX9i5f/wBA0P8AwCP+R8m/s7/sL/snfsn65qHiX9nnwXaeGL/VYFtbqeCSaRpIVbeE/eyPgbueMZwM9K5T4Uf8E4P2Jfgd8Vrb43/CnwBZ6N4qs3uJIdQinuHkRrpHjlO15WT50kYHK9+K+3aK5JZ1mEnUlLEzbqK0/fl7yta0tdVZtWd1Y2WX4VKCVGNou8fdWj7rTR+gUUUV5h2BRRRQAUUUUAFFT21tc3lwlpZxtLLKwREQFmZjwAAOST6V+jHwG/Yzz5Piz4wR8cPFpgP5GYj/ANAH/Aj1Wvo+GuFcxzzE/V8BTvb4pPSMV3b/ACSu30R5Ob51hctpe1xMrdkt36L9du583fBD9m3xj8YrlNSYHTtEVsSXki/fx1WJf4j2z90dzng/rp8O/hn4O+FuhLoHg+0EEfBlkPzSzMP4nbqT+g7ACu3trW2sraOzs41hhiUIiIAqqo4AAHAA9Knr+teDPD/LuH6anTXPXa1qNa+kV9lfi+relvw/P+KMVmk+WT5aS2itvV93+HZBRRRX3h8yFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVgeJ/C3h7xnos3h7xRaR3tnOMPHIMj2IPUEdiMEdq36Kzq0oVYOnUinFqzT1TXZoqE5Qkpwdmtmj8h/j1+yX4g+HXneJ/BAk1PRBl3XG6e2H+0B95B/eA47gdT8b1/SBXw38ev2P9H8Yed4q+Gax6fqhy8lp92C4P+z2jc/8AfJPXHJr+duOvB5x5sdkEbrd0v/kH1/wv/t17RP1bhvj1Plw2Zv0n/wDJf5/f3PyjorV1vQ9Y8NarNoev20lnd27bZIpV2sp+h/Q9CKyq/nupTlCThNWa0ae6fmfqUZKSUou6YUUUVBQUUUUAFfkp/wAFLf8AglJ4a/4KQa94S13XvGdz4Vbwpb3cCJb2aXQmF20bEktJHt2+X75zX610V6OVZti8txMcZgZ8lWN7Oydrqz0aa2fY5MbgaGLovD4mPNB2utVs79LPc/lY/wCIXb4df9Fg1L/wURf/ACRR/wAQu3w6/wCiwal/4KIv/kiv6p6K+v8A+Ip8U/8AQa//AACn/wDInhf6l5N/0Dr/AMCl/wDJH48/8E2f+CRHhP8A4Jz/ABC8RfEPQ/G134qn8QacmnGGeyS1WJVlEpbKySFiSoHbHPWvJv2Q/wDghr4P/ZL/AGutL/ax0z4h3mt3OmTajMNOl09IY3OoQTQEeYJmI2CYsPl5xjvX7v0V5FXjXOqk8TUniG3XioVPdj70UnFL4dNG1pZndDh7L4RoxjS0pPmjq9G2nffXVLe4UUUV8se0FFFFABRRRQAUUV9ffAb9lDxH8TDD4l8X+ZpehHDKcYnuR/0zBHyqf75H0B6j18lyLHZtiY4TAU3Ob+5Lu3sl5v8APQ4cwzLDYGi6+JnyxX3vyS6s8N+GHwk8a/FvWxo/hK23KhHn3D/LDCp7u38gMsewr9e/gv8As+eCvg1YCXT0+26tIuJr6VRvOeqoOdi+w5PcmvVvCnhHw34H0SHw74Us47KzhHyxxjqe5Y9WY9ySSa6Ov6u4H8MsDkSjia9quK/mtpHygn/6U9X0snY/EuI+MMRmTdGl7lHt1f8Aif6beu4UUUV+nnxwUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABTXRJEMcgDKwwQeQQadRQB+f8A8ev2N7HWvO8WfCWNLW75eXTshYpD3MR6I3+yflPbb3/MzUdN1DR7+XS9Vge2uYGKSRSqVdGHUEHkGv6M68G+NH7Pngr4y2Bl1BPsWrRriG+iUbxjorjjevseR2Ir8P468IqGO5sdkqVOtu4bQl6fyy/8lflqz9G4b46qYflw+YNyp9JbyXr3X4+ux+HFFemfE/4SeNfhJrZ0fxbbbVcnyLhPmhmUd0b+YOGHcV5nX8yYzB18JWlh8TBwnF2aas0fsFDEU69ONWjJSi9mtgooormNgooooAK8U/aE/Z4+Ef7U3wsvvgv8cdLOs+HNSeGSe2E8tsWe3kWWMiSF0kGHUHhhnoeK9rorWhXqUaka1GTjOLTTTs01s01s0RUpwqQdOok4vRp6prsz8fP+HDX/AAS4/wCidz/+DrU//kqj/hw1/wAEuP8Aonc//g61P/5Kr9g6K+g/1yz/AP6GFb/wZP8A+SPM/sDLP+gWn/4BH/I/L74T/wDBGz/gnh8EfiTovxb+GvgebT9f8PXSXthctq2oTCKeM5VtklwyNj0ZSK7D9oL/AIJU/sM/tR/Fa6+Nnxu8Hy6v4kvY4I5rpdSvbYMtsgjjHlwzpGMKoHC896/RGiuZ8T5w66xLxlX2iXLzc8ublve173tfW21zVZPgFT9isPDkve3KrX72ta/mFFFFeGeiFFFFABRRRQAUUV678Jfgp42+MWr/AGLw3D5dpEwFxeSgiGIfX+JvRRz9BzXXgcBiMbXjhsJTc6ktEkrt/wBdXst2YYnE0sPTlWrSUYrds830TQ9Y8S6rDoegW0l5d3DbY4ol3Mx+g/U9AK/Uf4C/sf6P4P8AJ8VfExY9Q1QYeO0+9Bbn/a7SOP8AvkHpng19AfCD4G+Cfg3pX2bQIvPvpVAuL2UAyyew/urnoo/HJ5r2Sv6f4F8JMPl3Ljc3SqV91HeEP/kpLvsntfRn45xJxxVxfNh8DeFPq/tS/wAl+L622Ciiiv2o/PQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvzk/bn/wCCa3wn/bhmtPE/iLVtQ0HxLplp9js723fzrcR7mcLJbOQrDcxJKNG54yxAArU/4KYftb3n7IP7Mt/4w8KXCQ+KtZmTTdE3qsmyeTLPMUYFSIowzfMCu/aCMGvzx/YY/wCC1XiD4y+PdB+Bvxx8JNPruuXMVjaanoY/dvJIcBp7eRvkUD5nkRyAMnYAK+ezTMstlWWW4zVytpZ21eiutn/Vz9K4U4W4op4F8UZH7qpuSumlKyV5PllpKPR76p6aH0F/wTI/4Jl+If2KvHXi/wAffEy/sNY1S8SPTtIuLLftWyJEkrsrqCjyOEUqM7dhwxDV+ydFFergMBRwdFUKCtFX/E+Q4i4hx2d46eYZhPmqySTsrKySSstltfTq2+oUUUV2HiBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/U/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA4P4hfDXwd8UdCbw/4wtFuIuTHIOJYmP8SN1B/Q9CCOK/Iz44fs1+Mfg9cPqcQOpaGzfJeRrzHnosqj7p7Z+6fUHiv2vqG5tre8t3tLuNZYpVKujgMrKeCCDwQfSvhOMvD/LuIKfNUXJXS92olr6SX2l+K6NH0vD/ABRisrnaD5qT3i9vVdn+HdM/nFor9Ivjz+xmG87xZ8H48Hl5dMJ/Mwk/+gH/AICei1+cl1a3NjcyWd7G0M0TFHRwVZWHBBB5BHoa/kriXhTMcixP1fHQsn8MlrGS7p/mnZrqj9xyjOsLmVL2uGl6p7r1X67Mgooor5s9YKKKKACiiigAooooAKKKKACiiigArvPh58NPGHxR11fD/g+0NxLwZJD8sUSn+J26AfqegBPFe2fAr9lvxV8WHi17W9+l6DnPnsP3s49IlPb/AGz8o7bulfrV4J8CeFfh3oUfhzwhZpaW0fJC8s7d2djyzH1P8q/W+BfCvGZxy4zH3pYbdfzT/wAKey/vP5J7nw3EnGlDAXoYa0634R9e78l87HjvwP8A2a/B/wAHrdNTlA1HXGX57yReI89ViU/dHbP3j9OK+kKKK/qjKspweW4aOEwNNQpx6L829231b1Z+L43HV8XWdfETcpPq/wAl2XkFFFFeicgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjXxe+Bvgn4yaX9m1+LyL6JSLe9iAEsfsf7y56qfwwea/IH4tfBTxt8HdX+xeJIfMtJWIt7yIEwyj6/wtjqp5+o5r946xvEHh7RPFWkTaD4jtY7yzuF2yRSjKkf0I7Ecg8ivzbjfw2wGfRdenaniek0tJeU119d15pWPruHeLsTljVKfv0f5eq84vp6bPy3P52KK+2fj1+yHrfgfzvFPw6EmpaQMvJb/euLcd+n30HqPmA6g8tXxNX8nZ9w9j8nxTwmPpuMuj6SXeL6r8tnZ6H7dluaYbH0VXws7r8U+zXRhRRRXinoBRRRQAUUUUAFFFFABRRRQAUUUUAFaWkaPqviDU4dG0S3ku7u4YJHFEpZ2Y9gBXonwp+DXjb4waz/AGb4XgxbxkfaLuTIhhB9T3b0Ucn6c1+v3wd+A/gn4NaZ5eix/adRlXE99KB5r+oX+4mf4R+JJ5r9F4J8Ocfn81Wf7vDLebW/lBdX57Lq76HynEPFmFyyLpr36vSK6ecn09N3+J8+fAX9jvS/C/k+K/imkd9qIw8Vlw8EJ/2+0jD0+6Pfg193AADA4ApaK/rPh/hzAZLhlhcBT5Y9XvKT7yfV/guiSPxDNM2xWYVnWxU7vouiXZLp/Vwooor3DzQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOc8V+EfDfjjRJvDviu0jvbOcfNHIOh7FT1Vh2IIIr8oPjz+yh4j+GZm8S+EPM1TQhlmOMz2w/6aAD5lH98D6gdT+wVIQCMHkGvjOLuB8u4go8uJjy1UvdqL4l5P+aPk/lZ6n0GRcR4vK6l6TvB7xez/AMn5r53P5wKK/VH49fsd6X4o87xX8LEjsdROXlsuEgmP+x2jY+n3T7cmvzA1fR9V8P6nNo2t28lpd27FJIpVKurDsQa/knirg7McgxHssZC8H8M18Mvn0fdPVemp+5ZLn+EzOlz4eXvLeL3X/A81oZtFFFfKHtBRRRQAUUUUAFFFFABRRRQAUUUUAFFbfh3w3rvi3WIdA8NWkl7eXB2xxRDJPv6ADqScADk1+qXwF/ZF0LwF5Pin4gCPU9ZGHjhxut7Y9sA/fcf3jwD0GRmvr+EuCsx4gr8mFjamvim/hj/m+0Vr3stTws84hwmV0+au7ze0Vu/8l5v8XofNfwG/ZC1zxx5Hin4iiTTdIbDx2/3bi4Hb/cQ+p+YjoACDX6neH/D2ieFdIh0Hw5ax2dnbrtjiiGFA/qT3J5J5NbNFf1vwnwXl3D9D2eEjeo/im/il/ku0Vp3u9T8NzziHF5pU5q7tFbRWy/zfm/y0CiiivrjwgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivin/goJ+1DD+yT+y/r/wATrKVE1y4UadoiMAd1/cghG2nIYRKGlYHghCO9YYnEQoUp1qjtGKbfyO/K8tr5hi6WBwsb1KklGK827fd3fRamT+29+wF8Kv25NA0618dahqGk6roazDTb2zk3JEZ9u/fA+Y3DFFzja5wBvAr4b/4J1/8ABJ3xR+yL+0VrXxZ+KGp2GuxadZm28PT2gZWL3O5ZpZI3GYpFjGwAM4Ikb5uK+fP2LP8Agt/448XeK9E+D/7Q/hhta1DV7qDT7TVdDRUuJJ52EaebasVRizMMtEyADohr+lOvnsFSyrNK0cxoxvUi1fdO9tLrZ26Py3P0nPcVxfwngqnDWOqWw9WLSV1Jcrd5ckviSeqadtG/dTdwooor6g/JwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//V/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvnL43/ALNvg74w2z6ioGna2q4jvI1+/josq/xDtn7w7HHB+jaK87NcpwmZYaWEx1NTpy6P809010a1R14LHV8JVVfDzcZLqv17ryZ/P78RPhl4x+FuutoHjC0MEnJikX5oplH8SN0I/UdwDXA1/Qn418DeFviFoUnhzxdZpeWsnIDcMjdmRhyrD1Ffkv8AHb9lnxV8KXl1/Qd+qaDknzgMywD0lUDp/tjj128Cv5Y468KsXk/NjMBerht3/NBf3kt1/eXzS3f7Rw3xrQx9qGJtCt/5LL07PyfyufKlFFFfkZ9yFFFFABRRRQAUUV6d8L/hF41+LmtDSPCdtujQjz7mTKwwqe7N6+ijLHsK6cHgq+LrRw+Gg5zk7JJXbMcRiKdCm6taSjFbt7Hn2nabqGr30Wl6VA9zczsEjiiUs7segAHJNfph8Bv2NbLR/J8V/FtEuboYeLTshooz2MpHDn/ZHy+u7t9F/Bj9n3wV8GrASaen23VZFxNfSqN5z1VBzsX2HJ7k8V7xX9NcC+ENDA8uNzpKpW3UN4R9ekpf+Srz0Z+P8ScdVMRfD5e3Gn1ltJ+nZfj6bDURIkEcYCqowAOAAKdRRX7ifnIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXxZ8ev2RdC8e+d4p+H4j03WTl5Icbbe5PfIH3HP94cE9Rk5r7Torxs9yDA5xhXhMfTUovbvF94vdP/AIZ3Wh6GW5picBWVfCzs/wAGuzXVH87XiLw3rvhLWJtA8S2slleW52yRSjDD39CD1BGQRyKxK/ef4sfBjwT8YdH/ALP8TQbbmMH7PdxYE0J9j3X1U8H64NfkD8YfgT42+Dep+TrkX2jT5WIt76IHypPQH+4+P4T+BI5r+TuN/DXHZDJ4ilerhuk0tY+U10/xbPybsft3DvF2GzNKlP3K38vR/wCF9fTdee54tRRRX5qfXBRRRQAUUUUAFFFa+g6BrXifVodC8PWsl5eXDbY4ol3Mx/wHUk8Acmrp05VJKEE3J6JLVt9kiZSUU5SdkjIr7P8AgL+yRr/xA8nxR49EmmaK2HSLG24uV7YB+4h/vEZI6DnI+lPgL+yDovgryfFPxIWPUdWGHjtvvW9ue2e0jj1+6D0zw1fbtf0LwL4PN8uOz+PmqX/yb/8AbV/2894n5ZxJx7bmw2WP1n/8j/n93cw/DfhrQPCGjQ+H/DNpHZWduMJFGMAe57knuTkk9a3KKK/omlShTgqdOKUVoktEl2S6H5VOcpycpO7e7YUUUVZIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeJ/GL4D+CfjLpvl61H9m1GJcQX0QHmp6Bv76Z/hP4EHmvbKK4swy7DY7DywuMpqdOW6e3/AAH2a1XQ6MLi62GqxrUJOMls0fgr8Vvg141+D+s/2b4ogzBIT9nu48mGYD0PZvVTyPpg15TX9EniTw1oHi/RpvD/AImtI72zuBh4pBkH3HcEdiMEHpX5VfHr9kjX/h/53ijwEJNT0UZd4vvXFsO+QB86D+8BkDqOM1/LvHXhNicr5sbld6mH3a3nBf8At0V3Wq6rS5+y8N8b0cZbD420KvR/Zl/k/LZ9Ox8YUUUV+NH34UUUUAFFFFABRRSgEnAoASvafg98CfG3xk1PydDi+z6fEwFxfSg+VH6gf33x/CPxIHNfQPwF/Y81XxZ5Piv4oLJYaacPHZ8pPOP9vvGh/wC+j/s8Gv1D0bRdJ8PaZDouh20dpaW67I4olCqoHoB/k1+2cC+EeIzDlxucJ06G6htOfr/LF/8AgTW1tGfnnEnHNLC82HwFpVOst4x/zf4LrfY85+E/wY8E/B7R/wCz/DMG65kA+0XcuDNMfc9l9FHA+uTXrNFFf07gcDh8HQjhsLTUKcdEkrJf11e76n47icTVxFSVatJyk92wooorrMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr43/bL/Yi+E37bfguy8K/Eu4v7G40h5ZdOvLGYoYJZQAxaJsxSA7R95dwGQrLk5s/t1/tNWH7Jf7M/iH4tF0/tUR/YtHifB83ULkFYuD1CYMrjuiNX4h/sa/8FxPiVea/pHwr/aO8PP4om1G4hsrbVNGjWO+eaZgiCS2ysUpZiBmMx4/usa8DNc3y6nVWAxv212ut9L2212+8/RuEODeJcRhZcQ5GrOjKyakoyuleTjfRpJ2kr63sk9T6N/YV/wCCP/iP9lv9qyb4t/EXWLHxHouh2rtoMsKNHK93PmMvNC24IYo92AHcbnVg2VOP3uoor0Muy3D4Gk6OHjaLbfff+rHzfE3FOY5/iljczqc1RRUVZJKy8lorttu3VhRRRXefOhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKa6JIhjkAZWGCDyCDTqKAPgD48/sb2Ot+d4r+EqJa3Zy8unZCxSHuYj0Rv8AZPyntt7/AJmanpmo6NfzaVq8Eltc27FJIpVKujDqCDyK/oyrwr4zfs/+CvjLYF9TT7Hqka4hvolHmLjorjjenseR2Ir8P468IqGO5sbkyVOtu4bQl6fyy/8AJX5as/RuG+OqmG5cPmDcqfSW8l691+PrsfhpRXqHxR+EHjb4Ra1/ZXiu3xHIT5FzHloZgO6t6+qnBHpXl9fzLjcFXwlaWGxUHCpF2aas0fsGHxFKvTjVoyUovZrYKK1tD0LWfEuqw6H4ftpLy7uG2xxRLuZj9P5noBya/Ub4DfsfaP4P8nxV8TVj1DVBh47T71vAe27tI4/75B6Z4NfRcKcGZjn9f2eDhaC+Kb+GP+b7Ja+i1PJzviDCZZT568rye0Vu/wDJeb/PQ+aPgN+yZ4i+I/k+JvGvmaXojYdFxie5X/YB+6p/vEc9geo/Vrwt4T8O+CtFh8O+FrSOys4BhY4xjnuSepY9ySSe9dDRX9b8I8EZdw/R5cLHmqte9UfxPyX8q8l87vU/Ds84jxeaVL1naC2itl/m/N/KwUUUV9ieAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWZrOi6T4i0ubRddto7u0uF2SRSqGRh7g/5FadFTOEZxcJq6ejT2aHGTi1KLs0flT8ev2PdW8J+d4r+F6SX+mDLyWfLzwDvt7yIP8Avoe/Jr4WIIODX9H9fHvx5/ZO8O/EkTeJvBvl6XrhyzjGILk/7YH3WP8AfA57g9R/PnHXg8p82OyFWe7pdH/g7f4Xp2toj9S4b48ceXDZm9Ok/wD5L/P7+5+QNFdD4p8J+IvBWtzeHfFNpJZXkBw0cg7diD0ZT2IJB7Vz1fzpVozpTlTqxcZJ2aas0+zXQ/V4TjOKnB3T2a2CiivuD4C/sgaz408nxV8SVk07STh47b7txcDtnvGh9fvEdMcGvXyHh7H5zilhMBT5pdX0iu8n0X57JN6HBmea4bAUXXxU7Lp3b7JdX/TPAfhF8EPG3xj1b7J4eh8myiYC4vZQRDEPTP8AE3oo59cDmv1++EfwR8E/BzSfsnh2HzbyVQLi9lAM0p9M/wAK56KOPXJ5r0rQtB0bwxpMOh+H7aOzs7ddscUS7VUf4nqT1J5Na1f1lwT4b4DIYqvP95ies2tI+UF09d35LQ/EeIuLcTmbdOPuUf5e/nJ9fTZee4UUUV+jnyQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHxF8ev2QdF8a+d4p+G6x6dqxy8lt923uD3x2jc+v3SeuOWr8s9e0DWvDGrTaF4htZLO8t22yRSrtZT/AIHqCOCORX9FNeP/ABc+CPgn4x6T9k8RQ+VeRKRb3sQAmiPpn+Jc9VPHpg81+L8deEuGzLmxuUpU6+7jtCb/APbZPvs+qWrP0HhvjirhOXD4686XR/aj/mvxXTsfg/RXsXxd+CHjb4Oat9k8QxedZSsRb3sQJhlHp/stjqp59Mjk+O1/L+Py/E4KvLC4um4VI6NNWf8AXZ7PdH7JhsVSxFONahJSi9mgoor3b4Mfs/8AjX4y6gG01Pselxtie+lU7F9VQcb39hwO5FVluWYrMMRHC4Om51JbJf1ol1b0XUnF4yjhaTrYiajFdX/X4HlXhbwn4i8a63D4d8LWkl7eTnCxxjt3JPRVHckgDvX6u/Ab9k7w78NhD4m8ZeXqmuDDKMZgtm/2AfvMP75HHYDqfdPhd8IvBXwj0T+yPCdviRwPPuZMNNMw7s3p6KMAdhXp1f1LwL4UYXKuXG5lariN0t4Qfl/NLzei6LS5+M8ScbVsbzYfB3hS6v7UvXsvL7+wUUUV+wnwQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfHX7eP7T9h+yR+zPr/xWDp/a7J9h0aJ8HzdQuARFweojAaVx3RCOtY4ivChSlWqO0Ypt/I7cty6vj8XSwWGjepUkoxXm3b7u76I0v2vf2M/hF+2l4EtvBHxVa9tzp0jz2F3YzmKS3mddpbYcxSZAxh0bAztKkk1+Xv7Fn/BHDWv2Zv2tF+LXjzW7LxL4d0C3efRHjRop2vZPkVp4W3KvlIWZSrtlyrAgjFfLH7F3/Bbj4yweIdI+FH7Qehv41Go3ENja6hpiJFqhlmYIitF8sM5JIAx5TdyWNf1OV85g45VnFSOOpw/eQav0d+l+j/HY/T87q8XcF4epkGJrWw9aMkrNSi0/icH8UL3s1Zbt2vqFFFFfUn5GFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/1/7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDA8T+FfD3jPRZvD3ii0jvbOcYeOQZHsQeoI7EEEdq/Nvxt+wv4lj8Xww+A72OTRrpzvkuWxLar1O4D/WD+6VwSeDgfNX6h0V8rxLwXlWeqH1+leUdpJ2lbtfqn2fqrPU9vKOIMblrl9Wno909V627/ANO60PHfhF8D/BPwc0r7L4eh869lUC4vZQDNKfT/AGVz0UceuTzXsVFFe9gMvw2CoRwuEpqFOOiSVl/Xd7vdnl4nFVcRUlWrycpPdsKKKK7DAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPMfij8IvBXxc0T+yPFlvmRAfIuY8LNCx7q3p6qcg9xX5P/ABD/AGWvil4J8VQ6BpllJrFveybLS5tkyrnrhx/yzIHJ3HbgEgkAmv2uor4Li7w7yvP2qtZOFZW9+NrtdpaWemzeq9Lp/TZFxVjcsThTfNB/ZeyfddvPo/XU+M/gN+yRoHw98nxR47Eep60MOkeN1vbN22g/fcf3jwD0HGT9mUUV9LkeQYHKMMsJgKajBb92+8nu3/wystDyMyzPE4+s6+JnzS/BLsl0QUUUV7BwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBk67oOjeJ9Jm0PxBbR3lncLtkilXcrD/EdQeoPIr8tfjz+yBrXgzzvFPw1WTUdKGXktfvXFuPbvIg9fvAdc8mv1gor5LivgzLs/oezxcbTXwzXxR/zXeL09Hqe5knEGLyupz0JXi94vZ/5PzX5aH5d/AX9ji/17yfFnxZR7SyOHi0/lZpR2Mp6ov+z94/7Pf9NtM0zTtF0+HStIgjtra3UJHFEoVEUdgBwKvUVrwtwhl2Q4f2OCh7z+Kb+KXq+3ZKyXrdkZzn2LzOr7TES0W0VsvTz89wooor6g8YKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr5h/an/AGQ/gt+2J4Hh8D/GO0nlSyd5rK6tJmhntZnG0unVGOOMSI6+1eY/8FF/2rbf9kb9mPWfHenTKniLUx/Zmhxnkm8nU4kx6QoGlOeCVCn7wr8Ov2F/+CzP7Qdt4v0L4LfGnSZPiDFq11Bp9nd2u2LVlkmYIgOdsU/JA+fY3UtIa+ezTO8BSrrAYtX51rpda7J9dfQ/SuE+BOIsXgJ8RZO+X2MnZ83JN2V5OLdlZLR3avqtdUfbX7HX/BG9P2Yv2rx8Y/Euv23ibw9otvJLoaNEYrpb2T5A08fzR4ijLFWVuXIbC7cH916KK9PL8tw+Cpulho2i3f5nyvEfFGZZ7iY4vM6vPUjFRTslovJWWrbb82FFFFdx8+FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9D+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor+f7/go5/wcmf8ABNz/AIJ4arf/AA5u9bm+JPj+x3Ry+H/CxS4FtMONl3eMwt4CCMOgaSZO8XSgD+gGiv8AMu+PH/B6h+394z1SeH9n74d+DfA2lMT5X29bnWr9B2zMZbaA+/8Ao1fC+uf8HYP/AAW01aVpLD4jaTpYPRbbw7prAfTzoJT+ZoA/1uaK/wAg+b/g6W/4LoynKfGxI/ZfDOg/1041V/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/Kyj/iKN/wCC6/8A0XP/AMtnw9/8rKAP9fqiv8gX/iKN/wCC6/8A0XP/AMtnw9/8rKP+Io3/AILr/wDRc/8Ay2fD3/ysoA/1+qK/yBf+Io3/AILr/wDRc/8Ay2fD3/yso/4ijf8Aguv/ANFz/wDLZ8Pf/KygD/X6or/IF/4ijf8Aguv/ANFz/wDLZ8Pf/KynL/wdH/8ABdYHJ+OQP18M+H//AJW0Af6/FFf5Dln/AMHUH/Bcu2YNN8Y7e49pPDWhgf8AjlgteveDv+Dur/gsx4YuEn1rxF4Y8RKpyY9Q0GBFb6/ZDbt+RFAH+sLRX+fz+yJ/we1ajJq1roP7dnwggSzlIWbWfBE7q0XbP9n3sj7x3JF4CAOFPSv7N/2Kv+ChP7Hn/BQv4dn4l/skeOLDxXaQhftlpGTDqFi7dEurSULPCSQQpdAr4JRmHNAH2fRRRQAUUUUAFFFFABRRRQAUUV+Y/wDwVZ/a8b9lT9me7t/C939n8W+L/M0vSSjYkhUr/pFyvceUhwpHSR0PTNc2NxdPC0J4iq/dir/8D57Hq5Hk2IzbH0cuwivUqSUV5d2/JK7fkmfUv7TP7JXwM/a48HxeD/jXpP25LQyNZXcLmG6s3kADNDIOmdq5VgyNgblOBX51fsY/8EgdA/ZP/adu/jTqPiBPEulafasugRTQ+Xc29xPlZHmAzGxjiyqMpG4uW2oVGfzu/wCCdn/BWT9qO6+Jfhr9nj4h2T/EW21u7isLW4kfy9Ttw55dpsETJGuXcyjftBJkAGK/q5rwcvllubyjj4U/3kGt1Zp9L9HbpvbTY/QeIocU8GU6vD9bE/7PWi7KMlKLi3q4p+9C+qeivd77hRRRX05+UhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf//R/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor+YT/g6i/4Ka61+wj+wdH8F/hPqLWHxA+M8lxo1pcQvsnstIhVTqFyhHKuyyR26HggzF1IZKAPwS/4OJf8Ag5Y8afEbxdr37Cv/AATu8QyaT4S02SSw8TeMdNlKXOrTLlJbWxmTBjtFOVknQ7rgghCIeZvxs/4JMf8ABu5+2p/wVPgt/ihb+X8OvhW8pVvFWsQPIbzaSrjT7UFHuirAguXjhBBXzC6la9F/4NvP+CNln/wVG/afu/iB8bbWRvg98NXgudcQFo/7Wvpctb6crjBCMFMlyVO5YgFBVpUYf6zvh3w74f8ACGgWXhTwnY2+maXpkEdrZ2dpEsMFvBCoWOOONAFREUBVVQAAMDigD+bH9mD/AINMv+CRPwG0O2X4neG9V+K2txqDLf8AiLUZ4YjJ/F5drYtbQhPRZRKQOrE81+kOgf8ABEr/AIJGeGoVg079nPwFIq9DdaLb3Z/EzrIT+Jr9RqKAPz1g/wCCSH/BKy3G2P8AZr+Fx/3vCOlN/O2NW/8Ah07/AMEsv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB8Af8Onv+CWX/AEbT8Kv/AAjdI/8AkWj/AIdPf8Esv+jafhV/4Rukf/Itff8ARQB8Af8ADp7/AIJZf9G0/Cr/AMI3SP8A5Fo/4dPf8Esv+jafhV/4Rukf/Itff9FAHwB/w6e/4JZf9G0/Cr/wjdI/+RaP+HT3/BLL/o2n4Vf+EbpH/wAi19/0UAfAH/Dp7/gll/0bT8Kv/CN0j/5Fo/4dPf8ABLL/AKNp+FX/AIRukf8AyLX3/RQB+fLf8EqP+CVKXSWT/s2/CgTSKzqh8HaPuZUIDED7LnALLk9sj1qf/h09/wAEsv8Ao2n4Vf8AhG6R/wDItWv2z/GniD4feJvA/izwzN5N3aNfsP7rKfIyrDurDgivqT4RfFbw/wDF/wAHw+J9EOyUYS5tycvBKByp9QeqnuPfIHy+B4qwtfOMVkkvdrUuVr+/GUIyuvNOVmu1n3t7OIyWtTwFHMVrTndP+61Jqz8nbR99O1/lH/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6K+oPGPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf8ARtPwq/8ACN0j/wCRa+/6KAPgD/h09/wSy/6Np+FX/hG6R/8AItH/AA6e/wCCWX/RtPwq/wDCN0j/AORa+/6KAPgD/h09/wAEsv8Ao2n4Vf8AhG6R/wDItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/AKKAPgD/AIdPf8Esv+jafhV/4Rukf/ItH/Dp7/gll/0bT8Kv/CN0j/5Fr7/ooA+AP+HT3/BLL/o2n4Vf+EbpH/yLTW/4JN/8EsW6/s0/Cv8ADwdpA/8AbWv0BooA/Oi8/wCCQP8AwSlvlKT/ALNnwyUH/nn4V02M/mkArxXxz/wQE/4I2fEO0kstf/Z78K26SAgnTIpdLcZ9Hs5YWX8CK/YGigD+JX9u3/gzC/Zn8f6PeeK/+Cf/AIyv/AGvKjPDofiGR9T0aZh92NbjBvLcHu7G69kHWv4l/F/gj/gov/wRD/bIgXVBq/wq+JXh1vOs7y3cNbX9ozY3xyDdBeWc23DKd8bYKOoZSo/20q/M3/gqv/wS++BH/BVX9l3U/gR8V7aKz121SW58MeIVjDXWj6lt+SRT95oZCAtxDnEiejqjqAfJn/BCn/gtx8N/+CuvwQuLLxBDbeHPi94Rhj/4SXQoWPlTRMQi39kGJY20jcMhLNBIdjEho3f95a/xMv2evjL+07/wRW/4KSW3i24tZdM8afCnX5dM17SvMKw39rG/l3dqzYw8FzFkxyYIwUlXkKa/2gvgx8W/A3x9+EXhj44fDK7F/wCHfF+lWmsabcD/AJaWt7EssZIycHawyOoOQelAHpdFFFABRRRQAUUUUAFfPX7Q/wCyv8Cf2p/Co8KfGzQINVSEN9muh+7u7Vm6tDMuHTJAJGdrYG4EV+bH/Baj9sOf4GfA+H4GeCLtoPE3jpHSZ4m2yW2locStkcgzN+6X1XzMcgV+fv8AwSt/4KMfteeKPjL4e/Zm8QL/AMJ7o+oOUa4v5GF7p1rEu6Sb7ThjIkagnZKGLHaiuuRXzOO4gwSxv9mV4c3NZPS6u9k193c/Vcg8Oc9nkb4qwFZUvZuUo+84S5YLWcZbLW6s2rpPXVJ/qV+xL/wSm+H/AOxp8cte+LtjrcniJZrYWuhrdwqk9ikpPnl2U7XkZQqK6qnylxt+av1koor28FgaGEp+xw8eWN27ep8Fnmf4/OMV9czKq6lSyjd2WkVZaJJeb01bberCiiius8cKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0v7+KKKKACiiigAooooAKKKKACiis7V9X0nw/pN1r2v3UNjY2ML3Fzc3DrFFDFEpZ3d2IVVVQSzEgADJoA0aK/gk/wCCs/8AweDP4S8T6p8Cv+CWthZ6kbF3trnx7q0Pn27yKSCdNtGwsig/duLjcj87YSu1z/H149/bk/4Knft3+MriLxP8RviD8Q9SuCZG06wu7yaBAx/5Z2VpiGJSe0cSigD/AG4KK/xBF/4J0/8ABUrxiPtifAn4qarv53jwxq8+c+/2c5p3/DqD/gqa/wA3/DNXxVPv/wAIbq//AMi0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f8A+RaP+HT3/BU3/o2n4q/+Ebq//wAi0Af7fNFf4g3/AA6e/wCCpv8A0bT8Vf8AwjdX/wDkWj/h09/wVN/6Np+Kv/hG6v8A/ItAH+3zRX+IN/w6e/4Km/8ARtPxV/8ACN1f/wCRaP8Ah09/wVN/6Np+Kv8A4Rur/wDyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V//kWj/h09/wAFTf8Ao2n4q/8AhG6v/wDItAH+3zRX+IN/w6e/4Km/9G0/FX/wjdX/APkWj/h09/wVN/6Np+Kv/hG6v/8AItAH+3zRX+IN/wAOnv8Agqb/ANG0/FX/AMI3V/8A5Fo/4dPf8FTf+jafir/4Rur/APyLQB/t80V/iDf8Onv+Cpv/AEbT8Vf/AAjdX/8AkWj/AIdPf8FTf+jafir/AOEbq/8A8i0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f/5Fo/4dPf8ABU3/AKNp+Kv/AIRur/8AyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V/wD5Fo/4dPf8FTf+jafir/4Rur//ACLQB/t80V/iDf8ADp7/AIKm/wDRtPxV/wDCN1f/AORaP+HT3/BU3/o2n4q/+Ebq/wD8i0Af7fNFf4g3/Dp7/gqb/wBG0/FX/wAI3V//AJFo/wCHT3/BU3/o2n4q/wDhG6v/APItAH+3zRX+IN/w6e/4Km/9G0/FX/wjdX/+RaP+HT3/AAVN/wCjafir/wCEbq//AMi0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f8A+RaP+HT3/BU3/o2n4q/+Ebq//wAi0Af7fNFf4g3/AA6e/wCCpv8A0bT8Vf8AwjdX/wDkWj/h09/wVN/6Np+Kv/hG6v8A/ItAH+3zRX+IN/w6e/4Km/8ARtPxV/8ACN1f/wCRaP8Ah09/wVN/6Np+Kv8A4Rur/wDyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V//kWj/h09/wAFTf8Ao2n4q/8AhG6v/wDItAH+3zRX+IN/w6e/4Km/9G0/FX/wjdX/APkWj/h09/wVN/6Np+Kv/hG6v/8AItAH+3zRX+IN/wAOnv8Agqb/ANG0/FX/AMI3V/8A5Fo/4dPf8FTf+jafir/4Rur/APyLQB/t80V/iDf8Onv+Cpv/AEbT8Vf/AAjdX/8AkWj/AIdPf8FTf+jafir/AOEbq/8A8i0Af7fNFf4g3/Dp7/gqb/0bT8Vf/CN1f/5Fo/4dPf8ABU3/AKNp+Kv/AIRur/8AyLQB/t80V/iDf8Onv+Cpv/RtPxV/8I3V/wD5Fo/4dPf8FTf+jafir/4Rur//ACLQB/t80V/iDf8ADqD/AIKmp83/AAzV8VR7/wDCG6v/APItMb/gnT/wVK8HD7Y/wJ+KmlbOd58MavBjHv8AZxigD/b8or/Ef8Bftyf8FTv2EPGVvF4Y+I3xB+HmpW5Ei6df3d5DA4U/8tLG7JhlUHtJEw9q/sF/4JMf8Hgz+LfE+l/Av/gqVYWemm9dLa28e6TD5FukjEAHUrRcrGpP3ri32onG6ELucAH97dFZ2kavpPiDSbXXtBuob6xvoUuLa5t3EsU0UoDI6OpKsrKQVYEgg5FaNABRRRQAUUUUAFFFFABRRRQAUUUUAFf5NP8AwdnftHat8b/+Cwfij4eNcNJpPwv0fSvDtkgP7sPLAt/cMB/e866aNj1IjA6AV/rLV/iq/wDBb/xFN4o/4K8ftF6lO25ovHer2gJ9LOYwAfgIwKAP9Pj/AIN4f2RtF/Y9/wCCSXwm8M21ssOr+NNMj8aazJjDy3muolwm/wD2orYwQfSId6/bKvKfgP4Zg8FfA7wZ4NtVCRaRoWnWSKOAFgt0QD8AterUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfDX7e/7c2lf8E/8A4Py/Hbxh8NvGvj7w1p8Vxc6vceDLSyvX0m2tlDNPdR3V7aOIiCx3xLIECMZNgwSAfctFfmZ/wS9/4Kv/ALMH/BWv4R698Xv2aLfWdMg8Nar/AGTqGm+IIILbUIpGiSWOUpb3FynkyqxCN5mSyOMDbztf8FGv+CkXg/8A4Jn/AArPx0+LXw28b+LvBdqqtqes+E7bT7uDSzJKkMQukutQtJlEjyKFeON0H8TKSAQD9GaK+JP2Cv23tF/b/wDgfa/tC+Dfh74x8B+G9WWKbSH8Y2lpZTanazLvS5t47W8u28hgRteTy94IZAykNX23QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV/Ol/wAFvv8AgoN8dfB3jf4ff8EpP2A7hI/j18fGa3XU1cg+GtCO5Z9QO3LLIUScxuAWjSGWQfOseQD+hHw54o8NeMNMOteEtRttUsxNPbGezmSeLzrWV4Jo9yEjfFKjxyLnKOrKcEEVuV8t/sU/smfDn9hf9lfwV+yf8KXmm0XwbYfZlubk7p7q4mkee6uZOTh7i4kkmcD5QzkDAAFfUlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWBpvivwtrOt6l4a0fUrW71HRmiTULWGZJJ7Vp0EkYmRSWjLoQ6hgNynIyK36/mJ/4LO6T8c/+CaHx70j/guP+yjDNq2mWENj4b+MPhPzCINa0DzBHaXqg5CXNo8nlrKASgZCR5YnDgH9O1FeTfAb43fDj9pT4L+Fvj/8Ib9dT8M+MNMttW025HBaC5QOoYZO11ztdDyjgqeQa9ZoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD83/+Cgv/ADKP/b//AO0K+Ovgx8Xde+DnjCPxFpeZbWTEd5bZws0Xp7MOqnsfYkH7F/4KC/8AMo/9v/8A7Qr836/jvxKx1fBcZYnFYWbjUg6bTXR+yh/TWzWjP3rhHDU8RkFGjWjeMlNNf9vyP6HPCPi3QvHPhy18VeGpxcWd4gdGHUeqsOzKeCOxrpK/F39mn4+3fwf8Rf2XrTtJoGoOPtCDnyXPAlUe3RgOq+4FfszZ3lpqNpFf2EqzQToJI5EO5WVhkEEcEEdK/o3gXjShxDgVVVo1oWVSPZ91/dl07aroflHEnD9XKsTyPWnLWL8uz811+8s0UUV9ufOBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf5p/8Awel/sjaL8Mf2wvh1+194ZthAvxR0a403Vig4k1HQDEizOf70lrcQxj2g+tf0Mf8ABoN+0dq3xs/4JMxfDbxDcNPdfC7xRqXh+Dedz/YZ1iv4cn+6rXUkajssYA4Ar5D/AOD27wzBd/sR/B/xkygy2HjiWyVu4W7sJ3I/E24/KvJv+DHjxFNc/Bf9oPwmzZjsta0C7C+huoLtCfx8gflQB/dbRRRQAUUUUAFQz3EFrH51y6xoCBuY4GScDk+pOBU1fzhf8F4P2r9X0TTNH/ZL8Jma3TU0j1bWpwrIssSOfs8Ct0Yb182THQqgz94V5ubZlDAYWeJmr22XdvZf10Pp+DuF6/EObUcrw75ebWUrX5YrVytpe3RXV3ZXR+5/x1/Zx+Cn7SvhJvBfxq8P22t2YDeS8q7Z7dm/ihmXEkbe6sM9DkcV8t/sTf8ABN/4TfsQ+KvFXizwVqFzrN14gKQWst8iCaysUwxgDpgOXk+Z32rkKg2/KSfyY/4Iz/thfth/E34qx/AbXLz/AISnwZptlJc3l5qZZ7rToUG2JYp/vPvkKqscm7C5KlQpr+nmuLLKuDzOMMxjStNXSbWt7WevVdv0Z73FeFzzhWdfhmpjOajNKTjGV4tN3V09YN2u0rXVrtpq5RRRXvn50FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/T/v4ooooAKKKKACiiigAooooAK/gk/wCDwb/grP4n8IvYf8EtfgVqj2R1Kzh1bx7c2zlZHt5/mtNNJByqyKPtFwv8aNCudpdT/e3X+I/+3J498Zft4f8ABU74jeJ4rg3GpfEP4g3dhpzSEsEgmvPsllH6lYoRFGP9lRQB+5//AAbq/wDBurY/8FE7FP2xv2xku7L4PWV29vpOk27tb3HiO4t22ykyrh4rKJwY3eMiSSQMiMmxmr/Sw+B37PnwM/Zm8BW3wu/Z78I6R4L8PWgAjsNHtI7SHIGNzCNRvc/xO2WY8kk0fs+fA7wF+zN8DPCP7PfwuthaeHvBekWmj2EYAB8m0jWMM2Orvjc7dWYknk17DQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHj3xx/Z8+Bn7TPgK6+F37QnhHSfGnh67BElhrFpHdw5IxuUSKdjj+F1wynkEHmv80//AIOKv+DdWx/4J2WL/tjfscpd3vwevbtLfVtJuHa4uPDlxcNtiIlbLy2UrkRo8hMkchVHZ96tX+ojXj37QfwO8BftM/Azxd+z38UbYXfh7xppN3o9/GQCfJu42jLLno6Z3I3VWAI5FAH8Qv8AwZ8/8FZ/E/i57/8A4Ja/HTVHvTptnNq3gK5uXLSJbwfNd6aGJyVjU/aLdf4EWZc7VRR/e3X+I/8AsN+PfGX7CH/BU74c+J5bg2+pfDz4g2lhqLRkqHghvPsl7H6hZYTLGfZjX+3BQAUUUUAFFFFABRRRQAUUUUAFFFFABX+In/wVxuGuf+Cqn7SkjHOPij4tT/vjVLlf6V/t2V/iDf8ABWI5/wCCpv7S3/ZVfGX/AKd7qgD/AG69Lt1tNMt7RRgRRIgH+6AKvUAY4ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK/Ev/g4Z+O2v/Bb/AIJU/ELw14D3P4r+KLWfw90K3Q7XuLvxHKLWWNT13fZTcMMc5X8a/bSv5w/+Ckc4/aq/4LVfsffsMW/7/SPh8+pfGXxLD94J/Zatb6O5HTi8SRDntIPxAP54/wDglDovib/ggb/wcJa5/wAE5PiNq0t34D+L1nZ6Xpuo3OES7luV8/SLkgBQ0guDPp5woHmSOcAAY/oU/wCDlrW9b+KP7Nfwo/4J1eCbhotb/aT+I+h+GJBH96PSbWdLq7n7/LDItsz8Y2k59D8Ff8Hh/wCxjr3iH9n/AOH/APwUn+ESyWfiv4OapBZale2vyzR6ZezK1rPuHINpfBBHjp9pYnpWp/wT8/a60v8A4Ldf8FcPgj+05YIsmhfs+/B5tY1WBRmG08ceJXNldwBTwFESM8RPJ8kN6YAP7BvCnhfQPA/hfTfBXhO1Sx0rR7WGys7aIYSG3t0EcaKOwVVAHsK36KKACiiigAooooAKKKKACiiigAooooAKKKKACvyf/wCCsyf8FAPBf7Puv/tD/sRfFnQvh+nw78O6trmq6VrmgR6nFqiWMJuOLt5c2pSOJwMQSBi2WIAr9YK/ni/4Oj/2oh+zR/wR48f6Zp9x9n1b4lXFn4MscHBZdQYy3Yx1IayguF+rDPoQD+X7/gmn/wAFvv8Ag4Y/4KkftQWf7LfwD8ceEbDUXsLnVb7UdT0K2SzsbG12h5ZfKikkOZJI4kVUJLyLnC5Yfpd+3/8At+/8HLH/AAR18Oaf8df2iv8AhWfxf+G893FY3Wp6Zp08SWs05PlpcJE1nNCZNpCShZIQxVWO5lU+Rf8ABkd+y39g8C/Gf9tDWLf59TvLPwdpUxGCEtEF5fAHurtNadOMxnv0/c//AIOevip8NPht/wAEXPi1o/xDuIln8WLpujaPauwD3WovewToIwepiSF5zjosRNAHuP8AwRm/4LH/AAb/AOCwnwI1Px/4O0mTwp4x8Jzw2viTw7NOLn7K9wGaCaGYKnm28wR9jFEYMjqV4DN+xtf58H/BkB8IvHn/AAl3x4+PTq0Phf7HpGgIxztuL/fLcMF7EwRbd3p5y+vH+g/QBy/jfxn4a+HPgvV/iF4zuksdH0GyuNRvrmT7kNtaxtLK7eyopJ+lfxVf8Gzdx40/4KQf8FCv2kf+CzPxyiMt9cXEfhjw1FIN8dhBdYleCLOQptbOK1gDDlllcnliT+tf/B0P+0pqv7N//BHH4ix+Hbj7LqXj+ey8HQSZwTFqblrtB677OK4T6NntXnn/AAaX/CO2+Gn/AARe8GeKYoxHN4713Xten4wSyXbaepP1jskI9sUAf0q1+Ln/AAXD0P8AaV8OfsZeM/2lPgH8fdY+DEXw08M6vrFzZ6ZptldrrNzDEHtoZJ7hfPgLSJ5KGFwMy5IbAFftHX8of/B4Z+07/wAKZ/4Ja2/wN0u48vUviz4kstMeMHDHTtNP2+dh3wJorZGHcSYPFAHyL/waEfFL9tH9rbxB8bf2q/2qvid4s8dadYLpvhvSYdc1a5vbNLmUvdXbRQSyNFG8aC3AKKDiVhwDz/btX8jv/BGn9ov9h/8A4Inf8ET/AIT+I/20fHOn+CdW+KYuvGpsWSW61G+GquBbSQ2dsktw6CyjtQ0gTy1P3mAxX61/sQ/8F1f+CYv/AAUI+Iw+Dn7OHxFS48Xyo8tvo2q2Vzpl1dJGCzG3+0RokxVVLlI3ZwoLFQATQB+u9FFFABRRRQAhIHXilr+T3/g8o/5RJaV/2UHRv/SW+r9dP+CIFxPc/wDBIj9nWW5dpG/4QXSVyxycLEABz6AAD2oA/U6iiigAooqvd3drYWst9fSpDBCjSSSSMFREUZLMTwABySelAFiivw/+M/8AwcY/8Eh/gv4m1LwdN8Uh4sv9GQy6h/wiem3uuW1tEp2tI93aQyWu1T94iY479q/SL9kP9sv9mn9vD4L2n7QH7KXiq28W+FrqeS1NzAskUkFzCFMkE8MqpLDKodWKSIp2srDKspIB9PUUVWvb2006zl1C/kWGCBGkkkc4VEUZJJPQADJNAEGratpegaVc67rlzFZ2VlE89xPM4SOKKMFnd2OAqqoJJPAAr+L39nP9r79un/g4s/bZ8faH+zx8TvEXwG/ZW+F0q2raj4RdbDxFrlxMXW3IvHR3ieVUeZkX93BF5asjyMHrS/4L0/8ABwh+wb8Rv+CZPjz4J/sRfFO08WeN/H/2fw80OnwXcMlvpl026+lZpoYl2Pbo9uQGzmYcEZrif+DXP/goD/wTF/ZP/YF8G/s1+MvijpelfFv4keK7y6vdEkt7r7R/aF7crYWMBlEBi/eQQQMvz7QZOSOaAPoD/g26+IP/AAWdj/aG+MXwI/4KF2fjW8+HfhiFhpGq+PIppL1dTS6EaRW1/PGjXsUttvkkdWeNdkbJtEvzf17UUUAFFFeFftEftO/s9/sk/De4+Lv7S/jHSvBPhy2byzfatcrAjyEEiOIE7pZWAO2OMM7Y4BoA1fj54C+I3xP+EOt+A/hJ42u/h14i1GJEs/EdjaW9/cWLLIrMyQXaSQOXQNGd6nAYkYYAj/Ol+AHx4/4KYfHL/g4l8O/8E/PFP7THjXx94W8B/EO4TUp7a8k0azvrPwwz3d1HcWlk6QbWNs9u6nKljgdQK/q2X/g5l/4JPeINI1y58CeN766mstG1jVdKm1DRdQ02w1eTR7WS6lt7a5ubeNDKVjwqNtLMQq5dlU/zVf8ABmt8FPEfx0/bV+OP7ffxGze3ulaeNPW6lH+t1TxHctdXMqn++qWzBueBP70Af6LNeZfGn4R+Cfj78IPFPwO+JNqL3w/4w0q80bUYCAd9texNDIBkHB2scHscGvTaKAP4mv8Ag1G/ar8ffB34ofGn/gir8dbzz9V+Eer6pe+HmkJUiK0vTaalboCfuC4ZLmNRknzpT0Ax/bLX+cR+0R4of9hH/g8r0XxtpB+z6X478S6HBMg+VGi8W6fDp9wz9iFupnl9ioPUV/o70AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+b/APwUF/5lH/t//wDaFfm/X6Qf8FBf+ZR/7f8A/wBoV+b9fxh4sf8AJVYz/uH/AOmoH9A8Ef8AIlw//b3/AKXIK+8v2SP2iv8AhFruL4X+Np8abcPiyuHPFvIx+4xPRGPQ/wALex4+DaK+X4c4hxeS46GPwj95brpKPWL8n+Ds1qj2c2yuhmGGlhq60ez6p9Gv68j+kCivg79kj9or/hKrOL4YeNp86nbpiync83Eaj7jE9XUdD/EvuOfvGv7a4c4hwmdYGGPwb917rrGXWL81+Ks1oz+d82yuvl+Jlhq61Wz6NdGv68gooor3TzQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/j0/4PWrdW/4Ji/Du77p8UNPT/vrSdVP/stfDf8AwYzXBbTv2nbXskng1/8AvoawP/Za+8v+D1Yf8as/AJ/6qrpX/po1ivgD/gxjP/J0Q/7En/3NUAf3+UUUUAFFFFAGB4i8WeFvCFtBeeLNStdMhup47WGS7mSFZJ5ThI1LkAux4VRyT0Fef/Gr4B/B/wDaJ8HyeBPjNoFrr2nPkos64khcjG+GRcSRP/tIynHHSv5h/wDguv8AHv4i+LfjfpnwLutOvdK8K+G4hc273ETRRaleTKN88ZIAkSJT5SkZw3mf3q+sf+CGfxa/a1+JsGu6P411l9V+HHh2BLa3fUVM1wl8+CkNvOSG2JHy6sXCAoFC7s18ouIqNfMZ5XKk5La+60Wt0+nnqfr9TwzxuX8M0eLKeMVOaSny3aaTdock4t++7r3dLXte6Z+tH7H/AOxV8If2KvC2s+F/hWbm4/tu+N5cXV6yvcFFG2KEsqqCkQJ28ZyzE8mvr6iivpaGHp0KapUo2itkj8tzHMcTj8RPF4yo51ZauT3fT8tAooorY4gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/1P7+KKKKACiiigAooooAKKKKACv8QP8A4J0r/wAJj/wVJ+BKXn7z+1fip4YD55z5+r2+fzzX+35X+IN/wSg+f/gqb+zVu7/FXwbn/wAG9rQB/t80UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXl3xP+OHwV+COnR6x8aPGGieELSbcY59a1CDT432Y3Yad0BxkZweM1+T3/AAXx/wCCoutf8Epv2Ebv4y/D20hvvHPinUY/Dnhpbkb4Le8uIpZWupUxh1t4omYIeHkKKflJr/Op/YF/4Jcf8FIv+Dgv4reKfjPqfjT7ba6NNHBrfjHxlfT3OJ5QXS1t0VZZJHVDuEahIY0wCyZRWAP9XH4W/tpfsdfHG/j0n4KfFnwb4wupX8tIdE16x1CRn6bQsEzkn2619L1/lM/t/wD/AAaoft+/sF/BjVf2mfA3iPRviToHhOFtQ1QaILi11Wyt4MM9ysEiYeOIZd2jlLoqltu0Ej9f/wDg1W/4Lo/HH4v/ABej/wCCbH7YOv3vjC51a1uLvwZr+pzm4v43sYTNNp88shLzRmCN5YXdi6FGQllZBGAf3z0V/Lh/wdU/t5/tbfsB/slfDf4h/sheM7jwVrOt+Ljp17c29vb3DTWos55fLIuYpVA3opyADx1xX0b/AMG0/wC2L+0j+3J/wTQt/jb+1R4ml8W+Kl8T6tp39oTQQW7m2t/KaNCtvHEh272wducdTwKAP6AqKKKACiiigAooooAKKKKACmu6xqXchVUZJPAAFeb/ABm+LngX4A/CHxR8c/ifd/YfDng7SbzWtUuApcx2ljE00rBRyxCIcKOWPA5r/KG+OH7Wn/BU7/g5d/bcf4DfCWa6/sC4lubrR/CcNybPRNG0eKQD7TqDKdsroGjEtxIHdpGCRKNyRUAf621hqWnarb/a9LnjuYiSu+Jw65HBGQSOO9Xa/wAi39sb/gjp/wAFdf8Agg/o2i/tZ2fiqGy0pLyG3fxJ8P8AV7sDT7uUHy47tZIbSUJLgoGMbwsSEZsuqt/dR/wbdf8ABXXxv/wVS/ZH1e1+Oaxv8TPhjc2uma9fQoscepwXaO1pemNAqRyS+VKkqINm+MuoVXCKAf0VUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH+IH/wUWUeDv8AgqV8dks/k/sr4qeJwmOMeRq9xj8sV/t+V/iDf8FX/k/4Km/tK7e3xV8ZY/8ABvdV/t80AFFFFABRRRQAUUUUAFFFFABRRRQAV/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+a/xBv+CsX/AClN/aW/7Kr4y/8ATvdUAf7fNFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFfiN8Xv+DjP/gjb8Bfin4h+Cnxd+L0mieKPCmoXGlarYTeGteZ7e7tXMciFk05kYBgcMjMrDlSQQaAP2V8Za3q3hrwhqviPQNIufEF/p9nPc22l2Twx3N9NEhZLeJ7mSGBZJWARGlljjDEF3Vckfyz/sCeAf8Agqnp3/BZv4rft4/tgfs06rovh74o6ZYeFNEurPxH4fvj4a0i0mi2/aI11ESSRuIlnuDbq7+YG2RvkAfX3/EUb/wQo/6Ln/5bPiH/AOVlH/EUb/wQo/6Ln/5bPiH/AOVlAH7KftIfAbwJ+1H8AfGX7OfxOh8/QPG2j3mjXoABZYruNo96Z6PGSHRuquoI5Ffz/wD/AAbDf8Euvit/wTW/Zs+KFp+0HpJ0vxt4q8Z3Ns5IAE+kaIDb2cqHnMcsj3M0ZzzHIp717Z/xFG/8EKP+i5/+Wz4h/wDlZR/xFG/8EKP+i5/+Wz4h/wDlZQB+/wBRX4A/8RRv/BCj/ouf/ls+If8A5WV9gfsU/wDBZj/gmz/wUS+KeofBX9jr4kf8Jh4m0vSpdburP+x9U0/y7CGaGB5fMvrO3iOJbiJdquXO7IGASAD9PqKKKACiiigAooooAKKKKACiiigAooooAK/zp/8Ag9q/aj/t/wCN3wf/AGONGuMw+G9Ju/FWpxocq1xqcn2a1D+jRx20zAdds2ehFf6LFf5Cv7dGrah/wV7/AODiTW/AehTPdaV4y+Iln4MspYjlU0fS5Y9Pe4THRPIgkuTjn5iepoA/pF/4JZfs7/8AByv+yT+wP4C+Gf7Iug/B+HwX4gsV8TWU2uvdnWEGugXg+1gPHH5qLIqFRG20KFy2MmX4j/8ABuR/wV9/4KhfFzSviN/wV8/aK0ZdE0pmNrpHheKS7NrC7AvHb25t7Kzt3cAKZ8TuQF3+ZjFf3JaZpmn6Lptvo+kwpbWtpEkMMUY2pHHGAqqoHQAAAD0q9QB8w/sc/se/AX9g/wDZ60D9mT9m7Rxo/hjw/GQgciS4uZ5DmW5uZcAyzyt8zuQB0VQqhVH09RRQB/Fn/wAHtnim4tP2GfhF4JUnytQ8dvfN6brPT7mMfpcGv3B/4N+dFg0D/gjN+z5Y26BFk8MrckD+9czzTMfxLk/jX4i/8HtPhe6vP2EfhL4zjjLQ6f48Nm79la70+6dR+PkH8q/bj/g321uDxB/wRl/Z9v7dxIsfhoWxI/vW1xNCw/AoR+FAH7G1/mQf8Hmn7S83xX/4KGeCP2XdCla6tPhl4bSSeBOWXVNfcTSKFGeWtYrMjvz09f8ATdZlRS7kBQMkngAV/mCf8EwfBmlf8Fkv+Dmzxb+0r4sjXVvB/h7XtV8eBJRvSXT9HmjtNGjbOVO12syVIwyRsMY6AH9T/wDwTF/4IY/C5/A1h+1f/wAFRfCWmfEv4yeKtNtY00TxFbJqGj+ENHhjVLLRrKyn8yAG0hCo8jIzK4KofvPJ/Gn/AMFR/gL8PP2Hv+DkPSPh/wDsS6enheKy8W+DdU03TLA+XBY6hqH2SdoYVX7kTu+4Rj5VWTYoCYWv9Rf9pf8AaN+E37I/wF8VftI/HHU00nwt4QsJdQvp3I3FUHyRRgkb5ZXKxxIDl5GVRyRX+eh/wQe/Zk+MP/BZL/gsr4u/4K7fHbS5LXwT4T8STeI0aUF4ZNaGP7L06F2A3jT4vKlZgCVWGINjzQaAP9KKivyX/wCC0En/AAVCj/Y6jP8AwSRWJviedfsRdbvsJnGkFZfPMH9pf6Lv83yN2/nyt+3nFfod8Av+FvD4FeCh+0GbU+Pf7B07/hJfsOBa/wBr/Z0+2eTt48vz9+zHG3GKAOw8deNPDvw38Eaz8RPF8xttJ0CxuNRvZlRpDHb2sbSyMFUFmwik4UEnoBmvwA/4ir/+CH//AEVW+/8ACb1f/wCRK/oE8aeD/DnxD8Hat4A8Y232zSNcs59PvrcsyebbXKGOVNyFWXcjEZUgjPBBr8OP+IYb/ghl/wBEKh/8KDXf/ljQB/N//wAHJv8AwXB/4Jtf8FEP+Ceth8BP2TvHFz4i8UQeMNN1Z7WbSL+xUWlvBdJI/mXMEceQ0qDbuyc8Dg1+hf8AwS0/4OPf+CRX7M3/AATr+DX7P/xk+I95pnirwh4WsNM1S0TQdTuFhuYE2uokitmjcA91Yg9jXw5/wcy/8EYf+CaP7An/AATq0/44/skfDOPwj4pn8ZaZpb3y6rqd6TaXFvdvJH5d3dzx/M0aHds3DHB5Nfot/wAEp/8Ag3v/AOCP/wC0b/wTf+C3x2+M/wAHota8V+K/Cmn6lqt8db1iA3F1MmXfy4b6OJcnsiKo7CgD7++GH/BzR/wRu+MfxL8O/CL4f/Ey9vNe8VanaaPptu3h/VYhLeX0qwwoXe1CKGkdRuYhRnJIFfvhX4k/DX/g3L/4Ix/CD4jaB8Wfh38FodP8QeF9StdX0y6/tzWZvIvLKVZoZPLlvnjfZIittdWU4wQRxX7bUAFf5yf/AAWB/wCCm37Rv/Baj/gojpP/AARs/YF1qXS/hvca9/wj+p31ox263c2rMb68uHjOX02yRJHSJTtmEZlO4mIJ/bt/wVN+M3ib9nr/AIJu/HL4z+CZntta8P8AgnWrjTp4wS0N2bZ0hlGP+ecjK/4V/nV/8Guv/BMjXv28PiP8Vfil4b+MXiX4RXPgOy03TGuvCDRQavcQa6bkyrHdSBmtgBZgb41LtuIyBkEA/ok/4Kp/GL9gD/ggv/wSd1//AIJnfstWtjefEr4m6BP4dOnQbJdWuv7VtzbXesaoVDMC0bv5CsAGcrHCoiRvL+1f+DWf9gL4z/sI/wDBOCZv2gLGfRfEvxK12TxQNIuCyzWFjLbQQWyTxHHlzusRlkX7yq6I4DqVH2P+yL/wRE/4Jo/sC+J5fj/4a8MNr/jiyEl7deN/G1++raojKN0lyZrgiCCQAEtNFFE2M5bGa/XPQPEGg+LNCsvFHha9t9T0zUYI7m0u7WRZoJ4JVDJJHIhKujqQVZSQQcjigDXprosilHAZWGCDyCDX4f8A7Ecn/BaGT/gqD8ef+GyRYL+zeouV+HwiGn7yftUX2IxG3/0v/jz8z7V9q/5bbdnFfuFQB/mtf8Hk9j8HPCf7TPwR/Zm+Bng3RdA1K00K/wBbvE0XToLSa6bWLpLa3RzCiltpsZNqn+/nuK/uw/ZM/wCCev7Mn7N3wI+G3w8h+H3hiTXvAuh6RY/2t/ZVq1417p0EaG58/wAvzDKZU8zzN27d82c1/B5+1tbf8PGP+Dv7QfhVF/p+ieEvF2jaa0R+ZfsfhK1W+1CJuwVpoLlT/vY61/pcUAFFc5pvjDwlrOs3nhzR9Us7vUNPwLq1hnSSaDPTzEUlk/4EBXR0AfKX7b37Ynwi/YG/Zb8X/tYfG+do9B8JWfnmCLHn3lzIwjt7aEEgGWeVljXPAzuYhQSP4XP+CUv7P3x0/wCDln9vHxD/AMFEf+CjrvqPwe+G16LXR/CgZ/7IlvJAJItNgTIHkW8flzXjn95OzRq+5Xbb7j/we8ftF+JLDw98D/2T9JuDHpWpzan4p1OIMR5stqI7WzyPRRLcnnOSR6V/Tj/wQl/Zt8O/stf8Elfgb8P9DhEdxq3hiz8S6i5ADvfa+gv5t57mMziJT/cRR0FAH5A/8HiTfC/wF/wSP8K+AYNOs7OR/G+kWWg2sEKRraJbWl2zeSigCONIUMfyAABgvQ4r6Y/4NQP2YP8Ahnn/AIJB+F/Gmp2/kat8UtV1DxXc7h84gdxZ2oz/AHWt7ZJVHQeaT1Jr+UX/AIOhP247r/go/wD8FL/CX7DP7Ol+utaF8PLxPDFqLd90F54p1WdIboqRwwiYQ2wODtdJdpIbn/SM/Z78M/CP4E/D/wAM/sg/D7VrGS5+HXhrSbBNLSeP7bBp1vF9ltppIAxkRJfIYK7DazKwBJBoA+gqK/D3wA//AAWgf/gth4tXxwLBf2QV0RP7JwNP5uTaxbDGV/4mH2n7X53meZ+58rOP+WRr9wqAP8yz/g6pvX+G3/BeX4X/ABA00/Z7iLw54U1USrwfMttUu1DZ9QIR+Vf6adf5lX/B1Hp//C0v+C9Xwx+G+nN5k83h3wno5VeSJLrU7tgPriYH8a/01aACiiigAoorifiXq+o+H/hz4g17SJPJu7HTbu4gkwG2yRRMynDAg4IBwQR61jia8aFGdae0U27b2SuaUaTqVI047tpfedtRX4n/APDXP7Qv/Qwf+Slt/wDGqP8Ahrn9oX/oYP8AyUtv/jVfj3/EdMh/58Vv/AYf/LD73/iG+Z/8/Kf3y/8AkD9sKK/E/wD4a5/aF/6GD/yUtv8A41R/w1z+0L/0MH/kpbf/ABqj/iOmQ/8APit/4DD/AOWB/wAQ3zP/AJ+U/vl/8gfthRX4n/8ADXP7Qv8A0MH/AJKW3/xqj/hrn9oX/oYP/JS2/wDjVH/EdMh/58Vv/AYf/LA/4hvmf/Pyn98v/kD9sKK/E/8A4a5/aF/6GD/yUtv/AI1R/wANc/tC/wDQwf8Akpbf/GqP+I6ZD/z4rf8AgMP/AJYH/EN8z/5+U/vl/wDIH7YUV+J//DXP7Qv/AEMH/kpbf/GqP+Guf2hf+hg/8lLb/wCNUf8AEdMh/wCfFb/wGH/ywP8AiG+Z/wDPyn98v/kD9sKK/E//AIa5/aF/6GD/AMlLb/41R/w1z+0L/wBDB/5KW3/xqj/iOmQ/8+K3/gMP/lgf8Q3zP/n5T++X/wAgfthRX4n/APDXP7Qv/Qwf+Slt/wDGqP8Ahrn9oX/oYP8AyUtv/jVH/EdMh/58Vv8AwGH/AMsD/iG+Z/8APyn98v8A5A/bCivxP/4a5/aF/wChg/8AJS2/+NUf8Nc/tC/9DB/5KW3/AMao/wCI6ZD/AM+K3/gMP/lgf8Q3zP8A5+U/vl/8gfthRX4n/wDDXP7Qv/Qwf+Slt/8AGqP+Guf2hf8AoYP/ACUtv/jVH/EdMh/58Vv/AAGH/wAsD/iG+Z/8/Kf3y/8AkD9sKK/E/wD4a5/aF/6GD/yUtv8A41R/w1z+0L/0MH/kpbf/ABqj/iOmQ/8APit/4DD/AOWB/wAQ3zP/AJ+U/vl/8gfthRX4n/8ADXP7Qv8A0MH/AJKW3/xqj/hrn9oX/oYP/JS2/wDjVH/EdMh/58Vv/AYf/LA/4hvmf/Pyn98v/kD9sKK/E/8A4a5/aF/6GD/yUtv/AI1R/wANc/tC/wDQwf8Akpbf/GqP+I6ZD/z4rf8AgMP/AJYH/EN8z/5+U/vl/wDIH7YUV+J//DXP7Qv/AEMH/kpbf/GqP+Guf2hf+hg/8lLb/wCNUf8AEdMh/wCfFb/wGH/ywP8AiG+Z/wDPyn98v/kD9sKK/E//AIa5/aF/6GD/AMlLb/41R/w1z+0L/wBDB/5KW3/xqj/iOmQ/8+K3/gMP/lgf8Q3zP/n5T++X/wAgfthRX4n/APDXP7Qv/Qwf+Slt/wDGqP8Ahrn9oX/oYP8AyUtv/jVH/EdMh/58Vv8AwGH/AMsD/iG+Z/8APyn98v8A5A/bCivxP/4a5/aF/wChg/8AJS2/+NUf8Nc/tC/9DB/5KW3/AMao/wCI6ZD/AM+K3/gMP/lgf8Q3zP8A5+U/vl/8gfthRX4n/wDDXP7Qv/Qwf+Slt/8AGqP+Guf2hf8AoYP/ACUtv/jVH/EdMh/58Vv/AAGH/wAsD/iG+Z/8/Kf3y/8AkD9sKK/E/wD4a5/aF/6GD/yUtv8A41R/w1z+0L/0MH/kpbf/ABqj/iOmQ/8APit/4DD/AOWB/wAQ3zP/AJ+U/vl/8gfthRX4n/8ADXP7Qv8A0MH/AJKW3/xqj/hrn9oX/oYP/JS2/wDjVH/EdMh/58Vv/AYf/LA/4hvmf/Pyn98v/kD9sKK/E/8A4a5/aF/6GD/yUtv/AI1R/wANc/tC/wDQwf8Akpbf/GqP+I6ZD/z4rf8AgMP/AJYH/EN8z/5+U/vl/wDIH7YUV+J//DXP7Qv/AEMH/kpbf/GqP+Guf2hf+hg/8lLb/wCNUf8AEdMh/wCfFb/wGH/ywP8AiG+Z/wDPyn98v/kD6Q/4KC/8yj/2/wD/ALQr8369I+IPxc+IfxU+yf8ACeah9v8AsHmeR+6ii2ebt3f6tFznavXOMcV5vX8+8b57h85zvEZlhYyUJ8tlJJP3YRi72bW6fXY/UOHctq4DLqWErNOUb3te2sm+qXfsFFFFfKHtlmyvLvTryLULCVoZ4HWSORDtZWU5BBHQg9DX7N/s1fH20+MHhz+zNZdY9f09B9pQcecnQSqPQ9GA+6fYivxbrpPCHi3XvAviO18VeGpzb3lo+9GHQ+qsO6sOCO4r7jgTjSvw9jlVV5UJ2U4913X96PTvqup85xLw/SzTDcj0qR1i/Ps/J9fvP6HKK8l+DPxc0L4x+D4vEWlYiuY8R3dtnLQy46e6nqp7j3BA9ar+0cDjqGMw8MVhpqVOaumuq/rdbp6M/n3E4aph6sqNaNpRdmgooorrMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD+QL/g9W/5RZeAf+yq6V/6aNYr4A/4MYv8Am6L/ALkn/wBzVff/APwerf8AKLLwD/2VXSv/AE0axXwB/wAGMX/N0X/ck/8AuaoA/v8AKKKKACvIPiZ8fvgx8Gtb0Lw78VPEljoF34mmkg01b2TylnkiALDcflUDcoyxALMFByQD6/X8SH/BXXXv2hvFX7W2q6v8bdBvNB0y3zZeHYphut306FjtkikQmN2lJMkm1iVZtpxtArweIc4ll2GVaEOZtpdbLvd9PLzP0Lw24Jp8TZpLBV6/s4Ri5OzXM3slFPfXWWnwp6ptH9jvxb+C/wAKPj74Mm8B/F3Q7TxBpFwN3lXKbijEcPG4w8bgdHRlYdjWR+z/APAD4afsy/DCy+EXwntGtNIsXllXzW8yWSSZi7PI+AWY5xk9FAHQCvy0/wCCH3h39oSL9nS78Z/FTXr268LahMIfDWmXZ8zyYICyyzI7Ausbv8kcYYINjMF+YGv20rry6pTxdKnjnS5ZyXW17evZ7r8kePxPhsTlGKxHD8cX7WjTntFvkckrX5XopK7i99bq7CiiivTPlQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//9X+/iiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP5Yv+DuD9jD4sftVf8E29N8ffBvTLjWtR+FfiBNfv7C1RpZ30qSCW3uZI40BLGAvHK/HyxLI3QV/G1/wQo/4OBvGf/BH+2174QeLvByeN/hp4r1NdWvLe2mFrqdje+UsDzW7sDHIHjjjDwyBclFKunzbv9L39sP/AIKo/sA/sCeLtJ8B/tffEez8Fatrtm1/Y21za3dw01srmMuDbwSqBvUjBIPHSvzI8e/8ETv+CFf/AAWE+GNh+1h8JvC1taWPi8XElp4q8DPJobXLQzSQTO1q0YtmkE0bq7y2hcsDknuAN+Bv/Bzf/wAEWP2w/DNz8P8Ax143uPAT69ayWV1pfjSxksUeG4QxyI91CZ7NVKsQd1wvBr0v9hf/AIIM/wDBHL4CfFHwf+21+xppD6nqOkedd6Drdl4kudVsJBcQyW7OhWd4ZVKSOOrLmv5uP2yv+DKHx54Z0LUvF37CvxVXxNNbxvLb+HfFVslpczbORGmoQHyWkfovmW8KZ+84BJH43f8ABvN/wUM/aB/4J0/8FMPCf7PWuXl7a+C/iD4mtvB/ivw5dMRDDe3c32OK52NxFPa3DKZGUbmjDoeowAdp/wAF+/2T/wDgsJ8EdWv/AImft5+MdY1/4V+IPHOpjwhY3/iZ9Yt7YytcS2/l2jSuLfba5UYVdo+X2rv/APgh9+xh/wAF0/i54E8G/Gj9h7x1reifBew8ZRnUtNtPFj6ZaSPazQPe7rDzlSQPHgMChEg4Oa/oO/4Pa/8Akxb4R/8AY9t/6b7mvq//AIM9v+UPsP8A2Omt/wDoNvQB0P8Awcaf8F3tY/4JVeBtE+B37OcNjqHxg8cWk13DNeATRaFpoJjW8eA8SyyyB1t0f93mN2cMFCP/ACP/AAN/4Ji/8HI//BTT4dQ/tjxeL/E0ljrifb9IufEviufTri/iYApJZ25k/dQuDmFisMTLyh2kE/KH/Byh4u8X+M/+C43xkTxFA93Jpl/pGnWVnIGINtDp1p5SKqENtlyXwpBJkJGCa/ejSf8Ag4v/AODhrQdKttC0P9jSzs7KyiSC3t4PBPiWOKKKMBURFW6AVVUAAAAADAoA+Ov+Caf/AAX8/wCCgf8AwSe/arn/AGL/APgqlJr/AIj8JWd/Dpms2/iWaS61zw2z7dtzb3DmR7i2EbLJ5Rd0ki2vAwz8/wDTB/wdcftN/Gr4Af8ABLzwr8W/2W/HmseDtS1Px3pECav4a1Gaxmnsbiwv5dgntnRmikKI+NxViqnsK/h+/wCComvf8FYP+Crfx9039o341fsu+IPDGv2GjQ6LJ/wjfhDWoI7qK3llkjkn+0C4ZpV80oGBHyKq9AMf0Df8Fs4fipZ/8Gq37MGk/GzT77SfE+nav4VsL201OGS3vIvsel6lBGs0coWRX8tE3BgDnrQB+G/7J37d3/Bfr/gpV4TsP+Cef7LHj/xl4mvPtV5rOq6uNXnTUWt5ljj23urzyiS3sogmEhEqJJJIwIkZkUbn7Wf7Fn/Bwf8A8Eb9Nsf2l/HfjTxXpuiC6jSXxD4c8TXGo2cFxLjbHeoJMqrt8mZ4jC7YTcxIB/pj/wCDJf4Y+CNM/YY+LHxls4If+Ek1rx0dGu5gP3v2LTLC1nt0J/uiS8nYY6k+3H9Wn7Znwi8DfHv9kn4lfBr4lW8VzofiPw1qdldrL91Ukt3xID/C0bYdWGCrKCCCAaAPxJ/4N0P+C3etf8FY/g1r/wAP/jzBZaf8W/h6lsdRay/dRavp84KJfxw9I3EilLhEzGrFGXaJAi/0mV/k/wD/AAaI+M9a8L/8FldB0PS0d4PEfhbXtOvCvRYY4VuwW9vNt4x9SK/1gKAPkn9u79lS2/bh/ZG8c/sm3/iG68K23jqwGnXGqWcSzTwwGVHkCo5CnzEVozk9GJr8hf8AgmX/AMEbf2W/+Df3w78W/wBqTX/iRfa/pF3oUU+ranqmnrF/Zem6T51xcMi23myuHBVmVVJPlrgE1+4v7QH7R/wK/ZV+G8/xf/aM8U2Hg7wxbTRW8upanL5Nuks7bY1LYOCzcD3r5r0r4u/sN/8ABWn9m74ifBr4R+PNP8e+D9d0648N+IZvD12Glt49ShZGUSbTskMZJQlT06GgD+Mj/g4v/wCDjn9jP9sv9jnVf2GP2Jpr7xfF4svbCbWvENzZTafZQWunXEV2kdvHdJHcSSvNEm5mijVUBwW3YH6Uf8GeX7Afxx/ZU/Za+I/7Qvx00O88MXPxav8ASxpOnajC1vdNpmjx3BjumjfDIk8l5IIwygskYcZR0J+F/wDgqf8A8GgvwE+D/wCzD4v/AGiP2EvGGvprXgvTLnWrnQPEk0F5b3tpYxNLOlvNDBDJFN5aloxJ5iuw2Epu3K3/AIM6P+CnXx1+IvxG8W/8E6vjVr154j0PT9BfxJ4Vm1CYzS6f9knihubNHclzFItwksaE7YjE+0DeaAP7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/EG/4Kxf8pTf2lv+yq+Mv/TvdV/t81/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmgAooooAKKKKACiiigAooooAKKKKACv8Qb/grF/ylN/aW/7Kr4y/9O91X+3zX+IN/wAFYv8AlKb+0t/2VXxl/wCne6oA/wBvmiiigAooooAKK4r4hfEn4dfCTwpceO/itr+m+GNDtCiz6jq11FZWkRkYIgeaZkRSzEKuSMkgDk183/8ADxH/AIJ/f9F0+Hv/AIU+m/8AyRQB9i0V4Z8Kv2oP2aPjrq1zoHwR+Inhnxlf2cP2i4ttD1e11GaKHcF3ulvK7Ku4gbiAMkCvc6ACivLPir8c/gn8CdKtdc+N/jHQ/BtleymC3uNc1CDToppQCxRHuHRWbaCdoJOBmvDf+HiP/BP7/ounw9/8KfTf/kigD7Foryn4U/Hf4H/HfTrvV/gf4y0LxlaWEghuZ9C1G31GOGRhuCyNbu4ViOQCQSK9WoAKK8V+K/7Sn7OnwGurKw+OXj/w54Mn1FHktI9d1W10550jIDtGLiRC4UkAlc4yM15J/wAPEf8Agn9/0XT4e/8AhT6b/wDJFAH2LRXhHw6/al/Zk+MGoppHwl+I3hfxTdyZ2Q6Rq9pfSNtGThYZXJwBzXu9ABRRXzVf/tifsx6b+05p37Gc/jPT5Pijqmnz6rD4dhZprxLO2VWeWYRqywAqwKCZkMgyUDYOAD6VooooAKK+J/2yf+Cjf7EP/BPzRLHXf2wfiNpfgoapuNlaz+Zc310qHDNDZ2yTXMiKSAzpEVUkAkEiuM/Y5/4Ktf8ABP39vuLXF/ZS+JFl4lvPDMDXOqWElvdaff2sCnDSta3kME5jViFaRUZAxAzkgUAfoXRXzf8Asr/tffs0/tt/CmD42/sreMLHxp4Znle3N1ZF1eGdMFop4ZVSaCUAgmOVEfaQcYINfSFABRRRQAUUUUAFFFFABRRRQAUUV+P/AMfP+C+n/BID9mbx7efDH4vfHLRrfXNOma3u7bTbe91j7PMh2tHI+n29yiOp4dWYFSCCAaAP2Aor4+/ZL/b/AP2L/wBuzQ7rX/2SPiRovjiOwCtd29hPtvLVXOFae1lCXESsQQrSRqGwcZr7BoAK/iV/4OxP+CLH/C9fh/df8FNf2atJ3+MvCVmq+NrC1T59T0i2XC3wVfvT2SDEp6tbDOf3IDf21VDcW9vd272t0iyxSqUdHG5WVuCCDwQR1FAH+AbX9mv/AARt/wCDeb/gnF/wVp/ZKs/jd4d+L3i7R/GGjuuneLNAjSxY6fqAGQybotxtrhR5kDnPG5CS8b18af8AByp/wRguP+Ca37Sf/C9fgdpjR/Bf4k3csumrEv7rRdUbMk2nMRwsZG6S0zjMQZOTEWP5wf8ABIH/AIKffE3/AIJTfth6P+0B4S87UPDN7t07xXoiPhdS0qRgXCgkKJ4T+9t3OMONpOx3BAP7Uf8AiCO/Yu/6LJ41/wC/Fj/8ZqC4/wCDI39jdoiLT4zeM0fHBe2sXGfoI1/nX9iPwR+NPwy/aM+Efh346/BnVodd8LeK7CHUdNvoDlJYJhkZB5Vl5V0YBkYFWAYEV6lQB/mCf8FTP+DST4/fsVfBjV/2jv2WvGZ+LHhvw7bveazpUth9h1i0tIhmSeJUkljuo41BeQAxuqjIRwCQ7/gyo/5SleP/APsleqf+nfR6/wBPWaGG4ha3uFDxuCrKwyCDwQQeoNfwn/8ABE79kfSv2Hv+Dov9qD9nfwxarZaDYeBtW1HRYIxiKHTNW1PRL62iT/ZhjnEP1QjrQB/dpRRRQAUV+f8A+0//AMFVP+CdH7GkFyP2kPjH4Z8O3tpnzNMF6t5qgx1xY2vnXR9OIjzX0d+zV+0V8LP2tvgV4a/aP+CV5LqHhTxbafbdNuJoXt5JIdzJlo5AHU5U8MAaAPcqKKKACiiigAooooAKKKKAPzW/4KWeNP8AgpVonwpHg3/gmv4A0PxP4k8Q2V9bT67rWtJpy6DIVRYJorV4z9qkbe7L+9RY2jG5XDYr+Hv/AIJx/wDBAH/guF/wTs/bV8Gftn+H/hp4R8XX/hGa7k/s3UfEcEcdwt9azWsn71cskgSZmR9rbXAJVhwf9K2igDzj4Q+IfiR4s+GWieJPjB4ch8IeJ7y1SXU9Ft75dTisrg/eiW6WOJZgvZxGufQV6PRRQAUUUUAfz0f8HR/7PN5+0B/wRq+I9zo8LT6h4CuNO8W26KM/JYTCO5Y+gS0mnfP+z6V51/waU/F62+Jf/BGHwh4SikEk3gLX9e0GbnJDSXTaioP0jvVx7Yr+iz4heA/CvxU8Aa58MPHVot/oniPT7nS9Qtn+7Na3kbRSxn2ZGIP1r+LT/g210vxj/wAExv8AgpL+0Z/wRj+NtyfOkeLxR4Uupf3aajBajYZoh0Z7mylt5Sq52fZ5FJyhwAf2T/HTwFr3xU+CXjH4YeFtWbQdT8SaHqGl2epqnmNZT3lu8Uc4XI3GJmD4yM4xmv4X/wDgkj/wTR/4LLf8EJv2kfHXjTSv2fNN+POi+LtMj0ZL3w94s0/SzGYZhLHKn2/ZL5b/AHXV4Exw275cN/fpRQB/Ij8eP+CXP/BWj/gtz8SdKl/4Kg6zpnwE+BOh3a3lt8NvCmoJrGrXM8YIEl1eohtWlKswWbMixjIS3Uszn+oD9nP9nD4JfslfBrQ/2f8A9njw9a+F/CXh2AQWVhaLhRnlndiS8ksjEtJI5Z3YlmJJJr26igD+N3/gpx+3n/wVO+FH/BaP4O/8E3f2evjHp0eifFO+07Urq303wzZx3ukaPd38ySQy3F0175zx2dvJIZUWBiBnYoIr+yKv4J/2OfjP8Lfjr/wco/tQf8FK/j3rMGk/D39n23n8O2GoTBpI4r13TQLNIURXd2uljvWjSNWeSSQBFJbFf3sUAFFFFAH8qX/B4hoet+IP+CTulWGgWc99OPH+juY7eNpX2i1vsnCgnHPWv1j/AOCI1je6b/wSP/Z5sNRhe3nh8EaWrxyKUdWEYyCDgg/Wv1KooAKKKKAPJfj38FvBP7R/wP8AF/7P3xJiebw/420a90PUVjO2T7NfwtDIUbna4VyVPZgDX+fD+zt/wR2/4OJP+CJX7WuuePf+CdmhaL8UfDerA2EsrX1lHp2rWIcvAL6yu7uzuIZozzvhk/dsWVZmRm3f6PFFAH8qelfsBf8ABZ//AIKt6jp+n/8ABYrxVoXwl+DdvKk2ofDP4dzOLnXWhYMIdRvFnudtuxALLHdy7v4UjfbIv7N/t43PjX9lb/gn14q8V/so+I9F+FNv8KfDdzqVqbjRV1Oxi03RrKVksobUT2yx7tkaRuC+0DaI2JGP0Rr+ZP8A4O1f2lZvgN/wSF13wHpc/k6j8Utd0zwxGUOHFuGa/uCP9lo7QxN7S470Adp/wbQftaft1ft4fsc+K/2sf23vFv8Awkcuu+J5tO8OW6WFpYQW1hp0SLK8YtYYtwkuJJEJkLsDD15r+h3xL4i0Xwf4c1Dxb4kuFtNO0u2lu7qd+FihgUu7n2VQSa/mz+FXxf1r/gl1/wAEHtV+FH7IlhaeMfjP+z74B0XVPEPh4QTXEen6r4jb7ddtcCLZvMAlubp4VkEgiRWcKsiFvx31b/g4c+Lf7bv/AARkvf2dNPgtvFv7WHxmu9R8DWXhzwjaStOulXREc1/PCCwgLWryRJh/vlZQAivtAPD/APg02+G/iH9r7/gqv8eP+CkfjS1Z4tPi1G6WWT+HWPFt682Qe5W3juFYDp5i56jP+hv440bWvEXgrWPD/hu/bStRvrK4t7W9QZa2mljZUlA7lGIYfSvyi/4Ib/8ABMq3/wCCV/7BWg/AnxAYLjxxrUz694tuoCHjbVLpUUwxv/FFbRIkKnoxVnAG8iv2FoA/yZvAP/BNf/grR/wRx/4KPfAv4x/E+0j03VfF3xH07QdN1DTdcgvD4gNzdRi6idIpftbW1zG5WYzwpw43AMRX+szX4d/AP/glz8bfGf7ft5/wUg/4KPeNtP8AHXivwvNfWHw18M6HFLDoHhfTJndFuAs2Hmv5oSPMZlxG5OGk2xGL9xKAP5X/APg5q/4Io/HH/gqT4B8C/Fv9lM2l34/+HgvbR9HvLhLRdT0++Mb7Yp5cRJNDJHlRI6Iyu+WBCg/CH7Hv7Nf/AAdVfFP9m/wx/wAE+fixd6H8CfhjodhDodz40ea0u/FH9iwAQi1tjZXdxmRIAI4pPLtn2qMz55P9x9FAH+bp+0l/wbrf8FH/ANmD/grX4c+Kn/BL34cafqvgPwlP4b1PwxrWt39l9jhu9KtLWOefUo5Jo5mmN5FJcy+VES5fdGuflX+t39mP/gnn8U/2Kv2aPiN8WfEHxZs7j9on4hlfEHjr4n6zpX9q2ytZru+z29l51ptsLSAPHbx74wuS+wDbEn7XV+In/Bxh+0rN+y//AMEd/jJ4o0yfydU8T6bH4TscHazNrsi2k209itq87gjn5aAPgr/g2D/b0/4KF/8ABSnwr8X/ANpD9snxiuveGdM1Ow8P+HLG10yz0+2guo43ub1gbeFJHYRzWoHmSPgMfav6sK/nh/4NtfCPwn/Zu/4JxfDL9lmLU4D8SdZ8Nx/EvX9MjVjNBaeJp3exlnIUpGz2yxRojsJGETMF2g4/cT49/GnwP+zh8EfFvx++JdwLXQPBmkXms38hIB8iyiaVguerMF2qOrMQByaAP8/j4teBbz/goF/weU2/h/QkFzonw017SL+8k++kMPhCxguZQ+OzX6eTjpucA96/0Ya/i7/4NNP2WfiR491j40/8FiPjxZiDW/jfq99b6Gzg73tZb17vUp1J6xTXnlxJ0ObZ+MFTX9olABRRRQAV5v8AGT/kkPir/sD33/ol69Irzf4yf8kh8Vf9ge+/9EvXnZx/uGI/wS/9JZ14D/eqX+KP5o/Aeiiiv8/D+oQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPUvhD8VvEHwg8YQ+J9FPmRHCXVuThJ4ieVPoR1U9j7ZB/cTwT4z8P8AxB8M2vizwzMJrS7Xcv8AeVh1Vh2ZTwRX89NfSP7OPx5vvg34m+zakzS6FfsBdxDnyz0EqD+8vcD7y8dQMfrfhh4gPJsQsBjZf7LN7/8APuT+1/hf2l811v8ADcY8LrMKX1nDr99Ff+BLt6rp93p+19FU9O1Cx1awh1TTJVnt7hFkikQ5V0YZBB7girlf1xGSklKLumfhrTTs9wooopiCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kC/4PVv8AlFl4B/7KrpX/AKaNYr4A/wCDGL/m6L/uSf8A3NV9/wD/AAerf8osvAP/AGVXSv8A00axXwB/wYxf83Rf9yT/AO5qgD+/yiiqOqNqSabcNoqRSXgicwLOxSJpcHaHZQxCk4yQpIHQGhjSu7Hyn8Qf26P2YvhV8ebT9nP4ieJYdI8RXdrHcq1x8tohmJEcUs/3IpHA3APtBUjnLKD7r8TPhX8Mvjf4Ln8C/FLRrTxBot6oLW90gkTOOHRuqMM/K6EMOoIr+E/9tf4PftS/Dz466xrn7Uelzx694ivJbr7co8yzvC5/5dpVyrIowqoMNGuFKr0r+vj/AIJofAP4jfs8fsnaD4R+K2p3t7rV6Pt8lndytIumRzAeXaRBidgjUAuo4EjNjjFfIZNnlfH4qvha9C0Fffouiknu2fs3G/AOX8PZTgM3y/MOatO3wu6lJK8p05Rs1GLstb7rVPQ+4PC/hnQPBXhvT/B/hW0jsdM0u3itLS2iGEihhUIiKPRVAArdoor65JJWWx+NTnKcnKTu3q2wooopkhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//9b+/iiiigAooooAKKKKACiiigAr/EG/4JO/8pTf2af+yq+Df/Tva1/t81/iDf8ABJ3/AJSm/s0/9lV8G/8Ap3taAP8Ab5ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP4yf+Dw3/gm98S/2lP2e/Bv7anwW0ybWNQ+Ey3tr4hs7VGknOiXmyT7UqAElbSWMmTAyI5Wc/LGSPwL/AOCCv/ByvF/wTC+FL/slftPeFtQ8WfDSO9mvtIvdFaL+0tIa6YvPEIJmijuIZJSZRmaN42Z+XDBU/wBSkgMCrDIPUV+H/wC1h/wbof8ABIz9sLxndfEj4gfC6HQPEN9k3N94YupdH85ycmR4LdhbNISSWkMJdj94mgD8lv2if+D0X9gnwt8Nb64/Zm8EeLfFvjCWA/YLfV7aDTNNimYHBuZluZpSEOCViibfjG9c7h/KR/wQc/Yq/aF/4Kdf8FYfDvx9vLKS40Dwd4utvHvjXWymy1SWK7N8kGehlvJ02LGvzBC7/dQkf23+Av8Ag0X/AOCNfg3WY9V1vw/4n8Txxur/AGXVNdmWE7ccH7Its5Bxz8/fsK/oN+BH7O/wI/Zf+H1t8Kf2dfCGk+CvDlqdyafo9pHaQlyADI4jA3yMAN0j5dupJNAH8oP/AAeteENe1f8A4J3fDbxfp1u81lo/j+BLt0UsIhdWF4qOxH3VLLtyeNzKOpFfmn/wbRf8F5f2M/2Jv2VLL9hj9oS11+18Uat41kfSrrT7NLqymj1g28MfmP5qvG0cobeNhGzBUsSVH9/nxq+CHwh/aO+GOrfBf47+HLDxZ4V1yIQ32l6lCs9vMqkMpKt0ZGAdHGGRwGUhgCPxa8H/APBsR/wRZ8B/ETTvib4X+FFzbahpF7DqFmn/AAkOrtDFcW7iSNgrXhJCsoO1iQcYIIoA/k+/4PCv+CffxL+Ev7Zunf8ABRnwbb3F14U+IlrZWWp3kEZxpmtaVDHbRCV14Vbi3jiMLE5LxyDsuf2k/YY/4PBf2C/GX7P2iQftvNrPgv4jaZZR2+rNa6bJqFhqNzCgVri2a2DNGJyC5ikRBGSVDMAGP9dPjvwF4I+KPg3Uvh38StHs9f0DWYHtb/TtQgS5tbmCQYaOWKQMjqR1BBFfzqfED/g0v/4IyeOPFcnifTPCGveG4pZPNew0rXLhbQk9QFuDO6qT2R1A6LgcUAfzKftZ/wDByL/wU4/4KF/t9aR8G/8Agj7qGteEPDurGDRdB0X+z7C5v9TudzvLfXXnQ3It12n5gJfLihi3uQd5H7U/8Hcvh/xn4T/4In/DTwr8RtbbxL4h0zxr4ctdU1d4khbULyHStQSe5McSpGhmkDPtRVVc4AA4r+gX9hv/AIJPf8E//wDgnLbXEn7Jfw5sPD+q3iGO51mdpL/VZo2IJjN5ctJMsZIBMSMseQDtzzX4cf8AB53/AMooPDH/AGUrSP8A036nQB/Jp/wbwf8ABcix/wCCR/j/AMSeBfjrpOo638JfH8sMt22nAPc6ZqVopUXMETlElDxuqXEe9W2iNlJKbH/fX/grz/wdmfso+P8A9kfxT+z/AP8ABPtda1vxZ4606bSJ9cvrN9NtdKsr2Mx3Dx+YRNJc7GKR4RURj5m87Qrc9/wa6f8ABPz9jv8A4KEf8Eg/Hnw2/a+8C2HjHT7L4p6nJZTTF4L2yd9J0jc1tdQNHPDuwu8JIFfADBgMV+uHgz/g0m/4IzeE/F0XijUfCviHXoIpBINN1HXLg2Zx0DeR5MrLnqDKc9DkZFAH4H/8GX37A/jnU/jP41/4KJeMrK4svDekaXL4X8PSTRFI9QvbyRHu5YmI+ZLaOERMV4LzEZyjCv8ARSrkfAXgHwR8LPBWl/Dj4a6TaaDoGiW0dnp+nWEK29tbW8Q2pHHGgCqqgYAArrqAPy//AOCzf7GPif8A4KAf8Ez/AIq/su+AhEfEmtadDeaMJjtV9Q0u4ivYYtxwE89oPJ3HhRJk8Zr/ADhv+CA3/BZt/wDgi58fPG3w/wD2h/DOqX/gTxi0Nrr9laRqmqaTqWmNIkcywzGMOV8ySKeFnjbowOY9jf63Nfkh+3b/AMENv+CaH/BRbxV/wsb9o34exnxaUEb6/o1zLpmoSouABO0DCO4IACq08cjKowpA4oA/ms/4Kyf8HbP7J/xS/ZA8X/s9fsLaRrur+J/H+kXWiXGr6xaLYWel2d/GYbh0XzGlluPKd1jAVURyHLNt2N8+f8GYn/BP74rt8YvF3/BRzxjYPp/g2HRbrwr4flmG06je3E8L3M0IIy0VukJiZ+FMkhVSTG4H9DXwT/4NW/8AgjJ8GfEVr4ovPh7f+M7qymE8K+JNWubu3DKcgPbxNDBMnqk0bqR1Br+hDw14Z8N+DPD9n4T8H6fbaTpWnQpb2lnZxLBbwRIMKkcaAKiqOAqgADpQBt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH+IN/wAFYv8AlKb+0t/2VXxl/wCne6r/AG+a/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t80AFFFFABRRRQAUUUUAFFFFABRRRQAV/iDf8ABWL/AJSm/tLf9lV8Zf8Ap3uq/wBvmv8AEG/4Kxf8pTf2lv8AsqvjL/073VAH+3zRRRQAUUUUAcD8TPhT8LvjT4RuPh98Y/DWleLdBuyrT6brNnDf2chQ5UvDOrxsVPIyvBr/ABzv2p/2cfhf+1B/wXF8W/slfsf6TbeG/C3ij4nv4U0e30+P/RLSL7WLSaeFBwsCssk6quFWPhQFAFf63n7eP7SVj+x9+xf8Uf2nb10V/BPhrUdUtlkxtlvIoW+zRc8ZlnMcYz3av83T/g0P/Ztvv2hP+CsFz+0D4pR7y1+F2g6hrklxNl9+qan/AKFAHJ6uyT3EoJ/ijz1xQB/o6fsf/wDBPr9jb9g3wZaeDf2V/h9o3hQwWUdjcalbWkf9qX0ceDm7vNvn3DMwDEyORnoAAAPsqiigD5w/ai+CP7LHxl+F2oP+1x4O8PeL/C+g2t1fzr4h0+C/htIo4y00qecj+WwRSS6YYY4PFf5DH/BHH9h7wN/wUs/4KpeD/wBn7UdOmtfh/eaje63rFpHIwaLRNPV7j7OZQd480iO23g7gZMg55r/Sa/4OT/2ov+GWf+CPPxW1TT7n7Pq/je2h8GaeM7S7a03lXIB65FkLlxj+7+Nfzjf8GRf7Lv2jX/jT+2jq9txawWXgvSpyMgtMRfX657FQln07NQB/dJ8BP2ZP2df2WfCB8A/s2+BtC8C6OxRpLXQ7CGxSZ0XaHl8pVMsmBgu5Zz3Jr3GiigD8Y/8AgvL8Kv2Rdc/4Jl/GX4x/tN+B9D8S3fhXwdqg0PUNRs4pL2x1G6j8qy+y3LL50DNdvDzGy5PUEcH+An/g1z/4JifBj/go3+2n4n1D9prQP+Ek+H3w50D7fdae8kkUFzqd9KIbOKYxMjlNi3Eu0MNzRKDldwP9Qf8Awed/tQf8Kv8A+CfPg79mXSrjyr/4p+JkluYs/wCs0zQlFxKMe11JZn04r4N/4NYv22v+CZ//AAT1/YQ8a+Mv2mfi74e8KeOPHHid5rrTrmR2vo9N06FIrRWhjR5GzI9zICoIxIO+aAOq/wCDkb/ggP8AsVfsvfsW6l+35+xLobfDbXPAN/prapp9hdTPZXlrf3cdoskaSu7QXEU88TK0TKhQMChbDD62/wCDQ7/gpt+0L+2J8G/iH+zB+0jrd14qvvheNMutE1nUJGnvX07UPOja2nmYlpPIeAGN3JfbIVJ2ooH5V/8ABfH/AILs6J/wVl8Nad/wTR/4JheG9d8caVrOqw3GrajBpsxuNYezcPbW9hagG48kS4lkklijcsigKFDFv6H/APg2f/4JAePv+CXX7LWv+Mf2hYYrX4n/ABSntLzVLCNxJ/ZVhZI4tbN3UsjTBppZJih25dUBby9xALv/AAcAf8Fi/HP7C2geF/2NP2M4BrP7Rfxfkhs9Bt0jWY6XbXk32aO68t/leeabMVojApvVnfKoEf7I/wCCQX/BKPwR/wAE2Pg1PrXjC7PjD42eOsaj488ZXrtc3l/fzHzJII55MyfZonJ25OZWBlcbmAX+O7/gkN45m/4Kz/8AB0d4w/bH16dtR0Hweuu+JtHjnO5E0yx2aTpSqDwrRrcwzYGP3ilvWv8ASSoAK8h/aA+N3gT9mn4G+L/2hPihObbw94K0e81rUHQAv9nsomldUBI3OwXai9WYgDk169X+fd/wce/ts/8ABaj4b/sd6n8A/wBsbwj8NvCnw/8AijrI0q0u/Cl5eXOrT2+nyreKjedOVWNxFGJW8oZDbcANigD1X/g27+GXiH/gq7+3h8Z/+C1X7YtoNd1HRtWTRvB1pdEz2ml3MqGVkgVuB9gtHgig4PMzSH95h6/an9gX/ggJ4G/YX/4KZfFD/go3bfErUfFNz4+bWHstEuLIW/2A63drd3BnuhO5uypXYmYohg7mDMAR+Mn/AAQG8Gf8F3/2cP2DfAWlfsxfDL4WX3wu8a6g/iddR8QX15DrMttqDojyyJFOse7yol8r939wJkE9f7rqAP5Gv+Cvn7P3xf8A+CPvxYn/AOC1/wDwTVtksNJnvLaH4w+BIhs0jW7OeXauo+SvEVwJJNsksa7leQTYwbjzP6Xv2Tv2ovhD+2j+zr4T/ae+BWoDUfDHjCxS9tXOBJExyssEqgnbNBIGilXJ2upGT1roP2jvgxoP7Rv7Pvjj4AeKFRtO8baDqOh3HmLuUJfwPAWx6rvyO4IyOa/hx/4Mvv2tfEPhbxp8Yv8Agmx8QJHWWxLeLtJgY5WCe2kjsNTjB5HzFrVlUYHyyNzkmgD+/WiiigAor+bv48f8HUn/AASv/Z0+N/jH9n74iy+LR4g8Da3f6BqYttHEsH2zTZ3t5vLfzxuTeh2tgZHOK8o/4jCf+CPv/Pbxp/4JF/8AkigD+puiv5ZP+Iwn/gj7/wA9vGn/AIJF/wDkij/iMJ/4I+/89vGn/gkX/wCSKAP6m6K82+DXxV8K/Hb4QeFPjf4FMx0Pxlo9jrmnG4Ty5vsmowJcQ70ydrbHG5cnB4zXpNAH80f/AAcL/HX9qDx/J8J/+CSX7D14dN+If7Rt5dx6pqkczQvpfhzTAj3cjOmHjjlBbzHUlmhhljClpBXyz4Z/4Mu/+Catl8LIPC/i7xr471DxT5AE+uW13aWsbXGOWjtGtZlSLP8AyzZ3fHHmZ5r+qu7+BXwcv/jVaftHXvhrT5fHlhpEmg22uvCpvotNllEz2yy9RGZBuwO5Pqc+r0Af45X7TfwL/av/AODcP/gqpplt4J8Rtdar4WNrr2g6xAptodc0O6ZkZJ4dz7Y5THNbXERLAMjFSRtav9gT4d+NdL+JXw/0L4i6GCLLX9PtdStw3J8q6jWVM/8AAWFf50v/AAc+eDNU/wCCg/8AwXW+Ev7CvwDj+3+KofD2keHr54495tLjUbq4vXaXHPlW1lKlzITgKhY9jX+jL4K8J6V4C8G6R4G0JStjotlb2FuD1EVsgjQcf7KigDpqKKKAPmH9sr9kb4M/t1fs2eKv2W/j3YfbvDniq0aCRlwJ7WdfmhuYGIOyaCQLJG2CMjBBUkH/ABff+Chf7CPxm/4Jv/tXeJ/2U/jbBm/0SXzLC/RCtvqemzEm3vIM5ykqjkZJRw0bfMjCv9yCv5+/+DhL/gjpov8AwVU/ZRfVfhzaQw/GHwBFNe+Frs4Q30ZG6bTZXOBsuNoMRYgRzhTlUaTcAfyXf8GqP/Baf/hlP4twf8E8v2kNW8r4cePL7Phq+un/AHei65cEDyix+5bXrYB/hjuNr4Aklav9NWv8B3W9E1vwrrl34c8RWk2n6lps8ltdW1wjRTQTwsVeN0YBldGBDKQCCMGv9Tb/AINh/wDgtMP+CgX7P4/ZQ/aD1XzvjF8NrJFW4uHzNr2ixYjju8k5e4gysVznJbKSkku+0A/qsrxvTf2ePgVo3xx1D9pnSfCOk23xC1bTV0e98Rx2sa6lcaerRuLeS4A8xog0UZCE4yi+gr2SigAooooA/wA6/wD4O/v+CeX7HH7LHw4+E/xt/Zu8BaV4I1zxHr2rWesPpEX2eO+WSJLhWkjU7N6OG2sqg4cg5AGP6xP+Dff/AJQzfs+/9iyP/SiavwO/4Pef+TWfgf8A9jVqP/pIK/fH/g33/wCUM37Pv/Ysj/0omoA/Yyiv5GP+Cln/AAXK/as8a/8ABQjTP+CPX/BICx0i5+Jt1d/2frni/VUF3a6XcpGZ7iOGIq8X+hxKzXUsqTBWDRLEZFzW9+0l/wAE0f8Ag4Q+E3wlu/jX+zX+21q3xE+IOkW5vJPDN74fsdPstQdDvaK13PPAr4yI0lhCSHALRg8AH9ZNFfyLf8G//wDwcd67/wAFBPiGf2Jf22dMtPD/AMX4YJm0nUbSNra31w2as9xDJbHP2e8ijRpCqny5FV8LGUCt+zP/AAWG/wCCoHgL/gk5+xxqP7R/iSwXXdevrqPR/DWjM5jW+1SdWdRI6glIYo0eWVu6ptB3MtAH6oUV/HP+yp8Fv+C/f/BS/wDY2039vqT9rRfhb4j8YQ3Os+EPBeleHrT+x47Pc4to7qfmXbPgFTKt00cZVmMjEov5B/sff8HIX/BfPV/2no/2AdS8LeCfiR8UW1W/0P7J4jtY9GuxqOnCXz4GntruwslZTC6gFBvYBVJJAIB/pKUV8pfsR+L/ANrjx7+zL4c8V/t0+E9K8D/FG6N5/bGiaLcC6srUJcypbeXKs1wGL2wikbErYZiOMYH1bQAUUUUAFFFFABRRRQAV/PX/AMFt/wDgnL8avi14k8Bf8FNv2CtsH7Q/wDdrzTrPblfEekKWefTZMYZnKvMIlBAdZpYusisn9ClFAHyl+w7+1r4I/bq/ZQ8FftW/D60uNO0/xdZNLJY3alZ7K8tpXtry1kBC5a3uYpYS2AGKZHBFfVtZWjaFonh2zbTvD9nBY27TTXDRW8axIZrmRppnKqAN8krtI7dWdixySTWrQAUUUUAfgz+zN/wbufsK/syfti+If2yNFv8AxN4iv9Z8QP4ptPD+sX0cuhafqxeaSK6S2ihjM01qbiYWj3DyGAOSuZPnr95qKKACiiigAooooAKKKKACiiigAr8vP+Cqv/BJ39nz/grj8GtA+Dfx+1bW9Bh8NauusWN9oMsMVwsnlPC8bCeGeNo3Rzn5QwZVIOAVb9Q6KAPlz9j/APY++DH7EPwbh+C/wUgu3tXuptR1LU9UuGvdV1fUrog3F9f3T/PPczEDe5wAAFUKiqo9g8J/CL4UeAtYu/EXgbwxpOi6hqGftV1YWUNtNPkgnzHjRWfJAPzE16HRQAUUUUAFFFFABRRRQAV8A/8ABSz/AIJz/BX/AIKj/sw3X7LXx2v9U0nSZdQtdVt77RpI47u3u7TcEYedHLGylXZWVkOVY4IOCPv6igD4X/YE/wCCef7P/wDwTm+EEnwo+B/9pancX8kU2r6/r1z9u1jVZbeJYIWubjagKwwosUMSKkUSDCKMsT+Nv/BYyL47f8FS/wBpLSf+CJH7NUtzoXhKGLT/ABP8ZfFoiPladpDSebY6dEWG2S4uWj85UHUrHk+Ws+3+nqs210bSLG/utVsbSGG6vijXMyIqyTGNdql2Ay21eBknA4HFAHE/B34SfD/4B/Cjw58EvhTp0ek+GvCenW2laZZxfdhtbVBHGuepO0Dcx5Y5JySa9IoooAKKKKACvN/jJ/ySHxV/2B77/wBEvXpFeb/GT/kkPir/ALA99/6JevOzj/cMR/gl/wCks68B/vVL/FH80fgPRRRX+fh/UIUV/Oh4B/4L02M37fup/sh/F/wnZ+H/AA7a+JtR8MQ6/HeO7LPbXElvbyTRsgVUldFVzuwm7cTtBr9lv2yfj3qP7Lv7MHjT9oDSdOj1e58K6eb2OzmkMSTEMq7SygkD5uoBr6LMOFczwWIw+FxNK063K4apqXM7LVOy1tdPbqeVhc6weIpVa1Gd40782juravTf/M+maK+GP+Cc37Xesftx/sraP+0Pr2iQ+H7rUrq9tns7eZp41+yzNECGZVPzAZIx1r7nryMfgq2DxNTCYhWnBuMlvZp2eq0O7DYiniKUK9J3jJJr0YUUUVyG4UUV89/tV/tH+D/2R/gD4i/aI8e2V5qGkeGo4JLi309Ua5cTzxwLsEjxpw0gJyw4B78VthsPUxFWFCjG85NJLu27JfNmdWrClCVSo7RSbb7Jbn0JRXzz+yl+0h4P/a6+AHh39onwDZXmn6R4kSeS3t9QVFuUFvPJbtvEbyJy0ZIwx4I78V9DUYnD1MPVnQrRtOLaa7NOzXyYUqsKsI1KbvGSTT7p7BRRRWJoFFFFABRX53/8FOf229f/AGA/2bYvjr4c0C38R3EmsWumfZLmZoEC3CSsX3KrHI8scY71+Rfhf/gtb/wUk8b+G7Pxj4M/ZM1vV9I1GFbi0vbK11O4t54XGVeORLRldSOQVJBr6vKuCs1zHCLG4aMfZNuN5ThHVbr3pI8TG8Q4LCV/q9aT57Xsoyej9Ez+oSivwv8A2DP+C2Xhj9qn47n9lr41+A734Z+O5fNS0t7mZp4Z5rdDJJBIJIoJYJtoZlRkYEKRuDFVP7oV5Wc5Hjsqr/VsfT5JtJrVNNPZpptNejO3AZjh8bS9thp80b26qz7NOzTCiiivJO4KKK/I7/gpn/wUr8UfsDePfhX4Q8P+FbXxHF8Qrq7t55Li5e3a2FtJaoCgVGDFhcE84xtHrXpZTlOJzLFRweDjzVJXsrpfCnJ6uy2TOTHY2jhKMsRXdoq13a+7SW3mz9caKKK806wooooAKKKKACiivHP2ifife/BL9n7x18Z9Ns11G58I+HtT1qK1diizvYW0k6xlgCQHKbSQCRmtaFGVWpGlBe9JpL1eiIqVIwg5y2Sv9x7HRX5o/wDBLD9vPxH/AMFDfgBrXxl8T+HbfwzcaV4huNFW1tp2uEdIba2n3lnVSCTOVxj+Gv0urpzPLcRl+KqYPFRtUg7NXTs/VaGODxdLFUY4ii7xkrp7BRRRXCdIUUUUAFFFFABRXm/xk+J2i/BP4Q+KvjL4kgnutO8I6Pfa1dQ2wUzSQ2ELzusYZlUuyoQu5gM9SBzXzl+x1+3D8O/23P2fb79ob4WaVqOm6bZ3V3ZfZtVWKOcy2iK5P7mSVdp3gA7s9eK7qeW4mphpYyEG6UZKLl0Unsvmc8sXRjVVCUvfabS8luz7Vor8of8AglF/wUb8Tf8ABRn4e+LPGfifwva+GJfDeow2SR2ty9wsqzReZuJdFIIIx3zX6vVea5XictxdTBYuPLUho1dPdJ7q62ZOCxtLF0I4ig7wls9vLqFFFFecdQUUV+cn/BUL9uTxB/wT8/Zzsvjj4b8P2/iS4utcttJNrcztboFninkL7lVjkGIDGO9duW5dXx+Kp4PDRvUm7JXSu/V6HPi8VTw1GVes7Rirvqfo3RXlPwH+I1z8Yfgd4M+Ll5arYzeKdC07V3tkYusLX1ukxQMQCQpfAJAzivVq5q1KVKpKnPdNp+qNac1OKnHZ6n3F+yZ+0T/whN/H8N/Gk+NHunxazOeLaVj0J7RuevZW56Emv1er+b+v0/8A2RP2if7ct4fhT43n/wBNhXbp9xIf9aij/VMT/Go+6f4hx1Az/QXhJ4hcrhkWZT02pSf/AKQ3/wCkf+A/yo/LuOeFr82ZYSOu80v/AEpf+3ff3P0Booor+jj8nCiiigAr5p8e/tWfC7wV8WdG+BGmm58ReMdYuIUfS9Ij+0y2NtIyh7u8IIW3gjVt5LkMw+6rZrxr/go3+2TB+xh+z5ceM9HWOfxPrMh0/RIJOV+0MpLTOvdIV+YjoWKqcbs1l/8ABNb9nIfBb9n6y8feMd1948+IKJr/AIh1K4y1zLNefvY4nY84iV8EZx5hdu9eVVxsp4pYOhulzSf8q6L1f4LXXY+uweQ0qOUPO8wT5JScKUE7Ockryk30hDS9leUmoprVrc8Zf8FOv2F/h94v1TwH4w8fQWeraLdzWN7bmyvHMVxbuY5ELJbsp2spGVJHHBrmv+HtP/BPT/oo8H/gBff/ACNWT+yv+wB8PPAPiXx58XPjV4Z03WPF3jHxRq+pLNeJHerb2Fxcu8CRhwyIWU73IAbLbScKBX4ff8Fe/BvhDwt/wUI8E6H4Y0qz06ym0jSHkt7WBIYnZr64ViUQBSSAASRyBXiZjmuaYTCrFTUNXbltK6Tel3zb91Y+94Z4R4TzjNnlNCeIbjBydRTp8rcUnJRXs27Xuk77an7r/wDD2n/gnp/0UeD/AMAL7/5Gr7c+HPxO8CfFnwDp/wAUPh9qKahoOqQme2vArRK8akqWxIqsoBU/eA6V4z8V/wBi39lz4yeDr3wZ4w8D6MsV3C8SXVrZQwXduzDh4ZkQPG6nkEHB6EEZB/Jf9rrR/jD+xp/wR20j4M3s4g1hrwaDfz2cmQLK5uLmY4YdpYlSNwOzlckV6NXG47Ce0q4pRlTjByvFNO6to7t7309D5rB5FkOcPD4XKJ1aeJqVoU3GrKElyTUrzjywg3ytK680uun298Rv+CuX7Cnw38Sz+E7jxZJrF3aSGO4bSbSa7gjK9T5yqInA7mN3Fdt4f/4Kb/sS+LdI0zU/C/je2vp9W1G00uCwVHjv/tF5II0zbSKkuxSfnkClQO/Iz4t/wR0H7PUn7Hmin4PrZ/26qFfE20L9t+3lmz5/8ewj/U5+XZ053V4F/wAFHv2I/hp4c+KPwz/aq+F2lQaPqEPjTRLPXIbRBFDcR3N0gjnKKAokWQBGYAbw+WyQK5Hjsy+pxxsJQlFpNxSeifZ82rXXRbHsQ4f4XedVMhrQxFOcJSipynBqco30cPZpwU2vdalLdX3uv3cooor6o/IQr42+Lf8AwUB/ZG+BHjG58A/Fvxb/AGJqtqQJIZrC9ZfmUMNsiQNG4wwyVY46HnIr7Jr8uv8Agsro+man/wAE9fGl9fwJLNp0+lXFs7qCYpGvoIiyk9CUkdcjsxHevPzSvWoYWpXoNXinLVNppJu2jVvXX0PpOEsBgsfm+GwGPU+StOMLwkouLnJRT96M00r6qyv3Ot/4e0/8E9P+ijwf+AF9/wDI1H/D2n/gnp/0UeD/AMAL7/5Gr5b/AOCHfhDwnrn7Fk97rWl2l5N/wkV+vmTwJI20RwYGWBOK+ov23v2IvgX+1R8MtW+Geg6domm/EG3sjf6NcIsdvdRMGwpk8oeYbaRgY3JVlGcgblFeRQxmaVsFHF0nTbkrqPLL7r8+/wAj7PMMl4SwOfVcnxUcSoU58kqiqU3ZXtzOPsVouuui77Hr/wC0f+3T+zJ+ypp0Fx8XfEaQX17bLd2mmWqNcX1xC5IV1iX7qsVYB5CiEgjdkV1X7KP7Tfg/9rr4PW3xo8C2N5p2n3VzcWywX4QTA27lCSI3dcHqPmr5C/4Ke+AdJP8AwTi8Wy+JrG1uNY0rStLjF15avJHJBc2+fLkI3AZLemQT6muR/wCCLep6bo3/AAT+0rUtXuIrW3j1XUd8szhEXM2BlmIAySAPet44/ELNVhJtezdPm213tq7+vY8+fDuWS4QlnGHjP6xHEKk25Jxa5HL3UkrXut23po9bH6+UVzmkeMfCOv3JstB1WzvZlUuY7edJGCjAJwpJxkjmotS8ceCtGvH07WNYsrS4jxuimuI43XIyMqzAjIOa97nja9z899hV5uTld+1jqKK5+88WeFtOsINV1DU7SC1ucGGaSZFjkyMjaxODxzxVKx8feBdTu47DTdasLieU7UjiuY3dj6ABiTRzx2uCoVWuZRdvQ62iuQk+IXgGG6axl1zT1nVzG0ZuYw4cHBUjdnOeMV19NST2ZM6c4W5otX7hRRXH2XxD8Aal4wufh7p2uafca/Zw/abjTI7mN7yKHIXzHhDGRU3MBuKgZIHehyStd7hClOabhFuyu7dF3fkdhRXmGifG74MeJfFUngTw54v0XUNciLB9OttQglu1KfeBhVy4xjnK8V6fShOMleLuVWoVaTUasHFvXVNad9Qorzfxv8Y/hD8M547X4keKtH8PyzLujTUr6G0Z19QJXUkcdRXVeGvFXhfxnpEev+D9StdWsJs7LmzmSeFsdcOhKn8DSVSDk4Jq/YqWFrRpqtKDUHs7Oz9Hsb1FYfiTxP4a8HaNP4j8XajbaVp1qu6a6vJUghjX1Z3Kqo+prj9W+NPwc0Gy0jUtc8W6NZW+vokmlyz38EaXqSAFWt2ZwJQwIIKZyCMdaJVYR+KSQUsLWqJOnBu+mib1Sv8Alr6HplFcd4z+Inw/+HGkrr3xD13T9BsXcRrcajdR2sRZuih5WVST2GaoeOfiz8K/hgsDfErxNpXh4XJxCdTvYbTzDnHy+a6559KJVYRvzSStuOnhK9Tl5KbfNe1k3e29u9uttj0Cism217Qr3RU8SWd7BLp0kXnrdJIrQNFjO8ODtK453ZxiuJ8F/Gr4N/EjU59F+Hni3RtevLUFpoNOv4LqWMDgllidivXuKHUgmk2rvbzFHDVpRlOMG1Hd2dl69vmeY/G39q74Yfs6+MdB8PfGBbzR9J8Q7ooNfeEtpcN0DhYLiZc+S7j5kZwEIDEsMGvpS3uILuBLq1dZYpVDo6HcrK3III4II6GuI+KHwy8FfGX4f6t8MPiLYpqOja1btbXMEgzlW6Mp52uhwyMOVYAjkV+Lv/BNn44+MvgD+0R4q/4JkfGfUTft4almfwreznEklsoEwg5zw1uwnjX+AB1yQFA82tjZ4fFQp1v4dR2i+0v5X3v0ffR9z6nA5DRzPKa+JwN1iMMuapBu6nTvZ1I9U4NpTi7ppqSa1R+79FFFeqfHn8gX/B6t/wAosvAP/ZVdK/8ATRrFfAH/AAYxf83Rf9yT/wC5qvv/AP4PVv8AlFl4B/7KrpX/AKaNYr4A/wCDGL/m6L/uSf8A3NUAf3+V+XPhT/grp+yTr37QWu/ATW9SOjDTbz7FZa3csv8AZt7KmFkAlHEQEm5VZ/3bgbg4yBX3J+0F4F8efE34K+Jfh98MtdXw1rmsWMlra6k0Zl8gycMQFZWBZcqHByhO4AkAH+JLxR/wTl/as8F/tCaH+zn4l8PSRan4iu/s2n38WZdPnjHzSTJMBgpHGDJIpAkRR8yg8V8pxJm2Owc6P1SlzRb1drp9FHTa/f0tfVH6/wCGHB3D+eUcb/bGLVOpGPuRUuWSSXNKprpJJK1tbLmbt7rP7qfEHhbwd480y3tPFGn2esWcc0N5AlzElxGJYSHilUMCNykBlYcg8iumryP4C/Bzw5+z78HPDvwZ8KSSTWPh6zS1SWYkySsOXkbJOC7kttHC5wMAAV65X09O7ipTjaTSv1+V+tj8pxThGpKlRm5U4t8ratdX35buzaSbV/K7CiiitDmCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1/7+KKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvzt/wCCm3/BM34Ef8FWv2e7H9mz9ofVte0bQtP1y21+Ofw7cW9vdm5tYZ4EVmuba6Tyytw5IEYbIXDAAg/olRQB+cH/AATB/wCCXv7P3/BJv4C6t+zx+zjqmv6xo2ta7P4huLjxHcW9zd/ap4Le2ZVa2trWMRhLZMDy85JJY5GP0foooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/EG/wCCsX/KU39pb/sqvjL/ANO91X+3zX+IN/wVi/5Sm/tLf9lV8Zf+ne6r/b5oAKKKKACiiigAooooAKKKKACiiigAr/EG/wCCsX/KU39pb/sqvjL/ANO91X+3zX+IN/wVi/5Sm/tLf9lV8Zf+ne6oA/2+aKKKACiiigD+SD/g8g/ai/4VD/wTQ0X9njSrjy9R+LXiW2tpos4L6Zo2L2cjucXItAR0w358d/wZifsu/wDCr/8Agn14x/ac1W38q/8Ain4laG2kx/rNL0FTbxEH2upLwHtx+X89X/B4l+1pYfHL/gpTpH7Pvhm9W60v4Q+H4rC4WNg6Jq+qN9qusEEjIg+yo46q6MDyMD++X/gjzpHwM+GP/BMX4H/Dj4QeJNJ1nTdK8H6YZ7nT7qKaJ765hW4vGOxjtLXMsrMp+ZScHkGgD9QKK+DP2xP+CnH7C/7CPw9v/iD+0h8R9G0n7HE7w6VDdR3OrXsijiK2s42M0jscDO0Iucuyrlh+F3/Bvn8cPib/AMFQ/wBr79oX/gsH8TLKbSNIv/sPw38E6U0hkTT9IsSL64hJ4DuXktpXcDHnSS4wMAAH5X/8Hun7UX2jXfgt+xdpFzxbQ3vjTVYAc5aUmysGx2ICXnX+9X9HP/Bth+y5/wAMsf8ABHn4U6VqFt9n1fxvbS+M9RONpdtabzbYkdciyFshz/d/Cv8AO+/4LaftG+Ev+CgP/Bbzxtqk/iG3s/BcfiWw8F2eqvKv2S103TGjsprlZCSvkmUT3IfO3a+elf65vw41n4Sab8P9H0r4ZanpsnhzTrKC109rO5jlt1tYECRBHVipUIoAIPSgD0+ivyB/4KQ/8Fuf2D/+Cbnwp1TxT488Y6Z4m8ZRwv8A2V4P0a9iuNUvbkj5FkWMv9lhzy88wChQdod8I3w//wAG8GveL5/2Ffif/wAFVv2w9WjsNa+OvibVvHGrXty5itbHQ9JU2tuoDk7IIEgmMZJ/1GzqACQD+Sn/AIO9P2jtQ/aD/wCCr1j+zt4UZ723+GGg6foiW0Pz79V1X/TZigHVmjmtoiB/FHjrX7F/8Fzf+CDPwA+CH/BE3wz4++AfgXR9J+JPwT0/RbjxNq+lWccN5rdrHAtpqUlzJGoMzCVxds7klVjfHWv5wf8Agm7N/wAPTv8Ag4x8IfEvx3xbeM/iLqHjeWC5IIFtpfn6tDakd1CWyQBefl46c1/rY/Ev4d+Efi98OPEHwn+IFot/oPifTbrSdStn+7NaXsTQzIfZkYj8aAP4vP8Agys/am8GeMf2cPiT+yPqFpZW3inwZqcet2tzHCkdzeaTqY2sruo3yC2uY2JLE7ROijgV/ZH8eNY1Xw98DvGev6EN19Y6FqNxbgcZlit3ZP8Ax4Cv8of/AIJs/FXxF/wQt/4L0j4efGS+NjoOg+Ir7wH4oupf3UUujX8gjhvXz0hVhbX3+4nSv9b65t9N17SpLS5VLqzvIijrwySRSDBHoQwP4igD/NT/AODJdrL/AIb7+K6yY+0H4fsU9dn9o2e/9dtf6Xlf5n//AAbg+G7z/gnn/wAHFHxD/Yp+IKtHfXmmeJ/BVo0uV81rC4h1GCZc9VmtbEunqsgNf6YFABX+cx/wel/FnWPij+2R8C/2P/CQa7u9H0K41VbaI5L3niG7FrEhH9/FiNoPQP8A7Vf6M9f5qnxTtG/4KMf8Hi9l4XjH23RPA/jOzhZD80cUHga0We4R+217y1lUg8FpNvegD/RG/Z0+D2j/ALPP7P3gb4BeHtpsPBHh/TdBtyowDHp1vHbqfxCZr2WiigAr/L4/4N6r/U/Bn/By54m8LaApezvL/wAeadclegt4WuJVJ9vMhjH41/py+MPFeheA/CWqeOPFM4tdM0a0nvruZukcFuhkkY+yqpNf5yP/AAaG/CXxB+0Z/wAFQ/jH+3LqELxaX4e0u9Ztwyf7S8T3ZeNd3Q7YIbjdjnO3seQD/SQooooA/Lf4kf8ABFL/AIJRfF34g638VPiV8DPDGr+IvEl9canqd9PA/m3V5dOZJpXw4BeR2LMcckk1xX/Dg3/gjb/0b54T/wC/En/xyv59P2vv+DOHVv2pf2r/AImftMWv7QsOhx/EPxTq/iUac/hZrk2n9q3Ulz5PmjUo/M8vzNu/Yu7Gdo6V86f8QNOvf9HNW/8A4SDf/LWgD+pb/hwb/wAEbf8Ao3zwn/34k/8AjlH/AA4N/wCCNv8A0b54T/78Sf8Axyv5af8AiBp17/o5q3/8JBv/AJa0f8QNOvf9HNW//hIN/wDLWgD++zwT4M8K/DjwZpHw98CWEOl6HoNlb6dp1lbrthtrS1RYoYkHZURQqjsBXT14h+zL8G/+GdP2bvh9+z4NQ/tf/hBPDWk+Hvt3leR9q/su1jtvN8vc+zzPL3bd7bc4yete30AFfmT/AMFV/wDgpx8J/wDgl5+zZN8WPF0J17xhrkh0zwd4WtiWvNb1aQARxIiguIkLK00gB2qQo3SPGjejf8FGP+CiX7PP/BMn9mnVf2kv2hL7bBb5t9K0qBl+26vqDKTHa2ynqzYy7n5Y0BduBX8Rv/BPn/grx/wTV+LH7W2p/wDBVn/gr/8AE17v4uRzy2ngbwZbaJqd9pHgvTInYRtE0ds8UlywyyOrNs3GRiZnxEAf0D/8EJf+CR3xL/Z717xN/wAFLv8AgoCx1j9pP4vvPf3yz4YeH7O+YSNbIBlVuJMKJdvywxqsEeFVy/8AS3X823ij/g7I/wCCKOgaBdaxpHj/AFnW7m3jZ47Gz8Pagk87AZCI1xDDEGPQF5FX1Ir7b/4Ix/tbftJft6/spaj+2V8frGDQ9J8f+JdSu/BOixRKsun+GbdltrZJ5QAZpZJYppGkIAYMCoCFQAD9bqKKKACiivwI/wCDgP8A4LI+HP8AglH+yy9l4BuYLv4w+O4ZrTwrYtiT7GoG2XUp0OR5VvkeWrAiWYquCgkKgH8RP/B2tof7Fuj/APBT+6m/Zlmz41u9PSb4iW9oq/2fFrDYMTKVP/H3JDhrtQNobYxJlaXH7E/8Gj//AARl8Q+Gbqy/4KwftB21xp809vc23w/01y0TPb3UbQXGpyrwSksbvFbK3DKXlwQYmr8Of+CAH/BILx1/wWA/a41D47ftGG9vvhX4V1P+0/Fup3Tu02u6pM3niwWYnc8kzN5t3IDuSI9VeWM1/rMaNo2keHNHtPD3h+1hsbCwhjt7a2t0EUMMMShUREUBVVVACqAAAMCgDSooooAKKKKAP4gv+D3n/k1n4H/9jVqP/pIK/bz/AIIgeJLzwb/wQh+Dni/TovPuNK8D3N5FFjO94HuHVcDrkjGK/Cz/AIPfte0eH9nf4EeGJbhBf3PiPVrqOAsN7QwW0SO4HXCtKgJ6ZYV++f8Awb232j+I/wDgiv8AAL7K8d3bnw7LbSgEMu+K6uIpEPurKysPUYoA/iF/4M/PE8Hi/wD4LIeJfFvxDuHv9c1fwPr13FczHdJJqE97ZSSyMT1ZozMSfev9Ruv8mb4Z6H4y/wCDcH/gv3pEnxgs7uHwJo+sXUMV6yFxqHg7WfNt47xCAfMaGNhI6KcieBozyDX+q1pHxX+GOv8Awyh+NWjeIdOufB9xp39rx63HcxnT2sPL837R9o3eX5Pl/OX3bQvOcUAf5VP/AAUJ0ef9i3/g6Q1TVfhiP7New+KfhzxHElqdoJ1v7FqFwmB/DKbqRXXoQxGMcV/Sf/werfBL4qeOf2Mvhb8Y/CFrcXnhvwR4ku010QKXW3GpwoltcSgA7Y1eJot5wA8yr1YV+PX7L3wduv8Agu3/AMHMnjH9rLwFC8vwn8D+KrHxFfaoyFoLjTvDYgtNNiGQBu1FrSNhGcMITI3JQiv68f8Ag4O/4Kh+FP8AgmR+w3c6xceGLHxp4m+Iss3hzRdH1aBbjS3aSFmnmvon+WW3ijxuh6ys6pwpZlAPO/8Ag2H/AGy/hr+1F/wSi8AfDzQdShfxX8KrT/hGdd0zzAbi2W3dxZylOG8qe3CFHxtLq6Ako1fy/fD34SW/7Vn/AAeJ654o/ZdA1Twv4R8aL4i1rU7Ib7S2GlWMQv2eRAVAl1BXtwejySDnkmu2/YJ/Zd/4Nc4/gj4Z8XfF39ou9X4lanZrceJLiDUb7wrELm6Aa4so7aO3gWO2iYmMBWO4DIbaQB/WV/wTH8Z/8ENvgh4fHwD/AOCZnjD4d2s+oyR+dZaTrMFzrOoy8hDM88z3tyQWITezhM4XAOKAP2frwP8Aaq+IHxU+FH7M3xA+J3wN8PHxZ4z8PeHtR1HQ9EEckx1HULaB5Le22RESN5siqm1CGOcDmvfKKAP4g/8Ah+T/AMHK3/Ri0/8A4Idc/wDjtH/D8n/g5W/6MWn/APBDrn/x2v7fKKAP4g/+H5P/AAcrf9GLT/8Agh1z/wCO0f8AD8n/AIOVv+jFp/8AwQ65/wDHa/t8ooA/iD/4fk/8HK3/AEYtP/4Idc/+O0f8Pyf+Dlb/AKMWn/8ABDrn/wAdr+3yigD+IP8A4fk/8HK3/Ri0/wD4Idc/+O0f8Pyf+Dlb/oxaf/wQ65/8dr+3yigD+IP/AIfk/wDByt/0YtP/AOCHXP8A47R/w/J/4OVv+jFp/wDwQ65/8dr+3yigD+IP/h+T/wAHK3/Ri0//AIIdc/8AjtH/AA/J/wCDlb/oxaf/AMEOuf8Ax2v7fKKAP4g/+H5P/Byt/wBGLT/+CHXP/jtH/D8n/g5W/wCjFp//AAQ65/8AHa/t8ooA/iD/AOH5P/Byt/0YtP8A+CHXP/jtH/D8n/g5W/6MWn/8EOuf/Ha/t8ooA/iD/wCH5P8Awcrf9GLT/wDgh1z/AOO0f8Pyf+Dlb/oxaf8A8EOuf/Ha/t8ooA/iD/4fk/8AByt/0YtP/wCCHXP/AI7R/wAPyf8Ag5W/6MWn/wDBDrn/AMdr+3yigD+IP/h+T/wcrf8ARi0//gh1z/47R/w/J/4OVv8Aoxaf/wAEOuf/AB2v7fKKAP4g/wDh+T/wcrf9GLT/APgh1z/47R/w/J/4OVv+jFp//BDrn/x2v7fKKAP4g/8Ah+T/AMHK3/Ri0/8A4Idc/wDjtH/D8n/g5W/6MWn/APBDrn/x2v7fKKAP4g/+H5P/AAcrf9GLT/8Agh1z/wCO0f8AD8n/AIOVv+jFp/8AwQ65/wDHa/t8ooA/iD/4fk/8HK3/AEYtP/4Idc/+O0f8Pyf+Dlb/AKMWn/8ABDrn/wAdr+3yigD+IP8A4fk/8HK3/Ri0/wD4Idc/+O0f8Pyf+Dlb/oxaf/wQ65/8dr+3yigD+IP/AIfk/wDByt/0YtP/AOCHXP8A47R/w/J/4OVv+jFp/wDwQ65/8dr+3yigD+IP/h+T/wAHK3/Ri0//AIIdc/8AjtH/AA/J/wCDlb/oxaf/AMEOuf8Ax2v7fKKAP4g/+H5P/Byt/wBGLT/+CHXP/jtH/D8n/g5W/wCjFp//AAQ65/8AHa/t8ooA/Cv/AII4/t4f8FOv2zNd8fWH/BQv4CP8F7Xw/Bp0mhyvp99Zf2hJctOLhc3jsG8oRxn5MY389RX7qUUUAFeb/GT/AJJD4q/7A99/6JevSK83+Mn/ACSHxV/2B77/ANEvXnZx/uGI/wAEv/SWdeA/3ql/ij+aPwHooor/AD8P6hP8+5P2KNY/bd/bR/aw8JeCS7eKvC+o+I9e0WBTxdT2+sFHtyPWWJ3WPpiTbk7c1+qPw7/b7m/a/wD+CJ3xe+GvxJui3xD+HmgLp+pic4mvLQSItvdEHksQpjmPJ8xdzY3qKT/gjv8A8plP2oP+vnxH/wCnxa+Xf+C6X7Hvi/8AZC+NmpftU/Agyad4N+LkFzpXiCC3X9zFf3IEk8TrjHl3ZQXCekyORjCV/TuKxVDMc5oZFjGlKCoVaEn0lGMXOHpOKuv7y6uyPx6lQqYTAVcyoK6k6kKi7ptqMvWLevl8z7g/YL/a+tP2Hf8Agg9D8fRaJqGp2mpanZ6TaS58ua/uryRIhJgqfLTmRwCCUQgEEivKPhv8Hf8AgrF+0d8Drb9sR/2oE8PeJ9bs21jR/CMd2Le0kt5h5kKSKki28TyLgxo0EgUMu91O7Hlngz9n7xv+0J/wbk2OnfDyzk1HU/C/iO98QC0hBaWaG0up0mCKASxWKV5NvU7eMnArxP8AZ1j/AOCAWo/sqaV40/aBs9VsviFpemrDq2kJdamZ73UIUwz2/lHyAtyy7ly6rHuw20DNcqwdCM8wxeGpudd4upGfLQjXko/Zi4ylHlhLW8lu9Lqxt9YqOOFoVpqNNUIuN6kqab6u6TvJaWXzPsz/AIeQ/tQfti/8ElvGfxX8C+Ibrwt8V/g3qmny65c6N/o51DTZt0XnMgBVdytJJKi4UNbllCqwUeyfHf8A4KU/E1P+CG/gb47+C/EFza/EbxZPYeGP7Rt2/wBN/tCymcXUuAD880do5Jx/y2GOor1D/gjT8F/gP8Zf2Vvib4k8GfCG5+GPhb4mRnQJVutZuNXOq2kMM0Tyx/aIowiIbmSMMmQ7hh/BX8+n7Fvgv4qeO/2w/hj/AME1/HkW/S/h98SdU1nUITkh3sVhNzGwPAjC2Em31M7eornw2W5RiMVjKUcOqcMFWVdxfI37P2bc6b5XJOKqR2u0k7O2xrWxmOpUcPN1XKWIp+zTXNbm50oy1Sabg97K7V/M/cL9jb/go/8AFaL/AII+fFz4wfGPXbq++IXw3uNT0dby+YG6F3eiNbBn452XFx5YBGcR47V8A/FP4f8A7ePxs/4I2S/tZ/F74x6td6NcvPeX+gXymX+0bKS/tbS1UuGUIqSRNOuVbIcV8sf8FB/C/wAVPhL+2p8Yv2DfhtB/xLvjB410PWbeIEhZHujLNBEgxjYZ77a2OhhUc4r+n3/gp/8AB6w+Fn/BGvxl8FfAkDS2XhXw5pFjAqL8xt9NubXc5A/2Iy7n6k1OJeEyrF4DEYOnBPG4inVXuxfLScYXirp8vvzlZq1rXVmh0VXxtDE0q8pWw9KcHq1eacrN2evuxV73vfXc+DP+CRVl8Xv2Tf2B5/25Pit8RrvXvhhY+FNYuNO8ErEVWyuLe+c7o5WcqXleKRVGwAGbrgc+S/sweE/+CtP/AAVl8Oat+1A/xvuvhJ4XkvpYNE0/RxPDDK1vwyrHBLExgRvkMkskrs4bK4Fdt+wl8QvhP+2b/wAEbtV/4J3fCvWhc/FTTvCusXEujvDNDtaPUXngPnsggKyPLAvEhI38gYbGf/wR6/4Kq/swfsxfsq/8MqftZapP4D8Q+A7+/SNLyxuX+0Q3M8lw6kQxSOk8Usjo8bqpxt27juC8+YUsfGWbY3C4RTx0cRypOlGUo0Hzcs4w5XfnejnZuS1u9zXCzwzWBw9eu44d0r352k6ml4uV9OVbRurPSx9Cf8Ev/wBub9q/QP2vvFX/AATR/bsvU1zxVoMc02layFHmzeSomKO4CebHLbuJ4ZGQSBQQ+cgL8AfsV/Fv/gqX+3h8bfin+zv8P/jDdeGtA0vUWub/AF+6T7Vd6fbwzXEUNrZhShBnLbmwyHbAMOOVf1z/AIJ9axrX/BQf/gtR4v8A2/vA+k3Nj4C8L28sFtdXKGPzGaxGnW8ZxkGWSMvOyZOxeCc7c9X/AMG73/JxP7TX/YS0/wD9KdRqsyo4bL6GZYynhqaxEaGGnOLhFxp1pzalaLul0lba+6aFhKlbFVMJh5Vpuk6laMXzNOVOMbq7Vm+qvvbawv7Evx7/AG3f2R/+Craf8E6f2lPiFefEvQNct5Tb3+pPJcSA/YnvbeeJ5meZCfLMMkRkZASSM4DV/Qdr/wC2j+x34T1298L+Kfix4N03U9Onktru0utesYZ4J4mKvHJG8wZHRgVZWAIIwRmv57/jH/ys0eAf+wbH/wCmm7r9C/in/wAEHv2CfjF8TvEXxb8Y22vHV/FGp3erXxh1Ixxm5vZWmlKL5Z2rvc4GTgV8vxNQyatiMFiszcqTq4anN+yhH3ptyTbjeKV0lsezlFTH06WIo4NKfJWnFc8npFJNJPVvV9T5+/4OB/HXgj4l/wDBM3TPG3w51mx8QaLfeK9PNtf6bcR3drN5aXSNsliZkba6spwThgQeRXz9+xl/wXq/Yn/Z+/ZO+H/wV8b6d4qm1jwtodpp12bSxt5IWmgQK3ls10hK5HBKj8K7n/gtV+zz8O/2U/8AgkV4b+AXwnW4Tw/4f8V2gtBdy+dMBcm9uH3PgZ+eVsccDAr9Pf8Agmp8MPhrrn/BPj4Q3GteHtMvJLnwrp5mae0ikMhaMZ3FlOc9810qtlFDhOl9aozrUfrNRQtJU5Wto3pJXa3XfqY+zx1TO5+xqRp1PZQ5rrmW+qWq69T+f39lHxen/BU7/gtnF+1p8NdOHhvwt4MittQnivZ4k1GaKzgNvAzRI5LvJKVD7N6RxgKzkld337+154X/AOCuH7VX7ZeqfCb4W69qHwU+DehoRD4lgdbcXIiRd8zSxSLPI0krFY4w8aBFBI3BifiLxj4F8D/shf8ABxl4MsvhdZw+G9D8TvbObG1AgtQ+r2ctrIiRrhQsk/zhAMCQ8AYAHz14p8b/AAF/aD/4KlfFbwv/AMFbPGGtaN4X8OanqNr4f0tpbiKwjEFxst4j5CMY4zagSK6KnnMd5fJw/wBZVwf1jF0Mbg4R9hDBwdOLp+2qQTk17sOZKc0/tPRJ7dX4kK/sqFTD4iT9pLESU2p+zjJ2vrK14xfZat9T62/Z4/ab/aq/Yu/4KeeD/wBjDxl8cV+O/g/xh5EF1czTG8ltJrvzEjBd5Z5IJ4njVnj890aKQEjcQVg/a5/ae/4KL65/wWR8Xfsafso+OLjToNbisNPsLW6O+x02OfSbW5ubpV2tsaMebJu2sQSdo3FcfnBrPxb/AOCefwx/4KvfC7x1+yTF/wAI78JvCF7pqX+pTG7ljnuI5pHuLofajJcFAsiJyB/q8hduCfqf9pD9rHwl+yT/AMHCuvftD+KIZb3w1Amlw37Wyb5Es7/QbSLzkXqfLLq5HVgCo5NdzyVPH/WIYJSqzwM5JTpRjzVYzjbmgvdU9VdJ3s0mcyzB/VnSliGoRxEVeM27QcXe0nq46Ozfa57d+1bpv/BV3/gkb/YH7Sl18a7z4u+EbrUUtdVstXEzwJNKpYRPDNLMUikCsElhkQq4AwMgHlf+C/vxjs/izoP7Knx7+G0Bli8QWOo63psEwyxNx/Zk0cbhSPmBIVgCOcjNd/8A8Fof+CoP7M37Vf7OOl/ss/snanN4613xVq9lNMbOzuEWGKFt0caiWON3nllKKqIrEANuwdoPiX/BWH4Ra58BPhr+xB8G/FGBqnh2wms75Vbeq3SNpXnKrd1WQsAfQVx8OUassVlOOzTDqljHLEK3IqbnTVGTTlBJbPROy0OjNZwVDHYfB1XOglSd+ZyUZOotFJt7rV67nr37cfwh/wCCvn7JfwNX9urxh+0PfXmq2N1aSav4d07fBp2n/bZVRFjj3G2uFSV0jZWt1BB6sOvvH7ev/BU39pDwp/wS3+D/AO0B8I2j0HxN8UAlvqeqwQq62bwRP54gWTcqPNIhKEhtqBsfNhh95f8ABd7/AJRZ/Ev/AK6aJ/6dbOvy31/9pXSv2dP+CKnwJPxE+Edl8V/A3iK3uLPWI76doI7CZZ5GtnDJFIVd/wB4FkDIysoAOWrwckrRzXA5fjsTg6dSpHFSpqMY06alD2XOo/Zi7PWKk9bJXu3f08xpywWJxWGo4iUIOipXblK0uflv1aut2tr36HnXhb4Wf8FOH8K+HPjt+wt+1Wfjxrt20M2o+Gv7Wj22quhZw9vqN20TIhAR1eOCUbshBgkfob/wVE/4KUftIfsu/s5/DLwP4K0BNB+NXxSt0juLQCO9XSZkSJLhYNryRyStcSrHASZEKhiQSBX4K/tu+CP+CNmlfBJPjf8AsEePNb0b4gR3FtLp3h5TeOFJkXzQ73EXmwPChZlkFwysy7V3bgw+lP29fCX7V1r+yj+yf/wUG+J+nXes674Hgh/t83Yczr5d0l1p0tyCu4edFHtmkYZ8xlDEswr6Cpk+GxmMy/EY2nHkdSpFRq0VQqOSg5QhLlfJOHMkk1Fa+7d3Z5ccfWoUMVSw83zKMW3Co6kEnJKUo3XNGVru19tdLI+n/i/+yH/wWg/Zf+B19+1ra/tE6j4k8QeHrP8AtbWfDTSS3FrFb26+ZMIhMz283lqCXXyIwyqdpJwD6J8ff+CnPxY+Of8AwRYP7Wnwv1Kbwb46stcs9F1aXS2Max3ccqeb5JYsRHLE6OFJJXftycZPp37Wv/BdT9hzxL+xf4mHwm1yfVvF/izQ7nTbTQpLKeKe1uL6FomNy7oIQsG8ltkjh8YQsDkflz4g/Z18dfs9/wDBu/qr/EWyl03UPGnjKy8RJazgrLFbTtBBDvQgbS6QCQDrtcZ54Hl5dhK+KhhK2f4ONOssVThD93Gm5QfxxcUlzQjpZtPtc68XXp0JV6eWV3On7GUpe+5KMvsu93aT6q/yPpfwf8Hv+Cvn7XX7Flj+2FcfHq88JPYaD9t0Xw9phmtpNRt9OiK+ddXEMifv7sxtLh1lUlxnYDtT7/8A+CQX7Wn7Qv7d37Avi208YeIxZ/EHQ7i/8P2PiRrZJXV5bVJLS7lhwscskLy/MuAJBGC2WZifpr9in/lEr4F/7J3H/wCkZr81v+DYv/k1n4h/9jUv/pJDXhZti44zKM0lOhTi8NXgqfLTiuVOUk07L3k7a817vfoengaDoY7BKNST9tTk53k3dpJ330evS1uh5l/wUP8AEfxa/wCCNX7Gfgr4E/sxeI7t9a+Imu6rqXiXxlcwobuW92wNKyKd6wtPuAXAd1jiOGLksfO9B+E//BUXwzD4c+NH7Bf7UCftGXVxKkmpaI2rRPFAhXcwkg1C9dDGSPLcfuJ0LAhVOSv6a/8ABa/9pvwl+z98MvCWhfGj4PWnxT+Hnii+lg1Oa6uHg/s25hCGIxskbFJpI3mMTLJG3yMAcE1/OL+3T4K/4JG+Dfhpp3xq/wCCdfxE1ux8eLfQPZ6JEbwiKMn94/mXEST28kXVWM7bjwoOdw+l4SdbH5fh5VcP+8rTqc1R0YVqdVt2tVs1Oly7JJxVlfY8jPFTw2KqqFX3KcY2gqkqc4afYveM77vd303P7xvAGreKNe8CaLrnjjSzomtXlhbT6hpxkSY2l1JGrSw742dH8tyV3KzKcZBIr+er/gv/APta/tKfsseIvgjc/s7eJr3QpNXuNbe8tbZv3V81o2nmGOVRy6/vHGARw5Hev2d/Yh1j4veIP2Qvhvrnx7Ew8YXfh+xl1Q3KlLgzPGDumUgFZSuDKpAIckEV/P8A/wDByR/yU39mr/sJa3/6N0qvzzgHBUv9bKWGrwjOKdVNbwfLTnte91daX8mfU8TYif8AYk61KTjJqGu0leUe3XXU8a/bo8Kf8Fb/ANgb4c+HP21/G/x/v9e1PUtWt7bVvD1uHXS7Ce4R5lQQFzbTQgxGJtsEfJGMg5rp/jN4Q/4KyfFj9jS6/wCCm9/8dbrwsJNNHiW18F6CZ7Gzg0p8MmJElw7CHEgSVJCejSFia+//APg4y/5R2/8Acz6Z/wCgzV3Xi/8A5QAQ/wDZGbH/ANNcdfXYLPZzyzLsfLD0fazxDpN+yh/D918iXLZLW1171lvvfw8RlkY4zF4ZVZ8kaSmlzy+PX3r38ttvLY8P8C/8FbvHfgv/AII06b+2f8RooNZ8fvczeHLbzI/LgvNUSaRIppUj2AAQIZpVTaGZWC7dwx8e+E/gt/wVn+LHwEh/bHH7UI03xdqenHW9P8HR3Sx2z28q+dHEyK620czpjZE1uyqSFZ1+bHzdon7Pvjj49/8ABu5plx8P7OTUL3wX40vPEUttCC0slrCZ7eYqozuMaT+YR12oxHoed+Drf8G+9x+ynpvxC+LmnarF8QbHSkXUtAS81P7Rd6nFHhhA8ebcRzyAsjF1VAwD7SMV71DKcHhFi55fQcqn1qpCShQhXcYp+7DllKPJB916XVkebUxteu6EcVUtH2MZJyqSp3l1ldJ80l2frZ3Pta6/ae/aJ/4Kmf8ABKjxd8Q9F8cDwL4j+F+na4PG1pZW7eR4hsE095VTAcLELiNXRxyA4YhQpUVhf8ECvgV+0DefBO5+PVj8Sri3+Hdpda3Z3HgwQsYZ7s2iKLgyb8AgujY2HlPfNe4/sL+BPAmvf8El/wBoH4j/AAX+Et38M7Txv4Z163sbOfV7nWJNUW202dI54/PijKIZJXjXaDvKn0GeG/4IAftY/AWw/ZV1P9kjUNb8j4gXupazqNrpbW85861+yRuZFmWMwgARvkM4bK9ORnzsyqTp5Pm2EyyhanTrxXLyQk4RlFud3HmS5ZXSlzNwWiatZdWDhGePwNfGVbzlTb5uaSUmmlGyfLurXVveetmfnH/wRm+CP7cX7SfgXxz8Lv2bviUfhP4Qtby2vNZ1m0haTULi8ljZIYIikkThFRGZiskeCRktkAfqF/wS0/aa/bH+Fn/BRDxv/wAE4v2qvGNx49g0m1uZbPUL6Rri4Sa2EUsbpNJmUxz28m5kkZtrAbSPm3Vf+DYD/khPxR/7D1n/AOk5rnPgr/ysyfEH/sGy/wDpqtK6eJMYsbmmfZdXpQdOlRdSL5I8ynFU/e57czeve1rLbfHKaDw+DyzFU5y5p1FF+87crctOXbp231MeL9or9v7/AIK7/teeN/hP+yZ4/m+E/wALPAUrW8uqWIdLmVWdoopHeJllkmuGikeONZYkSNTklhl9Pwl+0v8At7f8EsP24PBn7Nn7YnjiT4pfDj4gyQW9lrF2Ge5i86QQeaskhMqPDKyGeN5JVMTAqdxBHgf/AATa/aG8Ef8ABIH9sL4v/srftief4b0rXbqCXT9ZaCWeErZvP9nkPlq0jQ3MMwKyBSFZcNtyxW5+298ePCf/AAV9/wCCifwZ+Bn7JKT6/wCHPBVy1xqGtiCW3i8ueaCW8lHmKrrFDFboqO6rvlYqoOVLaTy1fX55d9Th/ZCocyq8kdvZ83tPa2vz8+lubbp1Jji/9mjivby+ve0tycz/AJ7cnJty8uu3zPp39vn9rX9tT9qH/golB/wTS/Yi8Ry+CLfSI421rWbZzDKZDALmaVp4wZY4YI5FjVI9rPNkEkFcfnr/AMFc/wBnb/goJ+yj+zvofgb47/Fif4u/DnXNZglS91GOQ3thq9vDMUjLzSTS7JYml2/vWU7DlUIG76W+MPxDtv8AgmH/AMF1tY/aG+N1jcxfD/4k2chTVIYnmEUN5FCJXAUEs0F1DiSNcuImDBSWVTxn/Bdf/gp5+zb+1T8E/D37P37NGqt4pjh1aLW9V1OO2mht7dYYpYooQZkjZnczbmIG1QoXOSQNeHqGLoY/J6OW4SMsHKnCc6ns0/fs+eTqWbjKMtEuZdrO9jPNKlCphsfUxldrEKcoxjzNe7dcqUb2aa3dn38z+oX9iL/ky/4Q/wDYlaB/6Qw19P18wfsRf8mX/CH/ALErQP8A0hhr6fr+fM1/32v/AI5fmz9SwX+70/8ACvyCpra5uLO4ju7SRopYmDo6HayspyCCOQQehqGvov8AZ0+BOofGXxR5l8Gh0OwYNeTDgueoiQ/3m7n+Ec9cA3lGV4rMcZTweCjzVJOy/wA2+iW7fRE47GUcLQniMQ7Qitf8vV7JH6b/ALNnxJ8SfE/4ZW+u+KbV4bqFzbm4IAS6CY/eKP0bjG4HHoPfqo6Zpmn6Np0Gk6VCtvbWyLHFEgwqIowAB7Cr1f3jlOFr4bBUcPiqvtKkYpSk/tNLV/1r31P5ox1anWxFSrRhyQbbUey7BRRRXonKfyq/8FqvEF38UP24vh18B5pG/s60s7KPZngT6tdFJWA9444h+Ff1TxRRwRLDCoREAVVUYAA6ACv5Qf8AgrvYSeAv+Cl/gP4g36tHZ3Nrol75p+7m0vHVwPdQikj3HrX9YNfKZC28wzBy35o/dZ2/A/X/ABCjGHDfDkKXweyqP/t5yi5/O+4V/Jp/wWZ/5SO+Bf8AsD6N/wCl9zX9ZdfyY/8ABZqWNf8Ago34HZmACaPo272/065P8qXGf/IvX+OJXgf/AMlHL/rzU/JH9Z1eS/HT4J+Af2ifhVrHwe+JlqbrSNZh8uTadskbqQ0csbc7XjcBlPIyOQRkV61Xwh/wUP8A2i/FX7LXwQ0r4ueF7gwJa+JNJi1BREkpm095SbiIB1bBeMEBlww7EGvosbVpU8PUnXV4JO/p1PzTIcJi8TmOHoYCXLXlJcju1aV9Hdap32P5n/jl+xb+2x/wTK8fv8XfhXqN7Nodox8nxHowOwQk52XsHzbAeNyyB4WOAGJ4H6ofsM/8FpPDXxl1vTPg5+1Lp9vo2uX0kdvaazbjFhczkgIJo2JMDs2MOC0ZY/8ALMYr949F1nw94z8OWuv6FcQ6jpeqW6TwTRkSQzwTKGVgejKynPuDX8p3/BbT9jb4OfAbWvDfxn+EdrBoX/CU3FxbX2k24CQGaFQ4nhjGAgIbbIqgJnaQASc/E47LsRksXjcuqXoqzlB6qzfT+r+bP3nIeJsu45qwyLibCqONaap14K0rxTdpL5PTWLf2Y7n9ZtFfNv7M/iLVNL/ZL8A+JvizeJaXkfhjS5tSuryQRhZPs0Zd5XcgA55Yk9c17d4T8Z+D/H2iR+JvAuq2etabMSI7uwnS5gcr1xJGWU474NfdUq0Zxi9m1e3U/nzGYGpQq1YbxhJx5ls2m+vna68jpK/M3/gsN/yjq+IP10n/ANOVrX6ZV+Zf/BYhlX/gnX8QAxwS2kge/wDxMrWuLOv+Rfif8E//AElnvcC/8lJln/X+j/6ciflT/wAEtPHH/BQnw7+zJNYfsyeCvDPiDw2dZu3+06tdtBcC5KRb02iZBtACkHHevr39hXxT+1V4t/4KMfEK/wD2vtIh0LxNF4QtYraytcG0jsBdBo/IdZJQ6FzIS3mMd+4HBBUdl/wQmYH9iO4A7eJL8H/v3BX63L4E8Ip46f4mLYR/29JYLpjXvPmG0SRpRF1xt8xi3TJP0FeFkmWTnhMHXVaVo2fK2uXZrSyv10uz9B484qo0M4znASwVNSqOUFUipe0vzRd23JqztraKex8R/wDBVj/lH58Sf+vO1/8ASuCvnP8A4I+eCvB/xE/4Jy2Xgzx9pdprWkX2qaitxZXsKzwShZwy7kcFThgGGRwQCORX0Z/wVYIH/BPz4k5/587X/wBK4K8a/wCCJJ/4wL0j/sK6l/6NroqxUs/imtPYv/0o83B1JQ8O6s4OzWNi01o01SWqZ+Y/7BfgTwz8MP8Ags34z+H/AIJthZaRpUmvW9pbqSVihUgqgJJOFHAyScCvpX/gvN8DvhTp3wP0j47aVoVpaeLbvxJa2N3qcMYSe5ge0uPlmZceZt8mMKWyVC4BA4rxH9lq6g0v/gut46tL9hHJd3mupCDxuYp5gA/4ApP4V9X/APBffXtEt/2T/Dfhqe7hTUbrxTb3ENqXAmkhhtbpZHVM7iqNIgZgMAsAeorwKVOn/YeNi0rRnO3k7q1ux+iYrFYn/X3IqkZyvOhQ5mm/eTUnK/dO13f1Pq79nr9nj4OftJ/8E9vhZ4F+NGhW+t2A8M2DQ+aMS28jW4XzIZFw0bgHgqRX89/hHwrb/wDBJj/go5Yf8Ll0wa34XhMhsdSkgEkn9n3eVjvIRjieEgrIF54dV+8pr+nT9gCaOf8AYl+FjxnIHhrT149ViUH9RX5J/tn+EPGv/BWH4r6v8Mv2eUs08L/CK3uw2vzoGXUtbmUf6Fby5GI/kAZwSoI3tkeXnuzfBQlhMLiKC/2hcrhZXcrJNp+SWt+nzPA4LzytTznN8tzCbWWTdVVm5NRp80pKMovpKUny2XxXu17um3+xj+w78PP2v/i54n/b4+OPg620/wAN+Kb6S48M+GXjCQyQ/dN7cxj5XaXG7B+V3Z5MFSlf0HKqqoVRgDgCv59/+CM/7a+p39pN+w98b5JLTxH4Z82LRPteUleC3JEtk4bkSW2CUXr5YK4AjGf6Ca9nhr6tLBqrQXvS1m+vN1v6PZdj4nxSeaU87ng8wb9nTSVFXbiqVrQcb73SXM93JO+qPKfjR8JrD42+Arn4e6prWsaDbXbo0tzod2bK7KqeY/NAYhHHDjHI4r+RH9gv9mLxr8VP2yviH+zv4W8Z3vhrSLW21Ky1+9tcfb73S7a+ijeGN8EI8ziPex427gQwJU/2iV/MV/wSdZT/AMFRfjYVOQbfXiP/AAbQVwcRYSlVx2C51vJp6tXVttD6Lw1znF4XIM99jL4KcJxTSaUua3NZp6rS1+qTPnv/AIKhfsOfD/8AYEv/AIe/Ff8AZv1DUrCW5uZo3a4uPNlivLPy5YZo3CqQWy24dMqMAZNfu7+2T+2Zqf7PX7CcH7QGlrGviPxFY2FvpSsMxrf6jD5m/ByCIkEkoUjDFADwa+CP+Dg//kkHw7/7DF3/AOiBVr/gqt4E13xZ/wAEufhv4m0SOSaHw4dCvbwJyqW8ti1v5jfSSWNc/wC1XnTTwNfMo4NcqUItJdHbVr8z6Si45/geF6udz9pKderCUpbyipq0ZPqm0o+jPRv+Cdf7B/wT+K37Odh+0L+01o8fjzxl8QfO1G7vdZZrp44ZHZYlTccAlFDlwNwLYBwBX5y/EW98Uf8ABHb/AIKCQRfDy7u2+GniMQX0umPKZVm02ZjHKhB6zWzq5hc/PtChmIZs/tF/wSA+K+jfE79hbwrp1jKGvfCxn0a9jzko8MheP8GheMj8R2r8uv8AguzocvxH/aS+FHwt8HRC68R6jZSW6QIcu32y5WO3BA5ALq+D9fSlmOHo08nw+NwqtVjyNSW7bsmn3u3qmacNZnjcVxtmORZvJywtT20JQk/chCF3BxT0iopJRa2Tv5nWf8F2fgBpWi+BdG/aIg8R63qFzquvRaf/AGfd3hn023iltZZAbWHAEXMOTgncXJPaqHwh/wCCPT/tXfsyeBvi78TviHqNl4o1LSbE2gEMd3Y2ujJEq2lskWYmDiEBmYSAb2OVY5Zvfv8AguzpK+H/ANiPwToKOZBZeKLCAMerCKwvFyfriv07/YXdH/Yv+FLIQR/wiekDj1FtGD+RroWU4XE5ziKdeF48kXa73fXR7nmT4wzbLOCMuxOAr8tRVqkFLli3yRWkdU1Z6XVtbK5/MR/wV3/Za039mv4gfD+HQvE2u+In1fTpYmm168N48b2bxooiJUbI9rqAgyAFr9bPi/8A8Egvh/8AEf4Z+JfiB8ZfFes+KvileWM122uSzeXbR3caF0jhtgNq2wICCMkkJ90rwB8f/wDBwMQPiJ8Jsnpb6l/6Nt6/pP8AGv8AyJurf9eVx/6AaWBynCVMfj6U4XjHkstbK8Xr69nuuhefcY5xhuHeHcXQxDjVn7bmkkk2o1YpK9r8tt4rSVldOyP5P/8AglZ8DvHP7a/w38R/AP4heNtT034XeE723v7nRdPfy5r25vw+yMysG2W6GBnaMAgyNuADfMMP9uj9nTw1/wAE0v2vfht8QP2cr29srS8Md/HDPMZXjltplSaPfgFopY2AZWznLA5BAH1p/wAG7/8AyDfi3/110P8Ale1yv/BfggfFz4TE9ra9/wDR0FeK8JSXD1PG2/epq0uqtOyS7JLotOu59ws5xb8ScRkXPbCTjLmppJRk5UFOTkkvek5byd3bS9tD+niv5RP+CnPiS9+BH/BWbwX8XNIxFKINC1Rz0EiRzPbyKx9GjiKH2r+ruv5PP+C1umt4/wD+CgngHwBowEt5daHpVhhfvebdX9yFX8nUj619TxjdYGMo/Epxa9T8l8ElGXEFSlV/hzo1VLty2V7/AHH9YdFFFfVn4+fyBf8AB6t/yiy8A/8AZVdK/wDTRrFfl7/wZefFLwZ8E/ht+158V/iDdCz0fQrXwZdXMnViq/21hVGRud2IRF6sxA71+oX/AAerf8osvAP/AGVXSv8A00axX4X/APBqf+yDH+2p8Ev2pfhQfEd34dlgufA19byQgPbyzxLrgRbmPhnjG4kBWUhsNzgCufFzqxozlQjzTs7Lu+h6eTUcHVx1CnmFR06DkueSTbUb6tJXe3k/Q/r4/ZJ/4LgfCT4u+I5PBP7QtjF4GvLm5cWGoCQvpzxMx8tJ3b5oZAuAXP7piCxMYwtfubBNaX0EV7auk0TqJI5FIZWVhwykcEEHgjtX8jH7Kn/BHf43N+1zD4N/aP0XyfB3hvbqN3fQt5llqiK2IoIZMAnzWH7xWCukYbIUsuf664YYbeFbe3UJGgCqqjAAHAAA6AV4PDGJzGtQl/aEbNOyurN23uvyfU/QfFbK+GcFj6K4cqcynHmkoy5oRv8ADyvV3au2m3bTa9lJRRRX0x+VhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//Q/v4ooooAKKKKACiiigAooooAK/xBv+CTv/KU39mn/sqvg3/072tf7fNf4g3/AASd/wCUpv7NP/ZVfBv/AKd7WgD/AG+a/h8/4PO/2j/2hv2ftH/Z0HwG8eeIvBI1ebxX9u/sDVLnTftX2ddL8rzfs8ieZ5fmPs3Z27mxjJr+4Ov4Ff8Ag+Y/5A/7Mn/Xbxj/AOg6RQB8u/8ABrb/AMFxPit4X/apn/Ym/bQ8dat4p0H4ozxr4c1bxDqE1/NYa8o2R2wmuHdxDeqBGq5IE6x7QPMc1/pGV/iJ/FD9hH4s/Bv9hj4Nf8FHfC09xP4W8f32qabNdwZR9J1vSb2eOKPeuCongiEsLZ3b45RxtXP+oz/wb9f8FV9P/wCCpX7DmneI/GV5G3xQ8CCHRfGFuMB5Z1U+RfhR0S8jUucAKJllRRhRkA/hO/4L3fttftm/DP8A4LS/GP4ffDf4ueNPD+gWGs6ZHa6bpuv31pZwo9haMyxwxTLGgLMSQFAJJPU1/rCV/ju/8HE3H/BdP43H/qOaV/6brOv9bj9o79oL4Xfsp/AnxX+0d8ar8aZ4W8G6bNqeoz4BfyoRkJGpI3yyNiOJM5eRlUckUAe1UV/mMfHP/g4c/wCC1X/BVP8AaQvPhR/wS60fWfCWgRh5LHQ/DNjDfas1rGcfab++eJ/KJyM+W0UKEqmXYB247w//AMFwP+Dg/wD4JH/HfQ9B/wCCgttrevaJekTTaB40s4UGoWqNtlaz1KKLeJFzgOkssasRvjYcUAf6jFFfz8ftNf8ABS7xt+1z/wAEO/Gn/BRb/glR4om0HxJoWmNrCrdWNreXVidIlSTVLK6t7hLiISJaiVgQDuGx0JRgT+Uf/Brv/wAFwP2yP+Chf7RvxI/Z0/bd8Yw+K9Qg8P2+veHXXTrHTTCtncCC8QfY4IBIZPtMDYfcVEZK4G6gD+2Oiv5Bf+Dpj/gsf+1V/wAE2Lr4R/Cv9i7xVD4Y8T+KV1PVdZnews9QYWFuYobZAl5DMiiSVpjuVQ37rGcEivfP+DXf/gqr+0P/AMFNP2bPiRH+1p4ii8T+PPA3iKAG7js7aw/4lWpW4NsrRWkUMeRNb3XzbMkYBPFAH9P1fl7/AMFnv2xPix+wH/wTR+Jn7XHwOh0+fxT4RTSmsY9Vhe4tCb3U7Szk8yNJImb93O5XDjDYPIGD/LH/AMHJH/Bfn9uz9ib/AIKB2/7LP7DfjiDwtpvhvw5YTa9G2l6fqLyarfl7gAteW87IFtWtyApXJckg8V8H/wDBcD40f8HES/BTxZ8Jv2mV1fVfgLP4Z8FTeJtUHhvTrXTm1Oaz0u5ul+2Q2qTIE1pmjwjqN67MBfloA/o8/wCDab/gst+1j/wVvtfjOv7Udj4dtH+HzeHv7NbQbOa03jVhqHnCUS3E4bb9kTZt24y2c8Y/qSr/ABwP+COXxp/4LT/CFfiKP+CQWmaxqI1A6R/wln9laHZ6zs8r7X9g8z7Xbz+Vnfc7dm3fg5ztGP8ASz/al/4Kh6b/AMEz/wDglx4M/a+/bXsLi88eX2gaHbXHh6IR2V5qHie8tEe4tguNkASQTPMQpEUaNtVmCowB+xlFf5YS/wDBaj/g4z/4Kw/GHWrH9iWTXbHTrNxJ/YfgTTYktdLgmJEQub+SNpdzhT8886qzBiiqMgbnw3/4OCv+C73/AASx/aCsfh//AMFBrPVvE+m4W4vPDHjXT47G7uLRiUM1nfxwrL1UhJN08O4HKE5oA/1IaK+Sv2Gf2zvg5/wUC/Zc8KftYfAqeR9B8U2xk+z3G0XNlcxMY57WdVLBZYZFZWwSDgMpKspP+bP+z7/wdpf8FTfhX8Zr3xF+0H4og+I/h20tNShttAbSdM0+Ka+eN0tHmuLW1iuBFDKVkdY3DOF2ZG7IAP8AVNor/Lo+Ov7av/B2lcfD66/bh8a/8J34Q8DRQ/2mW0/SLaysLKyZQwkey8ozC3VCGMtwjDb8zOeTX7m/8G1n/Bw38eP29/i1d/sQftuy2ur+MhpkupeHfElrapaS6gtn81xb3cUIWHzVjPmRSRRxqVRw4LYJAOE/4PMPjv8AtT/BC1/Z8vf2dfGPirwhY3K+K5NYl8Oahd6fFIYjpQgNy1s6A7fMkEfmHjc2Opr9X/8Ag1r+KvxQ+M3/AASI8L+OvjB4k1TxXrc2va5FJqGs3k19dOkd0VRTLOzuQo4UE4A6VR/4OKPAP/BUL9pX4KeFf2G/+CePgu013QviyuoWnjjW7p0g/sqzs5bN4F8+WZI40uN83m4jlldIysa7jz8uftPftU+HP+DV3/gj58KP2Z/A9rB46+J+qpf2mlvcBk0+XVHc3mpX0wBSRra3luUSKIFZHVo1LL8zAA/rXor/AC0vhp+3T/wdbf8ABSDw7qP7QH7OGpeMtS8Kw3EipN4asLLS9ODwnDRWxMcbXJQ8MqtK+eGJNep/sU/8HQ3/AAU5/Yd/aZj+Bf8AwVJt73xZ4csr9bLxFZazpUeneJdHVwP3kJjS38woCJDHcI/mpwjpuDUAf6bVFZ+k6rpuvaVba5os6XVnexJPBNEwZJIpAGVlI4IYEEEdRWhQB/nC/wDB4D+1r+1V8Cf+ClPgfwZ8EfiZ4r8G6PP8NNNvZbHQ9ZvNOtnuZNU1VGlaK3lRDIyRopcjcVRQTgDGL/waaf8ABVD496t/wUE1f9lf9pn4ha/4w074m6HKNH/4SDVLjUTb6vpAa5RYjcyP5YltjchwuN7JGDnAx4v/AMHqv/KU7wF/2SrSv/TvrFfhr4g8KfE//glZ+1b8Cf2jvCbSPLc+HvBnxR0KWQ7BdRX1vDcTxNgf6v7UlzbEc5ReetAH+2NX8bH/AAeD/wDBRP4j/sv/AAB+Gn7MvwC8V6l4U8W+ONVm1q/vtFvJbK9h0rS08tYzLCyOq3FxMpGD832dgeM5/rn+E3xO8IfGz4WeGvjJ8PrkXmg+LNLs9Z02cf8ALS0volmibjPVHBr/ACq/+CyXj7xd/wAFhP8Ag4Juv2fPhddG5so/EWn/AAx0KVf3iQQWExivLjjgxLdPd3BYceXzzjNAHD/8EMf25f21/iR/wVu+BPgb4h/GHxvr2ial4kSK70/UfEF/dWtxH5Mp2yRSzMjrkA4YEV/rmV/jhf8ABEbw/Y+E/wDgu38G/C2lljbaZ45ntIS5y3lwrOi5OBk4HPFf6nf/AAU0/wCCjHwV/wCCXP7KGr/tS/GqObUIraaKw0rSLV1S61TUrjPlW8TP8q/KrySOQdkSOwViApAP0Cor/Letf+Cvn/ByZ/wVv+Juv61+w8niDTvD2mzH/iVeCbGGCx01H5jjm1CZN7ysoz+9nBYglEUHA9Z/ZG/4OWP+Cqn/AATh/acX4Df8FadL1jxX4fgdI9W07WdOh0/xHpsU2CtzbSLHCLhcfMEmLLKvCSJw1AH+mRX8Ff8AwRY/4OWv+ChP7fv/AAU48AfsffHXS/BsXhXxWNaF1LpWnXFveIdP027vIjHI93KozJbqGyhypOMHBH6jf8FrP2xv+CsPiD4VfAH42/8ABCU6n4r8MeO9P1fVNZvdD0Sz1lHtpE099NaQXlvMYCRJcjaAjbgwcZQAf5vP/BOrxt+238Pf20PCfjH/AIJ62t5efGS1Oo/2HDYWMOo3DeZZXCXe22uI5YnxaNMTuQ7RlhggGgD/AFa/+DiT4i/EH4Tf8EafjZ8QfhXruoeGde0+00g2upaVdSWd5B5urWUb+XNCyyJuRmRtrDKsQeCa/AX/AIMw/wBpD9of9oDUv2jU+PHj3xF42Gkx+EjYjX9UudS+zeedV8zyvtEj+Xv2Ju243bRnOBXZ/tLfE3/gpP8AFf8A4Nbf2hvEX/BVDT7/AE74lw63Z28CalplvpM76UupaQ0DeRbRxRkeY0wD7ATjBziv5Lf+CP3/AAVB/bF/YJ0b4k/Az9gjwp/wkXxR+NlzoNjpVylo2pXFmNL+3F/s9kFZZp5DdLtMgaNFRiyNkFQD/ZCor/KZ/aJ/4KG/8HSv/BPXUNJ+LH7U3inxr4TstenCWs2tafYXWlzTAeZ5BUQS28UjKCfKwkhUMQPlJH9yH/BAj/gr1d/8FdP2TdQ8c/ELS7XRfiJ4Jv00vxJbWCullMZlMltdW6u0jIkyBgyM7FZI3/hK0AfutRX8gn/BwL/wcqXv/BO7x3e/sY/sdabZ6v8AFSKzhn1fXL/E9joP2pd8cS2+f392YisuJCIo1dCwkJZF/m28JftSf8Hbnx1+HyftTeAbz4o6r4au4xe213p2kQw29zBKNyy21lHbp58RHKtFC6Y6cUAf6olFfwJ/8ESP+DrL4vfEP41+H/2PP+CmqW1/c+J9Qj0vSvG0EMWnyW97MfLih1K3jWOHZJJhBPEsZjYjzFZSzp/YJ/wUe/b5+Ef/AATS/ZG8TftZfGFHvLTRUS30/TYXCT6nqVwStvaxsQdpduXfB8uNXcghSKAPuivzg/4LBeM/F/w7/wCCWvx+8ceANUu9E1rS/A2s3Fnf2Ez291bTLbttkiljKujr1DKQQeQa/wA7K/8A+C8n/Bwj/wAFOfjhe+Bf2Q9U1izkmLXlv4Z+H+kxEWNqrBd8t0YpLrywWUPJNOI9x6LkLXd/tHf8Fdf+C5v7KHwD8ffsNf8ABWDwrqWraH8VvC2qaNpt74hsIrO+t5J4mjE1rfWqLDdpG7r5ySea4UjDpxkA/Qb/AIM6P2pf2m/j1+2H8V9B+OfxG8UeNLGy8GxXFvba7q93qMUMpvYV3olxK6q20kbgAcHFf6Fdf5rv/Bkh/wAns/GH/sSIv/S+Cv8ASioA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aACiiigAooooAKKKKACiiigAooooAK/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uqAP9vmiiigAryn44/CHRfj18KNa+EHiLVNY0Wx12EQTXugahNpeoxKHV/3N1AyyxE7drFSMqSDwTXq1FAH8z2rf8Glv/BHvXtUudc13RvFl7e3krzXFxP4iuZJZZZCWZ3dsszMSSSSSTWf/wAQi/8AwRm/6FzxN/4P5/8ACv6caKAP5jv+IRf/AIIzf9C54m/8H8/+Ffo1on/BG/8AY88IfsP6b/wT4+HU3inwp8PdO1K41RxoevXWn6heS3RmMqXd1AyyTwv5xBifKEJHkfIK/VeigD+Y7/iEX/4Izf8AQueJv/B/P/hR/wAQi/8AwRm/6FzxN/4P5/8ACv6caKAP5jv+IRf/AIIzf9C54m/8H8/+Ffon+0d/wRl/Yw/af/Zx+H37Jfj7/hJdP+H3w20uPR9M0bRtcurC1uLaJIUj+2xRtsupE8hWWSVWZWZ2Byxr9XqKAP5qfDX/AAae/wDBIvwXr9p4r8Hab4w0nVdPlWe1vLPxJdQXEEq8q8cibWRh2KkEV/Qn8Jfhtpnwe+GmifC7RtR1PVrTQbSOzhvNavZdR1CZIhgNcXMxaSaQ93ckmvQ6KAPxG/bf/wCDe/8A4Jpf8FBv2gb/APab/aH8O6rL4t1W2tbW8uNN1OWyjnFnGIondEBBcRqqbu6qo7V98fsUfsS/Cf8AYK+EzfBP4K6r4j1Dw+s4mtoPEWsXGrmzRY0iWG2NwzeRAoQERR4QMScZJr7BooA/jb/4OMv+Ce/xX+Cfx28G/wDBej9iCyefx18Krywu/GWmQqW+3afYELHeFVG5lSHNteAZzakN8oicn+mX9h39t34Fft/fsu+HP2rfgXqUc+ha5bB7mGRx5+m3kag3Fpcj+CWBjhs8MuHUlGVj9eSRxyxtFKoZWBBBGQQexr8Bvit/wQP+Fcet/Ga8/Y+8dar8HvD3xy8IavoHibwfpcSSeHrjU76Ipb6jHbkqbYxFmEsUG0SoxRTGpcOAfsr4l/aC+EHh74I6/wDtEw6/Yan4Q8N6bfarealYXMdzbi306N5JyJY2KEoqNnngjmv4b/8Ag0E/Z38ZfH79qX48f8FX/ijaENqt1eaNp0z5ZZdT1m4Goak6E/xQp5Cbu4nYetd7+y1/wQP/AOCz3wz/AGLvFn/BKXU/FngPwb8J/Hnix9c8UeL9PvbzUdVutPeG2hazsrRoIURZPsqvJvMTOCULhMhv7Hf2Nv2Rfgv+wn+zZ4W/ZZ+ANg1j4a8K2vkQmUh57mZyXmuJ3AG+aeRmkkIAGWwoVQAAD6dooqnqFvc3dhPa2c7Ws0kbIkyqrNGxGAwDAqSp5AIIPegD+aP/AIONv+Cg2v8AgP4Ix/8ABMD9ki2m8WfH79oGA6FaaNpn725sdFvcx3dxKB/q/PiEkMZcqFUyTFgsRz+gX/BF3/gmL4Y/4JTfsQ6J+z5HNBqXi7UpW1nxZqkC4S61W4VQyxkgMYbdFWGLIG4IXKqzsK1f+Cf3/BJz4IfsN+KNf+POvavqHxQ+NvjVnfxL8Q/EeH1O88wgmG3jBMdnbDaoWGL+FVVmYIgX9UaACiiigAooooAKKKKACiiigD8lv+Chv/BFX9iH/gqF8QNB+I/7Wdtr2pXnhrT203T7ex1eaztIYnkaV3EKZTzZCwDyAbmVEB4Ra/Pf/iEX/wCCM3/QueJv/B/P/hX9ONFAH8x3/EIv/wAEZv8AoXPE3/g/n/wr+ir4PfCbwJ8BvhP4a+CXwusV03w34R0u00fTLVSSIrSyjWKJcnliFUZY8k8nk16PRQAUUVk69r2ieFtDvfE/ia8h0/TdNgkuru6uXWKGCCFS8kkjsQqoigszEgADJoA+Xf25/wBtP4J/8E+v2YfE/wC1R8e737Nonh23zHbxkfab+8k4gtLdSRummfCr2UZdiEVmH+Thoej/ALa//ByF/wAFU5JLh8694xufNuJcNJp3hjw7atjgcYgtY2CqMhp53GSZJST9Jf8ABdv/AIKv/E7/AILSftqaT8DP2bLe+1L4b+HtUGjeCdGtUYza1qNw4hN+0XDNLcMQlujDMcJAwrvJn++//ghD/wAEffBv/BJn9lKHQNfjt9Q+K3jFIb7xhq0WHAmUEx2MD/8APva7ioP/AC0kLycBlVQD9I/2MP2Pvgp+wd+zZ4Y/Zb+AGn/YPDvhi2ESu+DcXdw/zTXVwwA3zTyEu7YAycKAoUD6joooAK8v+N/xd8Ifs/8AwY8W/Hf4gSNFoXgvRr7XNRZMFxa6fC88u0EgFtiHAJGTXqFfxMf8HZH/AAWR+FngP9nfVP8Agmh8ANet9Y8c+MZIovF8ljKJV0fSoHWVrWV0OFubp1RWi5Kwb94XzEyAf1Mf8E+f23fh7/wUY/ZL8L/tg/CnRtW0Hw/4ra9W0tNajijuwLG6ltHZhDLMm1pIWKkOcjrg19n1+cH/AAR++DH/AAz9/wAEuPgJ8KpYvIubLwTpNzdx4xsvL+Bbu5H4TTP9a/R+gD+ff49f8G0X/BNr9qD4g3XxR/aBufHni/XLpnP2rV/Fd7evGjuX8uMzM5SJSx2opCqOgr6n/YR/4I1fsl/8E4vFI8Q/svat4002y2Tq+h3fiS8utFke4ADSvYMwt2lGBtkKblPQ1+sNFAHxb+23/wAE8/2Pv+Cifw2j+Fv7XXgq08VWNqzSWNyxe3v7GVsZe2uoSk0ROBuVX2PgB1YcV+MHh3/g1G/4J7+H9FfwGfiF8W7zwRLMJpfCUvihI9EkOSSGghtImOc8nzN3vmv6caKAPnD9lj9kP9mr9iX4T2vwR/ZX8H6f4M8NWrGX7LYod80xAUyzzOWlnlIUAyyu7kAAnAFfyn/8HI37VPwx/bA/aI+G3/BB74d+G9H1b4geN9c0iW+8U60rGPwob9h5TWgR0drp4GMkmW2eSyptd5P3f9n9fxw/8F5P+Dbb40/t1ftPf8N+fsM+L7PRPiHcw2A1XS9UnlshNc6ZGkNtd2V5CjmGdYo4l2OFXMYcSKeCAbGtf8GV/wDwTJ1CygXSvHvxIsLqOJEldb/TpIpHUAM+x9OLLuOTgPgZwK+A/wBu3/g0U/Zk/ZO/Za8d/tT/AAj+OniLRdR+HWjXniKFtdhtnhkk06MzJEstuLZ4pJHUJG67iHZcKx4rvfht4R/4Pa/hrbxfDK3utN1nT7ZRDDrOsXfhm9ZV6bmmd/tcpHUtKjsfev0M+DH/AAQ//wCChH7ZHivR/iH/AMF4fj7L8SdB0i6h1CD4a+GsWfh+e4gOYjf+RBaRShOQUjt9xyf3+0sGAP2g/wCCRHxM+Mnxl/4JjfA34o/tAzXN14u1vwjp1zf3V5n7Rdbo8RXEpPLPPEElZj94vnvX6M1R0zTNN0TTbfRtGt4rSztIkhgghQRxxRxgKqIqgBVUAAADAHAq9QAUUUUAFFFFABRRRQAUUUUAFFfMf7WnxR/aS+EHwo/4TD9lj4Wp8X/EyXccb6A+u2/h5jalHLypc3MUsRZWVFEZC7t+dw24P8eup/8AB6F4r0f4p3HwQvv2S9THi+11V9Dk0hPFYku/7SSY25thGmkktL5w8sKuSW4GaAP7pqK/k9+Nn/Bx7+2F+yR4ct/iJ+2X+wr458B+EpZI0l1iLWYtQgh8zG0SMLKKKN2zhUllQk8da/Xb/gmZ/wAFif2J/wDgq54Tv9V/Zl1m5t9f0SNJdW8NazEtrq1lHIdokMavJHLEW+XzYZJEBIDFWIFAH6mUUUUAfHP7e/7cPwT/AOCdf7LfiX9qz49XLpo2gRKsFpBg3OoXsx229pAp4Mkr8ZPyooZ2IRWI+Sf+COH/AA2v8SPgPrn7YP7dOpXFr4l+NOpJ4j0nwjuYWfhbQvKWOws4o25WR4gJpyQGZnHmASB6/AP9v34jzf8ABY//AIOGfhl/wS4tFN58H/gDdt4l8YQZ3QajqFlEs84lUfejRng04A4ZGmnwcMK/t4AAGBQAUV80/tYeIf2sPDPwkl1P9jDw34e8VeNftMapZeJr+bTrH7OQ3mP5sEUrlwQoVMKDk5YY5/kW/wCCU/8AwX5/4Khf8FEv+CtGk/safELQPBXhnwjoDa3L4oi0KzuJ5vI0qKWMbbqa7mUhrwwoHjVQQ2cHoQD+3+iiigAooooAKKKKACiivhL9v34ofty/CL4SDxr+w54K8LeNdVsUurnVLfxPqkumRxW0Ee9TD5cbLK5IIKvJEoH8VAH3bRX8a3/Bv9/wXS/4KG/8FeP24fE/gv4v6R4U8PfDnwl4Yn1O6t9DsLhJDeS3EMNqhnuLmdtxDSucbVIjPA4x/ZTQB/N58HP23/jJ/wAE7v8AgqBq/wDwTj/bv1u61zwF8a9ZvfEPwd8aX7F2SXUrgyTeH7qQ5yYJ5fKtSTlA0ScJLEsf9Idfz+f8HLf7GZ/au/4JdeLfHHhON4vG/wAHCPHegXkBKXEP9lgveqjrhxutPNdQp5ljjPVRX0T/AMEOf+Cjdv8A8FO/+CenhP49azIh8Y6SW8PeLYlAUDWbBE8yUAcBbmN47hQOF83Z/CaAP16ooooAKKKKACiiigAooooAKKKKACvN/jJ/ySHxV/2B77/0S9ekV5v8ZP8AkkPir/sD33/ol687OP8AcMR/gl/6SzrwH+9Uv8UfzR+A9FFFf5+H9Qnk/g/4C/A34eeM9U+I/gDwXoWh+IdcMjalqmn6db217eGZ/NkM88aLJKXk+dt7Hc3J55rpfH/w4+HvxX8MT+CPiloOneJdFuWRprDVbWK8tZGjYMhaKZWQlWAZcjgjI5rs6K3liazqKq5vmVrO7urbWe+nQzVKCi4KKs+ltDivh/8ADX4dfCbwzF4K+Fegab4Z0aBneKw0q1isrVGkO5ysUKogLE5JA5PJr568UfsB/sQ+NfF7+PfFfwl8J3+sSyNNLcy6TblppXOWeUbMSMTyWcMa+uqK0pZhiqU5VaVWUZS3ak036tPUieFozioTgmlsmlZehT07TtP0iwh0rSYI7W1tkWKKGFQkcaKMBVVQAABwABgV5ZpH7PfwD8PfEi5+MmgeB/D9j4vvDI0+uW+mW0WpSmUYcvcrGJmLjhsucjrXr9FYwr1Ic3JJrm0dm9V2fc0lThK3Mk7beXoeReIP2fvgN4s+Idl8XfFXgjQNT8Wab5RtNau9Nt5tRt/IJaPy7l4zKmwkldrDaTkYr1K/sLHVbGbTNUhjuba5RopYZVDxyI4wyspyCCDggjBFW6KJ16k1FTk3y6K72Xl2CNOEb8qSvv5+p4R8Lv2XP2avgh4hu/FnwZ+H/h3wpql9Ebe4u9I0y3sppIWZXMZeJFOwsqsVztyoOMgVzvxV/Yw/ZJ+OPiL/AITD4vfDbw34i1clS19fabBLcuEGFDylN7qAMBWJGO1fTNFdEcyxcavt1Wkp2tzczvbte97GTwlBw9m6a5e1lb7jkvA/gHwL8MvDVv4L+G+i2Hh/R7TIgsdNto7S2i3HJ2RRKqLknJwOTXMfDv4FfBH4Q6lqesfCfwbofhe71tlfUZ9I063spLtkLMpmaFEMhBdiC5OCxPc16pRWH1mr765373xavXrr3111NPZQ933Vptpt6djyu8+BXwR1D4m2/wAa7/wdoc/jO0XZBr0mn27anGuwx4S6KGZRsZkwHHykjoTXqlFFTUrTnbnk3ZWV3ey7LsvIqMIxvyq19X6nA/Ef4U/C74x+HR4R+LvhvSvFWkiVZxZaxZw31v5qAhX8uZXTcoJAbGRk+tdB4X8LeGPBHh2z8IeC9OtdI0nTolgtLKyhS3t4IkGFSOOMKiKB0VQAK3qKHWqOCpOT5U72vpfvba4lTjzc9te/U8d8afs7/s//ABI8aWHxI+IngXw9r/iLShEtlqmo6ZbXV7bCBzLGIp5Y2kQJIxdNrDaxJGCa474v/scfsp/H7X4fFfxp+HmgeJtUgVUS8v7GKW42L0VpCu5lHZWJUelfSdFdFLMMVTcZU6sk4qytJqy7LsjOeFozTU4Jp73S19T5Z8Y/sP8A7HXj/wANaL4O8X/DDwze6V4c3/2XaHTIFhtBKQXWJFRQiuQC6j5WIBINfizZ/se/F3Uv+C+3iL4z+IvAVxc/C3UdJWyOoXFosmlzR/2DBamIhgUZfMUxFSMZGK/pMor2Mq4oxuCjXipOaqU50/ebfKptOUo66Sul69TgxuTYfEOm7cvJOM9EteVNJPy1Plz4Y/sRfsffBfxZ/wAJ58Kfhl4a0DWlYtHfWemwR3EJYEHynC7ogQSCIyoIr0/4j/Ar4I/GK90zUvi54O0PxVcaKzvp0usafb3z2jSFSxhaZHMZYohJTGSq56CvVKK8epmGKnVVedWTmtOZybdu173O+OFoxh7OMEo9rK33HIePPh94C+KfhW58C/E7Q9P8R6Je7DcafqltHeWsvlOJE3xSqyNtdVZcg4YAjkCs6y+E3ws074er8I9P8NaVb+FFhNsNFjsoV04QsSTGLYKIthJJK7cZr0CisI16qioKT5U72u7X727+e5o6cG+ZxV7W+Xb0Pjvwl/wT2/YZ8CeKI/GnhH4SeFbHVIXEkNxHpcGYnHRowUIQjsVAIr621PTNN1rTp9H1m3iu7S6jaGeCZBJHJG4wysrAhlIOCCMEVeorXEY7E4iSnXqyk1s5Ntr0uRSw9KknGlBRT7JI+R/Dn7Av7EPhHxcnjzwz8JPCNjq0UizRXEOkWytDIhyrxAR7Y2B5DIFPvX0D8Qvhn8N/i34ak8F/Fbw/pvifR5nSR7DVrSK9tmeM5VjFMroSp5BIyD0rt6KdXMMVVnGpUqylKOzcm2vR30FDC0YRcIQST3SSs/U5nRPBXg3w14Sg8AeHNIstP0G1t/scOm21ukVpHbgbfKWFVEax7eNoXbjjFcz8MPgt8HPglpVxoXwZ8J6N4RsbyXz57fRbCCwillwF3ukCIrNtAG4gnAAr0yisfrFXllHndpatXer7vuaeyhdPlV1t5ehzni3wf4S8feHbrwh460u01rSb5PLubK+hS4t5kP8AC8cgZWHsRXzN4F/YB/Yj+GfiqPxv4D+FPhfTNWgcSw3UOmQeZC46NESp8sjsUxX15RW1DH4mjCVOjVlGMt0pNJ+qT1M6mGo1JKdSCbWzaTa9Aryv4k/Ar4I/GW50y9+L/g7Q/Fc2is76fJrGnW981o0pQuYTOjmMsUQsUxnauegr1SisKVWdKSnTk1JdU7P7zWcIzXLNXXmcH8RvhX8MPjD4d/4Q/wCLnhvS/FOk+as/2LV7OK+tvNTO1/LmV03Lk4OMjJqef4bfDq58AD4T3OgabJ4WFkumjRmtYjp/2JEEa2/2cr5XlBAFEe3aFGMYrtaKaxFVRUFN2Tuld2T7rs/MTpQbcnFXej9OxxHw9+GXw3+EfhqPwZ8KfD2m+GNHid5UsdJtIrK2V5DlmEUKogLHkkDJPWvnnXP+Cf8A+w74l8Xnx7rvwj8JXWrNIZnuH0m2zJKx3F5F2bXcnks4Jz3r69orelmGKpTlUpVZRlLdqTTfq76/MznhaM4qE4JpbJpaehVtLKysLOPTrGFIbeFBHHFGoVERRgKFHAAHAA4xXgvhH9kn9ljwB43k+JfgX4b+GNG8QyiUPqVjpVtb3RE4Ky/vEjDfvASH5+YEg5ya+hKKyp4mtTUo05tKWjs2r+vf5lzo05tOUU7babeh5f8AC/4IfBb4IWF1pfwX8IaJ4Qtb6RZbmHRNPg0+OaRRgM6wIgZgOASCQKjsfgX8EdM+Jlz8atN8HaHb+MrxCk+vRafbpqcqlQhV7oIJmGxVXBc/KAOgFeqUU3i67lKbqO8lZu7u12fdeolQppKKirLbTb0PGPjB+zn8A/2grGDT/jj4M0XxbHahhbnVbKK6eDfjd5TyKWjJwMlCM1Y+EX7P3wL+AGlzaL8EPB+j+Era52mdNJsorQzFMhTKY1UyEZOC5J5r1+in9dxHsfq/tJez/lu+X7thfV6XtPa8i5u9lf79zzn4n/B/4UfGvw5/wiHxi8M6X4p0rf5otNWtIryFZACA6rKrBWAJwwwRng1454f/AGGP2MPC/g65+H+jfCjwkmi3ssU9zZyaPayxTywbvLeUSRt5jR722M+Su44xk19U0VVLMMVSh7KnVko3vZSaV+9r7+Yp4WjOXPOCb2u0r2MvRNE0Xwzotn4b8N2cGn6dp8Edta2ttGsUMEMShUjjRQFREUBVVQAAMDitSiui8KeFdd8beIbXwv4bgNxeXjhI0HT3JPZQOSewFY06dStUVOCcpydklq23+bbNJzjTg5SdopfJJHV/CX4WeIPi74vh8LaENiffubgjKQRA8sffso7nj3H7jeBvBHh/4d+GLXwl4Zh8q1tVwM8s7H7zse7MeSfy4rjfgr8H9C+DfhCPQNNxNdzYkvLnGGmlx+ir0Udh7kmvX6/sPw34DhkOE9viEniqi95/yr+RP/0p9X5JH4NxbxNLM6/s6TtRi9PN/wAz/TsvNsKKKK/TD48KKKKAPxe/4LW/so6t8dP2frP4u+CbZ7rXfh+81y8MS7nm06cL9owByTEUSUeiB8cmv0D/AGNfj9on7TP7NnhT4taTcrPc3llFDqKg5aHUIFCXCMOoIkBIyBlSrdCK+nWUMCrDIPBBr86fBn7HXjb9mb46y/EH9k7UbO08FeK76OTxN4R1EuttEXYCS806RA3lSqvPksvluBt3KAgTxZ4SeHxzxlFXjNJTS3uvhku9lo1vbVXPuqGc0MxyGGS4yfJUw8pToSfwtS1nSb+zdpShJ6XvFtJpn3r4tsfEup+GL/T/AAdqEWk6rNC6Wl5Nb/ao4JSPldod8fmAHkrvXPqK/DP48/8ABGP4sftKfE6f4vfFj45fbdblSOJJIvDiwpDHD9xI1S/AULyfUkkkkkmv3uorqx+V4bGxUcTFyS6c0kvuTR5PD3FuaZHOVXK6ihOWjl7OnKVuyc4yaTtqk7HhnwJ8DfG/wFoE2k/G7xzB47uR5a293FpK6U6KgIbzFSeZZGY4OQEAx05ry39uP9leX9sX4Kw/BsaoNIgk1ewvLqfbuf7NA/71Y+oEhQnYSCu4DPHNfYtFbTwdKdB4eabg1Z3bbt6tt/icGHzrFUMfDM6LUa0ZKScYxik1taMUor0SsfjH4Q/4J5ftk/sz6bJ4X/ZA+Oj2vh1t5i0rxHp8d4lsW5zG5WRVyeSEijBPJBzVvwz/AMEtvGfxT+MVh8cf28viJJ8Sr3SdjWWk29qtpp0ZRg21kHytGSAWRI495HzlhkH9kaK4FkODVotNxW0XKTiv+3W7fofRT8Q86fPUjOEas01KrGlTjVae96kYKWvVp3fc+Pv25/2XtQ/a9/Zz1P4IaLrX/CP3F1PbXMU5QyQs1s4cRyopUlGx2+6wVsHGK/Mz/gjN8KvFfwR+K/xr+FFtrieIvDXh+702zN9bqy2kuqIkn2gQhifmj/1chHJ2oTwRX7OfGj4VD4z+BpfAUviDV/DlvcyxtcXGiXAtbqSFc7ofNKsypIOGKYbHQip/g58Fvhh8APAVp8M/hFpEOi6NZlmSGLLM7v8AekkdiXkdu7uxY4AzgDCr5WqmY0salZwWru7vRpK21tbt77I0wHFs8NwzisjlPmjWkmocqtBqUJObn8Tb5VGMVok2272T9Rr81v21P2JPjt+2Lp174BuPi1D4c8E3U8Fwujw6As8paEAgS3P2yNpB5gLgBEA4BBKg1+lNFeji8JSxNN0aybi90m1f1s1p5bHzGT5zisrxUcZgmlUjs3CE7Pe6U4ySa6NK66M/J79jP/gnn8ef2L3Xw94N+MsWpeE7nUEv7/Rrjw6gEx+RZPKmN67wvIiBdwDAYB2kiv1hooqcHgaOFpqlQTUV0bbt6XbsaZ3n2NzfEvGY+SlVe7UIQb83yRjd+bu/M+Gv24P2Uvil+194Bb4S+HviDF4N8M3qx/2lbDSBfz3bxSCVP3xuodiBlU7VXJI5Yg4rgv2Fv2H/AIt/sV6c3gb/AIWfH4o8HvLNc/2U+iLayJcTKAWS4+1ysq5AJQoQT0xk5/SKispZXhniVjGn7RaX5pbdrXtbytY66fFmZwyt5LGcfqzd3H2dP4v5ubk5ua2ilzXS0Tsfix+2l/wSd1v46/tAQ/tM/s/eM/8AhB/E0phe9bbKM3EICLcwyxMHjk2AKygYYjOQSc+efFf/AIIu658TPhZHa+JfiRdeKfiNearbT33ifXhNN5WnQxzKbW2iMkjKN8isd0nzFP4BxX71UVx1eHMvqTqTnT1nq9Xa73dr2T89z28J4ncR4ajh6FHE2VFJRfLBy5VtFy5eZxX8rdtrp2R+S3hj/gmT49+F/wCz/P8ABT4OfGvxFpNxqMQs729vYzfW8dkd5eGxtPPiSz3u+5pEd5OoDc5r6L/YR/ZH8UfsYfCy5+EWqeL4PFeli5NzYmPSl02SBpSzS+YyzzGYuSu1mIKhdoyMAfb1FdVDKMLRqRq0otOKsvelZLta9vwPJzDjLN8dhquExVVShUkpy9ymm5LZ8ygpaapWdkm1s2fgx8Sf+CMfxI+I3x+v/wBpFvjUNK8TXeoJqMc9h4dW3ME0W0Rsnl3yjcAoy2Mu2WbJJr9o/hT4d+IfhTwFYaD8VPEaeLddtw4udVjsk05bjLEqfs6PIqFVIU4bBIzgZwPRKKeDyrDYWc6lCLTlv70nd97NtX89yc74vzXN6FHDZhUjOFJJQtTpxcUlZJSjCMuW32b22drpHAfE/QviF4k8FXejfC3X4fDGtzbPI1K4sRqKQgMC37hpIg5K5Ay4AJzg4wfx2+AX/BI/42/s2/F67+N/w2+OSLr2pRzw3z3XhpZo7mO5cSyCRTf95FV8gghgO1fuRRTxeV4fE1IVayblHa0pK3pZpX8yMn4szPK8NWweCnFU6uk06dOfMuzc4Sdl0V7J3aV2fkb+23/wTX+Lv7b/AIjtZ/Gvxbh0vQNImmk0vSrfw+GEHnBQTJL9uUzPhQNxVQOdqrk19bfAv9mvxj4K+Bc/7Pv7QHiq2+JOhHT49JgWTShpzCwSMxGKXbPN5p27QH+VhjOSea+vKKVPKcNCvPERi+eWjblJ3XZptq3bTToXieMM1r4CjllSpH2NJ3glTpxcXe94yjBSTb1bvd9bn4WeC/8AglN+0J+y18S9S8ZfsQfFtfD2l6vhZ9O1myF0PKUkqrnDpKUydj+XG6gkZ5JP1b+zr/wT3TwD8abj9qX9ovxZP8SPiTOpSC+ngW1tLBSpTFvApIBCEqDwqgnaqkk1+k1FY0MiwdGScIuyd0nJuKfdRbsn8tOh3Zh4gZ3jac416seaceSc1CEak4fyyqKKm10avqt7n5X/ALdP/BPX4uftwapFpeufFePQfCNhcJd2GixaEs5inEXlmSS4+2RtKxy+35VChsAdz7z+xj+zL8Yf2WPBUPwx8ZfEdPG3hzTbYW+l2zaQthNaAOWwZhcTNImCQqsMqMYOABX2vRW0Mqw0MS8XFP2j3fNL7rXtbsrWXQ4a/F+aVsrhk1ScXho6qPsqSs+6koc3M+submd3du7PxZ/bC/4JS/Fb9s/4jp45+I3xijt7XTxLDpVhD4eGy0tpJC4QuL5TI+MBpCAW2jgDgfYus/AL9rrW/gVL8KLr4y2g1m5LwTa+vhpRcNZPCIvLEX23Ys27c5nBzyAFUjcfuGiohk2FhOpUimpT+J889f8Aybp07dDavxtm9ahh8LVnB06GtNOjRtHvb9313d93q7s/G/8AYx/4Jd/F39ifxrc+IPh38YYrrStXktf7Y02bw6u28htXLBVkN8xifa8iq4BxvJKtgCub/aw/4JOfGH9sTx/F43+KfxrVk08Sw6baReHERLS3kkLhAUvV3sMgGRhubaPTFftpRWL4fwLw/wBV5H7O9+Xmnb/0rvr66navEfiBZi82VeP1lq3P7GjzWtbf2e9tL720vbQ8i+CXhD4qeA/AcXh34x+L4/G2rwuf+JomnrppaEKoVXiSWVSwIJLhhuz0GK/CX9nn4f3P7dv/AAVT8U/tcJGZ/h/8Pr1bbTLvH7m7u7GNYbdYifvAMGuiR93KA43Cv2C/ae+FXx1+OlvbfCXwRr9v4R8G6rBIviDVLfc+sSRkgfZrRSBFEJUyHmYswBwF9fZPgx8G/h78APhrpfwm+F1gun6NpMXlwxg7ndicvJI3VpHYlmY9SanE4B4mtSpSTVKk1LV3cpLZa3bSvdt7vQ2yziGGV4LF4unOLxmKi6doxUY0qcn77tFKKlKyUYxXuq7drpP1GiiivcPgD+QL/g9W/wCUWXgH/squlf8Apo1ivgD/AIMYv+bov+5J/wDc1X3/AP8AB6t/yiy8A/8AZVdK/wDTRrFfAH/BjF/zdF/3JP8A7mqAP7/KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//0f7+KKKKACiiigAooooAKKKKACv8Qb/gk7/ylN/Zp/7Kr4N/9O9rX+3zX+IN/wAEnf8AlKb+zT/2VXwb/wCne1oA/wBvmv4Ff+D5j/kD/syf9dvGP/oOkV/fVX8Cv/B8x/yB/wBmT/rt4x/9B0igD9Af+CE/7Hfwo/b5/wCDZ/Rv2UPjNBv0bxbL4kt1uFUNNZXSapcPb3UOf+WkEqrIvY42nKkg/wAcf7CX7SX7QX/Bu3/wV0v/AAt8abaeOy0HUX8M+ONNh3GPUNFnZXW7gU43lUMd5at8pYYUkK7iv7zf+DUT/lCP8NP+wn4i/wDTpc18E/8AB3D/AMEmP+GkP2f4f+CiXwU0zzfG3wwszD4lht0/eah4cUlzMQPvSWDM0hP/ADwaQkny0FAH8cv/AAXy8Z+FPiP/AMFofiz8QfAmoQatomu6hoeoafe2zh4bm1udLsZIpY2HBV0YMp7g1/Y5/wAHqnxh8W+D/wBgf4b/AAf0GeW307xn4x83U/LJAnh0y2kkjhfHBQyyJLtP8USkdK/zUNJurm88Q2Mt3I0riWBAzksQqbVUZPZVAAHYDAr/AFdv+Dr39i/x5+1v/wAEsrzxV8L7T7drHwm1qHxhNbopaabS7e3uIL1Yx6xxzC4b1SAgZOAQD+Ov/gib/wAHCXwm/wCCPX7PXiD4T2vwHbxn4l8Uaw2pan4ij15dPkuII41jtrcxmxnISD94VHmEbpXbA3GvVf8Agr//AMHLfwh/4Kw/scah+zF4g/Z9k8N6zHqFlqmh6/L4hS+bTLq2kHmOsQsIS4ltmmgI8xR+83clQK+pP+DXr/gs9+xL+yz8Gtd/Yl/bluNP8LQnV5ta8O+I9QtBLZut0iLPaXMqq7RMrx+ZE7L5bB3VmUqgb9hP+Cv3/ByR+wh+yp8Fl0L/AIJ9ah4N+KnxU1S4hFv5FmNQ0XTrRXDTS3MsJiSR2QGOOKOYsGbe+FUBwD86f+DKLxZe+PfB37S37MHjOP8AtLwfewaLfvZy8wh79Ly0uwR/08QpEre0Qr8Q/wDgmNd69/wSZ/4OK/DXwf8AGNw8Nr4f8eX3gC/ll+RLix1V5NPgnfp+7PmwXIPAwATxX95f/Bu5+2V+2b+39+yXr37Un7WXhbwx4WsNX1j7F4YTw9pc2mm8tLNMT3MnmzzCWMzOYoiu3DRSZzkV/IX/AMHhn7MWp/s9/wDBS/wr+1z4KV7CD4o6Lb3n2uL5WXW/D5S2lZSOhW3+xNnruJNAGn/wV90iP/gq/wD8HQfh/wDY7E0t14c0jU9C8D3DW7YkTTrFTf6uUI+68RlvAD6oCa6f/g1D8da9+xp/wWP+Kn7DPxHnFvNrWmazoFxEx2BtY8LXRkyQeywR3n0z9aX/AINOPBXjP9sz/gsT8T/29PiwFvNT0LTNW8QXd0ikINd8U3Jj+UEnarQve4GSQBj1r49/4OHdA+I//BOf/gu742+N3wXm/sW88aaavifSrgKcquvWMunX7jBGWacXZB7E8g85APP/ANmXQ5P+Cz//AAcixeLb5DqPhrxV8QrvxLc7xuT/AIRzQnaeGGQ/3XtLaG2z6uMYzX96H/Bz3/ygx+Ov/XLw9/6fdOr+dL/gyT/ZJ+2eJPjD+3LrtrlLGG28FaNMRkGSYpe6hjPRlVbMAjnDsOB1/o+/4OZ9Kv8AWf8Agh18d7TTozJIlpok5A/55wazYSufwRSfwoA/nk/4MZP9V+1D9fBX/uZr5e/4Pbfiz4o1P9s34QfAuaeT+xdE8Fya9DBk+X9q1S+uLeRsdC2yxjHqB9a8x/4NKP8AgpZ+xj+wF4l+Onhn9r7xpb+CF8b2/h240m7vIZnt5TpJ1ATxl4o5Nr4u4yobG4BsHIxX33/weJ/skXvx9+D3wi/4KpfA2Rdf8IWWkw6Nqt3bhiF0zVHF1pd4MgfuXknkjZiAQ0sQx8xwAf0kf8G9/wCzF8O/2Yf+CRvwXsfA1pFFd+NfD1l4v1e7QL5t3e65Et0WkZQNxijkSBM8qkar1Br4y/4O0v2Yvh38aP8AgkX4o+NGvWcX/CSfCnUdL1fR70hVlRb28gsLmDeRny5IrjeUBw0kUZ6qK/Oj/g3V/wCDib9jrwp+xf4a/Yv/AG3/ABfb+APE/wAOoP7M0nVdUVk07U9KDsbdfPRSkMtshELLLsDIqMrMxcL8q/8ABz5/wX4/Zg/ah/ZxT9gP9iLxCvjKz12/tL/xXr1rG66eLawk86GygeRVM0jXCRTPIg8tVjVQzFmCAHsv/Bjz8WPFGpeA/wBoT4HX9xJJo2j33h7W7KEklIrjUEvILlgOgLrawdOu32r+Y/8A4IB/BvwT8ef+C3nwX+HnxDs4tQ0oa/qWrPbzLvjkm0axu9RgDKeGHnWyEg5B6EEcV/aP/wAGeH7CXjn9mv8AYd8U/tS/Ee2awvPjfe2V1pltICJP7F0lZ0tZ2B+758lxO6DHzReW4JDDH8h//Bs1/wAp9fg1/wBfXin/ANMWp0Af65niTw7onjDw7f8AhLxNbR3um6pbS2l3byqGjlgnUpIjA8FWUkEHqDX+Rb/wbJxy6H/wXo+DWl2UriNLjxNbsc43ouh6jw2OD0B+tf69lf5DP/BtZ/yn6+Dv/X/4o/8ATJqVAH+vNX8sX/B1J/wSs+PH/BRj9l3wV8Rv2YtL/wCEi8ZfCi+v7gaLEQLq+07VEhW5FtkhXmja2hcRkguoYJl9qN/U7X8rP/By3/wVU/4KDf8ABKq3+FfxA/ZPg0WTwl4uOpafq0+q6Y975Go23kyW6eYJY1TzonlKLjJ8pz24AP47P+CeH/BwB/wUi/4Iy+Ff+GQ/EHhKz1bwpo13PMvhjxdYXFhqGmPcSNJMsEqmGWISSszss0cqhiSoUk5/Zr4Y/wDBdP8A4IJ/8FJvjra+J/8AgqB+zXZeDvGespb2Enim8I1vTsQgRxfaZoktriJQCAGNvIqL99wozX6n/wDBPH/gvP8A8Euv+CkH7IWj+H/+Coes+AtK+JOnLPba/pHjGxgi0q4O9vLnszeiSBo5Ytu6PzPMSQMCu3YzfxZf8HAqf8EoP+GxLC4/4JPyWh8Py6Xu8RpowlGiLqnmtj7F5vGDFt8wQfuAcbPm30Af6+HgHRvBfh3wLovh/wCG8VtB4dsLC2t9LisiDbJZRRqsCxFSVMYjChMHG3GK62vy4/4ImeHvif4U/wCCS/7P3h74wwy22u2vgzTlaGdSksVqUzaI6nlWS1MSlTggjBAPFfqPQB/mB/8AB6r/AMpTvAX/AGSrSv8A076xXv8A/wAFt/2Lv+Fjf8G9/wCxl+2/4YtN+o/DfwX4b0TWJEXk6TrNjAInc/3YbtI0Qety1eAf8Hqv/KU7wF/2SrSv/TvrFf2Z/smfsxeGf20P+DeT4Z/sr+Ldi2njn4M6NpaTONwt7mTTYjbzgc8wTiOVeOqCgD8Rv+CKH/BYSx+E3/BuP8TvHHiq/R/Ff7Nlre6Np6TkM0v9qZbQtwP8DXM5tVGOEg6Gvy//AODNv9j6++OH7dHjb9uHxzE95Z/DHTHt7K5nyzSa5r++MyBmzuZLVbkP3BmQk88/yaax4k+NnwOsPHX7Mep3l1olrf6lDaeJ9GyAs17oc0qxpMMZJt5XkwAcZPfiv9Zz/g2n/Yu/4Yy/4JMfD+01u0+zeJPiMr+NtX3Lh92rKhtEOeQUsktwyno+7gZNAH+ef/wRs/5T/wDwr/7KFe/zuK/Z7/g9w+MPi3Uf2sPg58AJJ5V0HRvCU/iBIQSInu9SvJbZ2I+6zLHZqFPVQxx941+MP/BGz/lP/wDCv/soV7/O4r+mX/g9Y/Yv8d+LvAvwv/bs8IWn2vR/CIuPDHiJkUl7aO+lWWxmbH/LLzfNiZjjEkkY538AH56f8E2P+Dqz4O/8E4f2MfBf7I/gb9m+S/8A+EbtWOo6nF4lS2Op6jOxe4u3j/s6QhpHPCs7lECoGIUV+eH/AAXK/wCC4Pwp/wCCyOieBbyw+CrfD3xX4KnuUGttrS6k9zp90oLWrItnbHCyqsiMXbYd4C/Oxr+nH/g3+/4Lt/8ABN67/Ye8G/stftla3oXw98efDqyj0RLrXbdIbDVLC3JW1mjumVo1kSEJHKkrISy7lyGwvn//AAWP/wCDor4E/AHxLoHwv/4JYWXg34i6nE8s3iLXNR0p7rSYkxiK3tWR7YzSEkvJKpaJVCqpZi4QA/Qf/gz1+Kfiv4if8Egx4Z8SSvLbeCfGus6Hpu8522jx2t/tHsJryXHp9K/i3/4NfP8AlPF8Gfr4o/8ATDqVf6ZX/BJj4m/tO/G39gXwD8a/2vtA0fwv438X2smrzaVoljJp1vbWlzIzWgeGWSVxK9v5cj5IwW24BBz/AJXn/BD/APaS+E/7CH/BYn4a/HL9pjUD4f8ADHhjUNbsNXvDFJMLRr7TrywV3SNWcqs0ybyFJC5OOKAP9IT/AIOZf+UHfx4/689F/wDTzYV/Lx/wZDfBvwT4l+Pfx2+OmsWcU+u+EtG0TStNmkXc0EWsy3b3BQn7rN9ijUkDO0kZwSD+/H/BcH9rz9m39tb/AIN8/j78Xv2WPF1n408NQNpWmyX9iHEa3cGr6a7xkSKjZVZEPTGGGK/F7/gxn/5Cn7Tn/XLwb/PV6AP6EP8Ag6C8H6B4t/4IhfGafWrdJpdIGh6hZyMoLQ3EerWab0J6Exu6Ejna7DvX8+H/AAY0XVz/AGn+01ZeY3k+V4PfZn5d2dWGceuK/o2/4OXP+UH/AMef+vHR/wD072Nfzg/8GNH/ACHf2mv+uHg//wBC1agD+dr/AIJq+A9L/wCCmn/BeLwbYftC/wDE2tPH/jvU/EetQ3R3Ldrai51R7eQPnMcvkeSyf3DtGOK/2Mba2t7O3jtLSNYoolCIiAKqqowAAOAAOgFf4+n7W3w4+NH/AAQU/wCC358a6dYedF4O8Ur4t8NlsrDqvh2+mdljDkHG+BpbSZgDslV8ZwCf9Dn4Zf8AByb/AMEb/iH8FbX4y6p8YdP8NF7VJ7vRNVhnj1e1lK5aE20cbtK6H5S0HmIeqsRzQB/Dr/wd2/sy/D39nj/gq1H43+GlrFpyfE3wvZeKNRggCxoNU+0XNnPIqKBt84W0crt1eVpGPJNfZv8Awcu/tL/Eb4xf8EmP2BLzxXdTXEnj3wy3iXWXfJE+p2el6bH5rE9WJvbgjOSQxr8ef+Clf7VPxM/4L/8A/BXGxl/Z30O58vxJLYeDPBOm3YCzx6dA7sJbkpuCBpZbi6mOWEMbEFiE3H+tH/g51/4Jma9p3/BGP4Rw/CJDqsP7L9rp1hdhUPmyaKLOHT5rhQCT8kkMEkg5xHvcnCHIB9c/8Gif7M3w++En/BJXRPjzotnEfEfxW1jVtR1O9Kr55h0y8m063g343eVGLZ5FUnAeVz/FX23/AMHE/wCzn4A/aL/4JAfGW18bWkc114N0WXxZpNy2BJa32kAzh42PQyRCSFh/EkjDqQa/l8/4Nev+C9n7L37LP7O91+wR+2z4iTwZaaRqN1qXhXXruNjp5gvnEk1nO8YYxOs7STJI4EbLIyllKqH+m/8Ag4+/4OGf2P8Ax3+xp4g/Yi/Yi8XW/j3xF8QVSx1rV9LDPp2m6WkivMgnZQk0tyF8oCLeqxs7MytsBAPz7/4MkP8Ak9n4w/8AYkRf+l8Ff6UVf5rv/Bkh/wAns/GH/sSIv/S+Cv8ASioA/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uq/2+aACiiigAooooAKKKKACiiigAooooAK/wAQb/grF/ylN/aW/wCyq+Mv/TvdV/t81/iDf8FYv+Upv7S3/ZVfGX/p3uqAP9vmiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACv8/b/g7I/wCC3H2qXUf+CVn7Ler/ALuMqPiJqto/3mGGXSEdT0HD3mO+2EniZD/er8SPDWv+M/h7rvhDwprlx4Z1TVNPubS01e0jjlnsJ5o2RLiNJVaNniYh1V1KkjBGK/jM1n/gyf8A2avEWr3XiDxB8efGN9f30z3Fzc3FnaySzTSsWd3diWZmYksxJJJyaAP87X4S/F/4p/AX4had8Wfgp4h1Dwr4n0hpGsdV0ud7W7t2lRo3McqEMpZHZTg9CRX3P/w+Z/4Kz/8ARyHxF/8ACivf/jtf2o/8QQ37Kn/Rb/Fn/gvs6P8AiCG/ZU/6Lf4s/wDBfZ0AfxXf8Pmf+Cs//RyHxF/8KK9/+O0f8Pmf+Cs//RyHxF/8KK9/+O1/aj/xBDfsqf8ARb/Fn/gvs6P+IIb9lT/ot/iz/wAF9nQB/DZ8QP8AgqF/wUl+KunHRviL8ffiFq9kVKtbXHiS/aBgeu6Pzgh+pFfOPwE+F+p/Hj49eC/gvppdr3xnr+naJERy5l1G4SBcepy9f6EP/EEN+yp/0W/xZ/4L7OvpL9jv/g0S/Ze/ZE/ak8B/tQad8VPEfiO78Baza65badeWdrHBNcWbeZFvZPmAWQK3HORQB/WxpWl6foel22i6TEsFrZxJBDEnCpHGAqqPYAACr9FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHlPx3+L3hj9n74I+MPjv41bZo/gvRL/AFy9Odv+j6fA88mCe5VDj3r/ACu/+Da/4M+If26/+C5GifGr4gRi+HhebV/iNrT7flN4HIgYE5wRf3UMg6nCn6j+0P8A4OwP2o/+Gd/+CQ3ibwTpdz5GrfFTVbDwpbbT84gdjd3Zx/da3tnhY9B5oHUiv5M/+Dav9rr4mf8ABOzw18Svjzov7MHxM+MsPjprLSbHXvCGkz3dlappplkuLcypC6b3eaJnAbI2LxQB/pbftK+Cvhl8R/2ePHPgT40RW83hHVtB1C21hbtVaEWTwOJmYNxhUy2eMYzkYzX+VZ/wajX/AMQ7P/gtn8NoPBHn/YLrTPEMWuiIkRnThptw6+bj+D7WtsRnjzNnfBr+gP8Ab0/bz/4L6/8ABWv4Z6r+yF+yH+yT4w+Dng7xZH9g1nVfEkcthfXtlKMSw/ab+Kxt7eCRSVmCea7plQ4DMp/Wb/g3y/4IIaf/AMEmPCWr/GT43ahZ+IfjL4vtBY3c9gWay0nTSySmzt2cKZXklRXnlKgEoioAqlpAD+levJ/j18XfD/7P3wN8Z/HnxapbSvBOhajr14qnBNvptu9xIATwCVQ4r1ivxi/4OHPHdz8Ov+CLn7QHiC0lMTXHh+LSyy8Erql3b2TL9GWcg+xoA/m3/wCDN7QvEnx+/aW/ai/b7+J2LrxJrs1naPeEcyXGuXVzqN+BnoDJDbnHuPSv75a/jT/4MnPDFraf8E8Pij4yRf31/wDEWeyc+q2mmWDqPwNw351/ZZQB8ef8FB/2lLb9jz9h74rftNyyLHP4M8MajqFlvxh75YmW0j54/eXDRp/wKv4yf+DJn9m95X+OX7cfipSzMbTwhYXspySTi/1Hc7f9uTE59Sa/RP8A4PJv2nv+FS/8E1NB/Z40u48vUPiv4ntoJ4s4L6Zow+2TH323Isx6fNX4+/8ABDj9gX9oz/gql+wl4f8A2a9V8Saz8J/2WvCt9fXHiWXRGFtq/j7xJeSl5o/MYOi2Flb+TBl0kR5I87Gf/j2AP9A7wb8fPgV8RfEU/hD4feNdB13VrUEz2Wnalb3VxGF67o43Z1x3yK9ar/KN/wCDgj/glP4G/wCCHX7SPwj+Kn7Evi/XtOs/FkN7f6a91dhtT0rU9Ekt98kVxCkLbHFzEUyu4MHG4jAH+mD+wX8afFP7SH7D/wAHv2g/HMaxa3438FaDruoKieWn2rULKGeUovZC7kr/ALJFAH1jRRRQAUUV8If8FH/+ChPwN/4Jk/sr65+1H8dJTLb2O210vS4XVbrVdSmB8m0g3fxNtLO2CI41dyCFxQB9t61rei+G9Kn13xFeQWFjbLvmuLmRYoo19WdiFUe5NfiN/wAFtf2/vhN8J/8AgkH8cfiv8GvGGka/e3WkN4UtJdHvobwxX2vMLEYaF2CyRRyyTAEggRk9q/n2/wCCbv7L37Vn/Byr8TNR/b4/4Kna3qMPwA0XUpLfwl8P9LuZLHSdQuIHPmDYhDtb2/8Aq5bgnz55coJFWNlr8zv+Dsr9kH9l/wDYV+OHwz+H37H2gW/gLSvGnh97vxBoWku8Vjcy6XO0VlcyQ7yplCzTpvIycE8sWJAP3P8A+DLH9mR/h7+w/wDEX9qPVrfyrz4keJU060dhy+naDEVV1Pobm5uUIHeP8v7OK/PP/gk5+zB/wxr/AME3fg1+znc2/wBk1DQPDNnJqcWMbdTvgbu+H/gVNL15r9DKAMHxV4Y0Pxt4X1LwZ4nt1u9N1e1msruB/uywXCGORD7MrEGv8+T/AINA/ipr/wCzn/wUA/aC/wCCdHi27by5ILi7hikPyjUvDN6bKYIOzyRXBZsdRCPQV/oc1/mb/wDBP7UpPg7/AMHjfi3w5pR8qz1z4g+P7WdOgMd9bahdKo9hKEIHoKAP9MiiiigAooooAKKKKACiiigAooooAK83+Mn/ACSHxV/2B77/ANEvXpFeb/GT/kkPir/sD33/AKJevOzj/cMR/gl/6SzrwH+9Uv8AFH80fgPRRRX+fh/UIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFi0tLq/uo7GyjaaaZgkaICzMzHAAA5JJ6Cv2V/Zn+AFr8IfD39sa4iyeINQQee3XyEPIiU/q5HU+wFeVfsjfs6/8ACOWsPxT8bwY1Cdd1hbuOYI2H+sYH+Nh0H8K+54++K/p/wn8PfqcI51mMP30l+7i/sJ/af95rbsvN6fjnG/FP1iTy/CS9xfE19p9l5L8X5LUooor91PzYKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/kC/4PVv+UWXgH/squlf+mjWK+AP+DGL/m6L/uSf/c1X3/8A8Hq3/KLLwD/2VXSv/TRrFfAH/BjF/wA3Rf8Ack/+5qgD+/yiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//S/v4ooooAKKKKACiiigAooooAK/xBf+CXJ/sn/gqZ+zqZuPs3xV8I7s9tmr22f5V/t9V/h5+Gr1f2SP8Agprp+peKwbQfDL4nxSXgbgxDRdVBkz/u+UaAP9wyvyJ/4Ks/8EXf2W/+CwNr4FtP2lte8U6GPh8+pPpx8M3VpbGQ6oLcS+d9qs7sNj7MmzaExls5yMfrlDNDcwpcW7iSOQBlZTkMDyCCOoNSUAfFX/BPn9hH4Rf8E2v2WtD/AGR/gbqOsar4b0Ce9uLe512aGe+Zr6d7iQO9vBbxkB5CFxEMLjOTzX2RqWm6drOnXGj6xbx3dpdxvDPBMoeOSOQFWRlYEMrAkEEYIq7RQB/Jdr//AAZo/wDBKrWfHN74003xR8SNIiur6S9i0yy1TTRZWqvIZFgiEulyTeVGDsTfK77QMuTzX9Zs0MVxE0E6h43BVlYZBB6gg9QakooA/lo/bo/4NKf+CcX7XPxIvvi98L73V/g/rOqOZbyz8OrA+jSStktItlLH+5ZjjKwyxxd/LBJNeQ/syf8ABmp/wTp+EPjCz8Y/HfxT4m+KS2Z3/wBlXTxaXpszA5HmpbD7QwH91bhQf4gRxX9etFAHPeEvCXhfwF4W07wR4I0620jRtHtorOxsbOJYbe2t4FCRxRxoAqIigKqgAADAr84P+CpP/BJP9mH/AIK4/C7w38Lf2lb3XdIh8Kao2q2F/wCHJ7e2vVaSJoZIS91bXSGGQFWZRGGLRoQwAIP6gUUAfk9/wSt/4I4/sr/8EhPDHjHw1+zRqfiLWT45urS51K78SXNrc3H+gpIkMaNa2toojXzZGwysdznnHFeY/wDBU3/ggz+xr/wVz8f+Ffib+0brPivQdX8JafNpdvN4Zu7O28+2lk80LP8AarK73eW5YpsKY3tnORj9r6KAPhn/AIJ2f8E+fgT/AMEx/wBmPT/2VP2eZtTvNCsb281CS91mWGbULq5vZC7vM8ENvExVdsSbYlxGig5ILH6q+KXww8A/Gv4ba98IPippcOt+GvE9hcaZqlhcA+Vc2l0hjljbaQwDKxGVIYdQQQDXeUUAfyAeNP8Agy2/4JleIfFtzrnhfxv8QtA025laQabBfWM8cCsc+XFJPYvLtXoPMaRsdWJ5r+oz4f8A7Ovwv8Cfs26B+yleWS+JPB2geHbLwv8AZdbjiuxeWFlbpaqt0nlrFIXjQeYPLCMScKBxXudFAH8hH7T3/Bmt/wAE8vjH4/vfHfwO8W+JfhfFqErTSaPaeTqOmwljki3SdRPGuc/K08ijooVQBXof7Fv/AAaHf8E4f2YviJY/FL4w6nrXxgv9MkEttp2urBBovmLyrS2kSFp8HnZLM0R6NG1f1aUUAVLCwsdKsYdM0uGO2traNYoYYlCRxxoMKqqMAKAMAAYAr+df9hn/AINiv2B/+Cf37Xvhv9tL4N+K/H2p+KfC76hJZ2mtahp82nk6laz2cm9INNglO2O4cpiYYYAnIBB/ozooAK/nJ/Yg/wCDYf8AYJ/YG/a+8NftqfB7xd4/1LxT4Wlv5rS11m/06bT3bUbWe0k8yODTYJSBHcOU2zLhgCcjIP8ARtRQAV4R+0r+zJ8CP2wfg1rH7Pv7Sfhq18V+ENdRVvNPutygmNgyOkkbLJFIjAMkkbK6kZBFe70UAfxffFj/AIMof2G/E/iK41b4RfFPxh4Usp5jItjdR2upxwoTny43KQSbR0UuztjqWPJ+0P2Gf+DUP/gmd+x38QdO+LvjP+2fiv4j0i4ju7D/AISWWIabbTxEFJBZW8caSkNzi4aZM4IUEZr+nGigAooooA/CL/gqB/wb1fsXf8FZfj5o/wC0V+0X4m8a6Lrmi6BB4cgh8N3tjbWrWlvcXNyrOt1YXTmTfdSAkOF2hRtyCT+t/wCzV8BPB/7LH7PXgn9mv4fXN5eaF4C0Sx0HT59RdJLuS2sIlhjaZo44kaQqoLFY0UnooHFe3UUAfzP/ALVH/Bqb/wAE1f2uf2qfFP7WfxA1vxzper+MdV/tjU9K0jULCDS3uX2mYqkmnSzgTuGkl/f7i7sVKggD+lTT9PsdJsINK0uFLe2to1ihijUKkcaDCqoHAAAAAHQVcooA/m1/Zr/4NcP+Cf37LP7Yeg/tsfDvxd8QbrxT4d1qXXLWz1DUNOk05ribflHSPTI5jGPMOAJg3TLHv/Q/458CeCfif4P1L4e/EjSLPX9B1iB7W/07UIEubW5gkGGjlikDI6kdQwIrq6KAP48/2k/+DMf/AIJ//Fbx1feM/gT428T/AA0tr+V5jpEYh1TT7csc7bcTBJ0QdlknkI7EDivpP9hb/g0//wCCav7HXxEsPi945fWfi14h0maK5sF8SPEumW1xC25ZVs7eNFlYH+G4eZOhC5Ga/p5ooAK/mK/bV/4NPv8Agmp+2N8cNc/aBttQ8VfD3XPE13LqGq23h67tzp9xeXDmSacQ3VtO0byOxZhHIseTwgr+nWigD8OPhL/wQJ/ZH+En/BMfxt/wSq03xP4uvPAXj7Vf7Y1PUpbqzGrx3Aks5cQSLZ+QibrKLh4JDgtzyNvov/BKb/gih+yr/wAEfpPHU37NOveKtcb4gjTF1E+Jru0ufKGlfafK8n7LZ2m3d9qffv35wuMYOf2CooA+UP24/wBjv4Z/t+/sr+Lf2Q/jHfanpvhrxlFbQ3tzo0sUN9GtrcxXSeU88M8YJeFQd0TfKSBg4I+J/wDglP8A8ES/2Vf+CP8Ad+Orz9mnxB4r1xviAmmpqI8TXdnciIaWbgxeT9lsrTbu+0vv3784XGMHP7D0UAfBf7fn/BNL9j3/AIKX/Cv/AIVX+1f4Wj1ZbYM2m6tbEW+raZI+Mva3IUsmcAtGwaJ8DejAAV/MDq//AAZE/slz6+9zoPxs8XW2llyUt7ixs57gJzgGZREpPT5vKA9q/tyooA/Iz/gmb/wRJ/YP/wCCVmnT3/7PmhT6t4uvkMV34r1947vV3ibrFHIkcUdvEe6Qxpv48wuQCP1l1PTNN1vTbjRtZt4ruzu4nhngmQSRyxyAqyOrAhlYEggjBHBq9RQB/JJ+1/8A8GeP/BPL9oT4kaj8Tfgh4j134SS6rK08+kaWkF5o8Uj8k29vKqyQqTk+WsxjXOEVFAFdB+zB/wAGgf8AwTd+Bmh+I1+J2teJPiHrev6NqOiwX969vbRaWNRt3tmu7O2WF0+1xLIzQyXBnSNwriPcoNf1d0UAfiJ/wS1/4IH/ALHv/BI/4oeJfi1+zh4j8Y63qXinS10i6j8S3llcwpAkqzZjW1sbRg+5ACWZhjt3r9u6KjmmhtoXuLhxHHGCzMxwFA5JJPQCgD/EJ/4KjH+1v+Cpn7RRh5+0/FXxdt99+r3OP51/t9V/h5+JL5f2t/8Agppf6l4UBux8TfifLLZheTINa1UmPH+95or/AHDKACiiigAooooAKKKKACiiigAooooAK/xBv+CsX/KU39pb/sqvjL/073Vf7fNf4g3/AAVi/wCUpv7S3/ZVfGX/AKd7qgD/AG+aKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK8s+OepfFPRvgl4x1j4GWEGq+NrTQ9Qm8PWV0wSC51WOB2tIpGJUKjzBFYkgAE8igD1OivyQ/4It/Ev/gpj8Vv2Pp/FP/BVTw9H4c+In9v3sVjCLaKznm0hY4TDJPBASkb+cZ0XhS0aIxXJ3N+t9ABRRRQAUV/If/wcj/8ABSn/AIK3/sLfA9fG/wABNG8OfDj4f6z4j/4RS38SLejVfE1zNLBPcRzxWzQC0soZY4JQpLTzggH90TX9Ln7GXinxF45/Y++FHjbxfeS6jq2seDtCvr26mO6Se4uLKGSSRz3Z3YsT6mgD6UooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoor5w/ar/af8DfshfB67+NHxB0nxBrlhazR24svDOlXGs6hLLLnaEt7dWbBxgu5VF43MMigD/P8/4PXP2o/wDhNP2rvhb+yPo9xvtPAugT69foh+X7drcoREcf3o4LVHX0Wf3Nf2X/APBDP9mD/hkP/glD8FPhDeW/2bU5fD8WuamjDEgvtbZr+ZH9WiM/lewQAcAV/ma/t3aX+2X+3t/wUp8V/tpfFH4B/Eb/AIRnxP4ktrltK/4R++N0mhWXlQQ22fKCCX7HEqsQdvmEnODmv9YT9jv9rH4bftkfCAfFX4XaJ4i8OafbXTabJp/ifRrjQ76CaKKOQr5Fwi7kCyqBJEXiJBVWJUgAH1TRRRQAV+FH/BzBo8uuf8EPfjxZQgkpZaNccelvrFjKf0Q5r916+Ff+CnvwOv8A9pP/AIJ1/G34G6ND9o1HxF4L1m30+PGd18ts72wx/wBd1SgD+eT/AIMqL+Ob/gl98QNOGN8HxQ1JyB12yaVpOP1U1/YLX8LX/Bj98TbTUPgd8e/g00mJ9I13RtaEZPVNRt5oCQO+DZgH0yPWv7paAP8ANK/4OqvG3jL9uf8A4LN/DD/gnv8ACiQXN74dstJ8O28BOVj1vxROkzs2Oi/Z3syx7BSTx0/0N/2Vv2bvht+x/wDs5+DP2Y/hDbfZvDvgnSoNLtAQA8vlL+8mkxwZZpC0srfxO7HvX+cRqum/Gv8AYq/4OZtQ/br/AOClvgHxLonw9t/HPiDV112DSbrUdPOnyW91BpM8E0EbrNHDm1JCZkQIQUDgrX9Gv7Yn/BaH9qH9uvwvc/swf8EI/hn4r8Xaz4mhNne/EzUtLudD0TRLe4G0yW8t8kB+0bSxV5Qnl43RpK3CgH88n/BwJ8S/Fn/BZj/guB4M/wCCfP7Ksi6tD4KceDormMb4E1OWUzaxdMw58mzRAkvp9lcjORn/AEHviX8PPil8Bv2ENZ+E37EVnBN4w8GeCJdI8D218yeUb3TrHydPSQyFYz8yRj94VQn7xC5I/LT/AIIbf8EIfhp/wSb8GX3xJ8f6hD40+Nfiu38rW/EChmt7SFm3taWJkUSeWXAaWZwHnZQSFUBB4P8A8HLv/BQ79uX/AIJlfA/wr8cP2WviB4e0a28TatD4fTQ7zw+L3UjL5NzcTXsd5NctB5aCOKPyTZZDPu8w52gA/Tj/AII8ax/wUj139ibStR/4KqW0Vt8VX1G93BY7SKdtO3D7M1ylh/oyzH5+IwvyBN437q/Uivwd/bl+JX/BTL4L/wDBB2b4kfCe5vvEv7Rtt4S0KfVr2x06KS+S7untv7Vlt7OCERb7eOSbaEiGxU34yvP87X/Bs9/wV2/4KR/Er9vo/sQ/tw67rnizSPF2hX2q6c/iS2cajYXViDIJEmdUkNtKiSxsr7l8wJsK4YMAf6A9f5kv/B1n+0J8Sf2z/wDgrr4P/wCCdfgS5Yaf4IGkaHZ2jNiGTX/E/kTPO2Ov7me1iGQdmx8feNf6bVf5iP8AwcR/swftWfsNf8FtIf8Agpp4R8IXmv8Ag2+13w54y0bU0gkuLBNQ0RLQSWd3IgIiYz2u5VbG6KRduSGwAf6PX7Mn7Pnw8/ZO/Z68G/s2/Cq2W08PeCdJttKs1ChS626ANK/rJK+6SRiSWdiSSTX+bL+0/wDFax/4Lmf8HPPgz4d+GmTVvh/oHiSz8NWBjw8Vx4f8MSS3uoShh8rJcsl3JG/9yRBziv3707/gpd/wUR/4L1+Grf8AZc/Yk+Euv/AX4c+I4hb+PPiZr7FntdNkAF1aaSRFGklzKhMaupZ8OCVgH7wfyh/8EQtX/av/AGNP+ClPjbTf2efgZq3xE+K9npOr+EtB067DwWugapc3MMf23U5NgCQQQpIsm54QwfG9dwIAP9c+vw9/4I/eIv8Ags7r/jv43f8AD1vT7Gw0ODXIU8Ci2SxQm333H2hYjZHc9qqC3MT3P75iWyxwQPnv9sO8/b4/4JPf8EctZ+Otv8crPX/iR4UE+v8Ai3VvFOmS61Hqmq61dQxrZ6YWurZLC1imm8q3T7PKm3b+6jy1fVv/AAQP+PH7X37VP/BNjwr+09+2r4hHiHxV49v9S1OzK2NtYLa6WkxtraFY7WKJSrCBpldgzkSjLEAAAH7M1/mR/s0Wlx4x/wCDzTUo9M5MHxL8WSNt/u2On3zP+kZz71/puV/m6/8ABun4Tl/a3/4OMvjf+2JZRNcaNoN14y8SxXfVFn1+/e3t0z6vBcTsvbahoA/0iqKKKACiiigAooooAKKKKACiiigAqteWdnqNnLp+oRJPbzo0csUihkdGGGVlOQQQcEHgirNFJpNNNaDTad0eb/8ACm/hD/0Kmj/+AMP/AMRR/wAKb+EP/QqaP/4Aw/8AxFekUV5/9kYD/oHh/wCAx/yOr6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ5v/wpv4Q/9Cpo/wD4Aw//ABFH/Cm/hD/0Kmj/APgDD/8AEV6RRR/ZGA/6B4f+Ax/yD6/iv+fsv/Ameb/8Kb+EP/QqaP8A+AMP/wARR/wpv4Q/9Cpo/wD4Aw//ABFekUUf2RgP+geH/gMf8g+v4r/n7L/wJnm//Cm/hD/0Kmj/APgDD/8AEUf8Kb+EP/QqaP8A+AMP/wARXpFFH9kYD/oHh/4DH/IPr+K/5+y/8CZ+Xf7cng3wh4S/4Rf/AIRTSrPTPtH23zfskCQ79nk7d2xRnGTjPTJr4Dr9IP8AgoL/AMyj/wBv/wD7Qr836/j3xTo06XFGMp0oqMV7PRKy/hQ6I/eeC6kp5NQlN3fvavX7cgooor8+PqAr7q/ZJ/Z2/wCEvvYviZ41gzpVs+bOBxxcyqfvEHrGh/Bm46Ag+W/s2/AS8+MXiT7dqqtFoNg4N1IOPNbqIkPqf4iPur7kV+z1jY2emWUOm6dEsFvbosccaDaqIowAAOgAr9y8KPD369UjnOYw/cxfuRf25L7T/up/+BPyTv8AnHG3FP1aDwGEl+8fxNfZXZeb/Beb0tUUUV/UR+NBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/IF/wAHq3/KLLwD/wBlV0r/ANNGsV8Af8GMX/N0X/ck/wDuar7/AP8Ag9W/5RZeAf8Asqulf+mjWK+AP+DGL/m6L/uSf/c1QB/f5RRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf/9P+/iiiigAooooAKKKKACiiigAr/KK/4Ou/+Cfetfslf8FJNT/aF8PWLJ4J+NofX7WdV/dx6wm1dSgJ/vtKVuueonwM7Tj/AFda+Ff+CjH/AAT5+A//AAUz/Zc1r9l/4+W7C0viLrTNTgUG70rUolYQ3cBPG5NxVlPEkbMjcMaAPxP/AODZD/gsp4C/bk/ZV0L9kX4taxFbfGP4Z6bHpxt7mQLLrekWahLe8h3HMkkUQWO6UEsGUSniTj+pqv8AF3/b9/4Jfft+/wDBGP4/Wup+N7fUdMtbC/E3hfx94feaKyuXjJMUkN1GQ1tcgDLQuyyoQSNyYc/rH+yl/wAHin/BSr4HeGrbwf8AHbRvDvxbtrVQiX+pRPp2qsq8APPaFYXwP4mti5PLMTmgD/Ulor/Pm0z/AIPlfEsUQGsfs0Ws79zD4ueEH8G0uT+dbg/4PnDjn9l3/wAvb/7y0Af3+0V/AH/xHO/9Wu/+Xt/95aP+I53/AKtd/wDL2/8AvLQB/f5RX8Af/Ec7/wBWu/8Al7f/AHlo/wCI53/q13/y9v8A7y0Af3+UV/AH/wARzv8A1a7/AOXt/wDeWj/iOd/6td/8vb/7y0Af3+UV/AH/AMRzv/Vrv/l7f/eWj/iOd/6td/8AL2/+8tAH9/lFfwB/8Rzv/Vrv/l7f/eWj/iOd/wCrXf8Ay9v/ALy0Af3+UV/AH/xHO/8AVrv/AJe3/wB5aP8AiOd/6td/8vb/AO8tAH9/lFfwB/8AEc7/ANWu/wDl7f8A3lo/4jnf+rXf/L2/+8tAH9/lFfwB/wDEc7/1a7/5e3/3lo/4jnf+rXf/AC9v/vLQB/f5RX8Af/Ec7/1a7/5e3/3lo/4jnf8Aq13/AMvb/wC8tAH9/lfmB/wVT/4KE+O/+Cdvws+HXiz4W/DT/hbHif4mfEDSPh7pGg/2zHoW+/1mG6e3b7VNBcRDMtusWJAiDzNzOoU5/lC/4jnf+rXf/L2/+8teAfEn/g5C/wCHwf7U/wCyV+zR/wAKZ/4V3/Yfx/8AAfib+0v+Ei/tfzfs121r5Hk/2fabd32vfv8AMONmNp3ZAB/T7/w8O/4Lr/8ASOr/AMy74e/+R6P+Hh3/AAXX/wCkdX/mXfD3/wAj14B/wVi/4L1f8Env+GWP2lv2Kv8Aha3/ABc3/hFfGXgn+xv7C1j/AJDv2S6sPsv2j7D9m/4+f3fm+b5X8W/b81H/AASd/wCC9X/BJ7/hlj9mn9ir/ha3/Fzf+EV8G+Cf7G/sLWP+Q79ktbD7L9o+w/Zv+Pn935vm+V/Fv2/NQB+n3/BKz/goT47/AOCiXws+Iviz4pfDT/hU/if4Z/EDV/h7q+g/2zHruy/0aG1e4b7VDBbxHEtw0WIw6Hy9yuwYY/T+v84T4bf8HIX/AA58/an/AGtf2aP+FM/8LE/tz4/+PPE39pf8JF/ZHlfabtbXyPJ/s+73bfsm/f5gzvxtG3J9/wD+I53/AKtd/wDL2/8AvLQB/f5RX8Af/Ec7/wBWu/8Al7f/AHlo/wCI53/q13/y9v8A7y0Af3+UV/AH/wARzv8A1a7/AOXt/wDeWj/iOd/6td/8vb/7y0Af3+UV/AH/AMRzv/Vrv/l7f/eWj/iOd/6td/8AL2/+8tAH9/lFfwB/8Rzv/Vrv/l7f/eWj/iOd/wCrXf8Ay9v/ALy0Af3+UV/AH/xHO/8AVrv/AJe3/wB5aP8AiOd/6td/8vb/AO8tAH9/lFfwB/8AEc7/ANWu/wDl7f8A3lo/4jnf+rXf/L2/+8tAH9/lFfwB/wDEc7/1a7/5e3/3lo/4jnf+rXf/AC9v/vLQB/f5RX8Af/Ec7/1a7/5e3/3lo/4jnf8Aq13/AMvb/wC8tAH9/lFfwB/8Rzv/AFa7/wCXt/8AeWj/AIjnf+rXf/L2/wDvLQB/f5RX8AR/4PnDjj9l3/y9v/vLWHqf/B8r4lliI0f9mi1gfsZvFzzAfgulx/zoA/0Ga/ll/wCDm/8A4LKeAv2G/wBlXXf2RfhLrEVz8Y/iZpsmnC3tpA0uiaReKUuLybacxySxFo7VSQxZjKOI+f5dP2rf+DxP/gpV8cfDVz4O+BWjeHfhJbXSlHv9NifUdVVW4ISe7LQpkfxLbBweVZTivyc/YC/4Jfft+/8ABZz4/XWp+CLfUdTtb+/M3ijx94geaWytnkIMsk11IS1zckHKwozSuSCdqZcAH6J/8Gof/BPvWv2tf+CkemftC+IrBn8E/BIJr91cMv7qTWH3LpsAP99ZQ1zx0EGDjcM/6utfCv8AwTn/AOCfPwH/AOCZn7Lmi/sv/AO3Y2diTdanqc6gXeq6lKqia7nI43PtCqo4jjVUXhRX3VQAUUUUAFFFFABRRRQAUUUUAFFFFABX+IX/AMFaIzF/wVQ/aVU9/in4wP56tdH+tf7elf4mP/BZTS30f/grJ+0haSDBf4j+I5/wnvpZB+YagD/bIt5RNbpMOjqG/Opq5H4f6tHr3gLRNciO5b2wtpwfUSRqw/nXXUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV/Or/wcU/8FD/21/8AgmJ+zTpP7Rv7M+t+DbXS9S1S08Ptp+uaTc3mqS31ylxMZbadLyO3EaQw5Mcls5yCd/IWv6Kq/iB/4OZWvP22v+CoX7IH/BKTR3aSy1fUU17XooyT/omo3QtjIQOjW9pZ3kg6HD+4oA/aLxL/AMFD/wBrr9jj/gk/8GP2qPjB8MPEHx5+KHjWHSRrmj+FLPyLm2k1e0nvzI8NtbzBIrVUS2bEeC5XLZOT+eX/ABE3ftXf9GAfFz/vxef/ACrr9jv23v2/vih8F/2SPD/7RP8AwTk+Fr/tKf2n4iOgrpvhm5cRRWlst5HcXKSW8FwGjgubUW5wu3c4w3TP44/8P3f+C2H/AEjj8Xf+Bt7/APKygA/4ibv2rv8AowD4uf8Afi8/+Vdfst/wS3/4KN/E/wD4KJeE/F3iX4mfAvxV8D5fDN3a20Fr4oSVJNQW4R3MkPm21sdsZUK2A3LDkV+NP/D93/gth/0jj8Xf+Bt7/wDKyv2Z/wCCW/7bP7YP7aXg/wAW65+17+z7q3wCv9BvLaDTrTVZpZjqUMyMzyJ5ttbkeWyhTgMDuHTuAfix/wAHqP8Ayiv8C/8AZU9K/wDTTq9f0ifsD/8AJivwW/7EPw5/6b4K/m6/4PUiB/wSw8Cgnk/FPSv/AE06vX9Iv7A//JivwW/7EPw5/wCm+CgD6zooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/ge/4JjfDq6/4I8/8HOPxH/Yt8QQnSvAnxw02/n8IZ+W2kgmlOo6eFbgHyBDdWI6ZlGB1Gf74a/n1/wCDgL/gmz8Vf2xPgt4R/ah/Y/QW/wAffgJqqeJfCksWFnvooGWaayU/xSF4o5YFbgyIY+BKxr9D/wDgmf8At9fDz/gpH+yP4e/aT8Exf2bqM27TvEWiyE+fo+t2gC3dnKrYYbGIaMsAWiZGIG7AAPvuiiigAr+HT/gvE0X7d3/Bfb9kv/gnJK6z+G/CKp4n8QxsQIhBPM15fLJngbdP0wEM3CiX3Nf3F1+Dv7YX/Bvr+yZ+2r+3dH+3X8S/Ffi/TNRu9Mi0jW9D0a/WysdWtIojAYJpEjFwsM8B8m5jSUCVOAVySQD9TL/9p7wj4h/ZY1L9qz9nuxu/ijpKaNd6vo1n4fUPca0LZXKxWnm7A7TMhWM9HyCu7Iz+Sn/BMP8AYj/at8YftaeNP+Cuv/BSWwtdB+KfjXS4/DvhXwbaTC6i8I+GUcSi3kmBKvdTNhpCv3SZDwZWjj/efw34b8P+DfDth4Q8JWUGmaVpVtFZ2VnaxiKC3t4FCRxxooCqiKAqqAAAABW1QAUUUUAFFFFAH8dX/B478ZvEzfspfCH9iP4ehptf+MXjNCltGfmuINKVEWEj/bu7y2Ye6V/Sx+xDb/AzwL8A9K/Zl+A+t2uuWXwVt7PwFqL2eWS31DSLO3EkLtja0qq6NLtLbXYqxDhgPjT/AIKkf8EYfgX/AMFUfGXwx+I3xH8ZeKfA3iD4WXVxcaXqPha5itrjFy8EpIeWKQxSxSW6PDNGVZDuJDHbt/RX9mz9m/4Qfsk/BXQv2f8A4F6WNI8N+H4WjgiLmWWWSRjJLPPKxLyzzSM0ksjks7sSetAHzl/wVS/assf2Jv8Agnf8Xf2lp7r7Je+HvDl2ulPnBOq3i/ZbBR35upYgccgZPavw1/4NAP2J9U/Zy/4J0ap+0b4109rLXfjRqw1K3Mq7ZG0PTlMNiSDzh5HuZkPRo5UYcEE4P/BVgeMP+C2v/BQLwt/wR++A7zN8J/hNqlp4m+NHiK2crbxyqCINKjlXg3HlmQBAWxM+4qPs0mP6yvCvhfw54H8Mab4K8H2UOm6Ro9rDZWNpboI4be2t0EcUaKOFREUKoHAAxQBvUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB+b//AAUF/wCZR/7f/wD2hX5v1+kH/BQX/mUf+3//ANoV+b9fxh4sf8lVjP8AuH/6agf0DwR/yJcP/wBvf+lyCvV/g58Jdf8AjF4wi8N6QDFAmJLu5IysMWeT7seijufbJHIeDPB2v+PvEtr4U8Mwme7u32qOiqO7MeyqOSfSv3D+D3wm0D4PeD4vDWjgSTtiS6uSMNPLjkn0UdFHYe+SdfDjgOpn+L9tXTWFpv3n/M/5F6/afRebRHFnEscsoclJ3rS2XZfzP9O78kzrvBvg/QPAfhu18KeGoRBZ2ibUHdj3Zj3ZjyT3NdPRRX9i0aNOjTjSpRUYxSSS0SS2SR+CVKkqknObu3q2+rCiiitSAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/j8/4PWJAP+CXXw+h7t8U9MP5aTq/+NfBn/BjJGRB+1BN2ZvBQ/L+2f8a+yv8Ag9j1aOH/AIJ3/C/QyfnufiLBOB6iHTL9T/6MFfLf/Bjdpbw+Bv2kdaI+W4vvC0APvDHqTH/0YKAP70KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//U/v4ooooAKKKKACiiigAooooAKKKKAOZ8ZeCvBvxG8MXvgj4haRZa7oupRmG7sNRt0urW4jPVJIpQyOp9GBFfgV8ef+DWv/gjL8dNauPEcHw4uvBN9dMXlbwvqdxYwkn+5bO0ttGB2WOJR7V/Q3RQB/I5qP8AwZff8EpL2QvbeLPiZaA/ww6vpxA/7+aW5/WsY/8ABlV/wSyJyPH3xVH/AHFdI/8AlNX9flFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1H/ABBU/wDBLL/ofvir/wCDXSP/AJTV/X7RQB/IF/xBU/8ABLL/AKH74q/+DXSP/lNR/wAQVP8AwSy/6H74q/8Ag10j/wCU1f1+0UAfyBf8QVP/AASy/wCh++Kv/g10j/5TUf8AEFT/AMEsv+h++Kv/AINdI/8AlNX9ftFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1H/ABBU/wDBLL/ofvir/wCDXSP/AJTV/X7RQB/IF/xBU/8ABLL/AKH74q/+DXSP/lNR/wAQVP8AwSy/6H74q/8Ag10j/wCU1f1+0UAfyBf8QVP/AASy/wCh++Kv/g10j/5TUf8AEFT/AMEsv+h++Kv/AINdI/8AlNX9ftFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1H/ABBU/wDBLL/ofvir/wCDXSP/AJTV/X7RQB/IF/xBU/8ABLL/AKH74q/+DXSP/lNR/wAQVP8AwSy/6H74q/8Ag10j/wCU1f1+0UAfyBf8QVP/AASy/wCh++Kv/g10j/5TUf8AEFT/AMEsv+h++Kv/AINdI/8AlNX9ftFAH8gX/EFT/wAEsv8Aofvir/4NdI/+U1fEH7Wn/BvT+xf/AMEmvj7+yF+0X+zp4n8a61retftFeAPDc8HiS9sbm1W1ubmW6Z0W10+1cSh7VACZCu0sCpJBH97lfIH7a37BX7J3/BRH4Waf8FP2xfCn/CYeGNL1WLW7Wz+3Xmn+XfwQzQJL5ljPbynEVxKu0uUO7JBIUgAP+ChPwt8d/HH9gX44fBT4W2P9qeJ/GHw/8TaJpFn5scH2i/1DTriC3i8yZkiTfK6rukdUXOWIGTR/wT2+Fvjv4HfsC/A/4KfFKx/svxP4P+H/AIZ0TV7PzY5/s9/p+nW8FxF5kLPE+yVGXdG7I2MqSMGvzA/4hcv+CFH/AEQz/wAubxD/APLOj/iFy/4IUf8ARDP/AC5vEP8A8s6APwh/ZL/4N6f2L/8AgrL8ff2vf2i/2i/E/jXRdb0X9orx/wCG4IPDd7Y21q1rbXMV0rut1p905lL3TgkSBdoUBQQSft//AIgqf+CWX/Q/fFX/AMGukf8Aymr+j79in9gr9k7/AIJ3fCzUPgp+x14U/wCEP8Mapqsut3Vn9uvNQ8y/nhhgeXzL6e4lGYreJdocINuQASxP1/QB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IF/xBU/8Esv+h++Kv8A4NdI/wDlNR/xBU/8Esv+h++Kv/g10j/5TV/X7RQB/IGP+DKr/glkDk+Pviqf+4rpH/ymrZ07/gy+/wCCUllIHufFnxMuwP4ZtX04A/8AfvS0P61/XHRQB/PJ8Bv+DWv/AIIy/AvWrfxHP8OLrxtfWrB4m8UancX0II/v2yNFbSA91kiYe1fvr4N8FeDfhz4YsvBHw90iy0LRdNjENpYadbpa2tvGOiRxRBURR6KAK6aigAooooAKKKKACiiigAooooAKKKKACiiigAr/AB0/+Dkz4V3/AMJv+C0/xv026hMcGtajZa5bORhZY9TsredmX1AlZ0P+0pr/AGLK/gV/4PTv2CtR1Gz+Hn/BRrwPYtLHYRjwd4oeJciONnefTp3x0Xe88Lu3doVzyBQB/X1/wS6+Nmk/tF/8E5fgh8ZdHnW4Gs+C9HNwynIW8gtkhuo8+sdxHIh91r7wr+CX/gze/wCCoHh6TwnrX/BLj4s6ktvqVtc3Ov8AgczvgXEEw8y/sY84G6NwbpFGS4kmPRK/vaoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr8Dv29P8AggR8Gv28f28PDv7deufErxb4I1XS9EXQNQsfDkyWr3tntuIpES7wZbcT29zLbzhAd8ZIG0kk/vjRQBxHw0+G3gP4OfD3RPhR8LtKt9D8OeHLKDTtM0+0XZDbWtugSONB6KoA5yT1JJrt6KKACiiigD8H/wDgph/wQy0f/gqprMFv+0l8dvHUXhPS759Q0jwxpkWlW2nWEzoY9wIsfOmcKWVXuJJXUMwUgMQfv79hn9j7xt+xb8L7L4Nap8W/EvxL8OaHp9npeh23iO305JNNtbNSiIs9naW803ybUBneQhUGD1r7iooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvn34Q/st/Az4DfEXx/8UvhLoUWiat8TtRh1fxEbclYru/hi8rz/KzsSR15lZAPMfLtliSfoKigAooooAKKKKACiiigAooooAKKKKACiiigDwD9nz9l34FfstaR4h0b4GaBDocfizX9S8T6xIhaSa91TVZmnuJ5pHLO5LNtQEkJGqouFUCvf6KKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPzf/wCCgv8AzKP/AG//APtCvzqsLC91S+h03TYmnuLh1jjjQZZ3Y4AA7kmv0V/4KC/8yj/2/wD/ALQruP2Sv2dv+EOsoviX41gxq1ymbSBxzbRMPvEHpI4/75XjqSB/LfFHCeKz/jrF4ShpBezc5dIx9lD8XtFdX5Jtfs+TZ3RyzhuhXqay99RXd88vw7v9bHqX7N3wEsvg54a+26oqy69foDdSjkRL1ESH0H8RH3m9gK+lqKK/pLKMpwuWYSngsHDlpwVl+rfdt6t9WfkeOx1bGV54ivK8pf1ZeS6BRRRXpHIFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRXLeOPG/hH4aeDNW+IvxA1G30fQtCs5tQ1C+unEcFta2yGSWWRjwqoiliT0AoA/g7/AOD4H42aSNM+Af7OVjOr35l1nxJewg/NHCBBa2rEekjG4AP+wa+vv+DKX4V3/hv9gL4mfFu/hMS+KfHDWluWGPMh0yyg+ceq+ZPIn1U1/E1/wVz/AG5vFn/BWX/gpN4m+Nvgqzu7zTtWvLfw54M0xUZ7j+zLd/Js41j5YS3MjNO0YziWZlGeK/1jf+CVf7Ftj/wT4/4J/wDwy/ZRQIdS8OaSkmsyx4Ky6ves1zesG/iX7RK6oT/yzVR0FAH6D0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9X+/iiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvE/wBo/wDZ6+FX7WHwJ8U/s4fG/TV1bwr4x0+XTtRtidrGOTkPG3OyWNwskbjlHVWHIFe2UUAf4uX/AAUf/wCCeX7WH/BE/wDbTt/Dd9e31kNPvhrHgfxnp+6BL6C3kDRTxSL/AKu5hO0TxZ3Rv/eRkd/7df8Agjr/AMHXn7O/7SnhjSfgf/wUU1Kz+HHxIgRLZfEc+INA1lgMCSST7lhM3WRZNtuTyjruES/03/tj/sU/s0/t8fBK/wD2fv2pvDFv4l8O3p82MSZjuLO5UEJcWsy4eGZMnDoRkEqwZWZT/nVf8FHf+DQj9tT9nbVtQ8c/sOXS/GLwWpaWPT2aO08RWsfXa8LFIbraMAPAwkc5xAtAH+nToeu6H4o0e18ReGryDUdPvY1mt7q2kWaGaNxlXR0JVlI5BBINatf4fnhD9oP/AIKXf8E3fEs3w/8ACviv4hfBfUI3Zp9GNxf6KGfPJks3MaPz/ejPNfYegf8ABx3/AMFsfDUKwad8fdXkVehurHTrs/iZ7RyfxNAH+yBRX+P1B/wdA/8ABdG3AWP46SHH97w5oLfz041b/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9fqiv8gX/AIijf+C6/wD0XP8A8tnw9/8AKyj/AIijf+C6/wD0XP8A8tnw9/8AKygD/X6or/IF/wCIo3/guv8A9Fz/APLZ8Pf/ACso/wCIo3/guv8A9Fz/APLZ8Pf/ACsoA/1+qK/yBf8AiKN/4Lr/APRc/wDy2fD3/wArKP8AiKN/4Lr/APRc/wDy2fD3/wArKAP9arxr8KvD/j7xhoHifxEPPj8P/aHit2GUeWYx7Wb1CbCcdyR2GD6hX+QL/wARRv8AwXX/AOi5/wDls+Hv/lZR/wARRv8AwXX/AOi5/wDls+Hv/lZXLRwVCjVq1qcEp1GnJ9W1FRV/RJJf8Fm1TEVJwhTnK8YppLtdtv8AFn+v1RX+QL/xFG/8F1/+i5/+Wz4e/wDlZR/xFG/8F1/+i5/+Wz4e/wDlZXUYn+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlH/EUb/wAF1/8Aouf/AJbPh7/5WUAf6/VFf5Av/EUb/wAF1/8Aouf/AJbPh7/5WUf8RRv/AAXX/wCi5/8Als+Hv/lZQB/r9UV/kC/8RRv/AAXX/wCi5/8Als+Hv/lZR/xFG/8ABdf/AKLn/wCWz4e/+VlAH+v1RX+QL/xFG/8ABdf/AKLn/wCWz4e/+VlI3/B0Z/wXWYYPxz/Lwz4f/wDlbQB/r90V/j3Xn/Bzl/wXKv1KT/Ha4UH/AJ56DokZ/NNPFeK+Of8Agvt/wWR+IdpJZa/+0L4rt0kBBOmTx6W/Po9nHCy/gRQB/rs/tVftrfspfsQ/D+X4m/tWePNJ8E6SiO0X9oTgXF0UGSltbrunuJP9iFHb2r/NI/4Lzf8AByF4+/4KYQXP7Mf7MtteeD/gpBOrXX2giPUvEUkLbke6CEiK2VgGjtgzbmAeQlgqR/kZ8B/2CP8AgqJ/wVG+II8T/DXwX4w+JeoamyifxLq7TPaY9ZtUvmWEY5IDTFjzgGv7e/8Agkn/AMGivwl/Z21zS/jz/wAFG9QsPiL4ps2W4tPCdkrPoFpKpDK108io986nH7sokAOQwmXBAB8S/wDBqh/wQu8S6h4u0f8A4KkftaaM9lpenD7R8PtHvUKy3NweBq0kbDiKME/Y8jLufOGFSNn/ANCuooIIbaFLa2RY441CqqjCqo4AAHQCpaACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//1v7+KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDn/EvhPwr4z0xtE8YaZaatZPy1veQpPEfqjgg/lXzDrn/BPf8AYH8UStP4l+B/gDUXb7zXPhrTpifqXgNfX1FAHwVP/wAEq/8Agl/cndc/s3/C2Q+reD9JP87Wqv8Aw6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLR/wAOnv8Agll/0bT8Kv8AwjdI/wDkWvv+igD4A/4dPf8ABLL/AKNp+FX/AIRukf8AyLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/wCigD4A/wCHT3/BLL/o2n4Vf+EbpH/yLR/w6e/4JZf9G0/Cr/wjdI/+Ra+/6KAPgD/h09/wSy/6Np+FX/hG6R/8i0f8Onv+CWX/AEbT8Kv/AAjdI/8AkWvv+igD4A/4dPf8Esv+jafhV/4Rukf/ACLSr/wSf/4JaKcr+zV8Kx9PBukf/Itff1FAHwtZ/wDBLz/gmdp7B7D9nb4YwEdDH4R0pT+lsK9e8HfsffslfDu4S8+H/wALfCOhTRnKPp+iWdqykehjiUivouigBFVVUKowBwAKWiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//X/v4ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA/9k=" + } + }, + "cell_type": "markdown", + "id": "71c3a35c-b75c-417f-9beb-d563de5a696f", + "metadata": {}, + "source": [ + "![Xnip2024-01-11_00-36-07.jpg](attachment:4acba1f5-5083-4b35-9183-e711c3f39490.jpg)" + ] + }, + { + "cell_type": "markdown", + "id": "69c142ef-ea14-44bc-8ae5-5907ee3b30ff", + "metadata": {}, + "source": [ + "## Importing modules" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "9485f7bb-ca6e-440e-8d2d-4b4f29d32781", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "# import necessary modules\n", + "from threeML import Powerlaw\n", + "from cosipy import FastTSMap, SpacecraftFile\n", + "from cosipy.response import FullDetectorResponse\n", + "import astropy.units as u\n", + "from histpy import Histogram\n", + "from astropy.time import Time\n", + "import numpy as np\n", + "from astropy.coordinates import SkyCoord\n", + "from pathlib import Path\n", + "from mhealpy import HealpixMap\n", + "from matplotlib import pyplot as plt\n", + "import gc\n", + "from cosipy.util import fetch_wasabi_file\n", + "import shutil\n", + "import os" + ] + }, + { + "cell_type": "markdown", + "id": "91a91fd4-0ae9-46d0-b939-fa51cb18df34", + "metadata": {}, + "source": [ + "## Example 1: Fit the GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)" + ] + }, + { + "cell_type": "markdown", + "id": "4ab70a73-c526-4f63-bcee-54fc17cab95d", + "metadata": {}, + "source": [ + "### Download data" + ] + }, + { + "cell_type": "markdown", + "id": "f7bbfc30-ec3e-42b6-8b89-ff6ecb0187f2", + "metadata": {}, + "source": [ + "The cells below contain the commands to download the data files needed for the GRB TS map fitting. \n", + "\n", + "The files will be downloaded to the same directory as this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "86653160-3c45-4780-a3c3-7975828688f8", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8f6db734-409b-49c4-8f57-5afaef1853ac", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "GRB_signal_path = data_dir/\"grb_binned_data.hdf5\"\n", + "\n", + "# download GRB signal file ~76.90 KB\n", + "if not GRB_signal_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5\", GRB_signal_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "0743ac61-e2e4-450e-be69-51cb4a30950d", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "background_path = data_dir/\"bkg_binned_data_local.hdf5\"\n", + "\n", + "# download background file ~255.97 MB\n", + "if not background_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/bkg_binned_data_local.hdf5\", background_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "ccbf7f92-4c07-4f98-94c5-365ead967dc0", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "orientation_path = data_dir/\"20280301_3_month.ori\"\n", + "\n", + "# download orientation file ~684.38 MB\n", + "if not orientation_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", orientation_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5cf6c384-5551-4f8d-b34f-745d1f3ec7ea", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "zipped_response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " \n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\", zipped_response_path)\n", + "\n", + " # unzip the response file\n", + " shutil.unpack_archive(zipped_response_path)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(zipped_response_path)" + ] + }, + { + "cell_type": "markdown", + "id": "f53e01e8-b00d-49bd-8be2-1acd592df5af", + "metadata": {}, + "source": [ + "### Define a powerlaw spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f8b24951-eee1-421d-b72c-e457b64e9402", + "metadata": {}, + "outputs": [], + "source": [ + "index = -2.2\n", + "K = 10 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit" + ] + }, + { + "cell_type": "markdown", + "id": "2390232e-5879-43a7-83d4-6e2d9cd97881", + "metadata": {}, + "source": [ + "### Read the data" + ] + }, + { + "cell_type": "markdown", + "id": "d8e59409-b6f8-4864-a87e-7fd02a9d6a9f", + "metadata": {}, + "source": [ + "#### Read the GRB signal, background component and assemble the data" + ] + }, + { + "cell_type": "markdown", + "id": "ba0fe2e4-b532-4d44-bc3c-ba5d61b9e689", + "metadata": {}, + "source": [ + "We will read the GRB signal and extract the background component from the simulated 3-month background. After that, we can assemble the GRB signal and background to get the observed data." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "6b4e8302-80cc-4ce8-8a80-3e476400239c", + "metadata": {}, + "outputs": [], + "source": [ + "# Read the GRB signal\n", + "signal = Histogram.open(GRB_signal_path)\n", + "\n", + "# get the starting and ending time tag of the GRB\n", + "grb_tmin = signal.axes[\"Time\"].edges.min()\n", + "grb_tmax = signal.axes[\"Time\"].edges.max()\n", + "\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "signal = signal.project(['Em', 'PsiChi', 'Phi'])" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "01672216-1a91-47ff-ba7a-6e4f12370e78", + "metadata": {}, + "outputs": [], + "source": [ + "# load the background file\n", + "bkg_full = Histogram.open(background_path)\n", + "\n", + "# Extract 40s background from the 3-month one\n", + "bkg_tmin_idx = np.where(bkg_full.axes['Time'].edges.value == grb_tmin.value)[0][0] # the time idx corresponding to the tima tag\n", + "bkg_tmax_idx = np.where(bkg_full.axes[\"Time\"].edges.value == grb_tmax.value)[0][0]\n", + "bkg = bkg_full.slice[bkg_tmin_idx:bkg_tmax_idx,:] # It slices the Time axis\n", + "\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg = bkg.project(['Em', 'PsiChi', 'Phi'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "ced2bb37-ced1-492e-a6c3-4ec38c34cf2e", + "metadata": {}, + "outputs": [], + "source": [ + "# assemble the data\n", + "data = bkg + signal" + ] + }, + { + "cell_type": "markdown", + "id": "2fbc67e7-170a-4c50-bbf7-25e2a8941c19", + "metadata": {}, + "source": [ + "#### Read the background model" + ] + }, + { + "cell_type": "markdown", + "id": "682a893d-6f1d-4a27-a74d-3c1289738092", + "metadata": {}, + "source": [ + "Since we don't have a tool to estimate the background counts during a burst yet, here we average the full 3-month background down to the duraion of the burst (40s) to ensure good statistics." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "f8b4e218-30c8-455b-8220-8a1000dca8ba", + "metadata": {}, + "outputs": [], + "source": [ + "# calculate the duration of the background\n", + "bkg_full_duration = (bkg_full.axes['Time'].edges.max() - bkg_full.axes['Time'].edges.min())\n", + "\n", + "# average the background model down to 40s\n", + "bkg_model = bkg_full/(bkg_full_duration/40)\n", + "\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "1aa33727-7d30-4c9e-83a8-654c6f8ecaf8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG7CAYAAAAizIoLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJ6UlEQVR4nO3deVxVdf7H8fflsoiAS4CC8CtziaVUTM0tTQ23LDW1zKzUXCY1l5pSc9J0tMnK1KwZtzTMmnHrV2PlkpimOWqb5gKSK5MG4opclO1yf3/48xapCMjlcD2v5+PBw7nnnPs9n3vlTG+/53u+X4vD4XAIAADAxDyMLgAAAMBoBCIAAGB6BCIAAGB6BCIAAGB6BCIAAGB6BCIAAGB6BCIAAGB6BKIiyMrKUlJSkrKysowuBQAAuACBqAiSk5M1ePBgJScnG10KAABwAU+jCyjP4uPjFR8fL5vNZnQpAADAhQhEhYiNjVVsbKySkpI0ePBgo8sBAAAuwi0zAABgegQiAABgetwyAwBck91uV25urtFlAIWyWq3y9PSUxWIpcRsEokIwqBqAmdlsNh07dkwOh8PoUoDrqlixokJDQ+Xt7V2i91sc/KZf1+VB1QsWLFBERITR5QCAy9ntdh04cEAVK1ZUcHDwDf3LG3Alh8OhnJwcnTx5Una7XXXr1pWHR/FHBNFDBAC4Qm5urhwOh4KDg+Xr62t0OUChfH195eXlpeTkZOXk5KhChQrFboNB1QCAa6JnCO6iJL1CBd5fSnUAAAC4LQIRAMAtWCwWnTt3rty250pBQUE6evSo0WUYKi4uTvv373dZ+4whKgRPmQEACmO322W1Wo0uwxTi4uJUpUoVRUZGuqR9AlEhWLoDAC6Z33i+bKmu/cehf4i/hnw/pNBjpk+fri+++EKZmZl65ZVX1LdvX0lS3759lZSUpJycHP3P//yPFi5cqJCQEEnSF198oUmTJiknJ0cWi0Xz5s1T06ZNnW06HA6NGzdOiYmJWrp0qex2uwYNGqSffvpJwcHBio6OVnZ2tuLi4hQXF6fFixfrlltu0c8//6z58+fr/Pnzeumll5SXl6eqVatqzpw5io6O1qZNmzR69Gjt2rVLkrR37149+OCDOnr0qI4ePaqYmBiNGjVKn3/+udLT0zV79mw98MADkqRVq1Zp7Nix8vLyUqdOnQr9Tl5//XV9+OGH8vDwkK+vr7766itVrFhRb775puLi4uTh4aH69evrH//4hypXrqxJkyYpISFBFy9eVFJSku644w5NmzZNf/7zn3XkyBE1atRIH330kTw8PNS/f395eHho//79OnXqlJo3b665c+fK19dXaWlpeuaZZ3TgwAE5HA6NGDFCf/rTnyRJNWvW1FNPPaX169crNTVVAwcO1MsvvyxJSk1N1ciRI3X06FFdvHhR3bp109SpUwt933vvvafvv/9ezz33nCZNmqS//e1vzu+qtBCIAADXZUu1KeN4htFlyGKxaOfOnTp8+LAaN26sli1bqmbNmpo1a5aCg4MlSdOmTdOkSZM0d+5c/fzzzxowYIA2b96syMhI5ebm6sKFC872srOz1adPHwUGBuqTTz6R1WrViy++KF9fXyUmJspms6lFixZq1KiR8z07duzQzp07FRERobS0NEVFRWnTpk2qV6+ePvroI/Xq1Uv79u277mdJT09X/fr1NXnyZK1du1ajRo3SAw88oLS0NA0YMEBbtmxRdHS05s+fr9OnT1+1jcWLF+vjjz/WN998o8qVK+vs2bPy8fHRmjVrtGjRIm3btk1VqlTRkCFDNG7cOM2ZM0eS9P333+uHH35QlSpV1KZNGw0aNEjr16+Xr6+vGjdurDVr1qhLly7Oz7t9+3ZVrFhR3bt318yZMzV+/HiNGDFCERER+t///V+lpaWpUaNGatCggZo1ayZJOnfunLZt26ZTp06pdu3aGjBggMLCwtSvXz+NHz9e9913n/Ly8vTggw9qxYoVeuSRR675vkGDBunDDz/U6NGj1b179+L/4hQBgQgAcF3+If7l4hyDBg2SJNWqVUutW7fW5s2bVbNmTf3zn//UkiVLlJWVpaysLAUFBUmS1q9fr06dOjlvs3h5ealy5crO9rp06aJu3bppwoQJzm0bNmzQzJkzZbFYFBAQoN69e+vgwYPO/S1atHDOSbdjxw7Vq1dP9erVk3Spp2r48OE6fvz4dT9LhQoV1KNHD0lS8+bNdejQIUnS9u3bVb9+fUVHR0uSBg4cqBEjRly1jc8//1zPPPOM8zNVrVpV0qUhH71791aVKlUkSUOHDnUGDknq0KGD89i7775bPj4+CggIkCQ1bNhQBw4ccB776KOPOvcNHDhQs2fP1vjx4xUfH68ffvhBklStWjX16NFD8fHxzkD0+OOPS7o0/qlWrVo6cuSIqlSpog0bNujEiRPO9m02m5KSkpyvr/a+sLCw636fN4pABFPY9uMXqnYyTxU9fIwupVgu5GcrrZqXmjcs3a5hoLiudyvLKBaLRd98841mz56tbdu2qVq1alq1apUmTpxYpPe3a9dO69ev16hRo1SpUqVrnuP3/P2LFg49PT1lt9udr7Oysgrs9/HxcbZttVoLHFvY+Uvij238fp4eq9V6xeu8vLwit1XUc+Tl5TlnPd++ffs15woqTi2liafMYArVTuapdoUwhXoHudVP7QphqpbGOlLAZe+//74k6ejRo9qyZYtatWqls2fPKiAgQIGBgcrJydG8efOcx3fs2FHr1q1zPp2Um5ur9PR05/7x48erR48eio2Ndd6WateunRYvXiyHwyGbzably5dfs55mzZppz5492rt3ryRp6dKlCgsLU1hYmGrVqqXk5GSdPHlSkrRkyZIifcbmzZtr9+7dzpoXLVqknJycqx7btWtXzZ071/mZzp07J7vdrtjYWC1fvlznz5+XJM2bN08dOnQo0vn/aOXKlbLZbLLb7Xr//fcVGxsr6dI42wULFkiSTp48qf/93/9V+/btC23L399fbdu21bRp05zbfv31Vx07duy6dVSqVKnA311po4eoEDxldnXu2NtS0+fS4Eq7w6603LMGV1M01byqymqxutX3DLia3W5Xw4YNlZmZqdmzZ6tmzZoKCwvThx9+qIiICAUGBio2NtZ5y6pOnTp6//339cQTTyg3N1dWq1Vz587VPffc42xz9OjR8vPzU7t27bRu3TpNnDhRAwcOVFRUlIKCgtSgQQPnrac/Cg4O1kcffaSnnnrKOah6xYoVslgsqlGjhsaMGaN77rlH1atXV+fOnYv0GYODg7Vo0SI9/PDD8vb2VqdOnRQYGHjVY5988kn9+uuvatGihTw9PeXn56f4+Hh17txZe/fuVfPmzQsMqi6JJk2aqGPHjjp58qSaN2+u0aNHS5Jmz56toUOHql69enI4HPrLX/5SYLD6tXz00Ud6/vnnddddd8liscjPz0/z5s1TeHh4oe8bMmSI/vznP2vmzJkuGVTNWmZFwFpmBR1a92/VruD6+7mucCjruGp37GZ0GUWSsn6tQr2DlJJzSqHtC3/KBChtWVlZOnLkiG6//fYSLYPgznJzc2W321WhQgVlZmaqY8eOGjFihHr37m10aWWuf//+iomJcYag8uxGf2fpIUKxXe6xcKfeFum38Ti1jS4EQLl29uxZde7cWXa7XVlZWerWrZseffRRo8uCixGIUGJpuWfdrueCMATgeqpVq+Z8esrs4uLijC6hzDCoGgAAmB6BCAAAmB6BCAAAmB6BCAAAmB6DqgvBPEQAAJgDPUSFiI2N1bRp0665hgwAwFhBQUE6evRoocdMmjTpimUzCvPuu+8WmEn54MGDeuSRR3T77berYcOGatCggV588UVlZ2dLujRXT1hYmGJiYhQZGaknn3yywAKyNWvWVEREhGJiYhQVFaXHH39cmZmZxfqcFotF586dK/a+a9m9e3eRJ4o0CwIRAOCmNnny5CIHoosXL2rGjBnOfwinpKTo3nvvVadOnXTkyBHt3LlT//nPf1SpUiVlZGQ43/fiiy9q165d+umnn3T48GG9++67BdpdtmyZdu3apX379ik9Pf2qj7MfPXpUbdq0KfHnLI769evLx8dHX331VZmczx1wywwAcF2N5zdWqi3VpecI8Q/R90O+L/SYVatWaezYsfLy8lKnTr/Ng/bCCy/o66+/Vm5uripVquRcWeCZZ56RJLVq1UpWq1Vffvml4uPj9fbbbysnJ0f5+fmaOnWqHnroIUmX1u1q2bKl/Pz8JEl///vf1aZNGw0cONB5Lj8/P02YMOGq9fn4+Ojee+9VcnLyVffn5OTowoULzpXmi2P69On64osvlJmZqVdeeUV9+/YtsN/hcGjcuHFKTEzU0qVLZbfbNWjQIP30008KDg5WdHS0srOznWGsT58+mjdvntq1a1fsWm5GBCIAwHWl2lJ1POO4oTWkpaVpwIAB2rJli6KjozV//nzngqxjx47V9OnTJV1aYHXUqFFau3at5s6dq3nz5mnLli3O9cg6duyoPn36yGKx6OjRo2rWrJmSk5Pl4+OjTZs2FViP68cff7zugqW/l56erk2bNum1114rsL13797y9fXV0aNH1ahRoxLNfG2xWLRz504dPnxYjRs3VsuWLVWzZk1JUnZ2tvr06aPAwEB98sknslqtevHFF+Xr66vExETZbDa1aNFCjRo1crbXvHlzDR8+vNh13KwIRACA6wrxDzH8HNu3b1f9+vUVHR0tSRo4cKDz1tb69ev1zjvvKCMjQ/n5+Tpz5sw12zly5Ij69u2rY8eOydPTU2fOnNGRI0cUGRmpY8eOFeh5+qOZM2dq8eLFOnPmjObPn+889s0339SiRYv0888/q0uXLmrbtm2B9y1btkwxMTHKy8vTn/70J40dO1ZvvfWWjh49qu7du0u61Hv03//+VzExMZIu3db64IMPnG0MGjRIklSrVi21bt1amzdvdgaiLl26qFu3bgV6rjZs2KCZM2fKYrEoICBAvXv31sGDB537Q0JCdPr0aWVlZZluvbqrIRABAK7rereyjGCxWCRJ//3vf/Xss8/qu+++U+3atbV79261bt36mu977LHHNG3aNPXq1UuSdMsttzjHGFWsWLHAeKOGDRvq22+/db5+7rnn9Nxzz6lNmzYFjnvxxRc1evRo/fe//1WrVq00d+5cDR069Ipze3p6qmfPnnrxxRf11ltvqWbNmtq1a5ekS2OI+vfvr02bNhXr80tSu3bttH79eo0aNUqVKlW67vHSpcVQrVarvL29i3S+mx2DqgEAbqF58+bavXu39u/fL0latGiRcnJyVLVqVXl5eSk0NFQOh+OKAc0BAQFKT093vj579qxuv/12SdKHH36os2d/W6S6fv36SkpKcr4ePny4NmzYUGAQdH5+/jUHad96661655139Ne//lUXL1686jFfffWVIiIiivfhJb3//vuSLgWnLVu2qFWrVs5948ePV48ePRQbG+u8jdiuXTstXrxYDodDNptNy5cvL9BeYmKi7rrrLnl4EAUkAhEAwE0EBwdr0aJFevjhh9WgQQMdOHBAgYGBCggI0GOPPaY777xTTZo00a233lrgfX/+85/Vvn17xcTEKC0tTW+//bZ69eqlhg0baufOnQWO79Wrl9atW+d8XaNGDW3ZskWfffaZatasqUaNGunee+/VfffdVyCQ/F7Xrl0VGRmpf/zjH85tvXv3VkxMjO666y4lJibq7bffLvbnt9vtatiwoTp06KDZs2c7b5ddNnr0aA0ePFjt2rVTamqqJk6cqIyMDEVFRalTp05q0KCBcxyVJK1du9bZSwbJ4nA4HEYXUV79fmLG3bt3O59aMLuU9WsV6h2klJxTbrfavTvhe4aRsrKydOTIEd1+++2mG1/SpUsXTZo0SU2aNDG6lBuSm5sru92uChUqKDMzUx07dtSIESPUu3dv5eTkqHHjxvrqq68UFBRkdKml4kZ/ZxlDVIjY2FjFxsYqKSlJgwcPNrocAEAZmD17thITE40u44adPXtWnTt3lt1uV1ZWlrp16+Z8uu3IkSOaNm3aTROGSgOBCACA36ldu7Zq165tdBk3rFq1avrhhx+uui8iIoI7Hn/AGCIAAGB69BAB5Zzdka/wGeFGl1FkAT4BmtJ2inpFM1gTgPsgEAHllMVyqQM31DtQ2++aZ3A1RZeRd0Fzf1hFIALgVghEQDlVsYK/ZJesFqvCfaobXU7R+UjPejxsdBUAUCyMIQLKqUoRkVLFCpK3l9v82B12SZK/1dfgbw83o9zcXE2ePFmRkZG688471bBhQ3Xv3t050/OmTZvk6+urmJgY1a9fX02bNtX27dud7580aZKCg4MVExOjBg0aqEmTJvrPf/5TrBoGDRqkjRs3lubHKmDSpEkaPXq0y9rHtdFDBJRXwbdc+nEjaf8/dxLgCgMGDJDNZtO2bducq8XHx8crKSnJuf5XRESEMyC9++67evrpp5WQkOBso2/fvpo1a5ak3xaB/e6774pcw3vvvVcqnwXlD4EIAHB9PyRIObmuPYe3l9Qo+qq7Dhw4oE8++US//PKLMwxJl+aLu5b7779fY8eOveb+9PT0Am393meffaa//OUv8vDwUF5enl599VV169ZNbdq00ejRo9W9e3elpKSoX79+OnbsmMLDw3XLLbcoMjJSkyZN0qRJk5SYmKgLFy7o0KFDCgkJ0cqVK3XLLbdoz549Gjp0qC5cuKCsrCw9/vjjevnll4v4JcFVCEQAgOvLyXV9ICrEzp07VadOHd1yS9F7TVeuXKnHHnuswLaPPvpImzZtUnp6us6fP19gmY7fe/nllzVv3jw1b95c+fn5On/+/BXHjBw5Us2bN9fkyZOVmpqqmJgYRUZGOvfv2LFDP/zwgwIDA/XYY49p3rx5eumll1SzZk1t2LBBPj4+unjxolq0aKHY2Fg1a9asyJ8NpY9ABAC4Pm+vcnWOQ4cOqWfPns5AcXnh08u3z1JTU5WXl6cdO3YUeN/vb5lt2LBBPXr0UFJSknx9C457u//++zVq1Cj16tVLHTp0cN6S+70NGzZo+vTpkqSQkBA9+OCDBfZ36tRJgYGBki4tTLtnzx5J0sWLFzVs2DDt2rVLHh4e+uWXX7Rr1y4CkcEIRIX4/VpmAGBq17iVVVYaNmyogwcP6uzZs6patapq166tXbt2KS4uTp9++qnzuMtjiHJzczVs2DD17dtX27Ztk8ViuaLN+++/X1lZWdq7d+8V65bNmDFD+/bt08aNG9WvXz/17dtXY8aMKbTGP57j9+tpWa1W5eXlSbq0Mn1QUJB27twpT09P9ejRQ1lZWcX9SlDKeMqsELGxsZo2bZpGjBhhdCkAYGp169ZVt27dNHDgQJ07d865PTMz86rHe3l56e2339axY8cKBKbf++mnn2Sz2a5YNV6S9u/frzvvvFPPPvushg4dWuBptcvatWunuLg4SdKJEyf0+eefF+mznD17VuHh4fL09FRSUpLWr19fpPfBteghAgC4hbi4OL366qtq2rSpPD09VbVqVQUHB19z4HTFihX16quvatKkSerevbuk38YQORwOWSwWLVmyRMHBwVe8d/z48UpKSpK3t7cqVqyoOXPmXHHM22+/rX79+ik6Olo1atRQ06ZNVaVKlet+jpdffllPPvmkFi9erNq1a6tdu3bF+h7gGhaHw+Ewuojy7vJq9wsWLGAxPEkp//9odUrOKYW272R0OShH+N24eWRlZenIkSO6/fbbC9z6wW8uXrwoLy8veXp66vTp02rWrJk+/PBDNW3a1OjSTOlGf2fpIQIAoAQOHDigp556Sg6HQzk5ORo2bBhhyI0RiAAAKIH69es7J4GE+2NQNQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQDALVgslgKzVJe39lwpKChIR48eLbPz9erVyzkLd2HatGlzzZnA3Q2BCACAErLb7UaXgFJCIAIAXFfjxlJ4uGt/Gje+fh3Tp09Xw4YNdccdd+ijjz5ybu/bt68aN26s+vXrq0uXLkpNTXXu++KLL9SkSRM1aNBAMTEx2rFjR4E2HQ6Hxo4dq65du+rChQvKyMhQ7969FRkZqVatWulPf/qT+vfvL+nS8iFt27ZVz549Va9ePX377bdat26d7r77btWvX1/33XefEhISJEmbNm1STEyM8zx79+51rpt29OhRValSRa+88ooaNWqkOnXqaPXq1c5jV61apaioKNWvX7/QRWXj4uIUGxurPn36KDo6Wi1atFBCQoIefvhhRUVFqUOHDs4Fym02m55++mnddddduuuuuzR58mRnO/v371eLFi105513qnv37jp//rxzX0ZGhgYPHqx77rlH9evX15AhQ5STk3P9vyw3w8SMBtv24xeqdjJPFT18jC6lyKp5VTW6BABlLDVVOn7c6Cou3ebauXOnDh8+rMaNG6tly5aqWbOmZs2a5VyTbNq0aZo0aZLmzp2rn3/+WQMGDNDmzZsVGRmp3NxcXbhwwdledna2+vTpo8DAQH3yySeyWq168cUX5evrq8TERNlsNrVo0UKNGjVyvmfHjh3auXOnIiIilJaWpqioKG3atEn16tXTRx99pF69emnfvn3X/Szp6emqX7++Jk+erLVr12rUqFF64IEHlJaWpgEDBmjLli2Kjo7W/Pnzdfr06Wu2891332nPnj269dZb9eSTT+qhhx7Sf/7zH1WvXl0PPvigFi9erOHDh2vKlCnKzs7W7t27dfHiRd17772KjIxU79699eSTT+qZZ57RwIEDtWfPHjVu3FiPP/64JOnPf/6zWrVqpQULFsjhcGjw4MF6++239eKLL5b0r7FcIhAZrNrJPNWuEGZ0GSVyIT/b6BIAlJGQkPJxjkGDBkmSatWqpdatW2vz5s2qWbOm/vnPf2rJkiXKyspSVlaWgoKCJEnr169Xp06dFBkZKUny8vJS5cqVne116dJF3bp104QJE5zbNmzYoJkzZ8pisSggIEC9e/fWwYMHnftbtGjhXNdyx44dqlevnurVqyfpUk/V8OHDdbwI6bFChQrq0aOHJKl58+Y6dOiQJGn79u2qX7++oqOjJUkDBw7UiBEjrtlO8+bNdeutt0qSGjdurNzcXFWvXl2S1KRJEx04cECSFB8fr7feekseHh7y8/PTU089pfXr16tz587atWuXsxesXr16uvfee53tf/rpp9q2bZtmzJgh6dIablar9bqfz90QiAx2uWfI7rArLfeswdUU3YX8bKVV81JtowsBUCa+/97oCq7OYrHom2++0ezZs7Vt2zZVq1ZNq1at0sSJE4v0/nbt2mn9+vUaNWqUKlWqdM1z/J6/v3+R2vb09CwwxigrK6vAfh8fH2fbVqv1muOR/nj+P/r9QqZWq/WK13l5ecVu9/f7HA6HPv74Y91xxx2F1uHuCESFiI+PV3x8vPP+qyul5Z51u9XBCUMAytr777+vSZMm6ejRo9qyZYtmzZqlPXv2KCAgQIGBgcrJydG8efOcx3fs2FF//etftX///gK3zC73Eo0fP945DmfNmjUKDAxUu3bttHjxYrVu3VqZmZlavny5GjZseNV6mjVrpj179mjv3r266667tHTpUoWFhSksLEweHh5KTk7WyZMnFRwcrCVLlhTpMzZv3lwDBgxw1rxo0aJSGbMTGxurhQsX6r777tOFCxe0ZMkSjR07VpUqVVLDhg31wQcfaMCAAdq3b5+++eYbPfHEE5Kk7t276/XXX9e8efPk6emps2fP6vTp06pTp84N11SeEIgKERsbq9jYWCUlJWnw4MFGlwMApme329WwYUNlZmZq9uzZqlmzpsLCwvThhx8qIiJCgYGBio2Ndd6yqlOnjt5//3098cQTys3NldVq1dy5c3XPPfc42xw9erT8/PzUrl07rVu3ThMnTtTAgQMVFRWloKAgNWjQQFWqVLlqPcHBwfroo4/01FNPKS8vT1WrVtWKFStksVhUo0YNjRkzRvfcc4+qV6+uzp07F+kzBgcHa9GiRXr44Yfl7e2tTp06KTAw8Ia/uwkTJmjkyJHO23uPPPKIHn30UUlyhqG33npLdevWVevWrZ3vmzlzpsaNG6eYmBh5eHjI09NTb7zxxk0XiCwOh8NhdBHl3eVAtGDBAud949KSsn6tQr2DlJJzyu16iIA/4vf55pGVlaUjR47o9ttvL3ALxgxyc3Nlt9tVoUIFZWZmqmPHjhoxYoR69+5tdGkoxI3+ztJDBADA75w9e1adO3eW3W5XVlaWunXr5uxJwc2LQAQAwO9Uq1ZNP/zwg9FloIwxMSMA4JoYVQF3kZ+ff0Pvp4cIAHAFLy8vWSwW5xNS13v0GzCKw+FQTk6OTp48KQ8PD3l7e5eoHQIRAOAKVqtV4eHhOnbsWJkuKgqUVMWKFXXrrbfKw6NkN78IRACAq/L391fdunWVm5trdClAoaxWqzw9PW+oJ5NABAC4JqvVelMu0wD8EYOqAQCA6RGIAACA6RGIAACA6RGIAACA6RGIAACA6fGUGYBSZ3fkK3xGuNFlFFmAT4CmtJ2iXtG9jC4FgEEIRABKjcVyudPZoeMZxw2tpVgypAkbJxCIABMjEAEoNZV8Kkn5Uqh3kH5tscbocorE7shXRl6mZqUuN7oUAAYiEAEoNRUr+EsXsmS1WBXqHWR0OUXnI71Q43GjqwBgIAIRgNJTs4Z09Fcpz250JUVmz74U4PytvkaXAsBABCIApSf4lks/biRt/Vr36s0C4BKmCURvvvmmtm7dqqysLFWvXl1DhgxRy5YtjS4LAACUA6YJRI8++qhGjRolb29vJSYm6vnnn9fSpUtVuXJlo0sDAAAGM83EjLfddpu8vb0lSRaLRbm5uTp16pTBVQEAgPKgXPYQXbhwQUuXLlVCQoISExOVkZGhl156SZ07d77i2JycHC1cuFBffvmlMjIyVLt2bQ0aNEhNmjS54tgZM2Zo9erVysnJUbNmzVSrVq2y+DgAAKCcK5c9ROnp6YqLi1NycrLq1KlT6LGvvfaali9frvbt22vkyJHy8PDQmDFjtHv37iuOff7557Vu3TrNnDlTTZo0kcVicdVHAAAAbqRcBqLAwEB98sknWrFihYYOHXrN4xISErRhwwYNGTJEw4YNU9euXTVr1iyFhIRozpw5V32P1WpVo0aN9MMPP2jbtm2u+ggAAMCNlMtA5O3trcDAwOse9/XXX8tqtapr167ObT4+PurSpYv27dunEydOXPO9drtdx4+70dICAADAZcplICqqAwcOKDw8XH5+fgW2R0VFSZIOHjwoSbLZbFq/fr0uXLigvLw8bdy4UTt37lSDBg2u2u6pU6eUlJTk/ElOTnbtBwEAAIYql4Oqi+r06dNX7Um6vO3yU2QWi0Wff/65Zs6cKYfDobCwME2YMEF169a9arurVq1SXFycy+oGAADli1sHouzsbHl5eV2x/fLj9dnZ2ZIkPz8/vf3220Vut2vXrgUmbUxOTtbUqVNvsFoAAFBeuXUg8vHxUW5u7hXbc3JynPtLIigoSEFBTOUPAIBZuPUYosDAQJ0+ffqK7Ze3EWoAAEBRuHUgqlOnjo4dO6bMzMwC2xMSEpz7AQAArsetA1GbNm1kt9u1atUq57acnBytXr1a0dHRql69+g21Hx8fr3Hjxumdd9650VIBAEA5Vm7HEH388cey2WzO219bt25VWlqaJKlnz57y9/dXdHS02rZtq/nz5+vcuXMKCwvT2rVrlZqaqrFjx95wDbGxsYqNjVVSUpIGDx58w+0BAIDyqdwGomXLlik1NdX5evPmzdq8ebMkqUOHDvL395ckjR8/XtWrV9e6detks9lUq1Ytvf7664qJiTGibAAA4IbKbSBavnx5kY7z8fHRsGHDNGzYMBdXBAAAblblNhCVB/Hx8YqPj5fNZjO6FAAA4EIEokIwhggAAHNw66fMAAAASgOBCAAAmB6BCAAAmB6BCAAAmB6DqgvBU2YAAJgDgagQPGUGAIA5cMsMAACYHoEIAACYHoEIAACYHoEIAACYHoOqC8FTZgAAmAOBqBA8ZQYAgDlwywwAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgej90XgnmIAAAwBwJRIZiHCAAAc+CWGQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD3mISoEEzMCAGAOBKJCMDEjAADmwC0zAABgegQiAABgegQiAABgegQiAABgegQiAABgejxlBgCS7I58hc8IN7qMIgvwCdCUtlPUK7qX0aUANwUCEQBTs1gud5Q7dDzjuKG1FEuGNGHjBAIRUEoIRABMrZJPJSlfslqsCgsIM7qcIkmxpSjfka+M7AyjSwFuGgQiAKZW0dNXyslVqH+ojj1/zOhyiiR8Rrh79WYBboBB1QAAwPToISoEa5kBJpKTK237yegqiuS7eu/pXG6GZqUuN7oU4KZBICoEa5kBJuBpvRSGpN/+LOdCvYMU6h2kF2o8bnQpwE2DQATA3GrWkI7+KuXZja6kyOzZWbJarPK3+hpdCnDTIBABMLfgWy79uJG09WsV6h1kdBnATYVB1QAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPQIRAAAwPRKHIgOHTqkL774QpmZmc5t2dnZeuutt9SjRw/16dNH//73v0ulSAAAAFcqcSD64IMPtHDhQlWsWNG5bf78+Vq1apUuXLigtLQ0zZw5U999912pFAoAAOAqJQ5EiYmJatiwoSwWiyQpLy9Pa9asUVRUlP79739r2bJlqlKlilauXFlqxQIAALhCiQNRenq6qlWr5ny9f/9+ZWZmqlu3bvLx8VFQUJBatmypgwcPlkqhAAAArlLi1e6tVqtyc3Odr3ft2iWLxaKGDRs6t1WuXFnp6ek3VqGB4uPjFR8fL5vNZnQpAADAhUociEJCQrRz507n640bNyo0NFQhISHObSdPnlTlypVvrEIDxcbGKjY2VklJSRo8eLDR5QAAABcpcSDq0KGD5syZoz/96U/y8vLSoUOH9OSTTxY45vDhwwoPD7/hIgEAAFypxGOIevTooTZt2igpKUl79uxR06ZN9cQTTzj3HzlyRAcPHtTdd99dKoUCAAC4Sol7iLy9vTV58mRlZmbKYrEUePxekqpWraqFCxcWuIUGAABQHpW4h2jXrl06ceKE/Pz8rghDklSlShUFBATwlBkAACj3ShyIRo8erTVr1hR6zLp16zR69OiSngIAAKBMlDgQORyOIh1zeeJGAACA8sqli7seO3ZMfn5+rjwFAADADSvWoOpp06YVeL1lyxalpqZecZzdbldaWpp2796tpk2b3liFAAAALlasQPT7MUMWi0UHDx685qBpi8WiyMhIPfvsszdWIQAAgIsVKxAtW7ZM0qWxQY899pgeeeQR9erV64rjPDw8FBAQIF9f39KpEgAAwIWKFYh+P6fQuHHjdMcddzDPEAAAcHslnpixc+fOpVkHAACAYUociC5LSEjQ/v37ZbPZlJ+ff8V+i8Wifv363ehpAAAAXKbEgej8+fMaP3689u7dW+icRAQiAABQ3pU4EL377rvas2ePYmJi1KlTJ1WrVk1Wq7U0awMAACgTJQ5E27ZtU1RUlGbNmsVs1AAAwK2VeKbq7OxsNWjQgDAEAADcXokDUZ06da46SzUAAIC7KXEg6t+/v7Zu3ap9+/aVZj0AAABlrsRjiM6cOaNmzZpp5MiRat++verWrXvNhVw7depU4gJLQ05OjmbMmKHvv/9eNptNNWvW1LPPPqu77rrL0LoAAED5UOJA9Nprr8liscjhcGjNmjVas2bNFeOJHA6HLBaL4YHIbrcrJCREf//73xUcHKyNGzfqpZde0rJly1SxYkVDawMAAMYrcSAaN25cadbhUr6+vurfv7/z9f333693331Xv/zyiyIiIowrDAAAlAvlcumOCxcuaOnSpUpISFBiYqIyMjL00ksvXfWcOTk5Wrhwob788ktlZGSodu3aGjRokJo0aXLN9n/55RdlZGQoLCzMZZ8BAAC4jxIPqnal9PR0xcXFKTk5WXXq1Cn02Ndee03Lly9X+/btNXLkSHl4eGjMmDHavXv3VY/Pzs7W1KlT1bdvX/n7+7uifAAA4GZK3EN04sSJIh9bvXr1YrUdGBioTz75RIGBgdq/f7+GDBly1eMSEhK0YcMGDR06VH369JEkdezYUf3799ecOXM0Z86cAsfn5eVp4sSJCgsLK3ALDQAAmFuJA9Gjjz5apEkZLRaLNm7cWKy2vb29FRgYeN3jvv76a1mtVnXt2tW5zcfHR126dNH8+fN14sQJZxjLz8/X1KlTZbFYNH78eCaUBAAATiUORB07drxqqLDZbDp06JBSUlIUExOjkJCQGyqwMAcOHFB4ePgVj/tHRUVJkg4ePOgMRNOnT9fp06c1ffp0eXoW/rFPnTql06dPO18nJyeXcuUAAKA8KXEgGj9+/DX3ORwOLV26VP/61780duzYkp7iuk6fPn3VnqTL206dOiVJSk1N1eeffy5vb+8CvUlvvPGGGjRocMX7V61apbi4ONcUDQAAyp0SB6LCWCwW9enTR9u3b9c//vEPTZ061RWnUXZ2try8vK7Y7u3t7dwvSSEhIdq8eXOR2+3atatatmzpfJ2cnOyyzwAAAIznkkB0WUREhD7//HOXte/j46Pc3Nwrtufk5Dj3l0RQUJCCgoJuqDYAAOA+XPrY/fHjx2W3213WfmBgYIGxPpdd3kaoAQAARVHqgSg/P18nTpzQ4sWLtXXrVt15552lfQqnOnXq6NixY8rMzCywPSEhwbkfAADgekp8y+y+++4r9NF1h8OhgIAADR8+vKSnuK42bdpo6dKlWrVqlXMeopycHK1evVrR0dHFnv/oj+Lj4xUfHy+bzVYa5QIAgHKqxIGoQYMGVw1EFotFAQEBioyM1AMPPKCqVauWqP2PP/5YNpvNeftr69atSktLkyT17NlT/v7+io6OVtu2bTV//nydO3dOYWFhWrt2rVJTU0vl6bbY2FjFxsYqKSlJgwcPvuH2AABA+VTiQDR79uzSrOMKy5YtU2pqqvP15s2bnU+KdejQwbnsxvjx41W9enWtW7dONptNtWrV0uuvv66YmBiX1gcAAG4eLn3K7EYsX768SMf5+Pho2LBhGjZsmIsrAgAAN6tSCUR79uzRgQMHdOHCBVWsWFF169ZVvXr1SqNpAAAAl7uhQLRnzx5NmzZNx48fl3RpIPXlcUXh4eEaN26c7rrrrhuv0iAMqgYAwBxKHIiOHDmiF154QVlZWWrcuLEaNmyowMBAnTlzRjt37tR3332nF154QXPnzlXNmjVLseSyw6BqAADMocSBKC4uTrm5uXrjjTfUtGnTAvv69u2rHTt26KWXXlJcXJwmTZp0o3UCAAC4TIknZty1a5fatGlzRRi6rGnTpmrTpo127txZ4uIAAADKQokDUWZmpkJDQws9JjQ09IpZpAEAAMqbEt8yCwwM1L59+wo9JiEhQYGBgSU9heEYVA0AgDmUuIeoZcuW2rVrl9577z1lZ2cX2Jedna1FixZp586duvfee2+4SKPExsZq2rRpGjFihNGlAAAAFypxD1G/fv20bds2ffjhh1q1apWioqJUtWpVnT17Vvv379e5c+dUo0YN9evXrzTrBQAAKHUlDkSVK1fWnDlzNHfuXG3YsEHbt2937vP29lbnzp31zDPPqFKlSqVSKAAAgKvc0MSMVapU0bhx4/TCCy8oOTnZOVP1bbfdJk/PcrsqCAAAQAHFTi0ffPCBsrKy9PTTTztDj6enp2rXru08Jjc3VwsWLJCvr6+eeOKJ0qsWAADABYo1qPr777/XokWLVKlSpUJ7gLy8vFSpUiW99957+vHHH2+4SAAAAFcqVg/RunXrFBAQoB49elz32Icfflgffvih1qxZo7vvvrvEBRqJx+4BADCHYgWivXv3qlGjRvL29r7usd7e3mrcuLH27NlT4uKMxlpmAACYQ7FumZ06dUo1atQo8vGhoaE6ffp0sYsCAAAoS8UKRB4eHsrLyyvy8Xl5efLwKPHcjwAAAGWiWGklMDBQR44cKfLxR44cUVBQULGLAgAAKEvFCkT169fXjz/+qJSUlOsem5KSoh9//FENGjQocXEAAABloViB6OGHH1ZeXp4mTpyoc+fOXfO49PR0vfLKK7Lb7erWrduN1ggAAOBSxXrKLCIiQo888ohWrFihp556St26dVPDhg0VHBws6dKg6x9++EGfffaZzp07p0cffVQREREuKbws8Ng9AADmUOyZqocPHy5vb2/961//0pIlS7RkyZIC+x0Ohzw8PPTEE09o0KBBpVaoEXjsHgAAcyh2ILJYLBoyZIi6dOmi1atXa+/evTpz5owk6ZZbblG9evXUuXNnhYWFlXqxAIDf2B35Cp8RbnQZRRbgE6ApbaeoV3Qvo0sBrlDiFVjDwsLoNQEAA1gsl4d/OnQ847ihtRRLhjRh4wQCEcollqQHADdTyaeSlC9ZLVaFBbhHb3yKLUX5jnxlZGcYXQpwVQQiAHAzFT19pZxchfqH6tjzx4wup0jCZ4S7V28WTIdppAEAgOnRQwSUUytWSBMnShludochIECaMkXqxTARAG6EQASUUxMnSvv3G11FyUyY4D6BaN+Kfdo0cZOyM7KNLqXIBr/TVAG3+Cj3Yp68jC4GuEkQiIBy6nLPkIeHFBpqbC1FlZIi5edLP/8shbvJ0+CZJ26TZ96jaquNulOJRpdTJA57viQp+3w2gQgoJQSiQjBTNcqD0FDpmHuMm1VU1KVerfx86bjbjJ/1l+SvjWqrZmFu8kX/P4fDYXQJwE2DQFQIZqoGimfKlEu3y9xp3NOvx/PlkIdyPSro+WPPG11OkWR8stXoEoCbDoEIQKnp1ct9xg5dVsWaqfT8AKPLAGAwAhGAUuOOA5Qd+e695iKA0kEgAlBqNk3cpFP7TxldRrFcHoVj8bAYWgcAYxGIYAruOKdPSorRFRTf5Z4hi4dF/qH+BldTNB4pFilfOm/3c5sn4xwXG6uSf77GP5qsJx82uhrg5kAggim485w+AW44vMU/1N9tBigviJLS90v5DosbPRnno1/PSFP/dauefNPoWoCbA4EIpuCOc/rkXcyVbBm6J22rZoQfMLqcIrGluN8UFe74ZFxKikP5+RbZLlqNLgW4aRCIYCruNKfP36Pm69SZU9IZyY3+Wy1J8gnwMbqEInPHJ+PCAnP06xn3+Y4Bd0AgginkXcyV5CVbSoZmhC8wupwiudzb4k7jcaRLYajtlLZGlwEAxUIggilkn8+W5KX8fIcyjrtXf0vgHYEanjjc6DIA4KZGIIIpOPIvPVxtkRQQ5j6jlOltAYCyQSAqBGuZ3XwsHha3efoJAFB2CESFYC0zAADMgUAEAG4q9Zy320wmmWL7TvI6p4sPzDK6FOCqCEQA4Gb8fe2SpPx8d5pMMlRSqM6vfcHoQoCrIhABgJt5uc9/9bflt+m8zUMWX/eYj+j4r3bJYVV+tvtMIQFzIRABgJvp3uK0nnzQpvMnL+q90d8ZXU6RvODXWw5bmORwXP9gwAAEIgBwMxaLxfm/3WZerf/vGLo8BQZQ3hCIAMDN+FTykeSQxerhPvNqpRtdAFA4AhEAuBkvX08pJ1cBIf5uM6/WCwFuM/obJuVhdAEAAABGIxABAADTIxABAADTIxABAADTIxABAADT4ykzAHBXObnStp+MrqJIqvtEKNUmVfD0VvgMN1mATVKAT4CmtJ2iXtG9jC4FLkYgQrGtWCFNnChluMl8cJJ0Pt/P6BKA0uNpvRSGpN/+LOeslks3JCpZ/XQ8w40ewc+QJmycQCAyAQIRim3iRGn/fqOrKK5L/2fs45FjcB1AKahZQzr6q5RnN7qSYrPIQ2EBYUaXUSQpthTlO/KVke1G//pDiRGIChEfH6/4+HjZbDajSylXLvcMeXhIoaHG1lJUtpQMeeVnqVOl7ZIeMroc4MYE33Lpx4048rMlSWlnfRQ645jB1RSRLUXyOqeLD8wyuhKUAQJRIWJjYxUbG6ukpCQNHjzY6HLKndBQ6Zib/P/ajPAFyjieoQBfN1nmALjJ+Pte6s3Kz7fouNvcMQuVFKr0NX82uhCUAQIRAMDlJjz+i15ddqvO2zyUcSbb6HKKJMPiJzmsyr/IGEQzIBABAFyudyebnuiyTxlnsrVgxA6jyymSF9J7y2Fzj/FOuHEEIgCAy7EgLco7AhGKLe9iriQv2VIyNCN8gdHlFIkthYHxAIBrIxCh2LLPZ0vyUn6+QxnH3etxVJ8AH6NLAACUQwQiFJsj3yFJskgKCHOfp7Z8AnzUdkpbo8sAAJRDBCKUmMXD4jZjAQAAKAyLuwIAANMjEAEAANMjEAEAANMjEAEAANMjEAEAANPjKTMAAArhyAxReLjRVRRdQIA0ZYrUq5fRlbgXAhEAAFdh8bbJIUkOq4672SoeEyYQiIqLQAQAwFVUaPmqLmx7SZasSqpR2T0WeU1JkfLzpQz3WkSgXCAQAQBwFV4Rq6RGS1TJVlnH3jxndDlFEh4ut+vNKi8YVA0AAEyPQAQAAEyPW2YAABTifMXzqvJiFaPLKJLz6fskhcl2IUOS+yy+XR6YJhB9+umn+uyzz3T48GE9+eSTevrpp40uCQBQjlWwV1C60uXwcCjdP93ocorG4pAkZeQSiIrLNIEoMDBQAwYMUHx8vNGlAADcwNg7x+r1fa8ry5pldClFdjm2OS5NGIBiME0gatWqlSRp+/btBlcCAHAHzw18Ts/pOaPLKBaPuceJQiVULgPRhQsXtHTpUiUkJCgxMVEZGRl66aWX1Llz5yuOzcnJ0cKFC/Xll18qIyNDtWvX1qBBg9SkSRMDKgcAAO6oXD5llp6erri4OCUnJ6tOnTqFHvvaa69p+fLlat++vUaOHCkPDw+NGTNGu3fvLqNqAQCAuyuXgSgwMFCffPKJVqxYoaFDh17zuISEBG3YsEFDhgzRsGHD1LVrV82aNUshISGaM2dOGVYMAADcWbkMRN7e3goMDLzucV9//bWsVqu6du3q3Obj46MuXbpo3759OnHihCvLBAAAN4lyOYaoqA4cOKDw8HD5+fkV2B4VFSVJOnjwoKpXry5JysvLk91uV35+vux2u7Kzs+Xp6Smr1XpFu6dOndLp06edr5OTk134KQAAgNHcOhCdPn36qj1Jl7edOnXKue2DDz5QXFyc8/WSJUuuOVB71apVBY4FAAA3N7cORNnZ2fLy8rpiu7e3t3P/ZU8//XSRJ2Ps2rWrWrZs6XydnJysqVOn3mC1AACgvHLrQOTj46Pc3Nwrtufk5Dj3l0RQUJCCgoJuqDYAAOA+3DoQBQYG6uTJk1dsvzz+h1ADADAjh8XhNuuvXVbBXkFj7xyr5wYaMxmmWweiOnXqaOfOncrMzCwwsDohIcG5/0bEx8crPj5eNpvthtoBAKAsWGRxzlTtNuuv/b90pev1fa8bNju4WweiNm3aaOnSpVq1apX69Okj6dLtstWrVys6Otr5hFlJxcbGKjY2VklJSRo8eHBplAwAgMsEeAUoXZLFYVElW2Wjyymy8xXPy+HhMHTduHIbiD7++GPZbDbn7a+tW7cqLS1NktSzZ0/5+/srOjpabdu21fz583Xu3DmFhYVp7dq1Sk1N1dixY40sHwCAMudfMUDpZ6UalcN07M1zRpdTZFVerGJ4j1a5DUTLli1Tamqq8/XmzZu1efNmSVKHDh3k7+8vSRo/fryqV6+udevWyWazqVatWnr99dcVExNjRNkAAMANldtAtHz58iId5+Pjo2HDhmnYsGEurggAAPeQkiKFhxtdRdGdT98nVTiv3OavGVZDuQ1E5QGDqgEA7iQg4NKf+fnS8ePG1lI8YZItTFlb/2JYBQSiQjCoGgDgTqZMkSZMkDIyjK6keI7/apccVjly/A2rgUAEAMBNolevSz/uxiMgVQ5bmLE1GHp2AACAcoBABAAATI9bZoVgUDUAAOZAICoEg6oBADAHbpkBAADTIxABAADTIxABAADTIxABAADTY1C1wT7bXF0zP4hU+gWLPHyMrqZozuf7GV0CAAClikBUiLJ47P7NxXV18Bdfl7XvGpc6Fn08cgyuAwCA0kEgKkRZPHafefHSX4GHh0OhoRaXnKO02VIy5JWfpU6Vtkt6yOhyAAC4YQSicqL6Ldk6dqyC0WUUyYzwBco4nqEA3wCjSwEAoFQwqBoAAJgegQgAAJgegQgAAJgegQgAAJgegQgAAJgeT5kVoizmIQIAAMYjEBWiLOYhAgAAxuOWGQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD3mISoEEzMCAGAOBKJCMDEjAADmwC0zAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgegQiAABgesxUbTDH5T8d0ozwGYbWUlS2FJYyAQDcXAhEhSiTtcwcv/3PjOMZrjuPC/gE+BhdAgAApYJAVIiyXsssICzA5ecoLT4BPmo7pa3RZQAAUCoIROXI88eeN7oEAABMiUHVAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9AhEAADA9FjtHgBQdnJypW0/GV1F0XlapZo1pOBbjK4ELkYgKkR8fLzi4+Nls9mMLgUA3Jun9VIYkn770x3k5EpHfyUQmQCBqBCxsbGKjY1VUlKSBg8ebHQ5AOC+ata4FCzy7EZXUnSXg5s71YwSIxABAFwv+Bb362XZ9pN79WbhhjCoGgAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6BCAAAmB6r3RdBdna2JCk5ObnU2/apkCM/P2/5VMhRUpJ3qbcPACih479IuXmSl6eUVMHoam5qfr4n5XDYZPE9qaQkW6m3f9ttt6lChcL/Di0Oh8NR6me+yXz55ZeaOnWq0WUAAIASWLBggSIiIgo9hkBUBOfOndO3336rTz/9VKNGjSrSe9555x2NGDHiusclJydr6tSpevnll3XbbbfdaKk3haJ+d0Yo69pcdb7SavdG2inJe4v7nqIczzV4pfJ8DUpch6XZjquvw/Ly38Ki9BBxy6wIqlSpog4dOuirr766bsK8zN/fv8jHSpf+sopz/M2suN9dWSrr2lx1vtJq90baKcl7i/ue4hzPNfib8nwNSlyHpdmOq69Dd/pvIYOqiyE2NtYlx6Kg8vzdlXVtrjpfabV7I+2U5L3FfU95/l0qz8r798Z1WHrtuPo6LO+/S7/HLTODJSUlafDgwUW6vwmg9HENAsYrD9chPUQGCwwMVP/+/RUYGGh0KYApcQ0CxisP1yE9RAAAwPToIQIAAKZHIAIAAKZHICrncnJyNG3aNPXq1UudOnXSM888o7179xpdFmAqb775prp3765OnTqpX79+2rp1q9ElAaa1d+9e3XfffVq8eHGptssYonLu4sWLWrZsmTp37qzg4GBt3LhRs2bN0rJly1SxYkWjywNMITk5WaGhofL29lZiYqKef/55LV26VJUrVza6NMBU8vPzNWzYMDkcDrVo0UL9+vUrtbbpISrnfH191b9/f1WvXl0eHh66//775enpqV9++cXo0gDTuO222+TtfWmtQYvFotzcXJ06dcrgqgDz+eyzzxQVFeWS2ayZqbqUXbhwQUuXLlVCQoISExOVkZGhl156SZ07d77i2JycHC1cuFBffvmlMjIyVLt2bQ0aNEhNmjS5Zvu//PKLMjIyFBYW5sqPAbgtV12DM2bM0OrVq5WTk6NmzZqpVq1aZfFxALfkiuswPT1dK1as0Jw5c/TOO++Ues30EJWy9PR0xcXFKTk5WXXq1Cn02Ndee03Lly9X+/btNXLkSHl4eGjMmDHavXv3VY/Pzs7W1KlT1bdvX/n7+7uifMDtueoafP7557Vu3TrNnDlTTZo0kcVicdVHANyeK67DBQsW6JFHHlFAQIBrinagVGVnZztOnTrlcDgcjsTEREerVq0cq1evvuK4ffv2OVq1auX45z//6dyWlZXleOyxxxzPPPPMFcfn5uY6xowZ45g8ebIjPz/fdR8AcHOuugZ/b+zYsY7//Oc/pVs4cBMp7eswKSnJMXDgQEdeXp7D4XA4Xn31VUdcXFyp1kwPUSnz9vYu0kybX3/9taxWq7p27erc5uPjoy5dumjfvn06ceKEc3t+fr6mTp0qi8Wi8ePH8y9ToBCuuAb/yG636/jx46VSL3AzKu3rcNeuXfrll1/Us2dPde/eXV999ZX++c9/6rXXXiu1mhlDZJADBw4oPDxcfn5+BbZHRUVJkg4ePKjq1atLkqZPn67Tp09r+vTp8vTkrwwoDUW9Bm02m7Zt26aWLVvK29tbW7Zs0c6dOzVkyBAjygZuKkW9Drt27ar777/fuX/27NkKDQ1V3759S60W/utqkNOnT181PV/edvkJltTUVH3++efy9vYukKDfeOMNNWjQoGyKBW5CRb0GLRaLPv/8c82cOVMOh0NhYWGaMGGC6tatW6b1Ajejol6HFSpUUIUKFZz7fXx85OvrW6rjiQhEBsnOzpaXl9cV2y8/2pudnS1JCgkJ0ebNm8u0NsAMinoN+vn56e233y7T2gCzKOp1+Efjx48v9VoYQ2QQHx8f5ebmXrE9JyfHuR+A63ANAsYrT9chgcgggYGBOn369BXbL28LCgoq65IAU+EaBIxXnq5DApFB6tSpo2PHjikzM7PA9oSEBOd+AK7DNQgYrzxdhwQig7Rp00Z2u12rVq1ybsvJydHq1asVHR3tfMIMgGtwDQLGK0/XIYOqXeDjjz+WzWZzdvlt3bpVaWlpkqSePXvK399f0dHRatu2rebPn69z584pLCxMa9euVWpqqsaOHWtk+YDb4xoEjOdu1yGr3bvAo48+qtTU1KvuW7ZsmUJDQyVdGj1/ef0Wm82mWrVqadCgQbrnnnvKslzgpsM1CBjP3a5DAhEAADA9xhABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABAADTIxABMJXWrVsX+MnOznbuW7NmjVq3bq01a9YYWOFv/v3vfxeo9W9/+5vRJQE3LVa7B+ASKSkp6t27d6HHhISEaPny5WVUUcHzdurUSZJktVpdeq5vv/1WL7zwgpo0aaK33nqr0GP/+te/Kj4+XhMmTFD79u0VERGh/v37y2azaeXKlS6tEzA7AhEAlwoLC1P79u2vus/f37+Mq7kkJCRETz/9dJmcq3Hjxqpevbp++OEHnThxQtWrV7/qcTabTVu2bJG/v79at24tSYqMjFRkZKRSUlIIRICLEYgAuFRYWFiZhY/yyMPDQ507d1ZcXJzWrl2rfv36XfW4+Ph4ZWdn64EHHpCPj08ZVwmAMUQAyo3WrVtr5MiROnnypP7617/qoYceUseOHTVmzBj9+uuvkqSjR49q/Pjx6tKlizp27KgJEybozJkzLq0rLS1N/fr1U2xsrDZt2uTcfvbsWb3zzjvq06eP7r//fj300EN6+eWXdfjw4QLvf+CBB2SxWLRmzRo5HI6rnmP16tWSpC5durjscwC4NgIRgHIlIyNDw4cPV0pKijp27KiGDRtq+/btev7553X48GENGzZMFy9e1AMPPKDIyEh9/fXXmjx5ssvqOXr0qIYNG6a0tDS9+eabatOmjSTp+PHjGjRokFasWKEaNWqoR48eatasmb799lsNHTpUCQkJzjZCQkLUqFEj/frrr9q5c+cV5zh8+LD279+vunXr6o477nDZZwFwbdwyA+BSx48f16JFi666784771TTpk0LbDt06JAeffRRPfvss85tM2bM0Keffqpnn31WAwYM0COPPCJJcjgcGjt2rLZv366kpCRFRESUau379u3T2LFj5enpqXfeeUd16tRx7nv11Vd15swZTZ8+Xffcc49z+1NPPaXBgwfrjTfeUFxcnHN7ly5d9P3332v16tW6++67C5yH3iHAePQQAXCp48ePKy4u7qo/O3bsuOJ4X19fDRo0qMC2+++/X5JUuXJl9erVy7ndYrE49x06dKhU6962bZuee+45BQQE6B//+EeBMPTzzz9r79696tixY4EwJEn/8z//owcffFCHDx8ucOusVatWqly5sr7++mtlZmY6t+fl5enLL7+Ut7f3NQefA3A9eogAuNQ999yj6dOnF/n48PBwVahQocC2wMBASVKtWrVksViuuu/UqVM3WOlvNm7cqO+++061a9fWm2++qapVqxbYf/l22NmzZ6/a+/Xf//7X+WetWrUkyRl4Vq5cqfj4eHXr1k2StHXrVp07d06xsbEKCAgotc8AoHgIRADKFT8/vyu2XZ4rqLB9eXl5pVbDvn37ZLfbVb9+/SvCkCSdP39e0qVepG3btl2znYsXLxZ43aVLF61cuVKrV692BiJulwHlA4EIAP5gyJAh+uabb7Ry5UpZrVYNHz68wP7LwWzUqFHq2bNnkdutXbu2IiMjlZiYqCNHjiggIEDffvutQkNDrxhXBKBsMYYIAP7A29tbr776qpo3b65ly5bp3XffLbA/KipK0qWepOK63BP0xRdfaN26dbLb7c7H8gEYh0AEAFfh7e2tqVOnqkWLFlq+fLneeecd577o6GhFR0drw4YN2rBhwxXvzc/P165du67abmxsrCpUqKAvv/xSq1evloeHh3MZEQDG4ZYZAJcq7LF7Serbt2+5nZnZy8tLU6ZM0cSJE7VixQo5HA6NHDlSkjRx4kSNHj1akydP1sqVK1W3bl35+PgoLS1Ne/fuVXp6uuLj469o08/PT/fdd5/WrVunc+fOqWnTptdczgNA2SEQAXCpy4/dX8sjjzxSbgOR9FsoeuWVV7Ry5Uo5HA6NGjVKNWrU0MKFC7Vs2TJt2bJFa9askYeHhwIDA9WgQQPnBI5X06VLF61bt07SpVmsARjP4rjWPPIAcBNq3bq1YmJiNHv2bKNLKbKUlBT17t1bnTp10vjx440uB7gp0UMEwHR27drlXFF+/fr15baH6t///rfeeusto8sATIFABMBU+vfvX+D15XmMyqOIiIgC9datW9e4YoCbHLfMAACA6fHYPQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAMD0CEQAAML3/AwXLkq2g7JBmAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the counts distribution\n", + "ax,plot = bkg.project(\"Em\").draw(label = \"background component\", color = \"purple\")\n", + "data.project(\"Em\").draw(ax, label = \"data(GRB+bkg)\", color = \"green\")\n", + "signal.project(\"Em\").draw(ax, label = \"GRB signal\", color = \"pink\")\n", + "bkg_model.project(\"Em\").draw(ax, label = \"background model\", color = \"blue\")\n", + "\n", + "ax.legend()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "id": "2741ff6e-a653-4d89-86c8-27505a624311", + "metadata": {}, + "source": [ + "#### Read the orientation" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "aa47b873-81f1-4d23-9624-6f62871c857c", + "metadata": {}, + "outputs": [], + "source": [ + "# read the full oritation but only get the interval for the GRB\n", + "ori_full = SpacecraftFile.parse_from_file(orientation_path)\n", + "grb_ori = ori_full.source_interval(Time(grb_tmin, format = \"unix\"), Time(grb_tmax, format = \"unix\"))\n", + "\n", + "# clear redundant data from RAM\n", + "del bkg_full\n", + "del ori_full\n", + "_ = gc.collect()" + ] + }, + { + "cell_type": "markdown", + "id": "06acabfd-438a-4091-adda-82dc1a91cbfe", + "metadata": {}, + "source": [ + "### Start TS map fit" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "814399a6-2a79-4a8f-9ed8-55cc4da60058", + "metadata": {}, + "outputs": [], + "source": [ + "# here let's create a FastTSMap object for fitting the ts map in the following cells\n", + "ts = FastTSMap(data = data, bkg_model = bkg_model, orientation = grb_ori, \n", + " response_path = response_path, cds_frame = \"local\", scheme = \"RING\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "a45a9e06-edd7-4b4e-9b64-c65863789f34", + "metadata": {}, + "outputs": [], + "source": [ + "# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source spectrum.\n", + "# note that this nside is also the nside of the final TS map\n", + "hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)" + ] + }, + { + "cell_type": "markdown", + "id": "1a9166fa-c2f2-4a76-93a2-d29bade03075", + "metadata": {}, + "source": [ + "Below is the actual parallel fit:\n", + "- In default, the maximum number of cores it can use is `max_number-1`. You can also customize the number of cores you want to use by the `cpu_cores` parameter.\n", + "- energy channel is `[lower_channel, upper_channel]`. Lower channel is inclusive while the upper channel is exclusive\n", + "- This might take long in a personal computer" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "c3188898-ee3f-4100-b2da-340333f22756", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have total 56 CPU cores, using 55 CPU cores for parallel computation.\n", + "The time used for the parallel TS map computation is 1.896751336256663 minutes\n" + ] + } + ], + "source": [ + "ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [2,3], spectrum = spectrum, ts_scheme = \"RING\", cpu_cores = 56)" + ] + }, + { + "cell_type": "markdown", + "id": "f7bfce3f-e64d-4b22-b74e-2a697ed6e5a3", + "metadata": {}, + "source": [ + "### Plot the fitted TS map" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "940d989a-5671-4de3-962c-e49556240c5f", + "metadata": {}, + "outputs": [], + "source": [ + "# This the true location of the GRB\n", + "coord = SkyCoord(l = 93, b = -53, unit = (u.deg, u.deg), frame = \"galactic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "faa698a0-0ffa-4b1b-8b79-b66af1ff800f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeZhsVXno/7eqxzNzzgEkgEocQSQqKoM4MIjG2dwYR4jmuUaj3sTc+MSouYkZjSa5mR6HqzEqRoEoSRyiGJUAMqgoiopD8CcCiszDGfv0VPX7o2tV71p7rb3X8O7q6uL7eZ48hj7dq3fXsLu61vru1ep2u10BAAAAAAAAAAAYU+21PgAAAAAAAAAAAIAmMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAHAf02q1Sv/3oQ99KPjrP/ShDznHwNo79dRTS/fLK17xirU+LPmjP/qj0nEdddRRa31Y8OD+AgAAwDhiMgQAAAAAAAAAAIw1JkMAAMBIueGGG5zVQfH/jjvuuEa+90033SQTExOV35vV0QAAAAAArD9MhgAAgHXn2muvlauvvlp93HPOOUc6nY76uAAAAAAAYG0xGQIAANalc845Z12MCQAAAAAA1h6TIQAAYF0677zzZHFxUW28yy67TH70ox+pjQcAAAAAAEYHkyEAAGBduvPOO+XTn/602ngf+tCH1MYCAAAAAACjhckQAACwLuzcubP0Ma3LWu3fv18+/vGPD3xscnJStm3bpjI+MCyXXHKJdLvdgf9jog+x/uiP/qj0OLrhhhvW+rAAAACALEyGAACAdeF5z3uebNy4ceBjF154odxxxx3ZY//rv/6r7NmzZ+Bjz3jGM+Sggw7KHhsAAAAAAKw9JkMAAMC6sGXLFvkf/+N/DHxscXFRPvrRj2aP/cEPfrD0sVe84hXZ4wIAAAAAgNHAZAgAAFg3Xv7yl5c+lnsJoBtvvFEuueSSgY/t3LlTnv3sZ2eNCwAAAAAARgeTIQAAYN04/fTT5f73v//Ax771rW/JNddckzzmOeecI91ud+BjL3nJS2R6ejp5TAAAAAAAMFom1/oAAAAAQrXbbfnVX/1V+fM///OBj59zzjny6Ec/Onq8brcrH/7wh0sfH9Ylsm6++Wb51Kc+JZdffrl873vfk5tuukn27t0r3W5XNm3aJEceeaQcffTRcsopp8hzn/tcedCDHjSU44KO73//+3LhhRfKlVdeKdddd53cfPPN/ft38+bN8oAHPECOPfZYefKTnyy/9Eu/JIceeuhaH3Klb37zm3LBBRfIZZddJtddd53cc8890mq1ZNu2bfLgBz9YHvvYx8pznvMceepTnyrt9nDXXC0uLspFF10kF198sVx99dVy/fXXy5133in79++X6elp2b59uzzoQQ+Sxz3ucXLmmWfKmWeeKVNTU0M9RqzqdDpy+eWXy0UXXSRXXXWV/OhHP5Lbb79d9u3bJ5OTk7Jt2zY56qij5Pjjj5fTTz9dnvWsZ8mGDRvW+rABAACw3nUBAABGyI9//OOuiJT+7/Wvf3232+12f/jDH5b+7dBDD+0uLi5Gf69LL720NNZxxx3X//cHPvCBpX9/4AMfmP0zXnXVVd1nPetZ3Xa77fxZff/3lKc8pXvRRRdlf3/X2B/84AeDv/6DH/ygc4w6T33qU0tf88IXvjD6+K+77jrvbfS2t70terxzzz23NM7ExER3165d0WMtLy93zzvvvO7xxx8fdd9OTEx0X/KSl3Svu+666O9Z9JSnPKU09stf/vKsMa+++mrnuL7/e+hDH9r92Mc+NjDGW9/61kaeS3fccUf3zW9+c3fnzp1Rt/ehhx7affvb396dm5vLPoZUL3rRi0rHNTU11b3jjjtUv8/jHve40vc5/PDDu0tLS96vaer+2rNnT/cd73hH94gjjoi6v7Zu3dp905ve1L3nnnuivt/CwkJ348aNpfHe/e53Rx/7+973Pu/xXXnlldHjvepVryqN8/jHPz56HAAAAITjMlkAAGBdechDHiKnnHLKwMduv/12+cxnPhM9lmu/Ede+JFoOHDgg/+t//S858cQT5TOf+Yx0Op2or7/00kvljDPOkJe97GWya9euho6yOWeccUbpYxdffHHpMmV1LrroIu+//dd//Vf0cbnGe/zjHy9bt26NGue73/2uPOEJT5CXvOQl8o1vfCPqa5eXl+W8886T4447Tv76r/866mub9I53vENOPPFEufTSS4O/5oc//KG88IUvlLPPPlsWFhYaO7Z/+qd/koc+9KHyF3/xF3LXXXdFfe3tt98ub3rTm+RRj3qUXH311Q0dYTXXuWZxcVHOO+88te/xve99T77+9a+XPn722WfLxMSE2vcJ8alPfUqOPvpo+b3f+z25+eabo7529+7d8va3v10e8YhHyOc///ngr5uampInPelJpY9XnUN8hnHecZ0jAQAAoIfJEAAAsO643kQ855xzosbYt2+ffPzjHx/42OTkpLzsZS/LOjafu+66S57ylKfIu971rug3/23nnnuunHTSSXLjjTcqHd1wuN7ou+OOO+Tb3/521DhVb0peccUVMj8/nz3e6aefHjXGv/3bv8mJJ54oX/3qV6O+zjY/Py+/+7u/K694xSuiJ8u0/eZv/qa86U1vkqWlpaSv/8hHPiLPe97zkr/eZ3FxUV7+8pfLK1/5Srn33nuzxrruuuvkSU96knz605/WObgIT3va0+Tnfu7nSh+PPZdV8Y3V5KSvy1ve8hZ53vOeFz0JYrvlllvkmc98przvfe8L/hrfJGzM86vb7crFF1/s/ffYyZUbb7xRfvSjH5U+HnveAQAAQBz2DAEAAOvOi170Inn9618vc3Nz/Y995jOfkbvuukt27twZNMYFF1wge/fuHfjY05/+dDnssMNUj1VkZeLlaU97WmUtMDs7K8cdd5wcfvjhMjk5KTfffLN897vflT179jg//wc/+IGcccYZcuWVV478XhPG8ccfL9u2bStVLRdddJE86lGPChqj2+3KJZdc4v33ubk5ufLKK+W0004LGu/HP/6x3HDDDaWPx6zQPvfcc+VXf/VXZXl52fs5hx12mBx99NGyc+dOmZyclNtuu02uvfZaufPOO52ff84558imTZvkXe96V/BxaPrzP/9zeec73+n991arJccee6zc//73l61bt8ott9wi//3f/y233XbbwOd97nOfk9/93d+Vbdu2qRzX4uKivOAFL5BPfepT3s9pt9vyiEc8Qo444gjZsWOH7Nu3T2655Ra55pprZHFxsfT5c3Nz8oIXvEAuuugieeITn6hynCEmJibkrLPOkr/6q78a+PjVV18t3/3ud+XYY4/NGn95eVk+8pGPlD5+wgknyDHHHJM1dozXvva18p73vKfycx72sIfJAx/4QNm5c6fMz8/LbbfdJt/85jcHzvHG8vKy/MZv/IZs27ZNXvSiF9V+f9cEw9133y3XXHONHH/88UE/w7XXXiu3336799+vvPJKmZubC97XxFWSzMzMDPXxBwAAcF9EGQIAANadrVu3yi/90i8NfGxhYUHOPffc4DFcl8hqauP0N7zhDd6JkPvf//7ygQ98QG677Ta56qqr5BOf+IRccMEF8uUvf1luu+02+Zd/+Rc5+uijnV/7ox/9SF75ylc2csxNmJiYkFNPPbX08ZhV1d/61re8Ewgp47k+d3Z2Vp7whCcEff1ll10mr3jFK5wTIdu2bZPf+73fkx/84Adyyy23yMUXXywXXHCBnH/++XLxxRfLbbfdJldccYU84xnPcI797ne/Wz75yU8G/yxavv71r8tb3/pW579NT0/LH/zBH8iPf/xj+c53viOf/exn5fzzz5dLL71Ufvazn8kXv/jF0pvPf//3fy+XXXaZyrH95m/+pnci5Bd+4Rfkwx/+sNx5553yne98Rz73uc/JueeeK5/85CflqquukjvvvFM+8IEPyAMe8IDS1y4sLMhZZ50lu3fvVjnOUL5zzoc//OHssb/4xS/Kz372s9LHh1mFvP3tb/dOhDzoQQ+Sd73rXf2JtM9//vNy3nnnyb/927/JFVdcIXfddZdccMEF8ohHPKL0td1uV1796lfLTTfdVHsMj3nMY2T79u2lj+eeJ4rm5+fliiuuyBrvpJNOYpN4AACAhjEZAgAA1iXXm4iuCQ6XG264obQHwo4dO+S5z32uwpEN+tznPifvfe97nf/2K7/yK3LttdfKr/3arzn3p9iwYYO88IUvlG9+85vy6le/2jnGpz/9afmnf/on1WNukqu4+NKXvuRcse8S8gZm7pucT3jCE2R2drb2a3ft2iUvfvGLncf+zGc+U370ox/J29/+dnn4wx/u/Pp2uy1PeMIT5LOf/ax89KMflenp6dLnvPKVr6xcka5teXlZXvWqVzkndx70oAfJ17/+dfmTP/kTeeADH1j693a7LWeccYZ88YtfHNj3pNvtJu2pYPv4xz/ufC5NT0/LP/zDP8i3vvUtOfvss51vfIusTKL+2q/9mvzgBz+QF7zgBaV/v/HGG+U3f/M3s48zxiMe8Qh53OMeV/r4Rz7ykcrSKITrElkzMzPy4he/OGvcUF/96lfl93//90sfb7Va8uY3v1muu+46ee1rX+ut8TZs2CC//Mu/LN/+9rfl9a9/fenfd+3aJb/6q79aexztdttZimlOhsSO53o+sF8IAABA85gMAQAA69IZZ5whRx555MDHvvGNb8h3vvOd2q8955xzSvt2vOQlL3G+GZ2j0+nI6173Oue/PfvZz5Zzzz03aJPu2dlZec973uN94+8Nb3hD6ZJfo8p1yZq9e/fKVVddFfT19puIU1NT8tSnPnXgY1/72teCV/i79gEIvW7/W97yFufK+1e+8pXyH//xH8GXbBMReelLXyr/+q//Kq1Wa+Djd955p/z93/998Di53ve+98k3v/nN0scPOeQQ+dznPifHHXdc7RitVkve8IY3yNve9ja149q7d69zomJ6elouvPDCqEmMDRs2yMc+9jHnJZb++Z//Wa677rqsY43lmtg1lU2q3bt3yyc+8YnSx5/znOfIjh07kscN1el05Nd//ded+3Kcc8458ra3vS14A/eJiQn5u7/7O/nd3/3d0r9deuml8oUvfKF2DNdz+rLLLpOFhYXar11eXpYvfelLAx878cQTS7dj6GTI97//fbnllluCjhEAAAC6mAwBAADrUrvdlrPPPrv08brNh7vdrvMSNE1cOuazn/2sXH/99aWPH3744XLeeefJ5GT49m2tVkve//73O6/1v2vXLpXL6gzDscce61wJHvJG4uLiovNNSbvoWV5eLpU/Ltdee21pjwuRsBXaN9xwg/zjP/5j6eOnnnqqvOc97ylNaoR49rOfLb/zO79T+vj73vc+OXDgQPR4KXyXNHrf+94nD33oQ6PGevOb3yy/+Iu/qHFY8g//8A/O++pd73pX0pvIrVZL/vEf/1F+/ud/fuDj3W5X/uEf/iH5OFP4JmJzNlL/2Mc+5txvY1iXyDr//POdE9O///u/7zxvh3jb294mJ554YunjIZOFruf0/v375Stf+Urt17omV88888zSJf++8Y1vyL333ls7nutct3nzZjnhhBNqvxYAAAB5mAwBAADrlmtF9Uc/+lFZWlryfs2XvvSl0gTFscceK49//OO1D8+7+fU73vEO2bx5c/R4U1NT3jf+3v3ud0ePt1Zcb16HTIZcddVVpQLmjDPOcL7RmXpZmy1btjgvW2R717veVbo81sTEhLzzne+MmuSy/Z//839Kj40777xTPvaxjyWPGeqrX/2q8w3s0047TZ7//Ocnjfk3f/M3WbeHiMjS0pJzM/eTTz45a8+cLVu2yFve8pbSx8855xzZv39/8rixduzYIc95znNKH//EJz6RvIeJa3L0fve7n9rkVJ2//du/LX3sqKOOkj/4gz9IHnNyclL+7M/+rPTxz372s3LDDTdUfu3RRx8thx9+eOnjqecJ13lneXlZLrnkkqTxnvSkJ8nU1FTt1wIAACAPkyEAAGDdetjDHiYnn3zywMduvfVW+c///E/v13zwgx8sfayJ1dJ333238ziOOOIIeelLX5o87plnnimPecxjSh//7ne/K9/61reSxx0m12TIV77yFdm3b1/l1/mus/+IRzxCfu7nfm7g4yFvcrrGe8pTnlL75n2n05F//ud/Ln38l3/5l+XYY4+t/b5VDjroIHnZy15W+rjGnht1PvrRjzo/7qpVQh1zzDHeDeJDff7zn3deVijnjXXj7LPPLl2qLuaybVpc56C5uTn5+Mc/Hj3W9ddfL5dffnnp4y972cuyJ6ZCfO9735Ovf/3rpY+/8Y1vlJmZmayxn/rUp5b24Ol2u0GTEK7zTsilyOzn3oYNG+Tkk09OmoTtdDrOao39QgAAAIaDyRAAALCuxWykvnfvXrngggsGPjYxMZF82ZYqX/nKV0r7koisXBKn3c57CeY73i9/+ctZ4w6L642/hYUFueyyyyq/zn6jcdOmTXLSSSeJSPmNTt8lsAzfpbRCLrn09a9/3Tm2aw+KFK7Nnq+88kqVsau4vseOHTvk6U9/eta4rsmdGP/xH/9R+tiOHTvkzDPPzBpXZGVD8Sc84Qmljw/j9i56xjOeIYceemjp4ymXyvrwhz/sPPcM6xJZrvtrYmLCuWl9itTnh+u8c9VVV8mePXu8X3PgwIHS2E984hNlZmZGHv7wh8sRRxwx8G91kyHf+MY35J577il9nP1CAAAAhoPJEAAAsK696EUvktnZ2YGPffrTn5a777679LkXXHBBqT54+tOf7tzDIpfvWvTPetazsse298io+56j5qijjpIHPehBpY9XvZE4NzdXmuwpXlrG9UZnVU3x9a9/XXbt2lX6eMgKbd9+JBpvzouIPPaxjy197Ic//KHcddddKuO7zM/Py7e//e3Sx88444zsy/c84xnPSNpDxXDd3qeddppa5eC6vYf9XJqcnHROGl1++eXy4x//OHgc355Ij3nMY+QXfuEXso4xlOv+evSjHy2HHHKIyvip95frub20tFTah6joiiuuKO3XUxzHHtO3ObrhOsft3LlTHv3oR3u/BgAAAHqYDAEAAOvatm3bSvsZzM/Py/nnn1/6XFcx0tRqaddlYkRE5U2vBz3oQaVL+4isbPS7XsTuG3L55ZfLwsLCwMeq3pSsG881UXLIIYfIcccd5/0a45vf/GbpY0ceeaRs2bKl9mtDHHzwwc6P//SnP1UZ3+Xb3/52aQ8UEVF5A33r1q1y1FFHJX3t3Nyc/Pd//3fp48ccc0zmUa1y3d4/+clP1MYP5arcfJMbPpdddplz8mRYVYiI+/kxCvfX/e9/f3nIQx5S+njseUL7vHPaaadlTRYCAAAgXPMXjQUAAGjYK17xitLkx4c+9CF57Wtf2//vH//4x6UVwNu3b5fnPe95jRyTa3XwAx7wADnooIOyx261WnLcccfJFVdcMfDxW2+9NXvsYTnjjDPk/e9//8DHrrnmGrnrrrtk586dpc/3bWJsPOABD5AHP/jB8qMf/ajya6r+LfRNyR/+8Ielj83PzzvfzE7husSRiDgvr6PFN9ESMjkU4rjjjosqHIzrr79elpeXSx+/6KKL1CYsXPdnk7e1zy/8wi/Iox/9aLnmmmsGPv7hD39Y/vAP/zDosem6rNbU1FT2pcpC7du3z3nu+9a3vqX2/HCNv2vXLul0OrWXIDzjjDPk//v//r+Bj8WcJ7Zv3y7HH398/799k7pnnXVW6eMLCwvOvVy4RBYAAMDwMBkCAADWvTPPPFOOOOIIufnmm/sf+9rXvibf+9735BGPeISIrLxJaL/J/OIXvzh7Q1+fe++9t/QxrcvEiIhzf4Fdu3ZJt9tdF6uMTz/9dGm1WgP3SbfblYsvvti5t4C9otp1aZkzzjhjYDLkhhtukOuvv750Sa75+XnnHgOhmxgXH2fGHXfckbS/Q4wm36B3PV5F/JVKrNRxXLe1yMr+OE3ukbMWkyEiKxO7v/3bvz3wMbMh+pOe9KTKr/VtuP7MZz5T7X6s47u/vvOd78h3vvOdxr5vt9uVXbt2yfbt2ys/74wzzpD3vve9pWO74447Sufn3bt3lwq/U089dWDC5cgjj5SHPexhct111/U/5ptc+cpXviL79+93HhMAAACGg8tkAQCAda/dbjs3FTdvTvsuNaO1UtnF9Waq69JWqbZt21b62PLycuVmwKPk0EMPlWOPPbb0cdcbiffee6984xvfGPiYq+IIvWTNlVdeKXNzc6WPh67Qdu01Mgy7d+9ubGzfz6T1mE0dZxxv6yovfelLnXu0hFwq69///d+dz/9hXiJrre4vkbD7zHXe6Ha7zstXXXrppaUqyXWOsT/2k5/8xFkbuc5FZjIFAAAAw8FkCAAAGAuuiY2PfOQjsry8LJdccknpEj3HHHOMnHDCCY0dz969e0sf27Rpk9r4vrHWy2SISPjkxSWXXBL0pqTrjU7XeK6PPeABD3DuJ+Bib6g8LL7LZ2lwPV5FRDZu3Kgyfupjf61u67VyyCGHyDOf+czSxz/2sY85J/CKXGXSwQcfLM9+9rPVjq/OWt5fIc+Pgw8+2LkPTuh5ImQyJGY8LpEFAAAwXEyGAACAsfDwhz9cTjrppIGP/exnP5MvfOELQ9043di8eXPpY65LpKTat29f8PcdVa43EX/4wx+W9oKo28TYOOSQQ0pvdP7Xf/1X6U1S13gxb0pOTEwEf+564Zus0HrM+h6vdcbxtq7jOjft3r1bPvGJT3i/5uabb5YvfvGLpY+/5CUvcZYmTVkP91fo5IV9njj88MPl6KOPLn3eaaedVtqrxB5v3759ctVVV5W+lskQAACA4WIyBAAAjA3Xm4jvfOc75V//9V8HPjYxMeG8rJYm17XrNS+94xqr3W6rXoqraU95ylOcb57ab+rabyze//73l4c+9KHOMe03Ou+4446BvQr27NkjX/va12q/ropr4uCEE06Qbrfb6P81eVm3gw46yPlxrcds6ji+SZp3v/vdjd/ea+XZz362c4+PqktlfeQjH5FOp1P6eJOPGRff/fXGN76x8fvrqKOOCjpG1wTE9ddfLzfccEP/v2+//Xa59tprBz7Hd47YsWNHaf+iiy++eOAx9KUvfUkWFxdLX8t+IQAAAMPFZAgAABgbL37xi2V2dnbgY5/5zGdKq9LPPPNMOfzwwxs9Fteby3fccYfa+Lfffrvze66HzdONrVu3yuMe97jSx4uTH7feeqt873vfG/j3qjcQXW90Fse79NJLZWlpKejrfA477LDSx+6+++7grx9FvsmQO++8U2X81HFct7XI+r+9q0xNTclLXvKS0se/8IUvyC233OL8Gtclsh75yEfK8ccfr358VdbD/fXkJz9ZJicnSx8vTsK6irKY885dd90l11xzTf+/XeXJQx/6UDnyyCNDDxsAAAAKmAwBAABj46CDDpLnPe95tZ83jNXSP/dzP1f62E033aSy0r7b7Q7UDobvjchR5nqDsXh5mtBLZBmuNzqLb0S6xjv66KOjJsd+/ud/vvQxzYmutXDEEUc4P26vjk/leryGcN3WIuv/9q7jOkctLy/LRz7ykdLHv/a1r8n3v//90seHuXG6ceihhzr3mRml+2vLli3O/aLqzhNV5526S2/FjgcAAIBmMBkCAADGSt1Ex0EHHSTPf/7zGz8OV/HQ7XYHVgun+vGPfyy7du0qffzxj3989tjD5ioybrnlln4NErvpsOuNzi996Uv9GkRjE2P7kjgiIrt27ZIf/OAHUeOMkkc96lHOvSW+9a1vZY+9Z8+egUsQxTj00EOdE4tf+cpXMo9qtB1//PFy3HHHlT7uulSWqwqZmJiQs846q5Fjq9JqteRRj3pU6eNf/epXh34sVVzP+WINYp8nHvawh1VWHE960pNKzx8zAWJXIlXHAAAAgGYxGQIAAMZK3SWwXvziF8vMzEzjx2Fv5m585jOfyR7705/+dNT3HGWnnHJK6dJmIqtvRtorqo855pjaisNecW32CbH3D/F9fp0nPelJzo9fcsklUeOMkpmZGeeb7xdddJFzr4MYF154YdYeHK7b++qrr5a9e/fmHNbIc5Ud1157rXzjG9/o//fCwoKcf/75pc97+tOfvmalmOv+uvXWW0dqstD1nDf7hNx4441y/fXX135+0aZNm0rnX7NPiL1/iMjKpNFpp52WePQAAABIxWQIAAAYK3Urood16ZiTTjrJuX/Heeedl705s+tSOSIiJ598cta4a2F2dlae8IQnlD5+0UUXlTY1FgmbuPBdssb1pmS73Y5+U/L000+XzZs3lz7+T//0T1HjjBrX/XD33XfL5z//+axxzz333Kyvd136bmlpST70oQ9ljTvqXvaylzn3tiiWIJ/5zGfkrrvuKn3OsDdOL/JdqvD973//kI/E7+STT5YNGzaUPn7RRRc567GU886+ffvkq1/9qvMSWY961KPk4IMPjjhiAAAAaGAyBAAAjJ1Xv/rV8oY3vKH0f3/4h384tHpix44d8ou/+Iulj//kJz9xruQO9V//9V/y9a9/vfTxRz7ykc7L06wHrsvFXHLJJc434UPelDz55JNL+xb43uR89KMfLdu3b4842pWK4sUvfnHp41//+tflwgsvjBprlLzsZS9zfvzv/u7vksf87//+b/nsZz+b/PUiK2+uuzZ4/8u//EtZWFjIGnuUHXbYYfL0pz+99PHzzjuvX+u4LpG1fft2ee5zn9v48fmcfPLJ8rCHPaz08f/3//6f3HnnnWtwRGUzMzNyyimnlD7uOk+ETpj6JmE1Ls0HAAAAHUyGAACAsfOgBz1I/vqv/7r0f3/8x3881ON43ete5/z4G9/4Rtm3b1/0eEtLS/Jbv/VbUd9rPXC9ibhr1y75m7/5m4GPtdttOfXUU2vHm56elic+8YkDH/vyl78sn/vc54K+d4jf/u3flna7/FL6Va96ldx6661JY661k046SR75yEeWPv7FL37Re2m2Or/zO7+TfZmtTZs2yate9arSx3/yk5+s68d9CFfJdscdd8iFF14od955p3Oi6UUvetFQLgXo02q15Ld/+7dLH9+3b5+cddZZsry8PPyDcnA99y+99NLS5MWjH/1o2bFjR+14J554omzatGngYx/96EfluuuuC/reAAAAaB6TIQAAAA15xjOeIQ9+8INLH//pT38qZ599dvSbgq9+9avlu9/9bunjBx10kJx99tnJx7nWHv/4x8vWrVtLH//hD3848N+PfexjnYWAi73yen5+Xm666abazwt17LHHyq/92q+VPv7Tn/5Unve858kdd9yRNK5tYWFBPvCBDwxtRf1rXvMa58df+cpXlvZRqPOXf/mX2VWI8eY3v1l27txZ+vj73/9++ZM/+ROV7yEictNNN43U5bee+9znOsulc845R84991znRNNaXiLL+PVf/3V5+MMfXvr4f/7nf8prXvMaWVpaUvk+d955p7znPe9J+lrXhMSePXvktttuq/08l6mpqdJ+KfY5TERkcnJSnvzkJ0ccKQAAALQwGQIAANCQdrst7373u517h/z7v/+7nH322bJnz57acebn5+W1r32tfOADH3D++9/+7d+WViSvJxMTE0FvDsaspg75XNeblzH+6q/+So488sjSx6+66ip5zGMe49wrINRPfvIT+Yu/+As56qij5H/+z/85tM3CX/WqVzkvt3b77bfL0572NOdknK3b7crf/d3fyZve9Ca14zrooIO8b3q/9a1vlec///mlN7FDdbtdueKKK+Sss86SBz/4wSM1GeK7JNt//Md/OG+Po48+Wk488cRhHFqlyclJ+eAHPygTExOlf/vHf/xHOfXUU6Mn14quueYaed3rXicPeMAD5B3veEfSGMcff7xs27at9vO0zzsnnHCCc88hAAAANI/JEAAAgAY97WlP8662P++88+S4446Tc845xzkpcuDAAbngggvk+OOP974R/PznP38kVoLnSt0Y3ef444+v3QvEdVmbGNu3b5ePf/zjzo2Yb775ZjnjjDPkiU98opx//vly++23V461Z88eueyyy+Qd73iHnHjiifLABz5Q3vKWt8gtt9ySfHwpJicn5X3ve5/zEmA/+tGP5LGPfay89a1vlZ/85Celf+90OnLxxRfLmWeeKf/7f//v/mb1rVZLZY+EX/mVX3FefklE5JOf/KQcddRR8hu/8Rty+eWX1+4lctNNN8knP/lJed3rXidHHHGEPPGJT5SPfvSjasWCJtfze2FhQX7wgx+UPu66rNZaOfnkk+X//t//6/y3K664Qh72sIfJS17yEvnCF75Qe9nAW2+9VS688EJ54xvfKA9+8IPlMY95jLz73e+Wubm55OObmJioveze9PR01IRpyDmK/UIAAADWzuRaHwAAAMC4+6u/+iu56qqrnBuf33jjjfKKV7xCXvOa18hxxx0nhx9+uExOTsrPfvYzufbaa2X37t3ecR/ykIfI+973viYPfWjq3kT0bXjsY/YX+fd///fk7xnipJNOkgsuuEBe8IIXON+YveKKK+SKK64QEZGHPvShcuSRR8qOHTtkZmZGdu3aJffee6/ceuutcv311/cnD9baCSecIG9961vlrW99a+nf5ufn5U/+5E/kT//0T+W4446T+9///rJlyxa59dZb5Qc/+IFzv5Tf+q3fkoMOOiirlDH+5m/+Ru69915nvXHgwAF573vfK+9973tldnZWHvnIR8rOnTtlx44dsrS0JPfee6/ce++9cv3118tdd92VfSzDcsIJJ8gxxxwj3//+9ys/r91uy1lnnTWkowrz+te/Xu6++27npcyWl5fl/PPPl/PPP18mJyflkY98pBxyyCH9/TnM/XXjjTc2tg/PGWecIZ/85Ce9/37SSSfJxo0bg8d79KMfLTt37qx8fLFfCAAAwNphMgQAAKBhGzdulP/8z/+UZz7zmfLVr37V+Tlzc3Ny1VVXBY95zDHHyOc+9zk55JBDtA5zTT3ykY+UQw891FtQPOEJT3AWGFXOOOOMyskQrRXaz3zmM+ULX/iC/Mqv/EplyfHDH/7QuYfAKPrDP/xDufXWW71FUrfblW9/+9vy7W9/u3KcX/zFX5S//uu/lj/7sz9TOa5WqyUf+MAH5Mgjj5S3ve1t0ul0nJ934MAB5+TjevXyl7+89rJjZ5xxhvOybWvtj//4j+Wwww6T//2//7fMz887P2dpaUmuueaa4R6Y1J8DYicuWq2WnHbaaXLBBRc4/33Dhg1y8sknR40JAAAAPVwmCwAAYAh27Nghl156qbzuda9z7iES46Uvfal85StfkQc84AFKR7f2zJuIPimrqau+ZuPGjXLSSSdFj+lzyimnyLe//W0566yzsu/foqmpKe8m2k1797vfLX/+53/u3PchxMte9jL55Cc/KZOTuuuvWq2W/Omf/qlcdNFF8ohHPEJ17Pvd737y3Oc+V3VMDWeddZbz0mVFo3y5vNe85jXy1a9+VfU5J7Kyl8wLX/jC5K8/9thj5bDDDvP+u/Z555RTTpGZmZnoMQEAAKCDyRAAAIAhmZmZkXe+853yla98RZ71rGfVvrlpO/XUU+Wiiy6Sj370o7J169aGjnLtVL2JmFJxHH300XL44Yc7/+2JT3yiTE9PR49Z5eCDD5Z//ud/lquvvlrOOussmZ2dTRpnZmZGTjvtNPnbv/1bufnmm+WTn/xk0EbPTXjLW94iX/7yl6P2TXjIQx4i//Iv/yIf+chH1G/jolNPPVW+9a1vyTnnnCOPf/zjk8c57LDD5KyzzpJPfepT8tOf/lR+53d+R/EodRxxxBFy5plnev9969at8ku/9EtDPKJ4j3rUo+TKK6+UT3ziE3L66adHn/+M7du3yy//8i/LueeeK7fccov85V/+ZdZx+c4tmzdvlhNOOCF6PO3zGAAAAPS0uqNycWIAAID7mJtvvlk+8YlPyOWXXy7f+9735Cc/+Yns3btXut2ubNq0SY444gg5+uij5ZRTTpHnPe958uAHP3itDxkR9u3bJ5///OfliiuukGuuuUZuuOEGuf3222Vubk7a7bZs2bJFtmzZIocddpg8/OEPl6OPPlqOP/54edKTnhR9SbBhuPrqq+WCCy6Qyy+/XK677jq55557pNVqybZt2+TBD36wPPaxj5XnPOc5cuaZZya/0Z3jxz/+sVx44YVy1VVXyQ9+8AO56aab5N5775X5+XmZnZ2VrVu3ytatW+Woo46So48+Wo455hg55ZRT5Ljjjhv6sWJlU/TPfvaz8pWvfEW+973vyY033ij33HOPzM3NyczMjGzZskW2bt0q97///fv314knniiPe9zj1uTxBQAAgPWPyRAAAAAAAAAAADDWWFIDAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKwxGQIAAAAAAAAAAMYakyEAAAAAAAAAAGCsMRkCAAAAAAAAAADGGpMhAAAAAAAAAABgrDEZAgAAAAAAAAAAxhqTIQAAAAAAAAAAYKxNrvUBAAAAAE064ylvW+tDKGnPL631IZRM7Dmw1ofgtHjw5rU+hJKLLn3LWh8CAAAAgEiUIQAAAAAAAAAAYKy1ut1ud60PAgAAAPcNo1hp5BjFwiPVqJYhqUaxKMlBjQIAAADkoQwBAAAAAAAAAABjjTIEAAAAfaef/hfJX9taXvuXlRN7F5K/tn0g/WtFRJa3zGZ9vZbJO/ekfeFieuXS3bwh+Ws1tfbOZX19d+um5K9d3LEx63traC8uJ3/tF678A8UjAQAAAEYPkyEAAADrVM7ERQ6NSY+cSYtYuZMcsTQnRZInNlJkTIak0JxAyZ0EiZUzaRJLY5IlZ5IkBxMsAAAAGCVcJgsAAAAAAAAAAIw1yhAAAIA1slZlR4hi/THMiiPVsOuPGHYpMtTaI8aQy5AYdkUy7BIkxjCrkVTF2mStqpEQlCUAAADQRBkCAAAAAAAAAADGGmUIAABAhlOf9nbvv7WXRuNlVmup4/23iX2LQzwSt87Gqcp/X9owUTvG7M27tQ4nWW2tMDU5nAOp0J2d9v5ba26++ouX1r4g6G6Yqfz32p9hCLoL9ZVS5/6HVv57e27tn5dVpdDyjtGoXxa3+h/Pl3zu94Z4JAAAAFgPKEMAAAAAAAAAAMBYowwBAAD3eVV1RyztGqSq6ojVVAVSV3aECilA6jRViKjuUaFciFTVHjFUqwrliqSuCInRVD0SUoTUqStGQjVWlijuK6Ndl1RVIrGoSgAAAMYTZQgAAAAAAAAAABhrlCEAAGCsaFYeIWJKEM3Ko0pMAaJVdYTSqD9ixJQiqvVHlYgyRKv6CDH0/TYi6hHNMqRKzG2gUYLE0KpGQkXVJYrFSJWYmkSzFAlBTQIAADD6KEMAAAAAAAAAAMBYowwBAAAja9iVR4iJA7p7IWhojeCruWEXIFVMHTK08iNErw4ZZvlRZ+hlSJ1eOTKsKiSEuY2GXYVUGXYxEqK9e4Seaz0Hjtq+1odQQk0CAAAwXJQhAAAAAAAAAABgrFGGAACAoXrqk/7c+29rVRPM/mxP5b8v7tg4pCMRWTiouhSYuWf4K9K7k63qf2/7/70zUf212jb84Fb/P7aGeyzG0hE7vP82sfvAEI9ERO64x/tPrY2z1V/bHp11VN2IfVc0tfb776/uYsQeG03btqXynztbNwzpQFa199WUR8vD2VNJRGTp4M3V/755uHspGe0F/23wX//15iEeCQAAwHhiMgQAAGSrmuAIpTURUjexEUJr8qNuYiOE5uRH3aRG7ddXTHrU0Z4UqZz0qNPApEjVhEeVRiZDKiY8qtROhlQZ84mSqkmQOutpkqSO5iRK7eRICKUJlLrJkaAxlCZQqiZEQjFxAgAA4DY6f7UAAAAAAAAAAAA0gDIEAABU0qg+XGJKEI3ao0pMCaJRe7jEFiC5lUft+BkVSJWYQiSr/ggRUYiklh91ksqQxPKjTlYZUmedliM5RUiIkahGMmuROrE1iUox4hJRkWiUIpXjR1QkGqWIC/UIAAC4Lxqdv0oAAAAAAAAAAAAaQBkCAMB9UFO1RxW7BGm69qhilyBN1R51ijVI06WHT1MFSJ1iIdJ4AVKnV4g0VX+EKBUiDdUfVRotQ6qMYDXSdBFSexz3gWLEp1iSNFaJ1LEqkqZLkSp2RdJUKVKFigQAAIyL0fnLAwAAAAAAAAAAoAGUIQAAjJHTT/+Lgf9uLw5/BamIyMTe1dW8rcXlNTmGxUM2Dfz3wpbwa7RrmZwb/NnbS8O9P+a3D/7MLcddMbV3aUhH0zsG6zE5fcMdQ/3+IiLLPzdYgHQj9jHRMgoliIhIa3r1MdLdPFhMtQ6Mxqp8idjjQ0vn9jsH/ru9/aChH4NMDK5b667V/VE8hsN2Dvx3ay5ur6Nsk9ZeU2vwp+zytsE9UNaqrpvYt3rbL26P25dFS8v6nXbRl35/TY4DAAAgFGUIAAAAAAAAAAAYa5QhAACsE3b1UaWpIqRYfFRpqgaxa48qTZUgdu3h0mQBYtceVVwliE9ThYhdgrg0WYfYFUiVpgqRUgXi0lAZUiw/6thlSO3YTZUKdhni0lAtYhchVRqtRSbq16yNYilSpdGKxC5GXBr6s9cuRSoPoaGKpFiJVGmqILELkSrUIwAAYC1RhgAAAAAAAAAAgLFGGQIAwAiIqT6qpBQhobVHiJwiJKb6cMkpQUJqjzo5NUhM7VElpgTxySlEQiqQKjmFSEwBUielEAmqP0JkFCIxFYhLbBniPIacWiGkCAmRUI3EFCF1soqRgCKkylrXIjGlSJWsiiSkEqmT8SdyTCni/NYZ9UhoIRIipSKJKUSqUI8AAICmMBkCAMAQaE12uIRMgGhOeBSFTH7kTnJUCZkA0ZjocKma/NCa3KiiMfFRpWpSJHfSo07VpIjmpIdP1WSI2qSHT8VkSO5kRx2NyZA6lZMlWpMhPhWTJJqTIT6VkySZkyB11nKSRGuCpErl5InG5IhLwJ/RuRMjld8+YNJEc3KkKGSiRGtixIXJEgAAkIrLZAEAAAAAAAAAgLFGGQIAQKYmq48qpghpqvqoYoqQJquPKp3J4a/nMCXIMKoPl6ZLEBdThzRdgvhMzK/BD93T3rdGK+l7ZUjTFYjLMMoQl34t0nQZ4tG55941+b4iIu2Dmy+dXMa9FHHp1yNNlSIVlrfODv17iqzWI00VIlVMPdJkIVKFegQAALhQhgAAAAAAAAAAgLFGGQIAQIAzTntb6WPdVvompyEm9i86P96eT9/gOsaBw8rVx+SBhlfqL7tflnRmhrOS98COwT0FJhaH8zJpear8WNp4u3sl78LWZouBifnyKt6J/cN5zPnu56ndza5qXnZ836m79zf6Peu0du1tdPzOwdvK33O/pxZoN7t+yruPyLBKEcd+HZ077270W7Y2u6u61uxMo9/X6O52PL4arpFaG937THQde7l0N0w3eixGa8E6tzX8e91YOsh9W7Q6w//TvD3nfq0xLEtbmn3Mu27TL17+fxr9ngAAYHRRhgAAAAAAAAAAgLFGGQIAgLjLDx/NIsRXf7hoFiGu6sNHrQbxVB8uTZQgdvVRRasIcRUfPr4SxEerEHGVIN7PVSxEYu5j7TLEVYJ4v/caFSJaZYirAPF+T18Z4qNUjHjLEBfNWsRRhPholyK+MsT5uYq1iLMI8VEqRXxFiI+rFPF+rlJBUipEKj9Zvx7xlSLOb38fqkc0q5GY241yBACA8UUZAgAAAAAAAAAAxhplCADgPiOm/vBJqUJi6g+XlCIkpvzwSSpCIuoPl5QiJKb48EkpQWKqD5/YGsSWUofElCDeMRIKEY3aJ6UQialAnN9zHZUhMRWI83vGliEuCbVIVBnik1KMRJQhLim1SEwR4h0joRSJKkJ8EkqR2CrEFlOJeMdIqEeiShHvIPG/I2IKEee3XINqRGRtypGUakTj9qEaAQBgfaMMAQAAAAAAAAAAY40yBAAwVjTqDxdXEZJbfNTxFSEa1YdLbQmSWX34VBUDGtWHS10JolF9uOSWID51hYhGDeIc11GINLHfS5GvDsktQLzfbwTLkNwCxPs9NcoQn4piRKUMcamrRTLLEB9fMaJRhVRxFSMqRYhLTSWSW4T4aJQiznFr6hGVUsQ5sP93TW4l4v2W96F6RMRdkDR1G1CNAAAw+ihDAAAAAAAAAADAWKMMAQCsK02VHz7tuYZWg/q+X68Gaar+cOkXIQ2VHz77fy7+et85TA3SVPXh0lQJ4mMKkaZKEJspQ5quQYpMGdJUCeL9vkMuREwZ0lQF4vyeTZYhLr1apLEyZESYUqTpMqTIVCKNlSG2XinSVBHi01Qp4vxevXqksUrEY2n7xqF+v7UoR9aqGlneFL+fTA7KEQAA1h6TIQCAkfPUU/6s//93p5uPGCfvPVD6WGem2TdYupODP9filviNaXNN7mv+DZ35natvNCxPNzsJMb3HPQGwsKXZx1B3YvDnahUOY+Ntzb7JO3eI+42c6d01lzzL1Jkc/Jmbnnxpzzf78zhZ9+vUHfsa/Xb2OaEvYRPmGK19hfPfPbsG/3HHQc1+70XPOajhP0+6+wfP+a2Ns81+P9eERMJm5FHfc//cwH+3Jpv9ndaa8bypvKHZ21YKj6HuVmuyaanZ80Z31n0fthYb/r5TqxPBy5uHu6jAaHrCxL406cT+hhcWOM6zyxubf102ee/q8/Rz1/55498PAABwmSwAAAAAAAAAADDmKEMAAENXLD+qaFchrgLEplmEeFd6Fwy7CNGuQYrlh49mEeKrP4o0SxC7+nBpBUQRmoWIrwZx0SpE7BLER6sQGXoJEnA/a5chIecHEVErQwYKEB+7DPFRKka8ZYhN+c8Vuwxx0axFgi5VpVSK2EWIj1Yp4i1CXDQrkYDHTqkUcVGsR3ylSJFmNVIsRHzWohzRrEbsQsRFtRoJ+H7axUixDqlCOQIAgA7KEAAAAAAAAAAAMNYoQwAAjQqtQFxSypCQ+sMlpQgJXtntsB6KkJDqwyelBgmpPlxySpCQ8sMWUoL45BQiMUWIkVOGhNYgtpQ6ZBRLEJ+UQiTnXJFShgRVIC6hZYhLQi0SXIa4JPwJE1KE+KSUIlmblyeUIqFViC2nEokqQ4ycQiTjMRNUitgyypGQUsQlpR4JqUR8hl2PpJQjIYWIT1I5kvj9UqqR0DLEhVoEAIB4lCEAAAAAAAAAAGCsUYYAALLklB8+VUVIavlRpaoKyVrR7TBKRUhO+eFTVYSklh9VqqqQlOqjSk4RYgspRFJKEJ+QQiS1BLGFliFDrUEUHwtVZYj2+UJEKlcoJxcgPjlliE9FMZJVhvhU/GmTU4bYQkqRrDKkKLASSS1DbCGlSFIR4hNSiig+VpIKkSoV9UhqHVKlqhzJKUR8hlmO1FUjOYWIS2U1ovy9RKrLkZxCxIdyBACAMsoQAAAAAAAAAAAw1ihDAADBmqhAiuwipIkKpKhYhDSyortgrYqQJuqPIrsEaaL+KLJLEO36w6ZZg7gUCxHNEsSnWIholSA+phBZT/uBhLDLkKbPHcXVyeoliK2JMsRWKEUaKUOKrD9zNMsQF1OLqBUhdXrFiFYR4lMsRVSLEJ9iKdLwY0S9ErFZ1UgTpUiRXY00UYoUrdV+I9qFiG2gGGn4e9m1SBOFSBG1CADgvo4yBAAAAAAAAAAAjDXKEABAyVOf2CtAmv4N0V5ZbText37/BA1LW1dWm7aWG17u37M8u7KatjPV8Er13YsiInLg0OZXaJqaYGrfcG7DuYNXVrW2G15AbkzMrzzom77P+t9vYeV2bLrSMCb3N3+/Lc+srLWZvWM4z+vljSvPs4khFShTP1upJ7obGl4h3165HVt7m10lPGCqVwDcftdQvl1r29aV/6fT7OOyu7dX87SGtA6s03ss1ux/oKa7cvt1G/7d1pqcHE4ZIiLdxZXfa60NG4by/fqPffP9NzT8+7T3J3jT5Ub/2/W+T9V+I2rfa7r32me62Z+t23sN2VoezvOs1bvP2geG9IJkaeX53Gr4/Gjqpc/94O3Nfh8AAEYEZQgAAAAAAAAAABhrlCEAcB/Vrz9cmvjN0C6vfG+iCDH1h4t2EWLKDx+tusCUHz7aRUhVpdBEEWLqj6JhlSCGKUJs2oWIKUGc36uBOmQYJYjIag3iol2ImBLEpl2GmALER70MabtvwzUpQ3yUi5F+GWJTXgndL0O8B6K8PqzjeSxqlyJd/+3URCVS3Duk/7EGShFThTiPQbsUqXvMOzRSjTj+JG+iGqkaU7saMYWIj1Y50nW8vizSLkdaFW+fNFKNLJWfy43UIkv++59qBAAwTpgMAYAxVznpYdP4jVDzR2lRzmRI1aSHLWcSpG7Co0jjjfO6iY+inEmQmDfecydAXJMdPsO+HFao1Pu2avLD+70yJkVGYfLDpjEZ4psAccmZFKmbACnKmgzxTHxUGcqkSOwbw4mTI95JkCoZb/7VToYU5UyM+CZBnJ+r8Au3YjKk9KkZvwddkyDez82YHKmaBPF+v9TJkYRJkFBZkyURf5rnTpbEfH3OREndpEiRxgRJ3eRIUc5ESdWkiC1rksQxGeKjMklSMSliY5IEALAecZksAAAAAAAAAAAw1ihDAGCMRFUgLqG/ESJW3bnEFCExBYgtpgiJKUBsMdVATPnhE1KEaFxyKaYIiak/bKNag9hi7ueUIqT/fSLuu1EsQXxiCpGYEsQWU4bElCC2qDIkoQSxjWQZ4hJQiySVIbaIFdBRZYgtphSJKUNKXxtxfoooQrxDBPx+jClCvGNElCIpZUj/+8QUIg1WIXWiqpGMP9Njqg+Ny3GFlCMxhYhPTDkSU4jYYoqRmELEFlWMRBQiLsHVSEQZ4kItAgAYdZQhAAAAAAAAAABgrFGGAMA6lF2AuLh+G2QWIC6uKiSn/nDxFSE59YdLXSmgUYEU+YoQ7Y23fUVITv3hsl6KEJvvfs+pQZzfx3O/rqcapKiqDMkpQXxchUhOCeLjLEQUShDbuilDbI5SRKUMsTlWPWcVIT6uUiSnCPGpKkUUypCB4Ty/MzXKkIHxPJVIThHi/D6+SmQNi5BQznJE+c91XwmivWG7rxbRKESK6mqRnELExVeN5BQiLs5qJLMOcXEWI5l1iAvFCABgVFCGAAAAAAAAAACAsUYZAgAjrpEKpMj8FmigAikyRYh2BWJrLXfUCxCbKQO0yw+bKUG0yw+bKUG0yw/bei1BfLRXgfqY+3+9FiE2U4g0UYMUmTKkiRqkqF+GNFCDFK3bMsR2+13NlCFFvZXOjZQhRaYSaaIMKTKViHIRYjOFiHYRYjOFiHYR4v1+W7cM5fs0rV+NNPy7xxQi2qWIzZQj2qWIzZQj2oWIrbXcbfx1Qb8WaaAQKerXIg0UIkXUIgCAtUAZAgAAAAAAAAAAxhplCACMiKc9/o8G/rsz08xKOXtlXKuh3wLthZXVZE1XGoubV8afmG941XzvZpvY32zecOB+vRpkopkVjK3CzbS4qblVksOqQBY3+H+G2XubeUwsbB5cSzKzp5mVk0uzK99nenezKzOXNq58n1bDi9s33rJSNixude8boMWUNBt/WN6rQsPiYdsG/ntyj38vlBz2quz2PXub+T4bV/co8F3jX1trz/7BD0xPNfONlgd/nu6+/Z5PzGNKiqZLB3P8rVn3/lHqXPujaGp4pX537sDgt7vfIc18o0XrF96Q9ibpbFrdG6W13OBzt7CnTGdLM3WvOd+1Gi4eOqZ6aeg1ljExt3IuGFZd03LskaWhO2P9HtpzwPOZeezH1ee/9keNfB8AAEQoQwAAAAAAAAAAwJijDAGANWBXIEVaRUjdtZG1ihBTgPholSGmAPHJLkNqFglqFSGm/PDRKkJaNTeHVhUyCgVIHY1CxK5BirTKEFOC+GgVIqYE8dEqREwJ4qNViNTtqZNbiNgliE2rDKlbQaxVhhRLENualSE2rVKkZrV8bilSt7eGVilSd5zrrhRpuAgx7DJk4BA0KhG7CLENoRAp1iEuasXIcvXvUa1ipO48qFWOdGq+T245YsoQ7/hKxUjdOVurGLELEZtWMVL1OKIWAQBooQwBAAAAAAAAAABjjTIEABpUVYD4pJQhdRVIUU4RUleBFKUUIXX1h0tSERKx4C+nCKmrQIpSipC6+sMlpQhZD/VHlZwypKoIseUUInVVSFFKIVJXg7ikFCJ1NUhRahlSV4LYUsqQuhrEJbYQiV0ZnFqGVJUgtpEpQ2yxpUjCaviUSqSuDCl9j8RSJObYRroSGYEixJZViNSVIUVrsI9InaRqpKYQcUmpRmLOjzm1SF0hUpRSi9QVIs7vk1CNxJy7c2qRukKkKKUWSXmsUIwAAGIxGQIAClImPWwhkyAxkx4+IZMhMZMetpBJkJRJD1vQJEjGzRUyCRIz2eETMgmSMulhC5kEaXrSo6nJjlAhkyIxkx8+IZMiMZMftpjJkJRJECNkMiRm8sMnZFIkdgKkKGQyJGXywxYyGZJzaZSQyZCYiQ+XkZ0MKQqZGFG4NFDIBETsZMjA+AETIxobvjc+ORIzKTLkDdNTBE2OxEyC2EZwUsQWNEmSMCliC3njW+NyUiGTJTGTIraQSZKUSZHS9wk4xpxzeMgkScxkiE/IJInGZdeYJAEA+HCZLAAAAAAAAAAAMNYoQwAgkUYNIuIvQjQqkCJfEZJTgRT5ihCNCqTIW4Qo3Vy+IkSjAinyFSEaFYiIvwRZ75e80uAqRDSKkCK7DskpQXxchUhOCeJi1yEaJYjNVYbklCAudh2iUYLYXGWI1ia5hl2H5JYgtmGUIVlViIurFNHaNLrArjRyqhDn+I5SRKMMsa1JKTKEy2NpVCFFzkIkpwjxabgUySlEXLzViEIpIuIvArTPpb5aJKcQKfLVIhqFyMD38Ryv1rncV4toFCJFvlpEoxARoRIBAAyiDAEAAAAAAAAAAGONMgQAamgVID7LGyI3ho1kihCtAsTnwME6q7d8+kVIQwtMTRGiXYDYuq1mV8iaImTc9//I1fTtY8qQJoqQovZSsy/jTBnSRBFiLG6dVi9BbFN7mk+iJvfMq69etrXmdVcVl8Zfj2WIbXqqkTKkZH6h0eG7i4uNlCHG0DZan2j2OWFolyG29o7tjY6/3goRW78YUSpEfJZ3bGp0fFOMaBUiNlOMaBciw2aKEe1CZNgoRgDgvokyBAAAAAAAAAAAjDXKEAAo+MVj39L//zsby9ex17K8cVqkwdPvwIqztv689/zO1Qqk2+CC7lan2+jK96UNKyvaug0tyCzuC6K1F0iRvc/FxGIzt9Xy9MrP0WloAeDU/tXj7vZ+pKXZ5h5Ym29ZrQT2H6J/508sFO6HBp8f07uX1fcIKSrWGltu0F+hvu/I1ZXKk/v1nyCt5dX7YXJ/c6VAZ3rlPpja3UwpUNwnRHuPEBGR7sxqnThxx67Bf9ug//0G6paFhldHTzT3/Oju3df//1tT+oVnt7DCvrtnj/r4wypDlu/dJRM7dzT3DTqF3x/z5X17crW2bF79/xu4n/tMWTGE+6Xbq1C6rv12NFhPu9YB/ed5Z1PhdWhDdUJ/774m3y1pibTnh7SZWwOKe690J5s737YPLEnHszehikK1/fmr3trc9wEAjATKEAAAAAAAAAAAMNYoQwDcpxVLEJtGGbJcNYbC6bfymsMKRUixAHHRqkJaHfdtoVWFmALEJ7cMKRYgLrlViF2A2HKLEFN++GgVIcUCpKhb8eNpFiLFIsTQLEMGihCbwo8xvdtfN2gUIlX7dmiUIcUSxKZZhhSLkNXx9coQU4K4aNQhxRLEplGGFEsQm12GlL5WoRSp3PdkHZUixTLE0CwHuhV7L2iUIk2XIcv3+h9LKqWI53WDiG4hUixD+h/TLESq9rdp+D7q1uxTkl2O1DzdcouRYh3ikluM9MsQ7ydkDb/K823WUzFSLERsGsVI+4D/tlApRir286MUAYDxQxkCAAAAAAAAAADGGmUIgPuEqgLEllKEVBYgLgmn3soKxJZYhdSVIEZOEeKrQFxSypC6CqQopQipq0CKUoqQugqkKKUIqatAilKKEF/94VJVhNhSChFXCeKTUohUliC2hOdMVQliyylDqooQI6cMqSpCbCmFiKsE8Y8fX4hUlSC2lDKkqgSxpZQhVSWIra4MKY2dUIpUliG2ESxFXEWIT0pBUFWElD43oxBZyzLEllSKRLyWSClFXEWI93NTSpGqIsS2xoXIwOem1CIRT7OUWqSuEClKqUVqC5GBT44ePur1wSjXIlV1iC2lFqmqQ1ySipGKQsRGMQIA6xdlCAAAAAAAAAAAGGuUIQDGVkwNUhRahkTXIEUBp96oEsQWUIaEViAuIWVITAFiCylCYgoQW0gRElOA2EKKkJgCxBZShMQUILaQIiSmALHFFCG2kEIkpgixhRQiUUWILeBuiSlCbCGFSEgJ4hNSiMSUILaQMiSmBCmPH3bbxtQgRaFlSEwNUhRahsTUIEWxZcjA9wysRKLKkKIRqURiyhBbSEEQU4aUvjagFBmlIsQWVIhkvLYIKURiipDS14YUIjFFiG2ECpHS14YUIxm/+0OKkZhCxBZSjEQVIqUvDvicjOFHoRiJKUNsIaVIbBlSFFyJRJQhRVQiALC+MBkCYN1LnfRwcU2EZE162Byn3KxJD5tjEiRn0sPmmgTJmfSwuSZBciY9bL5JkJyJjyLfJEjOxEeRbxIkZ+KjyDcJkjPxUZQzCWJzTYrkTIIYVZMhWZMghueuypkAKfJNhuRMgBT5JkNyJkCKfJMhORMgg+O7b+fUyQ+bbzIkdfLD5psMSZ38sOVMhth8kyPJkyG2NZocyZkMKfK9cZ4zGTIwjmdiZJQnQ4q8EyMKrzmqJkVyJkP6Y7ju25xJENsIT4oMjOObIFF6LeCbIMmZFCnyTZBkTYqUBnN8THH4tZgkyZkUsbkmSXImRWzOSZLECREXJkkAYDRxmSwAAAAAAAAAADDWKEMArDuaJYits3FatwSx9U65qjWISL8I0axAikwRolmBFJkiRLMCKTJFiFYBYjNFiFYBYjNFiFYBYjNFiFYBUqRZgxSZMkSjBnExhYhKDeLSuyu1ihCbKUS0ihCbKUS0ihCbKUS0ipDVcVdub60SxGbKEK0SxGbKEK0SxKZZhthMKaJWhtiGVIpolSGGqQi0ihCbKUTWSxFi6xciDb3+MJWIRhHi0q9ENMuQogbvV61CpDSuKUYaen1gihGtQsRmihHVQmTgG/T+t6Hhh1WLaBYiIquViGYZYuvMTqqWITZKEQAYDZQhAAAAAAAAAABgrFGGABhpT33in4mIyOQ99Zv2pljcuWnl/2loFdDyzMqc8/Q9BxoZf/6QjY2Ma3SmVm6X9oL26q6VcbsN3e6daTN+I8P3LQZsVp1qaq7TyPjmNpk80Myv/4XNvcdMb+FeU2XF8szK99l0azMrBOd2rqz8bDe0ANFUPhvu0v0G8wetHLdv/5pcbbNvTUPPrYn5lfG1zzlGyxy+cnEiIiJdkZmb7tYft2fxsG0yMd/Q6nKRlXKxd7tM3FO/EXfyt5mZltZiwyuTm6hEJnurwfc0U/3IpEkYG/rTbNG9n42a3nEv796tOuzE1q29/6ehcrThMkTM+Buaqei6nd65snf7tzY387qwqUpERKS1/4B0dmxpbHxTTzf1mrM71Rs/YBPwtG/Q+1/lwze1d2uxod8rvdu9tdDM+X4YpYiISGdDMyWmOf4vXPkHjYwPAPCjDAEAAAAAAAAAAGONMgTASDEliE2rDOmXILbM1WKmALFpFiHDqkCKNFdndx17F2is0us49tFYT0XI1Jz7Ns79Hr7bQKsIMQWIzVVSaNYhpggp0qhDTAli0ypDfPu9aJUhpgixaRUi/SKk9A3yxzY1yMD3Uzz3tByHrlqGOIbSKEQWD9tW+phqGeL6E8Bzu2iWIt2Z8r5cjZUimoXIZPk5plqJTDpW3mtUIkMqQmxahUi/DCn9g04pYsoQm0op4hhbsxDpVyFFnvtDqxhpqhBp7Xe/XlYtRtrl11WatYgpRAY+plGLuO5Sxde5rv0AVWsRx+2uWYv4buOmihGtUsR33JQiANA8yhAAAAAAAAAAADDWKEMArClfCWJLKUO8FUhRxoowXw1SlFOGNFWCuAoQW86qbFcBUvqchNvdVYC4x44eOkpqseErQDTGD/mZc4oQXwVSFFJQpBQirhLEllOG+IoQW2oh4itCbCmFiK8GKcopQ7w1yMA3SB/fVYSUjiHhXOQqQUqfk1OGBHxpShniKkFsWWVIyEv+wNslpxRxlSG2kSxFHGWILakUcRUhtpxCZI3KkKKUSsRbhJQ+Ma0Q8RUhtqxCJOB7pJQiziLEFnC/5NQiwy5EbMnFiKNScEktRlx1iPPzUoqRkNNAxu9kVyFS+pyUYiTgNs8pRUJuy1HcVyT0MUApAgD6KEMAAAAAAAAAAMBYowwBMDShFUhRTBESVILYIlZ+hZQgRkwRshZ7gfjErsIOqUBKXxNxm4fWIIPjR39JkJhiI7QCiR0/5WeLKUJCChBbSjERUoiEFCG2mEIktAgpCv1ZQ2uQopgyJKQIsYUUIkElSGng8E8NKUFsMeekkCKk/7kxZUjCzRJThoQUIUZ0GRL7Mj+hmImtRELKEKOxQsSIKUUCyhAjqhAJKUNsMaVIU2VIQq0SU4gElyEDXxR2H4VWIUVRhUjK+AGFSFARYku4n2KKkbUuRIqiapHAQqQo5PVraBky8DUxlUjKOzeRL0lCCpH+58aUIgm3eUwxEnM7jlIpklIJUYsAQB4mQwA0JmXyw1Y1GZI0+WFU/EETM+nhUzcZspaXwKpS98ZjyuRH/2srbvOUSY/y+NlDOFVNUqRMeoSOn/vz1E2CpEx8FOVsLF41GZIyCWKrmxRJmQgRqf+ZUyZBinwTIimTH7aqyZCkSZDSNyh/KGXyw1Z1ToqZ/PCO4XvzP3PsusmQmAkQF++kSO7LeoWN5X2TIzGTIC5rNjESMQniUzk5kjIZYnO9eTkCl8eq45scSZoIGRig+j5LmQwRCZgQSRx34HtUTIokTYYYmfdX3QTJKE2K2ConSRLeoLe5Xt+mTIqUxqh6kzzn7qx5qRIzGeL8+roJksTbvG5iRGOz+rXYdF3juJkcAYA4XCYLAAAAAAAAAACMNcoQAKo0apAiU4ZkVSAu1ioujRpEpFyEjNIlsOoUV2DnFCA+ZuWcRgUyOK7qcH12saFRgVSNr/Vz2EVIbgFiyylCbHYholGFiJTLkNQSxMe+DXKLEMMuQzSKEFuro1SClAZe/X81ihDDLkM0apCB8ewSQml8uwzJLUFs/TJE+2W8QhliM6VIbhliG9om6wplSFGpEtEoQ4ziiu4RujxWHbsQyS5D+gMN3nepRYhPqRRRGt+uQ7KKEJvy/WcXI6NciBSVahGFQkSkXIloFCID45mKoIl3cAqHnluHDAxrlyJKt3V/fKsY0SgtRIZ3KS2t4zWoRACgHmUIAAAAAAAAAAAYa5QhALJolyBGt93Mcv+lzSurcFpLuqv8De3VPUWaFUiR5uovF63qxtZUERK70WSshU0NPkaaWZCpWoM4NXSbN1JASHPnJ6PdwOp8Q7PaGBi3Yh8YlfHnmzlnt5aaOe72QuRG55Emmlqx2uBjr71fd1W+rbFSRHNVfkF3Tnele4lyBdHX8GuGJnWXmnmMtKbDN0uOMjPTzLhGU/fldqWyx0G7ELF1Dtat+PrjTuuXniIi3Ylm17a2GnqryLtfl4aGztnmqgLtOc/+UpmWtzTzfKcUAYAyyhAAAAAAAAAAADDWKEMARDn99L8Y+G+t1a9mbxBDc48QU4OI6BYhE4urYy1t0F+Sb5cPWvt4lFZjKS1yX9gyuOpNa6V4YwVIQbG6aSuuFF/csLrmoKu4/KCpfUHsce370N7nJJfZ/0HzthERmdo3+DzX2tOjqb1CREQmC8VGE4VP/75UftXXsc5LU/t1zrH2Y2JSac+e5enBgSf36xYcZhVta1F/ZepEcTVqS++xV7qee0FX8druE3fuWh1346zauKvfYOVYWwd098ro3n3PwH+3Dmpm5XhjpYhyIdLtFTitiQZWuhcLC3vvlgylP3eXdZ73nf2Dr10ntB8brd7zT7k8adnPa+u/u1q3/TZrTxXNvSIKq/81n/MDe4ko720h0tyeIu35wRcoyxt192gytEoRu2hpoqYs/m7rTij+MVG4DzUrkabKkAnrb+zPff8vPJ8JAPcdlCEAAAAAAAAAAGCsUYYAqGSXIIbGCh67BhHRKUKKJYgtpwyZqFjpm1OG1JUPqUVI7fV4FRZJ2TWIiE4R0lQNUrXvSk4RUixAXFLLB7vUsOUWIb7xq+7DnDqkVXMT5xYidhFiaBQcVfum5Iw/WbGHR04hUvk8zHiK2iWILbcM8T0GcssQuwjpj6tQhlStlM0pRCaqVpxmlCFVJUidnFKkWIaUxs0pRSquma+xYtwuQ/pjr7dCxMgoRboV+7JklSJV5UNGpVD5Z65CHWKXIUZ2IdKqeZ5llCKlKqTI82/ZpYhdiAR+31o1e0PkPP8HChFbxnnQLkMG/k2hErELEZHmKpGi1GKkbs+TnL83K6vHnFKk4j7UKEWGVYgYlCIA7osoQwAAAAAAAAAAwFijDAHQ56tAXFJW6rhKEFtKGVJVghgpRUhVCTLw/ROqkJDyIaUIqa1BBj45/FNdBYhPTBmyFgWIS2wVUleCGCmlQ10NIpJWhISMG3PfxRQidUVIUext5qtBXFIKjqoiJGfcqiLESClDgu7DhFd+dUWIkVKGxNznMYWIrwZxjhtRiMSsgI0pQypLkNLACb8fMooQW0ohUlWGlMaPKUVqVhYXxawU9xUhznHXYyWSUIhUlSFGUiESUjok1AlBf+YmFCK+IsQluhKpq0KKIgqRyiLEFvC5SbVIXSES+L1LagoRI7YUqaxDXCKOvaoQKX1uRDHiKkN8RmlfkbpCRCTtb8/Q33tJpUjAfZhSigy7DHGhFgEw7ihDAAAAAAAAAADAWKMMAe7DYkoQW9XqnJACxCekDAkpQWyhZUhoDVIUUoakFBAhZUhUCdL/ovpPiSlBjNCqYFRqEJGwIiS0AikKWekeUmrYQoqQlHFT9nkJLUNiqpCiutswpgixVZUcISVIyrghJYhPVSGStUdPwJeGFiFFoXVIUjkVUIbEFCH9cQPKkJTVriFlSFQR0h847H7RrEF8QiuRmDKkP3ZIIRJRhhghK8RjypD+uGNaiIQUIT6VpUjG3hdVpUjWn7cVpUhMEWKrLURiipCiwNswqgwxEr4mqBgJKURSjiWwECkKORdEFyIiwbddTCEiEl6JxBQixlqWIiFliC2kFEn5HRhciSQUmiGlyCiUITZKEQDjhskQ4D4kZ/LD8L3wzJkAEfFPgqRMfNhcEyEpkx421ySIxhv9vkmQpImPgQHcH06Z+CjyvRk7SpMeNtckSMqkh827+XPCBEWRbxIkd1yNze59kyKpkyCG77bMmQQxXJMWOZMgVePmTIIYvsmQ7PvP8+UpEyBFvsmQlMkPm2syJGXyozSuYzIkdUPYgTE8v2uSJkAGBvb8nhjC5Ecd3+RIymTIwLi+iZGEN9FsrjdEUyZDSuOut8kRz8RIzmSISMWESM5kiOF4813lz1vHpEjOZIjhnRRJnQwxPLdl0iSILXMM7wRJyqRIke+4EiZFbK5zQtKkiM1xzLETIi6+SZKUSZGiYU+QpEyK2Fx/q2r8bnROkijcd74JklGcFDGYHAGw3nGZLAAAAAAAAAAAMNYoQ4Axp1GDFJnVNrkliM2UIRoliK211FEpQWymDNEuIEwZkl2C2HrHmVuC2Mzq9FEuQQy7CNGoQUTKK95ziw3DLkK0xhXRqUKKTCGSW4TYzG2rUYQUmYpDowhxja1RhNhMIaJ231nD5BYhhl2GaBQhRrEM0ShC+uP2yhCNGqTIlCHZJUhp4N7viREoQeqYUiS3DCmNa0oRhZXERWZFuEYZ0h9znRciuWWI0S9ENIoQ28KiThFi6xUiGlVIUb8QyS1CbL3bVqUIKVIcr1SK5BYihn2MCoWISLkSUSlEjHZbpQyxmVIktwyxNV2KaJQhRebv1iZ+V3YnWipliM2UIqNchhRRiQBYjyhDAAAAAAAAAADAWKMMAcaMdglimBXDszfvVh13/1EHiYj+anIRkcm5BpZ8i8jixvoN05M0VFYsbNUtQYrai7p3nLker+ZKchGRVm9x4NKM7o2sXVcUVW2anaPbXrkNJg/olhYTvcfCvPLjLWTD7BTmdmhCU3WMa6+bHJ3QTUIjmePUPl6Rld9FEw1UN1P7mvl9Mbm7fnPqFK69sEZd++49jYzb3bKxkXHlZ7epD9natrWRlcRNFSKt3rF29uzVHbi3gr81o7vKvDtfvxl2qs6eZh6/E9u3Kw/Yu22ndOub7uLKavXWTDOr1bsbmhm3Eb3Hb3dW9zY2RXhnWvcFYHdm5XVZyObdsZoqRaSh12gT+5o5R3Qn9dcYt3fPiYjI8g73vpqpTH0zeafueX2pd5xfvOL/qI4LAE2gDAEAAAAAAAAAAGONMgRY55oqQUQGrx+vWYSYGkREdwW1fb376T06K6AWN1krtDSO2TUVrTBuZ3r1NliabW6+W6sI6Vor07WKkJa1aFqjCHHtJdBWeIgtbho8NrVV79aPbF+TWqsMmbAeC1plSGl/FMWXK8Vzhf1YSeJ4eGmMaz8ftEqLpooQkcFj1CxDiveZxnNk9vY558eXN+Wt9LVv2+l7FFfsFx5TLaVr4YuIdGZWf8dpX1++qFu4nr/m/iH9vUP6g2f+IvHtj3HHXXnjSq8M6f+H3vOw6TLEUCtErL0dNAqRpqqQ4m2wvFvvtXB70+Bq79a00gp76/GvVYiYMqTP2vejtUVp3w/7+yoUI6195fN9d9OG7HHtx7FWKWLvGahViphCxNAsRZY3F+6nTv7v6Il95apyecus4zMjWcemtZ/X8qbB56/m71JTiIjoViLF/Vk0KpElz7FRigAYRZQhAAAAAAAAAABgrFGGAOtUE0WIXVYU5ZQhxRLEllOGVB2vSFoZUqpAinLOllVTzzm3wbT/Nhi1MsSuQAb+LeNQq1bg5xQhrhLEyClC7BLElrTqvWJIuwgpyqlD7CLEllqIlIoQW8LLlqpzRVbBUXG754xb93zIKS60q5CqY8k6zor7LKcM8RUhRk4ZUnXbJhUiFY+hnDKkWILYhlWG2FJKkVIRMjBgxi8VXxliZBQiA2VI6R/Tn5vaZYhdhBRl1SEVjwGRvEJkGGWILaUUsYuQ0vdLLURqHvM5hUipCila8P9bE7VITiniKkT64+aUIhWP65xaxC5EilJqEbsMseWUIgNliC2jFHEVIv3vmVOKVBxTSi1ilyG2nN+txTKk9H0zSpFuxTkjpxShEAGwHlCGAAAAAAAAAACAsUYZAqwj2jVIXVlRFFOGVJUgttgyJOSYY4qQyhLEFnOsMVPNEeNWlSBFTVUhMUVIVQlS+tyIww1ZcR9bhFRVILaYKqSuAimKWu0eMGxVEWKLKUTqihBbTCFSW4WIRJUhMee4qJIj4uEVM27o8yCmuGhqf5CYY4g63oD7LLYMqatBimLKkJjbNqoMCXjMxJQhVSWIba3KECOmEKksQ0oDR/ySqStDiiIrkcoypP9JEb87h7RXSJWoUiTgMSASV4isRRFiiylE6soQkcg6JLKCiilEKosQW0Uh0v/eI7CvSFUdUho3thYJeHzHlCJVZYgtphSpK0SKYmqRyjqkKKIUqSpDSt8/phSJOYaY26CmEBGJ/z1bVYaUvn9EKVJVhthiShFfGVJEJQJgrVGGAAAAAAAAAACAsUYZAoywtSxBbHVlSEwNYoRUISnHXFWGRJUgRshZMmVqOfDsG1qDFGmXISFFSEwJ0v+amsNM3XehrgyJKUGMkCIkpgQxKle5JzxlY4oQW10hEluFiISVIUFFiK3iPkw5bwQ91hJu2rpxc/bLqSouRqEICf2a1N9NdYVITBFihJQhKbdtZRmScJ4LLUNiqhCRtS9DbFWlSFQZ0h8w4BhiyhCjphAJKkKcX1j9WBuFMsSoLEQS7vv+sdRUIqNQhhhVhUhIEVI6hpBCJGF/nLo6JKoIsQUUIjbtYiSkFIkpRPrj1pUiiY/zulokphAxQkqRmELEqCpFgsuQosBCI6YQMYJKkYT9TKpKkZAyxBbyezemDukfS02hEVOG2KpKkZAyxEYpAmDYmAwBRkgTm6IbqW82+SZBUiY/bK7JkJwJG98kSNIESJHvLJk732CNmzLpYRvW5bFSJj4Gvt5zmFmbWfe4JkJSJj8M1yRIyqSHzftGbsbQORMhIv7JkJRJkCLfhEjSJIjhuE9zzh+G9zGYObQ9bs4kiOGaZBjmBum5Y+TeX77nUMokiOGaDNG4TZ2TIRnnO99kSOzkh23UJkMM16RI0mRIaWDHMaVMhhieSZHkyZD+AO7H4DA3Tg/lnBTJuO8Ne1JklCZBbK5JkZTJEMM7KZLxZqaIf1IkazJEJGlCxGjqUloi7kmSlEmR/niuyRGFx7pvciRlUqTIniBJmQyxuSZHkiZFbNYkRcpkSJF3YiRjc3cR/8RIyqSI4fo9nDIZYvNNjqROivgmRFImQ2xMjgBoGpfJAgAAAAAAAAAAY40yBFhjTdUgGiukRVbLEI0SxNbq6h2nyGoZkl2C2MxZUnP6uKtTgtiaujxWbgliM6viNUoQwxQhORWIiylDNGoQkcJq9gauYpRbhhimEMktQgy7DMkqQmzdrup5pPSYVBrajKtRhBjF4qKJy2JpVCGucbTuL/NcyilBbMUyRPM27ZchSuc8uwzJLUKMUS1DikwlolKG9ActHFtOGWLrlSLZZYhhneNHsQwxBgoRpfteZLUQGeUyxFjevTurCLGVCpHMMqQ/bq8QyS5CjIwyxKepS2nllCHOcU0toviYN6VIbhliM6WIRiEislqJqJQhtk43uw4p6pcimWWIzZQiOWWIrT2/pFKG2EwpknO5rCK7FNEoRESoRAA0gzIEAAAAAAAAAACMNcoQYMie/ug/EBGRxR0bVcfVXBlttDoiyzP6c6balUG/BNA+mzWwct+UG22l1V0Lm8x4KsP1aRYbRqe38Ez7WJf1Fl+JiEi7tyh4caPuA2Bioblft1pFSH+83tN+dpfunbU8rX8+WZ4WaSkepqlhmjinaptY6Mry1OgWIYZ57C8r13CbfrJfdTwRkf1HrPxuntqjW0hM36W7gn9p28rK24n9uiuwmyhD2rtX7qflg3RXdrf3660SFhFp7V05TtXixIytvFK+u7/3eGorv55S/l3SG1Q6e/fpj6ustbG3ol+ztpmZke5+/fNUa4PyY3Sp97yf1C6re79LNGurHvW9RZZ7LyS0X09t0SuDRERacyvnve5W3XFFRJa36BYd/demSuep1vLKHyft/fpV2PIm3Z/dVCxBm7hHmLxjj+p4IiJLB29Wf9yLiHp1s9S78sMln3+T6rgA7psoQwAAAAAAAAAAwFijDAGGxBQhRm4ZsrRx8Pqu7YX8pfx2DaBVhTRWgvS/gd7YSxtWf2azb0LWeNYeHrlFiClBVsfLGm5A8efVWMHfsS5BrHWs9p4LHYWFjO3CokWNIqTJCqTI3tMgt+ixb1utMqSJPUOKRZBGGWLvj6JVhtj3icaeIcXHl2oZYg3Vztwzxn4eaJQhxWplwy1619A2RYiRW4a0rJtu6m6d1eamCDE0ypBiDdKdHjyhthbyV3SbMsTQKkTsfVNaB/JuC1OGGKqFSGHVbUthr4t+GWJkrrwu7UWhtXeEyMDPrlGIdPYOXpe+vVnp8WTKEEOjEJlZfb5qFCKtCeuF1fSU+xNjLVnP88xCpHPvroH/btt75miVIlPW+WpW4Tm7XHhBobFa3qp4upM6+3OYQqQ/rkIp0p1aPbbOrF4lVKqXc89Xy4Pnfo1SZGnr6v2kuTeLvc9Jdili1RaTd+31fGKcpYOt86jCY39ir/Wzb8xL+ZesPUEpRADkoAwBAAAAAAAAAABjjTIEaIhdghg5RYhdgxTllCG+1eSpZYh2CSLiqEEGvmH6uMUSxMgpQuwSxJZShtg1yOB40cP1uX7OnCLELkFsKcdatYo+pwhpOxYl5hQhwypBDLsIKUqpQ+pqhZxCxK5CRPLKkKo9YlIKEbsIsaUWIr77IacMqXqcJRUiNV+SWob4jjOnDKnaxySlELFLEFtqGWIXIf3xMsoQuwYpSilDqvYFscsQW0opYpchRTmViF2G9D+eWIjYZYgtqRSpWF2bU4iUyhAjccV1qQyxpZQiFT97TiFilyFGaiFSKkJsKYXIjP85m1OIlMoQkbw6xC5CbAmFiF2FFJUKkaKUWmSq5nyVU4osO15Q5KyWr9jnJaUWscuQ0pgZpUixEDFySpHKfe0Szll2GVIaMqMUKRYiq98v/TWrXYYUJVUiNftwpJYipTLEyHjM22VIUU4lYhciBqUIgBiUIQAAAAAAAAAAYKxRhgCKfDVIUUwZUlWC2GLKkNCV4zFlSOP7gji/afy4rhLEFluG1NUgInFFSFUJsjpe8HBRP09sGVJXg4jEHWvIqvmYIsRVgLjEViHDLkGMqiLEiClDYiuFmELEVYTYYgqRqiLEiClD6ooQI6YMaeq2D3m8RZUhgZ8aU4bEPCdiCpGqIsSIKUPqihAjpgzx1SAD4yWUIVVFiBFThlQVIUZdGWLEFCJVZYiRUoj4ypCBz4moROrKECOqEAlYVRtTiHiLEJeIFde1ZYgRU4gE/OwxhYivCHGJqURqyxAjphCpKEOMmELEWYTYYgqRuiLEFlGIVJUhRmUhYsSUIjWFiBFdirjqEOfAEb9/KwoRI6YUqStEROIrEVcZ4hNTjFQWIkbMeaumEBGJr0RcZUj5+8b/DVBViBhRpUhNISISV4l4yxBbxGO9qgyxxZQivjKkiEoEQB3KEAAAAAAAAAAAMNYoQ4AMISWILaQMaaIISdlHoKoMWZMSpHQQYZ8WUoMYIRVFSAliqypDQkqQ8njV/56y70lIFRJSghghRUjM6vjQIiS0BimqKkPWqgIpCilCbHXP+ZS9K0LKkJAixAgpQ0KKEFtdIRJahRRVFSJN7NMiEllbhJYhkQ+lujok5flRVYaElCC2kDIktAgxQsqQkCKkNG5FIRJSgtjqypCQGqQotAwpqqtEQsoQW1UpElKElL4moBAJLUOMoEIk4XrrVaVIVBli1Ky0Dq5CjNA6JOJnDylEYsoQo6oQCS5CiurqkIAixBZSiASVIUZIIRJbhojU1iEhRYgtqBCxVRUjgYVIUWUtElqGDAwY+LgPKESMkFIkpBDpjxdQisTUIUZdJRJUhtgqzl8hZUhpuIBSJKQOWT2GsBcCIWWIrbIUCShDbFWlSHAZUhR4f2oXIiFliI1SBICNyRAgQcokiOGbDImZACnyTYakvDlnuCZBhr4pegjPl8dMfthckwgpkx+GbxIkZQJkZTz3x3M2fXdNgsRMevj4jjV1A2nfZEjK5IfhmgQZhckPI2USxKa9kbdvQiRmEsTmmhRJmQQxfJMhKZMghmsyJOc8axTvB43HnndSJPGh5JsMyTlW12RIyiSI4ZsMiZ0AKXJNhqRMfpTGdUyGpEyCGL7JkNhJECNlMsTwTYqkTIYYrkmRlMmQ0hiOyZHYyZAi78RIxuazrkmRpMkQw/OmYvRkiOGbFMnZZLqnODmSMglic02KJE2GGL5JkYTJEMM1KRI1CWLzTYqkTISIeCdDUiZBbEmTIiL+iZGESRHDOTmSMinSH9DzfIiYDCnyTYzETIZ4x3ZMkqRMihi+yZGkSRER/zksYVKkP6RjciRmMqR8LJ7XTAmTIUWliZGEyRCba3IkaVLE8NyvMZMhRb6JkZTJEINJEQAGl8kCAAAAAAAAAABjjTIECJBTgthMGZJagthMGaKxQtkwZUgTNYiIfhGSU4IYxbIipwSxmTIktQQpj7fyvzkliM2UIRo1iMjqMaaWBza7CMkpQQy7CBmlGqSoiTIk936xy5CcIsQ2eaCbVYTYTCGSU4QUmTpE83xr7g+tx2C/DFE6fdtliEq9YpUhOVWISLkMySlCikwdolGE9MfslSE5NUiRKUNSSxBbThliM6VIThlSZCoRjTLEMIVIThVSVCpEMisJuw7JKkMMa3V1chliM6WIQhkislqHaJQhhilEsqqQIlOIZBQhtu7+/XlFiM0uRFLLEMMqRNa0DLHZpUhGISLiqERyCpH+oNbzI7EQsZliRKMQEVmtRHLKEJspRZLLEFvvXJZThpSGLJQiOYWIYZcio1iIiKxWIllliK13P6eWITZTiuSUITZKEeC+izIEAAAAAAAAAACMNcoQwOPJz/5LERHZ8NM9quPOHblFdbwJxULA0KpWjOwSxKJZbjRlaVa/qpnep3tfLyoUNUWaq6ebYu6X3JXow6BRhTSpifu7pbTCzQjZoD1Gt2Yj4hTaj8WqzclTTCmfd0RWa76Jed2xte+f6d06tUVR6Garoabuqd88PoZmGWJM3LlbdbzOVp3yp6h9Z/7q9qLuJqXyoMes9u4e0FlhOzD2rF7VICL55YE93K23qY4nIjJx6CG6Ayr/7pJ5/fu5aiPqFCGb3sdQq0Ma1NrQe14rP8ZFq1QqqtpoPkFnp+79s7zBs6dNBu2/NzuT+n9vTu5WqPsKljcpn78b+NNjYl/9pvUx5g/RfQ1groRx6YW/pzougNE2+u8oAgAAAAAAAAAAZKAMASzaRcj+B6yspNFc8dwprPyd2p1//VrtEqQzZe/HoLD6t3DzaewRYq+ezr0Ovr16em5n/m1qr3Ke2ZN3X9t7O9h7AaRoFw5JY4+QrrUiKbc+sAsdlVX4xSEaWEE1tW/1G8xvzb9R29ZK9NzixN5/w+yjkWP2ntUH0vw2hZ95yf7v/Pt94LGpcL1re4+eyfm8Y7Sffxr3S/F2m8g8PpHyuTu3DLF/17QULuc+c+9i///XKE2WNgze0VN781brthcHbzONa3Evb1rdM6I9Zx2fxspY60+NibvyXl91tm2qHD+XRiVirrffl3lNe3sfAI1CpLWlcIwaq8gXFwf/O/c8ad2vS7fdnjee6Bch9n4rKuWOdhVi75uRu+9FE3uGHLRt9T8aeGuieD91F/JXqfcLESO3FJmyKonMvU5EVvcQEdHZR6Szw7qyQebz2943xOwnkmNi/+B928msTzr2fikKj81iHZq7f4iIfhnSXhw8P3SmFf6enVp9HTF5r14Zs7Rl5WdfntV5H4NCBLhvoQwBAAAAAAAAAABjjTIE93mmBLHllCGmBinKKUM6jmvA5xQh2iWISHmFrkhmEeK5uVKrEN919HOKENe19HOKEN8q5NQixC5BjJwipO04lJwixC5BjJwixLVfS1YZ4PrShosQI6cMsYsQI6cMsasQkbwCoViEGDlliF2ErH48/f53PkYzVkTaRYiRWob4nn8594vr9sopQ3zn7dQyxPX7RiSvDCkWIUZOGWIXIUZOGWJXISJ5ZUixCOl/D7sMMXIKEcefGjl1SKkMqfg+OXIKkVIZYiQWIr6V3TklwkAZYuQUInYZ0v9Gic8jz/2ZU4g0XYYYWYVI02WISF4dMulewZ9TiAyUIUbDhUj/22SUIqVCRCSvErELkf7H06uJYiFi5JQipUKkP2ja89wuRPrfJ6MUsQsRkbxKpFSIGImPUd/eYTmlSNOFiJFTihQLESOnFDFlSFFOJdL1/H1EKQKMJ8oQAAAAAAAAAAAw1ihDcJ/lK0KMlDLEVYQYKWWIqwgxYsuQpvcFcYkqQwJvnpgyxFeDFMWUIa4SxBZThoSuOo4pQ3w1SFFMGeIqQWyxZYivBimKKUNcJYiRVATUfYlyFeIqQmwxhYivCLHFFCKuIqQ0XkSJ4CpCbDGFiK8IKX9e+OMh5HEasxLSV4QUxdYhVc+9lDKk6vZJKUPqztcpZUjV756UMsRVhBgpZYivCDFSyhBXEWLElCGuEqT0vXxliC2mFKn4UyOlEPGWIQHfL0VKIeItQ0SS6pC6ldwpJYKzDDFSChFfGSISv2o84D6MKUSGVYTYou6XYRQhtphCxFOE2GIKEWcRYlN+PtfddymliLMQMWJKEV8ZMvA5ccWEqwyxxZQi3jJkYMDw57uvDCl934hSxFWGlMaLKEW8ZUhRxOPUV4bYYkqRYZUhRbGViKsMMVIKEVcZYqQUIr4yxKAQAcYLkyG4T6mbACkKmQypmvywhUyGVE1+2EInQ9ZiEsQImgyJPANVvbkWMvlhhEyChEx+GKGTIDFvroVMgoRMfhghkyAhkx9FIRMhQW8q94RMglRNftiC3/yOeRyuwWSIUTcpEjoRIhI2GRIyCdIfL+DN95BJECN0MiR0ImTlc+t/npjHa8gf/CGTIEboZEjMBGTI/RIzSRQyKRJ7OcOqSZGY3zkhkyFVkx+20PN13QRIUchkSNXkhy1kMiRkEqT/vUMnQ4yQSZGIPzVCJkdqJ0MSv3eokMmRyskQW8XkSOzlbELefK+cBLGFTIpUTYKUvnng8znifguZFFmryRCRiAmRtZgMMUImRQInQ0TqJ0SCJkGMIU+GDHzrwImRyskQW8jkSMikSP9z6++XkAmRopDzTtCkSH/A+ud96KSISPjESMikSH/MgMmRoEkRo+JxGzoZYoRMiqzFZIgROilSNRliC5kcqZoMsYVMjtRNhhQxMQKsf1wmCwAAAAAAAAAAjDXKENwnxBQhhqsMiSlBbL4yJKYGKfKVIWtZghi1RUjCWUerCDGqypCYIsTwlSE5G/C6ypCYEsTmK0NiaxCR6pXpUSvre6qKkJgSxKhd6Z7ym28NixBDswwR8dchMUVIaUxHiRBThNh8hUhMEVL+2vLPl/K4rVrtGFOEGHVlSOwl6USqy5CUy8j5ypDYGmRwzPI5N+V3j+EqRGKKEKPu/B1ThBhVZUhMEWLUlSExVYhIQhkiUl+HJPypUVWIRJUhGcdQx1WIRBUhNkchkrPRsa9IiCpDjKpCJKYM6R9EzfM74f6qKkS0ypCYqsDmLUTWsgix+QqRiCpERLkMMdawEOkfQk0pElWIGFWlSEwh0v8a/30VW4iI+M9BUWVIadDy8z+mDCkdi6cUiSlD+mNVFCJRZYihWIiI1FciWoVITBli85UiMWVIka8SiSlDbK5SJKYMMShEgPWLMgQAAAAAAAAAAIw1yhCMpZQSxFYsQ3KKEMMuQ1KLEJHBKkS7BBHJW5Er4ihDFM4yxVXHKSWIzS5DUmoQo1iF5JQghl2E5NQgIuUiJKUEsRVXqCetqLfYZUhKDWIMrHbX+A03AkWIzS5EYosQm12IaJYhOVWISLkMySlCVsdY/fk0Hr/2KseUKqTILkRSipD+sVj3R0oNUmSXITlFyOqYq+ff3N8/IuUyJKUKKbLP6ylFiFEsQ1JKEJtdhsSWILakMsRmlyIKf2oUS5GkMkTxWIrsOiSrDDEKhUhOGWLYRUJSGVJkVyIpZUj/YKzne+b9Y9cha7lXiE+pEBnlMiSyCLHZhUhSEWIbgULEVixGkuoQw65EUsoQW+HxkFKG2OxzUlYhIlI6B+QUIkaxFEmpQ/rjWJVIUhliKzx+U8oQm12KrOXeIT7FUiS1DhEpFyI5ZYhRLERSyhAbpQiwflCGAAAAAAAAAACAsUYZgrGiUYQYGiv8B8bLW1w1YGr38kgWIYbr+u+55rfp/LymCMkpQWxzOyd0Hy/KJcLkAb3TvFmhrrKaXlaLkJwSxObbGyWZ0qFpFCGGKUNyixDDlCE5RUhpzF6RkFuGGIub9NZvtJe6ao9hEemvbMwtQgxThuQUIU0xZYhGEbI6Zkft94/IahmSW4QYi5v0foGbMkSjChFZLUNyixBDpQwxTCGi9KeGqUOyyhCb0rGZQkSlDDGWOypliGGKhOwyxNg/pzOOyOrqcKX7wxQio1iGGN1du9XGEpG8IsRmCpHMMsQwhYhKGWIoPVY071MREZlQ/PvMlCIahYhI/zGiUYgY3Q26t1+3rffaojM7mVWGlMbrlSIqhYiItJb0/17WplGGGJ3piawypETpbyBjSfG1HoUIMPpG8M9sAAAAAAAAAAAAPZQhWPee/Ky/VF1J379epNIzQ7MIMSutJ5RW+i9tWBlP4xr8xvJMS6Z3568iObB9ZdVNS3nRjNYqdRGRfYet3Ln29eljbbhr5Q6YO1jvwdJti0ztVyxCzNNCaQp9eUaxBDF7ICj9uGZPGtVKYqIlM7v1HswLW1buCHsvolTmHKBZIpjaZPbevCfI6s+afUh9ncny3hdZlMsQzceeOT91lY7N/B7SvD+0HsfmPLXhTp0i5MCOlVWguo+Vlf+ZuTtvter89uneOHrlQGdmon9fTOzWW03bl3k9brMad2JO5/4VEWktrJz8ukorfc1q9ZbSatrWXr36ort5ZS+D1rzS7dfpnQTsPTBGQNfUL7v3qo2pXhD0ZBciG2ZX/tfebyKD+Vm7OfvBNG1iQvVnNr/HW1oVhqFZiijspyEi0p3p/YyKFYZ0u9LdqLdfRdeUhbmvNXq/d7TOySKrJWZ3Quf2M/VKZzr/78DudFta9t6dGVq9PazUXqf17tfOjOLzQqkQWdy68rzQ2MvFaHVFLvkclQgwiihDAAAAAAAAAADAWKMMwbr15GcV9gfJWCjT9a1UHKEyxKzENVLLEFOC2HLKEHuFf24VYooQY5TKEFOCGFpFiJFThrhW9OeUIfZ+ChrFQKtwODl7hPRLEFvGc9bUICI6q/I71nmlePvN3pv/oDa1hJG6Yst+7mvcz/bPnlqG2D+jkXNO6BSeYiqr/a1VmjlliOtx3co4RPv8lFuG2L+Hcu6H6V3lXzqLW9IP0D5faZQhpgoRyXyseE51qWWIKUJWx8lflV9coWmfS0apEPFdpz2nFDFliIhSHWL9WZW1Gnmx/DzJqTpMGaIxloisliFGTiFi6oaiuQPJw3XtfVEUCpGmyhAjuRCxbzuFWsL+WUe2ELGrC41SpPB7Xb0SEckrRZYL5xOF/Vz6hYiRU4o43lLKKUX6ZYihVIgYOedm1x5dOZWIva9JbiHSnbb+RsgoRUwZUvp44t8d9v2qUYh0i8/ZjH1YTBliyylFiq/jKUSA0UIZAgAAAAAAAAAAxhplCNaNgRLElrDIsOkipD9cwuIOewWuLaUMcVUhKUVI3V4PsWWIXYLYtMqQlCLELkFsKWWIXYOIpBUhdSv4U6oQe3V1zPdz8a1qj61CvCWIkfCcLZYgtpQyxK4hjKrbLaUQ8dcS8cdc9fxPub99t4FIWh2iWYZ0Kp5iSav+PdftTilDqh7fKWVI3XkpthDx/T5KuR9cRYiRUoZUnbNE0gqRYhFipD1Gqv85pQyxq5CVceJX41etxKw7l6iVIgl1iK8M6Q+ZUIgUyxAjqRCp+XMqaRWyowzpj5dQddhlSPJYdhFiSylEXGWIkVCIlMoQI6EQaboIMZLKkKrbLaGSqPpZR7YOEfHXFimlSMW+HCNRiix7ziUJpUipDClKqURqzoMppUipEBFJq0RqfueknKO1ChG7DLHFliJ2GWJLKUVchUjK3x7O+7MgpRTpVj1nE0oRzUKk6nU8pQiwtpgMwcirnAQxAv+m9k6ADHxS2FihYiZD6iZBjJDJEN8lsYpiJkNCN7wOmQypmwARWbvLY9VNgIjETYK4Jj9sMZMhoW9Sh0yG1L2RGPP9RMLfuA2ZDKmdABGJeq5WTX4YoZMgVW/6GyG3W8xkiG9iwBbzh0nI8z/k5wi5PWImQ8J/1vrPqZoEMaLe6A7cvDRkUiTkMR4zGRJ6XoqZDAn5nRRyP1RNghgxkyEh5y6RsMkQ1+SHLe4xEvZpIZMhrsmP8jjhbzyHvMkQeg5Rv3xWwHmkbjKkP1TEpIhrMsQWNDkS+OdU1BtuFZMh/fECJjJ8kyCx4/TVTYYYMZMiVW/qGwGTIt5JEFvEpMiwJkOMqEmRkNstYEIg5Gcc6ckQI2RiIXSCJOD3/Zpstu6bDLFFTI5UTooYIZMjgefBmEmRujfPRSRuciTgd03oedo1GWKLmRypmxQRCZsYqZsMMWImRXyXyxr4nIDXD0H3p8RNilRNhhgxkyK+yZCB8QInRkJexzMpAqwNLpMFAAAAAAAAAADGGmUIRk5QCWKrWRAQVIT0Pzn+21cOV7OAI7QGEdErQoy6leGhNYiIXhFiaJYhIVVISBFiVK3ADilBbHVlSEydUVWEhK6mjvneMSvXq4qQoBLEVvElISVIUVUVElI+2GLus6pCJLSSKKpbmRVThFX9HCm3S10hEvPzVp0jQooQW+3q/8AqRKS6DEl5rFc9z2Iv1xdShsT8Xqq6H0KKECO0DIk5j1WVISFFiBFchkQcW1UZElKErI5Tv/o+ZoVl7GUvhlmIhJYhIuF1SEgZYlQWIhF/TgXXIQFlSH/MirIjpAwJGacvtAwxqgqRkLLBVlGIBJchIrV1yLCLkKLaOiTldqsoImJ+1pEuRFI2J68qRSJ+74sMuRQJLUREaiuRoDLEVlWKRJwP6yqR0JJgQNUpKuK1a8i5OqQOKaoqRULKEEOzEBGpr0RCypD+5yoWIiL1r2FCyhAjpBAJKUP649UUIimXu6UUAYaDMgQAAAAAAAAAAIw1yhCMlKQqRMS7GjOqCOl/UdoheIfzLNyIWXlruMqQmBLE5lshHlOEGK4yJKYEsTVdhsSUIDZ7JXZKDSLiL0JSNq82imVISglSdwwpK1yMYhmSVIIYni+NrUGKimVISvFg5Nx3rkJEswyJKUJsrp9LswxJ+TmN4rkipQgxvKv/I1eG9o/FOv3lPOZ9z7vYKsSw65CU30f9Y3Ccq2OKEJtdiOScx1xlSEwRYis9RjKOzVWGxBQh5fEGV9+nbEIqkrYhqqFaiTjOLzFlSGk4qxSJKUJszkIk48+p0urjiCKkNJaj7IgpQ2rHi61CDF8dklI4GFYhElWFFHkKkbUsQwxvIaJUhuT8jGNXiBjF2ynx97/IEDZbjylDbJ5SJKkQMYqlSMb50FeKJBUiIuVKJOM1vqsUiS1DiuxKJKYMsblKkZgyxPAVIjFlSOlrHa8rUu5P3+uamDLE5ipFYsqQ/jieQiT172bqEKB5lCEAAAAAAAAAAGCsUYZgJCQXIUZvQUBSCWJrqAzJWXlrFMsQzSIkpQSxmTIkpwYR0S1CjNl7lrNKEEOrCDFMGZJTExj2XiE5q6lFVo8ppwQx7L1CklfIW1+WU4IYpgjJqUFEdO5DuwzJqSVEVldi5RQhRvHny72tRFYLkdyfUUSvDDH6q/8zVpqJrJYhWRVUj/08TC1CDFOGaPxess/ZOVWIyGoZknsOExksQ3KKEGP1sZE91EAZklOErI63svI+tQgxcsoQo6lCJKcM6Q/XK0RyyhBjoBBR+HOqv+o4owwRKdccOWVIaczUMsSwC5GcMsToFSLJZYjRK0RGoQix9QsRjdurUD5o/KxjW4iIrN5Wma8HRBRLEftnyilEjF4pklWGiJT3EVE4L5pSJLkMMRQLEaO1uJxVhhiahYjIaiWSUobY7FJEqxDJvj9l9fVOThkiUq5DUsqQ0pi9UiT372gKEaA5lCEAAAAAAAAAAGCsUYZgTWSXIJauwurW1cGUhlEsQvpjKg2lUtBY7Ovjp2pirxCNKkREZOPtCkvse/YfqnNMxuSc0gNX8aFhihCNlfEiIstTegenXSBplCFGW2GRn4jIxIL+r3et+6DtubZuKs3bf0JpUbtmGWJoVD4iOjWgbeYenYNb2Kr0y0RWyxCNKkRE+Tml/PSc2qdz+2uUIYZqISIinVm935uTu+ZUxunXIYp/TrX2e/bXiDWl+zpDRKQ1p3RsCivt+7TKkJ7WAd3Hrabugs6xtewV/ApGshDJLUNsGhVGj3oponhs3U35NZmI6D7PRaSzVem4RNSOzRR9GoWI0Z7X+X2+vFm/cmvPKb0Qbes9NrQKEWNpo955Q/NvABFKEUATZQgAAAAAAAAAABhrlCEYqif+j78SEZH2fP7DrtNb2ap17XSjpbDgYXlWZ2WCuT65vedCKrMaWGN18cbbVlan7T1cZ9WJOTa1wkHyVz/btcvmW/JvuP2H9FZqZt6lU/tW0oau4sqa5elWfw+NHOY6qVqrz81zXON5oLVHiE2jTDDXlc2uVnrjaNyXRn9/lswhW72XHJplzsRCV+Wx0e4tatXYJ6dduO019jExz3ONMqG48n9pg8L1pHvPd7NvVCqzh1ITRVPu4808vycPKFYTc8uyPKu3+lCjDJkorPjM3XtERGR5auWGm77rQPZYMtFS2TOkr3fKmLw3rxDpbFhZ3d3f70OBqU3au/bnjTO7cq39lsaK8cJ14lsL+QVAd2Zab6yNhX00FMYzlY+990rSUDNTKuP09fYW6M7lPadGugxp9Y6t28AmglqliMJzqrW5VzLNK5VI073SROM5sGFW9e+L1tLK7dXNrNXMeaOr8PvJPmd3p/OOrTPT+3qNt9Z6Q7QV9rYS0d1DRK0M6VnetPK4nVAYtzPZVtmLZHHL4GOhlVmzd3p/Q03uzz+nLW1c+fku/7ffzR4LuK+jDAEAAAAAAAAAAGONMgRDoVGEdKxV5jlFiF2DiOQVIdoliC1n1XNxdX5OEWJKEFtOGVI8Ns0ixDV+DM0ipF+C2BLvUlOEGDkrt/qr/QtyagJ75UxOGeJ6fuc8D+yfa5TKELtEyFrF7rj7cu7T0mMkcaiW56VGys/qKgdyHhttaxFlThnSdtzWOWWI/fzOqSZce0HklCH28z2nDDFVSJFmIZL6nPI9r3MKkYm51dtJswwxcgoRrTLEFCG2rEKkcM7OKkQ8p4rUQsSUIf3hMwqRruPnyqlDTBliZBUiy+UnUU7VYVZ4q4xVLEOMnNXx1u+rnLKjO1PeFyJpvAn3cyq1ENEsQ9T3CmlZx6ZdiGjuI5LxnOqXIUU5lci09VjLeQ5sKD+ncv7eMGVIf6zEQsQ+b6x+PP0+1SpE+mWILeettsKX5lQiHc/PlFOKaBUipgyxpZYiHasMySlF7EJEJK8S6Vh/U+WUIhQiQD4mQ9AYMwEikjYJYk9+2FImQ7QmQbQmP4pcEyEpb/BVvQGdMhnimwQxYiZDqo5trSdDqjaAT5kM8U6CGBF3rT0BUpTyx4lrEsSIfeO86kVhymRI1fM65vlQ93Os5WRI3ZvtSW/cVowZc59WPTbqvo+PbyJEJO5nrXpzPOVcaU+C2GImRVyTIEbKZEjd8zpmoqBqQ+yUyZC6PwRjJkVckyCG9uWyUp5XmpMhxUkQ21pfLqvqTYeUSRHVyZCKc3XSpIjiZIg9ETLwbRImRVyTIUbMpIg9CWJLmhRxTIb0x4t409X3ZmbKWP0xXZMhRsx4NX8Sp0xiuCZDksbzTIaIpE2IrKvJkNI3VJoc0d5cXSRqcsQ5GWKkTIrYkyFFsc8rx2SIkfJ3hz0ZMjBexMRI3fkjZVKk6lwdMzHinQzpD5bwmqbiS2ImR3yTIf1vkzAp0tTlsopSJkTsyRBbyuSI1qSIPRliS5kcMZMiIkyMALG4TBYAAAAAAAAAABhrlCFQVyxCjNAypK4GEYkrQlwlSGm8gEUHwypBbCGrnWNW34eWIXU1iEhYERJzbGu1cXpVEWKElCG1JYihVIQYISu0alf7F4RWBCErYkLuh5jnc+jq/5CfYS3KkNDSIGoFe8CYIbdH8GMk4mlaVYT0PyfgZ40pBEIfI3VViEjY/VVVhNhCCpHQFZcht0lVEWILKURCV8FplSGGViESW4aEPKdDCpGqIsQ27EIkZtVlSCHiK0JsQYVIxDk6qBAJGC62DqkqQ/rfNqAQqSpCDM0yxAgqRCqKkNJ4AavP61Z2R41VVYTYQlbGh/zOCqw5qoqQpDErypD+94woRNZ1GdL/xiN6+azAOqSyDLGFlCJVZYgRWohUlCG2kNctVWVIfxzFQmT18+rv06BztGYhIhJeicQUygGlSF0hIhJeiQyjDLFFvWYJLEBCShFXGWKLKUXqChGR8EqkWIYYFCJAGMoQAAAAAAAAAAAw1ihDoCalCAkpQWxVK8lDSpD+ODWLC7RrkJASxFa1yjl2P4aqKiSkBLFVlSFrVYSEfP+QEsRWV4YEVyEilatTQ0oQW9WKrJgiRKS6IEi5NmrV/ZCy50/dqv+YvTGGXYbE7D9RuYI94elSdbvEPkZCjiGkCOl/bsXPmlIE1D1GQooQo+o+iylCjLoyJOU63K7bKKYIMarKkJTnfl0dElKEGMPeOyRm/x/DVYjEFCHGsDdU1ypDQouQoto6JOEc7SxEEk5xdYVISBFSOoyq69JH7H1SV4iEViFFlYVIRBnSH8+x+jx0JXfdOANjxpQhRtWYMb+7amqOmDIkaMyAMqT/vWsKEc0qRGQNyxAR/TpEZGiFSFQZYlQVIiFliK3q+RBRh4hUv4YJKUNK41WUIjHnk7o6JGl/p4rCIqgMKQ1Yc+5RKkRCypDSt64oRTTrkJAyxFa531nC3iB1lUhIIWJUvXYOKUNsdaUIhQgQjzIEAAAAAAAAAACMNcoQZHMVIYZdhqSUIIZvJXlMDTIwnmcxgVYRklKCGL7VzbE1SFGxDEkpQWx2GZJ6bMMoQ1JqEBF/ERJVgtgcN1NKEWLYK7GSVvr3uAqClFXh/WPxPCZSqhCR8vMipgSxNV2GxJQgPgMr2DPG891OyY8Va7iYEsTmWqWfUwL4zp0xRYiteF+mFCGGrwxJKUIMrTLEsAuR1Oe/rwyJKUJsTe8dklKEGFpliNH03iExRYjNVYiklCFGqRDJODdrlSGGrxBJKUOM4irkmCLE5itEUsoQEUcdklCE9MdSKkOqxhNJLEOM4pg5v8M8NUdKGVI5ZkQZUjoWqxQZ2TIkpgjx0SxFtAoRw3qOJZUhIv46JKUMMVzPscgypMh+XZNShvTHchQiOecTXymSUoiIlCuRpDKkP5jnXJR4irIrkZQypHQohVJEe98QkbRCxCi+tkkpQwxfIRJThhT5XkunFCKGXYq4yhCDQgRwowwBAAAAAAAAAABjjTIE0apKkKL2fDerBLGZ1eSpJUhpvN7iAc29QXJqkCKzujmnBLG1l3SLEK1ja7IMSS1CDFOGZJUgtt7NllODFJnVVzlFiDGx2M0qQWzmfkgtQWzmeZFThBhNlSEaRYjR6khWEWLYt1f2Y6U3XE4RYjOr9XNX/9tlSE4RYpj7NKcKKTKFSE4RYhRvr5wixDBliNZ5wBQiOUWI0dTeITlFiG3yQDerCDG09w4xdUhOEWIzhUhOFSKiW4YYnamJrCLEZgqRnCLE0CpDDFOIpBYhtn4hklGG9McqrDbPWcltj5dVhBSZ41P4XWbXHDllyMB4GUWIzRQiY12GGNp7iWhWIr3nWHIZYjOlSE4ZYltYzCpDDPM6J6cMGRivV4lonE/6Y/Z+l6WWIf1xetVFVhlSGrR3blJ6+WNKEa1CZNTKkCLzeienEDFMKZJahtjMa+ycMsQ2ub9TWYcUUYoAKyhDAAAAAAAAAADAWKMMQZTQKmTUdSZ1V4VrFSEHtvdWpyis8DU235xfgxTt+nmd1YciK8WA5mrfxY2692tbf8GLTO3XWa3WmTL1i+KqkgO6K+m0n2daVZiIfhmiuQq5P6RSUWPOJ12ln1nz/GS49lxIYVYhdhXvD+0iQaPiKtJ83mofm/Z4Inr3h3k+aNZwM/fo/tLQLkRm7zxQ/0mBFjcrrkIWkel751XH60zr3XbmvDIxp7QCvgGteaVfGGY8zz4daYMpnwcmlfdy8O3BkMKszle6/bRW1A/Q/HllRMsQY4QLkX6ho1U5aL+lo/izdnvPWa3zSmfzRpVxBig//Ja3KBVsslKtdBUrMW0thZKwz1zxYINShbGoew5Y2K5XJRmaf9+Gog4BKEMAAAAAAAAAAMCYowxBkJAixKy0bmeusrRXQ2vMli9uGJz3y91zYHlqcJXb9N78VQcHtk+orLi2V7xvvSlvteW9DxksQTRWq5sxtFb4Lm7q/cwKw83sXr0vFwOvvVnF3kNici7vsdJEEdJe6g78b6ol63mmtceCMYpliCl9FjflP1bsOsI+z8SyzycaZcjMrmVZ2KK3jkJrrxB7/w2NMsTeSyK3XjHjaRZTrU5X5Ty6PGP9sJkvDe37o6OwwG9qf1dtLBHlMqSw8n3m7vyVrwsHDf6QE5mPPbO/z8xdevXF/I6V1wbthbzfaV3ret4zd85ljScisrR5deVmeyH/RYt2GWKuTa+xZ4hY+z+0Mo+xvWffwH9rXJu/s3WDtPfoVUlm5bD9s2fTKCbsfRtyV8L3zi2tRb3qrLtvTlradY0oFCJ2iaDwN1Grd39053XOfa0NG1bGW8h/rAzs3aJRh9gFVifzb1PNfVJ6tAqR7obBv027GseqfDox5/fOrE5F2f+9oVCI2H8P5L4OUi1DjHZLpQ5Znh68vSb35Z1LF7cM3p9dhdf0dkWd+17aRO+9huUN9Y8VChHclzEZgkpVkyC+NxNzTuCuN9pT3gC1Jz+M1EkQ35uSOZMg5pJYRTmTIb77I2UyxJ4AKUqZDPF9TeqbeP3JD1vG2aw4CdL/PhmTIb6NtFMmQzqOx1/Om/m+SY/UyRB7EqQ/3ghPhhgpt6PrUmc5kyG+N9lTJ0N855GcyZCZXeUnccqkSKvm4Z9yTnBtRJ4zGeLbUDt1MsQ3Xs6kiOs+TrntSpMgRsZLQ9f9kTOBYSZBtMbzPQ+y3gxwXAYoZVLEngQxciZDWo77MmdSxEyCFOVMiNiTIUbKpEhxEsTImQxxPZZF8iZFXJv0Zk2KOCYEciZE7MkQI2VSpLN1g2P8jEkRz/0xUpMirk2sU974rbm0WMrkSHdf+Tk1UpMivje0M/42ajnuj5SJETMJUhorY1LEuZF9zqSI7zGTOinS4GRIUcrEiD0Z0v94zjE3NBliS50c8W3wnjI5UvX3QMproaYmQ2w5kyP2pIiROjliT4oYKZMjrkvK5ryfNuF5r6FqcoRJEdwXcZksAAAAAAAAAAAw1ihD4OQrQqpWUafMYFdVBppFiBFThoSsyo4pQ1wliC2mDAld0R5ThgyrCDFiVjJ7a5CiiIegqwQpfc+IMsRXgthiyhBXEdL/t4RV/nXlR0oZ4qtCRMavDHEVIbaYQqSuNEgpQ6rOITFliKsEscWUIXVFiBFzTvCt2h74nIib0FdwGLFlSN14KWVI1f0bc9t5ixBbxEvEkPsjpuhwFSE549U9/pPKkIrV25pliBFTiLiKEFtMIeIqQmwxhYivCDG0yhAjpRCpe0zHFCK+Vb0D3y+mEAmoIWIKEV8RYospRFxlyOr3SyhE6s4xa1mIuIoQW8wK+MBN52MKEVcZUhpPqRRJqkPqVvVH/I3kKkJsMYWIrwwpjRlRijjLEFtMKVL1mEmpQ4ZUhhgxhYivDCl9XszPMKQypCimEqn7HbKWhciwyhBbTCniK0OKYioRXxliaBUiRsr7bL5CRMRfiVCI4L6EMgQAAAAAAAAAAIw1yhAMsIuQmFXTITPWMXVB6CrwuhqkKKQMiVmNXVWGhJQgRSFVSMz9EVKEVJUgttD7LuY+DlnJHFSEGAFns5AipP+9A8uQ0CpEpLoMqSpBSp8b8FiILT1CPr+qBCmNNyZlSEgRYoSUITGFQd35KKYmCylDQooQI7QMCa1CRMLOCSEFQv9zQ4KyiGUhofddzJghhUjM/Vx3GwZXISJBZUjM/RFScoQUITHjicRVUUGrIQNXbYuEFSJ1RUhRaB0SUoYYVYVISBFihJYhdVVIUUghUlWE2EIKkZjHdGgdElKG9L9/SCESUUGEFCKhZYhIfR1SVYSUv29AIRJxf6jXISJhhUhIGWKErICPOMeE1iEhZUh/TOW9RGpLkZgV/AG/D0PKECOkEAktQ0TC65CgMsQIKUQiHjNBpciQyxBbVSkSWoaIRNQha1CGGCGFSNTvkMBKRPu1kXohEnPul+pSJKQMMUIKkboypCi0EqkqQ2wh77tVlSGl7239fU8hgvsCyhAAAAAAAAAAADDWKEPu43JKEJtrhjplnwnDtwo8pgQxqoqQlOvy1+0VEluFiFSv/E25X6rKkJgixPDdlzn3sWsFc1QJYvPchDE1yMCxeMqQmBLE5ipDYoqQ/tfUPCZS9v+o+pqYIqQ/3jotQ2JKEJuvDIndb8LwnZ9iSgGbayVYTBFi8xUiMUWIUVU1xKzW7n9NxZfE1BtG3f2YMmZVGZJyP/tuw6gipMjzMjHl/jBcRUdMERIynkjcqkebcxVkzMrbnqoyJKYIMerKkJgixNAqQ4y6QiSmDDGqCpGYMsRwFSI5j2lfIRKzmtfmXFmcUT74CpGYKqTIV4jElCGrx1BRiKTcL8MuRGLKEKOqEEk41/gKkZgipDTmsAqR1ArB8zsypgyxuUqRmDKkP05NIRJVhhhVhUjCY6ayEFnjMsRwFSIxZUjpa30/1xqWITZXKZL1u8RTiqS8RqoqRNa6DBGp30ckphAxqkqRmELE8JUiMWWIzfU+XEwZUjoWShHcB1CGAAAAAAAAAACAsUYZch/2xP/xV1kliGHPROeUAiLl1d8pJYjNLkNSapAiuwxJKUFsxRXAGveLXYak1CBF9v2aez+LDK5gzipCDOtsllqEGHYZklOEGMUyJKUI6X+t9RhJKUFsxTFSSpDSeOusDMkpQgy7DEktQgz7XJVThBjFlWA5RYhhlyEpRUiRXTbkrNbuj2ENkVJwFNn3a+54IoOFiMb9bN+OWmWIxv1hlxw5VYhrvJwixBhY/Ziy4tZiFyIpVUiRXYikFCG2YiGSUoTY7EIkpQgpsuuQlCLEVixENB7bdiGSs5pXxLG6WKF4sAsRrTIkpQixDRQiCveHeiFi1yEZBUKfvfI983xjFyI5ZUh/zKYLkdwKwfqdmVOGGMVCJKUMKY1nlSJJZUiRXYko/J4aKEVGpAwxioVIThnSH8P++UaoDDGKhUju7xKRciGS+1rJrkRGoQyx2aVIShlSZFciKWWIzS5FcgoRkfJ7czmFiLG8oU0dgrFDGQIAAAAAAAAAAMYaZch9kNknRKM+EKm+xnuKhc2jP0eXs6Lfp+ra9ik6+QsmB7SrL32bpKOwoK5oZpfuihSNOsKmUXAMUByuvdRV/ZnXUxmiUYWIrJYhuUWIYcoQjVLAMCvBNKoQkdUyJLcIMczvFI1V2oY5v2oUHCKr96/WeCIrZYjm/Wxux+QixKL9O0pE//XD8ozuQWo9pgfH1P2ZXftQZWngrwLt23HigM65q6i1pHuQk7sr9sBI0J1RfsEkIhO336syjilENMoQo73ngE4Z0h+woUJEowwxzMp3jRX+slqIaJQhIvp1iEihENGqEHrnV40yRGS1DtEoQ/pj9gqR7DLEMIWI0uNGRFYKEcUyJKcIcfLsgZFDo+RodLwGfubOtO4xuvbiyhtQ/4XnwjbdN0g0/1Yxljx7lqaa2qtzv5h9RChEMC5G/11nAAAAAAAAAACADHkXLMa6cvKL/6+IiLSUipDpPSuzzFqrTkV6K4w1VyWaH1VpTLMaeEGxDFnuLVBoL1Z/XihTHnQyrzdpmGuxa5YhmqupRfSLgaXZBooQU0koPXTMbaixd4uhXTyZPRC0ahizr8zUPr2TRH/M/UrjbV4ZT6sMWdy08r/Te1SGExGRhc2mDFEab4sZT+dnPrC9rTqeSOEcoTSkea7Y10vOMbHQLe19kcNUXtrFTu61jItMCWrvwwVgRem69go6vb1btEbubsy/fr+ts2VW2vvm6z8xeMDeOUZpNX5n28aV4eaUXrxLoeTQqk20axgzXkfvfN3atHI7dg/o3Nct5dXzrRn9x3ZrtjemvVdMIvN4sfeKyRpzalK3YjTVitIFSVp7Vl60d7dsVBmvCeb1ocYeZiKrValmiTC5Z+V5t7RF53FuahiN/U1EVmsYzb1IJntl6dKszm/A5d57BhMH9I6xO9FS/fui09snxd7HLZbZe8S8p/jl89+Qd2DAGuMyWfcB/UkQhZOqmQAR0ZkEsTfezX6jyn59oLHhdeFNzdLxJli26szcSRD7jealjfqb24qITGa8Weyb/EidxPB93ezd6b/knRMgGTel9xJRGWO6bsesyRDHsXQmcw7Q/eGcyZCFreXjyZkMmd/qfjBuvCPthtx/P/eDccOd6Y/FAweVf+bpPRk/8zb3z7zl5rQ/nPce7v6ZcyYvzKSU1njeSYXM3wlt62Gi8Xu1OFmhMRli/+GdOxlin8s0JkPsMXInQ5ZmrZ9Z4Xd/8XzbVniPyb4dcyfx7fOqxmUJp/au/qCLm/IfjPYE+8R83jFOzFtPQIX7eWDjeYXnc3dq8Hw7dVfeTHtpMiRzE3qR1ckQY+pnd+eNt33LwH93FY6xSHVSpD9o3jF2Zt3Pj5zJkZbjclY5EyO+NxC7e/aljec7lpzJEceYORMjLd+lorQnFXMeP643szMmRrpbNjk/njM54rokU87kSHfK8XzJeAuqtd99GcKcyRHty1r5HiPJkyOex3bO5Eh7vvwY0ZgYsV+D5U6O2PeNxuRIZ2Z1TI2JkaWNg2PkTo4sbrF/5vzXJ8VL0+ZOjIiILGxbeV4zKYL1istkAQAAAAAAAACAsUYZMsZMEWKkzCgXSxBbShlSW1akPBqrFkQkjFd1eZuUMsQuQWwpZUjVSvuUMqRqNXITRUj/3xMWYlR9TUoZUnlJrITFNrWrcxPGrLodk8qQimNIKkNqfuSUMsRVhBgpZYivCDFiyxBfEWKklCGuIsRIKUN8RYiRUob4qhCRtJLDVYTkjFdbViT8TrBrkKKclVquYiOnDKlbbZhSiFSdz1IKkaqvSalD7CLEllKIVJ1vUwqRqtsw5Xdg3fk0pRApFiG2lEKk7pKLKYVIqQopSrifW1V//iQ8r+0ixJZSiFReIiuhvrCLkKKUOsQuQmzrohARSVrl7ytD+kMmFCKuMsRIKUSqVk+n1CG1m5KnFCIVY6YUIt4yxBiFQqRqJX9CIeIrQ4yUQqRqs+6UQsRZhvT/MX48XxnSHzKhEBlWGSKSWIfUPLa1CxEjpRSpeu2VUonU3TcppUixDLGllCJ2GVKUUonYZYgt5e+PYhliSylFTBliUIhgvaEMAQAAAAAAAAAAY40yZAzZRYgRMoNcVYLYQsqQ6JIi5tEYsgAiYryQDY9jfp66IsSIKUNCVtjHlCEhq5Bjy5CQzdFjVsPGfG5IGRK1OXrgTRm1EjdgzJgN5oPKkIjFQtFlSMCPHlOGVBUhRkwZUleEGDFlSF0VIhJXhlQVIUZMGVJXhBSF1iFVRYgtpOioKkJSxosuKkIetxGL12JWaIUUGjE/T+gKw5gyJOScFlOGhHxuTBlSV4QYMWVIyHk3pgyJ+b0Q+nsu5lwa8v2rihBbSCFSV4QUhdYhlUWILeZXccifPxHP67oyxIgpRII2T4+oL6rKECOmEKkrQ4xxKkTqipDSkAGFSFURYgspRGJWSYcWIrVVSFFMIRIwbkwhUluGiOjXISJxhUjICv6IQqSuDBGJr0OqypDS2AGlSGUZUvrk+vHqypCB4QIrkWGWIaXvHVOKBDzGYyuRqjLEiClEQl57xRQiofdNzLmvqgwxYgqRqjLEiClE6soQW8jfIVVliC2kFLHLEINCBOsFZQgAAAAAAAAAABhrlCFjZFhFiFFXhqTsr1G5qi/lUpgV44WUILa6nym0BimqKkNS9lqoKkNSrkdfV4bEVAz9rwlY7JByLfWqMiSqCDFqHnMp12avGjPltqwsQxKeM7VlSMqeCxWP45ASxFZXhoTWIEUhZUhIEWKrKkRCihBbXSESU4WI1JchMUWIUVVyxBQhIeOJJO6zUTFkTBFiVP2eTdmrI/RnSrnudNXxpJzTqqqPlH1F6gqR0CqkqGqVYsp5t6oQSbkN637fpbwWqDqOmCLEVlWIxJQhRl0hElWGGFXXK0/5s6fi+R1ahBTV1SFBRYitor4IKUJsVYVIaBFSpF2HFKmXIhUrumPLEJH6OiSmDDGqCpGU6+fXFSJRZYhIfR2SsAdKVSESVITYmihEROqLgJS9HSpKkZAyxFZXisSUIf0xKwqRqDKk/0UVr6siypD+cDWFyFqWIf1jCHlNl/BYrytFQsoQW1UpkrJfW1UpknLf1J0HQ8oQW1UpElKG2KpKkdgyRKT+Pb+YMsSgEME4owwBAAAAAAAAAABjjTJkTPiqEBH/LHFKDSLiL0KSShBb8VBTSpCq8SStBimyf8aUEsTmKkNSVoEavjIkafW0+MuQlNW0/a91LHZIKUFsdhmSVIMUWTdlUglSM6ZI3m3pLUMSnz/eMiTjR3c9nlOKEJtdiKQUIUV2HZJSgthcZUhKEWL4ypDYIsTwlSEpRYjhKjlSipC6cVPPaX3WYaYUIbbi79uUIsTm+xlTihDDdVw55zZX/ZFShBi+MiSlCCmyVyrmnHcNuxDJ/R3h+z2Y85rAdUzaZUhKEWL4ypCkIqTIGjapCLFZr6dTqpAiXyGSVIYYjgIjpQwxXIVIShlirOdCJKUKGRjOKkRSihCbqxBJKUP643kKkegyxPAVIqnjibsQSSpDbNqliF0GpBQhNkchklKGGL5CJKUMEfHXIUllSP+Ly2OmlCGlYa1SZBTKEJvztV7GY91XiKSUISL+OiSlDOl/raMQ0bhv7PNiShlSZFciKWWIrViKpJQhNt97gCmFiIi/EvGVISLUIRhtlCEAAAAAAAAAAGCsUYasc1VFiGFmhVNLEJspQ1RKEMM8CjVqEMe4uUWIYX5mjSLEMGVIzsrPIlOGZK+a7jFliMYqWlt3QqcIMUwZkl2EGL3Ho0oRYo2pdXv2yxCl506pDFH80c1jXKMKEVktQ3KLEMOUIRpFiGHKkJwapMiUIakliI8pRHKKEJspOTSqkOJ4Wuc289jWKEIM8/tWowopMj9zThFSZI5P89xmapCcKqTIFCK5RYhhVipq/i7TLkMM83tR63WBOa6cIsRmCpGcKqTIFCLZRYjRRBli9J7nuWWIYQqRrCKkqFdf5BQhNlOI5FQhRU0VIup1iEh/hXduGdIfrleIaJQhIqt1SE4RUhqzV4gkFyE+phRRGtdUIipliNFUIaJRhoj065CcIsRmFyKpZUhp3I45Vyq9cOudxzXKkP6QvUJkFMsQozvRyipCvOP2HpOpZYjNlCI5ZUiRqUQ07xtznswtQwxTiGiUIUWmEtEoRAzzN0pqGWIzpUhVGWJQiGAUMRmyToVMgnR6584Nd+n98SsiMnew1jtRzZmc031Yzx3ce0GjOOzEwsr/hmxwH0PrjWZjQu/1Zl/XvLGnNSHQ+9tK+1i13ogq0pz8EdF/03W+9/iZqt5LM8qBHStjak1KGh2lN4b7GnhvZrlXkE/WbPoePF7vjeH2gspwfapvFPZUbTKdwr4sWi4zSVO3QXuMhd6Ys/fqPjGXZ5TP6zWbVqfoL5BQGnqyd4wd5XOm+qIL0X/Nof187PbeRJm9W+/EsbBl5c1M7d9p07t1TxxVm/qmqtuMNnq83v0zdY/Oi5jOxt4bzQ387BM1m4HH0p4U6UyvPCAn76nepD6GmaTqKr15ZkzcuVt1vEY2BJ9XfrGhPTFg3iCu2Fw9mfbtOak8Xu9N3e7GWb0x6za+T6V8W2pNJBZ1duhM9BrtvSvn887W6o3bQ/UnBBp4vV61eXmK5c3+zdVTNDEpsrh55c2IyQO6P/uBHYorZkVvwUnR5Jzu83xh88p5PWRxGZMiGCVcJgsAAAAAAAAAAIw1ypB1JqYIMTTKkH33W82Z2wolg33Zi9wV43ZhoLmCuF+FiKiseJ2wFlnlliHaJYjI4Kbu3g26E3StqCi3DLGrCI0ypHgJtKn9+Xe4fYwdpSsOLG0YvN81HvPzhceSRhliihAj93ne5CW8ljes/v8TCgsMl61FUbllyLJ1ztQoQzqFx7pmKaBdhCxbq6I0qovipbs0ypCFTfrHKFJedV96DiQoXmZM47xRumRm5pCT1mNRqwyxf99oXMZBuwixa0SN6qJbuLRGE2WIiNJxWqXfzD15BYK90fv0nvyiofgzi4hM7dM52XWty5/kFiL9MqT/AYXXMoU/F9sH8n/u1sLgGJ2NOqtpTRliaBQixcuXadQhLetScG3PpuWh7EsQadZQ3ULNoLIaX3tTcfvSQRqFyGzhBZxng/EU3Q2DLwx9m5cHsy6LplKIaJchTdRKIqXKprVrb/aQnZ1bV/9D4e0xU4b0x88sREpVRENv4WlUIvaxdmbyripiH5NGIWLKEBHdOsS+POXC1ryf3S7DNa4IUbykq8ZVMEwZ0h+TQgTrBGUIAAAAAAAAAAAYa5Qh60RdEeJaOZlThBRLEFtKGVK3AWrOinFXXZCz2nWgBCl9s/jx7BLEllqGNF2EGDlliF2ClP49YTq2akVEThmy7FiUmFOG1K3cSClE7BqkKOcxP+94LOWUIXYRYqQ+z2tXwycMWyxBbDlliF2EGKlliF2E2FIKkU7FAtyUQkS7BDHsIsTIqS6qNnNPKUTsIqQo5zh9K+1zyhDXxvM5541SEVKUMKxdhNhyChHX75qcMqTpIsSWU17Y1YFIXiFi1xEimcdXs/dTSiFiVyFFOYWI62fPqUNc983A2AmFSKkKGfjHjNc0jj8XcwoRuwwxcgoRuwopSilEqja0zylE7DLESC1E6janTilFuhX7WyQVInWbSacWIr7nUE4hMlux30FCzWEXIbbkQmTZ/RojqxAZ9TKkZt+VnEJkoAwxMt4ms8uQge+VUInU1hDKb+nlFCK+Y00tROqOJaUUKZYhtpxSxC5DRPLqkLo9A1NKkWIZUvq3jFLELkRE6isRChGsJcoQAAAAAAAAAAAw1ihDRpyvCAlZIRlThlSVILaYMqSuCDFiVoyH1AQxq10rS5DSNw//1LoixIgpQ7RrEFcJYkspQ+qKkP7nRdz0ISsfYsoQVwliSylDQldoxJQhVUWIEfOYd5Ug5fGCh+vzFSG2mOd70Er4iLupqggxYsoQXwniEluH1FUhInFlSFURYsSUIcMuQmwx5UVVEWLElCFVRYiRUoaErrCPKURcRYgt5vxRWYQYDZQhRkwhEvI7JqYQGXYRYospMOqqA5G4QsRVRZS+Z8zx1RQhtphCpKoMMWIKkZCfPaYQCblvRBooQ/qfFP64cxUhtphCxFeE2FIKkaoyxIgpRKrKkP7nRBQiviLEFlOI1FUhA98/4n6vKkP648UUInVliEh8HRL4PBKRuFKkqgwxImqOujJEJLIO8RQhpe+bUois8zLESClEnGWILeJts6oypP89IwqR4PphBPYSCTnWmEok9HvHFCJVZYgtphRxlSG2mFKkrgwxYgqRqjKk9LkRr1NdZUhpPM9NSSGCtUAZAgAAAAAAAAAAxhplyIiyi5CUa2WHlCExRYhRV4aE1iBFVSvFU/aVCFnlGlWE9A+m+p9Da5CikDJkLYoQW10hElqDDHxNyKrdiJUOIWVISBFiqytEUq7XGVKGhBQhRshjPqQIKY9b/e+hNUhRSBkStTdCwG+xkCLEVlWIxBQhRmgZElKEGCFlSEgRYqsqRJoqQkTCqxCRsPIipAixVRUiIUWILbQQiVlVH/L8CClCbFXnkaAixBb4CjO0ChEJez2UtB9VxSFoFyFGE2VIaHVQVFWIhFQRpWMIOc4GypCQIsRWVYik/OwhhUjMfRRahwQVIaUv8j/+QooQW0ghElqGiITXISFFiK2qEAkpQkpfE1CIhJYhIuF1SEwZ0j+Oivs9pAgpjRdSiISUIf3PDXx+JJzrKguRkCLEFlB0hJQhRlAhEliGDBxDXSWiXYQYa1SGFNVVIkFFiC2kmAsoQ/rHEFCIpOyL0UQlElJpxBxrSCGSsn9J3THElCFGSCESUobYqkqR0DKkqO59iZgypP81Aa9XQ8qQ0rjWTUohgmGiDAEAAAAAAAAAAGONMmQEFauQlCLE8JUhKTWIUVWFpBQhhmuleMrKTsO3ujWpBiny/PgpRYjhKkO0SxCRtBqkyFeGpBQh/a913B0plYXhK0NSapAiXxmSc6yuMiSmBPFxPfZTipDV8dwfTylCDNfzPaoE8XHcTSlFiOErQ1KqEBF/GRJTgvi4CpGUIsTwlSHaVUhMCeLjKi9SihDDV4akVCFFvkIkpgixuZ43KUWI4Tp/JBUhNs/vzpgipMj32ijndYOrDGmqCBGJr0IM3+MlpQgxtMsQw3uskVWI4atDUooQm6sQyfnZfYVI6v3kK0SSipDSIOXHYkoZYrgKkZgixOYrRFKKkCJfHZJShvS/1lGIxBQhPr5SJKUMEfHXISllSH9MVyESU4T4+EqR1HOerw5JKUMMR9ERU4T4OEuRhDLE8BYio75XiJHz+PQUIkllSJHnXBlThthcpUhSGdL/4uHuI5JzrK5SJKUMqTuWlDKkyFeJpJQhhqsQSSlDjKr3KVLqkP7Xel6/ppQh/TELNyd1CIaFMgQAAAAAAAAAAIw1ypARYoqQnBqkyJQhOSWIrViG5JQgNrNSPGdVZ5G9ujW7CDF6w+aUIDZThjRRg4jkFyGGKUNyShBb8f7OqSxsphDJLUIMU4ZoHmOxDNEoQgzz2M+pQQbHG/zvnCKkyDznVYoQo/f8zKlBiuwyJLUIsZlCRKMIMYplSE4RYjOFyCgWIUaxuMgpQmymEMktQgy7DMkpQorMcyinCLGZ84hKFSJSKkNSixCbeb2k9dpBZLAQaaIMSS1CbObxk1OE2IqFSE4VYesfa2IRYrMLEe0yRPNnN4WI1v1kFyIqZYhIvw7JKUJsphDJqUKK7EIktwwxTCGSU4TYioWIRhlimEIktQixmUIkpwgpjVksRDTKkP5YveeQ1jnPLkRyypCiXs2hUYYY/UIkowopKhUi94EyxGZKkewyxOidO3OKEFuxEMkqQ2zKb//Z5YbWsZpKJKcMsZljyy1DDLsQySlDikwlklOG2IrvY+SUITbzujanDBkYr3eTUoigaUyGjIATzl6ZBNF8o1VE+U1GM6be34cDJhZ0H4aaby4XVW2onGpxk+545s2GiYBNqqM0c5M2Q/m5NL1X/zS5/37tRt5o05pMNTRfhBU1sQn3cs3+kKPCd8m5HOb21HxDXKR6Q+0UmpMgRROKL+qNVkMbxc/s0T1BaS5MMMwk2NIG3YDYdYm8HMsNvSYR8V8eMZXWJIhN+7We5h/IRme6od8jyq8dmzS5X/fEP6H4BruISHu+9wau0hs5RRO79d4cFBFZOkhpxYNlYncDL/Ib0qraCDyF5qSFSP/N9da80oqsoon1cWELzQkmo3VAcTVeQXdWcRWNSCOTId0N06pvivfHVT7ntfc4LhenYHnnFv1Bld8GNJMX5veJlq7vUnkZFrbrTVYWab/WmzukmRe6vssh59D+e8QsdLrqn5kUQTPWx6sJAAAAAAAAAACARMprSJFCqwixLzuxoLha0FxuyLXBaIomVoWLiCw1sIpd8/IbIvortw2ty08MQ/E20HgsbLhz8Ek0t0PnTutXEYplyP77NTMHbVbc+zbFjLVkXRpIY5X8wGWBFM8BS9Yi0dzzVFOXx+qf681Nq3BXNXUu1Ti2osWNg48nrcv3ifQu3ac5Xu9Qu73FWFrHqnmJQWO+cBkrjTqmiZViIqvFmrnk2HRmcWTGM88p7d/TIiuPWY06xJz3lk21qXQbm99PmqXZxMLq71LNy2+Z55TWa8jVS/v0/lvhPNheXP3ZO1Oa111b+Z+lTSsPhMl9eXfYxJz1wyqvmG0trdwOGqulO73LkXR2bpKpu9wbgKfo3/9aP7u5xOaWlV/2E3v0qovW4pLaJa1EVi/x0p1auXxOe497E/ho5vmuvFK8O7Pyi1SlELFvR61LO9mXnsotT3qVjfrjVAYvb9Xan19cdQ4arA3UiiNzGypd1sswj3/NQsRcxq87rfM87WwZ/KNEoxRZ3r5p9fGuWHEVL2Go9fOL6Bci9t+2Gs+pYgXbUazWlzb0ftfP6TxG7fcJtV7vmp9f82cvXUUk89eJ9lVzABtlCAAAAAAAAAAAGGvsGbKGNPcKcW1GurApfa7Lt/F06qq+utXLOavZnTVIxjRf1Yz7ZMbiDl8RkrrqvK4EGaU9Q6pqmJyV7XYRYuSUIVV7ZGy4K/3J6ipCcvYMqdt7IfU5ZRch/fEy7qeqjaJz9uGxixAj9TxVdyw5hYjzPJ/xFPU9b7LLM88x5ayQt6sQEZ3awlVa5Dynup6nVOqx1pUgs/ekn0/mHRub55QhVbVCzr4hvj2McsqQqn2RtAuRnMd91XlPJL0Q8f2OyilEikWILacQ8R5r4s1a93st5/dUsQwxsgqRipstpw4plSFGxkrZqtW7OYVIx7GJbk4hsry1emOw5NXCnodVTiHS3/C6+G0UChHXxsRZdYhvb4fctwc81UZWIeK6/XLqkLpqIbUQ8azcz1rNXlED5BQidhnSHzO1EJmu2d8goxTpbii/OZFViFQ8djQrCSOnEFneXrHBaEYp4no+5vzspgjxGaW9RJY2+/fJyaklXK8bciqRAzurn1Opr3un9rof/zk/u3PPXoW3o9g7BE2hDAEAAAAAAAAAAGONMmQNmCLESClDXCWILaYM8ZUgttjVfKGr/mNWsQftC5IwzRcysx5ThoSu0E5ZbR6yP8golCEht0FsGeKrQYpSypCqIqT/vSPKkJC9QVJWsdcVIUbUc8pTgwyMl7CYp25ltEhcGeIrQWwpq45DjiPmuRp0Xk84zpDnS1QdEngMKSvkXUWILaa6CNlzI+U55StCbNrHmlKGuIoQW0whElInpJQhVfVGUUwhEjJmE3uHiMQ9/kPOeyJpZUjI76mYQqSqCLHFFCJBx5lw/gv9vRbz+8pVhNiSCpGAmyumEPEWIbaElbIhq3VjChFXEWJLKUTqyhCRyJXCgY/BlELEVYaUvn1EKeIqQmxJhYivDCkdQMQTNqDWSCpEQm6vmFIkpFJIqUMCV+pHPVYDxkwpRHxlyMC4MZVIXRliJBQirjLEFlWKBDxWmihEROIrkcoypD9o/GM15HkYcxvUlSEi+nVIUcxzqqoMMVIqiZDXCzGlSF0ZYsS+/vWVIbaY28BZhtgSXvvZPxuFCLRQhgAAAAAAAAAAgLFGGTJEdhFihKwgDilBbCFlSGgRYoSs5EvZAyJktV9QEdI/iPpPSVlBGlqGpFy3v2rVeUgJYlMvQ4yaQ4n92UMfLyFFiC2kEAlZwdo/hoAyJKQIsYWuZg+tQkQCn1MBRUhp3ID7K3RltEhYkRFahBSFrjqOKVNCypCkPaCUz6vBz8GEU0TICvmQIsQIqS1CKgtbyHMqtAgpqjvelGMNKURCihBbVSGSUiWEFiKhVUhRSCESM+5aFiJx57/Ac3/M65+ekEJEuwxJOs7Ah2JM7RjyeyqkCLEFFSIRN0FIGRJchBQFro5NWaFbVYiEFCG2kEIkpAix1a4QTilIAwqRkCKkdCgBxUNIGWIEFSKhRcjAQQTeaBF1RlAhkrLXSsgxxNQJoYVIwur8oNXsEeOGFCIhRUhp3JBCJLQMEQm+/UOKEFtQIRLxOF3rQiSoDBkYuPrxklJmhdwGIWWIba32EQkpQ2whlURMSRpSiISWIUUhr4FDyxAj5GcPKkNsAb9WfD8PhQhyUYYAAAAAAAAAAICxRhkyJL4qRKR6JXFKEWL4ypDYGqSoagVfShHSH9ex4i+qBPHxTPelrhr1lSEpJYjNteo8pQgxhl2GpN4GdY+blCLEcJUhKStX+8dSUYakFCGGbxV7TAni4ltJm1KE9Md03F8xK6F9fIVGShUiUr/aOKYIsbmeq0lFiNHQedX7nMw4NVStjI8pQmyu4iKlsrD5nlspVYiIvwzROFZXIZJShBjaZYjhK0RSihCjqgzJGVe7EKkrQ1LPhb77I+f3leEqRGKKEJurEFE5Ts9NG1OEDHxdzbkzpQwxnCs/M26CqkIkqQwxPCtkc1biapchhqsQSSlCbN5VwomnQF8dklKE2FyFSEwRYqssRFLKEMP31kHMfh2WypXqKWWI4TqmhP0q+uoKkYQyRKTicZo4XpGrFEkpQ/rj+QqRmCrExXO/pJQhRmUhkvF41S5F6gqR6DKkP7D78ZO0Z09P1c+eUoYYTe0l4ntupZQhIv5CImlvMYurFEkpQ4yq18CxZUiR7zZIKkOMit/JVT8HdQhyUIYAAAAAAAAAAICxRhnSsKoixLBXFOfUIEV2GZJThBSZ1Xs5K5ZLYxZW/qkUIUbvJtBaHWqXIRpFiLE8k1eC2IZVhmjdBubxlFOC2IpliMbKVcMUIjk1SJG9ej23CDHsFbU5RUhp7N79pVGFiJRLjdQixGbOVzkliK1YhmQVITblc2vpual0SrBXx+cUIbb2ok5lYdjPrdQixGYKEc1jLZYhOUWIzS5EcqoQkXIZklNuFNl1iNa4Is0XInrnwZVxNX9fFcuQnCLEVixEVI+3d9OmFiGl8azzaU4RYutMtbOKEJtdiGRVIUXWytjcFbh2HZJThNiKhYhGGWL0Vwcr/R60CxGNMsToTk1mFSG2UiGSU4UU2W8hZKy0L+qvWs8pQmzFY8spQ2ymFFEoOEQcq9iVxjV1SE4RUhrTLkRyyxDDun9yypCifiWi9DgVaX4vkeQipDTg4OMopwwpsn/+nDLE1vReIqlliM1UEhpliFEsRHLKEJt5LZxThRTZhUhWGVJk/WoJeQ1PIYIUzZzBEUVr8sOmNflh05wEMVQnQAq03wDRnPywaU6EiIgsz66Mpz0p0tRtoDkJYmi+QVOkNQlimBcPIZu+Ro2rOPlh03rzb3XAlf9Z2qg7rOYkSHHMjt5r0z7tc6sZT/NNZRHdyQ+b5uSCyOpzS/s8qH2cIiIHtrfVzwEiq5Or00p//EzOrYyzsFn3PLjQO19NNjWRr8g8B7RfvzXxO6s7sXqfaWr13ghdmtV9HGhNghjmuTrRwG3QXuxIZ1rv51/atHKynrlT+RdX7zZth2wqHKC1tHJbLm/Q/0W4uHPlzT+tYzXM48p1mbcUy1tWVkVM3l2/AXys1uKS6mRIZ8vKC6v2fuXHlbktl3Xvq+7MyuNK9Vxg3gxWnLQSkdU37rUmLczjNHTD9kDdjXoTi/0xZwevGdvSmmTo/ezaEw3mOdWa1/td0FpYfTxpHm9ni9KKsP6A+r//RFZ//uUt+o+vzsyk6oSI9msLo91bcKT5d+HSBu0/sleoLuCT1Z+9T2sypLk/M4EBXCYLAAAAAAAAAACMNS6T1ZCgy2P1bnmtVZD7D7YSSMWFOsXVj95N3hKYS5Zo1Qal1epKh7rx9sGp9APb9eYRzc/emVY6WGvWf2JB5/G1bB1fS+PUURhi0216yxV2P2DwgeDb9DiWuYSJVnFh11uTFXtdRo9dXKSjehmP3m2gVAdMWPs6apUh03usS+4oXXpMRKS90FWtbqasYzVVVy5TQywqHmvxslNqObSIzOxaHXdhq/7l3NpLOudB+3eMas1TOAVqrt4yxzyzS2fQ+W3NvNZoW+OUVpwl6EyuPpY0VwU2dZms1RWGo3+ZrMn9hcs47NBbEql9maziY0BEZGqP3ovjbmFszdfGhlYh0pkZfIBO7l1QGddcZqS1rPfcKt7vLcXLGWkVIbZ2r5Jp767eADlGZ3Nhxb3i74L2gcL9rrlK2vw90NTqc8Vj7U5NOjcUT6Z5Ka+CUhmi9Phtza88BjpblC6/JNYl4jSLFutnVquleo/XYtWRo7PJKmQ0q7bC39oqP7/1FG0pVV2d2cHXAFr3lfkdYGpEDQsH2UWTzrht6/fVwhad10Wrl+FS/B1WeFzZlxPOMX+Q9feB0m1rXseFvNbgclmIQRkCAAAAAAAAAADGGmWIsqoipFVzS+cUInYVIqKzWtN1Peyc1W91m9emFiLeVZkZk+h2DVKUU4b4fsbsMsRzuDlliF2DFGWVIY4v1ShD7CLESC1D6jYazqkDXHv6aJQhy67LtmY8tCb31dwGiYWIXYSsjpc03AC7ChHJW1HTrngO5TwG7CLEyC1DfPtj5BQiVSuHcgqRYhFiaJQhvr03cgqRqtX/WYWI49SnsZrKd7yphYhdhNhyXnPYVYiIfhli5KwytosQW2oh4vtZc85bVfdHTiFSLEJsOYWI7zVy6v3luu+LcgqRrmPsJsoQkbw6xC5CbKmFiG/jWY1CxHV/5xQiTRchpY8rFCIDZUj/g+njDRQhpXFzXst7vnYEC5FuRcGRVYoMqwwxEh/PpgjxySlFWq59WDQKEcfPmlUc1PzdmlqK2GVIfzyNQsRxzFm3QcVTM6cSscsQI7cQ8Z37c0oRuwwZGDfnPOs51tRCpO71X1Yp4nhcaRQidhkikneb1r2Oq3rNQSGCEJQhAAAAAAAAAABgrFGGKKnbI6SuChGJK0NcJUjpeyZM8LtKEFvK6re6IsSIKUOCVmAmTJpXFSFGShkS8rNF1SGBM+0pZUhVEWIklSEBXxJTiPhKEFtsGVJXhBgpVYCrCLHFFCLOEsSW8DyoK0KMlDLEV4UMjhs+nqsEsaWsoKkqQoyUx4CvCLHFFCK+GsQlphAJWSmUUoa4ihBbSiHiK0JsMYVIyO+apDIk4FSXsqIq5Hhj6pC6IsRIec3hKkJKn5NQiNStJhOJW2VcV4QYsWVI6M+Wcv4KuT9iCpGqIsRIKUNCXh+LxK8KD3kMiMQVIq4ipPQ5I1SI1JUhRkwh4qtCilIKkZD7N6UQ0S5DfEVI6fMSChFnEVL6pOhhq8uQ/rgR91nM6/8GKpGUQqSqDOmPm1KIKJch3iKkKOExXVeGGCmFiLMMscWUIgE/X1JxEPi4jS1EfGVIadyYUiTgWJNug5DXnQmFiK8MscUcc8j5PqUQqSpD+uOmnGcDjjemEgl93ZdUiAQ8vlJKEVcZYou5bYNey9e83qAQQRXKEAAAAAAAAAAAMNaaudAlgle6xQopQmKElCCpQmuQ6HFjFkKYHy/gWEKKkBip+5+EDR7+qabyCClEQoqQKA09vEKLEKMzFV6HhFYhoUJKkKRxQ4oQI+J5EFqE9D9/fze4DgkpQmKEFCGGWYEdsoImpAgxzO0VUoiEFiExYoqQGDErgsznhhQiIUVIrNAaJFbM7xpzvg8qRCLO393er/yQlVSp+1VUCa1Cit8/pEgIKUIM85wNqShCa4BQoUWI0VoOvx9iipeY81dMobM8vXL/VhUiIUWIMXv3yi/akEIk9nVyt90KXhEe8zhY3LJyh+XsIVJkjlG7EJk/eGU1a0ghElqEGEubp5P3D3HpTqz87CGFSMwqf7NqPmTFcFN7hYTqbN3Q//819hFZHcx8g4BPDSlC+p/cu71y9hBxjts7YMVCxDy3Qh47IUVI/3M3rrywDipEGtorJIhZ1R34GA+tQkRE2nv2iUhYIRJUhBjmOauxl4iUK4vcvSkGxpqeDK5DQqsQkdVjVNlLxDGO1m3QnegdZ0AhElqEGK3FZd37anLw8ZSzl8jAuBGvvUOKEGN6z8prpNR9RJzfv/BaMmsfEYv9N53GniIicbdt0HgTg8epsXcZ7jsoQwAAAAAAAAAAwFhjz5BMZq8QjRLEtWeIRgniWyWYWoXUrXbLKUJcNYXKalfHMeWUIHV7hqRWIbV7hmTMorvKEI0SxLl3SMbzoW7PkNgqxPCVIRoliKsK0ChCXHuHRBUhtpq7O7YKMXxliEYJ4to7JKYIsVWtmokpQmy+MiS3BvHtG6JRhLj2DslZ+VNVhuQUIb69Q3KLEN++IRq/c5yFSMb5u2oFVc7x+vYOiSlCXHyvO2KKkNLXVpQUOUWIb3VxbBVi890vKXugFPnOYSl7thhaZYjNV4jkvmb23We5ZZCvDgnZK8Rn2HuIxFYhNl8hErJXiE/VSs2U/R9Wxy0/bpssQkL3C/F+vacQCdorxKfikKLKkNK4rtf2Cn/sNrCHiIj/cRRThpTGrCpE1mKvkDqex35MGVJUV4dElSE218+r8Nx1VgcKj1tfKRJThgyMV1eHZByz8zZQeNq5SpHYMqSorhBJ2SNKpL4OCdkzxDu2Y+iYMsTHVYrkVB61X5v4+PL9jRiyV0gd122rUXub1x/sHQIXyhAAAAAAAAAAADDWKEMSaRYhRrEM0dwbxKwW1NofxF7lprk3SLGoUL3+uXWMWvuDmEJEa3+QUhmiuICqWIZo7g1SKkOUnhOmEEktQWx2GaK5N0ixCtDcI8QuQ7KqkKLe4aaWIDa7DNHcG6RYhuQUITZ71UxOFVJkHgta+4PYZYjmHiHFMkTrWrAi5UJEa58QU4ho7RFilyGav3MGyhDF87i9ckrrmE0hkluEGHalkFOE2Aauj6y4R4i9sji3DDHMfZRbhBj2uSunCLEVC5GcIsRmFyJar53Nfab1OLDLkJwixDasQiS3DDFMIZJThBTZdUhOEVIee/VxO8plSH+cXiGSVYQUWYeVVYSUxi7cT5pvGTRciOQUIQPj2XVIQ3uFqJQhhvUcSC1DbKYUySpCiuyfWfG5O1AdKD5u7UIktQwpjWtKEaVjLVUXmq9DC4VIThlis485tQyxmVIkpwgZGM8+3yodp8hgIaK5/0dpLKXHmfnbUaMMMYq3r+prfAoRODAZkuDEs/5vI+MubG7mBbzWH/S2zoT+8S4r/V1g23hHMy+69x/STFylvQmsyMqbXVpvdBVp/kFbtDzT0PNhbzPHO79d/3i1NhezTTZ0TmjqzZ52E5uhNfSbr6n7rCndBk5hZvIjZEP1GIuey7Hlcl7qT0Fb8f2okrXdGzjYRFO3QYOvXKf36j6Jm/od2dib6/d6rimpYH673hsnRdrnscm55k7kTd1vU3uU3qBsWHuxwV+SDT3XtCZBSpQnBNoHlhoZV0RWN8DW1tCkiExorqhbpTYRUKA6EVLQWmjmXN6dbeiP9Un9+8zeYFttXMVNwItCN26P1W3g+dCdaugCMw39jlzc3Mzrj4mGfqcd2KG4urJHa/Guran3bJp6vfS1D/1OI+Ni/eEyWQAAAAAAAAAAYKw1ND843jqTLe/GqynmzaU/lCaWm1jpaxQvr6R5aYaBy/8oLuzybZqda9/9Vm5kzVXgTd1vvg1yc3X6CyxWHhNal53SzEL7YxYXMe3VG3dhWzMrFuzLQbk2uk4a17pcUUdpkczUvpX/XdiiM56IyKbbV08wczv1nhwz9w7eBvNK9+HmWwZPiPvup7MKa/bewefvAcUUecNdHdW6TetyWDZziT/zv1q3gV1NLm1QGVZEmqtCzOqrCaXLutmX2VL7vd47vOXeOWZC8Xfx1L7V58TiRs00v9sbs3epO7XLZPVe4ykVbl27ylV82nXbq5e0mr1b705b2Lry54a5DUo/QyJT0WrXN0sbVh5XmoXI0uzqY1Xr+Ssi/ft/cfPKbTy1V2dl8eS+wft/aZPOC4ZObzWxaiHSUBFiCjz1YzY1orkskHad2O491jSri8kJkSXFP/zsy00pXcqpX270/letYujVG92JldXaLc1LkU0XnluKNUd348of15UbwUfoHLR54L9bB5SOtYEixOjMrD7O2vOjX8+15lYeV90NOlVAk5fLakq/cBORzuzov1W5uLH3u3e/3uPrwM7C/d/QJfmXZvXew7Avtax1ZQDz3th6u+oC1g/KEAAAAAAAAAAAMNbYMyTC41/xN/3/P6cMMSWIT+rsp68smFbYI8G14XbOCtLKjaAzDreuBLFXWYcyJYhPzoy1637TuEaiqwjR2DPEVxOkliF1JUhOMdOpWBA2c1f6A81VhGiUPb4NwnPLELsIMXLKEFODuCxsST/eYhFiyylE7CLEllqI2EWIoVGGuM5XOVXEhrv8J6qcQqSuCEldIVS3ejrntnCt+tcoQ5ouQmypK8zrNl7PKkQqDimnECkWIYZGGeKrCrLLEM/DPqcQqSwqMg636vdXTiFiihDn98yoQ3z7qjW1P4tGIVIsQ4ysQqTiS3PqELsIsWkVIoZKbdFwGVKUdbx1f3In/kleXEntlFOIVG1qnVOKuDYiV6hDfHt6JBciNft55BQi3Q0Vx5RTiFSUFjmViF2G9MfMLUQaLEOWN5ULi5xCpKm9Qtq79ld/38RSxHu8CqfdpvYMaS+Uzys5hUhTe4V0an7+nFJkoAyx5bxP5nj/UqMQ8b0Plvr3X93euVqlCHuHgDIEAAAAAAAAAACMNcqQAMUixEgpQ+qKECNmtjNmNXpMIeIqQWwpK0crixAj4REZujdIShlSV4WIpM1Qh9x3MYVIzN4gMYVIaD2QUoaE7A+SUlxUFSFGShkSskdIyvH6ihBbTCHiq0FcYgqRqiLESClDqooQI6UMqStCjNgyxFeE2FIKkZDzVEwVUVWE2GIKkdA9QmJXBoWulk4pQ0JW+6cUIsMuQopiV5fXVSFFUb/nAw4jpQxxFSG2lEIkpCJIqkMCH+4phUhQTRExbMzvq5hCpKoI6X/vhDKkbrWgMUqFiKsIsSUVIgFfElOI1BUhRdp1iEhicTHEIsSWdLyhf3JH/mleW4YYMYVIVRFiiylEXEWILaEQ8RUhtuhCpKYM6X//hEKksgwxUgqRgNIiphDxFSHOcWMqkSEXIbaUQmStyhCRtDok+Hhj3nsaYhFiSylE1qoMMVIKkcoyxEh5vyzg/cuYUiTm/a+YvwXDX+uFf/8qFCL3XZQhAAAAAAAAAABgrKVfgA9BQmuQWBr7E7iEFCH9Y+gtNghZORpUhBjmEGomr0NrkFghJUiKpu6zmCIkVkwxYFYwhxQiIUWIYWb9Q26/kCIkRkgJkiq0BokeN6IIiRFShPSPofezhRQiIUWIYQqHkEIktAjpf/6ubnAdElqFhErdy6hOTBESI7QIMSbnusErgmJWSJvbLaQQiVnhPzm38r8hhchaFiGxYoqQuIHDP3W59zslpBAJKUL6n7t/5XNDCpGYamBxY6s3fuDXRNxt3YlWcB0SVVEEvoZqQkgRYpifPfRnC10pKLJS1TZRhyxtWHl8hRQiIUWIYV57B53/In6sxc0r90fOHiIupiLRLETMKtug4mINi5D+IcQcb+xFGFqt4K8JrkJERNq9x2TOHiIuZoV/zh4iRTPWqmiFvUSM1oH58DoksAoREenOTvfGrz/WoCLEmO49x0IKkYjSortx5Q/znD1EnOPOrhxv9j4iQ9CZGfx9lbOXSKqQIsRoza08tkIKkeiCpS0q+4g0zT7f5ewlMiyLG1ePsa4SCSpCjIjXejFXtJk8sPK5GnuJDIw71xs3cR8Rl+J7Q1qVCO5bKEMAAAAAAAAAAMBYY8+QCq69QgzfDKtGCeKa2dSoClx7hsSUID6+MiSqBnHxPDI1ihDXSmyNIkT7vqvaMySnCKnbMySmCLG5ypCYEsTHdTtqlCCuvUM0ihDf/Z5bhPj2DdEoQlz3e0wRYqsqQ2KKEFtdGRJbhRi+MkSjBHHtHaJRhLiqCI0ixLd3SGwVYvOtCEq6Zn6Brw5J2vOhp6oMGcUixHcb5hYh3vpT4dWjqxCJKUJ8XIWIRingfTxl/srwFSIp+2qsfnHFP2W8LqnaOySmDLH5ftaYIsSlqf1DRNyFSEwR4uN8Liv8GL5CJGa/EJeh7yEyAmWIzXu8uX9me74+qghx8dUhMXuF+LgKkZC9Quo4CpHQvUKqeEuRiDKkqK4OiSpDbFWFSMYeHK5CJGavEO+4vkKkof1CQvYKqeMqRNZyr5A6rlIk63hrXoKt5Z4hPq5CZK33CqniK0SiyhAX33tnCXsd21yliEaN4fq7MPd1n0jasbF3yH0PZQgAAAAAAAAAABhrlCEOVUWIzcy0au4NUpzJ1Nxnwi5DNKoQkfKq0ewixLAemZp7hMze22lkb5CY/S1imEJEe38QU4jklCAupg7RKEKM4m2quTeIXYZo7RNiPwa09gixyxDNPUKKj4OcIsRmCpGcGsTFFCKpJYiPKUS09wYxdUgTe4SYMkJrnxC7DMktQgx7BVBuEWLYZUhOEWIrFiJNFSEievuEmNtUe4+Q/u/6Bl41TizqFCE2U4ho1wH9x5fSrzi7DMkqQmyFoTVfmxQLkZwixGb/7BorBEWaK0RMHaJRhNgmFrqNPN9MIZJbhNi0C5FSbTGCRYitdMxaf2Zb42SXIYZdiGiUISKrdYhGEWLrFSIaVUhRvxBJLEJ8TCmSVYS4mEpEsbIoFiIaZUh/XLsQGeEyRKRch4xyGWKYQkT9WM17GyNYhLiYSmSUyxDDLkSyyxDDfg9NoQwRKdchmvt0FP8+1HrdJ0Ihgmqjv+vQiGtig/TuhDTyx485GWhviGTecNF+Q72pDdJF2CTd0L7PVsfVf16Yx+9ywKbGMeZ3rhxrS3nfPPPmsfZjYtMtZqNg/dt48y3LMr9V/wX/5ltXXuhq3xbakyCG9iSI0dRG6SL6m6VvvGNlPK1Jc8NsoKf9Rr25bbWPV2R1Q/WO9uSC+Z2suJmgyOqkhfZt3Om9Ymzid/PSrO4ErNHYJZKUH2aqkx+2lki3geEP7Fh5AaH1R7ZhJoaWZ3R/YZhFJdqPCbOpehOv27vtisvUZVjcsvJk1p4Mac+vHGxnRufkY950Ms+PiZrNZ6M18Lzob6yu/AafmaRozymfgM2m6tprIxt6s1tEVjdYV54MaR2YFxGR7ibdPzTM5urq2vp/dPY3Vp+b1x3XbKy+2Mzr6+6k7m1hNldv6jWE5iSI0d9gfUr5D+V1dh2Z/kRxQ5Mhmoqbq6vq/W4zf7e0lU6VZnP1xU36C43M34cLW7Rf+638Lxusw2Wdnd4AAAAAAAAAAADicJmsgtDLYy0XFnh0NCd0iyuUFO+Vmd2Dg2mXIYZaZdDg5bGKlhVrZXujc62Z8pY1zNRenXH3HzY4D6pdRWjOvnesBVVaq50nrL0CtZ7L9uWwVC91V3gua5YhG+9cXamlWYZMW5e90botSpfmU6oBJg8MHm9Tq0i0LockUt7Ad3la50aemB8cd2GLzuNieu/gnTe/TWfc2bsHx913mN4vZ7NaSURkYbP+pn5aZUjxOEXK585UdlWg+Tu5eD7XrJvslWXtRZ3fnW3r3KN1mTf73Kh57hkYW/G1pbkcpohyhWQ93rTOaU2t8J3aM/igWNysd2MUqxvVQsS6jTfcOqcybMdana1ViNjllEohUnzdrvmnsHWZKddmzCnau637SOnyU/YldVoLOsdrb8itWVt0C7dxe49eUtjZsmngv1u+TeZj2QXLtNIfzPZG9W2915bFMqSzbVPFZ0aOWyxDtC7JJuUyxJQduSb2DhYynY3NVD6apUhnc/Harvnj2eee5e3/P3v/HabPdt11oqve1PGXTw5KVpasaFtClpxwHlvGNjYMMMYX/DADGO610TADeBiGwcw8YFtc4lzDJZjrwWAwOMgRR8mygpVzPJaOTj7nFzu+qe4f9a7qelftvWuHtbvf7vP9PI+en7pP936rd+3atav2+qylMx7k3NPf1clDO768PNdoPofPm+sRxdvGdFO8l1FqWxrtbHakwmYIo7XGJtI3Q5jRraP5XB6/DaTLOvvADAEAAAAAAAAAAAAAAAAAwJkGZgjFGSFMUjS5KyAi4axIE0SykmaI45BX0QyRJogkNgKxKxIgxQyRNsjS5yqbIXW7CUFVrqjmlChUaYS0Pjfymu4qkJ4SmTJyXNMphkjTCJGkGCLSCJHE9kVXZGyKISKtkKXPXUFDRBohdZuJUdTSCGFSzRBphDAaZoi0QojSzBBpWDRJMUO6xlGsIeI6XqI0Q8RVayLl3uyaw1MMEVdEWUrkmjRCJLGGSNdcmDL3ONtOWGM2jZBWsymXc8fwj53bstWNobYV0iTFEHHVYUkyRBx9nGKHSCOk9d8jDZGuWjpJhohrHZ/yaGyIdtewQ1pmCJNoiNiKLacaItIMqT8vwRApHSZBiiEijZAmSXZIV02TWENEGiGSBEPEVSskxRBx1gpJMES6aoXEGiLSCGm1u4KGyJIR0mo4uln73ENplkhXofdYU0SaIa3PTeiLuWsdknDbkGZIkxRLxFXrMMUS6TIrUtbbx2GGMDBEAMwQAAAAAAAAAAAAAAAAAACcaTQrXpw5TCaIpLcI+giKJvcJgOCfCdhY7TJCGN4J1jZEOEo0yBDxOGRuL5chEkKXEZKCVn5IicsIWUW08txLuoyQFLqskOh2Pa/pUFxGSApdRkgsqrnSBS4jZBWxGSFMfzyPiqC2GSHMaBEBHWOI2KwQIqK1G9V/CzFETCaIZOvR6uYcYoh0GRZERKOFnRdiiPhG9w/2y2A7xOeYe4vgupC51WWEMDH3Zh9zYP9KNX5DDBGfSLL5sPqjQiLWuowQhq20EEPEJzqRfybEEPGKeoxYY7qMkLrZRX8FGSKeQz50bjspI6T+mcW8F2KIuIwQhvs26L7o0cf7d1XRtCGGSJcRwvQOZ8F2SJcVQkQ026zm9yBDxGcdz5HqIYaII7pdRqeHmCKuqGwiquyDCDukKyq7HFVtxhgiNiuEiKjYrf4ezRoiREd2h2YNESKisleNcbX6IU3Gi5unVg0Rhuc+5WfW3o2qbzVriBDR0XWmWEOE6R1O1eqHLLW7Vy2stA2R+YXNqn3FGiJVw4t/lV8J9K9VY0KrjkiT2dZIrY5IE15PadYSqRpe/Btw23AZIQyvx0PeE7mMkPqzF+8BQwwRX5MiZr19nEYIMxTvLXz/PnB2wBkHAAAAAAAAAAAAAAAAAMCZ5mlfM8RUL8THCJF4mSExAQ+eZ8fXCmlyorVDIkbdSdYOiTFCfKMSY4wQn9ohMUbISdYOiTFCfKNPQ60QX9MrxghxRaKkmCCu2iEpJkhX7ZBYG6QzV36CDeKqHZJigpxE7ZAuE8TZbkcUdZcNYqPLDnGZIF24DBEfI8SGyxDxsStsuAyRlPHSZYikHLOzHlPCssB1j06pJeEyRFIiyboi1nytEEmXHZISjegaU0lRjo5D9jFCrM26znvCWOua23JZIT5GiA2XIeJjhNhw3isT+thliPgaIcbf7TBEfIwQG05DJCVK3vWonBDN7jJEOo0QFx2mSJcVYqPLEnEZIV24TBFXrZAuXKaIq1ZIF05TpKtWiIsuS6SrXoiNrlqXjlohXbhMEWetkC4c572rVogJX0Okq15Iq91M9UOI/AwRZ60Qa8MePxIxB/kYIjHzj68h0lUvxITP2slZK8TacPeP+JghEp/3Rj5miMTHEIkxJ3ztkJMwQ2yY/k7UDTmbwAwBAAAAAAAAAAAAAAAAAMCZBjVDKM4E8SZTiYkYE+REOWWHS5SvPghqgxxx2uqDoDbIEaetPshpqw1ClGaFuIg1QrpIMUJcpBghLlLsii5yWUS5jjnFCHG2m2CEMKYaIhoRZLacxrFGCGOrH6KRn7rstceWSt5rQ67rFCOkbtZWQyRxvPXHVSdIQ2QVjZC6DUMNkRQjhImqIeJBTA0RH3qH1YGG1hDxYbY5CKsf4ktMDREPOFI9pIaIF2wmRNQScZFSR6SLYndfvY4I0SmsJXLK6ogQnZ5aIvI606olwvVD6nYVTRGuIUKkXEdEDlulVwhcQ4TRqiUy21ruU81aIs01lWodkeawVbx1yPW61nslmTEmpJaIC15rMyF1RE4K1BJ5+vC0TZPF6bG0N0Lq9Draa43FWdLeBMmVKotokS4rw+jKnS5LexOEH861N0E4VVaOTZDc6bK0N0H4ZYD2Jghfzzk2Qcpenk0QTpelvRHC6bK0N0HqAsHKL3L4hWSOTZDc6bK0N0H4haH2Jginy9LeBOFUWTk2QThdlvamAqfL0h4bnC5L+3h5Ds6xCdKb6GyCSHgzRFul5wez1E0QSY7NEKJMmyF1Y0f/V2MzpG5WeTOEOU2bIU14Q0RjM0RSzChLIBZviqSkyDLBmyIp6bFM1Jsi2i9/Mxd7JkpMkWVisSkSmx7LBm+KpKTHMsGbIinpsWz0bu0mpceyUW+KpKTIMsGbIrHpsWwsrouU9FgmeEMkKT2WjaKISo/VBW+KhKbH6mw3U/os3hSJSo/lbHjxj/b8Q0ebItpzEG+KxKTHcsHrqqj0WM6Gq39i0mN1UZRx6bG64E0R7Q0BXnuvUnosF/z3I13W2QLbXAAAAAAAAAAAAAAAAAAAONM8bdNknRYjhCPHc6RWmmwWWSKc6whA5WPeuFod7GGmHWSkxcoP0mI12s6UGouvE23Wry1SWziKk8fA0cfzgW67609VCtl0Sz9Mpjee60cLEdHGE1WE02Rb99Y8ullFKs7WdI9587HqeLX7ePOx6tzNh/p9vPVo1ReuQu0xnHuoanfnbt1zx9fzpKOgeih1+qIMq8DpVkF9Jb2+CafL6utlRyCiRrqsme4xs52mHf2vaoJICspy7nKNN06XpX3/YLSNECaHEcJMN3tZUizu3VNF3q4/rhs9nWvtPd1iC1D3HPZvVn//7MK6artERPNF1PRpWd1zlLf6GWTLoq+/fivX19TbJCKar1UGR0/ZDGETotA2QzJRTDOmpM2UzEQ9TR23u0ifpW2I1KmzlNcsrdRZinD6rOkd51XblemztMiVAYAnS14DaK5dyuLIsCwUxwZnkSlmparByWtvNtS135cdXqjmzrUbOidTps4CZ4PTst4CAAAAAAAAAAAAAAAAAACI4mlXM+QVf7GqFaJVd2Iuo9yUNkxl1LjmbinXFCDS3fmWOaG1cpHbIt1TDRFbdCXn7U/C0IRGJODUEB2skZt9aglwG+6ktTu3BGBp1YeQRohWnvqNJ0ThrG29SIi160dta0aEyEJnWrnT5bnSMkNkATXNvhjeOory0rQW+o36I5pmyOjm8g1Jywzpi3opWmbIYM98AWv0tTxmojyGCJGOHbJ2w9wXqYbI0FIjRMMQMc2TrbVMBKa5QdMyaN6zB4o2oFyr2Po+lNHN5bGhlSNa1vJQWbOYPkfx3Mn7kZphKA5RFuqMZS6iH9eu60UOT841CqgrFhI1ze8ahohpraxhh8w2LJNO4im0PXtoGCL9G+2JR8UQMazXBk8lLsCJrAXU1fL2i1cIXEg7udmN5YeHUtEQKRrmRqlYYL7Zp70dvZoL5eZyXxQHSi8whJGlVTuE670cfUPxBcbsaD4r1/UKzM+EuTG4oXP+pheW+6KnVEelt2s+V/P1NEuisJyrYjd9wTW97Vz7mwpWoMks1HhmmG1Y2kgczrY1itYzsGxf0xBpommIyOcarXeecu2iZYjs3VE1/P5/gtohZwGYIQAAAAAAAAAAAAAAAAAAONM8bWuGzBcBBTGGiDOCknczEzZMTbUENPLpNY2Qut3FdliKIWKLxi/KNDskV+0Doow5t/MEaBqNEJV29VMeE5HdCNEgV30QaYM0Ge5UF16MIdI0QSQpOUOlCSIpe0WSHWKzd3rjxTEnRPaaomE18qc2jRBmsFv9ISnWgslW6HGu+gRDRBohzHCn+jtiDRHT8RIR9Q+r76cYIjYrJBXbMa8qNiMklS4rgf97jCHiMud6i0tHwxBpMlvkGk6xDEz3a753pRgitvUJ922sISKNEGawV43xFENEWiHN72kbIhrnznYP6o3LNDvEckh8b4k1RKQRwhxerC6MFEOkaYTUn8f1ahIMEe1aUIxrnXxwR7XIizFErEZI/cGLf5WXvdONqv/Va4gsbBHtGiLTK9tEpGSICIrJLM0OsUSQzy9sEVG8ISKNEKaYVecsxRApDLU8+HsphoipH+fblRGQYohII6T+/vowzQ6xRONz36cYIi0rhIioEJ8XY4rM2utD2Qcxpog0Qpim0aFliRAd1QQi0rNEmvQOFjVKEg0RSblVzW0ahsgSvD5QrhvVmyyez3JY5QWp18Ql0nkGNq17ctQQabaXYojYnmPKIu19p23twjVEiOIsETZCwNkCZxUAAAAAAAAAAAAAAAAAAGeap03NEK4VIgkxQ4IiJgM2Sk0miLXZgLNlMkGs7QZskIbUZQg1Q0JskJiaISFGSFCUZcCPhtQOCTFCQs5LiBESWjckxAoJqR0SYoSE9IXLCJGEmCEuI0QSEgnSZYQ0CTVDQs5HSFRvSNRrTFSMyQixEWKIhNgKIYaIzQgxEWqHhBxzSERxiBGSrY9XoHZIiBESWjckxEQIMUNC5sMYMyRkLgixDELu1yGGSMi6JNQOsVkhJkIMEZMRYmMVaoiE3HuCDJGA0xFqh9isEBMhhojJCLERcq8Mmr8jaoeEXH8hhkinGdIkcCiHXNshhoipVoiNIEMk4DoJMkQCTIcgQyTglUGoHWKzQow/G2CImIwQa7uZ+i3GELGZISaCTJGAKPxQS8Rohlh/OGAyN5gh1mYDDBGbGWIixBCRtUJchBgitlohJkLtEFu9EOPPBhgixlohNgLGpqlWiI2QZwdrrRDjQfj/6NGxBBx34PNwSNurUEsk5Dkm5P1nyNolxBCxmSGoHXK6gRkCAAAAAAAAAAAAAAAAAIAzzZk3Q2xGCONjhiTl0HZseoYYIa1mHb8aYoS02u3YIA2JMF36vY5DSqkP4jJEUmqDOKMrEwIvXWZISm0Qn3MTUyPE1wyJqRPiYyKk1Ahx9UmIESJxGSIhRoikKwokxApp0hWlG2KESFxRvSl50F19EWKCSHyshZj6FT5mSIgRwviaIbE1N7qii1NqhLj6OqVGyEkZIrF1QroMkdjaFETuyKrY+zWR37onpuaDj10Qc9/2MUNSaph1naMQI6RJlx0SYoRITsIQSalT1TmeIpvuipYMMUIkPoZIiBnC+Nw7Y2qF+BgiKetmlyESZIRIuoZG5CnsskNCjBCJ0xBJuE6chohy7YvlH4g7Zl9DJMQMqX/HwxAJMUPqdj36MaXmissUCTFCJE5DJKEuQ5chEmSELP1ix5gKMEJaTTsMkRAjROIyREKMEImPIRJihjC+hkiIGVL/jochEmSGSBxjNsQMkbieIYLMEImjC2PrmBF1vxuIbTuXHULkNkRiah4yrvefKWsXH0Okq2YIDJHTCcwQAAAAAAAAAAAAAAAAAACcaVKchzPBfNi2Q5JMEAcpJogPKUZIFykRpi5SjBAXKbvDDEdkLkVXKnQx7/BLQyTFCiE6iu6X5yrGBmky2a7+lYZIjAkiKft2KyHFCHGRYoS4SDFCuog1QhiOoJFRuylGCNMbl62I3hQjpG5jcX00I2JSjBBmsFv90dJaSDEViIh64+r3bYZIjBVCRDTcqf5mmyGSetw2UowQFxrH25ss+lrZEGHzQxoisUYIs/1IdQ6lIZJihDTbkFFWGvfr3uJSM62HYowQZrZe/a7JLki5b/N9zmaIpFghLmKNEGawV41laYikGCGyDW1DxHQOU4wQpjdezPlyfCU2zfejlMhMG4cXB1Y7JMYIYfhYTffSGCOEmS6iXk2GiMa6+eCOamEoDZEkK4ToaAzIoZF4Sqcb1TmShkiKESLbWDJEFK6T6ZVqUR5UQ8SDYhGZnmI8mJhf2CIiuyESY4QwxWxmtUNijBDT70pLRKN/5tuVQdA0RFKMkLqNhQ3RMkQSouiJjs6RNESijRCmWBxXhiQl3AchNUR8YPsjpIaID/PFuLIZIjFWCBFR72C8/DnCFIkxQphy62huk5ZIkhHCzMvW2E0xQhjTM0SSEcLwoSkPZ9PzsAZsb+QwRLjNkBoiPsh7fkgtEReHF5bPvzRFuqwQcHp52m+GNMm1CUKkvxHCk0HqC/RWu3ytKz8z8mS1fk3/xd3arXmdKkvjYc5Ivn0m9XNYt5u4CWJDYxOkCb+4G4TVWvSCX/avK2+6DXeqAc3psrQ2QuSCJ3UTxIbGJogJjU0QExqbIBLeFNFeqPGmyOBAt5PlpojWJkj/sGqHX7BpboI0N55ybdrkJHUTRMKbIocXdV828abK2JG+L5be9GhtlLIJIpEv1LXu3XJTRGsThDecuK9TN0FsaGyCmNrMkTKLzyFv6Ghh3RRJbVdsiqSkx2pyeLG6QHhTJGUTRDIfFvVxp2yCSOSmiPbamTdFhreUr5PF5aF9vLZNEQ36Nw7Ciqp7srQpkpAeS9LaFFF6US03RVI2QZoUM3HOFDacltpfbIzMFTYrJKZNEQ2smyKp7Vo2RZKRmyIJ6bFaTR9M6v5ISY8lSUmJ5WIuNtsG1/dU2+fNkdAC613wxkhIcXUv+HpW2ASR5AqskpsiWoEY7SBaneOWz8GamyPNtsbb+i/pykJvQ6QJb46EFFgHpxNscwEAAAAAAAAAAAAAAAAA4ExzZguodxVOb1KnkMmgiXGqiYFCOowmU06JpXzIHAHa0w6OWmysrmfYYT241Kvb12TWNDYyXCW8w69thky2VJur4TFRKPf1gE3/DIKMthHC9IUBoZ2CZbiItJ15FOUOob+wFspC94BrHVZZ4eW22bbQpBws+lb5Fsh90Z/kSgFYLP2rBfextilDVEVfzdb1cy3yMU+3dLXO/mE12c3WdI+ZUwkdXFY+3vHyGN6/rDtv8Jw/yWGejPMsQev7lbJUxhHpbPlowRZEDmtvNiqy2q1E+nYI0ZEJoZGCq8l0PVMc2KKPZfRmKmyw5Ih+5PHsU1g9BNleodwnHNGracsQHd3/1h/STUFVmyHKY5kZ3MyQV3ZhRJQbyhHkveqcyfQ9WswX0f+9HWV7YbFWnG/pWz69w4l6ejKijH3NzxDKzxLzUbU26u3pnrvZpc2lr7WfgXoHC3toXT/FSH+/snuKQ13LZ769MDk8CreHMNtazBfKc11vupjzM/TxUhriDMuD+bDI8h6pXssor+9GC6NzsqnbGdyettnJ7WVZIy2m5ZDsQSikfrqAGQIAAAAAAAAAAAAAAAAAgDPN07ZmiHZULdPTT22/xDRTkXS54zlf7IQmGyIi2OxgkYNPwxA5uNTYy+P/qxDcNstUw0M7WlCS2whh6h14hb4eNIPvLAUyYzguI0SLYYao2ib9DGYF0zTqOPpTwxBptstFyTUMkdoIqT9Ip4CjNAtnixy0qYZIrnsVI/tUs+hdr/G39xc1VDQMEXnMg92pih3CRoj8OtUQkZHt61erhYKGISKtEG2a87yslZRCbiOEKRddnGqIyEi2nburhlMNEVkXg6PQNAyR2chgt2aaTrgAvIYhIqP9a3s7MdI0txHCcM0vjTVfs64JG6ga0Y9yPE83eup2yNLnDQoVO6Qn7qey5lUs8n53cG9Vj0PDEFmqF8L3c23b6Xz1GSqGiCg8XuxXVoG2ISJrFqTaC3NRD2K+XdW3SDZExNqwt6iJoGGI9BrR/poF7NkIYebrozwmDveNtiEi6rNomyJcNFzDEGErpPn/NQwRNkKYcm2oYoewEVK3uxhv2oZIrrmuf7A8P6mbInyLUVguLNUKUSyu3lrLKK3vRqLGF7+b0DZE+LlC3RDJVFydaPn9bs4a0+D4gRkCAAAAAAAAAAAAAAAAAIAzzZmsGeKqF+ITZRtTO8THCImpG+JtgkScRZ+dzSQzxBFklmKGLBkhEZ9tw8sIiehn3+jA0NohuUwQIr/znmKGDFzBdgmRDSdphMTUDfE1QmJqh/jYIClRUa55MsUM8Zl/YwyRlhFi/KHwC9z3fhFjiPjcr1LMEVc/ppghMnq3SYoZ4nPeYwwRaYTYCDVEfCPZYwwRHyMkpXaIa35PMUOOywgxEWOH+EauxRgi0goxkWKIzFztZzJEUswQn+j+GDskmxFC5NWPMYbI3GP+TYl6dI3rFEPE53djDBHXPaVJqCHie5+LMUSWjBAbq1hDZGKfy1LsEGkrmIixF6QRYm07xhDxWBPGGCI9jwj/FEPE1ddJhojPM0PEcwXXCukixhCR9UJMxDwL9Q667/kphog0Q5qkGCLSDDG2H2GJ1LVCOg8gbM7jWiGdnx/R10u1QqwHENzsshFiI2Hqd65pEtZ20gwxEWOJ+P5OjCni8zsxa6XSY/p1vUdF3ZDTA8wQAAAAAAAAAAAAAAAAAACcac581rPs+dYz1QjJVRuEKCzXXVDtkIBgspDaIV4mSAKnsUbIcdUHcRFSO8RpgrQaXvwbcFpOW40QorA6IWx5+BgiIfVBQvLmhhhzMbVDYow8H7yMkAhCj3c27HnbISH3LY6U9vmdEKMmpnaIT/RuTO0QjVoxxmPxNEKaP+9rh4REsIfUEAmpEbKxmBdDDBGf+TymdshJGiFMaP2QkCi1kBoiPkZIfQwRNUScRkjd8OJf5eVPTO2QkGj+kPohJ22EMJo1RJrE1BDxGdPTjcU5DDBEQn6W1wU+hoivEcL0D+fe4ynk3qZZQ2SJVaoh4jBCGK4fwviYIj5GCMN1RHztBV8rhEixhohAs4ZIk5gaIj59HVWrJcScCKgj4muE1D+/uaZeP4RIt4ZIk5gaIi4jhCnXhktf+5giPkZI3X5AHRFvI4TpFVmMOK4lsso1RJaQQ82jS7zWNLIdjyHtY4QwueqIEOWvJaJZQ4So/Q4YtUROJzBDAAAAAAAAAAAAAAAAAABwpjlTNUOatUI0jBBb5G+qDdJVOyTaCuk4kyk7ls7oy4SgXZcZomKEWJpPtkE6+jo2ArCrbsgqGCESVyRxkBFi/YD2t3KZIEyKEdJVOyTECJG4zJAQI8SGKSpKw9hwGSIp7TtrXqQYIR23xdhj7jJDNO5bpjY0zApXFG1o9G4TlyGSctxdtUNCrRCmywyJqWnQxGaHhBghNlyGSEoNKJchsgpGiKTLDEmNSrPZISFGiA2XIeJlhFgbjv9VFy5DJLS+gwnb9ZbVCiFK6i/X+tCnVogNV9Rjyph2WR8p9UUYmyGScl8h6h5fsXWxuuwQr1ohNk6ihoiHEdKFyRAJMUJsdFkLIWbIUrtddkjCqxGXIeJTK8SGyxDJ1tcapoSjjVAzpEmXIeJTK8SGyxDxqRXShckU8TFCunAZIiFmSKtdhyESbIY06ZjvfOuFSLrsEK9aIS4sl5tXrZAuHF2StK5xHFqIGSLpMkRiDZKuNUvqOt22XvKpFdJF830raoesPjBDAAAAAAAAAAAAAAAAAABwpjmT2c1y1QlZ+fog3Mxit1Mzd52xdohCcL6pdkjOGiGrXh+ErSFpiKyiEcKYaoeoGCEWVr0+CEcbSEMkxQhh+uN5yw7RMEJM5Krhodn2fNEX0iBIrhPCUWEiOjD1uGfD6rikIZLtnqU4Nkw1RFIjd4nMNUQ0jnuwW92wpSESa4TI35eGSKoRYv08RbPCVEMkxQhhTDVEchkhROn3LVvtEK08xSH1Q0Ip+207JMkIqRte/HtMNUQ0rBDj562wEcLMB0VrzZhihDCmvNgaY9pUQ0TDCGFCaoiE0D9c1FoTYy3WCGFs9UOSjBDmOGuIKBghDNcS8akhEoKthkisEVL/vq1+iEKyjN7uQcsOSTFCmGZ0fkgdEV9C67V4Y6khkmKFEFX1Q4jahkiKEcIUjXHAloiGEcL0DqZBdUR84VoiTUMkxQip27XUEEmyQois812sEcL0xbk6NXVEiFrv8oiU1jWGNV6KEcLIdxtsgqTWFJHPJqeljghR9b4Y9UNOD2ciTdbL/9Kbs7bfP8zURZnSEsz110g1vfT1XMcH5Gl2tpbpZWOmAtv7t2UaHAs0NkFsDG/maXf92mpvgkj4RquxCXKs5DzcTMOaX55nK5aeuDC30cu04aT9Ummp7Uwv/ZlcG0OuVG0pzId5xtxkO+ONnIgOLmYMOtB9H1aT7b6Vac7jzRCN9FgmNF6gG8m4/AgpBB/U7mJeyrYZkqtPck2nGc/h+tVMkWEL+vt5Bsl0M8+cOtzJ1B+Z77WDp/JFLWkXE6/JdHn3bgUUmg+A+0FjM8TYviikrclpO2beFNHYDDFRJAbSWNvN9Boux4YZw5siyZshFnrjPH19cFueeWme6R3TNFPQCDPayfcyaO+2PLsB2TYZMsfRvPf/g3RZqwrSZAEAAAAAAAAAAAAAAAAA4ExzNiQeg1KWgmZaChODA3MqpFRq5WsR5aiplNWpfwbdxUeD2s2swU22FnqrcuDWUdqqqv216zpjZv92MSYUh2K/EeSj3c9EROtPVAerbeGMblXtzgd8LnU6pXWdKx32UGin2hHprGzniiaqt8gVo6VrDZXnEaXxZ0rdpAmncJorn8NcRggRUe+gkUpB05RZjLeyyKMVH6Wn0O1rqctPt3WiEtm+6U8XEXIbOlF4PKZHN6rjHl/QX6YNb07p4KJ+RB/fZ3tToolicCYXpZwvTh2voVKRa7DBru7A5nRZm0/pRt+xPWVLyZhCUZL6PE1E1BfnTKXQaINcxkk2mzFDmixmcHB08+YUV5ocXujT2g39Dj+6zqvrZnhTZ+Eui+Vq2Y18/XEqRk7NqIbys+1S02VJs8vVg0z/6q5au/PzG0dfKK5zejv79s9RgNvr3dzv+MlAFtc1p/Xq7SmloFqslzilFae40mApTZZGAXUBWwXa5kIxrh5yB4/dICKi6Z0XdBpezBflwgIuFNLDEhHNtpbXooMd3fRk88X6PzXllAk+d73xjOYjvfPIz8uzQTWn9vd05tTDy1VKNZ77tQ30tWvV2Du8pGs9yXuV5nEXJdFkqzp3w129+/n+lUHdPpHu+pToyBDXzoIjM9/MlU5lrsw0QA+YIQAAAAAAAAAAAAAAAAAAONOcDTNECasRohCdY4pktBXLjkF755XJEgFM9qKtxfSouGkMbIJIOMdgqiGSq5A5kcEKUaJvSPuqYQ+xCdL6vMNSZSecjRBtrNd5YmC6NEIYjiDXMETKRpRWdkNEAdv8UczTxp61kLmlUGMo/YPlc8lRvKmGyHEZIQzXOkkyRAzjS7XwXKtI/ZzKfnqchjRCtLDVY+E89ymGiGlcaxoizUjrc5+vohBvPSM9olTbvGRs9sB0vUiyQ2xrruli/aBtiOxdqcaEhiFiigzUiMAzXcsa6wRphDC9Salih8i6bcPd6qAnW4lzSMZgPpPdyvcG7TowXOhcwxBpzk+HF6oxrWGI2MbB5PwgyQ6RRghTm1XaRco1DZHmfVHREDGtFzUMEaOpwWM5w7qHDY5kQ0QW9VYyRGzHpWKIGM5hDkNk6bMUDJGytzwHFZOZih3Sv26ufZNsiFjmB21DhJluV+dOwxCZbRyFtc/F+l/bFOH6HpqGCDPbHKjZIU20DJGhODY2RJgUU2RmuC/mMltyGCJMUSq9oxRtNGsIplgitlqEbIpoGSJgdYEZAgAAAAAAAAAAAAAAAACAM01RliscVtzBy//ym83/IfAv8q4REtFTPtGLMWZIyC5rTFSfT8RvTO0QmxHSJMYMsRkhNkIiWUNskJjaIV5GSMTYMxkhrWYjxobNCDERY4j4GCExdUO8r/OICAabFWIixBApA6KxshkiEUFEPvNH1LwUEmEYGMkmbRAXMYZILivEZIRIosyQgPEUZYh4tB9jiPgaITG1Q2xWiIkQQyRkXMcYIj7R1TGGiM99NKZ2SIgxEGKIhK61tA0RJsYQ8YkEjIm+C7l2Y+ZsmxnSJMYQkUaIiSg75JiNEBsxhkizVoiNGEPEZ36KMURCznuIIWIzQkzE2CG+10yUIeJz342YlkLWhzGGiJehEbEGkrVCoj9bErA+DLVEQo4nyhDxOJcxhshSrRAbEYaINEKcPxtgitiMEBNRdojn3BBjiMh6ISZiDJGmEdJFjloiRHGGiM9zcYwhwrVCvI4hwLaQRkjncUQYIiYzRBJjiPjcv2IMEa4V4kOUKeLxOzGGiM0MabUdeApt778+8A9/IKwhkB2YIQAAAAAAAAAAAAAAAAAAONOczZohBXlHznhHi3O75Nd2SLRiSO2QVaoNwgaHjyHiY4TUPztdbr+LUCvEl5j6IIcXq2PxMUSCaoQEjD0fI6RuNiAneIgREkJMbRCOzPeNtAy6zkvyjg4NMUJCCDFCssNjw+MaDplHQsZekBESSIgRwvSmpbcdcpJGCBNUOyS3LBpinMwWx+1hiITWCBnsTLztkBAjJISYcR1SQyQkmjqkhkiIWTncq/71MUQ0akhoMt0qstghITVEQiL/QmqHxKz5QuZsHyOEYcvD5/z7GCFMcP2QFRp+ITVEfIyQ+mcDaoiEzE8hNURirvPJ+Wq+S6khYiK0fkjIdRNUQyTkvqtYQ8RESA2RICsjoIaIjxFS/2xo/ZDA9bVWHRFj2yE1RALGSEgNES8jRB5DpmeUYlLNHxq1RJoE1w8JMMbKYc/bDvExQhiuIcJo1BJpwrVETrKGSEimhNlmNZ/6GCIhRgiTqx4HUVVLxNcO8TFCmJBjDrl3cQ0RRruWSFCdu4DTwZaHjyHia4TUPz/xt0M06uaC4wNmCAAAAAAAAAAAAAAAAAAAzjRn0wxxEBQhHkGIEdL6XYchkmKEuKL5onK9B35u9O93GCIpRsh8YI9ujTFCfAgyQSIIMUIkrjGSYoT0D6vfte2Sx1ghQZ8fe73zr1lOWYoRwlHmpoiYFCOEfzdb7RCHIZIyj3RFG0dbIR0RbDFGSAirYIRInIZIwrjh+5N1HCSOyS5DJNQKYQY71aRpM0RSjJD+/sxaNySn6USUFj3tMkRCjBBJlyESa4VM16vf61p7xdRmI6rsEKI89UP2rvStdkhKdKIr6k5jzeeas0OMEEmXIRJihTTpNEQyB/HF1Dirf3dWWu2QECOk9bsOQyRlfgoxRGLoMkRC6oU06TJEUq6b6dbAboek3Bubw8LSTMp60GWIRNXpYByGSIgR0vrdUEMkkC5DJOVz55sjux2ScA5dhkiQESKRx2RYZ4fUCpG4DJGQWiGSTkMkooYQUWWHEMXVD/Fluj2y2iEhtUIkq2CIhMCGCBNTS8RFl20RWi+EWbtWPW/YDJEQI0TSvG/lMFvYFDEZIiG1QiROQyThzwgxRILaFe/ZQuuIgNUEZggAAAAAAAAAAAAAAAAAAM40RVnmThCuz8v/8pv9f3jx16kbIYvmUkwQG80Ixhw1QjiaT9sKYZMj1QiRSDNEu0YIR7tqGyFcNySLEVKmmSDWZsX2qHadEDZEtI0QjrxUv87FqdOuEcJ2SI4aIdkMEXF9a88j9fykHT2/6GNtI0TWDllFI8RGOehlqRFSjwnltqUZEmuE2GBDRLtGCBsiOYyQZu0Q7Xz6RJUhkmKE2GBDRLtOiFyTxRoh1vYzGCJER/VDckT1NdeRmvN1c72QYoTY4LERa4TYqA2RFTZCTLAhkmKE2Jhu9LLMT01DJEdNIJ7zYo0QGxxpq72+aRki2vdfFmIz3Nf7V3fzWBeLcZdihZhoHavyOjuXiVIbIsrnUNohSWaIjaJIMkJssCGSYoWYaBkikWaIDTZFQmqF+MCGSIoRYkLbDjExH/WDaoX4woZITL0QF7wmizVCbEhDJMUMMVHbjsq3ArZDUowQG0vvPDOsz9gUCa0X0tnu4lSG1Ar5wD/8Ad2DANGc+TRZ2dJiZdxCmg+IiowZXHKlxhrtVA1PNnVnsMn2or1Mx30a02IN9v0LzIfAG1lrT61OsXQf1m5WF8x0XXkRvjjc4c7pK5Tem5R5ChJzSqRMa+ZsKYQybQ7xfOpbgDWUHJsgTDEvs2y41ykOfAq2h7S7SJfVy5SKgPta+7iH1w+JiGh6rruYaSijG9Ms55DZemya5aGH1wsHl3QPntNmrVIxbB/G29WYG+5l3JzUbndxGfYyrbNzzal12qztPHK89iZIzSkb00RHabOGe3nmbFsqwlTKxcaT9sZ4XVR9J0M0E+U7biKi+da6eptEdJQ2S5l6s+KCJTdjKpnW73VR9d1D1XZ582N6aXPpa03mmyMqlINUiI7WlNrUabNuP5+l/dn5xZpP+bmGi6trPy/lSpnVJEfAB1E7fZYWudYhnDZr/zb95wIioj6nHVXeeJLF1TXhtepslJaW10b93kx5OuH0WTPdfThwTCBNFgAAAAAAAAAAAAAAAAAAzjRn0gxpRsRkUaIybZiPzzXSYy2OW8MQsUVwl0qbu5wOSpvxRbGbzV8qfNzUYDVrR7rzTrFmgaXB3tH/7yowH8LaVVkMb/Gv0qkdHC43pGVEbFzNEDpA7cjO2cI46Sump5gP8+xF98eZJigxFup0Vlofd8oyNpYimrGrAGsMxbykcrQozKh5XjNFZnHBRMZZsD2CurAhR78qRcXNlU0Qpne4PD8Nbi0iMxUNkWJe1tO1rdByDPO1PH0ir4/1a9UYObiUx+rTjqbXLqgu741s1moaIk1zYz7Sv/bno0LVDpFrU831cNVQ9U9nYfVA2NDidBd9pfReMrKTi55zEXQttOfVJpPNnqodIlOncXpKzTmQ6KjvtWyf3uI+zkWF5T0zFhltnS3Cm8eGYj/z+mB2ZZv6T+mlQcpmhAh6tw6qzzunZM4sno/m21V7vZ0DlWbZCJFfD67tmX48mnK9eijVNERm59bqf4ePXldrd3zfZeP35dotGb5elObWbAb9Yh6RRc815qnZeuNlBU9Liss+ngP74znNRnoN831xstVISSvTHUYgjRB+lpbpylPhe5eWIcLHJzPvzBTWlrNGl8wX3Z3DEJmtEfUVxbs6gw04lcAMAQAAAAAAAAAAAAAAAADAmeZUFVDvKpzukyM1yRBxBNjI6L4QmkaIJCUSzidiO8UO6TJCYmuHtIwQScKINRkhkly1EFIMkYEjcCfFDGkZIcYPiG+/67qINUS6jJCU2iE+EYAphshJGCFJtUM8zn/SNXNCt6D+YfxBSyvERIoh4vrdJEPEYYSk1J3wiRpLsUO6+jI2Sq7LCEk5Zp/IwhRDxNUnKdHRLiMkpXaIz/WgbocsHUCeZlMMEZ91Y4oh4rI1chgiXZ/Zhc96NMkO6fiTYw2RrrkzxRDxKDhdjwABAABJREFUieZMMUTYMjGRK/o4xRCRRoiJJDuk41djDZFex307JfLaJwd/iiFSHDqOLaGvXffXFEMktxHCJoj182MNkY7noRRDRFohJlIMkfmWPVl+iiHCRoiJFEPEZoQ0SbFD5hsda6XIuTWbEULkZYynzFNLZkir4ehmnfNfiiHi85yXYoh01QqJNUS63nOmGCI+x5RiiMwcXZJiiLhqeaQYIhpGCAqpnzwwQwAAAAAAAAAAAAAAAAAAcKY5EzVDfIyQKDIZAozLCGFiciXnMhuIwuqDDPfKYDuk0wohiqpn4WOE5CamhojLCGFiaod4GSGRhFhSRVkG2yE+dUIGC3MjxBDRyglt4yRrhHA0ZZAhklvYOGEpcbaIgA8xRHwihVLwiZ6PqiHiEfFVLD46xBDRynduw9euKftFcMScT52QmJon6rmmBT59EpM/36dGyMZT1d8WYoiEGFLZ6ocQVfNZhss3poZIyD0ypoaIj53BP6NtiHB7IYZIiKEcVT/E808c7s6D7RCf+TKmhkhI9GZMDRGXEcLkqiEy2aw+W7OGSJOo+iGePzofFMFrxS4rhEi/hkir/YgaIk4jhImoIeJzP51d2a6aVawhkkqXEdL8uWA7xOM5SLuGiCSmhojLCGFiaoi4jBBmctdFIkozRFzM16rjDlnTdRohTL8ItkOyWiGexMxTTiOkbnjxb8Dt18eIk8/HmrVEiI7qiIQYIl1GCFPMw+0Qn+w3zfuXVh2RJlxLJMQQcRkhTK4aItIa0awlAk4HMEMAAAAAAAAAAAAAAAAAAHCmOdVmSIwRMl9ElTl3TyOClaZri+hAR8SfjwliwycaLsYI4fa6IvNCjJAYvIwQiYchEmOE8E58TsOmCx8jROJjiEQZIZ4mTkrdHB98jBCJjyESY4TMFu25aofkMkEYHyNE4mWIRJxG72tmBUtU+RgiMUYIRy35RMbH1BfxMkQ8Iqdax+JhiMREr4ZYFlH94RnF7GOEtI7H49hjjJDBrTER+dUOiekTnwhpHyNE4mOIpNTMyQYf0gkZIrnvkTH1OlbJEAnByxCJ+JOGu9W13mWIxNRYijFEQvAxRHyMEMkqGCI+tUJav+NjiEScR46m7Vo7+hghrbYDIq99IqNb7XsYIl5GiMTDEImpwRViiOSqFeJrhJh+J7p+iAM2RIi6LRGfWiG233EZIj5GiCTGEPGBDRHGZYr41AqR+Bgi3kZIE75WTtr4iJlHPOYpLyOk1TAfU/iv+sDPzS5DJOZ5z8cQ8TVCmvAzdWz9kC74HtZliMR8vo8h4mOESOZiWLlMEVetkK7fcRkiGrVCwOoAMwQAAAAAAAAAAAAAAAAAAGeaoixXMFRX8PK//OalrzVqhBjNEEUTQEYAplghTWxRcFoWgzREtIwQWTskygSxYThEzRohuQwRWTskxgYxYTND1OqEiGa0ol1ttUNijBCJyQzRrBHSNERW0Qix0TJElLqkdc2s/m2GiNp2iGaNkGakvGbUvNEMiYj0siEjoLVymtuiRFP7xha9HGOEmJDHrVkjxGSIaI6VZoR0jBFiQxoiWsecpXZIk0zBXdIO0TRCTLVDNO0LbUOEMR1jSK2QLlprY6U/QxoiMUaICZsdopXDW9ohMUaIjVy5602GSIwRYqNliCidS9taMsYMWf598702xggxti/skCgjxIZh7RRjhlibb5giuYwQojgrxITVEAmsmWhDGiIxRogJaYfEGCE2TIaIT60QX5qGSIwRYsO05osyQySWeTVbrRCtecQyT0WZIcYPWP5Sa/4jWjZENJ/3TIZIjBliQ5oaPrVCfJDrDy0jxWaHxJghJqQdEmOE2DAZIjnMkA/8wx9QbxP4cSrSZOUokL6ULitjOiStTRCGHx65GHcutNNi8QP87j0ZXm4UVL/EXYVC6b7wOdQ+lzJdVq5i6dopP4rFC/P1a/oFJAcH83pDJEeh9Nl6L6ygaySaGyFLKHdJnTbrpPXvSHIUSi97RVDxUu92ZbosxQcFoqO0WcVEd4DL1FNaL9BlShetTRCGj7uY6Z/Lwa1xvSGSM82U5kYI0VHarINLim+3KXNBdaJsabNiiqr7Mtks6vVUjhRUvXGZZUNEps3S3AhZQvnQOW3WeFt3DMqUWdqFTDU3PyRlv8hyb5dpszQ3QogaabOU+1qmzUrdBKnbFaloNF8CEh3dG/u7GR4oZ2W9IaK5CVI3v0ifVWRYU+WglTZLaROE4dRZ2sFYMUXVfSnXB/WGiOYmCMPps7THn0ybpbIRQtTaQHSmwF0h5DyltglSf0D1T5ml2Hd32qwYZNoszY0QoqOAw0L5NuybNiuUvlirjpU3E3IVVydaTpuF9FhnE6TJAgAAAAAAAAAAAAAAAADAmeZUmCE5KYs8mRIOzy+iXZXTw3AqIVbL5G5rKrmi22/dv4jKz9D+VL8+3RK9abtgkwaD/erfHG0TEa09xSHduu1yVKp2ZOdgv2qXDY6Bozh5DL2MlkJvXGaxCXLD84n2PMVjjiN51O0+jqpTPm4upp7DHipmZb7+JqL52iI6a3I6osmYlSy07UDaPVppc5j+/iLacE0/dL6/GBvaZggbFutXqxv8wWXdY99+uGp35x7ddmXkubYRMVmYwdoW5f7l6vxtPaq/oJo0DAjt9SUR0XSjyNL2bC1Pu2xY8Np1rnxZsiGiHeHZF2OO+0eNTPdgoqMo3Z6yjTi8OV76+vCybjQ6p+HSjjIsOdo/0xp2tl09UPZ3xh0/GUbv+m7V/m3nVNslahifgx71lQtyExHNh4v1lHbDfA6VI697Nypzg493etu2avtsiGilSa3bvbKcziGHDdHfG9NsUzcyn4ioHObRG/k5oeQ1vWb6OmrY08rTyfhSNZ/29zO9SMpk8hLpW3fM4cUqH3pvWqrbFkQiy80pgFPmZysMn/FxUjP1FlgtYIYAAAAAAAAAAAAAAAAAAOBMcyrMEJkDPAVTMWyOcNewImT0lVYksK24dC641snoVtpxsxHCaO5i5zZC+o0gKc5DqGFxsBGi3fbohuVcKUVTDEX+c75eUg0RNkJyslQonP+vwsc2c7bz/JTTEJmNeip1Q2R+VI6KSY7Szz1NyXkwU3SqzAGegum+pWmIyHvDfNjLYodwFJxa7ZBMkViyv9nk0KgdkqPmS5NmbmuOBtQwROR1PdyZ0mRb4WZmGb7rV2cqdoi8N2gZItq1CCQy2m3/tuobG0+mj5/p+tF1s3tX1Q8ahsjEUBODi15q2BbSqJiNCp12RbSl5jGbyGWIsGGmEa0rrZDm9zQMkaXnKMV7sMz3Pdnq03A3X8jr2tVDHTtE/OnTjWpwDBIjpFvrA15bahkiYu2gaYj0bh3VmOg/eatqX8EQMd3HuUaBhiEyF9H+08tbNLi6m97uphhnvJbIUE+FiGjwZFVgXtsQkfUhUphtDVvfa9XAS6A3PhoP/b1qTGsYInI9VUzLLPUsmLmSISKfTbXuOdOt5bXkbGP5Gko1RVrP1IqGyHS9cawZzRMi3Xocco2p9W5NHpt8Z6ptcmgZIrL2br8q0UQz5feELZt8qDBYTldyhDMJzBAAAAAAAAAAAAAAAAAAAJxpirLMkPBVkZf/pTe3vhdjiJiMkHa7wc3W+ERbxUQB+xohuaLgUswQaYWYiNnFPk4jxEaMxSGNEK12rUaIJHIDWxohNmIMER8rJKV2iNeufcQQ73lcb7kMkRQzRBohJqLsEM8/Nbp2iK8Zl+l2FmOI+NynUswQn3tDrvohUXZIJhOE8V0XxBgiPkZISu2Q0uOYYgwRn2s5yhAJGLYxhojPfSHGDvE1QlJqh/hEuMUYIk0jxEaMIWIyQmzErDN9DIqodj2iK1PWxVwrpPM48qSNj4rWNRkhNmIMEZ/nqJh7sDRCTKQYIrJWiIkoQ8TzT40xRILWBjGmiMf6IcYQaRohNlIMEZ/7d4whIo0QEzGGSMsIsTYeF5vKtUK60DZE6s9PMERMZogkxhBpGiHWz44wRHzWUymGiNeaPsIO8X0WjTVEpBliI8YQ8Tr2iC5fMkIU22V83j3EGCI+68sUO8TnmGIsDq4VkqNtaYWY0DZEJFGGiOF6+8A/+oH0gwHBwAwBAAAAAAAAAAAAAAAAAMCZ5lTUDJGE1BDximSq2138jseuqkbeXeexBNYI0cq/LImpHeJjhDAheQ5zGSE+JkgKPkYIE1I/xNsIYUoKjnTwtUKIwmqIhNQJma5X48nHEFHJ3+jAxwhhctUQYbsjxBDxMUKY4PohAX8eR015GSLHXCfJRUgNkRBzMaZ2SMi9YT6szru2IRJcP2RFrBCisBoiITVCOKouxBDxMULqYwmoIRJidw13qpuOlyGS2SMOuS+E1g8JqRPC83yIIRIS0RZSQ8THCGE0a4ikEmJMhNT5CImmjKkf4muEML1ZHjtEs4aIiZAaIiHPUSE1RHyMEGayVXVyiCHiY4Qwa1cPicjTEAk8J9ONfnL9ECf9wt8OCVg/hNQQ8TFCmJgaIiFGZ0gNER8jhJle3iKiOEOku/HGReazNvE0Quomn9zJYofE1BDxMUKYkBoiPkYIo1lDpIl8tvExRYLW9AH1Q0KfPcsi/H7ja4UQHdUS8TFEgo49V60P2Rce7Ye8gwipIRKyvoypHxKyrgqt8+FrhcS07QvXEGFy1RLJlY0E5AVmCAAAAAAAAAAAAAAAAAAAzjSnsmYI44oGDYpksrZv/n6qFdIVBRxqhTC56oY0MRkiISaIDdcO9iobIS6DI8QICW0/2AqRdAyxECNE4jJDQiJ/rW0YDBEVI8RxaCFGiLX5E6ghEmKESDqjyxP/HKsdomGEZL6tmQyRmFpWrTYcxx17XyDKVzuEsRoiK2SEmLBFm4YYITZchkiIEWLDZIhE1fsROA2RhOa7aoek3htshkiIEWKiyw5JjWCz2SEhRogNlyESUitE4lpralgStvZjcmz7tMuEWiGSk6ofElIrROJ6ntF4jjLdi0OMEBsuQyTECLFhNUQSp9guQySljhgR2Q0RhXWVyxAJMUMkLkMkpsaXxGSIhBghNlyGiHetEOcHWNYngVaIJFf9ECK3IRJihNgwGSIhRogNlyGisa4yGSIpa3rGZYikPHN23XNCjBATNjtE5TnZ0YRXrZCI9jXeQbjWNxqmhOk9W+qaiqj72ELMkJB2fWqFuMhZR8Q5HhzXFmqGnAwwQwAAAAAAAAAAAAAAAAAAcKY51WYII6NDVaKZqG2GaNcJ4QggjeiAJrkNEbZDNIwQSXPnOpcRQqRfJ0QaHBpWiKndZCNEshh6KSaICWmHaBghS+0t7JAsNUIah6phhNTNZjJDGGmIpFghTVpRUcp/Rm2IaNcIOSY7RMMIkTSjQzXvD8dmiKy4ESLh6FMNI6SJtEM0jBCmaYZoRC5KlgwRxealIaJ9b2BDJNUIkUhDRDunMRsiGkaIpGmIpBghkuZaM4cVwe1rRC+a2mVSjRDJcRkiKUaIpPl8o/UMtUTjnqZhhjDSENGwQprUhojyFCsNkWQjRDLLs66SdkiKESJpGiIaRoiEDRENK6SJNERUrJClD1isTxKNEEkuQ0TaIRpGSBNph2iYIUzTEMmxrmJDRPu9jzREtJ83+d6TaoRIpCGidtyiGRUjxNG+5ruI5npHe51JdPSeTXtdJY811gjpaj/VCJHkMkRaY8JjOoEZcjKs7GaIzyaIRPvhl9GeMI6LXJsihxfz9sdcd920RK5i6dqTs2SgvFnBrN3kYsK5UjjlOe5ehhfQS+0rvmSQZNsU4WYzHbr6w/oCfijwKU4e9wF52u0f5t1YyEm2TZFFX+d4iCTKs/FEREdjRHtDbgEXss9BmbFtIqKJ8sMvo/0CmuEHkINM65RZhs0KIqLhTuYgloztZ7suuf2U6aos6Z/+1j+jVzz1ABERzaigP/11P0ifvXCX8178Mz//w3T33rX667c860vo77zmj3t/JlG+ddXgINOzTo7gkga5ntGIiDYf8Y9A+rfv/TG66/B6/fWv3v4K+vvP/Q7jz44vVi+2XWkPUxjuKe4MNRhcryrGTs/nedMzfOR6lnYnd10gIqJ/8r5/Ri/ceaj6XtGnP/eqv0if37xD5TNyzVc9j4LtMfBmwvDxW1naz5k2iyjfGsWVti2V+XrGFxGUb01YKAf0MDPeTMgU6NRzpHtOYbqRKTJhQVca1RRmGdsmomzPO+PtPO3aShdokW1TJGIdiE2R4yXPUy4AAAAAAAAAnBDf9Ln31BshRERvedaX0mcv3HWCR7T6bI336cVXH6T7bz1B5yYHNC8KujXcoM+dv50+evmZdDjI+6IQrD6bs0N6wcEjdO/kGm3ND6mkgnb6a/SF4WX6+PrdNO6ljZF//uxvoB/90L8kIqJhOaPv/8xb6K9+8f9D49ABAAAAAIjolG+GjG5K1V23fd6F7C+iSLTTZOWCo+Y5VZHmbur4QlHrkjkipZo7s6q7wItjnS3s5f6hTrO5jZChKFivpUyyEZILjvLn49VMu5DbCimmR/aGZgRZq4CeVtPyOlQ2RKSxIVOgxaKtibfbX/yfxedo2wqztWpw5zBEykb0leZx5zZC6i97yn0+55SS1ZddxR29ySzG1se7iNbTTJPF13cxnlOplBKvSW+/inJd25/S4W2KIVOL4x7sLdJCbeocu4xqX79efZCWIcL3BL7naxusk0U0XS5DhKP1NA2ROo3noFBN2cSkrhu2Jvv0Fz70lvrrg/6Q/sVLvr5Os8lMtrRuast9wPdOLUOE5z1+FtHs88H+nF794Kfojz3wO/Tqpz5Ng9Lc+Yf9Ab31npfQT77wq+jjl+/3br83LbPYq7zG3L23egDcekgpR61A+7mnTjuzUV1Eg30dq4CNkPrrm7qGyKuufZq+6wtvo1dd/4x9jBQDesfWF9F/vPRl9Kl1/43H6Z0X6n55/8Xn0DsvPZ9ec+2TRET06uufoTc8+RF6620viT72/v7RA9t8pPf6g+8NbHD0d/M8GE7uqNKIaRki43suLH3tKn6eQrFYd6oZIothxymt+nt6hsjk4tF10j/Q749m+lHNZ4fpJt/Dqn+HNzO9nOA1vZYhMl++R2plCMhthNRpDhe3m/EFvfmEny2JKMszSnOtrJmycry1aJcP+XS8Mm29O1Z7vmRke6ekX55OnOrNEAAAAAAAAABo8qc+/lt05XCn/vrnnv0aenLjQmsz5OnO1mSf/vp7/wN91WMf7vzZtdmUvvbBD9DXPPhB+k/PfR39w1d8K037eJQ862xND+hNn/wZ+oonP9L5s2vllL5y5xP0hp1P0M9feCX989u/mqZF+MvJf/uMr643Q4iIvu+BX6XfvfJCmke0BQAAAAAgOZUrWGmEMFy0OtUQsRkJHIW1qoaILWJewxAZX2j/zRqRUrly9NVYjm22lmaHHLcRwnCkZKwhYjNCNCMYTZEdGoZILiOkcERGaBgiLSOk/mBKi5DMPA3ZInR4HkkxRExWiGZkkGlOUrcVFmgaIqUh2krjuI/LCFHH8jerGCKmY1esHWIagyqGiOGwuaCohiHSM0Qorz1ZRRcnGSKWc5VqiOSuc2CrK/F0NkTmhicHTVtBwyS9dHCLvuvTb6u/nhR9+g/PfINxI4SLcKsZIoLU9ZVtntPo89uv36B/8M4fp2ftPh70ez0q6bs+/bv0nJuP0l95w5+lw8HI/HOm+7mCIWJbA+/eu6Fih3CtEElRpj3z2M6ltiEiSTFELo136Ec/+C/omXtPBP1ej4i+7cb76FnjJ+lv3vOddGhJnTW980Lre0VJ9PFz99P7LzybXnGjSnN338FT9E2PvpfecveXBh1H0wipj21RdDvFELHdG2ZbQxU7xFZ4fHLHuSQ7RBohzHxUzX8rbYgY7g0ahkjTCKnbFUW3U0yRphFSt6/w7HBkhIjPOz9UsUNkH9SkGiKWtb22IZKDwX57HIxuVPOJpiFCRO1nkYRnLtNamddyKYZIbYRIlAyRXLVCbO+KtTIQzG016U6ZOfN04FRuhgAAAAAAAACA5E9//Ddoc3b0cuxXnvkqenzj4skd0AoynE3p//z9f2XcCPn81m306898BX1h+woVZUn37j5FX/v5D9D9O08u/dyrH/8M/W/v+L/pf3799x7TUYPjZDif0g9/+N8YN0Ie3LiNfuv2l9Ij61eof32X7plcp6/Y+TjdO7m+9HMv33+Q/uqjv0D/+z3fHvz5P3XfG+rNECKiP/X536RfvfOVNOnh9QUAAAAA0jhVqwmbESIZ7MfZIbl2H3OSu36CyQiRxBgiPkZIktHicSwx9UNOygiRFPNwO8SnTkhKBGOuSI6TMEI0sBohSwfBPxzQsO+piTRPfM9jjCHiUyckJTLIZw5aRUPEZIRocNJGSHRfe/58VASPz7EnGCI+YzDKEPE47BRDxGSESKIMEc9zM9ibB9khvkZISu0QW+Rvk6eTIWIyQiQptoJWbbHzh7v0rQ+8c+l7P3vfazt/b7g7i7NDPOfDmPWVz9wW0+eD/Tn9+Y/9Ir3w5kNL358UffoHL/k2+oX7vqye/8bnqz755y/9BnrjZ99Fb3rPzyzVi/jKhz5M3/7pt9N/fu7r6u953b8j1j8+696U+iE2I6RJzDOP7z0q1hCRtUKsPxdoiPzZB36VXrDz8NL3JkWf/uFzv5V+8a4vObpHLkqD/MTDr6dvvPlB+ouP/1caNML4v3z30/TfXH8fveXiK70+l/n9i8+jh9cv0T0H14iI6I7xTfqaxz9Av3LXqzt/12SESGIMEZ/7Qkr9EJsR0iSmfojNCJGspCHicW/IUUNkqf2FJRFiiJiMkFa7meoPTs5X4yjGELEaIZJ5GW6HeKzvU54Dc9ULMRkhkhRDZKlWiA2ebwMMEZ+1soYhYqV5qCH3zBN+J5tiiFitkKUPWPwLQ+TE0a+6CQAAAAAAAADHzLd/9h20MTt6AfSJC/fSJy7ed4JHtHo8c+cx+s7P/W7r+3/zlX+KfuH+1xg3gsuiRz/7Ra+lv/7l39P6b//Dh36Jzo33shwrOBmesfc4ffvDv9f6/v/24v+WfvHuL7WMkYJ+6cLL6e/c/cbWf/vep95G2zO/TZuaoqBfunN54+OPPvT2sDYAAAAAAAycis2Q0c3S2wphBvtHNURcFLOj//mikRM5ld6sDI6YL/v+UdzjC4WXFdKkKLt3UGfr4XVCQo6bCgreZZ2tHVkiNnqT1bFCQlm7OfeyQpr0pmVnRAb/jM/PMmXP32iJGeM+FNNwK6TsF17RYESVEeJlhSwdFPmN29AIgsDrISYKx2fuLIvCywppMh8U3hG0ZZGWx1uT2VrPL8KHKnPC1woJ+dneZH7iVsjSr4REjkUYO17nvizDjz3gd2LGYDGd15aIvWEKNryK8by2RLro7U+9rJBgIo57sDeva4how4aIDyHzPZNrjTDZLmpLJAfj7aK2RGzMB35WSJPZWuFdX6+Y61kh/fmMvvMzyy/533K/f42B4e6sriHiRaa6ST7raUlIn//Jz/zWkt1BRPTz938Zvf3OF7d+dnRzRqObR33y1ntfSj/7nNcs/cz58T5916feFrQerPFYp4SsHZndezdqS6SL8cU1Lyukie85ioksZUPEB18rZOl3bnb/zn/7+d9ujZFfuOtL6PeuvMj6O5O7L9Lk7ov0ju3n0S+df9nSfzs3P6A3Xn9v/fX0zgvGeiGSX7nz1TRrDJDn7D1Gr7j+GevP9/cnXlZIk954Wlsimsy2hl6mR+jPMpM7ztWWiAtfK6QJGyK5KHzWqHPyskKazDZHtSXSxeTiurFeiLP99X6nOTHZHnhZIUvtBjw7TDf71nohrWM5P1z6n/MYPP62FvMyat3u1XTAs/R0o5/FChnsz7yskCajG9PaEuki5LzXFEWnuT4fFsE19ULWeuOtwl4vxIbnc0FuKyQkexA/2/k83837hZ8VsvQBlFY/FiRzKjZDAAAAAAAAAMDGax/9BN12cJQ6ZkYF/fbdLz3BI1o9zo336Ksf+cDS9yZFn/6/z/t67zZ+/KXfQNNi+RHy2z7zTirKTJvw4FjZnuzTVz3xoaXvTYo+/etnfZ13Gz9x5ctpKl4zfNPND1ARuIF4dXSOPnL+GUvf+8bH3mv5aQAAAAAAP1a+ZkioESJhO0TuAqbuOrId4huFpYVGpLyrFkeoDeJLqA1iwllDJONpWFUjhCMpbdFyoTaIid60bEVmaNQG4WM2RYOuco0QjhYuDMcYbIOYsOXQTm26Izd3rnovoTaIifmgsB5fig2Sq3YIY8oDrFEbpOu4V8kIWfr1rv5OPA/W/K4akduOGiLZjCSFw3bVEEmxQTprhyQeO9shthoiodFuTFf9kFAbxERvol8/hOhkaoiE2iAmXPUstGyQJt/0ufcsff2hy8+ia2vdkdMturo5YV4xrauYGItAMlsrrAb7YH9OX/3gB2lULi+k33bnizv7ie2Q8fk+Xd04T79z70voa75w9ML8jv0b9IonH6D33f5FcQceU0PNg64aIjNLBPwzbz1Gz7v1MF0+vEXD+YyujbboifUL9OFLz6L9wZFFYqshknouu+qHxBghS7/vqB/yhic/0hojv3vlRXRttO3V9uTui3TtEaLf234uvWHnk/X3b5/u0IvXr9IHLj4n6Fh/57aX0stufq7++vVPfow2vuhw6TyE2iAmXDVEUu4PXTVEQo0QSUwNER9OrH6Iwr3BVUMk1AYxtm+oIRJqgxjbddQQ8bVBXNhqiQQbIRJew9uecyLX+F31Q3LVCNHAVUMk2AYxEVFDxAdXDZFgG8SEpV7GKhkhJmzPmcE2iLFxQv2QE2LlN0MAAAAAAAAAwMb6dExf/shHl7739jvtKX2errzmyU+2vvfbd31xcDu/ef/LljZDiIhe++jH4zdDVoDBfErf/rnfo+/43Nvpnv2rxp856A3pHbe/gP7Nc7+WPnv+7mM+wuPhS699qvW937k93LB62/bzlzZDuO3QzZB3XH4Bff9n31J/vTEf0+ue+hj9+p2vCD4mAAAAAACiFdwMeflfejMRpRshNrR3HY/LEMkRLV/2j/pD0whpRklpGCGSliGidOhcN6R/WP2bywjRrg0iDRENI6RJLmuAqDpmPv5cRgiRjhXSRBoiKlaICe1mReSl1rnla5GvTQ0jpImMDNKMxj8uQ6Q30W1fHveqGiGt5mR/Z+r3LLn8y7KOxNIcg1w3pBz0suSOlYaIVo2QliGifOzSEIk1QiTSENEwQprw2iGXIZLLDiGqDJHBgX770hDJYYV8yeOforX58th+/5Wwl66dKM0rfC/je5uGEdJE9vdg/6jDv/jqA62f/+ClZ3u3Pbo5o/H5Pn3gtnbfvvzJdtvBNNYpoXVCXNT1QywZlu7ZfYp++L3/hp6z85iznfX5hL7qsQ/T6x//KP3Us7+S/sXzv57Komc1RFKRhkiqESIxGSJffOMPWj/34fPPDGp3cvdFev/lFxM9+gtL3//im+22u3h0/TI9unaR7jq8Xn/vtdc+Sb9xxyuod6D/sNY0RDTvD9IQSTVCJNIQiakVYuLEDBEFZpuj2g7RMEJa7a/3l+wQtXaFIaJhhTRhQ6TnWV/OG2mIKK3xpU05zzBWmoTWCXExujGt7RAVI0TSMES01slEbUNExQppYjFEtEk1QiTWTATJDVf/8LvwD/yjH1D+AGBi5WqG9A/LPAXKIwprrwL9SUl95ZdoTSZbBU20J7cFM+XJ57gY7JY02NXv89HNkkY3y6jCmF7t75Y0ynDcPoW6UshZNDemcHcIs/Uezdb1p9FiXmZ7OU8UV1jNh9moRzNDSh619tcLmq3nOZ/5NrSq62eeqV9CCqsHtTso8vUJ5bs2YwqZhzAf9Gg+yHMuc71oYIrJ3K9oaSDD3SkNdzMUYV+Q6x6xcbWkjav55tlc69npRkHTjTyDvDeJLALpyXS9R9MM98yyX9BrH/vE0vd2Bmv0yQv3qrRfzEvqa780IqLerPpfLmajgmajo3N528ENujLeWfqZR9cv0lPr54PaLWYlPbl2nh7dvLj0/efeeJh6SnVDmsetiel+edfeVfrH7/innRshTQblnP7UZ3+T/toHf3qpVkquNf50vU/T1FQ2Dvief9vhDbo8WR4jj61dpKfWwsYIEdGTaxfosbXlF/LP2X00aoy8/8Lyht2rr32ayiHR9PwaTc+vWX4rDVOKSRV6lPUNzOH9F+nw/ovq7U7Oj2hy3q84eQyztT7N1vTH+MEdm3Rwx6Z6u8zhpREdXsrTL1FFzQOYj3pZnk+yrcV7BVGvoN6szBpEqc18UAQVhI8h1/vC2aj6Xy7K/lEwpSbTDf2NkCa51srZ3oUDIytnhgAAAAAAAACAL6984jNLX3/6/D00L1Yu5utEecbOE63vPbR1Jbq9h7au0F171+uvN2YTumPvOj26dTm6zeNmMJ/R33nvv13aJPr81m30O3e+lB7evEL7/RFdPrxFL7v2B/TaJz7eso++4eH30q3hBv2jF7/xuA89C/fvPdn63kMb8efz4fXLdOfhjfrrjfmEbj+8QY+tXwpq55Pn7qNvfPx99dcXpnv07J3H6LPnzmaqMgAAAADkZWU3Q2TKolimIhCgXPzFWmlzcqXHkru7XcWyY5g2Iqy5P0qFEbHU54oFEXMXVloTEaK98SKNQWJ0Wq6Ub8xwf7l9V5HvYJqR2xkKdQ13jqLDeotd8LnCNSUjzufDQjVNkbQqXEW+Q5DnrE7DpRR5IKNSphvVhNJMoREDt1N/zqJ/tPpczks8RnoakRONQ2cTotBIH5bRSDLB0XT9w7SJUtognLZAzSgQXVv2F+3PdKOuc6Q/mw+PQpc0j7t5jL3JrPVZ6R+w/GU56NWpuVKYbyxfmMO9aiEx2cyztBzdWBRwvpDWNzJF0+YT1Tf2btdZYMkxp5lOtbkOYjtksL/6EWTynjzZ7NFQwfbhe+Pm5ICecWv5Rf9nMtRz4LX5zGJWfvMD76b/5d3/Qf1zfXhk6xJ9+xv/RvWFGBKHi2vmrgfbdTBCX0pPto6uE2mGEBHds3s1aTOk2bddxXND6I/NbXzFYx+uNzhuDTboH73oW+lX7nt16+f+47PfQFcObtKbPvwz9LonPrb0377jc2+nt975Enr/le56Kd/4hd+nv/ahn474C9J5dHiB/vRL/vLS9yaXl0Nn75xcb/3eY2sXgz+L58HHDb9798HV4HH3ma27Wt974a0v1JshbIcMbia+OCCi2XYjDJrX3wrPVLLIO38929BJlzUXVoXW86A0E9gOGd5sFyePYbq9/PfPFkWx+wqpippFzdlc17T8mgW8OXWTStpacc8s5rrvgCTzUU8lZZZ8XlV9J2GA7RDtCH0+r5rpsoja/aDxfN8cz7yummymDxY53vqT0rr2iWpfPtsvpt1e4rSS0wYhMtulGtjWKCAvCJkCAAAAAAAAnEpecO0h6otAjQfO3XlCR7O6XD7caX3v8Y34ugKPb1w0fMat6PZOAt4I2e2v0Zu+9M8aN0KYp9bP019/9ffQf737FUvf71FJb/rwzyylyzqtXB63z98Ta/FjxPS7lybtcdjFA5vt6/kFN78QdUwAAAAAACtrhqQijRBJqiGSs2C6K+dfiiEyzZRrv27f1ecJhkinEVJSK/I1BGmESHrjMsoO6TJCUostSiNEkhSN4YpqVzBEmkaIJMUQcdUg0LAVXHU2UiIYu85RqiHSlac0xRCRVsjS5yr0uYatZsQxhyYZIq4xyAWsM+SeZ2Zr/Sg7pKs+SLIh0tGVq2yIuCyNlON2HZOKIeI4peWi7kmMISKNEMlwb5rNDiGqDJEYO6SraLeGIeI6pymGiGsdpGGI9Aw1iDnSMiUvt+uezJGLMYaIvBfef6ud/unRjbDI8yU6TlGXIXKiOE7XVm+/9b39vl+9haYRUv/uoP27Fw73vNqTuPoyZX3lG235/37xt9HHL97f+XNl0aP/42XfRc+/+QV6xu5RSqn7956k1z7xCfq9O14UfIwngTRCmHOT+DHCNOfB/X472fx5w2d0sTdYp1v9dTo3Oyogf58hpVeKIbJkhEgUDZFW0/uTJDtEGiGSsl9EPQt21apINUSkEdL6/ARDpGmEtNpVMESaRogkyRBx3DNzZAlpkvKM0vV8mmyIdETjr7IhcnDFPs5Tnu9d41fTEFn6TPE8H7MG6nqun4/S7ZAc5DJCwMlyZjdDAAAAAAAAAGebu3evtb73ZGBRcA1ujjbpkxe70nPleaB+cqP7712ftt8wHPbjX8KafndttoJvMTr4+IX76FfufZX3z097A/qnL/wW+j/f86+Xvv/Gz7+jczPk5nCTPqVY5yLkhetTw3OdP7NuOH+HvfjXBYc9wxiZG3ZfPXhy7QKd2zvaDLnr4HrsYQEAAADgac7Kb4bM1sLrhnRZIU3Kgb8dktMGIXIbIZKQ6IAQIySmdkhIf4cYIkE1Qri9gFPUZYQ0Ca0fElInJMYQ6bJCmgRFY4TUOYgwRFxGiCTEEHFFn0pibAWXEZJCaIRMMSuDoke6jJAUXEZI6zgi+txnDoqqHRIQJBNkiISMwcyGSEj9kC4jpPXzw164HRJwesp+T90OIYozREKsjBBDJOQYogyRgFMaYoh0GSFNVq1+SJcV0iTGENGsTbPUbsA6KMYQMRkhkhhDJOSenGKIMHfsX29977FLF2my3qfhrn8nht7rZQ7tt937EnrbvS8x/3BEHamgCOCSOufawbzdx+OOF90mI4QxbYYMy7AI2pDI0hBDJCT/9s8/88uqnPkBa5R33P4Cenz9At1xcFQc/NVPfZr68xnNevZ56e13vpjefueL3Y0Hmtfrj+4G/bzNCiEiGhjO33jot2FmmgdN42s4j0vL8NTaOXr23mP117c3CrNLQgwRpxEiiTBEZK0Q18+EGCJdRkiTnLUbYgyRLiukiWYNkaV2IwwRlxEiCTJEAu4Pq2SIhBoNwZZSYDR+b1aq2yFEcYaIywiRhBgiIeM1xhAJGVchlmzIu8WY+iE5a4XktkJQL+TkQM0QAAAAAAAAwKlka9J+4bk/CHjB+TQm5RHcGMSTkEL1pHjrXZYNLAdl0aO33bG8qbE2n9Lzbj6sdVgrQ5lgM6X8ruRAbL4NyjmNZnGWCQAAAACe3qy8GUJU2SFE3YZIkKHQoKt+yCoZIRJXdEBKjRAfQyS2v6sPWPxr+NODjBCJpyESYoU06TJEQowQSVF22yEhRkjYhyeMcQ9DJMQICSEk+lTiYyvEGCG+kYux0Vm+0SMxVsh0o9dZNyTECJH49HlMjRAvQyRh699piKSMwRM2REKtkPr3fOuHRE5XueqHEPkZIil1OlzHnmIPeBkiCdO4yxAJMUIkuQ2RLkKMEMnmE/NOOyTmnPrUDklZB/kYIj5GiMTHEEm5J/sYIrb7nik107hfjbnJVnXNdBkisQZozvohxdwjSjNgCE577cb6I3O/uIwQZs3wInraG9Rr2cJxbCn95VpnhUZYPr5+ga6tV+mjQi3WT52/t/W95998yKv2iJHIjaSDu7aIqNsQcRkhzLRo32PW5hMqB4XVknXNg6aUWFOHOWOC10pjQ8qt9dmYxo5Uby5DJMgIkXgYIj5GiO13XIZIiBEi8TVEuuqFmJicH3XaISFGiGS20e+0Q1y1QqztehgiIUaIJKmGiINVMkRC8LaUIqPxc9UPIarGQZcdEmKESFzP+Ck1bnwMkZRx5FoHpdT+9DFEYISAFGCGAAAAAAAAAE4lffESeU4FlQUecSSHBlvGtKHhi+l3T5uR8+D27dG/+znD71463Ek5nBPHXAcmfoyMDCmxDnpxY2RmuKb7ZZ5gEgAAAACcbU6FGcLYDJEkQ6GBNERW2QiRNKPHUoyQVrsGQ0Srv42fp5UO1GKIxBohXaQYIU1s9UM0jBBjns4UI0RiMEQ0jBBT7ZCU6FOJKRJQo0aILXJRK1+vLXoktU4Imx/SEEkxQiTzYdGKvEyJHKnbNRkiiu/DgmqIBHDchkisESKxGiJK3ZPbEJHRrClGSKv9Ru0TzXoSRkMk41IlxQppkssQsdUOSTFCmtjqh2ic0/5h2Vpnqq2ByGyIxBghEpMhonlPthkiLhvysL88rnpU0mA2pWnj+zZDRKsmmDUyMrFvrNG/EUPwxqi9gN+YjunwQp/WboQPvg1DQfabjc8wGSKaBo1cZ8VEWe4M1tvtehoiu4bf3Z7uBx+DVmoxmyHiY4QwN4ftMcJF1eUayGce3Ji1jYybQ7/j4bURMzJYJqbNmy6SjBCJwRCJMUJazVoMkRQrpIktOj/GCGliqx+SYoQ0sdUPiTFCWm0bDJEUI0RiNEQU7p0nZYiE1guRWA0RpWj8XIaIrX5IihEiCa0R6ovJENEcN3IdpPFsT2Q3RHJZITBCnj4gbAoAAAAAAICnOb35nNamE+oZCm2vMvv9tdb3UqLZzypXF+mgmtyxZy9C3cWde9e9PmOVOUgwWQ767d/dnHYX7F5lro22W99zFSrvwvS714btz/BhzWSZGM4BAAAAAEAXp8oMYdgQKfU260X7p8cIaaJphEjYEJmc1254uX11Fl29dk23z7l2yOBAtdkajqIbHOgedx2FkfM9R1HQ8JZieOsCjvafrefZw9WKDm21u4ik6x/m6XSOqJmt6faLpgligvu7yFBsdb7WNk80KQeFagQ3k90QWUT89Qx1IVKoDZFMx50LjvxhA0UbTSNEUhsiI92FENcO4XOqTW5DZHIuz8KQDZH9K7r3Ca4fkmr0uZhuFFZ79cLBDn3zZ95Lr3j8AXrhU1+ge3eu1v/toe3L9PEr99H773g2/eIXvYpurC+/wJxnXk9w5OLAVQtqwbX19svV8+M92h21wwbZEEnJv23jyx/5CH3fx36ViHRtGR+e3DhPP/iV3+f8mYe3Lre+d/feNSIiOrzA9wf/ecu0GWL6jLLIO8brdVZEtOW6wW6p2+0wRNYNtWr2Bu2NuSave+yj9Gc+9asBRxiPrNny1No5+msv/17n7zyyfqn1vTsPri99Pd1cWFY73Q9vdxg2Qx41fEYTaYQw5yZ7S1/fGGzQ3DMdHtcOyXZfXsyH/R13zYzgZheGyORi20LSgJ8L58r3fDZEcvU3GyI56kLMRr0sUfnMfNgLmmd9OS5DRCvDAVO/m8h0aeY2RKaOOhwpcD+76rTFMtyb03g733M+v+ucKt/32RCZZ3oHnBsYIavHqdwMqV+gK0/6rYW68nhlVYwnBldxy1AOLx0dey9DUNK4sW7VfAlYt+UoqJ6C9iYIk2sTpG5fjg2le0nWNFmNz+CFwcBRCDWUaaOYZ44X0c0Fu6YeWaevs6SfSkUuwrT6Rs6r2i+85IOA9uZ2aCHUIMqj/tHsFy5enaPtrPC92FGEOwZ+QCr7i5d0Y90Ln4/36BuqzdeprHjjIkfbVFKWNFmc+kx7U4RfEHN6Aa0UFPywuHa9ejl3eFF3ecv3zs3Hq3/37lDql8WY43kqx6Z8OSA6vFy1y6lC79y5Rn/+fb9MX/fA+43R1kRE9+5cpXt3rtIf/twH6fvf8xb6tWe/gv7ZK7+RHtuuFoTNlKnDDGUS5otTOF6smUe79gv00c2Lre/dsX+DHtm+Yv0dn6K5oZwf79Pzbjyi1l4I58bd6Zk+d75d4+K+W08SUTtQS6ZrNXHv7lNLXx/0h/SY4Vz0x2X9EsBVwDWVyWavlV6ti+2pfUHftX7YMvzuzsCdt+P8ZI+ed+tkxohPCq8HN9tj5N79pww/6cc9B1eXvj7oDenxtYvGn+0dTBb/Vl/zBgZz++HNpa8f79hUaVIHP/QK9YAQoqN0pLO1DRo9FZEqzcL40vImiPYL48Gt5c2b8WWdTZdWSiXll6KcaopTP04T03u12l60m5o2zMR8WNT3es1nwuZ7rBybUEdr8sXzlXZhdUNaRQ1ybJgRNVIzZ9ps4TFSj5UDvf4+PH80rnOMlSkHls9JNQ+RfD823laeV/hxjQNNldOo5nrfCeJBmiwAAAAAAADOOmVJf+ST76B//7N/n77lM79v3QiRrM2n9C2f+X369z/79+mPfPIdajUOtHjYsOmRkv7prPLE5kW6urZs0dy9d42u7N+0/Iad2/Zv1FYJ8+kLd3tH6q8K9+08Ef27z9ht/+61tbgUUKvCk+sX6Opwa+l7dx1cp8uH4WPkyuFNuuvw+tL3Prt1V9QYKco5XR7fWvreIxv+myEAAAAAAE1O14q1IGMEZDFPi6CdDwqzvm35vBhMBYSmG0Vd4DKWw0vFkhVCRDRfq/6nwfjSshVCVEVwp0ZxFzNLBLtSf69dK7NYIYODvFbIYL80G0MlJe8iG7XWslR7qVHMytZnTDd7yfrodKu3ZIUQ6YxBppiXragI0/dCKXtma2260VNJQWXr29S+sR237fsx5NDDbTQjsJJRuA5NFNO50aZQU93FvWw+6NFcWhExzKm2QpqUg17bugig7BfGFAXzUV8tLZTx+BTv+U3mw75acXZjW5nGJdGRIZJKWRTGtEGD/VmrCGUIvVlpTCGwdn1aWyIpmO5rRESbj89p8/HEvjGcs96kVLPZysHy2rM3n9Nfe89P0w+9/adpexKnEG9PDumH3v7T9Nff9R+W6opMtqv/aTAfHFkhTcZb9ovz0xfvbn3vGbce9/q82ahXWyIpzIbFqUjd8P7bn9363isf/Wzre0XpjtB92ZN/0G77tucsfd00Qpjh3jzY3ghhstkLsk/uPLhBFw+X1Sbf6/D5Nx5qfe+T5+/1/uxV5UMXn9X63hff+FzrWplsD5yFq19683Ot733wfLttoiMrpMng5iENblZz1b37V2lQLo+bz2zfZf1sF2prIKqMkJkoaj6+skHjK3kq+/oYWz4Mbo1bVggR0ejqAY2uxj/o9sZzozFQTEsqFNb+vcl8uQD5gsHBjAYHaRauqe3+wYz6ie0ypucRjWdC03ussleoZTmwr8nzvEYsC51xPu8XWayQ+VpRWyFNbOvRqM8wPLdO13s0TUwVfni+v2SFEOmOlelacWSFMJZnxRBs78dGOzr93Zs1rJAG/UmZVN7A+vuZnjdBOKczTRYAAAAAAACgm7Kkv/lff5q+88PvTM6sVhLRd3zsXURE9Le/6ruzpNsM5aHt2+jGaJMujI9qCnzRjUeP/Th+8dlfSr/47C81/8fIfurcFA98Tn/H3S+kr/nCh5a+99UPfYh+876XB7Xz1Q99sN32XS8IO5gV4Q2PfJh+/lmvDfqdopzT6x//6NL3DnsD+tT5e5y/98v3fQn94rMsY2SB6WWv3zG5/7tvu+++8nz6yic+svS9r3j8w/QbgWPkK576SOt77770vKA2mC/aaacW+8T5+6LaAgAAAAA4HWaI5+5ZjCHiVdAvYfdORuaZiDFETEaIJMUQMRkhkpgIdKsRsvRDFN3fp9UIIfKsIRMRAWyLbF1uN94Q8Wk/xhAxGSGSFAtCw/4w4WtQxEYCadg2NnyOO8UQ6U1LqxXiNTckkGSIOK67lP6wGSFa7XfNpdGRkZ5RPqmGiPXjEwwRr2NaQUPE63dzmUuTebQhYjNCJKF2iG8EXooh4lMkNMoQ8ThPKYaIad35nR96h8pGCC1+nzdEvv1j71z6bymGiM0IaTLeKqyGyEeuPGPp6+ddfzjo82PtkNmw8MsrHbHO8pr7A+er37rvi2ncW55LvuKhD9PFA3PhF5MhcungFn3FQ8svup9YP0/vu70yQ0xGiGSVDJFv+fy7iSjsunvNE5+gOw6WU7G958pzadazz9PWTASJdFk89ecPe16Fst96+0toXCz/Ha9/4qMtg4YxGSIXxzv0uqc+tvS9J0fn6IMXnrX0vd7BxGiFNBncPKTnPfWFpe/NqaCPn+veDHFFPacYIiYjRJJiiIwvrbfqhTApkfM2I0SSYoe4SDFEfDbzNAwREymGiM/zR4wh4jOfpET924yQpWMY9bIaIjHkMkKIyGiESFIMEa+xEmGImIwQScpYMRohkghDxJoxpcFop4w2RGxGiCTUDvE2SmCInDinYzMEAAAAAAAAEMRdN6/Rm37n54hI75mL2/krv/tzdNeta86fPS7edefzl76+b+epqFoYZ52ba5v06/cvR/gPyxl930d/xbuN7/vor9KwXH6D8LPPeQ2Vp6xeCPPi6w/SNzz4Hu+f789n9Bc+/pbW93/uGWF2yapya7hJv33HFy99b1jO6M98+te82/jTn//11hh5y11fGj1GXnrr80tff/LcPXRztGX5aQAAAAAAN6u/ao14cvOxQ6KicwJ273yMEImPIeJjhEhCDBEfI0TiE50fFfUd0N+5jBCi4zFCvKyQQLyMEElA5GJU+x74GCGSEEMkxAgJ+dmYCP7QSKAQIyTEmIk59pDfcRkhkpUyRAIi7UP6w8cISWk/ZO4MjoyMCOQNsUO6otCWDiXAEImyVFbAEImySVbAEPE1Qpr41g+JibgLsUNi7m1ehkjEeQmJVLetO7//7b9E2+O4GiFdbE8O6S++65db3w8xRHyMEInJEHn7PS9q/dyrH/90ULuh9UO8jBCJxxoryggMmK9+8vlfTVPxUvrbHngnve6Rj1p+48g++PKHP0rf/tl3LP23m8MN+unnvt7LCCEiesWTn6G3/txfpbf+3F+ld/zUm+gdP/Um+s8/98N+B5+J/9eH/gs9z1ADpEVZ0v/0of9IzxTF07+weYXecbs5TVjoM6ePvcH4GCEx7f+7Z34lzcQY+dYH30V/6PGPWX7jyBB57VMfp2999N1L/+1Wf53+y91Hm0U+Rggzmk/ohbvLZsg7r7hTsoVEOYesg3yMEEmIIeIyQiQhhoivEdIktH6IqVaIjRA7xFYnxEWIIRLSfoghEmOka9WVlIRcDz5GiCSXIRJqQeU0QnyskCYhhkjUWPEwRHyMEEnIWPEyQiQehkjMu7EQQ8TXCGnia3tE1RiBHXJirP5mCAAAAAAAACCIi/s79E2feF/Wz/j6T7+fLu6b0+ccJw+eu50eOH/H0ve+9LFPndDRrDYPnL+LfuaLXrf0vR6V9Hd/7yfoWx54l3nDpizpWx94J/3d3/uJ1n/68Zd8A90abeY63Kwc9qqduO3pIf3Yu/85fd1D77X+7OWDm/R33vsT9A0PL//MnAr6kZd+56k1Y0z8wfad9F/uXTZdelTS//6+/x998xfebR0j3/Lgu+h//fi/a/2nf/XMr6Vbw7gx8sW3Pk8jYZm8/fb25icAAAAAgC+rW0A9cYeM7RAZWaWSq5UTJhsItUFMTDeK1m5oqA1igu2QniFAMNQG8UUlwpv/dEufn2YjJBpH4m8VW4MfcgyRvSnts9kwMOSJDrVBTLANYRp3KfVB+HdtkRLRNR0WcBTQYN8cKhFbI8TVH0Tpx81t2Gw8XxvEBB9zbE2YLjgCxxh1nXJpLvrU1CehNkho+9V/iGuXoyJ7tmNMPHS2Mmx9EBqF1mQ+6lNvbB7kKjVLOu5BsbDx0Zu0jz22tsgSfLzKEUdsh5SW6OJQI0TCdsh0Y7kPYnMwM2yHHF40L9Q07p2bj89p7w7RLwrjhucpU+Sga935LR97D41mGVU7IlqbTem/+eR76Sdf/hWt/8Z2yNCwVxJqg5hgO2S0W/XPrzzz1fQ/fOiX6v/++oc+Qv35zFnHIYYoI6SJZY2lcU92PaM0Ixb/2Uu/mV7xxGfp+TeOaqsMyxn9tff+NP2JT/4W/fr9L6eHt65QUZZ0z+5V+sNfeD89Y+fJVptvvfvF9LP3/yEvI8RJWdUR8a3z4Qu3Z6tP8jt3vpSetfMYPe/WI3R+sk8/9MF/T//dZ36D3nrnS+mhzcu0P1ijy4e36GXX/oBe+/jHaX3ethl+5pmvo/dd+SJj+7HPnWxv2CLWY4yQkPZnox79Xy/6JnrZjQfoebeOipcPyxn9Tx/+T/THH/gd+s27XkYPb16uxsj+VfqaRz5I9++1x8jbL7+Qfu7u11Sf52mDNHn9tWVj6Q/Wb6cHytuMPxub857IvQ4KtUFMsB0yemq//d88bRATHDlvGxOhRoiE7ZDxZfMxhhghTdgOKS3XSKgNYmJwMKPpuvncpbTPdsjM0HZ0fcIGrufClHdZfH2YnolT1uEM2yGxY8JG1xjPZYRo0JuV1uNTGSsLO2RwoNznjrESbIOY4MMVt/zUbClsh4y3LfNK4pKY11FyHRhlhDTJ9KwJ3KzuZggAAAAAAAAgilc+9MCxfM4rHn3AuBly3PzyM19Ff+5Dv0y9xdPkxfEeverxz9C773p+x28+/Rj3h/RXXv9n6R//9v9Fz9xZTvn0zJ0n6M987L92tvG+255D/+tr/iTRfHVfRHUx7fXph171PfRPf++f0JVxtWv3zN0n6Jmf/U2v3//Ve15J//hF35LzEE+McX9If/VL/gz9g3f9eCst2DN3n6Dv/cyvd7bxgfPPor/7gu82Blf5UJQlve76J5a+92tXXm75aQAAAAAAP1bP51XO0V3Mq/9F1QhxNkxLxxlTI8SHmBohXTRriMTUCLEh6zao5/0XfZ6rTsjgIK8VolYjROQfz1LDo6HBa7Y/3ezVtkNMjZAuWmMxwQppImuIROX1diBzxTb7KQXZH9rHLdsLqRHSRc76IUQiT6tirQXZJxpWiKt9rXtnK3e2R27XEGTtjpjcxCZk/ZCoGiFdZHrf16wLElUjpItjqiESUyfEhW8NkVDWrk+Xaoho3zu96odE0jTZfNadL37sC+4fUOJFT7g/R9YQ0bBCTDy2dYnefs8Ll7739Z+zpz0KZTYs0q0QA9r3ZHk/sOW6vrp+nv77r/5++u17XhLU/JwK+pnnvJb+ymu+jybzYfDhXRzvtr73wPk7iagyOGwWRwqTzZ7VOnl08zL9pdf+efqDrTuM/93EtOjRTz7nq+j/eNl3G9NjaT13zoe9pRofXLtFC9m+rJtzde0c/YXX/nl66x0vDmuXCvrZ+19D//NLv5cO+qOgGiFNXnXzs3RpejRexkWffu22VxAR0eDmUaqDkDz3XTTXQTE1QrqQNURSrJAmsr5CTJ0QF7KGSG88VzEAimm5VEMkpkaIC1k/RLP9Zv2QmLoPXTSfCzXfZcnrRWMd3uS4aojM+0VWKySmVogJWT8ky1hp1A+JqRViozlWomqEdKH8nMnIGiIxdUJc8LrKt5aIN5nqVQIzMEMAAAAAAAA4Q/Tmc7rv5tVj+az7bl6l3nxO897Jx1j9u+d/Jb3+4aMiz3/4wQ/QP3jlt9HuyK+A8dONW6NN+ut/6Hvpyx77BP2xT/0Ofcnjn6ZBaX4zcdgb0O/e/WL6yRd8FX3s8v3RqbFe9eRnWt/7ly/4uqi2tHho6zb6vi//f9J3fu536ds/93a66+C68ecOewN6x+0vpH/z3D9Mnzl/z/Ee5AmxM9ykH3rV99CXPPlJ+u4/eBu9+in3GPm9219E/+45X0Efv3A/DXemxp/z5ZuffM/S179+5WV0fbiV1CYAAAAAADZDEpmPqn+t+dsjObyQf0twfDFTw3kCImtGt/K0m71GyEGeJIAcgV+ewl3kyXZPNcJNUtfMUB6THNWq3S4z2e4v2tftHNXIUwOz0aIOh5IVUre7iJ5RjbyQnzHqUf9Q/4Ry5E8/7X2AldladVL7yvl55/1F3t95nkE+X0RaahszbIdoXzs1HEmXof352iBLu7np71WDe7oVHiHuA0d0zi01SmIZ3lrUJlGuUcCsX63O5YGy3ds/rNqddkSIDmeZJh3b581ndNixGTI+Vx2zih3bYLJZtTvcK+m9dz6XPn7pXnrhtYeIiGhjNqFv+tx76D8+7/Xe7X3Ht/6Npa8H+/PKUlQe4pwPfqJsx8bwrjtfQO+68wW0Pd6nF1/9PN23+yRtT6qF8c3RJn1++3b6yOVn0OFgRMW8TKrh86onP7309VvvejF94uL9S98bHMyXIl21+PY/Up3btevtENFJf0A/9ZyvpJ96zlfSs289Sl908xG67fAmDcoZXRtt0xPrF+hDl55F+4M1a/uz9UWedeXLb7pZ3duGu3l0WbYsZrfZNw1//7bn0+/f9nzanuzTi64/SPfuPUXb08UYGW7Qg1u300cv3k+H/VH9O+OL1UWz/mi4FXJxskOvbaTImhPRz9y5XNSd60For4GIiPq7E3UrpMnBnVVBee36CjxWBpmel2eLyPCennRStcv1JhStkCZ8rx/d0O5vPu5867fxuZ76ffM4YONEO3NF3eeHmd6tLMbgXPn652sn1/uDw3P55qvJVqF+X2uSKxNEzvdM4PSzcpshw4XONLEUvQmFX/7xyzktvVBa4Z1FbaM/aPGvaiqexheKBVYLsc4tC90JaHRTtD/gB460Dzn2TRClAknyQZT7WnVTpGgrtBoLmuZL+a6iaBrMh4XKIpVf9jPa173UlF3Fy8IaTvv1LuS82lWwNITp+lHbOTZFmml96o0FhU0ReS5nG33qK6b8kS+G+SEy+YWA6NquIqvBzcsx3lFYPfpztK6dJs0UUJqbIr1M7TKZNsrlmBjsVosAtU2RXGnJxBgcLOYprU0R1ZSsgua9ZrAoGj7dMn/epH+8S/yJo0i5TJ823SiyvNjhTZF/+ZKvo7/3tn9df/+7Pvk2+k/PfZ0xnZELWbyW13PN+5IGw13lTRHRtSH3zp3RBr3rrhfQu+gFxv++lCqUA04Cbm1XDm4u1SiZU0H/8gVff9Rmowu4IKzKpog4ZYcX+8YNEeaBc3fRA+fu8m5+ti7vbYuPTXx5JFOpTLZ0N0VkMe+1J6uvDx2bIjvDDXr37c+ndzvalUWxD+6qXvyvP7rnfWxvfPzdNGwYKG+79GL63MZRKrODOzbr/6+2BiKi4Y2j9FtdxcNjkPeI+ainsiEy21iegw/urM7h+mPtgu0x7N+9PCYmixevHFgQC2/e1O1uVRfPcFfnzevB5eU1yfhC1f7oRnr7h422+VrV3BRpppScbugFE8i1cTErVVNlyXcFWu8QZhvL9wJOYaW1KdJa1+4sgma20zYZZIrGHO8Nl1J4Kr7fa7431LqvNcn1/mci1sbafd4T7z0jMoYaGe5kfmkDljj5UCQAAAAAAACAGvNej75w/vKxfNYXzl9eiRRZzFvvfSl9+PIz6q+fsfMkfc2DHzzBIwKMtEJ+5+6X0qcvPD3STQF/1mdjeuPj76q/nlFB/+aerz7BIwIAAADAWWJ1nlwEw50yaWfMVoxQo7Cva+dPowjibGT4pkJxoemGsEKaZCqwKgtdxTC62bZClj4jYxRmCoOD0p0aK6FAkis9gUpxxaJYjoJukFLw2HV9aIwVFynFymajomWFNEm95rv6NLowZKbruokrCtpVsLSL6Xphjb7VKGLrKvY8W+vVlkhwu45zOdvotyL3QpHFTlufEVuwsGOsdH1uZ/NdYzxHwXNSKqrqmA+pVyybHSG4fjelXSZTEb6u4qNsiERjOe7UoqddhTYHe/PaEon+DMN8uH6tpPVraRNxMbdHsw12y9oSkXz0zvuSPteXj91u/hzXPDvdKOpI11hs653JZkH/7GXfvPS97/nYbxCVfudhsD9vWSFL/71rfdfVvuX3h7vz2hKJxnFY2QrA948skS6a9UJmVNS1Qlzrw8HBvLZEgnHMg4cX+3R4Me2ePFsvWlZIkzJS0Opas062+rUlEsPoqf2WFdJk7cn92hIJxfVcdnDXZm2JuPiWJ36fzs+O1P1fu/JyenDjtqqNOzaXrJAmsgB8CMMbh0tWSBNZPDwGVwHslILTXWtLNkRi2b97o2WFNJmc69eWSAjTzX7LCllqd2tQWyKxSCukyfjCoLZEQjm8PFyyQppoFMeeD5atkCYp985iXlqN6WJWJpsbXW3Evj+YbfRaVkiT1ELnqetLF67nYJX3hpnu6673huUg/t7G2NZvrvctPky2ipYV0iS1v3uTthXi+r4vqe++QRwruxkCAAAAAAAAiON99z77WD7n/Xcdz+eE8N47n0u/cd8X118///rD9LUPvv/kDggQ0fJmyG/e+zJ64Lx/Kirw9GBzdkh/7NG31V/v9tfoX933h0/wiAAAAABw1lj5zZCYHTKfHb8YQ2Q+9M8HF7PTOxtZrJClg6BgQ8RphEgiIsmLSbteSKvZiKj/LiNkqf1BEWyIDA7y1QsJihjMFL0bZYi4IqAFKYaIs90VMkS6jJAmMdd8aB8GRbgfgxHimxs/xBBxGSGSmGgYV6Ryq/0AQyTkXMYYIiFmRlBkZOCcH2OHBI3xDHYIUaQhEjAfBhFifcQYIidkhDQZ7E7CDRHP446J3nMZIZIYQ8RnPowxRFxGiMRkiPzCi15Nh5lrhxz2B/SW579q6Xsh82xMlKvP+mayWdCP/qFvo73B0cL6v//gL9PAUVi+ywhp/XyEHeLzO1GGSMBcHnPvdEUU14fQYYjcuXeN7tm7SkRE06JH/+r5Xxe0dkoyRBzEGCJdRkiT0CjakKjyGDvEZYRIQgyRkGcxlyHy3Y+8jS5Mjz7zJ+75Kro23HYaIZKQdZDLCJHEGCIh6+UQQyRkLXlw50awIdJlhEhC7BCXEdJqN8IQObg8dFohTUIMEZcRIokxRFxGSAo+83f9sxGGiIZVYqLLCJHE2CE+a8rBzqyuH+JLyLNv1HtDn/t4xHu9kPeGMYaIz/ot5P0L02WENInpb1/zI8YOgRFycqxcAXUAAAAAAABAGtc3tumXX/AK+raP/n62z/jV576Crm9sZ2s/hce2L9Hfeu2foOdfe6j+3t171+jBc7ef4FE9fXls8xK94Y1/76QPA6w4u4N1+rd3fyUREU16ffrZO77shI8IAAAAAGeNoiw9E+geE6/5kz9q/W+TbfduX2wOuK5oDV8bxIUrsq/TBnHh+Ju9bRAXjq7pskGczTpGna8N4my/w/pZCSPERMevu2qFdDbtGuYK0c/OHKEJwd7J9U866E3sH5CSt7IrmjfVqumM8MnUb77RbS6GhqhrXxvERd9xLn2jlJ3tH7aPW8OO6u/bo41S6nTU7Y8tgzFxjHRFU8X2TTHNk7d36TNc10/KWHG1m1oDpKv9TEadRh7l6VbHQiry2LuujxAjxMS0I6ovZT48uGT/XV8bxMV0ESF3181r9J9/4u/R9tgv8jmEneEa/dE//j/So+cuEZHOPDvYd9dEi2W417EuDDBCTHTdw2LXh5OtjnuAwr3ede/0jSY2/q4jkDY1bzcR0XTd0UjCUFy7bj9wXxvERWGXk4gozAxpMtx1Ry6HGCEmDm8zP1hq1G5cf3TP+t98bRAXpnWQrw3iYnx53frfNNbLPcNxp9aeIyJaf8w9FkKMkCbDW+4xGGKEGNvfdV88vjaIidENe9u+NogL1/Nmig3ivGcmzN+May2fYoN0/W6IEWKid+huP3ZtO912j+HYWplNnO8NU+qDOH5V472h696Wsn7rj+2/7GuDuOhac8fWAul6h+wyQt75k38l7kNBECufJgsAAAAAAAAQzqPnL9GPfMUbiUhvj5zb+dEvf2O9EQIAAAAAAAAAp4FTZYYw0hDRiC4iakdwaBghTeSuY5IRImn0gYoRIml0TYoR0mpWjD4NK2SpfWGIrKwRIhHNpRghS83KzfMM+fCbkR5a1ybR8RoiKUaIRF732nVWWlE/K2yENJF2iIYZwjSjXDUilVvtNwwRzfMpDRENK2SpfY4wVB4jMrpKq09yGyKta0dzrDTb1jBCXO1nrLGkYYU0aRkiSscur5VUI0QiDRGt+VDaIRpGiGS6VRCVJf2tX/sP9J0ffieVlNbt/Ps/86Ivo7/9Vd9NFFAfJAQZ7aq1BpCGSKoRIpH3Mq31YcsQUZ7HpR2iEVFct9W4tWmuC5klQ0RxKEpDRMMKaSKjaGONEIk0RFKNEAkbIhpGSBNph2gYIUzTDNEwQiRNQ0RzvSzNEA0rpIk0RGKNEIk0RFKNkFb7whBJMUIkTUNEwwiRNJ83NeuDNO+ZmvM3I9f2WjVCZDupRohEGiJa61ppiGgYIU1a7w2V7g9V40f/N8d7w+a9TfP9jTRENKyQJrLPY40QiXyn7FMjBGbI8YCaIQAAAAAAAJxVioL+9td+F1FJ9J0feWdaU0T0n17yGvrhN/zRLAEVAAAAAAAAAJCTU2mGMOPzeR7Cpht5H+40owCaTLfytNukK89tLGs38rTL+OzAxqBuhAh6HbVPYilzRCovfUC+fsltiDhrq6SQ+aWRVoSORNsIkeSIXiIi6mWaq47azzjGM7Wdywxhcp3L7IbISq2CAsk012obIZLptn60JRHRdF03+lQyPp+n/cMLeefZel1blvQdH3kn/Y+//bO0PQmPjt4ZrtHf/8pvo595yWvqe5pW5JyNrlofsWw85c5tv6poR59KBobaWCocwzw7VY4oZgYHeefDHGYVEdHW53eytJvLDKnJ2N3rT+haMpKDO3KkZ9C3ylvtZ5pWXHWDNJit5emX3P2d8zl5uJu/7l4O5opZGUwMdvIMxv078qxnGW3TmZnqiXdWcq0PtbP3SPr68uCiXf/rHmbI8XAqN0NybYIwteKu/DGleIbWfuk63eaGddslEosZxfbXry43pr34WLu2vCDQUtClpqee2iJTmix5Q83xErD5kniu+N6oOTZyvIhuvvRX3VjIvAkiN1dDbrQuZKoP7c0F+eCleU6b12OOtDNNNI+71SeOgnEpmArBpyDnVe32efO2N9Z9kCkHyx2uvQHAx51jk6iYNVK1KW5uy7b6h7p9PltfnrC0XqbJl4mzNeU0C+KecHBJJ6pFjo2DS/pvpJpz4KRRVP37f++X6Bs/+X5am3VP7of9Af3y819J//gPfSM9er6qEZJ7E0T2jVaaUznPbj6hO8blfOgqmhuCTN+pHagg14OmgtOxNK/PHPNhnSZLebnVXutnClBSXifKMb79B7qbInv3VdF32mtxea1ovgScN16ab37BXqw9lv27j94saj5DDG8uT7TjS5o5tttobYrI9av2830pbsGaY6V5v5+N9O/Jw8ZL+Vb6Q63PyLAhMltfPtZ+pk1i7U0ROTaaadBSyL0JIp/nNQMhZmtH/1++n9SA5xHtTYVWQLnyPZ/Xy9rrWzmvyjSwJrAZcjwgTRYAAAAAAABPEx49f4l+6Bv+BP3IV7yRvuVj76FXPvIH9OLHHqT7bl6tf+YL5y/TR++8n95397Po51/0JXRj4xj0YwAAAAAAAADIzKkyQ47NCJEofKxr11XDEKmtkKWG09t16q0K7UszhEgnekQaIZJUQ0RGizHJUegdfZpiiLiiZjQMEVeEWIoh4hoPGlFprujKpOiuYzZCJLGGSFchcw1DxBV5lnJOXddfLkNEYww6+yOTHUKUbnB0zaOp7duMBw1DRFohS+0rGCKmY9eIKm4aIT6fGYqpDQ07RBohrc+NjHLviqhONUS67rkphohrPGgYIq45z1Z0sjef03A+pUlvQPOe+RiO2whpkmKHdEU8pxoiXfNhrCEijZDW5yoYIqY1oIYZ4ro+NebD6brhpCosvWxrfKJ8dghRuiHSNcZTDRE2QiQa6yDX9aER9T83pFPSMESaRogk5RlCGiFNctshRPGGSNeaNfUZXxohkpSx4rrfaxgiQ0eaplU2RKQR0iSXHUKUbojYxkKqGZLbCCEyP8NrmCFNI0SiYYiY5g0NO8T5zkPhnm9bL6eud7vmUZchAjPkeIAZAgAAAAAAwNOcea9Hh738L9oAAAAAAAAA4KQ4FWbIiRkhkojDCNlljTFEjEZIq+HwdoMKnkW0bzJCWs1GRHd0GSFNYuwQV7RYk6go9IB+jDFEfKJlYgyRkIiwGEPEZxzERKWFRFMGRXedsBHSJNQO8Z4LKc4QCYk0CzmnIdfbKhkiQf2xQvVDQufO0M/wNRxiDBGXEdJqP8IQ8Tn2mMhilxEScwwxvxNjiHQZIUvHEBHh7htJHWOIhNxnQwyRkPMfY4iEzHE2Q8TESRohkhBDJGSejbFDfOfDGDOkywpZOo6I68dnzRdjiIQYDjHzodEIaTUc3Kz3Gp9otQyR0Cj+GEPEZoU0iVkHhVwXMVH/JiNEEmOIuIwQScgzhMsIkaxa/ZCQdWrMM36XFdIkZKyE3OtjDBGXEcLkMkPqY4gwRFxGCJPTDCGKs0N8z32MIXLcdUJMxBgiLiNEEmOI+MwVMYZIyDuPmHu+73o5dP0bOneaDBGYIcdD3pkXAAAAAAAAAAAAAAAAAADghFl5M2RlrBBJx6+l5N3zMUS8jJBWw90/EmSERLTvY4S0mvXY4Q8xQiQ+UX0h0WKMd3Rm5BXoG8kSE0nlEy2YkiPYxxCJiRryOaaU/Npe0V0ZzZCgCIkGvoZIzHzoY4jE5h6u2nfl7o5v9yQNkaT+OGFDJLbekm/7MVaDjyESYoS02vcwRGKO2yeyOMQIkfgcU8xx+xgiIUaIxMcQicmt72uHpNTm8jFEYiLKfQyRlDnNZYiskhHC+JghKfOsryESMx/6RMKHGCESnzVOjAXsY4ik1LzwGQdeRkir4e4fiVnj181nMkR8+zJ2nPvaIT5GiMRnHRRbQ4fI77nGxwiR+BgiIUaIxPUMEWKESHIZIr5jK3Zd6vucF2KEMD5jJOVe72OI+BghklUwRHyMEMmqGCIx7zx8DJFVMEIkPoZIiBEi8XmXGXP/8TFEYt93EFHnPT92rey7Fo69J0s7BGbI8QAzBAAAAAAAAAAAAAAAAAAAZ5qnrRkSbYRILM2kmCFEdjskygixfkj7W0lmiKPdGCOk1axltz/FCmlii/BLiRgjcuxAK115tsiWmOgIiSl6MMUIkZgMkRgjRGI6xhQjRGKM7lpBI0RiizxJnQ9tdkhKZO5y++bj1rA7jtMQ0eoPouM3RGKNEN/2YwyFJjY7JMUIaX2GwRBJPW4ic2RxihEiMR2jxnHbDJEUK6SJzRBJiT4nshsiKVGiTWx2iEYEuckQ0ZzDmobIKhohEpshojXX2gyR1PnQFhWfYoQ0sa13YowQickQSb0mm5jGRZQR0mq4/a3U9f1S88dsiGiNcZshEmOENLGt21KMEInpOSfGCJGYDJEUI4SxmSEpVkiT4zZEtNahtue+GCNEYhojWvd6IrMhEmOESE7CEIkxQiQnZYikvvOw2SGraIRITIZIihHCmN5laj7H2gyR5HcelqGgtVa2rY1T+wZmyMkAMwQAAAAAAAAAAAAAAAAAAGealTVDVt4IkSyaTTVCJGyIqBohSx9Q/aNihBja1jBCrM0vogC0zBCGI/40I8aIDDvSyl3DkS4aRkgTjiTUNEKasB2iYYRI+Jg1rZAmdZRXJitEywiRcCSK9nzIhohm5Mhy+9Vx57A5jsMQydEvuQ0RLSPE1r6GodCEDRFNI2Sp/Ume4yaqIos1jRAJH7P2sbMhomWESNgQ0Yw+JzoyRDSjRJuwIaIdMc52SI4567jMEO0+YUMk172HDRHt+ZCj5LWMEAmvfTSMkCZsh2hfk02KealjhLQarv7RXuPXzWc2RHKNcTZEUo0QCa+BNI0Qpvm8o2GESDa/sKdihEj42UHLCJHkNkRyrTv5OVDDCGnC4yTXvZ7tEA0jRHJchoiGFdIklyEizRDtdx5siOQyQjRMEBuTzZ6KESLhd5u57j1siKi/81gMjWzP94vpW7tf2BCBGXI8wAwBAAAAAAAAAAAAAAAAAMCZJlPccTzNqLQc7WYxIIhouggcseW/i2VyniOhc0W2Z2mWiIjWbuRrm4hodDPP7nqO6CWio53jXH2uHR3B2OrXaMGRljl27nNEbzeZrbFFpNvudC1vFBPnF9WOYMwVNcJw9OzgQL9fputFlnbryNxM0aIcDdlTjjbiqPlcx11H5SvPt7PNalnTM+S112C+iAAsMphy5aDIek8u+4sLVFkInq0pK7EC7utSOSq/tpMymYPrT1VhY4eWGiLR7S5s2MML+hPucLfMZikQEc0XUYv9fd12x+eqYx7u5pmv9m6vxvj69Twmci7q+VvZ4MhphDCD3VkeM+SUwiZvLqNF2whh+ByOJvo3t96spKkhX74Wu/dvZbHiJ9vVfJLLDJluVH0y2M8zX+UyQ/hcmuoSpZDrWYrJZfETNfo807sJbSNEtqttiPDY4zGuzf7teYyQycZi/s5ohkw387xj4vczuZ7x2YTgdZwWuYwQJld/5HoXDsysXJos5lV/7seISC/tlBxYWpPF1LJ21NoUGV9YPj2amyKFpehxKmvXDZ+luBAZ7uZtv9W2UtO2B5hcmxhqiMPTfBAzpWnSvHk129K8aZkWvpobIlOh+2st5G1jLfWF90ktODQ2L0wv/jQ3RZrHrvpQbZk21DZFRJ/nePm/9HFKD3ryxbbqpoihz1X6xTC+e5bi5DHMh6YqiBnPZ+YXpfNhnicQtU0RMZ9qb4ZINDdFmvOVZnrJuSF1Q39fbwzKTYVcmyKM9qYIoxV8Yl3vKFybuV7KMcNb7YeTgysKL6hOaQH1ieWln9axD8TLSq3r3tbO6Jbiva3xGbbCyjGYNvs01m+2F7ibDx8kt01EtHfPuvH7qZsiM0sKsoGhCHcMk3PLaxTtzZCcNItXr13XG9uHF9vrNs25Vz63aadSlKRuihxeML8Q1JoHrUEgCtMKb4Q00VxD7N/WnldU3nMa/nbNjb+168vnTmszJPdYzhW0xuu29/74D+b5AGAEITcAAAAAAAAAAAAAAAAAADjTrFyaLEkxS7NDbKoRtxm7u2czQhguYBRriEgjhCl76WmzchkhLrgoWorBYTJCNNu3tl2k7TJ3RS3kKnyuguGQOHoiJRrDVbi7TieWEDRh+l0NzdMVETFb1CtMMUSkEVJ/bmLxv66xxenEckU2puA6XzyOYkwOVyqYlHYZ03HLSMmoSMOOaWK+VqTZIZb+5qj5XIZIaioAW1Q/p7VKMkQcfZ6rX+aL1FMphojRCGE48jWHIVKWWe2Q3mSexQ6p03GlREYb5tC1a9WiK5chsnYjPW2Wab7i+SklUtxkhDAzThuRYIjY0kxNtoqsdsjBxarDtA0RXmumGCLONQ5f7xHX50kYISo4/lSN9exxGyFM6rFLI4RRue4dvzteWAAxhoirXU6fk2KIuNK/8WfHrNu6Uvrs3bOeZIfYjJBUbEYIM10U9441RKQRUn/uKE+6LE0mhvRsbHOkGCImI4TRSJlle7ZOfdfRRWzaLJsRUrerMIfnSg1qMkIYjTWEyQhRwdEdvcVtOsUQkUYIM7qVli7rtBohRPnTjAM76HoAAAAAAAAAAAAAAAAAAJxpVt4MITraiQsxRHyLzzTb9N3x67JCmsQYIjYrpEmMIZLbCDHVCpHEGBwuI0Sjfa92F90csuscGqXQm5WrY4d4HIaMpPD5e11GiCTGEPH52RhDJCQCIsYQsRkhrePoF0F2SOh4KntFcJRjrnohIedHw+TQajdsXAVEGgacyqii6p7HXQ6KrPVD5sMiOOrNJ5I/yhAJ6PMoQ8Sjz2MMEacRIslliCREoJ80UYaIx7y5ioaIz3wVEynuMkIkMYaIT+Fxfg7IbYjkqB8SY4jkiixcBSNk/amq0HRQ7ZCAvouJLs5p0nZZIU1moyL4ecNmhTSJuu4DfjbEEAlpN8YQcRkhKYQUeWa7I8QQ8TVCphu94LohXVbIUvsRhojNClk6hhU0RExGiCTGEHEZIZIQQyTkGS3mXUdOuqyQJjFzuJcRws0FTBEuI0QSY4j4GCFRGXAC/sYYQ8RmhEhGt8ogOyTneM1pgxDBCFkFcAoAAAAAAAAAAAAAAAAAAHCmORVmCONriPhaIZLUOiIuZmvddoiPESJhQ4QorY5ICj5GiMTH4AgxQmLaj2rXM2oiNnflidcPSfhYjbydJnwMkRg7QaOGiAsfQ8TXCGniWz8kdgz51g9ZBSNE4mNyxOSG9Wk3rRZNfC5qZ7s+hkjEca9K/ZCY2g5ehkhKvn6fvonocx9DJMgIkZwyQ6Q3qc5fjtohTDEtu8dYRHT4KhgiMfOVT6R4iBEi8TFEfIwQSW5DJFf9EKJqrdllh0Tdezyuy1UwQiRehkjmdeyqGCFNfNffPkaIxOu6T6mz5CClXR9DJMYI8VmvhRghEh9DJKZGCB9TlyESYoS0PmOr12mH+BghklUwRHyMEImPIRJihISQ8oyW0xCZrfc664aEGCGt9j1MuagaIR6GSIgRIvFZR8TUCPF6t5nxlZOvDSLxrR+SywqBEfL0AacCAAAAAAAAAAAAAAAAAABnmlNlhjA2QyTWCJHYdlFDaoWYsNUPiTFCTNjqiOSqFRJjhEhKEb2ubnKsUA2REI7dEFH8GFNURkitEBsmQ0TDTpBtNHfrQ3Jh2rAZIjFWSBNfQyQWmyGyikaIZLpetCyOqEggQ7tEy4aI5nEbIw4Vrk2rIZJ47CdliMQYIa22R722HaI4DxprqyiMFZMhkmSESGCILGGtH6IQHb52bZrNDiEyGyIa85UpUjzFCJHYDJEYK6TJcdQQyYGtfojKvcdwXa6iESKxGiJK04vNtMhlhcQaIb7EGCGS3rRsmRoaRoipdoimaWIyRDRqhNgMkRQrpInNEImxQprYDJEUI8SHGCNEMhv1js0OiTFBbJgMEQ0jxLZG1npOy/WuY7a+MH3EvJRihHh9rsJzIJXUus+kGCEuYkwQG8Z3mwqHbasdEmuESGyGCIwQoAVOCQAAAAAAAAAAAAAAAAAAzjSn0gxhsu/eLXZRZ2lBGC1shogWbIj0xnl2qjWMEBtlv6DRTf3t3uMyRLTrZZx4DZFIOPoixw542TuKRMhBMT+yOTThNjUi0ppIQ0R7rLAhol3PIjdsceQwWabr3TlpU6gjDpXnq9oQUY78PS5DRDsSyKt+SAJ1v2SIJmZDhHIFScIQWaI2RJSbz10/hKgyRA4u6fcL3xOmSla2hA0Rbbs5lyGSs3YI0dH8N88RPFuWWddVRDpGiKQ2RG5z1BBR4LQYIdJo0TBCmtTX/Lr+fDI+1++sZ5ECGyKzNd1j5/VaqrnWRaoRImFDRHtsT7cW5smidoiGEdLkOOqHaFohTXLVB+Gx13fVB1xB2BBJzZTQalfMgypGSJNFN0829a95XkeUmZaEtSGifPnw+mG4k3cMnjYjBCbI6oNTBAAAAAAAAAAAAAAAAACAM01Rltphf7q86s/9WOfPTEQeOZlXN5aZzIGsvbG82Iqaj3RPwWBP5nRVbZ5GN6p/c+zONneUNXetW5Evyscuj7WvFHk9E5FG2jv5dR0O7YhrEfyi3T4ft6zDoUEz96dmZL40NtSNBTk/KR36XARcDvZ1TyZH1sgaH6nIekTqNsRijGv3B9Fy7ubhnt5AkWNQO2qUIyRlHuBUWucyk4HCdoEW0gLrzfTab7atbTwS0XKojGL78l5c9pVjcnhdpd2urNegvB5ko2WynTdGSdMQaUbSTc5niIpeXC656lQx2oZIr5IVaLSre+DDm8tmhaZN1GtGRWaYTprRkaMbeobIbH15sal9/fB1PlQ2FuS9WDtymdfczTocGgz2lts7uJzHyMlhiHBtEm2rVxoKky3l6P9cNqVYR2lFMMvn1p5yxLW89w4O9cZK03jKEdHNzyHaFpF8TtDOEMDPJNrPaeOt5U7WWtvLdjRrEBEZahRrdkujaVkbWYP6OU07k8lk+WttS4lrhmi/T5LP8Fr3Ynmt+FhE7/3xH1T5bBDGqU6TJTdBmKLUf1AloqPJLrFteYOV6axiN0fkJkjdvqW4UQy8EUKkW1jLpNWZCmarUZDKzct2bLNhobYh0kSrT+QYlNdLyjk1pXDQHCvNY7cVJ4/BVAAtZ5Hysqc0tm3zUeIYl5sgzHTRT6mbAHJhYCpOHot8eU5kLzQY1/7R/9fqDyJzAUvW9VM2RWwPRtP1nsqGiHzQsBVHDMV0Hpufp70pwi+kNTZFTOnw+AW95qYIkXIaSNMLAD4PCe3bUnEUi75I3hSR66pFu8mbIpb51VbUOhSZ1mu4s0gtkmlTZP1a1X7KpogpncBwkd5UZVNEXB5Z14KklzZLvgzgFz2pmyJyE4TRSLFmfFHJp1B5vaaJ3ARhhjtzlWtHXteczip1U8R2L9ZK5yLX2Kbi5LHIjRAiovWrizRlypsitiLfMYxFmqbZSCfNqS1N03B3prMhImNVlTZFbOsmnl9Trlm5EUJ09EyosSmS5d0OmdO+afQHI587epNSZUPE9lzQm5VJGyKmZxEivec0uQmiiWl88/c0NkVaGyFaGJrltZbGpkjrOU1pHpTrnrr9tbTUbbJgOqP1PilHIGPdtuH6GO4t1sgZUquBNJAmCwAAAAAAAAAAAAAAAAAAZ5pTbYa4SInaa6XHkpQUZYf4Rhf0xoV66iyiNEOkaYRINK0CY/sJUYHOwnAJ0W8+x8IRMjGGiCm6pkmsVeA7BjVNDq12XceeYoiYjBBJiiHiis5Jinj1mYMUIzwlKUaEKzIiJfLIZhI0STFEXNE5Kf1hi8JqomGImOCIuBhDpCvKKtYQ8TmPzc9fJUPEZIS02k8wRFztJxkimUJjfIuzFrN5nB3S8StJhojHMExZa7qKva+iIeJTYDLJEOm4HNRsSguTrSLKDrFFRjIphojNCmmiYYgYSVg/uNZr4wvVccaky7IZIU1Srp2u63iy0YuyQ3yjtGMNka41dYohYjJCjosUQ0QaIU1kgeUQfAp3D3erPosyRLqyl5dllB2SK70oUfczK1GaIeK6LqdrizESkS7LZIRIUgwR13NGSsos7ecAxudZhCjtOc1lhaSs6X1+J8UQcRohKc/amUQBn78xZR7sWvekYLNCmqS8T3I9p6dYmtpp5MDxADMEAAAAAAAAAAAAAAAAAABnmlNphthqhZgIidrrNEKayM0/5Z1driPia4jY6oUY2w4wRFxGiI2Q3VpTrRBruwFR9L7RqNUPyw/y/1UfQgwRn+gaJtQqiIlqKQv/XXdTrRBXu0R+bYccNxsijHaB9RBDJCRfa9C5jJlrAqJWbLVCbEw3Cm8bIiRXJkceEeWJtggxRELytYYYIr5RWE1CDJGQMRhiiIRGVc3We+pF1ZvMB0WWqMcQQ8THCGm1H2CIhLQfZIiE3BcUaoe4CKofEng/683m/nZIxBwbstZ0GSGS3IZILoIMkYCpYdXqh4RER4YYIj5GSApB0dkB64eQ9VqIIeJjhEhCrp0Qsyu0foh2MWNJSGRsiCESYoTkqh3ChBgiLiNEEhIZ7WOERNNlg9h+3nNdELI+CjEhQp5ZmRBDJOS6DDFEfIyQGGKM8xBDJMQI4edU3/kn5nlkul54P5+F1AkJMURyGU9RtUFCDJGA5kNqh8RYLyHzYKgRMlsrvOuG+BghMcRkbAgxRELeUaB2yOpxup6uAAAAAAAAAAAAAAAAAAAAAinKMjQc4fh51Z/7MSIKM0JsuKIMgswQG5b2Y6Lym9gMkRAjxNhuhx0SY4Y0sUUshRgh1rYNARJBRkgXhqY0ohFthkhMhE2TrmNLHYO2cxlihIS0m3q8TUyGiE+tkC5MhohGFKDzXGoEE9jOZWJQny36QisCwhZ94VtjwoUpoivECLHhikiJicSSmCLFNMagzRCJiToyYTNFUs9lzrzYJkMkxgixtm8wRDTaNxoiGvOrwxDRuBdbDZHU9ZStXaVTaVtnhhghNnIZIq7aIT61QrowGiIK66mcNUSI7IZIar5smx2iYYS4aofE5OtvYegSjfWayRCJMUJsmK6dmFo/EpshknoftkWkatXys9khGjVCchkiLjMkxAixYYqM1jBCrLVDtF7BWNYJqesh23Wd+rxK5J6LNK5LkyGiYYSY+iTGCLFhM0RS64TY5qPU55CuqPgQI8SEbQxrrPVNzzNRRogN0yEqNG97Nk19PusyQ1LXPTZDJNUIsd0TY4wQicsM0chawe9H3vvjP5jcFogDZggAAAAAAAAAAAAAAAAAAM40p6JmiIYRwsjdw7JQMkLqBvmDFl8qbTeF1hDxblcEYrEpkmqEMLI2hIYRUredOXd0M/ej5mfIGiIaETZE7bEWkvfVq31xLlONEFu7OZiNjuwQDSOEadYQ0cwLbR3bWh8h8pqmGiFMSL2MqPYXdUQ4GkPDCGHmw6KO7tIwQhhTn2gYIYysIaI1DmUNES0jhJkt2mdDROtchuQaDm572POqHxLdfr9X2yGaxkmrhohWGIylhoiWodmqIaK1nprxtZInHkjWD9EwQpjhzjyLHbJ+reqTpiGiYYQwrRoiSpdR9nWgIDUykpH1QzRrhKxdm7bsEBUjhCmoXjtoGryyhoimFWJCI/qcqF1DROseLHOWa6+RZf0QDSOEWb86yWKHmGqHaBghjMydr1UnZLhb9W1tiGROyqG1/pHPkVrPq0TVM6Scl7SuSaLlGiKaNUJkn2haISZSjRBG1hDReg6Rz2WpJohEruk11/bc1nxQ6BohJhSblzVEtJ7P5Pyntd6xoVUjRL5H0nwH0bwP56hfyjVEwMkBMwQAAAAAAAAAAAAAAAAAAGeaU2GG5GS2Ttb8+SloRks1YUNEGh1arF2t/tWMjCbSjfZotd072rnN1e850IywMcHR/prRnUSNOjPK1009RjJ1y3ibo6P129a0QprweJ6Pqn/7h7rtT7YW7RpqqqTANkSu657bz3XcXXlTY9vOGb3M0VjakSscUZerFsd0ESlpqyESC+dd1o7a4yj/IlN/zNaq/ugpRaQuUUejKl+YbJ7ksmZyrafYEBnk+YA66lA5QHrtRnUTO7ygHzm/fm1Oh+fzLaRG1xfRo6YaIglom7AMR4uuXc9zvR9cWFgFN3XbXbtWPSRMzud5zON1YI57Glst2obpcKc62PG5POO77OVZ8HD0fK7nG00jpImMMtaEDRFtY7Vufz3PGnOWaS3P93ZVA6zBdGERaF/vfI/M+TysaYU0yfUehtestvqiqfBzjva57HONFmUzhMlZD1CrrqVktMiGomVASHLNf7lgG4nnQW1yvgM8Te8XQRg4tQAAAAAAAAAAAAAAAAAAONOcCjNERhdr5E2dbjQb5A9Kbzc3uSIRJDIfYSrrV5dDEOaKUSDNqKNc0YFZ8lLLLlAaf/Kc8dfqRoTydWMbExrRIByhRpSxPzIwF9ETs7UMEWXUiFZTioJrXX9ac6sYItrHfdRuhojGMk99HHl/nK7r5jXlyCP+d6BkcMgaIbKGSDSiP7QNkToSa/GvptFSNqK85qOFkZPDEJmVR/U+FOD6JuWIrRadybVUrLVhbL/HEZLl0tepFLN8i8leo+1chsjazWrMaRoicu00ulmq2yHNz9FaA/JcPb5QHevohtY8svz1rfurm9m5B3VuZrmMECK9enESec6mG4WqHcK1dmRNn1QGh6JmklL78h6pXgdw0c7u3dXY23pEbyG1e9fR4jXHemr9qaNk9nt36oUZ54r+Pbi0fNFwhHT/UKdPuI/5zjtUum40ayxKmteNdg1NouVnYc1n93Ytx0KlBoys4cFfj3Z0Dn6codYY0dE6hNm4Wr2o2r+scw/ia1LWR9QglwU7ulW2vla1QxZNybpSqeSw+IjEO9cGau9hMgoybAkSHRlEGnU+du+Cj7AqFGWZuYqXIi9905uXvk55oWS7MIko6cWddnopSa7NkC5FP/bvkpsgNlI2R1yTd9LC1jEOkhZWPn9qpjGYcuPpHAORx+x77lM2RVwLhVXcFJGbICZSNkUmm452E56HO6+32FPoOT2kHLt8ObXcbsoF2f0jKfcy1wuXlE0Rl36dsiHiUyg9aYOho/mUTRFXn6Qcc+mhuqdsihRTx+8mbIq4irynbIgc1yZI7H934doImW7ELxB7HhssOdJmEaW9MPBZK6VsirjWxCnrv645OWVTxHWvYVI2RbKlxnKtLROmbJ/zlLIpMnG8BEzZsJCbIJpt+9wnU8a363dTNkWamyCSlHVUc/PDRsqmiKs/1m7G38vkJoiN2E2RrpegKZsiro2QlOu967ohStsUcT4DpywtXb+b8CrNt5B57KZI1yZISp/IjZAmKZshPnNbyqaIc02TMG/LTZAmSZshnr8auynSNTenFFJ3vW9Vef/i+JOHu/HXZXMTpNVuwmaI3AT58I/8QHRbQAdsSwEAAAAAAAAAAAAAAAAA4ExzKtJk2YhJOeI0QpiI9D9n1QhhtNNmSThaN8QQ8YkyitLKPc57lrRZTTKNwZgUUd7nPHO6OY7KDjFEfKIkTlParCazterfEEPEZYTU7UaknvK+vpqnI8M4iTl2nyjdqDQPIT8acS/ziTrlyJYQQ8SnIB8XpAwxRHwiXZmolFmezcekzfLpk5hj9jFC6mOISJvlNEIYNg4Czo/LCGHmyimzNPA1PmLSZvmkxhrsV32RYoi4WKW0WdnWRgt81sQx6z/fOTgmbZbPvSaFkzBCmJg1cch54aK/IYaIywhhYlJa+US2x7Ydcp+MGd8+PxuTNstlhDAx6ygfI4TZfKw63hBDxKc/Ds9XF0CIIeJrhMQQEv3NdkeIIeKTGivmeve9bkIJeS8Rc9xeP8trogBDxNcIicU3LVZMn7iMECYmXVbuItVeaxg+hQGnx2WEyJ8JMkQy10f3nYvnw+rfEEPE531r1PuXgD6ZbC3mvwBDxGWE1O1GpMtCWqzVBWcGAAAAAAAAAAAAAAAAAABnmlNthjA5itJWDcoPUm7fg+MqmO5Lc/e2KxrDt15Ik96k7LRDYvLO5i6sLj/HfBARH+BhW8TYOlltiIDo/5haMfNB0WmHxOTNXAVDxKdWiMTHEPExQlrtZipOXuNrEkVcN7NR93HHROlmKazewOdeFpOH3McQ8bEf2u2GGyIheNsWEX0yHxaddkhMn6gVgrfgY4h4GSESD0PExwiRhBgiOWuFxNQBKeZl5+/FFEsPMUR8aoVITtIQiTFCRjcXEZMetUNi1sS+67+YZ4jxhaLTDom514QUVD9JI0TiE2WcO/rXxwiR+FocMdHtRdndbogREkNMn/sYIj5GiMRnHRVihMQQ0x++hkiMFTJbKzrrhmgVSbYRUyzd53qPuWZ8CqrnzsgRZTd6GiIxVsh4u9dZNyRXkXTGxwiR+BgiMdejT0H1XAXSGR8jxPY7nYZIxOXeH5ed80Su51fGKwOPwOv9S6bpz8cESQFGyOqDMwQAAAAAAAAAAAAAAAAAgDNNUZYBCQ5XhJe+6c3O/26K7orZqbTSaP+01goh8q8X0oXsgxgjxITNGtDY1TZGISheCUsRJZqbzoZj1BiDtt14tfEtjjvGCDEhDRGtyKnjtkNijBAbTUMkxgixtmsJDlSL8pRjW+m6kcetlbfdOg9pziPNe43iPNI0RGLsB3u75rlfK+q1ZVsoHbo0RLT6xGaHhNQK6aJpiEQZITYa5yzGCLFhM0RyWSExRohPOzFGiAmbHRJjhNjQNkTqdhtRl5o1QmyGiNZ6uGX0KnW1NES07jU2O2SVjBAbzXGhaYTYaofEWCEm5P1Wq96BbFfr3mjrW80+bxoiMUaIjeZaStMIsdUO0eoTaYho1QmRhojWc42tbkiMEWKjeb1r1ghpGiKa711s9y21+5l4xaZVJ0QaIlpGiO3vjjFCJCYzRHN+ahoiqkaI4ZTFGCESqxmidDnKeUPLCLHVDdF4z2p896L47NusHaJphJhqh3QZIR/+kR9Q+3yQBswQAAAAAAAAAAAAAAAAAACcac5EzRBJM/Jmtp7hAwrKXj/kNBghDO/kalsyHK3LFoFmnsOlaLUM6QLLXoYaNkRLdRY0+zu34cTHrRmF3myvq4ZIKLI/cpkimkYI41NDJKpdUUNEPe93prSduWqftPJeZ7jec8xNRH41ROLaXa4hop0Hva7Hcahbj4PvMV01REKR9UM0jRBmPupRfy/DgsGjhkgMsobIqhshTDHPc53L+iGaRgizdmOWxQ7hGiLaecplDRHt9XC9/lO+HMcXFvPqru45lPVDToMRwuSqDzJdRLOzIaJlhEg0o9uJjp4LtNfCsi5Orn7XNEIYXku5apPEsPlY1R4bIrn6RMsIYWp7QPlWwAYIGyKaRkgT7WuG6KiGiHZ+fx4TueuzahkhTK7aINwf69f0H3qbtUNyXItcQ0TLyKxZDOfRju64btUOyfS8p10jZD5c/JthGbJUOyRjKQ/teWSyWbXnU/cOrB4wQwAAAAAAAAAAAAAAAAAAcKY5k2ZIE9651N7154juHBHjzQjmXJEsOeBoPm24j+eLCFXtyEkZUaXWbiZjhqiKZK4jVTXbFVHA2n3NfayZX5xoOZ+sJhwBQYt/+we67fNx95Uj0ol064U0kREV2lEn00WExcCQgzOFyVb1r7YxM95e7g+NXLJNZASsatvrRZaIuOnGwohQHhs8f3D7g33diWSyVU3W2ubJbK063hxR/2WvoOl2NUENdvTyrTPzQU+tPsZSu2tVX6vfxxbHysesbZ6wcaJ93IODasEwz2DKlL2CRrcWFsc5vfY5yn3t1pwOFdtleE3J9wQt6uhD5XUIM93KY4js3Fc9eLCRo8l0rVA3bIny1b1i+ouaSRPl2L5sz16L/pDmuxbTtXxrysOLw+4fWiFsNUO04HWINmzsTpVtAraRDs/lMeqJFuM5gxnC9xftcc3XeS6DXNuOZuoxohzhzrDtlMMQKfuUxaRnI2msbWBnCvavnx25L5Q/p649pNwu1wzJYoYs6hOWgzzPS2xwaK/9Di/maRccD6eygDrjKqQ+2TZ/X+PFz9yxHtTYHDHdjDUW5trpsep2LQ98WgstW7qL5InSVv9Yoa9N40xjU8Sl1mu8nJGbIUQ6NyRbAcDUG0fnw3XiIsB2rWtsiky22gensdDPkeqiiel61HjpbXvhlbopYj2HiZsis47nbI1NkakhjUGOTREipYABy/WmtSlim5tTN0VmI3PDyZsilj9bY051pYHS2BThzYomKpsitpqRqfevjmNL3RSxFZFPPm5Lf2hsipjGSI7NkCY5NkWY1E0R2xos9wNs6qaILeWqxqaI6YWrxtrdlSZWY1PEVtD3wFCkNwTb+slWfNoby69rbYbYUh5prClNa45cL2E1UmV1bYKkPuPZ+jS1T2xpSzU2RUzPjpqbIaaX/rLIdwym+4nGmLaNgdTNkK6xlfoC2TpGMl2PGpshe7c7/miFIWhKyzY2PF8HY2ki9dlOBtDVaC2dbIen0CWm4ukahdNN62uVzRBHExrrPt4ECWkbhdNXj1PkHQAAAAAAAAAAAAAAAAAAAIRz5tNkSeSuvHaKkKXiP4G4IhJSUjnlMkK6aEaixESgdBVATUqb5bFbnCttVn0IyhH8Kek7TEaI/G8x/WwzQpiylzkqM1I/ddlfRESz9erfGEPEZITU7SakzToJI4RpFRMPoCvad7pZRNkhnecwU6F5hovixUQRmYwQ+d+0DZGklJId11dzHogZI11z8XSjF2WH2IyQ+r+vJRRsd/yZuVI+Milps0xGCMPRn1GGSMcYKXuRqR89j6WYzKPsEJsRUv/3lLRZjqZ7k2rMxRgirrlaI12WK+p/bdF+DkNksFdG2SFda61c6TuZlLRZrr4+PF8deIwh4oo257V7zLrddbwa2IwQZv3qNMoO6Vo/yeLTQTh+JSVdlk8B7JQ1pWuNkStNz+7dldURY4jkTovV1YcpfWKL+Cc6inyPMURc2QRSrnOf9E9c5DvGEHHdP1LGdNdaMjZd1nGkNHeOkUzXY0q6LKcRkoDJBFGlowvH54qo5zqrEcLwZRIzljJ3ickIYQb71b8xhohrfZ3rHV8KNhMEnG5ghgAAAAAAAAAAAAAAAAAA4ExzJs0QW70QE/OBfyRsV6RxkxBDJCQCIZe1EIOtVoiJkAiULiOk1Xa/yBJhG9PXIVHVIQXWXdE9kpBIVZcRYvvZXEXVGZ/ozOCc0yV52yEh13mKIeJsN2Nh9VBCrscQQyQkwjdXUXWiOEOkq15IkxBDxGWE2H52pQwRD0LGSMjcG1pUvcsKWfrZFEPEQcycGnI9hhgiLiOkdQwhhkjAXJ2rOHksXVbI0s+GHHtAn4QYIiFjI8YQCYn6z2WI8D3A5/4Rat9mN1UDCOnrEEMkJLo8ZN0ecrz8syHruC4jJJZQo3ayUfjbIQF9EmKI+BghKYSsKVbBEAk1Qop52Noi5zrcFe3f+tkAQyTkmTHo+TxTQXAmV82p0Hcms5H/u5mYdwQ+tUNCxkZuQgyRICOEh5PHnxpihIwW76eCaodkHNqdVkiTEEMkZIgEZMpwmSAahKytg56TAvoj1AgOsUJWaS0JulmBV+oAAAAAAAAAAAAAAAAAAAD5KMqyXJ2t50he+qY3E1GYEWKiKxI2JGJc4jJEQnNTmjBFJuSqFRJihNhwRaCEmiFL7XbtHCceui0CRCOK2hTFGBLdY8MVqRpihkhcfd1VK8QH2656sBXSatj9n2Ov8y47xFUrxPszDBFquWqFpFyHjCv6Pyb3O9NliKTM1UR2SyTECDFhs0NCjBAb2oYI45zbFCKpTGNEw3y0GSIhRoiJTjsk4TS45lSN69FkiIQYITaMhojC2HBaFgmGYlftkJCoNRPW41boE5chkjJGXIZISh2IXJG+jO0+klqTLWdUn6t2iEbNDZMhElNvQGJat2scr2tNl2KEdNUOSV07WQ0RhT4xGSIaRojLckhZQ2ibIRKbIZJaJ8S21ki1Qbr6IyXq36feTwqm61zDCDHVDtG4P3Sdq9j1ZNe7mdR1qs0O0TBCcl2PLjNEpUaI4U/XqBFiNUQSu6nL+A8yQiSu8aXxuGc4NA0jxFQ7JHVNTdTxfi+hP7rWeql1Qrj9D//IDyS1A/IBMwQAAAAAAAAAAAAAAAAAAGeaM1kzJBZbrvTUKGOi5Sg1tkQ0jJC6zcAcqCeNLUdpavSrNB3qnWSloOmcNVuKWXo0owlTLvMUI8TWBve1hhVCFJ7P0b/hxb/iMFOvc1v9EA0jpP6MYVFHQeUyQjSx1YdIsUKavy8NEY25mqhdRyTVCGFC6oeEcqw1RBSDzuQY0ZpbQ2uI+GKtH6IRDWyof6VhhDDNGiIaRggTVEMkpF1bHY7EzykWdTikIaIRvUZkOG7F66U3mbfsEI0xYqohomIpZKodwsgaIlprqGzrDyKabhUtO0Sjr42fpWCEMM11u+bx2mqIpNYJWb9a3bSkIZJt7aTYJ71JWdshmjVCTPXoNNYMuWqH2Eg1Qhj5TKdVH8TWHxpR/4PDsnVdaxghJjRrhIy3q05mQ0TrnmCrsZi6luR1v3xXk+tdi2aNkMFBmeVaNNUOUTFCLGhYIUaUukY+0yWZIJI5tUPWM3VHzhohWuvqVu0Qpb6wrfVSjRBwejhFr88BAAAAAAAAAAAAAAAAAADCORNmSGqtEIktj6MWOaL/iY52NQc7edon0qkX0kRGs2hH4dU7yY4aJTHwcWofL1tDM8VoPqbsFdmiCoh0bBMTdRSO9rEv2psrRf0zbIhwxLurXlBU+0NLtLQSmpHoDPdFqTy3cjQwz9naVgQbItpjj6OJNGoNSaYbRZb6IbUhojyeGR4j2nM1GyLq1yEbIge6NwGeR3NFihNVhkhvoh/yXhsiynNTbVooHzO3Nx/lWZTl6g8+dzNFu4cZ3ZrTZFs/Tiq3IbJ+tWp//3bd9nMZItOFMTrc0b/QD8/3qJ8ropbyzU3c7uim7mTNhoh2BDMbG8OOGmap7edgNiyMtWVSyWWI7N5dLdRz1fLRMkIkHBU9VDZUOWJ+vKU/n/Jzea7rPJsluBh7k0TzXMKGiPZ6ndvTXvMeB/sL2079fdbi1GlaMkREo90M5kaDXO3mfGdDZZ5n0MF+9a/2dViTa17KZIKcpqw9T1dwigAAAAAAAAAAAAAAAAAAcKYpyrI8fVvSFl7wt96s2p6MJNWKal67tvw1R5JrMbrBNQX0dzm1zRCmmSddK7+g8XOUIjBkNIR2vkUZVaUWoSPa0dyxbhoWmlHY0tRS7+vNPBHpsnaKVp/Ieag31jvuSSO6ZbCn1izNNpa/1j6HcoxomREzcR32tYwLMcVp9kezL3LUJmlaa5oRsc188ZpRmtJ06mm1Lc5hXynyU+bozhE1uNTXY72I1Wa7svZJCnIt0z/QmUxz1QypEc1pGSLyOOejPHFNmoaIvO72L+uElMoIUm0zpHXf1hoi4rLTnEubbanWx1iaNzLYh+I6X7+mE7aaq2aINNs1TYtpwwphG1iDZg7+HPZQc92r+XyRywiRaN23JhvLf7y2GTKWc7PiqWzOqZpZCuT9T+sdBVuHjHZEOh+ndv0K+Yw43FOcPzLV7pFrDy0zRN5P1E1M0R9aGWC4riSjVV+SaPna07zfNv/2wYH952Kp66Qq315kH6jVlxR1XbXWB9PN6t9P/K0f0GkQZONMpMk6LorFulw71YssuBy7OcKbIIxc1KUsPI5jE4QpFvtzOTZFbIXbk9sVhZtjX27aFjD8kilpU8TwuxoF4U1ppniBpJ2ahqjqa42Xx7KId/PBNmV82ArIa/SJae6Zc3oh5ZcTfCPX3BRhmtdLyrm0LWhTU0XJTZD6+4sXFNGbIpYpjftDe5NIs2C76aGYHzpTXuTJorlE9oKYQe1a0r1xUdroTRHLOZwtXn5obYowmvcsY18vXqSnbIqY2m0VO4zAtmaZrfeTNkTkJgijtvbIWHfRdGy9Maf70t0IGC4K3aZsitius42rM7UNkaV2n9BJl2W9T/Ofk3KODZeaxlxq+l1Oa5j0gG+cNxZztMK6I1eKVbkJwqT2ia1Y9eH5asylbIpMDamx+D6YsiliepHL93SNTRHbujeV49oEYTTuW3IjpPm9lE2R1gaIMtqpiRhbEEBvViZd+3IThOF5MGVTxHRcXLReY1Mk1/VyXJsgTDFL2xCx3T9S01Pm6gdGboJoYnrW0rjfmp6Xp4v3jSmbIpMtS1/ztyMPOUfARRO5CaLa9ma2pkEGkCYLAAAAAAAAAAAAAAAAAABnmjOVJotJTZcVErkdYonI9FguQu0QaYW4iInEOE4zRJIzbRZRWMRtSAREaJR3SCRDlCHi8TsxhohPAfIYGyJEYw3pa2mEONsNGBuhkT4xfeIz38QYIhOP4m8xhohMj+Ui5ByGjI0QQ8RmhJiIskM8m48xRHz6JMYQCUmTEBLVbLIJbIQYIjYjxESUHeLZfIwhIlNkmYgxRIL6OsAQCWk3JNI2ZI0SY4jYzJDWz8WsPTx+JSZdVsixrELarJBrK8YQ8YlijrFDvO/LMcvSgCkhZC4N+dkgGyJo3ggf0z7XeUyqLJsR0v784KatVoiJEEPEZITYCDFEQqLYYwwRn3VvzHPFcRshNkLuWyYjxEaIIRJkhEQsaXzm0ph0WT73uZj3ETYjxEaIIRJyPCHXVsjzYUy6rOM2QpZ+JmIeDblfhM4FIX0R8iwZYoPEpMvyucai7rMef2OMGWI1QkwEHnbI3xlyfwmxQWLWB00jBOmxTg8wQwAAAAAAAAAAAAAAAAAAcKZBzZBEctcR0S6uTnQU6eITAXGSRghTCHlJ2xTJXUdEuw4AURWR622HBPxZITVEfIyQ+hDEDrsr+jKmsFmuvs41NoiqPvGNQg2ZX0JqiPgYIYzMgekyRUKMECbXOeSIS62i6kxw/ZCAaSukL0KuF64hwrhMkZhIQJ+89yE2QX0sCjVETATXDwk49tlGz9sO8TFCmJA5KaqvPWqIxLSrkYvdxGy9urn4GCK+RghTlKX/eiMkSG5hL/lEzsasd06yhkiMbbVxtTp3PoZISF770PohQbZmSO2QTFHuMfVFvOplRM0b/jnNQ6KvDy5VNzhfQ8TXCiGq+sI3+jPECAkhxAhhfGqIxNQ18KkhElPrIOS5YlWMkBBCjJAQomqEeOTpj6kNwmPCZ10YYj6GvI8gCrdCfMlVtyjmeplsLurLOAyR3DUxQtYdfN/0NURy1YLI1Se56oPEPGP53Gdj3qGE1A4JMkICyTY2Mh0zaoOcDWCGAAAAAAAAAAAAAAAAAADgTHMma4YQxdUNicnhL7FFcIfUC3EhTZGQWiEubFERq2CG2MhVS8QUcRuTE7PVriXKWyuaoWWKKJ06WzRXiBliw3TNxUQ1SEx9HVIrxNquJRo7JvqniW3u0TLOpCUSYoR0YTJEYswQiekcaowNmyESUi/EhNUQSexq27yh0RdEdjskJmpJYopcjrEKJCZDJKRWiA1rVHti0zZDJMQIsWG8XyneGk2GiEb7pjWARnSmzRAJtUJav29bbyQesi2KVmN9k6t2CGMyRKLq8AhshkhMRPNSuxZDJHntbztVCkHMpjk0xgiRGI0I1Xkjz/VtM0RCjBATNkNEwwgx1Q6JMUIkJjMkxgiR2MyQ1HUuY3umWFUrxPa8qmGEmGqHRBkhEsMhp86fTeT6MKYOlgnbHJFqhNjqhmjMSaZrTuNaMZkhOY0QrXcq8n2JVrS/bX7Q6BPT85SGEWKqHaLxbGXr09TnQpsZomaDiMPWGhu2e4qGEWJaG3QZIagXcrqAGQIAAAAAAAAAAAAAAAAAgDMNaoYoU4igpdNSS0Tm7VxlI4ThWiKnrYYIo10bgaN1vWuJeCLz/WoYIUyzboZWpDtRu+aChhVClG9shNRUiSGkjkgo080jO0TDCGGa51BzbMgaIqlGCNOqIaI0LeWeN7iOCBsiGlFLTLOGiKatIGuIaFghRIYaIkrHPFtEkLIhomGEMPNBkaWmETMb9Wo7RPMcyhoiWjm7ZQ2RVCOEaa03tALlRP0QzfVMrtohTLOGiIYRwsgaIloRzbKGiNp9VtYPUYxwn2wWtQmiYYQwrdoheVPQq13fsoZIqhHCyP7QrBFyeL5X2yEaRgjTrB2iYYQwsnaIlhEiWVUTRCLvVZo1Qrit4f5cxwhhRO0QTStk6WOUjBBJrtogjGaNkOna0fWnea3I2iG5rJBcWTZOW20QRrNGSH9c/Tsb6T5bydohWs/IsnZIrvogp602CBHqg5xlYIYAAAAAAAAAAAAAAAAAAOBMc2ZrhjA+tUO0o7CbDHcXn5EpyMGW2zW5XUvewFQ0zZAmuSIbiI4iQrWpI8+Um+cIAY5I0GKyVf3by3S9aEYdS+aG3Mo67Vb/as8h00Vfm+pxpFCfQ20raZCnXaIqokYzUkeibVIx/UyReHVEkPLcz/eonjklexJln2i4o98fPIdqRsUSHUU75rpv5zC0iIiKTPdXpjfR7xC2ZHIdu/aaQ8tCkuQwQ5rkrB+iGfFogiNkteA1zJ6lhkh0uxOO0lTuj8Vhbj6uf/0dLszAoa3mVSLZnq8yDbk66li5O0a71bnLYVnM+4WxjlYqPCdrz3n8jJJjrZGTXIYMUXWfytE+X3/akdh8najfXxf3P75etDg8v5hEMy2Rcj1HEOWzb/j6M9UeSoGzSGjPSWzzaNRwlfQmZZa1Hb8jyGWz5BobmvZ6k1zvLA+usCmj3/b4nP/PolbI6QRmCAAAAAAAAAAAAAAAAAAAzjSoGXJMlD3dKFNj1LHCRi7njZekRg7YolI0dvhzWiHHgsjtqsVsUdtDe6eccyprGSJzyxjQuF5M+SN7Cv0h6zg0a5+kwEZI/fUiR6W2ISJrqqx6u7O16l9NQ4RtFr7stI6Zox7n28tjL9WMkFGDMq93LPI604zabM7vk0V/5DBEmjmbNeEIN617N7fHdWrU7CEOZl5EpBeZaojMF/U3NAwRGXlW9ossdojM9x5LLiNEkqMWWv9gWtu+k/N6Rb84KnGwX9JUMY9+LuSaZXNRQyTVEJH1UriGj4oh0ji0vTuqLzQMETZCmMlGoWqHTIUtpFnvhIjadVoSyZmHXjvKnWnWPZB1tFKQ83BtrSXOgTKvvdZaQ67HGa01Hfcp/zve0pvrcmVLyGVkHVfdCu5jjWuntkKIVJ+3TedOZZ0gmuW+0cpSkcvIKjMtATTru0g0a501kXPS4KDMcu3ImnPRiEPTmvOJlvuCs3RoPgeyFaJNiBECTjdP+82QnCmyJPJGoZ6CQ/nhoEmzUJ8m3P85tMdUsqfHan0gJS3QbAW0Zo13HzEbI5Mt8/flJkbM5ohtI4RI/0Vk/ZmL/tDYFGnCYzjHnJK6KWI9hwqbF6Vh3Gm0OzO8s9PYFDEdL9Hygi3muLsK2E22i6gFYFfqBK1NEUmuVBYamyKmOZRfvqVsitgeKFLnIttDosqmiGF4rPKmiEu/z5kya94vsr14SsE25jQ2RfoH7Yt3eLO68aVsipiOebDPBaL134hwAdnYdFm5UnsSuV+mJG2KOP7UlE0RuQnSZLKRnjJLboLUbTcKwauS+NxjfUGl8NLU9CKXA8NSUiLlejmYK1Vh19ooZa1h2whp/reY9ZxrU4nPa8qmiOlepDE2bM8fs1GRlCrLdp2kBhvkDGZc2gRRJNs6oqPZsiii3kt0XVcp73dcGyAaG7SmuU7jvZHpvq2xAeCaj1aSrOnJ87SLzQ+gzeqHcgEAAAAAAAAAAAAAAAAAACRw5guoM7ZC6rnMEC6c7kNItGlQBGnA5qktPZaJkOiB0EiUkJ3+3Omxjt0MMRFwCF3RV01CDBGbVWAjJArTZYZIQq4TU3osGyGGSEikQ8jcItNjuQixQ4LPXUAEnc2wSG3XZIR0EWKK5DrukOsvxIoIjRIMMURCrqmQqM2QeTykL0LmzhBDJEQxD+mz0LQBue7vuQwRJsQQCSnMuApF1XOmxwoZdyHrHZMRYiPEEAk53lxps0LskFAjJCRdVkh6jaA1X0C3hZghLiPERoghYjNCjO3mMESYgD8zKG1JwCGHpPYJub+HGCEh0dgh82zIfBiyJiIKW2OErMVD1nEh/RZihsTYBCFjI+R5I+S5PDS1T9C9NeCeFnJNBRkhAacl27ohZNkX8F4i1LQKebcTsrYNuaZC5riQ54yQ+3XQHBdhP+RMyRiULitkiGbqk5DnvxAjJOQdl4YRgsLppxuYIQAAAAAAAAAAAAAAAAAAONM8bcwQRhoiq2CGSFyRp9q5xZkQM0TiiiZIyVHateufywxZCSNE4jik0OirJl2756FmAdMVkRlihEhc10eIESLxMURiokB85pgQM4TxMURizx9RdzRdiGER0naMGcK4DJFcx5ty/XVFxcTmju6yQ1Lq8LiizVJy+Lr6ImXudBkiKUUHu/owtpik9z0+oktO0hAJMUIkJ2WI5LJCUsada90TYoRIXIZIyvGelCESWyekyw5JKbjqnMcSuslliMQYIYyPGRJihNTt5jRDiDrnxqTIXMehpxR7dt3rU2qEuKKyU+bVrrkxdl3UFc2ekofetY5LqWvgMkRS6ku4xkTKu4uu5/KU68Pn7415dve5tqJqhHicnpRz6LxOUl7ndLyniK3112WHpBRJd11jKXOc67kj5X7tOncp89CJmSEpt71MfeF67kupDeJjhsAIAQzMEAAAAAAAAAAAAAAAAAAAnGkSYlpPN6tohDBlrx11mmSE1A0v/m1stqYYIQzv9suIghQrhOjoHKVEG58ZuGuVA+o4Cj8kv6IPbH7ERme6aEampES4S+aNwFhpiaREPsjx25x7YoyQ+nc3l7+WpkiKFUJ09DfLaLoUw6LZtmw3xQip21ir/m0aIlrHS7R8zClGCDPZri5sGR0Ta4TUv7+I1pWGiMb1Mh/ER525sPVFKhy5HFJDxAeehzTnICKi2SJqzHrPT4nuWkSm5zZElj4zIeJPtqFtiHA0ooz8XEUjpG6jLFuRtSlGCDO8Wd30moaIxvEO9qsLRNsQGe5V7UpDJHXNsflE1a40RFIiTOs2FtfdkiGi0C17d1SNhNQQ8WGysZiTDYZIjBFSt7u5aDe3ISLIFZGbYoS4SImW7iJ1LuW5Qc6Vqesi/n25xkhZg8s2muu4FCOE4fPfNERSbAKGn6HlejD1/QW3J5/RNa6Peb9o308Vsjhw3zavtSgTRGJ5ttY4f0YyT3k51uZEaUaIi1xznMb92obGXJSLsle0120KXWya7zX6wfbcl2KFENnfbWnYIODsATMEAAAAAAAAAAAAAAAAAABnmqddzRDmhf/Lm7t/KAINM6QJR52qmCGtxnXMEAkbIqlmiIQj7J9WtUJc7WY0ZlY58sHEbCNTBF3G2XG2nqddNkRSzRAJR9NpmBamdjXMkCZsh2gfL1F1zBpmiISjY1LNEAkbItoWA0ehadt73A855s5B3Re6Fzf3rXYEXX3vV+6KnHZIbzJXMUJs5KohUmTqEu2xxvQO8yjO0+18C4BcNURma3naPbiYaf2mPMc32Xx8nlQrxAYbIilWiLHdXIbI4jDVjZDF4eYwQvjerx0xzQaE9tzJkcLa6yFeW+R4FulNdIwQCdsL2lYBjwntjBb8jK59ffDfn+tZPWe2iF6mdVGuvsgxjon05/gm2s8hR+3m6YtZpr7IZSrW/ZCh+bJXZJmT+Zkv1QiRsBmibYSgVsjZAmYIAAAAAAAAAAAAAAAAAADONE/fmiGZoji125V5yVWPtzyKvNWMhuBIhbKvG8lS1xA5ZaO2XGx0q0edZqojkrNtWy2DVPLl76/+7R/otktkrpuhwfhC9W+hnDt2fKE6Z8Nd3ciNw4tVu4M93XbHi3aHO/rhMeMLRANlC7Bqd3F97Ou2O1lECY9uKNfj2MxzPU8XpleO64Pz1Y8y1SbRjtTj+512VOh8cbw95XNHRDQf9fLYG0WeG1N939C2bzJFKnI09myjGhz9fb3Jfr7Wp96k6pD5UG/Byeug/kHV9mxdp21eu/am1QUy2dING16/vohYVDZEBruLqOwt/fvT/pWiVfdMg0O+Pymvh3i+Hxhqk6SQK/I9V/58oqPrRBs29gfaZkimKP3Rrep6Pris/wGztSJLRH09LpTv1Vz/QLuWlbaBzLDpNc4wt+WIdifKZyvU60LtupyL6Py+8ho559zG87G28c21IgfKz038fKO99tbOgtBkdKukybZ+u3yP1r5OeBxrGyFsKvLY0CLHMyk4eWCGAAAAAAAAAAAAAAAAAADgTPO0rRnCvOhvvFllJ3x0y/z91LaHluhVjWMeGKK7NAwR07Fp7Kznqr2Rq1YIR2K1Py+9bWN+Xo12TRELCu3acm6mRpTboipToxds0QQaEZETQ+5KjWgDUx5PDTtkumk+R6mGyGTL3K6GITLbaLetYYhMN9vf0zBEbNGVqYaI8XqmdEPElu9ewxAx3Ss0rg9TH4920sOcbPN8auSp7V6scS819YWKIWLoClVDpJF3u5jqhai17hdKS43cZgijbYbU/z+DGcJomyGMthnCaJohzflM0wwxXWsahojpPqKxFrKthVMNEdvce3g+fcyZzI21W+lzkSlHv7YJ0GRwkHbMc8t9L9VsWb9mvsFpGCKm/tRYAxyea48rDfPE1pe5xoXGewXTtcC1VJIw/Mkax2t7Vky9d9tqbqQaIrZ6DRp1l0z9aVvfhmCqH6vxPsf2nJ56/2AjRJK69rYZIRrXs6n+r4YhMjXUY9WwQ2zjOPWattWu0jAYexOij/0waoWcRU5ZwqE8yAtbUxNstp2rXc225Q1KK32WnIi0tcPThFzgqqXPkvesVW+XljdJNFPtyOtBS+2URc+10kXwwkBbwaxT7CinzCI62szQTpvFmy/aabMm23nSZk0XhepzpM2abeinzCI6SselnTYrVxq8XNfHeLuaKDReiEhmw0ypOBb30tOSNosLqSdtihiKj5aD6tylbIpY7wt8qJFTRa5NECLzg7NGuqzmJgijkS7L9kKvfzBP2hCxrU2Hu6ubLss0f2mky8qSko7sm+mpqKeMbZCroHCu9FU5CxXnwLYJooFtIySVXJsHpk0QDXKNtZxobAgaUU9dqdsek/M6zlGwmihfSizT5ocG2imPmtg2QFLJlRLLtPmhgWnzQ4NcY5jIvgGSClJiPX1AmiwAAAAAAAAAAAAAAAAAAJxpnvZpsoiqVFkmQnbNbWmyUtu1pclKbZfInCbLRoghEnIcIdGt2mmycqXHIopTS32i5aJ2wH3ajYle8GjXlh7LhU9UeUwUpW9EUEz0iY8hYkqP1YVPZEJMxIWPKWJLj+XC1xKxpciy4WuJmNJjdeFjipjSY3XhY4rEqLs+pkjM9exridhSZLnwuaZD7gUhETshfRxiiITM8SHRyqE2Zki/hfRFkCESMCSCotgNRoj1RwMMkaDo0MDhflypsVyEGCImI8T6swGGSEh0c4ghEnJ95EqZRRRmiITMVyFrm5BrKSRdVsj9I8SODTVCQtKdhMyxIemyQsZxSHR8SCR5LrPBN1VWjA3i028xJohPuqyY/vK598eYIL7jMtQGyZlCzecZPsYE8UqXFfFn+RxvjBHiey+PsUJ80mXFPNv5pMuKMUJ81rsxRojPe52YZ3Lfe0eMEeKz5g4xQkKu5RAjJCRNVogREnothYzjkLEZ8j4s6NnHsl5DiqyzC8wQAAAAAAAAAAAAAAAAAACcaVAzxIFPXY4QI0S269oBDTFCQtolCjNCGN69d0XlxUQb+OQ/z1U4fdUoi0y5lLn7tNvO1G6uugM8PnPkjJ2t69UPaXLaaomctjoiRKevlshso/rXZojE5nnvqiMSY4Qws7XCej3H1L6QkUam6yPGuvGpIRJj/fHvdEWJxtToKvvdfRjTF141RGKiOH1qiAQYIXW7HjVEouZ+z/ohq2CEMD41REKMEManhkhMvvv+IkK9yxAJvT5y1Q8h8qshEnPf9qkhElMjhO8LLkMk5t7BddS61j8xa9vpRtEZ4RtTI2TtZjXeXIZIzDhmc8AUNZ9SU4DnFm0bYLq43myGSEp9kKK09yFqgxxx2uqDnJbaIEtNn7I6IagRckSuOiGrVCPEZ36PqREy3Kn+dRkiMTVCfN+lRGWt8HiPGZMhhZ+RTM9CqA0CYIYAAAAAAAAAAAAAAAAAAOBMg5ohDWy1QyTNHcsYM8Sn3RgzxKddojgzxISM0tOKOpBRrrnMkFWrGWJCRtNF1QwxIduNjCa3tRlTK8SGjCiPqRdiQkY1aEWgyAjJmFohNpoRDJrRQ01DJKZWiA1piITWCrEhDZGYWiEmpB0SUyvERtMQiYnUtyENEZVrmdqGSIoZ0kRezzFmiAkZ3aPZx01TRGNul9HMMUaICdmXWn3QskMUb8lLUe4RRoi1XWGIqEWHikNcJSPERtMQiTFCbDQNEc0IZ2mIaF0fuWqISDtEM9Kwud6JMUJsSENE674h1z9atrM0RGKMEEnTDNEcvzJ6XiuC/Lhqh6QYIU1kn2oaIc3aIZr9Iq1QLStEjlet8XZctUM0jZCl2iGKhy/fQWjd8+U9Xut6lnVDNJ/pmrVDNN7NyHWvlg0i3+9oPYfL+4WmCdJcZ8eYIDbktRxjg5iQZkiMDWJCXl+a47c5ZtXee9HyM5HvOg21Qs4+MEMAAAAAAAAAAAAAAAAAAHCmgRliwNcQISIaKueDJ6p2RDXNkGa7RHpmCMNRe9r5KEvFKFFJLitEywiRaEY5N8mVm3SmFEVuosxU6Ui7LzhCUtMMITqKZshx7oqprhnCsCGiZYYwWWrsEFExzzN+c9SVYbQMC8nAUpskud29PCcvV35oIv06RhwtqhX5zrjy46ZQGyIZLo9iVqqaIUxvnGdA5FpD5Ir0zWWwEBHNRnniqspMVnAuQ2SsZK02mW4VqkYIw2aIlhHC8D1O+97Mkb4aRkiTgwv5YgJz5dLPNUf0MowzIqK165kWJ0S0f1ueB4JctTy07/W5zZAcNUJqM0T50HPVhZxlek7O9fxCRDQ4yNR4pmYnGe6dRJStFs080zsZIv33imyGaBkhDF9nOd5FlD1dI4QJmRtghDx9gBkCAAAAAAAAAAAAAAAAAIAzTaYY66cP/cXu+2xdb8d1/erR1rtmPsJWhK/SIfNOa71LfApG1bxfZImCyhWZkq3dRSSuepQrjy3FZmcbR/9fNSf3xvLXvan550I5vJSn3fGF5U6V9TNSOLxyNMD6+4rtXl5EwB+qNUlERxaLZh8QEc2Hi+Od6LbLZoyspaIB59rta/Xx4hC5bspgT6dZvj+Mz1cfMLqplHtYRCep9UOD2VqhaoewScj/Dvd1JvjpYj2iHUXNtRz6hxlsi0wm6GwtzzHP+9Xxaq0juD1GM2o0lxXC7Q4OZjRd1wuVrKOnp7y+1onbGuxVEeraZkivvs70x/DoZkmTLfVms0Ulc2724a7OB/AzENvGm0/qHfjebUfjSnNNWc+7yutgmV9f63lg65Hl4gX7d+iE+mpnC2iyfyXPg+Zwt+rU8bbuweeybnI8G+Z6hpcWVk9LGOLLjdtTq8dS/cvHqWkDrF8/OmGHinZaLjOa66SoGyf5xKZsaFtjZV82qNPHe3eJ+4XS9SZtUs2sBLmylfD7l5z3JHB6wbAAAAAAAAAAAAAAAAAAAMCZBjVDHLhqh6w/Ze42DUNk7Xq7bQ1DxBgpq7DDbcuLmxpdkrNmiGl3WCNyh6MnmqREarh2yVPa7arpkWKKzAx9oBHoMNtof08jmk+aIUQ6FoepXY22bTU9NOyI8YX2oEoxROZr9v+WYonMNtwDKrYvbDUWNAyReb99zBqGiGmeVbEiLIeWaojY7guphohtrsxhiFTt5lk6pdghtppVqYaI7V6sYVvkimQ0Re9pHK8tsix1/SDNECYlgj+3EWIixRCx5dNPNUPYCJHs356+sO4Zrq2Di+lxZqaoaQ1DxDYfzhz3ah9stQtSDBHXc8/mk/HXctMIkaSsKa3zbOJlKI0QJnXulEYIo2GGmObJ9avpIcRGI0ThUZGNEEmsIdJ5P0gYE7bxQJT4vGno2vUb6fdMW12eZDPE1ocK48E0fjXMkKYRwmiYIabznlKzyPQuo0mSIeJoerKp/N5HYyyYXmkohJK3jZCK1GchaYQwGgaHqcaYSruGW46GgWN73+I6f6gV8vQDmyEemDZFbJshkpjNEdNmSKvdiGc4r5dCEZOPzw03ZmMkx2aIzw0s5qVG18KBKG6R6qMMxrTrW+A8ZlPEuBkiiZh1TJshkpAHWdtmxVJ7ERsXPu1Gt+1R3DxmI8C0CSKJ2RRxbYYwMZsiXZshRHH94FtwOmRzxLQJIonZFPGZU6M2AjwOJWZDxPceEPMg4DNPnuVNEdsmiCRmU8TnPhyzyXCcmyCSmOP1ffgNXT/YNkEkMZsi2pshPu3FbIb4FhUO3RSxbYJIYjZFTJsgkphNEZ8XhDGbIj7zX8yGiG8B55BNEZ/nm5jNENcmCBOzGeI1r0Zciq6X3k1i5lLbRkiTmE0Rn3kyZlPEKy1WwDLKtvkhidkM8boHZBoPUc+ZHl0bsyli2wRpErUh4tt3Ea8QfMZvyKaIafNDErMZ4nOeYzZDfN5lEEVuhng0rb4ZEvDZEp+1ZMymiG0ThIl5BrJtgDSJ2bQwbX6otOtxa4nZDPF9r2I6b9gEefqCNFkAAAAAAAAAAAAAAAAAADjTnIJS16ebfmP3XLPIen8R1KNZYJ2IjiIufKIrA6IOeLfWJwIlZ3osH2SkplbhO7kTrRUZm6u4OlF1LnztEC8jhAkoLOljhDAcbaBVDFOOV60i6LJtzXZzFRVnG8PHEPExQuTP+hgiPkYIE9oPvlYIUVVgXbO4OhdWZ7QKrKsXVV8QWlQ9xAwcny+8I6NCiu3l6gue97QNkclGNbFrFVUnOjJI1AurBxQpP0kjhAk53tDIv3m/8F4z+FohREd/n48hkis9lg+DgypM0McQ8TVCmP7B3NsO8bVCiIg2nqgW1D6GiI8RwnBUsI8hEhIhPdyt/vUxRHIZcb5GSAghzzNsefgYIj5GCBOyhgyaRwOLqftaIUTVHOU7r/oYITFoF6bNVSCdyN8KISIa7cy97ZCgZ8WA8RA6Foj8xsNxFUpXIdMtLVdBZR8jhFlbWDc+hkjI+okzQPi+q/G1QoI5JUXStQujL7UdsNYbn69+1uc5yMcIOTqG6l8fk8PHCIkhR4F0zfcn4OkJzBAAAAAAAAAAAAAAAAAAAJxpUDMkgGbtEN+aISa6DBGfmiHGdi07ubmK6aYU53JFpBx34XQfuiJ+UiIqTJEeGrvnpnZ9a4U427VMGUFmSJOOYRRihkhc0X2+tT2M7RoiEVLac7VL5FcrxIXNjvCpFWLDZYiEmCESlyESYoZIugyREDOkic0Q8akV0oXJEEmJ5nPeCxKmhi5DJPaYuyKjUubJs1JDxLdeiKQrqjnlPuwyLrTNEI1oPtvxpkaN2tYNIUaIxGWGnETB9C5chkioGdLEZoiEGCEmbHZIiBFiw2SIpBQRdpkhKfNbV+2QWCvEVjdEw3A3GSIhRogN0xoyyazr+NUQC6BJ17yaYoS4aoekzJGm2iEqRoilC0OMkCZdZkhS9gDHr8aOBSL3eEhZQ9pqh6TaINZ5UOOWplwA21UzJMQIkXSZIbFrJ9u7Gg0TxFg7RGFNdtyF1GPXkV3jKMQIkbief0KMEInJDNEwQWzGSexzWtc5STFCmucNtUIAzBAAAAAAAAAAAAAAAAAAAJxpYIZE8KK/8eYkM0TCpkisEdJqT+zwqkbANnZqU8wQSTNSJYcZop0XlCOBNHNsNqM+NPMqNtvVMEPqdsXUEW2GSBbNphghkmZ0n4bBUbfbiEzI1S5RuhnCSDsixQxpwpZIihEiaRoiKUaIRPZBrBEikYaIhhlC1LZDNPM89w9JNZ+vNES0jlVGSGnNj7nskKrtvIZIrBEikVHOWvdfaVusQq2QLuQxa60beL2QYoQ0kXbIKhohEmmIpFghTdgQSTVCGGmGaBghTNMMSTFCJNIQ0ZrXpCGiVSeEDRHNmodNM0TDCGGkGaJWb0k0k2IBNJHzrGaNkP07hqrPUtIMUasTIroy1giRSENEq54kES2NB62xQHQ0HrTWYtIM0aoP0poPNW9pje7UHL9NQyTFCJGwIaK1ZpLvajTfWyyZIYprMXUzhFk0q10fhMdVigkiaT73pJggkqbBoVkbRJohWs9pfK40a4OUPRgh4AiYIQAAAAAAAAAAAAAAAAAAONMoxpg+fdC0QoiI+qaciynt6QUCtcnkEfGOr1a0a260IjybaNsrsl39XO0LG0AxsoCIVKNLGE3TZqndTDMotzsf6V5wbJjMh7rtsrlRzPVOnqZl0oT7oH+oO9DqPlW+ziZbeY6XqIr81bxfTDerf7tqiIQyPl/97YN95XG7GGM5DJHZWpHFDplsVBO6WmT94p6rGXVFRDRbW0TsW2qdpKId2Ud0dMy9ie4xa68X6kg5zcjkBjlMk8FBFTY4H+gudPoHuudq44lqQjy8qL9o4Ojh8TndPhjuVv9qr0d4Xpxu6I5fTSOE0bRBmvDacbinfE0sujTHswSRrhHCaD+jHFyuQuvVswEsTtVwT3duGO1U7WlfD0S6Nshyu7rtaZkgErYstNchRPmerTVtkCbaz+qcESLHmomIsjyz5yJXH2gaIcz4fFE/U2mi/s6G2830niXHnJDLVAenE5ghAAAAAAAAAAAAAAAAAAA406BmSCSv+Is/RkTtHHkpNCN0VXctlc+wjEiV+atTWKppkXFkqkWK1NFdOs2VMopHsQ/mwzx9KyMXtHbx63zVSgEXHGHPaEbaT7eP2u6ptrs8EfTGOm1Pz1Xt9g502pttLh/nYEfpgiCi6fmjSba/o7d/Pxd1SIbXddqenJ+rtiejbYY7euNrtnbUB6Nbeu3K6Cs182LR7kApSlfeBwb7Ks0S0fI9XLPugKxxo2Wf8H1cc03TRNMQaUbRFpnsCCI9Q+RU1QxppgBXfDwoxLpxtq5zj9C2WGRdjPF5vdDq5rEeXtC7R8prQKt+23RRz1BrDdaauxSt+GbbmnOYPObRLaVaYIt72KGSJSTnhK2H9cyQ3buPQok15wRp24y3lPpicZ0NlMaXNLm0rEyi5WdezXErj1GzXqQmsp6FVl0iomUrRvM9hVw3rt1QqkmjbQy2rq88Y2CgaEDnqhXCfTHeVro3iuOUtaVSaJobmmaXrGuqlRWAn1FV34c2nhk1+4DrsLz/n/ygXqPg1IPNkEQ0N0VME5PKpkjmzRBJyqLDuGDLNEKTNkQ67qexmyOtzZDWD8S1SyQ2QxTaY0waZ8qGiCza2SJyLSM3QxiNTZHmZgijsSkiN0OI0jZEeBPERuzmiNwMYTQ2RZqbIUzKpojcBGmSsoHBmyCabRLZ1WONTZHmZgiTsiniUtCTNkQs7aZuitjuARqbIqZ7d8qmiHwp1yRlQ8R2v17FTRFXKpEcmyKpmyG2NFapmyLWc5ayMeD41ZQXoHIThEndDMlVNN72Mi5lU8R1rCmbIrYxn7oZUm+CtD4wvk3n/JXw0trUrsbcZTve1M0QW7qtlE0R1zNXyqZIcxPk6LPSrztbH6Ruhtius5RNEdcL6pRNEdOzrsa4tR3TKm6GyI0QIp3NENPLU43NENt6MXYzRHvzo4npGlvFzZDcmx82UjZF5EYIkc5miCl9VcpGgNz8kMRuhtieSVXegxqeEzU2Q7AJAlwgTRYAAAAAAAAAAAAAAAAAAM40MEOUYEOEidkh9dmlDTJFshU792s4JhLDK3plFUwRj8OMsUM6zZD6B8PbNpohCe36FPaKMUQ6zRCiqAhFmxkiCTFFTEaIJMYQMRkhrXYjDJEuM4Qozg6xmSGSEFPEZIRIYgwRlxnCxNgcNjMkpV2fgnQxhojJCJHEGCI+xQmDDBHPQ4gxRHzm+xhDxOceHWOIuCKrmRBDxPf+vEqGiE+RWW1DJMYO8S1sHmOI+Jy3KGtC2QyxGSFNYuyQXEYIkV9Ucogh4nOsMWaIzxiPsUOsRkjrAPzb9Jq3IiL3fdqNmbt82o2xQ3wLsIcYIj5zQYwZYjJC2p+dpw9C7RCfayzGDPGJ2o8xQ3yecUPGre8xrJIZYjJCJDGGiE8Eech7Cd93AjFmSC4rxO8a0x0LMWZILiOEyLMPAswQkwkiiTFDfAqZx1gRXUYIE2OG+DyThsxfPs+DMX3AJggDIwS4gBkCAAAAAAAAAAAAAAAAAIAzjWJZGtBERhdpRVdypIJqgfVMNKOENYuX1VFpygGC3KdaxdV74pxrFVknoqoPPP9+LyOk2S75t9352WKG0SquXh+f55/ma4UQVVHzmsXV5yIKX6vA+nxUtetjiPgYIXW764t2PQ0RXyuEiGi6XV0UWgXWZwuDxscQ8TFCmMlF/yLoPkZITLvebS7sJM3C6kRE43NVuz6GiI8RwrD5pVZUnZYjt7SKqxMdRVj5GCIh92Sek30MEZ9IZYajwbWKqvPn57BDphvVNeBjiPgYIUy5sC20DJH5sDpOX0PE1wrhn/W1Q8IiWhd94GNR+PxIsWjPIxrcxwhh+gfVwPI1RI67TkgsIce5dqPqAx9DJGRM8xzga4h4WyGeBM1bi8/2MURC2uWf9Zm/Qtr1xdcGCSVkLti9pwo/9jFEfIyQGHL0Q8g1xmPbxxAJidjn+5KPnaFtZoRaKf1xeeJ2iI8REoJmYWVJyHuAwws9bzskd5H0k2C6uMf4GiLaVkiuPvAxQhg2JnwMER8jJBRfGyQUHxMkBs3nP6K2CQJACDBDAAAAAAAAAAAAAAAAAABwpkHNEGVk7ZAmXdFJMfn76rZNQQknXDPERFdEU3TkSoa/1RkZkhDYYDNEvOuF2LD0QZAZ4tkmkV/NEBsmQ8SrVkgXlj81xAxp0mWI+NQMsWEyRHxqhXS2azBFQsyQVnsdhkiIGdLEZof41ArpwmSKhJghEpfJEWKG+LabGo1js0R8aoXYcBkiIWaIxBghpBA4ZjNEUsw/lyGSYmuaDBGNSGWbIRJrauaqH0JkNkRCjBAbx11DJMQMaWIzRFKsWmf0dEq7jseGEDNEYjNEVtEIMdUO0ThOkyGSMoa7zJBoI8TyayrzliGCP6Vd17yV0q6tdohGpLKpdkjKXOAyQ1KMENtckNoHttohKdeYywxJidg3PRNrWBi2cRv7DH7cZoiGCWKao1OMkK5rKHZ9aDNDTrI2iA3tmiGMzQzJVR8kqQ8cNUNCjBCJzQyJtUG6xnqKEWJ656hhgpjmrRQTpKsPXFYIaoUAH2CGAAAAAAAAAAAAAAAAAADgTAMzJBMuQ4Th3dMUI2SpPRmYsIJmiISjNNQiVjL9za1oEcVABzZFks0QRvRBkhniaDfFDGGahoiKGcKIPznWDJGwKZJihDSRdoiGGVK33TBEUsyQVrsLUyTWCJFIQ0TDDCFq2yEpZohkeL2XZISY2muilaeVDZEUI0TSNERSjBDJUuSQYrtsiGjVgpJ2iGb9rqYhopnDng0RrdpduQwRaYesohnCSEMk1giRsCGiWWdtKZpas93G40OKESJhQ2QVjRBJ0xDJYYZojV9piKjVCFk0ozpfHeSZB+W8pdU2GyKaueubZojmXNA0RDRrhPBcoNUH0gzRnAsGB6VqxL58JtZ6npXjVevZO7cholkbRM7VWnVC+JrSWhdKM2QVjRDmuMyQVa4NIs2QFBukiTRDtOqD8LjXrA3SfPeoWRtEzlta9UG4D3zqg8AIASHADAEAAAAAAAAAAAAAAAAAwJkGZkhmfAwRVx7yFHJFb2qaIYyavSBRPlTNKDWJqhnRQCO6tolmZEKTHH07UTI4JKViFEWT+VD3eOeKRoCk7Om2zYaIlhnCFLNMc4uiEcD0d/PEJ9jy2KZiq02SgpYp2WrXkS88huGuanM1uaLhidw502PItsYw1FBJJZchMjjI0wma9gJRvr+fqLuOSijzUZ55ULtPmcm2/uJlvJ2nDw4v6LarZjQbyDEP5GDrsQyLAco0BjJ16Wg3Tx9MNvSv2VzPm1qWAcP3V+1n7pxmiKYVQpTxWHM1m+Ey0DQimmgbIrnej+T6+4mI9u7Qvmh1m2PG5/Tb1DQOmwz2crULIwTkAWYIAAAAAAAAAAAAAAAAAADONBljeoAvMupDO5JfG979zxUVqgnnGGzWpkhqT0Q+9Fa4DzifP0eEln2lcSW3UJUiYbTPFREtR2koRkHwONA6/5MLyw3193T2qcu15ZNTHOrtfxfb1Ykqd3RuI/O7D4joaHjNd3X0m+JCpRqUN/TyY5ejo34tDvT6dHqxGgeD6zohVvNRufi3+nqwqzMH8D1gfKFqf3RD75412dK1Lvg+xdGgWtHGnHN4tKM3scz7RLSYp/uKUdHcB7OhTtscYc+RsFp9yuNqxn2gbLLkYLqob6FliOSyF/j+n8MQmQ97qnYI21FafcH1TAri+VDxPqhscnF9n43DajztX9G5F3B07XCvanfn7rR26zlkYR1OFSP4i8UasCyKpbo0qXCUuVb0Ol9TO/dUfbn9sN4Dwe4dPRoqRtgOhbkx2dS5Bvj5dbqoSSPrBsSiVtOmyaLJ3rRUfc4e7VR9e3heqU8zmbxqz4ANtE0Qhs8PmxZa1s36orbHwUXFmjGN85WzxlEquWqFyDGgeS+YrRWqZsju3aIWkVIfc80NzfcXk229tprweNWyOtefEOdfaZzJ2iBa9YIAkCBN1jHhSpfFxfdMpCzYcmxWuB5MUj4vl7YsNy+Y2BvWzPI+VeOluHaaLFdx45RF8XTL8h8i34V0/d0pi4vJOcN4TZjxZuv2/5YyBuRmCJO6KTKzpJxK2hQ5335S09gQ6Z0zPwHGbor0tt1PlCmbI83NECZlU6R0pEdL2RjhzZBWmwmbIq6HvZRNEVMBP41NEdt9KfYFflmY/0aNTRHT/Spl48J1T05p1/aSOmVTxDWuUjZFcqaHMhG7KZJrE8SGdr9obIaUlvVubN90FXVP2RQxbYI0i6mH0ne8RE7ZELG9SErZDHHNHSkvwgrDWk9jM8SWaif2Ra5t/ayxGbJrSNuSsikiN0GapGyI2FI3pWyGuDZAXM8znRh+N+XZmjc/bMRuitg2QTQ2XE1j1vZ87EPuTRBJymbI+g37+UrZFDGdr5TNkK53KLHXVo5NENf5T7kHzNbav7t+LX1tITdBmNj3VraC4xqbIaZNkJT5z7W5mrIhIjdBmJTNEFdxdNdmCNJjgRSQJgsAAAAAAAAAAAAAAAAAAGcamCHHiM0OcZkhTEwUy3GbISmfq22G+ES8xOzg28yQVtsRfXCcZkj9MxGGiNUMYQKDOHz/7pjzZTRDJAEzoMsMYWLOvc0MkYSYIjYrpEmUIWIwQyQhpojNCGkSY4d0mSFMiCFiMkIkMYaIywxhQgwRmxHSajPCEPGJfAsxRGwRVk1iDBGf+1CMyWAzQ5gYQ8TnfhVjcmibIb4R+lH96tMHAYbIcRshTULskOM2QiSrYIjYjJDWzwX0VZcVQhRnhvhEaYcYIi4jhIkxQ3xTi8QYItpmiMkIaf1MxKNqV/HlmOh2nzVzjCFiMkIkIYaIywhhYswQ32LeIVHsPimxoiKjPX4n5Nm6ywhhYswQn9RYIYaIzziNMUO0jRDf/o8xQ1xGCBNihvicoxgzxPedSagZctxGCBNzDzAZIUyMGWIzQSRx76u6fybkfYVPOqyY+c9rvAaaITYbpEmMGeIyQhibGQIrBKQCMwQAAAAAAAAAAAAAAAAAAGcamCEngDREfMwQiU80xUmZITHHcBJmiMRnJ9/XDCHyNwS0jRAmJJLAJ4qo0wgx4RHQEfr3+5wnLyNE4vErPmYI43P+fY2QJr52iI8ZwngZIh5GiMTHEPExQxhfQ8TXCmniY4j4mCGMjyHiY4RIfAwRXzOEyN8OiYl48zFEfKKsGB9DJOa+52sydFkhTXwMkajITI9jDekDn/Zi7AXvPg3oAx8z5CSNEMbXDDlpK4QoX3/5GCK+RsjS73j2mY8ZwvgYIjF5+30MER8zhPE1RGIKzvoYIiE2mU90sI8R0vodj2eQLiOkiW+ke4xF7WOI+BghjI8Z4mOESHwNEV8rhMgvij2mSLrXc01Asz7P0r5GSBNfOySkWLrPHBQzTr3M1Aw1QmIyXvgYIj5GCONjhsQUtPdZ14SuVX2uqeMqku7CZ+53mSA2fA0RXyuEyO8chDyjMF7vKQIKpPu+zwkdq75miI8RwviYIT4miESaITBCgBYwQwAAAAAAAAAAAAAAAAAAcKaBGXKCsCESY4ZITBEWq2CG1L/XcSyrYIYwrh39EDOk1a6lD1bBDGn9riG6KMoMYRwBHSl/v+1cRZkhjONXQ8wQien8x5ghTJchEmKGNLFaIhFmCOMyRELMEInNFIkxQ4i67ZAQM0RiMkVizBDGZoiEWCHGdi2mSIwZwpgMkZhoK4nJFEm579lshhAjpEmXHZJynzJFaaf87a6o7xSDwdqnKX+7wxBZBTOE6TJEVsEMYY7bEImxQoi6+yzECJGYDJEYI4RxmSEhRojEZojEGCGMywyJqS/EmKKEY4yQ+nc7nkFCrJAmtsjnmEh7xmSGhJggNkyGSIwRwtjMkBATxIQtkj3GCGGMzzUJ02iXnRBjhRDZzZAYy4BxzUUp49S2DslhgxDFGSGMyQwJMUEkLjMk5VzZ1jcpazSXGaJthKSc+y4zJMYKIbKbISEmiMR1PlKeUUzvJkJMEEnX+5zYsWozQ0JMEInJDIkxQSRshsAIAdrADAEAAAAAAAAAAAAAAAAAwJkGZsgK8GXf86Mq7choi1UyQ1rtiGNbJTNE0tzhTzFD6vbE376KZkjdRiPaKMkMkTQCPDT+fhmFkWSGNFk0k2KESJrnP8UMkbApEmuESFqGSIIZwjQNkRQjRCINkVgzhJGGSIoR0kTaISlmCCMNkVQzpG53YYikRPA3kXaIhhnCDHd173fSZog1QyRsimjen5pR2xp9IKPAteyFVp8m9oG0Q1bJCJFIQ2SVjBBJbkMk1giRyD5MMUKYphmSYoRIpCGSYoUQtc2QFCOkibRDUowQphklnGKESPhZJNYEkchI6JRIe8n2wzMVI4SRZkiKFdKEDZFUI4SRkewpRgjTeq5ROk3y+TnWCGGkGZJiGUiac5PGOJXrEW0jJMUE+f+zd+dhclV14v8/Xb0knaSzkYAssoVNQJBNUBjZ3PCHC47LgDjihgoiI6OyOKPid4bFGR1lGEQUQUERBB0FwYWRXURk3zcJIWELJJ2kk+6kt98f3ady69RdzvK51dWV9+t55hnpVJ+6XVVdS5/zvseWLENiihCbKUS07if7/Y3Ge7Pk71Mz7A2SxS5DQksQm12GxBQhRvJ+0fxMYv4mEVODJNnPe2qP0/G3JjEliM0uQzSqEBGRu79HEYJyUIYAAAAAAAAAAICWln1CWzTMup6xWdTYvUPs1Txaq1nLoLXauBFGlH9LNFcFl612laji42l8GnZYaSWG9n1UVcKvkLn/s/aQCTU8TW+VlIjI6JSx8dqm6B1o2wzFpaEJlenjy2SU7q+2Wetq/nu0X+cBNjp1/D4a1ntgDc0eu3+y9hAJHnf62O9++4DOsa6bNTZexxr9X6rB6SJdK/XGM6Wi5kpmEZF1M8bG7ejXW4U13NkmHTl7aISMJ6KzKjypepsqrbgfHl9l3KG0KrpMQ1PHfjfb1zX/sY62t5VSh2gVIUb1caR4k1bWjagfp4hI18qxJ5LhKTrP0d2vjD3nD3WXs55N83ffPNcNK9ffWkWIPZ72+zIRnX1Ckganjf3/aUt1n0+0ihCbRhFitI0fYtreETFiSxDblJVj4w2W8DuqWS2JrH/Maz/vaxYhSZpFiKFZ7oiUc2aOoSltpXzWLWtvGK0ixNAoQWyaNUiSVhFiaD8+Dc0ixNAqQYzS/r4DjKMMAQAAAAAAAAAALY09Q5rIvh8a2ztEu5rQLESSK4c0j7NtfKGH1koSe9WQxv4ZeePHMCsT2pR+E+39VzTOpS0iMjheMGnWElpliG1w5tjPrLWaYmja2Hhtiiv6h2cnlp0P6Y3bPr63x/AaneUU0zeqPUH1mj6dTW6m9wyojiciMmN8zL4+nU1epkytfQD1L+9WGbdr5loREVm3XHEzmo71q+UqK/WW0oxOGS86Vug86ZkVc+1rFZ9IEkN1rdAb1jw3t/frjGfvudU+oDOuWdlp78sRw7wW2+d9D2W/ZmqtQq4+ngb0Vosm6wCt188krULEvK/Reu8wNuj6/6m5b0b7wNjr3YhSHaFZhBhtw+sHVTtOGStOREQGe3Te8Nj3y+B0nWM1z09r5mv+7GP/f1DrHPfW84hWaW0+z7Svy7+cj+Sxxe4Tk2TOR2+fQz+U2S9Ba+8Zkdrne83np/WfFXXGG7Eqiy6l0nBtj9l/RWU4EVn/fkRtTOt+Uas2u0wFqjKciNT+vWFqr+JeIbN07ydzG2ruC1bWynjzeOpcrXO/D2xU++SsVcdU9xXV/NvD+LaQWve7fR+NKt1n7WvHx1f8e9uU3sT9rfjcbI5V62fvHN9j8Y6f/LPOgEAGJkOakJkUESnndFIxkyN5f8CIOda0N00xEyNZkxXakyJF1+ciLdOM+fCQtRl97B91qpMhdQOHj6k9GWImQWyxkyJmMsQWMzlSMxlSvaL4B2h7ykbnMRMj9mSIETOJYSZCtMYzZqSMGzMxYk+GGKGTImYSxKYyKdJR/yQaMyliJkHqriZwUiTrg5HKpEjKEDGTIlnpfOykiD0ZUh03YlIk7bQuMZMiaa+7GhMiWa+RoZMimY+niEmRtFMklTEZYoROimS9j4n6o2PO98b8kcxMgtiCJxtKPNNYcjKkenURkyKVjPs3dFIk637QmAxJe26KmRSppEwqRE2IZDx/xP6RKOtzS8ykSNoxaUyGZP3hLnRSxEyC2GImRdKe5zUmQ7L+sB76h2J7EsSImQwxEyBJGn9sTXs/EjVuxv0R8zyfdto6jcmQtN/PmMkQM/lhi72fsm67mEkR9VN0Z7zsxE6G2JMgRsxkyHDax8GYvzV0pX899n7Puo9iJgTaUz4mxrzO1Ux+2CLu+rTjFIn72c0EiAiTIGgcTpMFAAAAAAAAAABaGmVIk0rWISLlbTgeUokUreQMOda8FSQhhYhLqVFGJRJSiLhs4OWzsiqrDKkZL2C1a2YZUh3Ue8iGlSFJIZVIVhlihBQiqWVI3RW7j5tWhNRdZ0AhklWGGCFFR1oZEjNuWhFiCylEssoQkbA6JKsMsXmVIilFiC2kEMkqQ0TC6hDXVWJepYjDRUMKkbzn5JA6JKsIqRvboxBx2eg3pBDJe70NKURcXxN9ChGXx1JIIZK3eXZZhYhvHeLyviVoJbZyGZJVhCR5VxclVSFpRUj1KgPKkKwiJMmnDnG9/UMKkbznppAyJK0IsXkVIo7PHyErZ/M+q4SUIS7H4FOIuK5aDilDsqoQkbAyxOV53ud5ybUqCFk9n1WFiISVIWlFiM1nBbrLZ8KgFe0Ft3/I83xaEVI/rvt4Ln8/CClDsooQI+T2dLm9fMqQsk+HlSWkDMmqQZJ8ypDUEqRuQPfxquNmFCFGyP3ucj+F1BFZpYVI2OtbbhEiElSF5B1jddiAnz1ZhIhQhaCxKEMAAAAAAAAAAEBLowxpcnYhYkzkJus+Kzhdj9Nn5YhLKeJTaEz0PiIuq4AMl5VVLmVIdTyH+7KwCEkd2O1iE1GGGC6FSFERksa1EnEqQ6oHUjymSxlSvW6HQqSoCEnjWnO4lCE+Y7qUIYZLIZJXhNh8ChHXMsRwKkQcyhDDpRDJK0LqrtqjEPFZJeZch3g8NbkUIj7PxS6FiGsRUjOu40PZpQypXtahEPEpMF0KkZBK0vW9hddjyaEQyStC6q5buRApowwxnFZie63WLr6wSxFiTHQZkleE1F21w7G6FCGGaxkSslrbpRDxeW5yKURcihDDuQwJKa0dHlI+n59cChGfVbuuZYjPimWfMiSvCLG5FCI+z/Muz0e++0z4rKbPK0JsLoWISxFiuNyfPu8/nB8fAS9XLs85LkXI+vGKL+PzO+lahhTVIGlcblef52SXMqSMIsTnsWS4FCIuRYjh8j7NqQipDuh2saIaJMmr2PK4n1zqCJfKonrdjr8fhTVIksdFfY7V5We3SxCDIgQTgTIEAAAAAAAAAAC0NMqQSSKrEDEaWYr4lCHV8QqOz3c1UFLaitaQVanV71UuRYqOJWQFh0j2KiufMqRuzJT7NqgMqQ6Y/88TWYbY0kqRkDLEKCpEvMoQI6cQ8SlD6o4lpRQJKUOMrJrDpwhxGc/wKUOMvELEpwyxZZUivlWIUViHeJQhRl4h4lOGVA+hoBDxWcmflFmIRDwl5RUiIc/FeYVISBlSHTfjIe1ThNR9b0ohErInl5FXiJRRhoQ+jkTSCxGfIqTuWBpciMS8L0l9rxBx+GkrY32KEFthdTGBRYgt7Vh9ihBbUSGiXYbEPCelFSI+RYgtsxCJeP+et4I25HNSXhkSch736rgZz51Be0FIcR3iU4QYeWVIyPN7URkS+jkwa8W2TwliyytDfIoQo+h+Df0cmDmu8vO7TwlSP172v4X8ThaVISFFiJF2e4Y8Bxt5ZUizFCFGWhniU4LYst6vedUgNQPm/7NPEWLk/V7G3D9pdYRPXVF3LAW/J15FiJHzLTHHmvazZ5UgBkUIJhJlCAAAAAAAAAAAaGmUIZNMUSEiol+JiNSWIiFlSN141jHGlCEi9atbY8oQW9mlSMxKDpH61VYxZUh1zMR9HFWG1A1c+5/NVIYYyUIkpgwx7EIkqAhJY1UiMWWIkSxEYsoQwy46QsuQrPFCipAsyVIkpgwx7EIktAwx6gqRgCLElixEQoqQLHYpErOiXySlEFF4SkoWIrHPwSL1hUjMCuyaca2HeEwZUh0jUYjElCGGXYjEvv7a7zFiHz+GXYfElCFG2YWIxvuPmvcIioebXDEbU4YYddVFExUhhn2MMVVIkl2IxKxGFqmvQzSej5JlSEwRYtSVIUrv2+1VtBqfiZKFSEwRUh3Pes4MLUIMuwwJKUGyJAsRjc9W9meW+M9/1n9HFCFGsgwJKUGy2Pdz7HuPuseNwvN78rknpghZP17tf2v9jcIuRGKKECN5e8Y+B4vUlyHaNYjGe1cjWYbEFCGG/b4tuAipDmiNF1CC2JL3t+Z9Y9cRMaWFSP1rTlAJYksMEXt8IvU/c1ENIkIRguZAGQIAAAAAAAAAAFoaZcgkNVGFiIjeKs3aQXWH01jNkqRdh4isX2GlubJDRGe1a9JQ+hYIccYPsRnLkKSRTv2nx5Ee3V+g9mlKpck4U4dolCGGKTpiyxBbpegk1J4Gh/SfNE0hEluGGNVCRKEMSWpbq/+zdy7TXW/Rvk73uc3UIZrPwaYQ0SpDjM7VqsOpFgKGKUS0ykxTiGi/59CoW23ahUhlUPn32xxeCWWIRhWSNNKp+1ykUYTUD6r7XGTKEI3VyCLryxDt5yERkYFZuvePan0s61fRan4GMmWIRhWSlHae/ihlPK8P6A5qnotiixDDrOjWKEJsmmcZEBH1z7rVle0lPK9rf47W/tnLeKy3r9Md1JQhzVyEGMNTlZ+HtfdEMX83UChCDPP7o32sGgV3Uucq/Qd71r6EoUwZQhGCyYYyBAAAAAAAAAAAtDTKkEnOpRAxs+naK1w0V2ua85ZXhnUfjkNTxsbVWkBevQ0VD3PYbAWgdozjd7jS/T04Y+z/l1EEDU8V1fOCD/aYJWc64w2NVxyVAcVfnvljhcDIgM5SlKmzx5Z3DK7TGW/enFU1/903EHui1/U2nbVSREReWNmjMt6rZ/eKiMiSFbNUxtt81lgqsPCVuSrjiYjM6B67v1f06SRWXV1jS5n6XpmmMp7R1jn+i9int+RstDL2+9j1ss5y2pHxFWGdfUq/4ONPFx39+RcLG1N5heH4SvQuh1VXLsz5mzVXh5lV6LHnv68a/1G1VmualeL2+fpj1K3k13o9My/jSntSlFGGGB1r4vdYEhEZ6Rh/nVWuLgzVQkT5GM37tuFunedK87hZN1tvyavZa2jNPJ0xp6waO8a+zXRzi8r488XgDL37qGN834zhKTpjmueirpU6v5BD08aOq0OxNDGvt1rHaKwbL4Gmapz3XkSGzIp2xcPU/rxs6pqhbp3HT0XnKbeG/TNr3QZdfePPRUp7r5gzNWiVRSLrV7V3rNF5EK2dM/azav4+Dk1rq9nvTYsp87QeU0PjH0009pUSKecsGmaPjOh9TMZNXTZ2v6ybpfu+YMorY+OOKNYw5vlcq/wy789dfh8pQtCMmAxpEbmTIhnPd804OZLczFVjYmTI+uASOylSd5sp/PYMT035YsS49oZtVYH3t5kMscXc36k/s8Ib2+pkiBH5Wj9kndJKZVJkfv3pkmImRsxkiC10csSeDDFiJkXMJEiSxoSImQwxYidFzGSIoTEpYiZDkmImRsxkiC10cqQ6CVI3YPgnDzMJkqQxIWJ/IIieFLEOU2VSJDGmxoTIaMYfXWMmRdI+AMZMiqSdiidqQiTjR4udFLFPm6MxKaI+GZL18h0xKZL6vkf5nX/MhEh1EsSmPOGgMhlS0iSILWZSJO2xEjMpkvYHuJgJETMJYtOYFKkkniM0JkPsP47GTobYz0EaEw1mIiQp5o+wWX94Cz3WdRmnQYuZDBlKO6WPxp7CJU2CGBqTIdoTIVk/c+htYSY/bDGTIWmnqtaYDLE3fY6dDDGTINXxFCZD0n6/YyZFsk5LGPq4Gsr46BEzGZL22NOYDLE3Co+dDDGTIIbGZIiZABHRmQTJet4OnQzJeh+e9/vIJAiaGafJAgAAAAAAAAAALY0ypIVk1iEOk7/qm8RJWDkwkrP5d0gpYpchSSGVSOHtFDBmaiURMV5mGSISNP2ZVYYYIfdz7s9sBKz6qStDkgIWQdhliC2oFEkpQ4yQQiSrDBEJq0OyyhAjpBBJK0OMkELELkJsIYWIXYWkCSlF0soQI6QQySpDDN9CJLMMqQ7ovxwrrQwxQgqRotVRQYVIzlNFUCGSO57/E3lWEWILKUTyVsOFFCJ5mzQHFSIFP1JIIZK3mXJIIZK70XXIitWCuzukDMl9j1PSO/+QQiSzDDGaoRBpUBFihJQheY+RkDIkb/VxSBmSVYTYQgqRSs5zQkghkrdCPKQOKdrMPaS6SFsxboSsSC96nfU9xqwixAgpQ1KLEKOMz3SBijadDylEGlWEuP57mqwqRCSsDEkrQoyQMsQuQWwhZYhdg9SMF/B7mPd7bYSUIVlFyPoxvYfMrEJEwsqQvMdcSBlilyC2kDLErkGSQsqQZAliCylDip6nQ4oQl/fcWb+PVCFodpQhAAAAAAAAAACgpVGGtKBmKkR8q4G8MsTmUorklSE2l1LE6/Zx/M1yqiQ8xixacVjD4ecpKkNsLve518/ssfontwwxPG6eojLE8CpEcsoQw6cQyStDDJ9CpKgMsbmUInlliM2lFCkqQ5JcKxGXMsRwKUTyihCbSyFSVIQk+dQhhWVIdVD3ZVl5ZYjhU4i4rI7yrkMcniq8ChGPd1IupYhrGSLiXof4rIJzKUTyihCbUyHicRu61iFFK7JrxnQoRHKLEJvPylXHu9unEHGqXydw75DCIsSYyA3VS7hun/doLoWIz2PCpRDxWXXsWoi4ViEibmVIXgli8ylDXFaG+5YhLs9BPtWFy8pxnxXprquPfY6xqApJcilEcosQm/ZnOUdFNUiSSxnS6BIk5vJ5RYjhU4bkFSGGTxlSVIQYPmVIXhFSHc/j99Dl99pweY4uKkHqxyy+TF4JUjeeQxni8xhzLUOKapAkl/fEeSWIzaUMyStBbL5liMtztE8ZQhGCDQFlCAAAAAAAAAAAaGmUIS2srhAJOa16g0sRnzLEyCtEfMoQI281ZdDtUfAb5lVJOIzpVYYYOT+XbxmSVHR/B/3sOauBnMoQW87N5VqGJBVWIg5liC2vFHEpQ2x5pYhvGSJSXIf4lCFGXiHiU4YYRYWITxkiUlyH+JQhRl4h4lOGGEWFiHMVUjNo9vIslyLElleIhJwvt7AQCXiKyC1EIt5BpRUiPkWIragQCTk/cl4h4lOGGLmFSMBtWbRyzacMqY6ZU4h4lSFG3q9ZyMt1QQkQsh9aowsR5yokqZF7h0xwEWLklSEh+8jklSEh56EvKkN8ihBbWiHiU4TY8gqRkL0CigqRkOeevJW9PivHjbyV6WWcj96nCDHyyhCvIsQouCu1P9f6FCFGXhmiXYSIhP3Med/jUoLY8soQlxLEVlSGuNYgSXnPAy4lSN14Ob9/Ib/PRc/RvjVI7djZ/+ZThFTHyylDQh6PRWWITxFi5L0n9ilCjLwyxKcIMbT3cRLJL0NC9uOzfw8pQjDZUIYAAAAAAAAAAICWRhmyAagWIgoL3couRULKkCS7EgkpQ2zJVZYqP7/1GxdUR+SMF1SG2FJ+zjIKkeCfPWNFUFAZYqTcbCFliJFZiASUIUZaIRJShhhphUhIGWJkFSIhZYiRVoiElCFGViHiW4YYWYVISBlipBUiIWWIkVWIBJUhIpl1SEgZYqQVIiErV43MQiTyHU9dJaLwDipZiMSUIYZdiIQUIUl2HRJShNjqCpHIIe0VbSGrsuvGTBQiQUWIzf51i7yr7TIgqAixlVyIBBUhSSUUGzWFSJMUIUl2HRJShNjsQiSkCkmyC5GYIsRIliExRYhhlyEhNUhSVhkS89yTttI3ZAW5kbUyPfS1NWslckgRYqSVIUFFiJFxtzZDEWKklSHNUoTkfW9IEWKklSEhRYiRVYaEFCFG2nNCSBFSHS/j9y/0dzrreVq7CAkpQerGtcqQ2N8/uwwJKUFsyffGISWIzS5DQmqQJPt5OqQEsSXLkJASxGZ+DylCMFlRhgAAAAAAAAAAgJZGGbIB0SxERPRX2YiMFQSxdUiSKUU0ChGR9SsvVX/28TGjCxFrPJVCRKQ6ZRpThthMKaL2M4+vTIgqQ5LGb7qYMsRWLUUiypAkU4nElCG2wXUdUWWIzZQiMWVIkqlEYsoQmylFQssQmylFYsqQJFOJxJQhNlOKBJchdQOOLdmKKUOSTCUSU4bYqqWI0lNEtRBRfAfV0T+qUoYYphCJLUMMU4holCFGtRBRGjJvD7EQHf1KvyNJyu+629cqH2MJnwoq6/ReS0WknEJEo/5J0HoPZsoQjSLEMGVIbBFimDJEowgx+jZrVylCDFOGxBYhhilDNCo0w6z8jalBkszKdK3XUnN8MSWIzZQhUTVIUhmf0ySuBLGZMkS7BtH8mUcrcSWIzZQhMTVIklmRHlOC2MxzQ0wNUjPeat3fZ/N8HVOC1I859v81ahCR9UWI1mPRFCEaJYhh3hNr1CAi64uQ2BIkaaRLpwQxTBGiUYOIUISgdTAZsgF64/v/U0SKN/9zpf2GU/OPQcaI4pslEVGbUErS+oOVoX07Ds5UHU5EijdE8zU4XffpbGim8h9wRKTSo/vpp2uq3h/Jt994qby0Wm/W6zVzXxQRkcWrZ6uMt+PMl0RE5G99G6mMJyKyXc9SERF5ctV8lfFmd439lfzJ3nkq4202Y2wi6allej9zZ/vY47p3+XSV8SrjkyrDK3T+4tI2PP6mfbX+jHvnKt3nxY41emONdIp06s1FVl+ntD78pG34Hkv7j0FMhihgMkSF2oIUM167/s88NF3nL/ltQ6Oq44mM3R+rN9Ybz0xgD+q87FVp/aFTZP2Es9YfeM3ns+Qp/2KMdI7/EV9xkmp0fAFcZ5/OmEPjZxm1T+8YPN74/Tt1md7zbP/8sTtmynLdP8Z2rtK7X9bOaZMZS/Set9fOVH4/V8KCTK2/i1Qpv5aqLSBM0P4c3qb3kXRsvBLegnXmbGwfQvtnFtGdfNVkjutPP//CBB8JoIPTZAEAAAAAAAAAgJZGGbIBe+P7/1NlFURd8ho7ZAkbgtsZe2yma4+nsXIhmYhrnIYkuUmWSPwK3CFrNZ3GqQGSNYzGbbhulrWh7FDkxqU9teONKuxQ2zF7/a5yI8Phxzd/o9ol5CtW12+67Wv7jZdW/7dGIWLKECO2EDFliKFRiJgyRESnDjFlSHXMyELElCGGRiFiyhARnTqkYp1uK7YQabN+LzaUQiS5Qk+lELF+xNBCpM1aHKpRmtjlYuyY9uuRxjFWhtaPoXE6IbOqujpm7DHa9+9A/Ito8jSlGj+z/V6mbTDyGCfBBuo144nISGfkmyXrNhyN3YReRDr6ane3Hdgk7P1D21DtsWmUIclCR6MM6ah9SW7KMsSuGGLLELvY1yhDks9fGmXIqHVK5NgyZMh6CGuUIcn7VqMMMUWIEVuG2Bs2a5Qha+esH1OjDOnbvPZ3OOYYhxMbz2s8pu3TvbWvy7igI7uysDcRD5E8RXVFoUCwP2vHnpXC/tuCxmnQkqfE0ihXuqzHXOwZTezXlGGFY5zaW3vHxJ42sGL96o4o/M2mY2CUIgQthzIEAAAAAAAAAAC0NMqQDZzZP8SIKUVSVwPETGxnPDJDSpG8iiFkFUNRFRFSOeStAggpRewyJCmkErHLECOmEElbkRJTiNhlSHXMwELELkOMmEIkWYYYIYWIXYbYQkqRZBliCylF7DIkKaQSscsQW0gpkixDjJhCxC5DqmMGFiJ2GWLEFCLJMsSIKUTsMsQIKUTsKiRJuxDRrkNEwgqRvJVvQYVIxo+lVYbEjieSvqdV1HgZr0MxY1aG6r83pJawi5Ca8UKOr+BhG1KIjHTkvV/wP8ai9yxBhYhyFWIXHLHXkTqeRJYhKbdjTBliFyGGVhlihBQieXu2hBQi9updWzMUInn1QkgdkrXiOWYVfdrzV0wZYhchRmgZYhchRkwZknZfhpQhdgliCylD7BokKaS6SJYgtpAyxC5BbCHHmCxCjJjHtF2EVMcMLDmy3sPFlCGDKR+5YsqQrM/WIWVI3t8QQv6mkrc5ekgZYpcgtpAyJO/1JKQMsUsQI6YIsWsQkbgixN63hCoErYgyBAAAAAAAAAAAtDTKENSIKUWcVgP4THg7PjJ9ShGXisFnVUPeeL6Fg8tqAJ9CJK8MMXwKkawyxOZTirisSPG5HbPKkJrxPCqRrDLE5lOKpJUhhk8hUlSGiPjXIXlliOFTiOSVIYZPIVJUhhg+hUhaGWLzKUWyypCa8TwqkawyxPApRNKKEJtPIZJVhNh8CpG8MsRotULEZeWbVyFSVA54rOrNqkJCx0srQqLGc3y98RkzrQipu4xHLZFXhlTH81lp7fhw9SlEtMoQ1/coXmVII4qQiOt0Gk88CxGH29GnEMkqQpJ86pCsIsTwKUPyihDDpwwpKkKMiSxDXKoFnzLEdaWzz2p67eetrCLE8ClDsmqQJJ8yxOW+8ylDiooQw6cMyStCDJ/qIq8IMXzLkKIqRMTvGNOKEMPnsZxVgtSN6VFyuLxv8ylD0kqQuvE8yhDXz84+ZYjL3wx8/oaSV4QYvmVIXhXiU4S4vI74FCFZJYjNpwxJK0FsPmUIJQg2RJQhAAAAAAAAAACgpVGGIJVdiBh5pUjIeSJzVzgGPDKLKhGfasHl5/EZz2WVhs+KANcVmC6FiJG36sO1DEkqun18VqS43H4uZUh1PIdCxLUMEXGvQ/LKEFteKeJShtiKShGXMsSWV4q4lCGGSyHiWoaIuNchLmWI4VKIuJQh1fEKCpGiKiRNXiniUoYYLoWIaxki4l6HuJQhRrMXIkV1SMi5kHMLEZ8VeY4rel3KEJ8xXcoQr/E8XoOLxnMpQuq+J6eacFlZXTde0c/scx87lCF5RYjNpRDxqVcL65CJKEI8j8FnTKcyxOP2cylDXIoQw7UMKapCkvIKEZcixFZUiLhWIYZmHeJSF/jUCq5liM9qZ5fV9D7PW3nPV0UlSJqiOsSlCDFcbmufmse1DHGtQkTcyhCXIsTIqy5cShBbURniUoLY8o4xrwSxuZYhrlWIiFsZ4vO+zaUMcSlCquMVlCEhe27mfQ73OXuE69+AXGoQw+W2LtofJMnludLnNaSoDHGtQZLy/g7kUoLY8soQuwQxKEKwIaEMAQAAAAAAAAAALY0yBLmyChGR7EokqBAx0r5XsRDxWUVa830ZP1PoeCLpKzh8ypC68TJ+lX3KEKNRhYhPGZKUtfrFpwypGzOlFPEpQ2xZpYhPGWKkFSIhZYiRVYiElCEi2XWITxliSytFfMoQW1Yp4lOGGGmFiE8RUjdeRiESUoaIZNchPmWILa0U8SlDjKJCxKcMMSZrIRJShhiphUjAYWfVEj5FiMuYPkWI03gRr71ZP3NIGVL93pRqQrUMiXhIphUiPkWILe1n9SlC6r43qxBRKkOCipCCY4gZM7UQibj90goRnyLEllWI+BQhRloZElKEGFlliG8RYmjvGyKSXhv4FCFGURniU4RUjyNlNX3I85SR9XwVUoWIZJchPkWILe229ylCjKwyxKcEsaWVIT4liC2rugipQkSyy5CQIsRIO0afIsTIKkN8SpC6MVOeNmPep2WVIT41SM14GWXIRBYhRtbfSXxKEFvabe9TgtiynjNDXz+yyhCtIiSkBDGyipCsGkSEIgQbJsoQAAAAAAAAAADQ0ihD4CSvEDFMKRJVhojUr4BUeITapUjMqlKR+p8xdjyRsZUdMWVIdRzrVzqkDEmyV4iElCE2c3uFliE2syompgypjpUoRGLKEMMuRELKkCRTicSUITZTioSWIYZdiMSUIUayEIkpQwxTiIQUIWlMJRJThlTHsgqR0DLEsAuRmDLE6F0+PagIyWJKkZAiJEm7DhEprxCJWWlo61wlUdWAYdcSMWVI2ngxZYg9psbrbXK8mCLESNYSMSutq+PZK64jhzR1SEwRYjM/c0wVIpJShjTDXiF1g7TpjSWJOkThI5hdhsRUISL1ZUhIEWIbmt4eVYTYTCESuqLXaEQZElKFJJlCJKQEydK+drSU56nQIsSwy5CYIsQwt39IDZLGFCIxRYiRLENiihDDri5CixDDlCExJYjNHGNIDZJklyExRUh1zMRTp8b7NFOGhJYgdeONlyEhJYjN/vwdUoMk2X8XiSlCjJHOuBLEsJ87Y1837CIkpASx2X//ialCRNaXIXkliEERgg0ZkyHw4jIpYmj8Yb8sGh8CasZz3OiwiHmDo3nbaf7hTURkxG0fZCej7XoTIiIigwqTF0kj3fpPj+1zFN4hSjmTIhtP71MbS0RkoymrVcYxEyIakyFGRePTRMLLa5U+7SSsGdL5ZTOTIhqTISIiK/sU/kJhGVmm80QwGSZFYj902joVf207+nWf87R/VhGRyrDOMWpOhpTFZdNyHxp/2Dba1+k+h2oem4jexMXYYMqTIQ6bn/tqHyjYXdfT2o2mqo013K37867t0fvjrEg5G6nHToIYmu+5Da23P2YyJHYSxGhTem5PyjptcvB4ig89MxmiMREiovdZtAxakyDGcBm/F8oPP81jrAzp/d6K6E6uirhtFu/K/N1CYyJERGdiJqlzte57HxG9v0v5vGdkEgTgNFkAAAAAAAAAAKDFUYbAm2sdol6GmOGUHrHm9FEaK0HMCgutlRZmVYTGqUWM0Q6FU5iJyNC0sf+ftZGb93hmkbniw0WrEBmePfZDtq3VWwrWMXdsueCoxp0hIpvMHTuV0tBI/INvhzkvSe+6adHjGPvPfUpERB5d/SqV8d4wa2y8+/teHT3W3j1Pi4jI3X1bRY8lIrLjtBdEROS25dupjCcisnl3rzyxauPocaZ11C7ZevSVuDHbK2NPmstX6j1WKpWx39mhl+Oqk9F267R0K+N/d0c7xsbsWq7zBG9WlmqsHE6uFMzaqN1vvLGfVWslnXkt0zi25GuEyqmtxl/DNAuHkY42lWOzX/ujj3H82zVPVWTeO1WyNkB3ZP+sseONDZKzMXuA0c6x3/3K2vi6rmYDdY2PYOO3X3u/ToY1NGNsOfPwlPjnu+Qq1cGZ8c/FZrz+uTpL4KesHD8N0Kbxx9ZlneJp7cy428+Ua4MzNE9tN/b/o+sG+yx+Cg/jkY7sTbFDDI0XCFqvZeazStom275MER97uh5jaDzi0vpcJiIyPFXnPcrw+LFpFaym4iqjOo19HJu/AWgWOuYxonZ60PHTJmmcNq77pVFZO1vv+alr5dixadVwpiyJPV24yPrTTWnVa6Pt46eW11yWPur+3pgqBBhDGQIAAAAAAAAAAFoaZQii5ZUiqnVI1lCBj+CslQIxK0OSM/wxs/1Z+3zElCKjiZUqmoWIEboiKXODxIhj1C5DbDGliClDkmIqEVOGGDGFyA5z6vfkiClFTBliCy1FTBlixBQipgxJiqlETBliaBQim3f3Vv93TCFilyFGaCFiyhAjphAxRUhSTB1ilyFGTCFiyhCRuDoka2VfzOrLtHNIx1QYdjkQuqo26zUsqhBRKkOyXqti6ou0jcljjlG1DEn51phCJO09UkzNoVqGpPx6xhQipgipu5qIQkStDMl4PxhaiJgixIgpQ9LOWx5ThmSdBz2mEDFViEhcGWIXIUZMGdK+LuX2iyhE7FX0wavMMx6uMZ+bkqvoNcqQIWtPipgyJO3zSUwZYu+RGFqGDGVs5xNThgynjBnz3sQeL6YMSdvTp5nKEPvzfkwZkvWYCP2dbbc20NYqQoyYMsSUILaYMiS5z0hMEZK18XhoGWJKkLqvxyxLtw4l7z0nJQiQjjIEAAAAAAAAAAC0NMoQqEkrRNT3DRHJLwY8Hs1FKwZCVojkzfCHzP5nra4V8a9ERnNWqoSECXYZkuSzOimzDDECjk2rDDGyChHDpxRJK0OMkELELkOSfCuRtDLECClEssoQkbA6xC5DbD6lSFoZYoQUInYZYvMpRZJFiC2kEMkqQ0TC6hC7DLH5lCJpZYgRUohklSGGTyGSLEJsIYVI0cq+kFWYWmVIXikQsrI277VLxPMYc54WQ+qLotenkApDqwwpel0PKkRyvsWnEMl7TxRScxT9rEGFiFIZklWEVK8moAypKULqrtDjsVL0GAkoQ+wqJCmkENEqQ7KKECOkDEkWITafQiSrCDFCypC0IsTwKUOKVs0HrTLP+XFDPi/lrZ73KUTsEqR+LOehEmPmjOdRhtgliC2kDMmqQkTCypC0IsTwfU+SN1ZIGZJWhBiaZYj25/2QMqToseDzO2vXIEkhZUiyBLH5liFZNYhIWBGSLEFsIWVIVhFi+JQhWTWISGARUnDVae85KUKAfJQhAAAAAAAAAACgpVGGQF3phYjPUA6PbpeVA66rRnxm+l0uW7S6VsSvEMmrQ2rHLL5MXhliqBYihsOxNboMEXGvQ/LKEJtLKZJXhhg+hUheHZLkUorklSGGTyFSVIYYLoVIXhli+BQiRWWIiHsdkleG2FxKkbwyxHAtRIqqkCSXQiSvDDF8CpGiMsRwKUTyyhDDpxBxWdnnuhIzrQix+dQXLoWA6wpbl9ctw+kYHZ7zXSoM31WzLhVGWhFSf70eKwkdXs+d6xCHi2mVIYZrzeHyc3qVIQ6/hi6FSFERUne1DoVIbhFSvWKHG9fjvZ5rHZJXhBg+ZUhRySHiXoi4jOVThuQVIYZLGVJUhBg+ZUheEWK4lCE+q+WdV5q7PDQdLuOzWt61DCmqQsbGcr9el88hLmVIURFi+JQheUWI4fIal1dvJPlUIS5jupQheSWIrdFliM/ne5fHuut9r1WEGC5lSF4JkuRTheQVIYZLGZJXgthcy5CiGkTErQjJK0HqLuvyeHL8USlCgHCUIQAAAAAAAAAAoKVRhqA0yUKk4XuHZEl5tIecU7JoFUnIuSDTvsdnhW11nJzVg65lSO14+f/uUogYeauWnMuQpIJj0ypEXMoQW1EpolWIuJQhtrxSxLUMMfIKEZcyxJZXiriWISLFdYhLGWLLK0VcyhCjqBDxKUOMvELEpQwxigoRnzLEyCtEXMoQI68QcS1CkorqEJcyxMgrRELOz160KtOlDDHy6gufMsAoWmmrVoYEvMbnVRgh51PPqjBcipD6688+Nt89wERyCpGAl728x0HI+dSzqo6QnzO3EAl4r5VViPhWISL5ZYhTEVJ3EHkbM+iVIS5FiC2vEHGpOIyiMsRnLCOvEHEpQoyiMsS1CknKK0RcihAjrwwJWSVf+Lrks41NzmVD9k8oKkNcipD1Y+WN4zzM+vEK3k65ViEi+XWASwliy3uNcy1CjLz3IL5jieSXIRNVhBh5j1/NIiRkj5i831OXEsQoKkJca5CkvDLEpQSxpZUhPiWIUfR3HZcSxJZWhviUINXvKXo8hbzfSry3pAgB/FCGAAAAAAAAAACAlkYZgoYwlciE7R1iUypEqodijRdShuR9X0ghUh0zsZowpAxZP076133KEFtyFVNQGWJkHNtEliFGViHiU4Yk2ZVISBlipBUivmVIkl2JhJQhRloh4lOG2OxSJKQMMdIKEZ8yxGaXIiFliJFWiPiUITa7FAkpQ0Sy6xCfMsRIK0RCyhDDLkR8ihBbWiESUoYY9upMnyLEllZhhJQhhr3iNuZ1KrUQiXiNtyuMkCpERLcMWX8s648tpJQwNMsQI/l4CClCDM0yJHXMiKVcmmWISH0dElSEVA8i5UaPeYxYhUhIEWKklSEhFYdhFyIxY6WVIT5FiM0uREKKECOtDPEpQoysMiR0pXzd61LE73vac0VIEWLYZYhPCVI/Vv3XYj5v2GWITwliSysFQooQw36dCyk4jLQyJGY8uwzxqUGSGlGGhH6Gz3rMhxQh1WNJ/J76lCC2rDIkpAgxkmVISAliZO0VElKFiNT/PSekBDG0ipDq99qPrZj3WePvJalBgHBMhqChmm5SRKTuhShmUsRoGw1/M5Vkxoj5I1PNeOMfqmMmRdaPNfb/YyZDksyb+KhJEWP82CZiI/UiZnIkdDLEMJMiMZMhtqGRStRkiGEmRWImQ5LMxEjMZIhhJkViJkNE6idEYiZDDDMpEjMZIrJ+QiRmEsRmJkVCJ0MMMykSMgmSZejl7qjJEMNMisRMhhjJSZGYyRDD/GEiZjLESE48xEyGGOaPTbGvU9XjUnx7YD4shk6GGGbiIWYSxFYZGo2aHDCqkyIKjw2tyRDDTGBo/JyVwRHVnt1MioROghhmMiRqEsRmPppF3m5mMiRmEsRITobETFwYZjJEY6zkZEjMJIhhJkNiJkGMtTMrQZMfWcykSOwfhauvS4p/BTDPGTETISLrJ0NiJkHWj1X737GfMcxkSMwkiGH+SB4zAZJkXudiJi2M9gGdcQwzGRI6CWKUuXF67Od287iPmfyoHsv472fMBEiSmQyJmfwwzCRIzARIkpkMCZ38SBruaoua/DDsSZCYCRCRxGNL430VkyCAGk6TBQAAAAAAAAAAWhplCCbE6z/8Td0BFVeSDnfqDGZWAWisrjQ0ViKJiIwo/YxJsat9DK0KRkRkcGbzlSFG53Td1nvjOatUxtl21ssq44iIvHnOwyIi8vzgHJXx5nSsVhlHRKSrTe++FBFZPaL0yykiCwfmqYyzpH+2yjhJTyyfrzLOij7FJYciMrhcb7z2NTrrRNqGx55nO1brPd/mbjjuoVNhxbNNo1oR0VlVWTX+Y3YUbMjrSqOkqY4Vv4C9RvuAzh1QSTktRKi2nE3jQ1SGdV/TNZjqJe10GhMtdjVr6pgVnTGHuxXX45k4SqHsFhFZ16N3bKolvIgMT9H9jKJJo4IU0T029Z9T8+5UesqoFjmKn5/UKD8tqp4mS+m+nPbi2BPQwFy9B5tGMSeSv3F9KK3fKa33ZSLrTz2oWe9qyTrNeKg/X/bPugMCGzDKEAAAAAAAAAAA0NIoQ9AU1EoRhdn3EWslXewKCM1CRKsMsfdFUTm28YXZI5Erw4a7aw+mbSj+TtUqRIZnWUt5I2+47tljGwEMDcYvp9tpsxdr/ntZf9xmLnvOe1ZERHoH4zdxMYWIEVqKHDj90Zr/vn/tqzMu6W7/7rF9SO4cqN8U3YdGGbLLlCU1//2bFbtHjffaaWP34W9feW3UOCIir562vPq//7hkh+jx5naPJQ5PL50bPVZn5/rfyzUvKSRq43uGtK+M+73ULEPsiiBtU1gfZgVv14r4J3979Xnsikbzs9ob1QZJHIrGKkRzTnCVPQASQ2hUNW3jb+crkT+nRhli6tP2/vgfbDSx0rN9bXxOY8oGjconuRdKM5UhbVZBM9IV/x7DPL5G2iP3WLGObXCGwiZ2SmWIeWwMTo9/zk6et35gdvzawykrxn7INRvH35fJfQiyNlb2YZ7zhyMrGPt5MHbvEZH4z3Cdq8d+tqwN7H3Yr+Ohx2Z/9NAoQqp7esyIG6divW5rHJspYuP3Jau94YYUfs+nvTiiUoRMWV57bLH3g9nPQ6Pks9/vxNRuU1es/yUYmhp/u2kVIRWrYtUoTLSKEEoQoDyUIQAAAAAAAAAAoKVRhqCpNMNeInYZIhK3sijre0OiAq0ypDpexiq6oGNLOWV/TCWiWYio7x2iVIiYMsQWU4okC5GYOsSUIbaYUiRZiMTsI2IXIkZMKWIKEZG4SiSmELHLEJGwOsQUIbaYQiRZhhghhYgpQmwxhYhaGdKR/nscWoiYMqQ6fEQhkrW/RGghYp/bPaYQSduXIKYOqatgYgqRlMOIKUTslcpRhUjKt8YUIm3W2/nQQiSmDLH3I4spQ0ZTVmbGlCH2CtmYMiRZhFTHa5IyxK5CROLKEPtxFVqGZO33ElWG2CVBYBmStXo6phDRKkNMEWILKUSSRYgRU4ZkPc+HFCJpz30xZUjM5zZTg4jEFSFZr9sxx5b8uBFTSmTtJRFTJCSrkJhjy9obLXRMzSLE7A+SFFOGaBYhpgZJCilDst7XaBUh68fzv92yji2m5LCrkNDx2BsEmHwoQwAAAAAAAAAAQEujDEHTUa9DRLwKkbQyxOazqqfosj5RQaPKEMPr2FLKEJtPKWKXIUm+lUjpZUhSQCWSVYgYPqWIvXdIUkgpklWIGD6liL13SFJIKZJViIj4VyLJMsQWUor4FCJpRYihWYYYPoVIWhFiaJYhhk8hkixCbEGFSEYZYvgUInYVUnM1AYVI1gpTEf86xK5C0viUImlliOFTiOT9jElepUjO1fsUIq4rlL1KkZyL+hQi9sr9ND6ViG8ZYtcgaXwKkbQipDqORxniuiLWpxBJK0Kq40xwGZJWhBg+ZYjL48m3DsmqQkQCy5Cch5NPHVL0GAkpQzpS6gvDpxDJKkIMrTLE8ClEip7XtcoQw6cQCakukiWIzbcMyXsdCzm2vI8UPqVEVglihBQJ9v4gST7HllWChIy1fsycx7rH73VaCWLzLUPsGiTJ535IK0FsPmVI0fsXnzIkrQSpH8/9dis6Np+SI60EiRlPuwgRoQoBGoUyBAAAAAAAAAAAtDTKEDQ91VLEYfbepQwxXFb5+KwEco0KtAqRojIkyfnYlAqRvDLE5lKKaNYhuWWIzeGGKypDklwrkbxCxHApRYrKkCTXSiSvEDFcSpG8MsTmUork1SFJLqWISxmSV4TYXAuRoiokyaUQyStDDJdCpKgISXKtQ/LKEMOpECkoQpJc65C8MqR6tQ6FiGstIeJeiLiUIYZLIZJXhhguhYjXz+pahzjctS6FiM/KZOc6xOFiLoWIy0p+w6UQcS1DXIoQw6UMyStCquM4liE+q2FdypC8IqQ6zgSVIXlFiOFShvg8jlzLkLwixOZUiDgM51qG+DxGXAqRvCLEcC1DiqqQJJdCJK8IMVzKEJ/Sz7UO8angXJ6HXT5z5ZUgSS5ViM/rlsuxuXzWci0limqQJJciIa8EMVyPragG8R0zrwSxuZQhLkWIiFsVkleC2FzuB80ixKdmdSlDNIsQn2NzKTlcihCf8TSLEEoQYGJQhgAAAAAAAAAAgJZGGYJJQ30vkYwZfZ8yxMhb7aN9jliRiSlDjMJjcyhDkooqEZ9CxEgrRbT3DRHxLESMlBvQpwwxigoRlzLElleK+BQiRlYp4lKGJBVVIj6FiJFXirgWIklZtUheIeJThhhZhYhPEWLklSEuRYgtrxDxKUOMrELEpQix5RYiHmWIkVWIuBQhdVefU4j4rDo1igoRnzJEJLsOcSlCbHkri4N+1qKVqgHvcNNKEZ8yxChc1RhwbGmrqH1W9Bt5hUhRGeJThBhpZYhLCVI3TkEZ4rPa30grQ1xKkLpxGlyGuBQhtqxCxPcxVFSG+BQhRm4ZEvD2LasQCXmM5JUhLkWILasQ8SlCjLwyxKUIseUVIj5liJFViPgUIUbe83DWZy3XCiQprwgJeZ3S3DtSJLuU8ClBjLwSwaUEsRVVHD5FSN6YPiWIUVSEuNYgSWlliE8JYhQVIS41SFLR85zX/mbj0soQlxKkfpz8X4iQY8srOXyKkKLxtPcHoQgBJhaTIZi01CZHFCdFjOQb35DJEJv9RrnRG6nnqTs2z8kQmz05EjIZYpQ9KRI0GZJk3XghkyJG2uRIyISIYU+MhEyG2JKTI74TIklZkyMhkyJGcnIkZDLEZk+OJCdFQiZBbPakSMhkiEj9hEjIJIjNnhQJmQgR0Z0MMWomRQImQWz2pEjIZIiRNikS8ocXw54U8Z0EsdmTIiGTIUbaH9Wiflb7jzYK72yTkyIhkyFG5gf7wGO0/4gYMhliS06O2JMhIZMfNnsyJGQiRCR7MiTkD9xGcjIkZBKkbrySJ0VCJkEMezIk9rFjT4qETIIYqZMhEW/X7MmQmMeIkZwUCZkEMTQnQ0TqJ0RCJkFs9qRIyESISP1kSMgkiC35fGx/xgqZ/LAlJ0NiXpeyPv/5Tn4kJScGQiY/bPYf4UMmQIz0SQu98UImQJLsyZCQyQ9DaxLEsO8H38kPm/18FzLBYGSdHitkImRsvNrbLubYjOTkRcjkR9o4SVqTIEx+AM2F02QBAAAAAAAAAICWRhmCSa+s02fFlCFJMStKbWY1UTOVIba20fg6RGR9IRJThiSZSqRpTpeVNH7HxpQhtqHB9qgyxGZKEY1CRERk7xlPq4wjsr4UiSlDkkwlolGIGHcObCVbd76sNp4pQ0KLEJspRDTKEMMUIqFliGEKkZgixLbmpekqZYhhCpGYMiSpc6Xec7IpRGLLEMMUIjFliE1jJbNIohBRumtNHaL5Ol5dBRl5jGaFtUYZYlTWjlbLEI0ixDBlSGgRUh1nvAzRWOVvmDJEowoR0S9DYkoQmylDtB4zpgyJKUJsg9N0ftlMGaL5WBmc3hZVhNhMIRJahBimDNF6HhVZX4aEFiE2U4holCHVMbt0ShDDFCExNUiSKUNiShBb0WkwXZkSIaYEsY10xpUgaeOJ6BUhMSWIzZQhMTVIkrk/YosQkbHnPI3awjBlSGgJUj/e2G2neYxaTBnC6bCADQNlCAAAAAAAAAAAaGmUIWgpmpVI3mZcYePpjTXaobMXSXW88RWRRRvfucrZMzrY4Ayt1Tdj46iuTpszJDKi93jpntOvNpaIyHbz9YqE/eeO1RJL1s5WGe/dc+4eG69gk3QfO3TpFTEiIj1KS+eWDuds4u3p1R0rRUTktv6tVcZ7VccKERH5v1W7qIwnIjJt/Hb708vbqoy3uHeWyjgiImvXdsrwaqUnPJHqKv+OXqVVzePVypRlek/0lSGdccxzp+YK0Mq6UdXnZFN4tivFdkWbinuNNaj7GmTeC7QrreDWWgkuItI2fu5urZXRptjtGNCrxLQqIlMgVAb1Hsij7W1SWaf3s2qXIZpGOsYeyMNdOs955n4Y7NF7892xZlgGe5QSO9FbfWyeS7L2IgnR1Tf2GBmYo3OQU3vHxluzseJrmtJz1VC38jJwxeFMKTA8RWdQUw+tm6l3kJVBtaHGx9N7fpqyYlStihVZ/7NqnVEhuWeVFq33embvDc33P5qlXhmGFYtYahCg+VGGAAAAAAAAAACAlkYZgpakUYgkVy9oVBj2KtDhrvCxRhML3TSOzT5XdmwhMtxd+98aK2CT+6SMdMY/bdmlScwxDs9JLMNRKEQ6e2pPCtzREXcD7rRxbSkxpLBMyhQiIjqViClEqmNGlCKHTFtY/d+Lh7qzL+hox87a++O5yH0hNAoRU4YYsYWIKUOMmEJkmlXSxJYhUzpql7k99fJGUeOJjJUhhkohYj0lxRYiI9Z+JjGFyKh1KLG1hP1cqVGIVBLnjlYpJqxf0dif2X6djakwkqteNX5WzWMT0VmVa4qQ6n8rfNJI7uPWTGWIvdJVowxJ7sejUYaYIsSILUPs94wx45kixIgtQ+zbX6MM6Viz/j7QKEMq1u9H7Gpk+3kkphAxRUh1rMgyxBQhhkYZEvscZe+7sXZ2/Pt2s5eWiMi6iPHsPSM0ipDkXjIaRcj0F2ofcP0bxd2nU5fXjrduRvwxTkncHzEfeezqRaMImdq7/vlk7cz434fOft3nE/v5SaMM0SpCRqz7sqLwVkCzBhGhCAEmE8oQAAAAAAAAAADQ0ihDsEEIKUXSVjHEVBhZK0BDCxF7tW/16xHHaK/2EwmrROwyxBayGnY4Zx+SkFIkbw+SoOObk3GS1ohSxC5EROIqEbsQMUJKkWQZYgspRewypGa8gEokWYekCSlG7EJEJK4SCSlE7CLE5luI2EWIoVmGiMTVIXYZYsQUIskyxAgqRHKeekLqELsIsYUUIlmvFSJhxUTW82NMIZIsQ4qux0nKr2XIz1r0ehpSYeStag75mbWPMWTVtV2C1P17wCeNZAliUy1DjIBjTHufGBsd+joAAJW4SURBVFOGjKb8zDFliF2EGCElR9r7w5jx7CLEFlKI5N32IYVIsghZP074MnN7xbURszI57TlDswypjulZiNhFiC2kEIkpQuwaRCSsCEkWIGlCqhC7BkkKKUOSJYgtpAyxSxAjpgixaxCRuCJkSsb9ElKF5O2BElKGJEsQW0gZYpcgtpDnk7TnppgiRHtvELsIMWLKEK0ihBIEmLwoQwAAAAAAAAAAQEujDMEGxacQcVnV4FNhuKz49KlE8lb71lzO4xjzVv4ZPqVIUSEi4r8SVqsQyStDDJ9jyyxDbB6lSFoZYvMpRbLKkCTfSiSvEDF8SpG8QqQ6nkcpUlSIGD6lSFohYvMpRnwKEc0yJKsKSfIpRNKKEJtPIZJVhNh8CpG0IsTmVYg4POX4FCJFZYjhU4i4vFb4VBMuz4u+lUhaGeJzfesvXHwRn5/V9fXTp75wWd3s8zO7HKP28SUVVSEifmVIXhFiTHQZ4vL+0KcQSStCquN4liFZNUiST8nh8r7QZ7yiIsTwKUNcbmufMiStCKkfz/29UlYRYvNZqezyHOFTiGQVITXjedQhmmWIz3NSWgFi8ylCikoQw6cIyStBDJ8iJK8EMXyLkKwaJMmnDEkrQWw+ZUhWCWLz+UiTV4QYPmWIZhFSVIOI+D1/uDwn+ZQh2iWISHYNkuRThrA3CAAbZQgAAAAAAAAAAGhplCHYYBVVIiGrHPJWaAbtQ5FTiriWIdXLO0x9uqwANFwKEZcyxHC9ffLKEJtLKeJSiBhOdY9rISLiXIm4FCKGSyniUogYLqWISx2S5FKKuBQi1fFyShHXMiSpqBJxKUNseaWISxlSVIQkudYhLmWI4VKIuJQhhksh4lqGiLjXIS5liOFUiHi8g3IpRFzLECOvEPF9jRDJryZCXsOKCpG8IiToOAIW/uX9zCF7cBVVGEF7cuT8zD7H6FKIuB6fSxFSvWzORV1KEFujy5CQ94N5tUJeCZI5XkEh4lKE2PKKDp/3gy7juRYhhksZ4lPfuJQhLkXI+vHcbm/XKkTEbeWyz/OwSxniUoRUx3MsQ4qqkCSXQiTvOcmlBLEVlSGuNUhSXhniUoIYLkWISwmS5FKFuJQghksR4lKCGK5FiGsNIuJWhLiUIIZLEZJXgthcyxCXIsRwef7weT5yKUM0ixCXEsSWV4ZolyAi1CBAq2EyBBu8rEmRmBf4tD9OxGwGmzYpEvKHrur3ZrwHC/nwa6RNjvhMhtgyN5z3mAxJypoY8ZkMsaUdo9dkiC1jcsRnMiQpa2LEZzLEljY54jsZkpQ1MeIzGVI3ZsrkSMikiJE2ORIyIWJkTYykTYr4TILYsiZFfCZBbGmTIj6TILa0SRGfSRBb1qSIzySILXVSJOKdU9akiO9EiJE1IRLzGpE2QRDzGpY1KRIyGZJ7LBGffdN+5pDJkOp4GX/Ai9kEOO3n1j7GrOPzmfyo+96Ubw2ZBDEaNRkS8z4w6w/1IRMhItmTISGTIEba5EXM+8CsyRDfiRAja0IkZpP6tEkRn0mQ+vHSb3+fPzra0v6IF/P8mzYp4jMJUjdexqSIzySILW1SJOu5KGQCxEibCAmZ/DDSJkF8Jj9sWZMhvhMgSWmTIT6TH7asyRCfCZCkrMkQn8kPW9pkiM/khy1rMsRnAiQpazLEZ/LDlva8EfM8lDUZ0qjN0V2kTYYwCQLAFafJAgAAAAAAAAAALY0yBLCYUkRr5YNZtRmzqsuWLEViVv9Wx7CmRWNWBorUVyIxhYiRvP1C65AkuxSJKURE6u/fqELEsEqR0ELEsEuRmELESJYiMYWIYZciMYWISH0lElOIGMlSJKYQMexSJFmIxJQhhl2IxJQhIvV1SEwZYiQLkZgyxLALkZgyxKgpRBTeOdmFSGgZYtiFiMZrQ7KW0HgNswuR0DLEqDsmhZft5M8cU11Ux7NWN8eUISL1P7P2MdrHF1OEVMewhoipQkTKL0M03v/Z9UJoEVIdzypDYooQI1lyxL7vs8cTCS9CDLsMiSlCjGQZElOErB+v9n6IWYltJFc2azzv2mVITBUiUl+GxBQhRrIMsZ+DYkoQI1mExJQghl2ExNQgIvVFSEwJYiSLkJgSxLCLkNASxLCLkJgSxLCLkJgaRKS+CAktQZKSVUhMCWLYJUTsc5BdhDRTCWIzZQibowMIQRkCAAAAAAAAAABaGmUIkEG7ECnL0DT9MWNXbdoGZ6oO57R5u6+1cxTTHREZmaVQhlg6p8evwE/adbPnVcfbd85C1fFERPae9jfV8UwpolGIJE1v019bsGxE9zH5VM5G8yFuX7296ngiInf1bqk63sNLXqU63nCf/pNPpU9xmZyIdK3UfSwWbYIeM2ZsGWLL26g7hEL0VKdzje7vtbaulfrVhfb7qDLKEI0yIqltRPfBaMoQjSKkbLEVTN14JbwN1z7G4W7d513t9+EiIiMdymMqDzc4Tf9n1n7smCIktgSpU8JfYzrX6A6qUSEmtZUQ+GmehUGknNfrEeWKQfsxrv0+SkS3BhEp728zFCHAhoUyBAAAAAAAAAAAtDTKEMDBPh/5ltpY2nuIVLcvUFwkUV09pvTsYNcrseeyL6MMGZy+/ocd6dJ7WhzpGV/6VNEZs3vW2Anth4b05rK32+RlERGZ2h55ct1xe89eJCIi7UoP8gOnP1rz36tHuzIu6e6AqQM1/710OO6k1Ft0zKj57+XDOsvpNeoQexHao+viCpGp1kmYb1i1c9R4Ns06ZFrH2NL+vz6jM+bUqWM/++qXFZO88b1CKr0Km3zI+teWzj6d54iK9atRUVjNaa8I7Vyle771DoXzrYuUU4aYVZcd/TrPj2aFpFaJoFmGDE0fWw7arvWzjq+W71ytV14OTxk7xso6rfuj9r9jz99ur4DVuJ/b7HPCa5ccWuONH6bqivTx21NtNfV4UTQ8Ve82rKwblSHF0sTeA2BoStzY9mNaY6W7VhVi74eytidu3Ckra58X1s6Ov1+6rNc7e++M4HHHf3at3xfzOq35matjfI8Mey+OUO3jdalm9dSeKFY19gCqO7bIQ20fqH1Maj1XlFGEmOdZrcekedxUFE++QA0CbLgoQwAAAAAAAAAAQEujDAECxJQiWasjQhfRV8uQugHDxhPJWGGj8Ewx2QqR6vVElCLVMsQWWIqYMsQWU4qYMiRJoxIxhYgttBixCxEjphSxCxGRuErELkSM0FKkjDLECC1E7DLEaKZCxBQhtphCxFQhSSqFSEdiFaJCHZL16xVaithlSPXrEQFB2rnCY+oQuwwxYgqRMqoQkfTVlzGVSNa5s0MLgpgyxJQgtpgyJK0y0ChDTBGSFFOHZL23i1lZnHbfxpQhdhFSvZ5mLEMSh6qyqjjltoyqQzL2mIkpRNL2UIpZ9W0XIdUxA8uQrMfyRJYhdglixBQhdg0iEleE2CWIEVqEZP3MGr8naa/NMZ+1TAliCy1D2jP2GYspQ9LGjHnezjyWJixCtGuQrOfU0Mdm1uMkpgyhBAFgUIYAAAAAAAAAAICWRhkCRAgpRFxWR/gsnM8sQ+oGdR/TyF1pE/DMYZchNcMFLIhuVBlSd70BpUhmISISVIlkFSJGSCmSVojYfIqRrDIkyacSySpDbCGlSFohYoSUIlmFiEhYJRJSiBQt1gwpQ7KqkKRmKESyyhAjpBBJK0OMoEKko/j33qcUcf1V8i1EssqQ6r8HhARpq0+NkEIkqwxJ8q1EGlmGGCGFSFYZUr0+z5IgpAzJKkKMkDIkry4IKUPSShCbbxni8n4uZIVx3n0aUoZkFSHV61MuQ4LGdfixglYX59yWQWVIRhFihJQhaUWIzWcVeFYRUjNeQB1S9FgOKURCipCsMkIkrAhJK0Gq4wUUIVkliM2nDMn7mQ2f34+812Aj5DNWVglihBQhWTWISFgRkjee4fO87XwMAc83dg2SFFKGNKoEqbucx6G6PEZCyhCKEAA2JkMARS6TI15vVsuYFBFxfkPm9SbT4ZkkbzKkbjiHvwGWMRki4jYhUnMcDpMjuZMhNofJkaLJkCSfiRGXCZEkl8kRl0kRw2VyxHVSRMR9YiRvMiSN6wRJ3qSIzWWSxGVSxOfvEb4TIi6TIcZETIoUTYIkuU6I5E2C2LwmRRwmQwyXSRGf1wvXCZGiiZCay3o8xbn8IcZwmRxxmQwxXCdFtCdDQv4I4TI5UjQZUnMMDn9Id50MKZoASXKZDAn5g7zLpIjLJIjhOhni8z7O5Y9q2vdh9bIOfxSvHkMJEyJOY3r8XnhNhnjcps6TIgUTIUkukyIukyCGyx8+XSZBquN5ToZ4/XHY4U2IyySIywSA4ToJkjfxkTqu42SI6wSIiNskiM/P7rTIznOO2+fzVdEESJLLH7pdJisMl8+pPuOJuD3Wg07L5fAteZMfNpfnhDI3RXe6rPIkiOEyGcLkB4AinCYLAAAAAAAAAAC0NMoQoCRZlUjMBnd5K3+9ypC6gdO/HLwhXcGzik8hUh0yZ2G0diHiW4YkFVUiXoWIkVOK+BQitrRixLcMSSqqRHwKESOvFPEpRGxpxYhvHZJUVIr4FCJGXimSV4iE7GVaVIj4FCG2RhYiPmWIUVSI+JQhSZmViEcRYssrRHzKEKOoEPEpQ2q+L+Npznd1alJeIeJThhhFhUgzlCFGXiHiUxVUjyWnLigqQ3yKECOvDIkpErLKEJ8aJKmoDAl5/5a3yjjkvjOy7kOfGqTmWBpdhkT8PmTeD4G3Z+FKZ48ixMgrQ3yKEFvaanCfIqRuvIJCJOQ0b3llSF4R4lNDGEVFiG8JUjN2ShXiU4DY8oqQkJ+96Pko5vU27XOVTwFiy1v171tuiBR/Pg0Z00h7zMds0J5XhPiUIEZRETJRp8JK/d6cQw05ZZqRVYZQgwDwQRkCAEAz+P5HRBZvWsrQ7Us2l54LP1HK2AAAAAAAAJMBZQjQIHYpElOIiNSvAo4qQ6qD1v5n1EqYJOtZJqQMqRnOWhzdLHuHpLFLkaAyJMmqRGLKEFuyFIkpRAy7FAkpQ9LYtUhMIWIkS5GYQsSwS5HCMuT7H5HKV/5FRrdaJKNXHi2yxfOpF7NrEbsQSVuQ2b5kc3nVB66UzkVbyytf+1dZ9fEfZB6GXYjEFCFJ2nWISG0hElKE2OxCJLQIsdUVIhFliJEsREKKkCx2KRJahlS/33q6i1mpaiQLkZAiJItdijRTGZJkVyIxdYGRrAzsMiSkBLHZZYhWhWCXIaFFiGGXIbHv02rGTqw21r7PRMKLEKOsTdTrxlb4Pai7XxRuT5GUFdABRYgtWYjEFCGGvSo8pgqpGdcqREKKkCS7DrGLkJASIo1dhsSUINUxE0VITAli2EWI1s9u/x5ovL4mP0/FlCA2uwKIKTdE6j+fxo4nUvuYV/v8K1L32TqkBkmynwPK2BdEJK4IqY5hPUZjahCR+iKEEgRADMoQAAAm2mG/l9GtFknbM1tK2/suVStEkhMhg1sulDVvv05lXAAAAAAAgMmGMgRoMFOIaK44FBEZnqI7noiItCmvjhmnUrEkmFKkmfYOyWJKkehCxBgvRTQLERGRrTdapjqeyPpSRKsQMQ6Z8bDqeKYS0ShEkqa0FTxAF28qbe+7VNqe2bKwEDFMKbJqtH6lmT0R8sIV75PhzZc4HaspRLTKEKOsQkSjDDFMIaJVhhire5Wf+GSsENEsQ4wpr+i+QJlCRGPlas24yvWGyPpCpFnLEMMUIhqVQVL7oP7rnilDtOuD2NXrdeOtM7ep6rAioltwjY039rPHFiG20vYOKeHT5qjy+9PqSmiFIsQYntqmUoTYRiJXWNtMGaL9O7V21ti4WjVEDeU/YZgiRKMGKZN5ftJ+PRXRv/9NCaBRbois/0yqNV6pxn9FY0sQ2/DUctYya5QgtqGcvZNCmDKEIgSABsoQAACawRbPy+iVR6sUIjETIQAAAAAAAK2IMgSYYHt/9FvFF3Iwap0qe6Qj/XK+zGpGzXOzG8NTlFdgVtaPq6mMQmS4Z0RGu/SXdHfOGFvO3NGps2Rs23mviIjIiPKSoX3mPiMiIlPahgou6W7vaX8TEZGZFd2iY7eusduyXWm1aBmFiLFoqE91ImThUMFeJ4E0C5Ge9gH5y4qt1cazPfiizinLhofHnqAGVuk9QbX1r3/ir/Tr/Y5WBsfG6lypdC5+6/WoY0365XyZ1yfFpxGpJMqIjn69cc1rtH3O61Dta8t5+65Zhthlaccandc8U0No1jbJ91CVtXqvzdVjLOnTVmVQ51hHOseen+y9SKLGTNz/ZRRsWmVIm7UafqRLd62g6vtc6+4ZUXpvbp5Dtd7rl1EYda4aey82OEPnBjXPdUPKK+27xo9zXU/8fkuGKQG1j9UUFlqPUVOWlHFWgY6BERlW/N0s81hFRNoVX0eGuiul7A0yMv4Q1Xp+1i5BjL9cQgkCQB9lCAAAzSSiEKEIAQAAAAAASEcZAjQRjUrELkSM0FIka7WIxuqxtIIjanVSxvfGliJllCEiY3VIkkYpYsqQJI1KxBQiRmwpYsoQm0YpYgqRpJhaxJQhSRqViHohsnhTGf77H5cyEdKMhUhPe/192syFiClDDI1CJFmGGBqFiClDRHTqELsMMWILkazXp5inkUpKGaFRiKS9NsdUIs1chmSttI0pQ9L2xtBYKZt6v0Ss6M08piYuQ0wVIqJThqTd/81YhthFiKFdhhhR728z7pbYMiTruTL2PX5MGWIKEJtGEZL2/BZTW3SlHKtGEWJKEFtsGWLvtaFRhKTtM6JRW3RYe23EViFZ+6E0Yxky1F3/s2q83o1kPDRDn5/LKkFEqEEAlI8yBACAZuRTiIxPnFCEAAAAAAAApKMMAZpYSCmSVYaIxO0jUrRqJGQVmUuxEbRqKed7QiqRRpUhWUKKkbRCxAgpRewyJE1ILZJViBihpUhaHZIUUoqkFSK2kGIkuhCx/n3x5e8tbSKkmQqRtDLEKKsQCalD7CLEFlOIpJUhRkghkixCsoSUIllliBFaiBS9LoU8faSVIbaQUiTvtTmkEGmmMsR1ZW1IGZJWhFT/LeAmyLsfjJAypPBYmqgMSZYgWUIKkbzHQRlliBFSiGRVIUlNsXeIw90QUocUPTfGlCEhVUhWDSISVoS4PI+FVBZpJUhSaBWSVYIYIcdqVyBpQh6TWYWFSFhlYRcgWULKkLxjNbTLkJAiJK0EsYW83mWVINUxI56XtasQShAAjcZkCDCJuEyOuHzQN3wmR3zeMPl8iPKdnHB64+7xftnn+id6UkTEfWIkbzLE5jM54jIpYvhMjhRNiiS5TJAUTYbYfCZHXCZFDJ/JkdxJkawJkZyJkkVDfc7X7aOsCRERt0mRvEkQWzNMihRNhiS5TozkTYLYfCZFXCZDDJ9JkaLJkCSXiRHfD/A+kyIukyGGz6SIz2uzy+RIs0yG+PwhyWUyJG/yo+6yHofqdft7/DHL+w9Uynebz2SIyySI4TMZ4vMYmOjTZblMghgTerosj8eJ72SIz/Ohz/t5l0mQvEkPm88kiM/zls/EQtHkh81lMqRo4iPJ51hdJj8Mn0kQlwkFw3li3HECRMRvEqSMY/XlMhniMvmR5PM6UzQBUjOux/Mxkx8AWg2nyQIAoNmlnTLrL3v67SkCAAAAAACwAaMMASaprErEZ/WjLa8UiVnNl7eyLGZz88KVTQHTvXnH0wxliC2vFPGpQ2xFtYhPIWLklSI+ZYgtrxTxLUSS8moRnzrEVlSLuBYiRtFEyGQrRIrqEJ8yxJiIQsSnCLEVFSI+ZYgtrxTxKUOMvELEpwix5RUiMa9HRauifcoQW14pEvLanFeITFQZErOaNq8M8SlCqt+T8y0x74WKypCojWwn4HRZPkWIkVeGxDwGJup0WT5FiK3hp8sKPNSiQiTwrKMikv8+Pq8I8SlBjKIiJORUfkZeaeFbgSTlFSE+JYgt73h9ShCj6LHnU1bY8p4XfEoQW14ZUtbxhigqQnxrkKS81xyfEqRu3JxDLmNzdGoQAM2EMgQAgMlii+dl9Jwv1nxp9JwvUoQAAAAAAAAUoAwBJrkyChEjWYporuZLrjCLKUNsdSuelKZ77WNsxkLESJYiMWWIzS5FQsqQNHYtElOIJNm1SEwhYqSVIjGFiGGXItpliDHZC5GQIiSLdimSVojElCGGXYjEFCFJdh0SUoRkSZYiMWWILVmKaLweZa2SjilDROrrEI3XYiNZijSqDNFcPZssQ0JKkCz2qtnY2zyrDIkqQowGlCEhJUgWuxDRejw0au+QmCLEaNjeIUqPDbsQiSlCkuw6xC5CQiqQNHYZElOCGGmFRUwJYthFSEwFkmQfb0gFksZ+zMWUFbbkc0NMCWKkFSEax9uovUJiShBb8rUnpgSpGzdxyGWUIAZFCIBmRBkCAMBkYG2WPvKrD9buIbLYfVNvAAAAAACADQ1lCNBiTCmiuRpVZH0lor2az6w00yxEDM1VyUkDc5u3DEnTMVdvRX11zPFSRKsQMUwpolWIGKYU0ShEkg6Yulp1vKRpla71/2FNhFRLkKyv55hshchf12xbyrhl7SMiInLfc5urjmcKEa0yxDCFiGYZIrK+DinjObhjTTmrytv7Syot9AK9Gp2ryzlelfohg9bK8TolLe1qV1jdXKfkMkSzChFZX4Zor6Yuc++QspRWiCgvyDZliFYRYpj363l7/8Qo2vMkRmzxZzNFiFYJYpgiRKsEMUwRolmCGGWMKSIyWinn8VBWGVK4F1AA83qsWYOIrH/+LasGoQQBMBlQhgAA0MzyJjy2eF5GrzyaQgQAAAAAAKAAZQjQ4vb6RPqeIqHKKkSGusdWp4zkbJcQaqSznNWugzPGBh3uKrigp5GpY+OOdiofdM+giNTv/xFro9ljpcFG3WsKLulv2xkvy5xOvXH3mFZbnExrW6sy7mu7ltf896yKzoOibclm0v3+n0nlma1kZKtnRK78cHr50QSFiFl4uWRYtxBZMzJWRTw8oFtbPNm/sYiILFs3TXVcEZEX1/TIC70z1ccdXDf2BDzSq/ykM65jpc4aGfv1oX1Ab/VhZTAxrs6v75gRM6bu8645Xu3XILN/iPbxlvFaaVbMdq3Qfe0Zrq6i1n1DYlYkd6zRO95ksVFRPF57nwyNPTJEylnlLFJyEdIm5ZQ34zexdnUj4x/By1oBb+/pEUtznx97OeZIp86xahcgxmibvV+K3thtw3o/f5K5LbTPFFBaCWJuY+2bwtQVJdzGZT1PmmNV/Z2T9fuYaI9LCQJgMqIMAQCgCdkTIf0//4fsCQ4KEQAAAAAAgFyUIcAGRKMSGck4B3zsaj9ThtRdn0IpkjaGxupXU4YkaVQipgyxRZciPYOpX44tRUwZUvd1hVJk2xkv131NoxSxCxERnUrELkQM31IkbSJkdPPn6i43zR7XsxDRqEOyFmLGFiKmCLFpFCKmCknSKEReXNNT9zWNQsQUIbZmLUSyXg80CpFKytOYSiGScswa1UXa8YrEvwZVMvYDiD1mjdfGrNWysWWIKUFsGmVI2up8jTIkrSbQKEPsIsSILUMmbRFi0/h0mzKuSh2S8dG7mQuR6JXkGTdb7Gr9skoQkfoaRESnsmhLeVrRqBaybovYYy69BLFp/BqkHLLGbVx2CWKL/b0zJYj2uCLUIAAmP8oQAACaiOtESCoKEQAAAAAAgFSUIcAGLKYUySpEROJWAGYVIjXXHVCLuH5PyKrYtELEFlKMZBUiSUG1SEYhkhRSi2QVInWX8yxG0uqQNCHFSFohYgspRrIKkaS0WiRqImTctEpXQwoR1wWZoYVIVhlixBQiaWWIEVOIpJUhRkwhklWGiJRXhxghlYjra0BIKZJVWtSMG1KKOBxzSHXhcrwhrztZZYjN95hDjsV1tWxIGZJVgySFlCEuq/BDyhCXciCkDMkqQWwhZUhZq52N0qqQvJsk5tNtzrhRZUjBR+6yypDq+AGFSNAKcoebKGSVfqP2A0m9TEBdkVaApPG9LVxvh5BjbngFkhTy8Hc43JDHWpnPiS7HE1NuZNUgseNSggBoNUyGAKjymRzJmwzJ4vKB2GUypO5YHCY6QiZQXP8o5DIZYnOZHHGZDLF5TY44TIoYPpMjrpMiIn4TI66TIiL+EyMukyJJrhMkLpMiRvuSzWXeB66UjkVbB0+EJDlvvp7gMyni83cJnwmRokkQm8+kSN4kSBaXyZG8SZAsLpMjeZMgWSb61Fkhf/j0mRRxmVyojuszKeJx3D4TDD7H6zMR4ToZkuRy3K7HEPLHIp/JEJdJEMNnMsTnD84+kyE+fyT3mQxxnQRJcp0QmXSnxCrpj6Uh43pNinh+1G6G02U5/dE04PHj8ofgRp/6KvfynhMKrhMgIn5/pPe5TXyOeUInP2wu3xJwuK63c6NPgZXH5fcvb9IjZlyDyQ8ArY7TZAEAMMG0J0JEREY3f076f/4PMrLVM1J5ZitOmQUAAAAAADZolCEAcmXVIiFliC1t9WBIGWLLq0BiNmTPWzEbUocYRZVISCEi4lCJeJQhWdKKEZ8yJEteMeJTiNjyihHfOiSpqBQpKkSmX/gJmf21/ydDWy6Ul694nwxvvkRE/DdeT5MsRNae/jUZ/MRF6487Y/y8QiRm0WZRIeJbhdiyKpGQIsSWV4iElCFGXiESUoYYE1WIxK4Kz6pEfAqL1HGzfkUVVrHnFRcxx533mhNShhh5x1tUhsSsns0rQ3xKEFteGaKxyj6rEIndTDurEAmpQZKKypANoggx8m4KhQAj8zEQ+fG6zFNm5RUimSvHIx8zRavjJ/IUWJnfm1NY+BQgtrzbQuN2SDvusgqQmusNva2Lvi3i0PNu62YqQWxpv4chJYjLuCJUIAA2TAp/zgQAADFWf/wHIiIy8PbrqhMhWkwh0nHd22omQgAAAAAAADYklCEAvNiliEYhIlK/olCjEDGSNUhMGWJLrqCNKUOy2MVIaCFiqytGFAoRkfpKRKMQEamvRGLKkCzJYiSmELElixGf/UOKaBQjaexSxC5EtBdvmlIktgix2YWIRhkiUl+HxBQhtmQhElOEZGlUKaK1OtwuRGLLkOq4diGivJrdVBdax5uUfM2JKUNsyVLELkM0V88my5CYEiSLKUS0V9XbZUhsEWLYZUhsEWLYZcikK0GqV6A4lv3apTR23WNB+WN1o/YPqVsxrvSYsVfJN2MBUjdWoqyIKUCylHWb2EVIU+0HksYepoTDTd7WzVyCGPbvoUYNkjYuJQgAsGcIAAAAAAAAAABocZQhAKLs8en0PUViDU8pZzWcKUM0C5GkoenlPaUOzixpldfcdaWMa2wyf0Up4+4zf1Ep4x4y65FSxjX2nfJCaWOXVYw8P1zuY+SJwY1KGffXy/coZdxHejcpZVzj2ZfmljZ2WYVIZ2+562s6V5XzmtDeX8qw0tlX7tvr9hLKExGR9nXlHXfeXiUayloJXdZq9raRkj+ClTR+qUVIeVtllGpEqeqxlbl3iIhMymWRmhVIK2gr+U85k/H2LuszpKFZgyQNd5Uz7p0Xn1TKuAAwmU3Ct0AAAAAAAAAAAADuKEMAqNIuRcz5y4em6q6WGbVOyW/vzxHK3kNlZIruU6xdtAx3640/Mn39yZHbpuifKHl6z4CIiMyYap+0P86sKQM1/73DzJdUxt2+u3acV3e9ojJudbyOZTX/vVm7Tn1hLxifp1yLaFYivSO1x7Z0WGcPjlfG9yIxblu5vcq4xtrh2l/0v63SKVtWr6u9PZb1zsi4ZLiRoTaRPv00rm3t+ufojn695+uy9g4x7HPCV5Qe3h0Dtc/NbYp7fIisX51fUX6qLqMMqR6rcmFhnyNfqzyx99yw91GJZZ+7vqyipZQypNJWd/tosPdLqdvDInTcor0xIpVVhNiPuZF2xetRXgppP4fav5eh2gdqE6ShbqWBx9lFhVYBYT/G7Mdg/BWM/78Sfr+Tj2fN/VLsz1zar4fD9mdErZvGGlb7931wfH9M7ddxShAAKEYZAgAAAAAAAAAAWhplCIDSaFQieSsyY2oRe5VSkkYlYhcidf8eWIwU7XUSW4ok65A0McWIKUPSaNQidiEiolOJ2IVIkkYtYhciRmwpUrSAPrYYiSlE7CIkSaMOscsQW2gpYhchtthCxC5DDI1CZGQo5/lSoRRJliGGRiFilyFJGpVI1urX2ELELkPqrjdyZWzWvg2xK0w1ypDMY4ssQ4pWnMeWIVnFg0YZYtcgSU1dhuTsWaFRiNhFSHXsyIKjaDV+6PhllSBJeY+3qEIkcglkUSkQW4TYJYihUYTk7auhUYSkPZ5UipCcIWLKkKLHcWwVkvcZSyT89a+uAKm74rBxa+RcRczvv6lA0miUIdQgAOCHMgQAAAAAAAAAALQ0yhAADRNSivisyAwpRYpWLyX5FCNFZUjNZQMqkaJCJMmnFikqQ2whpUheIWILKUbSChFbSDGSV4jYQoqRrEIkKaQW8Vk8H1KLhBQieWWIEVKIFBUhSSF1SFEZYoQUIllVSJqQUiS3DDECCpG0IiRLSCmSV4bYfEoRn5WvIZVIURlScyweq2SzqossvitOQ8oQ72PyKER8VpuHlCE+dYPP+5G8EsRWWhlihKwgzylCjJAyJKsESR0/oN5wXY0fMnbZVYjL4yuoDAlY+ujz/BhShGRVIEkhRUheAWILKUJcHjdBRYjHt4QUIb6PXa/73+PzTkgRUliD1ByMx8Aew4b87ueVILaQMoQSBADiMBkCYEK5TpCEnKbCZXLE5028zWVyxGdSpO57HSZJfCZFDJfJEd9JkSSXCRKfCRHDdWLEZTIkjesEic+kSJLrBInLpIjNZZIk5oxCLpMkLpMiLpMgNpdJEZ9JEJvrpIjrRIjNdWLEZzLEcJkUcZoEyeIwOeIzGWJzmRzxmQwxXCZFYk4D4jI54jMZYrj8och34iHJ5Q8urpMhUcfhMBkS9AdWh8mQmFM7ubwP8ZkEMZpiMsRh8iOLy23qMwlSHddxwiL0dESu4zfDJIjNaVLE4bEY8zzo8jvqMulhc50E8Zn4SHKdBAk9lZrz4zFkzsThdznm8eryeAj53OTy2uY16WFzuasihne5TX0mPwzXSRAmPgBAH6fJAgAAAAAAAAAALY0yBEBTySpFNDYwFcmuRWIKEZHsSiSmDKkbK6UUCSlDsqQVIzGFiC2tGAkpRGxpxUhoHZImrRgJrUPSZBUjIYVIUlYtorDntIhk1yJphUhIEZIlrRSJKUOMrEIktAixZRUiIUVImqxKJKoMScqoRGLKECOtEAkpQrKklSKxG8TWjJ/yqxZShtjSVtPGFBm2tFWpWWWI6vWmlCGxmy+LpJchGpt8V8dKGSqkBMnS8I3UI2qQpKzbOKQGSR0/Y4W+ygbVOeOXVYRovZ8VyShEMh6TWs95Wb+rIRVIUlYRElqApEmrQkILkNTx0+4PjX3UU36HNR+faY+N2M9FNeOnvJZFlSC2rLsw8iqybuOQCiRNVhlCCQIA5aMMAQAAAAAAAAAALY0yBEBTM6WI5kq6JFOKaK6ASjLFiGYhkmRqEc1CJMnUIpqFiMj6SkSjDEljahHNQiTJ1CKahYjt1V2vRNchaUwxolWI2EwxYgoRzSokyRQiGlVIGlOKaJUhNlOKaJUhhilE1IoQ23gholGEpDGViGYZkmQqEc0ypDr2Op0iJEvbkG6hYasMry9DSr2ewVGVEiRL+9pR1SLEMO9DNGuQpIbtHaJUhNjMba5VhFTHHV+5r1WCZI3fjHuDuKjWIeOPyzKe20TWFyGxBUiaoe521QLEZooQzQqkZnxzH5T0EDJliPZj1DxWyvoMZIoQ1QokydydJQ1vbm+tEsRmyhBKEABoPMoQAAAAAAAAAADQ0ihDAEw6e34qfV8RDcNdbVLSQnYRWV+IZO0xEjxuyYXI0PSxlYCj3eUsF65MHVs+Nm1G/f4fGuZM6x8bvzN9H41YjShFRETeOO2JUsZ9ZXi6iIjs1LVcfeyl2g/2cU+s20RERIZLWtexeN1cERF5fPUm5Yy/eraIiCwf6C5l/NUDY7d7f9+UUsYfXT32ZFYZKOf2bx8vTzrWKK/IHH8Ky9hSJ5rZP6SsQsSs5C1r9XfX6vI+FgyPvz51pOztoWF0vHjoXFXOjTPSNTZ+2p4nMcyq8va15by+mnKgUtaq+PHbPW1fg8lgtNwgpHr7lH37q45ZYgUisn5/kDJrEBGpPt9r066fbNVaqbOc6zHFQ1mPyeHx49auoUzNX2aBOTCrUmoZedeFVCAA0AwoQwAAAAAAAAAAQEujDAEw6WmWIsNd9auwNEuRtL1DNBfOm0Kk5muKtYgpRJI0axFTiCRp1iKmEKm7DqVixBQitslSjJhCxKZVjGhWIqYMSdKoREwRkkajEjFFiE2rEDFFiE2rEDFFiE2rEGnP2ItErRDJeLrSKkUqGeNorWTNKkK0ShHNMmQ447VHqwzJWhGvVYaMpLwfENErQ7L2wNAqREYyxtdaDZ51+0+GQqRRNUiS5ip8rRoka+8erSLEFCC2yVKElF2AiKTvY6JZhKTtM6L5WBxOOVbNImQoZb8RzTJkYFb9exfNMoQSBACaE2UIAAAAAAAAAABoaZQhAFpWaDGSVoekiSlG0gqR+uOIGD+lEKm7TEQxklaI2GKKkbRCxBZTjGQVIjXjR9QiWYVIUjPXIlmFSFJMLRJTiKQVIbaYQiSvDDFiCpGsMiQpphLJKkOSYiqRrDIkKaYSySpDkqIqEcenpdBSJKsMsYWubHUtQEJLkZgyJKsEsYWWIa6r4UPLkKwSxBZThmTVIEkxZUhWDZIUsyrc5T5o5jJkIooQW9m3f+b3ZlQgSTFFSFYFktTMRUij9gHJE1OEpBUgtpjHXloBYospQtIKEFtMEZJWgKQJrUIoQABgcmEyBMAGwWdixHUyJMl3YsRlMsTm8/djl8mQ1O9z/GOWy2RIFp9JEpdJEZvPJInLpEjd+B6TJC6TIrZmmiRxmRSx+UyS+EyKuEyC2HwmRVwmQWw+kyIukyA2n0kRl0mQLC6TIy6TIFl8JkdcJkNsXpMjAU9dPhMjrpMhST5/4AmZ5PD5Ht/JENcJkCSfyZCQP/76TIa4ToAk+UyGuEx+2HwmQ1wmP7K4/GE05o/vzTQp0gyTIDafP0z7jO8y6WHzmQRxmfSwNdMkSDNMeth8JkFcJj2yuD7mXCY+0vhMhrhMfth8J0NcJ0CSfCZDmAABgMmL02QBAAAAAAAAAICWRhkCYIOWV4yEFCK2vGIkpA6x5S2sD61DasYoWPUbU4gkZdUiIWVImqJaJKQQqRm/oBYJKUSSJroWCSlE0mRVI3mFSEgRkiWtFAkpQrLklSIhZYgtrxSJKUOMvEIkpgwx8gqRkCIkS2oporghal4pElKG2PJWv2pslJ43RlEZElKC2PLKEI2NofPKkJASJEtaIRJSgmTJK0RiihAjb5W4xv0wkWVIM5YgWULuh5D6I01RERJSgSRNdBHSjBVImqwyJKYCSSoqQkJLkKS8KiSkArHlvS6GFCC2vCKEAgQAWg9lCAAAAAAAAABMcltvvbW0tbUV/t/FF1880YeKCC73cVtbm9x4440TfahNR2FdMgBMXnd/r3a1T+im61myVgnHbL6elLVCebhLpDK+0jqmEKkMpn/dFCMdqysqdUhbf/rc/Ih0qNQhazJWvMdswl4z/mD6HWqKkcdXbhxVhzzRv3Hq17WKkT+t2T733005EluIPLpuTurXk8WIqUQ0ixCjfXwZacwG63l2mP6iiNQWIhpFiDFnam3BtHygW6UIMbqt34eYjdbTjEytfa6I2Wg9z9C0see8qI3Wc9ghk3ke1qhCROpX0cZsGpvGXlWeV4polCC5x6K4wt4Y7Gmv1iGaJUgezSIkjUYJkqeM+8GM2chCZDIVIYa5b83q/eR1aBUgNlOExJYfWUovQkRqqpDJUoCkGelsUytA0iSrEI0CxJYsQjQKkDwaBYgLSpDmt3r1avnLX/4id999t9x///2yaNEiefbZZ6W3t1f6+/tlYGBAuru7ZcaMGdLT0yM9PT2y9dZbyw477CA77LCD7LTTTrLXXnvJlCm673MBTB5MhgAAAAAAAABoOn19ffLTn/5UfvGLX8iNN94oa9fmL2hbvXq1rF69Wl58cWyh0j333FPz793d3XLAAQfIoYceKm9729vkda97XVmHDqAJsWcIABTY/YT/KnX8oWmlDl/dm2S4u9yn+3WzFU/Kn2K0a+z4K9MzcpVIU7rHxp3Xs7qU8Y3XbbS41PEr48v0FkxdWur17DjluVLHXzY8o9Txn1k3r9TxH+rbVEREXlwzs9TrWdw7q9Tx+1dNFRGR0TUlLVEWkcrairQPlLuitKOv/EKgY0CkTWebo0ydBXt6xOroL/9jQXs5T+FVoxWRjv5yX49E8s8xr2G0IlJZV/79kXeuf5XxSy5DzH4LbUPlXk8ZVUiNkhe9j7Y1ppIquwop+34wlUbenj0xhrobUzeMlnw1Q1PHrqDs+3toSrn3993fpwJpdi+++KKcccYZ8sMf/lD6+vpKu57dd99dPvGJT8jRRx8ts2fPLu16GmXrrbeWZ555pvByF110kRxzzDHlH9AG5Gtf+5rT5Y455hjZeuuto66rzfG1/YYbbpCDDjoo6rpaDWUIAAAAAAAAgAk3NDQkZ511lpx11lmyenW5C9VERO677z454YQT5Itf/KK89NJL0tPTU/p1ojWdfvrpTpc76KCDoidDEI7JEAAocN9/fz7161rFSNn7ilTMSuX+9JUDWsVIR1/6MrShGTqr69rWje+BIuknsY8tRtb2j437sqTvi6FVjNz7yhYisn4/EVvM3iIiIiPjJ01/amB+6r9rFSOPrd1MREQGRtPfSuw+dVHU+HPbx1Z/lVGIPNi/Rd3XetoH1K9HRGSTaStFpJxCZFn/NJk2pfZxv2ZtOZs8tE0b24OhrEJkeGrt85B2KWI/n2rt72Gzfx3USxH7ZpkEfbd9Pvz2QeU9UBqz0LpuXxDt4qFRP0fZ7H0uRtvbpKJ8n4usL0LKkroPRRmxAEVIjdILnHFZ+3RoFSGNKkDKZgoQm3YRQgGCpCeffFL+4R/+Qe66666GX/fAwIAMD+dspgagJTAZAgAAAAAAAGDC3HzzzXLEEUfIsmXLJvpQALQwJkMAIFCyGImpREy5MWI9I6etXI6pRbKupz2lGAmpRbLGTytGYmoRU4iYPUSMkdX1K+JDahFTiJg9RIyXV9UXIzG1yJrBsTvTLkQeX7lx3WVDahFTiBhmL5GsYkQkrBqZOr703S5E7hvYsu6yIbWIKUSMmFIkrQgxVg2P7Y2hUYiY/UKSTCFixJQiy/qzNxrSLEXMfiFJphAxJkMpUllX/72TsRTpXJPyvNyEpUjWimtjsLtNOiP2JpmoEsQ20hlXPDRLCTLaFrdviF2CpDEVR8ztVVSCjHa0qewbklqEGOY+i4kHGvX4LbkI0SgDJroCSYopQpqpAol5XsmqQJI07veyKxCDGmTyuf766+Xwww8v3BwdAGIxGQIAAAAAAACg4e688055z3vew0QI4GFU+ZSFGxImQwBAgca+IlllRc1lSt5fxEirRUTcihGXn0Njf5GsQiQprRYRcStGsgqRpLRaJMmlHMkqRJLSahERv2LElCKVnCXAMfuMZBUiSWm1SJJLORKyl0heEWIzhYjhU4qkFSFZNEuRPKYUKXsvEcOnFKmsdV/CmixFtPcTEZmYUkR9PxGR+lJEpNRaxGXFtYZGVBRFJYjKdXj+HCNd48/b65rvw65LERIjZE8QU3X4FCK5JUiWkEJkAy5Cyi5AYp6HfIqQZipAbD7PLS4FiAYKELhatmyZvO997wveKH2nnXaSQw45RA455BBZsGCBzJs3T+bNmyeVSkVWr14tzz//vCxcuFDuu+8+ueOOO+TGG2+UFStWKP8UACYTJkMAoERlb75u+JxSy2WyIovPKbVCridrkkQke6LEZVLE5nNKLZdJkSw+p9ZymRSxZU2SiGRPlLhMith8Tq011foLb97kiC1vssSeKEmePquMTdYNl9Nn+UyCZNlk2srCCZG802MVSZ4+q2hiJO30WK6SkyOT4RRaWZLPn0UTIx2BZ1YrfbP16sD2FYcPNVkmP8wfLTv68//QWfYESLOcCquIOati0ctC7ASI6+myYjdHd5kUCZoE8dWISbwm2SC9mU555aJoEqSZJz6Sip5jtCY+iu7/Rkx8MOnRuj796U/LokX+p9I98MAD5fTTT5cDDzww8zJdXV0yZ84c2XnnneUd73iHiIgMDw/LTTfdJD/72c/kZz/7maxatSr42AFMTpPjVR4AAAAAAABAS/i///s/+fnPf+71PVOnTpWf/vSncuONN+ZOhGRpb2+XQw45RC644AJZsmSJnHPOObLFFu4VOYDJjzIEACZAWjFiapGYciOp6JRaWtcTc0otHxqn1sqTdUotw5zBNqQQSSo+tdbY//cpRNIUnVprZLTNqw7JUnRqraltQ151SJasamT3qYsyT53lc3qsIsnTZ2lssp4m69RZMUVImqxN1mOKkDRZp9DyOT2Wi6xSJG3j9BCTcbP1XB6lyGQpQZyvR7kEsUuHsn6ORp0uyy5EyjoVln27xZYgrtRrkKzTZbXIKbGMZBXQzKe8cmGKkMlSfrgq69RXdhHCqa+g7eSTT/a6/Pz58+Waa66R17/+9SrX39PTIyeccIIce+yxcv7558vpp58eNM66devk8ccfl4ceekgefvhheeaZZ+S5556T5557TpYtWyb9/f3S398vg4OD0tXVJd3d3TJv3jzZbLPNZPvtt5fddttN9t9/f9ljjz2krUHP7TEWL15c/VmffPJJWbJkiTz33HPywgsvyJo1a2RgYED6+/ulvb1dpkyZInPmzJFNNtlEtt12W3nNa14j++23nxxwwAEyY0Z5dX/SK6+8Itdff7389a9/lQcffFCeffZZef7552XNmjWybt066e7ulhkzZsgmm2wi2223ney4446y7777yhvf+EaZPz/7DAmXXnpp8DH94Q9/kMWLFxdebpNNNpG3vOUtqf/m+li54YYb5KCDDvI5vFQjIyNy1113yS233CL33HNP9b7v7e2V/v5+aWtrkxkzZsisWbNk6623lu2220523313eeMb3yi77767tLeXfI5VD0yGAAAAAAAAAGiIG2+8Ue666y7ny1cqFbn88svVJkKSpkyZIieeeKIcffTRzn+g/93vfid/+MMf5LbbbpO77rpLBgfdFswNDAzIwMCALF++XJ544gm56aabqv+2xRZbyIc+9CE54YQTZPPNNw/6Wcrwt7/9Ta666iq59dZb5U9/+pO8/PLLTt83MjIig4OD0tfXJ88++6z89a9/rf7b1KlT5bDDDpPPfvazcsghh6gf8+DgoFx++eXygx/8QG655RYZGcleQLl69WpZvXq1vPjii3L//ffX/Ntee+0l733ve+WTn/xk3cTIhz/84eDjO+OMM5wud+CBB2ZOhjTKY489Jt/73vfkJz/5ibz0Uv6epcuXL5fly5fLwoUL5cYbb6x+ffbs2XL44YfLhz70IXn7299e8hEXaxtl+3kAaGqv/bzu/iK2yvji7XU9pV5NddXzkHIxYhvpFBnuGS6+YIwpY+N396wtuGCcSmXsttpidm+p19PVPvbzbDvD7Y1tqJcGxh5ke8zyPy+wjxVDuiVFlkX9cxpzPavmiojI6nUZGwEp6V05drsNryt31U5ZhYitY43ZN6DcFXYd/WP/vxIXjRVfz5rRatFXlrKql6TRdpHONSV//Bgfvr1gb4pYI+O/Ku0lFxtmtXzHGp0SMsvw+Ory9nXlXk+1Rmr+xa9NxTwO2kp+i1Mtdzw2og+6ngaVZ+ZxNlry1Q13tZX+XLBuxtjvaFvJv6JD3WP/v+zHGgXIhu3II4+Un/3sZ86X/+pXvypf+9rXyjsgTzvttJM89thjpYw9depUOfnkk+Vf/uVfpKPDfw371ltvLc8880zh5S666CI55phjCi931llnyamnnup9HK7e8pa3yPe+9z3ZZpttVMa77LLL5LTTTpOFCxeqjCci8stf/lLe85731HytERXPgQceWDOpEHL9oWXICy+8IF/60pfkJz/5Se5kko/dd99d7r33XpWxYrRWHwoAAAAAAACgKQ0MDMg111zjfPn58+fLKaecUuIRNZeBgQE5/fTT5c1vfvMGscH7H/7wB9lzzz1rKpkQvb298u53v1uOOuoo1YmQDdFVV10lO++8s1xyySVqEyHNhNNkAUCTe+C/6vcX0axFzMrWrpT3WZq1iDn/fUfKHiOatUhlUERWpa9sVytG1o6N3y9Tci8WW46MjIzdVouWjRUIphSxxZYj64bHfp5HV2wiIutLEVtsObLx1LEH2ZK1Yz+PKUWSNKqRWR1rav5buxT52+p5qV/vqOguoTRFiDG9a2zZvnYhYooQo71r7OfQLkRMEWKMTFn/xrrMSmS0Y/3vTZmVyEhi26GyKhF7j6eySxENZe07UX9FjbmakQb9PGmr5oemjf2eaBciw9Z+A8NdJRUi9n1UUiGSVRyUXTpoSDt2szpfa5V+1h4t5vbRup0aXX5k0S5ChrvSB9SuQkwFklRGEWIqkJrrKaEIoQJB0k033SR9fX3Ol//MZz4jU6fq7m03Gdx0003y7ne/W/7whz801X4LZejt7ZXDDz9cbrvtNtltt928v/+ZZ56Rt771rfL444+XcHQbljPPPFO+/OUvSyufSIoyBAAAAAAAAEDpbr/9dq/LH3vssSUdSfO74YYb5Oyzz57ow2iIvr4+OfLII2VoyG+1zwsvvCCHHnooEyEK/vM//1NOO+20lp4IEaEMAYBJKa0WEYkrRkba1+8fYqTVIiJxxUjb0Pr9Q4y0WsQIqUbMquzkSm0RkfaMYkQksBoZL0TMHiK2/lX15UhMLWJKEbsQWdw7u+6yMbWIKUXsQuRvfelFhEhYNWJKkWQhcs+KLXO/J6QcMaVIbCGSVYQYQ4kl4zGViF2E2EwhIlLuPiKmEBEpfx+RZCUiEleKmL1C0iQrEZG4UsTsFZLGfu7ZkEqRZipBhsdXwMfsHeJSgpiV4jErwxu2in6cXYOUxuUmUShEXG4/c5mJLER87ueY1flZ9UcajdujWSqQpJgiJKv+SBPze59Wf2SJrULSCpDU64msQihA4OLOO+90vuy2227bVJuJT4QzzzwzdQPvVvTwww/L97//ffnMZz7jdPnh4WH54Ac/KE899VTJR9b6fve738nJJ5880YfREEyGAAAAAAAAACjdk08+6XzZ/fffv8Qj0dXe3i7bbbed7LrrrrLDDjvIrFmzpKenR6ZPny4DAwOycuVKefrpp+Wuu+6Sv/71r857MfT19ckPfvCDUjcxD7HJJpvIrrvuKrvssovMmzdPZs6cKTNnzpSRkRFZs2aNLF68WB599FG56aabZMWKFc7jfuc733GeDPn2t78tN998s/exL1iwQA499FDZdtttZd68eTIwMCAvv/yyPPLII3LTTTfJCy+84D3mZLZq1Sr56Ec/6r0/SHd3txxwwAGy3377yfz582X69OnyyiuvyPPPPy9/+tOf5K677vIufRqByRAAaCFl7y9iZBUjIm7ViNk/xC5E0mRVIy7FSFYhkiarGnEqRgoKkaS0WiTJpRzJKkSS0mqRJJdyJKsQSRNTjZhCRCR9H5GkvHKkqBpJ7iXiW4kUVSE2U4lo7yNiS1YiIn6liL1XSJ5kJSLiV4rYe4W40CxF8miWInkmqhQRKbcWaVgFIrJB7AniKmTvkJASJGjvkAZHFyG340hHW6l1SMx967Mq36f+SONzGzRj+ZHFpwjxKUBsPkWITwFi8ylCXOsPLVQgCDE6OiqLFrmX3rvvvnuJRxNv7ty58q53vUve8573yFve8haZNs3t/fWSJUvk9NNPl+9///tOl7/88ssnfDKkUqnIwQcfLO9+97vl3e9+t2y5ZX7RbwwODsoll1wiX/jCF2T58uWFl3/sscfk3nvvlde97nW5l1u2bJmcfvrpTsdgvOENb5AzzzxTDjzwwNzL3XHHHXLuuefKFVdcIevWrUu9TNqppNra3F5XbrjhBjnooIOcLtsIZ511ljz//PPOl582bZp84QtfkJNOOklmzZqVebmVK1fKj370IznvvPPk0Ucf1ThUFUyGAAAAAAAAAChVX1+fDAwMOF9+7tz808faHnroIbnnnnt8D6vGggUL5A1veEPuZbbaais57rjj5BOf+ITzBEjS5ptvLhdccIFsscUW8tWvfrXw8vfdd58sXbp0Qk6VNWXKFPnEJz4hX/rSl2T77bf3/v7Ozk752Mc+Jvvtt5+8/vWvl9WrVxd+z/XXX184GfLd735XVq3KWaVp+fSnPy3//d//LR0dxX8K33fffWXfffeVr33ta3LCCSc4X8dk1NfXJ+edd57z5TfddFP59a9/LXvvvXfhZWfOnCknnHCCHH/88fK9731Pfv7zn8ccqhomQwCgxfnsL2JWxMYsZi9jn5E0PsWITyFi89pnZK11WYdSxOazz4hLIZIlrxyxqxFTiIi4VSK2vGpEpLYcSdtHxJXPfiPJSkQkuxTxLUJsQ9Yy87xSpGivEBcupYhPEZIlphQJkSxFsiqRvL1CXCVLkbIqEZH056KsWqRjTdwKds19RbRKkMFpY7dtZ9bP1ui6QOnnKto7pJH7gmjuCZJbiGjeVw57h2jdhjH7h5RxP6YVIbHlR5q8n7fR+9ZoVCAixSVITP2RJq8IiSlAfJRRgORVSRQg0NTfn7PpWoo5c+Z4Xf7qq6+OLig+8pGPFE6G/Pa3v3WuAPKcdtppcu6558rSpUsLL3v33XfL2972tujr9PVP//RPKj/rzjvvLMcee6z8138Vn7nirrvuKrzMRRdd5HzdRxxxhHz3u991vryxYMECufbaa70m8CabX/7yl9Lb2+t02c7OTvnVr37lNBGSVKlU5DOf+Yx89KMfDThCfUyGAMAGKmuSRGT9RInmGX7SJknMBInL6bJc5W7GPv6XlpBJkTR5EyUiItWbL2BSJMn11FohkyJpXCZKQiZFsricYitkcsTmcootMykSOwmSJWtyRGMiJE3MabR8pG22HnJ6LBcTdQotoxVPpSVSO0nS0NNfibTcKbCq11fyH5ft02U1ZFP0RtxXo1L9Q3nZt2HWpEjZ12v+8GwmPEZLvuvMz9fQCY+Sr8pMgmhPdmQxkyCNmvAwp8cq+9RX5rHIhAcaZe3a4lMCJ/X0KK+oU6IxOSAi0tHRIfvtt59cffXVhZd9/PHHJ2QyROtnFRE54IADnCZDHn/88dx/f+CBB5w3TZ85c6ZceOGFTpfNMnXq1Kjvb2b/+7//63zZk08+WfbZZ5/g62qW27Exr+QAAAAAAAAANlhdXX4Lc/r6+ko6kubheiqw5557ruQjKZ/Wz3rrrbc6X+cnP/lJ78JoQ+J6W06dOlU+97nPlXw0jUEZAgCok1WN7P453c3Y7VrEXv02rLxwoFqNjNfZI53rV4KWsfKuWo6sapeRqWNL/EZn6O9mnFaOtLWP/WzTZvitvipiVyPtldpV+lvNKd4Uz4ddjSzrrz3F05Y9OtdXdIqtsjzRu/68v1MUa5ssq9ZMkfaOsesZHipnmbypRIaGx3/fSio3DFOKjAyO/TxlFRVG+3glb1Ylt5W0Ut6UIsNT16/Gax8oc9Nnv82bY66nquTKwKwYN/+/Y8BjJ+IAZpW/z4bHMcz1lF2EmFJoqLvitWl7qKHu9T9PmRudJ5VWTFjDjraVW4LY45rHSFk/n3nMN+p+GjLPhw167ij6mobB6bXjln1b3nM+BQgmlu/+Gi4bbjeD0dFReeihh+S2226rVgvPPvusLFu2TFauXClr166VoaG4z4ErV65UOtp4S5culZtvvlnuueceefTRR2XRokXy0ksvSW9vrwwMDMi6detSNxh3VfSz+uwL8/73vz/4OFrdc889Jy+99JLTZQ866KAJ2bOmDEyGAAAAAAAAACjVjBkzZMqUKc6ny2r2yZCnn35a/ud//kd+9rOfyZIlS0q9Lt/9VrQNDAzIJZdcIhdffLHcfvvtUZMdRYp+1qefftppnO7ubtlzzz01Dqklud6OImOnOGsVTIYAAJzdd059MaJZi3SMv+cxlUZ7yj5lmrVIZXBsNd5I52j1um1axUhlYGy55kjBS69WOTI6vip/TV/2fiMa1cjwSO0y1GeWZyfIGtXI3O7ajc8Xrcq+Pq1qpAxPr6xPxNcO15YamqXIC73151s2hYihVYoM9VuP8SkZK8mVipGOvtrj9tmcXENy896yKhEjWYmIlFuKaMnao6Qsjdo/IG9z6+Ep4xupr9W5fxpVmhh5e8bY+5RoSJYgtpiNzhsm5yE3qnie9eqYOU+dZTxW8h7r2vfL0NSC20v5YdCo5wvDrkCSyniMU4GgGbW1tcmWW24pTzzxhNPlH3jggZKPKMzg4KCccsopcs4550QXH65GRhr8hiDhmmuukeOOO06effbZhlxf0USLa82wxRZbSGen0oahLcj1dhQR2WabbUo8ksZizxAAAAAAAAAApVuwYIHzZW+//fYSjyTMihUr5O1vf7t861vfathEyET6zne+I+9+97sbNhHiYs2aNcUXEvc9SjZUrrejSGvdlpQhAIAoabVIUkg5YhciSWm1SFJIOVIZbKvZPyTtWNKEVCPVQmRq+sqetr7sl+aQasQUImYPkaS8akQkrBwxpYi9l4hIfjUiElaOzO1eU7ePiJFXjRiNrkfSipAsGqVIWhGSpaxSJFOyGCl7XxFrQVhZpchoxqLfsooRuxQxJqIYadUCxMhbHV+GRtYgeSVIlphCJK8EyTJhhUjE3R5ahYTsJxLzeAl5bMfcD4X1R5qIu72RzxV55UeWmNuS8gOT1T777CO//e1vnS772GOPydKlS533KjjllFPklFNOSf23gw46SG666Sbn48zyvve9T/74xz9GjzMZ/OQnP5F/+qd/mujDAFRRhgAAAAAAAAAo3X777ed82dHRUbnoootKPBo/P/zhD+X666+f6MNoiKVLl8qJJ5440YeRatq09MVwtmXLlpV8JJOb6+0o0lq3JWUIAKBUZe8zYssrR/KqkeT+Ia7yqhGR/HKkqBBJk1eNiOSXI3mFSJaickQkux5J7iWSVomkKSpHRNLrEXsfkaxSJE1RPaJVjvgUIVlMKaK5l0ieZCniWonU7Rfiyt5XxKEUsfcK8RFSinT0ha8uTitGytxfJK0Y0axFJmsFMjR1vGYYKH5O0ihBfPYOaaZ9QcoSUoTY1AsRxWjApQQJqT6yuDxmtIsml9s9qPzI4nA3N9O+H2WiAkErOfjgg2XatGnOp+g577zz5J//+Z+lvX0CXrwsZ599tvNld9hhB/nEJz4hb3rTm2TBggUyc+ZM6erqqrvcMcccIz/60Y80D1PF97//fXnllVecLjtt2jT5yEc+IocffrjssssuMn/+fOnu7pY267XxxhtvlIMPPjj62FxLoSVLlsjQ0JB0dPDn7zSut6OIyMKFC8s7kAbj0QAAAAAAAACgdN3d3fKOd7xDrrzySqfLP/PMM3LeeefJCSecUPKR5bv//vvl8ccfd7rsxz/+cTn//POd/gjvs29DI7neP9tss41cf/31su222xZeVutndd3Me82aNXL33XfL61//epXrbTU+m6LfeuutJR5JYzEZAgBoONd9Rjr6w/blyJJVjSSLkZBCJIvLfiMhhUgWl/1GTCEi4leJZHHZdyRvHxFfefWIqUZiShFb7L4jGkWILbmXSFYl4rNXiIui/USCi5AsAaVIDLsUESlvXxHDrkXKLEVEwvYXaXQBYrT6fiAirVOCFO0dolGDpHEqREq+W7NKEM36I03ysdOIx27abaxaf6SxrrLRzwkijSlAkrct5Qc2NMcee6zzH9tFRL70pS/JwQcfLLvuumuJR5XvlltucbrcZpttJt/97neda4Snn3465rBKsXr1arnnnnucLvvf//3fThMhIno/6+te9zrny1555ZVMhmTYfPPNZf78+bJ06dLCy954443y8ssvy7x58xpwZOVizxAAAAAAAAAADfGWt7zFa2JjYGBAjjjiiAmdOHj++eedLrf//vtLZ2fKSpuMMe++++6YwyqF688qIl6nvfrNb34Tcjh1DjjgAOfLXnDBBdLb26tyvUW6u91Wcvb3F5xvu4H2339/p8v19/fLueeeW/LRNAZlCACg6eSVI7ucrL/fSFox0j4wtiJwsKec5dp11Uj/2PoEs6J0cJbusuHc/UZGxlc/zlmnep0i+eVIz0zdN4FFe470D4x9KNl4dp/q9brUI2VJViIiIitWK6ZUOUwpsnbFeFZVKTlrSJQilVWNefuaVouUyS5F2tO341GXLEbahku+Hy1rZ49dd0eDzw7R6BLE7B3S0d+429espK806D4dnD724tXo4qXs+iNpaMrYz6i2X4mj0fY267/Lvb7h8dPZm/vSVDhlGhr/HWn046fR+3/cd25+GQ1saM4880x55zvf6Xz5J598Uvbbbz/51a9+5bUJuxaX1fMiIuvWuX+mOv3002VkpNEvnsVcf1aRsZ/XZSPu22+/Xa677rqYw6rafffdZZtttnGaHFuxYoUce+yxcsUVVwRf35o1a5x+xpkzZzpNdDzyyCNy2GGHBR+PpiOOOEL+93//1+myZ511lrzrXe+SPffcM+i6XG/HsjEZAgCYVB46O/+DpPZkSeeqsQ/Kaae9GJqu/wcR84eAruWVzFNtaE+UVP+Qvbx+Q78aypMlq1aO/eG+0pH980yfpvcX4e6pY+c9WjUwpToxkkVrwqTdOvfRcNpO2grsSZCKNTkxMlLyH3yS45c9MWKusqv2eirryvkZzcbpWZMjjT6dlkj5p9QqxcTsOZxqpL2xEwWN0shTCWU9lZnXrbL+qF3WfWYmOjKvd2i0lEmQvImGsn7Phwte6su678yER9r1lTkJkjwVqjHSXs7vCpMdgJ/DDz9c3vGOd8i1117r/D0vvfSS7L///nL00UfL1772Na89D2K5/hH3xhtvlOXLl8ucOfkLpi6++GL53ve+p3Fo6nz+YP3LX/5SPvrRj+Ze5tlnn5UPfvCDsYdV45hjjpGvfvWrTpf9+c9/LieccIJ8+9vflvZ291UFS5YskU9/+tPy8Y9/XN7znvcUXn7u3Lny4osvFl7u+9//vhx77LEyY8YM52MpyxFHHCGf+9znZMWKFYWXXbt2rbzrXe+Sq6++WvbYYw+v67n44ovlxz/+sfzxj38MPVQ1nCYLAAAAAAAAQENdeOGFsvHGG3t9z8jIiPz4xz+WHXbYQd70pjfJv/3bv8lNN90kjz/+uCxbtkxGRkZkYGBAnn/+efnLX/4iP/jBD+Too4+WO++8M+pYN9lkE6fLrVixQt7//vfLkiVLUv991apV8qUvfUk+9rGPRR1PmVx/VhGRk046SX77299m/vvVV18t++yzjzz77LMah1Z13HHHeU0mnHvuuXLggQc67f3yyCOPyHHHHSc77LCDXHPNNc7X4Xrqt0cffVRe85rXyIknnijf/e535ZJLLpFLL7205v9ca41YPT098ulPf9r58kuWLJG/+7u/k69//euycuXK3MsODAzIj370I9lzzz3lox/9qCxbtiz2cFW0jY6OttaSKAAAMmhUIyEbo8YWJCHXqVKPhNQEkfVIXiWSRaMeKSpF0mjUI7GlSMhpsTQqkerpsXwoFCMhp8iKLUZMGeJ1nQq1SMhpsmJXknesVvhYEHBzN/o0WcZElCEap8oKKUA0ftaQp6vYFf8ax11UfaRer0IFEnJ6qdjf4aLqI/U6Fd4uZFUfZV5vWvFRRKMIof4A9P3xj3+Uww47zOv0UmX6yEc+IhdffHHd1//4xz/KoYce6jxOV1eX/P3f/73svPPOstlmm8nKlSvlnnvukWuuuSboj8JZx2Xbeuut5Zlnnim83EUXXSTHHHNM5r9vtdVWsmjRIufj23fffeXggw+WrbbaSkTGNku/7rrr5IEHHnAeI8nlz9Xf+MY35OSTT/Yee/vtt5dDDz1Utt12W9loo41k7dq18vLLL8uTTz4pN998syxcuLDm8r/85S+dypCzzz5bTjnlFO/jSbPVVlvVHUdSW5vba9oNN9wgBx10UO5lVq5cKTvuuKO88MILHkc4tkfKm970Jtl3331l4403lmnTpsmyZcvkxRdflL/85S9yxx13yMDA+nOS77777nLvvfd6XUcZOE0WAAAAAAAAgIY75JBD5JJLLpEjjzyyKffPMP7u7/5OZs2a5XQ6IZGxvTQuu+yyko+qPIcffricd955zpe/44475I477ijxiOqddNJJ8utf/1puu+02r+974okn5IknnlA/nne+851qkyGNNHPmTLnwwgvl8MMPd5qEMvr7++V3v/ud/O53vyvx6PQxGQIA2GDk7TfiWo20jfiXGh2rs1dtuFQjZvWkz/V2rsi/sFM5Ylby+5QEefuOOFQjI0PjG9R6FCKr12Rv0p6UV5CY/UQMl1Lkpd7iLLuoHknuKeJbiYRulh6zn0hQEVK9Iut6PEqRmE3T7b1FRMrbX6R6nRvK/iJNtA/IZDHU7b+ZusZeICH7pGhscTRa8S8AfI4xpPpIvU6PEqSMDcV9fk9D6o/U6/S4X0LKD43rDak/svhUIdQfQON94AMfkI6ODjn66KOdNqCeCJ2dnXLiiSfK17/+dbUxN9lkE9lzzz3VNhbXdOKJJ8oFF1wgQ0NDamN+9KMflYsuukhtvI6ODrniiitk//33z60oGmXnnXeWv/u7v3M6FVezecc73iH//u//LqeddtpEH0rp2DMEAAAAAAAAwIR573vfKzfccENDN0VPk3f6oS9+8Yuy5ZZbqlxPR0eHXHrppd57pjTKDjvsICeccILaeMccc4z84z/+o9p4xmabbSZ//OMfZbvttlMfO8S3v/1t6epSWrnQYKeeeqqcfvrpE30YpaMMAQBA8qsRkdpyJKTUyOJTjWheb1E5IpKoR5Ir+GP2m8irRozxesQUIkbIXiI2l4LE1COmFAnZSyTJpR4RGStI2q2lwVmlSGgRksWlFIkqQrKkPZYU9hVxumqrFkkrRUL2Cim83pSH00TUIiKexUiLFiAhtUTZNCqQPHk/s0YJksa8ZmUVAWnHolV8FLGLkDKqjzRZv39a1Ufm9abcB5rVh+91i+jWH2nSihDKD6B57bvvvnLffffJF7/4RfnBD34gw8PDDbvu+fPny/HHHy/HH3985mVmzJghv/nNb+SAAw5wPl1WmkqlIhdeeKG8+c1vlksvvTR4nLJ94xvfkIcffjj6NEiHHXaYXHDBBd6ns3K1zTbbyB133CEf/vCH5dprry3lOlztueeecsEFF8ixxx7bNPvg+PjKV74iO+64o3zqU5+Keow3M8oQAAAAAAAAABOup6dHzj//fLn33nvliCOOkPb29tKuq7OzU97+9rfL5ZdfLosXL5avfvWrMm/evNzv2XXXXeX//u//gguWnp4eueqqq0qpJLR1dHTIVVddJUceeWTwGB/72MfkV7/6lXR2xi0yKzJ37lz5zW9+I5dccolavRPqIx/5iNx6662y//77T+hxhPrgBz8oDz/8sBx11FFSqbTe1AFlCAAADvLKkZ1PddtvxFdeNSKyfrWty74jIfLqkZHxdxDD3crXnVGP2AtKK/MHdK93XF49Mrx67A18Z0/23iOhXAqSDoU6xkWyFOnvLXnJrs2qRSqry/vwW3O1KfuKNCqHsGuR9gYtIEutACaoAFnXM3bFXauap9Aom9k7pK1xC15rmAKirYFVjHnNGq3UPtAaVWOY163KUPJrE/N73iiD08dLoAlYmDo0bfy6PfZj0XTPd0+akOsFoGfXXXeVX/ziF7Jo0SK58MIL5Ze//KU88MAD0eNuttlmcvDBB8vb3vY2Ofzww2XOnDneY+y1115y9913y7/+67/KhRde6LTPSaVSkSOOOEK+9a1vTfgf631Mnz5dfvrTn8phhx0mX//61+XJJ590+r4dd9xRzjrrLHnPe95T7gFajj76aPnABz4gl112mfzwhz+UW2+9VUZGwj5H7bHHHvL3f//3QZMa++yzj9x6661y//33yzXXXCN//etf5eGHH5bly5fLypUrZWAg7vOsz0bnITbbbDP5yU9+Iv/yL/8i559/vlx22WWydOnSoLFmzpwphx9+uBx99NHKRxmmbbTsWw8AgBZX1mRIkbInQ/KUNhniqKzJkDxlToa4aNRkSFJ1MqSs8+cUaNRkSJquZROzCspMhkzEHy87V0/M77M5jc1ETYZM5GmyJmoyxEx8NXIyxLAnQxolbTKkYdfNZEjDMRkCtKZnn31Wbr/9dvnrX/8qjz32mCxatEief/55Wb16tfT390t7e7vMnDlTZs6cKT09PTJnzhzZfvvtZZdddpFddtlFdt55Z9lss81Uj2np0qVy1VVXyQ033CD33nuvvPzyy7JixQrp7u6W+fPny2te8xp505veJO973/tkwYIFdd+/fPlyWb16deH1TJ8+PWjiRtPIyIhce+218oc//EFuu+02ee6552TZsmUiIjJr1ixZsGCB7L333vLOd75TDj300LqqYO3atc5/UN9iiy1Ujvnll1+W66+/Xu6880558MEH5dlnn5UXXnhB1qxZI4ODgzJ16lSZMWOGbLzxxrLtttvKjjvuKPvuu6/sv//+8qpXvUrlGFrByMiI3HnnnXLLLbfIvffeK0888YQsWbJEent7ZWBgQCqVikyfPl1mzpwpW221lSxYsEB233132X///WWPPfaQjo7m6TGYDAEAoAHKnDBx2UOkrAmTEYf3NGVOmIx2FU8QtM8q569AZnIkTSMmTMqeHMmtQkqeHKmsypkEacAcRV6VVVlb7s+eV4aU/QfNRkyGpJ2/3yh7MiTv+apjbfk/e95+IB39JV9/zsO27AmRRkx+5N23ZU1+uLz+lVlbmYmOPGU9Z5iJjtzrLnEShIkOAAAQqvVO/AUAAAAAAAAAAJBAGQIAQBPQKkdcKhGbZjXitFI2Q2xB4lKJZNGoR/JKkSJaJYlGLRK1T0hkMZJbhBR+c9RV1yjaryf16pWKkZg9Q2JXgWuUIXnlRxGtMiTkeUizDMkrQAqPI7YQiXgYahQiWhVIzGuJRgkSc/2xNYhL8ZFFswRxqT/qrl+pBqH8AAAAZWEyBACAScJnwiRkUsSF68RJ1B+ScvhMmMRMjuRxmTiJmRgp4jNx4jM5Utpm6Q4TJFGTIIWDu180ZBLE6RAcJkrK2jjd54+jvpMhMRMfeVwmRcp6jvGZFImZ9Cg8DpdJkZKu3mdSxGfyo6z7TMRtAqS06/e4H2ImOvK4/p6HTHA4Xb/HJAgTHQAAYCJxmiwAAAAAAAAAANDSKEMAAGghdj1SViFSJFmQlLkaOI9dkZRViuSxK5Iyi5E0dkWSVoqUVoRksUqRUquQLNbvRVlFSO4hWLVIWWVI4XEkrtcuQ8oqP4rYZchEPIfYhUiZFUjmMdh1SIMPIa0QsUuQRt83dgEyIa8v1v1QVu1RJPm7W1bxUXgMVhFC9QEAAJodZQgAAAAAAAAAAGhplCEAAGyAXvNlnQ3bfYxaAcDgjIl7C2Ify/CM4Qk5jsrA+nUpIxN0DNI2MfdDW//6O6FtcGJWNRudfWPXbz8uGql9jVXMTMDDoXNl469TRGTECqa6Vk7gc8N4aVAZnLBDEBGRtkTE1b5uYm6PkQn6fRjqXv+7EL2hvMIxiEzsc4N9LBPx2Lzvvz/f+CsFAAAoAWUIAAAAAAAAAABoaZQhAAAgV1kVic9K27IrEp9jKasiSVYiLkovSUoqRpJFSOFlSy5GTBHioqyV4XYR4qKsaqTMMsSuP1yUVYiMeuwzUfYq/DaPrYzKKkTKLkDssqFIWTWIz3GUXYL4HEtZj0FqDwAAsCGiDAEAAAAAAAAAAC2NMgQAAETTqEe0VuJqVCRax6JRkfgWI3mia5KIWsSnCHEaL6Ia8SlCXIU+ZkLKkCKh5UhMGRJSfhQJLUN8yg9XMavzfeoPFzGFSGwF4lt55NEoQLSOR+M5X+tYNEoQqg8AAIB0lCEAAAAAAAAAAKClUYYAAICGyqtIyj5Pe5aimqSRx1VUk2iWIq4Ki5KcYkS7CCmSV4yUUYS4yHv8lFGG5MmrRorKkDLqjzx5ZUgZ9YeLvFX72gVIkbxCpKgA0Sw8XBWVII08pqLn9Im4fUTyH1/UHgAAAPGYDAEAAE1rp6+Us3l7jHWzmu+t02gHx5Sno29sAqnszbB9tPeP/bF1tIk67c6+iT6CdJ1rmuexNDr+N/KOgYk9jqThrok+gslhcMbETHDkeeBbTHAAAAA0UhN9/AIAAAAAAAAAANBHGQIAAFpKo2sSn1PjrJ3TmLddPgXEcHdj3wo2uhgxVYiLRpUjpgpx0chypFnLEJHG1SGjHvFAo+uQRhcgPqdFa9TvzuB0jzuowSEIlQcAAEDzowwBAAAAAAAAAAAtjTIEAABs8DRrEu1NlDVrkrJWb2vVJRrViE8J4kPztvMpQ1xo1SMbShniU3/40ChFtOqPsja71/w98Ko8XCgOR+UBAADQmihDAAAAAAAAAABAS6MMAQAAiJBXlWhXIqHy6pJGnes/T1FZ4lKMlFWE+Ci6LbWLkBB5FUkzlyFGUSFSVvXhw6UQKSpAyio7fOQ9ntWrjlA5h0HdAQAAANvEf2oEAAAAAAAAAAAoEWUIAADABHnNv+jtVaItWRAMTZsEbxebZKF6GrsIaYYaJ03Hmok+gmyj7bX/3dnXvI9J+1ib0dC09Y/JtqEJPJACD/wXdQcAAAD0UIYAAAAAAAAAAICWRhkCAAAwSU1UWZK374SrhtYmDa5GNPcGaWRF0ugyRLOgaHQp0sj6I1lxhJqo+oOyAwAAAM2EMgQAAAAAAAAAALQ0yhAAAABUxdQmGsVIrKjiJHIBvmYREiO0JokpQ5pln4zYQiTm59AoOGLFFCBUHAAAAGh1TIYAAACgYXb6SvNuGh+iGSaAtHT2TfQRKJv4uQlVD/4HkxUAAABAjBb6+AYAAAAAAAAAAFCPMgQAAAAtrRlrlGYsSpq2DGnCwoNKAwAAAJh8mvBjGAAAAAAAAAAAgB7KEAAAAAAAAAAA0NIoQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBLYzIEAAAAAAAAAAC0NCZDAAAAAAAAAABAS2MyBAAAAAAAAAAAtDQmQwAAAAAAAAAAQEtjMgQAAAAAAAAAALQ0JkMAAAAAAAAAAEBL65joAwAATD4jIyOycuXKiT4MAAAAABlmzpwplQprYAEAMJgMAQB4W7lypbzrXe+a6MMAAAAAkOHXv/61zJ49e6IPAwCApsESAQAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDS2DMEAKCi866NpG2ovfrfbZU2SfxH/tdrvtaW+J+V1K9nXT759Zrvzbq8+d9Z15P4n07X73KdZlCH8UaT35ZcvpD2M9R9b8HPkXXZjOspHE9ERmuWWGT8HG11/5x5/VnXOZp1/cmvJ5nbN+04XMeLuP7q7aJ2nQ5fl/qvu92efv/b6bh8vi/j8sG3RdExxYztehmPMXyPS9pG6y8T8TOkjpdjNO17Pa8n+xjTL1PzdCoplyn6dxFpcxk78+ujia+Puh2TdZ21v/7149ljVjIvU3/9WePVPLUn/nfW2E5fl9Hcf3f531nHUpH8703+e+31jwSNl3/5+jHba65/JPX72l2uX9KPtz1zzJHx60x8LeNYs76eeZ2Jr6cde9YYyetprxnb5XZJXmfGMY5/b3vWz+b082ccY+Zl6v938q1a8vcp+b/bE5dpz7hMJfELW0n8BrRL/ddrL1tJ/77Ee89VK9vlIyfNFwAAkI3JEACAirbBirQNK0+GVDImKUazvp743rZK6tdTJw+yrifrf2f9lawt489NqeP4/qVVii+T9b9r/lBX8BfTGr6XSX454/qrkzEel807FJfLjD++3P4Y7HKdvtevfZ2B/zvieoInaXy/T9K/rj4ZovRzak+G+F//BEyGZI45AZMhaZepOW7fyRC/6yyajMj8mSXj65m3S9Zl6m/ztqzLZtwW2ddf/L/TJkN8/7f3JEXKZEjtv/tOhuRPAIxdpi3xv+snQ9L+vX68rAkISf964j6qnUhIOe6aMdocvp48Xkn9eu2xpx1T4vtqxkheZ/LrxZNE7TW3S/1lsv89fULFZTIk+zL5kyG115/4esbtWXuZ5Ncz7pfx/117Wan7d/s6K2kvPgAAoAanyQIAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALa1jog8AANAaRjtHRNqG13+h0rb+f7eN5n+95msZ35f8emUk4+vJ761kfD3lfycvW/Pvkv71zPEcrtMMmnYc1v8eTfk29+9NfkNSm/X/RUal6LKul0kYzfh6ipqxRzO+LqkXybn+lMtk3p7J/511/3tePu1Y1K7T4X9LytcjriftIex9LKHHHfO/G3U9LtflcjtnXD77uWC0/jIZl80eo2C8HKNp3+t5PdnHmH6Z2qe2lMsU/buItLmMnfn10cTXR92OybrO2l//+vHsMbMvk3L9NT9b0bNvzuUd/veo+VlrHjd+/zvxam4db9H1Z409kv71zMun/+9K4vKVxJiV8cskx2tL/nvi6yOZ463/38NSP7aISHvGmObrycdBe8bYWV/POpb2muuRxOXNZeu/NvZ96f+79vLr/6M98+ttqV+vpPx7zfUkjiZ5ndm3S/J7HW6L8f+d9fPX3BY1159x+Yyfs13qv1572Ur69yXee65ayVpXAACKMBkCAFAxuNcrE30IaFYZf99qFi5/IwcA1KqflrAmNzCJpc0M8od2AAAw+fGOBgAAAAAAAAAAtDQmQwAA3lasWDHRhwAAAAAgB+/ZAQCoxWQIAAAAAAAAAABoaewZAgDw1tPTU/e1Sy65RGbNmjUBRwMAAABs2FasWCEf/vCHa76W9p4dAIANGZMhAABvlUp9WDhr1iyZPXt24w8GAAAAQJ209+wAAGzIeGUEAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2NyRAAAAAAAAAAANDSmAwBAAAAAAAAAAAtjckQAAAAAAAAAADQ0pgMAQAAAAAAAAAALY3JEAAAAAAAAAAA0NKYDAEAAAAAAAAAAC2tbXR0dHSiDwIAAAAAAAAAAKAslCEAAAAAAAAAAKClMRkCAAAAAAAAAABaGpMhAAAAAAAAAACgpTEZAgAAAAAAAAAAWhqTIQAAAAAAAAAAoKUxGQIAAAAAAAAAAFoakyEAAAAAAAAAAKClMRkCAAAAAAAAAABaGpMhAAAAAAAAAACgpTEZAgAAAAAAAAAAWhqTIQAAAAAAAAAAoKUxGQIAAAAAAAAAAFoakyEAAAAAAAAAAKClMRkCAAAAAAAAAABaWsdEHwAAtJK+vj55+OGH5ZVXXpHe3l4ZHh6W6dOny+abby477rijzJo1a6IPsWWNjo7K4sWL5cknn5SVK1fKqlWrRESkp6dHZs6cKQsWLJBXv/rV0tbWNsFHWmvFihWyZMkSeemll2T58uUyMDAg69atk+7ubpkxY4bMnz9fdthhBx47AAAAgSb6PfrIyIg88cQT8re//U16e3ur7/U23XRT2XHHHWXjjTdWv86hoSF5/vnn5cUXX5SXXnpJ+vr6ZO3atVKpVGTGjBkyY8YM2WabbWSrrbaS9vZ29etPMzw8LE899ZQsWrRIli1bJv39/dLV1SXTpk2TTTfdVLbYYgvZbLPNGnIsAIANE5MhADYIo6OjcuKJJ8q9995b92+ve93r5Jxzzgkee2hoSH73u9/J1VdfLY899pgMDw+nXq5Sqciuu+4q733ve+Xggw8O+qP8ddddJ2eeeWbwsRa5/PLLZdNNN1Ud8ze/+Y2cffbZpV3fgw8+KNdcc43cfPPN0tfXl3vZ6dOny5ve9CY5/PDD5bWvfW3U9Ybo7++XBx98UB544AF5+OGH5amnnpJXXnnF6Xu32GILectb3iKHHXaYvOpVryr5SAEAAMKcccYZ8tvf/lZlrNe//vXyn//5n0Hf28j36FmWLl0qP/vZz+T3v/+9rFixIvNy22+/vRxxxBFy2GGHBU9MPPvss3L//ffLAw88IE888YQ888wzsm7dusLvmzJliuyzzz5y2GGHyRvf+MZSJkbuvvtuufrqq+XPf/6zrF69Oveys2bNkl133VX2228/OeiggyZsQdALL7wgjz76qDz22GPV/zOLrYzYz5EAgMZjMgTABuGqq65KnQiJdc8998jZZ58tzz33XOFlR0ZG5P7775f7779ffv7zn8u//uu/Nt3KJ+1q4qWXXpL/+Z//UR3TWLZsmXznO9+RG264wfl7Vq9eLdddd51cd911cuCBB8qJJ54o8+bNK+X40vz+97+Xb37zm0Hfu3jxYrnooovkkksukX/4h3+Qf/zHf5SpU6cqHyEAAMDk1wzv0X/1q1/JeeedJ/39/YWXfeKJJ+Qb3/iG/OIXv5Cvfe1rsuWWW3pf3wknnCDLli3z/r61a9fKrbfeKrfeeqssWLBATjrpJLVFQwsXLpRvfetbXp/DVqxYIbfddpvcdttt0t3dLW9961tVjqXInXfeKffdd5889thj8uijj+ZOXgEAJi/2DAHQ8hYvXiwXXHCB+ri/+MUv5KSTTnL6kGV76KGH5JOf/KQ88sgj6scVav78+eqJ/tlnn11Ya4RYvHixfPKTn/SaCLHddNNNcuyxx8qzzz6reGTlGxoakksvvVQ++9nPSm9v70QfDgAAQFNphvfo5557rnzzm990mghJevLJJ+VTn/qUPPzww1HXH+qpp56SE044Qa655prosX7729/KJz/5yVIWpJXhu9/9rvz4xz+WO+64g4kQAGhhlCEAWtrIyIicddZZMjAwoDruH/7wB/n2t79d9/W2tjZ53eteJ/vss091YuHll1+Wv/71r3LPPffU5PmrVq2SL3zhC3LBBRfI5ptv7nS9PT09st1220Uf/zPPPCODg4M1X3vHO94hlYreHPmvf/1rufPOO9XGM1atWiUnnniiLF26tO7fenp6ZP/995cdd9xRZs+eLaOjo9Lb2yuPPfaY3HrrrXVZ/ssvvyz/9E//JBdffLH09PSoH2uRrq4u2W677WTLLbeULbbYQubOnSvd3d3S1tYma9askSVLlsgjjzwi9913X92pHR5//HH5/Oc/L9/73vekq6ur4ccOAADgoqOjQ7beeuug7/UtNCbqPXrSZZddJldccUXd17u7u+XQQw+VBQsWyKxZs+Sll16S+++/X26//XYZHR2tXm716tXyxS9+Ub7//e9HFSrz58+X7bffXrbYYgvZdNNNZfr06TJ16lRZu3atrFixQv72t7/JnXfeWfeeemRkRP7jP/5DpkyZIm95y1uCrvuKK66Qc889t+7rbW1tsv3228vee+8t8+fPl9mzZ8vw8LCsWrVKFi1aJE8++aQ8/PDDmac0AwAgFpMhAFraz3/+c7n//vur/73zzjtHr7T629/+Jt/4xjfqvr711lvLqaeeKq95zWvq/u2oo46Sp556Ss4880x5/PHHq19ftWqVfOUrX5ELLrjA6fy8BxxwgBxwwAFRx7906VL5wAc+UPO1trY2ecc73hE1btILL7wg5513XvW/Z8yYIXPnzpVFixZFj33BBRfUfWhra2uTD33oQ7mnjurv75cf/vCHcvnll9d8fenSpXL++efLF7/4xehjK9Le3i677LKL7LfffrL33nvLDjvsIJ2dnYXf9/LLL8sPfvADufbaa2u+/tRTT8nFF18sxx57bFmHDAAAEGXevHnywx/+sPTrmcj36MZjjz2WWqQfcMABcuqpp9YtvjnqqKNk4cKF8uUvf7mmVl61apX8v//3/+S8885zPo3t3LlzZZ999pF9991Xdt99d5k/f37h94yOjspNN90k5557rrz00ks1X//2t78te+21l8ydO9fp+o3rr78+9TS5Bx98sHzqU58qnOBZvXq1/PnPf5ZrrrlG/RS+IaZPny7bb7+9bLbZZnXvxQEAkw+nyQLQsp599ln5wQ9+UP3vWbNmyec+97nocS+44AJZu3Ztzde22WYbOffcc1M/ZBkLFiyQc845p+4yTzzxhPzyl7+MPi5X1157bd1qq7322ktt4/TR0VE5++yzZc2aNdWvHXfccd4fpNL09fWlfgg5/vjj5dhjj83dQ6O7u1uOP/54+dSnPlX3b9ddd13dhohlOPzww+W73/2ufOQjH5FddtnFaSJEZOyPCKecckrqsV911VXq5RMAAMBk0wzv0b/zne/Uvc8+6KCD5N/+7d8yK+Stt95azjvvvLoK5aGHHvLaiP6HP/yhfPnLX5Y3v/nNThMhImMLig466CA5//zz6yYpVq1aJb/61a+cr19k7PPXf/zHf9SULh0dHXL66afL6aef7lS6TJ8+XQ499FD5r//6L3nzm9/sdf2xuru75bWvfa28733vk3/5l3+RSy65RK699lo555xz5CMf+UhDjwUAUA4mQwC0pJGRETnjjDNqPhCdcMIJMmfOnKhxn3zySfnTn/5U87WOjg75yle+IjNnziz8/mnTpslXv/pV6e7urvn6pZdeWvfhrQyjo6Ny3XXX1X39//v//j+16/jf//1fueuuu6r/vffee8vhhx+uMvbtt99ed3qv7bffXt7//vc7j3HkkUfKggULar42NDQkf/7zn1WOsUwf+tCHZJdddqn5Wn9//6Q4dgAAgLI0w3v0u+66Sx588MGar82dO1e+8IUvFJ6KdtasWXLKKafUXe7HP/6xjIyMOF1/jHnz5snnP//5uq/feOONXuOk7ZPyla98RQ4++OCg42pkGXLGGWfItddeK//zP/8jn/vc5+Stb32rbLXVVk1RpwAA9DAZAqAl/exnP5OHHnqo+t9veMMb5K1vfWv0uDfddFPd1w466KC6P67n2WyzzeRtb3tbzdeWLVsmN998c/TxFbn77rvrNpOcNWuWvOlNb1IZ/7nnnpPzzz+/+t/d3d2qp59KO83WoYce6vUhpVKpyKGHHlr39cmykXraCrmFCxc2/kAAAACaRDO8R0+rKI488kinyRgRkd13313222+/mq8tWbJE/vrXvzp9f6x99tlHZs+eXfO1RYsWOU/G/OlPf5K777675mtve9vb5KCDDlI6wnK96lWv8jolGgBgcmIyBEDLWbhwYc15iadPny7//M//rDJ2sngwQjYWtD9oiYj8/ve/DzomH7/5zW/qvvaWt7zF+XRNeUZHR+Wss86qWQ127LHHqp1+S0Rk+fLldV/baqutvMdJ+55ly5YFHVOjpW3k+corr0zAkQAAADSHiX6P3t/fX1emdHV1yWGHHeZ1/e9617vqvnb99dd7jRGqUqnUvW8fHh6W3t5ep+//6U9/WvPfXV1dcvzxx2sdHgAAKpgMAdBShoeH5YwzzpB169ZVv3bcccfJxhtvrDL+U089Vfe1XXfd1XucHXbYQbq6umq+ds8995R6qqxVq1alrmzTOoXVVVddJffee2/1v3fbbTd573vfqzK2kTZpEzKRY9/2WV9rRsnHttHR0TEBRwIAANAcJvo9+r333lv3Hm2PPfZwrkKM17/+9XWn6vrLX/5SswdHmdLeZ7q81160aJHcf//9NV97wxveUFeaAAAw0ZgMAdBSLrvsMnn00Uer/73XXnvJO9/5TpWx165dW3cO3GnTpmVuhpins7OzbkPxdevW1ZzaS9vvf//7ug84O++8s2y77bbRYy9ZskQuuOCC6n93dXXJySefrH6O3bTK5KWXXvIeJ+170oqLZpR8fBuT5dgBAAC0NcN79Pvuu6/ua7vttpv39Xd0dNTtD7ds2TJZvHix91i+Vq9eXXfa2JkzZ8qMGTMKv/eGG26o+1raaWkBAJhoTIYAaBlPP/20XHTRRdX/1t6vYtWqVXVfmz59evB4aR8sHnvsseDxilx77bV1X9PYOH1kZETOPPNMGRgYqH7tYx/7mLz61a+OHtu255571n3tjjvu8B4nbcPxvfbaK+iYGmnlypWppzrbZ599JuBoAAAAJl4zvEd//PHH675mT2q4SitayvyMYFx55ZV1C6f23ntvp8VNafuahP78AACUifNqAGgJQ0NDcsYZZ8jg4GD1a5/85Cdls802U7uOKVOm1H0t5rRWyckD45lnngkeL89jjz0mTzzxRM3Xuru7VVZsXXnllTVZ/E477SQf/OAHo8dNs91228muu+4qDz74YPVrt9xyizzyyCPymte8xmmMBx54QG699daar+21116y9dZbax6qut7eXjnttNPq9k3Zd999g/ZNAQAAaISBgQG59NJL5f7775dFixZJb2+vDA4OSk9Pj8ycOVNe/epXy+677y577rmnbLfddt7jN8N79LR/Dy130z6/LFq0KGgsV9ddd51cfPHFNV9ra2uTD3zgA4XfOzw8LI888kjN12bNmiXz58+v/ndfX5/8/ve/lz//+c/y1FNPSW9vr3R0dMisWbNko402kt12201e//rXyx577CGVCmt2AQDlYTIEQEv4yU9+UrNiatddd1Xfr2LGjBnS3t4uw8PD1a+tXr1ahoaGgvZsSNuM8Lnnnos5xExpNcHBBx8s06ZNixr32Wefle9///vV/+7o6JCTTz5Z2tvbo8bNc9JJJ8mnPvWp6sTXyMiInHrqqXLGGWfIzjvvnPu9DzzwgJx22mk1512eOnWqfP7zny/teGMMDQ3JwoUL5cYbb5Rf/OIX0tfXV/PvPT098s///M8TdHQAAADFent7a06naixbtkyWLVsmCxculFtuuUVExt7DH3XUUXLAAQc4jz/R79EHBwfllVdeqflae3u7zJs3z/u6RUQ22WSTuq89//zzQWPlWbFihdx1111y9dVXp25A//73v7/wvbXI2OcBuyjZYostqv/717/+tZx33nmyZs2amssMDg5Kf3+/vPDCC/LQQw/JZZddJttss4187GMfkwMPPDDwpwIAIB+TIQAmvaeeekp+9KMfVf+7q6tLTjnlFPVVRW1tbTJv3jx58cUXq18bHh6Wxx9/3OmDQtLixYvr/rAtMvahUNvatWvl+uuvr/t67CmyRkZG5IwzzqhZeffhD39YFixYEDVuke22206+8pWvyOmnny5DQ0MiMna7HX/88XLwwQfLIYccIjvuuKPMmjVLRkdHpbe3Vx577DH5v//7P7nppptkZGSkOtbUqVPl3//932XLLbcs9ZjzLFy4UL7+9a/XfG14eFj6+/vllVdeqamdkubOnStnn322vOpVr2rEYQIAAJTuwQcflNNOO00OPvhg+dKXvuR0uquJfo/e29tb8/5SRGTevHnBi4M23nhjr+vP853vfKduP5O1a9fKqlWrUid9jHe+851y3HHHOV1H2kTNjBkzZN26dfKVr3xF/vSnPzkf79NPPy3/+q//Ku985zvl85//fNBkFgAAeXhlATCpmdNjmT+Ki4gcc8wxpf1x+7WvfW3NBy0Rkdtvv937g1bWh4IVK1YEH1uWG2+8se5D3VZbbSWvfe1ro8a9/PLLazaT3HbbbeXDH/5w1JiuDjzwQDnvvPPkrLPOkr/97W8iMvah9/rrr0+d+Emz2267yRe/+MUJP8XUwMCAPPnkk86X7+jokLe+9a3y6U9/WmbPnl3egQEAACgym3F3dXXJqlWrZMWKFTXv4ZNuuOEGefzxx+Xcc8+VjTbaqHDsiXyPvnLlyrqvdXd3e11v0femXYeL5557zut95pZbbimf+MQn5KCDDnL+HruKERn7Gf793/+97vZsa2uTOXPmSE9Pj/T19cny5cvrJpJERK6++mp5+eWX5cwzz+S0WQAAVUyGAJjUfvzjH9fshbHjjjvKkUceWdr17bXXXnV/bL/66qvlqKOOcv7QMzg4KL/85S9T/y3tHMWx0k6RFVuFLFy4UC688MLqf7e3t8spp5zS0NVbO+20k1x00UVy2223yXXXXVc9vUKRgw8+WP7+7/9edtttt5KPUN/f/d3fyWc/+1nZdNNNJ/pQAAAAcm277bbyxje+Ufbee29ZsGCBzJo1q+bf161bJ48++qjcfPPNcvXVV0t/f3/Nvy9ZskROPfVUOeecc2Tq1Km51zWR79HT/i1tHxNXad9bxmeEpNmzZ8unPvUpOeyww7wnH9I2sL/99ttr6vFZs2bJhz/8YTnkkENqTh/W29srt9xyi1x88cWydOnSujEuuugi+fjHP+750wAAkI0pdgCT1uOPPy6XXHJJ9b87OjrklFNOKXW/ikMOOURmzpxZ87Vly5bJOeec4zzGBRdcIEuWLEn9t6zVcaEWL15cl8Z3dnbK29/+9uAxh4eH5cwzz6w5N/AHP/hB2WmnnYLHDHXffffJddddJ3feeafz99x0001y/vnnyx//+MfUlWjN7JZbbpGPfexjcu6559ZtpA4AANAM3vCGN8gFF1wgF198sRx77LGy55571k2EiIyd2na33XaTz372s3LFFVfIG9/4xrrLPProo3L++ecXXudEvkdP+7euri7n67WlTYZof0aw9fb2ytlnny3HH3+83HrrrV7fa+8XIlK7gf32228vP/rRj+QDH/hA3T4qs2fPlne+851yySWXyB577FE3zo9//GNZuHCh1/EAAJCHMgTApDQ4OChnnHFGzUaJRx99dOn7VXR3d8v73//+mipCZKy+mDp1qhx//PGZdcTw8LD88Ic/lMsvv7zUY7SPK7lZuIjI/vvvH3V6pcsuu0weeeSR6n9vueWW8tGPfjR4vBC9vb3yH//xH5k1SE9Pj8yaNUsqlYqsWLGi5tQGIyMj8uCDD8qDDz4or33ta+XLX/6ybLbZZo069Do77bST3HzzzTVfW7dunfT19cnixYvloYcekt/97nfV04GtXr1arrjiCvnd734np512mrzhDW+YiMMGAABIdfDBB3t/z6xZs+Sss86Ss846S6699tqaf/v1r38tH/jAB3LfrzXbe/S2tja1sUSk7v28q7PPPrtunL6+Punt7ZXHH39c/vKXv8gf//jH6uTFQw89JKeddpocdNBBcuqpp0ad7ktEZM6cOfLNb36z8LPHtGnT5Oyzz5aPf/zj8uyzz9Yc709+8hP58pe/HHUcAAAYlCEAJqWLL764+sdhEZFtttmmYftVHHXUUfKa17ym7utXXXWV/OM//qNcddVVsmjRIunv75eBgQFZvHix/OpXv5KPfexjNSXL3Llz68aIWUVmGx4elt/+9rd1X485RdbTTz8tF110UfW/29ra5OSTT446FYCvF198UT7zmc/UTYRstNFG8ulPf1ouu+wy+c1vfiM//elP5dJLL5Wrr75arrzySjnppJNk8803r/meBx54QI477jh55plnGnb8Lrq6umTu3Lmy2267yZFHHikXX3yxnH766TWrKlesWCGnnXaa3HTTTRN4pAAAAHq+8IUvyI477ljztaGhIbnyyisLv3ei3qOnTbIkywhfaaWF1qlo29rapKenR1796lfLoYceKqeeeqpcccUVdXuE3HjjjfKFL3zB6efIq/J99ribOnWqnHTSSXVfv/7662XNmjVOYwAAUITJEACTzqOPPio//elPq/9t9qvo7OxsyPV3dnbK17/+dXnVq15V92+LFy+W73znO3L00UfL2972NnnrW98qRx11lHzzm9+Up59+unq5uXPnyhe/+MW6758xY4bacf75z3+u29Bwk002kX322SdoPLNZ/eDgYPVr733ve6M3YvcxODgop556at0pDPbbbz/58Y9/LEcddVTdhIeIyMYbbyzvec975OKLL5Z3vOMdNf+2bNkyOe2000o/F3Osgw8+WP77v/+7ZkLEnLLsueeem8Aj+//bu/uYqsv/j+OvA4oCBw9mIoSYgMAQNQxNzbt0lrqcdzWdjZYzV6mJNs10LWst55w3360yK8qazjSzxrwrb6ZTa0pqkngDiejyBpUbEbkTD/j7w+k6fD7IOYcjyPk9H1t/8Ibr+lzgH12f87puAAAAPKNFixZ68803DfX09PR62zbVHN3sPpOGhCFmbRu6Q+NB2rZtq48//ljjxo1zqGdmZmrlypX1tq9rbDabTcOGDXNpLElJSXryyScdatXV1crMzHSpHwAA6kIYAqBZqaqq0uLFix2Ox5owYYLpKrCHqUOHDvrqq6/cCgLCw8O1dOlSw7nG0t3dDZ5idnG6O5ci3rNu3TplZ2ff/zo0NFRvvPGG2+Nzx4YNG5STk+NQS0hI0CeffKKgoKB627dq1UrvvfeeBg4c6FC/cOGC1q1b59GxPgydO3fWO++841ArLy83HAkBAADQXCUlJRl2Z1y4cEHXrl2rt21TzNHNfr72ZfCuMGtr9gxPS0lJUVRUlENt8+bNDsdWmalrbImJiW4tVuvVq5ehdvz4cZf7AQDADGEIgGZl06ZNDqu3OnbsqClTpjTJWNq2batPP/1UCxYscOrOiRYtWmjs2LFavXq1YmJiVFpaavgZT91dUVhYqIMHDzrUfHx8DLsinHXt2jWtWbPGoTZv3ryHukqtNrvdrp9//tlQnz17tkvHi1ksFs2aNcvQJi0t7aFfTukJQ4cOVUREhENtz549unnzZhONCAAAwHMsFoueeuopQ/3q1atOtW/sOXpwcLBhsVFhYaFqamqcGm9tZqGP2dFdnubr66vk5GSHWk1NjbZs2fLAdnUFRTExMW6NIzY21lCrvdsdAAB3cYE6gGaloKDA4evy8nJNmzbN6fb/PeLpnuzsbNNAZfXq1fX25+vrq5EjR2r48OHKzs7W0aNHlZubq+LiYpWWlsrPz0+hoaFKSEjQwIED9fjjj99va3ZPRe3VWO767bffHHbPSHdX2ZkdG+CMGzduOPztWrZsqS+++MKlPmofbSXdDVRqrxibMmWKBgwYYPjZ7OxsFRUVOdQiIyMN50o7IyQkRElJSQ6B0Y0bN5SVlaVu3bq53F9j69Onj8Mqverqap04cYLL1AEAgFcw+/C/uLjY6faNOUdv2bKl2rVrp/z8/Ps1u92ugoIChYSEOD3me8xCn7CwMJf7cUefPn0MtYyMjAe2qSso+u/Rrq4w22ly48YNt/oCAKA2whAAzVpRUZHhA3JXVVRUGI5ecpWPj4/i4+NdOq7r7NmzhpqnPojfvn27oTZq1CiP9C3dDZUa+jeTzF8269rhYPb3SkhIcPvZXbt2NeyeOXv2bLMIQ8xCLe4NAQAA3sJs97HZxeL1aaw5eqdOnRzCEOnuQiB3whCzBUSdOnVyuR93BAUFyWq1OuyOqW+OGRISIn9/f8PxXu7e52i249udf3sAAMxwTBYANJFTp045fN26desGfbh/T0ZGhuFsX5vNZrrbojkpKSkx1IKDg93uz6xtczlqqlWrVoZaeXl5E4wEAADA88x2gbi708BV7szRzY52OnnypFvPP3HihFP9Pyy1w4j65pg+Pj6m4zM7bswZZu0a698eAOD9CEMAoAlkZ2cbAotnn33W9ENuV5ldnD58+HC3V2c9KsxWid26dcvt/szaeuLv3xiuX79uqPGSCAAAvIXZ7uGGLIJxlrtzdLM7Tty59Lu6utoQojz22GOG++IelpqaGsORVM7MMXv27Gmo5eXluTWGK1euGGrMcwEAnsIxWQCalZSUFKWkpLjdPi8vTxMnTnSoJSYm6tNPP23o0FxidozViy++2OB+y8rKtG/fPkO9oUdkxcTEaP/+/Q3qIyUlxXDm8I8//uj0GchmL8DuvmRJ5lv+G+Ml2xPMVho2xsWaAAAAD1tJSYlhd4afn1+jBALuztETExPl5+fncJzTX3/9pZs3byooKMjp5//555+G46Z69+4ti8XidB8NkZWVZbh30Jk5Zt++ffX999871JrrzhgAgHdjZwgANLLc3Fxt3rzZoRYTE6PevXs3uO/du3ersrLSoZaQkKDOnTs3uO+m1rFjR0Pt2LFjbu0OuXPnjtLT0w31xlp11xCFhYU6duyYQ83Hx0ddu3ZtohEBAAB4zoYNGwwfyPfs2fOh7+BtyBw9ICBA/fr1c6hVVVXp119/dWkMtZ8vScOGDXOpj4bYvXu3oebMMb5du3Y1zNWzsrJ0/vx5l55fXFxsOkd/+umnXeoHAIC6EIYAQCOqqKjQkiVLDC9406dP90j/ZkdkeWLHyaMgLi5Obdq0caiVlZXpl19+cbmvXbt2GS6ntNlszWLV2cqVKw2XSCYkJLAzBAAANHtZWVn66aefDPXBgwc/1Od6Yo4+duxYQ239+vVO30mXmZmpgwcPOtTCw8PVq1cvp8fQEOfOnVNaWpqhPmjQIKfav/TSS4bad99959IY1q5da5jnxsfHq0OHDi71AwBAXQhDAMANtV+UnFFWVqZ3331Xp0+fdqiPHDlSSUlJDR7T2bNnlZWV5VDz9/fX0KFDG9z3o8DX19f0Rfjbb781HL/1IDk5Ofrf//5nqA8ZMkQ+PvX/bzElJUWDBg1y+M+ZVX87d+7U3r17defOHafH+l81NTX6/PPPTVfsmb18AgAANKbLly9r8+bNun37tlvtT58+rfnz5xt2/UZERGjEiBFO9dGUc/SkpCTDLorCwkItX75cNTU1D2xbUlKixYsXG34uOTlZvr6+9T57xYoVys/Pd3qstZ0/f15z5syR3W53qEdFRZneB2Jm1KhRCgkJcajt3bvXNGAxc+DAAW3atMlQnzx5slPt3Z2jAwD+fyEMAQA3zJ8/XytWrNDJkyfrfbmprq7Wzp079eqrrxouUoyMjNSsWbM8MqatW7caakOHDlVAQIBH+n8UTJ482XBEQlVVlebOnav169c/8Mgsu92uzZs3a8aMGSorK3P4nr+/v1577bWHMuZ7Ll68qA8//FCTJ0/W+vXrTS+HNFNTU6PDhw/rrbfe0saNGw3ff+aZZ7wm8AIAAM1XWVmZli1bpokTJ+qbb75RTk6OU+2Ki4uVmpqqGTNmqKioyOF7Pj4+mjlzplq0cO6606aeo8+ePdsQXuzZs0cffPBBnTtEzp8/r+nTp+vixYsO9fj4eI0cOdKp56alpWnSpElatGiRDh48aAg16lJYWKjVq1dr6tSpKigocPiexWLRnDlznApjJKlVq1aaPXu2ob5ixQqlpqbWOU+32+3asGGDFi5caFg01Lt3b8PxYwAANAQXqAOAG8rLy5WWlqa0tDS1bdtW3bt3V3R0tNq3b6/AwEBVVlbq+vXrys3N1aFDh1RSUmLoIywsTMuWLfNIWFFVVaVdu3YZ6g29OP1R0759e7399ttavny5Q72qqkqrVq3SDz/8oL59+youLk7BwcGyWCwqKSnRP//8o/T0dMNL3j0pKSlq165dY/wKOnfunFatWqVVq1YpPDxcsbGxioqKks1mk9Vqla+vr8rLy3X9+nXl5OQoMzOzzpV+kZGRev/99xtl3AAAAM4oKCjQmjVrtGbNGrVv316xsbGKjo5Wu3btFBgYKD8/P928eVP5+fk6ceKEjh8/bjga6Z6ZM2eqb9++Tj+7qefocXFxev311/X111871A8cOKAjR45o2LBhio6Ols1m07Vr1/T333/r0KFDhuDGarVq4cKFTu1avqeqqko7duzQjh07FBAQoC5duigmJkZhYWGyWq0KCAhQVVWVysrKdPHiRWVnZ+vkyZOmu2ksFotmz56t7t27u/T7DxgwQBMmTDAs4Fm7dq22bdum/v37KzY2Vm3atFFpaalyc3P1+++/6+rVq4a+QkNDtXDhQpee3xAFBQWaN29end832/GUnZ2tKVOm1NmmXbt2Wrp0qUfGBwDwDMIQAGig69eva//+/dq/f7/TbeLj47V48WKP3fNw4MABw8tcZGSkUxceNjdjxozRzZs3lZqaalg9duPGjfsvgc6wWCyaNm1ak92rcunSJV26dEl79+51uW337t21aNEiBQcHe35gAAAAHpCfn6/8/Hz98ccfLrXz8/PT9OnTNX78eLef3VRz9OTkZBUVFRmOfKqoqNCWLVvqbR8QEKAlS5YoPDzc7TGUl5fr+PHjhh0vzri3w8Pd+fH06dNVWlqq7du3O9SLioqc+v0lqVOnTlq8eLFsNptbY3DH7du3nd7NdE9FRcUD25SWljZ0WAAADyMMAYBG5O/vr0mTJik5Odnp7f7O8OaL080kJycrPj5eS5Yscfq4qdrCwsK0YMECJSYmenZwdfD39/dIPzabTVOnTtXo0aNlsVg80icAAMCjokePHpo7d646d+7caM/09Bw9JSVFHTt21JdffqnKykqn20VFRemjjz5y+Xdv3bq1S8+pS79+/TRr1iw98cQTbvfh4+Oj+fPnq0uXLkpNTVVFRYXTbS0Wi4YMGaK5c+fKarW6PQYAAOpCGAIAbpg5c6b27dunI0eOKCcnp97LGiMiIvT8889r9OjRHtsNck9eXp6OHj3qUGvZsqVeeOEFjz7nUZOUlKR169Zp//792rZtmzIzMx94Z4h0d6Vbjx49NGrUKA0cONCjgVR9Jk2apMGDBys9PV0ZGRk6deqU6ZEAZtq0aaNu3bpp+PDh6t+/v/z8/B7yaAEAAFwTGRmpzz77TBkZGTp+/LjOnDmj4uJip9qGhoaqV69eGjNmjOLi4twew6M0Rx8/frwGDBig9evXa9euXaZHct3TpUsXjRs3TiNHjnRrfrp161ZlZGTo8OHDOnHihM6cOVPn0WP/5evrq4iICA0cOFAjRoxQRESEy8+uy8svv6znnntOGzdu1M6dOw33wfxXUFCQ+vTpo1deeUVdunTx2BgAAKjNcqf2GSMAAJdUVlYqNzdXeXl5KioqUkVFhSwWiwIDAxUWFqbo6GiFhIQ09TC9nt1uV25urv7991+Vlpbe35ZutVpltVrVqVMnRUVFNWoAUp/i4mJdunRJV65cUXFxsSoqKlRdXa3AwEAFBgbKZrMpKipKoaGhTT1UAAAAlxUUFCgvL0/Xrl1TcXGxKisrZbfbFRAQoKCgIAUHBys2NtbjQYT0aM3Rq6urdebMGZ07d05FRUWy2+3y9/dXaGio4uLi1KFDB48+z2636/Lly/f/9uXl5aqsrFTLli0VGBgoq9Wq0NBQRUdHq3Xr1h59tpk7d+4oNzdXubm5Kiws1K1bt2S1WmWz2dSxY0fFxsa6dD8KAADuIgwBAAAAAAAAAABejegdAAAAAAAAAAB4NcIQAAAAAAAAAADg1QhDAAAAAAAAAACAVyMMAQAAAAAAAAAAXo0wBAAAAAAAAAAAeDXCEAAAAAAAAAAA4NUIQwAAAAAAAAAAgFcjDAEAAAAAAAAAAF6NMAQAAAAAAAAAAHg1whAAAAAAAAAAAODVCEMAAAAAAAAAAIBXIwwBAAAAAAAAAABejTAEAAAAAAAAAAB4NcIQAAAAAAAAAADg1QhDAAAAAAAAAACAVyMMAQAAAAAAAAAAXo0wBAAAAAAAAAAAeDXCEAAAAAAAAAAA4NUIQwAAAAAAAAAAgFcjDAEAAAAAAAAAAF6NMAQAAAAAAAAAAHg1whAAAAAAAAAAAODVCEMAAAAAAAAAAIBXIwwBAAAAAAAAAABejTAEAAAAAAAAAAB4NcIQAAAAAAAAAADg1QhDAAAAAAAAAACAVyMMAQAAAAAAAAAAXo0wBAAAAAAAAAAAeDXCEAAAAAAAAAAA4NUIQwAAAAAAAAAAgFcjDAEAAAAAAAAAAF6NMAQAAAAAAAAAAHg1whAAAAAAAAAAAODVCEMAAAAAAAAAAIBXIwwBAAAAAAAAAABejTAEAAAAAAAAAAB4NcIQAAAAAAAAAADg1f4PypQdTya18QYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "ts.plot_ts(skycoord = coord, save_plot = True)" + ] + }, + { + "cell_type": "markdown", + "id": "0f514ed3-59d9-4d6c-9b4f-16e6dd920cae", + "metadata": {}, + "source": [ + "The image above plots the raw TS values, which is also an image of the GRB. However, for the purpose of localization, we are more interested in the confidence level of the imaged GRB. Thus, you can plot the 90% containment level of the GRB location by setting `containment` parameter to the percetage you want to plot. However, because the strength of the GRB signal is very very strong, the ts map looks the same under different containment levels." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "e8538ead-8564-42ab-bb87-0f21c70c7abc", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AACwhUlEQVR4nOzdd5hU5dk/8HuWXgVFiiiCvYG9xR4BxUpU3sSoCRqNJWoSS2LU2BOMMYm+xrxqTCRRExUTuxiJxg4qKnbAghUQBGnS2fP7w8CPZc7C7O7szuzZz+e6uC7nOXOe88zu7ILnnu9z55IkSQIAAAAAACCjKkq9AAAAAAAAgPqkGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAECNDR8+PHK5XN4fAAAAKEfNS70AAKBwH374Ybz22mvxwQcfxOTJk2PevHmxYMGCaNu2bXTu3Dk6d+4c6667bmy33Xax5ZZbRkWFzz0A8JUZM2bEAw88EE899VS89tpr8dFHH8WcOXNi2bJl0aFDh+jZs2dstdVWse+++8ahhx4a66+/foOtbenSpTFq1KgYOXJkvPzyy/Huu+/G7NmzV6xtww03jL59+8bAgQPjkEMOibXWWqvB1lZMY8eOjQceeCDGjBkT48ePj5kzZ8aCBQuiffv20b179xVf/8MPPzw23HDDelnDp59+GnfddVc8+OCD8d5778Vnn30WrVq1iu7du8f2228fhx9+eAwePDhat25d1OtOnz49Nt988/jiiy9WjB177LFx6623FvU6AADVySVJkpR6EQBAukWLFsUjjzwSd999dzz22GMxZcqUgs9t37597LjjjjFw4MA45phj6u2mCk3T8OHD4/jjj88b909LKD8TJ06Myy+/PO68885YsmRJQec0a9YsDj/88Ljiiitiyy23rLe1LVu2LP7whz/EVVddFZ988klB57Rv3z5OPPHEuPjii6NTp071trZiGjlyZFx00UUxduzYgp5fUVERhx9+eAwbNiw233zzoqxh8eLFceWVV8aVV14ZCxYsWO1z+/TpE9dcc00cdthhRbl2RMT3vve9+POf/7zicYcOHWLixInRvXv3ol0DAGB1FEMAoAzNmTMnrrvuurjuuuvis88+q/N8uVwu9tlnnzjxxBPj6KOPlhipB8OHD48PPvigyth2220XgwcPLsl66ptiCE3JrFmz4pprrskbHzp0aPTu3bvB11OoysrKuPzyy+OXv/xlLF68uFZztGjRIi666KK44IILir4V3qRJk+LII4+MV155pVbnd+vWLW6//fbYf//9i7quYpo/f36cdNJJ8be//a1W57ds2TKGDRsWZ511Vp3WsWDBgjjyyCNj5MiRNTrvqquuinPPPbdO146IeP7552P33Xev8nfE1VdfHWeffXad5wYAKJRiCACUmdtuuy3OPffcmDp1ar3M37dv3/jVr34VgwYNqpf5m6p99903nnzyySpj3/3ud2P48OGlWVA9UwyhKfnggw+iT58+eeP/+c9/Yt999234BRVgwYIFcdRRR8XDDz9clPmGDBkSf/vb36J58+LstPzKK6/EgAEDYsaMGXWap3nz5vGnP/0pvvOd7xRlXcU0a9as6N+/f7z00kt1nuv73/9+3HDDDbUuSA0ePDjuu+++Wp17ww03xMknn1yrcyO+KsrtuuuuVVIxW221VYwbNy5atGhR63kBAGrKx0IBoEzMmzcvjj766DjuuOPqrRASEfH666/HQQcdFOeff369XQOA0kmSJIYMGbLaQkizZs1ixx13jEMPPTS++c1vxr777htdunSp9vkjRoyI7373u0VZ33vvvRcHHHBAtYWQXC4X/fr1i6OOOiqOPvro2GeffaJ9+/apz126dGmccMIJ8cADDxRlbcWyaNGiGDRo0GoLIb17947DDjssjjnmmBg0aNBqt4u66aab4qc//Wmt1jJ8+PC8Qkgul4vvf//78fLLL8f8+fNj+vTpcdddd8U222yTd/5ZZ50V77zzTq2uHRFx8803520Pdt111ymEAAANTgN1ACgD06dPj4EDB8a4ceNW+7xtt902DjjggNh9991jk002iZ49e0a7du0il8vFvHnzYvLkyfHOO+/E6NGj4/HHH1/t3uSTJ08u8qsAoBxcdtll8dBDD6Ue69SpU1x88cVx3HHHxTrrrFPl2LJly+Lpp5+On//85/HMM8/knfu3v/0tdt555/jRj35U67UtXrw4vvnNb8b06dPzji2/QX/++edHr169qhxbsGBB3H777XHBBRfEtGnT8tb9ne98J8aNG1c2/bHOOeecGDNmTOqx/fbbL4YNGxa77rprlfEkSWLUqFFx3nnnpW4d9utf/zr22GOPOPzwwwtex5IlS+JnP/tZ3vgtt9xSpbjVpk2bGDJkSBx66KFx0EEHxX/+858Vx+bPnx8///nP44477ij4usvNnDkz78MXQ4YMia9//es1ngsAoK5skwUAJTZjxozYa6+94u2330493qxZszj22GPj3HPPja233rpGc7/77rvxpz/9Kf7whz/EnDlzqhzL8hZOpdDUtsmCpqQxbZP1/PPPx9e+9rWorKzMO7b99tvHyJEjo1u3bqudI0mSGDZsWFxwwQV5x1q3bh1vvvlmbLTRRrVa37Bhw1KTiS1atIg77rgjjjjiiNWeP3ny5DjwwAPj9ddfzzt28MEHx4MPPlirdRXTc889F3vssUfqsXPOOSeuuuqq1W53tXjx4hg6dGj8/e9/zzvWvXv3mDhxYnTo0KGgtdxxxx1x9NFHVxkbOnRo3HLLLdWeM3369Nhkk02q/LuhRYsW8eGHH0aPHj0Kuu5yp556atxwww0rHrdt2zbGjx8fG2ywQY3mAQAoBttkAUAJLVmyJI488shqCyFbb711jBkzJoYPH17jQkhExCabbBLDhg2Ljz76KM4666yi7fUOQHm69NJLUwshm222WTz22GNrLIREfJXQOP/88+OSSy7JO7Zw4cJaN/OePn16/PKXv0w9dsMNN6yxEBIRsd5668W//vWv6Nq1a96xhx56KEaNGlWrtRXTj3/849Tx4447Ln7961+vse9Hy5Yt49Zbb4399tsv79jUqVPjyiuvLHgt//jHP/LGfv7zn6/2nHXXXTd+8IMfVBlbsmRJ3HvvvQVfNyLi5ZdfjptuuqnK2IUXXqgQAgCUjGIIAJTQhRdemJcmWO6ggw6KMWPGxE477VTn66y11lrxm9/8Jl566aXYcsst6zwfAOXn5ZdfjpEjR+aNV1RUxC233BKdO3eu0XwXXnhh3lZOERH3339/ajJjTa677rqYN29e3vhBBx0UJ5xwQsHz9OjRI37/+9+nHhs2bFiN11VMjz/+eLzwwgt54927d4/rr7++4HmaNWsWw4cPjzZt2uQdu/7662Pu3LkFzTN69Ogqj3fccceCUj3f/OY388aq2/YrTZIkcfrpp1cpzG266aZx9tlnFzwHAECxKYYAQIm88MIL8Zvf/Cb12Ne//vX45z//WW3D2Nrq169fjB07NoYMGVLUeQEovbRtlSK+2j7qa1/7Wo3na9asWVx++eV540mSxLXXXlujuZYuXRo33nhj6rGaJB2WGzJkSOywww554//5z3/irbfeqvF8xVJdkeaCCy4oeGur5Xr16hWnnnpq3vjs2bPj1ltvXeP5n3/+eXz66adVxnbZZZeCrt23b9+8QkxaH5Pq/OUvf8krxFx77bXRsmXLgucAACg2xRAAKJEf//jHsWzZsrzx9ddfP+68885o1apVvVy3bdu2ceedd8b3vve9epkfgNJ4/PHHU8dPPvnkWs/Zv3//2HjjjfPG77777li4cGHB84waNSqv8XnEV83E+/btW6u1nXHGGanjt99+e63mq6tZs2bFww8/nDfeoUOHOP7442s15+mnn566rVYhr/Hzzz/PG0v7XqapqKjI65OTNl+a2bNnx09/+tMqY4cddlgMGjSooPMBAOqLjcMBoARGjhwZzz33XOqx66+/Prp06VKv18/lcrHXXnvVaY4ZM2bE/fffH0899VS88cYb8eGHH8bcuXNj6dKl0a5du+jRo0dsuumm8bWvfS0OPvjgWt/sqotnn3027r333nj++edj4sSJMWvWrGjWrFl07do1unfvHnvttVccdNBBsffee0dFRc0+I3LllVfG+PHjVzxe+b+Xe+aZZ2Lo0KEFzbfFFlvEeeedV/D1Z86cGU8++WS89NJLMX78+Jg4cWJ8/vnnMWfOnFi8eHF06tQp1l577ejSpUvsvPPOsffee8fee+8d66yzTsHXKCfjxo2Lf/7zn/Hss8/GhAkTYubMmZEkSay77rrRtWvX2H333WPQoEHRv3//Bv3k8fPPPx/33ntvjBkzJiZMmBCzZs2KZcuWRefOnWPLLbeMvfbaK4YOHVqjZtOTJ0+OESNGxJNPPhmvvfZaTJ8+PRYsWBDrrrtu9OjRI/baa6844ogjYs8991xj74G6WLBgQTzyyCPx5JNPxiuvvBKTJk2KL774IhYsWBCtWrWKddZZJzbZZJPYdddd48ADD4y99tqrxj9HdTFv3ry47777YuTIkfHqq6/GJ598EvPmzYuOHTtG165dY6ONNooDDjggDjnkkBo3+/7888/jnHPOqXKtNFdeeWUMHz68oDlPPPHE2HPPPWu0jpqYNWtWjBs3Lm+8WbNmdWrynsvl4utf/3q89957VcZnz54do0aNikMPPbSgearrN/Htb3+71ms74ogj4pRTTolFixZVGb/nnnviF7/4Ra3nra2RI0fmrSXiq0JAu3btajVnnz59YrfddstLWYwePTo+++yz1faAmTVrVt5Yx44dC772WmutVeXxF198UdB5F110UZXCV+vWreOaa64p+LoAAPUmAQAa3IEHHphERN6fvffeu9RLW6O33347+fa3v520aNEi9TVU92f77bdP7r777jpfP23uW265pcpzRo0alWy//fYFr61fv37JqFGjarSOffbZp0avf01/9tlnnzVe8+23304uvvjiZLvttktyuVyNr9GyZcvkpJNOSt59990avdY0t9xyS+o1amLDDTfMO//iiy+u8pyXXnop2XfffQt+jX369EnuuuuuOr22tO/td7/73SrPefbZZ5NddtmloDXlcrnkhBNOSGbMmLHa63766afJCSeckDRr1qygeffee+/krbfeqtNrTfPhhx8mp512WtK+ffsavb969+6d3HjjjcmyZctqfe1C3leLFi1KLrvssqRz584FrauioiI5/vjjk8mTJxe8jkmTJhX15zvt91SxjRs3LvW6ffv2rfPcf/zjH1PnPv300wueo0+fPqlzfPLJJ3Va29e//vV6mbc2jj/++NS13HbbbXWa97LLLqvVvKNHj84758Ybbyz4urvttluVc1u3br3Gc1577bW832Gr/l4HACgV22QBQAP76KOP4tFHH0099pOf/KSBV1O4ysrKuPTSS6Nfv37xt7/9LZYsWVKj81955ZU46qij4oADDojJkyfXyxqXLVsWZ555ZgwYMKBGe5u/9tprMWDAgNS98cvFoEGDYsstt4xLL700xo0bF0mS1HiOxYsXxx//+MfYfPPN46qrrqqHVRbXsGHDYpdddoknnnii4HMmTZoU//M//xMnnXRSlca9xXTppZfGXnvtldokOU2SJPHnP/85dtttt7xP1y/38MMPR79+/eLPf/5z6vZ5aZ566qnYYYcdYtSoUQWvfXUqKytj2LBhsfnmm8cf/vCHatMQ1fnggw/i5JNPjt122y3ef//9oqxpVe+//37suOOOcdFFFxX8KfXKysq45ZZbol+/fjX6vdDYVLeF0XrrrVfnuXv27Jk6/uSTTxZ0/uTJk2PSpEl54xtvvHG1cxequtTL008/Xad5a+OZZ55JHd9nn33qNG9tX2OnTp3yxubMmVPwdVd9bufOndd4zumnn17ld1jv3r1rlHoEAKhPiiEA0MDuu+++1Ju03bp1iwMPPLAEK1qzhQsXxuGHHx6XXHJJjYsgq3r00Udj5513Tt3OpS6WLl0aRxxxRFx33XW1nuOiiy6KSy65pHiLKqJ33nmnaHMtW7YsfvrTn8Z3vvOdgm+8N7Qf/OAHcf7559d6fTfffHOccMIJRV5VxJlnnhmXXHJJrQot77zzTgwcODBmzJhRZfyOO+6Iww47LG+8EAsXLozBgwfHmDFjanzuyubMmRMHHXRQnH/++TXqA5HmxRdfjJ133rngYlGh3nzzzdh1113jjTfeqNX5n3/+eey3337x6quvFnVd5aK690/aDfGaqu4m+Ntvv13Q+6W6ItSOO+5Yp3Wtbo6GLnzNnTs33n333bzxrl27xvrrr1+nubfffvvULejW9BrTttwstFBZWVkZH3zwQZWxNW2zePvtt8dTTz1VZex3v/tdtG7duqBrAgDUNz1DAKCBpTVXjYgYPHhwNGvWrIFXs2aVlZVxxBFHxMiRI6t9TvPmzaNv377Rs2fPaNu2bXz66acxfvz4am/OTZ48OQYMGBBPP/10bLHFFkVZ58knnxz3339/3nivXr1i4403jq5du8aiRYvik08+iVdeeaXam+yXX355HHTQQbHLLrsUZV0NoWfPntG7d+9Ya621olOnTrFo0aKYPXt2jB8/Pj755JNqz7v11ltjww03LLtEzGWXXRZ/+MMf8sa7desWm2++eXTr1i2WLVsWU6dOjbFjx8bixYtT5/nLX/4Shx56aBx55JFFWdd1112XWmzr06dPbLzxxrHuuuvG3Llz45133okJEyakzvH+++/HySefHHfffXdEfJXuOO644/Lej2uvvXZsvfXW0a1bt6isrIxPPvkkXnrppdT37fz58+OEE06IV199NVq0aFHj1zVnzpwYOHBgPP/889U+Z/nPePfu3aNz584xe/bs+PTTT+O1115LLQzNnDkzDjjggHj++edjs802q/GaVjVlypQ44IAD8tIPzZo1i759+0aPHj2iU6dOMXPmzBg/fnx8+OGHqfPMnj07hg4dGi+++GI0b56t/xWqTVqsrpYuXRpvvvnmGosar7/+eur4VlttVec1VDdHddesL2+++Wbq96AYr7F9+/axwQYb5L2v11QY7NKlS/Ts2TM+/fTTFWNjx44t6JpvvfVWzJ8/v8rY9ttvX+3z586dm5duPfDAA2Pw4MEFXQ8AoEGUdpcuAGhaKisrk44dO6bu/X3HHXeUenmphg0bVu0e+J07d06uueaaZNq0aXnnLVmyJHnooYeS3Xffvdrzd9hhh2Tx4sU1Wk/aPKvuGd+yZcvkrLPOqrafwueff55cfPHFSevWrVPn22677Wr8dSqkz0RdbLzxxivm3WCDDZIzzzwzeeSRR1K/9iv79NNPk1//+tep/Tniv/0U/vOf/9R4PfXVM2TfffdNKioqqqxv6NChyUsvvZRUVlbmzTFnzpzk2muvTTp16pS6nh49eiTz58+v0brSvpe77LJL0qpVqxWPmzVrlpx22mnJm2++mTrH22+/nRx66KHVvveffPLJZPr06Um3bt2qjA8cODB54oknkqVLl+bN+fnnnydnn312tT1Frr766hq9ziRJkmXLliUHHXRQtevcY489knvuuSeZO3du6vnTpk1Lfve73yXrrLNO6vk777xzsmTJkoLXU937atWf8T59+iS33HJLMnPmzNR5Xn755WTgwIHVvq7f/e53Nfo6VddDpDY/O/Xl0UcfTV3jAQccUOe5H3744Wq/lnfeeecazz/ppJNSz61rL40kSZKlS5em9rDafPPN6zx3Tdx+++2pr/HEE08syvzV9UaZMmXKas876qijqjw/l8slH3zwwRqvd9FFF+Vd6/rrr6/2+eecc07e38MTJ06s8esEAKhPiiEA0IDeeeedam8oFXJzoqG9+uqrScuWLVPXu88++xTUkHjp0qXJpZdeWu3rvvDCC2u0purmWfkG2DvvvFPQXE8//XS1TaKfffbZGq2rvoshm266aXLwwQcnTz31VK3OnzdvXnLyySenvtbddtutxvPVVzFk5T/du3dPXnjhhYLmevvtt5Pu3bunznP77bfXaF1p38uV/3Tr1i0ZO3ZsQXOddtppqXMMHjy4SrPl5s2bJ8OHDy9ozttuuy3J5XJ5c2600UY1ep1JkiRXXXVV6vo6dOhQ0E3u5WbMmJHsvffeqXNddNFFBc9T3ftq5T+nnXZasmjRooLm+9GPfpQ6x2abbVbwmpKkcRRDxo4dm7rGfv361Xnum2++udrvx5VXXrnG8wcMGFCvX7/1118/b+5Cmn0X0y9+8YvU11is5uHHHnts6vyjR49e7XlpRZqTTjppted88cUXydprr13lnObNm1fblP6tt97KK0idd955tX6tAAD1Rc8QAGhAb731Vup4+/bto1evXg28mjU788wzU7cg2nnnnePBBx+MHj16rHGOZs2axUUXXRQ///nPU48PGzYsb1/y2tpyyy3j2WefjU022aSg5++5557x29/+NvXYLbfcUpQ1FcuoUaPiwQcfjL322qtW57dr1y5uuOGG+OEPf5h3bMyYMQVvndJQunXrFs8991zsvPPOBT1/iy22iL/+9a+px4r5vezcuXM89dRTBfc6uPbaa2PzzTfPG7///vtj+PDhKx7feeed8d3vfregOY855pgYOnRo3vj7778fzz77bEFzRER89NFHcfHFF+eNr7XWWvHcc8/F//zP/xQ819prrx2PPvpo7LnnnnnHfvOb38SsWbMKnmt1fvKTn8T1118fLVu2LOj5v/3tb1PXNHHixBp9rRqDDTbYIHU8bbujmnrxxRerPTZt2rQ1nl/dc7p161brNa0s7e+ihQsX1qhZeF2V4jWu7rrLHXXUUbHuuutWGbv55pvjzjvvTH3+4sWL49vf/nbMnDmzyvjhhx9ebbP7M844o0o/sfXXXz8uvPDC1a4LAKAUFEMAoAF9/PHHqeO9e/eOXC7XwKtZvTfeeCOefPLJvPG2bdvGP/7xj2jfvn2N5rvsssuif//+eePLli1L7Q9RU61atYo77rhjjQ1eV3XiiSem3qz+17/+Vec1FdOGG25YlHl+/etfp77eP/7xj0WZvxhyuVwMHz48+vTpU6PzBgwYEAMHDswbf/LJJ2PRokVFWdv1119fox4YzZs3j/PPPz9vvLKyckV/gVNPPTWOOOKIGq3joosuSh1fXW+fVV1xxRWxYMGCvPERI0bENttsU6P1RHz1M/j3v/89r2H3l19+GTfffHON51vVnnvuGb/85S9rdE4ul4urrroq9Vi5/YzXVdeuXVMLwUuXLk39XV4Tjz/+eLXHqusNVchzitHcPeKrAl5NrlsfyvU1tmzZMq644ooqY0mSxNFHHx2nn356vPrqq7Fw4cKYMWNG3HvvvbHbbrvl/R5p3bp1tb2lRowYEY899liVsd/85jfRrl27Nb0kAIAGpxgCAA1o8uTJqePF+uRoMV1//fWp4z/72c+q/QTymlx77bWpTYv//Oc/x8KFC2s153InnXRS9OvXr8bn5XK5OPbYY/PGP/744wa9kdZQWrRoEeecc07e+NNPP12C1aQ7+OCD48ADD6zVuccdd1ze2JIlS9bYaLgQO++8cxx99NE1Pu/www+vtrF5mzZt4he/+EWN5+zdu3fstNNOeePjxo0r6PyZM2emJmm+9a1vxYABA2q8nuXWX3/9+MEPfpA3XoyC5zXXXBPNmjWr8Xm77757apHglVdeqfOays3ee++dOn7TTTfVes7HH3883nnnnWqPF5L6qS6h0aFDh9ouq6B5Zs+eXZT5C1HOr/H73/9+DBo0qMpYkiRx/fXXx3bbbRdt2rSJLl26xDe+8Y3Un4tf/epXseWWW+aNz58/P84+++wqY1//+tdrlCoDAGhIiiEA0IDmzp2bOt65c+cGXsnqJUkSd9xxR95469at44wzzqj1vFtttVUceuiheeMzZsyo86e007Z/KtR+++2XOl7ojeXG5qCDDsobmzBhQoNuKbM6P/rRj2p9bn1+L08//fRanbfWWmul3kiMiPj2t79d65//3XffPW/s1VdfLejcO+64IzUtU13ipCbSiiGTJk2q03Z4e+65Z8Fbk6XZd99988ay+PN9+OGHp44/8MADq93qqjqVlZWpW6mtrJDUVXXPKXS7szVp1apVja5bH8r9NY4YMSL233//Gl/3sssuizPPPDP12BVXXFEl8dq8efO47rrranwNAICGohgCAA2ouvRDdTc5SuXtt99O/bTvIYccUu1WHYVK++R+RMTo0aNrPecWW2xRcJ+QNH379k0dnzp1aq3nLGfrrbdetGnTpspYZWVlWXxSvn379qk3rgvVs2fP1OJCMb6Xq36yuiaqK4bUZc6tttoqb6zQ1/nggw/mjfXt27faddZEjx49Yosttsgbf+6552o95yGHHFKXJaX+jGfx5/uQQw5J3cZt2bJlMXTo0BoXPK+66qp45plnVvuclXtF1PQ5aUnB2qhunkLWVizl/hrbtWsXDz30UFx44YXRunXrNT5/gw02iLvuuqvafl/vvvtuXs+tM844I/X30nKzZs2Km2++OQ477LDYdNNNo0OHDtG+ffvYeOON45BDDombbropr1cJAEAxKYYAQANatmxZ6nhFRXn9lTxmzJjU8YMPPrjOcw8aNCj1pk511yzEHnvsUZclRceOHaNt27Z54w25xUpD69KlS97YZ599VoKVVLXrrrvWaiuklaU1Gq7r93KTTTbJa0JcE9Wdu9tuuxV1zqVLl66xWXaSJKnboqX1W6mttBRHKX/G094ThXytGpuKior4yU9+knrsrbfeiv79+8fnn39e0FxXX311/OxnPyvm8vIUq1dWdfMs78tTSuX0Glu1ahWXX355TJw4Ma6++urYb7/9olevXtG6devo2LFjbLrppjFkyJC49dZbY/z48TFkyJBq5zrzzDOrpFK6d+8el1xySbXPv+GGG2KTTTaJk046KR544IF49913Y968efHll1/G+++/Hw899FCcfPLJsemmm8b//d//FfyaAABqojgfUwEAClLdpzEXL17cwCtZvbFjx6aOb7fddnWeu3Xr1rHFFlvk9XCo7pqF6N27dx1X9dV+7KveGC2XbaOqM23atPj3v/8dr732Wrz22msxadKkmDt3bsydOzfmzZsXlZWVNZqvkL3/61uxvperquv3sq7rat++fd5Y8+bNo2fPnkWdM+Krwk9acW+5d955J+bNm5c3XoxUyHJpxbaVt9Opqbp+/avrtzBnzpzVfq0aoxNOOCFGjBiRuvXgiy++GJtvvnlccsklccwxx8Taa69d5XhlZWU888wzcdFFF+U1XW/evHksXbo0b85CUgYtWrRI3c5p6dKl1fbTqYnq0hHF2qKqENW9jrSvWW0U8zVusMEGcfbZZ+f1+yjUfffdl9dk/aqrroqOHTvmPbeysjJOPvnkuPnmmwuae+bMmXHaaafFuHHj4oYbbihaMQkAIEIxBAAa1KpbEy335ZdfNvBKVm/KlCl5Y82bN1/t9hc1se222+YVQ7788suYO3durZrNFqPnStoNvbo2da8v//jHP+Lmm2+Of//730W70RZRHsWQcv1e1nVdaVvh1cecEWvuIVBdM+w777wzNTFSG2lbrn3xxRe1nq+uX6vqbtiX6894XeRyubjttttiu+22i08//TTv+MyZM+PMM8+Ms846K7bbbrvo2bNntGnTJqZNmxavv/56TJ8+Pe+cjh07xqmnnhq/+tWv8o4VUkxq2bJl6vty0aJFRSmGVPeBgobcgrK6okSx+paUw2uM+Opn5sc//nGVsT322KPaLTDPPvvsggshK7vpppuiQ4cOcfXVV9dqnQAAaRRDAKABde3aNXW8HLYnWlnaTfG11lqraJ+yre7rMGvWrFoVQ9q1a1fXJTUK48ePj9NOOy3+85//1Mv8CxYsqJd5a6Jcv5f1kR4oVSIh7QZ5RMSoUaPq9bp1KYaU6/uiXHXp0iUef/zxOPjgg+Pdd99Nfc7SpUtj7Nixa0zltWnTJu6999546623Uo8Xsn3cWmutFXPnzs0bnzdvXrUJp5pIm3v5dRtKdddKS2HVRjm8xoiIK6+8MiZNmrTicbNmzeL6669Pfe7jjz8e1157bd54//7947zzzouddtopcrlcvPTSS3HllVfGo48+WuV5v/3tb+Owww6Lvffeu7gvAgBossprg3IAyLj1118/dfyTTz5p4JWsXtpNy7TtL2qrups3dblZmnWjR4+OXXfdtd4KIRHlsb8+9a9UvXDKfdu5rNlss81izJgx0b9//1rPsd5668Vjjz0W++23X7XJsbR+LKtadTuu5YqVRqtunuquWx+awmucNGlSXjrolFNOiW233Tb1+eeee27e3ysnn3xyPProo7H//vvHWmutFR07doz99tsvHnnkkTj55JOrPDdJkjj33HOL+yIAgCZNMgQAGtAmm2ySOj5lypSYPXt2g3/Cszppn2Qt5iezq5uruk++NnWvv/56HHDAAWv8+rRp0yZ69uwZ66+/fnTo0CFat24drVu3joqK/M+/3H333WW3PRsNo1RbQym2Nbx11lknRo0aFQ899FD8/Oc/T92+LE3r1q3j+9//flx66aXRqVOniIhqG69vtNFGa5yvW7duqeOfffZZbLHFFgWtaXWmTp2aN9aqVauiFvHXZHWvsRjSXmNE9UnL+vCjH/2oyu+PLl26xOWXX5763DFjxsTLL79cZWyLLbaI3//+96l9QHK5XPz+97+PJ554IiZMmLBi/IUXXoixY8fGTjvtVKRXAQA0ZYohANCA+vbtG82aNYtly5blHRs3blzss88+JVhVvrRtS1ZtLl4X1d2EL8Z2KVl02mmnVVsI2WeffeK4446LPfbYo0Y3FZ944gnFkCaqWbNmpV4CDezggw+Ogw8+OF5//fV49NFH4/HHH4+PPvoopk+fHjNnzowWLVpE9+7do1+/fjFw4MAYMmRIdOnSpcocH3zwQerchfSS2nDDDVPHi5GKXLZsWWqhoHfv3g3afLs+X2NE9dvb9enTpyjzr8nIkSPj/vvvrzI2bNiwavv5/OMf/8gb+9nPfhbNm1d/C6J58+Zx3nnnxfHHH19lfMSIEYohAEBRKIYAQANq06ZNbL311vHaa6/lHXviiSfKphiSdnOjmFvcVDdXMZpnZ829994bzzzzTN54165d44477oj99tuvVvMWax97Gp/qklkPP/xwDBo0qIFXQ0Pq27dv9O3bN84+++wanztx4sS8sVatWsWWW265xnOrS49U18+kJj7++ONYsmRJ3nhDFQmWq8/XGBHx3nvv5Y21adOm2kRKMS1evDh++MMfVhnbZZdd4nvf+16154wePbrK4+bNm8fhhx++xmt94xvfiBNPPLHKh0bGjBlTwxUDAKTTMwQAGtgBBxyQOv7QQw818Eqqt3xblJXNmjUr9YZTbUybNi11XDEk34gRI/LGmjdvHg899FCtCyFJkhRtH3san+7du6eOz5w5s4FXQmPx5ZdfVtm6aLldd901WrVqtcbz+/btmzpeXVP2mqhujuquWV+23nrr1CRKMV7jvHnz4uOPP84b32abbRok/XL11VfHO++8s+JxRUVFtdtdLTdu3LgqjzfddNOCtgJda6218rYULXR7NwCANVEMAYAGduihh6aOv/jii0X7BGldpTXEXbp0abz99ttFmf/VV1/NG2vXrl106NChKPNnRWVlZYwcOTJv/JhjjqnTliFTp05N3aqNpqG6T8xPnz69gVdCY/Hss8+m/s7Yf//9Czp/++23Tx1ftadEbbz00ks1umZ96dixY2y88cZ549OmTat2i6tCvfLKK1FZWZk33hCv8eOPP45f/vKXVcZOOOGE2Hnnnas9Z+HChXnbMBbSW2a5VYshc+fOjcWLFxd8PgBAdRRDAKCB7bnnntXeFLjmmmsadjHVqO5G+6qf9KyNRYsWxfjx4wu+ZlP2+eefxxdffJE3Pnjw4DrNu+r2JTQty3sXrcpWNFRn1V4Ryw0ZMqSg83v27Bm9e/fOG3/33Xdj8uTJdVlaPPnkk6nje+21V53mrY0999wzdby6NRaqlK/xrLPOqlLY6Ny5cwwbNmy156QlD2vSzD7tgxHSjABAMSiGAEADy+Vy8f3vfz/12J/+9Kf48MMPG3hF+XbbbbfU8WJs5fXII4+kbrdV3TUbi5YtW+aNLV26tE5zfvbZZ6njaTcVa6KuN+Zo3Nq0aRM77rhj3rj3RfXSfr4j6v4z3hgsWrQo/v73v+eNb7/99gX1C1luwIABqeMPP/xwrdc2Z86c1J5KW2yxRay//vq1nre26uM1ru78/v3712neNXnsscfi7rvvrjJ2xRVXRJcuXWo8V02280p7bpIkNb4mAMCqFEMAoAROO+201JsJCxcujDPOOKNB1rDqFhYr23LLLVP7dzzwwAMxd+7cOl33tttuSx3ffffd6zRvqaV9knXBggV1mrO6r3WbNm1qPef8+fPj1ltvrfX5ZENaI+OpU6fGgw8+WILVlL/qtvCr6894Y/CnP/0ptZ/Mqg2116S65tlphZZC/fOf/4xFixbljdc1PVdbgwYNSi2c3X///av9O3d1Jk2alJra2m233art/1MMS5Ysyfv3yHbbbRennHLKGs9N6zs2Z86cgq+d9lw9xQCAYlAMAYAS6NChQ1x44YWpxx544IH47W9/W6/Xv//+++MnP/lJtcdzuVx861vfyhtfsGBB/P73v6/1dSdMmBD33Xdf3niXLl2qbSzfWKTdLK3rPvFpN5QiIj755JNaz/nHP/4xdestmpZjjz02dausK664ogSrKX/t27dP/bR6XX/Gy93MmTPjsssuyxvv1atXHH300TWa64ADDoh11103b/zxxx+PN954o1bru+6661LHjznmmFrNV1edO3eOgw46KG987ty5ccstt9Rqzt///vepqYj6fo3XXnttlT5huVwufv/730dFxZpvIbRu3TratWtXZey9994r+NqrPrd9+/bVprMAAGpCMQQASuT000+PXXfdNfXYueeeWy+f3l+2bFlcfPHF8Y1vfGONn1I97bTTUsd/+ctf1nqP9x/+8IepW2R973vfi9atW9dqznKRtnXV+PHj67SNTrdu3VLHH3300VrN9+6778YFF1xQ6/WQHb169Yojjzwyb/z5559XEEmRy+WiV69eeeO1vYnfGCRJEt/73vdSt+sbNmxYjW9ON2/evNotIs8777war2/EiBGpDdj33Xff2GabbWo01/DhwyOXy+X92XfffWu8rh/84Aep47/4xS9qnKz86KOP4v/+7//yxjt27Bjf+c53ary2Qk2ZMiWvCHbsscfGHnvsUfAc2267bZXH77zzTsyePXuN582ePTvefffdKmPbbbddwdcFAFgdxRAAKJFmzZrFrbfemvrp/8rKyvjud78bl1xySSxbtqwo13v11Vdjr732issuuywqKyvX+Pxtttkm9ttvv7zxefPmxZFHHhnz58+v0fUvvfTS+Ne//pU33rx58zj11FNrNFc5SrtZM3v27HjkkUdqPec666wTm222Wd74jTfeGNOmTavRXNOnT48jjzyy1lu1kD2//OUvU29oX3TRRbX+FHuat99+O6/vQGOU9jN+3333xcKFCxt+MfWssrIyTjnllLj33nvzjvXv37/GqZDlzjjjjLzEQMRX/aj+/Oc/FzzP1KlT4/TTT089VpvCSjH1798/dtppp7zx1a05zbJly2Lo0KGpW7GddtppNWpIXlPnnHNOlcJNx44d46qrrqrRHKtufbl06dLU99Oq7rnnnrwPETT2bTQBgPKhGAIAJbTpppvGiBEjonnz5nnHkiSJSy+9NHbbbbd46qmnan2N8ePHx9ChQ2PHHXeM0aNH1+jc//3f/41WrVrljY8ZMyYOO+ywgm7IV1ZWxi9+8Yu45JJLUo9fcMEFseGGG9ZoXeVo9913T9126JRTTolRo0bVuvnroEGD8sZmz54dhx56aMHbXb311lux1157xWuvvVarNZBNG2+8cWoKJEmSOOGEE+KUU06p0T7/K1u6dGk8+uijceihh8bWW2+diV4ke+65Z97YJ598Et/+9rfrtHVdfbj22mvjiiuuiM8//7zG537yyScxaNCguOmmm/KOrbPOOvGXv/ylRs2wV9atW7f42c9+lnrs1FNPjXvuuWeNc0yZMiUGDhyY+vfPoEGDymLLxd/97nep43/961/jpz/96Rr/Pli8eHF85zvfif/85z95x1b3NSyGp59+Ov72t79VGbvkkktq3J/kG9/4Rt7YsGHDVpuWXLp0aVx55ZV542kpNgCA2lAMAYAS69+/f4wYMaLaLUfGjh0b++yzT+yyyy7xv//7vzFx4sQ1zjl+/Pj4wx/+EHvvvXdstdVW8Ze//KVWCZNtttkmLr/88tRjjz32WGy11Vbx+9//PvWG29KlS+ORRx6Jvfbaq9r+KDvttFO1xxqbbt26xYEHHpg3/umnn8bAgQNjvfXWi4EDB8a3vvWtGDp0aN6ftBtAEV99kjqtWPbCCy/EtttuG3/9619TGwhHRLz22mtx5plnxrbbbhsTJkxYMb7DDjtEz549a/lKyZKzzz47jjjiiNRjN954Y2ywwQbx05/+NF588cXV/g5JkiTefffduOuuu+L444+Pbt26xQEHHBAPPvhgrQuB5ebYY49N/Vm85557YsMNN4xtttkmBg8eHMcdd1zqz/gzzzzTYGudMmVK/PznP4/1118/Dj300Ljlllvio48+qvb5SZLESy+9FGeccUZsttlmqVvxtWrVKu69995Yb7316rS2c845JzVls3jx4jjyyCPj1FNPjY8//jjv+MKFC+NPf/pTbL/99vH666/nHV9rrbXi+uuvr9PaimXPPfesNvF41VVXRf/+/ePFF1/MO5YkSfz73/+O3XbbLa8gsdwf/vCHekuFLFu2LG+br6233jqvkXoh9thjj7ytsiZMmBCnn3566u+EJEni9NNPr/J3VcRX/06obktRAICayv/XPADQ4AYPHhwPPfRQfOtb34oZM2akPufFF19ccfOkc+fOsckmm8R6660X7dq1i1wuF/PmzYvJkyfHO++8E7NmzVrjNQv9ZO/ZZ58dTz31VOonu2fMmBFnnHFG/PjHP45+/fpFz549o23btjF58uR4++23V/up5C5dusTtt9+eenOxsTr//PPjkUceSb1pPHXq1Jg6dWq15+6zzz6p27tsvPHGceqpp6Y2Cv7444/ju9/9bpxyyimxww47RI8ePaJZs2Yxbdq0ePfdd1NvKHbs2DFuu+221MQJTU9FRUXcfvvtMXjw4NRt7ObMmRNXXXVVXHXVVdG+ffvYeuutY5111onOnTvHwoULY9asWTFr1qyYOHFijfshNDbdu3ePk046KbWHQ2VlZbz55pvx5ptvVnv+vvvum5ouqU+LFi2KBx98cMXv73XWWSe23HLLWGeddaJDhw6xaNGimDx5crz11lurTZq1bt06RowYUZT1t2rVKu66667Yfffd8/6+S5IkbrjhhrjpppuiX79+semmm0aLFi1iypQpMXbs2GrfYxUVFTF8+PDo06dPnddXLL/97W/jpZdeihdeeCHv2OOPPx677LJL9OnTJ/r16xcdOnSImTNnxiuvvBJTpkypds6zzjqr2uJlMVx//fV5habrrruu1n9P/+pXv8r7kMCNN94Y77//fpx33nmx0047RS6Xi5deeimGDRuWV4TL5XI13p4LAGB1snP3AQAauf79+8crr7wSQ4cOjccff3y1z/3iiy9SP1VaiGbNmsUJJ5yQ1xy1OhUVFTFixIj4n//5n3jggQdSn7N06dJ4+eWXU5vZpllvvfXi4YcfTu2H0Zh97WtfiyuvvDLOPffcos579dVXxyuvvFLtJ8sXLFgQzz777BrnadOmTfzzn/+MLbfcsqjro3Fr3bp1PPDAA3HqqafGn/70p2qfN2/evHj++ecbcGXl5ze/+U2MHTu21r9/S23GjBk1Tqh079497rrrrthrr72Kto5NN900/vWvf8XAgQNj5syZeccrKytj3LhxMW7cuDXO1axZs/jjH/8YgwcPLtr6iqF169YxcuTI2H///at9HZMmTYpJkyYVNN/3vve9uPrqq4u4wqqmTZsWF110UZWxb37zm6m9wwp1wAEHxKmnnppXQBw1alSMGjVqjef/6Ec/qtP1AQBWZZssACgjG2ywQTz22GPx97//PTbZZJOizt2sWbP4xje+Ea+//nrcdNNNNdr/u3Xr1nHvvffGpZdeGi1atKjTOgYOHBgvvvhi3vYZWXHOOefEgw8+WNRCT8uWLeP++++vU5qjZ8+e8cQTT8T+++9ftHWRHS1atIibb7457r777thggw2KOnfv3r1jwIABRZ2zVNq0aRPPPPNMnHvuudG+fftSL6feHXXUUfHqq68WtRCy3I477hjPP/98nf4uWHfddePhhx+O448/vogrK5611147nnnmmfjmN79Z6zlatGgRv/rVr+Lmm2+uda+WQvz0pz+N2bNnr3jcrl27+M1vflPnea+77ro47rjjanzeiSeeWK/FHwCgaVIMAYAy9K1vfSsmTJgQ99xzTxx22GGpTcwLtfXWW8dVV10VH3/8cZ1SARUVFXHRRRfFa6+9Ft/+9rdrXBTZYYcd4u67745//etfdd5zvtwdfPDBMWHChHj66afjggsuiEMOOSQ22WSTWHfddaN169a1mrNz587x0EMPxTXXXBM9evQo+LwOHTrE2WefHW+99Vbssssutbo2TceRRx4ZEyZMiOuuu65OCaLevXvHSSedFI8//ni8//77ccwxxxRxlaXVsmXLuOqqq2LKlCnx17/+NU477bTYY489YoMNNohOnTqVxdZ/Bx98cHzjG9+oVcGmWbNmcfjhh8czzzwTI0aMiK5du9bDCr+yySabxNixY+Oaa66pUR+jdu3axQ9/+MOYMGFCDBw4sN7WVwzt2rWLO+64Ix588MHYYYcdCj6voqIiBg8eHK+++mr85Cc/qccVRowePTr+8pe/VBm78MILi9JbqlmzZvGXv/wlrr322ujcufMan7/22mvH9ddfHzfddFNUVLhdAQAUVy7JSkdDAMiwuXPnxjPPPBOjR4+ON954IyZNmhSTJ0+OL7/8MhYuXBht2rSJzp07R+fOnaNr166x/fbbxy677BK77LJL9OrVq17WNGPGjLjvvvviqaeeitdffz0++uijmDNnTixbtizatm0bPXr0iM022yx23333OOSQQ6Jfv371so6maNGiRXHvvffGY489Fs8//3x89tlnMXPmzKioqIiOHTtGnz59Ypttton+/fvHIYccEh06dMib45NPPomlS5dWGevUqVN06tSpgV4FjcGbb74Zo0aNihdeeCEmTpwYH3/8ccyZMycWL14cbdu2jQ4dOkSnTp1io402ii222CK22mqr2HvvvYuebKN2Fi9eHGPHjo0xY8bEuHHj4r333osPP/ww5syZE/Pnz4+WLVtGx44do3fv3rHVVlvFPvvsEwcccECNkoPFsmTJknj00Udj5MiR8fLLL8d7770Xs2fPjmXLlkWHDh2iV69e0bdv3xgwYEAcdthhjfZ31fPPPx8PPvhgjBkzJsaPHx8zZ86MRYsWRdu2baN79+4rvg+DBw9ukB4olZWVsfPOO1fZ5nKzzTaL119/PVq2bFnUa82cOTPuuuuuePDBB+Ptt9+Ozz77LJIkiW7dusWWW24Zhx12WAwZMiTWXnvtol4XAGA5xRAAAAAAACDT5E4BAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg05qXegEAAFCfBlQMKfUSyJhRlSNKvQQAAKCGJEMAAAAAAIBMyyVJkpR6EQAANA1SGlA70igAAFA3kiEAAAAAAECmSYYAALCC5AY0TZInAABknWIIAEAjpXABlDMFFgAAyoltsgAAAAAAgEyTDAEAKBHJDoDqSZYAAFBMkiEAAAAAAECmSYYAANSBdAdA+ZEqAQBgVZIhAAAAAABApkmGAABNnnQHAMtJlQAAZJNkCAAAAAAAkGmSIQBApkh5ANDQpEkAAMqfZAgAAAAAAJBpkiEAQNmS8gAgq6RJAAAalmQIAAAAAACQaZIhAECDkvYAgJqRIgEAqDvFEACgzhQ4AKA8KJwAAKSzTRYAAAAAAJBpkiEAwGpJfQBAtkiPAABNkWQIAAAAAACQaZIhANAESXsAAIWQIgEAskIyBAAAAAAAyDTJEADIEIkPAKAUJEgAgHInGQIAAAAAAGSaZAgANBJSHwBAYyY9AgCUkmQIAAAAAACQaZIhAFAGpD4AAKRHAID6oxgCAA1AsQMAoO4USwCA2rJNFgAAAAAAkGmSIQBQR1IfAADlQ3oEAEgjGQIAAAAAAGSaZAgAFED6AwCg8ZMaAYCmSzIEAAAAAADINMkQAAjJDwAAJEcAIMskQwAAAAAAgEyTDAGgyZD+AACgtqRGAKBxkwwBAAAAAAAyTTIEgEyR/gAAoKFJjQBA+ZMMAQAAAAAAMk0yBIBGRfIDAIDGRnIEAEpPMQSAsqPgAQBAU6FQAgANwzZZAAAAAABApkmGANDgJD8AAKAwkiMAUBySIQAAAAAAQKZJhgBQr6RAAACguKRFAKDmJEMAAAAAAIBMkwwBoE4kPwAAoLxIjgBAPskQAAAAAAAg0yRDACiYFAgAADRO0iIANHWSIQAAAAAAQKZJhgCQRwIEAACaBokRAJoKyRAAAAAAACDTJEMAmijpDwAAYHWkRgDIEsUQgIxT9AAAAIpJkQSAxsg2WQAAAAAAQKZJhgBkiBQIAABQCtIiAJQ7yRAAAAAAACDTJEMAGiEJEAAAoDGQGAGgXEiGAAAAAAAAmSYZAlDmpEAAAIAskRYBoBQkQwAAAAAAgEyTDAEoExIgAABAUyYxAkB9kgwBAAAAAAAyTTIEoASkQAAAANZMWgSAYpEMAQAAAAAAMk0yBKAeSYAAAAAUn8QIADWlGAJQBIoeAAAApadIAkB1bJMFAAAAAABkmmQIQC1JgwAAAJQvKREAViYZAgAAAAAAZJpkCMAaSIAAAABkh8QIQNMkGQIAAAAAAGSaZAjASqRAAAAAmh5pEYDskwwBAAAAAAAyTTIEaNIkQQAAAFiVpAhA9kiGAAAAAAAAmSYZAjQJEiAAAADUlcQIQOMlGQIAAAAAAGSaZAiQWdIgAAAA1BcpEYDGRTEEaPQUPQAAACgXiiQA5ck2WQAAAAAAQKZJhgCNjiQIAAAAjYWkCEB5kAwBAAAAAAAyTTIEKGtSIAAAAGSNtAhAw5MMAQAAAAAAMk0yBCgrkiAAAAA0NZIiAPVPMgQAAAAAAMg0yRCgpCRBAAAAoCpJEYDikwwBAAAAAAAyTTIEaDBSIAAAAFA70iIAdaMYAtQbxQ8AAACoH4ojADVjmywAAAAAACDTJEOAopIGAQAAgIYlJQKwZpIhAAAAAABApkmGAHUiCQIAAADlRVIEIJ9kCAAAAAAAkGmSIUCNSIIAAABA4yIpAiAZAgAAAAAAZJxkCLBakiAAAACQLZIiQFMkGQIAAAAAAGSaZAiwghQIAAAANE3SIkDWSYYAAAAAAACZJhkCTZgkCAAAAJBGUgTIGsUQaEIUPwAAAIDaUBwBGjvbZAEAAAAAAJkmGQIZJw0CAAAAFJOUCNAYSYYAAAAAAACZJhkCGSMJAgAAADQkSRGgMZAMAQAAAAAAMk0yBBo5SRAAAACgnEiKAOVIMgQAAAAAAMg0yRBopCRCAAAAgHImIQKUE8kQAAAAAAAg0yRDoBGRBgEAAAAaIykRoNQkQwAAAAAAgEyTDIEyJgkCAAAAZJGkCNDQFEOgjCh+AAAAAE2R4ghQ32yTBQAAAAAAZJpkCJSYNAgAAADA/yclAtQHyRAAAAAAACDTJEOggUmCAAAAABROUgQoBskQAAAAAAAg0yRDoIFIhAAAAADUnoQIUBeSIQAAAAAAQKZJhkA9kQQBAAAAqD+SIkBNSIYAAAAAAACZJhkCRSQNAgAAANDwpESANZEMAQAAAAAAMk0yBOpAEgQAAACg/EiKAKtSDIFaUAQBAAAAKH+KIsBytskCAAAAAAAyTTIECiAJAgAAAND4SYpA0yUZAgAAAAAAZJpkCFRDGgQAAAAgu6REoGmRDAEAAAAAADJNMgRWIRECAAAA0HRIiEDTIBkCAAAAAABkmmQITZ4kCAAAAADLSYpANkmGAAAAAAAAmSYZQpMlEQIAAABAdSREIFsUQ2hSFEAAAAAAqCmFEWj8bJMFAAAAAABkmmQITYJECAAAAAB1JSECjZdkCAAAAAAAkGmSIWSSJAgAAAAA9U1SBBoPyRAAAAAAACDTJEPIFIkQAAAAABqahAiUP8kQAAAAAAAg0yRDaPSkQQAAAAAoF1IiUJ4kQwAAAAAAgEyTDKHRkggBAAAAoFxJiEB5kQwBAAAAAAAyTTKERkMSBAAAAIDGSlIESksxhLKnCAIAAABAViiKQGnYJgsAAAAAAMg0yRDKjiQIAAAAAE2FpAg0DMkQAAAAAAAg0xRDKCtSIQAAAAA0Je6HQcNQDAEAAAAAADJNzxDKggo4AAAAAE2d/iFQfyRDAAAAAACATJMMoSQkQQAAAABg9SRFoHgkQwAAAAAAgEyTDKFBSYQAAAAAQM1IiEDdSYYAAAAAAACZJhlCg5AIAQAAAIC6kRCB2lMMod4ogAAAAABA/VAYgZqxTRYAAAAAAJBpkiEUnUQIAAAAADQMCREojGQIAAAAAACQaZIhFI1ECAAAAACUhoQIrJ5kCAAAAAAAkGmSIdSZRAgAAAAAlAcJEUgnGQIAAAAAAGSaZAg1JgkCAAAAAI2DpAh8RTIEAAAAAADINMUQakQqBAAAAAAaD/fz4CuKIQAAAAAAQKbpGUJBVJABAAAAoHHTP4SmTDGE1VIEAQAAAIBsURShKbJNFgAAAAAAkGmSIaSSCAEAAACAbJMQoSmRDAEAAAAAADJNMoQqJEIAAAAAoGmREKEpkAwBAAAAAAAyTTKkiZMEAQAAAABWJilCFkmGAAAAAAAAmaYY0oRJhQAAAAAAq3LfkCxSDAEAAAAAADJNz5AmSGUXAAAAACiE/iFkhWQIAAAAAACQaZIhTYhECAAAAABQGxIiNHaKIU2AIggAAAAAUAyKIjRWtskCAAAAAAAyTTIkwyRCAAAAAID6ICFCYyMZAgAAAAAAZJpkSAZJhAAAAAAADUFChMZCMgQAAAAAAMg0yZAMkQgBAAAAAEpBQoRyJxkCAAAAAABkmmJIRkiFAAAAAACl4v4k5U4xBAAAAAAAyDQ9Qxo5FVcAAAAAoJzoH0I5UgxppBRBAAAAAIBypihCObFNFgAAAAAAkGmSIY2MRAgAAAAA0JhIiFAOJEMAAAAAAIBMkwxpJCRCAAAAAIDGTEKEUpIMAQAAAAAAMk0ypMxJhAAAAAAAWSIhQilIhgAAAAAAAJkmGVKmJEIAAAAAgCyTEKEhSYYAAAAAAACZphhShqRCAAAAAICscx+UhqQYAgAAAAAAZJqeIWVEJRQAAAAAaIr0D6G+KYaUAUUQAAAAAABFEeqPbbIAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADIND1DSkivEAAAAACAfHqHUGySIQAAAAAAQKZJhpSARAgAAAAAwJpJiFAskiEAAAAAAECmSYY0IIkQAAAAAICakxChriRDAAAAAACATFMMaSBSIQAAAAAAteP+KnWlGAIAAAAAAGSaniH1TMUSAAAAAKB49A+hNiRDAAAAAACATFMMAQAAAAAAMs02WfXE9lgAAAAAAPXHdlnUhGQIAAAAAACQaZIhRSYRAgAAAADQcCREKIRkCAAAAAAAkGmSIUUiEQIAAAAAUDoSIqyOZAgAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZpmdIHekVAgAAAABQPvQOIY1kCAAAAAAAkGmSIbUkEQIAAAAAUL4kRFiZZEgtKIQAAAAAAJQ393FZmWIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaaBeg3YYw4AAAAAoPHRTB3JEAAAAAAAINMkQwogEQIAAAAA0PhJiDRdkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmp4hq6FXCAAAAABA9ugd0vRIhgAAAAAAAJkmGZJCIgQAAAAAIPskRJoOyRAAAAAAACDTFEMAAAAAAIBMs03WSmyPBQAAAADQ9NguK/skQwAAAAAAgEyTDAmJEAAAAAAAJESyTDIEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATGvyxRD9QgAAAAAAiHC/OMuafDEEAAAAAADINsUQAAAAAAAg03JJkiSlXkQpiDsBAAAAAFCdUZUjSr0EikgyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExrcj1D9AoBAAAAAKBQeodkg2QIAAAAAACQaYohAAAAAABApimGAAAAAAAAmdZkeoboFQIAAAAAQG3pHdK4SYYAAAAAAACZlvlkiEQIAAAAAADFIiHSOEmGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKZltoG6xukAAAAAANQXjdQbF8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMi2TxRD9QgAAAAAAqE/uQzcumSyGAAAAAAAALKcYAgAAAAAAZJpiCAAAAAAAkGm5JEmSUi+iWOzRBgAAAABAQxtVOaLUS2ANJEMAAAAAAIBMUwwBAAAAAAAyLRPbZNkeCwAAAACAUrNdVvmSDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyLZckSVLqRdTWgIohpV4CAAAAAABUMapyRKmXwCokQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMyyVJkpR6ETU1oGJIqZcAAAAAAACrNapyRKmXwH9JhgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmNaoG6hqnAwAAAADQ2GikXnqSIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm5ZIkSUq9iDUZUDGk1EsAAAAAAIA6GVU5otRLaLIkQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyreyLIQMqhpR6CQAAAAAAUGfud5dO2RdDAAAAAAAA6kIxBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMi0XJIkSakXkWZAxZBSLwEAAGiMkiR+G09E35gRERHLIuKUGBAf5NZa7Wm3Jg9H95i/4vGjsWH8Ordzfa6UBuJ7W/6uSx6LLeKLiIhYErk4JQbER7mOJV4VANSvUZUjSr2EJqV5qRcAAABQTAPiwxWFkIiIR6P3GgshTV3bZElsETOjZ8yL9rE4KiMX86JlfBztY3ysE4tzzUq9REqsvt8jN0ffuDqeioiIFpHEaTEuzou9i7F0AICIUAwBAAAypG2yJE6M11c8XhjN4i+xdQlXVN62Tz6Lo2Ji7BDTonmkbxqwKCpidLJejIjNYmJu7QZeIaXWUO+RV3Nd44Wke+wSUyMiYseYFnsmn8QzufVrvXYAgJUphgAAAJnxrRgfa8eiFY9HRp+YkWtTwhWVp7bJkjg7xsbe8ekan9sqKmPf+CT2jk/i/mTjuDG2jaU57SezrhTvkdtiyxXFkIiIE+ONeC5ZLyq93wCAIvAvCgAAIBM6JQtjcLy74vGSyMWI2KyEKypPnZKF8b/xeEE3uVdWERGD470YFk9Hq2Rp/SyOslCq98jbuXViXKy74nHPmBcHxgc1ngcAII1kCAAAkAnfjvHRJpatePxYbBjTc21LuKLy0yJZFr+IZ2PDmJt37ONoH0/G+jEl2kcuInrEvNg3PomeMa/K87aL6XFevBCXxtcaaNU0pFK/R+6MzWO7mL7i8THxdoxKNowl+tYAAHWkGAIAADR6HZJFcWBMqjL2QGxUotWUrxPijdgsvqgytiRycV1sHyOjT0QuV+XYX5KtY1BMijPilSr9IvaMyXFI8l48mNu4QdZNwyn1e2RsdIvJ0S7Wiy8jIqJrLIivx8fxr+hduxcEAPBftskCAAAavUPj/SqpkInRSbPvVfRK5lTZRmy5y2P3GJnbKO8md0REksvFw7mN4rLYPe/Y8fFGtE8W18taKY2yeI/kcvHIKoWPI+Kdms0BAJBCMQQAAGjUKpLKOCzeqzL2SPQp0WrK17difJVP7kdEPBR9YnRuvTWeOzq3Xjy8yte0YyxJvXFO41Uu75F/Re+VSpsRG8Xs2C6ZVuN5AABWphgCAAA0arvE1FgnFq54vCwino6epVtQGWqfLI594pMqY0siF8Nj64LnGB5bx9Komgw4KCZFLkmqOYPGpJzeIzNzbeLN6FJl7ACN1AGAOlIMAQAAGrUB8WGVx29Gl5iVa12i1ZSnPePTaBmVVcaei541+jp9kWsdz0XVhMC6sSD6rtTsurHrlcyJ/ZKP4qhkYnwrGR8HJpNip2RqtE6Wlnpp9a7c3iOrFjT3iE+bxPcBAKg/GqgDAACNVutkaewaU6qMjYkeJVpN+do5puaNPVWL9MzTsX7sHZ9WGdslpsZr0bXWayu15kllHBbvxuB4L3r8t2n3qhZGs3gh6R63xZYxKdepYRfYQMrtPTIm1osfxKsrHreJZfG1mByPR68arwkAIKIMiyEDKoaUegkAAEAjsX1Mi1arfJr91Vi3RKspX9vE53ljq25DVIjXU85Jm7ux6JHMi0vjuegTc1b7vNaxLPaOT+NrMTlGJJvFLbFNJCnNxBuzcnuPTM21i6lJ2+ge81eM7RpTFEMAyJTl98JHVY4o8UqaBttkAQAAjdaqn2b/MprHu9G5RKspT+skC2LtWFRl7LNoGzNybWo814xcm/gs2lYZ2yhmR0Uj7BvSPfkyron/rLEQsrLmkcTRMSHOjRcz1SulXN8jqxY2d4zPMvV1BwAaVtklQwAAAArVb5VeBO9Fp6jM2Cf266pXys3+ydGu1vNNjnbRbaVP67eJZbFuzI/P6jBnQ2sWlXFxjK5SAPg42scz0TOmRPtYEM2jcyyMvvF57BJT8tJHA+KjmBct4w+xXQOvvH6U63tkQqwdB6zUE2itWBx9Yna8H51qvTYAoOlSDAEAABqlNsmSWD/mVhl7P9Zq8HUMTD6Ic2Nsg183ImJqtI3jcget9jkr35Reri6Fi+mrfOo/IqJHfNmoiiF7xqcrChxzo0X8X2wbo3K98553T2wa6yQL4ofxcuy+Sm+aw+PdeCZZL17LrbkXhvdI7d4jaT/Pm8cXiiEAQK3YJgsAAGiUNo1Z0WyVsQ9KUAwpd2vHwryx6VHz7Y+Wm5ZybueUa5Sz5YWQL6N5nBd7pRZClpuRaxMXx9fi8digynhFRPw4Xs7Etk3l+h6ZlPLzvFnMrNWaAAAUQwAAgEap5yqpkIjI61VARIdYnDe2oA6bBCxMObdjyjUag+tju5iYW3uNz0tyufh17BwfR/sq4+vHvNhllcRIY1Su75H5uRYxN1pUGVs/5tV6XQBA02abLAAAoFHqnrK1z+d1+DR7bc2NlvFeiRIpMwp4va1jWd7Y4rxMTeEWpZzbKuUa5W5CdI5RsWHBz1+aq4gbk35xRTxXZfyQeD+ej/VWe673SO3fI59Hm+gQS1Y87hZf1npdAEDTphgCAAA0Sl1iQd7YF9G6wdcxOrdejF7DzfBSarZK8++I4t/obp5yjXI3MvpE5HI1OueF6BHTok10Xem9t31Mi2ZJZSzLVb/xgvdI7d8jM6N19Fmpwfu6KT/3AACFsE0WAADQKLVd6dPiyy2sww3cpqRuXS7yCwi5Os5YCs/WojiR5HJ5RY1WURkbx6wirap8lMt7ZNUtt5pHEi2TxpdEAgBKTzEEAABolIq9tU9WLUv53766bGvVMuXcpY3sfy2nR5uYlatdiuid6JQ3tll8UccVlVY5v0fSfqZbx9JazQUANG2N61+sAAAA/1WxyifNK+OrT+5TVVpaJu1mdaHSbpKnNcwuZ5+s0gi9Jj6ODnljnWJRXZZTcuX8HlmWkjJp1giTSABA6SmGAAAAjdKqfQkqIqJ50vh6V9S3udEyb6xNHT5Zn3bunJRrlLMvo0VRz22XsmVbY1LO75G0okxaTxIAgDVRDAEAgCauIvlqD/6KpHF92rrYn2bPqrSm8mnN5wu1bswv6BrlrC5JlrRz2zbybZvK+T2ShSQSAFAe/AsCAACamI7Jotg/Popt4vPYNL6IHivduJyStI13onO8EV3isegVc3KtSrjS1ZuVcnO1YyyO+XX41H9t7J5Mju/Gmw16zeVmRJu4ILfnap8zNdrmjXVLuVldqK4p506NdrWerxTq0nMi7dz5a/hfa++R2r9HOsTiKo/nRMuotB0eAFALiiEAANBErJvMj6HxZuwbH0fLSN9OqkfMjx4xP/aOT+PEeD2eSDaI4bF1TM/l3ywttWkpN3C7xPwGvzHfIRbHxjG7Qa+5XCHbM6X1uFgv5tX6mj3iyyqPF0az1O9FOavLtlZp565p2y3vkdq/R1ZNqHzWyN5rAED5sE0WAABkXZLEoOT9+GM8GgPjw2oLIatqGZUxMD6MP8ajMSh5P6LMttGaklL0WLcOW/tk1ee5tvFFVE34dI/5sXZS86/VOsmC6L7Kp/7fj7Ua3Sf1e9bhRv8GKefOivJNUBWiXN8juSSJtWNhlbHGlkICAMqHYggAAGRYRZLEWfFSnBUvR7tabg3ULpbGWfFynBUvlVVfkfdjrbyx9WNuCVZS/l6PLnlj28SMGs+zdXxe0NzlrmssiE7JwjU/McWm8UXe2MToXNcllVw5vkfWi3nRPKr+zkn7uQcAKIRtsgAAIKuSJH4UL8Wg+CCSiKjLZ/eTiBgUH0RExG+THSPKIAkwJdc+5iQto+NKPQX6xJwGX8ejud7xaPRu8OvWxNjoHnvHp1XG9opP4qlYv0bzrDpHRMSL0b1OayuVr8XkeDg2qtE5uSSJ3WNylbFFURHvRafVnuc9Urv3SNrWYhMyUHgCAEpDMgQAADJqUEwqSiEk/nv+8oLI8qJIORgfa1d5vFHMKs1Cytwz0TMWr/K/f3vEpzVKR3RKFsbXVrnR/Xm0jtdi3aKssaENikk1PmfnmBpdV9mK7ZXoGstyjf9/rcvxPbLqz3NlRExY5WceAKBQjf9fbAAAQJ51k/lxcrwWEXUvhCy3fJ6T49VYN5m/2uc2lLHRrcrjnvFlrfocZN3cXMu8T/i3iCS+E28VPMd3461oscqWRQ/FRpGUQUqoNraIL6J/8mHBz2+WVK74mVrZgzVMl5SrcnyP9F1ly613onPMyTXu/iwAQOkohgAAQAYNjTdr3SNkTdrF0hgab9bL3DX1Qsr2O9vG9BKspPzdEZvHslVKYwfH+7FrMrmaM/6/3ZLJcUi8X2VsbrSI+2KTgq/fL5kWo5K7q/y5NXm44PPrw+nxSmyS5PcAyZMkcXaMjV6r9KT5NNrHC9GjnlbX8Er9HllZy2RZbBEzq4yl/bwDABRKMQQAADKmY7Io9o2P6/Ua+8bH0TFZVK/XKMSnuQ7xYXSoMrZDTCvRasrbh7m14r7YuMpYRURcHKPjwGRSRJLkn5QkMSh5Py6K0XmHhsfWMTfXsp5WW78W/fd/hdvF0vhVPBX7ryYhsnayIC6J0TEgPqoyXhkRv4sdGm0yJk05vUf6xvRoGZVVxp6L9Wo1FwBAhAbqAACQOfvHR3k3EYutZVTG/vFR3BOb1ut1CvFY9IoTVkqq7B6ToyKpjMoM9HEotpujb/SLz2OTlXoxtIgkzo6XYkhMjCeT9WNKtItcRPSIL2Pf+DjWj3l584yOHnH/KjfNG5Nnomf0jjmxccyOjrEkzosX49vJ+Hg21ovJ0T4WRPNYOxbGNvF57BJTo3Usy5vjvtgkXs11LcHq61e5vEf2XKX3yKToGO/mNE8HAGpPMQQAADJmm1X22a/P65RDMeTfsWEMjTdXxN7XisWxbUyPV1bpJ0LEklyzOD/ZM66OJ/O2fOoVc+O4eHuNc7wWXeKXsWtEI05ELIuKuCS+FtfG47F2fJVw6hVzo1dMKOj8f0ev+L/Ytj6XWDLl8B7JJUnsEVW35vp3bFiruQAAlvNRKQAAyJhNo4AeCEW5zqwGuc6aTM+1jedX6duw/ypbGvH/fZFrHT+M/eKZGm45VBkRD8RGcV7sFQtzNf9cXadYnDf2QXSs8TzFMjXXLs6KffO2WVudpZGLO2Lz+HXsnKntsVZVqvfIcjvEZ9E5/v82fIujIh5VDAEA6kgyBAAAMqQiSaJHzG+Qa/WIL6MiSaKyDG4K/yM2jd1jyorHe8cn8Ydku5ifa1HCVZWvebmWcWl8LXZMpsaR8U7sENOiWaT0g4ivbkSPiR5xZ2weE3Nr1/qa26b0crk1tqr1fMXwaa5DnJr0j8Hxbhwe70W3an52FkVFvBA94rbYMt7PdWrYRZZIKd4jyx0Uk6o8fix6xaxc6zrPCwA0bYohAACQIc3ruVdI2vUWR7MGvWaaV3NdY2LSKTb7b1qlTSyLAfFh3BebFDzHcbmD6ml15eulXPd4KbpHu2RxbBkzY72YF+1iSUREzI2W8XF0iPGxdiyqw6f8l9supld5/Fz0KMqN80Ks7nu7JNcsRsTmMSI2j97J7NgoZsc6sSCaR2XMitYxPdrEm7FOLGiihbWGfI9ERHRKFsbuK22RVRlfFTsBAOpKMQQAADJkaQPvhNvQ11ud22KruCyeW/F4cLwb9ycbZ3o7o2L5Mtcyxkb3ept/7WRBlf4TlRHx19i63q5XWx/k1ooPYq1SL6Ms1fd7ZLnD471osVIC5ZnoGR/mfE8AgLorn/9zAQAA6qwyl4sp0bZBrjUl2pXFFlnLjc6tF2/H/08arB/zYq/4pIQrYrlVUyHPRM94r4lsN0XhWidL47B4d8XjZZGL4WVYNAMAGifFEAAAyJh3onMDXadTg1ynJv4U21R5fHRMiEjS+xzQcLZbqV/Isih9rxDK0yHxXnT87xZcERGjYsP4ONexhCsCALJEMQQAADLmjeiSqevUxKu5rvFU9FzxeJOYFftKh5TcysmQp2KD+MC2R6yibbIkvhUTVjz+MprHn1cpbgIA1IViCAAAZMxj0SsW1/M/9RdHRTwWver1GrV1Q2wbC1Zq6n58vBHNk4ZtLM//1zX5MnrElxHx1bZHt8aWJV4R5eibMSHWisUrHv8lto4vcq1LuCIAIGs0UAcAgIyZk2sVTyQbxMD4sN6u8URsEHNyrept/rqYnmsbw5JdY5P4YsVYt/gyPo0OJVxV0zUt1y4GxFGlXgZlbl60iL/+t1C2NCrivti4xCsCALJGMQQAADJoeGwde8Sn0S6WFn3uL6N52Tc1Hp1bL0bHeqVeBlCgEbnNS70EACDjbJMFAAAZND3XNm6MfhERUaz24cvnuTG2jem5tkWaFQAAoP4phgAAQEaNjD4xMnpHLupeEEkiIhcRI6N3jIzedV4bAABAQ1IMAQCArMrl4prYcUVBpE5TxVeFkGtix4hcXWcDAABoWHqGAABAhlXmcvHbZMd4O9aJk+PVWvUQ+TKax42x7VeJEIUQAACgEVIMAQCArMvlYmT0ibFJtxgab8a+8XG0jMo1nrY4KuKJ2CCGx9Z6hAAAAI1aLkmSYvVTLIoBFUNKvQQAAMi0jsmi2D8+im3i89g0ZkWP+HLFsSnRLt6JTvFGdIl/R6+Ym2tVwpUCAED2jaocUeolNAmSIQAA0MTMybWKe2LTuCc2jYiIiiSJ5lEZS6MiKm2DBQAAZJBiCAAANHGVuVwsjmalXgYAAEC9qSj1AgAAAAAAAOqTYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZFouSZKk1ItIM6BiSKmXAAAAAAAA9WJU5YhSL6FJkQwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTckmSJKVexOoMqBhS6iUAAAAAAEBRjKocUeolNEmSIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZVvbFkFGVI0q9BAAAAAAAqDP3u0un7IshAAAAAAAAdaEYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRaLkmSpNSLKNSAiiGlXgIAAAAAANTIqMoRpV5CkycZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRaLkmSpNSLqKkBFUNKvQQAAAAAAFitUZUjSr0E/ksyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADKtUTZQX04jdQAAAAAAyo3G6eVHMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADItFySJEmpF1FXAyqGlHoJAAAAAAA0caMqR5R6CVRDMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADItFySJEmpF1EsAyqGlHoJAAAAAAA0MaMqR5R6CayBZAgAAAAAAJBpiiEAAAAAAECmZWqbrOVslwUAAAAAQH2zPVbjIRkCAAAAAABkmmIIAAAAAACQaYohAAAAAABApmWyGGKfNgAAAAAA6pP70I1LJoshAAAAAAAAyymGAAAAAAAAmaYYAgAAAAAAZFouSZKk1IuoTwMqhpR6CQAAAAAAZIReIY2TZAgAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkWuYbqC+nkToAAAAAALWlcXrjJhkCAAAAAABkWpNJhiwnIQIAAAAAQKEkQrJBMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMa3I9Q5bTOwQAAAAAgOroFZItkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkWpPtGbKc3iEAAAAAACynV0g2SYYAAAAAAACZphgCAAAAAABkWpMvhog8AQAAAAAQ4X5xljX5YggAAAAAAJBtiiEAAAAAAECmKYYAAAAAAACZlkuSJCn1IsrFgIohpV4CAAAAAAANTK+Q7JMMAQAAAAAAMk0yJIWECAAAAABA9kmENB2SIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaniGroXcIAAAAAED26BXS9CiGFEBRBAAAAACg8VMEabpskwUAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm6RlSA3qHAAAAAAA0PnqFIBkCAAAAAABkmmRILUiIAAAAAACUP4kQlpMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQ2rBPnMAAAAAAOXNfVxWpoF6HWmmDgAAAABQPhRBSCMZAgAAAAAAZJpkSJFIiAAAAAAAlI5ECKsjGQIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm6RlSZHqHAAAAAAA0HL1CKIRkCAAAAAAAkGmSIfVEQgQAAAAAoP5IhFATkiEAAAAAAECmSYbUMwkRAAAAAIDikQihNiRDAAAAAACATFMMAQAAAAAAMs02WQ3EdlkAAAAAALVneyzqQjIEAAAAAADINMWQBqJqCQAAAABQO+6vUleKIQAAAAAAQKbpGVIC+ocAAAAAAKyZRAjFIhkCAAAAAABkmmRICUmIAAAAAADkkwih2CRDAAAAAACATJMMKQMSIgAAAAAAEiHUH8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk3PkDKidwgAAAAA0BTpFUJ9UwwpQ4oiAAAAAEBToAhCQ7FNFgAAAAAAkGmKIWVINRQAAAAAyDr3QWlIiiEAAAAAAECm6RlS5vQPAQAAAACyRCKEUpAMAQAAAAAAMk0ypJGQEAEAAAAAGjOJEEpJMgQAAAAAAMg0yZBGRkIEAAAAAGhMJEIoB5IhAAAAAABApkmGNFISIgAAAABAOZMIoZxIhgAAAAAAAJkmGdLISYgAAAAAAOVEIoRypBiSEYoiAAAAAEApKYJQzmyTBQAAAAAAZJpiSEaougIAAAAApeL+JOVOMQQAAAAAAMg0PUMySP8QAAAAAKAhSITQWEiGAAAAAAAAmSYZkmESIgAAAABAfZAIobGRDAEAAAAAADJNMqQJkBABAAAAAIpBIoTGSjIEAAAAAADINMmQJkRCBAAAAACoDYkQGjvFkCZIUQQAAAAAKIQiCFlhmywAAAAAACDTJEOaMAkRAAAAACCNRAhZIxkCAAAAAABkmmJIE6a6CwAAAACsyn1DskgxBAAAAAAAyDQ9Q6hCHxEAAAAAaFokQWgKJEMAAAAAAIBMkwwhlYQIAAAAAGSbRAhNiWQIAAAAAACQaZIhrJaECAAAAABki0QITZFkCAAAAAAAkGmSIRREQgQAAAAAGjeJEJoyxRBqRFEEAAAAABoXRRCwTRYAAAAAAJBxiiHUiCoyAAAAADQe7ufBVxRDAAAAAACATNMzhDrTRwQAAAAAyoMkCKSTDAEAAAAAADJNMoSikRABAAAAgNKQCIHVkwwBAAAAAAAyTTKEopMQAQAAAICGIREChZEMAQAAAAAAMk0yhHojIQIAAAAA9UMiBGpGMgQAAAAAAMg0yRAahJQIAAAAANSNNAjUnmIIDUpRBAAAAABqRhEE6s42WQAAAAAAQKZJhlASEiIAAAAAsHoSIVA8kiEAAAAAAECmSYZQFiRFAAAAAGjqJEGg/kiGAAAAAAAAmSYZQlmREAEAAACgqZEIgfonGQIAAAAAAGSaYghlRRUcAAAAgKbE/TBoGIohAAAAAABApukZQtnTRwQAAACArJAEgdKQDAEAAAAAADJNMoRGQ0IEAAAAgMZKIgRKSzGERktxBAAAAIBypfgB5cU2WQAAAAAAQKZJhtDoSYgAAAAAUC4kQqA8SYYAAAAAAACZJhlCpkiJAAAAANDQpEGg/EmGAAAAAAAAmSYZQiZJiAAAAABQ3yRCoPGQDAEAAAAAADJNMoQmQVIEAAAAgLqSBIHGSzIEAAAAAADINMkQmhQJEQAAAABqSiIEGj/JEAAAAAAAINMkQ2iypEQAAAAAqI40CGSLYghNnqIIAAAAAMspgkA22SYLAAAAAADINMkQWIWkCAAAAEDTIQkCTYNkCAAAAAAAkGmSIVANCREAAACA7JIIgaZFMgQAAAAAAMg0yRAogJQIAAAAQOMnDQJNl2QIAAAAAACQaZIhUAuSIgAAAADlTxIEWE4yBAAAAAAAyDTJEKgDCREAAACA8iMRAqxKMQSKSHEEAAAAoOEpfgBrYpssAAAAAAAg0yRDoJ5IiQAAAADUH2kQoCYkQwCgDHwjOSjWTbrUy9zrJl3iG8lB9TI3AAAAQGMgGQINRFIEqM43koPitDg+JsfUOCcujem5z4s297pJl7g6Lo71onv8IW6Je3IPF21uAACAhiQJAtSFZAgAlNgz8UJMjqmxXnSPq+PioiVEVi6ETI6p8Uy8UJR5AQAAABobyRBoYBIiQJpVCxd1TYgUez4AAIBSkQgBikEyBADKwPTc53FOXFqUhIhCCAAAAEBVkiFQYpIi0LT8a/K4iIg4YL3tUo/XtZChEAIAADR2kiBAfZAMAYAyUpeEiEIIAAAAQDrJECgjUiLQdCxPiKxqeWKkpoUNhRAAAKAxkwYB6ptkCACUoZokRBRCAAAAAFZPMgTKmKQIZF91CZGIr1Iiayp0KIQAAACNkSQI0NAUQ6ARURyB7FpdUSQ+6RG5o26L3Ie9Itnwozjmw2ExPfe5QggAANBoKH4ApWabLAAod+tPieTuYyPZ8KPIfdgrro6LY+tkc4UQAAAAgAJJhkAjJSUC2VRoQmS5lZMiAAAA5UQaBCgnkiHw/9q78ziry7Jx/NfMADJsAwiKiAoMSy6JiohbCpIpPbhgZT/NnszMSkPN1NDncev7LbXFb5qZQm6paS6ZQOZCCS6hKYIoyiYiuyzjsM6wzfz+KGiGcw5zzsyZ7fB+v168PNznXq5zGOE+5/pcnxugueixLCrvuKpaU+UdV0mEAAAAANRAZQg0cypEILfUpjKk8snzInosq9b1lO6H1U+AAAAANVARAjRFKkMAoDnY6RD1ime+uuMMkbwvPxyxeJ/GjhAAAACgyVIZAjlGpQjkhmoVIjslQnZUgqRq3wUVIwAAQLapBAGaA5UhANCU7Srh0WNZVD55ngoRAAAAgBqoDIEcp1IEmq+ulV3iF3FDdI9usTSWR7c3z05e+aFCBAAAaEAqQYDmSGUIADRBOydCroybUic4VIgAAAAA7JLKENiNqBKB5iFZImRl3qqEftXOFYnIuEJEdQgAAJAu1SBAc6cyBACakHQTIUmpEAEAAABISmUI7MZUikDTUqdEyL89v3S6ChEAAKDOVIIAuUYyBNhBcgQaTzYSIbuaL+Xh61VIigAAwO5L8gPIdW6TBQCNLNuJkIiIlXmr4sq4KZbG8uge3dwyCwAAANitqQwBdkm1CNS/kZVfjIvjm1lLhFRVNdFyV9wfT+c9u+O5hAPY/02FCAAA5DZVIMDuqEVjBwAAu7un856NqIx4Nf6Z1URIxL8rRCpviuPjqGqJEAAAAIDdicoQICMqRSB37VwpokIEAAByg0oQAGeGAAAAAAAAOU5lCFAnKkUAAACgaVEJApBIZQgAAAAAAJDTVIYAWaVSBAAAABqWShCAmqkMAQAAAAAAcprKEKDeqBIBAACA+qEaBCAzKkMAAAAAAICcpjIEaDAqRQAAAKB2VIIA1I1kCNCoJEgAAACgOokPgOxzmywAAAAAACCnqQwBmhSVIgAAAOxuVIIA1D+VIQAAAAAAQE5TGQI0aSpFAAAAyDUqQQAansoQAAAAAAAgp6kMAZod1SIAAAA0F6pAAJoGlSEAAAAAAEBOUxkCNHsqRQAAAGgqVIIANE0qQwAAAAAAgJymMgTIWSpGAAAAqC8qQACaF8kQYLcgMQIAAEBdSYAANF9ukwUAAAAAAOQ0lSHAbk3FCAAAADtTAQKQe1SGAAAAAAA0cz179oy8vLwafz3wwAONHSp1kM6fcV5eXkyaNKmxQ21yWjR2AACNaeerfVSKAAAA7H5UgjR9GzZsiH/+85/x9ttvx4wZM2LhwoWxaNGiKC0tjbKysigvL4/CwsJo165dtG/fPtq3bx89e/aMfv36Rb9+/eIzn/lMDBw4MPbYY4/GfilAI5EMAQAAAACanPXr18cf/vCH+NOf/hSTJk2KTZs27bL/hg0bYsOGDfHJJ59ERMS0adOqPV9YWBjHH398DBs2LE455ZQ47LDD6it0oAmSDAGoItnVQKpFAAAAcocqkKbvk08+iZ/+9Kdx3333xfr167M2b1lZWbz44ovx4osvxujRo2PAgAFx4YUXxnnnnRcdO3bM2jrsfm688ca0+p1//vnRs2fPeo2F1CRDAAAAAIBGt3Xr1rjlllvilltuiQ0bNtT7eu+8806MGjUqrrrqqlixYkW0b9++3tckN910001p9RsyZIhkSCOSDAGoQaqrhlSMAAAANF0qQJqXefPmxf/3//1/MXXq1AZfu7y8PLZt29bg6wINSzIEAAAAAGg0L7/8cowcOTJKSkoaOxQgh0mGANRS1auMVIkAAAA0PtUgzc/EiRNjxIgRNR6ODlBXkiEAAAAAQIN7880348wzz5QIgQxUVlY2dgjNlmQIQBY4VwQAAKDhqABp/kpKSuLLX/5yrQ9K/8xnPhMnnXRSnHTSSVFcXBxdunSJLl26RH5+fmzYsCGWLVsWCxYsiHfeeSfeeOONmDRpUqxZsybLrwJoTiRDAOqRJAkAAEDtSXrkru9+97uxcOHCjMedeOKJcdNNN8WJJ56Ysk+rVq2iU6dOcdBBB8UXv/jFiIjYtm1bTJ48OR577LF47LHHYt26dbWOHWie8hs7AAAAAABg9/G3v/0tnngis0RX69at4w9/+ENMmjRpl4mQVAoKCuKkk06KMWPGxJIlS+KOO+6IHj16ZDwP0HypDAFoBMmublItAgAA7M5Ugew+fvSjH2XUv2vXrjFhwoQ46qijsrJ++/btY9SoUXHRRRfF3XffHTfddFOt5tm8eXPMmTMnZs6cGe+//358/PHHsXTp0li6dGmUlJREWVlZlJWVxZYtW6JVq1ZRWFgYXbp0ie7du0ffvn3j0EMPjeOOOy4OP/zwyMvLy8prq0+LFy/e8VrnzZsXS5YsiaVLl8by5ctj48aNUV5eHmVlZVFQUBB77LFHdOrUKfbee+/o3bt3HHjggXH00UfH8ccfH+3atWuQeFevXh0TJ06Mt956K957771YtGhRLFu2LDZu3BibN2+OwsLCaNeuXey9997Rp0+f6N+/fwwePDiOPfbY6Nq1a8p5H3744VrH9OKLL8bixYtr7Lf33nvHySefnPS5dH9WXnrppRgyZEgm4SVVUVERU6dOjVdeeSWmTZu248++tLQ0ysrKIi8vL9q1axdFRUXRs2fP6NOnTwwYMCCOPfbYGDBgQBQUFNQ5hmzJq3TiCkCTIBkCAADsziRDdg+TJk2KoUOHpt0/Pz8/Jk6cmNGYTK1evTqKioqiRYuarxt//vnn48UXX4zXXnstpk6dGlu2bKnz+j169Iivfe1rMWrUqNh3331rPU/Pnj3j448/rrHf/fffH+eff36N/ebPnx9PPfVUvPrqq/GPf/wjVq1aVevYtmvdunUMHz48vv/978dJJ51U5/l2tmXLlvjjH/8Yv/vd7+KVV16JioqKWs0zcODAOOuss+Lb3/52QmKkIRJXJ554YkyaNCnpcw2VDJk9e3bcc8898cgjj8SKFStqNUfHjh1jxIgR8bWvfS1OPfXUWseSLZIhAE2cJAkAAJBLJD12b+ecc0489thjafe/4YYb4sYbb6y/gDL0mc98JmbPnl0vc7du3Tp+9KMfxf/+7/+mlZjZWbaTIbfccktcc801GceRrpNPPjnuueee6NWrV1bme/TRR+Paa6+NBQsWZGW+iIinn346zjzzzGptuZ4MWb58eVx99dXxyCOP1DqZtLMBAwbE9OnTszJXXTgzBAAAAACod+Xl5TFhwoS0+3ft2jVGjx5djxE1LeXl5XHTTTfF5z//+d3igPcXX3wxjjjiiJg8eXKd5iktLY0zzjgjzj333KwmQnZHTz31VBx00EHx0EMPZS0R0pQ4MwSgiXO+CAAA0FypAqGqyZMnx/r169Pu/73vfS9at25djxE1TZMnT44zzjgjXnzxxSZ13kJ9KC0tjREjRsRrr70Whx56aMbjP/744/jCF74Qc+bMqYfodi8333xz/M///E/k8o2kVIYAAAAAAPVuypQpGfW/6KKL6imSpu+ll16KW2+9tbHDaBDr16+Pc845J7Zu3ZrRuOXLl8ewYcMkQrLgF7/4RVx77bU5nQiJUBkC0CylurpKxQgAANAYVICQjjfffDPtvr17967TYeK54Oabb056gHcuev/992Ps2LHxve99L63+27Zti69+9avx4Ycf1nNkue/555+PH/3oR40dRoOQDAEAAAAA6t28efPS7nvcccfVYyTZVVBQEH369IlDDjkk+vXrF0VFRdG+ffto27ZtlJeXx9q1a+Ojjz6KqVOnxltvvZX2WQzr16+P3/3ud/V6iHlt7L333nHIIYfEwQcfHF26dIkOHTpEhw4doqKiIjZu3BiLFy+OWbNmxeTJk2PNmjVpz3v77bennQz51a9+FS+//HLGsRcXF8ewYcOid+/e0aVLlygvL49Vq1bFBx98EJMnT47ly5dnPGdztm7duvjmN7+Z8fkghYWFcfzxx8fRRx8dXbt2jbZt28bq1atj2bJl8Y9//COmTp2acaVPQ5AMAcghzhcBAADqmyoQaqOysjIWLlyYdv8BAwbUYzR117lz5zj99NPjzDPPjJNPPjnatGmT1rglS5bETTfdFGPHjk2r/x//+MdGT4bk5+fH0KFD44wzzogzzjgj9t9//7TGbdmyJR566KG48sor49NPP62x/+zZs2P69Olx2GGH7bJfSUlJ3HTTTWnFsN0xxxwTN998c5x44om77PfGG2/EnXfeGY8//nhs3rw5aZ9kt5LKy8tLK46XXnophgwZklbfhnDLLbfEsmXL0u7fpk2buPLKK+OKK66IoqKilP3Wrl0bDz74YNx1110xa9asbISaFZIhAAAAAEC9Wr9+fZSXl6fdv3PnzhnNP3PmzJg2bVqmYVVTXFwcxxxzzC77HHDAAXHxxRfHhRdemHYCpKp99903xowZEz169Igbbrihxv7vvPNOrFy5slFulbXHHnvEhRdeGFdffXX07ds34/EtW7aMCy64II4++ug46qijYsOGDTWOmThxYo3JkN/+9rexbt26tOP47ne/G7/+9a+jRYuavwofPHhwDB48OG688cYYNWpU2ms0R+vXr4+77ror7f777LNPjBs3Lo488sga+3bo0CFGjRoVl1xySdxzzz3xxBNNI4kuGQKQ45wvAgAA1IYKELKprKwso/6dOnXKqP/48ePrXEHxjW98o8ZkyHPPPZd2FcCuXHvttXHnnXfGypUra+z79ttvxymnnFLnNTN1+eWXZ+W1HnTQQXHRRRfF//t//6/GvlOnTq2xz/3335/22iNHjozf/va3afffrri4OJ599tmMEnjNzdNPPx2lpaVp9W3ZsmU888wzaSVCqsrPz4/vfe978c1vfrMWEWafZAjAbmpXH2wkSgAAYPcg4UFD2bRpU0b927dvX0+R1E02kgMRES1atIijjz46xo8fX2PfOXPmNEoyJFuvNSLi+OOPTysZMmfOnF0+/+6776Z9aHqHDh3i3nvvTatvKq1bt67T+Kbsz3/+c9p9f/SjH8WgQYNqvVZTeR/zGzsAAAAAACC3tWrVKqP+69evr6dImo50bwW2dOnSeo6k/mXrtb766qtpr/ntb3874wqj3Um672Xr1q3j0ksvredoGobKEAASuLUWAADkFhUgNLZMz9dI58DtpqCysjJmzpwZr7322o6qhUWLFkVJSUmsXbs2Nm3aFFu3bq3TGmvXrs1StHW3cuXKePnll2PatGkxa9asWLhwYaxYsSJKS0ujvLw8Nm/enPSA8XTV9FozORfmK1/xHUYqS5cujRUrVqTVd8iQIY1yZk19kAwBAAAAAOpVu3btYo899kj7dllNPRny0UcfxW9+85t47LHHYsmSJfW6VqbnrWRbeXl5PPTQQ/HAAw/ElClT6pTsqElNr/Wjjz5Ka57CwsI44ogjshFSTkr3fYz41y3OcoVkCABpS3Y1mWoRAABoWlSB0BTl5eXF/vvvH3Pnzk2r/7vvvlvPEdXOli1bYvTo0XHHHXfUueIjXRUVFQ2yTjITJkyIiy++OBYtWtQg69WUaEm3mqFHjx7RsmXLbISUk9J9HyMievXqVY+RNCxnhgAAAAAA9a64uDjtvlOmTKnHSGpnzZo1ceqpp8Ztt93WYImQxnT77bfHGWec0WCJkHRs3LgxrX7pnlGyu0r3fYzIrfdSZQgAdVLTVWcqRwAAILtUftBcDRo0KJ577rm0+s6ePTtWrlyZ9lkFo0ePjtGjRyd9bsiQITF58uS040zly1/+cvz973+v8zzNwSOPPBKXX355Y4cBWaUyBAAAAACod0cffXTafSsrK+P++++vx2gyc99998XEiRMbO4wGsXLlyrjssssaO4yk2rRpk1a/kpKSeo6keUv3fYzIrfdSZQgA9co5IwAAUHuqQMglQ4cOjTZt2qR9i5677rorfvjDH0ZBQUE9R1azW2+9Ne2+/fr1iwsvvDBOOOGEKC4ujg4dOkSrVq0S+p1//vnx4IMPZjPMrBg7dmysXr06rb5t2rSJb3zjGzFixIg4+OCDo2vXrlFYWBh5eXnV+k2aNCmGDh1a59jSrRRasmRJbN26NVq08PV3Mum+jxERCxYsqL9AGpifBgAAAACg3hUWFsYXv/jFePLJJ9Pq//HHH8ddd90Vo0aNqufIdm3GjBkxZ86ctPp+61vfirvvvjutL+EzObehIaX759OrV6+YOHFi9O7du8a+2Xqt6R7mvXHjxnj77bfjqKOOysq6uSaTQ9FfffXVeoykYUmGANDgnDMCAAD/ovKD3c1FF12U9pftERFXX311DB06NA455JB6jGrXXnnllbT6de/ePX7729+mXY3w0Ucf1SWserFhw4aYNm1aWn1//etfp5UIicjeaz3ssMPS7vvkk09KhqSw7777RteuXWPlypU19p00aVKsWrUqunTp0gCR1S9nhgAAAAAADeLkk0/OKLFRXl4eI0eObNTEwbJly9Lqd9xxx0XLli3TnvPtt9+uS1j1It3XGhEZ3fbqL3/5S23CSXD88cen3XfMmDFRWlqalXVrUlhYmFa/srKyeo4kfccdd1xa/crKyuLOO++s52gahsoQAJqcXV0dp2oEAIDmRvUHVHfzzTfHaaedlnb/efPmxdFHHx3PPPNMRoewZ0s6V89HRGzevDntOW+66aaoqKiobUj1Jt3XGvGv15vOQdxTpkyJv/71r3UJa4cBAwZEr1690kqOrVmzJi666KJ4/PHHa73exo0b03qNHTp0SCvR8cEHH8Tw4cNrHU82jRw5Mv785z+n1feWW26J008/PY444oharZXu+1jfVIYA0Ky8WPHELn8BAEBDs0eFzIwYMSK++MUvZjRmxYoVcdxxx8U3vvGNBq8SSfdL3EmTJsWnn35aY78HHngg7rnnnrqGVS8y+cL66aefrrHPokWL4qtf/WpdQkpw/vnnp933iSeeiFGjRsW2bdsyWmPJkiVx2mmnxQsvvJBW/86dO6fVb+zYsbF+/fqMYqkvI0eOjKKiorT6btq0KU4//fS0b6FW1QMPPBAjRozIeFx9kAwBAAAAABrUvffeG3vttVdGYyoqKuL3v/999OvXL0444YT4v//3/8bkyZNjzpw5UVJSEhUVFVFeXh7Lli2Lf/7zn/G73/0uzjvvvHjzzTfrFOvee++dVr81a9bEV77ylViyZEnS59etWxdXX311XHDBBXWKpz6l+1ojIq644op47rnnUj4/fvz4GDRoUCxatCgboe1w8cUXR7t27dLuf+edd8aJJ56Y1tkvH3zwQVx88cXRr1+/mDBhQtprpHvrt1mzZsWBBx4Yl112Wfz2t7+Nhx56KB5++OFqv9Kt1qir9u3bx3e/+920+y9ZsiQ+97nPxY9//ONYu3btLvuWl5fHgw8+GEcccUR885vfjJKSkrqGmxVukwVATnGLLQAA6oMKD8iubt26xaOPPhrDhw/P6PZSERFbt26NV155Je2Dzesqk0O4//a3v0Xv3r3jS1/6Uhx00EHRvXv3WLt2bUybNi0mTJjQZL4UTqVbt26x//77x8KFC2vsW1paGsOHD4/BgwfH0KFD44ADDoiIfx2W/te//jXefffdeomxS5cucd1118WPfvSjtMe89tprccIJJ0Tfvn1j2LBh0bt379hzzz1j06ZNsWrVqpg3b168/PLLsWDBglrFNHDgwHjiifT+nVi8eHHccccdKZ8/4IAD4swzz6xVHJm69tpr48EHH4zly5en1X/Dhg1xww03xC233BInnHBCDB48OPbaa69o06ZNlJSUxCeffBL//Oc/44033ojy8vJ6jj5zkiEAAAAAQIM76aST4qGHHopzzjmnSZ6fsd3nPve5KCoqijVr1qTVf/PmzfHoo4/Wc1T1Z8SIEXHXXXel3f+NN96IN954ox4jSnTFFVfEuHHj4rXXXsto3Ny5c2Pu3LlZj+e0006L0aNHZ33e+tahQ4e49957Y8SIEVFZWZn2uLKysnj++efj+eefr8foss9tsgDYbbiPMwAAu2K/CA3v7LPPjieeeCIKCwsbO5SUWrZsGZdddllW59x7772bzEHaO7vsssuiRYvsXkP/zW9+M6vztWjRIh5//PHo2bNnVuetrYMOOig+97nPNXYYtfLFL34xfvKTnzR2GA1CMgQAAAAAaDRnnXVWvPTSS9GrV69GjSMvLy/lc1dddVXsv//+WVmnRYsW8fDDD2d8ZkpD6devX4waNSpr851//vnx3//931mbb7vu3bvH3//+9+jTp0/W566NX/3qV9GqVavGDqNWrrnmmrjpppsaO4x65zZZABA13wPaeSMAAM2fCg9ougYPHhzvvPNOXHXVVfG73/0utm3b1mBrd+3aNS655JK45JJLUvZp165d/OUvf4njjz8+7dtlJZOfnx/33ntvfP7zn4+HH3641vPUt5/97Gfx/vvv1/k2SMOHD48xY8ZkfDurdPXq1SveeOON+PrXvx7PPvtsvayRriOOOCLGjBkTF110Ucbn4DQF119/ffTv3z++853v1OlnvClTGQIAAAAANLr27dvH3XffHdOnT4+RI0dGQUFBva3VsmXLOPXUU+OPf/xjLF68OG644Ybo0qXLLscccsgh8be//a3WFSzt27ePp556ql6qJLKtRYsW8dRTT8U555xT6zkuuOCCeOaZZ6Jly5ZZjCxR586d4y9/+Us89NBDWaveqa1vfOMb8eqrr8Zxxx3XqHHU1le/+tV4//3349xzz438/NxLHagMAYA07OoqQlUjAABNh+oPaP4OOeSQ+NOf/hQLFy6Me++9N55++ul499136zxv9+7dY+jQoXHKKafEiBEjolOnThnPMXDgwHj77bfjuuuui3vvvTfKyspqHJOfnx8jR46M2267rdG/rM9E27Zt4w9/+EMMHz48fvzjH8e8efPSGte/f/+45ZZb4swzz6zfAHdy3nnnxdlnnx2PPvpo3HffffHqq69GRUVFreY6/PDD40tf+lKtkhqDBg2KV199NWbMmBETJkyIt956K95///349NNPY+3atVFeXl6rmLbL5KDz2ujevXs88sgj8b//+79x9913x6OPPhorV66s1VwdOnSIESNGxHnnnZflKGsnr7K+3z0AyHGSIQAATYdkCOSmRYsWxZQpU+Ktt96K2bNnx8KFC2PZsmWxYcOGKCsri4KCgujQoUN06NAh2rdvH506dYq+ffvGwQcfHAcffHAcdNBB0b1796zGtHLlynjqqafipZdeiunTp8eqVatizZo1UVhYGF27do0DDzwwTjjhhPjyl78cxcXFCeM//fTT2LBhQ43rtG3btlaJm2yqqKiIZ599Nl588cV47bXXYunSpVFSUhIREUVFRVFcXBxHHnlknHbaaTFs2LCEqoJNmzal/YV6jx49shLzqlWrYuLEifHmm2/Ge++9F4sWLYrly5fHxo0bY8uWLdG6deto165d7LXXXtG7d+/o379/DB48OI477rjo1q1bVmLIBRUVFfHmm2/GK6+8EtOnT4+5c+fGkiVLorS0NMrLyyM/Pz/atm0bHTp0iAMOOCCKi4tjwIABcdxxx8Xhhx8eLVo0nXoMyRAAaAASJgAAdSfRAQDUVu7d+AsAAAAAAKAKlSEA0ASoHAEAUPkBANQfyRAAaCYkTACA5kyiAwBoTG6TBQAAAAAA5DSVIQCQQ1SPAACNQdUHANDUqQwBAAAAAABymsoQANgNqSABANKh4gMAyBUqQwAAAAAAgJymMgQA2CVVJACQW1R7AAC7I5UhAAAAAABATlMZAgDUmeoRAGgaVH0AACSnMgQAAAAAAMhpKkMAgAaligQAMqPaAwCg7iRDAIAmS+IEgFwlwQEA0LDcJgsAAAAAAMhpKkMAgJyimgSAhqbKAwCg6VMZAgAAAAAA5DSVIQDAbk81CQDbqfIAAMhNKkMAAAAAAICcpjIEAKAOVJUAND2qOwAA2JnKEAAAAAAAIKepDAEAaCSqSgBSU90BAEA2qQwBAAAAAABymsoQAIBmSmUJ0JSp7AAAoClRGQIAAAAAAOQ0lSEAAOyg2gR2T6o4AADIdZIhAAA0GMkWqB3JCgAAqBu3yQIAAAAAAHKayhAAAHKaahSyTZUGAAA0PypDAAAAAACAnKYyBAAAAAAAyGkqQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJzWorEDAKD5qaioiLVr1zZ2GAAAQAodOnSI/HzXwALAdpIhAGRs7dq1cfrppzd2GAAAQArjxo2Ljh07NnYYANBkuEQAAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcpozQwDIipZT94y8rQU7fp+XnxdVfrPr9mpteVUe5idtT9W/anu1san6b3+cap0qD9NaP501t0+axnyVVYdVvXwh2WtIGFvD60jVN8U6Nc4XEZXVLrFI8TryEp5OuX6qNStTrV+1vart72+yONKdrw7r73hfsrZmGu2R2J7e+5nZ47TiymRciv61fi9qiqkuc6fbJ4M5Mo0r8ioT+9ThNSSdbxcqk43NcJ3UMSbvU+2v00jSp6bnIyIvnblTtldWaa9ML6ad1qz+v3/ifDvPmZ+yT+L6qear9ld7lcep5k6rPSp3+Xw6j1PFkh+7Hlv1+errV9Rqvl33T5yzoNr6FUnHFaSzfiSPtyDlnBX/XrNKW4pYU7WnXLNKe7LYU81RdZ2CanOn875UXTNFjP8eW5DqtaX1+lPEmLJP4uOqW7Wq/z9VfVxQpU9Bij75Vf6Hza/yf0BBJLZX75uffFyVvee6tQXxjSu6BgCQmmQIAFmRtyU/8rZlORmSnyJJUZmqvcrYvPyk7UmTB6nWSfU41bdkeSm+bko6T6bftEbNfVI9rvZFXQ3fmFaTaZ+qzSnW35GMyaDvrkJJp8+/f77S+zI4nTUzXT/ba9bycR3WqXWSJtNxkbw968mQLL3ObCdDMl+/EZIhKedshGRIsj7V4s40GZLZmjUlI1K+5kjRnvJ9SdUn8T3PS9U3xXuRev2aHydLhmT6OOMkRZJkSPXnM02G7DoB8K8+eVUeJyZDkj2fOF+qBEQkb6/yZ1Q9kZAk7mpz5KXRXjXeSNpePfZkMVUZV22OqmtWba85SVRQ7X1J7JP6+eQJlXSSIan77DoZUn39Ku0p3s/qfaq2p/hz+ffj6n0j4fmd18xP9o8PAFCN22QBAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOS0Fo0dAAC5obJlRUTetv805Of953Fe5a7bq7WlGFe1Pb8iRXvVsfkp2pM8rtq32vORvD3lfGmsuX3SZHHs9LgyybD0x1YdUFXeTv+NqIya+qbbp4rKFO1JVJu7MkV7JO2yi/WT9En5flZ9nOrPP8P+yWLJ2pppPI4k7XVYJ9mPcMax1DbuujxuqHXSWSud9zlF/9R/F1Qm9knRN/UcNcy3C5XJxma4TuoYk/ep/ldbkj41PR8ReenMnbK9skp7ZXox7bRm9f/9E+fbec7UfZKsX+211fS37y76p/G4cvtrrfZzk9njKv+a7xRvTeunmrsieXvK/skf51fpn19lzvx/96k6X17V56u0V6Sc7z+Pt0Xi3BERBSnm3N5e9eegIMXcqdpTxVJQbZ2o0n9738S2f41L/rh6///8piBle17S9vwkz1dbp0o0VddM/b5UHZvGe/Hvx6lef7X3otr6KfqneJ0FkdhevW9+8nFV9p7r1rrWFQBqIhkCQFZsGbi6sUOgqUrx/VZTkc535ABUl5iW2Cm5QTOWLDPoi3YAoPmzowEAAAAAAHKaZAgAGVuzZk1jhwAAAOyCPTsAVCcZAgAAAAAA5DRnhgCQsfbt2ye0PfTQQ1FUVNQI0QAAwO5tzZo18fWvf71aW7I9OwDsziRDAMhYfn5iYWFRUVF07Nix4YMBAAASJNuzA8DuzL+MAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNMkQwAAAAAAgJwmGQIAAAAAAOQ0yRAAAAAAACCnSYYAAAAAAAA5TTIEAAAAAADIaZIhAAAAAABATpMMAQAAAAAAcppkCAAAAAAAkNPyKisrKxs7CAAAAAAAgPqiMgQAAAAAAMhpkiEAAAAAAEBOkwwBAAAAAABymmQIAAAAAACQ0yRDAAAAAACAnCYZAgAAAAAA5DTJEAAAAAAAIKdJhgAAAAAAADlNMgQAAAAAAMhpkiEAAAAAAEBOkwwBAAAAAABymmQIAAAAAACQ0yRDAAAAAACAnCYZAgAAAAAA5LQWjR0AQK5Zv359vP/++7F69eooLS2Nbdu2Rdu2bWPfffeN/v37R1FRUb2uX1FREXPnzo358+dHaWlpbN68OQoLC2OfffaJ/v37x1577ZX1Nbdu3RrLli2LTz75JFasWBHr16+PTZs2RX5+frRr1y7atWsXvXr1igMOOCAKCgqyvj4AAKRif9409ufbtm2LDz/8MBYuXBglJSVRVlYWrVq1ijZt2sQ+++wTPXr0iO7duzdILADsniRDgGbtpz/9aTz33HNZmeuoo46KX/ziF7Uau3Xr1nj++edj/PjxMXv27Ni2bVvSfvn5+XHIIYfEWWedFUOHDo28vLy6hFzNypUr47HHHosXXngh1qxZk7Jf3759Y+TIkTF8+PBaf/BZtGhRzJgxI959992YO3dufPzxx7F58+Yax+2xxx4xaNCgGD58eBx77LFZ++C1du3amDVrVsyePTtmzZoVc+bMiU8++SSh38svv5yV9erqhBNOyNpcN9xwQwwbNixr8wEA1IX9+X/szvvzqt5+++0YP358vP7667Fhw4Zd9i0qKopDDjkkjj766BgyZEi9J6pSWb58+Y7PF9t/rVu3rlqfww47LO64445GiQ+A2pEMAaijadOmxa233hpLly6tsW9FRUXMmDEjZsyYEU888URcd911Wbn66Zlnnom77rorysrKauw7d+7c+NnPfhZ/+tOf4sYbb4z9998/4/VGjRoVJSUlGY/btGlTvPrqq/Hqq69GcXFxXHHFFfHZz34243nmz58fU6ZMiTlz5sSsWbNi2bJlGc8BAEBusj9PX7b258ksWLAgbrvttpg+fXraY9asWROvvfZavPbaa1FYWBhf+MIXshJLTd5888145513dlxctavkFQDNlzNDAOrgT3/6U1xxxRVpfdDa2cyZM+Pb3/52fPDBB3WK4c4774xf/vKXaX3QqmrevHnxne98J95///06rV9bH374YYwaNSomTJiQ8dgJEybEPffcEy+99JJECAAAO9if115d9uc7e+655+Lb3/52RomQxvTb3/42fv/738cbb7whEQKQw1SGADmlRYsW0bNnz1qNzfQKsBdffDF+9atfJbTn5eXFYYcdFoMGDdpx/99Vq1bFW2+9FdOmTatWor9u3bq48sorY8yYMbHvvvtmHPOjjz4ajz/+eEJ7YWFhDBs2LIqLi6OoqChWrFgRM2bMiClTpkRlZeWOfhs2bIirrroqxo4dW6cr4Lp27Rp9+/aNHj16xD777BNt27aN1q1bx6ZNm2LNmjUxf/78ePPNN2PlypXVxlVUVMTPf/7z2GOPPeLkk0+u9frNXefOnaNz5861Gtu+ffssRwMAkD325/+yO+3PH3/88bjzzjsT2vPy8qJv375x5JFHRteuXaNjx46xbdu2WLduXSxcuDDmzZsX77//fspbmgFAXUmGADmlS5cucd9999X7OvPnz4+f/exnCe09e/aMa665Jg488MCE584999z48MMP4+abb445c+bsaF+3bl1cf/31MWbMmIzu0Tt79uwYM2ZMQvvxxx8f11xzTcKX5Oeee24sWLAg/ud//icWLVpUbf3/83/+T9x1111p3yO5c+fOMWjQoBg8eHAMGDAgunbtWuOYysrKmDx5ctx5552xYsWKau2/+tWvYuDAgbVOCGzXsmXL6NWrV/Tv3z9eeumlWL9+fZ3mayinn356XHDBBY0dBgBA1tmf717784kTJ8ZvfvObhPahQ4fGd77znRoTPBs2bIjXX389JkyYkNXzW2qrbdu20bdv3+jevXs8++yzjR0OAHUkGQJQC2PGjIlNmzZVa+vVq1f8+te/jg4dOqQcV1xcHHfccUf84Ac/qFZ+P3fu3Hj66afjy1/+ctox3H777QlXTQ0ZMiRuvPHGyM9PfhfEnj17xl133RXf/e53Y8mSJTvaZ86cGc8991wMHz48rbVr84E2Ly8vhgwZEoccckh8//vfr3brgnXr1sUzzzwT3/zmN9Oer6CgIHr27Bn9+/ePz3zmM9G/f//o06dPtGzZMiL+dd/f5pIMAQCgbuzPG39/vmjRovj5z39erdKlRYsWcd1118XQoUPTmqNt27YxbNiwGDZsWLV5GkJhYWH06dOn2ueL/fffP/Ly8mLZsmWSIQA5wJkhABmaN29e/OMf/6jW1qJFi7j++ut3+UFruzZt2sQNN9wQhYWF1doffvjhhA9wqUydOjXee++9am2dO3eOK6+8MuUHre2Kiopi9OjRCf1+//vfR0VFRVrr10WXLl3iBz/4QUL7pEmT0p7j3HPPjeeeey7uv//+GD16dJx55plx4IEH7kiEAACw+7A/r5ts7M8jIuk5Kddff33aiZCdNWRlyE9/+tN49tln4ze/+U1ceuml8YUvfCEOOOCAJlGdAkD2SIYAZGjy5MkJbUOGDIni4uK05+jevXuccsop1dpKSkri5ZdfTmv8M888k9B2zjnnpPVhLyJiwIABcfTRR1drW7JkSbz11ltpja+rQYMGRceOHau1LVy4MO0Pe126dIk99tijHiIDAKC5sT+vu7ruz//xj3/E22+/Xa3tlFNOiSFDhmQpwvrVrVu3jG6JBkDzJBkCkKGpU6cmtNXmcMGdP2xFRLzwwgs1jisrK0u48q1Vq1Zpl9Bvd/rppye0TZw4MaM5ais/Pz/22Wefam3btm2L0tLSBlkfAIDcYX9ed3Xdn//hD3+o9vtWrVrFJZdckq3wACArJEMAMvThhx8mtB1yyCEZz9OvX79o1apVtbZp06bVWIo/ffr02Lx5c7W2ww8/PO2rzrY76qijEm4F8M9//rPB7s2782uICLe5AgAgY/bn2VHb/fnChQtjxowZ1dqOOeaYhEoTAGhskiEAGdi0aVPCfXDbtGkT7du3z3iuli1bRufOnau1bd68OWbOnLnLce+8805C26GHHprx+i1atIiDDz64WltJSUksXrw447kytWHDhli0aFG1tg4dOkS7du3qfW0AAHKH/Xl21GV//tJLLyW0DRs2LGuxAUC2SIYAZGDdunUJbW3btq31fMk+XMyePXuXY+bMmZPQtvOHpnQlu2KupvWz4cknn0y48uzII490QCEAABmxP8+OuuzPk51rUtvXDwD1qUVjBwCQTeXl5fHwww/HjBkzYuHChVFaWhpbtmyJ9u3bR4cOHWK//faLAQMGxBFHHBF9+vTJeP5kh3bXVDZfU7w7+/jjj3c5Jtnz++67b63W7969e0LbwoULazVXuv7617/GAw88UK0tLy8vzj777HpdtymbO3du/PrXv46ZM2fGihUrYu3atdGiRYvo0KFDdOzYMfr16xcDBgxIerAlAEBTZn+emea2P9+2bVt88MEH1dqKioqia9euO36/fv36eOGFF+L111+PDz/8MEpLS6NFixZRVFQUe+65Zxx66KFx1FFHxeGHHx75+a7ZBaD+SIYAOaW0tDTGjBmT0F5SUhIlJSWxYMGCeOWVVyLiX1ddnXvuuXH88cenPX+7du2ioKAgtm3btqNtw4YNsXXr1mjRIvO/UpMdSLh06dKU/bds2RKrV6+u1lZQUBBdunTJeO2IiL333juhbdmyZbWaa1fWrFkTU6dOjfHjxyc94PIrX/lKHHTQQVlft7l47bXXEto2b94cGzdujOXLl8esWbNi3Lhx0apVqzj11FPjnHPOqfUHbACAhmR/npnmtj9ftGhRQkVJjx49djweN25c3HXXXbFx48ZqfbZs2RJlZWWxfPnymDlzZjz66KPRq1evuOCCC+LEE0+s5asCgF2TDAF2W++9915ce+21MXTo0Lj66qvTKqfPy8uLLl26xCeffLKjbdu2bTFnzpyMv8xfvHhxrF+/PqG9pKQk5ZjS0tKoqKio1talS5coKCjIaO3t9tprr4zW35Xbb7894X7JmzZtinXr1iX9ULndaaedFhdffHGt1tzdbN68OcaNGxfPP/98XHbZZTFixIjGDgkAIGvsz5vf/jxZoqZdu3axefPmuP766+Mf//hH2vF+9NFHcd1118Vpp50WP/jBD2qVzAKAXfEvC5CTth/216pVq1i3bl2sWbMmtm7dmrTvSy+9FHPmzIk777wz9txzzxrn/uxnP1vtw1ZExJQpUzL+sJXqg8GaNWtSjlm7dm1CW2FhYUbr1jQ22RrpWLp0acybNy/t/vvvv39ceOGFMWTIkFqtl2sKCgqiY8eO0bZt26ioqNjxc5vMpk2b4mc/+1nMmzcvLr/88oYNFACgFuzP09Pc9uc7V8VE/Os1/OQnP0l4P/Py8qJTp07Rvn37WL9+fXz66acJiaSIiPHjx8eqVavi5ptvdtssALJKMgTICb17945jjz02jjzyyCguLo6ioqJqz2/evDlmzZoVL7/8cowfPz7KysqqPb9kyZK45ppr4o477ojWrVvvcq2BAwfGxIkTq7WNHz8+zj333LQ/+GzZsiWefvrppM8lu0/xrp5Ldp/kdCUbu6v1s6Fjx47xne98J4YPH75bf7hp1apVDBw4MAYPHhwDBgyI/fffP1q2bFmtz6effhrvvPNOjBs3LunBlH/605+ia9eu8bWvfa2hwgYASIv9ee00t/15sgPsp0yZUu3clqKiovj6178eJ510UrXbh5WWlsYrr7wSDzzwQKxcuTJhjvvvvz++9a1vZfhqACC13fdbKCAnHHPMMTFmzJh44IEH4qKLLoojjjgi4YNWxL++eD700EPj+9//fjz++ONx7LHHJvSZNWtW3H333TWuedJJJ0WHDh2qtZWUlMQdd9yRdtxjxoyJJUuWJH0u1RVyqZ5r1apV2uvuLNmHrV2tnw2lpaVx6623xiWXXBKvvvpqva7VVH3ve9+LJ598Mm699dY466yzori4OCEREhHRqVOnGDJkSNx2221x++23J7339JgxY2LWrFkNETYAQI3sz3ev/fnO54VEVD/Avm/fvvHggw/G2WefnbCX7dixY5x22mnx0EMPxeGHH54wz+9///tYsGBBRvEAwK5IhgDN2tChQ+Mzn/lMRmOKiorilltuiS9+8YsJz40bN26XByRG/Kvs+ytf+UpC+1/+8pe4/fbbd/lhZdu2bTF27Nj44x//mFHMu5KXl5e1uSIiKisrazXu1ltvjZdffnnHr8mTJ8df/vKXeOSRR+KGG26I4cOHV/twN3PmzLj22mvj+uuvT7gSMNedc8450bFjx4zGHH744XHPPfdE165dq7VXVlbGPffck8XoAABqz/7c/ny7Tp06xS9/+cvo3LnzLvu1adMmbr311thvv/2qtVdWVsYjjzxS5zgAYDvJEGC3deWVV0b//v2rtW3dujWefPLJGseee+65ceCBBya0P/XUU/Hf//3f8dRTT8XChQujrKwsysvLY/HixfHMM8/EBRdcEA899NCO/sk+GOzqSrJkhwhWvfIqU8mu5MrWQYV5eXnRvn372G+//WLYsGFxzTXXxOOPP55wD+JJkybFlVdeWafXsbvo2rVr/PSnP024fcHUqVNj7ty5jRQVAEB22J83v/35rg6K/+53v5v2BUCtW7eOK664IqF94sSJsXHjxrTmAICaSIYAu60WLVrEd77znYT2N954o8axLVu2jB//+MfRrVu3hOcWL14ct99+e5x33nlxyimnxBe+8IU499xz45e//GV89NFHO/p17tw5rrrqqoTx7dq1S7lusvsl1+XDVrKxdTnwsSadOnWKH//4xzFy5Mhq7e+++2785je/qbd1c0n//v1j2LBhCe3p/NwCADRl9ufNb3+eKraioqL4/Oc/n1EsAwcOjAMOOKBa27Zt2+Ldd9/NaB4ASEUyBNitDRw4MOHqr0WLFsWKFStqHLv33nvHPffcE5/97GczXnffffeNn//85wn3No6I2HPPPVOOS9a/LiXsycYmWyPbLr300ujdu3e1tnHjxsWiRYvqfe1ckOyD5dSpUxshEgCA7LI/b17781SxHXbYYUnPxKvJkUcemdA2Y8aMjOcBgGQkQ4DdWl5eXgwYMCCh/ZNPPklrfKdOneKOO+6Ia665Jrp3715j/xYtWsSZZ54Z9913X/Tt2zfWr1+f0GdX83Ts2DHhFkmrV6+OioqKtOLdWbIPlTXd0zcbCgoK4rzzzqvWVlFREePHj6/3tXPBYYcdltCW7s8sAEBTZn/evPbnqRJFffv2rVUc/fr1S2hbvXp1reYCgJ1l58aTAM1Ysg8XpaWlaY8vKCiI4cOHxymnnBKzZ8+OqVOnxvz586O0tDTWr18frVq1im7dusXBBx8cn/vc56JLly47xn788ccJ8+18RVZVLVu2jD333DNWrly5o23r1q2xatWq2GuvvdKOebtkHyr32WefjOepjcGDBye0TZ8+vUHWbu4KCwujbdu2sWHDhh1tmfzMAgA0Zfbn1TXl/XmqRFFRUVGtYkhWabJmzZpazQUAO5MMAXZ7ye5zm+zgwprk5+fHgQcemPTgxlQ+/PDDhLZDDjlkl2P233//ah+2IiKWLFlSqw9bS5YsSTp/Q2jfvn20a9eu2tV3S5cubZC1c0Hr1q2rJUNq8zMLANAU2Z8nzt8QarM/32uvvaKwsDDh9l61uUVWRPLD6u1zAcgWt8kCdnvJrjKr7ZVMmXr//fer/b5169Zx8MEH73JMstLxmTNn1mr99957L63568vOH3Y2btzYYGs3dztfIddQP7MAAPXN/rzm+etLpvvz/Pz8pPElu91YOpKNs88FIFskQ4DdXrJS+I4dO9b7urNnz044kPDYY4+NPfbYY5fjkt1DuTaHCm7bti3hQ1rnzp1jv/32y3iu2qioqPCFfi0tXrw4tm7dWq2tIX5mAQAagv35fzSH/fnhhx+e0LZs2bJaxbB8+fKENp8RAMgWyRBgt7Z27dqEq79atWrVIB84nn322YS2//qv/6px3GGHHZZwxdbbb78d69aty2j9f/7znwnl7IMGDYq8vLyM5qmtWbNmxbZt26q1NcThkLng9ddfT2grLi5uhEgAALLL/rz57c+PPvrohLbmWhkDQG6TDAF2a4899ljChv/www+v8eqvupo/f36MGzeuWlvfvn1j0KBBNY5t06ZNHHPMMdXaNm/eHH/9618zimHn9SMiPv/5z2c0R11MnDgxoa2mWxAQsWXLlnj88ccT2pMdeAkA0NzYn1fXHPbnBx10UPTo0aNa26xZs2LBggUZrV9aWhpvvPFGQvsRRxyR0TwAkIpkCLDbmjVrVjzxxBMJ7SeeeGK9rltWVha33nprwoe8iy++OO05zjzzzIS2Rx99NO2rz959992YMmVKtbZ99903jjzyyLRjqIuPPvoo/vznPye0n3DCCQ2yfnM2duzYhNsHFBYWxlFHHdVIEQEAZIf9efPdn3/pS19KaLv//vsziuGhhx5KOCz9wAMPjL333jujeQAgFckQoFlaunRpjBs3LrZs2VKr8R988EGMHj06Nm3aVK19v/32i1NPPTWtOXb+sJSODRs2xFVXXRUffPBBtfbhw4fHwIED055n4MCBCVdprV69On75y19GRUXFLseuXbs2br755oR+5513XhQUFNS49m233RYrV65MO9adLViwIH74wx8mnHnRu3fvpPcbborOPvvsOOGEE6r9mjZtWo3j/v73v9f6lgGVlZXx4IMPxmOPPZbw3DnnnBPt27ev1bwAANlgf757789HjBgRe+21V7W2l156KWmCJZlXXnklnnzyyYT2888/P63xl156acL+PNPKHAByn2QI0Cxt2LAhfvGLX8RXv/rV+N3vfhfz5s1La1xpaWmMHTs2LrnkkigpKan2XH5+fowaNSpatGiR1lyjR4+O2267LWbOnFnjB5xt27bFCy+8EF//+tcTDlPs1atXXHbZZWmtWdXll1+e8OHo73//e1x33XUpr0BbsGBBXHzxxbF48eJq7QceeGAMHz48rXX//Oc/xznnnBM/+clPYsqUKQkfmlJZvXp13HfffXHhhRfGqlWrqj2Xl5cXP/zhD9P6sNecvffee/G9730vLr300pgwYUKUlpamNW7mzJlxxRVXxL333pvw3L777htf/epXsxwpAEBm7M937/35HnvsEZdffnlC+2233RZjx45NSHJtt3Xr1njsscfi+uuvj8rKymrPDRo0KOH2YwBQF3mVO/9rA9AMzJ07N771rW9Va+vatWv069cviouLY88994y2bdtGq1atYt26dbFy5cp47733YsaMGQml19tddtllScu7U7nkkkvi3XffjYiITp06xWc/+9koLi6Orl27Rtu2baO8vDw+/fTTmD9/frz++uuxdu3ahDn22WefuPPOO6Nr164ZvPr/ePjhh2PMmDEJ7YWFhfH5z38+iouLo6ioKFasWBHvvPNOvP766wkfDNu1axdjx46NfffdN601dy6Vb9OmTfTp0yf69u0b++yzT7Rr1y7atGkTmzdvjg0bNsTixYtj9uzZMXPmzKRX6+Xl5cXll18eI0eOzOCVR1x11VWxevXqlM8vWLAg4YNgnz59djnnz372s+jSpUuNa5999tkJt6q6/fbba7xy7o477qh2xVtBQUH07t07iouL44ADDogOHTpE27Zto6KiItauXRsff/xxTJ8+PT766KOk83Xq1CnuuuuutP/sAADqi/35v+zO+/OIiDvvvDPp+XadO3eO4447Lvr16xcdOnSI9evXx/z58+PVV1+NTz75JKF/t27dYuzYsVFUVJTWupdeemlMnz69Wts111yTdkJp1apVcfXVV6d8fsuWLfHxxx9XayssLNzln9Gee+4ZP//5z9NaH4CGkd7lFQDNwMqVK2PlypXx2muvZTSuVatWcfHFF8dZZ51V67U//fTTePnll+Pll19Oe8yBBx4YN998c3Tu3LnW65533nlRUlKSUFJeVlYW48ePr3F8mzZt4tZbb63Tl+kbN26MGTNmJFxRl47tV5D913/9V8ZjP/7444SERE1qukKxtrd1qK1t27bF3LlzY+7cuRmPPeCAA+Kmm26SCAEAmiz78//YHfbnEf86Z2X9+vXx7LPPVmsvKSlJ6/VHROy///5x8803p50IyYYtW7akXc20XVlZ2S7HrF+/vq5hAZBlkiHAbu3QQw+NK6+8Mnr27NlgaxYWFsY555wT5513Xtol/7ty6aWXRo8ePeLuu++O8vLytMf17t07brzxxoxfe+vWrTNaJ5VjjjkmLrvssujevXud59qdtGrVKs4888z49re/HXvssUdjhwMAkFX25817f56fnx+jR4+OPn36xNixY6OsrCztsXl5eTF06NC48soro127drWOAQBSkQwBmqVevXrFr3/965g+fXrMmDEj5s6dm/b5C926dYsjjzwyzjjjjOjfv3+tYxg1alRMnjw53nrrrZg3b16NBzbut99+cfLJJ8fpp59ep6vNkjnrrLPi+OOPj0cffTRefPHFpCX/2/Xp0ydGjhwZw4cPr9WHvQkTJsT06dPjzTffjPfeey/mzp2b8tYGVRUUFMR+++0Xn/vc5+LUU0+N/fbbL+O1m7tvfOMb8dnPfjamTZsW77//fixYsCCt965FixbRp0+fGDJkSIwYMSI6dOjQANECAKTP/ry63X1//uUvfzmGDBkSjz/+eLzwwgsJ58FU1b59+xg8eHCce+65Nd7WFgDqwpkhQM5YtWpVLFu2LFasWBGlpaVRXl4eW7dujTZt2kT79u2jY8eO0a9fv6x/0ImIKC8vj/nz58eyZcuipKQkysrKIi8vL9q2bRv77LNPFBcXx1577ZX1dZPZfuuljz76KEpKSmLr1q1RWFgY3bp1i/79+8fee++d1fW2bt0aS5cu3fHeb9y4McrLy6Nly5bRtm3baNeuXXTr1i2Ki4ujdevWWV27udv+3i1fvjxWrlwZGzZsiPLy8sjPz4927dpF+/btY6+99op+/fqpAgEAmh3783/Z3ffnlZWVMX/+/Jg/f36sXr06Nm3aFO3atYuioqLo0aNH9OvXL/Lz8+s9DgCQDAEAAAAAAHKa1DsAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGmSIQAAAAAAQE6TDAEAAAAAAHKaZAgAAAAAAJDTJEMAAAAAAICcJhkCAAAAAADkNMkQAAAAAAAgp0mGAAAAAAAAOU0yBAAAAAAAyGn/P3qj8rltO+RRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.plot_ts(skycoord = coord, containment = 0.9, save_plot = True)" + ] + }, + { + "cell_type": "markdown", + "id": "fb168be4-3ab9-4238-bca0-9a9b3febcab5", + "metadata": {}, + "source": [ + "As you can see, the GRB region shrinks only to a single pixel. This is caused by the fact that the GRB signal is very very strong in this case. In the next section, we will manipulate the strength of the GRB signal to see how the front source signal affects the TS values and the 90% confidence region." + ] + }, + { + "cell_type": "markdown", + "id": "e5429c31-b3ac-487a-a1f6-deb0e6618218", + "metadata": {}, + "source": [ + "## Example 2: Fit a fainter GRB using the Compton Data Space (CDS) in local coordinates (Spacecraft frame)" + ] + }, + { + "cell_type": "markdown", + "id": "d4174017-8367-43a6-a8a6-466bf370a8af", + "metadata": {}, + "source": [ + "This example uses exactly the same data file as example 1, so I don't repeat the downloading scripts here." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c1b1ca06-618c-4531-9b98-ef9e5980042d", + "metadata": {}, + "outputs": [], + "source": [ + "scaling_factor = 0.02" + ] + }, + { + "cell_type": "markdown", + "id": "a6202ef3-3893-49ac-b44c-4c2899f62652", + "metadata": {}, + "source": [ + "Here we will set up a scaling factor to manipulate the strength of the signal to see the affects on the final TS map. Since all the steps are exactly the same execpt the scaling factor, I will put the main codes in a single cell for simplicity.\n", + "\n", + "**If you encounter any errors, please try to restart the notebook kernel or the whole session.**" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "75dc1b55-f422-424e-951e-bd266b53e594", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "# download data\n", + "\n", + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path\n", + "\n", + "GRB_signal_path = data_dir/\"grb_binned_data.hdf5\"\n", + "# download GRB signal file ~76.90 KB\n", + "if not GRB_signal_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/grb_spectral_fit_local_frame/grb_binned_data.hdf5\", GRB_signal_path)\n", + "\n", + "background_path = data_dir/\"bkg_binned_data_local.hdf5\"\n", + "# download background file ~255.97 MB\n", + "if not background_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/bkg_binned_data_local.hdf5\", background_path)\n", + "\n", + "orientation_path = data_dir/\"20280301_3_month.ori\"\n", + "# download orientation file ~684.38 MB\n", + "if not orientation_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Orientation/20280301_3_month.ori\", orientation_path)\n", + " \n", + "\n", + "zipped_response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\"\n", + "response_path = data_dir/\"SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5\"\n", + "# download response file ~839.62 MB\n", + "if not response_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/SMEXv12.Continuum.HEALPixO3_10bins_log_flat.binnedimaging.imagingresponse.nonsparse_nside8.area.good_chunks_unzip.h5.zip\", zipped_response_path)\n", + " # unzip the response file\n", + " shutil.unpack_archive(zipped_response_path)\n", + " # delete the zipped response to save space\n", + " os.remove(zipped_response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "efea0798-053f-4294-a4fa-d4ac71875f18", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have total 56 CPU cores, using 55 CPU cores for parallel computation.\n", + "The time used for the parallel TS map computation is 1.9408295631408692 minutes\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAG7CAYAAADe2aHBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNE0lEQVR4nO3deVxU9f7H8fcwwIiC24CIcMtcUikVUzM1TQ23LLW0zGu5a6m5tLndNCu7WZmW1XVLo6x73bp1veWKZZo/tSzNBSU15aqBW4oMyj6/P4gpcjvgjGcGX8/Hg4fOOd855zPIqTff8z3fr8XpdDoFAACAy/IzuwAAAABfQGgCAAAwgNAEAABgAKEJAADAAEITAACAAYQmAAAAAwhNAAAABhCa3CgjI0OJiYnKyMgwuxQAAOBmhCY3SkpK0qBBg5SUlGR2KQAAwM0ITQAAAAYQmgAAAAwgNAEAABhAaAIAADDA3+wCAAC+Lzc3V9nZ2WaXAVxWQECArFZrsd9PaHKD+Ph4xcfHy+FwmF0KAFxzDodDR44ckdPpNLsU4LIsFouioqIUHBxcvPc7+Sl3m8TERA0aNEhz585VrVq1zC4HADwuNzdX+/btU+nSpRUWFiaLxWJ2ScBFOZ1OnThxQufOnVPNmjWL1eNETxMAoNiys7PldDoVFhamoKAgs8sBLissLEyHDh1SdnZ2sUITA8EBAFeNHib4gqv9OSU0AQAAGEBoAgCUKBaLRWfOnPHa43lSaGioDh06ZHYZpoqLi9PevXs9cmxCEwAAHpabm2t2CdcNT4YmBoIDANxmTqM5cqR4bvqV4MrBGrx18BXbTZ06VV988YXS09P1/PPPq1evXpKkXr16KTExUVlZWfrLX/6iefPmqXLlypKkL774QpMmTVJWVpYsFotmz56tJk2auI7pdDo1duxY7dmzRwsXLlRubq4GDhyoH3/8UWFhYYqOjlZmZqbi4uIUFxenDz74QBUrVtRPP/2kOXPm6OzZsxo3bpxycnJUoUIFzZw5U9HR0Vq3bp1GjRql7du3S5J27dqle++9V4cOHdKhQ4cUExOjkSNH6vPPP1dqaqpmzJihe+65R5K0bNkyjRkzRgEBAerQocNlvyevvvqqPvroI/n5+SkoKEhffvmlSpcurddff11xcXHy8/NTvXr19I9//EPlypXTpEmTlJCQoPPnzysxMVE333yzpkyZoqeffloHDx5Uw4YN9fHHH8vPz099+/aVn5+f9u7dq5MnT6pp06aaNWuWgoKCdPz4cT3++OPat2+fnE6nhg8frscee0ySVLVqVfXu3Vtr1qxRSkqKBgwYoOeee06SlJKSohEjRujQoUM6f/68unTposmTJ1/2fe+99562bt2qJ598UpMmTdLf//531/fKHQhNAAC3caQ4lHY0zewyZLFYtG3bNv38889q1KiRmjdvrqpVq+rNN99UWFiYJGnKlCmaNGmSZs2apZ9++kn9+vXT+vXrVbt2bWVnZ+vcuXOu42VmZqpnz56y2+369NNPZbVa9eyzzyooKEh79uyRw+FQs2bN1LBhQ9d7tmzZom3btqlWrVo6fvy46tSpo3Xr1qlu3br6+OOP1b17d+3evfuKnyU1NVX16tXTCy+8oJUrV2rkyJG65557dPz4cfXr108bNmxQdHS05syZo1OnTl30GB988IE++eQTffPNNypXrpxOnz4tm82mFStWaP78+dq0aZPKly+vwYMHa+zYsZo5c6YkaevWrfr+++9Vvnx5tWrVSgMHDtSaNWsUFBSkRo0aacWKFerUqZPr827evFmlS5dW165dNX36dI0fP17Dhw9XrVq19O9//1vHjx9Xw4YNVb9+fd1xxx2SpDNnzmjTpk06efKkqlevrn79+ikyMlJ9+vTR+PHjdddddyknJ0f33nuvlixZogcffPCS7xs4cKA++ugjjRo1Sl27di36D84VEJoAAG4TXLl4kwa6+/gDBw6UJFWrVk0tW7bU+vXrVbVqVf3zn//UggULlJGRoYyMDIWGhkqS1qxZow4dOqh27dqS8meOLleunOt4nTp1UpcuXTRhwgTXtrVr12r69OmyWCwKCQlRjx49tH//ftf+Zs2auebs27Jli+rWrau6detKyu/xGjZsmI4ePXrFz1KqVCk98MADkqSmTZvqwIEDkqTNmzerXr16io6OliQNGDBAw4cPv+gxPv/8cz3++OOuz1ShQgVJ+ZMz9+jRQ+XLl5ckDRkyxBVKJKldu3autrfddptsNptCQkIkSQ0aNNC+fftcbR966CHXvgEDBmjGjBkaP3684uPj9f3330uSKlWqpAceeEDx8fGu0PTXv/5VUv54rGrVqungwYMqX7681q5dq2PHjrmO73A4lJiY6Hp9sfdFRkZe8ft5NQhNwG+W7F6iiesmKi3T/N+SiyrEFqKXWr+k7tHdzS4F1zkjt87MYLFY9M0332jGjBnatGmTKlWqpGXLlmnixImG3t+mTRutWbNGI0eOVNmyZS95jj8yOuu0v79/oTFPGRkZhfbbbDbXsa1W6yXHR7lj2oc/H6NUqVKuv1ut1gte5+TkGD6W0XPk5OS4ZpffvHlzof1Xep+nMRAc+M3EdRO19+ReHU076nNfe0/u1YSvJlz5QwLXiffff1+SdOjQIW3YsEEtWrTQ6dOnFRISIrvdrqysLM2ePdvVvn379lq1apVrAHF2drZSU1Nd+8ePH68HHnhAsbGxrltgbdq00QcffCCn0ymHw6HFixdfsp477rhDO3fu1K5duyRJCxcuVGRkpCIjI1WtWjUlJSXpxIkTkqQFCxYY+oxNmzbVjh07XDXPnz9fWVlZF23buXNnzZo1y/WZzpw5o9zcXMXGxmrx4sU6e/asJGn27Nlq166dofP/2dKlS+VwOJSbm6v3339fsbGxkqTY2FjNnTtXknTixAn9+9//Vtu2bS97rODgYLVu3VpTpkxxbfvll1905MiRK9ZRtmzZQv927kRPE/Cbgh4mP4ufIoIjTK7GuGRHsvKceT7ZQwZ4Sm5urho0aKD09HTNmDFDVatWVWRkpD766CPVqlVLdrtdsbGxrttjNWrU0Pvvv69HHnnENVv0rFmzdPvtt7uOOWrUKJUpU0Zt2rTRqlWrNHHiRA0YMEB16tRRaGio6tev77rN9WdhYWH6+OOP1bt3b9dA8CVLlshisahKlSoaPXq0br/9doWHh6tjx46GPmNYWJjmz5+v+++/X4GBgerQoYPsdvtF2z766KP65Zdf1KxZM/n7+6tMmTKKj49Xx44dtWvXLjVt2rTQQPDiaNy4sdq3b68TJ06oadOmGjVqlCRpxowZGjJkiOrWrSun06m//e1vhQbYX8rHH3+sp556SrfeeqssFovKlCmj2bNnKyoq6rLvGzx4sJ5++mlNnz7d7QPBWXvOjVh7zrdFTYvS0bSjigyJ1JGnrvzbjLfw1bpRMmRkZOjgwYO66aabLnkbpaTKzs5Wbm6uSpUqpfT0dLVv317Dhw9Xjx49zC7tmuvbt69iYmJcQclbXe3PKz1NAAAUw+nTp9WxY0fl5uYqIyNDXbp00UMPPWR2WfAgQhM8whcHVSc7ks0uAYAPqVSpkuupsOtdXFyc2SVcE4QmeETBoGpfFGILMbsEAIAXIjTBI3x1UHXBo/sAAPwZoQkeFREcweBkAECJQGgCCpz4VTr0i5TjWwtrflf3PZ3JTtObKZeeIwYAcPUITUCBQ79I5zKu3M7LRASGKiIwVM9U+avZpQBAiUZo+k1WVpamTZumrVu3yuFwqGrVqnriiSd06623ml2aT+pUvplG1X5Q5QNCpE0/ml2OMVnZv/89MMC8OoooNzNDVotVwdYgs0sBvFZoaKi2bt2qqlWrXrLNpEmTNHbsWMPz97zzzjtyOBwaO3asJGn//v0aN26ctm7dqvLlyysvL0/t2rXT5MmTZbPZ1LdvX61Zs0ZhYWHKyMhQ48aNNXv2bJUuXVqSVLVqVdlsNgUFBSkzM1MNGjTQ3LlzVaZMGcOf02Kx6PTp0xedZPNy+y5lx44dGjNmjFasWGH4PSUZoek3ubm5qly5st59912FhYXpq6++0rhx47Ro0SLXDzSMe6ZKT9UM+kv+iz+GEV9QupTU2HfC8vE1KxURGGp2GYDPe+GFFzRq1ChDoen8+fOaNm2adu7cKUlKTk7WnXfeqZdffllLliyRJKWnp2vatGlKS0uTzWaTJD377LMaNWqUMjMz1aZNG73zzjsaPXq067iLFi1STEyM8vLydN999ykuLk7Dhg0rdO5Dhw6pb9++WrdunZs++aXVq1dPNptNX375pdq0aePx83k7QtNvgoKC1LdvX9fru+++W++8844OHz7M7N7FUNDrkevMldXmQ7ME+1ulqlXMrgLwWY3mNFKKI8Vjx68cXFlbB2+9Yrtly5ZpzJgxCggIUIcOHVzbn3nmGX399dfKzs5W2bJlXSs4PP7445KkFi1ayGq1avXq1YqPj9dbb72lrKws5eXlafLkybrvvvsk5a+z1rx5c1cv0LvvvqtWrVppwIABrnOVKVNGEyZcfE1Im82mO++8U0lJSRfdn5WVpXPnzqlChQrGvjF/MHXqVH3xxRdKT0/X888/r169ehXa73Q6NXbsWO3Zs0cLFy5Ubm6uBg4cqB9//FFhYWGKjo5WZmama+6lnj17avbs2YQm+XBoOnfunBYuXKiEhATt2bNHaWlpGjdu3EXX7MnKytK8efO0evVqpaWlqXr16ho4cKAaN258yeMfPnxYaWlpioyM9OTHKPGOZ59WRKsOV24IoERIcaToaNpRU2s4fvy4+vXrpw0bNig6Olpz5sxxLbI7ZswYTZ06VVL+orkjR47UypUrNWvWLM2ePVsbNmxw3b5q3769evbsKYvFokOHDumOO+5QUlKSbDab1q1bV2j9tB9++OGKi9D+UWpqqtatW6dXXnml0PYePXooKChIhw4dUsOGDYs1w7jFYtG2bdv0888/q1GjRmrevLnrtmRmZqZ69uwpu92uTz/9VFarVc8++6yCgoK0Z88eORwONWvWTA0bNnQdr2nTphf0dl2v/MwuoLhSU1MVFxenpKQk1ahR47JtX3nlFS1evFht27bViBEj5Ofnp9GjR2vHjh0XbZ+ZmanJkyerV69eCg4O9kT5AFAiVQ6urMiQSI99VQ6ufMUaNm/erHr16ik6OlqSNGDAAAUGBkqS1qxZo6ZNm+rWW2/Viy++qO3bt1/yOAcPHlTHjh116623qmvXrvr111918OBBSdKRI0cUHh5+yfdOnz5dMTExuuGGG7Ry5UrX9tdff1316tVTeHi4oqKi1Lp160LvW7RokbZv366TJ0+qatWqGjNmjKT8W3IxMTGKiYnRPffco61bt7pe9+7du9AxBg4cKEmqVq2aWrZsqfXr17v2derUSbfccoveffddWa1WSdLatWvVr18/WSwWhYSEXLB2XuXKlXXq1CllZPjegzLu5rM9TQUp2W63a+/evRo8ePBF2yUkJGjt2rUaMmSIevbsKSn/t4e+fftq5syZmjlzZqH2OTk5mjhxoiIjIwvdrgO8Xa4zT1HTLr/6tzcpmEi0e3R3s0uBGxm5dXatWSwWSdL//vc/PfHEE/ruu+9UvXp17dixQy1btrzk+x5++GFNmTJF3bvn/4xWrFjRFRxKly5dKEQ0aNBA3377rev1k08+qSeffFKtWrUq1K5gTNP//vc/tWjRQrNmzdKQIUMuOLe/v7+6deumZ599Vm+88YaqVq3qCnhFHdNU8PklqU2bNlqzZo1GjhypsmXLXrG9lL/IrdVqdQXP65nPhqbAwEDZ7fYrtvv6669ltVrVuXNn1zabzaZOnTppzpw5OnbsmOu3hYJ71haLRePHj7/gBwfwRhZLQYex0/TbIkWSJk34agKhCW7XtGlT9evXT3v37lXt2rU1f/58ZWVlqUKFCgoICFBERIScTqfeeeedQu8LCQlRamqq6/bc6dOnddNNN0mSPvroI50+fdrVtl69ekpMTHS9HjZsmGJiYhQXF+f6hTsvL++SvTM33HCD3n77bT322GPq27evgoIufPr1yy+/LNaY2vfff1+TJk3SoUOHtGHDBr355puufePHj1dcXJxiY2O1YsUK2e12tWnTRh988IFatmyp9PR0LV68WA0aNHC9Z8+ePbr11lvl5+ezN6fcxmdDk1H79u1TVFTUBY9s1qlTR1L+I6IFoWnq1Kk6deqUpk6dKn//K39rTp486bpPLumSA/oATyprKyvlSVaLVZEhvjEGL9mRrDxnnk8t6AzfERYWpvnz5+v+++9XYGCgOnToILvdrpCQED388MO65ZZbZLfb1bVr10Lve/rpp9W2bVuVLl1aq1ev1ltvvaXu3burfPnyatOmjW644QZX2+7du6t///6aPHmyJKlKlSrasGGDxo8fr0mTJslut8tms+muu+5SixYtLlpn586dNX36dP3jH//Q008/Len3MU05OTm68cYbNWvWrCJ//tzcXDVo0EDp6emaMWPGBdMsjBo1SmXKlFGbNm20atUqTZw4UQMGDFCdOnUUGhqq+vXrF5qWYOXKla7etuudxel0Os0u4moV3J672EDwPn36qEKFCoWStpTfvdm7d289/fTT6tKli1JSUvTQQw8pMDDQdZ9Xkl577TXVr1//ouedP3/+RVd2Lnga43qW/Ntj8MlZJxXRloHgHrXpx/xpHQIDpKYX/1n1NlHTonQ07agiQyJZZsfHZWRk6ODBg7rpppsMz29UUnTq1EmTJk267ENFviA7O1u5ubkqVaqU0tPT1b59ew0fPlw9evRQVlaWGjVqpC+//FKhob4/tcnV/ryW+J6mzMxMBQRcOFFhwb3ZzMxMSfkD3f44WM6Izp07q3nz5q7XSUlJrt86AAAl24wZM7Rnzx6zy7hqp0+fVseOHZWbm6uMjAx16dLF9dTewYMHNWXKlBIRmNyhxIcmm82m7OwLJ1fMyspy7S+u0NBQfpAA4DpVvXp1Va9e3ewyrlqlSpX0/fffX3RfrVq1rvs7J39U4kd12e32QuOOChRsI/QAAAAjSnxPU40aNbRt2zalp6cXGgyekJDg2n+14uPjFR8fL4fDcdXHAgAA3qnE9zS1atVKubm5WrZsmWtbVlaWli9frujo6MtOTmZUbGyspkyZouHDh1/1sQAAgHfy6Z6mTz75RA6Hw3WrbePGjTp+/LgkqVu3bgoODlZ0dLRat26tOXPm6MyZM4qMjNTKlSuVkpLimmkVAADgSnw6NC1atEgpKb8vDLl+/XrXE3Dt2rVzLYEyfvx4hYeHa9WqVXI4HKpWrZpeffVVxcTEmFE2AMCDsrOz9fe//13/+te/XDNZ33jjjZo0aZJiYmK0bt06dezYUbVq1VJeXp6CgoL01ltv6Y477pAkTZo0Se+++64iIyPldDoVGBiot956S82aNTNcw8CBA9WrV68Llklxl0mTJunMmTMXTKcDz/Lp0LR48WJD7Ww2m4YOHaqhQ4d6uCIAgNn69esnh8OhTZs2qUKFCpLyx54mJia6flmuVauWa1mSd955R/3793eNdZWkXr16uQJJwcK+3333neEa3nvvPbd8FngXnw5N3oKB4ADwm+8T8idb9ZTAAKlh9CV379u3T59++qkOHz7sCkxS/tjTS7n77rsvO1wjNTW10LH+6L///a/+9re/yc/PTzk5OXr55ZfVpUsXtWrVSqNGjVLXrl2VnJysPn366MiRI4qKilLFihVVu3ZtTZo0SZMmTdKePXt07tw5HThwQJUrV9bSpUtVsWJF7dy5U0OGDNG5c+eUkZGhv/71r3ruuecMfJPgKYQmN4iNjVVsbKwSExM1aNAgs8sBAPNkZXs2NF3Btm3bVKNGDVWsWNHwe5YuXaqHH3640LaPP/5Y69atU2pqqs6ePatVq1Zd9L3PPfecZs+eraZNmyovL09nz569oM2IESPUtGlTvfDCC0pJSVFMTIxq167t2r9lyxZ9//33stvtevjhhzV79myNGzdOVatW1dq1a2Wz2XT+/Hk1a9ZMsbGxrtuIuPYITQAA9wm8cAUGM49/4MABdevWzRU63n//fUly3apLSUlRTk6OtmzZUuh9f7w9t3btWj3wwANKTEy8YGHdu+++WyNHjlT37t3Vrl27i46VXbt2raZOnSopf/WJe++9t9D+grXxpPzFhnfu3ClJOn/+vIYOHart27fLz89Phw8f1vbt2wlNJiI0AQDc5zK3zq6FBg0aaP/+/Tp9+rQqVKig6tWra/v27YqLi9Nnn33malcwpik7O1tDhw5Vr169tGnTJlkslguOeffddysjI0O7du26YJ25adOmaffu3frqq6/Up08f9erVS6NHj75sjX8+xx/XQLNarcrJyZGU/xBTaGiotm3bJn9/fz3wwAPKyMgo6rcEbkRoAkqKrOz8xXt9wHd139OZ7DS9mWLsYQ7AqJo1a6pLly4aMGCA5s+fr/Lly0uS0tPTL9o+ICBAb731lm6++WZ99tlnuv/++y9o8+OPP8rhcKhq1aoX7Nu7d69uueUW3XLLLfL399fq1asvaNOmTRvFxcXp+eef17Fjx/T555/rscceu+JnOX36tOrUqSN/f38lJiZqzZo1atmy5RXfB88hNLkBA8FhKn/r72NITBxLUhQRgaGKCAzVM1X+anYpKIHi4uL08ssvq0mTJvL391eFChUUFhZ2ycHepUuX1ssvv6xJkyapa9eukn4f0+R0OmWxWLRgwQKFhYVd8N7x48crMTFRgYGBKl26tGbOnHlBm7feekt9+vRRdHS0qlSpoiZNmrjC3OU899xzevTRR/XBBx+oevXqatOmTZG+D3A/i9PpdJpdRElRMBB87ty51/0Ch8lrVioiMFTJWScV0baD2eWUbCd+lQ79IuXkml2JYbmZGbJarPx8lAAZGRk6ePCgbrrppkK3mfC78+fPKyAgQP7+/jp16pTuuOMOffTRR2rSpInZpV13rvbnlZ4mwNeFVcz/8iHHfwvVwPVg37596t27t5xOp7KysjR06FACk48iNAEA4EH16tVzTaQJ30ZoAmCaXGeeoqZFmV2GYSG2EL3U+iV1j+5udikATEBoAnDNWSx+v/3NqaNpR02tpUjSpAlfTSA0AdcpQpMb8PQcUDRlbWWlPMlqsSoyJNLscgxJdiQrz5mntMw0s0sBYBJCkxuwjApQNKX9g6SsbEUER+jIU0fMLseQqGlRvtUrBsDt/K7cBAAAAIQmAECJYrFYdObMGa89nieFhobq0KFD1+x83bt3V1xc3BXbtWrVqtAyNr6K0AQAgIfl5vrO5LO4NEITAMBtGjWSoqI899WokbE6pk6dqgYNGujmm2/Wxx9/7Nreq1cvNWrUSPXq1VOnTp2UkpLi2vfFF1+ocePGql+/vmJiYrRly5ZCx3Q6nRozZow6d+6sc+fOKS0tTT169FDt2rXVokULPfbYY+rbt6+k/KVcWrdurW7duqlu3br69ttvtWrVKt12222qV6+e7rrrLiUkJEiS1q1bp5iYGNd5du3a5Vrn7tChQypfvryef/55NWzYUDVq1NDy5ctdbZctW6Y6deqoXr16l10oOC4uTrGxserZs6eio6PVrFkzJSQk6P7771edOnXUrl0718NMDodD/fv316233qpbb71VL7zwgus4e/fuVbNmzXTLLbeoa9euOnv2rGtfWlqaBg0apNtvv1316tXT4MGDlZWVZewfzEcwEBwA4DYpKdJRLxgvb7FYtG3bNv38889q1KiRmjdvrqpVq+rNN990rSE3ZcoUTZo0SbNmzdJPP/2kfv36af369apdu7ays7N17tw51/EyMzPVs2dP2e12ffrpp7JarXr22WcVFBSkPXv2yOFwqFmzZmrYsKHrPVu2bNG2bdtUq1YtHT9+XHXq1NG6detUt25dffzxx+revbt27959xc+SmpqqevXq6YUXXtDKlSs1cuRI3XPPPTp+/Lj69eunDRs2KDo6WnPmzNGpU6cueZzvvvtOO3fu1A033KBHH31U9913n/7v//5P4eHhuvfee/XBBx9o2LBheumll5SZmakdO3bo/PnzuvPOO1W7dm316NFDjz76qB5//HENGDBAO3fuVKNGjfTXv+avIfn000+rRYsWmjt3rpxOpwYNGqS33npLzz77bHH/Gb0OoQkA4DaVK3vH8QcOHChJqlatmlq2bKn169eratWq+uc//6kFCxYoIyNDGRkZCg3NX85nzZo16tChg2rXri1JCggIULly5VzH69Spk7p06aIJEya4tq1du1bTp0+XxWJRSEiIevToof3797v2N2vWzLUO6ZYtW1S3bl3VrVtXUn6P17Bhw3TUQMIsVaqUHnjgAUlS06ZNdeDAAUnS5s2bVa9ePUVHR0uSBgwYoOHDh1/yOE2bNtUNN9wgSWrUqJGys7MVHh4uSWrcuLH27dsnKX8anTfeeEN+fn4qU6aMevfurTVr1qhjx47avn27qzetbt26uvPOO13H/+yzz7Rp0yZNmzZNUv6ae1ar9Yqfz5cQmtyAeZoAIN/WrWZXcHEWi0XffPONZsyYoU2bNqlSpUpatmyZJk6caOj9bdq00Zo1azRy5EiVLVv2kuf4o+DgYEPH9vf3LzTmKSMjo9B+m83mOrbVar3k+Kg/n//P/rhArdVqveB1Tk5OkY/7x31Op1OffPKJbr755svW4csITW7APE3A9SPZkczSLz7g/fff16RJk3To0CFt2LBBb775pnbu3KmQkBDZ7XZlZWVp9uzZrvbt27fXiy++qL179xa6PVfQ2zR+/HjXuKAVK1bIbrerTZs2+uCDD9SyZUulp6dr8eLFatCgwUXrueOOO7Rz507t2rVLt956qxYuXKjIyEhFRkbKz89PSUlJOnHihMLCwrRgwQJDn7Fp06bq16+fq+b58+e7ZQxRbGys5s2bp7vuukvnzp3TggULNGbMGJUtW1YNGjTQhx9+qH79+mn37t365ptv9Mgjj0iSunbtqldffVWzZ8+Wv7+/Tp8+rVOnTqlGjRpXXZO3IDQBgAEhthApTcpz5vnWJJfX6dIvubm5atCggdLT0zVjxgxVrVpVkZGR+uijj1SrVi3Z7XbFxsa6bo/VqFFD77//vh555BFlZ2fLarVq1qxZuv32213HHDVqlMqUKaM2bdpo1apVmjhxogYMGKA6deooNDRU9evXV/ny5S9aT1hYmD7++GP17t1bOTk5qlChgpYsWSKLxaIqVapo9OjRuv322xUeHq6OHTsa+oxhYWGaP3++7r//fgUGBqpDhw6y2+1X/b2bMGGCRowY4bqV+OCDD+qhhx6SJFdgeuONN1SzZk21bNnS9b7p06dr7NixiomJkZ+fn/z9/fXaa6+VqNBkcTqdTrOLKCkKeprmzp3ruo/tDkt2L9HEdRN9avmGzbfOUZStkpKzTiqibQezy4G32fSjlJUtBQZITeubXY0hSxOWasJXE3zqOixY+iUyJNJjM69nZGTo4MGDuummmwrd7rkeZGdnKzc3V6VKlVJ6errat2+v4cOHq0ePHmaXhku42p9Xepp8wMR1E7X35F6zyyii/Cz++8KsgG/rHt3d53prWPrFs06fPq2OHTsqNzdXGRkZ6tKli6tHBiUTockHtAyqq383flEh/mVk9ZEQUimggqTfFmYFgBKoUqVK+v77780uA9cQockHPFOlp2oG/cXsMoqldCljT4+g+JYskSZOlNJ8566RlFVHIUG5emnwMXVvanYxcAdGesAXXO3PKaHJBwRbgyRJuc5cWW0+NGbA3ypVrWJ2FSXexInSXl+7e6tASdKEuZXV/W8ml2LQ7iW7tW7iOmWmZZpdimGOng4pWMo5f/FHyd0hICBAFovF9eTXlR57B8zidDp14sQJWSwWBQQEFOsYhCYfcjz7tCJaMagahRX0MPn5SRER5tZiVHKyU3l5FqWd843bzZK0buI6ndx70uwyiiQvL0+SlHnWc0HParUqKipKR44cuaYLxQLFYbFYFBUVVexJNwlNbsDklvAGERHSEc88IOV2UZWydfREoJJPBSjKR6Y8ciT3VoAy1MayTk2qHDa7HEMsyu/1ceZ59tZZcHCwatasqezsbI+eB7haAQEBVzVLOaHJDZjcEiiakNL5PSB5eRavWKfMmBBJIVpnbaNFR65+Lpxr4cVnX7xm57JarSVuyQzgzwhNAK65lwalaMKccKWdt0qBgWaXY8gvR/PklJ8y83yjXgDuR2gCcM11aXpS3e88qbRfMzV3+BazyzHkBQ3UWTGFBnA9IzQBuOYyz2YpoEKgnLl5SjvqG3MlFIwKsvjxdBhwvSI0Ab/xyfmOJCUnm11B0f1xrpSQyBATKzHOL9ki5Ulnc8v4zOD1s6m7pVJnld30FbNLAUoEQhPwG9+c7+h3Ib6RPQqxWP301JGnzC7DkLl1pNS9Up7TlwavR0qOSGVs9JHJsAAvR2gCfuOL8x1JUs75bMmRptuPb9S0qH1ml2PIwDcbm11Ckb30kjRhgm/1RB79JVdyWuXMYmZ+wB0ITcCf+NJ8R5L0bp05OvnrSelXyYf+fy5JPjV7dPfu+V++xC8kRU5HpNllACUGoQn4Tc75bEkBciSnaVrUXLPLMcyRnD+pqsXPouAI3+hRsFjzZwK3lbWZXAkAGEdoAn6Tv9REgPLynD7zRNcf2W+2a9ieYWaXYcymH6WsbAUE8Z8gAL6D/2IBvylYasIi33miq4AtxKbWL7U2uwwAKNEITW7A2nMli8XP4jNPdAEArh1Ckxuw9hwAACUfoQkASjhnemWfmZBTyp9z7KWXfO9pRZR8hCYAKKEsgY785V+cVh+akDPfhAmEJngfQhMA82Rl5z9J5yv8rVLVKlJYRbMrMaRU85d1btM4KTNEFqdvzInlTK8sOa1KPpYmybceyEDJR2gCcO35W/MDk/T7n74gK1s69IvPhKaQGqt1ruECSb8vOOz13jgspUUpLZvQBO9DaAJw7VWtkh8+cnLNrsS4gnDnQzWPuWWMXt39qjKsGWaXYljqb386fSfm4TpCaAJw7YVV9JneGpffJuT0JU8OeFJP6kmzyygSv1lHiUvwWn5mFwAAAOALCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgNAEAABgAFMOwCOWLJEmTpTS0syuxLizeWXMLgEA4MUITfCIiROlvXvNrqKo8jtebX5ZJtcBAPBGhCY3iI+PV3x8vBwOh9mleI2CHiY/PykiwtxajHIkpykgL0Mdym6WdJ/Z5QDXNWd6ZUVFmV2FcSEh0ksvschwSUdocoPY2FjFxsYqMTFRgwYNMrscrxIRIR05YnYVxkyLmqu0o2kKCWK9K8AslkBH/ozgTquOHjW7mqIZNvyUune3m10GPIjQBADwGiFNX1fqlqelTB/65cURITmtOunINLsSeBihCQDgNZ6//xa9enNr31pkePYuKS2KRYavA4QmAIDXYJFheDPmaQIAADCAniZ4RM75bEkBciSnaVrUXLPLMcSRzNOPAIBLIzTBIzLPZkoKUF6eU2lHfWiGS0m2EJvZJQAAvBChCR7hzMu/w2+RFBLpO0/B2EJsav1Sa7PLAAB4IUITPMriZ9FTR54yuwwAAK4aA8EBAAAMIDQBAAAYQGgCAAAwgNAEAABgAAPBAQBwA2d6ZUVFmV2FcSEh0ksvSd27m12J7yA0AQBwFSyBjvxlVJxWHT1qdjVFM2ECoakoCE0AAFyFUs1f1rlN42TJKKsq5SLNLseQ5GQpL09K8625h01HaAIA4CoE1FomNVygso5yOvL6GbPLMSQqSj7XK+YNGAgOAABgAKEJAADAAG7P/cFnn32m//73v/r555/16KOPqn///maXBADwEWdLn1X5Z8ubXYYhZ1N3S4qU41yaJN9ZH9RshKY/sNvt6tevn+Lj480uBQDgI0rlllKqUuX0cyo1ONXscoyx5C+qnpZNaCoKQtMftGjRQpK0efNmkysBAPiKMbeM0au7X1WGNcPsUgwriHbO/MkSYJDPhqZz585p4cKFSkhI0J49e5SWlqZx48apY8eOF7TNysrSvHnztHr1aqWlpal69eoaOHCgGjdubELlAICS5MkBT+pJPWl2GUXiN+socakYfHYgeGpqquLi4pSUlKQaNWpctu0rr7yixYsXq23bthoxYoT8/Pw0evRo7dix4xpVCwAAfJ3Phia73a5PP/1US5Ys0ZAhQy7ZLiEhQWvXrtXgwYM1dOhQde7cWW+++aYqV66smTNnXsOKAQCAL/PZ0BQYGCi73X7Fdl9//bWsVqs6d+7s2maz2dSpUyft3r1bx44d82SZAACghPDZMU1G7du3T1FRUSpTpkyh7XXq1JEk7d+/X+Hh4ZKknJwc5ebmKi8vT7m5ucrMzJS/v7+sVutFj33y5EmdOnXK9TopKclDnwIAAJitxIemU6dOXbRHqmDbyZMnXds+/PBDxcXFuV4vWLDgkoPLJWnZsmWF2gMAgJKrxIemzMxMBQQEXLA9MDDQtb9A//79izShZefOndW8eXPX66SkJE2ePPkqqgUAAN6qxIcmm82m7OzsC7ZnZWW59hdXaGioQkNDi/1+AADgO0p8aLLb7Tpx4sQF2wvGIhF6AADXK6fF6TNLv0j5s6+PuWWMnhxgzrxYJT401ahRQ9u2bVN6enqhweAJCQmu/VcrPj5e8fHxcjgcV30sAAA8zSKLa3JLn1n6RVKqUvXq7ldNm0y0xIemVq1aaeHChVq2bJl69uwpKf/W3PLlyxUdHe16cu5qxMbGKjY2VomJiRo0aNBVHw8AAE8KCQhRqiSL06KyjnJml2PI2dJn5fRzmrpcjU+Hpk8++UQOh8N1q23jxo06fvy4JKlbt24KDg5WdHS0WrdurTlz5ujMmTOKjIzUypUrlZKSojFjxphZPgAApgguHaLU01KVcpE68voZs8sxpPyz5U3vFfPp0LRo0SKlpKS4Xq9fv17r16+XJLVr107BwcGSpPHjxys8PFyrVq2Sw+FQtWrV9OqrryomJsaMsgEAgA/y6dC0ePFiQ+1sNpuGDh2qoUOHergiAABQUvl0aPIWDAQHAPii5GQpKsrsKow5m7pbKnVW2U1fMa0GQpMbMBAcAOBLQkLy/8zLk44eNbcW4yIlR6QyNv7NtAoITQAAXGdeekmaMEFKSzO7EuOO/pIrOa1yZgWbVgOhCQCA60z37vlfvsQvJEVOR6S5NZh6dgAAAB9BaAIAADCA23NuwNNzAACUfIQmN+DpOQAASj5uzwEAABhAaAIAADCA0AQAAGAAY5p8wH/Xh2v6h7WVes4iP5vZ1RhzNq+M2SUAAOBWhCY38PTTc69/UFP7Dwd55Niek9+JafPLMrkOwM2ysqVNP5pdhXH+VqlqFSmsotmVAD6P0OQGnn56Lv18/j+Tn59TEREWtx/fExzJaQrIy1CHspsl3Wd2OcDV87fmBybp9z99QVa2dOgXQhPgBoQmHxJeMVNHjpQyuwxDpkXNVdrRNIUEhZhdCuAeVavkh4+cXLMrMa4g3PlSzYAXIzQBgBFhFX2vt2bTj77VKwZ4OZ6eAwAAMIDQBAAAYAChCQAAwIBij2k6cOCA9u7dq1atWqlMmfw5eTIzM/XOO+9o48aNstlsevjhh9WlSxe3FeutWLAXAICSr9g9TR9++KHmzZun0qVLu7bNmTNHy5Yt07lz53T8+HFNnz5d3333nVsK9WaxsbGaMmWKhg8fbnYpAADAQ4odmvbs2aMGDRrIYsmfNygnJ0crVqxQnTp19J///EeLFi1S+fLltXTpUrcVCwAAYJZih6bU1FRVqlTJ9Xrv3r1KT09Xly5dZLPZFBoaqubNm2v//v1uKRQAAMBMxQ5NVqtV2dm/z/+xfft2WSwWNWjQwLWtXLlySk1NvboKAQAAvECxQ1PlypW1bds21+uvvvpKERERqly5smvbiRMnVK5cuaurEAAAwAsU++m5du3aaebMmXrssccUEBCgAwcO6NFHHy3U5ueff1ZUVNRVFwkAAGC2Yvc0PfDAA2rVqpUSExO1c+dONWnSRI888ohr/8GDB7V//37ddtttbikUAADATMXuaQoMDNQLL7yg9PR0WSyWQlMPSFKFChU0b968QrfrAAAAfFWxQ9P27dsVERGh8PDwi+4vX768MjMztX//fsXExBT3ND6ByS0BACj5in17btSoUVqxYsVl26xatUqjRo0q7il8BpNbAgBQ8hU7NDmdTkNtCia/BAAA8GUeXbD3yJEjrnXpAAAAfFmRxjRNmTKl0OsNGzYoJSXlgna5ubk6fvy4duzYoSZNmlxdhQAAAF6gSKHpj2OYLBaL9u/ff8llUiwWi2rXrq0nnnji6ioEAADwAkUKTYsWLZKUP1bp4Ycf1oMPPqju3btf0M7Pz08hISEKCgpyT5UAAAAmK1Jo+uOcS2PHjtXNN9/MPEwAAOC6UOx5mjp27OjOOgAAALxasUNTgYSEBO3du1cOh0N5eXkX7LdYLOrTp8/VngYAAMBUxQ5NZ8+e1fjx47Vr167LztlEaAIAACVBsUPTO++8o507dyomJkYdOnRQpUqVZLVa3VkbflMQSZ1OaVrUNFNrMcqRzJIyAICSpdihadOmTapTp47efPPN637Wb4+vPfeHjry0o2meOYeH2EJsZpcAAIBbFDs0ZWZmqn79+td9YJLy156LjY1VYmKiBg0a5NFzhUSGePT47mQLsan1S63NLgMAALcodmiqUaPGRWcDh2c9deQps0sAAOC6VOy15/r27auNGzdq9+7d7qwHAADAKxW7p+nXX3/VHXfcoREjRqht27aqWbPmJRfn7dChQ7ELBAAA8AbFDk2vvPKKLBaLnE6nVqxYoRUrVlwwvsnpdMpisRCaAACAzyt2aBo7dqw76wAAAPBqLKMCAABgQLEHggMAAFxPit3TdOzYMcNtw8PDi3saAAAAr1Ds0PTQQw8ZmtjSYrHoq6++Ku5pAAAAvEKxQ1P79u0vGpocDocOHDig5ORkxcTEqHLlyldVIAAAgDcodmgaP378Jfc5nU4tXLhQ//rXvzRmzJjingIAAMBreGQguMViUc+ePXXTTTfpH//4hydOAQAAcE159Om5WrVq6YcffvDkKQAAAK4Jj4amo0ePKjc315OnAAAAuCaKPabpUvLy8nTixAmtXLlSGzdu1G233ebuUwAAAFxzxQ5Nd91112WnHHA6nQoJCdGwYcOKewqfER8fr/j4eDkcDrNLAQAAHlLs0FS/fv2LhiaLxaKQkBDVrl1b99xzjypUqHBVBfqC2NhYxcbGKjExUYMGDTK7HAAA4AHFDk0zZsxwZx0AAABejbXnAAAADHDLQPCdO3dq3759OnfunEqXLq2aNWuqbt267jg0AACAV7iq0LRz505NmTJFR48elZQ/+LtgnFNUVJTGjh2rW2+99eqrBAAAMFmxQ9PBgwf1zDPPKCMjQ40aNVKDBg1kt9v166+/atu2bfruu+/0zDPPaNasWapataobSwYAALj2ih2a4uLilJ2drddee01NmjQptK9Xr17asmWLxo0bp7i4OE2aNOlq6wQAADBVsQeCb9++Xa1atbogMBVo0qSJWrVqpW3bthW7OAAAAG9R7NCUnp6uiIiIy7aJiIhQenp6cU8BAADgNYodmux2u3bv3n3ZNgkJCbLb7cU9BQAAgNcodmhq3ry5tm/frvfee0+ZmZmF9mVmZmr+/Pnatm2b7rzzzqsuEgAAwGzFHgjep08fbdq0SR999JGWLVumOnXqqEKFCjp9+rT27t2rM2fOqEqVKurTp4876wUAADBFsUNTuXLlNHPmTM2aNUtr167V5s2bXfsCAwPVsWNHPf744ypbtqxbCgUAADDTVU1uWb58eY0dO1bPPPOMkpKSXDOC33jjjfL3d8tk4wAAAF6hyMnmww8/VEZGhvr37+8KRv7+/qpevbqrTXZ2tubOnaugoCA98sgj7qsWAADAJEUaCL5161bNnz9fZcuWvWxPUkBAgMqWLav33ntPP/zww1UXCQAAYLYihaZVq1YpJCREDzzwwBXb3n///QoJCdGKFSuKXRwAAIC3KFJo2rVrlxo2bKjAwMArtg0MDFSjRo20c+fOYhcHAADgLYoUmk6ePKkqVaoYbh8REaFTp04VuSgAAABvU6TQ5Ofnp5ycHMPtc3Jy5OdX7Pkzr7kzZ85o9OjRateunXr16qXvv//e7JIAAICXKFKisdvtOnjwoOH2Bw8eVGhoaJGLMsv06dNVsWJFLVu2TEOGDNHzzz+vs2fPml0WAADwAkUKTfXq1dMPP/yg5OTkK7ZNTk7WDz/8oPr16xe7uGvp3Llz2rBhg/r3769SpUrpzjvvVLVq1fTNN9+YXRoAAPACRQpN999/v3JycjRx4kSdOXPmku1SU1P1/PPPKzc3V126dLnaGi/q3Llzmj9/vp555hl16tRJLVu2vOSTellZWZo5c6buv/9+xcbG6rHHHtN3331XqM2RI0cUFBSkSpUqubZVq1atSD1rAACg5CpSaKpVq5YefPBB/fTTT+rdu7fmzZunH374QYcPH9bhw4e1bds2vffee+rdu7cSExP14IMPqlatWh4pPDU1VXFxcUpKSlKNGjUu2/aVV17R4sWL1bZtW40YMUJ+fn4aPXq0duzY4Wpz/vx5lSlTptD7ypQpo/Pnz3ukfgAA4FuKPCP4sGHDFBgYqH/9619asGCBFixYUGi/0+mUn5+fHnnkEQ0cONBthf6Z3W7Xp59+Krvdrr1792rw4MEXbZeQkKC1a9dqyJAh6tmzpySpffv26tu3r2bOnKmZM2dKkoKCgpSenl7ovenp6QoKCvLYZwAAAL6jyKHJYrFo8ODB6tSpk5YvX65du3bp119/lSRVrFhRdevWVceOHRUZGen2Yv8oMDBQdrv9iu2+/vprWa1Wde7c2bXNZrOpU6dOmjNnjo4dO6bw8HBFRUXp/PnzOnHihMLCwiTlD2Rv3769xz4DAADwHcVeVTcyMlKDBg1yZy0esW/fPkVFRV1w661OnTqSpP379ys8PFylS5fWnXfeqfnz52vUqFH6/vvvdeDAAd15552XPPbJkycLzUOVlJTkmQ8BAABMV+zQ5CtOnTp10R6pgm0nT550bXvqqaf08ssv695771VYWJgmTZqksmXLXvLYy5YtU1xcnNtrBgAA3qfEh6bMzEwFBARcsL1gKZjMzEzXtvLly+v11183fOzOnTurefPmrtdJSUmaPHnyVVQLAAC8VYkPTTabTdnZ2Rdsz8rKcu0vrtDQUJ+avBMAABSf76xxUkx2u/2i698VbCP0AAAAI0p8T1ONGjW0bds2paenFxoMnpCQ4Np/teLj4xUfHy+Hw3HVxwIAAN6pxPc0tWrVSrm5uVq2bJlrW1ZWlpYvX67o6GiFh4df9TliY2M1ZcoUDR8+/KqPBQAAvJNP9zR98skncjgcrlttGzdu1PHjxyVJ3bp1U3BwsKKjo9W6dWvNmTNHZ86cUWRkpFauXKmUlBSNGTPGzPIBAIAP8enQtGjRIqWkpLher1+/XuvXr5cktWvXTsHBwZKk8ePHKzw8XKtWrZLD4VC1atX06quvKiYmxoyyAQCAD/Lp0LR48WJD7Ww2m4YOHaqhQ4d6uCIAAFBS+XRo8hYMBAcAoOQjNLlBbGysYmNjlZiY6BNLywAAgKIr8U/PAQAAuAOhCQAAwABCEwAAgAGMaXIDBoIDAFDyEZrcgIHgAACUfNyeAwAAMIDQBAAAYAChCQAAwABCEwAAgAGEJgAAAAN4es4NmHIAAICSj9DkBkw5AABAycftOQAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCAp+fcgCkHAAAo+QhNbsCUAwAAlHzcngMAADCA0AQAAGAAoQkAAMAAQhMAAIABDAQHgJIuK1va9KPZVRjnb5WqVpHCKppdCVAIoQkASip/a35gkn7/0xdkZUuHfiE0wesQmgCgpKpaJT985OSaXYlxBeHOl2rGdYPQ5AZMbgnAK4VV9L3emk0/+lavGK4rhCY3YHJLAABKPp6eAwAAMIDQBAAAYAChCQAAwABCEwAAgAGEJgAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCA0AQAAGAAy6i4AWvPAQBQ8hGa3IC15wAAKPm4PQcAAGAAoQkAAMAAQhMAAIABhCYAAAADCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgNAEAABgAKEJAADAAEITAACAAYQmAAAAAwhNAAAABhCaAAAADPA3u4CSID4+XvHx8XI4HGaXAgAAPITQ5AaxsbGKjY1VYmKiBg0aZHY5AADAA7g9BwAAYAChCQAAwABCEwAAgAGEJgAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCA0AQAAGAAoQkAAMAAQhMAAIABhCYAAAADCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgNAEAABgAKEJAADAAEITAACAAYSmP/nss880YMAAtW7dWvPnzze7HAAA4CUITX9it9vVr18/3XXXXWaXAgAAvIi/2QV4mxYtWkiSNm/ebHIlAADAm3hlaDp37pwWLlyohIQE7dmzR2lpaRo3bpw6dux4QdusrCzNmzdPq1evVlpamqpXr66BAweqcePGJlQOAABKKq+8PZeamqq4uDglJSWpRo0al237yiuvaPHixWrbtq1GjBghPz8/jR49Wjt27LhG1QIAgOuBV/Y02e12ffrpp7Lb7dq7d68GDx580XYJCQlau3athgwZop49e0qS2rdvr759+2rmzJmaOXOmq+2wYcO0c+fOix7n0Ucf1aBBg9z/QQAAQInhlaEpMDBQdrv9iu2+/vprWa1Wde7c2bXNZrOpU6dOmjNnjo4dO6bw8HBJ0rvvvuuxegEAQMnnlaHJqH379ikqKkplypQptL1OnTqSpP3797tCk1E5OTnKzc1VXl6ecnNzlZmZKX9/f1mt1gvanjx5UqdOnXK9TkpKKsanAAAAvsCnQ9OpU6cu2iNVsO3kyZNFPuaHH36ouLg41+sFCxZcchD6smXLCrUFAAAll0+HpszMTAUEBFywPTAw0LW/qPr376/+/fsbatu5c2c1b97c9TopKUmTJ08u8jkBAID38+nQZLPZlJ2dfcH2rKws135PCg0NVWhoqEfPAQAAvINXTjlglN1uLzSmqEDBNgINAABwF5/uaapRo4a2bdum9PT0QoPBExISXPuvhfj4eMXHx8vhcFyT8wEAgGvPp3uaWrVqpdzcXC1btsy1LSsrS8uXL1d0dHSRn5wrrtjYWE2ZMkXDhw+/JucDAADXntf2NH3yySdyOByuW20bN27U8ePHJUndunVTcHCwoqOj1bp1a82ZM0dnzpxRZGSkVq5cqZSUFI0ZM8bM8gEAQAnjtaFp0aJFSklJcb1ev3691q9fL0lq166dgoODJUnjx49XeHi4Vq1aJYfDoWrVqunVV19VTEyMGWUDAIASymtD0+LFiw21s9lsGjp0qIYOHerhigAAwPXMa0OTL2EgOAAAJR+hyQ1iY2MVGxurxMREFv4FAKCE8umn5wAAAK4VQhMAAIABhCYAAAADGNPkBgwEBwCg5CM0uQEDwQEAKPm4PQcAAGAAoQkAAMAAQhMAAIABhCYAAAADGAjuBjw9BwBAyUdocgOengMAoOTj9hwAAIABhCYAAAADCE0AAAAGEJoAAAAMIDQBAAAYQGgCAAAwgCkH3IB5mgAAKPkITW7APE0AAJR83J4DAAAwgNAEAABgAKEJAADAAEITAACAAYQmAAAAAwhNAAAABjDlAADA+2RlS5t+NLsK4/ytUtUqUlhFsyuBBxGa3IDJLQHATfyt+YFJ+v1PX5CVLR36hdBUwhGa3IDJLQHATapWyQ8fOblmV2JcQbjzpZpRLIQmAID3CKvoe701m370rV4xFBsDwQEAAAwgNAEAABhAaAIAADCA0AQAAGAAoQkAAMAAQhMAAIABhCYAAAADCE0AAAAGEJoAAAAMYEZwN2DtOQAASj5Ckxuw9hwAACUft+cAAAAMIDQBAAAYwO05N8rMzJQkJSUlufW4tlJZKlMmULZSWUpMDHTrsQEAV+noYSk7RwrwlxJLmV1NiVUm6IScTocsQSeUmOiZMcQ33nijSpW69L+hxel0Oj1y5uvQ6tWrNXnyZLPLAAAAxTB37lzVqlXrkvvpaXKj22+/XTVq1NCTTz6pwEBjPUJvv/22hg8fftk2SUlJmjx5sp577jndeOON7ijV5xn5vpnpWtfnqfO567hXc5zivLco7zHaluvwQt58HXINuu84nr4Gjba/FtfglY5LaHKj8uXLq1KlSqpbt67h9wQHB1821f7RjTfeaLhtSVeU75sZrnV9njqfu457NccpznuL8p6iHp/r8HfefB1yDbrvOJ6+Bova3sxrkIHgbhYbG+vR9sjn7d+3a12fp87nruNezXGK896ivMfbf5a8mTd/77gG3XccT1+DxT2HGRjT5AMK5n+60r1WAJ7DdQiYyxuuQXqafIDdblffvn1lt9vNLgW4bnEdAubyhmuQniYAAAAD6GkCAAAwgNAEAABgAKGpBMjKytKUKVPUvXt3dejQQY8//rh27dpldlnAdef1119X165d1aFDB/Xp00cbN240uyTgurRr1y7ddddd+uCDD9x6XMY0lQDnz5/XokWL1LFjR4WFhemrr77Sm2++qUWLFql06dJmlwdcN5KSkhQREaHAwEDt2bNHTz31lBYuXKhy5cqZXRpw3cjLy9PQoUPldDrVrFkz9enTx23HpqepBAgKClLfvn0VHh4uPz8/3X333fL399fhw4fNLg24rtx4442u1QAsFouys7N18uRJk6sCri///e9/VadOHY/MGs6M4CY4d+6cFi5cqISEBO3Zs0dpaWkaN26cOnbseEHbrKwszZs3T6tXr1ZaWpqqV6+ugQMHqnHjxpc8/uHDh5WWlqbIyEhPfgzAp3nqOpw2bZqWL1+urKws3XHHHapWrdq1+DiAz/HENZiamqolS5Zo5syZevvtt91eMz1NJkhNTVVcXJySkpJUo0aNy7Z95ZVXtHjxYrVt21YjRoyQn5+fRo8erR07dly0fWZmpiZPnqxevXopODjYE+UDJYKnrsOnnnpKq1at0vTp09W4cWNZLBZPfQTAp3niGpw7d64efPBBhYSEeKZoJ665zMxM58mTJ51Op9O5Z88eZ4sWLZzLly+/oN3u3budLVq0cP7zn/90bcvIyHA+/PDDzscff/yC9tnZ2c7Ro0c7X3jhBWdeXp7nPgBQAnjqOvyjMWPGOP/v//7PvYUDJYS7r8HExETngAEDnDk5OU6n0+l8+eWXnXFxcW6tmZ4mEwQGBhqa0fTrr7+W1WpV586dXdtsNps6deqk3bt369ixY67teXl5mjx5siwWi8aPH89vt8AVeOI6/LPc3FwdPXrULfUCJY27r8Ht27fr8OHD6tatm7p27aovv/xS//znP/XKK6+4rWbGNHmxffv2KSoqSmXKlCm0vU6dOpKk/fv3Kzw8XJI0depUnTp1SlOnTpW/P/+sgLsYvQ4dDoc2bdqk5s2bKzAwUBs2bNC2bds0ePBgM8oGSgyj12Dnzp119913u/bPmDFDERER6tWrl9tq4f+uXuzUqVMXTeEF2wqeyklJSdHnn3+uwMDAQkn8tddeU/369a9NsUAJZfQ6tFgs+vzzzzV9+nQ5nU5FRkZqwoQJqlmz5jWtFyhpjF6DpUqVUqlSpVz7bTabgoKC3Dq+idDkxTIzMxUQEHDB9oJHmjMzMyVJlStX1vr1669pbcD1wuh1WKZMGb311lvXtDbgemD0Gvyz8ePHu70WxjR5MZvNpuzs7Au2Z2VlufYD8CyuQ8Bc3nQNEpq8mN1u16lTpy7YXrAtNDT0WpcEXHe4DgFzedM1SGjyYjVq1NCRI0eUnp5eaHtCQoJrPwDP4joEzOVN1yChyYu1atVKubm5WrZsmWtbVlaWli9frujoaNeTcwA8h+sQMJc3XYMMBDfJJ598IofD4epe3Lhxo44fPy5J6tatm4KDgxUdHa3WrVtrzpw5OnPmjCIjI7Vy5UqlpKRozJgxZpYPlAhch4C5fO0atDidTuc1PSMkSQ899JBSUlIuum/RokWKiIiQlP9UQMF6Ow6HQ9WqVdPAgQN1++23X8tygRKJ6xAwl69dg4QmAAAAAxjTBAAAYAChCQAAwABCEwAAgAGEJgAAAAMITQAAAAYQmgAAAAwgNAEAABhAaAIAADCA0AQAAGAAoQkAAMAAQhMAXETLli0LfWVmZrr2rVixQi1bttSKFStMrPB3//nPfwrV+ve//93skoASyd/sAgBc35KTk9WjR4/LtqlcubIWL158jSoqfN4OHTpIkqxWq0fP9e233+qZZ55R48aN9cYbb1y27Ysvvqj4+HhNmDBBbdu2Va1atdS3b185HA4tXbrUo3UC1zNCEwCvEBkZqbZt2150X3Bw8DWuJl/lypXVv3//a3KuRo0aKTw8XN9//72OHTum8PDwi7ZzOBzasGGDgoOD1bJlS0lS7dq1Vbt2bSUnJxOaAA8iNAHwCpGRkdcsoHgjPz8/dezYUXFxcVq5cqX69Olz0Xbx8fHKzMzUPffcI5vNdo2rBK5vjGkC4HNatmypESNG6MSJE3rxxRd13333qX379ho9erR++eUXSdKhQ4c0fvx4derUSe3bt9eECRP066+/erSu48ePq0+fPoqNjdW6detc20+fPq23335bPXv21N1336377rtPzz33nH7++edC77/nnntksVi0YsUKOZ3Oi55j+fLlkqROnTp57HMAuDhCEwCflJaWpmHDhik5OVnt27dXgwYNtHnzZj311FP6+eefNXToUJ0/f1733HOPateura+//lovvPCCx+o5dOiQhg4dquPHj+v1119Xq1atJElHjx7VwIEDtWTJElWpUkUPPPCA7rjjDn377bcaMmSIEhISXMeoXLmyGjZsqF9++UXbtm274Bw///yz9u7dq5o1a+rmm2/22GcBcHHcngPgFY4ePar58+dfdN8tt9yiJk2aFNp24MABPfTQQ3riiSdc26ZNm6bPPvtMTzzxhPr166cHH3xQkuR0OjVmzBht3rxZiYmJqlWrlltr3717t8aMGSN/f3+9/fbbqlGjhmvfyy+/rF9//VVTp07V7bff7treu3dvDRo0SK+99pri4uJc2zt16qStW7dq+fLluu222wqdh14mwFz0NAHwCkePHlVcXNxFv7Zs2XJB+6CgIA0cOLDQtrvvvluSVK5cOXXv3t213WKxuPYdOHDArXVv2rRJTz75pEJCQvSPf/yjUGD66aeftGvXLrVv375QYJKkv/zlL7r33nv1888/F7pN16JFC5UrV05ff/210tPTXdtzcnK0evVqBQYGXnLAPADPoqcJgFe4/fbbNXXqVMPto6KiVKpUqULb7Ha7JKlatWqyWCwX3Xfy5MmrrPR3X331lb777jtVr15dr7/+uipUqFBof8Gtt9OnT1+0F+1///uf689q1apJkisULV26VPHx8erSpYskaePGjTpz5oxiY2MVEhLits8AwDhCEwCfVKZMmQu2FcyldLl9OTk5bqth9+7dys3NVb169S4ITJJ09uxZSfm9UZs2bbrkcc6fP1/odadOnbR06VItX77cFZq4NQeYj9AEAMU0ePBgffPNN1q6dKmsVquGDRtWaH9BeBs5cqS6detm+LjVq1dX7dq1tWfPHh08eFAhISH69ttvFRERccE4JwDXDmOaAKCYAgMD9fLLL6tp06ZatGiR3nnnnUL769SpIym/R6qoCnqUvvjiC61atUq5ubmuKQkAmIPQBABXITAwUJMnT1azZs20ePFivf3226590dHRio6O1tq1a7V27doL3puXl6ft27df9LixsbEqVaqUVq9ereXLl8vPz8+1pAsAc3B7DoBXuNyUA5LUq1cvr50BOyAgQC+99JImTpyoJUuWyOl0asSIEZKkiRMnatSoUXrhhRe0dOlS1axZUzabTcePH9euXbuUmpqq+Pj4C45ZpkwZ3XXXXVq1apXOnDmjJk2aXHJpFQDXBqEJgFcomHLgUh588EGvDU3S78Hp+eef19KlS+V0OjVy5EhVqVJF8+bN06JFi7RhwwatWLFCfn5+stvtql+/vmsSzIvp1KmTVq1aJSl/tnAA5rI4LzVXPwBcx1q2bKmYmBjNmDHD7FIMS05OVo8ePdShQweNHz/e7HKAEoeeJgC4hO3bt6tly5aSpDVr1nhtT9d//vMfvfHGG2aXAZR4hCYAuIi+ffsWel0wz5M3qlWrVqF6a9asaV4xQAnG7TkAAAADmHIAAADAAEITAACAAYQmAAAAAwhNAAAABhCaAAAADCA0AQAAGEBoAgAAMIDQBAAAYAChCQAAwID/B1STIPB9Hrc3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# define a powerlaw spectrum\n", + "index = -2.2\n", + "K = 10 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit\n", + "\n", + "# Read the GRB signal\n", + "signal = Histogram.open(GRB_signal_path)\n", + "# get the starting and ending time tag of the GRB\n", + "grb_tmin = signal.axes[\"Time\"].edges.min()\n", + "grb_tmax = signal.axes[\"Time\"].edges.max()\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "signal = signal.project(['Em', 'PsiChi', 'Phi'])*scaling_factor\n", + "\n", + "# load the background file\n", + "bkg_full = Histogram.open(background_path)\n", + "# Extract 40s background from the 3-month one\n", + "bkg_tmin_idx = np.where(bkg_full.axes['Time'].edges.value == grb_tmin.value)[0][0] # the time idx corresponding to the tima tag\n", + "bkg_tmax_idx = np.where(bkg_full.axes[\"Time\"].edges.value == grb_tmax.value)[0][0]\n", + "bkg = bkg_full.slice[bkg_tmin_idx:bkg_tmax_idx,:] # It slices the Time axis\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg = bkg.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# assemble the data\n", + "data = bkg + signal\n", + "\n", + "# calculate the duration of the background\n", + "bkg_full_duration = (bkg_full.axes['Time'].edges.max() - bkg_full.axes['Time'].edges.min())\n", + "# average the background model down to 40s\n", + "bkg_model = bkg_full/(bkg_full_duration/40)\n", + "# project to three axes: measure energy(Em), scattering direction(PsiChi) and Compton scattering angle (Phi)\n", + "bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# plot the counts distribution\n", + "ax,plot = bkg.project(\"Em\").draw(label = \"background component\", color = \"purple\")\n", + "data.project(\"Em\").draw(ax, label = \"data(GRB+bkg)\", color = \"green\")\n", + "signal.project(\"Em\").draw(ax, label = \"GRB signal\", color = \"pink\")\n", + "bkg_model.project(\"Em\").draw(ax, label = \"background model\", color = \"blue\")\n", + "ax.legend()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_yscale(\"log\")\n", + "ax.set_ylabel(\"Counts\")\n", + "\n", + "# read the full oritation but only get the interval for the GRB\n", + "ori_full = SpacecraftFile.parse_from_file(orientation_path)\n", + "grb_ori = ori_full.source_interval(Time(grb_tmin, format = \"unix\"), Time(grb_tmax, format = \"unix\"))\n", + "\n", + "# clear redundant data from RAM\n", + "del bkg_full\n", + "del ori_full\n", + "_ = gc.collect()\n", + "\n", + "# here let's create a FastTSMap object for fitting the ts map in the following cells\n", + "ts = FastTSMap(data = data, bkg_model = bkg_model, orientation = grb_ori, \n", + " response_path = response_path, cds_frame = \"local\", scheme = \"RING\")\n", + "\n", + "# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source spectrum.\n", + "# note that this nside is also the nside of the final TS map\n", + "hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)\n", + "\n", + "ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [2,3], spectrum = spectrum, ts_scheme = \"RING\", cpu_cores = 56)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "b4337b3e-d99d-4b91-b057-59eff911a5cf", + "metadata": {}, + "outputs": [], + "source": [ + "# This the true location of the GRB\n", + "coord = SkyCoord(l=93, b = -53, unit = (u.deg, u.deg), frame = \"galactic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "f2d84b3b-fd4d-4e42-aaa8-113dd5cb4618", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOz9d7xsVX34/79nTruF2wUJRYkVRKKiUsQCIvaWT4wVonl8jEb9JibxF6MmUdOMJvmkPSwfjVExCkRJYoliVAJIEREUFUvwI1JE6oXb7z1t5vfHmTVnz9pr7b3Ke8+ZM7yej0cekXPPWbPP9DNrvfZqdbvdrgAAAAAAAAAAAIyp9kofAAAAAAAAAAAAQJOYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAAAAAAAAAY43JEAAAAAAAAAAAMNaYDAEAAAAAAAAAAGONyRAAAAAAAAAAADDWmAwBAAAAAAAAAABjjckQAAAAAAAAAAAw1pgMAQAAuI9ptVql//vYxz4W/PMf+9jHnGNg5Z166qml2+VVr3rVSh+WvPOd7ywd11FHHbXShwUPbi8AAACMIyZDAAAAAAAAAADAWGMyBAAAjJQbb7zRWR0U/++4445r5LJvvvlmmZiYqLxsVkcDAAAAALD6MBkCAABWneuuu06uueYa9XHPPvts6XQ66uMCAAAAAICVxWQIAABYlc4+++xVMSYAAAAAAFh5TIYAAIBV6dxzz5X5+Xm18S699FL5yU9+ojYeAAAAAAAYHUyGAACAVenuu++Wz3/+82rjfexjH1MbCwAAAAAAjBYmQwAAwKqwbdu20te0Tmu1b98++fSnPz3wtcnJSdm0aZPK+MCwXHzxxdLtdgf+j4k+xHrnO99Zuh/deOONK31YAAAAQBYmQwAAwKrwghe8QNatWzfwtQsuuEDuuuuu7LH/7d/+TXbv3j3wtWc961myefPm7LEBAAAAAMDKYzIEAACsChs2bJD/9b/+18DX5ufn5ZOf/GT22B/96EdLX3vVq16VPS4AAAAAABgNTIYAAIBV45WvfGXpa7mnALrpppvk4osvHvjatm3b5LnPfW7WuAAAAAAAYHQwGQIAAFaNpz71qXLkkUcOfO073/mOXHvttcljnn322dLtdge+9rKXvUymp6eTxwQAAAAAAKNlcqUPAAAAIFS73ZZf+7Vfk7/4i78Y+PrZZ58tj370o6PH63a78vGPf7z09WGdIuvWW2+Vz33uc3LZZZfJD37wA7n55ptlz5490u12Zf369XLEEUfI0UcfLaeccoo8//nPlwc96EFDOS7o+OEPfygXXHCBXHHFFXL99dfLrbfe2r99DzroIHnAAx4gxx57rDz5yU+WX/7lX5ZDDjlkpQ+50re//W05//zz5dJLL5Xrr79e7r33Xmm1WrJp0yZ58IMfLI997GPlec97njztaU+Tdnu4a67m5+flwgsvlIsuukiuueYaueGGG+Tuu++Wffv2yfT0tGzZskUe9KAHyeMe9zg544wz5IwzzpCpqamhHiOWdTodueyyy+TCCy+Uq666Sn7yk5/InXfeKXv37pXJyUnZtGmTHHXUUXL88cfLU5/6VHnOc54ja9euXenDBgAAwGrXBQAAGCE//elPuyJS+r83vvGN3W632/3xj39c+rdDDjmkOz8/H31Zl1xySWms4447rv/vD3zgA0v//sAHPjD7d7zqqqu6z3nOc7rtdtv5u/r+7ylPeUr3wgsvzL5819gf/ehHg3/+ox/9qHOMOk972tNKP/PiF784+vivv/5673X0rne9K3q8c845pzTOxMREd+fOndFjLS4uds8999zu8ccfH3XbTkxMdF/2spd1r7/++ujLLHrKU55SGvuVr3xl1pjXXHONc1zf/z30oQ/tfupTnxoY4x3veEcjj6W77rqr+9a3vrW7bdu2qOv7kEMO6b773e/u7t+/P/sYUr3kJS8pHdfU1FT3rrvuUr2cxz3ucaXLOeyww7oLCwven2nq9tq9e3f3Pe95T/fwww+Pur02btzYfctb3tK99957oy5vbm6uu27dutJ473//+6OP/UMf+pD3+K644oro8V7zmteUxnn84x8fPQ4AAADCcZosAACwqjzkIQ+RU045ZeBrd955p3zhC1+IHsu134hrXxItBw4ckP/v//v/5MQTT5QvfOEL0ul0on7+kksukdNPP11e8YpXyM6dOxs6yuacfvrppa9ddNFFpdOU1bnwwgu9//bf//3f0cflGu/xj3+8bNy4MWqc73//+/KEJzxBXvayl8m3vvWtqJ9dXFyUc889V4477jj5m7/5m6ifbdJ73vMeOfHEE+WSSy4J/pkf//jH8uIXv1jOOussmZuba+zY/vmf/1ke+tCHyl/+5V/K9u3bo372zjvvlLe85S3yqEc9Sq655pqGjrCa67lmfn5ezj33XLXL+MEPfiBXX3116etnnXWWTExMqF1OiM997nNy9NFHyx/8wR/IrbfeGvWzu3btkne/+93yiEc8Qr785S8H/9zU1JQ86UlPKn296jnEZxjPO67nSAAAAOhhMgQAAKw6rg8Rzz777Kgx9u7dK5/+9KcHvjY5OSmveMUrso7NZ/v27fKUpzxF3ve+90V/+G8755xz5KSTTpKbbrpJ6eiGw/VB31133SXf/e53o8ap+lDy8ssvl9nZ2ezxnvrUp0aN8e///u9y4oknyje+8Y2on7PNzs7K7//+78urXvWq6Mkybb/1W78lb3nLW2RhYSHp5z/xiU/IC17wguSf95mfn5dXvvKV8upXv1p27NiRNdb1118vT3rSk+Tzn/+8zsFFePrTny6/8Au/UPp67HNZFd9YTU76urztbW+TF7zgBdGTILbbbrtNnv3sZ8uHPvSh4J/xTcLGPL663a5cdNFF3n+PnVy56aab5Cc/+Unp67HPOwAAAIjDniEAAGDVeclLXiJvfOMbZf/+/f2vfeELX5Dt27fLtm3bgsY4//zzZc+ePQNfe8YzniGHHnqo6rGKLE28PP3pT6+sBdasWSPHHXecHHbYYTI5OSm33nqrfP/735fdu3c7v/9HP/qRnH766XLFFVeM/F4TxvHHHy+bNm0qVS0XXnihPOpRjwoao9vtysUXX+z99/3798sVV1whp512WtB4P/3pT+XGG28sfT1mhfY555wjv/ZrvyaLi4ve7zn00EPl6KOPlm3btsnk5KTccccdct1118ndd9/t/P6zzz5b1q9fL+973/uCj0PTX/zFX8h73/te77+3Wi059thj5cgjj5SNGzfKbbfdJv/zP/8jd9xxx8D3felLX5Lf//3fl02bNqkc1/z8vLzoRS+Sz33uc97vabfb8ohHPEIOP/xw2bp1q+zdu1duu+02ufbaa2V+fr70/fv375cXvehFcuGFF8oTn/hEleMMMTExIWeeeab89V//9cDXr7nmGvn+978vxx57bNb4i4uL8olPfKL09RNOOEGOOeaYrLFjvP71r5cPfOADld/zsIc9TB74wAfKtm3bZHZ2Vu644w759re/PfAcbywuLspv/uZvyqZNm+QlL3lJ7eW7Jhjuueceufbaa+X4448P+h2uu+46ufPOO73/fsUVV8j+/fuD9zVxlSQzMzNDvf8BAADcF1GGAACAVWfjxo3yy7/8ywNfm5ubk3POOSd4DNcpspraOP1Nb3qTdyLkyCOPlI985CNyxx13yFVXXSWf+cxn5Pzzz5evf/3rcscdd8i//uu/ytFHH+382Z/85Cfy6le/upFjbsLExISceuqppa/HrKr+zne+451ASBnP9b1r1qyRJzzhCUE/f+mll8qrXvUq50TIpk2b5A/+4A/kRz/6kdx2221y0UUXyfnnny/nnXeeXHTRRXLHHXfI5ZdfLs961rOcY7///e+Xz372s8G/i5arr75a3vGOdzj/bXp6Wv74j/9YfvrTn8r3vvc9+eIXvyjnnXeeXHLJJfLzn/9cvvrVr5Y+fP6Hf/gHufTSS1WO7bd+67e8EyG/9Eu/JB//+Mfl7rvvlu9973vypS99Sc455xz57Gc/K1dddZXcfffd8pGPfEQe8IAHlH52bm5OzjzzTNm1a5fKcYbyPed8/OMfzx77q1/9qvz85z8vfX2YVci73/1u70TIgx70IHnf+97Xn0j78pe/LOeee678+7//u1x++eWyfft2Of/88+URj3hE6We73a689rWvlZtvvrn2GB7zmMfIli1bSl/PfZ4omp2dlcsvvzxrvJNOOolN4gEAABrGZAgAAFiVXB8iuiY4XG688cbSHghbt26V5z//+QpHNuhLX/qSfPCDH3T+26/+6q/KddddJ7/+67/u3J9i7dq18uIXv1i+/e1vy2tf+1rnGJ///Ofln//5n1WPuUmu4uJrX/uac8W+S8gHmLkfcj7hCU+QNWvW1P7szp075aUvfanz2J/97GfLT37yE3n3u98tD3/4w50/32635QlPeIJ88YtflE9+8pMyPT1d+p5Xv/rVlSvStS0uLsprXvMa5+TOgx70ILn66qvlT//0T+WBD3xg6d/b7bacfvrp8tWvfnVg35Nut5u0p4Lt05/+tPOxND09Lf/4j/8o3/nOd+Sss85yfvAtsjSJ+uu//uvyox/9SF70oheV/v2mm26S3/qt38o+zhiPeMQj5HGPe1zp65/4xCcqS6MQrlNkzczMyEtf+tKscUN94xvfkD/8wz8sfb3Vaslb3/pWuf766+X1r3+9t8Zbu3at/Mqv/Ip897vflTe+8Y2lf9+5c6f82q/9Wu1xtNttZymmORkSO57r8cB+IQAAAM1jMgQAAKxKp59+uhxxxBEDX/vWt74l3/ve92p/9uyzzy7t2/Gyl73M+WF0jk6nI294wxuc//bc5z5XzjnnnKBNutesWSMf+MAHvB/8velNbyqd8mtUuU5Zs2fPHrnqqquCft7+EHFqakqe9rSnDXztm9/8ZvAKf9c+AKHn7X/b297mXHn/6le/Wv7zP/8z+JRtIiIvf/nL5d/+7d+k1WoNfP3uu++Wf/iHfwgeJ9eHPvQh+fa3v136+sEHHyxf+tKX5Ljjjqsdo9VqyZve9CZ517vepXZce/bscU5UTE9PywUXXBA1ibF27Vr51Kc+5TzF0r/8y7/I9ddfn3WssVwTu6aySbVr1y75zGc+U/r68573PNm6dWvyuKE6nY78xm/8hnNfjrPPPlve9a53BW/gPjExIX//938vv//7v1/6t0suuUS+8pWv1I7hekxfeumlMjc3V/uzi4uL8rWvfW3gayeeeGLpegydDPnhD38ot912W9AxAgAAQBeTIQAAYFVqt9ty1llnlb5et/lwt9t1noKmiVPHfPGLX5Qbbrih9PXDDjtMzj33XJmcDN++rdVqyYc//GHnuf537typclqdYTj22GOdK8FDPkicn593fihpFz2Li4ul8sfluuuuK+1xIRK2QvvGG2+Uf/qnfyp9/dRTT5UPfOADpUmNEM997nPl937v90pf/9CHPiQHDhyIHi+F75RGH/rQh+ShD31o1Fhvfetb5ZnPfKbGYck//uM/Om+r973vfUkfIrdaLfmnf/on+cVf/MWBr3e7XfnHf/zH5ONM4ZuIzdlI/VOf+pRzv41hnSLrvPPOc05M/+Ef/qHzeTvEu971LjnxxBNLXw+ZLHQ9pvft2ydXXnll7c+6JlfPOOOM0in/vvWtb8mOHTtqx3M91x100EFywgkn1P4sAAAA8jAZAgAAVi3XiupPfvKTsrCw4P2Zr33ta6UJimOPPVYe//jHax+ed/Pr97znPXLQQQdFjzc1NeX94O/9739/9HgrxfXhdchkyFVXXVUqYE4//XTnB52pp7XZsGGD87RFtve9732l02NNTEzIe9/73qhJLtsf/dEfle4bd999t3zqU59KHjPUN77xDecH2Keddpq88IUvTBrzb//2b7OuDxGRhYUF52buJ598ctaeORs2bJC3ve1tpa+fffbZsm/fvuRxY23dulWe97znlb7+mc98JnkPE9fk6P3vf3+1yak6f/d3f1f62lFHHSV//Md/nDzm5OSk/Pmf/3np61/84hflxhtvrPzZo48+Wg477LDS11OfJ1zPO4uLi3LxxRcnjfekJz1Jpqaman8WAAAAeZgMAQAAq9bDHvYwOfnkkwe+dvvtt8t//dd/eX/mox/9aOlrTayWvueee5zHcfjhh8vLX/7y5HHPOOMMecxjHlP6+ve//335zne+kzzuMLkmQ6688krZu3dv5c/5zrP/iEc8Qn7hF35h4OshH3K6xnvKU55S++F9p9ORf/mXfyl9/Vd+5Vfk2GOPrb3cKps3b5ZXvOIVpa9r7LlR55Of/KTz665aJdQxxxzj3SA+1Je//GXnaYVyPlg3zjrrrNKp6mJO26bF9Ry0f/9++fSnPx091g033CCXXXZZ6euveMUrsiemQvzgBz+Qq6++uvT1N7/5zTIzM5M19tOe9rTSHjzdbjdoEsL1vBNyKjL7sbd27Vo5+eSTkyZhO52Os1pjvxAAAIDhYDIEAACsajEbqe/Zs0fOP//8ga9NTEwkn7alypVXXlnal0Rk6ZQ47XbeWzDf8X7961/PGndYXB/8zc3NyaWXXlr5c/YHjevXr5eTTjpJRMofdPpOgWX4TqUVcsqlq6++2jm2aw+KFK7Nnq+44gqVsau4LmPr1q3yjGc8I2tc1+ROjP/8z/8sfW3r1q1yxhlnZI0rsrSh+BOe8ITS14dxfRc961nPkkMOOaT09ZRTZX384x93PvcM6xRZrttrYmLCuWl9itTHh+t556qrrpLdu3d7f+bAgQOlsZ/4xCfKzMyMPPzhD5fDDz984N/qJkO+9a1vyb333lv6OvuFAAAADAeTIQAAYFV7yUteImvWrBn42uc//3m55557St97/vnnl+qDZzzjGc49LHL5zkX/nOc8J3tse4+MusscNUcddZQ86EEPKn296oPE/fv3lyZ7iqeWcX3QWVVTXH311bJz587S10NWaPv2I9H4cF5E5LGPfWzpaz/+8Y9l+/btKuO7zM7Oyne/+93S108//fTs0/c861nPStpDxXBd36eddppa5eC6vof9WJqcnHROGl122WXy05/+NHgc355Ij3nMY+SXfumXso4xlOv2evSjHy0HH3ywyvipt5frsb2wsFDah6jo8ssvL+3XUxzHHtO3Obrheo7btm2bPPrRj/b+DAAAAPQwGQIAAFa1TZs2lfYzmJ2dlfPOO6/0va5ipKnV0q7TxIiIyodeD3rQg0qn9hFZ2uh3tYjdN+Syyy6Tubm5ga9VfShZN55rouTggw+W4447zvszxre//e3S14444gjZsGFD7c+GuN/97uf8+s9+9jOV8V2++93vlvZAERGVD9A3btwoRx11VNLP7t+/X/7nf/6n9PVjjjkm86iWua7vW265RW38UK7KzTe54XPppZc6J0+GVYWIuB8fo3B7HXnkkfKQhzyk9PXY5wnt553TTjsta7IQAAAA4Zo/aSwAAEDDXvWqV5UmPz72sY/J61//+v5///SnPy2tAN6yZYu84AUvaOSYXKuDH/CAB8jmzZuzx261WnLcccfJ5ZdfPvD122+/PXvsYTn99NPlwx/+8MDXrr32Wtm+fbts27at9P2+TYyNBzzgAfLgBz9YfvKTn1T+TNW/hX4o+eMf/7j0tdnZWeeH2SlcpzgSEefpdbT4JlpCJodCHHfccVGFg3HDDTfI4uJi6esXXnih2oSF6/Zs8rr2+aVf+iV59KMfLddee+3A1z/+8Y/L29/+9qD7puu0WlNTU9mnKgu1d+9e53Pfd77zHbXHh2v8nTt3SqfTqT0F4emnny7/7//9v4GvxTxPbNmyRY4//vj+f/smdc8888zS1+fm5px7uXCKLAAAgOFhMgQAAKx6Z5xxhhx++OFy66239r/2zW9+U37wgx/IIx7xCBFZ+pDQ/pD5pS99afaGvj47duwofU3rNDEi4txfYOfOndLtdlfFKuOnPvWp0mq1Bm6TbrcrF110kXNvAXtFtevUMqeffvrAZMiNN94oN9xwQ+mUXLOzs849BkI3MS7ez4y77roraX+HGE1+QO+6v4r4K5VYqeO4rmuRpf1xmtwjZyUmQ0SWJnZ/53d+Z+BrZkP0Jz3pSZU/69tw/dnPfrba7VjHd3t973vfk+9973uNXW6325WdO3fKli1bKr/v9NNPlw9+8IOlY7vrrrtKz8+7du0qFX6nnnrqwITLEUccIQ972MPk+uuv73/NN7ly5ZVXyr59+5zHBAAAgOHgNFkAAGDVa7fbzk3FzYfTvlPNaK1UdnF9mOo6tVWqTZs2lb62uLhYuRnwKDnkkEPk2GOPLX3d9UHijh075Fvf+tbA11wVR+gpa6644grZv39/6euhK7Rde40Mw65duxob2/c7ad1nU8cZx+u6ystf/nLnHi0hp8r6j//4D+fjf5inyFqp20sk7DZzPW90u13n6asuueSSUpXkeo6xv3bLLbc4ayPXc5GZTAEAAMBwMBkCAADGgmti4xOf+IQsLi7KxRdfXDpFzzHHHCMnnHBCY8ezZ8+e0tfWr1+vNr5vrNUyGSISPnlx8cUXB30o6fqg0zWe62sPeMADnPsJuNgbKg+L7/RZGlz3VxGRdevWqYyfet9fqet6pRx88MHy7Gc/u/T1T33qU84JvCJXmXS/+91Pnvvc56odX52VvL1CHh/3u9/9nPvghD5PhEyGxIzHKbIAAACGi8kQAAAwFh7+8IfLSSedNPC1n//85/KVr3xlqBunGwcddFDpa65TpKTau3dv8OWOKteHiD/+8Y9Le0HUbWJsHHzwwaUPOv/7v/+79CGpa7yYDyUnJiaCv3e18E1WaN1nfffXOuN4XddxPTft2rVLPvOZz3h/5tZbb5WvfvWrpa+/7GUvc5YmTVkNt1fo5IX9PHHYYYfJ0UcfXfq+0047rbRXiT3e3r175aqrrir9LJMhAAAAw8VkCAAAGBuuDxHf+973yr/9278NfG1iYsJ5Wi1NrnPXa556xzVWu91WPRVX057ylKc4Pzy1P9S1P1g88sgj5aEPfahzTPuDzrvuumtgr4Ldu3fLN7/5zdqfq+KaODjhhBOk2+02+n9NntZt8+bNzq9r3WdTx/FN0rz//e9v/PpeKc997nOde3xUnSrrE5/4hHQ6ndLXm7zPuPhurze/+c2N315HHXVU0DG6JiBuuOEGufHGG/v/feedd8p111038D2+54itW7eW9i+66KKLBu5DX/va12R+fr70s+wXAgAAMFxMhgAAgLHx0pe+VNasWTPwtS984QulVelnnHGGHHbYYY0ei+vD5bvuuktt/DvvvNN5math83Rj48aN8rjHPa709eLkx+233y4/+MEPBv696gNE1wedxfEuueQSWVhYCPo5n0MPPbT0tXvuuSf450eRbzLk7rvvVhk/dRzXdS2y+q/vKlNTU/Kyl72s9PWvfOUrcttttzl/xnWKrEc+8pFy/PHHqx9fldVwez35yU+WycnJ0teLk7CuoizmeWf79u1y7bXX9v/bVZ489KEPlSOOOCL0sAEAAKCAyRAAADA2Nm/eLC94wQtqv28Yq6V/4Rd+ofS1m2++WWWlfbfbHagdDN8HkaPM9QFj8fQ0oafIMlwfdBY/iHSNd/TRR0dNjv3iL/5i6WuaE10r4fDDD3d+3V4dn8p1fw3huq5FVv/1Xcf1HLW4uCif+MQnSl//5je/KT/84Q9LXx/mxunGIYcc4txnZpRurw0bNjj3i6p7nqh63qk79VbseAAAAGgGkyEAAGCs1E10bN68WV74whc2fhyu4qHb7Q6sFk7105/+VHbu3Fn6+uMf//jssYfNVWTcdttt/RokdtNh1wedX/va1/o1iMYmxvYpcUREdu7cKT/60Y+ixhklj3rUo5x7S3znO9/JHnv37t0DpyCKccghhzgnFq+88srMoxptxx9/vBx33HGlr7tOleWqQiYmJuTMM89s5NiqtFotedSjHlX6+je+8Y2hH0sV12O+WIPYzxMPe9jDKiuOJz3pSaXHj5kAsSuRqmMAAABAs5gMAQAAY6XuFFgvfelLZWZmpvHjsDdzN77whS9kj/35z38+6jJH2SmnnFI6tZnI8oeR9orqY445prbisFdcm31C7P1DfN9f50lPepLz6xdffHHUOKNkZmbG+eH7hRde6NzrIMYFF1yQtQeH6/q+5pprZM+ePTmHNfJcZcd1110n3/rWt/r/PTc3J+edd17p+57xjGesWCnmur1uv/32kZosdD3mzT4hN910k9xwww2131+0fv360vOv2SfE3j9EZGnS6LTTTks8egAAAKRiMgQAAIyVuhXRwzp1zEknneTcv+Pcc8/N3pzZdaocEZGTTz45a9yVsGbNGnnCE55Q+vqFF15Y2tRYJGziwnfKGteHku12O/pDyac+9aly0EEHlb7+z//8z1HjjBrX7XDPPffIl7/85axxzznnnKyfd536bmFhQT72sY9ljTvqXvGKVzj3tiiWIF/4whdk+/btpe8Z9sbpRb5TFX74wx8e8pH4nXzyybJ27drS1y+88EJnPZbyvLN37175xje+4TxF1qMe9Si53/3uF3HEAAAA0MBkCAAAGDuvfe1r5U1velPp/97+9rcPrZ7YunWrPPOZzyx9/ZZbbnGu5A713//933L11VeXvv7IRz7SeXqa1cB1upiLL77Y+SF8yIeSJ598cmnfAt+HnI9+9KNly5YtEUe7VFG89KUvLX396quvlgsuuCBqrFHyile8wvn1v//7v08e83/+53/ki1/8YvLPiyx9uO7a4P2v/uqvZG5uLmvsUXbooYfKM57xjNLXzz333H6t4zpF1pYtW+T5z39+48fnc/LJJ8vDHvaw0tf/7//9v3L33XevwBGVzczMyCmnnFL6uut5InTC1DcJq3FqPgAAAOhgMgQAAIydBz3oQfI3f/M3pf/7kz/5k6Eexxve8Abn19/85jfL3r17o8dbWFiQ3/7t3466rNXA9SHizp075W//9m8HvtZut+XUU0+tHW96elqe+MQnDnzt61//unzpS18KuuwQv/M7vyPtdvmt9Gte8xq5/fbbk8ZcaSeddJI88pGPLH39q1/9qvfUbHV+7/d+L/s0W+vXr5fXvOY1pa/fcsstq/p+H8JVst11111ywQUXyN133+2caHrJS14ylFMB+rRaLfmd3/md0tf37t0rZ555piwuLg7/oBxcj/1LLrmkNHnx6Ec/WrZu3Vo73oknnijr168f+NonP/lJuf7664MuGwAAAM1jMgQAAKAhz3rWs+TBD35w6es/+9nP5Kyzzor+UPC1r32tfP/73y99ffPmzXLWWWclH+dKe/zjHy8bN24sff3HP/7xwH8/9rGPdRYCLvbK69nZWbn55ptrvy/UscceK7/+679e+vrPfvYzecELXiB33XVX0ri2ubk5+chHPjK0FfWve93rnF9/9atfXdpHoc5f/dVfZVchxlvf+lbZtm1b6esf/vCH5U//9E9VLkNE5Oabbx6p0289//nPd5ZLZ599tpxzzjnOiaaVPEWW8Ru/8Rvy8Ic/vPT1//qv/5LXve51srCwoHI5d999t3zgAx9I+lnXhMTu3bvljjvuqP0+l6mpqdJ+KfZzmIjI5OSkPPnJT444UgAAAGhhMgQAAKAh7XZb3v/+9zv3DvmP//gPOeuss2T37t2148zOzsrrX/96+chHPuL897/7u78rrUheTSYmJoI+HIxZTR3yva4PL2P89V//tRxxxBGlr1911VXymMc8xrlXQKhbbrlF/vIv/1KOOuoo+d//+38PbbPw17zmNc7Trd15553y9Kc/3TkZZ+t2u/L3f//38pa3vEXtuDZv3uz90Psd73iHvPCFLyx9iB2q2+3K5ZdfLmeeeaY8+MEPHqnJEN8p2f7zP//TeX0cffTRcuKJJw7j0CpNTk7KRz/6UZmYmCj92z/90z/JqaeeGj25VnTttdfKG97wBnnAAx4g73nPe5LGOP7442XTpk2136f9vHPCCSc49xwCAABA85gMAQAAaNDTn/5072r7c889V4477jg5++yznZMiBw4ckPPPP1+OP/547wfBL3zhC0diJXiu1I3RfY4//vjavUBcp7WJsWXLFvn0pz/t3Ij51ltvldNPP12e+MQnynnnnSd33nln5Vi7d++WSy+9VN7znvfIiSeeKA984APlbW97m9x2223Jx5dicnJSPvShDzlPAfaTn/xEHvvYx8o73vEOueWWW0r/3ul05KKLLpIzzjhDfvd3f7e/WX2r1VLZI+FXf/VXnadfEhH57Gc/K0cddZT85m/+plx22WW1e4ncfPPN8tnPflbe8IY3yOGHHy5PfOIT5ZOf/KRasaDJ9fiem5uTH/3oR6Wvu06rtVJOPvlk+T//5/84/+3yyy+Xhz3sYfKyl71MvvKVr9SeNvD222+XCy64QN785jfLgx/8YHnMYx4j73//+2X//v3JxzcxMVF72r3p6emoCdOQ5yj2CwEAAFg5kyt9AAAAAOPur//6r+Wqq65ybnx+0003yate9Sp53eteJ8cdd5wcdthhMjk5KT//+c/luuuuk127dnnHfchDHiIf+tCHmjz0oan7ENG34bGP2V/kP/7jP5IvM8RJJ50k559/vrzoRS9yfjB7+eWXy+WXXy4iIg996EPliCOOkK1bt8rMzIzs3LlTduzYIbfffrvccMMN/cmDlXbCCSfIO97xDnnHO95R+rfZ2Vn50z/9U/mzP/szOe644+TII4+UDRs2yO233y4/+tGPnPul/PZv/7Zs3rw5q5Qx/vZv/1Z27NjhrDcOHDggH/zgB+WDH/ygrFmzRh75yEfKtm3bZOvWrbKwsCA7duyQHTt2yA033CDbt2/PPpZhOeGEE+SYY46RH/7wh5Xf12635cwzzxzSUYV54xvfKPfcc4/zVGaLi4ty3nnnyXnnnSeTk5PyyEc+Ug4++OD+/hzm9rrpppsa24fn9NNPl89+9rPefz/ppJNk3bp1weM9+tGPlm3btlXev9gvBAAAYOUwGQIAANCwdevWyX/913/Js5/9bPnGN77h/J79+/fLVVddFTzmMcccI1/60pfk4IMP1jrMFfXIRz5SDjnkEG9B8YQnPMFZYFQ5/fTTKydDtFZoP/vZz5avfOUr8qu/+quVJcePf/xj5x4Co+jtb3+73H777d4iqdvtyne/+1357ne/WznOM5/5TPmbv/kb+fM//3OV42q1WvKRj3xEjjjiCHnXu94lnU7H+X0HDhxwTj6uVq985StrTzt2+umnO0/bttL+5E/+RA499FD53d/9XZmdnXV+z8LCglx77bXDPTCpfw6InbhotVpy2mmnyfnnn+/897Vr18rJJ58cNSYAAAD0cJosAACAIdi6datccskl8oY3vMG5h0iMl7/85XLllVfKAx7wAKWjW3nmQ0SflNXUVT+zbt06Oemkk6LH9DnllFPku9/9rpx55pnZt2/R1NSUdxPtpr3//e+Xv/iLv3Du+xDiFa94hXz2s5+VyUnd9VetVkv+7M/+TC688EJ5xCMeoTr2/e9/f3n+85+vOqaGM88803nqsqJRPl3e6173OvnGN76h+pgTWdpL5sUvfnHyzx977LFy6KGHev9d+3nnlFNOkZmZmegxAQAAoIPJEAAAgCGZmZmR9773vXLllVfKc57znNoPN22nnnqqXHjhhfLJT35SNm7c2NBRrpyqDxFTKo6jjz5aDjvsMOe/PfGJT5Tp6enoMavc7373k3/5l3+Ra665Rs4880xZs2ZN0jgzMzNy2mmnyd/93d/JrbfeKp/97GeDNnpuwtve9jb5+te/HrVvwkMe8hD513/9V/nEJz6hfh0XnXrqqfKd73xHzj77bHn84x+fPM6hhx4qZ555pnzuc5+Tn/3sZ/J7v/d7ikep4/DDD5czzjjD++8bN26UX/7lXx7iEcV71KMeJVdccYV85jOfkac+9anRz3/Gli1b5Fd+5VfknHPOkdtuu03+6q/+Kuu4fM8tBx10kJxwwgnR42k/jwEAAEBPqzsqJycGAAC4j7n11lvlM5/5jFx22WXygx/8QG655RbZs2ePdLtdWb9+vRx++OFy9NFHyymnnCIveMEL5MEPfvBKHzIi7N27V7785S/L5ZdfLtdee63ceOONcuedd8r+/ful3W7Lhg0bZMOGDXLooYfKwx/+cDn66KPl+OOPlyc96UnRpwQbhmuuuUbOP/98ueyyy+T666+Xe++9V1qtlmzatEke/OAHy2Mf+1h53vOeJ2eccUbyB905fvrTn8oFF1wgV111lfzoRz+Sm2++WXbs2CGzs7OyZs0a2bhxo2zcuFGOOuooOfroo+WYY46RU045RY477rihHyuWNkX/4he/KFdeeaX84Ac/kJtuuknuvfde2b9/v8zMzMiGDRtk48aNcuSRR/ZvrxNPPFEe97jHrcj9CwAAAKsfkyEAAAAAAAAAAGCssaQGAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFhjMgQAAAAAAAAAAIw1JkMAAAAAAAAAAMBYYzIEAAAAAAAAAACMNSZDAAAAAAAAAADAWGMyBAAAAAAAAAAAjDUmQwAAAAAAAAAAwFibXOkDAAAAAJr0jMe8faUPoaTbHr01Se0Dcyt9CE7dmamVPoSS//rWn6z0IQAAAACINHp/hQEAAAAAAAAAAChqdbvd7kofBAAAAO4bRrHSyDGKhUeqUS1DUo1iUZKDGgUAAADIMz5/vQEAAAAAAAAAADhQhgAAAKDvmY/8w+Sf7U5NKB5Jmta+2fSf3bMv67IXD92W9fNaJnbsSfq57lTGdoITI7LG6s7tWT/eWrcu+Wc72zZmXbaG1v70uudLP/xLxSMBAAAARg+TIQAAAKtUzsRFDo1Jj5xJi+jLypzkiKU5KZI6sZEiazIkheYESuYkSKycSZNYGpMsOZMkOZhgAQAAwCgZkSVcAAAAAAAAAAAAzaAMAQAAWCErVXaEKNYfw6w4Ug27/ohhlyLDrD1iDL0MiWFXJEMuQWIMsxpJVaxNVqoaCUFZAgAAAE2UIQAAAAAAAAAAYKxRhgAAAGR4+mPf6f239uz88A6kSqvl/7e5lT/G7rqZ6n8P2KNk4ta7tQ4nWWfP3sp/b99v65COJE13eqrmG0bgz4a6Y7hnx1AOo0p3b32l1HrwA6v/fVf1fWkoJv2Pu9r7ypAsbF3v/bevXv5HQzwSAAAArAaUIQAAAAAAAAAAYKxRhgAAgPu8qrojlnoNUlV1xGqoAqkrO4LHCShA6jRViNRVHzFGtRBRXe2v/SeG5ngN1SMhRUidumIkeJymypKKWiSWdl1SVYnEoioBAAAYT5QhAAAAAAAAAABgrFGGAACAsaJZeYSIKkE0K48qEQWIVtURfHkK9UeMmFJEs/6ocp8oQ4IuMOLPkGH9yRJRjWiUIDG0qpHgy4upSxSLkSox91HNUiQENQkAAMDoowwBAAAAAAAAAABjjTIEAACMrGFXHiHacwsrfQgl3cnRW98y7AKkiqlDhlV+hBjFOmToZUgd82fKKP250itHhl2FVBl2MRKite/ASh9Cyfyhm1f6EEqoSQAAAIZr9P5yBgAAAAAAAAAAUEQZAgAAhuqZx/lXwnamJ4d4JMsm7ry38t+7mzcM6UhEZu9/UOW/T28f/or02spjseLt5MSQ9knpad94m/ffurNzQzySZa0jDvX/24HhHlPn7nu8/9betqXyZ7sz09qHU63qz5QV+hOmVbEfT+eOu4Z4JCKtTRv9/7i54t9EhrbHx4CFxcp/rrputS1uq35O76xQ2dZa7Hj/7StXvn2IRwIAADCemAwBAADZqiY4QmlNhNRNbITQmvyom9gIoTn5kX3qqqpJjzrKkyJVkx51mpgUqZrwqPy5BiZDqiY8qtRNhlRpZKIk9c+UBv68yfmgXnuSpHISpE7dJEkdzUmUmsmREFoTKHWTIyG0JlCqJkRCMXECAADgxmmyAAAAAAAAAADAWKMMAQAAlTSqD5eYEkSj9qgSU4Jo1B4usQVI4xuU51QgVSIKkZz6I0RMIZJaftSOm1CGpJYfdXLKkDpJ5UhTf6ZEjNv0qZtiqpGsIqRKbi1SJ7YmUShGXGJuS41SpEpMRaJRirhQjwAAgPsiyhAAAAAAAAAAADDWKEMAALgPaqr2qGKXIE3XHlXsEqSp2qNOsQZpvPTwaaoAqVMoRJouQOqYQqSp+iOEXYg0VX9UabIMqVKqRlbyz5PeZQ9zM2+XYjHSWBFSp+lixKdYkjRUidSxb/+mS5EqdkXSVClShYoEAACMC8oQAAAAAAAAAAAw1ihDAAAYI09//DsH/rt9YGFFjqO1f3b5PyL2ZdC0cOT9Bv973dTQj6FtreCd2Dvc1eYLGwZX3LcWym/7JvaszO1jtG+5ffgXev/B+4Z0hr/SeuAxIiKd7StTSrUKVUZrg1VIrdCfCV17j4n28NdvtfbuH/xC7L4XCrpT1r5Ku/cO9fJbU+XnzI5V1bXmh/waY98nW+F7EGnprJsZ/ELEPkia2vuXX08W1yfsyaPArlS+/M13rshxAAAAhKIMAQAAAAAAAAAAY40yBACAVcKuPqo0VYTYq9m9GqpB7Nqj8nsbKkHs2sOlyQLErj2quEoQn5UsRBqtQ+wKpEpDhUjI46apMqRl78dR9b12GVKnoT8jSmWIS0O1SKkIqdJgLVKqQlwaKkVcRYiPXYpUjttkRRJyX2yoIimVIlUaqkiKlUiVpgqSmH1MqEcAAMBKogwBAAAAAAAAAABjjTIEAIAREFN9VEkpQoJrjxAZRUhM9eH8+YwSJKT2qJNTg8TUHlViShCfVVuIxBQgdRIKEa3HUU4hElOBOH8+tgxxyfjTIqgICZFQjUQVIXUyfo+gIqRKRi0SU4T4xJQiVbIqEo0/bzMqkqhSxCWjHgktREKkVCQxhUgV6hEAANAUJkMAABgCrckOl5AJENUJj6KAyY/cSY7KsQMmQDQmOlyqJj+0JjeqaEx8VBnZSRHNSQ+fismQxh5L5qIrJkNyJzvqqEyG1Kn400NtMsSnYpJEdTLEp+L3y54EqVMxSaIxCVJFa4KkSuXkSVN/7gZMmGRPjFQJmDTRnBwpCpko0ZoYcWGyBAAApOI0WQAAAAAAAAAAYKxRhgAAkKnJ6qOKKUKaXqnu1CtCmqw+qnRmGl5B7mBKkGFUHy5NlyAuK1mHiIi05xrccLnGUEoBB1OGNF2BuAylDHHp/TnSeBnisSLPoT3dtQ2WA1V6pUjTVYjLMEoRl349sgJ//nbWrxn6ZYpIvx5pqhCpYuqRJguRKtQjAADAhTIEAAAAAAAAAACMNcoQAAACPP2EPyl/seGX0Nb8ovPr7T0HGr1cY/4XNpe+1vQKz27bfQ707tRw1m/Mrx88b//kfvdtoK3j+P2m73KXCYsHNVwMOO7XOZvDx1hc716lPnVvs5VGZ7q8X8PEvbsbvcw+z/NId+++Zi93y6bSl1pznts5YUNyDd2JIV2uY7+O1q70jciDeMof33OgNmf5NNFsmeOtYBx7b3Snh1OstPcMPs6GdbndNe7L6TZ8G7Qc+yG1FoZTbnQ9e6x0Gy49W4vl59j/+pbjPR0AALhPoAwBAAAAAAAAAABjjTIEAADxlB8+ii+dvvrDRbMIcVUfPlo1SMyK5yZKELv6qKJVhLiKDx9fCeKjVohE3J81CxFfBeKiXYa4ShAf1UIk4rpWK0McBYiPtwzxWYFiRLUWcRQhPuqlSMSeMJq1SNReOEqVQvS+KJ6CwDm2UslhFyLDuMyBMT2liPN7lW4XVyXi/V7FesRXiDi/V7EacRUiPpQjAACML8oQAAAAAAAAAAAw1ihDAAD3GVH1h0/Cy2ZM/eGSUoTElB8+KUVI7grmlCIkpvjwSSlBYqoPn9gaxJZUhyi89UspRGJKEJ+UQiSmAnFJKkMUruOkMiSiAnGJLkNcVtP+IhFliEtSLRJRhPikPM9GFSE+CUVCdBVii6gIvMeQUHLElCKalxtTiDh/PuE2iilEvGMklCMxhYjz5xOqkZg6xIdqBACA1Y0yBAAAAAAAAAAAjDXKEADAWFGpP1wcL5e5xUcdXxGiUX241JUgmuetHxi3orDQqD5c6koQjerDJbcE8aktRBp6u+cqRDQKkCq+OiS3APGpLUMaum4ry5DMAsRHpQzxGcX9RTLLEB9vMaJQhVRxPUerFCEuNQVCdhHio1CKuNRVHBqlSOzl5lYi3nFrbjuNUsQ5rqceyS1E6rgKEo1CxIVqBACA0UcZAgAAAAAAAAAAxhplCABgVWms/PBozS0M9fJMDdJU/eFiipCmyg+fuc3NrpK2mRqkqerDpakSxKdfiAzp7Z0pQ5quQYpMGdJUCeIzcc+uoV5evwxpqAJxabQMcVmp/UXWDPe5p1+KNFyGFJnn88bKEFuvNmisCPFpuCooMhVHU5WIT2fjuqFenilHmipEXEw10nQlUjI53OcgyhEAAFYekyEAgJEz7AmP9v7yB4DdiYb/ILf+4F88qNkPkLqTjtOnzDf/QcfcpsKHfw1fpVO73RNXi2vjN1mNMbt58EP5Vmf5rdVBP9nT6GXve8B659dnts81ermL6wZ/54l9zU4ath2nV2nNNnuaOvtDsok7dzR7eZ5T1yRtDB6htX92+bL2DN5fW5s2NnrZKzUZYmt6cqS1z3HKw4SNrmPYp1lrNX1de073lLKJeJTCn7LdNYOvo41P7nkem8XHVNOGPVHS1/SkhT1+wgbt2YYwUdLetfw4veD//XXjlwcAADhNFgAAAAAAAAAAGHOUIQCAoRt2+WG4ChCbahESsHJSswhx1R827RpkoPzwXqje5fnqjyLNEsSuPlyKJYiPZiHiq0FctAoRuwTx0SpEXCWITbUMCVgBrF6GBJYBWmVIyGp1uwzxjqVVjIxIGeKiWYs4yxCbUiliFyE+aqVIRPmhWokE/AlrlyIuqvVIwGN1mNWIyAqVI5rVSMhYw65GlIuRYh1ShXIEAAAdo/sXCAAAAAAAAAAAgALKEABAo0Zh/48QSUVIxurHlCIkpPzwSSlCgqoP7wXG/0hI9eGSU4KElB+2kBLEJ6cQiSlCjJwyJLQGsaXUISEliE9SIZKxsjepEMlY9Z9ShqSuPg8tQ5yXmVKLjHAZYkspRYKKEJ+E+0xoFWLLqkQSao+sQiTjT9eQUsSWVY4kVl1jX4+kvHfKqU2GWY4kvLaEliEu1CIAAMRbPX+BAAAAAAAAAAAAJKAMAQBkWS3lR5XKKkTz3NdSX4Tk1B8uVUVIVvnhvUD/P6WWH1WqqpCU6qNKThFiCylEUkoQn5BCJLUEsYWWITk1SFFQGaJ4jvfKMkRp34eiqjJEewV5ThniU1mMrKIyxBZSimSVIUWh+8skliG2oFJEcf+PoFJE8U/WlEKkSmU9orTnz8DljXM5UveeS/k92SjtN5JTiPhQjgAAULZ6/wIBAAAAAAAAAAAIQBkCAAg2DhVI0UARor3a0GKKEO3yw8cUIY3UHwMXNPifTdQfRXYJol1/2DRrEJdiIaJZgvgUCxGtEsTHFCJaBUidfiGiWIG4lMqQBmqQomIZ0vSK8CbKENtAKbKKyxAXU4uoFSF1evc9rSLEZ6AUUSxCfAZKkYb/VNWuRGylaqSBUmTg8sa5GhFZfq/W8Hu2ldxnpIlCpIhaBABwXzdef4EAAAAAAAAAAABYKEMAACVPe+Kfi4hIey7gXPwZOjNLK9Mnd+xv9HL6l7dm6fJaQ1rxt7Cht+K0ak8SBa25XgWyueEKREQ600u/y8w9zVY7xs4HrRERkan9zb5dWZhZ+r0mDyxdl60hvTtqL/QuaEiXN3Gg0/jvtjiztNZmzV3DWR2/uLb3PLJnOPfJidvvXfofU82WNd320n2ydaB+vxedC+z2V/13790xlItsbd7U+x9Nr/I21VCzFU+f+fNqWH9m9X6/7kKzZV6r1RKZaf51RkREFpeei0P2ZlFhPZ67DRdfrU7vfciw7iO9uqe1t/n3W921vRJ2quHH27DLMnNbLQ7nNmstLj2uW7MNv7b17osX3PB/mr0cAABGBGUIAAAAAAAAAAAYa5QhAHAfZeoPlyaKEFOBFDVRhJj6w0W7COmXHz5KRYgpP3y0ixBTf7g0UYSY+qOoiRLE1B8upgixaVcU/RLEpYF3ZBOO36uJMsTUIC7ahYgpQWzaZUi/APFRLkNMCWJTL0Oq3vrX7AehXYz0y5DSPyiXIgs1r2naxYjvOtb+s6vi92qiEmm5bpcmSpFF/2ueeimS8DhuohrplyIDF9TAk3VFTaFdjZhCxPvvWuXIShUiLg1UI6YQGfhaE7WI6z7YQzUCABgnTIYAwJirmvSwaUyCuCY9fHImQ6omPWw5kyC1Ex5FCpMfdRMfRTmTIFUTHrbcCRDXZIdPziRI1WSHzTf54ZM6gVA5+eGT8c7MNfnhkzMpUjX5YdOYDPFNgLjkTIrUToAUZUyG+CY+qiRPisS81Y/cHDt1csQ7CVL5QxnPr3WTIUU5EyMx17XGn2ARv1fO5IhzEsQnZ3KkYhLEJ3lypMHT3OVMljgnRbwXlHkfiphEyJkoqZsUGfhejQmSYU2OxFz/GZMkrskQ7/dqTJJE3AeZJAEArEacJgsAAAAAAAAAAIw1yhAAGCMxFYhLaBkSU3+4xBQhMQWILaYIiSpAbBFFSEz54RNShMSUHz4xRUhM/WGLqUFi6g9bbA1iiykpkooQI+JHY0oQn5DfK6YE8YkpRGJKEFtMGRJVgtgiVpanlCC2oDIk9219ZBniPISAWiSpDCkNEnGdxpQhtphSJOf6j/nZnN/HXFxAKRJVhPjElCIJZYgRVYg0WIXUialGoiqR0gXFvGDlP7+HlCMxhYh3jJhyZBQLEVtEMRJTiDh/PrQaybnfCbUIAGD0UYYAAAAAAAAAAICxRhkCAKtQbgHi4qpCcgsQF1cVklN/uPiKkKz6w6WmCNGoQIp8RYhGBVLkK0Jy6g8XVxGSU3745BYhNl9JkVWDuHiG06hBiny/j0YNUlRVhuSUID6uQiSrBPFxrDLXKEFszjJE+228Qhlic5UiKmVIaVDHda5QUJS4SpEm/pyqGlP59/JVIiplSJGvEskoQly8lcgKFiGhXOVIViHivBDfi5juc76vFtEoRAbGq6tFVkMh4uKoRnLrEBdnMaJ9nxOKEQDA6KAMAQAAAAAAAAAAY40yBABGXBMVSJEpQpqoQIpMEaJdgdhaCx39AsTWK0K0yw+bKUG0yw+bKUG0yw+bKUGaqD+KtEsQn4n5Ib2F6l2MdhFiM4WIdhFiM4VIEzVIkSlDGqlBinqrzZuoQYpaB+aaKRCKGihDbN17dzRThhSZoqGJMqTIVCJN3y5m/IZ/H1OIqBchNlOIKBchPt0N64ZyOU0z1Yh6KVK6oN79reGiwpQj2qWIrV+ODKMQafq5oFeLNFGIFPVrkYbva9QiAICVQBkCAAAAAAAAAADGGmUIAIyIM57wZwP/3dQq4+7U4Dx4S3ufg56JvUvnt+/W7KuRa27b2qXL2+c+57mWhfVLq7+ndrn309Aye7+lFZLdhpYrdKaWb4+59Q2uiSjc7K0GFzAuFhaUtq2bZmpfMysa7cfm5Gwzl2Out3bDBdLimqX7QavhxcYz22dFRKQzU3N+90yL00u/z7of3N7M+PffPPDf7R17G7kcexWz7/z7uYqrsltDWqkv+639Y9Y0tDLcLhyaKivMXhQNr6Lu9q631mTDe180vOq8z9w+jn0yVFh7oXS3bGzocqzrq3i/m2judba4v0ijtchc4cXVt+9Lpu5k73Vortn3csOqRFr7ll7vumubub76Gi5F7P1Y2rv2NXI5i9s2DPz3l7/5zkYuBwAAEcoQAAAAAAAAAAAw5ihDAGAF2BVIkVYRYhcgNq0ixBQg3uNQKkNMAeI9jswyxJQfPlpFiCk/fLSKkGIB4qJWhdTcvFpVyGLF1WYXITaNQqTqcalVhtRdV1qFiClBvMehtMDYlCA+WoWIKUF8cgsRuwSxqZUhNSuVtcqQqvPzr1gZYtMqRer2vsgtRaZqCg2l1frdmutLrRQZdhHio1WKLPjfF6hUInX3n6rfU6kY6dZcV2rFyFzNC61SMWIKER+tcsQuHkoyyxFThngvX6sYWax+L69VjNRdX1rFiF2IFFGLAAC0UIYAAAAAAAAAAICxRhkCAA2qKkB8UsqQugqkKKcIqatAilKKkLr6wyWlCKmrQIpyipC6CqQopQipqz9ckoqQiIvJKUGq6g9bXQ1SlFOGxDwecwqRmOstpRCpq0FcUgqRuhqkKLUMqStBbCllSF0N4hJdiESuPE4tQ6pKkNJljEoZYostRerKA5eUSqSuDLElrtKvK0OKkiqRUSlCinLqkIoixJZViMTcZ6J+9/T1inWlSFFSNVJXiLgkVCN1hUhRTi1SW4gUJdQidYWIS1I1UlOIFOXUIjHXV0otUlWG+FCMAABiMRkCAApSJj1sIR+6xkx6+IRMhsRMethCJkFSJj1sIZMgMZMetpBJkJjJDp+QSZCUSQ9b0CRIxsWEfJgfM9nhEzMJYguZFNE4TV3IpEjOpFHMZEjKJIgRMhkSM/nhEzIpEjsBUhQyGZIy+WELmgzJOPVKyGRIzMSH8zJGdTKkKGRiJGUyxBbyQXfsZEhRwAfRMZMgPkGTI6M4GWIL+ZA/YhLEJ2hyJOf0ahr3zYDJkphJEVvQJEnKpIgtYJIkZlLEJ2SyJGpSxBbwvJ4yKWILmiSJmBSxhUySZF1PPSGTJCmTIjYmSQAAPpwmCwAAAAAAAAAAjDXKEABIpFGDiPhXomtUIEW+IiSnAinyFSEaFUiRrwjJqUCKfEWIRgVS5CtCNCoQkYoSRGf45eE8Cwk1KhCRvBLEx1WIaBQhRXYdorWRfJGrEMkpQVzsOkSjBLG5ypCcEsTFrkM0ShCbswzJ3ITXZtchuSVIafxhlCEKtcMAVymisfreZtcAOVWIi2M1vkYZYiuVIsOoQpq4PezyQaEKKXIWIjlFiI/WdeOpRXIKERdvNaJRioh4axGNQqTIV4tolA8i4n3u1yhEiry1SEYhUuSrRdSupx5fLaJRiIhQiQAABlGGAAAAAAAAAACAsUYZAgA1tAoQn9RNhEOZIkSrAPGZPWRdo+ObIkSrALGZIkS7ALEtzjSwQragX4Q0ezHSaeZm6GuiCCmaPNDs2x9ThjRRhBSF7DmTw5QhTRQhRmdmQr0Esc1s119hb2vv2KtegpQkbsAdalWWIbY1M82UCLamL6PTaaQMMfqFSNNlSNPXkykflMsQW3fD+kbHb/p66k5PNTp+vxjRKkQ8uuvXNDq+KUa0y4e+3muEdiFia/z27j1vNHY99TQ9PsUIANw3UYYAAAAAAAAAAICxRhkCAAVPf/w7+/+7ydVIC+unpL3Q3Arcib3LK/NaDVzOgUOXV0i2Os29jHSmWt69TjR0J5dWYmrvF2F0JpfH7TZwd1pYM3jcxctrQlM1yPSe5dt4Ym7pf89uaG69xub/t7zvwp4j9FeZzuxYXqHcabB4mL53Tma3ec4XrqC4X0gTZcj++y9f95P79FenFx/Xa+7aX/GdeRbXLq3AnbpjVzMXcG9h3E0H6Y9fWEFs70nSeOnSVPkw1fudJhtcVVxcAe/Z5yBLodjoHtB//LWGUc+ISGfHTmlv2dzcBTT9p2xhT5qu9j4xBa3efiTd4t4fTT3+ehVH17XfjoLWvFXpNFEfFZ63mnq/3jUVR5P1VKslrf0NltuFx3mT918RaXSZbWuhI521zdUuxcfdV658e2OXAwAYDZQhAAAAAAAAAABgrFGGALhPK5YgNo2VZgvr/auYNMqQYgFi0yhCigWI8zKUqpDOlHuFqlYV0q0pJnLLkLoiI7cKsQuQ2MvPpVWEFAuQIlODuGgWIsUixNAsQ4pFiE2jEJm+1796VKMQaVU8ZWiUIcUSxKZZhrgez5plyGLF6lSVOuTeijE0ypCKc8mXyhDbaihFpipWD2uWIq69ETQLkYrV6BqlSNNlSGfHTu+/qZQiw/oT1lFPaK6wN0WIy0AlUqT1OKzZgyi3HCkVIrbc4qJmX4zc9/HdmutZrRjxPBbVipGax/pqKEaq/qbRKEa8jzWhFAGAcUQZAgAAAAAAAAAAxhplCID7hKoCxJaykqyqAHFJqUKqKhBbahVSV4L0x88oQnwViPNyEsqQugpk4HsTipCYCiOlCKmrQFKPJUVKEeKrP1yqihBbSiHiKkF8UgqRqhLEllKGVJUgtpwypKoIMXLKkKoixJZSiMQ8jlMKkaoSxJZUhlSVILaUMqRm9XRRbRliG8VSpKoMsaWUIq4ixCelFIlYbZ5TiKxkGWJLKkWGuFdInZSV9VVFSGn8ilXrJSmPyZpCZOBYEmqR2kKkKKW2iHiOS3mPX1eIFCXVIhGPxaxaJPByGi9FRJKW5Mb+bZNSjMQ81ihGAGD1ogwBAAAAAAAAAABjjTIEwNiKqUGKQleNxdYgRSFlSEwJYgtZPRVagTjHDyhDYgqQ0vgBRUhMAVL62YCV5DnVRUgRElOA2EahCIkpQGwxRYgtpBCJKUJsIYVITBFiCylEYooQW0ghElKC+IQUIjEliC2kDMnZ4ye0DImpQYqCy5CYGqQotAyJWCldFF2GFI1KJRJThhSFViIxZYgtpBTJ2IcgpBQZpSLEFlSIjFARYgtZUR9ThJTGjylEbCGPz4hCxBZSjEQVIraQx0Xi855I2Hv/mELEFlSMZDw2g4qRjPFHYV+RnL0QQyuR1McYlQgArC5MhgBY9VInPVxcfwzlTHrYXJMgOZMeNtcfCjmTHqXxHZMgOZMepfEdkyA5kx6lsTwfompNLvgmQXImPopWahIkZ+KjKGcSxOaaFMmZBDGqJkNyJkEM32RIzgRIkW8yJGcCpMg3GZIzAVLkmwzJmQAp8k2GpE5+2LyTIamTHzbfZEjGh4BFWZMhtpWaHEmdDLH5JkdyJkOKfBMjSpsy+yZGRnkypMg7MTLCkyGG64PjnEmQ0vg5kyJFvsdoxqRIkW+CJGtSpMj3WFF6PvRNkORMitickySKj1HnJIni+CsxSZIzKWJzTZKoPb6ESRIAGFWcJgsAAAAAAAAAAIw1yhAAq45mCWLrTk2oliA2U4Zo1iAiy6ukNCuQgfF7RYhmBTIwfq8I0axAisyq8qbKClOEaBUgtmEVIVoFSJFmDVJkyhCNGsTFFCIaNYiLKUS0ihCbKUS0ihCbKUS0ihCbKUS0ihDDlCFaJYitX4ZolSA2U4YorXy2qZYhtmGVIlpliM2UIlpliGEKEaUixGYKkdVShNj6hcgqKEJczMp5zTJkYHzFVex95rGqVIjYTDGiVojYzGOpoedJU4xoFiJF/VqkocdsvxZpaPzGapHe1a1Zhtg6a6eaeUz1UIoAwGigDAEAAAAAAAAAAGONMgTASHvqU/9SREQmd9dvCppibsvSquZWQ8+EZkX/zPbAjV8jHTh4rYg0d/wLa5fmzCfmmluF1YSmS5B2r2SZ3dTcmoLpPR05sDlwQ98IkweG87LfVBHS1xt+7Z0NPTdsXlpR6trHRsPimqX7zsx23TJkbnNvlXlDi8An9i+tWJ3f0MzKz6aKEKO9uHR7mt9DU3eiJdPfv0V93P74hx8srbmGVlKby5heul3b9+5u7jLWr5XW/mYetyIi3ckJaR3QL666M73nhKaOPXQD90TdfUvvQ1oNrXruzi5d5939unVRy1QEa5qp0LrzS6VPa4NnP55cveulqfKkX2+Y6/+gdc1cToNa+2eHc9xN3fcnl8btTjT7GG41VOq0DijXbj3dmd77hIb+hOisW3pOntjTzHNyZ/3SY7bb0PspU6B89fI/auYCAABelCEAAAAAAAAAAGCsUYYAGCmmBLFplSGmBLHllhW+AkGzCDEVSJFmEWIqkKLVUIS4VpBrFiFtRxmgWYRM73Ffx7lVyLAKENuwipAijTrElCA2rTLElCA2rTKkX4TYlB4KvpJCoxAxNUiRZhliapAizTKkO1E+Vo1CpHv4waWvDasMsWmWIt31jtcyhdqi6ygrNAsRU4YMjK9ZiTRUhpgixKZViJgipPR1pUKk5SkqtEoRU4aUxtcoRVzXjWYh4ioFfLfHiBcjvsdS48etWIuYQmTgaw3VIk1VIv3xFWuRfiFSpHj4phCx5RYjpgyxaZUivr1JKEUAoHmUIQAAAAAAAAAAYKxRhgBYUb4SxJZShvgqkKKcsiKkPsgpQ1wliC3l+F0FiG0Ui5DQleKpVYirAHFJrUJ8BYgtpQhZqQqkqLEiJGDYnDLEV4TYUgsRXxFiSylEvDVIUcYKxpB6IqcMcRUhtpRCxFWC2HLKEFcJYkspQ1wliG2lyhBbTiniKkNsKcWFqwwpjZtRirjKkNL4KaXIkPYKqZJTifjKkIHvSahEfEVI+fvSChFfEVIaP6cQCbhukkqRkCog5HYZwVok9DE0qsWIqw5xft99qBhxliG2jMP2lSFFOZWIrxApSqlFfGWIjVIEAPRRhgAAAAAAAAAAgLFGGQJgaEIrkKKYIiSkBLHFlBUxxUFMERJSgNhijjukBDFGrQhJWRUecjuFViBFMUVIaAVSFFKEjEIBYlvJIsQWU4iEFiFFoXVIaA1SFFOGBBUhtoCHUkotEVOGhJQgtpjngJAixIj5XUNKEFtMGRJShBijUoYUxVYiIWWIEVNahJQhpfEjSpGQMqQ/bkwhMgJliC2kFAkpQko/E1GIhJYhgz8T9j4wtAoZGDumEEm4boIKkZRV/ym30wgUI0l12AjUIqFlyMDPNFSJGE3WIjGlSFAhYos49JBCxIgpRULKEFtMKRJaiBRRiwBAHiZDADQmZfLDVjUZkjL5YVRNJmhsvl03GZIyASJSPwkSM/HhslKTIRqbJbtut5RJD1vVJEjKpIfNNwkyihMfRaM0CWKrmxRJmQgRqZ8MSZkEKfJNiCRNftgqHmIam4m7JkVSJj9sVc8NMZMfPr7fPWUCpKhuMiRmAsSlqUmRlMkQm29yJGYSxKXuw9GUyZCB8T0TIzGTIN6xq459yBunx6iaFEmZDCmN4ZkcSZkIGfz56veHKZMhIgETIgrXSeWkSM6H2pnHtlITJEmnnrOsxCRJyqRIaYwxPZVW0qSISO3ESMxkiE/VJEnKpIhRNTmSMhliY3IEAOJwmiwAAAAAAAAAADDWKEMAqNKoQYpMGZJTgbjYhYVGDSJSLkJSCxAf+7hzS5CiYVUhGhVIkX3badQgIuUiRKMCKbKLkFEvQYzGihARlSpEpFyGpJYgPnYhkluEGHYZolKE2Fo6JYitWIZoFCGG/XyhUYMU2ddFbhFi2GVIbgliG+UyxGZKkdwyxGavGM8tQ/rjWoWIRhkyML690n2EyxBba6KtUoTY7EIktwxZHmfwvWNqEeId3y5FtK4b+/fXXMmvfPsNqxjRKESKGjtua5W/RiEyMF6Dp9RqqhixS5HkMsTHOmyNQkSkXInklCEuphbRKEOKqEQAoB5lCAAAAAAAAAAAGGuUIQCyaJcghlapYeuv0GroqU+7eijSWn1ua7oIafI6aUK32X0sZaGh27FJjdYgImpFiK2p+3ZTz09GSz/c6Js40MzgWkWFT91+SanaDd1Hpnbor8ovWk1liNH05u8y39D4Db1faDV1vD1NlCEiIrLQ4HF3Gy5Um9qDYbqBik9EZFq3SippoPIRabYW0S5EbE0du3oNYcZdrZuvN/gRVGdNM4+bxV5xMrlXtzAzOsoVkUEpAgBlq+8TGQAAAAAAAAAAgAiUIQCiNFWCTBwYXGk4f5Deqp6B8/UqPuUVV50vrNFfmWWvtO5M6ay8bs8PXgctpetkfr21B8Z+ndVkXWvavtXAIrWBy2hogbtmETKzY3B1/+xmnfvf9G6rGrCu60XFPWpElq937RKiqft400WI0UgZ0jt07f1C5jcOrnad3KszflMlSNe6CSdmdZ9QzH1tcmcDq5cL9+PWvN7t2CnsiVFaBdzSu8+39hT2hWhgxbt5rW/t113t3tq9d/BytFaOW9dta05ptfHi4G2ovcdH98BScdKabK4iWrogvcdm17pOWkr3v+7efQP/3d6yWWXcEu3Hi/24XrCeT5Tqn9W4n0h34/rl/+g08EJk1dLdKaW9jqz9tDpalZ9VK2gVfnaF2JptoLYo3M87imXOYmFPEs1KZGH94OO8PavzOj95166B//7S9X+lMi4ArGaUIQAAAAAAAAAAYKxRhgCo1FQJIlKuQUR0ipBu1TlXM57yqvYfyClD6s61n1qE2KvjbRqr5e0aRESnCLFrkKKcMqRq3KaKEJH0KsQuQGy5RUipBDEqruOcOqTy+pf8IsJ3n9e4rw+rCinKuj4qDjenDrFLEFtuGTKsIsTQKEOq7l9ZhUjFuDllSLEEKY1bd374jFJkoAyxZax8r3rN16hE7DKkf7m5q94912V2IbJYfRvmlCKmCnFprBTJKETsIqRIow6xyxCjsULEyDn2qsewXYj0v55XAwyrELHlFCMDhYgtpxip2EdPoxKxCxERpUqkZj+L1GKkbp+qrGKk4r6eU4oUyxCbRiliFyIiOpWIXYgYlCIA7osoQwAAAAAAAAAAwFijDAHQ12QFIuIuQWwpZUhlCdL/pvinuqoSpCilCqmrQUTSipC6GqQoZrW8qwDxiSlD6kqBopgiJGbcpcEjvz9QShFSV4OIpBUh3gqkKOI6jilEom7nyMVvTd3njZUoQoykMiTgcFPKkLoixEgpQ4Zdg7jEFCIx96OoMiRi3JQypKoI6Y9bV4b0vzH+cVFZhtgiVr4HvQcwxxBRiviKEOcxxKx8j7jukiqRmjLESClEqsoQY5QKkaoyxEgpRHxFiEujlUjMscc8Zn2FyMD3xJcAK1WIGLGlSGUd4hJTjFQUIqXjiChGXGWIT1QxEvM8m1CJ1BUiIomVSOD9PqUUqSpEjJRSxFWG2FJKEV8Z4kItAmDcUYYAAAAAAAAAAICxRhkC3Ic1VYKEFCA+IWVIzCrQ5R8Ke6oLrUGKQsqQkBLEFlKGxKyKN0JWNceUIEZoERJbbYQWIdE1iMiKFiEhBYgtpAgJKkBsCadkDy1Dkm4Xqa8iUu77/bErHgMrWYL4VF4XGYcbUoiEFiFFoXXIKBQhRkgZklIWBZUhCeOGliEhNcjAuKFlyMAPhV3hUWWIEbDyPeU9QUghElOG9I8lZOV7SlUTWogEViFFIYVISBHisxKlSEgR4lNVisQUIbbGCpHQOiRlv5+QQqT0M/V/A6x0IVIUUotEFyIi4ZVIRCEiEl6JxBQiRlApkvJ8G1CKhJQhpXFDSpGE+31oJRJShthCSpGQMsSnqhiJKUNslCIAxg2TIcB9yLA3Q4/hmwRJmvgoDVJ+mkuZ9LC5JkFSJj1svkmQnA9/Rfwf5KVMfBT5JkFSPwQvck2EaIw77EmQlImPIt8kSNLER1H+w8A7KZJ7O/kmAHIfByLux8IoToIY3smQzEP2TYakTIAU+SZDRmnyw+aaDEmZ/LB5J0Myx/ZNhsROfpTGTZkMKQ3i2Rg8ZTKkyPOhr8b7BNfkSMpkiM35oW/GJvT9IXyTIxmTACL+iZGcyRCRBidERJyTIjmTIYZrUiRnMsQY+qSIwv0taVJk4OfdfyOM0qSIzTVJkjQpYnNNkkROiLj4JklSJkWKvBMkmc+7vgmSlEmR0tiuSRKFx4FrkiRlQsTmmyDJmRQR8U+M5EyKGEyOAFjtOE0WAAAAAAAAAAAYa5QhwJgbxVNhuZgyRKUEsXW7KiWIzZQhGjVIkSlDNFbAF5lVzrkliM2UISrFhqXVUR53SEVIbgli2EVIdglSpPyQMIWI9v3AVBFNPR5GuQix9QsRpUO2y5DcIsSwy5BRLkIMU4Zo1CBF/TJEeVxThuSWIKVxNcqQ0qBLN1R2GWKbbuZ9g6lENMoQY2AFvMZKfTOUXYgoFBEi5UIktwwxmi5ENIoQmylENKqQosYLEcX7mYjk1yEDYw3+DTHKhYhIuRJRKUSMTlelDLGZUiS3DLH1SxHt591eKaJRhgyMayoR7ceDLJUiGmWIzZQiuWWIzZQiGmVIEZUIgNWIMgQAAAAAAAAAAIw1yhBgzDztlD8XEZHOjO7q/25v1dLkvsBNPAMt9FbUdKb152YnKjaRyzG/vsGVjQ1YWKd/3bYXll46tFec9Ve8Kw/bnutVADO6K8MmDjT3EtrVfQj3LfYeaxMHdFfQtnv3hbmNugfe1HXc1PXbBNfeORoW1vQqNOWnSlMHTe/Sfw5eWNeWCc8+RTkmDzTzejG5Q2dFva3bbmY9UyNliBl7b0PXxbqZRsZt33mv/qAz09IN3fA6Qsgm0ElMQbdrt+64i0uPt9aM7m3XDdi8O9m87vtfo7FCZGZad7z53nXbwAp7EZHuGuXjHYYp5b8HzHWsPG6nd922AzYyjx573eq63UI2c08xv2Wt+pjtuV4BOt3M3/QzN9+jOm5nw1Lh9eVr3qk6LgA0gTIEAAAAAAAAAACMNcoQYJUzJYhNowzpFs5hq1mELBTOr6pahFhPZ1r7hJi9QfoXo7FHiGsIjWfjwrgLa/WuW1OC9C9GqwixrwelYU0JYmgUIS3HYjL7eklhlztm74JcXesc1PbeGFplSNu6L2iVIZPW6v9uU6tRFQ7Xvr+JiHSmFe5zDRchhmYZUtwzRrMMKT5ONMqQme3uSmEx9xzd1qFN7tKrITozy6uFW/N6d47Fg5ZX9moeb0nhNbq1T69k0C5DWgvu67Z1z878wQur9TULkabLEEOtEFm09hVSKES6+x170kwpVziKdUhr7eBK8taaZgontUJk3trnw6pwWlrX9aT1nnsy/0W6dWCu9LVGShStosO6rrXG7Vi/s2YpsrBxzfK4nufQGK6CQ3s/Ed/lpGiiDDFMISKiW4kU/07QqERMGWKjFAEwiihDAAAAAAAAAADAWKMMAVapJooQeyV5UU4ZUixBbFllSM3TV0oZYlcgAxeXU4RU/WjOs3DFuDllSF3xkFSGNHQduFblGzlFiKsE6V9mRhFSt4dLShlS9di1i5CBy8qoQ+wixJZaiNhFiE27EMkpQyrvexllSFNFiEi5CilKKUS6FXfnnDKk6nGSU4b4ihAjqwypOKyU4qJYgthyypBiCWIbVhliSylFmtorxFeG9P89pxCpWKWfU4qolyEVt1VWHbJY/ZyQU4g4yxBDuxAxEkoRuwgp/fsoFiJ2qVBQtU9LUi1SU4LklCKuQqQ/blN7luRUHRXXe8q4dhliyylFimVIadyMUqSq3GiiFKm7TJ9hlSG2nFKk6m+HnFKEQgTAakAZAgAAAAAAAAAAxhplCLCK+GqQopgypGpFiC2mDKkqQWzRZUjAU1ZMEVJVgpQuOqYMiVkUHvMsHDhuTBUSUzlEFSENXQdVq/GN2CKkqgIpXX7E9VVXgRTFFCEhj92qIqR02RGFSF0RYospROqqEJHR2Dsk5D5oxBQiTRQhVSWILaYMqSpCbDGFSMhjJrYMqatBiqLKkIjDiCkuqooQI6YMqSpBbCtVhhgxhchKlSED3xtbiQSszo8pRIa1V0iVqFKkpgwxYgqRyiLENgKFSF0ZItJgHSISV4hUlQmWqkLEiCpFIgqQmFqkqg4pjbvS+4pEXP8x49YVIkUxtUhVHTIwZsxzbMTlj0Ip0kQhUlWG2GJKkZjPAWJKEV8ZUkQlAmClUYYAAAAAAAAAAICxRhkCjLCQEsRWVYbErACx1ZUhMTWIEVSFJDxFVZUhMSVI/xBCipCUqzb0V0sYu6oMSdnvIqgIaeA6iFmBX1RXhsSUIP1jCbjeYkoQo6oISXnMxhQhpWOpKURiqxCRsDIkpAixrcTeISn3x7oypKn9QWKKECOkDIkpQoy6MiTlcSNSX4jEFCFGUBmScJtVFRchJYgttAyJqUJEVr4MsVWVIqNQhvR/pq4QSdyvoa4SGYUyxKgsRAKLEJe6SiSqDDFWoBAJKUJKP7NS+4fEFAmWkELEVlmMJOwRElKKxBQi/XFXal+RlNsjoBSJKUSMqlIktAwZGC/w+TZlH4+VKEWa2jskpg4x6iqRnM8FqkqRkDLERikCYNiYDAFGSMrkh803GZL6hsc3CZIy+WFzToZkPCX5JkFSJkCKvJMhuZ/F2r+qwme7rkmQnM2+jdJkiPbv3pM6+VHkmghJmfwwXNdf6oe3Rb5JkJw/TnImQkT8kyEpkyBFvgmRlEkQY9iny8q9b9qTIqM0CWIrToqkTH7YfJMhuY8j32RIyiSI4ZwMUbitXJMMKZMghm8yJHbywzZqkyGGa1JklCZD+j/rmxTJ2bxa/JMiw9w4PZRzUiRjMsSwJ0WSJkGKmpoQEXFOiqRMhvR/dtiTIhmTISJpEyKGd2IkY+N0wzVJkjIp0h9v2JMjmbeLPW7KZIjNNTmSMilSGtd6Hk6ZDCka9sSI9qRIymSIzTc5kvp3h29CJGUyxMbkCICmcZosAAAAAAAAAAAw1ihDgBWmUYOIlIuQnNXlRaYM0ShBbJ3ptsoqRMOUIbkliK1fhmguRO8qj9djyhCNGkSkUIRoH2tvWI0SxDBFSE4F4mKuS40aRGS5CNF6jBblliGGKURyixDDLkNyihBb06fL0rqPmjJklIsQw5QhGlWISLkMUXss9e5HOSWIbaAMUbytTHGRU4MU2WVIbhFijGoZUmQqkVEsQ0pjmVIkswwx7EJkFMsQY6AQUShDDFOIZJchRsOFSE4RYmu8EMktD3pyyhCffjGiUIiILFciOWWIc9wmN11Xun3scTUKEZHlSkSjDCmNvdDJrkOKmi5FRrEMsZlSROvvEbsU0ShERKhEADSDMgQAAAAAAAAAAIw1yhBgyJ71i78nIiLzh21VHXdxrf4Kl6mdB2R+k/7qns6U7kruVu9ZrBOy0XmErtIq+4ExewvaWkoLfBZnmllt3uo08NLQQA0iErjBfYRW72VxcUZ3vUB7Xv86NTVAW3mx4MLapXHX3q07sPZjX2TpdtK8T5nCbDU8n0zuW5QDW/Wf+1vKd9WJ2aUBQzapj7HuZ/t0BxSRA4csreac2q1732/P6o630CtB2oEbqYdqogxp3b5dRES699d936OtdaC3z4PSyvOBsfcqVQw93b1L9/3WGuX3aA38WdhdWJDu7j3q40pH975vqovuomIZNNEWaemvPdQuRLq9PU7qNquP1ruNusq3lYhIa63yfX9Bf+W9iH4pYp5Luuv1N+rWWslvdKeW7vvdCd3HwMQ+3ZpHRL8Uae1fekzN30/3Om2iEFlYN9lItTx1r+77iU7vs46vXvZHquMCuG+iDAEAAAAAAAAAAGONMgQYElOEGLlliL0a3pz3M8fUzsEVHE1UISL5q8PtVcuaK7jNvhMiOvWGvRI6d8zFmcHfVXMlz+S+5cEWNfYfsG4nrdX72iWIyHINIqJThNhljVYJZO8LsTg9+N9T+/KuY1OEGFpliF0vTO/Ov0KKt5PGfcsUIYbW84o97sK6/OfqyX3L159mGWIXRrklhylCtMZbGmT5f667Va8MMUWIkV2GWG+vtVZzLlh7g2iUIQPVinXu8HZvdWsOU4YYo1qI9MsQQ7MQKaw6b83mr2o2ZUh/zNxCxF65rbhKvrh/hEYh0tk3+Lu3leoYu7bQKERaxetVoxDpDh6T1n4kpgzpj5tZiHTu3THw3+1NGwcvT6kUabWt61Rjbx7tQmRq8DVaq5KwazOVUqRw/XUUSwlTiPT/ewRLkcX1y7+7ZnHZsl5DR7UUWVg3eHtr/H05tdu6XTL34+pYZ8GgEAGQgzIEAAAAAAAAAACMNcoQoCF2CWLkFCFVK+JzyhC7CDFGqQypOod9zgruzkz5Z3NW8detfE4Z265BBsbLWGRTLEH6l5VThNS8mqSs3m+iAhEZLEGMnCKkbo+VlNvdrkCK7CKkKKUOsYsQW04h4ioXcsqQqtsp5T5mlxu21OcX37g5ZUixCLGlFCJ1e82klhx2EZI73tIP+/8ppRCxSxBbchnieVuds3rTrkEGxk1YwVq5f0m7+v6eUorYZUjRKFUipTLEllKKVKwyzylE7DKkP2ZqJVG3UjthtXyxCCn9W0YhYpchRmohUrf/Rkoh0qq6PnMKkW75WHLqELsIKY2dUIjYVUiRXYgMHEtCLVIqQ2w5pUjDhUhRSilRtw9RViniuN5yShG7DBn4N+VKRCSvFCkWIkZOKWKXIUXalYhI+nsNuwwxcv7OLJUhAxeYPrBdiBiUIgBiUIYAAAAAAAAAAICxRhkCKPLVIEUxZUjMqviYMsRXgti0y5CYIqSqBOmPl7Bi21WClC47clFNyGrnmDGrSpD+eBELalwFiPeyY8uQgNspZrW+dgniKkBcYquQuhKk/30Rt3tVCWJUFSFGTBlSV4TYYgqRkFIhphAJuY1i7mt1RYgR8zwTOqZIXCFSVYQYMWVIXRFixJQcvhokd9yQ55iYMqSuCDGiypCA55mU1ZpVRUh/3IgVq5VFSP+bwu7vMYVIVRlijEIhUluGGDGFSMDq8phCxFeEOMeNKSVCV2dHrJavKkP63xNRiPiKEJeYSqSuDDFiCpHKMqT/TRHvOxxFSGm4iEKkrggpjR1RiFSVIUZVIWLElCK1hYgRW4po1yEilYWIEVNL1BUiIgmVSMT1FFOMVBUi/e9Z4f1EXGWILaUUqSpEjJXcT8RXhthi/v6sLENKBxA+sK8MKaISAVCHMgQAAAAAAAAAAIw1yhAgQ0gJYgspQ5ooQkJrkKJhliEhJUhpvMDrKaQG6R9HwCKalPPeV40bUoKUxqtZQBNTg/SPI6QKibidQlbpN7EnSGgNUlRVHYRWIAM/U3F7hxQgtpAixFZXiMRWISJhZUhMoRBShqTs5VJ334spOIyq55uU8ULKkJAixAi93kOrEKPu+S6mCAkaM+G1IKQMCS1CjKAyJOG5pmqlZkgJUhqvZoVqUA0y8APxzwt1lUhIGWJbiVIkuAwxQgqRhJXlVaVITBnSH6+ukohdiR34O4WUIf3vDShEYsoQo6oQCS1CiurqkKAipPRDAT8TUIb0hwsoRGLLEJH6OiSkCLGFFCK2qmIkuBApqqogmihDjIBCxAipJUIKkf54IaVIwn4rdZVISBlS+pkVKEVC6hAjtBIJKUNswyxFQsuQotBKRLsQCSlDbJQiAGxMhgAJUiZBDN9kSOqHwr7JkJTJD2NYG6enTIAMjOe5zmImP2yuD7FzNv31fSieMgEi4n/jmTL50T8W14fzCq8Mvg+kV+pUWC6uD9pTJj/6P+u5vVMmQETSJkFsvkmRlMkQEf+ESMoG3oZrUiRnQ3vffS9l0sJwPd/kjGcUJ0ViJj98fLdD7CSI4Xv+S5kEqRwz4znHNxkSOwFS5JwMUXjL7PowImUSpD+e54OY6EmQ/g+mP+f4JkVSJkOMYU6KRE+GFPkmRjI+THVNiqRMhvTH800MpH7Y6PndYiZBfIqTIymTIDbXpEjKZIjhmxRJmgzp/7DjZyMmQUrDeSZFUiZCRPyTISmTILaUSRER/8RI0qSI4ZoEWKHTZbn4JgdiJkO8Y7smSTI2ofdNjqRMiogMb7P1mMkQm+81OWUypGhYm62nTIoYvr9RoyZDBg7GPWDKZIjBpAgAg9NkAQAAAAAAAACAsUYZAgTIKUFspgzRWh1vypCcEsTW9OmxtIuQnBLEKK7ozylBfOOmliCl8XqLZHJKEFu/DFF6NTCr8ps4BZZIXgli2NVBTg0iUi5CUksQWxNlSGoRYthlSE4RYpvevZhVhNjMfVGj4BBZfu7RGk9kuQzRqEJElm+P1BLEZj8f5hQhvjFzn3vsMiSnCCnq1yGKb5XNSsycGmRgvN4q1OQSpDSg3vO2KUVyypCiJiuRrCqkyC5EMleU23VIThnSH9OuJLRWW/d+V40yRGS5DtEoQwxTiORUIUWmEMkqQmytdlYRUhrOKkRSy5D+eFYhspJliM0uRbIKEZFyFTFChYjNVBMahYhIoRLJKENsphRJLUNsTZciOYWIYZcio1iIiBTem2SUITbzN2tyGWLrlSI5ZYiNUgS476IMAQAAAAAAAAAAY40yBPA44wl/JiIik7fdqzru3JHbVMebyFxh4qJdhnQndQuBhXWjP4/bUf6dRUSm9uitFBTRq1WMkM3no8dUfolaWLt032kv6I67OKV/e2tUIUW5RVZpPN27o4iITNRsfB5rao/unbK1OPpvmeY26q2YE9F/rBR1lZ/K2/PK959d+q+vvn2+Uk3uUVpxaSiWIcbET29XHa+JQkStDGlIa/+siIh09+us+h4Ye73uSuPugVnV8RbvuFN1PBGRic2b1McceZO6rw3dfbr3Ra06pFETus/ffUp1yADlx2F3q+5jRqO6sKmXIg0E7hO7dG8X7VKkib9fp3fqvk/pKJVFhjk7wFeu+GPVcQGMttH/RBEAAAAAAAAAACADZQhg0S5C5g/v7RGiudqytTxW8dymqRY2Dp7/t9vKO1b7nP9thdXU3cIhLa7Nn8e1b4/cPSOmd1j7KNxvKms8kcHfWURkenfeUvy5DYPXm8Yq/IE6oIFXk9wyZMG6r2iscl+cLoyp8BJaOsbC6naNlfP23i3aK/01CpFi9dRRKGLsx7PKHjuFMbUrGxXWMc1tyl9pWtzHpDOtv34m+/5t3VXaCs9p2jWIdgkysX/wtaa1mH/f7sws31dKe48ovHdpW+9TWnfckzegtUK5O5V/HRfHaO/O34Otu2bwPUBueWLKkP74CoVIa8NBy//Ryb8faRchYu09srg9834jIhNbtiz/h8a+HFPW6vb5/Pfknf3L97/2Wt1SW0TyCxHrfU93f/7jpVX8Pa3Xb439XYp7iWTvIyLSXCFiaJQixb/lFG6j7har3Mn8W9F+3tZ4rWxZ+3N01uRdj/b759y/FUUG9xDJ3T9ERKS7dvC1ZmF93t+f7dnBonphff59sfieeWqXXiVCIQIgB2UIAAAAAAAAAAAYa5QhuM8zJYgtpwwxNUhRVhniWH2TU4TYJYiRU4TYNYhIXhFiVxH9y0msQnzXf84qH7sGEckrQny/c2oRYpcgRk4R4qwARqwIsUsLkbwaYtG1Il75+ETc+x3krJy3V7T1L2eEyhDXPjg5ZYjv8ZxVhjjGHKkyxHMsOWVIsQgxRqoM8dxFcsqQUS9CRMpViEheGVIsQoxSGdL/h/THpV2GiGTWIZ5z1+cUIq6fzSlE7DLESC1E7DKkfzkZhchAGWJkFCJNlyFGTiEyUIYYOYWIXYYYGYVIx7GKX70QyalDPO9/cgqRluv387ye55QiXcf9O6sUaboQMXJKEdffdhm3VakQqbqckPE8z9s5r6F2ISKSV4n43k+n/g3ZdhyfSF4pYhciInmViF2ILI+Zfj263jvnlCJNlSE2ShFgPFGGAAAAAAAAAACAsUYZgvssXxFipJQhriLESCpDKlbZxJYhvhqkKKYMcZUgtpgyxFdFlC43ogwJuc5jVvW4ShBbTBkS+jvHlCG+GqQopgwJWvW/wmWIr7QQSasgnCVIUcLLZuUxOoqQ0kVGLF3wrWArXe4KFiKuIsQWU4iEPo6jCpGAMVe8EKm4/JQyxFWEGCNThlTcLVLKkNVahBgxZYirBLF5y5DSN4Y/Pl1liJFUiHjKECOlEKn6mZRCxFeGiKTVIb4ypH95CYWIswwxEgoR1TLEU4UUxRQiziLEFlOI+IoQW0Qh4ipCbCtaiAS+94kpRJxFiK3itTilEnHVIQNjppQiwypEROIrkZC/7SJuM28ZEnuZZrzA5+uY11ZXGVIaL6IUCXlfHfP3pK8MKY0ZUYq4yhBbTCniK0MGx4u7L1a9Z04pRIZVhhgUIsB4YTIE9yl1EyBFIZMhVZMftqDJkIg3j6GTISGTIEbIZEjIJIgRMhkSOiHQv/yKD5VjJpxC3rSGTH4YoZMgMb9vyCRIyOSHETIJEn3KI+VXkJBJkKqJBVvoB/61EyBF2scYMBnSv+i6eZrAiRCRlZkMCZkEMUInQ2L+AA2aDIkYb8UmQyIuN2RSpGoSxDb0SZGI58yQyRDtyQ+R5jdJrxIyGRIyCWIET4b0f6D+BqqaDLEFTY7UTIYUhX7QFjOBEjI5UjUZYquaHKmbBCldbsCkSOUkiC1gUkT99FgiQZMhRsikSNBkiBEyKRI6GSISPCESMhlirMikSMRHBnUTIkGTIEbMa3LA5EjdZMjAeKETI8OcDLGFTI7EnsIq4L4YNCkScfkxz8Ghr7khkyL9MQMmR2LeY1e9Nw2dDOmPFTApEjIZYoRMioRMhiyPF/YeI+Y9c8jkyLAnQ4qYGAFWP06TBQAAAAAAAAAAxhplCO4TYooQw1WGxJQgNm+1kLjhnK8MiSlBbK4yJKYEMeqKkNgaRESvCDGqVn/EFCGGrwxJ+V37x+EoQ2JKEJuvDEnaAHuIRUhMZWHUVQ9RJYjhOMaUYzNiipD+ISiWISL6dYiI+/4UU4TYfIVI6saVIp5CJGG8oZchCZdXVYbEFCHG0MqQjOdOVyEybkWIUVeGxFQhIglliEhtHRJThhiVhUhEGWLUrTpOObWWqxCJKUJsrkIktgwZOBZPJRJVhhgVq+lXugwxqgqRqDLEcBUiMUWIzVOIxBQhtqEVIpEfF6iWIUbGa76rGIkpRPrj1JUiK1mIGFWlSMrfnJ7bMqoMCTiOlOdgw/daHFOG9MeqKERi32OL6BYiIvWVSEwhYrhKkZgypDye+zpMfc/sq0RWsgwxKESA1YsyBAAAAAAAAAAAjDXKEIyllBLEVixDcooQo1QvJBYhIoNVSE4JYthFSEoNUmSXITl1hFEsQ5I2o7fYqz9SahCjWIVo/K52EZJTg4iUi5CkEsTWcBmSVVwUaoekAsSmeGwiaUWIzV5Jn7JarUizELHvXzlViEi5DMkpQoyBMkRhvMYLkYzx7TIkpQYparwMUXgOtcuQUd0kPaUEsdllSGwJYksqQ0qDDN6IKWWIbaAUSShDDHv1cc5qZJFyHZJThhjFQiSnDDHsQiSpDCmyVtQPe+P0KnYdklSE2IqFSE4ZYliFSE4ZIqJch9hlSObHBHYhklSE2DJfs+1KJKUQKY1ZLEZGoQ4pKpYiGX979lm3aVYhIlI6ptznZJHB1+iUOqQ/jlWJ5L7XFhl8D5tShpTGs0qRlDKkyK5EcgqR5TGXr8ec98t2ITIKZYiNUgRYPShDAAAAAAAAAADAWKMMwVjRKEIMjfpgYLwJvbnHiX1zKkWIYcqQ3CLE0FhZYVtYr7PSyhxbTgliO3C/KZUipCmTBxRvj4aKkNzaokj7sbuwRmc8jSLEMCvpNVapiTS7d0huGWJ08xa8D5jc11EpQozGyhDFcTtTOveVxsoQxYetKUO0ihDtvUFEdKoQkeUyJLcIMVTKkP5gSzeqRhkiUqhDMsoQW2edwkp/WS5ENMoQo3VgXqUMMUwhkl2GmPH2ufckyZJZhhimEFEpQ4xuR6cM6ens2qUyjvq+ISLLhYjSxwSmEFEpQwyt1/BpvcesiEhrSnc8VaYS0ShEerpr9B4TIiLdab03e53piawypDRerxTReu89oVBdNMUUIhplyPKYk6rvl7XeRxman19QiACjjzIEAAAAAAAAAACMNcoQrHqnP/kvpL2gt+pjYd3SSoiJAzqrDTSLkPkNSytSJvfrrNKY27g0nn1+9RwL69oytUfj/KK6K3E7veHW3qV37vhdRy3VOVN78+5/Zk+PxWm9lVqL0y2Z2aX3uGj1ygGt1VCLSrWFiPRXz6sd25TueCJLq41aDSwA01rtb+7DizN6v3O79xQ6sD9HAvM72vvK5GgtikwoPY+KFPZJ0br6FN+ZtXvlwMIanefU/jmaNR/CSk/3pr6a2qnzPD+/0bwf0Hsu7U4uXXGTu/OOsdO7PVuaVVe3K9J73msrrrg0K3Nbi5mPud5q5tacZr2ydH+2zw2fTPkY2/fuURlHRKR70FoREWkd0Cl1+uNqFiJKZUjroPUiItLdpXf9tdbMSHdB8YW8V051duzMG6b3u0ru46ugtWap4OjOK71nNsemuZ9GqyWyqPfc3HdfKEWUf0eRXpWtOK5WIdJ/L694V9EuRCb3LD0nq+yXMtVW2YtkecBefap0e5jPbOY36hVFWoWIqYC1PgMSEWktdOTLV71DbTwAeihDAAAAAAAAAADAWKMMwap1+pP/ov+/c8oQU4LYclYFdKcK84wKizNMEWKkliGmBLHllCEL6wbnVHOrEM0ipOMYKqcMMSWIoVWEGDlliOtnc8oQe7Wxxuqn4sr+rD1CPHfXnGNcLDwNqPyu1nlni/uYaO4dYqQWIvZ9WKMMaVtPnalliO93yilEinWORhnSsn+1jKvPda7ibsZ5vdvWitncMqQzZT1mM37Xqd3l19e5zemrDu3HlEYZYqoQkbwyxJQgttQypGPdjiplSPExZT3/aRQi9jnbkwsRz+Mhq8JoL9+vVeoQ6xhzjq3l2L+lte9A8nimDOmPNUKFSGu6vEq4u29f+nimljBjKRQirTXL7wGzChHPvmaphUjb+l01ChFThhjJhYh9LBplSHHMSesxq12KNFBQZJUixedqjX0/NEsO1/06Y3zNvUNEHO/tM+4qrteKnL8dTBnSHyuzELHfr2WVIh33z6aWIvZnNhqFSHFfk5x9P3z7w+V8JtQq/L4UIsBooQwBAAAAAAAAAABjjTIEq0axBLGllCGaRUjXXjFblLAYwy5BbClliKsKSSlC7BLEFluGaO8NIqJXhNgliC2lDLFrEJG0IqTuZ1KqkKoVxikrnnwr+KOrkJq7acqxLVYsVkv6XT0rkZwr5Xo0C5GUMqTq/ptSiNhFSFFKHaJZhlTt15JSiJSKkP4/RA9VuYotpQyxixBbbCFSKkKMhN/VVYQYKWVI3WMopRApFiFGShniK0KMlDLErkJEEsuQqsdQzfNfSililyEiiXVIzeMhqcJol+/fSYVIA8fmKkP6/5ZQiNhlSH+sEShEXGXI8njxhYhdhvTHSihEikVIabyUQkSxDClVIUUJjzG7CClKqkN8x5BSiFT9PnYh0v+ZMSxFfM/fKaWI8u9T9Z439fLU9w7xSbiraBUidhlSGjOyFPG+b+tJKkUchUhKHVL3mU1KKVIsQ2wppYhmIdKq+H0pRYCVxWQIRl7VJIgROhnimwApinmhq5wEMSLeb9RNghghkyG+U2IVxUyG1E2CGCGTIU1tjl4ldDKkbgJEJG4SxDX5YYuZDAn93pDJkJAP0WLe1Id+SB00GRIwVMyxVU1+xI4X8sa69g9CWfnTZYXcj0MmRaomQYyYyZDQ3yHk/hayaX3MZIh3EqT0jSFjBdyPIj7cqJsEMWImQ+r+oBaRoN+1ahLEiJkMCX3shEyGuCY/bDGTIXWTIEbIZIhr8sMWNRkS8hwd+DwYMynimgwpfU/IB7eBj4eoiQfHZIgtaHKkgWOrmgzpf0/ApIhvEmRgHOUJEZG4SZGqyZDl8eonRXyTIKWxIiZFqiZD+uOFTIoEvC8QiZsUqZwMMQIeW1WTIEbUZEjoREzMpEjImL5JkYFxFCdIVmKz9dCPbmImR5R+j5D3vrGX1/jpslwC7yIhrw0xf6vUTYqIhE2MBL13k8hJEc/psga+JeC2Cv3MJmZSpGoyxIiZFPFNhhSFfl5UNRliMCkCrAxOkwUAAAAAAAAAAMYaZQhGTkgJYqtbZRBShBghM/1BRYhRsyAgtAYR0StCjLoyJLQGERluERJSghSFVCEhRYhRtaI+pASx1dUeMeVIVRGScjqVuhVNMacsqixCUs70UnFsISVI6FgpiXXw6jjRL0TqyoqYsqmqDAkpQmx1hUhM2VJ13wspQmx1hUhwFSJSWUsk3Z8qVniGFiFGSBkSuqpQRCp/15AixAgtQ2IeL1VlSEgRYoSWIaFViEh1GRJShBhBz+sxb/UjT/ERUoiElCH9761a/R2x0jm4wAgoQ4zKVcANHFtIGdL/3opCJKQM6Y8z5EIkpAgpj+cvRELLEJH6OiSkCCmNWVWIRLwvqKtDgooQW8VjK6QMMWoLkZRT4FUVIjHjhZQhpfFXaSkS87xe9/w07NNlRVz2ipQhRsBdI/a0ilWXH1KG9MdRLEREAiqRgDKk/62KhYhIfSUSUoYYIe/BQ8oQo+5zo5AyxEYpAgwHZQgAAAAAAAAAABhrlCEYKSlViIh/dUFMEWK4ZvijShCbZ0FATBFiuMqQmBLE5itDYooQw1WGaO4NEluDFLnKkJgSxGavrE+pQUT8xUfKhupGsQxJ2li3x7dyKWXzamOgDMl45fEdW2wN4hszZeV+f5yY1XAWrULEV1fEFCE2VyGiWYakbABvFO+TKUWI4StDooqQgR+0x8m4X3lWdcZWIYZdh0SVIDbHocUUITa7EMl5XLjKkJgixGYXIjEliM1VhsQUIbbS833qc3XC5q+GXYnEFCE2ZyGSskGw+VG7xogoQmzOlcCKxxZThJTGchQiMWVIaTylUsRXh6SUIctjDhYiMVXIwDieQiSlDOmPWSxEMt4X+AoRrTIkpgixeQsRrTIkZRwjpRDpX65SKdL0Zus5H+H4nq+GvXdIxDEMbSP1Ko67RmwZUnUsMWVIaSxHKZLy3s5biESUIaUfddx2MWWI4StEYsoQm+u9eUwZYvgKkZQyRIQ6BBgGyhAAAAAAAAAAADDWKEMwElKLEMOsLkgpQWz2zH5WFSLSX0WSUoLYimWIZhGSUoLYTBmiWYOI5BUhxtq75rNKEEOrCDFMAZJTghj2XiE5VYjI8mqlnBLEKO0VkjikvYIqpwSxx8xZtS+SuQqup6m9Q3KKEKNYhqQUITZTiOQUIYZWGWKYQiS5COkfTO//Zd63RMplSGoRYpgyJKsIMaybMKcKEVkuQzQeD8UyJKcIMUwZklOEGMUyJKcIMfrP+bnP2TmrZntMIZJThhgDhUhGfdEfwlQYGWWIMbAiWPHYcsoQkXIdklOG9MdsqBDJKUOWx1wqRFLLkP44vUIkpwjpj6VUhhimEEkqQmyFx1ROGWL0C5GckkOkXIfkjieSV4iIjOR+IqV9RDQ+yjHPXyu5d4hP75hWdO8Qn05eGeI7lpxCRGS5EtF4j1cqRZQKkZQyxGZKkZwyRKT8Pj2lDLGZz5NSyxCDQgRoDmUIAAAAAAAAAAAYa5QhWBG5JYhNYwbfyF1x26dYhPSHVFhFLSLSUVjVamspPZNolCCG2StEowoREVlzr8IqtZ65g3Tnotfco3RsiofVL0KU7hsLaxTvt8oPAZXVbz1ahUhuueSispJO9CuYdmYJVTS5V+mxpFiG9IdUGmtug/65zKf2KCRDolsXmjJEowoR0b2fec/LnUijwhARlTKkP9QunZrAaGWsSC2NpbAqVaSwKlihDDHau8v7fqQN1MB7PaVCRBb03k9plSF9c569MBJ0Fe+zIiKyoPM8W6oLFHQPKN1vNeWWIbZRLkU0P9KZyS+2RHTfG4voVG79sbRe63p3CY1CxJjYr/MctKhwxgxbO7NcXB5I7w9OrULE6E7qHVtu5WOjFAH0UIYAAAAAAAAAAICxRhmCoTr1me8REZGJffmrCuY3La12mNift0pncc3gnODUXoVjWzepsvLcnLO+eL7+HGalvsaq7DXbl1atzG7VWXWyf8vSsdl7X6SY3dT7PTNvykVrYdT6O/JXnMxuXFr1nLvCe3rP0vVk7/+SY3FtWyZm869/UzB1FFcYi+iUIaaWyH1MTVgLfTSObfLA0rHl1lFmnK7icof2Yu96m84bdLL3fK1Zp03uW5RO5nGJiLTneo8phefH4qp/jf0lzGNpQmH1f6ew4m1hrWKFkVmGHNi29FoyeUBv5a25n2Xfpr2bULNomti/qHvfOJD/+jS5a3ll98IWhX0mzGPqQP77qvbsfP886BrMys/cY2uiDDGrqSd27q/5zhoTps5UuN8WVsS35vNvz+7apWK3tXuf2lgiIq1ZhVW45v2ZRoUxPSXdA7P54/S0eqVDboXR36tF8WOA/kcKs5m/r9k7RGPPkBmrDM8c0+yx0t2bf7+VbZuX/v/uvfljiUhrXe85W6Fs6q5bIy3NCqZ33+hOZL5X09w/xKoDuzN5ry/md8v+HUWkPd/bu06pYDSvdyp7YexZenxrvR6bfUQ09hAREVnMvB1FytdTdpXde3swuTv/9Wlu69Jz0MVf+oPssYD7OsoQAAAAAAAAAAAw1ihDMBQaRYgpQYycIsSuQUTyipD5ddYKlcQFgi3Pr5Szir2/b4PkrWo1JYgtpwwxNYhIXhFiShBbahmiWYSYEsSWusrEFCFGThmyuLZ8veWUIfaeNqNUhtj7Z+Q8puwqRCTv2EzJYeSUIfZYInmFiClCjNQyZNLzfJ1SiEzuKz8ec8oQU4T0/zvjedK1D0TO6n/7MZRThnQc50AelTLEVCFFOYWIfb9Kvk09N13OfWRi//L9V/O+0R8/oxDRKkNac+7bLqfCaM8uvwfJWZHqOxd46rGVzhOfUYi4zq+fVYfYK5Rz/uRzrBLPKUSKNYdIXiFijyWSWYjY789yChHHvhAppUjLs/dFaiHSL0P6A6XfN5wfJeTUIRPW4zun5rDLkMzxTBliZBUipgwpyqhE+mWIkVGIdNetKX0tqxSx7iPJ9YRnn5WsUkSpEPH9TjmliClERPIqEd/rXk4pYgoRkbzX5I7nthuFUsR1/WRVItZLfE4pQiEC5GMyBI0xEyAiaZMg9uSHLWUyRGsSpDT5YUv4W9g1EZLyge2C4wNuI+UDHN8kiBEzGVKc/LClTIb4JkGMmMkQewKkKGUyxDcJYsS8mbInQIpSJkNckyBG7GSIPQEy8G8rOBlSt3l4ymPLNQlixByba8KiKGUypGrMmMkQe/LDljIZ4psIEYmbDHFNgvTHSTguexKk9O8Rz5dVm2GnfOBd99iJmRRxTYIYmpMhRsykiGsSxEiZDKm6PyVNYChOhhQnQWya95GUyZDiJIgtZVJEczKkOAliS/kARnMypHLD3IRJkarNhqMmReo+fEv506/ig9CYSRHXxMXAWAmTIlVjRk2K1L0vS5kUqdgkO2ZSxDcZsjRO/IRIaTKkNGj4faTyo4SUSRF7MsQWM5nhmgxJGafHngyxRU2OuCZDjIRJkdJkSFHkxIhrMqR/OSmTIhX3kajJgppN55MmRSo+dI+ZGKn7PVImRYqTIbaYyZG6DcFTJkWKkyGly0t4bXZNimhNiBSlTI6oTYrUvC1ImRwxkyIiTIwAsThNFgAAAAAAAAAAGGuUIVBXLEKM0DKkrgYRiStCXCWILaQMqS1BjIiFgL5TYhWFrF6vKkFsoatZ62oQkbAipKoEsYWWIXU1iIheEWKElCF1JYihVYQYIWVIVQliCy1DqoqQ/vesUBlSV4WIhD22qkoQW8ix1RUhRkwZEjJmSBlSV4QYMWVIVRFihJQhVUVIabzA46urQkTCni+rihBbyOr/0MdMSBlSVYTYVup0WVVliBFSiITcj6JrjoCbImTMqiLEpnofCShEqooQW0gh4itCbCEVRlURYgtZhVq3MlYkvg6pLEOMgEKkqggxVMuQ/gUHPCYiVoGHFCJ1ZUh/rIBCJHQskcBCJOT9WWgdUrOCvSikEKkqQ5bHCX8815Yh/UED3mOE3I9iCpG6MsQIKTuqypCE8erKEJGIOqSqDLEFlCKVZYgRWIhUlSGlyw15jgi5HykWIv0xQ0qRgPpAsxAJ/R6R6jLEFlKKhLwOhlYiVWVI6XIDXqN9p8sqWqlSJOQ6iSpFAt7GhVYixTLEoBABwlCGAAAAAAAAAACAsUYZAjUpRUhICVIas2K1cUgJYtQVIcE1SFHFTH9ICWKrWr0eU4SIVK9gDSlBbFVliGYRElKC2KrKkJASxFZXhoRWISLVK0dCShBbVRkSU4SIVFchISVI6WeGXIaEFCFG1WMrpggx6o4ttAoRqS5DYsYxqsqQ0CKkqK4OCSlCjKoV/TFFSH+8mmMLKUL631vxnBlThBh1q/5THi+uQiSmCDG09w6pq0NCihCjqgyJ2XPGqK05Ep62XGPGFCFGI/eRikJEqwwJLUKK6iqMmDLEcK0+DVkJW7rsmmMLKkJsFYVISBli1BYiKZv1Vv0pmLA/gKsQiak4+uPU1CFJY1YVIjEre+sKkYgyxKgqRELKkOVxqh/XwVXIwKAVez6kfJRQVYqEliEi9TVHTBkSMGZIGWLUFiIxZYhRUYgElSG2ilIkpg4RqSlEEu4jlfVETHlVVxwk1AZVpUjK3iB1P6NViKS8HlZVETF1iEh1IRJShti0S5G6SiRmb5XKUiThfWZdKUIhAsSjDAEAAAAAAAAAAGONMgTZXEWIYZchKSVIfyzPauOYGqTIV4YkFSFGYaY/pQQxfKvWY2uQouLK1ZQSxGaXITE1SJGvDEkpQgy7DEmpQUT8RUhMCWJzrRRJKUIMuwyJrUGKXGVIShHS/9mGy5CYEsTmeoylFCGGfWwpBYetWIjkjOcrQ1KqEJFyGRJTgthcK/tTipD+eJ4yJKYIKf1s4bkzpQgxfKv+cx4nWmWIoVWI+MqQmCLEVixEUooQw1uGZDxdaZUhhn1fybqPOMqQmCLE5ipEUsoQw64wUooQQ6sM6R+LpxBJKkOMQiESU4TYvIVIShkiUl65nVCEGFplSH88TyGSNWaxEIkpQmy+QiShDDFchUhMGVIeb/DxnlSGiHhX92d9lFAsRGKKEB+76kgpQ3xjSVwZYiuVIilliIi3DkkqQwxHIRJbhgwci/38kXEfcVYTOY8vX4GQWBnYlUhKGVL3szFlSJFdieS8HhrFOiK2DBk4Fk8lklKIGFqliK8QiSlDiryVSMb7TrsUcZUhBoUI4EYZAgAAAAAAAAAAxhplCKJVlSBFE/sWskqQ0ni91cepJYjNlCFZJYjRm9nPqUGKzKr1nBLE1p7vqhYhqSWIzZQhOSWIzZQhqUWIYcqQnBLEZlaH5NQgRaYMySlCjInZTlYJYmuqDMkpQgzzGMupQYrMsWkUIUZnQmc8uwxJLUIMU4bkFCE2s9I/pwoRKZchOUVIf4zeqv+cKqTIrPrXeHwUy5CcIsRoau+QnCLE0CpDjH7Nofg01Z7vZhUhhmYZIrJch+QUITZTiORUISK6ZYjRnZpQWQFrmGPMKkIMpTLE6BciGauRB5g/CzPKEKNYiORUHP3xeoWIxlgihTokpwwx7EIkY+W6yHIdklOElMdcevwnlyH9gbrWfypcf7OzOmWIYaqOnDLEMV5OGWL0C5HUMsTWK0WyyhDb3HxWGWL0CxGlj5v65UTm42tgTFMiZFYFphDJKUNKY/bGSi1DbKYU0SpEcsoQmylFcsqQIs39REwpklqG2PqliOL7z8ndc5V1SBGlCLCEMgQAAAAAAAAAAIw1yhBECa1CRPL2GhjQxD1UecyW0nizm3VX5YqIrLtdael7z44HK62yEpHOVHl/jxy+vRFSTXpOyZ1jZpfO6p7+ilLFVSXec5om0ipDTHHV0VsgObA6d1R59zaINNFbua31nNzSuQsP0Cg4RES6vftcK7N+KcqtVWyLM7pPVFqvPyL6ZYhv/6sc7QWlFaZtU4fprR6c2qX4gib695WZO93nmk+xuF7vvYCIyKRvD4xEnbV6K4f7rxfaq5sVaa7QFRGRBcXnvUnl97aaxyYirf2Kq5tnlu53rn1Tkij/riIi0lF6zuuVHN35/JpLRPz7r+RQLGtERFpTikXCmsxCx1LapyNTV/Nx2156zms59iZJoVWHDYzZ1n1e7qzTu6+0D8z79zoZAa05xcdu7268uEHnNtYsRERE5jfoPm5FRFpK7y06U+H3YeoQgDIEAAAAAAAAAACMOcoQBAkpQuYPWlpBMjGbNwNvnwtcY3W0vc/IROa57u3xNM6dr1aFWFfXujvyypCdDxpcmdFVWOjb6S2W0apCNIuQNTuWr8AFhVXNE9b9N/e+0kQRYu4zuStTFq3yQGMPneIYGmWIWUWvca52keXnO40V3PYK9W5mvWKPp1GGzGyfl7nNeqvdTMGRW3J0rQpJowyx923IXfVvVmxpPl9pVSH2a1rufa80vsJz6dRe81jTOTbVMqRwO0ztzn9hm984+GTXznxfZc4Pvubnu7PGKVrY1NszJHPVpX0u9Pa+/Jq1M1N4jtJ4vCmXIeY668zkv6jZRWf29bd9x+B/b9qQN56IdNfNqK4cNvfn1oHMVebW81xrX/6eOt2ZwdfHUSxEugcO5O8bIlLa4yO3ELH3RzF7nGSNuXbpeUqtXtmwfmncA/nPU9pliEwNXn+5x9g1+3JolUQiaoVI6brTeM9S3M9J8T2QViHS7j3faRQi9t9AuWcGUC1DjI5SHWL9ru25vOfShfWDt6fG35P232fZ70t7N6e9j6ILhQjuy5gMQaWqSRAz+WHLmQxxbYqaMhni22Q9dRLEN17OB9vqp8TyXE0pkyH2BMjAxSS85nc87wNTJ0O0T4clMjgJYuRMhtiTIEbKfcb5RivnvZfnvpI6GWJPgvTHy3gv5/rZnMkQ34fGKW9iXc9xOZMhvje9qX+M+cbLmQyZ2V7+wzVlUqRukiJlEsOeCEkdpz+eZ3Pu1MkQX7ae8zzW1CSIMUqTIWYSRGs832M+649Px+2RMiliT4IYOZMhro1ScyZFzCRIUc6EiG9j2JQP9TszjueknPcLvsdBxp9OrusqZ1LE9SFW1oSIPRliJEyKdNeV30vmfGjm2/Q3eVLEc/vmTIrYkyEiihMiRQmTI67JhaxJEc+G56kTD77N4nMmRcxkyMB4KcfXmwQpjZ8x4dD0ZIiReoxd3yblOZMjjlNRpUyMeK+7nPcujp/Vfi8kkj450vY8z6VMjlT97ZMyMdLUZIgta3LE8zunTo7YkyJGyt+Vrr/PtN+TilRPjjApgvsiTpMFAAAAAAAAAADGGmUInHxFiK8GEUkrQlwliKFZhBgxZUjdWCJxq/yHVYLYYsqQYRUhRkwZol2DuEoQW0wZ4itBbDH3mcrVJSmLlWoOMaUM8VUhInFlSMj3xpQhoSvnY1bwhDzHxRQidat+UlakVY0ZU4a4ShBbTBkSWmrEFB2uIiRrvIrXI5H4MqRuI8OU57SmixDbShYiriIkZ7y6x3rSKryK20OzDDFiChHfKvqimELEVYTYYgoRXxHS/3etMqQ/YPRw9auMI14zQ66bmEIkZPVu1HXoK0JsEYWIqwwxUlYS192nowuRmts3phBxFSGl8Va4EAkpLKJKEU8ZIpJWX/jKkP6YEYWIqwgpjRdzjJ4ypHS5ERXGsMoQkbQ6xFuGGCmFSMUm5TGFSPB1F/MeJuB7td8TxVQivjLEWMlCZFhliC2qFAn4ey+mEvGVIYZWIWJov0f1VSIUIrgvoQwBAAAAAAAAAABjjTIEA+wipKoEsYWsmq4qQWyhZUjoCleRsDIkZryqVf7qJYhIcA0iElaEVJUgpYsOvOnqapCikDJkJYoQI7QMCa1CRKrvM1GrSEK+NfLZPaQMqSpBSuMFLGKJqUdCy5CY1fMh13lM9RZShsSs7qlbhRYzVkgZElKEGKFlSEydEfK9IUVI1HgRr0uhdUhdFTJw+QHfqlWEiMS9xq1EGRJShMSMJxJZgIU8piJuj5BCpK4IKQqtQ0LKEKOqEAkpQozQMqSuChn43oC6obIIKQ0Y8D0x9/vAP6NiqpmQQiRm1W5QIRJahojU1iFVRYgtZEVxzH05uA6JuI1DCpGQMqQ/nnYhEliHRJUVIYVIRRlSuuyaCqOuChkYK6RwCShD+uOFFCKBZYhIeIUxzDLEFnKMtWWILaQUqShDbFWlSNR1F/pYj3hOWIlCpK4MKQqtRGLeG4W85qgXIpExRGUpEvG7hhQidWVIUej1HFPwa79XtUsRChHcF1CGAAAAAAAAAACAsUYZch+XU4LYXKunY0oQm68MiVnValQVISnj1e37sFL7gxRVlSExRUj/EDw3ZUwJYnOVIdoliEhcDVLkK0NiShCb676Tcl7R2jIk4RCrypCYIqQ/XsXDJKYIMerKkJTV867rPmX/I8NXhiSd61X8q89SxxNxrzyKKUJsvkIkpggJ+ZmYIiRovITXp7oyJKYI6R9HxY+sVBFSpL0CUsRddMQUISHjiSQ+t/Y4H2MJt0dVGRJThBh1ZUjMKnpDqwwx6iqImDKk/zMVdUNUGdIf0PG1nPu65/UzpgixuQqRmCLE5r0OY6qQIk8hElOGGFUrilPu07WFSMJtXVWIxJQh/fGGVIjEFCE2ZyESUYSUjsVTYcSUIQPjeX63mDKkNKbrGCPKkP4x1NQXK1mGGFXHGF2GiNTXIRFliOEqRLKuO99jP/H5v4n3SK5SJKYMsflKkZT3SFWvQStdhogE7COS8DtXlSIxhYjhu95jyhCb1nvW/rFQiuA+gDIEAAAAAAAAAACMNcqQ+7BTn/merBLEsFdR59QgIuUiJHU1a5FdhuSOaa/uH4USxGaXISk1SJFdhuQUIUaxDBmlIsSwy5CcIsQo3ndyVi2XyhCF+0yxDEkpQUrjdar/O5Zdhmismi/eBjlFiGGXITkFh0h5xVnueCKDK49yihDDLkNSipCqn08pQmrHzHydsguRlCLEVnwO1CxCjFEuQ3KqENd4Wc+tPQOPNYXbwy5EUqqQIrsQSVk9bysWIilFiM2uIlKKkIGft8qGpCKkNGjhf2vc160/q3LKEJFyHZJThhilQkSpDEkpQmzFlcUa9+lSIZJ5G9t1SEoRUhqz4UIkpwwxBgqRjDLEsOuL1DKkP571O+aUIf0xi8eYUIbY7ApjFMoQW/EYk8oQm12KJJQhRrEQUbnu7OeCzOeGpguRnDLEsAuR3PdK9uvRKJQhtlIpkvk725VIShlis2+HnEJExPG3osJ72M50mzoEY4cyBAAAAAAAAAAAjDXKkPsgs0+IRhUikr8K2KaxCrg8qO5wvvOTZ1E+xvn1use4qLyASSS/FLDlliC2JmqVidnRfcptdbsqRUh/vM7g/89lyhDNVfNmNY5GFSKyXIZoFBwiyyvNtMYTWV5xpFGFiCyXIVqvBWYczdeC/piZRYhhyhCNIsTotkerCLE1seqxvaD7Cy+s1X3S1npeGKB8NbbyYouSyb3KKztFZGK/znNNn/L7ThERUX7v2cqsYGzdKeUCWUTat9ypM1CvENEoQ4zW3IJKGdIfz6yqVnoeM4WIRhnSH7OhQkSjDBEp1CEKZYhh6ovcMqQ/Xu931ShDRAp1iEIZYpj6YhTLEKN1YE6nDGmKQv1ZHlP3/YP6e6YG/ibtrNG9jTXqlQENvAVb3LRGdTzNvwMM3/6TqbTey5p9RChEMC4oQwAAAAAAAAAAwFijDLkPOeVFf6M6npllzt0jpKgz2dJdGat87zars+c26K/Q0zrWyd7tsn+rzjF2e8N0FH/lidnemEoLUkx5MLNrdMuQqT29x4tSeWHO06pxbnxjYq4j8+sUV2L2bg6tlcuzm5aObXqP3lKhA5uXxlx3l85B7jt46YGy7m6d8cztMbNTb5Wxef5af+usynh7D1taDTy9W+l3Xr/0O+fuI1FkKhON8+2LSH+1mno5oLiQ0KxW6yo9d5s9KhbX6L0YmMpS67amDMlHGaJDqwzpmtXKmsfXu/7aP79LZbjW+nUiItLZuE5lvD57vwEFrVmd+3d37dKq/tae/SrjiYi0ZnuPE633deZ94r59KsO11vRWVGuueDf1wexc9ffF0jrGyaXXu+6k4h9B5nee03leNEWWdo0mWu+XREQmes9jizqP6daBpfev3XWKq/zNfUbrvtM1f6cprz1WHM7sabV4kE7VZ95jq+0dYq67zL23ikxlWdyPJcfC+qUiq61Y8M8fNCntef3XP633tLNbl667y8///6mMB6wUJkPuAzQnQYpPohqTIPYY2RMhTfx9XHhxG8VJkEnrhU1jEsT14VnOZMiE5zPX1MkQ32mXRmkyZMrzgX3OZIjrg9ycyRDXqZdyJkN8j9+cD+vMBEhRzmSImfywpU6GmMmP0ngZkyGu2yBnMsT3vJU6GWImP2w5kyFmAqQo5wNy3ym2sidDrEMaxckQO9nPnQyxN+rWmAxR30B9jbWBuvLpKTRuZ/sP5U7maRC0J0FERCb3Fz7AULhr24/DyT15H3i2Dgx+wKJ+6iiFCYfO9OAxTezN+51LH6RpTIpYk0m5kyJmMsS4L0yKmMmQ0rgZkyP9yZCinIkRz+td6uRIfzKk9A8Zx+g6FZP2xIhI+jF6JkGyJkdcv3PGxIjv9HQjNTky4Xi9y5gYMZMhtqzJEdd9JOe+7fmIbZQmR1qOSQaNiRH1jdXt60xhcqT4/kFjYsRMihi5kyPzB1njKU+OaLyvZVIEqx2nyQIAAAAAAAAAAGONMmSMaRQhVbPGKWVI3c8klSENnQrLZVTKELsGKUopQ6pWDjdRhPTHTliIUbUZ9yiUIb4ixEgpQ6pWs6eUIVX38ZQypO5xm7KC2VWEGClliK8IMWLLEF8R0h8voQypuu5TypC656uUMsRXhYiklSGuIsRIqQXqNl1PKkMqDmOUypC6TRxTChG7CilKKUTsIqQo5fa2ixDbKBQiVasDU+qQxosQW8JdvO5xmFKI2FXIwOWNQCFiFyGlIRMKkcoVxCmFSMXpxVLqELsIsa2GQkQkrRLxlSH9MRMKEWcZYqQUIlXvHRPqEG8Z0v+GhGOs2qR7FAqRmgIkqRCp+p0TChFfGWKMRCHiKkOMhELEV4YYSYVI1X0j5b5d8RGbeh0iol6IGCmlSNV77aRKpO76SihFqt43pJQidhlSlFKJ2GVIacwRKEVMGWJQiGC1oQwBAAAAAAAAAABjjTJkDOUUITGzwiFlSGw9ElWGDLEIMVa6DKkqQoyYMiRkpXBsGVJXg4jEFSFVJYhtpcqQuhqkKKQMiVm9HlKGhNy3jdgyJOQxG7OSuaoIMWLKkLoixIgpQ+qqEJG4MiTkOo8pQ2Kep0LrkKoixBZSiFQVIbaQYqBuJbot6DEW8dyzkoVIXRFixJQhVUWIEVOGVBUhRkwZUleEGCtZhsSsBAwtRNQ3S68qQmwBv07M4zC0DqkqQkqXv4KFSF0Z0h8yohAJWj0c89wXsPF8TCFSV4YY41SI1BUhpTEDCpHKIsQWUojEvIcMLERqq5CBb464T1ZVEsZKbq4eWH5EFSIhv3NEIVJXhog0UIcUhdzfqsoQW0ApUleGFAVXIjH3i5DvjfiIbaX3EakqQ4yYQiTkPXZUIRJ6/UQUIiHvF2IKkaoyxIh5X1hXhpTGXoFSxC5DDAoRrBaUIQAAAAAAAAAAYKxRhoyRYRUhRl31kbKnSOUq8xUoQWzDLkNCShBbVRmScs74ujIkpAQpjRmw0CKmCDGGXYbEFCFGVRmSsp9BVRmSch+vqxRS9vWpWs0cUoLY6sqQ0BqkKKQMCSlCSuNWFCIp+7PUFSKxz1F1ZUhMEWJUlSExRYhRVwzEViEiNY+1hOeelSpDQquQoqrXgZAixFZViIQUIba62zu0CikaZiGScm7oujJkRYsQW8Wvl/JYrCtEYsqQ/nEMsRAJLUIGhqupQ5JWCVdd9wFFiK2qEAktQorU65CBwXWff6sKkdgyRKS+DokqQ4yqQiTlvWRNIRJVhojUr5wPqSNsK1GIJOwJUluJpPzuFaVISBlia6QUqbrfxZQhRkUhElOGGLWFSMr7hKqfSfiIrZG9RERqlz+HlCG2qlIk5e/ZylIk5Xqp+Z1S3idUlSIhZYit6v1ibBkiol+HiFCIYLxRhgAAAAAAAAAAgLFGGTImUqqQ1JWsvuIjpQSxDaw6b+CembJSvmhYZUhKEWL4ypCUKkTEX4akFCH9MR0LCFJKEFvTZUhKCWJzlSEpK2gMXxmSel/31QopRUj/Zx0L0FKKEJtdiKQUIUV2HZJSgpTGdJQhKUWI4StDUp+bfGVIShFiuMqQlCLEZhcDKavQi0qPO4XnoGEVIilFiOF6LUgpQgxXGZJShBi+MiSlCCnSrkNEyrd3ShVS5CtERr0MyXks+sqQlCKkSL0OESnVFylVyMBwnkIka3Ww67ZIKEMMVyGSUoYYq7kQSalCBsazCpGkIsTmeg+Y857SU4hElyH9H/Q8N6TUEYZ2IWLYx5pQhRSVCpGc39lwFCIpZYihXoj47nspZYjhKERSyhBbqRTJfY9g/7zCR2zD2kskpQwR8dchOX/XOgsRjevB+h1z3yPYlUhKGWIrvodMKUNK4w1pHxFfGSJCHYLRRhkCAAAAAAAAAADGGmXIKhdThGitWDUFiEYJYvRXnTd0b8wtQowmy5CcGqTIlCGpJYjNlCE5JYh37CmdIsRoqgzRKEIMU4bkrJopMmWI1n3crhZyihCbWd2sUYWILJchuUWIYcoQjSKkP2avDMmpQYpMGaL9XGQKkZwixGYKEY0qRGS5GMgtQoz+Y1DxOUi9DDF6v3JOEVJkXh9yihCbKURyqpAic3vnFiHGaihDDFOIjFQRYuv9qlqPR1OI5BYhRiNliNH7nXPLkP5wvUJEbRWwuU0yihCbKURyqpCixgoR5TpEZLkQyS1D+uP1ChGVMkRkuQ5Rel8pslyIJBchPuZ5WKOSEGmmEjHHmFmGGP1CROt37tUhOUWIrZE9RESW75M5ZUhRrxLRKEOMfiGi9R7BjKP4EVvTe4mkliE2U4po/Y3br0Q0f//e76r1HsEUIhplSJF5P6lRiPTHbKgUqSpDDAoRjCImQ1apkEkQ8yH21D7dJ76FNfovyJofiIvofTBsHNiydGW2FT9HmO59qNlR+uDI0PwgV0Skpfg7Lw+69P/qNigPNbl/6WlsQunvyv64yo8dEb1JKqO9oPsUvveQpTddM7v1fvd991u6oScPqA0pIiId3fedjTC39/Rundtpfu3Sg2d6r/JLdwPvBLT+GDImD+iOtzi9dF1qPs4Xe6+P0zt1nzg707qvu1p/+BZpT4ZM7l86xs607mtkE5MiU7t1b+/upO7t3e39ylP79I5zft3SE/Dkft0P0aburt7IOVYTkyKdtbovPt3eB4UTNZvJB483s/Q7t2b1P+Cc2LlXdTztSRHz2KncjDdWQx9EtrfvamRcVdqTS1O9x47SdWoWBLX2N7Bia0r5cV63gXf0gEvviTSf4/rvDbQ/HlJ+3W3t3V//TZG669eqjtfatfRc2d24XmW87nTv/tjA+7eW8uO8s05n4tjoL5JQfG+02JvEaGsuEhGRuYN170eLyu//RfQnRRbWhz8HMSmCUcJpsgAAAAAAAAAAwFijDFllYooQQ6MM0a5B7CIgu7iwFpxonqrEVCEiOmXItLUBcm4ZMnfQ4JW5sDZ/9U27UFh0NRfz2HvLZd6tTBFiqJQhhadEe/wUdrmhtWp6Ye3glefatDqWqUJEdMoQU4QYuWWI/dzm21w6aezCAkCNx7ldAOWWIfPW41qjDFkonH5I475ulE6tlvk2wz4Nj2+D7RiLhdpAowxZtF4jtcqQrnU6yq5rs9xIxVNcThzIf96wN1DPfY4zRYihVYaUrjuFu7x2EWJXshpFUPE1vIkyRESnDrF/15mf78kab2Hz4Crsib35bxDmt1hjap3SyzqFTG4hYsoQQ6MQKa4cbu9WWJVtnd6oc/Dm/DGlXFWpFCLaZYi1Crt9b959vVQwzCs+LxXH1jgllX2smdet/byuUogUT2eleaqjhsqQ/n8qFCID1WgTHxEpFSL2aaPau/OLte5BhUpN4Xc3ZUh/yMxCpF+GGIqFSPG+01Y4fZ99X8y9b5ZOn6lQiCwWNkDXrEM6awZvp4UNeafHm7eqi/a8wn2zUO63FE6nGVOGGBQiGAWUIQAAAAAAAAAAYKxRhqwSdUVIacW05BUhTZcgtqyV2I5FJjllSLEEsaUcp12C2FLLELsIMXLKkLZjMUhWGVLzsyllSNUK9qwyxPFUmLNavm4vj5TV03YNUpRThhSLECOnDLGLECO1DHE9vw1IuI9W7TeS83zk2xMmtQyxi5DSuAmFyELFhtQp9/lSCWJLfJvh25g5pwxZrKgMUgoRuwgpyqlD7CKk//WMMqTjGDOnDLGLkIF/S3h+s4sQW04h4rzeMt79Nl2E2HIKEddreE4hUixCjJwypO53SylE7CqkKKcQscsQkbw6xC5CSmMnFCJ2FVKUU4i4zimfVYh4KoOcQqRqr52kQqSpTYs95+dPLkTq9rZIKUWqxkwpROqOMfG69r0mZhUiVRudJ7yfUS9C+gO7jyVnFb5zP7GmPipKqETqNhLPKUQGypD+F9N/d7sMGRg2oRIplSG2jFLEdZ/JKUR898HU+2apDLEllCLFMsSWU4rYZYhIXh1ilyG2lFKkak/HnFKEQgSrDWUIAAAAAAAAAAAYa5QhI85XhNSulJa4MkS7BDFCV/5HrcQOWEgSU4ZUlSC2mOOsK0KMmDLEV4MUxZQhrhLEllSGBP5MTBkSsmI9qgwJeOpLWSVfV4QYMSunq4oQI6YMcZUgtpQyxFeE2GIKkZDnupgypKoIMWIe574SxCW2DqmrQkTiypCqIsSIuc/XFiFFEW81fEWILaYQqSpCjJgypKoIMVLKEF8RUvq+iELEVYTYYgqRqiKk/z0NlCFGTCESdD1F3I+HXYTYYgqRkNfumELEVYTYYgqR2NolphCpKkOMmELEVYSUxosoROqKkP6YymWIEVOIuIoQW1QhElgVpBQiVWWIEVWINLxXiPdiYwqRuuKiKKYQCRk3phAJGS/y+o55HYwqRarKkP6FR7ynaXivEO+3JazCd5YhiZcffqExr+lh95GUQsRZhpS+KeI9ckUZ0h8uohCpLUOMhEIk5L4SU4qEjBdz/6wtQ4yIQqSqDLHFlCKuMsQWU4rUlSFGTCFSVYaUvjeiFEkpQwwKEawEyhAAAAAAAAAAADDWKENGlF2EBK2OtoSUIU0UISn7QFSuxE4oE0LKkJgixKhbMR5agxSFlCEhRYgRUoaEFCG22lWmCbdTyH0lZqV6UBmS8JRXdwyhNUhRyMrpkCLECClDQooQW10hElqDFIWUIVHPeQH3vZAixFb1eI8pQozQMiSkCOmPGVCGhBQhtqr7fFQRYoSuZAysQkTCypCQIsRWVYiEFCG20EIktAoRCVsRG1KE2KoKkZAipPQzgYVIaBUiElaGJO2tUnEX1S5CjCbKkJSas6oQCSlCbCGFSBNlSEgRYqsqREKKkNJ4AStYQ8sQkfA6JKQIsVUVIiFFiC2oEImoCULrkJAixFZZiAx5rxDnIYTWITFliFFViKSMF3KbxowbeP2nPM9XFiIhRUjpIOrf26xUGTLwIzWr8IOKEIXjqD6IkNf2+MdmXSUSVISUfqj+dw8pQ/rDBRQiwWVIUc3tmlIPhRQiMeOGfG9wGVJU87oQU4YYIYVISBliqypFQsuQorpKJKYM6f9MQCGSU4YYFCIYJsoQAAAAAAAAAAAw1ihDRlCxCkkpQgxfGbLS+4O4OFdgp+xV0eMrQ1JqkCLfSvGUIsRwlSExJYjNV4ak1CBF3tWmGbeT6z6Tsk+H4S1DMp/mfMeUUoQYrhXTMSWIj6sQSSlCDF8ZklKEGK4yJOe5rs9xX0wpQgzf4z2lChHxlyExJYh3bEchklKEGL77fFIVIuJ9DMaUID6uQiSlCDF8ZUhKFVLkK0RiipDSzzpWxqYUIYarDEkpQkpjeAqRmCKkyFeHJBUh/R8uf6mpIkQkvgoxfEVF0v5ePdpliOErRGKrEMNXh6QUITZXIZJShvTH86xkjalCBsbzFCIpRYjNVYiklCGGsxCJ2V/C4itEUoqQIm8dskJ7hVTxliIpJYeIvw5JHU/EfRvnjGd4bo/U53tvHZJShvQPpvwCol6EVFxW8I96VuEnlSH9QRv6KMlRiqSUIYavEEkqQwYG8LxfjihDSkM6SpGkMsTw3L4pZUiRrxLJGdf1s0lliOF5nUgpQ4p8lUhKGWK4CpGUMsSoKkRS6pD+z3oqEY0yRIQ6BMNDGQIAAAAAAAAAAMYaZcgIMUWIygppWS5DRrEEsfVXYOcvEhaRchmSW4QY5jhzShCbKUNyapAiuwzJLUKM/qpTpdtIZPA+lFOE2PqFiNLTmzm2nBLEVlwprVGEGKYMyalBiuwyJKcIKTJ1iNbznYj075s5NUiRXYakFiE2U4hoFCH9MQtlSE4RYjP3/eQixNZ7TGoUIUaxDMkpQmymEMktQgy7DMkpQgbG6a2OzSlCbKYQ0ahCRMplSGoRYjOFSFYRYivc15soQ1KLEJupK3KKEFuxEMkpQmymEEktQmx2IaJdhuQUIaVxeytaU4uQ0nhWIaJRhogs1yE5RYitX4hkVCFFdiGSW4YY/UJkBPYKqdMvRDSKC5HlQkRrPJHB21tz3N7to/V8XypEcsqQIvM+p4kyROnvGnv1fVYZMjBwAx8rFQqRnDLEZkqR7DLE6P3uOUVIachCIZJVhth6t3duGWLYhYjWuGacrDLE1nvdyC1DDLsQySlDikwlklOG2IqlSE4ZYjOliFYZYlCIoGlMhoyAU36lNwmi+BonovcHd5HmBEhRW29uQURE5tcpfjpQsGa78oGKyIFtui8c5oPQus3eYzVx20/MNvP0MzGnO+50zSbiKXYfPhm0+XUszQ/YRUQWZ1SH69OapCvqKP0da1ObCDDjNXDmHXOM2s/7U/t0f/nGXkNqNgtM0cRrqIjI1F7d15FFpQ+Yi8zEr+YEi4juH18iehNVLlO7dB+oTd2fFmdGP/JuB2y8mWKi4vReKTrTuu/HitrzuneA9rzu80gTkyFG++6dquMt/sJW1fEMtQ+Eixq4PkVE2nsc5xsdJYu9+2fAptixupO6j9PWYjO3UXdtA2+gh3hKqiwNHGdnzbS0lJ/3RERaysfa2uk5pV2mzv02qY/ZVb7dzUTAxD6dCfC+Bt5DLG5s6A9c5UPdf2gzp9vznVI+h/p78t51efm/MSmCZoz+X1AAAAAAAAAAAAAZlFsEpNAqQtZsH1whN7tF7+Y1q461JrubWiE5t35pfk9zlYf2CvZFxVMiFWmeGsdoahV3q7ewpzPZUjn11Lq7rPv+JuVTu+xWGW5pqMObedqd27B0rFrVQRNFiHYBZpjTV5nnldz77aS19+ui1qIc8zxqjlfh+tCuVgztUnF24+Dz0/QevQOfX9uSGcUypDM1eKxaBZs9robic53GqQY1TwVYtLzh+dL/nziQ+Sagd5gTvdNtab6utntl4eKaCeeG8rE6U4PHprUar78CT/Emmyz8vgtKp0gTWS6M1O5fneXbSERUbieZaEm7t0K8o3RKK5Hlcsf8/6k9eS/S2kWIzZyGRqMQMaexWjx0i0zcfm/2eEZ779LpjTrrdd+omOPVLERai13V00KaFfydDWtFxLNZfQJz6inteq9fCCisQNcuQprSP84GTkFWPP2QRiXRWTc98N/t/Tp/9JpTOvVPQaekf9okzedB81yndAoue/NzjdNmdbZtVH0sGcXnec1TkC327ldqhYh9aApP0cXnea1TLoqILK7t1TGeDdZj2X/Tqn2GZp7qmzmZio5RPjaMBcoQAAAAAAAAAAAw1tgzZAVp7hViVyEieWWIb7Vx6mbHdbPYOaubTQ0yOF76gFUlyPSu9JUovpWrqfub1JUgOXuGaBchVSvgc1aK2kWIkVOG2Bv9Fq29O/32dxUhOXuGmBLEJ7UQGXoRkrHCxbeheer91y5CbFmFiOOmzilDfM+ZuSuGfK9HM7vS76t2FSKiU4a49seZ2ZV+BfjKjdQypK4EmdmR/iTteo7LKUOqnodz9g3peDa0zypDKn7NnEKk7dhrKqc4sIuQ0tiJhYj3nMwZD6nJit8zqxDx3HWSX/drVq1nFSKO1fs5hUjVXi45dUgTZYjZL8T5bxmFiGu1bU4hYq+4tmmXIjmFiGvlukoh4lgVnlOH+DYjzy5EFj33qYxV7atmrxDfcWYUIlUr13MqCbsMMVILkbqNs3NKkc6a8rHm/O4t331UJK8S8XwGkVOIdLZt9P9jTiniONacQqRu8/DkUsT3uU7GQ7hTsYF6Timy6LgOciqRfYdV//GZ+nef9314xt2psX382DsEDaEMAQAAAAAAAAAAY40yZAWYIsRIKUNcJYgtpgwJLTNiy5DQ2eqYMsRVgpTHi79bh+wNElOGhK5QTSlDQvYHiSlDmt4bpErsClFfDVKUUoZUFSFGTBkSsjdIShlSV4QYMWVIEzWISOAeIRErWnwlSOn7Eu7PdVWISGQZEnDTppQhIc+VMauEQl9/UsoQVxFiiylEXCWILaUMCd3LI6YQCRkzpQwJeW6LKURCnn9TyhBfEWKLKkQCfq2UMsRVhNhiioO6IqQ/ZkIZErTqLuKhWlWE2KIKkYCbP6kOCVytHlWIBKzWTylEqsoQI6YQaXKvkKoypP89EYVIyKralEKkrgwR0a9DRNIKkZAV61GlSMDq75RCxFeGlC4+phSpWnHfHzD+dWXVlyG2iFIk5DGVUkn4ypCimEqkrgwxUgoRVxlSGjfiOqgsQ4yUSiLgM4jYSqSyDOkPmrCkP+BYY0qRujJEJLEOCf1cJ+bvn4oypH+xCYWIqwyxxZQidWWIEVuIBL//jrhbNV2GGBQi0EIZAgAAAAAAAAAAxhplyBDZRYgRsjI3pASxhZQhsXt1hJQhKecuDDmOkCJkebz6AUNKEFtoGZKyOrWqEAkpQWwhZUgTRUjsavfQ1aEhRYgtZBV1SBFihJQhIUWILbQQCa1CRMLKkBUtQoyA54vQImTgZwLv2yFFiBFUhiS8ooY8ZmKeq0Ofg1OqxJBCJKQIMULKkJAixBZSiIQWIUV1dUjKmCGFSErtVlWIpKzKDy1EQquQoqAVajELkwNeg0OKEFtIcRBahoiE1yFJq+0Cfj31MiRhYWrwfTFiZXpQGZKwf0NIIRJShBghZchKFyGln6koRFJW0YYUIiFFiG2lCpGU1flBhUjEqu+QQiS0CBk4hNDHYMiK+/6g9cehXYT0L7qBMiTpWAMKkZjHVsh9MKQIsYUUIqFliEh4HRJShJTGDrgOgsoQI6SOSPhILbQQCSpDBgaueVwlHGtIIRJShtgqS5GUjylD/wYKKENsIY/DkDLECClEQsuQopC/A6P37gt4yRhWGWJQiCAXZQgAAAAAAAAAABhrlCFD4qtCRKpX56YUIYavDImtQYqqypCUIqT/s45jiilB/OO6f9mUKkTEX4aklCA2VxmSUoQYVWXIKBQhRt2q0JQixHCtpo4pQWxVZUhKEWL4ypCYEsTFV4doFyFRJYiP5/kjpQoRqb+PxxQhNmchkvG8WvXYyXm+9j0npxQhRlUZElOE2FyFSEoRYvMVIikFh4i/DEkdr8hViKQUIYZ2GWL4CpGUIsSoXKGW8RhwvTanFCFGXXEQU4UMjOspRFRW2Tl+3ZgixOYsRPLv/v77ZMxeBQW1dUhCGWK4CpGYIsRWVYg0UYakFCH9n1UuQwxXIZJShNi0CxFfHZJShNichUjKPgA9VYVIShlieAuRmJX2pUH9x7Na9goRyThWTx2S85gyXPfNlDLE8BUiMVWIi68USSlD+mNWPC6jyhCbq5LI+EitrhCJLkP6A3seVxnHWlWIpJQhhrMQ0fiY0ve3UEIZIuJ/TMYUIT6uUiSlDDGqPpuLLkMGBnZ/edhliAh1CPJQhgAAAAAAAAAAgLFGGdKwqiLEsFfp5tQgRXYZkrPCuMjUITkliK14bBpFyPK4SwOnliA2uwzRKEKM+XWtrBLEZpchTdQgIulFiM2sCs0pQWzFVdU5RYjNFCI5NUiRXYbkFiGGXYY0sUeIShUiUlq5k1qE2Mz9PqcEsQ2UIYqvoOaxpPVcbT9H5xQhRXYdklOE2Kb3dFWKEMMuQzQKDpHlQkRrPJHBMiSnCLHZhUhOFSJSLkNyipCi0io1xcfW4tp2VhFis6uD1CKkNG6vEFFdXVf4tXOKENtAIaL3MFi+fyYWIbZSIZJRhNg6E+2sIsRmFyJN7ReSU4aIlOsQjdXrRrEQ0ShDjKYLEY0yxOhOtLKKEJtdiORUIUWlQiRnpf3AwEvHN/Z7hbhYhYjWY8vcP3OKEJtdiOSWIYZdiOSUIQPj9q6DrCLEVqwkFD9SM6VIchFSGtB6zCsdq12J5JQhtol9c6rXqf13ZmoZYjOPUY0yxCgWIjlliM38XZhVhQwMOPifK1GGGBQiSKH3qEUyrckPm9YHaqVxG6iLNSdAirQmQQzNyQ+b5kSIyPIHn9q3l9bkh01zEsTQnAAp0poEMebW945T+e7V1AbpIoqTID2TB5aesObX695mmpMgxsSBZq5b7edsMxGkPRGqOflh05wIERGZ3bj0y09VnDIqheYkiDG7eVL3D7+ehd51Or1b58XAfFi9sE73jmX+iJrYr/8mQ3MiRERksTcR0FpUHlfxg/W+lsjkfv0XbjOxsrBW+QNLpUkQw9xWE/MN3K8WO7Ko+MI9f9DSe4uZe2fVxizKnQQx+h+ANXB3XTx0y9LQVZvqJmjvXbpOtSZFzAdgIZtKx2otdqXrOR1his6GtUvj7j2gNqbI8qRKa175/XuD6zSbPEWWCnNdBmyqHkNroqKos3bww2TfKeRidaeXfveQDbujxp0yr9uKr4fFiWHFCUzNieClAZt5TJmJ8UXFSTZjcd20TOxVfC1salGo0v2+aHFtMx/Rqi+MZUk9VjlOkwUAAAAAAAAAAMYap8lqSMjpsSb3La1MaM/r3AQHtg3OImuu3C4e46LSKTFEllfud5ROW2BvmK5Vhqy9a3Cguc16M/Zm5bLWKWzsZFHvNFaD/91V3jBVswzZdeTgaqVJz6bHsUxlo7Z6vcHp6OLtvqi4YGfNvUvX5ZxSHTC5b/C20SpDpncPjqv5vDU521WtI2Z2NnMdTPWu27mDFH/3A8vHqlmzTRXuBwsNFF1aZYh9bJrFSfE1QOt9QZFWGTK3YfCJS7sSMzQKkU7h9rJPG5jDLi0Wp3WezNu90sS3SX2KYr0yMae3grF4GofZrXqpnDlereqmY902U3v17giLM8urrVXex1pDzNyjsyrWPi1S27FJawpzSpS2Z+PjXJp1iFlt3v9vrZXy5nS8B/Sug4Fj0zz1zv7C9dnRey5oLfSeD7WOdWHw+bW7VvP5RXcVd3fCeu7XqgOaOl3WgaW/ZzsbFE+908DK+KWBB6/LrmJ5ISLSPqDz/GKfeky1Fiv8zhr3AXsMrdvOroS0bivzeG0f0LtOFzatHfjv9mwzr18LB+n88b2wfun1QPPv2KLJfXqP3/kNg6+ruaflLeF0WVBGGQIAAAAAAAAAAMYaZYiyqiLElCA+OStB7SpERGe1puuYcmam6/ZwSF1ZZxchRk4ZYtcgRTlliClBbNlliOeqyylD7BqkKKcMca0U0ChD7CLESC1D6vZbySpEhrihfU4ZYkoQn9RCxC5CDI0qwq5CRPKet6ruPzmFiF2EGLnXwZTnus0pRIpFiC2nEHEdaxNlSP/yMkqOquPKGdf13N9EGWKkFiJ2EWLTLkS0yxAjpxCp23sjtRBpeyqInEKkqqzIKUQmKqqCnELEd7yphYhdhNhyCpFiEdK/vAbKEJG8OqRuo+zUQsS3Se4oFiJ2ETLwbzl1iO/vDoVCxHlcGX+uDxQhtoxCpLXgeT7M/WjBM25OIdLUXiGlMkREpw7x7BmSWge0albW55QiwypDRPTrkKLUUsS3Kb1KIeK6DjIKkaqfzbkd7TKkf3mZt5fvcZtTithlyMC4DVQiqYWIKUJ8tEsRjULELkNEGqhDiiqGphBBCMoQAAAAAAAAAAAw1ihDlNTtEVJXhYjErQR1lSCl8RJWaYYcQ8pMdF0RYsSsrPPVIEUpZUhVEWKklCG+IqQoqg4JvKpSypCqIsRIKUNCVgfEFCK+EsQWW4bUFSFGUhmiPAUdcvumlCF1RYiRUob4qpCimDrCVYLYUp63Qu43KWWIrwixxVwHvhrEJaYQqSpCjJQyJOR4R6UQCTmOlDIk5Pm+qUIkpg6pK0KMUdo7xFWE2GIKkboixIgtQ3xFiC2lEAkpKmIKkaoixEgpQ0LLj9hCpK4MMWIKEVcRUrrclEIk4EdSCpG6MsSIKUR8VcjAeCNUiFSVIf3viSlEAv9sTilEgo4j4c/2yjLEiChEvEWIS8zxBo6bUogMtQwpXXjEc4KnCBm4zIQyoK4MMVIKEfUyJOD6GqVCxFeGlMaNKUVCroOE+0HIz6Tcnr4ypHT5EbdbyGM2pRCpKkP6447APiJ1ZYgxSnuJuMoQ27D3EaEQQRXKEAAAAAAAAAAAMNZydymAR0gJkiKkCInR5HnJQ2uQWCFFiNHpLVQIKURCipAYISVIsoirttubpA8pCEKKkBhNnScytAgxFmZawXVIaBUSbIh7g/hM9BY5hRQioUWIMb2rG1yHhBQhUZcdUIQYE3NL3xuygiamJJrZtfS9IYVIaBESI6YIiRFShNjfG1KINHW8TYgpU0wlFlKIxBSAnamlcZt8ra4SWoWIiHR6rzXahcji2qVjCClEQoqQGKFFiDEx1wmuQ0KrEJHl19KQQiSmoDDHWlWIhBQhhqkXQgqR2NKjO9EK/pnQKkREZH790gMyZw+RInO7BhUiEXdXc52GFCKhRYjRWTuZvH+Ic7xejaFdiJgV2CGFSEgRYrTmlx7nWXuIWIoFjcY+In1mZXXA30JBRYjR7j1mMvYQcR9E+PEGD7l/6TEQUoisaBHS/+be765UM5iV+6FlQGgVIiLS3n1ARMIKkcb2CglgfxagWYp01kwH1yGhVYjIcj2hspeIlK//nL1EXOOE3L6hRYjR6naVb6vBy8/ZS2Rg3Jnea5hyITK5Z+l+lbqPiIv5+1ZEtxJZWDd4f9LYU0Rk+X2s2mdE9q+8ev7MxAigDAEAAAAAAAAAAGONPUMymb1CNEoQ18pPjRLEt0ozdaVp3axzThHiWkkXU4L4uMqQnBKkbs+Q1CqkdsVwxoS/qyTQKEFce4fkzPbX7RkSW4UYvtX+GiWIc++QEShCbHVlSGwVYvjKEI0SxLVvRkwRYqt6/ordW6bIV4bk1iC+fUM0CgvX3iExRYitqgzJOd6m9g7xVRwal+caO2pPKMuw9w6JKUJcmtg/pKoMySlCfHuHxFYhNl8hElOEuPjqkNjSokirDLH5CpGcY636+ZgixMVXh4TsFeJTWYhkPNX4CpHYKsTmK0RC9grxjjnEPURiihAfbyGS+feIrxDJKlIqjimqDLE5CpGovUJ8fMebObavEhmJMsTmWhkfsFdIHV8ZEFOGFNXVISuxV0idpvYS8ZUiMWXIwHh1dUjG7+G6H2hUI67bO7YMKaq7rVIfu3V1SMieId6xh7iXSOieIS7D3kckZK+QOk2dTcSUIuwdAhfKEAAAAAAAAAAAMNYoQxJpFiFGceWn5t4gZoWm1spSe7ZZc2+Q4go6jSLEsMsQrf1BTCGitT9IaeWw4sR+sSjQ3BvELkO0ZvZNIZJagtjsVf+ae4MMlCFNbhWj9HRjCpHUEsRmlyGae4MUy4icIsRmP4/lVCFFphDR2h/ELkM099woliE5RYjNLkS0jlm7ELHrDc3xi2PnFCG2pguR3CLEaKIMMYqFiOYeIXYhkluGGKYQyS1CDLsMya0sioqFSE4RYrMLEa1jNuPkFiGGXYbkFCG2gUJE8anMLkRyyxDDFCI5RcjAeA3VISKDhYhGGdIfyy42lP4uMYWI2h4l1nFlFSG2QiGiUoYY9nWpNLYpREayCLEVV8YrlCGGXQGkliE2U4o0tleIYtUxrEIktQwpjWtKEaXjtu8DWvuJiAze/jlliM2+zbQew6YUySlCBsZrqA4RGSxEcsoQW9OliEYZYlCIYJiYDEnwlGe9p5Fx5zbqPZEUaX7IVaT1oUlRt6EPktf/XHdzdGP3A/Q2wCrq6L236Ft316LMNnAf0/wgpihkM+YUIRscp/CdziiH1uSHbWpvM9eB5oe+Reqb2otIq6lXvqbGbebh0MhttubepTvu7Cbd55umTpfVxP1LRGSiwU3PV2pD9VhNTYq0Os39/lO7dQ+6G7KRdsq4DT0nTO9U/CDVMrepmfdM2tdxY3+Mi/80Z7mmdzR0uylfFU1OijT1Ia3mB4lF2u+fW7O9v3UamAhozTXzd5TMN3R/mG7gDylRngwxGjpWrQkmW3dtM8/jmpMhRlOTIk0tfPOdSi+X1qR2UXeiLaI0+T6gofd3ZlN0bU1Njhy4v87kTVFTkyJNvc9t6r3Y5eczIYIlnCYLAAAAAAAAAACMtYbW8Y637kRLdTXP7Jalm0FrzPLsrOYpa5qZPyuulNNc8dlUFbPrgUurYjRXlze1ynPdXc2sDFo0C5mmlg5c67rWPO1af8xCZaJZhsyva+ZGs0+x5NroOsWaHYOrBRendMadnO2dYkdx9eTa7cv32wNb9AqDmR2Dj4c5pXph/W2DpyrZe6h7M89YMzsGVxyZ1wsNa+6el32H6q1INEWItsneY9b8/wOblU6JY52+S7NGa3WWT4ujdXokkeUCbWaH0imXrOcAreKk0dNkHSicokFzlVvvV58/aOk5YWqP0mlbeisntd7b2Btya75nai12Zf6gpeeEqT16K8EX1i2Nae5f9v0uldYpoWzmPanmqsTFmeXnLc2/IcxY8xt6t9tundttYs/ga9riep3XNHNqqNa8/pNEd7KtWoesliKkxNQLioVId3JC9zRZZsW+qSKUypPugQNL/6P3/1sbN+iMO9nMKdOWxi48N2jef3vXrVbVY2+ornWspdN6KT4+FgunHZrYo1fPFSsD1TLAlFJKp01roggZvIDebaX4Wlx8T6P5Gm9Op9me0y3nFjYs3ccmd+vdv5qoQkREJgvvnxfW6L2+Tcxany/MaJ0+Xv+9WPFvCIAyBAAAAAAAAAAAjDX2DInw5Of+Vf9/56xaqFvZmzq273x9U3vzZ0BdRUjO/h5V50zOWeVYVyfM3JO2esOUID45hYirCOkqLORwFSEae4YsehaSp5YhdSVITjGzWLHSe8296Y8LZxGisHjFt+l2bhliFyFGThkyOeu//uYyCrJiEWLLKUTsIsSWWojYRYihUYbYVYhIXhmy5m7/6sCcQqSuCEndO2SypuLKKURcm7prlCGu/Uc0yhDfnkQznsd2nbqV+TmFSFNViGs1l0oZ4vlVc8uQzpT7/pnzHseuQrTGrXrfmVOImCLEJacO8a4Wber08AqrEl0rJXP+lqi8zTLqELsIsaUWIi3Pn5tNFCIiOqvWtcuQpoqQ/l4hPjmFSMf/s1mliGsvB4WCoV+G2BeXWIiUipDSN6Tfpt11/sdSzv232/bfb3MqEbsM6Y+Z+VjzPc40Hi8LG8rXcU4h0lnrfw+eU4i0d7vvt32JpUiTZYhz/xyFksN1f8opREy54ZNaipjSxCenFGmqDHG9T9QoRHzvkbQKkdDLC1H8W+Jr//lmjcPBKkYZAgAAAAAAAAAAxhplSIBiEWKkrFYIXdEbM7avBnGJKURC9gZJKUOqihAjZXVjaJWQUobUVSEiaWVISPEQU4jE7A0SU4j4ShBbShkSsj9IShlSVYQYKWVI0B4hCcfrK0JsMYWIrwZxiSlEqooQI6UMqSpCjJQypK4IMWLLEF8RYkspRFxFiC2mEKkqQmwxhUjoHiGxZUhdEWKklCGuIsSWUoi4ihBbSiHiK0KKYuuQmBX5MYXIMIsQW1IhEvCrpdQhviLElvJep6oMSRk35v1mTCFSVYQYKWVI8OrQESpEQlZGpvxNEfIzMYVIXRFSFFuH+KqQge8ZoUJkte0VUluGGDGFSEURUrr8mELEVYTYEuoFXxFSuvjIQqS2DOl/Y/xtW1WGGEn334oypD9uxHXsK0Kc40Ycb+jjLOVx4ypCbCmFSFUZYqQUIrVliEhSHdJEGeIsQnwiio6Q+05KIVJXhoik1SF1ZYiRUogMswyxxZQiMe+JmqhEUt6Tuf6moBC576IMAQAAAAAAAAAAY625EwlCRPLO714lpgiJEVKEGGYlbEghElKEGGbWv272OnWPijohJUiKnL0vqsQUIbFCqxCR5dXUIbdLSBFimOom5PoLKUJiBJUgiUJrkFgxRUiMkCLEmO5VaCGFSEgRYpgSIaQQCS1CjOmdi8F1SGgVEiqkBEkRU4REjRtYhBgzOxeD65DQKkRk+b4eUoiEFCH9Y+g9h4UUIiFFiGFW9YcUIiFFSKycPRqqrGQR0j+GuaXrNKgQiXjqnT9o6X4bWoiEViEiS+91QiuOkCKkOK5I3h4iqUKKEMNUR6H3y6gVoV1ppA4x72VDViPGrII07+lDVkDHrJKe37B0e+TsIeIysXfpNTB1/xCX7tTSY027EDGrz4NWHa+yIkQkogoRETErunP2EHEw9UTWHiJF09bziMJeIkZ31+7gOiS4ChFZLl4CCpGQImT5GCLuvwFFSP97e9dxzh4iznEjjjd4zMLrn+ZjafGgwb/3c/YSKerMLH32E1KIBBUhxnxvvIBCpMm9QqKY9yEKe4mIlN/X5OwlUmRXHqn7iLgUy5S6SmQlixBjsvfeW2MvkaKJ3ucImoVI8fNFjb3dcN9DGQIAAAAAAAAAAMYae4ZUcO0VYvhWJmiUIK6xNUoQ154hMSWIj68MialBXHyz2BpFiGvvEI0ixLV3SE4RUrVnSE4RUrdnSEwRYnPdPjEliI/retQoQVx7h6gUIZ4hcosQ374hGkWIa++QmCLEVlWGxBQhtroyJLYKMXxliEYJ4to7RKMIcb3maBQhvr1DYqsQm68QiSlCXHx1SEwRYqsqQ2KKEFtVGZJThPj2DsktQnz7hoxCEeLjLEQU3u36CpGYIsTF934npggJHVMkb3Vt1d4hMWWIzXc/zV752Vzg6VyJqLHq0XX7aKyI9hUiMfuFuPgKkZC9QnxWYg+RJsqQFd8nxMdXh0TsFeLjLERC9gqp46gYQvcKqeIrRaLKkIEfrL7NY8oQW+X9N6IMKY3ruG5j9grxjus53tzHmu9xFbJXSB1XIRKyV0gdVykSVYb4OEqRJsuQqD1DbBWv5zk1ket9QsheIXVchUjoXiFVfIXIKJQhPq5SRKPGaGIvERH/sVX9jcHeIfc9lCEAAAAAAAAAAGCsUYY4VBUhNrMyQXNvkOJqB829QewyRKMKESmXIblFiGHPYmvuETJzz0Ije4PE7G8RwxQi2vuDmEIkpwRxMbeVRhFiFK9Tzb1B7DJEbZ8QaxitPULsMkRzj5BiGZJThNhMIZJTg7iYQiS1BPExhYj23iCmDmlijxDzGqS1T4hdhuQWIYZdhuQWIYZdhuQUIbZiIZJThNjsQkRrnxBTiGjvEWIKkVEuQmz9QkT5na4pRHKLEMN+v5NThFSNrblKvViI5BQhNvt+q3VO8KYKEbP6sInVja3FbiNlgSlEcosQmylEcoqQoqbqEJHBVchN7RUiMsJliGEXIgpliEihDtEoQmy9ikGjCikyhUhyEeLTezzkFCEu5j6cU4SUxiwUIhplSH9ca9W/1mPOfnxplCEi5TpEowwxioWIShli9AqRpqqQrCLExexvpri/jMjyewaNMsTWnuuolCGGXYiMchkiUq5DNPfpaLoQifkbg0LkvmNEdldavZrYIL0z1VL9wKWv93w1f1AzTzZakyBGUxuki7BJuqE9CdIfV3ESxDATTQtrdcc+sGXp8TAxq3t/a2qD9PW3L72JXlTe2ExEZO1d8zJfcwq1FOvuWjpmtQ+1erQnQQztSRCjqY3SRfQ3S193+9J4HeU3pzM7l26zRcU/JkSWJwUXQzbQjtSf3G1gbBH9zdLnNixdt9qvofPrlsad2a3/BqWp107tSRBDaxLEMM+NTVwP3XZL2vP6t9n8Qb0NeJWHNpNu6n8Ym/uC8nWs/d53GBZ7H+xpT4ZM7Fv6YKezVufNpdlU3Tw+QjYkDh67wQkQkVUwCWKYDzjndd+f9DdVV96sXUSWN1hXngzp7tq99D+2blYdt5EJoYbGbXpjdVG+O5hFo2bTci1mc/Um7r+dmUmZvHuP+rj9x/CobJ5eR+kDepvWB/8umhMhIs1M2BSZxSVan3E0tbm6yPIG6/Pr29JWfDky79H0P93AOOA0WQAAAAAAAAAAYKxxmqyC0NNjFU/z4dowO1XxdFOaK+2m9linAVIqQxo7PZa1mmpSccV+8XQnrs2iU9m3l29T+VhT1ilkJpVOI7L3/oPz4y2NGfji/VdxwX5pE2Olm80+PY/WbTazq7mn1OLmvZplyHShWNAsQyb3WVm8Uhlib2intYJ4al9z5UbRwhrF6/jA4INtUWnF+sS8/bqhs9Jscu/g8c5u0VlBvObuwdR872F6p6OY3r18zPu3KWyi2dDpseznXa0yxH6t1CxDiiXE5H69cRfWNpPy26/1vs3lYzVWxlg0C5HJwvPlouJKVPsUS1rPl/b7dbX3absHXzfmNuslt8X3w5qlgf14mL5rr87A1kp1tULEeu+gUYgUT/miuvrbOmWR1qm+WnutCkLrVE72KZZm3Rv7xmrtt6qjacUUvXA/6+7cpTfulk3ey8lijdNdo3Nd2M8JXcVSpKnTZQ2UIYpLcu0yROuUTqXKQOljM/s5berO3SrjiijfXiLStgrCxU06p3Iy5V//cpTKv7nNg+//NT+rK1bBmu+nFtY10y3Ypx2dUDoFdpOnyyqexl+zEFmzffk5LfRzA06XNf4oQwAAAAAAAAAAwFijDJG0IsTImW2uWpWWU4bYJYgtpwypOuacMqRqxVtOGVKqCgpyypC62yd1xaFdgthyyhC7BinKKkOq7scZC+KqbrucOqRuw+bU225YRYgtpxCZrtjDIqcQsYsQW2ohYhchtpxCZFhVSFHOime7CDFyyxC7CDFyyxC7CDE0yhC7ChHJK0OKJYgtpwyxixBbaiFS9zybU4hUvU7mFCJVJUROIWIXIUU5K9fqXvNTC5FhFSG2nBWNkxXPlTmFSN2m26nPl3Xv03MKEbsKKcopRKreE+cUIlWPgaw6pGZFemohUvdeIWclcdXK8axSxLGZtUYdUipDjNxCxLf5dmYhUipDjJxCpOJ+llWI2EVI4GXWqvnZ1EKk7jkgpxCp2iskqzioekhlPAfX7RWSWojU7juR8fFZ1fNaTiGiXYQYdhlSlFOJ2GVI6XITn9/tMsSW89ld1X5xOe+rhlWGFOVUInV7huS83y6WIeVxk4cdKEMMChFQhgAAAAAAAAAAgLGmd5LfMeQqQWxmVV/MLHPIKjTzPTGFSF0RYn9fTCEScsxmFjimEAlZ4bYwszReTCFSWRVk0NzLxVZXhaSqKkKyNDSV2tRtV1eE5GiqCvn/s/fnUbdkWWEfuCPu9M1vzJcvpxqSmueJGpgLhJhMgSQLybDUCKuFheylZaBBLLttqW1J7Za6wLK0bBrUxhJg1AIhhMRUSAioolSVBVWV1JhFZWUNOWe+8RvvFNF/ROy45+4458QZ9vm++31v/9bK9fJ9795z44sbceJE7P3b22aExGAzQmLoMkJC6TJCYjgJIyQGkxGC9KZFkB1iMkKQwV61n0IMEZMVAgAwulFl6vgYIjoThLL5ZJXJ5mOI2IwQZP1atR98DJEuIwQZ7JfedoiLfYdzqo8h4mJOjrer48zHEHExIdDu8DFEbEYIgmsTn4w112s+Zt/5GCInZYUALLIbfTIZbUYI0juqXuNjiHQZIc3nH8297BDXdTl+xz6GiM0IQYY3q7nNxxBxWROXvcz5tYjLMT+5axMAPA0Rxwz0/HDqbYe4GKSYFe6TQeySKY6v8TJETIYFtDOgfUwRoxGCzOZhdohlewEAYDSs/gwwRIxWCAAAmgecPUQAIDu3AwDMPUQAFgYAYz8OJDuq9gVXD5Fm3HqbOXuIAADku9WxyG4g4GmW4L4ymxds/UOWB673LXOBlemVbQDg7SGSkt6tQwDg6yOiUoz6bH1EVEKe3bkQsq46CSMEQSvCxxDpMkKazw9Yb9uMkMW4UI/rPKzWCEHo787Vg1Q4Pcg3LgiCIAiCIAiCIAiCIAiCIAjCmeaO7xmi6xfiYoRQXKLLIXWJXbMSXa0QFRczJGSbXcyQkJrHLmZIiFXgkgEbYoS47rsQI8Sld0iIEeLUOyTkOPbIXvYb2O1lvlaI63fHbYTEmCC23iExJkhX75BQG6SzFniEDWLL7FhFE8SW7dxlgtjoMkS6bBATXXaIzQTpwmaIuBghJmyGiIsRYsJmiLgaITq6DJGYfkw2QySml5bNEImxIGyGiIsRYqIrYy3UBO2yQ07SCDFhy2R0MUJM2AwRVyNER5chEprx2XXtdzFCTNgMkZg+ILb3xtTtthoiERnnXYZIaE8xALshEpMdbjVEugwL27gWQ6TTCLHRZYqEbnOHJWI1QrqwmSIRx5vVFLH1CunCtk0x29thiYTOFV2WiK1XSBdWUyRG7Lb1Ke3oFaLDdQ7o7BfSGtjt9SFzm4shchK9Qky4GCJdvUK02+JoiHT1C9Hhsl6w9Qox4WKInKQZQnExRFzNEBXXdYiLGdIeu/s1NjPEhO45gvQNOZuIGSIIgiAIgiAIgiAIgiAIgiAIwplGeoZAmAniSohZ4UKICeJCqu2NyXrr4rT1B5HeIAtOW38Q6Q2y4LT1B1lFI6SLGCvERqgR0kWMEWIjxgixEWOEdBFjhdiIMUJsxBghNjgsCF0PkRgjBDHVNI699pv6h6yiEYLoal3HGCGIqYdIjBUCsJgbqSESWwPc1D8kxghBdD1EONbGIT1EXAjqIeJAfljtB98eIi4kqzEf0kPEZdw6Q9qnh4gTs3q8kF4iNiL6iHQymbL3EQE4fb1ETlsfEYDT00uEnr9svUToPmUsuoI9RABORx8R7CGCcPUSoSYQ5zyvrs04+4ioNolPH5GTgtoQPr1EbNCKMTHGantsdVy2YaWXyB3EHVsmC8tjcQdCcBLlDirgDRp3EARLZaUIghT9LEkQBMtlcT9Ix4dB3EEQ3LfcQRAslZUiCNKUy+I+juv7M/YgSD0cdxAEv7vTFATBclncgRAsl8UdBEFtnDsIgguX0xQEwQd73EEQLJfFHQTBclncQRAslZUiCILlsrgDIVguizsIguWyuIMgWCorRRBktFskefCPwRCOQIgK3phxX/tPUzAE4Q6GINzBEIQ7GEJp1m8MwRAVDIikWCNn85L1YQPSBEWYH6ZiUCSmPJYOfFjG3Ty5eaAaUR7LOHYdFIkqkaUDgyLc21wHRaLKY+nAoEiCB/flrdtx5bFM4LYybzMGRbjnCgyKxJTH0tEERFI8+83DymN10QQ7fctjdQ5cB6CY5zYMiqxSeawuMCgSUiLLBs7zIeWxbOBaIqQ8lg1cY61SeawuMDAQUiLLBq5TQspj2cet/gwpj2UDnytIuayzhYS5BEEQBEEQBEEQBEEQBEEQBEE409yxZbK4jZASh2POhBjdqrKEUmitk+3cuQG1D6jDcWexDA4wgixlsQASlsUCSBYmlbJYC05baazhrWpc7iyZ/mE9LnP25tpzlao930xQdmFSQDnkP0lGz9fbvDVkHbe/X2fIMm/z6FqVPWZrkhzC+tNVVmzZ59/HW1+s9vHkAu8+PvfZAwAA2H0xT0kAZOO5ap44vMg730/XsUQU67AAAHBwOYf1a/wXVG4jBME1S2/CO99jhl6WIEs/FcUgh+EtfiMLy2UVI97jGC26OfO4CLcRgqQsHVsMc8hn/OuL6aUNAAAYXD/seKUfKe5vAADmG9Ucz102Kz+ozo9iiz8rG695p0Aiq0CDg9sMSXRMAFRls5KcfbgvprzHW6q5IivS3PTi9iY5rxPdpze2F/c2JzqOsXRW75A38z0lWD5rdnmLddwUphBAOpMX76FxXVj2mU0yFNQYpw00IvJZ2Sp5FQOOZSpZGz5u9efBlWpO3niW5zzhKhsmrBZihgiCIAiCIAiCIAiCIAiCIAiCcKa543qGvOn7fxwAAAb7PL92SZLRuOwCNEKaz2HMLphsKzEwxoA0jRZzZbOgEUKJNUR6huRHzJiNGnva3maOY2Oy1d42egyGMDP8zrHnyXxk2JdM50nLCGE6njEbG+HMSB6ovQoYz7/eUaIsL3KJ4DJDeuPlfcxphgxuL7IUOc2QTOlrwmlZ9PaWJyMuMyQjfVi4tjkf67OOOQwR3dgchkg2a58fHHbI8Ib+QhJriAwMvXk4DBFdxhuHITLXlGzmNETUNQZnTwSaQUd7fYRCrYLZOo+9kLKxo7ovBrf5DBFai32+niabk8sQodd8zv5F0x3ld2e8A8NG6ir9g3hDRFdHn8MOQXOj/YFx45p6hHAYIr3ddi8PFkNEcyue3zqIH9fUQJ2rdwjZ7uzWHs+4I15z0wRrLwd1mzntkEGiIh70mGOyycqN5YVAKvOrYLyGTM4tH2/D2zyZ5JOd5fuPwS5ThvqR4fiKfKRXDPX7tH99P2pcAH4jBNGdwxxrosJwvxT7LMdknHAZIvMheRbHuMZQn+txGiK0Zwjb+p4Mw2WI3HpxNV98+Kd+iGU84WQRM0QQBEEQBEEQBEEQBEEQBEEQhDPNHdszBK2CkMx3WyZ+WYeXYiLH1AoBWGRnx2RYLBkhCP76EQFeU3S47GVRdojJCOHAZIVEj8uUUUrRGSEcmIyQWIxGCAOp+oNQG2T5M6sTOsQQWTJBKBHnXyoTBKFGCJJPq8+NMUSoFQIAkNc1e2MMEdUIaT5rv8oEiTFEqGGh/izGtqBGCP15qCGi21715zHbbLJCYkk1rs4I4cBkhMRiMkKQ9evhPURsNZCxxi53D5HDS9WxFmOI6NYYHDWGTRlz2Osj1BAx9ZnoH1bfXYwhoqtZjD+LyYbU7YvpTjX/xBgiOqsAAKB3OEtih+C1JdQQMV3jjy5X+yLGEFkyQhA8tCOWNTojhAPTdwcAML1YmW8hhojRCEEY7kt0YG159h4ie5Utwt1DpDhX9WhhMURagxdxdohhfVieq7K/gw2RYzJCEDzGowwR3TajzRFjiByXEYKgRRRhiFArBKB9L8FliuSHy/s2xBShRkjzc8Xo4LJEAACm24txuSyRJXDfMhd9mV3cBAAeQ+Q44FgTmSjzND1mOXqIUCsEgKeHiO5ZHq69YwwRaoQgRT+Ls0MMb8UeIgBhlggaIcLZQswQQRAEQRAEQRAEQRAEQRAEQRDONHdMzxDsFULxMUN8ejP4RI11JohxGzwyKrQmiAmPwK5PFNjXDPGxQUJ6hvgYIT69Q3yMEJ9jw8cI8Tk+fYwQX3vKywrx2BdeRojHJtiMEIqPGWI1Qige25vSCDHZIDp8zBCdCWIcN8AM0RkhJnwMEZNhocPHtjAZITp87ZBU2+xjbvj0DvEZ16d3iI8R4tM7xMcI8e0b0mWFqPiYITYjhBJihuh6hZjwMUR81ho+WWQ+GXK+dojJCtHhY4jojBATPtmQPvvCxxCxWQWUVekf4nN99zFEtEaICY/vw8cICekd4vMd+hginWbI0ka4vxTA3C9Eh48housVYsLLEPFYc3kZIqZeIdqBPdZcHtvrbYccsxWiw8sQ8dneEEPkuM0QHZ6WiM4MMb52BXqJmMwQHT6GCO0VYsPHEDH2CtHh+XjP1C9Eh48hcpy9Qkz4rIlMvUJ0hBgiPutxX0tEZ4aY8Fn7+TzL81m3m8wQHV6miMdLfQwRkxkivUNON2KGCIIgCIIgCIIgCIIgCIIgCIJwpjnzZojJCEFcst59Mu4ptqixjxFCsWVUeBkhlI6AbmhtwK6ockx/EJshEtMbxGaGxPQGsR0TMb1BXI7TkB4hrmZIUJ8Qh6yKqB4hlk3yMUIotgxSLyOE0rELU1khPkYIxWaI+BghrXEtGZ4+JgjFxQzxsSsQF8vCxwhBXM2QkG0G6N7umF4eNkMkZlybIRLTI6TLEAntE9JliPgYIRSbIeKTgUZxMUR8jBDExQwJWWe4ZI3F1EzuMkR8jBCVLjvExwih2LIhY/aFzRDxsQkoJ2WIhPQCQ1wMES8zBHHYjSG9QlwMkZjv0GaIeBkhlI5f1ccIUemyQ3yMEIrVEIlYc1kNER8jpDVwxz4M3GZnQ2QFzBDEKes8ZnttpsgqGCGUDkPExwhZel8iOwTAboj4GCEUmyHiY4RQXAwRLzMEcfzefcwQxMUQWQUzhGJbG/mYIRTb852Y9XiXIeJjhKh0rQNj+v7a1vE+RgjFutaPmOJcDJGuniFiiJxOxAwRBEEQBEEQBEEQBEEQBEEQBOFMc8ebIQDtzPcYE4SiRoljTBCKLpsiyghBDIHcUCOkGdYQXY4xQhCdGRJjhLTGV2yKGCOEQjMIYqwQFXr8htggOuh5EmSC6DBkUkQZIYhmE2OMEESXSRplhCCGXbqKRogKtUNijJDW2ErGZ4wRQqGGSKhZQTGZFiFWiIrJEIndbtP2xpgbiM4M4RgXUQ2RGCOEQg2RUCOEQg2RGCNEhdohMRloFJ0hEmKEUHSGSOw6A8CcNRZjQgCYzZBQI4RCDZEYI4SiZkHG7gcV1RCJsQkox22IxJghAGY7JMgIoWh2a4gRQtEZIpzfITVEoqwQFfKrhxohFGqIxBghlCVDhPGWW2uIxJghzcCGfRq57UZDZIWMEB2tDHTO7VUNkVRGCADfcUcMkVAjhHLchkiMGYLoDJEYMwQxGSJBVogOciyEGCE6qCWyikYIRV0bxRghFJ0hwrEuNxkioWYIYloXxpghiG5dH2OGUJbW/IzrW2qKdFkhAGKGnFYSXnlPH5xBEApnIARg8RBzvMO80fVEUgx4FyZ48zbc5X+oO9gvm4AIZxBEhTMIQuEKglC4giAUtiAIUl8T+56N2p2oh9x4nvf86x9WxzE+RGEJhAAsLuT1Ll71IAiFMwiiwhkEQXr71UKnGPDOoRicyCdMNy41GEzBoAhX8AbHwaAIZ7ACb97ma33WcSmcgRAVriAIsv1Y9YDw6G6eBwjI+vVq3x5c4l/EFP1FQIQjCIIcXqqONwyKcARC1HHwBonr4T+uiTAowhUEoXAGQdQxOW/0kelONRcNb/LOz73Det5gDorg9QmDIrFBEOTocrUfMCjCEgRBMmjWBRxBEGS2Ue0DDIpwBkIAAKYXq8BvfsQ87+O+sJRKDKEYVd+ZT1N1V/K9I7+m6o4U5zaq8W8d8ARBmoHrOQiDIkzrxfJc9XC0CYqseBAEwXOjXOe9bgPAIgAS0mD9JMDjzLOxehd4T5IiKJIfzpqACEcQBOEIfOiYbi+Pu/acufRgELiPme8DZxc3AcCvufpJg+stnwbrLpT1cBgU4UpQykiyz2yDZ7vp9nk1K+9AHWt8LsU9Ssa6vcjBleo89GmwLpxOpEyWIAiCIAiCIAiCIAiCIAiCIAhnmjNbJsulPFZDvQf6Y/5dgabCYJ83i2KyVUVXS+ZwFmb925pAhYCZNa7NuH2YrWWQJ0g6LhJ7U0Wd5ceZbQsAMF+rxuXe/hyD48yJO4PdOiMoQWh2/Uad9ch8fOQkK59T2wUAGN6qLQBLA+oQ8nltATBvL+6PriZvIWSTAvIp/wmOmaXcmWhZvY/xT3bqbM2COTM2r+0KzuxjJBvPoWA+lgEAevtVRvp8k3cS7R3U5x9XaZcaPCYO77U3VPclnyxfV/fuYZ43EpghdOwUawMAfqsTM+jWrjFni2GyZoLM2LKfsc/5S+NnAKMb/PZeqnJZ061qXC4bCUG7HM1RLjBr1VSqjYPBHm9men9v+fxIdb3iXiPhGmb49C7ruPPtygzhNnAAqvUcZ1mvBrQVhswZ8PUclx3yzxkAC4Mj9ficZAdHUG7w20O4nuO2Z0u0hpjP68b4YijPozK9uLxv58ymZF5vb5Fg/Yz2ArchP6stc25re75Rzck9Ziswq+8D0eLjJFW5rIZEl24uM4QyvFXN/bNNXpMDy/lzr0fx+VEvwXPcyU49h3oczlIu63QhZoggCIIgCIIgCIIgCIIgCIIgCGeaO7dnSKIobaqeFQgaIdzQPhC03mEoNAsKe3twZIHO1hbbXNS7hcMQSWWEpMgYUZmvpRk/pwmwpK9FDGiFACi1NRlCtGiEIGWPxw6hRggXaIKkIk9lKcDyPsF6phyGiNoTA/t6cBgitNY4V61iaoJgY9doQ8TUzJSJnGQMYsM8DkMkUzLO8rp/CIchgkaI+ncOOwSNEPr3WEOEHgPrT1Y1oDkMEWqFcKM2UO/Vu53DEKGN2aebWRI7ZF73+og1RGhN5aNLVbZ0tCFCxuWsna7Ow03de8aMPHWfjC9UBwWHIZLaCEGwznSsIUL7DWIvEg5DZCljlfSt4WS61We3Q1TyWcFih9DrldqXKga6Zplc3QYAHkMErRCAxfnHYYio5zJ+BoshQvtXTOo5jtkQoYZFrMlBx0tliOB4HIZIdnDU+n8OQ4Su38p+nqa3Go7JbIgAXX8ymyK9+v6CwxDJlW3jNERo/7DpzojFDkEjBCnqHlrshshaNS63IUL7OnGbInhPy2KInFIjBOnXVW24DZEU61GA9rNMTlNEXedxVxsRThYxQwRBEARBEARBEARBEARBEARBONOcyZ4h1n4hDr9tSO8QFyMkpG+IqwkSkk1PI6g6YswQW+ZTTAbozMGACDFETtoI8c22dTVBQn6vlg2iIyKgrxohlBgzhBohOkIi+i5GSEiGg6sREpL16GKDxGRl2PZJjBmSOezrEEOEGiHa1wRkY7uaH0GGiIMVEpNtS7NsVWLMkMySYRZjhlAjREeIIUKNEOPYnoaI63ceYoi4GCExvUOouaESY4bYxkVWqX8INUJMBBkiDmPHGCK2eThm7rftkxgz5LiMEBMhhgi1QnSEGCKqEWIiVQ+RGEOE9grREXLNsl2rVHzXSq5rlRBDRDVCTMQYIrZzOMoQoWaISowd4jCXhVgcrobGKvUQUY0Q47gRhoht/RZjiJQupnLA+e2yPgeAIEOE9gvRDhtgAeQO2xJjiFAzRCXGEKFmiI4QSwR7hXTha4pkjvd7IYaIy3U2yBBJ/GT1uMwQ7WcHWCLYK6SLkHWpyzOjEEMEe4XYsD1Pkr4hpwcxQwRBEARBEARBEARBEARBEARBONOc/Z4hiaOzqXqEpOoNAuBmhCA+vUN8Mpx8eoe4mCAxnLQREoJPfxDMxHX5PZ2MEMSjd4jNBKGE9A5xMUJCSNUjBMCvT4hPXWyf/iA+dTt99kVI7xAXIyQE54wzT3xNj7KXu7/Ho08IZsy6ZNu6ZtcChPUOsRkhzTYE9A5xMUJCcDVC1Ne72iE+x4dPDxGfHiFbT1X72scQcTE3QnqHuIybGt/+Ia5WCIBnDxGPcUN6iLjMuyE1m132R0jvkJM2QpB8VjrbIS5GCMLZQ0QlVQ8R3G8+hoiLEYKkumYBVGslVzvEZ33C2UNkaRsCeoi4nLNBPURsRggyId+ziyniM3d59vnwsTJOQw+RpXEDeoi4rNdaffMczjEnIwTx6CPivT7vZez9QwB4e4iohPQQsRkhyHRn+VhzMUVcjBDEp4+IqxHSvH6tx95HBGDRS2Sle4hEcpJGCJKqjwhA+l4inD1EANrrQOklcjo5+TNbEARBEARBEARBEARBEARBEAQhIWeqZ8hSrxCG38rUOyTWBunqHRJqhXRl0vsYIRSbGRJT89ZmhnAYIabeIalskGb8QCukK9PWxwih2H5nLyOEYtkkHyPEhO645jBBbBH8GCOkK6PBxwih2DIefYwQE7pt57BjbBmYMUaIrXdIjBHSlYUd1P/D5X0+2XcGdNm2vtm1Oqw1qAPqCyM2QyTGCOnqHeJrhTTjdpghoccGYrJDfIwQEzZDJMbcsF23YsY9qd4hPkaIDqMdwpDsZpubYno12a5bMfvDZoikMkIA/K0QSpch4mOGUGyGiEsNcxMn0UPExwgxYTJEYq9bXYZI6PnSZYe49AoxYbufismWtRoiLkZIFzpDJKLfUTNEh8URamOk6h8CYN8ml14hxnEthkhMjzdEZ4h4GSEmLGvxKHO7wxBx6RViHNpiAbj0CulC94zAxQjpwmaI+JghFJsh4muGqHQZIq79QihddkjMdRbAYomc4V4hJroMEdd+IZSu611Mf1kAsyXi0iukC/X5kvQOWX3EDBEEQRAEQRAEQRAEQRAEQRAE4UxzNnuGJIrMrnp/ENprIcYEoeh6h8QYIYiud0jKHiGr3h/EVIs9xghB8ln7948yQhBN7xAOI8QEV38QzOzECD5XfxBTzcsYIwTR1cPmMEJ0pOyXwtUfpBjUdW1J9lBsnxBTnf7YrP+yl+vH4ci+08BhhCC6HiIxRgii6yHC0SMEx6CGSKgRQt9PDZHYY8MEhxGC6HqIcPTy0F23OMb16S3mg6l3SKwRgnj1D/EkK8vWvBRjhDTjaq5bHPvD1ENkVfqEmMjrvlfUEIkxQpDZet6yQ2IzVQGOt4cIhxGC+PQQ8cHUay32fDH1D4kxQhBdDxGO+unaHiIcRgiCvURceoh4YOrzEdufI1X/EByTbl+MEaIbw6ePiCu4bnbpIeKFoYdIdD8/XIsSUyPGCGmGVu5R0BLhMEKQfF4m6SuKvURUQyTGCEFMPURirBCAqn8IQNsQCTVCEOwfgpz2PiKraIQgfVLtBk2RUCMEoc8YT0sfEYBqnSj9Q04PZ6JM1pv+6o93vyiCUaIHu1w33pTZerpgAt4gpiLZ5JFol6Rqkj45l2ZcDIawBEEMDPbSHCNrt9IcHD3mpqYIXrg5giDa8QeJGoOnPMcZAqg6MBiSqll6qu3OTuPVl/tGmZDNE10EGEp26OC+yULGl/kfdqgc3JUuF4bjgbGOVGWzUq1rmmBIqvVHomtAqnUNAEA/QeNUFa5gCIUzuUjFVoI2hlQlswAA1p8+TDZ2SmZbvA/qkd5+wgV1QnrX99INPop/AHucpCqb1QRdGIIhOoptfVlNnsHTDFt2lK8Lpg5WcARDdHCUItOR6p6LI2HVBAZFYoMhJvq7ae6bpztp5qVUa7FUQRCEIxhi4uBqmuttVwnTULrK1Mfykf9NymWtKlImSxAEQRAEQRAEQRAEQRAEQRCEM82ZKJNFy93EMkyUfYj0D6p0i+kmbyxqPqz16no/cGZnLkpwZazZBrSUBrctgyW3+swa3GR7eUP7B0zjYuMmTempWPJJCXmdbIHlFDhZf746SLjLnI12q3F15QNiSGWEDEk5EG5bgVsVVUmVodRSlgc8k5OtgTrL+FjCacib6p6yTFY2XmSpliPGzJxTaoTku8tZzMXOBs/AdRZiflDt72KDNwtq9HyVSZrCEOkfzCHF8q+nlPTiNFSxTCded4dMtu7iWlWPu8d7jI8vVsfE6AZv5jheA3uYnTlinJ+KEvJ6fM5sx3xal5Wos2s5S44AQLLyuLiONpXNCqV1v8K81ksxLjK+tAaja/yZ7vR4w2MmllRGCB5z83ru7x0wGyK41kuQ4Z0VJRTnN6uPubnPNm65sUivzRjP8Wxv+Sar3GK6jtcUW9V1Nt/jPa6xpGG5WRkc+T6vVYXrG05DJFPW6+WAf52QTarxyyFz6aKD6t5rVP85vv8c6/i6UrExNAZmD8v18K4/TOV+OcCyWdm8ZDVm8BkQGhyD2zyGyHyzmqNx3cFtv2IFiMk5ZvOEbibnpSADmJyvzsHhTT5D5PBKta9p6X42EjwfA2hbumzbfRorQNxhiBkiCIIgCIIgCIIgCIIgCIIgCMKZ5kyYIVyYjBBd83Bf0AZRGezzGSJohXCTrJ6xIQidlXF2iMlKmI14DBFqhHDSWCHM6BrwYj3pGEMETRBK/6hksUPQCOHmuIwQBJsRchgiS1YIZt0xZLgclxHS/Hw6j7JDTEYI175GI6T5+6T6vFhDJFWTbYBlI4T+LMoQOSNGCBuGbNfTYIhURkjFzheq+er2C+ML5fYYm7yrmDKzJttZlB1iuj5NtqoPjDVEaC+g8QU+Q0RnRrIYIppxG5sjwhAxZfcXvYzHDiFDDHaruXu6HXd7YzKrOQwRrcWeKNuRc1y1D8n4UjUfcRgipuOrGORRdkgyI8QAqyGirvUYDRHd/MFhiKhGSPOzHlYrSGC21KZIrCFCs9q5DJHC0OC8OEWGCABANq0tDg5DhJzm2WTGYofku/rvavT4LQBYfUMEmY+qHcRhiOTKvUZGWgNzmyKp9gdAZYhw2SEqXIZI/2D5XpH2CI0xRWa6Z4O4ucxTagpDBMkKHsui9V2p+yDiaywMy4RkZouwcshXLAiCIAiCIAiCIAiCIAiCIAjCmSYry/LUVjN741/7ce3PfXuHuPYICbEkdEYIJcQM8TFBQnqHuPyuIb0bTEaISogZ4msi+BgiPjZISO8QJyMkYJ/ojBBKiBliMkJ0hBgiLkZIyLGXyggBMFshOnysBa/+IAEZLsdthKiEmCE+PUJ87RBqg9gIMUScrJCA3iE6I4QSZIaccSMkqHeIR4YrtyGChBgiqhFiIsQQcTFCQnqH+GRi+RgivtejEEOEWiE6QgwRl2tekBnicS0NMURcMvuDDBGHt4TYIb7rZR9DxOveJNGaL2jcafe4IYaIz/HkY4gkN0IcD9cgQ8RlzRew/vVZM4cYIjozpLUNAec57RWi/ewAO8Qni93XEjFZIdqxmQ2RZhsCDJHMYd0eZIh4XDZ8TBGTEaKD2w5RCTEiXIyEEEMk97DPU/QSAQjbHy7PfUIMEewV4oKPJUKNkC5CDBGtGUIJuYV3+DVDDBHsFeJCiG3h9P0EHNImM4Tivc2G7+YjP/lDngMJqREzRBAEQRAEQRAEQRAEQRAEQRCEM82Z7BlS9twzsFytEAC/3iEuRgji0ztklXqDYNa6S8aRixHSbEs9nKshwtGfQkdIf5BZnaDkYoh49QjxqPvslB2Ir/XoHeJjhPgQ0hvE59gDOP4+IbF4GSEBnKQR0ry2tjxcDBEfI8QXHyOkec9k7myHePUJKerXOhgiLkYIfa2TIXLGjZDm9bcP3O2QBDXPQ/HpIeJihCA+PUR8eoT0D6vXuhgiq1abd7KVO9shLkYI4tNDxCej26t3SIjZ69FDxCeTHzP+nAwRj8327R8SYlEnI9Gaz2tcByME8ekhEmIY4Xtieoiw4LGrvXqI+Kz5GHuI6PDpIeJihDSv9egh4mKE0Ne6GiK+metcfUS0Y69ADxEXI6R5LWcPEd34k3p8hl4iKqn6hwBUx7PrMeVjH2APEYSjl4gK9hI5yR4iPpVApjuVXeFiiPgYIQhXHxEdw1sTZzvEyQhBfHqIePxa2EME4e4l4tOPw+v78FjfuBohiFfvk9W5ZRQcWLFbT0EQBEEQBEEQBEEQBEEQBEEQBF7OZM8QALMZ4mOCGMe2BOd9jBATOkOEwwjRZb2FGCHtMfT71McGsWHKHIg1Qkx9Q0KMkNbYmqQmLxPEhGUIr+xAAzpDhMMIMX1XIVaISlfW7CobIbqeFixGiCaLIpUJgvgYISZMhkisFWLqHRJihKh0mSFeRogJjSHiY4SY0BoiCY2QVDYI4muFUIyGSKQRkqpvCIDdDPExQkzoDBEfI8SEyRCJtUK6eofErhdMhoiPEaLDZIeE9MWiaA0RxmxyXYY/R+a+0RCJ3HSTIRJrhHT1DfHtY9geQP9jjjWfbmwfI8SEzRAJMUMopuMsWb+QyF1itEO4LGDDec0xj+gMER8jxITOEPExQkx0GSIhPQ1UTIaIT68Q7biJ+ocA6A0RHyOkC60pwpBuqzNEfHqFmEjVQ6Tr2Iq1Dkx2iE+vEBMn0UMkpEcsRWeKhJghFNN35dsvhGIyRLyMEBumKZ9hX+sMEZ9eISZ0638WQ8cyhK8ZosN432K57ErPkNVDzBBBEARBEARBEARBEARBEARBEM40p9IMsRkhFMzI4jBClsatg/AcJghFNUNS9AjBLDgOK0QFM5C4jBCEZg5w9whBQ4TDCFkat05wYjFCKBlTViCBmiHcfULwu4s1Qih47KUyQRDuHiFoLSTpEdLLkhshADxWiAoaItx9QnBfxxohFGqIsBghKrUdwmGEUMrR4I42QiiNIcLcI+S4DBEOI4Ry+4UjFiOEgoYId58QaohwrxfQEIk1QihoiHBkclOWDJFEZkiKXg6NIcK8S9AQ4e4RQg2RaCOEUg+fYu0HGY8RQlENEQ4jhILH3aoaIZSWIcK99qvP7xTzSH5zn8UIoaAhwmGFqFBDJNYIoaAhEmuEtMZNZIhQO4TTDEHKQT9Jmi0aIhxWiEoqQwTBY467DwUaIhxGiEoqO2TpM3oZixFCQUOEwwpRwe8u1gihUEOEzQxBPPpn+IB2CIcRQlHvB1L0bsF9wWGFqDTb7XHZFUNkdTiTDdRVuIMgSJ7wIeN8lCVtvsMdBEGwUapLM24fphvYLJt12AbuIEgzboogSM1gr4S5Wy8uL/BmeHQrzQHIHQRBBrexGXeafX4aG6X39iZQrPEvVrI6SJHiZhsgXbN0l6adQePisEWaYztFEKQZezpPcvOTYxPMFItZ4A+CNCQ6Rnp71fwx3+J/kDR6/qhp1JuCraemcHiJf6k43Kv29Zj5OonX8zzRacMdBEFm69WT+cE+/wOq3ngO84QPolMxH1bbzN04Fhur0yahseB9wXE8UOKmGGRJgiHYWN2l6W0IKR6qVePW9x3M+YJNU3XmpIyGlM3Vh2muM01jdeZxMbhSnN+qP4h3n6Rav6duqj6/vAMAiYIho15zj8AJNlbnJmVjdQAlQM58OmJz9Zw5ITdVU3WVop8luR/DBuvGMpuBcI+HDG9V18TDu3mDqQg+oOdes3Kvm1TwOd98mOY5KHcQBGkawp++pZ8AUiZLEARBEARBEARBEARBEARBEIQzzpk0QwaKDVLUGnzOmKiQomQEAMDRRcXZx+giR39EQ4YQV9buYD9NduBkc3n7mig3w8fNNtq/O6ftk80BenU2wXzEFypWj+1enWjHYYis3TQcI0yb3j9a/tK4jj1dMy8OaIbkbKvayf09vuzGYqRMv4wZa73DNCnRNNsLs+JSGSJspGoKSBu+Y7NzTkMky5ryAKyZcZrG7CzDkm3E7C+u870Zry5LkR3wlEzATExuMnIsJDFE8qzJMp6v8S3pimGiY4SsxUa3eQ0RLE3EuV4AWKwPpnV5r8Ehz7zXI9fG6Wb1HXIaIvl4Dvm42jFTznJCamY043WAzheYBcttiOD6gTvTkT27lgxT1OVzuctlzTaq/Zyk/O/OkNUOyUh5x95+te7hLpHCvc5Bm6rs1eUvuctq1mBZULqfYsHxcHwOyl61lppf3IHe9dts4zZGCILnI7Mhkh1V1/Vyjem6jkvJuqwVlwmLRghS7NTj3+Y1UHBtzGmINJb72gB6t/i2N3WZrAbGZzoAACNSraAYMdV8xJJ1ZEM5zne8jgMoNhijdZHK4MBrwHx9sU7oHcavz6gR0qxdmct34nMcLkME9wctiV8wLKOWWgMwnzMpESPkdCNmiCAIgiAIgiAIgiAIgiAIgiAIZ5pT1UC9q3H6wKE/SIwhYjNCYjK0lowQSsS345LJFJOx22WEhPZvoEYIJSbTU2eEUGIMEVvDzBhDxHZsx5ghJiNEJSbiTY2Q1tiBx1+XERLTO8SlbnaMIbJkhFAipmObERLTO8Qlu2sl7ZCOrNyYrLWWFaIjxhCxbHuUIWIxQmKymKkRoh0/4lrTlT0WaoikMkIA2laIjihDxFKvPMYQsRkhMb1DXNZeMXZIV7Pq0HVD13ogxhChVoh2/AhDBG0QHVGGiK1WfsS1wGWO4LZDVFLVwo4yRBzeGnP/UQzNH5DCEAGI6x/iYjrE2CFd31XoWqerv04qQ6QZP8IQyQ/M31dMxjgaITpiDJGWEaL98Ij7vAN7D8FgQ6RjV8YYItQK0Y4fYYgUlrVMzFrbdu8SY4ikNkJUC0JL4OFHjRBKlCHiYFbEnO+2fRJjiKQ2QmzEGCJdvUJCDZGuZzYxhojLPokxROaW9UjM89AiQY9dAB4jRBqpnzxihgiCIAiCIAiCIAiCIAiCIAiCcKY5Ez1DXIyQEFL1BkGsRggSUDMvZZa2T3+QfFp6Z+h3WSEAYbXAXYyQELqyUVV6Y/8eIi7HdkjvEBcjJJQuG0Qlm5feGeMufULQ7vA5/lyMkBisRggSUNPYpUdIflS9xscQ4az3e+w4ZOKG1DV2MkJicNnukB4iDj1CQurcuxghMbhmi5Uba952yHH1CWHHJVstoIeIS4+Q9WvVuD6GiI+NG9I/xPUaXOb+doiLJRrSQ8TFCGnGD+ghYjNCkMFedU3wMkQcjr3mNR7rUJ81QKr+IQDV2iKFHRLUQ8TjpSE9RGxGCJKqh8h0p1qscvYQUQnpH+L63ZR55n2P1WWFAKxmDxGbEYKE9BCxGSHI/GJlMnD2EFkiYK3dZYQ0rzsa+9shDruPu4dIa/yAHiI2IwQJWWu73KvMz1Xby9lDJJZOIwTJwDvTvcsKAVi+9rP1EVEIOd9d9klID5FURogP2EfExxDpMkKQbO5vh7iYCupruPqIqGAvER9DxGqEIKeoh4hwuhAzRBAEQRAEQRAEQRAEQRAEQRCEM82pNkNCjJCijrLashVDjBCXzCwnE8SEQ0Q0xAjBKHxXZp6PERKCixFCcTFEQoyQol9/l5asUB8jJISQY9vFEAkxQjBzoCvjwMcICcHFCKG4GCIhRshsq9rJtt4hTiZIBC5GCMXFEAkxQrCO6In3Dgmoze6StRZkhKCN4WIKhGy3iyHiYIS0NsUhiznECHG91qiv9aHcqLKtugyRVTJCentVpp9T7xCXrHw6voMh4mKEUFwMkZj+bC6EXINdrdKQvmEuhoiPERKCixFCcTJEAo69EEPEh1SGCK4zVsYQ8cDlPsTFCKGsgiES0vPCxRAJ+S5c1zsuRkhrwoamMAABAABJREFU7BUwRFyMEIpLxriLEULxMUSceoVQHAwRVyNk6T1H1XuC+4dYQEMEoNsScekV0hrfwRBxMUIoIYaIC2iIIDZTJFWvEGcjRCVxpjuuBzoNkYD1tsv5HrJPQgwRblz6YlBcDBFXI0QF17mh/UO6wOc6XYZIyD5xMUScjBAKfYtl21e5V4iwOogZIgiCIAiCIAiCIAiCIAiCIAjCmSYrS4+CmSfEG//ajy/9naNHiC5rkbNHCM3MirJCVAybyJWRTbN2uYwQmpkfYoKY0GV5cvYIUbNEOY0Q2juEq/eNyQzh6hNCI+JcRogpYzzECKHozBDOHiGqIcJqhGim5xAjxAQ1RLgyto7dEGHKtKW/P2uPENUcYMwM1pohAUaICZo5y9UnxHS+x2aEmcyQVTJCTGgNkZCsfNP4iiESYoSYoIYIlxVi6h3CdR2ma4cQI0QHtUM4jRBd75AQI8TEkiHCeOzpDBHffmE2UvQQAUhjiABYjASmXULvQUKMEBPchgiiM0RCjBAT1BDhMnRM650QM2Rp3ER2SDM+2bchRogJXcZ4iBliQjVFgowQE2TNHWKFaIc1GSJMl2FqiIQYIdpxiR0SYoSY0N1v+PQ17EI1RFIZIUiQGUIxLD9ceoW40DJEmOwLkx3Csk+gfU+QqldIiP1gQmeIhJghJqgpwmUqUEOEa5+Y7JAgM0QH2e5URkjzcQnMkI/85A/xDyo4cSrKZKVokK6Wy0rZKJ0tCIKg0pZYIeQui4UPno/O88tIamPUVWiU7go2VM+ZexDTclmpmqVzl8XCY3qwy7+z82nZBERSNEqfbQ2jb3y1EIWfMxCy9DHM2vqxlc1KVG4kSaP0PPdq1ulKq1wWYyAEYFHahfsYoWWzuK5ptFzWaQiCIL298SIgwvkgmsAZCAFYlM0aMz84pg3Vua/DWDaLew0Y0lTdeezNfhMQ4QyCIIO9aVO+iBVSNoszEJKSVGWzWiWzmHcHZ/CDMtvIkwREaNkszkAIwKJsFpY55YKud7jWgsdVMqt3215aMoRsVjTjcwZBECyfxX4dDmis7jQsLZvFfCuMpbPKEV8wASCsqbor5aDXrCs5gyAIls+abad9Msr10J9eA0bXeYIgiHPZLE9oySy2/VGDa4XeJG1wmBNaNoszEAKwWAv7NCl3wbVsli/0OdeU+1ndMTVXl/JYZxMpkyUIgiAIgiAIgiAIgiAIgiAIwpnmVJghKeEqi0A5upCm2xFGJUuHJt8hpMrkPririrvlCRLbp1uLUC23ZQHQ3Ww1lP5R3dy7nybUvPFcteG25uEhDG/X2SXMmYf9Q8wuqbPsmI/tVOc6AEA+maexFBJXMWwyGpnHpaXCuI2WpgkosyFX1GWEkpl3ibIOARaZdfmE2fJBcyONlLQwWea8213sbNTjMu/ren9gtiu7MVNnFZfM2XsAi4bqxZA3UxLPl7Vr1UFydIk3y3PrqWq796/wLlmpuVEw7/LJVnVsrzNblId3Vd/f5uP82bpJrBCFYlDP3cxrzdl69eX1D5mb82Kj9np9Ml/nzSHDdQn3Oq2/v7wfZpu8B/d8rc7WPeK/lmFWbX+Xr2wTAEB+UM1Pw/rPyZVN1vHZF1I1aA9lidaDxWZlK+T7zJnoN/YAAGB+mb9EUbG+uBb09nmPE4DFeqrHVCaroZfIPKnXIY1pscWbiY6GCDCbOLQ0KLcNBgAwuDWG6Tn+Rvap6B9U3yGWNcV1Gxe9g2q8OfMaE6/BqZ4jpZ4HUzA5V62nekcFzNdSVEZJU4WhwPs+5l09r28NsEIH+7qnrrgySWDG9o4AZmkKDQgnjJghgiAIgiAIgiAIgiAIgiAIgiCcaU5FA/W3/qV3s42FUUMdHAbAZNMQX4oMUprq1EVnu3dsVz+y5jUaIRQOQ0Q1QppxGRMotHXEGc6WviGTLtYQGd2yH8CxEXhTL49YQwSNEAqrGaLbRIbhtVn4HIaIZVrmsCzmG/rs33wcdwKZmsdzmSGmRn0cJoeuhn3q3kwc2YG6Bnccdoippn/OlKVm6ssSa1qYjhEWQ0R3jDCaIYWm3ncKQwSAxwCwnR8cdshgX79vYw0RUy8PLjPEdO6sPx9/7sw22sc3hyGS3AjRnTsM2YymBp9choip/nmsIWLqf8ORKUmtEBUOQ0T3vXEYIrpeG5x2CJohKhx2iClTOY+tcW84P7gyo03zN4chku0etH7GYYioRgiFwxDRrWF71/eixy03DaYG13dpWIdwGyKLgeMfmJjuFwB4DBHdPJXKEOHsk4FmCCXWEDGd77GGyHTbvtaLvc6b+nymMkQ4G6nPNf35OAwRU+Px2H3d9bvHmiJzw6ESu+4xPVebbMd/lz1LSy0OUwT7Yj/0sz8cP5gQhJghgiAIgiAIgiAIgiAIgiAIgiCcaVbeDOGyQmxGCBJjhhiNkKUP8B/XZIRQggwRh7FjzBCTFaISYojojJDWuBEJFFojhBKwW0yRa5UQO6TLCGnGDoy8m4yQ1vgBhojJClGJMkRcNilgeKfM+xBDxGE6jrEsTEaISogdYsvwUgnddmO2PyHE5DBlcceO6/bh4eO6ZC+FGCIu+yPEDjGZIDpCbAvXYyTIEHE5RiIMEZ0RQlklQ8TnfAgxRExGiEqIHWIyQigxhojL+RNiiOiMEEqIIXISRgglJJvRZf6LsUNcM31DDBGTFaISsl6zGSGUEEPE5XsKMUR0RgglxhDRGSGUEEPENTM5yBDxOCdCMqRd5vAQQ0RnhFBiDBGbGYKEGCIua9gQQ8RohLReGLYWdF13rKIh4rLPQwwRl3lqFQ0RkxGiEmKHuK7XQg2RLjOk2Y6A67zJClkadwUNEZ0R0npNgCFiMkJUYuwQl985xA4xGSGUoHWPw5ojxhCxmSFIiCGCRoiK2CEng5ghgiAIgiAIgiAIgiAIgiAIgiCcac68GeJihFBcDBEnE6Q1sPtLXY0QFWc7JGBsH0PExQihuBgiLkZIa1yHJAonE4Ti8RaXqDXFxRBxNUKWxvWMurtaIUuf4ZC54GKEUJwMkZDgv8fXE9SLwcUQCZiGfSwLFyOE4mqIuFohKi7b7pzpr+CTse6SwR0zvhce339ItpLLcRuyP1wNER8rBMDfsgg5VpwMkZBjxGPbXYwQykkaIiHHv48Z4mKEUFwNEVcrRMXHEAk5f1wMERcjhOJjiKQyQ1yMEIpLRmPI/OdjiIRk9rraIS5GCMVnzeZjhiAuhkhIpqmLIeJihFB8DBEXI4TiYoiEZCJ72yGe+9x1m0LmcBdDxMUIofgYIi5GCMXFEAlav3oYIs5myNKbHLLhA0zUZHYIgJchErLPXQyRkHkqlSGCuFxPXIwQioshEnKu+9ohrlaIisv35GKEtMZN/DjTZe3hYoS03uNgiLgYIRSf8yFkXeVqiLhaISpe656AZ2wupoiLEUJxMUR0RggiZsjJIGaIIAiCIAiCIAiCIAiCIAiCIAhnmjNrhoQYIRSTIRJkhSwNbP/nECsEwMEMCS+Z16AzREJMEIrNDAkxQlrja5IogowQimWIkGg1xWSIhFghS+N2RN1DjJBmbEsGQ4gRQtEaIgzHtu27DDJCKDpDhGH6tVkWIUYI0mWGhGR3qZi2OyjLn2DLiArJ4PYZPwrL8RBTv9Z2/HLsD5Mh4muEULqyH6OPFdP3yHGMWLY9xAihnIQhEnPcdxkiIVaIiskQCTFCVLrskNjzx2SHhBghFJshskpGCMWU0RgzBwJ0GyIx9d4BzIZIiBGi0rVeCzFCEJsZElN7HNEZIiFGCMVmiIQYIRSTIRKbfdxpiETuc9P2caxZbIZIiBmC2AyRECOEojNEYtevAHZDJMgIaQ1i+C4j+pMBnJwhwrHPdYYIxzx1EoZIiBFCsRkiMed8lyESYoSomL6zECOkNfYJGCIhRkhrDIshEmKGUHT7PHZNBdBtiISYIQAO657IZ2wmOyTECKHYDBExQ1YPMUMEQRAEQRAEQRAEQRAEQRAEQTjTnEkzhMMKAWibIdFGSOsDqj9CTRATLUOEeXy0QziMEIpqiHAYIc24JHmCxQpRIcNxWCEAbTMk1ghpjV9H3mNMEO24JIuBwwhRaewQ5mMbAJa+SxYjBKFmCPPUS02LGCtEhRoiHNldKrjdHEaICs2K4jAgbOOzohwbHJk7CD2eufcJGiKxRgiFZkJyHyuNIcJ9jJDt5jBCkFRmCKKaA5zHOjVEYo0QChoisUYIhRoi3OcOGiIcRghFNURW2QihYCYj5xwI0DZEYo0QChoisUYIhWZKxhghFNUQ4ci0pqiGCIcZglBDhMMKUUFDhDvbuGWIMO9z3F7udQq1Q2KMEIpqiHAYIRQ0RNjXsMQQYbFClgasv8tII4SSzBAhdgj3/qZ2COd8dVyGCIcVokINEe7zHk2RWCOEQr87DjME4PjtEA4zpBlLMUQ4jBBKqnUVNURCjRATuP7her6GUEOEwwwBaNshNiMEETPkZFjZYMhJBkEoU8fmiN4kCoYgeaKHdRPGIIWO+Sjd+IODNPukV98fpLiJBHCbREMY3axuHGdraR6spToGkz6IBoB8zPwU4xgoB/UDGJdG86tEPb2etn2e+hgESHdtyOa8wcnFwNUGuzS7DCLVcgUDlYnGL/N0Em7qoMhsk/mOpsalaWQIZf1dTrfSjJ/i5hQAYHCQ6JypGd5ON7+mCISwUZbwjz7wk/D6G58HAIA5ZPCff/V/DY9tX7Wu1/757/5PcM/Rzebvv3Hvm+B/et13OX0kXhvm64nWVb7NuB1xbQQfCnfSjcrwmX3n1/7TT/8juDq91fz9PedfB+9+4F3a1853qoejRaJ5Nj9Ks0/6t6snOgVTUgyl9/SNJONOH7gEAAD/+OGfhFfsPVH9LOvBf/GGvw5f3LjC8hmp1iddpWVDmW1Xx+Dgmvsx7kOqoEiBSSupnnFwJqsRUgdFUt0/9Pd5g8HI+GK1P7gfoCO9cZpzMnVQJNWzEwCAyU7atX0qCv44NgAskpi5E5GQuUfTdh9CngtKUOR4SXTICoIgCIIgCIIgnAzf/MSHm0AIAMBv3P8WeGz76slt0Clgc3oIr7zxJXhg73nYmh5BCRnsDtfhi1t3wScuvgAmvTQBUuH0sFGM4eXjp+He2U3YKsZQQAZ7+QgeH1yAR4b3wCSPe7zw0y/80/DuT/wMAAAMyjn8l5/7dfibr/nLDFsuCIIgCIJQcaqDIaPby5HkVEbBoC7xw2aIJE6iS5WNDwAw3cwaFS5F1rJaGsvWVN0X3ObZeq3ZMZXQ6JF+gpg1wWWIDPeWj/FS14Q7ADRCUtEqg8BZ6kcZO0WWSjYvmzI8nBlktLQP19hohCw+B7PzV9wQSdyxip4rnBlCZZ41xx5nyQ+kUI4VToujmZe4TQiyr1OcP0ufk2i7uWmV8+LcHb2FhcNeNgwWJTkGN+cwPc+XOYrHIJaJmG3wZL/R831QXzu5DBEsk4UZnVzZaZhFN96ptpOuazko8wzG56sPGt3ky16eKWvinLv0KEB7rez5EZvTQ/gvPv3rzd+P8gH8f1/2p6FPsvG5SlzQbN9eXY6LyxDBazr3OhOgysz98qc+A3/+S++DN9/4LPRL/XE4zvvwvnteBf/nS78WHrnwgPP42XxxrnOWiMH7kPHVqpzV6Ok02fNornIZIk2pkvrYy5hsHzRCkPygLg3FZIi88daj8J8+/X544+3PmY+RrAcfWH8Q/uX2W+BPRnc7jz29/1Jzjj98/kH44IWXwttu/AkAALz51qPw1c9/At57+dXB257KCMHr77xf7WNdw3YOppeqY5zLEJlc3V76e3+P576woOsRnKaYlls4/83XqmuarYm4L5PzCyOkqzF0CKoRy1nmEMtvzUfV9o+uj20vD4a7xFIP5z0cjmtpn9gI6dUGDv45vsS3RsZSqfmsbJVK56BUTk/aDiCGVEYIhXsNPiPPjjn3STUg+fuKP5q5EznVwRBBEARBEARBEASV7/7c78GlyaKe/799wVvh2tpOKxhyp7M5PYK/+fFfhK997hOdrx0VM/iGJ/4Y3vnEx+CXH3wH/OPX/icwi7QAhNVnY3YEP/zYv4avvvHJzteOyjl87cGfwFcf/An8263Xw09f+BqYZf5BpJ974J1NMAQA4K984T3wB5deAUXAWIIgCIIgCJRTuYI1Zc716p4hK2uIGDaLy7RIbYRQOLabs0m6DlNmx2w9i7JDqBHCDTVCEMx2CDVETEYIPhzgqH+pzZTHDMaIbBLduBxZKrbarRwZ7qas7bKfx407SKxWpESz6ZhxydE7RHd+4M9iMoZ0x1lRfw8chkgrow4Ayh424w0f35hBnGVxlkVis6Lzc7m3ndE80Z73+KOYQ0WTDYXzCIchomvSOrhZZRvHGCKmYzDWEOGyJU3QxukIR3aaLpOO0xDRzVcchshMswYu6l4qLIaIaZdm4JxVd2G8C3/u83/Q/H2a9eAX7/1KbSAEs1M5m6AujR9piJgsTw5D5PLuLXj3R/4JvOjgOa/35VDCf/q598ODt5+GH3nHfw7jvt480DWR5zBETPcd46ubLHYI9gqh5ON5lB1i+q64DRFKjCFyfroH/+BT/we88Mj3GAF4197D8MLpNfhbd30HjHN9ebXp/ZfaPywBPrX1AHx058XwhtuPAQDA/UfX4Vue+TD82tUv99qO1EYIZb45ZLFDsFcIZXppM8oOoUZI83lb1ffDZYi0YDBEdNc0DkNENUKazyIfFWOK6HqkzTbreTDCEEEjhDK+OGKxQ7BXCCX23rtnmueYDZEU9DR9WUbXqjUypyECUNkhKjGmSKk5VPBnMTZEaiOkZ1hTxq7BqRGCcOwTAMuzhlNwjN9pnMpgiCAIgiAIgiAIAuUvPfofYGO+eCD5nvveCM+tnT+5DVpBBsUM/t4f/zNtIORL65fh37/g9fDE5iXIoIT79q/B1z/+MDywf23pdW96/nPwt/7wF+C/efv3HtdmC8fIoJjB33nk57WBkC+tXYLfv/hqeHJ0EXq39uGe2S34moPPwH2zm0uve/34cfjRa78J/+Nd3+79+f+/+78a3vDJx5q/f8+Xfhfec+WNMBUbSRAEQRCESE7VasI1U643LpPZIcE4bE6IaZHSBgHQGyGUkO12MUKKOokopHeISwZHSP8QVyOkzLOgbD2TEULJytI7I9alT0iMIZKid4LruCFZKjYjhAOXLO0Q88TVCCn72er1DXHY9BhDxOWcCDFEXI6rGENEZ4Rw4DQHhdgQjnNPst4hdDu4tz3CEHGyM0IMEYfspxhDRGeEUEIMEdfrYP9g7mWHuF7/YnqHmKwQlZDsNJdMuhhDxGW+CjFEdEYIJcoQcdmFDll1O5N9+LYvPbT0s39z9a2dQ/cmRZAd4rqWCDFEXK7hIYZIb1zA93/2N+Hlu08s/Xya9eB/edm74NfueUszD07qY+WfvPJPw7d//iH4oYd/ZalfxNc89Qn4zs/9R/iVB9+x2G6Hy3eIIeJynxHTP8RkhKiE9A9x/W5CDRHaK8SEryHyfY//O3jZwZNLP5tmPfjHL/xW+I273ry4Vt5V/fGzT70Dvnn/4/DXr/8H6CsXuK84fBS+bfdh+LXt1zt9LvKhcy+BJ0cX4N7xDQAAuDK5DV//3B/Db939ps73HrcRojLfDO8fYjJCVEL6h5iMkNbnRxgiTmvZAEPE5ZqWoofI0jbUm+BjiOiMEAqHIaIDrY4QQ8RkhFCyovS2Q4xWyNLA9Z8hy4hE/UJ0RgglxhDBXiE20BTxMUR0RojpNez9MiIwGSGUbF6y9Q9RidknTsegGCIrwymusyIIgiAIgiAIglDxHV/8IKzPFw8uPrN9L3xm5/4T3KLV4wX7z8Kfffz9rZ//P17z3fBr9365NmhcZjn86ovfDv/3t/6l1r99/yd/E7YnB0m2VTgZHjh8Dr7zmQ+2fv4/vuS74DeuvMVwjGTwG1uvhb97+dta//a9t94PW4Vb0KYhy+A37n7z0o/+3JPt41YQBEEQBMGXUxEMGd0uvLPjeuOy6SHCDfYOcSID7/qYLlkH+bxM3iPExQpRycrubZ9uZd59QorBwhLh2AbKbD1rLBETvbF/n5Ayz7wyJlytEF9GN6dOVohK/2je2WQ0nxZL/zlRlIv+IR14jVuTFWVnBl42L72tkLKfO2db+7zW9z2+fULKfgZlRI1RNnLwvtoUo55z5mWZZUl6B/iewwCVIVI4fk9FP3e2Qspe3vQP6cLlPGi/KfOzJjzg6GVhxXW7fbfd4z0h573TedHLnKwQlWxWOGfFZtO5kxXiS8gx2D+YR/URsDHwuL4WPTcrRMXlulL0/esrj3fyxhLpImS+Gp/vN5aIidl67mSFqBTDrLFEOglYJ5ve0yvm8Ge/sPyw9NfveYvzsL1J4Za5ipuRaB2ezUpvs9Pn+//uL/zekt0BAPBv7/lyeP/lV7ZeO7w5g6FiEL3v3lfDr75w2bTZmR7Cn/vcH0A2d7NCVGYbvU4rrMz8+xOOr242lkgX852RkxWiko/nTgZriCVeehhKrlaIChoiNv7ik+9tHSO/fteb4QMXXmF8z/zqBZhfvQAf2Pgy+I3N1yz923YxhnftfrT5+/T+S/p+IYTfuvImmCsn+4MHz8Abbn7O+Hqf619q5pvDxhLpYrY9crJCVKaXNhtLxIarFbK0PVuON97gt5ZtcDgtQq5p87V+Y4l0MTk/0vYLsW6Tw1w0X8udrBCV2WavsUS6mI9yY78QyvjiaOk/l9f6EHS/4Ty4x0vLMokV0tufOlkhKqNrR40l0sVsI3eyQlTyWdnqJ0IpczcrJPQ9IetZV1ytEMT3uY6pX4gO3Ccu+yXoGAxZ/wqsnIpgiCAIgiAIgiAIgom3PfcIXBrvNn+fQwbvvfLqE9yi1WNregBf9+wfL/1smvXgZx78U85j/JNXfRPMsuVbyHc99hBk5Wo8hBbi2Jodwtde//jSz6ZZD/6P+7/eeYyfPf8OmJHHDN+y93Hvh0XXh9vwiZ0XLP3sm579sNcYgiAIgiAIlJXvGRJSL1kF7RDuHiJoh0xN2XKRH2fqw7EKPUKCxvW0QXTYeoj42iA++BohlK56zqFGCN5QmDLifW0QHf2jeat/CEtvENwXmowfjvF1PUQ4MjhtPRA4st9N4/saIe1x62PwuHuIMITbi1HPmH0ZY4PYeof4ZqLp0PUQ4egNgnZINtefJ9EZWqZ+GZHmzYn1D+Ewhiw9RJJZLww1cG09RGJskK7eIbHHINohpmzx0PO+q3+Irw2iQ1e/mCN7ztZDhGO+0vUQ8bVBdFh7iHAsN0nd5W96Yvkh6cfPvxBuDP2zors2LWY90TucG/uGcFyjbT3reuMCvu7Jj8OwXD7//+DyKzv3E9ohk/N9uL62De+959Xwzic/1vz7laNb8Pprj8FHL39Z0HaH9BBxoauHSDnUfxcvOHgWXrL/FFyc7MGgnMGNwRY8P9yBj++8AI56i+xpUw+R2Hmwq39IiBGiYusf8lU3Ptk6Rt5/4RVwc7DlNPb86gW48TTAB9YfhK86/Gzz88vzPXjlzi48fO7FXtv6+5deDa+7/YXF9l37FPzD2RiO+ovvIbUNEnOt7+oh4muEUEJ6iLjQ1T8kek1r6B/CcU2z9RDxtUF06HqI+NogOmw9RFxtEBumXiK+Rgilq3enj3G5PHD9p2E6TdUjhANbDxFfG0RHSA8RF2z9MlLZIAD+Rgilq4efjxGiw7RfWI7BDKR/yAmx8sEQQRAEQRAEQRAEE2uzCXzFs59a+tkHLplL+typvPX6Z1o/+70rr9G80s7v3vfapWAIAMDbn30kOBiyCvSLGXzHUw/Bdz71AbinbtpNOcoH8NCFl8LPPvBOeGzz6jFv4fHwlpufbf3svRde5T3O+zZeuhQMAQD48huf8Q6GfODCK+C/euzXm7+vFxP4iuufht+54teQXRAEQRAEAVm5YMhb/9K7ASDeCDkuWoZIorpvp8kIUa0WDiOEQg0RLisE+4b0D6sBY40QCmZLjG7zZr1RQ4TDCFHB3iEFQ6Zyi6Js7BAW48QAd11vmuWeKjs81ghpjXdchgjz7sCMS8zA5OwPohoiHNlolKZ/CPMup4YIe83eBD1YAI7BEEFSbH+WNXYI6zmPQxXAYoRQ6DzF1SOEGiLcxyA1RLjOe2qIcBghKl3ZaTGMd/JmfZxivhqf70NvzH9utgyRBKfnm699FkbFchbwRy88yPoZXGuJ3mF1bKMhwn1Npkay+p2+9tbnW6//+LkXOY89vDmDyfk+PHyp/UD7ddce89tQDaoh4tsnxEbTP+TT+n+/5/A6/A+f/nl48cGz1nHWiil8zbVPwldc/zT8i/u+Cn7mBd8AZZYbDZFYqCESa4RQdIbIa/a+2Hrdx7df0PqZjfnVC/Dw5FUA135j6eev3f2C4R1mnl67AE+PzsPV8c3mZ2+/8Qj8zl2vN1qyXHBe66khEmuEUKghEtIrRAc1RDgs5yUMhggH87V+Y4dwGCGUMktTnYIaIhxWiEqsCWKCGiLBRkhrYP3npMK3T4iN0bWjxg7hMEIoqiHi2yfEBjUhUlohnNA1eKwRQrGZM1HUm4nPwh/62R9m/gBBx8od1nma3pkwW6sfdB8lanbYUbIoFNxe1wbivuB+ScHkXObdSHEV6B+keZAx3K0fYFjK88SQqvFsigcuKv3denG9xvxE6hjAm172JqqJHkQjuKjmfuhV1DfteaIH3ai9uzQt9aUY9JLcVHOXamuNj0GRgnefpA5a4PyaLFCZKIGgHNbLpuJ0JGyopGiUDgAwuF0/2PFouOo1/q3qGjE579aI1pXRzWp/HF5Kc+3Jp2lKGGDJrOEe/zGezctme7sadIYw26y2vX/AfP7kAG97/pGlH+31RvAn2/eyDJ+V1f7gfDgPsFi3zT0aZvtA58HL41twcbK39LNnRufh2mjHb+AS4Pm1c/D0+nm4eniz+fFLbj8JeVlAkcX/PuML/aXG7Wxo1rRXj27AP/zYT8PF6Z7mDXr6ZQHf/fjvw13jW/D3X/pnoax/53yCwWfmBzCJjhFkXq9nr+zeaO2HZ4bn4PrQ8xgBgGvDHXhmeA7untxqfvbg/tNBx8hHd14M3/zcR5q/v/nmo1Cs5VBm1TW5v9fdFN6XYthL/tA1BeN7qu+K+z7z6HL1QHd4k39fAwBMzlXX+MEub1Lf0V3rAJAu6Q4DuCmOlTneGycqB9VVyjuUVPs6J8EV7nk2WbLgMXRpHu7NYbzDv55NWYoeQL1P5v2g6QbeZ7IO29AERZjHT/UsXNCzcsEQQRAEQRAEQRAEV95w7XNLf390+x6Wh/JniQf2n2v97In1i8HjPbF5aSkYsj6fwpXDm/D0RviYx02/mMPf/vT/uRQA+NLaJXjfpVfBk2sX4bA3hIvTPXjt7S/AW298pmUffeNzD8Nufx3+1we/7bg3PQkPHD7f+tmTa+Hf55NrF5eCIevFFO4a34Jn1i54jfOZrfuWgiHnZgfw4N4z8Oj2PcHbJgiCIAjCncvKBkOmdfbYYD8usjw+t3wjxG2IULOiq4GUK9j4HcGSUJyGiLrtGNUsGQLK4/OLcXE8jqiprnE6J2vXlo81rlIXaISkone4PD5mGHKoqUtZ7Ur5My76+4ubyhzLcTEYIvT8K3sZa6Y4PSa4xqdjYIYKV+YLLXXGZYgUJGMRFXouQ4Qad7RsVtTYiu7f1Zzca9zERhWlGNT7JDL7n5aEYDdESHYblyGiOyc5xl0ac6DMTXm9nzgMEXUI3F5OMzFVg8l8+VjBEhpchkhGMgsxGzXWEKHGw/o1XkOEqvNYehNLcXIxqcuQpjBEuCkGy7/7bCPnsUPqYddnY3hgb/lB/+e2+Ps5dK2DvvnJP4If+8QvsX+uC0+tX4C/8M4fA4B2Vi7aPlePbrbe5/tQenJucev4zPr51r/fu389KhgyV0paTM5Xn8VhiJjWOV91/ZNNgGO3twb/64PfCr995Y2t1/3yvV8Bl8a34b9+9FfhHTeWLaTvfOqD8AeXXgUPn1+UZTOt377pqQ/Djz7yL6N+l1CeGZyD7335f7X0s+mF9aW/XyluAeWZ4Xnvz8J14LOj9nvvGd/wPu4e1fRnefntx5tgyGyrui5wGCLFcHEt4Mycpw3U+7tVPWauclnqdgPwVSKYkfsyvAZzGSL0mj7drtYQHIYIjgWwKFvLaS1gqUMA3mOl9dxEKdPKQes+Oc+Ytpus8TWN5jnhuk+mRkgxwkoEvHZi/2j52JutxSdsqGNiKXYOQ4QaCr0pwJzxOSQ9BnFf0H3ky2Sb3McyPovUgc9WYlsa5AlEWKEbSZkSBEEQBEEQBOFU8rJbT0CPlFh4bPPuE9qa1eXiZLf1s2fXzgWP96wmGHJh3P6MVQYDIfu9EfzYq79XGwhBro124L9/5XfD71x+7dLPcyjhBz/7ryErT1/5RMqFSbtU2HMBJbKa92pKsOk+o4vHNtrn8ytuPx60TYIgCIIgCCtrhsRCjRBKrCGSstcGtUJUYgyRlNsMsGyEUGKisl1GSGzzMmqEULJ5GWSHdBkhsRk71AihxBgitqx2DkNENUIoMYaIbbs5MsVtx0HM+F3vic18oUYIJcYQoVbI0r8xGCLcfZiacS0NIGMMkdTHYBfFoBdkh3Q1CY02RDrmuZh9k+q8bMYYWOaiGEPE9hYOQ+SYjBBKf28aZYdQI4QyvDkJskO6emBwGCK2hoqrbIjozg+O3iHUCFHBRqJBhggZllohAP7Gg9fHJzBlubBlPW/ND1s/O+q5nUuqEYIc9tvvPTc9cBqPMrc0OY0xRFzXNf/4wW+DR7bv73xdmeXw91/6Z+Gle0/CA0fXmp/ff3QN3nrjM/DBi69Yen02K9nr2nNAjRBkZxZ+jCBqg+3DvP3enZn/MXLQX4Pd3hpszxcN5O8/aJf0ijFEqFmhkqq3AkBliMTYIbbtBqjW0SH3mtQIocQaIl3X8RhDRDVCKByGiGqEUGKOFetzErwfiljbWe9Rora7Y40faYjQXiGtz4+4T7b1CeEwRMZ3rRn/DS2IEEPEZlBwGiIqPXIqhpgiXZUTZmt5tB2i/dxTYogIx8uZDYYIgiAIgiAIgnC2uXp4o/Wz532bgjNwu78On92K72EQEmS5ttb9+67P2w8tx3l44HLca793bZa4pm0CHtm6D377rjc4v36W9+EnX/wt8Hc/9XNLP//2pz7UCoZQbg/W4bOakk+h+CRtXOtvd75m7RiOkVERdow8P9qB7YNFMOTqUfu8FwRBEARBcGHlgyHTzdy7b0iXFaIyW8uc7RAfsyKkd4jNCKH4GCJe2x3QO8RmhFB8orI+PUJCMg66jBAV3/4hPn1CQgyRLitExccQ8TleQzIjbUYIxccQ8dnukEzx2L4xJnyz1X0zDLuMkBhsRkjrtQGGiIsREtI7pMuAWHqthyGS+hj0wad/iM/+wNd72yEec5tP/x2f8zLovLcZIRQfQ8Rn94UYIidkhKiE9A/pMkJUfPuH+NgNIYaIzQg5LkIMEZfzIcQQsRkhlChDpObKUbvPwbPnzsFs1IP+gcf1wbPXU1Yur4Hef+VV8P4rrzK+1pe5x3U2nxadmc49TRmnSW6/FdQZIYjuQXcf/NIubUZIa1s8DBEf0/XXr74Fyn7PK7Dw0MWXwbPDHbgyud387I23HoVeMYd5vjx3qFnL//HyK+E/Xn6l8+e4MHjez7QwWSEAAP2y/f2Nh27zbKFZT0w0gZRBEZaa+/zaDrz44Nnm73eN2+c94mOIdJkVKiHZ87RXiI6Q/iFe283UP0RHiCHiY3dy9hBRCTFEbEYIxedY8cpWDzBEvO5RvLbb73jyrebRZYS0tsfjPtlmhFBCDBGbEULxMUR8rIkQQ4T2CrGBpoiLIeJzDIb0D6G9QozboeyKFJZI0cu87RDpF3JySM8QQRAEQRAEQRBOJRvTcetnR5oSTkKbktYc83qv7oenr0TEH1zWB7BslFkO77+0HNQYFTN4yf5TXJu1MsR8o/r3ho04JiW3+mUBw/npM5EEQRAEQTh5Vt4MAajsEADoNER8jBCVrv4hMb02XAwRHyOEYjNEorbbwRDxMUIoNkPExwhpjetoiPhYISpdhoiPEUJxqenqY4R4fbZnNqSKiyHiY4T4ELPdLpniIUaIawZ6qBXgWhc1xAqZj/LObEofI6T1XgdDJKRHiIsh4mtALL3XYoikPgZj6DJEQveJc/+QwIdiXfslxtRyOu99jBCKzRCJmb5dDJEVMEIoroaIjxXiQ0y/i/Vr8047JMQISdU7BHExRELmHBdDxMcIoTgZIobh14p2RjIaD7ONXj2uPQUwdC5P2T+kNyk67RCvrOasPdYQ9ItumxGCjObttd0s70FZf4zt/PAxQig2Q8S399lzwx24MdwCAEcbVFmjfHbz3tY/v3TvSWPvkdj+byamlzcAoNsQsRkhyCxrz3nDYgbzUQ96hjWWzghBsEF912fYmK9X3/e41z4m1+YTmGgMpeazLIaIj1lBccmedzFCKC6GSNR2OxoiXf1CdEzODzvtkJB+X8h0e9Bph9h6hZhwMUR8jBBKsn4zDoZI1D1Kou12fVbja4UgXfOsjxFCKUb9TjvExwih2AyRmD4aLoaIjxFCsRkiMcegiyHiaoToSNVHxLV/iBghJ4+YIYIgCIIgCIIgnEpy8jCogAxKzYP/O50jzUPjoeZhtSu63g+6puqrzJc2Lge/94sbd7V+dn66F7M5Jw5njw8AgKHmvb4N2RFdME9X+k0QBEEQBKGLU2GGICZDJNQIoVBDJMasoGRF2YqMxhghlHy6sENYt1tjiMQYIV3EWCEqpqyDUCOkixgjRMWUscNhhMyHeatvSEy0nqLLjuQwQnS9Qzi3W5cpztEjxJSBzmUBmDJfYvuEzEd1jxmSXRljhFCKft6yQ0KMkNa4GkMkxgih+PQQ8Rv3eA0Rrn1iNESYDAW6Xzh79+h6k0QZIZQ8X9ghnIeLzhBJWZYmwgpRMRkisUaIqXdIjBGiYuofwtEjpH9YJrNDAPSGCMccozNEYowQitEQsXwEbfCcQwn9YgYzpR+GyRDhWk+YDJGQXiEquG6jhoiPEYLcHmy2frY+H0PRz4LOmfVZuzzZ7eFG8/86QyTGCKFQQ8TXCgEA2O+1s3iN13qyTtnvtbP3t2ZHrZ9RjtsQcTFCkFv9jdbP1uum6vN6jYWGiM0Ioe9Vua35DB1ohCA6E0kXvOkixqyg6LLnQ4wQiskQ4dp20/1miBGiYuofEmOEqJj6h4QYIRSdIRJjhFB0xwpLRrrGEGG9TzYYIrHrCdOzmlAjhJJqnjX1D4kxQij9o8Kpf4gvOkMkxgihUEOE6zg0GSIxVojKcRsiYoSsDpI2JQiCIAiCIAh3OHldgz8/ZdnWR31NNrv0EmiB5aBU7jq6rXmlG1cO2w2sr4+2g8c7CUItBdN7N+btANFp4qbuGLE0Ku9C917dceiCzlCJ+f4EQRAEQbhzOVVmCIKGSJFo6znNChWMqHPZD5RU2w2wiJQeXeL9DIzE9roTqcLGrzd3/XneG3vMhhgcpMnIxYydrhrXvmBmIVfWrI6sBOgd8Ie80RCZb6Q58TmzznXjcmW6UDDzBY0OLnC82KxWE5hRmMKGKEa9ZJYFQJ01miAb/7gMka5a0b40hoihN0n0+InPTS77oUXK58l4jKRKaUm0T9AQwQxjLjALtas3SShoiBxd4N3u1P1DACpDZHRLfzCeG+/DN33xw/D65x+Dl994HO49uNH825MbF+CRC/fDw5dfDL/1gjfBrdGyVYCGSET/bSuNIeJgxuoeru5MD2F/0M6IR0OkF1F/28RXPPdJ+L5H/x37uC48P9qGH3vT91lf89T6hdbPrh5V3zl+n7NN92P87oOb7c/YuNj6WZnz2kMUNETWn/HPyF/TmAtIY4gYaubr3nugsUVU3nHtU/C9X/z3HlvIwGPVH9eGO/DfvOb/Yn3pU6P2MXJlfHPp75NzdR8OB/v7yqQdDHla8xkq1AhBtqfLxsut/joUjuXwsHdIPkm0TqkzoNHo4ALHm1xys2l8wftN7nsILhPEBIcJYqIY5Ow2gUqZZ5BPE6zz6+8yRf8qgMUxHmIlWsettzfE7HMhpkeIDTREpjtpnkvE9AjpYnR7DlOPa70vaIjM7JdDb9AQ0fVK5iC1IdJnrAok8HAqgyHz4fIsz9XYqSAXPu4Hxjg+BnHwJpiDw0uLRUxvwn+iHd612Dcc5SEQDAylmnzWri83sOc6Vgb43eFuYd7l3EEQpCk349i8LBQMWHAGRWbKwjfFw2L12GDVi+uhTOWnYmkp3FyN7up9gKNx7/MUZbIasoUWnWoR7NK40HvIhAGclDRlsrj3CX0gr2tKHgE+6ELY50MsIdLVaD6EREGQRUCrLqk2Yr7jqL9DLP04X+cZH8u24J/jS3zlCgAWN/8bz1Z/Hlzh2W485jCxYrrB/xSj7AEcXawOmLXr1fbffXAD/uonfgu+4UsPaxscAwDce3AD7j24Ae984mPwAx/7dfj3D7wefvrV3wTPbFyot3VxEA4YSnlS8OZxslVd44Z75nXRM5qH/Hcd3tI+mMcgJSaH0PKhMWxPD+Ele0+xjefD1uyw8zVf2mz3uLjv4BoALNb2g91qP0+3ux+U3Ld/benvR70BPLNxvvW6rFiUBuYsk9VQn0eHV4aw/qxfQGRzbs7GykmAn14zNjUWyF7fPvdszw7hJftPe2whHy4lvHQ9VO47vB78mfceLb/3KB/As6Nz2tfiujDfrb7D6fbyA/W7xssWk+6876IY9pIERMq6xNL04joMrnefi65MLpMgCPM6pXdYl5irN5ktiEFPc+7e4WQ8zgBAVpSQ1c9SOEsEI2W+mAc5S6anCoIgTSlIU4ncQHoYXMFdzbycoM9+uO7x8f4bA1vcAX86HmcAbbqhJPVx3n/XzFJc5xXw+SF3UIQmrJdMpz8+Uy7qZRVnaTIhDimTJQiCIAiCIAhnnbKEd33ug/Bz73k3fOsX/sgYCKGMihl86xf+CH7uPe+Gd33ug2n71ATwpCbocddReGmfs8pza+fgOrForh7dhIvkIbMLlw5vwT2HN5Z+9tmde5wz9VeF+w+udb/IwAOHz7V+dnMQVgJqVXh+dA5ukN4yV8c34eJk13usS5PbcJVYJZ/buBp0jGRl0dqGp9f8gyGCIAiCIAgApywYMh9mLSsEoIrwxkR5i37WskJsPw/9DMpsPYsujXB4KV+yQgDM+ylo/LuyJSsEoIqSxkZK86m+XFjJZOytXS8bK2Rp/MhjZXBYLqwQlQxYSkX0D+bJrRCVMkubSTLf6EeXtZptD5asEICqvA1X6ZysKNtN4TQ/88W0b+ejnEVHn6/39I398qyxOoIwvJ9zn1MrhA3NeVj2s6S6OwfZvDxWK6TMMhYTJ5sV+sywLIvLNMpzfZkm088DoBm+AAnnw36+sERiySHJyi2bzrVlzrIxU13PotCaPb3DKfQOwz+jN543NojK6NoRjK7F19/Mp4W2JMTGs1PYeDZu3+hMpMFByVZ+s+wtr6nyooAf+fgvwY99+JdgU9P42oXN2Rh+7MO/BD/68C9Brnyf0/Ucpus8B2bRyxorRAUNER2P7tzT+tkL9siD6gK0GafzYd5qTh5C2ctOxV3Vx86/qPWz113/Qutng915Y4noeP31z7d+9vDlB5f+nhVtm7w3LvmyoUtoZZwfXhnC4RX37PYrk1twfrK39LN8Om9ZIQDthuov3Xuy9Zo/2brX+bNXlY/tvKj1s9fc+gLM13owVxpszzb7MNs0r/Ffc7t9XP3xzgu1r9WtCwe7ExjUlsh9h9egT3oZPbrVPu9dKIY9vkbkg7yxQpDpxXWYXnRvWu8F0xqldzhrrBCV4c1Jq/m5F6b7Yab75KzUXztNP/caW3Pvl08KtjLHuucn81EWbculvpc37dsycl3bmxYLK0SFaZ1rupePvcc33X/n05LN3tBZJsUgi7ZPphv5ktULAFVyC1OCy2yUJbdCVLhaD5ieS+rWMF7jzkptpaGit7BEhJPlVJbJEgRBEARBEATBgbKE//a9vwh/5pGHoIS4Z1IlAHznZx8CAIC/+47vSlJiwZcnNy/BrcEGnFN6Cjy4e/yliH7zvrfAb973Fu2/pQp4+z4Ee+jSy+Brn/340s++9tmPwe/d/Vqvcb7uiY+1fvaBKy/z25gV4SuvfRJ+7Z63er0nKwv4imufWvrZOO/DZzftD+jfc/eb4Dcf0B8jzdiBD+q6khxcy9p86OJL4WuufWLpZ1/z/MfhPzzweq/toWMAAHzowku9xkC+THM+f3rn/qCxBEEQBEEQTkEOk7vpEJL172J+xBgiLu8NMUR0RgglxhDRGSGUEEPEFHldGpdkM/pgMkJan+F5nBiNEEpE5ktKI6TrJnwVDRGdEUKJsRU47A8drvsy1A4xGiEcOJwXMfs8nxVGKyQry/DG3g7nXTJDJMKCOG4jhBJqhxiNkNYLIw0RExGGSNnLtVbI0mtW0RA5ZiNk6TXjabghYjBCKL52iMkIocQYIi5NQkMMEZcM1hhDRLeG+jOf/iBLIATq92NA5Ds++8Glf4sxRExGiMpkq2c0RD51/oGlv3/Z7bp3h8EIoYTaIa7XRE67UsU3I/r37341TLLlffhVz32yZUcgOkPkwtEufPVTyw+6n1vbgY/WZohLNmWUIaIxQig+hsi3Pv2HAGA2QlSyeQHZvIC33vgTuDJZLi/2kXNfBvPcvD4rhnmaHgSOtmfZz52yud976VXtY+Tap4zHiM4QOT/Zg6+4/umlnz0/3IY/JtaJbV2IDHYn8LLrjy/9rIAsOhgSY4jojBBKjCEyubzR7heCRNxrmowQSpQdYiNi213mOQ5DREeMIeLyvCTEEDkpI2RpGxznFBWjEUIJnCpd7+9DngO43H/HGCIu9keIIaI1QigRhshxGyEqLs8WY9/ra4eYjBCKGCInz6kIhgiCIAiCIAiC4MfVvRvwgx/4VQBgq7DSjPODf/ircPfeDetrj4sP3bWccX7/wTW4dOTfC+OsszvYgN+9umyBDMo5/OXP/TvnMf7Kp98Dg3I5aPCrL3oblKesXwjyit0n4E898xHn1/eKOXz/Y7/Z+vm/uefLOTfrxNgdbMDv3fWapZ8Nyjl836Pux8j3ful3WsfIr939luBj5DW7yyW3PrN9L9webhpeLQiCIAiCYGflV60hZoNL1n+I7eHznpDxXQwRFyOE4mOIuBghFJeMh5CorY8h4mqELI3vaBI5GSEUj12Yqk9ISNZ56iwTF1yMEIpPxqVPJojPa0P2nW//EC8jxMd+Cugz4rPPXTL/EC9DJCDDbBUMkZM2QlR8+4e4ltlYfpPPsehxffMwRFyMkNZ7VsEQOUEjpPUeH0PE0QhRce0f4mKEUHzsEFOfEBsuhkhIxqqPIWJaM/3Ah34TtqZhPUK62JyO4a99tP1Q2McQcTFCKDpD5D9eeUXrdW987lGvcX37h4SYHinsEAC/4+sXXvB1MCcPpb/9iYfg7c9/yvCOhSHylU99Er7z88tG0O5gHX7pwa90rq/9hucfhff+6o/Ce3/1R+H9v/gj8P5f/BH4l7/297rf6GCEhPI3Pvtv4CWaHiDtbSjhhx/9FXghaZ7++NoleOiCvkyYrxHiY6+HGJ4umdy/cP/XwJxcfL798YfgHc+ZjxE0RN5+/dPw7c98aOnfdntr8CtX39783WddOCym8Iq9ZTPkg5df7vReF3wMERcjhOJjiFiNEIrHGtjVCFHx7h/icyh6vDbk2unzHp97PR9DJKSCBkcPkVhC9neIIeKE5xo4pOKDy3tCqjL4GCIhtofLe5yMEIqHIXKSRgjF51ljyHNJ1/WNixFCETvk5Fj5YIggCIIgCIIgCH6cP9qDb3rUPeM9hG/8/Efh3JG+fM5x8vjWXfD5rStLP3vztc+e0NasNp/fuhv+1f1vX/pZDiX8D3/88/CtT35I/yCkLOHbnngI/s5DP9v6p59+5TfB7tDxAe6KMc6r8k6b8zH8vz75T+EbnnvY+NqLk13424/8Anzj88uvKSCDn3jJd5xaM0bHFzbvhl+5921LP8uhhP/h4Z+Hb33Ccow8/hD8rUf+eeuffuYFfwp2B2HHyGt3vwBDYpn8weVXBY0lCIIgCIIAsMIN1EN7XSCYVUOjvaG9P+gYpqgfx/iz9Qz6xEbwtUF04D7tTdrb7muDuBJaw08FMx0zQzKorxHiSpARooK71DBMyh4hsWA2NHfdVewb0jtoZyf52iA6MONStw9i+oPge03ZerHZ42iH9Mb6lIPgHiG4vabf3dMG0VH2MuMx55r1pwPtEG3WI8N0hXZIFpDBYQW3V/OgYFVsEB24n01WTpARsjSAeb8AQHAPkOa9BgvB1wbRjpFoPmzsEN2+XeFnamiHlCPDnO1phFDQDpmvL48fYoSooB0yvrSm/XdfG0THxrNTOLiyvN0cxw3aIdON9uRnM2i/9U8+DMMizVoDGRUz+NbPfRh+4VVf0/o3tEMGh+1962uD6EA7ZLhX/Y7vue+N8P2P/Fbz71/5zCehV8ytfRx0dGXbx9odtrVKLFlpXpOoWY0/9WXfDK+/8Ri8dO+p5meDcg4/8qlfhr/whffCf7j7tfDU+kWAEuDew+vwzmcehgcOr7XGfN/VV8K/euE7vGtqtyirPiLarOiI3YR9Q9af1We4v+/iq+BFB8/Clx08DTvzQ/ixz/5L+O4nfg/+4OIr4cnRRTjsDeHidA9ec/uL8Nabn4G1on1j86+vvg0ePv+gdvzQHiGm+9jm3yP7cWEWt+naPl/rwf/nFd8Cr9v9PLx0d/kY+dFP/jL8xc+/F37nanWMZABwz8F1+PpnHoYHDtrHyPsvvBx+9WrVoD5kXfhV1z+59PfPr1+Bz2d3eY/TBdoh+aQ9Z/raIDrQDhlcP2z9m7MNoqPjftPXCKGgHTI5b+jBE3oodmw3x7XTPh+GfwDaIbrz29cG0YHzoK6vUqoKDhz7u2teceoVogP3qeHtsT1Au+7zY8inpdHg8LVBbGOE9ikxgvdrmmvNqtggOvDZY2G4RYl9NolrHXqehxghKmiH5GmX7AJhZYMhgiAIgiAIgiCE8YanHzuWz3ndc4/BL0A7GHLcvOf+N8L/9ZH3QF4/XTs/PYA3XP8c/NHll3a8885j2hvA33zD98H//OGfhhccLJd8esHBc/C9j/1O5xgfufRi+Ntv+R6/UogrxjzL4W+//D+Df/jxn4aL08pwesHh8/CCJ97r9P5/d/n18L+96JtTbuKJMekN4G++8fvgf/5D/THylz/XfYw8vPMi+Hsv+67gYyQrC/iKG8uN2H/78uuDxhIEQRAEQUBWLvfQp7+FC9gXIqSHhw06Hvf4SEiPkC7UfRzSI8QErY3JYYUsjU/qYYf0CdGOS3qHDA7LeCtEhdR0XaUeIV2kyj6Zb/QbSySkR0gXtJ9FbMaIOo46FndPAdpDJKRGqRbaEySgR4gNur99akF3sWQqBPQI6eK4eoisshWiQnuIZLMi3gpRob1VPPp+WCHjhPQI6SJZPyW1h0iiHiEqvr1CjOPQHiIBfUJsuPYQ8WV07Wiph0hIjxAbLv1DQlH7h7j0VXvl84/bX8DEK6/ZP4f2EOGwQnQ8O7rQ6h3yjU/wlQnz6ZV1ktCa76Za1zdG2/BfvuUH4L13+ZUcKiCDf/Wit8MPv/2vwjg3ZItbOD/Zb/3ssZ27AaDKhG6yoRl7hBxeGTaWCOXptQvwQ6/+K/CFdXfbYJbl8M/v/Sr4By/5M1BmOWTzArL5Yif79gkxQe9RfPt8dY5Pav3P13owX1tMLNdH2/DX3xp2jPzr+98GP/aq74Wj3jB4Xfim25+DC7PF8TLJ+vDbl98AAACDXY9+Fh6oPURCeoR0QXuIRFkhKmSNHNInxEarhwjXmpyME9Kzwjp8az507xHShdo/JKRHSBdqD5GUfT25zWc6r/SmRbgVokLWyJzfpW48rvtw2j8kpEdIF+p4Qb1CTCg9RFapR0gXtC9ISJ8QG7iuymdltBWiUvSkh8hxImaIIAiCIAiCIJwh8qKA+3avH8tn3bd3HfKigIIjsBnJv3jxV8NXPrto8vzOp/8Y/tGrvh32B24NjO809gbr8N+/7i/BW659Bv78F98Hb77xKPRK/UOrSd6H919+BfzcK98Jn77wQHBprDc9325s/7+//BvDBmPiifVL8AOv+wH4zqc+AN/x9Afh7skt7evGWR8euvAy+Ln7vw4+t3n1mLfyZNgbrMN/94bqGPmuL7wP3ny9+xj5hRd9DTxy7gHo78c9jP/WZ/9o6e///vLr4OZgK2pMQRAEQRAECYZEgtFR7vpuRxfTR11T9QmJrhvcwWB/RXuEdNDX1MzmAKPRqbJF0HjijHojk/NDyBNmzBcD7MXBe4LiPkmV7T/bqFIC2HsUJKiFqoL7m8sKacatsys5s7dbnzHIk4yPGYXZPE0R0K76vKtKOaiPcW6bjdkGaY+f8NzvZeaeKgykOkbyWwcAAFBs63txxNLfqzJR8ZjhAu2Q6Y5/ZrsL689VKWhHl3nNx9Gt6ns8umg/1geJe4XoPm/cEQyZbFb/3j/iPc4xA3KwV8BHLn0ZPLJzH7z89hMAALA+n8I3PfER+OUXfYXzeH/hnT+29PfBwQzyWQHzHu8xaKs7zzL+3NJ7i/CHl14Gf3jpZbA5PYRX3f4S3HdwDTbn1Tlyu78BX9q4DJ869wCMe0PIihKGt2Yw3Q67jXzT88uN7d979VXwyPkHln7WOzL0D4nkz33bfwsAABtPtfs2TPM+/OJ9XwW/eN9XwYsOnoEH95+GS5Nd6JdzuDnYgueGO/CJnRfAYW9kHL9gtgiQ+Qj7WaSZx3tHVdBCtUIoeIxsTQ/hlbe+BPcdXoPNWXWM7PY34Iubi2MEmZ6r/l+18Vw5P92Dt998pPl7ARn88t3vWHoNZuKnuPfsHU5hNjB/17Ec3lsFdXrM3+l0p/oOOa0QlQKffWh6kMYww3l8P80xPqn3y+gm736ZrZl7snJRDDL+HoewOPZSzVup7vGbvo+J9nkzH3JUZ1BIUUVGZZ5oLQEAMNnK2Ku+qMzrqbY3Zh74dBRmEE6IlQuG4A0SXlhiaR4Q44nANAdRfSlV0xtrE+FAJufYhloiJ2uLsmdueh7C8PbybMY1aQ4TLbqQ/gEZv6uRsCM0OIEPzjmDImo5CM6giHqxxnIZnAsm2gBtPuqxBEToIoP7wSgtv5GscTMzdH/P1qtLS5/hRgwfAAAowRbGoIU6t3KOT0tvFWs9yI/4JkRVP1f/HvvAmzZQ5w62tLab6RxKVsJKRS1VwnnuL5WC47k+qLS+u4wn6JIdLd8V5bvVwy6uoMhxlZYb3K6CLVxBkZTHolpmYe26PSgy9WwaHovt82jpkNlaxh4QAQCYblUf9E9f+g3w9/7onzU//3Of/wP4Vy98O5SZ34OCwcHyNQzXEep1iQPuoAgtG+JzL7E/WIcPXXoZfOhS99iD3Wr/+ARFLh3dhhfuLfpPFJDB//7yP714gbLpWC6LIyhCH5Yf3LOuDYggn9+4Gz6/cbfz+PM1sg+Y7jvpQ8omOYTpAToGm5HhzeqmanLeHATYG6zDhy6/DD5kGZde68eXquuCT1DkXc88BINysW5634VXwhc2rjR/n5xbzNmcQZHBrcU29m9X+2O2wxcUmZGA03yYswREptvL4x7dXW3z2jM8TxdxPKQY8gRFZuvLx8p0kzcoMj63vF/G56tzlSMoggEWAGhKkHMGRdTjuQkAMNyH0+MtnxasARF6z433ibElrej9Jvd8mE+Wt3t4o54PL8Sd//QY534uCbB8fcdncgXDk97JtvLMps7t4QyKzBPFm+nvjn+nzytD6ZGG9VylrXoJA05Cm5P32QVBEARBEARBYKPIc3hi++KxfNYTWxdXokQW8r67Xw2fUEyDBw6eh697+mMnuEUCQq2Q37/nNfDZc/ee0NYIq8rafAzveuah5u9zyOGf3v/1J7hFgiAIgiCcJVbnzoXQPyqjssaMTaYYmvHZIn8cTW9mmrLGWVm2MnZ9mZxLZ4WYcGnw2cXwdtmyQlRSRZRj6R8UbStEhTYS9sBmZ3A0nrM1CS36WbDmOR/mRoWz6GXRTVVpo8mlzx71grM5bdsN0DY6fOlqypqyaV4spv0NUBkiaIn4Yvu+ikEencFka0IaM76tIXux1oPCUoLCbfy8lXFJ/z2ErmtM1+d20bndEY2Jk58beWYsMRfVUFlpStgi4vrQDDErkpTGyo6mLStEBQ2R4PHnpdYKyaZztubvOga3J40lEoruWFx7fgprz8eletHmm0vjXy8aS4Tyqcv3R32uK5+6pP8cW0PZ2VoWbYGbmqdOt3L4qZd/y9LPvufR33U2ogYHs5YVotIbz6Ns097hHHqH7ffnkyI6w9WWectxL6FjsDtrLJEu1H4hc8gWvUIs92dLTdU9MTWPB6jskIN74nrJzNf6bStEJXB3d61DYhu09/cmLStEZXhz3Fgivtiu9eNLa40lYuM/efYPYWe+MHd++/Lr4Ut1g/vJueGSFbL02RFNrAe3jpasEJX+7XFjiYQyW+u1rBCk6z7DxnS717JCVKjR4cvR3SPrGMUwaywRH2breTtjXmG6mTeWSCjUCln6t/P9xhLxZbLTW7JCVObDrLFEQrHNW7b7jC56k8JoIeXTItqM77o22u4Zbdju7wHi58N8Mm9ZIVzYjnGO55K2+9kYJtv5khWiUgwWlkgo85H+GV7sc72ibzdiYm2Z3rRsWSEAVXWgmApBvalYISfBygZDBEEQBEEQBEEI46NXX3wsn/PHdx3P5/jwkUtfBr979TXN3192+0n4+qcePsEtEgCWgyH/4b7XwWM7d0YTcsGdjfkR/IWn3tf8fb83gp+5/xtOcIsEQRAEQThrrHwwJMQOccoSDYjE+lgfIYbIbF1vhaiEZHWlNkLyWXf9vRBDpMsIUTFFl63j7xfJ+oVYjRAKQwawdtgAQ8QnyznGELGOG2CIdGWMqPgYIj6ZWiEZ4r7vWSU7xGef+xgiPt9PiMHhk0HjM75PplaIIeJjZvi81veaEmKH+LzH93xIek5YjJAobEYIJeD64GSEhIzbYYSo5LtH3oaIyQhpvS6hHQIQZoi4HIshhojNCGmNrzFEfv2lb4JxL217wHHeh19/8E1LP/PJzg4xRExGiMp0K4efeMt3wIHSzPmvfua3oF+YF6xdRgglxA7RGSGUEEPEZZ80rw24l3AZv8sQufvgBtx7cB0AAGZZDj/zsm/0uh+LMURshBginUaIiuc9p8+6JiQb2maEUHwMEZ+1h80Q+a4n3wfnZgfN3//Zfe+EG8NtqxHS2haPOchmhFBCDBGbEULxue/oMkJUuuwOjvf42CHWbHlCiCEyPtezWiFLr/UwRGxGCCXEELEZITHYjBBKiCESa0ua8LnXBAibD12MkOGNcdM/xJUu82mJgOeSLvezLs/oKDYjhBJiiLg8swt5rtdlhIS+FjEZIZQQO0SMkJNj5RqoC4IgCIIgCIIQx821LXjPg2+Ab/+TP0z2Gb/9ojfArbWtZOPH8OzGefg7b/iL8NJbTzY/u3pwAx7fuusEt+rO5ZmNC/DV7/r7yz/kj20Ip5z9/hr87L1fBwAA07wH//rut57sBgmCIAiCcObIyjJB8dgI3vEX3238t67MseAM0Y73xfYAAbBHCbtsEBu2iHDq/iC+kWaVzLI/XG0QG72O4P1KGCE6Ok5HW6+QzqEtx3lszwsA+7aF1sEFAMgtmcKhtUdVbJksMdvdleEcu89j+8KEwrHP+4ftySO0n4uKLZOJo56qbvzQur1L4x5Z6utG9OlATJZAbO34LvsguH9J17lzHD1CArFuO8dyyzJGVH8Q27iONoiNYtteI97FCNFRDhgWaBamO/Ys5Jhj8eiyOZ3O1Qaxjn+xOv+u7t2Af/GL/wC2pnH17nXsD0bwF779R+CZrQsAEF6rX8VmhLuaDzoGe/bzw8cI0dF1DXMxQnR0ZbrG7BPEdn2MGX+6zd9LQ2U+sm13+LgbTx0a/83ZBrHRdd8Z2LOsyybyMUJ0TM7rU3U51imja2Yzw9UGsaE7HlxtEBuzHXP6sqsNYkOXze9qg9hYe8Z+PQjtM5JP7Ce2jxGiY9Bx/+5qg+gY3TRfA1xtEBs9y76Jma8yy/23qw1iwzYfxdggXdeW2PvNrvkwtEfI5IL93Ig9xgHAeo2IuZ+12RCuNoiN3HK7ENMLxPZcL7YHCED3M00XI0RH1zNkmxHyH//5Dwd9puDHypfJEgRBEARBEATBn6e3LsBPvP1dAMCXhI/j/MRb3tUEQgRBEARBEARBEE4Dp8oMQaghwpYlSsbhMEJUqB0SY4RQ1CjxKhshFGqIcFghKjSSvLJGCIWcljFGyNKw5BjnMEIo6rbGmBWtcZXMYQ47gaJmt3BuN8145t7nx2WIcO9zaodwmCGIanBwGCHW8Rn75lBDhCPbUgXNgVgjxDQuwrXdrXNnhY0QytK2p1hmKWNGGSGWcQF4rBAVaoiEGiGU4zZEuI5FaodwGCGtz7iYA5Ql/He//y/gzzzyEJTQmZhuBd//Ky95K/zdd3wXQJaxGCEUaohwGBAAbUMk1gih0GtZqBFCoYYI1/5A6LWSc/wlQyTBdKgaIpz19qkhwmKFqND7zkAjhEIzomONEAoaItxrFGqHcBghiHpccBghFNUQ4TBCEJrZz2GFqFBDJNQIoVBDhCVbXoEaIjFGCEU1RDiMEIpqiHDOV6ohwmGEUOj8xNUjhF5ruO836XwYaoRQqCHCfYzT6wPn/axqU3AYIRTVEIkxQij0uR6HFaJCn3GGGiEU+kzZpUeImCHHg/QMEQRBEARBEISzSpbB3/3qPw9ZCfCdn3kobigA+JWXvRX+n2/98wAJgs2CIAiCIAiCIAgpOZVmCDJdT3MTxh1lbI3Pl+iyxPh8+ptSTitEZXQj7WG4fv2UGCEEWw+EGArGbHYdKcwNJLkJsVpTojOp9kvK7xKAP7u1GZfJpjKOn/A4SbXtqcyQ5CQ6RhoSHeOsxobpM6Y8GW6tcQ95M4kp5QZjqpg6bmJDhDNTeXnctAvP8bk6868s4Ts/80H4wQ/+alAPkb3BCH7ibe+CX3nZ25pAiK0HHAeDROusjWfTHuOQ6PTntBH1H5Bm2OlW+vy7YpBm34xu8BpylK6+MKEMr/MbEADpzBAk5bVzeCPNPkGOrmwkGbew9MdZZYoEFQiWxk80H6a6N0FsvbGixz5Ie1FOvW9S0d9LM48f3MtY6kVDqvvwowvpuyWksIYBjmHdeZjoPtzj0iZmyPFwKoMhqYIgSIFVC5j3TKogCJIyGLJU4otxv4yuk8GYf4XNZ5ZnS64bpd7h8mzG/SCa3ghwjd9S8FOc/kqmKGdZm2K4GKw35t9udUHNGYSi3x13qZ+WtsykRtNSYVyl2hC6QOIcf7lEEduw+s9iPIeoAp0qGJozP0Av+vRY4d1uvBHgfkBS9kjZGeb5EL9P7v0NAJBNlMwEzuz8xGWyyjXSNDxPc6fEHRShQafxZZ6b35yUCTu6aG6qzvEZhxer/XJ17wb8wB/9JnzjYx+F0bw7y2Xc68N7HnwD/OSbvhmernuEqNfhFA+k6L7huu7Ta/L6c7xBkVa5Ka5ScPShIvMub5UqYZxX1Ll1ss1/jJf16c790Giwv3zedzXk9QW3N3WAizsoMrlYlTvk3t+07A7ng/T5+uKasP7kPtu4yMEDm83/54z3KIO95fl5fIn//ElB6jJZdB6fMwZC1TJWKRJkh7uLeYQzgKtea3pj/vsHeg3iukeh8yp3cJheywa7PNf8oyvLZV+510GD3eX5kDNpZryz2Mdlghyi2Ua1L3rcQT/62JD5MMekb67yWAidn/oO1wgJhhwPUiZLEARBEARBEO4Qnt66AH/ra/8z+Im3fTt8y2c/DG945jF4xbXH4f7d681rHt++CJ++dD989O4Xw6+/5M1wa23TMqIgCIIgCIIgCMLp4FSZIcdmhFAY9tBptUJo0/clGPZLywwBYMl2o0YIJTYTg5ohSKzB0ZX5HDO+tTEjxzRgySKMsSFUI4TCkSlqy+SIyXrp+q5iDZGuRpuhhkhX83gOg8OmzcaMb83ATXSl47AJbBm4qeyQauw4Y4EaIa3xI00OU9YphyFCrZCl8RN9pxyGyJIR0vpHhoun5nfnsENaRghlRQ2RrjJkMYYINR9UOAwR2/hoiLTeUxQwKOYwzXtQGL4T23WXIzPStt0x1/yua3KsIdJlUoQaIi0jpDVw0LDLQ2jKnnCYIba5lMMQ0WW0ctgK1AhR4bBDTNu46oYIGiEUjn1ua8bMYYioZgjCYYioRgglxhChRojKKtsh1AihxBoiXfN4jCHSs2w7hyGiGiGt8SO223Zt4TBEbNegmHuUrrk01hAxXcNizRBqhFA41kHUCgHgMUNUI4TCYYigEaLCYodYhuCwQ0xtAGINka75yGaIiBlyPIgZIgiCIAiCIAh3OEWewzhRYEoQBEEQBEEQBGEVOBVmyIkZIZSAPXUmjRBKwH7RGiGUgF+tywhRCcnCMBkhlBCDwyfbOWT8LpMAAMIMEY/swRAbwmaGICHZoj6ZGz6ZLz7fTdD+cPkea3ztkC4rRCXE4PBppOYzvlfG7QoZIj6Zt6vUP6TLCGl9hqfJ4ZplGmKI2IyQ1viJvtOQfW41QlovDphYHH7XEEOk0whRSfgQPsQQ8WlO72OI2MwHSogh4jO+yRDR4XOdDcmM9Nlun23xuSaH2CGu83iIGdJphSx9gPfwTo1wQwwRn7kzxBBxyWANsRVsRgglxBBx3aZVNERMVohKyD63GSGUEENEZ4RQQgwRmxFC8TFEbEYIZdUMkS4rRCXEEPGZy30MEZsRQgkxRGxGSDNuwDMJn2tKiCHicv0JuTfxmTtD7BDXa1aIIdJlhaiErIN0RgglxBCxGSGUEENEZ4RQggwRj7eEGCImI4Tia4j4Gmo6Q0TMkONB0r8EQRAEQRAEQRAEQRAEQRAEQTjTrLwZsjJWCKVjr90RRgjF4UhyMkIoDr+qjxFCccnGcDVCVFwzWELr37uO72MSNLhMCxH1pF2MCBcjhOKSLRpTy9MlAybE2nE1RIK+S3A3RHzMEMTF4PAxQnzGD63BDgAnaojE1GI/aUPE1wppxnec50IyS13mUB8jpDV+ou/UZZ97GSGtNztsU8AS0MUQ8TJCKCfcP8THCKG4GCI+BgTiYoiEjIvYDJGYPh0u19uQ7XbZppgea66GSJA14fD7ehkhrQ9weImDEUJx+V1j+i25GCIhGasu1xQfI4TikuUccl1bFTvExQihuPy+PkYIxcUQcTFCKC6GiI8RQrEZIj5GCOWkDREfI0TF1Q4JmctdMrN9jBCKiyHiYoS0xnXY7ph7HxdDJOT643pvEtpzydUQCbkmuxgiPkYIxWUd5GKEUFwMER8jhOJyvXUxQihOhkjE+q3LEHG1QSiudkho3yJqh4gZcjyIGSIIgiAIgiAIgiAIgiAIgiAIwpnmjjVDgo0QimHvpTJDUhkhSJQZgmj2SZARQjH86jFWiIopGyPEClExZbSEGiGu44daBEvopoeIrPbW8JqhQowQii5rNMYIoegyYGKyUBGTIcLyXYLZEAkxQlRM9kaMEeIyfpQZghyjIRJjhFCO2xAJNUJa4xvmvZDMWRXTfBpjhLQ+I9F3qtvnUUZIazDNNjIs/UyGSJQVonLMhkiMEaJiskNizA1EZ4hwjIuohkiMEULRXX85ttu0jRzXYwCzIRJ73puuXVFGyNIHGH4cYIRQdL97jBFC0RkiIUZIawzNNSbGCKGYMp5jr20nZYiEGCEqpt87xgih6AyRECOEojNEYowQxGSGxFghKsdtiIQaIRSTIcIxj+uytGOMEIrOEAkxQlrjarab5Z6nRmeIcFx/TPcmoUYIxWSIxF6TTXZIjBGiYnoGEWKEUHSGSIwRguiuuyEmiAmjIRJ5mJvMkFAjhGIyREKNEETMkJNBzBBBEARBEARBEARBEARBEARBEM40DhUPT4aVN0IQ3Mw6mHdHGyGIsk9YjBCEDsW8S/I60ovZGLFGCILZ/lyZil3jc1kE1aDZIoOYMau9Gb5cbD+HEYLMR/V3WEfZOa0QgMU+xgwYru8Wx2n2Ced3CQsDBA2RWCMEwf2LBgeXEWIanzM7is7hXGCWEmfGrAo9BvnG7dXjVhcFLiOkGb8eDw2R2KxZpKzHRUOE0whpPiPLmu+T0/JR9zmrEYLQOZzpmEQDBA0RNiMEKepjm9kQQQMEDREuIwQZPX8IAAtDhNPcWLs+bewQznFTg3N3M5czbTu91nOvsw7vqhb1aIhwnfeYgYvXMjYjpPmA+k9cHzIYIUhWlkmvb8Pdaj6ZbA9YjBAE9wFeczitEIBFxjJmQHNd2zJcVyUyRNAAQUMk1ghB6P7mNEJ0cBghyOG9lQWy/uQ+ixGCFPV8hYYIlxGCjK5V505qQ4TLCEH69f02GiKc83hvWjYZ25xGCJLPFnYIhxHSjEueSbDe9wDAfFTfD45xzcwzv9B7Ey4jxATXNXm6XV3r0RDhMkIoHCYIZXirmkcm5/osRgiS1ZuK12FOKwQAYL5Wn5doiDAd4vgMAg0RLiMEaeaT+hyNNUKQWX19oIaIkBYxQwRBEARBEARBEARBEARBEARBONOsnBlSMGYBLY2LxkaiYNt0K03WQXIjBEt+JwiLjW6kjWyuX0uTbdA7SjMuZvunqvXPbT80JDBCVOaYCZQgy7WpuZroUJyvVdveZ7KImnFxnyRIEgcAmG2kGZ/bCKE01laCY2U+yrU1dGPhNAi049fnfWboqxIK2gpcFgGlMTeYx2/6QTBmQi+Nn6ebU8p+Dpm+bDHP+DnOtbyZaeUwcZ3yxIZIKkbPHQAAwPSivodIKGt19u/kPP8Sfv36HCab6SbyVIYsZhQPDtKsrw4vVzcRuO/ZKInCwQynEaKST9CuSnesbHzxNuy/eId9XFPvNC4ae5D5O8X+GKmMMC4jpEXC1qT5vITpVrpHGbdfug39BPeER3VvJm4zBJnVWf995jVtY/YlMCwAFGOOeT2bwghRYTf7lgZPNzRAum1Pd+2pKxuM0jwwPLxarde4t39eV79IuVo+Op8b+2XEwF5VhzDYr/b1lNk84TZCKMmeWScaV9Czcg3Ukbd9T9VIfc5UOqdVvorpt55uGhrEMV14UwZDct09HcN9jbY0FuNRtn69PdObGiz7YHwYz7TtgwP9rDyPvJk0LmSYHsLSIAvHvkbwobwKZ1BkaVHAWbFNc6HiDIjQ/cIVtCgN94yx46da9C4+QP9jjsClrlQYa1BE3XbO6l6GSzfXTSSdV0wNyn0xPgzlWorQeY/z2NQdhwzD677L/IAvKlL22hMWS0DEdEikdo4TNVZng3yfrMEQzfHGGRRRGxLP1vjWn7p1Cud1g5YkYguKGDYxNihimk9LprKEqcozAgBkmoQezqBI/8Zh62ccQRHd2jU3NEINgZaBKphKNWI5GwpXUKRH7k3mGzzzSWlatzEGo2ZKaSzOh7pTTUCYIyhiCjRvf3EcPTYAwP69I+3PY4MipmS7PtM8O91aXqNw3memDiZgqUYAgNFNvgQL3T7nvGb2D8l8xTSHm8rhxd6bTM7pn8hzJbDONvVPoDn2+VTzrGPtGt+T+tsvbNfo5wiKzDXx8YKpJBQAwBpJauYKhvQSJpUBtI8JrpKYOO998OelcfpxsuJ3lIIgCIIgCIIgCIIgCIIgCIIgCHGsXJksSm9SRtkhxobmkU1zTUYIgtscaogcuxGCYJCWO0zG0KRYZ4QgtMEyKxlEbbfJCEF6dZadryHSmQXF0Phcl5nCsa91RghCG4uGoM2IYDgGbc08sUxHjCFi2i9odIQaHCYjhGv8pFgOXyxTFpIZZGseTxsLBqHbbvqzgGOxK+O37GdRGVimeYU2KPelszxObHNv0zyHGTsx2V22KZRhXtFRbFSLlxhDRGeE0H8LMkS6DoEC0qbaFMXq2iGa43dwvcp0jzJELMfX8GbdPDPCECk0532/bmoZY4jY1imYTReTeWnKyJtu5HF2SMcmHdUNikMMEdsciv8WY4ikskJ0Rgj9txhDRGeEcGBbq2KWa4whYsqEzufVPgk1RExGCBJbNosaIfTnMYaIyQoBWKy9QgyRmaVJOt4zxBgiOiOk+Wwsixuw3uwqPbj7glGUHWIyQmLpKr+M9yyhhgg1QujnRt3TH6MRgozPV79PjCFi2+cc10xqhCD5tIiyQ0zzIBJa0tdkhCAx94GIyQqJRWeEIEeXqvk1xhDRGSEc6IwQBK+VMYYINUKQwUFcuazjNkLoz2MMkSTPLwUnVvRuUhAEQRAEQRAEQRAEQRAEQRAEgYeV7xmi4mOIGI0QG457ossK0eFjiKSyQqxGiPFN7i/V9gox4fFSmxFiwifC6mUgeLy0ywjR4WOHeGc/eRgiIc3YXfa5zQgx4fP9eNXI9PnaA5JGfAwRn/3iY290GSGx4wMk7BcSMA36ZAbZzJDWuD6GSMj07bALQ7J9fTKwfOYTXzvEu2my7+/qY7/5HK+JvstmeI/f08cQsRkhxm3xMUR8vv5UKTerZoZ4fJdehkjA9OpjiOiMEBM+hkhIdrbPtcQnA8/LEAnY3752iM/86WOInIQRYsLHEPExQnx6h4RkWvoYIl2Z0Cq+dkiXFULxtUNMVoh2WzwMEZsRYtwWB0PEZoQYt8VjDrIZIRQfM6TLCNHhY4j4GCG+fUNC7gN9DBGTFaLD61w+ASPEhI8hErK/Xa6ZJhPEui0e87fPPAjgd1/SZYXo8LkP9DFCfNYnNiPEhI8h4mOE+DwXsRkhJnwMEZMRosPHDklphIQ84/BZn+rmNukZcrys2N2kIAiCIAiCIAiCIAiCIAiCIAgCL6fKDEG6DJEgK0SlY4+EmCEA3XZIyj4hAIFmSPNm8z95GSEUy1tDjBCKLZskpidF1zESYoWodBkiwTVxOzKoQzJTKLZ9HmKGILbvy8sIoTgcBiFmCGIzRKL2R8chFmKF+Iy/SkYIxZYZ5GOEtMa1ZdZxTN+WXRqT9WvLxIqpr92V4exthFC6fueIfkhWQ2SFv0ubIRJihFCshkjMPHtWDZGI79JqiDBMrzZDxMcIodgMkZj5BLFdW2JqMncaIpH7vMsQCe231GWHrJIRQrEZIjE9QmyGCEftbZsh4psJrdJliPgaIZQuQ8THCKHYDJEQIwSxmSEhRgjFNif5GCEUmyESYoRQbIZITI+QLkMk9j6wyw7xMUIo1nN7hYwQis0QidnftmtliBFC6TJEQufCLjskxAhR6bJDYnqE2PZ5iBFCsRkiMT1CbM9JQowQpMsM8bFBdHQZIqmskNhnHF1rVdtcJmbI8SJmiCAIgiAIgiAIgiAIgiAIgiAIZ5rI3OGTAQ0LaohEGyEIDkuCdqFGCILbSw2RlTZCEAzsKuGzKCMEob86c2YHZlzQCGyUFQJgPEa46NUZedQQic66xAxCklHNYYSoY9H9HWNAIPi7q99dlBHSDEI/SP3M+OFn69XvTg2R2H2C5odvj4/Y8VfZCEHma3krMyjGCGnGqLM2lwwRzulbM69wZP2W9flNs7Fi5xPMWA7NeO4E5ym6D2KMECTP2nYI93dJh2f4LouNaqGjGiIcRggda8kQ4fh6NWsIFop64OM2RBi+y8H1w7Ydwji9Dm9Wk7dqiMQYIUj/qNpI1RDhMEKaseqMOnqtibFCABZZmy1DJHFGcez8iO+nhsgqGyF0LNUQiTFCkM3HbgNA2xDhsEIAFtmu1BCJsUIAAPJ5tT+oIRJrhHQRY4SoY1A7JMYIQXBtphoiHEYIgvcM6hwVY4Qgs7V6bU/WmhxWCADA7gsq+4MaIjFWCADArD7WqCHCeR+oI8YIQXT3l6nm7xgThDI+X/3uqiHCsb9N10oOKwQAIK/nb2qIxM6DpnuSWCOkixgjBCnzrLW/OYwQHTEmCKWsN1F9bhJjhCB4jaSGSKwRggwOqvGpIbKqRggdh65budYoAh9ihgiCIAiCIAiCIAiCIAiCIAiCcKY5lWYIQg2LoqOXiDf1cF316nwxGSLcsBghlAJgdDPhdmcA60zRZBXMwLDW/A+BZHLH9gqhoCEyW+PLkgIAoyHCBe5v9nMSquwuWz3naLJFBgUnaIiwZp9D2+CI7RViGj9PPF9xM6+z9liy2unYo9xa5zqa+hjhtnAwG4s7k44aItG9QiiJ5inAjJ3EtlMKmwoNkSwyQ89EY4hMmcc/7YYIczb+4HqVJT+9YOkfEsnw5gyOLvFnXKIhwpFlrSPWBDHRGCL7vHM47mPsHcJtzDXjMVo4S+MzGiG6sXt75h4IoaAhcvjANvvYKrGZ0BQ0RKaWPhwhoPmFvUM4jBAVHG+2yf/4YD7MWQ0zChoikx3e+yk0RArm2zRKrBFCQUOkq8+M97j1/Iq9QziMEJWm4kPC+0BOK0QFDZHBHu9ci9fKwX6iUgE13PMg3pNMmecTvP/DCgEcRogK7m9b/7RQji5V+2KylWpdVf3JVk2nBs/H4e20zwpW3QihiAmy+ogZIgiCIAiCIAiCIAiCIAiCIAjCmSYry0RFZ5l42/e8u/M1LXODKcQzW18el6M2qkoxWP6Ti+Hu8t9nDDUBVdauYx083nEBANZuLLIlWPpB1NAMEu4IMI38cmVP0Kwx7u2mdUC5oFk13JnieOz1xvzTl7rtnJlHNOONPes/o/ucZ/w5qQPKnU2LWWODfd6MI1qPl9tswYym/gF/Zr5aP5yr9i+A5hjhzoSph8+ZrRl67WU3T45pGcS6v5WxUmZ0V+PzHYNZsbyttA8CG6fMECmH1bV+tpmgZrZy/hxd5BtfzSgeM2dbA+hr/XOOi6DhwgVa38MbvCmM/b3l8WbnGDPF1TZYc/75pFR6ZPRvxfcMQYq15eN5fBfzDU+9K7it79Q9Q/Ba02fOFO/tL5ccGF/hM9pSWiEAAONzte3IfT9CNpv73hi3N2NeavbI/Q3XdtN+rjmzrEANHM75W+17kOIZx3C3+hLpWjx63JvL14aS+d5+Pqp2ev+Q98s8urisJ3BV70g9l1AbNroPrYL6DILef3PQPHNkHnqwR5+z8Y7fnJvM8/eQWFpc1YBGt0kvKQfT54M//8Msny34carLZBkP2AKSOC+4IIkNitDgBy1nFRocoUEQpH9U/ckRFFlTmqbjRMexYFCDIIiu2RMXugZYIZj0t/mox66TApibpfmSKggCoNeL8ZzhuAlRjzf8LI6giG67TU00OeA6Bk2L6jLLogIipkUYLgJjgyJUnZ9u8gVFdI0JsWQbR1CkVMafbdQ3CQxBEd0DEWwkGhMUMR4jTMcgXVQXdUPU2KCI6VrLNp8ccy4I1/zdGreez1MFRcpBfMksGgRpfm5oDh1N6rJZeE5FHkMYBEH69cNGlqCI5vxZu16NHxMU0ZVVGd2ujg2OoAh9sMAVFDE9sMBSF7EP1Wjp28mF6kFPbFCEBkGan9+qyk5FBUU0pyUGLjiCImUvzflHgyDI6LkjnoAI+dUxMSk2KEKDIAg+BIwNitBrC5az4giK0EAIAMDo2SqwFRMUOa4gSPN5GdO9iGGzs4LnvphuY1n/GrFBERoEaT6P4Z6eBkIAAAostcvwHD1VKTLa/BmA9xkHBkGascuSJSBCgyDN+NMiKiCCwQ/KbL2eTyKDIjQIwslxB0K40D2DwHOVIyjSerZYAktAhAZBmuEjn+HpzslqQPyAsHERGgThhAZC1M9LVf5MCEe+EUEQBEEQBEEQBEEQBEEQBEEQzjSn2gyxEtGkk5bHomRlmB3ianzkU/7SWQBxhohqhFBo1JdbLY2JLtsy+mOydF0aImFmRYgh0tVUMTSjO6UR4kJMRrftuIoxRFwa5cUYIrYslZhj0CWrCF/DVTJLJcYQsTVUjDFEdEZI6zURhkhpGT/GEHHJBuUwRHRE2QoduzvUEHG9vkYZIidYITRqn1vek9oQCcFkhLReNyvSlMxaYUOEWiEqUYaIw/kTYoi4NNqNMUS6Sk1k8zIo69O1hMVsLQuyQ6gRQokxRExWyNJrOAwRDTGGiM0ImZ2rLIKQclkmI0Rl9Fx1sxNkiHT8qtONfpAdYjJCKKGGSNe1JMYQ0RkhHBy3EbL02TH3Ig6bHWMVdG1T2QuzQ0xGCAc6I4QSY4jYjJAYs8+Yfa4Q811SI2Rp3HrNEGKImIyQWExGCCXGELFZITjvhZTLOkkjBD87pFyWyzOIEJyeI+LmBmyCyQjhwOW8jDFEbFbI4KAaMKRcls4IEVYfMUMEQRAEQRAEQRAEQRAEQRAEQTjTnEozxCta52GIdBkhKq1ansyBXewj4mqImPqF6PAxRGxGiAmfLApdrxATPoaITwY/Zuki3PXcfQyRLiNExTe7OLUV4pPd4JOV5ZONQ7eBu8G6jyHik6Xi812GZBH5GCK+tUmnm7mzHWIzQtrjLl7L3VwdwM8QsRkhFB9DJKQ+uI8h4nOseM0nnodgMczZm6qreNUAP0EjhOK1zz2uS6kMEY7eITaS9Q8BqAyRlE3VPQwRmxFC8TJE0iZGeuFjiPhkU/r0DwnJ0vTNMu6yQlR8DBEXIyQKj6nBxxDx6RHiY4i4GCEUL0PEY3/49g9xtUJC8bln8TFEfIwQn94hJ2mEULzuRRJutq+h4ts/xMcK8bmHdzFCKD6GiE+PEJ+52ynzPACbCWLCxxDxMUJw/efaO8TVClGZrfed7RCfPiE+hkiq+SSkN4iPIeLzzMSnd0hQZRkPQ8TXCClz98ouyc7LgP4gPoaIjxEivUNWD/kmBEEQBEEQBEEQBEEQBEEQBEE402RluUJpkgbe9j3vBoCw+m0tLOEfHzPEhClzJLYHiOn9PkaIji47JMQMUTFllvgYISZ0keaQng7m8dtjufQK6cJkiPhYITq6ssNSmSGx9S5NGVGcvWd0hghHnU7d8caRpWL7LkPMkNb4hmnf1wqhmAwRHyPEPr7+3HHpFdKFzhDxMUJM2AyREDOkNb7GEGE5RkzHIFPijskUic2+NGZYrv5SR7/PGUzFVD1EbIaIa68QG0kMEYC0hgiA8VjzMUJMaA0RhnPS1jvEpVdIFzpDJMTcoJiutxxjA5izjH2MEB0mO4TDCLH2DmGYCnSGiI8RYkJniIQYISa0hgjD/jAZIrFGiGl9wGWvm+wQjh4hOkNklYwQE7r1A4cRYrqfCep3phvHcCmO7RNi2u4QI4RiM0N8jBATurmbI/Nct09CjBDj+Ib1e2yfEJMhEmKEqHSZIT5GiA6THbJKRogJ3TqE49mD6V49ut9wx6bF9gkxGSLR56Vhs0KMEIrt2TNHjxA0RD748z8cPZYQhpghgiAIgiAIgiAIgiAIgiAIgiCcaU5FzxAWIwShQbycxwhBMMsDM0mio7Q1vj1EXMH+IQiaIrFGCEJrj3IYIYhPD5Gw8Rf13DmMEIT2EIk1QhBT75NVNUIQn5q9ocxHWWOHcG03wHIPEc4sFVMvAY6Mf3UcNERijRAEM2pce4j4j9+rx6/OHQ4jBCmGWWOHcBghiK6HCIcR0oxPeoiwHSP0GGROwiqG1T5AQ4SrHndrPjkFRghS5tlifzP2rjruHiIcVghAwh4iuH2pDBHSP4TDCEH6+9OFHcJ4Tq5drxaZqiHCYYQgtIcIl7lBe4hwjWsi1ghBaP8Qzh4h/Vvjth3CeOqXvbyxQziMEIT2EOG0QrQw7RPaQ4SrRwhmRON6gbufIe0fwmGEIKNnDxs75DQYIQhdP3CtS+i9cMr7HYB4IwSh281hhCBFv22HcBghiNpDhLMXAd0nnFaIjlgjBKE9RGKNEGS2Xs8jtSESa4JQaP+Q02CE6OB89kB7iLA9GyS9Q2JNkC7Yzkscpt5cDiMEUXuHcJggFM5tFcIQM0QQBEEQBEEQBEEQBEEQBEEQhDPNqTBDUsJphaiUjNkNKmiIUKODi41n0CbgHTeVvQFQZWfoekKwkSipiSsrwzj+Wp1Nxpy0wpndoNJkYCXa31iXkStjSqUYZEmOcczObzKcDnm3vdknzOdPk2HDZCm0x0e7inenzzbq/cGU/bs8di9p1jLOJ6ZeHKE0hkgiw2Kx3Wmz604LjbVlKoIbAX6HXPYQgoZIPubLLD4WUhsiic53tAhm27wZmACVITI5l+7WYHSrOs/x2sMFztmcmcUAi2tvioxAAIDDuyuDY5vRDAGo7BAAgNm2pX9IBPO16hjJE/Qjml7aAABeUwEAYPRcdeM0vtTRLDEQzJDmvgajocVlKVC49zMyX0f7M926h9MKUcGMa86qAACL+ydTL6JQ8JkD97gIpxGigrYTl52ug9MKUekfJurFVq/TBrfSnJeTnWqe4r7v4zLiTKQ0zFJZIfi8gXu9g3A/q0MG+2nmEbSpUn2X3PO1Sqq5VTh5xAwRBEEQBEEQBEEQBEEQBEEQBOFMczrMEBpAZAjOzTbT1jBFaG3JWPoHhn9gDmtx9yhZv7ac9ctZ6z+pFVKj9oZgG5PuA6ahC5LBgxlD3IYIN6bsHY5Iv5p1hP/PaoiUaXqfYFZq8/f1jN0OAVhkq3GdSzTrI5UZRmvJso1bn0OchkhWlK26pjzjLv+9GOasmalNJk+98Vx9BKidUAx5DJHW+Uf6N0RDrQpOY0YZCmvxY21+TrKyZLVDsEeIqYdIKOy9Qij02ODaJ7OUKuziIOnv8hsiZZbBoO7vMd1hzLomp8lwr0iSLZnXhx6XIYLzK24rV31nmmm9+2XbAACw/eguy/jTC8v2Q8aYMZmqDx3t1TXfHLBaC5MLlSWD2ei0z14o9JpD+2GFQvcHdx8L3M7D+zcBAGD98X2egQHg4IWbyufUawfG9RT2YOsfzGH/Hr75j/PeVIVWoVD7WXCAx8S0/pwB030CvQfhRF1f0x4InBS9xXWBA3q/UfQzlvtUeuyNL1XH9egajzWI43FD57nhrap3CJdhWjR9MbBCAt/6KpUR0j8i+yTRekftZ8E5Hjem5ztczwY4n81R1Oe3nM8G9u9OWx1GcCcry9PTXfRN3//jyz+I2PJUwZDCMvdzBESMwRCAqIDI8JZ9Z4YGRWgQxDh+xAI0VTDEVhYmZuJ1+l0jfiUaDFGJCYikKo/lqjDHLDZtC+yooIjlrTFBEZcbkJigyNQy/8WcT13qa8pyeQBxQRHbeRmz8HFqehpxrNj2aczDGNv1KiYg4vIQPiYg0nnexSx5bNseM67DW2OCIrb9GRMUsTVKjwmIHFsQJPTfbVgCIeV6RHaJw/EVExSxHQdRQRGHYzvmIYHtIVdMQKTrWhUTFHEpORMTFKGBEJWYoIgtCBJTLos+9NcRExTBIIj2syMCIl3Xmqjrr8M+iQmKYCBER0xQRA2CUGKCIRj8sBETFLGt/2LuPVxLcYcGRbqOgZigSKpAiMt6OlXZrJigiO3+IuYYcX3+ERoU6QqCxNzz2ea4mGCIy3OBmKDIcQVBVFKVylIJDYp0BkFinklZvkuOZwK253ExwWbbPXDMMwEaBPnwT/1Q8FgCD1ImSxAEQRAEQRAEQRAEQRAEQRCEM83pKJNlIqDkyEkYIQiNgPqYIlYjpNmI+k+PcbuMEIS7bFZr/DqrwscQOQkjBElRNmt5I+o/PYa3GSFISMmsVEaIL3hs+GTguGQXBZXNckn2Jx/NWT4LYJFx5mOI2IwQJKRklmszNHXOS2GJhJTNcplzQtRYJyOkeXH9p89bHH7FkHIdLteloudfMsvHQAgpmeV8foWUzXLZ9pBxfV4aUDbLZf+FNFW3GSEId8ksFlx/x5CyWQ6lsbLDaiEVZYhYCCmb5fK9B5XNSuycu2T4hpTMcr0uhZTNStWEGLEZIQgaBz6GiEtZLHyNjyHiYj8g883qnPExRGxGCBJSMsv1WhN0/fXYJyFls2xGCBJSNstmhCw+279closRgmw+Vc1/PoaIy/ov5N7D1QgJwef7DimbdZJGSGrwWuBjiLjcT4QcI6lKsiGuZbFC7vlc5rSQclmpmt0jJ2GEILhWOA5DxBXnslghz6Qcvku83/R5HuDz3C2kHKHLPXDIMwEpi7W6rM4ZKQiCIAiCIAiCIAiCIAiCIAiCkIDTbYYgCZrSHgcuzdWdjBBKgCHiSq4kZXVZIq79QpbGn5Wd2RLH0TDdFRr5tkWsg7JAHI5tFyOEsipN1UOyQFya1YXUm03SWF3BpcF6SEaWiyHiYoRQuJuqU0IyQlyZj/LObK6Q8zFFY/UlHM73kP3lkqEa0tMqxBDxGt/REAmyrrKs2+II6R3B3bCd4GKIhPRccTFEXIwQio8hkrRXSMh3WZbd7wtolu5liAQcRy6GSEivGCdDJOCw98mYDKn57mqIhMytk6280w4JMUJ8Gqq7GCEUF0MkpFG6iyHiYz+E4GKEUFwNkZBrTTHMOzOpU+8TFyOE4mKIuBgh7W3pNkR8jJAQQtZ/rtn/IVbIbC3rzF6O6RHjug0pCFkvp2yo7rwNAT0IXY+RkONvfGnY2TckVZN0JKQPkoshEvIsYLZezWm23iGpTBDExQihpDREBgdlZ9+QVE3SkZDv0uV5QKpKLBz9nG2IEbL6iBkiCIIgCIIgCIIgCIIgCIIgCMKZJivLROmLCXnT9/+4/QWa3+gke4W4ootOBpkhFEPIy7VfSBfUEAkxQrTjGjInTrJXiCtqBJu1LqhmE0PMEIrJEEnVL4SrLijNvuHKIjLaIYyHnpphyJmRpRoiIUaICdN559ovpIsUhghAO7uL63w0Zbt59QrpQhmKc/+o2V2cWTEmQyQkC107PjEe2Prw0LmfaXuNWf2c84hiiIQYISbU7yzECDFhMkSSWSFc3yUdJ8AI0WG0QxjXI6ohwnUuAhBDhPGYNmVMhlghOqghwjW3UkOEq0eIyQ4JMUJMqIZIiBFiQjVEOO0HU++QECtEBzVEuK41NLOaa5+YrIEQI8SEaoiEGCEmVEOE0wgx9Q7hWgPS+w+uPiHUEOEyQkx9Q1bJCDGRyhAxXVNCrBDt+OQY4Tr2qCHCZYSY7vNCjBCKzgzh7BGiGiKraIRQUvcOoYYImxFiGIbju9StxTiNEHVu5bz31c11XUbIh3/qh/g2QIhCzBBBEARBEARBEARBEARBEARBEM40Z6NnCEUJTs46auetEmoPERYjBCGR1uEur1mBfUS6eoh4j1tnVGAmxWkwQpBikKXpYaP0FOAwQpCSBLBZbRZ1XObsHtf6rL7QLKQUPSLKLI1549JDJATaQ4TLCEFS9RCZj6qBuTK9mnFJ/xBWIwTJ0vT1cekhEjQu6SHCmYUOsOgh0hsz75RUfT7ouAkOkbKXQ+9QnyUdg0sPkRBoD5GVN0IQ/A6Z++O0+ockWI/0dycw3eHJmFdpeohs89ZEpjW1uYwQBMfjrsGP28u9XqD9QziNEBVOI4SOyb3Onm9W5wsaIlxGCIXNPqzBay/3egG3E49pTiNEhdMIQfBeZnhzxjru5lNV9jwaIqnua7iMkGa8tTT3vNN6O9EQOQ1GSDNmoh4iaAkODhKp6fg5zMdeqt4geJ832OW/8VB7h3A/CwBY9BBJ1QOCwwZRSdk7RIW9RwheYxLMp+pzgFQ9QtTP4QKfBxxdEMfgNCLfmiAIgiAIgiAIgiAIgiAIgiAIZ5qzaYYoYE+PnDfhBOZ1UD5FnXvV3CiYs68BFlm73GOv3UyTWdFkGdffZcb8XaZCNX24KUZpzBNa45r7+MasNe5su2a7ubP46uwV/HOwn9Yu4GSynSexFaYbywd0nzl7bVL3ORnuM49bZ9/Qesyx0Nq0Q+aMqlm9v/sJMtfKfgaQ4BhpsoGZjS2cS2frVTpf/5B3X6N5ota55wDPQ27LAqDKuC7WqotjfpTg4phDyy7lIJURkjXmBq4bmD8Hx2PqGYJkk+q7Q3OGd/AMBrtVlvR0my+jFLP9h7dnMNnhv50Y1tfb2Rrvd4jZwOzrm3rcVHYmGiJr1/lNsMn5AfT3+bOBcc4uITP2lIoiT5PdjrYCd3Y+roFLYlFyMduor2HM114AgKN7NtjHBEjXD+LwSjXXoQnG2eMTIF2fO8zkpr2Noql3M/YSSLX9KcD7DvZscdwn9Tqe/x4vjQlGK2dwgeONL1Qny+gG/5oyhRUCsLhHmjKbFqlMk2ltsqD9Tyt0xILPErnHbaoVJHiCnHpOSvVdHl1sFjrCKeRUNlBHbI3UJzv6yZYjKDK33EtynMgDzUNAjsCFLljBMe7QsHjIuBb5hk2MDYqkKI/VjK25p+SYhK2lsRh+HV3DT45j2tRINDYo0rlPI8c3Ldo4FsyT7fbGcwRFdItjzoW4bs7gCIhMDaUGYoMic0P5vtigSNeCniMogiW+VDiCItrjgeMYMTyY4gqKmM732KCIqTxMbFBEbW6uwhEUsV2/OIIiujJ4GUcAINF1t2u9ER0UMX1nsfvEsAZjCYpotjlFMESFJShi2tWRQRHTw8XYNU7XwwbuoAjCERSZbrW/L46giG1txhEA6B3q57jJubjje244xmKDIqaSbFzBkOmm/iDkCIro5laOMr26IMj6c/HHNAZBTMwiy9Oa1unTzbhxTeVsWIIimk1L/eCR436GJl8BMAVEDF9V7L1d2RGcjb0XM53PHEER3RgcwZCjy8w11Am6eyKOgIjpGhZbUg2DIK3PYwpamEorc4yvG5uj3HeqxukpEk1VmiAIxfKx0jh99ZAyWYIgCIIgCIIgCIIgCIIgCIIgnGnOfJksCtVkuctnxTQB1hkhSExpK1v5qlQlswCWM0uDLJGOTYopm5XSCjF+Jvka2HU9pbm6LyZzAyDumLaNC1Bly3GXzFoicJ90Zf3HKNU6IwSJKZtlywyi2Uoh2Um2OQIz7UIMEZMRgkw2syA7xGSEINg8krtsFjKpmwqHGCI6IwSJKZtl/d7xGAnJXOvIhiuVYzPEEumaK2frvSA7pKthMP57iCFiskIA0jUnR2LKZumMkObf+lj+LOBicEJGSPO6WRFmh3R9RzFlsyz7umkwH2KIWLaZo1yWbf00vF03SQ0xRLp29VERZId0ZVbHrHFcsi1Tlc06ulhd5EIMEZ0RgsxqyyDEEElVhgIxGSHI8NYkyA4xGSHNv4/Cy2aZrBCAxboqxBAx2SBL49fX3hBDxDa35vUaNcQQsZXFOryrOqZDDJEuIySWrnU53sOHGCK2JsdNma+QzG5bMYGIec+FmPsZnRGC4P1ZUOZ4x1cTem/XZYRwYDuHY8pm2d4TUy4rlRGSomSwStc1bLqRB9khJiMEiSmXZbJBuLCNj9fEEEPENvfEnOepjBCjCSKcauRbFQRBEARBEARBEARBEARBEAThTHMmzRBTvxAdRd/dDrH1CqH4ZFzYjBBKKpODZiW5jG/qFaIDs02dsjg9f7WyvzpN1X2i8z4N1r2yrzxsiC5zQyVVFhHNmnMxRbyzDzNwtkN8mrula7qXrrE6wCKLycUQ8ZlrfAyRLiNEJVVTdYAwQ8TnGPExRGxGCMXHEPEygWIMEQfQEnExRHzOc9+m6l1WiO617I3VAwwRH6vRxxCxGSGt1/oYIqe3LV23FaLiY4h47GsvQ8Rje0MMEZ9jz8sQ8dnNR+5N1X0zqcv8dDUVRnwMEZsRQvExRHzm6hAbossICaXLCGm9fpQ52yE2I4Tis09cjJAYfEx+H0PEp1G6jyHia4T0x6VX35CUdedtRgjFyxDxOPZSGyI+2IyQKDyfK0w3c+f7Oh8rxOfei6Pfjw0fi8THEFkFI2Sw599MPaXV2GWFqPgYIl7PnBKNG4LPXONjiKScq72sEI9nTsLJI2aIIAiCIAiCIAiCIAiCIAiCIAhnmqwsT3PaXsWbvv/HAcDPCNHRZYj4mCEUWxTUxwwxocvetvUKiRnXxwgxYc08ivgauwyRVL1COKLouqyEkHq87YHN/+RjhlBsx3TMuM34hu2Ozt7oOAR8sv5VurKIbL1CXNFlPYTUiKXospQ47DObIeJjhlC6DJGufiFdmCyR0GMDMdkhPkaICVvWVEiPmAaXPiMR6AwRjgwtkyHiY4To6LJDbL1CurAZIhzXLp0h4mOEmNAaIomXlkF9yGo6e4fE9nIx2SEM+9pqiERst80QiTn2rGYIw/LGZIgE1ddX6MpcDKnrjXD3DqHoDBEfI8SEzhDhmKttNkSMEdLVO8TXCqGYDBEfI8SEbp9wGCG2bPOYOdV2r+JjhJgwGSKxfUJMhkhshnFX3xAfI4RindsYjr1Uhohun3KYIJ0Z44H7pOueLrZPiGldzmGE2O4LY+4ZbWbIKhghJkyGSOz1q6t3iI8RQrGtMVieOWnG5xhX1zuEY06xnecrY4ToqDftwz/1Q/EbIyRBzBBBEARBEARBEARBEARBEARBEM40Z7JnSChFvTeoIRJjhCBq9BkjpBxGCJLPS/Y+IjguAH+PEmMPkciPKckRjaZIKiOEk6xIVLNS00OEw9yg24rHNcfYAIvsOpceIl4YeqrEZv2b+odwGCHIfJg1GRAcRgjiU8fWB1MPkRgrBMDcQyTWCEFoH5HYYwPx6R/ii66HCMv3qeshwmCEILSHCNcc6NtDxBVT/5AYI6QZoyxbdgjntUvtIcJhhCBePUQYiMlgBlhsZ8sQiTVCENo/hHFfZ9N52w5h2G5dDxGOY8/YO4RrV5MeIrFGCGKqox9jhCCz9Sy5HYJwGCGI2kOEc61q6pcR2ydkeKs6pqkhEmuEmOAwQpCilzX7g7NHCK4b1ezz2PkUQN87hMMIMRFrhCC4NsW1KleGMd7fU0MkxghB8rlmnku3q9mgvRC5+oMYewpE7hPTPV2sEWKCs0dIPiubc53zXlHXOySVEQLAY4Xo4Lp+4TGMhkiMCULJ5u31RqpeHil7hHCZZvQ8T2mDADAYIcKpQb5pQRAEQRAEQRAEQRAEQRAEQRDONGfCDIntFUIpEu+VJNn/sMiqGu7yR0txbFMt/VBodip3ZjqaIpm+3Gw03NH0xq5YS5B5ktlr0seS6rhusu24Nx0T3hmzZgAW2URolHX1IvIFs6tS1PUt84w1uxHBrDvuYwQNETzP+wxZdypoiOTM5zkaIikyW2YbOQz2EqT5JMqGQ9AQsfYoCQANEc6sO4CFIdLT9OGI4TgsxmKtD9mU/xhpDJEEYwPwZDAvjYeGiK0PRwQ4blbwTta4f8sh/2J1sDuB2RZ/pmdjiJxLs8Ae3q72ydEF3u+yuWYxT3+z2o5MYYgcXRwkzZpMtdZDQ2Swx7tgR0Pk8O411nGxNnqeaF9zGiGUop9Bb8y/iMR9getgLg7vquekRPcwqc4XXP9zj49r0hTPK0xWHBdcRgilV2eMc1UnQPBY5p6r0TDpTdLsaO57W5XxxerAS2XJcBshg71qvMlOmmOP0whRSWpsJBobe2lxVVRojZ9ork5mgpwCa+9OR8wQQRAEQRAEQRAEQRAEQRAEQRDONFlZnoJmCo685v/2E6zj0ahpwZQst/Hs8i6frfOMi6zdwJ4CvOMCLNfO5Kw5vpTxyRlFJUc3V3YwzYZo1SqNZEYyZ7iMGWqGcB4jS1kAjLuDZrfQutKxYP+KHrM9RHsNcRkidB7qjXnGBQCYbC32NWdPIzrHcW4zQLtXEJchQjPMBlyZYWSYHuP8odaSHt1K0JtEyYDqH/Jlb6lGEqsBQOdqriw8cp2KrW+PpOwZ0oyp7l9Ga2GpZwjndufkeshkniTrGYLj0++Sa1+TcVOZLZyGSEZ67Iwv89T8p1n53GZIip4h1UDLf+W0rtV5mbU3kPK79xPYh8Vo+XwcXeNZKIwvjJY/hylznK5NObOZ1W3kzL5eykJPcPc/V75DzvsL2juQbZ+Q6xTXuGgNIdzZzDNSPYDTfFUNCPp7cMJlLgzIecdthuB5wl0Zg54f9PeIQV2ns57nZNdynS/UjsmYKypQU43rOk7Pa84+SeozFc5nTOrcwX1MAyysV+6qGLR3DxdH58l9AJMmMNmu9sPH/98/yDOgkIwzUSbruMjrh6VcQRGkf7j899DgCAZBEDoRxSxMdZMQPlCJudnSPvTCHyVYg+maB7KMSy6AoRcuGgRBOBpc60pk4TESc2xoVUhDk3IO1MaSMdAm3mrz7ZjACA2CILiPYxYIurlnXt/ncwcYsPEjZ1AEmSvPJmK2mwZBkNlGFhUQMd1M4TETHBQxvA0X0JxBEQCA8blqxc8RFJlpNHD8WUxQRFeWDa8pUUERw01aMawboIcGRQzXpfl6dTByBUUQnLc5giLa/YmBhogH9drG6Xi9idnu3HA9HPSiAiKtIEjzD/W2RgZFUpaj1G1bUzaLOSjSr8sVxQRFaBAEGT0/YQuIqKzd4CmXZSoRg0lSUQ9TNKcEPqCIeTihm4c51um633W2VTdTZwiK0CAIFzQIguiafftgeoiL6/eYoIhum3DdH/PgUVuKh3GdPk/0HdIgSPPz2H1iuC5x7GtdAIE2Dw+BBkC4SVGyz4ba5DsEU/AA93FUUCTRHI2kKseuW6eznOeGXZkVJf+8BEqJ88DlNHeZPkrKMpS6Zyq0eXgIuvmD45ierRvutSKfeaQKfiCtIAgjGAgRTgdSJksQBEEQBEEQBEEQBEEQBEEQhDPNmSqThcSWy/JpKuRjidDyWDZ87RBqhdgIyUhwidCGZJ45Zf6GBFg9jmofS8QnA8I3gm+yQnSEGCIu2aohx4ZTk6yAWcYnY8jHFKFGiA0fQ8RkhJgIyZZwmW9CTAu1PJaJEEPEZx7z2W6TEaLDxxDxySQLskMc3xJiiBQOmcohhog208yAjyGiM0JMeBkiPnN0iB3iOHyIIeIyR4cYIl77z8MQ0RohJny222CEaLchwBAxmiGtwf0XH07fYYiF47Etq1A2y2SE6AgxRFyaVofYIa5Ng4PMEI9TwCdT02ve9Vin+/yOIYaIixESUirLZIS0Pj8gc9xnXepjiPhsi899iFdz5oAljYsREnJfYTJCKEFZ6R7XIp/xfUpK+WSW+xghIVUPXIyQVOWyQswQ33JSXoZIojna5xwIKZfltE4PedrncnsfcA76zEu+doiPFeJzjfM5Z0PKZbk8SwkxQ1zmjxAzxGSE6PB93nFsJbFsBOgCqhEi5bFOD2KGCIIgCIIgCIIgCIIgCIIgCIJwppGeIZGk7iPC3VwdwK9PhE90lmaf2jLQvDJV6UuZE1RS9xHhbq4OUGViuNohPvXLfY4NJyMEoS+1bHpIplBRH2vczdWxjwh3c3WAah+7Zkv4zC8+PURcjBAEe4ggNlMkZN5K1ftktlHXRGVqqo549w/x+HifHiIuRgiCPUQQmyniY4TQ99gylX2MkOY9HD1ENHj3D/HY9vl639kO8ZmjfXqIBO0vhx4iXkZI8yaGHiIa0IJwMUScjZDmDaWzkeH1Hdb72MkQCbBTTrKHiI8RgoyenwCAmyHiYoQgvv1DXK0QAM/eIYn8+5BeTS49REKsF58eIj49QsaXqoWBqyHiaoUAVMeSq5HB1ey5NW6AneLS18LLCGkGrv+0HK8hvUF87itcjZDm9T49CxIVwkhlTYT0CHG5nw3pDdIb1304mH9X3E7X84uzyfgSieboECtqWleJsP2uIetzr94hPrf3nn12guYmB1L1CUnVH8TrGQp5j+25Usi84dM7xMcI8WUljBAPpDfI2UDMEEEQBEEQBEEQBEEQBEEQBEEQzjRnsmcIQFjfEJ9eISZMGdw+/UJs0Ixrn14hNkzZC7FRWlP2GUuGr25ohmF1GTVBdWnpuIZIvk+vEBvUFPHJVLVhOjZCshpaaHYJRwaezhDx6RViwmSI+PYLoZgMES7jjNoWPkZIFzpDhMNo0xkiPr1CTJgMEa+6whqMhkjknGSyQ3yMEBsmOyQo84ygy1wOMUMo2usHxxxtyliLHNpkiHDM0TpDhNWg0dgLQWYIRbf09OgVYsJkiHhbIa2B9d9V7HdotEMYjo1UvUMQnSESYoZQTIaIjxWiw2SI+BghOowmBcNpqMvUDDFCKLq1eVAfFAM6Q8THCDFhMkR8jBAdJkODYz2q6x0SYoRQdPclLFnXhuM2xArRYbqn8LVCKMb7tMjHHKZxOSwJXdZ5SGY3RXcfG2KEmDjuHiKxRohxfZ9ojg4xQii635ljXW78nZm+Unq+cJkgpt4hHEaI7trHYYToeodwPDsxPk+KnDtMZgiXDUKfdaQyQRAWI0QzRJcRIv1CThdihgiCIAiCIAiCIAiCIAiCIAiCcKaRniHM5CRz/LT0EqE1XbmitbQ+MWvGKg6VAWu9z9Q9RBDuXiKYjeHaS8QVemywGCGI8t1x1mSmPUQ4rBCAdD1EaBaRay8RV1L14wCoeomgHcI5L6nbzGGEILSHSKwRgrR6iDCdhjSzyKWPiA/YRwQNEZbMsxq1hwiHEYK0ricMVgiApocI0zbP16sDGA0RLmsPx3LpHxJMnjd2CIsRgtAeIgxWCEC7h0i0EdIMXG9nvd1c32GrfwjjsZGqdwii9hDhMEIQ2kMk1ghBaA+RWCMEafUPYTwdZ2tZk63JYYQgdG3OaYXo4LBCANo9RGKNEASPMTQ2ONejs428sUM4jBBErdXPWoef9BbgMkJaH8N82Wr1LmC6LtJxOa0IXH/2JiWLEYLQ+1hOK+Q4SNYbBEk0R3MYIQjtHcK2Nqe9QxK1PThtvUEQzh4heL82H2Ssz05o7xCuuYP2DknVH+S09QYBkP4gZxkxQwRBEARBEARBEARBEARBEARBONOc2Z4hiEvvEI5eISZGt6rdy5WBRjHV94ulN06clcENzXTgHDrRrsCMIO7sKMwk58xuAKgMAIB0+6Mw9JfhILanhwk0FrjnENzXA0N/i+Bx614hObMhgvuBK4NXZT7K2PeDiqkObSypthltw96Yd3w8r7mNOIAq+7i/z3+hLfvL2VFcZPU+SGVc5EdpFh05p7mhUu8HUz+OKBhNCC3M32HJZLBQUpghKin7h8xHacbGtdHkHK9ijXOdqYdIKDh3ctmGCGakr1/jv1hNt6p9kCqLl3tubki1Lq+zrzlNRoBFJmyKXgvsZkgzcPUHtxmS2kLi/u4QTmu2RZl2vwx3eY+PyVa1L7hN5bLexdzPNpo5OdF0lGLdjHA/I2jGrQ+JkvmwxvOP+9jAZxscPVwpvWnJvh9Upky9YSlcvSNbJJpDR7fSXLgP7qqtfuaqHQAA0x20wbtfK71CTidihgiCIAiCIAiCIAiCIAiCIAiCcKaRniHHRJnzZtRrawczZBQOdvWZn7F1bk3ZYSw1FDPN/58i3wmjzeyGyDCNIYLZE1zHc0ojZLbR/hmHCUB7WJQ9HjsEjZDm7xtpDJGiLrPNbYjgPMFtiKTYD01GTf0nVz8VPD8mW8vf5XAvbttp/ynMMI01ROh5zNkzqVTO7dlmtaNTGCLFIEuSgYx9IbgNkWKt2hfchkhR98dgNUSU353244gitRFCPyfyO0xlhLQ/aLk3CQfZZAbZpLrwFZs8PRYAAKA+znqzAuabfPZG6kxYhPYQCYXOlbjm4jBE1CzYw0vVwoPDEEEjBJkPc1a7ALN48U+uHgBNr55687n6EM4TZv2nqo+uHhvzut8Vy3dIdilWCog1RFKZD8ZMcabrNvbwQ7tiss14rJyie1WAhRHCDc3Kp70LYliahxmfEfQ1a2+OTP1U179m/FQCcaIlHe2byAm3vWJicFCw2CHGnjTcvwZnPxll28Y71T4Y3eY7CNEK4QaNEOHsc8cHQ1KWyKLQiz37BSnBTTRCmwuyjVtfiFibcgOwLHhSl8eilFncIsi0YFA/LyQwQh/QIxzHc8pAiImmtBVzxYmyuTnnHRcgPhgw3dLvZ46giK65OUdQRFdOgiMoYrpZmSvPCEMCI12K9WQrCwqI0CAIhSso0vpcxqCICkdQpNQ0t6UNBUPIDL/rHRkUsfyuUUGR4wqC6D53BavCNuWxKAzrOQyAqOT71eQWFRTRHFe9/ao+QUxQxLT+Gd6qxg4tl5VqLQdgnx9jgiK2UiAxQREaBFHheKBuWodON/KogEhpOA8w4B4aFDEFQfBYjHnApwuC4HU6plxWijIx1cCJhk1Y/sm6LyIC4bnl1GIJimg2Ce8dUuyvyXYeVSrLFARpyjIHrrtSlibiLleI6IIgHBxXEoDp30O+C9v8GHtsqGOoZEU1Xsw8qNumVGXDODAGQVaZRMfzSQU/sjJdwE84WVbwlBcEQRAEQRAEQRAEQRAEQRAEQeDjzDdQR0yN1FOZIdg43QWfrDVteSzjwO4hTFN5LB0+dohvlq6XIRISofXYnOM2Q7Tb4LG9PiqpjyFiMkNM+Oy3VGaIrjyWCR9DRGdBGMf1mFt89rGPFWEyQkz4GCI++8LHEAnJmPTZJz4au48h4pNN5GOIdJkhFB9DxOdc9TFESo/z2scQ0RkhJnyuPSYjRPvahEumlWisHvD7eRkiJ2WGqHj8jinLYxmtEO2LPdYNGiPEhJch4nEc+RgiPuscHzvEdw3nUy7LZz70WfP5ZLv6mCE2I8SEjyHis/70MURMRogJH0PEpzSWT0aoT1ksn/WOz7HhZff43Gd4lMo6MSOk9WL3X9BmhFC8zJCAZUOq/edjiPiWxfKxAHzWzD7lsryMEI/vxccI8bnPOCkjhOLzffjMhz7HhM91xGs+THRchuBTLsvbCEl1e+JzGfbYBp9yWT5GiE8jdZ9yWKbjXhqnn27EDBEEQRAEQRAEQRAEQRAEQRAE4Uxzx5ghCDVEVsEModii+V5mSGtgc/TTxwyh2EyRmPrtnZZITIKpZbNWwQih2DJHYpqLdRkivlYI0rUPV8EIobgYIj42RDOuw6kVsp9dbAhfM0SlyxIJ2RfN2JbjLqaWtm2fxDQ2tBkiMVlEXYaIrxWCdNkhMXOcLSPaxwih2AwRHyOEYrsG+RghrfcmWjqlskMAHA2RiN/LaoisghFC6fhdU1khXkZI683m/ehjhFCshkhE7xmbIRKTEdtliITOcV12SEwPJdsaMKb+uc0QCTFCEBe7IGT96WqG+FohSJcdEtMs3ZYRHdMo3bbuiaqNb/sOY3oUdhgix94s3enN5l/YxwihWA2RiH18UmZITJN0lwz8kDWzixkSdI/t8P3E9Aix3XekbJQeev3r+m5ieibYjo2Y5xi2OSGmX0kqQ6TLDInqD3ISZkjEZ9rMkJjeIC5mSEiDdHr8ixFyNhAzRBAEQRAEQRAEQRAEQRAEQRCEM01M/PFUs4pGCFLm7ah+lBHSDFxvm5JtFWOEIJjlTQ2RGCtEfb9XHxFXMkgXQU8ARqO5M0kwk8anh4gLmFGRyrJJgWo6UEskxoKg2V3q3BNq3gAATDeW30utiBgrBACgqBOFqSESsy+asYdZyw6JMUIQ3CfqvogxQpB5vS9UQ4Qja2hSf0fUEAk1QhDcl9QQ4Tgfi34WlR1tYrZZfVE+PURcwOtH7PWIglnL3IZIsVbthxSGSNGvDlqtIZJKEl5FIwTBbSO/+0oaIUhZtvZpjBGC5PvV5LZkiEQYIUhvv0rRo4ZI7FpmeKsalxoisXPc2o3qvKOGCMech+ssNYM5KtO95vBSdVH26SHiwnxYnQc6uyAmkxczY02GSKgR0kWMEWIjxgixwXFsmAePe3tvXP3O1BBZSSME0cz3MUYIgqbFkiHCcDnFewXufYrbSQ2RGCMEmQ+yVjY+x1p5tlZ9d6ohElNtoQGHIN9XjA1i/bjEzx1S3XPHGCE2Yq4jNmKMkJMiyghBUj3bwjEzzc8iGO9UkwM1RGKsEIDFPTQ1REJsEBU8f1OdD8LJIGaIIAiCIAiCIAiCIAiCIAiCIAhnmjuuZwjy2h/8ie4XBcBhhqhglJ/FDGkNnrGYIRQ0RLgzcRtDJFFENpUtxJK9oqGIqKPfOXZkZrqJVBl/Mb1CTgrMdOIGrYhYM4SChgiHGbI0LmbLMpghKrgfOMwQSm+cpp4sGiLc5x8aItxZY5gtHdMrRAfaITG9QkzgdSmmX4iO09ZDpLFDEmx3Np2vthFiINX1icUI0Y1r69ESQTFKtAAAgGIjzdjT7TTjWvsBRDBbS5eLtn5tFtUrxAQaItzZvGiIcJ9/2DuE2wjBrNAURgiug7itkMbu4bbLazNkpY2Q1qAlixFCaeYK5n2cuncIhxGigln5qXoupKw44NKbJITTti9S3DelJk/0DCd17xAWI0Ql5VPdROYJmiGxRggFzZBYI4TysXdLr5CzhJghgiAIgiAIgiAIgiAIgiAIgiCcae7YniEYQWaPfuvq6sUMR3ovsEaoy7LJ6MUMKg6aXgA5sEaQWz1ETkviqaEm6cqOC+nq4et6L3CQqkeJrk4tF/M1gN4R+7AwvoBmFve41Z/DXeZxL9b7eJ933KN63CGzrQdQ7eMU407q7JX+Ie/YmLE4usV7gszWsaY88zyxhr0tEpx3dR38/oy7N0m9zVNu/aae6Atu07Le3gl/Ol3Zz1nXFMnR9FPjIJURgttZDqslPEfPEHXsvB6vGPLdImTz6jjr1TbyfHuNZVw8fkfXqj/Hl3jGRUY3qn0xvsB7u7R2s+5Ncp4/BXey3UtSmx4zWbmtb5yTucfNmOfMZtzUmbcJwGt139CnJZhE2zu8XZ/P5/kfU6T6/pqeQMzmlK7XEAfTzVS9sao/U2TUF70MeonO6xRM6n08YK7ugfemtFdkLCmNEDSG2PuEZGkehqQyQma1/cduhADAYL9s9RPlACtC0H6qsWAVBG4jBJ8TztdZh2V/riKsBmKGCIIgCIIgCIIgCIIgCIIgCIJwprlje4Ygr/8bP8ESCR/dNOzGyAAt1vSkcESsddnHLNmcum1jGLYwZRNE7uNkvUJMPRBS7QuGcXWZRxx2iKk/RqwhMt3S/zzWEDFtL4chMj7fHpvDEClG7Z9xZDFMDf1YYg0R03fHYYjMNcnBHCbHTJNxw2KIGObzWEPElEkYa4iY5mIOQ0R3DeIwRHT16PsH8ZO/qa9JrCGSTwzv58iK1GwyiyGiuVacCkOEbHeZ8+QJpTZDmr8ymyFICjME4TZDEC4zJJstf3ecZoi6juA0Q3TzL0cWvC6DlcPiMPVtiB3bNPfONtOkPXPYFnPNmpOjh4qp30TsNs8NPW9i703RCKFwGCI6U4jj/k93r8eR/Z4brp2xhojp/qhkSCjvj9vbzJEBX2j60vWYTTKV2Hu9icG6iTVETPemHIZIKitE9z2x2CGG+TH2fiG1EULh6Jc52G//zhyGiK5HKIcdYuqLGbvvTfemHL1O8ynAw/+L9Ao5i9yxZbJUaNMl1guCOj8xmmt0McM1edNGuGwPMujvzrmGSbSPk5FqXyQal96QcZbOmisP8DlLZ9Hzgat8Fl2IcpXPwof33GWzcMGRQu2cbFd/cpfNmm1Wf3KXzZqcS1M2K9W4AACz9Yy9ZBYAwPhcmrJZeJPOXTarqAMO3GWzZhvVxZ4jKEIpBjl/ySyAdGWzhtW+4C6blaIUJxuGaxkGMUKDIsmCIADaBwAs5bI043KUy6JBEKS3exQVEDEdp6Nr1UU0NChCgyDNuAzlsnTrBY5yWdzzLZKijAeAOQjCMnaKOTchuiAIB6mabpuCIByYAiGxpCqXxvEQU4cpCBJL0sbjmiAIB7ogyCpiCn5wYAqAxHKcwQ8WmMuYqhx3ACQWXfCDA46ggQ5T8INn7ETzsJTEumOQMlmCIAiCIAiCIAiCIAiCIAiCIJxp7vgyWQBVqSwdPlFzY5ksHR5BTFOZLB2+kW2fjGOvrE6f7fAY1iv66/DSVOWxAAIzhhz2RVAE3GHcEO3axRAJyWhxMURMJZZsuGZFhWyziyGiK4/VhYspoiuP1YVLxoOpPJYNV0vE9/tztUR05bG6cDE6dOWxOMYNSUdwmbdDzmdXSyRkDnLJXPa5xvgYIj6lRnwMEVN5LB0+2crG8lgmfLJePb46L0PEYxm5EoaIx/b62iHHVRrL+lIfQ8RjXB9DxGSE6PAxRHyOS187xGSFaMf2MER8DFIfQ8THCPEpl+VjhPiUtPI1QrzG9phjV6Fclo8R4nINCzFBXLc3xAZxuR8NMUFcymWFmCAu94Mh93Wu5YB8bRDXNV6IDeJSLivEBHGZV0JMkFQmguu8HWKFuJTLCrkXdSmXtUpGiNP5EWCEuN4jrIIR4jOv+BghPmWyfIwQ3zJZPlaIz/fhcy/q8/uZno9Iiayzi5ghgiAIgiAIgiAIgiAIgiAIgiCcaaRniAWXXiJeRgiCb7EENX2MEAQzQLoiqyE16J3qfoeE1nAfWIaNsiFOR7nRigx4e6mo4wL/2JitxtlDBGDRR4SzhwjA4rxIUTd3tpax9Q9ROW29RE5bHxGA09dLZLZejWuax0Oba3b1EYmpyzofZsYs5hBToCBWhi4LLKT5rEsPER8jBCkG1b7tyl72tkIAqh4iXZmwAV+dUw+RgLn/RHuIBGyva/+QVTBCEKceIiHZlg49RHyMEKS3W13gugwR3342rv1DfIyQZmyHHiIhawKXHiIhPUIw29tmiIT0CMHrQpfFEdInpBhk3eMG9Ajp71f7mNsQmW1Uc4TOuIjpDYJrbNM1LbQ/iG17AeL6g2SF+V5UeoMsOG39Qe703iAqqfqESI8QhUR9QlbBCEF69Tllm2dCeoSgJWQzREJ6hOB7ugyRkD4hLs8xQ+5FcVt1v6/0BhHEDBEEQRAEQRAEQRAEQRAEQRAE4UwjPUMUTL1DKGp0PcgMMaEEO0PMEBM0whpihuhoZXZyhdbIsDEZyS2UoVauZ4iOVPuCjBuaTa6iGiKcmS3UEAnpF6KDZk5xbTPNBg3pFWJCNURCeoWYUDMjQnqFmKCGCNd3Rw2RkF4hOqjFEdIrxGlsxjQEOp9znMsAbUOEa+6hWc1chgC1Q0LMEBOqKRJihlBoNnOQEaKDZsYy7YJWRj7jsvHYDBGmbaaGyCoZIcahVEOEcVzVEAkxQkxQQ8TXCDFBDZEQI0Q7LrFDOC1R1RAJMUJMUEMkxArRQU2OECPEadwAI4RyXL1DYqwQFXpNCzVCKO3t5Vmg0HtPTiNE7R3CaYTQ+0KueznaG4HLCKHrPU4jRO0dwmmEqHMNpxFyXL1DuIwQ2jeE875Z7R2Swgjh2tetniFM65PW/cAKmSAm6FwTYoPooGZIiA2ig5ohISaICfX74nwGqP7urkaI9Ao5+4gZIgiCIAiCIAiCIAiCIAiCIAjCmUbMEA2uhggAwGA3we7LeM0QBCOtXGYI0mR2MofWaF14TlLVU01VWzbVvmhlZXCNy2gtUDizD1S4MuoRzCbiNEMAFnYIpxmC5FNeMwRBQ4TLDEFS2V2paogOU1wvalLtCzXDjJP+YZpJOKXx1+MyOGowu5nNDEEwU5Z5em8y9BMsG5MZIqdtiZuoRnY2TXdilInqvZejNBf7yblhknHn6/wpuEfne6xGCIJmCJcRgqDBwWWEtMZlMEJUUtkhAOl6WKS6H0h1XzTYSzf3THbSfH+p9jF3hjret6T47sosTY8QnHO4+4SkMkNS9TPh7rep0kvU2yXVPp4P0+Rmp5qDOY0QCve1E80QLiMEQTMkxTOZMmeuClNj65lGESPkzkHMEEEQBEEQBEEQBEEQBEEQBEEQzjTMccI7D8ya4IwSr19bZNFwZqsP9pdTR8qcqTYjZnTWm80VzaU1Hzkzdcpemgxi3Kfc2QhYu9Unqu0E7lLmcTH7iTNbabq5+P45MyWnW6SW74Rn3MPLZFymbI/xxeW/D/b1rwvh8Mpiv/b3+M63w7urcfv7vJke0+1q3MEu77hoNtF+NbFMdqrtHN7mz1bi3mY8d7GOMVcdfJwbpnXdZXpdCh63zt7DOuo5Z339ej4v+lnruhQDXi/ma9VG9454LkpFPV4+5r3IzdeqJWPvMIE6VRQAOX9+Dvb44O7tUfbrcZn6TqQyQgAAYFY0/QZYs1En1XGQAUC5zmdbZEfTpT+Lczy6Yn6zvlgymyH9w+o8S2GGbDw3g/E5/nFxHuPOgEc7mmuexHsg/HN0k+88npxb3AJzzuu9cZp+W02GOm4q01c3urG8OFX3Swyp6vQDAEy20xghg93qXKZ9gGLpH1XHxHSDd6dgpQfOqgSpvrcJvddiXkZgpQMue6E1NzJeOke7i7XZZItvh6eyuxbrE+bKIjj1MMuaaBJy9VVSKZmXavQ5H9e16PDy8nHF9dyksUnrPzmfpRXMFTqQ5rxIuMwWTi9ihgiCIAiCIAiCIAiCIAiCIAiCcKaRniEWbL1D1p/Xh985DJH16+0wK4choqvRzmGHmOqop6j3B8CUyaYZgiO6PVtvxxdjLBFbT48YS6TzeIoYe7be/hlHtopqhiAcmQ7UDAHgsUNM/TFiDZGZIUmWwxAZX2jvzxhDZL5h/n5iLJGZZVyAcFPElBHHYltoNonDENHVfOfYXtM5G2uImPZxrCFi6lsQY4jY5u6Y7C1bf4wYO6Qw1F2ONURM6wQOQ0Tby4LBECk1pgWHHYJGSGvsWEMkhRli2aYoQ2Ri/t5jDBE0QSixZkhjhBCOXnghalyAhRWiMr4Yn+aaa7KbOQwRU9Y0GoChmOf1iPWvZZ06uhm+kLKZDzHzOjVCkNh7IWPPgsgpgxohCIcZojsehrfjb7K0RgjD1DnY1W9bqCGCJoiJGEPEdq8aY4jovjMOI5gaIUiq3nwcZoj2OQPD07KR5jjjMEN063XdNcR9QPtxFNM/L7NM3bOI80L3+3KYIToThOOZnGmM2D6N1AhBOJ6X6O43OZ6d6YwQDgPH+OzJMrb0CrnzkGCIA7qgiCkYQgkJjuiCIZSQidilYW1IcMTlopgiMBIUFHF4S8jErguCtMYNCIq4NDgPCYo4Hz8BY+uCIZSQ4IguGELxudjrgiCUkKCIa5PwkKCIKRCiEhIU0QVBKCFBEVswpBk3ICjSFQwBCAuIuJYH8Ao2OGxGSFDEpfFtSFDE5dwMuUF23bchQRGXBs4hQRGXOTvk4ZlLs3CfoIgpCEIJCYq4rAlCgiJODb0DgiK6IEjrswOCIqYgSGts36BI4vJYnR/vcwtgCYIgIcEQUxCE4hsUMQVBKCFBEV0QhBISFHF5gBUSFHF5QBgSEHGf192PM5f1aUgwxOUhf8h8bgqCqITcAzk3bg6YQkyBEJWQoIjL8RASFHEqi+WxH0zBD0pIMKQrEAIQFgxxuTcNCYa4fGchaz5TEEQlVUAEICwo4vRcwWNYXfCDEhIMcVmnBwVDHNcjIcEQWxAECQmGuPyeIUERl4fxIc/iut4TEgwxBUBUQoIhLveZIc/MXMphhQRDnJ8tacaWIMidi5TJEgRBEARBEARBEARBEARBEAThTCMN1BODDdYBeJusY4SXs8E6wCIT1ikb1CMzACP3nIaImsHF3Vxdhas5FN2nXE3WkzVXB6g7o7q91MUIQXwarLsYIQieD2yNwkhiJ1dzdYDljAuu5uoAANPN6k/OxuoAALOtugm6gyHiYoQ04266N1d3MUIQ3+bqPk0j5yPe5urYWB3harCeqhG8b1N1n3073cyd7RAXIwTBTCQXQ8RnbsZrj0tGsYsRgnA3VQcAKEaJGquvDwDAzRBxMkIQNDgcDBEXI6R5rUdTdVcjRH29sx2SygrhauoeQHZYXSRdDBFXIwTJbx042yGuVggAwNoXbgCAmyHiYoQgo+vVvnAxRHyyeEe36ibPDoYIVzNhSoomyz73M+Pz1QLKxRDxMRx85nMXIwTxvQdytkIAqjW648tdjJAQuI+HVA3SAdytEIBqf7naIS5GSLMNB+4N1X3uQXtj94bqx9UofZXhfHag4mKEIMO96lhwMUR8qirgXON8bUm0HnExQnyIKv9lgbsxuorPtW26Ub3WxRBxMULoNrg8H3ExQkJI0SCdowy7cGcjZoggCIIgCIIgCIIgCIIgCIIgCGca6Rnigdo7xLVniI4uQ8SlZ4gOU+TZpVdIFzpTJKaB1ok1Vw/82K7MHJeeIcaxNVnILr1COsfVnNksJpFhxvAxQ1S6ovo+ZgjFlgHh0jPEhM4Qce0VYh3XkEHj0ivEhskScekVYsJmiPiYIa1xLYaIjxlC6TJEQrPkjNYFw6mmM0RiMnZshkhMdk2XIRK6b7sMER8zhKIzRDhsPV1GsY8RYsJkiLj2C6F02SEh/cMQmyHiZYZQNIaIjxFiwmSI+FohrXFNhsYKGiHW3iEOvUJM2AwRXzNExWSI+BghOkx2iI8RYkJniMRkudrMkBgjpKt3SPh8rt8mjnWpzhDhaASum899jBBK172PlxGi0vG2GCPEth9j7AJd7xAWI8SwL3yMEJUuM8THCKHYzJCYqgQ2MyTmOzOt9WJtkOPuHRJlhFimVh8jhNJlhoSu0Y3XGIZ1iO45EIcJousdEnOt7OoZEmqFdF27Yq5tNjPExwih6J6LcJggpvkq1Abp+k6ijBBlbOkVIogZIgiCIAiCIAiCIAiCIAiCIAjCmUbMkABe/zd+IsoMoaApEmqEUGgkmsMMQdRs0RgzhJLcFGEeHiPgMUZIa0wlK5nDDGnGVc5w1h4zZOYINUMoGO2PMUIoaiZEjBFCUQ0RDjOkGZdk1sSaIQg1RGLMEBW0RGKMkNaYiiESY4RQqCHCVTe5ZV0wHWbUDuGs5dob89ZbpVmDXPuWGiIxRogKtUO4+jgBLGcUc5ghCBoioUYIhRoiMUaICrVDoowQimKIcJghCDVEYs2QZlw0NlbQCKEsGSIRRgiFGiIxVogKGiKxRghCzRAOIwRRzRDOuufUEOHqE0INEb75nL/noWqGcBghCDVDYqwQFXrPE2yEUMgwnD1CJuf6rH0mqBnC1ieE7INQI4RCDZEYI4SiGiJcfSoBFoYI1/dG13hc/UGOywxh7RGi7IoYI4SChgjX2rx1rWFch6jPgTh7g6hmCOe1Eg0R7v4geC3jvKapZkiMCUJRn4dw3k/SeYurP0jTF5ezN0gmRoiwQMwQQRAEQRAEQRAEQRAEQRAEQRDONIwxwTsHTisEAKA/5pVzbH0SYuHMnFXByD+3IYJZXdzjdtWfDBqTKSO3NS5G1bm/unrc2RrvsJyZZwirEaNQmMuhx43bTzP+dBPH5T0YZlvVeJyZG7NNZRsZN3e6XQ1m600SwnxU/dnT9JOJYbJTbWffUj82lPkIoH/INx5mEnf1EPFlupknGRczl3qMGZ7N2P2MLYtYZb5WXXy4rsXFqB5vyrut8/UBAAD0bx+xjgsAAEUBZY//IlyiccJ9DToFRghSZhlkY+ZJDACyw3pM5n2R3zpgHW/tCzcAAGB2ZYd1XACA0fVqH0y3B7zj3qpSMnV11mPA+Xa6wXytTLAeG5+vFk3c61zMJB/sM6brw+KeZ7aWJieR0whBuNfmkx1M0+YdF8cb7PF+Z7hP54wVARBOG0SF+zvDNR5nRjkAQFFPiSkMEVYbRIHTBlFhzYCHxfMPU0/KWDiNEITTBlHhNkKQFNe06UYGM+ZrLwD/uduMm+g5C/f5AAD81xzhVCNmiCAIgiAIgiAIgiAIgiAIgiAIZxrpGRLIW77vxwGA1+roKWPROrUxNBmkTENybhtlKYODs7QnyUYsmSLjuL1cVkcrYs+4q9XMBc7sObQNmrGZkmXmdQYSVyYH7enBmcE/2Vns0N4R34E73Vn+orjGnp6rUi16hzzjzTaXUzcGu3xx9un2YuzBbb5x0eRARteZ9m1tnqxdY5oTSBLx8BbfyYv1pAEARjfTzetstmI9DNt1lwzDaXKo2Uw5o3VRDJbPgd6YNzuR2xBBOA2RcqBYIZybmyg9KMPviKkHCZDeJpz7IJsrx9OM79jKpsvpo+WQyY4omPuxkHFmd23zjAsA+XixD8aXmZqsQXt+4eqZgf0MuUxomj2LvUM4UNfOPcbs8oL87qPbPOdEvzZNji7xnAd0TT+8xZeufXRxsXM57x36B8vHLVcPRrz29g94vqsp6WXCeQ88G6W56OSkTxn2oYimHpauS0OhvfY4TRZ1rJxxmUTvSdduMR1nzGbfcDfN+QWwfA7Q3nsx0GczXD3hBrvVfEj7/oQyPr+8LzntmLlSbYOzYsicVPHgqjYwW68Ne06hONHt6GCvGvgPf+aH0nyAcCqRYEgknEGRnmYMjkWXsZxG4NDHFgxBGK4FugtqTECkS7sNvYB16osRu16ncXLc2NBgCEBcQGS+1rFvA48HU4Nzjgv4ZKe9IzkCFzQYEjsuBkFMhAZHaDAE4QiKqMGQZtyIoAgNgqjEBEQwCEKJDYqYbjo5giJqMARJFRSJCogY3hp93TW8nSMoolO7Y4IiNAiiwh0QAVjNoMhSEIQSs7mpgyCU2KAIDYY0Pw8fcikIQokIitAgCBIdDDHtg9iHJ4b3xwRF1CAIJSYoYppPYoMhM811ASAuKGIrIxITFNGtmTmCITQIgsQGQ/qGclsxQRHbOj4mKKIGQVw+yxUaBEFiH9aayqnEBEVoIEQl5l74uIIgSHAwpONXjAmK0EAIAE8wRDcGRzDEdO8ZGgzhDn6o0EAIAE8wRHfMxwRDup7DhAZDMPhhIiYoQgMhADzBEBqsAIgLhujGUwkNhmDwg8ISDJEgiHACSJksQRAEQRAEQRAEQRAEQRAEQRDONGKGMIGGCBKSsaozQyg+mShODVYDvv1jN0MoAYFyl+wCH1PEZTtDIvrOja0CvgKXBl8+WV86I6Q1XkDCTJcZAhBmh5jMEIpPdoPOCGmNF2By6IwQlnE7zBCAMDvEZIZQfEwRnRHSGi/AELGZIUiIIWIyQ1R8LRGXrLsQQ0RnhFBWwhBxfGmQIeLwlhBDxKXZX4ghYjNDkLNuiFjNEMRnc4/bCKGEGCImI2LpNf7DcpshJiNEJcgOcfn9AcIMEYf3+BgiNiMECTFDXOaPEDvEZIRQfAwRl3VniBnislYOMURMRohKiB1iMkIoPoaIy3o9xAzRGSEhn00xGSEqvtnrLtfbEDPEZoQgIffC3EaIyQShBJkhDkOHmCE6I6T10SGb6/AeH0PE9T4zxAxJZYXojBCKzznmcoyHmCGuz1tCzJAuKwTAzwzRmSCUEDOky9wACHuO5DIuQJgZYrJCVLwMkcQmCCJGiGBDzBBBEARBEARBEARBEARBEARBEM40TG2kBQrNsOJq+IpGApudQYO8p8ETwm10CJj7ZBVgZJ+ruTo1czgbYUEGzt+VS2YegpkwXE0SaQYhV3N13D7XzB1XKwQAYD7kbQQ2X0vTBB3HdRnPxQhpxl2vx3U0RFytEICF7cHVYH26U4/nYIi4GCHI+GK1D1wMERcjBDm6xNtcHQBgcq4ai7OxOgDA+Hw1LrchgvMRW1N1WL7esjVXB4B5ncXpYoi4ZKgiaHm4ZHi7GCHIfFRNuJyGSDnIk9ghs50qfc3FEHEyQhDcXWmElk6crRAAgFnhboe4GhEAXvvAaoQg/Xr/OxgiLkZI89pJlbrvbIj47IOydLdDuJqv17gYIcjo+UMAcDNEfIwyNAJcDRFXK8QVn3XndLN6rYsh4mxPA8C8PqxcDBEXI8QXVxvEF5/1OX7/LoaIixESgosR4ovP9Xa20au3o/v7cDFCEJ/78ZMyQpDhXuFuh3gMndfnlosh4mKE+MDZbL01tsd0eHSu52yHpG6SzoXPM6ainutdDRGuZyyIiwkSgosRguDv5GKIuJobPqQYE8DNBAmC+VkjNUEEwQcxQwRBEARBEARBEARBEARBEARBONNIzxBmaO8Qla6MVZeeISZ0UXynniFdaIY48Z4hOgxvC6k32bzXkr0QvJ1gNkR8Mt70A+t/7JOhR7FloLn0DDGOq0micekV0oUpm8fHDFHpMkRceoYYx9YYHS69QoLG9TBDWuN1GCI+ZoiKyQ5x6RXSObbGFPExQyg2Q8THDKGYDJGQOswqJkvEpVeIiWPtIcLwUcbrbcTYNkPEJ1OVosv49jFCTHD3EEnVPwRAb4h4GSEmdJucMA3IywxRMRkiPjZE673mf3IyQkxYDBEfM4RiNERC90HX+i9ifajrHeJjhJjQGSIhPYaQLjMk1Agx9Q2JWW8iOkMkZn1sM0NijBBT7xAOI0TXOyTG2LaZITFGiGmbYm0QU1+DmOuszQzxMUIountibhNk6fM8rRCk0wyJOL50a1YOE0Rnf8QYIV09Q0L6UQKY+4acZG8QE7aeITHPd0xmSKwJYnqOE2OE2HqG+BghFJMZEmpudFUUiTFCdD1DOEwQ7XOThE+abVaI9AoRXBAzRBAEQRAEQRAEQRAEQRAEQRCEM42YIYmwGSIIZq7GGCEqNKLPYoYgylApzJAY02IJMkyMGbI0DkkiYNteWET+o82QZsDlv3Jk6gG0M8BizJBmTCWZhsMMQWh2T6gZQsGMhxgjZGk8YnFwmCG6sWPMkNa4tSkSaoRQqCHCYYYAtO2QGDOEMrqeRRkhFGqIxJohCBoiMUYI5VgMEcaPaAwRpjGpHRKTqUpRM8A5zBDktBgi1A5hN0NW0QihoCESY4RQlKGijBCKYojEGCGUxhDh2gd0HcjYI0Q1RFKYITFWiAo1RLh6hKAhwrXOBFg2Q9jWxdA2RLj6hKAhwtkjRDVDuHr4ASwbIpw9QnAbufqD0Ox1zuts/2AeZYJQ6D1xKisk1AihNIYI43Glrlk5e4NQC4SrTwgaIqEmCIWaIatohCD03OJ6pkPNEK7eIPgch7M3CDVDYmwQFWqGcPXywOdEnL1BVDOEszdIyww5gf4gYoQIPogZIgiCIAiCIAiCIAiCIAiCIAjCmUbMkMS4GCKj22myLHuTNOPm0xU2Qwhd9RZ94bQXWmMzZtYtjTvgHXe2wTpcQ8G8nQAAk3ZZbxbma2mmzWLIPN4o3fRe5rxjoyHCZYYg+ThRlp6lDnkow9tp5oBeux0DCyksES5TktI/4h23f5iuf0YqTosh0jtMcHIlgs0IoTBPW9k00XYCQHbImAoMAGWfL2t7iTzNtaDYaff5iGV6jlFlVDi4wqQd1nBmlFJSXQs4LQMAgM2nOprLBTK+yPtdAfDZMJTBfpprwTyBZWHqdxNL0UtzLnAZIchkM10eLPe5xWmGqXBvJ9JL8HyEwwbRwX3PzVqNRKG/l27tcvvFvDfdqY7X2UaCuSXR4wFOM0xFjBAhFWKGCIIgCIIgCIIgCIIgCIIgCIJwpkkUwxRWAWpFcEXt0eJI0TuEG6xZSes4Bo+XaJ+mAGuh4vfEZd+UJPspY8pawpqzrBn36qZyttBhPq6mF5czf3p7PHHqYn05oyY/ZEyJ26l/+ds8l5HpfSS7kmnc+aXqgOpd48uyLEYFFHXibp/puwIAGF+sDtLRdZ5zFc8p/HOwyzJsc16NL1T/M7rBd3JNN7OlmvGxYC8SrDXNlRE4q2tCc9VIB1ieo1mvr7UAPB9W2xxrjeJ1sBxV80nOZUfU15b5VpWt19vjy7jOZgWU/QRZxvU+YDNEEqQoZfNyYUWw9iKpz63RELJxmux4DrJ5/TvXf5YDxlsfZrk+m1TX1eFz1Z+TuxiaswFAf7+6Du48Vv15+8Vxii/OT8Pd6s/JNt+Bi9m1RZ/3WjDZrq9Xt3jvhXYfqBYD21/iS4k9uDpc7qMVCb1OcX1feb0MRIOD9tQKZb7G39cilRGCBlPBlL2d6r6Su1ICAMDgkPZL4d0H2H+Aq3LC+o3qOn10ju9gUPcBa48jxvMfIE31BYB2r6T5Ot+1YLqes5ohN1+ybILkTENjX0au5yEAiWwQAHYjBNcACNe5Ssfl6u8jCBQpk3VM2MplpSqTZXqYErXQsrw15uFNqjJZhWFSDn2IPTM0ReNYvHKXybJdOGL293TbsE8DFwFdF/yY4MhkR/PDiK9qtmV+c0xghAZDkNigyOy8fqNigiLlec0XwhG42DHswMCxyy37KjcmOFKM2t9XTFDE1mgwJjBiasQeFRSxbE5MUER3E8nxIMx0QxkcFDH8/hxBEd28HBUUsSzvYgIipocqUUERS4mRmKBINmv/nimCIs3nhe6DlM3dddfmmKCIZr3DEQzhLo/VBEFMnxcTFNGcW8W58AADBkF0xAREMAhCiQmG2OakmIfsqa4BE8OaNTQoYlo/cwRDDq62y7bEPBS1XZdivqvccLjGBEOaAIiOmMsgcxCkq3xbaPNs031kxvCURnfNnkaUuKNBECQ2GGLaBzH3xxgA0RETFNHtg5hgSNd5Hlo2MEUQhAZAVGKCIVPNe9efi8+QpEEQJDQYMjcc5xzBEPYgSKKnvDRYgcScq6YxAezPtKQ8lhCDlMkSBEEQBEEQBEEQBEEQBEEQBOFMI2bIMWKyQ47bDFHxNhocXh6SycpthpiMEJWQTH6TGdIaO8AUOU4zBAnZ7yYzBPHNjHDNgggxRLRmCMVjc21mCBJyXJnMEIqPKWKyQlRCDBGtGULxsTlMRkjoeDVdZgjiY4jojBBKiCFiM0MQH0PEZIRQggwRh83wMURcMulCsoNdsmmD7JCO3z/EEHGZh4MMEWYzxLXMRpAh4tB81scQ0RkhlFSGiJcdctxGCMXHEHFY14QYIikapndZIQCBZojDLZOPIWIzQpAQM8RkhFBCDBFuMyTVNcBkhCAhZojLXB1iiOiMEIqPIeJyHQr5rkxGCMXHELEaIUjI5e+YjRAkxAxxuWf0MURcrtUhZojJCFHxsUNc75VD7o9tRgjiY4a4/O4hZojree1rhhy3EYKEmCE6IwQJMUNMJgglxAwxWSEqPs9BTks5LAC7uYGEnKsu45qeaYkVIsQiZoggCIIgCIIgCIIgCIIgCIIgCGcaMUNOAGqInKQZgjibDJ5Hi+s2nIQZQnHJ6Hc1QwDSZry44NNsymX/dxkh/3/27jtMsqpO/P+nqtPkGYaBUWDJQcAVxUVwQUBZDCwSzAEFUVkTq4sorLu/VfiuK5hWEJUoKqhgACWJC0t2WTKIgbQSBwZmmNg907l+f3Sfmlunbjjhc6ura96v5/GR7qk+dbu6ukKf874njcvqCN9VES6FiFMRYnP4cbmUIYbL/cm1CElyrUNcyhDDpRBxKkJsLkWHSxniM564VyFJLoWISxliuBQiLkWIzaUQcS1DRDzqkICHKZdCxGclncvq4JDzqzsXIh63gcvK3JDnPafnVI+XdS6FSMjGq851iEMRUr+oQxniUoTYtAsR5zKkpOVIXnWmchlSPwaHQqSMIqR+/Q5lSP04XAqRgLdKLoWISxliuBYirlVIkksh4vOewqU6CFlF7fIcUFSEJLnWISGP1S6FiEsRYrg8t4WUia6FiGsVIuJWhjgVITaXp78pKkKSXOsQn7MIuJQhIc/VLoWISxVhuJYhZZ1BwaUIMVzKEJ/v3XB5bPN9repyP2zVJul5XMqQvBIki2sh4lqFiLiVIS4liK2Mv304afH+IGlcfkd9xjPsv2lRhEALZQgAAAAAAAAAAOholCFTyBQi7VCG2DJXbAQOWXQs7VCGGHkr+n3KkKZxM27TdihDbGk/j5AyxMhbJRGzOiKrEgkqQ4ycu6pPGWJLu1+FlCFGUSHiU4YkZVUiQWWIkVd0+JQhjuOGlCEixXWITxliSytFQsoQI6sQ8alC0mSWIhGPJ2mFSMiqYFvaKuGQMsTILEQCv/eiVboxz3upz6kRL+fyCpGQ1aZGZiHiUYQ0fWlOIRJShhgtL0SUlyP57tfVIK8QCVjBa2QVImVVIT5FiC21EIn4ncorQ3yKEFtWIRJShBh5ZUjMe4m06iDmsb+oDPGpQpKyCpGYx+i0MsSnBMmS9hwXUoQYWWWITwmSJqsOCSpCjLSnvfICs6AqRCS7DAmpIepfm/OlMc/RWWVISBEhUlyGxNwGae+XfUoQW14ZEvr9i2Q/xsW8Ps27L2oXIT4liK2oDAmpQkSyyxCfEsSWV4aEFCFG2mux0vYGEVEvQkLKDSPtdzRmPMP8TYsiBNooQwAAAAAAAAAAQEejDGkD+77966WMG7Oay1ZfyaE0pH1s7VSG2JIr+mPKkPp41qqYdixDjOTPJaYMsSVXTWislrALkagyJGnyMGOKEFvy/hRThthMKRJahNjsQiSqDDGSJUdMEZI3roSXIYZdiMQUIUl2HRJThhh2IRJbhhj1QkTp196uQzTKEKNnoBa14s7WVIgo3QZm9a7m813Dc6nCyzm7EIlZcZrUVIhElCEizXVITBFiK70QaacixJYsRCJW8NpMIdKORYjRUIYovjWyC5GYKkSkuQyJKUKS7DpE4z1EsjrQfsyfGF/n8ckuQzQfo+c+PaRShBj2c11MFZJkflaxRYhhlyFRRYhh3SXLqkJCixDDLkNiaghbshDReH62y5CYIiLJFCKa33vy/XJMEWIzhYjW924/1mm8Pk3eJ9thb5AsdhkSWoLY7DIkpggxkmVITAliM6/JSqtB2qgEsdl/09Ia+64fUISgHJQhAAAAAAAAAACgoymu00GooXkTc1Jl7R2iwaw+0VqBqF2ClElj9XbDeEorbVuhcWWg3nHXJlcFj/XpjKe1Gr5JCT8qc3/K25smxNgc3ceP8ZkTS2YqSlWEiOjWICnj1sZ1fmBjmzauQKr06yw/HJ38GXUN6q1DGFo48TuatYdIqJG5E//f068z3tAmE8fXo7gCyRiZXVEtQ2qTP568c3SHMGVhVfFYx7srUh3R+x0d6504xrw9REKM9038DlWVCo6xOROrArtXDaqMl2QqE61CpDb5vVdG9FaylqZaFRnVP852LkLqY42MlnKc1dXrRESkNlOnDuhdNiAiIuOz9GqDJM2qvHftxM9ncBPdtXdaRYgxNH/y+WlAdVgR0dknJMmsvO1bpft7qlWE2FSKEGPyx15TXsoZW4LYeiZrndEZ+m8itN9DatUQNs0iJEmzCDG0bwPN16PGWF8le1+7CBo1SBqtIsTQKEFsmjVIknoRUtI5fDSLkLLG1DjLCZCHMgQAAAAAAAAAAHQ09gxpI9p7h1Qmf7QVxUl/1XNTp4xbizyPuNF0Pk2lmeXxyePTOk4R3fMoT4zXeGxaP7Oh+ZNzp4pTqKMzN/y35oqX4fkT33N1WOfnNDK5Z4jmSvGRhRuW4VVG9W7U6oKJc7OP9evcsWYtWtfw8fq1M3TGnTexonvdGp3xRERmzp0cc/XMgku66ZrRuFRyfLlOylSbOzFu9zK9lU61rg13zt5Veven8Z7J8mSlzu+SeT7qXqf4y5Q4tBkrFCuJyVVj3YM6x2qvcNJajVp/rldc0V2bfB7pGtS5PZu+d6WapTI5TtfAcMEl3dWqid8fhV+lpv1MlF5218etKC6dK6EKERGpDE/UdrUuncemplXHGrdpYoyG/UMimXplfI7Sc1218TYcn6FzrGbF+cCWes/JpjZYt5nOz73p9a3S6nOzz6C9t1WMkcTWLjNW6b930ipDBjeZqKG0nudEGt/XVBUfUurPI8rv6Ywepf1XzJ4hqnWE5uO8iFRHrH1ylPehGFMs9pPvD3vW673GG549WcLqbLtUfw7RfK+YfO2k+rs0+ZDcs1Zn0IGXNv7AtV7fDi0wOZjKcCKy4fFe6+8O41ZQqnVGkerky1rNs1/0rknckIq/8t2TdZVWuWaq0t/98kSV8YAsTIa0Ia1JkUrGjzZmcqTsyZCkmAmHzBd1kY/R9gtnI+pYS54MMWJ/dvXJEFvEe9zRlL9Zx7w4MZMgtthJkZGMDdRjXvAmJ0Pq4ylMipjJkKSYiRF7MsSImRQxEyFJGpMiZjKkYdyIiRF7MsQInRQxkyA2jUmR5GSIETMpYiZBbKGTIlnPOyqTIimHFDMpkpXOx/6xKCv3jnnTmPY8HzMpUkt5/tCYEMn83gMnRSoZXxczKVKrpvy+lDEZUr/CsJ9T5ngxfywreRLEFjopkvnHReXJkPqnIiZFsk7hFTwpknb/FJ3JkLQ/YMRMiqSdcilmQiTzdW3kH5vHe9PHjZkUGZnd/LkyJkOM0EkRMwlii3meS3s/o/EH3MxTpQQ+5GW9l4uZDLE3TRdRmgwpeRLEaMfJkLT3gzGTIWbywxY9GZL195aIH3/afT7mdynr1HKxkyH2JIgR87q2PgGSFHFbZj3Ox06G2JMgRsxkSDXlJWzMZEjD5Ict4le+O+PUcjGTIWYCRIRJELQOp8kCAAAAAAAAAAAdjTKkTWnUIVllSMNlAhYElFGH5I0ZUl04rXAJmLzOWk1kBB1ri8qQpJCfYWYZYgRMraaVITaflRtZZUhSSCWSVYYYIat/0sqQpnE9SpG0IsQWUohklSFGSCGSVobYfEqRtCKkabyAQiSrDBEJq0OyyhCbTymSVoTYQgqRrDJEJKwOcX2u8SpFHA4jpBDJ21QxZNWs6waAPivpnJ7fAwqRtDLECClEnL93j0IkqwppGC+gEEktQ4yA57fMgqPhSv1+Rk5jhqwkVi5DsoqQJN86xGmVdchbmpyvCSlDXDZ196pD8u6XyTEDCpG8VZwhZYjLJtw+hYjL61mRsBX4WauFRcLKkLQixNYup8vKqkJEwp7jXN7H+Kxqd940V/l9XEgZklaE2Lzun8oliJFVhBjaZYjhU4i4vN8LKUOyihAjqAxxeQ3m8WN3uc+HlCFZRYgRUoZk1SBJPq9nU0sQW8BDZ95jvEhYGZJVgySFlCFpRUj9OgPKkNwiRCTosTOrBkkKKUOSRYgIVQhaizIEAAAAAAAAAAB0NMqQNhdTiLisHK1f1mNhQKvLEJtLfeG1wsXjokVlSJJrJTIVZYjhcrsXFiFpHL/EpQwxXFZwuJQhhkshUlSEpHFdCeRShtTHdChEXMoQw6UQKSpC0rhWIi5liOFSiLiUIfXxHAqRvCLE5lOIuJYhhksh4lKGGC6FSF4RYvMpRHyeY5zrEI/HbpdCJK8IsbmsnnVe3ZrguprO6/ndoRDJK0JsLoVI0PfuWIe4lCH1MR0KkdwixOZwUad6o37lJZQh9Qs7/BCmoAgxSilD6oPrViQuhYhLEWI4lyE+900ztkMh4rN606UQcSlCDNcyxOe1rOFyHylaLZzkUoi4FCHGVJcheUWIzeU5zuf9i8uqdu/njZLev7kUIi5FiOH02FVCEVJUg6SZir1DfFbou5YhRTVIGqdCxOe1l8vTkMfN7VqGFNUgaVwKEZcixHB5LetUhBiON7vP47vP/c6lCDFcypC8EqTpuh1v9sIaJMnjpncpQgyX1xZ2CWJQhGAqUIYAAAAAAAAAAICORhkyTYQUIj4rR5u+NmeBwFSXIba0AiNqZUvOl/qsLDKKCpGpLENsaT+HoDLEKPhSnzLEyFvJ4VOG2NJKkZAyxChaEeRThtTHzClEfMoQW1opElKGGFmFiE8RklRUh/iUIfUxcwoRnzLEllWK+FYhRlEd4lOGGHmFiE8ZYhQVIiF7U4nkFCIRD+95hYhPGWLkrZ4NqSOMrFV1Uc/rKYWITxFiyytEyihDfIqQprFTChGvIsSW86Ve9Ub9YAr2pQoZs/7FKT+MKSxCbEWFSMh+ELm3Z8TvUFoh4lOE2AoLEeUyJOR83kZaIeJThNiyCpGo17A59xWfFcNGXhniU4TYtAuRojrEpwgx8p7bQt63FK1qD36+zPi6kPdrRl4Z4lOEGIWPYcpVSEgRYrSyDAnZs6GoDAkpQozUMiTmNVfe01DAzVz4OxTxkiatDPEpQWxZr2G9apCkgh9DyON73v3PpwSxpZUhPiVI07EU/Bi8ihAj5+byKUFsaa8xskoQgyIEU4kyBAAAAAAAAAAAdDTKkGmm1YVIfYyx5H+3Vxki0lxfqK5sSQwVs9LIaDrWNipDjOTPI6oMsVlDhZQhSfaqjpgyxEgWIjFliGGvDAopQlLHtSqRmDLESBYiMWWIYRcioWWIYRciIUVI5tiJUiSmDDHsQiS0DDHsQiSkCLElC5GQIiSLXYqEliFGUyGi8PCeLERCihCbvYo2pgpJslfXqTyfJwqRmDLEsAuR2O/dLkRiipCGca06JKoMMawhogoOkaZVqNHjiTSuOlYuQupXEVGGGHYhElSENAxYy/84ZEirDImpQpKaCpHI+6Zdh8QUIUayDIkpQgy7DNF47SrSfL8JWTFsSxYiMUWIUXYZElKCZEk+t2m8X7FXt0c/V1pfr/E+LVmGhJQgWZoe09qoCDHKLkNCapA0diESU4QYDWWIxmst+yko8qZt+t1RfHueLENiihDDfu0aXIQY1m2p8bievC/GlCA2uwyJqUJEmsuQoBLElrj5YkoQw36NUVSDiFCEoD1QhgAAAAAAAAAAgI5GGTJN+RQiGitJk6rD7VeG2MZmKM/zTU54a6w4Mkwh0o5lSNLwHN3xRKQ+DRtbhhhmdYdGGZI0lr9dQ5DRTXTKEKNrju54pg7RKEMMU4jEliE27WevoaH41VA2U4jEliGGKUQ0ypCGcQf0f89nLNcdU2P1UpKpQzTKEMOsotUqQzaMq7ScskSmEFGrYiaLEK0yxKiu133MFBGpjOseY2VEueAwK5BLKEM0qpDGAZV/eZR/NiISXW7Y6mWI0rimDNEoQmzrFxfsc+Kp/6WKS3Jlw+p7jZXDhilDNKqQJO1CRPt5R0SkmrLXVNR4kw9BasdawvuzshTtJRhKowgxtMuQ+ri6v+aqVYTRpfz3DfPz1rqv1393Svjeh+foDqr1/r5u8rbUfFw3fzvQvm9q1U+G9nsfkfw9oUKY1xoUIZhuKEMAAAAAAAAAAEBHowyZ5pwKkclJ9OjzL1s0CxFTSVSHdafTx2ZOzvcpHWp9xYziTTk6Y2JMrRVDZgWKvTdJqOG5+t+zMaq8ys6MV6vqHOzI3IlxqkN6K1HGXjJx8tDakM5c9IyFE7XFyLBOYrTZwjUNH69Zp7cKdIsFE2M/t3qeynhbb7JSRESeXLGJynjm+B5/flOV8UREZs6c+Hn3r9JZJlWZLEKqy3SzJfO40dOvuCpwctAZL+oMZ86bq3K+3ISeAcXnssmbT3vVlXke716v8xw51jvx+NOl+Zw7OVRVqeSojpnHX52awaxc6xrQKxm0i5Cm8bUKkZHJGka5aBDRK0PMniHar1XrFH9Wte6JpaRax1rr62n4//gBJ45rbLbi88RksbN+876CC7rpGZi4b6/cUfe5zKyiHZmr91xmzn+vtcLb1Iizn9e5Tw7NM6ty9QsBreccw+zB0duv9Fw2eVvG7k3WwPyclW5OswfJ6Eydx1/zvF1TrOiazlKgNLY51hGl731ssgzQLJbMmFr3SVNZaI0nMvH7qF2uiIis33TyteCQznhDm0y+zlJ6DWzu4/Y+HDHMsY3O1LmPz1gxMV70vij2uCsnHzdmKFaOk++ftM58YZ4bXfYRowhBO2IypEPkTopkPIa24+RI8g/4GhMjY/aLr8hDbMqHFW7CtCe5mImRrDdroZMjw1lvKCOOUXsSJGvc2EkRMxliaEyKmMmQpJiJETMZYgudHLEnQ4yYSREzyZCkMSFiJkOM2EkR+zg1JkXMZEhSzMRIJeP0WKGTI1mPF1GTIimDakyIlLKJYILGpEjyW1eZEMn4McT8gcpMhCRFTYqkfGnMhEg147SZsZMi9imDNCZFyp4MqV9PzKTISMq7VOVJkZgJEXvj9PqY2pMiCj8rMwlixB5j1uRH1KRIytu6qEmRlD+KxkyImEkQm8akSPJ0IhqTIfYmwLGTIfYpGTUmQ8xESFLMpEjWaZJCn3OyNiCP+UNx2qktVSZD7GEjH4KSG7GL6EyGpD1Xx0yKZJ6qOXDMrNcSMZMhYymnRtKYDLHHjZ28sE81pTEZkvb7GDMpYiY/msYMnAwxkx9N40W8/k27P2tMhtjHFDsZYiZBDI3JEDMBIqIzCdKX8T4pdDLEfk408iZDmARBO+M0WQAAAAAAAAAAoKNRhnSQzDrEYWK5jNMShJQiefVCSCnSVIY0XJn3cMUbywWMmTfzH1KI5K1cC6lDMsuQ+qDeQ7asDEkKqUTsMsQWUoqklSFGSCGSVYaIhNUhWWWIEVKIpJUhRkghYhchtpBCJO8YjZBSJK0MMUIKkawyxPAtRIpWugYVIjmDhhQidhFia4dCJO92DCpEHG/2kNW6aWWIEVSI5HxJSCGSVYbU/z2gEMnbSDqkEGlVEVK/vpAyJK0IMUo4XZZIWCGSVYbUx2yDQsQuQpJCjq+o/AgqQ3LezgWVITkrw0PKkKwixBZSiORtMBtSiGStfhUJq0PSSoakkEIkrQgxQsqQovc3vs81WUWIEbJqPu92DCpDXH6WAQ8/dhFiCylE8p6bQ8qQzCLECBgz7xhDypC0IsQIKUPyxhMJu0/mbTweMp7LBvYhZUhWEVIfM6AMyapCRMLKkLz7cUgZUnQMIWWIXYMkhZQhyRLEFlKGZJUgRkgRkvd8aGSVIVQhaHeUIQAAAAAAAAAAoKNRhnSgdipEfOsQn3LBpRTJLUOarrz4Ii4rNnzGE/Gb+XcpRXxWrbnc3oVlSNOgxReZijLE8ClEisoQw6cQyStDDJ9CJK8MMXwKkaIyxOZSirhUF4ZLKVJUhiS5ViI+x+hSiOQVITaXQqSoCEnyqUNcHy+8ChGHQX0KkaIyRES/DhHxK0R8HnedShGf8RxX7OYVITanQsRj0aNLIVJUhDRc1rEOyStCbC6FSKuLkKbr9ylE8soQYwr3DikqQupjTuGG6nlFiM31OH2qD6fLeryNcypEPFaEuxYirlWIiFsZkleC2HzKEJcVsL5lSFEVIuJXhuQVIYZPGeL6vsanDCmqQpJcVs+73IaGUyHi8zN0vCmLapAklzLEp9J0KUMKSxCbx+OAy7H6lCFFBYeIXxniMp6IX8mRV4SEjOfz9wWXMqSoBGka06EMyStBmsZzeJ3rUzS5liE+RYpLGZJXgthcypC8EsTmW4YUVSEifmUIRQg2BpQhAAAAAAAAAACgo1GGdLCmQiTgPLetLkVC9rTIK0S8ypD6QWT/k1cZ4jCeSNg5IfMKkZDzGefd7t5lSMPA+f+sXYiEjJdXiriWIUlFlYhLGWLLK0VcyhBbXiniW4aIFNchPtWFkVeI+JQhRlEh4nuMRXWITxli5BUiPmWIUVSIhDxW5BYiAQPmFSIuRYit1YVIyG1opBYiMeMVrNz1KUOM3BWfAZFEXiHiU4bUv6agEPEpQ4y8QmSqyxARhzrEpQixtbgQca1CGsZs4d4hPkWIUXR8IfuA5H5NwNu33DIkYI+AojLEpwixpRUiPkWILa8QcVkBayt67PepGYy8QsSlCLHlFSIh72eKnmN8ihAjb/V8yG1YWIb4Dllw1/ApQoy8MiRk366iFfbeVYhI7uNByDHmlSGu5UZSURkSMmbefdGlBPEZL+T3r6gI8a1BGsbOKUN8ipD6eDmFRsgeN0VlSMgeJXlliE8RYuSVIT5FiFH09yGXEsSWV4aEPA/aZQhFCKYbyhAAAAAAAAAAANDRKEM2AvVCJGLFqVF2KRJShjSO1zjzHlSG2BKHGFSG5IwnElaGJNmVSMxK5foYKT+HMgqRdihDjLRCJKQMMbIKkZAyxEgrRELKECOtEAkpQ4ysQiSkDDHSCpGQMsTIKkRCjzGrEAkpQ4y0QiSkDDGyCpHQx4rMOiTiwSetEAkpQ4wyChGR5kpE4/G2oRDRGM9avRtShCQ1rQJViCPsQiSkCmn4eqsQCSlCbMlCpB2KEFtTIRJShNhKLkRCipCG8crYPyTxsw0pQmz2MYYUIblfr/C2rakQCVipm2QXIjFFiJEsQ2KKEMMuQ0JWwSZlPfaH1AxGWhkSUoQYWWVI6HuZrDIkpAgx0lbPx9yGmWVI6JAZd5OQIsRIK0NCagsja6V9UBFipIwZc4xpZUhIvWFklSExY6bdF0OKkLzxRMJ//7LKEO0iJKQEaRp30H6tHDemXYaElCC2ZBkSUoLY7DIkpAZJsv8+FFKC2JJlSOxzoMiGMoQiBNMVZQgAAAAAAAAAAOholCEbEc1CRKScFXrV4Vp0HdI43sSsvEohIlJfIaRSiFhjxhYihilFNFYsi2yoRKLKkKZBJ/6vncqQJFOJxJQhNlOKxJQhSaYSiSlDbCPD3VFliM2UIjFlSJKpRGLKEJspRbSO0ZQiMWVIkqlEYsoQmylFtB4j6qWI0oCmEokpQ2zapYgpRLRuQ5HJQkRzvMlVvLFliFFfFaoYSZhCJLYMMSo5e5KE6F6bcyLtNlFZp3yMynWIiIiMxZcCSWW8/tSoiRr0xCzL3qBehii+XauXIZGrdQ1ThmgUIcbKHXtVihDDlCEaq2FFNjz2x1QMNlOGxNQgSaYM0XrPYp5TYkoQm1k9r3U71ssQrR/L5N0lpgSxmTIkprRIMqvuo0oQW6WidnwiG8qQmHIjyZQhWuOJbLgvxtQgaeNp/f6ZMiSmBGkac/Llg0YNIrKh2IgtQQxThGiUIIYpQjRqEJENRUhsCZI0OqOiUoIYpgjRev6jCEGnYDJkI7TfkV8TkfhTUhnab0oLN78LUIs/80GD8W7lN80iMqr4hqoMQwv0/0AyOkt5POXJleH5+qdGqW2Sv7Gsr77ZOn90FxHZZfMX5Pl1c9TGe/nCpSIi8kT/QpXxXrFgiYiI/HnNS1TGExHZed4LIiLyx1UvVRlvfu96ERF5ePnmKuNtMmtivGeez98APkRlef4G665q3RPPAb0rdR5ozXNAz4DKcA20JkVqkw+HPf2ab1Yq0rdW7zHH/LHO3uAwVNeg/uNh96DyH8mZDInHZIgOpckQo9arO56IyNic/A3QnU2+lRydozeDXauI9G+hN1735B+BVBf2iN5CJpENf+zUeh9k/gibt5G6j7HJu0tV72Vn/Q/4PUoTX+bn0bNOZzxzf5m9VO8xbO2WE6+V5iiNObD5xHiaf4xdt3mXzF2i9OJBRAbn674Rr02Dc5t0K/3h2dB+7BIRGZ2lO2ZV++VIxunQYnSv1x2vUsKfUrsUH2NFRG0xhXmOuu3yz6mMB0y1afBUAgAAAAAAAAAAEI4yZCO235Ff06lDrHtQ9Ay5PZ7CQhc7o409JcdoX+M8osYpPpKby2mserST89g0cmR243ga2a92GTI8r/F7rI7FHePInMY7n0ZhVFuYWO4RcY6dRZs1ntZpbcbm5T522fyF+n9rFCKmDDFiCxFThhgahYgpQ0R06hBThhixhYgpQwztQkSjDjFliBFbiNirYtuxELFXJWoUIsnnKY1CxH54CS1E7JV5FYWVehVriK6huBWy9qp+e0P1ENXhDWNUh+JXyNor+yvDeqtuRZQKkWTNMKbw4st+PRi5EX0pG6gnqpWaQs2hvYG6XerUuuPXsVUGGwvV0UWBz/fWz1ejDEk+bmmUIfbq7HYsQ+yNkWPLEPv1uUYZMpaIiDTKEPuUTrFliP1z0ChDkvcVjTLEFCFGbBliihBDowxZlxhTowxZu1XjD7on4r44OnPDf6dt/O1rzHrb1BV51mH7PaLGfXDdZhse77sVThVl/20g9n2tdgkiIg2nR9Q4XW6v9fp8PPJvX91WJa1xir++VY1jjkaeitB+3T6u8PeLruEaRQg6DmUIAAAAAAAAAADoaJQhGzmzf4gRVYqk3JOiKpGMLw0pRfI2WAupOuwyRGPMkZxN3kNWQ+atVAipROwyxIgpRMouQ4zQQsQuQ4yYlTQNZUj9k/7HZ5chtpBSJFmG2EJKEbsMSQqpROwyxBZSiiTLECOmELHLECO0ELHLEKOdChG7DDFCCpG8FbHahUhIHVJ0nuqQQiTv+SmkEMl6ONEqQ4yYQsQuQ0Ti6pCs/R5iCpFkGbJhPP8bMW+vB+06RCSwEMkrIkIKkaLXfgGFiHoVkrKPSUwZknV8UWVIyv4tMWWIXYQYWmVIfbyAQiTvZVBIIVJ0vv52KETsIiQppA7Jej0eU4aMpWwrE1OGZG3yHVqGZN3uMavy0+4bIWWIXYLYQsoQuwZJCilD1uWMF1KG2CWILaQMSRYhRkwZYhch9TEDy5Cs94Qx98FkEWLElCFZfxMIeT+rXYN05/zuh5QhdgnSNGbA37rsGiQppAyxSxAjpghJe60eU4TYz09UIehElCEAAAAAAAAAAKCjUYagQVQp4nBP8ipFHC/qU4rkrcA1fKqOvELEtw7JK0MMn5WRLisVfAqRrDLE5lOKtKoMSfKpRLLKEJvPyprUMqT+j+7HVlSGiPjXIXlliOFTiOSVIYZPIVJUhhg+hUhaGWLzKUWyypAkn0okqwwxprIQySpCbD6FiMtq2KksRIrKEMOnEHF5XvIpRIoeRnwKkawqJMmnEEkrQmw+hUhWEWLzKUTSipDm8dxvxLwyxJjyQkSrDHF9jedRhrSiCLH5FCKux+dViKQUIU3jeRQiWUVIklcdUvBz9ilDXF72+JQhRUWIMZVlSF4RYviUIa6vu30KkbQixOZTiGQVIYZPGeJyW/usyne5L/iUIUVFiOFThuQVIYZPGZJXhBi+ZUhRFSLiV4akFSGGTxmSVYI0jelRhri87/O5D6aVIDafMsS1VvB5/9rKIsTwLUPyqhCfIiSvBDF8ipCsEsTmU4a4vD73KUMoQbAxogwBAAAAAAAAAAAdjTIEqexCxMgtRQLuSbmlSMh4BRPvLitwDZeyo2jvEN/xXOoQw3U1os/KhbxSxLUMSSparTYVZYjhUoi4liEi7qtrcsuQpgtnH6NLGWIrKkVcyhBbXiniUoYYLoWIaxki4l6HuJQhhksh4lKGGEWFSFEVkkarFHEpRFzLEBH3OsRnNWyrCxHXKsQoqkN8no+MvELEZ+sh1zrEZeWZ4VKIuJQhhksh4lqGiBTXIS5FSPOY2TekSxFi0yxEnMoQnz0yXAoRn7cUBXXIVBQhtqJCxOcYncoQhyKkPp5DGeJShBjOZYjHzzivEAnYKq2wEHGtQgzNOsSlVnApQgzX50KfGtulDHEpQoy8MqSoBElTVIf41Dcuq/J9fv6uZYhrFSLiVoa4FCFGXhniUoLYisoQlxLElleG5JUgNtcyxLUKEXErQ3xKCpf7oEsRYhSVISF7V+R9P9oliIhbDWK4VCFF+4M0jOdQhrgUIUbR7e1agyTllSE+r8eNvDIk6/mIIgQbE8oQAAAAAAAAAADQ0ShDkCurEBHJqUQi7lGppYhiIRKyElcku+rwKUNcxvQpQ2xZKxRDVoq0qhCZyjLEllaK+JQhtqzVNl5lSP2Lmo8tpAwxsgqRkDJEJLsO8SlDbGmliE8ZYssqRXzKECOtEPEpQmxZhUhIGSKiv4+ISHop4lOGGEWFiE8ZYrSqEPEtQ4ysQiT0+UgkvRAJWWmdVYiErEAz0goRnyLEllaI+BQhtqxCJKQM2TBm8w051WVIfcy0QsSnCLGlFSIxbyUyChG1MiSgCDGyypCYY0stRDyKkKbxUgoRnyLEllmIBPyM08qQkMcpI6sM8S1CDO19Q0TS6wWfIsQoei70KUKMtDLEpwSxZZUhIVWISHYZ4lOENI2Zsjo/5OeeVYb4lCC2tDLEpwSxZZUhIVWISHYZElKEGGlliE8RYmSVIT4lSNOYKWWITwliyypDfGqQpKwypJ2LEJ8SxJZWhviUIE3jZfzdyqcGScq63bWKkJjX4VlFSN5zEUUINkaUIQAAAAAAAAAAoKNRhsBJXiFi1EuRyHtUUx2icA+1S5GYFbkizVVHTCGSHDOmDDHsFYshK0aS7EokpAyxmRVt7VSGGMlCJKYMMezVN0FlSMMAE8cXU4bYTCkSWoYYdiESU4YYyUIkpgwxTCESUoSkMZVITBli2IVIaBlilFWIhBQhWUwpElKEJGnXISLNhUhoGWKYQiT2+Sepb+141Eprwy5EYlakiTTXITFliGEKkZgqJMkUIjFFyIaxNtyAIUWITbsQqdchMUWIzRQisW8jrDKkHfYKsZlCROvY6nVIRBFSH8sqQ2KqEJGUMkThbeLonB6VxynDFCKhRYjRijIkpApJMs+NISVIlt61tagixLDLkNAixLDLkJgipD7m5Op8rZ+1KURiihAjWYbEFCGGXYaEFiGGKUNiShCbKUNCapAkuwyJKULqYybKkJgixDD3vdASxGbKkNj39SLN35/2/iAxRYgx3hNXgtTHsYqQ0BLEsG//kBLEZpchsa/BTRni8vxDEYKNGZMh8OIyKWJo/cFC/Y2xiIx3674B0hrPTLJoTIoYLhuQeY2n+LeU8Z6K6oSIxmRI0tjMEu57m0VOhhglTIpsMUdvLBGRzWb0q4xjJkQ0JkOMMeUw8pl1C1THExF5Yd1clXHUJ0VWKT+oiEjfcoV3nlLOpEjRRui+8jadDdHbH/9GzCjaoNNXdUT/MbQ6ovP9ak6GGBqTPg3jaU+KjOh9rzKqOJaIVJTH05gEMdQnQ2Yq/CXapnz7jW46W22skbm6zxmDmyq+EJVyNlKPnQQxtN5LJWkdm3ku03pfoP34KaLzR+2kvA2JfZnJEI2JEBHdCTMREVEcTmsSpE7/10KqcfPITTQWDxrdgzWVSRCjonxGTo3JD8P83UJjIkRE/3Wo5vdqjCstkqpknNY9DZMgAKfJAgAAAAAAAAAAHY4yBN5c65Dx7krmRuZBJifNfWa984xNntpKYzxzijCt0wBonkbF0CpEzEqXvE3WvcabM3nbKa62Gpk7cWyxP4+RBRN34OqQ3s9jfNHk0iOlJXCbbjpRX1QUxtt5k2XSP6K3YnX/TR8VEZE/DzRvOB7iwAUPiYjIvf3bRI+115zHRUTkf/t3iB5LRGSHGctEROTmFTupjCcismnfgPx5ZfrG7z56uhpXDD/+7KKo8SrVyd+vFc2bqgeb/P3vez7ugcB+HOlViJ3MY2ffSqXnnsnHd+3iRKMQqU7eVbRW0pmVqt3rFF4MJF6uxp5CQESka3Dim9WsJcZ7u1I3fPdVs07rUF0fuWR18rarjGq+KJsUWyRUGr/XyojSklXFMkS69F6gNGygrnGarMn7SmVI53YbnzPxGmC8T+F0b4n72/Am8a8tzO/9usU6L2jNCt91m8f/HLrXNX48krEPvStTXYwpnCrKMGWTfVpEX3YJolE7jvVVVMvE0VnK71XMex+FYzTHpvUawLyPytpUPMToLJHu+LO/yujk6au0vlfz+6D1cxURqVV0ai7zc9U8JaA5Jq3qx5z+dWRW/HhznhuTwQV666r71kw8X2gVML1rJ8bTON1e/bFJ6243eUiaNVdlvOZ8fFQhwATKEAAAAAAAAAAA0NEoQxAtrxSx99KIKkUyJs9Dy46xjE3PY0qR5GrOmJUh7VyGGPa5UENX6ZgVTbaYUsSUIfWxAm9OU4bYYkqRehmSFFF1mDKkPlTEWDtvsqzpczGliClDbKGliClDjJhCxJQhSTGViClDDI1CZNO+DRtgxBQidhlihBYipgwxogqRlN/zmDok63EjphBJPnbG1CFZj+vtVIhUrbtKaCGStdotqhBRKkNMEWKLKUTGe5vveDGFiGoZkvIyX70QialDyipDjJhCRLEIMbTKEPs+YoQWIqYIqX8cUYak3b9iypCs3/eYQiR53veYMsQuQoyYMiSttIgpROy9bkLLkKy9QWLKkOQqcI0yZHSWznsTkfQ9H2LKEPvYQp/7s943xZQhafs3xpQho9aG5jGvc9Lu+zE/11ol4/YLLEPsn2vM+/+sYwgtCEwJYmgVIUZMGWJKEFtMGWJqEJG4IiTzsSj0bpdxKDFlSNMeZjnHRgkCpKMMAQAAAAAAAAAAHY0yBGrSChG7DLEFlSI5Q/pUHVllSMhYRtZKPZGwlSKahUjZZUiSz4qdrBVORkghYpchDeMF3KRZhYjhU4qkliFGQNVhlyENw3mOl1aGGCGFSFYZIhJWh9hliM2nFEkrQ4yQQsQuQ2w+pUiyCLGFFCJZZYhIWB1ilyE2r1Ik5/c7pBAperzwKUTyHjNDCpGix3OtQiSkDLGLkIZ/C6hDila7eRUiOS9TQwqRrDLECClEtMqQvNcQIoGFSM7tp1aIhJQhGatz6/88lXuHlF2E2DwKkaL7SEgZYlchDf8WUIholSFFv98hZUiyCGkaz6MQySpCjJAyJK+w8ClDmlYM29cT8KuVVYWIhJUheau/fQoRe1W+LaQgyH1/o3hsIc/5ee+ZQsqQtCLE8C1D7BokKeR7zbvP+/xcs0qQ+lgBRUjezzbkfWbRMfgUBHYNkhRShiRLEJtvGZJVg4iEFSHJEsQWUoYUPvb43FVyrj6kCCl6XE87NooQIB9lCAAAAAAAAAAA6GiUIVAXUogYTqWIx2S6S91RVIi4jiNSvGKv4bIOF9XeO0SzDslbOWVoFiKGSymSV4Y0jedwtUVliIh7HZJbhtgcyo68MqQ+jEchkleHJLmUInlliOFTiBSVIYZLIZJXhhg+hUhRGSLiXofklSE2l1IkrwwxXAuRoiokyakQcfh99ilEXEsyl0LE5fHSpxBxeTzX3D/EpxDJK0Pql3EsRHxWvDkVIg4vU10KkaIixOZSiKQVIU3X61GIuLyGcK5DHG63Kds7pGClrsgU7R3S6iLEcChDfF5futYheUVI/TIeZYjL/cm1EHH5nfYpQ/KKkPp4DmVIURFi+JQhLmWFSxlSuHI4eZ2Ov155RUh9LJfj91j17VqGFJUXIp7vQ1ze1zgcm8txifg937u8R3IpQ/JKkCSfKiSvCDFcvlef+sn151pUhYi4lSGuP9OJ6yy+jGuNolWEGC5lSF4JkuRTheQVIYbLY0ReCWJzLUOcHm9cflwef7Jx+bk6P55ThADBKEMAAAAAAAAAAEBHowxBaZKFiGsZklRYiQREE2mFh0sZ4jJOks8KvvrXpHxJO5chhstKKiNvJY9rGZJUtApcqxBxKUNsRaWIViHiUoY0DZcznmsZYuQVIi5liC2vFHEtQ0SK6xCXMsSWV4q4lCFGUSHiU4YYeYWISxliFBUiPmWIkVuIeCzEzitEQvYWKqpDfB4v8wqRkMfxVhUiLkVI09cUFCJqZUjAy9O81eS+ZYhIdh3iUoQ0XX9OIRLymiGzEAm43VpWiDis0m36klYVIspViFMRYsspRDTLEJcipOlrcgoRn/tPURkSsg9QXiHiUoTUxykoQ1yrkKS8QsRnr428VfM+RUj9ugt+rVyKkPpYeXudBOwDULRS22eVfu77Do/3L/XxFI8t73k+5D1RXhniWoQYeWWISwliy/teNYsQlxKkacycSkOzCAnZmyTv9ZRLCWIUFSGuNUhSXhniUoLY0h4rfEoQo6gI8dmTqC7tSwL+RFP0+jjksTx5bBQhgB/KEAAAAAAAAAAA0NEoQ9ASphIJKUSMplIkIprQKkSyxgtZ5SmSvapEqxCZ6jLEllzhE7IKyshaFe5ThjSMZx1KSBliZBUiXmVIklV1hJQh9aFSChHfMiTJrkRCyhAjrRDxKUNsdikSUoYYaYWITxlis0uRkDLESCtEfMoQm12KhJQhIjl1SMBi7LRCJKQMMexCJOZxMq0QiXn8LrsQCSlD6l9rFSI+RYgttRCJeHlqry4PqUJEdMuQ+rEkCpHQ1woiumWIoVaIKJYh9S/VKkRKLkOCihAjpQyJuY/YhUhIEVL/2pQyJOb+YhciIUWIkVaG+BQhTeNZhUhIEWKklSE+RYiRtXo+aCWxNJchPiVI01gp309IEWLYK7d9Vufb0kqCqPctiseW9vwe817ILkN8a5CktDIkpAgx7O/VpwZJyipDQoqQ+pjDOj/TrPfwIUWIkXxd5VOC2LLKkJAixEiWISEliJH1WBFShYg0lyFBJYihVIQY9uvk0MdvEakfGzUIEI7JELSUxqSIUZ8ciRzKnsiImRRJjhnzBtYwL6za+XRZMW8qkswL3Jg3Aob5w2joZEh9HMVJEcNMjgRPhhiTExkxkyFNQ1ZqUZMhhpkUiZkMSTITIzGTIYaZFImZDBFpnhCJmQwxzKRIzGSIyIYJkZhJEJuZFAmdDDHqkyKKZ6Tpe74rajLEMJMiGo+PyUkRjcfvsiZFYiZD6mNMTorETIaIJCZEFF+Wmj+whk6GGGZSJGYSxNY1NKbyOqE+KaJwu5V2uqyIP1QZpZ0uqx0mQWyTkyKx9w8zGRIzCWIkJ0M07idmMiRmEsRITobETILUx5ucDImZBDFG5oRNfmQxf0SO+iOabJgMiZkEaRpz8vuMmQgR2fDHy5iJBsP+43nse5YuxWMzz+sa73tENkyGxEyCGN3r4yY/bOZ7DZ0EMczPM2byoz6W0iSIYd4zxkx+GOb1VMwESJKZDImZ/DDMJEjMBEiSebwInfxIGp1RiZv8MOwhIu9u5ucZ+7gtIkyCAIo4TRYAAAAAAAAAAOholCGYEn/7zq+rjpezH7Q3jWpFRGR8crGhxspbYzRytZXRbqfLStI8tuH5k/+hdAcZ3kRx1exc3VWumy5aqzLOLgtfUBlHROTQTR8QEZFnRzZRGW9xz2qVcUREukR3BfSy0XlqY/1hYAuVcR5bs5nKOElPLN1UZZza6pxN1QP0LtdbsZ+3caiXyYcdjdXFhlYhMmO1cgGgqHtA70nTlJ/d63XGLNog1UdVucKortNZfq5ah4zpfo/qdYiCWtfkurJuvcegWo9SraI0TsOYXTrr6EbnKj4HTD4sDs/XyRyG5+itFRzTfaqTceXxNGms1hcR1aWamuWLiEitDZeRmjMlqL63U3pfbZ+OLXo8xcqqpnTfmPX8xA9gcKHeCwSt16F9JbzW0/od0ChojOrwxPc53tt+v6Aa5XrSbZdRhABa2u8RAwAAAAAAAAAAQBFlCNqCVimiEQBolSH18RQLEa0yxF6ppnG7mQ3LYldA2Oe6rUZurSEyWYgofJPD9p4hkT+O6sKJJU7jI/Hz0ttt1bhnxZrBuJP97rX4qYlxRuJPGmwKESO0FHnD7D83fPzH4fiCYq8ZE9/nvYNbRY2jUYbs1Le04ePLV+wZNd4us54XEZGrl748ahwRkcUzN5RHdzy+bfR4s2ZPnNx64Nm50WPVejb8XvY9F780crx34rGid3XkL7hiGWI/fHUPxD2emRWks5bHrxq090SJXe1n9iAxK/1iJPcE06hDxmZMPMFVh+LHSv5MKxoFxeS5qKuDcU+aGmVIrXdiyW1lffwy3lrPhuW71XWD8eNN7u1RGYp/cdFQSWiUIZP3g9qMyMcx60dY61M4NrOPSew+fdbDw8g8hdRBqQwx53Mfmhd/e3Un9qoYmhv/2r1v7cR46zdV2Gco8WupWZpElyElLNGMLUO61+nt61GxnjZC3y9VrN9vjSLElAix+4Q0vWdTeNuqVYNo7xEiMlGFaBQhM63XYiOz434ZNIsQ85rMiNkTqHfthl8CjT1atYqQrqHG20vj2OoFTeTdgxIEKA9lCAAAAAAAAAAA6GiUIWgr7bCXSFlliC2kFNEqQ4yscxmH3G6mDEmKqUQ0C5H63iFJEaWIViFiyhBbTCmSLERi6hBThthiSpFkIRKzj4hdiBgxpYgpRETiKpGYQsQuQ0TC6hBThNhiCpFkGWKEFCKmCLHFFCJaZYgpQmzBhYhdc0QUIlkPV6GFiL2SNKYQscsQkbg6xF6FGFOIJMsQI6YQMWWIEVOIpP1MowqRcet2CyxEYsoQU4TUx4ooQ5JFiBFThpgixIgpQ1L3zYgpQ6yfe1QZkvLjiypDqo3fa2gZkvUYFlWGWGOGliGV8fSDiylEtMoQU4TYQgqRtBX2ZexBElSIKC/PjClCTA0iEleE2CWIEfPeKFmFxBQhWXtSxJQhDe/TIt6uau4LIqJbhJj9QZJiyhDNIkSrBrFfgxlaRciG8fy/16zXgzFliF2FiIQdW+ZeKoE3G0UIUD7KEAAAAAAAAAAA0NEoQ9B2tOsQEb8IoFVliOFTiLSqDDF8bre0MsTmsxrKLkOSfCuR1DLE5vHNNpUhDeM4D1OXVYgYPqWIvXdIUkgpklWI1Mf0KEXsvUOSQkqRrEJExL8SSZYhtpBSxKcQSStCDM0yxPApRNKKEEOzDDF8CpFkEWILKUSyyhDDqxDJGSqkEMl7ePKtQ1xWk/qUImlliOFTiGStRmy6nEcpklaGGD6FiF2EZPEpRfJ+pl6FSMaq9iSfSsS3DLFrkNQxPQqRtCLE8ClD7BIki08hklqEGD5liOPP16sQyRnSqwypFr/e8K1D8u7rQWVIzng+dUhWEWKElCHJIqRpPI9CJKsIMbTKEGPK9w5RWp4ZUoQkSxCbbxmSVYOIhBUh9v4gST5lSFYJYoQUIbnvxTxuNu0SRCT/tYdPGZJWgth8yxC7BknyKUM09wURKX4N5lOGpJUgzeO5f69Fr/t8ypC0EsTmc2yZRYgR8HBIFQK0BmUIAAAAAAAAAADoaJQhaHuapYjL4v9WlyFJrpWIViFSVIYkuYYTWoVIXhlicylFnOoQEadvNLcMaRqv+CJFZUiSayWSV4gYLqVIURnSMJ5jJZJXiBgupUheGWJzKUXy6pAkl1LEpQzJK0JsroVIURWS5FKI5JUhhkshUlSEJLnWIXlliOFSiBQVIUnOdYjDkC6FiE+d51qI+KwmdSlE8soQw6UQcS1DRNzrkLwyxHApRFzLEBH3OsTlZ+tUiDiUIYZLIeJahrgUIfUxHcqQvCLEcC1DXKsQEbcyJLcIMVzLEI/qx6kMcRjOqQxxKELq4zk+DPo8fjkVIg7juZYhRVVIkkshkleE1MdxLEOKqpAkl0LEZeW99t4hznXIFOwVkleCJLlUIXkliM3lvU9eCWK4PocX1SBJLmWIU5Xv+mMveV+QPC5liEsRIuJWheSVIDaXMkSzCPF53eVShmgWIT4VsEsZ4lKEGC7HWFiEGA6/E5QgwNSgDAEAAAAAAAAAAB2NMgTThvZeIlkr1qayDDGKCpGpKEOMopV+LmVIUtFKKZ9CxEhbveRchiQVfLNehUh9zOZP+ZQhRlEh4lKG2PJKEZ9CpD5eRiniUoYkFVUiPoWIkVeKuBYiSVm1SF4h4lOGGFmFiE8RYuSVIS5FiC2vEPEpQ4ysQsSlCLHlFSI+ZYiRWYgEvKLKK0R8VlbXxysoRHzKEJHsOsSlCLHlrd70WaFY/5qClYMuZYgtrRTxKUOMokIk5GebWop4rHA38gqRojLEpwipj5lShriUILaiMsSnCDHSyhCnEsRWVIb47ANjjiOvDAl4+ZFZiHhUISLFZUjIfTu3DAkYL6sQ8SlCjLwyxKUIaRovoxDxKUKMvDIkZPV9ywqRFhUhrhVIUl4R4lOCGEXvc1xqkKSs53CfEsTIK0J892cUkcJV8FpFiE8JYhQVIa41SFJaGeJTghhFRUir9wdJk1aGuJQgzePkf68+RYiRV4b4FCFG1jE61yBJOXc7ihBgajEZgmlLa3Kk7EmRkMkQmz050uqN1PPYt5/vZIjNftMQMhliqE2KGNY3GzQZ0jBe44chkyJG2uRIyISIYU+MhEyGNI2ZmBzxnRBJypocCZkUMZKTIyGTITZ7ciQ5KRIyCWKzJ0VCJkNEmidEQiZBbPakSMhEiIjuZIiRnBQJmQSxNU2KRAyZNikS8kfF+njWpIjvJIjNnhQJmQwx0v6QEfLmvP611pvnkEkQW3JSJGQyxMiaFAn92TZNiAT8cdeWnByxJ0NCJj9s9mRIyESISPZkSMgkiJGcDAmaBLHZkyIBkyBG6mRIxMuOpskQz0mQpvGsh4CYx6vUyZCI8ezJkJBJEFtyUiRkEqQ+juJkiEjzhIjGH5y1JkWaJkNKngQJmfywJSdDQiY/jKxJEN/Jj6Tk83jI5IfNngwJmgAx0hZ7KZ4OK2QCJMmeDAmZ/DC0JkEMezKkHSY/jKzTY4VMhEyM1/i9hkx+2JKTISGTH4bqJIiRuPmY/ADaC6fJAgAAAAAAAAAAHY0yBNNeWafPaqcyxDCFSDuVIbZKLb4OEdmwoiqmDEkyq52iyhDb5J1FqxCJKUNs4yPVqDLEZkoRjUJERGT/eQ+rjCOyoRSJKUOSTCWiUYgY9w5uJQu6HHbMdmTKkNAixGYKEY0yxDCFSGgZYphCJKYIsfU916NShhj1QkRpyJ4BnXFENhQisWWIYQqRmDLE1jOg87M1Kww1yhCRDXVITBliM6VIzCp6kUQhorDi3agOjtTLEI0ixDBlSGgRYpgyJKYEsZkyRKUKEdlQhkQUIUm1Xr3vtV6GRBYh9fEmHwJi78tJI3N1XpCaMkSjCDGG5nVFFSFN400WIqFFiGHKEM1V+KWdLktxGeZ4t04JYpgiJKYGSTLvY2JKEFt1VGccU4RElSC2iv7G6CJ6RUhMCWIzZUhMDZJkyhCtIiSmBLGZMiS0BGkeb+J71ShCDK3nIHNsUSWIrUIRArQryhAAAAAAAAAAANDRKEPQUTQrkVrX1G+knjmW8ibvhlYhknV+0Rgj6dsH+I8zZ+IhrzKud4zDC8fUVoSLiFQ31V1atc3iF9XG2n+zx0RE5Pnh7I3Bfbxr4Z0iIrJ0VC/ZeVlv/J4cSbOUluL9ZWShyjgiIlt0rxYRkev7d1MZb2F3v4iI/NeLu6uMJyLS1zVxu9393F+pjNe/bLbKOCIilaGqdPcrrgeZfDjpXalUFE4+FvetVBlORESqkasrDbMCrzdyNXPDmGM16R7UG888R/as1fnd1Vz5bqqV6ohSOVCdXBU+pPO9VoeVlkWLSGVkYqzMTZQ91XomXkhVBxWfI0eVvl/lIkRERHq61W47Ef0yRNPY5LGN9+q8WDZFSNZG6iG6B8ZkaKFeqaPFFDrDORt/+zIve7Tq7K4hM57iMSo9p43OVH7Pojhc12SJpPWetDI6MZ7m+zTVukTiS5CknoGacpkz+fNQegjVKn0axlSqQroUy4268Zrq31c0X5uJiIzO1HtuvO1yahCg3bXfq2EAAAAAAAAAAABFlCHoSBqFiHYZYospRcoqQ4zYQmTMXmWlsLhkbGZiOIWFfqYQMWJKkeGFiZWlGo+o8xqXClUj90rY7iXLGz4er8Xff0whIqJTiZhCxIgpRf5u1jP1/35mNP7Osp11+z8fufJXoxAxZYgRW4iYMsSIKURMEWLEliE9XY0rt1cujb+/VYY2rAVRKUSsX6nYQsQ+X3tMIWLvFWL2EAllr8TTKESSe3xoFCL2c2RsITLe23gf6RoKfwxIfq8adYgpQ+pjRhYiGmWIKUIMjbrBVCEikWWIXUUMRy5r7rZezGmUIYm9VVRuuz7rGCPLkPHuxq+vjoZ/z2PWscWWIfYeIRplSPfAhvuzRhliP36Y89SHsl/SxRQi9kr12DKky9oyTKMMiS1C7FX9GpVE8nkrpjTpsvak0XgvamoQEZ3vtW9V4zGOzI4bs7e/cTyNsxT0JF7nxJQh1VHr56HwcrFv5YZfspG5Co9P6xu/wdi/EZRVhBgx9+mm1zsK+8MlH381fr4UIcD0QRkCAAAAAAAAAAA6GmUINgohpUjZZYgRWoiUXYcYISt0msoQW8Cik2QZ0jRcwMIauwxJCqlEGlhwZxsAAJVRSURBVOqQpJhH2HnNK3xjKhG7EDFCSpFkGWILKUXsMiQppBJJ1iFpQooRuxARiatEQgoRuwix+RYidhFiaJYhInF1iF2GGDGFSLIMMYIKkZxfnZA6xC5CbCGFiF2GJIVUIlnnaI4pRCopq/tiCpG058eQOsQuQmwhhUja92qElCL2SsmmMT1LkZAyxC5BbCF1Q7IEsQWVIUU1REghYlchInFlSE/z81JMGdJUhBgBZYhdgzQMF1CG2EVI0/UFFCJ2FZIUUogkixAjpgzJeryIKUPSXr5pliGGbyFiFyHN4/kfY0wRkrbiO6SSKHpeCqlC7BokKeS9aGU0e7yQ79kuQYyYIsSuQUTiipCejNcyIVWIXYMkhZQDyRLEFlKG2CWILeTvA+o1SMZjcejfVrJe58SUIWmPuyE/X0oQYPqiDAEAAAAAAAAAAB2NMgQbFZ9CpFVlSJJPJdKqMsTms3KnsBAR8a5EtAqRvDLE8ClEMssQm88jbkoZYvMpRbLKkCTfSiSvEDF8SpG8QsTwKUWKChHDpxRJK0RsPsWITyGiWYZkVSFJPoVIWhFi8ylEsooQm08hklaE2LwKEYdfF59CpKgMMXwKkbwyxPApRLLKkCTfSiSvlvApRFyeF30KkaIyxPApRPK+V8OnECkqQ0T86hDfMqSoChHxqxvyihDDqwxxrSB8ypC0IsTmU4ikFCGGbxmSWYMkeZQheUVIfTiPMqSoCKlfr0cZkleEGD5lSFoRYvMpRFwfH3wKEZeXaj6FSFYRkuRTh2iWIT5FiMvKbp86wvX5x6cIyStBDJ/3oHkliOFbhGTVIEk+ZUhaCWLzeX+ZVYLYfMqQvCLE8CkHNIuQohpExO/vAq0qQWw+92un1zYeZYjL46vPz5ciBJj+KEMAAAAAAAAAAEBHowzBRquoEpmKMsSWV4pMVRliuKzgcSpDDMdFKnllSNOQDgtvXAoRw6UUcS5ERNwrEYdCxHApRVwKEcOlFHGpQ5JcShGXQsTIK0Vcy5CkokrEpQyx5ZUiLmVIURGS5FqHuJQhhksh4lKGGC6FiGsZIuJeh7iUIYZTIeLxEOdSiLiWIUZeIeJShNjyChGXIsRWVIi4VBK2vJW6Ic+LeaWIaxmSVLQKPOR7zitFXFZP1sdxKERcyxCXIsTIqxtcShBbYRkSsCdGbhniUoLY8sqQnBIkS1Eh4lSE2HJuJ5cipGm4nELEtQipX79DGeJShBguZYhLEWK4liE+1ZjTymWPhziXMsSlCDFcy5CiKqRxTIdjzClDQs7xX1RJhOxXlVeGuJQghst7T5cSJMmlCnEpQQyXIsSlBDFcixDXGkTErQhxKUEMl/tZXglicy1DXIoQw+X1z1QVIUbe/dvntYyRV4aE7MVU9HOmBgE6C5Mh2OhlTYq0w2SIkTYpMtWTIba0F7NekyG2jNdrPpMhDcNlvO70mQyxpU2OeE2G2LIOxWMyJClrYsRnMsSWNjniOxmSlDUx4jMZYkubHAmZFDHSJkdCJkSMrImRtEkRn0kQW9akiM8kiC1tUsRnEsSWNiniMwliy5oU8ZkEsaVOikQ8tGVNivhOhBhZEyIhkyFG2qRIyGSIkTUpEjIxIJL9x6qY58W0SZGQyRAj64+god+zSPqkSMgfEOrjpUyOZE2G+Ex+2NL+kB8yCWJkToaETIIYaZMhIZMgRtZkSMBEiEj2ZEjQJIiRcnuFTILUh8uYDPGdCKkfS8aEiM8kiC1tUsRnEsSWNSniMwliS93YN+I5J21SxGcSxJY1KeIzCdI8ZsoxZkyChEyAGGkTAyGTH0baJIjP5Ict672n7wRIUtr37DP5YcuaDPGZAEnKmgzxmfywpU2G+Ex+2LLucz4TIElZkyE+kx+2tNc/6pMfIt4TIElp9++o1zApr6dCJkE2HEv655kEAToTp8kCAAAAAAAAAAAdjTIEsJhSpJ3KEFuyFGm3QkSkeZVPVCFiJBa3hNYhDcNZi3JiChGR5kokqhAx7EMKLEQMuxSJKUSMZCkSU4gYdikSU4iINFciMYWIkSxFYgoRwy5FkoVITBli2IVITBki0lyHxJQhRrIQiSlDDLsQiSlDjIZCROEhzS5EQssQwy5EYsoQI1mIxJQhhl2IxFQSIs0rejWeD5OFSEwZYtgrxGO/Z7sOiVlVWR8zUYjYZUhMEWLYVUNMFSKSUobEFCFGsgyJKUIMuwwJLEKMptswpggxErdbTBFSH84qQ0KLEMMuQ2KKECNZhsQUIYZdhsQUIUZyZXNMEWLYZUhMFSLSXIbEFCEbxtxwjHYRElOCGMk6IqYEMewiJKYGEWl+zxlTghjJ7zmmBDHsIiS0BDHs94oxJYhhFyExNYhI830vtARJSlYhMSWIYb/umepTYaVJ3r81XrMYpgyJqUGSzM+bEgTYOFCGAAAAAAAAAACAjkYZAmSYDoWIiMiow8Z4U214vu4xjvWpDiciIkMLdB8KRxaUcJ7WufErkpJ2+KsXVMfbb9H/qY4nInLAnIdUxzOliEYhktRT0V9b8OSo7u/NvYNbq45386pdVMcTEXnghS1Ux1v15ALV8boH9H/O3QO6P+eeuPAnZTz9l4mmEImtJGyxK55tGqu8bd3rFKrBBO3bsGfFOtXxRETGe+OqCFt1WPkHLSIyrvyz1qhVEkwZolKEWLR/Ptqvm2sK1YpNu6oena37cxmdof89j85Q/rko3xVdN9L2oVE0JpkiJLYEaVLCX2O61+uOp31bVkf0v+mujH1mQvWu1n+u0X480yjmGmiPJyLjPcrPh8qP3xQhwMaJMgQAAAAAAAAAAHQ0yhDAwWvf8w21scz5f7VW2JRRhpjVXhWlBawjs63xI1d0lFGGjCb2IRnr03tYHJ07MVatS2nM+ZPnNR/X+7m/9CUTmw3M6hkpuKSbvRY+KSIifUrLtP9u7h8aPh6pxa9ifd2MxmNbOR63hG5RV+OdfHXkeIZ2HSISX4jMqjaeIPw3K14RNZ5Nsw7p65n4OT//2CKV8WqzJx4Ue15Q2JBj0ljvxGND30rdcx73rlEZTqrW9gwaKy/t8+DPWBm3Kn90ZuNt17tWZ5V//dzbmq+UJ793jf0KRDacf9veSySUZhkyOn+GiIhU1yutrp1cUVtdN1xwQXemimjahyRQzaosKqNxPxd7FbHGqmK7Jhqbqfd4JtLmZcjkoY0rHaP5XscUS47qSE2G5+plF/a+CcNz4o6126oiRmbF35ZaVYi9j4W9z4Uvu4wcnqewL9VA48cjs9Iv50u7BDH7MWju8WD2axlXuntrlyAiIt2DGx6zqxp1qHX7xd6e3f2N79XGZimVfSUUIeZ713q8NY+zsXvBJN36a2oQYGNFGQIAAAAAAAAAADoaZQgQIKYUsVfEGqGlSJllSJJGJTLdCpEN1xP+MGnKEFtwKTI/o96IKEVMGZKkUYmYQsQWWozYhYgRU4rYhYhIXCViFyJGaClSRhlihBYidhlitFMhYooQW0whYqqQJI1CxJQhIjp1SC1jiNBSxC5DjJgVmWnPgzF1iF2GGDGFSL0KSdJ4xZzyvcdUIlmrTENLkZgyxJQgTccSU4akVAEaZUjaPhkxdYhdhBgxZUhaERFTSWTtL7NRlCEphxSzWjnre4wpRNL2UIgpRLJWT4eWIXYRYkxlGWKXIEZMEZK2T1ZMEWKXIEZoEaJdgCRVUx4jYkoGU4LYQsuQsksQI6oIybi92rII0a5BMr7H0MfarMfTmDKEEgSAQRkCAAAAAAAAAAA6GmUIECGkEMkqQ5J8KpEyyhAjrRAxQkoRuwxpuK6ASqRVZUjz9fo/bGYVIiKBlUhWIWIElCJphYjNpxjJKkOSfCqRrDLEFlKKpBUiRkgpklWIiIRVIu2yd0hWFZLUDoVIVhlihBQiaWWIEVKIJIuQLD6lSFYRYvMtRLLKECNkpWbe82BIIZJVhiT5ViKpZYgt5BV0zvceUogUrTb1LURCypCsIqR+DCFlSE4NEFKGpJUgTeN6liFZNUhSSBmSV0KEVBJZRYihXYYYbVGI5BxCyGrlou8ppAxJK0JsPoWIy6rpkDokqwwxQgqRkCIkqwYRCStC0koQI6QIySpBbD5lSFn7geQJKRmyShAjpAjRrkHSShCbVxnieDsF3Z792e+5gsqQFpUgTVfr8Vjr8hgaUoZQhACwMRkCKHKZHHGZDDGmelIkbzLE5jI5kjcZ0nTdDpMjZUyGiLhNiDQeR/EPKm8yxOY0OVI0GZLkMTHiMiGS5DI54jIpYrhMjrhOioi4T4zkTYakcZ0gyZsUsblMkmhPivhOiLhMhhhTMSlSNAmS5DohkjcJYvOZFHGZDDFcJkVcJ0NE3CdEiiZCknz+YOHzPOgyOeIyGWK4Too4TYYYLt96wK+uy+SIzx9YXCZGXCdDiiZAGq7XZTIk4A/dLpMiLpMg9fEcJ0NcJkEMl8kQnz/y+1y2aBIkqYwJkSmdDPG4atc/1Pl8P05/0HOYBDFcJkN8/kDoOxlSNBGS5DIp4jIJkjfp0XSdjpMgeRMfaVwnQ1wnQETcJkGmYvIjyed5pWgCJMllMmQqJj+SnCZCAiY2XG7TvMkPm9NkSImborvQngSpH4LDYx2THwCKcJosAAAAAAAAAADQ0ShDgJJkVSI+K2JteaXIVJchSUWViE8hUj+WnFJEuxDxLUOSiioRn0LEyC1FfAoRW0ox4luGJBVVIj6FiJFXivgUIra0YsS3DkkqKkV8ChEjrxRpdSHiU4TYWlmI+JQhRlEh4lOGJGVVIj5FiC2vEPEpQ4yiQsSnDEnKWtkZ8/yXV4j4lCFGUSHiVYYkZf14I773vEIk5NQbeYVIURniU4TUry+vDInYHDurDPGpQRrGKyhDfIoQI68MidkYPOtrfWqQpOlQhtTHzbrdAq+uaPVyyPeRt8rZpwixpRUiMZsJFxUiPkWIkVeG5BUhPiVI/boKihDfEiQprQrxKUBseUVIGZui+9YgSWnPKz4FiC2vCGnVpuiuUsuQiM3P856jfUoQo7AImaJTYaXJe2wNOaWgkfWYRw0CwAdlCAAA7eC8o0WeeWkpQ/cs2UIWff/YUsYGAAAAAACYDihDgBaxS5GYFbIizZVIO5UhNrsUCSlDkuxKpF32DkljlyIhZUhSUyUSU4bYEqVITCFi2KVISBmSxq5FYgoRI1mKxBQihl2KFJYh5x0t1X/7V6lt85TUfnGUyFbPpV7MrkVcCpGeJVvIju/5mfQ9tY0888UvyvJjv595WbsQiSlCkrTrEJHGQiSkCLHZhUhoEWKzC5GYMsRIFiIhRUgWuxQJLUMMe8Vn7POeSGMhElKEZLFLkeAyxLB/zEpP0XYlElKG2JKliF2GhJQgTePbZUhEEdEwrlWGhBYh9fGsMiSkBMmSLERiipCsMUKLEKOsTdRFWrB3iNLw9ipmjeNOrn6OKUIMuwyJqUIaxrUKkZAiJMmuQ+wiJKQCSb0eqwyJKUGMZBESU4IYdhFSRgUiEleCGMnnk5gSxGaXIVO9L0iahiJE4XnVsJ+jQ2qQpKYypIx9QURUbgP7MTWmBhFpfryjBAEQgzIEAICp9pb/kto2T0nlya2l8o6L1QqR5ETI0NZPyuo3XasyLgAAAAAAwHRDGQK0mClENFbIJo31lnRuZqU6JGk0fqFpA1OKtNPeIVlMKRJbiBj1UkSzEBGRl26+SnU8kQ2liFYhYvz9/PtVxzOViEYhktRVKVh/8MxLpfKOi6Xy5NaFhYhhSpG0QsSeCHnsknfJyJbPOh2rKUS0yhCjrEJEowwxTCGiVYYY1VV6q8yNvpVV1TLEmLFcdzyzClT7ea97UHc8kQ2FSHQZUjJTiGiUIUldg7qPeyKJMkSpCKnL2Y8jhClDNIuQspg6IrYIsU2rvUN6dO9PZhWz5vGOzaiqFCE2zSpOZEMZEluE2AYXTNyWWiVIA+UhTRGiUYMkaT/vGRoliK0rsga1mSKkHUsQm/bvqXluji1BbGMzSnhjLqJawxgjs3WP1ZQhFCEANFCGAADQDrZ6Tmq/OEqlEImZCAEAAAAAAOhElCHAFNvnvd8ovpADe3XweLfOCo/K5EOE1nhJ6oXI5KqWMeWiY9Sc71fx0XJkbk3G+/QffsfnTKzArfTqrJoqoxAREXn1oqdFRGROl155sM+cx0REZNOufrUxRUT+pm9iBXa36KxwKqMQMX4/PKg6EfLQ8OKgryuiWYjM7hqWe5ZvpTZe1dqQ6dlnF+oMPDlsdbXeqvPqcOL83uv1HqMrkwv5+1bpjDdmPdb3rFUq4yZ/lXrW5V/OR3Kl/YxVenXQWN/EwXYN6Tw226tYK0p7B2iWIWMzGu/rPWuVlh2PT96GiouDk5VBdUi/jtGivVdIfdyeiee3cc16J7HSWHV1fGWy4NB6nWudc39UeeW1ZmlSse7zI7N1fl5mpb29J0mo8RLiqhkvTjweDy7UOUZTwYzM0l0b2rNu8rZU+tmIbNi/Y1w53NIuQczzUhnFas/AuOrZCsootkSkvodH16Di64eSahDz2GTvQxpKuwQxfvfLE0sZF8DGjTIEAIB2ElGIUIQAAAAAAACkowwB2ohGJZK1Gie07KhkPERolCJllSG22FKkXoY0XWHcuCPWviEapYgpQ5I0KhHtQsSUITaNUsQUIkkxtYgpQ5I0KhH1QuSZl8rI2y8qZSKkHQuR2SlLGjUKEbsMMaILEWtYjUIkWYYYGoVIJfEwolGH2GWIEVuIZD3fxZQiaSvtNQoRU4YkxVQiWataYwsRjTLELkKMqDJkPOW2UihD0vadaMcyxC5CDI0yxFQhIkplSMprMZUypNI4SGwZYhchhnYZYsQUInYRYsSWIVl7L8QWIjFliClAbBpFSNqeKDFliKlAkjSKEFOC2GLLEO0SRCT9uUijDOkZaLxtY6uQsksQW0wZUnYJYgstQ8oqQUSoQQCUjzIEAIB25FOITE6cUIQAAAAAAACkowwB2lhIKZK3Giem5sgqRGLG1i5DjKxCRCSsEsksQxqu1H9cuwzJElKMpBUiRkgpUvbeIVlCS5G0OiQppBRJK0RsIcVIdCFi/fuffvrO0iZC2qkQSStDjJBCJKsISQqqQwqGjSlE0soQI6QQqTgsiA8pRbLKECO0EClafRpSiListA8pRdLKECOkEHFd5epbioSUIVkliC2oDEkrQur/5j9cWglia6cyJKsIMULKkGQJkiWoEMl57RVVhlTyvzikEMmqQpLaYe+QrCIkKaQOySpCjJgyJKQKyapBRMKKkLQCxBZShKSVIEmhVUhWCWKEFCFlVCAi+c89IUWIXYBkjh1wl2x1DSISVoS0ugQxYvYK0a5CKEEAtBqTIcA04jI54vNC1GcCo2gyJHTcMiZE8iZDbD6TI06TIvWDcL+o66SIiPvESN5kiM1ncmSqJkWSXCZIiiZDbD6TIy6TIobP5EjupEjWhEjORMnvhwedr9tHWRMiIm6TInmTIDafSRGXyRDDa1LE47HAdWIkbxLE5jMp4jIZYvhMihRNhiS5TIz4/sHFZ1LE54/LPpMieZMhNpfJEZ8/8vhMiPhOhrhOhIg4TobkTX40Xdb9oi6TIMZUT4YUTYAk+dxfXSZBDK/JEI/XXM6TIgUTIA1j+ryWdZgEMabydFkukyCG72RI0URIks+kiMskSN6kh81nEsRl8sPwmQQpmvywuUyGFE18JPlMgkzF5IfN9bnZdQJExG8SZComP2wukyFlTX6I+E26+kyGMPkBoNNwmiwAANpd2imz7tzTb08RAAAAAACAjRhlCDBNZVUiMZvW5RUdPmWIz7hlnSpLxK8QMfJKEa8ypOlgsv/Jpwyx5ZUiPnWIragWadWG6i7yShHfQiQprxbxqUNsRbWIayFiFE2ETLdCpKgO8SlDjLxCxKcIseUWIhGvrooKEZ8yxJZXiviUIUZeIeJThNjyCpGY57miSiRmQ+q8UsSnDDHyCpGYFbB5pUhRGeJTgthyyxCfIqT+Ndn/5FOC2KaqDPEpQmx591ufIsTILUMCXlvVj6XoSz2KkKax817DeqzstrX6dFk+VUhSUSHiU4TY8gqRvCLEpwQxiooQnwrElleF+FYgSXlFiE8JYssrQ1q1GbqrvOdlnxKkadycu0M7lCBGUREyVafCypP38reMzdGpQQC0E8oQAACmi62ek9qZn2v4VO3Mz1GEAAAAAAAAFKAMAaa5MgoRI1l0xJQheeO2WxmSxq5FogoRI+XmjClEjGQpElOG2OxSpB32Dslj1yIxhYiRVorEFCKGXYpolyHGdC9EQoqQLMlSJKYMMVILEYWHTLsQiSlCkuw6JKQIyZIsRWLKEFuyFNF4fssqRGLKEJHmOiSkCMmSLEU0V8QmSxG7DIkpQWwNZUhICZLFGiqmChFpXRkSU4LYkvfbkBIkS1MhovS6qqkQiShC6mOmlCExRYjRqr1DQosQm12IxBQhSXYdYhchIRVIGrsMiSlBjLQiJKYEMewiJKYCSbKLkHbYD6RI8nk5pgSpj5fya1dKCaLwGCHSXIa0YwliS778LaMEMShCALQjyhAAAKYDa7P08V+/u3EPkWdeOtVHCAAAAAAA0LYoQ4AOY0oRjZWzSabm0CxEkuOWUYholSG2oU1LGVZG5pTzcDy66Yj6mKYUafdCxDCliEYhkvSmWatVx0vqqySWBloTIfUSJOvzOaZbIXLL6peVMu59L25ZyrgiIs8uydlLJIApRLTKEMMUIppliMiGOkSzDDF61tbUn99ERHpz9iiJ0bO+pHH7dVZh2/L2E4nVs7qcx55aVzlru8oqRDSLEMOUIZpViEiiDFF+PVUvQxSKkAYlLvMrqxDRvg1MGaJVhBimDOldXc5jz2jBniftZLh+Gyu/J5p82TcdShCje73u/czQqLpSlTVuiTRrEJENRUhZNQglCIDpYPq86gAAYGOUN+Gx1XNS+8VRFCIAAAAAAAAFKEOADrf3+9P3FAlVX5GrvJhvtG9iQPs8uRrGeyvqK59FREbmTY6vfMxjMyYelu3zMccanTe5mq9HdxXX7IXrRURk/qz1quOKiOwwf7ks6NEb92/nNpYhs6pDGZf0s1ffCw0fL+zqUxl3/JmXysx3XiLVJ7eR8W2eFPnFB9LLjw4uRNZObtpzX/82quM+tnbRxPjDOj+rpDXrZ0j/Co3NhSyjE4+T3SuVHhysJTE9q5Ue2K1huhUfGpLn1e9SrC7MuD0Dui+LuybDvKpycWFWzXYrnPe+YdwSypDxnok7RN9y3eeI0bkTv7td63Trx/HeidWy3Wt1nh9ERMZm99b/W7M4Ge+z9hUa0bk/lLVXiEy+7Syl5ilpiZ+5LcZT9iSJol3FTErba0GF4kONvdJ9bIbObWE/zqr9zKyHRc37QnW0pr7yX6Sk/TVEpGt44o5QUQ6EyipBzHNaGUVprasSvc9YmvHJvca0n49H5kw8OGjtT2RQggCYjihDAABoQ5VntmiYCFn/8/dkT3BQiAAAAAAAAOSiDAE2IhqVSObKmshFTaYMsWlUF+O9zWNrlCKmDGm4LoXjNWVI09iRi8HrZYgtshQxZYhNoxTZYf7yps9plCJ2ISKiU4nYhYjhW4pUntlCet/504aJkNqWzzZdbla1t/ETnoVIWXWISHwhYooQm0YhYqqQhutTKETWrG/eJEOlEBlNf3yMLkQyHs+jC5GML9coRNJWNGoUImnjalQiXRnRQmwpkrWKNrYU0ViJakoQW2wZYkoQm0YZYmqQJI0yJFmEGBpliF2E1MeOLEOaipD6wJGPCRlvN1UKkZKLkMbPKazgn25FiEh0FZJVPsQWIVmPoyo/p5ShNcZNO2aNMqTsEsQWW4aUtieIpD+PaZQhaT8njTLElCBNY0c+H5sSpGlchTKEGgTAdEcZAgBAG7EnQoZ//t7UiZBUFCIAAAAAAACpKEOAjVhMKZK7wiZigVNWIZIUUl+k1SFpQoqRtEKk6foDjjmrEGkYN2BheGYhkhRQi2QVIjbfYiStDkkTUoykFSK2kGIkqxBJSqtFUidCttowETLm8JQ9q9rbEYVIVhlixBQiaWVI/XojCpG0MsSIKkQyyhCRyDrEYUlMUCXi+CUhpYjLisaQUsRl3JBSJKsMSQqpRFxX1fqWIiErUbNKEFtIGZJVgySFlCFpJYgtpAxJK0FsIWVIVgnSNHZAGZJZgzQMHPHCLud5K6oMaWERsuHfIm6HjaQIcakcQooQl8fJoJ+Pw0NeyLiuj+u+VUhZBYhIdgWSFFKElL0fSJ6QIsT1ZxJShWRVIA3jRhQhWTWISFwRQgkCoNMwGQKgzmdyJCg3dnht6TIZYnOZaHCdDElynRhxmQyxuRyzy2RI07gefxd1mhQxPCZHXCdFRPwmRlwnRUT8J0ZcJkWSXCdIXCZFjK4lW8qid/1Cup/aNnUiJMllUqSyZAu3zdcT2mFT9aJJEJvPpEjeJEgWl8mRvEmQLE6TIzmTIFmcJkcCHr+dJ0UC/hblMyni82beZ1LEZ1yfSRGXyRDDZ1Ik5I9LLhMjrn+EcZ0ASfKZDHGZBDF8JkNcJkEMn8kQl0kQw2cyxHUSpGF8xwkRp0mQpsEdfu4Bby2dJkWmYPIj+2s87v8lTYKITO1m6SGndnKZBAmZHHb+eXgO7TsJ4nPsPrdfq0+BlcZnEmQqJz9sru9XQ+7PLpMhLpMfTeM6fJ95kx6Z43q8zmHyA0Cn4zRZAABMMZ+JEFe1LZ+V9T9/j4xv86RUn9yGU2YBAAAAAICNGmUIgFxZtYjGRnRpK4hDyhBbXnURUogYeaVISB1iFFUiIYWISHEl4lWGZEkpRnzKkCx5xYhPIWLLK0Z865CkolKkqBCZfcFHZMGX/p+Mbv2ELP/ZO2RsyyUiUrzxum8hMnTKl2TkIxcmjjt9NfNUFSK+VYgtqxIJKUJseYVISBli5BYiAWWIkVuIRDx+FxYikQ/hWZVI7IafWZWIxkaieaWITxliy1tlHLPyNq8QKVqRGlKEGHlliE8JYssrQ3xKkCxZhYhPDZImqxAJqUEaxi0oQ4KKkPrgOT//iLeUuWVIGxUhzWNk3B4l1iAirS9CYjf4LipCQmoQEYdyI+KvHHljhx6vSP5t2Q4FSJaiMqSdahAj771qzH06rwgJKUGaxk/5nkNKkKZxM+4GVCAANkZxr7YBAEC0gQ+fLyIig2/+TX0iRIspRLp/86aGiRAAAAAAAICNCWUIAC92KaJSiIg0rSbWKESMZHkRU4bYkqVITBmSxS5GQguRpnGtaXCVQkSkqRLRKEREmiuRmDIkS7IYiSlEbMlixGf/kCJ2MeJSiLiwS5EyN1YX2VCKxBYhNrsQ0ShDRJrrkJgixNZQiEQUIVnqpYjyKuumUkTp0O1CRKPgEGkuRLTGNUwlElOEZEmuRtZchZssRewVqTEliC1ZhsSUIFlMIaJRgyTZZUhsEWLYZUhsEVIf1ypDNAqIxiuYvE+U8BayoRAp8WTOWrdJUz0wHTdJF2kqQmJLEMMuQmKKClvDba94V0yOq3m8hn3btnMNItJchLRjAZIl+R5V6z4t0liGaJQg9XGt20CjBhFpfp1DCQIA7BkCAAAAAAAAAAA6HGUIgCiv+UD6niKxRgvOLxzK1BaahUjSaM7p/2ONzC3n4Xp4oVIZkmH24oFSxt3zpU+XMu4hCx8sZVzjgJnlHLeIyPyMPUBiPTaqvHzectf6bUsZ9+fPvbqUcZesnl/KuEb/C7NLG7t7dTlnSO1ZU+458nvKeRiR7pz9PmLMWFXuy2utVb9N464v73e9a6jcx5FKSY9TZa2ELl1Zh13ir3qtp9x1euqVjBm3pOMuuwiplVWylHgi7nHFFf6tpF0hGmU9FxhllStllCCGZtGYZIoQzRokaXRGOeP+z88pQQDARhkCAAAAAAAAAAA6GmUIAFXapUhl8hFqZKbuKh97Pw6tUqRp3J70ywWPb622G5up9xA+MnfD6rJaj/5TQ/f8YRER6ZuhezL9svYU2X3Ocw0fb9Oru1fJ9r2Ne4j8VddQxiX9rLN+dC/t0q1FNCuRFWONKdX/DW+uNG5jWfHfL7xMZdwsWqXIyEjjMuChlXp7ktSNV6R7rf5y4+R5xbsHNM/N3fhxt/Y2NtbduXu9zmOffZzdg8qPqTWzN4nuuGWUIeZ5vKq8gnm8t3FNV9e60YxLerJWy1fGdI/brh8qI3rj16objj15Xnu18bsqpZQyZRUhydsj7ePo8bvKHX/D9SiOpVyDVKw/JWityu+yHjNHZuveR6rW74dWcdI1bI1r7ysTyfz+lbGfSZJmEWL/Xmg/F4xZpUZZNV9N+Wc5MmviuLWrIUoQAChGGQIAAAAAAAAAADoaZQiA0mhUIpWcR6iYWiSv2NCoRIqKkNBixC5DbLGlSLIOSRNTjJgyJI1GLWIXIiI6lYhdiCRp1CJ2IWLEliJ2IWKLLUZiChG7CEnSqEPsMsRWVikSW4jYZYihUoiMZz+uaZQidsEholOIpI1bH1+jEsm4G8cWIkXHFl2KZLx8jy1FNMqQrOft2NXAdgliiy5DMlbMa5QheeWDRhmSViRolCF2+dAwvsLq61YVIb7/nvl1BfVAWWXIhuuP+NrIIsQuQGyxRYhdghgaRYhdgSRpFCF2DSKiU4Tk/Y6VWYbEViFFvwehzwV2AWIre3+nmDLEVCBpNMoQahAA8EMZAgAAAAAAAAAAOhplCICWCSlF8soQW0gp4lNo+BQjXuMGVCJFhUiSTy1SVIbYQkqRvELEFlKMpBUitpBiJK8QsYUUI1mFSFJILVJUiCSF1CIhhUheGWKEFCJFRUhSmfuIhBQiWVVImqBSJKcMMUIKkbxyo2n8gFLEa3yfUsTjbhtSifgci1cl4vmy3bcUCSlDfJ6nRfxWBRfVIElBZYjHanmfQsSneAgpQ3wKhJBCpKiAEAlbhV1WCVIf3/F2CSk4XG6TmPHdjiHgawKKkKIKJCmkCMmqQJJCipC8AsQWUoSkFSBN4wbUAz6/S2XvFSLiV4b43NdDipCiGiSpnfYKyStBbCFlCCUIAMRhMgTAlHKdIPH9Y4uI2+RIzAbnLpMjUeM7fK3PpIjhMjniOymS5DJB4jMhYrhOjLhMhqRxnSDxmRRJcp0gcZkUsblMkvhMithcJklcJkVcJkFsLpMiPpMgtnbZXN1nMsRwmhRxmATJ4jI54jNZ0TS+w+RIyPhOExERp6VwmRwJOYWX06RIxMt2l4kR18mQkOdkw+UPYj6TIIbTZEjEqYJcJkNC/tjvMhkS88d1l8kQnz/0N43v8AfIMidBgk955TpxEnHbTOWkiMskiM+kh81lEsRl0sPmOgniM/GR5DoJ4jLxkTq+4x/OQ/5w3w6bpofcp10e830mPWztcHosn8kPw3UShIkPANDHabIAAAAAAAAAAEBHowwB0FaySpGYVahJWbVITMEhkl2JxI5bNFZIGZIlrRiJKURsacVISCFiSytGQuuQNGnFSGgdkiarGAkpRJKyapGYQiQpqxZJK0RCipAsaaVITBliTFUhElKEpMmsRCLKkKSsSiSmDKmPnVKIaIxbHz+t0tB7aEstRTQ2d08tRRRftqeVIllliNZzsEj6KuGQEsSWWoZEbhrdMFRKGaJZPKQVIhplQVYZElM8NIyfsSq7XU6JFTqOxu0zFRuqZxUhMRVIUlYRElKBJGUVIaEFSJq0KiS0AEkdP6Ug0KgWpqII0bzvpj3mx5QgtlafHiukAkmTVYZQggBA+ShDAAAAAAAAAABAR6MMAdDWTCmiuSo1yZQimgVHkilGSht/clzNQiTJ1CKahYjIhkpEowxJY2oRzUIkydQimoWIbZve5dF1SBpTjGgVIjZTjJhCRLMKSTKFiEYVkqZVpYhWGWLUCxGlIsRmChHNcqNh/MlKpLTxTbGh+5A2Mfb6mkoRkjn+YE21DLF1jdTqZUhZz7kiE6uENUqQLF3rRlWLEMOUIWUVD6YMKasmMIWIVhHSNP7k6uyybp/S9t+YHLes26VVdYgpQrQKEJspQmILkDQjs6uqBYjNFCGaFUjD+JMFQVmFQllliClCyrqPmiJEswJJatVeIVoliM2UIZQgANB6lCEAAAAAAAAAAKCjUYYAmHb2Pip9XxENY70VGc049b4Gs8porE933Poxl7QAcWTuxFPF2MwSllOLSG1y3O7Zzft/aJg7Z6IQmdlbzvgvWzBRcOw8+/lSxu+rThz33856tJTxnx3dRERE/rp3qfrYT4/OUx9TROSPQ1uKiMi68fS9S2ItGZq4TR5avbiU8V9cN1G0rF2n/GAwaWRoIhcb7y8nS+taN7Gepjpc1opSswpZedzJ4qSavqVOtK6hicfKnnXljG9WCKed411D3+qSkhzZsDq4a6ic5xGz+runP2XvEI3xJ2uWasq+SFHjdk+OO1TObV+bHL+ifNx1JRUVtrILi/FpssdJ07i6ceGEybtKWYWYOeas/UdiVcxDQMl3zVpJdxnzPFLKzzahrAKzftzKDznjfZOvCzL2ttIwPL+71ALz9kupQACgHVCGAAAAAAAAAACAjkYZAmDa0yxFxnqbl5FpliKmDGm4TsWF4anHqrgyzhQiSZq1SC1lLM1axBQiNq1ixBQiNq1ixBQiNq1ixBQiNq1iRLMSMWVIkkYlYoqQNBqViClCbFqFiClCbFqFiClCbFqFSNY4WoVINWMlrFYpYlb02rRKkaxzx2uVIpplSNZ54rXKkPGMIkGrDMna10SrDDFFSNP4SoVILWN8tUKkRUWIbboWIprHrVYMZNwVtIqQrOPUKkIqWb/q06gISXvOmE5FSOqxKoYbpgZJ0ixDhuenvGZS/PMYJQgAtCfKEAAAAAAAAAAA0NEoQwB0rNBiJK0OSRNTjKQVIk3HEbFQ3OnYIlbOpRUitphiJK0QscUUI1mFSFJMLZJViCTF1CJZhUhSTC2SVYgkxdQiMYVIWhFiiylE8soQI6YQySpDkmIqkawyJCmmEskqQ5JiKhGXr42pRLLKkKbLBZYiWWWILbQUySpDmi4XWIrElCFZJYgttAzJKkFsoWVIVgliiylDsmqQhvEjypCsGiQpqgyZohokabqWIUbM8UcVAw4/9pgixOXYYoqQzAqk4ULBwzuJKUJcnhvauQhxOraIh5a0AsQWU4SkFiBpAv80RgECANMLkyEANgo+EyOukyFJvhMjLpMhNp/JkeCJGsfDcpkMyeIzSeIyKWLzmSRxmRSx+UySuEyK2HwmSVwmRWw+kyQukyI2n0kSn0kRl0kQm8+kiMskiM1nUsRlEsTmMyniMgmSxWVyxGUSJIvP5EjIRIrP5IjrZEjD13hMjLhOhiT5TIy4ToY0fI3HxIjvZIjrBEiSz2SI6wRIks9kiOsESJLPZIjL5EfT+B6TIS6TH1mcJkXaYPIjy8Y0KeL1R/KAvxf7TIKE/MHeZxLEadKj6YsCvsaDzyRIyHNA2ZMghutkSPDxeNz3XCY/bL6TIc4TIEkefxpjAgQApi9OkwUAAAAAAAAAADoaZQiAjVpeMRJSiNjyCo2QOsSWV4uobPxecIgxhUhSVi0SUoakKapFQgqRpKJaJKQQSSqqRUIKkaSiWiSkEEmTVY3kFSIhRUiWtFIkpAjJkleKhJQhtrxSJKYMMfIKkZgyxMirPrQ2YBdJL0VCipAseaVIyKpgW14pElKGNI2RU4oUlSEhJYgtrwwJKUFseWVISAmSJa0QCSlBMsfPKURiihAjtwxp4yLEKLsMMaayEMlcoa+0f3RRERJbLBQVIUEVSMMAkV9foKgI0Xi8F5n602OpXH/OfTKkArHlVSFBBYgt509iFCAA0HkoQwAAAAAAAABgmtt2222lUqkU/u8HP/jBVB8qIrj8jCuVitx0001TfahtR2EaHQCmrzsu/mzDx6GbrmfpzjiXvUq1ISJdGSuUx/o2XHfUdWUtlJpc5NWztqJSh3StT5+bHxOdOmR0IH3Fe8wm7Enrh9PHN8XIQ6s2j6pDHhlILw5MMTI0PnH9oYXI/6zbKfffTTkSW4g8OPyS1M8nixFTiWgWIcas6rCIxG2wnudl8yd+HslCRKMIMebOavyFX7uuT6UIMapzGu8/MRutpxnvbXys0KxBksYmH/NiNlrPM24FOqYU0VolPDKr8ePQzdaz2Ku180oRjRIk91hKKBBG5nTX6xDNEiSPZhGSRqMEyTUNShBbZXziftuqQqQs9vfRsEpfqQBpus7JX/myigT7MSa6AEnTwh+71mN7mlZWIaVcV+I+qlGA5FEpQBxQgrS/gYEBufPOO+Xee++V3//+9/LUU0/J008/LatWrZL169fL4OCgzJw5U+bMmSNz586VuXPnyrbbbis777yz7LzzzvKyl71MXv3qV0tfn8eGnAA6CpMhAAAAAAAAANpOf3+//OQnP5HLLrtMbrrpJhkayjlnqUxMmAwMDMjzz08sVLrvvvsa/n3mzJmy3377yUEHHSRvetOb5JWvfGVZhw6gDbFnCAAU+Jtjv1nq+CNzyl1JNTa5CH50ZqlXIyPzyn06MfuKaO0jYjOVSOz+IUVetfmSUsfv65pYgrnzrPT9ObRs27u81PGXjOjt5ZHm0fXZ+3toeGztZiIi8nz/3FKvZ8VKvfIkzfhkVdU1UN7K9MpYRbrWl/s42DNQ6vAiItK9TqSisKdHnr415Y7fu7akpegJZd9Gta6KdK9X3CRmClXGyn+bVpnmbwXH+iaWu1dHyr3vlr13SBmVVIOyI6nJm79W9vdR9vCTpU7RPhuhxif3C5zuv3dF+8FoGSu57rv9ks8WXwhT6vnnn5f/+I//kO9///vS399f2vXsscce8pGPfESOOuooWbBgQWnX0yrbbrutPPnkk4WXu/DCC+WYY44p/4A2Il/60pecLnfMMcfItttuG3VdlYrbY/GNN94oBx54YNR1dRrKEAAAAAAAAABTbnR0VE477TQ57bTTZGCg/BUtDzzwgBx//PHyuc99Tl544QWZO7fcxUzoXKeccorT5Q488MDoyRCEYzIEAArc/f0TUj+vVYx0DaavDhubobPqqms4/9+1ipHudenHOzpLZ/Wb2Vcka7FebDFi9hVZm/HvWsXIfS9M7IUxpy/9B7PT/GVR4w+NTTy1P7IufX8OrWLkieFFIiKycjS9THjVrOLVSHm27FkpIuUUIn8e2KLpc93VcpaBLp4zcY8qoxDpX98nvTMaT8Y+PFjOS7ux2RO/X2UVImMzGx8ntEuRMWubmKLHxVC1bvtc+bqrf+3V49UWlAOxxqzzyHcr3yalr0SfNG79bKslFy7T1VhKQdFVQrVhipCylF2C1K9H6f6b9VigvoI/40ep9Xtoyoyyxi+6Hq0ixH68qI+vXYRk/Wop3X0pQDAVHnvsMXnPe94j99xzT8uve3BwUMbGOqMuBZCNyRAAAAAAAAAAU+aWW26RI488UlasWDHVhwKggzEZAgCBksVITCVSnVzYPW49IqcVIzG1iFkJba+Q7k4JHkJqkcrk91Gzvo+0YiSmFqkXIlYJUlnfvKospBYxhYjZQ8RY2998o8TUIv1DEz8IuxB5dPVmTZcNqUVMIWKYvUSyihGRsGpkk+6JdN0uRO5bt03TZUNqEVOIGDGlSFoRYoyOT6wy1ihEzH4hSaYQMWJKkf71fZn/plmKmP1CkkwhYkyHUqQ60vy56ViKpO170o6liF2C2EZnV6V7ILwUmKoSJO3fO6EOqVUqUavV00qQrMvEFCJFJch4T1Vl35DpsDeIy+951Ip+h5tR4/cwq86YiuuJKUKKHitElIoQl7t3xN23UyoQgxpk+rn++uvl0EMPLdwcHQBiMRkCAAAAAAAAoOXuuusuOeKII5gIATzUtE+9uBFhMgQAFGjsK5JViCSVvb+IkVaLiLgVI1mFSMP4CvuLZBUiDceSUouIuBUjWYVIUlotkuRSjmQVIklptYiIXzFiShFTiKSJ2WckqxBJSqtFklzKkZC9RPKKEJspRAyfUiStCMmiWYrkMaVI2XuJGD6lSGXM/XErWYpo7yciMjWliPZ+IiLpq87LrEWKKhAtrahBXFZ3t5r5vittUPzYXIqQqPED9gQxVYdPIdKOe4PE/M56re4PCGlCfhddyoyY6wkZv/61HkVIyGNEUBESEjh53I0pQNBuVqxYIe94xzuCN0p/2cteJm94wxvkDW94g+ywww6yaNEiWbRokVSrVRkYGJDnnntOnnjiCXnggQfkjjvukJtuuklWr16t/F0AmE6YDAGAEpW9+brhc0qtrNNlufA5pZbLpEjT+BmTJCLZEyUukyJNx+ZxSi2XSZEsPqfWcpkUsWVNkohkT5S4TIrYfE6tZSZFjLzJEVveZIk9UZI8fVYZm6wbLqfP8pkEybJ4ztrCCZG802MVSZ4+q2hiJO30WK6SkyPT4RRamdeReHwsmhjpXhd2HWVvtm5onkprukx+jM6c/L1dn/+XznacAJkKtcrkpEvBH25jJ0BcT5cVuzm6y6RIKyZB8iZAtCYpC/+wrbR3fdHvZMyExFRcT9EkSOxjQ+EkiNLPpWgSpJMmPpj06Fwf+9jH5KmnnvL+ugMOOEBOOeUUOeCAAzIv09vbK5tssonstttucsghh4iIyNjYmNx8881yySWXyCWXXCJr167N/HoAnak10/UAAAAAAAAAICL//d//LT//+c+9vmbGjBnyk5/8RG666abciZAsXV1d8oY3vEHOPfdcWbJkiZx55pmy1VZbeY8DYPqiDAGAKZBWjJhaxOV0WS6KTqkVU4gkxZxSy+t6FE6tlSfrlFr165HwQiSp6NRahk8hkqbo1FpDY91edUiWolNrbdI94FWHZMmqRl4168nMU2f5nB6rSPL0WRqbrKfJOnVWTBGSJmuT9ZgiJE3WKbR8To/ldD0ZpUjaxulB40/Dzdbz+JQi06UEcaVdgpjxyt5IvVWny7ILkbJOhWUXIrEliKupOCVWmaepa1j1r1UapEj+fmqVGVnXUdb4hilCWlaFlfhzabiaDipARKhANiYnnXSS1+U322wzueqqq+Q1r3mNyvXPnTtXjj/+eDnuuOPk7LPPllNOOSVonOHhYXnkkUfkj3/8o/zpT3+SJ598Up599ll59tlnZcWKFbJ+/XpZv369jIyMSG9vr8ycOVMWLVokW2yxhey0007yile8Qvbdd1951ateJZVK+1erzzzzTP17feyxx2TJkiXy7LPPytKlS2XdunUyODgo69evl66uLunr65NNNtlEFi9eLNtvv73suuuuss8++8h+++0nc+bMacnxvvjii3L99dfL3XffLX/4wx/k6aeflueee07WrVsnw8PDMnPmTJkzZ44sXrxYdtxxR9lll11k7733lr/927+VzTbLPgPAxRdfHHxM1113nTzzzDOFl1u8eLEcfPDBqf/mel+58cYb5cADD/Q5vFTj4+Nyzz33yK233ir33Xdf/We/atUqWb9+vVQqFZkzZ47Mnz9ftt12W9lxxx1ljz32kL/927+VPfbYQ7q6WvN6zwWTIQAAAAAAAABa4qabbpJ77rnH+fLValUuvfRStYmQpL6+Pvn0pz8tRx11lPMf6H/729/KddddJ7/73e/knnvukZERt1U4g4ODMjg4KCtXrpRHH31Ubr755vq/bbXVVvL+979fjj/+eNlyyy2Dvpcy/OUvf5Ff/vKXctttt8n//M//yPLly52+bnx8XEZGRqS/v1+efvppufvuu+v/NmPGDHnLW94in/rUp+QNb3iD+jGPjIzIpZdeKueff77ceuutMj6ePTs9MDAgAwMD8vzzz8vvf//7hn979atfLW9729vkox/9aNPEyAc+8IHg4/uP//gPp8sdcMABmZMhrfLwww/LOeecIz/+8Y/lhRdeyL3sypUrZeXKlfLEE0/ITTfdVP/8ggUL5NBDD5X3v//98uY3v7nkIy5WqbH9PAC0tT2P091fxFaZfF0wtKDcVSjjk4vOx2aUejUyNqMmo7PLXYpX65sYv3uu0tLzDNWuietZvKDcc9n2dU+UAjvNc9+QPcQz6xaIiMirFjxd6vW8ONyaVUZPDCxsyfUsWT1fREQGh3XLDdvgmskCZaTclZ/Vwcnz+Q+X+5hjarJKfABVcD0T/19WMbLhempqtUuWnvXlL2Me76pIz0C512PKhrLqGsOsZu8aKvf7Mauxi/ZAiWX2WvHZgDxEvQLgXagXn03YVZR8deb1Z63khaKtqkFqXSLV4XLv1GMzJgvLkv+EM2qup+SnBAqQjdt73/teueSSS5wv/8UvflG+9KUvlXdAnl72spfJww8/XMrYM2bMkJNOOkn+9V//Vbq7/dewb7vttvLkk08WXu7CCy+UY445pvByp512mvzzP/+z93G4Ovjgg+Wcc86R7bbbTmW8n/70p/KFL3xBnnjiCZXxREQuv/xyOeKIIxo+14qK54ADDmiYVAi5/tAyZOnSpfL5z39efvzjH+dOJvnYY4895P7771cZKwZ7hgAAAAAAAAAo3eDgoFx11VXOl99ss83k5JNPLvGI2svg4KCccsop8nd/93cbxQbv1113ney5554NlUyIVatWyeGHHy7ve9/7VCdCNka//OUvZbfddpOLLrpIbSKknXCaLABoc/ee27y/iGYtUpucFu9b1bzKTLMWyVvRrFmLdA1WJGuuX6sYqQxNjG/2EckSW46Mj01cz3MvTpQBphSxxZYjQ6MTLwf+sOKlIrKhFLHFliNbzVolIiLLhif2wjClSJJGNbJpb3/Dx9qlyF/6N039fFV5mbMpQowZvRP3J+1CpF6EGD2T9zPlQsQUIcZ474bbq8xKpJZ4tVtmJZLcW6SsSmTc+tGXXYpoaNVq9rJXShut2t8k7dz8ptzQLkTMuIbZW0O7ELFvu9rkh9qFSFYBUPbeLhpaXn8kKV91VlVgShCtIqRS8OugXYRkHbd2FWIqkKQyHudG066nhL97UYEg6eabb5b+/v7iC076+Mc/LjNmlHx6gTZ08803y+GHHy7XXXddW+23UIZVq1bJoYceKr/73e/kFa94hffXP/nkk/LGN75RHnnkkRKObuPyla98Rf7lX/5FOvlEUpQhAAAAAAAAAEp3++23e13+uOOOK+lI2t+NN94op59++lQfRkv09/fLe9/7Xhkd9Vu9tHTpUjnooIOYCFHw9a9/Xb7whS909ESICGUIAExLabWISFwxUqs2rwRLq0VE4oqR6kjz6uauwezLh1QjE3XIxP4hSd0D2WsAQqoRU4iYPUSaxlzbvII/phYxpYhdiDy/am7TZWNqEVOK2IXIo2s2S7u4iIRVI6YUSRYi9636q9yvCSlHTCkSW4hkFSHGeG3D70VMJWIXITZTiIiUvI9IT+J+VvI+IslKRCSuFDF7haSpWa98Y0oRs1dImmQlIrJxlSLtVILUus2+MeG/jy4lyFjfxO9HzN4haSVImewapCwut59GIeKy+t9cZioLkSktP7IoHJJLSaBRghRVIEkxRYjPscYUIWn1R5bYKiStAEm9nsgqhAIELu666y7ny26//fZttZn4VPjKV76SuoF3J/rTn/4k5513nnz84x93uvzY2Ji8+93vlv/7v/8r+cg6329/+1s56aSTpvowWoLJEAAAAAAAAACle+yxx5wvu++++5Z4JLq6urpkxx13lJe//OWy8847y/z582Xu3Lkye/ZsGRwclDVr1sjjjz8u99xzj9x9993OezH09/fL+eefX+om5iEWL14sL3/5y2X33XeXRYsWybx582TevHkyPj4u69atk2eeeUYeeughufnmm2X16tXO455xxhnOkyHf+ta35JZbbvE+9h122EEOOugg2X777WXRokUyODgoy5cvlz//+c9y8803y9KlS73HnM7Wrl0rH/rQh7z3B5k5c6bst99+ss8++8hmm20ms2fPlhdffFGee+45+Z//+R+55557vEufVmAyBAA6SNn7ixhZxYiIWzViVi/bq5rTZFUjLsVIViGSJqsacSlGigqRhvFSapGG43AoR7IKkaS0WiTJpRzJKkTSxFQjphARSd9HJCmvHCmqRpJ7ifhWIkVViM1UItr7iNiSlYiIXynStFdInh7rvuZRith7hbjQLEXyaJYieaaqFBEptxZp5Sr3jWFPEFche4eElCAhe4e06vYzQlb/j3dXSq1D2rL+SONxmDG1gE9l4VN+ZPG5T8TUKj5FiE8BYvN57HOtP7RQgSBErVaTp556yvnye+yxR4lHE2/hwoVy2GGHyRFHHCEHH3ywzJo1y+nrlixZIqeccoqcd955Tpe/9NJLp3wypFqtyutf/3o5/PDD5fDDD5ett97a6etGRkbkoosukhNPPFFWrlxZePmHH35Y7r//fnnlK1+Ze7kVK1bIKaec4nQMxmtf+1r5yle+IgcccEDu5e644w4566yz5Gc/+5kMD6e/cE87lVSl4vYcdOONN8qBBx7odNlWOO200+S5555zvvysWbPkxBNPlBNOOEHmz88+q8GaNWvkhz/8oXz3u9+Vhx56SONQVTAZAgAAAAAAAKBU/f39MjiYc45ky8KFC73G/+Mf/yj33Xef72E12GGHHeS1r31t7mW22WYb+cQnPiEf+chHnCdAkrbccks599xzZauttpIvfvGLhZd/4IEHZNmyZVNyqqy+vj75yEc+Ip///Odlp5128v76np4eOfbYY2WfffaR17zmNTIwMFD4Nddff33hZMj3vvc9WbvW/dTQH/vYx+Tb3/62dHcX/yl87733lr333lu+9KUvyfHHH+98HdNRf3+/fPe733W+/Etf+lK54oor5G/+5m8KLztv3jw5/vjj5ZOf/KScc8458vOf/zzmUNUwGQIAHc5nf5Ha5IKymBWAZewzksanGPEpRGw++4yYQsRwKUWaxvTYZ8SlEMmSV47Y1YgpRETcKhFbXjUi0liOpO0j4spnv5FkJSKSXYr4FiG25D4iIvmlSNFeIS5cShGvIiRLRCkSIlmKZFUieXuFuEqWImVVIiLNpYhIdi3SvS5uBbvmviJaK95HZk/cX3oG0h+7WlWBGFo1Q9HeIa3cF0RzT5C8QkSzBHHZOyRmH4i0cUIKkWlTfqTJOfTYvSJsRdWFRgUiUnyf0NirJCmvCIkpQHyUUYDk/fwpQKBp/fr1XpffZJNNvC5/5ZVXRhcURx99dOFkyLXXXutcAeT5whe+IGeddZYsW1a8/+K9994rb3rTm6Kv09dnPvMZle91t912k+OOO07+8z//s/Cy99xzT+FlLrzwQufrPvLII+V73/ue8+WNHXbYQa655hqvCbzp5vLLL5dVq1Y5Xbanp0d+/etfO02EJFWrVfn4xz8uH/rQhwKOUB+TIQCwkcqaJBHZMFGi+cY4bZLETJC4nC7LVd5m7OavACGTImnyJkpERMzfUkMmRRrGcTy1VsikSBqXiZKQSZEsLqfYCpkcsbmcYstMisROgmTJmhzRmAhJE3MaLS8pm62HnB7LxVSdQsvoxFNpiTROkrT6j72ddgoso+zJD/t0Wa3YFL0Vt2GtsmFCRGvyI0vWpMi0nvBIYyaalCc80pjJB63JjizmZ6c92ZHFTIK0asLDPC6Wfeorc59gwgOtMjQ05HX5uXPzT/07VTQmB0REuru7ZZ999pErr7yy8LKPPPLIlEyGaH2vIiL77bef02TII488kvvvDz74oPOm6fPmzZMLLrjA6bJZZsxwOEf3NPWrX/3K+bInnXSS7LXXXsHX1S63Y2tPKgkAAAAAAABgo9Pbm5LH5ujv7y++0DTneiqwZ599tuQjKZ/W93rbbbc5X+dHP/pR78JoY+J6W86YMUP+8R//seSjaQ3KEABAk6xq5NUf0d2M3a5FRmc2rjoZ8dvjupCpRsxps8YTr8VHZ+mvTK6XIwNVGeubGH98tv5SydRypHvi+nrn6C4vt6uRarXxdttq4SrV67OrkeX9sxs+/qsFOtdnVyPd1YmlkqPj5a4beXLlhhfm5jrLNDTQK5WuiZ9Zbayklc+TlYgZvzJS8sruyVJkfLJsqJZ8feZxROO0gnlMKZJcXd3lt5jSy3iPyHhJlU3SWO+G6+jtL7cIGZ3Z+Pvbva7c3zFzmixp7Vm+Si9CapMr8Me6u6Q6XP7jlDktl4hIZbzkG9MUKJ1SgljfRv3xqaSbMa2sKbMIGetr0c8pcTW1iqmKy7nu4TmNj1NdI+a2LOf6/vcnFCCYWr77a7hsuN0OarWa/PGPf5Tf/e539Wrh6aeflhUrVsiaNWtkaGhIRkfj8uI1a9YoHW28ZcuWyS233CL33XefPPTQQ/LUU0/JCy+8IKtWrZLBwUEZHh5O3WDcVdH36rMvzDvf+c7g4+h0zz77rLzwwgtOlz3wwAOnZM+aMjAZAgAAAAAAAKBUc+bMkb6+PufTZbX7ZMjjjz8u3/nOd+SSSy6RJUuWlHpdvvutaBscHJSLLrpIfvCDH8jtt98eNdlRpOh7ffzxx53GmTlzpuy5554ah9SRXG9HkYlTnHUKJkMAAM7uOb+5GNGsRbrXT54febIQ6UmpojVrkepkNDHem735slYx0jVkxs9fwatWjoxOXN9wf3aKrlGNjI833m7PrFiQeVmNamTRnIGGj59elX19GtVIstbQrETSjtseX7MUWb1ydtPnTCFiaJUilcHG+3itJ/13SKsY6R5oHGc85frKrEVqiR9b2efjH+tr/LjMUkRLsgRpBbsGKUu9Akn7t8lz/HcNtmCDhhLUcvbpGJ/cB0WzEEmWIE3HUp0szDQLkRaXO+pauAm6SP6+LSEb0OdpWflh5FxdTfEc+YZdgSRtKEL0UIGgHVUqFdl6663l0Ucfdbr8gw8+WPIRhRkZGZGTTz5ZzjzzzOjiw9X4+NS9rrjqqqvkE5/4hDz99NMtub6iiRbXmmGrrbaSnp6S9kzsAK63o4jIdtttV+KRtBZ7hgAAAAAAAAAo3Q477OB82dtvv73EIwmzevVqefOb3yzf/OY3WzYRMpXOOOMMOfzww1s2EeJi3bp1Tpdz3aNkY+V6O4p01m1JGQIAiJJWiySFlCN2IZKUVoskhZQj1eHG/UMajiWjGBEJq0ZMIWL2EGk6loHsciSoGpksRMweIkl51YhIWDliShF7LxGR/GpEJKwcWTRnoGkfESOvGjF86hGNfURcjsnQKEXSipAsZZUiWZLFSOn7ili1SFmlSC3jrlHaviJ96Z+fimKkUwsQI68Eme7ySpAsMYVIXgmSRaUQmS5FSMCvUsxjTF75kSWmCGmn+iNLaBWSV35kiSlCKD8wXe21115y7bXXOl324YcflmXLljnvVXDyySfLySefnPpvBx54oNx8883Ox5nlHe94h9xwww3R40wHP/7xj+Uzn/nMVB8GoKpzX9UDAAAAAAAAaBv77LOP82VrtZpceOGFJR6Nn+9///ty/fXXT/VhtMSyZcvk05/+9FQfRqpZs2Y5XW7FihUlH8n05no7inTWbUkZAgAoVdn7jNjyypG8aiS5f4irvGpEJL8cKSpE0uRVIyIF5UhOIZKlqBwRya5HknuJpFUiaYrKEZH0esTeRySrFElTVGqklSN2oeFSivgUIVnM9WjuJZInWYq4ViL2fiGu7H1FXEoRe68QHyGlSHdBlZYnrRgpc3+RtGJEsxaZrhXI6KzJ36F1xTe+RgnSznuHhNQgsUKKEJtXIdKOJYjize7yGBJSfeRxKUKmQ/mRxaUICak/NFCBoJO8/vWvl1mzZjmfoue73/2ufPazn5WurrDXmZpOP/1058vuvPPO8pGPfET2339/2WGHHWTevHnS29v8/uqYY46RH/7wh5qHqeK8886TF1980emys2bNkqOPPloOPfRQ2X333WWzzTaTmTNnSsV6XL3pppvk9a9/ffSxuZZCS5YskdHRUenu5s/faVxvRxGRJ554orwDaTHuDQAAAAAAAABKN3PmTDnkkEPkF7/4hdPln3zySfnud78rxx9/fMlHlu/3v/+9PPLII06X/fCHPyxnn3220x/hffZtaCXXn892220n119/vWy//faFl9X6Xl038163bp3ce++98prXvEblejuNz6bot912W4lH0lpMhgAAWs51n5Hu9bXUfUNCZVUjyWIkpBDJ4rLfSEghksVpv5HRxDF5VCJZXPYdydtHxFdePWKqkZhSxBay70iyFNEoQmzJ8bMqEZ+9QlwU7ScSWoRkCSlFYtiliEh5+4oYdi1SZikiEra/SKsLEIP9QPSVVYIU7R2iUYOkSS1E2qUEKfnXJvlYoV1+pEmrQaZz/ZEmrQhpRQGS3C+E8gMbm+OOO875j+0iIp///Ofl9a9/vbz85S8v8ajy3XrrrU6X22KLLeR73/uec43w+OOPxxxWKQYGBuS+++5zuuy3v/1tp4kQEb3v9ZWvfKXzZX/xi18wGZJhyy23lM0220yWLVtWeNmbbrpJli9fLosWLWrBkZWr81/5AwAAAAAAAGgLBx98sNfExuDgoBx55JFTOnHw3HPPOV1u3333lZ6eHucx77333pjDKoXr9yoiXqe9uvrqq0MOp8l+++3nfNlzzz1XVq1apXK9RWbOnOl0ufXr15d8JO723Xdfp8utX79ezjrrrJKPpjUoQwAAbSevHNnj+P9Uv768fUaGFqpfnYg0VyPmY7NafHi+7jLxvGqkMrkwcWzBqOp1iuSXIzPmKW5iIMV7jgwNTBzL/E0Gci/nq4z6w5W9X8m6/ozl/8pMKVJZNfFGzy45tCXH717bmrU8zbVIa0uR7hadMSFZjJRdw9jWbzrxVqTHYQ8PTa0uQcYmS5eu9a37Psd7TTnRmusz5YnLngu6V9zCq5r8HitjrU1QTAWz4eNyr69+35n8Pse6yv+ZmsKl2uLbdmhua/cfuOuH+WU0sLH5yle+Im9961udL//YY4/JPvvsI7/+9a+9NmHX4rJ6XkRkeDh9T8U0p5xyioyPt9/eYq7fq8jE9+uyEfftt98uv/nNb2IOq26PPfaQ7bbbzmlybPXq1XLcccfJz372s+DrW7dundP3OG/ePKeJjj//+c/ylre8Jfh4NB155JHyq1/9yumyp512mhx22GGy5557Bl2X6+1YNiZDAADTygPf/qfcf9eeLOlbMfH/4ynPmCPzVK9KRDb84apvZTXzDx7aEyW1yb9zdK3Kf1mgPVkyuGbyr7A5p8+akbFBe4i+2RNjDQ731CdGsmhNmIRsth7CngSpdDVeb22s3L+eJU9jVfbESP16rL9hVcbKuZ6etZN/5M349ajozyE2SPvjcqXWLucD8jAFZ9yqZVyn+VlWy/rZTc3Zxep/xG6FrA3MzX2zrEmRsiYiik4jVhmrlXLd4z3Z11vWY1rR/aSs2zjrlF7VsVqpkyAjKafdK+v0Ykx2AH4OPfRQOeSQQ+Saa65x/poXXnhB9t13XznqqKPkS1/6kteeB7Fc/4h70003ycqVK2WTTTbJvdwPfvADOeecczQOTZ3PH6wvv/xy+dCHPpR7maefflre/e53xx5Wg2OOOUa++MUvOl325z//uRx//PHyrW99S7q63CfClyxZIh/72Mfkwx/+sBxxxBGFl1+4cKE8//zzhZc777zz5LjjjpM5c+YUXrZsRx55pPzjP/6jrF69uvCyQ0NDcthhh8mVV14pr3rVq7yu5wc/+IH86Ec/khtuuCH0UNVwmiwAAAAAAAAALXXBBRfI5ptv7vU14+Pj8qMf/Uh23nln2X///eXf//3f5eabb5ZHHnlEVqxYIePj4zI4OCjPPfec3HnnnXL++efLUUcdJXfddVfUsS5evNjpcqtXr5Z3vvOdsmTJktR/X7t2rXz+85+XY489Nup4yuT6vYqInHDCCXLttddm/vuVV14pe+21lzz99NMah1b3iU98wmsy4ayzzpIDDjjAae+XP//5z/KJT3xCdt55Z7nqqqucr8P11G8PPfSQ7LrrrvLpT39avve978lFF10kF198ccP/XGuNWHPnzpWPfexjzpdfsmSJvO51r5NTTz1V1qxZk3vZwcFB+eEPfyh77rmnfOhDH5IVK1bEHq6KSq02HZeWAQDgT6MaSStEisQWJCGnxNCoRyoBrxCi65GATdY16pGiUiSNRj0SW4qEnBZLoxIxp8fyul6FYiTkFFmxq6tNGeJ1nQrFQchpsmKLkbxTBrofRMD1KpwmK6sCyRNdhgRcp8apskIKEI3TZWXVIHliCxGNSiFk83iN682rPrKvN/I6Q+4bGt9rwG0cW4OkFR9FNIoQ6g9A3w033CBvectbvE4vVaajjz5afvCDHzR9/oYbbpCDDjrIeZze3l55+9vfLrvttptsscUWsmbNGrnvvvvkqquuCvqjcNZx2bbddlt58sknCy934YUXyjHHHJP579tss4089dRTzse39957y+tf/3rZZpttRGRis/Tf/OY38uCDDzqPkeTy5+qvfvWrctJJJ3mPvdNOO8lBBx0k22+/vWy66aYyNDQky5cvl8cee0xuueUWeeKJJxouf/nllzuVIaeffrqcfPLJ3seTZptttmk6jqSK42usG2+8UQ488MDcy6xZs0Z22WUXWbp0qccRTuyRsv/++8vee+8tm2++ucyaNUtWrFghzz//vNx5551yxx13yODgYP3ye+yxh9x///1e11EGTpMFAAAAAAAAoOXe8IY3yEUXXSTvfe9723L/DON1r3udzJ8/3+l0QiITe2n89Kc/LfmoynPooYfKd7/7XefL33HHHXLHHXeUeETNTjjhBLniiivkd7/7ndfXPfroo/Loo4+qH89b3/pWtcmQVpo3b55ccMEFcuihhzpNQhnr16+X3/72t/Lb3/62xKPTx2QIAGCjkbffiGs1Uh31r0N6cupRl2rErOj1KUR6V+df2KUcMSutfQqRvH1HnKqR8ckr9ShEBnM2aU/KK0jMfiKGSymyeuXswssU1SPJPUV8K5HQzdJj9hMJKULqX2ttzu1TisRsmm7vLSJS3rn469e5sewv0kb7gJRO6XpDNlPX2AvEPH/4FCIhJUjTGLWadx3iUyqEVB+x1xlSfBRfv/tltfaG8fqeFffY8ClCQuqPLD7fA/UH0Hrvete7pLu7W4466iinDainQk9Pj3z605+WU089VW3MxYsXy5577qm2sbimT3/603LuuefK6KjeC9gPfehDcuGFF6qN193dLT/72c9k3333za0oWmW33XaT173udU6n4mo3hxxyiHz5y1+WL3zhC1N9KKVjzxAAAAAAAAAAU+Ztb3ub3HjjjS3dFD1N3umHPve5z8nWW2+tcj3d3d1y8cUXe++Z0io777yzHH/88WrjHXPMMfLBD35QbTxjiy22kBtuuEF23HFH9bFDfOtb35LeXv9TMLeDf/7nf5ZTTjllqg+jdJQhAABIfjUi0liOmPPMh+wfYvOpRkIKkSxF5YjIhnokuRI7ZB8RI68aMer1yLj1JiRgLxGbS0Fi6hFTioTsJZLkUo+ITBQkyUpEJLsUCS1CsriUIjFFSOb1jjS/0dTYV8SFXYukrcoO2Suk8HpTfgWmohYR8SxGpqjGKLsCMY/hqXuHTNH3rLXqP0teIaJRgqQx97XM+2JKKaBVfBSxr7uM6iP9etM/X/bPP+221qw+8mQVIZr1R5q074/yA2hfe++9tzzwwAPyuc99Ts4//3wZGys5503YbLPN5JOf/KR88pOfzLzMnDlz5Oqrr5b99tvP+XRZaarVqlxwwQXyd3/3d3LxxRcHj1O2r371q/KnP/0p+jRIb3nLW+Tcc8/1Pp2Vq+22207uuOMO+cAHPiDXXHNNKdfhas8995Rzzz1XjjvuuLbZB8fHv/3bv8kuu+wi//AP/xB1H29nlCEAAAAAAAAAptzcuXPl7LPPlvvvv1+OPPJI6epKOeepkp6eHnnzm98sl156qTzzzDPyxS9+URYtWpT7NS9/+cvlv//7v4MLlrlz58ovf/nLUioJbd3d3fLLX/5S3vve9waPceyxx8qvf/1r6enRX1yVtHDhQrn66qvloosuUqt3Qh199NFy2223yb777julxxHq3e9+t/zpT3+S973vfVKtdt7UAWUIAAAO8sqRv/4nt/1GfOVVIyIbVrePzC3l6nPrkfHJFfxjM3VXErvUIyIiYwtHVK/XyKtHKmsnj22e/lJ+l4LELjjKkrye2qrWJt52LdI12JoVy2n7irSKXYt0teg02amr9GPSrwhDcycea3r7p2jT1CmoQMzeIT77NqiavNpS95Sx1AuRqrV/UIvKBFMIJAsY+1jKUuuyvucWPeaMzJy43u7Bydu+Rbe1iMjIrIn7eHV08vVCi3/R7vjxZ1t6fQD0vfzlL5fLLrtMnnrqKbngggvk8ssvlwcffDB63C222EJe//rXy5ve9CY59NBDZZNNNvEe49WvfrXce++98v/9f/+fXHDBBU77nFSrVTnyyCPlm9/85pT/sd7H7Nmz5Sc/+Ym85S1vkVNPPVUee+wxp6/bZZdd5LTTTpMjjjii3AO0HHXUUfKud71LfvrTn8r3v/99ue2222R8POw15qte9Sp5+9vfHjSpsddee8ltt90mv//97+Wqq66Su+++W/70pz/JypUrZc2aNTI4OBh0TIbPRuchtthiC/nxj38s//qv/ypnn322/PSnP5Vly5YFjTVv3jw59NBD5aijjlI+yjCVWtm3HgAAHa6syZAiZU+G5ClrMsRVWZMhecqcDHG6/hZNhiSZyZDK2NScM6hVkyFpeldN0fc8+V662vq7uPT2T83v83iXuf6pmQyptu4MHE2majLEnKaplZMhRqsmIGxpkyGtYk+GtIo9GdLS67YmQ1qNyRCgMz399NNy++23y9133y0PP/ywPPXUU/Lcc8/JwMCArF+/Xrq6umTevHkyb948mTt3rmyyySay0047ye677y6777677LbbbrLFFluoHtOyZcvkl7/8pdx4441y//33y/Lly2X16tUyc+ZM2WyzzWTXXXeV/fffX97xjnfIDjvs0PT1K1eulIGBgcLrmT17dtDEjabx8XG55ppr5LrrrpPf/e538uyzz8qKFStERGT+/Pmyww47yN/8zd/IW9/6VjnooIOaqoKhoSHnP6hvtdVWKse8fPlyuf766+Wuu+6SP/zhD/L000/L0qVLZd26dTIyMiIzZsyQOXPmyOabby7bb7+97LLLLrL33nvLvvvuKy95yUtUjqETjI+Py1133SW33nqr3H///fLoo4/KkiVLZNWqVTI4OCjValVmz54t8+bNk2222UZ22GEH2WOPPWTfffeVV73qVdLd3T49BpMhAAC0QJkTJi4rTMuaMBl32OOhzAkTl/1TxheU81fl+uRImhZMmJQ9OZJXhZQ9OdKzJnv88RbEKt392defur+EorwypOwJklZMhoznPF6VPRmStzdC91D53/tYzn4U3YPlfu9Ze1SIlD8h0orJj7yfbVmTH1M1wWGYiY48ZU2CmImOPGVOgjDRAQAAQnXeib8AAAAAAAAAAAASKEMAAGgDWuVIyHnINasRl1IkS2xB4lKJZNGoR3JLkSJKJYlGLRKzT0hsMZJXhBTRLEbyypAsWsVIzJ4hseWIRhmSV34UX79OHZFXCWTRLEPyCpDC44gsRPIKkMKvVXhbqFWBhPwMDY0SZCqrD5fiI4tmCeJSf9i0ahDKDwAAUBYmQwAAmCZ8JkzK2pzVdeIkZlIkj8+ESczkSB6XiZOoiZEiHhMnPpMjZW2W7jJBEjMJUsRnkiRkEsSFy0RJWRun+0yQ+E6GxEx85B9H8f025o/leXwmRWImPQqPw2FSJGbiI3dcj7eHPpMfZf3MRNwmQKb6tFYicRMdeVwnQUImOFz4TIIw0QEAAKYSp8kCAAAAAAAAAAAdjTIEAIAOYtcjZRUiRZIFSVmVSBG7IimrFMljVySlFiNprIokrRQpqwjJYpciZVYhWexapKwiJI9di5RVhhQeR+IuapchZZUfRewypMyiIItdiJRZgWQeg1WHlFWCZEkrROwSpNU/G7sA6eTao0iyBimr+ChiFyFUHwAAoN1RhgAAAAAAAAAAgI5GGQIAwEbo5SfqbNjuY7yn8eORue3zEmR09tQcS/fAhhXFI/N0No/2NkULq7sGNqzJ6RqemmMweibLkLHWRjINutc1ftzqCkBEpHfN1Pwe2I8NvWun7rHBFGQu+7yUKbnivktxc3cf41NQw4iIjM7YcL2aG9t7HUNf4/c+FWWhMTqr8Vi6Blt/DHf98ITWXykAAEAJKEMAAAAAAAAAAEBHowwBAAC5yqpI7NXgeTaGiiRZibgovSQpaVF4sggpvGzJxUiPx14hZVUjdhHioqxqpMwyxOf33SirEPFZ5V92IWLvuZCnrEKk7AIkWXq4KKsGsWuPPGWXIHbtkaesEoTaAwAAbIwoQwAAAAAAAAAAQEejDAEAANE06pGQleNpOq0i8S1G8kTXJBGH4lOEOI0XUY34FCGuQsuRkDKkSGg5ElOGaP3+JoWWIWWs6o8pRHzqDxcxhUhsBeJbeeTRKEB8ao88GvcZn9ojj0YJQvUBAACQjjIEAAAAAAAAAAB0NMoQAADQUnkVSRmry11Mp5pEsxRxVViU5BySdhFSJK8YKaMIcZFXjZRRhuTJq0aKypBW/37mlSFl7+mQJa8Q0S5AiuQVIkUFiGbh4aqoBNGqPFwU3X+0Kg9feVUItQcAAEA8JkMAAEDb2u2fy9m8PUY7TZy0s/HuqT6CDXrWTvxhs2tkig8koTo08f+1rqk9jqSe/va6b1cmD6d7XXsdl4hI92D7HNNY79T84X66GZnTfrfTvecwwQEAANBKnCYLAAAAAAAAAAB0NMoQAADQUVpdk1Q89iQfnt+al11dg+4roMdmtPalYKuLEVOFuGhVOWKqEBetLEdaXYZUPK6OOqT1Bch4t/v1teoUYe1YdxhUHgAAAO2PMgQAAAAAAAAAAHQ0yhAAALDR06xJfEoRF5o1iU8x4kOrLtGoRnxKEB+a1YhPGeJCqx7RLEN8qg8X7ViG2DRKEa36w6fq8KFZgFB5AAAAoNUoQwAAAAAAAAAAQEejDAEAAIiQV5VoVyKh8uqSsmoRH0VliUsxUlYR4qOoHtEuQkLkVSRFZYh27RGiUwqRogKkrLLDR14F0s5Vh0HdAQAAABtlCAAAAAAAAAAA6GiUIQAAAFNk95P09iop01jfVB+BgzZ+Rds13PhxdTj9clOtp42ri3GraOld277HWqu2fzUxPHfDMXaNtO9tSd0BAAAATZQhAAAAAAAAAACgo1GGAAAATFPTpSxJ09LapMWvdu0SJEYrK5JWlyF27RGj1aVIK+uPZMURaqrqD8oOAAAAtBPKEAAAAAAAAAAA0NEoQwAAAFA3nWsTkcjiJPJVsWYREiO0JokpQzQrjxixhUhM8aFRcMSKKUCoOAAAANDpmAwBAABAy0z3yZZO1tPGm5KHmA4bmft44Kx/mupDAAAAAKY1TpMFAAAAAAAAAAA6GmUIAAAAOho1ipt2LUPasfCg0gAAAACmH8oQAAAAAAAAAADQ0ShDAAAAAAAAAABAR6MMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2te6oPAAAw/YyPj8uaNWum+jAAAAAAZJg3b55Uq6yBBQDAYDIEAOBtzZo1cthhh031YQAAAADIcMUVV8iCBQum+jAAAGgbLBEAAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY09QwAAKnru2VQqo131jyvViiQ+yP98w+cqif+spn4+6/LJzzd8bdblzX9nXU/iP52u3+U6zaAO49WSX5ZcvpD2PTR9bcH3kXXZjOspHE9Eag1LLDK+j0rTP2def9Z11rKuP/n5JHP7ph2H63gR11+/XdSu0+Hz0vx5t9vT77+djsvn6zIuH3xbFB1TzNiul/EYw/e4pFJrvkzE95A6Xo5a2td6Xk/2MaZfpuHhVFIuU/TvIlJxGTvz87XE52tux2RdZ+Ovf/N49pjVzMs0X3/WeA0P7Yn/zhrb6fNSy/13l//OOpaq5H9t8t8br388aLz8yzeP2dVw/eOpX9flcv2SfrxdmWOOT15n4nMZx5r1+czrTHw+7dizxkheT1fD2C63S/I6M45x8mu7sr43p+8/4xgzL9P838mXasnfp+R/dyUu05VxmWriF7aa+A3okubPN162mv51ideea9d0ydEnbCYAACAbkyEAABWVkapUxpQnQ6oZkxS1rM8nvrZSTf186uRB1vVk/XfWX8kqGX9uSh3H9y+tUnyZrP9u+ENdwV9MG/heJvnpjOuvT8Z4XDbvUFwuM3n/cvtjsMt1+l6/9nUG/nfE9QRP0vh+naR/Xn0yROn71J4M8b/+KZgMyRxzCiZD0i7TcNy+kyF+11k0GZH5PUvG5zNvl6zLNN/mlazLZtwW2ddf/N9pkyG+/+09SZEyGdL4776TIfkTABOXqST+u3kyJO3fm8fLmoCQ9M8nfkaNEwkpx90wRsXh88njldTPNx572jElvq5hjOR1Jj9fPEnU1XC7NF8m+9/TJ1RcJkOyL5M/GdJ4/YnPZ9yejZdJfj7j5zL5342XlaZ/t6+zmvbkAwAAGnCaLAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0bqn+gAAAJ2h1jMuUhnb8IlqZcN/V2r5n2/4XMbXJT9fHc/4fPJrqxmfT/nv5GUb/l3SP585nsN1mkHTjsP671rKl7l/bfILkirW/4vUpOiyrpdJqGV8PkXD2LWMz0vqRXKuP+Uymbdn8r+zfv6el087FrXrdPhvSfl8xPWk3YW9jyX0uGP+u1XX43JdLrdzxuWzHwtqzZfJuGz2GAXj5ailfa3n9WQfY/plGh/aUi5T9O8iUnEZO/PztcTna27HZF1n469/83j2mNmXSbn+hu+t6NE35/IO/10z32vD/cbvvxPP5tbxFl1/1tjj6Z/PvHz6f1cTl68mxqxOXiY5XiX574nPj2eOt+G/x6R5bBGRrowxzeeT94OujLGzPp91LF0N1yOJy5vLNn9u4uvS/7vx8hs+6Mr8fCX189WUf2+4nsTRJK8z+3ZJfq3DbTH531nff8Nt0XD9GZfP+D67pPnzjZetpn9d4rXn2jWsdQUAoAiTIQAAFSOvfnGqDwHtKuPvW+3C5W/kAIBGzdMS1uQGprG0mUH+0A4AAKY/XtEAAAAAAAAAAICOxmQIAMDb6tWrp/oQAAAAAOTgNTsAAI2YDAEAAAAAAAAAAB2NPUMAAN7mzp3b9LmLLrpI5s+fPwVHAwAAAGzcVq9eLR/4wAcaPpf2mh0AgI0ZkyEAAG/VanNYOH/+fFmwYEHrDwYAAABAk7TX7AAAbMx4ZgQAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHa1Sq9VqU30QAAAAAAAAAAAAZaEMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NGYDAEAAAAAAAAAAB2NyRAAAAAAAAAAANDRmAwBAAAAAAAAAAAdjckQAAAAAAAAAADQ0ZgMAQAAAAAAAAAAHY3JEAAAAAAAAAAA0NG6p/oAAAAbDA0NySOPPCJLliyR/v5+WbdunfT19cmcOXNks802k1122UXmz59f2vWvXr1aHn74YVm2bJn09/fL0NCQzJo1S+bMmSNbbrml7LTTTjJjxozSrj9Wf3+//PnPf5ZnnnlG+vv7pVKpyNy5c2XrrbeW3XbbTfr6+qb6EAEAADYag4ODsmTJEnnhhRdk2bJlsm7dOhkaGpLe3l6ZO3euzJ8/X3baaSd5yUteMtWHCsuKFSvk8ccfl6VLl0p/f78MDw/LrFmzZO7cubLVVlvJTjvtJD09PaUew8jIiPzlL3+RJ598UtauXSsDAwPS09Mjc+fOlYULF8rOO+8sixYtKvUYAACdhckQAJi0Zs0aeeihh+Thhx+Whx56SB555BF5/vnnmy53yy23qF7v0NCQ3HDDDXL11VfLH//4RxkbG8u9/NZbby1vetOb5JBDDpFNN900+vpXrFgh11xzjVx77bXy1FNP5V62q6tLdtttN/n7v/97Oeigg9pmcuHuu++WSy+9VO6+++7M26+3t1f23Xdfee973ysve9nLWnJcQ0ND8uEPfzj1dn3zm98sX/jCF1pyHAAAAGUbGxuThx9+WP7whz/IH/7wB3nsscfk2WeflfHx8cKvnT9/vhxwwAFyyCGHyG677Vb6sa5cuVI++MEPyurVq5v+7ZhjjpFjjz221Ou/55575IQTTpBardb0b2eccYa86lWvKvX60yxdulTuuOMOuffee+WBBx6QFStW5F6+t7dXdt99d3nrW98qBxxwgNrEyOjoqNx2221y9dVXy7333isjIyO5l998883ljW98oxx66KGyxRZbeF3XfffdJ5/+9KdjDjfXVP0sAQDZmAwBsNH6y1/+Irfffrs88sgj8tBDD8lzzz3X8mO4++675etf/7o8++yzzl/z1FNPyXnnnScXX3yxfOQjH5G3v/3tUq36n/VwfHxcLr/8cjn33HNl/fr1Tl8zNjYmDz74oDz44IPygx/8QE488UR5zWte433dWvr7++X000+Xm2++ufCyw8PDcuONN8pNN90kRx55pHzyk58sfTXbeeedVzjBBAAA0AmeeeYZ+djHPhb0tatXr5YrrrhCrrjiCtl///3lH//xH2XzzTdXPsINvvGNb6ROhLTCunXr5PTTT0+dCJkKl156qdx4443ypz/9yevrhoeH5b777pP77rtPNt98c/n85z8f/b7g4Ycflq9+9avy6KOPOn/NCy+8IBdffLFccskl8r73vU8++MEPSm9vb9RxaKlUKlN9CAAAC3uGANhoXXXVVXLOOefIjTfeOCUTIZdffrl89rOf9ZoISVq/fr18+9vfllNPPbWwJrGNjY3Jv//7v8sZZ5zhPBFiW7p0qZx44onyy1/+MujrY61YsUI+/vGPO02EJNVqNbnsssvkxBNPlMHBwZKOTuT3v/+9/OIXvyhtfAAAgE50yy23yLHHHisPPfRQKeNfd9116qW3j+985zuydOnSKbt+23e+8x3viRDbCy+8ICeeeKKcffbZwWPceuut8vGPf9xrIiRpdHRUfvSjH8mJJ54Y/P5GU19fn+y4445TfRgAAAtlCABMgRtvvFH+8z//M/XfdthhB9lrr71k6623ljlz5sj69etl6dKlcv/998v999/ftIrshhtukHnz5skJJ5zgfP1nnnmmXH/99U2fr1Qq8upXv1r22GMPWbx4scyYMUP6+/vliSeekDvvvFOeeOKJpq8544wzZMGCBXLQQQc5X3+s4eFhOemkk+TJJ59s+re/+qu/kte//vWy5ZZbSq1WkyVLlsgNN9wgS5YsabjcfffdJ//v//0/+fKXv6x+fIODg/KVr3zF6bQQAAAAnahSqcg222wj2223nWy11Vay+eaby6xZs6Snp0fWr18vy5Ytk0cffVTuvPPOpj9er1mzRv7pn/5JzjnnHNl6663VjunFF1+UM844Q208X3feeadceeWVU3b9PhYvXiyveMUrZLvttpMFCxbI7Nmzpb+/Xx5//HG58847U+vnn/zkJ9LV1SUf/ehHva7rwQcflC9+8YsyOjra9G9bbrml7LPPPrL99tvLnDlzZHh4WJYtWyYPPvig3HnnnU2Lwu6//375t3/7N/na175WeL0zZ85UmbBYsmRJ0334wAMPlDlz5kSPDQDQxWQIAFh6enpku+22k1122UVuvPFG6e/vVx2/v78/9U3YokWL5POf/7zss88+mV/7l7/8RU477bSmlXK//vWv5eCDD5a//uu/Lrz+P/7xj/KrX/2q6fO77767/PM//3PuG87bbrtNvv71rzedQ/jMM8+U17zmNTJ37tzC69dw7rnnysMPP9zwue7ubvmnf/onOfTQQ5uS9A9/+MNy1VVXyX/+5382vGG69dZb5Ve/+pUcccQRqsd3zjnnNEy+7LbbbtEr7gAAANpZpVKRrbfeWvbee295zWteI7vvvrvTH4OHhobkF7/4hVx44YUyPDxc//zAwICcfvrpctZZZ6mdbujrX/+6rFmzpv5xK1+j9ff3y1e/+tX6x11dXbLDDjvII4880pLrd/GSl7xE3vzmN8sb3/hG2WqrrTIvV6vV5JZbbpFvfvObsnLlyoZ/u+iii+Rv/uZvnPfKGB0dlW984xtNEyFz5syRz3zmM3LwwQdn/vyff/55+epXvyp33XVXw+fvuOMOuf766+Xv/u7vcq/7ZS97mXz/+993Os4sQ0NDcuSRRzZ9/u///u+jxgUAlIPTZAHYqJk3IYcccoiccMIJcs4558i1114r559/vnzuc58rZTXP9ddf3zSZMG/ePDnzzDNzJ0JERLbffns544wzZJdddmn4fK1Wk5///OdO1/+zn/2sqS7Zbbfd5Fvf+lbhyrv99ttPzjjjjKbbZeXKlXLdddc5XX+sJ554IvXUXKeeeqq89a1vTX2zVK1W5bDDDpNTTz216d/OO+88Wbt2rdrx3X///XLZZZfVP95qq63kmGOOURsfAACgHW299dZy8cUXy/HHHy9777238+vovr4+ef/73y/f+MY3mvZze/DBB+WBBx5QOb5rr71Wfve739U/fsUrXiGHHXaYytguzjrrLHnhhRfqH7///e+X7bffvmXXn2fnnXeWr3zlK3LppZfKsccemzsRIjIx8XXAAQfIeeedJ4sXL276929961vO13333XfLX/7yl4bP9fT0yNe+9jV54xvfmDsRtnjxYvnqV78qr33ta5v+7Wc/+5nzMcS4+eabmxbPbbXVVvLKV76yJdcPAPDDZAiAjdb73vc+ufbaa+XCCy+Uk08+WY444gjZddddS99UO+0cxUcffXThmw5j5syZcuKJJzZ9/o477pCRkZHcrx0ZGZH//d//bfr8Zz/7Wenr63O6/m222UY++MEPNn3+tttuc/r6WD/+8Y+bcvi3vvWtst9++xV+7ete9zo59NBDGz63du1atX1P1q9fL1/5ylfqk02VSkVOOukk59sWAABgY7XHHnvIO9/5zqbP33jjjdFjL1++XM4888z6x319fXLSSSe1bIPr22+/Xa655pr6x9tuu60cffTRLbnuIl/+8pfl/PPPl3333df79th8883l1FNPbfq6xx9/3Ll4ufXWW5s+d8QRR8juu+/u9PVdXV1y4oknNm2a/tBDD8myZcucxohx9dVXN32OKgQA2heTIQA2WosWLZqSP1KnnV/Xd7+NXXbZpaniMOdezrNs2bKm89lus802stNOO3ld/8EHH9z0uaefftprjBBr166VG264oeFz3d3d8uEPf9h5jA9/+MPS1dXV8Lkrr7xSZX+P733ve/Lcc8/VPz7iiCNkjz32iB4XAABgY/DGN76x6XNpe9b5+upXv9qwev/YY4+Vv/qrv4oe18XatWsb9q+oVqty8sknl74Ay9XrXve6qK/fddddU8uM22+/3enr0/YA9H1vtNlmm6WWGGW/P1myZIncf//9DZ/r6uqSN7/5zaVeLwAgHJMhANBiq1atavh43rx5snDhQu9xttlmm6bP2efsdfn3tHGKbLrppqmnyirbzTff3FS/vO51r/O6/TbddNOmimTZsmXRp2C455575Ne//nX945e85CXyD//wD1FjAgAAbEy23HLLps+9+OKLUWNeffXVDWX0rrvuKu9617uixvRx5plnyvLly+sfv+Md75DddtutZdffCmmTIc8++6zT19rvjUQmyhlfIe+NYl199dVNpx9+7WtfK5tuummp1wsACMdkCAC0WHd3d+7HrtJWk9l5eNF1Z43jwr6uouvWcOeddzZ97oADDvAe58ADD2z6XNrpw1ytW7dOTj/99IY3Q5/73Odk1qxZwWMCAABsbJIbqBsxBcULL7wg3/nOdxrGOvnkk5sq4bLcdttt8tvf/rb+8ZZbbikf/ehHW3LdrbT55ps3fc7eIzFL2vuTkPdHIe+NYoyNjcm1117b9Hn7lLwAgPbCZAgAtNhLX/rSho9Xr14tQ0ND3uMkN2AUmUjuX/KSl+R+zUte8pKmc/ra47gYGhqS1atXN3xuiy228B7H1+9///umz73iFa/wHifta9LGdvWd73xHli5dWv/4kEMOkb322it4PAAAgI3Rn//856bPxbzGtE+P9cEPflC222674PF8rFmzRr7+9a/XP+7kveTS3su4TkTY741Ewt6fpH1Nme9P7rjjjobiR2TiNMx77713adcJAIjHZAgAtNiee+7Z8PHY2Jjcc889XmOsWrWq6c3izjvvLHPnzs39uvnz58uOO+7Y8Lk///nPsmbNGq/rv/POO5s2MX/1q1/tNYavZcuWNa0wW7x4sSxatMh7rM0220wWL17c8Ln/+7//a/qeXNx1111y5ZVX1j9etGiRfPKTn/QeBwAAYGN3ySWXNH3uNa95TdBYV155ZUNVvOOOO8r73//+4GPz9a1vfavhtevhhx+euq9FJ3jmmWeaPud6qij7vZHIxESDj5GRkab3UwsXLpTtt9/eaxwfaRunv+Utb2lZdQQACMNkCAC02OGHHy7VauPD7/e///2mvTDynH/++U1/uH/HO97h9LVHHHFEw8ejo6Py/e9/3/m6h4eH5cILL2z4XFdXlxx++OHOY4RI23g+7bzSruyVYoODg96r0AYGBuT0009v+NwJJ5xQOCkFAACADUZHR+Wb3/ym3H333Q2fX7BgQeqm6kWef/75htNjdXV1yUknnRR8elpft956q1x//fX1jxcvXiwf+9jHWnLdU+Hmm29u+tyuu+7q9LVvfvObZebMmQ2f+8lPftJQ9BS59NJLm/YHOfLII5uKeC0rVqyQ//mf/2n4XKVSkb//+78v5foAAHqYDAGAFtt6663l3e9+d8PnHnnkEfnSl74kAwMDuV87NjYm559/vlxxxRUNn3/1q18tBx98sNP1H3LIIbL77rs3fO6yyy6TH/7whzI+Pp77tWvXrpV//dd/lccee6zh88ccc0zpp8l67rnnmj5XdFqwPHYZIuK+0aPx7W9/u2EC5aCDDmranB0AAADpnnvuObnsssvk6KOPll/96lcN/1apVORzn/tc0x/Ki9RqNTn99NNl3bp19c+95z3vkV122UXjkAutXr1avvGNbzR8rpP3knv44Yfl4YcfbvhcV1dX6qbqaebOnSsf//jHGz63bNky+fznP990Gqo0v/71r+X8889v+Ny2224r73nPe5yuP8S1117btDDtla98ZUtOGwwAiNOaZREAgAbHHXecPP/883LDDTfUP3frrbfKUUcdJYcddpjstddess0228isWbNkcHBQli5dKvfff79cccUV8vjjjzeM9bKXvUxOPfVU55VPXV1d8uUvf1k+85nPyBNPPFH//AUXXCA333yzHHbYYbLHHnvI4sWLpbe3V9atWydPPvmk3HHHHXLllVc2rbp661vfKh/84AfDbwxHaZswpm3W6Crta+3vLc///u//yjXXXFP/eP78+fLpT386+HgAAAA60cc//vGGPSVqtZoMDg7KypUrGyYsknp6euSzn/2svO51r/O+vl//+tcNhcnWW28tH/rQh/wPPNA3v/nNhtetb3nLW4JP9dXuarVaQ4Fj7LfffrJgwQLncY444ghZsmSJXHrppfXP/eEPf5APfvCDcuihh8prX/ta2W677WTOnDkyPDwsy5cvl9///vdy9dVXyx//+MeGsbbcckv52te+VureLMn3AAYbpwPA9MBkCABMga6uLvniF78ou+66q1x44YX1N4IvvviiXHjhhU2noUrT29srb3vb2+QjH/mI8waFxsKFC+Xss8+Ws846S6655pp6EfLYY4/JN7/5TacxNtlkE/mHf/gHOeSQQ7yuO1Tavia+KwWLvtbeFD7L2rVr5Wtf+1rD5z7zmc94vekDAADYGPzlL3+R9evXO19+zz33lE9+8pOy0047eV/Xs88+K9/73vfqH1erVTnppJO8XyuHuummm+TGG2+sf7zpppvKpz71qZZc91T4xS9+Iffff3/D57q7u+XDH/6w91jmZ37WWWfJqlWrRESkv79fLrnkktS9ZGxdXV3ypje9ST71qU/JnDlzvK/f1QMPPNB0+t65c+fK/vvvX9p1AgD0MBkCAFOkUqnIu9/9bjnkkEPkmmuukSuvvDJ1Xwzb7Nmz5b3vfa8ccsghQZuHG7NmzZLPf/7z8t73vleuueYaueKKK2Tt2rWFX7flllvKBz7wATnooINKXXFlGxwcbPpczBvbtGNPrlrMc+aZZ8qyZcvqH++3335y0EEHBR8LAADAxm6HHXaQz3zmM7LHHnsEfb05PVZy4uVtb3ub/PVf/7XWIeZatWpV06KiTt5L7o9//KOcffbZTZ9///vfL9tuu23QmG984xtl//33l9/+9rdy9dVXy0MPPVT4Nb29vfL2t79dDjvssKj9BF2lbZx+8MEHt/R9EQAgHHuGAMAUGhoakuuuu07+67/+y2kiRGRi0+6f/OQnct555zWc5irE8uXL5eqrr5brr7/eaSJERGTJkiVywQUXyEUXXVRftdUKo6OjTZ+LedOR9rUum9j/7ne/k9/+9rf1j+fMmSMnnHBC8HEAAABA5P/+7//kM5/5jHzxi19s2p/OxWWXXSb33Xdf/eMttthCjjvuOM1DzPWNb3yj4bXxG97whqDTfE0HS5culX/5l39peu28++67y9FHHx087ujoqNxyyy3yX//1X/LII484fc3w8LD88pe/lLPPPlv+9Kc/BV+3i4GBAbnpppuaPs8psgBg+qAMAYApcs8998hpp50mzz//fNO/VatVWbhwocyZM0cGBwdl1apVDWXEunXr5De/+Y3813/9l7zvfe+TD33oQ9Ld7f6QXqvV5LLLLpOzzz47tYbo7e2VTTbZRGbNmiX9/f2yYsWKhk0Cly1bJj/60Y/k8ssvlxNOOGFaVhGue6wkrVmzRr7+9a83fO5Tn/pUVKEDAADQyZKLSEQm/uDd398vy5cvl4ceekhuvPFGufvuu6VWq8n/3969B0VV/38cfyELKC6gkJqWdBFM7eKF0Yy+qJmXLhSVY03TdNdqbIxuZplEmkpiTOk4Od0spxlz0ulCmqmUGZGpmKVpGVEpmlhIKiC6sOzvDwd+Hs4B9oJLHZ+PGf/Y99nPZYEZz2ff5/N5u91urV+/Xl999ZXuvfder+vS7d+/X6+99lrD6/ri6+3bt2/Vz9KUvLw8bdiwoeF1TEyMHn300aCMHWxHjhzRlClTTPX8YmNjNWPGDJ/WJKcqKirSrFmzTPURT+0/KipKNTU1Onz4sKHejMvl0oYNG7RhwwalpqZq8uTJAR2n25S8vDzTbvU+ffooISGh1ccCAJweJEMAoA2sXbtWWVlZhgSDJA0YMEDjx4/XwIEDDWfdut1uFRUVafXq1Vq1apVcLldD/N1339W+ffuUkZHh1eLD4/EoJydHubm5hnhoaKhGjRqlG264QX379lVYWFjDtePHj2v79u368MMPVVBQ0BCvqKjQjBkzVF5ervHjx/v1s/CW1Wfz9lgrK1ZtW/r5vfLKKzp06FDD68GDBwetZgoAAIAdOBwOderUSZ06dVJCQoJSU1NVVFSkrKyshh0hbrdbb775po4ePdpizY26ujplZWUZvqROTU1VUlLSaf0c9crLyzV//nxDLD093Za15KqqqjRlyhTt2bPHEHc6ncrOzlbXrl396nfr1q16+umnTffniYmJuu222zRkyBDDz9Pj8eiPP/5QXl6ePvzwQ1VWVjZcW7lypfbu3avs7GxFRkb6NZ+mWB2Rdf3117fqGACA04tjsgAgyHbs2GFKhISGhurxxx/XggULlJKSYir6Fxoaqj59+uixxx7T66+/bjoPd/369V4VXZekpUuXmhIhnTt31vz58/Xss8/qsssuMyRCJKl9+/YaMmSIsrKyNGvWLNNTdgsXLlRhYaFX4/vL6sm++qSQP6ySIc09PZifn6+8vLyG1x06dNCUKVP8Hh8AAAAn1RfO7tevnyH+/vvvGwqSW1mxYoW2b9/e8LpLly6aNGnSaZmnlZdeeklHjhxpeJ2cnKxRo0YFbfxgqa6u1tSpU011PDp06KC5c+eqd+/efvW7f/9+TZs2zXRvftddd+mNN97QmDFjTImlkJAQXXDBBZo4caLefvtt9e3b13B9+/btysnJ8Ws+TSkuLjZ99vbt29vydw0AdkYyBACCqK6uTnPnzjXtCHn44Yd10003edXHhRdeqJycHFMxxqVLl6qkpKTZtqWlpXrrrbcMsbCwML344ou67LLLvBp/2LBhysjIMMQ8Ho/mzZtn+lytKTo62hQ7tUCmr6zaxsTEWL73yJEjpgXVQw89pLPPPtvv8QEAAPD/IiMj9fzzz5vqui1atMiydpwklZSU6I033jDEnnzySXXs2PG0zfNUa9eu1ddff93w2ul06sknnwzK2MF04sQJPfPMM4akk3SyBt+LL74YUJH6nJwc0335rbfeqgkTJqhdu5a/surWrZuys7PVo0cPQ3zdunXaunWr3/NqzGpXyIgRI4L2twYAaB0kQwAgiDZu3GgqlN6rVy+NGzfOp3569OihO++80xBzu9364IMPmm23YsUK02LyxhtvND1N1ZKUlBQlJycbYgcOHDAsBltbbGysKfbXX3/53Z9V286dO1u+96233jKci9y/f3+vk1cAAADwztlnn60xY8YYYqWlpdqyZYvl+xcsWGDYUTBmzBhdccUVp3WO9Vwul+l4rEmTJtmulpzL5dKzzz6r7777zhAPDw/XnDlzNHDgQL/7Li4uNu0uj42N1YQJE3zqJyYmRg899JApvnz5cr/ndiqXy6V169aZ4hyRBQD/PdQMAYAg2rhxoyk2duxYv4p5jx07VosWLZLH42mIbd68udk23377rSl2zTXX+Dx2fbtvvvnGENu8ebOGDx/uV38t6d69uylmVXzeW1ZtrcaQpLKyMsPr0tJS3X///V6PZbULpaCgQPfdd58hFhcXp3nz5nndLwAAgN0MHTpUn3zyiSG2bds2yyTHqbXcJGnnzp2m+6vmHD161BTLzc01PeBz0UUXaerUqYbYiRMnVFFRYYh98MEHLT6cdCqr+9Hs7GxT8e+0tDSlpaV53W9rqamp0fTp001rjLCwMM2aNUuDBw8OqH+rtdGIESP8Knz/v//9T06n01A/ZNu2baqtrfW7qHu9/Px8w1FokhQfH6/+/fsH1C8AIPhIhgBAEBUXF5tiF198sV99de7cWT169ND+/fsbYiUlJXK5XAoPDze93+VymXalhIWF+X2+b+MznSXpt99+86svb/Ts2dMUO/Wz++rPP/80vI6IiFC3bt28anvw4MGAEjHSyeLzjRfQpy7eAAAAzkRWx5A2vm9rSiD3hvXKy8sNO4Ilmer5NaW+AHwgrD5D46RPMNTW1iojI8P0MJXD4dDMmTM1dOjQgMewWjtYrTG84XA4dNFFFxmOxqqurtaff/6p+Ph4v+coUTgdAOyEY7IAIIisnj5rXBDQF1ZtrcZoKh4dHe3XrhRfx24NXbt2NR1jVVpaatq14Y2ysjKVlpYaYgkJCQoNDQ1ojgAAAAiM1UM9x44da4OZnLlqa2uVmZlp2gXucDg0Y8YMXXnlla0yTuPdFlLw1kbeKi0tNR0R5nA4NHbs2ID6BQC0DZIhABBEVou7U8859tXx48dNsaa2lTcuRhno2FZt/dnS7gurIu87duzwuZ/GxR+b6hsAAADB9c8//5higXxBDt/U1tbq+eefV35+viEeGhqqzMxMpaSktNpYbbk28tann36quro6Q+yKK66wrGcIAPj345gsAAgiq4XcgQMHlJCQ4HNfbrfbdFRTWFhYk9v4nU6nQkND5Xa7G2JVVVWqqKhQVFSUz+NbHVcQExPjcz++uPzyy7VhwwZD7Msvv9RVV13lUz+N+6jvuylz5szxqf/Gtm3bpvT0dEPsmmuu0bRp0wLqFwAAwG527dplijX1xfPixYsDGmv16tXKysoyxO655x6v6o5ERUXpq6++Cmj8OXPm6LPPPjPE5s+fH1BR8kC43W698MILps8VGhqq5557rtVrAza1NvKX1fokkERaXV2dVq9ebYqnpqb63ScAoG2xMwQAgujcc881xayKmnvjxx9/NNWYsOq/XkhIiM455xxDzOPx+D2+VTuruh6tadiwYQoLCzPE8vPzLZ8gbEp5ebnpSbezzjpLAwYMaI0pAgAAwE8ej0eff/65Ke5vjT14r66uTrNnz9b69esN8dDQUE2fPt3nh4+80Zpro4MHD+r33383xJxOp+mYXV8UFhaaHj7r0qWLhgwZ4nefAIC2RTIEAILI6sZ5zZo1fhXjXrJkiSk2ePBgn8dfunSpYbeINyorK7VixQqv+m9N0dHRpoVYbW2tT08FLl68WLW1tYbYDTfcoHbt+C8RAACgLa1cuVJFRUWGWHh4eLM7eBG4uro6ZWVlKS8vzxBv166dnnnmGV199dWnZVyrtUNhYaHl7qCWWK2NBg0aFFBNwJUrV5pi1157LXUGAeA/jG9+ACCIkpKSFB0dbYi5XC5lZGT4VBhy8eLFKiwsNMVHjhzZbDur68XFxXrllVe8HrumpkaZmZmmgocxMTFKSkpqsf3q1as1bNgww79HHnnE6/HvuOMO0wIkNzfXVODRSkFBgXJzcw0xp9OpcePGeT0+AAAAjH755Re99957ljUbvLV+/Xq9/PLLpvh1112nyMjIQKZne4HcX3s8Hs2bN09r1qwxxOsTIWPGjDkdU5YkJSYmKj4+3hSfMWOGysrKvO7n008/tUxcBJLEOXz4sAoKCgyxkJAQXXfddX73CQBoeyRDACCIIiMjdeedd5riP//8sx544AH98MMPzbYvKyvTzJkz9c4775iuDRs2TP369Wu2/SWXXKLk5GRT/OOPP9bUqVMtz9k91e7duzVp0iRt2bLFdO2ee+457QXUJemCCy7QzTffbIh5PB5Nnz5dK1eulMfjMbXxeDz65JNPlJGRYbo2YcIEU4IKAAAA3quqqtKiRYt022236dVXX9XPP//sddvffvtNM2fOVGZmpmn3bmxsrCZOnNja08UpXn75Za1atcoQa9eunaZOnaqxY8ee9vGtfr8HDhzQxIkT9fXXX1ve29c7evSoFi5cqLlz55qu9enTRyNGjPB7XmvXrlVNTY0hNmjQIPXo0cPvPgEAbY8C6gDOaFOmTNGhQ4eavG71RFJLBRWzs7N11llnNXn9lltuUUFBgb7//ntDfO/evZo8ebISExOVlJSk+Ph4OZ1OHT9+XGVlZdqxY4e2bNliWiRKJ8+unTx5crPzqpeenq7du3ebPvfGjRu1efNmDRw4UP3791fXrl3VoUMHVVVVaf/+/dq2bZt27txp2WdSUpLS0tK8Gr81PPjgg/rhhx8MxyjU1tYqOztby5Yt08iRI9W9e3dJJwspfv7559q3b5+pn+TkZFNiBQAAAP75559/tGzZMi1btkyxsbFKTExUYmKi4uLi5HQ6FRERoerqalVUVOj333/Xrl27THUe6jmdTs2ePVtRUVFB/hRnjh07duijjz4yxcPDw7V8+XItX77c777j4uI0b968Ft83fPhwjRo1ynRE16FDhzRt2jT17NlTgwcP1oUXXqioqCjV1NSovLxcu3bt0qZNm1RdXW3qs2PHjnrqqacUEhLi9/wbJ4gkCqcDgB2QDAFwRtuzZ49KS0t9avPrr782e73xE0SNhYWFKSsrS0888YTlebhFRUWms5KbExsbq5ycHHXr1s2r93fv3l0vvfSSHn/8cVPhcbfbrcLCQssjuJpyySWXaPbs2XI4gvdfSkREhLKzs5Wenq69e/caru3du9dy50xj/fv3V2ZmZkCLJAAAAFgrLy/Xpk2btGnTJp/bdunSRbNmzVLfvn1Pw8xQz+ohK0k6fvx4i2uellRWVnr93mnTpqm6utp0LJUklZSUqKSkxOu+IiMjlZWVpYSEBK/bNLZz505Tki46OlopKSl+9wkA+HfgmCwAaAMdO3bUwoULdffddwdUgO+qq67SkiVLdP755/vUrlevXlqyZImGDx/u99gOh0P33nuvFixY0CbnOMfFxWnRokU+L0pCQkKUlpamnJwcdejQ4TTNDgAA4MwRHh7eKkWlHQ6Hxo8fr3fffZdEyBnE4XBozpw5Sk9PD+j+fNCgQXrnnXc0YMCAgOZjtStk9OjRCg8PD6hfAEDbY2cIALQRh8Oh+++/X2lpaVq1apXWrVunkpKSZs/FlU4mAVJSUpSWlqZevXr5PX6nTp30wgsvqKioSLm5ucrPz1d5eXmzbUJCQtSzZ0+NHj1aqampiouL83v81hAVFaXZs2dr8+bNev/997V161a53W7L94aHhys5OVm33347i2sAAIBWdPHFF+vjjz/Wli1bVFhYqF27dmnPnj2qq6trsW1ERIR69+6tkSNHatSoUYqJiQnCjPFvExISonHjxmn06NH67LPPtGbNGhUXF7f4NxQTE6OhQ4fqxhtv1KWXXhrwPKqrq/XFF1+Y4hyRBQD2EOJp6Vs3AEDQVFRUaPfu3fr7779VWVmpY8eOKSIiQk6nU506dVJiYqLXx2H54+DBgyoqKtLhw4dVWVmpEydOKDIyUk6nU127dlXv3r3/1ec2V1RU6KefftK+fftUVVUl6eSW9p49e6pfv35BKfAOAACAk18q79u3TwcOHFB5ebmqq6vlcrnUvn17dezYUU6nU/Hx8TrvvPNaZVcJ7OfYsWP65ZdfdPDgQVVWVqqqqkphYWFyOp2Kjo5WQkKCzjnnnLaeJgDgP4RkCAAAAAAAAAAAsDVqhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGyNZAgAAAAAAAAAALA1kiEAAAAAAAAAAMDWSIYAAAAAAAAAAABbIxkCAAAAAAAAAABsjWQIAAAAAAAAAACwNZIhAAAAAAAAAADA1kiGAAAAAAAAAAAAWyMZAgAAAAAAAAAAbI1kCAAAAAAAAAAAsDWSIQAAAAAAAAAAwNZIhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGyNZAgAAAAAAAAAALA1kiEAAAAAAAAAAMDWSIYAAAAAAAAAAABbIxkCAAAAAAAAAABsjWQIAAAAAAAAAACwNZIhAAAAAAAAAADA1kiGAAAAAAAAAAAAWyMZAgAAAAAAAAAAbI1kCAAAAAAAAAAAsDWSIQAAAAAAAAAAwNZIhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGyNZAgAAAAAAAAAALA1kiEAAAAAAAAAAMDWSIYAAAAAAAAAAABbIxkCAAAAAAAAAABsjWQIAAAAAAAAAACwNZIhAAAAAAAAAADA1kiGAAAAAAAAAAAAWyMZAgAAAAAAAAAAbI1kCAAAAAAAAAAAsDWSIQAAAAAAAAAAwNZIhgAAAAAAAAAAAFsjGQIAAAAAAAAAAGzt/wAghLUgbfLN0QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "ts.plot_ts(skycoord = coord)" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "8dcd6979-4e6c-400a-a4c1-05e406b6dabd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AADAKElEQVR4nOzdeZiVZf0/8M8Z9lVQZBFFcN/Afcs9BcWVNL5lZqFpLqmVS1mZa4WZlX7NvmqWlFkqlruYpLmDioo7IIoLAoIgm+zM8/vD4MfMeQbOzJyZc+aZ1+u6uC7P/Zznfu4zc2bA53Pe9yeXJEkSAAAAAAAAGVVR6gUAAAAAAAA0JMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAam3EiBGRy+Xy/gAAAEA5alnqBQAAhXv//ffj1Vdfjffeey+mTZsWCxcujMWLF0f79u2ja9eu0bVr19hwww1jp512im233TYqKnzuAYDPzZ49O+6///548skn49VXX40PPvgg5s+fHytXroxOnTpF7969Y7vttosDDzwwjjrqqNh4440bbW0rVqyI0aNHx6hRo+Kll16KyZMnx7x581avbdNNN43+/fvHoEGD4sgjj4z11luv0dZWTOPGjYv7778/xo4dGxMmTIg5c+bE4sWLo2PHjtGzZ8/VX/9jjjkmNt100wZZw0cffRR33nlnPPDAA/HOO+/Exx9/HG3atImePXvGzjvvHMccc0wMGTIk2rZtW9Trzpo1K7beeuv49NNPV499/etfj1tvvbWo1wEAqEkuSZKk1IsAANItXbo0Hn744bjrrrvi0UcfjenTpxd8bseOHWPXXXeNQYMGxQknnNBgN1VonkaMGBEnnXRS3rh/WkL5mTRpUlxxxRVxxx13xPLlyws6p0WLFnHMMcfEz372s9h2220bbG0rV66M3//+93HVVVfF1KlTCzqnY8eOccopp8Qll1wSXbp0abC1FdOoUaPi4osvjnHjxhX0/IqKijjmmGNi+PDhsfXWWxdlDcuWLYsrr7wyrrzyyli8ePFan9uvX7+45ppr4uijjy7KtSMivvWtb8Wf/vSn1Y87deoUkyZNip49exbtGgAAa6MYAgBlaP78+XHdddfFddddFx9//HG958vlcnHAAQfEKaecEscff7zESAMYMWJEvPfee1XGdtpppxgyZEhJ1tPQFENoTubOnRvXXHNN3viwYcOib9++jb6eQlVWVsYVV1wRv/jFL2LZsmV1mqNVq1Zx8cUXx09+8pOib4U3ZcqUOO644+Lll1+u0/k9evSI2267LQ4++OCirquYFi1aFKeeemr87W9/q9P5rVu3juHDh8e5555br3UsXrw4jjvuuBg1alStzrvqqqviggsuqNe1IyKee+652Hvvvav8HXH11VfHeeedV++5AQAKpRgCAGXmr3/9a1xwwQUxY8aMBpm/f//+8ctf/jIGDx7cIPM3VwceeGA88cQTVca++c1vxogRI0qzoAamGEJz8t5770W/fv3yxv/zn//EgQce2PgLKsDixYvjy1/+cjz00ENFmW/o0KHxt7/9LVq2LM5Oyy+//HIMHDgwZs+eXa95WrZsGX/84x/jG9/4RlHWVUxz586NQw45JF588cV6z/Xtb387brjhhjoXpIYMGRL33ntvnc694YYb4rTTTqvTuRGfF+X23HPPKqmY7bbbLsaPHx+tWrWq87wAALXlY6EAUCYWLlwYxx9/fJx44okNVgiJiHjttdfi8MMPjx//+McNdg0ASidJkhg6dOhaCyEtWrSIXXfdNY466qj4yle+EgceeGB069atxuePHDkyvvnNbxZlfe+8804ceuihNRZCcrlcDBgwIL785S/H8ccfHwcccEB07Ngx9bkrVqyIk08+Oe6///6irK1Yli5dGoMHD15rIaRv375x9NFHxwknnBCDBw9e63ZRN910U/zwhz+s01pGjBiRVwjJ5XLx7W9/O1566aVYtGhRzJo1K+68887YYYcd8s4/99xz4+23367TtSMibr755rztwa677jqFEACg0WmgDgBlYNasWTFo0KAYP378Wp+34447xqGHHhp77713bLHFFtG7d+/o0KFD5HK5WLhwYUybNi3efvvtGDNmTDz22GNr3Zt82rRpRX4VAJSDyy+/PB588MHUY126dIlLLrkkTjzxxNhggw2qHFu5cmU89dRT8dOf/jSefvrpvHP/9re/xe677x7f+9736ry2ZcuWxVe+8pWYNWtW3rFVN+h//OMfR58+faocW7x4cdx2223xk5/8JGbOnJm37m984xsxfvz4sumPdf7558fYsWNTjx100EExfPjw2HPPPauMJ0kSo0ePjgsvvDB167Bf/epXsc8++8QxxxxT8DqWL18eP/rRj/LGb7nllirFrXbt2sXQoUPjqKOOisMPPzz+85//rD62aNGi+OlPfxq33357wdddZc6cOXkfvhg6dGh88YtfrPVcAAD1ZZssACix2bNnx3777RdvvfVW6vEWLVrE17/+9bjgggti++23r9XckydPjj/+8Y/x+9//PubPn1/lWJa3cCqF5rZNFjQnTWmbrOeeey6+8IUvRGVlZd6xnXfeOUaNGhU9evRY6xxJksTw4cPjJz/5Sd6xtm3bxhtvvBGbbbZZndY3fPjw1GRiq1at4vbbb49jjz12redPmzYtDjvssHjttdfyjh1xxBHxwAMP1GldxfTss8/GPvvsk3rs/PPPj6uuumqt210tW7Yshg0bFn//+9/zjvXs2TMmTZoUnTp1Kmgtt99+exx//PFVxoYNGxa33HJLjefMmjUrtthiiyr/bmjVqlW8//770atXr4Kuu8oZZ5wRN9xww+rH7du3jwkTJsQmm2xSq3kAAIrBNlkAUELLly+P4447rsZCyPbbbx9jx46NESNG1LoQEhGxxRZbxPDhw+ODDz6Ic889t2h7vQNQni677LLUQshWW20Vjz766DoLIRGfJzR+/OMfx6WXXpp3bMmSJXVu5j1r1qz4xS9+kXrshhtuWGchJCJio402in/961/RvXv3vGMPPvhgjB49uk5rK6bvf//7qeMnnnhi/OpXv1pn34/WrVvHrbfeGgcddFDesRkzZsSVV15Z8Fr+8Y9/5I399Kc/Xes5G264YXznO9+pMrZ8+fK45557Cr5uRMRLL70UN910U5Wxiy66SCEEACgZxRAAKKGLLrooL02wyuGHHx5jx46N3Xbbrd7XWW+99eLXv/51vPjii7HtttvWez4Ays9LL70Uo0aNyhuvqKiIW265Jbp27Vqr+S666KK8rZwiIu67777UZMa6XHfddbFw4cK88cMPPzxOPvnkgufp1atX/O53v0s9Nnz48Fqvq5gee+yxeP755/PGe/bsGddff33B87Ro0SJGjBgR7dq1yzt2/fXXx4IFCwqaZ8yYMVUe77rrrgWler7yla/kjdW07VeaJEnirLPOqlKY23LLLeO8884reA4AgGJTDAGAEnn++efj17/+deqxL37xi/HPf/6zxoaxdTVgwIAYN25cDB06tKjzAlB6adsqRXy+fdQXvvCFWs/XokWLuOKKK/LGkySJa6+9tlZzrVixIm688cbUY7VJOqwydOjQ2GWXXfLG//Of/8Sbb75Z6/mKpaYizU9+8pOCt7ZapU+fPnHGGWfkjc+bNy9uvfXWdZ7/ySefxEcffVRlbI899ijo2v37988rxKT1ManJn//857xCzLXXXhutW7cueA4AgGJTDAGAEvn+978fK1euzBvfeOON44477og2bdo0yHXbt28fd9xxR3zrW99qkPkBKI3HHnssdfy0006r85yHHHJIbL755nnjd911VyxZsqTgeUaPHp3X+Dzi82bi/fv3r9Pazj777NTx2267rU7z1dfcuXPjoYceyhvv1KlTnHTSSXWa86yzzkrdVquQ1/jJJ5/kjaV9L9NUVFTk9clJmy/NvHnz4oc//GGVsaOPPjoGDx5c0PkAAA3FxuEAUAKjRo2KZ599NvXY9ddfH926dWvQ6+dyudhvv/3qNcfs2bPjvvvuiyeffDJef/31eP/992PBggWxYsWK6NChQ/Tq1Su23HLL+MIXvhBHHHFEnW921cczzzwT99xzTzz33HMxadKkmDt3brRo0SK6d+8ePXv2jP322y8OP/zw2H///aOionafEbnyyitjwoQJqx+v+d+rPP300zFs2LCC5ttmm23iwgsvLPj6c+bMiSeeeCJefPHFmDBhQkyaNCk++eSTmD9/fixbtiy6dOkS66+/fnTr1i1233332H///WP//fePDTbYoOBrlJPx48fHP//5z3jmmWdi4sSJMWfOnEiSJDbccMPo3r177L333jF48OA45JBDGvWTx88991zcc889MXbs2Jg4cWLMnTs3Vq5cGV27do1tt9029ttvvxg2bFitmk1PmzYtRo4cGU888US8+uqrMWvWrFi8eHFsuOGG0atXr9hvv/3i2GOPjX333XedvQfqY/HixfHwww/HE088ES+//HJMmTIlPv3001i8eHG0adMmNthgg9hiiy1izz33jMMOOyz222+/Wv8c1cfChQvj3nvvjVGjRsUrr7wSU6dOjYULF0bnzp2je/fusdlmm8Whhx4aRx55ZK2bfX/yySdx/vnnV7lWmiuvvDJGjBhR0JynnHJK7LvvvrVaR23MnTs3xo8fnzfeokWLejV5z+Vy8cUvfjHeeeedKuPz5s2L0aNHx1FHHVXQPDX1m/ja175W57Ude+yxcfrpp8fSpUurjN99993x85//vM7z1tWoUaPy1hLxeSGgQ4cOdZqzX79+sddee+WlLMaMGRMff/zxWnvAzJ07N2+sc+fOBV97vfXWq/L4008/Lei8iy++uErhq23btnHNNdcUfF0AgAaTAACN7rDDDksiIu/P/vvvX+qlrdNbb72VfO1rX0tatWqV+hpq+rPzzjsnd911V72vnzb3LbfcUuU5o0ePTnbeeeeC1zZgwIBk9OjRtVrHAQccUKvXv64/BxxwwDqv+dZbbyWXXHJJstNOOyW5XK7W12jdunVy6qmnJpMnT67Va01zyy23pF6jNjbddNO88y+55JIqz3nxxReTAw88sODX2K9fv+TOO++s12tL+95+85vfrPKcZ555Jtljjz0KWlMul0tOPvnkZPbs2Wu97kcffZScfPLJSYsWLQqad//990/efPPNer3WNO+//35y5plnJh07dqzV+6tv377JjTfemKxcubLO1y7kfbV06dLk8ssvT7p27VrQuioqKpKTTjopmTZtWsHrmDJlSlF/vtN+TxXb+PHjU6/bv3//es/9hz/8IXXus846q+A5+vXrlzrH1KlT67W2L37xiw0yb12cdNJJqWv561//Wq95L7/88jrNO2bMmLxzbrzxxoKvu9dee1U5t23btus859VXX837HVb99zoAQKnYJgsAGtkHH3wQjzzySOqxH/zgB428msJVVlbGZZddFgMGDIi//e1vsXz58lqd//LLL8eXv/zlOPTQQ2PatGkNssaVK1fGOeecEwMHDqzV3uavvvpqDBw4MHVv/HIxePDg2HbbbeOyyy6L8ePHR5IktZ5j2bJl8Yc//CG23nrruOqqqxpglcU1fPjw2GOPPeLxxx8v+JwpU6bE//zP/8Spp55apXFvMV122WWx3377pTZJTpMkSfzpT3+KvfbaK+/T9as89NBDMWDAgPjTn/6Uun1emieffDJ22WWXGD16dMFrX5vKysoYPnx4bL311vH73/++xjRETd5777047bTTYq+99op33323KGuq7t13341dd901Lr744oI/pV5ZWRm33HJLDBgwoFa/F5qamrYw2mijjeo9d+/evVPHn3jiiYLOnzZtWkyZMiVvfPPNN69x7kLVlHp56qmn6jVvXTz99NOp4wcccEC95q3ra+zSpUve2Pz58wu+bvXndu3adZ3nnHXWWVV+h/Xt27dWqUcAgIakGAIAjezee+9NvUnbo0ePOOyww0qwonVbsmRJHHPMMXHppZfWughS3SOPPBK777576nYu9bFixYo49thj47rrrqvzHBdffHFceumlxVtUEb399ttFm2vlypXxwx/+ML7xjW8UfOO9sX3nO9+JH//4x3Ve38033xwnn3xykVcVcc4558Sll15ap0LL22+/HYMGDYrZs2dXGb/99tvj6KOPzhsvxJIlS2LIkCExduzYWp+7pvnz58fhhx8eP/7xj2vVByLNCy+8ELvvvnvBxaJCvfHGG7HnnnvG66+/XqfzP/nkkzjooIPilVdeKeq6ykVN75+0G+K1VdNN8Lfeequg90tNRahdd921Xuta2xyNXfhasGBBTJ48OW+8e/fusfHGG9dr7p133jl1C7p1vca0LTcLLVRWVlbGe++9V2VsXdss3nbbbfHkk09WGfvtb38bbdu2LeiaAAANTc8QAGhkac1VIyKGDBkSLVq0aOTVrFtlZWUce+yxMWrUqBqf07Jly+jfv3/07t072rdvHx999FFMmDChxptz06ZNi4EDB8ZTTz0V22yzTVHWedppp8V9992XN96nT5/YfPPNo3v37rF06dKYOnVqvPzyyzXeZL/iiivi8MMPjz322KMo62oMvXv3jr59+8Z6660XXbp0iaVLl8a8efNiwoQJMXXq1BrPu/XWW2PTTTctu0TM5ZdfHr///e/zxnv06BFbb7119OjRI1auXBkzZsyIcePGxbJly1Ln+fOf/xxHHXVUHHfccUVZ13XXXZdabOvXr19svvnmseGGG8aCBQvi7bffjokTJ6bO8e6778Zpp50Wd911V0R8nu448cQT896P66+/fmy//fbRo0ePqKysjKlTp8aLL76Y+r5dtGhRnHzyyfHKK69Eq1atav265s+fH4MGDYrnnnuuxues+hnv2bNndO3aNebNmxcfffRRvPrqq6mFoTlz5sShhx4azz33XGy11Va1XlN106dPj0MPPTQv/dCiRYvo379/9OrVK7p06RJz5syJCRMmxPvvv586z7x582LYsGHxwgsvRMuW2fpfobqkxeprxYoV8cYbb6yzqPHaa6+ljm+33Xb1XkNNc9R0zYbyxhtvpH4PivEaO3bsGJtsskne+3pdhcFu3bpF796946OPPlo9Nm7cuIKu+eabb8aiRYuqjO288841Pn/BggV56dbDDjsshgwZUtD1AAAaRWl36QKA5qWysjLp3Llz6t7ft99+e6mXl2r48OE17oHftWvX5JprrklmzpyZd97y5cuTBx98MNl7771rPH+XXXZJli1bVqv1pM1Tfc/41q1bJ+eee26N/RQ++eST5JJLLknatm2bOt9OO+1U669TIX0m6mPzzTdfPe8mm2ySnHPOOcnDDz+c+rVf00cffZT86le/Su3PEf/tp/Cf//yn1utpqJ4hBx54YFJRUVFlfcOGDUtefPHFpLKyMm+O+fPnJ9dee23SpUuX1PX06tUrWbRoUa3Wlfa93GOPPZI2bdqsftyiRYvkzDPPTN54443UOd56663kqKOOqvG9/8QTTySzZs1KevToUWV80KBByeOPP56sWLEib85PPvkkOe+882rsKXL11VfX6nUmSZKsXLkyOfzww2tc5z777JPcfffdyYIFC1LPnzlzZvLb3/422WCDDVLP33333ZPly5cXvJ6a3lfVf8b79euX3HLLLcmcOXNS53nppZeSQYMG1fi6fvvb39bq61RTD5G6/Ow0lEceeSR1jYceemi9537ooYdq/Frecccd6zz/1FNPTT23vr00kiRJVqxYkdrDauutt6733LVx2223pb7GU045pSjz19QbZfr06Ws978tf/nKV5+dyueS9995b5/UuvvjivGtdf/31NT7//PPPz/t7eNKkSbV+nQAADUkxBAAa0dtvv13jDaVCbk40tldeeSVp3bp16noPOOCAghoSr1ixIrnssstqfN0XXXRRrdZU0zxr3gB7++23C5rrqaeeqrFJ9DPPPFOrdTV0MWTLLbdMjjjiiOTJJ5+s0/kLFy5MTjvttNTXutdee9V6voYqhqz5p2fPnsnzzz9f0FxvvfVW0rNnz9R5brvttlqtK+17ueafHj16JOPGjStorjPPPDN1jiFDhlRpttyyZctkxIgRBc3517/+NcnlcnlzbrbZZrV6nUmSJFdddVXq+jp16lTQTe5VZs+eney///6pc1188cUFz1PT+2rNP2eeeWaydOnSgub73ve+lzrHVlttVfCakqRpFEPGjRuXusYBAwbUe+6bb765xu/HlVdeuc7zBw4c2KBfv4033jhv7kKafRfTz3/+89TXWKzm4V//+tdT5x8zZsxaz0sr0px66qlrPefTTz9N1l9//SrntGzZssam9G+++WZeQerCCy+s82sFAGgoeoYAQCN68803U8c7duwYffr0aeTVrNs555yTugXR7rvvHg888ED06tVrnXO0aNEiLr744vjpT3+aenz48OF5+5LX1bbbbhvPPPNMbLHFFgU9f999943f/OY3qcduueWWoqypWEaPHh0PPPBA7LfffnU6v0OHDnHDDTfEd7/73bxjY8eOLXjrlMbSo0ePePbZZ2P33Xcv6PnbbLNN/OUvf0k9VszvZdeuXePJJ58suNfBtddeG1tvvXXe+H333RcjRoxY/fiOO+6Ib37zmwXNecIJJ8SwYcPyxt9999145plnCpojIuKDDz6ISy65JG98vfXWi2effTb+53/+p+C51l9//XjkkUdi3333zTv261//OubOnVvwXGvzgx/8IK6//vpo3bp1Qc//zW9+k7qmSZMm1epr1RRssskmqeNp2x3V1gsvvFDjsZkzZ67z/Jqe06NHjzqvaU1pfxctWbKkVs3C66sUr3Ft113ly1/+cmy44YZVxm6++ea44447Up+/bNmy+NrXvhZz5sypMn7MMcfU2Oz+7LPPrtJPbOONN46LLrporesCACgFxRAAaEQffvhh6njfvn0jl8s18mrW7vXXX48nnngib7x9+/bxj3/8Izp27Fir+S6//PI45JBD8sZXrlyZ2h+ittq0aRO33377Ohu8VnfKKaek3qz+17/+Ve81FdOmm25alHl+9atfpb7eP/zhD0WZvxhyuVyMGDEi+vXrV6vzBg4cGIMGDcobf+KJJ2Lp0qVFWdv1119fqx4YLVu2jB//+Md545WVlav7C5xxxhlx7LHH1modF198cer42nr7VPezn/0sFi9enDc+cuTI2GGHHWq1nojPfwb//ve/5zXs/uyzz+Lmm2+u9XzV7bvvvvGLX/yiVufkcrm46qqrUo+V2894fXXv3j21ELxixYrU3+W18dhjj9V4rKbeUIU8pxjN3SM+L+DV5roNoVxfY+vWreNnP/tZlbEkSeL444+Ps846K1555ZVYsmRJzJ49O+65557Ya6+98n6PtG3btsbeUiNHjoxHH320ytivf/3r6NChw7peEgBAo1MMAYBGNG3atNTxYn1ytJiuv/761PEf/ehHNX4CeV2uvfba1KbFf/rTn2LJkiV1mnOVU089NQYMGFDr83K5XHz961/PG//www8b9UZaY2nVqlWcf/75eeNPPfVUCVaT7ogjjojDDjusTueeeOKJeWPLly9fZ6PhQuy+++5x/PHH1/q8Y445psbG5u3atYuf//zntZ6zb9++sdtuu+WNjx8/vqDz58yZk5qk+epXvxoDBw6s9XpW2XjjjeM73/lO3ngxCp7XXHNNtGjRotbn7b333qlFgpdffrneayo3+++/f+r4TTfdVOc5H3vssXj77bdrPF5I6qemhEanTp3quqyC5pk3b15R5i9EOb/Gb3/72zF48OAqY0mSxPXXXx877bRTtGvXLrp16xZf+tKXUn8ufvnLX8a2226bN75o0aI477zzqox98YtfrFWqDACgMSmGAEAjWrBgQep4165dG3kla5ckSdx+++15423bto2zzz67zvNut912cdRRR+WNz549u96f0k7b/qlQBx10UOp4oTeWm5rDDz88b2zixImNuqXM2nzve9+r87kN+b0866yz6nTeeuutl3ojMSLia1/7Wp1//vfee++8sVdeeaWgc2+//fbUtExNiZPaSCuGTJkypV7b4e27774Fb02W5sADD8wby+LP9zHHHJM6fv/99691q6uaVFZWpm6ltqZCUlc1PafQ7c7WpU2bNrW6bkMo99c4cuTIOPjgg2t93csvvzzOOeec1GM/+9nPqiReW7ZsGdddd12trwEA0FgUQwCgEdWUfqjpJkepvPXWW6mf9j3yyCNr3KqjUGmf3I+IGDNmTJ3n3GabbQruE5Kmf//+qeMzZsyo85zlbKONNop27dpVGausrCyLT8p37Ngx9cZ1oXr37p1aXCjG97L6J6tro6ZiSH3m3G677fLGCn2dDzzwQN5Y//79a1xnbfTq1Su22WabvPFnn322znMeeeSR9VlS6s94Fn++jzzyyNRt3FauXBnDhg2rdcHzqquuiqeffnqtz1mzV0Rtn5OWFKyLmuYpZG3FUu6vsUOHDvHggw/GRRddFG3btl3n8zfZZJO48847a+z3NXny5LyeW2effXbq76VV5s6dGzfffHMcffTRseWWW0anTp2iY8eOsfnmm8eRRx4ZN910U16vEgCAYlIMAYBGtHLlytTxiory+it57NixqeNHHHFEvecePHhw6k2dmq5ZiH322ac+S4rOnTtH+/bt88Ybc4uVxtatW7e8sY8//rgEK6lqzz33rNNWSGtKazRc3+/lFltskdeEuDZqOnevvfYq6pwrVqxYZ7PsJElSt0VL67dSV2kpjlL+jKe9Jwr5WjU1FRUV8YMf/CD12JtvvhmHHHJIfPLJJwXNdfXVV8ePfvSjYi4vT7F6ZdU0z6q+PKVUTq+xTZs2ccUVV8SkSZPi6quvjoMOOij69OkTbdu2jc6dO8eWW24ZQ4cOjVtvvTUmTJgQQ4cOrXGuc845p0oqpWfPnnHppZfW+Pwbbrghtthiizj11FPj/vvvj8mTJ8fChQvjs88+i3fffTcefPDBOO2002LLLbeM//u//yv4NQEA1EZxPqYCABSkpk9jLlu2rJFXsnbjxo1LHd9pp53qPXfbtm1jm222yevhUNM1C9G3b996rurz/dir3xgtl22jajJz5sz497//Ha+++mq8+uqrMWXKlFiwYEEsWLAgFi5cGJWVlbWar5C9/xtasb6X1dX3e1nfdXXs2DFvrGXLltG7d++izhnxeeEnrbi3yttvvx0LFy7MGy9GKmSVtGLbmtvp1FZ9v/419VuYP3/+Wr9WTdHJJ58cI0eOTN168IUXXoitt946Lr300jjhhBNi/fXXr3K8srIynn766bj44ovzmq63bNkyVqxYkTdnISmDVq1apW7ntGLFihr76dRGTemIYm1RVYiaXkfa16wuivkaN9lkkzjvvPPy+n0U6t57781rsn7VVVdF586d855bWVkZp512Wtx8880FzT1nzpw488wzY/z48XHDDTcUrZgEABChGAIAjar61kSrfPbZZ428krWbPn163ljLli3Xuv1Fbey44455xZDPPvssFixYUKdms8XouZJ2Q6++Td0byj/+8Y+4+eab49///nfRbrRFlEcxpFy/l/VdV9pWeA0xZ8S6ewjU1Az7jjvuSE2M1EXalmuffvppneer79eqphv25fozXh+5XC7++te/xk477RQfffRR3vE5c+bEOeecE+eee27stNNO0bt372jXrl3MnDkzXnvttZg1a1beOZ07d44zzjgjfvnLX+YdK6SY1Lp169T35dKlS4tSDKnpAwWNuQVlTUWJYvUtKYfXGPH5z8z3v//9KmP77LNPjVtgnnfeeQUXQtZ00003RadOneLqq6+u0zoBANIohgBAI+revXvqeDlsT7SmtJvi6623XtE+ZVvT12Hu3Ll1KoZ06NChvktqEiZMmBBnnnlm/Oc//2mQ+RcvXtwg89ZGuX4vGyI9UKpEQtoN8oiI0aNHN+h161MMKdf3Rbnq1q1bPPbYY3HEEUfE5MmTU5+zYsWKGDdu3DpTee3atYt77rkn3nzzzdTjhWwft95668WCBQvyxhcuXFhjwqk20uZedd3GUtO10lJYdVEOrzEi4sorr4wpU6asftyiRYu4/vrrU5/72GOPxbXXXps3fsghh8SFF14Yu+22W+RyuXjxxRfjyiuvjEceeaTK837zm9/E0UcfHfvvv39xXwQA0GyV1wblAJBxG2+8cer41KlTG3kla5d20zJt+4u6qunmTX1ulmbdmDFjYs8992ywQkhEeeyvT8MrVS+cct92Lmu22mqrGDt2bBxyyCF1nmOjjTaKRx99NA466KAak2Np/Viqq74d1yrFSqPVNE9N120IzeE1TpkyJS8ddPrpp8eOO+6Y+vwLLrgg7++V0047LR555JE4+OCDY7311ovOnTvHQQcdFA8//HCcdtppVZ6bJElccMEFxX0RAECzJhkCAI1oiy22SB2fPn16zJs3r9E/4VmTtE+yFvOT2TXNVdMnX5u71157LQ499NB1fn3atWsXvXv3jo033jg6deoUbdu2jbZt20ZFRf7nX+66666y256NxlGqraEU2xrfBhtsEKNHj44HH3wwfvrTn6ZuX5ambdu28e1vfzsuu+yy6NKlS0REjY3XN9tss3XO16NHj9Txjz/+OLbZZpuC1rQ2M2bMyBtr06ZNUYv467K211gMaa8xouakZUP43ve+V+X3R7du3eKKK65Ife7YsWPjpZdeqjK2zTbbxO9+97vUPiC5XC5+97vfxeOPPx4TJ05cPf7888/HuHHjYrfddivSqwAAmjPFEABoRP37948WLVrEypUr846NHz8+DjjggBKsKl/atiXVm4vXR0034YuxXUoWnXnmmTUWQg444IA48cQTY5999qnVTcXHH39cMaSZatGiRamXQCM74ogj4ogjjojXXnstHnnkkXjsscfigw8+iFmzZsWcOXOiVatW0bNnzxgwYEAMGjQohg4dGt26dasyx3vvvZc6dyG9pDbddNPU8WKkIleuXJlaKOjbt2+jNt9uyNcYUfP2dv369SvK/OsyatSouO+++6qMDR8+vMZ+Pv/4xz/yxn70ox9Fy5Y134Jo2bJlXHjhhXHSSSdVGR85cqRiCABQFIohANCI2rVrF9tvv328+uqreccef/zxsimGpN3cKOYWNzXNVYzm2Vlzzz33xNNPP5033r1797j99tvjoIMOqtO8xdrHnqanpmTWQw89FIMHD27k1dCY+vfvH/3794/zzjuv1udOmjQpb6xNmzax7bbbrvPcmtIjNfUzqY0PP/wwli9fnjfeWEWCVRryNUZEvPPOO3lj7dq1qzGRUkzLli2L7373u1XG9thjj/jWt75V4zljxoyp8rhly5ZxzDHHrPNaX/rSl+KUU06p8qGRsWPH1nLFAADp9AwBgEZ26KGHpo4/+OCDjbySmq3aFmVNc+fOTb3hVBczZ85MHVcMyTdy5Mi8sZYtW8aDDz5Y50JIkiRF28eepqdnz56p43PmzGnkldBUfPbZZ1W2Llplzz33jDZt2qzz/P79+6eO19SUvTZqmqOmazaU7bffPjWJUozXuHDhwvjwww/zxnfYYYdGSb9cffXV8fbbb69+XFFRUeN2V6uMHz++yuMtt9yyoK1A11tvvbwtRQvd3g0AYF0UQwCgkR111FGp4y+88ELRPkFaX2kNcVesWBFvvfVWUeZ/5ZVX8sY6dOgQnTp1Ksr8WVFZWRmjRo3KGz/hhBPqtWXIjBkzUrdqo3mo6RPzs2bNauSV0FQ888wzqb8zDj744ILO33nnnVPHq/eUqIsXX3yxVtdsKJ07d47NN988b3zmzJk1bnFVqJdffjkqKyvzxhvjNX744Yfxi1/8osrYySefHLvvvnuN5yxZsiRvG8ZCesusUr0YsmDBgli2bFnB5wMA1EQxBAAa2b777lvjTYFrrrmmcRdTg5putFf/pGddLF26NCZMmFDwNZuzTz75JD799NO88SFDhtRr3urbl9C8rOpdVJ2taKhJ9V4RqwwdOrSg83v37h19+/bNG588eXJMmzatPkuLJ554InV8v/32q9e8dbHvvvumjte0xkKV8jWee+65VQobXbt2jeHDh6/1nLTkYW2a2ad9MEKaEQAoBsUQAGhkuVwuvv3tb6ce++Mf/xjvv/9+I68o31577ZU6XoytvB5++OHU7bZqumZT0bp167yxFStW1GvOjz/+OHU87aZibdT3xhxNW7t27WLXXXfNG/e+qFnaz3dE/X/Gm4KlS5fG3//+97zxnXfeuaB+IasMHDgwdfyhhx6q89rmz5+f2lNpm222iY033rjO89ZVQ7zGtZ1/yCGH1GvedXn00UfjrrvuqjL2s5/9LLp161bruWqznVfac5MkqfU1AQCqUwwBgBI488wzU28mLFmyJM4+++xGWUP1LSzWtO2226b277j//vtjwYIF9bruX//619Txvffeu17zllraJ1kXL15crzlr+lq3a9euznMuWrQobr311jqfTzakNTKeMWNGPPDAAyVYTfmraQu/+v6MNwV//OMfU/vJVG+ovS41Nc9OK7QU6p///GcsXbo0b7y+6bm6Gjx4cGrh7L777lvr37lrM2XKlNTU1l577VVj/59iWL58ed6/R3baaac4/fTT13luWt+x+fPnF3zttOfqKQYAFINiCACUQKdOneKiiy5KPXb//ffHb37zmwa9/n333Rc/+MEPajyey+Xiq1/9at744sWL43e/+12drztx4sS4995788a7detWY2P5piLtZml994lPu6EUETF16tQ6z/mHP/whdestmpevf/3rqVtl/exnPyvBaspfx44dUz+tXt+f8XI3Z86cuPzyy/PG+/TpE8cff3yt5jr00ENjww03zBt/7LHH4vXXX6/T+q677rrU8RNOOKFO89VX165d4/DDD88bX7BgQdxyyy11mvN3v/tdaiqioV/jtddeW6VPWC6Xi9/97ndRUbHuWwht27aNDh06VBl75513Cr529ed27NixxnQWAEBtKIYAQImcddZZseeee6Yeu+CCCxrk0/srV66MSy65JL70pS+t81OqZ555Zur4L37xizrv8f7d7343dYusb33rW9G2bds6zVku0raumjBhQr220enRo0fq+COPPFKn+SZPnhw/+clP6rwesqNPnz5x3HHH5Y0/99xzCiIpcrlc9OnTJ2+8rjfxm4IkSeJb3/pW6nZ9w4cPr/XN6ZYtW9a4ReSFF15Y6/WNHDkytQH7gQceGDvssEOt5hoxYkTkcrm8PwceeGCt1/Wd73wndfznP/95rZOVH3zwQfzf//1f3njnzp3jG9/4Rq3XVqjp06fnFcG+/vWvxz777FPwHDvuuGOVx2+//XbMmzdvnefNmzcvJk+eXGVsp512Kvi6AABroxgCACXSokWLuPXWW1M//V9ZWRnf/OY349JLL42VK1cW5XqvvPJK7LfffnH55ZdHZWXlOp+/ww47xEEHHZQ3vnDhwjjuuONi0aJFtbr+ZZddFv/617/yxlu2bBlnnHFGreYqR2k3a+bNmxcPP/xwnefcYIMNYquttsobv/HGG2PmzJm1mmvWrFlx3HHH1XmrFrLnF7/4ReoN7YsvvrjOn2JP89Zbb+X1HWiK0n7G77333liyZEnjL6aBVVZWxumnnx733HNP3rFDDjmk1qmQVc4+++y8xEDE5/2o/vSnPxU8z4wZM+Kss85KPVaXwkoxHXLIIbHbbrvlja9tzWlWrlwZw4YNS92K7cwzz6xVQ/LaOv/886sUbjp37hxXXXVVreaovvXlihUrUt9P1d199915HyJo6ttoAgDlQzEEAEpoyy23jJEjR0bLli3zjiVJEpdddlnstdde8eSTT9b5GhMmTIhhw4bFrrvuGmPGjKnVuf/7v/8bbdq0yRsfO3ZsHH300QXdkK+srIyf//zncemll6Ye/8lPfhKbbrpprdZVjvbee+/UbYdOP/30GD16dJ2bvw4ePDhvbN68eXHUUUcVvN3Vm2++Gfvtt1+8+uqrdVoD2bT55punpkCSJImTTz45Tj/99Frt87+mFStWxCOPPBJHHXVUbL/99pnoRbLvvvvmjU2dOjW+9rWv1WvruoZw7bXXxs9+9rP45JNPan3u1KlTY/DgwXHTTTflHdtggw3iz3/+c62aYa+pR48e8aMf/Sj12BlnnBF33333OueYPn16DBo0KPXvn8GDB5fFlou//e1vU8f/8pe/xA9/+MN1/n2wbNmy+MY3vhH/+c9/8o6t7WtYDE899VT87W9/qzJ26aWX1ro/yZe+9KW8seHDh681LblixYq48sor88bTUmwAAHWhGAIAJXbIIYfEyJEja9xyZNy4cXHAAQfEHnvsEf/7v/8bkyZNWuecEyZMiN///vex//77x3bbbRd//vOf65Qw2WGHHeKKK65IPfboo4/GdtttF7/73e9Sb7itWLEiHn744dhvv/1q7I+y22671XisqenRo0ccdthheeMfffRRDBo0KDbaaKMYNGhQfPWrX41hw4bl/Um7ARTx+Sep04plzz//fOy4447xl7/8JbWBcETEq6++Guecc07suOOOMXHixNXju+yyS/Tu3buOr5QsOe+88+LYY49NPXbjjTfGJptsEj/84Q/jhRdeWOvvkCRJYvLkyXHnnXfGSSedFD169IhDDz00HnjggToXAsvN17/+9dSfxbvvvjs23XTT2GGHHWLIkCFx4oknpv6MP/3004221unTp8dPf/rT2HjjjeOoo46KW265JT744IMan58kSbz44otx9tlnx1ZbbZW6FV+bNm3innvuiY022qheazv//PNTUzbLli2L4447Ls4444z48MMP844vWbIk/vjHP8bOO+8cr732Wt7x9dZbL66//vp6ra1Y9t133xoTj1dddVUccsgh8cILL+QdS5Ik/v3vf8dee+2VV5BY5fe//32DpUJWrlyZt83X9ttvn9dIvRD77LNP3lZZEydOjLPOOiv1d0KSJHHWWWdV+bsq4vN/J9S0pSgAQG3l/2seAGh0Q4YMiQcffDC++tWvxuzZs1Of88ILL6y+edK1a9fYYostYqONNooOHTpELpeLhQsXxrRp0+Ltt9+OuXPnrvOahX6y97zzzosnn3wy9ZPds2fPjrPPPju+//3vx4ABA6J3797Rvn37mDZtWrz11ltr/VRyt27d4rbbbku9udhU/fjHP46HH3449abxjBkzYsaMGTWee8ABB6Ru77L55pvHGWeckdoo+MMPP4xvfvObcfrpp8cuu+wSvXr1ihYtWsTMmTNj8uTJqTcUO3fuHH/9619TEyc0PxUVFXHbbbfFkCFDUrexmz9/flx11VVx1VVXRceOHWP77bePDTbYILp27RpLliyJuXPnxty5c2PSpEm17ofQ1PTs2TNOPfXU1B4OlZWV8cYbb8Qbb7xR4/kHHnhgarqkIS1dujQeeOCB1b+/N9hgg9h2221jgw02iE6dOsXSpUtj2rRp8eabb641ada2bdsYOXJkUdbfpk2buPPOO2PvvffO+/suSZK44YYb4qabbooBAwbElltuGa1atYrp06fHuHHjanyPVVRUxIgRI6Jfv371Xl+x/OY3v4kXX3wxnn/++bxjjz32WOyxxx7Rr1+/GDBgQHTq1CnmzJkTL7/8ckyfPr3GOc8999wai5fFcP311+cVmq677ro6/z39y1/+Mu9DAjfeeGO8++67ceGFF8Zuu+0WuVwuXnzxxRg+fHheES6Xy9V6ey4AgLXJzt0HAGjiDjnkkHj55Zdj2LBh8dhjj631uZ9++mnqp0oL0aJFizj55JPzmqPWpKKiIkaOHBn/8z//E/fff3/qc1asWBEvvfRSajPbNBtttFE89NBDqf0wmrIvfOELceWVV8YFF1xQ1HmvvvrqePnll2v8ZPnixYvjmWeeWec87dq1i3/+85+x7bbbFnV9NG1t27aN+++/P84444z44x//WOPzFi5cGM8991wjrqz8/PrXv45x48bV+fdvqc2ePbvWCZWePXvGnXfeGfvtt1/R1rHlllvGv/71rxg0aFDMmTMn73hlZWWMHz8+xo8fv865WrRoEX/4wx9iyJAhRVtfMbRt2zZGjRoVBx98cI2vY8qUKTFlypSC5vvWt74VV199dRFXWNXMmTPj4osvrjL2la98JbV3WKEOPfTQOOOMM/IKiKNHj47Ro0ev8/zvfe979bo+AEB1tskCgDKyySabxKOPPhp///vfY4sttijq3C1atIgvfelL8dprr8VNN91Uq/2/27ZtG/fcc09cdtll0apVq3qtY9CgQfHCCy/kbZ+RFeeff3488MADRS30tG7dOu677756pTl69+4djz/+eBx88MFFWxfZ0apVq7j55pvjrrvuik022aSoc/ft2zcGDhxY1DlLpV27dvH000/HBRdcEB07diz1chrcl7/85XjllVeKWghZZdddd43nnnuuXn8XbLjhhvHQQw/FSSedVMSVFc/6668fTz/9dHzlK1+p8xytWrWKX/7yl3HzzTfXuVdLIX74wx/GvHnzVj/u0KFD/PrXv673vNddd12ceOKJtT7vlFNOadDiDwDQPCmGAEAZ+upXvxoTJ06Mu+++O44++ujUJuaF2n777eOqq66KDz/8sF6pgIqKirj44ovj1Vdfja997Wu1Lorssssucdddd8W//vWveu85X+6OOOKImDhxYjz11FPxk5/8JI488sjYYostYsMNN4y2bdvWac6uXbvGgw8+GNdcc0306tWr4PM6deoU5513Xrz55puxxx571OnaNB/HHXdcTJw4Ma677rp6JYj69u0bp556ajz22GPx7rvvxgknnFDEVZZW69at46qrrorp06fHX/7ylzjzzDNjn332iU022SS6dOlSFlv/HXHEEfGlL32pTgWbFi1axDHHHBNPP/10jBw5Mrp3794AK/zcFltsEePGjYtrrrmmVn2MOnToEN/97ndj4sSJMWjQoAZbXzF06NAhbr/99njggQdil112Kfi8ioqKGDJkSLzyyivxgx/8oAFXGDFmzJj485//XGXsoosuKkpvqRYtWsSf//znuPbaa6Nr167rfP76668f119/fdx0001RUeF2BQBQXLkkKx0NASDDFixYEE8//XSMGTMmXn/99ZgyZUpMmzYtPvvss1iyZEm0a9cuunbtGl27do3u3bvHzjvvHHvssUfsscce0adPnwZZ0+zZs+Pee++NJ598Ml577bX44IMPYv78+bFy5cpo37599OrVK7baaqvYe++948gjj4wBAwY0yDqao6VLl8Y999wTjz76aDz33HPx8ccfx5w5c6KioiI6d+4c/fr1ix122CEOOeSQOPLII6NTp055c0ydOjVWrFhRZaxLly7RpUuXRnoVNAVvvPFGjB49Op5//vmYNGlSfPjhhzF//vxYtmxZtG/fPjp16hRdunSJzTbbLLbZZpvYbrvtYv/99y96so26WbZsWYwbNy7Gjh0b48ePj3feeSfef//9mD9/fixatChat24dnTt3jr59+8Z2220XBxxwQBx66KG1Sg4Wy/Lly+ORRx6JUaNGxUsvvRTvvPNOzJs3L1auXBmdOnWKPn36RP/+/WPgwIFx9NFHN9nfVc8991w88MADMXbs2JgwYULMmTMnli5dGu3bt4+ePXuu/j4MGTKkUXqgVFZWxu67715lm8utttoqXnvttWjdunVRrzVnzpy4884744EHHoi33norPv7440iSJHr06BHbbrttHH300TF06NBYf/31i3pdAIBVFEMAAAAAAIBMkzsFAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATGtZ6gUAAEBDGlgxtNRLIGNGV44s9RIAAIBakgwBAAAAAAAyLZckSVLqRQAA0DxIaUDdSKMAAED9SIYAAAAAAACZJhkCAMBqkhvQPEmeAACQdYohAABNlMIFUM4UWAAAKCe2yQIAAAAAADJNMgQAoEQkOwBqJlkCAEAxSYYAAAAAAACZJhkCAFAP0h0A5UeqBACA6iRDAAAAAACATJMMAQCaPekOAFaRKgEAyCbJEAAAAAAAINMkQwCATJHyAKCxSZMAAJQ/yRAAAAAAACDTJEMAgLIl5QFAVkmTAAA0LskQAAAAAAAg0yRDAIBGJe0BALUjRQIAUH+KIQBAvSlwAEB5UDgBAEhnmywAAAAAACDTJEMAgLWS+gCAbJEeAQCaI8kQAAAAAAAg0yRDAKAZkvYAAAohRQIAZIVkCAAAAAAAkGmSIQCQIRIfAEApSJAAAOVOMgQAAAAAAMg0yRAAaCKkPgCApkx6BAAoJckQAAAAAAAg0yRDAKAMSH0AAEiPAAANRzEEABqBYgcAQP0plgAAdWWbLAAAAAAAINMkQwCgnqQ+AADKh/QIAJBGMgQAAAAAAMg0yRAAKID0BwBA0yc1AgDNl2QIAAAAAACQaZIhABCSHwAASI4AQJZJhgAAAAAAAJkmGQJAsyH9AQBAXUmNAEDTJhkCAAAAAABkmmQIAJki/QEAQGOTGgGA8icZAgAAAAAAZJpkCABNiuQHAABNjeQIAJSeYggAZUfBAwCA5kKhBAAah22yAAAAAACATJMMAaDRSX4AAEBhJEcAoDgkQwAAAAAAgEyTDAGgQUmBAABAcUmLAEDtSYYAAAAAAACZJhkCQL1IfgAAQHmRHAGAfJIhAAAAAABApkmGAFAwKRAAAGiapEUAaO4kQwAAAAAAgEyTDAEgjwQIAAA0DxIjADQXkiEAAAAAAECmSYYANFPSHwAAwNpIjQCQJYohABmn6AEAABSTIgkATZFtsgAAAAAAgEyTDAHIECkQAACgFKRFACh3kiEAAAAAAECmSYYANEESIAAAQFMgMQJAuZAMAQAAAAAAMk0yBKDMSYEAAABZIi0CQClIhgAAAAAAAJkmGQJQJiRAAACA5kxiBICGJBkCAAAAAABkmmQIQAlIgQAAAKybtAgAxSIZAgAAAAAAZJpkCEADkgABAAAoPokRAGpLMQSgCBQ9AAAASk+RBICa2CYLAAAAAADINMkQgDqSBgEAAChfUiIArEkyBAAAAAAAyDTJEIB1kAABAADIDokRgOZJMgQAAAAAAMg0yRCANUiBAAAAND/SIgDZJxkCAAAAAABkmmQI0KxJggAAAFCdpAhA9kiGAAAAAAAAmSYZAjQLEiAAAADUl8QIQNMlGQIAAAAAAGSaZAiQWdIgAAAANBQpEYCmRTEEaPIUPQAAACgXiiQA5ck2WQAAAAAAQKZJhgBNjiQIAAAATYWkCEB5kAwBAAAAAAAyTTIEKGtSIAAAAGSNtAhA45MMAQAAAAAAMk0yBCgrkiAAAAA0N5IiAA1PMgQAAAAAAMg0yRCgpCRBAAAAoCpJEYDikwwBAAAAAAAyTTIEaDRSIAAAAFA30iIA9aMYAjQYxQ8AAABoGIojALVjmywAAAAAACDTJEOAopIGAQAAgMYlJQKwbpIhAAAAAABApkmGAPUiCQIAAADlRVIEIJ9kCAAAAAAAkGmSIUCtSIIAAABA0yIpAiAZAgAAAAAAZJxkCLBWkiAAAACQLZIiQHMkGQIAAAAAAGSaZAiwmhQIAAAANE/SIkDWSYYAAAAAAACZJhkCzZgkCAAAAJBGUgTIGsUQaEYUPwAAAIC6UBwBmjrbZAEAAAAAAJkmGQIZJw0CAAAAFJOUCNAUSYYAAAAAAACZJhkCGSMJAgAAADQmSRGgKZAMAQAAAAAAMk0yBJo4SRAAAACgnEiKAOVIMgQAAAAAAMg0yRBooiRCAAAAgHImIQKUE8kQAAAAAAAg0yRDoAmRBgEAAACaIikRoNQkQwAAAAAAgEyTDIEyJgkCAAAAZJGkCNDYFEOgjCh+AAAAAM2R4gjQ0GyTBQAAAAAAZJpkCJSYNAgAAADA/yclAjQEyRAAAAAAACDTJEOgkUmCAAAAABROUgQoBskQAAAAAAAg0yRDoJFIhAAAAADUnYQIUB+SIQAAAAAAQKZJhkADkQQBAAAAaDiSIkBtSIYAAAAAAACZJhkCRSQNAgAAAND4pESAdZEMAQAAAAAAMk0yBOpBEgQAAACg/EiKANUphkAdKIIAAAAAlD9FEWAV22QBAAAAAACZJhkCBZAEAQAAAGj6JEWg+ZIMAQAAAAAAMk0yBGogDQIAAACQXVIi0LxIhgAAAAAAAJkmGQLVSIQAAAAANB8SItA8SIYAAAAAAACZJhlCsycJAgAAAMAqkiKQTZIhAAAAAABApkmG0GxJhAAAAABQEwkRyBbFEJoVBRAAAAAAakthBJo+22QBAAAAAACZJhlCsyARAgAAAEB9SYhA0yUZAgAAAAAAZJpkCJkkCQIAAABAQ5MUgaZDMgQAAAAAAMg0yRAyRSIEAAAAgMYmIQLlTzIEAAAAAADINMkQmjxpEAAAAADKhZQIlCfJEAAAAAAAINMkQ2iyJEIAAAAAKFcSIlBeJEMAAAAAAIBMkwyhyZAEAQAAAKCpkhSB0lIMoewpggAAAACQFYoiUBq2yQIAAAAAADJNMoSyIwkCAAAAQHMhKQKNQzIEAAAAAADINMUQyopUCAAAAADNifth0DgUQwAAAAAAgEzTM4SyoAIOAAAAQHOnfwg0HMkQAAAAAAAg0yRDKAlJEAAAAABYO0kRKB7JEAAAAAAAINMkQ2hUEiEAAAAAUDsSIlB/kiEAAAAAAECmSYbQKCRCAAAAAKB+JESg7hRDaDAKIAAAAADQMBRGoHZskwUAAAAAAGSaZAhFJxECAAAAAI1DQgQKIxkCAAAAAABkmmQIRSMRAgAAAAClISECaycZAgAAAAAAZJpkCPUmEQIAAAAA5UFCBNJJhgAAAAAAAJkmGUKtSYIAAAAAQNMgKQKfkwwBAAAAAAAyTTGEWpEKAQAAAICmw/08+JxiCAAAAAAAkGl6hlAQFWQAAAAAaNr0D6E5UwxhrRRBAAAAACBbFEVojmyTBQAAAAAAZJpkCKkkQgAAAAAg2yREaE4kQwAAAAAAgEyTDKEKiRAAAAAAaF4kRGgOJEMAAAAAAIBMkwxp5iRBAAAAAIA1SYqQRZIhAAAAAABApimGNGNSIQAAAABAde4bkkWKIQAAAAAAQKbpGdIMqewCAAAAAIXQP4SskAwBAAAAAAAyTTKkGZEIAQAAAADqQkKEpk4xpBlQBAEAAAAAikFRhKbKNlkAAAAAAECmSYZkmEQIAAAAANAQJERoaiRDAAAAAACATJMMySCJEAAAAACgMUiI0FRIhgAAAAAAAJkmGZIhEiEAAAAAQClIiFDuJEMAAAAAAIBMUwzJCKkQAAAAAKBU3J+k3CmGAAAAAAAAmaZnSBOn4goAAAAAlBP9QyhHiiFNlCIIAAAAAFDOFEUoJ7bJAgAAAAAAMk0ypImRCAEAAAAAmhIJEcqBZAgAAAAAAJBpkiFNhEQIAAAAANCUSYhQSpIhAAAAAABApkmGlDmJEAAAAAAgSyREKAXJEAAAAAAAINMkQ8qURAgAAAAAkGUSIjQmyRAAAAAAACDTFEPKkFQIAAAAAJB17oPSmBRDAAAAAACATNMzpIyohAIAAAAAzZH+ITQ0xZAyoAgCAAAAAKAoQsOxTRYAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZpmdICekVAgAAAACQT+8Qik0yBAAAAAAAyDTJkBKQCAEAAAAAWDcJEYpFMgQAAAAAAMg0yZBGJBECAAAAAFB7EiLUl2QIAAAAAACQaYohjUQqBAAAAACgbtxfpb4UQwAAAAAAgEzTM6SBqVgCAAAAABSP/iHUhWQIAAAAAACQaYohAAAAAABAptkmq4HYHgsAAAAAoOHYLovakAwBAAAAAAAyTTKkyCRCAAAAAAAaj4QIhZAMAQAAAAAAMk0ypEgkQgAAAAAASkdChLWRDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDT9AypJ71CAAAAAADKh94hpJEMAQAAAAAAMk0ypI4kQgAAAAAAypeECGuSDKkDhRAAAAAAgPLmPi5rUgwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0zRQrwV7zAEAAAAAND2aqSMZAgAAAAAAZJpkSAEkQgAAAAAAmj4JkeZLMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBM0zNkLfQKAQAAAADIHr1Dmh/JEAAAAAAAINMkQ1JIhAAAAAAAZJ+ESPMhGQIAAAAAAGSaYggAAAAAAJBptslag+2xAAAAAACaH9tlZZ9kCAAAAAAAkGmSISERAgAAAACAhEiWSYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQac2+GKJfCAAAAAAAEe4XZ1mzL4YAAAAAAADZphgCAAAAAABkWi5JkqTUiygFcScAAAAAAGoyunJkqZdAEUmGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGnNrmeIXiEAAAAAABRK75BskAwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg05pNzxC9QgAAAAAAqCu9Q5o2yRAAAAAAACDTMp8MkQgBAAAAAKBYJESaJskQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyLTMNlDXOB0AAAAAgIaikXrTIhkCAAAAAABkmmIIAAAAAACQaYohAAAAAABApmWyGKJfCAAAAAAADcl96KYlk8UQAAAAAACAVRRDAAAAAACATFMMAQAAAAAAMi2XJElS6kUUiz3aAAAAAABobKMrR5Z6CayDZAgAAAAAAJBpiiEAAAAAAECmZWKbLNtjAQAAAABQarbLKl+SIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECm5ZIkSUq9iLoaWDG01EsAAAAAAIAqRleOLPUSqEYyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMi0XJIkSakXUVsDK4aWegkAAAAAALBWoytHlnoJ/JdkCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRak2qgrnE6AAAAAABNjUbqpScZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGRaLkmSpNSLWJeBFUNLvQQAAAAAAKiX0ZUjS72EZksyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTyr4YMrBiaKmXAAAAAAAA9eZ+d+mUfTEEAAAAAACgPhRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgEzLJUmSlHoRaQZWDC31EgAAgKYoSeI38Xj0j9kREbEyIk6PgfFebr21nnZr8lD0jEWrHz8Sm8avcrs35EppJL635e+65NHYJj6NiIjlkYvTY2B8kOtc4lUBQMMaXTmy1EtoVlqWegEAAADFNDDeX10IiYh4JPqusxDS3LVPlsc2MSd6x8LoGMuiMnKxMFrHh9ExJsQGsSzXotRLpMQa+j1yc/SPq+PJiIhoFUmcGePjwti/GEsHAIgIxRAAACBD2ifL45R4bfXjJdEi/hzbl3BF5W3n5OP4ckyKXWJmtIz0TQOWRkWMSTaKkbFVTMqt38grpNQa6z3ySq57PJ/0jD1iRkRE7BozY99kajyd27jOawcAWJNiCAAAkBlfjQmxfixd/XhU9IvZuXYlXFF5ap8sj/NiXOwfH63zuW2iMg6MqbF/TI37ks3jxtgxVuS0n8y6UrxH/hrbri6GREScEq/Hs8lGUen9BgAUgX9RAAAAmdAlWRJDYvLqx8sjFyNjqxKuqDx1SZbE/8ZjBd3kXlNFRAyJd2J4PBVtkhUNszjKQqneI2/lNojxseHqx71jYRwW79V6HgCANJIhAABAJnwtJkS7WLn68aOxaczKtS/hispPq2Rl/DyeiU1jQd6xD6NjPBEbx/ToGLmI6BUL48CYGr1jYZXn7RSz4sJ4Pi6LLzTSqmlMpX6P3BFbx04xa/XjE+KtGJ1sGsv1rQEA6kkxBAAAaPI6JUvjsJhSZez+2KxEqylfJ8frsVV8WmVseeTiutg5RkW/iFyuyrE/J9vH4JgSZ8fLVfpF7BvT4sjknXggt3mjrJvGU+r3yLjoEdOiQ2wUn0VERPdYHF+MD+Nf0bduLwgA4L9skwUAADR5R8W7VVIhk6KLZt/V9EnmV9lGbJUrYu8Yldss7yZ3RESSy8VDuc3i8tg779hJ8Xp0TJY1yFopjbJ4j+Ry8XC1wsex8Xbt5gAASKEYAgAANGkVSWUcHe9UGXs4+pVoNeXrqzGhyif3IyIejH4xJrfROs8dk9soHqr2Ne0cy1NvnNN0lct75F/Rd43SZsRmMS92SmbWeh4AgDUphgAAAE3aHjEjNoglqx+vjIinonfpFlSGOibL4oCYWmVseeRiRGxf8BwjYvtYEVWTAYfHlMglSQ1n0JSU03tkTq5dvBHdqowdqpE6AFBPiiEAAECTNjDer/L4jegWc3NtS7Sa8rRvfBSto7LK2LPRu1Zfp09zbePZqJoQ2DAWR/81ml03dX2S+XFQ8kF8OZkUX00mxGHJlNgtmRFtkxWlXlqDK7f3SPWC5j7xUbP4PgAADUcDdQAAoMlqm6yIPWN6lbGx0atEqylfu8eMvLEn65CeeSo2jv3joypje8SMeDW613ltpdYyqYyjY3IMiXei13+bdle3JFrE80nP+GtsG1NyXRp3gY2k3N4jY2Oj+E68svpxu1gZX4hp8Vj0qfWaAAAiyrAYMrBiaKmXAAAANBE7x8xoU+3T7K/EhiVaTfnaIT7JG6u+DVEhXks5J23upqJXsjAui2ejX8xf6/PaxsrYPz6KL8S0GJlsFbfEDpGkNBNvysrtPTIj1yFmJO2jZyxaPbZnTFcMASBTVt0LH105ssQraR5skwUAADRZ1T/N/lm0jMnRtUSrKU8bJItj/VhaZezjaB+zc+1qPdfsXLv4ONpXGdss5kVFE+wb0jP5LK6J/6yzELKmlpHE8TExLogXMtUrpVzfI9ULm7vGx5n6ugMAjavskiEAAACFGlCtF8E70SUqM/aJ/frqk3Kzf1p0qPN806JD9Fjj0/rtYmVsGIvi43rM2dhaRGVcEmOqFAA+jI7xdPSO6dExFkfL6BpLon98EnvE9Lz00cD4IBZG6/h97NTIK28Y5foemRjrx6Fr9ARaL5ZFv5gX70aXOq8NAGi+FEMAAIAmqV2yPDaOBVXG3o31Gn0dg5L34oIY1+jXjYiYEe3jxNzha33OmjelV6lP4WJWtU/9R0T0is+aVDFk3/hodYFjQbSK/4sdY3Sub97z7o4tY4NkcXw3Xoq9q/WmOSYmx9PJRvFqbt29MLxH6vYeSft53jo+VQwBAOrENlkAAECTtGXMjRbVxt4rQTGk3K0fS/LGZkXttz9aZWbKuV1TrlHOVhVCPouWcWHsl1oIWWV2rl1cEl+Ix2KTKuMVEfH9eCkT2zaV63tkSsrP81Yxp05rAgBQDAEAAJqk3tVSIRGR16uAiE6xLG9scT02CViScm7nlGs0BdfHTjEpt/46n5fkcvGr2D0+jI5VxjeOhbFHtcRIU1Su75FFuVaxIFpVGds4FtZ5XQBA82abLAAAoEnqmbK1zyf1+DR7XS2I1vFOiRIpswt4vW1jZd7YsrxMTeGWppzbJuUa5W5idI3RsWnBz1+Rq4gbkwHxs3i2yviR8W48Fxut9Vzvkbq/Rz6JdtEplq9+3CM+q/O6AIDmTTEEAABokrrF4ryxT6Nto69jTG6jGLOOm+Gl1KJa8++I4t/obplyjXI3KvpF5HK1Ouf56BUzo110X+O9t3PMjBZJZazM1bzxgvdI3d8jc6Jt9FujwfuGKT/3AACFsE0WAADQJLVf49Piqyypxw3c5qR+XS7yCwi5es5YCs/UoTiR5HJ5RY02URmbx9wirap8lMt7pPqWWy0jidZJ00siAQClpxgCAAA0ScXe2ierVqb8b199trVqnXLuiib2v5azol3MzdUtRfR2dMkb2yo+reeKSquc3yNpP9NtY0Wd5gIAmrem9S9WAACA/6qo9knzyvj8k/tUlZaWSbtZXai0m+RpDbPL2dRqjdBr48PolDfWJZbWZzklV87vkZUpKZMWTTCJBACUnmIIAADQJFXvS1ARES2Tpte7oqEtiNZ5Y+3q8cn6tHPnp1yjnH0WrYp6boeULduaknJ+j6QVZdJ6kgAArItiCAAANHMVyed78FckTevT1sX+NHtWpTWVT2s+X6gNY1FB1yhn9UmypJ3bvolv21TO75EsJJEAgPLgXxAAANDMdE6WxsHxQewQn8SW8Wn0WuPG5fSkfbwdXeP16BaPRp+Yn2tTwpWu3dyUm6udY1ksqsen/uti72RafDPeaNRrrjI72sVPcvuu9Tkzon3eWI+Um9WF6p5y7ozoUOf5SqE+PSfSzl20jv+19h6p+3ukUyyr8nh+tI5K2+EBAHWgGAIAAM3EhsmiGBZvxIHxYbSO9O2kesWi6BWLYv/4KE6J1+LxZJMYEdvHrFz+zdJSm5lyA7dbLGr0G/OdYllsHvMa9ZqrFLI9U1qPi41iYZ2v2Ss+q/J4SbRI/V6Us/psa5V27rq23fIeqft7pHpC5eMm9l4DAMqHbbIAACDrkiQGJ+/GH+KRGBTv11gIqa51VMageD/+EI/E4OTdiDLbRmt6StFjw3ps7ZNVn+Tax6dRNeHTMxbF+kntv1YbJIujZ7VP/b8b6zW5T+r3rseN/k1Szp0b5ZugKkS5vkdySRLrx5IqY00thQQAlA/FEAAAyLCKJIlz48U4N16KDnXcGqhDrIhz46U4N14sq74i78Z6eWMbx4ISrKT8vRbd8sZ2iNm1nmf7+KSguctd91gcXZIl635iii3j07yxSdG1vksquXJ8j2wUC6NlVP2dk/ZzDwBQCNtkAQBAViVJfC9ejMHxXiQRUZ/P7icRMTjei4iI3yS7RpRBEmB6rmPMT1pH5zV6CvSL+Y2+jkdyfeOR6Nvo162NcdEz9o+PqoztF1Pjydi4VvNUnyMi4oXoWa+1lcoXYlo8FJvV6pxcksTeMa3K2NKoiHeiy1rP8x6p23skbWuxiRkoPAEApSEZAgAAGTU4phSlEBL/PX9VQWRVUaQcTIj1qzzeLOaWZiFl7unoHcuq/e/fPvFRrdIRXZIl8YVqN7o/ibbxamxYlDU2tsExpdbn7B4zonu1rdheju6xMtf0/9e6HN8j1X+eKyNiYrWfeQCAQjX9f7EBAAB5NkwWxWnxakTUvxCyyqp5TotXYsNk0Vqf21jGRY8qj3vHZ3Xqc5B1C3Kt8z7h3yqS+Ea8WfAc34w3o1W1LYsejM0iKYOUUF1sE5/GIcn7BT+/RVK5+mdqTQ/UMl1SrsrxPdK/2pZbb0fXmJ9r2v1ZAIDSUQwBAIAMGhZv1LlHyLp0iBUxLN5okLlr6/mU7Xd2jFklWEn5uz22jpXVSmNHxLuxZzKthjP+v72SaXFkvFtlbEG0intji4KvPyCZGaOTu6r8uTV5qODzG8JZ8XJskeT3AMmTJHFejIs+1XrSfBQd4/no1UCra3ylfo+sqXWyMraJOVXG0n7eAQAKpRgCAAAZ0zlZGgfGhw16jQPjw+icLG3QaxTio1yneD86VRnbJWaWaDXl7f3cenFvbF5lrCIiLokxcVgyJSJJ8k9KkhicvBsXx5i8QyNi+1iQa91Aq21YS//7v8IdYkX8Mp6Mg9eSEFk/WRyXxpgYGB9UGa+MiN/GLk02GZOmnN4j/WNWtI7KKmPPxkZ1mgsAIEIDdQAAyJyD44O8m4jF1joq4+D4IO6OLRv0OoV4NPrEyWskVfaOaVGRVEZlBvo4FNvN0T8GxCexxRq9GFpFEufFizE0JsUTycYxPTpELiJ6xWdxYHwYG8fCvHnGRK+4r9pN86bk6egdfWN+bB7zonMsjwvjhfhaMiGeiY1iWnSMxdEy1o8lsUN8EnvEjGgbK/PmuDe2iFdy3Uuw+oZVLu+Rfav1HpkSnWNyTvN0AKDuFEMAACBjdqi2z35DXqcciiH/jk1jWLyxOva+XiyLHWNWvFytnwgRy3Mt4sfJvnF1PJG35VOfWBAnxlvrnOPV6Ba/iD0jmnAiYmVUxKXxhbg2Hov14/OEU59YEH1iYkHn/zv6xP/Fjg25xJIph/dILklin6i6Nde/Y9M6zQUAsIqPSgEAQMZsGQX0QCjKdeY2ynXWZVaufTxXrW/DwdW2NOL/+zTXNr4bB8XTtdxyqDIi7o/N4sLYL5bkav+5ui6xLG/svehc63mKZUauQ5wbB+Zts7Y2KyIXt8fW8avYPVPbY1VXqvfIKrvEx9E1/v82fMuiIh5RDAEA6kkyBAAAMqQiSaJXLGqUa/WKz6IiSaKyDG4K/yO2jL1j+urH+8fU+H2yUyzKtSrhqsrXwlzruCy+ELsmM+K4eDt2iZnRIlL6QcTnN6LHRq+4I7aOSbn163zNHVN6udwa29V5vmL4KNcpzkgOiSExOY6Jd6JHDT87S6Mino9e8dfYNt7NdWncRZZIKd4jqxweU6o8fjT6xNxc23rPCwA0b4ohAACQIS0buFdI2vWWRYtGvWaaV3LdY1LSJbb6b1qlXayMgfF+3BtbFDzHibnDG2h15evFXM94MXpGh2RZbBtzYqNYGB1ieURELIjW8WF0igmxfiytx6f8V9kpZlV5/Gz0KsqN80Ks7Xu7PNciRsbWMTK2jr7JvNgs5sUGsThaRmXMjbYxK9rFG7FBLG6mhbXGfI9ERHRJlsTea2yRVRmfFzsBAOpLMQQAADJkRSPvhNvY11ubv8Z2cXk8u/rxkJgc9yWbZ3o7o2L5LNc6xkXPBpt//WRxlf4TlRHxl9i+wa5XV+/l1ov3Yr1SL6MsNfR7ZJVj4p1otUYC5enoHe/nfE8AgPorn/9zAQAA6q0yl4vp0b5RrjU9OpTFFlmrjMltFG/F/08abBwLY7+YWsIVsUr1VMjT0TveaSbbTVG4tsmKODomr368MnIxogyLZgBA06QYAgAAGfN2dG2k63RplOvUxh9jhyqPj4+JEUl6nwMaz05r9AtZGaXvFUJ5OjLeic7/3YIrImJ0bBof5jqXcEUAQJYohgAAQMa8Ht0ydZ3aeCXXPZ6M3qsfbxFz40DpkJJbMxnyZGwS79n2iGraJ8vjqzFx9ePPomX8qVpxEwCgPhRDAAAgYx6NPrGsgf+pvywq4tHo06DXqKsbYsdYvEZT95Pi9WiZNG5jef6/7sln0Ss+i4jPtz26NbYt8YooR1+JibFeLFv9+M+xfXyaa1vCFQEAWaOBOgAAZMz8XJt4PNkkBsX7DXaNx2OTmJ9r02Dz18esXPsYnuwZW8Snq8d6xGfxUXQq4aqar5m5DjEwvlzqZVDmFkar+Mt/C2UroiLujc1LvCIAIGsUQwAAIINGxPaxT3wUHWJF0ef+LFqWfVPjMbmNYkxsVOplAAUamdu61EsAADLONlkAAJBBs3Lt48YYEBERxWofvmqeG2PHmJVrX6RZAQAAGp5iCAAAZNSo6Bejom/kov4FkSQichExKvrGqOhb77UBAAA0JsUQAADIqlwuroldVxdE6jVVfF4IuSZ2jcjVdzYAAIDGpWcIAABkWGUuF79Jdo23YoM4LV6pUw+Rz6Jl3Bg7fp4IUQgBAACaIMUQAADIulwuRkW/GJf0iGHxRhwYH0brqFznacuiIh6PTWJEbK9HCAAA0KTlkiQpVj/FohhYMbTUSwAAgEzrnCyNg+OD2CE+iS1jbvSKz1Yfmx4d4u3oEq9Ht/h39IkFuTYlXCkAAGTf6MqRpV5CsyAZAgAAzcz8XJu4O7aMu2PLiIioSJJoGZWxIiqi0jZYAABABimGAABAM1eZy8WyaFHqZQAAADSYilIvAAAAAAAAoCEphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApuWSJElKvYg0AyuGlnoJAAAAAADQIEZXjiz1EpoVyRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADItlyRJUupFrM3AiqGlXgIAAAAAABTF6MqRpV5CsyQZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpZV8MGV05stRLAAAAAACAenO/u3TKvhgCAAAAAABQH4ohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKblkiRJSr2IQg2sGFrqJQAAAAAAQK2MrhxZ6iU0e5IhAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKblkiRJSr2I2hpYMbTUSwAAAAAAgLUaXTmy1EvgvyRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINOaZAP1VTRSBwAAAACg3GicXn4kQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMyyVJkpR6EfU1sGJoqZcAAAAAAEAzN7pyZKmXQA0kQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMyyVJkpR6EcUysGJoqZcAAAAAAEAzM7pyZKmXwDpIhgAAAAAAAJmmGAIAAAAAAGRaprbJWsV2WQAAAAAANDTbYzUdkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkWiaLIfZpAwAAAACgIbkP3bRkshgCAAAAAACwimIIAAAAAACQaYohAAAAAABApuWSJElKvYiGNLBiaKmXAAAAAABARugV0jRJhgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmZb6B+ioaqQMAAAAAUFcapzdtkiEAAAAAAECmNZtkyCoSIgAAAAAAFEoiJBskQwAAAAAAgExTDAEAAAAAADJNMQQAAAAAAMi0ZtczZBW9QwAAAAAAqIleIdkiGQIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmNdueIavoHQIAAAAAwCp6hWSTZAgAAAAAAJBpiiEAAAAAAECmNftiiMgTAAAAAAAR7hdnWbMvhgAAAAAAANmmGAIAAAAAAGSaYggAAAAAAJBpuSRJklIvolwMrBha6iUAAAAAANDI9ArJPskQAAAAAAAg0yRDUkiIAAAAAABkn0RI8yEZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKbpGbIWeocAAAAAAGSPXiHNj2JIARRFAAAAAACaPkWQ5ss2WQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaniG1oHcIAAAAAEDTo1cIkiEAAAAAAECmSYbUgYQIAAAAAED5kwhhFckQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xpA7sMwcAAAAAUN7cx2VNGqjXk2bqAAAAAADlQxGENJIhAAAAAABApkmGFImECAAAAABA6UiEsDaSIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaniFFpncIAAAAAEDj0SuEQkiGAAAAAAAAmSYZ0kAkRAAAAAAAGo5ECLUhGQIAAAAAAGSaZEgDkxABAAAAACgeiRDqQjIEAAAAAADINMUQAAAAAAAg02yT1UhslwUAAAAAUHe2x6I+JEMAAAAAAIBMUwxpJKqWAAAAAAB14/4q9aUYAgAAAAAAZJqeISWgfwgAAAAAwLpJhFAskiEAAAAAAECmSYaUkIQIAAAAAEA+iRCKTTIEAAAAAADINMmQMiAhAgAAAAAgEULDkQwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg0/QMKSN6hwAAAAAAzZFeITQ0xZAypCgCAAAAADQHiiA0FttkAQAAAAAAmaYYUoZUQwEAAACArHMflMakGAIAAAAAAGSaniFlTv8QAAAAACBLJEIoBckQAAAAAAAg0yRDmggJEQAAAACgKZMIoZQkQwAAAAAAgEyTDGliJEQAAAAAgKZEIoRyIBkCAAAAAABkmmRIEyUhAgAAAACUM4kQyolkCAAAAAAAkGmSIU2chAgAAAAAUE4kQihHiiEZoSgCAAAAAJSSIgjlzDZZAAAAAABApimGZISqKwAAAABQKu5PUu4UQwAAAAAAgEzTMySD9A8BAAAAABqDRAhNhWQIAAAAAACQaZIhGSYhAgAAAAA0BIkQmhrJEAAAAAAAINMkQ5oBCREAAAAAoBgkQmiqJEMAAAAAAIBMkwxpRiREAAAAAIC6kAihqVMMaYYURQAAAACAQiiCkBW2yQIAAAAAADJNMqQZkxABAAAAANJIhJA1kiEAAAAAAECmKYY0Y6q7AAAAAEB17huSRYohAAAAAABApukZQhX6iAAAAABA8yIJQnMgGQIAAAAAAGSaZAipJEQAAAAAINskQmhOJEMAAAAAAIBMkwxhrSREAAAAACBbJEJojiRDAAAAAACATJMMoSASIgAAAADQtEmE0JwphlAriiIAAAAA0LQogoBtsgAAAAAAgIxTDKFWVJEBAAAAoOlwPw8+pxgCAAAAAABkmp4h1Js+IgAAAABQHiRBIJ1kCAAAAAAAkGmSIRSNhAgAAAAAlIZECKydZAgAAAAAAJBpkiEUnYQIAAAAADQOiRAojGQIAAAAAACQaZIhNBgJEQAAAABoGBIhUDuSIQAAAAAAQKZJhtAopEQAAAAAoH6kQaDuFENoVIoiAAAAAFA7iiBQf7bJAgAAAAAAMk0yhJKQEAEAAACAtZMIgeKRDAEAAAAAADJNMoSyICkCAAAAQHMnCQINRzIEAAAAAADINMkQyoqECAAAAADNjUQINDzJEAAAAAAAINMUQygrquAAAAAANCfuh0HjUAwBAAAAAAAyTc8Qyp4+IgAAAABkhSQIlIZkCAAAAAAAkGmSITQZEiIAAAAANFUSIVBaiiE0WYojAAAAAJQrxQ8oL7bJAgAAAAAAMk0yhCZPQgQAAACAciERAuVJMgQAAAAAAMg0yRAyRUoEAAAAgMYmDQLlTzIEAAAAAADINMkQMklCBCiWyn13qvK44unxJVkHAAAA5UciBJoOyRAAAAAAACDTJENoFiRFgPqqnhCJkBIBAABobiRBoOmSDAEAAAAAADJNMoRmRUIEqK+0hEh1EiMAAADZIhECTZ9kCAAAAAAAkGmSITRbUiJAXRSSDKlOUgQAAKDpkQaBbFEModlTFAFqqy4FkVUURgAAAMqbIghkk22yAAAAAACATJMMgWokRYBC1SchsoqkCAAAQGlJgkDzIBkCAAAAAABkmmQI1EBCBChUMRIi1UmMAAAANCyJEGheJEMAAAAAAIBMkwyBAkiJQLZ84ZVlVR4/u2Pres330EcvVXl82FdOrtd8q0iHAAAAFJc0CDRfkiEAAAAAAECmSYZAHUiKQDZUT4hE1C8lUj0hskpdkyKSIQAAAPUjCQKsIhkCAAAAAABkmmQI1IOECGRDWkJklbokRWpKiETULSUiIQIAAFA7EiFAdYohUESKI9A0ra0YkqbQAsnaiiLVFVIkURQBAABIp/gBrIttsgAAAAAAgEyTDIEGIiUCTUtt0yFrWldSpDYJkVXWlhSREAEAAJAGAWpHMgQAykDFzcMipvZqkLk3TLrFl5LDG2RuAAAAgKZAMgQaiaQINA31SYisUj0psq5kSMXNw6LFxT+NZNP3Y8XIEyI2np76vOppkUISIhsm3eLquCQ2ip7x+7gl7s49tM5zAAAAypEkCFAfkiEAUGKVh/0rkk3fj9z7m0bLobcVLSGyZiFkWsyIp+P5oswLAAAA0NRIhkAjkxCBpqEYCZE1XdTt9bU/YWqvaDn0tsi9v+k6EyKrrEqKpCVEqhdCzo/LYlbuk7ouHwAAoGQkQoBikAwBgHKw8fRYMfKEoiREFEIAAAAAqpIMgRKTFIHyNvnWnSMi4hsDnivKfJds+GZERKxMKtOfUIeEyCqH995FIQQAAGjyJEGAhiAZAgDlpB4JEYUQAAAAgHSSIVBGpESg/KxKhqypGCmRVQmR6lYnRmqbEJnaK2btcZdCCAAA0CRJgwANTTIEAMpRbRIi/y2cKIQAAAAApJMMgTImKQLlIy0hUl1dEiM1JUQi/psSWVdCpNrxE96/UiEEAAAoe5IgQGNTDIH/196dx+lc7/8ff85iGGZhGITGvlckoeyEaEqqc7RKjpxKRRJS54iTSBSO0kLpaBcdComy59jJkjXDmLEMY2bMZszM9fujL7+5fK5r5nNts3zmcb/dzu1c877e7/frfV0z1ee6Xp/X+12CkBwBip6ZpMgVriRH8kuK6OR18nvgM/kdj5Kt9gllL3j4z4RIPomSPjVbmY4NAAAAAL5G8gNAUWObLAAAirtap2T79lHZap+Q3/GoPxMgW25x7UwRAAAAAACAUozKEKCEokoEKDquVIdcq6BqEbMVIlfYVYo4QIUIAAAAgKJCNQiA4oTKEAAASopap2Sb+ZJdk23mS1SEAAAAAAAAFIDKEKCEo0IEKDqeVIhccW2liDuVIbZvHzUkRHJsuXY/UyECAAAAoLBQEQKgOKIyBACAkuCaQ9RzF/e/eoaI3wOfSSevK+oVAgAAAAAAFFtUhgAWQ6UIUHi8URnizNHun/z/H65JhFytBHHWno9eNVr6bM0AAAAASicqQQCUBFSGAABQnOWX8Kh1SrZvH6VCBAAAAAAAoABUhgAWR6UIUPi8VTFSZ0tVfTr/AUVdqKgTlZJU66d7HFd+UCECAAAAoBBRCQKgJKIyBACAYqjGuTC7RMjjj33rPMFBhQgAAAAAAEC+qAwBShGqRICi4WqlSI1zYfrijUdU+2wlHa96QQMfXKhT4RcN/fY/8559g4sVIlSHAAAAADCLahAAJR2VIQAAFCPXJkIeHvu5w0SIQ1SIAAAAAAAAOERlCFCKUSkCFB1H1SKOEiHxVVKuPl/2YHCB8+5/5j0qRAAAAAB4jEoQAFZDMgTAVSRHgKITaauiqRqnGqruMBGSl5mkyHXJoeYOX8+DpAgAAABQepH8AGB1bJMFAEARcyURYtap8It6/LFvdaJSkqIuVGTLLAAAAAAAUKpRGQIgX1SLAL7Xz9ZHz+gJxeu0Rmq8EvzOSSr44HVXK0Qm9lyj+W13Xn3OcAD7/6FCBAAAALA2qkAAlEaBRb0AAABKu+/8lkk2aYO2XE2EeMuVCpE7DjSwS4QAAAAAAACUJlSGAHAJlSJA0bu2YsRMhYgZ11aKUCECAAAAWAOVIADAmSEAAAAAAAAAAMDiqAwB4BEqRYDiI/bV230y7/Wv/+qTeQEAAAD4BpUgAGBEZQgAAAAAAAAAALA0KkMAeBWVIkDx4u1qEapEAAAAgOKHShAAKBiVIQAAAAAAAAAAwNKoDAHgM1SJAMWXpxUjVIgAAAAARYtqEABwDZUhAAAAAAAAAADA0qgMAVBoqBQBijd3qkWoEAEAAAAKB5UgAOAZkiEAihQJEqD4M5MkISkCAAAAeA+JDwDwPrbJAgAAAAAAAAAAlkZlCIBihUoRoGRwVi1ChQgAAADgOipBAMD3qAwBAAAAAAAAAACWRmUIgGKNShGgZLlSMUKFCAAAAOAclSAAUPioDAEAAAAAAAAAAJZGZQiAEodqEQAAAABASUEVCAAUD1SGAAAAAAAAAAAAS6MyBECJR6UIAAAAAKC4oBIEAIonKkMAAAAAAAAAAIClURkCwLKoGAEAAAAA+AoVIABQspAMAVAqkBgBAAAAAHiKBAgAlFxskwUAAAAAAAAAACyNyhAApRoVIwAAAACAa1EBAgDWQ2UIAAAAAAAAAJRwderUkZ+fX4H/mzdvXlEvFR4w8zv28/PTmjVrinqpxU5gUS8AAIrStXf7UCkCAAAAAKUPlSDFX1pamrZs2aIdO3bot99+04kTJxQbG6ukpCRlZGQoMzNTwcHBCgkJUWhoqEJDQ1WnTh01atRIjRo1UpMmTXTLLbeobNmyRf1SABQRkiEAAAAAAAAAip3U1FR98cUXWrRokdasWaNLly7l2z8tLU1paWk6c+aMJGnnzp12zwcHB6tDhw7q3r27evXqpZYtW/pq6QCKIZIhAJCHo7uBqBYBAAAAAOugCqT4O3PmjN544w19/PHHSk1N9dq8GRkZWrlypVauXKkxY8aoRYsWGjx4sB599FFVrFjRa3FQ+rz22mum+g0cOFB16tTx6VrgHMkQAAAAAAAAAEUuOztbkydP1uTJk5WWlubzeLt379Zzzz2nl156SWfPnlVoaKjPY8Kaxo8fb6pfly5dSIYUIZIhAFAAZ3cNUTECAAAAAMUXFSAly5EjR/Tggw9q+/bthR47MzNTOTk5hR4XQOEiGQIAAAAAAACgyKxbt079+vVTYmJiUS8FgIWRDAEAN+W9y4gqEQAAAAAoelSDlDyrVq1SdHR0gYejA4CnSIYAAAAAAAAAKHRbt27VvffeSyIEcIHNZivqJZRYJEMAwAs4VwQAAAAACg8VICVfYmKiHnjgAbcPSm/SpIm6deumbt26qX79+qpSpYqqVKkif39/paWl6dSpU4qJidHu3bu1efNmrVmzRsnJyV5+FQBKEpIhAOBDJEkAAAAAwH0kPazrqaee0okTJ1we17lzZ40fP16dO3d22icoKEiVKlVSs2bN1KdPH0lSTk6O1q5dq6+++kpfffWVLl686PbaAZRM/kW9AAAAAAAAAAClx88//6wFC1xLdJUrV05ffPGF1qxZk28ixJmAgAB169ZNH374oeLi4jRz5kzVqlXL5XkAlFxUhgBAEXB0dxPVIgAAAABKM6pASo/Ro0e71D8yMlI//PCD2rRp45X4oaGheu655zRkyBC9//77Gj9+vFvzZGVl6dChQ9q3b5/279+v48ePKz4+XvHx8UpMTFRGRoYyMjJ0+fJlBQUFKTg4WFWqVFGNGjXUsGFD3XTTTWrfvr1uvvlm+fn5eeW1+dLJkyevvtYjR44oLi5O8fHxOn36tNLT05WZmamMjAwFBASobNmyqlSpkqpVq6Z69eqpadOmateunTp06KCQkJBCWe/58+e1atUqbdu2TXv37lVsbKxOnTql9PR0ZWVlKTg4WCEhIapWrZoaNGigxo0bq23btrr99tsVGRnpdN7PPvvM7TWtXLlSJ0+eLLBftWrV1KNHD4fPmf1bWb16tbp06eLK8hzKzc3V9u3btX79eu3cufPq7z4pKUkZGRny8/NTSEiIwsPDVadOHTVo0EAtWrTQ7bffrhYtWiggIMDjNXiLn40TVwCgWCAZAgAAAKA0IxlSOqxZs0Zdu3Y13d/f31+rVq1yaYyrzp8/r/DwcAUGFnzf+IoVK7Ry5Upt3LhR27dv1+XLlz2OX6tWLT3yyCN67rnnVLNmTbfnqVOnjo4fP15gv08++UQDBw4ssN8ff/yhhQsXasOGDfr111917tw5t9d2Rbly5dS7d289++yz6tatm8fzXevy5cv6+uuvNWfOHK1fv165ubluzXPLLbfovvvu05NPPmlIjBRG4qpz585as2aNw+cKKxly8OBBffDBB/r888919uxZt+aoWLGioqOj9cgjj+jOO+90ey3eQjIEAIo5kiQAAAAArISkR+n20EMP6auvvjLdf9y4cXrttdd8tyAXNWnSRAcPHvTJ3OXKldPo0aP16quvmkrMXMvbyZDJkyfr5ZdfdnkdZvXo0UMffPCB6tat65X5vvzyS40dO1YxMTFemU+SvvvuO9177712bVZPhpw+fVqjRo3S559/7nYy6VotWrTQrl27vDKXJzgzBAAAAAAAAIDPZWZm6ocffjDdPzIyUmPGjPHhioqXzMxMjR8/XnfccUepOOB95cqVatWqldauXevRPElJSerbt68efvhhryZCSqOFCxeqWbNmmj9/vtcSIcUJZ4YAQDHH+SIAAAAASiqqQJDX2rVrlZqaarr/008/rXLlyvlwRcXT2rVr1bdvX61cubJYnbfgC0lJSYqOjtbGjRt10003uTz++PHj6tmzpw4dOuSD1ZUukyZN0iuvvCIrbyRFZQgAAAAAAAAAn9u0aZNL/YcMGeKjlRR/q1ev1ptvvlnUyygUqampeuihh5Sdne3SuNOnT6t79+4kQrxg6tSpGjt2rKUTIRKVIQBQIjm7u4qKEQAAAABFgQoQmLF161bTfevVq+fRYeJWMGnSJIcHeFvR/v379dFHH+npp5821T8nJ0f9+/fX0aNHfbwy61uxYoVGjx5d1MsoFCRDAAAAAAAAAPjckSNHTPdt3769D1fiXQEBAWrQoIFuuOEGNWrUSOHh4QoNDVWFChWUmZmplJQUHTt2TNu3b9e2bdtMn8WQmpqqOXPm+PQQc3dUq1ZNN9xwg5o3b64qVaooLCxMYWFhys3NVXp6uk6ePKkDBw5o7dq1Sk5ONj3vjBkzTCdDpk+frnXr1rm89vr166t79+6qV6+eqlSposzMTJ07d06///671q5dq9OnT7s8Z0l28eJFPfHEEy6fDxIcHKwOHTqoXbt2ioyMVIUKFXT+/HmdOnVKv/76q7Zv3+5ypU9hIBkCABbC+SIAAAAAfI0qELjDZrPpxIkTpvu3aNHCh6vxXEREhO655x7de++96tGjh8qXL29qXFxcnMaPH6+PPvrIVP+vv/66yJMh/v7+6tq1q/r27au+ffsqKirK1LjLly9r/vz5GjlypC5cuFBg/4MHD2rXrl1q2bJlvv0SExM1fvx4U2u44rbbbtOkSZPUuXPnfPtt3rxZs2bN0jfffKOsrCyHfRxtJeXn52dqHatXr1aXLl1M9S0MkydP1qlTp0z3L1++vEaOHKkRI0YoPDzcab+UlBR9+umneu+993TgwAFvLNUrSIYAAAAAAAAA8KnU1FRlZmaa7h8REeHS/Pv27dPOnTtdXZad+vXr67bbbsu3T+3atfXMM89o8ODBphMgedWsWVMffvihatWqpXHjxhXYf/fu3UpISCiSrbLKli2rwYMHa9SoUWrYsKHL48uUKaNBgwapXbt2atOmjdLS0gocs2rVqgKTIbNnz9bFixdNr+Opp57Sv//9bwUGFvxVeNu2bdW2bVu99tpreu6550zHKIlSU1P13nvvme5/3XXXacmSJWrdunWBfcPCwvTcc89p6NCh+uCDD7RgQfFIopMMAQCL43wRAAAAAO6gAgTelJGR4VL/SpUqudT/+++/97iC4vHHHy8wGfLjjz+argLIz9ixYzVr1iwlJCQU2HfHjh3q1auXxzFdNXz4cK+81mbNmmnIkCF65513Cuy7ffv2Avt88sknpmP369dPs2fPNt3/ivr162vZsmUuJfBKmu+++05JSUmm+pYpU0aLFy82lQjJy9/fX08//bSeeOIJN1bofSRDAKCUyu+DDYkSAAAAoHQg4YHCcunSJZf6h4aG+mglnvFGckCSAgMD1a5dO33//fcF9j106FCRJEO89VolqUOHDqaSIYcOHcr3+T179pg+ND0sLExz58411deZcuXKeTS+OPvvf/9ruu/o0aN16623uh2ruLyP/kW9AAAAAAAAAADWFhQU5FL/1NRUH62k+DC7FVh8fLyPV+J73nqtGzZsMB3zySefdLnCqDQx+16WK1dOzz//vI9XUzioDAEAGLC1FgAAAGAtVICgqLl6voaZA7eLA5vNpn379mnjxo1XqxZiY2OVmJiolJQUXbp0SdnZ2R7FSElJ8dJqPZeQkKB169Zp586dOnDggE6cOKGzZ88qKSlJmZmZysrKcnjAuFkFvVZXzoX5y1/4DsOZ+Ph4nT171lTfLl26FMmZNb5AMgQAAAAAAACAT4WEhKhs2bKmt8sq7smQY8eO6d1339VXX32luLg4n8Zy9bwVb8vMzNT8+fM1b948bdq0yaNkR0EKeq3Hjh0zNU9wcLBatWrljSVZktn3UfpzizOrIBkCADDN0d1kVIsAAAAAxQtVICiO/Pz8FBUVpcOHD5vqv2fPHh+vyD2XL1/WmDFjNHPmTI8rPszKzc0tlDiO/PDDD3rmmWcUGxtbKPEKSrSYrWaoVauWypQp440lWZLZ91GS6tat68OVFC7ODAEAAAAAAADgc/Xr1zfdd9OmTT5ciXuSk5N155136u233y60REhRmjFjhvr27VtoiRAz0tPTTfUze0ZJaWX2fZSs9V5SGQIA8EhBd51ROQIAAAB4F5UfKKluvfVW/fjjj6b6Hjx4UAkJCabPKhgzZozGjBnj8LkuXbpo7dq1ptfpzAMPPKBffvnF43lKgs8//1zDhw8v6mUAXkVlCAAAAAAAAACfa9eunem+NptNn3zyiQ9X45qPP/5Yq1atKuplFIqEhAQNGzasqJfhUPny5U31S0xM9PFKSjaz76NkrfeSyhAAgE9xzggAAADgPqpAYCVdu3ZV+fLlTW/R89577+nFF19UQECAj1dWsDfffNN030aNGmnw4MHq1KmT6tevr7CwMAUFBRn6DRw4UJ9++qk3l+kVH330kc6fP2+qb/ny5fX4448rOjpazZs3V2RkpIKDg+Xn52fXb82aNeratavHazNbKRQXF6fs7GwFBvL1tyNm30dJiomJ8d1CChl/DQAAAAAAAAB8Ljg4WH369NG3335rqv/x48f13nvv6bnnnvPxyvL322+/6dChQ6b6/u1vf9P7779v6kt4V85tKExmfz9169bVqlWrVK9evQL7euu1mj3MOz09XTt27FCbNm28EtdqXDkUfcOGDT5cSeEiGQIAKHScMwIAAAD8icoPlDZDhgwx/WW7JI0aNUpdu3bVDTfc4MNV5W/9+vWm+tWoUUOzZ882XY1w7NgxT5blE2lpadq5c6epvv/+979NJUIk773Wli1bmu777bffkgxxombNmoqMjFRCQkKBfdesWaNz586pSpUqhbAy3+LMEAAAAAAAAACFokePHi4lNjIzM9WvX78iTRycOnXKVL/27durTJkypufcsWOHJ8vyCbOvVZJL214tXbrUneUYdOjQwXTfDz/8UElJSV6JW5Dg4GBT/TIyMny8EvPat29vql9GRoZmzZrl49UUDipDAADFTn53x1E1AgAAgJKG6g/A3qRJk3T33Xeb7n/kyBG1a9dOixcvdukQdm8xc/e8JGVlZZmec/z48crNzXV3ST5j9rVKf75eMwdxb9q0ScuXL/dkWVe1aNFCdevWNZUcS05O1pAhQ/TNN9+4HS89Pd3UawwLCzOV6Pj999/Vu3dvt9fjTf369dN///tfU30nT56se+65R61atXIrltn30deoDAEAlCgrcxfk+z8AAACgsHGNCrgmOjpaffr0cWnM2bNn1b59ez3++OOFXiVi9kvcNWvW6MKFCwX2mzdvnj744ANPl+UTrnxh/d133xXYJzY2Vv379/dkSQYDBw403XfBggV67rnnlJOT41KMuLg43X333frpp59M9Y+IiDDV76OPPlJqaqpLa/GVfv36KTw83FTfS5cu6Z577jG9hVpe8+bNU3R0tMvjfIFkCAAAAAAAAIBCNXfuXFWtWtWlMbm5ufrPf/6jRo0aqVOnTnr99de1du1aHTp0SImJicrNzVVmZqZOnTqlLVu2aM6cOXr00Ue1detWj9ZarVo1U/2Sk5P1l7/8RXFxcQ6fv3jxokaNGqVBgwZ5tB5fMvtaJWnEiBH68ccfnT7//fff69Zbb1VsbKw3lnbVM888o5CQENP9Z82apc6dO5s6++X333/XM888o0aNGumHH34wHcPs1m8HDhxQ06ZNNWzYMM2ePVvz58/XZ599Zvc/s9UangoNDdVTTz1lun9cXJw6duyoCRMmKCUlJd++mZmZ+vTTT9WqVSs98cQTSkxM9HS5XsE2WQAAS2GLLQAAAPgCFR6Ad1WvXl1ffvmlevfu7dL2UpKUnZ2t9evXmz7Y3FOuHML9888/q169err//vvVrFkz1ahRQykpKdq5c6d++OGHYvOlsDPVq1dXVFSUTpw4UWDfpKQk9e7dW23btlXXrl1Vu3ZtSX8elr58+XLt2bPHJ2usUqWK/vGPf2j06NGmx2zcuFGdOnVSw4YN1b17d9WrV0+VK1fWpUuXdO7cOR05ckTr1q1TTEyMW2u65ZZbtGCBuf9OnDx5UjNnznT6fO3atXXvvfe6tQ5XjR07Vp9++qlOnz5tqn9aWprGjRunyZMnq1OnTmrbtq2qVq2q8uXLKzExUWfOnNGWLVu0efNmZWZm+nj1riMZAgAAAAAAAKDQdevWTfPnz9dDDz1ULM/PuKJjx44KDw9XcnKyqf5ZWVn68ssvfbwq34mOjtZ7771nuv/mzZu1efNmH67IaMSIEVqyZIk2btzo0rjDhw/r8OHDXl/P3XffrTFjxnh9Xl8LCwvT3LlzFR0dLZvNZnpcRkaGVqxYoRUrVvhwdd7HNlkAgFKDfZwBAACQH64XgcL317/+VQsWLFBwcHBRL8WpMmXKaNiwYV6ds1q1asXmIO1rDRs2TIGB3r2H/oknnvDqfIGBgfrmm29Up04dr87rrmbNmqljx45FvQy39OnTRxMnTizqZRQKkiEAAAAAAAAAisx9992n1atXq27dukW6Dj8/P6fPvfTSS4qKivJKnMDAQH322Wcun5lSWBo1aqTnnnvOa/MNHDhQAwYM8Np8V9SoUUO//PKLGjRo4PW53TF9+nQFBQUV9TLc8vLLL2v8+PFFvQyfY5ssAABU8B7QnDcCAABQ8lHhARRfbdu21e7du/XSSy9pzpw5ysnJKbTYkZGRGjp0qIYOHeq0T0hIiJYuXaoOHTqY3i7LEX9/f82dO1d33HGHPvvsM7fn8bUpU6Zo//79Hm+D1Lt3b3344Ycub2dlVt26dbV582Y99thjWrZsmU9imNWqVSt9+OGHGjJkiMvn4BQH//znP9W4cWP9/e9/9+hvvDijMgQAAAAAAABAkQsNDdX777+vXbt2qV+/fgoICPBZrDJlyujOO+/U119/rZMnT2rcuHGqUqVKvmNuuOEG/fzzz25XsISGhmrhwoU+qZLwtsDAQC1cuFAPPfSQ23MMGjRIixcvVpkyZby4MqOIiAgtXbpU8+fP91r1jrsef/xxbdiwQe3bty/Sdbirf//+2r9/vx5++GH5+1svdUBlCAAAJuR3FyFVIwAAAMUH1R9AyXfDDTdo0aJFOnHihObOnavvvvtOe/bs8XjeGjVqqGvXrurVq5eio6NVqVIll+e45ZZbtGPHDv3jH//Q3LlzlZGRUeAYf39/9evXT2+//XaRf1nvigoVKuiLL75Q7969NWHCBB05csTUuMaNG2vy5Mm69957fbvAazz66KP661//qi+//FIff/yxNmzYoNzcXLfmuvnmm3X//fe7ldS49dZbtWHDBv3222/64YcftG3bNu3fv18XLlxQSkqKMjMz3VrTFa4cdO6OGjVq6PPPP9err76q999/X19++aUSEhLcmissLEzR0dF69NFHvbxK9/jZfP3uAQBgcSRDAAAAig+SIYA1xcbGatOmTdq2bZsOHjyoEydO6NSpU0pLS1NGRoYCAgIUFhamsLAwhYaGqlKlSmrYsKGaN2+u5s2bq1mzZqpRo4ZX15SQkKCFCxdq9erV2rVrl86dO6fk5GQFBwcrMjJSTZs2VadOnfTAAw+ofv36hvEXLlxQWlpagXEqVKjgVuLGm3Jzc7Vs2TKtXLlSGzduVHx8vBITEyVJ4eHhql+/vlq3bq27775b3bt3N1QVXLp0yfQX6rVq1fLKms+dO6dVq1Zp69at2rt3r2JjY3X69Gmlp6fr8uXLKleunEJCQlS1alXVq1dPjRs3Vtu2bdW+fXtVr17dK2uwgtzcXG3dulXr16/Xrl27dPjwYcXFxSkpKUmZmZny9/dXhQoVFBYWptq1a6t+/fpq0aKF2rdvr5tvvlmBgcWnHoNkCAAAhYCECQAAgOdIdAAAAHdZb+MvAAAAAAAAAACAPKgMAQCgGKByBAAAgMoPAADgOyRDAAAoIUiYAACAkoxEBwAAKEpskwUAAAAAAAAAACyNyhAAACyE6hEAAFAUqPoAAADFHZUhAAAAAAAAAADA0qgMAQCgFKKCBAAAmEHFBwAAsAoqQwAAAAAAAAAAgKVRGQIAAPJFFQkAANZCtQcAACiNqAwBAAAAAAAAAACWRmUIAADwGNUjAAAUD1R9AAAAOEZlCAAAAAAAAAAAsDQqQwAAQKGiigQAANdQ7QEAAOA5kiEAAKDYInECALAqEhwAAACFi22yAAAAAAAAAACApVEZAgAALIVqEgBAYaPKAwAAoPijMgQAAAAAAAAAAFgalSEAAKDUo5oEAHAFVR4AAADWRGUIAAAAAAAAAACwNCpDAAAAPEBVCQAUP1R3AAAA4FpUhgAAAAAAAAAAAEujMgQAAKCIUFUCAM5R3QEAAABvojIEAAAAAAAAAABYGpUhAAAAJRSVJQCKMyo7AAAAUJxQGQIAAAAAAAAAACyNyhAAAABcRbUJUDpRxQEAAACrIxkCAACAQkOyBXAPyQoAAADAM2yTBQAAAAAAAAAALI3KEAAAAFga1SjwNqo0AAAAgJKHyhAAAAAAAAAAAGBpVIYAAAAAAAAAAABLozIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFhaYFEvAABQ8uTm5iolJaWolwEAAADAibCwMPn7cw8sAABXkAwBALgsJSVF99xzT1EvAwAAAIATS5YsUcWKFYt6GQAAFBvcIgAAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSODMEAOAVZbZXll92wNWf/fz9lOeH/Nvt2vzyPPR32O6sf952u7HO+l957CxOnoem4puJeWVSE/PZ8g7Le/uCo9dgGFvA63DW10mcAueTZLO7xcLJ6/AzPO00vrOYNmfx87bndeX9dbQOs/N5EP/q++K1mCbaZWw393669tjUulwZ56S/2+9FQWvyZG6zfVyYw9V1yc9m7OPBa3A4Xz5sjsa6GMf5Gh33sfvXqRz0Keh5SX5m5nbabsvTbjO3pmti2v/jb5zv2jn9nfYxxnc2n92/2vM8dja3qXbZ8n3ezGNna/FX/mPzPm8fP9et+fLvb5wzwC5+rsNxAWbiy/F6A5zOmft/MfO0OVmrs3anMfO0O1q7sznyxgmwm9vM+5I3ppM1/t/YAGevzdTrd7JGp32Mj/NequX95ynv44A8fQKc9PHP8w+sf55/AgJkbLfv6+94XJ5rz4spAXp8RKQAAIBzJEMAAF7hd9lffjleTob4O0lS2Jy15xnr5++w3WHywFkcZ4+dfUvm5+TrJofzuPpNqwru4+yx3Rd1BXxjasfVPnmbncS/moxxoW9+SzHT5//+vsx9GWwmpqvxvR3TzccexHE7SePqODlu93oyxEuv09vJENfjF0EyxOmcRZAMcdTHbt2uJkNci1lQMsLpa5aTdqfvi7M+xvfcz1lfJ++F8/gFP3aUDHH1sctJCgfJEPvnXU2G5J8A+LOPX57HxmSIo+eN8zlLQMhxe57fkX0iwcG67ebwM9Ged71y2G6/dkdryjPObo68MfO2F5wkCrB7X4x9nD/vOKFiJhnivE/+yRD7+Hnanbyf9n3ytjv5vfzfY/u+Mjx/bUx/R//xAQAAdtgmCwAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApZEMAQAAAAAAAAAAlkYyBAAAAAAAAAAAWBrJEAAAAAAAAAAAYGkkQwAAAAAAAAAAgKWRDAEAAAAAAAAAAJZGMgQAAAAAAAAAAFgayRAAAAAAAAAAAGBpJEMAAAAAAAAAAIClkQwBAAAAAAAAAACWRjIEAAAAAAAAAABYGskQAAAAAAAAAABgaSRDAAAAAAAAAACApQUW9QIAANZgK5Mr+eX8/wZ/v///2M+Wf7tdm5Nxedv9c5205x3r76TdweO8fe2el+N2p/OZiHllUkfruOaxzcEw82PzDsjL75r/l2wqqK/ZPnnYnLQ7YDe3zUm7HHbJJ76DPk7fz7yPnf3+XezvaC1ei2nisRy0exDH0Z+wy2txd92ePC6sOGZimXmfnfR3/u8Cm7GPk77O5yhgvnzYHI11MY7zNTruY/+vNgd9Cnpekp+ZuZ222/K028yt6ZqY9v/4G+e7dk7nfRzEt3ttBf3bN5/+Jh7brrxWu78b1x7n+a/5NestKL6zuXMdtzvt7/ixf57+/nnm9P+/Pnnn88v7fJ72XKfz/f/HOTLOLUkBTua80p737yDAydzO2p2tJcAujvL0v9LX2PbnOMeP7fv//x8CnLb7OWz3d/C8XZw8q8kb0/n7knesiffi/x47e/1274VdfCf9nbzOABnb7fv6Ox6X59rzYgr3ugIAUBCSIQAAr7h8y/miXgKKKyffbxUXZr4jBwDYM6YlrkluoARzlBnki3YAAFDycUUDAAAAAAAAAAAsjWQIAMBlycnJRb0EAAAAAPngmh0AAHskQwAAAAAAAAAAgKVxZggAwGWhoaGGtvnz5ys8PLwIVgMAAACUbsnJyXrsscfs2hxdswMAUJqRDAEAuMzf31hYGB4erooVKxb+YgAAAAAYOLpmBwCgNOO/jAAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALM3PZrPZinoRAAAAAAAAAAAAvkJlCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNICi3oBAOBNmZmZiouL09mzZ5WQkKD09HRdunRJQUFBCg0NVXh4uBo2bKjq1at7PXZycvLV2BcuXFBmZqaysrIUHByskJAQRUZGqlGjRgoPD/d67LzOnDmjQ4cOKSkpScnJyfL391dYWJiioqLUuHFjlS1b1qfxvcVmsykmJkbHjx9XQkKCMjIyFBAQoAoVKqhatWqqVauWatWqJT8/P6/FzMnJUUxMjGJiYpSSkqK0tDT5+/srJCREFStWVMOGDXXdddd5LV7euCdPnlRMTIySkpJ08eJF+fv7KzQ0VGFhYWrYsKFq1Kjh9bgAAAC+VJTX5vBMYmKijh07ptOnTys1NVVZWVkqX768QkNDVatWLTVs2FBlypTx6RouX76sP/74Q8ePH9fFixeVlpamMmXKKDQ0VBEREWrUqJGqVKni0zUAAKyFZAiAEisnJ0cHDx7U3r17tXfvXh05ckTx8fHKzc0tcGx4eLg6d+6sPn36qFmzZi7HzsjI0N69e7Vnzx7t379fR48e1fnz502NrVWrlnr06KHevXt77YPfxYsXtWDBAv3888+KjY112q9s2bK6/fbb1b9/f7ded2E4ePCgFi9erPXr1ys5OTnfviEhIWratKnatm2rLl26qGrVqm7F3LJli5YuXapNmzYpMzMz374VK1ZUt27ddPfdd6t+/fpuxcvNzdXevXu1bds27dy5U7///ruysrIKjNu+fXv169dPjRo1cisuAACArxTltbmrLly4oAEDBji81hw4cKAGDRrk0/jbt2/XiBEjZLPZDM/NmDFDN998s0/jO3L69Glt3rxZO3bs0O7du5WYmJhv/6CgIDVv3lx33323Onfu7LXESHZ2tjZs2KClS5dqx44dunz5cr79q1atqp49eyo6Otrlm4d27typYcOGebLcfBXV7xIA4JyfzdF/fQGgBDh+/Lgee+wxj+fp1KmTnn/+eZe+SF+8eLGmTZvmUdzAwEA9+OCDGjBggMqVK+f2PAsXLtTcuXOVmprq0rjevXtr+PDhCg4Odju2NyUkJGj69Olav369W+P/9re/6fHHH3dpzMmTJ/XWW29p586dLsfz8/PT3XffraeeekohISGmxsTHx+ubb77R2rVrTSfPHOnQoYNefPFFVa5c2e05AAAAvKkor81d9eqrr2rdunUOn/N1MiQ9PV0DBw7U6dOnHT5f2F+gf/3111q9erX279/v9hxVq1bVqFGj1KZNG4/WcvDgQU2ZMkWHDx92eWxgYKAefvhhDRgwQEFBQabG+DoZMnPmTLVs2dJn8wMAXMeZIQBKvXXr1mnQoEE6cOBAocbNzs7WZ599pmeffVZJSUkuj798+bImTZqkGTNmuJwIkaTly5dr6NChbsX2ti1btmjgwIFuJ0LcsW/fPj355JNuJUKkP7fxWrJkiZ555hlduHDB1Jjdu3dr0aJFHiVCJGnDhg16/PHHtWfPHo/mAQAAKG58fW2+cuVKp4mQwvDuu+86TYQUhXfffdejRIgknT17ViNHjtT777/v9hzr16/X008/7VYiRPrzs9V//vMfjRw5UhkZGW6vw1vKli2rBg0aFPUyAADXYJssAJbh5+en2rVrq27duqpVq5aqVq2q8uXLq0yZMsrIyFBCQoIOHz6sLVu2GC6QU1JS9MILL+iDDz5QVFSUy7GDgoLUoEEDRUVFqVatWoqIiFBwcLD8/PyUnp6uuLg4/f7779q9e7dycnLsxh46dOhqbLN3MUnS9OnTtXz5ckN7uXLl1LZtW7Vo0UKVKlXSpUuXFB8fr02bNhk+XBw5ckSjRo3SrFmzXIrtTatXr9aECRMM74skRUVFqW3btqpWrZoiIiIkSampqTp58qSOHDmivXv3Fri9lCPx8fEaOXKk0tLSDM9VrlxZ7du3V4MGDRQWFqbs7GwlJiZq//79+vXXXw3xYmJi9OKLL+rDDz9UYKB7/1kNCAhQw4YNdeONN6pq1aqqVKmS/P39lZiYqN9//12bNm1Senq63ZiUlBSNGjVK77zzjpo0aeJWXAAAAF8pymtzZ86fP68ZM2Z4bT5XbdmyRd9//32RxXdFtWrVdNNNN6lu3bqqWLGiKlSooNTUVB07dkxbtmzRiRMnDGO++OILBQQE6Mknn3Qp1p49ezRu3DhlZ2cbnqtZs6batWunevXqKSQkRFlZWUpISNCePXu0ZcsWw2eIXbt26Z///KfeeuutAuMGBwd7JWERFxdn+Bvu0qWL6epxAEDhIRkCoMTy8/O7+mV5mzZt1Lx5c1MXnJcuXdK3336rTz75xO6L7bS0NL355puaNWtWgYdyBwQEqHnz5mrXrp1at26tRo0amdon99y5c5ozZ46WLVtm13706FHNmzdPQ4YMKXAOSVq6dKnDD1IdOnTQiBEjHB4kOHjwYK1fv15Tpkyx2x/5wIEDmj17tk9LxJ3ZtWuXXn/9dcOHmNatW2vo0KEFnslx6dIlbdu2TcuWLXMpEfHOO+8YEiFBQUEaMmSI7rvvPqdzJScn69///rd++uknu/YjR47oq6++0qOPPmp6DX5+frr55pvVu3dvdezYUeXLl3fa9+LFi/r000+1YMECu72l09LS9K9//Uvz5s3z+QGWAAAA+SnKa3Ozpk6dqpSUlKs/N2vWzOOqCLNSU1M1ZcqUqz8HBASofv36OnToUKHEN6N69eq688471bNnT9WqVctpP5vNpnXr1untt982VEjPnz9frVu3Nr3VV3Z2tqZNm2ZIhISEhGj48OHq0aOH09//mTNnNGXKFG3dutWuffPmzVq1apXuuOOOfGM3adJEH3/8sal1OnPp0iX169fP0H7XXXd5NC8AwDc4MwRAqbV7926NGDHCcChfYezt+vnnn+uDDz6wawsODtbixYsLPD/k0qVL6t+/v+FQw549e2rs2LHy989/B8SYmBg9++yzdh8E/f399dFHH6lhw4YuvhL3JSUladCgQTp37pxd+7PPPqu//vWvLs9ns9lMfVCOiYnRgAEDDO3/+te/1LlzZ1Oxpk2bpsWLF9u1RUREaNGiRfm+/8uXL9eUKVPUq1cvPfbYY6pZs6apeHnHT5482XDY5jPPPKMHH3zQpbkAAACKE19fm//444964403rv580003qU+fPpo8ebJdP1+dGTJ58mS7G6IGDBigs2fP6scff7TrV9hnhnTq1EmNGjXSE088odtvv92lxNPZs2c1dOhQnTlzxq69bt26+vTTT03N8b///U+jRo2yaytTpoxmzpyp5s2bFzg+JydHY8eO1aZNm+zamzRpog8//NDUGjzx008/6fXXX7drq1Wrlr744gufxwYAuI4zQwCUWi1atNBf/vIXQ/vq1at9HvuRRx4xXNxnZGTof//7X4FjlyxZYkiE1KxZUyNHjiwwESJJderU0QsvvGDXlpubq3nz5hW8cC96//33DYmQoUOHupUIkWT6g5ujc0k6duxoOhEi/Zl8uLJt1xWJiYnat29fvuMaNWqkzz77TGPGjHE5ESL9eei9ozvPVqxY4fJcAAAAxYkvr83PnTunmTNnXv25bNmyGj16tNcqTgqyadMmu0RInTp19PjjjxdK7IJMnDhRc+bMUfv27V1+P6pWraoJEyYYxh07dsx0xYuja/N7773XVCJE+rPCZuTIkYYtfw8cOKCEhARTc3hi6dKlhjaqQgCg+CIZAqBU69mzp6EtJiamUGI7Kts2E3vt2rWGtoceeqjAipK8unfvrrp169q1bdy4UWfPnjU9hyeOHj1qOO+kZcuWbidCXOFof+Pu3bu7NEdwcLA6dOhgaI+Njc13XP369d1KguQ1cOBABQQE2LUdPXrUcEceAABASeOra/MpU6YoNTX16s+DBg3S9ddf7/G8Zly8eNHu/Ap/f3+NGTOm2Gxx2rFjR4/GN23aVLfddpuh/dpKDWeOHz9uaHP12jwyMtJh9VBB1+aeiouL065du+zaAgICdOedd/o0LgDAfSRDAJRqjr6YPn/+fLGNnZGRYdjXOCAgoMD9cB3p0aOH3c+5ublatWqVy/O448svvzRs9TRs2LBCuTvv2n2NJal27douz+NozLUVO75QsWJFNW7c2NB+6tQpn8cGAADwJV9cmy9dutSu+rpp06aFcgPOFTNnzrSrhn7ggQfUrFmzQotfGBwlQ+Lj402NTUpKMrTVqVPH5TU4ujZ3dN3vTUuXLjV8prnttttUuXJln8YFALiPZAiAUi3vIY1XFNZdWo5iF3QI+IkTJwyHC9apUyffw7edueGGGwxtZu/g8kRaWprWrFlj19a4ceMCD0v3FkfvsTu/82tL8Z21+UK1atUMbYWVxAMAAPAVb1+bnz17Vu+++67dXGPGjDFU2frKhg0b7LYzrVmzpp588slCiV2Yqlatamgze5OQo2vzgj4TOeLo78SX1+Y5OTmG814kKTo62mcxAQCeIxkCoFT7/fffDW01atQolNgHDhwwtBW0hZKjO6ccfTFuhqNx+/btc/gh1Js2btxoiOFqKbwnrrvuOkObO9uDORrj6RZYZmVmZhraypYtWyixAQAAfMXb1+bXbo81YMAAw1axvpKSkqKpU6de/dnPz0+jR4+25DXbpUuXDG1mExG+vDb35ee6zZs3G84/rFKlitq2beuzmAAAz5EMAVCqffXVV4a2Nm3a+DxuSkqKw8P2br311gLHXatChQpurSEkJMTQlp2drT/++MOt+czaunWroc3sAYne0KpVK0Pb5s2bXZ7n2sPuy5Qpo5tuusntdbkiLi7O0EY5PgAAKOm8eW3+/fffa8uWLVd/btCggR555BG31+aq6dOn21VH9O3b1+G5FlZw8uRJQ5vZa1NvXJtfvnxZ27dvt2uLiIhQvXr1XJrHFY4+y/Xu3bvQqo4AAO5xvfYQACwgOztbM2fO1LZt2+zaK1as6PDgRm9KSkrS2LFjDXvYtm3btsCzKxzdSeboTiwznI07fvy4mjRp4tacZuzdu9fuZz8/P7stsi5duqRffvlFGzZs0OHDh69+iKxYsaIiIiLUvHlztW7dWm3atHFr24TbbrtN1atX1+nTp6+2LVmyRPfff7+qV69uao6ff/5Zhw8ftmvr2bOnQkNDXV6Pq44dO2Y4BL5s2bKFdpcjAACAt3n72vzMmTN222MFBARo9OjRbm2/5I7169fbncVXrVo1PfXUU4USuyisXbvW0Na0aVNTY++8807NmTNHGRkZV9u++OIL9erVy+HNW458/fXXhs9W/fr189l5hImJifr111/t2vz8/HTXXXf5JB4AwHtIhgAoVU6dOqVNmzZp4cKFio2NtXvOz89PL730koKDg70eNzs7WzExMVqzZo0WLVpkV64vSaGhoXrxxRcLnCcsLMzQ5mjrLDOcHSjoqOrAWzIzMw2HKUZERFw982T9+vWaNm2awz2Gz549q7Nnz+rAgQNauHChqlevrgEDBqhPnz7y9zdf6BgYGKgXXnhBo0ePvtqWkZGhkSNHatKkSbr++uvzHb9+/XpNnjzZ8Br+/ve/m16DJ5YsWWJoa926tcqVK1co8QEAALzFF9fmNptNb775ptLT06+2Pfjgg2rcuLFX1lyQ5ORkTZs2za7tpZdecuuMv5Lg4MGDOnjwoF1bQECAw0PVHQkNDdXTTz+tt99++2pbQkKCRo0apQkTJqhKlSr5jl+8eLHmzJlj11anTh09+OCDJl+B63788Ufl5OTYtbVs2bLQtlsGALiPZAgAy3n66aftqh5sNpsyMzN14cIFuw9FeZUpU0YvvviiOnbs6HbcmJgYTZgwwa4tJydHGRkZOn/+vC5fvuxwXEREhN58801TVQmODic8fPiwcnJyXC7JvvZDyxXOkiTecOrUKdlsNru2ChUqyGazaerUqfr+++9Nz3X69GlNmTJFGzZs0D//+U+XPmDedtttGjZsmGbOnHl1PSdOnNCgQYPUq1cvderUSQ0aNFBYWJiys7OVmJio/fv368cff7TbbkGSwsPDNXXqVFWsWNF0fHedOHHCYTLk7rvv9nlsAAAAdxT2tfnixYvtKkyioqL0xBNPuL5wN7399tt2N/b07t27ULbhLQo2m82uAueKDh06uHRtfO+99youLk5ff/311ba9e/dqwIABio6O1m233aa6desqJCREWVlZOnfunH777TctXbpU+/bts5urZs2aeuutt3x6NsuyZcsMbRycDgAlA8kQAJbzxx9/2JVZF6RVq1YaOnSoGjZs6FHczMxMHTlyxHT/wMBA9ezZU0899ZTpDws1atRQZGSkEhISrrZlZGRo165duuWWW1xa77Wl3VckJye7NI8rzp8/b2grX7683n33XYeJkPDwcFWsWFHp6elKTEw03IEl/fk6nn/+eb377rsufei5//77df3112vq1KlXt8y6dOmSlixZ4jDh4Ej79u314osvFnjHmjdkZ2fr9ddfNyTVbrrpJt1+++0+jw8AAOCOwrw2j4+P1+zZs6/+7O/vr9GjR5s+zNtTa9as0erVq6/+XLlyZT377LOFErsofPvtt9q1a5ddW2BgoP72t7+5PNeV3/msWbOuVr6npqbqq6++cniWzLUCAgLUq1cvPfvss6a313LH7t27DVvWhoaGqlOnTj6LCQDwHpIhAEqt+vXra/jw4WrRokWhx+7YsaOeffZZXXfddS6PbdWqlVasWGHXtmDBApeSIbGxsU6TIa58WHXVxYsXDW3Hjh3TgQMHrv4cHBys/v37684777QrNU9PT9emTZv0ySefGD6AHDp0SFOnTtUrr7zi0nratGmjL774Qr/88ouWLVumHTt2FDjG399fd911l/r166cGDRq4FM8T7777rt37JElBQUEaOXJkoa0BAADAVzy9Nr+yPVbea9n77rtPN954o7eWmK+kpCS7rZ4kacSIEYVyplxR2Ldvn95//31D+yOPPKI6deq4NWfPnj3VqVMnrVixQkuXLjVc+zoSFBSk+++/X/fcc49q1qzpVlxXODo4vUePHj6tRAEAeI/5TdYBwGKOHj2q4cOHa9y4cS5VdHjD+vXrNWjQIM2aNcvlbanuvfdeQ9uvv/6qn376ydT47OxsvfHGG8rNzXX6vK842ios77YJ1atX15w5czRo0CDDnrvly5dX9+7dNW/ePN1xxx2GeVasWKHNmze7tB6bzabNmzdrxYoV+u2330yNyc3N1bJlyzR79mzDllm+snjxYi1cuNDQ/vTTT7v9YRMAAKA48fTafNGiRdq5c+fVn2vUqKEhQ4Z4c4n5mjZtmt1Zft26dfNoC97i7PTp03rllVcM1/bNmzfX448/7va82dnZWrdunX766ScdOnTI1JisrCwtXLhQ77//vvbv3+92bDPS0tK0Zs0aQztbZAFAyUFlCADLubZqIjs7W6mpqTp37pwOHDig1atXa9u2bbLZbMrJydHq1au1bt06PfHEExowYIDbcZs0aaJ169bZtWVlZSk1NVUnT57Uvn37tGLFCv3xxx+S/ryY/uabb7RixQqNHTvW9CGDzZs3V6tWrQxVDJMnT5bNZlOvXr2cjr148aLGjx9v2Fs3Lz8/P1PrcMe154XkVbZsWb311lsFHmAeGBioV199VQkJCdq9e7fdc/Pnz1fbtm1NrSU+Pl5vvPGG0yRIeHi4wsPDlZOTo+TkZLtD73NycrR161Zt3bpVHTp00KhRo3x2ZsiGDRs0ffp0Q3uPHj10//33+yQmAACAtxTGtXlcXJw++OCDqz9fOXy9XLlyXn0tzqxatUpr1669+nN4eLiGDx9eKLELW3Jysl566SW7c1GkP89BHD9+vAID3fua6fDhw3r99dd17Ngxh89HREQoNDRUly9fVlJSkt15M1lZWVq7dq3Wrl2r6OhoPffccwoODnZrHflZtWqVMjMz7dqaNGlSqNXiAADPkAwBYHmBgYGqWLGiKlasqAYNGig6OlqHDx/WpEmTrt51lpOTozlz5iglJcWr+/oGBQUpIiJCERERuummm/TQQw9p9erVevvtt6+ezZGcnKyxY8fqtddeU+fOnU3NO2rUKD355JN2205lZ2dr4sSJWr58uaKjo3XjjTeqUqVKysrKUnx8vDZt2qRvv/3W7kyQiIgIwwcZX+6pnN+Ho4cffli1a9c2NY+/v79GjRqlxx57zK7C5bffftPx48cLnOfKnYfXno9Ss2ZN9e/fX+3bt1dkZKTdcydPntTatWv17bff2p19smHDBsXGxmr69OmqXLmyqfWbtX37dr322muGs1Jat26t0aNHezUWAABAYfD2tXlubq4mTZpk9yV1dHS0y+fpuSsxMVEzZsywaxs2bJjPbpQpSmlpaXrppZd0/Phxu/aQkBBNmTJFVatWdWve7du3a8yYMXYV45LUsGFD9e/fX23atLF7P202m2JiYrRq1Sp99913djct/fDDDzpx4oSmTJmi8uXLu7UeZxxtkXXXXXd5NQYAwLfYJgtAqXTlcL5mzZrZtX/zzTd2hx76QteuXfXvf/9b4eHhV9tycnI0adIkxcfHm5qjRo0aGjdunMO9aXfs2KEJEyboL3/5i+644w716dNHgwcP1ty5c+2+/G/ZsqX69+9vGO/LAwed3Z0XEBCgvn37ujTX9ddfr1tvvdXQfu0hjtdKSUnRqFGjDImQPn36aN68ebr33nsNiRBJqlWrlh555BH95z//Ubt27eyeO378uF577TWnW4+5Y8+ePRo7dqyysrLs2m+66SZNnDix0A4CBQAA8DVPrs2//fZbu0rfyMhIPfPMMz5ZpyNTp061u668/fbbHW7pWtJlZGRo9OjRhnM8goOD9eabb6pRo0ZuzRsXF6exY8caEiEDBgzQRx99pJ49exoSS35+fqpbt66efPJJffLJJ2ratKnd87/99pumTZvm1nqcOXr0qOG1lytXzpK/awCwMpIhAEqt8uXL67XXXjMkFGbPnu3TczMkqU6dOnrhhRfs2tLT0zV37lzTc7Rp00YzZ85UlSpVXI7funVrTZw40eEZHt6ubsgrLCzMYXuDBg0UERHh8nyOkiEFnf3xwQcfKCEhwa6tU6dOGj16tKmDD0NDQ/Wvf/3L8GF99+7dWr58uYlVF+z333/XqFGjDIfZN23aVG+++aZPyv4BAACKkjvX5rGxsfroo4/s2kaOHKkKFSr4bJ15/fTTT9qwYcPVn0NCQjRy5MhCiV2YLl26pJdfftlwnV22bFlNnjzZo0Pqp02bZrjm/etf/6rBgwfL37/gr6yqVaumKVOmGM4bXLlypbZv3+72uq7lqCqkS5cuhfa3BgDwDpIhAEq16tWrq2fPnnZtp0+f1tatW30eu1u3bobzMX755Re7ra8K0rRpU/3nP//RwIEDTVV0hIaGatiwYZo2bZpCQ0OVlpZm6HPtBwlvcpZoadiwoVvzORp37tw5p/2TkpIM+1YHBQVp2LBhLp2VUrZsWYf7QC9YsMD0HM4cOnRII0eONPxuGjVqpKlTp/KBCwAAWJar1+YzZ860qyjo2bOn6XP4PJWVlWXYHuuZZ55x60al4iwrK0uvvPKK4bzCoKAgvfHGG7r55pvdnvvo0aPatm2bXVtERIQGDx7s0jzh4eF66qmnDO3euDaX/nwPVq5caWhniywAKHk4MwRAqdeuXTt9//33dm07d+4slA9Sbdu2VWxs7NWfc3JytHfvXpdih4SEaNCgQXrkkUe0e/du7dixQ/Hx8UpKSlJGRobKly+vqKgotWzZUu3bt7fbqura/X4lqV69ep69qHxUrVpVAQEBhjMwnFWMFMTRuJSUFKf9t2/fbth2qnXr1g63xSpIkyZNVLduXbtDHv/44w+dO3fO7Q/BR44c0YgRIwwJsQYNGujtt99WaGioW/MCAACUFK5cm+c9x02S9u3bp0GDBpmO5ei6ccmSJXbVHpLUuHFjw3ltly5dMlyzLVq0SIsWLTId/8yZM4a2KVOmGKqA+/bt6/KWst5w+fJlvfrqq9qyZYtde5kyZfT66687rNJ2xaZNmwxtXbp0cevg+w4dOigkJMTu/JCdO3cqOzvb7UPdr1i/fr1hi92oqCi1aNHCo3kBAIWPZAiAUq969eqGNrNndxSn2GXLllWbNm3Upk0b02OOHj1q93NQUJDb+/2aERgYqFq1ahmSMO6ef+Fo3LXJjryufb2SDNtduaJZs2Z2yRDpz4SIO8mQP/74Qy+88ILhQ3m9evX09ttvu50wAgAAKEk8uT6Oi4vzOH5iYqISExPt2syeqXflAHhPOHoN1yZ9CkN2drb+8Y9/6H//+59de2BgoCZMmGA4Q88df/zxh6HN3WvzwMBANW7c2G5rrIyMDMXHxysqKsrtNUocnA4AVsI2WQBKPUdfqKenpxdKbEdnVBRW7HPnzhnuRmvevLmpczM80aRJE0Nb3ju4XOFoXH5Jg2vv6JJkOJDRFY7G5leZ4syxY8c0fPhww/rq1q2r6dOne7RGAACAkqQor83xp+zsbI0bN06//vqrXXtgYKDGjx+v9u3beyVOcb02z+v06dOGLcICAwPVq1cvj+YFABQNkiEASr0LFy4Y2grry2dHscPDwwsl9qpVqwxt3bp183lcR/sKnzp1yq25Tp8+bWjL73fn6MN13n2mXZWZmWloczWZFBMToxdeeEFJSUl27VFRUXrnnXdIhAAAgFKlKK/N8Wci5LXXXtP69evt2gMCAjRu3Dh17NjRa7EK49rcnS238lq2bJlyc3Pt2m677TZFRER4NC8AoGiwTRaAUm///v2GtsK6uN23b1+RxLbZbPrxxx/t2oKDgwslGdKmTRv5+/vbfajYv3+/bDabS4eYS9LevXsNbfkdxu7og7S7iRhnY135sB4bG6vhw4cbtmKIiorSjBkz+JAFAABKHVeuzT/++GOPYi1fvlyTJk2yaxs4cKCpc0dCQ0O1bt06j+K/8cYbhmvyGTNmeHQouSdycnL0r3/9y/C6AgIC9M9//lOdO3f2ajxvX5s72k7Nk0Rabm6uli9fbmiPjo52e04AQNGiMgRAqWaz2fTzzz8b2ps3b+7z2OfPn9fOnTvt2vz9/T06w8KsJUuWGPbojY6OLpQDuqtUqaJWrVrZtV24cMFwMGNBsrOzHf7ubrnlFqdjatWqZWjbvHmzS3GvyMzMNPz+/Pz8HMZw5OTJkxo2bJghEVKrVi1Nnz5dlStXdmtdAAAAJVVRXpuXdrm5uZo4caJWr15t1x4QEKBXX31VXbt29XpMR9fN155RYtaZM2cMZ/mFhISoUqVKbs0nSdu2bTNsKxwZGenSGY0AgOKFZAiAUu2HH37Q4cOH7dqCgoLUtm1bn8d+9913DYd9N2/e3OfVALGxsfrwww/t2kJDQzVgwACfxs3r/vvvN7TNmzdPOTk5puf47rvvDImEyMjIfD8st27dWv7+9v/pi42NNXzoM+Obb75RRkaGXVvDhg1NfeCKj4/X8OHDde7cObv2mjVrasaMGW4dwA4AAFDSFeW1eWmWm5urSZMmGbbR9ff318svv6zu3bv7JK6jpMK2bdscVgcV5NNPPzW0tWrVSgEBAW6tTfrz7/FavXv39mhOAEDRIhkCoEQ6dOiQvvzyS4f7wpq1evVqvfPOO4b2Pn36qHz58k7H/fTTT1q9erVsNptbcXNzczVr1iyHZ3Y4ShI440ri4IqYmBg9//zzunjxol37s88+69JZJcuXL1enTp3s/vf888+bHt++fXvDQer79u0zJGmc2b9/v8O+jzzyiAIDne8AGR4e7rByZNq0aYqJiTEVW5K2bt2qefPmGdrNfFA8c+aMhg8frrNnz9q116hRQ9OnT1dkZKTpdQAAABQHRXltDs+uzW02m9566y2tWLHCrv1KIqRnz56+WLKkP28kioqKMrSPHz/ecNNQfpYtW+YwceFJEicpKUkbN260a/Pz81OfPn3cnhMAUPRIhgAokdLS0jR79mz1799f7733ng4cOGB67B9//KEJEyZo3Lhxys7OtnsuIiJCTz75ZL7jT548qXHjxmngwIH68ssvHR7i7Uhubq62bt2qp556St98843h+TZt2pg+syM7O1v9+/fXp59+qpMnTxbYPz09XR9//LEGDx6s8+fP2z3Xu3dv9e7d21Rcb3rxxRcNd1V9+eWXevPNNw3JmiuunHXywgsvGA5XrFu3rqn9e4cMGWI4myQlJUVPP/20li9fbvibyCszM1OfffaZRo8ebegXGRmp++67L9/Y586d0/Dhww1/M9WrV9eMGTNUrVq1AtcPAABQ3BTltTk8884772jp0qV2bf7+/ho9erR69erl8/iOfr+nTp3Sk08+qQ0bNuR7A1pKSopmzZqlN9980/BckyZN1KVLF7fX9dNPP+ny5ct2ba1atVKNGjXcnhMAUPQ4QB1AiXbhwgV99dVX+uqrrxQREaGGDRuqYcOGqly5skJCQlS2bFllZGTo4sWLOnbsmPbv32/YS/aKkJAQTZw40fS5GceOHdPs2bM1e/Zs1axZU40aNVK9evUUHh6ukJAQBQQEKD09XRcuXNCRI0e0Z88eJSQkOJyrbt26euWVV1x67WfPntXcuXM1d+5cRUVFqWnTpqpbt64qVaqk4OBgXbx4UYmJidq7d6927txp2JJLkm677Ta99NJLLsX1lsaNG2vo0KGaOXOmXfvSpUu1du1atW/fXs2aNVN4eLgyMjJ04sQJbdy4USdOnDDMFRoaqjfeeENBQUGm4j788MP6/PPP7drT0tI0adIkzZ07V23btlWDBg0UFhYmm82mpKQk/f7779q8ebNSUlIMcwYGBmr06NEqW7ZsvrE//vhjxcXFGdpzcnL08ssvF7j2/PTt21d9+/b1aA4AAABPFOW1OVy3Z88e/fe//zW0BwUFacGCBVqwYIHbc1euXFlvvfVWgf06d+6sO+64w1A1f/78eY0dO1bXX3+9br31VtWrV0+hoaG6fPmyEhMTtX//fm3evNmwba0kVahQQaNGjTLcAOWKaxNEEgenA4AVkAwBYBmJiYnavHmzWwdiR0ZG6vXXX1fTpk3dih0XF6e4uDi3zp648cYbNXHiRFWsWNGt2JJ04sQJh0mC/Nx111168cUX891WytceeOABXbx4UZ988olde2pqqlasWGEo13ekcuXKmjhxomrWrGk67t///nelpaU5/PB39uxZff/996bnKlOmjMaOHWvqIEVnVScJCQlOE2VmXVvxAwAAUJSK8toc5ji7Ns3MzNSRI0c8mjs1NdV037FjxyojI8OwLZX05/l+sbGxpucqX768Jk2apAYNGpgec619+/YZknRhYWHq2LGj23MCAIoHkiEASqSgoCAFBAS4dW5GXoGBgerXr5/+9re/md6LODg42KOYV4SHh2vw4MG65557PLpryVVVq1bV0KFD1bVr10KLmZ8nnnhCtWvX1jvvvKPk5GSXxrZu3Vpjx45168DxESNGqEWLFpo+fbrLca9o2LChxo4dq/r167s1HgAAwAqK8tocJV9gYKDeeOMNLVq0SB9++KHDag8zWrVqpTFjxqh69eoercdRVUiPHj1MVaEDAIo3kiEASqTmzZtr8eLF2rp1q7Zt26b9+/fr+PHjys3NLXBs2bJl1ahRI3Xr1k133HGHSweHS9JDDz2kzp07a/Pmzdq1a5f279+vM2fOmBobFhamG264Qb169VL79u3dvqAODAzUxIkT9b///U87duxwuPVSXgEBAWratKn69Omjnj17FrsL+W7duunWW2/VokWLtHTp0nzPYQkODtbNN9+sBx98UC1btvQobvfu3XX77bfr559/1rJly3TgwIF8zwyR/rzb7JZbbtE999yjNm3aFGoiCwAAoDgqymtzWIOfn5/uv/9+9ejRQz/++KNWrFiho0ePFvg3FB4ernbt2umee+7RjTfe6PE6MjIy9Msvvxja2SILAKzBz5bfaVQAUIJkZGTo5MmTOnXqlBITE5WRkaGsrCyVK1dOFSpUUEhIiKKiolS7dm3Dwd2eSkpKUlxcnE6fPq2kpCRlZGQoJydHFSpUUIUKFRQeHq569ep5fJdSfvFjYmJ06tQpJScn69KlSwoMDFRYWNjV80xCQkJ8EtsXYmNjdeTIEZ09e1aZmZkKDg5WxYoVdd1116lp06Y+29orKytLhw8fVlxcnFJTU5WWliZ/f3+FhIQoNDRU9erVU1RUlPz9/X0SHwAAwCqK8toc1pCenq5Dhw7pzJkzV6/Ny5Qpo5CQEIWFhalBgwYubZULAADJEAAAAAAAAAAAYGnc2goAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALA0kiEAAAAAAAAAAMDSSIYAAAAAAAAAAABLIxkCAAAAAAAAAAAsjWQIAAAAAAAAAACwNJIhAAAAAAAAAADA0kiGAAAAAAAAAAAASyMZAgAAAAAAAAAALI1kCAAAAAAAAAAAsDSSIQAAAAAAAAAAwNJIhgAAAAAAAAAAAEsjGQIAAAAAAAAAACyNZAgAAAAAAAAAALC0/wfwBdoNO4rfxwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.plot_ts(skycoord = coord, containment = 0.9)" + ] + }, + { + "cell_type": "markdown", + "id": "64eab521-9a79-41b7-8e13-50f11896d8bb", + "metadata": {}, + "source": [ + "## Example 3: Fit Crab using the Compton Data Space (CDS) in galactic coordinates" + ] + }, + { + "cell_type": "markdown", + "id": "b31e885f-cc29-49ca-b0f7-d14f99fddb10", + "metadata": {}, + "source": [ + "The Crab case is similar to the GRB one. The difference is that the Crab data (signal and background) are binned in the galactic coordiates instead of the spacecraft coordinates. Therefore, we will need to use the galatic response for Crab. In addition, the orientation file is not needed since Crab is a fixed source in galactic coordinates." + ] + }, + { + "cell_type": "markdown", + "id": "92247366-573f-46e1-8a8a-c1e5db2b5399", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "### Bin data (optional)" + ] + }, + { + "cell_type": "markdown", + "id": "2f19cae4-ac54-4b62-8ee1-99e1db7d7b56", + "metadata": {}, + "source": [ + "If you want to binned the data by yourself, you can run this **Bin data** section. Otherwise, you can skip to the next section and use the binned data downloaded from Wasabi, which is faster." + ] + }, + { + "cell_type": "markdown", + "id": "d8f76a21-b530-4685-8e08-5a0e0793aed7", + "metadata": {}, + "source": [ + "#### Download unbinned data " + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "cc73d0d2-a347-4a51-95a9-d75b8405800f", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "931588ad-4c21-4fd5-9c27-2352b30ac2dc", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "crab_unbinned_path = data_dir/\"Crab_DC2_3months_unbinned_data.fits.gz\"\n", + "\n", + "# download 3-month unbinned Crab data ~619.22 MB\n", + "if not crab_unbinned_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Sources/Crab_DC2_3months_unbinned_data.fits.gz\", crab_unbinned_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "37310a8d-6a5c-47cd-91ef-a82459d0794a", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "albedo_unbinned_path = data_dir/\"albedo_photons_3months_unbinned_data.fits.gz\"\n", + "\n", + "# download 3-month albede background data ~2.69 GB\n", + "if not albedo_unbinned_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Data/Backgrounds/albedo_photons_3months_unbinned_data.fits.gz\", albedo_unbinned_path)" + ] + }, + { + "cell_type": "markdown", + "id": "4c9917d4-278a-4003-bc06-c8957523e4ff", + "metadata": {}, + "source": [ + "#### Getting the binned Crab data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5fd8cbec-61a0-4e1f-af66-a6d44c2e4ff7", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Here is the code I used to bin the Crab data if you want to generate it by yourself.\n", + "from cosipy import BinnedData\n", + "# \"Crab_bkg_galactic_inputs.yaml\" can be used for both Crab and background binning since the only useful information in the yaml file is the binning of CDS\n", + "analysis = BinnedData(\"Crab_bkg_galactic_inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data = crab_unbinned_path, \n", + " make_binning_plots=False, \n", + " output_name = \"Crab_galactic_CDS_binned\", \n", + " psichi_binning = \"galactic\")\n", + "\n", + "# After you generate the binned data files, it should be saved to the same directory of this notebook\n", + "crab_data_path = data_dir/\"Crab_galactic_CDS_binned.hdf5\"" + ] + }, + { + "cell_type": "markdown", + "id": "55891a90-167a-4b45-94cc-4815709126ef", + "metadata": {}, + "source": [ + "#### Getting the binned background data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "ae1ec395-d217-4a57-8b95-384aee92d38d", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "binning data...\n", + "Time unit: s\n", + "Em unit: keV\n", + "Phi unit: deg\n", + "PsiChi unit: None\n" + ] + } + ], + "source": [ + "# Here is the code I used to bin the background data if you want to generate it by yourself.\n", + "from cosipy import BinnedData\n", + "# \"Crab_bkg_galactic_inputs.yaml\" can be used for both Crab and background binning since the only useful information in the yaml file is the binning of CDS\n", + "analysis = BinnedData(\"Crab_bkg_galactic_inputs.yaml\")\n", + "analysis.get_binned_data(unbinned_data = albedo_unbinned_path, \n", + " make_binning_plots = False,\n", + " output_name = \"Albedo_galactic_CDS_binned\",\n", + " psichi_binning = \"galactic\")\n", + "albedo_background_path = data_dir/\"Albedo_galactic_CDS_binned.hdf5\"" + ] + }, + { + "cell_type": "markdown", + "id": "993bbc9e-b056-4369-b7f7-3f59f0e26e4f", + "metadata": {}, + "source": [ + "### Read data and background" + ] + }, + { + "cell_type": "markdown", + "id": "61a4fac6-090b-4343-a1a0-7dd29c907290", + "metadata": {}, + "source": [ + "Here you can download the binned data to avioding the binning steps above." + ] + }, + { + "cell_type": "markdown", + "id": "01980340-c1e7-4ef1-a169-47c7d136852b", + "metadata": {}, + "source": [ + "#### Download the binned data" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "951ae2f4-e713-4663-9ff8-d00e8d848cbf", + "metadata": {}, + "outputs": [], + "source": [ + "data_dir = Path(\"\") # Current directory by default. Modify if you want a different path" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "8400db09-0c32-4533-9bfc-35729ec3f514", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "crab_data_path = data_dir/\"Crab_galactic_CDS_binned.hdf5\"\n", + "\n", + "# download 3-month binned Crab data ~158 MB\n", + "if not crab_data_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/Crab_galactic_CDS_binned.hdf5\", crab_data_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "142b9b61-487b-40b5-b2e0-191f4c5f4f07", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "albedo_background_path = data_dir/\"Albedo_galactic_CDS_binned.hdf5\"\n", + "\n", + "# download 3-month binned Albedo background data ~457.50 MB\n", + "if not albedo_background_path.exists():\n", + " fetch_wasabi_file(\"COSI-SMEX/cosipy_tutorials/ts_maps/Albedo_galactic_CDS_binned.hdf5\", albedo_background_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "720de2f7-222e-4d29-815a-a85c07abca46", + "metadata": {}, + "outputs": [], + "source": [ + "# Read background model\n", + "bkg_model = Histogram.open(albedo_background_path) # please make sure you adjust the path to the files by yourself.\n", + "bkg_model = bkg_model.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# Read the signal and bkg to assemble data = bkg + signal\n", + "signal = Histogram.open(crab_data_path)\n", + "signal = signal.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# Here the background is the same as the background model since they are simulations, thus we know the background very well.\n", + "bkg = Histogram.open(albedo_background_path)\n", + "bkg = bkg.project(['Em', 'PsiChi', 'Phi'])\n", + "\n", + "# Assemble the signal and background\n", + "data = bkg + signal" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "109c9aaf-be38-4a10-9c93-add2fdb5bfa9", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHOCAYAAACGgTObAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJOElEQVR4nO3deVxU9eLG8WdYRUBFNEX05hqJC+Ce+0KuZaXklqm5ZJmZpWZamt3stqpp3TS3+KmZXu1WVm5pauauyU0xLTeuuKS44ICyz+8PY24E6oDAmQOf9+vlK+ds88zEiadzvucci81mswkAAMBEXIwOAAAAkFsUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDpuRgcoDNeuXdOyZct06NAh/fLLL7JarZowYYK6dOlyR9vdu3evFi9erF9//VUZGRmqUqWK+vbtqw4dOuRTcgAAkJNiUWDi4+MVGRmpChUqqGbNmtq/f/8db3P16tV6++231ahRIw0bNkyurq7673//q/Pnz+dDYgAAcCvFosD4+/vriy++kL+/vw4fPqwnn3zyjrZ39uxZzZgxQz169NBzzz2XTykBAICjikWB8fDwkL+/v0PL7ty5U0uWLNGvv/4qi8WikJAQPf3006pWrZp9ma+++koZGRkaMmSIpBunqLy8vGSxWAokPwAAyIpBvH+ybt06jR8/Xl5eXho+fLgGDhyokydP6plnntHZs2fty+3bt09/+9vftHPnTvXs2VOdO3fWAw88oPnz5ysjI8PATwAAQPFQLI7AOOLatWuaOXOmHnjgAY0bN84+vXPnzurfv7+WLFlinx4bGysXFxe99dZb6tu3r2rUqKEffvhBixYtUnp6uoYPH27UxwAAoFigwPxh7969SkhIUIcOHXTlyhX7dBcXF9WuXVs//fSTfdr169eVkZGh4cOH67HHHpMktW3bVlarVStXrtTjjz+ukiVLFvZHAACg2KDA/CE2NlaSNHr06Bzne3t72//u6emp69evKzw8PMsyHTp00K5du/Trr78qNDS0oKICAFDsUWD+kDl25ZVXXlHZsmWzzXd1dbX/3d/fX7GxsfLz88uyTOZrq9VagEkBAAAF5g+BgYGSpDJlyqhRo0a3XDYoKEixsbGKi4tTpUqV7NPj4uLs2wAAAAWHq5D+0KRJE3l7e2vJkiVKS0vLNv/P42Lat28vSfr222/t0zIyMrRmzRqVKlVKQUFBBZ4XAIDirNgcgfn888+VkJCgixcvSpK2bdtmv2tuz5495ePjoxdeeEFvvPGGhgwZog4dOqhMmTL6/ffftXPnTtWtW1fPP/+8JKlly5Zq2LChlixZoitXrqhmzZraunWrfv75Z40dO1YeHh6GfU4AAIoDi81msxkdojD06tVL586dy3He8uXLFRAQIEnav3+/Pv30Ux06dEgpKSkqX7686tevrx49emQ5snLt2jXNnz9f33//vaxWq6pUqaJ+/fqpY8eOhfJ5AAAozopNgQEAAEUHY2AAAIDpUGAAAIDpFNkCk5SUpCNHjigpKcnoKAAAIJ8V2QITExOjYcOGKSYmxugoAAAgnxXZAgMAAIouCgwAADAdCgwAADAdCgwAADCdYvMoAQAoDtLT05Wammp0DOC23N3d5erqmuf1KTAAUEQkJCQoNjZW3GAdZmCxWFS5cmX5+PjkaX0KDAAUAenp6YqNjVXJkiVVvnx5WSwWoyMBN2Wz2XThwgXFxsaqVq1aeToSQ4EBgCIgNTVVNptN5cuXl5eXl9FxgNsqX768Tp48qdTU1DwVGAbxAkARwpEXmMWd/qxSYAAABaZq1aoKCgpSaGioateurX79+ikxMTHP24uMjNTDDz+cfwEL0DfffKO2bdsaHcNQV65c0VtvvVUg26bAAAAK1PLlyxUVFaXo6GjFx8crMjLS0DxpaWmGvn9xQoEBAJheSkqKrl27Jj8/P0nSgQMH1LJlSzVo0EDBwcGaOnVqlmXHjRununXrKiQkRJ07d862vTNnzqhx48ZauHChJGn79u0KDQ1VvXr1NHjwYIWEhGjz5s2SpLZt22rUqFG677771LFjR6Wnp9u3X7duXT377LNKSUmRJA0aNEjvv/++/X3Gjh2rKVOmSJKmTJmi3r1768EHH1RwcLDat2+vS5cuSboxDmnEiBGqVauWmjRpok2bNt30uzh9+rQiIiJUr1491a9fX5MmTZIknT9/Xj169FC9evVUt25dffzxx/Z1qlatqldeeUXNmzdXlSpVNGfOHH3yySe67777VLVqVS1btsy+rMVi0SuvvKKwsDDdc889+vTTT+3z1q1bpwYNGqh+/fpq06aNDh06JEnavHmz6tatqxEjRigkJER16tTR3r17s6zXsmVLNWzYMMvnu9V6Tz31lKxWq0JDQ9WoUaObfh95wSBeACii5jaaq4RzCQW2fZ+KPnpy75O3Xa53797y8vLSyZMn1bBhQ/Xq1UvSjV/IGzdulKenp65fv67mzZsrPDxczZo105tvvqlff/1V+/btk6enpy5cuJBlmwcOHFCfPn00Y8YMdezYUSkpKerdu7cWLVqkdu3aadOmTfrkk0+yrPPrr7/qhx9+kLu7u2bPnq09e/Zo3759cnV1Vffu3TVjxgyNHz/+tp9n165d2rdvn/z9/dWnTx99/PHHmjBhgubOnasjR44oOjpaktSpU6ebbqN///7q2LGjVq5cKUn2z/fss88qKChI//73v3X+/Hk1bNhQISEhatasmSQpMTFR27dv19GjR1WvXj29/PLL2rFjh/bs2aOuXbuqT58+9vewWCzav3+/jh8/rkaNGqlFixYqWbKk+vXrp82bN6tevXr69NNPFRERYc98+PBhLViwQB999JHmzJmjl19+WevWrdPx48c1ZcoUrVu3TqVKldLRo0fVqlUrnTx58pbrzZkzR6GhoYqKirrt95pbHIEBgCIq4VyCrKetBfbH0XKUeQopLi5OVatWtZeE69eva+jQoapXr56aNWummJgY+y+6b775Rs8995w8PT0l3bhiJVN0dLS6d++upUuXqmPHjpJu/AJ1c3NTu3btJEnt2rVTjRo1suTo37+/3N3dJUkbNmzQoEGD5OnpKTc3Nw0bNkzfffedQ5+nc+fO8vf3lyTdd999OnbsmCRp48aNGjBggDw8POTh4aHBgwfnuH5CQoJ+/PFHjRkzxj4t8/Nt2LBBw4cPlyTddddd6tGjhzZs2GBfrnfv3pKkmjVrqkSJEoqIiJAkNWrUSJcuXdKVK1fsyw4dOlSSVL16dbVu3Vo//PCDdu3apXr16qlevXqSpMcee0xnzpzR6dOn7dtt2rRpts+2du1aHT16VK1bt1ZoaKgiIiLk4uKi//73v7dcryBxBAYAiiifinm7QVhBbd/NzU09e/bUuHHjNG3aNE2cOFHlypXT/v375ebmph49eigpKem226lUqZKSk5P1/fffKyQk5KbL/fUql1vdMO3Py7q5uSk9Pd3+OikpKcu6JUqUsP/d1dX1pmNq8uOKsL9u46/vnfnaYrHIYrHccnyPI3lu9tlsNpvuv/9+LV26NNs6p0+fdvg7yU8UGCAfrYheocmbJ8uabDU6Sq74evrq9XavKyI4wugoyEeOnN4pbN9//72CgoIkSZcvX1bt2rXl5uamI0eO6LvvvlPr1q0lSd27d9fMmTPVokUL+ymkzKMUfn5+Wrx4sR544AFZrVZNnjxZQUFBSk1N1ZYtW9SmTRtt2bJFR48evWmO8PBwLVq0SP369ZOLi4vmz59vP5pTs2ZN7d69W5J08eJFrV69WgMGDLjtZwsPD9eSJUvUr18/2Wy2bKewMvn4+Kh169aaNm2aJkyYIEn2zxceHq558+bpjTfe0IULF/Tvf/9bK1ascPDbzeqTTz7RlClTdPLkSW3dulXvv/++vL29deDAAR08eFB169bVsmXLFBgYqMDAwFt+X506ddJrr72mn3/+WfXr15ck7d69W02aNLllhlKlSun69etKSUmRh4dHnj7HzVBggHw0efNkHY47bHSM3LNKkzZNosCgQGSOgUlLS9Pdd9+tOXPmSJJeeeUVPf744/q///s/1ahRQ+3bt7evM378eL388stq0KCB3N3dValSJa1evdo+39fXV2vXrtUjjzyicePG6d1339WyZcv0zDPPKCMjQw0bNlRQUJDKlCmTY6Ynn3xSx44dU4MGDSTdGOQ7evRo+7yIiAjVrl1b1atXt48/uZ1hw4bp4MGDCg4Olp+fn1q1aqV9+/bluOzixYv17LPPqk6dOnJ3d9dDDz2k1157TbNmzdLTTz+tevXqyWaz6eWXX7afmsmt9PR0hYWFKTExUbNmzVLVqlUlSZ9++qkGDBigtLQ0+fn5acWKFbc9OlOzZk0tXbpUw4cP17Vr15SSkqKwsLAcj8j8WdmyZTVgwADVr19fPj4+WQYF3ymLrYg+NOPIkSMaNmyY5s2bZ2/7QEGrPL2yTltPy8XiogCfAKPjOORswlll2DIU6Buo2BdijY6DPEpKStKJEydUrVq1LIfzixOr1SpfX19J0p49e9S9e3cdO3ZMJUuWNDhZ4bNYLLp8+fJNC5wzuNOfWY7AAAUgwCfANGUgs3QBZvf5559rxowZstlscnNz0+LFi4tleSkuKDAAgCJh0KBBGjRokNExnEIRPbmSBZdRAwAA06HAAAAA06HAAAAA06HAAAAA06HAAAAA06HAAAAKTbly5ewPALyZKVOmOPRIgUwffvih3nrrLfvrY8eOKSIiQtWqVbM/OXn+/Pm5znry5Mk7vo9K27Zt9eWXX+Z63s0kJSWpYcOGio+Pv6NcRQEFBgDgVF577TWHC8z169c1ffp0Pfvss5Kkc+fOqWXLlurUqZNOnDihffv2ad26dTk+myc/n9eTeZfbglaiRAk9/vjjmjZtWqG8nzOjwAAACsyqVatUu3Zt1a9fXy+++KJ9+tixY9W4cWOFhoaqdevWOnLkiCTpqaeekiS1atVKoaGhOn/+vJYuXaqmTZsqLCxMISEh+vrrr+3bWblypVq0aCFvb29J0j//+U+1atVKw4YNsy/j5+dn3+6gQYM0ePBgtW7dWnXr1pV044nMjRo1Uv369dWtWzedO3cuy2cYO3as6tevrzp16mR5MrSjNm7cqMaNG6tmzZoaM2ZMjvdo+fzzzxUSEmJ/ivOrr76qmjVrqnHjxnrllVeyFKQ+ffpo3rx5xeJeL7fCjewAoIhqNLeRziWcu/2CeVTRp6L2PnnzZ9ucP39eTzzxhLZu3arg4GDNnTtXFy9elHTjWUfvvfeeJGnZsmV67rnntHbtWs2ZM0cff/yxtm7daj9906lTJ/Xt21cWi0UnT55Us2bNFBMTI09PT23evDnLs4L27dun+++//5a59+3bpx9//NH+2IH333/f/qDIt956S1OmTLE/ryk+Pl61a9fWe++9p507d9ofT5C5riMOHTqk7du3KzU1Va1bt9Znn32mfv362edPnz5dX3zxhb7//nv5+/vr22+/1eeff679+/fLx8dHgwcPzrK9ihUrysvLS9HR0fYSVhxRYACgiDqXcM7Qx0Ts3LlT9evXV3BwsCRpyJAh9lM93333nT744ANZrVZlZGTo0qVLN93OiRMn9Nhjjyk2NlZubm66dOmSTpw4oXvvvVexsbHq3LlzrnI9+uijWQrI0qVLtXjxYiUlJSkpKUnlypWzz3Nzc7Pf3bdZs2aqVKmS9u/fr9atWys8PFxxcXGSpDNnzig0NNS+3u7du+1PXx4wYIDc3d3l7u6u/v37a8OGDfYCM3XqVFWoUEHfffed/XlAGzduzJJxyJAh2rRpU5bPULFiRcXGxlJgAABFT0Wfik61/cwnHv/3v//VyJEjtWfPHtWoUUM///yzWrdufdP1+vTpo7feeksRETeell62bFn7GJmSJUtmGS/TsGFD7dixQ88///xNt+fj42P/+48//qhZs2Zpx44duuuuu7Rq1SpNnjzZoc/x59NJVatWVVRU1C3X++v6ktS0aVOtX79ex48ftxe9Wy2fKSkpSV5eXg69X1FFgQGAIupWp3cKw3333acnnnhChw8f1r333quFCxcqJSVFfn5+cnd3V0BAgGw2mz788MMs6/n6+io+Pt5+Cuny5cuqVq2aJGnJkiW6fPmyfdn69evbx89I0ogRIxQaGqpPPvlETzzxhCTpypUrWr58uYYPH54t4+XLl+Xr6yt/f3+lpKTo448/zjI/LS1Nixcv1qBBg7R79+5sR1ocsWTJEvXr109paWlaunRplnJ1//33q0+fPnrwwQe1YsUKNWjQQO3bt9fEiRM1ZswYeXt7a+HChVm2l56ermPHjqlevXq5ylHUMIgXAFAgypcvr4ULF+qRRx5RSEiIfvvtN/n7+8vX11d9+vRRnTp11LhxY/3tb3/Lst6YMWN0//332wfxzpw5UxEREQoLC9P+/fuzLB8REaF169bZXwcEBOjHH3/UN998o2rVqql+/frq0KGD3N3dc8zYuXNnBQUFKSgoyD5w+M9Kly6tgwcPKiQkRE888YSWLl2aq/EvklS7dm21aNFC9erVU6tWrdSnT58s81u1aqVly5YpIiJC27Zt0wMPPKCHHnpIoaGhaty4scqUKZPlcu4ff/xRjRs3VtmyZXOVo6ix2IroMOYjR45o2LBhmjdvnoKCgoyOg2Ki8vTKOm09rUDfQMW+EGt0HIeYMTOyS0pK0okTJ1StWjX7WIriolu3bpoyZYoaN25sdJR8Y7Va5evrK5vNpjFjxuj69euaPXu2pBun1IYMGXLbwcrO7k5/ZjmFBAAwtVmzZumXX34xOka+GjBggE6ePKmkpCTVqVPHflVUUlKS2rRpY/rykh8oMAAAU6tRo4Zq1KhhdIx89cUXX+Q4vUSJEnr66acLOY1zYgwMAAAwHY7AwGmtiF6hyZsny5psNTqKw84mnDU6AgAUCxQYOK3JmyfrcNxho2Pkia9n7q5SAADkDgUGTivzyIuLxUUBPgEGp3Gcr6evXm/3utExAKBIo8DA6QX4BHB5L2BSaWlpeuONN/TZZ5/Jzc1Nbm5uatKkid55550s9zZxRNu2bTV69Gg9/PDDecoyZ84cWa1WjRs3Lk/r387mzZs1evRoh+/IiztDgQEAFJghQ4bo0qVL2rFjh/z8/GSz2bRy5UpdunQpW4FJS0uTm1vB/VrKfCI1igauQgIAFIijR49qxYoV+uSTT+Tn5yfpxnN9Hn30UVWvXl2bN29WnTp1NGTIEIWGhuqLL77Q0qVL1bRpU4WFhSkkJERff/11lm1u3LhRjRs3Vs2aNTVmzBjldC/W3377TS1atFBISIjq1aunV155RZI0ZcoUjR49WpKUmpqqESNG6J577lGzZs00ZswYtW3bVtKNIyl169bViBEjFBISojp16mjv3huPZUhLS1OnTp3UqFEj1alTR/369VNiYmIBfYO4FY7AAEBRte+QlJJacNv3cJca5vwAQkn66aefVKtWrSxPd/6rX375RR999JEWLFggSbp48aL69u0ri8WikydPqlmzZoqJiZGnp6ck6dChQ9q+fbtSU1PVunVrffbZZ/YnO2f68MMP9cADD2jChAmSlOOTrufOnavffvtN0dHRkqSuXbtmmX/48GEtWLBAH330kebMmaOXX35Z69atk6urq5YuXSp/f3/ZbDaNGDFCH3zwgV566SUHvjDkJ47AAEBRlZJa8H/uUPXq1dWmTRv76xMnTqhLly6qW7euHn74YV26dEknTpywzx8wYIDc3d1VsmRJ9e/fP8sToTO1bt1a8+bN08svv6z169fnONZm48aN6t+/v9zd3eXu7q6BAwdmmV+zZk01bdpU0o2HUh47dkySZLPZNGPGDIWFhal+/fr69ttvGfNiEAoMABRVHu4F/+cWGjRooN9++00XL1686TI+Pj5ZXvfp00dDhw7VwYMHFRUVJR8fHyUlJd10fYvFkm1az549tW3bNgUFBdmPxtzOX7fz52fzuLq6Ki0tTZK0dOlSff/999qyZYsOHDigsWPH3jIfCg6nkACgqLrF6Z3CULNmTfXs2VNDhgxRZGSkypQpI5vNpn//+98KCwvLcZ3Lly+rWrVqkqQlS5bo8uXLWeYvWbJE/fr1U1pampYuXarnn38+2zZ+++031ahRQwMGDFCTJk3UvHnzbMu0b99eS5cutZ9+WrRokUOf6fLlyypXrpxKlSolq9WqyMjIbE/TRuHgCAwAoMAsXLhQISEhatq0qerUqaPg4GCtX79eZcuWzXH5mTNnKiIiQmFhYdq/f3+2clC7dm21aNFC9erVU6tWrdSnT59s21i5cqXq1aunsLAw9e7d2/4gxD8bPny4qlatquDgYLVo0UI1atRw6LLuAQMG6Nq1awoKClKXLl3UqlUrx74I5DuLLach3EXAkSNHNGzYMM2bN09BQUFGx0EeVJ5eWaetpxXoG8h9YAoQ33PRkJSUpBMnTqhatWpZTn/g5qxWq3x9fZWamqrHHntMDRs21Pjx442OVWzc6c8sp5AAAMVSeHi4kpOTlZSUpJYtW2rUqFFGR0IuUGAAAMXSrl27jI6AO8AYGAAAYDocgQHy0fQXTumdf3orKe3Wl5c6k6sld0klriohfJrRUQDAYRQYIB+9809v/Z6S89UVTivBV0oIVPyGMao8vbLRaRyW+dTviOAIo6MAMAAFBshHmUdeLMpQKRdzPB8l3lZSsrlKyb46bT1tdBzHWaVJmyZRYIBiigIDFIBSLom6ku5rdAyHeHte0rWUsrLYLKrkG2h0HIecTTirDFuGrMlWo6MAMAgFBijm3P84alTqWinT3Acm8941cH5Vq1aVp6envLy8lJycrLCwMM2bN0/e3t552l5kZKS+/PJLffnll/kbtAB88803eu+997R58+ZCeb+EhAT5+vrm+ITuPzt58qRCQ0N15cqVQslVULgKCQBQoJYvX66oqChFR0crPj5ekZGRhubJfK4RzI0CAwAoFCkpKbp27Zr8/PwkSQcOHFDLli3VoEEDBQcHa+rUqVmWHTdunOrWrauQkBB17tw52/bOnDmjxo0ba+HChZKk7du3KzQ0VPXq1dPgwYMVEhJiP/rRtm1bjRo1Svfdd586duyo9PR0+/br1q2rZ599VikpKZKkQYMG6f3337e/z9ixYzVlyhRJ0pQpU9S7d289+OCDCg4OVvv27XXp0iVJUmpqqkaMGKFatWqpSZMm2rRp002/i7Zt22rMmDFq3bq1/va3v2nSpElavXq1WrZsqapVq2r69On2Zffu3avmzZurfv36atKkibZt22af9/HHH6tWrVoKCwvTjBkzsrzHnj171L59ezVq1EhhYWFasWLF7f4VmQqnkACgiGrUSDp3ruC2X7GitHfv7Zfr3bu3vLy8dPLkSTVs2FC9evWSdOP00saNG+Xp6anr16+refPmCg8PV7NmzfTmm2/q119/1b59++Tp6akLFy5k2eaBAwfUp08fzZgxQx07dlRKSop69+6tRYsWqV27dtq0aZM++eSTLOv8+uuv+uGHH+Tu7q7Zs2drz5492rdvn1xdXdW9e3fNmDHDoUcJ7Nq1S/v27ZO/v7/69Omjjz/+WBMmTNDcuXN15MgRRUdHS5I6dep0y+3ExMRo06ZNunr1qqpWrarLly9r69atOnPmjIKCgjR48GCVLFlSPXr00Lx589SpUyf9+OOP6tmzp44ePaqTJ0/q1Vdf1f79+xUQEKCJEyfat33lyhU9+eSTWr16tQICAhQXF6cGDRrk+GBLs3LKAnPq1CktWLBABw4c0NWrV1WhQgWFh4erT58+POMDABx07px02gmGCi1fvlyhoaFKS0vT8OHDNX78eE2bNk3Xr1/XiBEjFBUVJRcXF506dUpRUVFq1qyZvvnmG7399tvy9PSUJJUvX96+vejoaHXv3l1ffvmlQkJCJEmHDx+Wm5ub2rVrJ0lq166datSokSVH//795e5+Y8zXhg0bNGjQIPv2hw0bpn/+858OFZjOnTvL399fknTffffpwIEDkqSNGzdqwIAB8vDwkCQNHjxYCxYsuOl2IiIi5OrqKj8/P1WvXl0PPPCALBaLAgMDVb58eZ08eVKurq5ycXGxl6GWLVuqQoUKioqK0k8//aQuXbooICBAkvT000/rzTfflHTjaNTx48fVpUuXLO955MgRVa9e/baf0QycrsD8/vvvGj58uHx8fPTII4+oVKlSio6O1sKFC3XkyBH7vxwAwK1VrOhc23dzc1PPnj01btw4TZs2TRMnTlS5cuW0f/9+ubm5qUePHkpKSrrtdipVqqTk5GR9//339gKTE4vFkuW1j4+PQ8u6ubkpPT3d/jopKSnLun/+H2lXV9ebjqn56/v/1V+3k9N2XV1dHd7un6fbbDbVqVNH27dvz7bcyZMnb5nLLJxuDMz69euVkJCgt99+W/3791f37t01YcIEderUSdu2bZPVymWTAOCIvXul2NiC++PI6aO/+v777xUUFCRJunz5sipXriw3NzcdOXJE3333nX257t27a+bMmUpOTpakLKeQ/Pz89N133+nLL7/U3//+d0lSUFCQUlNTtWXLFknSli1bdPTo0ZvmCA8P16JFi5SSkqK0tDTNnz9fHTt2lCTVrFlTu3fvliRdvHhRq1evduizhYeHa8mSJUpNTVVKSkq2U1h5ERQUpIyMDPt3s337dp07d06hoaFq37691q5dq3N/nCecM2eOfb3mzZvrxIkT2rBhg31aVFSUfZxPUeB0R2ASE2/c/CtzkFcmf39/ubi4yM3N6SIDAG4hcwxMWlqa7r77bvsv2ldeeUWPP/64/u///k81atRQ+/bt7euMHz9eL7/8sho0aCB3d3dVqlQpS5Hw9fXV2rVr9cgjj2jcuHF69913tWzZMj3zzDPKyMhQw4YNFRQUpDJlyuSY6cknn9SxY8fUoEEDSTcG1Y4ePdo+LyIiQrVr11b16tXVrFkzhz7nsGHDdPDgQQUHB8vPz0+tWrXSvn378vCN/Y+Hh4f+/e9/a9SoURozZoxKlCihlStXysfHR3Xr1tWUKVPUqlUr+fj4qEePHvb1/Pz89O2332rs2LEaM2aMUlNT9be//c0Ul587ymK73QXjhWzXrl0aN26cWrRoocGDB6tUqVI6ePCg3nvvPXXt2lXPPvusQ9s5cuSIhg0bpnnz5tnbPswl814fgb6Bprk/SRlXq+IzfFXaxWqaG9mZMbMZfzYKWlJSkk6cOKFq1aoV27GCVqtVvr43fob37Nmj7t2769ixYypZsqTByZCTO/2ZdbrDGU2bNtWQIUO0ZMmSLJeKPf744xo2bNhN14uLi9PFixftr2NiYgo0JwDAuXz++eeaMWOGbDab3NzctHjxYspLEeZ0BUaSAgICFBISojZt2qhUqVLasWOHlixZorJly6pnz545rrNq1SrDb44EADDOoEGDNGjQIKNjoJA4XYHZuHGj3n33XX366ae66667JElt2rSRzWbTxx9/rPDwcJUuXTrbet27d1eLFi3sr2NiYrLcFAkAABQdTldgvvjiC9WqVcteXjK1aNFCa9as0W+//aZGjRplW69cuXIqV65cYcUEAKfkZMMagZu6059Vpyswly9ftg/C+rPM6+z/fG0+AOAGd3d3WSwWXbhwQeXLl7/tPUgAI9lsNl24cEEWi8V+c8HccroCU6VKFe3Zs0enTp1SlSpV7NM3btwoFxeXbHdWBADcuPFZ5cqVFRsbW2RuVIaizWKxqHLlyjnerM8RTldg+vTpo127dmnkyJHq0aOHSpUqpe3bt2vXrl164IEHOE0EFJCrGd4q42qOG0VeLblLKnFVCeHTjI7iVHx8fFSrVi2lpqYaHQW4LXd39zyXF8kJC0xoaKj++c9/6pNPPtEXX3yhq1evKiAgQMOGDVPfvn2NjgcUOSXcUhWfItnkovgMc9wHRgm+UkKgrOvHGZ3E6bi6ut7RLwXALJyuwEhScHCw3n33XaNjAMXC+JGJevtDKSktb+ehjRBvKynZXGVLufmzbQAUbU5ZYAAUnuenVdHzJjsT4+J7WraEQKNjADCQ0z3MEQAA4HYoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHQoMAAAwHTcjA4AAHlls9hUeXplo2M4zNfTV6+3e10RwRFGRwFMjwIDwHQsssj2x99PW08bmiVXrNKkTZMoMEA+oMAAMJ0SKSV0TZLFZlEl30Cj4zjkbMJZZdgyZE22Gh0FKBIoMABMxz3NXZJU6lopxb4Qa3Aax1SeXtlcR4sAJ8cgXgAAYDoUGAAAYDoUGAAAYDoUGAAAYDoUGAAAYDpchQTAtK5meKuMqzkuS75acpdU4qoSwqcZHQUoEigwcFoJe7pIG17QmaRSKjPOJL+kMryNjlAslHBLVXyKZJOL4jN8jY7jmARfKSFQ1vXjjE4CFAkUGDgt6/qx0qUg2STFGx0ml0q4pRodoUgbPzJRb38oJf1xPxgziLeVlGyusqX4GB0FKBIoMHBa9v/QW9JV2nLN2DC5UMItVeNHJkoqa3SUIuv5aVX0vMnOxLj4npYtwRx3DQbMgAIDp2fxPqcrVrP9h5/yAgAFiauQAACA6VBgAACA6VBgAACA6VBgAACA6TCIt5hYEb1CkzdPljXZHPdTkSSbZafREQAATooCU0xM3jxZh+MOGx0jTyyyGB0BAOBkKDDFROaRFxeLiwJ8AgxO45gzNotskkqklDA6CgDAyVBgipkAnwDFvhBrdAyHlBlnVbwkdxPdbRUAUDgYxAsAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEyHAgMAAEzHaR/meOTIEX3yySc6cOCAUlJSVKlSJT344IOKiIgwOhoAADCYUxaY3bt3a8KECapVq5YGDhwoLy8vnT59WhcuXDA6GgAAcAJOV2ASExP1j3/8Q82aNdPrr78uFxfOcgEAgKycrh1s2LBBly5d0rBhw+Ti4qLr168rIyPD6FgAAMCJON0RmL1798rb21txcXF6+eWXderUKXl5ealjx44aOXKkPD09jY4IAAAM5nQFJjY2Vunp6Zo4caK6deumJ598UlFRUfr888+VkJCgV199Ncf14uLidPHiRfvrmJiYwooMAAAKmdMVmOvXryspKUkPPfSQnnvuOUlSmzZtlJqaqlWrVmnw4MGqUqVKtvVWrVqlyMjIQk4LAACM4HQFJvMUUYcOHbJMDw8P16pVqxQdHZ1jgenevbtatGhhfx0TE6OpU6cWbFgAAGAIpysw/v7+OnHihMqWLZtlup+fnyTJarXmuF65cuVUrly5As8HAACM53RXIQUFBUlStnu+xMXFSZLKlClT2JEAAICTcboC065dO0nSt99+m2X6t99+K1dXV4WFhRkRCwAAOBGnO4V0zz33qGvXrlq9erXS09MVGhqqqKgobdq0Sf379+c0EQAAcL4CI0ljx45VhQoVtGbNGm3dulUVKlTQyJEj1atXL6OjAQAAJ+CUBcbNzU1PPPGEnnjiCaOjAAAAJ+R0Y2AAAABuhwIDAABMhwIDAABMhwIDAABMxykH8QJAUWWz2FR5emWjYzjM19NXr7d7XRHBEUZHAbKgwABAIbDIItsffz9tPW1ollyxSpM2TaLAwOlQYACgEJRIKaFrkiw2iyr5BhodxyFnE84qw5Yha3LOz6ADjESBAYBC4J7mLkkqda2UYl+INTiNYypPr2yuo0UoVvI8iPfYsWP69ttvlZiYaJ+WnJysadOmqUePHurbt6+++uqrfAkJAADwZ3k+ArNo0SIdOHBAXbt2tU+bO3euVq1aJS8vL8XHx2vGjBmqVKmSGjdunC9hAcDsrmZ4q4yrOU7JXC25SypxVQnh04yOAmST5wLzyy+/KCwsTBaLRZKUlpamNWvWqHbt2po5c6asVquGDh2qlStXUmAAFHsl3FIVnyLZ5KL4DF+j4zgmwVdKCJR1/TijkwDZ5LnAxMfH66677rK/Pnz4sBITE/XQQw/J09NTnp6eatGihXbu3JkvQQHAzMaPTNTbH0pJf4yFMYN4W0nJ5ipbio/RUYBs8lxgXF1dlZqaan8dFRUli8WisLAw+7TSpUsrPj7+zhICQBHw/LQqet5kZ2JcfE/LlmCOK6ZQ/OR5EG/FihW1f/9+++tNmzYpICBAFStWtE+7cOGCSpcufWcJAQAA/iLPR2A6duyo2bNna/jw4XJ3d9exY8f0+OOPZ1nm+PHjqlzZPHecBAAA5pDnIzA9evRQ27ZtdeTIER04cEBNmzZV//797fNPnDiho0ePqkGDBvkSFAAAIFOej8B4eHjotddeU2JioiwWi0qWLJllvp+fnxYsWJDllBIAAEB+yPMRmKioKP3+++/y9vbOVl4kqUyZMvL19dXRo0fvKCAAAMBf5bnAjB49WmvWrLnlMuvWrdPo0aPz+hYAAAA5ynOBsdlsDi2TeaM7AACA/JLnAuOI2NhYeXt7F+RbAACAYihXg3jfeuutLK+3bt2qc+fOZVsuPT1d58+f188//6ymTZveWUIAAIC/yFWB+fOYF4vFoqNHj950kK7FYtG9996rkSNH3llCAACAv8hVgVm+fLmkG2Nb+vTpo0cffVQRERHZlnNxcZGvr6+8vLzyJyUAAMCf5KrA/PmeLi+99JLuuece7vMCAAAKXZ5vZNelS5f8zAEAAOCwPBeYTIcOHdLhw4eVkJCgjIyMbPMtFosGDhx4p28DAABgl+cCc/XqVU2cOFEHDx685T1hKDAAACC/5bnAfPjhhzpw4IBCQ0PVuXNn3XXXXXJ1dc3PbAAAADnKc4HZsWOHateurffff5+77QIAgEKV5zvxJicnKyQkhPICAAAKXZ4LTM2aNXO8Cy8AAEBBy3OBGTRokLZt26bo6Oj8zAMAAHBbeR4Dc+nSJTVr1kyjRo3S/fffr1q1at30wY2dO3fOc0AAAIC/ynOBefPNN2WxWGSz2bRmzRqtWbMm23gYm80mi8VCgQEAAPkqzwXmpZdeys8cAAAADuNRAgAAwHTyPIgXAADAKHk+AvP77787vGyFChXy+jYAAADZ5LnA9OrVy6Gb2FksFm3atCmvbwMAAJBNngtMp06dciwwCQkJOnbsmM6ePavQ0FBVrFjxjgICAAD8VZ4LzMSJE286z2azadmyZfrss880fvz4vL4FAABAjgpkEK/FYlHfvn1VrVo1ffTRRwXxFgAAoBgr0KuQgoKC9NNPPxXkWwAAgGKoQAvM6dOnlZ6eXpBvAQAAiqE8j4G5mYyMDF24cEFr167Vtm3b1KBBg/x+CwAAUMzlucC0adPmlpdR22w2+fr66plnnsnrWwAAAOQozwUmJCQkxwJjsVjk6+ure++9V127dpWfn98dBQQAAPirPBeYWbNm5WcOAAAAh/EsJAAAYDr5Moj3wIED+u2333Tt2jWVLFlStWrVUr169fJj0wAAANncUYE5cOCA3nrrLZ0+fVrSjYG7meNiKleurJdeekl169a985QAAAB/kucCc+LECY0dO1ZJSUlq1KiRwsLC5O/vr0uXLmn//v3as2ePxo4dqzlz5qhq1ar5GBkAABR3eS4wkZGRSk1N1TvvvKOmTZtmmffYY49p165dmjBhgiIjIzVlypQ7zQkAAGCX50G8UVFRatu2bbbykqlp06Zq27at9u/fn+dwAAAAOclzgUlMTFRAQMAtlwkICFBiYmJe3wIAACBHeS4w/v7+io6OvuUyhw4dkr+/f17fAgAAIEd5LjAtWrRQVFSU5s+fr+Tk5CzzkpOTtXDhQu3fv18tW7a8o4CLFi1S69atNXDgwDvaDgAAKDryPIh34MCB2rFjh5YsWaJVq1apdu3a8vPz0+XLl3X48GFduXJFlSpVuqPicf78eS1ZskReXl553gYAACh68lxgSpcurdmzZ2vOnDnauHGjdu7caZ/n4eGhLl266KmnnlKpUqXyHO6jjz5ScHCwMjIyFB8fn+ftQErY00Xa8ILOJJVSmXFWo+M45GqGt9ERAABO6o5uZFemTBm99NJLGjt2rGJiYux34r377rvl5nZnN/mNiorSli1bNH/+fM2cOfOOtgXJun6sdClINklmq4Il3FKNjgAAcDK5bhmLFi1SUlKSBg8ebC8pbm5uqlGjhn2Z1NRUzZs3T15eXurfv3+uQ6Wnp2vmzJnq1q1blu0i72wpPjf+YklXacs1Y8PkQgm3VI0fmSiprNFRAABOJFcFZu/evVq4cKGeeuqpWx5hcXd3V6lSpTR79mwFBwerQYMGuQr11Vdf6ffff9eMGTMcXicuLk4XL160v46JicnVexYXFu9zumINNDpGLlFeAABZ5arArFu3Tr6+vurRo8dtl33kkUe0ZMkSrVmzJlcFJj4+XgsXLtSAAQNUpkwZh9dbtWqVIiMjHV4eAACYV64KzMGDB9WwYUN5eHjcdlkPDw81atRIBw4cyFWg+fPny9fXVz179szVet27d1eLFi3sr2NiYjR16tRcbQMAAJhDrgpMXFyc2rVr5/DyAQEB+vHHHx1e/tSpU/r666/17LPPKi4uzj49JSVFaWlpOnv2rLy9vXO8sqlcuXIqV66cw+8FAHCMzWJT5emVjY7hMF9PX73e7nVFBEcYHQUFKFcFxsXFRWlpaQ4vn5aWJhcXx++VFxcXp4yMDM2cOTPHK4969+6tiIgIjRo1yuFtAgDyxiKLbH/8/bT1tKFZcsUqTdo0iQJTxOWqwPj7++vEiRMOL3/ixIlcHRWpVq2a3njjjWzT58+fr2vXrmnUqFGqVKmSw9sDAORdiZQSuiZJCQGyvBdrdByH2Cw2ydOqs+HTpGeMToOClKsCU79+fX333Xc6e/bsbR/kePbsWf3000/q1KmTw9svU6aMWrVqlW36ihUrJCnHeQCAguEr3SgwNlfZEkx09aJVsq4fZ3QKFLBcFZhHHnlEa9as0eTJk/Xuu+/e9Cqh+Ph4vfrqq0pPT9dDDz2UHzkBAIVs/MhEvf2hlJTmbnQUh8XbSt4oXJn3vkKRlasCExQUpEcffVQrVqzQgAED9NBDDyksLEzly5eXdGMMy759+/T111/rypUr6tWrl4KCgu445KxZs+54GwCA3Hl+WhU9P83oFLnj4nvaXEeLkGe5vhPvM888Iw8PD3322WdavHixFi9enGW+zWaTi4uL+vfvr6FDh+ZbUAAAgEy5LjAWi0VPPvmkunXrptWrV+vgwYO6dOmSJKls2bKqV6+eunTposBAGjAAACgYeX7iYmBgoIYNG5afWQAAABzi+E1aAAAAnAQFBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmA4FBgAAmI6b0QEAAMhvNotNladXNjqGw3w9ffV6u9cVERxhdBTToMAAAIoMiyyySVJCgE5P2Wl0HMd5WvXMtg8VsZQC4ygKDACgyPDNsChekmyuktU8R2BkleLWjTI6halQYAAARcarT6Xp7Q8vKSnN3egoDou3lZRsrrKl+BgdxVQoMACAIuP5aVX0/DSjU+SOi+9p2RICjY5hOlyFBAAATIcCAwAATIcCAwAATIcCAwAATIcCAwAATIerkHJpRfQKTd48WdZkq9FRcsVmMdENnQAAuA0KTC5N3jxZh+MOGx0j17xcPXVdUgVPf2nHf4yO4zg3V6lqJal8WaOTAACcCAUmlzKPvLhYXBTgE2BwGseluXrruiRXi4uUkmp0HMelpEonz1BgAABZUGDyKMAnQLEvxBodw2GBbyT/74WHSe5QmVm00tKNzQEAcDoUmGLGlmGT7gsxOoZjdvzHXEeLAACFhquQAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6TjdnXh/+eUXrV27Vvv379e5c+dUqlQp1alTR0OHDlWVKlWMjgcAAJyA0x2BWbp0qbZs2aKGDRtq1KhRevDBB/Wf//xHQ4cO1fHjx42OBwAAnIDTHYHp1auXJk+eLHf3/z1wsH379nriiSf06aefatKkSQamAwAAzsDpCky9evWyTatSpYqqVq2qmJgYAxIBAABn43QFJic2m02XL19W1apVb7pMXFycLl68aH9N2QEAoOgyRYH57rvvdOHCBQ0ePPimy6xatUqRkZGFFwqFJyVV2vEfo1M4zs1VqlpJKl/W6CQAUGQ5fYGJiYnRjBkzVKdOHXXu3Pmmy3Xv3l0tWrTIst7UqVMLIyIKipvrjfIi/e+fZpCSKp08Q4EBgALk1AXm4sWLGj9+vLy9vfX666/L1dX1psuWK1dO5cqVK8R0KHBVK90oAmnpRidxXGbRMlNmADAhpy0wCQkJevHFF5WQkKAPP/yQclIclS9rvqMYO/5jrqNFAGBSTllgkpOT9dJLL+nUqVOaPn36LQfvAgCA4sfpCkx6erqmTJmi6Oho/eMf/1DdunWNjgQAAJyM0xWYf/7zn9q2bZuaN28uq9Wq9evXZ5nfsWNHg5IBAABn4XQF5ujRo5Kk7du3a/v27dnmU2AAAIDTFZhZs2YZHQEAADg5p3uYIwAAwO1QYAAAgOlQYAAAgOlQYAAAgOlQYAAAgOk43VVIAAAUR7bEinLxPW10DIe5eCSqf69fFTn7AUPenwIDAICBXDwSlS5JNlfZEgKNjuOwdElL/iVFzjbm/SkwAAAYqH+vX7XkX1JGirfRURxmS6wo2VwNzUyBAQDAQJGzHzDsKEZeufieNvxoEYN4AQCA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6VBgAACA6XAZdS51K9Nco+99VGXcfaUd/zE6jsMsLrWNjgAAQL6hwOTS2Ep9Vcuryo0XKanGhskDm83oBAAA3DkKTC75uHpJktJt6XL1LGFwGsfZMm40l5TraZI8jQ0DAMAdosDk0fnUywpo29noGA5LvGKV5Km0lAyjowAAcMcoMLm0aksFvb/4Xl1JtOj6ZavRcRx2NcM8z9gAAOB2KDC59N6iWjp6yuuPV+Y5hZSphJv5xu0AAPBXFJhcSrh24ytzcbHJVwkGp8mdEm6pGj8yUVJZo6MAAHBHKDB5dJdfss7G+RodIw8oLwAA8+NGdgAAwHQoMAAAwHQ4hQQUhJRUU92pWW6uUtVKUnlOMQIwBwoMkJ/cXP93h2Yz3ak5JVU6eYYCA8A0KDBAfqpa6UYRSEs3OonjMouWmTIDKPYoMEB+Kl/WfEcxdvzHXEeLAEAM4gUAACZEgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKZDgQEAAKbjZnQAAE4iJVXa8R+jUzjOzVWqWkkqX9boJAAMQIEBijs31xvlRfrfP80gJVU6eYYCAxRTFBiguKta6UYRSEs3OonjMouWmTIDyFcUGKC4K1/WfEcxdvzHXEeLAOQ7BvECAADTocAAAADTocAAAADTocAAAADTocAAAADT4SokAObFzfeAYosCA8B8uPkeUOxRYACYDzffA4o9CgwA8+Hme0Cx55QFJiUlRQsWLND69etltVpVo0YNDR06VI0bNzY6GgAAcAJOWWDefPNNbd68WY8++qgqV66sNWvW6MUXX9TMmTNVv359o+MBQN4x8BjIF05XYA4dOqSNGzfq6aefVt++fSVJnTp10qBBgzR79mzNnj3b4IQAkAcMPAbyldMVmC1btsjV1VXdu3e3T/P09FS3bt00d+5c/f7776pQoYKBCQEgD8w88PhaEkeN4HScrsD89ttvqly5sry9vbNMr127tiTp6NGjFBgA5mPGgcd7Dt4oL5L5jhodOi55nDI6ieMoXbnmdAXm4sWL8vf3zzY9c1pcXFyO68XFxenixYv21zExMQUTEACKCzMfNfrr352dyUpXBc8gnUuQynv6GZbB6QpMcnKy3N3ds0338PCwz8/JqlWrFBkZWZDRAKB4MeNRowuXKF2FwNVy40lELgY+kcjpCoynp6dSU7P/C0xJSbHPz0n37t3VokUL++uYmBhNnTo13/OVLXPtT/8ske/bBwDcAUpXofD3u650W4ahvwudrsD4+/vrwoUL2aZnnh4qV65cjuuVK1fupvPyU/TRzB2D8gIAyAcmLF3/+TXzb8b9LnS6p1HXrFlTsbGxSkxMzDL90KFD9vkAAKB4c7oC07ZtW6Wnp2vVqlX2aSkpKVq9erWCg4O5AgkAADjfKaTg4GC1a9dOc+fO1ZUrVxQYGKi1a9fq3LlzGj9+vNHxAACAE3C6AiNJEydOVIUKFbRu3TolJCSoevXqevvttxUaGmp0NAAA4AScssB4enpqxIgRGjFihNFRAACAE3K6MTAAAAC3Q4EBAACmQ4EBAACmQ4EBAACmQ4EBAACmQ4EBAACmQ4EBAACmQ4EBAACm45Q3sssPycnJkqSYmBiDkwAAgNy6++67VaLEzZ92XWQLzLlz5yRJU6dONTgJAADIrXnz5ikoKOim8y02m81WiHkKzZUrV7R79259+eWXeu655xxa54MPPtCzzz57y2ViYmI0depUvfLKK7r77rvzI6rpOfK9Gamw8xXU++XXdu9kO3lZN7frsB/mjTPvh0ZkK4j3NOs+mNv1nGUfLLZHYMqUKaOOHTvq+++/v2WD+zMfHx+Hl7377rsdXraoy833ZoTCzldQ75df272T7eRl3dyuw36YN868HxqRrSDe06z7YG7XM8s+WOQH8YaHhxfIsvgfZ//eCjtfQb1ffm33TraTl3Vzu46z/zw5K2f+3ozIVhDvadZ9MLfrOfPP0p8V2VNIBeXIkSMaNmzYbc/NASg47IeAsZxhHyzyR2Dym7+/vwYNGiR/f3+jowDFFvshYCxn2Ac5AgMAAEyHIzAAAMB0KDAAAMB0KDAFICUlRW+99ZYiIiLUuXNnPfXUUzp48KDRsYBi5d1339XDDz+szp07a+DAgdq2bZvRkYBi6eDBg2rTpo3+7//+L1+3yxiYAnD9+nUtX75cXbp0Ufny5bVp0ya9//77Wr58uUqWLGl0PKBYiImJUUBAgDw8PPTLL7/ohRde0LJly1S6dGmjowHFRkZGhkaMGCGbzabmzZtr4MCB+bZtjsAUAC8vLw0aNEgVKlSQi4uLOnToIDc3N506dcroaECxcffdd8vDw0OSZLFYlJqaqri4OINTAcXL119/rdq1axfI3XqL7J14c+PatWtatmyZDh06pF9++UVWq1UTJkxQly5dsi2bkpKiBQsWaP369bJarapRo4aGDh2qxo0b33T7p06dktVqVWBgYEF+DMC0CmofnD59ulavXq2UlBQ1a9ZM1atXL4yPA5hOQeyD8fHxWrFihWbPnq0PPvgg3zNzBEY3vuTIyEjFxMSoZs2at1z2zTff1L/+9S/df//9GjVqlFxcXPTiiy/q559/znH55ORkTZ06VY899ph8fHwKIj5gegW1D77wwgtat26dZsyYocaNG8tisRTURwBMrSD2wXnz5unRRx+Vr69vwYS2wZacnGyLi4uz2Ww22y+//GJr1aqVbfXq1dmWi46OtrVq1cq2dOlS+7SkpCRbnz59bE899VS25VNTU20vvvii7bXXXrNlZGQU3AcATK6g9sE/Gz9+vG379u35GxwoIvJ7Hzxy5IhtyJAhtrS0NJvNZrO98cYbtsjIyHzNzBEYSR4eHg7dTXDLli1ydXVV9+7d7dM8PT3VrVs3RUdH6/fff7dPz8jI0NSpU2WxWDRx4kT+zw+4hYLYB/8qPT1dp0+fzpe8QFGT3/tgVFSUTp06pZ49e+rhhx/W999/r6VLl+rNN9/Mt8yMgcmF3377TZUrV5a3t3eW6bVr15YkHT16VBUqVJAkvffee7p48aLee+89ubnxNQP5wdF9MCEhQTt27FCLFi3k4eGhrVu3av/+/XryySeNiA0UGY7ug927d1eHDh3s82fNmqWAgAA99thj+ZaF36y5cPHixRwbaua0zCsczp07p2+++UYeHh5ZWuo777yjkJCQwgkLFEGO7oMWi0XffPONZsyYIZvNpsDAQE2aNEm1atUq1LxAUePoPliiRAmVKFHCPt/T01NeXl75Oh6GApMLycnJcnd3zzY981LN5ORkSVLFihX1ww8/FGo2oDhwdB/09vbWzJkzCzUbUBw4ug/+1cSJE/M9C2NgcsHT01OpqanZpqekpNjnAyg47IOAsZxpH6TA5IK/v78uXryYbXrmtHLlyhV2JKBYYR8EjOVM+yAFJhdq1qyp2NhYJSYmZpl+6NAh+3wABYd9EDCWM+2DFJhcaNu2rdLT07Vq1Sr7tJSUFK1evVrBwcH2K5AAFAz2QcBYzrQPMoj3D59//rkSEhLsh8G2bdum8+fPS5J69uwpHx8fBQcHq127dpo7d66uXLmiwMBArV27VufOndP48eONjA+YHvsgYCyz7YM8jfoPvXr10rlz53Kct3z5cgUEBEi6McI68xkQCQkJql69uoYOHaomTZoUZlygyGEfBIxltn2QAgMAAEyHMTAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAAMB0KDAAnF7r1q2z/ElOTrbPW7NmjVq3bq01a9YYmPB/vvrqqyxZ//GPfxgdCSiSeBo1ALuzZ8+qd+/et1ymYsWK+te//lVIibK+b+fOnSVJrq6uBfpeu3fv1tixY9W4cWNNmzbtlsv+/e9/14YNGzRp0iTdf//9CgoK0qBBg5SQkKCVK1cWaE6gOKPAAMgmMDBQ999/f47zfHx8CjnNDRUrVtTgwYML5b0aNWqkChUqaN++ffr9999VoUKFHJdLSEjQ1q1b5ePjo9atW0uS7r33Xt177706e/YsBQYoQBQYANkEBgYWWllwRi4uLurSpYsiIyO1du1aDRw4MMflNmzYoOTkZHXt2lWenp6FnBIo3hgDA+COtG7dWqNGjdKFCxf097//XQ8++KA6deqkF198UWfOnJEknTx5UhMnTlS3bt3UqVMnTZo0SZcuXSrQXOfPn9fAgQMVHh6uzZs326dfvnxZH3zwgfr27asOHTrowQcf1CuvvKLjx49nWb9r166yWCxas2aNbDZbju+xevVqSVK3bt0K7HMAyBkFBsAds1qteuaZZ3T27Fl16tRJYWFh2rlzp1544QUdP35cI0aM0PXr19W1a1fde++92rJli1577bUCy3Py5EmNGDFC58+f17vvvqu2bdtKkk6fPq2hQ4dqxYoVqlSpknr06KFmzZpp9+7devrpp3Xo0CH7NipWrKiGDRvqzJkz2r9/f7b3OH78uA4fPqxatWrpnnvuKbDPAiBnnEICkM3p06e1cOHCHOfVqVNHTZs2zTLt2LFj6tWrl0aOHGmfNn36dH355ZcaOXKknnjiCT366KOSJJvNpvHjx2vnzp06cuSIgoKC8jV7dHS0xo8fLzc3N33wwQeqWbOmfd4bb7yhS5cu6b333lOTJk3s0wcMGKBhw4bpnXfeUWRkpH16t27dtHfvXq1evVoNGjTI8j4cfQGMxREYANmcPn1akZGROf7ZtWtXtuW9vLw0dOjQLNM6dOggSSpdurQiIiLs0y0Wi33esWPH8jX3jh079Pzzz8vX11cfffRRlvLy66+/6uDBg+rUqVOW8iJJVapU0QMPPKDjx49nOZXUqlUrlS5dWlu2bFFiYqJ9elpamtavXy8PD4+bDnYGULA4AgMgmyZNmui9995zePnKlSurRIkSWab5+/tLkqpXry6LxZLjvLi4uDtM+j+bNm3Snj17VKNGDb377rvy8/PLMj/z9NDly5dzPLr03//+1/7P6tWrS5K9oKxcuVIbNmzQQw89JEnatm2brly5ovDwcPn6+ubbZwDgOAoMgDvm7e2dbVrmvVpuNS8tLS3fMkRHRys9PV3169fPVl4k6erVq5JuHKXZsWPHTbdz/fr1LK+7deumlStXavXq1fYCw+kjwHgUGABFwpNPPqkff/xRK1eulKurq5555pks8zOL1HPPPaeePXs6vN0aNWro3nvv1S+//KITJ07I19dXu3fvVkBAQLZxMQAKD2NgABQJHh4eeuONN3Tfffdp+fLl+vDDD7PMr127tqQbR2pyK/NIy7fffqt169YpPT3dfpk1AGNQYAAUGR4eHpo6daqaN2+uf/3rX/rggw/s84KDgxUcHKyNGzdq48aN2dbNyMhQVFRUjtsNDw9XiRIltH79eq1evVouLi72xxoAMAankABkc6vLqCXpsccec9o7z7q7u+v111/X5MmTtWLFCtlsNo0aNUqSNHnyZI0ePVqvvfaaVq5cqVq1asnT01Pnz5/XwYMHFR8frw0bNmTbpre3t9q0aaN169bpypUratq06U0fLwCgcFBgAGSTeRn1zTz66KNOW2Ck/5WYV199VStXrpTNZtNzzz2nSpUqacGCBVq+fLm2bt2qNWvWyMXFRf7+/goJCbHf8C4n3bp107p16yTduEsvAGNZbDe7RzYAOInWrVsrNDRUs2bNMjqKwzKf7N25c2dNnDjR6DhAkcMRGACmEBUVZX/i83fffee0R4C++uorTZs2zegYQJFHgQHg9AYNGpTldeZ9ZJxRUFBQlry1atUyLgxQhHEKCQAAmA6XUQMAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANOhwAAAANP5f/ghY/XvtsDIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the counts distribution\n", + "ax,plot = bkg.project(\"Em\").draw(label = \"Background component\", color = \"purple\")\n", + "#data.project(\"Em\").draw(ax, label = \"data\", color = \"green\")\n", + "data.project(\"Em\").draw(ax, label = \"data(Crab+bkg)\", color = \"green\")\n", + "signal.project(\"Em\").draw(ax, label = \"Crab signal\", color = \"pink\")\n", + "bkg_model.project(\"Em\").draw(ax, label = \"Background model\", color = \"blue\")\n", + "\n", + "ax.legend()\n", + "ax.set_xscale(\"log\")\n", + "ax.set_ylabel(\"Counts\")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "194a38f1-2070-46a3-914a-970ecd41aaeb", + "metadata": {}, + "outputs": [], + "source": [ + "# clear redundant data from RAM\n", + "del signal\n", + "del bkg\n", + "_ = gc.collect()" + ] + }, + { + "cell_type": "markdown", + "id": "e48658c5-9b31-48eb-8644-e4556f83011f", + "metadata": {}, + "source": [ + "### Start TS map fit" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "72ba732c-37d3-4a43-afbe-24292fbbd3e6", + "metadata": {}, + "outputs": [], + "source": [ + "# define a powerlaw spectrum\n", + "index = -3\n", + "K = 10**-3 / u.cm / u.cm / u.s / u.keV\n", + "piv = 100 * u.keV\n", + "\n", + "spectrum = Powerlaw()\n", + "spectrum.index.value = index\n", + "spectrum.K.value = K.value\n", + "spectrum.piv.value = piv.value \n", + "spectrum.K.unit = K.unit\n", + "spectrum.piv.unit = piv.unit" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "7c39a92b-3016-4b19-b56e-7ac0bbe33f1f", + "metadata": {}, + "outputs": [], + "source": [ + "%%capture\n", + "zipped_response_path = data_dir/\"psr_gal_DC2.h5.zip\"\n", + "response_path = data_dir/\"psr_gal_DC2.h5\"\n", + "\n", + "# download the galactic point source response ~6.69 GB\n", + "if not response_path.exists():\n", + "\n", + " fetch_wasabi_file(\"COSI-SMEX/DC2/Responses/PointSourceReponse/psr_gal_continuum_DC2.h5.zip\", zipped_response_path)\n", + " \n", + " # unzip the response\n", + " shutil.unpack_archive(zipped_response_path)\n", + " \n", + " # delete the zipped response to save space\n", + " os.remove(zipped_response_path)" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "de748dc4-97a9-4b44-8531-e56a7be242d5", + "metadata": {}, + "outputs": [], + "source": [ + "# here let's create a FastTSMap object\n", + "ts = FastTSMap(data = data, bkg_model = bkg_model, response_path = response_path, cds_frame = \"galactic\", scheme = \"RING\")" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "73ba79d0-a686-453e-b081-46d9462d338f", + "metadata": {}, + "outputs": [], + "source": [ + "# get a list of hypothesis coordinates to fit. The models will be put on these locations for get the expected counts from the source\n", + "# note that this nside is also the nside of the final TS map\n", + "hypothesis_coords = FastTSMap.get_hypothesis_coords(nside = 16)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "19d55399-0ef5-41dc-9bd6-29281375ccb5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "You have total 56 CPU cores, using 55 CPU cores for parallel computation.\n", + "The time used for the parallel TS map computation is 1.1570752302805583 minutes\n" + ] + } + ], + "source": [ + "# Perform the parallel fit\n", + "ts_results = ts.parallel_ts_fit(hypothesis_coords = hypothesis_coords, energy_channel = [1,2], spectrum = spectrum, ts_scheme = \"RING\", \n", + " cpu_cores = 56)" + ] + }, + { + "cell_type": "markdown", + "id": "a6f94572-b73d-425f-9c81-04d508420ab8", + "metadata": {}, + "source": [ + "### Plot results" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "f967ebe1-a1ef-4b4c-a11b-840f33b0f055", + "metadata": {}, + "outputs": [], + "source": [ + "# This the true location of Crab\n", + "coord = SkyCoord(l=184.5551, b = -05.7877, unit = (u.deg, u.deg), frame = \"galactic\")" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "887d08d5-ffd0-4f50-af84-a724ac497826", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOz9eZhsVX3o/3+qqoczcAbOAUQmERQZHVAZRUFEIw6YG+MIkfyu18R4E5P41ai5iRmNRq8ZHjU3alSMglGSOEQxCgFkFEEBERHCLPN0Docz9FBdvz+6V5/dq/au2sMaPqv6/XoeHzx1uqvXqa6urqrPfu/V6vV6PQEAAAAAAAAAABhR7dgLAAAAAAAAAAAA8IlhCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAsM61Wq+9/n//850t//uc///nc60B8J554Yt/35cwzz4y9LPmTP/mTvnXtv//+sZeFAny/AAAAMIoYhgAAAAAAAAAAgJHGMAQAAKhyxx135FYH2f8dccQRXr72XXfdJZ1OZ+DX5uhoAAAAAADSwzAEAAAk54YbbpBrrrnG+fWeddZZMjc35/x6AQAAAABAXAxDAABAks4666wkrhMAAAAAAMTHMAQAACTpnHPOkZmZGWfXd8kll8itt97q7PoAAAAAAIAeDEMAAECSHn74YfnmN7/p7Po+//nPO7suAAAAAACgC8MQAACQhI0bN/Zd5uq0Vtu2bZOvfvWrSy4bGxuTdevWObl+IJSLLrpIer3ekv8x6ENVf/Inf9J3P7rjjjtiLwsAAABohGEIAABIwmmnnSarVq1actl5550nDz30UOPr/td//VfZsmXLkste/vKXy/r16xtfNwAAAAAAiI9hCAAASMKaNWvkf/yP/7HkspmZGfnSl77U+Lo/97nP9V125plnNr5eAAAAAACgA8MQAACQjLe85S19lzU9BdCdd94pF1100ZLLNm7cKK985SsbXS8AAAAAANCDYQgAAEjGi1/8Ytl3332XXHbdddfJtddeW/s6zzrrLOn1eksue+Mb3ygTExO1rxMAAAAAAOgyFnsBAAAAZbXbbfm1X/s1+cu//Msll5911lny7Gc/u/L19Xo9+cIXvtB3eahTZN1zzz3yjW98Qy699FK58cYb5a677pInnnhCer2erF69WvbZZx85+OCD5fjjj5dXv/rVcsABBwRZF9z42c9+Juedd55cfvnlcvPNN8s999yz+P3dZZddZL/99pPDDjtMXvjCF8ov//Ivyx577BF7yQP9+Mc/lnPPPVcuueQSufnmm+Wxxx6TVqsl69atkwMPPFCe+9znyqte9Sp5yUteIu122GOuZmZm5IILLpALL7xQrrnmGrntttvk4Ycflm3btsnExITsuuuucsABB8jznvc8OeWUU+SUU06R8fHxoGvETnNzc3LppZfKBRdcIFdddZXceuut8uCDD8rWrVtlbGxM1q1bJ/vvv78ceeSR8uIXv1he8YpXyMqVK2MvGwAAAKnrAQAAKHL77bf3RKTvf+985zt7vV6vd8stt/T93R577NGbmZmp/LUuvvjivus64ogjFv/+KU95St/fP+UpT2n8b7zqqqt6r3jFK3rtdjv331r0vxe96EW9Cy64oPHXz7vuz33uc6U//3Of+1zudQzzkpe8pO9zXve611Ve/80331x4G33wgx+sfH1nn3123/V0Op3e5s2bK19Xt9vtnXPOOb0jjzyy0ve20+n03vjGN/Zuvvnmyl8z60UvelHfdb/lLW9pdJ3XXHNN7vUW/e/pT3967ytf+cqS6/jABz7g5WfpoYce6r3vfe/rbdy4sdLtvccee/Q+9KEP9bZv3954DXW9/vWv71vX+Ph476GHHnL6dZ73vOf1fZ299tqrNzs7W/g5vr5fW7Zs6X34wx/u7b333pW+X2vXru29973v7T322GOVvt709HRv1apVfdf3yU9+svLaP/WpTxWu7/LLL698fW9729v6ruf5z39+5esBAABAeZwmCwAAJOVpT3uaHH/88Usue/DBB+Vb3/pW5evK228kb18SV3bs2CH/+3//bzn66KPlW9/6lszNzVX6/IsvvlhOPvlkefOb3yybN2/2tEp/Tj755L7LLrzwwr7TlA1zwQUXFP7df/3Xf1VeV971Pf/5z5e1a9dWup6f/vSnctxxx8kb3/hG+dGPflTpc7vdrpxzzjlyxBFHyEc/+tFKn+vThz/8YTn66KPl4osvLv05t9xyi7zuda+TM844Q6anp72t7Z/+6Z/k6U9/uvzVX/2VPPLII5U+98EHH5T3vve98qxnPUuuueYaTyscLO+xZmZmRs455xxnX+PGG2+Uq6++uu/yM844QzqdjrOvU8Y3vvENOfjgg+UP/uAP5J577qn0uY8//rh86EMfkkMPPVS++93vlv688fFxOeGEE/ouH/QYUiTE407eYyQAAADcYRgCAACSk/cm4llnnVXpOrZu3Spf/epXl1w2NjYmb37zmxutrcgjjzwiL3rRi+QTn/hE5Tf/bWeffbYcc8wxcueddzpaXRh5b/Q99NBDcv3111e6nkFvSl522WUyNTXV+Ppe/OIXV7qOf/u3f5Ojjz5afvCDH1T6PNvU1JS8+93vljPPPLPysMy13/7t35b3vve9Mjs7W+vzv/jFL8ppp51W+/OLzMzMyFve8hZ561vfKps2bWp0XTfffLOccMIJ8s1vftPN4ip46UtfKk9+8pP7Lq/6WDZI0XX5HPrmef/73y+nnXZa5SGI7b777pNTTz1VPvWpT5X+nKIhbJWfr16vJxdeeGHh31cdrtx5551y66239l1e9XEHAAAA1bBnCAAASM7rX/96eec73ynbt29fvOxb3/qWPPLII7Jx48ZS13HuuefKE088seSyl73sZbLnnns6XavI/ODlpS996cBaYMWKFXLEEUfIXnvtJWNjY3LPPffIT3/6U9myZUvux990001y8skny+WXX65+rwnjyCOPlHXr1vVVLRdccIE861nPKnUdvV5PLrroosK/3759u1x++eVy0kknlbq+22+/Xe64446+y6scoX322WfLr/3ar0m32y38mD333FMOPvhg2bhxo4yNjckDDzwgN9xwgzz88MO5H3/WWWfJ6tWr5ROf+ETpdbj0l3/5l/Lxj3+88O9brZYcdthhsu+++8ratWvlvvvuk5///OfywAMPLPm473znO/Lud79b1q1b52RdMzMz8trXvla+8Y1vFH5Mu92WQw89VPbee2/ZsGGDbN26Ve677z659tprZWZmpu/jt2/fLq997WvlggsukBe84AVO1llGp9OR008/XT7ykY8sufyaa66Rn/70p3LYYYc1uv5utytf/OIX+y4/6qij5JBDDml03VX81m/9lvzDP/zDwI856KCD5ClPeYps3LhRpqam5IEHHpAf//jHSx7jjW63K7/5m78p69atk9e//vVDv37egOHRRx+Va6+9Vo488shS/4YbbrhBHnzwwcK/v/zyy2X79u2l9zXJK0kmJyeD3v8AAACWI8oQAACQnLVr18ov//IvL7lsenpazj777NLXkXeKLF8bp7/rXe8qHITsu+++8tnPflYeeOABueqqq+RrX/uanHvuuXLFFVfIAw88IP/yL/8iBx98cO7n3nrrrfLWt77Vy5p96HQ6cuKJJ/ZdXuWo6uuuu65wgFDn+vI+dsWKFXLccceV+vxLLrlEzjzzzNxByLp16+QP/uAP5KabbpL77rtPLrzwQjn33HPly1/+slx44YXywAMPyGWXXSYvf/nLc6/7k5/8pHz9618v/W9x5eqrr5YPfOADuX83MTEhf/RHfyS33367/OQnP5Fvf/vb8uUvf1kuvvhiuffee+X888/ve/P57/7u7+SSSy5xsrbf/u3fLhyEPPOZz5QvfOEL8vDDD8tPfvIT+c53viNnn322fP3rX5errrpKHn74YfnsZz8r++23X9/nTk9Py+mnny6PP/64k3WWVfSY84UvfKHxdZ9//vly77339l0esgr50Ic+VDgIOeCAA+QTn/jE4iDtu9/9rpxzzjnyb//2b3LZZZfJI488Iueee64ceuihfZ/b6/XkN37jN+Suu+4auobnPOc5suuuu/Zd3vRxImtqakouu+yyRtd3zDHHsEk8AACAZwxDAABAkvLeRMwbcOS54447+vZA2LBhg7z61a92sLKlvvOd78g//uM/5v7dr/7qr8oNN9wgv/7rv567P8XKlSvlda97nfz4xz+W3/iN38i9jm9+85vyT//0T07X7FNecfH9738/94j9PGXewGz6Judxxx0nK1asGPq5mzdvlje84Q25az/11FPl1ltvlQ996EPyjGc8I/fz2+22HHfccfLtb39bvvSlL8nExETfx7z1rW8deES6a91uV972trflDncOOOAAufrqq+XP/uzP5ClPeUrf37fbbTn55JPl/PPPX7LvSa/Xq7Wngu2rX/1q7s/SxMSE/P3f/71cd911csYZZ+S+8S0yP0T99V//dbnpppvkta99bd/f33nnnfLbv/3bjddZxaGHHirPe97z+i7/4he/OLA0KiPvFFmTk5Pyhje8odH1lvWDH/xA/vAP/7Dv8larJe973/vk5ptvlt/6rd8qrPFWrlwpv/IrvyLXX3+9vPOd7+z7+82bN8uv/dqvDV1Hu93OLcVcDkOqXl/ezwP7hQAAAPjHMAQAACTp5JNPln322WfJZT/60Y/kJz/5ydDPPeuss/r27XjjG9+Y+2Z0E3Nzc/KOd7wj9+9e+cpXytlnn11qk+4VK1bIP/zDPxS+8feud72r75RfWuWdsuaJJ56Qq666qtTn228ijo+Py0te8pIll/3whz8sfYR/3j4AZc/b//73vz/3yPu3vvWt8h//8R+lT9kmIvKmN71J/vVf/1VardaSyx9++GH5u7/7u9LX09SnPvUp+fGPf9x3+e677y7f+c535Igjjhh6Ha1WS971rnfJBz/4QWfreuKJJ3IHFRMTE3LeeedVGmKsXLlSvvKVr+SeYumf//mf5eabb2601qryBrumsqnr8ccfl6997Wt9l7/qVa+SDRs21L7esubm5uR//a//lbsvx1lnnSUf/OAHS2/g3ul05G//9m/l3e9+d9/fXXzxxfK9731v6HXk/UxfcsklMj09PfRzu92ufP/7319y2dFHH913O5YdhvzsZz+T++67r9QaAQAA4BbDEAAAkKR2uy1nnHFG3+XDNh/u9Xq5p6DxceqYb3/723Lbbbf1Xb7XXnvJOeecI2Nj5bdva7Va8pnPfCb3XP+bN292clqdEA477LDcI8HLvJE4MzOT+6akXfR0u92+8ifPDTfc0LfHhUi5I7TvuOMO+fSnP913+Yknnij/8A//0DfUKOOVr3yl/P7v/37f5Z/61Kdkx44dla+vjqJTGn3qU5+Spz/96ZWu633ve5/80i/9kotlyd///d/nfq8+8YlP1HoTudVqyac//Wl56lOfuuTyXq8nf//3f197nXUUDWKbbKT+la98JXe/jVCnyPryl7+cO5j+wz/8w9zH7TI++MEPytFHH913eZlhYd7P9LZt2+TKK68c+rl5w9VTTjml75R/P/rRj2TTpk1Dry/vsW6XXXaRo446aujnAgAAoBmGIQAAIFl5R1R/6UtfktnZ2cLP+f73v983oDjssMPk+c9/vuvlFW5+/eEPf1h22WWXytc3Pj5e+MbfJz/5ycrXF0vem9dlhiFXXXVVXwFz8skn577RWfe0NmvWrMk9bZHtE5/4RN/psTqdjnz84x+vNOSy/Z//83/67hsPP/ywfOUrX6l9nWX94Ac/yH0D+6STTpLXvOY1ta7zYx/7WKPbQ0RkdnY2dzP3Y489ttGeOWvWrJH3v//9fZefddZZsm3bttrXW9WGDRvkVa96Vd/lX/va12rvYZI3HH3Sk57kbDg1zN/8zd/0Xbb//vvLH/3RH9W+zrGxMfmLv/iLvsu//e1vyx133DHwcw8++GDZa6+9+i6v+ziR97jT7XbloosuqnV9J5xwgoyPjw/9XAAAADTDMAQAACTroIMOkmOPPXbJZffff7/853/+Z+HnfO5zn+u7zMfR0o8++mjuOvbee29505veVPt6TznlFHnOc57Td/lPf/pTue6662pfb0h5w5Arr7xStm7dOvDzis6zf+ihh8qTn/zkJZeXeZMz7/pe9KIXDX3zfm5uTv75n/+57/Jf+ZVfkcMOO2zo1x1k/fr18uY3v7nvchd7bgzzpS99KffyvFqlrEMOOaRwg/iyvvvd7+aeVqjJG+vGGWec0XequiqnbXMl7zFo+/bt8tWvfrXydd12221y6aWX9l3+5je/ufFgqowbb7xRrr766r7L3/Oe98jk5GSj637JS17StwdPr9crNYTIe9wpcyoy+2dv5cqVcuyxx9Yaws7NzeVWa+wXAgAAEAbDEAAAkLQqG6k/8cQTcu655y65rNPp1D5tyyBXXnll374kIvOnxGm3mz0FK1rvFVdc0eh6Q8l74296elouueSSgZ9nv9G4evVqOeaYY0Sk/43OolNgGUWn0ipzyqWrr74697rz9qCoI2+z58svv9zJdQ+S9zU2bNggL3vZyxpdb95wp4r/+I//6Ltsw4YNcsoppzS6XpH5DcWPO+64vstD3N5ZL3/5y2WPPfbou7zOqbK+8IUv5D72hDpFVt73q9Pp5G5aX0fdn4+8x52rrrpKtmzZUvg5O3bs6LvuF7zgBTI5OSnPeMYzZO+9917yd8OGIT/60Y/kscce67uc/UIAAADCYBgCAACS9vrXv15WrFix5LJvfvOb8uijj/Z97LnnnttXH7zsZS/L3cOiqaJz0b/iFa9ofN32HhnDvqY2+++/vxxwwAF9lw96I3H79u19w57sqWXy3ugcVFNcffXVsnnz5r7LyxyhXbQfiYs350VEnvvc5/Zddsstt8gjjzzi5PrzTE1NyfXXX993+cknn9z49D0vf/nLa+2hYuTd3ieddJKzyiHv9g79szQ2NpY7NLr00kvl9ttvL309RXsiPec5z5FnPvOZjdZYVt7369nPfrbsvvvuTq6/7vcr72d7dna2bx+irMsuu6xvv57s9djXWbQ5upH3GLdx40Z59rOfXfg5AAAAcIdhCAAASNq6dev69jOYmpqSL3/5y30fm1eM+DpaOu80MSLi5E2vAw44oO/UPiLzG/2mouq+IZdeeqlMT08vuWzQm5LDri9vULL77rvLEUccUfg5xo9//OO+y/bZZx9Zs2bN0M8tY7fddsu9/Be/+IWT689z/fXX9+2BIiJO3kBfu3at7L///rU+d/v27fLzn/+87/JDDjmk4ap2yru97777bmfXX1Ze5VY03ChyySWX5A5PQlUhIvk/Hxq+X/vuu6887WlP67u86uOE68edk046qdGwEAAAAOX5P2ksAACAZ2eeeWbf8OPzn/+8/NZv/dbin2+//fa+I4B33XVXOe2007ysKe/o4P3220/Wr1/f+LpbrZYcccQRctllly25/P7772983aGcfPLJ8pnPfGbJZddee6088sgjsnHjxr6PL9rE2Nhvv/3kwAMPlFtvvXXg5wz6u7JvSt5yyy19l01NTeW+mV1H3imORCT39DquFA1aygyHyjjiiCMqFQ7GbbfdJt1ut+/yCy64wNnAIu/76fO2LvLMZz5Tnv3sZ8u111675PIvfOEL8sd//Mel7pt5p9UaHx9vfKqysrZu3Zr72Hfdddc5+/nIu/7NmzfL3Nzc0FMQnnzyyfLf//3fSy6r8jix6667ypFHHrn456Kh7umnn953+fT0dO5eLpwiCwAAIByGIQAAIHmnnHKK7L333nLPPfcsXvbDH/5QbrzxRjn00ENFZP5NQvtN5je84Q2NN/QtsmnTpr7LXJ0mRkRy9xfYvHmz9Hq9JI4yfvGLXyytVmvJ96TX68mFF16Yu7eAfUR13qllTj755CXDkDvuuENuu+22vlNyTU1N5e4xUHYT4+z9zHjooYdq7e9Qhc836PPuryLFlUpVda8n77YWmd8fx+ceOTGGISLzg93f/d3fXXKZ2RD9hBNOGPi5RRuun3rqqc6+j8MUfb9+8pOfyE9+8hNvX7fX68nmzZtl1113HfhxJ598svzjP/5j39oeeuihvsfnxx9/vK/wO/HEE5cMXPbZZx856KCD5Oabb168rGi4cuWVV8q2bdty1wQAAIAwOE0WAABIXrvdzt1U3Lw5XXSqGVdHKufJezM179RWda1bt67vsm63O3AzYE322GMPOeyww/ouz3sjcdOmTfKjH/1oyWV5FUfZU9Zcfvnlsn379r7Lyx6hnbfXSAiPP/64t+su+je5us/WvZ5RvK0HedOb3pS7R0uZU2X9+7//e+7Pf8hTZMX6fomU+57lPW70er3c01ddfPHFfVVS3mOMfdndd9+dWxvlPRaZYQoAAADCYBgCAABGQt5g44tf/KJ0u1256KKL+k7Rc8ghh8hRRx3lbT1PPPFE32WrV692dv1F15XKMESk/PDioosuKvWmZN4bnXnXl3fZfvvtl7ufQB57Q+VQik6f5ULe/VVEZNWqVU6uv+59P9ZtHcvuu+8up556at/lX/nKV3IHeFl5ZdJuu+0mr3zlK52tb5iY368yPx+77bZb7j44ZR8nygxDqlwfp8gCAAAIi2EIAAAYCc94xjPkmGOOWXLZvffeK9/73veCbpxu7LLLLn2X5Z0ipa6tW7eW/rpa5b2JeMstt/TtBTFsE2Nj991373uj87/+67/63iTNu74qb0p2Op3SH5uKomGFq/ts0f11mFG8rYfJe2x6/PHH5Wtf+1rh59xzzz1y/vnn913+xje+Mbc08SWF71fZ4YX9OLHXXnvJwQcf3PdxJ510Ut9eJfb1bd26Va666qq+z2UYAgAAEBbDEAAAMDLy3kT8+Mc/Lv/6r/+65LJOp5N7Wi2X8s5d7/LUO3nX1W63nZ6Ky7cXvehFuW+e2m/q2m8s7rvvvvL0pz899zrtNzofeuihJXsVbNmyRX74wx8O/bxB8gYHRx11lPR6Pa//83lat/Xr1+de7uo+W/d6ioY0n/zkJ73f3rG88pWvzN3jY9Cpsr74xS/K3Nxc3+U+7zN5ir5f73nPe7x/v/bff/9Sa8wbQNx2221yxx13LP75wQcflBtuuGHJxxQ9RmzYsKFv/6ILL7xwyX3o+9//vszMzPR9LvuFAAAAhMUwBAAAjIw3vOENsmLFiiWXfetb3+o7Kv2UU06Rvfbay+ta8t5cfuihh5xd/4MPPpj7NVPYPN1Yu3atPO95z+u7PDv8uP/+++XGG29c8veD3kDMe6Mze30XX3yxzM7Olvq8InvuuWffZY8++mjpz9eoaBjy8MMPO7n+uteTd1uLpH97DzI+Pi5vfOMb+y7/3ve+J/fdd1/u5+SdIuvwww+XI4880vn6Bknh+/XCF75QxsbG+i7PDmHzirIqjzuPPPKIXHvttYt/zitPnv70p8s+++xTdtkAAABwgGEIAAAYGevXr5fTTjtt6MeFOFr6yU9+ct9ld911l5Mj7Xu93pLawSh6I1KzvDcYs6enKXuKLCPvjc7sG5F513fwwQdXGo499alP7bvM5aArhr333jv3cvvo+Lry7q9l5N3WIunf3sPkPUZ1u1354he/2Hf5D3/4Q/nZz37Wd3nIjdONPfbYI3efGU3frzVr1uTuFzXscWLQ486wU29VvT4AAAD4wTAEAACMlGGDjvXr18trXvMa7+vIKx56vd6So4Xruv3222Xz5s19lz//+c9vfN2h5RUZ991332INUnXT4bw3Or///e8v1iAuNjG2T4kjIrJ582a56aabKl2PJs961rNy95a47rrrGl/3li1blpyCqIo99tgjd7B45ZVXNlyVbkceeaQcccQRfZfnnSorrwrpdDpy+umne1nbIK1WS571rGf1Xf6DH/wg+FoGyfuZz9Yg9uPEQQcdNLDiOOGEE/p+fswAxK5EBq0BAAAAfjEMAQAAI2XYKbDe8IY3yOTkpPd12Ju5G9/61rcaX/c3v/nNSl9Ts+OPP77v1GYiO9+MtI+oPuSQQ4ZWHPYR12afEHv/kKKPH+aEE07Ivfyiiy6qdD2aTE5O5r75fsEFF+TudVDFeeed12gPjrzb+5prrpEnnniiybLUyys7brjhBvnRj360+Ofp6Wn58pe/3PdxL3vZy6KVYnnfr/vvv1/VsDDvZ97sE3LnnXfKbbfdNvTjs1avXt33+Gv2CbH3DxGZHxqddNJJNVcPAACAuhiGAACAkTLsiOhQp4455phjcvfvOOeccxpvzpx3qhwRkWOPPbbR9cawYsUKOe644/ouv+CCC/o2NRYpN7goOmVN3puS7Xa78puSL37xi2WXXXbpu/yf/umfKl2PNnnfh0cffVS++93vNrres88+u9Hn5536bnZ2Vj7/+c83ul7t3vzmN+fubZEtQb71rW/JI4880vcxoTdOzyo6VeFnPvOZwCspduyxx8rKlSv7Lr/gggty67E6jztbt26VH/zgB7mnyHrWs54lu+22W4UVAwAAwAWGIQAAYOT8xm/8hrzrXe/q+98f//EfB6snNmzYIL/0S7/Ud/ndd9+deyR3Wf/1X/8lV199dd/lhx9+eO7paVKQd7qYiy66KPdN+DJvSh577LF9+xYUvcn57Gc/W3bdddcKq52vKN7whjf0XX711VfLeeedV+m6NHnzm9+ce/nf/u3f1r7On//85/Ltb3+79ueLzL+5nrfB+1//9V/L9PR0o+vWbM8995SXvexlfZefc845i7VO3imydt11V3n1q1/tfX1Fjj32WDnooIP6Lv9//+//ycMPPxxhRf0mJyfl+OOP77s873Gi7MC0aAjr4tR8AAAAcINhCAAAGDkHHHCAfPSjH+3735/+6Z8GXcc73vGO3Mvf8573yNatWytf3+zsrPzO7/xOpa+Vgrw3ETdv3iwf+9jHllzWbrflxBNPHHp9ExMT8oIXvGDJZVdccYV85zvfKfW1y/jd3/1dabf7n0q/7W1vk/vvv7/WdcZ2zDHHyOGHH953+fnnn194arZhfv/3f7/xabZWr14tb3vb2/ouv/vuu5O+35eRV7I99NBDct5558nDDz+cO2h6/etfH+RUgEVarZb87u/+bt/lW7duldNPP1263W74ReXI+9m/+OKL+4YXz372s2XDhg1Dr+/oo4+W1atXL7nsS1/6ktx8882lvjYAAAD8YxgCAADgyctf/nI58MAD+y7/xS9+IWeccUblNwV/4zd+Q37605/2Xb5+/Xo544wzaq8ztuc///mydu3avstvueWWJX9+7nOfm1sI5LGPvJ6ampK77rpr6MeVddhhh8mv//qv913+i1/8Qk477TR56KGHal2vbXp6Wj772c8GO6L+7W9/e+7lb33rW/v2URjmr//6rxtXIcb73vc+2bhxY9/ln/nMZ+TP/uzPnHwNEZG77rpL1em3Xv3qV+eWS2eddZacffbZuYOmmKfIMv7X//pf8oxnPKPv8v/8z/+Ut7/97TI7O+vk6zz88MPyD//wD7U+N28gsWXLFnnggQeGflye8fHxvv1S7McwEZGxsTF54QtfWGGlAAAAcIVhCAAAgCftdls++clP5u4d8u///u9yxhlnyJYtW4Zez9TUlPzWb/2WfPazn839+7/5m7/pOyI5JZ1Op9Sbg1WOpi7zsXlvXlbxkY98RPbZZ5++y6+66ip5znOek7tXQFl33323/NVf/ZXsv//+8j//5/8Mtln42972ttzTrT344IPy0pe+NHcYZ+v1evK3f/u38t73vtfZutavX1/4pvcHPvABec1rXtP3JnZZvV5PLrvsMjn99NPlwAMPVDUMKTol23/8x3/k3h4HH3ywHH300SGWNtDY2Jh87nOfk06n0/d3n/70p+XEE0+sPFzLuvbaa+Ud73iH7LfffvLhD3+41nUceeSRsm7duqEf5/px56ijjsrdcwgAAAD+MQwBAADw6KUvfWnh0fbnnHOOHHHEEXLWWWflDkV27Ngh5557rhx55JGFbwS/5jWvUXEkeFN1N0YvcuSRRw7dCyTvtDZV7LrrrvLVr341dyPme+65R04++WR5wQteIF/+8pflwQcfHHhdW7ZskUsuuUQ+/OEPy9FHHy1PecpT5P3vf7/cd999tddXx9jYmHzqU5/KPQXYrbfeKs997nPlAx/4gNx99919fz83NycXXnihnHLKKfJ7v/d7i5vVt1otJ3sk/Oqv/mru6ZdERL7+9a/L/vvvL7/5m78pl1566dC9RO666y75+te/Lu94xztk7733lhe84AXypS99yVmx4FLez/f09LTcdNNNfZfnnVYrlmOPPVb+7//9v7l/d9lll8lBBx0kb3zjG+V73/ve0NMG3n///XLeeefJe97zHjnwwAPlOc95jnzyk5+U7du3115fp9MZetq9iYmJSgPTMo9R7BcCAAAQz1jsBQAAAIy6j3zkI3LVVVflbnx+5513yplnnilvf/vb5YgjjpC99tpLxsbG5N5775UbbrhBHn/88cLrfdrTniaf+tSnfC49mGFvIhZteFzE7C/y7//+77W/ZhnHHHOMnHvuufLa1742943Zyy67TC677DIREXn6058u++yzj2zYsEEmJydl8+bNsmnTJrn//vvltttuWxwexHbUUUfJBz7wAfnABz7Q93dTU1PyZ3/2Z/Lnf/7ncsQRR8i+++4ra9askfvvv19uuumm3P1Sfud3fkfWr1/fqJQxPvaxj8mmTZty640dO3bIP/7jP8o//uM/yooVK+Twww+XjRs3yoYNG2R2dlY2bdokmzZtkttuu00eeeSRxmsJ5aijjpJDDjlEfvaznw38uHa7LaeffnqgVZXzzne+Ux599NHcU5l1u1358pe/LF/+8pdlbGxMDj/8cNl9990X9+cw368777zT2z48J598snz9618v/PtjjjlGVq1aVfr6nv3sZ8vGjRsH3r/YLwQAACAehiEAAACerVq1Sv7zP/9TTj31VPnBD36Q+zHbt2+Xq666qvR1HnLIIfKd73xHdt99d1fLjOrwww+XPfbYo7CgOO6443ILjEFOPvnkgcMQV0don3rqqfK9731PfvVXf3VgyXHLLbfk7iGg0R//8R/L/fffX1gk9Xo9uf766+X6668feD2/9Eu/JB/96EflL/7iL5ysq9VqyWc/+1nZZ5995IMf/KDMzc3lftyOHTtyh4+pestb3jL0tGMnn3xy7mnbYvvTP/1T2XPPPeX3fu/3ZGpqKvdjZmdn5dprrw27MBn+GFB1cNFqteSkk06Sc889N/fvV65cKccee2yl6wQAAIA7nCYLAAAggA0bNsjFF18s73jHO3L3EKniTW96k1x55ZWy3377OVpdfOZNxCJ1jqYe9DmrVq2SY445pvJ1Fjn++OPl+uuvl9NPP73x9zdrfHy8cBNt3z75yU/KX/7lX+bu+1DGm9/8Zvn6178uY2Nuj79qtVry53/+53LBBRfIoYce6vS6n/SkJ8mrX/1qp9fpwumnn5576rIszafLe/vb3y4/+MEPnP7MiczvJfO6172u9ucfdthhsueeexb+vevHneOPP14mJycrXycAAADcYBgCAAAQyOTkpHz84x+XK6+8Ul7xilcMfXPTduKJJ8oFF1wgX/rSl2Tt2rWeVhnPoDcR61QcBx98sOy11165f/eCF7xAJiYmKl/nILvttpv88z//s1xzzTVy+umny4oVK2pdz+TkpJx00knyN3/zN3LPPffI17/+9VIbPfvw/ve/X6644opK+yY87WlPk3/5l3+RL37xi85v46wTTzxRrrvuOjnrrLPk+c9/fu3r2XPPPeX000+Xb3zjG/KLX/xCfv/3f9/hKt3Ye++95ZRTTin8+7Vr18ov//IvB1xRdc961rPk8ssvl6997Wvy4he/uPLjn7HrrrvKr/zKr8jZZ58t9913n/z1X/91o3UVPbbssssuctRRR1W+PtePYwAAAHCn1dNycmIAAIBl5p577pGvfe1rcumll8qNN94od999tzzxxBPS6/Vk9erVsvfee8vBBx8sxx9/vJx22mly4IEHxl4yKti6dat897vflcsuu0yuvfZaueOOO+TBBx+U7du3S7vdljVr1siaNWtkzz33lGc84xly8MEHy5FHHiknnHBC5VOChXDNNdfIueeeK5deeqncfPPN8thjj0mr1ZJ169bJgQceKM997nPlVa96lZxyyim13+hu4vbbb5fzzjtPrrrqKrnpppvkrrvukk2bNsnU1JSsWLFC1q5dK2vXrpX9999fDj74YDnkkEPk+OOPlyOOOCL4WjG/Kfq3v/1tufLKK+XGG2+UO++8Ux577DHZvn27TE5Oypo1a2Tt2rWy7777Ln6/jj76aHne854X5f4FAACA9DEMAQAAAAAAAAAAI41DagAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRxjAEAAAAAAAAAACMNIYhAAAAAAAAAABgpDEMAQAAAAAAAAAAI41hCAAAAAAAAAAAGGkMQwAAAAAAAAAAwEhjGAIAAAAAAAAAAEYawxAAAAAAAAAAADDSGIYAAAAAAAAAAICRNhZ7AQAAAIBPLznhL2MvoU97ajb2Evq1WrFXkGtuohN7CX3Ov+QPYy8BAAAAQEWUIQAAAAAAAAAAYKS1er1eL/YiAAAAsDxorDSaUFl41KW0DKlLY1HSBDUKAAAA0AxlCAAAAAAAAAAAGGmUIQAAAFg0auVGFSNVedQxYmVIHaNWk1RBeQIAAIBRxzAEAAAgUct5cFHFsh9ylMUwpLTlPDSpggELAAAANOE0WQAAAAAAAAAAYKRRhgAAAERC2eEO9YcDlCFOUI24Q1kCAAAAlyhDAAAAAAAAAADASKMMAQAAaODFL/6rwr9rz8wFXEnChjwdbU93Ay1k9LWmBxQ0Q8qQ3sSY49UsX93JwfVIi1dopQy6HS88/70BVwIAAIAUUIYAAAAAAAAAAICRRhkCAACWvUF1R1XLsgZx9HSSAqSegbVHpStyt2cIFUk9w4qRspZjWeLqthOhKgEAABhVlCEAAAAAAAAAAGCkUYYAAICR4rLyKCP5EiTwU0Hqj2qcVR+lvpi7MqQM6pFqXJYPZaRel4S+vahJAAAA9KMMAQAAAAAAAAAAI40yBAAAqBW68ihDZQmi8OkcBUg5QcuPYQKXIcNQjpQTuoAoQ2NVovF2oiYBAAAIizIEAAAAAAAAAACMNMoQAAAQlMbaY5igNUiCT82oQAZTVX8MoqwMGYRqZDCNFcQwIWuSFG8fKhIAAIDmGIYAAIDGUhxwDOJs+DFiT7MYehRLZuAxSELDkEEYlBRLcQgwiKsByqjdLgxOAAAA8nGaLAAAAAAAAAAAMNIoQwAAwECjVn3kqVSCLJOnTlQgS41E+THMiJQhw1COLDVqVUSRKhXJcrhNqEcAAMByRBkCAAAAAAAAAABGGmUIAADL0HKoPQbpK0GW8dMhCpCdlkX9McgyKUMGoRrZaTnUEUXsimQ53xYiVCQAAGB0UIYAAAAAAAAAAICRRhkCAMAIOemUDy35c6u7fH/Nt6ynOK0q+4KMCuvb356hAhGhAMlqzRb/XPTGl/HR8NZjZ2/leKSFRJTzMrFr3w7L8KVkd8XSn4vWMvzVYsyNL63JLj7vDyKtBAAAoBzKEAAAAAAAAAAAMNIoQwAASIRdfQwyqkWIXXsM/NhRLUEqfGspQahABpUfTY1kOVLhsXNka5EKj7N9pYij602JXYoMMqoViV2IDEI9AgAAYqIMAQAAAAAAAAAAI40yBAAABapUH4OkXIRUqT5yPz/lEsTRt205lyDLvQAR8VuBlJVsLeLwsTPZYsTBy8JKpcggCb9ErVKK5Em5HqlSiAxCPQIAAHxhGAIAQACuhh15tA9Amg45Bl631gFIgG/Jch18LOehh4ZhR1NqhyUBHkfVDkk8vxx0NiAZROlL2qaDkUG0D01cDUbyMCwBAAB1cZosAAAAAAAAAAAw0ihDAABoyGf1MYiGIsRn9THw68YsQiLd7MuxBKECWR6i1yIRH0uj1yIRHsODlCJ5Ir7s9VmIDKKhHvFZiAxCPQIAAPJQhgAAAAAAAAAAgJFGGQIAQAmx6o88oYqQWNVHnmAliJ5/MiXIMrGcCpCqghUjCio7I1gpoujxPVopkifQ7RKrFMkTqh6JVYjkoRoBAGD5ogwBAAAAAAAAAAAjjTIEAADRVX4UcVmEaKo+8ngpQXT/k5ddCUIFgjqc1iKKipBBnNYiyh/7RZSVInk83IaaSpE8LusRTYVIEcoRAABGF2UIAAAAAAAAAAAYaZQhAIBlI4X6I0+dIkR7+VGkVhGS5j9VRJZXDbKcShAKkPBqFSOJlCG2WqVIor8T1Fcig9S4zbUXIkXqlCMpFCJ5qEYAAEgbZQgAAAAAAAAAABhplCEAgJGSav2Rp6gISbX6KDKwBhmtf+qyKEGWUwEiQgWi2dBaJNEypEhuMTJivy+SLkXyDPj+pFqJFCmqR1ItRPJQjQAAoB9lCAAAAAAAAAAAGGmUIQCApIxS+ZHH1CCjVn/kaU2P/hH1y6EEEVkeNQgFyOjotUf/eLDFSmTEf5eMXCmSozs5+vdXU42MUiWSh3IEAID4GIYAANR50al/vfj/23U21E5Qe1TfaM38s0b1zWR7cNXKDkBao/nGTmuHNfwYwffqWlPWv7Ezgv9IEZGZzL/TflkwMaJvNM8uHVL2RvDfaT8uzY3q0CDz7+wbjIzo4+9yGI7MTSz9NxadNjR1vbGd99Hvf/M9EVcCAMDyMfrPpAAAAAAAAAAAwLJGGQIACC5bfgyyHKqQ5IuQEstPuQgpc7qyVplTYSV+hHJfCVIk0cNs+iqQPKmXITMl/o1lXxakXlLMDv+ZTbUWKXuKxeRLkRL/zlKn0Er4sXk5FiJ5Uq9GsnXIIJQjAAC4MfrPoAAAAAAAAAAAwLJGGQIA8KpsBZJnlMuQJIqQBktMpQaps1F9qRKk8JPTOQq5dA1iS+BQm1IlSJEUCpEyFUieJi8LUigpShQhRVIoReo8nokkVok0uI/W2mw9kcfsUa9EyhQiRbSXI2XLkDzUIgAAVDfaz5oAAAAAAAAAAMCyRxkCAGikSflRhCIkEA9L0VSE1D1KuvD6mhQhfVem72jj2iWITeGhNo1KEJumMqRuAVLEx8sCTUVFgzLEprEUcfWYp7IUcXjfrFWIDKLo8ZxCpBpN1UiTQqQI5QgAAP1G+9kSAAAAAAAAAABY9ihDAACl+ahAsihCPPD8ZWOXIK7rj77rd1mD5H6BeEcUOytBikQ65MZpBZInZhniugSxhXhZELOocFiG5IlVi/h+HIxainj+tzmvRGyRq5FRLUVcFyK2mMWIj0Iki1oEALDcjeazIwAAAAAAAAAAgAWUIQCAPr4LENsoFyEiAaqQCDdfqCLE9xHPfV/PdwlS+IXDHD3svQbJCnTIjfcSpIjvQsR3BZIn1ssC30WF5yKkSKhSJOTjZLBKJNJ90XspYgv02D+KhYjvOqRIqGrEdyFioxgBACwXo/esCAAAAAAAAAAAIIMyBACWqdD1Rx6KkJIU3Uw+ipDQ9UfuGmIVIUsW4f4o0KAlSBHHh95EK0FsrsuQGCWITcHPooi4L0UilSE216WIhsdOL6WIgn9X8EIkj4ffCRQifvmoRkIXInmoRgAAo4RhCACMOA1DjyKjNgxxMvxQeJM0HYBoeMPOpmL4UaTBG2Aqhh82B+9TqRmAZDUZhmgYfORR+LO6qMkgQckwJMvFYETjY2uj4YjCf4+hYjhiazgsGcXBiIiu4YjRZEiiYRhShCEJACBF+p4pAAAAAAAAAAAAOEQZAgAjRHMFkrWsi5CE/ulVihCNRyjbVNcgWRWO9lVZghSpcAiOyhLEVqUM0VqC2BL4OV5UpaxQWIbYqpQiKTzeGpVKkUT+XSorEVuF3yMUIvFUKUY0FyJZ1CIAAO30P0MAAAAAAAAAAABogDIEABKUSgGSZ5SqkKFFSKL/1KIiJKWjkbOSKUJsBUf2JlWDZA04BCeJEqRIXiGSSgliS/RnXETyS5EEipAig0qRVB+LCyuRRP89SRQieQp+t1CI6JJXjaRSh+ShGAEAaJHmMwMAAAAAAAAAAICSKEMAQLmUK5CskSxCRuSfZEqQVI82tiVbghRZOIo32SLEtnAoTtI1SJYpQ1KtQbJG5DFgsRJJuAzJMpXIqDxGLxYiI/LvMZItRWwLv3NGrRRJtRDJMrVIyoVIFrUIACCG9J8RAAAAAAAAAAAADEAZAgBKnHDaR5b8uT0zGg/PI1OELHw7RubfIyLtESsoWlPWvyfxQz76/j2Ja41COSH9/45e3p4hCVny77FeFvTGxwKvxq2WVYYM2ocjCXMLv38mJ+Kuw5WF+1vhXiKJmlux89/TG4ED+LsrOrGX4Iz5t7TmRuM5tql3OtNpPzftWtXOZf/6/0VaCQBgOUj71RsAAAAAAAAAAMAQlCEAEIFdgWSNShFiJFNSDLnZk/l3lDRKVcjQgiKRQz8oQXQa9u9IrQwZ+O8Z8rIgtVLELkNsyZQic0N+/6RWigy5n41KKZItRGypFSOjVIeIDP/3pFKODNvXJbVixC5EsqhFAACupPXqDQAAAAAAAAAAoCLKEADwaFABUmRUyhDVJUWFm1j1v6OGUSlCKlUUCRz6MSpVyHKpQfJoLUQq/VsqvizQWooMK0LyqK5EhpUhWZorkQr3r1GpQ4xBlYhNczWy3AqRLM21yLBCJEtzLTKoDClCMQIAqIphCAA4UGfoYWMI4kGDm1TVv8OBZTkEsSl6r5rhhy4u/h0ahiGN/x0OXhZoGJDUGYbYVAxHqgxBimgajjS4f43KcKTKUKSIhmHJch6K2DQNSaoMRWyahiR1hiI2hiQAgCLxX7UBAAAAAAAAAAB4RBkCADW5qEFEKEKccXQzRv93OEIJMkCEQ0EoQXTx8e+IUYY4/3d4eFkQoxRxUYbYopQiLsoQW4xSxMP9ilJkqdi1yKiUIq7+HbFrkSaFSFbsWsRFISJCJQIAWIoyBAAAAAAAAAAAjDTKEAAYwlUBUoQypCJPNxdFiC7eS4pAh4NQhOgQYv0hyhDv/44ALwtClCI+yhBbkFLERxlihCpEPN+nKETKCVWOUIgMFqoYcVWGFAlVjLgqQ4pQjADA8kQZAgAAAAAAAAAARhplCABk+K5AsihCSgh0E1GF6BG8pPBwWAg1iA6h1++rDAn67wj8ssBXJRKiDMnyUon4rEJsPiuRgPepUahEfBciWb5qEeqQanzWIr4LkSyftYjvQiSLWgQARh9lCAAAAAAAAAAAGGmUIQCWtZAliG0UyhBnRUXkmyL1MiT1IiRqSeHwsJDUi5DUSxAj5r/DRR0S9fsQ+WWBi1IkdBWS5bQQCVmG2FyUIhHvS6NQiIiErUTyNC1HUi9EYq/fVTESsg7J46IYCVmG2ChFAGD0UIYAAAAAAAAAAICRRhkCYFmIWYDkSb0KaVRSKPqnU4TEpaqkqHF4iKr1N5B6EaJp/XXKEE3rj12G2OqUIjHLEFutUiRmEWJrUogoui+lXorELkSy6tQisQuLpjStv0ktErsQyapTi8SsQ/JQjABAunT9RgEAAAAAAAAAAHCMMgTAyNJWg2QtizJE8T+RIiQu1UVFicNEVK+/BFUlQg2a11+2DFH7b1D8sqBsJaKpDLGVKkU0lSG2MqWI4vsQhYg/ZYoRTYVFHZrXX6YY0VSG2MqUItrKkCwqEQBIC8MQAMnTPPSwjeQQJKF/EkOQuJIYIgx4rZ3E+guoffO9pFTWXzQMSWX9mt/IthUNRzQPQ7IKByOahyFZRYORBO5DDEXCKBqQaB4qlJHS+vOGJJqHIra8IYnmoYiNIQkA6JTObxIAAAAAAAAAAIAaKEMAJCelEsSWahmyWFSkuXyKkIiSrSkWDhdJdv0LkikSCqS2flOGpLbuRQm/LDClSCpliLFYiKRShNhMIZLofYdKJDxTjKRUWORJdf2mFkmpEBHZWYmkVIbYKEUAQId0f5MAAAAAAAAAAACUQBkCQLXjfvWjIiLSmU77oSrVIsRol9jYUJWFow6TW3dWW6SdcJWQelHRnp4/sr/XKrErrCLJFgkLkl7/zKxIyQ3UVZqZ3VknlNnoW6vZrkjJzdZV6c7f9r3JNG97c7R5b0WJTdY1WXgpPLcqsXUvaHUXjvJftXC/Sex3lojI7Mo0Cwsj1UJkduX8faWd6K/d7uT8+jtTab7G6k7Mr//Kc94VeSUAsPwk/IoNAAAAAAAAAABgOMoQAKqYEsSWahlCERJAzkGQSazbKDgsIdUqJNUixJQgtlTKkJSLipTXLiLzRYUthUIkb91F+1akUIrk7RWSUiHS7b/tU6hETBFiS6YQKXgpnEIpYqqQrMVCpO+Ddf8uS70OEUm/EMlKqRYxhYhNezFiyhAbpQgA+JfAKzUAAAAAAAAAAID6KEMARFVUgtgoQ8JSWVaUPKhR5dpFSh9+QBESVlERYtNYiKReVCS7/jLr1liGlFl3URli01iK5JUhNo2lSE4RYtNciBSVIVkqK5GSL4E1FiJ5RYitsBBZckX6fq+lXoikWoeI5BciNo3FSFEZkqWxEikqQ2yUIgDgnsJXagAAAAAAAAAAAO5QhgAIpmwFkkUREpa6qqLGQYsq/g01DjWgCAmrbBGSpaUOSbWoSHXdpYoKm5YypOray5YhWVoqkTJliE1DKVKiDLFpKEXKFCE2NYVIjZe/GgqRMkWIrVQh0veF4v+uS7UQSbkMMcoUIoamUqRMIWJoKkXKFiJZ1CIA0AzDEADe1Bl+2BiGhBVtkODgdXeUtTt4v5MhSHh1BiEi8YYhqQ4RUl23iNQbgGTFGoY0XXedYYgt1nCkzjAkK9ZgpMYwxBZjOFJnGGKLNhyp+fI39kCkzjDEqDUUWfLF4/z+YygSXpVhSJ5YA5Iqw5AiMYYkdYYhNoYjAFCNksPWAAAAAAAAAAAA/KAMAeCUixokK7UyJNUiRCRgWeH44MJg63Z8+ABFSDh1S5AioQqRVMuKVNctIs3LCiNUGeL6tnZRhthClSJNyxAjdCHioAwxQhQiLooQW7BCxPHL3lClSJMixNa4ELEF+n1IIRJW0zokK3Qp4qIQEQlXibgoQ7KoRABgOMoQAAAAAAAAAAAw0ihDADTiugQxUitCjBTLEO9lhaeDBr2t2/NhAikWISnWICLuixDDdxmSYlmR4ppFxH1ZYfguQ3yt20cZYvguRFyVITZfpYjDIiSPr0rERxlieC9EPL3s9VWIuCxC8jivRAyPvyMpRMJyWYhk+axFXJUhRXwVI64LEYNSBAD6UYYAAAAAAAAAAICRRhkCoBJfJYgttTIkxSLEcFZYhDlttJ8iJMChARQh4fgqQmwuC5FUy4rk1h1qvT7KkBBr91mGZPmoRHyVITZXpYjnMsRwXYj4LEOynFYigV7uui5EfJchhrdCxObwdyaFSBi+yhCbj1LEdyEi4rYS8VWG2ChFAIAyBAAAAAAAAAAAjDjKEAADhSpBjNSKECPFMsRJYRGoBslqtO5IhwCkVoVQhFTTpBBJraxIbb2LYq27SSESY82hyhBbk1IkVBFia1qIBCpDbE1KkVBVSFajQiTSy9ymhUioIsQWrBCx1fwdmmIdkloZYoQqRGxNipEQZYjNRSkSqhAxKEUALEeUIQAAAAAAAAAAYKRRhgBYFLoCyZNiGZJiFSJSsbCIc0DYEpXWq2TUTxHiX6waJKtOGZJaYZHaekUkXg2SVaUM0bDeWGWIrUopEqsMyapSiUQqQmx1CpEYZYhRqxBR8DK3aiUSqwrJilaIiNSqRChE/ItVhmTVqURi1CFZdUqR0GVIHmoRAKNOydtFAAAAAAAAAAAAflCGAMuYhhLERhniX6nCIv5BSYtKFyGKxvsUIf5pKEJsgwqRJMsKSXTdmtZcpgzRtF4tZYhRphDRUIYYZQoRJWWIUaYQiVmEFBlYiih8eTusENFQhNiiFiK2EsUIhYh/GgoRo0wpErsMsZUpRTSUITZKEQCjhmEIsIxoHH4YDEH8Kxwq6HvOvSh3zYqGHjaGIP5pHIIYecOQFIcJya1Z83qLhiFa16xtGJJVNBjRNAyx5Q1HlA1DsooGIxqHIUbuUETxy9uioYjGYYihaiiSVTAgSW0oktpARETXUMSWNyTRNhTJKhqQaByKGAxHAKRO8VtKAAAAAAAAAAAAzVGGACNOcw2SRRni32JlofdAoz7t6bkkxvapFSEi6VUhmosQW6/VSq+uEIoQL0wZksJaRXSXITZTimguQ4xsIaK4DDHsQkRzGWL0VkyoLkJsphDRXIRkqa1DsqxSJJVChDLEH1OJaC5DbKYU0VyGZFGJAEhRAm8xAQAAAAAAAAAA1EcZAoyYo874vyIiMrYjjR/t3sJINpX1iiRYhMzoPwrV6E7M3yHGt6VxFDVFiH8pFSGLUjhSXRIsQUTSKSyMlEoLkfTWKyLSTujYrm5XZDyBI+wN8zKxzEb2CpTZDF6b1NacRCFimV2Vs3ePQhQi/vU66ax3ZuG2Hd+WxutOc1+4+rO/H3klADBcQq8eAAAAAAAAAAAAqqMMARJnShCb5tKilxnDal6n0bMO1OooXvPc2M4jnsa26z863ZQghuYiZK7Tf/zA2LaZCCspp2edO7u9Q+9tm6c1s/T+29L8dCWREsSgCPFo1lpnAtVCL7vmrvVzl0DF0LN+/lqaK4bs7ZvAbdu3B4fm2zbnd0RvxUSEhZRk7cPSW6l4rTm6K637guID7rsr+suQnuKH5hQLkZnVO29QzXsM2XuHtBN4ajGTqW80VyJFlRClCACNFD8NAAAAAAAAAAAAaI4yBEhUSkXIoKOvtK3XrkCyNBYh2RLEpq0MsSuQLI1FSF4JYmgrQuwKJCv1IqTv7zU9bUmsCBFJqApJZZ1ZdhWSpagQ6Q1aZ3fIz5+imsEuQrLU1iGDbl9Ft21eZbFI6207YM2qCpEhR80nX4hkKatF8goRQ2MpklIhki1DbBpLEbsQydJWi8wM2JdFYylCIQIgBQp/7QMAAAAAAAAAALhDGQIkpKgGydJQWlQ5uir2egeVIDYNZcigEiRLQxUyqASxxS5DBlUgNg1VyKASxEitCBEZXoWIKClDEipCkilBjJTWO6iwsEUsQwaWILYhZYgtZikyqAyxqSlFyty+GgqRKo+zsW/bCmtVUYiUOEo+tTpEZEghYigoRQbVIbbYtUhKZYjI4DokS0MpMqgMscUuRQaVITYNpUhRGZJFJQIgNsoQAAAAAAAAAAAw0ihDAMXKlCC2WKVFnaOnYqy1SglixC5CytYgWTHKkColiBGrCKlSghgxipAyBYhtVIuQvs+J8fSFIsSPlNYqUq0IMSKVIZWqEJHKZYhIvDqkShliRCtEatyuIhKvEqnz+Brrtq2x1iiFSI2j4Ue2ELFFKEaqFCJGrFIklUKkbBmSFbsSqVKIGDFKkSp1iBGrEilThtgoRQCExjAEUKTO8MMWasDg4gVBsLU2fA0RahhSZ+hhCzUEqTP4yAo9BKkz/DBCD0HqDECM1AYhdYYgi58b+ulLIoMQhiAe1Bl+2AINQyoPP2x137TPCDUcqTMMsQUbjjS9XUMNRVw8roa6TRuuNfhApMGbvqkNRWoNRIzAg5E6QxEj9HBklIcitlBDkjrDkKxQg5E6wxBbqOFInWGIjeEIAN84TRYAAAAAAAAAABhplCFAZC5qEBH/lYWPo598rblpCWLzVYa4KEFsvsqQpiWIzWcZ0qQCyeOrDGlSgBRJpQxpUoT0XZfvpzEUIe6lslYXRYjhuQxpXIQYDsoQw3ch4qIMMbwXIq5uV9+FiMvHU9+3qaO1ei9EHB7hnkoh0qgMKeKpGGlShuTxWYsspzLE5qsUaVqG2HyVIi7KEJvvUsRFISJCJQLAD8oQAAAAAAAAAAAw0ihDgMBclSA2H5WFr6ObXK/VdQli+ChCfNQgIu6LENclSJbrKsR1CWK4LkJ8lCDGcixCllyvy6cyiZQgIgnVIKmsU8RtDZLluAxxVoLYHJYhNteliMsyJMtLJeLrdnVdivh6WejjNvW0VqeliKej2Zd1IWI4fkrluhAxXL+WSqUOEfFTiIj4qURcFyKG61LERyEi4qcScVWG2ChFALhAGQIAAAAAAAAAAEYaZQgQiK8ixHBRW/g8z21W07X6KkFsLsoQXyWI4bII8VmDiLgrQnyVIIaLIsRnBZK13IuQxet38VSGIsS9VNYp4q8IMRyVId6KEMNjGWK4KkR8lSGG00LE9+3a9DYN9XLQxW0aaK1OChFPZYhBIWJx8NTLVyFiuHqtRSGyk4tSxFcZYmtaivgqQ2wuShFfZYhBIQKgCcoQAAAAAAAAAAAw0ihDAE98lyC2JrVFqCLEqLPWUDWISLMixHcJYmtShvguQWx1yhDfFUhWkyIkVAlipFKEiPivQpZ8rTpPaShC3Ethnb4LC1uDMsR7DZIVoAzJalKJ+C5DbLVKkcC3Z+1CJPTLwSaFSOC11ipEPBchWanUISIBCxGjwVMz34VIVp3XYZQhxZqUIqEKEZF6lUioMsRoUoj4LkNslCIAqqAMAQAAAAAAAAAAI40yBHAodA2SVaW2CF2CGJXWGPGAp6plSOgaRKRaERK6ALFVKUJCliBZVauQ0CWIQREy5GtWeUpDEeJWCmsUCV+EGDXKkKBFiBG6ZFhQpxAJXYYYlQqRSLeniFSrRGK9HKxyW0Z+yVqpEAlYhhgUIiVUfOoWsg7JqvI6jUJksKqVSMgyxFalFAldiBhVSpHQZUgWlQiAYShDAAAAAAAAAADASKMMARqIWYIYZWuLWDVI1qC1xixBsspUITFKENuwMiR2DSJSrgiJVYLYBpUhsSqQLIqQimsY9tQmkSqEIsShWEWIbUAhEqUEscUsGTIGlSKxihBbqUJEw+05rBDR8FKwzG2pYJ1D65AIRYiNQqSiAU/xYpUhtjKv4VIoRGKUIbYypUjMOiRrUCkSqwzJKluJxCxEDEoRADaGIUANGoYgRtGAQcPww2avVcsAJCtvGKJh+GEUDUE0DD9sRcMQLQMQkfwhiIbhh8EQpJ7CYYiSN1GLJDH8MFJYq4bhgi1nGKJiCGJoePM+I28oomUYklU4GNF0exYNRTS+FMzengrXVzgUUTAMMRiK1JTzFFDLUESk+PVdCsMQQ8NQxMgbjmgZhmTZgxENwxBb0XBEwzDEYCgCwNDzmwgAAAAAAAAAAMADyhCgBE0liM3UFhpLECO1IkRTCWIzZYjGEsQwRYimAsRmFyGaapCsFMoQTUWIbbEQUXgkuS2ZKiSFdWoqLWwLZYiqGiRLU8lgMZWIxjLE6CtENN6ediGi9aWguS21rk8yhYiiIsSWQiGiqgzJsp4aaipEbOZ1YAqFiKYyxJYtRShEmjGliKYyxEYpAixfen8TAQAAAAAAAAAAOEAZAhR4zm9+TERExrfq/hHpTOten4hIZ0b/GltKD9LNanV1346dqbnYSxiqOzl/DMDEpunIKxlOexWiuQgxUqgt1K9R+/qytNYWGb055Y+TGksGW0v/sVwtxWVknzG9R7uLiMi48vWJSK/MBvCRaS9E1NYhGXML1YXWmjhrdpXuQkRzHWLM6b9LSndc/32xpfvlq8ysmr8Nr/v470VeCYCQ9P8WAgAAAAAAAAAAaIAyBLCkUIRk97QY36bvKNM56ygVjWucXbF0Fjz+hL417tiw9KiulQ/pO+p5ateda1x1/8yAj4zDlCCGxiKkN7Z0jZ3tmdtRYQ3Uso8c1/ejo7+2kDTWqL4KmbEecxQerduz19hReLTudGaNPesHWmM1YBdA4wqPeJ9b+jjZsvfpUKDX3fm9bk0qvA3tl6gp1BcprFFjIZL5Xs9ZhYjGCmPO2pdD4xq7K3c+t9S4vhTKEHuvi/asvufk07ssXWNnKtJCBphdlXnfQvH7KxQiwPKi/7cQAAAAAAAAAABAA5QhWPZMCWLTdORCtgQxtNUWdg0iomuNdgliaCpC7BLE0FSEZEsQQ1sRYtcgIrqKELsEMZYUIYayMqSvChFRVYakUFuksMbkihBD0dGvfUWIoakMmc5Zo12GGJoKkaK9YTQVInP5e69oKkSyZYihqhApeomaQn2hfI3q6pCc77VdiCx+qKLHebsQEdG1PpGlhYihaY0pFiKGplLELkRE9FUi2ULE0PR+y0zO+kQoRYBRpf+3DwAAAAAAAAAAQAOUIVi2iooQQ8ORCnlFiBG7usgrQWyx11hUg2TFLEOKShBbzDIkrwSxxS5D8koQQ0sRUlSDiBQUIbbIhUhuEWKL+OOeQm2RwhrVFyEixVWIiIoypLAIMWKWIXkliK2oDLHFLEWKyhBDQyFSUIaI6KlD8soQI3ohUublqfL6QoRCZPgChn+fiwoRET2FQ14hYsReY14ZYou5xpTLkKzYlUheGWKLXYrklSGGhvddisoQg0IEGC0MQ7CsDBuAZMX4pTxo+GGLNWgoMwQxQq+xzPDDiDUEKTsAEYkzBCkz/MiKMQgZNPywxRqGDBp+2EoNQ4zAQ5FSQxAj0jBE+5BB+/pERPcQZNhwISvSGzpDByBZMYYhZYYgRtlhiBFjKDJsGJIVazAyYBhiCz0cGTQEsUUbilR5eap94KB8fSIRhiIVvr+DhiF9Vxvpd8CgYYgtxhrLDESyYqxxVIYiRujhSJlhiBFrKDJoGGKL8T7MsGFIFoMRIH36f+sAAAAAAAAAAAA0QBmCZaFKEWKEOiKhSg2SFaq6qFKCGJqLECNUGVKlBLGFKkOq1iAiYYuQKiWIEaoIqVKA2CoVIUagMqRSEWIL9OOvvbjQvj4RGZ0ixBboqNZKRYgRugypUoWIVC9DRMLXIVXKECNUIVKhCLGFKkSqlCFG8EKkzstT5QUGhUj2C1X//lYpRPq+XKDfCVUKESNkhVG1EBEJt75RK0MMzYWIEaoUqVKGZIV6T6ZKGWJQiADp0v9bBwAAAAAAAAAAoAHKEIykOiWIzfdRCHWLEBH/5UWdGiTL9/rqlCA2X2VIkxLE8F2E1ClBbL7LkDo1iOG7CmlSg4jULEJsngsRzWVICsWF6jVqXptIsyLE8Hwka60ixPBdhlQtQWx1yhCb71KkThli+C5EGpQhhu9CpE4ZkuW1Emn6sjSF+kLxGr2XIQ7edmhSiIj4Lx3q1CGG77XVKUNsvteouRCpU4bYfJcidcqQLN+VSN06RMT/ezN1yhAbpQiQDr2/bQAAAAAAAAAAABygDMFIcVGEGK6PPmhSgth8lRdNixDDx/pc1CAiuosQw3UZ4qIEMXwVIU1KEJvrMqRpCWI4KUIMT2VIoyLE5vhHTXVtsUD1GjWvTcRNEWI4PnK1UQli81WGNC1CDBdliOGrEGlShthclyIOyhDDVyHStAwxvBQirl6WKq4vjGVZiDh826FpIWK4Lh2alCE2XxWGi0LEcL1GzWWI4aIQEfFTiTQtQwxfhUiTMsTm+r0aF2WIQSEC6Kf/tw0AAAAAAAAAAEADlCFInssaJMvV0QYuixDDVXnhqgSxuVifqxLE5rIMcVmDiLgtQlzWIFmuyhCXJYjhqghxVYLYnJYhhqNCxGkRYmv4I6e6tligeo2a12a4LC9EnJUhTosQW9NCxFUJYnNZhtialiIuixCbq0LEYRki4rYOcVWE2JwWIq5fliquL4xlUYh4eLvBVRlic1U6uCxEDFdrc1mGZLmsRDQXIq7KEJuLUsRVGWJzVYq4LEMMV+/ZuCxDsqhEAJ30/pYBAAAAAAAAAABwgDIEyfJVhBhNjjLwUYNk1S0vfJUgWU2rEF9FiNGkDHFdgtialCG+ShDDRRHiowbJalKG+KpBDC9VSFbNQsRrEWLU/JFTXVssUL1G1Wvz/PPg4OhUr1WISP0yxFcRYvgsQ4y6hYjPMkTETR3iuAyxNSlFfJUhRqNCxPfLUcX1hTGShYjn76uvOsRoUjr4KEOyXFQYvgoRo8kal2MZYjQtRHzVIVl1SxEfZUhWk/dvfJUhBoUIoIve3zIAAAAAAAAAAAAOUIYgGb5LEKPOEQW+SxBbnfoiRBUiUn1tvksQo04R4rsEMeoUIb5LEFudMsR3CWLUKUJ8lyCG9yLEqFGGBKlCjBoHJGuuLjSvbVkXIbYaR6V6L0KMOmWI7ypEJEwZIlKvDvFdhhh1ChHPRYitTiHiuwwxahUioV6Oaq4vFK9NpGYdEuj76rsQMeqUDr4LEaPO2nyXIbY6a1zOhYhRtRQJUYaI1KtDfJchtjrv6/guRAxKESAuhiFQL9QQxKjySzP0EMQoM3AINfywlVlbqAFIVtlhSKgBSFaVYYjmIUio4YdRZQgSavhhBBuC2CoMRbQOQzQPGjSvjSFIjhJvvAQbftjKDENCDD9soYYhtjLDkVDDEFuZ4UjgYYhRZigSaghiqzQUCf1yVPHgQetQpNIwJNLbC6GGIkaVN/dDDUWMKmvTPBRhGLJUmcFIqGGIrcxwJPQwxKjy/k6oYYjBUASIQ+9vFwAAAAAAAAAAAAcoQ6BO6BLEVubIAYqQflqLEJFyVUiMIsQYVoaErkGyhpUhoWuQrEFlSOgSxBatDBEZWocELUJsQ34UNZcXatemdV0i8YoQY8DRp9GKEGNQGRKjCDFilSHGoEIkVhliDCpEIpUhxqBCJFYZYgwsRGK+DFVaYIjorUNEShQiEb+nocsQ26DiIXQZkjWsxAhdhmQNW5vmMkQkTh0iQiFSV5n3eUKXITZKESAM3b9dAAAAAAAAAAAAGqIMgSqxqxCR/CMGYpUgtrz6IlYJYstbW6wSxJZXhsQsQYyiIiRmCWIUFSExSxCjqAiJXYOIRC5CjIIyJGoRYhQcoKy2uhDda1NbhcSuLoycI06jFyFGXhkSswgxYpchRl4hErsMMfIKkchliJFXiMQuQ0QG1CEaXoZqrjA0r62oEFHwPY1diIgUFw8xCxGjaG0xCxGjaG1aC5FYZYgtrxSJVYbY8kqRWGWILe99n9hliAh1CBCCzt8qAAAAAAAAAAAAjlCGQAUNRYhhHyGgpQoRWVpfaClCDLM2LTVI1vgTcypKEJspQzSUIDZThmgoQQy7CNFQghgqihDbQiGiogixLTyUaa4uNK9NbREioqcKEVlShqgpQoxsGaKhCDG0lCFGthDRUoYY2UJESRki0l+HaChDjL5CRNPLUM0Vhua1mUJE0/dygYZCxLCLBw2FiGHWpqEMsZm1UYaUZyoRLWWIkS1EtJQhIv3v/WgoQwwKEcAfnb9VAAAAAAAAAAAAHKEMQRSaShBb3nkttejM6P1xbek58HCR2StEYxWSd25XDSYf03N0q238CWVHBWdoLENa03pvr9aU4rWpri40r03fz4ApQ9RVISIiio7WX0JbGaKdqUMUlSGL2vqe+xgtxaUDhUg9vRX61qapDLF1V+bsi6TE7Cqdjx3Tu+hcl4jOQmR2RewVFOt19N1ei3S+RBcRShHAJcoQAAAAAAAAAAAw0ihDENRh7/0bERGZ2KTnbtddsfTIhInNitY2Of/fiSf0rMmYWT1/u01s0be2x/efn/Ouvlff2jYdNP/fDTfqW9u23duy6836jqA2Rw9NbNaztpZ1VHd7WtFRwYr3CmktrE1m9a1N5ua/p/b3VgXzvZzT97ihsghZsFiEtBQegTg9s3TfEAV6mT05Wh1dx0v1ZmalNa7vSGqzH4fK0sE8boxPDP64iFTebobitaksRNoLJd6Enp/TXnvp41hvUs9j7tzCvne9cV2PtSIi3cmO9PTcVItmF/Y0mVNYFZh9Jloan6YtvGZffA6uyMza+bWNbY28kIyZXZb+eXxLnHXkmV1Y208/RCECNKXvty8AAAAAAAAAAIBDlCEIQlsRYtcgIjqKEFOC2DSUIeaoEpuGMsSUIDYNZYgpQWwaypBtu/ffblrKkLxzyWopQ/LKATVlSM5RXxoKkcKj0TQUInNLv5+qyhD7e6epDEmhCDE0lSHTmbVRhpTWy+yXo6kQ6VmPF6pKB/vxg0KkHsVrU1GItPsfX7XUIXYZIqKnDjFlSJaWSqSbcxtpKEVMGWLTUIqYMsSmoRQpeg2voRQxZYhNQyliFyIieioRChGgOYYh8MYMQEQYgpSRNwjRPAQxYg5DioYgRsxhSNEQxIg5DMkbghixhyGDNtSLPQwZ9CZ59GHIgBc0sYchA19sxRyGzA0eekQdigz7nsUciqQ0BMmKPRCZHrC2yEOR7BDEFnsokh2C2GIPRexBSFbUN/eHPX4wFKlH6dqiD0RyhiFG7KFI3jBk8e8iD0XyhiFG7KFI3jDEiDkUKRqGGDGHIkXDECPmUGTYa3mtQxENAxGRNIYiIgxGgKp0HH4AAAAAAAAAAADgCWUInMsWIUasMiSvBLHFKkOKTomVFasMGXYEiUi8ImRYDSISpwgZVoIYMYqQQSWILXQZMqgEsYUuQ6qUAdHKkBJHc8UqQ0odaRarDBlShYhEKkPKfq9ilCGpFiFGrDJkUBFiC1yIDCpCbKELkUFFiC1WITKoDDGilA5lH0coRKrTui6JWIgMKEOMWIXIoDKk72MDlyKDyhBb6FJkUBlii1GKDCtEjBilyLBCRCReJVLm9X2sSqTodFlZsUqRvDLEFqsUmc1ZG4UIUA5lCAAAAAAAAAAAGGmUIXBGQxFSpgQxQhchZUoQW6gypMyRIrZQZUiZEsQWugwpW4WIhC1DqhQhImGrkCpFiBGqDKlTBAQrQ2ocsRW6DKl0VFnoMqREEWIEL0PqfJ9CFCKpFyG2UIVIlSLEoAxZVKUMMUIVImWKEFuw0qHO44jSQkRtHSJCIZJVogyxhSpFqpQhi58TqBCpUoYYIQuRKnWISNhCpGwZIhK+DilThthClSJ1Xu+HKkXKlCG20KVImULECF2KUIgA1VGGAAAAAAAAAACAkUYZgsbyihAjRBlSpQbJ8l2G1ClBDN9FSJ0jQ2y+y5A6RYjhuwypUoLYfJchVWuQrFBlSJ0qRMR/GdKkBPBehjQ4Mst3GdLoqLFQZUiFIsTmvRBp8v3xXYYorUJqFSGG5jLE8FyIVClCbL4LkTpFiKG5DDG81w51H0+U1iEiFCJNeS9FapQhhu9CpE4Zsvi5nguROmWISLg6pGoZkuW7EqlShth8lyJ1yhDDdyHi4vW/71KkTiFi+C5FqpQhWSEqkbwyxKAQAfJRhgAAAAAAAAAAgJFGGYLKBpUgWb6qkLoliM1HGdKkBsnyVYZoLkKalCA212VIkxLE5qsMaVKEGL7KkLoliM1HGeLqqH9vZYiDI7B8lSFOjw7zVYg0KEIMb2WIi++LrzJEaRFiNCpDDF+FSJMixPBUhjQpQmy+CpEmZYjhqxBpUoQY3ioHV4/zFCL1aF7bAm+FSIMyxPBViDQpQ5Zcj4dKpG4ZYvNVijQpQwxfhUiTMsTmuhRpUobYfJUimguRJmVIlo9KpG4ZYvNVigyqQ7IoRYB5lCEAAAAAAAAAAGCkUYagkrJViIi7MsRVCZLlugpxVYQYLssQF0d/ZLksQ1zWICK6ixDDVRniogSxuS5DXBUhhssyxPXR/l7KEMdHXbkqRLwcDeaqDHFQgticlyGuSx2XdYjyIkTEURWS5bIQcVGFZDkuRDSXIS6KkCyXdYiLIiTLS+Hg+nGFQqQZxWt0Vog4KEKyfNQhrsqQxetzWIi4KkMM14WIizLE5qoUcVmGGJoLERG3lYjr9wZcvi5wVYYYrgsRV3VIlqtSpGwZIkIdAohQhgAAAAAAAAAAgBFHGYJSQhYhPkoQW9MyxHUJYrgoQlwf7WFzUYa4LkIMF2WIjxokq2kZ4qMIMZqWIa5LEJuLMsTX/g9OyhBP5981XJQhvs4R3LgM8VCE2Brfdzzt3eKkDFmORYjhogxxXYTYGhYiLosQW9NCxHURYnNRiLguQwwnhYOvxxWDQqQZpWt0Uoc4LkNsLkoR12XI4vU6qCZclyG2pqWIjzLEaFqI+ChDslxUIq7LEMNFIeL7vQIXrxVcFyJG01LERxlia1qKUIgA5TAMwUBVhiBGk2GI70FI3SGIr+GHrckwxPcTG6POMMTX8MPWZBjiewhi1BmG+ByAZNUdhvgeghhNhiHeNsFe0GgY4nkIYjQZhngbgtjqDEUCDEJEGtyHfL9ZadQZiiznIYityVBE8TDE5yDEaDIQ0TwM8TUEsTV6Uz/U4wtDkfoUr6/RUMTzMMRoMhTxNQxZvP4GAwPfwxCj7lDE5zAkq85gxPcwxGgyFPE1DLHVGY6Ees+gyWsHX8MQW93hiO+hSJOBSJVhiMFQBMsRp8kCAAAAAAAAAAAjjTIEuUIVISFOiZVVpQwJVYNkVSlDQh3VYWguQowqZUioEsRWpQwJVYQYdcqQUFWISLUyxHcJUqRSIRKqtlhQpQwJVoLYqpQhgYoQo/J9KtQR20aVMoQipF+dMsR3EWKrUIiEKEJsVQoR30WIrU4hEqoMMSoVDqEfXwwKkfq0r08qliKByhCjSiHiuwgp/LoVaopQZYhIvTokVBliVClEQpUhtiqlSKgyxNBciBhVXluEKkOyqlQiIU6XlVWnFKEQAQajDAEAAAAAAAAAACONMgRL1ClCjDJlSOgSxFamDIlRhIiUq0JCH8GRVbYMCV2DZJUpQ2IVIcagMiR0CWIrU4aELEFsZcuQWFWISMkyJFJ1UaYMiVaEGGXKkMBFSFbp+1aso7ZFhhciyquQ4EWIrUwhEroIySpZh2guQ0JXIVllCpHQRYitVOEQ8zGGOqSZBNZYqhAJXIYYZQqRWGWISPk6JGQZYitTioQuQ2yDSpFYZYhRphAJXYZkla1EYr6vUOb1Row6RKRcIRK6DLGVKUXqlCEGhQiWA8oQAAAAAAAAAAAw0ihDlrkmJYgtrwyJXYIYg4qQWCWIbVAZEvPIDaOoDIlZgtiKypDYNUhWXhkSuwgxBpUhMYsQY1gZErMIMQrLkNjFRUZeIRK9CDEGlSERixBj6H0s5tHaRlEZEru4GCJ6EWLLK0RiFiHGkDIkRhFiG1aIxCxDjLxCJHYRYsutHDQ8xhgUIs0ksMbcQiRSEZKnqBKJWYYsrmFIWRGzDDEGFSKxyxAjrxCJXYZkFVUiMcsQW1EpouH9hUGvP2KVIbZBpUjsQsTIK0WalCE2ShGMIj2/SQAAAAAAAAAAADygDFnGXFUhdhGipQbJsssQLTVIVrYM0XCkhs0uQzQVIYZdhmgqQoxsGaKlCDGyZYiGEsRmlyEaShBbXxmipbjIyJYhaoqQLLsOUVCE2Prue5qO1jbsQkRbeZGhrgoRWVqGaChCbFYhoqEIsdmFiIYixJYtRLSVISI5hYOmxxrFZYhBIeLGkkJEURli2IWIhjLEZpciGsoQW7YU0VKGGNlCRFMZYtiFiKYyxLALEY3vN2Rfl2gpQ7LsSkRLGZJlVyKuChHqEIwafb9JAAAAAAAAAAAAHKIMWYZc7hMiItLZ4fTqvOjs0H83LzqfpxY7Nuo7OsM2s4vyG1FEVjyk93bc9eYZlUWIYcoQjUWIsViGaCwuFpgyRGUVIrKzDFFYhBiL90FNR2nbTBmisbpYoLIIyVJYMtiSeBqv+Gd5kcIjybOG7cMSFYWIG8rXuFiHKCxDDFOIaCxDDFOIaCxDjN54W10ZkjWzi97bzphao3+NswrrlazZ1bFXMFxP900oIu7fY6IQwajQ/ygNAAAAAAAAAADQAGXIMuK6CJldOf/fycecXq1T3RXz/7X3NdHEHJUxvlXnGrfvNr8+zeXKtn3mj84e36R3vmvOdbvyfr2HkIxt78ku9+o90n1s+/zaOtv1Hq3dnlk4AnpW75HQlCHNtUwxoPkplNnnQvEaKUOaS+JpvOKf5UVajyRfuO2ye5uoYyq0SYUb8llUFyJmnyKl3+ueqZOUrk9EpLewl1JvXG/VYPblmJvQu8a5iY7MTSh9TBSR7uT8z8rcuN7XVDML+5rM6f1xkVmzZ4jSpxHT6+b/21b8VGx63fyNN/644vvi2vk1Tmx2u0YKEaSOYcgy4HIIYgYgIjqHIGb4YWgcgthJqsYhiBmAZGkahpjhh03TMKRX8BpH0zBkbHv/N1XbMMQMQLI0DUMWhx82RcOQVsGpnFQNQ+xN00VUvoHast8c1/gUyt7sW+Ea1Q9BRKSXuR1bLT2P20bfhukdhW+s2d9njWvMPj6OK3yj3HocVDkUmbMeYxiK1JP3OKPo+90rOlWbqjXmP8ZoGo5kNyk3tA1G8tajaThihiE2TcORmYJN3jUNR2bzNlDX95RxcShiaByOmKGIoXE4YoYiIm4HIwxFkCo9v9UAAAAAAAAAAAA8oAwZYS6KkGwJYtNShtg1SJaGMmTY5mQaypC8EsTQVISIFFchIjrKkKIixNBQhuQVIYaWMiSvCDE0lCGFRYihoAwpKkJ2/r2CH+68IsRQUob01SBZmp5C2UWITcFaUytCbBoKkb4ixKahvhj2fdawxkGPj1oKkQGPgSoKEbsIsSVQiIgoqkQGPb4o+H4XliGGijUOfmzRUIjklSGGlkJk0Do0FCJFZYihoRApKkNEdNUhIgWFiBH/qWNfGWLTUIrYZUiWlkokW4bYXJQiFCJITfzfZgAAAAAAAAAAAB5RhoygJkXIoBLEFrsMGVSEGDHLkGFFiBGzDBlUhBixy5BBJYgtVhkyrAbJilGGDCpBbLHLkEFFiBG7DBlahYhELUOGFSFLPzbSD/igIsQWqRAZWITYYj6VGlaEGBHXmHoRYsQuQ4ZWIVkx6osq3+fYdUiZx8nYhUiJx76ohciwMsSgEBnyhSs8rkT6fg+tQrIi3ieHlSEi8euQQWWIEbsQqfL1Y5Qiw8qQrFiVyKAyxBa7FBlYhhgxn+YOKUOMmIXIoDLEiF2IDCpDbE1KEQoRpIIyBAAAAAAAAAAAjDTKkBESqggxQpchZUoQW+gypGwNkhWyDClTgthilSFVihAjdBlSpQgxQpYhVYoQI3QZUqYEscUqQ0oVIbbAhUiVKmT+4wP/gFcpQozAZUilIsSI9VSqbBWSFXCto1KE2EIXIpWKEEN7GWKEXmfFx0gRCV+I1HjMC1qIlC1CshKpQ0QiFCJ1Hk8C1xeVyhCRCOur/jgSqxApU4bYQpcidb5eyEKkShlihC5EqpQhRqxCpFQZYgv4tLdsGZIVuhIpU4bYQpciVcoQg0IEo4wyBAAAAAAAAAAAjDTKkBFRpwqpU4OIhCtC6pQgNt9lSJ0SxBaqDKlThYiEK0PqlCA232VInRLEFqoMqVOFiIQrQ+oUITbfhUitEsQWqAypWoTs/LxAP+B1ihCb50KkVhFiC/WUqk4RYgRY46gWIbZQhUitMsQIUV40+X6HKkNqPkYuEaoQafBYF6QQqVOGGBQimS/g4PEjUIFRuQwxgq2v+eOI71KkThFiC1WI1P06oeqQOmWIzXcpUqcMsYUqRWqVISLB6pA6ZYjNdylSpwyxhSpF6hQiIvUqEeoQaEYZAgAAAAAAAAAARhplSOKqFCF1SxCbzzLERQ2S5asMcVGEGL7KkLoliM13GeKiCDF8lSEuihDDVxlStwSxhShDXFQhIv7KECdFiOGpDKlbghRfn8cfdBdViIi3MsRJEWL4fkrloGYQEa/r1F6FuChCDN9lSKMiJMtnfeHq++27EHH5mOmrEHH0GOe1DmlShWRRiLgpQ0S81he1i5AintbqogxZvC5PhYiLMkQkTB3i6mv4KkVclCGGr0LERRli+C5EapchNk9PLV2UIYavQsRFGZLlsxKpW4bYqpQiFCLQiGFIosoMQVwNP2w+hiHahyAuhx8218MQV0MQw8cwxOUAJMv1MMTlEMRwPQxxNQSxuRyKuBp+2FwPQ5wOQWyOhiKuhyA7r9fD/cjVEMRwPAxxOgSxuX5q5fANfBHxMgzRPgQxXA5DDNdDEWdDEJvLgYOv77froYiPx0zXwxBfg14fbzy7GoYYy3ko4nqY6uH77XwYYjhaq8shSN91Ox6KuBqG2FwOR3wNWlwPRVwOQwzXQxGXw5AsH4MRZ8MQw/VTYIfDEJvr4UgKQxFXwxBbmeEIQxFowmmyAAAAAAAAAADASKMMSUzMIsRwUYa4LkFsLssQn1WISPMyxHUJYnNZhvgqQgwXZYiPGiTLVRniqwgxXJQhvooQw2UZ4rUKEWlchvgqQnZev8P7k+sixObgKGqvVYiIu/LCQ8WwhIN1LucixNa0EPFWhBgplCFG07V6fswUEXeFiKcyxHBSiLguQmyJFCJO6hDPp9dzWYh4K0OMhmv1WYaIuK1DfJUhhouqw/cpuFwVIj7KkCwXlYivMsRwWYg4L0NsDX99+CxDRNzWIa7LEJuLUsRXGWJQiCAVlCEAAAAAAAAAAGCkUYYkYlgR4rsGyapThvguQWxNyhDfJYitbhniuwgxmpQhvksQW5MyxHcRYqtTiPiuQbKalCG+ixBbnULEewliq1mG+C5C+r9ejfuY7xLE1uAoau9FSFaTp1cBKgYRabTGVIoQkTBViFGnDvFehNiaHE0d+vteZ60hHzeb1CGeixBbo0LEdxliLIdCxHcZYqvxffdehNhq3jd9lyF9X69GKeK7CLE1qTtCbM6+82tVv118FyG2JoWI7zLE1qQU8V6GGDV/jfguQ2xNShHfZYitTiniuwzJGlaJUIggJsoQAAAAAAAAAAAw0ihDlCsqQkKWILYqZUjoIsSoUoaELkFsVcqQUDVIVp0yJHQRYlQpQ0KXILYqZUjIIsSoU4aELkKMKmVI8CIkq2IdEroKmf+aFe5roYsQW4WjqoMWIUadp1cBC4YlKqyVImSwKmVI8CLEVuWo6tjf9yprjfDYWakQCVyE2CoVIqGKENsoFiKhixBbhe978DJEpHIdEroKWfK1KxQiocsQo07lEbIM2fk1y98+ocsQW5VSJHQZYtQpRIKVIVkVfrWELkNsVUqR0GWIUaUQCVmG2IpKEQoRxEAZAgAAAAAAAAAARhpliFJ2ERKzBLENK0Ni1SBZZcqQ2EWIUaYMiVGE2IYVIrFqkKwyZUjsIsQoU4bEKEJswwqRWDVIVpkyJGoRYpQsQ2IUIf1rGHDfi12EGCWOro5ShNjKPs2KVYVkDVgrRUg1ZQqR6GWIMegIay3f9zJHgSt47CxViEQuQ4yBhUisIiQrkTpEpGQhErsMMQZ836MUIbaShUjMMmRxDSUKkVhlSNaw4iNGEdK/huG3U+wyxChTiMQqQ7KGVSJRihBbiV81scsQo0whEqsMyRpWicQsQ2x2KUIhgpDiP0oDAAAAAAAAAAB4RBmiULYK0VSEiAyuQjQUIUZRGaKlBsnKK0M0lCC2ojJEQxFiFJUhWmqQrLwyREMJYisqQzQUIba8QkRFEWIUlCEaShBbYRmipQrJyjnKWkURYit6uqWgYliUs0aKkGaKChE1VYhIGmWISPE6FT6GFhYiSqqQrNxCREMZYqReiGgpQrIK6gsVZYitcK16ntznFSIaihBbUQGioQyx5ZUiWsqQrKJKREMZYhQVIirKEFvOrx4tZUhWUSWioQwxBhUimuoQkaWFCHUIQtHzKA0AAAAAAAAAAOABZYgipgjRVoNkZcsQTSWIzS5DNBYhhilDNNYgWaYM0VSCFDGFiMYixMiWIRqLEMMuQzQWIYYpQ1TVIHkWChGNRYhtsRDRWIQYmSOtVRYhhv10S2HFsGhhralUIRqLEMMuQ1QVIbbskdaav/f2EeGaH0tNIaKwCMlarEM0FSG2VAsRjWWIsfB9V1mE2BbXqvjJveysRDSWIYZdgmgsQ4xsIaKxDDFMIaKpCCliShGVZUjWwq8jjWWIYRcimsoQW7YU0VaGZJlKhEIEvjEMUWD/T3xUREQmH9b7RMQY2x57BeW0p2OvoDzNw6+s7XsrfrPBMrZF/xPRzlRLVt2r/+F3/a3p/DCNP57GWltTit9ktLSmFL9xm9GaSuN7LyIiCax1cQii/Cmi5iFIH81v2Gcpf9M+WcrfwDU/662xcptXR5XSUGRyIvYSSumtSGOdIiK9FWl8/+dWFZwqT6HZXfR//+cm2qqHIcbUWuWP9RnT6/TfniIi02tjr6C82dW6nzenZGbt/PPRO97x/0VeCUaV/ncMAQAAAAAAAAAAGkjg8J/Rl0IRYqbcY9t1H0HQXThYSHMZkkoJIpJODdKe0n2/zOokstZVD80fjTG9dv7XxMTjeguB9tT8/bQ7Of9Y2plSer9dOD2WOcWD5tNktQo2e9dI9amxshJYJ6fF8sC+Tdt6j0PqZe6jLcWnzel1lz4+qV6rqasWTo+mvbzopbDOmYUn+eP6j2bvTU0nUYe0dszfpqoLkYXTjZkStKf1du3Mr7O9UNbOTer9WeqNzT92dnbMr7W7Qu9aRUQ6U/OPp5oLkc700jKgO6F3ra3ZnWvtjeldZ8/6Fd9S/BKlu/Cw1FH8XpSIyPSG+degE4/qfR9y/HG9z+0wGriHAQAAAAAAAACAkcaeIRFp3iuk6HyHKx7Wd9RAN+fUseNbwq9jGIoQ94qKkPa0vvtpXhGicc8QU4TYNJYh7YICRGUZklNaaCxDCouQrr7DsHKLEE37HQwrQRStdWARouxpYjJVyLDKRlEh0htwX9VUXdhFiE3VWgf83KirLlJZa3vIczvlpUgKhYihshDJ2YheZR3Syb+faixETBli01iIZDdSNzQWIrMrCm5ThYXIzOr+yzQWIlPr8y/XWIhM7dr/+1RjJWLKEJvGUoS9Q+CLnlcNAAAAAAAAAAAAHlCGRGCKEENDGVJUgtg0lCF5JYhNQxlCCeJHmf1BNJQhZfYG0VKGFNUgWRrKkKISxKaiDCmx54aGMqT03iAKypBSe4NoqS0SWWupPUKUPE0cmSLEUFCGDCpCbBqqi2FliKFirSV+btRUF6msdVgZIqK+DsmiFKkopwyxqShFCsoQm4ZSpKgMydJSieSVITYNpUhRGZKlpRLJK0NsGkqRojLEpqEUyStDbBpKkaIyxKahFDFliEEhAlfiv1oAAAAAAAAAAADwiDIkILsIMWKWIWWLECNmGVKmCDFilyGpVCGjVoT0fU6EQqRMEWKLVYiUKUJsMQqRskVIVrQ6pGxpkRGrECldhWRFKERKFSG2WNVFImstVYT0fVLcp4sjV4aIRK9DUipDylYhInHXWuVlVfTaosbPdJQ1lylCbBQizkWrQ0oUIbZohUjJKiQrRiFSpgixxSpEyhQhthiFSJkixBarEClThNhiFCJli5Cs2HVImTLEiFmIlC1DjJiFiF2GGBQiaIoyBAAAAAAAAAAAjDTKkECKqhCR8GVI1RokK2QZUqUEKRKqEEmlBDFGvQhZ/NyAZUidIsQIXYbUKUKM0GVInSpEJEIZUqeyWBC6DKlVhBgBy5BaRYgtVHWR0lqlZhmy+MlhH6+SKUJEqlUhWYELkSpFiC10dVGlCMkKvs4GPxfBa4tU1lqnCLFRiDgXvBCpUYYYwQuRGmWISPg6pE4ZYoQuROqUIUbIQqROGWKELkTqlCFGyEKkThliC1WKVClCioQsRaqWIVmhK5GiMkSEOgTNUIYAAAAAAAAAAICRRhni2aAixAhVhjQpQrJ81yEuihDDdxmSUhGSSg3SpATpuy7PZUiTGiQrVBnSpAix+S5E6hYhNu+FSJPKwuK7EGlUhGR5rkOcFCGG79oipbUuaFSFiAQrQ5ZFEWLzXIg0KUJsvsuLukWIzfs6Hf48BKsuGq452DpdlCEGhYhz3guRBkWIzXshUrMIsfkuRJoUIbZQhUiTMiTLdyXSpAyx+S5FmpQhWb4rERdliOG7EHFRhhi+C5EmVUhWqEJkUBliUIigjsg798EnV8OPEFwOQHxKafhhLMchiG+uhiDGtr3mr8/1UMTl8MM3V8OPYBwOQXxzNgQxzJuLHoYiTgchIjvfXHY9aHC9TpH5tXociDQeghjmDSpPQ5FlOQQxzPff8VDE5RBk8ToXfv5dDxtcDUHs64u9AXwZvdn575O3YYOjn1nv6xRxOwgREZlZeHcpgaFIb2o6iYFIa8f8bRptY/UKWlMLa1V+u7anlj5Wx9hcvazOjqVrdT0ccTUEMTpT849/MTZXr6ozvbDWSBusl9WanV9njM3Vq+pZd6fYG60P0s08TMXcZH0Ye6gSc5N1oA79rwwAAAAAAAAAAAAa4DRZnpQ5PZbh6jRZoUoQl6fJ8l2EuDpNVkpFSColiEi4GsTV6bJcFyE2l2WI7yrE1WmyQhUhTk+X5bkKcXW6LOdFiM3hEdzOixCbq+LC9zoNh4WIsyKk8As4Otp8ORchNodliI8qxOayunBdhticrtXzSyhn5UUq6xRxX4QUSaAQEUnnlFkiDgsRh6fHyuO0DnF0eqxhXBUiLk+TlcdlHeK6DLG5KkRcnh5rEBeViKvTYw3jqhRxeZqsIq4KEZenycrjshBxdZqsYVyVImVOk2VwuixUQRkCAAAAAAAAAABGGmWIY1WKEFuTQiTk/iBNypDQe4M0KUNSqkFEKEIGfr2aZYjvEsTmogwJvU9I3UIk9B4hjcqQwPuDNC1DvBchtgZHcnsvQmxNiouQa3VQhngvQvq+YP3Hr2SqkNC3aYNCJEQRYmtSXfguQmyN1hrwpVOj6iLwSzwnhUioMkQkmTpEZJkVIp7LEFujUiRQGWLULUR8FyE2F4WI7zLEVrcUCVWGGE0KkVBliNG0EAlRhmQ1qUR8lyG2JqVIqDJEpFkdUqUIsVGIoAzKEAAAAAAAAAAAMNIoQxxpUoQYVcqQkCWIrU4ZEroIMeqUIakUISmVIEboImTx61YsQ0IXIbYqhUjoEsRWpwwJXYWI1CxDQhcWliqFSPAaJKvGEd3BixBblfIi5lprFCLBi5DFL1z9eQlFSEk1CpFUypDQRYityppjvmSqVV1EWm+ttYYsQmwUIt5UqkQCFyG2WoVI4DJEpF4dEroMsVUpRUIXIbaqhUjoMsSoU4iELkNsVUqR0FVIVp1CJHQZYtQpREKWIbYqpUiTMsSgEMEglCEAAAAAAAAAAGCkOTi5K0KKWYRUFasGyZpZM//fMoVIKkWISDpVSKwSxDY30Stdh8SuQsqKXYQY02vHStchMYoQozs5fyRKqUIkchFSRdQixDBHVpc4wjt6EVKFhrWaIqBEIRKtCDHMUb0ljkanCKnIfP9LFCIxipDFr73wGFCmtohdhBhV1hxTb3b++1qquogc/Vdaa8wixJhZOLQ2gUKkNzW/1lQKkdaO+fU23kckgNbCbVuqEIlQhBjtqfmfr7KFSOwqRESks2N+zS72EvGtM9UrXYfEqkJERDrTSx/nm+wlEkprttd4H5EQegvf1jKFSKwixOhmHq6a7CMSiqlSmuwlArgS/7cjAAAAAAAAAACAR+wZ0pCLvUKMvD1DNJYgw/YM0VCE2PLKkJRKEIMipL6iMkRzCZK3d4iWIiSrqAyJWYIUGViGaKgsLEX7hqgoQmwDjvRWWYQU1RYprVUUFCF5Cp5aJlOEiOipQmwFdUjMIqRIUW2hpQqxFa5X4UulwuoipbWK6ChDbAkUIkYqhYhRWIhE3i8kz8BCJGIZUqSoFNFQhtjyCpHYe4UMUlSKxCxDiuQVIrH3CskzrBCJuWdIkbxSJHYZkmdYIRJzz5AieaWIiz1DDPYOQR59j+AAAAAAAAAAAAAOUYbU5LIIMbJliMYixLDLEI0liM0uQ1KpQlIpQbI0ViEi/WWI5iLEsMsQjVWISH8ZorEIsfUVIhpLC+kvQ1QWITbrqG+VVYhIf22hdZ1Z1ppVViEifUenJ1WEGFpvW6sM0ViE2OziIpUyJIWXSH3VhdI1961TYxFiS6QQSa0OEckpRBSWISI5dYjCIsRmFyIayxCR/jpEcxli2IWIxjJEpL8O0ViG2OxSRGMZItJfh2gsQ2x2KaKxDDGyhYjLMsSgEEEWw5AafAxCREQ623X+Qi0yvkX/E0Kjpf+9giVSGoJoHX4UGd+Szs/Zbtelcz8QEVnx0FTsJZTW2ar0jc4C7amE1js7f79tzSZy/51KYMdBS28qjZ+1XoK3rdohiEXrQGEkpPBGvaXVSWMz0tbEeOwlVJfIUMTcb1vj6dzGvZUJHFGX0VuVznq7qxO53y6YWZvOeqfWpfF4a+zYNZ3faTt2S2etIiLT69J5K7W7SyKvyxa0Zv3cFxiIwEjnXUEAAAAAAAAAAIAaBuxoh2DWLRyFuF3/0SZzE9npt/7JfW/hwI0UypA5/d/+pbrz3/+5hUeRtuLbuLNd/301a+1t8z9n02vm59UTW3QfAVy0gbpG7en5o2J64/O3bWtG921rTpNlTnOg+jRZqZQghjm9kDnt0IBNyrVI5nRTC+tsLZz6JIkIOZUiZNZ6vG3pP66pZ5/uT2vF0Ft4DDDL1brOrLn5n63e3Pz9ojWu+6WdeQxLqhCZWSjcEilEzOkTVRciC6ekay3cH3ra7w9j848Fren5n7PehO6fMxGR9tT8Wos2VtdibmL+tu3smH/g7a7Q/7g7NrXz+eLspN7fwTOr5p+DdRZi4hRObZ49pVM3gYfc3vj87+DWjP73Glqrdj5/7G3T/bggIjK+x3YREZl5MJHz2yM5eh+9AQAAAAAAAAAAHGDPkAqc7RWybvDRh5379Y3tlxYh8yYf0TdL6w05mKSt8DTreUXI1G6Kj7Du5h/5oLEMGVSEtD2dh7IJU4TYNJYhg2oQjRuomyKkiMZCxN48XURpGTKkCFG5d0jeptOKy5DCIqSncM0D6hWVTzkTKUJEcqqQLIWFiF2EZKmsQ4p+njSuda74Z0l7HZKVVCEiorMOGbLHjcpCpNP/eKWyDhkb/LOvsRAZtGG6xkrElCE2jYVId0Xxz5rGQsSUITbNhcjM2v41ayxEpnYb/PxbYykyt0f/G2EaC5GJDTsG/r2rUoS9Q6DvURsAAAAAAAAAAMAhypASQhUhhoYyJK8EsWkqQ4YVIYamMqTMHiEqCpGCEsSmqQwps0eIpjKkqAixaShEyuwPoqkMGVaEGJrKkLwipO9jNBQiJYsPVWVIXhFiU1SIlNojREsdUmKtqp5yJlSEGAPLEENBITKoCDHUlSFlfo40rXlAGWJQiHikqRAZUoYYKgqRnCLEpqoQGVKGGJoKkUFliKGhECkqQmyaCpFBZYihqRApKkNsGkqRvCLEpqkQGVaGGJoKkbwyxKahFBlWhhgUImhKz6M1AAAAAAAAAACAB/FHf6OuZA2iRZkixJjaOD8Rj1WIlK1BtChTgqhTsgoREZlbeDSJWYiUKUK0KFuDaFGmCDHmJud/OGMWImWLEKM33o5Wh5QpQVSpWHr0xjrx65AyRYjRXvidFrEQKVWEaFFhra3W/GN01EJkVIuQxQ9euN9GKETKFCH2x0YvRKqUVebfF3PNJYoQo7fwuJdCIWIe85IpRGam5/8buxApWYWIiPQWHvtUFCIDtKzfKdFKkZJViIhIa3r+Zy1mIVKmCDHaU/Pr1VCIDNPZsfP3iqZKpMjY1PzvlJiFSNkixOhM6ahDhulML/2zplKkSG985+/sWJVImSLEaK1aeCxTUIgMM77H9sX/76oSwfJCGQIAAAAAAAAAAEYae4YMUGuvEAclSMg9Q6qUIEVClyEuipCQe4c0KUKi7RlSoQixhSxDXJQgofcOaVqEhN43pEoRYotVhlStQozQZYiLIiT43iENC4/ghUiVIsQWoQxpVISE3jvEQb0S9CnoqBchNuVliC14IeLi5yXkmisUIUVSKESMZAoRI3QhUqEIyRO8DimxV8gwwQuRCmVIVqw6pEoZYgtdiJTdL6RI6EKkzF4hw4QsRaqWIVmxCpEye4YUCVmIlN0rZJDQhUiVMqRIyFKk7J4hg9QpRdg7ZPmhDAEAAAAAAAAAACONMiRHrCLECFWGuKhCRMKVIS73CPFdhrjeH8R7IdKgBMnjuw5xuTdIqDLE1R4hocqQJkWIzXchUrcEKeK7EPGxR4j3QsRR0RGsDGlShNgCFSLO9gnxXYh42M/E+1PRxKqQRkWILUAh0qQIsXkvRFz/fPher4MixJZKIZJcHSISrhBpWIYY3gsRB0WIzXshUrMIKeK7FGlShNhCFSJNyxAjVCHiogwxfBciTaqQPL5LkSZFSB7flYiLMsQIVYi4KENEwtUhLsoQg0IEg6TxbFgzDxukd/ec8jIQcTX8sPnaSD21DdJFEtwk3fEQJATXm6TPjc3/XLgeivjaIH16zfzPmY+hiMsBSJavDdVdD0F8S26jdBFnQxCjt/Amg7ehiMshiOFpQ3Vvm6SbN79dv+nrcVP3VqvlZyCynIcgi1c653Ug4nIQkr2+6Burl+VzU3UPgxCRdDZWtx8jkxiO+N5Y3dEQxEhlU/Uss8F6tI3VK/K1ubrLIYhhNlYX8TMYcTUEMbKbq4u4H464HIIYY1NzUTdXr6qz8D56Chusi+zcZD21zdVF3A9HXA1BDLO5uuFjOOJyECKyc5N1NlhHnnQeiQEAAAAAAAAAAGrgNFkZpU+P5aEGsbksQ3wVITZXZUioIsTlqbJCFSHOTpfluQhxeZos1yVIEVdliK8ixOayDPFVhNhclSGhihCXp8sKVYU4O11WoNNZOStEfBQheRzUId6KkL4v5Oi+EGi9Tp+OUoTkc1iIuC5CijgrRHyfPs5wWYh4KkNs2gsRWxKFiOGqEHFchBRxVoh4OD1WHqd1iOPTYxVxVYj4KEPyuCxEXJchRVwVIj7KkDwuSxHXp8myuSpEXJ8eq4jLQsTlKbIGcVWIuC5DirgsRFyXIXnKViKcLmv0UYYAAAAAAAAAAICRRhkiuooQo0kZEqoEsTUpQ2LsD9KkDIm1N0ijMiTC/iBNCpFQRYitbiESqgixNSlEQhUhtrqFSKw9QpoUIqH3CWlchoTa4HyBkzIkVBUi0qgMCVaE9H3hBveJCGtu9LSUIqScBoVIqCLEVrsQCVWE2JoUIoGKkKzU6hCRhAoRF3VIoDLEaFyIBCpDjEaFSKAixFa3EAlVhNiaFCKhihBb3UIkVBFia1KI+C5C8jSpREKVIbYmpUioMiSrSSUSqgyxNSlFQpQhBoUIKEMAAAAAAAAAAMBIS+8woJACliC27p7zk9wqhUisIsSY2jg/La9SiMQoQpqIVYQ0EqEIaSJWEdJErCqkrlhFSF2xipAmQhchRm+sXa8OCVyEGL2FIzIrFSIhSxBbe+H3W4VCJFoRYpgKoMoR8hHX3GrN/w6oVIgkVoSIRKxCRHbeFyoUIrGKkOzXr1SHxCpCDHN7VVlzhCLE6C08rqZUiJjHVvWFyMz00j9XKUUCFyFGb+ExtVYhErgKERFpLdwXnO4h4llrev5nztUeIr61p+bX63IPEd86O7rO9g8JYWxq/veWyz1EfOoshAeu9hEJobPwcOxyLxGfeuPzzwuqFCKxihCjtWrhsa1CIRKyCDHG99i+5M9lSxGMjjQeaQEAAAAAAAAAAGpa9nuG5O4XErEIsZUtQ2JXIVllyhBNRUiZvUO0FSGl9g5RVISU2TtEUxFSdt8QTUXIoL1DNJYgw/YN0ViDDNo7JFYJMsjQQiRSDTLIwEIkZhFSZEAhEr0IKTLoiHmFax74NJUixI0BhUjsIiTP0EIkdhWSZ9CaIxYhRVIqRAz1hYhtUCESqQgZZGglEqEIGWZgKRJpr5BBhlUisfYLGWRQKRJrr5A8ZQuRWPuF5ClTiMTYK6RImUIk1l4hRcoUIjH2CilSphCJXYZkla1DYpQhRfIKEfYNGU36fqMCAAAAAAAAAAA4lN5hPz4oKkHK0lSClKGpBClLWw0ylKISpCxNNUgZmkqQMjQWIcNoLEIG0ViEDKWwCBlIYxEyhNoqpIji9ebuIUIR4lbOHiIaixDDrK2vENFYhBh5e4goLEKMVPcQSaoOMXuJVNlDJKJG+4hEktpeIqntIyKSzl4inR1Lf6elsJeI2UNEJI19RDpWkJDCXiKdzJZOKewjYvYQMarsJRKD2T/EqLKPSCzsJbJ8LNvTZC2eHiuRQYg5XVZKQ5DJR9pJDUHM6bJSGYIsnioroSGIOV1WKkMQc7qslIYg5nRZqQxCzOmyUhqCtGbmkhqCLJ4uK5EhyOKpslIagiycLiuZIYh50ziV9UpmGJLgIERE+TDESGQYYiQ1DMky61Y8DLGlNBQRSfCUWSI7hyIKT5GVZ3EoovD0WEV6E+MqT49VxAxFNJ4eK48ZiGg6PdYwZiii6fRYg5ihiKbTYw1jhiLaTpFVxAxFNJ0ea5jWTEvV6bGGMUMRTafHGsQMRDhd1mhJ4zcrAAAAAAAAAABATWkd5uNSIkXI2Pj8kXndhIoQWRiip1SFiKRThCxKqAgxUilCjJSKEGNsezpHsYiItBI6MhaBpBisJnAU/RLdtB4nRDKny4q8jqqSKEKM3pz0EnpMXjxdViJH0i9K6DY2Ck9NplSKp/kS81iRStVi1ttJ4NwyC1rdOeklVIZId+GxIpG7cYrP6c3ps7or0riRzamzZlalcz82p89K4923pafOSkVvvCftsfmfv7lZ/c+JzOmznrzr4yIict9ja2MuZyj71FkYDZQhAAAAAAAAAABgpC27PUNeeP67RUTkrvs3RF7JYKYIMboPJLBxj3Wg6cTjumdtrYKDNXuKDwxp5RxSsWMPvUf4rrw//z4wu1r3w87a25b+uZ3Agb2rHly6yPaM3vuFiEhn+9L1Lu5roVgrc5umsGdI322awJ4hrbx9QjSvu2D/ip7m8iKvVEjg/ryksJhTfPsuSKoIWZBSFSIifXuEpFAtZG/jFNabt3+F6nW38o+IVV2ItHKeKydQh7Ts23oygUIkc9/tTeq/jXvWz1pvUvHPnoj0xpeuL4XaomttTN5dqfv9i9kV+eubWam3BpjZpX9tXcVvbe3YmP9caG5S93Ok1u5L9wxJoRDZ78mPLvmz9kLElCzff8lHIq8ELuh+tAcAAAAAAAAAAGhI/7jek/32nJ9CaixE7CpERKTzpPnz1KksRAoO0JxeO6e2DimqQrTKK0I0KypCNLNrkKy5hUdKTYWIXYLY5sbbausQuwoREemNzd9nNBYirZzb0Rytp7EQKbwNzXmyFZYWuUWIZgVFiGqDSgVz9KnC+3NuYdFe+B2jsBChCAmgl/9917yvRd5trHm9eUWIoXrdBZLbQ2R64XeMwkKkrwgxphZOtK+xEMm5r7am5m9jjYWIXYQYramu2jrErkJERDo7lv4+1FSK2EWI0cnsvai9Eska3z7/O0ZzIZLVWdiCQXMhYmtPtdTWIXYVIiKq9xCxixDjybs+rrIOMUUIRks6j/AAAAAAAAAAAAA1LJs9Q8xeITYNZUheCVJERRlS4UBMbWVIlSJEw94hVYoQLXuHVKlCNOwdMqgIsWkoQ4YVIVlaypC8EqSIpjIkrwgp/FglR9RXuv0UFCKVihAF661ShKjZN6RKqaDkfixSsbBQUoikVoWMShGSR0u1UOU21rJmERlYhtjUrLuoWMj7UA2FSN5eIUUUFCKFRUgeLXVIhfumpkKkqAzJ/VglpUheGVJEQyFSVIbkfqyCQqRor5A8WuqQvL1CimgoRIr2CsmjrRDJK0OKaChFisqQPBpKkaIyhL1D0hb/kR0AAAAAAAAAAMCjkS9DiooQI2YZUqUIsUUrRGoefBmrEGmyN0iMMqTJ3iCxy5A6+4TELEOqFCG2WIVIlSokK1YhUqUIscUsRKoUIYufE/mI+tq3V6TaotEeIbEKkZr7hEQrRJpUChHvz7XqishlCEVIABWqkKzY1UKd2zrqmisUIbZo665SLGQ/LVYdUqUIsUUqRCpVIVmxC5Ea98mYhUiVIqTvcyMVIlWKkKxYdUiVIqTvcyMWIlXKECN2IVKlDLHFKEWqlCG2WKVIlSIkK1YdUqUIscUsRIbtGUIhkibKEAAAAAAAAAAAMNLin7Axsv32fDRYHdKkBIlOx+m4S2tShNjXEaoQaVKFiIiseHB+thmqEKlTgtjGtraC1yFNipBY6hYhxtz4/PcqVCHSpAgxemPzaw5ViNSpQbLM0XyhCxFNe6yU0agIMcYWjkIMVYjULEKMVmf+vhysEHFRKZijUwPenxvVFe2F30eBCxGKkABqFiGLn75wHw5dLTS5raOsuUERYgRfd91aYUFv4fdRsEKkSRFiTC/8PlKwh0gpU9Pz/w1diDS4D7amdv7OD1WJNClCjNbU/M9fqEKkbhFidHbM//xp2D+krM72+d9HoQuROlWIiMj49qW/h0KVIk2KEKOzPVwd0qQIMdpT8/9mbXuJFGmPza9Tw/4hZdl1RqhSZFgVgnSl89snca4HIZ0nbRcRj6fLcvx+wvTa+Sv0fbosF0OQ0JoOQUJzMQTJGts6/0vY51DE9QBkbuGR0/fpspoOQUJzMQQJrekQxBZqKOJsCBJosOBkCBJawyGIzftQxMcb851OkIGIs6FCoKEIQ5D0hHqj3uVt3et2wwwWHAxCsrzf1g2HILbgQxEXAg1Fap8eyxZqKOL4PmcGI5o2Vx8m9FCkqVBDkSanx7KZoYiI38FI3SFIETMciX36rLI68293qdhcvaxQQ5G6p8eymaGI4Ws40uT0WEWevOvjKjZXR7o4TRYAAAAAAAAAABhpI7uB+rCN0/P4OF2W71NjOS9DPJ9hwkcZEqIG8XGqLN9FiOvTZbkuQmw+ypBQp8RyXYj4LkJcny7LdxHi41RQrouQvuv3dDS999NieShEvFchrtfsuAixOS9DQlUKHu7T3gsLx4VIakWISMJVSMPTYw3julrwfTt7qSwcFyFFnK/dcRnSd/WuCxEXp8caxEMd4qwIKeKrEPFdfnkoRFycImvg9TsuRJqeHmsY14WIyyJk4NfxUIi4LkNsrgsRF6fHGsRHIeLiFFnD+KhEXJUhRVwXIj7KkCwfhUid02OxkXpaKEMAAAAAAAAAAMBIS+jkqGlIdpP0QHuOutw7JLX9QVLbG8TwXYQYLvcOSW2T9NT2BskKsU+Iy83UfRchhqu9Q4JvkO5wD5Fg+4SMddzUIZ6LEMPp3iEhSwWHm6oHKywc7SFCERKQ5yJk8cs42tci1O3sdB+OQEWI4WzvE9+1wgKne4j4rkJEnO4f4r0IMcweIkbTUiTE3jridg8R30WI0ZrqJrN/iMjOPUSMVDZYd7m5uu8ixEh1DxEjlb1EXO4j4rsIMVLbYD3W5upIG2UIAAAAAAAAAAAYaSO5Z0id/UKy6uwdErsIqbV3SOADjrOalCExi5A6e4fELkLq7B0SqgbJ06QMiVmE1Nk3JHYR0mTvkBBFSJE6tUSoIqTw69c4mj54FZLVoLQIVoTkqbPuQEVIkVqFSMxSoUEZErWwqFGHpFiEGMmVIYGKkCJ1yoWYt3Gj0iJwGZJVa92haoWiL1+nEAlRhBRpUIgEK0Py1KlDAtUVReoUIqGKkNyv3aAQ8b1XyDB1CpFQ+4Xkfu0GhUioMiRPnUrE914hw9QpRELsFVKkSSESqgzJU6cS8b1XyDB1CpE6e4VksW9IOihDAAAAAAAAAADASEvjJIyKxS5Caol78J2IVNs7JLW9QYzYRYix4sH527hMIRKzCDHq7B2S2h4hIvGrEBGRufH573eZQiRmCdJE7CLE6HU6peuQqEWIUWPvkKhFSB2RixCj0h4iGkqFGnuHqCgsKu4fomLNNVCE1FNlXwsNt3GtPUQiFiFGpXVHLkIMp3uIhFBjD5GoRYhh9hEpW4hErkJE3O4hEkJraunv7TKlSOwixOjsmE1m/xCRenuIxCxCjCr7iMQuQgyzl0hqe4gYZUqRmEWIkdo+IiI7Kw/2EEGe+I+4AAAAAAAAAAAAHo3UniFN9wqxFe0dorUGGbpviI6D75YYVIZoLkKG7R2ipQrJGlSGaChCiuQVIppLkGF7h2goQorkFSKai5BBBYWWIiRrWBmioggpMqAQUVmEDCtalFQhtsI6RHOlMOB+rbKuGFKGqFxzCRpqhUqUFCF5hlULGm/rgWtWUIQUKVy3hlIhx9A6JOZeIUUGFCIqipAiwwoRBWWIbVAhEnOvkGHyChEtRUieYYVIzL1ChskrRTQUIUUGFSJaypCsYXVIzL1ChhlUiGgoQ2zDCpHY+4UUKapEmu4VYmPvEP30PvICAAAAAAAAAAA4kM6JFxXQWoQYnSfNnzBxsRDRe9Ddory9QzQXIUU0liC2FQ+2++oQzUVIEc1ViIjI3MKjql2IaC5C8mguQoze2Pz91y4qNFYhIjuPCrQLEdVFiJGzh4jKIsQo2vNEaRFSKIVKIWcPEdV1RcHeIarXPIDGSmEoxVWISPG+Fppv69w1Ky5CjFp7n0RUuH+IxiLEyNlDRHURYhTtIaL4vtKamumrQzQXIYbZS6TMHiIadHbM/xzahYjmIsTobJ+rtI9IbEV7iGisQkR27h9ipLKPiMjOvUSyhYjGIsQwe4gYphTRWoQY7CMCYyROk+X69Fi2ex9Z5/X6Xevel9CjvmXy0XSeHIiISGI/PWYYkuIQZNUDad3YZhiS2hBk/PHp2EuozAwTtA5BirSnEntjXkRa2/U+KR9o+47YK6ikN5Xez6HRm0rrPtKbTvO21vzGfCHlQ5BCmt/ozpHMRt85WmNprb01UXKzb2VaZTcp12RVWq9vzVAkhWGIbW6XtO4fZiiSwjAka2rXtB7vRHYORbQOQ4ps3Set50y9fdJ63ZK1z+6PxV6CKpwuS6+0fmMAAAAAAAAAAABUlN44OoA9Vy/dPCeVMqTXm5/Qt/ecnyTP3b8i5nJK6UyldVSB0bEOJO0W75enxuQmkclN8/PP6YSqwF3usRJM5Y9aqx9IqwTJGts+K73xhVNPJVBZ5G34ngJzmqyi03yptHBqkN5YR1rDNifXxJzKyxxtrPxUSIunauosHKtStKG6QouFRaslkkB0bE53s3jUfyLVQpJFyJz1mJHCKXqyzH0jgUKk1W7tPGVdQkekL562KZW1L5xuzzxmJ1W0dNpprdvcF4pOm6XVwnMl85ypl8K6F56XtnfMytyQTco1aXXnfy+ObZu/rWdX6X786C5smD62ff53y2xCp83qLSx1bFtPZlfp/10+tev8f8e2zq91dnUaz6HszcntU1JpdPg+9y7586apNGq+l+x505I/n3//wZFWgtDSeeQFAAAAAAAAAACoIZ2RfwB2EWIcud/dIiLyo7v2DbmcSkwVkoqiImR2dW9xcq+RXYSkYHJT/2UTC3d1zYWIXYRoV1SE9BYOTmopPph+LIHN0rMKi5CFI9pEaWlhb5yehJxN0nsLm5OrLkQ0b+5eIHcD7wQKkdT23OgV3TcSKESSq0LsIsTo9dKrQ0SSKkREJInKonAj725X9bptSZQWnf77bRLrtikvRHo5t7OISGth3UkUIjJfh4iI6kJkbjz/MSKVQsRIoRCZXt3/WD22bf45SQqFiJFCIdLds3/vPVOKpFCIGOsnt6uuQ+wixL6cQmT06X3EBQAAAAAAAAAAcKDV6yVwYucCLzz/3U6up6gIsWkqQ6qUIJr2DimzR4i2MqRKDaJp75C8IsSmsQwpU4Ro2zekyj4hmgqRMkWIpr1DKu0RoqwOKVOFqNo7pEJZoaoQKbtuRXuH5BYhRRQVIqWKEEVPMQuLkMJPUHRbp1aEGEVlSFaKhYihqBBptUvcjopKi8IiJI+idZu9QoZRVVoUlAp5dK27xPddWWVRVIXkfqymtY8NX7emQqSoCMmjrQ4x+4UMorEQyStDbJoKEbNXSBnaKpG8MsSmqRCx9woZRFMpUlSG2FwVIt9/yUecXA/c0fdICwAAAAAAAAAA4JCeEX8kZasQER17h6S2N4hRpggxzHQ+diFSZ3+Qzsz8f2MWImWKEEPD3iF19gZpLxzgG7sQqVKEaFJlj5De+PzMPGYhUqkIUabKPiG9hSPzohYiCe61ISLV1z02Fr0OqVSEGAr2EKm0R4g5+ltRIVJaqx29DhnpIsQw942UC5GIShUhhoI9RCoVIYaCdYtI6SpEJNG9OETJuqt8n5XvHzKIij1EShQhRgp7iOTRsn9ImSLEMHuIGDFLkTJFiKFhD5EqRYihZR+RMkWIkeIeIiLz+4iIxC1EyhYh2Y9n/5DRRBkCAAAAAAAAAABGWlqjfQeqlCCaNClC2nvuEJHwe4dUqUHyxCpE6hQhGlQpQmyxCpE6VYgGTYqQ3sKBSSH3DqlSghSJVYjUrkLM0W6RKosqRYgtSiHSoAjpjc3fqaPtHVJ37ebI18CFSK0iRIFKRYgtciFSeb8Qw+wJEbgQWRZFiC3FQqQ3F23fkEpFiE1LaVFVrHVXKEJsvdnZeJVFhf0rbFEKkSbf18iFSJW9QmytqenwdUiFIsRmChEjZClSZa8Qm5ZCpI6x7XPB65AqRYhNQyFSR6xCpEoRYjOFiEj4SqTKXiE2DYVIFXZNQikyGihDAAAAAAAAAADASGv1eumdyPmF57+78ue4LkJC7RviY48Q34VI0yLEFqoMcV2E+N43pEkJUiRUGeK6CAm1d4jrPUJ81yEuihBbqDLE+T4hgSqLJkVI7vX5XreHPUKCFSKu1+652PBShATYO6RREVJ4pWGeetYuQgqv0O/tvSyLkCIpFSIiwQqRRkVIkQClRa29Qobxve4GRUieYJVFg0qhiPe1u/5eBiotmhQhudcXqhBpUIYU8V2INKlC8oQqRKrsFVJGqEKkSRlSxHcpUme/kEFCFSJNypA8vguRJkVIkVCFSNX9QoapU4h8/yUfcboG1Dfyp8nydVosn5upL4dN0qvwfbqsFE+L5WMQIuL/dFm+Tovle0P1FDdK9zEIEfF/uixvm6V7Om2W6+FHUJ42S/d+2ixfm7x7Om2W19NiddpeByJeBiEi3k+b5XwI4lmyQxARP4MQkfROm2UGZZ6GIl6GIEa363Ww4GUQIuLvtFmOhyCG91NPeRiCGFFP91XHlPW7y/GQwfUQxPC+qbqHIYjR3jGb1Obqvk+b5XoIYpjN1X0NRXwMQYyxbb2kTp3l+7RZrocgRoqbq5vTZon4GYy4HoLY18tps9LEabIAAAAAAAAAAMBIS2d8X8Fy3CS9CtcbqvsqQmwuC5EQNUhnZv6/Lk+X5asIsbkuRFLbKD1UCeJjM3VfRYjNdSHirQjxJFQR4mUz9UBHzTsvRFI72j/URunmCFWHhYi3IsTmuBDxXoQ43lCdIqSEZV6IeC1CsjxUFt6KEFtiG8I7L0Q8FiFZXsqWUN+zyBusV+W8EPFYhGSZzdVdFiKuT49lM4WIkcoG664LEZ9FSJaPzdVdnx7Lln3vyUUl4qsIsbkuRHycHitPapuriywtT6hE0kEZAgAAAAAAAAAARlpSG6gP2zg9ZhHSZO+QmHuENKlDQhUhtiZlSMz9QZoUIqGKkDxN6pBYRUiTvUNi7g/SpBAJVYTkaVKHRCtCGpQWMfcJaVSIRCwrGtUhsdbdoOwIVoXkaVCIBCtCcr94/d8X0fYIaVCIJFuFhCpC8qRSh2Q1KESCVSF5GhyxH6wIydOkNPC0V8gwjUqLQFVInmbrjnj0fYPawtdeIUO/bpNCJFAVkqdJIeK7CBmkSR3ia6+QYZoUIqGqkDxNChHfRcggTQqRUGWIrUkhEqoKydOkEPG1V0gZwwoRNlKPjzIEAAAAAAAAAACMtJHYM4Q9QsKJVYNk1dk7JGYRsriGGnuIxCxC6tKwP0h74SDhKoVIzCLEqLOHSMwipInoe4SYI+UqlBYxixCj1h4iie21sSj2us1RrxUqj6hFiFFjD5GoRYhRY/+QaEWIUWMPEYqQBlLbP0Sk1h4iUYsQo8Y+HFGLEKPO/iGRihDDy14cAdRat4Z9XWrsHxKrCDGc7yESSJ09RGIWIYbZR6RKIRKrCDHMHiIi7vYRCaHOHiIxixDDvA9VpRCJVYQYZg8REXf7iISQ4h4iIjurFPYQ0SudR0oAAAAAAAAAAIAa0joExaKpCDlyv7tFZPDeIRpLkPaeO0Rk+N4hGooQW5lCREMRUoemImRi4cds2N4hGooQW5lCREMRUoemIqQ3vlArDKk9otcgeUoUIhqKEFupQiT2UfMZvbH5o+tK7R2iaN0iUqoQUVGE2EoUIiqKkBqiFyG2EoUIRYhDy6QQUaFEaaGiCLGVKUQiFyG2SqVF5FIhq9S6NRQhthKFSOwixGYKEZESlUjEvUJsdQoRDcoUIrGLkDymEhlWiMTcK8RWpxDRoEwhErsIyWMqkWGFSMy9QmymEDEGlSIx9wqxUYjope/RGwAAAAAAAAAAwKFWr1fh5MyRvPD8dy/5s6YipIhdiGisQvLYhYjGIsSWV4akUITYe4doqkEGsQsRjUWILa8MSaEIyds7RFMRUsQuRFQWIXmsykJjEWLLLUO0HTWfo7AQ0b52qwBRWYQUyRQiSRQhBU9P1VUhNqsOoQgJQGOZMEhBHaJir5BhMkf4qyxCithlgrIqxFZYWSgrFfLkrl1jGWKzSgttVUiRvkJEURFSJK8Q0bBXyDB5hYjGMsRmFyKaipBB7EpEw14hw+QVIhrLEJtdiGgqQgax6xBNRUgRuxD5/ks+EmklSKJVTGH4USSVIYgthSGIMbu6tzgQSWEIYpgN1ce2xl1HXSkMQYz27M6BSApDEMPeUD2FQYjIztNmdbalsV5bCkMQo+90WdrfKF7Qd9qsRNZtTpnV27Ej8kLqS2IQItK3obr6IYhRY1N1VVIagqTKOmVWEkMQo9tN441tm/m9Pj4++OOU6Dv1VCJvzIvMr33nuhO6r9TYWF2Dxc3VVw8+5bUm7R2ziwORFIYghn3arBQGISLlT5uljTl11ta90/kdaZ82K4VBiEj502Zpk+Lm6ikMbJaLtB4RAQAAAAAAAAAAKkqiDEnR4XvPp2U/+cXekVdSzdya+SMeOlPp3DXGtrVE0jlgYNH4loWjXVM6IlBE1tw1f3RJr5PWulc9lN7Rrp3taR5Z3JqeX/fcQrXQHrTJN9zQf8bLfKmt2zpaN63TZKX3GCgi0kt13SmeHivVKiTFDdVFMvVQOkdGi4iIuW+n9DzQFApzC7e58tNkpc6chTuhe8hO5ndOKjWOKW2n5k850JtMo35qdefvI53u/POobkKbq7cS/PWesomFk8TYp+rWrLty4XfN5nGRdTNxF1PBU/d8OPYSavn/7XepiIjcNb1b5JUgJYn8lgcAAAAAAAAAAKgniQ3UP3/zsSIi8u1Hnhl5JcNNd/OP7tJaiMxuHXz0yPjDeo/SGNuWs3F6AqdlNEWITXshMrkp/+j+FAqRFY/1H+3aUnzU7qAipN3VW1mYIsSWRBmSs8YU9g5pzeSssWhzckVaRfs/aF57TgWSRBky3X9EWgq1ReFtq/ixWySN27ZPqkVIkdQKkQWtFPZXyNn8vZXCEfR5t63iOiTlDdTzbuvCf48mY/3r7k0kUFnkrFtEdyHSG7BPiOZCpLuyf90p7MNRtEbtG6nPrMlfXwqFyNRuOc+rFBciB+7z0MC/Xz2mc7/B//Gka3IvT6EQ2W9ivsI586ArIq9k+dL/6A0AAAAAAAAAANCA+jLEVCFZGguRoiIkS1sdMqwKEdFZhuQVITaNhUhREZKlsQ4pKkJsGguRvCLEpqkQKbNHiMYypKgIsaksREqsSWMhkluE2BRVFoUlSB5F6xaR3CLEprIQySlCbBorhlK3paLH7SyNt+dAo1aEZCVah4goLURyipC+D9FYLZS5LZUVIpUqCk23eYnbWmUhUlBWZKksREqsW0RnITKoDDE0FSJ5RYhNYyFSdk0aC5GiKiRLYyGSW4TYFBYiw8oQEX11SFEVkqWxEDFFSBZ1SBz6HrUBAAAAAAAAAAAc0jNyr+DUjdeLSNxCpEwJolWZIsSY2W3+CE0NhUiZIsToTs7/V0MhUqYIMUyloKUQKVuFiIi0ugtrj1iIlClBNCpThBhzC0cBailEylYhIiJzYwtr11CIVFhDb+FoRw2FSKkixDBHDUYuLSpVIZpUqD3M0a4qCpESRYhhjkDXUDRUuu3M70glhYiG2w8WE74nWIiY+5OKQqREEWL0Fp6XqChEqtx2cwvPB5QVIqV05+LXIRVua/M4r6IQKVlWiIi0Fn6vqihEKqxbRKQ1NaOmDilThBidHfP3FU2FyCBj1mu5mKVI1a89sbWnpg4pU4QYE4/P/1dDIVKqCDE2L/w8KihEyhQhxtbZCRHRV4gMYlcYMUuRvCIEcSX4rA8AAAAAAAAAAKC8NEbtytStQo7Y5x4Ribd3SJUixBazEKlShNhiFiJVihBb7EKkShGiQZMixNzGMfYOqVKE2GIXIlWKENvcWDteHdLg68YsRCoVIUrULkJiFy0N6o6ohUiFIsQWuxCpfXtFLkSSLUJGea8QW+KFSLQ6pEIRYotaiDS5vSIXIrVrCfM8MHYhUkHUQqRiWZEVvRCpufbW1MK6IxUiVYoQW8xCpMxeIUVMKaJxL5E8E1vnf1fGKkSqFCG2mIVIpSLEFrEQqVKE2GIXImX2Cimy38TDKvcRQRxpPDoDAAAAAAAAAADU1Or1ejpOuFzg8zcfO/RjQu0d4nqfkFCFSJMiJE+oOqRJEWILXYY0qUKyQpUhrkuQUPuG+NgjJFQh0qQKyROqEGlShOQJVog4/jqh6hCnRUig0sL5HiGhChHHNUewOqRBEVIkVPHg/DYK9PhNEZKwBAsRkYD7hzQoQgqvMlSx4Po2ClSIOK8jEry9gxUiDaqQPMEKEdfrDlSINClC8oSqQ5oUIUVCFSKuv06oUqRJGZIVug5pVIbYAhUiTaqQPKEKkSZFSJ5QhUiZvULOPOiKACuBTe0wpMwQxOZrKOJ7s3RfQxHXQxDD9zDE5RDE5mso4mr4UcTXUMT36bB8DUV8b5TucyDieghi8zUUcT0EsXkbini63hDDEG+nxvI0XPC+UbqvoYjnoYXXoYiHQUiWrzf9vQ+KPD2GMwRJTK8nH5OL5Ah5REREuiLym3KK3NFaN3Ao8s9z35I9Zdvin78rT5GPtI/yvdpSvA1FPAxBlly9zzfoK9wmZ209V/bsbV3883fHDpT/u+IFgz/J01DE+wDA123u6T5obo+/feBf5BkzD4iIyIy05R1PepPcPb7BzRdxPFQwvA1FPK3X8DUUcT0EsfkcivgYhGT5Gor4Hrb4Goq4GoIU8TUccToEsXkeirgehhi+hiKuhyA2X0OROhumMxQJiz1DAAAAAIyUU+TOxUGIiMh3Zf/5QQgKrepNy8G9R2Tv3hZZLTPSE5EnZELubq2Vm1obZbrFS8flbtXclDxj5kHZu7tZVs9NSU9a8kR7Un7RWS83TTyp8X3ks+uOkw8//O8iIjIuc/Kbmy6WP9z9l10sHQAAQEQYhgzkuwjxxVcRYvjcTN1nFSLifkN130WI4XpD9VAbpLe6C+t2WIj4rkJE/Gyq7rsIMVxvrO67CPHG8+m3fG6m7n2zdMcblHsvQgzXG6sHOo2Vl03VPRchRqvTcVpDBDt1mOON1ZMtQkSWbRWyqjcjb5WfLP55h3TkLDls5wckurG6uS86LURabXnO3P3y2u7P5Dm9+2VM8n9upqQjV7T3lq+2D5Fb2hsrfQkvm6qHOnWY443Vg50SyvHG6s+ZvVf+x9br5DnTv5AxyX+ONSUduXLF/nLu6ufILeN7VLp+8/vh+hX7yg9XPEWev+NOERE5cupuOX7bf8tlq55Wf/GeC4voG6vX5Hpjdd9FiOFjU3XfRYgxtn3OacUR6vRbrjdY912EGK43V/dahBibx73UIb6KECP2xup1mYKDjdWXH4YhAAAAAEbGG+Qm2SA7j3w5T54qj7RWRlyRTqt60/Ku2R/KCb27h37spHTlxLm75IVzd8k32gfJpzrPkdlWmgeOobxVc1Pye1sulhOmbx/6sZPSlRftuFVO2HGrfHPVEfLpNcfVuo+cveaoxWGIiMivP36ZXLHyAJnzfDo3AACwPIzUMOTUjdeLSPO9Q0IXIUfsc4+INN87xHcRYnNRiPguQYp0J5vVIaGKEFvTQiRUEWJzUYiEKEJsLgqRUEWIa6GLkLmxhaLFRdERalN2cVuIeC9CbGOdRpVFsCLE5qIQCVUoZDgpRAIVIVnmCPQmdUSwIsQxipA0re/tkNfIfy/+eUZa8lU5KP+Dl3Ehsl6m5COzF8hT5PFKn9cWkdfM3Sz79zbJH42dKFMVTovkpBAJVYTY5uYa1SHBihBbg0Jk/dw2+fCmb8pTupsqfV5bRE7b9hPZf/YR+eNdXyFTrfKvUXuzs/Kzzu5y3eTe8qyp+dfIe89ulpdtvVHO2+XwSuvwXYTYWtMzbuqQ0Ot2XIiE4qIQCVWEZI0tvDZsUnWEKkJsTQuRUEWIzUUhEqQKMTZbP4sNShHfRYjNVSHie68Qm6tCpM5eIYhjpIYhAAAAAJavN8lNslJ2vmlxgTxFHmqtirgifcZ7XfmL7sW5g5C7ZY18v72f3NtaIy3pyV69J+RFc3fK3vLEko97du9Bee/s5fKn4y8MtWwENN7ryp9tPi93EPKLznr5/ooD5b7OOhHpyV7dx+WFO/5b9u5uXvJxz5q+V96z6Xz5811fXvnrf3XNcxeHISIib9xylZy/+mCZYd8aAADQ0Eg+mzh14/W16pDYe4TUKURC1yB56hQisYqQrDr7h8QqQmytuV7lOiRWFdJUjCLEhdhFyFynXWvfkNh7hDQqRAIWIbYmhUjwIiSrRmURrQix1SlEFBQKtQqRCEWIrU4hEr0IabB3SLJVyDIuQkRE1vSm5Jdk6el8vikHDP/EXi+5OkSkZiHSasuvd6+Vg3qPLrl4Rtry8c7z5Lz2gX23xVm9Z8rL526V/9394ZI9RY7v/UJe2b1F/qPz9IrrrlGIxCpCsmrsHxKtCLFVLETO3HqVHDS79AjXGWnLJ9a+UL6z8pC++8gXdjlKfmn7jfKOxy9ZsqfI8VO3yyu23SDfWlWt6ri6s7fc21kre3XnB3a7d5+QE7fdLN9bfejwTw5cVmQ12j8k4rpFmhUiofYLyeNjD5EQXBQisUxs7VWuQ2JVIVl1CpGgRUgRU4pUKERCFyE2U4iIVKtEQhchtiaFCFVIWtJ75AUAAAAAy6vktiVVyM2yXm5ubYi4In327W2W18z9vO/yPx97gZzXeVruUKjXasm3O0+TPx87oe/vzuxeJ7v00towFYPtO/uYnLb9hr7L/3L9y+Q7qw4tvI+ct+ow+Yv1L+v7uzO3/EB2mdtRbRGtlvznykOWXPTLT/y42nUAAADkGNlhyKkbr1/cQ2SQ6W5n8X9amEJkkNmt4yqqkKyZ3WYXK5EiY9taKqqQrO7kzkqkyPiWnpoqpKrJTXNqqpBWt7e4f8gwKx7rqqlCeu1W6RKns30uehVizHXaMlfhqMvYVUjW3Fh7sRIZanYuahWS1et0FiuRYVoz3bhVSNZYp9QRiWqqkKwyR1LOzqqoQrJaY2PDjxienlFRhVTVm52NX4VkVSgpe91umlXIXHfZVyHt3py8Wm5dctl35Knlr6DX27mHSGKq3G/f0P3pkrpDROTb7QPlyvY+Qz/3ivY+8u32gUsuWyvTclrOcKWMXndusRIp1OnoqEKy5uZ2ViIDqKlCskpUw6/ffu2SukNE5NsrD5UrVwz/ebpyxVPlPGuIsaY3Ja/e9pNq6xSR7608WLqy8/H7qTOPyLN23F38CSWfy4TQmp5ZrESGUrRukZ2FSBm98U7UKiSrs2N2sRIZpruyE2W/kDxj2+cWK5FhZle21ZQkE1t7i3uIpGbi8Z2VSJGp3bo6qpCszeP9+4lYDtznoehViG3r7MSSUqRI7Coka7+Jhxf/V/ZjkRYdj6QAAAAAUNNRcr9slJ1Hn3dF5BIpf+rZ5WCX3rS8aO6uJZfNSFs+3yl/euGzOs+UWVk6YDy1+9/SSnSQhKV2mZuSF+747yWXzUhbvrDLUaWv4wu7HC2z1tsML992Y+X7yKOd1XLj+J5LLjtl242VrgMAAMCm8HAVt0wdYu8hoqkEyVO0f4i2GqQsbTVIFVqLkNbCOdCLigUtNUgeU4f0Ov1r11KD5DG3dSvn/PNaapA8pg4p2kNEUxFimxtrF+8foqQGyZO3h4iaCmSQgn04VBYhWUX7h2iqE6pQXIMM2ztEVRGSNWT/kCRrEJFlX4NknSJ3LvnzT2U32dRaEWk1cfS63eL9Q1ptecHcPTJhHfF/eXsf2dRaWfprPNZaKVe09pETejuP0N9dtssRvQfl+taTaq67xh4iHu03t0kO7D4qG3rbZUzmZFNrhTzcWiU/7ewhO1qZ12IFe4ioLEKyivYP6XTk+Kk7+u4jV6x4qmzqrCp99Y91VskVk/vLCVO3LV62+9xWOWL6Xrl+stqA8tIVB8oRM/ct/vm47bfK5PR2mZrI3GcVVRW2oXuIKF37sP1DtNQgeQbtIaKlBskzaA8RLTVIHlOHFO0homGvkCITj1fbP0SNGnuIaGDqEHsPEU1FSJ6ifUSoQdKm/JkaAAAAABRb0ZuVo+W+JZddKU+OtBq9njd3b99ll7T2rXw9l7T3lRO6S09X9Py5e+X6dr1hiAZjva68auYmOW3mJnly74ncj9khHflhZx/50sQz5fbOaO5F87yp/tNQXTJ5YM5HDnbpigOXDENERJ43fVflYciVk/vL27dcuvjnlb1ZOXbqdrloosRG6gAAADnUDUM+f/OxXq9fexFSJKUixOwbMv7wWFJFiNk3pDM1/1+tRYjNLkQ0FyG2Vre3WIdoLkJsdiGiuQrJsgsRzUVIltk7ZLEQUVyE2Ewh0t6R2OayC0cqtrZPRV5ITVrrhBzmCOLe7KzqIsRmFyJqixCbVYhQhIyG58iDMmkdzX6d7B5pNXGZ+/RiIdLaeUTx4b3+84jf0K5+O/2kvYeIdRfMu+6qlhQiAfcJefLc4/InOy6U/ec2Dfy4FdKVE7p3yrHb75Jzxw+Xz088R3qtVmEhop4pRDLVwmEz/QOzn05UHyzekPM5h0/3X/cwD4ytlQfaa+RJc1sWLztq6k65cOVB0loxZNNHRfoKEaVFiM0uRDQXIbbOjtnFOkRzEWKzCxHNVUiWXYhoLkKyzN4hphBRt0/IIJlCRNs+IYMUFSLaFRUirpj3ws886Aov14+l1A1DfHnVbteJiMi/PnBk5JVUs+u6rSIi8tDW9XEXUsPceE9E0vglmNVO572oJSYSGd7YJh9P6AmHpT2T5m0u6cwSkmdOk9Ub76RxmixD+2mxiqR8zvpU157suhN9IEx13Z49X+5f8uetMib/Lbu6+wK9nkgrree0vYWBX2vhPcCNvW2yIbOniojIA7JKHm2VP/2R8UhrlTwgq+RJsm3xsgN7j0m7NydzrTTeuDOeNLdFPrb9PNnQ2zH8gxeMSU/eMPMT2a23VT46+YL5gYgkcHqsITZ2n5ANc9uXXPZAexd5tLO68nU90tlFHmjvIk+a21nZHDD7SK37yHWTe8tLt9+0+Ocjp+6W9tjY4vCs73RfirUW1txLZBiyyAz8JK11553aGMiV1q/4JSZXpfkG1om7/Tz2Emp5x64/EhGRb27dL/JK0ETaz9gAAAAALGvPlKVHRN4q62UuseGFb/v2Hu+77N7WmtrXd19rjTypt3MYskK6srtskwdkl9rXGdqYzMkf77hoySDk7tZauWxsP7mvvUa2y7hs6G2Xw7sPyPO798iklcO8ZPY22dKalP83WX5zcc32nd3Ud9m9Y+tqX999Y+vkSdM7hyErerOye/cJeWCs2kn6bx7fY8kwZF1vh+w/87DcPrE86y8AANDMyA9DOq2lRwP8ypPmp3jaC5FfbFm/5M+777VJREQeund938dq09m884iR6XXzR5FMbNZ/xM64dXrg7or5F9GdHbqPKBnfuvTP5rRTZpNyzSa27jzCtWfO5pDAwfOdqaVH5vbGWtKa1X97t2fsdc//XLaUn3aqbwP1hXVrPl1WK9VT71hFiDlysWVvTK6NXbKY06sk8H3ozWSO5hpfeFqWQJljnxZr2Mbqaljray2cNquXwtGj2SrEvNGfapnj0MrejOwjW5ZcdpvUfwO3kLmtC4YsL+3dIe/u/dD91y3hflklZ7RfMf8H66h78zO5p2y1P00eaFU/4t94sLVKxLr7Pbn3hDzQqj8MWbKBuvlZ9Xi6rONn71occGyRCfl/k8+X88ef1vdx/y6Hyoa5bfLOqSvkmO4vlvzdaTM/kytWHCDXj+819OudMnWzvGvrxW4WX9ED7V3kLevfuPRCa1PvJ3X7B2YPduoPzB5q998X9uw+XnkYctvYxr7LDpp+YOcwJIVCxLofD9ugXAv7tFiprFtEZG5i59rHts4/Z5ldrf/tL/u0WGPb55I4VZa9gbo55bj202VNW08XJh+Zv99MbVT+fFZEJp+884CEXzy6XkRE9tmwKc5iKnjFnj9Z8udHu/O/KzZ08vfr0uJVq+/K/TOFSJr0P6oCAAAAQI6ny6a+E7fc4WMYkrhdZXvfZQ9J9VNkDfrc9RVONaWBGYRslXF5/8pTcgchxqPtVfInK14sF449dcnlbRH5na2XSGsEBpO7zm3ruyxvoFHWQ53+z911rv9+OMwdBcMQAACAOvSPxmuyixCb5kLErkKyNBci2SLEprkQsYsQW3dFS2UdYhchNs2FSLYIsWkuROwiJKs3tnB7KyxE7CLEprkQ6atClBtUhJij61TuHTKkRFBdiAxau+JCZEkRYlNciAzbKL3V6eisQ4asSXUhMmifEAoR2duqQkTm98LwZkghEtWAvRjWzPUPKna06r8U3N7qPzJ8rUzVuq7WoCP6AxQin5w8Sm7uDN8QtddqyUcnj5endR9ZctqxfeYel+fP3CVXTTzF2xqdmsg/qn/NXP/3b0e7fgGQdx/Jux8Os609IVtak7Kmt3N9e+ec0iuJQsTSmppRWVkM2yhdcyGSLUJsmguRQfWHvam6JnYRYtNciNhVSJbmQiRbhNg0FyJ2EWJ7tLuLyjrELkKK/p5CJC36fgsAAAAAQAl7Sv+bAg/LyuDr2CITcmukIuWREv/eFdL/hs5Ug82Qp3M+195TIwU/b2+U88cOLP3xs62OfHryefJnO/5ryeWvmPrZ0GHIltak3NrZUGudTT3SHn5KtBW9/iH9VIO3C6Zzhm2TvXpD/oc7q2XN7M5hyJNm+0/pBQAAUMZIDkOGVSFZv/KkH6mpQwYVITZNhcigIsSmqRAZVoRkads/ZFgVkqWpEBlUhNg0FSKDihDNhhUhmpUqQhTtHVJljxBVhUjF8qA31tFTh1RZu6JCZGARYlNUiAwrQrLU7R9SYR2qCpFBRYhtGRciu+Wc/ukxWeH/C/d6S+qQK1p7yRWt4ftGeDGgCDE60n9/yhtolJU3SBnP+RqDDCxCbJ4Kke+MP71y5fPDlQfIQ9M/kN3ndj4hf/bMvdLpzUl3wPfiyomnyJWx65GCKkRkfkN520yrwX0kZxgyXnNg9lhnF3nq7KOLf96tO+CFnKZCpMT9VXNlMUyqa9dUiFSpPTQVIsOKENv4lp6aOmRQEWLTVIgMKkJsmgqRYUVIlrb9Q4ZVIfbHUoekI/6jKAAAAADUsEr6B4w7GrzJv7zUf2Mqb+zWyr1Ut8s71d+46LVacsX40qHGpHTlwO4jrpalhuvvaN173I720jetx2ROJubiHygAAADSE38U7lCVIiQr9v4hVYoQW8xCpEoRYotdiFSpQrJiFyJVihBNqhQhmtQpQrTsHVKnCumNtaPvG1Jrj5CIhUiVIsQWvRCpWRtE3z+kSSURsRCpVITYIhYiVYoQW/RCpMHXbbVb8eqQKkWIbRkWInmnf2pSPFQSe/+QEkWI0c05Bm5ibkbq3lR5p8SaKXlllYoQm8NC5KHWKtnULn9KtdbExOL//++x3cTeIuVpsw/JzWO7N16XFwOKEGM27z7Sq/84OpFzSqyZisditsbn1513yq0VvRmZHvR2RsxCpMb9U0tlMWy/kDwa9j4ZtFdIEU2FSBWaCpEqYu8fUqUIsU0+0olWh1QpQmwxC5EqRYgtdiFSpQjJ+zwKEf3SevQEAAAAgAVt69j1OZk/ch9L5dUyEw32+Mj73NSKnF+019b+3Lvb6/suW9+rvjm4JlM5G55PSv2BeN4gZUfO1ygjb5iXd+o3AACAYdIagReoW4TYQhciTYoQ2+57bQpWhzQpQmKrW4TE5qII6XVawfcNcVGExNg7xMUeIbEKkab7hPQWKovQhUitIsSmaA+RKoIXIo7qguCFiMsqotMJVoc0KkJsgQuRJlVIVvBCxNHXCb5/SJMixLaMChF774q2iIz15mS2QjXRWOhCpMa/bYtM9l22Umal1+0u/oxWsTLnqP/Hc75GVqMixOagENkqE8M/aEG2ChER2Zbzpv4uc1N9l0VXoggxHm/3f/9WzNX/HbYyZ0P2Le1y+/mYIsTI23g9b0+S6BwUS7EKkTpFSFasddcpQmwxChEXVUesQqTqfiG22IVIXZr2D6kqdCHSpArJCl2I1C1Ciq6HQkQvyhAAAABgmWv3ejLR60o7sQGK6+JhVD2WM6jYTeqfemP3nM/d1Aqwcb1DOxq8mZ5XOKzM2b8mJZvaq/ou232u/htQeZ/7WIXTkmXlnXKrbmUCAACWN4WHU5TnqggJzWUREprrKiTU3iGui5BQe4e43iOk11moFTwXIj72CAlViLioQrJCFSJNixBbqELESRFiG2t7r0Oa7BVSxHsh4qkm8F6I+KogPO8f4rQIsXkuRFwVITbvhYin6/VeiLgsQmytVmEdsrY3JSfLXXK4PCxPl8fkyZk3t+/rrZJbZFe5QXaTC2Q/ebw1+Ij/mDZJ/xvwa2VatknYN0qP7d0rb+n91PNXyT+K9hFZKX/YeeHAz7y/tUvfbthP6s1/z83PZJVCZI9e/5PU+1u75H6s0yLE1qAQWZHzBrvNLkJ2fm7/Y/z2Ife5Y6bvlDO2X11ucU1ZldIj7dXyxxteOfBT7u/0nzZsj26DYUh3S6mvkWUXIcaauaWnIHu8vULmyhZSofYOcVCFZIUqLZoWIbZQ63ZRhNjGts56r0N8VByhCpGmRYgtVCHSZK+QPKEKkSZ7hRT5xaPro+wf0lTsPUTqohDRK8lhiO8hiK/TZfkegvjcTN33qbF8DUV8nxbL11DE90bpPocivjdL73X8DERcD0FsvoYirocgNl9DES9DkCyPp8zyMQjJir6xek3OhyKhNgv3MBTxOgjJGh9zejv5GoLYnA9FAp1+y/lQxOcQJMs6ZdbuvW1ypvxUTpS7ZaLgnPtPlm3yZNkmL5R75K3yE7mot698Xg6Th1r9R47H9qD0r2k32Sb3y+qg61gj03KgbA76NY3VMj30Y+6WNX2X7SVL36yuMhR5cm/pk+wd0sn9XngdhGR1u5XfjB50uxUNQYxVOcOQJ3JOM5W1pjclB3YfLbc4x3ZpD7+P/GJsfd9le83Wv0/vNfv4kj/vkDF5qFMwMCsYghi7WUOZBzv99+ehunN+BiKOhyA2X8MF10MQm691+xiCZPk8ZZbvYcXY9jkvX8P1EMTmayjieghi8zUU8TEEyfJ5yixXp8cq4mso4ur0WMOun6GIHpwmCwAAABh1vZ68vHebfFq+Ky+VOwsHIbYJmZOXyp3yafmuvLx3m7p9SO7LGXrsLtsjrES3h1ur+k6Vtadskw296rfVhv8/e3ceJ1lZH/r/W73NPgPIsMsOKhJRjKIBFSRGMbgQTbwmeMXEGGMuMdfEJd4kinfRLL/EJF53owaNe4y7RhRQjBcVxA0VjKzDAAPD7NNr1e+P7qfn1FPnVJ3lWb7P6c/79fIl01Nd9Ux1d/Xp/p7PeXr75AjpP3Pn552Dyp+pr8Qx3V2jb1T4vjsG3pbaZcJs942vH7iM1eHd3XLIQvWztA5Z2CuHd/uHbbdMPqjW50in15ODF/p/OXj3xPDCBAAAoEhSZUjoy2K5LERCXhrLZSESerP02U1dJ3VI6I3SXRUivosQm8tCxHcRkuXyklm+ixCbq0LEdxFic1mIeK9CshwWIr6LEFtvctxNHRKqsFjSuBAJvN5lDgqRYEVIloNLZoUqQmyNC5HAX5OGk0IkVBWyZKzXkz+S6+UCuaX2fayTeXmFXC8Pk+3y5t6jpRtqs/ARfi6Dp34eI4OX54HID2SzPFHu7Hvb6XKffE0e3Pe2UYXI6d1tg/fdOazvz8GKkKyKl8za3Nsnm7r7ZWdmADCqCDFOmb9v4G0/m9hc6n01++HkkfKEmZ/3ve3hc1vl6+MnV7qfh89uHXjbD6aOyr3tqCrkqPkdMmENb2+ZrPlcu7xklucixNaZmXNSWfguQmyuChHfRYjNZSEScoNzl5fM8l2E2FwVIr6LEJvLQsR3FZLlshDxXYTYti+sd1KH+C5Cih6PQiS+pIYhAAAAACro9eSPetfJBXKL9KRo14mSdyUiF8itIiLyt71HD+xLEMPWznrZ1ZuSjZlLHp0g9c/4r+vfO8fLv8vx+X9Z93lyXFp8p3OEPLHXPwx5Qu8O+VrnwQXvke8JvTsG73ss/xfd2v3Swh3yhbFTK71Pp9eTx8/d1ve2GRmX/xx/0ND3+/KqU+XLq6o9VmlTbi5FdN2qYweGIedM/6d8fXW1YcgTZv5z4G3fmar3y58T5gYHTzdNHV7rvgAAAJJomcc7vaibpT/n8OuXK5Gq7tx9ULQN0zcftWO5EqlqfOd48CrEmN3UXd5DpKrJPeGrkKyF1Z3lSqSq0FVIVm+8s1yJVDW1txu0CsnqjR+oRKoan+kGr0KyTCFS1dhcN3gVktWbGFuuRKoam++GrUKyJsYOVCIVdRYWglchRm9yvP4ZfHPz8SoLWSxETCWSlPHxymd79ubm4lQhWZMTByqRknrz89GqkKwqmzaLyOLZ35G+JrM6Y53lSqS0Xjd4FXKB3OJkECJL728GImYoosFP5JC+P58oO+IspEivV/3yYh4uOXVN5xiZtX78O7u3RQ7qTefevrewMFBuHdTbL7/U7R+o3Cdr5PtLZUhnfCxOFZJV4TXigrmbRGSxCClbhTxm7g7Z3O0/cL9h8ihZiHGZsKlJZ4MQEZFrVp848DnyS9O3yKaF8mcrH7SwTx4/3V+h3Te2bqAM6UxOjqxCREROnOsvkbriYBiy0D1QiVRV4zjBlc7M3HJpUVWjY0oHmqw9dBWSNbF3frkSqWp+zVjQKiRrYn93uRKpanZdJ3gVkmUKkapmN4WvQrJW3T++XIlUft8j9wWtQrLu3H7QciVS1a8e8YPgVYixfWH98h4iVT1j3e3BqxBNj49EhiEAAAAAqtnc2ye/1/ueiDQfhBjmfn5Pviebe3F+cLd9R/p/MXq07K21F0bb7e6sGqhAJqUr/7X3w9L38V8XfiCT1iWLPj9+svQUVEJ1PKR7v5w/N1gxFBnvdeXF+64dePvnVj3M5bKi2TO2eqACmZSuvGDPt0vfxwv2fGvgc+QLa0+r/Tly+sxdfX/+2eRhsmt8TcGtAQAAhlN/mayYRYityh4isWqQPFX2EIlVg+QxdUiZPURi1iB5FlZ3Su8fErMIsVXZQyRWDZKnyh4iMWsQW9X9Q2IWIbYqe4hEq0HyVNhDJFYNksecyVdqD5GINUie3sR4+f1DNK3dwR4iUZTYQ0RDDWIrvX+Iwo9HqT1EAtcgxiW9H8o68fPxXifzcon8SP5aHuPl/qv4lhwhL5Pv9b3tDNkmV4qyazL3eqMvmeW5Lvhw52FyXu92GZcDn6+/2vtPubZ3lFzbyb/Ulfm6fHxnq1zY/Vnf3+2WSfnU2Kmla5BHLNwtfz17Rd/b7u6skxeuvqjKP8OpP5i9Vm5ftVl+NnHo8Bv2evLf914tx1qbp28Z2yjfnozwueawCMn66Loz5dzpm/s+R56+/0fyrVXHybdWHz/0fc+avlV+df+NfW/b3Vkln1r7C8t/LlODGFPdeXnozN19b/v2muFrqKTKHiKRapA8VfbhiFmD5Kmy90nMIsRWZQ+RWDVInip7iMSsQWxV9w+JWYTYquwhEqsGyVNlD5FYNUgeU4eU2UNEW43xjHW3s39IJHpepQEAAAA4sbE3I+fK4N4OLp0rd8jG3ozXxyhjS2eD3CYb+t52ptwbaTW63dbZJJ/q9J/5PyYir+t+Q57W/Xn+5bx6Pbmg+5/y5/PXDPzV+8bPkN2dVZ5W69eMLP7Cal1vTt64+/Py5JmbC297SHef/MWeL8svz/YPg7oi8vfrnpBsGZPntslD5NOZ4YXI4ufIn+/4ojx1342FnyNP23ej/NmOLw781T+vf6zsGVtday2nz26RSen/heI315xU674AAABEFJchmooQ23MOv76wDtFUhNiGFSKaihDbqEJEWxVimL1DigoRTUWIbVghoqkIsQ0rRDQVIbZRhYimIsTWmxgrrENUFSG2IYWIpiLENrIQ0VRWZJi9QwoLEaXrFpGhhUj0fUKGKVGIaFRYiCj+ujQ6Y53BOiRSESIicr7cJlPi9/GnpCvny+3ySTnF6+OU8RU5Vn5bfrT858fLXTLW60o3xj4Ow5hfJNu/PA+4znd3zpBH9LbJyZm9VSalK3/c+7b8eu8ncnXnWNkq66QjIkfKHjm3d7scI4MH3N/sHC2fnXyIdLQOAszrRsEZ/d+YOl6OW3hATlrYLht6M/KqvVfJf9l/g/zH1PGydXyD7JdJObi3X06fu1seM3e7rJbB16FPr3q4fH8y8ObxnoqQrH/a8Dj5hdm75OT5A5uXT0pX/vuuq+S5e2+Qq1efLHdPbJROT+SIhV3ypOmb5ZiFnQP38/9WHS+fWXu6iFQrQoyz9/UPn26deJD859Rhle9npGGFiKIixDaqENFWhRij1q2pCLENK0Q0FSG2YYWIpiLENqoQ0VSE2FbdP15Yh2gqQmzDChFNRYhtVCGirQoxzLooRMJSOwwBAAAAUM/pvftG38jF48h9KoYhV8hxcon8aDl73ySzcoZsk+9Kw42WW2iuMy6vHXui/E33SjlWdvf93bGyW17Q+1HBex7w/c5h8saJs0df9kuxBRmTN6x/ivzdrk8v7zFzbHeHHDt9Q6n3/8rUyfKOtY/3uMJ45joT8ucHXyh/tf3f5MELO/r+7sELO+Tivd8ZeR/fnzxK3rjpKbU/Rzq9njx+f/9+Ll9Z99Ba9wUAAGCoG4ZoLkKy7P1DNBchtmwhorkIsdmFiNYixGYXIpqLEFtvvLNch2guQmx2IaK5CsmyCxHNRUiWvX+I6iLElilENBchtoFCJJGz/wcKkUTWLSKLZ4YufY6oLkJsViGicb+QPKX3EFGm1P4hgZwiDwR6nB1BHmeUbZ21cm3vSHm8bF1+2/lyu/5hSKRy5YHOGnn52C/LH3e/JefIltLv1xWRz42dLO+YeozMdar/HLFJBi+rdlvnoMr3U8mQ15F7xjfKn2x8hrxu97/LcdZeIEXmpSOfWP0Ief+aXwx7eawARUjWA+Nr5b8/6Nfkv++8Us6euaX0+3VF5PNrHi7v2HiOzHXGaxUhIiKPmrldDu7uX/7zrIzLl9edVuu+SssWIoqLEJtdWmgtQmz2ujUXIbaJvfPLdYjmIsRmFyKaq5AsuxDRXIRk2fuHaC5CbNlCRHMRYrMLEa1FiC2VdbaFumEIAAAAgPrGej05UsL8wH2k7JWxXk+6CgqBT8gpfcOQJ8qd8tbeI2VfJ+wvkVOxpzMll42fI4/u3S3P6f5UzpR7+jbNzpqVMfl/cpR8dOLhctPYg6RTc4hzxsI9A2+7fPIRte7LlbvGN8l/2/Rr8qzpH8ozZm6Uw7v5Z1zNyLh8e/LB8sE1Z8otEw8KvMo49oytlv958AVy5szt8mt7vyePmr1zyOfIuFy76nj52PpHyk2TzYeQF+z5Yd+fv7ruobJzfG3j+wUAACsbw5CGjlm7Q0TSKkOMztSCiKRz9oXRi/+zdi1jaZyMO2B8Nv7ZrXXl7XmSgk7expQAouvxtYlETHjeKyTv8WYVHFN+r3OY3NQ7SE5dqlXWyII8RW6TT8nJw98x4wWdp3tanV7XdY6Q68aPkHW9WXmY3C9H9fbIOlk8Y3u3TMkdnQ3yE3mQzHQmpDPR7MfHR3bv7vvzN8eOkZvHwgwWLjn4Nwv/bq4zLh9fc4Z8fM0Zctz8djlxYbs8qLtXxqUrOztrZNvYOrlx8nDZ35kKstaszurFDep73Xjl7fWrjpXrVx0r67oz8tC5e+So+Z2ytjcrIiK7x1bJneMHy0+nDpOZzOCxM7X0XNX43nnQwl45a//Pl//cFZFPbnhUo39DJQqGu7UoqBJrSfX4KtXnW9L9nYqkuu504qEBm1cnckkWy9PW3bb0X6l+0sCnTk/ZT/bduxevOfzB3brPtrl294m5b/9/9xwfdiE13HffhoG3jW0Lf2Bf1eSu/O8gU7tz36zG5J78L7HxwasEqGMy2qzxOVUvGbnGcgY4YwWbk2tSdFmsoo3VtUhyA3UjsQ3UjdQ2UDeS3EB9Se7lpVK45FTOc5vCpbJS3EBdJOfyWJE2UB/r9eRLvY8He7ynynNUlCEiIo/v3SVvkP9Y/vOdsl5+W54a9nJGZUTcQL2uzuTgIKTK5umH9PbJh6b/dfnPXRH5g1VPl5+PHeJieYU6a9Z4vX9fzBDEFnMoUsbyEMRW4dcOL9j5TfnNXd9a/vPX15ws/+fQX226tNEmcoa6Y/q/Nns5X5siIr1Vus997U3lr6+rfN0iIvNrBj9X5tfFPylglLm1g5/Pc2uVfX/MMbexYAP1jYEXUtHM5oIN1A/Xf7msRx1158DbHntQ+UsmxvKbG/P3PZtUPhQ5eKl8HDvi5sgrWRn0f2cHAAAAUFq305GtEuZyMltlnZpBiIjINztHyY/lwC/Xj5E98gQZ/IEe4dmXyPrG2LHeByFIz+rurDxjz/eW/7wgHfnnTe3cqB4AAISnduT+WxvuFxGdhUhRFSIi8rjDbxURnYVIXhFidDcvZs4aC5GiIsSY3aCzDikqQoyFpZO9NBYieUWIsTC5tCG8wkIkrwgxukubk2ssREZtlG5vrK5JURUiItJd2pxcZSEyZE29pQ0zNRYihUWIMTmhsrIoLEIMa5NvTYZWFOZyMRpLC4XPZRmFG6abjWwVfl0auZumm7P9IxQiN8vBQfYNuVkO8v4YVb1HTpe/ka8t//n58lP5Wu8YHZe+KVqD+RxJoBDJMhcZKFOInJG5RNaCdLzvFdK2ImT575dKBY2FSGEVInLgc39EIfKre34gG7oHfkD6yrqHyZ2TnodmeUWIYZ5nhYVIURFidGbmVdYhRUWIMTazeAyjsRDJK0KMib2LxygaC5G8IsSY3Le0ObnCQqSoCDGmdi3+v8ZCpKgKERGZuWfxhBWNhUheEWJ8a8cJIqKzECkqQow56amsQw5mL6wo9H1HBwAAANDIDzuHhnkcCfM4VXyvc5h8TY5e/vPJskPOpQ6J7pHdA2XI18aPldvGDoq3GKi0tjsjv777O8t/3tuZkvdt+qWIKwIAAG2jb9Ru+a0N96upQ4YVITZNhciwIsSmqRAZVYRkzS79E7UUIqOqkCxNhciwIsSmqRAZVoTYNBUio4oQW2+io6YOGVaE2FQVIhXWoKkQGVmEZCmrLEZWIVmKypYU9tXIVeL5Mxsga/o3FhYhtvFxdXVIbhFii1CIfEWOkxfLD2TK42bqszImX5Fjvd1/E2+XM+QxcreskcXPlxfJD+Wa3tEyH7O8KFOmKCxE8vYKsY0qRA7r7pEje4ubsC5IRz444bcKSdWoKqTvtmNjauqQoUXIwI2LC5Ff33WdbOpOL//5A5seJw+Mr2u6vGLDihCbokJkVBGS1VmqLLQUIqOqkCxNhciwIsSmqRAZVoTYNBUio4oQ29QuPXXIsCJk4LaKCpFhRYhNUyEyqgjJmpPFz3EthQhVSDzxv6sAAAAAcGpXZ5Vc1Xuw/Irc5u0xrpIHy65O+V/ehrSts1be2DtLTpYHlt92uOyVLVL+JCG4c+/YennqmotjLwPK7RlbJR/YeJaIiMx3xuTT68+IvCIAANA2nV5vxEU7A+vefUrh38UqRKoUIUViFCJVipAiMQqRKkVIkViFSJUiJE+sOqRKEVIkRiFSpQgpvI9IpUXVKsQWqxCpUoQUiVKIOHjMGIVIpSKkSKTSolIRkhW5DGlUS8QsLRo8b7ELkdJViC1yIVKqCCl+Z3cLGWJzb5+8q/clWSfuP8Z7ZUJ+V35FtnU4q22kunuVRK5DyhQhhe8bcX+WVPcKEalWhmTFKkQqFSFFYvw6okoRUiRCIVKlCCm8j0iVRZUiJE+sOqRKEVJ4HxEKkSpFSPF9xHkdr1qF2GIVIlWKkCIxCpEqRUiRGIVIlSKkSKxCZFgRMnbEzQFXsnLFbzwBAAAAOLets1be0Vk8s9rVrxvN/bxDzmAQAgAAACApSZUhRqhCxEURkhWqDnFRhNhCFSIuqpCsUIVI0yLEFqoQcVGE2EIUIi6KkIH7DFRaNC1CbKEKERdFSFawOsTD44QqRJxUIVmBiovaRYgtcCHitI4IWVo4fJ5CFyK1ixBb4EKkURHSf0du7mfk4/TkFb3r5AK5RXoijc6BM+//BTle/lYeXb94WClcPT+BC5EmRcjAfQX8HFmJRYgtVCHipAjJCvUrCRdFiC1QIeKiCum7v0ClRdMixBaqEHFRhAzcZ4BCxEURMnifYV7HmxYhtlCFiIsiJCtUHeKiCLGFKkRcVCFZoQqRMnuEUIaEQRkCAAAAtFWnI2/uPFq+IMc3/lHPDELezCAEAAAAQIKSLEMMX4WI6yLE5qsQ8VGE2HwVIq6LEJuvQsR1EWLzVYj4KEKyfNYhPqqQvvv3VFq4LkJsvgoR10WIzVsh4nndPusQ50WI4bm0cFaE2Dyv21sNEaKy8PTc+C5EnBUhNs+FiLMiZPCO/dzv8v33lv//ArlVfk++V2sPkb0yIe+QM+QLcjyDkFF8PT+eCxGXRUjf/Qb4fEm1CnFVhNh8FyLOyxDD568mfFQhWZ4KEddFyMD9eyotXBchNl+FiI8ipO/+PdYhPqqQ/vv381ruugix+SpEXBchNl+FiI8ixOarEHFdhNh8FSJlihCDMiSMpIchhuuhiO9hiOF6KBJiGCLidiDiewhiczUU8T0EsbkaivgegthcDkV8D0H6HsvhYMH3EMTmaijiewhiczoUCbh2l0MRb0MQm+NfoHsbgtgcrzvYJaF8PE6gS4i5fo68DUFsjh/H2xBk8IE83Ofg2jf39skl8iM5V+6QKRn9mLMyJlfJg+V98nD2CBkl1JDI8VDE1xBk4HE8PD8MQYZzPRTxNgSxufwVhe8hSJbDgYjvIcjA4zkaLvgegthcDkV8D0L6HsvhUMT3EGTw8dy8lvsegthcDUV8D0FsLociIQYhIu6HIb6HIIbrYUiVIYjBMCSMsN+pAAAAAESzrbNW/loeI+/oPULOl9vldLlPTpEdcqTsXb7NVlknN8tB8kM5VK6QY2V3J8wvbgEAAADAp1aUIUbTQiRUEWJzUYiEqkKyXBQiocsQo2khEroMMZoUIqGrkKwmhUjIImTgsRtUFqGLEFvdQiR0EWJrVIhEWLuLMiRYEWJrWBcEK0JsDqqI0BuFi4ibQiTwpvIibp6rYEWIreHjBitCBh/YwX1UX/tYrycT0pV5GZMul8GqJtbz5aAQCVWF9D2mg+eLIqSapoVIsCLE5uJXFSHLEKNBIRK6CBl4/JqlRegixNakEAlZhAw8doNCJHQR0v/Y9V/HQxchRtMyJHQRYrgoQ0IVIVku6pBQRYitaSFSpwgxKEPCoAwBAAAAVrhupyOzEu8XQgAAAADgW6vKEKNqIRKrCLHVKURiFCG2OoVIrCIkq04dEqsIsdUpRGKWIUadQiRmGbK8hgqVRewiJKtqHRK7CsmqVIgoWHedQiRaEZJVozSIVoTYaqw9ShFiq7OGCEWIrc5zF60IsdVYR7QqpH8RNd5HwbpXEi0FTY1CJEYRMrCGGs8fRUgzdQqRaFVIVp3XthhFiK1CIRK7CMmqWofErkKyqhQiMYuQ5TXUKENiFiEH1lD99TtWEWKrU4jEqkKy6hQiMYoQW51CJFYRIiKy9t2/I9MXfFG6R2+pXIiMLELuPFLkC78i8rvvL7wJZUgY8V9FAQAAAAAAAACIYO27f0c2vv5/yiG/8TEZ23K02zu/80jpPPcDMvYXfybyrhe6vW9U1soyRKR8HaKlCskqU4hoKEJsZQoRDUWIrUwhoqUIySpbh2goQmxlChENRYitTCGiqQwxyhYimsoQY2ghonC9ZQoRFUWIrWR5oKYKySqxdhVFiK3MmhQUIbYyz6WaIiSr5JpUFCG2MoWIrsP5lUFLFZJVohDRUITYyhQiFCHulK1DVBQhtjKvdRqKENuQQkRTEWKULUM0FSFGmTJEQxFiK1OIaChCbGULES1VSFaZQkRDEWIrU4hoKEJsZQqRmEWIiMjYlqPlkN/4mEzcdrzMH3erbP/or8v40XeVet+hVcjSIKRz27HSO+526X38YpFjtuavgTIkCH2vpgAAAAAAAAAABNA9eots/+ivy/xxt8rEbccvFSJHNbvTCoMQhNPaMsQoKkQ0FiFZRXWIxiLElleIaCxCbEWFiMYqJKuoENFYhNjyChGNRYgtrxDRWITYigoRjUVIVmEdonjdeYWIyiLEVlAiqCxCsgrWrbIIseWtUWERYit6blVWIVkF61NZhNjyChFdh/Erg8YiJKugDtFYhNjyCpFUixARnVVIVlEhorIIseW99mksQoyCMkRjFZJVVIhoLEJseYWIxiLElleIaCxCbEWFiMYiJKuoDtFYhNjyChGNRYitqBCJXYVkVSlEXBUhy49NGRKE/ldVAAAAAAAAAAA8clKIUISo1voyxDCFiPYixGYKkRSKENvYtqkkihCbKUS0FyE2U4ikUIRkmTokhSLEZgqRFKqQLFOIaC9CbMuFSELrzhYiSZQhxlKZoL4IsS2tO4kixDY/n0QRYjPPtfoixLa03iSKkCxTh+g6fF8ZtBchtqVCJIUixNbpdChCAjKFSBJFiJF9DdRchNiWChHtRYjNFCIpFCFZpg5JoQixmUIkhSokyxQi2osQmylEUihCbKsO35dEEWIzhYimIsQ2rBBxXYQsPyZlSBBpvbICAAAAAAAAAOBJrUKEIiQJK2YYcsTEDjliYkfsZawsaZ0MkL7e0v8AqNEbH5fe+HhaVYiIyOTE4v+AtuqMFe6tALRBZ3xcOuPpnQ0tku4+IZ2DN0nn4E2xl1FZZ2oqrSpEZLHUmhhPqwoRkd7EuPQSWzPi6HQX/5ea3vji/5LTkWR/f5VqLHzQ+D45aHxw3xNt7IHIQb/xCTl460n5N2YQkgx1l8kyXF8u6yv7+1+RP/XAmU7v3xd7I/UULpc1dl/OBuo79f/CIdkN1Kfz3z4xrf/oiQ3Uw2ID9fCyQ5C8TdXVsi7XlMzlsqx1J3G5LDZQD6vgsljq1y3CBupaKL9cVmdiMv8vxnSvW0RkbO2QS04oNjAA2V9wcK5M7+D+nYM7u/X/UsrorTrweZ7CMUpvquDrUvnrCRuoh7eQs8bZ9fp/lzK7If9zeX6d7s/x2YL59cyh+l9Xpg4bfM0+82j9l8v6lQf1Xxbr6evyN1TX5rCtJw8fdDQchHB5rLD0v6oCAAAAAAAAABDaMVul9/GLpXfc7dK57VjpPPcDInceufh3FCHJaX0ZYhchNq2FiF2E2DQXInlliKG5ECkqQ0R01iFFRYhNYyGSV4TYNBYieUXIwG0UFiJFRcjg7fStvbAKyVK47jKXxVJZiowoEtSefTli3aoLkWFrU1iIlHkuVVYWJTdKV7n2vCJk4Db6vme2nsIzugurkCyFhUhrihCb0kLELkJsGguRbAlSROMxSmERkqXwtaSoCBm4ncJCJK8IsWksRPKKEJvGQqSoCLFpLESKqhAR3WVIXhFiaC5D7CLEprUQOWx8Xf8b7MHHP7xSOn/4140HIZQhYel7NQUAAAAAAAAAQAurEBl71kcoQhLU2jJkVBGSR0slMqoKydJUiAwrQmyaCpFhRYhNUyFStgwxNBQiZYoQm4ZCpEwRMvA+CgqRskVI//vEX7dIySLEpmDtdTZKV1GIVCgQ1J15WWHtqgqRKmtRVIhUeQ7VVBYlq5AsFWsvU4QMvE/875kripIzuksVIYaiMqS1RUiWsjpkVBWSpaEQKVOE2DQcp5QqQmxKXk/KViF976OgEClThNg0FCJlihCbhkKkbBFiaCpDhhUhNk2FyLAixKapEBlVhGRpqUMGapA83zpTxp71keU/dj/1PJHHXl/7MSlDwor/KgoAAAAAAAAAgGZ3HimdP/zrvjd1/vCvD+whAvVaWYbUqUKyYhUiVYqQPLEqkSpFiC1mIVKlCLHFLkSqViFG7DqkThlixCxE6pQhy+8bqRCpU4X0v3+cddcqQmwR1l6nCBm4jxhnojcoDqKfedlg7VELkSaPHbEQafKcRassahQhWdHWXacIGbgPlYf37RXpjO5KRYgtYiGyIooQW+RCpEoRYotRiNQpQmwxjlNqFSG2SK8ndYqQvvePVIfUKUKMmGVInSLEiF2GVK1CjNh1SJUixBazEKlShNhiFSJVapA8sQqRUkUIe4a0AmUIAAAAAAAAAAB57EHIxy8Weez1fXuIdJ77AQqRBLSqDGlahNhCFSJNixBbqEKkSRFSJFQp0qQKyQpdiNQtQmyhC5EmRYgtZCHSpAgZuK/AhUjTMuTA/YRZt5MiJCvQul0UIQP3GepsdEeVQfAzLx2tO3gd4vLxAhYiLp+n4KVFwzLECLZuF0XIwH2qPMxvn8BncjcqQmwBC5FUixCRhlVIVuBCpEkRkhWqDnFRhNhCHac4qUKyAr2uNC1Clu8ncBnSpAixhSxEmhQhttCFSN0ixBa6EGlShGSFqkOalCBFQhUiTYsQW6hCpFYRYhcgo/5+BMqQsChDAAAAAAAAAADIKjPoOGYrhUhCKENK8F2IuC5DDF+FiI8iJMtnHeKqCLH5LkRcFSE234WIyyIky3cd4rIIGbhvz4WIqyJk8H79rtt5GWJ4ul8fRcjAY/g6G91TVeD9zEtP6/ZeiPi8f8+FiK/nxntp4agIsXlbt48ipO/+VR7qt5PnM7mdFiFZnusQipAcngsRV0WIzVch4qMIsfk6TnFehBieX09cFSED9+u5EHFZhNh8FyIuq5As34WIqyLE5rsQcVWE2HwWIj6qkCxfhYjrIsTwXYY4KUKa3n4JZUhYlCEAAAAAAAAAAIjUG2xQiCRBbRlilClEfBUhNteFiK8ixOa6EPFdhhguCxFfRUgRV6WIryLE5roQ8VWE2HwUIj6rkL7HcVyI+CpCBh/H7bq9FSE2x48TogwRcVyHBNpnwvmZl4HW7byCCLUniYfnJ9R+Ks5LC09FiM35un2XIcuPo/qQv10cn9HtrQixeShEUq1CvBUhNseFiK8ixOayEAlRhYi4Pz7xVoTYHL+e+CpCBh7HcSHiswjJ8lGH+CpCbK4LEV9FiM1VIeKrBCnishDxXYQYrssQX0WIzXUh4qUIqfn+FCFxJD0MCTUEsTUdioQagthcDEVCDUKyXAxFQg9DRNwMREINQ2xNhiOhBiFZLoYioYYgfY/pYCASaggy+LjN1h5sCGJz8LihBiF9j9nkl68BN9vOavxLh0jrdjIICL05u4iT5yv4pvLmcZsOFwINQWyN1x1qCDLwuKoP/dul4S8xgw1BbA6GIgxBKmo4FAk1BLE1GYqEGoJkuRiIBBuC2Bq+noQaggw8roOhSKhBSJaLoUioIUhWk4FIqOGHzcUwJPQgRMTNMCTUECTLxUAk1BDE1nQoUmoIItJ8EFLhfhiGxMFlsgAAAAAAAAAAK5erQYgIl8xSjDKkpjp1SKwixFanEIlRhNjqFCIxihBbnUIkVhFiq1OIxChDjDqFSIwiZGANNQqRWEWIrU4hEq0KyaqxhhhFyMAa6pyJHqmwMCqfhRl5vUatSiJSWdGnxvMXqwjpW0Odz+1IRYit1tpjVSF9a9Dx/K0INc7ojlaFZNUoRChCGqpYiMQqQow6ZUiMIsRWpxCJVoRk1XgtiVWE2OoUIjGKEFudQiRGEWLUKUNiFSG2OoVIjCLEVqcQiVGE2OoUIrGKEFudQiTIpbFq3C9lSByUIQAAAAAAAACAlekLv+J+ECIyUIjIF37Fzf2itiTLkJhFSJEypYiWMsQoU4hoKEJsZQoRDUWIrUwhoqUIySpbh8QsQoqUKUU0lCFGmUJESxGSVbYOUVGE2EqsSUMRYitViCgpLEQqnoGpaN0iJasJBWXFgBLPo4YixFaqslBShNhKrV1DEWLo/hGgnUqc1a2iCLGVKEQoQhypUIbErkKyyhQiGooQW5njExVFiK1kIaKlCskqU4hoKEKMMmVIzBKkSNlCREsVklWmENFQhNjKFCIaihBbmUJESxFilClDSu8PYnvXC0Uu+Hd3g5CsO49cHIT87vuX30QZEoee7zIAAAAAAAAAAISWGVQ4d8xWv/eP0tSXISIH6hCNRYitqBDRVoUYo+oQjWWIkVeIaCxCbEWFiMYqJKuoENFYhNjyChFNRYhtWCGisQwxigoRlUWILWeNGosQW24hoqysyFN4JqbitedWFArLigE5z6nGIsRWWFkorUKMwnVrKkJs+n8UaJeCM7pVFiG2nEKEIsSDgjpEUwlSJK8Q0ViE2PKOS1QWIbaC1xONRYgxrAzRVITY8goRjUWIragQ0ViEZBXVIRqLEFteIaKxCDFGlSHaqhCjqA6pXYREQBUSD3uGAAAAAAAAAACAVkuiDPnyLQ+NvYTKTCGitQgpYkoRzUWILVuIpFCGGKYQ0V6E2EwhkkIRkmXqEM1FiM0uRDRXIVl2IZJEGSKyXIekUITYlgsRxWVFnuUzMRNZ90BRkUBhsWzpOU6hCslaLi2UFyG25XVrLkJs+n8kaJelM7qTKEKyluqQVIsQEeVVSNZSIZJCEZJl6pAUihCbOS5JogoRGShDNBchWXYdorkIsZlCJIUqJMsUItqLEJspRFIoQoxsGaK5CLGZQkRrCVLEFCIpFSEGZUg8lCEAAAAAAAAAAKDV0hnBJ2bH3JrYS6il103rTAERkblN3dz9Q7SbW7/4XI9Pp3UmZm/5etFprVvS+9SW7uTi57UpQjqJPOe9icV1j0+ndQY6MEpnYvGwqTedWNInknut/xR0xhfPvOx103o96Sw9372UQrNOhzokpE56x64iIp2pdOpxWzJFyJLZU48UEZHJbXsjr6SauWMeJCIiE9t2RV5Jdb01qxb/YyGRqm/pNbu3OpGSZYn5ebI3mVZdISLpHk8l+u09pSLE6Mwtfo5MHp3Wa/c9+4fvJ6zVt2cWv+f86toEfz5DNGkehQMAAAAAAAAAAJSURBmyrjPb9+e9vXTOSHroIfeIiMhPth8eeSXVLBwyJyIi49v1n2WSrUJml4bZKewdMrFv8fSM+bXmzxEXU8P8qsXnfWJG/5lTY5n9TbqTnYG3aWXvEdKdHBvYR0SjztLZdKZsSWHNWeYstRT2DlneK8SYnEhi/43lvUKMyaXDEeVrX95vY6kQSWrPkCWdqUnpzc7FXkZlnaXPkZ7yz5Gk9gjJY64/TyHiz1j/mdBmfxlTQWnWWb0q9hLqOeJQETnQNHdmdL8Gzj744L4/z21evA56CoXI/KYDV0eY37y410kShchkEr8WGbS07s7CUiEyrr9a6GYqFnOsnUIhMr+u/3NkfKYrC6v0n1s8t07/GvPMLe1tMrnb/DniYkqa3dR/DDi3ZV0SdcjRh+yMvYRaNk8k8L3F8v+m+38G/qVI60AiG6gb/3HriX1/1jgUef+9Zxf+neaByLZ7h2/Mp3koMuwSWRqHImYIMvw2ARZS0fjs8HVrHooMG3xoHIqU2Shd44ChM+KSAhrXvGzIJu+ahyIDw5Ashb80HhiC5FG4bpERG49rHooM+RxJcSgionggMmQQ0hv2tapZOj8mpGFs9C/8NA5Fhg1BzOUDVVoaguTROhCxByF5NA5FskMQm+phyLAhiOZLZY0Y3mgcinRLXMpL41DEHoJkaR6GjBqCzGzU9zkyV2Jzd41DEXsIkqV5GDJqCPKCY/5foJVUN2wQovFyWQNDkON/HmklMPS+egMAAAAAAAAAADiQdBliaChEhhUhRTSUIqOKEJumQqTKpumaCpEyZciB23pcSEmjihCbpkKkSvWhqRApU4YYGmqLUUVIHg3rFpGhRYhNUyEytAixKTiLvlQRYlOwbpERRYhNUyFS4XOEQqShCpfGohBZoUoUIYamMqTKZbFUFSJDihCblkKkTBFi01CIDCtCbKoKkSqXxdJSiNS4lJeGQqRMEWJoKkOGFSE2TYVI1ctiaShEyhQhB27rcSEVDStCbJoKkaqXxdJQiNS5JJaGQsQuQgzKkPj0vGoDAAAAAAAAAAB4oOgUnvrMBusaCpEqUtxc3WysLhKvEqlShBgaNlavUoQYKW6uPp85MyZWJVKn8tCwsXqVIsRIdZPy6OuuUIQYGjZWr1SEGIlsTj4g8rorFSGGho3Va3yOdKYWv5+nVohE31S9xmbp5qz/5AoRNlavp0IRYmjYUL3ORunmNTNqIVKhCDF6qxZf/2IVInWKEA2qFCHL76NhQ/U6G6WPL/1sE6sQSXRz9ypFiKFhQ/UqRYgxvvQzb6xCJPVN0qvQsKF6lSLEmNuyTkTiFSJskh5WURECPdJ81QQAAAAAAAAAACgpqT1DjKK9Q4yQhUidvUKKhC5Equ4XUiR0IVKnDLGFLETqFCHF9+Xsrkqpul9IkVCFiKuqI3QdUqcIKRK6tKizX0ieYOuuUYTkCV2H1CpCigQ+i77WfiF5Aq27VhGSJ3Qd4vBzJLVCxAhWiNQoQnLvJrU6JCu9Hx/CqlGE5Aldh9QpQgrvK3QhUqMKyROqEHFVhITeN6ROEVIkeCHiqrAIVYg4Wm/ofUPqFCFFQhcidaqQPKEKEVdFSOh9Q+oUIcX35eyuRqpThNhClyGuipDQ+4a4LEJC7h0yqghhrxA9KEMAAAAAAAAAAECrtbIMyfJdibgsQwzfhYirIsTmuxBxUYTk8VWJuCxCBu/b212LiLsixOa7EPFVdPi6X5dFiM13aeGqCLF5L0QclSGG70LEaRFi83wWvbMixOZ53c7KEMN3IeLxc4RCxL5jP69PFCIt4qgIsfkuRFwWIQP37bsQcVSEGL7LEF97hPguRFwWITbvhYjrPTd8lyGe9gjxXYi4LEJsvgoRVyWIzXcZ4muPEN+FiMsiZPC+/dyvixokj+9CxNceIb4LER97hPguQ6rsD0IZogdlCAAAAAAAAAAAaLXAF3MNb11nVkTcFyI+ihDjoYfcs/zfofcRaWLhkMUzqVwXIr6KEGN26SyCkPuINDW/1k8d4qsIMeaXzpJxXYj43uOjO9kJ8jgudSfHvFQWvooQozu5+DnifO2OixDDPlMt9F4ijUxOeKksvBUhhjlj0vHanRchhjkr2sf9ey4KOlOTSdYhnaXPkWB7iDRkzvpPshDpdKhDRLwVIYb53PBRiPisQkQWX1u91CGOixCjt2rx5xjXhYivIsSY27xORPwUIj6rEC88lRXLxpd+NnV9TOx53Z2FxddqH4WIzyrEB19FiDG+9LOu60LEVxFirNq1+DnioxDxWYX44KsIMea2LL1mOy5EfBUhPvmoQbI+t2+1iLgvRKoUIdAnyctkGVUul2W4GIr4HIQUcTEU8XV5rCKuhiK+hyE2F0MRn5fIKn7M5vfhexhiazoUiTWccPG4Pi+RZXM5WPA9DLE1XrunIcgoLoYiXi+RZXPwS2PvQ5AiDdfubQhSxMXjRfileYpDEaPxUMTT5bEKHy7FoYjIyhyKeB6CFHExFPE9BMl9TBdDEU9DkCJNhyK+hyBFXAxFQg5BnFwqy/cQpEjTY+PA63Y5DAk5BHFxqSzfQ5AiTYcivocgNhfDkBjDDxeXyvI9BLG5GoaEHoK4uFyW7yFIHhcDkTpDEC6PpQ+XyQIAAAAAAAAAAK224soQW51SJEYZYtQpREIXIXnqVCKhixBbk0IkRhly4LGrv0/oIiSrSR0S+7JVdR4/ZBFSpE5tEboIyapVh0QqQmx1CpGgRYitxhn00YqQrBrrDl6E2Jo8fsTPkVQLkVp1SOAiZODhKUR0i1SFZNUpRGIUIcuP3aQMCVyE2OoUIrGqkKw6hUjMy2LVKkRiFSG2OsfKEddepxDRcDmsOoVIrCLEaFKGhK5CsuoUIjEvh9WkDAldhNjqFCIaLolVpxCJUYQYdcoQF5fDogzRhzIEAAAAAAAAAAC0mpLTKOJZ15ktXYfELEIMs7l6Shuri1TbXD12EWLU2Vg9ZhFizK9d/P8yhUjMIsSYt86UKVOKxC5CjBQ3Vheptkl5zCLE8LapegDm7LUyhUjUIsTwtDm5dxXXHb0KEam3sbqCz5HO1OL38VQLkdIiVyEiCW+s3lk6K3SlFCIRVdlYPWYRYpjX3kqFSOQixOitmixdh2goQurQsFH6/ObFKxqUKkS0FCF1KFh7lQ3VNRQhdcQuQowqG6rHLEFsVTZU17BB+uTS722qFCKxixCjyobqGoqQOmIWIUbVzdTZJL299LzSAgAAAAAAAAAAeJD0niGGi71DREbvH6KhDCmSV4po2CukyLBCREsZkqeoEtFQhBQZVohoKEOKFBUiWiuMUevSsFdIkbziQkMRUmRkIaJkvxBbUR2ioggpMqS0ULFXSJGCdasoQooMW5viz5HUCpGRe4coKEKKJFeIpP8jRj4Fe4UUyStENBQhRYYWIkqKkDxFhYjmImTY3iEaipAihYWIgrIi16jjZ63rlvxCRHMRMmrvEC1ViK2oDtFUhNiGlSEaipAiRYWIlhokz7AyRHMRkrd3iIYSpMioMsRVEcJeIXrpfcUFAAAAAAAAAABwQOe4PJJ1nVkRGSxENBchxkMPuSepfUSK9hDRXIWI1NtHJLa8PUQ0FyGG2UukzB4iGhTtH6K5CDFS25OjcL1KixCjyv4hauTsxaG6CDFS3PtkYmKwDkmgBEhtD5HO0ufGQCGiuAgxOuPjadUhbds7RHERkkdzEWIU7iGiuArJo7kIMeY2L12PPlOIaC5CCikuK0REZHzpZ1m7ENG+bovmIsQwx9N2IaK1CCmiuQgx8vYO0VyEFNFchBhzW9YN1CGai5AimqsQkeK9Q9gjZOXQ/8oLAAAAAAAAAADQAHuGlPDWe87zev+uff0np8ReQm2rb9F/FlvW2nvS+vKZ2L/4/+Mzaa1bRGRqT1pTelOEaN3jpMj4dEJn0i/pdBef485MWp8jY9OzsZdQWWf/TOwl1NLbP/y6sOrMpPk8i6RTiBi92fS+DkUS3D9EJN1CJLEiZGzd2thLqK1zzBGxl1DJ3GHrYy+hls6s/rOjbRM7hmyCqFBvarFO6CivlvMsrBu+j6o23TWLz/XCqrReq6cPSatgERGZXbdYg8welFYVsveYtL4Oj/+Fu2IvobZXHP/vsZdQyYPGivdocYE9Q/SiDAEAAAAAAAAAAK3WijLEcF2I/PP9/XuF7JlP4yyJb91xnIiIzOxNY70iIuP3HVjr5G79ZxpM7rH+vDeNLyNThhgpFCLjVlkxnsgeIvZeISkUImOZ6xt3Etk/RORAGbL8Z+WFSMc6ozupPUQy+4V0UtiPw9rfpDenvFqwz/a39xBRrJe9PnoK1UK3/zWul9BznUUh4lFiRYiIyFh2n5DxdNbfOdzaI0T5/gq7H3pI359Xb9dfmO1+8IHPjY3/uX/ILXXpru7/PJ66W/fGjaYIMVIqQ7qrD6y9N67/nFlThBiplCHza/uf2/nV+p9rU4Qs/zmRMmTOivdmD9L/9djddOB49MRj7424kmoetHqxsHjhEd+IvJJy7ph9UN+fH7n6dqf3TxGiH8OQIexhiKF1KGKGIEU0DkeyQxCb5qGIPQwZ+HuFwxF7EJKleShiD0NEdA9ERm2YrnkoMmZv9ii6hyL2EKTv7xQOROwhyMDfax6KDNk0XeVQZMQm72qHIkWfI4p/Ud/Led1YpvEX9d3hr2kMRQLR/ONH6kMQm+KhyMAQxFA6DLGHIDaNQ5HsEMSmeShiD0FsGoci9iAkS/NQJDsEMTQPQ+whiE3zUMQehIjoHobYQ5C+v1M4ELGHHzbNw5DsEMSmcShihh9FtA5F7CGIwTBk5dH7ygsAAAAAAAAAAOBAq8oQo2khUlSE5NFSiYyqQrI0FSLDyhBDUyEyqgjpu62yOmRYGWJoKkTyipDC2yooRUYVITZNhUheEWLTVIgMK0IGbquoEBlVhizfTlMhMqKwyFJRiFRYr7o6pMznh6JqYWgRYtNULYwoQwwKkUA0/RjStiLEpqgQKSxCspTVIaOqkCwNhciwIsSmqRAZVYQYmsqQYUWITVMhkleE2DQVIqOKEJuGQiSvBCm8raJCZFgRsnwbZWXIqCokS1MhMqwIMTSVIaOKkCwtdUhRDZKnaSFCEZIOPa+4AAAAAAAAAAAAHug65SZB6ycWz/zRUoiUsWrd4ppjFiJlihBjbkP/WYOaSpFh5pbOqIhdiJQpQoyFVYtrjlmIVClCjIVVi3NdDYVIWd3JTvQ6pEwRYvQm+2fnmkqRYXpLZ4XFLkTKViEiIr3JpTXHLEQqFBZGb+ksXhWFSAmdyUkRUVCIVDmTf2LpsC1itVCpCDHMGekxq4WSRYjRmZhIsg7pLD3XyRQinaVjutiFSGJVSKUixDCfExELkVJFiGG+l0QuRKoUIRpUKUKMXSetEZG4hUjZIsSYPWJD9DqkShGiQZkSxNZZ+p4fuxCpWoXEVqUIMSamF5/rmIVImSLEmNqx+H07diFSpQjRoEwJYvv57YeJSNxCpEoRokWVIgQrD2UIAAAAAAAAAABotVbuGSJSb9+QKnuFFAldiFTZK2SY0JVIlTKkSMhCpMpeIYX3EbgQqVKEDBO6EqlThgzcR+BCpOp+IbbQhUiVImSUkIVIlb1CCu8jcCFSpQjJff9YdUiNMsQWtBBxsN7ghYiLM/cjlAu1yhBb6GqhYhViS7EQSaYMsYX+sWQlFCG2CGVIpSKkSOBCxEUREnLvkDpFiC1WGVK1CrGFLkRcFCEh9w6pU4QUCV2INC1CQu8bUqcIGbiPwGVIlRpk6P0ELkRcFCEh9w6pU4TYQpchrmqQ0HuHuChC6uwdwn4haaEMAQAAAAAAAAAArZbWxRcTYPYQMVLZSyTUPiIuihDD7CWS2h4iRuy9RMoKtY+IiyLESG0Pke5k/+dG7L1EquhNjnmvQ1wUIUaoPUSaFiGG2T9k+X59lyIOCgsj2B4ijtYcbA8Rl2fsT0wEq0OcFCFGqD1EGhYhRmdpr5aUCpHk9g4xQu0hshKLECPw3iFOqhCRYHuIuNwjZPqQKe91iIsixAi1d0jTEsQ2e8QGEfFfiLjcI6Q3sfiziu9CxGUVEkJqe4MYLooQI9TeIa6KkFBS2xvEcFGEGKH2DkltfxD2BkEdlCEAAAAAAAAAAKDVWrtniFFm7xAXe4WM4qsQcbVniM1XIeKyDMnjoxJxsV/I0Pt3XIi42iukiK9CxGUZMnDfngqRpnuFjOK6EHG5V0geH4WIyyok9/49FSKuypDC+3ddiDgsQvJ4qUM8r9lbIeLrc8NTteC0CCni+jlxVIQUSakQEUmwDsly/WPKSi5CingqRJwVITZPZYjLIiSPj0LEZRWSx3Uh4roIsfkqQ1wWIXl81CG+ixDXe4f4LkJ87R3isggZuG9PZYjvIsT13iG+ixAf+4a4rEHy+CpDfBUhvvYMCVGElNk7hL1C0kQZAgAAAAAAAAAAWi3NizImaP3ErNM6xFcRYpg9RIympYjvIsRIbR8RkQN7iazUPUR8FiGG2UNExE0l4rsIMcxeIqnsIdKbXLr+sec9RFxyvYeI7yLEMHuJNC5EPNcVRrD9QxxyvoeI78+NpX0tXBYiQaoQkcUz0108P56LECO1PUSS3T/EpcSKEJFAVYjI4teewzrEWxFiON47xHcR4oPvIsRwtYeI7yLEcL13iO8ixAf2CMk3vnSc76IQ8VmDZLneO4Q9QvzzXYQYrvYOCbU3yPvvXrwSj8tChH1C0FRa3y09CHGJLCPVzdVFwm2w7oqLoYjvy2PZ5tZ1Gg1EfF8ey2aGIkad4UiIQYgttc3VRZoPRXxfHsvmYiji+/JYtl7mh6M6g5FQQxCbs6FIIE6GIoEGOEbjoUjozw0HQ5FgQ5CsJpuqBxqC2BiKBNB0Q3WGIOU42FTd+xDE1nAoEnoIMn3I4s9QTS6XFWoI4kqoIYityVAkxgDExWbqoYcgnaXjhLqXy0pxo/RQQxDbxHS31kAk1vBjasfi9+sml8sKOQiZ2rH43Da5XFaoIYgrqW2QLhJv+HHD9LGlLpWF9HCZLAAAAAAAAAAA0Gqt30DdKNpIPWQZUqRKIeL78lhlVKlDQl0eq6wqpUjoMiR3DRVKkdBlSJEqhUiMMmRgDRUKkVCXxxqmSh0SuggpUqUQCV2EDFOlEIlVhtgqFSKBC4s8lQoRBeutVIco+ZyoUohEKUKKVHn+IpUhtlQKESOpQkSkWh1CEdJMhUIkeBFSpEIhouHSWFUKEQ1FSJVLZcUqQmxVyhBNl8SqUohouSxWlUJEQxVS5XJZsYqQvjVUKEO0XA6rShmi4ZJYVcoQbSVIlctlaahCqlwuS8PlsIrKEDZOT1v8V3YAAAAAAAAAAACP4o/lAzFTu6JCNxMJzgAAtYZJREFUJKbU9hJxvbl6SGX2EtFQhBhlNlfXUoQYC6s6I+sQDUWIkdoeIqltqi5yYA8RI5UN1stsrq6lCDF6k+Oj6xAFhYVRag8RRestvX+Ips8LDxurB1FmDxElRYjRmZhIqg5Jbg+RsvuHJFaFqCpCKlBThBhz8yPrEA1FiFFmDxENRYhRdjN1LVWISLm9QzQVIWVoKUHq0FCEVKGhCDHKbqaupQoRKbd3iIYixCizd4i2IqQMDSVIFRpKkFEoQtpBzys8AAAAAAAAAACABytmzxDDlCEa9goZxq5DNOwVMopdiGjbL8RWVIdoKkNseYWItjIkq6gQ0VSG5LErEQ17hYxilyJa9gspYtchmvYKKZItRLQVIXkGChFFhUWR3EJE8boLCxHNnx855YKqvUKKZJ9TZUVInpQKESOZQsSwf4ShCHEvZ+8QdUVIVkEZoqkIseWVIZqKkCJ2IaKpCCmSLURSKELsvUO0VyH2viEplCD23iGaapA8RWWIpiLElleGaCpCbEVliPYqxN43JIUixN47RHsVYvYOoQxpB92v9gAAAAAAAAAAAA3pH9c7ZqZ4/3z/CyKvZDizj4j2/UOyzF4iqewhYvYPMdZu1XtGhTGXOetjzX36z6RfWNX/nE7t0X82r8iBfUQm9qZzlmxqe4mYfURS2T9EpNweIpr0JpfWO2oPEUV6kxMH6hDFRYgxsIdICmfWT0ws1yFJFCGGOUN91H4tSnSW9mpJqRDpjI+nVYeYPUQ6aZ3blUQRYpjPh6WvP9VViMjiviEiy4WI5iLEsPcOSaEKyUqhCMlKoQixaS9CbCkUIcb40jH9zMGTkVdSjtk7ZN+D0vm6M3uH7D1G/+9aRA7sHTJ9XPF+TpqlUITYtBchBkVIu6T10wMAAAAAAAAAAEBF6YztHbtz30EiInLM2h1R1zGKKUQmJxfPWpib038WgClEZvdNyNi+dOZt82sW/1/zHhxZqa1XRGR+qRSZKNhLRJvu1OLn79hsQmdPp3HSzQHmzF5J43NCRBZPI0jo5OkDz3EiUluviHTGFl8rkjmr3lQWKZUhCewTkrW8Jd/yc63/c6PX7R2oLHoJPN+JFSFGb6le6BTsb6FRZ/Xq2EuoZO9JB8deQmWpFSH3P2KtiIgcfNNM5JWUN3/IOhnfk856UytCehPpvSbbe4ZoV7RniGbzivczybOwJqGfSZeMr55PqgjZObP4i6xUipDPb/sFERF52UMjLwROpfdqCgAAAAAAAAAAUEGnt3zq2sp04dcvVV2HfP3OE3PfrrkQmd22duBtmguRqR35ZytoLi4m9w5+2Wpeb9E+FloLkaL1ai5ExuYH1zw2r3e9nZz1ioh0FJ+pnrf3hub9ODpFH/85vXsYdPL2CVG83qKz/Xua97XIOezrzSper5EtQ1KoLOznOYU1d3vZP8RbSFkJliGd8QPH7ymUIZ116wbfuGl9+IWUtPehm3PfbvZV02gusbOmi9aruRDJO37XXIikWFh0Vw2+npn9ATUqKkLm1+pcc1ERMqv49SOvCJlRHO0VFSFzh+k9Rh5fPfgz0pnH3hFhJeWYIsR20ZHfDbyS8j6/7Rfks0/4x9jLgAf6j8IDMJfMMjQPRwxz2SxD83BERKS7tv8gVPNwxJjPvFZrHjQY89b3liTWnNlgXetgJMtcNsvQPBwREeku/TCleShi640vbayueCiSleIm5WZjWdVDhqzU1iuLG6urHohYOlNLG8FrHIrkXR5L8aWnCs8x0rzmbs6aNV8uK/EhiKH5clm5QxDligYhWrVlCKKZ9uN0W1uGIBqldjkskfQuiZXa5bBE0rskVt7wQ7Oi4Ydm5pJYaL+0XmEBAAAAAAAAAAAqWvGXyRJZvFRWHg2FSNFlsvJoqUPyLpNVJGYhUnR5rGFi1xZ5l8caJeaaiy43NUzsQqTOmmOeeZZ3eazR7xP3TLmiS2QV3j5yJVKn+ohZihReHmuYyNVF7uWximgoRCqc3a+mEKlwuKeiEKmyYbqS2qLSIbWCNecWIcU39reQslpShBTeVkEhUqkIUXK5rCpFiIbLZaVUWNRZa8zLZdU5Ho99uazUapA6JUjMy2XVKUJiXyqrThES83JZdYqQ2JfLqlOExLxcVpUiRMtlsqpUIRouk1VUhHCJrPZK67svAAAAAAAAAABARfFPQVIs5l4iVYoQw+wjEqsQqVKEGGYvkRT2EBE5sC9H7EKkitTWbPYRiV2IVNGdGkvqusSp7SWS2j4iIvH2EqlVhYhE25ejUhFi2GdPh1xzjbP5O5NL+3HEKkRqBMBR9xCpUoQYkffjqBVZj4/HW2+VIsSIvYdIYlVIlSLEiLmHSK09QnbuWfz/SIVInT1CTP0bshBJqQQxmqz5gVNXBa9DUjoGN1ZCERJbavuEsEeIfythj5Drb3+wiMQrROrsE/LJrY8SkbCFCHuDIK1XXAAAAAAAAAAAgIrSG/F7YK4DV7R3iGFKEQ17iQxjChFDy14iw5hCRCSNSmTeGninUF1k1+x7vXX23bCFLkSarrk7tVRbBDo7rc5eIbbQhUjVvUJsoQsRF1VHrEKktkiFSCOTE0msN3gh4mBLuM7UZLg6pE4RYgtciDTedi/0eusUIbbQhcgKKEJsoQuRWlVIVuBCpE4REktqVUhq63VxzL2wfpWIhNs7ZCUWIZ25xY9TqL1DmhYhE/sW1xtq7xAXRcjU0r6ivvcOSa0GSa0EEalXg8RUpwSJqWwRwl4h7ZfWd2MAAAAAAAAAAICKOr3Gp7W1z6hCJMtXJVJnz5BRfBcidfYMGcZnITK1w89ZDb6Ki8m9fr5Mfa3XRRlSxFcp4nrNvgsRF2XI4H36XXPTMmTg/jwVIr4qDp91SO29QkbxVFzU2iukDJ+FiOOz970XIo4P77wXIi7KEJun4sLbobOv9booQorv3M/9rsAiZOA+PZchjYsQm+cyxHUR4nPfkNQKC1/r9bl3iK/jbF+FyEosQmy+yxDXe4T4KkN87g3iqwzxVYTMHOzlbr0VIXOH+TsWdl2E+N4zxEcR4mvPkCr7g1CErBxpfVcGAAAAAAAAAACoiD1DGvKxj4iPKkTE314irosQI7uPiEhae4mksIeISHrrFVncS8RlHeKrYjF7iCw/jqMz2HwUIUY3c9aay0rEdRFihN5DpKnk9g8Rcb6HiLcixPCx54mns/XNHiKGs1LEU7XQmVra88RHIeKjChEJvidHYx7W67UKEVksOFzWIRQhy3pz817qEOdFiOF47xDfe4OY4z+XhQhFiH+h9uZzJaUixEcNkuV67xDXJYjNx94hPqsQH9gjxB/fe4Ncf/uDRcRdIRJib5BPbn2U0zqkShGClSetV2MAAAAAAAAAAICK2DNkiCp7hxguChFfZUgeF3WIrzKkiItCxNeeIXmaVBe+9goZpcmafe4XYnNRiIRcr0jzM9p8liH5j1d/vb6KkJGPW7MUCV1suHg8b3uFFGlYXHgvQ2xN1huhJmhUhwQ+nHNSiPgqQvI4+HgGP2RusGbvRUj+g9Z/38SKEBG/VcjAYzkoRLwVIUUaFCK+q5A8TQqR1AqL0Ot1sXdI6CKk7t4hKZUghu8ixNa0DPFdhNhclCEhi5Am+4bEKkGa7B0SsgZxsWeI7yLE5qIMCVGFGC7KkDpFCHuFrDwMQ0qoMxQx6gxHQg5DbHWGI6GHIUadoUjIIYitzoAh1jDEqLPm0MOFrCrDkZjrFKn3Q13oQUj/Y1dfb6xhiEi9gUisy1fVedzgQ5CsGgOG4EMQW52hSMRLK1UaikQ+jKs1FAk5BLHV+LhGP1Sus+ZUhiEMQao9do2hSPAhiK3CUCTGEMSoMwxJbQgiEnfNdYYisS6LVWcYktogJPQQJKvOQCT0EMRWZSgS83JYdYYhsS+HVWcYEvOSWHWGIqGHIEadYUjI4YetzjCkyeWwGIKsXGl9xwYAAAAAAAAAAKiIDdQ9Mxusi7jdZN0Xs8l6mUIkVhFiZDdYT2lzdSOFTcvn15RfZ+zSQmRxc3URN5fP8i27wXoKm0GazdXLFCIxixCj6ubqMTc1NxurG+o3WK+4SXn0KkSk2poVbLZtNld3tqm6R5U2Vo9ZhBgVNimPXoQYVdYcowgxTOVRphChCKmlt/QaVqYQiV6EVBCzCDGqbKhOEeKPlmPihfWrStchFCH+xK5BqtKwQfrU0pUlyhYisauQslLaHN2IVYNkVdlIPWYRUhWbo6Op+K/WAAAAAAAAAAAAHqVzWkBE5jpyTfYOETlQiaRUiBguNlr3yVQiKRQihilF8sqL2HuFZCVZtCRUiIgcqESKzoaLuVeIrUohokHVQkQDU4rkFSJR9wqxVSxEVBi2ZgVFiG1kIaKlXJCKhYgGI2oLNVVISVGLEFuVQiQBGoqQKtQVITv3FO4boqEIsQ0rRFKpK7I0rfmBU1eJSP7eIVqKkCooQurrzC1+vIv2DqEI8UdjCbLqgcX/z9s7hCLEn5RKEMNVEcJeIUjnVRsAAAAAAAAAAKCGTi+1U98UaFqI2Ewp8vU7T3R6vz5kC5HYe4aUYUqRqR36zoCwZYsLTWVIEbsQ0bBnSJFsIaJ5nYZ9dpymMiSPqUQ07BUyil2IaN+fw16fqjLEZtUWKvYKGcauQxSWIbblQkT5odtAHaJhr5BRrI+/2sNje52aipAidiGSyH4hKRQh9t4h6qoQ21IhorEIsdlliKbCogzN67XLEO1ViL13SEpFiKYaJI9dhqRQhMyvPbBmzUWIvWeIxiLEli1DUihC5g5bPN5NoQTJ7hmSQhFy0ZHfFRH3e4NQhMDQ++oNAAAAAAAAAADggO5TBVYIs5dICrJ7icxGXEdZZi8R2ZHAWSaZAf3k3njrKMusd2qX/rM2zB4iIiJTCZQhZg+RiX36z1QXObCPyLj2EkAO7CEyNp3GvgZm/5Cx/QmsN7U9RMx6pwevXa7V8h4is7q/Ay/vH5LQc2v2EOnNK//8NetM5etMJJkSxEihCDHM58HYQZsir6ScFIoQw5TEMwel9fmruQgxzN4hD/phAhsRisjC+sX1pnLsKKK/CDHM3iHz6ycjr6Q8zTVI1tTSlSb2HZbGekXSqEGyUihCjBRqkCzXRQhgS+eVEQAAAAAAAAAAoAb2DKnJ9b4hIiI3bjli+b/XrNF71ufeuzbEXkJlU/f1n+U3pvTpndzT/+eJaf1fnuPT1p9nda553CpCxmd0rjPL3t9kbE7nNZXHrH0s2DvEnaT2DDGsQqij9Qx2ex8Le58LhXr2mrVWDNY+FtpLljzqC5ElKRQinbH+M9W17nNirzOFosVUWMt/Xqt0P7/NB/f9ce+JB8VZRwXTh/T/7NBR+nk7s7H/83RsQec6s9bc1/+9bO3dOivCgWOwBf3HYKYoXv6z/bqmRNfaG6Q7qf/1dn7N2NA/azG31trvaL3Oz4Gshan+P88cqvN1rGuHo0frr9u6s/2LPuXB90RayWi3bz9wrHDKYduc3z/7hSArjX5SIfOF5GMoIiKyf//idwTNQ5GUdaf0DkSy5lf3H7ykMBxZmOqoHYhkLSxdOiuFoYjRnRxTOxDJ6k0sPrcahyJFP8j2JsfVDkSyzKadKociBZdJ601O6B2IZJlfKiocigwMQYyJCb0DkYzO1OIxTYpDEe3MBtoahyIDw4XUmI3fFQ5F7CGIatYgRERk3c93iIjOoYg9BNHMHoSIiHTHF7/uNA5F7CGIZnnHhOZSqxqHIvYQRDN7EKKd1qFHHnsQopU9/EjBwCBEKXv4kYLsEMQHhiDIk84rOwAAAAAAAAAAQA2UIQ2FKkQMShF3utYZCSmVIhoKEfvyWFkLU0vVRUKFiKGhFLEvj5VlMvKUChFDYymSZc6q01KIDFuH6kIkR2/p7HU1hUhRaSGiuhDJNbF0KKelEBlyKZmUCpHOxEQyl8oS0VWIjCpCOmMddZfKGrpmRYXIqCKkt2+fnktl5RQhmo0qQnpjHTWXysorQjQbVYTsO2KVmktlaTkGHCWlEsQYVoSYn2s0XC4rpRLEGFaETO5ZfN3ScLmslIqQVEoQI6UixHcJYlCEYJj0XukBAAAAAAAAAAAqoAxJDHuJVGNvnD6MKUVSKUQ01CGjmELEiFWK2JunD7OwqqOiDhlFSyFib54+TMy9RKpc31lbITKMikKkYK+QPOoKkWEUFCKFe4XkiV2IVDhjOpVCpLP0nFKIlHzsCnuEmNvGLkRS2dekyh4hvX37Ft8nViFSoQjRsHdI6nuEFNGwd0jqe4QUibl3SNUipNPtRd9EPaU9QqpUIRP7u9EqklT2BslKpQqpVIRsWbP4/5E2Uk+pBhEJV4QAZVCGAAAAAAAAAACAVuv0ej39p0AnpMneITduOaL2+4YsRfbetSHYYzVVpQyxhS5EJvc0e//QpciwPUNGvm/gQqRKGdL3foELkWF7hZS/j7BnqVUpQ7JC1yFNzt4LXYg0fbzglUiFMsQWvBCpUlrYAhYilYqQIqFrhgZn+GsvRIyUChHtZYgtdCHSqAgJuHdIlSJk4H1DlyEO9ggJWYg0KUJC7x3SZI+Q0GVI0xok9N4hTY65QpchdfcJCV2GuChBQu8dUrfwCF2GNClCQu8Z0rQEmTk07GtXoz1CApchTYqQUx58j8OVDNekBDnlsG2135e9QlAGZQgAAAAAAAAAAGg1yhBPqhQiTYqQrFB1yEopQ7JCVCJNyxAjVCHSpAxZvo9AhUjdMmTgfjyXIi7KkAP35fdstbpFiC1UIeLy7D3fpYir+/deiDQoQmzeCxEXpYVIsDrESRli+K4ZHJ0hnUodIkIhYnO574bvQsTpHiGeC5EmVUjf/fguRBwUIUaoMsTVPiG+C5EmRYjNdyHian8Q32WIy2O4UGVI3SJk4H48FyIu9wbxXYa4KjpClSEu9ggJVYa42hskRBnSqAbJ8lyGuNwbJFQZ4mp/kCqFCEUIqqAMAQAAAAAAAAAArUYZ4lmZQsRVGWLzVYqsxDLE8FmIuCpDbK5LERdFSO79eqhEXBUhA/frqRBxWYYs3p+/M9ZclSGGr0LE11l7PuoQX8WJt0LEYRlieCtEXJYWIt4KEadFiM11zeDpjGgKEfd81iFOSwvxV4a4Xmfmjt3fpaMiZOB+XRciDosQm69CxFURYvgqQ1wWIYavMsRVEWLzUYh4O87ydKzpqghZvj+PZYjLKkTEXxniq+Twcb8uapDc+3VciLgqQWw+yxBnRYjhqQxxWYQYvsoQVyWIrUwZQhGCOihDAAAAAAAAAABAq03EXgD82b+/f0wfak+RNutaZz6E2EukqfnVi2d/hNpLpK6FqcV1htpHpImFVUtrdVSIuC5CDPusKt/7iDTRm+g/SynUXiJ1mbP1fO8f4kJvYvHzwFkh4qEIMXqTE27rEF+lhTlz22Eh4rUKERGZWDrka1oz+N7TYWrxG20KhUhn6TnVXoh0JpfW6fBry1dpYe7XVSHirQjxwFcRYvT27Vt8nKaFiMcixFj38x1O6xDXRYhhzrR3WYj4qEJERLrji2t1VYj4KkJ8SOFYTcR9CeKT6xLEZn5mcVWIhNrbwwVfRYhrvooQH5yXIB75qEF88FWCAKFwmaxAhl0uy9dlsoo0GYqkdIksEfeXySriYiji6zJZeZoMRnxdJqvw8RoMR3xdJiv3sRoMRnwNQ4ofr/4PsK4vjzVK3aFIqE0tlx+vwQ/aoX9IbzQU8TgIsTkZivgeMBgOhiLehyFZTX5573kYYkthKGJoH4oYTYYioYcLdYciwYcgDS6X5XsIMvB4TYYhAQYhhothiK8hiM3FMMTXECRPk4FI6CFIk8tlBT++qnnsGXoI0uRyWb6HIAOP12AYEnIA0uSxQg8/mlwmK+QAxMVlsoINQRxcJivkEKTJpbJCD0GGXSaLy2OhiXRG5AAAAAAAAAAAADVwmaxAPvuEfyy1mXoI2ctntfXSWaGKECO1y2elcukskXQun+X60lk+mbOsNF82y+hNdNRfMktkhV82y5Pe0qV9ahUiISsLkUaXzQpahDQRuAgxUrtsVgp1SJ3LZsW63FSdy2ZFWWuvax689LuELkIMZ5fL8mzdz3eISL1CJFQRYjS5XFbIIqQJLovlRyqXxgpdhDSRyiWxUrkclkg6l8SKdjmsLWsW/79CIZLK5bBEdF4SiyoETaXxnQIAAAAAAAAAAKAm9gyJwC5EQu8ZkqdsIZLKniGhy5A8ZeuQkHuFFClTiITeK6RImUIk5F4hhWsoUYiE3iukSJlCJPReIXnKFiKh9wvJXUOJsxI1nLlYug4JuFdIkVKFiJbKokQhoqIIKVMxRCpCbCmUISLp7BsikkYZklW2DtGw1jKFSKwyxFaqEAm4V0iRMoVI6CKkSJlCREMRUnbvEA1VSJm9Q1QcV5U8BtVQhJTZO0RLEVJm7xANRUiZNWgpQsrsHaKhCCm7d4iKTdJLlCEaipCye4ZoKELsPUMoQuBK/O8YAAAAAAAAAAAAHrFnSARmmqllDxGR/n1ERNq7l0hIKe0jYvYQMTTvJWL2EBHRvY+I2UPE0LyXSPZsK837iPQm+p9TzXuJ2Gf8aThbMY/ZP8TQvI+I2UPEqLWXSChTk7X2DwluYuk5TaBmSGXvkM7Sc5pCIVJm7xAVlUVJqaxVSxFSioIipCwtVUgRDSVIWRpKkDK0Hlvl0VCClKWlBhlFQwlSlpYaZBQNJUhZKkqQEjSUIGVpKEGKUITAtXS+gwAAAAAAAAAAANTAniEKnPjh/x17CSOZUoQ9Q5qzCxENe4YUyRYiWvYMyWMXIhr2DCmSLUS07BmSxy5ENOwZUsQuRDTsGZLHPoNR8xmNy4WIgr1CRunMzevZK2SYpVJExV4hReyaQcl+ITbtdUhWCoWIkS1ENFcW9t4hmtdq7x2itQoZ2DdEcRFi9g7RXoKILO4dkkIRYvYO0VyE2HuGaD2Gso9BNRch9p4hmouQbMWuuQix16a5CMnuGaK5CLH3DFFdhCztGaK9BjF7hmguQYyfPucvYi8BLaX3OwkAAAAAAAAAAIAD7BmiwGlH3y0iIjduOSLySorZe4qgPnsvEc2ye4mMJ7KPiIjuMsTsJaJ5DxGRA2dgTezXf1az2UtkbEbnWYKGOTtwbJ/+s9rNXiKdBMqQ3uSEdGb0P6dizgifnhl+u5gS2UMklf1DRBLcQ2RB/9e86hLE1ls8S7yzalXkhZSkuAgxUihCjBSqEBHdRYix74jFr6F1d+yLvJLheuNLH/MEXqc6S5Xdwpo0fiWkuQgxNJcgNs01SJbqEsSivQgxUihCTjlsW+wloOX0f0cBAAAAAAAAAABogD1DFDnuHX8tIiLjm/Se6di7d/WB/57U+6kzdb815+vpPUtjatfi/3eUnzQ6uXfx4z02F3khJUwsVRdj83o/R7P7hWiuRDrWXiHjc4rPHlwwH3fFa5QDz2lnVvkXvYh0lp5TmVO81sweHB3N67SvIz6XwIvpbAJrlDQKESOFQkREdBciHfsYT+9rvimDZFz32aKdNUvH94c9KO5Chpg7pH9fk10nrom0ktF6mU9RzWeKr35g8WvH3ntPozX3LFaVY7OKX5uyFJchy/XKku6U3vNjFzL7mJi6XiNzlYLZDXqfS6O79G1pdqPe51NElk/b3r9Z7+tTx3o5WjhC8fHorgMF2Koj9RZ20/ctfm+/7fdeGXklaDuGIQqZoYiIvsFIdhgy8HeKhiMDwxBD4VDEDEOyNA5GzDDEpmk4MlEwVNA4FMnbPF3jUMQehhgqhyILg8+fpsFI0XOpcSjSyXkuRUTnUCRnQ3KVQ5GF/I+/+qFIIgMREYYiXmgaithDEEPhMGR5CGJTOBRZHoRkKRqK2EMQQ+MwpJfzKapxGGKGIDaNQxEzBLGpH4ooHIbYQxBD4zBkIWczd43DEPtSzYamoUi34NuRymFIztOmcRhiD0EMVcOQXcWXv9M2DDEDEBGGIAhHz6s0AAAAAAAAAACAB5QhSmXrEBFdhciwOkRERyFSWIZkKalE8soQm4ZSpKgMMTQUIkVlSJaWSiSvDLFpKEWKagZDRSFSVDFkaChERj2Xy7dTUIoUliEieuqQnCLEpqIQKShCbBQi7qRSiCRRh2gpQ4qqkCwFhUhhEZKlpA7JLUIMBWVIURFi01CI5BUhNi2FSFEVIqKjDCkqQWzqyxBDQSFSVIQYGsqQvBJk8Dbxn0uR4hokS0MZUlSEGCrKkBJPk5YypKgGyVJRhgwpQkR0VSHZIkSEKgRhxX+VBgAAAAAAAAAA8IgyRDm7EDFiliKjypC+20aqREqVIUbkQqRMGWLEKERGFSF5YlUiZcoQI3YhUqYMMWIUImUrhqxolUiJMsSIWYhUfU5jFCJDixBb7OqiRBliRClEShYhWerrEBEKEYeSKEOM2IVImTLEiFCIlCpCjMhlyNAixBapEClbhWTFKETKFCFG7DJkWBFii1GIlC1CDMqQ4UbVIHliFCJlipADt437NVSmCDFilSGjapA8UQqRCk9P7DKkTBFiRCtDRtQgWTHLELsEMShCEANlCAAAAAAAAAAAaDXKkEQUFSJGyFKkShmy/D6BC5FKZYgtcClSpQzJClWJ1ClDjNCFSJUyxBa6FKlShhghC5E6ZYgRvBCpUjMsCV2I1H0+Q9chlcoQI3R1UaEIsQUtRGqUIQaFiFsUIg6FLkSqFCFGwDKkUhFiC1yIVCpCbIEKkTpFiBGyDKlShNhCFyJVihAjdBlStQoxkqhDApchdYoQI2QZUqUIOfA+YZ/LKiWILXQZUqcIMYKVITWfktBlSJUSxBa8DKlQhBghy5CiEsSgCEFMlCEAAAAAAAAAAKDVKEMSM6oQEfFfidQpQwbuw3Mp0qgMsXkuReqWIYbvQqRJGWLzXYo0KUMM34VInSIkj+9KpEkZYngvROpUDAV8lyJNn0/fhUitIqSI7/qiQRlieC9EGlQhWRQi7mivQ0QoRPrUKUKyAtQhjaqQLM+FSKMixPBchjQpQrJ81yFNihDDdxlSpwQp4rsQqVuEGEmUIYbnQqRJEWL4LkPq1CD59+P3uWxShBi+y5AmJYjNexnS8KnwXYY0KUFs3suQGiWIzXcZMqoGEaEIgQ6UIQAAAAAAAAAAoNUoQxIVsxBxUYYM3KfjUsRpGSLitQ5pWobYXJciLssQw1ch4qIMyfJRibgqQwxfhYiLMsTwVoi4rBnEbx3i6vn0VYg4LUMM1/WFgyIky2sd4qgMMShE3KEQccRXGdK0CLF5KEScFSGGpzLESRFic1yIuCpCDJ9liIsqJMt1IeKyCDF8lSFNixCDMsRNEWL4KkNcFSEH7s/9c+miBsnyVYa4LEIM52WI43+6zzLEZRUi4qEMcVCC2HyVIRQhSA1lCAAAAAAAAAAAaDXKkMSVKUQMV6WIjzJk+b61FyKGw1LEdRliuCpEfJQhWS4rEddliOGyEHFdhhiuChGXRUgRZ6WIj5pB3BYivp5P14WIlzLEcFVgOC5DDKeFiOMixEYh0lwKZYixogoR10WIzWEh4rwMMRwVIl6KEMNRGeK6CLG5LERcFyGGqzLERxFiuC5DXBUhtiQKEUdliMsSpIirQsR1EXLgft39HO66CDFcliE+apAsZ2WIp09Nl2WI6xLESKEIMVyVIWVKEIMiBBoxDGmJKkMRo+5wxOcwpO9xHAxGvA1DDAdDEV/DEFvd4YjvYYjhYijiaxhiuBiK+BqG2OoOR0IMQ0QcDUR8/gJf3AxFQj2fdYcjXocgWS4GDp6GIYaToYjnYYihfiiifCAiwlDEqSYDEd9DEMPBMMTbEMTWYCjidRBiNBiI+B6CGC6GIb6GIIaLYYjPQUhW3aGIr+GHbaUMQ0IMQkTqD0N8DT8GH6f5c+lrCGK4GIb4HoIYtYchgb59uxiG+BqCGE6GIR4HIFl1hyFVhh8GQxBoxmWyAAAAAAAAAABAq1GGtEidOsSoU4mEKkSWH69GKeK9DLHVKEVClSEi9eqQUGWIrU4p4rsMsdUpRUKVISL16pBQJYNRqxAJVTNY6pQioZ/PqoVIsDLEqFNfeC5CbLUKkUBFiI1CpLkUChH1ZYhRpxAJVYYYNQqRYEWIUaMMCVKEGDXKkFBFiK1OIeK7CLHVKURCFSFG1TIkVBFiJFGGGDUKkVBFiFGnDAlVhSw+VvXn0HcJYqtThoQqQWy1ypCAn5J1yhDfJYitVhkSqAQx6hQhdWoQgyoE2lGGAAAAAAAAAACAVqMMaaFQhUjoMmTg8UuUIsHLkKySlUjIMsRWphSJVYYYVQqR0GWIUaUQCVmGGFUKkdAlg61UKRKpDDHKFCIxn8cqdUjwMsSoUl8ELkOMSoVIpDJEJIE6RIRCxBH1hUiVMiR0EWIrUYgEL0JsJQqRoEWIrWQhEqsKEalWhoQuQowqZUjoIsSoUoaErkKykihESpQhoUsQW5UyJGQRcuAxy3/NhC5CjCplSKwixChVhkT8lCxbhoSuQbJKlSGBSxBblTKEIgQrAWUIAAAAAAAAAABoNcqQFmtSiBjDSpHYZYgxrBCJWoYYIwqRmGWIMawQiV2G2IaVIrHKkKxRlUiMMsQ2rBSJXYYYQwuRyGWIyOg6RMPzOKoQiVaFZA2rLyIVIbahhUjEIsRGIeKG9kJEfR0iMroQiV2FiAwtQ6IXIcaQMiRqEWKMKENiFiG2YYVIrCLENqwQiVWEZI2qQ2IWIUbqZUjsIsQYVobEKEEG1zD8Z+tYNUjWsDIkdgliG1qGKPiUHFWGxCxCjKFlSOQixBhWhjQpQQyKEKRGwcsbAAAAAAAAAACAP5QhK4CLQsTIliJaypAsuxJRUYbYrFJEQxliyytFNBUiRXWIhjLEKCpENJQhRl4hoqFoyMotRDQUDUuKChFNz2NRIaKiDDHy6gslZUjWQCWiqAwxKETcoBBxwC5ENBQhtkwhoqYIybLqEBVFiM0qRDQVIYZdhmipQbLyyhANRYhRVIZoKEKMVMsQLUWIkVeGaChCjKIyREMRYhSVIZqqkNwiRNenoogMliEaShDbQBmipAbJypYhLkoQgyIEqVL4cgcAAAAAAAAAAOAOZcgK4rIQETlQiWgsRAxTiqgsRIylUkRjISJyoBLRVIbYTCmiqQyxmVJEUxliG5/pqSoabMuViKaiwWJKEc3PoylFVJUhWaa+UFiGGMuFiMIyxKAQaU57HSKSSCHSVfpak9FRdmb2sqUyRGURYiyVIRqLEMOUIRqLEMOUIZpqkCxThmgqQWwplSHaapCs7tSYqhLEZsoQTSWIzZQhmkoQ23IZovRT0RQhGksQY7kIUViCGKYIcVmDiFCEIH0MQ1Yg10ORsRml30EzJnfpPVgypnbqXuPUTv0vFVN79K9xYr/OH3JF9A9DzEBJ9xoTGIaYNc4p/enCDEGGbVweWWdB/xpl6fBO9S/LGYY0pvrjazAMaayzfl3sJRTqTE6KiMjsSUdEXkmx8b2LrzXbz9gYeSXFDrpp8RdWu49z+wsrVzbdvEdERBZW6/2l3/j+xY+z5kGD0ZvUO2zQPgwZtjm5FtMH61/j7EG6f/cwfYj+Y4eFtXp/3jPsy8g3xRAEbaH/VRoAAAAAAAAAAKABvad2wBszzXVViEzu7J+pzW3SNyEfm+k/86G7St+ZBp3M06Yx47fX1NH3YZaudRLTmMIT33uZjRM7Cs+W7U0sfqA1lw2s0Y3e5LjeOkREZHLpEEVzfZHAGs2m0KoKAvPaZzas1rQ2o9eVztLHt8fHt5ZOZ+n73fjSZWEUXlZOexEiS9VFb2axUuqsmoq5mj6mCNHMFCGamSJEM1OFaGWKEDSTt3G6Fj29oYqIiPTGdVcWqdB8SSwRkck9/R/nBYVXh7R/Nzd7qJsnlSIEbaP3Ox4AAAAAAAAAAIAD7BmywrncP2TVvYOhkZZKZNW24rmflkpk1QPFZ5RoKEUmd+c/T5oKkYn9+WvUVIiM52zyrqUQyVuboaFwMHuGFNGxxvw1aFibkbcWNYXIsE3TFZyd3xl1ZruCNUrBYZ2qciDvNU/T+kREeoMfa82FiKHh47xchBTQUIioL0JElquQrBTKEA17h4wqQjTsHTKsCNGyb0heEaJpz5CiIoQ9Q8oZVoJo2TMkrwiZW6vn41tUhMxs1F+KaNgzZFgJYjZQj82uQbKmD9Px85Ndg4i4K0JEqELQTnq+kwAAAAAAAAAAAHig59QORGFPeV2WIiJ69hOZ2bz4uHmFSEr7iWgoRGyp7SWiqRIxzD4iWgqRPEnsgaF4jWZtIvHWN+xxzRmKagqRPAnsz6F5jSr2lhj2Gqdl/5CcIsRgD5ERjz2iCNEg1SLE0LB3iOa9QtgjxI1he4SMTy++tsQqRNgfpDnNe4MYmvcIYX+Q5jTvDTKsBDFiFyF5JYhLlCBYCfR/JwQAAAAAAAAAAGiAPUOQq04hkrdnyCihS5Fhe4fYYhQiw/YNsYWuRIr2DBkmdCVStGdInliFyLB9OWyhS5EqazNCVg6j9gzJilVfFO0Zkif0Gqs8XrRCZNieIbbAZ+eP3C/EFroeqHA4F60OqfKaFnqNQ4qQwndRXIhoL0NC7xuSehFii1WGVKlCQu8dUrUKCb1vSJUiJNaeIcOKEFvoMqRKEcKeIf3qlCCh9wypUoLE2jOkShHCniGDqtQgMfYLKVOEGKHLkDolSJ09QyhCsJLoP1IAAAAAAAAAAABogD1DkMtMhasUIjOHLZ6FWKUQ0bKnSJ7sXiKa9xExfJcicxsWn48qhYhZk/Z9RETYS6Su3sSY+j06RPxXGFWKEEP1HifWGYsq9xJRvD+HiKheX/B9Jeq8hmnZQ2QIzXuIhPwY19krxJQavguRthUhRui9Q9gnpD7Ne4RUKUFiqbNHiCk5UyhEfNO+Pwh7g4QXqgjRvC+IUaUGCanJniAUIUA5ur87AgAAAAAAAAAANMSeISilSiFSZ++QrBB1SJW9Q/L4KkWq7BlSxHchUmfvEJuvUqTKniFFfBcidfblyPJZiTRem/f6wsHnnqc11ilDbL6fPxf3760QqbJXSJ4AZ+ZX3jPE5muNDg7jvNcDLl63fK2xxl4hA3ehsAzJ8vnxrVOFZK3oMsRBbeG7DHFRhPjaO6RpERJiz5CmVYivvUNcFCG+9wypU4TYNJchvvcMaVqE+NwzpGkN4nvPEBdFiOY9Q3yXIS6KEF97hjQtQULsFdKkChGpVoZQhGAlYxiCSkIORQwfw5GmwxCb6+GIi6GI4Xo44mIYYrgeirgYhmT5GIw0HTgYPoYirtZmuP7lvothiOF+be5fp1yv0dX9eRmINB2GGB5+Kd14CGJzvUaHh3HOf2nuY3jreo0OhiHLd7WChiJNhyA210ORtg9BbK6HIi4vi+V6GOL6slg+hiKuLo3lYxji6tJYrochLoYftpU0DHF9OSwfwxBXl8TyMQxxfUmslTQMcXk5LNdDENeXwfIxDGk6/DAYggDV6D1CAAAAAAAAAAAAcIAyBJWVrUNclSE2V6WI6zpExF0h4rIMyXJRibgsQ7JcViKaCxHX9YXhohTxtjZHRYLLMsRwtzY/l3pxcmkrX2tzWYi4KkNsDs7Ud16GGC4qAk+HcM4KAl+X9XOxPodFSN/dKq5DNJchhotCZKVVISLuyhBfG6W7qEN8bZTuogzxtUm6yzLE12bpLgoRH1WIyMooQ3xtkO6iDPG1ObrLMmQlFSGGizLE1+borsoQHxuju6pCXJUgtrJlCFUIsEjvEQIAAAAAAAAAAIADlCFobFgp4qsOyapbivgoQ7KaVCK+yhBDcyFiNClFXJchtialiK/6wmhSiPhem1G3VPBRhmQ1KSh8lSFGk7V535i9SSHiqwixNThb31sZYjQpCTwfwtUuCXwVIUaTwsFTETLwMC0tRHwVIUaTMkR1EWJ4Ki+MuoWIryLEaFKG+CpCjCZliK8ixNakEPFVhBhNyhBfRYjRxjLEVwlia1KG+CpCjCZliOsSxKa5DNFchBhNyhAfNUhW3TLEVwmSNawKoQQB8uk9QgAAAAAAAAAAAHCAMgTO5BUiIcqQrCqViO8yxFanFPFdiBh1ShHfZYhRpxDxXYbYqpQioeoLkeqVSNC11agVfJchRr21hTnbvM7afJchA49XpRQJVYYYFc7W916E2OqUBAEO4WpVBL7LEKPO2ihDllX52PouQmx1ChHVZYjn8sKoU4b4rkJE6pUhvosQW5VCJFQRYlQpQ3yXILY6ZYjvIsRoWxkSqgoRqV6G+K5BsqqUIb5LEFvbyhDfJYhRpwjxXYLYqpQhIWqQrLwyhCIEGE7vEQIAAAAAAAAAAIADlCFwTkMhYpQpRUIXIkaZUiRUGWIrU4qEKkNsZUqR0GWISPk6JGR9YVQpREKvr0q1EKoMMaqtLXBFsKTMGkOXIcuPW6YQCV2GGCXO2g9ehoiUr0MiHLqVrghCVSFZZdYWqAgZeFjFhUhbyhCKkH5l65AQRYitbCESugoRKVeGhC5CjDJlSOgixChThoQqQWxtKUNCFiEi1aqQkEWIUbYMCV2FiKRfhoQqQWxlypDQJYhRpggJXYIYFCFAfXqPEAAAAAAAAAAAAByIc7o+Ws1Mo/MKkdDsKX2VPUV8G5vpP7uhzp4ivmTri6JKZG7D4vpDFyLZ9RRVIvNrFtcWshDpWmdGFZUiC6sW1xaywOiN9X+uVd1LxKfeRP8nWKyKIY/mtRlmjSrXtnTWY6U9REKZnKi3R4dvk0uHZQrX1plYXFutPUR8W1pbrT1EPOssfUw1FiJlPqahi5Dlx106o3tYIUIRUk+MIqSsGEVIWbGqkFFiFSFlxCpCUhe6BKkiRglijCpCYpQgRspFSKwaZJRYJUgZsUqQYShCgGr0fRUDAAAAAAAAAAA4xJ4hCMJUIrH2DrHlFSKx9g7JKqpDYu0dklVUiMTaOySrqBCJsXeIragQibF3iC2vENGwLpH80iH0niFF8temo8zIW5uGaqSwDom1Z0iWdcZ+lL1Citg1gaJDtoGaQFFxNlCIRNovJI/GQsTIfkxjFSFFsoUIRUg59t4hmooQe+8QTUWIvXeIhiKkaM8QDVVI3p4hWoqQ1PYM0VKE5O0ZErMIMYrKkJhFiJFiGaKhCCnaK0RDFZK3V4iWIsTsFUINAtTHMARBaRuKiAwORjQMRQwzHNEwDLGZ4YiGYYjNDEc0DENsZjiiZeiQ1en2dK5r6Zf5WoYhIoMDBi3DEJEDa9MwBLEtD0U0DEFsS7+kVjUMMcwv0BUesi3/Al3TMMQwa1M0DDE0DkW0D0MYglRjhiGahiCGGYZoGoIYZhiiYQhiM0MRDUMQmxmKaBmEiKQxDNEyAMlaWDWuYvhhM8MQDcMPWwrDEA3DD5sZhmgYfhj2EETLAESEIQjgkp6vbAAAAAAAAAAAAA8oQxDFqf/z72IvodDYbOwVFJvUd5Lasom9+l5KJhWuyZjcp3NtE/v1nUFtjE8rPKVpyfi0vrO8xxSuyejM6Dlz1NaZVvxNYFbv89bTuDZThCjcWF1jGSIiIgt6X2dVGl86fXpM3/llY+vXxV5CoYUjHhR7CYW6a/TU67axWcVfnwp/paC5DFlYp6/YMubXKsxCRGR2g851iegsQ+Y26FuTMZ9/5T8VFgouW67Bzf/jFbGXALSG3iMEAAAAAAAAAAAAByhDoIKmUmTVjv4/z62Nsoxcq3Ye+O+ushOKzN4hRRutx6S1EJk0e5ooXN749NK+E4rWRhlS0dIeDirPJF069OjM6n3eOppKB/tQTVNVYO3/0ptX9PmW3StEYR1iqKpEtJUh45kzgTWvTVEZYu/30lmn6EDWoqkQGdu9mF/PH7ZxxC3Dm9ixX0REumunIq9kkPk+nrcheGyUISUtHWLMr1P4MVx6PZtbr/NjqbEIMXuDFG2cHstY5rB6VtHL7IR15Y2Zg/X88EsJAvij87sKAAAAAAAAAACAI5QhUEVDIWKXISJ66pBsGWJoKURMGZKlpRJRX4bYFCzXlCE2DaUIhcgI3fwPkopCpOCQQ0UhUvC8qShEig7VNBQF3cHXCjV1SC/ndYxCZDgt9cV4zhnKmtempAyxqxARypBRTBFi01CImCLEpqEQKfq+raEQoQgZoeCQQkMZ0st5DROhDBmlk/PtUUsZMpZzGK2lDLGrEBEdZQhFCOCfzu8qAAAAAAAAAAAAjlCGQJ3YdUheGWKLVYrklSG2WKVIXhlii1WKaC1DjMJCxIi4/KJCxIhZilCIFCgoHIyohciIQ46ohciI5y1qITLseYtdE+SUIUb0QiSvDDEoRPLFri/yqgtD89oilyF5Rcjy31GG5CoqQoyYZUhREWLELENGfZ+OWYZQhBQYcaweswgpKkEMrUWIEasMyStBbLHKkLwSxBarDMkrQWyxyxCqECAM3d9dAAAAAAAAAAAAGqIMgXqhS5EyZYhBITJIayGiuQ4ZWYZkBf5njCpDskJXIpQhOUbUDVlBC5EKhxrB65AKz1nwOqTKIVqsmmBIGWJEK0SGlSEGhUi/WPXFsOrC0Ly2SGXIsCJk+TaKyxAjdCEyqgrJCl2IjKpCskIWIlW+N8eqQyhDMiocPoQuQ0bVIFmay5AYVQhFSD1lihAjdBlCCQLEofe7CwAAAAAAAAAAgAOUIUhGqEKkShlihC5EypQhtlClSJkyJCtUJdKaMsRQXIgYoUoRChGpVDcYWssQI1ghUuO5C1aI1DlEC1UTlChCbMELkTJliG2llyKh6osytYVN89oClyFlipCB91FciIQqQ6oUIUaoMqRKEWJoLUOMUIUIRYjU+rlAcxFiUIaUq0GyQpUhZUoQW+gypEoRYoQqQyhCgLgYhiBZvocjdYYihu/hSJ1hiEiYgUjVYYjN93CkdUMRw/M/q84wxOZ7OLKihyI1fqEvEmggUvMww/swpOZzluV9KNLkEM33L85rDEMM70OROkMQm9KhiPeBSIiBQ51hg4j/tdVdV5bnoUidIcjy+67gYUidIYjN91CkzjBEJMxApO73Y9/DkBU9BHFwTO17GFJn+GGs5CFI1eGHLcQwpM4gRMT/MKTO8MPwPQRh+AHoove7DAAAAAAAAAAAgAOUIUier0KkSRmS5aMSqVuG2HyVIk3rEBF/hUhryxCbp3+mi0JExE8lorkMEfFUhzioG0Q8FyINDzO8FSKOnjsRD4WIy0MzXyVBgzLE5rwUcVGGiKitQ0Q8FiI+64um5YXmtRmOy5AmJcjAfSkuQwzXhYiLIsTwVYbULUIMn2WIq++/PgoRzVWIiKcyxNGhga8ipEkJYluJZUjTIkTEXxVStwSx+ShDmtQgWb7KEIoQQCe932UAAAAAAAAAAAAcoAxBq7isRFyVIYbLQsRVGWJzVYq4KENsrkoRzWWI4bQQEXFaibgqQ2wuSxGthYjTMsRh1ZDltBBxfHjhtBDx9Pw5K0R8HJq5KgkcFiFZTusQV2WIobgQMZyVIi7rC1e1hU3zGh2WIS6rkL77VVyIuCpDXBYhWS7rkKZFiM1lIeKryHRZiGgtQ5wWIZ5+ZHFZhrisQUR0FyGGqzLERQlic1WGuCpBbC7LEFdFiOGyDKEGAfTT/90GAAAAAAAAAACgAcoQtJKLQsR1GWJrUor4KkOMpoWIjzIky0UlorkQcV6G2Bzcva9CxGhSimgtQwwnhYinssFoVIh4Pqxwcsaq5+evcSHi8zlsWhB4KkMMJ4WI6zLEprgUaVyIuKgufBUhRpM1+l6bgzLEVxGyfP8tLkN8FSGGizLEdRFia1KIeNuja4mLMkRrEWI0KkM8H/67KEJclyA2zWWIiyLERw2S1bQM8VWEGE3KENcliM1FGUIRAqRD73cbAAAAAAAAAAAAByhDsCLUKUV8lyFG3ULEdx1i1KlEfJchtjqliOYyxPBeiBg1HsZ3GZJVpxLRXoeI1CxEPBcNhuYyxGh0BmuA57FWHRL6kKxOReC5DDEaFSK+yxBDcSFiVC5F6lQXvmsLm+Y1NihDfBchy4+juAwx6hQivqsQkWZliO8ixNBchhh1ChHtRYhIzSok4Lf9OmWI7xLE0FyEGHXKEN8liK1OGeK7BjHqViG+ixCjThlCCQKkS/93HQAAAAAAAAAAgAYoQ7CiVClEQpUhWVUqkVBliK1KKaK5EKEMKVDxIUMWIkaVUqR1hUigMsSoVIhEOpyodCZr4OdPpGIhEuuQrEo9EKgMMSoVIqGKEJvyQqRSHVK1ughdhYhUW2OM9YlUKkRCFSHLj9eyMiREEWKrUoiEKkJsVQqRUEWIUaUMaV0REuHbfNUiJFQNktW2MkRzERKqBLFVKUNC1SBZVcoQihAgffq/6wAAAAAAAAAAADRAGYIVa1QlEqMMsQ0rRWKVIUaZQiR0GWIrU4pQiIxQ4qFj1CFZw0qR1pQhEYqGrFKFSMTDidJntUZ8HksVIrEPyYYVBIGLkCJDS5FYZUiW4kqkVCFStrqIVVyIjF5jzLUZQ8qQ0CVIEc2FSJkyJEYRYpQtQ2JVISLlypDQRYitTCGSfBkS+dt6mSokRglitKUICV2C2MqUIbGKEGNYGRKjBLGNKkOoQYB2YRiCFa9oKKJhGGLkDUViD0NsecOR2MOQrKLBCMOQinKWEnsYYssbjiQ7FIk8BLHlDkUUHUYU/mJH0fNYOBRR9DzmDkWUDENEhgxENAxDDMVDESN3OFI0aNAwYDBSWGPBMETLIERE9zBEpHggEnMIYisaisQcgtjyhiKxhyC2vKFIskMQRd/KRfKHITGHH7aUhyGxByBZecOQ2MMPW94wRMMQxCgahjAEAdpJ/3cfAAAAAAAAAACABihDAIspRTSVIbZsKaKtEBEZrEQ0FSKGXYpQiNSUWZK2QkRksBJJrhBRVDQYA3WIwsOIgbNeFT6PA4WIwuexrxBRVIYYA4WIpjLESK0QsasLTbWFkcIarTJEUxFipFaGaCpCDLsM0VSEGHYZoq0KEekvQ5IsQhR++84WIZpKECPFIkRTCWLYRYi2GkSkvwjRVILYTBlCCQKsDPq/CwEAAAAAAAAAADRAGQIUSKEQEdF5BohtfFr/y8yExurCorIMyRjfr/CsbIspRZIoRPbp/uIem9F3dqmtM637ORQR6czMxl7CcNrXl9Gb0//x1l6KlNpkHSN1NNYqBbQXIr11a2IvYbSpIRtoK9Gb0H0OZHe1/udwuQjRfTguIiJz6ydiL2GoFMqQ2XX6ihrbfAJr7Or+VKQIAVYo/d+FAAAAAAAAAAAAGqAMAUr4hT/+u9hLKGT241hYrffMkAlrP46ewhMms3uG2PuJaDK5b2mdej/cMrFvsRDpKV7j5L7+s581Xk9ZRH8dIqK8EFk6xOmksEZ7DxEt7MNEjeu01tjTXF+Ytdr7XiihuQzpTC6eXqp6jSkUIZP9p+l2pqYKbhjZ0r4rvTWrIi+kWGdpP6reaqXPoYiIdXzTG9d3vKO1CulY+43Nr1f8cV6ivQgRUV6FZD7ks+v1fa2MWYcOsxv1rdGYWPqZVfMaf/g3/z32EgBEovg7EQAAAAAAAAAAQHOUIUANmkoRU4bYNJYiqRUihqZSZLkMsen7cC8XIjZNxYhdiIjoqkRSKEMMVYVIwaGNykIks1aVdUjRYaKmtRasUWUhkrdWRZWItuqiMzl4lrO2NYqkWYQYKsuQsQMHXhrLELsYMFQVIgXHMpQhw+V9bClC3FJVhuR8KVOE1DNR8DOqprVSggAwFH0nAgAAAAAAAAAAcI8yBGhAQyFSVIbYNJQidhmSpaUSyStDbBpKkcJCxIj/4S4sQ7K0VCJ5hYihoRShEKloxKGNikKkxOGXilJk1DpTWKMoqkSGrVVBIaKlusgrQgw1a0yhBhEpLEIMFWXI2OgDKw2FSFERYqgoQ0ocs2ipQzQUIcM+pikUIUYKZYiKIqTEj81ayhC7BsnSUFsUlSA2DWulCAFgYxgCOBRzOFJ2KCISbzAybBhiizkcKTMQyYoxHBk5DMmKfAxaZihixBqODBuG5Ik1IGEoMkKFQ5roA5Eqa401cKhyiBhzKFJhndGGInUOtyMMR2INGoYNP4pEW2tLhiBZ0QYiJYYgRuxhyKhBSFaUoUiF45LYw5BYQ5AqH0ORNIYhKQxBjCjDkIrfemMOQoYNP2yxBgxlByAicYcgDD8AjKJgPA8AAAAAAAAAAOAPZQjgSehKpEoZYgtdilQpRIyQpUjVMiQrdCVSqRCxBT5hp0ohYoQsRarWIVmhSxEKkQI1DmmCFyINDruCFyJ115rAOoMXIk0OtwMWIqFrizpFiBF8rSkUITWfz+BlSIUixBa6EKlaE4gELkMaHH+ELkRCFyF1PnaG9iqEImSIBt9uQ5YhVUoQI3RtUaUEsYVeKzUIgCooQwAAAAAAAAAAQKtRhgCB+C5FmpQhRqhCpE4ZkhWqEmlSiBi+S5FGZYjN84e/ThmSx3ct0qQQMUKVIqkUIt7rEAeHMsEKERdrDVVeNF2r73U6PIT1Xoq4WqvnSiREbdGkBsnyvdYkShCj4XMarAxpUIQYocqQJlWB4b0QcXSs4bsQCVWEuPiYaS9CDMqQDAffXkMVIXVqkKxQtUWTIsTwvVZKEABNUIYAAAAAAAAAAIBWowwBAvNViLgoQ2y+SpGmZYjNVyniogyx+SpFnBYiIl4rEVeFiOGrFHFRiGT5rEVWfCHi8FDGWyHi4XDLWyHieq2prFM8FiKu1+qpEPFZW7gqQgxfa11JRYjNWyHioAix+SpEXNQFhrcyxPHxhK8yxGcR4vLjJEIR4oO3IsTDb698lSFNSxCbr9rCRQli87VWihAALlCGAAAAAAAAAACAVqMMASJzVYr4KEOyfFQirgsRw3Up4qMQEfFTiTgvRAzHH37XdUiW61LEdSFi+ChFVmQh4vkwxlkp4nudLusL34eGrtbqeZ1OKxHfz6mjUsRlbeG6BLE5XWsqNYjn59RpGeKhBslyVYa4LgxsTusQz/uRuSpEfBQhvj5OqRQhIulUIV6KEE9fpq6LENcliOGjsvBRg2S5WjMlCAAfKEMAAAAAAAAAAECrUYYAirioRHwXIoaLUsRXGWJrWor4KkNsLkoRb2WIreGH32cZkqdJLeKrDCnSpBhJpQwxGhUigQ9fGhcigdbrpBAJ9dw2XWugdTopREI9pw0LERe1he8ixHCyVoqQPk7KEM9FiNG0DPFdhNgaFSKeixBb00KkSRkS+uNCGeKekzIk1GFIwzLEVwlic1FZ+C5BDBdrpQYB4BtlCAAAAAAAAAAAaDXKEECxOqVIqDLEVqcUCVWGZNWpREKVIUXqFCPBCpGsGicChS5EjDqlSOhCRKReJZJaHSJSsxCJcPhSqw6JdJhVqxCJdUhYtxCJtN5apUis57ZiKVKntghVgthqrTWVEsSI9NzWKkQCFSG2OoVI6PpApGYZErgIMZqUIXWqkBgfD4oQ92oVIZF/E1WnDAlVg2TVqS1ClSC2OmulBAEQGsMQICFlhiOxhiFZVQYjMQYiWVWGI7GHIiLlByNRhiG2CsfCsYYiRpXhSIyhiK3MkKS1QxEFhy2VhiKR11tpKKLguS01GNGwTqk4FIm55goDkaoDhliDEJFqa01qCBLxOTUqDUMiDUGMKsOQGL90t5UaikQagtiqDEXKDEE0PP8MQfwpPQyJ/2lQaQgSY/iRVWW4EGsAklVmvQw/AMTGZbIAAAAAAAAAAECrUYYAiSqqRDSUIbZhpUjsMsQ2rBTRUIbYhpUiKuqQrCEnCsUuQ/IMq0U01CFZw0qR1AqRkXWIosOWoYWIonVmDS1FNK05lXVmDC1FNK15SCkyqraIWYLYhq01qRLEUPTcDi1DIpcgRYYVIhqKBGNkGaKkCskaVogMK0I0Pe8iaVUhImmVIUOrEF2fBiIyvAyJXYLYhpUWGkoQW9F6qUEAaKLzaBYAAAAAAAAAAMARyhAgcSkVIka2FNFWhuSxaxGNhYiRLUXUlSF5rJOHNBYiRl4poq0QybJrkeQLEcWHK7mFiOb12tWF4rUuy65Z8XoH6hDFa12WKUXs2kJTCVJkYM2pVCEJPLcDhYjSKkQkvwzRViZkDRQiCouQLLsOsYsQzc81RYh/fWWI3k+FgSJEWwWSJ1taaCxBDIoQACnRe0QLAAAAAAAAAADgAGUI0DKmFNFchmSZSiSFQsSYmE5nrSKJrXfppCLNhUjWxH69ZUiRscTWPDadVtEiItJJZM3LhUhKh4Kzc0mttzeXxufCsiH7iail+Iz0XAkUIcZyGaK4COmzKq0CQGT4XieamDKkN5XO56+RShmSZBGyLpHXhiXza3QXWFmmtNBcg2SZ9VKCAEhBWt+9AAAAAAAAAAAAKqIMAVruzJf8bewllGL24Zhfnc4ZO1NLa+6mcnny/Yu1hb2XhGYT+xbUX0dbRGRir1VbJHCqQSqFSGfpKKUzk9AZ9t2cfTk0sg4Bk1hz1sxs7BWUlkwhklIZMrF0FnUKn7erMmf/d/U/x53J/v0gJIV9WCYn0ilYJLNnSALHOCIi3TWTo28Um/U9bX6D/uqm0+vJ7IYEntslZm+Y2Q0JvCaIyNi8WW86rw3jM4trnluXxmvD9e98RewlAEBl6XxXAAAAAAAAAAAAqIEyBFhBNFcikwV7hmguRaZy1qy5EjFliE1zKTKxL+cMWs3rtQsRQ+mpB5rrkE7B0YnqQiTnS0x1bVFwCKh6zXkSKkQMtaWI5jJkouB6+po/X1flnJmuuAwZKEIMzWVI3h4siguR5SLEpvjYRm0VUvA9THMR0slZs+YypFOwJ5PmMsTUIFmayxBTgtg0lyHUIABSp/e7AgAAAAAAAAAAgAOUIcAKprEUKSpEsrTVInmFiE1TMVJUiGRpqkVy65A8mtZcVIhkKTodQWMhUlSGLP+9xkJkyJeWytqixCGgynWPklgpoqoS0VaGFNUgWZo+R/NKEJuyMqSwBsnSWIbkFSGGwjKksAgxFB3DGKqKkBLfrzQVIXkFSB5NVUhRBZKlqQjJK0Bs2oqQogokS2MRQgkCoG0YhgBYpmE4UmYYYos9HCkzDLFpGI6UGYoYGoYjpYciImp+qVBqKGKL+HObhqHIqCHIwO01DEXKfyktizpkqHHox1DEPxVDES3DkDJDEEPD52aZIYihZBhSaghiizkUGTb8KKJgKDJyCGJTcPwSdQhS4/uTliFI2QGIiI4hSJnhh6FhCFJm+GGLPQwpM/ywaRiGMPwA0HbxjxABAAAAAAAAAAA8ogwBMFToWqROGWKLUYrUqUOMWJVIlTKkSIxipFIhYot0xmWtQkQk2ikLsQqRqlXIwPvHqkQafClFKS4aHPolWYiIJFeJiEQqRWKVIVVKEFusz8kqNUieSIVIrSLEiFGG1ClCjEhlSOUaxBbpWCVaEVLze1KsIqRKAWKLUYRUKUCKxCpD6tQgRowqpE4JYgtdhlCBAFiJKEMAAAAAAAAAAECrUYYAqCRUKeKiEDFClCJNypAioYoRF4WISLhKpFEZUiTA2mvXIXkCncoQqhBpWoQM3F+oQsTNl46IBCwuHB/2JVeKJFiIGEFKkVBlSJMSpEioz8WmRYgRqAxpVILkCVWHNClCbIEKkcZFiC3QcVWwIsTh958QVUiTAqRIqDLERQ0iEq4IaVKAFAlRhrgoQYxQRQglCABQhgAAAAAAAAAAgJajDAHQiK9SxGUZkuW7EvFRiBi+ShFXZUgRX8WIl0JExPuZmE4LEZunUxx8FyKuy5Dl+/VViPj9kvFbW3g67EuuEDESLUW8VSI+yxAfNUiWr89BVyWIzXMZ4rwIMXyWIS5rkDyeChHnRYjh+XjEWxHi8dcLvosQHzWIiL8ixFUBUsRXGeKjBDF8FyEua5AsX2UIJQgADKIMAQAAAAAAAAAArUYZAsAp16WIr0LE5qoY8VmG5HFZi/guRAzXpYi3QsTmet0+C5Esx6c9uKxEfBUhA4/juhAJ86Xip7YIcNiXbCUiklwp4rwQ8VGG+C5CDFefd75KkCIOCxFvNUiWjzLEdxFiOC5DvBUhNofHH85rkEC/SnBdhPgqQGyuixDfJYjhsgjxWYHkcVWG+CpAbK6LEEoQABiNMgQAAAAAAAAAALQaZQgAb1xUIqHKkCwXlUjoQsRoWoqEqkNsLmqRYIVIlot1hypEbA1Ph2hSiIQqQgofv24pEufLw01pEeFwj0IkvMaliIsyJFQJYmv6+Ra6CDEclCFBihCbi0IkVBFiq1mIBCtBijQ45mhchET6lYGLIiRUBZLloggJVYHYmlYhoUsQw0UREqoGyXJRhlCDAEA1lCEAAAAAAAAAAKDVKEMABFOnFIlRhhSpUozEKkPyVKlFYpUhReoUI1EKEVuddccqRLJqnCJRpxCJXYaI1KxDlHx51CouFBzuJVuKJFqJiNQoReqUIbFKEFudz69YNUhWjTIkSgliq1OGxCpBbDXKkOhViEitY4taRYiC7xd1ipAYBYitThESqwApUqUMiVWB5KlShsQoQIrUKUMoQQCgGYYhAKIqOyDRNBQxygxHNA1FjDLDEW1DEZHygxEVw5A8ZdevYShiK/HzZZmhiIYhiK30UETfl0S54YLiwzyGI2GVGoyUHYZoGYBklfl80jD8sJUYhqgYfhQpMxTRMgTJKjkQUTEEsZU4nig1BFH4/aHsEETD4CNP2WGItgGISLkhiKbhh1FmCKJp+GGUHYIw+AAA97hMFgAAAAAAAAAAaDXKEACqFJUiGsuQrKJKRGMZUiSvGNFYiNjyihG1dUiegjM8VRYiWQWnU+QVIhqLEFthIaL/S0BEhlQWCRzmJVuIGG0qRYrKEI0liC3v80hjCVIkpxBRXYQYRWWIxhokT0EhorIIseUcPxQWIcq/FxQVIVoLkDx5VYjGAsSWV4RoLECKFJUhGmuQrKIyhBIEAPyjDAEAAAAAAAAAAK1GGQJANVOKaC9DiphiJKVCJMvUIikUIlmmFkmqELF1OvrrkDxLp1mYQiSFKiTPcimS1qf+gcoi0cO7pCuRRAsRozc3d6AMSaEEKTI7l1YRYiyVIUnUIHlMIZJKEWIslSFJlCB5lo53louQBF/75zesSqoAsZkiJIUKJMsUISlVIFmmCNFegBQxZQglCACERxkCAAAAAAAAAABajTIEQHLO+q3/L/YSajOFxcJUWrPoiX2L6+4ldsKnsbz+/Mvzqpdy4TI+nWDdIrJ8dm0n0fUvn2Wbamlhnv+5xJ5/c2Zw3n4cCejNJ/Z8Z5iiojef1utlZ2rpjP6i/Vq0W51ghZPRW7O0/oL9u7Qr3CNEs6XnemFdgmvPmFuX6EHx0rep+bVp/SwyPru48Nn1aa0769oP/nHsJQAAhDIEAAAAAAAAAAC0HGUIgOSlVIrk7b2RUiViCouslGqRvPWLpFOMpFyIiCRSiQw5LEqhEim87noqhUjB+pMpRIquGZ9IKZJSGVK0t0YqZchyEWJLpRBJuAhZrkHyJFCIJFODFDyXFCEB5XxLSqkIMTVIVkplCCUIAOiUzncSAAAAAAAAAACAGihDALSW5mIkrxCxaS5GigqLLM3FSKn1Kz45lELEoxKHRZoLkcIyJEtzJVLm+ddciRSVITalpYjmMqSoBLFpLkMKa5AszWVIwjWIyIgixFBchqguQko8bxQhHpX41qO5CMkrQGyaixAKEABIC8MQACuCtsFImWGITdNwpMwwoYimIUmdf4emIQlDEYdqHA5pGoqUGoIU0TQcqfNx0DQcKTsMyVI0GNE2DCk7AMnSNAwpNfywaRqGJD78MEoNQWyKhiKqhiA1nheGIA41+FavaRhSZvhh0zYMYQACAOnS9R0FAAAAAAAAAADAMcoQACtazGKkTh1ii12LNClEsmLXIk3/HbFrEQqRBhweBsUsRRqVIUbMQsTlxyFmKVKnDLFFLEVilyF1ShBbzDKkVglSJGYhkngRUqsEKRKxEIlehDT8t1OENOTo22LsIqROBWKLWYVQgABA+1CGAAAAAAAAAEDijj/+eOl0OiP/9773vS/2UtFAmY9xp9ORq666KvZS1VF0AUwACM8+20fb3iKjjM/mFw2hipH5tWNO6pBOwcnIsYuRsjoFJ72FKkbm146LSLqFyMLqAx9oVfuIVNRb+neELEScFCGGfVa7pr1EKuhNLn0cQhciLqoQERG7jlC0p4hrLkqQgfucGA9ehzgtQmJIvAQxnBYhkQStQTxVL6kXIcF5vE5HyCrERQGiASWIfnv37pVvfetbcv3118v3v/99uf322+WOO+6QHTt2yP79+2V6elrWrFkj69evlw0bNsiGDRvk+OOPl1NPPVVOPfVUeehDHyqPfvSjZdWq9L9nAKgnkV8zAQAAAAAAAFhJ9uzZI//yL/8i//qv/ypXXXWVzMzMDL393r17Ze/evXLPPfeIiMh3v/vdvr9fs2aNnHPOOXL++efLU5/6VHnkIx/pa+kAFGLPEAAYwXct4mLvkDJ81yKu9g8ZxVctEmz9nmuRVOsQm/dCJNDhj+9KxGkZMozPSiTAvyFIJeKqDBnGcyUSYs8QHzWILUQZEqQG8blvCDVINZ73DvFehATa+6QtVYi3/UICfcv2XYSEqkB87xVCBaLfPffcI//n//wf+ad/+ifZs2ePt8c544wz5MUvfrFcfPHFctBBB3l7nFCOP/54ue2220be7r3vfa9ccskl/he0grz+9a8vdbtLLrlEjj/++EaP1Sn5vf3KK6+Uc889t9FjtQ1lCAAAAAAAAIDo5ufn5U1vepO86U1vkr1793p/vO9973ty6aWXyitf+Uq59957ZcOGDd4fE+102WWXlbrdueee23gYgvoYhgDACEVnDbG/SBy+9hcxZ9H5LkSK9hcxmpYjqe8fYph9RLwUIgGjWJ/7iASrQkQO7CeS+D4iRvD9RFxJcD+RECVICMnvC2JQhNR8wJ6XusJZERKo/ChCEWJpybU32AcEMfzsZz+T//Jf/otcd911wR97enpaFnxWmQBUYBgCAAAAAAAAIJqvfe1rctFFF8n27dtjLwVAizEMAYCasmcZNalE5tYsFgmh9g6x5RUjdWqRUGVFkbxipE4tEv3fkXMSXp1axBQiRqqliClEjEalSMRt0nrWv6NJKRK0CLHZZ8dTisSlsBShBFGGEsThIpZeextUGE5KkMgViEh7ShCjURGiKJ5osleIpgrExV4h1CDpueKKK+TCCy8cuTk6ADTFMAQAAAAAAABAcN/+9rfl2c9+NoMQoIJezBPkEscwBAAccLGvSOxCJKvJ/iKxy4qsJvuLqPp3FBznVClGVvReIgoPFF2WIlE1KUUUfVxaW4qIeK1F2lKBiCgtQcaXCr8q1y+nBPGvRiFSqQhRUH4UWdFFiJ5vWQOqFCGaChBbnSKEAiR927dvl+c+97m1N0p/6EMfKk9+8pPlyU9+spx00kly6KGHyqGHHipjY2Oyd+9e2bp1q9x6663yve99T6699lq56qqrZOfOnY7/FQBSwjAEADxqy+brRpVLamkaJtiqXFJL9b9jyM+zRYOStg1FRDxtsh5Yb/XEyIFI1MtjlZX9hXKil9AS6R+OjByMdJV/XBxeSiuV4UdnYvF1rjc//HVO5QCkjpYMQAzVg5AKhg5AFA888qy4IYjyl3Vj1BBE8+CjKoYe7fXSl75Ubr/99srv96QnPUkuu+wyedKTnlR4m6mpKTn44IPltNNOk6c//ekiIrKwsCBXX321fPjDH5YPf/jDsnv37tprB5Cm5hdjBAAAAAAAAICSvvKVr8jHPvaxSu+zevVq+Zd/+Re56qqrhg5CioyPj8uTn/xkeec73ylbtmyRf/iHf5Bjjjmm8v0ASBdlCABEkHd2k6lFNF0uq4wml9TSpOiSWobmQiTPqEtrza8dT74OMQovnZVCSZFRdOmsJIqQPEWX0Ers39OaS2gZFUqRVEqQspItQezLZVGC6FBwuay+IiSxAiRPm6qQ5SIkrW9DI6VegNiXx6ICWTle/epXV7r95s2b5bOf/aw89rGPdfL4GzZskEsvvVRe8pKXyNvf/na57LLLat3P7Oys3HTTTfKjH/1IbrzxRrntttvkrrvukrvuuku2b98u+/fvl/3798vc3JxMTU3JmjVr5NBDD5WjjjpKTjnlFHnEIx4hZ599tjzqUY+STgLfN+68887lf+vPfvYz2bJli9x1111y9913y759+2R6elr2798v4+PjsmrVKjn44IPl8MMPlxNPPFEe9rCHyeMe9zg555xzZP369UHWe//998sVV1wh3/nOd+SHP/yh3HHHHbJ161bZt2+fzM7Oypo1a2T9+vVy+OGHy8knnywPechD5KyzzpJf+qVfks2bNxfe7wc+8IHaa/ryl78sd95558jbHX744fKUpzwl9+/Kfq5ceeWVcu6551ZZXq5utyvXXXedfP3rX5fvfve7yx/7HTt2yP79+6XT6cj69etl06ZNcvzxx8vJJ58sZ5xxhvzSL/2SnHHGGTJujmcV6PTYcQUAVLAvnZXKMKSIGYakMjwYxVxGK/V/T/byWW0ZhhipD0NsyQ9DbIkOQ2wDwxDtl8kaJTMM6c33/9tSH4bYl8lKdhhiMAzRiWFIMto2DDEn6jAMQYquuuoqOe+880rffmxsTK644opK71PV/fffL5s2bZKJidHnjX/pS1+SL3/5y/KNb3xDrrvuOplzsEfbMcccI7/1W78ll156qRx99NG17+f444+X2267beTt3vve98oll1wy8nY///nP5ROf+IRcc8018h//8R9y33331V6bsXr1arngggvkv/23/yZPfvKTG9+fbW5uTj7ykY/Iu9/9bvn6178u3W69n+Ef/ehHy6/92q/J7/7u7w4MRkIMrp70pCfJVVddlft3oYYhP/3pT+Ud73iHfPCDH5R777231n0cdNBBcuGFF8pv/dZvydOe9rTaa3GFYQgAKHfOr/117CU4MT69+O2mO5H+LwYm9i/+Qqo3nv6/RURkYu/iL0B7Y+3494zvT3evilwLi187Y7OJFwmG+WEk9cJiSWdh6d8zYn+KJMy342Miq6YW/78ln2PLlVVLfmxLfvhRoLuuXf+uNg1BRETm1qZ/UYyxpeOBhVVp1ddFvv6pV8ZeAiJ6/vOfLx/+8IdL3/51r3udvP71r/e3oIoe+tCHyk9/+lMv97169Wp59atfLX/2Z39WajBjcz0MedOb3iR/+qd/WnkdZT3lKU+Rd7zjHXLCCSc4ub8PfehD8trXvlZuvfVWJ/cnIvLJT35Snv3sZ/e9re3DkLvvvlte9apXyQc/+MHawyTbGWecITfccIOT+2qiHd9FAQAAAAAAAKg2PT0tn/3sZ0vffvPmzfKa17zG44p0mZ6elssuu0x++Zd/eUVs8P7lL39ZzjzzTLn66qsb3c+OHTvkWc96lvzmb/6m00HISvSJT3xCTjvtNLn88sudDUI0Sf/0CABouWv+dfCsqRRrkYXVi2cumEIkK7VaZH7N4vUuTSFSJJVyZH5d/+GAKUVsqZQjC2v6z2ZNthRZ6P9a6U4tfpySLUTsA+nsXhxtOIN/InMd3DZUIqkxNUhb5F3Sy5wBmGgh0rYihBIkDakWIWMLg1/nKRchVCDIuvrqq2XPnj2lb//7v//7snr1ao8r0unqq6+WZz3rWfLlL39Z1X4LPuzYsUMuvPBC+cY3viGPeMQjKr//bbfdJr/yK78iN910k4fVrSxvfOMb5X/8j/8hbb6QVLrfTQEAAAAAAAAk45vf/Gal27/kJS/xtBL9rrzySvnLv/zL2MsIYs+ePfL85z9f5itetvXuu++W888/n0GIA3/zN38jr33ta1s9CBGhDAGAJOXVIiJpFCMLqzsDdcjYfPE3W83VyKhCpJNzVl8KtYgpRexCpDNko2jN1YgpRZIpRHI+b7JMISKScCVim7QOSRMoRZb3CskzYZ29RyniXpkSxHxeJfD5lFuCtEDbahARipBUpFCE5NUfRVKpQihAUMa3v/3t0rc98cQTG20m3gZvfOMbczfwbqMbb7xR3vWud8nv//7vl7r9wsKCPO95z5P//M//9Lyy9vvSl74kr371q2MvIwj9RwgAAAAAAAAAkvezn/2s9G3PPvtsjytxa3x8XE4++WQ5/fTT5dRTT5VNmzbJhg0bZN26dTI9PS27du2SW265Ra677jr5zne+U3ovhj179si73/1ur5uY13H44YfL6aefLg9/+MPl0EMPlY0bN8rGjRul2+3Kvn375M4775Sf/OQncvXVV8vOnTtL3+/f//3flx6GvPnNb5avfe1rldd+0kknyfnnny8nnniiHHrooTI9PS333Xef/PjHP5arr75a7r777sr3mbLdu3fLi170osr7g6xZs0bOOeccedzjHiebN2+WdevWyf333y9bt26V//iP/5DrrruucukTAsMQAGiRVPYXGbZ/iK2oGtFUjJTdQ0QkvxbJ0lSOFBUieVKoRrJ7iSRTiYyQrURElJYidTbdS7AUGYpSpLmVsCdIWYr3DmljCSLSvhpEhCIkpCoFiE1zEUIFgjp6vZ7cfvvtpW9/xhlneFxNc4cccog885nPlGc/+9nylKc8RdauXVvq/bZs2SKXXXaZvOtd7yp1+4985CPRhyFjY2Ny3nnnybOe9Sx51rOeJccee2yp95ubm5PLL79c/uRP/kQeeOCBkbf/6U9/KjfccIM88pGPHHq77du3y2WXXVZqDcbjH/94eeMb3yhPetKTht7u2muvlbe85S3y0Y9+VGZnZ3Nvk3cpqU6n3M+9V155pZx77rmlbhvCm970Jtm6dWvp269du1b+5E/+RF7xilfIpk2bCm+3a9cuef/73y9vfetb5Sc/+YmLpTqh70gBAAAAAAAAQKvs2bNHpqenS9/+kEMOqXT/P/rRj+S73/1u1WX1Oemkk+Txj3/80Nscd9xx8rKXvUxe/OIXlx6AZB199NHyzne+U4455hh53eteN/L23/ve92Tbtm1RLpW1atUqefGLXyyvetWr5JRTTqn8/pOTk/Lbv/3b8rjHPU4e+9jHyt69e0e+zxVXXDFyGPK2t71Ndu/eXXodL33pS+Uf//EfZWJi9K/CzzrrLDnrrLPk9a9/vVx66aWlHyNFe/bskbe+9a2lb3/kkUfKpz/9afnFX/zFkbfduHGjXHrppfIHf/AH8o53vEM+9rGPNVmqMwxDAKDlUt5fZBiNxYgpRIwypYhN4z4jphARKVeJ2IZVIyJxypFsJSKipBRpcOaokUQpUke2FEm9EhEZLEVEqEWy2laBGC3cF4QSJC1trEE0lSBNChDNKEDg0v79+yvd/uCDD650+8985jONC4oXvvCFI4chX/ziF0tXAMO89rWvlbe85S2ybdu2kbe9/vrr5alPfWrjx6zqj/7oj5z8W0877TR5yUteIn/3d3838rbXXXfdyNu8973vLf3YF110kbztbW8rfXvjpJNOks9//vOVBnip+eQnPyk7duwoddvJyUn51Kc+VWoQkjU2Nia///u/Ly960YtqrNA9PUcOAICgioYkIuEGJVUul1WWps3Yq1w+axhNl9aqcumssjRcYiv6JuuefoESdThS5/JYZbTtElrGSr6UFsOPeiJcLqutww+DIUg6Yg1BQg08Ql8ei4EHQpmZmal0+w0bNnhaSTMuhgMiIhMTE/K4xz1OPvOZz4y87U033RRlGOLq3yoics4555Qahtx0001D//4HP/hB6U3TN27cKO95z3tK3bbI6tWrG72/Zv/2b/9W+ravfvWr5TGPeUztx9LyPOq9ACUAAAAAAACAVpiaqnYCxJ49ezytRI+ylwK76667PK/EP1f/1muuuab0Y/7u7/5u5cJoJSn7XK5evVr+8A//0PNqwqAMAQAMCH1pLR+FSJ5Y1cj8mvHGdcgww8oRX9WIj0IkT+hLbAW/fFbgS2pkS5FWXkJLxHsp0lnwVLzY2noprRgViPkc8V0RtfAyWCLtrkHaWoIYbSxCRPxXITEvd+W7CKEAQWxV99cos+G2Br1eT370ox/JN77xjeVq4Y477pDt27fLrl27ZGZmRubnmx2H7Nq1y9Fqm9u2bZt87Wtfk+9+97vyk5/8RG6//Xa59957ZceOHTI9PS2zs7O5G4yXNerfWmVfmF//9V+vvY62u+uuu+Tee+8tddtzzz03yp41PjAMAQAAAAAAAODV+vXrZdWqVaUvl6V9GHLLLbfI//2//1c+/OEPy5YtW7w+VtX9Vlybnp6Wyy+/XN73vvfJN7/5zUbDjlFG/VtvueWWUvezZs0aOfPMM10sqZXKPo8ii5c4awuGIQCA0vKKEZe1SKhCJI/vDdld7R9Sle9qJLu5uoj/UsTme7+RbCnitBJRsMmqt/1EfO0VUpZdioiwr0hM7Afin+O9Q9pcgoi0uwZpawliuC5CNG147qMIoQKBRp1OR4499li5+eabS93+Bz/4gecV1TM3Nyevec1r5B/+4R8aFx9ldSMeY3/2s5+Vl73sZXLHHXcEebxRg5ayNcMxxxwjk5Pt/t7YRNnnUUTkhBNO8LiSsNgzBAAAAAAAAIB3J510UunbfvOb3/S4knp27twpT3va0+Rv//Zvgw1CYvr7v/97edaznhVsEFLGvn37St2u7B4lK1XZ51GkXc8lZQgAoJGi/UWMOuVIzELE5nqfkViFSJ5h1YhIvXIk1F4iZYzab0SkWj1iKpFGhYiis1Bt3koRDQLvKxJM3r4iInGKkbYWIIamEsSxtpcgBkVIupoUIZrqjzxNihDKD6TqMY95jHzxi18sdduf/vSnsm3bttJ7FbzmNa+R17zmNbl/d+6558rVV19dep1Fnvvc58pXv/rVxveTgg9+8IPyR3/0R7GXAThFGQIAAAAAAADAu8c97nGlb9vr9eS9732vx9VU80//9E9yxRVXxF5GENu2bZOXv/zlsZeRa+3ataVut337ds8rSVvZ51GkXc8lZQgAwCvf+4zENKwaERlejmgqRIqMKkdEiuuR7F4iGiqRIqPqkbxyJLuPiEjJUkT5mal5sqVI6Uok9n4hZdUoRToLifzbRPKLEZe1SKoViPm4lymDUixBOp3S+4ashBqkzSWISPtrEJFyRYj28sMVKhC0yXnnnSdr164tfYmet771rfLHf/zHMj5eUMQG9Jd/+Zelb3vqqafKi1/8YnniE58oJ510kmzcuFGmpgaPoS655BJ5//vf73KZTrzrXe+S+++/v9Rt165dKy984QvlwgsvlIc//OGyefNmWbNmjXQ6/T9LXXXVVXLeeec1XlvZUmjLli0yPz8vExP8+jtP2edRROTWW2/1t5DA+GwAAAAAAAAA4N2aNWvk6U9/unz84x8vdfvbbrtN3vrWt8qll17qeWXDff/735ebbrqp1G1/53d+R97+9reX+iV8lX0bQir78TnhhBPkiiuukBNPPHHkbV39W8tu5r1v3z65/vrr5bGPfayTx22bKpuiX3PNNR5XEhbDEABAcGX3GVlY3VGxb0hdZfYbSaEQGabMviOa9hGpqsy+I0NLkZacsTpyP5FUipAidiki0p59RYw6+4ukWoBUlWIFUsScgWkVIpQg7bESi5C21h/Z/UIoP7DSvOQlLyn9y3YRkVe96lVy3nnnyemnn+5xVcN9/etfL3W7o446St72treVrhFuueWWJsvyYu/evfLd73631G3/8R//sdQgRMTdv/WRj3xk6dt+/OMfZxhS4Oijj5bNmzfLtm3bRt72qquukvvuu08OPfTQACvziz1DAAAAAAAAAATxlKc8pdJgY3p6Wi666KKog4OtW7eWut3ZZ58tk5PlBtdbt26V66+/vsmyvCj7bxWRSpe9+tznPldnOQPOOeec0rd95zvfKTt27HDyuKOsWbOm1O3279/veSXlnX322aVut3//fnnLW97ieTVhUIYAANQZVo486el/FXAl/tjVSHdy8fyE8enFs7SL9uJITbYcWVjdf2a6+bemzq5Huqsye23sK7GfSIJMKdJZOvu8M5N4GZLHrkUWZuOsw7dsMTK+Qs6TalMJUqC3dvXSf7TzjHpjJdQgK6EEkaVvIQtLtWxbS5Crvvjq2EsAVHnjG98oz3jGM0rf/mc/+5k87nGPk0996lOVNmF3pczZ8yIis7Pljxkvu+wy6SosrMv+W0UW/71lNuL+5je/KV/4wheaLGvZGWecISeccEKp4djOnTvlJS95iXz0ox+t/Xj79u0r9W/cuHFjqUHHj3/8Y7ngggtqr8eliy66SP7t3/6t1G3f9KY3yTOf+Uw588wzaz1W2efRN4YhAICkXP35Vw39+9SHJdmBQdGwoC2DEvNvHd8/5HJEnbT/rd21/b/EautwpLfqwL+zM9PSf+Pq/EtGdaZbOiRpgV7RpcGWdBb0/fKhCS6F1S6tG4IUfLmZAUgbMOwAqrnwwgvl6U9/unz+858v/T733nuvnH322XLxxRfL61//+kp7HjRV9pe4V111lTzwwANy8MEHD73d+973PnnHO97hYmnOVfmF9Sc/+Ul50YteNPQ2d9xxhzzvec9ruqw+l1xyibzuda8rdduPfexjcumll8qb3/xmGR8v/31ny5Yt8tKXvlR+53d+R5797GePvP0hhxwi99xzz8jbvetd75KXvOQlsn79+tJr8eWiiy6SP/zDP5SdO3eOvO3MzIw885nPlM985jPyqEc9qtLjvO9975N//ud/lq9+9at1l+rMCjn9CwAAAAAAAIAW73nPe+Swww6r9D7dblf++Z//WU499VR54hOfKP/rf/0vufrqq+Wmm26S7du3S7fblenpadm6dat861vfkne/+91y8cUXy7e//e1Gaz388MNL3W7nzp3y67/+67Jly5bcv9+9e7e86lWvkt/+7d9utB6fyv5bRURe8YpXyBe/+MXCv//MZz4jj3nMY+SOO+5wsbRlL3vZyyoNE97ylrfIk570pFJ7v/z4xz+Wl73sZXLqqafKZz/72dKPUfbSbz/5yU/kYQ97mLz85S+Xt73tbXL55ZfLBz7wgb7/la01mtqwYYO89KUvLX37LVu2yBOe8AR5wxveILt27Rp62+npaXn/+98vZ555przoRS+S7du3N12uE51er+XtNAAAS1KtRupcTirVemRoJVIk4Xok1VKkU+Pwsa3FSJ5ka5GEfywYVYHkSbUMqVWAJPqxXUkliEjCNUiNL6VUixDqD8C9r371q3LBBRdUuryUTy984Qvlfe9738Dbv/rVr8r5559f+n6mpqbkOc95jpx22mly1FFHya5du+S73/2ufPazn631S+GiddmOP/54ue2220be7r3vfa9ccsklhX9/3HHHye233156fWeddZacd955ctxxx4nI4mbpX/jCF+QHP/hB6fvIKvPr6r/6q7+SV7+6+uvyKaecIueff76ceOKJ8qAHPUhmZmbkvvvuk5/97Gfyta99TW699da+23/yk58sVYb85V/+pbzmNa+pvJ48xx133MA6sjolfwa+8sor5dxzzx16m127dslDHvIQufvuuyuscHGPlCc+8Yly1llnyWGHHSZr166V7du3yz333CPf+ta35Nprr5Xp6enl259xxhlyww03VHoMH7hMFgAAAAAAAIDgnvzkJ8vll18uz3/+81Xun2E84QlPkE2bNpW6nJDI4l4aH/rQhzyvyp8LL7xQ3vrWt5a+/bXXXivXXnutxxUNesUrXiGf/vSn5Rvf+Eal97v55pvl5ptvdr6eZzzjGc6GISFt3LhR3vOe98iFF15Yaghl7N+/X770pS/Jl770JY+rc49hCABgxRi234jmamR5b40KhUhnxOajWsuRhTWLhyaVCpGyB2wKC5LsniIpVCJ1ihAju6+ISLtLEfYX8adOAZI6J3uBmNe/BAqRlVaDiCRQhDj83WQKRQj1BxDeb/zGb8jExIRcfPHFpTagjmFyclJe/vKXyxve8AZn93n44YfLmWee6WxjcZde/vKXyzvf+U6Zn69R7hd40YteJO9973ud3d/ExIR89KMflbPPPntoRRHKaaedJk94whNKXYpLm6c//enyv//3/5bXvva1sZfiHXuGAAAAAAAAAIjm137t1+TKK68Muil6nmGXH3rlK18pxx57rJPHmZiYkA984AOV90wJ5dRTT5VLL73U2f1dcskl8l//6391dn/GUUcdJV/96lfl5JNPdn7fdbz5zW+Wqan8E6O0+9M//VO57LLLYi/DO8oQAABkeDUioqMcqVOIFBlVjojErUdMIWLU2kvEVuaM6Ij1SLYSEdFVijQpQorYpYhIu2sRkfxihFqkmO8KpDe+eF6Ypr1DnFQgwygsRChBIgv06a+pCKH8APQ666yz5Hvf+5688pWvlHe/+92ysND8556yNm/eLH/wB38gf/AHf1B4m/Xr18vnPvc5Oeecc0pfLivP2NiYvOc975Ff/uVflg984AO178e3v/qrv5Ibb7yx8WWQLrjgAnnnO99Z+XJWZZ1wwgly7bXXygte8AL5/Oc/7+UxyjrzzDPlne98p7zkJS9Rsw9OFX/xF38hD3nIQ+T3fu/3Gn2Oa0YZAgAAAAAAACC6DRs2yNvf/na54YYb5KKLLpLxcX/D1MnJSXna054mH/nIR+TOO++U173udXLooYcOfZ/TTz9dvvKVr9QuWDZs2CCf+MQnvFQSrk1MTMgnPvEJef7zn1/7Pn77t39bPvWpT8nkpN8TAQ455BD53Oc+J5dffrmzeqeuF77whXLNNdfI2WefHXUddT3vec+TG2+8UX7zN39TxsbaNzqgDAEAoARN+424LESG0VSPeClF8iiqRzSUIj6KkGFW0r4iBvuLrMx9QAzvJUiRiIUIJUhACqKnWEUI9QeQvtNPP13+9V//VW6//XZ5z3veI5/85CflBz/4QeP7Peqoo+S8886Tpz71qXLhhRfKwQcfXPk+Hv3oR8v1118vf/7nfy7vec97Su1zMjY2JhdddJH87d/+bfRf1lexbt06+Zd/+Re54IIL5A1veIP87Gc/K/V+D3nIQ+RNb3qTPPvZz/a7QMvFF18sv/EbvyEf+tCH5J/+6Z/kmmuukW633jfERz3qUfKc5zyn1lDjMY95jFxzzTXy/e9/Xz772c/Kd77zHbnxxhvlgQcekF27dsn09HStNRlVNjqv46ijjpIPfvCD8md/9mfy9re/XT70oQ/Jtm3bat3Xxo0b5cILL5SLL77Y8Srr6fR8P3sAALRcrEto+R6GlBHrUlrehiFlRLqU1koYhgw8/goYhhSJMgyJ9PGOPQyJeZmsaMOQ5QUwDAmBYUh4DEOAdrrjjjvkm9/8pnznO9+Rn/70p3L77bfL1q1bZe/evbJ//34ZHx+XjRs3ysaNG2XDhg1y8MEHyymnnCIPf/jD5eEPf7icdtppctRRRzld07Zt2+QTn/iEXHnllXLDDTfIfffdJzt37pQ1a9bI5s2b5WEPe5g88YlPlOc+97ly0kknDbz/Aw88IHv37h35OOvWras1uHGp2+3K5z//efnyl78s3/jGN+Suu+6S7du3i4jIpk2b5KSTTpJf/MVflGc84xly/vnnD1QFMzMzpX+hfswxxzhZ83333SdXXHGFfPvb35Yf/vCHcscdd8jdd98t+/btk7m5OVm9erWsX79eDjvsMDnxxBPlIQ95iJx11lly9tlnyxFHHOFkDW3Q7Xbl29/+tnz961+XG264QW6++WbZsmWL7NixQ6anp2VsbEzWrVsnGzdulOOOO05OOukkOeOMM+Tss8+WRz3qUTIxoafHYBgCAEAAPgcmGoYiw/gcmEQdigwTYGDiezgSexBShAGJRwE+5rEHH0VCDESiDz6KeP64r8Thh+F1CKJg0DGMzyEIgw4AAFBX+y78BQAAAAAAAAAAkEEZAgCAAq7KEe2VyDBNCxK1lUgZjkoSF7WI1iJklJVcjBiNyxEHH3ut5ccoLssQtQXIKA4+/iu5AjEa1yDKi49hXNUglB8AAMAXhiEAACSiysAk5aHIMFUGJkkPR4apMDipMhxJdQgyykofklQakFT8HEh18DFMlaFIskOPUSp8HjD8qDj8SHjQMUyVIQiDDgAAEBOXyQIAAAAAAAAAAK1GGQIAQIvY9UhbC5Ey7IqktaXIMFZFkleKtLUIGWal1yJZfeWI9bnQxvKjLLsQaW0FMkzOawMlSE4J0tLaowy7CKH6AAAA2lGGAAAAAAAAAACAVqMMAQBgBXryk98YewlRjVuFRG9i5Z4fYj8XK1J38dTuztzKLalERGRuBdZTtlVTi//Pj0jSXTsVewnxWFXdwuqJSAvR4StXvzb2EgAAAJxYuT/5AwAAAAAAAACAFYEyBAAADLUSKpIqdcRKqUhWRDHSLX+x/xVRjayUMmRVheJhBfyotGIKEKv2GGYllCDUHgAAYCVaGT/NAwAAAAAAAACAFYsyBAAANNa2esRVFdG2iqQ1tUiFIqSsVpQjbSlDqpQfZbXkR6bWVSAVao9h2laCUH0AAADka9dP6AAAAAAAAAAAABbKEAAAEFSKFUnIIiLFmiSZYsRDEVJGMtVISmWIj/qjjER+dEqyAHFUeZSRYglC7QEAANAcwxAAAKCWxsGJxl/8axygqHqeIg1BylA1KNE2DIk18ChD0Y9QKgcfAQcbZWkcgDDgAAAACEvfT84AAAAAAAAAAAAOUYYAAIBWCV2TqCogaghdlQR/vhRXIWUELUdClyGay48yAv8YFbwAUVh3VBG6BKHyAAAA0I8yBAAAAAAAAAAAtBplCAAAWPFc1iSplyJ1uKpLnDx3iZcgdTirR1yWIalXH3U4+LHKWf2ReNVRh8sShMoDAACgnShDAAAAAAAAAABAq1GGAAAANDCsKlmJlUgdo8qSUs/jCixC6hhakYwqQ1Zi7VFHiR+vRhYgK7DsqGNYDULdAQAAABtlCAAAAAAAAAAAaDXKEAAAgEie8rg3xF5Ca4xNU+E01VngxwIXnO37Afn3a/8i9hIAAADQIpQhAAAAAAAAAACg1ShDAAAAEkVZUg7VSDmUIeVRf5RD2QEAAABNKEMAAAAAAAAAAECrUYYAAABg2UquTVZ6QUIZsrKLDyoOAAAAtB3DEAAAAATTtmFLmwYobRuGtG2wwbACAAAAaIbLZAEAAAAAAAAAgFajDAEAAECraaxRNBYlWssQjYUHlQYAAACQHsoQAAAAAAAAAADQapQhAAAAAAAAAACg1ShDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrTcReAAAgPd1uV3bt2hV7GQAAAAAKbNy4UcbGOAcWAACDYQgAoLJdu3bJM5/5zNjLAAAAAFDg05/+tBx00EGxlwEAgBqcIgAAAAAAAAAAAFqNYQgAAAAAAAAAAGg1hiEAAAAAAAAAAKDV2DMEAODE5HUPks78+PKfO2Mdyfxh+Nv73tbJ/OdY7tuLbp99e9/7Ft3e/HfR42T+s9Tjl3lMc6cl7q+Xfbfs6Qt5/4aB9x3x7yi6bcHjjLw/Een1nWJR8O/oDPx14eMXPWav6PGzb88yz2/eOsreX4PHX35enD1mibfL4NvLPZ/V/rvUuqq8X8Htaz8Xo9bU5L7L3qbCfVRdl3R6g7dp8G/Ivb8hennvW/FxiteYf5u+l1PJuc2ovxeRTpn7Lnx7L/P2Xrk1WY/Z/+U/eH/2fY4V3mbw8Yvur++lPfPfRfdd6u3SG/r3Zf67aC1jMvx9s3/f//jdWvc3/PaD9zne9/jd3PcbL/P4kr/e8cL77C49ZuZtBWstenvhY2benrf2ovvIPs54332XeV6yj1mwxqX3HS/6t5X69xessfA2g/+dPVTLfj1l/3s8c5vxgtuMZb5gxzJfAeMy+Pb+247lv1/m2HP3rnF54Ss2CwAAKMYwBADgRGduTDoLjochYwVDil7R2zPv2xnLfXvu8KDocYr+u+i3ZJ2CXzfl3k/V37TK6NsU/XffL+pG/Ma0T9XbZN9c8PjLw5gKtx22lDK3Wfr8KvfL4DKPWfXxXT9mzf9u8Di1hzRV30/y3+58GOLo3+l6GFL98SMMQwrvM8IwJO82feuuOgyp9pijhhGF/2YpeHvh81J0m8HnvFN024LnovjxR/933jCk6n9XHlLkDEP6/77qMGT4AGDxNp3Mfw8OQ/L+fvD+igYQkv/2zMeof5CQs+6+++iUeHt2vZL79v61560p835995F9zOzbRw+Jxvuel8HbFP99/kClzDCk+DbDhyH9j595e8Hz2X+b7NsLPi5L/91/Wxn4e/sxx/K++QAAgD5cJgsAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKsxDAEAAAAAAAAAAK3GMAQAAAAAAAAAALQawxAAAAAAAAAAANBqDEMAAAAAAAAAAECrMQwBAAAAAAAAAACtxjAEAAAAAAAAAAC0GsMQAAAAAAAAAADQagxDAAAAAAAAAABAqzEMAQAAAAAAAAAArcYwBAAAAAAAAAAAtBrDEAAAAAAAAAAA0GoMQwAAAAAAAAAAQKtNxF4AAKAdepNdkc7CgTeMdQ78d6c3/O19byt4v+zbx7oFb8++71jB23P+O3vbvr+X/LcX3l+JxzR3mrcO6797Oe9W/n2z75DVsf5fpCejblv2Nhm9grfn6LvvXsHbJfcmQx4/5zaFz2f2v4s+/hVvn7cWZ49Z4r8l5+0NHifvU7jyWuquu8l/h3qcMo9V5nkuuH3xa0Fv8DYFty2+jxH3N0Qv730rPk7xGvNv0//SlnObUX8vIp0y91349l7m7b1ya7Ies//Lf/D+7Pssvk3O4/f920a9+g65fYn/7pl/a9/nTbX/znw3t9Y76vGL7rub//bC2+f/91jm9mOZ+xxbuk32/jrZv8+8vVt4fwf+e0EG71tEZLzgPs3bs58H4wX3XfT2orWM9z2OZG5vbjv4tsX3y//v/tsf+MN44ds7uW8fy/n7vsfJrCb7mMXPS/Z9SzwXS/9d9O/vey76Hr/g9gX/znEZfHv/bcfy3y9z7Ll7F+e6AgAwCsMQAIATc4++P/YSoFXB77e0KPM7cgBAv8GxhDXcQMLyJoP8oh0AAKSPIxoAAAAAAAAAANBqDEMAAJXt3Lkz9hIAAAAADMExOwAA/RiGAAAAAAAAAACAVmPPEABAZRs2bBh42+WXXy6bNm2KsBoAAABgZdu5c6e84AUv6Htb3jE7AAArGcMQAEBlY2ODYeGmTZvkoIMOCr8YAAAAAAPyjtkBAFjJ+M4IAAAAAAAAAABajWEIAAAAAAAAAABoNYYhAAAAAAAAAACg1RiGAAAAAAAAAACAVmMYAgAAAAAAAAAAWo1hCAAAAAAAAAAAaDWGIQAAAAAAAAAAoNUYhgAAAAAAAAAAgFZjGAIAAAAAAAAAAFqNYQgAAAAAAAAAAGg1hiEAAAAAAAAAAKDVOr1erxd7EQAAAAAAAAAAAL5QhgAAAAAAAAAAgFZjGAIAAAAAAAAAAFqNYQgAAAAAAAAAAGg1hiEAAAAAAAAAAKDVGIYAAAAAAAAAAIBWYxgCAAAAAAAAAABajWEIAAAAAAAAAABoNYYhAAAAAAAAAACg1RiGAAAAAAAAAACAVmMYAgAAAAAAAAAAWo1hCAAAAAAAAAAAaDWGIQAAAAAAAAAAoNUYhgAAAAAAAAAAgFZjGAIAAAAAAAAAAFptIvYCAAD+zc3Nye233y633Xab7Ny5U/bu3Svj4+OyYcMGOeigg+QhD3mIbN68OfYyg7rjjjvk1ltvlXvvvVf27dsnnU5H1qxZI4cddpgcffTRcuyxx8rEhNtvk3v27JEf//jHcuedd8qePXuk0+nIhg0b5Nhjj5XTTjtNVq1a5fTxAAAAqtqxY4fceOON8sADD8iOHTuk1+vJhg0b5JhjjpGHPexhsnbtWueP2e125e6775Z77rlH7r33Xtm1a5fMzMyIiMi6detk/fr1cuyxx8qJJ54ok5OTzh9fi+npafnRj34k9913n+zYsUNmZmZk3bp1cuSRR8qpp54qhx56aOwlIrJ7771XfvrTn8rWrVtl//79MjU1JQcffLCccMIJcsopp8jYWJhznnfv3i0333yzbNmyRXbv3i1zc3OyZs0a2bRpkxx11FFywgknyPr164OsBQCqYBgCACLS6/Xk5S9/udxwww0Df/fIRz5S/uEf/qHU/WzdulWe97z/v737jorySv8A/qUKAiJNiooRC6goCjbsmlji6uLaEhON/mwby2qwoUaja4LYo8Zd1Ng2McYSV4NGbAkiCIog2JAiiKgggiAiDJ3fHx5ZX94XmBlmBoLfzzl7zvLM3AKiee889z73IxXP7n+WLVuGDz/8sNr3FRcXIzIyEhEREYiMjERcXBxKSkqqbGNlZYWBAwfCw8MDzZs3V2p++/btw4EDB5RqK4/Lly/XqH1ycjL8/PwQEBCA9PT0Kt9rYGAAR0dHdO/eHQMGDFD6ZwIA4eHhOHLkCMLDwyv9c9DX10fv3r0xYcIEODk5KT0WERER1Z6XL18iJiYGsbGxiImJQVxcHNLS0kTvq+kzjaoVFBTg5MmTOHv2LBITE1FWVib5Pl1dXbi5uWHcuHHo3r270uOlpaXh5s2buHPnDmJjY/HgwQPk5+dX205PTw8uLi4YNmwY+vfvr/RGElU+s9rb2+PgwYNKty8rK8Ply5fx3//+F3fu3EFRUVGl723bti08PDzw4YcfqmzTTllZGR4/flz+OxsbG4v4+Hjk5eUJ3jds2DAsX75cJWOSYkpKSuDv748TJ04gPj6+0veZmppi6NCh+Oijj9Sy0U0mk+HcuXM4e/YsYmJiUFpaWul7tbS00Lx5c7i6usLd3R3u7u4qnw8RkTKYDCEiAnD8+HHJRMifTUJCAo4dO4agoCDk5OQo1DY9PR1Hjx7FsWPHMHz4cMydOxdGRkZqmqlm5eTkwNfXF/7+/tUmhd7Iz8/HzZs3cfPmTaSkpMDLy0vhcV+9eoX169cjMDCw2vcWFhYiICAAly5dwt/+9jfMmTOnXu98JCIiqg8SExMRGhqKuLg4xMTEIDU1tbanpLCAgABs27YNmZmZ1b63uLgY165dw7Vr1+Du7o5ly5ahcePGCo+5atUqREdHK9yuqKgI4eHhCA8Px549e+Dp6fmn/pA1ISEB3t7euH//vlzvj4uLw8aNG3HkyBGsXLkSjo6OSo0bGBiI6OhoxMTEID4+Hq9evVKqH1K/pKQkrF69GomJidW+Nzs7G0ePHsWpU6cwd+5cjBw5UmXz8Pf3x65du+T6dwJ4nWRLTk5GcnIyTp06hYCAAJXNhYioJpgMIaJ33uPHj7F79+7anoZcnJ2dq3w9MDAQZ86cqdEYZWVl+O233xAeHo4tW7bU6ESEKnXo0EGpdrGxsVi+fHm1J0FULTMzE/Pnz8fDhw8ValdWVob//ve/ePDgAdavXw8DAwM1zZCIiIhq6vTp0/jll19qexpK2717t9KnGkJDQzFjxgxs3boVTZs2VfHMqvf06VN4eXlhypQpmDp1qsbHr6nAwECsXbsWMplM4bbJycmYM2cO1qxZg169eincfv369UyA/Ancvn0bixcvFp3SqY5MJsPGjRvx+PFjzJo1q0ZzKCgogLe3Ny5dulSjfoiI6gomQ4jonVZaWop169bJdSxfHnp6emjdunWN+3lTK/ltnTp1Ujoxoa+vDycnJ3To0AGWlpYwMzNDaWkpnj9/jjt37uDatWsoLCwUtElLS8MXX3yB7777DnZ2dnKNY2FhoZLvX2p33IgRIxTu59atW1i8eLHkItPGxgY9e/aEnZ0dzM3NoaOjg9zcXKSkpCAhIQF37txBbm6uUvMvLCyEl5eXZCKkefPmGDhwIJo2bYqysjI8efIEf/zxB548eSJ4X2RkJL7++mt4e3srNQciIiKiqvz444+SiZA3pbDc3NxgaWmJ4uJipKWlISwsDLdv3xa8Ny0tDZ6envj+++9hamqq9Fze3GHXrFkz2NrawsTEBIaGhigsLEROTg6SkpIQHh4uel4CgAMHDkBfXx8TJ05UenwASj/D2traKtwmKioKq1evljyx7OTkBHd3d9jY2EBfXx/Pnz9HVFQUwsLCBM/rhYWFWLlyJbZt21bthin683n8+DG8vLwkEyFdunRBt27dYG1tjdzcXCQlJeHChQuiygA///wzLCwsMH78eKXmIJPJsGjRItHfewAwNDSEq6sr2rVrBzMzMxgbG0MmkyEzMxOJiYm4d++e5N9XIqLaxmQIEb3Tjh07hlu3bpV/3b59e6WO7L9haWmJffv21XheEydOFCVDFE0G6OjooGfPnhg+fDi6d+9eZU3ljIwM+Pr64sKFC4J4eno61q9fj23btsk1poeHBzw8PBSaZ0V3794V7WBq2LAhBg0apFA/Dx8+xNKlS0WJECcnJ8yZMwcuLi5Vti8uLsbNmzdx9uxZhetR7969G7GxsYKYrq4uPD09MWLECGhpaQlemzZtGk6fPo1vv/1WsCgOCgrCyZMnMWrUKIXGJyIiotqlp6eHli1bwtHREQEBAXVuF354eDj27t0rinfs2BFeXl6wt7cXvTZ58mTcvHkTPj4+SElJKY8/ffoUPj4+WLdundzjm5iYYMCAAejRowc6d+4s98mSiIgIbNu2DUlJSYL4/v370bt3b7Rs2VLuOVSkimd4eTx//hyrVq0SJUKsrKzg5eUleRfL+PHjkZqaio0bNyI8PLw8XlRUhFWrVuGHH35QSXlbU1NTtG3bFiYmJvjjjz9q3B8pp7S0FGvWrBH9u2Fubo6vv/4aHTt2FLX5+9//jn/961/w8/MTxHfu3Ak3Nze0atVK4TmsWrVKlAgxNjbGlClT4OHhUe0a6dGjRwgICIC/v79CYxMRqROTIUT0znr06BH27NlT/rWpqSnmzZuHzz//vBZn9fo0Q3JysiBmbGyMAQMGyNW+QYMG8PDwwIQJE2BhYSFXG0tLS6xcuRL29vaihXFkZCQuXbok9/g1dfr0aVFs0KBBMDQ0lLuPwsJCrF69WrSAGD9+PGbPng1tbe1q+3h7V2Rll4hKSUpKwvHjx0XxNWvWoE+fPpJttLW18de//hVmZmb48ssvBa99//33eP/992FiYiL3HIiIiEhzdHR08N5778HR0RFOTk5wdHRE69aty+/+un79ep1KhpSVleHf//636PJjV1dXrF+/vsoPOF1cXLBjxw7MnTtXkBAJCQlBcHBwpc86FW3cuFGpubu5ucHX1xcLFizAvXv3yuNFRUU4fPgwli1bplS/mnTw4EFkZWUJYpaWltixY0eVp0xsbW2xYcMGrFy5EleuXCmPp6enY//+/Zg7d65C8zA2NkabNm3g5ORU/nv75jR4ZGQkkyFv6devn+DrI0eOKHUiSF6//fYbYmJiBLFGjRrB19e30nENDQ2xaNEiGBgY4OjRo+Xx4uJibNu2Ddu3b1doDj/99BOuXr0qiL333nvYsmULLC0t5eqjefPm+OyzzzBp0iSFxiYiUqfqPw0iIqqHSktLsXbtWhQUFJTH/vGPf8DMzKwWZ/Xab7/9Joq9//77ct0d0aNHDxw+fBhz586VOxHytsmTJ0vWHT537pzCfSkjLy9PcuGl6KmYQ4cOISEhQRAbM2YM5s6dK1cipKKKJzmq8tNPP4l2+o0cOVKuDwf69u0r+l5zcnIkkytERERU+z755BOcPXsW+/fvx9KlSzFq1Ci0a9euPBFSFwUHB4tKkpqYmGDFihVynYa1tLTEihUrRM9H+/fvV+k8K2NkZCSZ9AgKCkJxcbFG5qCszMxMnDp1ShRfunSpXB+u6+rqYvny5aIPo0+ePInnz5/LPY89e/bgt99+w7Zt2zBr1iwMHDhQ7rK4pF4lJSWS5evmz58v1+/IzJkzRSekoqKiEBUVJfccHj16hAMHDghiTZs2xfbt2+VOhLxNkbUUEZG6MRlCRO+kw4cP4+7du+Vfu7u7Y8iQIbU4o9fy8vIkL6eTNxnQoUMHpZIgb/u///s/Uez69esoKiqqUb/yCAgIEJW1atmyJdq3by93H1lZWfjpp58EsebNm9f48kB55OTkiJI5urq6mDZtmtx9TJs2DTo6OoLYqVOnRLs3iYiIqPZZWloqXE6ztl2+fFkU8/DwUOhDTmdnZ/To0UMQi4+Pl7xbQB3enMR526tXrxRKCNSG0NBQ0T19HTp0kCyNVRkTExOMGzdOECssLMSZM2fk7sPOzo4fUNdRYWFhSE1NFcRatWqFwYMHy9VeX19fcj3366+/yj2H3bt3i9Z+ixYtQuPGjeXug4iormIyhIjeOUlJSYKawEZGRli4cGEtzuh/Ll68KEoGtG7dWrTYUydHR0eYm5sLYoWFhRpZXEqVyPrLX/6iUB/Hjx8XnPgBgFmzZkFfX79Gc5NHYGCgaOHQt29f0c+zKhYWFqJTJOnp6bh586ZK5khERETvtoiICFFMmU1BQ4cOFcUq3j+nTlInGep6MkRVP3upNufPn1dqTnVJSUkJ7t27h0uXLuHkyZP48ccfcfz4cfz++++IjY1VqHTtn9Xvv/8uiv31r39VqI8+ffqI1h/BwcHIz8+vtu2jR48QFBQkiPXt2xdubm4KzYGIqK7inSFE9E4pKSnB2rVrBTuyZs+ejSZNmtTirP5HqkSWoskAVWjSpAkyMzMFsczMTNjY2KhtzKSkJMFpHeD1ziaphXZlSktLRRf0mZubw93dXSVzrE5YWJgo1r9/f4X7GTBgAAIDAwWxq1evokuXLkrPjYiIiCg7OxsZGRmCmLGxMVq0aKFwX87OzqJYaGio0nNTVMUTFsDrE7l1WcUyrsDrkyGKsrCwgK2treAEwcOHD5GSkvKnLHcVHh4OPz8/hIeHV3m/jqmpKXr27ImJEycq9Ttb15WVleH69euiuKLrCV1dXfTp00dwmXpBQQGioqLQs2fPKtueOXNGdCK9NtajRETqwpMhRPRO+fnnnwWX0bm5uWHkyJG1OKP/SUxMFFwECbxOBtRG+a6KJysAqL0EhFQiqE+fPjA1NZW7jzt37iA9PV0QGzBggKjslLrcunVLFOvUqZPC/Ui1keqbiIiISBEvXrwQxZo0aaJUySQrKytRu7S0NMHF6upSVlaGuLg4QUxbW1utl1qrQnZ2tiim7GYja2trUUyReyHqgoSEBHzxxRdYsGABLl26VGUiBHj98zt37hymTJmCTZs2SSbE/sySk5ORlZUliDVr1kyhU+ZvKLueqFiy2cTERKEybkREdR2TIUT0znjw4IHgYkdDQ0MsXry4FmckJJUM6NevH0xMTDQ6j5KSElGdWgA1voukKsXFxZJH+xXdhRQeHi6KKXLfSE2kp6eLTtNYW1srdcmglZWVaIGbkJAgupidiIiISBEvX74UxYyMjJTqS1tbW7JtxSSFOly4cEG0AcbJyUnjz82Kkvr5N2zYUKm+jI2NRbHY2Fil+qoNV65cwezZs3Hjxg2F25aUlMDPzw/z588XJQ/+zKT+/JQ5OQRIn9yq7vcjJSUFT548EcQcHR3r/IkrIiJF8F80InonFBcXY+3atYL7HGbMmFFnjpEXFRVJJgPkvThdla5duyaqJ2tjY6PWC/OCg4NFCxkbGxt07dpVoX6kLu1s06ZN+f8vLi5GcHAwLl++jJiYGGRkZKC0tBSNGjVC48aN0a5dO3Tt2hU9evRQeGGanJwsijVt2lShPt5mZ2eHtLS08q/z8/Px7NmzOr/jkYiIiOouqZO+UieC5SV1B8HDhw+V7k8eYWFh2Lx5syg+fvz4GvV79OhR3Lp1C4mJiXjx4gXy8/NhYmICExMT2NrawsXFBZ07d5b8kFleDRo0QHFxsSBWWFio1IfNtfGzV5ULFy7A29tbVI5JT08Prq6uaNeuHZo0aQJjY2PIZDKkpqbixo0bopMNd+/exYoVK7Bt27Z68YG91HqiWbNmSvVlbW0NHR0dwWaqR48eVdnmzp07oljr1q0FXyckJOD8+fOIiorC48ePkZeXByMjIzRu3BjNmjWDm5sb3N3dlZ43EZG6/fn/a0FEJIeffvpJsBPG2dkZo0ePrsUZCQUFBYmOzTdt2rRW7oh4u7bsG71791brmFKnYoYPH65wyYbExERR7M2D+M2bN7Fu3TrRbicAyMjIQEZGBu7fv49Tp07B1NQUn3zyCcaMGSP3xetSp2lqcseKVOmDlJQUJkOIiIhIaVLlR6VKZ8kjJydH9ME+AMlnrZrKzc3FrVu3cObMGdG9asDr09SDBg2q0Rg7duwQxbKyspCVlYXk5GRcu3YNAODg4ICPP/4YgwcPVrgUa6NGjZCbmyuIvXjxQqnTIVJ/bpooUVZTDx48wMaNGwWJEB0dHYwfPx4TJkyodAPW1KlTER8fjw0bNgjWdbdv38bu3bsxe/ZsdU9d7Z4+fSqKSa0J5KGjowMrKytBn+np6SguLq40cSR1p82btdTLly+xdetWXLx4UfSely9f4uXLl0hOTkZISAj+9a9/YdCgQZg6dSqTIkRU5zAZQkT1XkJCAv7zn/+Uf62vr4+lS5dCW7vuVApUVTKgpm7cuIGQkBBBTEtLS60nVJ49eya6KFBbWxvDhw9XqB+ZTCY6XaKvrw89PT385z//wf79+0W7zyqTnZ0NX19fXL58Gd7e3nLV6a1YIgt4XYNbWVJt61MZACIiItI8MzMz6OrqCpIYz549Q1ZWFszMzBTqq7KSO8o+rxw8eBB//PGHIFZYWIhXr15JPme90atXL6xcuVKpMZWRmJiItWvXwt/fHytXrlSoJGqTJk1EG2hiYmIUPq1eUFCApKQkUbyqn1NdUFpaitWrVwtOtRgaGsLHxweurq7Vtm/Tpg3+/e9/w8vLS1Ae9/jx4xg7dmyNnr3rAnWsJ95OhpSUlODFixeV/s5Kbe4yMjJCTEwMli1bhufPn8s1bmlpKS5evIiQkBB89dVX6NWrl3LfABGRGtSdTwKJiNTgTXmstxd8U6ZMgb29fS3OSujp06eIiIgQxHR0dPDhhx9qdB6vXr3CunXrRPHBgwejVatWahvX399flKTo1q2bwg/+Ug/nDRs2xPHjx7F3717RGMbGxrC3t4eNjQ309PQk+7x79y4+//xzuRb1UjWgDQ0N5Zy9mFRbqUs3iYiIiOSlr68PJycnUbziZhh5VNZG2eeV9PR03L9/X/C/5OTkSj/gt7KywsKFC+Hj4yNZ/ksZxsbGsLW1RcuWLWFlZVXlCeHIyEhMmzZNMilRGalLrUNDQxWeZ1hYmOSpnMLCQshkMoX705TAwEA8ePBAEFu6dKlciZA39PT0sGbNGsEpp6KiIhw9elRl86wtmlhPSI3xhtR66sWLF/Dy8hK9pq+vDxsbG9jb20veXwMAeXl5WL58ueRpEiKi2sKTIURUr/3www+Ij48v/9rR0RETJkyoxRmJnTlzRvRBfY8ePZS6eFtZZWVl8Pb2Fh3NNjU1VeuR87KyMpw5c0YUV/TidOB1qYaKcnNz8d1335V/raurCw8PD4wcORIODg7l8YKCAkREROCHH35AdHS0oI+nT59i9erV2LJlS5WlEKTqNstbYkuKqmt6ExEREQGAm5ub6G6A48ePY9iwYXKXfXr58iXOnj0r+Zq6P4w3NDTElClTMHbs2Eo3tMiradOmcHd3R48ePdCqVSvR83dJSQni4+MREhKCEydOiBI9WVlZWLJkCXbu3CnXSWJXV1f8+OOPglhAQABmzpwJKysrued95MiRSl/Lz8+v0Qfo6nTo0CHB1126dMHAgQMV7sfY2Bhjx47F3r17y2OXL1/G3LlzazzH2iS1nqhJok9qLSI1xhtS66mdO3cK1iAdOnTAZ599Bjc3N0H/CQkJ8PPzg5+fn+CektLSUmzYsAEODg6C9RcRUW3hyRAiqrfi4uIEiw1dXV0sXbpU4dq+6lRaWgp/f39RXJlkQE3s2rULV65cEcS0tLSwdOlSuRZ2yrpx44boOLaZmRn69OmjcF9FRUWSsTeJJhMTE3z33XeYP3++6EG8QYMG6NWrF3x9fSWTZZGRkTh9+nSV40vtzqvJ4kWqrdT3SERERKSIESNGiO4MuH//Pg4ePChX+7KyMmzatAmvXr2SfF3qmUiVZDIZfH19MX36dPj7+6OsrEzhPpydnbF161b8/PPPmDdvXqUbkXR0dODk5ISpU6fi2LFjks/oT58+xYYNG+Qa19XVFS1atBDECgsLsW7dOrnLuR4/flx0kfjb6urzYmpqqqi0Wk3WPO7u7oKvnz59Knnnxp+J1N8dVW+uqurvp9TvztuJkIkTJ8LX1xfu7u6iebVq1Qqenp7Ytm2b6KRIfn6+3H9HiIjUjSdDiKheKioqwtq1awW7UiZOnKjWck/KCA8PR1pamiBmbm4uerhXpxMnToh2aQGvf17qvjhdKsEwdOjQSi/1q0pVC2EtLS1888036NChQ5V9aGlpYdasWXj+/DnOnz8veO3QoUMYMWKExpJpmr4vhoiIiN4N1tbWGDJkiOh07r59+6Cnp4cJEyZU+hxSUFCALVu24NKlSyqfl6enJzw9PQWx3NxcZGdn4/79+7hx4wbOnz9fnoR58OABfHx8cPbsWaxatUqhDTzdu3dXeH4GBgbw8vKCtbU19u3bJ3gtJCQEt27dkiyD9TYtLS1MnDgR3t7egvj169exevVqLFu2rMpTHSdOnBCceq5sjLooKipKFOvYsaPS/dna2opi8fHxsLGxqbTN3r17RRvAlLFkyRKFTyX17t0b06ZNU3ismvx5SrWtas1U1WvDhw/HzJkzqx2zU6dOWLNmDRYuXCjoLzo6GhEREXBzc6u2DyIidWIyhIjqpQMHDiAxMbH865YtW2LSpEm1OCNpUhenDxs2TKlkgDLOnz+Pbdu2Sc5h+vTpah375cuXCAoKEsWV3SFW1c9s2LBh6NKli9x9zZ8/H8HBwcjLyyuPpaamIjw8HD169JB7/JqUtZJqq6nfCyIiIqrf5syZg8jISMEJ3bKyMuzcuRMBAQHw8PCAq6srLCwsUFJSgmfPniEsLAy//PKLYPe9ubm56E6Pmuxkr8jIyAhGRkaws7NDv379MHPmTOzcuRMnT54sf09kZCTmzZuH7777TuFL4JUxZcoUxMbGij5UP3z4cLXJEOD1xp/Lly+LnoMvXbqE27dvY+zYsejZs2f5vXaZmZmIioqCn5+foLyZ1M8eUO3PX5UqlmYDgC+//FKlY1R3X01aWhru379f43EePnyocJvWrVtX+x5NrCeqSuJUttYwNjbGP/7xD7nH7dq1KwYPHizaXHbq1CkmQ4io1vFTFSKqd2JiYgQnHXR0dLB06dIa1xRWtezsbAQHB4vimiqRFRgYCB8fH9GR/AEDBsDLy0vtu8ouXLiAwsJCQaxjx46i0gHyMjAwqPS10aNHK9SXiYkJBg8ejF9//VUQj4yMrDQZIjV+xe9PEVKLl6q+RyIiIiJ5mZiY4JtvvoGnp6foQuXY2Fi5Stq0aNECn376KdauXSvqW10aNmyIBQsWwNbWFr6+vuXx5ORk+Pj4aKwUz6xZsxAaGip4jo6IiEBxcbFcm1eWL1+OefPmCe42BF5fYL1r1y7s2rWryvaGhoZYtWoV5s+fL4hraWnByMhIge9Ec549eyaKqSIx8bbqkiF1narvDFR0PVHZa0OHDlX492r06NGiZIjU6SAiIk3jnSFEVK8UFhbCx8dHUB5r/PjxaNeuXS3OStq5c+dEdVk7d+6M5s2bq33skJAQ/POf/xT8nIDXx7e/+uorjZSCkjoVM2LECKX7MzU1rTTu6OiocH/dunUTxW7fvl3p+xs1aiSK1eQCUam2lX2PRERERIpq06YNdu7cqdRGFEdHR2zcuBHa2uKPFCwsLFQxvSpNmDBBtEHl6tWrCA8PV/vYAGBvb4+2bdsKYjKZDNHR0XK1NzIywo4dO9C3b1+FxzY3N8fatWvRrFkz0WumpqZ19iRxxaSbOtQkcVAXSD3rq3o9IbVmqe41qXVRddq1aye6OyQzMxOPHz9WuC8iIlWqm/+VJCJS0i+//IIHDx6Uf92sWTNMnTq1FmdUOalkgCZOhYSFheGrr74SXZ7Xo0cPrFmzRiMLqJiYGNFOsIYNG2LAgAFK99m4cWPo6OiIEjxt2rRRqj+pdhkZGZW+X6pOtdQOOHlJtdVE6QciIiJ6dzRr1gx79uzBr7/+ikOHDkmWXXqbgYEBPvroI0yePBm6uroIDQ0VvUfqLgd1mDx5Mq5duyaI+fn5oWvXrhoZv0uXLoiJiRHEKt4FWBVDQ0N4e3sjKCgI+/fvr/aUhLa2Nvr37w9PT080btwYSUlJovfY2dnJPb6m5eTk1PYUsHz5cixfvlzhdv369RN8feTIEbX8nks966enpyvdX8X1hLa2Nho3blzp+ytLZCqzntLS0kLr1q1Fp0EyMjIkE3lERJrCZAgR1SsVP6zOy8vDrFmz5G5f8aQG8LpUgFRCpeLFiYqIjo4WJG2A17VYa5IMkEd4eDiWL18uKt/UtWtXfPPNNxorJSaVCHr//fervDCyOrq6urCyshLUsQaq3v1UFamdWVXtaJNaECmyIJanraY+XCAiIqJ3R4MGDTB+/HiMHj0ad+/eRUREBB4+fIjs7Gzk5ubCwMAATZs2hYuLC/r06SMogyV1d4KDg4NG5t2+fXuYmJgIPmSPjIzUyNiA9AfHL168ULifvn37om/fvkhMTER4eDji4uLw4sULvHz5Erq6umjSpAnatWuHvn37CpIdUskQTf3slSFVAurChQuS8XeV1LN+xbWNvEpLS0VrYysrqyo3vlWWTFN2PSXVThMnhIiIqsJkCBHVa5mZmdXucKuOTCZTeT1bqWTABx98oNbFwI0bN7Bs2TJRIsTV1RU+Pj4aW4gUFBTg999/F8VrUiLrjRYtWogWDMomeKQun6zqDhCp8mZPnjxRamwASElJEXzdoEEDWFtbK90fERERUVV0dXXh4uICFxcXudskJCSIYs7OzqqcVqW0tbVhbW0tSIZkZ2cjLy8PDRs2VPv4Uvcr1KRMk4ODg0LJjMTERFFMUz97ZUhtNMrJyWEy5C329vaimLLribS0NFElAKn+31ZZyTxNraeIiDSBd4YQEWmYTCaTTAaos0RWVFQUli5dKlqgde7cGevWrdPoIiQgIACvXr0SxBwcHFRyr4tUH7m5uUr1VXGOQNW7opo0aSI62v706dMqS2tVJiMjQ5TUad26tUbuciEiIiKSR2FhoegCcFtbW42WapL6sDUvL08jY0udAqmqBJGq3b17VxRzdXXV2PiKkiopq+yph/qq4j00gPSfszzu3LkjV/9vc3Jykoxraj1FRKQJTIYQEWlYQECAaJHWpk0bpS75lsfNmzfh5eWF/Px8QbxTp05Yv3695K42dVL1xelv69y5syiWmpqqVF9S7apb4Hbq1EkUq+rS9crcunVLrr6JiIiIaktISIjomXbgwIEanUNWVpYoJnUCQR2kSoRpauzMzEzcuHFDEGvfvj1sbGw0Mr4ypDYt3bx5sxZmUne1aNFCtN549OiR5O95daTWINWd+rKzs5M8ia7sekoq2aXJhCERkRSWySKiemXevHmYN2+e0u1TU1Px0UcfCWKdO3fG9u3bazq1cupMBlR0+/ZtLFmyBDKZTBDv2LEjNmzYUKM7OpTx6NEj0aJHX18fQ4YMUUn/nTp1gpGRkWD3UlJSEnJzc2FkZKRQX1K7qaq7PLBHjx4IDAwUxC5duqTwBwMV+3jTNxEREVFd4e/vL/haS0sLw4cP19j4mZmZog9bTUxMNHIHXnFxMa5fvy6Kt27dWu1jA8C5c+dQUlIiiKnzlLkqdOvWTRS7fPkyPv3001qYTd2kpaWFbt264cKFC4J4YGAgRo0aJXc/xcXFCAoKEsT09fUlN45V5O7ujpMnTwpid+7cqfZUSUU5OTmihKG+vn6lpbiIiDSFJ0OIiDQoOTlZtEunQYMG+OCDD1Q+VnR0tGQipEOHDti4caNGailXdObMGVGsb9++Kjsurauri0GDBgliJSUluHjxosJ9nTt3ThRzc3Orsk2/fv1EC/CgoCCFdnNlZmaKFi+WlpZyLV6IiIiINCEsLAyhoaGCWJ8+faq9k0CVLl68iLKyMkGsQ4cOGhn7zJkzojJZ9vb2khdgq1pmZiZ+/PFHQczc3BxDhw5V+9g18d5776FZs2aC2L179xAREVFLM6qb3n//fVHMz89PoT5CQkLw/PlzQaxPnz5yVQQYPHiwKHb+/HmFxn/TpuLfT2dnZ94RQ0S1jskQIiINOn36tCjWv39/mJiYqHSc2NhYLFq0SFTftV27dti0aVOtJEKKi4tx9uxZUVzVp2JGjx4NLS0tQezQoUMK1Y8OCgpCXFycIGZgYICePXtW2a5Ro0aiUyDFxcXYt2+f3GPv27dPdNnhyJEjoa3N/2QTERFR7cvMzMTmzZsFMV1dXfz973/X2ByeP3+OH374QRTv16+f2sdOSUnBnj17RPEBAwaofezi4mJs3LhRdBfDjBkzJO9PqWsmTZokim3YsAEvX76shdnUTd27dxeVO7t//77knZNSioqKJNce8p4s6dixo+gUSHR0tCj5WZW8vDwcPnxYFNfE3xEiourwkxUiIg0pLi6WPG2g6mTA/fv3sXDhQtEiycnJCZs3b1a4XJSqXL16VbRDydbWVuUXPbZq1Qr9+/cXxFJTU7Fp0yZROQEpjx8/xqZNm0TxUaNGyVUH+tNPPxVddO7n54eQkJBq2165ckW088vY2Bhjxoypti0RERG9W8aPH49+/foJ/hcZGSl3e3meiyrKyMjA/PnzRXcITJo0Se5TIb6+vkhOTlZ47DfS09Ph6ekp+gDd3Ny82tKkMplM4U0yb3v06BGWLFkiOhXSqFEjUandqijzsy8qKsLXX3+NK1euCOJdunTRaHmymhgyZIjo9yQ1NRVLlixBRkaGUn3m5ubi0KFDSp1eqIt0dXUlS4dt3bpVrgvnd+/ejcTEREGsU6dOCp0ynzZtmii2fv16pKSkVNu2pKQE69evR1pamiBuZWX1p/k9JaL6jckQIiINCQkJEZVLatq0qUrLHyUlJWHBggWixWHbtm2xefNmGBsbq2wsRUndlTJ8+HDRKQ5VmDt3rijpc/HiRXz55Zd49uxZpe1CQ0Mxd+5c0Z+TpaUlPvnkE7nGbtmyJf72t78JYmVlZVixYgVOnz4tOi7+5vVTp05h5cqVotemT5+usjJiRERERG/MnDkTvr6+SEhIqPa9hYWF+OWXX/DZZ5+J7gFwc3PDZ599Jve4AQEBmDx5MlasWIFLly6hoKBArnY5OTk4evQoJk+ejKSkJNHrUs9/FRUXF2Pnzp0YN24cduzYgdu3b0s+m1X0Zqf79OnTJRM5M2bMUOik96ZNm/DNN98gIiJCdCK4orKyMoSGhmLKlCkICAgQvGZpaYmVK1eq5XlaHXR0dLBmzRrRKfXo6GhMmzYNJ06ckOv3obi4GOHh4di4cSPGjRuHnTt3ijZd/ZmNGDFCdDojOzsbs2bNkrzXEADy8/OxefNmHDlyRBDX0dHBF198odD47u7uolNWmZmZmDNnDq5du1Zpu7S0NCxbtkz0ewoAn3/++Z/i9BIR1X9aZfL8l5+I6B2hzgvUlyxZgqtXrwpiM2fOxMSJE2vc9xsLFixAeHi4KG5nZ1fj0lhTp05Fnz59lGqbkZGBcePGCXbB6ejo4OjRo7CysqrRvCoTFBSEFStWiBa4DRo0QM+ePeHi4gIzMzMUFhYiNTUVoaGhiI2NFfWjp6eH7du3K1SDuqCgALNnz0Z8fLzoNXt7ewwaNKi8pnRKSgp+//13PH78WPTeXr16wcfH50+zwCUiInoXLV68uMoPYpOSkkQfeFd30faGDRtgaWlZ5XvGjx8v2im+bds2dOnSpZoZvzZmzBikp6cDAKytreHs7AwHBwdYWFigYcOGyM3NRVZWFmJiYnD9+nXRPXTA65PH3377rUInjyvOW19fH61bt0abNm3QtGlTGBsbw9jYGEVFRcjLy0NKSgri4+Nx69YtFBYWSvY5YcIEzJo1q9qxc3JyRBeNm5mZoW3btmjVqhWsrKxgbGyMBg0aIDc3F5mZmbh79y6ioqIqPU3y0UcfYc6cOXJ//wDw9ddfl1+SbWxsjE6dOqFVq1awsbGBkZERioqKkJWVheTkZISGhkr+fpmammLr1q1o1aqVQmMDQExMDDZs2FDp6zKZDE+ePBHETExMYG1tXWkbR0dHeHl5yTX+lStXsGLFCskTMsbGxujcuTPat2+Pxo0bw9jYGDKZDK9evUJaWhri4uIQHx8vKgc8a9YsTJgwQa7xFVUxMXDkyBG13w/z6NEjzJw5U/R9AoCrqyu6desGa2tr5ObmIikpCRcuXJAsNzZ79mx8/PHHCo+fk5ODGTNmSJ4GcXJygru7O2xtbaGnp4fMzExERUXh2rVrkn9Hx4wZg/nz5ys8ByIiddCt7QkQEb0L0tPTcf36dUFMR0cHH374oUrHqWxnmTxHmquTk5OjdNuzZ8+KFjvdu3dXWyIEeH0x+5IlS0TlsQoKChAYGIjAwMBq+zAyMsLKlSsVvoyzQYMG2LBhA+bPny/aPZicnIwDBw5U24eLiwtWrVrFRAgREVEd9/DhQ7nK17zt/v37Vb5eVFRUkykpLC0tDWlpaXLfSwC83j2+atWqGm+4KSwsRHR0NKKjoxVuq6OjgylTpmDy5MlKj5+VlYVr165VueO9srE/+eQTTJ8+XemxAeDVq1cICQmRq6TqG82aNcP69evRvHlzpcaUyWTV/g5WlJOTU+V6QJET6L1798a3336L1atXIzMzU/Daq1evEBwcjODgYIXmV980b94c69atw5IlS0SJyBs3buDGjRvV9jF+/HilEiHA6+TXli1b4OnpKSqLFxMTg5iYGLn6GTlypMLJQiIidWKZLCIiDfD39xclA3r27AkLC4tampFmnTlzRhSruCtPHf7yl79g8+bNVe5iq4yjoyN8fX3Rq1cvpca2sLCAr68v+vbtq1A7LS0teHh4YPPmzTA0NFRqbCIiIiJ1MTU1haenJ9atW6dUIsTAwEAl83B2dsb3339fo0SIshwcHLB9+3bMmDFDoxtXdHV1MWbMGOzdu1fpREhd0blzZ+zZswdDhgwR3benCC0tLXTp0gUuLi4qnF3d4OLiAl9fX7Rs2VKhdoaGhli4cCHmzp1bo/Ht7Oywe/duhdczwOtkyqJFi7B48WLo6nIfNhHVHfwXiYhIzcrKyiSTAaq+OL2uioqKEpWAMjc3VzrJoChXV1ccPHgQp06dwqlTp/DgwYNK36uvr4+OHTti9OjRSj30V2RiYgJvb2+EhYXh6NGjiIiIqPTCTH19ffTq1QsTJkxAu3btajw2ERERUVW+/PJLBAcHIyIiAg8fPkRpaWml79XS0kLr1q0xZMgQjBgxQqGyWBXt378fd+/exbVr13Dnzh3ExMRIluCSmoOdnR3c3d0xbNgw0Z0K8jA2NsauXbsQFRWFmzdvIj4+vrxUWHUsLCzQpUsXjBw5Uu5SZJWZNGkSmjdvjrCwMMTFxVVa/uuNJk2aYNCgQRg1ahTs7OxqNHZdYmlpiRUrVmDq1Kk4fvw4wsLCRHfSSGnYsCE6d+4MNzc39O3bFzY2NhqYbe1wcHDA3r174e/vjxMnTlR5osfU1BSDBw/Gxx9/jCZNmqhkfFNTU3h7e+PGjRs4duwYwsLCqjy5Zm9vjw8++ABjx46t1fsqiYgqwztDiIjonfKm1nBqaipkMhkMDAxgamoKKysrODs7o0GDBmobOycnB/fu3cPjx4/L6/82atQIzZs3R/v27VW2U5KIiIhIEbm5uUhMTERqaipevHgBmUwGHR0dmJiYwNbWFm3btkXjxo3VMnZpaSlSU1ORmpqKtLQ05ObmQiaTQVdXF0ZGRmjYsCGaNGmCNm3a1CgJU5ns7Gw8efIEz549Q2ZmJvLz81FUVARDQ0OYmJigUaNG5fd5qENRUREePHiAlJQUPH/+vPxuEkNDQ1hbW8PBwQFNmzZVy9h1UWZmJuLi4pCdnY3s7GzIZDIYGhqiYcOGsLKygr29PWxsbN7ZUrJpaWmIjY3F06dPy/+emJubo2XLlmjbti20tdVbAEYmkyEmJgbJycnlZdMaNWoEMzMzODk5qbUMMhGRKjAZQkRERERERERERERE9RrvDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrXmAwhIiIiIiIiIiIiIqJ6jckQIiIiIiIiIiIiIiKq15gMISIiIiIiIiIiIiKieo3JECIiIiIiIiIiIiIiqteYDCEiIiIiIiIiIiIionqNyRAiIiIiIiIiIiIiIqrX/h9dxSaOY4M2VAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the raw ts values\n", + "ts.plot_ts(skycoord = coord)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "070a537c-d856-4a32-8cb0-f2e8fa7a9706", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkMAAAQRCAYAAACadv/fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAC4jAAAuIwF4pT92AADB2ElEQVR4nOzdd5hcZdk/8Hs2vZJASCck9BaqNOlCAqFGIa8ioIAgRUClKCrSNYio8CK+gChBQIGgdIJEkJ4AAQIIJKGEmoQ00kjPnt8fmPyyO2eT2d3Zndmzn8915bqY58x5zjO7s5tw7vk+dy5JkiQAAAAAAAAyqqLUCwAAAAAAAGhIiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAADU2ogRIyKXy+X9AQAAgHLUstQLAAAK98EHH8Rrr70W77//fkyZMiUWLFgQixYtivbt20fXrl2ja9eusf7668f2228fW265ZVRU+NwDAF+YNWtWPPDAA/HUU0/Fa6+9Fh9++GHMmzcvVqxYEZ06dYo+ffrEVlttFfvuu28cdthh0bdv30Zb2/Lly2P06NExatSoePnll+Odd96JuXPnrlrbhhtuGAMHDozBgwfHoYceGuuss06jra2Yxo0bFw888ECMHTs2JkyYELNnz45FixZFx44do2fPnqu+/kcccURsuOGGDbKGTz75JO6666548MEH4913341PP/002rRpEz179owddtghjjjiiBg6dGi0bdu2qNedMWNGbL755vHZZ5+tGjv22GPj1ltvLep1AABqkkuSJCn1IgCAdEuWLIlHHnkk7r777njsscdi6tSpBZ/bsWPH2GmnnWLw4MFxzDHHNNhNFZqnESNGxAknnJA37p+WUH4mTZoUl112Wdx5552xbNmygs5p0aJFHHHEEXH55ZfHlltu2WBrW7FiRfzhD3+IK6+8Mj7++OOCzunYsWOcdNJJcdFFF0WXLl0abG3FNGrUqLjwwgtj3LhxBT2/oqIijjjiiBg+fHhsvvnmRVnD0qVL44orrogrrrgiFi1atMbnDhgwIK6++uo4/PDDi3LtiIjvfOc78ec//3nV406dOsWkSZOiZ8+eRbsGAMCaKIYAQBmaN29eXHvttXHttdfGp59+Wu/5crlc7LPPPnHSSSfF0UcfLTHSAEaMGBHvv/9+lbHtt98+hg4dWpL1NDTFEJqTOXPmxNVXX503fvzxx0f//v0bfT2FqqysjMsuuyx++ctfxtKlS+s0R6tWreLCCy+Mn/3sZ0XfCm/y5Mlx5JFHxiuvvFKn83v06BG333577L///kVdVzEtXLgwTj755PjrX/9ap/Nbt24dw4cPj7PPPrte61i0aFEceeSRMWrUqFqdd+WVV8Z5551Xr2tHRDz//POx++67V/k74qqrropzzjmn3nMDABRKMQQAysxtt90W5513XkybNq1B5h84cGD86le/iiFDhjTI/M3VvvvuG08++WSVsW9/+9sxYsSI0iyogSmG0Jy8//77MWDAgLzxf//737Hvvvs2/oIKsGjRojjqqKPi4YcfLsp8w4YNi7/+9a/RsmVxdlp+5ZVXYtCgQTFr1qx6zdOyZcv405/+FN/61reKsq5imjNnThxwwAHx0ksv1Xuu7373u3H99dfXuSA1dOjQuO++++p07vXXXx+nnHJKnc6N+KIot+uuu1ZJxWy11VYxfvz4aNWqVZ3nBQCoLR8LBYAysWDBgjj66KPjuOOOa7BCSETE66+/HgcffHD89Kc/bbBrAFA6SZLEsGHD1lgIadGiRey0005x2GGHxde//vXYd999o1u3bjU+f+TIkfHtb3+7KOt7991348ADD6yxEJLL5WLbbbeNo446Ko4++ujYZ599omPHjqnPXb58eZx44onxwAMPFGVtxbJkyZIYMmTIGgsh/fv3j8MPPzyOOeaYGDJkyBq3i7rxxhvjxz/+cZ3WMmLEiLxCSC6Xi+9+97vx8ssvx8KFC2PGjBlx1113xTbbbJN3/tlnnx1vv/12na4dEXHTTTflbQ927bXXKoQAAI1OA3UAKAMzZsyIwYMHx/jx49f4vO222y4OPPDA2H333WOTTTaJPn36RIcOHSKXy8WCBQtiypQp8fbbb8eYMWPi8ccfX+Pe5FOmTCnyqwCgHFx66aXx0EMPpR7r0qVLXHTRRXHcccfFeuutV+XYihUr4umnn46f//zn8cwzz+Sd+9e//jV23nnn+MEPflDntS1dujS+/vWvx4wZM/KOrbxB/9Of/jT69etX5diiRYvi9ttvj5/97Gcxffr0vHV/61vfivHjx5dNf6xzzz03xo4dm3psv/32i+HDh8euu+5aZTxJkhg9enScf/75qVuH/frXv4499tgjjjjiiILXsWzZsvjJT36SN37zzTdXKW61a9cuhg0bFocddlgcfPDB8e9//3vVsYULF8bPf/7zuOOOOwq+7kqzZ8/O+/DFsGHD4itf+Uqt5wIAqC/bZAFAic2aNSv22muveOutt1KPt2jRIo499tg477zzYuutt67V3O+880786U9/ij/84Q8xb968KseyvIVTKTS3bbKgOWlK22Q9//zz8eUvfzkqKyvzju2www4xatSo6NGjxxrnSJIkhg8fHj/72c/yjrVt2zbeeOON2Gijjeq0vuHDh6cmE1u1ahV33HFHfO1rX1vj+VOmTImDDjooXn/99bxjhxxySDz44IN1WlcxPffcc7HHHnukHjv33HPjyiuvXON2V0uXLo3jjz8+/va3v+Ud69mzZ0yaNCk6depU0FruuOOOOProo6uMHX/88XHzzTfXeM6MGTNik002qfLvhlatWsUHH3wQvXr1Kui6K5122mlx/fXXr3rcvn37mDBhQmywwQa1mgcAoBhskwUAJbRs2bI48sgjayyEbL311jF27NgYMWJErQshERGbbLJJDB8+PD788MM4++yzi7bXOwDl6ZJLLkkthGy22Wbx2GOPrbUQEvFFQuOnP/1pXHzxxXnHFi9eXOdm3jNmzIhf/vKXqceuv/76tRZCIiJ69+4d//znP6N79+55xx566KEYPXp0ndZWTD/84Q9Tx4877rj49a9/vda+H61bt45bb7019ttvv7xj06ZNiyuuuKLgtfz973/PG/v5z3++xnPWX3/9+N73vldlbNmyZXHvvfcWfN2IiJdffjluvPHGKmMXXHCBQggAUDKKIQBQQhdccEFemmClgw8+OMaOHRtf+tKX6n2dddZZJ37zm9/ESy+9FFtuuWW95wOg/Lz88ssxatSovPGKioq4+eabo2vXrrWa74ILLsjbyiki4v77709NZqzNtddeGwsWLMgbP/jgg+PEE08seJ5evXrF73//+9Rjw4cPr/W6iunxxx+PF154IW+8Z8+ecd111xU8T4sWLWLEiBHRrl27vGPXXXddzJ8/v6B5xowZU+XxTjvtVFCq5+tf/3reWE3bfqVJkiTOOOOMKoW5TTfdNM4555yC5wAAKDbFEAAokRdeeCF+85vfpB77yle+Ev/4xz9qbBhbV9tuu22MGzcuhg0bVtR5ASi9tG2VIr7YPurLX/5yredr0aJFXHbZZXnjSZLENddcU6u5li9fHjfccEPqsdokHVYaNmxY7Ljjjnnj//73v+PNN9+s9XzFUlOR5mc/+1nBW1ut1K9fvzjttNPyxufOnRu33nrrWs+fOXNmfPLJJ1XGdtlll4KuPXDgwLxCTFofk5rccssteYWYa665Jlq3bl3wHAAAxaYYAgAl8sMf/jBWrFiRN963b9+48847o02bNg1y3fbt28edd94Z3/nOdxpkfgBK4/HHH08dP+WUU+o85wEHHBAbb7xx3vjdd98dixcvLnie0aNH5zU+j/iimfjAgQPrtLYzzzwzdfz222+v03z1NWfOnHj44Yfzxjt16hQnnHBCneY844wzUrfVKuQ1zpw5M28s7XuZpqKiIq9PTtp8aebOnRs//vGPq4wdfvjhMWTIkILOBwBoKDYOB4ASGDVqVDz33HOpx6677rro1q1bg14/l8vFXnvtVa85Zs2aFffff3889dRT8Z///Cc++OCDmD9/fixfvjw6dOgQvXr1ik033TS+/OUvxyGHHFLnm1318eyzz8a9994bzz//fEyaNCnmzJkTLVq0iO7du0fPnj1jr732ioMPPjj23nvvqKio3WdErrjiipgwYcKqx6v/90rPPPNMHH/88QXNt8UWW8T5559f8PVnz54dTz75ZLz00ksxYcKEmDRpUsycOTPmzZsXS5cujS5dusS6664b3bp1i5133jn23nvv2HvvvWO99dYr+BrlZPz48fGPf/wjnn322Zg4cWLMnj07kiSJ9ddfP7p37x677757DBkyJA444IBG/eTx888/H/fee2+MHTs2Jk6cGHPmzIkVK1ZE165dY8stt4y99torjj/++Fo1m54yZUqMHDkynnzyyXjttddixowZsWjRolh//fWjV69esddee8XXvva12HPPPdfae6A+Fi1aFI888kg8+eST8corr8TkyZPjs88+i0WLFkWbNm1ivfXWi0022SR23XXXOOigg2Kvvfaq9c9RfSxYsCDuu+++GDVqVLz66qvx8ccfx4IFC6Jz587RvXv32GijjeLAAw+MQw89tNbNvmfOnBnnnntulWulueKKK2LEiBEFzXnSSSfFnnvuWat11MacOXNi/PjxeeMtWrSoV5P3XC4XX/nKV+Ldd9+tMj537twYPXp0HHbYYQXNU1O/iW9+85t1XtvXvva1OPXUU2PJkiVVxu+55574xS9+Ued562rUqFF5a4n4ohDQoUOHOs05YMCA2G233fJSFmPGjIlPP/10jT1g5syZkzfWuXPngq+9zjrrVHn82WefFXTehRdeWKXw1bZt27j66qsLvi4AQINJAIBGd9BBByURkfdn7733LvXS1uqtt95KvvnNbyatWrVKfQ01/dlhhx2Su+++u97XT5v75ptvrvKc0aNHJzvssEPBa9t2222T0aNH12od++yzT61e/9r+7LPPPmu95ltvvZVcdNFFyfbbb5/kcrlaX6N169bJySefnLzzzju1eq1pbr755tRr1MaGG26Yd/5FF11U5TkvvfRSsu+++xb8GgcMGJDcdddd9Xptad/bb3/721We8+yzzya77LJLQWvK5XLJiSeemMyaNWuN1/3kk0+SE088MWnRokVB8+69997Jm2++Wa/XmuaDDz5ITj/99KRjx461en/1798/ueGGG5IVK1bU+dqFvK+WLFmSXHrppUnXrl0LWldFRUVywgknJFOmTCl4HZMnTy7qz3fa76liGz9+fOp1Bw4cWO+5//jHP6bOfcYZZxQ8x4ABA1Ln+Pjjj+u1tq985SsNMm9dnHDCCalrue222+o176WXXlqneceMGZN3zg033FDwdXfbbbcq57Zt23at57z22mt5v8Oq/14HACgV22QBQCP78MMP49FHH0099qMf/aiRV1O4ysrKuOSSS2LbbbeNv/71r7Fs2bJanf/KK6/EUUcdFQceeGBMmTKlQda4YsWKOOuss2LQoEG12tv8tddei0GDBqXujV8uhgwZEltuuWVccsklMX78+EiSpNZzLF26NP74xz/G5ptvHldeeWUDrLK4hg8fHrvssks88cQTBZ8zefLk+J//+Z84+eSTqzTuLaZLLrkk9tprr9QmyWmSJIk///nPsdtuu+V9un6lhx9+OLbddtv485//nLp9Xpqnnnoqdtxxxxg9enTBa1+TysrKGD58eGy++ebxhz/8ocY0RE3ef//9OOWUU2K33XaL9957ryhrqu69996LnXbaKS688MKCP6VeWVkZN998c2y77ba1+r3Q1NS0hVHv3r3rPXefPn1Sx5988smCzp8yZUpMnjw5b3zjjTeuce5C1ZR6efrpp+s1b10888wzqeP77LNPveat62vs0qVL3ti8efMKvm7153bt2nWt55xxxhlVfof179+/VqlHAICGpBgCAI3svvvuS71J26NHjzjooINKsKK1W7x4cRxxxBFx8cUX17oIUt2jjz4aO++8c+p2LvWxfPny+NrXvhbXXnttnee48MIL4+KLLy7eooro7bffLtpcK1asiB//+MfxrW99q+Ab743te9/7Xvz0pz+t8/puuummOPHEE4u8qoizzjorLr744joVWt5+++0YPHhwzJo1q8r4HXfcEYcffnjeeCEWL14cQ4cOjbFjx9b63NXNmzcvDj744PjpT39aqz4QaV588cXYeeedCy4WFeqNN96IXXfdNf7zn//U6fyZM2fGfvvtF6+++mpR11Uuanr/pN0Qr62aboK/9dZbBb1faipC7bTTTvVa15rmaOzC1/z58+Odd97JG+/evXv07du3XnPvsMMOqVvQre01pm25WWihsrKyMt5///0qY2vbZvH222+Pp556qsrY7373u2jbtm1B1wQAaGh6hgBAI0trrhoRMXTo0GjRokUjr2btKisr42tf+1qMGjWqxue0bNkyBg4cGH369In27dvHJ598EhMmTKjx5tyUKVNi0KBB8fTTT8cWW2xRlHWecsopcf/99+eN9+vXLzbeeOPo3r17LFmyJD7++ON45ZVXarzJftlll8XBBx8cu+yyS1HW1Rj69OkT/fv3j3XWWSe6dOkSS5Ysiblz58aECRPi448/rvG8W2+9NTbccMOyS8Rceuml8Yc//CFvvEePHrH55ptHjx49YsWKFTFt2rQYN25cLF26NHWeW265JQ477LA48sgji7Kua6+9NrXYNmDAgNh4441j/fXXj/nz58fbb78dEydOTJ3jvffei1NOOSXuvvvuiPgi3XHcccflvR/XXXfd2HrrraNHjx5RWVkZH3/8cbz00kup79uFCxfGiSeeGK+++mq0atWq1q9r3rx5MXjw4Hj++edrfM7Kn/GePXtG165dY+7cufHJJ5/Ea6+9lloYmj17dhx44IHx/PPPx2abbVbrNVU3derUOPDAA/PSDy1atIiBAwdGr169okuXLjF79uyYMGFCfPDBB6nzzJ07N44//vh48cUXo2XLbP2vUF3SYvW1fPnyeOONN9Za1Hj99ddTx7faaqt6r6GmOWq6ZkN54403Ur8HxXiNHTt2jA022CDvfb22wmC3bt2iT58+8cknn6waGzduXEHXfPPNN2PhwoVVxnbYYYcanz9//vy8dOtBBx0UQ4cOLeh6AACNorS7dAFA81JZWZl07tw5de/vO+64o9TLSzV8+PAa98Dv2rVrcvXVVyfTp0/PO2/ZsmXJQw89lOy+++41nr/jjjsmS5curdV60uapvmd869atk7PPPrvGfgozZ85MLrrooqRt27ap822//fa1/joV0meiPjbeeONV826wwQbJWWedlTzyyCOpX/vVffLJJ8mvf/3r1P4c8d9+Cv/+979rvZ6G6hmy7777JhUVFVXWd/zxxycvvfRSUllZmTfHvHnzkmuuuSbp0qVL6np69eqVLFy4sFbrSvte7rLLLkmbNm1WPW7RokVy+umnJ2+88UbqHG+99VZy2GGH1fjef/LJJ5MZM2YkPXr0qDI+ePDg5IknnkiWL1+eN+fMmTOTc845p8aeIldddVWtXmeSJMmKFSuSgw8+uMZ17rHHHsk999yTzJ8/P/X86dOnJ7/73e+S9dZbL/X8nXfeOVm2bFnB66npfVX9Z3zAgAHJzTffnMyePTt1npdffjkZPHhwja/rd7/7Xa2+TjX1EKnLz05DefTRR1PXeOCBB9Z77ocffrjGr+Wdd9651vNPPvnk1HPr20sjSZJk+fLlqT2sNt9883rPXRu333576ms86aSTijJ/Tb1Rpk6dusbzjjrqqCrPz+Vyyfvvv7/W61144YV517ruuutqfP65556b9/fwpEmTav06AQAakmIIADSit99+u8YbSoXcnGhsr776atK6devU9e6zzz4FNSRevnx5cskll9T4ui+44IJarammeVa/Afb2228XNNfTTz9dY5PoZ599tlbrauhiyKabbpoccsghyVNPPVWn8xcsWJCccsopqa91t912q/V8DVUMWf1Pz549kxdeeKGgud56662kZ8+eqfPcfvvttVpX2vdy9T89evRIxo0bV9Bcp59+euocQ4cOrdJsuWXLlsmIESMKmvO2225Lcrlc3pwbbbRRrV5nkiTJlVdembq+Tp06FXSTe6VZs2Yle++9d+pcF154YcHz1PS+Wv3P6aefnixZsqSg+X7wgx+kzrHZZpsVvKYkaRrFkHHjxqWucdttt6333DfddFON348rrrhirecPGjSoQb9+ffv2zZu7kGbfxfSLX/wi9TUWq3n4sccemzr/mDFj1nheWpHm5JNPXuM5n332WbLuuutWOadly5Y1NqV/88038wpS559/fp1fKwBAQ9EzBAAa0Ztvvpk63rFjx+jXr18jr2btzjrrrNQtiHbeeed48MEHo1evXmudo0WLFnHhhRfGz3/+89Tjw4cPz9uXvK623HLLePbZZ2OTTTYp6Pl77rln/Pa3v009dvPNNxdlTcUyevToePDBB2Ovvfaq0/kdOnSI66+/Pr7//e/nHRs7dmzBW6c0lh49esRzzz0XO++8c0HP32KLLeIvf/lL6rFifi+7du0aTz31VMG9Dq655prYfPPN88bvv//+GDFixKrHd955Z3z7298uaM5jjjkmjj/++Lzx9957L5599tmC5oiI+PDDD+Oiiy7KG19nnXXiueeei//5n/8peK511103Hn300dhzzz3zjv3mN7+JOXPmFDzXmvzoRz+K6667Llq3bl3Q83/729+mrmnSpEm1+lo1BRtssEHqeNp2R7X14osv1nhs+vTpaz2/puf06NGjzmtaXdrfRYsXL65Vs/D6KsVrXNN1VzrqqKNi/fXXrzJ20003xZ133pn6/KVLl8Y3v/nNmD17dpXxI444osZm92eeeWaVfmJ9+/aNCy64YI3rAgAoBcUQAGhEH330Uep4//79I5fLNfJq1uw///lPPPnkk3nj7du3j7///e/RsWPHWs136aWXxgEHHJA3vmLFitT+ELXVpk2buOOOO9ba4LW6k046KfVm9T//+c96r6mYNtxww6LM8+tf/zr19f7xj38syvzFkMvlYsSIETFgwIBanTdo0KAYPHhw3viTTz4ZS5YsKcrarrvuulr1wGjZsmX89Kc/zRuvrKxc1V/gtNNOi6997Wu1WseFF16YOr6m3j7VXX755bFo0aK88ZEjR8Y222xTq/VEfPEz+Le//S2vYffnn38eN910U63nq27PPfeMX/7yl7U6J5fLxZVXXpl6rNx+xuure/fuqYXg5cuXp/4ur43HH3+8xmM19YYq5DnFaO4e8UUBrzbXbQjl+hpbt24dl19+eZWxJEni6KOPjjPOOCNeffXVWLx4ccyaNSvuvffe2G233fJ+j7Rt27bG3lIjR46Mxx57rMrYb37zm+jQocPaXhIAQKNTDAGARjRlypTU8WJ9crSYrrvuutTxn/zkJzV+AnltrrnmmtSmxX/+859j8eLFdZpzpZNPPjm23XbbWp+Xy+Xi2GOPzRv/6KOPGvVGWmNp1apVnHvuuXnjTz/9dAlWk+6QQw6Jgw46qE7nHnfccXljy5YtW2uj4ULsvPPOcfTRR9f6vCOOOKLGxubt2rWLX/ziF7Wes3///vGlL30pb3z8+PEFnT979uzUJM03vvGNGDRoUK3Xs1Lfvn3je9/7Xt54MQqeV199dbRo0aLW5+2+++6pRYJXXnml3msqN3vvvXfq+I033ljnOR9//PF4++23azxeSOqnpoRGp06d6rqsguaZO3duUeYvRDm/xu9+97sxZMiQKmNJksR1110X22+/fbRr1y66desWX/3qV1N/Ln71q1/FlltumTe+cOHCOOecc6qMfeUrX6lVqgwAoDEphgBAI5o/f37qeNeuXRt5JWuWJEnccccdeeNt27aNM888s87zbrXVVnHYYYfljc+aNaven9JO2/6pUPvtt1/qeKE3lpuagw8+OG9s4sSJjbqlzJr84Ac/qPO5Dfm9POOMM+p03jrrrJN6IzEi4pvf/Gadf/533333vLFXX321oHPvuOOO1LRMTYmT2kgrhkyePLle2+HtueeeBW9NlmbffffNG8viz/cRRxyROv7AAw+scaurmlRWVqZupba6QlJXNT2n0O3O1qZNmza1um5DKPfXOHLkyNh///1rfd1LL700zjrrrNRjl19+eZXEa8uWLePaa6+t9TUAABqLYggANKKa0g813eQolbfeeiv1076HHnpojVt1FCrtk/sREWPGjKnznFtssUXBfULSDBw4MHV82rRpdZ6znPXu3TvatWtXZayysrIsPinfsWPH1BvXherTp09qcaEY38vqn6yujZqKIfWZc6uttsobK/R1Pvjgg3ljAwcOrHGdtdGrV6/YYost8safe+65Os956KGH1mdJqT/jWfz5PvTQQ1O3cVuxYkUcf/zxtS54XnnllfHMM8+s8Tmr94qo7XPSkoJ1UdM8haytWMr9NXbo0CEeeuihuOCCC6Jt27Zrff4GG2wQd911V439vt555528nltnnnlm6u+llebMmRM33XRTHH744bHppptGp06domPHjrHxxhvHoYceGjfeeGNerxIAgGJSDAGARrRixYrU8YqK8voreezYsanjhxxySL3nHjJkSOpNnZquWYg99tijPkuKzp07R/v27fPGG3OLlcbWrVu3vLFPP/20BCupatddd63TVkirS2s0XN/v5SabbJLXhLg2ajp3t912K+qcy5cvX2uz7CRJUrdFS+u3UldpKY5S/oynvScK+Vo1NRUVFfGjH/0o9dibb74ZBxxwQMycObOgua666qr4yU9+Uszl5SlWr6ya5lnZl6eUyuk1tmnTJi677LKYNGlSXHXVVbHffvtFv379om3bttG5c+fYdNNNY9iwYXHrrbfGhAkTYtiwYTXOddZZZ1VJpfTs2TMuvvjiGp9//fXXxyabbBInn3xyPPDAA/HOO+/EggUL4vPPP4/33nsvHnrooTjllFNi0003jf/7v/8r+DUBANRGcT6mAgAUpKZPYy5durSRV7Jm48aNSx3ffvvt6z1327ZtY4sttsjr4VDTNQvRv3//eq7qi/3Yq98YLZdto2oyffr0+Ne//hWvvfZavPbaazF58uSYP39+zJ8/PxYsWBCVlZW1mq+Qvf8bWrG+l9XV93tZ33V17Ngxb6xly5bRp0+fos4Z8UXhJ624t9Lbb78dCxYsyBsvRipkpbRi2+rb6dRWfb/+NfVbmDdv3hq/Vk3RiSeeGCNHjkzdevDFF1+MzTffPC6++OI45phjYt11161yvLKyMp555pm48MIL85qut2zZMpYvX543ZyEpg1atWqVu57R8+fIa++nURk3piGJtUVWIml5H2tesLor5GjfYYIM455xz8vp9FOq+++7La7J+5ZVXRufOnfOeW1lZGaecckrcdNNNBc09e/bsOP3002P8+PFx/fXXF62YBAAQoRgCAI2q+tZEK33++eeNvJI1mzp1at5Yy5Yt17j9RW1st912ecWQzz//PObPn1+nZrPF6LmSdkOvvk3dG8rf//73uOmmm+Jf//pX0W60RZRHMaRcv5f1XVfaVngNMWfE2nsI1NQM+84770xNjNRF2pZrn332WZ3nq+/XqqYb9uX6M14fuVwubrvttth+++3jk08+yTs+e/bsOOuss+Lss8+O7bffPvr06RPt2rWL6dOnx+uvvx4zZszIO6dz585x2mmnxa9+9au8Y4UUk1q3bp36vlyyZElRiiE1faCgMbegrKkoUay+JeXwGiO++Jn54Q9/WGVsjz32qHELzHPOOafgQsjqbrzxxujUqVNcddVVdVonAEAaxRAAaETdu3dPHS+H7YlWl3ZTfJ111inap2xr+jrMmTOnTsWQDh061HdJTcKECRPi9NNPj3//+98NMv+iRYsaZN7aKNfvZUOkB0qVSEi7QR4RMXr06Aa9bn2KIeX6vihX3bp1i8cffzwOOeSQeOedd1Kfs3z58hg3btxaU3nt2rWLe++9N958883U44VsH7fOOuvE/Pnz88YXLFhQY8KpNtLmXnndxlLTtdJSWHVRDq8xIuKKK66IyZMnr3rcokWLuO6661Kf+/jjj8c111yTN37AAQfE+eefH1/60pcil8vFSy+9FFdccUU8+uijVZ7329/+Ng4//PDYe++9i/siAIBmq7w2KAeAjOvbt2/q+Mcff9zIK1mztJuWadtf1FVNN2/qc7M068aMGRO77rprgxVCIspjf30aXql64ZT7tnNZs9lmm8XYsWPjgAMOqPMcvXv3jsceeyz222+/GpNjaf1Yqqu+HddKxUqj1TRPTddtCM3hNU6ePDkvHXTqqafGdtttl/r88847L+/vlVNOOSUeffTR2H///WOdddaJzp07x3777RePPPJInHLKKVWemyRJnHfeecV9EQBAsyYZAgCNaJNNNkkdnzp1asydO7fRP+FZk7RPshbzk9k1zVXTJ1+bu9dffz0OPPDAtX592rVrF3369Im+fftGp06dom3bttG2bduoqMj//Mvdd99ddtuz0ThKtTWUYlvjW2+99WL06NHx0EMPxc9//vPU7cvStG3bNr773e/GJZdcEl26dImIqLHx+kYbbbTW+Xr06JE6/umnn8YWW2xR0JrWZNq0aXljbdq0KWoRf23W9BqLIe01RtSctGwIP/jBD6r8/ujWrVtcdtllqc8dO3ZsvPzyy1XGtthii/j973+f2gckl8vF73//+3jiiSdi4sSJq8ZfeOGFGDduXHzpS18q0qsAAJozxRAAaEQDBw6MFi1axIoVK/KOjR8/PvbZZ58SrCpf2rYl1ZuL10dNN+GLsV1KFp1++uk1FkL22WefOO6442KPPfao1U3FJ554QjGkmWrRokWpl0AjO+SQQ+KQQw6J119/PR599NF4/PHH48MPP4wZM2bE7Nmzo1WrVtGzZ8/YdtttY/DgwTFs2LDo1q1blTnef//91LkL6SW14YYbpo4XIxW5YsWK1EJB//79G7X5dkO+xoiat7cbMGBAUeZfm1GjRsX9999fZWz48OE19vP5+9//njf2k5/8JFq2rPkWRMuWLeP888+PE044ocr4yJEjFUMAgKJQDAGARtSuXbvYeuut47XXXss79sQTT5RNMSTt5kYxt7ipaa5iNM/OmnvvvTeeeeaZvPHu3bvHHXfcEfvtt1+d5i3WPvY0PTUlsx5++OEYMmRII6+GxjRw4MAYOHBgnHPOObU+d9KkSXljbdq0iS233HKt59aUHqmpn0ltfPTRR7Fs2bK88cYqEqzUkK8xIuLdd9/NG2vXrl2NiZRiWrp0aXz/+9+vMrbLLrvEd77znRrPGTNmTJXHLVu2jCOOOGKt1/rqV78aJ510UpUPjYwdO7aWKwYASKdnCAA0sgMPPDB1/KGHHmrkldRs5bYoq5szZ07qDae6mD59euq4Yki+kSNH5o21bNkyHnrooToXQpIkKdo+9jQ9PXv2TB2fPXt2I6+EpuLzzz+vsnXRSrvuumu0adNmrecPHDgwdbympuy1UdMcNV2zoWy99dapSZRivMYFCxbERx99lDe+zTbbNEr65aqrroq333571eOKiooat7taafz48VUeb7rppgVtBbrOOuvkbSla6PZuAABroxgCAI3ssMMOSx1/8cUXi/YJ0vpKa4i7fPnyeOutt4oy/6uvvpo31qFDh+jUqVNR5s+KysrKGDVqVN74McccU68tQ6ZNm5a6VRvNQ02fmJ8xY0Yjr4Sm4tlnn039nbH//vsXdP4OO+yQOl69p0RdvPTSS7W6ZkPp3LlzbLzxxnnj06dPr3GLq0K98sorUVlZmTfeGK/xo48+il/+8pdVxk488cTYeeedazxn8eLFedswFtJbZqXqxZD58+fH0qVLCz4fAKAmiiEA0Mj23HPPGm8KXH311Y27mBrUdKO9+ic962LJkiUxYcKEgq/ZnM2cOTM+++yzvPGhQ4fWa97q25fQvKzsXVSdrWioSfVeESsNGzasoPP79OkT/fv3zxt/5513YsqUKfVZWjz55JOp43vttVe95q2LPffcM3W8pjUWqpSv8eyzz65S2OjatWsMHz58jeekJQ9r08w+7YMR0owAQDEohgBAI8vlcvHd73439dif/vSn+OCDDxp5Rfl222231PFibOX1yCOPpG63VdM1m4rWrVvnjS1fvrxec3766aep42k3FWujvjfmaNratWsXO+20U96490XN0n6+I+r/M94ULFmyJP72t7/lje+www4F9QtZadCgQanjDz/8cJ3XNm/evNSeSltssUX07du3zvPWVUO8xjWdf8ABB9Rr3rV57LHH4u67764ydvnll0e3bt1qPVdttvNKe26SJLW+JgBAdYohAFACp59+eurNhMWLF8eZZ57ZKGuovoXF6rbccsvU/h0PPPBAzJ8/v17Xve2221LHd99993rNW2ppn2RdtGhRveas6Wvdrl27Os+5cOHCuPXWW+t8PtmQ1sh42rRp8eCDD5ZgNeWvpi386vsz3hT86U9/Su0nU72h9trU1Dw7rdBSqH/84x+xZMmSvPH6pufqasiQIamFs/vvv3+Nf+euyeTJk1NTW7vttluN/X+KYdmyZXn/Htl+++3j1FNPXeu5aX3H5s2bV/C1056rpxgAUAyKIQBQAp06dYoLLrgg9dgDDzwQv/3tbxv0+vfff3/86Ec/qvF4LpeLb3zjG3njixYtit///vd1vu7EiRPjvvvuyxvv1q1bjY3lm4q0m6X13Sc+7YZSRMTHH39c5zn/+Mc/pm69RfNy7LHHpm6Vdfnll5dgNeWvY8eOqZ9Wr+/PeLmbPXt2XHrppXnj/fr1i6OPPrpWcx144IGx/vrr540//vjj8Z///KdO67v22mtTx4855pg6zVdfXbt2jYMPPjhvfP78+XHzzTfXac7f//73qamIhn6N11xzTZU+YblcLn7/+99HRcXabyG0bds2OnToUGXs3XffLfja1Z/bsWPHGtNZAAC1oRgCACVyxhlnxK677pp67LzzzmuQT++vWLEiLrroovjqV7+61k+pnn766anjv/zlL+u8x/v3v//91C2yvvOd70Tbtm3rNGe5SNu6asKECfXaRqdHjx6p448++mid5nvnnXfiZz/7WZ3XQ3b069cvjjzyyLzx559/XkEkRS6Xi379+uWN1/UmflOQJEl85zvfSd2ub/jw4bW+Od2yZcsat4g8//zza72+kSNHpjZg33fffWObbbap1VwjRoyIXC6X92ffffet9bq+973vpY7/4he/qHWy8sMPP4z/+7//yxvv3LlzfOtb36r12go1derUvCLYscceG3vssUfBc2y33XZVHr/99tsxd+7ctZ43d+7ceOedd6qMbb/99gVfFwBgTRRDAKBEWrRoEbfeemvqp/8rKyvj29/+dlx88cWxYsWKolzv1Vdfjb322isuvfTSqKysXOvzt9lmm9hvv/3yxhcsWBBHHnlkLFy4sFbXv+SSS+Kf//xn3njLli3jtNNOq9Vc5SjtZs3cuXPjkUceqfOc6623Xmy22WZ54zfccENMnz69VnPNmDEjjjzyyDpv1UL2/PKXv0y9oX3hhRfW+VPsad566628vgNNUdrP+H333ReLFy9u/MU0sMrKyjj11FPj3nvvzTt2wAEH1DoVstKZZ56ZlxiI+KIf1Z///OeC55k2bVqcccYZqcfqUlgppgMOOCC+9KUv5Y2vac1pVqxYEccff3zqVmynn356rRqS19a5555bpXDTuXPnuPLKK2s1R/WtL5cvX576fqrunnvuyfsQQVPfRhMAKB+KIQBQQptuummMHDkyWrZsmXcsSZK45JJLYrfddounnnqqzteYMGFCHH/88bHTTjvFmDFjanXu//7v/0abNm3yxseOHRuHH354QTfkKysr4xe/+EVcfPHFqcd/9rOfxYYbblirdZWj3XffPXXboVNPPTVGjx5d5+avQ4YMyRubO3duHHbYYQVvd/Xmm2/GXnvtFa+99lqd1kA2bbzxxqkpkCRJ4sQTT4xTTz21Vvv8r2758uXx6KOPxmGHHRZbb711JnqR7LnnnnljH3/8cXzzm9+s19Z1DeGaa66Jyy+/PGbOnFnrcz/++OMYMmRI3HjjjXnH1ltvvbjllltq1Qx7dT169Iif/OQnqcdOO+20uOeee9Y6x9SpU2Pw4MGpf/8MGTKkLLZc/N3vfpc6/pe//CV+/OMfr/Xvg6VLl8a3vvWt+Pe//513bE1fw2J4+umn469//WuVsYsvvrjW/Um++tWv5o0NHz58jWnJ5cuXxxVXXJE3npZiAwCoC8UQACixAw44IEaOHFnjliPjxo2LffbZJ3bZZZf43//935g0adJa55wwYUL84Q9/iL333ju22mqruOWWW+qUMNlmm23isssuSz322GOPxVZbbRW///3vU2+4LV++PB555JHYa6+9auyP8qUvfanGY01Njx494qCDDsob/+STT2Lw4MHRu3fvGDx4cHzjG9+I448/Pu9P2g2giC8+SZ1WLHvhhRdiu+22i7/85S+pDYQjIl577bU466yzYrvttouJEyeuGt9xxx2jT58+dXylZMk555wTX/va11KP3XDDDbHBBhvEj3/843jxxRfX+DskSZJ455134q677ooTTjghevToEQceeGA8+OCDdS4Elptjjz029WfxnnvuiQ033DC22WabGDp0aBx33HGpP+PPPPNMo6116tSp8fOf/zz69u0bhx12WNx8883x4Ycf1vj8JEnipZdeijPPPDM222yz1K342rRpE/fee2/07t27Xms799xzU1M2S5cujSOPPDJOO+20+Oijj/KOL168OP70pz/FDjvsEK+//nre8XXWWSeuu+66eq2tWPbcc88aE49XXnllHHDAAfHiiy/mHUuSJP71r3/FbrvtlleQWOkPf/hDg6VCVqxYkbfN19Zbb53XSL0Qe+yxR95WWRMnTowzzjgj9XdCkiRxxhlnVPm7KuKLfyfUtKUoAEBt5f9rHgBodEOHDo2HHnoovvGNb8SsWbNSn/Piiy+uunnStWvX2GSTTaJ3797RoUOHyOVysWDBgpgyZUq8/fbbMWfOnLVes9BP9p5zzjnx1FNPpX6ye9asWXHmmWfGD3/4w9h2222jT58+0b59+5gyZUq89dZba/xUcrdu3eL2229PvbnYVP30pz+NRx55JPWm8bRp02LatGk1nrvPPvukbu+y8cYbx2mnnZbaKPijjz6Kb3/723HqqafGjjvuGL169YoWLVrE9OnT45133km9odi5c+e47bbbUhMnND8VFRVx++23x9ChQ1O3sZs3b15ceeWVceWVV0bHjh1j6623jvXWWy+6du0aixcvjjlz5sScOXNi0qRJte6H0NT07NkzTj755NQeDpWVlfHGG2/EG2+8UeP5++67b2q6pCEtWbIkHnzwwVW/v9dbb73YcsstY7311otOnTrFkiVLYsqUKfHmm2+uMWnWtm3bGDlyZFHW36ZNm7jrrrti9913z/v7LkmSuP766+PGG2+MbbfdNjbddNNo1apVTJ06NcaNG1fje6yioiJGjBgRAwYMqPf6iuW3v/1tvPTSS/HCCy/kHXv88cdjl112iQEDBsS2224bnTp1itmzZ8crr7wSU6dOrXHOs88+u8biZTFcd911eYWma6+9ts5/T//qV7/K+5DADTfcEO+9916cf/758aUvfSlyuVy89NJLMXz48LwiXC6Xq/X2XAAAa5Kduw8A0MQdcMAB8corr8Txxx8fjz/++Bqf+9lnn6V+qrQQLVq0iBNPPDGvOWpNKioqYuTIkfE///M/8cADD6Q+Z/ny5fHyyy+nNrNN07t373j44YdT+2E0ZV/+8pfjiiuuiPPOO6+o81511VXxyiuv1PjJ8kWLFsWzzz671nnatWsX//jHP2LLLbcs6vpo2tq2bRsPPPBAnHbaafGnP/2pxuctWLAgnn/++UZcWfn5zW9+E+PGjavz799SmzVrVq0TKj179oy77ror9tprr6KtY9NNN41//vOfMXjw4Jg9e3be8crKyhg/fnyMHz9+rXO1aNEi/vjHP8bQoUOLtr5iaNu2bYwaNSr233//Gl/H5MmTY/LkyQXN953vfCeuuuqqIq6wqunTp8eFF15YZezrX/96au+wQh144IFx2mmn5RUQR48eHaNHj17r+T/4wQ/qdX0AgOpskwUAZWSDDTaIxx57LP72t7/FJptsUtS5W7RoEV/96lfj9ddfjxtvvLFW+3+3bds27r333rjkkkuiVatW9VrH4MGD48UXX8zbPiMrzj333HjwwQeLWuhp3bp13H///fVKc/Tp0yeeeOKJ2H///Yu2LrKjVatWcdNNN8Xdd98dG2ywQVHn7t+/fwwaNKioc5ZKu3bt4plnnonzzjsvOnbsWOrlNLijjjoqXn311aIWQlbaaaed4vnnn6/X3wXrr79+PPzww3HCCScUcWXFs+6668YzzzwTX//61+s8R6tWreJXv/pV3HTTTXXu1VKIH//4xzF37txVjzt06BC/+c1v6j3vtddeG8cdd1ytzzvppJMatPgDADRPiiEAUIa+8Y1vxMSJE+Oee+6Jww8/PLWJeaG23nrruPLKK+Ojjz6qVyqgoqIiLrzwwnjttdfim9/8Zq2LIjvuuGPcfffd8c9//rPee86Xu0MOOSQmTpwYTz/9dPzsZz+LQw89NDbZZJNYf/31o23btnWas2vXrvHQQw/F1VdfHb169Sr4vE6dOsU555wTb775Zuyyyy51ujbNx5FHHhkTJ06Ma6+9tl4Jov79+8fJJ58cjz/+eLz33ntxzDHHFHGVpdW6deu48sorY+rUqfGXv/wlTj/99Nhjjz1igw02iC5dupTF1n+HHHJIfPWrX61TwaZFixZxxBFHxDPPPBMjR46M7t27N8AKv7DJJpvEuHHj4uqrr65VH6MOHTrE97///Zg4cWIMHjy4wdZXDB06dIg77rgjHnzwwdhxxx0LPq+ioiKGDh0ar776avzoRz9qwBVGjBkzJm655ZYqYxdccEFReku1aNEibrnllrjmmmuia9eua33+uuuuG9ddd13ceOONUVHhdgUAUFy5JCsdDQEgw+bPnx/PPPNMjBkzJv7zn//E5MmTY8qUKfH555/H4sWLo127dtG1a9fo2rVrdO/ePXbYYYfYZZddYpdddol+/fo1yJpmzZoV9913Xzz11FPx+uuvx4cffhjz5s2LFStWRPv27aNXr16x2Wabxe677x6HHnpobLvttg2yjuZoyZIlce+998Zjjz0Wzz//fHz66acxe/bsqKioiM6dO8eAAQNim222iQMOOCAOPfTQ6NSpU94cH3/8cSxfvrzKWJcuXaJLly6N9CpoCt54440YPXp0vPDCCzFp0qT46KOPYt68ebF06dJo3759dOrUKbp06RIbbbRRbLHFFrHVVlvF3nvvXfRkG3WzdOnSGDduXIwdOzbGjx8f7777bnzwwQcxb968WLhwYbRu3To6d+4c/fv3j6222ir22WefOPDAA2uVHCyWZcuWxaOPPhqjRo2Kl19+Od59992YO3durFixIjp16hT9+vWLgQMHxqBBg+Lwww9vsr+rnn/++XjwwQdj7NixMWHChJg9e3YsWbIk2rdvHz179lz1fRg6dGij9ECprKyMnXfeuco2l5tttlm8/vrr0bp166Jea/bs2XHXXXfFgw8+GG+99VZ8+umnkSRJ9OjRI7bccss4/PDDY9iwYbHuuusW9boAACsphgAAAAAAAJkmdwoAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZ1rLUCwAAgIY0qGJYqZdAxoyuHFnqJQAAALUkGQIAAAAAAGRaLkmSpNSLAACgeZDSgLqRRgEAgPqRDAEAAAAAADJNMgQAgFUkN6B5kjwBACDrFEMAAJoohQugnCmwAABQTmyTBQAAAAAAZJpkCABAiUh2ANRMsgQAgGKSDAEAAAAAADJNMgQAoB6kOwDKj1QJAADVSYYAAAAAAACZJhkCADR70h0ArCRVAgCQTZIhAAAAAABApkmGAACZIuUBQGOTJgEAKH+SIQAAAAAAQKZJhgAAZUvKA4CskiYBAGhckiEAAAAAAECmSYYAAI1K2gMAakeKBACg/hRDAIB6U+AAgPKgcAIAkM42WQAAAAAAQKZJhgAAayT1AQDZIj0CADRHkiEAAAAAAECmSYYAQDMk7QEAFEKKBADICskQAAAAAAAg0yRDACBDJD4AgFKQIAEAyp1kCAAAAAAAkGmSIQDQREh9AABNmfQIAFBKkiEAAAAAAECmSYYAQBmQ+gAAkB4BABqOYggANALFDgCA+lMsAQDqyjZZAAAAAABApkmGAEA9SX0AAJQP6REAII1kCAAAAAAAkGmSIQBQAOkPAICmT2oEAJovyRAAAAAAACDTJEMAICQ/AACQHAGALJMMAQAAAAAAMk0yBIBmQ/oDAIC6khoBgKZNMgQAAAAAAMg0yRAAMkX6AwCAxiY1AgDlTzIEAAAAAADINMkQAJoUyQ8AAJoayREAKD3FEADKjoIHAADNhUIJADQO22QBAAAAAACZJhkCQKOT/AAAgMJIjgBAcUiGAAAAAAAAmSYZAkCDkgIBAIDikhYBgNqTDAEAAAAAADJNMgSAepH8AACA8iI5AgD5JEMAAAAAAIBMkwwBoGBSIAAA0DRJiwDQ3EmGAAAAAAAAmSYZAkAeCRAAAGgeJEYAaC4kQwAAAAAAgEyTDAFopqQ/AACANZEaASBLFEMAMk7RAwAAKCZFEgCaIttkAQAAAAAAmSYZApAhUiAAAEApSIsAUO4kQwAAAAAAgEyTDAFogiRAAACApkBiBIByIRkCAAAAAABkmmQIQJmTAgEAALJEWgSAUpAMAQAAAAAAMk0yBKBMSIAAAADNmcQIAA1JMgQAAAAAAMg0yRCAEpACAQAAWDtpEQCKRTIEAAAAAADINMkQgAYkAQIAAFB8EiMA1JZiCEARKHoAAACUniIJADWxTRYAAAAAAJBpkiEAdSQNAgAAUL6kRABYnWQIAAAAAACQaZIhAGshAQIAAJAdEiMAzZNkCAAAAAAAkGmSIQCrkQIBAABofqRFALJPMgQAAAAAAMg0yRCgWZMEAQAAoDpJEYDskQwBAAAAAAAyTTIEaBYkQAAAAKgviRGApksyBAAAAAAAyDTJECCzpEEAAABoKFIiAE2LYgjQ5Cl6AAAAUC4USQDKk22yAAAAAACATJMMAZocSRAAAACaCkkRgPIgGQIAAAAAAGSaZAhQ1qRAAAAAyBppEYDGJxkCAAAAAABkmmQIUFYkQQAAAGhuJEUAGp5kCAAAAAAAkGmSIUBJSYIAAABAVZIiAMUnGQIAAAAAAGSaZAjQaKRAAAAAoG6kRQDqRzEEaDCKHwAAANAwFEcAasc2WQAAAAAAQKZJhgBFJQ0CAAAAjUtKBGDtJEMAAAAAAIBMkwwB6kUSBAAAAMqLpAhAPskQAAAAAAAg0yRDgFqRBAEAAICmRVIEQDIEAAAAAADIOMkQYI0kQQAAACBbJEWA5kgyBAAAAAAAyDTJEGAVKRAAAABonqRFgKyTDAEAAAAAADJNMgSaMUkQAAAAII2kCJA1iiHQjCh+AAAAAHWhOAI0dbbJAgAAAAAAMk0yBDJOGgQAAAAoJikRoCmSDAEAAAAAADJNMgQyRhIEAAAAaEySIkBTIBkCAAAAAABkmmQINHGSIAAAAEA5kRQBypFkCAAAAAAAkGmSIdBESYQAAAAA5UxCBCgnkiEAAAAAAECmSYZAEyINAgAAADRFUiJAqUmGAAAAAAAAmSYZAmVMEgQAAADIIkkRoLEphkAZUfwAAAAAmiPFEaCh2SYLAAAAAADINMkQKDFpEAAAAID/T0oEaAiSIQAAAAAAQKZJhkAjkwQBAAAAKJykCFAMkiEAAAAAAECmSYZAI5EIAQAAAKg7CRGgPiRDAAAAAACATJMMgQYiCQIAAADQcCRFgNqQDAEAAAAAADJNMgSKSBoEAAAAoPFJiQBrIxkCAAAAAABkmmQI1IMkCAAAAED5kRQBqlMMgTpQBAEAAAAof4oiwEq2yQIAAAAAADJNMgQKIAkCAAAA0PRJikDzJRkCAAAAAABkmmQI1EAaBAAAACC7pESgeZEMAQAAAAAAMk0yBKqRCAEAAABoPiREoHmQDAEAAAAAADJNMoRmTxIEAAAAgJUkRSCbJEMAAAAAAIBMkwyh2ZIIAQAAAKAmEiKQLYohNCsKIAAAAADUlsIINH22yQIAAAAAADJNMoRmQSIEAAAAgPqSEIGmSzIEAAAAAADINMkQMkkSBAAAAICGJikCTYdkCAAAAAAAkGmSIWSKRAgAAAAAjU1CBMqfZAgAAAAAAJBpkiE0edIgAAAAAJQLKREoT5IhAAAAAABApkmG0GRJhAAAAABQriREoLxIhgAAAAAAAJkmGUKTIQkCAAAAQFMlKQKlpRhC2VMEAQAAACArFEWgNGyTBQAAAAAAZJpkCGVHEgQAAACA5kJSBBqHZAgAAAAAAJBpiiGUFakQAAAAAJoT98OgcSiGAAAAAAAAmaZnCGVBBRwAAACA5k7/EGg4kiEAAAAAAECmSYZQEpIgAAAAALBmkiJQPJIhAAAAAABApkmG0KgkQgAAAACgdiREoP4kQwAAAAAAgEyTDKFRSIQAAAAAQP1IiEDdKYbQYBRAAAAAAKBhKIxA7dgmCwAAAAAAyDTJEIpOIgQAAAAAGoeECBRGMgQAAAAAAMg0yRCKRiIEAAAAAEpDQgTWTDIEAAAAAADINMkQ6k0iBAAAAADKg4QIpJMMAQAAAAAAMk0yhFqTBAEAAACApkFSBL4gGQIAAAAAAGSaYgi1IhUCAAAAAE2H+3nwBcUQAAAAAAAg0/QMoSAqyAAAAADQtOkfQnOmGMIaKYIAAAAAQLYoitAc2SYLAAAAAADINMkQUkmEAAAAAEC2SYjQnEiGAAAAAAAAmSYZQhUSIQAAAADQvEiI0BxIhgAAAAAAAJkmGdLMSYIAAAAAAKuTFCGLJEMAAAAAAIBMUwxpxqRCAAAAAIDq3DckixRDAAAAAACATNMzpBlS2QUAAAAACqF/CFkhGQIAAAAAAGSaZEgzIhECAAAAANSFhAhNnWJIM6AIAgAAAAAUg6IITZVtsgAAAAAAgEyTDMkwiRAAAAAAoCFIiNDUSIYAAAAAAACZJhmSQRIhAAAAAEBjkBChqZAMAQAAAAAAMk0yJEMkQgAAAACAUpAQodxJhgAAAAAAAJmmGJIRUiEAAAAAQKm4P0m5UwwBAAAAAAAyTc+QJk7FFQAAAAAoJ/qHUI4UQ5ooRRAAAAAAoJwpilBObJMFAAAAAABkmmRIEyMRAgAAAAA0JRIilAPJEAAAAAAAINMkQ5oIiRAAAAAAoCmTEKGUJEMAAAAAAIBMkwwpcxIhAAAAAECWSIhQCpIhAAAAAABApkmGlCmJEAAAAAAgyyREaEySIQAAAAAAQKYphpQhqRAAAAAAIOvcB6UxKYYAAAAAAACZpmdIGVEJBQAAAACaI/1DaGiKIWVAEQQAAAAAQFGEhmObLAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADJNz5AS0isEAAAAACCf3iEUm2QIAAAAAACQaZIhJSARAgAAAACwdhIiFItkCAAAAAAAkGmSIY1IIgQAAAAAoPYkRKgvyRAAAAAAACDTFEMaiVQIAAAAAEDduL9KfSmGAAAAAAAAmaZnSANTsQQAAAAAKB79Q6gLyRAAAAAAACDTFEMAAAAAAIBMs01WA7E9FgAAAABAw7FdFrUhGQIAAAAAAGSaZEiRSYQAAAAAADQeCREKIRkCAAAAAABkmmRIkUiEAAAAAACUjoQIayIZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKbpGVJPeoUAAAAAAJQPvUNIIxkCAAAAAABkmmRIHUmEAAAAAACULwkRVicZUgcKIQAAAAAA5c19XFanGAIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmaaBeC/aYAwAAAABoejRTRzIEAAAAAADINMmQAkiEAAAAAAA0fRIizZdkCAAAAAAAkGmKIQAAAAAAQKYphgAAAAAAAJmmZ8ga6BUCAAAAAJA9eoc0P5IhAAAAAABApkmGpJAIAQAAAADIPgmR5kMyBAAAAAAAyDTFEAAAAAAAINNsk7Ua22MBAAAAADQ/tsvKPskQAAAAAAAg0yRDQiIEAAAAAAAJkSyTDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTmn0xRL8QAAAAAAAi3C/OsmZfDAEAAAAAALJNMQQAAAAAAMi0XJIkSakXUQriTgAAAAAA1GR05chSL4EikgwBAAAAAAAyTTEEAAAAAADINMUQAAAAAAAg05pdzxC9QgAAAAAAKJTeIdkgGQIAAAAAAGSaYggAAAAAAJBpiiEAAAAAAECmNZueIXqFAAAAAABQV3qHNG2SIQAAAAAAQKZlPhkiEQIAAAAAQLFIiDRNkiEAAAAAAECmKYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaZltoK5xOgAAAAAADUUj9aZFMgQAAAAAAMg0xRAAAAAAACDTFEMAAAAAAIBMy2QxRL8QAAAAAAAakvvQTUsmiyEAAAAAAAArKYYAAAAAAACZphgCAAAAAABkWi5JkqTUiygWe7QBAAAAANDYRleOLPUSWAvJEAAAAAAAINMUQwAAAAAAgEzLxDZZtscCAAAAAKDUbJdVviRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgEzLJUmSlHoRdTWoYliplwAAAAAAAFWMrhxZ6iVQjWQIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGm5JEmSUi+itgZVDCv1EgAAAAAAYI1GV44s9RL4L8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyLQm1UBd43QAAAAAAJoajdRLTzIEAAAAAADINMUQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk0xBAAAAAAAyLRckiRJqRexNoMqhpV6CQAAAAAAUC+jK0eWegnNlmQIAAAAAACQaYohAAAAAABApimGAAAAAAAAmaYYAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKaVfTFkUMWwUi8BAAAAAADqzf3u0in7YggAAAAAAEB9KIYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohAAAAAABApimGAAAAAAAAmZZLkiQp9SLSDKoYVuolAAAATVGSxG/jiRgYsyIiYkVEnBqD4v3cOms87dbk4egZC1c9fjQ2jF/ndm7IldJIfG/L37XJY7FFfBYREcsiF6fGoPgw17nEqwKAhjW6cmSpl9CstCz1AgAAAIppUHywqhASEfFo9F9rIaS5a58siy1idvSJBdExlkZl5GJBtI6PomNMiPViaa5FqZdIiTX0e+SmGBhXxVMREdEqkjg9xsf5sXcxlg4AEBGKIQAAQIa0T5bFSfH6qseLo0XcEluXcEXlbYfk0zgqJsWOMT1aRvqmAUuiIsYkvWNkbBaTcus28goptcZ6j7ya6x4vJD1jl5gWERE7xfTYM/k4nsn1rfPaAQBWpxgCAABkxjdiQqwbS1Y9HhUDYlauXQlXVJ7aJ8vinBgXe8cna31um6iMfePj2Ds+jvuTjeOG2C6W57SfzLpSvEduiy1XFUMiIk6K/8RzSe+o9H4DAIrAvygAAIBM6JIsjqHxzqrHyyIXI2OzEq6oPHVJFsf/xuMF3eReXUVEDI13Y3g8HW2S5Q2zOMpCqd4jb+XWi/Gx/qrHfWJBHBTv13oeAIA0kiEAAEAmfDMmRLtYserxY7FhzMi1L+GKyk+rZEX8Ip6NDWN+3rGPomM8GX1janSMXET0igWxb3wcfWJBledtHzPi/HghLokvN9KqaUylfo/cGZvH9jFj1eNj4q0YnWwYy/StAQDqSTEEAABo8jolS+KgmFxl7IHYqESrKV8nxn9is/isytiyyMW1sUOMigERuVyVY7ckW8eQmBxnxitV+kXsGVPi0OTdeDC3caOsm8ZT6vfIuOgRU6JD9I7PIyKieyyKr8RH8c/oX7cXBADwX7bJAgAAmrzD4r0qqZBJ0UWz72r6JfOqbCO20mWxe4zKbZR3kzsiIsnl4uHcRnFp7J537IT4T3RMljbIWimNsniP5HLxSLXCx9fi7drNAQCQQjEEAABo0iqSyjg83q0y9kgMKNFqytc3YkKVT+5HRDwUA2JMrvdazx2T6x0PV/uado5lqTfOabrK5T3yz+i/WmkzYqOYG9sn02s9DwDA6hRDAACAJm2XmBbrxeJVj1dExNPRp3QLKkMdk6WxT3xcZWxZ5GJEbF3wHCNi61geVZMBB8fkyCVJDWfQlJTTe2R2rl28Ed2qjB2okToAUE+KIQAAQJM2KD6o8viN6BZzcm1LtJrytGd8Eq2jssrYc9GnVl+nz3Jt47momhBYPxbFwNWaXTd1/ZJ5sV/yYRyVTIpvJBPioGRyfCmZFm2T5aVeWoMrt/dI9YLmHvFJs/g+AAANRwN1AACgyWqbLI9dY2qVsbHRq0SrKV87x7S8safqkJ55OvrG3vFJlbFdYlq8Ft3rvLZSa5lUxuHxTgyNd6PXf5t2V7c4WsQLSc+4LbaMybkujbvARlJu75Gx0Tu+F6+uetwuVsSXY0o8Hv1qvSYAgIgyLIYMqhhW6iUAAABNxA4xPdpU+zT7q7F+iVZTvraJmXlj1bchKsTrKeekzd1U9EoWxCXxXAyIeWt8XttYEXvHJ/HlmBIjk83i5tgmkpRm4k1Zub1HpuU6xLSkffSMhavGdo2piiEAZMrKe+GjK0eWeCXNg22yAACAJqv6p9k/j5bxTnQt0WrK03rJolg3llQZ+zTax6xcu1rPNSvXLj6N9lXGNoq5UdEE+4b0TD6Pq+Pfay2ErK5lJHF0TIzz4sVM9Uop1/dI9cLmTvFppr7uAEDjKrtkCAAAQKG2rdaL4N3oEpUZ+8R+ffVLudk/JTrUeb4p0SF6rPZp/XaxItaPhfFpPeZsbC2iMi6KMVUKAB9Fx3gm+sTU6BiLomV0jcUxMGbGLjE1L300KD6MBdE6/hDbN/LKG0a5vkcmxrpx4Go9gdaJpTEg5sZ70aXOawMAmi/FEAAAoElqlyyLvjG/yth7sU6jr2Nw8n6cF+Ma/boREdOifRyXO3iNz1n9pvRK9SlczKj2qf+IiF7xeZMqhuwZn6wqcMyPVvF/sV2MzvXPe949sWmslyyK78fLsXu13jRHxDvxTNI7XsutvReG90jd3iNpP8+bx2eKIQBAndgmCwAAaJI2jTnRotrY+yUohpS7dWNx3tiMqP32RytNTzm3a8o1ytnKQsjn0TLOj71SCyErzcq1i4viy/F4bFBlvCIifhgvZ2LbpnJ9j0xO+XneLGbXaU0AAIohAABAk9SnWiokIvJ6FRDRKZbmjS2qxyYBi1PO7Zxyjabgutg+JuXWXevzklwufh07x0fRscp431gQu1RLjDRF5foeWZhrFfOjVZWxvrGgzusCAJo322QBAABNUs+UrX1m1uPT7HU1P1rHuyVKpMwq4PW2jRV5Y0vzMjWFW5JybpuUa5S7idE1RseGBT9/ea4ibki2jcvjuSrjh8Z78Xz0XuO53iN1f4/MjHbRKZatetwjPq/zugCA5k0xBAAAaJK6xaK8sc+ibaOvY0yud4xZy83wUmpRrfl3RPFvdLdMuUa5GxUDInK5Wp3zQvSK6dEuuq/23tshpkeLpDJW5GreeMF7pO7vkdnRNgas1uB9/ZSfewCAQtgmCwAAaJLar/Zp8ZUW1+MGbnNSvy4X+QWEXD1nLIVn61CcSHK5vKJGm6iMjWNOkVZVPsrlPVJ9y62WkUTrpOklkQCA0lMMAQAAmqRib+2TVStS/revPttatU45d3kT+1/LGdEu5uTqliJ6O7rkjW0Wn9VzRaVVzu+RtJ/ptrG8TnMBAM1b0/oXKwAAwH9VVPukeWV88cl9qkpLy6TdrC5U2k3ytIbZ5ezjao3Qa+Oj6JQ31iWW1Gc5JVfO75EVKSmTFk0wiQQAlJ5iCAAA0CRV70tQEREtk6bXu6KhzY/WeWPt6vHJ+rRz56Vco5x9Hq2Kem6HlC3bmpJyfo+kFWXSepIAAKyNYggAADRzFckXe/BXJE3r09bF/jR7VqU1lU9rPl+o9WNhQdcoZ/VJsqSd276Jb9tUzu+RLCSRAIDy4F8QAADQzHROlsT+8WFsEzNj0/gseq1243Jq0j7ejq7xn+gWj0W/mJdrU8KVrtmclJurnWNpLKzHp/7rYvdkSnw73mjUa640K9rFz3J7rvE506J93liPlJvVheqecu606FDn+UqhPj0n0s5duJb/tfYeqft7pFMsrfJ4XrSOStvhAQB1oBgCAADNxPrJwjg+3oh946NoHenbSfWKhdErFsbe8UmcFK/HE8kGMSK2jhm5/JulpTY95QZut1jY6DfmO8XS2DjmNuo1Vypke6a0Hhe9Y0Gdr9krPq/yeHG0SP1elLP6bGuVdu7att3yHqn7e6R6QuXTJvZeAwDKh22yAAAg65IkhiTvxR/j0RgcH9RYCKmudVTG4Pgg/hiPxpDkvYgy20ZrakrRY/16bO2TVTNz7eOzqJrw6RkLY92k9l+r9ZJF0bPap/7fi3Wa3Cf1+9TjRv8GKefOifJNUBWiXN8juSSJdWNxlbGmlkICAMqHYggAAGRYRZLE2fFSnB0vR4c6bg3UIZbH2fFynB0vlVVfkfdinbyxvjG/BCspf69Ht7yxbWJWrefZOmYWNHe56x6LokuyeO1PTLFpfJY3Nim61ndJJVeO75HesSBaRtXfOWk/9wAAhbBNFgAAZFWSxA/ipRgS70cSEfX57H4SEUPi/YiI+G2yU0QZJAGm5jrGvKR1dF6tp8CAmNfo63g01z8ejf6Nft3aGBc9Y+/4pMrYXvFxPBV9azVP9TkiIl6MnvVaW6l8OabEw7FRrc7JJUnsHlOqjC2Jing3uqzxPO+Rur1H0rYWm5iBwhMAUBqSIQAAkFFDYnJRCiHx3/NXFkRWFkXKwYRYt8rjjWJOaRZS5p6JPrG02v/+7RGf1Cod0SVZHF+udqN7ZrSN12L9oqyxsQ2JybU+Z+eYFt2rbcX2SnSPFbmm/7/W5fgeqf7zXBkRE6v9zAMAFKrp/4sNAADIs36yME6J1yKi/oWQlVbOc0q8GusnC9f43MYyLnpUedwnPq9Tn4Osm59rnfcJ/1aRxLfizYLn+Ha8Ga2qbVn0UGwUSRmkhOpii/gsDkg+KPj5LZLKVT9Tq3uwlumSclWO75GB1bbceju6xrxc0+7PAgCUjmIIAABk0PHxRp17hKxNh1gex8cbDTJ3bb2Qsv3OdjGjBCspf3fE5rGiWmnskHgvdk2m1HDG/7dbMiUOjfeqjM2PVnFfbFLw9bdNpsfo5O4qf25NHi74/IZwRrwSmyT5PUDyJEmcE+OiX7WeNJ9Ex3ghejXQ6hpfqd8jq2udrIgtYnaVsbSfdwCAQimGAABAxnROlsS+8VGDXmPf+Cg6J0sa9BqF+CTXKT6ITlXGdozpJVpNefsgt07cFxtXGauIiItiTByUTI5IkvyTkiSGJO/FhTEm79CI2Drm51o30Gob1pL//q9wh1gev4qnYv81JETWTRbFxTEmBsWHVcYrI+J3sWOTTcakKaf3yMCYEa2jssrYc9G7TnMBAERooA4AAJmzf3yYdxOx2FpHZewfH8Y9sWmDXqcQj0W/OHG1pMruMSUqksqozEAfh2K7KQbGtjEzNlmtF0OrSOKceCmGxaR4MukbU6ND5CKiV3we+8ZH0TcW5M0zJnrF/dVumjclz0Sf6B/zYuOYG51jWZwfL8Y3kwnxbPSOKdExFkXLWDcWxzYxM3aJadE2VuTNcV9sEq/mupdg9Q2rXN4je1brPTI5Osc7Oc3TAYC6UwwBAICM2abaPvsNeZ1yKIb8KzaM4+ONVbH3dWJpbBcz4pVq/USIWJZrET9N9oyr4sm8LZ/6xfw4Lt5a6xyvRbf4Zewa0YQTESuiIi6OL8c18XisG18knPrF/OgXEws6/1/RL/4vtmvIJZZMObxHckkSe0TVrbn+FRvWaS4AgJV8VAoAADJm0yigB0JRrjOnUa6zNjNy7eP5an0b9q+2pRH/32e5tvH92C+eqeWWQ5UR8UBsFOfHXrE4V/vP1XWJpXlj70fnWs9TLNNyHeLs2Ddvm7U1WR65uCM2j1/HzpnaHqu6Ur1HVtoxPo2u8f+34VsaFfGoYggAUE+SIQAAkCEVSRK9YmGjXKtXfB4VSRKVZXBT+O+xaeweU1c93js+jj8k28fCXKsSrqp8Lci1jkviy7FTMi2OjLdjx5geLSKlH0R8cSN6bPSKO2PzmJRbt87X3C6ll8utsVWd5yuGT3Kd4rTkgBga78QR8W70qOFnZ0lUxAvRK26LLeO9XJfGXWSJlOI9stLBMbnK48eiX8zJta33vABA86YYAgAAGdKygXuFpF1vabRo1GumeTXXPSYlXWKz/6ZV2sWKGBQfxH2xScFzHJc7uIFWV75eyvWMl6JndEiWxpYxO3rHgugQyyIiYn60jo+iU0yIdWNJPT7lv9L2MaPK4+eiV1FunBdiTd/bZbkWMTI2j5GxefRP5sZGMTfWi0XRMipjTrSNGdEu3oj1YlEzLaw15nskIqJLsjh2X22LrMr4otgJAFBfiiEAAJAhyxt5J9zGvt6a3BZbxaXx3KrHQ+OduD/ZONPbGRXL57nWMS56Ntj86yaLqvSfqIyIv8TWDXa9uno/t068H+uUehllqaHfIysdEe9Gq9USKM9En/gg53sCANRf+fyfCwAAUG+VuVxMjfaNcq2p0aEstshaaUyud7wV/z9p0DcWxF7xcQlXxErVUyHPRJ94t5lsN0Xh2ibL4/B4Z9XjFZGLEWVYNAMAmibFEAAAyJi3o2sjXadLo1ynNv4U21R5fHRMjEjS+xzQeLZfrV/Iiih9rxDK06HxbnT+7xZcERGjY8P4KNe5hCsCALJEMQQAADLmP9EtU9epjVdz3eOp6LPq8SYxJ/aVDim51ZMhT8UG8b5tj6imfbIsvhETVz3+PFrGn6sVNwEA6kMxBAAAMuax6BdLG/if+kujIh6Lfg16jbq6PraLRas1dT8h/hMtk8ZtLM//1z35PHrF5xHxxbZHt8aWJV4R5ejrMTHWiaWrHt8SW8dnubYlXBEAkDUaqAMAQMbMy7WJJ5INYnB80GDXeCI2iHm5Ng02f33MyLWP4cmusUl8tmqsR3wen0SnEq6q+Zqe6xCD4qhSL4MytyBaxV/+WyhbHhVxX2xc4hUBAFmjGAIAABk0IraOPeKT6BDLiz7359Gy7Jsaj8n1jjHRu9TLAAo0Mrd5qZcAAGScbbIAACCDZuTaxw2xbUREFKt9+Mp5bojtYkaufZFmBQAAaHiKIQAAkFGjYkCMiv6Ri/oXRJKIyEXEqOgfo6J/vdcGAADQmBRDAAAgq3K5uDp2WlUQqddU8UUh5OrYKSJX39kAAAAal54hAACQYZW5XPw22SneivXilHi1Tj1EPo+WcUNs90UiRCEEAABoghRDAAAg63K5GBUDYlzSI46PN2Lf+ChaR+VaT1saFfFEbBAjYms9QgAAgCYtlyRJsfopFsWgimGlXgIAAGRa52RJ7B8fxjYxMzaNOdErPl91bGp0iLejS/wnusW/ol/Mz7Up4UoBACD7RleOLPUSmgXJEAAAaGbm5drEPbFp3BObRkRERZJEy6iM5VERlbbBAgAAMkgxBAAAmrnKXC6WRotSLwMAAKDBVJR6AQAAAAAAUCpfTQ6O9ZNuDTL3+km3+GpycIPMTe0ohgAAAAAA0Cx9NTk4To8T4qq4qOgFkfWTbnFVXBSnxwkKImVAMQQAAAAAgGbpmXghpsS06B09i1oQWVkI6R09Y0pMi2fihaLMS90phgAAAAAA0CzNyM2Mc+OSohZEqhdCzo1LYkZuZpFWTF0phgAAAAAA0GwVsyCiEFK+FEMAAAAAAGjWilEQUQgpb4ohAAAAAAA0e/UpiCiElD/FEAAAAAAAiLoVRBRCmgbFEAAAAAAA+K/qBZHbN/xJ/POFT1OfqxDSdOSSJElKvYg0gyqGlXoJAAAAAAA0U/984dPIHXVb5D7oF8mGH8YxHwyvUuiobyFkdOXIhlg2NZAMAQAAAACA6vpOjeTuYyPZ8MPIfdCvypZZEiFNj2IIAAAAAAD81z+njI9/Thn/xYPVCiIrt8zaOtlcIaQJUgwBAAAAAICaVEuIXB2XK4Q0QS1LvQAAAAAAACilVUmQmvSdGsn/nhe5I+5cNXRl/F4hpAmRDAEAAAAAgDX5uFfkzvp1laEfxRmreohQ/hRDAAAAAABolqr0B6nJx70id9RtkfugXyQbfhiV9319VQ+R1ZuqU94UQwAAAAAAIE21Qkhy97ERu7xcpam6gkjToBgCAAAAAECzUpdESHL3sRF9p35xbLWm6goiTYNiCAAAAAAArG5NhZCVFESaFMUQAAAAAACahXonQqr7b0FkSkxTEClziiEAAAAAABBRu0LISn2nxrlxiYJImcslSZKUehFrMqhiWKmXAAAAAABAE7bWNEhE3Qoh1c6ftvNd0Tt6xpSYFufGJTEjNzPvaaMrRxY+J0UjGQIAAAAAQCYVtC1WRP0LIRERfadGzxf/Rw+RMqUYAgAAAABA81WMQshKeoiULcUQAAAAAAAyp9ESIdXpIVKWFEMAAAAAAGieRg0ubiHkv2bkZlYpiOwZuxRlXuquZakXAAAAAAAA9VVQEqS6k2+JyoiIIY8WrRCy+lqO7RWxZ+wS9+QeLtrc1I1iCAAAAAAAzdfJtzTY1DNyM+OeUAgpB7kkSZJSL2JtBlUMK/USAAAAAAAoQ3VKhDSyA3tvHxERoytHlnYhzZieIQAAAAAAQKbZJgsAAAAAgCanKSRCVmpKa80qyRAAAAAAACDTFEMAAAAAAIBMUwwBAAAAAAAyTc8QAAAAAABoAAf23r7K49GVpVkHEbkkSZJSL6JQgyqGlXoJAAAAAACUkXJsTp5fBBlZmoWwim2yAAAAAACATLNNFgAAAAAATdbKFEY5JESqJ0IoH5IhAAAAAABApkmGAAAAAABAPUiElD/JEAAAAAAAINNySZIkpV5EbQ2qGFbqJQAAAAAAUIYas3fI2hIhoytHNs5CWCvJEAAAAAAAINP0DAEAAAAAgALpD9I0SYYAAAAAAACZJhkCAAAAAEBmrExuFLt3iERI09YkG6ivpJE6AAAAAAA1KUZBpC5FEI3Ty49tsgAAAAAAgEyzTRYAAAAAAPyX7bCySTIEAAAAAADINMUQAAAAAAAy6cDe29cq6SEVkl2KIQAAAAAAQKblkiRJSr2I+hpUMazUSwAAAAAAoEz9c8r4NR4vViJkdOXIosxD8UmGAAAAAAAAmday1AsAAAAAAICGtDL5UT0hokdI8yEZAgAAAAAAZJpkCAAAAAAAzYIkSPMlGQIAAAAAAGRaLkmSpNSLKJZBFcNKvQQAAAAAAJqZ0ZUjS70E1kIyBAAAAAAAyDTFEAAAAAAAINMytU3WSrbLAgAAAACgodkeq+mQDAEAAAAAADJNMQQAAAAAAMg0xRAAAAAAACDTMlkMsU8bAAAAAAANyX3opiWTxRAAAAAAAICVFEMAAAAAAIBMUwwBAAAAAAAyLZckSVLqRTSkQRXDSr0EAAAAAAAyQq+QpkkyBAAAAAAAyDTFEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADIt8w3UV9JIHQAAAACAutI4vWmTDAEAAAAAADKt2SRDVpIQAQAAAACgUBIh2SAZAgAAAAAAZJpiCAAAAAAAkGmKIQAAAAAAQKY1u54hK+kdAgAAAABATfQKyRbJEAAAAAAAINMUQwAAAAAAgExTDAEAAAAAADKt2fYMWUnvEAAAAAAAVtIrJJskQwAAAAAAgExTDAEAAAAAADKt2RdDRJ4AAAAAAIhwvzjLmn0xBAAAAAAAyDbFEAAAAAAAINMUQwAAAAAAgEzLJUmSlHoR5WJQxbBSLwEAAAAAgEamV0j2SYYAAAAAAACZJhmSQkIEAAAAACD7JEKaD8kQAAAAAAAg0xRDAAAAAACATFMMAQAAAAAAMk3PkDXQOwQAAAAAIHv0Cml+FEMKoCgCAAAAAND0KYI0X7bJAgAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINP0DKkFvUMAAAAAAJoevUKQDAEAAAAAADJNMqQOJEQAAAAAAMqfRAgrSYYAAAAAAACZphgCAAAAAABkmmIIAAAAAACQaYohdWCfOQAAAACA8uY+LqvTQL2eNFMHAAAAACgfiiCkkQwBAAAAAAAyTTKkSCREAAAAAABKRyKENZEMAQAAAAAAMk0xBAAAAAAAyDTFEAAAAAAAINP0DCkyvUMAAAAAABqPXiEUQjIEAAAAAADINMmQBiIhAgAAAADQcCRCqA3JEAAAAAAAINMkQxqYhAgAAAAAQPFIhFAXkiEAAAAAAECmKYYAAAAAAACZZpusRmK7LAAAAACAurM9FvUhGQIAAAAAAGSaYkgjUbUEAAAAAKgb91epL8UQAAAAAAAg0/QMKQH9QwAAAAAA1k4ihGKRDAEAAAAAADJNMqSEJEQAAAAAAPJJhFBskiEAAAAAAECmSYaUAQkRAAAAAACJEBqOZAgAAAAAAJBpiiEAAAAAAECmKYYAAAAAAACZpmdIGdE7BAAAAABojvQKoaEphpQhRREAAAAAoDlQBKGx2CYLAAAAAADINMWQMqQaCgAAAABknfugNCbFEAAAAAAAINP0DClz+ocAAAAAAFkiEUIpSIYAAAAAAACZJhnSREiIAAAAAABNmUQIpSQZAgAAAAAAZJpkSBMjIQIAAAAANCUSIZQDyRAAAAAAACDTJEOaKAkRAAAAAKCcSYRQTiRDAAAAAACATJMMaeIkRAAAAACAciIRQjlSDMkIRREAAAAAoJQUQShntskCAAAAAAAyTTEkI1RdAQAAAIBScX+ScqcYAgAAAAAAZJqeIRmkfwgAAAAA0BgkQmgqJEMAAAAAAIBMkwzJMAkRAAAAAKAhSITQ1EiGAAAAAAAAmSYZ0gxIiAAAAAAAxSARQlMlGQIAAAAAAGSaZEgzIiECAAAAANSFRAhNnWJIM6QoAgAAAAAUQhGErLBNFgAAAAAAkGmSIc2YhAgAAAAAkEYihKyRDAEAAAAAADJNMaQZU90FAAAAAKpz35AsUgwBAAAAAAAyTc8QqtBHBAAAAACaF0kQmgPJEAAAAAAAINMkQ0glIQIAAAAA2SYRQnMiGQIAAAAAAGSaZAhrJCECAAAAANkiEUJzJBkCAAAAAABkmmQIBZEQAQAAAICmTSKE5kwxhFpRFAEAAACApkURBGyTBQAAAAAAZJxiCLWiigwAAAAATYf7efAFxRAAAAAAACDT9Ayh3vQRAQAAAIDyIAkC6SRDAAAAAACATJMMoWgkRAAAAACgNCRCYM0kQwAAAAAAgEyTDKHoJEQAAAAAoHFIhEBhJEMAAAAAAIBMkwyhwUiIAAAAAEDDkAiB2pEMAQAAAAAAMk0yhEYhJQIAAAAA9SMNAnWnGEKjUhQBAAAAgNpRBIH6s00WAAAAAACQaZIhlISECAAAAACsmUQIFI9kCAAAAAAAkGmSIZQFSREAAAAAmjtJEGg4kiEAAAAAAECmSYZQViREAAAAAGhuJEKg4UmGAAAAAAAAmaYYQllRBQcAAACgOXE/DBqHYggAAAAAAJBpeoZQ9vQRAQAAACArJEGgNCRDAAAAAACATJMMocmQEAEAAACgqZIIgdJSDKHJUhwBAAAAoFwpfkB5sU0WAAAAAACQaZIhNHkSIgAAAACUC4kQKE+SIQAAAAAAQKZJhpApUiIAAAAANDZpECh/kiEAAAAAAECmSYaQSRIiAAAAADQ0iRBoOiRDAAAAAACATJMMoVmQFAEAAACgviRBoOmSDAEAAAAAADJNMoRmRUIEAAAAgNqSCIGmTzIEAAAAAADINMkQmi0pEQAAAABqIg0C2aIYQrOnKAIAAADASoogkE22yQIAAAAAADJNMgSqkRQBAAAAaD4kQaB5kAwBAAAAAAAyTTIEaiAhAgAAAJBdEiHQvEiGAAAAAAAAmSYZAgWQEgEAAABo+qRBoPmSDAEAAAAAADJNMgTqQFIEAAAAoPxJggArSYYAAAAAAACZJhkC9SAhAgAAAFB+JEKA6hRDoIgURwAAAAAan+IHsDa2yQIAAAAAADJNMgQaiJQIAAAAQMORBgFqQzIEAAAAAADINMkQaCSSIgAAAAB1JwkC1IdkCAAAAAAAkGmSIdDIJEQAAAAACicRAhSDZAgAAAD8v/buOzzKKu3j+C8VQholITQpoRelqYAUBUXFDYINFxvYWBARsYCwIJZ1AVkLyhpAERQsgKyKWEHpsPQgCIFQQw2BkEpCEpL3D1/YDDOTPDOZyUyefD/X5eVw5rSZTOA8cz/3OQAAADA1MkMADyNTBAAAAAAA4H/IBAHgDmSGAAAAAAAAAAAAUyMzBPAiZIkAAAAAAICKiGwQAO5GZggAAAAAAAAAADA1MkMAL0amCAAAAAAAMCMyQQCUNYIhQDlCcAQAAAAAAJRHBD8AeBrbZAEAAAAAAAAAAFMjMwQop8gSAQAAAAAA3oxsEADehMwQAAAAAAAAAABgamSGAOUcGSIAAAAAAMCbkBECwBuRGQIAAAAAAAAAAEyNzBDAZMgUAQAAAAAAZYlMEADlAZkhAAAAAAAAAADA1MgMAUyOTBEAAAAAAOBKZIIAKI/IDAEAAAAAAAAAAKZGZghQgZAlAgAAAAAAnEE2CIDyjswQAAAAAAAAAABgamSGABUYmSIAAAAAAMAWMkEAmA3BEACXERwBAAAAAKBiIvgBwOzYJgsAAAAAAAAAAJgamSEAikW2CAAAAAAA5kIWCICKiMwQAAAAAAAAAABgamSGAHAImSIAAAAAAJQvZIIAAJkhAAAAAAAAAADA5MgMAVAqZIoAAAAAAOBdyAQBAGtkhgAAAAAAAAAAAFMjMwSAS5EpAgAAAABA2SITBABKRmYIAAAAAAAAAAAwNTJDALgNWSIAAAAAALgH2SAA4BgyQwAAAAAAAAAAgKmRGQKgzJApAgAAAACAc8gEAYDSIRgCwKMIkAAAAAAAYInABwC4HttkAQAAAAAAAAAAUyMzBIBXIVMEAAAAAFDRkAkCAO5HZggAAAAAAAAAADA1MkMAeDUyRQAAAAAAZkMmCACUPTJDAAAAAAAAAACAqZEZAqDcIVsEAAAAAFBekAUCAN6BzBAAAAAAAAAAAGBqZIYAKPfIFAEAAAAAeAsyQQDAO5EZAgAAAAAAAAAATI3MEACmRcYIAAAAAMBdyAABgPKFYAiACoHACAAAAACgtAiAAED5xTZZAAAAAAAAAADA1MgMAVChkTECAAAAALgSGSAAYD5khgAAAAAAAABAOdewYUP5+PiU+N/cuXM9PVWUgpGfsY+Pj1auXOnpqXodf09PAAA86cq7fcgUAQAAAICKh0wQ75eVlaVNmzZp27Zt+v3335WYmKijR48qNTVV2dnZysnJUVBQkEJCQhQaGqrQ0FA1bNhQzZo1U7NmzdSiRQt17NhRlSpV8vRLAeAhBEMAAAAAAAAAeJ3MzEx9/vnn+s9//qOVK1fqwoULxdbPyspSVlaWkpKSJEnbt2+3eD4oKEjdunXTzTffrNtuu03t2rVz19QBeCGCIQBQhK27gcgWAQAAAADzIAvE+yUlJemf//ynPv74Y2VmZrqs3+zsbC1btkzLli3TSy+9pLZt2+qJJ57QQw89pKpVq7psHFQ8r7zyiqF6gwcPVsOGDd06F9hHMAQAAAAAAACAx+Xn52vy5MmaPHmysrKy3D7ejh07NGLECL344os6ffq0QkND3T4mzOnVV181VO+mm24iGOJBBEMAoAT27hoiYwQAAAAAvBcZIOXL/v379de//lVbt24t87FzcnJ08eLFMh8XQNkiGAIAAAAAAADAY1avXq277rpLKSkpnp4KABMjGAIATip6lxFZIgAAAADgeWSDlD/Lly9XTExMiYejA0BpEQwBAAAAAAAAUOY2b96s/v37EwgBHFBYWOjpKZRbBEMAwAU4VwQAAAAAyg4ZIOVfSkqK7r33XqcPSm/RooV69eqlXr16qXHjxoqIiFBERIR8fX2VlZWlkydP6vDhw9qxY4c2btyolStXKi0tzcWvAkB5QjAEANyIIAkAAAAAOI+gh3kNHTpUiYmJDre78cYb9eqrr+rGG2+0WycwMFDVqlVTq1atdMcdd0iSLl68qFWrVunLL7/Ul19+qYyMDKfnDqB88vX0BAAAAAAAAABUHL/++qsWLXIs0FW5cmV9/vnnWrlyZbGBEHv8/PzUq1cvzZo1S8ePH9d7772nevXqOdwPgPKLzBAA8ABbdzeRLQIAAACgIiMLpOIYM2aMQ/UjIyO1dOlSXX/99S4ZPzQ0VCNGjNCQIUM0Y8YMvfrqq071k5ubq3379umPP/7Q7t27deTIEZ04cUInTpxQSkqKsrOzlZ2drby8PAUGBiooKEgRERGqU6eOmjZtqmuuuUZdu3ZV+/bt5ePj45LX5k7Hjh27/Fr379+v48eP68SJEzp16pTOnz+vnJwcZWdny8/PT5UqVVK1atUUFRWl6OhotWzZUp07d1a3bt0UEhJSJvM9e/asli9fri1btmjXrl06evSoTp48qfPnzys3N1dBQUEKCQlRVFSUmjRpoubNm6tTp0664YYbFBkZabff+fPnOz2nZcuW6dixYyXWi4qKUu/evW0+Z/SzsmLFCt10002OTM+mgoICbd26VWvWrNH27dsv/+xTU1OVnZ0tHx8fhYSEKDw8XA0bNlSTJk3Utm1b3XDDDWrbtq38/PxKPQdX8SnkxBUA8AoEQwAAAABUZARDKoaVK1eqZ8+ehuv7+vpq+fLlDrVx1NmzZxUeHi5//5LvG//555+1bNkyrVu3Tlu3blVeXl6px69Xr54efPBBjRgxQnXr1nW6n4YNG+rIkSMl1pszZ44GDx5cYr2DBw9q8eLFWrt2rdavX68zZ844PbdLKleurD59+ujpp59Wr169St3flfLy8rRgwQJ99NFHWrNmjQoKCpzqp2PHjrr77rv15JNPWgVGyiJwdeONN2rlypU2nyurYMjevXs1c+ZMffbZZzp9+rRTfVStWlUxMTF68MEHdfvttzs9F1chGAIAXo4gCQAAAAAzIehRsQ0cOFBffvml4foTJ07UK6+84r4JOahFixbau3evW/quXLmyxowZo/HjxxsKzFzJ1cGQyZMna+zYsQ7Pw6jevXtr5syZatSokUv6++KLLzRu3DgdPnzYJf1J0tdff63+/ftblJk9GHLq1CmNHj1an332mdPBpCu1bdtWcXFxLumrNDgzBAAAAAAAAIDb5eTkaOnSpYbrR0ZG6qWXXnLjjLxLTk6OXn31Vd1yyy0V4oD3ZcuWqUOHDlq1alWp+klNTVW/fv30wAMPuDQQUhEtXrxYrVq10rx581wWCPEmnBkCAF6O80UAAAAAlFdkgaCoVatWKTMz03D9YcOGqXLlym6ckXdatWqV+vXrp2XLlnnVeQvukJqaqpiYGK1bt07XXHONw+2PHDmiW2+9Vfv27XPD7CqWSZMm6e9//7vMvJEUmSEAAAAAAAAA3G7Dhg0O1R8yZIibZuL9VqxYoSlTpnh6GmUiMzNTAwcOVH5+vkPtTp06pZtvvplAiAv861//0rhx40wdCJHIDAGAcsne3VVkjAAAAADwBDJAYMTmzZsN142Oji7VYeJmMGnSJJsHeJvR7t279eGHH2rYsGGG6l+8eFH333+/Dhw44OaZmd/PP/+sMWPGeHoaZYJgCAAAAAAAAAC3279/v+G6Xbt2deNMXMvPz09NmjRRmzZt1KxZM4WHhys0NFTBwcHKyclRenq6Dh06pK1bt2rLli2Gz2LIzMzURx995NZDzJ0RFRWlNm3aqHXr1oqIiFBYWJjCwsJUUFCg8+fP69ixY4qPj9eqVauUlpZmuN9p06YZDoa8++67Wr16tcNzb9y4sW6++WZFR0crIiJCOTk5OnPmjPbs2aNVq1bp1KlTDvdZnmVkZOjRRx91+HyQoKAgdevWTZ07d1ZkZKSCg4N19uxZnTx5UuvXr9fWrVsdzvQpCwRDAMBEOF8EAAAAgLuRBQJnFBYWKjEx0XD9tm3bunE2pVe9enXdeeed6t+/v3r37q0qVaoYanf8+HG9+uqr+vDDDw3VX7BggceDIb6+vurZs6f69eunfv36qX79+oba5eXlad68eXrhhRd07ty5Euvv3btXcXFxateuXbH1UlJS9OqrrxqawyVdunTRpEmTdOONNxZbb+PGjZo+fboWLlyo3Nxcm3VsbSXl4+NjaB4rVqzQTTfdZKhuWZg8ebJOnjxpuH6VKlX0wgsv6LnnnlN4eLjdeunp6frkk0/0wQcfKD4+3hVTdQmCIQAAAAAAAADcKjMzUzk5OYbrV69e3aH+//jjD23fvt3RaVlo3LixunTpUmydBg0a6KmnntITTzxhOABSVN26dTVr1izVq1dPEydOLLH+jh07lJyc7JGtsipVqqQnnnhCo0ePVtOmTR1uHxAQoMcee0ydO3fW9ddfr6ysrBLbLF++vMRgSGxsrDIyMgzPY+jQoXr//ffl71/yV+GdOnVSp06d9Morr2jEiBGGxyiPMjMz9cEHHxiuX7t2bS1ZskTXXnttiXXDwsI0YsQIDR8+XDNnztSiRd4RRCcYAgAmx/kiAAAAAJxBBghcKTs726H61apVc6j+d999V+oMikGDBpUYDPnpp58MZwEUZ9y4cZo+fbqSk5NLrLtt2zbddtttpR7TUc8++6xLXmurVq00ZMgQvfPOOyXW3bp1a4l15syZY3jsu+66S7GxsYbrX9K4cWP98MMPDgXwypuvv/5aqamphuoGBATo22+/NRQIKcrX11fDhg3To48+6sQMXY9gCABUUMVd2BAoAQAAACoGAh4oKxcuXHCofmhoqJtmUjquCA5Ikr+/vzp37qzvvvuuxLr79u3zSDDEVa9Vkrp162YoGLJv375in9+5c6fhQ9PDwsI0e/ZsQ3XtqVy5cqnae7NvvvnGcN0xY8bouuuuc3osb3kffT09AQAAAAAAAADmFhgY6FD9zMxMN83EexjdCuzEiRNunon7ueq1rl271vCYTz75pMMZRhWJ0feycuXKeuaZZ9w8m7JBZggAwApbawEAAADmQgYIPM3R8zWMHLjtDQoLC/XHH39o3bp1l7MWjh49qpSUFKWnp+vChQvKz88v1Rjp6ekumm3pJScna/Xq1dq+fbvi4+OVmJio06dPKzU1VTk5OcrNzbV5wLhRJb1WR86Fue8+vsOw58SJEzp9+rShujfddJNHzqxxB4IhAAAAAAAAANwqJCRElSpVMrxdlrcHQw4dOqR///vf+vLLL3X8+HG3juXoeSuulpOTo3nz5mnu3LnasGFDqYIdJSnptR46dMhQP0FBQerQoYMrpmRKRt9H6c8tzsyCYAgAwDBbd5ORLQIAAAB4F7JA4I18fHxUv359JSQkGKq/c+dON8/IOXl5eXrppZf03nvvlTrjw6iCgoIyGceWpUuX6qmnntLRo0fLZLySAi1Gsxnq1aungIAAV0zJlIy+j5LUqFEjN86kbHFmCAAAAAAAAAC3a9y4seG6GzZscONMnJOWlqbbb79db7/9dpkFQjxp2rRp6tevX5kFQow4f/68oXpGzyipqIy+j5K53ksyQwAApVLSXWdkjgAAAACuReYHyqvrrrtOP/30k6G6e/fuVXJysuGzCl566SW99NJLNp+76aabtGrVKsPztOfee+/Vb7/9Vup+yoPPPvtMzz77rKenAbgUmSEAAAAAAAAA3K5z586G6xYWFmrOnDlunI1jPv74Yy1fvtzT0ygTycnJGjlypKenYVOVKlUM1UtJSXHzTMo3o++jZK73kswQAIBbcc4IAAAA4DyyQGAmPXv2VJUqVQxv0fPBBx/o+eefl5+fn5tnVrIpU6YYrtusWTM98cQT6tGjhxo3bqywsDAFBgZa1Rs8eLA++eQTV07TJT788EOdPXvWUN0qVapo0KBBiomJUevWrRUZGamgoCD5+PhY1Fu5cqV69uxZ6rkZzRQ6fvy48vPz5e/P19+2GH0fJenw4cPum0gZ49MAAAAAAAAAwO2CgoJ0xx136KuvvjJU/8iRI/rggw80YsQIN8+seL///rv27dtnqO7jjz+uGTNmGPoS3pFzG8qS0Z9Po0aNtHz5ckVHR5dY11Wv1ehh3ufPn9e2bdt0/fXXu2Rcs3HkUPS1a9e6cSZli2AIAKDMcc4IAAAA8CcyP1DRDBkyxPCX7ZI0evRo9ezZU23atHHjrIq3Zs0aQ/Xq1Kmj2NhYw9kIhw4dKs203CIrK0vbt283VPf99983FAiRXPda27VrZ7juV199RTDEjrp16yoyMlLJyckl1l25cqXOnDmjiIiIMpiZe3FmCAAAAAAAAIAy0bt3b4cCGzk5Obrrrrs8Gjg4efKkoXpdu3ZVQECA4T63bdtWmmm5hdHXKsmhba++//57Z6ZjpVu3bobrzpo1S6mpqS4ZtyRBQUGG6mVnZ7t5JsZ17drVUL3s7GxNnz7dzbMpG2SGAAC8TnF3x5E1AgAAgPKG7A/A0qRJk9S3b1/D9ffv36/OnTvr22+/degQdlcxcve8JOXm5hru89VXX1VBQYGzU3Ibo69V+vP1GjmIe8OGDfrxxx9LM63L2rZtq0aNGhkKjqWlpWnIkCFauHCh0+OdP3/e0GsMCwszFOjYs2eP+vTp4/R8XOmuu+7SN998Y6ju5MmTdeedd6pDhw5OjWX0fXQ3MkMAAOXKsoJFxf4HAAAAlDXWqIBjYmJidMcddzjU5vTp0+ratasGDRpU5lkiRr/EXblypc6dO1divblz52rmzJmlnZZbOPKF9ddff11inaNHj+r+++8vzZSsDB482HDdRYsWacSIEbp48aJDYxw/flx9+/bVL7/8Yqh+9erVDdX78MMPlZmZ6dBc3OWuu+5SeHi4oboXLlzQnXfeaXgLtaLmzp2rmJgYh9u5A8EQAAAAAAAAAGVq9uzZqlmzpkNtCgoK9Omnn6pZs2bq0aOH/vGPf2jVqlXat2+fUlJSVFBQoJycHJ08eVKbNm3SRx99pIceekibN28u1VyjoqIM1UtLS9N9992n48eP23w+IyNDo0eP1mOPPVaq+biT0dcqSc8995x++uknu89/9913uu6663T06FFXTO2yp556SiEhIYbrT58+XTfeeKOhs1/27Nmjp556Ss2aNdPSpUsNj2F067f4+Hi1bNlSI0eOVGxsrObNm6f58+db/Gc0W6O0QkNDNXToUMP1jx8/ru7du+u1115Tenp6sXVzcnL0ySefqEOHDnr00UeVkpJS2um6BNtkAQBMhS22AAAA4A5keACuVatWLX3xxRfq06ePQ9tLSVJ+fr7WrFlj+GDz0nLkEO5ff/1V0dHRuueee9SqVSvVqVNH6enp2r59u5YuXeo1XwrbU6tWLdWvX1+JiYkl1k1NTVWfPn3UqVMn9ezZUw0aNJD052HpP/74o3bu3OmWOUZERGjChAkaM2aM4Tbr1q1Tjx491LRpU918882Kjo5WjRo1dOHCBZ05c0b79+/X6tWrdfjwYafm1LFjRy1aZOzfiWPHjum9996z+3yDBg3Uv39/p+bhqHHjxumTTz7RqVOnDNXPysrSxIkTNXnyZPXo0UOdOnVSzZo1VaVKFaWkpCgpKUmbNm3Sxo0blZOT4+bZO45gCAAAAAAAAIAy16tXL82bN08DBw70yvMzLunevbvCw8OVlpZmqH5ubq6++OILN8/KfWJiYvTBBx8Yrr9x40Zt3LjRjTOy9txzz2nJkiVat26dQ+0SEhKUkJDg8vn07dtXL730ksv7dbewsDDNnj1bMTExKiwsNNwuOztbP//8s37++Wc3zs712CYLAFBhsI8zAAAAisN6ESh7AwYM0KJFixQUFOTpqdgVEBCgkSNHurTPqKgorzlI+0ojR46Uv79r76F/9NFHXdqfv7+/Fi5cqIYNG7q0X2e1atVK3bt39/Q0nHLHHXfojTfe8PQ0ygTBEAAAAAAAAAAec/fdd2vFihVq1KiRR+fh4+Nj97kXX3xR9evXd8k4/v7+mj9/vsNnppSVZs2aacSIES7rb/DgwXrkkUdc1t8lderU0W+//aYmTZq4vG9nvPvuuwoMDPT0NJwyduxYvfrqq56ehtuxTRYAACp5D2jOGwEAACj/yPAAvFenTp20Y8cOvfjii/roo4908eLFMhs7MjJSw4cP1/Dhw+3WCQkJ0ffff69u3boZ3i7LFl9fX82ePVu33HKL5s+f73Q/7vbmm29q9+7dpd4GqU+fPpo1a5bD21kZ1ahRI23cuFEPP/ywfvjhB7eMYVSHDh00a9YsDRkyxOFzcLzByy+/rObNm+tvf/tbqT7j3ozMEAAAAAAAAAAeFxoaqhkzZiguLk533XWX/Pz83DZWQECAbr/9di1YsEDHjh3TxIkTFRERUWybNm3a6Ndff3U6gyU0NFSLFy92S5aEq/n7+2vx4sUaOHCg03089thj+vbbbxUQEODCmVmrXr26vv/+e82bN89l2TvOGjRokNauXauuXbt6dB7Ouv/++7V792498MAD8vU1X+iAzBAAAAwo7i5CskYAAAC8B9kfQPnXpk0b/ec//1FiYqJmz56tr7/+Wjt37ix1v3Xq1FHPnj112223KSYmRtWqVXO4j44dO2rbtm2aMGGCZs+erezs7BLb+Pr66q677tLbb7/t8S/rHREcHKzPP/9cffr00Wuvvab9+/cbate8eXNNnjxZ/fv3d+8Er/DQQw9pwIAB+uKLL/Txxx9r7dq1KigocKqv9u3b65577nEqqHHddddp7dq1+v3337V06VJt2bJFu3fv1rlz55Senq6cnByn5nSJIwedO6NOnTr67LPPNH78eM2YMUNffPGFkpOTneorLCxMMTExeuihh1w8S+f4FLr73QMAwOQIhgAAAHgPgiGAOR09elQbNmzQli1btHfvXiUmJurkyZPKyspSdna2/Pz8FBYWprCwMIWGhqpatWpq2rSpWrdurdatW6tVq1aqU6eOS+eUnJysxYsXa8WKFYqLi9OZM2eUlpamoKAgRUZGqmXLlurRo4fuvfdeNW7c2Kr9uXPnlJWVVeI4wcHBTgVuXKmgoEA//PCDli1bpnXr1unEiRNKSUmRJIWHh6tx48a69tpr1bdvX918881WWQUXLlww/IV6vXr1XDLnM2fOaPny5dq8ebN27dqlo0eP6tSpUzp//rzy8vJUuXJlhYSEqGbNmoqOjlbz5s3VqVMnde3aVbVq1XLJHMygoKBAmzdv1po1axQXF6eEhAQdP35cqampysnJka+vr4KDgxUWFqYGDRqocePGatu2rbp27ar27dvL39978jEIhgAAUAYImAAAAJQegQ4AAOAs8238BQAAAAAAAAAAUASZIQAAeAEyRwAAAMj8AAAA7kMwBACAcoKACQAAKM8IdAAAAE9imywAAAAAAAAAAGBqZIYAAGAiZI8AAABPIOsDAAB4OzJDAAAAAAAAAACAqZEZAgBABUQGCQAAMIKMDwAAYBZkhgAAAAAAAAAAAFMjMwQAABSLLBIAAMyFbA8AAFARkRkCAAAAAAAAAABMjcwQAABQamSPAADgHcj6AAAAsI3MEAAAAAAAAAAAYGpkhgAAgDJFFgkAAI4h2wMAAKD0CIYAAACvReAEAGBWBDgAAADKFttkAQAAAAAAAAAAUyMzBAAAmArZJACAskaWBwAAgPcjMwQAAAAAAAAAAJgamSEAAKDCI5sEAHAJWR4AAADmRGYIAAAAAAAAAAAwNTJDAAAASoGsEgDwPmR3AAAA4EpkhgAAAAAAAAAAAFMjMwQAAMBDyCoBAPvI7gAAAIArkRkCAAAAAAAAAABMjcwQAACAcorMEgDejMwOAAAAeBMyQwAAAAAAAAAAgKmRGQIAAIDLyDYBKiayOAAAAGB2BEMAAABQZgi2AM4hWAEAAACUDttkAQAAAAAAAAAAUyMzBAAAAKZGNgpcjSwNAAAAoPwhMwQAAAAAAAAAAJgamSEAAAAAAAAAAMDUyAwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKbm7+kJAADKn4KCAqWnp3t6GgAAAADsCAsLk68v98ACAHAJwRAAgMPS09N15513enoaAAAAAOxYsmSJqlat6ulpAADgNbhFAAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKlxZggAwCUCttaQT77f5T/7+PqoyB+KL7co8yny0Ndmub36Rcst2tqrf+mxvXGKPDQ0vpExL3VqoL/Cos2K3r5g6zVYtS3hddira2ecEvuTVGhxi4Wd1+Fj9bTd8e2NWWhv/KLlRV16f23Nw2h/pRj/8vvisjENlMu63Nj76dhjQ/NypJ2d+k6/FyXNqTR9G63jQB+Ozks+hdZ1SvEabPZXjEJbbR0cx/4cbdex+OtUNuqU9LwkHyN92y0vLFJeaGxOV4xp+etv3d+VffrarWM9vr3+LP5qL/LYXt+GylVY7PNGHtubi6+Kb1v0ecvxC5zqr/j61n36WYxfYLOdn5HxZXu+fnb7LPj/MYuU2ZmrvXK7YxYptzV3e30UHcfPom8j70vRMe3M8f/b+tl7bYZev5052q1j/bjoUq3o71PRx35F6vjZqeNb5BfWt8hvgJ+syy3r+tpuV2TtmZHup0HPRQoAANhHMAQA4BI+eb7yuejiYIivnSBFob3yIm19fG2W2wwe2BvH3mN735L52Pm6yWY/jn7TqpLr2Hts8UVdCd+YWnC0TtFiO+NfDsY4ULe4qRip8/+fL2NfBhsZ09HxXT2mk49LMY7TQRpH28l2ucuDIS56na4Ohjg+vgeCIXb79EAwxFYdi3k7GgxxbMySghF2X7PslNt9X+zVsX7PfezVtfNe2B+/5Me2giGOPnY4SGEjGGL5vKPBkOIDAH/W8Sny2DoYYut56/7sBSBku7zIz8gykGBj3hZ9+BgoLzpf2Sy3nLutORVpZ9FH0TGLlpccJPKzeF+s69h/3nZAxUgwxH6d4oMhluMXKbfzflrWKVpu5+fy/48t68rq+SvH9LX1jw8AALDANlkAAAAAAAAAAMDUCIYAAAAAAAAAAABTIxgCAAAAAAAAAABMjWAIAAAAAAAAAAAwNYIhAAAAAAAAAADA1AiGAAAAAAAAAAAAUyMYAgAAAAAAAAAATI1gCAAAAAAAAAAAMDWCIQAAAAAAAAAAwNQIhgAAAAAAAAAAAFMjGAIAAAAAAAAAAEyNYAgAAAAAAAAAADA1giEAAAAAAAAAAMDUCIYAAAAAAAAAAABTIxgCAAAAAAAAAABMjWAIAAAAAAAAAAAwNYIhAAAAAAAAAADA1AiGAAAAAAAAAAAAUyMYAgAAAAAAAAAATI1gCAAAAAAAAAAAMDWCIQAAAAAAAAAAwNQIhgAAAAAAAAAAAFMjGAIAAAAAAAAAAEzN39MTAACYQ2FAgeRz8X8Fvj7/e+xTWHy5RZmddkXLfQvslBdt62un3MbjonUtnpftcrv9GRjzUqe25nHF40IbzYy3LdqgKJ8r/i8VqqS6RusUUWin3AaLvgvtlMtmlWLGt1HH7vtZ9LG9n7+D9W3NxWVjGngsG+WlGMfWR9jhuTg779I8LqtxjIxl5H22U9/+3wWF1nXs1LXfRwn9FaPQVlsHx7E/R9t1LP9qs1GnpOcl+Rjp2255YZHyQmNzumJMy19/6/6u7NN+HRvjW7y2kv72Laa+gceFl16rxefGscdF/jW/Yr4ljW+v7wLb5Xbr237sW6S+b5E+ff+/TtH+fIo+X6S8wG5//3t8UdZ9S5KfnT4vlRf9HPjZ6dteub25+FmMoyL1L9W1Lvuzne3HlvX/9wc/u+U+Nst9bTxvMU6R2RQd0/77UrStgffi/x/be/0W74XF+Hbq23mdfrIut6zra7tdkbVnRjr3ugIAUBKCIQAAl8jreNbTU4C3svP9lrcw8h05AMCSdVjiiuAGyjFbkUG+aAcAAOUfKxoAAAAAAAAAAGBqBEMAAA5LS0vz9BQAAAAAFIM1OwAAlgiGAAAAAAAAAAAAU+PMEACAw0JDQ63K5s2bp/DwcA/MBgAAAKjY0tLS9PDDD1uU2VqzAwBQkREMAQA4zNfXOrEwPDxcVatWLfvJAAAAALBia80OAEBFxr+MAAAAAAAAAADA1AiGAAAAAAAAAAAAUyMYAgAAAAAAAAAATI1gCAAAAAAAAAAAMDWCIQAAAAAAAAAAwNQIhgAAAAAAAAAAAFMjGAIAAAAAAAAAAEyNYAgAAAAAAAAAADA1giEAAAAAAAAAAMDUCIYAAAAAAAAAAABTIxgCAAAAAAAAAABMzaewsLDQ05MAAAAAAAAAAABwFzJDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApubv6QkAQGmkpqZq9+7dOnfunFJTU1VYWKjQ0FDVq1dPLVu2VJUqVVw+ZkFBgU6dOqWkpCSdPn1a6enpunDhgiQpODhYISEhql+/vqKjoxUQEODy8b1FTk6O/vjjD505c0apqam6cOGCgoODVbt2bTVr1kwRERGenmKFl5mZqT179ujYsWPKzMyUj4+PQkNDVb9+fbVq1UqVKlUqk3nk5uZq//79Onr0qFJTU5WTk6PAwECFhoaqdu3aatCgAZ8XAAC8BOtrz2F9jZKcPn1ae/fu1cmTJ5Wdna3AwEBVq1ZNjRo1UtOmTeXrWzb3PGdkZCghIUHHjx9XRkaG8vLyFBQUpPDwcNWpU0eNGjVSSEhImcwFABxBMASowNLT0xUfH6+9e/cqPj5e+/btU1JSklW91atXe2B29l24cEHffPONfvrpJx08eFCFhYU26/n7+6tjx4667777dP311zs9XlJSknbs2KFdu3Zp7969OnTokHJyckpsFxAQoLZt2+r222/XjTfe6PQXzx9//LHmzp3rVNsr1a9fX/Pnz3e6fWFhoVavXq3//Oc/2rVrl/Ly8uzWbdasmfr166c+ffrI359/bsrSli1btGDBAm3ZskUXL160WScwMFBdu3bVwIED1aJFC5fPobCwUGvXrtX333+vrVu3Xv5Cw56IiAhdc8016ty5s2688UYFBQW5fE4AALgb62tjWF//j6fX14WFhTp27Njlz+zevXuVkJCg8+fPW9S7/fbbNW7cOJeMCcdcvHhRP/74o77++mslJCTYrRceHq7bbrtN999/vyIjI10+j+zsbP3888/66aefFB8fr4KCArt1fXx8dNVVV6lDhw7q0qWLunTp4vL5AIAzfArtrXIAmM7Bgwe1YcMG7du3T/Hx8Tp58qShdt50sbZixQpNmzZNKSkpDrXr0qWLxo4dq6pVqzo85tChQ7V7926H2xVVq1YtjRo1yqlFoLdcrB04cEBvvPGG9u/f7/CYEyZMUPPmzZ0aF8ZlZmZqypQpWrVqleE2Pj4+uuuuuzR8+HCX3Wm5a9cuvfPOO8VerBVn+vTpuuaaa1wyFwAA3In1Nevr8ri+XrVqlXbv3q34+HglJCQoMzOzxDYEQzzj8OHDeuWVV3Tw4EHDbYKCgvT000+rb9++LpvHjz/+qJkzZzr894Qk+fn5acWKFS6bCwCUBmeGABXI0qVLNXPmTK1YscLwhZo3mTVrliZOnOjUAmzDhg168skndfz4cTfMrGSnTp3SmDFj9PHHH3tk/NJatWqVnnrqKYcv1CQpMTFRw4cP1/r1690wM1ySkpKiYcOGORQIkf68G/A///mPXnjhBUN3ZJZk/vz5GjFihNOBEAAAyhPW16yvneXJ9fWUKVP0xRdfaPv27YYCIfCMnTt3aujQoQ4FQqQ/MzimTp2q2NjYUs/hwoULevnllzVp0iSn/p4AAG/DviUAyoV58+bZvOPqUqp+x44dFRERofz8fCUlJWnTpk3auXOnRd2kpCSNGjVKH374ocLDw52eS9WqVdW8eXPVq1dPtWvXVmhoqIKCgpSbm6uMjAwdPnxYW7ZssXlhOHfuXAUGBuqhhx5yenxJatKkiVPtateu7XCbuLg4vfLKKza3W2rRooW6dOmiWrVqKTAwUGfPnlVcXJw2bdqk3Nzcy/Vyc3M1YcIETZs2TW3atHFq7rAvNzdXY8aM0ZEjR6yeu+qqq9SzZ0/VrVtXhYWFOn78uH777Terz+f27dv1+uuv64033nB6Hu+//74WLVpkVe7n56dWrVqpffv2qlGjhqpWrarc3Fylp6fr8OHDSkhI0L59+4pNtQcAAK7F+toS62t4k2PHjmnMmDFW25VJUvv27XXdddcpKipKWVlZOnz4sJYtW6aMjAyLel988YVq1KihAQMGODWH7OxsvfDCC1a/99Kf2ScdOnRQy5YtVa1aNYWEhCg7O1spKSk6ePCg9uzZ47FAKQAUh2AIAAUEBKhRo0Zq3ry5VqxY4XV3B23ZskWzZ8+2Kr/66qs1ZswY1a9f3+q5QYMGaceOHZo0aZJOnDhxufzUqVOaNGmSJk+ebHj80NBQ3XTTTerUqZPatWununXrGmq3detWTZs2TYcPH7YonzNnjrp27apGjRoZnsOVyuoOuLNnz2rixIlWF2qRkZEaM2aMzb2iBwwYoJMnT2rq1KnasmXL5fK8vDxNnDhRn376qYKDg90+94pk1qxZ2rt3r0WZv7+/Ro0apZiYGPn4+Fg89/jjj2vp0qV65513LH62a9as0TfffKP+/fs7PIf58+dbBUL8/PzUt29fPfroo6pWrVqx7VNTU7V27Vp99913VvMFAKC8YX1dPNbX3rm+Dg8PV7NmzRQaGqrffvut1P3BOQUFBXrttdes/t6oXr26Xn/9dV199dVWbf72t7/p3//+t5YsWWJRPmPGDHXs2FGNGzd2eA4TJ060CoSEhIRo8ODB6tevX4ln9hw9elQrVqzQjz/+6NDYAOBOBEOACsbPz08NGzZU8+bN1aJFCzVv3lxNmjS5fFbA5s2bvepirbCwUB988IHVHeMdOnTQlClTil2AtW3bVtOnT9fTTz9tccG2fv16rV27Vt26dTM0h6lTpzo1944dOyo2NlbPPfec9uzZc7k8Ly9PX375pcaOHetUv2Vp/vz5OnfunEVZRESEpk+fXuxdcLVr19abb76pCRMmaN26dZfLk5OTNWfOHD399NNum7OnPfPMM4qLi7v857Fjx6pPnz5uG+/w4cNavHixVflrr71m9zPu6+urO++8U9WqVdPf//53i+c+/PBD3XzzzQoNDTU8hx07dlh9oVKlShVNmTJFbdu2NdRH1apVFRMTo5iYGLuHtgIA4I1YX7O+doS3rK9DQkLUtGlTtWjR4vLntk6dOpL+zBgmGPI/PXr0sPjzggULnMoIMur7779XfHy8RVlYWJhiY2PtjhsUFKQXXnhBlStX1sKFCy+X5+fna9q0aXrvvfccmsNnn32m//73vxZlDRs21Ntvv62IiAhDfVx11VV65JFH9PDDDzs0NgC4E2eGABXIAw88oJ9++klz5szRSy+9pP79+6tly5YuOzTZHdauXWu1j25oaKjGjx9f4p0o0p8XFuPHj7e603zOnDkunac9wcHBNi/K1qxZo/z8/DKZg7NSUlL03XffWZW/9NJLhhb//v7+GjdunNVi+ZtvvtHZs2ddNs+K7rPPPrO6s7Bv376Gvozo3r27YmJiLMoyMjJsBlfsyc/P19SpUy3mEBAQoLfeestwIORKZIYAAMoL1tf/w/q6ZN6yvv7oo4/0/fffa9q0aRo2bJh69ux5ORACz7p48aLN7etGjhxp6DMyZMgQqwypuLg4i5u1SnL06FHNnTvXoqxu3bp67733DAdCimJtD8CbEAwBKpCIiAhDFzjeZPXq1VZl/fr1c2gR1qZNG3Xq1MmiLCEhwebep+5w6U7BojIzM70+ILBhwwaLfYklqXXr1jZT9+0JDQ3VfffdZ1GWm5urH374wSVzrOgyMjKs7trz9/fX448/briPxx9/XH5+fhZl3333neHzO7799lslJiZalD344INq3bq14TkAAFBesb7+H9bXJfOW9XWdOnX4gtpLbdq0SSdPnrQoa9y4sXr37m2ofWBgoB599FGr8m+//dbwHGbNmqW8vDyLshdeeEFVq1Y13AcAeCuCIQC82tatW63Kbr31Vof7ue2226zKli1b5tScnGHrTitvv1hz1Xtvq80vv/zi1JyulJiYqLVr12rp0qWaP3++Fi5cqF9++UVxcXG6cOGCS8bwZqtWrbK6UOnevbuqV69uuI8aNWpYZZEkJydrx44dJba9ePGiFixYYNVfaQ8wBQAA7sP62nPKw/raky5evKg9e/Zo5cqV+uabbzRv3jwtXrxYv/76q/bu3VshtlL99ddfrcruvPNOh/ro1q2b1fXA2rVrlZOTU2Lbo0ePas2aNRZl3bt3V8eOHR2aAwB4K84MAeC10tLSdObMGYuykJAQNWjQwOG+2rRpY1W2YcMGp+fmqCvvAJP+vIPfmx04cMCqzJm7/WvUqKHatWtb3OF05MgRnThxwql0/KNHj2rhwoXauHGjTp06ZbdeYGCg2rVrpwEDBjh0t115smnTJquyG2+80eF+brrpJq1atcqi7L///a/at29fbLutW7da/QxuueUWBQYGOjwHAADgfqyvPctb19eetmXLFi1ZskRbtmwp9nyd8PBwde7cWQ899JBTn1lvV1hYqM2bN1uVO7q+9/f3V7du3SwOU79w4YLi4uLUuXPnYtv+8MMPVhnif/nLXxwaHwC8GZkhALxWamqqVVnNmjWdSumOjIy0apeUlGRx8KO7FBYWat++fRZlvr6+bj10zxXS0tKsymrVquVUX1FRUVZljuxbe2k+U6ZM0SOPPKJvv/222ECI9OcF8qZNm/TCCy/omWee0enTpx0arzz4/fffrcquueYah/ux1cZW31dasWKFVdktt9zi8PgAAKBssL72LG9bX3vagQMH9Oyzz+q5557TypUriw2ESH++fz///LMGDx6sf/3rXzYDYuVZYmKizp07Z1FWr149h7K+L3F2fb9y5UqLP4eGhpr2xjIAFRPBEABeKz093aosODjYqb58fX1ttr3yIsodli1bpuTkZIuyFi1aKDQ01O1jl4at979KlSpO9RUSEmJVtnfvXsPtjx49qqFDh+r777+3OizciLi4OA0ZMkR79uxxuK23Sk5OVkpKikVZVFSUU4caRkZGWl1QHzhwoMT3esuWLRZ/DgwMVJMmTRweHwAAlA3W157lTetrT1u3bp2eeuopbdu2zeG2Fy9e1JIlSzRy5Eir4EF5Zuvn5+w5fLYyt0r6fJw4cULHjx+3KGvevLnXZ1wBgCP4Gw2A17J1GGVpzoGwtUfqkSNHnO7PiE2bNumtt96yKh8wYECp+l24cKF+//13HTx4UKmpqcrJyVFoaKhCQ0NVu3ZttW3bVu3atbO5CDaqUqVKys/PtyjLzc11ajFcmvf+8OHDGj58uDIyMqyea9mypa6++mpdddVVCg0NVX5+vs6ePatdu3Zp48aNFneLpaSkaPTo0froo49s3klX3lx5aLkk1a1b1+n+6tSpo6SkpMt/zsnJ0enTp+3eYXn69GmL+pIUHR1tcRj72bNn9fPPP2vz5s06dOiQ0tPTFRgYqKpVqyoyMlLt27fX9ddfX6rPKQAAMI71tX0VaX3tacuWLdMbb7xhtR1TQECAOnTooJYtW6pmzZoKCQlRdna2Tp48qW3btlllNvzxxx8aP368pk2bZoov7G2t7+vVq+dUX1FRUfLz87O4ueno0aPFttm1a5dV2ZU3Oh04cODyGY3Hjh3T+fPnFRwcrKpVq6pevXrq2LGjunTp4vS8AcDdyv+/FgBMKzw83KrMVmq/ERkZGVYXHpKs7nxxhaysLP3+++/64YcfrM5hkKQePXqoV69epRpj+vTpVmXnzp3TuXPnlJiYqI0bN0r688vpv/71r+rdu7fFl9RGhIWFKSsry6IsNTXVqbvXbP3cjGyhkJ2drZdfftkqEHLDDTdo6NChatiwod22Z8+eVWxsrMVhkmlpaXr55ZcVGxsrX9/ynRxZdI/oS5zdZkGyvdXCiRMn7AZDDh48aFV26aLn4sWL+uyzz/TJJ59YHfCen5+v8+fP68SJE9qxY4fmzp2rNm3a6MknnyzxjBIAAFA6rK/tqyjra087dOiQpk6dahEI8fPz04ABAzRw4EBVrVrVZrvHHntMCQkJevPNNy0yHHbu3KlZs2bpqaeecvfU3c7WNsDO3sTl5+enyMhIiz6Tk5OVn59vN3Bk60ybS+v79PR0vfvuu1q+fLlVnfT0dKWnpysxMVHr16/Xv//9b/Xq1UuPPfYYQREAXodgCACvVa1aNfn7+1tcZJ0+fVrnzp1TtWrVHOrLXkqws2nV8+fP12+//WZRlpubq8zMTKuti4q64YYbNGHCBKfGdMbBgwf1z3/+Uz/++KMmTJjg0BZKNWvWtPrCPT4+3uFDGS9cuKDDhw9blRf3Pl0SGxtr1Xbo0KF64IEHSmxbo0YNjR8/XnXq1NHcuXMvl+/Zs0crV64s9QWzp9l6/2rWrOl0f7baFvf7YetiOzg4WOnp6Ro9erR2795teOxdu3bp2Wef1eDBg/Xoo48abgcAABzD+rr0yvv62pMKCgr0yiuvWGS1BAUFadKkSerQoUOJ7Zs2baoPPvhAY8aMsdiudfHixbr33ntLtRb2Bu5Y3xcNhly8eFGpqal2P7O2brYKDg5WfHy8xo4dq7Nnzxoat6CgQMuXL9f69ev18ssv64YbbnDuBQCAG5Tv22IBmFpgYKBatGhhVb5+/XqH+7LXxtYhhkYkJydr//79Fv8lJibavQCJjIzU888/r0mTJtncnsAZISEhql27tho1aqTIyEgFBgbarbt9+3Y9/vjjNi+a7LF16N6GDRscnuemTZts3jWYm5ur7Oxsu+2Sk5P1/fffW5T179/fUCCkqMcee0zXXnutRdlnn33mUB/eyNae00FBQU73Z6ttcb8fti6G/P39NXbsWKtAiK+vryIiItSgQQO7X7QUFhZqzpw5Nre9AAAArsH6unhmX1972qpVq3To0CGLspdeeslQIOSSgIAAvfbaaxZZTnl5eVq4cKHL5ukpZbG+tzXGJbbW96mpqRozZozVc4GBgapVq5bq169v8/waSTp//rzGjRtnM5sEADyFzBAAXq1jx45We5cuXrxYt99+u+G09PT0dP300082n3P3xUJQUJAGDx6se++9VwEBAaXqq27duurSpYs6deqkxo0bW93Rc/HiRSUkJGj9+vX6+uuvrS5Ez507p9GjR2vGjBmqXr16ieN16NBB8+bNsyhbsWKFhgwZosjISMPzXrBggd3ncnJy7C7wFy5caLHFUnBwsIYOHWp43KIGDx5scfdYQkKCTp06VaptpTzN1j7RxV2wl8TRPcRtneGydOlSizY1a9bU4MGD1aNHD4WFhV0uT05O1vLlyzV//nyrfr799lu1bNlSd9xxhzMvAwAAlID19f9UtPW1p33++ecWf27fvr169uzpcD8hISG69957NXv27Mtlq1ev1tNPP13qOXqSrfV9aQJ9tq4NbI1xia31/YwZMyzW961bt9Yjjzyijh07WvR/4MABLVmyREuWLLE4p6SgoEBvvvmmoqOjFR0d7exLAQCXITMEgFeLiYmx2tN0//79mj9/vqH2hYWF+te//qXMzEybz9u6o8qVsrOzFRsbqyeeeEI//vijCgsLHe6jTZs2evfdd/XFF1/omWeeUadOnWymNvv5+alFixZ67LHHtGjRIv3lL3+xqnPq1Cm9+eabhsbt0KGDGjRoYFGWm5uryZMnWx12aM/ixYutDjos6srzJIq6cj/onj17OrWfsvTne3jlHUvbt293qi9vYeuzW5qLJVtti/v52Hqu6IXStddeq08//VQxMTEWgRDpzzs5Bw4cqE8++cTmRdG0adOcvqsUAAAUj/V1xV1fe9LJkyettlaz9X4a1aVLF4s/nzp1yuaZG+WJrd8dV9/sVNzvZ0nr+4ceekixsbHq0qWL1bwaN26sUaNGadq0aVbXXTk5OYZ/RwDA3cgMAeDVoqKidOutt+qHH36wKP/4448VEBCggQMHysfHx2bbCxcu6O2339bKlStdPq9Ro0Zp1KhRFmVZWVlKS0vT/v37tW3bNv3yyy+XLxIPHTqkSZMm6aefftLEiRMN3Tl2yfXXX+/w/CpXrqwxY8YoKipKH3/8scVz69ev1++//24zTb8oHx8fPfTQQ3rjjTcsyjdv3qxXXnlFY8eOLfaus6+//lrvv/9+iWPYYuti5uqrry62r+L4+vqqVq1a2r9//+WyhIQE9enTx26btWvXWr13Rlx5aOjs2bO1aNEih/qoUaOGpk6d6vDYpWHvZ2FPcV88NGjQwNCWFREREXr77bc1aNAgi+BHdna2vvrqKz3++OMOzQkAAJSM9XXFXF97WlxcnFVZadb3tWvXtipLSEgoNvN79uzZWrdundNjXjJ69GiHs5K6du3q1Nq2ND9PW22LW8MX99wdd9yhIUOGlDjmNddco9dee03PP/+8RX+7d+/W1q1b1bFjxxL7AAB3IhgCwOsNHz5c27dvtzjQrbCwUDNmzNCKFSvUr18/dejQQTVq1NDFixd1+vRpbdq0SV999ZXFF+rVq1e32nO4NHfaXCk4OFjBwcGqU6eOevTooSFDhmjGjBn65ptvLtfZvn27nnnmGb3//vsOH1LpjMGDB2vv3r1Wi/4vv/yyxIs1Sbrtttu0evVqrVmzxqJ85cqV2rlzp+6991517txZtWrVUkBAgFJSUhQXF6clS5ZYbL9g672X7L//O3futCr79NNPHQ4qFHVlkKKkzIOMjAyL4ImzTp8+rdOnTzvUxt6dlkVdeUenVPy2ViWx1dbWGEaee/755w1nqVSvXl1/+9vfrO4W++677wiGAADgJqyvnVde19eeduXWbJL097//3aVjlLS+T0pKcsn6/siRIw63adKkSYl1ymJ9X1wQx976PiQkRCNGjDA87rXXXqvevXvrl19+sSj/7rvvCIYA8DiCIQC8XmhoqP7xj39o1KhRVge+7d2711DKbYMGDfTggw/qn//8p1Xf7lKlShU999xzql27tmJjYy+XJyYmatKkSWWWKjxs2DBt2LDBIvV+69atys/PL/YL7UvGjRunZ555RgkJCRblZ8+e1cyZMzVz5sxi2wcFBWnixIkaOXKkRbmPj4+Cg4NttklOTrYquzKYUVrFHR5YHlSuXNmqLDc31+n+bF0s2RqjpOeio6PVrl07h8bu3bu3YmNjLfYpTklJ0ZEjR6y2kgAAAKXH+rp0yuP62tNs3RzkisBEUeV9m1VHz/AriavW97fddpvDn6u7777bKhhiKzsIAMoaZ4YAKBeaNm2qGTNmOPXFaPPmzTV16lT5+lr/lVejRg1XTK9YAwcOVKdOnSzK/vvf/1oc6O1O9evXV7NmzSzKsrOztXv3bkPtg4ODNX36dHXv3t3hsatXr65//vOfqlevntVz4eHhdi8Wy+JCpjQXFt7gynM4pNIdWGqrbXh4uN369p677rrrHB67UqVKNu+ktJUhBAAAXIP1tfPK4/ra08riRqTyvr63tb529fre1jVESc85s75v2bKl1dkhKSkpOnbsmMN9AYAreee/kgBgQ7169fTRRx/p22+/1eeff24zLbyoypUr6/7779egQYPk7++vDRs2WNWxtdesOwwaNEgbN260KFuyZImuvfbaMhm/ffv2io+PtyhLSkoy3D4oKEhvvPGG1qxZozlz5pR4F5evr69uvPFGjRo1SlWrVtXhw4et6tSpU8dueyPbRLlbnz59ij1TxJ5nnnnG4q6nsWPHOtVPSWzti+3odlwltS1uqwl7X3Q0bdrUqfGbNm1qtd3EmTNnnOoLAAAYw/raeeVtfe1pRTOAPWXcuHEaN26cw+169Ohh8ecFCxa45XNua+1tK2PeqCvX976+vqpatard+q5c3/v4+KhJkyZW2SBnzpyxGcgDgLJCMARAuVKpUiUNGDBAd999t/744w9t3bpVR44cUVpamrKyslS5cmXVrVtXbdu2Vbdu3SzS9G3t7RodHV0m827VqpVCQ0MtLgK2b99eJmNLthe2qampDvfTvXt3de/eXQcPHtSWLVu0b98+paamKj09Xf7+/qpZs6Zatmyp7t27W1yM2bpYK+69t7XX8dSpU63uAKzIbF2AOXIBbqRtcRd59i62i8smKY6tduV9qwMAAMoD1tfOKW/ra0+ztQXUsmXLDJ8zVxHYWnsXPaPHEQUFBVY3FkVGRhabOWRvfV9cNklxbLUr71sVAyj/CIYAKJf8/f3Vtm1btW3b1nCbAwcOWJW1adPGldOyy9fXV1FRURYXa2lpaTp//ryqVKni9vFt7f9amjTy6Ohohy62Dh48aFVW3Htv644lFs6WrrrqKquy0pyrcuLECYs/V6pUSVFRUXbr29tSo7hDGYtjKwBWmjNQAACAY1hfO6a8ra89zdaNLxkZGQRDiqhfv75VmbPr+6SkJOXn55fYf1Gs7wFUBJwZAqBCyM3NtTqgsHbt2mWaSm5rMXj+/PkyGdvWXWrFpUi72h9//GFV1qFDB7v1baWIlybrwYxq1qxp9T6dOnXKqa2lzpw5Y3XXWZMmTeTn52e3TbVq1WwGS7KyshweX7K9NZqzWSYAAMD9WF+nWpV58/ra02xt8eps1oNZXXkOjWT752zErl27DPVfVIsWLWyWu3J972yWCQC4CsEQABXC+vXrrS6MevbsWaZzOHfunFVZWX3Za2sLg7IaOyUlRdu2bbMoa9WqlWrVqmW3TatWrazKduzY4fK5lXeuOnT8999/N9T3ldq1a2dVdvLkSYfHt9euLL9QAAAAjmF9Xb7W157WsmVLqzLW95YaNGhgtf49evSozc95SWxdE5SU9VWnTh2bNzs5u763FexifQ/A0wiGAKgQfvzxR4s/+/j46I477iiz8VNSUqwWg6GhoU6nHDsiPz9fmzdvtipv0qSJ28eWpJ9//lkXL160KPvLX/5SbJvGjRtbZT3s2LGDMySuYOsMlZUrVzrcz6pVqwz1faUuXbpYldm6C80IW3e9OXsYOwAAcD/W1+Vrfe1p1113nVXZ6tWrPTAT7+Xj42PzfbK1Vi9Ofn6+1qxZY1EWGBho80amK7lqfZ+RkWEVMAwMDLS7FRcAlBWCIQBMb9OmTdqwYYNFWbdu3UrcM9WVli9frsLCQouy1q1bl8nYP/zwg1Uaf/369Ys9HNtVUlJSNG/ePIuy6tWr67bbbiu2nY+Pj7p27WpRlpOTo6+++srlcyzPevToYXXBv2bNGofuHktJSbG6WIqIiDB0sdS1a1cFBwdblG3YsMFi724jDhw4YLXNRuXKlcvsdwQAADiG9XX5W197WsOGDVWvXj2Lsj179mjr1q0empF3uvnmm63KlixZ4lAf69ev19mzZy3KunXrZvOcmyv17t3bquyXX35xaPxLba78/WzTpg1nxADwOIIhAEwtJSVFb731lkWZv7+//va3v5XZHM6ePatPP/3UqrxHjx5uH/vEiRP66KOPrMpvuukmt4+dn5+vqVOnWu0V++STT9rc3/lKDz74oNWZFZ9//rl2797t0nmWZ2FhYVbbUeTn5+vjjz823MfHH39sdbhi37595etb8hKhUqVKVnchXrhwQfPnzzc8/qU5XKlLly6GPicAAKBssb4uv+trT3v44Yetyt58802lp6d7YDbe6frrr7fa7mz//v369ddfDbXPy8uzubbu37+/ofZXX3211dkiu3fvtgp+Fuf8+fP68ssvrcrL4ncEAEpCMARAmRgwYIB69Ohh8d/27dsNt78yDdyIM2fOaOTIkVZ7nD788MOG71qLjY1VYmKiw2NfkpycrFGjRlkt8KtXr17insrZ2dn6/PPPnT4E8ujRoxo9erTVXWthYWG6//77DffjzHufl5en119/XevWrbMob9++veHtE+rWrWtVNy8vT+PGjXPqXAzpz9fy66+/6sMPP3SqvTeyFTRasmSJ1q9fX2LbdevWWd1pFhISonvuucfw+AMHDlRQUJBF2YIFCwyNL0lfffWVVWaKj4+PBg0aZHgOAABURKyvWV9Ljq2vPe3WW2+1+pycPHlSo0eP1pkzZ5zqMysrS59//rlT2QveyN/fXw8++KBV+bvvvmvowPlZs2bp4MGDFmXXXHONoazvSx5//HGrsilTpujEiRMltr148aKmTJmipKQki/LIyMhy8zkFYG4EQwCUC0OGDFFsbKwOHDhQYt3c3Fx99dVXeuSRR6z2Ke3YsaMeeeQRw+OuWLFCgwYN0vjx47Vy5UpduHDBULuMjAwtXLhQgwYN0uHDh62ef/rpp622F7pSfn6+ZsyYofvuu0/Tp0/Xzp07rVKNbbl0J84TTzxh80LzySefVGhoqKHXIUn/+te/9I9//ENbt261yiC4UmFhoTZs2KDBgwdrxYoVFs9FRERowoQJ8vHxMTz28OHDFR0dbVGWkpKikSNHKjY21ir92579+/frww8/1MCBA/Xqq69q//79hufg7Ro1aqS77rrLoqywsFDjx4/X0qVLbX5mCgsL9d1332nChAlWzz3xxBMKCwszPH6NGjU0ZMgQi7KCggKNHz9eixYtsvuZyc7OVmxsrN577z2r52JiYqx+7gAAwLVYX1fM9bUn+fn56bXXXlOVKlUsynfv3q3HH39cX3/9taHPQ35+vrZs2aKpU6fqvvvu04wZMwxfF5QHMTExVtkZaWlpGjZsmN3zO3JycvTWW29pwYIFFuV+fn569tlnHRq/S5cuVllWKSkpGj58uDZu3Gi3XVJSksaOHWv1OZWkoUOHlovsJQDm51No5F9+AKbx4osvFrtQPHz4sNWCvKSDAN98801FREQUW2fAgAFWd7JMmzZN7du3L2HGf7rnnnuUnJwsSYqKilKbNm0UHR2tGjVqqEqVKsrKytK5c+cUHx+vzZs3Kzs726qPFi1a6J133inxIqm4eQcGBqpJkyZq2rSp6tatq5CQEIWEhCgvL0/nz5/XiRMnlJCQoN9//125ubk2+xw4cKCGDRtW4tgZGRlWWxBVq1ZNzZo1U+PGjRUZGamQkBBVqlRJWVlZSklJ0R9//KG4uDi7d7vdf//9Gj58uOHXL0mvv/66li1bJunPrIFrrrlGjRs3Vq1atRQcHKy8vDydO3dOiYmJ2rBhg83PV3h4uN599101btzYobGlP+8WGzZsmFJSUqyeCwgIUOvWrXXNNdcoMjJSYWFhysvLU2ZmplJSUrR//37t3bvXak5dunTRlClTHJ6LEc8884zi4uIu/3ns2LHq06ePW8a65MKFC3rqqaeszt2Q/ty/ulevXpf3sD5x4oR+/fVXHTt2zKruDTfcoEmTJjl8QV1YWKgJEybYPASzVq1a6t69uxo1aqTg4GClp6dr3759Wrt2rc2zTVq0aKHp06dzsQQAKDdYX7O+Lm/r6/j4eL355pt2n8/Oztbx48ctykJDQxUVFWW3TfPmzTVmzBhD469bt07jx4+3mSETEhKidu3aqVWrVqpatapCQkKUnZ2tzMxMJSUlad++fUpISFBWVpZFu2HDhmngwIGGxnfUlYGBBQsWuP18mKNHj2rIkCFWr1OSOnTooOuuu05RUVHKysrS4cOHtWzZMpvbjT311FP661//6vD4GRkZevLJJ21mg7Ro0UJdunRR7dq1FRAQoJSUFMXFxWnjxo02f0fvuecejRw50uE5AIA7+Ht6AgDK1pEjRwyl1xZV0l30eXl5pZmSw5KSkpSUlGR431Tpzy+/J06caHUXkqNyc3O1e/dup86t8PPz0+DBg0u1/c+5c+e0cePGYu/IsTf2Aw88oCeeeMLpsSUpMzNT69evN7wFkiTVq1dPU6ZM0VVXXeXUmLVr19bMmTM1ceJEq/c9Ly9PcXFxFsGHiqhSpUp68803NXLkSKu7FRMTEzV37twS+2jbtq0mTpzo1J2FPj4+mjBhgsaPH2/12Tx16pQWLVpkqJ/WrVvrjTfeIBACAChXWF+zvi4NT6yvs7OzHc6UzsjIUEZGht3nQ0JCDPfVtWtXvfPOO3rllVesbnjKzMzU2rVrtXbtWofmZzZXXXWVJk+erNGjR1sFIrdt26Zt27aV2MeAAQOcCoRIfwa/3n77bY0aNcpqW7z4+HjFx8cb6qdv374OBwsBwJ3YJguAqYWHh2vUqFGaPHmyUxdqlStXdsk82rRpow8//NAj5yBER0frvffe05NPPlmmKfT+/v665557NHv2bKcv1C6JiorS+++/r0GDBjl0oWVLgwYN1KtXr1L14Y1q1Kih2NhYde/e3aF2Pj4+6tevn9566y2rsz8cUalSJU2ePFkPP/yw/P0du9fCz89Pd999t9577z1Vr17d6TkAAAD3Y31tjvW1p7Vr104fffSRbr31Vqvz7xzh4+Oj9u3bq23bti6cnXdo27atYmNj1ahRI4faBQUF6fnnn9fTTz9dqvHr1KmjWbNmOXx9If0ZTHnhhRf04osvOnxtAADuxN9IAMqFv//971q7dq22bt2qI0eOqKCgwG5dHx8fNWnSRLfeeqtiYmIcStu/0pw5c/THH39o48aN2rVrl+Lj421uEWBrDnXq1FGXLl10++23W+35akRISIhmzpypuLg47dixQwkJCZe3MihJjRo11L59e/Xt29fwVgn2PPzww7rqqqu0adMm7du3z+72BJfUrFlTvXr1Uv/+/VWnTp1SjV1UQECAHn/8cd1///369ttvtXbtWsXHx5d4AKW/v79atmypjh076oYbblCLFi1cNidvExoaqjfeeEObNm3SwoULtXXrVrvvT2BgoG644QYNHDhQLVu2dMn4fn5+evLJJ3X77bdrwYIF+u2335SZmWm3fvXq1dW1a1c9+OCDLv2sAACAkrG+Zn3taRERERo/frwee+wxLV68WJs2bbI6k8aWKlWqqF27durYsaO6d++uWrVqlcFsPSM6OlqzZ8/Wjz/+qK+//rrYjJ7w8HD17t1bf/3rX1WzZk2XjB8eHq433nhD27Zt06JFi7Rp06ZiM9fq16+vW265Rffee2+pb2IDAHfgzBAA5U5WVpYOHjyokydPKjU1VdnZ2fLz81NoaKhq166tZs2aqWrVqm4Zu6CgQCdPntTJkyeVlJSkrKwsZWdny9/fX8HBwapSpYpq1qyppk2bluoi0Z60tDQdP35cp0+fVkpKinJycpSXl6egoCCFhoYqLCzs8n7D7pCXl6dDhw7pxIkTOnv27OW9k4OCghQVFaXo6GjVrVvXLWPbkp2drfj4eJ09e1ZpaWnKzMxUYGCgqlSpomrVqql+/fqqV69ehb0bKSMjQ3v27NGxY8cu7zccFhamq666Sq1atXLZnZn2XLx4UQkJCTp06JDOnTun/Px8hYSEKDw8XI0aNeKQdAAAvATra9bX3iIlJUX79u1TWlqa0tLSlJ2draCgIFWpUkWRkZGqX7++atWqVW4OjXe1pKQk7d27V6dOnbr8e1K9enU1atRIzZo1k6+vezeAuXT9lZiYeHnbtLCwMFWrVk0tWrRQZGSkW8cHgNIiGAIAAAAAAAAAAEyNM0MAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACmRjAEAAAAAAAAAACYGsEQAAAAAAAAAABgagRDAAAAAAAAAACAqREMAQAAAAAAAAAApkYwBAAAAAAAAAAAmBrBEAAAAAAAAAAAYGoEQwAAAAAAAAAAgKkRDAEAAAAAAAAAAKZGMAQAAAAAAAAAAJgawRAAAAAAAAAAAGBqBEMAAAAAAAAAAICpEQwBAAAAAAAAAACm9n+07beOsqj05QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the 90% confidence region\n", + "ts.plot_ts(skycoord = coord, containment = 0.9)" + ] + }, + { + "cell_type": "markdown", + "id": "ebb53a69-63be-48b3-9668-f9dae007267c", + "metadata": {}, + "source": [ + "## Improvements in progress" + ] + }, + { + "cell_type": "markdown", + "id": "9fe82127-8feb-4ca6-8fc8-881cd8657c2c", + "metadata": {}, + "source": [ + "The current method can generate the TS map for a GRB and Crab. However, the computation time needed on a personal laptop is still long and requires a massive amount of RAM (~30-40 GB). The future improvements will include:\n", + "- Optimization of the speed\n", + " - Faster algorithm for Newton-Raphson's method\n", + " - GPU computation\n", + "- Optimization of the RAM usage\n", + " - Share memories among parallel processes" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "cosipy_fastts_pythonv3_10", + "language": "python", + "name": "cosipy_fastts_pythonv3_10" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}